PROTEIN DATA BANK LIST OF IDCODE, RESOLUTION, AND COMPOUND NAMES Fri Apr 5 10:39:25 EDT 2024 IDCODE RESOLUTION COMPOUND ------ - ---------- - -------------------------------------- 7RWG ; 0.97 ; ""Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor AGI-43192 2QPS ; 2.2 ; ""Sugar tongs"" mutant Y380A in complex with acarbose 6F4G ; 1.9 ; 'Crystal structure of the Drosophila melanogaster SNF/U2A'/U2-SL4 complex 7W7V ; 3.0 ; 'late' E2P of SERCA2b 5NQ2 ; 1.54 ; 'Porcine (Sus scrofa) Major Histocompatibility Complex, class I, presenting IAYERMCNI 5NQ3 ; 1.57 ; 'Porcine (Sus scrofa) Major Histocompatibility Complex, class I, with human beta2 micro globulin, presenting EFEDLTFLA 2E5O ; ; 'Solution structure of the TRIP_4C domain of target of activating signal cointegrator 1 3RK1 ; 2.3 ; 'X-ray crystal Structure of the putative N-type ATP pyrophosphatase (PF0828) in complex with ATP from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR23 5L5V ; 2.7 ; 'Yeast 20S proteasome with human beta5i (1-138; V31M) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 18 1N21 ; 3.1 ; (+)-Bornyl Diphosphate Synthase: Cocrystal with Mg and 3-aza-2,3-dihydrogeranyl diphosphate 1N20 ; 2.3 ; (+)-Bornyl Diphosphate Synthase: Complex with Mg and 3-aza-2,3-dihydrogeranyl diphosphate 1N24 ; 2.3 ; (+)-Bornyl diphosphate synthase: Complex with Mg and product 1N1Z ; 2.3 ; (+)-Bornyl Diphosphate Synthase: Complex with Mg and pyrophosphate 1N23 ; 2.4 ; (+)-Bornyl diphosphate synthase: Complex with Mg, pyrophosphate, and (1R,4S)-2-azabornane 1N22 ; 2.4 ; (+)-Bornyl Diphosphate Synthase: Complex with Mg, pyrophosphate, and (4R)-7-aza-7,8-dihydrolimonene 1DSA ; ; (+)-DUOCARMYCIN SA COVALENTLY LINKED TO DUPLEX DNA, NMR, 20 STRUCTURES 1DSM ; ; (-)-duocarmycin SA covalently linked to duplex DNA 6OIA ; 1.777 ; (1S,3S)-3-amino-4-(perfluoropropan-2-ylidene)cyclopentane-1-carboxylic acid hydrochloride, a potent inhibitor of ornithine aminotransferase 8QML ; 1.4 ; (2R,4R)-MeTDA bound HydE structure (control experiment) 2AQY ; ; (3+1) assembly of three human telomeric DNA repeats into an asymmetrical dimeric G-quadruplex 8PSE ; ; (3+1) hybrid G-quadruplex from a G-rich sequence with five G-runs 8R4W ; ; (3+1) hybrid-2 G-quadruplex with a -(llp) loop progression 2ET6 ; 2.22 ; (3R)-Hydroxyacyl-CoA Dehydrogenase Domain of Candida tropicalis Peroxisomal Multifunctional Enzyme Type 2 1GZ6 ; 2.38 ; (3R)-HYDROXYACYL-COA DEHYDROGENASE FRAGMENT OF RAT PEROXISOMAL MULTIFUNCTIONAL ENZYME TYPE 2 5KQF ; 1.98 ; (4~{S},6~{S})-4-[2,4-bis(fluoranyl)phenyl]-4-methyl-6-pyrimidin-5-yl-5,6-dihydro-1,3-thiazin-2-amine (compound 12) bound to BACE1 5KR8 ; 2.118 ; (4~{S},6~{S})-4-[2,4-bis(fluoranyl)phenyl]-6-(3,5-dimethyl-1,2-oxazol-4-yl)-4-methyl-5,6-dihydro-1,3-thiazin-2-amine (compound 5) bound to BACE1 3FY4 ; 2.7 ; (6-4) Photolyase Crystal Structure 4OYQ ; 1.7 ; (6-isothiocyanatohexyl)benzene inhibitor complexed with Macrophage Migration Inhibitory Factor 1H8E ; 2.0 ; (ADP.AlF4)2(ADP.SO4) bovine F1-ATPase (all three catalytic sites occupied) 1GBV ; 2.0 ; (ALPHA-OXY, BETA-(C112G)DEOXY) T-STATE HUMAN HEMOGLOBIN 2LJQ ; ; (C9S, C14S)-leucocin A 1NP5 ; ; (GAC)3 parallel duplex 7O7P ; 4.6 ; (h-alpha2M)4 activated state 7O7L ; 4.5 ; (h-alpha2M)4 native I 7O7M ; 6.6 ; (h-alpha2M)4 native II 7O7R ; 3.9 ; (h-alpha2M)4 plasmin-activated I state 7O7S ; 4.3 ; (h-alpha2M)4 plasmin-activated II state 7O7N ; 7.3 ; (h-alpha2M)4 semiactivated I state 7O7O ; 4.8 ; (h-alpha2M)4 semiactivated II state 7O7Q ; 3.6 ; (h-alpha2M)4 trypsin-activated state 4IN6 ; 2.7 ; (M)L214A mutant of the Rhodobacter sphaeroides Reaction Center 4IN5 ; 2.2 ; (M)L214G mutant of the Rhodobacter sphaeroides Reaction Center 4IN7 ; 2.85 ; (M)L214N mutant of the Rhodobacter sphaeroides Reaction Center 8RX0 ; 3.7 ; (NEDD8)-CRL2VHL-MZ1-Brd4BD2-Ub(G76S, K48C)-UBE2R1(C93K, S138C, C191S, C223S)-Ub 4OIK ; 2.1 ; (Quasi-)Racemic X-ray crystal structure of glycosylated chemokine Ser-CCL1. 2RBS ; 1.557 ; (r)(+)-3-chloro-1-phenyl-1-propanol in complex with T4 lysozyme L99A/M102Q 3O3M ; 1.82 ; (R)-2-Hydroxyisocaproyl-CoA Dehydratase 3O3O ; 2.0 ; (R)-2-hydroxyisocaproyl-CoA dehydratase in complex with (R)-2-hydroxyisocaproate 3O3N ; 2.3 ; (R)-2-hydroxyisocaproyl-CoA dehydratase in complex with its substrate (R)-2-hydroxyisocaproyl-CoA 4YMJ ; 2.0 ; (R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors 4YNE ; 2.0229 ; (R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors 4YPS ; 2.1012 ; (R)-2-Phenylpyrrolidine Substitute Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors 3UKB ; 1.42 ; (R)-cEt-BNA decamer structure 1IQ6 ; 1.5 ; (R)-HYDRATASE FROM A. CAVIAE INVOLVED IN PHA BIOSYNTHESIS 4CHI ; 1.27 ; (R)-selective amine transaminase from Aspergillus fumigatus at 1.27 A resolution 6SNL ; 3.129 ; (R)-selective amine transaminase from Exophiala sideris 6XU3 ; 2.1 ; (R)-selective amine transaminase from Shinella sp. 2LBN ; ; (Revised) Solution structure of the monomeric form of a mutant unliganded bovine neurophysin, 20 structures 3F80 ; 1.6 ; (S)-2-amino-6-nitrohexanoic acid binds to human arginase I through multiple nitro-metal coordination interactions in the binuclear manganese cluster. Resolution 1.60 A. 6UXZ ; 2.8 ; (S)-4-Amino-5-phenoxypentanoate as a Selective Agonist of the Transcription Factor GabR 3UKC ; 1.54 ; (S)-cEt-BNA decamer structure 3UKE ; 1.68 ; (S)-cMOE-BNA decamer structure 3HTD ; 1.4 ; (Z)-Thiophene-2-carboxaldoxime in complex with T4 lysozyme L99A/M102Q 6WAZ ; 4.1 ; +1 extended HIV-1 reverse transcriptase initiation complex core (pre-translocation state) 6WB2 ; 4.5 ; +3 extended HIV-1 reverse transcriptase initiation complex core (displaced state) 6WB1 ; 4.7 ; +3 extended HIV-1 reverse transcriptase initiation complex core (intermediate state) 6WB0 ; 4.2 ; +3 extended HIV-1 reverse transcriptase initiation complex core (pre-translocation state) 5LZN ; 1.4 ; -TIP microtubule-binding domain 3PSM ; 0.98 ; .98A crystal structure of a dimeric plant defensin SPE10 1HSS ; 2.06 ; 0.19 ALPHA-AMYLASE INHIBITOR FROM WHEAT 1I0T ; 0.6 ; 0.6 A STRUCTURE OF Z-DNA CGCGCG 7R2H ; 0.79 ; 0.79A resolution structure of DMSO bound Cyclophilin D 3UI4 ; 0.8 ; 0.8 A resolution crystal structure of human Parvulin 14 2H5C ; 0.82 ; 0.82A resolution crystal structure of alpha-lytic protease at pH 5 1SSX ; 0.83 ; 0.83A resolution crystal structure of alpha-lytic protease at pH 8 1N55 ; 0.83 ; 0.83A resolution structure of the E65Q mutant of Leishmania mexicana triosephosphate isomerase complexed with 2-phosphoglycolate 1X8P ; 0.85 ; 0.85 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Complexed With Ammonia at pH 7.4 1X8Q ; 0.85 ; 0.85 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus in Complex with Water at pH 5.6 1PJX ; 0.85 ; 0.85 ANGSTROM STRUCTURE OF SQUID GANGLION DFPASE 4O8H ; 0.85 ; 0.85A resolution structure of PEG 400 Bound Cyclophilin D 3UI6 ; 0.89 ; 0.89 A resolution crystal structure of human Parvulin 14 in complex with oxidized DTT 4OY5 ; 0.89 ; 0.89 Angstrom resolution crystal structure of (Gly-Pro-Hyp)10 4O6U ; 0.89 ; 0.89A resolution structure of the hemophore HasA from Pseudomonas aeruginosa (H83A mutant) 1I1W ; 0.89 ; 0.89A Ultra high resolution structure of a Thermostable Xylanase from Thermoascus Aurantiacus 1YWA ; 0.89 ; 0.9 A Structure of NP4 from Rhodnius Prolixus complexed with CO at pH 5.6 1YWB ; 0.97 ; 0.9 A Structure of NP4 from Rhodnius Prolixus complexed with NO at pH 5.6 3W7Y ; 0.92 ; 0.92A structure of 2Zn human insulin at 100K 3M5Q ; 0.93 ; 0.93 A Structure of Manganese-Bound Manganese Peroxidase 3NJ6 ; 0.95 ; 0.95 A resolution X-ray structure of (GGCAGCAGCC)2 4EGU ; 0.95 ; 0.95A Resolution Structure of a Histidine Triad Protein from Clostridium difficile 4O6Q ; 0.95 ; 0.95A resolution structure of the hemophore HasA from Pseudomonas aeruginosa (Y75A mutant) 2AT8 ; 1.0 ; 0.96 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Containing Fe(III) 2,4 Dimethyl Deuteroporphyrin IX Complexed With Nitric Oxide at pH 5.6 1C75 ; 0.97 ; 0.97 A ""AB INITIO"" CRYSTAL STRUCTURE OF CYTOCHROME C-553 FROM BACILLUS PASTEURII 1TG0 ; 0.97 ; 0.97-A structure of the SH3 domain of bbc1 3C78 ; 0.98 ; 0.98 A crystal structure of nitrophorin 4 from Rhodnius prolixus containing FE(III) 2,4 dimethyl deuteroporphyrin ix complexed with ammonia at ph 7.5 6K9J ; 0.98 ; 0.98 A three-dimensional structure of horse heart cytochrome C at 110K 2H5D ; 0.9 ; 0.9A resolution crystal structure of alpha-lytic protease complexed with a transition state analogue, MeOSuc-Ala-Ala-Pro-Val boronic acid 6EH4 ; 1.26 ; 003 Human T-Cell Receptor specific for HIV GAG epitope SLYNTVATL carried by Human Leukocyte Antigen HLA-A*0201 6EH5 ; 1.29 ; 003 Human T-Cell Receptor specific for HIV GAG epitope SLYNTVATL carried by Human Leukocyte Antigen HLA-A*0201 6FR3 ; 1.35 ; 003 TCR Study of CDR Loop Flexibility 6FR4 ; 1.28 ; 003 TCR Study of CDR Loop Flexibility 4PRG ; 2.9 ; 0072 PARTIAL AGONIST PPAR GAMMA COCRYSTAL 1EN8 ; 0.985 ; 1 A CRYSTAL STRUCTURES OF B-DNA REVEAL SEQUENCE-SPECIFIC BINDING AND GROOVE-SPECIFIC BENDING OF DNA BY MAGNESIUM AND CALCIUM 8GXU ; 2.5 ; 1 ATP-bound V1EG of V/A-ATPase from Thermus thermophilus 8A6C ; 1.8 ; 1 picosecond light activated crystal structure of bovine rhodopsin in Lipidic Cubic Phase 7CRI ; 1.85 ; 1 ps Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 8GXZ ; 3.1 ; 1 sulfate and 1 ATP bound V1EG of V/A-ATPase from Thermus thermophilus. 6H9B ; 2.75 ; 1,1-Diheterocyclic Ethylenes Derived from Quinaldine and Carbazole as New Tubulin Polymerization Inhibitors: Synthesis, Metabolism, and Biological Evaluation 5DPX ; 1.85 ; 1,2,4-Triazole-3-thione compounds as inhibitors of L1, di-zinc metallo-beta-lactamases. 2OTY ; 1.83 ; 1,2-dichlorobenzene in complex with T4 Lysozyme L99A 5I2A ; 2.1 ; 1,2-propanediol Dehydration in Roseburia inulinivorans; Structural Basis for Substrate and Enantiomer Selectivity 5I2G ; 2.352 ; 1,2-propanediol Dehydration in Roseburia inulinivorans; Structural Basis for Substrate and Enantiomer Selectivity 8QZG ; 1.73 ; 1,3 L,D-transpeptidase from Gluconobacter oxydans 3DN6 ; 1.8 ; 1,3,5-trifluoro-2,4,6-trichlorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 1H80 ; 1.6 ; 1,3-ALPHA-1,4-BETA-D-GALACTOSE-4-SULFATE- 3,6-ANHYDRO-D-GALACTOSE-2-SULFATE 4 GALACTOHYDROLASE 1DYP ; 1.54 ; 1,3-ALPHA-1,4-BETA-D-GALACTOSE-4-SULFATE-3,6-ANHYDRO-D-GALACTOSE 4 GALACTOHYDROLASE 5CLM ; 2.61 ; 1,4-Oxazine BACE1 inhibitors 8BRE ; 2.0 ; 1,6-anhydro-n-actetylmuramic acid kinase (AnmK) 8CPB ; 1.7 ; 1,6-anhydro-n-actetylmuramic acid kinase (AnmK) in complex with AMPPNP, and AnhMurNAc at 1.7 Angstroms resolution. 8C0U ; 2.112 ; 1,6-anhydro-n-actetylmuramic acid kinase (AnmK) in complex with their natural substrates and products 8CP9 ; 2.2 ; 1,6-anhydro-n-actetylmuramic acid kinase (AnmK)in complex with non-hydrolyzable AMPPNP. 7KWR ; ; 1,N6-ethenoadnine (E) in dsDNA sequence (5'-CGCGEATTCGCG-3') 5MPJ ; 2.14 ; 1-(2-chloro-[1,1'-biphenyl]-4-yl)-N-methylethanamine 1F2D ; 2.0 ; 1-AMINOCYCLOPROPANE-1-CARBOXYLATE DEAMINASE 1B8G ; 2.37 ; 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 1CP6 ; 1.9 ; 1-BUTANEBORONIC ACID BINDING TO AEROMONAS PROTEOLYTICA AMINOPEPTIDASE 1XCC ; 2.3 ; 1-Cys peroxidoxin from Plasmodium Yoelli 3TB2 ; 2.3 ; 1-Cys peroxidoxin from Plasmodium Yoelli 6Q5V ; 2.747 ; 1-Cys SiPrx, a Prx6-family 1-Cys peroxiredoxin of the thermoacidophilic archaeon Sulfolobus islandicus 7QP2 ; 0.9 ; 1-deazaguanosine modified-RNA Sarcin Ricin Loop 7S04 ; 2.52 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Acinetobacter baumannii in complex with FR900098, NADPH, and a magnesium ion 5KQO ; 2.35 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Vibrio vulnificus 5KRY ; 2.3 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Vibrio vulnificus 5KS1 ; 2.4 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Vibrio vulnificus 5KRV ; 2.3 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Vibrio vulnificus in complex Arginine 5KRR ; 2.5 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Vibrio vulnificus in complex with Mn(2+) 5DUL ; 2.6 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Yersinia pestis in complex with NADPH 3IIE ; 2.21 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Yersinia pestis. 1R0L ; 2.7 ; 1-deoxy-D-xylulose 5-phosphate reductoisomerase from zymomonas mobilis in complex with NADPH 6OUW ; 2.398 ; 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Deinococcus radiodurans with enamine intermediate bound 6OUV ; 1.937 ; 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Deinococcus radiodurans with methylacetylphosphonate (MAP) bound 2O1X ; 2.9 ; 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Deinococcus radiodurans 2O1S ; 2.4 ; 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Escherichia coli 8BZX ; 2.05 ; 1-deoxy-D-xylulose 5-phosphate synthase from Klebsiella pneumoniae (kpDXPS),co-crystal with thiamine monophosphate analog 8A4D ; 2.2 ; 1-deoxy-D-xylulose 5-phosphate synthase from Pseudomonas aeruginosa with a thiamine analog inhibitor 1K5H ; 2.5 ; 1-deoxy-D-xylulose-5-phosphate reductoisomerase 2RBY ; 1.5 ; 1-methyl-5-imidazolecarboxaldehyde in complex with Cytochrome C Peroxidase W191G 2OU0 ; 1.94 ; 1-methylpyrrole in complex with T4 Lysozyme L99A 8X6Z ; 2.95 ; 1-naphthylamine GS from Pseudomonas sp. JS3066 8WWV ; 2.3 ; 1-naphthylamine GS in complex with ADP and MetSox-P 8WWU ; 2.0 ; 1-naphthylamine GS in complex with AMP PNP 6YSK ; 1.21 ; 1-phenylpyrroles and 1-enylpyrrolidines as inhibitors of Notum 1QAS ; 2.4 ; 1-PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE PHOSPHODIESTERASE DELTA 1 1QAT ; 3.0 ; 1-PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE PHOSPHODIESTERASE DELTA COMPLEX WITH SAMARIUM (III) CHLORIDE 1UZB ; 1.4 ; 1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE 2J40 ; 2.1 ; 1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound inhibitor L-proline and NAD. 2J5N ; 1.63 ; 1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE FROM THERMUS THERMOPHIRUS WITH BOUND INHIBITOR GLYCINE AND NAD. 2IY6 ; 1.8 ; 1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE FROM THERMUS WITH BOUND CITRATE 1SY2 ; 1.0 ; 1.0 A Crystal Structure of D129A/L130A Mutant of Nitrophorin 4 1SXX ; 1.01 ; 1.0 A Crystal Structure of D129A/L130A Mutant of Nitrophorin 4 Complexed with Nitric Oxide 1SY1 ; 1.01 ; 1.0 A Crystal Structure of T121V Mutant of Nitrophorin 4 Complexed with Nitric Oxide 2WYT ; 1.0 ; 1.0 A resolution structure of L38V SOD1 mutant 2QCP ; 1.0 ; 1.0 A Structure of CusF-Ag(I) residues 10-88 from Escherichia coli 3E6Z ; 1.0 ; 1.0 A Structure of CusF-W44A-Cu(II) residues 10-88 from Escherichia coli 3CCD ; 1.0 ; 1.0 A Structure of Post-Succinimide His15Asp HPr 5SV5 ; 1.0 ; 1.0 Angstrom Crystal Structure of pre-Peptidase C-terminal Domain of Collagenase from Bacillus anthracis. 6N59 ; 1.02 ; 1.0 Angstrom crystal structure of [FeFe]-hydrogenase 4GNR ; 1.0 ; 1.0 Angstrom resolution crystal structure of the branched-chain amino acid transporter substrate binding protein LivJ from Streptococcus pneumoniae str. Canada MDR_19A in complex with Isoleucine 1SY3 ; 1.0 ; 1.00 A Crystal Structure of D30N Mutant of Nitrophorin 4 from Rhodnius Prolixus Complexed with Nitric Oxide 2AT3 ; 1.0 ; 1.00 A Crystal Structure Of L123V/L133V Mutant of Nitrophorin 4 From Rhodnius Prolixus Complexed With Imidazole at pH 5.6 2AT0 ; 1.0 ; 1.00 A Crystal Structure Of L133V Mutant of Nitrophorin 4 From Rhodnius Prolixus Complexed With Nitric Oxide at pH 5.6 2OFR ; 1.0 ; 1.00 A Crystal Structure Of V36A/D129A/L130A Mutant of Nitrophorin 4 From Rhodnius Prolixus Complexed With Nitric Oxide at pH 5.6 4B4E ; 1.0 ; 1.00 A Structure of Lysozyme Crystallized with (R)-2-methyl-2,4- pentanediol 1HJ8 ; 1.0 ; 1.00 AA Trypsin from Atlantic Salmon 1X8O ; 1.01 ; 1.01 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Complexed With Nitric Oxide at pH 5.6 6CLI ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 0.17 e- / A^2 6CLC ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 0.27 e- / A^2 6CLJ ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 0.50 e- / A^2 6CLD ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 0.81 e- / A^2 6CLK ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 0.82 e- / A^2 6CLE ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 1.3 e- / A^2 6CLM ; 1.01 ; 1.01 A MicroED structure of GSNQNNF at 1.5 e- / A^2 6CLL ; 1.02 ; 1.02 A MicroED structure of GSNQNNF at 1.2 e- / A^2 3NVS ; 1.021 ; 1.02 Angstrom resolution crystal structure of 3-phosphoshikimate 1-carboxyvinyltransferase from Vibrio cholerae in complex with shikimate-3-phosphate (partially photolyzed) and glyphosate 1NH0 ; 1.03 ; 1.03 A structure of HIV-1 protease: inhibitor binding inside and outside the active site 3O1N ; 1.03 ; 1.03 Angstrom Crystal Structure of Q236A Mutant Type I Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium 1SXW ; 1.05 ; 1.05 A Crystal Structure of D30A Mutant of Nitrophorin 4 from Rhodnius Prolixus Complexed with Nitric Oxide 3M8M ; 1.05 ; 1.05 A Structure of Manganese-free Manganese Peroxidase 1I0M ; 1.05 ; 1.05 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-FLUOROETHYL THYMINE IN PLACE OF T6, HIGH RB-SALT 1I0K ; 1.05 ; 1.05 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-[TRI(OXYETHYL)] THYMINE IN PLACE OF T6, MEDIUM CS-SALT 4I62 ; 1.05 ; 1.05 Angstrom crystal structure of an amino acid ABC transporter substrate-binding protein AbpA from Streptococcus pneumoniae Canada MDR_19A bound to L-arginine 5U4H ; 1.05 ; 1.05 Angstrom Resolution Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Acinetobacter baumannii in Covalently Bound Complex with (2R)-2-(phosphonooxy)propanoic Acid. 5IQX ; 1.05 ; 1.05A resolution structure of Holo HasAp (R33A) from Pseudomonas aeruginosa 1I0J ; 1.06 ; 1.06 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-3'-METHYLENEPHOSPHONATE (T23) THYMINE IN PLACE OF T6, HIGH CS-SALT 1SFS ; 1.07 ; 1.07 A crystal structure of an uncharacterized B. stearothermophilus protein 1SXY ; 1.07 ; 1.07 A Crystal Structure of D30N Mutant of Nitrophorin 4 from Rhodnius Prolixus 3C76 ; 1.07 ; 1.07 A crystal structure of L133V mutant of nitrophorin 4 from Rhodnius prolixus complexed with ammonia at PH 7.5 1X8N ; 1.08 ; 1.08 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Complexed With Nitric Oxide at pH 7.4 3C77 ; 1.08 ; 1.08 A crystal structure of nitrophorin 4 from Rhodnius prolixus containing FE(III) deuteroporphyrin ix complexed with ammonia at ph 7.5 1JBE ; 1.08 ; 1.08 A Structure of apo-Chey reveals meta-active conformation 1YWD ; 1.08 ; 1.08 A Structure of Ferrous NP4 (aquo complex) 5DGJ ; 1.0 ; 1.0A resolution structure of Norovirus 3CL protease in complex an oxadiazole-based, cell permeable macrocyclic (20-mer) inhibitor 2BV4 ; 1.0 ; 1.0A Structure of Chromobacterium Violaceum Lectin in Complex with alpha-methyl-mannoside 1A0M ; 1.1 ; 1.1 ANGSTROM CRYSTAL STRUCTURE OF A-CONOTOXIN [TYR15]-EPI 4H4N ; 1.1 ; 1.1 Angstrom Crystal Structure of Hypothetical Protein BA_2335 from Bacillus anthracis 3RPE ; 1.1 ; 1.1 Angstrom Crystal Structure of Putative Modulator of Drug Activity (MdaB) from Yersinia pestis CO92. 1LU4 ; 1.12 ; 1.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF A SECRETED MYCOBACTERIUM TUBERCULOSIS DISULFIDE OXIDOREDUCTASE HOMOLOGOUS TO E. COLI DSBE: IMPLICATIONS FOR FUNCTIONS 6AT8 ; 1.105 ; 1.1 Angstrom Resolution Structure of Human Cellular Retinol-Binding Protein IV 1R0R ; 1.1 ; 1.1 Angstrom Resolution Structure of the Complex Between the Protein Inhibitor, OMTKY3, and the Serine Protease, Subtilisin Carlsberg 4YL4 ; 1.1 ; 1.1 Angstrom resolution X-ray Crystallographic Structure of Psudoazurin 3U97 ; 1.102 ; 1.1 Angstrom-resolution crystal structure of the Brucella abortus ribonuclease toxin, BrnT 3BF7 ; 1.1 ; 1.1 resolution structure of ybfF, a new esterase from Escherichia coli: a unique substrate-binding crevice generated by domain arrangement 3BF8 ; 1.68 ; 1.1 resolution structure of ybfF, a new esterase from Escherichia coli: a unique substrate-binding crevice generated by domain arrangement 4LQT ; 1.1 ; 1.10A resolution crystal structure of a superfolder green fluorescent protein (W57A) mutant 1I1X ; 1.11 ; 1.11 A ATOMIC RESOLUTION STRUCTURE OF A THERMOSTABLE XYLANASE FROM THERMOASCUS AURANTIACUS 2OFM ; 1.11 ; 1.11 A Crystal Structure of Apo Nitrophorin 4 From Rhodnius Prolixus 1D2U ; 1.15 ; 1.15 A CRYSTAL STRUCTURE OF NITROPHORIN 4 FROM RHODNIUS PROLIXUS 1SY0 ; 1.15 ; 1.15 A Crystal Structure of T121V Mutant of Nitrophorin 4 from Rhodnius Prolixus 6CLN ; 1.15 ; 1.15 A MicroED structure of GSNQNNF at 1.8 e- / A^2 6CLF ; 1.15 ; 1.15 A MicroED structure of GSNQNNF at 1.9 e- / A^2 6CLO ; 1.15 ; 1.15 A MicroED structure of GSNQNNF at 2.1 e- / A^2 6BID ; 1.15 ; 1.15 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic inhibitor 7A6A ; 1.15 ; 1.15 A structure of human apoferritin obtained from Titan Mono- BCOR microscope 3T3L ; 1.15 ; 1.15 A structure of human frataxin variant Q153A 4B49 ; 1.15 ; 1.15 A Structure of Lysozyme Crystallized without 2-methyl-2,4- pentanediol 2W2E ; 1.15 ; 1.15 Angstrom crystal structure of P.pastoris aquaporin, Aqy1, in a closed conformation at pH 3.5 2NSZ ; 1.15 ; 1.15 Angstrom Crystal Structure of the MA3 domain of Pdcd4 1Z70 ; 1.15 ; 1.15A resolution structure of the formylglycine generating enzyme FGE 4O06 ; 1.15 ; 1.15A Resolution Structure of the Proteasome Assembly Chaperone Nas2 PDZ Domain 3W7Z ; 1.15 ; 1.15A structure of human 2Zn insulin at 293K 6CLP ; 1.16 ; 1.16 A MicroED structure of GSNQNNF at 2.5 e- / A^2 5Z0D ; 1.16 ; 1.16 A-resolution crystal structure of the deoxy-form tyrosinase from Streptomyces castaneoglobisporus in complex with the caddie protein 6C4Q ; 1.16 ; 1.16 Angstrom Resolution Crystal Structure of Acyl Carrier Protein Domain (residues 1-100) of Polyketide Synthase Pks13 from Mycobacterium tuberculosis 1R3G ; 1.16 ; 1.16A X-ray structure of the synthetic DNA fragment with the incorporated 2'-O-[(2-Guanidinium)ethyl]-5-methyluridine residues 4NLM ; 1.18 ; 1.18 Angstrom resolution crystal structure of uncharacterized protein lmo1340 from Listeria monocytogenes EGD-e 4JER ; 1.1 ; 1.1A resolution Apo structure of the hemophore HasA from Yersinia pestis (Tetragonal Form) 2BOI ; 1.1 ; 1.1A Structure of Chromobacterium Violaceum Lectin CV2L in Complex with alpha-methyl-fucoside 4PF4 ; 1.13 ; 1.1A X-RAY STRUCTURE OF THE APO CATALYTIC DOMAIN OF DEATH-ASSOCIATED PROTEIN KINASE 1, aa 1-277 2CS7 ; 1.2 ; 1.2 A Crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold 1QU9 ; 1.2 ; 1.2 A CRYSTAL STRUCTURE OF YJGF GENE PRODUCT FROM E. COLI 6GMC ; 1.2 ; 1.2 A resolution structure of human hydroxyacid oxidase 1 bound with FMN and 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1,2,3-thiadiazole 367D ; 1.2 ; 1.2 A STRUCTURE DETERMINATION OF THE D(CG(5-BRU)ACG)2/5-BROMO-9-AMINO-DACA COMPLEX 1G7A ; 1.2 ; 1.2 A structure of T3R3 human insulin at 100 K 6COA ; 1.2 ; 1.2 A Structure of Thaumatin Crystallized in Gel 3IR4 ; 1.2 ; 1.2 Angstrom Crystal Structure of the Glutaredoxin 2 (grxB) from Salmonella typhimurium in complex with Glutathione 6UOF ; 1.2 ; 1.2 Angstrom Resolution Crystal Structure of CBS Domains of Transcriptional Regulator from Streptococcus pneumoniae 6DT3 ; 1.2 ; 1.2 Angstrom Resolution Crystal Structure of Nucleoside Triphosphatase NudI from Klebsiella pneumoniae in Complex with HEPES 1AMM ; 1.2 ; 1.2 ANGSTROM STRUCTURE OF GAMMA-B CRYSTALLIN AT 150K 3G91 ; 1.23 ; 1.2 Angstrom structure of the exonuclease III homologue Mth0212 4HI9 ; 1.203 ; 1.2 structure of integrin-linked kinase ankyrin repeat domain in complex with PINCH1 LIM1 domain collected at wavelength 0.91974 3WNJ ; 1.2 ; 1.20 A resolution crystal structure of dioxygen bound copper-containing nitrite reductase from Geobacillus thermodenitrificans 5E0G ; 1.2 ; 1.20 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic (17-mer) inhibitor 5E0J ; 1.2 ; 1.20 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic (21-mer) inhibitor 6E6Q ; 1.2 ; 1.20 A resolution structure of the C-terminally truncated [2Fe-2S] ferredoxin (Bfd) from Pseudomonas aeruginosa 4B4I ; 1.2 ; 1.20 A Structure of Lysozyme Crystallized with (S)-2-methyl-2,4- pentanediol 6CLQ ; 1.21 ; 1.21 A MicroED structure of GSNQNNF at 2.8 e- / A^2 2AT5 ; 1.22 ; 1.22 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Containing Fe(III) Deuteroporphyrin IX Complexed With Nitric Oxide at pH 5.6 2AT6 ; 1.22 ; 1.22 A Crystal Structure Of Nitrophorin 4 From Rhodnius Prolixus Containing Fe(III) Deuteroporphyrin IX Complexed With Water at pH 5.6 1MJU ; 1.22 ; 1.22 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE FAB FRAGMENT OF ESTEROLYTIC ANTIBODY MS6-12 3GLP ; 1.23 ; 1.23 A resolution X-ray structure of (GCUGCUGC)2 3T3K ; 1.24 ; 1.24 A Structure of Friedreich's ataxia frataxin variant Q148R 3RM1 ; 1.24 ; 1.24 Angstrom X-ray structure of bovine TRTK12-Ca(2+)-S100B D63N 2C9U ; 1.24 ; 1.24 Angstroms resolution structure of as-isolated Cu-Zn Human Superoxide dismutase 2C9S ; 1.24 ; 1.24 Angstroms resolution structure of Zn-Zn Human Superoxide dismutase 5C5W ; 1.25 ; 1.25 A resolution structure of an RNA 20-mer 6Z6U ; 1.25 ; 1.25 A structure of human apoferritin obtained from Titan Mono-BCOR microscope 4B4J ; 1.25 ; 1.25 A Structure of Lysozyme Crystallized with (RS)-2-methyl-2,4- pentanediol 6XXX ; 1.25 ; 1.25 Angstrom crystal structure of Ca/CaM A102V:RyR2 peptide complex 5KZ6 ; 1.252 ; 1.25 Angstrom Crystal Structure of Chitinase from Bacillus anthracis. 3GIU ; 1.25 ; 1.25 Angstrom Crystal Structure of Pyrrolidone-Carboxylate Peptidase (pcp) from Staphylococcus aureus 6E85 ; 1.25 ; 1.25 Angstrom Resolution Crystal Structure of 4-hydroxythreonine-4-phosphate Dehydrogenase from Klebsiella pneumoniae. 8QF3 ; 1.25 ; 1.25-A structure of anti-Arc nanobody H11 2DN3 ; 1.25 ; 1.25A resolution crystal structure of human hemoglobin in the carbonmonoxy form 2DN2 ; 1.25 ; 1.25A resolution crystal structure of human hemoglobin in the deoxy form 2DN1 ; 1.25 ; 1.25A resolution crystal structure of human hemoglobin in the oxy form 4HIL ; 1.25 ; 1.25A Resolution Structure of Rat Type B Cytochrome b5 4O6T ; 1.25 ; 1.25A resolution structure of the hemophore HasA from Pseudomonas aeruginosa (H83A mutant, pH 5.4) 1IKJ ; 1.27 ; 1.27 A CRYSTAL STRUCTURE OF NITROPHORIN 4 FROM RHODNIUS PROLIXUS COMPLEXED WITH IMIDAZOLE 4QAS ; 1.25 ; 1.27 A resolution structure of CT263-D161N (MTAN) from Chlamydia trachomatis 2CAK ; 1.27 ; 1.27Angstrom Structure of Rusticyanin from Thiobacillus ferrooxidans 5OL4 ; 1.28 ; 1.28 A resolution of Sporosarcina pasteurii urease inhibited in the presence of NBPT 4QUS ; 1.28 ; 1.28 Angstrom resolution crystal structure of predicted acyltransferase with acyl-CoA N-acyltransferase domain (ypeA) from Escherichia coli str. K-12 substr. MG1655 2F91 ; 1.2 ; 1.2A resolution structure of a crayfish trypsin complexed with a peptide inhibitor, SGTI 3HT1 ; 1.2 ; 1.2A structure of the polyketide cyclase RemF from Streptomyces resistomycificus 6XG7 ; 1.3 ; 1.3 A Resolution Structure of the of the NHL Repeat Region of D. melanogaster Thin 366D ; 1.3 ; 1.3 A STRUCTURE DETERMINATION OF THE D(CG(5-BRU)ACG)2/6-BROMO-9-AMINO-DACA COMPLEX 6U4U ; 1.3 ; 1.3 A structure of a pathogenic human Syt 1 C2B (I368T) 1G7B ; 1.3 ; 1.3 A STRUCTURE OF T3R3 HUMAN INSULIN AT 100 K 1I0Q ; 1.3 ; 1.3 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-[TRI(OXYETHYL)] THYMINE IN PLACE OF T6, MEDIUM NA-SALT 1I0N ; 1.3 ; 1.3 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-[TRI(OXYETHYL)] THYMINE IN PLACE OF T6, MEDIUM RB-SALT 1I0P ; 1.3 ; 1.3 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-[TRI(OXYETHYL)], MEDIUM K-SALT 1JW8 ; 1.3 ; 1.3 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF P6 FORM OF MYOGLOBIN 7VBF ; 1.3 ; 1.3 Angstrom Resolution Crystal Structure of SARS-CoV-2 Nucleocapsid dimerization domain, pH 8.5 6NKJ ; 1.3 ; 1.3 Angstrom Resolution Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Streptococcus pneumoniae in Complex with (2R)-2-(phosphonooxy)propanoic acid. 3DHC ; 1.3 ; 1.3 Angstrom Structure of N-Acyl Homoserine Lactone Hydrolase with the Product N-Hexanoyl-L-Homocysteine Bound to The catalytic Metal Center 5UEJ ; 1.3 ; 1.30 A crystal structure of DapE enzyme from Neisseria meningitidis MC58 6CLR ; 1.31 ; 1.31 A MicroED structure of GSNQNNF at 3.1 e- / A^2 6RKG ; 1.32 ; 1.32 A RESOLUTION OF SPOROSARCINA PASTEURII UREASE INHIBITED IN THE PRESENCE OF NBPTO AT pH 7.5 5HQH ; 1.32 ; 1.32 Angstrom Crystal Structure of Ybbr like Domain of lmo2119 Protein from Listeria monocytogenes. 4O6S ; 1.32 ; 1.32A resolution structure of the hemophore HasA from Pseudomonas aeruginosa (H83A mutant, Zinc Bound) 7A6B ; 1.33 ; 1.33 A structure of human apoferritin obtained from Titan Mono- BCOR microscope 4DJC ; 1.35 ; 1.35 A crystal structure of the NaV1.5 DIII-IV-Ca/CaM complex 6CLG ; 1.35 ; 1.35 A MicroED structure of GSNQNNF at 2.4 e- / A^2 5I45 ; 1.35 ; 1.35 Angstrom Crystal Structure of C-terminal Domain of Glycosyl Transferase Group 1 Family Protein (LpcC) from Francisella tularensis. 5TKW ; 1.35 ; 1.35 Angstrom Resolution Crystal Structure of a Pullulanase-specific Type II Secretion System Integral Cytoplasmic Membrane Protein GspL (N-terminal fragment; residues 1-237) from Klebsiella pneumoniae. 5SXO ; 1.35 ; 1.35 angstrom resolution crystal structure of beta-ketoacyl-ACP synthase II (FabF) from Listeria monocytogenes 1ZGK ; 1.35 ; 1.35 angstrom structure of the Kelch domain of Keap1 1LK2 ; 1.35 ; 1.35A crystal structure of H-2Kb complexed with the GNYSFYAL peptide 5VFB ; 1.36 ; 1.36 Angstrom Resolution Crystal Structure of Malate Synthase G from Pseudomonas aeruginosa in Complex with Glycolic Acid. 6CLH ; 1.37 ; 1.37 A MicroED structure of GSNQNNF at 2.9 e- / A^2 4MYD ; 1.374 ; 1.37 Angstrom Crystal Structure of E. Coli 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (MenH) in complex with SHCHC 4EIV ; 1.37 ; 1.37 Angstrom resolution crystal structure of apo-form of a putative deoxyribose-phosphate aldolase from Toxoplasma gondii ME49 3T3T ; 1.38 ; 1.38 A structure of human frataxin variant Q148G 3C8Y ; 1.39 ; 1.39 Angstrom crystal structure of Fe-only hydrogenase 1SXV ; 1.3 ; 1.3A Crystal structure of rv3628, Mycobacterium tuberculosis inorganic pyrophosphatase (PPase) at pH5.0 3QGJ ; 1.3 ; 1.3A Structure of alpha-Lytic Protease Bound to Ac-AlaAlaPro-Alanal 1SXU ; 1.4 ; 1.4 A Crystal Structure of D30N Mutant of Nitrophorin 4 from Rhodnius Prolixus Complexed with Imidazole 1D3S ; 1.4 ; 1.4 A crystal structure of nitrophorin 4 from Rhodnius prolixis at pH=5.6. 5KB3 ; 1.399 ; 1.4 A resolution structure of Helicobacter Pylori MTAN in complexed with p-ClPh-DADMe-ImmA 2TNF ; 1.4 ; 1.4 A RESOLUTION STRUCTURE OF MOUSE TUMOR NECROSIS FACTOR, TOWARDS MODULATION OF ITS SELECTIVITY AND TRIMERISATION 6U4W ; 1.4 ; 1.4 A structure of a pathogenic human Syt 1 C2B (D366E) 4MYS ; 1.423 ; 1.4 Angstrom Crystal Structure of 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase with SHCHC and Pyruvate 4EQ9 ; 1.4 ; 1.4 Angstrom Crystal Structure of ABC Transporter Glutathione-Binding Protein GshT from Streptococcus pneumoniae strain Canada MDR_19A in Complex with Glutathione 3I19 ; 1.36 ; 1.4 Angstrom Crystal Structure of Fluorescent Protein Cypet 2W1P ; 1.4 ; 1.4 Angstrom crystal structure of P.pastoris aquaporin, Aqy1, in a closed conformation at pH 8.0 3M07 ; 1.4 ; 1.4 Angstrom Resolution Crystal Structure of Putative alpha Amylase from Salmonella typhimurium. 4GUC ; 1.4 ; 1.4 Angstrom resolution crystal structure of uncharacterized protein BA_2500 from Bacillus anthracis str. Ames 3DHB ; 1.4 ; 1.4 Angstrom Structure of N-Acyl Homoserine Lactone Hydrolase with the Product N-Hexanoyl-L-Homoserine Bound at The Catalytic Metal Center 1HMR ; 1.4 ; 1.4 ANGSTROMS STRUCTURAL STUDIES ON HUMAN MUSCLE FATTY ACID BINDING PROTEIN: BINDING INTERACTIONS WITH THREE SATURATED AND UNSATURATED C18 FATTY ACIDS 1HMS ; 1.4 ; 1.4 ANGSTROMS STRUCTURAL STUDIES ON HUMAN MUSCLE FATTY ACID BINDING PROTEIN: BINDING INTERACTIONS WITH THREE SATURATED AND UNSATURATED C18 FATTY ACIDS 1HMT ; 1.4 ; 1.4 ANGSTROMS STRUCTURAL STUDIES ON HUMAN MUSCLE FATTY ACID BINDING PROTEIN: BINDING INTERACTIONS WITH THREE SATURATED AND UNSATURATED C18 FATTY ACIDS 5TG1 ; 1.4 ; 1.40 A resolution structure of Norovirus 3CL protease in complex with the a m-chlorophenyl substituted macrocyclic inhibitor (17-mer) 5LQ1 ; 1.41 ; 1.41 A resolution structure of PtxB from Trichodesmium erythraeum IMS101 in complex with methylphosphonate 4JB7 ; 1.42 ; 1.42 Angstrom resolution crystal structure of accessory colonization factor AcfC (acfC) in complex with D-aspartic acid 6PNV ; 1.42 ; 1.42 Angstrom Resolution Crystal Structure of Translocation Protein TolB from Salmonella enterica 1CXU ; 1.42 ; 1.42A RESOLUTION ASV INTEGRASE CORE DOMAIN FROM CITRATE 4M8I ; 1.43 ; 1.43 Angstrom resolution crystal structure of cell division protein FtsZ (ftsZ) from Staphylococcus epidermidis RP62A in complex with GDP 4MVA ; 1.43 ; 1.43 Angstrom Resolution Crystal Structure of Triosephosphate Isomerase (tpiA) from Escherichia coli in Complex with Acetyl Phosphate. 5WP2 ; 1.439 ; 1.44 Angstrom crystal structure of CYP121 from Mycobacterium tuberculosis in complex with substrate and CN 1DI6 ; 1.45 ; 1.45 A CRYSTAL STRUCTURE OF THE MOLYBDENUMM COFACTOR BIOSYNTHESIS PROTEIN MOGA FROM ESCHERICHIA COLI 6CLT ; 1.45 ; 1.45 A MicroED structure of GSNQNNF at 3.8 e- / A^2 4MOV ; 1.4503 ; 1.45 A Resolution Crystal Structure of Protein Phosphatase 1 6H8J ; 1.45 ; 1.45 A resolution of Sporosarcina pasteurii urease inhibited in the presence of NBPTO 6NLF ; 1.45 ; 1.45 A resolution structure of apo BfrB from Pseudomonas aeruginosa 4QAR ; 1.45 ; 1.45 A resolution structure of CT263 (MTAN) from Chlamydia trachomatis bound to Adenine 6E6S ; 1.45 ; 1.45 A resolution structure of the C-terminally truncated [2Fe-2S] ferredoxin (Bfd) R26E/K46Y mutant from Pseudomonas aeruginosa 1I0G ; 1.45 ; 1.45 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-FLUOROETHYL THYMINE IN PLACE OF T6, MEDIUM NA-SALT 5EQV ; 1.45 ; 1.45 Angstrom Crystal Structure of Bifunctional 2',3'-cyclic Nucleotide 2'-phosphodiesterase/3'-Nucleotidase Periplasmic Precursor Protein from Yersinia pestis with Phosphate bound to the Active site 3TNL ; 1.45 ; 1.45 Angstrom Crystal Structure of Shikimate 5-dehydrogenase from Listeria monocytogenes in Complex with Shikimate and NAD. 4H48 ; 1.45 ; 1.45 angstrom CyPet Structure at pH7.0 6YUN ; 1.44 ; 1.45 Angstrom Resolution Crystal Structure of C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein from SARS-CoV-2 6BXG ; 1.45 ; 1.45 Angstrom Resolution Crystal Structure of PDZ domain of Carboxy-Terminal Protease from Vibrio cholerae in Complex with Peptide. 3O8Q ; 1.45 ; 1.45 Angstrom Resolution Crystal Structure of Shikimate 5-Dehydrogenase (aroE) from Vibrio cholerae 7KH6 ; 1.45 ; 1.45 Angstrom resolution internal aldimine crystal structure of the beta-Q114A mutant of TryptophanSynthase in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site 4V4M ; 1.45 ; 1.45 Angstrom Structure of STNV coat protein 4MXD ; 1.45 ; 1.45 angstronm crystal structure of E.coli 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (MenH) 4XBD ; 1.45 ; 1.45A resolution structure of Norovirus 3CL protease complex with a covalently bound dipeptidyl inhibitor (1R,2S)-2-({N-[(benzyloxy)carbonyl]-3-cyclohexyl-L-alanyl}amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid (Orthorhombic P Form) 4O8I ; 1.45 ; 1.45A resolution structure of PEG 400 Bound Cyclophilin D 5C98 ; 1.45 ; 1.45A resolution structure of SRPN18 from Anopheles gambiae 6CLS ; 1.46 ; 1.46 A MicroED structure of GSNQNNF at 3.4 e- / A^2 5LQ5 ; 1.46 ; 1.46 A resolution structure of PhnD1 from Prochlorococcus marinus (MIT 9301) in complex with phosphite 5TPI ; 1.47 ; 1.47 Angstrom Crystal Structure of the C-terminal Substrate Binding Domain of LysR Family Transcriptional Regulator from Klebsiella pneumoniae. 6ZK0 ; 1.47 ; 1.47A human IMPase with ebselen 6YR3 ; 1.48 ; 1.48 Angstrom Resolution Crystal Structure of Transaldolase from Thermoplasma acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 6RP1 ; 1.49 ; 1.49 A RESOLUTION OF SPOROSARCINA PASTEURII UREASE INHIBITED IN THE PRESENCE OF NBPTO AT pH 6.5 4X9C ; 1.4 ; 1.4A crystal structure of Hfq from Methanococcus jannaschii 3LG3 ; 1.4 ; 1.4A Crystal Structure of Isocitrate Lyase from Yersinia pestis CO92 1O98 ; 1.4 ; 1.4A CRYSTAL STRUCTURE OF PHOSPHOGLYCERATE MUTASE FROM BACILLUS STEAROTHERMOPHILUS COMPLEXED WITH 2-PHOSPHOGLYCERATE 6VHC ; 1.4 ; 1.4A damaged structure of GSNQNNF used to determine initial phases from radiation damage 6VHB ; 1.4 ; 1.4A low-dose structure of GSNQNNF determined from initial phases generated using radiation damage 7N9I ; 1.4 ; 1.4A Structure of Drosophila melanogaster Frataxin 1QTO ; 1.5 ; 1.5 A CRYSTAL STRUCTURE OF A BLEOMYCIN RESISTANCE DETERMINANT FROM BLEOMYCIN-PRODUCING STREPTOMYCES VERTICILLUS 2GS5 ; 1.5 ; 1.5 A Crystal Structure of a Conserved Protein of Unknown Function from Corvnebacterium diphtheriae 1TP6 ; 1.5 ; 1.5 A Crystal Structure of a NTF-2 Like Protein of Unknown Function PA1314 from Pseudomonas aeruginosa 1TUA ; 1.5 ; 1.5 A Crystal Structure of a Protein of Unknown Function APE0754 from Aeropyrum pernix 2GZ4 ; 1.5 ; 1.5 A Crystal Structure of a Protein of Unknown Function ATU1052 from Agrobacterium tumefaciens 1Z6N ; 1.5 ; 1.5 A Crystal Structure of a Protein of Unknown Function PA1234 from Pseudomonas aeruginosa 2A35 ; 1.5 ; 1.5 A Crystal Structure of a Protein of Unknown Function PA4017 from Pseudomonas aeruginosa PAO1, Possible Epimerase 1SH8 ; 1.5 ; 1.5 A Crystal Structure of a Protein of Unknown Function PA5026 from Pseudomonas aeruginosa, Probable Thioesterase 5UR4 ; 1.52 ; 1.5 A Crystal structure of PYR1 bound to Pyrabactin 2B5H ; 1.5 ; 1.5 A Resolution Crystal Structure of Recombinant R. Norvegicus Cysteine Dioxygenase 2GH2 ; 1.5 ; 1.5 A Resolution R. Norvegicus Cysteine Dioxygenase Structure Crystallized in the Presence of Cysteine 1PUY ; 1.5 ; 1.5 A resolution structure of a synthetic DNA hairpin with a stilbenediether linker 1ZEQ ; 1.5 ; 1.5 A Structure of apo-CusF residues 6-88 from Escherichia coli 2GRC ; 1.5 ; 1.5 A structure of bromodomain from human BRG1 protein, a central ATPase of SWI/SNF remodeling complex 2OE5 ; 1.51 ; 1.5 A X-ray crystal structure of Apramycin complex with RNA fragment GGCGUCGCUAGUACCG/GGUACUAAAAGUCGCCC containing the human ribosomal decoding A site: RNA construct with 3'-overhang 4R52 ; 1.53 ; 1.5 angstrom crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase from Cupriavidus metallidurans 4JGI ; 1.5 ; 1.5 Angstrom crystal structure of a novel cobalamin-binding protein from Desulfitobacterium hafniense DCB-2 3HJB ; 1.5 ; 1.5 Angstrom Crystal Structure of Glucose-6-phosphate Isomerase from Vibrio cholerae. 1WPA ; 1.5 ; 1.5 Angstrom crystal structure of human occludin fragment 413-522 4NOH ; 1.502 ; 1.5 Angstrom Crystal Structure of Putative Lipoprotein from Bacillus anthracis. 5DZS ; 1.5 ; 1.5 Angstrom Crystal Structure of Shikimate Dehydrogenase 1 from Peptoclostridium difficile. 4EVM ; 1.506 ; 1.5 Angstrom crystal structure of soluble domain of membrane-anchored thioredoxin family protein from Streptococcus pneumoniae strain Canada MDR_19A 4EQB ; 1.5 ; 1.5 Angstrom Crystal Structure of Spermidine/Putrescine ABC Transporter Substrate-Binding Protein PotD from Streptococcus pneumoniae strain Canada MDR_19A in Complex with Calcium and HEPES 3RQT ; 1.5 ; 1.5 Angstrom Crystal Structure of the Complex of Ligand Binding Component of ABC-type Import System from Staphylococcus aureus with Nickel and two Histidines 4GUF ; 1.5 ; 1.5 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) E86A Mutant 1LMI ; 1.5 ; 1.5 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF A SECRETED PROTEIN FROM MYCOBACTERIUM TUBERCULOSIS-MPT63 4IFA ; 1.5 ; 1.5 Angstrom resolution crystal structure of an extracellular protein containing a SCP domain from Bacillus anthracis str. Ames 3TKF ; 1.5 ; 1.5 Angstrom Resolution Crystal Structure of K135M Mutant of Transaldolase B (TalA) from Francisella tularensis in Complex with Sedoheptulose 7-phosphate. 5U4Q ; 1.5 ; 1.5 Angstrom Resolution Crystal Structure of NAD-Dependent Epimerase from Klebsiella pneumoniae in Complex with NAD. 3UPB ; 1.5 ; 1.5 Angstrom Resolution Crystal Structure of Transaldolase from Francisella tularensis in Covalent Complex with Arabinose-5-Phosphate 3RY4 ; 1.5 ; 1.5 Angstrom resolution structure of glycosylated fcgammariia (low-responder polymorphism) 3IQO ; 1.5 ; 1.5 angstrom X-ray structure of bovine Ca(2+)-S100B 6ZNY ; 1.5 ; 1.50 A resolution 3-methylcatechol (3-methylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 5G4H ; 1.5 ; 1.50 A resolution catechol (1,2-dihydroxybenzene) inhibited Sporosarcina pasteurii urease 3WNI ; 1.5 ; 1.50 A resolution crystal structure of dioxygen bound copper-containing nitrite reductase from Geobacillus thermodenitrificans 6NLG ; 1.5 ; 1.50 A resolution structure of BfrB (C89S/K96C) from Pseudomonas aeruginosa in complex with a small molecule fragment (analog 1) 7LKT ; 1.5 ; 1.50 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 2k 6E6R ; 1.5 ; 1.50 A resolution structure of the C-terminally truncated [2Fe-2S] ferredoxin (Bfd) R26E mutant from Pseudomonas aeruginosa 4BGU ; 1.487 ; 1.50 A resolution structure of the malate dehydrogenase from Haloferax volcanii 7R7B ; 1.5 ; 1.50 Angstroem Crystal Structure of FeoA from Bacteroides fragilis 5TW9 ; 1.5 ; 1.50 Angstrom Crystal Structure of C-terminal Fragment (residues 322-384) of Iron Uptake System Component EfeO from Yersinia pestis. 4GUJ ; 1.5 ; 1.50 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) in Complex with Shikimate 6E5Y ; 1.5 ; 1.50 Angstrom Resolution Crystal Structure of Argininosuccinate Synthase from Bordetella pertussis in Complex with AMP. 7KOS ; 1.5 ; 1.50 Angstroms Resolution Crystal Structure of Putative Pterin Binding Protein PruR (Atu3496) from Agrobacterium fabrum str. C58 5D8X ; 1.5 ; 1.50A resolution structure of BfrB (L68A E81A) from Pseudomonas aeruginosa 6AW4 ; 1.5 ; 1.50A resolution structure of catechol O-methyltransferase (COMT) from Nannospalax galili 5LQ8 ; 1.52 ; 1.52 A resolution structure of PhnD1 from Prochlorococcus marinus (MIT 9301) in complex with methylphosphonate 4QWO ; 1.52 ; 1.52 Angstrom Crystal Structure of A42R Profilin-like Protein from Monkeypox Virus Zaire-96-I-16 5HSF ; 1.52 ; 1.52 Angstrom Crystal Structure of Fc fragment of Human IgG1. 6WN5 ; 1.52 ; 1.52 Angstrom Resolution Crystal Structure of Transcriptional Regulator HdfR from Klebsiella pneumoniae 1K4V ; 1.53 ; 1.53 A Crystal Structure of the Beta-Galactoside-alpha-1,3-galactosyltransferase in Complex with UDP 1WCF ; 1.54 ; 1.54 A CRYSTAL STRUCTURE OF RV3628, MYCOBACTERIUM TUBERCULOSIS INORGANIC PYROPHOSPHATASE (PPASE) AT PH7.0 3QY1 ; 1.54 ; 1.54A Resolution Crystal Structure of a Beta-Carbonic Anhydrase from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 1MV8 ; 1.55 ; 1.55 A crystal structure of a ternary complex of GDP-mannose dehydrogenase from Psuedomonas aeruginosa 7OW0 ; 1.55 ; 1.55 A crystal structure of DNA/2'-O-methyl-RNA heteroduplex with overhangs solved by Zn-SAD. 4K9G ; 1.55 ; 1.55 A Crystal Structure of Macrophage Migration Inhibitory Factor bound to ISO-66 and a related compound 1KQ1 ; 1.55 ; 1.55 A Crystal structure of the pleiotropic translational regulator, Hfq 4FOJ ; 1.55 ; 1.55 A Crystal Structure of Xanthomonas citri FimX EAL domain in complex with c-diGMP 6ZO3 ; 1.55 ; 1.55 A resolution 3,6-dimethylcatechol (3,6-dimethylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 6CR0 ; 1.548 ; 1.55 A resolution structure of (S)-6-hydroxynicotine oxidase from Shinella HZN7 5WKK ; 1.55 ; 1.55 A resolution structure of MERS 3CL protease in complex with inhibitor GC813 7LKV ; 1.55 ; 1.55 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 3c 6Z9E ; 1.55 ; 1.55 A structure of human apoferritin obtained from data subset of Titan Mono-BCOR microscope 7QZJ ; 1.55 ; 1.55 A X-ray crystallographic structure of SapH from Streptomyces sp. (HPH0547) involved in Pseudouridimycin biosynthesis 3GA7 ; 1.55 ; 1.55 Angstrom Crystal Structure of an Acetyl Esterase from Salmonella typhimurium 4RS2 ; 1.55 ; 1.55 Angstrom Crystal Structure of GNAT Family N-acetyltransferase (YhbS) from Escherichia coli in Complex with CoA 4S12 ; 1.55 ; 1.55 Angstrom Crystal Structure of N-acetylmuramic acid 6-phosphate Etherase from Yersinia enterocolitica. 4ERR ; 1.55 ; 1.55 Angstrom Crystal Structure of the Four Helical Bundle Membrane Localization Domain (4HBM) of the Vibrio vulnificus MARTX Effector Domain DUF5 1F0L ; 1.55 ; 1.55 ANGSTROM CRYSTAL STRUCTURE OF WILD TYPE DIPHTHERIA TOXIN 6NAU ; 1.55 ; 1.55 Angstrom Resolution Crystal Structure of 6-phosphogluconolactonase from Klebsiella pneumoniae 5VDN ; 1.55 ; 1.55 Angstrom Resolution Crystal Structure of Glutathione Reductase from Yersinia pestis in Complex with FAD 3IFE ; 1.55 ; 1.55 Angstrom Resolution Crystal Structure of Peptidase T (pepT-1) from Bacillus anthracis str. 'Ames Ancestor'. 3R2K ; 1.55 ; 1.55A resolution structure of As-Isolated FtnA from Pseudomonas aeruginosa (pH 7.5) 3NEP ; 1.551 ; 1.55A resolution structure of malate dehydrogenase from Salinibacter ruber 7SNS ; 1.55 ; 1.55A Resolution Structure of NanoLuc Luciferase 2Y3Q ; 1.55 ; 1.55A structure of apo bacterioferritin from E. coli 6PUQ ; 1.56 ; 1.56 A crystal structure of flavodoxin-like domain of Schizosaccharomyces japonicus putative tRNAPhe 4-demethylwyosine synthase Tyw1 in complex with FMN 6Z9F ; 1.56 ; 1.56 A structure of human apoferritin obtained from data subset of Titan Mono-BCOR microscope 1HFC ; 1.5 ; 1.56 ANGSTROM STRUCTURE OF MATURE TRUNCATED HUMAN FIBROBLAST COLLAGENASE 4D74 ; 1.57 ; 1.57 A crystal structure of erwinia amylovora tyrosine phosphatase amsI 3T3X ; 1.57 ; 1.57 A structure of Friedreich's ataxia frataxin variant R165C 6E55 ; 1.57 ; 1.57 Angstroem Crystal Structure of FeoA from Klebsiella pneumoniae 4CEU ; 1.58 ; 1.58 A resolution native Sporosarcina pasteurii urease 4QAQ ; 1.58 ; 1.58 A resolution structure of CT263 (MTAN) from Chlamydia trachomatis 3GM7 ; 1.58 ; 1.58 A resolution X-ray structure of (CUG)6 7R5O ; 1.58 ; 1.58 A STRUCTURE OF HUMAN APOFERRITIN OBTAINED FROM TITAN KRIOS 2 AT eBIC, DLS UNDER COMMISSIONING SESSION CM26464-2 4CEX ; 1.589 ; 1.59 A resolution Fluoride inhibited Sporosarcina pasteurii urease 3L4E ; 1.5 ; 1.5A Crystal Structure of a Putative Peptidase E Protein from Listeria monocytogenes EGD-e 1OZN ; 1.52 ; 1.5A Crystal Structure of the Nogo Receptor Ligand Binding Domain Reveals a Convergent Recognition Scaffold Mediating Inhibition of Myelination 1SQE ; 1.5 ; 1.5A Crystal Structure Of the protein PG130 from Staphylococcus aureus, Structural genomics 1ZKP ; 1.502 ; 1.5A Resolution Crystal Structure of a Metallo Beta Lactamase Family Protein, the ELAC Homolgue of Bacillus anthracis, a Putative Ribonuclease 3UR6 ; 1.5 ; 1.5A resolution structure of apo Norwalk Virus Protease 1JKS ; 1.5 ; 1.5A X-RAY STRUCTURE OF APO FORM OF A CATALYTIC DOMAIN OF DEATH-ASSOCIATED PROTEIN KINASE 2AP3 ; 1.6 ; 1.6 A Crystal Structure of a Conserved Protein of Unknown Function from Staphylococcus aureus 1ZKE ; 1.6 ; 1.6 A Crystal Structure of a Protein HP1531 of Unknown Function from Helicobacter pylori 3DMO ; 1.6 ; 1.6 A crystal structure of cytidine deaminase from Burkholderia pseudomallei 5XB0 ; 1.6 ; 1.6 A crystal structure of peptidyl-prolyl cis-trans isomerase PPIase from Pseudomonas syringae pv. tomato str. DC3000 (PSPTO DC3000) 8EPU ; 1.6 ; 1.6 A crystal structure of the lipocalin dog allergen Can f 1 with the C118S mutation 1HFE ; 1.6 ; 1.6 A RESOLUTION STRUCTURE OF THE FE-ONLY HYDROGENASE FROM DESULFOVIBRIO DESULFURICANS 2WBZ ; 1.6 ; 1.6 A Structure of Thaumatin Crystallized without Tartrate at 4 C 1I0F ; 1.6 ; 1.6 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-AMINOOXYETHYL THYMINE IN PLACE OF T6, BA-FORM 1I0O ; 2.0 ; 1.6 A STRUCTURE OF THE A-DECAMER GCGTATACGC WITH A SINGLE 2'-O-METHYL-3'-METHYLENEPHOSPHONATE THYMINE IN PLACE OF T6, HIGH K-SALT 3B9F ; 1.6 ; 1.6 A structure of the PCI-thrombin-heparin complex 3GWA ; 1.6 ; 1.6 Angstrom crystal structure of 3-oxoacyl-(acyl-carrier-protein) synthase III 2BL7 ; 2.2 ; 1.6 Angstrom crystal structure of EntA-im: a bacterial immunity protein conferring immunity to the antimicrobial activity of the pediocin-like bacteriocin, enterocin A 2BL8 ; 1.6 ; 1.6 Angstrom crystal structure of EntA-im: a bacterial immunity protein conferring immunity to the antimicrobial activity of the pediocin-like bacteriocin, enterocin A 3GEX ; 1.6 ; 1.6 angstrom crystal structure of fluorescent protein Cypet 3LKM ; 1.6 ; 1.6 Angstrom Crystal Structure of the Alpha-kinase Domain of Myosin Heavy Chain Kinase A Complex with AMP 1JLJ ; 1.6 ; 1.6 Angstrom crystal structure of the human neuroreceptor anchoring and molybdenum cofactor biosynthesis protein gephyrin 6VC5 ; 1.5 ; 1.6 Angstrom Resolution Crystal Structure of endoglucanase from Komagataeibacter sucrofermentans 3PP9 ; 1.6 ; 1.6 Angstrom resolution crystal structure of putative streptothricin acetyltransferase from Bacillus anthracis str. Ames in complex with acetyl coenzyme A 7VBE ; 1.59 ; 1.6 Angstrom Resolution Crystal Structure of SARS-CoV-2 Nucleocapsid dimerization domain, pH 5.0 2A7M ; 1.6 ; 1.6 Angstrom Resolution Structure of the Quorum-Quenching N-Acyl Homoserine Lactone Hydrolase of Bacillus thuringiensis 1T4B ; 1.6 ; 1.6 Angstrom structure of Esherichia coli aspartate-semialdehyde dehydrogenase. 2GIM ; 1.6 ; 1.6 Angstrom structure of plastocyanin from Anabaena variabilis 1G4Y ; 1.6 ; 1.60 A CRYSTAL STRUCTURE OF THE GATING DOMAIN FROM SMALL CONDUCTANCE POTASSIUM CHANNEL COMPLEXED WITH CALCIUM-CALMODULIN 4XBC ; 1.6 ; 1.60 A resolution structure of Norovirus 3CL protease complex with a covalently bound dipeptidyl inhibitor (1R,2S)-2-({N-[(benzyloxy)carbonyl]-3-cyclohexyl-L-alanyl}amino)-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid (Hexagonal Form) 7LKX ; 1.6 ; 1.60 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 3e 6UBU ; 1.6 ; 1.60 A resolution structure of the guanine riboswitch bound to guanine 6NLN ; 1.6 ; 1.60 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 16) 1DI7 ; 1.6 ; 1.60 ANGSTROM CRYSTAL STRUCTURE OF THE MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN MOGA FROM ESCHERICHIA COLI 3U80 ; 1.6 ; 1.60 Angstrom Resolution Crystal Structure of a 3-Dehydroquinate Dehydratase-like Protein from Bifidobacterium longum 4PZJ ; 1.6 ; 1.60 Angstrom resolution crystal structure of a transcriptional regulator of the LysR family from Eggerthella lenta DSM 2243 3V4G ; 1.6 ; 1.60 Angstrom resolution crystal structure of an arginine repressor from Vibrio vulnificus CMCP6 7KBN ; 1.6 ; 1.60 Angstrom resolution crystal structure of the beta-Q114A mutant of Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site, and 2-aminophenol quinonoid at the enzyme beta site 7KA1 ; 1.6 ; 1.60 Angstrom resolution crystal structure of the beta-Q114A mutant Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the alpha-site, aminoacrylate at the beta site, and cesium ion at the metal coordination site 4LQU ; 1.6 ; 1.60A resolution crystal structure of a superfolder green fluorescent protein (W57G) mutant 6ZO1 ; 1.61 ; 1.61 A resolution 3,5-dimethylcatechol (3,5-dimethylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 4GUG ; 1.62 ; 1.62 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) E86A Mutant in Complex with Dehydroshikimate (Crystal Form #1) 7OKW ; 1.62 ; 1.62A X-ray crystal structure of the conserved C-terminal (CCT) of human OSR1 8A18 ; 1.63 ; 1.63 A resolution hydroquinone inhibited Sporosarcina pasteurii urease 3UUW ; 1.63 ; 1.63 Angstrom Resolution Crystal Structure of Dehydrogenase (MviM) from Clostridium difficile. 3RYK ; 1.631 ; 1.63 Angstrom resolution crystal structure of dTDP-4-dehydrorhamnose 3,5-epimerase (rfbC) from Bacillus anthracis str. Ames with TDP and PPi bound 6ZO2 ; 1.65 ; 1.65 A resolution 4,5-dimethylcatechol (4,5-dimethylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 6NLJ ; 1.65 ; 1.65 A resolution structure of Apo BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 12) 6W2A ; 1.65 ; 1.65 A resolution structure of SARS-CoV 3CL protease in complex with inhibitor 7j 7K0F ; 1.65 ; 1.65 A resolution structure of SARS-CoV-2 3CL protease in complex with a deuterated GC376 alpha-ketoamide analog (compound 5) 7LKR ; 1.65 ; 1.65 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 2a 7LKU ; 1.65 ; 1.65 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 3b (deuterated analog of inhibitor 2a) 7LKW ; 1.7 ; 1.65 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 3d (deuterated analog of inhibitor 3c) 5A6T ; 1.65 ; 1.65 A resolution Sulphite inhibited Sporosarcina pasteurii urease 1M93 ; 1.65 ; 1.65 A Structure of Cleaved Viral Serpin CRMA 1SDI ; 1.65 ; 1.65 A structure of Escherichia coli ycfC gene product 4MBO ; 1.65 ; 1.65 Angstrom Crystal Structure of Serine-rich Repeat Adhesion Glycoprotein (Srr1) from Streptococcus agalactiae 3D72 ; 1.65 ; 1.65 Angstrom crystal structure of the Cys71Val variant in the fungal photoreceptor VVD 6DAD ; 1.65 ; 1.65 Angstrom crystal structure of the N97I Ca/CaM:CaV1.2 IQ domain complex 6U3A ; 1.65 ; 1.65 Angstrom crystal structure of the N97S Ca-CaM:CaV1.2 IQ domain complex 5IBX ; 1.65 ; 1.65 Angstrom Crystal Structure of Triosephosphate Isomerase (TIM) from Streptococcus pneumoniae 4QTO ; 1.65 ; 1.65 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) from Staphylococcus aureus with BME-modified Cys289 and PEG molecule in active site 5HOP ; 1.65 ; 1.65 Angstrom resolution crystal structure of lmo0182 (residues 1-245) from Listeria monocytogenes EGD-e 3TNO ; 1.65 ; 1.65 Angstrom Resolution Crystal Structure of Transaldolase B (TalA) from Francisella tularensis in Covalent Complex with Sedoheptulose-7-Phosphate 3LWZ ; 1.65 ; 1.65 Angstrom Resolution Crystal Structure of Type II 3-Dehydroquinate Dehydratase (aroQ) from Yersinia pestis 1DHN ; 1.65 ; 1.65 ANGSTROM RESOLUTION STRUCTURE OF 7,8-DIHYDRONEOPTERIN ALDOLASE FROM STAPHYLOCOCCUS AUREUS 2UZ1 ; 1.65 ; 1.65 Angstrom structure of Benzaldehyde Lyase complexed with 2-methyl- 2,4-pentanediol 5WOF ; 1.65 ; 1.65 ANGSTROM STRUCTURE OF THE DYNEIN LIGHT CHAIN 1 FROM PLASMODIUM FALCIPARUM 6P4V ; 1.65 ; 1.65 Angstrom ternary complex of Deoxyhypusine synthase with cofactor NAD and spermidine mimic inhibitor GC7 3DMS ; 1.65 ; 1.65A crystal structure of isocitrate dehydrogenase from Burkholderia pseudomallei 4TOF ; 1.65 ; 1.65A resolution structure of BfrB (C89S, K96C) crystal form 1 from Pseudomonas aeruginosa 3R2R ; 1.65 ; 1.65A resolution structure of Iron Soaked FtnA from Pseudomonas aeruginosa (pH 6.0) 3UR9 ; 1.65 ; 1.65A resolution structure of Norwalk Virus Protease Containing a covalently bound dipeptidyl inhibitor 6UXC ; 1.65 ; 1.65A resolution structure of the hypothetical protein CT253 from Chlamydia trachomatis 4MLO ; 1.65 ; 1.65A resolution structure of ToxT from Vibrio cholerae (P21 Form) 4JBU ; 1.65 ; 1.65A structure of the T3SS tip protein LcrV (G28-D322, C273S) from Yersinia pestis 1I2Y ; 1.66 ; 1.66 A STRUCTURE OF A-DUPLEX WITH BULGED ADENOSINE, SPERMINE FORM 6MUQ ; 1.67 ; 1.67 Angstrom Resolution Crystal Structure of Murein-DD-endopeptidase from Yersinia enterocolitica. 7ZRQ ; 1.68 ; 1.68 Angstrom crystal structure of Ca/CaM-E140G:CaMKIIdelta peptide complex 5MKX ; 1.68 ; 1.68A STRUCTURE PCAF BROMODOMAIN WITH 4-chloro-2-methyl-5-(methylamino)pyridazin-3(2H)-one 1LLN ; 1.6 ; 1.6A CRYSTAL STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN-III (PAP-III) WITH METHYLATED LYSINES 1YD9 ; 1.6 ; 1.6A Crystal Structure of the Non-Histone Domain of the Histone Variant MacroH2A1.1. 1RZ2 ; 1.6 ; 1.6A crystal structure of the protein BA4783/Q81L49 (similar to sortase B) from Bacillus anthracis. 4JES ; 1.6 ; 1.6A resolution Apo structure of the hemophore HasA from Yersinia pestis (Hexagonal Form) 1JUX ; 1.6 ; 1.6A Resolution Crystal Structures of the DNA Octamers d(IUATATAC) and d(ITITACAC):Binding of Two Distamycin Drugs Side-by-Side 2WCW ; 1.58 ; 1.6A resolution structure of Archaeoglobus fulgidus Hjc, a Holliday junction resolvase from an archaeal hyperthermophile 2WCZ ; 1.65 ; 1.6A resolution structure of Archaeoglobus fulgidus Hjc, a Holliday junction resolvase from an archaeal hyperthermophile 4DCD ; 1.69 ; 1.6A resolution structure of PolioVirus 3C Protease Containing a covalently bound dipeptidyl inhibitor 3Q7R ; 1.6 ; 1.6A resolution structure of the ChxR receiver domain from Chlamydia trachomatis 1JKL ; 1.62 ; 1.6A X-RAY STRUCTURE OF BINARY COMPLEX OF A CATALYTIC DOMAIN OF DEATH-ASSOCIATED PROTEIN KINASE WITH ATP ANALOGUE 1U17 ; 1.7 ; 1.7 A Crystal structure of H60C mutant of Nitrophorin I. Heme complexed with two molecules imidazole 3CXK ; 1.7 ; 1.7 A Crystal structure of methionine-R-sulfoxide reductase from Burkholderia pseudomallei: crystallization in a microfluidic crystal card. 1Y7R ; 1.7 ; 1.7 A Crystal Structure of Protein of Unknown Function SA2161 from Meticillin-Resistant Staphylococcus aureus, Probable Acetyltransferase 3R2H ; 1.7 ; 1.7 A resolution structure of As-Isolated FtnA from Pseudomonas aeruginosa (pH 10.5) 4PD0 ; 1.7 ; 1.7 A resolution structure of gephyrin's E-domain 4UUU ; 1.71 ; 1.7 A resolution structure of human cystathionine beta-synthase regulatory domain (del 516-525) in complex with SAM 1UWF ; 1.69 ; 1.7 A resolution structure of the receptor binding domain of the FimH adhesin from uropathogenic E. coli 1QUS ; 1.7 ; 1.7 A RESOLUTION STRUCTURE OF THE SOLUBLE LYTIC TRANSGLYCOSYLASE SLT35 FROM ESCHERICHIA COLI 4JCO ; 1.7 ; 1.7 A resolution structure of wild type malate dehydrogenase from haloarcula marismortui 6XXF ; 1.7 ; 1.7 Angstrom crystal structure of Ca/CaM:RyR2 peptide complex 3GVF ; 1.75 ; 1.7 Angstrom crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei bound with phosphate 1PXZ ; 1.7 ; 1.7 Angstrom Crystal Structure of jun a 1, the major allergen from cedar pollen 4Q7G ; 1.7 ; 1.7 Angstrom Crystal Structure of leukotoxin LukD from Staphylococcus aureus. 4S24 ; 1.7 ; 1.7 Angstrom Crystal Structure of of Putative Modulator of Drug Activity (apo- form) from Yersinia pestis CO92 1ZD7 ; 1.7 ; 1.7 Angstrom Crystal Structure Of Post-Splicing Form of a dnaE Intein from Synechocystis Sp. Pcc 6803 2PDR ; 1.7 ; 1.7 Angstrom Crystal Structure of the Photo-excited Blue-light Photoreceptor Vivid 6U3B ; 1.7 ; 1.7 Angstrom crystal structure of the Q135P Ca-CaM:CaV1.2 IQ domain complex 1Z9L ; 1.7 ; 1.7 Angstrom Crystal Structure of the Rat VAP-A MSP Homology Domain 1EYE ; 1.7 ; 1.7 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF 6-HYDROXYMETHYL-7,8-DIHYDROPTEROATE SYNTHASE (DHPS) FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH 6-HYDROXYMETHYLPTERIN MONOPHOSPHATE 3HJV ; 1.7 ; 1.7 Angstrom resolution crystal structure of an acyl carrier protein S-malonyltransferase from Vibrio cholerae O1 biovar eltor str. N16961 6NFP ; 1.7 ; 1.7 Angstrom Resolution Crystal Structure of Arginase from Bacillus subtilis subsp. subtilis str. 168 4MPB ; 1.7 ; 1.7 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) from Staphylococcus aureus 5BXI ; 1.7 ; 1.7 Angstrom Resolution Crystal Structure of Putative Nucleoside Diphosphate Kinase from Toxoplasma gondii with Tyrosine of Tag Bound to Active Site 3SD7 ; 1.7 ; 1.7 Angstrom Resolution Crystal Structure of Putative Phosphatase from Clostridium difficile 3VAA ; 1.7 ; 1.7 Angstrom Resolution Crystal Structure of Shikimate Kinase from Bacteroides thetaiotaomicron 4QPK ; 1.66 ; 1.7 Angstrom Structure of a Bacterial Phosphotransferase 6U41 ; 1.7 ; 1.7 angstrom structure of a pathogenic human Syt 1 C2B (D304G) 2HRC ; 1.7 ; 1.7 angstrom structure of human ferrochelatase variant R115L 1SBP ; 1.7 ; 1.7 ANGSTROMS REFINED STRUCTURE OF SULFATE-BINDING PROTEIN INVOLVED IN ACTIVE TRANSPORT AND NOVEL MODE OF SULFATE BINDING 5B5Q ; 1.7 ; 1.7 Angstroms structure of ChlaDub1 from Chlamydia Trachomatis 1I6K ; 1.72 ; 1.7 HIGH RESOLUTION EXPERIMENTAL PHASES FOR TRYPTOPHANYL-TRNA SYNTHETASE COMPLEXED WITH TRYPTOPHANYL-5'AMP 1I6L ; 1.72 ; 1.7 HIGH RESOLUTION EXPERIMENTAL PHASES FOR TRYPTOPHANYL-TRNA SYNTHETASE COMPLEXED WITH TRYPTOPHANYL-5'AMP 1I6M ; 1.72 ; 1.7 HIGH RESOLUTION EXPERIMENTAL PHASES FOR TRYPTOPHANYL-TRNA SYNTHETASE COMPLEXED WITH TRYPTOPHANYL-5'AMP 6SJQ ; 1.604 ; 1.7-A resolution crystal structure of the N-terminal domain of T. brucei BILBO1 1YR5 ; 1.7 ; 1.7-A structure of calmodulin bound to a peptide from DAP kinase 5KKI ; 1.7 ; 1.7-Angstrom in situ Mylar structure of hen egg-white lysozyme (HEWL) at 100 K 5KKK ; 1.7 ; 1.7-Angstrom In situ Mylar structure of sperm whale myoglobin (SWMb-CO) at 100 K 2KIM ; ; 1.7-mm microcryoprobe solution NMR structure of an O6-methylguanine DNA methyltransferase family protein from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium target VpR247. 7EFC ; 1.7 ; 1.70 A cryo-EM structure of streptavidin 7KPZ ; 1.703 ; 1.70 A resolution crystal structure of Group A Streptococcus HupZ-V5-His6 7K0H ; 1.7 ; 1.70 A resolution structure of SARS-CoV 3CL protease in complex with a deuterated GC376 alpha-ketoamide analog (compound 5) 7LKS ; 1.7 ; 1.70 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 2f 6XMK ; 1.7 ; 1.70 A resolution structure of SARS-CoV-2 3CL protease in complex with inhibitor 7j 4CL3 ; 1.699 ; 1.70 A resolution structure of the malate dehydrogenase from Chloroflexus aurantiacus 3T3J ; 1.7 ; 1.70 A structure of Friedreich's ataxia frataxin variant N146K 4KI3 ; 1.7 ; 1.70 Angstrom resolution crystal structure of outer-membrane lipoprotein carrier protein (lolA) from Yersinia pestis CO92 6VJ4 ; 1.7 ; 1.70 Angstrom Resolution Crystal Structure of Peptidylprolyl Isomerase (PrsA) from Bacillus anthracis 3SLH ; 1.7 ; 1.70 Angstrom resolution structure of 3-phosphoshikimate 1-carboxyvinyltransferase (AroA) from Coxiella burnetii in complex with shikimate-3-phosphate and glyphosate 4EAM ; 1.7 ; 1.70A resolution structure of apo beta-glycosidase (W33G) from sulfolobus solfataricus 6AW6 ; 1.7 ; 1.70A resolution structure of catechol O-methyltransferase (COMT) L136M (rhombohedral form) from Nannospalax galili 7SNX ; 1.7 ; 1.70A Resolution Structure of NanoBiT Complementation Reporter Complex of LgBit and SmBiT Subunits 6CL7 ; 1.71 ; 1.71 A MicroED structure of proteinase K at 0.86 e- / A^2 6AON ; 1.72 ; 1.72 Angstrom Resolution Crystal Structure of 2-Oxoglutarate Dehydrogenase Complex Subunit Dihydrolipoamide Dehydrogenase from Bordetella pertussis in Complex with FAD 5EYU ; 1.72 ; 1.72 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) P449M point mutant from Staphylococcus aureus in complex with NAD+ and BME-modified Cys289 5VIS ; 1.73 ; 1.73 Angstrom Resolution Crystal Structure of Dihydropteroate Synthase (folP-SMZ_B27) from Soil Uncultured Bacterium. 6B4O ; 1.73 ; 1.73 Angstrom Resolution Crystal Structure of Glutathione Reductase from Enterococcus faecalis in Complex with FAD 5DGX ; 1.73 ; 1.73 Angstrom resolution crystal structure of the ABC-ATPase domain (residues 357-609) of lipid A transport protein (msbA) from Francisella tularensis subsp. tularensis SCHU S4 in complex with ADP 7O86 ; 1.73 ; 1.73A X-ray crystal structure of the conserved C-terminal (CCT) of human SPAK 5FSD ; 1.75 ; 1.75 A resolution 2,5-dihydroxybenzensulfonate inhibited Sporosarcina pasteurii urease 4QAT ; 1.75 ; 1.75 A resolution structure of CT263-D161N (MTAN) from Chlamydia trachomatis bound to MTA 5TG2 ; 1.75 ; 1.75 A resolution structure of Norovirus 3CL protease in complex with the a n-pentyl substituted macrocyclic inhibitor (17-mer) 7K5E ; 1.75 ; 1.75 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor JAG-5-7 2ID7 ; 1.75 ; 1.75 A Structure of T87I Phosphono-CheY 5I4D ; 1.75 ; 1.75 Angstrom Crystal Structure of Superantigen-like Protein, Exotoxin from Staphylococcus aureus, in Complex with Sialyl-LewisX. 6U3D ; 1.75 ; 1.75 Angstrom crystal structure of the N53I Ca-CaM:CaV1.2 IQ domain complex 4GHJ ; 1.75 ; 1.75 Angstrom Crystal Structure of Transcriptional Regulator ftom Vibrio vulnificus. 3OGA ; 1.75 ; 1.75 Angstrom resolution crystal structure of a putative NTP pyrophosphohydrolase (yfaO) from Salmonella typhimurium LT2 3M3H ; 1.75 ; 1.75 Angstrom resolution crystal structure of an orotate phosphoribosyltransferase from Bacillus anthracis str. 'Ames Ancestor' 6AZI ; 1.75 ; 1.75 Angstrom Resolution Crystal Structure of D-alanyl-D-alanine Endopeptidase from Enterobacter cloacae in Complex with Covalently Bound Boronic Acid 5CXD ; 1.75 ; 1.75 Angstrom resolution crystal structure of the apo-form acyl-carrier-protein synthase (AcpS) (acpS; purification tag off) from Staphylococcus aureus subsp. aureus COL in the I4 space group 6D7Y ; 1.75 ; 1.75 Angstrom Resolution Crystal Structure of the Toxic C-Terminal Tip of CdiA from Pseudomonas aeruginosa in Complex with Immune Protein 4HVO ; 1.75 ; 1.75 angstrom x-ray crystal structure of cufe reconstituted 3-hydroxyanthranilate-3,4-dioxygenase from cupriavidus metallidurans 5IXE ; 1.75 ; 1.75A RESOLUTION STRUCTURE OF 5-Fluoroindole BOUND BETA-GLYCOSIDASE (W33G) FROM SULFOLOBUS SOLFATARICUS 4JBG ; 1.75 ; 1.75A resolution structure of a thermostable alcohol dehydrogenase from Pyrobaculum aerophilum 4EAN ; 1.75 ; 1.75A resolution structure of indole bound beta-glycosidase (W33G) from sulfolobus solfataricus 3PZF ; 1.75 ; 1.75A resolution structure of Serpin-2 from Anopheles gambiae 5DN8 ; 1.76 ; 1.76 Angstrom Crystal Structure of GTP-binding Protein Der from Coxiella burnetii in Complex with GDP. 1UWL ; 1.76 ; 1.76A Structure of Urocanate Hydratase from Pseudomonas putida 4DUN ; 1.76 ; 1.76A X-ray Crystal Structure of a Putative Phenazine Biosynthesis PhzC/PhzF Protein from Clostridium difficile (strain 630) 7EFD ; 1.77 ; 1.77 A cryo-EM structure of Streptavidin using first 40 frames (corresponding to about 40 e/A^2 total dose) 3LDV ; 1.77 ; 1.77 Angstrom resolution crystal structure of orotidine 5'-phosphate decarboxylase from Vibrio cholerae O1 biovar eltor str. N16961 5V26 ; 1.79 ; 1.78 angstrom crystal structure of P97H 3-hydroxyanthranilate-3,4-dioxygenase from Cupriavidus metallidurans 4GUI ; 1.78 ; 1.78 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) in Complex with Quinate 6N7M ; 1.78 ; 1.78 Angstrom Resolution Crystal Structure of Hypothetical Protein CD630_05490 from Clostridioides difficile 630. 6B8D ; 1.78 ; 1.78 Angstrom Resolution Crystal Structure of N-terminal Fragment (residues 1-405) of Elongation Factor G from Haemophilus influenzae 6D0G ; 1.78 ; 1.78 Angstrom Resolution Crystal Structure of Quercetin 2,3-dioxygenase from Acinetobacter baumannii 1P99 ; 1.7 ; 1.7A crystal structure of protein PG110 from Staphylococcus aureus 3RIX ; 1.7 ; 1.7A resolution structure of a firefly luciferase-Aspulvinone J inhibitor complex 6MAB ; 1.7 ; 1.7A resolution structure of RsbU from Chlamydia trachomatis (periplasmic domain) 7CB7 ; 1.69 ; 1.7A resolution structure of SARS-CoV-2 main protease (Mpro) in complex with broad-spectrum coronavirus protease inhibitor GC376 3MHZ ; 1.7 ; 1.7A structure of 2-fluorohistidine labeled Protective Antigen 4NAM ; 1.7 ; 1.7A structure of 5-Fluoro Tryptophan Labeled Protective Antigen (W206Y) 3DGL ; 1.8 ; 1.8 A Crystal Structure of a Non-biological Protein with Bound ATP in a Novel Bent Conformation 1S7I ; 1.8 ; 1.8 A Crystal Structure of a Protein of Unknown Function PA1349 from Pseudomonas aeruginosa 1T8H ; 1.8 ; 1.8 A CRYSTAL STRUCTURE OF AN UNCHARACTERIZED B. STEAROTHERMOPHILUS PROTEIN 1I6N ; 1.8 ; 1.8 A Crystal structure of IOLI protein with a binding zinc atom 3FC0 ; 1.76 ; 1.8 A crystal structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells 4FOK ; 1.8 ; 1.8 A Crystal structure of the FimX EAL domain in complex with c-diGMP 2Q3B ; 1.8 ; 1.8 A Resolution Crystal Structure of O-Acetylserine Sulfhydrylase (OASS) Holoenzyme From MYCOBACTERIUM TUBERCULOSIS 4TNL ; 1.8 ; 1.8 A resolution room temperature structure of Thermolysin recorded using an XFEL 1JUE ; 1.8 ; 1.8 A resolution structure of native lactococcus lactis dihydroorotate dehydrogenase A 4BGV ; 1.811 ; 1.8 A resolution structure of the malate dehydrogenase from Picrophilus torridus in its apo form 3S8F ; 1.8 ; 1.8 A structure of ba3 cytochrome c oxidase from Thermus thermophilus in lipid environment 3S8G ; 1.8 ; 1.8 A structure of ba3 cytochrome c oxidase mutant (A120F) from Thermus thermophilus in lipid environment 6DXO ; 1.8 ; 1.8 A structure of RsbN-BldN complex. 4N6H ; 1.8 ; 1.8 A Structure of the human delta opioid 7TM receptor (PSI Community Target) 2OE8 ; 1.8 ; 1.8 A X-ray crystal structure of Apramycin complex with RNA fragment GGGCGUCGCUAGUACC/CGGUACUAAAAGUCGCC containing the human ribosomal decoding A site: RNA construct with 5'-overhang 5EUM ; 1.8 ; 1.8 Angstrom Crystal Structure of ATP-binding Component of Fused Lipid Transporter Subunits of ABC superfamily from Haemophilus influenzae. 1IMX ; 1.82 ; 1.8 Angstrom crystal structure of IGF-1 4UAM ; 1.8 ; 1.8 Angstrom crystal structure of IMP-1 metallo-beta-lactamase with a mixed iron-zinc center in the active site 5DO8 ; 1.8 ; 1.8 Angstrom crystal structure of Listeria monocytogenes Lmo0184 alpha-1,6-glucosidase 4NV4 ; 1.8 ; 1.8 Angstrom Crystal Structure of Signal Peptidase I from Bacillus anthracis. 5YS3 ; 1.823 ; 1.8 angstrom crystal structure of Succinate-Acetate Permease from Citrobacter koseri 4GFS ; 1.8 ; 1.8 Angstrom Crystal Structure of the 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium LT2 with Nickel Bound at Active Site 2PD8 ; 1.8 ; 1.8 Angstrom Crystal Structure of the Cys71Ser mutant of Vivid 6AU8 ; 1.8 ; 1.8 angstrom crystal structure of the human Bag6-NLS & TRC35 complex 3HJI ; 1.8 ; 1.8 Angstrom Crystal Structure of the I74V:I85V Variant of Vivid (VVD). 4ME3 ; 1.794 ; 1.8 Angstrom Crystal Structure of the N-terminal Domain of an Archaeal MCM 4RO3 ; 1.8 ; 1.8 Angstrom Crystal Structure of the N-terminal Domain of Protein with Unknown Function from Vibrio cholerae. 3BS6 ; 1.8 ; 1.8 Angstrom crystal structure of the periplasmic domain of the membrane insertase YidC 4IUO ; 1.8 ; 1.8 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) K170M Mutant in Complex with Quinate 3LLP ; 1.8 ; 1.8 Angstrom human fascin 1 crystal structure 3QYQ ; 1.8 ; 1.8 Angstrom resolution crystal structure of a putative deoxyribose-phosphate aldolase from Toxoplasma gondii ME49 3LV8 ; 1.8 ; 1.8 Angstrom resolution crystal structure of a thymidylate kinase (tmk) from Vibrio cholerae O1 biovar eltor str. N16961 in complex with TMP, thymidine-5'-diphosphate and ADP 6DT4 ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of cAMP-Regulatory Protein from Yersinia pestis in Complex with cAMP 3IJ3 ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of Cytosol Aminopeptidase from Coxiella burnetii 3N2B ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of Diaminopimelate Decarboxylase (lysA) from Vibrio cholerae. 3JZE ; 1.8 ; 1.8 Angstrom resolution crystal structure of dihydroorotase (pyrC) from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 5TRO ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of Dimerization and Transpeptidase domains (residues 39-608) of Penicillin-Binding Protein 1 from Staphylococcus aureus. 3KQF ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of Enoyl-CoA Hydratase from Bacillus anthracis. 3TE9 ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of K135M Mutant of Transaldolase B (TalA) from Francisella tularensis in Complex with Fructose 6-phosphate 3RU6 ; 1.8 ; 1.8 Angstrom resolution crystal structure of orotidine 5'-phosphate decarboxylase (pyrF) from Campylobacter jejuni subsp. jejuni NCTC 11168 4E0C ; 1.8 ; 1.8 Angstrom Resolution Crystal Structure of Transaldolase from Francisella tularensis (phosphate-free) 6X1Q ; 1.8 ; 1.8 Angstrom resolution structure of b-galactosidase with a 200 kV cryoARM electron microscope 6P7L ; 1.8 ; 1.8 Angstrom structure of Aln2 from Streptomyces sp. CM020 8F49 ; 1.8 ; 1.8 angstrom structure of apoferritin embedded in crystalline ice 3NE4 ; 1.81 ; 1.8 Angstrom structure of intact native wild-type alpha-1-antitrypsin 1MI3 ; 1.8 ; 1.8 Angstrom structure of xylose reductase from Candida tenuis in complex with NAD 1HXN ; 1.8 ; 1.8 ANGSTROMS CRYSTAL STRUCTURE OF THE C-TERMINAL DOMAIN OF RABBIT SERUM HEMOPEXIN 1TPH ; 1.8 ; 1.8 ANGSTROMS CRYSTAL STRUCTURE OF WILD TYPE CHICKEN TRIOSEPHOSPHATE ISOMERASE-PHOSPHOGLYCOLOHYDROXAMATE COMPLEX 1GLP ; 1.9 ; 1.8 ANGSTROMS MOLECULAR STRUCTURE OF MOUSE LIVER CLASS PI GLUTATHIONE S-TRANSFERASE COMPLEXED WITH S-(P-NITROBENZYL)GLUTATHIONE AND OTHER INHIBITORS 1GLQ ; 1.8 ; 1.8 ANGSTROMS MOLECULAR STRUCTURE OF MOUSE LIVER CLASS PI GLUTATHIONE S-TRANSFERASE COMPLEXED WITH S-(P-NITROBENZYL)GLUTATHIONE AND OTHER INHIBITORS 3O76 ; 1.77 ; 1.8 Angstroms molecular structure of mouse liver glutathione S-transferase mutant C47A complexed with S-(P-nitrobenzyl)glutathione 1THG ; 1.8 ; 1.8 ANGSTROMS REFINED STRUCTURE OF THE LIPASE FROM GEOTRICHUM CANDIDUM 8CLM ; 1.8 ; 1.80 A crystal structure of RNA/2'-O-methyl-RNA heteroduplex 7RT0 ; 1.8 ; 1.80 A resolution structure of MAO from P. nicotinovorans in complex with FAD 6NLL ; 1.8 ; 1.80 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 14) 3VCZ ; 1.8 ; 1.80 Angstrom resolution crystal structure of a putative translation initiation inhibitor from Vibrio vulnificus CMCP6 6W4H ; 1.8 ; 1.80 Angstrom Resolution Crystal Structure of NSP16 - NSP10 Complex from SARS-CoV-2 3UWQ ; 1.8 ; 1.80 Angstrom resolution crystal structure of orotidine 5'-phosphate decarboxylase from Vibrio cholerae O1 biovar eltor str. N16961 in complex with uridine-5'-monophosphate (UMP) 4IG2 ; 1.8 ; 1.80 Angstroms X-ray crystal structure of R51A and R239A heterodimer 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pseudomonas fluorescens 4TOG ; 1.8 ; 1.80A resolution structure of BfrB (C89S, K96C) crystal form 2 from Pseudomonas aeruginosa 5W38 ; 1.8 ; 1.80A resolution structure of human IgG3 Fc (N392K) 7KNF ; 1.8 ; 1.80A resolution structure of independent Phosphoglycerate mutase from C. elegans in complex with a macrocyclic peptide inhibitor (Ce-1 NHOH) 4TOH ; 1.8 ; 1.80A resolution structure of Iron Bound BfrB (C89S, K96C) from Pseudomonas aeruginosa 7SNW ; 1.8 ; 1.80A Resolution Structure of NanoLuc Luciferase with Bound Inhibitor PC 16026576 4JM7 ; 1.824 ; 1.82 Angstrom resolution crystal structure of holo-(acyl-carrier-protein) synthase (acpS) from Staphylococcus aureus 6BZ0 ; 1.83 ; 1.83 Angstrom Resolution Crystal Structure of Dihydrolipoyl Dehydrogenase from Acinetobacter baumannii in Complex with FAD. 6AWA ; 1.83 ; 1.83 Angstrom Resolution Crystal Structure of Dihydrolipoyl Dehydrogenase from Pseudomonas putida in Complex with FAD and Adenosine-5'-monophosphate. 6BK7 ; 1.83 ; 1.83 Angstrom Resolution Crystal Structure of N-terminal Fragment (residues 1-404) of Elongation Factor G from Enterococcus faecalis 7KOU ; 1.83 ; 1.83 Angstroms Resolution Crystal Structure of Putative Pterin Binding Protein PruR (Atu3496) from Agrobacterium fabrum str. C58 3OYT ; 1.84 ; 1.84 Angstrom resolution crystal structure of 3-oxoacyl-(acyl carrier protein) synthase I (fabB) from Yersinia pestis CO92 5WKL ; 1.85 ; 1.85 A resolution structure of MERS 3CL protease in complex with piperidine-based peptidomimetic inhibitor 17 6W5H ; 1.85 ; 1.85 A resolution structure of Norovirus 3CL protease in complex with inhibitor 5d 6W5J ; 1.85 ; 1.85 A resolution structure of Norovirus 3CL protease in complex with inhibitor 7d 7K0G ; 1.85 ; 1.85 A resolution structure of SARS-CoV 3CL protease in complex with deuterated GC376 6NLK ; 1.85 ; 1.85 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 13) 1ODO ; 1.85 ; 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) 2ID9 ; 1.75 ; 1.85 A Structure of T87I/Y106W Phosphono-CheY 4MWA ; 1.85 ; 1.85 Angstrom Crystal Structure of GCPE Protein from Bacillus anthracis 4YF1 ; 1.85 ; 1.85 angstrom crystal structure of lmo0812 from Listeria monocytogenes EGD-e 4EGD ; 1.85 ; 1.85 Angstrom crystal structure of native hypothetical protein SAOUHSC_02783 from Staphylococcus aureus 3GC2 ; 1.85 ; 1.85 Angstrom Crystal Structure of O-succinylbenzoate Synthase from Salmonella typhimurium in Complex with Succinic Acid 4IR8 ; 1.85 ; 1.85 Angstrom Crystal Structure of Putative Sedoheptulose-1,7 bisphosphatase from Toxoplasma gondii 3L2I ; 1.85 ; 1.85 Angstrom Crystal Structure of the 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium LT2. 1U6E ; 1.85 ; 1.85 Angstrom Crystal Structure of the C112A Mutant of Mycobacterium Tuberculosis Beta-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) 4EDP ; 1.85 ; 1.85 Angstrom resolution crystal structure of an ABC transporter from Clostridium perfringens ATCC 13124 4QJE ; 1.85 ; 1.85 Angstrom resolution crystal structure of apo betaine aldehyde dehydrogenase (betB) G234S mutant from Staphylococcus aureus (IDP00699) with BME-free sulfinic acid form of Cys289 4MPY ; 1.85 ; 1.85 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) from Staphylococcus aureus (IDP00699) in complex with NAD+ 6UE2 ; 1.85 ; 1.85 Angstrom Resolution Crystal Structure of Class D beta-lactamase from Clostridium difficile 630 3QM3 ; 1.85 ; 1.85 Angstrom Resolution Crystal Structure of Fructose-bisphosphate Aldolase (Fba) from Campylobacter jejuni 6VBF ; 1.85 ; 1.85 Angstrom Resolution Crystal Structure of N-terminal Domain of Two-component System Response Regulator from Acinetobacter baumannii 4MGE ; 1.85 ; 1.85 Angstrom Resolution Crystal Structure of PTS System Cellobiose-specific Transporter Subunit IIB from Bacillus anthracis. 3IGX ; 1.85 ; 1.85 Angstrom Resolution Crystal Structure of Transaldolase B (talA) from Francisella tularensis. 4WKQ ; 1.85 ; 1.85 angstrom structure of EGFR kinase domain with gefitinib 3R2L ; 1.85 ; 1.85A resolution structure of Iron Soaked FtnA from Pseudomonas aeruginosa (pH 7.5) 4XBB ; 1.85 ; 1.85A resolution structure of Norovirus 3CL protease complex with a covalently bound dipeptidyl inhibitor diethyl [(1R,2S)-2-[(N-{[(3-chlorobenzyl)oxy]carbonyl}-3-cyclohexyl-L-alanyl)amino]-1-hydroxy-3-(2-oxo-2H-pyrrol-3-yl)propyl]phosphonate 4UY4 ; 1.862 ; 1.86 A structure of human Spindlin-4 protein in complex with histone H3K4me3 peptide 5YL9 ; 1.861 ; 1.86 Angstrom crystal structure of human Coronavirus 229E fusion core 6BLB ; 1.88 ; 1.88 Angstrom Resolution Crystal Structure Holliday Junction ATP-dependent DNA Helicase (RuvB) from Pseudomonas aeruginosa in Complex with ADP 5V36 ; 1.88 ; 1.88 Angstrom Resolution Crystal Structure of Glutathione Reductase from Streptococcus mutans UA159 in Complex with FAD 4R7K ; 1.88 ; 1.88 Angstrom Resolution Crystal Structure of Hypothetical Protein jhp0584 from Helicobacter pylori. 6D0P ; 1.88 ; 1.88 Angstrom Resolution Crystal Structure of Quercetin 2,3-dioxygenase from Acinetobacter baumannii 4HSJ ; 1.883 ; 1.88 angstrom x-ray crystal structure of piconlinic-bound 3-hydroxyanthranilate-3,4-dioxygenase 8TFG ; 1.88 ; 1.88A CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS TOPOISOMERASE I 6ZNZ ; 1.89 ; 1.89 A resolution 4-methylcatechol (4-methylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 1XFK ; 1.8 ; 1.8A crystal structure of formiminoglutamase from Vibrio cholerae O1 biovar eltor str. N16961 3T5N ; 1.787 ; 1.8A crystal structure of Lassa virus nucleoprotein in complex with ssRNA 2BWM ; 1.8 ; 1.8A CRYSTAL STRUCTURE OF of Psathyrella velutina LECTIN IN COMPLEX WITH METHYL 2-ACETAMIDO-1,2-DIDEOXY-1-SELENO-BETA-D-GLUCOPYRANOSIDE 2C25 ; 1.8 ; 1.8A Crystal Structure of Psathyrella velutina lectin in complex with N-acetylneuraminic acid 1HUQ ; 1.8 ; 1.8A CRYSTAL STRUCTURE OF THE MONOMERIC GTPASE RAB5C (MOUSE) 2PST ; 1.8 ; 1.8A Crystal Structure of the PA2412 protein from Pseudomonas aeruginosa 3QH6 ; 1.8 ; 1.8A resolution structure of CT296 from Chlamydia trachomatis 3R2M ; 1.8 ; 1.8A resolution structure of Doubly Soaked FtnA from Pseudomonas aeruginosa (pH 7.5) 1LJ5 ; 1.8 ; 1.8A Resolution Structure of Latent Plasminogen Activator Inhibitor-1(PAI-1) 1IG1 ; 1.8 ; 1.8A X-Ray structure of ternary complex of a catalytic domain of death-associated protein kinase with ATP analogue and Mn. 1Y7P ; 1.9 ; 1.9 A Crystal Structure of a Protein of Unknown Function AF1403 from Archaeoglobus fulgidus, Probable Metabolic Regulator 1T06 ; 1.9 ; 1.9 A Crystal Structure of a Protein of Unknown Function from Bacillus cereus ATCC 14579 4HJZ ; 1.9 ; 1.9 A Crystal structure of E. coli MltE-E64Q with bound chitopentaose 6PUP ; 1.89 ; 1.9 A crystal structure of flavodoxin-like domain of Schizosaccharomyces japonicus putative tRNAPhe 4-demethylwyosine synthase Tyw1 in complex with FMN 1VTO ; 1.9 ; 1.9 A RESOLUTION REFINED STRUCTURE OF TBP RECOGNIZING THE MINOR GROOVE OF TATAAAAG 3NJ7 ; 1.904 ; 1.9 A resolution X-ray structure of (GGCAGCAGCC)2 1C4W ; 1.84 ; 1.9 A STRUCTURE OF A-THIOPHOSPHONATE MODIFIED CHEY D57C 5K2C ; 1.9 ; 1.9 angstrom A2a adenosine receptor structure with sulfur SAD phasing and phase extension using XFEL data 4FCU ; 1.9 ; 1.9 Angstrom Crystal Structure of 3-deoxy-manno-octulosonate Cytidylyltransferase (kdsB) from Acinetobacter baumannii without His-Tag Bound to the Active Site 1O0E ; 1.9 ; 1.9 Angstrom Crystal Structure of a plant cysteine protease Ervatamin C 2YHF ; 1.9 ; 1.9 Angstrom Crystal Structure of CLEC5A 7PVA ; 1.91 ; 1.9 Angstrom crystal structure of dimeric PorX, co-crystallized in the presence of zinc 3G25 ; 1.9 ; 1.9 Angstrom Crystal Structure of Glycerol Kinase (glpK) from Staphylococcus aureus in Complex with Glycerol. 5IKM ; 1.9 ; 1.9 Angstrom Crystal Structure of NS5 Methyl Transferase from Dengue Virus 1 in Complex with S-Adenosylmethionine and Beta-D-Fructopyranose. 3MJD ; 1.9 ; 1.9 Angstrom Crystal Structure of Orotate Phosphoribosyltransferase (pyrE) Francisella tularensis. 5IQJ ; 1.9 ; 1.9 Angstrom Crystal Structure of Protein with Unknown Function from Vibrio cholerae. 4RCO ; 1.9 ; 1.9 Angstrom Crystal Structure of Superantigen-like Protein, Exotoxin from Staphylococcus aureus, in Complex with Sialyl-LewisX. 3EIF ; 1.9 ; 1.9 angstrom crystal structure of the active form of the C5a peptidase from Streptococcus pyogenes (ScpA) 1Z9O ; 1.9 ; 1.9 Angstrom Crystal Structure of the Rat VAP-A MSP Homology Domain in Complex with the Rat ORP1 FFAT Motif 2AFQ ; 1.93 ; 1.9 angstrom crystal structure of wild-type human thrombin in the sodium free state 4H47 ; 1.9 ; 1.9 angstrom CyPet structure at pH5.2 3HMQ ; 1.9 ; 1.9 Angstrom resolution crystal structure of a NAD synthetase (nadE) from Salmonella typhimurium LT2 in complex with NAD(+) 2PNS ; 1.9 ; 1.9 Angstrom resolution crystal structure of a plant cysteine protease Ervatamin-C refinement with cDNA derived amino acid sequence 6C4V ; 1.9 ; 1.9 Angstrom Resolution Crystal Structure of Acyl Carrier Protein Domain (residues 1350-1461) of Polyketide Synthase Pks13 from Mycobacterium tuberculosis 6B8W ; 1.9 ; 1.9 Angstrom Resolution Crystal Structure of Cupin_2 Domain (pfam 07883) of XRE Family Transcriptional Regulator from Enterobacter cloacae. 5U9C ; 1.9 ; 1.9 Angstrom Resolution Crystal Structure of dTDP-4-dehydrorhamnose Reductase from Yersinia enterocolitica 5TU0 ; 1.9 ; 1.9 Angstrom Resolution Crystal Structure of Maltose-Binding Periplasmic Protein MalE from Listeria monocytogenes in Complex with Maltose 4EG9 ; 1.9 ; 1.9 Angstrom resolution crystal structure of Se-methionine hypothetical protein SAOUHSC_02783 from Staphylococcus aureus 3V85 ; 1.9 ; 1.9 Angstrom resolution crystal structure of the protein Q9SIY3 from Arabidopsis thaliana 1EQ6 ; 1.9 ; 1.9 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE SACCHAROMYCES CEREVISIAE RAN-BINDING PROTEIN MOG1P 4KMQ ; 1.9 ; 1.9 Angstrom resolution crystal structure of uncharacterized protein lmo2446 from Listeria monocytogenes EGD-e 4KWU ; 1.9 ; 1.9 Angstrom resolution crystal structure of uncharacterized protein lmo2446 from Listeria monocytogenes EGD-e in complex with alpha-D-glucose, beta-D-glucose, magnesium and calcium 1FAS ; 1.8 ; 1.9 ANGSTROM RESOLUTION STRUCTURE OF FASCICULIN 1, AN ANTI-ACETYLCHOLINESTERASE TOXIN FROM GREEN MAMBA SNAKE VENOM 1XW6 ; 1.9 ; 1.9 angstrom resolution structure of human glutathione S-transferase M1A-1A complexed with glutathione 4WRG ; 1.9 ; 1.9 angstrom structure of EGFR kinase domain 3FZI ; 1.9 ; 1.9 Angstrom structure of the thermophilic exonuclease III homologue Mth0212 5UE0 ; 1.9 ; 1.90 A resolution structure of CT622 C-terminal domain from Chlamydia trachomatis 4MPO ; 1.9 ; 1.90 A resolution structure of CT771 from Chlamydia trachomatis Bound to Hydrolyzed Ap4A Products 5T6F ; 1.9 ; 1.90 A resolution structure of Norovirus 3CL protease in complex with the dipeptidyl inhibitor 7l (orthorhombic P form) 7K0E ; 1.9 ; 1.90 A resolution structure of SARS-CoV-2 3CL protease in complex with deuterated GC376 6NLI ; 1.9 ; 1.90 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 11) 6NLM ; 1.9 ; 1.90 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor (analog 15) 7K5F ; 1.95 ; 1.90 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor KM-5-50 7K5H ; 1.9 ; 1.90 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor KM-5-66 6VPW ; 1.9 ; 1.90 Angstrom Resolution Crystal Structure Chemotaxis protein CheX from Vibrio vulnificus 4Q92 ; 1.9 ; 1.90 Angstrom resolution crystal structure of apo betaine aldehyde dehydrogenase (betB) G234S mutant from Staphylococcus aureus (IDP00699) with BME-modified Cys289 4NEA ; 1.9 ; 1.90 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) from Staphylococcus aureus in complex with NAD+ and BME-free Cys289 6N7F ; 1.9 ; 1.90 Angstrom Resolution Crystal Structure of Glutathione Reductase from Streptococcus pyogenes in Complex with FAD. 3TI2 ; 1.9 ; 1.90 Angstrom resolution crystal structure of N-terminal domain 3-phosphoshikimate 1-carboxyvinyltransferase from Vibrio cholerae 6VPU ; 1.9 ; 1.90 Angstrom Resolution Crystal Structure Phosphoadenosine Phosphosulfate Reductase (CysH) from Vibrio vulnificus 5D8O ; 1.9 ; 1.90A resolution structure of BfrB (wild-type, C2221 form) from Pseudomonas aeruginosa 6AW5 ; 1.9 ; 1.90A resolution structure of catechol O-methyltransferase (COMT) L136M (hexagonal form) from Nannospalax galili 7TL7 ; 1.9 ; 1.90A resolution structure of independent phosphoglycerate mutase from C. elegans in complex with a macrocyclic peptide inhibitor (Sa-D2) 4ROA ; 1.9 ; 1.90A resolution structure of SRPN2 (S358W) from Anopheles gambiae 7OXS ; 1.91 ; 1.91 A crystal structure of DNA/2'-O-methyl-RNA heteroduplex 4PYW ; 1.91 ; 1.92 angstrom crystal structure of A1AT:TTAI ternary complex 3TU3 ; 1.92 ; 1.92 Angstrom resolution crystal structure of the full-length SpcU in complex with full-length ExoU from the type III secretion system of Pseudomonas aeruginosa 7DY0 ; 1.93 ; 1.93 A cryo-EM structure of streptavidin 7P6F ; 1.93 ; 1.93 A resolution X-ray crystal structure of the transcriptional regulator SrnR from Streptomyces griseus 4RFB ; 1.93 ; 1.93 Angstrom Crystal Structure of Superantigen-like Protein from Staphylococcus aureus in Complex with Sialyl-Lewis X. 5HL8 ; 1.93 ; 1.93 Angstrom resolution crystal structure of a pullulanase-specific type II secretion system integral cytoplasmic membrane protein GspL (C-terminal fragment; residues 309-397) from Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044 6MUK ; 1.93 ; 1.93 Angstrom Resolution Crystal Structure of Peptidase M23 from Neisseria gonorrhoeae. 4NPI ; 1.94 ; 1.94 Angstroms X-ray crystal structure of NAD- and intermediate- bound alpha-aminomuconate-epsilon-semialdehyde dehydrogenase from Pseudomonas fluorescens 1O6Z ; 1.95 ; 1.95 A resolution structure of (R207S,R292S) mutant of malate dehydrogenase from the halophilic archaeon Haloarcula marismortui (holo form) 3R2O ; 1.95 ; 1.95 A resolution structure of As-Isolated FtnA from Pseudomonas aeruginosa (pH 6.0) 6VH0 ; 1.95 ; 1.95 A resolution structure of MERS 3CL protease in complex with inhibitor 6g 5WEJ ; 1.95 ; 1.95 A resolution structure of Norovirus 3CL protease in complex with a dipeptidyl oxazolidinone-based inhibitor 5E0H ; 1.95 ; 1.95 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic (18-mer) inhibitor 6BIB ; 1.95 ; 1.95 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic inhibitor 6W5K ; 1.95 ; 1.95 A resolution structure of Norovirus 3CL protease in complex with inhibitor 5g 7K5G ; 1.95 ; 1.95 A resolution structure of WT BfrB from Pseudomonas aeruginosa in complex with a protein-protein interaction inhibitor KM-5-28 1SUG ; 1.95 ; 1.95 A structure of apo protein tyrosine phosphatase 1B 6MPQ ; 1.95 ; 1.95 Ang crystal structure of OXA-24/40 beta-lactamase in complex the inhibitor ETX2514 3NVT ; 1.95 ; 1.95 Angstrom crystal structure of a bifunctional 3-deoxy-7-phosphoheptulonate synthase/chorismate mutase (aroA) from Listeria monocytogenes EGD-e 3TFC ; 1.95 ; 1.95 Angstrom crystal structure of a bifunctional 3-deoxy-7-phosphoheptulonate synthase/chorismate mutase (aroA) from Listeria monocytogenes EGD-e in complex with phosphoenolpyruvate 1ZDE ; 1.95 ; 1.95 Angstrom Crystal Structure of a dnaE Intein Precursor from Synechocystis Sp. Pcc 6803 3III ; 1.95 ; 1.95 Angstrom Crystal Structure of CocE/NonD family hydrolase (SACOL2612) from Staphylococcus aureus 3HVU ; 1.95 ; 1.95 Angstrom Crystal Structure of Complex of Hypoxanthine-Guanine Phosphoribosyltransferase from Bacillus anthracis with 2-(N-morpholino)ethanesulfonic acid (MES) 4JBE ; 1.95 ; 1.95 Angstrom Crystal Structure of Gamma-glutamyl phosphate Reductase from Saccharomonospora viridis. 4H3D ; 1.95 ; 1.95 Angstrom Crystal Structure of of Type I 3-Dehydroquinate Dehydratase (aroD) from Clostridium difficile with Covalent Modified Comenic Acid. 5T8K ; 1.95 ; 1.95 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with Adenine and NAD 3T4E ; 1.95 ; 1.95 Angstrom Crystal Structure of Shikimate 5-dehydrogenase (AroE) from Salmonella enterica subsp. enterica serovar Typhimurium in Complex with NAD 5JVA ; 1.95 ; 1.95 angstrom crystal structure of TAGRFP-T 4GUH ; 1.95 ; 1.95 Angstrom Crystal Structure of the Salmonella enterica 3-Dehydroquinate Dehydratase (aroD) E86A Mutant in Complex with Dehydroshikimate (Crystal Form #2) 3IJ5 ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Yersinia pestis 4QYI ; 1.95 ; 1.95 Angstrom resolution crystal structure of a hypoxanthine-guanine phosphoribosyltransferase (hpt-2) from Bacillus anthracis str. 'Ames Ancestor' with HEPES molecule in the active site 6DXN ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of DsbA Disulfide Interchange Protein from Klebsiella pneumoniae. 3T41 ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of Epidermin Leader Peptide Processing Serine Protease (EpiP) S393A Mutant from Staphylococcus aureus 5UH0 ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of Fragment (35-274) of Membrane-bound Lytic Murein Transglycosylase F from Yersinia pestis. 4DB3 ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of N-acetyl-D-glucosamine kinase from Vibrio vulnificus. 6W75 ; 1.951 ; 1.95 Angstrom Resolution Crystal Structure of NSP10 - NSP16 Complex from SARS-CoV-2 5U47 ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of Penicillin Binding Protein 2X from Streptococcus thermophilus 5TXU ; 1.95 ; 1.95 Angstrom Resolution Crystal Structure of Stage II Sporulation Protein D (SpoIID) from Clostridium difficile in Apo Conformation 5IQW ; 1.95 ; 1.95A resolution structure of Apo HasAp (R33A) from Pseudomonas aeruginosa 4TOB ; 1.95 ; 1.95A resolution structure of BfrB (Q151L) from Pseudomonas aeruginosa 5KGN ; 1.95 ; 1.95A resolution structure of independent phosphoglycerate mutase from C. elegans in complex with a macrocyclic peptide inhibitor (2d) 7TL8 ; 1.95 ; 1.95A resolution structure of independent phosphoglycerate mutase from S. aureus in complex with a macrocyclic peptide inhibitor (Sa-D3) 4TOA ; 1.95 ; 1.95A resolution structure of Iron Bound BfrB (N148L) from Pseudomonas aeruginosa 5IBO ; 1.95 ; 1.95A resolution structure of NanoLuc luciferase 3INO ; 1.95 ; 1.95A Resolution Structure of Protective Antigen Domain 4 5JVB ; 1.95 ; 1.95A resolution structure of PtxB from Trichodesmium erythraeum IMS101 in complex with phosphite 1U18 ; 1.96 ; 1.96 A Crystal structure of H60C mutant of nitrophorin complexed with histamine 1M5W ; 1.96 ; 1.96 A Crystal Structure of Pyridoxine 5'-Phosphate Synthase in Complex with 1-deoxy-D-xylulose phosphate 7VD8 ; 1.96 ; 1.96 A structure of human apoferritin obtained from Talos Arctica microscope 2I5N ; 1.96 ; 1.96 A X-ray structure of photosynthetic reaction center from Rhodopseudomonas viridis:Crystals grown by microfluidic technique 4I3P ; 1.961 ; 1.96 angstrom x-ray crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase bound with 3-aminosalicylic acid from cupriavidus metallidurans 7KQ2 ; 1.981 ; 1.98 A resolution crystal structure of Group A Streptococcus H111A HupZ-V5-His6 4Q7F ; 1.98 ; 1.98 Angstrom Crystal Structure of Putative 5'-Nucleotidase from Staphylococcus aureus in complex with Adenosine. 3O7M ; 1.98 ; 1.98 Angstrom resolution crystal structure of a hypoxanthine-guanine phosphoribosyltransferase (hpt-2) from Bacillus anthracis str. 'Ames Ancestor' 6WKQ ; 1.98 ; 1.98 Angstrom Resolution Crystal Structure of NSP16-NSP10 Heterodimer from SARS-CoV-2 in Complex with Sinefungin 5IWI ; 1.98 ; 1.98A structure of GSK945237 with S.aureus DNA gyrase and singly nicked DNA 5NPK ; 1.98 ; 1.98A STRUCTURE OF THIOPHENE1 WITH S.AUREUS DNA GYRASE AND DNA 4QFB ; 1.986 ; 1.99 A resolution structure of SeMet-CT263 (MTAN) from Chlamydia trachomatis 3IMF ; 1.99 ; 1.99 Angstrom resolution crystal structure of a short chain dehydrogenase from Bacillus anthracis str. 'Ames Ancestor' 5K2D ; 1.9 ; 1.9A angstrom A2a adenosine receptor structure with MR phasing using XFEL data 1YDP ; 1.9 ; 1.9A crystal structure of HLA-G 1R4V ; 1.9 ; 1.9A crystal structure of protein AQ328 from Aquifex aeolicus 1SFL ; 1.9 ; 1.9A Crystal structure of Staphylococcus aureus type I 3-dehydroquinase, apo form 1G6L ; 1.9 ; 1.9A CRYSTAL STRUCTURE OF TETHERED HIV-1 PROTEASE 6XAF ; 1.968 ; 1.9A crystal structure of the GTPase domain of Parkinson's disease-associated protein LRRK2 carrying R1398H 1XBW ; 1.9 ; 1.9A Crystal Structure of the protein isdG from Staphylococcus aureus aureus, Structural genomics, MCSG 3ENK ; 1.9 ; 1.9A crystal structure of udp-glucose 4-epimerase from burkholderia pseudomallei 3D03 ; 1.9 ; 1.9A structure of Glycerophoshphodiesterase (GpdQ) from Enterobacter aerogenes 1CE1 ; 1.9 ; 1.9A STRUCTURE OF THE THERAPEUTIC ANTIBODY CAMPATH-1H FAB IN COMPLEX WITH A SYNTHETIC PEPTIDE ANTIGEN 2P1Y ; 2.42 ; 1.B2.D9, a bispecific alpha/beta TCR 8PYQ ; 1.4 ; 10 micrometer HEWL crystals solved at room-temperature using fixed-target serial crystallography. 7Z04 ; 7.5 ; 10 mM Rb+ soak of beryllium fluoride inhibited Na+,K+-ATPase, E2-BeFx (rigid body model) 8A6D ; 1.8 ; 10 picosecond light activated crystal structure of bovine rhodopsin in Lipidic Cubic Phase 1K43 ; ; 10 Structure Ensemble of the 14-residue peptide RG-KWTY-NG-ITYE-GR (MBH12) 7VG4 ; 2.77 ; 10,5-methenyltetrahydrofolate cyclohydrolase from Methylobacterium extorquens AM1 strain 7VG5 ; 2.25 ; 10,5-methenyltetrahydrofolate cyclohydrolase from Methylobacterium extorquens AM1 with tetrahydrofolate 7PG7 ; 1.51 ; 10-decarboxylase TamK from Streptomyces tsukubaensis 8PDP ; 2.9 ; 10-mer ring of HMPV N-RNA bound to the C-terminal region of P 8PDL ; 3.1 ; 10-mer ring of human metapneumovirus (HMPV) N-RNA 2GPN ; 1.99 ; 100 K STRUCTURE OF GLYCOGEN PHOSPHORYLASE AT 2.0 ANGSTROMS RESOLUTION 8A6E ; 1.8 ; 100 picosecond light activated crystal structure of bovine rhodopsin in Lipidic Cubic Phase (SACLA) 4PSY ; 0.85 ; 100K crystal structure of Escherichia coli dihydrofolate reductase 7BKS ; 1.24 ; 100K endothiapepsin structure obtained in presence of 40 mM DMSO 5A90 ; 1.7 ; 100K Neutron Ligand Free: Exploring the Mechanism of beta-Lactam Ring Protonation in the Class A beta-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography 4GCB ; 1.8 ; 100K X-ray diffraction study of a 6-fold molar excess of a cisplatin/carboplatin mixture binding to HEWL 4G4H ; 2.0 ; 100K X-ray diffraction study of carboplatin binding to HEWL in DMSO media after 13 months of crystal storage 6KMP ; 1.31 ; 100K X-ray structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with tetrahedral intermediate mimic KVS-1 5LSP ; 2.605 ; 107_A07 Fab in complex with fragment of the Met receptor 7SFX ; 3.1 ; 10A1 Fab in complex with CD99 peptide 7QA9 ; ; 10bp DNA/DNA duplex 3BEW ; 2.6 ; 10mer Crystal Structure of chicken MHC class I haplotype B21 6XE9 ; 4.3 ; 10S myosin II (smooth muscle) 2JSI ; ; 11-23 obestatin fragment in DPC/SDS micellar solution 6NJ7 ; 2.6 ; 11-BETA DEHYDROGENASE ISOZYME 1 IN COMPLEX WITH COLLETOIC ACID 4NMH ; 2.9 ; 11-beta-HSD1 in complex with a 3,3-Di-methyl-azetidin-2-one 1FYI ; ; 11-MER DNA DUPLEX CONTAINING A 2'-DEOXYARISTEROMYCIN 8-OXO-GUANINE BASE PAIR; 8PDQ ; 3.1 ; 11-mer ring of HMPV N-RNA bound to the C-terminal region of P 8PDM ; 3.3 ; 11-mer ring of human metapneumovirus (HMPV) N-RNA 7BXV ; 1.75 ; 11A1 antibody-peptide complex 4C7J ; 2.16 ; 11b-Hydroxysteroid Dehydrogenase Type I in complex with inhibitor 4C7K ; 1.91 ; 11b-Hydroxysteroid Dehydrogenase Type I in complex with inhibitor 4YYZ ; 3.2 ; 11B-HYDROXYSTEROID DEHYDROGENASE TYPE I IN COMPLEX WITH INHIBITOR 3BEV ; 2.1 ; 11mer Structure of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding 5WXU ; 1.7 ; 11S globulin from Wrightia tinctoria reveals auxin binding site 7W05 ; 1.29 ; 12 mutant Ribonuclease from Hericium erinaceus GMP binding form 5U5Q ; 3.8 ; 12 Subunit RNA Polymerase II at Room Temperature collected using SFX 1Q45 ; 2.0 ; 12-0xo-phytodienoate reductase isoform 3 1BSO ; 2.23 ; 12-BROMODODECANOIC ACID BINDS INSIDE THE CALYX OF BOVINE BETA-LACTOGLOBULIN 8CTZ ; 2.32 ; 12-mer DNA structure of ExBIM & O6Me-G bound to RNase-H 8CTY ; 2.3 ; 12-mer DNA structure of ExBIM bound to RNase-H 8CU0 ; 1.74 ; 12-mer DNA structure of ExBIM bound to RNaseH -modified DDD 1RSX ; ; 12-mer from site II calbindin D9K (DKNGDGEVSFEE) coordinating Cd(II) 1RT0 ; ; 12-mer from site II calbindin D9K (DKNGDGEVSFEE) coordinating Zn(II) 1RSW ; ; 12-mer from site II calbindin D9K (DKNGDGEVSFEE) coordination Pb(II) 6MRT ; 2.8 ; 12-meric ClyA pore complex 8AUE ; 1.82 ; 12-oxophytodienoate reductase 3 (OPR3) from Solanum lycopersicum in complex with 2-methoxyethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUA ; 1.9 ; 12-oxophytodienoate reductase 3 (OPR3) from Solanum lycopersicum in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUB ; 1.62 ; 12-oxophytodienoate reductase 3 (OPR3) from Solanum lycopersicum in complex with ethyl (Z)-2-(hydroxyimino)-3-oxopentanoate 2B8K ; 4.15 ; 12-subunit RNA Polymerase II 3FKI ; 3.88 ; 12-Subunit RNA Polymerase II Refined with Zn-SAD data 6KJ3 ; 0.6 ; 120kV MicroED structure of FUS (37-42) SYSGYS solved from merged datasets at 0.60 A 6KJ4 ; 0.65 ; 120kV MicroED structure of FUS (37-42) SYSGYS solved from single crystal at 0.65 A 7AS5 ; 9.8 ; 126 helix bundle DNA nanostructure 3RYG ; 1.75 ; 128 hours neutron structure of perdeuterated rubredoxin 5X04 ; 2.43 ; 12:0-ACP thioesterase from Umbellularia californica 1ZJE ; 2.1 ; 12mer-spd 1ZJF ; 2.2 ; 12mer-spd-P4N 2IWO ; 1.7 ; 12th PDZ domain of Multiple PDZ Domain Protein MPDZ 2IWP ; 2.15 ; 12th PDZ domain of Multiple PDZ Domain Protein MPDZ 2OTJ ; 2.9 ; 13-deoxytedanolide bound to the large subunit of Haloarcula marismortui 6MRU ; 3.2 ; 13-meric ClyA pore complex 6E7B ; 3.5 ; 13-pf 3-start GMPCPP-human alpha1B/beta3 microtubules 2HSS ; ; 13mer duplex DNA containg an abasic site with beta anomer, averaged structure 2HPX ; ; 13mer Duplex DNA containing a 4'-oxidized abasic site, averaged structure 2HSR ; ; 13mer duplex DNA containing an abasic site with beta anomer 1ZJG ; 3.0 ; 13mer-co 7SJ9 ; 3.8 ; 13pf E254A microtubule from recombinant human tubulin decorated with EB3 7SJ8 ; 3.6 ; 13pf wildtype microtubule from recombinant human tubulin decorated with kinesin 8DGM ; 3.2 ; 14-3-3 epsilon bound to phosphorylated PEAK1 (pT1165) peptide 8DGN ; 3.16 ; 14-3-3 epsilon bound to phosphorylated PEAK2 (pS826) peptide 8DGP ; 2.7 ; 14-3-3 epsilon bound to phosphorylated PEAK3 (pS69) peptide 8C2D ; 2.15 ; 14-3-3 in complex with Pyrin pS208 8C2Y ; 1.46 ; 14-3-3 in complex with Pyrinp pS242 8C28 ; 1.6 ; 14-3-3 in complex with PyrinpS208pS242 7ZIT ; 1.79 ; 14-3-3 in complex with SARS-COV2 N phospho-peptide 4BG6 ; 2.3 ; 14-3-3 interaction with Rnd3 prenyl-phosphorylation motif 4IEA ; 1.7 ; 14-3-3 isoform sigma in complex with a phosphorylated C-RAF peptide 4FJ3 ; 1.95 ; 14-3-3 isoform zeta in complex with a diphoyphorylated C-RAF peptide 2BQ0 ; 2.5 ; 14-3-3 Protein Beta (Human) 2C23 ; 2.65 ; 14-3-3 Protein Beta (Human) in complex with exoenzyme S peptide 2BR9 ; 1.75 ; 14-3-3 Protein Epsilon (Human) Complexed to Peptide 2C63 ; 2.15 ; 14-3-3 Protein Eta (Human) Complexed to Peptide 2C74 ; 2.7 ; 14-3-3 Protein Eta (Human) Complexed to Peptide 6KZH ; 2.645 ; 14-3-3 protein in Complex with CIC S173 phosphorylated peptide 6KZG ; 2.0 ; 14-3-3 protein in Complex with CIC S301 phosphorylated peptide 4JC3 ; 2.05 ; 14-3-3 protein interaction with Estrogen Receptor Alpha provides a novel drug target interface 4JDD ; 2.1 ; 14-3-3 protein interaction with Estrogen Receptor Alpha provides a novel drug target interface 5IQP ; 2.602 ; 14-3-3 PROTEIN TAU ISOFORM 2BTP ; 2.8 ; 14-3-3 Protein Theta (Human) Complexed to Peptide 1A37 ; 3.6 ; 14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE 1A38 ; 3.35 ; 14-3-3 PROTEIN ZETA BOUND TO R18 PEPTIDE 2V7D ; 2.5 ; 14-3-3 protein zeta in complex with Thr758 phosphorylated integrin beta2 peptide 1A4O ; 2.8 ; 14-3-3 PROTEIN ZETA ISOFORM 7AEW ; 1.2 ; 14-3-3 sigma bound to bis-phosphorylated aminopeptidase N (APN, CD13) via canonical and non-canonical binding motifs 6XWD ; 1.6 ; 14-3-3 sigma bound to canonical mono-phosphorylated aminopeptidase N (APN, CD13) binding motif 6TWZ ; 2.8 ; 14-3-3 sigma complexed with a phosphorylated 16E6 peptide 6QZS ; 1.9 ; 14-3-3 sigma in complex with FOXO1 pS256 peptide 6QZR ; 2.3 ; 14-3-3 sigma in complex with FOXO1 pT24 peptide 6YR6 ; 1.75 ; 14-3-3 sigma in complex with hDM2-186 peptide 6YR7 ; 2.105 ; 14-3-3 sigma in complex with hDMX-342+367 peptide 6YR5 ; 2.25 ; 14-3-3 sigma in complex with hDMX-367 peptide 6Y1J ; 1.127 ; 14-3-3 sigma in complex with IkappaBalpha pS63 peptide 6Y3S ; 1.95 ; 14-3-3 Sigma in complex with phosphorylated (pS210) Gab2 peptide 6Y3R ; 1.5 ; 14-3-3 Sigma in complex with phosphorylated (Thr391) Gab2 peptide 6Y3M ; 1.5 ; 14-3-3 Sigma in complex with phosphorylated ATPase peptide 6Y3V ; 1.499 ; 14-3-3 Sigma in complex with phosphorylated c-Jun peptide 6Y3O ; 1.5 ; 14-3-3 Sigma in complex with phosphorylated CAMKK2 peptide 6Y8A ; 1.5 ; 14-3-3 Sigma in complex with phosphorylated camkk2{pS511} peptide 6Y8B ; 1.54 ; 14-3-3 Sigma in complex with phosphorylated caspase{pS139} peptide 6Y8D ; 1.51 ; 14-3-3 Sigma in complex with phosphorylated caspase{pS164} peptide 6ZVE ; 2.51 ; 14-3-3 Sigma in complex with phosphorylated Gab2pT391 peptide - 1h incubation 6ZVB ; 2.51 ; 14-3-3 Sigma in complex with phosphorylated Gab2pT391 peptide - 24h incubation 6ZVC ; 2.51 ; 14-3-3 Sigma in complex with phosphorylated Gab2pT391 peptide - 48h incubation 6ZVD ; 2.5 ; 14-3-3 Sigma in complex with phosphorylated Gab2pT391 peptide - 96h incubation 6Y8E ; 1.42 ; 14-3-3 Sigma in complex with phosphorylated MLF1 peptide 6Y40 ; 1.75 ; 14-3-3 Sigma in complex with phosphorylated PLN peptide 6Y44 ; 1.71 ; 14-3-3 Sigma in complex with phosphorylated SOS1 peptide 7AOG ; 1.5 ; 14-3-3 sigma in complex with Pin1 binding site pS72 7AXN ; 1.4 ; 14-3-3 sigma in complex with Pin1 binding site pS72 and covalently bound TCF521-026 6YIA ; 1.3 ; 14-3-3 sigma in complex with SMAD2 pS465 peptide 6YIB ; 1.7 ; 14-3-3 sigma in complex with SMAD3 pS423 peptide 6YIC ; 1.6 ; 14-3-3 sigma in complex with SMAD4 pS403 peptide 5N75 ; 1.803 ; 14-3-3 sigma in complex with TAZ pS89 peptide 5N5R ; 1.801 ; 14-3-3 sigma in complex with TAZ pS89 peptide and fragment NV1 5N5T ; 1.8 ; 14-3-3 sigma in complex with TAZ pS89 peptide and fragment NV2 5N5W ; 1.37 ; 14-3-3 sigma in complex with TAZ pS89 peptide and fragment NV3 3MHR ; 1.15 ; 14-3-3 sigma in complex with YAP pS127-peptide 8ANB ; 1.64 ; 14-3-3 sigma sirtuin-1 phospho-peptide complex 8ANC ; 1.11 ; 14-3-3 sigma sirtuin-3 phospho-peptide complex 7NIX ; 1.9 ; 14-3-3 sigma with AS160 binding site pT642 7NSV ; 1.33 ; 14-3-3 sigma with p65 (RelA) binding site pS45 and covalently bound PC2046 8C3C ; 1.6 ; 14-3-3 sigma with Pin1 binding site pS72 and bound Fusicoccin A 8C2G ; 1.6 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound CV1040 7NRK ; 1.75 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1002F1 7NJ6 ; 1.59 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1005 7NJA ; 1.75 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1006 7NJ8 ; 1.8 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1007 7NIG ; 1.9 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1008 7BDT ; 1.75 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1009 7BGW ; 1.9 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1011 7BGV ; 1.683 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1012 7AZ1 ; 1.15 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1013 7AZ2 ; 1.081 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1014 7BGR ; 1.8 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1016 7BDP ; 1.75 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1017 7BGQ ; 1.75 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1019 7NRL ; 1.8 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound LvD1032 7BG3 ; 1.4 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound PC2046 7BFW ; 1.8 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound PC2068A 7BDY ; 1.801 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound PC2068B 7NIF ; 1.71 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound TCF521-011 7AYF ; 1.752 ; 14-3-3 sigma with Pin1 binding site pS72 and covalently bound TCF521-110 6QHM ; 1.25 ; 14-3-3 sigma with RelA/p65 binding site pS281 6QHL ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 7NQP ; 1.24 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound LvD1009 6YOW ; 1.23 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521 6YP2 ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-011 6YOY ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-025 6YOX ; 2.05 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-027 6YP3 ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-028 6YP8 ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-033 6YPL ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-037 7O3Q ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-041 7O3R ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-042 7O34 ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-043 7BJB ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-044 7O3S ; 2.0 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-045 7O3A ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-046 7BJF ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-069 7NMH ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-070 7O6K ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-080 7O6J ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-083 7O6I ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-085 7O6O ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-096 7O6M ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-097 7NM9 ; 1.7 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-110 7NR7 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-111 7O3P ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-116 7O3F ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-117 7NLE ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-118 7NLA ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-119 7NZV ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-120 7NZK ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-121 7NZG ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-122 6YPY ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-123 7NK5 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-124 7NZ6 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-125 7NM1 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-126 7NYG ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-127 7NK3 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-128 6YQ2 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-129 7NY4 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-130 7NYF ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-131 7NJB ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-132 7NJ9 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-133 7NYE ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-134 7NM3 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-135 7BJL ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-142 7BKH ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-153 7BJW ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-154 7O57 ; 1.4 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-157 7O5A ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-158 7O5C ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-159 7O5D ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-160 7O5F ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-161 7O5G ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-164 7O5O ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-165 7O5P ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-166 7O5S ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-167 7O5U ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-168 7O5X ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-173 7BIY ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-175 7O6G ; 1.8 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-176 7O6F ; 2.0 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-178 7BI3 ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-179 7BIQ ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-180 7NXY ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-181 7NXW ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-182 7NXT ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-183 7NXS ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-184 7NWS ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-185 7NVI ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-186 7BIW ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-187 7NV4 ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-188 7O59 ; 1.2 ; 14-3-3 sigma with RelA/p65 binding site pS45 and covalently bound TCF521-192 6NV2 ; 1.13 ; 14-3-3 sigma with RelA/p65 binding site pS45 in complex with DP005 6EF5 ; 2.44 ; 14-3-3 with peptide 6ZFD ; 1.9 ; 14-3-3 zeta bound to the phosphorylated 18E6 C-terminus 6ZFG ; 1.85 ; 14-3-3 zeta chimera with 18E6 and fusicoccin 6F08 ; 1.9 ; 14-3-3 zeta in complex with the human Son of sevenless homolog 1 (SOS1) 1QJB ; 2.0 ; 14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 1) 1QJA ; 2.0 ; 14-3-3 ZETA/PHOSPHOPEPTIDE COMPLEX (MODE 2) 4O46 ; 2.9 ; 14-3-3-gamma in complex with influenza NS1 C-terminal tail phosphorylated at S228 4HKC ; 2.2 ; 14-3-3-zeta in complex with S1011 phosphorylated integrin alpha-4 peptide 5NWI ; 2.35 ; 14-3-3c in complex with CPP 5NWK ; 3.3 ; 14-3-3c in complex with CPP and fusicoccin 5NWJ ; 2.07 ; 14-3-3c in complex with CPP7 4J6S ; 3.08 ; 14-3-3gamma complexed with the N-terminal sequence of tyrosine hydroxylase (residues 1-43) 7ZMW ; 1.8 ; 14-3-3s binding to non-natural peptide 2c 7ZMU ; 1.6 ; 14-3-3s binding to non-natural peptide 2d 8C40 ; 1.4 ; 14-3-3sigma bound to PKA-responsive ERa phosphopeptide 8C3Z ; 1.4 ; 14-3-3sigma bound to strep-tagged PKA-responsive ERa phosphopeptide 7O07 ; 1.2 ; 14-3-3sigma covalently bound to peptide (chloroacetamide-Cys interaction) 6G8Q ; 1.85 ; 14-3-3sigma in complex with a A130beta3A and Q133beta3Q mutated YAP pS127 phosphopeptide 6G8J ; 1.47 ; 14-3-3sigma in complex with a A130beta3A mutated YAP pS127 phosphopeptide 6G8L ; 1.37 ; 14-3-3sigma in complex with a L132beta3L mutated YAP pS127 phosphopeptide 6G8P ; 1.9 ; 14-3-3sigma in complex with a P129beta3P and L132beta3L mutated YAP pS127 phosphopeptide 6G6X ; 1.13 ; 14-3-3sigma in complex with a P129beta3P mutated YAP pS127 phosphopeptide 6G8I ; 1.6 ; 14-3-3sigma in complex with a R124beta3R mutated YAP pS127 phosphopeptide 6G8K ; 1.25 ; 14-3-3sigma in complex with a S131beta3S mutated YAP pS127 phosphopeptide 6GHP ; 1.95 ; 14-3-3sigma in complex with a TASK3 peptide stabilized by semi-synthetic natural product FC-NAc 6YLU ; 1.88 ; 14-3-3sigma in complex with BLNKpT152 phosphopeptide crystal structure 7B13 ; 1.37 ; 14-3-3sigma in complex with SHN3pS542 phosphopeptide crystal structure 7B15 ; 1.59 ; 14-3-3sigma in complex with SHN3pT869 phosphopeptide crystal structure 6ZCJ ; 1.53 ; 14-3-3sigma in complex with SLP76pS376 phosphopeptide crystal structure 6MRW ; 4.3 ; 14-meric ClyA pore complex 6E7C ; 3.65 ; 14-pf 3-start GMPCPP-human alpha1B/beta2B microtubules 4P5T ; 3.263 ; 14.C6 TCR complexed with MHC class II I-Ab/3K peptide 8GH7 ; 1.75 ; 142D6 bound to BIR3-XIAP 1B4L ; 1.8 ; 15 ATMOSPHERE OXYGEN YEAST CU/ZN SUPEROXIDE DISMUTASE ROOM TEMPERATURE (298K) STRUCTURE 7LAF ; 2.44 ; 15-lipoxygenase-2 loop mutant bound to imidazole-based inhibitor 3BPP ; 2.3 ; 1510-N membrane protease K138A mutant specific for a stomatin homolog from Pyrococcus horikoshii 2DEO ; 3.0 ; 1510-N membrane protease specific for a stomatin homolog from Pyrococcus horikoshii 3VIV ; 2.25 ; 1510-N membrane-bound stomatin-specific protease K138A mutant in complex with a substrate peptide 3WG5 ; 2.4 ; 1510-N membrane-bound stomatin-specific protease K138A mutant in complex with a substrate peptide under heat treatment 6M4B ; 2.25 ; 1510-N membrane-bound stomatin-specific protease S97A mutant 5A91 ; 1.2 ; 15K X-ray ligand free: Exploring the Mechanism of beta-Lactam Ring Protonation in the Class A beta-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography 5A92 ; 1.05 ; 15K X-ray structure with Cefotaxime: Exploring the Mechanism of beta- Lactam Ring Protonation in the Class A beta-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography 7MWG ; 3.5 ; 16-nm repeat microtubule doublet 8EVG ; 2.75 ; 162bp CX3CR1 nucleosome (further classified with better nucleosome end) 6LER ; 3.0 ; 169 bp nucleosome harboring non-identical cohesive DNA termini. 6LAB ; 3.2 ; 169 bp nucleosome, harboring cohesive DNA termini, assembled with linker histone H1.0 8KAE ; 3.18 ; 16d-bound human SPNS2 8FEP ; 1.55 ; 16mer self-complementary duplex RNA with two continuous native U:U pairs 8FER ; 1.54 ; 16mer self-complementary duplex RNA with two continuous s(2)U:s(2)U pairs 8FEO ; 1.52 ; 16mer self-complementary duplex RNA with two separated native U:U pairs 8FEQ ; 1.5 ; 16mer self-complementary duplex RNA with two separated s(2)U:s(2)U pairs 1AT0 ; 1.9 ; 17-kDA fragment of hedgehog C-terminal autoprocessing domain 7UR8 ; 1.5 ; 170_h_ob, a small beta-barrel de novo designed protein 8GJM ; 2.8 ; 17b10 fab in complex with full-length SARS-CoV-2 Spike G614 trimer 8GJN ; 3.6 ; 17B10 fab in complex with up-RBD of SARS-CoV-2 Spike G614 trimer 3KLP ; 2.5 ; 17beta-HSD1 in complex with A-diol 3KLM ; 1.7 ; 17beta-HSD1 in complex with DHT 4WDT ; 1.5 ; 17beta-HSD5 in complex with 2-nitro-5-(phenylsulfonyl)phenol 4WDW ; 1.94 ; 17beta-HSD5 in complex with 3,6-dihydropyridin-1(2H)-yl(5-methyl-1H-indol-2-yl)methanone 4XVE ; 1.55 ; 17beta-HSD5 in complex with 3-pentyl-2-[(pyridin-2-ylmethyl)sulfanyl]-7-(pyrrolidin-1-ylcarbonyl)quinazolin-4(3H)-one 4WDU ; 1.7 ; 17beta-HSD5 in complex with 4-chloro-N-(4-chlorobenzyl)-5-nitro-1H-pyrazole-3-carboxamide 4XVD ; 2.81 ; 17beta-HSD5 in complex with 4-nitro-2-({4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}methyl)phenol 4WDX ; 1.64 ; 17beta-HSD5 in complex with [4-(2-hydroxyethyl)piperidin-1-yl](5-methyl-1H-indol-2-yl)methanone 6HNO ; 1.68 ; 17beta-hydroxysteroid dehydrogenase 14 variant S205 - mutant H93A 6FFB ; 1.65 ; 17beta-hydroxysteroid dehydrogenase 14 variant S205 - mutant Q148A - in complex with a nonsteroidal inhibitor 5O6O ; 1.45 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal 2,6-pyridinketone inhibitor 5O42 ; 1.76 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal 2,6-pyridinketone inhibitor. 5O43 ; 1.5 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal 2,6-pyridinketone inhibitor. 5L7T ; 1.983 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal inhibitor. 5L7W ; 1.76 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal inhibitor. 5L7Y ; 1.912 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal inhibitor. 5O6X ; 1.35 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal quinoline based inhibitor 5O6Z ; 1.57 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal quinoline based inhibitor 5O72 ; 1.91 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal quinoline based inhibitor 5O7C ; 1.6 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with a non-steroidal quinoline based inhibitor 6GTB ; 1.619 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with FB211 6QCK ; 1.68 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with FB262 6GTU ; 2.25 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with fragment J6 6EMM ; 2.47 ; 17beta-hydroxysteroid dehydrogenase 14 variant T205 in complex with Salicylic acid 5ICM ; 1.68 ; 17beta-hydroxysteroid dehydrogenase type 14 in complex with a non-steroidal inhibitor 6H0M ; 1.25 ; 17beta-hydroxysteroid dehydrogenase type 14 mutant K158A in complex with Nicotinamide Adenine Dinucleotide 6G4L ; 1.444 ; 17beta-hydroxysteroid Dehydrogenase Type 14 Mutant Y253A in Complex With a Non-steroidal Inhibitor 6GBT ; 2.1 ; 17beta-hydroxysteroid dehydrogenase type 14 Mutant Y253A in complex with a non-steroidal inhibitor 6ZDI ; 2.13 ; 17beta-hydroxysteroid dehydrogenase type 14 variant S205 in complex with 2-fluoro-5-nitrophenol 6ZRA ; 1.73 ; 17beta-hydroxysteroid dehydrogenase type 14 variant S205 in complex with 2-fluoro-5-nitrophenol 6ZT2 ; 1.95 ; 17beta-hydroxysteroid dehydrogenase type 14 variant S205 in complex with 3-chloro-2,6-difluorophenol 6ZR6 ; 1.5 ; 17beta-hydroxysteroid dehydrogenase type 14 variant S205 in complex with non-steroidal inhibitor 6ZDE ; 1.87 ; 17beta-hydroxysteroid dehydrogenase type 14 variant S205 in complex with pentafluorophenol 3HB4 ; 2.21 ; 17beta-hydroxysteroid dehydrogenase type1 complexed with E2B 3KM0 ; 2.3 ; 17betaHSD1 in complex with 3beta-diol 7UR7 ; 1.21 ; 17_bp_sh3, a small beta-barrel de novo designed protein 1GV8 ; 1.95 ; 18 kDa fragment of N-II domain of duck ovotransferrin 1ZNT ; ; 18 NMR structures of AcAMP2-Like Peptide with non Natural Fluoroaromatic Residue (AcAMP2F18Pff/Y20Pff) complex with N,N,N-triacetylchitotriose 1NP8 ; 2.0 ; 18-k C-terminally trunucated small subunit of calpain 7M20 ; 3.84 ; 18-mer HeLa-tubulin rings in complex with Cryptophycin 1 8AKQ ; 4.1 ; 180 A SynPspA rod after incubation with ATP 1GVC ; 1.9 ; 18kDa N-II domain fragment of duck ovotransferrin + NTA 8Q2M ; 3.21 ; 18mer DNA mimic Foldamer with an Aliphatic linker in complex with Sac7d V26A/M29A protein 8CMN ; 2.65 ; 18mer DNA mimic Foldamer with an aliphatic linker in complex with Sac7d wild protein 8QPC ; 3.24 ; 18mer DNA mimic Foldamer with an Aromatic linker in complex with Sac7d V26A/M29A protein 1RUZ ; 2.9 ; 1918 H1 Hemagglutinin 7NHA ; 2.91 ; 1918 H1N1 Viral influenza polymerase heterotrimer - Endonuclease and priming loop ordered (Class2a) 7NHC ; 2.87 ; 1918 H1N1 Viral influenza polymerase heterotrimer - Endonuclease ordered (Class2b) 7NHX ; 3.23 ; 1918 H1N1 Viral influenza polymerase heterotrimer - full transcriptase (Class1) 7NI0 ; 3.32 ; 1918 H1N1 Viral influenza polymerase heterotrimer - Replicase (class 3) 7NIK ; 6.2 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8189 core 7NIL ; 5.01 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8190 core 7NIR ; 6.7 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8191 core 7NIS ; 5.96 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8192 core 7NJ3 ; 4.48 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8196 core 7NJ4 ; 5.84 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8198 core 7NJ5 ; 4.63 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8199 core 7NJ7 ; 4.82 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8200 core 7NK2 ; 4.84 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8202 core 7NK4 ; 5.32 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8203 core 7NK6 ; 6.72 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8204 7NK8 ; 5.34 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8205 core 7NKA ; 4.07 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8206 7NKC ; 4.46 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8207 7NKI ; 4.67 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8209 core 7NKR ; 5.6 ; 1918 H1N1 Viral influenza polymerase heterotrimer with Nb8210 8R60 ; 3.23 ; 1918 H1N1 Viral polymerase heterotrimer in complex with 4 repeat serine-5 phosphorylated PolII peptide 8R65 ; 4.23 ; 1918 H1N1 Viral polymerase heterotrimer in complex with 4 repeat serine-5 phosphorylated PolII peptide with ordered PB2 C-terminal domains 7NK1 ; 4.22 ; 1918 Influenza virus polymerase heterotirmer in complex with vRNA promoters and Nb8201 1RVT ; 2.5 ; 1930 H1 Hemagglutinin in complex with LSTC 1RUY ; 2.7 ; 1930 Swine H1 Hemagglutinin 1RV0 ; 2.5 ; 1930 Swine H1 Hemagglutinin complexed with LSTA 1RVX ; 2.2 ; 1934 H1 Hemagglutinin in complex with LSTA 1RVZ ; 2.25 ; 1934 H1 Hemagglutinin in complex with LSTC 1RU7 ; 2.3 ; 1934 Human H1 Hemagglutinin 7JO9 ; 3.3 ; 1:1 cGAS-nucleosome complex 1FYH ; 2.04 ; 1:1 COMPLEX BETWEEN AN INTERFERON GAMMA SINGLE-CHAIN VARIANT AND ITS RECEPTOR 1HWH ; 2.9 ; 1:1 COMPLEX OF HUMAN GROWTH HORMONE MUTANT G120R WITH ITS SOLUBLE BINDING PROTEIN 8S9P ; 3.8 ; 1:1:1 agrin/LRP4/MuSK complex 1HWG ; 2.5 ; 1:2 COMPLEX OF HUMAN GROWTH HORMONE WITH ITS SOLUBLE BINDING PROTEIN 1EN3 ; 0.985 ; 1A CRYSTAL STRUCTURES OF B-DNA REVEAL SEQUENCE-SPECIFIC BINDING AND GROOVE-SPECIFIC BENDING OF DNA BY MAGNESIUM AND CALCIUM 1EN9 ; 0.985 ; 1A CRYSTAL STRUCTURES OF B-DNA REVEAL SEQUENCE-SPECIFIC BINDING AND GROOVE-SPECIFIC BENDING OF DNA BY MAGNESIUM AND CALCIUM. 1ENE ; 0.985 ; 1A CRYSTAL STRUCTURES OF B-DNA REVEAL SEQUENCE-SPECIFIC BINDING AND GROOVE-SPECIFIC BENDING OF DNA BY MAGNESIUM AND CALCIUM. 5MX7 ; 1.98 ; 1a,20S-dihydroxyvitamin D3 VDR complex 2B5R ; 1.65 ; 1B Lactamase / B Lactamase Inhibitor 1S0W ; 2.3 ; 1b Lactamse/ b Lactamase Inhibitor 6L9L ; 2.399 ; 1D4 TCR recognition of H2-Ld a1a2 A5 Peptide Complexes 5HYJ ; 3.06 ; 1E6 TCR in Complex with HLA-A02 carrying AQWGPDPAAA 5C0A ; 2.46 ; 1E6 TCR in complex with HLA-A02 carrying MVW peptide 5C0B ; 2.03 ; 1E6 TCR in complex with HLA-A02 carrying RQFGPDFPTI 5C0C ; 1.974 ; 1E6 TCR in complex with HLA-A02 carrying RQFGPDWIVA 5C07 ; 2.11 ; 1E6 TCR in complex with HLA-A02 carrying YQFGPDFPIA 5C08 ; 2.332 ; 1E6 TCR in Complex with HLA-A0e carrying RQWGPDPAAV 3UTP ; 2.574 ; 1E6 TCR specific for HLA-A*0201-ALWGPDPAAA 3UTS ; 2.712 ; 1E6-A*0201-ALWGPDPAAA Complex, Monoclinic 3UTT ; 2.6 ; 1E6-A*0201-ALWGPDPAAA Complex, Triclinic 3MFF ; 2.0 ; 1F1E8hu TCR 8CT6 ; 3.1 ; 1F8 mAb in complex with the computationally optimized broadly reactive H1 influenza hemagglutinin P1 1SRL ; ; 1H AND 15N ASSIGNMENTS AND SECONDARY STRUCTURE OF THE SRC SH3 DOMAIN 1SRM ; ; 1H AND 15N ASSIGNMENTS AND SECONDARY STRUCTURE OF THE SRC SH3 DOMAIN 2LCN ; ; 1H and 15N assignments of WALP19-P10 peptide in SDS micelles 2LCO ; ; 1H and 15N assignments of WALP19-P8 peptide in SDS micelles 1DOX ; ; 1H AND 15N SEQUENTIAL ASSIGNMENT, SECONDARY STRUCTURE AND TERTIARY FOLD OF [2FE-2S] FERREDOXIN FROM SYNECHOCYSTIS SP. PCC 6803 1DOY ; ; 1H AND 15N SEQUENTIAL ASSIGNMENT, SECONDARY STRUCTURE AND TERTIARY FOLD OF [2FE-2S] FERREDOXIN FROM SYNECHOCYSTIS SP. PCC 6803 2L1J ; ; 1H assignments for ASIP(93-126, P103A, P105A, P111A, Q115Y, S124Y) 2LDJ ; ; 1H Chemical Shift Assignments and structure of Trp-Cage mini-protein with D-amino acid 2LR5 ; ; 1H chemical shift assignments for micasin 2LS2 ; ; 1H Chemical Shift Assignments for the first transmembrane domain from human copper transport 1 2LS3 ; ; 1H Chemical Shift Assignments for the secondary transmembrane domain from human copper transport 1 2LS4 ; ; 1H Chemical Shift Assignments for the third transmembrane domain from the human copper transport 1 1BJ6 ; ; 1H NMR OF (12-53) NCP7/D(ACGCC) COMPLEX, 10 STRUCTURES 1DF6 ; ; 1H NMR SOLUTION STRUCTURE OF CYCLOVIOLACIN O1 1Q3M ; ; 1H NMR structure bundle of bovine Ca2+-osteocalcin 1ORL ; ; 1H NMR structure determination of Viscotoxin C1 1Y9O ; ; 1H NMR Structure of Acylphosphatase from the hyperthermophile Sulfolobus Solfataricus 1MMC ; ; 1H NMR STUDY OF THE SOLUTION STRUCTURE OF AC-AMP2 2M74 ; ; 1H, 13C and 15N assignments of the four N-terminal domains of human fibrillin-1 2KWA ; ; 1H, 13C and 15N backbone and side chain resonance assignments of the N-terminal domain of the histidine kinase inhibitor KipI from Bacillus subtilis 2N8A ; ; 1H, 13C and 15N chemical shift assignments and solution structure for PARP-1 F1F2 domains in complex with a DNA single-strand break 2M64 ; ; 1H, 13C and 15N Chemical Shift Assignments for Phl p 5a 2MF4 ; ; 1H, 13C, 15N chemical shift assignments of Streptomyces virginiae VirA acp5a 2MZY ; ; 1H, 13C, and 15N Chemical Shift Assignments and structure of Probable Fe(2+)-trafficking protein from Burkholderia pseudomallei 1710b. 2MUK ; ; 1H, 13C, and 15N Chemical Shift Assignments for AUX/IAA17 2N9K ; ; 1H, 13C, and 15N Chemical Shift Assignments for in vitro GB1 2N9L ; ; 1H, 13C, and 15N Chemical Shift Assignments for in-cell GB1 2KXC ; ; 1H, 13C, and 15N Chemical Shift Assignments for IRTKS-SH3 and EspFu-R47 complex 2RS2 ; ; 1H, 13C, and 15N Chemical Shift Assignments for Musashi1 RBD1:r(GUAGU) complex 2MNQ ; ; 1H, 13C, and 15N Chemical Shift Assignments for Thymosin alpha 1 2LI6 ; ; 1H, 13C, and 15N Chemical Shift Assignments for yeast protein 2L07 ; ; 1H, 13C, and 15N chemical shifts and structure of brazzein-derived peptide CKR-PNG 2K0A ; ; 1H, 15N and 13C chemical shift assignments for Rds3 protein 1ESX ; ; 1H, 15N AND 13C STRUCTURE OF THE HIV-1 REGULATORY PROTEIN VPR : COMPARISON WITH THE N-AND C-TERMINAL DOMAIN STRUCTURE, (1-51)VPR AND (52-96)VPR 2KYQ ; ; 1H, 15N, 13C chemical shifts and structure of CKR-brazzein 2LX2 ; ; 1H,13C,15N assignments for an isoform of the type III antifreeze protein from notched-fin eelpout 2LX3 ; ; 1H,13C,15N assignments for an isoform of the type III antifreeze protein from notched-fin eelpout 2AIH ; ; 1H-NMR solution structure of a trypsin/chymotrypsin Bowman-Birk inhibitor from Lens culinaris. 1G47 ; ; 1ST LIM DOMAIN OF PINCH PROTEIN 8THA ; 1.68 ; 1TEL, non-compressed, double-helical crystal form 6RO5 ; 1.68 ; 1Yr-Y: Lysozyme with Re Cluster 1 year on shelf 2J9V ; 2.0 ; 2 Angstrom X-ray structure of the yeast ESCRT-I Vps28 C-terminus 2J9U ; 2.0 ; 2 Angstrom X-ray structure of the yeast ESCRT-I Vps28 C-terminus in complex with the NZF-N domain from ESCRT-II 3ETO ; 2.0 ; 2 Angstrom Xray structure of the NOTCH1 Negative Regulatory Region (NRR) 8GXW ; 2.7 ; 2 ATP-bound V1EG of V/A-ATPase from Thermus thermophilus 2W52 ; 1.56 ; 2 beta-glucans (6-O-glucosyl-laminaritriose) in both donor and acceptor sites of GH16 Laminarinase 16A from Phanerochaete chrysosporium. 5U52 ; 1.942 ; 2 helix minimized version of the B-domain from Protein A (Z34C0 bound to IgG1 Fc (monoclinic form) 6GKC ; 1.97 ; 2 minute Fe2+ soak structure of SynFtn 7PFH ; 1.5 ; 2 minute Fe2+ soak structure of SynFtn E141D 6SON ; 1.6 ; 2 minute Fe2+ soak structure of SynFtn variant D137A 7PFB ; 1.7 ; 2 minute Fe2+ soaked structure of SynFtn Variant D65A 7PFG ; 1.8 ; 2 minute Fe2+ soaked structure of SynFtn Variant E141A 6SOQ ; 1.67 ; 2 minute Fe2+ soaked structure of SynFtn variant E62A 8GXY ; 2.8 ; 2 sulfate-bound V1EG of V/A-ATPase from Thermus thermophilus. 4A3H ; 1.65 ; 2',4' DINITROPHENYL-2-DEOXY-2-FLURO-B-D-CELLOBIOSIDE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS AT 1.6 A RESOLUTION 1BHR ; ; 2'-DEOXY-ISOGUANOSINE BASE PAIRED TO THYMIDINE, NMR, MINIMIZED AVERAGE STRUCTURE 7KUN ; 1.58 ; 2'-F modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 6TC8 ; ; 2'-F-arabinoguanosine and 2'-F-riboguanosine modified hybrid type G-quadruplex with V-loop 6TCG ; ; 2'-F-riboguanosine and 2'-F-arabinoguanosine modified G-quadruplex with V-loop and all-syn G-tract 6YCV ; ; 2'-F-riboguanosine and LNA modified hybrid type G-quadruplex with V-loop 6RS3 ; ; 2'-F-riboguanosine modified G-quadruplex with V-loop 6HUR ; 1.297 ; 2'-fucosyllactose and 3-fucosyllactose binding protein from Bifidobacterium longum infantis, bound with 2'-fucosyllactose 6HUS ; 1.409 ; 2'-fucosyllactose and 3-fucosyllactose binding protein from Bifidobacterium longum infantis, bound with 3-fucosyllactose 2DLJ ; 1.5 ; 2'-Me-Se and Br Derivitation of A-DNA Octamer G(UMS)G(BRU)ACAC 2GPX ; 1.6 ; 2'-Me-Se and Br Derivitation of A-DNA Octamer G(UMS)G(BRU)ACAC 1Z7I ; 1.28 ; 2'-Me-Se Derivitation of A-DNA Octamer G(UMSe)GTACAC 7KUP ; 1.44 ; 2'-OMe modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 2HC7 ; 1.4 ; 2'-selenium-T A-DNA [G(TSe)GTACAC] 3IFF ; 1.75 ; 2'-SeMe-A modified DNA decamer 3IFI ; 1.2 ; 2'-SeMe-dG modified octamer DNA 4NLF ; 1.0 ; 2'-trifluoromethylthio-2'-deoxycytidine-modified SRL 4NMG ; 1.01 ; 2'-Trifluoromethylthio-2'-deoxyuridine-modified SRL 4NXH ; 1.158 ; 2'-Trifluoromethylthiouridine-modified E. coli 23S rRNA Sarcin Ricin Loop 5OV2 ; ; 2'F-ANA-G modified quadruplex with a flipped tetrad 2M8A ; ; 2'F-ANA/2'F-RNA alternated sequences 5MJX ; ; 2'F-ANA/DNA Chimeric TBA Quadruplex structure 6F4Z ; ; 2'F-araG modified quadruplex with flipped G-tract and central tetrad 3P4A ; 1.2 ; 2'Fluoro modified RNA octamer fA2U2 7A19 ; 1.21 ; 2,3-Dihydroxybenzoate Decarboxylase of Aspergillus oryzae 7A1A ; 1.53 ; 2,3-Dihydroxybenzoate Decarboxylase of Aspergillus oryzae 1EIL ; 2.0 ; 2,3-DIHYDROXYBIPHENYL-1,2-DIOXYGENASE 1EIQ ; 2.0 ; 2,3-DIHYDROXYBIPHENYL-1,2-DIOXYGENASE 1EIR ; 2.0 ; 2,3-DIHYDROXYBIPHENYL-1,2-DIOXYGENASE 4G5E ; 2.5 ; 2,4,6-Trichlorophenol 4-monooxygenase 6P8C ; 2.07 ; 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5'-phosphate reductase (MthRED) from Methanothermobacter thermautotrophicus 7CN3 ; 2.2 ; 2,5-dihydroxypridine Dioxygenase in complex with 2,5-dihydroxypridine and product N-formylmaleamic acid 4HUZ ; 2.6 ; 2,6-Dichloro-p-hydroquinone 1,2-Dioxygenase 2RB0 ; 1.84 ; 2,6-difluorobenzylbromide complex with T4 lysozyme L99A 4JPG ; 2.33 ; 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as Novel PKM2 Activators 2R2M ; 2.1 ; 2-(2-Chloro-6-Fluorophenyl)Acetamides as Potent Thrombin Inhibitors 4TPP ; 2.65 ; 2-(3-alkoxy-1-azetidinyl) quinolines as novel PDE10A inhibitors 4W9S ; 1.8 ; 2-(4-(1H-tetrazol-5-yl)phenyl)-5-hydroxypyrimidin-4(3H)-one bound to influenza 2009 H1N1 endonuclease 2RBP ; 1.467 ; 2-(n-propylthio)ethanol in complex with T4 lysozyme L99A/M102Q 3BYZ ; 2.69 ; 2-Amino-1,3-thiazol-4(5H)-ones as Potent and Selective 11-Hydroxysteroid Dehydrogenase Type 1 Inhibitors 1FC4 ; 2.0 ; 2-AMINO-3-KETOBUTYRATE COA LIGASE 7BXP ; 1.8 ; 2-amino-3-ketobutyrate CoA ligase from Cupriavidus necator 7BXR ; 2.55 ; 2-amino-3-ketobutyrate CoA ligase from Cupriavidus necator 3-Hydroxynorvaline binding form 7BXS ; 2.5 ; 2-amino-3-ketobutyrate CoA ligase from Cupriavidus necator glycine binding form 7BXQ ; 2.49 ; 2-amino-3-ketobutyrate CoA ligase from Cupriavidus necator L-Threonine binding form 7E7G ; 2.35 ; 2-aminoethylphosphonate:pyruvate aminotransferase (AEPT) native 2KUZ ; ; 2-Aminopurine incorporation perturbs the dynamics and structure of DNA 2KV0 ; ; 2-Aminopurine incorporation perturbs the dynamics and structure of DNA 3IO7 ; 2.6 ; 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2 3IOK ; 2.1 ; 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2 7YEP ; 2.83 ; 2-APB bound state of mTRPV2 4TWC ; 1.7 ; 2-Benzamido-N-(1H-benzo[d]imidazol-2-yl)thiazole-4- carboxamide derivatives as potent inhibitors of CK1d/e 3GHZ ; 2.03 ; 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Salmonella typhimurium 1DXE ; 1.8 ; 2-dehydro-3-deoxy-galactarate aldolase from Escherichia coli 1DXF ; 2.6 ; 2-dehydro-3-deoxy-galactarate aldolase from Escherichia coli in complex with pyruvate 1E4I ; 2.0 ; 2-deoxy-2-fluoro-beta-D-glucosyl/enzyme intermediate complex of the beta-glucosidase from Bacillus polymyxa 5A3H ; 1.82 ; 2-DEOXY-2-FLURO-B-D-CELLOBIOSYL/ENZYME INTERMEDIATE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHEARANS AT 1.8 ANGSTROMS RESOLUTION 1H11 ; 1.08 ; 2-DEOXY-2-FLURO-B-D-CELLOTRIOSYL/ENZYME INTERMEDIATE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHEARANS AT 1.08 ANGSTROM RESOLUTION 6A3H ; 1.68 ; 2-DEOXY-2-FLURO-B-D-CELLOTRIOSYL/ENZYME INTERMEDIATE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHEARANS AT 1.6 ANGSTROM RESOLUTION 6QUD ; 2.1 ; 2-deoxy-galactose reaction intermediate of a Truncated beta-galactosidase III from Bifidobacterium bifidum 6X95 ; 1.1 ; 2-deoxy-glucose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 4XBK ; 1.951 ; 2-deoxyribose-5-phosphate aldolase from Lactobacillus brevis 4XBS ; 2.17 ; 2-deoxyribose-5-phosphate aldolase mutant - E78K 6X9P ; 1.0 ; 2-deoxyribose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 6QAI ; 1.66 ; 2-desoxiribosyltransferase from Leishmania mexicana 1DUB ; 2.5 ; 2-ENOYL-COA HYDRATASE, DATA COLLECTED AT 100 K, PH 6.5 3HTG ; 1.26 ; 2-ethoxy-3,4-dihydro-2h-pyran in complex with T4 lysozyme L99A/M102Q 2RB1 ; 1.7 ; 2-ethoxyphenol in complex with T4 lysozyme L99A 3HU8 ; 1.8 ; 2-ethoxyphenol in complex with T4 lysozyme L99A/M102Q 3HT7 ; 1.7 ; 2-ethylphenol in complex with T4 lysozyme L99A/M102Q 1E70 ; 1.65 ; 2-F-glucosylated MYROSINASE FROM SINAPIS ALBA 1E73 ; 1.5 ; 2-F-glucosylated MYROSINASE FROM SINAPIS ALBA with bound L-ascorbate 7DNH ; 3.64 ; 2-fold subparticles refinement of human papillomavirus type 58 pseudovirus in complexed with the Fab fragment of 2H3 7DNK ; 6.41 ; 2-fold subparticles refinement of human papillomavirus type 58 pseudovirus in complexed with the Fab fragment of 5G9 7DNL ; 4.19 ; 2-fold subparticles refinement of human papillomavirus type 58 pseudovirus in complexed with the Fab fragment of A4B4 1C4X ; 2.4 ; 2-HYDROXY-6-OXO-6-PHENYLHEXA-2,4-DIENOATE HYDROLASE (BPHD) FROM RHODOCOCCUS SP. STRAIN RHA1 2KH0 ; ; 2-Hydroxy-7-nitrofluorene covalently linked into a 13mer DNA duplex - solution structure of the face-down orientation 2KH1 ; ; 2-Hydroxy-7-nitrofluorene covalently linked into a 13mer DNA duplex - solution structure of the face-up orientation 4CY8 ; 2.03 ; 2-hydroxybiphenyl 3-monooxygenase (HbpA) in complex with FAD 2IME ; 1.7 ; 2-Hydroxychromene-2-carboxylate Isomerase: a Kappa Class Glutathione-S-Transferase from Pseudomonas putida 2IMF ; 1.3 ; 2-Hydroxychromene-2-carboxylate Isomerase: a Kappa Class Glutathione-S-Transferase from Pseudomonas putida 4YAR ; 1.75 ; 2-Hydroxyethylphosphonate dioxygenase (HEPD) E176H 4UXD ; 2.5 ; 2-keto 3-deoxygluconate aldolase from Picrophilus torridus 2Q18 ; 2.1 ; 2-keto-3-deoxy-D-arabinonate dehydratase 2Q19 ; 3.0 ; 2-keto-3-deoxy-D-arabinonate dehydratase apo form 2Q1C ; 2.8 ; 2-keto-3-deoxy-D-arabinonate dehydratase complexed with calcium and 2-oxobutyrate 2Q1D ; 2.7 ; 2-keto-3-deoxy-D-arabinonate dehydratase complexed with magnesium and 2,5-dioxopentanoate 2Q1A ; 2.5 ; 2-keto-3-deoxy-D-arabinonate dehydratase complexed with magnesium and 2-oxobutyrate 4HGO ; 2.1 ; 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphohydrolase from Bacteroides thetaiotaomicron in complex with transition state mimic 2NUY ; 2.5 ; 2-keto-3-deoxygluconate aldolase from Sulfolobus acidocaldarius in complex with pyruvate 2NUW ; 1.8 ; 2-keto-3-deoxygluconate aldolase from Sulfolobus acidocaldarius, native structure at 1.8 A resolution 2NUX ; 2.5 ; 2-keto-3-deoxygluconate aldolase from Sulfolobus acidocaldarius, native structure in p6522 at 2.5 A resolution 1V19 ; 2.3 ; 2-KETO-3-DEOXYGLUCONATE KINASE FROM THERMUS THERMOPHILUS 1V1S ; 3.2 ; 2-KETO-3-DEOXYGLUCONATE KINASE FROM THERMUS THERMOPHILUS (CRYSTAL FORM 2) 1V1A ; 2.1 ; 2-KETO-3-DEOXYGLUCONATE KINASE FROM THERMUS THERMOPHILUS WITH BOUND 2-KETO-3-DEOXYGLUCONATE AND ADP 1V1B ; 2.6 ; 2-KETO-3-DEOXYGLUCONATE KINASE FROM THERMUS THERMOPHILUS WITH BOUND ATP 1W37 ; 2.0 ; 2-keto-3-deoxygluconate(KDG) aldolase of Sulfolobus solfataricus 3HT9 ; 2.02 ; 2-methoxyphenol in complex with T4 lysozyme L99A/M102Q 5HXI ; 1.5 ; 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, 5HN bound 3HT6 ; 1.59 ; 2-methylphenol in complex with T4 lysozyme L99A/M102Q 6QKG ; 2.2 ; 2-Naphthoyl-CoA Reductase(NCR) 6QKR ; 2.2 ; 2-Naphthoyl-CoA Reductase-2-Naphthoyl-CoA complex(NCR-NCoA-soaked complex) 6QKX ; 2.4 ; 2-Naphthoyl-CoA Reductase-DiHydroNaphthoyl-CoA complex(NCR-DHNCoA co-crystallized complex) 2RBO ; 1.29 ; 2-nitrothiophene in complex with T4 lysozyme L99A/M102Q 5B48 ; 2.5 ; 2-Oxoacid:Ferredoxin Oxidoreductase 1 from Sulfolobus tokodai 5B46 ; 2.1 ; 2-Oxoacid:Ferredoxin Oxidoreductase 2 from Sulfolobus tokodai - ligand free form 5B47 ; 2.2 ; 2-Oxoacid:Ferredoxin Oxidoreductase 2 from Sulfolobus tokodai - pyruvate complex 6N2O ; 2.824 ; 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus with 2-oxoglutarate, coenzyme A and succinyl-CoA bound 1Z01 ; 1.8 ; 2-Oxoquinoline 8-Monooxygenase Component: Active site Modulation by Rieske-[2fe-2S] Center Oxidation/Reduction 1Z02 ; 1.8 ; 2-Oxoquinoline 8-Monooxygenase Component: Active site Modulation by Rieske-[2fe-2S] Center Oxidation/Reduction 1Z03 ; 1.8 ; 2-Oxoquinoline 8-Monooxygenase Component: Active site Modulation by Rieske-[2fe-2S] Center Oxidation/Reduction 2RBR ; 1.433 ; 2-phenoxyethanol in complex with T4 lysozyme L99A/M102Q 3HTB ; 1.81 ; 2-propylphenol in complex with T4 lysozyme L99A/M102Q 4Z4B ; 1.9652 ; 2-Pyridyl Hoechst - a New Generation DNA-Binding Radioprotector 1EE0 ; 2.05 ; 2-PYRONE SYNTHASE COMPLEXED WITH ACETOACETYL-COA 5US2 ; 1.9 ; 2-Se-T2-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 5W7N ; 1.8 ; 2-Se-T2/4-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 5W7O ; 1.75 ; 2-Se-T4-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 2ZL9 ; 1.9 ; 2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure 2ZLA ; 2.0 ; 2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure 2ZLC ; 2.0 ; 2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure 4YQH ; 2.308 ; 2-[2-(4-Phenyl-1H-imidazol-2-yl)ethyl]quinoxaline (Sunovion Compound 14) co-crystallized with PDE10A 1R7L ; 2.0 ; 2.0 A Crystal Structure of a Phage Protein from Bacillus cereus ATCC 14579 1TWU ; 2.0 ; 2.0 A Crystal Structure of a YycE Protein of Unknown Function from Bacillus subtilis, Putative Glyoxalase/Fosfomycin Resistance Protein 1MUU ; 2.02 ; 2.0 A crystal structure of GDP-mannose dehydrogenase 1NG5 ; 2.0 ; 2.0 A crystal structure of Staphylococcus aureus Sortase B 2BE6 ; 2.0 ; 2.0 A crystal structure of the CaV1.2 IQ domain-Ca/CaM complex 1DM1 ; 1.99 ; 2.0 A CRYSTAL STRUCTURE OF THE DOUBLE MUTANT H(E7)V, T(E10)R OF MYOGLOBIN FROM APLYSIA LIMACINA 4E6K ; 2.0 ; 2.0 A resolution structure of Pseudomonas aeruginosa bacterioferritin (BfrB) in complex with bacterioferritin associated ferredoxin (Bfd) 2J5K ; 2.0 ; 2.0 A resolution structure of the wild type malate dehydrogenase from Haloarcula marismortui (radiation damage series) 5DS7 ; 2.0 ; 2.0 A Structure of CPII, a nitrogen regulatory PII-like protein from Thiomonas intermedia K12, bound AMP 1NI9 ; 2.0 ; 2.0 A structure of glycerol metabolism protein from E. coli 1NIG ; 2.0 ; 2.0 A Structure of Protein of Unknown Function from Thermoplasma acidophilum 1MI8 ; 2.0 ; 2.0 Angstrom crystal structure of a DnaB intein from Synechocystis sp. PCC 6803 3H0P ; 2.0 ; 2.0 Angstrom Crystal Structure of an Acyl Carrier Protein S-malonyltransferase from Salmonella typhimurium. 6XY3 ; 2.0 ; 2.0 Angstrom crystal structure of Ca/CaM N53I:RyR2 peptide complex 3NZT ; 2.0 ; 2.0 Angstrom Crystal structure of Glutamate--Cysteine Ligase (gshA) ftom Francisella tularensis in Complex with AMP 3UN6 ; 2.01 ; 2.0 Angstrom Crystal Structure of Ligand Binding Component of ABC-type Import System from Staphylococcus aureus with Zinc bound 2AYL ; 2.0 ; 2.0 Angstrom Crystal Structure of Manganese Protoporphyrin IX-reconstituted Ovine Prostaglandin H2 Synthase-1 Complexed With Flurbiprofen 1Q4G ; 2.0 ; 2.0 Angstrom Crystal Structure of Ovine Prostaglandin H2 Synthase-1, in complex with alpha-methyl-4-biphenylacetic acid 4RGT ; 2.0 ; 2.0 Angstrom Crystal Structure of Superantigen-like Protein from Staphylococcus aureus in Complex with 3-N-Acetylneuraminyl-N-acetyllactosamine. 6DAE ; 2.0 ; 2.0 Angstrom crystal structure of the D95V Ca/CaM:CaV1.2 IQ domain complex 2PD7 ; 2.0 ; 2.0 Angstrom Crystal Structure of the Fungal Blue-Light Photoreceptor Vivid 1APM ; 2.0 ; 2.0 ANGSTROM REFINED CRYSTAL STRUCTURE OF THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE COMPLEXED WITH A PEPTIDE INHIBITOR AND DETERGENT 3IFS ; 2.004 ; 2.0 Angstrom Resolution Crystal Structure of Glucose-6-phosphate Isomerase (pgi) from Bacillus anthracis. 6DB1 ; 2.0 ; 2.0 Angstrom Resolution Crystal Structure of N-Terminal Ligand-Binding Domain of Putative Methyl-Accepting Chemotaxis Protein from Salmonella enterica 6WJT ; 2.0 ; 2.0 Angstrom Resolution Crystal Structure of Nsp16-Nsp10 Heterodimer from SARS-CoV-2 in Complex with S-Adenosyl-L-Homocysteine 4MFG ; 2.0 ; 2.0 Angstrom Resolution Crystal Structure of Putative Carbonic Anhydrase from Clostridium difficile. 3TK7 ; 2.0 ; 2.0 Angstrom Resolution Crystal Structure of Transaldolase B (TalA) from Francisella tularensis in Covalent Complex with Fructose 6-Phosphate 5WI5 ; 2.0 ; 2.0 Angstrom Resolution Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Streptococcus pneumoniae in Complex with Uridine-diphosphate-2(n-acetylglucosaminyl) butyric acid, (2R)-2-(phosphonooxy)propanoic acid and Magnesium. 7ATP ; 2.1 ; 2.0 angstrom structure in complex with Ca of plant Extended Synaptotagmin 1, C2A domain 1N2Z ; 2.0 ; 2.0 Angstrom structure of BtuF, the vitamin B12 binding protein of E. coli 1QLP ; 2.0 ; 2.0 ANGSTROM STRUCTURE OF INTACT ALPHA-1-ANTITRYPSIN: A CANONICAL TEMPLATE FOR ACTIVE SERPINS 7AS6 ; 2.0 ; 2.0 angstrom structure of plant Extended Synaptotagmin 1, C2A domain 3HJK ; 2.0 ; 2.0 Angstrom Structure of the Ile74Val Variant of Vivid (VVD). 3RLZ ; 2.01 ; 2.0 Angstrom X-ray structure of bovine Ca(2+)-S100B D63N 2AFG ; 2.0 ; 2.0 ANGSTROM X-RAY STRUCTURE OF HUMAN ACIDIC FIBROBLAST GROWTH FACTOR 4OFC ; 1.99 ; 2.0 Angstroms X-ray crystal structure of human 2-amino-3-carboxymuconate-6-semialdehye decarboxylase 5KKJ ; 2.001 ; 2.0-Angstrom In situ Mylar structure of hen egg-white lysozyme (HEWL) at 293 K 5WJK ; 2.0 ; 2.0-Angstrom In situ Mylar structure of sperm whale myoglobin (SWMb) at 293 K 6CL8 ; 2.0 ; 2.00 A MicroED structure of proteinase K at 2.6 e- / A^2 2IDM ; 2.0 ; 2.00 A Structure of T87I/Y106W Phosphono-CheY 3LXM ; 2.0 ; 2.00 Angstrom resolution crystal structure of a catalytic subunit of an aspartate carbamoyltransferase (pyrB) from Yersinia pestis CO92 3PAJ ; 2.0 ; 2.00 Angstrom resolution crystal structure of a quinolinate phosphoribosyltransferase from Vibrio cholerae O1 biovar eltor str. N16961 4ZV9 ; 2.0 ; 2.00 Angstrom resolution crystal structure of an uncharacterized protein from Escherichia coli O157:H7 str. Sakai 4HSL ; 2.0 ; 2.00 angstrom x-ray crystal structure of substrate-bound E110A 3-hydroxyanthranilate-3,4-dioxygenase from Cupriavidus metallidurans 4OE2 ; 2.0 ; 2.00 Angstroms X-ray crystal structure of E268A 2-aminomuconate 6-semialdehyde dehydrogenase from Pseudomonas fluorescens 4I25 ; 2.0 ; 2.00 Angstroms X-ray crystal structure of NAD- and substrate-bound 2-aminomuconate 6-semialdehyde dehydrogenase from Pseudomonas fluorescens 4I1W ; 1.992 ; 2.00 Angstroms X-ray crystal structure of NAD- bound 2-aminomuconate 6-semialdehyde dehydrogenase from Pseudomonas fluorescens 7SNR ; 2.0 ; 2.00A Resolution Structure of NanoLuc Luciferase 3IMI ; 2.01 ; 2.01 Angstrom resolution crystal structure of a HIT family protein from Bacillus anthracis str. 'Ames Ancestor' 2C3C ; 2.15 ; 2.01 Angstrom X-ray crystal structure of a mixed disulfide between coenzyme M and NADPH-dependent oxidoreductase 2-ketopropyl coenzyme M carboxylase 7W9W ; 2.02 ; 2.02 angstrom cryo-EM structure of the pump-like channelrhodopsin ChRmine 3FGP ; 2.05 ; 2.05 a Crystal Structure of CysM from Mycobacterium Tuberculosis - Open and Closed Conformations 5EF4 ; 2.05 ; 2.05 A crystal structure of the Amb a 11 cysteine protease, a major ragweed pollen allergen, in its proform 5VXM ; 2.05 ; 2.05 A resolution structure of IpaD from Shigella flexneri in complex with single-domain antibody 20ipaD 6VGY ; 2.05 ; 2.05 A resolution structure of MERS 3CL protease in complex with inhibitor 6b 5WKJ ; 2.05 ; 2.05 A resolution structure of MERS 3CL protease in complex with inhibitor GC376 6WB6 ; 2.05 ; 2.05 A resolution structure of transferrin 1 from Manduca sexta 3QFK ; 2.05 ; 2.05 Angstrom Crystal Structure of Putative 5'-Nucleotidase from Staphylococcus aureus in complex with alpha-ketoglutarate 4NU7 ; 2.05 ; 2.05 Angstrom Crystal Structure of Ribulose-phosphate 3-epimerase from Toxoplasma gondii. 3IJR ; 2.05 ; 2.05 Angstrom resolution crystal structure of a short chain dehydrogenase from Bacillus anthracis str. 'Ames Ancestor' in complex with NAD+ 6OAD ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of Aminopeptidase B from Escherichia coli str. K-12 substr. MG1655. 6WJI ; 2.052 ; 2.05 Angstrom Resolution Crystal Structure of C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein from SARS-CoV-2 5VRV ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of C-terminal Domain (DUF2156) of Putative Lysylphosphatidylglycerol Synthetase from Agrobacterium fabrum. 3INP ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of D-ribulose-phosphate 3-epimerase from Francisella tularensis. 3QFH ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of Epidermin Leader Peptide Processing Serine Protease (EpiP) from Staphylococcus aureus. 6NBG ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of Hypothetical Protein KP1_5497 from Klebsiella pneumoniae. 5TV7 ; 2.05 ; 2.05 Angstrom Resolution Crystal Structure of Peptidoglycan-Binding Protein from Clostridioides difficile in Complex with Glutamine Hydroxamate. 3GSD ; 2.05 ; 2.05 Angstrom structure of a divalent-cation tolerance protein (CutA) from Yersinia pestis 2GEL ; 2.05 ; 2.05A crystal structure of Salmonella typhimurium YeaZ, form B 4TOD ; 2.05 ; 2.05A resolution structure of BfrB (D34F) from Pseudomonas aeruginosa 5D8Y ; 2.05 ; 2.05A resolution structure of iron bound BfrB (L68A E81A) from Pseudomonas aeruginosa 6MV2 ; 2.05 ; 2.05A resolution structure of the CS-b5R domains of human Ncb5or (NADP+ form) 3I3O ; 2.06 ; 2.06 Angstrom resolution crystal structure of a short chain dehydrogenase from Bacillus anthracis str. 'Ames Ancestor' in complex with NAD-acetone 4JJP ; 2.056 ; 2.06 Angstrom resolution crystal structure of phosphomethylpyrimidine kinase (thiD)from Clostridium difficile 630 3H83 ; 2.06 ; 2.06 Angstrom resolution structure of a hypoxanthine-guanine phosphoribosyltransferase (hpt-1) from Bacillus anthracis str. 'Ames Ancestor' 5FSE ; 2.07 ; 2.07 A resolution 1,4-Benzoquinone inhibited Sporosarcina pasteurii urease 6KML ; 2.095 ; 2.09 Angstrom resolution crystal structure of tetrameric HigBA toxin-antitoxin complex from E.coli 3KB8 ; 2.09 ; 2.09 Angstrom resolution structure of a hypoxanthine-guanine phosphoribosyltransferase (hpt-1) from Bacillus anthracis str. 'Ames Ancestor' in complex with GMP 6WQA ; 2.0 ; 2.0A angstrom A2a adenosine receptor structure using XFEL data collected in helium atmosphere. 4E77 ; 2.0 ; 2.0A Crystal Structure of a Glutamate-1-Semialdehyde Aminotransferase from Yersinia pestis CO92 3S5J ; 2.02 ; 2.0A Crystal structure of human phosphoribosyl pyrophosphate synthetase 1 3EOL ; 2.0 ; 2.0A crystal structure of isocitrate lyase from Brucella melitensis (P43212) 4O6I ; 2.0 ; 2.0A crystal structure of Lymphocytic Choriomeningitis Virus Nucleoprotein C-terminal Domain 4TO9 ; 2.0 ; 2.0A resolution structure of BfrB (N148L) from Pseudomonas aeruginosa 4RO9 ; 2.0 ; 2.0A resolution structure of SRPN2 (S358E) from Anopheles gambiae 6UXD ; 2.0 ; 2.0A resolution structure of the hypothetical protein CT021 from Chlamydia trachomatis 2QR8 ; 2.0 ; 2.0A X-ray structure of C-terminal kinase domain of p90 ribosomal S6 kinase 2 (RSK2) 2QR7 ; 2.0 ; 2.0A X-ray structure of C-terminal kinase domain of p90 ribosomal S6 kinase 2: Se-Met derivative 2F96 ; 2.09 ; 2.1 A crystal structure of Pseudomonas aeruginosa rnase T (Ribonuclease T) 1QQH ; 2.1 ; 2.1 A CRYSTAL STRUCTURE OF THE HUMAN PAPILLOMAVIRUS TYPE 18 E2 ACTIVATION DOMAIN 2Q3C ; 2.1 ; 2.1 A Resolution Crystal Structure of O-Acetylserine Sulfhydrylase (OASS) Holoenzyme From MYCOBACTERIUM TUBERCULOSIS in Complex with the Inhibitory Peptide DFSI 1QDR ; 2.1 ; 2.1 A RESOLUTION STRUCTURE OF ESCHERICHIA COLI LYTIC TRANSGLYCOSYLASE SLT35 1QDT ; 2.1 ; 2.1 A RESOLUTION STRUCTURE OF ESCHERICHIA COLI LYTIC TRANSGLYCOYSLASE SLT35 IN COMPLEX WITH CALCIUM 6DE6 ; 2.1 ; 2.1 A resolution structure of histamine dehydrogenase from Rhizobium sp. 4-9 6W5L ; 2.1 ; 2.1 A resolution structure of Norovirus 3CL protease in complex with inhibitor 7g 6NTY ; 2.1 ; 2.1 A resolution structure of the Musashi-2 (Msi2) RNA recognition motif 1 (RRM1) domain 3ETC ; 2.1 ; 2.1 A structure of acyl-adenylate synthetase from Methanosarcina acetivorans containing a link between Lys256 and Cys298 3DKI ; 2.1 ; 2.1 A X-ray structure of CysM (Rv1336) from Mycobacterium tuberculosis an O-phosphoserine dependent cysteine synthase 4ZRO ; 2.0566 ; 2.1 A X-Ray Structure of FIPV-3CLpro bound to covalent inhibitor 2P04 ; 2.11 ; 2.1 Ang structure of the dimerized PAS domain of signal transduction histidine kinase from Nostoc punctiforme PCC 73102 with homology to the H-NOXA/H-NOBA domain of the soluble guanylyl cyclase 3GRP ; 2.09 ; 2.1 Angstrom crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Bartonella henselae 3GWE ; 2.1 ; 2.1 Angstrom crystal structure of 3-oxoacyl-(acyl-carrier-protein) synthase III 1QYR ; 2.1 ; 2.1 Angstrom Crystal structure of KsgA: A Universally Conserved Adenosine Dimethyltransferase 3PP8 ; 2.1 ; 2.1 Angstrom Crystal Structure of Putative Oxidoreductase (ycdW) from Salmonella typhimurium 4RWR ; 2.1 ; 2.1 Angstrom Crystal Structure of Stage II Sporulation Protein D from Bacillus anthracis 2A8T ; 2.1 ; 2.1 Angstrom Crystal Structure of the Complex Between the Nuclear U8 snoRNA Decapping Nudix Hydrolase X29, Manganese and m7G-PPP-A 3TPZ ; 2.1 ; 2.1 Angstrom crystal structure of the L114P mutant of E. Coli KsgA 1VF6 ; 2.1 ; 2.1 Angstrom crystal structure of the PALS-1-L27N and PATJ L27 heterodimer complex 6PO4 ; 2.1 ; 2.1 Angstrom Resolution Crystal Structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (mtnN) from Haemophilus influenzae PittII. 6VC6 ; 2.133 ; 2.1 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Mn2+ 3N2L ; 2.1 ; 2.1 Angstrom resolution crystal structure of an Orotate Phosphoribosyltransferase (pyrE) from Vibrio cholerae O1 biovar eltor str. N16961 3K96 ; 2.1 ; 2.1 Angstrom resolution crystal structure of glycerol-3-phosphate dehydrogenase (gpsA) from Coxiella burnetii 6BAL ; 2.1 ; 2.1 Angstrom Resolution Crystal Structure of Malate Dehydrogenase from Haemophilus influenzae in Complex with L-Malate 5CQE ; 2.1 ; 2.1 Angstrom resolution crystal structure of matrix protein 1 (M1; residues 1-164) from Influenza A virus (A/Puerto Rico/8/34(H1N1)) 3R2U ; 2.1 ; 2.1 Angstrom Resolution Crystal Structure of Metallo-beta-lactamase from Staphylococcus aureus subsp. aureus COL 4QVS ; 2.1 ; 2.1 Angstrom resolution crystal structure of S-layer domain-containing protein (residues 221-444) from Clostridium thermocellum ATCC 27405 4GQO ; 2.1 ; 2.1 Angstrom resolution crystal structure of uncharacterized protein lmo0859 from Listeria monocytogenes EGD-e 4QYB ; 2.1 ; 2.1 Angstrom resolution crystal structure of uncharacterized protein, disulfide-bridged dimer, from Burkholderia cenocepacia J2315 2B5T ; 2.1 ; 2.1 Angstrom structure of a nonproductive complex between antithrombin, synthetic heparin mimetic SR123781 and two S195A thrombin molecules 5BKA ; 2.11 ; 2.1 Angstrom structure of ActVI-ORFA from Streptomyces Coelicolor 1G6N ; 2.1 ; 2.1 ANGSTROM STRUCTURE OF CAP-CAMP 6OVL ; 2.1 ; 2.1 Angstrom structure of wild type Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with glyoxylate and NADP 2A5H ; 2.1 ; 2.1 Angstrom X-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale SB4, with Michaelis analog (L-alpha-lysine external aldimine form of pyridoxal-5'-phosphate). 2WB0 ; 1.95 ; 2.1 resolution structure of the C-terminal domain of the human adenovirus 5 ssDNA binding protein 5KKH ; 2.125 ; 2.1-Angstrom In situ Mylar structure of bacteriorhodopsin from Haloquadratum walsbyi (HwBR) at 100 K 5WKQ ; 2.1 ; 2.10 A resolution structure of IpaB (residues 74-242) from Shigella flexneri 5T6D ; 2.1 ; 2.10 A resolution structure of Norovirus 3CL protease in complex with the dipeptidyl inhibitor 7l (hexagonal form) 7KNG ; 2.1 ; 2.10A resolution structure of independent Phosphoglycerate mutase from C. elegans in complex with a macrocyclic peptide inhibitor (Ce-2 Y7F) 7SNY ; 2.1 ; 2.10A Resolution Structure of NanoBiT Complementation Reporter Large Subunit LgBiT 5EZ4 ; 2.11 ; 2.11 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) P449M/Y450L double mutant from Staphylococcus aureus in complex with NAD+ and BME-modified Cys289 7O6E ; 2.1 ; 2.12 A cryo-EM structure of Mycobacterium tuberculosis Ferritin 5LV1 ; 2.12 ; 2.12 A resolution structure of PtxB from Prochlorococcus marinus (MIT 9301) in complex with phosphite 4ILO ; 2.12 ; 2.12A resolution structure of CT398 from Chlamydia trachomatis 4WBC ; 2.138 ; 2.13 A STRUCTURE OF A KUNITZ-TYPE WINGED BEAN CHYMOTRYPSIN INHIBITOR PROTEIN 3KBO ; 2.14 ; 2.14 Angstrom Crystal Structure of Putative Oxidoreductase (ycdW) from Salmonella typhimurium in Complex with NADP 2J5Q ; 2.15 ; 2.15 A resolution structure of the wild type malate dehydrogenase from Haloarcula marismortui after first radiation burn (radiation damage series) 2C3D ; 2.15 ; 2.15 Angstrom crystal structure of 2-ketopropyl coenzyme M oxidoreductase carboxylase with a coenzyme M disulfide bound at the active site 5T1Q ; 2.15 ; 2.15 Angstrom Crystal Structure of N-acetylmuramoyl-L-alanine Amidase from Staphylococcus aureus. 5JPI ; 2.15 ; 2.15 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with D-Eritadenine and NAD 4K28 ; 2.15 ; 2.15 Angstrom resolution crystal structure of a shikimate dehydrogenase family protein from Pseudomonas putida KT2440 in complex with NAD+ 5US8 ; 2.15 ; 2.15 Angstrom Resolution Crystal Structure of Argininosuccinate Synthase from Bordetella pertussis 6AOO ; 2.15 ; 2.15 Angstrom Resolution Crystal Structure of Malate Dehydrogenase from Haemophilus influenzae 3H02 ; 2.15 ; 2.15 Angstrom Resolution Crystal Structure of Naphthoate Synthase from Salmonella typhimurium. 4I2R ; 2.15 ; 2.15 Angstroms X-ray crystal structure of NAD- and alternative substrate-bound 2-aminomuconate 6-semialdehyde dehydrogenase from Pseudomonas fluorescens 3Q7T ; 2.15 ; 2.15A resolution structure (I41 Form) of the ChxR receiver domain from Chlamydia trachomatis 6AW7 ; 2.15 ; 2.15A resolution structure of SAH bound catechol O-methyltransferase (COMT) from Nannospalax galili 6MV1 ; 2.15 ; 2.15A resolution structure of the CS-b5R domains of human Ncb5or (NAD+ form) 4NOI ; 2.17 ; 2.17 Angstrom Crystal Structure of DNA-directed RNA Polymerase Subunit Alpha from Campylobacter jejuni. 4E0B ; 2.17 ; 2.17 Angstrom resolution crystal structure of malate dehydrogenase from Vibrio vulnificus CMCP6 1H5W ; 2.1 ; 2.1A Bacteriophage Phi-29 Connector 3ENN ; 2.1 ; 2.1A crystal structure of glucose/ribitol dehydrogenase from brucella melitensis (p43212) 2GEM ; 2.1 ; 2.1A crystal structure of Salmonella tyhpimurium YeaZ, a putative Gram-negative RPF, form-A 3SKY ; 2.1 ; 2.1A crystal structure of the phosphate bound ATP binding domain of Archaeoglobus fulgidus COPB 3R2S ; 2.1 ; 2.1A resolution structure of Doubly Soaked FtnA from Pseudomonas aeruginosa (pH 6.0) 3Q7S ; 2.1 ; 2.1A resolution structure of the ChxR receiver domain containing I3C from Chlamydia trachomatis 1EK9 ; 2.1 ; 2.1A X-RAY STRUCTURE OF TOLC: AN INTEGRAL OUTER MEMBRANE PROTEIN AND EFFLUX PUMP COMPONENT FROM ESCHERICHIA COLI 2DXI ; 2.2 ; 2.2 A crystal structure of glutamyl-tRNA synthetase from Thermus thermophilus complexed with tRNA(Glu), ATP, and L-glutamol 3D6B ; 2.21 ; 2.2 A crystal structure of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei 3D53 ; 2.2 ; 2.2 A crystal structure of inorganic pyrophosphatase from Rickettsia prowazekii 3EMJ ; 2.2 ; 2.2 A crystal structure of inorganic pyrophosphatase from rickettsia prowazekii (p21 form) 8EPV ; 2.19 ; 2.2 A crystal structure of the lipocalin cat allergen Fel d 7 5A1A ; 2.2 ; 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor 2Q3D ; 2.2 ; 2.2 A Resolution Crystal Structure of O-Acetylserine Sulfhydrylase (OASS) From MYCOBACTERIUM TUBERCULOSIS in Complex with the Reaction Intermediate ALPHA-AMINOACRYLATE 2PZZ ; 2.2 ; 2.2 A resolution crystal structure of UPF0201 protein from Methanococcus jannaschii 6NKL ; 2.2 ; 2.2 A resolution structure of VapBC-1 from nontypeable Haemophilus influenzae 4ZAJ ; 2.22 ; 2.2 Angstrom Crystal Structure of a Human Arginyl-tRNA Synthetase 5ISU ; 2.2 ; 2.2 Angstrom Crystal Structure of ABC Transporter Substrate Binding Protein CtaP (Lmo0135) from Listeria monocytogenes. 3R2P ; 2.2045 ; 2.2 Angstrom Crystal Structure of C Terminal Truncated Human Apolipoprotein A-I Reveals the Assembly of HDL by Dimerization. 4LES ; 2.2 ; 2.2 Angstrom Crystal Structure of Conserved Hypothetical Protein from Bacillus anthracis. 4EG2 ; 2.2 ; 2.2 Angstrom Crystal Structure of Cytidine deaminase from Vibrio cholerae in Complex with Zinc and Uridine 3IAC ; 2.22 ; 2.2 Angstrom Crystal Structure of Glucuronate Isomerase from Salmonella typhimurium. 3TOZ ; 2.2 ; 2.2 Angstrom Crystal Structure of Shikimate 5-dehydrogenase from Listeria monocytogenes in Complex with NAD. 3PMA ; 2.2 ; 2.2 Angstrom crystal structure of the complex between Bovine Thrombin and Sucrose Octasulfate 3DRM ; 2.2 ; 2.2 Angstrom Crystal Structure of Thr114Phe Alpha1-Antitrypsin 1ATP ; 2.2 ; 2.2 angstrom refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MNATP and a peptide inhibitor 3N3W ; 2.205 ; 2.2 Angstrom Resolution Crystal Structure of Nuclease Domain of Ribonuclase III (rnc) from Campylobacter jejuni 6DLL ; 2.2 ; 2.2 Angstrom Resolution Crystal Structure of P-Hydroxybenzoate Hydroxylase from Pseudomonas putida in Complex with FAD. 3OT5 ; 2.2 ; 2.2 Angstrom Resolution Crystal Structure of putative UDP-N-acetylglucosamine 2-epimerase from Listeria monocytogenes 3R2T ; 2.21 ; 2.2 Angstrom Resolution Crystal Structure of Superantigen-like Protein from Staphylococcus aureus subsp. aureus NCTC 8325. 6CZP ; 2.24 ; 2.2 Angstrom Resolution Crystal Structure Oxygen-Insensitive NAD(P)H-dependent Nitroreductase NfsB from Vibrio vulnificus in Complex with FMN 1DCC ; 2.2 ; 2.2 ANGSTROM STRUCTURE OF OXYPEROXIDASE: A MODEL FOR THE ENZYME:PEROXIDE COMPLEX 3NA7 ; 2.2 ; 2.2 Angstrom Structure of the HP0958 Protein from Helicobacter pylori CCUG 17874 2QD1 ; 2.2 ; 2.2 Angstrom Structure of the human ferrochelatase variant E343K with substrate bound 1DR1 ; 2.2 ; 2.2 ANGSTROMS CRYSTAL STRUCTURE OF CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADP+ AND BIOPTERIN 1LTA ; 2.2 ; 2.2 ANGSTROMS CRYSTAL STRUCTURE OF E. COLI HEAT-LABILE ENTEROTOXIN (LT) WITH BOUND GALACTOSE 1WGC ; 2.2 ; 2.2 ANGSTROMS RESOLUTION STRUCTURE ANALYSIS OF TWO REFINED N-ACETYLNEURAMINYLLACTOSE-WHEAT GERM AGGLUTININ ISOLECTIN COMPLEXES 2WGC ; 2.2 ; 2.2 ANGSTROMS RESOLUTION STRUCTURE ANALYSIS OF TWO REFINED N-ACETYLNEURAMINYLLACTOSE-WHEAT GERM AGGLUTININ ISOLECTIN COMPLEXES 7WGA ; 2.0 ; 2.2 ANGSTROMS RESOLUTION STRUCTURE ANALYSIS OF TWO REFINED N-ACETYLNEURAMINYLLACTOSE-WHEAT GERM AGGLUTININ ISOLECTIN COMPLEXES 9WGA ; 1.8 ; 2.2 ANGSTROMS RESOLUTION STRUCTURE ANALYSIS OF TWO REFINED N-ACETYLNEURAMINYLLACTOSE-WHEAT GERM AGGLUTININ ISOLECTIN COMPLEXES 1HAR ; 2.2 ; 2.2 ANGSTROMS RESOLUTION STRUCTURE OF THE AMINO-TERMINAL HALF OF HIV-1 REVERSE TRANSCRIPTASE (FINGERS AND PALM SUBDOMAINS) 5ITE ; 2.182 ; 2.2-Angstrom in meso crystal structure of Haloquadratum Walsbyi Bacteriorhodopsin (HwBR) from Octylglucoside (OG) Detergent Micelles 5ITC ; 1.999 ; 2.2-Angstrom in meso crystal structure of Haloquadratum Walsbyi Bacteriorhodopsin (HwBR) from Styrene Maleic Acid (SMA) Polymer Nanodiscs 6CL9 ; 2.2 ; 2.20 A MicroED structure of proteinase K at 4.3 e- / A^2 6VH3 ; 2.2 ; 2.20 A resolution structure of MERS 3CL protease in complex with inhibitor 7j 4ZOS ; 2.2 ; 2.20 Angstrom resolution crystal structure of protein YE0340 of unidentified function from Yersinia enterocolitica subsp. enterocolitica 8081] 3ROI ; 2.2 ; 2.20 Angstrom resolution structure of 3-phosphoshikimate 1-carboxyvinyltransferase (AroA) from Coxiella burnetii 4I26 ; 2.204 ; 2.20 Angstroms X-ray crystal structure of 2-aminomuconate 6-semialdehyde dehydrogenase from Pseudomonas fluorescens 5D8Q ; 2.2 ; 2.20A resolution structure of BfrB (L68A) from Pseudomonas aeruginosa 4TOE ; 2.2 ; 2.20A resolution structure of Iron Bound BfrB (D34F) from Pseudomonas aeruginosa 7SNT ; 2.2 ; 2.20A Resolution Structure of NanoLuc Luciferase with Bound Substrate Analog 3-methoxy-furimazine 5TY0 ; 2.22 ; 2.22 Angstrom Crystal Structure of N-terminal Fragment (residues 1-419) of Elongation Factor G from Legionella pneumophila. 4NVR ; 2.22 ; 2.22 Angstrom Resolution Crystal Structure of a Putative Acyltransferase from Salmonella enterica 5NPP ; 2.22 ; 2.22A STRUCTURE OF THIOPHENE2 AND GSK945237 WITH S.AUREUS DNA GYRASE AND DNA 6ZO0 ; 2.23 ; 2.23 A resolution 3,4-dimethylcatechol (3,4-dimethylbenzene-1,2-diol) inhibited Sporosarcina pasteurii urease 3R38 ; 2.23 ; 2.23 Angstrom resolution crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) from Listeria monocytogenes EGD-e 6VGZ ; 2.25 ; 2.25 A resolution structure of MERS 3CL protease in complex with inhibitor 6d 5WKM ; 2.25 ; 2.25 A resolution structure of MERS 3CL protease in complex with piperidine-based peptidomimetic inhibitor 21 6BIC ; 2.25 ; 2.25 A resolution structure of Norovirus 3CL protease in complex with a triazole-based macrocyclic inhibitor 2J5R ; 2.25 ; 2.25 A resolution structure of the wild type malate dehydrogenase from Haloarcula marismortui after second radiation burn (radiation damage series) 3QM2 ; 2.25 ; 2.25 Angstrom Crystal Structure of Phosphoserine Aminotransferase (SerC) from Salmonella enterica subsp. enterica serovar Typhimurium 5JXW ; 2.25 ; 2.25 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with Neplanocin-A and NAD 6DVV ; 2.25 ; 2.25 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Klebsiella pneumoniae in Complex with NAD and Mn2+. 6DUX ; 2.25 ; 2.25 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Klebsiella pneumoniae in Complex with NAD. 3N2I ; 2.25 ; 2.25 Angstrom resolution crystal structure of a thymidylate kinase (tmk) from Vibrio cholerae O1 biovar eltor str. N16961 in complex with thymidine 8CZP ; 2.25 ; 2.25 angstrom resolution crystal structure of as-isolated KatG from Mycobacterium tuberculosis with an MYW cofactor 5DIB ; 2.25 ; 2.25 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) Y450L point mutant from Staphylococcus aureus in complex with NAD+ and BME-modified Cys289 5ICR ; 2.25 ; 2.25 Angstrom Resolution Crystal Structure of Fatty-Acid-CoA Ligase (FadD32) from Mycobacterium smegmatis in complex with Inhibitor 5'-O-[(11-phenoxyundecanoyl)sulfamoyl]adenosine. 5HM3 ; 2.25 ; 2.25 Angstrom Resolution Crystal Structure of Long-chain-fatty-acid-AMP Ligase FadD32 from Mycobacterium tuberculosis in complex with Inhibitor 5'-O-[(11-phenoxyundecanoyl)sulfamoyl]adenosine 4HV4 ; 2.25 ; 2.25 Angstrom resolution crystal structure of UDP-N-acetylmuramate--L-alanine ligase (murC) from Yersinia pestis CO92 in complex with AMP 4HW8 ; 2.251 ; 2.25 Angstrom Structure of the Extracellular Solute-binding Protein from Staphylococcus aureus in complex with Maltose. 6AW8 ; 2.25 ; 2.25A resolution domain swapped dimer structure of SAH bound catechol O-methyltransferase (COMT) from Nannospalax galili 4TOC ; 2.25 ; 2.25A resolution structure of Iron Bound BfrB (Q151L) from Pseudomonas aeruginosa 4F49 ; 2.25 ; 2.25A resolution structure of Transmissible Gastroenteritis Virus Protease containing a covalently bound Dipeptidyl Inhibitor 6VH2 ; 2.26 ; 2.26 A resolution structure of MERS 3CL protease in complex with inhibitor 7i 7VDA ; 2.26 ; 2.26 A structure of the glutamate dehydrogenase 4GIB ; 2.27 ; 2.27 Angstrom Crystal Structure of beta-Phosphoglucomutase (pgmB) from Clostridium difficile 7P13 ; 2.29 ; 2.29 A Mycobacterium tuberculosis EspB. 7VD9 ; 2.29 ; 2.29 A structure of the human catalase 4DXB ; 2.29 ; 2.29A structure of the engineered MBP TEM-1 fusion protein RG13 in complex with zinc, P1 space group 3GAF ; 2.2 ; 2.2A Crystal Structure of 7-Alpha-Hydroxysteroid Dehydrogenase from Brucella Melitensis 6B86 ; 2.2 ; 2.2A Crystal Structure of Co-CAO1 4E5D ; 2.201 ; 2.2A resolution structure of a firefly luciferase-benzothiazole inhibitor complex 4JBH ; 2.2 ; 2.2A resolution structure of cobalt and zinc bound thermostable alcohol dehydrogenase from Pyrobaculum aerophilum 4JET ; 2.2 ; 2.2A resolution structure of Holo hemophore HasA from Yersinia pestis 4FP7 ; 2.2 ; 2.2A resolution structure of Proteasome Assembly Chaperone Hsm3 3DAH ; 2.3 ; 2.3 A crystal structure of ribose-phosphate pyrophosphokinase from Burkholderia pseudomallei 4ZWM ; 2.31 ; 2.3 A resolution crystal structure of the ornithine aminotransferase from Toxoplasma gondii ME49 2G7U ; 2.3 ; 2.3 A structure of putative catechol degradative operon regulator from Rhodococcus sp. RHA1 3POL ; 2.3 ; 2.3 Angstrom Crystal Structure of 3-deoxy-manno-octulosonate Cytidylyltransferase (kdsB) from Acinetobacter baumannii. 3IS2 ; 2.3 ; 2.3 Angstrom Crystal Structure of a Cys71 Sulfenic Acid form of Vivid 4ECM ; 2.3 ; 2.3 Angstrom Crystal Structure of a Glucose-1-phosphate Thymidylyltransferase from Bacillus anthracis in Complex with Thymidine-5-diphospho-alpha-D-glucose and Pyrophosphate 4QVR ; 2.3 ; 2.3 Angstrom Crystal Structure of Hypothetical Protein FTT1539c from Francisella tularensis. 1Z7H ; 2.3 ; 2.3 Angstrom crystal structure of tetanus neurotoxin light chain 5E31 ; 2.3 ; 2.3 Angstrom Crystal Structure of the Monomeric Form of Penicillin Binding Protein 2 Prime from Enterococcus faecium. 6CMZ ; 2.3 ; 2.3 Angstrom Resolution Crystal Structure of Dihydrolipoamide Dehydrogenase from Burkholderia cenocepacia in Complex with FAD and NAD 5U1O ; 2.31 ; 2.3 Angstrom Resolution Crystal Structure of Glutathione Reductase from Vibrio parahaemolyticus in Complex with FAD. 1XWK ; 2.3 ; 2.3 angstrom resolution crystal structure of human glutathione S-transferase M1A-1A complexed with glutathionyl-S-dinitrobenzene 6KMQ ; 2.35 ; 2.3 Angstrom resolution structure of dimeric HigBA toxin-antitoxin complex from E. coli 5DRK ; 2.38 ; 2.3 Angstrom Structure of CPII, a nitrogen regulatory PII-like protein from Thiomonas intermedia K12, bound to ADP, AMP and bicarbonate. 6CNY ; 2.1 ; 2.3 Angstrom Structure of Phosphodiesterase treated Vivid (complex with FMN) 1DR2 ; 2.3 ; 2.3 ANGSTROMS CRYSTAL STRUCTURE OF CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXED WITH THIONADP+ AND BIOPTERIN 1DR3 ; 2.3 ; 2.3 ANGSTROMS CRYSTAL STRUCTURE OF CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXED WITH THIONADP+ AND BIOPTERIN 1RPL ; 2.3 ; 2.3 ANGSTROMS CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF DNA POLYMERASE BETA 6VH1 ; 2.3 ; 2.30 A resolution structure of MERS 3CL protease in complex with inhibitor 6h 4NU9 ; 2.3 ; 2.30 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) from Staphylococcus aureus with BME-free Cys289 3HYK ; 2.31 ; 2.31 Angstrom resolution crystal structure of a holo-(acyl-carrier-protein) synthase from Bacillus anthracis str. Ames in complex with CoA (3',5'-ADP) 6QTK ; 2.31 ; 2.31A structure of gepotidacin with S.aureus DNA gyrase and doubly nicked DNA 4IGN ; 2.329 ; 2.32 Angstrom X-ray Crystal structure of R47A mutant of human ACMSD 5TSE ; 2.35 ; 2.35 Angstrom Crystal Structure Minor Lipoprotein from Acinetobacter baumannii. 4FBD ; 2.35 ; 2.35 Angstrom Crystal Structure of Conserved Hypothetical Protein from Toxoplasma gondii ME49. 5V27 ; 2.352 ; 2.35 angstrom crystal structure of P97V 3-hydroxyanthranilate-3,4-dioxygenase from Cupriavidus metallidurans 3KY7 ; 2.35 ; 2.35 Angstrom resolution crystal structure of a putative tRNA (guanine-7-)-methyltransferase (trmD) from Staphylococcus aureus subsp. aureus MRSA252 4QRI ; 2.35 ; 2.35 Angstrom resolution crystal structure of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 4OC9 ; 2.35 ; 2.35 Angstrom resolution crystal structure of putative O-acetylhomoserine (thiol)-lyase (metY) from Campylobacter jejuni subsp. jejuni NCTC 11168 with N'-Pyridoxyl-Lysine-5'-Monophosphate at position 205 3DZC ; 2.35 ; 2.35 Angstrom resolution structure of WecB (VC0917), a UDP-N-acetylglucosamine 2-epimerase from Vibrio cholerae. 6VW4 ; 2.35 ; 2.35 Angstrom structure of Caci_6494 from Catenulispora Acidiphila in complex with S-DNPA 5VRA ; 2.35 ; 2.35-Angstrom In situ Mylar structure of human A2A adenosine receptor at 100 K 5D8P ; 2.35 ; 2.35A resolution structure of iron bound BfrB (wild-type, C2221 form) from Pseudomonas aeruginosa 4JBI ; 2.35 ; 2.35A resolution structure of NADPH bound thermostable alcohol dehydrogenase from Pyrobaculum aerophilum 5DG6 ; 2.35 ; 2.35A resolution structure of Norovirus 3CL protease in complex an oxadiazole-based, cell permeable macrocyclic (21-mer) inhibitor 3OO2 ; 2.37 ; 2.37 Angstrom resolution crystal structure of an alanine racemase (alr) from Staphylococcus aureus subsp. aureus COL 5BUF ; 2.37 ; 2.37 Angstrom Structure of EPSP Synthase from acinetobacter baumannii 6QTP ; 2.37 ; 2.37A structure of gepotidacin with S.aureus DNA gyrase and uncleaved DNA 4IGM ; 2.391 ; 2.39 Angstrom X-ray Crystal structure of human ACMSD 6COM ; 2.3 ; 2.3A crystal structure of E. coli phosphoenolpyruvate carboxykinase mutant Asp269Asn 1S6Y ; 2.31 ; 2.3A crystal structure of phospho-beta-glucosidase 4HJY ; 2.4 ; 2.4 A Crystal structure of E. coli MltE-E64Q with bound chitopentaose 3E5B ; 2.37 ; 2.4 A crystal structure of isocitrate lyase from brucella melitensis 3EOM ; 2.398 ; 2.4 A crystal structure of native glutaryl-coa dehydrogenase from Burkholderia pseudomallei 1EEP ; 2.4 ; 2.4 A RESOLUTION CRYSTAL STRUCTURE OF BORRELIA BURGDORFERI INOSINE 5'-MONPHOSPHATE DEHYDROGENASE IN COMPLEX WITH A SULFATE ION 3DGM ; 2.4 ; 2.4 A Structure of a Non-biological ATP binding protein with ADP bound 1I2X ; 2.4 ; 2.4 A STRUCTURE OF A-DUPLEX WITH BULGED ADENOSINE, SPERMIDINE FORM 1IHH ; 2.4 ; 2.4 ANGSTROM CRYSTAL STRUCTURE OF AN OXALIPLATIN 1,2-D(GPG) INTRASTRAND CROSS-LINK IN A DNA DODECAMER DUPLEX 7PPB ; 2.4 ; 2.4 angstrom crystal structure of bone morphogenetic protein receptor type II (BMPRII) extracellular domain in complex with BMP10 3PNU ; 2.4 ; 2.4 Angstrom Crystal Structure of Dihydroorotase (pyrC) from Campylobacter jejuni. 3MGA ; 2.4 ; 2.4 Angstrom Crystal Structure of Ferric Enterobactin Esterase (fes) from Salmonella typhimurium 3GTD ; 2.4 ; 2.4 Angstrom crystal structure of fumarate hydratase from Rickettsia prowazekii 2Q6S ; 2.4 ; 2.4 angstrom crystal structure of PPAR gamma complexed to BVT.13 without co-activator peptides 5TLS ; 2.4 ; 2.4 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with DZ2002 and NAD 3HZZ ; 2.4 ; 2.4 Angstrom Crystal Structure of Streptomyces collinus crotonyl CoA carboxylase/reductase 3V05 ; 2.4 ; 2.4 Angstrom Crystal Structure of Superantigen-like Protein from Staphylococcus aureus. 1LU5 ; 2.4 ; 2.4 Angstrom Crystal Structure of the Asymmetric Platinum Complex {Pt(ammine)(cyclohexylamine)}2+ Bound to a Dodecamer DNA Duplex 6U39 ; 2.4 ; 2.4 Angstrom crystal structure of the D129G Ca-CaM:CaV1.2 IQ domain complex 6DAF ; 2.4 ; 2.4 Angstrom crystal structure of the F141L Ca/CaM:CaV1.2 IQ domain complex 4O0N ; 2.4 ; 2.4 Angstrom Resolution Crystal Structure of Putative Nucleoside Diphosphate Kinase from Toxoplasma gondii. 4N3O ; 2.4 ; 2.4 Angstrom Resolution Crystal Structure of Putative Sugar Kinase from Campylobacter jejuni. 3SEF ; 2.4 ; 2.4 Angstrom resolution crystal structure of shikimate 5-dehydrogenase (aroE) from Vibrio cholerae O1 biovar eltor str. N16961 in complex with shikimate and NADPH 4IFR ; 2.391 ; 2.40 Angstroms X-ray crystal structure of R239A 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pseudomonas fluorescens 6CQI ; 2.42 ; 2.42A Crystal structure of Mycobacterium tuberculosis Topoisomerase I in complex with an oligonucleotide MTS2-11 7P0Z ; 2.43 ; 2.43 A Mycobacterium marinum EspB. 5T6G ; 2.45 ; 2.45 A resolution structure of Norovirus 3CL protease in complex with the dipeptidyl inhibitor 7m (hexagonal form) 2A8R ; 2.45 ; 2.45 Angstrom Crystal Structure of the Complex Between the Nuclear SnoRNA Decapping Nudix Hydrolase X29 and Manganese in the Presence of 7-methyl-GTP 2A8S ; 2.45 ; 2.45 Angstrom Crystal Structure of the Complex Between the Nuclear SnoRNA Decapping Nudix Hydrolase X29, Manganese and GTP 5UJS ; 2.46 ; 2.45 Angstrom Resolution Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Campylobacter jejuni. 6BWT ; 2.45 ; 2.45 Angstrom Resolution Crystal Structure Thioredoxin Reductase from Francisella tularensis. 5KGL ; 2.45 ; 2.45A resolution structure of Apo independent phosphoglycerate mutase from C. elegans (orthorhombic form) 5CDP ; 2.45 ; 2.45A structure of etoposide with S.aureus DNA gyrase and DNA 3PGJ ; 2.49 ; 2.49 Angstrom resolution crystal structure of shikimate 5-dehydrogenase (aroE) from Vibrio cholerae O1 biovar eltor str. N16961 in complex with shikimate 1SFJ ; 2.4 ; 2.4A Crystal structure of Staphylococcus aureus type I 3-dehydroquinase, with 3-dehydroquinate bound 4HIN ; 2.4 ; 2.4A Resolution Structure of Bovine Cytochrome b5 (S71L) 6B6I ; 2.44 ; 2.4A resolution structure of human Norovirus GII.4 protease 2OE6 ; 2.4 ; 2.4A X-ray crystal structure of unliganded RNA fragment GGGCGUCGCUAGUACC/CGGUACUAAAAGUCGCC containing the human ribosomal decoding A site: RNA construct with 5'-overhang 1JKK ; 2.4 ; 2.4A X-RAY STRUCTURE OF TERNARY COMPLEX OF A CATALYTIC DOMAIN OF DEATH-ASSOCIATED PROTEIN KINASE WITH ATP ANALOGUE AND MG. 1X87 ; 2.4 ; 2.4A X-ray structure of Urocanase protein complexed with NAD 8PTU ; 2.52 ; 2.5 A cryo-EM structure of the in vitro FimD-catalyzed assembly of type 1 pilus rod 3QH7 ; 2.497 ; 2.5 A resolution structure of Se-Met labeled CT296 from Chlamydia trachomatis 5K2B ; 2.5 ; 2.5 angstrom A2a adenosine receptor structure with MR phasing using XFEL data 5K2A ; 2.5 ; 2.5 angstrom A2a adenosine receptor structure with sulfur SAD phasing using XFEL data 5J7R ; 2.5 ; 2.5 Angstrom Crystal Structure of Putative Lipoprotein from Clostridium perfringens 6DAH ; 2.502 ; 2.5 Angstrom crystal structure of the N97S CaM mutant 3REH ; 2.5 ; 2.5 Angstrom Crystal Structure of the Nucleosome Core Particle Assembled with a 145 bp Alpha-Satellite DNA (NCP145) 3OKF ; 2.5 ; 2.5 Angstrom Resolution Crystal Structure of 3-Dehydroquinate Synthase (aroB) from Vibrio cholerae 4ECD ; 2.5 ; 2.5 Angstrom Resolution Crystal Structure of Bifidobacterium longum Chorismate Synthase 5TR3 ; 2.5 ; 2.5 Angstrom Resolution Crystal Structure of Dihydrolipoyl Dehydrogenase from Pseudomonas putida in Complex with FAD. 2F9D ; 2.5 ; 2.5 angstrom resolution structure of the spliceosomal protein p14 bound to region of SF3b155 1RC2 ; 2.5 ; 2.5 Angstrom Resolution X-ray Structure of Aquaporin Z 6P77 ; 2.501 ; 2.5 Angstrom structure of Caci_6494 from Catenulispora Acidiphila 6P35 ; 2.495 ; 2.5 Angstrom structure of wild type Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with 2-keto arginine and NADP 4IH3 ; 2.493 ; 2.5 Angstroms X-ray crystal structure of of human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in complex with dipicolinic acid 5Y2R ; 1.0 ; 2.5 atm CO2-pressurized human carbonic anhydrase II 5VXJ ; 2.5 ; 2.50 A resolution structure of IpaD from Shigella flexneri in complex with single-domain antibody JMK-E3 4EGR ; 2.5 ; 2.50 angstrom resolution structure of 3-phosphoshikimate 1-carboxyvinyltransferase (AroA) from Coxiella burnetii in complex with phosphoenolpyruvate 4IFO ; 2.5 ; 2.50 Angstroms X-ray crystal structure of R51A 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pseudomonas fluorescens 5D8R ; 2.5 ; 2.50A resolution structure of BfrB (E81A) from Pseudomonas aeruginosa 6WBT ; 2.52 ; 2.52 Angstrom Resolution Crystal Structure of 6-phospho-alpha-glucosidase from Gut Microorganisms in Complex with NAD and Glucose-6-phosphate 4DXE ; 2.51 ; 2.52 Angstrom resolution crystal structure of the acyl-carrier-protein synthase (AcpS)-acyl carrier protein (ACP) protein-protein complex from Staphylococcus aureus subsp. aureus COL 5VXK ; 2.55 ; 2.55 A resolution structure of IpaD from Shigella flexneri in complex with single-domain antibody JMK-H2 3REJ ; 2.55 ; 2.55 Angstrom Crystal Structure of the Nucleosome Core Particle Assembled with a 146 bp Alpha-Satellite DNA (NCP146b) 6BQ9 ; 2.55 ; 2.55 Angstrom Resolution Crystal Structure of N-terminal Fragment (residues 1-493) of DNA Topoisomerase IV Subunit A from Pseudomonas putida 6VJ6 ; 2.553 ; 2.55 Angstrom Resolution Crystal Structure of Peptidylprolyl Isomerase (PrsA) from Bacillus cereus 4ZND ; 2.55 ; 2.55 Angstrom resolution structure of 3-phosphoshikimate 1-carboxyvinyltransferase (AroA) from Coxiella burnetii in complex with shikimate-3-phosphate, phosphate, and potassium 7CUB ; 2.55 ; 2.55-Angstrom Cryo-EM structure of Cytochrome bo3 from Escherichia coli in Native Membrane 7CUQ ; 2.64 ; 2.55-Angstrom Cryo-EM structure of Cytochrome bo3 from Escherichia coli in Native Membrane 3EON ; 2.55 ; 2.55A crystal structure of native glutaryl-coa dehydrogenase from Burkholderia pseudomallei in complex with a small molecule 5D8S ; 2.55 ; 2.55A resolution structure of BfrB (E85A) from Pseudomonas aeruginosa 6AW9 ; 2.55 ; 2.55A resolution structure of SAH bound catechol O-methyltransferase (COMT) L136M from Nannospalax galili 7VDF ; 2.56 ; 2.56 A structure of influenza hemagglutinin (HA) trimer 3EMK ; 2.5 ; 2.5A crystal structure of glucose/ribitol dehydrogenase from brucella melitensis 1TB6 ; 2.5 ; 2.5A Crystal Structure of the Antithrombin-Thrombin-Heparin Ternary Complex 1RD3 ; 2.5 ; 2.5A Structure of Anticoagulant Thrombin Variant E217K 5IWM ; 2.5 ; 2.5A structure of GSK945237 with S.aureus DNA gyrase and DNA. 5A3E ; 2.501 ; 2.5A structure of lysozyme determined by MicroED with data from a single crystal 3J6K ; 2.5 ; 2.5A structure of lysozyme solved by MicroED 5CDM ; 2.5 ; 2.5A structure of QPT-1 with S.aureus DNA gyrase and DNA 2AF5 ; 2.5 ; 2.5A X-ray Structure of Engineered OspA protein 1F66 ; 2.6 ; 2.6 A CRYSTAL STRUCTURE OF A NUCLEOSOME CORE PARTICLE CONTAINING THE VARIANT HISTONE H2A.Z 3DMP ; 2.6 ; 2.6 A crystal structure of uracil phosphoribosyltransferase from Burkholderia pseudomallei 7SWY ; 2.6 ; 2.6 A structure of a 40-601[TA-rich+1]-40 nucleosome 4ODI ; 2.6 ; 2.6 Angstrom Crystal Structure of Putative Phosphoglycerate Mutase 1 from Toxoplasma gondii 4IIW ; 2.6 ; 2.6 Angstrom Crystal Structure of Putative yceG-like Protein lmo1499 from Listeria monocytogenes 5TJ9 ; 2.6 ; 2.6 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with Aristeromycin and NAD 2QO1 ; 2.6 ; 2.6 Angstrom Crystal Structure of the Complex Between 11-(decyldithiocarbonyloxy)-undecanoic acid and Mycobacterium Tuberculosis FabH. 2A8Q ; 2.6 ; 2.6 Angstrom Crystal Structure of the Complex Between the Nuclear SnoRNA Decapping Nudix Hydrolase X29 and Manganese in the Presence of 7-methyl-GDP 3REK ; 2.6 ; 2.6 Angstrom Crystal Structure of the Nucleosome Core Particle Assembled with a 146 bp Alpha-Satellite DNA (NCP146b) Derivatized with Oxaliplatin 3SG1 ; 2.6 ; 2.6 Angstrom Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1 (MurA1) from Bacillus anthracis 6OV8 ; 2.61 ; 2.6 Angstrom Resolution Crystal Structure of Aminopeptidase B from Escherichia coli str. K-12 substr. MG1655 4QN2 ; 2.6 ; 2.6 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) G234S mutant from Staphylococcus aureus (IDP00699) in complex with NAD+ and BME-free Cys289 5VH6 ; 2.61 ; 2.6 Angstrom Resolution Crystal Structure of N-terminal Fragment (residues 1-406) of Elongation Factor G from Bacillus subtilis. 5U2G ; 2.61 ; 2.6 Angstrom Resolution Crystal Structure of Penicillin-Binding Protein 1A from Haemophilus influenzae 5I1T ; 2.6 ; 2.6 Angstrom Resolution Crystal Structure of Stage II Sporulation Protein D (SpoIID) from Clostridium difficile in Complex with Triacetylchitotriose 4HS7 ; 2.6 ; 2.6 Angstrom Structure of the Extracellular Solute-binding Protein from Staphylococcus aureus in complex with PEG. 6OXN ; 2.61 ; 2.6 Angstrom structure of W45F/H46S Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with glyoxylate and NADP 4DIR ; 2.6 ; 2.6 Angstrom X-ray structure of human CA(2+)-S100A5 1LTB ; 2.6 ; 2.6 ANGSTROMS CRYSTAL STRUCTURE OF PARTIALLY-ACTIVATED E. COLI HEAT-LABILE ENTEROTOXIN (LT) 4Q52 ; 2.6 ; 2.60 Angstrom resolution crystal structure of a conserved uncharacterized protein from Chitinophaga pinensis DSM 2588 4O96 ; 2.6 ; 2.60 Angstrom resolution crystal structure of a protein kinase domain of type III effector NleH2 (ECs1814) from Escherichia coli O157:H7 str. Sakai 4ZWL ; 2.6 ; 2.60 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) H448F/Y450L double mutant from Staphylococcus aureus in complex with NAD+ and BME-free Cys289 6N0I ; 2.6 ; 2.60 Angstrom Resolution Crystal Structure of Elongation Factor G 2 from Pseudomonas putida. 6VBB ; 2.6 ; 2.60 Angstrom Resolution Crystal Structure of Peptidase S41 from Acinetobacter baumannii 4NML ; 2.6 ; 2.60 Angstrom resolution crystal structure of putative ribose 5-phosphate isomerase from Toxoplasma gondii ME49 in complex with DL-Malic acid 6FQV ; 2.6 ; 2.60A BINARY COMPLEX OF S.AUREUS GYRASE with UNCLEAVED DNA 4ILQ ; 2.6 ; 2.60A resolution structure of CT771 from Chlamydia trachomatis 7ZRP ; 2.65 ; 2.65 Angstrom crystal structure of Ca/CaM:CaMKIIdelta peptide complex 3REI ; 2.65 ; 2.65 Angstrom Crystal Structure of the Nucleosome Core Particle Assembled with a 145 bp Alpha-Satellite DNA (NCP145) Derivatized with Triamminechloroplatinum(II) Chloride 4RV4 ; 2.65 ; 2.65 Angstrom Resolution Crystal Structure of an orotate phosphoribosyltransferase from Bacillus anthracis str. 'Ames Ancestor' in complex with 5-phospho-alpha-D-ribosyl diphosphate (PRPP) 3SC6 ; 2.65 ; 2.65 Angstrom resolution crystal structure of dTDP-4-dehydrorhamnose reductase (rfbD) from Bacillus anthracis str. Ames in complex with NADP 4GFQ ; 2.65 ; 2.65 Angstrom Resolution Crystal Structure of Ribosome Recycling Factor (frr) from Bacillus anthracis 5UTU ; 2.65 ; 2.65 Angstrom Resolution Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with SAH and NAD 5CDR ; 2.65 ; 2.65 structure of S.aureus DNA gyrase and artificially nicked DNA 2C4D ; 2.6 ; 2.6A Crystal Structure of Psathyrella velutina Lectin in Complex with N-acetylglucosamine 3R9I ; 2.6 ; 2.6A resolution structure of MinD complexed with MinE (12-31) peptide 8PSV ; 2.7 ; 2.7 A cryo-EM structure of in vitro assembled type 1 pilus rod 2GYS ; 2.7 ; 2.7 A structure of the extracellular domains of the human beta common receptor involved in IL-3, IL-5, and GM-CSF signalling 5D6A ; 2.7 ; 2.7 Angstrom Crystal Structure of ABC transporter ATPase from Vibrio vulnificus in Complex with Adenylyl-imidodiphosphate (AMP-PNP) 3V0A ; 2.703 ; 2.7 angstrom crystal structure of BoNT/Ai in complex with NTNHA 3GE1 ; 2.7 ; 2.7 Angstrom Crystal Structure of Glycerol Kinase (glpK) from Staphylococcus aureus in Complex with ADP and Glycerol 2A8P ; 2.7 ; 2.7 Angstrom Crystal Structure of the Complex Between the Nuclear SnoRNA Decapping Nudix Hydrolase X29 and Manganese 3REL ; 2.7 ; 2.7 Angstrom Crystal Structure of the Nucleosome Core Particle Assembled with a 146 bp Alpha-Satellite DNA (NCP146b) Derivatized with Triamminechloroplatinum(II) Chloride 3PFI ; 2.695 ; 2.7 Angstrom resolution crystal structure of a probable holliday junction DNA helicase (ruvB) from Campylobacter jejuni subsp. jejuni NCTC 11168 in complex with adenosine-5'-diphosphate 4GFP ; 2.7 ; 2.7 Angstrom resolution structure of 3-phosphoshikimate 1-carboxyvinyltransferase (AroA) from Coxiella burnetii in a second conformational state 4QPJ ; 2.742 ; 2.7 Angstrom Structure of a Phosphotransferase in Complex with a Receiver Domain 5EGW ; 2.7 ; 2.70 A crystal structure of the Amb a 11 cysteine protease, a major ragweed pollen allergen, in its proform 4H44 ; 2.7 ; 2.70 A Cytochrome b6f Complex Structure From Nostoc PCC 7120 6WN8 ; 2.7 ; 2.70 Angstrom Resolution Crystal Structure of Uracil Phosphoribosyl Transferase from Klebsiella pneumoniae 5V28 ; 2.724 ; 2.72 angstrom crystal structure of P97A 3-hydroxyanthranilate-3,4-dioxygenase from Cupriavidus metallidurans 3OTR ; 2.75 ; 2.75 Angstrom Crystal Structure of Enolase 1 from Toxoplasma gondii 6U7L ; 2.75 ; 2.75 Angstrom Crystal Structure of Galactarate Dehydratase from Escherichia coli. 8OW4 ; 2.75 ; 2.75 angstrom crystal structure of human NFAT1 with bound DNA 4K15 ; 2.75 ; 2.75 Angstrom Crystal Structure of Hypothetical Protein lmo2686 from Listeria monocytogenes EGD-e 4O4A ; 2.75 ; 2.75 Angstrom Crystal Structure of Putative Lipoprotein from Bacillus anthracis. 5UBU ; 2.75 ; 2.75 Angstrom Resolution Crystal Structure of Acetamidase from Yersinia enterocolitica. 4MJZ ; 2.75 ; 2.75 Angstrom Resolution Crystal Structure of Putative Orotidine-monophosphate-decarboxylase from Toxoplasma gondii. 4HHD ; 2.75 ; 2.75 Angstrom resolution crystal structure of the A. thaliana LOV2 domain with an extended N-terminal A' helix (cryo dark structure) 6CN1 ; 2.75 ; 2.75 Angstrom Resolution Crystal Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Pseudomonas putida in Complex with Uridine-diphosphate-2(n-acetylglucosaminyl) butyric acid, (2R)-2-(phosphonooxy)propanoic acid and Magnesium 5F2H ; 2.75 ; 2.75 Angstrom resolution crystal structure of uncharacterized protein from Bacillus cereus ATCC 10987 4PUP ; 2.75 ; 2.75 Angstrom resolution crystal structure of uncharacterized protein from Burkholderia cenocepacia J2315 2UUW ; 2.76 ; 2.75 angstrom structure of the D347G D348G mutant structure of Sapporo Virus RdRp Polymerase 3HL3 ; 2.76 ; 2.76 Angstrom Crystal Structure of a Putative Glucose-1-Phosphate Thymidylyltransferase from Bacillus anthracis in Complex with a Sucrose. 2UXS ; 2.7 ; 2.7A crystal structure of inorganic pyrophosphatase (Rv3628) from Mycobacterium tuberculosis at pH 7.5 6QX1 ; 2.65 ; 2.7A structure of benzoisoxazole 3 with S.aureus DNA gyrase and DNA. 6M0R ; 2.7 ; 2.7A Yeast Vo state3 5BW8 ; 2.8 ; 2.8 A crystal structure of a Get3-Get4-Get5 intermediate complex from S.cerevisiae 6BDF ; 2.8 ; 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy 2X0J ; 2.786 ; 2.8 A RESOLUTION STRUCTURE OF MALATE DEHYDROGENASE FROM ARCHAEOGLOBUS FULGIDUS IN COMPLEX WITH ETHENO-NAD 7R0W ; 2.8 ; 2.8 Angstrom cryo-EM structure of the dimeric cytochrome b6f-PetP complex from Synechocystis sp. PCC 6803 with natively bound lipids and plastoquinone molecules 3JCS ; 2.8 ; 2.8 Angstrom cryo-EM structure of the large ribosomal subunit from the eukaryotic parasite Leishmania 4ONX ; 2.8 ; 2.8 Angstrom Crystal Structure of Sensor Domain of Histidine Kinase from Clostridium perfringens. 5YS8 ; 2.798 ; 2.8 angstrom crystal structure of Succinate-Acetate Permease from Citrobacter koseri 5TPM ; 2.8 ; 2.8 Angstrom Crystal Structure of the C-terminal Dimerization Domain of Transcriptional Regulator PdhR from Escherichia coli. 4MH6 ; 2.8 ; 2.8 Angstrom Crystal Structure of Type III Secretion Protein YscO from Vibrio parahaemolyticus 4KQN ; 2.8 ; 2.8 Angstrom Resolution Crystal Structure of D-Hydantoinase from Bacillus sp. AR9 in C2221 Space Group 1YSC ; 2.8 ; 2.8 ANGSTROMS STRUCTURE OF YEAST SERINE CARBOXYPEPTIDASE 2AAT ; 2.8 ; 2.8-ANGSTROMS-RESOLUTION CRYSTAL STRUCTURE OF AN ACTIVE-SITE MUTANT OF ASPARTATE AMINOTRANSFERASE FROM ESCHERICHIA COLI 6CLA ; 2.8 ; 2.80 A MicroED structure of proteinase K at 6.0 e- / A^2 5VXL ; 2.8 ; 2.80 A resolution structure of IpaD from Shigella flexneri in complex with single-domain antibody JPS-G3 6Y7S ; 2.85 ; 2.85 A cryo-EM structure of the in vivo assembled type 1 pilus rod 1IMV ; 2.85 ; 2.85 A crystal structure of PEDF 7TIF ; 2.85 ; 2.85 Angstroem crystal structure of Arginyltransferase 1 (ATE1) from Saccharomyces cerevisiae 5HM8 ; 2.85 ; 2.85 Angstrom Crystal Structure of S-adenosylhomocysteinase from Cryptosporidium parvum in Complex with Adenosine and NAD. 4ZXU ; 2.85 ; 2.85 Angstrom resolution crystal structure of betaine aldehyde dehydrogenase (betB) H448F/P449M double mutant from Staphylococcus aureus in complex with NAD+ and BME-free Cys289 4MVJ ; 2.85 ; 2.85 Angstrom Resolution Crystal Structure of Glyceraldehyde 3-phosphate Dehydrogenase A (gapA) from Escherichia coli Modified by Acetyl Phosphate. 4O6H ; 2.8 ; 2.8A crystal structure of Lymphocytic Choriomeningitis Virus Nucleoprotein C-terminal Domain 5X3X ; 2.788 ; 2.8A resolution structure of a cobalt energy-coupling factor transporter-CbiMQO 4ROB ; 2.8 ; 2.8A resolution structure of SRPN2 (K198C) from Anopheles gambiae 5CDN ; 2.79 ; 2.8A structure of etoposide with S.aureus DNA gyrase and DNA 8BP2 ; 2.8 ; 2.8A STRUCTURE OF ZOLIFLODACIN WITH S.AUREUS DNA GYRASE AND DNA 5NWY ; 2.9 ; 2.9 A cryo-EM structure of VemP-stalled ribosome-nascent chain complex 1D2R ; 2.9 ; 2.9 A CRYSTAL STRUCTURE OF LIGAND-FREE TRYPTOPHANYL-TRNA SYNTHETASE: DOMAIN MOVEMENTS FRAGMENT THE ADENINE NUCLEOTIDE BINDING SITE. 1NTA ; 2.9 ; 2.9 A crystal structure of Streptomycin RNA-aptamer 1NTB ; 2.9 ; 2.9 A crystal structure of Streptomycin RNA-aptamer complex 2X0I ; 2.91 ; 2.9 A RESOLUTION STRUCTURE OF MALATE DEHYDROGENASE FROM ARCHAEOGLOBUS FULGIDUS IN COMPLEX WITH NADH 1C8O ; 2.9 ; 2.9 A STRUCTURE OF CLEAVED VIRAL SERPIN CRMA 3PMB ; 2.9 ; 2.9 Angstrom crystal structure of bovine thrombin in tetragonal spacegroup 1F5O ; 2.9 ; 2.9 ANGSTROM CRYSTAL STRUCTURE OF DEOXYGENATED LAMPREY HEMOGLOBIN V IN THE SPACE GROUP P2(1)2(1)2(1) 1F5P ; 2.9 ; 2.9 ANGSTROM CRYSTAL STRUCTURE OF LAMPREY HEMOGLOBIN THAT HAS BEEN EXPOSED TO CARBON MONOXIDE. 3UPD ; 2.91 ; 2.9 Angstrom Crystal Structure of Ornithine Carbamoyltransferase (ArgF) from Vibrio vulnificus 4RH6 ; 2.9 ; 2.9 Angstrom Crystal Structure of Putative Exotoxin 3 from Staphylococcus aureus. 3JCI ; 2.9 ; 2.9 Angstrom Resolution Cryo-EM 3-D Reconstruction of Close-packed PCV2 Virus-like Particles 6BI4 ; 2.91 ; 2.9 Angstrom Resolution Crystal Structure of dTDP-Glucose 4,6-dehydratase (rfbB) from Bacillus anthracis str. Ames in Complex with NAD. 6C43 ; 2.9 ; 2.9 Angstrom Resolution Crystal Structure of Gamma-Aminobutyraldehyde Dehydrogenase from Salmonella typhimurium. 2F8N ; 2.9 ; 2.9 Angstrom X-ray structure of hybrid macroH2A nucleosomes 1BAF ; 2.9 ; 2.9 ANGSTROMS RESOLUTION STRUCTURE OF AN ANTI-DINITROPHENYL-SPIN-LABEL MONOCLONAL ANTIBODY FAB FRAGMENT WITH BOUND HAPTEN 1VSG ; 2.9 ; 2.9 ANGSTROMS RESOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF A VARIANT SURFACE GLYCOPROTEIN FROM TRYPANOSOMA BRUCEI 7YQM ; 2.89 ; 2.9-angstrom cryo-EM structure of Ecoli malate synthase G 6CN0 ; 2.95 ; 2.95 Angstrom Crystal Structure of 16S rRNA Methylase from Proteus mirabilis 5DVY ; 2.95 ; 2.95 Angstrom Crystal Structure of the Dimeric Form of Penicillin Binding Protein 2 Prime from Enterococcus faecium 5KGM ; 2.95 ; 2.95A resolution structure of Apo independent phosphoglycerate mutase from C. elegans (monoclinic form) 5CDQ ; 2.95 ; 2.95A structure of Moxifloxacin with S.aureus DNA gyrase and DNA 3EOO ; 2.9 ; 2.9A crystal structure of methyl-isocitrate lyase from Burkholderia pseudomallei 4RSQ ; 2.9 ; 2.9A resolution structure of SRPN2 (K198C/E359C) from Anopheles gambiae 5AFI ; 2.9 ; 2.9A Structure of E. coli ribosome-EF-TU complex by cs-corrected cryo-EM 5V56 ; 2.9 ; 2.9A XFEL structure of the multi-domain human smoothened receptor (with E194M mutation) in complex with TC114 5NGM ; 2.9 ; 2.9S structure of the 70S ribosome composing the S. aureus 100S complex 2NDK ; ; 20 lowest energy ensemble of dermcidin (DCD1L) NMR structure 6GKA ; 1.76 ; 20 minute Fe2+ soak structure of SynFtn 6SOO ; 1.57 ; 20 minute Fe2+ soaked structure of SynFtn variant D137A 7PFI ; 1.7 ; 20 minute Fe2+ soaked structure of SynFtn Variant D65A 7PFJ ; 1.65 ; 20 minute Fe2+ soaked structure of SynFtn Variant E141A 7PFK ; 1.55 ; 20 minute Fe2+ soaked structure of SynFtn variant E141D 6SOR ; 1.74 ; 20 minute Fe2+ soaked structure of SynFtn variant E62A 8AKR ; 3.8 ; 200 A SynPspA rod after incubation with ATP 5DES ; 2.05 ; 2009 H1N1 PA endonuclease domain 5EGA ; 2.15 ; 2009 H1N1 PA endonuclease domain in complex with an N-acylhydrazone inhibitor 5CCY ; 2.1 ; 2009 H1N1 PA endonuclease in complex with dTMP 5CGV ; 2.17 ; 2009 H1N1 PA endonuclease in complex with L-742,001 6YA5 ; 2.0 ; 2009 H1N1 PA Endonuclease in complex with LU2 5VPT ; 2.1 ; 2009 H1N1 PA Endonuclease in complex with RO-7 5VRJ ; 2.302 ; 2009 H1N1 PA Endonuclease in complex with RO-7 and Magnesium 5CL0 ; 2.22 ; 2009 H1N1 PA endonuclease in complex with rUMP 5CZN ; 1.98 ; 2009 H1N1 PA endonuclease mutant E119D 5DBS ; 2.11 ; 2009 H1N1 PA endonuclease mutant E119D in complex with dTMP 5D8U ; 2.29 ; 2009 H1N1 PA endonuclease mutant E119D in complex with L-742,001 5DEB ; 2.14 ; 2009 H1N1 PA endonuclease mutant E119D in complex with rUMP 5D2O ; 2.15 ; 2009 H1N1 PA endonuclease mutant F105S 5D42 ; 2.0 ; 2009 H1N1 PA endonuclease mutant F105S in complex with dTMP 5D9J ; 1.85 ; 2009 H1N1 PA endonuclease mutant F105S in complex with L-742,001 5D4G ; 2.08 ; 2009 H1N1 PA endonuclease mutant F105S in complex with rUMP 6KJ1 ; 0.65 ; 200kV MicroED structure of FUS (37-42) SYSGYS solved from merged datasets at 0.65 A 6KJ2 ; 0.67 ; 200kV MicroED structure of FUS (37-42) SYSGYS solved from single crystal at 0.67 A 8CW6 ; 1.65 ; 200us Temperature-Jump (Dark1) XFEL structure of Lysozyme 8CWG ; 1.5 ; 200us Temperature-Jump (Dark1) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 8CW7 ; 1.57 ; 200us Temperature-Jump (Dark2) XFEL structure of Lysozyme 8CWH ; 1.5 ; 200us Temperature-Jump (Dark2) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 8CW5 ; 1.57 ; 200us Temperature-Jump (Light) XFEL structure of Lysozyme 8CWF ; 1.5 ; 200us Temperature-Jump (Light) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 7SQS ; 3.1 ; 201phi2-1 Chimallin C1 localized reconstruction 7SQQ ; 4.2 ; 201Phi2-1 Chimallin Cubic (O, 24mer) assembly 7SQR ; 3.4 ; 201phi2-1 Chimallin localized tetramer reconstruction 4YB1 ; 2.081 ; 20A Mutant c-di-GMP Vc2 Riboswitch bound with 3',3'-cGAMP 6C6D ; 5.5 ; 20mer crystal structure of CC chemokine 5 (CCL5) 8CVV ; 1.57 ; 20ns Temperature-Jump (Dark1) XFEL structure of Lysozyme 8CWD ; 1.48 ; 20ns Temperature-Jump (Dark1) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 8CVW ; 1.57 ; 20ns Temperature-Jump (Dark2) XFEL structure of Lysozyme 8CWE ; 1.48 ; 20ns Temperature-Jump (Dark2) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 8CVU ; 1.57 ; 20ns Temperature-Jump (Light) XFEL structure of Lysozyme 8CWC ; 1.48 ; 20ns Temperature-Jump (Light) XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 6HE5 ; 4.12 ; 20S core particle of PAN-proteasomes 6HE7 ; 3.69 ; 20S proteasome from Archaeoglobus fulgidus 1J2Q ; 2.83 ; 20S proteasome in complex with calpain-Inhibitor I from archaeoglobus fulgidus 4FZC ; 2.8 ; 20S yeast proteasome in complex with cepafungin I 4FZG ; 3.0 ; 20S yeast proteasome in complex with glidobactin 7V5G ; 4.47 ; 20S+monoUb-CyclinB1-NT (S1) 7V5M ; 3.88 ; 20S+monoUb-CyclinB1-NT (S2) 8CW1 ; 1.57 ; 20us Temperature-Jump (Dark1) XFEL structure of Lysozyme 8CW3 ; 1.57 ; 20us Temperature-Jump (Dark2) XFEL structure of Lysozyme 8CW0 ; 1.57 ; 20us Temperature-Jump (Light) XFEL structure of Lysozyme 8AKS ; 3.9 ; 215 A SynPspA rod after incubation with ATP 2FMJ ; 1.65 ; 220-loop mutant of streptomyces griseus trypsin 1HCW ; ; 23-RESIDUE DESIGNED METAL-FREE PEPTIDE BASED ON THE ZINC FINGER DOMAINS, NMR, 35 STRUCTURES 8GOI ; 1.54 ; 23-residues Heterotetramic Antiparallel Coiled-Coil Derived From LacI 8GOJ ; 1.38 ; 23-residues Heterotetramic Antiparallel Coiled-Coil Derived From LacI 8AKT ; 4.4 ; 235 A SynPspA rod after incubation with ATP 1GZ0 ; 2.5 ; 23S RIBOSOMAL RNA G2251 2'O-METHYLTRANSFERASE RLMB 7QSH ; 0.86 ; 23S ribosomal RNA Sarcin Ricin Loop 27-nt fragment containing a Xanthosine residue at position 2648 1C2W ; 7.5 ; 23S RRNA STRUCTURE FITTED TO A CRYO-ELECTRON MICROSCOPIC MAP AT 7.5 ANGSTROMS RESOLUTION 7L3R ; 1.01 ; 23S Sarcin Ricin Loop with a 3-deazapurine A2670 1ZUV ; ; 24 NMR structures of AcAMP2-Like Peptide with Phenylalanine 18 mutated to Tryptophan 1RHT ; ; 24-MER RNA HAIRPIN COAT PROTEIN BINDING SITE FOR BACTERIOPHAGE R17 (NMR, MINIMIZED AVERAGE STRUCTURE) 8ORB ; 3.25 ; 24-meric catalytic domain of dihydrolipoamide acetyltransferase (E2) of the E. coli pyruvate dehydrogenase complex. 7Y3J ; 2.6 ; 24B3 antibody-peptide complex 8PYP ; 1.4 ; 25 micrometer HEWL crystals solved at room-temperature using fixed-target serial crystallography. 1T0W ; ; 25 NMR structures of Truncated Hevein of 32 aa (Hevein-32) complex with N,N,N-triacetylglucosamina 8AKU ; 4.5 ; 250 A SynPspA rod after incubation with ATP 1IGI ; 2.7 ; 26-10 FAB:DIGOXIN COMPLEX-AFFINITY AND SPECIFICITY DUE TO SURFACE COMPLEMENTARITY 1IGJ ; 2.5 ; 26-10 FAB:DIGOXIN COMPLEX-AFFINITY AND SPECIFICITY DUE TO SURFACE COMPLEMENTARITY 6YMC ; 2.0 ; 26-mer stem-loop RNA 5MPB ; 7.8 ; 26S proteasome in presence of AMP-PNP (s3) 5MP9 ; 4.1 ; 26S proteasome in presence of ATP (s1) 5MPD ; 4.1 ; 26S proteasome in presence of ATP (s1) 5MPA ; 4.5 ; 26S proteasome in presence of ATP (s2) 5MPE ; 4.5 ; 26S proteasome in presence of ATP (s2) 5MPC ; 7.7 ; 26S proteasome in presence of BeFx (s4) 7QO6 ; 6.3 ; 26S proteasome Rpt1-RK -Ubp6-UbVS complex in the s2 state 7QO5 ; 6.0 ; 26S proteasome Rpt1-RK -Ubp6-UbVS complex in the si state 7QO4 ; 7.0 ; 26S proteasome WT-Ubp6-UbVS complex in the si state (ATPases, Rpn1, Ubp6, and UbVS) 6FVT ; 4.1 ; 26S proteasome, s1 state 6FVU ; 4.5 ; 26S proteasome, s2 state 6FVV ; 5.4 ; 26S proteasome, s3 state 6FVW ; 4.5 ; 26S proteasome, s4 state 6FVX ; 4.9 ; 26S proteasome, s5 state 6FVY ; 6.1 ; 26S proteasome, s6 state 5MRX ; 0.851 ; 27-nt SRL with a 5-hydroxymethyl cytidine modification 8AKV ; 4.4 ; 270 A SynPspA rod after incubation with ATP 6KOU ; 2.43 ; 277 K cryoEM structure of Sso-KARI in complex with magnesium ions 6KPA ; 2.75 ; 277 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 4RGC ; 1.05 ; 277K Crystal structure of Escherichia Coli dihydrofolate reductase 8AKW ; 5.4 ; 280 A SynPspA rod after incubation with ATP 1OE7 ; 1.8 ; 28kDa glutathione S-transferase from Schistosoma haematobium 1OE8 ; 1.65 ; 28kDa glutathione S-transferase from Schistosoma haematobium (glutathione saturated) 8OIS ; 3.0 ; 28S human mitochondrial small ribosomal subunit with mtRF1 and P-site tRNA 8OIP ; 3.6 ; 28S mammalian mitochondrial small ribosomal subunit with mtRF1 and P-site tRNA 1D4R ; 2.0 ; 29-mer fragment of human srp rna helix 6 8AKY ; 4.7 ; 290 A SynPspA rod after incubation with ATP 5A93 ; 2.2 ; 293K Joint X-ray Neutron with Cefotaxime: EXPLORING THE MECHANISM OF BETA-LACTAM RING PROTONATION IN THE CLASS A BETA-LACTAMASE ACYLATION MECHANISM USING NEUTRON AND X-RAY CRYSTALLOGRAPHY 5A93 ; 1.598 ; 293K Joint X-ray Neutron with Cefotaxime: EXPLORING THE MECHANISM OF BETA-LACTAM RING PROTONATION IN THE CLASS A BETA-LACTAMASE ACYLATION MECHANISM USING NEUTRON AND X-RAY CRYSTALLOGRAPHY 6KPI ; 2.43 ; 298 K cryoEM structure of Sso-KARI in complex with Mg2+ 6KPJ ; 2.56 ; 298 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 1A0Q ; 2.3 ; 29G11 COMPLEXED WITH PHENYL [1-(1-N-SUCCINYLAMINO)PENTYL] PHOSPHONATE 7JOA ; 3.3 ; 2:1 cGAS-nucleosome complex 1CD9 ; 2.8 ; 2:2 COMPLEX OF G-CSF WITH ITS RECEPTOR 1PGR ; 3.5 ; 2:2 COMPLEX OF G-CSF WITH ITS RECEPTOR 1Z8R ; ; 2A cysteine proteinase from human coxsackievirus B4 (strain JVB / Benschoten / New York / 51) 2HRV ; 1.95 ; 2A CYSTEINE PROTEINASE FROM HUMAN RHINOVIRUS 2 3MUS ; 2.0 ; 2A Resolution Structure of Rat Type B Cytochrome b5 4HEI ; 1.6 ; 2A X-RAY STRUCTURE OF HPF from VIBRIO CHOLERAE 5T0Y ; 3.011 ; 2A10 Antibody FAB fragment 5SZF ; 2.52 ; 2A10 FAB fragment 2.54 Angstoms 6BGA ; 2.307 ; 2B4 I-Ek TCR-MHC complex with affinity-enhancing Velcro peptide 1JY8 ; 2.5 ; 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) 1W77 ; 2.0 ; 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) from Arabidopsis thaliana 1MWA ; 2.4 ; 2C/H-2KBM3/DEV8 ALLOGENEIC COMPLEX 6FLC ; 2.0 ; 2C8 Fab bound to EDIII of DenV 2 8B0H ; 3.3 ; 2C9, C5b9-CD59 cryoEM structure 8B0G ; 3.3 ; 2C9, C5b9-CD59 structure 7UTG ; 1.25 ; 2D9 nanobody to BCL11A-exZF23 fragment 2DZI ; ; 2DZI/Solution Structure of the N-terminal Ubiquitin-like Domain in Human Ubiquitin-like Protein 4A (GDX) 2DZJ ; ; 2DZJ/Solution Structure of the N-terminal Ubiquitin-like Domain in Human Synaptic Glycoprotein SC2 12E8 ; 1.9 ; 2E8 FAB FRAGMENT 3LEX ; 1.97 ; 2F5 Epitope scaffold elicited anti-HIV-1 monoclonal antibody 11F10 in complex with HIV-1 GP41 3LEY ; 1.99 ; 2F5 Epitope scaffold elicited anti-HIV-1 monoclonal antibody 6a7 in complex with HIV-1 GP41 3LES ; 2.77 ; 2F5 Epitope scaffold ES2 1DOI ; 1.9 ; 2FE-2S FERREDOXIN FROM HALOARCULA MARISMORTUI 1OFF ; 1.8 ; 2Fe-2S Ferredoxin from Synechocystis sp. PCC 6803 8E6K ; 3.1 ; 2H08 Fab in complex with influenza virus neuraminidase from A/Brevig Mission/1/1918 (H1N1) 4KVC ; 2.306 ; 2H2 Fab fragment of immature Dengue virus 3T5W ; 1.8 ; 2ME modified human SOD1 2F9S ; 1.401 ; 2nd Crystal Structure Of A Soluble Domain Of ResA In The Oxidised Form 2BYG ; 1.85 ; 2nd PDZ Domain of Discs Large Homologue 2 3MLG ; 2.29 ; 2ouf-2x, a designed knotted protein 3MLI ; 2.9 ; 2ouf-ds, a disulfide-linked dimer of Helicobacter pylori protein HP0242 7CRK ; 1.85 ; 2ps Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 2QB1 ; 2.61 ; 2TEL crystallization module 7JKB ; 2.55 ; 2xVH Fab 6RO3 ; 1.03 ; 2Yr-X: Lysozyme with Re Cluster 2 year on shelf 2FDN ; 0.94 ; 2[4FE-4S] FERREDOXIN FROM CLOSTRIDIUM ACIDI-URICI 8AEY ; 3.05 ; 3 A CRYO-EM STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS FERRITIN FROM TIMEPIX3 detector 8GXX ; 3.0 ; 3 nucleotide-bound V1EG of V/A-ATPase from Thermus thermophilus. 1MFJ ; ; 3' Stem-Loop from Human U4 SNRNA 4YAZ ; 2.0 ; 3',3'-cGAMP riboswitch bound with 3',3'-cGAMP 4YB0 ; 2.121 ; 3',3'-cGAMP riboswitch bound with c-di-GMP 2JC4 ; 1.9 ; 3'-5' exonuclease (NExo) from Neisseria Meningitidis 7LNF ; 1.652 ; 3'-deoxy modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 398D ; 1.94 ; 3'-DNA-RNA-5' JUNCTION FORMED DURING INITIATION OF MINUS-STRAND SYNTHESIS OF HIV REPLICATION 1ZBH ; 3.0 ; 3'-end specific recognition of histone mRNA stem-loop by 3'-exonuclease 3Q61 ; 1.56 ; 3'-Fluoro Hexitol Nucleic Acid DNA Structure 1B99 ; 2.7 ; 3'-FLUORO-URIDINE DIPHOSPHATE BINDING TO NUCLEOSIDE DIPHOSPHATE KINASE 1BUX ; 2.8 ; 3'-PHOSPHORYLATED NUCLEOTIDES BINDING TO NUCLEOSIDE DIPHOSPHATE KINASE 2J14 ; 2.8 ; 3,4,5-Trisubstituted Isoxazoles as Novel PPARdelta Agonists: Part2 3H0E ; 1.997 ; 3,4-Dihydropyrimido(1,2-a)indol-10(2H)-ones as Potent Non-Peptidic Inhibitors of Caspase-3 1PVW ; 2.45 ; 3,4-dihydroxy-2-butanone 4-phosphate synthase from M. jannaschii 1PVY ; 1.7 ; 3,4-dihydroxy-2-butanone 4-phosphate synthase from M. jannaschii in complex with ribulose 5-phosphate 1SNN ; 1.55 ; 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii 1B6Y ; ; 3,N4-ETHENO-2'-DEOXYCYTIDINE OPPOSITE ADENINE IN AN 11-MER DUPLEX, SOLUTION STRUCTURE FROM NMR AND MOLECULAR DYNAMICS, 2 STRUCTURES 1B60 ; ; 3,N4-ETHENO-2'-DEOXYCYTIDINE OPPOSITE CYTIDINE IN AN 11-MER DUPLEX, SOLUTION STRUCTURE FROM NMR AND MOLECULAR DYNAMICS 1B6X ; ; 3,N4-ETHENO-2'-DEOXYCYTIDINE OPPOSITE GUANINE IN AN 11-MER DUPLEX, SOLUTION STRUCTURE FROM NMR AND MOLECULAR DYNAMICS, 4 STRUCTURES 1B5K ; ; 3,N4-ETHENO-2'-DEOXYCYTIDINE OPPOSITE THYMIDINE IN AN 11-MER DUPLEX, SOLUTION STRUCTURE FROM NMR AND MOLECULAR DYNAMICS 2BYH ; 1.9 ; 3-(5-chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as Inhibitors of the Hsp90 Molecular Chaperone 2BYI ; 1.6 ; 3-(5-chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as Inhibitors of the Hsp90 Molecular Chaperone 4MK2 ; 1.85 ; 3-(5-hydroxy-6-oxo-1,6-dihydropyridin-3-yl)benzonitrile bound to influenza 2009 pH1N1 endonuclease 6UOE ; 1.8 ; 3-25 Fab germline-reversion variant bound to an HCMV gB-derived peptide 1LWI ; 2.7 ; 3-ALPHA-HYDROXYSTEROID/DIHYDRODIOL DEHYDROGENASE FROM RATTUS NORVEGICUS 3L1S ; 2.9 ; 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3 2FEL ; 2.2 ; 3-carboxy-cis,cis-muconate lactonizing enzyme from Agrobacterium radiobacter S2 2FEN ; 2.6 ; 3-carboxy-cis,cis-muconate lactonizing enzyme from Agrobacterium radiobacter S2 1SYM ; ; 3-D SOLUTION STRUCTURE OF REDUCED APO-S100B FROM RAT, NMR, 20 STRUCTURES 1DZA ; 1.65 ; 3-D structure of a HP-RNase 1GM6 ; 2.13 ; 3-D STRUCTURE OF A SALIVARY LIPOCALIN FROM BOAR 2DFS ; 24.0 ; 3-D structure of Myosin-V inhibited state 2WYR ; 2.245 ; 3-D structure of PhTET1-12s, dodecamer in the asymmetric unit 3HYX ; 2.9 ; 3-D X-Ray structure of the sulfide:quinone oxidoreductase from Aquifex aeolicus in complex with Aurachin C 3HYV ; 2.3 ; 3-D X-Ray structure of the sulfide:quinone oxidoreductase from the hyperthermophilic bacterium Aquifex aeolicus 3HYW ; 2.0 ; 3-D X-Ray structure of the sulfide:quinone oxidoreductase of the hyperthermophilic bacterium Aquifex aeolicus in complex with decylubiquinone 2DHQ ; 2.0 ; 3-DEHYDROQUINATE DEHYDRATASE FROM MYCOBACTERIUM TUBERCULOSIS 1H0S ; 1.7 ; 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with 3-hydroxyimino-quinic acid 1H05 ; 1.5 ; 3-DEHYDROQUINATE DEHYDRATASE FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH SULPHATE 3QBD ; 2.47 ; 3-Dehydroquinate Synthase (aroB) from Mycobacterium tuberculosis in complex with NAD 5EX4 ; 2.25 ; 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis complexed with tryptophan in all three allosteric binding sites 5E2L ; 2.5 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis in complex with D-phenylalanine 5E7Z ; 2.4 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis in complex with D/L-tryptophan and D-phenylalanine 5E40 ; 2.05 ; 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis with D-tyrosine bound in the phenylalanine binding site 5E4N ; 2.05 ; 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis with D-tyrosine bound in the tyrosine and phenylalanine binding sites 2YPP ; 2.3 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase in complex with 3 tyrosine molecules 5E5G ; 1.95 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with D-tryptophan bound in the tryptophan and phenylalanine binding sites 2YPO ; 2.0 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with phenylalanine bound in only one site 2YPQ ; 2.76 ; 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with tryptophan and tyrosine bound 3JTJ ; 2.18 ; 3-deoxy-manno-octulosonate cytidylyltransferase from Yersinia pestis 1Q9H ; 2.35 ; 3-Dimensional structure of native Cel7A from Talaromyces emersonii 6ZOB ; 2.8 ; 3-Formylrifamycin SV binding to the access pocket of AcrB L protomer 6ZO7 ; 2.85 ; 3-Formylrifamycin SV binding to the access pocket of AcrB-G619P L and T protomer 6ZOH ; 2.8 ; 3-Formylrifamycin SV binding to the access pocket of AcrB-G619P_G621P L and T protomers 3UDL ; 2.174 ; 3-heterocyclyl quinolone bound to HCV NS5B 4I6Y ; 1.45 ; 3-hydroxy-3-methyl (HMG) Coenzyme A Reductase bound to R-Mevalonate 4I6A ; 1.85 ; 3-hydroxy-3-methylglutaryl (HMG) Coenzyme A reductase from Pseudomonas mevalonii complexed with HMG-CoA 4I6W ; 1.66 ; 3-hydroxy-3-methylglutaryl (HMG) Coenzyme-A reductase complexed with thiomevalonate 4I64 ; 1.75 ; 3-hydroxy-3-methylglutaryl Coenzyme A reductase from Pseudomonas mevalonii, a high resolution native structure 3QAU ; 2.3 ; 3-Hydroxy-3-MethylGlutaryl-Coenzyme A Reductase from Streptococcus pneumoniae 3QAE ; 2.3 ; 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Streptococcus pneumoniae 6NEM ; 1.95 ; 3-hydroxy-5-[(naphthalen-1-yl)methyl]-6-[4-(1H-tetrazol-5-yl)phenyl]pyridin-2(1H)-one bound to influenza 2009 pH1N1 endonuclease 4M5O ; 2.0 ; 3-HYDROXY-6-PHENYL-1,2-DIHYDROPYRIDIN-2-ONE bound to influenza 2009 H1N1 endonuclease 5HYM ; 2.3 ; 3-Hydroxybenzoate 6-hydroxylase from Rhodococcus jostii in complex with phosphatidylinositol 1CNZ ; 1.76 ; 3-ISOPROPYLMALATE DEHYDROGENASE (IPMDH) FROM SALMONELLA TYPHIMURIUM 1WAL ; 2.27 ; 3-ISOPROPYLMALATE DEHYDROGENASE (IPMDH) MUTANT (M219A)FROM THERMUS THERMOPHILUS 1CM7 ; 2.06 ; 3-ISOPROPYLMALATE DEHYDROGENASE FROM ESCHERICHIA COLI 3VMK ; 1.48 ; 3-isopropylmalate dehydrogenase from Shewanella benthica DB21 MT-2 3VMJ ; 1.56 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 3WZV ; 1.9 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 0.1MPa - complex with IPM and Mg 3VL2 ; 2.06 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 160 MPa 3VL3 ; 1.8 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 340 MPa 3VL4 ; 1.88 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 410 MPa 3VL6 ; 2.07 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 580 MPa 3WZW ; 1.8 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 580MPa - complex with IPM and Mg 3VL7 ; 2.2 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 650 MPa 3VKZ ; 1.84 ; 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at atmospheric pressure 2AYQ ; 3.0 ; 3-ISOPROPYLMALATE DEHYDROGENASE FROM THE MODERATE FACULTATIVE THERMOPHILE, BACILLUS COAGULANS 1IDM ; 2.2 ; 3-ISOPROPYLMALATE DEHYDROGENASE, LOOP-DELETED CHIMERA 1XAA ; 2.1 ; 3-ISOPROPYLMALATE DEHYDROGENASE, LOW TEMPERATURE (100K) STRUCTURE 1XAB ; 2.1 ; 3-ISOPROPYLMALATE DEHYDROGENASE, LOW TEMPERATURE (150K) STRUCTURE 7VTR ; 1.93 ; 3-ketoacyl-CoA thiolase Tfu_0875 1OKG ; 2.1 ; 3-mercaptopyruvate sulfurtransferase from Leishmania major 1MPG ; 1.8 ; 3-METHYLADENINE DNA GLYCOSYLASE II FROM ESCHERICHIA COLI 2JHJ ; 1.9 ; 3-methyladenine dna-glycosylase from Archaeoglobus fulgidus 2JHN ; 1.8 ; 3-methyladenine dna-glycosylase from Archaeoglobus fulgidus 1PVS ; 2.4 ; 3-methyladenine Glcosylase II(AlkA) Hypoxanthine complex 2RBQ ; 1.633 ; 3-methylbenzylazide in complex with T4 L99A/M102Q 2RB2 ; 1.463 ; 3-methylbenzylazide in complex with T4 lysozyme L99A 8F41 ; 3.9 ; 3-methylcrotonyl-CoA carboxylase in filament, alpha-subunit centered 8F3D ; 3.4 ; 3-methylcrotonyl-CoA carboxylase in filament, beta-subunit centered 6X9M ; 1.0 ; 3-O-methyl-glucose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 1ISK ; ; 3-OXO-DELTA5-STEROID ISOMERASE, NMR, 20 STRUCTURES 7SUB ; 1.78 ; 3-oxoacyl-ACP reductase FabG 2A4K ; 2.301 ; 3-Oxoacyl-[acyl carrier protein] reductase from Thermus thermophilus TT0137 4DML ; 2.5 ; 3-oxoacyl-[acyl-carrier-protein] reductase from Synechococcus elongatus PCC 7942 4DMM ; 2.38 ; 3-oxoacyl-[acyl-carrier-protein] reductase from Synechococcus elongatus PCC 7942 in complex with NADP 1QPG ; 2.4 ; 3-PHOSPHOGLYCERATE KINASE, MUTATION R65Q 5G55 ; 2.45 ; 3-Quinoline Carboxamides inhibitors of Pi3K 5AHS ; 2.3 ; 3-Sulfinopropionyl-Coenzyme A (3SP-CoA) desulfinase from Advenella mimgardefordensis DPN7T: holo crystal structure with the substrate analog succinyl-CoA 5AF7 ; 1.89 ; 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7T: crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold. Native crystal structure 3QGA ; 3.0 ; 3.0 A Model of Iron Containing Urease UreA2B2 from Helicobacter mustelae 3QGK ; 3.0 ; 3.0 A Model of Iron Containing Urease UreA2B2 from Helicobacter mustelae (refined w/ no ordered solvent) 2X0S ; 2.997 ; 3.0 A RESOLUTION CRYSTAL STRUCTURE OF GLYCOSOMAL PYRUVATE PHOSPHATE DIKINASE FROM TRYPANOSOMA BRUCEI 7P30 ; 3.0 ; 3.0 A resolution structure of a DNA-loaded MCM double hexamer 364D ; 3.0 ; 3.0 A STRUCTURE OF FRAGMENT I FROM E. COLI 5S RRNA 3RED ; 3.03 ; 3.0 A structure of the Prunus mume hydroxynitrile lyase isozyme-1 2H1N ; 3.0 ; 3.0 A X-ray structure of putative oligoendopeptidase F: crystals grown by vapor diffusion technique 5HVN ; 3.0 ; 3.0 Angstrom Crystal Structure of 3-dehydroquinate Synthase (AroB) from Francisella tularensis in Complex with NAD. 2F9J ; 3.0 ; 3.0 angstrom resolution structure of a Y22M mutant of the spliceosomal protein p14 bound to a region of SF3b155 4MLK ; 3.051 ; 3.05A resolution structure of CT584 from Chlamydia trachomatis 6FQM ; 3.06 ; 3.06A COMPLEX OF S.AUREUS GYRASE with imidazopyrazinone T1 AND DNA 5V57 ; 3.0 ; 3.0A SYN structure of the multi-domain human smoothened receptor in complex with TC114 4Q0C ; 3.1 ; 3.1 A resolution crystal structure of the B. pertussis BvgS periplasmic domain 2H1J ; 3.1 ; 3.1 A X-ray structure of putative Oligoendopeptidase F: Crystals grown by microfluidic seeding 7XR2 ; 3.1 ; 3.1 Angstrom cryoEM icosahedral reconstruction of mud crab reovirus 3IZX ; 3.1 ; 3.1 Angstrom cryoEM structure of cytoplasmic polyhedrosis virus 1XQJ ; 3.1 ; 3.10 A Crystal structure of maspin, space group I 4 2 2 1XQG ; 3.1 ; 3.10 A crystal structure of maspin, Space group P 4 21 2 6VJ2 ; 3.1 ; 3.10 Angstrom Resolution Crystal Structure of Foldase Protein (PrsA) from Lactococcus lactis 6FQS ; 3.11 ; 3.11A complex of S.Aureus gyrase with imidazopyrazinone T3 and DNA 7ZXY ; 3.15 ; 3.15 Angstrom cryo-EM structure of the dimeric cytochrome b6f complex from Synechocystis sp. PCC 6803 with natively bound plastoquinone and lipid molecules. 5CDO ; 3.15 ; 3.15A structure of QPT-1 with S.aureus DNA gyrase and DNA 5U9G ; 3.2 ; 3.2 A cryo-EM ArfA-RF2 ribosome rescue complex (Structure I) 5U9F ; 3.2 ; 3.2 A cryo-EM ArfA-RF2 ribosome rescue complex (Structure II) 7Y1B ; 3.23 ; 3.2 angstrom cryo-EM structure of extracellular region of mouse Basigin-2 in complex with the Fab fragment of antibody 6E7F1 5WKT ; 3.2 ; 3.2-Angstrom In situ Mylar structure of bovine opsin at 100 K 6CLB ; 3.2 ; 3.20 A MicroED structure of proteinase K at 7.8 e- / A^2 7VDC ; 3.28 ; 3.28 A structure of the rabbit muscle aldolase 6B3J ; 3.3 ; 3.3 angstrom phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex 5ZX5 ; 3.28 ; 3.3 angstrom structure of mouse TRPM7 with EDTA 6KE6 ; 3.4 ; 3.4 angstrom cryo-EM structure of yeast 90S small subunit preribosome 7XR3 ; 3.7 ; 3.4 Angstrom cryoEM D5 reconstruction of mud crab reovirus 6QX2 ; 3.4 ; 3.4A structure of benzoisoxazole 3 with S.aureus DNA gyrase and DNA 6ZS5 ; 3.5 ; 3.5 A cryo-EM structure of human uromodulin filament core 357D ; 3.5 ; 3.5 A structure of fragment I from E. coli 5S RRNA 5T3Z ; 3.5 ; 3.5 Angstrom Crystal Structure of a Fully and Natively Glycosylated BG505 SOSIP.664 HIV-1 Env Trimer in Complex with the Broadly Neutralizing Antibodies IOMA and 10-1074 5X41 ; 3.47 ; 3.5A resolution structure of a cobalt energy-coupling factor transporter using LCP method-CbiMQO 7VDE ; 3.6 ; 3.6 A structure of the human hemoglobin 6RQF ; 3.58 ; 3.6 Angstrom cryo-EM structure of the dimeric cytochrome b6f complex from Spinacia oleracea with natively bound thylakoid lipids and plastoquinone molecules 3J6J ; 3.64 ; 3.6 Angstrom resolution MAVS filament generated from helical reconstruction 4MBR ; 3.65 ; 3.65 Angstrom Crystal Structure of Serine-rich Repeat Protein (Srr2) from Streptococcus agalactiae 6PXK ; 3.647 ; 3.65 Angstroms resolution structure of HslU with an axial-channel plug 6M0S ; 3.6 ; 3.6A Yeast Vo state3 prime 6BWI ; 3.7 ; 3.7 angstrom cryoEM structure of full length human TRPM4 6BWD ; 3.7 ; 3.7 angstrom cryoEM structure of truncated mouse TRPM7 6PXL ; 3.741 ; 3.74 Angstroms resolution structure of HlsU with an axial-channel plug 3CNF ; 3.88 ; 3.88 Angstrom structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy 5T3X ; 3.9 ; 3.9 Angstrom Crystal Structure of a Fully and Natively Glycosylated BG505 SOSIP.664 HIV-1 Env Trimer in Complex with the Broadly Neutralizing Antibodies IOMA and 10-1074. 3V0B ; 3.9 ; 3.9 angstrom crystal structure of BoNT/Ai in complex with NTNHA 6CXC ; 3.9 ; 3.9A Cryo-EM structure of murine antibody bound at a novel epitope of respiratory syncytial virus fusion protein 1ZWU ; ; 30 NMR structures of AcAMP2-like peptide with non natural beta-(2-naphthyl)-alanine residue. 1L5I ; ; 30-CONFORMER NMR ENSEMBLE OF THE N-TERMINAL, DNA-BINDING DOMAIN OF THE REPLICATION INITIATION PROTEIN FROM A GEMINIVIRUS (TOMATO YELLOW LEAF CURL VIRUS-SARDINIA) 8AKX ; 6.6 ; 305 A SynPspA rod after incubation with ATP 6KPK ; 2.3 ; 309 K cryoEM structure of Sso-KARI in complex with Mg2+ 6KQJ ; 2.54 ; 309 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 3NQ4 ; 3.5 ; 30mer structure of Lumazine synthase from Salmonella typhimurium LT2 6O7K ; 4.2 ; 30S initiation complex 4IYL ; 2.36 ; 30S ribosomal protein S15 from Campylobacter jejuni 8AA8 ; 1.71 ; 30S ribosomal protein S24e from Thermococcus barophilus 8A8S ; 1.659 ; 30S ribosomal protein S24e from Thermococcus kodakarensis 7OE1 ; 3.05 ; 30S ribosomal subunit from E. coli 2YKR ; 9.8 ; 30S ribosomal subunit with RsgA bound in the presence of GMPPNP 4YY3 ; 3.6 ; 30S ribosomal subunit- HigB complex 2F4V ; 3.8 ; 30S ribosome + designer antibiotic 6WUA ; 3.2 ; 30S subunit (head) of 70S Ribosome Enterococcus faecalis MultiBody refinement 6WUB ; 3.2 ; 30S subunit (head) of 70S Ribosome Enterococcus faecalis MultiBody refinement 6W6K ; 3.6 ; 30S-Activated-high-Mg2+ 6W77 ; 3.6 ; 30S-Inactivated-high-Mg2+ Class A 6W7M ; 3.8 ; 30S-Inactive-high-Mg2+ + carbon layer 6W7N ; 3.4 ; 30S-Inactive-low-Mg2+ Class A 6W7W ; 3.9 ; 30S-Inactive-low-Mg2+ Class B 8EYT ; 2.8 ; 30S_delta_ksgA+KsgA complex 8EYQ ; 3.3 ; 30S_delta_ksgA_h44_inactive_conformation 4RBQ ; 1.05 ; 32 base pair oligo(U) RNA 5AY6 ; 1.839 ; 32 kDa Fragment of the Flagellar hook protein FlgE from Caulobacter crescentus 8AKZ ; 6.9 ; 320 A SynPspA rod after incubation with ATP 1U86 ; ; 321-TW-322 insertion mutant of the third zinc finger of BKLF 6KQ4 ; 2.3 ; 323 K cryoEM structure of Sso-KARI in complex with Mg2+ 6KQK ; 2.17 ; 323 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 6KQ8 ; 3.0 ; 328 K cryoEM structure of Sso-KARI in complex with Mg2+ 6KQO ; 2.52 ; 328 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 8T8P ; 3.4 ; 33-mer FliF MS-ring from Salmonella 6L9Z ; 2.5 ; 338 bp di-nucleosome assembled with linker histone H1.X 6SCN ; 3.1 ; 33mer structure of the Salmonella flagella MS-ring protein FliF 7D84 ; 3.7 ; 34-fold symmetry Salmonella S ring formed by full-length FliF 6LA2 ; 3.89 ; 343 bp di-nucleosome harboring cohesive DNA termini assembled with linker histone H1.0 6KPE ; 2.83 ; 343 K cryoEM structure of Sso-KARI in complex with Mg2+ 6KPH ; 2.41 ; 343 K cryoEM structure of Sso-KARI in complex with Mg2+, NADH and CPD 6LA8 ; 3.4 ; 349 bp di-nucleosome harboring cohesive DNA termini assembled with linker histone H1.0 6LA9 ; 3.7 ; 349 bp di-nucleosome harboring cohesive DNA termini assembled with linker histone H1.0 (high cryoprotectant) 6SD3 ; 3.3 ; 34mer structure of the Salmonella flagella MS-ring protein FliF 3I77 ; 2.1 ; 35/99/170-loops of FXa in SGT 3I78 ; 3.0 ; 35/99/170/186/220-loops of FXa in SGT 7COW ; 2.86 ; 353 bp di-nucleosome harboring cohesive DNA termini with linker histone H1.0 6M3V ; 4.6 ; 355 bp di-nucleosome harboring cohesive DNA termini 6M44 ; 3.81 ; 355 bp di-nucleosome harboring cohesive DNA termini (high cryoprotectant) 8AL0 ; 6.9 ; 365 A SynPspA rod after incubation with ATP 6ATT ; 3.77 ; 39S Fab bound to HER2 ecd 8OIT ; 2.9 ; 39S human mitochondrial large ribosomal subunit with mtRF1 and P-site tRNA 4CE4 ; 4.9 ; 39S large subunit of the porcine mitochondrial ribosome 8OIQ ; 3.5 ; 39S mammalian mitochondrial large ribosomal subunit with mtRF1 and P-site tRNA 7NSH ; 3.2 ; 39S mammalian mitochondrial large ribosomal subunit with mtRRF (post) and mtEFG2 1FG9 ; 2.9 ; 3:1 COMPLEX OF INTERFERON-GAMMA RECEPTOR WITH INTERFERON-GAMMA DIMER 3T5Q ; 3.0 ; 3A structure of Lassa virus nucleoprotein in complex with ssRNA 1N0Q ; 1.26 ; 3ANK: A designed ankyrin repeat protein with three identical consensus repeats 2WNX ; 1.31 ; 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum 2WO4 ; 1.85 ; 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum, in-house data 2WOB ; 2.0 ; 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum. Orthorhombic structure 5CBA ; 2.5 ; 3B4 in complex with CXCL13 - 3B4-CXCL13 2BHG ; 1.9 ; 3C protease from type A10(61) foot-and-mouth disease virus 2J92 ; 2.2 ; 3C PROTEASE FROM TYPE A10(61) FOOT-AND-MOUTH DISEASE VIRUS - Crystal packing mutant (K51Q) 3ZV9 ; 2.05 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 74 3ZVA ; 2.2 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 75 3ZVB ; 2.65 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 81 3ZVC ; 2.0 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 82 3ZVD ; 2.25 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 83 3ZVE ; 1.8 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 84 3ZVF ; 2.5 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 85 3ZVG ; 2.1 ; 3C protease of Enterovirus 68 complexed with Michael receptor inhibitor 98 6T1Q ; 1.3 ; 3C-like protease from Southampton norovirus. 6T2X ; 1.54 ; 3C-like protease from Southampton virus complexed with FMOPL000004a. 6T4S ; 2.02 ; 3C-like protease from Southampton virus complexed with FMOPL000013a. 6T5D ; 1.42 ; 3C-like protease from Southampton virus complexed with FMOPL000014a. 6T5R ; 1.78 ; 3C-like protease from Southampton virus complexed with FMOPL000091a. 6T2I ; 1.61 ; 3C-like protease from Southampton virus complexed with FMOPL000157a. 6TAL ; 1.51 ; 3C-like protease from Southampton virus complexed with FMOPL000227a. 6TC1 ; 1.67 ; 3C-like protease from Southampton virus complexed with FMOPL000283a. 6T3G ; 1.63 ; 3C-like protease from Southampton virus complexed with FMOPL000324a. 6TBO ; 2.07 ; 3C-like protease from Southampton virus complexed with FMOPL000363a. 6TAW ; 1.41 ; 3C-like protease from Southampton virus complexed with FMOPL000411a. 6TBP ; 1.56 ; 3C-like protease from Southampton virus complexed with FMOPL000490a. 6T82 ; 1.46 ; 3C-like protease from Southampton virus complexed with FMOPL000542a. 6T49 ; 1.56 ; 3C-like protease from Southampton virus complexed with FMOPL000582a. 6T8T ; 1.68 ; 3C-like protease from Southampton virus complexed with FMOPL000603a. 6T8R ; 1.88 ; 3C-like protease from Southampton virus complexed with FMOPL000605a. 6TGL ; 1.99 ; 3c-like protease from Southampton virus complexed with FMOPL000644a. 6T71 ; 1.52 ; 3C-like protease from Southampton virus complexed with XST00000375b. 6TCF ; 1.79 ; 3C-like protease from Southampton virus complexed with XST00000642b. 6T6W ; 1.8 ; 3C-like protease from Southampton virus complexed with XST00000692b. 6XP6 ; 2.4 ; 3C11-DQ2-glia-a2 complex 5TV4 ; 4.2 ; 3D cryo-EM reconstruction of nucleotide-free MsbA in lipid nanodisc 5GTA ; 2.998 ; 3D Crystal Structure of LsrB Bound to Furanosyl diester (R)-THMF, from Salmonella typhi 4M64 ; 3.35 ; 3D crystal structure of Na+/melibiose symporter of Salmonella typhimurium 6LES ; 2.004 ; 3D domain-swapped dimer of the maltose-binding protein fused to a fragment of the focal adhesion kinase 6LF3 ; 3.2 ; 3D domain-swapped dimer of the maltose-binding protein fused to a fragment of the protein-tyrosine kinase 2-beta 1TIJ ; 3.03 ; 3D Domain-swapped human cystatin C with amyloid-like intermolecular beta-sheets 6ZHB ; 3.25 ; 3D electron diffraction structure of bovine insulin 8CPC ; 2.91 ; 3D electron diffraction structure of Hen Egg-White Lysozyme from nano-crystals obtained by high pressure freezing and cryo-sectioning 6ZHN ; 2.76 ; 3D electron diffraction structure of thaumatin from Thaumatococcus daniellii 6ZHJ ; 3.26 ; 3D electron diffraction structure of thermolysin from Bacillus thermoproteolyticus 4D0A ; 6.0 ; 3D EM map of the sodium proton antiporter MjNhaP1 from Methanocaldococcus jannaschii 7X7N ; 4.47 ; 3D model of the 3-RBD up single trimeric spike protein of SARS-CoV2 in the presence of synthetic peptide SIH-5. 6R9Z ; ; 3D NMR solution structure of ligand peptide (Ac)EVNPPVP of Pro-Pro endopeptidase-1 2NAQ ; ; 3D NMR solution structure of NLRP3 PYD 2M9R ; ; 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol epsilon-viniferin glucoside 2M9S ; ; 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol epsilon-viniferin glucoside 2RMI ; ; 3D NMR structure of astressin 2K1M ; ; 3D NMR structure of domain cC0 of cardiac myosin binding protein C (MyBPC) 2JND ; ; 3D NMR structure of ECD1 of mCRF-R2b in complex with Astressin 2MOL ; ; 3D NMR structure of the cytoplasmic rhodanese domain of the full-length inner membrane protein YgaP from Escherichia coli 2MOI ; ; 3D NMR structure of the cytoplasmic rhodanese domain of the inner membrane protein YgaP from Escherichia coli 1U34 ; ; 3D NMR structure of the first extracellular domain of CRFR-2beta, a type B1 G-protein coupled receptor 2MPN ; ; 3D NMR structure of the transmembrane domain of the full-length inner membrane protein YgaP from Escherichia coli 7ZHS ; 6.9 ; 3D reconstruction of the cylindrical assembly of DnaJA2 delta G/F by imposing D5 symmetry 1J47 ; ; 3D Solution NMR Structure of the M9I Mutant of the HMG-Box Domain of the Human Male Sex Determining Factor SRY Complexed to DNA 1J46 ; ; 3D Solution NMR Structure of the Wild Type HMG-BOX Domain of the Human Male Sex Determining Factor Sry Complexed to DNA 2LG4 ; ; 3D solution structure of antimicrobial peptide aurelin 2L37 ; ; 3D solution structure of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrical) 2M6N ; ; 3D solution structure of EMI1 (Early Mitotic Inhibitor 1) 1AWZ ; ; 3D SOLUTION STRUCTURE OF HUMAN ANGIOGENIN DETERMINED BY 1H, 15N NMR SPECTROSCOPY, 30 STRUCTURES 2LJ7 ; ; 3D solution structure of plant defensin Lc-def 2CXJ ; ; 3D Solution Structure of S100A13 1XJ1 ; ; 3D solution structure of the C-terminal cysteine-rich domain of the VHv1.1 polydnaviral gene product 1X3Q ; ; 3D Solution Structure of the Chromo-2 Domain of cpSRP43 2HUG ; ; 3D Solution Structure of the Chromo-2 Domain of cpSRP43 complexed with cpSRP54 peptide 1X3P ; ; 3D solution structure of the Chromo-3 domain of cpSRP43 1YL8 ; ; 3D Solution Structure of [Tyr3]Octreotate derivatives in DMSO 1YL9 ; ; 3D Solution Structure of [Tyr3]Octreotate derivatives in DMSO 2JTC ; ; 3D structure and backbone dynamics of SPE B 2MTY ; ; 3D structure determination of STARP peptides implicated in P. falciparum Invasion of hepatic cells 2MU6 ; ; 3D structure determination of STARP peptides implicated in P. falciparum Invasion of hepatic cells 3JCR ; 7.0 ; 3D structure determination of the human*U4/U6.U5* tri-snRNP complex 3ZSE ; 1.78 ; 3D Structure of a thermophilic family GH11 xylanase from Thermobifida fusca 2F9M ; 1.95 ; 3D structure of active human Rab11b GTPase 2BEG ; ; 3D Structure of Alzheimer's Abeta(1-42) fibrils 2E8D ; ; 3D Structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR 2M0J ; ; 3D Structure of Calmodulin and Calmodulin binding domain of Olfactory cyclic nucleotide-gated ion channel complex 2M0K ; ; 3D Structure of Calmodulin and Calmodulin Binding Domain of Rat Olfactory Cyclic Nucleotide-Gated Ion Channel 2M02 ; ; 3D structure of cap-gly domain of mammalian dynactin determined by magic angle spinning NMR spectroscopy 1W6L ; 2.0 ; 3D structure of CotA incubated with CuCl2 1W8E ; 2.2 ; 3D structure of CotA incubated with hydrogen peroxide 1W6W ; 2.2 ; 3D structure of CotA incubated with sodium azide 2N9A ; ; 3D Structure of Decoralin-NH2 by Solution NMR 4ACK ; 2.15 ; 3D Structure of DotU from Francisella novicida 4ACL ; 2.49 ; 3D Structure of DotU from Francisella novicida 4AJ3 ; 1.9 ; 3D structure of E. coli Isocitrate Dehydrogenase in complex with Isocitrate, calcium(II) and NADP - The pseudo-Michaelis complex 4AJA ; 1.799 ; 3D structure of E. coli Isocitrate Dehydrogenase in complex with Isocitrate, calcium(II) and thioNADP 4AJC ; 2.3 ; 3D structure of E. coli Isocitrate Dehydrogenase K100M mutant in complex with alpha-ketoglutarate, calcium(II) and adenine nucleotide phosphate 4AJR ; 2.687 ; 3D structure of E. coli Isocitrate Dehydrogenase K100M mutant in complex with alpha-ketoglutarate, magnesium(II) and NADPH - The product complex 4BNP ; 2.0 ; 3D structure of E. coli Isocitrate Dehydrogenase K100M mutant in complex with isocitrate and magnesium(II) 4AJB ; 1.9 ; 3D structure of E. coli Isocitrate Dehydrogenase K100M mutant in complex with Isocitrate, magnesium(II) and thioNADP 4AJS ; 1.802 ; 3D structure of E. coli Isocitrate Dehydrogenase K100M mutant in complex with isocitrate, magnesium(II), Adenosine 2',5'-biphosphate and ribosylnicotinamide-5'-phosphate 3R0G ; 2.2 ; 3D Structure of Ferric Methanosarcina Acetivorans Protoglobin I149F mutant in Aquomet form 3QZX ; 1.3 ; 3D Structure of ferric methanosarcina acetivorans protoglobin Y61A mutant with unknown ligand 3QZZ ; 2.4 ; 3D Structure of Ferric Methanosarcina Acetivorans Protoglobin Y61W mutant in Aquomet form 4CFI ; 1.3 ; 3D structure of FliC from Burkholderia pseudomallei 4OIF ; 2.448 ; 3D structure of Gan42B, a GH42 beta-galactosidase from G. 4V1W ; 4.7 ; 3D structure of horse spleen apoferritin determined by electron cryomicroscopy 6RJH ; 2.1 ; 3D structure of horse spleen apoferritin determined using multifunctional graphene supports for electron cryomicroscopy 2F9L ; 1.55 ; 3D structure of inactive human Rab11b GTPase 1KCP ; ; 3D STRUCTURE OF K-CONOTOXIN PVIIA, A NOVEL POTASSIUM CHANNEL-BLOCKING TOXIN FROM CONE SNAILS, NMR, 22 STRUCTURES 2JFB ; 2.5 ; 3D Structure of Lumazine Synthase from Candida albicans 2RQS ; ; 3D structure of Pin from the psychrophilic archeon Cenarcheaum symbiosum (CsPin) 2MQA ; ; 3D structure of RP domain of MiSp 3RX9 ; 1.35 ; 3D structure of SciN from an Escherichia coli Patotype 2WZN ; 1.9 ; 3d structure of TET3 from Pyrococcus horikoshii 1IK6 ; 2.0 ; 3D structure of the E1beta subunit of pyruvate dehydrogenase from the archeon Pyrobaculum aerophilum 5DFA ; 2.5 ; 3D structure of the E323A catalytic mutant of Gan42B, a GH42 beta-galactosidase from G. stearothermophilus 2C9O ; 2.2 ; 3D Structure of the human RuvB-like helicase RuvBL1 6UT2 ; ; 3D structure of the leiomodin/tropomyosin binding interface 2V1V ; ; 3D STRUCTURE OF THE M8L MUTANT OF SQUASH TRYPSIN INHIBITOR CMTI-I 3ZE6 ; 1.5 ; 3D structure of the Ni-Fe-Se hydrogenase from D. vulgaris Hildenborough in the as-isolated oxidized state at 1.50 Angstroms 3ZE7 ; 1.95 ; 3D structure of the Ni-Fe-Se hydrogenase from D. vulgaris Hildenborough in the reduced state at 1.95 Angstroms 3ZE8 ; 1.801 ; 3D structure of the Ni-Fe-Se hydrogenase from D. vulgaris Hildenborough in the reduced state at 1.95 Angstroms 3ZE9 ; 1.33 ; 3D structure of the NiFeSe hydrogenase from D. vulgaris Hildenborough in the oxidized as-isolated state at 1.33 Angstroms 3ZEA ; 1.82 ; 3D structure of the NiFeSe hydrogenase from D. vulgaris Hildenborough in the reduced state at 1.82 Angstroms 2BHF ; 2.5 ; 3D structure of the reduced form of CotA 2BAG ; 2.4 ; 3D Structure of Torpedo californica acetylcholinesterase complexed with Ganstigmine 3I6M ; 2.26 ; 3D Structure of Torpedo californica acetylcholinesterase complexed with N-piperidinopropyl-galanthamine 3I6Z ; 2.19 ; 3D Structure of Torpedo californica acetylcholinesterase complexed with N-saccharinohexyl-galanthamine 2MN2 ; ; 3D structure of YmoB, a modulator of biofilm formation 2WJ1 ; 1.84 ; 3D-crystal structure of humanized-rat fatty acid amide hydrolase (FAAH) conjugated with 7-phenyl-1-(4-(pyridin-2-yl)oxazol-2-yl)heptan- 1-one, an alpha-ketooxazole 2WJ2 ; 2.55 ; 3D-crystal structure of humanized-rat fatty acid amide hydrolase (FAAH) conjugated with 7-phenyl-1-(5-(pyridin-2-yl)oxazol-2-yl)heptan- 1-one, an alpha-ketooxazole 3LJ7 ; 2.3 ; 3D-crystal structure of humanized-rat fatty acid amide hydrolase (FAAH) conjugated with Carbamate inhibitor URB597 2WAP ; 2.8 ; 3D-crystal structure of humanized-rat fatty acid amide hydrolase (FAAH) conjugated with the drug-like urea inhibitor PF-3845 3LJ6 ; 2.42 ; 3D-CRYSTAL STRUCTURE OF HUMANIZED-RAT FATTY ACID AMIDE HYDROLASE (FAAH) CONJUGATED WITH THE DRUG-LIKE UREA INHIBITOR PF-3845 at 2.42A RESOLUTION 2WW5 ; 1.61 ; 3D-structure of the modular autolysin LytC from Streptococcus pneumoniae at 1.6 A resolution 2WWD ; 2.25 ; 3D-structure of the modular autolysin LytC from Streptococcus pneumoniae in complex with pneummococcal peptidoglycan fragment 2WWC ; 1.75 ; 3D-structure of the modular autolysin LytC from Streptococcus pneumoniae in complex with synthetic peptidoglycan ligand 7Y8J ; 1.03 ; 3D1 in complex with 6-mer HR1 peptide from SARS-CoV-2 5D99 ; 0.97 ; 3DW4 redetermined by direct methods starting from random phase angles 2VKR ; 2.01 ; 3Fe-4S, 4Fe-4S plus Zn Acidianus ambivalens ferredoxin 8E6J ; 2.7 ; 3H03 Fab in complex with influenza virus neuraminidase from A/Brevig Mission/1/1918 (H1N1) 7BH8 ; 1.8 ; 3H4-Fab HLA-E-VL9 co-complex 6FLA ; 2.9 ; 3H5 Fab bound to EDIII of DenV 2 Xtal form 1 6FLB ; 2.2 ; 3H5 Fab bound to EDIII of DenV 2 Xtal form 2 2RJM ; 2.0 ; 3Ig structure of titin domains I67-I69 E-to-A mutated variant 2IWN ; 1.35 ; 3rd PDZ domain of Multiple PDZ Domain Protein MPDZ 1ZRC ; 2.8 ; 4 Crystal structures of CAP-DNA with all base-pair substitutions at position 6, CAP-ICAP38 DNA 1ZRD ; 2.8 ; 4 crystal structures of CAP-DNA with all base-pair substitutions at position 6, CAP-[6A;17T]ICAP38 DNA 1ZRF ; 2.1 ; 4 crystal structures of CAP-DNA with all base-pair substitutions at position 6, CAP-[6C;17G]ICAP38 DNA 1ZRE ; 2.8 ; 4 crystal structures of CAP-DNA with all base-pair substitutions at position 6, CAP-[6G;17C]ICAP38 DNA 6QYF ; 1.4 ; 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus at pH 4.6 with Mg2+ and CoA. 6QWU ; 1.4 ; 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus at pH 5.5 with Mn2+ and CoA. 6QXQ ; 1.45 ; 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus at pH 7 with Mn2+ and CoA. 6QYG ; 1.6 ; 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus at pH 8.5 with Mg2+ and CoA. 6QXR ; 1.2 ; 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus at pH 8.5 with Mn2+ and CoA. 4U89 ; 1.4 ; 4'-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis 2VKU ; 1.95 ; 4,4'-Dihydroxybenzophenone Mimics Sterol Substrate in the Binding Site of Sterol 14alpha-Demethylase (CYP51) in the X-ray Structure of the Complex 4K26 ; 2.21 ; 4,4-Dioxo-5,6-dihydro-[1,4,3]oxathiazines, a novel class of 11 -HSD1 inhibitors for the treatment of diabetes 4K1L ; 1.96 ; 4,4-Dioxo-5,6-dihydro-[1,4,3]oxathiazines, a novel class of 11 beta-HSD1 inhibitors for the treatment of diabetes 2VCI ; 2.0 ; 4,5 Diaryl Isoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer 2VCJ ; 2.5 ; 4,5 Diaryl Isoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer 3HUA ; 1.4 ; 4,5,6,7-tetrahydroindole in complex with T4 lysozyme L99A/M102Q 4WOI ; 3.0 ; 4,5-linked aminoglycoside antibiotics regulate the bacterial ribosome by targeting dynamic conformational processes within intersubunit bridge B2 5JBF ; 2.19 ; 4,6-alpha-glucanotransferase GTFB (D1015N mutant) from Lactobacillus reuteri 121 complexed with maltopentaose 5JBD ; 1.8 ; 4,6-alpha-glucanotransferase GTFB from Lactobacillus reuteri 121 5JBE ; 2.1 ; 4,6-alpha-glucanotransferase GTFB from Lactobacillus reuteri 121 complexed with an isomalto-maltopentasaccharide 7P38 ; 2.7 ; 4,6-alpha-glucanotransferase GtfB from Limosilactobacillus reuteri NCC 2613 7P39 ; 2.9 ; 4,6-alpha-glucanotransferase GtfB from Limosilactobacillus reuteri NCC 2613 complexed with acarbose 7ZC0 ; 2.25 ; 4,6-alpha-glucanotransferase GtfC from Geobacillus 12AMOR1 7BHH ; 1.4 ; 4-(2-(3-(4-iodophenyl)selenoureido)ethyl)benzenesulfonamide in complex with Carbonic Anhydrase II 7BFA ; 1.6 ; 4-(2-(3-(4-iodophenyl)thioureido)ethyl)benzenesulfonamide in complex with Carbonic Anhydrase II 7BG5 ; 1.428 ; 4-(2-(3-(4-iodophenyl)ureido)ethyl)benzenesulfonamide in complex with Carbonic Anhydrase II 6NEL ; 2.0 ; 4-(2-(4-fluorophenyl)-5-hydroxy-6-oxo-1,6-dihydropyridin-3-yl)benzoic acid bound to influenza 2009 pH1N1 endonuclease 4OSF ; 1.62 ; 4-(2-isothiocyanatoethyl)phenol inhibitor complexed with Macrophage Migration Inhibitory Factor 3N3G ; 1.6 ; 4-(3-Trifluoromethylphenyl)-pyrimidine-2-carbonitrile as cathepsin S inhibitors: N3, not N1 is critically important 2GDO ; 3.0 ; 4-(Aminoalkylamino)-3-Benzimidazole-Quinolinones As Potent CHK1 Inhibitors 2RAZ ; 1.641 ; 4-(methylthio)nitrobenzene in complex with T4 lysozyme L99A 1FLR ; 1.85 ; 4-4-20 FAB FRAGMENT 1JXH ; 2.3 ; 4-Amino-5-hydroxymethyl-2-methylpyrimidine Phosphate Kinase from Salmonella typhimurium 1JXI ; 2.64 ; 4-Amino-5-hydroxymethyl-2-methylpyrimidine Phosphate Kinase from Salmonella typhimurium complexed with 4-Amino-5-hydroxymethyl-2-methylpyrimidine 1OHV ; 2.3 ; 4-AMINOBUTYRATE-AMINOTRANSFERASE FROM PIG 1OHY ; 2.8 ; 4-AMINOBUTYRATE-AMINOTRANSFERASE inactivated by gamma-ethynyl GABA 1OHW ; 2.3 ; 4-AMINOBUTYRATE-AMINOTRANSFERASE inactivated by gamma-vinyl GABA 2CLX ; 1.8 ; 4-Arylazo-3,5-diamino-1H-pyrazole CDK Inhibitors: SAR Study, Crystal Structure in Complex with CDK2, Selectivity, and Cellular Effects 3HTF ; 1.85 ; 4-chloro-1h-pyrazole in complex with T4 lysozyme L99A/M102Q 6FJT ; 1.27 ; 4-chloro-benzamidine in complex with thrombin 1NZY ; 1.8 ; 4-CHLOROBENZOYL COENZYME A DEHALOGENASE FROM PSEUDOMONAS SP. STRAIN CBS-3 1T5D ; 2.206 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase bound to 4-chlorobenzoate 3CW9 ; 2.0 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase in the Thioester-forming Conformation, bound to 4-chlorophenacyl-CoA 1T5H ; 2.002 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase unliganded, selenomethionine 3CW8 ; 2.25 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, bound to 4CBA-Adenylate 2QW0 ; 2.56 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, I303A mutation, bound to 3,4 Dichlorobenzoate 2QVZ ; 2.5 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, I303A mutation, bound to 3-Chlorobenzoate 2QVY ; 2.76 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, I303G mutation, bound to 3,4-Dichlorobenzoate 2QVX ; 2.7 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, I303G mutation, bound to 3-Chlorobenzoate 3DLP ; 2.6 ; 4-Chlorobenzoyl-CoA Ligase/Synthetase, Mutant D402P, bound to 4CB 3TSY ; 3.1 ; 4-Coumaroyl-CoA Ligase::Stilbene Synthase fusion protein 7PBI ; 2.8 ; 4-ethylphenol oxidase from Gulosibacter chungangensis: isoeugenol complex 7PBG ; 1.6 ; 4-ethylphenol oxidase from Gulosibacter chungangensis: native structure 4WHS ; 1.35 ; 4-fluorocatechol bound to Protocatechuate 3,4-dioxygenase (pseudomonas putida) at pH 8.5 6BDX ; 1.85 ; 4-hydroxy tetrahydrodipicolinate reductase from Neisseria gonorrhoeae 8IUP ; 2.69 ; 4-hydroxybutyryl-CoA Synthetase (ADP-forming) from Nitrosopumilus maritimus. 5GWR ; 2.2 ; 4-hydroxyisoleucine dehydrogenase complexed with NADH 5GWS ; 2.35 ; 4-hydroxyisoleucine dehydrogenase complexed with NADH and succinate 5GWT ; 1.9 ; 4-hydroxyisoleucine dehydrogenase mutant complexed with NADH and succinate 1SP8 ; 2.0 ; 4-Hydroxyphenylpyruvate Dioxygenase 1SP9 ; 3.0 ; 4-Hydroxyphenylpyruvate Dioxygenase 3TSN ; 2.63 ; 4-hydroxythreonine-4-phosphate dehydrogenase from Campylobacter jejuni 8VSW ; ; 4-MERCAPTOPHENOL-ALPHA3C 3OAW ; 2.75 ; 4-Methylpteridineones as Orally Active and Selective PI3K/mTOR Dual Inhibitors 5D2F ; 1.738 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - apo form 5D2I ; 1.78 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - complexed with calcium and acetate 5D2G ; 1.897 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - complexed with magnesium 5D2K ; 1.571 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - complexed with magnesium and 2-oxoadipate 5D2J ; 1.718 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - complexed with magnesium and adipate 5D2H ; 1.936 ; 4-oxalocrotonate decarboxylase from Pseudomonas putida G7 - complexed with magnesium and alpha-ketoglutarate 4OTA ; 2.75 ; 4-OXALOCROTONATE TAUTOMERASE OBSERVED AS AN OCTODECAMER, ORTHORHOMBIC CRYSTAL FORM 4OTB ; 2.5 ; 4-OXALOCROTONATE TAUTOMERASE OBSERVED AS AN OCTODECAMER, RHOMBOHEDRAL CRYSTAL FORM 4OTC ; 2.28 ; 4-OXALOCROTONATE TAUTOMERASE OBSERVED AS AN OCTODECAMER, TRIGONAL CRYSTAL FORM 1OTF ; 1.9 ; 4-OXALOCROTONATE TAUTOMERASE-TRICLINIC CRYSTAL FORM 2Q9M ; 2.05 ; 4-Substituted Trinems as Broad Spectrum-Lactamase Inhibitors: Structure-based Design, Synthesis and Biological Activity 2Q9N ; 2.2 ; 4-Substituted Trinems as Broad Spectrum-Lactamase Inhibitors: Structure-based Design, Synthesis and Biological Activity 6BWF ; 4.1 ; 4.1 angstrom Mg2+-unbound structure of mouse TRPM7 6K9L ; 4.27 ; 4.27 Angstrom resolution cryo-EM structure of human dimeric ATM kinase 3V0C ; 4.3 ; 4.3 angstrom crystal structure of an inactive BoNT/A (E224Q/R363A/Y366F) 3R9J ; 4.3 ; 4.3A resolution structure of a MinD-MinE(I24N) protein complex 2XEA ; 4.6 ; 4.6 ANGSTROM CRYO-EM RECONSTRUCTION OF TOBACCO MOSAIC VIRUS FROM IMAGES RECORDED AT 300 KEV ON A 4KX4K CCD CAMERA 5ZCS ; 4.9 ; 4.9 Angstrom Cryo-EM structure of human mTOR complex 2 2M4J ; ; 40-residue beta-amyloid fibril derived from Alzheimer's disease brain 2LNQ ; ; 40-residue D23N beta amyloid fibril 8G4S ; 3.14 ; 40S ribosomal subunit of the 80S Giardia intestinalis assemblage A ribosome with Emetine bound in V2 conformation with mRNA and three tRNAs. 8FVY ; 2.94 ; 40S subunit of the Giardia lamblia 80S ribosome 4UER ; 6.47 ; 40S-eIF1-eIF1A-eIF3-eIF3j translation initiation complex from Lachancea kluyveri 2MXU ; ; 42-Residue Beta Amyloid Fibril 3TPU ; 3.1 ; 42F3 p5E8/H2-Ld complex 4MVB ; 3.088 ; 42F3 pCPB7/H-2Ld Complex 3TF7 ; 2.75 ; 42F3 QL9/H2-Ld complex 4N5E ; 3.059 ; 42F3 TCR pCPA12/H-2Ld complex 4MS8 ; 1.922 ; 42F3 TCR pCPB9/H-2Ld Complex 4MXQ ; 2.596 ; 42F3 TCR pCPC5/H-2Ld Complex 4N0C ; 2.9 ; 42F3 TCR pCPE3/H-2Ld complex 3TJH ; 2.12 ; 42F3-p3A1/H2-Ld complex 3TFK ; 2.753 ; 42F3-p4B10/H2-Ld 7ASE ; 3.33 ; 43S preinitiation complex from Trypanosoma cruzi with the kDDX60 helicase 7ASK ; 4.3 ; 43S preinitiation complex from Trypanosoma cruzi with the kDDX60 helicase bound with ATP 7DBD ; 3.094 ; 444 in complex with tubulin 7S9U ; 3.2 ; 44SR3C ribosomal particle 7SAE ; 3.0 ; 44SR70P Class1 ribosomal particle 6MKD ; 3.2 ; 4699 TCR bound to I-Ab Padi4 6MNG ; 2.662 ; 4738 TCR bound to IAb Padi4 7ART ; 10.0 ; 48 helix bundle DNA origami brick 8G2Z ; 4.1 ; 48-nm doublet microtubule from Tetrahymena thermophila strain CU428 8G3D ; 3.7 ; 48-nm doublet microtubule from Tetrahymena thermophila strain K40R 7UNG ; 3.6 ; 48-nm repeat of the human respiratory doublet microtubule 8OTZ ; 3.6 ; 48-nm repeat of the native axonemal doublet microtubule from bovine sperm 8TO0 ; 7.7 ; 48-nm repeating structure of doublets from mouse sperm flagella 1GAF ; 1.95 ; 48G7 HYBRIDOMA LINE FAB COMPLEXED WITH HAPTEN 5-(PARA-NITROPHENYL PHOSPHONATE)-PENTANOIC ACID 8P03 ; 3.04 ; 48S late-stage initiation complex with m6A mRNA 8P09 ; 3.3 ; 48S late-stage initiation complex with non methylated mRNA 1BP8 ; ; 4:2:1 mithramycin:Mg++:d(ACCCGGGT)2 complex 1N0R ; 1.5 ; 4ANK: A designed ankyrin repeat protein with four identical consensus repeats 4ODX ; 3.1 ; 4E10 germline encoded precursor no.7 in complex with epitope scaffold T117 3CB8 ; 2.77 ; 4Fe-4S-Pyruvate formate-lyase activating enzyme in complex with AdoMet and a peptide substrate 3C8F ; 2.25 ; 4Fe-4S-Pyruvate formate-lyase Activating Enzyme with partially disordered AdoMet 8VRR ; 2.36 ; 4H11-scFv antibody 1X9Q ; 1.5 ; 4m5.3 anti-fluorescein single chain antibody fragment (scFv) 6EQY ; ; 4th KOW domain of human hSpt5 1NYP ; ; 4th LIM domain of PINCH protein 3QSK ; 1.75 ; 5 Histidine Variant of the anti-RNase A VHH in Complex with RNAse A 8PYO ; 1.54 ; 5 micrometer HEWL crystals solved at room-temperature using fixed-target serial crystallography. 7R6L ; 2.85 ; 5 prime exon-free pre-2S intermediate of the Tetrahymena group I intron, symmetry-expanded monomer from a synthetic dimeric construct 1NTS ; ; 5'(dCCPUPCPCPUPUP)3':3'(rAGGAGGAAA)5', where P=propynyl 1NTQ ; ; 5'(dCCUCCUU)3':3'(rAGGAGGAAA)5' 1NTT ; ; 5'(dCPCPUPCPCPUPUP)3':(rAGGAGGAAA)5', where P=propynyl 8EDB ; 1.55 ; 5'-CGCGAATTCGCG-3' and an AT-specific binder (DB1884) complex 8EC1 ; 1.63 ; 5'-CGCGAATTCGCG-3' and benzimidazole diamidine (DB1476) comlpex with ligand orientation I 8ED6 ; 1.63 ; 5'-CGCGAATTCGCG-3' and benzimidazole diamidine (DB1476) complex with ligand orientation II 423D ; 1.6 ; 5'-D(*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)-3' 424D ; 2.7 ; 5'-D(*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)-3' 425D ; 2.8 ; 5'-D(*AP*CP*CP*GP*GP*TP*AP*CP*CP*GP*GP*T)-3' 427D ; 1.1 ; 5'-D(*CP*GP*CP*(CH2-DM1)GP*CP*G)-3' 403D ; 1.4 ; 5'-D(*CP*GP*CP*(HYD)AP*AP*AP*TP*TP*TP*GP*CP*G)-3', 2'-(4-ETHOXYPHENYL)-5-(4-METHYL-1-PIPERAZINYL)-2,5'-BI-BENZIMIDAZOLE 447D ; 2.2 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3' 442D ; 1.6 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3', BENZIMIDAZOLE DERIVATIVE COMPLEX 444D ; 2.4 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3', BENZIMIDAZOLE DERIVATIVE COMPLEX 445D ; 2.6 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3', Benzimidazole derivative complex 448D ; 2.2 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3', BENZIMIDAZOLE DERIVATIVE COMPLEX 449D ; 2.1 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3', BENZIMIDAZOLE DERIVATIVE COMPLEX 453D ; 1.8 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3'-BENZIMIDAZOLE COMPLEX 1FTD ; 2.0 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3'-SYMMETRIC BIS-BENZIMIDAZOLE COMPLEX 443D ; 1.6 ; 5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3'/ BENZIMIDAZOLE DERIVATIVE COMPLEX 2KBD ; ; 5'-D(*CP*TP*GP*GP*GP*GP*AP*CP*TP*TP*TP*CP*CP*AP*GP*G)-3', 5'-D(*CP*CP*TP*GP*GP*AP*AP*AP*GP*TP*CP*CP*CP*CP*AP*G)-3' 2B1D ; 2.5 ; 5'-D(*GP*CP*AP*GP*AP*CP*GP*TP*CP*TP*GP*C)-3' Methionine Repressor binding site 2B1C ; 2.2 ; 5'-D(*GP*CP*GP*TP*GP*GP*GP*AP*CP*C)-3' Zif268 binding site 2B1B ; 1.9 ; 5'-D(*GP*CP*GP*TP*GP*GP*GP*CP*AP*C)-3' Zif268 binding site 1B3P ; ; 5'-D(*GP*GP*AP*GP*GP*AP*T)-3' 431D ; 1.15 ; 5'-D(*GP*GP*CP*CP*AP*AP*TP*TP*GP*G)-3' 414D ; 1.9 ; 5'-D(*GP*GP*GP*GP*CP*GP*CP*CP*CP*C)-3' 421D ; 1.8 ; 5'-D(*TP*TP*CP*TP*TP*(BRO)CP*TP*TP*C)-3', 5'-R(*GP*AP*AP*GP*AP*AP*GP*AP*A)-3' 1JE1 ; 1.8 ; 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEX WITH GUANOSINE AND SULFATE 1JDS ; 1.8 ; 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEX WITH PHOSPHATE (SPACE GROUP P21) 3T60 ; 2.396 ; 5'-Diphenyl Nucleoside Inhibitors of Plasmodium falciparum dUTPase 3T64 ; 1.65 ; 5'-Diphenyl Nucleoside Inhibitors of Plasmodium falciparum dUTPase 3T6Y ; 2.6 ; 5'-Diphenyl Nucleoside Inhibitors of Plasmodium falciparum dUTPase 3T70 ; 1.8 ; 5'-Diphenyl Nucleoside Inhibitors of Plasmodium falciparum dUTPase 2H8G ; 1.5 ; 5'-Methylthioadenosine Nucleosidase from Arabidopsis thaliana 5C7U ; 3.05 ; 5'-monophosphate wt Guanine Riboswitch bound to hypoxanthine. 5C7W ; 3.22 ; 5'-monophosphate Z:P Guanine Riboswitch bound to hypoxanthine. 1HPU ; 1.85 ; 5'-NUCLEOTIDASE (CLOSED FORM), COMPLEX WITH AMPCP 1HO5 ; 2.1 ; 5'-NUCLEOTIDASE (E. COLI) IN COMPLEX WITH ADENOSINE AND PHOSPHATE 1OI8 ; 2.1 ; 5'-Nucleotidase (E. coli) with an Engineered Disulfide Bridge (P90C, L424C) 1OID ; 2.1 ; 5'-Nucleotidase (E. coli) with an Engineered Disulfide Bridge (S228C, P513C) 1OIE ; 2.33 ; 5'-Nucleotidase (E. coli) with an Engineered Disulfide Bridge (S228C, P513C) 1HP1 ; 1.7 ; 5'-NUCLEOTIDASE (OPEN FORM) COMPLEX WITH ATP 1USH ; 1.73 ; 5'-NUCLEOTIDASE FROM E. COLI 2USH ; 2.22 ; 5'-NUCLEOTIDASE FROM E. COLI 406D ; 1.8 ; 5'-R(*CP*AP*CP*CP*GP*GP*AP*UP*GP*GP*UP*(BRO) UP*CP*GP*GP*UP*G)-3' 402D ; 2.3 ; 5'-R(*CP*GP*CP*CP*AP*GP*CP*G)-3' 377D ; 1.76 ; 5'-R(*CP*GP*UP*AP*CP*DG)-3' 439D ; 1.6 ; 5'-R(*CP*UP*GP*GP*GP*CP*GP*G)-3', 5'-R(*CP*CP*GP*CP*CP*UP*GP*G)-3' 422D ; 2.6 ; 5'-R(*GP*AP*UP*CP*AP*CP*UP*UP*CP*GP*GP*U)-3' 418D ; 2.4 ; 5'-R(*GP*UP*GP*CP*AP*CP*A)-D(P*C)-3' 435D ; 1.4 ; 5'-R(*UP*AP*GP*CP*CP*CP*C)-3', 5'-R(*GP*GP*GP*GP*CP*UP*A)-3' 434D ; 1.16 ; 5'-R(*UP*AP*GP*CP*UP*CP*C)-3', 5'-R(*GP*GP*GP*GP*CP*UP*A)-3' 6Y50 ; 4.1 ; 5'domain of human 17S U2 snRNP 8QH3 ; 2.81 ; 5'vRNA-bound Hantaan virus polymerase in monomeric active state 8QGT ; 2.8 ; 5'vRNA-bound Hantaan virus polymerase in monomeric intermediate state 1B0A ; 2.56 ; 5,10, METHYLENE-TETRAHYDROPHOLATE DEHYDROGENASE/CYCLOHYDROLASE FROM E COLI. 1V93 ; 1.9 ; 5,10-Methylenetetrahydrofolate Reductase from Thermus thermophilus HB8 4LN7 ; 1.73 ; 5,6-bis(4-fluorophenyl)-3-hydroxy-2,5-dihydropyridin-2-one bound to influenza 2009 pH1N1 endonuclease 2C16 ; 2.02 ; 5-(4-Carboxy-2-oxo-butane-1-sulfinyl)-4-oxo-pentanoic acid acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 2C18 ; 1.93 ; 5-(4-Carboxy-2-oxo-butane-1-sulfonyl)-4-oxo-pentanoic acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 2C15 ; 1.48 ; 5-(4-Carboxy-2-oxo-butoxy)-4-oxo-pentanoic acid acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 2C14 ; 1.9 ; 5-(4-Carboxy-2-oxo-butylamino)-4-oxo-pentanoic acid acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 2C19 ; 2.05 ; 5-(4-Carboxy-2-oxo-butylsulfanyl)-4-oxo-pentanoic acid acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 4M5U ; 2.2 ; 5-(4-FLUOROPHENYL)-3-HYDROXY-6-[4-(1H-1,2,3,4-TETRAZOL-5-YL)PHENYL]-1,2-DIHYDROPYRIDIN-2-ONE bound to influenza 2009 pH1N1 endonuclease 1AW5 ; 2.3 ; 5-AMINOLEVULINATE DEHYDRATASE FROM SACCHAROMYCES CEREVISIAE 2BWN ; 2.1 ; 5-Aminolevulinate Synthase from Rhodobacter capsulatus 2BWP ; 2.7 ; 5-Aminolevulinate Synthase from Rhodobacter capsulatus in complex with glycine 2BWO ; 2.8 ; 5-Aminolevulinate Synthase from Rhodobacter capsulatus in complex with succinyl-CoA 7X98 ; 2.05 ; 5-Aminolevulinate synthase HemA from Rhodopseudomonas palustris 4AFJ ; 1.98 ; 5-aryl-4-carboxamide-1,3-oxazoles: potent and selective GSK-3 inhibitors 4MK1 ; 1.85 ; 5-bromopyridine-2,3-diol bound to influenza 2009 pH1N1 endonuclease 1OTG ; 2.1 ; 5-CARBOXYMETHYL-2-HYDROXYMUCONATE ISOMERASE 4LBH ; 1.75 ; 5-chloro-2-hydroxyhydroquinone dehydrochlorinase (TftG) from Burkholderia phenoliruptrix AC1100: Apo-form 4LBP ; 1.87 ; 5-chloro-2-hydroxyhydroquinone dehydrochlorinase (TftG) from Burkholderia phenoliruptrix AC1100: Complex with 2,5-dihydroxybenzoquinone 4LBI ; 2.21 ; 5-chloro-2-hydroxyhydroquinone dehydrochlorinase (TftG) from Burkholderia phenoliruptrix AC1100: Selenomethionyl Apo-form 3HT8 ; 1.6 ; 5-chloro-2-methylphenol in complex with T4 lysozyme L99A/M102Q 5EAS ; 2.25 ; 5-EPI-ARISTOLOCHENE SYNTHASE FROM NICOTIANA TABACUM 5EAU ; 2.15 ; 5-EPI-ARISTOLOCHENE SYNTHASE FROM NICOTIANA TABACUM 5EAT ; 2.8 ; 5-EPI-ARISTOLOCHENE SYNTHASE FROM NICOTIANA TABACUM WITH SUBSTRATE ANALOG FARNESYL HYDROXYPHOSPHONATE 3TAG ; 2.95 ; 5-fluorocytosine paired with dAMP in RB69 gp43 3TAF ; 3.0 ; 5-fluorocytosine paired with ddGMP in RB69 gp43 2ZNX ; 2.3 ; 5-Fluorotryptophan Incorporated ScFv10 Complexed to Hen Egg Lysozyme 5OLY ; 2.0 ; 5-fluorotryptophan labeled beta-phosphoglucomutase in a closed conformation, monoclinic crystal form 5OLX ; 1.38 ; 5-fluorotryptophan labeled beta-phosphoglucomutase in a closed conformation, orthorhomic crystal form 5OLW ; 2.28 ; 5-fluorotryptophan labeled beta-phosphoglucomutase in an open conformation 7LI9 ; 3.9 ; 5-HT bound serotonin transporter reconstituted in lipid nanodisc in KCl 7MGW ; 3.5 ; 5-HT bound serotonin transporter reconstituted in lipid nanodisc in NaCl in occluded conformation 7LIA ; 3.3 ; 5-HT bound serotonin transporter reconstituted in lipid nanodisc in presence of NaCl in outward facing conformation 8JT6 ; 3.0 ; 5-HT1A-Gi in complex with compound (R)-IHCH-7179 7RAN ; 3.45 ; 5-HT2AR bound to a novel agonist in complex with a mini-Gq protein and an active-state stabilizing single-chain variable fragment (scFv16) obtained by cryo-electron microscopy (cryoEM) 7SRS ; 3.3 ; 5-HT2B receptor bound to LSD in complex with beta-arrestin1 obtained by cryo-electron microscopy (cryoEM) 7SRR ; 2.9 ; 5-HT2B receptor bound to LSD in complex with heterotrimeric mini-Gq protein obtained by cryo-electron microscopy (cryoEM) 7SRQ ; 2.7 ; 5-HT2B receptor bound to LSD obtained by cryo-electron microscopy (cryoEM) 6Y5B ; 3.1 ; 5-HT3A receptor in Salipro (apo, asymmetric) 6Y59 ; 3.2 ; 5-HT3A receptor in Salipro (apo, C5 symmetric) 2C13 ; 2.15 ; 5-hydroxy-levulinic acid bound to Porphobilinogen synthase from Pseudomonas aeruginosa 3TAE ; 2.71 ; 5-hydroxycytosine paired with dAMP in RB69 gp43 3TAB ; 2.8 ; 5-hydroxycytosine paired with dGMP in RB69 gp43 5SIW ; 2.13 ; 5-methyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-8-(trifluoromethyl)-[1,2,4]triazolo[1,5-c]pyrimidine 5HVB ; 1.6 ; 5-methyl-6-(1-naphthylthio)thieno[2,3-d]pyrimidine 2,4-diamine 5HVE ; 1.46 ; 5-methyl-6-(3'-trifluromethoxyphenylthio)[2,3-d]pyrimidine 2,4-diamine 4GJU ; 1.412 ; 5-Methylcytosine modified DNA oligomer 2E7F ; 2.2 ; 5-methyltetrahydrofolate corrinoid/iron sulfur protein methyltransferase complexed with methyltetrahydrofolate to 2.2 Angsrom resolution 3ZZN ; 2.9 ; 5-Mutant (R79W, R151A, E279A, E299A,E313A) Lactate-Dehydrogenase from Thermus thermophillus 3IJK ; 1.3 ; 5-OMe modified DNA 8mer 3LTR ; 1.3 ; 5-OMe-dU containing DNA 8mer 5USA ; 1.8 ; 5-Se-T2-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 5USG ; 1.7 ; 5-Se-T2/4-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 5USE ; 1.73 ; 5-Se-T4-DNA and native RNA hybrid in complex with RNase H catalytic domain D132N mutant 3IJN ; 1.8 ; 5-SeMe-Cytidine modified DNA 8mer 3LTU ; 1.4 ; 5-SeMe-dU containing DNA 8mer 3IKI ; 1.38 ; 5-SMe-dU containing DNA octamer 3KQ8 ; 1.6 ; 5-Te-uridine derivatized DNA-8mer 7Y1Q ; 5.03 ; 5.0 angstrom cryo-EM structure of transmembrane regions of mouse Basigin/MCT1 in complex with antibody 6E7F1 7YZR ; 6.92 ; 50 mM Rb+ soak of beryllium fluoride inhibited Na+,K+-ATPase, E2-BeFx (rigid body model) 7A0R ; 3.3 ; 50S Deinococcus radiodurans ribosome bounded with mycinamicin I 7A0S ; 3.22 ; 50S Deinococcus radiodurans ribosome bounded with mycinamicin I 7A18 ; 3.4 ; 50S Deinococcus radiodurans ribosome bounded with mycinamicin IV 6GC8 ; 3.8 ; 50S ribosomal subunit assembly intermediate - 50S rec* 6GC7 ; 4.3 ; 50S ribosomal subunit assembly intermediate state 1 6GC6 ; 4.3 ; 50S ribosomal subunit assembly intermediate state 2 6GC4 ; 4.3 ; 50S ribosomal subunit assembly intermediate state 3 6GC0 ; 3.8 ; 50S ribosomal subunit assembly intermediate state 4 6GBZ ; 3.8 ; 50S ribosomal subunit assembly intermediate state 5 7TTU ; 3.0 ; 50S ribosomal subunit from Staphylococcus aureus (Strain ATCC43300) 7TTW ; 2.9 ; 50S ribosomal subunit from Staphylococcus aureus containing double mutation in uL3 imparting linezolid resistance 6WNT ; 3.1 ; 50S ribosomal subunit without free 5S rRNA and perturbed PTC 6WU9 ; 2.9 ; 50S subunit of 70S Ribosome Enterococcus faecalis MultiBody refinement 2RDO ; 9.1 ; 50S subunit with EF-G(GDPNP) and RRF bound 7BL6 ; 4.0 ; 50S-ObgE-GMPPNP particle 6MKR ; 3.355 ; 5287 TCR bound to IAb Padi4 3NI3 ; 1.34 ; 54-Membered ring macrocyclic beta-sheet peptide 8OIR ; 3.1 ; 55S human mitochondrial ribosome with mtRF1 and P-site tRNA 7NQL ; 3.4 ; 55S mammalian mitochondrial ribosome with ICT1 and P site tRNAMet 6YDP ; 3.0 ; 55S mammalian mitochondrial ribosome with mtEFG1 and P site fMet-tRNAMet (POST) 6YDW ; 4.2 ; 55S mammalian mitochondrial ribosome with mtEFG1 and two tRNAMet (TI-POST) 8OIN ; 3.6 ; 55S mammalian mitochondrial ribosome with mtRF1 and P-site tRNA 7NQH ; 3.5 ; 55S mammalian mitochondrial ribosome with mtRF1a and P-site tRNAMet 7NSI ; 4.6 ; 55S mammalian mitochondrial ribosome with mtRRF (pre) and tRNA(P/E) 7NSJ ; 3.9 ; 55S mammalian mitochondrial ribosome with tRNA(P/P) and tRNA(E*) 6QB0 ; ; 5675 6QB1 ; ; 5676 6PRV ; 2.71 ; 58nt RNA L11-binding domain from E. coli 23S rRNA 1AB4 ; 2.8 ; 59KDA FRAGMENT OF GYRASE A FROM E. COLI 5TZM ; 1.177 ; 59th Ig domain of human obscurin (OBSCN Ig59) 4JPO ; 5.0 ; 5A resolution structure of Proteasome Assembly Chaperone Hsm3 in complex with a C-terminal fragment of Rpt1 4OQ2 ; 2.35 ; 5hmC specific restriction endonuclease PvuRTs1I 5K8N ; 3.225 ; 5NAA-bound 5-nitroanthranilate aminohydrolase 2GRZ ; 1.6 ; 5ns Photoproduct of the M37V mutant of Scapharca HbI 1C2X ; 7.5 ; 5S RRNA STRUCTURE FITTED TO A CRYO-ELECTRON MICROSCOPIC MAP AT 7.5 ANGSTROMS RESOLUTION 1IQ4 ; 1.8 ; 5S-RRNA BINDING RIBOSOMAL PROTEIN L5 FROM BACILLUS STEAROTHERMOPHILUS 8T2P ; 5.0 ; 5TU-t1 - heterodimeric triplet polymerase ribozyme 1TEM ; 1.95 ; 6 ALPHA HYDROXYMETHYL PENICILLOIC ACID ACYLATED ON THE TEM-1 BETA-LACTAMASE FROM ESCHERICHIA COLI 4MK5 ; 1.9 ; 6-(3-methoxyphenyl)pyridine-2,3-diol bound to influenza 2009 pH1N1 endonuclease 4M4Q ; 2.502 ; 6-(4-fluorophenyl)-3-hydroxy-5-[4-(1H-1,2,3,4-tetrazol-5-yl)phenyl] -1,2-dihydropyridin-2-one bound to influenza 2009 H1N1 endonuclease 3Q3B ; 2.7 ; 6-Amino-4-(pyrimidin-4-yl)pyridones: Novel Glycogen Synthase Kinase-3 Inhibitors 3VWQ ; 1.7 ; 6-aminohexanoate-dimer hydrolase S112A/G181D/R187A/H266N/D370Y mutant complexd with 6-aminohexanoate 8IRN ; 2.7 ; 6-BAP bound state of Arabidopsis AZG1 7M7E ; 3.2 ; 6-Deoxyerythronolide B synthase (DEBS) hybrid module (M3/1) in complex with antibody fragment 1B2 7M7I ; 3.4 ; 6-Deoxyerythronolide B synthase (DEBS) module 1 in complex with antibody fragment 1B2 (TE-free) 7M7J ; 4.3 ; 6-Deoxyerythronolide B synthase (DEBS) module 1 in complex with antibody fragment 1B2: ""turnstile closed"" state (TE-free) 7M7F ; 3.2 ; 6-Deoxyerythronolide B synthase (DEBS) module 1 in complex with antibody fragment 1B2: State 1 7M7H ; 4.1 ; 6-Deoxyerythronolide B synthase (DEBS) module 1 in complex with antibody fragment 1B2: State 1' 7M7G ; 4.1 ; 6-Deoxyerythronolide B synthase (DEBS) module 1 in complex with antibody fragment 1B2: State 2 6ZRY ; 1.652 ; 6-dimethylallyl tryptophan synthase 1HKA ; 1.5 ; 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN PYROPHOSPHOKINASE 3N4C ; 1.9 ; 6-Phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile as cathepsin S inhibitors 2PBG ; 2.5 ; 6-PHOSPHO-BETA-D-GALACTOSIDASE FORM-B 3PBG ; 2.7 ; 6-PHOSPHO-BETA-GALACTOSIDASE FORM-C 4PBG ; 2.5 ; 6-PHOSPHO-BETA-GALACTOSIDASE FORM-CST 5FOO ; 2.1 ; 6-phospho-beta-glucosidase 1BIF ; 2.0 ; 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE BIFUNCTIONAL ENZYME COMPLEXED WITH ATP-G-S AND PHOSPHATE 3BIF ; 2.3 ; 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE EMPTY 6-PF-2K ACTIVE SITE 2BIF ; 2.4 ; 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE H256A MUTANT WITH F6P IN PHOSPHATASE ACTIVE SITE 3E15 ; 2.0 ; 6-phosphogluconolactonase from Plasmodium vivax 6VYE ; 1.95 ; 6-phosphogluconolactonase from Trypanosoma cruzi 1B66 ; 1.9 ; 6-PYRUVOYL TETRAHYDROPTERIN SYNTHASE 1B6Z ; 2.0 ; 6-PYRUVOYL TETRAHYDROPTERIN SYNTHASE 1GTQ ; 2.3 ; 6-PYRUVOYL TETRAHYDROPTERIN SYNTHASE 5HUI ; 1.46 ; 6-substituted pyrido[3,2-d]pyrimidine--6-4'-trifluoromethoxyphenyl) 5HT4 ; 1.6 ; 6-substituted pyrrolo[2,3-d]pyrimidine 6-thieno-(4-methoxyphenyl) 5HT5 ; 1.9 ; 6-substituted pyrrolo[2,3-d]pyrimidine 6-thieno-(4-methoxyphenyl) 7WDT ; 1.65 ; 6-sulfo-beta-D-N-acetylglucosaminidase from Bifidobacterium bifidum in complex with GlcNAc-6S 7WDU ; 2.23 ; 6-sulfo-beta-D-N-acetylglucosaminidase from Bifidobacterium bifidum in complex with PUGNAc-6S 5BWK ; 6.0 ; 6.0 A Crystal structure of a Get3-Get4-Get5 intermediate complex from S.cerevisiae 2I91 ; 2.65 ; 60kDa Ro autoantigen in complex with a fragment of misfolded RNA 4BXF ; 2.05 ; 60S ribosomal protein L27A histidine hydroxylase (MINA53 Y209C) in complex with MN(II), 2-oxoglutarate (2OG) and 60S ribosomal protein L27A (RPL27A G37C) peptide fragment 4BU2 ; 2.78 ; 60S ribosomal protein L27A histidine hydroxylase (MINA53) in complex with Ni(II) and 2-oxoglutarate (2OG) 4CCN ; 2.23 ; 60S ribosomal protein L8 histidine hydroxylase (NO66 L299C/C300S) in complex with Mn(II), N-oxalylglycine (NOG) and 60S ribosomal protein L8 (RPL8 G220C) peptide fragment (complex-2) 4CCO ; 2.3 ; 60S ribosomal protein L8 histidine hydroxylase (NO66 S373C) in complex with Mn(II), N-oxalylglycine (NOG) and 60S ribosomal protein L8 (RPL8 G214C) peptide fragment (complex-3) 4CCJ ; 2.15 ; 60S ribosomal protein L8 histidine hydroxylase (NO66) in apo form 4CCK ; 2.15 ; 60S ribosomal protein L8 histidine hydroxylase (NO66) in complex with Mn(II) and N-oxalylglycine (NOG) 4CCM ; 2.51 ; 60S ribosomal protein L8 histidine hydroxylase (NO66) in complex with Mn(II), N-oxalylglycine (NOG) and 60S ribosomal protein L8 (RPL8 G220C) peptide fragment (complex-1) 8OJ8 ; 3.3 ; 60S ribosomal subunit bound to the E3-UFM1 complex - state 1 (native) 8OJ0 ; 3.3 ; 60S ribosomal subunit bound to the E3-UFM1 complex - state 2 (native) 8OJ5 ; 2.9 ; 60S ribosomal subunit bound to the E3-UFM1 complex - state 3 (in-vitro reconstitution) 8OHD ; 3.1 ; 60S ribosomal subunit bound to the E3-UFM1 complex - state 3 (native) 8FRU ; 2.49 ; 60S subunit of the Giardia lamblia 80S ribosome 6VAR ; ; 61 nt human Hepatitis B virus epsilon pre-genomic RNA 7N4K ; 1.85 ; 6218 TCR in complex with H2-Db PA 224 7N5P ; 2.09 ; 6218 TCR in complex with H2-Db PA224-233 with a cysteine mutant 7N5C ; 1.87 ; 6218 TCR in complex with H2Db PA with an engineered TCR-pMHC disulfide bond 6MNO ; 2.9 ; 6235 TCR bound to I-Ab Padi4 6MNN ; 2.83 ; 6236 TCR bound to I-Ab Padi4 6MNM ; 3.1 ; 6256 TCR bound to I-Ab Padi4 1EHL ; 2.4 ; 64M-2 ANTIBODY FAB COMPLEXED WITH D(5HT)(6-4)T 5IBU ; 1.71 ; 6652 Fab (unbound) 4B03 ; 6.0 ; 6A Electron cryomicroscopy structure of immature Dengue virus serotype 1 1BUL ; 1.89 ; 6ALPHA-(HYDROXYPROPYL)PENICILLANATE ACYLATED ON NMC-A BETA-LACTAMASE FROM ENTEROBACTER CLOACAE 5DZB ; 3.33 ; 6beta1 2IZ1 ; 2.3 ; 6PDH complexed with PEX inhibitor synchrotron data 6ER0 ; ; 6th KOW domain of human hSpt5 1AHH ; 2.3 ; 7 ALPHA-HYDROXYSTEROID DEHYDROGENASE COMPLEXED WITH NAD+ 1AHI ; 2.3 ; 7 ALPHA-HYDROXYSTEROID DEHYDROGENASE COMPLEXED WITH NADH AND 7-OXO GLYCOCHENODEOXYCHOLIC ACID 1CBK ; 2.02 ; 7,8-DIHYDRO-6-HYDROXYMETHYLPTERIN-PYROPHOSPHOKINASE FROM HAEMOPHILUS INFLUENZAE 1NBU ; 1.6 ; 7,8-Dihydroneopterin Aldolase Complexed with Product From Mycobacterium Tuberculosis 1B9L ; 2.9 ; 7,8-DIHYDRONEOPTERIN TRIPHOSPHATE EPIMERASE 4KIL ; 1.75 ; 7-(4-fluorophenyl)-3-hydroxyquinolin-2(1H)-one bound to influenza 2009 H1N1 endonuclease 1FMC ; 1.8 ; 7-ALPHA-HYDROXYSTEROID DEHYDROGENASE COMPLEX WITH NADH AND 7-OXO GLYCOCHENODEOXYCHOLIC ACID 3OPI ; 1.1 ; 7-DEAZA-2'-DEOXYADENOSINE modification in B-FORM DNA 8SV3 ; 1.51 ; 7-Deazapurines and 5-Halogenpyrimidine DNA duplex 8SV4 ; 2.3 ; 7-Deazapurines and 5-Halogenpyrimidine DNA duplex 6FDR ; 1.4 ; 7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII AT 100K, NA DITHIONITE REDUCED AT PH 8.5, RESOLUTION 1.4 A 7FD1 ; 1.3 ; 7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII AT PH 8.5, 100 K, 1.35 A 6FD1 ; 1.35 ; 7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII LOW TEMPERATURE, 1.35 A 7FDR ; 1.4 ; 7-FE FERREDOXIN FROM AZOTOBACTER VINELANDII, NA DITHIONITE REDUCED, PH 8.5, 1.4A RESOLUTION, 100 K 1BC6 ; ; 7-FE FERREDOXIN FROM BACILLUS SCHLEGELII, NMR, 20 STRUCTURES 1BD6 ; ; 7-FE FERREDOXIN FROM BACILLUS SCHLEGELII, NMR, MINIMIZED AVERAGE STRUCTURE 5Y2S ; 0.9 ; 7.0 atm CO2-pressurized human carbonic anhydrase II 1KAY ; 1.7 ; 70KD HEAT SHOCK COGNATE PROTEIN ATPASE DOMAIN, K71A MUTANT 1KAZ ; 1.7 ; 70KD HEAT SHOCK COGNATE PROTEIN ATPASE DOMAIN, K71E MUTANT 1KAX ; 1.7 ; 70KD HEAT SHOCK COGNATE PROTEIN ATPASE DOMAIN, K71M MUTANT 7ZP8 ; 2.2 ; 70S E. coli ribosome with a stalled filamin domain 5 nascent chain 7ZOD ; 2.56 ; 70S E. coli ribosome with an extended uL23 loop from Candidatus marinimicrobia 7Z20 ; 2.29 ; 70S E. coli ribosome with an extended uL23 loop from Candidatus marinimicrobia and a stalled filamin domain 5 nascent chain 7ZQ5 ; 2.7 ; 70S E. coli ribosome with truncated uL23 and uL24 loops 7ZQ6 ; 2.75 ; 70S E. coli ribosome with truncated uL23 and uL24 loops and a stalled filamin domain 5 nascent chain 6O9J ; 3.9 ; 70S Elongation Competent Ribosome 6O9K ; 4.0 ; 70S initiation complex 6YEF ; 3.2 ; 70S initiation complex with assigned rRNA modifications from Staphylococcus aureus 6VWM ; 3.4 ; 70S ribosome bound to HIV frameshifting stem-loop (FSS) and P-site tRNA (non-rotated conformation, Structure I) 6VWN ; 3.4 ; 70S ribosome bound to HIV frameshifting stem-loop (FSS) and P-site tRNA (non-rotated conformation, Structure II) 6VWL ; 3.1 ; 70S ribosome bound to HIV frameshifting stem-loop (FSS) and P/E tRNA (rotated conformation) 5UYL ; 3.6 ; 70S ribosome bound with cognate ternary complex base-paired to A site codon (Structure II) 5UYM ; 3.2 ; 70S ribosome bound with cognate ternary complex base-paired to A site codon, closed 30S (Structure III) 5UYK ; 3.9 ; 70S ribosome bound with cognate ternary complex not base-paired to A site codon (Structure I) 5UYQ ; 3.8 ; 70S ribosome bound with near-cognate ternary complex base-paired to A site codon, closed 30S (Structure III-nc) 5UYP ; 3.9 ; 70S ribosome bound with near-cognate ternary complex base-paired to A site codon, open 30S (Structure II-nc) 5UYN ; 4.0 ; 70S ribosome bound with near-cognate ternary complex not base-paired to A site codon (Structure I-nc) 7UG7 ; 2.58 ; 70S ribosome complex in an intermediate state of translocation bound to EF-G(GDP) stalled by Argyrin B 5UQ8 ; 3.2 ; 70S ribosome complex with dnaX mRNA stem-loop and E-site tRNA (""out"" conformation) 5UQ7 ; 3.5 ; 70S ribosome complex with dnaX mRNA stemloop and E-site tRNA (""in"" conformation) 6QNR ; 3.1 ; 70S ribosome elongation complex (EC) with experimentally assigned potassium ions 7JIL ; 2.8 ; 70S ribosome Flavobacterium johnsoniae 5LI0 ; 3.8 ; 70S ribosome from Staphylococcus aureus 7NHM ; 3.1 ; 70S ribosome from Staphylococcus aureus 6QNQ ; 3.5 ; 70S ribosome initiation complex (IC) with experimentally assigned potassium ions 7JT2 ; 3.5 ; 70S ribosome stalled on long mRNA with ArfB bound in the A site 7JT1 ; 3.3 ; 70S ribosome stalled on long mRNA with ArfB-1 and ArfB-2 bound (+9-III) 4W29 ; 3.8 ; 70S ribosome translocation intermediate containing elongation factor EFG/GDP/fusidic acid, mRNA, and tRNAs trapped in the AP/AP pe/E chimeric hybrid state. 4V9L ; 3.5 ; 70S Ribosome translocation intermediate FA-3.6A containing elongation factor EFG/FUSIDIC ACID/GDP, mRNA, and tRNA bound in the pe*/E state. 4V9M ; 4.0 ; 70S Ribosome translocation intermediate FA-4.2A containing elongation factor EFG/FUSIDIC ACID/GDP, mRNA, and tRNA bound in the pe*/E state. 4V9K ; 3.5 ; 70S ribosome translocation intermediate GDPNP-I containing elongation factor EFG/GDPNP, mRNA, and tRNA bound in the pe*/E state. 4V9J ; 3.86 ; 70S ribosome translocation intermediate GDPNP-II containing elongation factor EFG/GDPNP, mRNA, and tRNA bound in the pe*/E state. 7PHC ; 9.9 ; 70S ribosome with A*- and P/E-site tRNAs in chloramphenicol-treated Mycoplasma pneumoniae cells 7PAM ; 6.8 ; 70S ribosome with A*- and P/E-site tRNAs in Mycoplasma pneumoniae cells 7PIR ; 12.1 ; 70S ribosome with A*- and P/E-site tRNAs in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PHB ; 4.9 ; 70S ribosome with A- and P-site tRNAs in chloramphenicol-treated Mycoplasma pneumoniae cells 7PAL ; 4.7 ; 70S ribosome with A- and P-site tRNAs in Mycoplasma pneumoniae cells 7PIQ ; 9.7 ; 70S ribosome with A- and P-site tRNAs in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PAN ; 9.7 ; 70S ribosome with A/P- and P/E-site tRNAs in Mycoplasma pneumoniae cells 7PIA ; 13.6 ; 70S ribosome with A/P- and P/E-site tRNAs in spectinomycin-treated Mycoplasma pneumoniae cells 7PAO ; 7.0 ; 70S ribosome with EF-G, A*- and P/E-site tRNAs in Mycoplasma pneumoniae cells 7PIS ; 15.0 ; 70S ribosome with EF-G, A*- and P/E-site tRNAs in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PAQ ; 8.9 ; 70S ribosome with EF-G, A/P- and P/E-site tRNAs in Mycoplasma pneumoniae cells 7PIT ; 5.7 ; 70S ribosome with EF-G, A/P- and P/E-site tRNAs in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PIB ; 4.7 ; 70S ribosome with EF-G, A/P- and P/E-site tRNAs in spectinomycin-treated Mycoplasma pneumoniae cells 7PAR ; 8.2 ; 70S ribosome with EF-G, ap/P- and pe/E-site tRNAs in Mycoplasma pneumoniae cells 7PHA ; 8.5 ; 70S ribosome with EF-Tu-tRNA and P-site tRNA in chloramphenicol-treated Mycoplasma pneumoniae cells 7PAK ; 5.3 ; 70S ribosome with EF-Tu-tRNA and P-site tRNA in Mycoplasma pneumoniae cells 7PIP ; 9.3 ; 70S ribosome with EF-Tu-tRNA and P-site tRNA in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PI9 ; 6.3 ; 70S ribosome with EF-Tu-tRNA and P-site tRNA in spectinomycin-treated Mycoplasma pneumoniae cells 7PAJ ; 7.3 ; 70S ribosome with EF-Tu-tRNA, P- and E-site tRNAs in Mycoplasma pneumoniae cells 7PAH ; 9.5 ; 70S ribosome with P- and E-site tRNAs in Mycoplasma pneumoniae cells 7PH9 ; 8.7 ; 70S ribosome with P-site tRNA in chloramphenicol-treated Mycoplasma pneumoniae cells 7PAI ; 6.7 ; 70S ribosome with P-site tRNA in Mycoplasma pneumoniae cells 7PIO ; 9.5 ; 70S ribosome with P-site tRNA in pseudouridimycin-treated Mycoplasma pneumoniae cells 7PI8 ; 8.9 ; 70S ribosome with P-site tRNA in spectinomycin-treated Mycoplasma pneumoniae cells 7PAS ; 16.0 ; 70S ribosome with P/E-site tRNA in Mycoplasma pneumoniae cells 7PIC ; 9.1 ; 70S ribosome with P/E-site tRNA in spectinomycin-treated Mycoplasma pneumoniae cells 6BU8 ; 3.5 ; 70S ribosome with S1 domains 1 and 2 (Class 1) 6WNV ; 3.5 ; 70S ribosome without free 5S rRNA and with a perturbed PTC 5WDT ; 3.0 ; 70S ribosome-EF-Tu H84A complex with GppNHp 5WE6 ; 3.4 ; 70S ribosome-EF-Tu H84A complex with GTP and cognate tRNA 5WF0 ; 3.6 ; 70S ribosome-EF-Tu H84A complex with GTP and near-cognate tRNA (Complex C2) 5WFK ; 3.4 ; 70S ribosome-EF-Tu H84A complex with GTP and near-cognate tRNA (Complex C3) 5WFS ; 3.0 ; 70S ribosome-EF-Tu H84A complex with GTP and near-cognate tRNA (Complex C4) 5WE4 ; 3.1 ; 70S ribosome-EF-Tu wt complex with GppNHp 5NP6 ; 3.6 ; 70S structure prior to bypassing 5CZP ; 3.29996 ; 70S termination complex containing E. coli RF2 5DFE ; 3.09998 ; 70S termination complex containing E. coli RF2 6OGI ; 3.4 ; 70S termination complex with RF2 bound to the UAG codon. Rotated ribosome conformation (Structure V) 6OG7 ; 3.3 ; 70S termination complex with RF2 bound to the UGA codon. Non-rotated ribosome with RF2 bound (Structure II) 6OGF ; 3.9 ; 70S termination complex with RF2 bound to the UGA codon. Partially rotated ribosome with RF2 bound (Structure III). 6OGG ; 4.2 ; 70S termination complex with RF2 bound to the UGA codon. Rotated ribosome with RF2 bound (Structure IV). 4V4Z ; 4.51 ; 70S Thermus thermophilous ribosome functional complex with mRNA and E- and P-site tRNAs at 4.5A. 7AZS ; 3.1 ; 70S thermus thermophilus ribosome with bound antibiotic lead SEQ-569 7AZO ; 3.3 ; 70S thermus thermophilus ribosome with bound antibiotic lead SEQ-977 4V74 ; 17.0 ; 70S-fMetVal-tRNAVal-tRNAfMet complex in hybrid pre-translocation state (pre5b) 8CD1 ; 3.0 ; 70S-PHIKZ014 4ZSN ; 3.6 ; 70S-wild-type HigB toxin complex bound to a AAA lysine codon 6CTE ; 1.2 ; 77Se-NMR probes the protein environment of selenomethionine 2IWQ ; 1.8 ; 7th PDZ domain of Multiple PDZ Domain Protein MPDZ 6R5X ; 1.7 ; 8-bladed beta-propeller formed by four 2-bladed fragments 6R5Y ; 2.15 ; 8-bladed beta-propeller formed by two 4-bladed fragments 5ZND ; 3.0 ; 8-mer nanotube derived from 24-mer rHuHF nanocage 7UN1 ; 6.0 ; 8-nm repeat of the human sperm tip singlet microtubule 3I4M ; 3.7 ; 8-oxoguanine containing RNA polymerase II elongation complex D 3I4N ; 3.9 ; 8-oxoguanine containing RNA polymerase II elongation complex E 4R5N ; 1.8 ; 8-Tetrahydropyran-2-yl chromans: highly selective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors 4RRN ; 1.8 ; 8-Tetrahydropyran-2-yl chromans: highly selective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors 4RRO ; 1.8 ; 8-Tetrahydropyran-2-yl chromans: highly selective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors 4RRS ; 1.8 ; 8-Tetrahydropyran-2-yl chromans: highly selective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors 2X5V ; 3.0 ; 80 microsecond laue diffraction snapshot from crystals of a photosynthetic reaction centre 3 millisecond following photoactivation. 2X5U ; 3.0 ; 80 microsecond Laue diffraction snapshot from crystals of a photosynthetic reaction centre without illumination. 7MDZ ; 3.2 ; 80S rabbit ribosome stalled with benzamide-CHX 7LS2 ; 3.1 ; 80S ribosome from mouse bound to eEF2 (Class I) 7LS1 ; 3.3 ; 80S ribosome from mouse bound to eEF2 (Class II) 8CCS ; 1.97 ; 80S S. cerevisiae ribosome with ligands in hybrid-1 pre-translocation (PRE-H1) complex 8CDL ; 2.72 ; 80S S. cerevisiae ribosome with ligands in hybrid-2 pre-translocation (PRE-H2) complex 7UCK ; 2.8 ; 80S translation initiation complex with ac4c(-1) mRNA and Harringtonine 7QDZ ; 3.6 ; 80S-bound human SKI complex in the closed state 7QE0 ; 6.5 ; 80S-bound human SKI complex in the open state 7UYL ; 2.0 ; 850 Fab 7UYM ; 2.2 ; 850 Fab in complex with NANPNANPNANP peptide 5NMG ; 2.75 ; 868 TCR in complex with HLA A02 presenting SLYFNTIAVL 5NMF ; 2.89 ; 868 TCR in complex with HLA A02 presenting SLYNTIATL 5NME ; 2.94 ; 868 TCR in complex with HLA A02 presenting SLYNTVATL 5NMD ; 2.07 ; 868 TCR Specific for HLA A02 presenting HIV Epitope SLYNTVATL 8BPE ; 3.63 ; 8:1 binding of FcMR on IgM pentameric core 1U45 ; 2.01 ; 8oxoguanine at the pre-insertion site of the polymerase active site 1DYL ; 9.0 ; 9 ANGSTROM RESOLUTION CRYO-EM RECONSTRUCTION STRUCTURE OF SEMLIKI FOREST VIRUS (SFV) AND FITTING OF THE CAPSID PROTEIN STRUCTURE IN THE EM DENSITY 1FN2 ; 1.6 ; 9-AMINO-(N-(2-DIMETHYLAMINO)BUTYL)ACRIDINE-4-CARBOXAMIDE BOUND TO D(CGTACG)2 1RQY ; 1.55 ; 9-amino-[N-(2-dimethylamino)proply]-acridine-4-carboxamide bound to d(CGTACG)2 6R5Z ; 1.75 ; 9-bladed beta-propeller formed by three 3-bladed fragments 1S6R ; 2.24 ; 908R class c beta-lactamase bound to iodo-acetamido-phenyl boronic acid 8GLV ; 3.1 ; 96-nm repeat unit of doublet microtubules from Chlamydomonas reinhardtii flagella 8J07 ; 4.1 ; 96nm repeat of human respiratory doublet microtubule and associated axonemal complexes 8E8L ; 3.13 ; 9H2 Fab-poliovirus 1 complex 8E8S ; 2.73 ; 9H2 Fab-poliovirus 2 complex 8E8Z ; 3.15 ; 9H2 Fab-Sabin poliovirus 1 complex 8E8Y ; 2.5 ; 9H2 Fab-Sabin poliovirus 2 complex 8E8R ; 2.66 ; 9H2 Fab-Sabin poliovirus 3 complex 8E8X ; 2.91 ; 9H2 Fab-Sabin poliovirus 3 complex 460D ; 1.2 ; A ""HYDRAT-ION SPINE"" IN A B-DNA MINOR GROOVE 461D ; 1.5 ; A ""HYDRAT-ION SPINE"" IN A B-DNA MINOR GROOVE 397D ; 1.3 ; A 1.3 A RESOLUTION CRYSTAL STRUCTURE OF THE HIV-1 TRANS-ACTIVATION RESPONSE REGION RNA STEM REVEALS A METAL ION-DEPENDENT BULGE CONFORMATION 1TC1 ; 1.41 ; A 1.4 ANGSTROM CRYSTAL STRUCTURE FOR THE HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE OF TRYPANOSOMA CRUZI 5KKO ; 1.55 ; A 1.55A X-Ray Structure from Vibrio cholerae O1 biovar El Tor of a Hypothetical Protein 7KQU ; 1.579 ; A 1.58-A resolution crystal structure of ferric-hydroperoxo intermediate of L-tyrosine hydroxylase in complex with 3-fluoro-L-tyrosine 7KQS ; 1.677 ; A 1.68-A resolution 3-fluoro-L-tyrosine bound crystal structure of heme-dependent tyrosine hydroxylase 7KQT ; 1.835 ; A 1.84-A resolution crystal structure of heme-dependent L-tyrosine hydroxylase in complex with 3-fluoro-L-tyrosine and cyanide 5TTA ; 1.85 ; A 1.85A X-Ray Structure from Peptoclostridium difficile 630 of a Hypothetical Protein 7KQR ; 1.89 ; A 1.89-A resolution substrate-bound crystal structure of heme-dependent tyrosine hydroxylase from S. sclerotialus 3WG7 ; 1.9 ; A 1.9 angstrom radiation damage free X-ray structure of large (420KDa) protein by femtosecond crystallography 3NKB ; 1.916 ; A 1.9A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage 1OQM ; 2.1 ; A 1:1 complex between alpha-lactalbumin and beta1,4-galactosyltransferase in the presence of UDP-N-acetyl-galactosamine 5U4O ; 2.05 ; A 2.05A X-Ray Structureof A Bacterial Extracellular Solute-binding Protein, family 5 for Bacillus anthracis str. Ames 1HP7 ; 2.1 ; A 2.1 ANGSTROM STRUCTURE OF AN UNCLEAVED ALPHA-1-ANTITRYPSIN SHOWS VARIABILITY OF THE REACTIVE CENTER AND OTHER LOOPS 4OU2 ; 2.15 ; A 2.15 Angstroms X-ray crystal structure of E268A 2-aminomuconate 6-semialdehyde dehydrogenase catalytic intermediate from Pseudomonas fluorescens 4OUB ; 2.19 ; A 2.20 angstroms X-ray crystal structure of E268A 2-aminomucaonate 6-semialdehyde dehydrogenase catalytic intermediate from Pseudomonas fluorescens 3IGM ; 2.2 ; A 2.2A crystal structure of the AP2 domain of PF14_0633 from P. falciparum, bound as a domain-swapped dimer to its cognate DNA 1Y62 ; 2.45 ; A 2.4 crystal structure of conkunitzin-S1, a novel Kunitz-fold cone snail neurotoxin. 6VN1 ; 2.8 ; A 2.8 Angstrom Cryo-EM Structure of a Glycoprotein B-Neutralizing Antibody Complex Reveals a Critical Domain for Herpesvirus Fusion Initiation 7CPS ; ; A 2:1 stoichiometric complex of anticancer drug 4'-Epiadriamycin bound to parallel G-quadruplex DNA [d-(TTGGGGT)]4. 7CSK ; ; A 2:1 stoichiometric complex of anticancer drug Adriamycin bound to parallel G-quadruplex DNA [d-(TTGGGGT)]4. 3CQS ; 2.8 ; A 3'-OH, 2',5'-phosphodiester substitution in the hairpin ribozyme active site reveals similarities with protein ribonucleases 5OPQ ; 1.7 ; A 3,6-anhydro-D-galactosidase produced by Zobellia galactanivorans. This is an exo-lytic enzyme that hydrolyzes terminal 3,6-anhydro-D-galactose from the non-reducing end of carrageenan oligosaccharides. 2NWC ; 3.02 ; A 3.02 angstrom crystal structure of wild-type apo GroEL in a monoclinic space group 7KIP ; 3.39 ; A 3.4 Angstrom cryo-EM structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles 7B0N ; 3.7 ; A 3.7-angstrom structure of Yarrowia lipolytica complex I with an R121M mutation in NUCM. 1B37 ; 1.9 ; A 30 ANGSTROM U-SHAPED CATALYTIC TUNNEL IN THE CRYSTAL STRUCTURE OF POLYAMINE OXIDASE 1B5Q ; 1.9 ; A 30 ANGSTROM U-SHAPED CATALYTIC TUNNEL IN THE CRYSTAL STRUCTURE OF POLYAMINE OXIDASE 2KQO ; ; A 3D-structural model of unsulphated chondroitin from high-field NMR: 4-sulphation has little effect on backbone conformation 6KFU ; 2.2 ; A ACP-AMT Fusion Protein of Hybrid Polyketide/Non-Ribosomal Peptide Synthetase 3Q8W ; 3.64 ; A b-aminoacyl containing thiazolidine derivative and DPPIV complex 1NKE ; 1.8 ; A BACILLUS DNA POLYMERASE I PRODUCT COMPLEX BOUND TO A CYTOSINE-THYMINE MISMATCH AFTER A SINGLE ROUND OF PRIMER EXTENSION, FOLLOWING INCORPORATION OF DCTP. 1NK8 ; 1.9 ; A BACILLUS DNA POLYMERASE I PRODUCT COMPLEX BOUND TO A GUANINE-THYMINE MISMATCH AFTER A SINGLE ROUND OF PRIMER EXTENSION, FOLLOWING INCORPORATION OF DCTP. 1NKC ; 1.8 ; A BACILLUS DNA POLYMERASE I PRODUCT COMPLEX BOUND TO A GUANINE-THYMINE MISMATCH AFTER FIVE ROUNDS OF PRIMER EXTENSION, FOLLOWING INCORPORATION OF DCTP, DGTP, DTTP, AND DATP. 1NKB ; 2.0 ; A BACILLUS DNA POLYMERASE I PRODUCT COMPLEX BOUND TO A GUANINE-THYMINE MISMATCH AFTER THREE ROUNDS OF PRIMER EXTENSION, FOLLOWING INCORPORATION OF DCTP, DGTP, AND DTTP. 1NK9 ; 1.9 ; A BACILLUS DNA POLYMERASE I PRODUCT COMPLEX BOUND TO A GUANINE-THYMINE MISMATCH AFTER TWO ROUNDS OF PRIMER EXTENSION, FOLLOWING INCORPORATION OF DCTP AND DGTP. 2DYW ; 1.13 ; A Backbone binding DNA complex 7XVO ; 2.0 ; a bacteria protein complex 8HS8 ; 2.7 ; a bacteria protein complex 8CZJ ; 2.751 ; A bacteria Zrt/Irt-like protein in the apo state 5AED ; 1.91 ; A bacterial protein structure in glycoside hydrolase family 31 5AEE ; 1.85 ; A bacterial protein structure in glycoside hydrolase family 31 5AEG ; 1.85 ; A bacterial protein structure in glycoside hydrolase family 31. 2MC5 ; ; A bacteriophage transcription regulator inhibits bacterial transcription initiation by -factor displacement 2MC6 ; ; A bacteriophage transcription regulator inhibits bacterial transcription initiation by sigma-factor displacement 7B4P ; 2.7 ; A Bacteroidetes bacterium CuZn-superoxide dismutase with CuZn metalation 7B4O ; 1.41 ; A Bacteroidetes bacterium CuZn-superoxide dismutase with ZnZn metalation 1FNZ ; 2.05 ; A bark lectin from robinia pseudoacacia in complex with N-acetylgalactosamine 6L92 ; ; A basket type G-quadruplex in WNT DNA promoter 8F1S ; 2.1 ; A benzimidazole (DB1476) sequence-specific recognition of 5'-CGCAAAAAAGCG-3' in A-orientation 8F1V ; 2.1 ; A benzimidazole (DB1476) sequence-specific recognition of 5'-CGCAAAAAAGCG-3' in B-orientation 4PDW ; 3.0 ; A benzonitrile analogue inhibits rhinovirus replication 3T8V ; 1.8 ; A bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases 3T8W ; 2.0 ; A bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases 1XBH ; ; A BETA-HAIRPIN MIMIC FROM FCERI-ALPHA-CYCLO(L-262) 1C4B ; ; A BETA-HAIRPIN MIMIC FROM FCERI-ALPHA-CYCLO(RD-262) 1HAA ; ; A beta-Hairpin Structure in a 13-mer Peptide that Binds a-Bungarotoxin with High Affinity and Neutralizes its Toxicity 1HAJ ; ; A beta-Hairpin Structure in a 13-mer Peptide that Binds a-Bungarotoxin with High Affinity and Neutralizes its Toxicity 3CWO ; 3.1 ; A beta/alpha-barrel built by the combination of fragments from different folds 2DND ; 2.2 ; A BIFURCATED HYDROGEN-BONDED CONFORMATION IN THE D(A.T) BASE PAIRS OF THE DNA DODECAMER D(CGCAAATTTGCG) AND ITS COMPLEX WITH DISTAMYCIN 3EM2 ; 2.3 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6038 3EUI ; 2.2 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6042 in a large unit cell 3EQW ; 2.2 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6042 in small unit cell 3ERU ; 2.0 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6045 3ES0 ; 2.2 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6048 3ET8 ; 2.45 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6054 3EUM ; 1.78 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine BSU-6066 3NYP ; 1.179 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine ligand containing bis-3-fluoropyrrolidine end side chains 3NZ7 ; 1.1 ; A bimolecular anti-parallel-stranded Oxytricha nova telomeric quadruplex in complex with a 3,6-disubstituted acridine ligand containing bis-3-fluoropyrrolidine end side chains 3CE5 ; 2.5 ; A bimolecular parallel-stranded human telomeric quadruplex in complex with a 3,6,9-trisubstituted acridine molecule BRACO19 3VEQ ; 2.25 ; A binary complex betwwen bovine pancreatic trypsin and a engineered mutant trypsin inhibitor 1BKX ; 2.6 ; A BINARY COMPLEX OF THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE AND ADENOSINE FURTHER DEFINES CONFORMATIONAL FLEXIBILITY 2L8I ; ; A biocompatible backbone modification? - Structure and dynamics of a triazole-linked DNA duplex 7CC4 ; 2.0 ; A biodegradable plastic-degrading cutinase-like enzyme from the phyllosphere yeast Pseudozyma antarctica 7MEU ; 1.91 ; A biphenyl inhibitor of eIF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders 6RQM ; 3.0 ; A blocking anti-CTLA-4 Nanobody (KN044) complexed with CTLA-4 6PPS ; 2.8 ; A blue light illuminated LOV-PAS construct from the LOV-HK sensory protein from Brucella abortus (construct 15-273) 5XX3 ; 1.12 ; A BPTI-[5,55] variant with C14GA38G mutations 5XX5 ; 1.38 ; A BPTI-[5,55] variant with C14GA38I mutations 5XX4 ; 1.67 ; A BPTI-[5,55] variant with C14GA38K mutations 5XX2 ; 1.12 ; A BPTI-[5,55] variant with C14GA38L mutations 3GSJ ; 1.8 ; A Bulky Rhodium Complex Bound to an Adenosine-Adenosine DNA Mismatch 3GSK ; 1.6 ; A Bulky Rhodium Complex Bound to an Adenosine-Adenosine DNA Mismatch 5NYB ; 1.88 ; A C145A mutant of Nesterenkonia AN1 amidase bound to adipamide 5NY7 ; 1.31 ; A C145A mutant of Nesterenkonia AN1 amidase bound to nicotinamide 5NYE ; 1.55 ; A C145A mutant of Nesterenkonia AN1 amidase bound to propionamide 5NYC ; 1.51 ; A C145A mutant of Nesterenkonia AN1 amidase bound to propionitrile 5NXZ ; 1.21 ; A C145A mutant of Nesterenkonia AN1 amidase from the nitrilase superfamily 5NY2 ; 1.85 ; A C145A mutant of Nesterenkonia AN1 amidase from the nitrilase superfamily 5NZ5 ; 1.47 ; A C145S mutant of Nesterenkonia AN1 amidase from the nitrilase superfamily 5DKA ; 1.55 ; A C2HC zinc finger is essential for the activity of the RING ubiquitin ligase RNF125 3ZUA ; ; A C39-like domain 5IAU ; 1.781 ; A C69-family cysteine dipeptidase from Lactobacillus farciminis 5INR ; 1.652 ; A C69-family cysteine dipeptidase in complex with Ala-Pro from Lactobacillus farciminis 5INX ; 1.681 ; A C69-family cysteine dipeptidase in complex with Met and Ala from Lactobacillus farciminis 5LSW ; 2.15 ; A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin 8JIY ; 1.55 ; A carbohydrate binding domain of a putative chondroitinase 7NWP ; 2.163 ; A carbohydrate binding module family 9 (CBM9) from Caldicellulosiruptor kristjansonii in complex with cellobiose 7NWQ ; 2.231 ; A carbohydrate binding module family 9 (CBM9) from Caldicellulosiruptor kristjanssonii in complex with cellotriose 7NWO ; 2.7 ; A carbohydrate binding module family 9 (CBM9) from Caldicellulosiruptor kristjanssonii in complex with glucose 7NWN ; 1.97 ; A carbohydrate binding module family 9 (CBM9) from Caldicellulsiruptor kristjanssonii 7NN3 ; 1.88948 ; A carbohydrate esterase family 15 (CE15) glucuronoyl esterase from Caldicellulosiruptor kristjansonii 8QEF ; 2.16 ; A carbohydrate esterase family 15 (CE15) glucuronoyl esterase from Phocaeicola ATCC 8482 bound to novel ligand. 8Q6S ; 1.99 ; A carbohydrate esterase family 15 (CE15) glucuronoyl esterase from Phocaeicola vulgatus ATCC 8482 8QCL ; 1.84 ; A carbohydrate esterase family 15 (CE15) glucuronoyl esterase from Phocaeicola vulgatus ATCC 8482 4R59 ; 1.65 ; A Carbonic Anhydrase IX Mimic in Complex with a Carbohydrate-Based Sulfamate 4R5A ; 1.64 ; A Carbonic Anhydrase IX Mimic in Complex with a Carbohydrate-Based Sulfamate 4RIU ; 1.651 ; A Carbonic Anhydrase IX Mimic in Complex with a Saccharin-Based Inhibitor 4RIV ; 1.631 ; A Carbonic Anhydrase IX Mimic in Complex with Saccharin 1G49 ; 1.9 ; A CARBOXYLIC ACID BASED INHIBITOR IN COMPLEX WITH MMP3 1HY7 ; 1.5 ; A CARBOXYLIC ACID BASED INHIBITOR IN COMPLEX WITH MMP3 4UUI ; 1.79 ; A case study for twinned data analysis: multiple crystal forms of the enzyme N-acetyl-neuraminic lyase 1MBL ; 2.0 ; A catalytically-impaired class A beta-lactamase: 2 Angstroms crystal structure and kinetics of the Bacillus licheniformis E166A mutant 1CPD ; 2.2 ; A CATION BINDING MOTIF STABILIZES THE COMPOUND I RADICAL OF CYTOCHROME C PEROXIDASE 1CPE ; 2.2 ; A CATION BINDING MOTIF STABILIZES THE COMPOUND I RADICAL OF CYTOCHROME C PEROXIDASE 1CPF ; 2.2 ; A CATION BINDING MOTIF STABILIZES THE COMPOUND I RADICAL OF CYTOCHROME C PEROXIDASE 1CPG ; 2.2 ; A CATION BINDING MOTIF STABILIZES THE COMPOUND I RADICAL OF CYTOCHROME C PEROXIDASE 1L83 ; 1.7 ; A CAVITY-CONTAINING MUTANT OF T4 LYSOZYME IS STABILIZED BY BURIED BENZENE 1L84 ; 1.9 ; A CAVITY-CONTAINING MUTANT OF T4 LYSOZYME IS STABILIZED BY BURIED BENZENE 7X54 ; 3.9 ; A CBg-ParM filament with ADP 7X56 ; 3.5 ; A CBg-ParM filament with ADP 7X55 ; 8.6 ; A CBg-ParM filament with GTP and a short incubation time 7X59 ; 6.5 ; A CBg-ParM filament with GTP or GDPPi 5ZU6 ; 1.4 ; A CBM32 derived from alginate lyase B (AlyB-OU02) 6HSW ; 2.14734 ; A CE15 glucuronoyl esterase from Teredinibacter turnerae T7901 1HBV ; 2.3 ; A CHECK ON RATIONAL DRUG DESIGN. CRYSTAL STRUCTURE OF A COMPLEX OF HIV-1 PROTEASE WITH A NOVEL GAMMA-TURN MIMETIC 1OSH ; 1.8 ; A Chemical, Genetic, and Structural Analysis of the nuclear bile acid receptor FXR 8P2L ; 2.68 ; A CHIMERA construct containing human SARM1 ARM and SAM domains and C. elegans TIR domain. 4EXK ; 1.28 ; A chimera protein containing MBP fused to the C-terminal domain of the uncharacterized protein STM14_2015 from Salmonella enterica 3O3Y ; 1.35 ; A chimeric alpha+alpha/beta peptide based on the CHR domain sequence of gp41 1UZH ; 2.2 ; A CHIMERIC CHLAMYDOMONAS, SYNECHOCOCCUS RUBISCO ENZYME 2WD2 ; 1.49 ; A chimeric microtubule disruptor with efficacy on a taxane resistant cell line 6X0R ; 3.0 ; A Circular Permutant of the Tobacco Mosaic Virus (TMV) mutant Q101H 6X0Q ; 3.0 ; A Circular Permutant of the Tobacco Mosaic Virus (TMV) mutant Q101H coordinated with heme 5HPN ; 2.509 ; A circularly permuted PduA forming an icosahedral cage 5UBL ; 1.8 ; A circularly permuted version of PvdQ (cpPvdQ) 3IA3 ; 3.2 ; A cis-proline in alpha-hemoglobin stabilizing Protein directs the structural reorganization of alpha-hemoglobin 6M5P ; 1.25 ; A class C beta-lactamase 6M5H ; 1.2 ; A class C beta-lactamase mutant - Y150F 6M5Q ; 1.3 ; A class C beta-lactamase mutant - Y150F 5LCK ; 1.89 ; A Clickable Covalent ERK 1/2 Inhibitor 6V4S ; 3.55 ; A Closed pore conformation of a Pentameic ligand-gated ion channel with additional N-terminal domain 1QRG ; 1.72 ; A CLOSER LOOK AND THE ACTIVE SITE OF GAMMA-CARBONIC ANHYDRASES: HIGH RESOLUTION CRYSTALLOGRAPHIC STUDIES OF THE CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 1QRM ; 1.95 ; A CLOSER LOOK AT THE ACTIVE SITE OF GAMMA-CARBONIC ANHYDRASES: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 1QRE ; 1.46 ; A CLOSER LOOK AT THE ACTIVE SITE OF GAMMA-CARBONIC ANHYDRASES: HIGH RESOLUTION CRYSTALLOGRAPHIC STUDIES OF THE CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 1QRF ; 1.55 ; A CLOSER LOOK AT THE ACTIVE SITE OF GAMMA-CARBONIC ANHYDRASES: HIGH RESOLUTION CRYSTALLOGRAPHIC STUDIES OF THE CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 1QRL ; 1.85 ; A CLOSER LOOK AT THE ACTIVE SITE OF GAMMA-CARBONIC ANHYDRASES: HIGH RESOLUTION CRYSTALLOGRAPHIC STUDIES OF THE CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 7A1T ; 1.42 ; A collapsed hexameric state of a de novo coiled-coil assembly: CC-Type2-(GgLaId)4-W19BrPhe. 3H8C ; 2.5 ; A combined crystallographic and molecular dynamics study of cathepsin-L retro-binding inhibitors (compound 14) 3H89 ; 2.5 ; A combined crystallographic and molecular dynamics study of cathepsin-L retro-binding inhibitors(compound 4) 3H8B ; 1.8 ; A combined crystallographic and molecular dynamics study of cathepsin-L retro-binding inhibitors(compound 9) 1YXW ; 2.2 ; A common binding site for disialyllactose and a tri-peptide in the C-fragment of tetanus neurotoxin 1YYN ; 2.3 ; A common binding site for disialyllactose and a tri-peptide in the C-fragment of tetanus neurotoxin 2FSD ; 2.3 ; A Common Fold for the Receptor Binding Domains of Lactococcal Phages? The Crystal Structure of the Head Domain of Phage bIL170 1CEC ; 2.15 ; A COMMON PROTEIN FOLD AND SIMILAR ACTIVE SITE IN TWO DISTINCT FAMILIES OF BETA-GLYCANASES 1XYZ ; 1.4 ; A COMMON PROTEIN FOLD AND SIMILAR ACTIVE SITE IN TWO DISTINCT FAMILIES OF BETA-GLYCANASES 2C53 ; 1.8 ; A comparative study of uracil DNA glycosylases from human and herpes simplex virus type 1 2C56 ; 2.1 ; A comparative study of uracil DNA glycosylases from human and herpes simplex virus type 1 3GY2 ; 1.57 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY3 ; 1.7 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY4 ; 1.55 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY5 ; 1.57 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY7 ; 1.55 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY8 ; 1.75 ; A comparative study on the inhibition of bovine beta-trypsin by bis-benzamidines diminazene and pentamidine by X-ray crystallography and ITC 3GY6 ; 1.7 ; A comparative study on the inhibition of bovine beta-trypsin by the bis-benzamidines diminazene and pentamidine 1KB7 ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 1KB8 ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 1NIL ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 1NIM ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 1PAN ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 1PAO ; ; A COMPARISON OF NMR SOLUTION STRUCTURES OF THE RECEPTOR BINDING DOMAINS OF PSEUDOMONAS AERUGINOSA PILI STRAINS PAO, KB7, AND PAK: IMPLICATIONS FOR RECEPTOR BINDING AND SYNTHETIC VACCINE DESIGN 2HWB ; 3.0 ; A comparison of the anti-rhinoviral drug binding pocket in hrv14 and hrv1a 2HWC ; 3.0 ; A COMPARISON OF THE ANTI-RHINOVIRAL DRUG BINDING POCKET IN HRV14 AND HRV1A 2HWD ; 3.8 ; A COMPARISON OF THE ANTI-RHINOVIRAL DRUG BINDING POCKET IN HRV14 AND HRV1A 2HWE ; 3.8 ; A COMPARISON OF THE ANTI-RHINOVIRAL DRUG BINDING POCKET IN HRV14 AND HRV1A 2HWF ; 3.8 ; A COMPARISON OF THE ANTI-RHINOVIRAL DRUG BINDING POCKET IN HRV14 AND HRV1A 5I1B ; 2.1 ; A COMPARISON OF THE HIGH RESOLUTION STRUCTURES OF HUMAN AND MURINE INTERLEUKIN-1B 8I1B ; 2.4 ; A COMPARISON OF THE HIGH RESOLUTION STRUCTURES OF HUMAN AND MURINE INTERLEUKIN-1B 3LDH ; 3.0 ; A comparison of the structures of apo dogfish m4 lactate dehydrogenase and its ternary complexes 2SBT ; 2.8 ; A COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF SUBTILISIN BPN AND SUBTILISIN NOVO 6UMM ; 3.7 ; A complete structure of the ESX-3 translocon complex 7FD4 ; 2.4 ; A complete three-dimensional structure of the Lon protease translocating a protein substrate (conformation 1) 7FD5 ; 2.4 ; A complete three-dimensional structure of the Lon protease translocating a protein substrate (conformation 2) 3BYT ; 2.3 ; A complex between a variant of staphylococcal enterotoxin C3 and the variable domain of the murine T cell receptor beta chain 8.2 1HKN ; 2.0 ; A complex between acidic fibroblast growth factor and 5-amino-2-naphthalenesulfonate 3ML6 ; 3.5 ; a complex between Dishevelled2 and clathrin adaptor AP-2 6BCA ; 1.995 ; A Complex between PH Domain of LbcRhoGEF (AKAP-Lbc) and Activated RhoA Bound to a GTP Analog 6BCB ; 1.401 ; A Complex between PH Domain of p114RhoGEF and Activated RhoA Bound to a GTP Analog 6BC1 ; 2.9 ; A Complex between PH Domain of p190RhoGEF and Activated Rac1 Bound to a GTP Analog 6BC0 ; 2.198 ; A Complex between PH Domain of p190RhoGEF and Activated RhoA Bound to a GTP Analog 8CB2 ; 2.7 ; A complex of cagX and cagY components of Helicobacter pylori type IV secretion system 1AHW ; 3.0 ; A COMPLEX OF EXTRACELLULAR DOMAIN OF TISSUE FACTOR WITH AN INHIBITORY FAB (5G9) 3ZEB ; 2.2 ; A complex of GlpG with isocoumarin inhibitor covalently bonded to serine 201 and histidine 150 5AIT ; 3.4 ; A complex of of RNF4-RING domain, UbeV2, Ubc13-Ub (isopeptide crosslink) 5AIU ; 2.21 ; A complex of RNF4-RING domain, Ubc13-Ub (isopeptide crosslink) 5TCY ; 1.9 ; A complex of the synthetic siderophore analogue Fe(III)-5-LICAM with CeuE (H227L variant), a periplasmic protein from Campylobacter jejuni. 5A5D ; 1.74 ; A complex of the synthetic siderophore analogue Fe(III)-5-LICAM with the CeuE periplasmic protein from Campylobacter jejuni 5A5V ; 2.04 ; A complex of the synthetic siderophore analogue Fe(III)-6-LICAM with the CeuE periplasmic protein from Campylobacter jejuni 5AD1 ; 1.32 ; A complex of the synthetic siderophore analogue Fe(III)-8-LICAM with the CeuE periplasmic protein from Campylobacter jejuni 1UZX ; 1.85 ; A complex of the Vps23 UEV with ubiquitin 3STB ; 2.5 ; A complex of two editosome proteins and two nanobodies 2QCS ; 2.2 ; A complex structure between the Catalytic and Regulatory subunit of Protein Kinase A that represents the inhibited state 6PWC ; 4.9 ; A complex structure of arrestin-2 bound to neurotensin receptor 1 4AIS ; 2.0 ; A complex structure of BtGH84 4AIU ; 2.25 ; A complex structure of BtGH84 6ING ; 1.698 ; A complex structure of H25A mutant of glycosyltransferase with UDP 8IKW ; 1.94 ; A complex structure of PGIP-PG 6H5H ; ; A computationally designed dRP lyase domain reconstructed from two heterologous fragments 8E15 ; 2.41 ; A computationally stabilized hMPV F protein 5ZZK ; 2.64 ; A Con Artist: Phenylphenoxybenzamide is not a Glycosyltransferase Inhibitor 1IKF ; 2.5 ; A CONFORMATION OF CYCLOSPORIN A IN AQUEOUS ENVIRONMENT REVEALED BY THE X-RAY STRUCTURE OF A CYCLOSPORIN-FAB COMPLEX 3EY1 ; 1.6 ; A Conformational Transition in the Structure of a 2'-Thiomethyl-Modified DNA Visualized at High Resolution 3EY2 ; 1.04 ; A Conformational Transition in the Structure of a 2'-Thiomethyl-Modified DNA Visualized at High Resolution 3EY3 ; 1.25 ; A Conformational Transition in the Structure of a 2'-Thiomethyl-Modified DNA Visualized at High Resolution 3DA7 ; 2.25 ; A conformationally strained, circular permutant of barnase 6MJV ; ; A consensus human beta defensin 6J4I ; ; A conserved and buried edge-to-face aromatic interaction in SUMO is vital for the SUMO pathway 1Q8C ; 2.0 ; A conserved hypothetical protein from Mycoplasma genitalium shows structural homology to NusB proteins 3KXE ; 2.6 ; A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex 2AYS ; 1.86 ; A conserved non-metallic binding site in the C-terminal lobe of lactoferrin: Structure of the complex of C-terminal lobe of bovine lactoferrin with N-acetyl galactosamine at 1.86 A resolution 4PAM ; 2.101 ; A conserved phenylalanine as relay between the 5 helix and the GDP binding region of heterotrimeric G protein 4PAN ; 2.4 ; A conserved phenylalanine as relay between the 5 helix and the GDP binding region of heterotrimeric G protein 4PAO ; 2.003 ; A conserved phenylalanine as relay between the 5 helix and the GDP binding region of heterotrimeric G protein 4PAQ ; 2.0 ; A conserved phenylalanine as relay between the 5 helix and the GDP binding region of heterotrimeric G protein 4R0Z ; 2.005 ; A conserved phosphorylation switch controls the interaction between cadherin and beta-catenin in vitro and in vivo 4R10 ; 2.3 ; A conserved phosphorylation switch controls the interaction between cadherin and beta-catenin in vitro and in vivo 4R11 ; 2.789 ; A conserved phosphorylation switch controls the interaction between cadherin and beta-catenin in vitro and in vivo 1OK7 ; 1.65 ; A Conserved protein binding-site on Bacterial Sliding Clamps 6EJ5 ; 3.34 ; A conserved structural element in the RNA helicase UPF1 regulates its catalytic activity in an isoform-specific manner 282D ; 2.4 ; A CONTINOUS TRANSITION FROM A-DNA TO B-DNA IN THE 1:1 COMPLEX BETWEEN NOGALAMYCIN AND THE HEXAMER DCCCGGG 7OGL ; 3.4 ; A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. apo-PNPase 7OGK ; 3.4 ; A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. PNPase-3'ETS(leuZ) 7OGM ; 3.7 ; A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation. PNPase-3'ETS(leuZ)-Hfq 1OPZ ; ; A core mutation affecting the folding properties of a soluble domain of the ATPase protein CopA from Bacillus subtilis 1OQ3 ; ; A core mutation affecting the folding properties of a soluble domain of the ATPase protein CopA from Bacillus subtilis 2KN5 ; ; A Correspondence Between Solution-State Dynamics of an Individual Protein and the Sequence and Conformational Diversity of its Family 2K0E ; ; A Coupled Equilibrium Shift Mechanism in Calmodulin-Mediated Signal Transduction 1QWH ; 1.36 ; a covalent dimer of transthyretin that affects the amyloid pathway 148L ; 1.9 ; A COVALENT ENZYME-SUBSTRATE INTERMEDIATE WITH SACCHARIDE DISTORTION IN A MUTANT T4 LYSOZYME 1LQT ; 1.05 ; A covalent modification of NADP+ revealed by the atomic resolution structure of FprA, a Mycobacterium tuberculosis oxidoreductase 2QK7 ; 2.4 ; A covalent S-F heterodimer of staphylococcal gamma-hemolysin 7WKJ ; 1.5 ; A COVID-19 T-cell response detection method based on a newly identified human CD8+ T cell epitope from SARS-CoV-2-Hubei Province, 2021. 5ING ; 2.45 ; A crotonyl-CoA reductase-carboxylase independent pathway for assembly of unusual alkylmalonyl-CoA polyketide synthase extender unit 2RPN ; ; A crucial role for high intrinsic specificity in the function of yeast SH3 domains 5B2K ; 2.75 ; A crucial role of Cys218 in the stabilization of an unprecedented auto-inhibition form of MAP2K7 5B2L ; 2.1 ; A crucial role of Cys218 in the stabilization of an unprecedented auto-inhibition form of MAP2K7 5B2M ; 3.06 ; A crucial role of Cys218 in the stabilization of an unprecedented auto-inhibition form of MAP2K7 8HIL ; 3.57 ; A cryo-EM structure of B. oleracea RNA polymerase V at 3.57 Angstrom 8HIM ; 2.8 ; A cryo-EM structure of B. oleracea RNA polymerase V elongation complex at 2.73 Angstrom 8HYJ ; 4.3 ; A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex 5ZA0 ; 2.0 ; A cryo-protectant induces the conformational change of glyceraldehyde-3-phosphate dehydrogenase 6ES4 ; 2.2 ; A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets 4K92 ; 2.005 ; A Cryptic TOG Domain with a Distinct Architecture Underlies CLASP-Dependent Bipolar Spindle Formation 4RUB ; 2.7 ; A CRYSTAL FORM OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE FROM NICOTIANA TABACUM IN THE ACTIVATED STATE 3SJ2 ; 1.36 ; A Crystal Structure of a Model of the Repeating r(CGG) Transcript Found in Fragile X Syndrome 7F0S ; 2.6 ; A crystal structure of alphavirus nonstructural protein 4 (nsP4) reveals an intrinsically 1dynamic RNA-dependent RNA polymerase 7VB4 ; 1.86 ; A crystal structure of alphavirus nonstructural protein 4 (nsP4) reveals an intrinsically dynamic RNA-dependent RNA polymerase 5X88 ; 1.76 ; A crystal structure of cutinases from Malbranchea cinnamomea 6WAK ; 2.4 ; A crystal structure of EGFR(T790M/V948R) in complex with LN3754 6KK9 ; 2.2 ; A Crystal structure of OspA mutant 6KWJ ; 1.94 ; A Crystal Structure of OspA mutant 6KWU ; 1.43 ; A Crystal Structure of OspA mutant 6KWV ; 1.37 ; A Crystal Structure of OspA mutant 6LJY ; 1.5 ; A Crystal Structure of OspA mutant 7FDD ; 2.9 ; A Crystal structure of OspA mutant 2P54 ; 1.79 ; a crystal structure of PPAR alpha bound with SRC1 peptide and GW735 4GDF ; 2.8 ; A Crystal Structure of SV40 Large T Antigen 1SZP ; 3.25 ; A Crystal Structure of the Rad51 Filament 3OTJ ; 2.15 ; A Crystal Structure of Trypsin Complexed with BPTI (Bovine Pancreatic Trypsin Inhibitor) by X-ray/Neutron Joint Refinement 3OTJ ; 1.6 ; A Crystal Structure of Trypsin Complexed with BPTI (Bovine Pancreatic Trypsin Inhibitor) by X-ray/Neutron Joint Refinement 227D ; 2.2 ; A CRYSTALLOGRAPHIC AND SPECTROSCOPIC STUDY OF THE COMPLEX BETWEEN D(CGCGAATTCGCG)2 AND 2,5-BIS(4-GUANYLPHENYL)FURAN, AN ANALOGUE OF BERENIL. STRUCTURAL ORIGINS OF ENHANCED DNA-BINDING AFFINITY 1FX1 ; 2.0 ; A CRYSTALLOGRAPHIC STRUCTURAL STUDY OF THE OXIDATION STATES OF DESULFOVIBRIO VULGARIS FLAVODOXIN 1HRS ; 2.6 ; A CRYSTALLOGRAPHIC STUDY OF HAEM BINDING TO FERRITIN 283D ; 2.3 ; A CURVED RNA HELIX INCORPORATING AN INTERNAL LOOP WITH G-A AND A-A NON-WATSON-CRICK BASE PAIRING 5H5O ; 2.122 ; A cyclic-GMP-dependent signalling pathway regulates bacterial phytopathogenesis 5ITI ; 1.95 ; A cynobacterial PP2C (tPphA) structure 3G8Q ; 2.4 ; A cytidine deaminase edits C-to-U in transfer RNAs in archaea 4YE1 ; 1.39 ; A cytochrome c plus calixarene structure - alternative ligand binding mode 6NMY ; 3.301 ; A Cytokine-receptor complex 2GW0 ; 1.55 ; A D(TGGGGT)- sodium and calcium complex. 3EHB ; 2.32 ; A D-Pathway Mutation Decouples the Paracoccus Denitrificans Cytochrome c Oxidase by Altering the side chain orientation of a distant, conserved Glutamate 4D1U ; 1.8 ; A D120A mutant of VIM-7 from Pseudomonas aeruginosa 7N2B ; 3.221 ; A DARPin semi-rigidly fused to the 3TEL crystallization chaperone 4DZM ; 1.94 ; A de novo designed Coiled Coil CC-Di 4DZN ; 1.59 ; A de novo designed Coiled Coil CC-pIL 4DZL ; 2.3 ; A de novo designed Coiled Coil CC-Tri 4DZK ; 1.79 ; A de novo designed Coiled Coil CC-Tri-N13 4PNA ; 2.1 ; A de novo designed heptameric coiled coil CC-Hept 5F2Y ; 2.1 ; A de novo designed heptameric coiled coil CC-Hept-homoCys-H-E 5EZ8 ; 1.95 ; A de novo designed heptameric coiled coil CC-Hept-I-C-I 5EZ9 ; 1.8 ; A de novo designed heptameric coiled coil CC-Hept-I-H-I 5EZE ; 1.8 ; A de novo designed heptameric coiled coil CC-Hept-I18betaMeCys-L22H-I25E 5EZA ; 1.76 ; A de novo designed heptameric coiled coil CC-Hept-I18C-L22H 5EZC ; 1.8 ; A de novo designed heptameric coiled coil CC-Hept-I18C-L22H-I25E 6EIK ; 1.52 ; A de novo designed heptameric coiled coil CC-Hept-I24E 7Q1T ; 1.68 ; A de novo designed hetero-dimeric antiparallel coiled coil apCC-Di-AB 7Q1S ; 1.99 ; A de novo designed hetero-dimeric antiparallel coiled coil apCC-Di-AB_var 4PN9 ; 2.2 ; A de novo designed hexameric coiled coil CC-Hex2 6EIZ ; 1.85 ; A de novo designed hexameric coiled coil CC-Hex2 with farnesol bound in the channel. 4PNB ; 2.052 ; A de novo designed hexameric coiled coil CC-Hex3. 5EHB ; 3.19 ; A de novo designed hexameric coiled-coil peptide with iodotyrosine 7Q1R ; 1.08 ; A de novo designed homo-dimeric antiparallel coiled coil apCC-Di 7BIM ; 1.64 ; A de novo designed nonameric coiled coil, CC-Type2-(GgLaId)4 4PN8 ; 2.0 ; A de novo designed pentameric coiled coil CC-Pent. 4PND ; 1.75 ; A de novo designed pentameric coiled coil CC-Pent_Variant 6M6Z ; 5.9 ; A de novo designed transmembrane nanopore, TMH4C4 6Z1L ; 2.29 ; A de novo Enzyme for the Morita-Baylis-Hillman Reaction BH32.12 6Z1K ; 1.48 ; A de novo Enzyme for the Morita-Baylis-Hillman Reaction BH32.6 7O1D ; 1.8 ; A de novo Enzyme for the Morita-Baylis-Hillman Reaction BH32.7 7BAU ; 1.42 ; A de novo pentameric coiled-coil assembly: CC-Type2-(TgIaId)4-W19BrPhe. 7BAS ; 1.1 ; A de novo pentameric coiled-coil assembly: CC-Type2-(TgLaId)4-W19BrPhe. 7BAV ; 1.3 ; A de novo pentameric coiled-coil assembly: CC-Type2-(TgLaId)4-W19BrPhe. 7DMF ; 2.201 ; A de novo protein that rigidly extends the structure of tVHS-like domain in tepsin with a new designed domain 6GJK ; 1.47 ; A degradation product of PD 404182 (P2742) bound to Histone Deacetylase-like Amidohydrolase 4ZBC ; 2.0 ; A dehydrated form of glucose isomerase collected at 100K. 4ZB0 ; 2.0 ; A dehydrated form of glucose isomerase collected at room temperature. 2JAB ; 1.7 ; A designed ankyrin repeat protein evolved to picomolar affinity to Her2 6IWJ ; ; A designed domain swapped dimer 4HB1 ; 2.9 ; A DESIGNED FOUR HELIX BUNDLE PROTEIN. 6MCT ; 1.9 ; A designed pentameric membrane protein stabilized by van der Waals interaction 3R5K ; 2.86 ; A designed redox-controlled caspase-7 1IFH ; 2.8 ; A DETAILED ANALYSIS OF THE FREE AND BOUND CONFORMATION OF AN ANTIBODY: X-RAY STRUCTURES OF ANTI-PEPTIDE FAB 17(SLASH)9 AND THREE DIFFERENT FAB-PEPTIDE COMPLEXES 2SCU ; 2.3 ; A detailed description of the structure of Succinyl-COA synthetase from Escherichia coli 1SZR ; 2.15 ; A Dimer interface mutant of ornithine decarboxylase reveals structure of gem diamine intermediate 8BFE ; 2.1 ; A dimeric de novo coiled-coil assembly: PK-2 (CC-TypeN-LaUbUcLd) 6QK9 ; 2.231 ; A dimeric ubiquitin formed by a single amino acid substitution 5DA1 ; 2.75 ; A Dimerization-Dependent Mechanism Drives PRRSV NSP11 Functions As a Beta Interferon Antagonist and Endoribonuclease 1FS5 ; 1.73 ; A DISCOVERY OF THREE ALTERNATE CONFORMATIONS IN THE ACTIVE SITE OF GLUCOSAMINE-6-PHOSPHATE ISOMERASE 2ND4 ; ; A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property 5NZB ; 1.695 ; A disulfide switch determines proteolytic resistance in the birch pollen allergen Bet v 2 5NZC ; 1.999 ; A disulfide switch determines proteolytic resistance in the birch pollen allergen Bet v 2 2KJI ; ; A divergent ins protein in c. elegans structurally resemble insulin and activates the human insulin receptor 6M7Z ; 2.5 ; A divergent kinase lacking the glycine-rich loop regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole 1N4L ; 2.0 ; A DNA analogue of the polypurine tract of HIV-1 3NAO ; 5.03 ; A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit Cell 309D ; 2.6 ; A DNA DECAMER WITH A STICKY END: THE CRYSTAL STRUCTURE OF D-CGACGATCGT 1D89 ; 2.3 ; A DNA DODECAMER CONTAINING AN ADENINE TRACT CRYSTALLIZES IN A UNIQUE LATTICE AND EXHIBITS A NEW BEND 1SP6 ; ; A DNA duplex containing a cholesterol adduct (alpha-anomer) 1SSJ ; ; A DNA DUPLEX CONTAINING A CHOLESTEROL ADDUCT (BETA-ANOMER) 6TZQ ; 2.29 ; A DNA G-quadruplex/i-motif hybrid 6TZR ; 2.4 ; A DNA G-quadruplex/i-motif hybrid 6TZS ; 2.6 ; A DNA i-motif/duplex hybrid 2VZB ; 2.3 ; A Dodecameric Thioferritin in the Bacterial Domain, Characterization of the Bacterioferritin-Related Protein from Bacteroides fragilis 3NUH ; 3.103 ; A domain insertion in E. coli GyrB adopts a novel fold that plays a critical role in gyrase function 3I8N ; 2.145 ; A domain of a conserved functionally known protein from Vibrio parahaemolyticus RIMD 2210633. 3I8O ; 2.638 ; A domain of a functionally unknown protein from Methanocaldococcus jannaschii DSM 2661. 1Q0P ; 1.8 ; A domain of Factor B 7W2H ; 3.796 ; A double cysteine variant of the sigma-1 receptor from Xenopus laevis complexed with S1RA 5G1L ; 1.7 ; A double mutant of DsbG engineered for denitrosylation 5C58 ; 2.795 ; A double mutant of serratia marcescens hemophore receptor HasR in complex with its hemophore HasA and heme 4N4S ; 2.2 ; A Double Mutant Rat Erk2 in Complex With a Pyrazolo[3,4-d]pyrimidine Inhibitor 7BFI ; 2.44 ; A double-histidine mutant of HSP47 slows down client release at low pH 7TZC ; 2.45 ; A drug and ATP binding site in type 1 ryanodine receptor 3O2P ; 2.233 ; A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB) 3O6B ; 3.1 ; A Dual E3 Mechanism for Rub1 Ligation to Cdc53: Dcn1(P)-Cdc53(WHB) low resolution 7V1T ; 2.562 ; A dual Inhibitor Against Main Protease 1T31 ; 1.9 ; A Dual Inhibitor of the Leukocyte Proteases Cathepsin G and Chymase with Therapeutic Efficacy in Animals Models of Inflammation 1T32 ; 1.85 ; A Dual Inhibitor of the Leukocyte Proteases Cathepsin G and Chymase with Therapeutic Efficacy in Animals Models of Inflammation 7ED5 ; 2.98 ; A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase 2FY1 ; ; A dual mode of RNA recognition by the RBMY protein 1SJK ; ; A DUPLEX DNA WITH AN ABASIC SITE IN A DA TRACT, ALPHA FORM, NMR, MINIMIZED AVERAGE STRUCTURE 1SJL ; ; A DUPLEX DNA WITH AN ABASIC SITE IN A DA TRACT, BETA FORM, NMR, MINIMIZED AVERAGE STRUCTURE 4D1V ; 1.7 ; A F218Y mutant of VIM-7 from Pseudomonas aeruginosa 6NOV ; 2.14 ; A Fab derived from ixekizumab 2WDB ; 2.03 ; A family 32 carbohydrate-binding module, from the Mu toxin produced by Clostridium perfringens, in complex with beta-D-glcNAc-beta(1,2) mannose 2W1U ; 2.0 ; A family 32 carbohydrate-binding module, from the Mu toxin produced by Clostridium perfringens, in complex with beta-D-glcNAc-beta(1,3) galNAc 7ZQU ; 1.75 ; A fast recovering full-length LOV protein (DsLOV) from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) - C72A mutant 6GBA ; 1.9 ; A fast recovering full-length LOV protein (DsLOV) from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) - M49A mutant 6GAY ; 1.86 ; A fast recovering full-length LOV protein (DsLOV) from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) - M49I mutant 6GB3 ; 1.752 ; A fast recovering full-length LOV protein (DsLOV) from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) - M49S mutant 6GBV ; 1.63 ; A fast recovering full-length LOV protein (DsLOV) from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) - M49T mutant 7DMS ; 1.96 ; A Fe(II)-binding effector of Yersinia pseudotuberculosis 2P4Z ; 2.1 ; A Ferredoxin-like Metallo-beta-lactamase Superfamily Protein from Thermoanaerobacter tengcongensis 1BMW ; ; A fibronectin type III fold in plant allergens: The solution structure of Phl PII from timothy grass pollen, NMR, 38 STRUCTURES 1ORO ; 2.4 ; A FLEXIBLE LOOP AT THE DIMER INTERFACE IS A PART OF THE ACTIVE SITE OF THE ADJACENT MONOMER OF ESCHERICHIA COLI OROTATE PHOSPHORIBOSYLTRANSFERASE 6F2D ; 4.2 ; A FliPQR complex forms the core of the Salmonella type III secretion system export apparatus. 1PX6 ; 2.1 ; A folding mutant of human class pi glutathione transferase, created by mutating aspartate 153 of the wild-type protein to asparagine 1PX7 ; 2.03 ; A folding mutant of human class pi glutathione transferase, created by mutating aspartate 153 of the wild-type protein to glutamate 1MD3 ; 2.03 ; A folding mutant of human class pi glutathione transferase, created by mutating glycine 146 of the wild-type protein to alanine 1MD4 ; 2.1 ; A folding mutant of human class pi glutathione transferase, created by mutating glycine 146 of the wild-type protein to valine 4ZB5 ; 2.0 ; A form of glucose isomerase collected at 100K. 1GM0 ; ; A Form of the Pheromone-Binding Protein from Bombyx mori 1P8F ; 1.85 ; A four location model to explain the stereospecificity of proteins. 1PB1 ; 1.7 ; A four location model to explain the stereospecificity of proteins. 1MKO ; 2.18 ; A Fourth Quaternary Structure of Human Hemoglobin A at 2.18 A Resolution 5T5S ; 2.202 ; A fragment of a human tRNA synthetase 5T76 ; 2.0 ; A fragment of a human tRNA synthetase 5IMU ; 1.9 ; A fragment of conserved hypothetical protein Rv3899c (residues 184-410) from Mycobacterium tuberculosis 2XNY ; 7.5 ; A fragment of streptococcal M1 protein in complex with human fibrinogen 8RZW ; 2.02 ; A fragment-based inhibitor of SHP2 8RZY ; 1.91 ; A fragment-based inhibitor of SHP2 8S01 ; 2.17 ; A fragment-based inhibitor of SHP2 8S04 ; 1.89 ; A fragment-based inhibitor of SHP2 8S06 ; 2.19 ; A fragment-based inhibitor of SHP2 8S07 ; 1.83 ; A fragment-based inhibitor of SHP2 8S0H ; 1.99 ; A fragment-based inhibitor of SHP2 8S0I ; 1.929 ; A fragment-based inhibitor of SHP2 8S0J ; 1.89 ; A fragment-based inhibitor of SHP2 8S0K ; 1.84 ; A fragment-based inhibitor of SHP2 8S0O ; 1.834 ; A fragment-based inhibitor of SHP2 8S0P ; 2.0 ; A fragment-based inhibitor of SHP2 8S0Q ; 1.872 ; A fragment-based inhibitor of SHP2 8S0S ; 1.94 ; A fragment-based inhibitor of SHP2 5DQY ; 1.4 ; A fully oxidized human thioredoxin 2JTK ; ; A functional domain of a Wnt signal protein 1G6R ; 2.8 ; A FUNCTIONAL HOT SPOT FOR ANTIGEN RECOGNITION IN A SUPERAGONIST TCR/MHC COMPLEX 7SHX ; ; A functional SNP regulates E-cadherin expression by dynamically remodeling the 3D structure of a promoter-associated non-coding RNA transcript, NMR, minimized average structure 6M5X ; 2.05991 ; A fungal glyceraldehyde-3-phosphate dehydrogenase with self-resistance to inhibitor heptelidic acid 8H59 ; 2.15 ; A fungal MAP kinase in complex with an inhibitor 3A1M ; 2.0 ; A fusion protein of a beta helix region of gene product 5 and the foldon region of bacteriophage T4 2KQG ; ; A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics 2KQH ; ; A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics 1K51 ; 1.8 ; A G55A Mutation Induces 3D Domain Swapping in the B1 Domain of Protein L from Peptostreptococcus magnus 3QI2 ; 2.797 ; A Galpha P-loop mutation prevents transition to the activated state: G42R bound to RGS14 GoLoco 3QE0 ; 3.0 ; A Galpha-i1 P-loop mutation prevents transition to the activated state 1G0U ; 2.4 ; A GATED CHANNEL INTO THE PROTEASOME CORE PARTICLE 3UPA ; 1.8 ; A general strategy for the generation of human antibody variable domains with increased aggregation resistance 3UPC ; 2.8 ; A general strategy for the generation of human antibody variable domains with increased aggregation resistance 2DD7 ; 1.9 ; A GFP-like protein from marine copepod, Chiridius poppei 7Z64 ; 1.31 ; A GH18 from haloalkaliphilic bacterium unveils environment-dependent variations in the catalytic machinery of chitinases 7Z65 ; 1.108 ; A GH18 from haloalkaliphilic bacterium unveils environment-dependent variations in the catalytic machinery of chitinases 5H7T ; 1.19 ; A GH19 chitinase domain from the Cryptomeria japnonica pollen (CJP-4) allergen 8BDP ; 1.47 ; A GH20 family sulfoglycosidase Bt4394 in complex with NAG-thiazoline and sulfite 5OHT ; 1.87 ; A GH31 family sulfoquinovosidase from E. coli in complex with aza-sugar inhibitor IFGSQ 6PNR ; 1.9 ; A GH31 family sulfoquinovosidase from E. rectale in complex with aza-sugar inhibitor IFGSQ 5OHY ; 1.77 ; A GH31 family sulfoquinovosidase in complex with aza-sugar inhibitor IFGSQ 5OHS ; 1.97 ; A GH31 family sulfoquinovosidase mutant D455N in complex with pNPSQ 5M77 ; 1.46 ; a GH76 family enzyme structure 3MFQ ; 2.598 ; A Glance into the Metal Binding Specificity of TroA: Where Elaborate Behaviors Occur in the Active Center 7Q5I ; 1.8 ; A glucose-based molecular rotor probes the catalytic site of glycogen phosphorylase. 1HPG ; 1.5 ; A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding 3EXU ; 1.81 ; A glycoside hydrolase family 11 xylanase with an extended thumb region 7BWG ; 2.85 ; A Glycoside Hydrolase Family 20 beta-N-Acetylglucosaminidase 6IFE ; 1.804 ; A Glycoside Hydrolase Family 43 beta-Xylosidase 5HQB ; 1.8 ; A Glycoside Hydrolase Family 97 enzyme (E480Q) in complex with Panose from Pseudoalteromonas sp. strain K8 5HQ4 ; 1.926 ; A Glycoside Hydrolase Family 97 enzyme from Pseudoalteromonas sp. strain K8 5HQA ; 1.747 ; A Glycoside Hydrolase Family 97 enzyme in complex with Acarbose from Pseudoalteromonas sp. strain K8 5HQC ; 2.001 ; A Glycoside Hydrolase Family 97 enzyme R171K variant from Pseudoalteromonas sp. strain K8 5L77 ; 1.24 ; A glycoside hydrolase mutant with an unreacted activity based probe bound 6INF ; 1.69 ; a glycosyltransferase complex with UDP 6INI ; 1.7 ; a glycosyltransferase complex with UDP and the product 6INH ; 2.1 ; A glycosyltransferase with UDP and the substrate 4D1W ; 1.4 ; A H224Y mutant for VIM-7 from Pseudomonas aeruginosa 190L ; 2.0 ; A HELIX INITIATION SIGNAL IN T4 LYSOZYME IDENTIFIED BY POLYALANINE MUTAGENESIS 191L ; 1.95 ; A HELIX INITIATION SIGNAL IN T4 LYSOZYME IDENTIFIED BY POLYALANINE MUTAGENESIS 192L ; 1.9 ; A HELIX INITIATION SIGNAL IN T4 LYSOZYME IDENTIFIED BY POLYALANINE MUTAGENESIS 7BAW ; 1.71 ; A heptameric barrel state of a de novo coiled-coil assembly: CC-Type2-(GgIaId)4 7NFP ; 1.43 ; A heptameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-I17K 7NFN ; 1.45 ; A heptameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-L21N-I24N. 7NFJ ; 1.19 ; A heptameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-L28Y. 7NFH ; 1.62 ; A heptameric barrel state of a de novo coiled-coil assembly: CC-Type2-(MaId)4. 3CK4 ; 1.7 ; A heterospecific leucine zipper tetramer 3CRP ; 1.7 ; A heterospecific leucine zipper tetramer 6F2R ; 3.9 ; A heterotetramer of human HspB2 and HspB3 8QP0 ; 11.2 ; A hexamer pore in the S-layer of Sulfolobus acidocaldarius formed by SlaA protein 8B16 ; 1.55 ; A hexameric barrel state of a de novo coiled-coil assembly: CC-Pent2-I17Q 7BAT ; 1.77 ; A hexameric barrel state of a de novo coiled-coil assembly: CC-Type2-(GgIaId)4 7NFO ; 1.37 ; A hexameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-I17C. 7NFG ; 1.09 ; A hexameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-L14A. 8A09 ; 1.35 ; A hexameric barrel state of a de novo coiled-coil assembly: CC-Type2-(QgLaId)4 7BO8 ; 1.84 ; A hexameric de novo coiled-coil assembly: CC-Type2-(VaYd)4-Y3F-W19(BrPhe)-Y24F. 7BO9 ; 1.56 ; A hexameric de novo coiled-coil assembly: CC-Type2-(VaYd)4-Y3F-W19(BrPhe). 7BOA ; 1.65 ; A hexameric de novo coiled-coil assembly: CC-Type2-(YaFd)4-W19(BrPhe). 5JY4 ; 2.11 ; A high magnesium structure of the isochorismate synthase, EntC 3D7D ; 1.69 ; A high resolution crystal structure of human glutamate carboxypeptidase II (GCPII) in a complex with DCFBD, a urea-based inhibitor 3D7H ; 1.55 ; A high resolution crystal structure of human glutamate carboxypeptidase II (GCPII) in a complex with DCIBzL, a urea-based inhibitor 3D7F ; 1.54 ; A high resolution crystal structure of human glutamate carboxypeptidase II (GCPII) in a complex with DCIT, a urea-based inhibitor 3D7G ; 1.75 ; A high resolution crystal structure of human glutamate carboxypeptidase II (GCPII) in a complex with DCMC, a urea-based inhibitor 2OR4 ; 1.62 ; A high resolution crystal structure of human glutamate carboxypeptidase II in complex with quisqualic acid 1S2R ; 1.53 ; A High Resolution Crystal Structure of [d(CGCAAATTTGCG)]2 5IVB ; 1.389 ; A High Resolution Structure of a Linked KDM5A Jmj Domain with Alpha-Ketoglutarate 4JL5 ; 1.24 ; A high resolution structure of Aquifex Adenylate kinase with 2 ADP's 4MCS ; 1.83 ; A high resolution structure of human glutamate carboxypeptidase II (GCPII) His475Tyr variant in complex with glutamic acid 2PVW ; 1.71 ; A high resolution structure of human glutamate carboxypeptidase II (GCPII) in complex with 2-(phosphonomethyl)pentanedioic acid (2-PMPA) 4MCP ; 1.65 ; A high resolution structure of human glutamate carboxypeptidase II (GCPII) in complex with folyl-gamma-L-glutamic acid (pteroyldi-gamma-L-glutamic acid) 4MCQ ; 2.0 ; A high resolution structure of human glutamate carboxypeptidase II (GCPII) in complex with folyldi-gamma-L-glutamic acid (pteroyltri-gamma-L-glutamic acid) 4MCR ; 1.65 ; A high resolution structure of human glutamate carboxypeptidase II (GCPII) in complex with folyltri-gamma-L-glutamic acid (pteroyltetra-gamma-L-glutamic acid) 2OOT ; 1.64 ; A High Resolution Structure of Ligand-free Human Glutamate Carboxypeptidase II 2IH9 ; 2.0 ; A high-dose crystal structure of a recombinant Melanocarbus albomyces laccase 6NIY ; 3.34 ; A high-resolution cryo-electron microscopy structure of a calcitonin receptor-heterotrimeric Gs protein complex 6OJD ; 1.99 ; A high-resolution crystal structure of covalent complex of NocB thioesterase domain with fluorophosphonate nocardicin G analog 6OJC ; 1.94 ; A high-resolution crystal structure of NocB thioesterase domain from Nocardicin cluster 2KOD ; ; A high-resolution NMR structure of the dimeric C-terminal domain of HIV-1 CA 6IUS ; 2.12 ; A higher kcat Rubisco 3HSS ; 1.9 ; A higher resolution structure of Rv0554 from Mycobacterium tuberculosis complexed with malonic acid 1Q1M ; 2.6 ; A Highly Efficient Approach to a Selective and Cell Active PTP1B inhibitors 7LMX ; 1.8 ; A HIGHLY SPECIFIC INHIBITOR OF INTEGRIN ALPHA-V BETA-6 WITH A DISULFIDE 8U20 ; 1.9 ; A Highly Stable Variant of Corynactis Californica Green Fluorescent Protein, ccGFP 5 8U22 ; 1.8 ; A Highly Stable Variant of Corynactis Californica Green Fluorescent Protein, ccGFP 7 8U23 ; 1.78 ; A Highly Stable Variant of Corynactis Californica Green Fluorescent Protein, ccGFP 8 8U24 ; 1.85 ; A Highly Stable Variant of Corynactis Californica Green Fluorescent Protein, ccGFP 9 8U21 ; 1.96 ; A Highly Stable Variant of Corynactis Californica Green Fluorescent Protein, ccGFP E6 3TVB ; 1.08 ; A Highly Symmetric DNA G-4 Quadruplex/drug Complex 8FR7 ; 3.39 ; A hinge glycan regulates spike bending and impacts coronavirus infectivity 5J8J ; 2.716 ; A histone deacetylase from Saccharomyces cerevisiae 5T0M ; 1.896 ; A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading 5Y2K ; 2.1 ; A human antibody AF4H1L1 5UHY ; 6.2 ; A Human Antibody Against Zika Virus Crosslinks the E Protein to Prevent Infection 8GV4 ; 2.5 ; A human broadly neutralizing influenza A hemagglutinin stem-specific antibody PN-SIA28 1X0M ; 2.2 ; a Human Kynurenine Aminotransferase II Homologue from Pyrococcus horikoshii OT3 7VZT ; 3.41 ; A human neutralizing antibody targeting SARS-CoV-2 RBD 3NCC ; 2.5 ; A human Prolactin receptor antagonist in complex with the mutant extracellular domain H188A of the human prolactin receptor 6B4N ; 1.3 ; a hydroxymethyl functionality at the 4-position of the 2-phenyloxazole moiety of HIV-1 protease inhibitors involving the P2' ligands 6Q1S ; 2.3 ; A hypothetical aminotransferase from Mycobacterium tuberculosis, alpha-ketoglutarate and PMP bound form 6Q1Q ; 2.4 ; A hypothetical aminotransferase from Mycobacterium tuberculosis, apo form 6Q1R ; 2.702 ; A hypothetical aminotransferase from Mycobacterium tuberculosis, PLP-bound form 1VDW ; 1.3 ; A hypothetical protein PH1897 from Pyrococcus horikoshii with similarities for Inositol-1 monophosphatase 5VCQ ; 2.051 ; A Hyrdrogen Producing Hybrid Streptavidin-Diiron Catalyst 3L45 ; 1.8 ; A Joint Neutron and X-ray structure of Oxidized Amicyanin 3L45 ; 1.5 ; A Joint Neutron and X-ray structure of Oxidized Amicyanin 1A8W ; ; A K+ CATION-INDUCED CONFORMATIONAL SWITCH WITHIN A LOOP SPANNING SEGMENT OF A DNA QUADRUPLEX CONTAINING G-G-G-C REPEATS, NMR, 8 STRUCTURES 2N91 ; ; A key amino acid in the control of different functional behavior within the triheme cytochrome family from Geobacter sulfurreducens 5YF4 ; 1.897 ; A kinase complex MST4-MOB4 2JQC ; ; A L-amino acid mutant of a D-amino acid containing conopeptide 2PHI ; 2.2 ; A LARGE CONFORMATIONAL CHANGE IS FOUND IN THE CRYSTAL STRUCTURE OF THE PORCINE PANCREATIC PHOSPHOLIPASE A2 POINT MUTANT F63V 7WX5 ; 2.392 ; a Legionella acetyltransferase effector VipF 7WX6 ; 2.273 ; A Legionella acetyltransferase VipF 7C0Q ; 2.6 ; a Legionella pneumophila effector Lpg2505 1LRV ; 2.6 ; A LEUCINE-RICH REPEAT VARIANT WITH A NOVEL REPETITIVE PROTEIN STRUCTURAL MOTIF 6YHT ; 2.15 ; A lid blocking mechanism of a cone snail toxin revealed at the atomic level 6YHY ; 1.55 ; A lid blocking mechanism of a cone snail toxin revealed at the atomic level 6ZOI ; 1.798 ; A lid blocking mechanism of a cone snail toxin revealed at the atomic level 5YXB ; 2.95 ; A ligand binding to FXR 5YXD ; 2.98 ; A ligand F binding to FXR 5YXL ; 2.24 ; A ligand M binding to FXR 1YTS ; 2.5 ; A LIGAND-INDUCED CONFORMATIONAL CHANGE IN THE YERSINIA PROTEIN TYROSINE PHOSPHATASE 7F7G ; 2.446 ; a linear Peptide Inhibitors in complex with GK domain 5E6H ; 2.238 ; A Linked Jumonji Domain of the KDM5A Lysine Demethylase 8X2K ; 3.03 ; a lipid receptor complex structure 6FPV ; 1.64 ; A llama-derived JBP1-targeting nanobody 6KQ9 ; 2.251 ; A long chain secondary alcohol dehydrogenase of Micrococcus luteus 6KQB ; 2.261 ; A long chain secondary alcohol dehydrogenase of Micrococcus luteus 1BH7 ; ; A LOW ENERGY STRUCTURE FOR THE FINAL CYTOPLASMIC LOOP OF BAND 3, NMR, MINIMIZED AVERAGE STRUCTURE 5JXZ ; 1.88 ; A low magnesium structure of the isochorismate synthase, EntC 2IH8 ; 2.0 ; A low-dose crystal structure of a recombinant Melanocarpus albomyces laccase 4JUO ; 6.53 ; A low-resolution three-gate structure of topoisomerase IV from Streptococcus pneumoniae in space group H32 6EQZ ; 2.293 ; A MamC-MIC insertion in MBP scaffold at position K170 8GW1 ; 3.31 ; A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analogue inhibitors 8GWF ; 3.39 ; A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analogue inhibitors 8GWG ; 3.37 ; A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analogue inhibitors 8GWI ; 3.18 ; A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analogue inhibitors 8GWO ; 3.8 ; A mechanism for SARS-CoV-2 RNA capping and its inhibition by nucleotide analogue inhibitors 8GWN ; 3.38 ; A mechanism for SARS-CoV-2 RNA capping and its inhibitor of AT-527 6F5O ; 9.8 ; A mechanism for the activation of the influenza virus transcriptase 6F5P ; 4.14 ; A mechanism for the activation of the influenza virus transcriptase 2QJ2 ; 1.81 ; A Mechanistic Basis for Converting a Receptor Tyrosine Kinase Agonist to an Antagonist 2QJ4 ; 2.5 ; A Mechanistic Basis for Converting a Receptor Tyrosine Kinase Agonist to an Antagonist 8U1C ; 2.89 ; A mechanistic understanding of protective influenza B neuraminidase mAbs at the airway interface 8U1Q ; 3.36 ; A mechanistic understanding of protective influenza B neuraminidase mAbs at the airway interface 8U1S ; 3.21 ; A mechanistic understanding of protective influenza B neuraminidase mAbs at the airway interface 2Z3C ; 1.79 ; A Mechanistic view of Enzyme Inhibition and Peptide Hydrolysis in the Active Site of the SARS-CoV 3C-Like peptidase 2Z3D ; 2.1 ; A Mechanistic view of Enzyme Inhibition and Peptide Hydrolysis in the Active Site of the SARS-CoV 3C-Like peptidase 2Z3E ; 2.32 ; A Mechanistic view of Enzyme Inhibition and Peptide Hydrolysis in the Active Site of the SARS-CoV 3C-Like peptidase 4AMS ; 2.6 ; A Megaviridae ORFan gene encode a new nucleotidyl transferase 4AMQ ; 2.17 ; A Megaviridae Orfan gene encodes a new nucleotidyl transferase 5X5Y ; 3.465 ; A membrane protein complex 8Q4H ; 2.83 ; a membrane-bound menaquinol:organohalide oxidoreductase complex RDH complex 1XIS ; 1.6 ; A METAL-MEDIATED HYDRIDE SHIFT MECHANISM FOR XYLOSE ISOMERASE BASED ON THE 1.6 ANGSTROMS STREPTOMYCES RUBIGINOSUS STRUCTURES WITH XYLITOL AND D-XYLOSE 2XIS ; 1.71 ; A METAL-MEDIATED HYDRIDE SHIFT MECHANISM FOR XYLOSE ISOMERASE BASED ON THE 1.6 ANGSTROMS STREPTOMYCES RUBIGINOSUS STRUCTURES WITH XYLITOL AND D-XYLOSE 3XIS ; 1.6 ; A METAL-MEDIATED HYDRIDE SHIFT MECHANISM FOR XYLOSE ISOMERASE BASED ON THE 1.6 ANGSTROMS STREPTOMYCES RUBIGINOSUS STRUCTURES WITH XYLITOL AND D-XYLOSE 4XIS ; 1.6 ; A METAL-MEDIATED HYDRIDE SHIFT MECHANISM FOR XYLOSE ISOMERASE BASED ON THE 1.6 ANGSTROMS STREPTOMYCES RUBIGINOSUS STRUCTURES WITH XYLITOL AND D-XYLOSE 3NQW ; 2.9 ; A metazoan ortholog of SpoT hydrolyzes ppGpp and plays a role in starvation responses 3NR1 ; 1.9 ; A metazoan ortholog of SpoT hydrolyzes ppGpp and plays a role in starvation responses 4X35 ; 1.5 ; A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering 4X3B ; 2.1 ; A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering 2WXD ; 1.6 ; A MICROMOLAR O-SULFATED THIOHYDROXIMATE INHIBITOR BOUND TO PLANT MYROSINASE 1N09 ; ; A minimal beta-hairpin peptide scaffold for beta-turn display 3Q5U ; 2.5 ; A minimal NLS from human scramblase 4 complexed with importin alpha 2P7D ; 2.25 ; A Minimal, 'Hinged' Hairpin Ribozyme Construct Solved with Mimics of the Product Strands at 2.25 Angstroms Resolution 1DS7 ; 2.06 ; A MINOR FMN-DEPENDENT NITROREDUCTASE FROM ESCHERICHIA COLI B 3WT5 ; 1.9 ; A mixed population of antagonist and agonist binding conformers in a single crystal explains partial agonism against vitamin D receptor: Active vitamin D analogues with 22R-alkyl group 3WT6 ; 2.0 ; A mixed population of antagonist and agonist binding conformers in a single crystal explains partial agonism against vitamin D receptor: Active vitamin D analogues with 22R-alkyl group 2AEW ; 2.7 ; A model for growth hormone receptor activation based on subunit rotation within a receptor dimer 5TGL ; 3.0 ; A MODEL FOR INTERFACIAL ACTIVATION IN LIPASES FROM THE STRUCTURE OF A FUNGAL LIPASE-INHIBITOR COMPLEX 6T63 ; 3.8 ; A model of the EIAV CA-SP hexamer (C2) from Gag-deltaMA tubes assembled at pH6 6T61 ; 3.7 ; A model of the EIAV CA-SP hexamer (C2) from Gag-deltaMA tubes assembled at pH8 6T64 ; 3.7 ; A model of the EIAV CA-SP hexamer (C6) from Gag-deltaMA spheres assembled at pH6 1XS9 ; ; A MODEL OF THE TERNARY COMPLEX FORMED BETWEEN MARA, THE ALPHA-CTD OF RNA POLYMERASE AND DNA 5Y49 ; 2.4 ; A moderator XD22 binding to bile acid receptor 5MTF ; 1.79 ; A modular route to novel potent and selective inhibitors of rhomboid intramembrane proteases 4ERS ; 2.637 ; A Molecular Basis for Negative Regulation of the Glucagon Receptor 4AXY ; 1.24 ; A molecular basis for the action of the collagen-specific chaperone Hsp47-SERPINH1 and its structure-specific client recognition. 3MAM ; 1.8 ; A molecular switch changes the low to the high affinity state in the substrate binding protein AfProX 2QA4 ; 3.0 ; A more complete structure of the the L7/L12 stalk of the Haloarcula marismortui 50S large ribosomal subunit 5M3K ; 2.83 ; A multi-component acyltransferase PhlABC from Pseudomonas protegens 5MG5 ; 3.44 ; A multi-component acyltransferase PhlABC from Pseudomonas protegens soaked with the monoacetylphloroglucinol (MAPG) 1LM3 ; 2.7 ; A Multi-generation Analysis of Cytochrome b562 Redox Variants: Evolutionary Strategies for Modulating Redox Potential Revealed Using a Library Approach 6DML ; 1.5 ; A multiconformer ligand model of 3,5 dimethylisoxaxole bound to the bromodomain of human BRD4 6DMI ; 1.9 ; A multiconformer ligand model of 5T5 bound to BACE-1 6DMH ; 1.3 ; A multiconformer ligand model of acylenzyme intermediate of meropenem bound to an SFC-1 E166A mutant 6DMK ; 1.66 ; A multiconformer ligand model of an isoxazolyl-benzimidazole ligand bound to the bromodomain of human CREBBP 6DMG ; 2.2 ; A multiconformer ligand model of EK6 bound to ERK2 6DMJ ; 1.15 ; A multiconformer ligand model of inhibitor 53W bound to CREB binding protein bromodomain 6L2A ; 1.90045 ; A mutant form of M. tb toxin MazEF-mt1 3NCB ; 2.1 ; A mutant human Prolactin receptor antagonist H180A in complex with the extracellular domain of the human prolactin receptor 3N06 ; 2.0 ; A mutant human Prolactin receptor antagonist H27A in complex with the extracellular domain of the human prolactin receptor 3NCE ; 2.0 ; A mutant human Prolactin receptor antagonist H27A in complex with the mutant extracellular domain H188A of the human prolactin receptor 3N0P ; 2.1 ; A mutant human Prolactin receptor antagonist H30A in complex with the extracellular domain of the human prolactin receptor 3NCF ; 2.8 ; A mutant human Prolactin receptor antagonist H30A in complex with the mutant extracellular domain H188A of the human prolactin receptor 7F5J ; 1.593 ; a mutant of an enzyme from Viola yedoensis 7F5P ; 1.9 ; a mutant of an enzyme from Viola yedoensis 4OAO ; 2.05 ; A mutant of Axe2 (R55A), and acetyl-xylooligosaccharide esterase from Geobacillus Stearmophilus 2DD9 ; 2.3 ; A mutant of GFP-like protein from Chiridius poppei 7ES2 ; 2.34 ; a mutant of glycosyktransferase in complex with UDP and Reb D 8I8Y ; 2.9 ; A mutant of the C-terminal complex of proteins 4.1G and NuMA 3HHT ; 1.16 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 7QOM ; 1.45 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 7QOP ; 1.8 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 7QOU ; 1.3 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 7QOY ; 1.45 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 7Z0V ; 1.45 ; A mutant of the nitrile hydratase from Geobacillus pallidus having enhanced thermostability 1WCS ; 2.8 ; A mutant of Trypanosoma rangeli sialidase displaying trans-sialidase activity 2F7D ; 1.9 ; A mutant rabbit cathepsin K with a nitrile inhibitor 1KPD ; ; A MUTANT RNA PSEUDOKNOT THAT PROMOTES RIBOSOMAL FRAMESHIFTING IN MOUSE MAMMARY TUMOR VIRUS, NMR, MINIMIZED AVERAGE STRUCTURE 1QOH ; 2.35 ; A MUTANT SHIGA-LIKE TOXIN IIE 2BOS ; 2.0 ; A MUTANT SHIGA-LIKE TOXIN IIE BOUND TO ITS RECEPTOR 2A9N ; 3.0 ; A Mutation Designed to Alter Crystal Packing Permits Structural Analysis of a Tight-binding Fluorescein-scFv complex 5X8Y ; 2.817 ; A Mutation identified in Neonatal Microcephaly Destabilizes Zika Virus NS1 Assembly in vitro 2LKW ; ; A Myristoylated Polyproline Type II Helix Functions as a Novel Fusion Peptide During Cell-Cell Membrane Fusion Induced by the Baboon Reovirus p15 FAST Protein 4ZB2 ; 2.0 ; A native form of glucose isomerase collected at room temperature. 5NRB ; 2.24 ; A Native Ternary Complex of Alpha-1,3-Galactosyltransferase (a-3GalT) Supports a Conserved Reaction Mechanism for Retaining Glycosyltransferases - alpha-3GalT in complex with Co2+, UDP-Gal and lactose - a3GalT-Co2+-UDP-Gal-LAT-1 5NRD ; 2.12 ; A Native Ternary Complex of Alpha-1,3-Galactosyltransferase (a-3GalT) Supports a Conserved Reaction Mechanism for Retaining Glycosyltransferases - alpha-3GalT in complex with Co2+, UDP-Gal and lactose - a3GalT-Co2+-UDP-Gal-LAT-2 5NRE ; 1.98 ; A Native Ternary Complex of Alpha-1,3-Galactosyltransferase (a3GalT) Supports a Conserved Reaction Mechanism for Retaining Glycosyltransferases - a3GalT in complex with lactose - a3GalT-LAT 5NR9 ; 1.7 ; A Native Ternary Complex of Alpha-1,3-Galactosyltransferase (alpha-3GalT) Supports a Conserved Reaction Mechanism for Retaining Glycosyltransferases - Unliganded alpha-3GalT 2F8O ; 1.7 ; A Native to Amyloidogenic Transition Regulated by a Backbone Trigger 6LN1 ; 2.699 ; A natural inhibitor of DYRK1A for treatment of diabetes mellitus 1N2R ; 1.7 ; A natural selected dimorphism in HLA B*44 alters self, peptide reportoire and T cell recognition. 4J3B ; 2.2 ; A naturally variable residue in the S1 subsite of M1-family aminopeptidases modulates catalytic properties and promotes functional specialization 7FGB ; 2.0 ; A naturally-occurring neuraminidase-inhibitors-resistant NA from asiatic toad influenza B-like virus 7FGC ; 1.9 ; A naturally-occurring neuraminidase-inhibitors-resistant NA from asiatic toad influenza B-like virus 7FGD ; 2.1 ; A naturally-occurring neuraminidase-inhibitors-resistant NA from asiatic toad influenza B-like virus 7FGE ; 2.8 ; A naturally-occurring neuraminidase-inhibitors-resistant NA from asiatic toad influenza B-like virus 8J1W ; 1.95 ; A near-infrared fluorescent protein of de novo backbone design 8J1X ; 2.25 ; A near-infrared fluorescent protein of de novo backbone design 8J98 ; 2.9 ; A near-infrared fluorescent protein of de novo backbone design 8Y33 ; 2.9 ; A near-infrared fluorescent protein of de novo backbone design 3TAX ; 1.88 ; A Neutral Diphosphate Mimic Crosslinks the Active Site of Human O-GlcNAc Transferase 1JJB ; 2.3 ; A neutral molecule in cation-binding site: Specific binding of PEG-SH to Acetylcholinesterase from Torpedo californica 7D6I ; 3.41 ; A neutralizing MAb targeting receptor-binding-domain of SARS-CoV-2 3FHP ; 2.0 ; A neutron crystallographic analysis of a porcine 2Zn insulin at 2.0 A resolution 6ITG ; 1.42 ; a new alginate lyase (PL6) from Vibrio splendidus OU02 6W35 ; 1.98 ; A new Autotaxin Inhibitor for the Treatment of Idiopathic Pulmonary Fibrosis: A Clinical Candidate Discovered Using DNA-Encoded Chemistry 5IZU ; 2.494 ; A new binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function 4UQG ; 2.0 ; A new bio-isosteric base pair based on reversible bonding 2JIM ; 2.45 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2JIO ; 2.2 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2JIP ; 2.3 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2JIQ ; 2.44 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2JIR ; 2.35 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2V3V ; 1.99 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 2V45 ; 2.4 ; A New Catalytic Mechanism of Periplasmic Nitrate Reductase from Desulfovibrio desulfuricans ATCC 27774 from Crystallographic and EPR Data and based on detailed analysis of the sixth ligand 3AID ; 2.5 ; A NEW CLASS OF HIV-1 PROTEASE INHIBITOR: THE CRYSTALLOGRAPHIC STRUCTURE, INHIBITION AND CHEMICAL SYNTHESIS OF AN AMINIMIDE PEPTIDE ISOSTERE 3E9S ; 2.5 ; A new class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication 4WHH ; 1.9 ; A New Class of Peptidomimetics Targeting the Polo-box Domain of Polo-like kinase 1 4WHK ; 1.8 ; A New Class of Peptidomimetics Targeting the Polo-box Domain of Polo-like kinase 1 4WHL ; 2.71 ; A New Class of Peptidomimetics Targeting the Polo-box Domain of Polo-like kinase 1 3SRK ; 2.65 ; A new class of suicide inhibitor blocks nucleotide binding to pyruvate kinase 2ZXM ; 3.01 ; A New Class of Vitamin D Receptor Ligands that Induce Structural Rearrangement of the Ligand-binding Pocket 2ZXN ; 2.1 ; A New Class of Vitamin D Receptor Ligands that Induce Structural Rearrangement of the Ligand-binding Pocket 5FNV ; 2.61 ; a new complex structure of tubulin with an alpha-beta unsaturated lactone 3WHE ; 4.0 ; A new conserved neutralizing epitope at the globular head of hemagglutinin in H3N2 influenza viruses 2QCA ; 1.33 ; A New Crystal Form of Bovine Pancreatic RNase A in Complex with 2'-Deoxyguanosine-5'-monophosphate 3M3J ; 1.6 ; A new crystal form of Lys48-linked diubiquitin 1GP9 ; 2.5 ; A New Crystal Form of the Nk1 Splice Variant of Hgf/Sf Demonstrates Extensive Hinge Movement and Suggests that the Nk1 Dimer Originates by Domain Swapping 4ZFP ; 1.96 ; A new crystal structure for the adduct formed in the reaction between AuSac2, a cytotoxic homoleptic gold(I) compound with the saccharinate ligand, and the model protein hen egg white lysozyme 1EHV ; 1.8 ; A NEW CRYSTAL STRUCTURE FOR THE DODECAMER C-G-C-G-A-A-T-T-C-G-C-G: SYMMETRY EFFECTS ON SEQUENCE-DEPENDENT DNA STRUCTURE 3U7B ; 1.94 ; A new crystal structure of a Fusarium oxysporum GH10 xylanase reveals the presence of an extended loop on top of the catalytic cleft 3T7U ; 2.9 ; A NeW Crystal structure of APC-ARM 5A2R ; 1.85 ; A New Crystal Structure of the Drosophila melanogaster Angiotensin Converting Enzyme Homologue AnCE. 3ZBO ; 1.58 ; A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures 7RHA ; 1.8 ; A new fluorescent protein darkmRuby at pH 5.0 7RHB ; 2.51 ; A new fluorescent protein darkmRuby at pH 8.0 7RHC ; 2.8 ; A new fluorescent protein darkmRuby at pH 9.0 1Y75 ; 2.3 ; A new form of catalytically inactive phospholipase A2 with an unusual disulphide bridge Cys 32- Cys 49 reveals recognition for N-acetylglucosmine 3EY0 ; 2.52 ; A new form of DNA-drug interaction in the minor groove of a coiled coil 5V4A ; 1.75 ; A New Glycosyltransferase (DUF1792) from Streptococcus sanguinis 5BN0 ; 2.8 ; A new HIV fusion peptide inhibitor 7BW5 ; ; a new lasso peptide koreensin 1O87 ; 2.1 ; A new MgGDP complex of the Ffh NG domain 6SJJ ; 2.3 ; A new modulated crystal structure of ANS complex of St John's wort Hyp-1 protein with 36 protein molecules in the asymmetric unit of the supercell 3SMA ; 2.0 ; A new N-acetyltransferase fold in the structure and mechanism of the phosphonate biosynthetic enzyme FrbF 1CHZ ; 1.76 ; A NEW NEUROTOXIN FROM BUTHUS MARTENSII KARSCH 1NCF ; 2.25 ; A NEW PARADIGM FOR TUMOR NECROSIS FACTOR SIGNALLING 3MHY ; 1.4 ; A New PII Protein Structure 5Z9T ; 1.8 ; a new PL6 alginate lyase complex with trisaccharide 4KWN ; 1.8 ; A new stabilizing water structure at the substrate binding site in ribosome inactivating protein from Momordica balsamina at 1.80 A resolution 6TI5 ; ; A New Structural Model of Abeta(1-40) Fibrils 1ENU ; 1.95 ; A new target for shigellosis: Rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase 1F3E ; 1.85 ; A NEW TARGET FOR SHIGELLOSIS: RATIONAL DESIGN AND CRYSTALLOGRAPHIC STUDIES OF INHIBITORS OF TRNA-GUANINE TRANSGLYCOSYLASE 3J4U ; 3.5 ; A new topology of the HK97-like fold revealed in Bordetella bacteriophage: non-covalent chainmail secured by jellyrolls 4ESV ; 3.2 ; A New Twist on the Translocation Mechanism of Helicases from the Structure of DnaB with its Substrates 6M1B ; 1.88 ; A new V27M variant of beta 2 microglobulin induced amyloidosis in a patient with long-term hemodialysis 7DQK ; 3.5 ; A nicotine MATE transporter, Nicotiana tabacum MATE2 (NtMATE2) 3DGN ; 2.7 ; A non-biological ATP binding protein crystallized in the presence of 100 mM ADP 3LT9 ; 2.55 ; A non-biological ATP binding protein with a single point mutation (D65V), that contributes to optimized folding and ligand binding 3LT8 ; 2.55 ; A non-biological ATP binding protein with a single point mutation (D65V), that contributes to optimized folding and ligand binding, crystallized in the presence of 100 mM ATP. 3DGO ; 2.5 ; A non-biological ATP binding protein with a Tyr-Phe mutation in the ligand binding domain 6RPJ ; 3.25 ; A Non-blocking anti-CTLA-4 Nanobody complexed with CTLA-4 4RTJ ; 1.99 ; A non-cognate complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with DNA and Sinefungin 2V4E ; 2.4 ; A non-cytotoxic DsRed variant for whole-cell labeling 6M2A ; 2.23 ; A non-His-rich type of chimeric sirohydrochlorin nickelochelatase CfbA from M. jannaschii and M. barkeri 2OKW ; 1.9 ; A non-invasive GFP-based biosensor for mercury ions 2OKY ; 2.4 ; A non-invasive GFP-based biosensor for mercury ions 3OAY ; 1.95 ; A non-self sugar mimic of the HIV glycan shield shows enhanced antigenicity 3OAZ ; 1.75 ; A non-self sugar mimic of the HIV glycan shield shows enhanced antigenicity 3OB0 ; 2.85 ; A non-self sugar mimic of the HIV glycan shield shows enhanced antigenicity 4LV4 ; 2.08 ; A noncompetitive inhibitor for M. tuberculosis's class IIa fructose 1,6-bisphosphate aldolase 7W5S ; 1.76 ; A nonheme iron- and alpha-ketoglutarate- dependent halogenase that catalyzes nucleotide substrates 7W5T ; 1.74 ; A nonheme iron- and alpha-ketoglutarate- dependent halogenase that catalyzes nucleotide substrates 7W5V ; 1.81 ; A nonheme iron- and alpha-ketoglutarate- dependent halogenase that catalyzes nucleotide substrates 6LE0 ; 2.51 ; A nonspecific heme-binding cyclase catalyzes [4 + 2] cycloaddition during neoabyssomicin biosynthesis 5WLO ; 1.27 ; a novel 13-ring macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands 2MDQ ; ; A Novel 4/7-Conotoxin LvIA from Conus lividus that Selectively Blocks 3 2 vs. 6/3 2 3 Nicotinic Acetylcholine Receptors 1U8C ; 3.1 ; A novel adaptation of the integrin PSI domain revealed from its crystal structure 1UW1 ; 1.94 ; A Novel ADP- and Zinc-binding fold from function-directed in vitro evolution 6KKB ; 1.7 ; A novel agonist of THRb 1HDA ; 2.2 ; A NOVEL ALLOSTERIC MECHANISM IN HAEMOGLOBIN. STRUCTURE OF BOVINE DEOXYHAEMOGLOBIN, ABSENCE OF SPECIFIC CHLORIDE-BINDING SITES AND ORIGIN OF THE CHLORIDE-LINKED BOHR EFFECT IN BOVINE AND HUMAN HAEMOGLOBIN 8JE0 ; 2.9 ; A novel amidohydrolase 7N1R ; 2.03 ; A novel and unique ATP hydrolysis to AMP by a human Hsp70 BiP 2FVJ ; 1.99 ; A novel anti-adipogenic partial agonist of peroxisome proliferator-activated receptor-gamma (PPARG) recruits pparg-coactivator-1 alpha (PGC1A) but potentiates insulin signaling in vitro 6LS4 ; 2.4 ; A novel anti-tumor agent S-40 in complex with tubulin 1EUJ ; 1.8 ; A NOVEL ANTI-TUMOR CYTOKINE CONTAINS A RNA-BINDING MOTIF PRESENT IN AMINOACYL-TRNA SYNTHETASES 5B64 ; 2.7 ; A novel binding mode of MAGUK GK domain revealed by DLG GK domain in complex with KIF13B MBS domain 7WMG ; 2.93 ; A novel chemical derivative(52) of THRB agonist 7WLX ; 2.39 ; A novel chemical derivative(53) of THRB agonist 7WMH ; 1.97 ; A novel chemical derivative(56) of THRB agonist 7WMJ ; 2.81 ; A novel chemical derivative(71) of THRB agonist 7WML ; 2.67 ; A novel chemical derivative(85) of THRB agonist 7WMN ; 2.57 ; A novel chemical derivative(89) of THRB agonist 7WMO ; 2.56 ; A novel chemical derivative(92) of THRB agonist 3KCK ; 2.2 ; A Novel Chemotype of Kinase Inhibitors 1TNS ; ; A NOVEL CLASS OF WINGED HELIX-TURN-HELIX PROTEIN: THE DNA-BINDING DOMAIN OF MU TRANSPOSASE 1TNT ; ; A NOVEL CLASS OF WINGED HELIX-TURN-HELIX PROTEIN: THE DNA-BINDING DOMAIN OF MU TRANSPOSASE 7U2M ; 2.9 ; A novel compound mimics the structural and functional effects of the full agonist glycine on glycine channels-desenstized state 7U2O ; 3.1 ; A novel compound mimics the structural and functional effects of the full agonist glycine on glycine channels-Expanded-open state 7U2N ; 2.8 ; A novel compound mimics the structural and functional effects of the full agonist glycine on glycine channels-open state 2J9Q ; 2.65 ; A novel conformation for the TPR domain of pex5p 4HEX ; 2.001 ; A novel conformation of calmodulin 1WCT ; ; A NOVEL CONOTOXIN FROM CONUS TEXTILE WITH UNUSUAL POST-TRANSLATIONAL MODIFICATIONS REDUCES PRESYNAPTIC CALCIUM INFLUX, NMR, 1 STRUCTURE, GLYCOSYLATED PROTEIN 3U4N ; 1.98 ; A novel covalently linked insulin dimer 5OAB ; 1.111 ; A novel crystal form of human RNase6 at atomic resolution 2CZQ ; 1.05 ; A novel cutinase-like protein from Cryptococcus sp. 4XKJ ; 3.148 ; a Novel D-lactate Dehydrogenase from Sporolactobacillus sp 2L60 ; ; A novel design concept: New Y-receptor agonists with increased membrane recruitment, Y2 affinity and selectivity 1HUL ; 2.4 ; A NOVEL DIMER CONFIGURATION REVEALED BY THE CRYSTAL STRUCTURE AT 2.4 ANGSTROMS RESOLUTION OF HUMAN INTERLEUKIN-5 2IBM ; 3.2 ; A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA 5Z16 ; 3.0 ; A novel dimeric isocitrate dehydrogenase from Acinetobacter baumannii 1RAM ; 2.7 ; A NOVEL DNA RECOGNITION MODE BY NF-KB P65 HOMODIMER 2RAM ; 2.4 ; A NOVEL DNA RECOGNITION MODE BY NF-KB P65 HOMODIMER 5T3V ; 2.6 ; A Novel domain in human EXOG converts apoptotic endonuclease to DNA-repair enzyme 5T40 ; 1.81 ; A Novel domain in human EXOG converts apoptotic endonuclease to DNA-repair enzyme 5T4I ; 2.389 ; A Novel domain in human EXOG converts apoptotic endonuclease to DNA-repair enzyme 5T5C ; 1.851 ; A Novel domain in human EXOG converts apoptotic endonuclease to DNA-repair enzyme 4LZF ; 1.72 ; A novel domain in the microcephaly protein CPAP suggests a role in centriole architecture 2JRA ; ; A novel domain-swapped solution NMR structure of protein RPA2121 from Rhodopseudomonas palustris. Northeast Structural Genomics Target RpT6 1URR ; 1.5 ; A novel Drosophila Melanogaster Acylphosphatase (AcPDro2) 375D ; 2.4 ; A NOVEL END-TO-END BINDING OF TWO NETROPSINS TO THE DNA DECAMER D(CCCCCIIIII)2 474D ; 2.4 ; A NOVEL END-TO-END BINDING OF TWO NETROPSINS TO THE DNA DECAMER D(CCCCCIIIII)2 5BY3 ; 2.44 ; A novel family GH115 4-O-Methyl-alpha-glucuronidase, BtGH115A, with specificity for decorated arabinogalactans 5U8M ; 2.105 ; A novel family of redox sensors in the streptococci evolved from two-component response regulators 3T3M ; 2.6 ; A Novel High Affinity Integrin alphaIIbbeta3 Receptor Antagonist That Unexpectedly Displaces Mg2+ from the beta3 MIDAS 3T3P ; 2.2 ; A Novel High Affinity Integrin alphaIIbbeta3 Receptor Antagonist That Unexpectedly Displaces Mg2+ from the beta3 MIDAS 6B72 ; 3.2 ; A novel HIV-1 Nef dimer interface induced by a single octyl-glucoside molecule 5F8P ; 2.2 ; A Novel Inhibitor of the Obesity-Related Protein FTO 8D2J ; 2.1 ; A novel insecticidal protein from ferns IPD113_Cow. 3QYY ; 1.9 ; A Novel Interaction Mode between a Microbial GGDEF Domain and the Bis-(3, 5 )-cyclic di-GMP 1H21 ; 2.5 ; A novel iron centre in the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 2JQW ; ; A novel lectin-like peptide from Odorrana grahami 2NPQ ; 1.8 ; A Novel Lipid Binding Site in the p38 alpha MAP Kinase 6IK4 ; 1.9 ; A Novel M23 Metalloprotease Pseudoalterin from Deep-sea 2BW7 ; 2.3 ; A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen 3RI6 ; 2.2 ; A Novel Mechanism of Sulfur Transfer Catalyzed by O-Acetylhomoserine Sulfhydrylase in Methionine Biosynthetic Pathway of Wolinella succinogenes 6VPB ; 1.87 ; A novel membrane-bound 6-phosphogluconate dehydrogenase from the acetic acid bacteria Gluconacetobacter diazotrophicus (Gd6PGD) 6Z68 ; 1.35 ; A novel metagenomic alpha/beta-fold esterase 6Z69 ; 1.81 ; A novel metagenomic alpha/beta-fold esterase 1JAC ; 2.43 ; A NOVEL MODE OF CARBOHYDRATE RECOGNITION IN JACALIN, A MORACEAE PLANT LECTIN WITH A BETA-PRISM 1HL6 ; 2.5 ; A novel mode of RBD-protein recognition in the Y14-mago complex 5Y44 ; 2.35 ; A novel moderator XD4 for bile acid receptor 7Z3C ; ; A novel molecular switch controls assembly of bacterial focal adhesions in response to changes in surface structure. 7ZOK ; ; A novel molecular switch controls assembly of bacterial focal adhesions in response to changes in surface structure. 1S20 ; 2.2 ; A novel NAD binding protein revealed by the crystal structure of E. Coli 2,3-diketogulonate reductase (YiaK) NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ER82 1NXE ; 2.3 ; A Novel NADH Allosteric Regulator Site is Found on the Surface of the Hexameric Type II Phe383Ala Variant of Citrate Synthase 4LP8 ; 2.46 ; A Novel Open-State Crystal Structure of the Prokaryotic Inward Rectifier KirBac3.1 5ACC ; 1.88 ; A Novel Oral Selective Estrogen Receptor Down-regulator, AZD9496, drives Tumour Growth Inhibition in Estrogen Receptor positive and ESR1 Mutant Models 3UT3 ; 2.42 ; A novel PAI-I inhibitor and its structural mechanism 4QLI ; 1.45 ; A novel phospho-switch in the linker region of the snail zinc finger protein which regulates 14-3-3 association, DNA binding and epithelial-mesenchymal differentiation 5C77 ; 2.5 ; A novel protein arginine methyltransferase 4TSH ; 2.0 ; A Novel Protein Fold Forms an Intramolecular Lock to Stabilize the Tertiary Structure of Streptococcus mutans Adhesin P1 1YZI ; 2.07 ; A novel quaternary structure of human carbonmonoxy hemoglobin 4BUP ; 2.166 ; A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases 3TGE ; 1.96 ; A novel series of potent and selective PDE5 inhibitor1 3TGG ; 1.91 ; A novel series of potent and selective PDE5 inhibitor2 1GHV ; 1.85 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GHW ; 1.75 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GHX ; 1.65 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GHY ; 1.85 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GHZ ; 1.39 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI0 ; 1.42 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI1 ; 1.42 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI2 ; 1.38 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI3 ; 1.44 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI4 ; 1.37 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI5 ; 1.6 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI6 ; 1.49 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI7 ; 1.79 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI8 ; 1.75 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 1GI9 ; 1.8 ; A NOVEL SERINE PROTEASE INHIBITION MOTIF INVOLVING A MULTI-CENTERED SHORT HYDROGEN BONDING NETWORK AT THE ACTIVE SITE 2XBP ; 1.2 ; A novel signal transduction protein PII variant from Synechococcus elongatus PCC7942 indicates a two-step process for NAGK PII complex formation 1MOA ; 1.9 ; A NOVEL SITE-DIRECTED MUTANT OF MYOGLOBIN WITH AN UNUSUALLY HIGH O2 AFFINITY AND LOW AUTOOXIDATION RATE 2SPL ; 1.7 ; A NOVEL SITE-DIRECTED MUTANT OF MYOGLOBIN WITH AN UNUSUALLY HIGH O2 AFFINITY AND LOW AUTOOXIDATION RATE 2SPM ; 1.7 ; A NOVEL SITE-DIRECTED MUTANT OF MYOGLOBIN WITH AN UNUSUALLY HIGH O2 AFFINITY AND LOW AUTOOXIDATION RATE 2SPN ; 1.7 ; A NOVEL SITE-DIRECTED MUTANT OF MYOGLOBIN WITH AN UNUSUALLY HIGH O2 AFFINITY AND LOW AUTOOXIDATION RATE 2SPO ; 1.7 ; A NOVEL SITE-DIRECTED MUTANT OF MYOGLOBIN WITH AN UNUSUALLY HIGH O2 AFFINITY AND LOW AUTOOXIDATION RATE 3ZH8 ; 2.739 ; A novel small molecule aPKC inhibitor 2JYN ; ; A novel solution NMR structure of protein yst0336 from Saccharomyces cerevisiae. Northeast Structural Genomics Consortium target YT51/Ontario Centre for Structural Proteomics target yst0336 4Q2J ; 2.603 ; A novel structure-based mechanism for DNA-binding of SATB1 1TFI ; ; A NOVEL ZN FINGER MOTIF IN THE BASAL TRANSCRIPTIONAL MACHINERY: THREE-DIMENSIONAL NMR STUDIES OF THE NUCLEIC-ACID BINDING DOMAIN OF TRANSCRIPTIONAL ELONGATION FACTOR TFIIS 1GB1 ; ; A NOVEL, HIGHLY STABLE FOLD OF THE IMMUNOGLOBULIN BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G 2GB1 ; ; A NOVEL, HIGHLY STABLE FOLD OF THE IMMUNOGLOBULIN BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G 4REA ; 3.81 ; A Nuclease DNA complex 4REC ; 2.2 ; A nuclease-DNA complex form 3 4SKN ; 2.9 ; A NUCLEOTIDE-FLIPPING MECHANISM FROM THE STRUCTURE OF HUMAN URACIL-DNA GLYCOSYLASE BOUND TO DNA 6PLJ ; 1.59 ; A nucleotidyl transferase from Methanothermobacter thermautotroptrophicus (Mth528) 4JJR ; 2.4078 ; A P21 crystal form of mammalian casein kinase 1 delta 2IPZ ; 1.35 ; A Parallel Coiled-Coil Tetramer with Offset Helices 1R2L ; ; A parallel stranded DNA duplex with an A-G mismatch base-pair 2HRI ; 2.09 ; A parallel stranded human telomeric quadruplex in complex with the porphyrin TMPyP4 2LFM ; ; A partially folded structure of amyloid-beta(1 40) in an aqueous environment 8Q52 ; 2.15 ; A PBP-like protein built from fragments of different folds 2G38 ; 2.2 ; A PE/PPE Protein Complex from Mycobacterium tuberculosis 8B15 ; 1.9 ; A pentameric barrel state of a de novo coiled-coil assembly: CC-Pent2-I10Q 4O2E ; 1.981 ; A peptide complexed with HLA-B*3901 4O2F ; 1.901 ; A peptide complexed with HLA-B*3901 7ELY ; ; A peptide with high affinity for B-Cell lymphoma2(Bcl-2) 6INW ; 1.798 ; A Pericyclic Reaction enzyme 2KIE ; ; A PH domain within OCRL bridges clathrin mediated membrane trafficking to phosphoinositide metabolis 2KIG ; ; A PH domain within OCRL bridges clathrin mediated membrane trafficking to phosphoinositide metabolism 2GAR ; 1.8 ; A PH-DEPENDENT STABLIZATION OF AN ACTIVE SITE LOOP OBSERVED FROM LOW AND HIGH PH CRYSTAL STRUCTURES OF MUTANT MONOMERIC GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE 3GAR ; 1.9 ; A PH-DEPENDENT STABLIZATION OF AN ACTIVE SITE LOOP OBSERVED FROM LOW AND HIGH PH CRYSTAL STRUCTURES OF MUTANT MONOMERIC GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE 2CHW ; 2.6 ; A pharmacological map of the PI3-K family defines a role for p110 alpha in signaling: The structure of complex of phosphoinositide 3- kinase gamma with inhibitor PIK-39 2CHX ; 2.5 ; A pharmacological map of the PI3-K family defines a role for p110alpha in signaling: The structure of complex of phosphoinositide 3-kinase gamma with inhibitor PIK-90 2CHZ ; 2.6 ; A pharmacological map of the PI3-K family defines a role for p110alpha in signaling: The structure of complex of phosphoinositide 3-kinase gamma with inhibitor PIK-93 2JWO ; ; A PHD finger motif in the C-terminus of RAG2 modulates recombination activity 6IUR ; 3.33 ; A phosphatase complex STRN3-PP2Aa 5J7C ; 2.535 ; A picomolar affinity FN3 domain in complex with hen egg-white lysozyme 2MDT ; ; a PilT N-terminus domain protein SSO1118 from hyperthemophilic archaeon Sulfolobus solfataricus P2 1SOL ; ; A PIP2 AND F-ACTIN-BINDING SITE OF GELSOLIN, RESIDUE 150-169 (NMR, AVERAGED STRUCTURE) 6H48 ; 2.2 ; A polyamorous repressor: deciphering the evolutionary strategy used by the phage-inducible chromosomal islands to spread in nature. 6H49 ; 1.8 ; A polyamorous repressor: deciphering the evolutionary strategy used by the phage-inducible chromosomal islands to spread in nature. 6H4B ; 2.902 ; A polyamorous repressor: deciphering the evolutionary strategy used by the phage-inducible chromosomal islands to spread in nature. 6H4C ; 2.52 ; A polyamorous repressor: deciphering the evolutionary strategy used by the phage-inducible chromosomal islands to spread in nature. 3GLJ ; 1.89 ; A polymorph of carboxypeptidase B zymogen structure 5V02 ; 1.78 ; A positive allosteric modulator binding pocket in SK2 ion channels is shared by Riluzole and CyPPA 5V03 ; 1.58 ; A positive allosteric modulator binding pocket in SK2 ion channels is shared by Riluzole and CyPPA 1GED ; 2.0 ; A positive charge route for the access of nadh to heme formed in the distal heme pocket of cytochrome p450nor 7EAR ; 2.2 ; A positively charged mutant Cry3Aa endotoxin 2BCH ; 1.1 ; A possible of Second calcium ion in interfacial binding: Atomic and Medium resolution crystal structures of the quadruple mutant of phospholipase A2 2BD1 ; 1.9 ; A possible role of the second calcium ion in interfacial binding: Atomic and medium resolution crystal structures of the quadruple mutant of phospholipase A2 8K45 ; 3.66 ; A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses including all major Omicron strains 8K46 ; 3.37 ; A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses including all major Omicron strains 8K47 ; 3.54 ; A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses including all major Omicron strains 6TYS ; 3.5 ; A potent cross-neutralizing antibody targeting the fusion glycoprotein inhibits Nipah virus and Hendra virus infection 5MEM ; 1.78 ; A potent fluorescent inhibitor of glycogen phosphorylase as a catalytic site probe. 3DS9 ; 1.758 ; A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate 3DSE ; 1.9 ; A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate 11BG ; 1.9 ; A POTENTIAL ALLOSTERIC SUBSITE GENERATED BY DOMAIN SWAPPING IN BOVINE SEMINAL RIBONUCLEASE 1VHH ; 1.7 ; A POTENTIAL CATALYTIC SITE WITHIN THE AMINO-TERMINAL SIGNALLING DOMAIN OF SONIC HEDGEHOG 6KQR ; 2.899 ; A pre-assembled molecular-helical Cascade backbone of Csy3 subunits from Zymomonas mobilis 1CL8 ; 1.8 ; A PRE-TRANSITION STATE ECO RI ENDONUCLEASE/COGNATE DNA (TCGCGAPTTCGCG) COMPLEX WITH DNA BASE ANALOG PURINE (P) 1ADD ; 2.4 ; A PRE-TRANSITION STATE MIMIC OF AN ENZYME: X-RAY STRUCTURE OF ADENOSINE DEAMINASE WITH BOUND 1-DEAZA-ADENOSINE AND ZINC-ACTIVATED WATER 1GRZ ; 5.0 ; A PREORGANIZED ACTIVE SITE IN THE CRYSTAL STRUCTURE OF THE TETRAHYMENA RIBOZYME 1APB ; 1.76 ; A PRO TO GLY MUTATION IN THE HINGE OF THE ARABINOSE-BINDING PROTEIN ENHANCES BINDING AND ALTERS SPECIFICITY: SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES 1BAP ; 1.75 ; A PRO TO GLY MUTATION IN THE HINGE OF THE ARABINOSE-BINDING PROTEIN ENHANCES BINDING AND ALTERS SPECIFICITY: SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES 9ABP ; 1.97 ; A PRO TO GLY MUTATION IN THE HINGE OF THE ARABINOSE-BINDING PROTEIN ENHANCES BINDING AND ALTERS SPECIFICITY: SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES 1AYP ; 2.57 ; A PROBE MOLECULE COMPOSED OF SEVENTEEN PERCENT OF TOTAL DIFFRACTING MATTER GIVES CORRECT SOLUTIONS IN MOLECULAR REPLACEMENT 2XD0 ; 3.0 ; A processed non-coding RNA regulates a bacterial antiviral system 2XDB ; 2.55 ; A processed non-coding RNA regulates a bacterial antiviral system 2XDD ; 3.2 ; A processed non-coding RNA regulates a bacterial antiviral system 5WDK ; 2.36 ; A processive dipeptidyl aminopeptidase secreted from an established commensal bacterium P. distasonis 5WDL ; 2.625 ; A processive dipeptidyl aminopeptidase secreted from an established commensal bacterium P. distasonis 7D4G ; 3.9 ; A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2 5MQ5 ; 1.6 ; A protease-resistant N24S Escherichia coli Asparaginase mutant with outstanding stability and enhanced anti-leukaemic activity 8WSQ ; 2.9 ; A protective human antibody against respiratory syncytial virus by targeting a prefusion epitope across sites IV and V of the viral fusion glycoprotein. 3ANW ; 2.65 ; A protein complex essential initiation of DNA replication 1OQU ; 2.0 ; A protein coordinated tri-nuclear Fe complex formed during soaking of crystals of the ribonucleotide reductase R2F protein from Corynebacterium Ammoniagenes 2L83 ; ; A protein from Haloferax volcanii 5L75 ; 3.7 ; A protein structure 2J0N ; 2.1 ; A proteolytically truncated form of Shigella Flexneri IpaD 1EHJ ; ; A PROTON-NMR INVESTIGATION OF THE FULLY REDUCED CYTOCHROME C7 FROM DESULFUROMONAS ACETOXIDANS 1F22 ; ; A PROTON-NMR INVESTIGATION OF THE FULLY REDUCED CYTOCHROME C7 FROM DESULFUROMONAS ACETOXIDANS. COMPARISON BETWEEN THE REDUCED AND THE OXIDIZED FORMS. 7WKC ; ; A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability 2CMN ; 2.3 ; A Proximal Arginine Residue in the Switching Mechanism of the FixL Oxygen Sensor 2DWP ; 2.7 ; A pseudo substrate complex of 6-phosphofructo-2-kinase of PFKFB 5AY7 ; 2.15 ; A psychrophilic glycoside hydrolase family 10 endo-beta-1,4-xylanase 5D4Y ; 2.5 ; A psychrophilic glycoside hydrolase family 10 endo-beta-1,4-xylanase 2CGQ ; 1.83 ; a putative acyl carrier protein(Rv0033) from Mycobacterium tuberculosis 2FUJ ; 1.7 ; A putative acyl-CoA thioesterase from Xanthomonas campestris (XC229) 3MAH ; 2.31 ; A putative c-terminal regulatory domain of aspartate kinase from porphyromonas gingivalis w83. 3NQR ; 2.0 ; A putative CBS domain-containing protein from Salmonella typhimurium LT2 4WRR ; 2.16 ; A putative diacylglycerol kinase from Bacillus anthracis str. Sterne 3ELN ; 1.42 ; A Putative Fe2+-bound Persulfenate Intermediate in Cysteine Dioxygenase 3IV4 ; 1.5 ; A putative oxidoreductase with a thioredoxin fold 2B78 ; 2.0 ; A putative sam-dependent methyltransferase from Streptococcus mutans 3JRK ; 1.97 ; A putative tagatose 1,6-diphosphate aldolase from Streptococcus pyogenes 2M8K ; ; A pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo 6R9K ; ; A quadruplex hybrid structure with lpp loop orientation and 3 syn residues 6R9L ; ; A quadruplex hybrid structure with lpp loop orientation and 5 syn residues 8R6G ; ; A quadruplex-duplex hybrid with a three-layered chair G-quadruplex topology 8R6D ; ; A quadruplex-duplex hybrid with a three-layered hybrid-2 G-quadruplex topology 8R6H ; ; A quadruplex-duplex hybrid with a three-layered hybrid-2 G-quadruplex topology complexed with Phen-DC3 5LU5 ; 1.55 ; A quantum half-site enzyme 6LII ; 2.3 ; A quinone oxidoreductase 2CGF ; 2.2 ; A RADICICOL ANALOGUE BOUND TO THE ATP BINDING SITE OF THE N-TERMINAL DOMAIN OF THE YEAST HSP90 CHAPERONE 5OCV ; 2.2 ; A Rare Lysozyme Crystal Form Solved Using High-Redundancy 3D Electron Diffraction Data from Micron-Sized Needle Shaped Crystals 3IGT ; 1.9 ; A rare nucleotide base tautomer in the structure of an asymmetric DNA junction 5ER1 ; 2.0 ; A rational approach to the design of antihypertensives. X-ray studies of complexes between aspartic proteinases and aminoalcohol renin inhibitors 1VKQ ; 1.6 ; A re-determination of the structure of the triple mutant (K53,56,120M) of phospholipase A2 at 1.6A resolution using sulphur-SAS at 1.54A wavelength 2CHR ; 3.0 ; A RE-EVALUATION OF THE CRYSTAL STRUCTURE OF CHLOROMUCONATE CYCLOISOMERASE 5JZD ; 2.303 ; A re-refinement of the isochorismate synthase EntC 6M2H ; 3.1 ; A reaction intermediate of sirohydrochlorin nickelochelatase CfbA in complex with Ni2+ and sirohydrochlorin 1GSM ; 1.9 ; A reassessment of the MAdCAM-1 structure and its role in integrin recognition. 5BUO ; 2.31 ; A receptor molecule 7DY6 ; 3.68 ; A refined cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA 3J1V ; 11.7 ; A refined model of the prototypical Salmonella typhimurium T3SS basal body reveals the molecular basis for its assembly 3J1W ; 11.7 ; A refined model of the prototypical Salmonella typhimurium T3SS basal body reveals the molecular basis for its assembly 3J1X ; 11.7 ; A refined model of the prototypical Salmonella typhimurium T3SS basal body reveals the molecular basis for its assembly 1DMZ ; ; A REFINED NMR STRUCTURE OF A NEW PHOPHOPEPTIDE-BINDING DOMAIN CONTAINING THE FHA2 OF RAD53 1H6I ; 3.54 ; A REFINED STRUCTURE OF HUMAN AQUAPORIN 1 3CIQ ; 2.9 ; A regulatable switch mediates self-association in an immunoglobulin fold 4RAX ; 1.45 ; A regulatory domain of an ion channel 3BO2 ; 3.31 ; A relaxed active site following exon ligation by a group I intron 3BO3 ; 3.4 ; A relaxed active site following exon ligation by a group I intron 3BO4 ; 3.33 ; A relaxed active site following exon ligation by a group I intron 3LFK ; 1.6 ; A reported archaeal mechanosensitive channel is a structural homolog of MarR-like transcriptional regulators 2B5B ; ; A reptilian defensin with anti-bacterial and anti-viral activity 6ON1 ; 1.982 ; A resting state structure of L-DOPA dioxygenase from Streptomyces sclerotialus 2I1A ; 2.3 ; A Retroviral Protease-Like Domain in the Eukaryotic Protein Ddi1 8INP ; 2.12 ; A reversible glycosyltransferase of tectorigenin - Bc7OUGT 8ITA ; 2.5 ; A reversible glycosyltransferase of tectorigenin - Bc7OUGT complexed with UDP and tectorigenin 4ZQX ; 1.46 ; A revised partiality model and post-refinement algorithm for X-ray free-electron laser data 6HN6 ; 2.71 ; A revisited version of the apo structure of the ligand-binding domain of the human nuclear receptor RXR-ALPHA 7ES0 ; 1.395 ; a rice glycosyltransferase in complex with UDP and REX 3HJH ; 1.95 ; A rigid N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor 3RTR ; 3.21 ; A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases 3U3I ; 2.304 ; A RNA binding protein from Crimean-Congo hemorrhagic fever virus 3CM8 ; 2.899 ; A RNA polymerase subunit structure from virus 2D09 ; 1.8 ; A Role for Active Site Water Molecules and Hydroxyl Groups of Substrate for Oxygen Activation in Cytochrome P450 158A2 1MIH ; 2.7 ; A ROLE FOR CHEY GLU 89 IN CHEZ-MEDIATED DEPHOSPHORYLATION OF THE E. COLI CHEMOTAXIS RESPONSE REGULATOR CHEY 6M2M ; 2.85 ; A role for histone chaperone OsChz1 in histone recognition and deposition 2QV2 ; 2.4 ; A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway 3MNN ; 2.5 ; A Ruthenium Antitumour Agent Forms Specific Histone Protein Adducts in the Nucleosome Core 7F0X ; 2.8 ; A SARS-CoV-2 neutralizing antibody 7F12 ; 3.15 ; A SARS-CoV-2 neutralizing antibody 7F15 ; 2.65 ; A SARS-CoV-2 neutralizing antibody 7PFM ; 2.0 ; A SARS-CoV2 major protease non-covalent ligand structure determined to 2.0 A resolution 1GHA ; 2.2 ; A SECOND ACTIVE SITE IN CHYMOTRYPSIN? THE X-RAY CRYSTAL STRUCTURE OF N-ACETYL-D-TRYPTOPHAN BOUND TO GAMMA-CHYMOTRYPSIN 1GHB ; 2.0 ; A SECOND ACTIVE SITE IN CHYMOTRYPSIN? THE X-RAY CRYSTAL STRUCTURE OF N-ACETYL-D-TRYPTOPHAN BOUND TO GAMMA-CHYMOTRYPSIN 4F04 ; 2.3 ; A Second Allosteric site in E. coli Aspartate Transcarbamoylase: R-state ATCase with UTP bound 2FSZ ; 2.2 ; A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor beta 3NWK ; 2.09 ; A second C2221 form of concanavalin A (Canavalia ensiformis) 2WHX ; 2.2 ; A second conformation of the NS3 protease-helicase from dengue virus 1HD7 ; 1.95 ; A Second Divalent Metal Ion in the Active Site of a New Crystal Form of Human Apurinic/Apyridinimic Endonuclease, Ape1, and its Implications for the Catalytic Mechanism 1E9N ; 2.2 ; A second divalent metal ion in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1, and its implications for the catalytic mechanism 2BN4 ; 2.91 ; A second FMN-binding site in yeast NADPH-cytochrome P450 reductase suggests a novel mechanism of electron transfer by diflavin reductase 2BF4 ; 3.0 ; A second FMN-binding site in yeast NADPH-cytochrome P450 reductase suggests a novel mechanism of electron transfer by diflavin reductases. 4PR6 ; 2.3 ; A Second Look at the HDV Ribozyme Structure and Dynamics. 4PRF ; 2.395 ; A Second Look at the HDV Ribozyme Structure and Dynamics. 3EIU ; 3.43 ; A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A1Ao ATP synthase 6Q40 ; 2.412 ; A secreted LysM effector of the wheat pathogen Zymoseptoria tritici protects the fungal hyphae against chitinase hydrolysis through ligand-dependent polymerisation of LysM homodimers 5VY6 ; 3.064 ; A self-assembling D-form DNA crystal lattice 6UAL ; 4.514 ; A Self-Assembling DNA Crystal Scaffold with Cavities Containing 3 Helical Turns per Edge 5VY7 ; 3.0 ; A self-assembling L-form DNA crystal lattice 7OGV ; ; A self-complementary DNA dodecamer duplex contaning 5-hydroxymethylcitosine 7OHE ; ; A self-complementary DNA dodecamer duplex contaning 5-hydroxymethylcitosine 7OHJ ; ; A self-complementary DNA dodecamer duplex contaning 5-hydroxymethylcitosine 7OHM ; ; A self-complementary DNA dodecamer duplex contaning 5-hydroxymethylcitosine 1TGL ; 1.9 ; A SERINE PROTEASE TRIAD FORMS THE CATALYTIC CENTRE OF A TRIACYLGLYCEROL LIPASE 2AYR ; 1.9 ; A SERM Designed for the Treatment of Uterine Leiomyoma with Unique Tissue Specificity for Uterus and Ovaries in Rats 5HGC ; 2.43 ; A Serpin structure 6OX4 ; 2.294 ; A SETD3 Mutant (N255A) in Complex with an Actin Peptide 6OX5 ; 2.098 ; A SETD3 Mutant (N255A) in Complex with an Actin Peptide with His73 Replaced with Lysine 2HY6 ; 1.25 ; A seven-helix coiled coil 1RMX ; ; A SHORT LEXITROPSIN THAT RECOGNIZES THE DNA MINOR GROOVE AT 5'-ACTAGT-3': UNDERSTANDING THE ROLE OF ISOPROPYL-THIAZOLE 1RN9 ; ; A SHORT LEXITROPSIN THAT RECOGNIZES THE DNA MINOR GROOVE AT 5'-ACTAGT-3': UNDERSTANDING THE ROLE OF ISOPROPYL-THIAZOLE 1ULH ; 2.31 ; A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase 1INV ; 2.4 ; A SIALIC ACID DERIVED PHOSPHONATE ANALOG INHIBITS DIFFERENT STRAINS OF INFLUENZA VIRUS NEURAMINIDASE WITH DIFFERENT EFFICIENCIES 1INW ; 2.4 ; A SIALIC ACID DERIVED PHOSPHONATE ANALOG INHIBITS DIFFERENT STRAINS OF INFLUENZA VIRUS NEURAMINIDASE WITH DIFFERENT EFFICIENCIES 1INX ; 2.4 ; A SIALIC ACID DERIVED PHOSPHONATE ANALOG INHIBITS DIFFERENT STRAINS OF INFLUENZA VIRUS NEURAMINIDASE WITH DIFFERENT EFFICIENCIES 1INY ; 2.4 ; A SIALIC ACID DERIVED PHOSPHONATE ANALOG INHIBITS DIFFERENT STRAINS OF INFLUENZA VIRUS NEURAMINIDASE WITH DIFFERENT EFFICIENCIES 5JB4 ; 1.99 ; A simplified BPTI variant containing 21 alanines out 58 of residues 5JB5 ; 1.6 ; A simplified BPTI variant containing 22 alanines out of 58 residues 5JB6 ; 1.9 ; A simplified BPTI variant containing 23 alanines out of 58 residues 5JB7 ; 1.9 ; A simplified BPTI variant containing 24 alanines out of 58 residues 3AUB ; 1.0 ; A simplified BPTI variant stabilized by the A14G and A38V substitutions 3AUH ; 1.2 ; A simplified BPTI variant with poly Arg amino acid tag (C3R) at the C-terminus 3AUI ; 1.851 ; A simplified BPTI variant with poly Glu amino acid tag (C3E) at the C-terminus 3AUE ; 2.28 ; A simplified BPTI variant with poly His amino acid tag (C5H) at the C-terminus 3WNY ; 1.3 ; A simplified BPTI variant with poly Lys amino acid tag (C3K) at the C-terminus 3AUG ; 1.398 ; A simplified BPTI variant with poly Pro amino acid tag (C5P) at the C-terminus 3AUC ; 1.91 ; A simplified BPTI variant with poly SER (C5S) amino acid tag at the c-terminus 161D ; 1.9 ; A SINGLE 2'-HYDROXYL GROUP CONVERTS B-DNA TO A-DNA: CRYSTAL STRUCTURE OF THE DNA-RNA CHIMERIC DECAMER DUPLEX D(CCGGC)R(G)D(CCGG) WITH A NOVEL INTERMOLECULAR G.C BASE-PAIRED QUADRUPLET 2B83 ; 2.25 ; A single amino acid substitution in the Clostridium beijerinckii alcohol dehydrogenase is critical for thermostabilization 4WGI ; 1.85 ; A Single Diastereomer of a Macrolactam Core Binds Specifically to Myeloid Cell Leukemia 1 (MCL1) 2LMS ; ; A single GalNAc residue on Threonine-106 modifies the dynamics and the structure of Interferon alpha-2a around the glycosylation site 1SMI ; 2.0 ; A single mutation of P450 BM3 induces the conformational rearrangement seen upon substrate-binding in wild-type enzyme 6MTG ; 1.85 ; A Single Reactive Noncanonical Amino Acid is Able to Dramatically Stabilize Protein Structure 7NE9 ; 2.1 ; A single sensor controls large variations in zinc quotas in a marine cyanobacterium 7ANA ; 2.3 ; A single sulfatase is required for metabolism of colonic mucin O-glycans and intestinal colonization by a symbiotic human gut bacterium (BT1622-S1_20) 7ANB ; 2.6 ; A single sulfatase is required for metabolism of colonic mucin O-glycans and intestinal colonization by a symbiotic human gut bacterium (BT1622-S1_20) 7AN1 ; 1.5 ; A single sulfatase is required for metabolism of colonic mucin O-glycans and intestinal colonization by a symbiotic human gut bacterium (BT1636-S1_20) 7OQD ; 2.3 ; A single sulfatase is required for metabolism of colonic mucin O-glycans and intestinal colonization by a symbiotic human gut bacterium (BT1636-S1_20) 7ALL ; 1.63 ; A single sulfatase is required for metabolism of colonic mucin O-glycans and intestinal colonization by a symbiotic human gut bacterium (BT4683-S1_4) 3RGV ; 2.9 ; A single TCR bound to MHCI and MHC II reveals switchable TCR conformers 1BWM ; ; A SINGLE-CHAIN T CELL RECEPTOR 1E3A ; 1.8 ; A slow processing precursor penicillin acylase from Escherichia coli 7P1Y ; 2.38 ; A small alarmone hydrolase TdActApo2 mutant - T78N 2E5L ; 3.3 ; A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine- Dalgarno interaction 1U3N ; ; A SOD-like protein from B. subtilis, unstructured in solution, becomes ordered in the crystal: implications for function and for fibrillogenesis 3EBN ; 2.4 ; A Special Dimerization of SARS-CoV Main Protease C-Terminal Domain Due to Domain-swapping 2YJY ; 2.598 ; A specific and modular binding code for cytosine recognition in PUF domains 4PQB ; 1.942 ; A sperm whale myoglobin double mutant L29E/F43H Mb with a non-native bis-His (His64/His93) coordination 4LPI ; 1.36 ; A sperm whale myoglobin double mutant L29H/F43Y Mb with a distal hydrogen-bonding network 5C6Y ; 1.793 ; A sperm whale myoglobin double mutant L29H/F43Y Mb with a Tyr-heme cross-link 4IT8 ; 1.5 ; A sperm whale myoglobin mutant L29H Mb with two distal histidines 4PQC ; 1.503 ; A sperm whale myoglobin single mutant F43H Mb with native His93 coordination 4PQ6 ; 1.45 ; A sperm whale myoglobin single mutant L29E Mb with native His93 coordination 4DKS ; 2.7 ; A spindle-shaped virus protein (chymotrypsin treated) 2G1T ; 1.8 ; A Src-like Inactive Conformation in the Abl Tyrosine Kinase Domain 2G2F ; 2.7 ; A Src-like Inactive Conformation in the Abl Tyrosine Kinase Domain 2G2H ; 2.0 ; A Src-like Inactive Conformation in the Abl Tyrosine Kinase Domain 2G2I ; 3.12 ; A Src-like Inactive Conformation in the Abl Tyrosine Kinase Domain 1LNA ; 1.9 ; A STRUCTURAL ANALYSIS OF METAL SUBSTITUTIONS IN THERMOLYSIN 1LNB ; 1.8 ; A STRUCTURAL ANALYSIS OF METAL SUBSTITUTIONS IN THERMOLYSIN 1LNC ; 1.8 ; A STRUCTURAL ANALYSIS OF METAL SUBSTITUTIONS IN THERMOLYSIN 1LND ; 1.7 ; A STRUCTURAL ANALYSIS OF METAL SUBSTITUTIONS IN THERMOLYSIN 1LNE ; 1.7 ; A STRUCTURAL ANALYSIS OF METAL SUBSTITUTIONS IN THERMOLYSIN 1LNF ; 1.7 ; A structural analysis of metal substitutions in thermolysin 4NSS ; 2.4 ; A structural and functional investigation of a novel protein from Mycobacterium smegmatis implicated in mycobacterial macrophage survivability 1OGA ; 1.4 ; A structural basis for immunodominant human T-cell receptor recognition. 2EYR ; 2.4 ; A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition 2EYS ; 2.21 ; A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition 2EYT ; 2.6 ; A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition 3C7A ; 2.1 ; A structural basis for substrate and stereo selectivity in octopine dehydrogenase (ODH-NADH) 3C7C ; 3.1 ; A structural basis for substrate and stereo selectivity in octopine dehydrogenase (ODH-NADH-L-Arginine) 3C7D ; 2.5 ; A structural basis for substrate and stereo selectivity in octopine dehydrogenase (ODH-NADH-Pyruvate) 3BEO ; 1.7 ; A Structural Basis for the allosteric regulation of non-hydrolyzing UDP-GlcNAc 2-epimerases 4DJB ; 2.053 ; A Structural Basis for the Assembly and Functions of a Viral Polymer that Inactivates Multiple Tumor Suppressors 1LPM ; 2.18 ; A STRUCTURAL BASIS FOR THE CHIRAL PREFERENCES OF LIPASES 1LPS ; 2.18 ; A STRUCTURAL BASIS FOR THE CHIRAL PREFERENCES OF LIPASES 1J7E ; 2.55 ; A Structural Basis for the Unique Binding Features of the Human Vitamin D-binding Protein 6VE6 ; 2.446 ; A structural characterization of poly(aspartic acid) hydrolase-1 from Sphingomonas sp. KT-1. 4OTK ; 1.6 ; A structural characterization of the isoniazid Mycobacterium tuberculosis drug target, Rv2971, in its unliganded form 1EPL ; 2.0 ; A STRUCTURAL COMPARISON OF 21 INHIBITOR COMPLEXES OF THE ASPARTIC PROTEINASE FROM ENDOTHIA PARASITICA 1EPM ; 1.6 ; A STRUCTURAL COMPARISON OF 21 INHIBITOR COMPLEXES OF THE ASPARTIC PROTEINASE FROM ENDOTHIA PARASITICA 1EPN ; 1.6 ; A STRUCTURAL COMPARISON OF 21 INHIBITOR COMPLEXES OF THE ASPARTIC PROTEINASE FROM ENDOTHIA PARASITICA 3S0M ; 2.31 ; A Structural Element that Modulates Proton-Coupled Electron Transfer in Oxalate Decarboxylase 2ON3 ; 3.0 ; A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 3-aminooxy-1-aminopropane 2OO0 ; 1.9 ; A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 3-aminooxy-1-aminopropane 1SSA ; 2.0 ; A STRUCTURAL INVESTIGATION OF CATALYTICALLY MODIFIED F12OL AND F12OY SEMISYNTHETIC RIBONUCLEASES 1SSB ; 2.0 ; A STRUCTURAL INVESTIGATION OF CATALYTICALLY MODIFIED F12OL AND F12OY SEMISYNTHETIC RIBONUCLEASES 3LUT ; 2.9 ; A Structural Model for the Full-length Shaker Potassium Channel Kv1.2 1Z9I ; ; A Structural Model for the Membrane-Bound Form of the Juxtamembrane Domain of the Epidermal Growth Factor Receptor 4BHP ; ; A structural model of CAP mutant (T127L and S128I) in cGMP-bound state 4BH9 ; ; A structural model of CAP mutant (T127L and S128I) in the apo state 4UTQ ; 8.0 ; A structural model of the active ribosome-bound membrane protein insertase YidC 2VSG ; 2.7 ; A Structural Motif in the Variant Surface Glycoproteins of Trypanosoma Brucei 8EFJ ; 2.31 ; A structural study of selectivity mechanisms for JNK3 and p38 alpha with indazole scaffold probing compounds 2FVP ; 2.25 ; A Structural Study of the CA Dinucleotide Step in the Integrase Processing Site of Moloney Murine Leukemia Virus 2FVQ ; 2.3 ; A Structural Study of the CA Dinucleotide Step in the Integrase Processing Site of Moloney Murine Leukemia Virus 2FVR ; 2.2 ; A Structural Study of the CA Dinucleotide Step in the Integrase Processing Site of Moloney Murine Leukemia Virus 2FVS ; 2.35 ; A Structural Study of the CA Dinucleotide Step in the Integrase Processing Site of Moloney Murine Leukemia Virus 2VJ1 ; 2.25 ; A Structural View of the Inactivation of the SARS-Coronavirus Main Proteinase by Benzotriazole Esters 5D8G ; 1.89 ; A structural view on the dissociation of E. coli Tryptophanase 3GE9 ; 2.61 ; A Structurally Atypical ThyX from Corynebacterium glutamicum NCHU 87078 Is Not Required for Thymidylate Biosynthesis 6AZP ; 2.291 ; A Structurally Dynamic N-terminal Region Drives Function of the Staphylococcal Peroxidase Inhibitor (SPIN) 3KZ3 ; 1.64 ; A structure of a lambda repressor fragment mutant 5Z12 ; 2.75 ; A structure of FXR/RXR 5O33 ; 1.64 ; A structure of the GEF Kalirin DH1 domain in complex with the small GTPase Rac1 8BK5 ; 1.44 ; A structure of the truncated LpMIP with bound inhibitor JK095. 8BJE ; 1.49 ; A structure of the truncated LpMIP with bound inhibitor JK236. 1ZV7 ; 1.7 ; A structure-based mechanism of SARS virus membrane fusion 1ZV8 ; 1.94 ; A structure-based mechanism of SARS virus membrane fusion 1ZVA ; 1.5 ; A structure-based mechanism of SARS virus membrane fusion 1ZVB ; 1.7 ; A structure-based mechanism of SARS virus membrane fusion 5Y6L ; 2.9 ; A subcomplex crystal structure of human cytosolic aspartyl-tRNA synthetase and heterotetrameric glutathione transferase-homology domains in multi-tRNA synthetase complex 6ON3 ; 2.31 ; A substrate bound structure of L-DOPA dioxygenase from Streptomyces sclerotialus 4GDJ ; 2.0 ; A subtype N10 neuraminidase-like protein of A/little yellow-shouldered bat/Guatemala/060/2010 4GDI ; 1.95 ; A subtype N10 neuraminidase-like protein of A/little yellow-shouldered bat/Guatemala/164/2009 2MR3 ; ; A subunit of 26S proteasome lid complex 485D ; 0.97 ; A SULFATE POCKET FORMED BY THREE GOU PAIRS IN THE STRUCTURE OF A NONAMERIC RNA 5XT6 ; 3.5 ; A sulfur-transferring catalytic intermediate of SufS-SufU complex from Bacillus subtilis 4KUK ; 1.5 ; A superfast recovering full-length LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae (Dark state) 4KUO ; 2.0 ; A superfast recovering full-length LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae (Photoexcited state) 1ZI0 ; 2.6 ; A Superhelical Spiral in Escherichia coli DNA Gyrase A C-terminal Domain Imparts Unidirectional Supercoiling Bias 1AGS ; 2.5 ; A SURFACE MUTANT (G82R) OF A HUMAN ALPHA-GLUTATHIONE S-TRANSFERASE SHOWS DECREASED THERMAL STABILITY AND A NEW MODE OF MOLECULAR ASSOCIATION IN THE CRYSTAL 2ONT ; 2.4 ; A swapped dimer of the HIV-1 capsid C-terminal domain 3NSU ; 2.0 ; A Systematic Screen for Protein-Lipid Interactions in Saccharomyces cerevisiae 5YXN ; 2.03 ; A T cell receptor in complex with HLA-A0201 restricted Hepatitis C virus NS3 peptide (KLVALGINAV) 3PJP ; 1.6 ; A Tandem SH2 Domain in Transcription Elongation Factor Spt6 Binds the Phosphorylated RNA Polymerase II C-terminal Repeat Domain(CTD) 2MOR ; ; A tensor-free method for the structural and dynamical refinement of proteins using residual dipolar couplings 2VSU ; 1.9 ; A ternary complex of Hydroxycinnamoyl-CoA Hydratase-Lyase (HCHL) with acetyl-Coenzyme A and vanillin gives insights into substrate specificity and mechanism. 5HUQ ; 3.0 ; A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase 8EZI ; 1.99 ; A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase R98A/R100A variant modeled with separated sulfite and NPN 8EZH ; 1.99 ; A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase R98A/R100A variant modeled with sulfite-NPN adduct 6C1W ; 2.398 ; A tethered niacin-derived pincer complex with a nickel-carbon or sulfite-carbon bond in lactate racemase 8EZF ; 2.15 ; A tethered niacin-derived pincer complex with a nickel-carbon or sulfite-carbon bond in lactate racemase R98A/R100A variant 2DCK ; 2.1 ; A tetragonal-lattice structure of alkaliphilic XynJ from Bacillus sp. 41M-1 6QMU ; 1.98 ; A tetrahedral boronic acid diester formed by a non-natural amino acid in the ligand pocket of an engineered lipocalin 2MJJ ; ; A tetrahelical DNA fold adopted by alternating GGG and GCG tracts 225D ; ; A TETRAMERIC DNA STRUCTURE WITH PROTONATED CYTOSINE:CYTOSINE BASE PAIRS 3M79 ; 2.1 ; A tetrameric Zn-bound cytochrome cb562 complex with covalently and non-covalently stabilized interfaces crystallized in the presence of Cu(II) and Zn(II) 4F5L ; 1.4 ; A Theoretical Optimized Mutant for the Conversion of Substrate Specificity and Activity of Aspartate Aminotransferase to Tyrosine Aminotransferase: Chimera P7. 5MI0 ; 2.35 ; A thermally stabilised version of Plasmodium falciparum RH5 3X2E ; 2.85 ; A thermophilic hydrolase 3X2F ; 2.04 ; A Thermophilic S-Adenosylhomocysteine Hydrolase 7Q4J ; 1.91 ; A thermostable lipase from Thermoanaerobacter thermohydrosulfuricus in complex a monoacylglycerol intermediate 7Q4H ; 2.00003 ; A thermostable lipase from Thermoanaerobacter thermohydrosulfuricus in complex with PMSF 4HVY ; 1.46 ; A thermostable variant of human NUDT18 NUDIX domain obtained by Hot Colony Filtration 3ZL1 ; 1.551 ; A thiazolyl-mannoside bound to FimH, monoclinic space group 3ZL2 ; 1.251 ; A thiazolyl-mannoside bound to FimH, orthorhombic space group 1VZK ; 1.77 ; A Thiophene Based Diamidine Forms a ""Super"" AT Binding Minor Groove Agent 1MP7 ; ; A Third Complex of Post-Activated Neocarzinostatin Chromophore with DNA. Bulge DNA Binding from the Minor Groove 6LQB ; 1.7 ; A third intermediate state of L,D-transpeptidase LdtMt2-ertapenem adduct 1BBB ; 1.7 ; A THIRD QUATERNARY STRUCTURE OF HUMAN HEMOGLOBIN A AT 1.7-ANGSTROMS RESOLUTION 5B6V ; 2.0 ; A three dimensional movie of structural changes in bacteriorhodopsin: resting state structure 5B6Z ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 1.725 ms us after photoexcitation 5H2I ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 110 ns after photoexcitation 5H2M ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 13.8 us after photoexcitation 5B6W ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 16 ns after photoexcitation 5H2K ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 2 us after photoexcitation 5H2O ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 250 us after photoexcitation 5H2J ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 290 ns after photoexcitation 5B6Y ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 36.2 us after photoexcitation 5H2H ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 40 ns after photoexcitation 5H2L ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 5.25 us after photoexcitation 5H2P ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 657 us after photoexcitation 5B6X ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 760 ns after photoexcitation 5H2N ; 2.1 ; A three dimensional movie of structural changes in bacteriorhodopsin: structure obtained 95.2 us after photoexcitation 1RMN ; ; A THREE-DIMENSIONAL MODEL FOR THE HAMMERHEAD RIBOZYME BASED ON FLUORESCENCE MEASUREMENTS 4I3H ; 3.7 ; A three-gate structure of topoisomerase IV from Streptococcus pneumoniae 417D ; 1.5 ; A THYMINE-LIKE BASE ANALOGUE FORMS WOBBLE PAIRS WITH ADENINE 4FFB ; 2.882 ; A TOG:alpha/beta-tubulin Complex Structure Reveals Conformation-Based Mechanisms For a Microtubule Polymerase 2UZR ; 1.94 ; A transforming mutation in the pleckstrin homology domain of AKT1 in cancer (AKT1-PH_E17K) 2UZS ; 2.46 ; A transforming mutation in the pleckstrin homology domain of AKT1 in cancer (AKT1-PH_E17K) 2KZG ; ; A Transient and Low Populated Protein Folding Intermediate at Atomic Resolution 1F51 ; 3.0 ; A TRANSIENT INTERACTION BETWEEN TWO PHOSPHORELAY PROTEINS TRAPPED IN A CRYSTAL LATTICE REVEALS THE MECHANISM OF MOLECULAR RECOGNITION AND PHOSPHOTRANSFER IN SINGAL TRANSDUCTION 1DQ4 ; 2.9 ; A transient unlocked concanavalin A structure with MN2+ bound in the transition metal ion binding site S1 and an empty calcium binding site S2 3H7Z ; 2.51 ; A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled coil segment of trimeric autotransporter adhesins - the M1 mutant structure 3LT7 ; 1.5 ; A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled coil segment of trimeric autotransporter adhesins - the M3 mutant structure 3LT6 ; 1.8 ; A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled coil segment of trimeric autotransporter adhesins - the Mutant 4 structure 3H7X ; 2.0 ; A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled coil segment of trimeric autotransporter adhesins - the wildtype structure 3FOP ; 3.0 ; A Triangular Cytochrome b562 Superstructure Mediated by Ni Coordination - Hexagonal Form 3FOO ; 2.4 ; A Triangular Cytochrome b562 Superstructure Mediated by Ni Coordination - Monoclinic Form 1GIS ; 1.7 ; A TRICHOSANTHIN(TCS) MUTANT(E85Q) COMPLEX STRUCTURE WITH 2'-DEOXY-ADENOSIN-5'-MONOPHOSPHATE 1GIU ; 1.8 ; A TRICHOSANTHIN(TCS) MUTANT(E85R) COMPLEX STRUCTURE WITH ADENINE 2WW4 ; 2.0 ; a triclinic crystal form of E. coli 4-diphosphocytidyl-2C-methyl-D- erythritol kinase 1VLN ; 2.4 ; A TRICLINIC CRYSTAL FORM OF THE LECTIN CONCANAVALIN A 3R6Q ; 2.4 ; A triclinic-lattice structure of aspartase from Bacillus sp. YM55-1 198D ; 1.97 ; A TRIGONAL FORM OF THE IDARUBICIN-D(CGATCG) COMPLEX: CRYSTAL AND MOLECULAR STRUCTURE AT 2.0 ANGSTROMS RESOLUTION 7QDK ; 1.41 ; A trimeric de novo coiled-coil assembly: CC-TypeN-LaLd 3HFE ; 1.7 ; A trimeric form of the Kv7.1 A domain Tail 3HFC ; 2.45 ; A trimeric form of the Kv7.1 A domain Tail, L602M/L606M mutant Semet 5XRC ; 2.9 ; A Trimodular GH5_4 Subfamily Endoglucanase Structure with Large Unit Cell 1QIU ; 2.4 ; A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for biological fibres 4RX2 ; 2.315 ; A triple mutant in the omega-loop of TEM-1 beta-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis 4RX3 ; 1.39 ; A triple mutant in the omega-loop of TEM-1 beta-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis 4RVA ; 1.4397 ; A triple mutant in the omega-loop of TEM-1 beta-lactamase changes the substrate profile via a large conformational change and an altered general base for deacylation 5G1K ; 1.96 ; A triple mutant of DsbG engineered for denitrosylation 3D17 ; 2.8 ; A triply ligated crystal structure of relaxed state human hemoglobin 8BK6 ; 2.263 ; A truncated structure of LpMIP with bound inhibitor JK095. 1FV7 ; ; A TWO B-Z JUNCTION CONTAINING DNA RESOLVES INTO AN ALL RIGHT HANDED DOUBLE HELIX 1BAH ; ; A TWO DISULFIDE DERIVATIVE OF CHARYBDOTOXIN WITH DISULFIDE 13-33 REPLACED BY TWO ALPHA-AMINOBUTYRIC ACIDS, NMR, 30 STRUCTURES 2DCJ ; 2.24 ; A two-domain structure of alkaliphilic XynJ from Bacillus sp. 41M-1 5LQG ; ; A two-quartet G-quadruplex formed by human telomere in KCl solution at neutral pH 5LQH ; ; A two-quartet G-quadruplex formed by human telomere in KCl solution at pH 5.0 3ALE ; 2.5 ; A type III polyketide synthase that produces diarylheptanoid 4I6J ; 2.7 ; A ubiquitin ligase-substrate complex 6RA0 ; 2.26 ; A ubiquitin-like dimerization domain controls protein kinase D activation by trans-autophosphorylation 5ZEW ; ; A ubiquitin-like protein from the hyperthermophilic archaea Caldiarchaeum subterraneum 5ICK ; 2.47 ; A unique binding model of FXR LBD with feroline 4ZM6 ; 2.8 ; A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain GH3 beta-N-acetylglucosaminidase 4JMR ; 2.9 ; A unique spumavirus gag N-terminal domain with functional properties of orthoretroviral Matrix and Capsid 4JNH ; 2.402 ; A unique spumavirus gag N-terminal domain with functional properties of orthoretroviral Matrix and Capsid 6MEM ; 11.6 ; A unique supramolecular organization of photosystem I in the moss Physcomitrella patens 3R0Q ; 2.61 ; A Uniquely Open Conformation Revealed in the Crystal Structure of Arabidopsis Thaliana Protein Arginine Methyltransferase 10 6ALE ; 2.5 ; A V-to-F substitution in SK2 channels causes Ca2+ hypersensitivity and improves locomotion in a C. elegans ALS model 6CZQ ; 2.2 ; A V-to-F substitution in SK2 channels causes Ca2+ hypersensitivity and improves locomotion in a C. elegans ALS model 1K50 ; 1.8 ; A V49A Mutation Induces 3D Domain Swapping in the B1 Domain of Protein L from Peptostreptococcus magnus 1SQ8 ; ; a variant 434 repressor DNA binding domain devoid of hydroxyl groups, NMR, 20 STRUCTURES 6K53 ; 1.89 ; A variant of metagenome-derived GH6 cellobiohydrolase, HmCel6A (P88S/L230F/F414S) 6VLK ; 2.4529 ; A varicella-zoster virus glycoprotein 4JL8 ; 1.79 ; A various kinds of ADP conformations in the Adenylate kinase active site 4I6E ; 2.7 ; A vertebrate cryptochrome 4I6G ; 2.2 ; a vertebrate cryptochrome with FAD 1CSH ; 1.65 ; A very short hydrogen bond provides only moderate stabilization of an enzyme: inhibitor complex of citrate synthase 1CSI ; 1.7 ; A very short hydrogen bond provides only moderate stabilization of an enzyme: inhibitor complex of citrate synthase 8G1R ; 3.4 ; A Vibrio cholerae viral satellite enables efficient horizontal transfer by using an external scaffold to assemble hijacked coat proteins into small capsids 6SCF ; 1.55 ; A viral anti-CRISPR subverts type III CRISPR immunity by rapid degradation of cyclic oligoadenylate 5LDN ; 2.7 ; A viral capsid:antibody complex 7PDY ; 2.54 ; A viral peptide from Marek's disease virus bound to chicken MHC-II molecule 2JBY ; 2.41 ; A viral protein unexpectedly mimics the structure and function of pro- survival Bcl-2 3J9X ; 3.8 ; A Virus that Infects a Hyperthermophile Encapsidates A-Form DNA 2XXP ; 1.692 ; A widespread family of bacterial cell wall assembly proteins 2XXQ ; 1.77 ; A widespread family of bacterial cell wall assembly proteins 2CE9 ; 2.12 ; A WRPW peptide bound to the Groucho-TLE WD40 domain. 7BTT ; 1.86 ; A X-ray cocrystal structure of XMU-MP-5 bound to the ALK kinase domain 4IVZ ; 3.1 ; A Y37F mutant of C.Esp1396I bound to its highest affinity operator site OM 5C8J ; 3.502 ; A YidC-like protein in the archaeal plasma membrane 3LG2 ; 2.6 ; A Ykr043C/ fructose-1,6-bisphosphate product complex following ligand soaking 1ZNM ; ; A zinc finger with an artificial beta-turn, original sequence taken from the third zinc finger domain of the human transcriptional repressor protein YY1 (YING and YANG 1, a delta transcription factor), nmr, 34 structures 376D ; 2.1 ; A ZIPPER-LIKE DNA DUPLEX D(GCGAAAGCT) 3M15 ; 2.6 ; A Zn-mediated asymmetric trimer of a cytochrome cb562 variant (D74A-RIDC1) 3M4B ; 2.5 ; A Zn-mediated tetrahedral protein lattice cage 3M4C ; 1.9 ; A Zn-mediated tetrahedral protein lattice cage encapsulating a microperoxidase 7E36 ; 2.0 ; A [6+4]-cycloaddition adduct is the biosynthetic intermediate in streptoseomycin biosynthesis 413D ; 1.8 ; A'-FORM RNA DOUBLE HELIX IN THE SINGLE CRYSTAL STRUCTURE OF R(UGAGCUUCGGCUC) 8IMJ ; 2.59 ; A'1-A'2, A'3-A'4, B1-B2, C1-C2 cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster B) 1JJP ; ; A(GGGG) Pentad-Containing Dimeric DNA Quadruplex Involving Stacked G(anti)G(anti)G(anti)G(syn) Tetrads 1EEG ; ; A(GGGG)A HEXAD PAIRING ALIGMENT FOR THE D(G-G-A-G-G-A-G) SEQUENCE 1DNZ ; 1.6 ; A-DNA DECAMER ACCGGCCGGT WITH MAGNESIUM BINDING SITES 138D ; 1.8 ; A-DNA DECAMER D(GCGGGCCCGC)-HEXAGONAL CRYSTAL FORM 137D ; 1.7 ; A-DNA DECAMER D(GCGGGCCCGC)-ORTHORHOMBIC CRYSTAL FORM 1DPL ; 0.83 ; A-DNA DECAMER GCGTA(T23)TACGC WITH INCORPORATED 2'-METHOXY-3'-METHYLENEPHOSPHATE-THYMIDINE 1I5W ; 1.4 ; A-DNA DECAMER GCGTA(TLN)ACGC 1MA8 ; 1.3 ; A-DNA decamer GCGTA(UMS)ACGC with incorporated 2'-methylseleno-uridine 1DNO ; 1.4 ; A-DNA/RNA DODECAMER R(GCG)D(TATACGC) MG BINDING SITES 1Y26 ; 2.1 ; A-riboswitch-adenine complex 2F4S ; 2.8 ; A-site RNA in complex with neamine 1UUE ; 2.6 ; a-SPECTRIN SH3 DOMAIN (V44T, D48G MUTANT) 1E6H ; 2.01 ; A-SPECTRIN SH3 DOMAIN A11V, M25I, V44I, V58L MUTANTS 1E6G ; 2.3 ; A-SPECTRIN SH3 DOMAIN A11V, V23L, M25I, V53I, V58L MUTANT 1E7O ; 3.2 ; A-SPECTRIN SH3 DOMAIN A11V, V23L, M25V, V44I, V58L MUTATIONS 1H8K ; 2.7 ; A-SPECTRIN SH3 DOMAIN A11V, V23L, M25V, V53I, V58L MUTANT 1BK2 ; 2.01 ; A-SPECTRIN SH3 DOMAIN D48G MUTANT 1HD3 ; 1.98 ; A-SPECTRIN SH3 DOMAIN F52Y MUTANT 1NEV ; ; A-tract decamer 1AL5 ; ; A-TRACT RNA DODECAMER, NMR, 12 STRUCTURES 5ZMB ; ; A-ubiquitin like protein from the trypanosoma brucei 2IXA ; 2.3 ; A-zyme, N-acetylgalactosaminidase 5TVA ; 2.25 ; A. aeolicus BioW with AMP and CoA 5TV8 ; 2.55 ; A. aeolicus BioW with AMP-CPP and pimelate 5TV6 ; 2.456 ; A. aeolicus BioW with pimelate 1ZHA ; 1.74 ; A. aeolicus KDO8PS R106G mutant in complex with PEP and R5P 7UW1 ; 2.21 ; A. baumannii 70S ribosome-Streptothricin-D complex 7UVX ; 2.35 ; A. baumannii 70S ribosome-Streptothricin-F complex 7MET ; 3.97 ; A. baumannii MsbA in complex with TBT1 decoupler 7M4U ; 2.71 ; A. baumannii Ribosome-Eravacycline complex: 30S 7M4V ; 2.54 ; A. baumannii Ribosome-Eravacycline complex: 50S 7M4Y ; 2.5 ; A. baumannii Ribosome-Eravacycline complex: E-site tRNA 70S 7M4W ; 2.55 ; A. baumannii Ribosome-Eravacycline complex: Empty 70S 7M4Z ; 2.92 ; A. baumannii Ribosome-Eravacycline complex: hpf-bound 70S 7M4X ; 2.66 ; A. baumannii Ribosome-Eravacycline complex: P-site tRNA 70S 7UVZ ; 2.21 ; A. baumannii ribosome-Streptothricin-D complex: 70S with E-site tRNA 7UVY ; 2.39 ; A. baumannii ribosome-Streptothricin-D complex: 70S with P-site tRNA 7UVV ; 2.5 ; A. baumannii ribosome-Streptothricin-F complex: 70S with P-site tRNA 7RYG ; 2.38 ; A. baumannii Ribosome-TP-6076 complex: E-site tRNA 70S 7RYH ; 2.43 ; A. baumannii Ribosome-TP-6076 complex: Empty 70S 7RYF ; 2.65 ; A. baumannii Ribosome-TP-6076 complex: P-site tRNA 70S 7UVW ; 2.37 ; A. baumannii ribosome: 70S with E-site tRNA 3T9Z ; 1.82 ; A. fulgidus GlnK3, ligand-free 3TA1 ; 1.9 ; A. fulgidus GlnK3, MgADP complex 3TA0 ; 2.3 ; A. fulgidus GlnK3, MgATP complex 3TA2 ; 1.9 ; A. fulgidus GlnK3, MgATP/2-OG complex 4EB5 ; 2.53 ; A. fulgidus IscS-IscU complex structure 4EB7 ; 2.75 ; A. fulgidus IscS-IscU complex structure 2ZYI ; 2.3 ; A. Fulgidus lipase with fatty acid fragment and calcium 2ZYS ; 3.1 ; A. Fulgidus lipase with fatty acid fragment and chloride 2ZYR ; 1.77 ; A. Fulgidus lipase with fatty acid fragment and magnesium 2XVN ; 2.35 ; A. fumigatus chitinase A1 phenyl-methylguanylurea complex 4NZH ; 2.0 ; A. fumigatus flavin-dependent ornithine monooxygenase R279A mutant 4B64 ; 2.28 ; A. fumigatus ornithine hydroxylase (SidA) bound to NADP and Lysine 4B63 ; 1.9 ; A. fumigatus ornithine hydroxylase (SidA) bound to NADP and ornithine 4B69 ; 2.3 ; A. fumigatus ornithine hydroxylase (SidA) bound to ornithine 4B68 ; 2.29 ; A. fumigatus ornithine hydroxylase (SidA), re-oxidised state bound to NADP and Arg 4B67 ; 2.75 ; A. fumigatus ornithine hydroxylase (SidA), re-oxidised state bound to NADP and ornithine 4B66 ; 2.9 ; A. fumigatus ornithine hydroxylase (SidA), reduced state bound to NADP and Arg 4B65 ; 2.32 ; A. fumigatus ornithine hydroxylase (SidA), reduced state bound to NADP(H) 2Y8U ; 1.99 ; A. nidulans chitin deacetylase 1U1H ; 2.55 ; A. thaliana cobalamine independent methionine synthase 1U1J ; 2.4 ; A. thaliana cobalamine independent methionine synthase 1U1U ; 2.95 ; A. thaliana cobalamine independent methionine synthase 1U22 ; 2.65 ; A. thaliana cobalamine independent methionine synthase 5EKW ; 1.1 ; A. thaliana IGPD2 in complex with the racemate of the triazole-phosphonate inhibitor, C348 5ELW ; 1.4 ; A. thaliana IGPD2 in complex with the triazole-phosphonate inhibitor, (R)-C348, to 1.36A resolution 5EL9 ; 1.1 ; A. thaliana IGPD2 in complex with the triazole-phosphonate inhibitor, (S)-C348, to 1.1A resolution 3LGS ; 2.2 ; A. thaliana MTA nucleosidase in complex with S-adenosylhomocysteine 6FL4 ; 1.6 ; A. thaliana NUDT1 in complex with 8-oxo-dGTP 6SMN ; 1.63 ; A. thaliana serine hydroxymethyltransferase isoform 2 (AtSHMT2) in complex with methotrexate 6SMW ; 1.54 ; A. thaliana serine hydroxymethyltransferase isoform 2 (AtSHMT2) in complex with pemetrexed 6SMR ; 2.12 ; A. thaliana serine hydroxymethyltransferase isoform 4 (AtSHMT4) in complex with methotrexate 8BOQ ; 1.547 ; A. vinelandii Fe-nitrogenase FeFe protein 3U7Q ; 1.0 ; A. vinelandii nitrogenase MoFe protein at atomic resolution 6FEA ; 1.2 ; A. vinelandii vanadium nitrogenase, turnover state 4OZE ; 1.61 ; A.aolicus LpxC in complex with native product 8IWL ; 3.04 ; A.baumannii Uncharacterized sugar kinase ydjH 2B8H ; 2.2 ; A/NWS/whale/Maine/1/84 (H1N9) reassortant influenza virus neuraminidase 5W08 ; 2.6 ; A/Texas/50/2012(H3N2) Influenza hemagglutinin in complex with K03.12 Fab 8GLC ; 3.12 ; A1 AncAla: Adenylation domain 1 core construct from ancestral reconstruction of glycopeptide antibiotic biosynthesis, alanine selection pocket 1AUQ ; 2.3 ; A1 DOMAIN OF VON WILLEBRAND FACTOR 8GJP ; 2.7 ; A1 Int graft: Adenylation domain 1 core construct from teicoplanin biosynthesis, intermediate selection pocket graft 8GKM ; 1.89 ; A1 Leu graft + Leu: Adenylation domain 1 core construct from teicoplanin biosynthesis, leucine selection pocket graft; leucine bound 8GIC ; 1.64 ; A1 Tei + Hpg: Adenylation domain 1 core construct from teicoplanin biosynthesis; 4-hydroxyphenylglycine bound 8GJ4 ; 1.81 ; A1 Tei: Adenylation domain 1 core construct from teicoplanin biosynthesis 8IMI ; 2.59 ; A1-A2, A3-A4, B'1-B'2, C'1-C'2 cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster A) 6H0J ; ; A1-type ACP domain from module 5 of MLSA1 4LID ; 3.0 ; A100, A DNA binding scaffold from Sulfolobus spindle-shape virus 1 2PQD ; 1.77 ; A100G CP4 EPSPS liganded with (R)-difluoromethyl tetrahedral reaction intermediate analog 4A6A ; 2.9 ; A115V variant of dCTP deaminase-dUTPase from Mycobacterium tuberculosis in complex with dTTP 4M9I ; 2.4 ; A125C NS2B-NS3 protease from dengue virus at pH 5.5 6E0X ; 1.974 ; A131E mutant of cyt P460 of Nitrosomonas sp. AL212 6E17 ; 1.97 ; A131E mutant of cyt P460 of Nitrosomonas sp. AL212 with NO bound 6E0Z ; 2.3 ; A131Q mutant of cyt P460 of Nitrosomonas sp. AL212 6E0Y ; 2.257 ; A131Q mutant of cyt P460 of Nitrosomonas sp. AL212 with bound NH2OH 2JPX ; ; A18H Vpu TM structure in lipid bilayers 1SZG ; 2.7 ; A198G:L230A flavocytochrome b2 with sulfite bound 1SZF ; 2.7 ; A198G:L230A mutant flavocytochrome b2 with pyruvate bound 7PBD ; 3.04 ; a1b3 GABA-A receptor + GABA 7PBZ ; 2.79 ; a1b3 GABA-A receptor + GABA + Zn2+ 1C17 ; ; A1C12 SUBCOMPLEX OF F1FO ATP SYNTHASE 4JFO ; 2.11 ; A2 HLA complex with E1A heteroclitic variant of Melanoma peptide 4JFP ; 1.91 ; A2 HLA complex with G4A heteroclitic variant of Melanoma peptide 4JFQ ; 1.9 ; A2 HLA complex with L8A heteroclitic variant of Melanoma peptide 4GKN ; 2.753 ; A2-MHC Complex carrying FATGIGIITV 4GKS ; 2.346 ; A2-MHC Complex carrying FLTGIGIITV 8FIF ; 2.35 ; A2.3 Nanobody In Complex With Microcystin-LR 3ZJD ; 1.87 ; A20 OTU domain in reduced, active state at 1.87 A resolution 3ZJE ; 1.84 ; A20 OTU domain in reversibly oxidised (SOH) state 3ZJF ; 2.2 ; A20 OTU domain with irreversibly oxidised Cys103 from 270 min H2O2 soak. 3ZJG ; 1.92 ; A20 OTU domain with irreversibly oxidised Cys103 from 60 min H2O2 soak. 7ZKK ; 1.97 ; A216H variant of the CODH/ACS complex of C. hydrogenoformans 8CMW ; 2.6 ; A225L variant of the CODH/ACS complex of C. hydrogenoformans 8CJA ; 2.1 ; A225L/F231A variant of the CODH/ACS complex of C. hydrogenoformans 8EFU ; 3.2 ; a22L prion fibril 4LZ0 ; 1.754 ; A236G Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 6TXV ; 1.6 ; A25T Transthyretin structure in complex with Tolcalpone 8CJB ; 2.5 ; A268M variant of the CODH/ACS complex of C. hydrogenoformans 5NM2 ; 1.948 ; A2A Adenosine receptor cryo structure 5NM4 ; 1.7 ; A2A Adenosine receptor room-temperature structure determined by serial femtosecond crystallography 5NLX ; 2.14 ; A2A Adenosine receptor room-temperature structure determined by serial millisecond crystallography 6LPJ ; 1.8 ; A2AR crystallized in EROCOC17+4, LCP-SFX at 277 K 6LPK ; 1.8 ; A2AR crystallized in EROCOC17+4, LCP-SFX at 293 K 6LPL ; 2.0 ; A2AR crystallized in EROCOC17+4, SS-ROX at 100 K 1AO3 ; 2.2 ; A3 DOMAIN OF VON WILLEBRAND FACTOR 1BH2 ; 2.1 ; A326S MUTANT OF AN INHIBITORY ALPHA SUBUNIT 3AM3 ; 2.5 ; A372M mutant of Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan 3AM4 ; 2.3 ; A372M mutant of Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant T1 2YEO ; 1.08 ; A39L mutation of scorpion toxin lqh-alpha-it 1YKJ ; 2.0 ; A45G p-hydroxybenzoate hydroxylase with p-hydroxybenzoate bound 1UXM ; 1.9 ; A4V mutant of human SOD1 6Z4M ; 1.55 ; A4V mutant of human SOD1 bound with 2-(pyridin-3-ylmethyl)benzoisoselenazolone derivative 10 in P21 space group 6Z4L ; 1.6 ; A4V mutant of human SOD1 bound with 2-(pyridin-3-ylmethyl)benzoisoselenazolone derivative 9 in P21 space group 6Z4O ; 1.4 ; A4V mutant of human SOD1 bound with benzyl benzoisoselenazolone derivative 1 in P21 space group 6Z4H ; 1.95 ; A4V mutant of human SOD1 bound with benzyl benzoisoselenazolone derivative 2 in P21 space group 6Z4I ; 1.6 ; A4V mutant of human SOD1 bound with benzyl benzoisoselenazolone derivative 3 in P21 space group 6Z4J ; 1.55 ; A4V mutant of human SOD1 bound with benzyl benzoisoselenazolone derivative 5 in P21 space group 6Z4K ; 1.45 ; A4V mutant of human SOD1 bound with benzyl benzoisoselenazolone derivative 6 in P21 space group 6Z4G ; 1.45 ; A4V mutant of human SOD1 bound with ebselen in P21 space group 6Z3V ; 1.25 ; A4V mutant of human SOD1 bound with N-aryl benzoisoselenazolone derivative 13 in P21 space group 6SPJ ; 1.97 ; A4V MUTANT OF HUMAN SOD1 WITH EBSELEN DERIVATIVE 1 6SPI ; 2.8 ; A4V MUTANT OF HUMAN SOD1 WITH EBSELEN DERIVATIVE 4 6SPK ; 2.77 ; A4V MUTANT OF HUMAN SOD1 WITH EBSELEN DERIVATIVE 6 6SPA ; 1.65 ; A4V MUTANT OF HUMAN SUPEROXIDE DISMUTASE 1 IN C2 SPACE GROUP 6SPH ; 2.25 ; A4V MUTANT OF HUMAN SUPEROXIDE DISMUTASE 1 WITH EBSELEN BOND IN C2 SPACE GROUP 3AA5 ; 2.1 ; A52F E.coli RNase HI 3AA2 ; 1.9 ; A52I E. coli RNase HI 3AA3 ; 2.2 ; A52L E. coli RNase HI 3AA4 ; 1.79 ; A52V E.coli RNase HI 5T7R ; 1.55 ; A6-A11 trans-dicarba human insulin 455D ; 1.43 ; A6/A18 INTER-STRAND DITHIOBIS(PROPANE)-CROSSLINKED DODECAMER (CGCGAATTCGCG)2 7DZL ; 1.64 ; A69C-M71L mutant of Fabp protein 8JLR ; 3.0 ; A77636-bound hTAAR1-Gs protein complex 6S0N ; ; A9 peptide derived from Herceptin fab binding region 5FTZ ; 1.38 ; AA10 lytic polysaccharide monooxygenase (LPMO) from Streptomyces lividans 4OPB ; 1.5 ; AA13 Lytic polysaccharide monooxygenase from Aspergillus oryzae 6TC4 ; 2.0 ; AA13 Lytic polysaccharide monooxygenase from Aspergillus oryzae measured with SSX 6TBQ ; 1.72 ; AA13 Lytic polysaccharide monooxygenase from Aspergillus oryzae partially in Cu(II) state 7NTL ; 1.38 ; AA9 lytic polysaccharide monooxygenase (LPMO) from Malbranchea cinnamomea 3H4M ; 3.106 ; AAA ATPase domain of the proteasome- activating nucleotidase 5EXS ; 2.5 ; AAA+ ATPase FleQ from Pseudomonas aeruginosa bound to ATP-gamma-S 5EXX ; 3.311 ; AAA+ ATPase FleQ from Pseudomonas aeruginosa bound to c-di-GMP 6LSY ; 6.33 ; AAA+ ATPase, ClpL from Streptococcus pneumoniae - ATP bound 6LT4 ; 4.5 ; AAA+ ATPase, ClpL from Streptococcus pneumoniae: ATPrS-bound 5EXP ; 1.8 ; AAA+ domain of FleQ from Pseudomonas aeruginosa 5EXT ; 2.4 ; AAA+ domain of FleQ from Pseudomonas aeruginosa bound to ADP 8OSF ; 4.0 ; AAA+ motor subunit ChlI of magnesium chelatase, hexamer conformation A 8OSG ; 3.8 ; AAA+ motor subunit ChlI of magnesium chelatase, hexamer conformation B 8OSH ; 4.9 ; AAA+ motor subunit ChlI of magnesium chelatase, pentamer spring-washer-like conformation 6HE4 ; 4.85 ; AAA-ATPase ring of PAN-proteasomes 7MQM ; 1.6 ; AAC(3)-IIIa in complex with CoA and gentamicin 7MQL ; 1.6 ; AAC(3)-IIIa in complex with CoA and neomycin 7MQK ; 1.6 ; AAC(3)-IIIa in complex with CoA and sisomicin 6MB6 ; 2.25 ; AAC-IIIb binary with CoASH 6MB5 ; 2.2 ; AAC-IIIb binary with NEOMYCIN 6NP3 ; 1.15 ; AAC-VIa bound to Gentamicin 6O5U ; 1.4 ; AAC-VIa bound to Kanamycin A 6NP5 ; 1.353 ; AAC-VIa bound to Kanamycin B 6NP2 ; 1.2 ; AAC-VIa bound to Sisomicin 6NP4 ; 1.151 ; AAC-VIa bound to Tobramycin 5BK9 ; 1.51 ; AAD-1 Bound to the Vanadyl Ion and Succinate 5LPA ; 1.4 ; AadA E87Q in complex with ATP, calcium and dihydrostreptomycin 5LUH ; 1.73 ; AadA E87Q in complex with ATP, calcium and streptomycin 5G4A ; 1.9 ; AadA in complex with ATP and magnesium 6FZB ; 2.05 ; AadA in complex with ATP, magnesium and streptomycin 4Y62 ; 1.6 ; AAGlyB in complex with amino-acid analogues 4Y63 ; 1.3 ; AAGlyB in complex with amino-acid analogues 4Y64 ; 1.6 ; AAGlyB in complex with amino-acid analogues 7Z4T ; 3.3 ; AAL160 FAB IN COMPLEX WITH HUMAN INTERLEUKIN-1 BETA 7LTU ; 1.122 ; AALALL SEGMENT FROM THE NUCLEOPROTEIN OF SARS-COV-2, RESIDUES 217-222, CRYSTAL FORM 1 7LUX ; 1.303 ; AALALL segment from the Nucleoprotein of SARS-CoV-2, residues 217-222, crystal form 2 1FT7 ; 2.2 ; AAP COMPLEXED WITH L-LEUCINEPHOSPHONIC ACID 6GIF ; ; AapA1 V26A toxin from helicobacter pylori 26695 8OQ5 ; 2.4 ; AApoAII amyloid fibril Morphology I (ex vivo) 8OQ4 ; 2.6 ; AApoAII amyloid fibril Morphology II (ex vivo) 2I13 ; 1.96 ; Aart, a six finger zinc finger designed to recognize ANN triplets 3C9U ; 1.48 ; AaThiL complexed with ADP and TPP 3C9S ; 2.2 ; AaThiL complexed with AMPPCP 3C9T ; 2.6 ; AaThiL complexed with AMPPCP and TMP 3C9R ; 2.3 ; AaThiL complexed with ATP 6JCQ ; 3.3 ; AAV1 in complex with AAVR 6JCR ; 3.07 ; AAV1 in neutral condition at 3.07 Ang 8FQ4 ; 2.27 ; AAV1 VP3 Only Capsid 6JCS ; 3.18 ; AAV5 in complex with AAVR 6JCT ; 3.18 ; AAV5 in neutral condition at 3.18 Ang 6UBM ; 3.3 ; AAV8 Baculovirus-Sf9 produced, empty capsid 6U2V ; 3.6 ; AAV8 Baculovirus-Sf9 produced, full capsid 6U20 ; 3.3 ; AAV8 human HEK293-produced, empty capsid 6PWA ; 3.3 ; AAV8 human HEK293-produced, full capsid 7RL1 ; 2.71 ; AAVrh.10-7x capsid 6XTG ; 1.55 ; Ab 1116NS19.9 bound to CA19-9 6XUN ; 2.41 ; Ab 5b1 bound to CA19-9 6AC6 ; 2.989 ; Ab initio crystal structure of Selenomethionine labelled Mycobacterium smegmatis Mfd 2YHG ; 1.08 ; Ab initio phasing of a nucleoside hydrolase-related hypothetical protein from Saccharophagus degradans that is associated with carbohydrate metabolism 1CKU ; 1.2 ; AB INITIO SOLUTION AND REFINEMENT OF TWO HIGH POTENTIAL IRON PROTEIN STRUCTURES AT ATOMIC RESOLUTION 7SKX ; 1.5 ; Ab initio structure of proteinase K from electron-counted MicroED data 7SKW ; 0.87 ; Ab initio structure of triclinic lysozyme from electron-counted MicroED data 8OTF ; 3.3 ; Ab typeII filament from Guam ALS/PDC 7MXE ; 3.7 ; Ab1245 Fab in complex with BG505 SOSIP.664 and 8ANC195 Fab 6FPD ; 2.5 ; AB21 protein from Agaricus bisporus 1W5I ; 2.3 ; ABA does not affect topology of pLI. 5MMQ ; 1.8 ; ABA RECEPTOR FROM CITRUS, CSPYL1 5MMX ; 2.882 ; ABA RECEPTOR FROM CITRUS, CSPYL1 5MN0 ; 2.0 ; ABA RECEPTOR FROM CITRUS, CSPYL1 5MOA ; 1.65 ; ABA RECEPTOR FROM TOMATO, SlPYL1 5MOB ; 1.669 ; ABA RECEPTOR FROM TOMATO, SlPYL1 5VT7 ; 2.624 ; ABA-mimicking ligand AMC1beta in complex with ABA receptor PYL2 and PP2C HAB1 5VR7 ; 2.612 ; ABA-mimicking ligand AMF1alpha in complex with ABA receptor PYL2 and PP2C HAB1 5VRO ; 2.257 ; ABA-mimicking ligand AMF1beta in complex with ABA receptor PYL2 and PP2C HAB1 5VS5 ; 2.8 ; ABA-mimicking ligand AMF2alpha in complex with ABA receptor PYL2 and PP2C HAB1 5VSQ ; 2.618 ; ABA-mimicking ligand AMF2beta in complex with ABA receptor PYL2 and PP2C HAB1 5VSR ; 2.618 ; ABA-mimicking ligand AMF4 in complex with ABA receptor PYL2 and PP2C HAB1 4LGB ; 3.15 ; ABA-mimicking ligand N-(1-METHYL-2-OXO-1,2,3,4-TETRAHYDROQUINOLIN-6-YL)-1-(4-METHYLPHENYL)METHANESULFONAMIDE in complex with ABA receptor PYL2 and PP2C HAB1 4LGA ; 2.7 ; ABA-mimicking ligand N-(2-OXO-1-PROPYL-1,2,3,4-TETRAHYDROQUINOLIN-6-YL)-1-PHENYLMETHANESULFONAMIDE in complex with ABA receptor PYL2 and PP2C HAB1 4LG5 ; 2.88 ; ABA-mimicking ligand QUINABACTIN in complex with ABA receptor PYL2 and PP2C HAB1 2JUV ; ; AbaA3-DKP-insulin 2OLK ; 2.1 ; ABC Protein ArtP in complex with ADP-beta-S 2OLJ ; 2.05 ; ABC Protein ArtP in complex with ADP/Mg2+ 2Q0H ; 2.2 ; ABC Protein ArtP in complex with ADP/Mg2+, ATP-gamma-S hydrolyzed 3C41 ; 2.25 ; ABC protein ArtP in complex with AMP-PNP/Mg2+ 3C4J ; 2.33 ; ABC protein ArtP in complex with ATP-gamma-S 2OUK ; 2.15 ; ABC Protein ArtP in complex with Sulphate 5F7V ; 1.4 ; ABC substrate-binding protein Lmo0181 from Listeria monocytogenes in complex with cycloalternan 4Z9N ; 1.745 ; ABC transporter / periplasmic binding protein from Brucella ovis with glutathione bound 8BFY ; 1.55 ; ABC transporter binding protein CebE from Streptomyces scabiei in complex with cellotriose 8ART ; 3.17 ; ABC transporter binding protein MalE from Streptomyces scabiei in complex with maltose 7ZNQ ; 3.04 ; ABC transporter complex NosDFYL in GDN 7OSG ; 3.3 ; ABC Transporter complex NosDFYL, consensus refinement 7OSJ ; 3.8 ; ABC Transporter complex NosDFYL, membrane anchor 7OSF ; 3.8 ; ABC Transporter complex NosDFYL, R-domain 1 7OSH ; 3.8 ; ABC Transporter complex NosDFYL, R-domain 2 7OSI ; 3.8 ; ABC Transporter complex NosDFYL, R-domain 3 2ONK ; 3.1 ; ABC transporter ModBC in complex with its binding protein ModA 7O17 ; 4.5 ; ABC transporter NosDFY E154Q, ATP-bound in lipid nanodisc 7O12 ; 3.7 ; ABC transporter NosDFY, AMPPNP-bound in GDN 7O0Y ; 3.3 ; ABC transporter NosDFY, nucleotide-free in GDN 7O11 ; 3.7 ; ABC transporter NosDFY, nucleotide-free in GDN, R-domain 1 7O10 ; 3.6 ; ABC transporter NosDFY, nucleotide-free in GDN, R-domain 2 7O13 ; 3.6 ; ABC transporter NosDFY, nucleotide-free in lipid nanodisc 7O14 ; ; ABC transporter NosDFY, nucleotide-free in lipid nanodisc, R-domain 1 7O15 ; ; ABC transporter NosDFY, nucleotide-free in lipid nanodisc, R-domain 2 7O16 ; ; ABC transporter NosDFY, nucleotide-free in lipid nanodisc, R-domain 3 7O0Z ; 3.7 ; ABC transporter NosFY, nucleotide-free in GDN 4PAG ; 1.901 ; ABC transporter solute binding protein from Sulfurospirillum deleyianum DSM 6946 4ZPJ ; 2.24 ; ABC transporter substrate-binding protein from Sphaerobacter thermophilus 4MLC ; 2.705 ; ABC Transporter Substrate-Binding Protein fromDesulfitobacterium hafniense 4P98 ; 1.9 ; ABC transporter system solute-bindng protein from Conexibacter woesei DSM 14684 4KQC ; 1.62 ; ABC transporter, LacI family transcriptional regulator from Brachyspira murdochii 6PU3 ; 1.8 ; ABC transporter-associated periplasmic binding protein DppA from Helicobacter pylori 6OFQ ; 1.45 ; ABC transporter-associated periplasmic binding protein DppA from Helicobacter pylori in complex with peptide STSA 2QI9 ; 2.6 ; ABC-transporter BtuCD in complex with its periplasmic binding protein BtuF 2RIN ; 1.8 ; ABC-transporter choline binding protein in complex with acetylcholine 2REG ; 1.9 ; ABC-transporter choline binding protein in complex with choline 2REJ ; 2.6 ; ABC-transporter choline binding protein in unliganded semi-closed conformation 7ZK7 ; 3.2 ; ABCB1 L335C mutant (mABCB1) in the inward facing state bound to AAC 8PEE ; 3.8 ; ABCB1 L335C mutant (mABCB1) in the inward facing state bound to AAC 7ZK6 ; 3.1 ; ABCB1 L335C mutant (mABCB1) in the outward facing state bound to 2 molecules of AAC 7ZK5 ; 2.6 ; ABCB1 L335C mutant (mABCB1) in the outward facing state bound to AAC 7ZK9 ; 4.3 ; ABCB1 L971C mutant (mABCB1) in the inward facing state 7ZK8 ; 3.0 ; ABCB1 L971C mutant (mABCB1) in the outward facing state bound to AAC 7ZKB ; 4.7 ; ABCB1 V978C mutant (mABCB1) in the inward facing state 7ZKA ; 2.9 ; ABCB1 V978C mutant (mABCB1) in the outward facing state bound to AAC 7OJ8 ; 3.4 ; ABCG2 E1S turnover-2 state 7OJH ; 3.1 ; ABCG2 topotecan turnover-1 state 7OJI ; 3.4 ; ABCG2 topotecan turnover-2 state 8BHT ; 3.1 ; ABCG2 turnover-1 state with tariquidar bound 8BI0 ; 3.2 ; ABCG2 turnover-2 state with tariquidar bound 8IWN ; 3.0 ; ABCG25 EQ mutant in ATP-bound state 8IWJ ; 3.0 ; ABCG25 Wild Type in Apo-state 8IWK ; 3.0 ; ABCG25 Wild Type purified with DDM plus CHS in ABA-bound state 8F37 ; ; AbdA Homeodomain NMR Solution Structure 8FOX ; 1.89 ; AbeH (Tryptophan-5-halogenase) 8FOV ; 1.86 ; AbeH (Tryptophan-5-halogenase) bound to FAD and Cl 7JQS ; 2.127 ; Abeta 16-36 beta-hairpin mimic with E22delta Osaka mutation 7JQR ; 2.07 ; Abeta 16-36 beta-hairpin mimic with E22G Arctic mutation 7JQU ; 2.611 ; Abeta 16-36 beta-hairpin mimic with E22G Arctic mutation 7JQT ; 2.08 ; Abeta 16-36 beta-hairpin mimic with E22K Italian mutation 6SHS ; 4.4 ; Abeta fibril (Morphology I) 1SO8 ; 2.3 ; Abeta-bound human ABAD structure [also known as 3-hydroxyacyl-CoA dehydrogenase type II (Type II HADH), Endoplasmic reticulum-associated amyloid beta-peptide binding protein (ERAB)] 3S5A ; 1.7 ; ABH2 cross-linked to undamaged dsDNA-2 with cofactors 3S57 ; 1.6 ; ABH2 cross-linked with undamaged dsDNA-1 containing cofactors 6Y8Q ; 1.83 ; AbiEi antitoxin from Streptococcus agalactiae 3S9V ; 2.3 ; abietadiene synthase from Abies grandis 6XR6 ; ; Abl 1b isoform active state 6XRG ; ; Abl 1b isoform inactive2 state 6AMV ; ; Abl 1b Regulatory Module 'inhibiting state' 6XR7 ; ; Abl isoform 1b inactive1 state 2HZ0 ; 2.1 ; Abl kinase domain in complex with NVP-AEG082 2HZN ; 2.7 ; Abl kinase domain in complex with NVP-AFG210 2HZI ; 1.7 ; Abl kinase domain in complex with PD180970 2HZ4 ; 2.8 ; Abl kinase domain unligated and in complex with tetrahydrostaurosporine 3MS9 ; 1.8 ; ABL kinase in complex with imatinib and a fragment (FRAG1) in the myristate pocket 3MSS ; 1.95 ; Abl kinase in complex with imatinib and fragment (FRAG2) in the myristate site 8SSN ; 2.86 ; Abl kinase in complex with SKI and asciminib 6HD4 ; 2.03 ; ABL1 IN COMPLEX WITH COMPOUND 7 AND IMATINIB (STI-571) 6HD6 ; 2.3 ; ABL1 IN COMPLEX WITH COMPOUND6 AND IMATINIB (STI-571) 5MO4 ; 2.17 ; ABL1 kinase (T334I_D382N) in complex with asciminib and nilotinib 5NP2 ; 1.6 ; Abl1 SH3 pTyr89/134 6AMW ; ; Abl1b Regulatory Module 'Activating' conformation 5NP3 ; 2.0 ; Abl2 SH3 5NP5 ; 1.4 ; Abl2 SH3 pTyr116/161 6XUK ; 1.42 ; AbLIFT design 15 of Ab 1116NS19.9 6GC2 ; 2.55 ; AbLIFT: Antibody stability and affinity optimization by computational design of the variable light-heavy chain interface 6KE2 ; 1.798 ; ABloop reengineered Ferritin Nanocage 6KE4 ; 2.3 ; ABloop reengineered Ferritin Nanocage 8APP ; 1.82 ; AbLys1 endolysin from Acinetobacter baumannii phage AbTZA1 7R08 ; 3.1 ; Abortive infection DNA polymerase Abi-P2 8OZ7 ; 2.75 ; Abortive infection DNA polymerase AbiA from Lactococcus lactis 7R06 ; 2.27 ; Abortive infection DNA polymerase AbiK from Lactococcus lactis 7R07 ; 3.1 ; Abortive infection DNA polymerase AbiK from Lactococcus lactis 7Z0Z ; 2.68 ; Abortive infection DNA polymerase AbiK from Lactococcus lactis, Y44F variant 6W2M ; 1.998 ; Abortive ternary complex crystal structure of DNA polymerase Beta with 8OG-dC base pair at the primer terminus and flipped out dA 8DF0 ; 2.1 ; Abp1D receptor binding domain 8DEZ ; 1.29 ; Abp2D Receptor Binding Domain ACICU 8DKA ; 1.9 ; Abp2D receptor binding domain R86E 1S22 ; 1.6 ; Absolute Stereochemistry of Ulapualide A 4ILY ; 1.835 ; Abundantly secreted chitosanase from Streptomyces sp. SirexAA-E 5BY7 ; 1.8 ; AbyA1 - tetronic acid condensing enzyme 4YWF ; 2.0 ; AbyA5 5NO5 ; 2.5 ; AbyA5 Wildtype 5DYV ; 2.5 ; AbyU - wildtype 5DYQ ; 1.66 ; AbyU L73M L139M 3SIO ; 2.32 ; Ac-AChBP ligand binding domain (not including beta 9-10 linker) mutated to human alpha-7 nAChR 3SH1 ; 2.9 ; Ac-AChBP ligand binding domain mutated to human alpha-7 nAChR 3T4M ; 3.0 ; Ac-AChBP ligand binding domain mutated to human alpha-7 nAChR (intermediate) 7C0G ; 2.4 ; Aca1 in complex with 14bp palindromic DNA target 7VJM ; 3.0 ; Aca1 in complex with 19bp palindromic DNA substrate 8PHE ; 3.1 ; ACAD9-WT in complex with ECSIT-CTER 4EFH ; 2.48 ; Acanthamoeba Actin complex with Spir domain D 7LES ; 2.65 ; Acanthamoeba castellanii CYP51 (AcCYP51)-Imidazole complex 1PRQ ; 2.5 ; ACANTHAMOEBA CASTELLANII PROFILIN IA 1ACF ; 2.0 ; ACANTHAMOEBA CASTELLANII PROFILIN IB 2ACG ; 2.5 ; ACANTHAMOEBA CASTELLANII PROFILIN II 6FWH ; 1.79 ; Acanthamoeba IGPD in complex with R-C348 to 1.7A resolution 2DRK ; 1.42 ; Acanthamoeba myosin I SH3 domain bound to Acan125 2DRM ; 1.35 ; Acanthamoeba myosin I SH3 domain bound to Acan125 1E3Z ; 1.93 ; Acarbose complex of chimaeric amylase from B. amyloliquefaciens and B. licheniformis at 1.93A 6WB7 ; 2.44 ; Acarbose Kinase AcbK as a Complex with Acarbose and AMP-PNP 1XCW ; 2.0 ; Acarbose Rearrangement Mechanism Implied by the Kinetic and Structural Analysis of Human Pancreatic alpha-Amylase in Complex with Analogues and Their Elongated Counterparts 1XCX ; 1.9 ; Acarbose Rearrangement Mechanism Implied by the Kinetic and Structural Analysis of Human Pancreatic alpha-Amylase in Complex with Analogues and Their Elongated Counterparts 1XD0 ; 2.0 ; Acarbose Rearrangement Mechanism Implied by the Kinetic and Structural Analysis of Human Pancreatic alpha-Amylase in Complex with Analogues and Their Elongated Counterparts 1XD1 ; 2.2 ; Acarbose Rearrangement Mechanism Implied by the Kinetic and Structural Analysis of Human Pancreatic alpha-Amylase in Complex with Analogues and Their Elongated Counterparts 1J0D ; 2.2 ; ACC deaminase mutant complexed with ACC 1J0E ; 2.45 ; ACC deaminase mutant reacton intermediate 1J0C ; 2.75 ; ACC deaminase mutated to catalytic residue 1ZEZ ; 2.0 ; ACC Holliday Junction 5TCW ; 2.7 ; ACC oxidase complex with nickel and acetate 5TCV ; 2.6 ; ACC oxidase complex with substrate 1-aminocyclopropane-1-carboxylic acid 5MU2 ; 2.7 ; ACC1 Fab fragment in complex with CII583-591 (CG10) 5MV3 ; 2.95 ; ACC1 Fab fragment in complex with CII583-591 (CG10) 5MUB ; 3.1 ; ACC1 Fab fragment in complex with citrullinated C1 epitope of CII (CG05) 5MU0 ; 2.7 ; ACC1 Fab fragment in complex with citrullinated C1 epitope of CII (IA03) 5MV4 ; 2.9 ; ACC1 Fab fragment in complex with citrullinated CII616-639 epitope of collagen type II (ptm23) 1LTM ; 1.7 ; ACCELERATED X-RAY STRUCTURE ELUCIDATION OF A 36 KDA MURAMIDASE/TRANSGLYCOSYLASE USING WARP 1IKD ; ; ACCEPTOR STEM, NMR, 30 STRUCTURES 1SJS ; 2.42 ; ACCESS TO PHOSPHORYLATION IN ISOCITRATE DEHYDROGENASE MAY OCCUR BY DOMAIN SHIFTING 5VL4 ; 4.1 ; Accidental minimum contact crystal lattice formed by a redesigned protein oligomer 1STA ; 1.7 ; ACCOMMODATION OF INSERTION MUTATIONS ON THE SURFACE AND IN THE INTERIOR OF STAPHYLOCOCCAL NUCLEASE 1STB ; 2.0 ; ACCOMMODATION OF INSERTION MUTATIONS ON THE SURFACE AND IN THE INTERIOR OF STAPHYLOCOCCAL NUCLEASE 5IOO ; 2.521 ; Accommodation of massive sequence variation in Nanoarchaeota by the C-type lectin fold 2NU2 ; 1.65 ; Accommodation of positively-charged residues in a hydrophobic specificity pocket: Crystal structures of SGPB in complex with OMTKY3 variants Lys18I and Arg18I 2NU3 ; 1.8 ; Accommodation of positively-charged residues in a hydrophobic specificity pocket: Crystal structures of SGPB in complex with OMTKY3 variants Lys18I and Arg18I 2NU4 ; 1.75 ; Accommodation of positively-charged residues in a hydrophobic specificity pocket: Crystal structures of SGPB in complex with OMTKY3 variants Lys18I and Arg18I 1S37 ; ; Accomodation of Mispair-Aligned N3T-Ethyl-N3T DNA Interstrand Crosslink 1PLC ; 1.33 ; ACCURACY AND PRECISION IN PROTEIN CRYSTAL STRUCTURE ANALYSIS: RESTRAINED LEAST-SQUARES REFINEMENT OF THE CRYSTAL STRUCTURE OF POPLAR PLASTOCYANIN AT 1.33 ANGSTROMS RESOLUTION 1PNC ; 1.6 ; ACCURACY AND PRECISION IN PROTEIN CRYSTAL STRUCTURE ANALYSIS: TWO INDEPENDENT REFINEMENTS OF THE STRUCTURE OF POPLAR PLASTOCYANIN AT 173K 1PND ; 1.6 ; ACCURACY AND PRECISION IN PROTEIN CRYSTAL STRUCTURE ANALYSIS: TWO INDEPENDENT REFINEMENTS OF THE STRUCTURE OF POPLAR PLASTOCYANIN AT 173K 8CUS ; 3.98 ; Accurate computational design of genetically encoded 3D protein crystals 8CUT ; 4.0 ; Accurate computational design of genetically encoded 3D protein crystals 8CUU ; 2.91 ; Accurate computational design of genetically encoded 3D protein crystals 8CUV ; 2.8 ; Accurate computational design of genetically encoded 3D protein crystals 8CUW ; 3.55 ; Accurate computational design of genetically encoded 3D protein crystals 8CUX ; 1.85 ; Accurate computational design of genetically encoded 3D protein crystals 8CWS ; 4.4 ; Accurate computational design of genetically encoded 3D protein crystals 8CWY ; 3.34 ; Accurate computational design of genetically encoded 3D protein crystals 8CWZ ; 5.53 ; Accurate computational design of genetically encoded 3D protein crystals 8FAR ; 3.66 ; Accurate computational design of genetically encoded 3D protein crystals 1KH0 ; 1.9 ; Accurate Computer Base Design of a New Backbone Conformation in the Second Turn of Protein L 8RXA ; 1.751 ; ACDC domain of AP2-O5 from Plasmodium falciparum 8RXO ; 2.998 ; ACDC domain of Plasmodium falciparum AP2-I transcription factor 8RWU ; 3.152 ; ACDC domain of the AP2-I transcription factor from Plasmodium falciparum 7V61 ; 3.2 ; ACE2 -Targeting Monoclonal Antibody as Potent and Broad-Spectrum Coronavirus Blocker 8B9P ; 2.11 ; ACE2 in complex with bicyclic peptide inhibitor 6M18 ; 2.9 ; ACE2-B0AT1 complex 8I92 ; 3.2 ; ACE2-B0AT1 complex bound with glutamine 8I93 ; 3.1 ; ACE2-B0AT1 complex bound with methionine 6M1D ; 4.5 ; ACE2-B0AT1 complex, open conformation 8TOQ ; 2.3 ; ACE2-peptide 1 complex 8TOR ; 2.2 ; ACE2-peptide 2 complex 8TOU ; 3.1 ; ACE2-peptide 2 complex crystal form 3 8TOS ; 2.35 ; ACE2-peptide 6 complex 8TOT ; 2.8 ; ACE2-peptide2 complex crystal form 2 7KMB ; 3.39 ; ACE2-RBD Focused Refinement Using Symmetry Expansion of Applied C3 for Triple ACE2-bound SARS-CoV-2 Trimer Spike at pH 7.4 7VX4 ; 3.9 ; ACE2-RBD in SARS-CoV-2 Beta variant S-ACE2 complex 7VX5 ; 3.8 ; ACE2-RBD in SARS-CoV-2 Kappa variant S-ACE2 complex 8I91 ; 3.3 ; ACE2-SIT1 complex bound with proline 4P69 ; 3.3 ; Acek (D477A) ICDH complex 6ZGQ ; 1.9 ; AceL NrdHF class 3 split intein GSH linked splice inactive variant - C124A, N146A 1TUY ; 3.0 ; Acetate Kinase complexed with ADP, AlF3 and acetate 1TUU ; 2.5 ; Acetate Kinase crystallized with ATPgS 2IIR ; 3.3 ; Acetate kinase from a hypothermophile Thermotoga maritima 4Z3A ; 1.72 ; Acetate-free structure of the enzyme-product complex resulting from TDG action on a GU mismatch 8B73 ; 2.24 ; Acetivibrio clariflavus beta-1,4-xylanase of Glycoside Hydrolase Family 10 (AcXyn10A). 4WD1 ; 1.903 ; Acetoacetyl-CoA Synthetase from Streptomyces lividans 2B9V ; 2.0 ; Acetobacter turbidans alpha-amino acid ester hydrolase 2B4K ; 3.3 ; Acetobacter turbidans alpha-amino acid ester hydrolase complexed with phenylglycine 1NX9 ; 2.2 ; Acetobacter turbidans alpha-amino acid ester hydrolase S205A mutant complexed with ampicillin 1RYY ; 2.8 ; Acetobacter turbidans alpha-amino acid ester hydrolase Y206A mutant 1YVE ; 1.65 ; ACETOHYDROXY ACID ISOMEROREDUCTASE COMPLEXED WITH NADPH, MAGNESIUM AND INHIBITOR IPOHA (N-HYDROXY-N-ISOPROPYLOXAMATE) 1QMG ; 1.6 ; Acetohydroxyacid isomeroreductase complexed with its reaction product dihydroxy-methylvalerate, manganese and ADP-ribose. 4BT3 ; 1.1 ; acetolactate decarboxylase with a bound (2R,3R)-2,3-Dihydroxy-2- methylbutanoic acid 4BT5 ; 1.1 ; acetolactate decarboxylase with a bound (2S,3R)-2,3-Dihydroxy-2- methylbutanoic acid 4BT4 ; 1.6 ; acetolactate decarboxylase with a bound (2S,3S)-2,3-Dihydroxy-2- methylbutanoic acid 4BT2 ; 1.1 ; acetolactate decarboxylase with a bound 1,2-ETHANEDIOL 4BT6 ; 1.6 ; acetolactate decarboxylase with a bound glycerol 4BT7 ; 1.1 ; acetolactate decarboxylase with a bound phosphate ion 4RJK ; 2.5 ; Acetolactate synthase from Bacillus subtilis bound to LThDP - crystal form II 4RJI ; 3.2 ; Acetolactate synthase from Bacillus subtilis bound to ThDP - crystal form I 4RJJ ; 2.34 ; Acetolactate synthase from Bacillus subtilis bound to ThDP - crystal form II 5WDG ; 2.12 ; Acetolactate Synthase from Klebsiella pneumoniae in Complex with a Reaction Intermediate 5D6R ; 2.276 ; Acetolactate Synthase from Klebsiella pneumoniae in Complex with Mechanism-Based Inhibitor 5DX6 ; 1.75 ; Acetolactate Synthase from Klebsiella pneumoniae soaked with beta-fluoropyruvate 7EHE ; 2.28 ; Acetolactate Synthase from Trichoderma harzianum 7EGV ; 2.54 ; Acetolactate Synthase from Trichoderma harzianum with inhibitor harzianic acid 1PG3 ; 2.3 ; Acetyl CoA Synthetase, Acetylated on Lys609 1PG4 ; 1.75 ; Acetyl CoA Synthetase, Salmonella enterica 5X6S ; 1.9 ; Acetyl xylan esterase from Aspergillus awamori 2XLC ; 2.7 ; Acetyl xylan esterase from Bacillus pumilus CECT5072 bound to paraoxon 2XLB ; 1.9 ; Acetyl xylan esterase from Bacillus pumilus without ligands 6AGQ ; 2.1 ; Acetyl xylan esterase from Paenibacillus sp. R4 7CW4 ; 1.56 ; Acetyl-CoA acetyltransferase from Bacillus cereus ATCC 14579 7CW5 ; 2.0 ; Acetyl-CoA acetyltransferase from Bacillus cereus ATCC 14579 1OD2 ; 2.7 ; Acetyl-CoA Carboxylase Carboxyltransferase Domain 1OD4 ; 2.7 ; Acetyl-CoA Carboxylase Carboxyltransferase Domain 1UYT ; 2.5 ; Acetyl-CoA carboxylase carboxyltransferase domain 1UYR ; 2.5 ; Acetyl-CoA Carboxylase Carboxyltransferase Domain in complex with inhibitor Diclofop 1UYS ; 2.8 ; Acetyl-CoA carboxylase carboxyltransferase domain in complex with inhibitor haloxyfop 1UYV ; 2.6 ; Acetyl-CoA carboxylase carboxyltransferase domain L1705I/V1967I mutant 7W5U ; 2.34 ; Acetyl-CoA Carboxylase-AccB 2P2J ; 2.3 ; Acetyl-CoA Synthetase, K609A mutation 2P2M ; 2.11 ; Acetyl-CoA Synthetase, R194A mutation 2P20 ; 2.22 ; Acetyl-CoA Synthetase, R584A mutation 2P2Q ; 2.42 ; Acetyl-CoA Synthetase, R584E mutation 2P2B ; 2.2 ; Acetyl-CoA Synthetase, V386A mutation 2P2F ; 2.58 ; Acetyl-CoA Synthetase, wild-type with acetate, AMP, and CoA bound 2X2C ; 2.41 ; acetyl-CypA:cyclosporine complex 2X2D ; 1.95 ; acetyl-CypA:HIV-1 N-term capsid domain complex 1DM3 ; 2.0 ; ACETYLATED BIOSYNTHETIC THIOLASE FROM ZOOGLOEA RAMIGERA IN COMPLEX WITH ACETYL-COA 6O2Q ; 3.7 ; Acetylated Microtubules 6O2T ; 4.1 ; Acetylated Microtubules 8FNZ ; 3.88 ; Acetylated tau repeat 1 and 2 fragment (AcR1R2) 5ZS7 ; 2.68 ; Acetylation of lysine 100 in Phosphoglycerate mutase 1 5ZS8 ; 2.2 ; Acetylation of lysine 100 of Phosphoglycerate mutase 1 complexed with KH_ol 2XNT ; 3.21 ; Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors 2XNU ; 2.55 ; Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors 2XNV ; 2.44 ; Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors 1EEA ; 4.5 ; Acetylcholinesterase 1FSS ; 3.0 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH FASCICULIN-II 1VOT ; 2.5 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH HUPERZINE A 1OCE ; 2.7 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH MF268 1GQS ; 3.0 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH NAP 1GQR ; 2.2 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH RIVASTIGMINE 5BWB ; 2.57 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) FROM TORPEDO CALIFORNICA IN COMPLEX WITH THE BIS-IMIDAZOLIUM OXIME 2BIM-7 5BWC ; 2.45 ; ACETYLCHOLINESTERASE (E.C. 3.1.1.7) FROM TORPEDO CALIFORNICA IN COMPLEX WITH THE BIS-PYRIDINIUM OXIME ORTHO-7 1QTI ; 2.5 ; Acetylcholinesterase (E.C.3.1.1.7) 1AX9 ; 2.8 ; ACETYLCHOLINESTERASE COMPLEXED WITH EDROPHONIUM, LAUE DATA 2ACK ; 2.4 ; ACETYLCHOLINESTERASE COMPLEXED WITH EDROPHONIUM, MONOCHROMATIC DATA 5FOQ ; 2.3 ; Acetylcholinesterase in complex with C7653 5DLP ; 2.7 ; Acetylcholinesterase Methylene Blue no PEG 5E2I ; 2.65 ; Acetylcholinesterase Methylene Blue no PEG 5E4J ; 2.54 ; Acetylcholinesterase Methylene Blue no PEG 5E4T ; 2.43 ; Acetylcholinesterase Methylene Blue with PEG 5IH7 ; 2.4 ; Acetylcholinesterase of Torpedo californica in complex with the N-methyl-indoxylacetate hydrolysis products 2E7Z ; 1.26 ; Acetylene Hydratase from Pelobacter acetylenicus 7YC4 ; 2.1 ; Acetylesterase (LgEstI) F207A 7YC0 ; 2.0 ; Acetylesterase (LgEstI) W.T. 2X2W ; 2.0 ; Acetylglutamate kinase from Escherichia coli bound to N-acetyl-L-glutamyl-5-phosphate 1OHB ; 1.9 ; Acetylglutamate kinase from Escherichia coli complexed with ADP and sulphate 1OHA ; 1.9 ; Acetylglutamate kinase from Escherichia coli complexed with MgADP and N-acetyl-L-glutamate 1OH9 ; 1.91 ; Acetylglutamate kinase from Escherichia coli complexed with MgADP, N-acetyl-L-glutamate and the transition-state mimic AlF4- 2WXB ; 2.0 ; Acetylglutamate kinase from Escherichia coli free of substrates 2BTY ; 2.75 ; Acetylglutamate kinase from Thermotoga maritima complexed with its inhibitor arginine 1VEF ; 1.35 ; Acetylornithine aminotransferase from Thermus thermophilus HB8 1WKG ; 2.25 ; Acetylornithine aminotransferase from thermus thermophilus HB8 1WKH ; 2.25 ; Acetylornithine aminotransferase from thermus thermophilus HB8 7RSF ; 2.13 ; Acetylornithine deacetylase from Escherichia coli 2FBM ; 2.28 ; Acetyltransferase domain of CDY1 2OU2 ; 2.3 ; Acetyltransferase domain of Human HIV-1 Tat interacting protein, 60kDa, isoform 3 4M98 ; 1.67 ; Acetyltransferase domain of PglB from Neisseria gonorrhoeae FA1090 4M99 ; 2.6 ; Acetyltransferase domain of PglB from Neisseria gonorrhoeae FA1090 in complex with acetyl coenzyme A 3IWG ; 2.3 ; Acetyltransferase from GNAT family from Colwellia psychrerythraea. 2ATR ; 2.01 ; Acetyltransferase, GNAT family protein SP0256 from Streptococcus pneumoniae TIGR4 7Q0Q ; 1.96 ; Acetyltrasferase(3) type IIIa in complex with 3-N-methyl-nemycin B 7Q10 ; 1.82 ; Acetyltrasferase(3) type IIIa in complex with 3-N-methyl-nemycin B 7Q1D ; 1.43 ; Acetyltrasferase(3) type IIIa in complex with 3-N-methyl-nemycin B 7Q1X ; 1.45 ; Acetyltrasferase(3) type IIIa in complex with neomycin B 1G66 ; 0.9 ; ACETYLXYLAN ESTERASE AT 0.90 ANGSTROM RESOLUTION 7FBW ; 1.9 ; Acetylxylan esterase from Caldanaerobacter subterraneus subsp. tengcongensis 7Y51 ; 2.45 ; Acetylxylan esterase from Caldanaerobacter subterraneus subsp. tengcongensis TTE0866 delta100 mutant 1BS9 ; 1.1 ; ACETYLXYLAN ESTERASE FROM P. PURPUROGENUM REFINED AT 1.10 ANGSTROMS 2UZ6 ; 2.4 ; AChBP-targeted a-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. 2W6C ; 2.69 ; ACHE IN COMPLEX WITH A BIS-(-)-NOR-MEPTAZINOL DERIVATIVE 1U65 ; 2.61 ; Ache W. CPT-11 8EU6 ; 3.0 ; Acheta domesticus segmented densovirus high buoyancy fraction 1 (HB1) empty capsid structure 8EU5 ; 3.1 ; Acheta domesticus segmented densovirus high buoyancy fraction 2 empty capsid structure 8EU7 ; 3.3 ; Acheta domesticus segmented densovirus VP-ORF1 virus-like particle 8ERK ; 2.5 ; Acheta domesticus segmented densovirus, high buoyancy (HB) capsid, a mixed population of empty and immature full particles 8ER8 ; 2.3 ; Acheta domesticus segmented densovirus, mature virion capsid structure 3DPD ; 2.85 ; Achieving multi-isoform PI3K inhibition in a series of substituted 3,4-Dihydro-2H-benzo[1,4]oxazines 2IGX ; 1.7 ; Achiral, Cheap and Potent Inhibitors of Plasmepsins II 2IGY ; 2.6 ; Achiral, Cheap and Potent Inhibitors of Plasmepsins II 6GTI ; 1.5 ; Achromobacter cycloclastes copper nitrite reductase at pH 5.0 6GTK ; 1.5 ; Achromobacter cycloclastes copper nitrite reductase at pH 5.5 6GTL ; 1.5 ; Achromobacter cycloclastes copper nitrite reductase at pH 6.0 6GTN ; 1.5 ; Achromobacter cycloclastes copper nitrite reductase at pH 6.5 5ZUR ; 1.95 ; Achromobacter Dh1f Bacterioferritin 1YPP ; 2.4 ; ACID ANHYDRIDE HYDROLASE 5U84 ; 2.34 ; Acid ceramidase (ASAH1, aCDase) from common minke whale, Cys143Ala, uncleaved 5U81 ; 1.4 ; Acid ceramidase (ASAH1, aCDase) from naked mole rat, Cys143Ala, uncleaved 8GDL ; 1.75 ; Acid phosphatase pseudoenzyme from flea 1BXO ; 0.95 ; ACID PROTEINASE (PENICILLOPEPSIN) (E.C.3.4.23.20) COMPLEX WITH PHOSPHONATE INHIBITOR: METHYL CYCLO[(2S)-2-[[(1R)-1-(N-(L-N-(3-METHYLBUTANOYL)VALYL-L-ASPARTYL)AMINO)-3-METHYLBUT YL] HYDROXYPHOSPHINYLOXY]-3-(3-AMINOMETHYL) PHENYLPROPANOATE 2WEC ; 1.5 ; ACID PROTEINASE (PENICILLOPEPSIN) (E.C.3.4.23.20) COMPLEX WITH PHOSPHONATE INHIBITOR: METHYL(2S)-[1-(((N-(1-NAPHTHALENEACETYL))-L-VALYL)AMINOMETHYL)HYDROXY PHOSPHINYLOXY]-3-PHENYLPROPANOATE, SODIUM SALT 2WEB ; 1.5 ; ACID PROTEINASE (PENICILLOPEPSIN) (E.C.3.4.23.20) COMPLEX WITH PHOSPHONATE INHIBITOR: METHYL(2S)-[1-(((N-FORMYL)-L-VALYL)AMINO-2-(2-NAPHTHYL)ETHYL)HYDROXYPHOSPHINYLOXY]-3-PHENYLPROPANOATE, SODIUM SALT 2WEA ; 1.25 ; ACID PROTEINASE (PENICILLOPEPSIN) (E.C.3.4.23.20) COMPLEX WITH PHOSPHONATE INHIBITOR: METHYL[CYCLO-7[(2R)-((N-VALYL) AMINO)-2-(HYDROXYL-(1S)-1-METHYOXYCARBONYL-2-PHENYLETHOXY) PHOSPHINYLOXY-ETHYL]-1-NAPHTHALENEACETAMIDE], SODIUM SALT 2WED ; 1.5 ; ACID PROTEINASE (PENICILLOPEPSIN) (E.C.3.4.23.20) COMPLEX WITH PHOSPHONATE MACROCYCLIC INHIBITOR:METHYL[CYCLO-7[(2R)-((N-VALYL)AMINO)-2-(HYDROXYL-(1S)-1-METHYOXYCARBONYL-2-PHENYLETHOXY)PHOSPHINYLOXY-ETHYL]-1-NAPHTHALENEACETAMIDE], SODIUM SALT 1BXQ ; 1.41 ; ACID PROTEINASE (PENICILLOPEPSIN) COMPLEX WITH PHOSPHONATE INHIBITOR. 2NT0 ; 1.79 ; Acid-beta-glucosidase low pH, glycerol bound 2V3F ; 1.95 ; acid-beta-glucosidase produced in carrot 2V3D ; 1.96 ; acid-beta-glucosidase with N-butyl-deoxynojirimycin 2V3E ; 2.0 ; acid-beta-glucosidase with N-nonyl-deoxynojirimycin 5Y00 ; 1.6 ; Acid-tolerant monomeric GFP, Gamillus, fluorescence (ON) state 5Y01 ; 2.65 ; Acid-tolerant monomeric GFP, Gamillus, non-fluorescence (OFF) state 3K1X ; 1.98 ; Acidic Fibroblast Growth Factor (FGF-1) complexed with dobesilate 3JUT ; 2.25 ; Acidic Fibroblast Growth Factor (FGF-1) complexed with gentisic acid 2K43 ; ; Acidic fibroblast growth factor solution structure in the FGF-1-C2A binary complex: key component in the fibroblast growthfactor non-classical pathway 3FXY ; 2.0 ; Acidic Mammalian Chinase, Catalytic Domain 7WG7 ; 4.0 ; Acidic Omicron Spike Trimer 1PSJ ; 2.0 ; ACIDIC PHOSPHOLIPASE A2 FROM AGKISTRODON HALYS PALLAS 1GP7 ; 2.6 ; Acidic Phospholipase A2 from venom of Ophiophagus Hannah 2HCT ; 1.95 ; Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine NAAPD synthesis and hydrolysis activities 7DN2 ; 2.7 ; Acidic stable capsid structure of Helicobacter pylori bacteriophage KHP30 8J2Y ; 2.3 ; Acidimicrobiaceae bacterium photocobilins protein, dark state 8DNA ; 2.77 ; Acidipropionibacterium acidipropionici encapsulin in a closed state at pH 3.0 8DN9 ; 2.9 ; Acidipropionibacterium acidipropionici encapsulin in a closed state at pH 7.5 8DNL ; 3.32 ; Acidipropionibacterium acidipropionici encapsulin in an open state at pH 7.5 1H1O ; 2.13 ; Acidithiobacillus ferrooxidans cytochrome c4 structure supports a complex-induced tuning of electron transfer 1ECE ; 2.4 ; ACIDOTHERMUS CELLULOLYTICUS ENDOCELLULASE E1 CATALYTIC DOMAIN IN COMPLEX WITH A CELLOTETRAOSE 2WT9 ; 1.65 ; Acinetobacter baumanii nicotinamidase pyrazinamidease 2WTA ; 1.7 ; Acinetobacter baumanii nicotinamidase pyrazinamidease 4WM9 ; 2.4 ; Acinetobacter baumanii OXA-24 complex with Avibactam 8T6R ; 1.78 ; Acinetobacter baumannii 118362 family 2A cargo-loaded encapsulin shell 8GPM ; 1.7 ; Acinetobacter baumannii carbonic anhydrase 8GPP ; 2.09 ; Acinetobacter baumannii carbonic anhydrase PaaY 7UT5 ; 1.4 ; Acinetobacter baumannii dihydroorotate dehydrogenase bound with inhibitor DSM186 7PQL ; 1.6 ; Acinetobacter baumannii DNA gyrase B 23kDa ATPase subdomain complexed with EBL2704 7PQM ; 1.55 ; Acinetobacter baumannii DNA gyrase B 23kDa ATPase subdomain complexed with EBL2888 7PQI ; 1.9 ; Acinetobacter baumannii DNA gyrase B 23kDa ATPase subdomain complexed with novobiocin 7CCH ; 2.848 ; Acinetobacter baumannii histidine kinase AdeS 8DA2 ; 2.6 ; Acinetobacter baumannii L,D-transpeptidase 7ESJ ; 2.06 ; Acinetobacter baumannii membrane-bound lytic murein transglycosylase A 7B8Q ; 3.84 ; Acinetobacter baumannii multidrug transporter AdeB in L*OO state 7B8P ; 3.54 ; Acinetobacter baumannii multidrug transporter AdeB in OOO state 5ZC2 ; 2.898 ; Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH), reductase component (C1) 7CCI ; 1.65 ; Acinetobacter baumannii response regulator AdeR with disordered N terminus 3ZPC ; 2.2 ; Acinetobacter baumannii RibD, form 1 3ZPG ; 1.99 ; Acinetobacter baumannii RibD, form 2 6YPU ; 2.9 ; Acinetobacter baumannii ribosome-amikacin complex - 30S subunit body 6YS5 ; 3.0 ; Acinetobacter baumannii ribosome-amikacin complex - 30S subunit head 6YHS ; 2.7 ; Acinetobacter baumannii ribosome-amikacin complex - 50S subunit 6YT9 ; 2.7 ; Acinetobacter baumannii ribosome-tigecycline complex - 30S subunit body 6YTF ; 3.0 ; Acinetobacter baumannii ribosome-tigecycline complex - 30S subunit head 6YSI ; 2.5 ; Acinetobacter baumannii ribosome-tigecycline complex - 50S subunit 4W98 ; 1.43 ; Acinetobacter baumannii SDF NDK 4WBF ; 2.64 ; Acinetobacter baumannii SDF NDK 7E52 ; 1.9 ; Acinetobacter baumannii Thioredoxin reductase 6P8T ; 3.15 ; Acinetobacter baumannii tRNA synthetase in complex with compound 1 6SZG ; 1.84 ; Acinetobacter baumannii undecaprenyl pyrophosphate synthase (AB-UppS) in complex with GR839 and GSK513 6SZH ; 1.65 ; Acinetobacter baumannii undecaprenyl pyrophosphate synthase (AB-UppS) in complex with GW197 8UFG ; 3.1 ; Acinetobacter baylyi LptB2FG bound to Acinetobacter baylyi lipopolysaccharide 8UFH ; 3.2 ; Acinetobacter baylyi LptB2FG bound to Acinetobacter baylyi lipopolysaccharide and a macrocyclic peptide 8FRL ; 3.2 ; Acinetobacter baylyi LptB2FG bound to lipopolysaccharide and a macrocyclic peptide 8FRO ; 3.25 ; Acinetobacter baylyi LptB2FG bound to lipopolysaccharide and a macrocyclic peptide 8FRN ; 3.3 ; Acinetobacter baylyi LptB2FG bound to lipopolysaccharide and Zosurabalpin 8FRM ; 3.14 ; Acinetobacter baylyi LptB2FG bound to lipopolysaccharide. 8FRP ; 3.8 ; Acinetobacter baylyi LptB2FGC 8TOB ; 3.14 ; Acinetobacter GP16 Type IV pilus 7D0A ; 4.0 ; Acinetobacter MlaFEDB complex in ADP-vanadate trapped Vclose conformation 7D08 ; 4.0 ; Acinetobacter MlaFEDB complex in ATP-bound Vtrans1 conformation 7D09 ; 3.6 ; Acinetobacter MlaFEDB complex in ATP-bound Vtrans2 conformation 8TOC ; 3.11 ; Acinetobacter phage AP205 8TWC ; 3.0 ; Acinetobacter phage AP205 T=3 VLP 8TW2 ; 3.39 ; Acinetobacter phage AP205 T=4 VLP 3WPA ; 1.79 ; Acinetobacter sp. Tol 5 AtaA C-terminal stalk_FL fused to GCN4 adaptors (CstalkFL) 3WP8 ; 1.97 ; Acinetobacter sp. Tol 5 AtaA C-terminal Ylhead fused to GCN4 adaptors (Chead) 3WPR ; 1.899 ; Acinetobacter sp. Tol 5 AtaA N-terminal half of C-terminal stalk fused to GCN4 adaptors (CstalkN) 3WPO ; 2.397 ; Acinetobacter sp. Tol 5 AtaA YDD-DALL3 domains in C-terminal stalk fused to GCN4 adaptors (CstalkC1i) 3WQA ; 2.401 ; Acinetobacter sp. Tol 5 AtaA YDD-DALL3 domains in C-terminal stalk fused to GCN4 adaptors (CstalkC1ii) 3WPP ; 1.952 ; Acinetobacter sp. Tol 5 AtaA YDD-DALL3 domains in C-terminal stalk fused to GCN4 adaptors (CstalkC1iii) 8G9M ; 2.5 ; Acinetobacter_baumannii short-chain dehydrogenase 4QGM ; 2.97 ; Acireductone dioxygenase from Bacillus anthracis with cadmium ion in active center 4QGL ; 2.61 ; Acireductone dioxygenase from Bacillus anthracis with three cadmium ions 4ID7 ; 3.0 ; ACK1 kinase in complex with the inhibitor cis-3-[8-amino-1-(4-phenoxyphenyl)imidazo[1,5-a]pyrazin-3-yl]cyclobutanol 7YVV ; 2.1 ; AcmP1, R-4-hydroxymandelate synthase 7K12 ; 2.17 ; ACMSD in complex with diflunisal 7K13 ; 1.83 ; ACMSD in complex with diflunisal derivative 14 1B0M ; 2.5 ; ACONITASE R644Q:FLUOROCITRATE COMPLEX 5F81 ; 2.13 ; Acoustic injectors for drop-on-demand serial femtosecond crystallography 5HL4 ; 2.2 ; Acoustic injectors for drop-on-demand serial femtosecond crystallography 5HQD ; 2.52 ; Acoustic injectors for drop-on-demand serial femtosecond crystallography 4P2E ; 1.6 ; Acoustic transfer of protein crystals from agar pedestals to micromeshes for high throughput screening of heavy atom derivatives 3RTO ; 1.8 ; Acoustically mounted porcine insulin microcrystals yield an X-ray SAD structure 7X5J ; 2.1 ; ACP-dependent oxoacyl reductase 8CUY ; 2.4 ; ACP1-KS-AT domains of mycobacterial Pks13 8CV1 ; 2.6 ; ACP1-KS-AT domains of mycobacterial Pks13 6FIK ; 7.1 ; ACP2 crosslinked to the KS of the loading/condensing region of the CTB1 PKS 9ATX ; 2.11 ; AcpB protein from Bacillus anthracis, N-terminal part 6S2C ; 3.2 ; Acquired functional capsid structures in metazoan totivirus-like dsRNA virus. 7B5P ; 3.2 ; AcrB in cycloalkane amphipol 6ZOE ; 2.85 ; AcrB-F563A symmetric T protomer 452D ; 1.6 ; ACRIDINE BINDING TO DNA 7CHQ ; 1.33 ; AcrIE2 7XI1 ; 2.53 ; AcrIF 24 7CHR ; 1.21 ; AcrIF9 8JFU ; 3.15 ; AcrIIA15 in complex with palindromic DNA substrate 7F7P ; 2.03 ; AcrIIC4 6PX2 ; 2.4 ; Acropora millepora GAPDH 1C3H ; 2.1 ; ACRP30 CALCIUM COMPLEX 6A4L ; 2.8 ; AcrR from Mycobacterium tuberculosis 6A4W ; 2.587 ; AcrR from Mycobacterium tuberculosis 5GXF ; 2.288 ; Acryloyl-CoA reductase AcuI from Ruegeria pomeroyi DSS-3 7U5G ; 1.84 ; ACS122 Fab 1ZPV ; 1.9 ; ACT domain protein from Streptococcus pneumoniae 8TRM ; 2.5 ; Actin 1 from T. gondii in filaments bound to MgADP 8TRN ; 3.0 ; Actin 1 from T. gondii in filaments bound to MgADP and jasplakinolide 5BVR ; 1.46 ; Actin binding domain of alpha-actinin from Schizosaccharomyces pombe 1QAG ; 3.0 ; Actin binding region of the dystrophin homologue utrophin 4Z94 ; 2.4 ; Actin Complex With a Chimera of Tropomodulin-1 and Leiomodin-1 Actin-Binding Site 2 3TU5 ; 3.0 ; Actin complex with Gelsolin Segment 1 fused to Cobl segment 1RDW ; 2.3 ; Actin Crystal Dynamics: Structural Implications for F-actin Nucleation, Polymerization and Branching Mediated by the Anti-parallel Dimer 1RFQ ; 3.0 ; Actin Crystal Dynamics: Structural Implications for F-actin Nucleation, Polymerization and Branching Mediated by the Anti-parallel Dimer 2Q36 ; 2.5 ; Actin Dimer Cross-linked between Residues 191 and 374 and complexed with Kabiramide C 2Q1N ; 2.7 ; Actin Dimer Cross-linked Between Residues 41 and 374 2Q31 ; 2.7 ; Actin Dimer Cross-linked Between Residues 41 and 374 and proteolytically cleaved by subtilisin between residues 47 and 48. 3CJC ; 3.9 ; Actin dimer cross-linked by V. cholerae MARTX toxin and complexed with DNase I and Gelsolin-segment 1 3CJB ; 3.21 ; Actin dimer cross-linked by V. cholerae MARTX toxin and complexed with Gelsolin-segment 1 3B5U ; 9.5 ; Actin filament model from extended form of acromsomal bundle in the Limulus sperm 3B63 ; 9.5 ; Actin filament model in the extended form of acromsomal bundle in the Limulus sperm 2Y83 ; 22.9 ; Actin filament pointed end 6ABS ; 2.2 ; Actin interacting protein 5 (Aip5, mutant) 6ABR ; 2.002 ; Actin interacting protein 5 (Aip5, wild type) 6U96 ; 3.8 ; Actin phalloidin at BeFx state 2A42 ; 1.85 ; Actin-DNAse I Complex 1CJA ; 2.9 ; ACTIN-FRAGMIN KINASE, CATALYTIC DOMAIN FROM PHYSARUM POLYCEPHALUM 5AEY ; 4.3 ; actin-like ParM protein bound to AMPPNP 3P5U ; 1.5 ; Actinidin from Actinidia arguta planch (Sarusashi) 3P5V ; 1.9 ; Actinidin from Actinidia arguta planch (Sarusashi) 3P5W ; 2.2 ; Actinidin from Actinidia arguta planch (Sarusashi) 3P5X ; 2.2 ; Actinidin from Actinidia arguta planch (Sarusashi) 6C0A ; ; Actinin-1 EF-Hand bound to the Cav1.2 IQ Motif 5APP ; 2.3 ; Actinobacillus actinomycetemcomitans OMP100 residues 133-198 fused to GCN4 adaptors 6DQX ; 1.76 ; Actinobacillus ureae class Id ribonucleotide reductase alpha subunit 3E35 ; 2.2 ; Actinobacteria-specific protein of unknown function, SCO1997 7PT3 ; 1.625 ; Actinobacterial 2-hydroxyacyl-CoA lyase (AcHACL) mutant E493A structure in complex with substrate 2-HIB-CoA and inactive cofactor 3-deaza-ThDP 7PT2 ; 1.762 ; Actinobacterial 2-hydroxyacyl-CoA lyase (AcHACL) mutant E493Q structure in complex with substrate 2-HIB-CoA and inactive cofactor 3-deaza-ThDP 7PT4 ; 1.64 ; Actinobacterial 2-hydroxyacyl-CoA lyase (AcHACL) structure in complex with a covalently bound reaction intermediate as well as products formyl-CoA and acetone 7PT1 ; 1.553 ; Actinobacterial 2-hydroxyacyl-CoA lyase (AcHACL) structure in complex with substrate 2-HIB-CoA and inactive cofactor 3-deaza-ThDP 5AA5 ; 2.497 ; Actinobacterial-type NiFe-hydrogenase from Ralstonia eutropha H16 at 2.85 Angstrom resolution 1MNV ; 2.6 ; Actinomycin D binding to ATGCTGCAT 1I3W ; 1.7 ; ACTINOMYCIN D BINDING TO CGATCGATCG 6JET ; 2.6 ; Actinonin bound crystal structure of class I type a peptide deformylase from Acinetobacter baumannii 6JF3 ; 2.01 ; Actinonin bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFC ; 2.04 ; Actinonin bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 2RHC ; 2.1 ; Actinorhodin ketordeuctase, actKR, with NADP+ and Inhibitor Emodin 2RH4 ; 2.3 ; Actinorhodin ketoreductase, actKR, with NADPH and Inhibitor Emodin 3QRW ; 2.792 ; Actinorhodin Polyketide Ketoreductase Mutant P94L bound to NADPH 3CSD ; 2.29 ; Actinorhodin Polyketide Ketoreductase Mutant P94L bound to NADPH and the Inhibitor Emodin 3RI3 ; 2.292 ; Actinorhodin Polyketide Ketoreductase Mutant P94L bound to NADPH and the Inhibitor Emodin 1XR3 ; 2.71 ; Actinorhodin Polyketide Ketoreductase with NADP and the Inhibitor Isoniazid bound 1X7G ; 2.3 ; Actinorhodin Polyketide Ketoreductase, act KR, with NADP bound 1X7H ; 2.3 ; Actinorhodin Polyketide Ketoreductase, with NADPH bound 1AF8 ; ; ACTINORHODIN POLYKETIDE SYNTHASE ACYL CARRIER PROTEIN FROM STREPTOMYCES COELICOLOR A3(2), NMR, 24 STRUCTURES 2AF8 ; ; ACTINORHODIN POLYKETIDE SYNTHASE ACYL CARRIER PROTEIN FROM STREPTOMYCES COELICOLOR A3(2), NMR, MINIMIZED AVERAGE STRUCTURE 1ACX ; 2.0 ; ACTINOXANTHIN STRUCTURE AT THE ATOMIC LEVEL (RUSSIAN) 4Y5Q ; 2.0 ; Activated Calcium-Dependent Protein Kinase 1 from Cryptosporidium parvum (CpCDPK1) in complex with AMP 3NCG ; 2.49 ; Activated Calcium-Dependent Protein Kinase 1 from Cryptosporidium parvum (CpCDPK1) in complex with bumped kinase inhibitor NM-PP1 3MWU ; 1.98 ; Activated Calcium-Dependent Protein Kinase 1 from Cryptosporidium parvum (CpCDPK1) in complex with bumped kinase inhibitor RM-1-95 4A0Q ; 1.9 ; Activated Conformation of Integrin alpha1 I-Domain mutant 2WB4 ; 2.8 ; activated diguanylate cyclase PleD in complex with c-di-GMP 8G33 ; 2.49 ; Activated form of a CDCL long protein 7LZA ; 2.03 ; Activated form of VanR from S. coelicolor 5WEO ; 4.2 ; Activated GluA2 complex bound to glutamate, cyclothiazide, and STZ in digitonin 6ET7 ; 2.852 ; Activated heterodimer of the bacteriophytochrome regulated diguanylyl cyclase variant - S505V A526V - from Idiomarina species A28L 6VXT ; 1.74 ; Activated Nitrogenase MoFe-protein from Azotobacter vinelandii 2FJU ; 2.2 ; Activated Rac1 bound to its effector phospholipase C beta 2 2V0N ; 2.71 ; ACTIVATED RESPONSE REGULATOR PLED IN COMPLEX WITH C-DIGMP AND GTP- ALPHA-S 1BWV ; 2.4 ; Activated Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase (RUBISCO) Complexed with the Reaction Intermediate Analogue 2-Carboxyarabinitol 1,5-Bisphosphate 7SS5 ; 2.7 ; Activated SgrAI endonuclease DNA-bound dimer with Ca2+ and intact primary site DNA 1UPM ; 2.3 ; ACTIVATED SPINACH RUBISCO COMPLEXED WITH 2-CARBOXYARABINITOL 2 BISPHOSPHAT AND CA2+. 8RUC ; 1.6 ; ACTIVATED SPINACH RUBISCO COMPLEXED WITH 2-CARBOXYARABINITOL BISPHOSPHATE 1RXO ; 2.2 ; ACTIVATED SPINACH RUBISCO IN COMPLEX WITH ITS SUBSTRATE RIBULOSE-1,5-BISPHOSPHATE AND CALCIUM 1AA1 ; 2.2 ; ACTIVATED SPINACH RUBISCO IN COMPLEX WITH THE PRODUCT 3-PHOSPHOGLYCERATE 7T37 ; 3.7 ; Activated state of 2-APB and CBD-bound wildtype rat TRPV2 in nanodiscs 7N0N ; 4.15 ; Activated state of 2-APB-bound wildtype rat TRPV2 in nanodiscs 5UX7 ; 2.69 ; Activated state yeast Glycogen Synthase in complex with UDP-xylose 5UW0 ; 2.73 ; Activated state yGsy2p in complex with UDP-2-fluoro-2-deoxy-glucose 5UW1 ; 3.26 ; Activated state yGsy2p in complex with UDP-galactose 3F75 ; 1.99 ; Activated Toxoplasma gondii cathepsin L (TgCPL) in complex with its propeptide 6IBL ; 2.7 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND AGONIST FORMOTEROL AND NANOBODY Nb80 6H7J ; 2.8 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND AGONIST ISOPRENALINE AND NANOBODY Nb80 6H7L ; 2.7 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND PARTIAL AGONIST DOBUTAMINE AND NANOBODY Nb6B9 6H7M ; 2.76 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND PARTIAL AGONIST SALBUTAMOL AND NANOBODY Nb6B9 6H7N ; 2.5 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND PARTIAL AGONIST XAMOTEROL AND NANOBODY Nb6B9 6H7O ; 2.8 ; ACTIVATED TURKEY BETA1 ADRENOCEPTOR WITH BOUND WEAK PARTIAL AGONIST CYANOPINDOLOL AND NANOBODY Nb6B9 1AUS ; 2.2 ; ACTIVATED UNLIGANDED SPINACH RUBISCO 5UW4 ; 2.98 ; Activated yeast Glycogen Synthase in complex with UDP glucosamine 1BJA ; 2.19 ; ACTIVATION DOMAIN OF THE PHAGE T4 TRANSCRIPTION FACTOR MOTA 1AVF ; 2.36 ; ACTIVATION INTERMEDIATE 2 OF HUMAN GASTRICSIN FROM HUMAN STOMACH 2W22 ; 2.2 ; Activation Mechanism of Bacterial Thermoalkalophilic Lipases 8HQN ; 3.0 ; Activation mechanism of GPR132 by 9(S)-HODE 8HVI ; 3.04 ; Activation mechanism of GPR132 by compound NOX-6-7 8HQM ; 2.95 ; Activation mechanism of GPR132 by NPGLY 3MJI ; 2.5 ; Activation of catalytic cysteine without a base in a Mutant Penicillin Acylase Precursor 3J9Z ; 3.6 ; Activation of GTP Hydrolysis in mRNA-tRNA Translocation by Elongation Factor G 3JA1 ; 3.6 ; Activation of GTP Hydrolysis in mRNA-tRNA Translocation by Elongation Factor G 2FNM ; 1.8 ; Activation of human carbonic anhdyrase II by exogenous proton donors 2FNK ; 1.8 ; Activation of Human Carbonic Anhydrase II by exogenous proton donors 2FNN ; 1.8 ; Activation of human carbonic anhydrase II by exogenous proton donors 5B3J ; 2.9 ; Activation of NMDA receptors and the mechanism of inhibition by ifenprodil 2VTX ; 2.5 ; ACTIVATION OF NUCLEOPLASMIN, AN OLIGOMERIC HISTONE CHAPERONE, CHALLENGES ITS STABILITY 1GQT ; 2.34 ; Activation of Ribokinase by Monovalent Cations 6EBR ; 1.816 ; Activation of RR02 bound to BeF3 3R8D ; 2.8 ; Activation of the Human Nuclear Xenobiotic Receptor PXR by the Reverse Transcriptase-Targeted Anti-HIV Drug PNU-142721 4EHT ; 1.95 ; Activator of the 2-Hydroxyisocaproyl-CoA dehydratase from Clostridium difficile with bound ADP 4EHU ; 1.6 ; Activator of the 2-Hydroxyisocaproyl-CoA Dehydratase from Clostridium difficile with bound ADPNP 4EIA ; 3.0 ; Activator of the 2-Hydroxyisocaproyl-CoA Dehydratase from Clostridium difficile without nucleotide 3GQY ; 1.85 ; Activator-Bound Structure of Human Pyruvate Kinase M2 3GR4 ; 1.6 ; Activator-Bound Structure of Human Pyruvate Kinase M2 3H6O ; 2.0 ; Activator-Bound Structure of Human Pyruvate Kinase M2 3ME3 ; 1.95 ; Activator-Bound Structure of Human Pyruvate Kinase M2 3U2Z ; 2.1 ; Activator-Bound Structure of Human Pyruvate Kinase M2 6WNW ; 3.2 ; Active 70S ribosome without free 5S rRNA and bound with A- and P- tRNA 5TV1 ; 2.4 ; active arrestin-3 with inositol hexakisphosphate 4Z0Y ; 1.6 ; Active aurone synthase (polyphenol oxidase), copper B : sulfohistidine ~ 1.4 : 1 5TSU ; 2.2 ; Active conformation for Engineered human cystathionine gamma lyase (E59N, R119L, E339V) to depleting methionine 7KXZ ; 2.4 ; Active conformation of EGFR kinase in complex with BI-4020 1RQI ; 2.42 ; Active Conformation of Farnesyl Pyrophosphate Synthase Bound to Isopentyl Pyrophosphate and Dimethylallyl S-Thiolodiphosphate 1RQJ ; 1.95 ; Active Conformation of Farnesyl Pyrophosphate Synthase Bound to Isopentyl Pyrophosphate and Risedronate 6KUI ; 2.33 ; Active conformation of HslV from Staphylococcus aureus. 2QY0 ; 2.6 ; Active dimeric structure of the catalytic domain of C1r reveals enzyme-product like contacts 6G0I ; 2.0 ; Active Fe-PP1 8DHB ; 3.53 ; Active FLCN GAP complex 5DU3 ; 2.1 ; Active form of human C1-inhibitor 1DVM ; 2.4 ; ACTIVE FORM OF HUMAN PAI-1 4U7O ; 2.395 ; Active histidine kinase bound with ATP 5JUY ; 4.1 ; Active human apoptosome with procaspase-9 5DUQ ; 2.9 ; Active human c1-inhibitor in complex with dextran sulfate 7BW0 ; 3.9 ; Active human TGR5 complex with a synthetic agonist 23H 1KYA ; 2.4 ; ACTIVE LACCASE FROM TRAMETES VERSICOLOR COMPLEXED WITH 2,5-XYLIDINE 7PIV ; 2.86 ; Active Melanocortin-4 receptor (MC4R)- Gs protein complex bound to agonist NDP-alpha-MSH at 2.86 A resolution. 1H9B ; 2.4 ; ACTIVE MUTANT (Q365->C) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES 1H93 ; 2.2 ; ACTIVE MUTANT (S215->C) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES 5OEF ; 2.05 ; Active semisynthetic [FeFe]-hydrogenase CpI with aza-diselenato-bridged [2Fe] cofactor 4XDC ; 1.63 ; Active semisynthetic [FeFe]-hydrogenase CpI with aza-dithiolato-bridged [2Fe] cofactor 4Z40 ; 2.35 ; Active site complex BamBC of Benzoyl Coenzyme A reductase as isolated 4Z3W ; 2.208 ; Active site complex BamBC of Benzoyl Coenzyme A reductase in complex with 1,5 Dienoyl-CoA 4Z3X ; 1.85 ; Active site complex BamBC of Benzoyl Coenzyme A reductase in complex with 1-Monoenoyl-CoA 4Z3Y ; 2.359 ; Active site complex BamBC of Benzoyl Coenzyme A reductase in complex with Benzoyl-CoA 4Z3Z ; 2.666 ; Active site complex BamBC of Benzoyl Coenzyme A reductase in complex with Zinc 1OAJ ; 1.73 ; Active site copper and zinc ions modulate the quaternary structure of prokaryotic Cu,Zn superoxide dismutase 1OAL ; 1.5 ; Active site copper and zinc ions modulate the quaternary structure of prokaryotic Cu,Zn superoxide dismutase 2D26 ; 3.3 ; Active site distortion is sufficient for proteinase inhibit second crystal structure of covalent serpin-proteinase complex 2AUN ; 2.4 ; Active site His285Ala mutant of LD-carboxypeptidase 4DEF ; 1.64 ; Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from M. tuberculosis 4DEL ; 1.58 ; Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from M. tuberculosis 4A7Y ; 2.8 ; Active site metal depleted aldos-2-ulose dehydratase 1FPC ; 2.3 ; ACTIVE SITE MIMETIC INHIBITION OF THROMBIN 3HAT ; 2.5 ; ACTIVE SITE MIMETIC INHIBITION OF THROMBIN 1E7M ; 2.54 ; ACTIVE SITE MUTANT (D177->N) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES 1E7Y ; 2.48 ; ACTIVE SITE MUTANT (D177->N) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES COMPLEXED WITH SUBSTRATE AND NADPH 1SNM ; 1.74 ; ACTIVE SITE MUTANT GLU-43 (RIGHT ARROW) ASP IN STAPHYLOCOCCAL NUCLEASE DISPLAYS NONLOCAL STRUCTURAL CHANGES 2JCS ; 2.5 ; Active site mutant of dNK from D. melanogaster with dTTP bound 3IQM ; 3.4 ; Active site mutants of B. subtilis SecA 3IQY ; 3.3 ; Active site mutants of B. subtilis SecA 1HM2 ; 2.0 ; ACTIVE SITE OF CHONDROITINASE AC LYASE REVEALED BY THE STRUCTURE OF ENZYME-OLIGOSACCHARIDE COMPLEXES AND MUTAGENESIS 1HM3 ; 2.1 ; ACTIVE SITE OF CHONDROITINASE AC LYASE REVEALED BY THE STRUCTURE OF ENZYME-OLIGOSACCHARIDE COMPLEXES AND MUTAGENESIS 1HMU ; 2.0 ; ACTIVE SITE OF CHONDROITINASE AC LYASE REVEALED BY THE STRUCTURE OF ENZYME-OLIGOSACCHARIDE COMPLEXES AND MUTAGENESIS 1HMW ; 2.3 ; ACTIVE SITE OF CHONDROITINASE AC LYASE REVEALED BY THE STRUCTURE OF ENZYME-OLIGOSACCHARIDE COMPLEXES AND MUTAGENESIS 2UWX ; 2.39 ; Active site restructuring regulates ligand recognition in class A penicillin-binding proteins 2XD1 ; 3.0 ; ACTIVE SITE RESTRUCTURING REGULATES LIGAND RECOGNITION IN CLASS A PENICILLIN-BINDING PROTEINS 2BG1 ; 1.9 ; Active site restructuring regulates ligand recognition in classA Penicillin-binding proteins (PBPs) 1C0E ; 2.2 ; Active Site S19A Mutant of Bovine Heart Phosphotyrosyl Phosphatase 2AUM ; 2.4 ; Active site Ser115Ala mutant of LD-carboxypeptidase 1ORB ; 2.0 ; ACTIVE SITE STRUCTURAL FEATURES FOR CHEMICALLY MODIFIED FORMS OF RHODANESE 1JNW ; 2.07 ; Active Site Structure of E. coli pyridoxine 5'-phosphate Oxidase 1WAY ; 2.02 ; Active site thrombin inhibitors 1WBG ; 2.2 ; Active site thrombin inhibitors 7W2R ; 2.9 ; Active state CI from DQ-NADH dataset, Subclass 1 7W2U ; 2.6 ; Active state CI from DQ-NADH dataset, Subclass 2 7W2Y ; 2.7 ; Active state CI from DQ-NADH dataset, Subclass 3 7W4C ; 2.7 ; Active state CI from Q1-NADH dataset, Subclass 1 7W4D ; 3.0 ; Active state CI from Q1-NADH dataset, Subclass 2 7W4E ; 3.0 ; Active state CI from Q1-NADH dataset, Subclass 3 7W4F ; 2.7 ; Active state CI from Q1-NADH dataset, Subclass 4 7W4G ; 3.1 ; Active state CI from Q1-NADH dataset, Subclass 5 7VZV ; 3.2 ; Active state CI from Q10 dataset, Subclass 1 7VZW ; 3.2 ; Active state CI from Q10 dataset, Subclass 2 7W0R ; 2.8 ; Active state CI from Q10-NADH dataset, Subclass 1 7W0Y ; 3.4 ; Active state CI from Q10-NADH dataset, Subclass 2 7W1T ; 3.0 ; Active state CI from Rotenone dataset, Subclass 1 7W1U ; 3.2 ; Active state CI from Rotenone dataset, Subclass 2 7W1V ; 3.0 ; Active state CI from Rotenone-NADH dataset, Subclass 1 7W1Z ; 2.6 ; Active state CI from Rotenone-NADH dataset, Subclass 2 7W20 ; 3.0 ; Active state CI from Rotenone-NADH dataset, Subclass 3 7V2H ; 2.5 ; Active state complex I from DQ-NADH dataset 7V2R ; 2.6 ; Active state complex I from Q1-NADH dataset 7V2C ; 2.9 ; Active state complex I from Q10 dataset 7V2E ; 2.8 ; Active state complex I from Q10-NADH dataset 7V31 ; 2.9 ; Active state complex I from rotenone dataset 7V33 ; 2.6 ; Active state complex I from rotenone-NADH dataset 7K6Q ; 3.1 ; Active state Dot1 bound to the H4K16ac nucleosome 7K6P ; 3.2 ; Active state Dot1 bound to the unacetylated H4 nucleosome 6NQA ; 3.54 ; Active state Dot1L bound to the H2B-Ubiquitinated nucleosome, 1-to-1 complex 6NJ9 ; 2.96 ; Active state Dot1L bound to the H2B-Ubiquitinated nucleosome, 2-to-1 complex 7OCF ; 3.6 ; Active state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and CNIH2 (LBD-TMD) 8C1P ; 2.9 ; Active state homomeric GluA1 AMPA receptor in complex with TARP gamma 3 7QHB ; 3.5 ; Active state of GluA1/2 in complex with TARP gamma 8, L-glutamate and CTZ 4G8L ; 2.8 ; Active state of intact sensor domain of human RNase L with 2-5A bound 6PAT ; 5.8 ; Active State of Manduca sexta soluble Guanylate Cyclase 5ZO5 ; 2.297 ; active state of the nuclease 5MVF ; 3.268 ; Active structure of EHD4 complexed with ADP 5MTV ; 2.79 ; Active structure of EHD4 complexed with ATP-gamma-S 6Y86 ; 3.4 ; Active YidC insertase crystal structure with the first transmembrane domain resolved 6HD2 ; ; Active-site conformational dynamics of carbonic anhydrase II under native conditions: An NMR perspective 1AXA ; 2.0 ; ACTIVE-SITE MOBILITY IN HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 PROTEASE AS DEMONSTRATED BY CRYSTAL STRUCTURE OF A28S MUTANT 4CEL ; 2.2 ; ACTIVE-SITE MUTANT D214N DETERMINED AT PH 6.0 WITH NO LIGAND BOUND IN THE ACTIVE SITE 3CEL ; 2.0 ; ACTIVE-SITE MUTANT E212Q DETERMINED AT PH 6.0 WITH CELLOBIOSE BOUND IN THE ACTIVE SITE 2CEL ; 2.0 ; ACTIVE-SITE MUTANT E212Q DETERMINED AT PH 6.0 WITH NO LIGAND BOUND IN THE ACTIVE SITE 4GZI ; 1.68 ; Active-site mutant of potato endo-1,3-beta-glucanase in complex with laminaratriose 4GZJ ; 1.55 ; Active-site mutant of potato endo-1,3-beta-glucanase in complex with laminaratriose and laminaratetrose 4WTR ; 2.27 ; Active-site mutant of Rhizomucor miehei beta-1,3-glucanosyltransferase in complex with laminaribiose 4WTS ; 2.3 ; Active-site mutant of Rhizomucor miehei beta-1,3-glucanosyltransferase in complex with laminaritriose 1TXX ; 2.2 ; ACTIVE-SITE VARIANT OF E.COLI THIOREDOXIN 2ARP ; 2.0 ; Activin A in complex with Fs12 fragment of follistatin 3T57 ; 2.1 ; Activity and Crystal Structure of Arabidopsis UDP-N-acetylglucosamine acyltransferase 5F42 ; 2.06 ; Activity and Crystal Structure of Francisella novicida UDP-N-Acetylglucosamine Acyltransferase 1ALD ; 2.0 ; ACTIVITY AND SPECIFICITY OF HUMAN ALDOLASES 3AAT ; 2.8 ; ACTIVITY AND STRUCTURE OF THE ACTIVE-SITE MUTANTS R386Y AND R386F OF ESCHERICHIA COLI ASPARTATE AMINOTRANSFERASE 4HEW ; 1.6984 ; Activity Enhancers of H64A Variant of Human Carbonic Anhydrase II Possess Multiple Binding Sites within and around the Enzyme Structure 4HEY ; 1.45 ; Activity Enhancers of H64A Variant of Human Carbonic Anhydrase II Possess Multiple Binding Sites within and around the Enzyme Structure 4HEZ ; 1.3446 ; Activity Enhancers of H64A Variant of Human Carbonic Anhydrase II Possess Multiple Binding Sites within and around the Enzyme Structure 4HF3 ; 1.1476 ; Activity Enhancers of H64A Variant of Human Carbonic Anhydrase II Possess Multiple Binding Sites within and around the Enzyme Structure 7DGZ ; 3.8 ; Activity optimized complex I (closed form) 7DH0 ; 4.2 ; Activity optimized complex I (open form) 7DGQ ; 5.0 ; Activity optimized supercomplex state1 7DGR ; 4.6 ; Activity optimized supercomplex state2 7DGS ; 7.8 ; Activity optimized supercomplex state3 7DKF ; 8.3 ; Activity optimized supercomplex state4 7RTX ; 1.65 ; Actophorin grown in microgravity 1BUD ; 1.9 ; ACUTOLYSIN A FROM SNAKE VENOM OF AGKISTRODON ACUTUS AT PH 5.0 1BSW ; 1.95 ; ACUTOLYSIN A FROM SNAKE VENOM OF AGKISTRODON ACUTUS AT PH 7.5 7Y4H ; 1.8 ; AcvX from Actinomadura viridis that exhibits deglycosylation activity on lobophorins 6P2I ; 1.63 ; Acyclic imino acid reductase (Bsp5) in complex with NADPH and D-Arg 6WC7 ; 5.8 ; Acyl carrier protein (ACP) domain bound to dehydratase (DH) domain in fungal fatty acid synthase (FAS) 5DZ6 ; 1.44 ; Acyl transferase from Bacillaene PKS 1WUT ; 2.26 ; Acyl Ureas as Human Liver Glycogen Phosphorylase Inhibitors for the Treatment of Type 2 Diabetes 8HSY ; 2.53 ; Acyl-ACP Synthetase structure 8I6M ; 2.59 ; Acyl-ACP synthetase structure bound to AMP-C18:1 8I51 ; 2.76 ; Acyl-ACP synthetase structure bound to AMP-MC7 8I3I ; 2.68 ; Acyl-ACP synthetase structure bound to AMP-PNP in the presence of MgCl2 8I49 ; 2.41 ; Acyl-ACP synthetase structure bound to ATP 8I8E ; 2.63 ; Acyl-ACP synthetase structure bound to C18:1-ACP 8I8D ; 2.51 ; Acyl-ACP synthetase structure bound to MC7-ACP 8I35 ; 2.75 ; Acyl-ACP synthetase structure bound to oleic acid 8I22 ; 2.15 ; Acyl-ACP synthetase structure bound to pimelic acid monoethyl ester 8HZX ; 2.68 ; Acyl-ACP synthetase structure-2 8QRT ; 2.0 ; Acyl-ACP thioesterase from Lemna paucicostata in complex with a spirolactam 8QS0 ; 2.3 ; Acyl-ACP thioesterase from Lemna paucicostata in complex with a spirolactam 8P8K ; 2.8 ; Acyl-ACP thioesterase from Lemna paucicostata in complex with a thiazolopyridine 1HBK ; 2.0 ; Acyl-CoA binding protein from Plasmodium falciparum 1XNV ; 2.3 ; Acyl-CoA Carboxylase Beta Subunit from S. coelicolor (PccB), apo form #1 1XNW ; 2.6 ; Acyl-CoA Carboxylase Beta Subunit from S. coelicolor (PccB), apo form #2, mutant D422I 1XO6 ; 2.2 ; Acyl-CoA Carboxylase Beta Subunit from S. coelicolor (PccB), apo form #3 7W0J ; 3.13 ; Acyl-CoA dehydrogenase, Tfu_1647 7DBL ; 1.84 ; Acyl-CoA hydrolase MpaH' mutant S139A in complex with MPA 5E7Q ; 2.23 ; Acyl-CoA synthetase PtmA2 from Streptomyces platensis 5UPQ ; 2.42 ; Acyl-CoA synthetase PtmA2 from Streptomyces platensis in complex with SBNP465 ligand 5UPT ; 1.92 ; Acyl-CoA synthetase PtmA2 from Streptomyces platensis in complex with SBNP468 ligand 5UPS ; 2.05 ; Acyl-CoA synthetase PtmA2 from Streptomyces platensis in complex with SBNP663 ligand 7DES ; 1.45 ; Acyl-Coenzyme A Binding Protein 103 (LMJF_17_0620) of Leishmania Major 7WFS ; 1.4 ; Acyl-Coenzyme A Binding Protein 103 (LMJF_17_0620) of Leishmania major in triclinic crystal form 7FC7 ; 2.2 ; Acyl-Coenzyme A Binding Protein 96 (LMJ_17_0780) of Leishmania Major in complex with Coenzyme A 4MOB ; 2.401 ; Acyl-Coenzyme A thioesterase 12 in complex with ADP 8AKI ; 1.4 ; Acyl-enzyme complex of ampicillin bound to deacylation mutant KPC-2 (E166Q) 8AKJ ; 1.35 ; Acyl-enzyme complex of cephalothin bound to deacylation mutant KPC-2 (E166Q) 8AKM ; 1.25 ; Acyl-enzyme complex of ertapenem bound to deacylation mutant KPC-2 (E166Q) 8AKK ; 1.36 ; Acyl-enzyme complex of imipenem bound to deacylation mutant KPC-2 (E166Q) 8AKL ; 1.35 ; Acyl-enzyme complex of meropenem bound to deacylation mutant KPC-2 (E166Q) 2BU3 ; 1.4 ; Acyl-enzyme intermediate between Alr0975 and glutathione at pH 3.4 7KHP ; 1.95 ; Acyl-enzyme intermediate structure of SARS-CoV-2 Mpro in complex with its C-terminal autoprocessing sequence. 2ACY ; 1.8 ; ACYL-PHOSPHATASE (COMMON TYPE) FROM BOVINE TESTIS 4RE5 ; 1.9 ; Acylaminoacyl peptidase complexed with a chloromethylketone inhibitor 4RE6 ; 2.55 ; Acylaminoacyl peptidase complexed with a chloromethylketone inhibitor 4HXF ; 1.601 ; Acylaminoacyl peptidase in complex with Z-Gly-Gly-Phe-chloromethyl ketone 6Z23 ; 1.31 ; Acylenzyme complex of cefotaxime bound to deacylation mutant KPC-2 (E166Q) 6Z24 ; 1.25 ; Acylenzyme complex of ceftazidime bound to deacylation mutant KPC-2 (E166Q) 6Z25 ; 1.24 ; Acylenzyme complex of ceftazidime bound to deacylation mutant KPC-4 (E166Q) 6THO ; 1.09 ; Acylintermediate of glutathione and the mature primitive phytochelatin synthase Alr0975 from Nostoc PCC 7120 at atomic resolution. 8BV9 ; 2.55 ; Acylphosphatase from E. coli 7CHX ; 1.49 ; acylphosphatase from Staphylococcus aureus 2BJE ; 1.9 ; Acylphosphatase from Sulfolobus solfataricus. Monclinic P21 space group 2W4D ; 2.4 ; Acylphosphatase variant G91A from Pyrococcus horikoshii 3TOQ ; 2.0 ; Acylphosphatase with mesophilic surface and thermophilic core 3TNV ; 1.6 ; Acylphosphatase with thermophilic surface and mesophilic core 7AHB ; 1.9 ; Acyltransferase domain of the polyketide synthase PpsC of Mycobacterium tuberculosis 7VT1 ; 2.5 ; Acyltransferase from the 9th Module of Salinomycin Polyketide Synthase 3U0W ; 2.0 ; AD related murine antibody Fragment 2J12 ; 1.5 ; Ad37 fibre head in complex with CAR D1 2WBW ; 1.55 ; Ad37 fibre head in complex with CAR D1 and sialic acid 4ATZ ; 1.95 ; Ad5 knob in complex with a designed ankyrin repeat protein 1SFE ; 2.1 ; ADA O6-METHYLGUANINE-DNA METHYLTRANSFERASE FROM ESCHERICHIA COLI 1A4L ; 2.6 ; ADA STRUCTURE COMPLEXED WITH DEOXYCOFORMYCIN AT PH 7.0 1A4M ; 1.95 ; ADA STRUCTURE COMPLEXED WITH PURINE RIBOSIDE AT PH 7.0 6CR1 ; 1.521 ; adalimumab EFab 4DD8 ; 2.1 ; ADAM-8 metalloproteinase domain with bound batimastat 2AO7 ; 2.9 ; Adam10 Disintegrin and cysteine- rich domain 6BE6 ; 2.8 ; ADAM10 Extracellular Domain 6BDZ ; 3.1 ; ADAM10 Extracellular Domain Bound by the 11G2 Fab 2AIG ; 2.6 ; ADAMALYSIN II WITH PEPTIDOMIMETIC INHIBITOR POL647 3AIG ; 2.8 ; ADAMALYSIN II WITH PEPTIDOMIMETIC INHIBITOR POL656 4AIG ; 2.0 ; ADAMALYSIN II WITH PHOSPHONATE INHIBITOR 3Q2G ; 2.3 ; Adamts1 in complex with a novel N-hydroxyformamide inhibitors 3Q2H ; 2.33 ; Adamts1 in complex with N-hydroxyformamide inhibitors of ADAM-TS4 7B01 ; 2.8 ; ADAMTS13-CUB12 8TXN ; 1.75 ; Adaptive mechanism of collagen IV scaffold assembly in Drosophila: crystal structure of recombinant NC1 hexamer 8TYS ; 2.9 ; Adaptive mechanism of collagen IV scaffold assembly in Drosophila: crystal structure of tissue-extracted NC1 hexamer 8IMQ ; ; Adaptive mutation is mediated by MsyB via its interaction with nucleoid-associated proteins HU and beta-clamp 3FCZ ; 2.804 ; Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility 3U2A ; 1.7 ; Adaptor dependent degradation of a cell-cycle regulator reveals diversity in substrate architectures 8FQQ ; 1.48 ; ADC-162 in complex with boronic acid transition state inhibitor MB076 8FQS ; 1.21 ; ADC-212 in complex with boronic acid transition state inhibitor MB076 8FQU ; 1.49 ; ADC-219 in complex with boronic acid transition state inhibitor MB076 8FQW ; 1.59 ; ADC-30 in complex with boronic acid transition state inhibitor MB076 8FQO ; 1.83 ; ADC-33 in complex with boronic acid transition state inhibitor MB076 6PWM ; 2.4 ; ADC-7 in complex with Beta-lactam antibiotic ceftazidime 5WAC ; 2.061 ; ADC-7 in complex with boronic acid transition state inhibitor CR157 5WAD ; 2.09 ; ADC-7 in complex with boronic acid transition state inhibitor CR161 5WAE ; 1.804 ; ADC-7 in complex with boronic acid transition state inhibitor CR167 5WAF ; 2.03 ; ADC-7 in complex with boronic acid transition state inhibitor CR192 5W12 ; 1.88 ; ADC-7 in complex with boronic acid transition state inhibitor EC04 6PWL ; 1.67 ; ADC-7 in complex with boronic acid transition state inhibitor LP06 8FQM ; 1.53 ; ADC-7 in complex with boronic acid transition state inhibitor MB076 6TZJ ; 1.8 ; ADC-7 in complex with boronic acid transition state inhibitor ME_096 6TZI ; 1.744 ; ADC-7 in complex with boronic acid transition state inhibitor PFC_001 5W14 ; 1.88 ; ADC-7 in complex with boronic acid transition state inhibitor S03043 6TZH ; 2.04 ; ADC-7 in complex with boronic acid transition state inhibitor S06015 5WAG ; 1.931 ; ADC-7 in complex with boronic acid transition state inhibitor S06017 6TZF ; 1.96 ; ADC-7 in complex with boronic acid transition state inhibitor S17079 6TZG ; 1.816 ; ADC-7 in complex with boronic acid transition state inhibitor S17083 5W13 ; 1.95 ; ADC-7 in complex with boronic acid transition state inhibitor SM23 2BIR ; 2.3 ; ADDITIVITY OF SUBSTRATE BINDING IN RIBONUCLEASE T1 (Y42A MUTANT) 8QB3 ; 2.9 ; ADDobody zinc containing condition 6PL9 ; 1.2 ; Adduct formed after 1 month in the reaction of dichlorido(1,3-dimethylbenzimidaz ol-2-ylidene)(eta5-pentamethylcyclopentadienyl)rhodium(III) with HEWL 6PLB ; 1.3 ; Adducts formed after 1 month in the reaction of dichlorido(1,3-dimethylbenzimida zol-2-ylidene)(eta5-pentamethylcyclopentadienyl)iridium(III) with HEWL 6PLA ; 1.25 ; Adducts formed after 1 month in the reaction of dichlorido(1,3-dimethylbenzimidazol-2-ylidene)(eta6-p-cymene)osmium(II) with HEWL 6BO2 ; 1.48 ; Adducts formed after 1 month in the reaction of dichlorido(1,3-dimethylbenzimidazol-2-ylidene)(eta6-p-cymene)ruthenium(II) with HEWL 6WX5 ; 1.3 ; Adducts formed after 3 weeks in the reaction of chlorido[chlorido(2,2'-((2-([2,2':6',2''-Terpyridin]-4'-yloxy)ethyl)azanediyl)bis(ethan-1-ol))platinum(II)] with HEWL 8DWE ; 2.2 ; Adenine glycosylase MutY variant E43Q in complex with DNA containing d(8-oxo-G) paired with substrate purine 8DWD ; 1.68 ; Adenine glycosylase MutY variant E43S in complex with DNA containing d(8-oxo-G) paired with an AP site generated by the enzyme acting on purine 5UZA ; 2.22 ; Adenine riboswitch aptamer domain labelled with iodo-uridine by position-selective labelling of RNA (PLOR) 1U49 ; 2.15 ; Adenine-8oxoguanine mismatch at the polymerase active site 1NK5 ; 2.1 ; ADENINE-ADENINE MISMATCH AT THE POLYMERASE ACTIVE SITE 6GZN ; ; Adenine-driven structural switch from two- to three-quartet DNA G-quadruplex 1NK0 ; 1.7 ; ADENINE-GUANINE MISMATCH AT THE POLYMERASE ACTIVE SITE 2ADM ; 2.6 ; ADENINE-N6-DNA-METHYLTRANSFERASE TAQI 7QW8 ; 2.5 ; Adenine-specific DNA methyltransferase M.BseCI 7QW7 ; 2.6 ; Adenine-specific DNA methyltransferase M.BseCI complexed with AdoHcy and cognate fully methylated DNA duplex 7QW6 ; 2.4 ; Adenine-specific DNA methyltransferase M.BseCI complexed with AdoHcy and cognate hemimethylated DNA duplex 7QW5 ; 2.3 ; Adenine-specific DNA methyltransferase M.BseCI complexed with AdoHcy and cognate unmethylated DNA duplex 1G38 ; 2.0 ; ADENINE-SPECIFIC METHYLTRANSFERASE M. TAQ I/DNA COMPLEX 7KFR ; 1.56 ; Adeno-Associated Virus (AAV-DJ) - cryo-EM structure at 1.56 Angstrom Resolution 6IH9 ; 2.8 ; Adeno-Associated Virus 2 at 2.8 ang 6IHB ; 2.84 ; Adeno-Associated Virus 2 in complex with AAVR 7JSH ; 4.4 ; Adeno-Associated Virus 2 Rep68 HD Heptamer-ssAAVS1 with ATPgS 7JSI ; 5.01 ; Adeno-Associated Virus 2 Rep68 HD Hexamer-ssDNA with ATPgS 7JSG ; 5.2 ; Adeno-Associated Virus 2 Rep68 HD-Heptamer-ssDNA with ATPgS 8SG7 ; 2.4 ; Adeno-Associated Virus Bat origin capsid protein basic regions in complex with importin-alpha 2 7TI4 ; 2.93 ; Adeno-associated Virus Go.1 at 2.9 Angstroms resolution, AAVGo.1 AAV-Go 7TI5 ; 2.4 ; Adeno-associated virus Go.1 in Complex With Its Cellular Receptor AAVR at 2.4 Angstroms Resolution, AAVGo.1 AAVR 7JSF ; 6.7 ; Adeno-Associated Virus Helicase domain Heptamer with ssDNA 6XB8 ; 3.3 ; Adeno-Associated Virus Origin Binding Domain in complex with ssDNA 7JSE ; 4.6 ; Adeno-Associated Virus Origin Binding Domain in complex with ssDNA 8FK3 ; 2.6 ; Adeno-Associated Virus Porcine Origin capsid protein basic regions in complex with Importin-alpha 2 7KP3 ; 2.1 ; Adeno-associated virus serotype 5 at 2.1 Angstroms resolution, AAV5 7KPN ; 2.5 ; Adeno-associated virus serotype 5 in complex with the cellular receptor AAVR at 2.5 Angstroms resolution, AAV5 AAVR 7WJX ; 3.23 ; Adeno-associated virus serotype 9 in complex with AAVR 7WQP ; 3.76 ; Adeno-associated virus serotype PHP.eB in complex with AAVR 7JOT ; 2.7 ; Adeno-associated virus strain AAV7 capsid icosahedral structure 6U95 ; 2.56 ; Adeno-associated virus strain AAVhu.37 capsid icosahedral structure 7RWT ; 2.43 ; Adeno-associated virus type 2 1NDP ; 2.2 ; ADENOSINE 5'-DIPHOSPHATE BINDING AND THE ACTIVE SITE OF NUCLEOSIDE DIPHOSPHATE KINASE 2FJA ; 2.0 ; adenosine 5'-phosphosulfate reductase in complex with substrate 7EZC ; 3.8 ; Adenosine A2a receptor mutant-I92N 1VFL ; 1.8 ; Adenosine deaminase 1UIO ; 2.4 ; ADENOSINE DEAMINASE (HIS 238 ALA MUTANT) 1UIP ; 2.4 ; ADENOSINE DEAMINASE (HIS 238 GLU MUTANT) 4DC3 ; 2.4 ; Adenosine kinase from Schistosoma mansoni in complex with 2-fluoroadenosine 3VAQ ; 2.44 ; Adenosine kinase from Schistosoma mansoni in complex with adenosine 3UQ6 ; 2.3 ; Adenosine kinase from Schistosoma mansoni in complex with adenosine and AMP 3VAS ; 2.26 ; Adenosine kinase from Schistosoma mansoni in complex with adenosine in occluded loop conformation 3UQ9 ; 2.343 ; Adenosine kinase from Schistosoma mansoni in complex with tubercidin 7XY7 ; 3.26 ; Adenosine receptor bound to a non-selective agonist in complex with a G protein obtained by cryo-EM 7XY6 ; 2.99 ; Adenosine receptor bound to an agonist in complex with G protein obtained by cryo-EM 4YB7 ; 2.2 ; Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni in complex with ATP 4YB5 ; 2.24 ; Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni in complex with the allosteric inhibitor histidine 4YB6 ; 1.98 ; Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni in complex with the inhibitors AMP and histidine 7DAM ; 2.7 ; Adenosine triphosphate phosphoribosyltransferase from Vibrio cholerae 7DAH ; 2.92 ; Adenosine triphosphate phosphoribosyltransferase from Vibrio cholerae in complex with ATP and PRPP 2FJB ; 1.7 ; Adenosine-5'-phosphosulfate reductase im complex with products 2FJD ; 1.84 ; adenosine-5-phosphosulfate reductase in complex with sulfite (covalent adduct) 2FJE ; 1.8 ; adenosine-5-phosphosulfate reductase oxidized state 8DB6 ; 2.02 ; Adenosine/guanosine nucleoside hydrolase 8DB7 ; 2.33 ; Adenosine/guanosine nucleoside hydrolase bound to a fragment inhibitor 8DB8 ; 2.21 ; Adenosine/guanosine nucleoside hydrolase bound to ImH 8DB9 ; 2.89 ; Adenosine/guanosine nucleoside hydrolase bound to inhibitor 8SA2 ; 3.1 ; Adenosylcobalamin-bound riboswitch dimer, form 1 8SA3 ; 3.0 ; Adenosylcobalamin-bound riboswitch dimer, form 2 8SA4 ; 3.1 ; Adenosylcobalamin-bound riboswitch dimer, form 3 8SA5 ; 3.5 ; Adenosylcobalamin-bound riboswitch dimer, form 4 1CBU ; 2.3 ; ADENOSYLCOBINAMIDE KINASE/ADENOSYLCOBINAMIDE PHOSPHATE GUANYLYLTRANSFERASE (COBU) FROM SALMONELLA TYPHIMURIUM 4WYD ; 1.35 ; Adenosylmethionine-8-amino-7-oxononanoate aminotransferase from Mycobacterium tuberculosis complexed with a fragment from DSF screening 6STW ; 1.37 ; Adenovirus 15 Fiber Knob protein 6STV ; 1.6 ; Adenovirus 29 Fiber Knob protein 6STT ; 1.54 ; Adenovirus 29 Fiber Knob protein in complex with Sialic acid 4WYJ ; 2.65 ; Adenovirus 3 head domain mutant V239D 6STU ; 2.39 ; Adenovirus 30 Fiber Knob protein 1ANV ; 2.7 ; ADENOVIRUS 5 DBP/URANYL FLUORIDE SOAK 1UXB ; 1.75 ; ADENOVIRUS AD19p FIBRE HEAD in complex with sialyl-lactose 1H7Z ; 1.6 ; Adenovirus Ad3 fibre head 2QLK ; 2.02 ; Adenovirus AD35 fibre head 1UXE ; 2.0 ; ADENOVIRUS AD37 FIBRE HEAD 1UXA ; 1.5 ; ADENOVIRUS AD37 FIBRE HEAD in complex with sialyl-lactose 1V1I ; 1.9 ; Adenovirus fibre shaft sequence N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif with a long linker 1V1H ; 1.9 ; Adenovirus fibre shaft sequence N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif with a short linker 6QPM ; 3.39 ; Adenovirus serotype 10 Fiber-Knob 6QU6 ; 1.03 ; Adenovirus Serotype 26 (Ad26) in complex with sialic acid, pH4.0 6QU8 ; 1.19 ; Adenovirus Serotype 26 (Ad26) in complex with sialic acid, pH8.0 6FJN ; 0.97 ; Adenovirus species 26 knob protein, 0.97A 6FJP ; 1.09 ; Adenovirus species 26 knob protein, high resolution, High pH 6FJO ; 1.17 ; Adenovirus species 26 knob protein, very high resolution 6FJQ ; 2.91 ; Adenovirus species 48, fiber knob protein 6QPN ; 2.74 ; Adenovirus species D serotype 49 Fiber-Knob 6QPO ; 2.45 ; Adenovirus species D serotype 49 Fiber-Knob KO1 mutant 6HCN ; 1.49 ; Adenovirus Type 5 Fiber Knob protein at 1.49A resolution 3N0Z ; 1.7 ; Adenylate cyclase class IV with active site ligand 3AT 3N0Y ; 1.7 ; Adenylate cyclase class IV with active site ligand APC 7RAH ; 2.6 ; Adenylate cyclase toxin RTX domain fragment bound to M1H5 Fab and M2B10 Fab 4AKE ; 2.2 ; ADENYLATE KINASE 6HAM ; 2.55 ; Adenylate kinase 6HAP ; 2.7 ; Adenylate kinase 1P3J ; 1.9 ; Adenylate Kinase from Bacillus subtilis 1ZAK ; 3.5 ; ADENYLATE KINASE FROM MAIZE IN COMPLEX WITH THE INHIBITOR P1,P5-BIS(ADENOSINE-5'-)PENTAPHOSPHATE (AP5A) 6PJW ; 2.4 ; Adenylate kinase from Methanococcus igneus - AMP bound form 6PSP ; 2.252 ; Adenylate kinase from Methanococcus igneus - AP5A bound form 6PK5 ; 2.3 ; Adenylate kinase from Methanococcus igneus - apo form 1KI9 ; 2.76 ; Adenylate kinase from Methanococcus thermolithotrophicus 1KHT ; 2.5 ; Adenylate kinase from Methanococcus voltae 1NKS ; 2.57 ; ADENYLATE KINASE FROM SULFOLOBUS ACIDOCALDARIUS 1AK2 ; 1.92 ; ADENYLATE KINASE ISOENZYME-2 2AK2 ; 2.1 ; ADENYLATE KINASE ISOENZYME-2 8BQF ; 2.05 ; Adenylate Kinase L107I MUTANT 1ZIN ; 1.6 ; ADENYLATE KINASE WITH BOUND AP5A 6ULY ; 2.3 ; Adenylation domain of a keto acid-selecting NRPS module bound to keto acyl adenylate space group P212121 6ULX ; 2.31 ; Adenylation domain of a keto acid-selecting NRPS module bound to keto acyl adenylate space group P43212 1ZAU ; 3.15 ; Adenylation domain of NAD+ dependent DNA ligase from M.tuberculosis 6ULZ ; 3.1 ; Adenylation domain of the initiation module of LgrA mutant P483M 8G95 ; 2.2 ; Adenylation domain structure from NRPS-like Delta-Poly-L-Ornithine synthetase 8G97 ; 2.51 ; Adenylation domain structure from NRPS-like Delta-Poly-L-Ornithine synthetase (D-Ornithine bound) 8G98 ; 2.49 ; Adenylation domain structure from NRPS-like Delta-Poly-L-Ornithine synthetase (L-Lysine bound) 8G96 ; 2.3 ; Adenylation domain structure from NRPS-like Delta-Poly-L-Ornithine synthetase (L-Ornithine bound) 6ULW ; 3.4 ; Adenylation, ketoreductase, and pseudo Asub multidomain structure of a keto acid-selecting NRPS module 5I34 ; 1.53 ; Adenylosuccinate synthetase from Cryptococcus neoformans complexed with GDP and IMP 6ZXQ ; 1.4 ; Adenylosuccinate Synthetase from H. pylori in complex with HDA, GDP, IMO, Mg 7PVO ; 2.0 ; Adenylosuccinate Synthetase from H. pylori in complex with IMP 1SON ; 2.55 ; ADENYLOSUCCINATE SYNTHETASE IN COMPLEX WITH THE NATURAL FEEDBACK INHIBITOR AMP 1SOO ; 2.6 ; ADENYLOSUCCINATE SYNTHETASE INHIBITED BY HYDANTOCIDIN 5'-MONOPHOSPHATE 2FJT ; 1.901 ; Adenylyl cyclase class iv from Yersinia pestis 6CFD ; 2.57 ; ADEP4 bound to E. faecium ClpP 7QU8 ; 3.37 ; ADGRG3/GPR97 Extracellular Region 8DJG ; 2.65 ; ADGRL3-lectin domain in complex with an activating synthetic antibody fragment 7WYB ; 2.97 ; ADGRL3/Gi complex 7WY5 ; 2.83 ; ADGRL3/Gq complex 7WY8 ; 2.83 ; ADGRL3/Gs complex 7X10 ; 2.93 ; ADGRL3/miniG12 complex 7BVP ; 3.45 ; AdhE spirosome in extended conformation 5MY7 ; 1.4 ; Adhesin Complex Protein from Neisseria meningitidis 6EVU ; 1.598 ; Adhesin domain of PrgB from Enterococcus faecalis 6GED ; 1.794 ; Adhesin domain of PrgB from Enterococcus faecalis bound to DNA 5LP2 ; 2.6 ; Adhesin domain of the type 1 HopQ of Helicobacter pylori strain G27 6S3U ; 3.24 ; Adhesin P140 from Mycoplasma Genitalium 5A0O ; 2.73 ; adhiron raised against p300 4N6T ; 1.75 ; Adhiron: a stable and versatile peptide display scaffold - full length adhiron 4N6U ; 2.251 ; Adhiron: a stable and versatile peptide display scaffold - truncated adhiron 2ANS ; 2.5 ; ADIPOCYTE LIPID BINDING PROTEIN COMPLEXED WITH 1-ANILINO-8-NAPHTHALENE SULFONATE 1ADL ; 1.6 ; ADIPOCYTE LIPID BINDING PROTEIN COMPLEXED WITH ARACHIDONIC ACID: X-RAY CRYSTALLOGRAPHIC AND TITRATION CALORIMETRY STUDIES 3DFV ; 3.1 ; Adjacent GATA DNA binding 1K98 ; 3.75 ; AdoMet complex of MetH C-terminal fragment 5H56 ; 1.7 ; ADP and dTDP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 1AMW ; 1.85 ; ADP BINDING SITE IN THE HSP90 MOLECULAR CHAPERONE 1XXI ; 4.1 ; ADP Bound E. coli Clamp Loader Complex 6NO0 ; 2.209 ; ADP bound to ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6NO2 ; 2.159 ; ADP bound to K114bD mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6NO1 ; 2.44 ; ADP bound to K46bE mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6NO5 ; 2.069 ; ADP bound to K46bE&K114bD mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6NO4 ; 2.24 ; ADP bound to L227bF mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6NO3 ; 1.939 ; ADP bound to V113bL mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 6VRF ; 1.5 ; ADP bound TTBK2 kinase domain 3IQX ; 3.5 ; ADP complex of C.therm. Get3 in closed form 1XJQ ; 2.06 ; ADP Complex OF HUMAN PAPS SYNTHETASE 1 3DSR ; 2.7 ; ADP in transition binding site in the subunit B of the energy converter A1Ao ATP synthase 1W0K ; 2.85 ; ADP inhibited bovine F1-ATPase 3X0J ; 0.92 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in apo state at 0.92 angstrom resolution 3X0S ; 1.1 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in E'-state at reaction time of 50 min 3X0K ; 0.97 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ES-state at 0.97 angstrom resolution 3X0L ; 1.0 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ES-state at 1.00 angstrom resolution 3X0M ; 1.15 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ESM-state at reaction time of 3 min 3X0N ; 1.12 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ESM-state at reaction time of 6 min 3X0O ; 1.09 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ESMM-state at reaction time of 10 min 3X0P ; 1.22 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ESMM-state at reaction time of 15 min 3X0Q ; 1.14 ; ADP ribose pyrophosphatase from Thermus thermophilus HB8 in ESMM-state at reaction time of 20 min 3X0I ; 0.91 ; ADP ribose pyrophosphatase in apo state at 0.91 angstrom resolution 7M9A ; 3.9 ; ADP-AlF3 bound TnsC structure from ShCAST system 7M9B ; 3.8 ; ADP-AlF3 bound TnsC structure in closed form 7M9C ; 4.2 ; ADP-AlF3 bound TnsC structure in open form 3ZQ6 ; 2.107 ; ADP-ALF4 COMPLEX OF M. THERM. TRC40 2WOJ ; 1.994 ; ADP-AlF4 complex of S. cerevisiae GET3 7N46 ; 2.21 ; ADP-binding state of the nucleotide-binding domain of Hsp70 DnaK 4AM7 ; 3.25 ; ADP-BOUND C-TERMINAL DOMAIN OF ACTIN-RELATED PROTEIN ARP8 FROM S. CEREVISIAE 4GVA ; 1.83 ; ADP-bound form of the ERK2 kinase 6MRC ; 3.08 ; ADP-bound human mitochondrial Hsp60-Hsp10 football complex 6MRD ; 3.82 ; ADP-bound human mitochondrial Hsp60-Hsp10 half-football complex 3KJG ; 2.3 ; ADP-bound state of CooC1 5O0I ; 2.0 ; ADP-dependent glucokinase from Pyrococcus horikoshii 5O0J ; 1.81 ; ADP-dependent glucokinase from Pyrococcus horikoshii 6XIO ; 3.12 ; ADP-dependent kinase complex with fructose-6-phosphate and ADPbetaS 5XB3 ; 1.77 ; ADP-dTMP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 5XB2 ; 2.161 ; ADP-Mg-F-dTMP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 1MOZ ; 3.17 ; ADP-ribosylation factor-like 1 (ARL1) from Saccharomyces cerevisiae 2YZV ; 1.6 ; ADP-ribosylglycohydrolase-related protein complex 2YZW ; 1.7 ; ADP-ribosylglycohydrolase-related protein complex 6HH3 ; 1.82 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-HPD 6HH5 ; 1.95 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-HPM 6G1Q ; 2.1 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-ribose 6HGZ ; 1.86 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-ribose 6HH4 ; 1.66 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with ADP-ribosyl-L-arginine 7AQM ; 2.5 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with alpha-1''-O-methyl-ADP-ribose (meADPr) 6HOZ ; 1.77 ; ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae in complex with inosine diphosphate ribose (IDPr) 8HE7 ; 2.1 ; ADP-ribosyltransferase 1 (PARP1) catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 1R4B ; 1.85 ; ADP-ribosyltransferase C3bot2 from Clostridium botulinum, monoclinic form 1R45 ; 1.57 ; ADP-ribosyltransferase C3bot2 from Clostridium botulinum, triclinic form 6DRE ; 1.8 ; ADP-ribosyltransferase toxin/immunity pair 6DRH ; 2.299 ; ADP-ribosyltransferase toxin/immunity pair 7B8B ; 2.03 ; ADPG2 - ENDOPOLYGALACTURONASE FROM ARABIDOPSIS THALIANA 2ADR ; ; ADR1 DNA-BINDING DOMAIN FROM SACCHAROMYCES CEREVISIAE, NMR, 25 STRUCTURES 1CJE ; 2.5 ; ADRENODOXIN FROM BOVINE 1E1K ; 1.95 ; ADRENODOXIN REDUCTASE in complex with NADP+ obtained by a soaking experiment 1E1M ; 1.85 ; ADRENODOXIN REDUCTASE in complex with NADPH obtained by a soaking experiment 1E6E ; 2.3 ; ADRENODOXIN REDUCTASE/ADRENODOXIN COMPLEX OF MITOCHONDRIAL P450 SYSTEMS 2WLB ; 2.6 ; Adrenodoxin-like ferredoxin Etp1fd(516-618) of Schizosaccharomyces pombe mitochondria 6CO3 ; 2.384 ; aducanumab abeta complex 6CNR ; 2.09 ; aducanumab apo Fab 3DZT ; 1.8 ; AeD7-leukotriene E4 complex 5FT3 ; 1.431 ; Aedes aegypti GSTe2 1YIY ; 1.9 ; Aedes aegypti kynurenine aminotransferase 1YIZ ; 1.55 ; Aedes aegypti kynurenine aminotrasferase 2R5C ; 1.96 ; Aedes Kynurenine Aminotransferase in Complex with Cysteine 2R5E ; 1.84 ; Aedes kynurenine aminotransferase in complex with glutamine 4I3M ; 1.95 ; Aer2 poly-HAMP domains: L44H HAMP1 CW-lock mutant 4I44 ; 2.88 ; Aer2 poly-HAMP domains: V33G HAMP1 inverted signaling mutant 6ZLF ; 1.8 ; Aerobic crystal structure of F420H2-Oxidase from Methanothermococcus thermolithotrophicus at 1.8A resolution under 125 bars of krypton 8C34 ; 1.82 ; Aerobic light exposed 1.8 Angstrom crystal structure of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH 6ETB ; 1.905 ; Aerobic S262Y mutation of E. coli FLRD core 3P9O ; 1.45 ; Aerobic ternary complex of urate oxidase with azide and chloride 8SM6 ; 1.39 ; Aerobic, Diiron(III)-metalated SfbO 4RJE ; 1.65 ; Aerococcus viridans L-lactate oxidase mutant 4YL2 ; 1.9 ; Aerococcus viridans L-lactate oxidase Y191F mutant 5EBU ; 2.6 ; Aerococcus viridans L-lactate oxidase Y215F mutant 6I1X ; 3.7 ; Aeromonas hydrophila ExeD 6IF8 ; 2.0 ; Aeromonas hydrophila MtaN-2 complexed with adenine 6K2Q ; 2.0 ; Aeromonas hydrophila MtaN-2 complexed with adenine 3WGC ; 2.5 ; Aeromonas jandaei L-allo-threonine aldolase H128Y/S292R double mutant 1IGB ; 2.3 ; AEROMONAS PROTEOLYTICA AMINOPEPTIDASE COMPLEXED WITH THE INHIBITOR PARA-IODO-D-PHENYLALANINE HYDROXAMATE 6B7L ; 2.3 ; Aeromonas veronii immune modulator A 7RC2 ; 1.51 ; Aeronamide N-methyltransferase, AerE 7RC4 ; 1.66 ; Aeronamide N-methyltransferase, AerE (D141A) 7RC5 ; 1.88 ; Aeronamide N-methyltransferase, AerE (N231A) 7RC3 ; 1.53 ; Aeronamide N-methyltransferase, AerE (Y137F) 7RC6 ; 1.71 ; Aeronamide N-methyltransferase, AerE, bound to modified peptide substrate, AerA-DL,34 2QR5 ; 2.2 ; Aeropyrum pernix acylaminoacyl peptidase, H367A mutant 4GQF ; 2.3 ; Aeropyrum pernix Peroxiredoxin Q Enzyme in the Locally Unfolded Conformation 7NVQ ; 2.05 ; Aerosol-soaked human cdk2 crystals with Staurosporine 8CJD ; 1.7 ; AetF, a single-component flavin-dependent tryptophan halogenase 8CJF ; 1.9 ; AetF, a single-component flavin-dependent tryptophan halogenase, in complex with 5-bromo-L-tryptophan 8CJG ; 2.3 ; AetF, a single-component flavin-dependent tryptophan halogenase, in complex with 7-bromo-L-tryptophan 8CJE ; 1.8 ; AetF, a single-component flavin-dependent tryptophan halogenase, in complex with L-tryptophan 5HJD ; 2.806 ; AF9 YEATS in complex with histone H3 Crotonylation at K18 5HJB ; 2.7 ; AF9 YEATS in complex with histone H3 Crotonylation at K9 1UT2 ; 3.3 ; AfaE-3 adhesin from Escherichia Coli 5L88 ; 1.88 ; AFAMIN ANTIBODY FRAGMENT, N14 FAB, L1- GLYCOSILATED, CRYSTAL FORM I, non-parsimonious model 5LGH ; 1.86 ; Afamin antibody fragment, N14 Fab, L1- glycosilated, crystal form II, same as 5L7X, but isomorphous setting indexed same as 5L88, 5L9D 5L9D ; 1.88 ; AFAMIN ANTIBODY FRAGMENT, N14 FAB, L1- GLYCOSYLATED, CRYSTAL FORM I, parsimonious model 5L7X ; 1.86 ; Afamin antibody fragment, N14 Fab, L1- glycosylated, crystal form II 8IF5 ; ; AFB1-AF26 APTAMER COMPLEX 4TX6 ; 1.9 ; AfChiA1 in complex with compound 1 8IR0 ; 2.89 ; AfFer mutant-P156F 8IQW ; 2.5 ; AfFer(Asterias forbesii ferritin) mutant-P156H 2JDG ; 2.0 ; Affilin based on HUMAN GAMMA-B CRYSTALLIN 6YXW ; 2.06 ; Affimer K3 - KRAS protein complex 6YR8 ; 1.9 ; Affimer K6 - KRAS protein complex 7NY8 ; 1.8 ; Affimer K69 - KRAS protein complex 6SWT ; 1.2 ; Affimer9 co-crystalised with the CH domains of alpha actinin 2. 6HJL ; 2.2 ; Affimer:BclxL 6HA5 ; 1.87 ; AFGH61B L90V/D131S/M134L/A141W VARIANT 6H1Z ; 1.57 ; AFGH61B WILD-TYPE 6HAQ ; 1.37 ; AFGH61B WILD-TYPE COPPER LOADED 2VEZ ; 1.45 ; AfGNA1 crystal structure complexed with Acetyl-CoA and Glucose-6P gives new insights into catalysis 1GVE ; 1.38 ; Aflatoxin aldehyde reductase (AKR7A1) from Rat Liver 2KH4 ; ; Aflatoxin Formamidopyrimidine alpha anomer in single strand DNA 8C0O ; 3.9 ; African cichlid nackednavirus capsid at pH 5.5 8AAC ; 3.7 ; African cichlid nackednavirus capsid at pH 7.5 6LJO ; 2.28 ; African swine fever virus dUTPase 6L2T ; 4.1 ; African swine fever virus major capsid protein p72 2M2V ; ; African Swine Fever Virus Pol X in the ternary complex with MgdGTP and DNA 5O51 ; 2.01 ; AfRom2 CNH domain 8JKE ; 3.67 ; AfsR(T337A) transcription activation complex 7RXA ; 3.08 ; afTMEM16 DE/AA mutant in C14 lipid nanodiscs in the presence of Ca2+ 7RX3 ; 3.3 ; afTMEM16 in C14 lipid nanodiscs with MSP1E3 scaffold protein in the absence of Ca2+ 7RXG ; 2.28 ; afTMEM16 in C18 lipid nanodiscs with MSP1E3 scaffold protein in the presence of Ca2+, full dimer 7RXH ; 2.3 ; afTMEM16 in C18 lipid nanodiscs with MSP1E3 scaffold protein in the presence of Ca2+, monomer with extra lipids 7RX2 ; 2.7 ; afTMEM16 in C22 lipid nanodiscs with MSP1E3 scaffold protein in the presnece of Ca2+ 7RWJ ; 3.5 ; afTMEM16 in C22 lipid nanodiscs with MSP2N2 scaffold protein in the presnece of Ca2+ 7RXB ; 3.07 ; afTMEM16 lipid scramblase in C18 lipid nanodiscs in the absence of Ca2+ 6DZ7 ; 3.89 ; afTMEM16 reconstituted in nanodiscs in the absence of Ca2+ 6E1O ; 3.59 ; afTMEM16 reconstituted in nanodiscs in the presence of Ca2+ and ceramide 24:0 6RVN ; 1.242 ; aFtsz-GDP-Wat 8GJF ; 2.0 ; afupcna bound with peptide mimetic 7BLM ; ; AG repetition attached to a compact i-motif clip at 3'-end 7BMA ; ; AG repetition attached to an extended i-motif clip at 3'-end 2MMS ; ; AG(7-deaza)G FAPY modified duplex 1AQQ ; ; AG-SUBSTITUTED METALLOTHIONEIN FROM SACCHAROMYCES CEREVISIAE, NMR, 10 STRUCTURES 1AOO ; ; AG-SUBSTITUTED METALLOTHIONEIN FROM SACCHAROMYCES CEREVISIAE, NMR, MINIMIZED AVERAGE STRUCTURE 6PQ5 ; 1.5 ; AGAAAA segment 113-118 from human prion 6PI0 ; 2.09 ; AgaD472N-Linear Blood group B type 2 trisaccharide complex structure 2ERB ; 1.5 ; AgamOBP1, and odorant binding protein from Anopheles gambiae complexed with PEG 1RJO ; 1.67 ; AGAO + Xe 3KII ; 1.9 ; AGAO 5-phenoxy-2,3-pentadienylamine complex 3KN4 ; 2.05 ; AGAO 6-phenyl-2,3-hexadienylamine complex 1W5Z ; 1.86 ; AGAO covalent complex with Benzylhydrazine 1W4N ; 1.65 ; AGAO covalent complex with Tranylcypromine 1W6G ; 1.55 ; AGAO holoenzyme at 1.55 angstroms 1W6C ; 2.2 ; AGAO holoenzyme in a small cell, at 2.2 angstroms 2BT3 ; 1.73 ; AGAO in complex with Ruthenium-C4-wire at 1.73 angstroms 2CG1 ; 1.67 ; AGAO in complex with wc11b (Ru-wire inhibitor, 11-carbon linker, data set b) 2CFG ; 1.55 ; AGAO in complex with wc4d3 (Ru-wire inhibitor, 4-carbon linker, delta enantiomer, data set 3) 2CFD ; 1.6 ; AGAO in complex with wc4l3 (Ru-wire inhibitor, 4-carbon linker, lambda enantiomer, data set 3) 2CFK ; 1.8 ; AGAO in complex with wc5 (Ru-wire inhibitor, 5-carbon linker) 2CFL ; 1.8 ; AGAO in complex with wc6b (Ru-wire inhibitor, 6-carbon linker, data set b) 2CFW ; 1.74 ; AGAO in complex with wc7a (Ru-wire inhibitor, 7-carbon linker, data set a) 2CG0 ; 1.8 ; AGAO in complex with wc9a (Ru-wire inhibitor, 9-carbon linker, data set a) 1SIH ; 1.73 ; AGAO in covalent complex with the inhibitor MOBA (""4-(4-methylphenoxy)-2-butyn-1-amine"") 1SII ; 1.7 ; AGAO in covalent complex with the inhibitor NOBA (""4-(2-naphthyloxy)-2-butyn-1-amine"") 1ZFM ; 2.2 ; AGC Duplex B-DNA 2MMR ; ; AGC FAPY modified duplex Major isomer 2WG0 ; 2.2 ; AGED CONJUGATE OF TORPEDO CALIFORNICA ACETYLCHOLINESTERASE WITH SOMAN (OBTAINED BY IN CRYSTALLO AGING) 3DKK ; 2.31 ; Aged Form of Human Butyrylcholinesterase Inhibited by Tabun 2WIF ; 2.25 ; AGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA1 2WSL ; 2.0 ; Aged Form of Human Butyrylcholinesterase Inhibited by Tabun Analogue TA4 2WIL ; 3.1 ; AGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA5 2C0P ; 2.5 ; Aged form of mouse acetylcholinesterase inhibited by tabun 3DL7 ; 2.5 ; Aged Form of Mouse Acetylcholinesterase Inhibited by Tabun- Update 8FDX ; 2.07 ; AGF271 and GAR in complex with human recombinant GARFTase, ligase, purine biosynthesis, transfers formyl group from 10-formyl tetrahydrofolate to glycinamide ribonucleotide (GAR) to form tetrahydrofolate and formyl GAR 2ZR1 ; 2.6 ; Agglutinin from Abrus Precatorius 2Q3N ; 3.5 ; Agglutinin from Abrus Precatorius (APA-I) 1RZO ; 2.63 ; Agglutinin from Ricinus communis with galactoaza 1JLX ; 2.2 ; AGGLUTININ IN COMPLEX WITH T-DISACCHARIDE 1BJJ ; 2.8 ; AGKISTRODOTOXIN, A PHOSPHOLIPASE A2-TYPE PRESYNAPTIC NEUROTOXIN FROM AGKISTRODON HALYS PALLAS 1A2A ; 2.8 ; AGKISTROTOXIN, A PHOSPHOLIPASE A2-TYPE PRESYNAPTIC NEUROTOXIN FROM AGKISTRODON HALYS PALLAS 3S7G ; 3.13 ; Aglycosylated human igg1 fc fragment 3HVM ; 2.1 ; Agmatine Deiminase from Helicobacter pylori 2JER ; 1.65 ; Agmatine deiminase of Enterococcus faecalis catalyzing its reaction. 2X6T ; 2.36 ; AGME bound to ADP-B-mannose 2X86 ; 2.8 ; AGME bound to ADP-B-mannose 5WF5 ; 2.6 ; Agonist bound human A2a adenosine receptor with D52N mutation at 2.60 A resolution 5WF6 ; 2.9 ; Agonist bound human A2a adenosine receptor with S91A mutation at 2.90 A resolution 3QAK ; 2.71 ; Agonist bound structure of the human adenosine A2a receptor 5I56 ; 2.28 ; Agonist-bound GluN1/GluN2A agonist binding domains with TCN201 8J1H ; 3.88 ; Agonist1 and Ruthenium Red bound state of mTRPV4 1HYK ; ; AGOUTI-RELATED PROTEIN (87-132) (AC-AGRP(87-132)) 5W6J ; 1.78 ; Agrobacterium tumefaciens ADP-glucose pyrophosphorylase 5W5T ; 1.76 ; Agrobacterium tumefaciens ADP-Glucose Pyrophosphorylase bound to activator ethyl pyruvate 5W5R ; 1.754 ; Agrobacterium tumefaciens ADP-glucose pyrophosphorylase P96A mutant bound to activator pyruvate 6VR0 ; 2.2 ; Agrobacterium Tumefaciens ADP-glucose pyrophosphorylase W106A 6V99 ; 2.287 ; Agrobacterium tumefaciens ADP-Glucose pyrophosphorylase- S72D in the presence of sulfate 6V9A ; 2.3 ; Agrobacterium tumefaciens ADP-Glucose pyrophosphorylase-S72D 6V96 ; 1.8 ; Agrobacterium tumefaciens ADP-Glucose pyrophosphorylase-S72E 4I7W ; 1.3 ; Agrobacterium tumefaciens DHDPS with lysine and pyruvate 4I7V ; 1.45 ; Agrobacterium tumefaciens DHDPS with pyruvate 8EXH ; 3.5 ; Agrobacterium tumefaciens Tpilus 1WW7 ; 1.9 ; Agrocybe cylindracea galectin (Ligand-free) 1WW5 ; 2.2 ; Agrocybe cylindracea galectin complexed with 3'-sulfonyl lactose 1WW6 ; 2.2 ; Agrocybe cylindracea galectin complexed with lactose 1WW4 ; 2.3 ; Agrocybe cylindracea galectin complexed with NeuAca2-3lactose 8GY0 ; 1.988 ; Agrocybe pediades linalool sunthase (Ap.LS) 6I5S ; 1.73 ; AH, Bottromycin amidohydrolase 2JCC ; 2.5 ; AH3 recognition of mutant HLA-A2 W167A 8ES5 ; 1.97 ; Aha1 domain protein from Pseudomonas aeruginosa 7VNI ; 1.997 ; AHR-ARNT PAS-B heterodimer 8JVM ; 3.86 ; AHS-CSF domains of phage lambda tail 8FUM ; 1.48 ; AibH1H2 metalated with Fe in the presence of Tris 7MGQ ; 2.67 ; AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans 5LVC ; 4.2 ; Aichi virus 1: empty particle 5YWZ ; 2.2 ; AID-SUN tandem of SUN1 2KIV ; ; AIDA-1 SAM domain tandem 4ZO2 ; 1.09 ; AidC, a Dizinc Quorum-Quenching Lactonase 4ZO3 ; 1.67 ; AidC, a Dizinc Quorum-Quenching Lactonase, in complex with a product N-hexnoyl-L-homoserine 3Q9J ; 2.55 ; AIIFL segment derived from Alzheimer's Amyloid-Beta displayed on 42-membered macrocycle scaffold 3T4G ; 1.7 ; AIIGLMV segment from Alzheimer's Amyloid-Beta displayed on 54-membered macrocycle scaffold 2MNF ; ; AIK-18/51 DNA recognition sequence d(CGACTAGTCG)2 3FOD ; 1.4 ; AILSST segment from Islet Amyloid Polypeptide 4AIF ; 2.006 ; AIP TPR domain in complex with human Hsp90 peptide 4APO ; 1.895 ; AIP TPR domain in complex with human Tomm20 peptide 8SM8 ; 2.0 ; Air-oxidized A. ca TruffO expressed from M9 minimal medium supplemented with Fe 8SM9 ; 2.3 ; Air-oxidized C. fi TruffO expressed from M9 minimal medium supplemented with Fe 8SM7 ; 2.2 ; Air-oxidized G. y4 TruffO expressed from M9 minimal medium supplemented with Fe 2W3G ; 1.4 ; Air-oxidized structure of the first GAF domain of Mycobacterium tuberculosis DosS 7DN0 ; 3.5 ; AJ-GMPCPP-MT-non-seam 6A56 ; 1.2 ; AJLec from the Sea Anemone Anthopleura japonica 2OM9 ; 2.8 ; Ajulemic acid, a synthetic cannabinoid bound to PPAR gamma 8GQU ; 3.5 ; AK-42 inhibitor binding human ClC-2 TMD 4D0O ; 2.75 ; AKAP13 (AKAP-Lbc) DH domain 4D0N ; 2.1 ; AKAP13 (AKAP-Lbc) RhoGEF domain in complex with RhoA 2VFY ; 1.8 ; AKAP18 delta central domain 2VFK ; 1.5 ; AKAP18 delta central domain - AMP 2VFL ; 2.25 ; AKAP18 delta central domain - CMP 4ZP3 ; 2.63 ; AKAP18:PKA-RIIalpha structure reveals crucial anchor points for recognition of regulatory subunits of PKA 7NHT ; 3.2 ; Akirin2 bound human proteasome 6F7R ; 0.92 ; AKR1B1 at 0.03 MGy radiation dose. 6F81 ; 0.97 ; AKR1B1 at 0.75 MGy radiation dose. 6F82 ; 1.03 ; AKR1B1 at 1.65 MGy radiation dose. 6F84 ; 1.09 ; AKR1B1 at 2.55 MGy radiation dose. 6F8O ; 1.17 ; AKR1B1 at 3.45 MGy radiation dose. 6A7A ; 2.37 ; AKR1C1 complexed with new inhibitor with novel scaffold 4JTQ ; 1.6 ; AKR1C2 complex with flurbiprofen 4JTR ; 1.3 ; AKR1C2 complex with ibuprofen 4JQ4 ; 1.52 ; AKR1C2 complex with indomethacin 4JQA ; 1.45 ; AKR1C2 complex with mefenamic acid 4JQ1 ; 1.6 ; AKR1C2 complex with naproxen 4JQ2 ; 1.75 ; AKR1C2 complex with sulindac 4JQ3 ; 1.75 ; AKR1C2 complex with zomepirac 3R94 ; 2.013 ; AKR1C3 complex with flurbiprofen 3R8G ; 1.799 ; AKR1C3 complex with ibuprofen 3UGR ; 1.65 ; AKR1C3 complex with indomethacin at pH 6.8 3UG8 ; 1.73 ; AKR1C3 complex with indomethacin at pH 7.5 3R6I ; 1.95 ; AKR1C3 complex with meclofenamic acid 3R58 ; 2.3 ; AKR1C3 complex with naproxen 3UFY ; 1.9 ; AKR1C3 complex with R-naproxen 3R7M ; 2.1 ; AKR1C3 complex with sulindac 3R8H ; 1.9 ; AKR1C3 complex with zomepirac 3UWE ; 1.68 ; AKR1C3 complexed with 3-phenoxybenzoic acid 4WRH ; 1.6 ; AKR1C3 complexed with breakdown product of N-(tert-butyl)-2-(2-chloro-4-(((3-mercapto-5-methyl-4H-1,2,4-triazol-4-yl)amino)methyl)-6-methoxyphenoxy)acetamide 3R43 ; 2.0 ; AKR1C3 complexed with mefenamic acid 6A7B ; 2.37 ; AKR1C3 complexed with new inhibitor with novel scaffold 5EID ; 2.0 ; AKR2A ankyrin repeat domain 7F7M ; 2.47 ; AKR4C17 in complex with NADP+ and glyphosate 7T4X ; 2.8 ; AKT1 K+ channel from A. thaliana in MSP2N2 lipid nanodisc 3OCB ; 2.7 ; Akt1 kinase domain with pyrrolopyrimidine inhibitor 4EKK ; 2.8 ; Akt1 with AMP-PNP 4EKL ; 2.0 ; Akt1 with GDC0068 6IC3 ; 3.3 ; AL amyloid fibril from a lambda 1 light chain 7NSL ; 3.1 ; AL amyloid fibril from a lambda 1 light chain 6Z1O ; 3.2 ; AL amyloid fibril from a lambda 3 light chain in conformation A 6Z1I ; 3.4 ; AL amyloid fibril from a lambda 3 light chain in conformation B 3CDY ; 2.43 ; AL-09 H87Y, immunoglobulin light chain variable domain 3U7A ; 2.0 ; AL-09 Y32F Y96F 3U79 ; 1.62 ; AL-103 Y32F Y96F 7VOJ ; 3.0 ; Al-bound structure of the AtALMT1 mutant M60A 1SGP ; 1.4 ; ALA 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B 2FMO ; 2.25 ; Ala177Val mutant of E. coli Methylenetetrahydrofolate Reductase 2FMN ; 2.05 ; Ala177Val mutant of E. coli Methylenetetrahydrofolate Reductase complex with LY309887 2IFI ; ; Ala6 Variant of ImI Conotoxin 1B6Q ; 1.8 ; ALANINE 31 PROLINE MUTANT OF ROP PROTEIN 1GMG ; 1.9 ; ALANINE 31 PROLINE MUTANT OF ROP PROTEIN, MONOCLINIC FORM 1XI9 ; 2.33 ; Alanine aminotransferase from Pyrococcus furiosus Pfu-1397077-001 1OMO ; 2.32 ; alanine dehydrogenase dimer w/bound NAD (archaeal) 1SFT ; 1.9 ; ALANINE RACEMASE 1L6G ; 2.0 ; Alanine racemase bound with N-(5'-phosphopyridoxyl)-D-alanine 1L6F ; 2.0 ; Alanine racemase bound with N-(5'-phosphopyridoxyl)-L-alanine 1BD0 ; 1.6 ; ALANINE RACEMASE COMPLEXED WITH ALANINE PHOSPHONATE 3HA1 ; 1.95 ; Alanine racemase from Bacillus Anthracis (Ames) 7XLL ; 1.76 ; Alanine racemase from Lactobacillus sakei Uonuma-1. 5FAC ; 2.8 ; Alanine Racemase from Streptomyces coelicolor A3(2) 5FAJ ; 1.64 ; Alanine Racemase from Streptomyces coelicolor A3(2) in complex with D-Cycloserine 5FAG ; 1.51 ; Alanine Racemase from Streptomyces coelicolor A3(2) with Bound Propionate Inhibitor 1EPV ; 2.2 ; ALANINE RACEMASE WITH BOUND INHIBITOR DERIVED FROM D-CYCLOSERINE 1NIU ; 2.2 ; ALANINE RACEMASE WITH BOUND INHIBITOR DERIVED FROM L-CYCLOSERINE 2SFP ; 1.9 ; ALANINE RACEMASE WITH BOUND PROPIONATE INHIBITOR 4LUS ; 2.1 ; alanine racemase [Clostridium difficile 630] 4LUT ; 2.26 ; alanine racemase [Clostridium difficile 630] complex with cycloserine 4P2S ; 1.94 ; Alanine Scanning Mutagenesis Identifies an Asparagine-Arginine-Lysine Triad Essential to Assembly of the Shell of the Pdu Microcompartment 6PK3 ; 2.18 ; Alanine-glyoxylate aminotransferase 1 (AGT1) from Arabidopsis thaliana 6PK1 ; 2.1 ; Alanine-glyoxylate aminotransferase 1 (AGT1) from Arabidopsis thaliana in presence of serine 4KYO ; 2.2 ; Alanine-glyoxylate aminotransferase variant K390A in complex with the TPR domain of human Pex5p 4KXK ; 2.9 ; Alanine-glyoxylate aminotransferase variant K390A/K391A in complex with the TPR domain of human Pex5p 4I8A ; 2.9 ; Alanine-glyoxylate aminotransferase variant S187F 1V7O ; 2.62 ; Alanyl-tRNA synthetase editing domain homologue protein from Pyrococcus horikoshii 4Z9E ; 2.49 ; Alba from Thermoplasma volcanium 6H95 ; 1.9 ; AlbA, albicidin resistance protein 6H96 ; 1.55 ; AlbA-albicidin complex, albicidin resistance protein 6HAI ; 2.2 ; AlbAM131A mutant in complex with albicidin , albicidin resistance protein 6H97 ; 2.598 ; AlbAT99V mutant , albicidin resistance protein 3OQV ; 1.9 ; AlbC, a cyclodipeptide synthase from Streptomyces noursei 7U6M ; 1.75 ; Albumin binding domain fused to a mutant of the Erwinia asparaginase 6XK0 ; 2.4 ; Albumin-dexamethasone complex 2WKW ; 2.03 ; Alcaligenes esterase complexed with product analogue 1CDO ; 2.05 ; ALCOHOL DEHYDROGENASE (E.C.1.1.1.1) (EE ISOZYME) COMPLEXED WITH NICOTINAMIDE ADENINE DINUCLEOTIDE (NAD), AND ZINC 2XAA ; 2.8 ; Alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541 at pH 8.5 in complex with NAD and butane-1,4-diol 4RQT ; 2.3 ; Alcohol Dehydrogenase Crystal Structure 4RQU ; 2.5 ; Alcohol Dehydrogenase crystal structure in complex with NAD 6QHE ; 1.83 ; Alcohol Dehydrogenase from Arthrobacter sp. TS-15 in complex with NAD+ 6TQ3 ; 2.0 ; Alcohol dehydrogenase from Candida magnoliae DSMZ 70638 (ADHA) 6TQ5 ; 1.6 ; Alcohol dehydrogenase from Candida magnoliae DSMZ 70638 (ADHA): complex with NADP+ 6TQ8 ; 2.5 ; Alcohol dehydrogenase from Candida magnoliae DSMZ 70638 (ADHA): thermostable 10fold mutant 1JQB ; 1.97 ; Alcohol Dehydrogenase from Clostridium Beijerinckii: Crystal Structure of Mutant with Enhanced Thermal Stability 1A4U ; 1.92 ; ALCOHOL DEHYDROGENASE FROM DROSOPHILA LEBANONENSIS 1B14 ; 2.4 ; Alcohol Dehydrogenase from Drosophila Lebanonensis Binary Complex with NAD+ 1SBY ; 1.1 ; Alcohol dehydrogenase from Drosophila lebanonensis complexed with NAD+ and 2,2,2-trifluoroethanol at 1.1 A resolution 1B16 ; 1.4 ; ALCOHOL DEHYDROGENASE FROM DROSOPHILA LEBANONENSIS TERNARY COMPLEX WITH NAD-3-PENTANONE 1B15 ; 2.2 ; ALCOHOL DEHYDROGENASE FROM DROSOPHILA LEBANONENSIS TERNARY COMPLEX WITH NAD-ACETONE 1B2L ; 1.6 ; ALCOHOL DEHYDROGENASE FROM DROSOPHILA LEBANONENSIS: TERNARY COMPLEX WITH NAD-CYCLOHEXANONE 1Y9A ; 1.81 ; Alcohol Dehydrogenase from Entamoeba histolotica in complex with cacodylate 4FR2 ; 3.2 ; Alcohol dehydrogenase from Oenococcus oeni 1R37 ; 2.3 ; Alcohol dehydrogenase from sulfolobus solfataricus complexed with NAD(H) and 2-ethoxyethanol 7QUY ; 2.6 ; Alcohol Dehydrogenase from Thauera aromatica complexed with NADH 7QUL ; 1.8 ; Alcohol Dehydrogenase from Thauera aromatica K319A/K320A mutant 4Z6K ; 1.9 ; Alcohol dehydrogenase from the antarctic psychrophile Moraxella sp. TAE 123 1JVB ; 1.85 ; ALCOHOL DEHYDROGENASE FROM THE ARCHAEON SULFOLOBUS SOLFATARICUS 4CPD ; 2.74 ; Alcohol dehydrogenase TADH from Thermus sp. ATN1 5HSA ; 2.35 ; Alcohol Oxidase AOX1 from Pichia Pastoris 6H3G ; 2.6 ; Alcohol oxidase from Phanerochaete chrysosporium 6H3O ; 2.5 ; Alcohol oxidase from Phanerochaete chrysosporium mutant F101S 5I68 ; 3.37 ; Alcohol oxidase from Pichia pastoris 8ENE ; 2.64 ; Aldehyde dehydrogenase 1 family member A1 from human liver 1AG8 ; 2.65 ; ALDEHYDE DEHYDROGENASE FROM BOVINE MITOCHONDRIA 1A4Z ; 2.75 ; ALDEHYDE DEHYDROGENASE FROM BOVINE MITOCHONDRIA COMPLEX WITH NAD (REDUCED) AND SAMARIUM (III) 4C7Z ; 1.55 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), activated with sodium dithionite and sodium sulfide 4US9 ; 1.4 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), soaked with 3- phenylpropionaldehyde 4US8 ; 1.49 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), soaked with benzaldehyde 4C80 ; 1.5 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), soaked with hydrogen peroxide 4C7Y ; 1.57 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), soaked with sodium dithionite and sodium sulfide 4USA ; 1.13 ; Aldehyde Oxidoreductase from Desulfovibrio gigas (MOP), soaked with trans-cinnamaldehyde 2ALR ; 2.48 ; ALDEHYDE REDUCTASE 1AE4 ; 2.4 ; ALDEHYDE REDUCTASE COMPLEXED WITH COFACTOR AND INHIBITOR, ALPHA CARBON ATOMS ONLY 6DUM ; 2.0 ; ALDH1A1 N121S in complex with 6-{[(3-fluorophenyl)methyl]sulfanyl}-2-(oxetan-3-yl)-5-phenyl-2,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (compound 13g) 6B5I ; 2.6 ; ALDH1A2 liganded with 1-(4-cyanophenyl)-N-(3-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]-1H-pyrazole-4-carboxamide (compound CM121) 6B5G ; 2.2 ; ALDH1A2 liganded with NAD and (3-ethoxythiophen-2-yl){4-[4-nitro-3-(pyrrolidin-1-yl)phenyl]piperazin-1-yl}methanone (compound 6-118) 6B5H ; 2.3 ; ALDH1A2 liganded with NAD and 1-(4-cyanophenyl)-N-(3-fluorophenyl)-3-[4-(methylsulfonyl)phenyl]-1H-pyrazole-4-carboxamide (compound CM121) 6ALJ ; 1.89 ; ALDH1A2 liganded with NAD and compound WIN18,446 8OT8 ; 2.4 ; Alditol oxidase from Actinomycetota bacterium in complex with D-xylulose 2VFU ; 1.9 ; Alditol Oxidase from Streptomyces coelicolor A3(2): Complex with Mannitol 2VFT ; 1.6 ; Alditol Oxidase from Streptomyces coelicolor A3(2): Complex with Sorbitol 2VFV ; 1.72 ; Alditol Oxidase from Streptomyces coelicolor A3(2): Complex with Sulphite 2VFS ; 1.6 ; Alditol Oxidase from Streptomyces coelicolor A3(2): Complex with Xylitol 2VFR ; 1.1 ; Alditol Oxidase from Streptomyces coelicolor A3(2): Native Enzyme 1YNP ; 1.25 ; aldo-keto reductase AKR11C1 from Bacillus halodurans (apo form) 1YNQ ; 1.3 ; aldo-keto reductase AKR11C1 from Bacillus halodurans (holo form) 8HWN ; 2.7 ; aldo-keto reductase DepB 8IKU ; 2.13 ; Aldo-keto reductase KmAKR - W297H 7K9X ; 3.8 ; Aldolase, rabbit muscle (beam-tilt refinement x1) 7KA2 ; 3.6 ; Aldolase, rabbit muscle (beam-tilt refinement x2) 7KA3 ; 3.3 ; Aldolase, rabbit muscle (beam-tilt refinement x3) 7KA4 ; 2.8 ; Aldolase, rabbit muscle (beam-tilt refinement x4) 7K9L ; 4.9 ; Aldolase, rabbit muscle (no beam-tilt refinement) 3V35 ; 1.9 ; Aldose reductase complexed with a nitro compound 3V36 ; 2.0 ; Aldose reductase complexed with glceraldehyde 2IKG ; 1.43 ; Aldose reductase complexed with nitrophenyl-oxadiazol type inhibitor at 1.43 A 1AH3 ; 2.3 ; ALDOSE REDUCTASE COMPLEXED WITH TOLRESTAT INHIBITOR 3DN5 ; 1.45 ; Aldose Reductase in complex with novel biarylic inhibitor 3U2C ; 1.0 ; Aldose reductase in complex with NSAID-type inhibitor at 1.0 A resolution 2AGT ; 1.0 ; Aldose Reductase Mutant Leu 300 Pro complexed with Fidarestat 2F2K ; 1.94 ; Aldose reductase tertiary complex with NADPH and DEG 3G9E ; 2.3 ; Aleglitaar. a new. potent, and balanced dual ppara/g agonist for the treatment of type II diabetes 3G8I ; 2.2 ; Aleglitazar, a new, potent, and balanced PPAR alpha/gamma agonist for the treatment of type II diabetes 5MXC ; 1.14 ; Aleuria aurantia lectin (AAL) N224Q mutant in complex with alpha-methyl-L-fucoside 6GKE ; 1.08 ; Aleuria aurantia lectin AAL N224Q mutant in complex with Fucalpha1-6GlcNAc 6BQW ; 4.2 ; AlfA Filament bound to AMPPNP 6F95 ; 3.44 ; AlfA from B. subtilis plasmid pLS32 filament structure at 3.4 A 2M7L ; ; Alfa-actinin from parasite Entamoeba histolytica 6I2G ; 1.5 ; ALFA-tag binding nanobody (NbALFA) bound to ALFA-tag peptide. 1SUI ; 2.7 ; Alfalfa caffeoyl coenzyme A 3-O-methyltransferase 4NEI ; 1.85 ; Alg17c PL17 Family Alginate Lyase 3GZE ; 1.98 ; Algal prolyl 4-hydroxylase complexed with zinc and (Ser-Pro)5 peptide substrate 5IYU ; 2.7 ; AlgE_CIM 7VBO ; 1.5 ; Alginate binding domain CBM 4E1Y ; 2.1 ; Alginate lyase A1-III H192A apo form 4F10 ; 2.2 ; Alginate lyase A1-III H192A complexed with tetrasaccharide 4F13 ; 2.208 ; Alginate lyase A1-III Y246F complexed with tetrasaccharide 5ZQI ; 1.5 ; Alginate lyase AlgAT5 from Polysaccharide Lyase family 7 1J1T ; 2.0 ; Alginate lyase from Alteromonas sp.272 3F73 ; 3.0 ; Alignment of guide-target seed duplex within an argonaute silencing complex 2UXY ; 1.25 ; Aliphatic amidase 3C3R ; 2.02 ; ALIX BRO1 CHMP4C complex 3C3O ; 2.15 ; ALIX Bro1-domain:CHMIP4A co-crystal structure 3C3Q ; 2.1 ; ALIX Bro1-domain:CHMIP4B co-crystal structure 4JJY ; 6.503 ; Alix V domain 3GXL ; 1.8 ; ALK-5 kinase complex with GW857175 5USQ ; 2.55 ; ALK-5 kinase inhibitor complex 7YRU ; 2.6 ; ALK2 antibody complex 2WOU ; 2.3 ; ALK5 IN COMPLEX WITH 4-((4-((2,6-dimethyl-3-pyridyl)oxy)-2-pyridyl) amino)benzenesulfonamide 2WOT ; 1.85 ; ALK5 IN COMPLEX WITH 4-((5,6-dimethyl-2-(2-pyridyl)-3-pyridyl)oxy)-N-(3,4,5-trimethoxyphenyl)pyridin-2-amine 5FRI ; 2.0 ; ALK5 in complex witha an N-(4-anilino-2-pyridyl)acetamide inhibitor. 7NWZ ; 4.17 ; ALK:ALKAL2 complex 3OH6 ; 2.894 ; AlkA Undamaged DNA Complex: Interrogation of a C:G base pair 3OGD ; 2.8 ; AlkA Undamaged DNA Complex: Interrogation of a G*:C base pair 3OH9 ; 2.802 ; AlkA Undamaged DNA Complex: Interrogation of a T:A base pair 2DIE ; 2.1 ; Alkaline alpha-amylase AmyK from Bacillus sp. KSM-1378 8JNX ; 3.2028 ; alkaline amylase Amy703 with truncated of N-terminus domain 1G01 ; 1.9 ; ALKALINE CELLULASE K CATALYTIC DOMAIN 1G0C ; 1.9 ; ALKALINE CELLULASE K CATALYTIC DOMAIN-CELLOBIOSE COMPLEX 1WSD ; 1.5 ; Alkaline M-protease form I crystal structure 2ANH ; 2.4 ; ALKALINE PHOSPHATASE (D153H) 1ANI ; 2.5 ; ALKALINE PHOSPHATASE (D153H, K328H) 1URA ; 2.04 ; ALKALINE PHOSPHATASE (D51ZN) 1EW9 ; 2.0 ; ALKALINE PHOSPHATASE (E.C. 3.1.3.1) COMPLEX WITH MERCAPTOMETHYL PHOSPHONATE 1EW8 ; 2.2 ; ALKALINE PHOSPHATASE (E.C. 3.1.3.1) COMPLEX WITH PHOSPHONOACETIC ACID 1HQA ; 2.25 ; ALKALINE PHOSPHATASE (H412Q) 1ANJ ; 2.3 ; ALKALINE PHOSPHATASE (K328H) 1URB ; 2.14 ; ALKALINE PHOSPHATASE (N51MG) 1B8J ; 1.9 ; ALKALINE PHOSPHATASE COMPLEXED WITH VANADATE 1ZED ; 1.57 ; Alkaline phosphatase from human placenta in complex with p-nitrophenyl-phosphonate 1ALI ; 2.2 ; ALKALINE PHOSPHATASE MUTANT (H412N) 1ALJ ; 2.6 ; ALKALINE PHOSPHATASE MUTANT (H412N) 1HJK ; 2.3 ; ALKALINE PHOSPHATASE MUTANT H331Q 1AKL ; 2.0 ; ALKALINE PROTEASE FROM PSEUDOMONAS AERUGINOSA IFO3080 4MG2 ; 2.3 ; ALKBH2 F102A cross-linked to undamaged dsDNA 4MGT ; 2.6 ; ALKBH2 R110A cross-linked to undamaged dsDNA 3Q3T ; 2.6 ; Alkyl Amine Renin Inhibitors: Filling S1 from S3 2UUV ; 1.99 ; alkyldihydroxyacetonephosphate synthase in P1 2UUU ; 1.95 ; alkyldihydroxyacetonephosphate synthase in P212121 5WX3 ; 1.801 ; Alkyldiketide-CoA synthase from Evodia rutaecarpa 5WX7 ; 1.904 ; Alkyldiketide-CoA synthase W332G mutant from Evodia rutaecarpa 5WX6 ; 1.799 ; Alkyldiketide-CoA synthase W332Q mutant from Evodia rutaecarpa 4WHQ ; 1.78 ; Alkylperoxo reaction intermediate trapped in Protocatechuate 3,4-dioxygenase (pseudomonas putida) at pH 6.5 5CL3 ; 1.971 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog (100% substrate at 4 hours) 5CLB ; 1.766 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog (9-mer A) 5CLC ; 1.729 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog (9-mer B) 5CL7 ; 1.44 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog or DNA containing an abasic site and a free nucleobase (18% substrate/82% product at 96 hours) 5CL6 ; 1.541 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog or DNA containing an abasic site and a free nucleobase (33% substrate/67% product at 72 hours) 5CL5 ; 1.569 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog or DNA containing an abasic site and a free nucleobase (51% substrate/49% product at 48 hours) 5CL4 ; 1.866 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-methyladenine analog or DNA containing an abasic site and a free nucleobase (71% substrate/29% product at 24 hours) 5CL8 ; 1.38 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing an abasic site and a free nucleobase (100% product at 144 hours) 5CL9 ; 1.538 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing an abasic site and a free nucleobase (100% product at 240 hours) 5CLA ; 1.541 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing an abasic site and a free nucleobase (100% product at 360 hours) 5CLE ; 1.73 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing an abasic-site analog and a free 3-methyladenine nucleobase 5CLD ; 1.541 ; Alkylpurine DNA glycosylase AlkD bound to DNA containing an oxocarbenium-intermediate analog and a free 3-methyladenine nucleobase 5WX4 ; 2.203 ; Alkylquinolone synthase from Evodia rutaecarpa 5WX5 ; 3.058 ; Alkylquinolone synthase Y215V mutant from Evodia rutaecarpa 7TC6 ; 1.85 ; All Phe-Azurin variant - F15W 7TC5 ; 1.45 ; All Phe-Azurin variant - F15Y 5BPJ ; 1.756 ; All Three Ca(2+)-binding Loops of Light-sensitive Ctenophore Photoprotein Berovin Bind Magnesium Ions: The Spatial Structure of Mg(2+)-loaded Apo-berovin 1G1M ; 2.25 ; ALL-FERROUS NITROGENASE IRON PROTEIN FROM AZOTOBACTER VINELANDII 3QVJ ; 2.1 ; Allantoin racemase from Klebsiella pneumoniae 3QVK ; 1.999 ; Allantoin racemase from Klebsiella pneumoniae 3QVL ; 1.822 ; Allantoin racemase from Klebsiella pneumoniae 3DY5 ; 3.51 ; Allene oxide synthase 8R-lipoxygenase from Plexaura homomalla 7B39 ; 2.13 ; Allene-Based Design of a Noncalcemic Vitamin D Receptor Agonist 1W2Q ; ; allergen arah6 from peanut (Arachis hypogaea) 1WHO ; 1.9 ; ALLERGEN PHL P 2 1WHP ; 3.0 ; ALLERGEN PHL P 2 2HOX ; 1.4 ; alliinase from allium sativum (garlic) 2JUU ; ; allo-ThrA3 DKP-insulin 7UR5 ; 2.6 ; allo-tRNAUTu1 in the A, P, and E sites of the E. coli ribosome 7URI ; 2.6 ; allo-tRNAUTu1A in the A site of the E. coli ribosome 7URM ; 3.0 ; allo-tRNAUTu1A in the P site of the E. coli ribosome 3MML ; 2.5 ; Allophanate Hydrolase Complex from Mycobacterium smegmatis, Msmeg0435-Msmeg0436 1ALL ; 2.3 ; ALLOPHYCOCYANIN 3DBJ ; 2.9 ; Allophycocyanin from Thermosynechococcus vulcanus 6X7T ; 1.0 ; Allose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 6I44 ; 1.36 ; Allosteric activation of human prekallikrein by apple domain disc rotation 6I58 ; 2.6 ; Allosteric activation of human prekallikrein by apple domain disc rotation 2LXS ; ; Allosteric communication in the KIX domain proceeds through dynamic re-packing of the hydrophobic core 2LXT ; ; Allosteric communication in the KIX domain proceeds through dynamic re-packing of the hydrophobic core 4V9C ; 3.3 ; Allosteric control of the ribosome by small-molecule antibiotics 6UTJ ; 2.9 ; Allosteric couple between alpha rings of the 20S proteasome. 20S proteasome singly capped by PA26/E102A, C-terminus replaced by PAN C-terminus 6UTH ; 3.4 ; Allosteric coupling between alpha-rings of 20S proteasome, 20S proteasome singly capped with a PA26/E102A_PANc, together with LFP incubation 6UTI ; 3.4 ; Allosteric coupling between alpha-rings of 20S proteasome, 20S proteasome with singly capped PAN complex 6UTG ; 3.4 ; Allosteric coupling between alpha-rings of the 20S proteasome, 20S singly capped with a PA26/V230F 6UTF ; 3.4 ; Allosteric coupling between alpha-rings of the 20S proteasome, archaea 20S proteasome singly capped with a PAN complex 4R0X ; 1.2 ; Allosteric coupling of conformational transitions in the FK1 domain of FKBP51 near the site of steroid receptor interaction 6HHC ; 2.7 ; Allosteric Inhibition as a new mode of Action for BAY 1213790, a Neutralizing Antibody Targeting the Activated form of Coagulation Factor XI 2GPA ; 2.0 ; ALLOSTERIC INHIBITION OF GLYCOGEN PHOSPHORYLASE A BY A POTENTIAL ANTIDIABETIC DRUG 3AMV ; 2.1 ; ALLOSTERIC INHIBITION OF GLYCOGEN PHOSPHORYLASE A BY A POTENTIAL ANTIDIABETIC DRUG 5JYO ; 2.098 ; Allosteric inhibition of Kidney Isoform of Glutaminase 5JYP ; 2.74 ; Allosteric inhibition of Kidney Isoform of Glutaminase 1T48 ; 2.2 ; Allosteric Inhibition of Protein Tyrosine Phosphatase 1B 1T49 ; 1.9 ; Allosteric Inhibition of Protein Tyrosine Phosphatase 1B 1T4J ; 2.7 ; Allosteric Inhibition of Protein Tyrosine Phosphatase 1B 2I80 ; 2.19 ; Allosteric inhibition of Staphylococcus aureus D-alanine:D-alanine ligase revealed by crystallographic studies 2I87 ; 2.0 ; Allosteric inhibition of Staphylococcus aureus D-alanine:D-alanine ligase revealed by crystallographic studies 2I8C ; 2.46 ; Allosteric inhibition of Staphylococcus aureus D-alanine:D-alanine ligase revealed by crystallographic studies 4EHA ; 1.696 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHD ; 1.581 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHF ; 1.655 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHH ; 1.78 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHK ; 1.668 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHL ; 1.799 ; Allosteric Modulation of Caspase-3 through Mutagenesis 4EHN ; 1.69 ; Allosteric Modulation of Caspase-3 through Mutagenesis 3I5E ; 0.98 ; Allosteric Modulation of DNA by Small Molecules 3I5L ; 1.18 ; Allosteric Modulation of DNA by Small Molecules 3K8Y ; 1.3 ; Allosteric modulation of H-Ras GTPase 3K9L ; 1.8 ; Allosteric modulation of H-Ras GTPase 3K9N ; 2.0 ; Allosteric modulation of H-Ras GTPase 7LJD ; 3.2 ; Allosteric modulator LY3154207 binding to dopamine-bound dopamine receptor 1 in complex with miniGs protein 7LJC ; 3.0 ; Allosteric modulator LY3154207 binding to SKF-81297-bound dopamine receptor 1 in complex with miniGs protein 7WV9 ; 3.36 ; Allosteric modulator ZCZ011 binding to CP55940-bound cannabinoid receptor 1 in complex with Gi protein 4JN4 ; 2.3 ; Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP 4JNE ; 1.96 ; Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP 4JNF ; 1.621 ; Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP 4EJF ; 2.6465 ; Allosteric peptides that bind to a caspase zymogen and mediate caspase tetramerization 4FGT ; 2.0 ; Allosteric peptidic inhibitor of human thymidylate synthase that stabilizes inactive conformation of the enzyme. 3Q1Y ; 2.03 ; Allosteric regulation by Lysine residue: A novel anion-hole formation in the ribokinase family 6Z0S ; 5.7 ; Allostery through DNA drives phenotype switching 7NBN ; 7.0 ; Allostery through DNA drives phenotype switching 3WNS ; 1.658 ; Allyl isothiocyanate inhibitor complexed with Macrophage Migration Inhibitory Factor 3GDN ; 1.67 ; Almond hydroxynitrile lyase in complex with benzaldehyde 4KBG ; 2.54 ; almost closed conformation of the helicase core of the RNA helicase Hera 4APW ; 19.7 ; Alp12 filament structure 6KXH ; 1.7804 ; Alp1U_Y247F mutant in complex with Fluostatin C 4X5T ; 3.5 ; alpha 1 glycine receptor transmembrane structure fused to the extracellular domain of GLIC 7AEL ; 1.76 ; alpha 1-antitrypsin (C232S) complexed with GSK716 7ALS ; 1.35 ; Alpha and beta Lactose isomer structure of Galectin 8, N-terminal domain 1XGB ; ; ALPHA CONOTOXIN GI: 2-13;3-7 DISULFIDE BOND ISOMER NMR, 24 STRUCTURES 1XGC ; ; ALPHA CONOTOXIN GI: 2-3;7-13 DISULFIDE BOND ISOMER, NMR, 25 STRUCTURES 1XGA ; ; ALPHA CONOTOXIN GI: 2-7;3-13 (NATIVE) DISULFIDE BOND ISOMER, NMR, 35 STRUCTURES 5TWI ; ; Alpha Helix Nucleation by a Simple Cyclic Tetrapeptide 5TWW ; ; Alpha Helix Nucleation by a Simple Cyclic Tetrapeptide 2JUR ; ; alpha RgIA, a Novel Conotoxin that Blocks the alpha9-alpha10 nAChR 2JUS ; ; alpha RgIA, a Novel Conotoxin that Blocks the alpha9-alpha10 nAChR 2JUT ; ; alpha RgIA, a Novel Conotoxin that Blocks the alpha9-alpha10 nAChR 1EA0 ; 3.0 ; Alpha subunit of A. brasilense glutamate synthase 6CU7 ; 3.5 ; Alpha Synuclein fibril formed by full length protein - Rod Polymorph 6CU8 ; 3.6 ; Alpha Synuclein fibril formed by full length protein - Twister Polymorph 1OLP ; 2.5 ; Alpha Toxin from Clostridium Absonum 7R13 ; 3.6 ; Alpha Variant SARS-CoV-2 Spike in Closed conformation 7R14 ; 3.4 ; Alpha Variant SARS-CoV-2 Spike with 1 Erect RBD 7R15 ; 4.1 ; Alpha Variant SARS-CoV-2 Spike with 2 Erect RBDs 1GWW ; 1.8 ; ALPHA-,1,3 GALACTOSYLTRANSFERASE - ALPHA-D-GLUCOSE COMPLEX 1GX0 ; 1.8 ; ALPHA-,1,3 GALACTOSYLTRANSFERASE - BETA-D-GALACTOSE COMPLEX 1GWV ; 2.5 ; ALPHA-,1,3 GALACTOSYLTRANSFERASE - LACTOSE COMPLEX 1GX4 ; 1.46 ; ALPHA-,1,3 GALACTOSYLTRANSFERASE - N-ACETYL LACTOSAMINE COMPLEX 7NPL ; 1.82 ; ALPHA-1 ANTITRYPSIN (C232S) COMPLEXED WITH cmpd 11 7NPK ; 1.83 ; ALPHA-1 ANTITRYPSIN C232S COMPLEXED WITH CMPD3 2M32 ; ; Alpha-1 integrin I-domain in complex with GLOGEN triple helical peptide 7FGA ; 3.2 ; Alpha-1,2-glucosyltransferase_UDP_sucrose_tll1591 7FG9 ; 2.66 ; Alpha-1,2-glucosyltransferase_UDP_tll1591 1HCU ; 2.37 ; alpha-1,2-mannosidase from Trichoderma reesei 5VCS ; 2.799 ; Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase with Bound Acceptor 5VCM ; 1.599 ; Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase with bound UDP and Manganese 5VCR ; 1.992 ; Alpha-1,6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase with bound uranium dioxide 6I7U ; 1.55 ; Alpha-1-antitrypsin (Ala250Met) in the native conformation 6ROD ; 1.85 ; Alpha-1-antitrypsin (Ser36Arg/Glu78Arg/Glu266Arg) in the native conformation 8P4J ; 1.91 ; Alpha-1-antitrypsin - Sydney variant (G192C) 8P4U ; 2.4 ; Alpha-1-antitrypsin - Sydney variant (G192C) 6I4V ; 1.78 ; Alpha-1-antitrypsin Queen's (K154N) variant 6IAY ; 1.9 ; Alpha-1-antitrypsin Queen's (Lys154Asn) variant 7KOO ; 3.0 ; Alpha-7 nicotinic acetylcholine receptor bound to alpha-bungarotoxin in a resting state 7KOX ; 2.7 ; Alpha-7 nicotinic acetylcholine receptor bound to epibatidine and PNU-120596 in the activated state 7KOQ ; 3.6 ; Alpha-7 nicotinic acetylcholine receptor bound to epibatidine in a desensitized state 6SL2 ; 3.1 ; ALPHA-ACTININ FROM ENTAMOEBA HISTOLYTICA 6SL3 ; 3.1 ; ALPHA-ACTININ FROM ENTAMOEBA HISTOLYTICA in orthorhombic space group 7AW8 ; 1.5 ; Alpha-actinin in Rhodamnia argentea 1B9K ; 1.9 ; ALPHA-ADAPTIN APPENDAGE DOMAIN, FROM CLATHRIN ADAPTOR AP2 2VUM ; 3.4 ; Alpha-amanitin inhibited complete RNA polymerase II elongation complex 1MPX ; 1.9 ; ALPHA-AMINO ACID ESTER HYDROLASE LABELED WITH SELENOMETHIONINE 5M46 ; 1.62 ; Alpha-amino epsilon-caprolactam racemase (ACLR) from Rhizobacterium freirei 5M4B ; 1.5 ; Alpha-amino epsilon-caprolactam racemase D210A mutant in complex with PLP and geminal diamine intermediate 5M49 ; 1.51 ; Alpha-amino epsilon-caprolactam racemase in complex with PLP and D/L alpha amino epsilon-caprolactam (internal aldimine) 5M4D ; 1.93 ; Alpha-amino epsilon-caprolactam racemase K241A mutant in complex with D-ACL (external aldimine) 3BCF ; 2.3 ; Alpha-amylase B from Halothermothrix orenii 3BC9 ; 1.35 ; Alpha-amylase B in complex with acarbose 3BCD ; 2.2 ; Alpha-amylase B in complex with maltotetraose and alpha-cyclodextrin 1AQH ; 2.0 ; ALPHA-AMYLASE FROM ALTEROMONAS HALOPLANCTIS 1B0I ; 2.4 ; ALPHA-AMYLASE FROM ALTEROMONAS HALOPLANCTIS 1AQM ; 1.85 ; ALPHA-AMYLASE FROM ALTEROMONAS HALOPLANCTIS COMPLEXED WITH TRIS 1BAG ; 2.5 ; ALPHA-AMYLASE FROM BACILLUS SUBTILIS COMPLEXED WITH MALTOPENTAOSE 1BVZ ; 2.6 ; ALPHA-AMYLASE II (TVAII) FROM THERMOACTINOMYCES VULGARIS R-47 6Z8L ; 1.4 ; Alpha-Amylase in complex with probe fragments 2KER ; ; alpha-amylase inhibitor Parvulustat (Z-2685) from Streptomyces parvulus 6P64 ; 3.05 ; Alpha-beta TCR Binding to Neoantigen KQWLVWLFL Presented by HLA-A206 1HC9 ; 1.8 ; alpha-bungarotoxin complexed with high affinity peptide 1L7C ; 2.5 ; alpha-catenin fragment, residues 385-651 1H6G ; 2.2 ; alpha-catenin M-domain 5J4S ; 2.103 ; alpha-chymotrypsin from bovine pancreas in complex with a modified Bowman-Birk inhibitor from soybean 5J4Q ; 2.303 ; alpha-chymotrypsin from bovine pancreas in complex with Bowman-Birk inhibitor from soybean 1B45 ; ; ALPHA-CNIA CONOTOXIN FROM CONUS CONSORS, NMR, 43 STRUCTURES 1CNL ; ; ALPHA-CONOTOXIN IMI 7N43 ; 2.47 ; Alpha-conotoxin OmIA with unusual pharmacological properties at alpha7 nicotinic receptors 1PEN ; 1.1 ; ALPHA-CONOTOXIN PNI1 1AKG ; 1.1 ; ALPHA-CONOTOXIN PNIB FROM CONUS PENNACEUS 5LUM ; 2.6 ; Alpha-crystallin domain of human HSPB6 patched with its N-terminal peptide 1WVC ; 2.5 ; alpha-D-glucose-1-phosphate cytidylyltransferase complexed with CTP 1QZM ; 1.9 ; alpha-domain of ATPase 6UPV ; 3.2 ; Alpha-E-catenin ABD-F-actin complex 4E17 ; 2.304 ; Alpha-E-catenin is an autoinhibited molecule that co-activates vinculin 4E18 ; 2.403 ; Alpha-E-catenin is an autoinhibited molecule that co-activates vinculin 5TYP ; 1.88 ; alpha-esterase-7 in complex with (3-bromo-4-methylphenyl)boronic acid 5TYJ ; 1.75 ; alpha-esterase-7 in complex with (3-bromo-5-phenoxylphenyl)boronic acid 5TYK ; 1.65 ; alpha-esterase-7 in complex with 3-chloro-4-[(2-fluorophenyl)methoxy]phenylborinic acid 5TYL ; 1.75 ; alpha-esterase-7 in complex with naphthalen-2-ylboronic acid 5TYO ; 1.57 ; alpha-esterase-7 in complex with [3-(benzyloxy)-4-methylphenyl]borinic acid 5TYM ; 1.84 ; alpha-esterase-7 in complex with [3-bromo-5-(pyrrolidin-1-yl)phenyl]borinic acid 5TYN ; 1.531 ; alpha-esterase-7 in complex with [3-bromo-5-(pyrrolidin-1-yl)phenyl]borinic acid 1CSR ; 1.7 ; Alpha-fluoro acid and alpha-fluoro amide analogs of acetyl-coa as inhibitors of of citrate synthase: effect of pka matching on binding affinity and hydrogen bond length 1CSS ; 1.7 ; ALPHA-FLUORO ACID AND ALPHA-FLUORO AMIDE ANALOGS OF ACETYL-COA AS INHIBITORS OF OF CITRATE SYNTHASE: EFFECT OF PKA MATCHING ON BINDING AFFINITY AND HYDROGEN BOND LENGTH 6GVD ; 1.22 ; Alpha-galactosidase from Thermotoga maritima in complex with cyclohexene-based carbasugar mimic of galactose 6GWG ; 1.77 ; Alpha-galactosidase from Thermotoga maritima in complex with cyclohexene-based carbasugar mimic of galactose covalently linked to the nucleophile 6GX8 ; 1.42 ; Alpha-galactosidase from Thermotoga maritima in complex with hydrolysed cyclohexene-based carbasugar mimic of galactose 6GTA ; 2.2 ; Alpha-galactosidase mutant D378A from Thermotoga maritima in complex with intact cyclohexene-based carbasugar mimic of galactose with 3,5 difluorophenyl leaving group 6GWF ; 1.72 ; Alpha-galactosidase mutant D387A from Thermotoga maritima in complex with intact cyclohexene-based carbasugar mimic of galactose with 2,4-dinitro leaving group 2J44 ; 2.1 ; Alpha-glucan binding by a streptococcal virulence factor 2J73 ; 1.4 ; alpha-glucan rcognition by a family 41 carbohydrate-binding module from Thermotoga maritima pullulanase PulA 2J71 ; 1.69 ; alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima pullulanase PulA 2J72 ; 1.49 ; alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima pullulanase PulA 2J43 ; 1.6 ; Alpha-glucan recognition by family 41 carbohydrate-binding modules from streptococcal virulence factors 1OBB ; 1.9 ; alpha-glucosidase A, AglA, from Thermotoga maritima in complex with maltose and NAD+ 7DCH ; 1.692 ; Alpha-glucosidase from Weissella cibaria BBK-1 bound with acarbose 7D9C ; 1.36 ; Alpha-glucosidase from Weissella cibaria BBK-1 bound with maltose 7DCG ; 1.53 ; Alpha-glucosidase from Weissella cibaria BBK-1 bound with maltotriose 2ZE0 ; 2.0 ; Alpha-glucosidase GSJ 1XV5 ; 1.73 ; alpha-glucosyltransferase (AGT) in complex with UDP 1YA6 ; 2.4 ; alpha-glucosyltransferase in complex with UDP and a 13-mer DNA containing a central A:G mismatch 1Y8Z ; 1.9 ; alpha-glucosyltransferase in complex with UDP and a 13-mer DNA containing a HMU base at 1.9 A resolution 1Y6G ; 2.8 ; alpha-glucosyltransferase in complex with UDP and a 13_mer DNA containing a HMU base at 2.8 A resolution 1Y6F ; 2.4 ; alpha-glucosyltransferase in complex with UDP-glucose and DNA containing an abasic site 3LAY ; 2.7 ; Alpha-Helical barrel formed by the decamer of the zinc resistance-associated protein (STM4172) from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 7AHL ; 1.89 ; ALPHA-HEMOLYSIN FROM STAPHYLOCOCCUS AUREUS 7OC5 ; 2.01 ; Alpha-humulene synthase AsR6 from Sarocladium schorii 7OC4 ; 2.03 ; Alpha-humulene synthase AsR6 from Sarocladium schorii in complex with thiolodiphosphate and a cyclized reaction product. 3OKJ ; 2.7 ; Alpha-keto-aldehyde binding mechanism reveals a novel lead structure motif for proteasome inhibition 6YPV ; 2.1 ; Alpha-ketoglutarate-dependent dioxygenase AlkB in complex with Fe and AKG after oxygen exposure using FT-SSX methods 6Y0Q ; 1.75 ; Alpha-ketoglutarate-dependent dioxygenase AlkB in complex with Fe, AKG and methylated DNA under anaerobic environment using FT-SSX methods 4CWX ; 2.15 ; ALPHA-KETOGLUTARATE-DEPENDENT DIOXYGENASE COMPLEX1 5M0T ; 2.2 ; Alpha-ketoglutarate-dependent non-heme iron oxygenase EasH 3OJ8 ; 1.9 ; Alpha-Ketoheterocycle Inhibitors of Fatty Acid Amide Hydrolase Containing Additional Conformational Contraints in the Acyl Side Chain 6VGS ; 1.8 ; Alpha-ketoisovalerate decarboxylase (KivD) from Lactococcus lactis, thermostable mutant 2ZWY ; 2.75 ; alpha-L-fucosidase 6OHE ; 3.14 ; Alpha-L-fucosidase AlfC D200A in complex with Fuca(1,6)GlcNAc 6O1C ; 2.6 ; Alpha-L-fucosidase AlfC D200A mutant in complex with 4-nitrophenyl-a-L-fucopyranoside substrate 6O1A ; 2.6 ; Alpha-L-fucosidase AlfC from Lactobacillus casei in complex with alpha-L-fucose product 6O1I ; 3.55 ; Alpha-L-fucosidase AlfC fucosyltransferase mutant E274A 6O1J ; 2.0 ; Alpha-L-fucosidase AlfC fucosyltransferase mutant N243A 2ZX9 ; 2.62 ; alpha-L-fucosidase complexed with inhibitor, B4 2ZWZ ; 2.36 ; alpha-L-fucosidase complexed with inhibitor, Core1 2ZX5 ; 2.65 ; alpha-L-fucosidase complexed with inhibitor, F10 2ZX6 ; 2.42 ; alpha-L-fucosidase complexed with inhibitor, F10-1C 2ZX7 ; 2.48 ; alpha-L-fucosidase complexed with inhibitor, F10-2C 2ZX8 ; 2.33 ; alpha-L-fucosidase complexed with inhibitor, F10-2C-O 2ZXA ; 2.57 ; alpha-L-fucosidase complexed with inhibitor, FNJ-acetyl 2ZXD ; 2.15 ; alpha-L-fucosidase complexed with inhibitor, iso-6FNJ 2ZXB ; 2.61 ; alpha-L-fucosidase complexed with inhibitor, ph-6FNJ 6GN6 ; 2.2 ; Alpha-L-fucosidase isoenzyme 1 from Paenibacillus thiaminolyticus 6TVK ; 2.1 ; Alpha-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus 1A4V ; 1.8 ; ALPHA-LACTALBUMIN 1HFX ; 1.9 ; ALPHA-LACTALBUMIN 1HFY ; 2.3 ; ALPHA-LACTALBUMIN 1HFZ ; 2.3 ; ALPHA-LACTALBUMIN 7PTX ; 4.03 ; Alpha-latrocrustotoxin monomer 1BMR ; ; ALPHA-LIKE TOXIN LQH III FROM SCORPION LEIURUS QUINQUESTRIATUS HEBRAEUS, NMR, 25 STRUCTURES 1TAL ; 1.5 ; ALPHA-LYTIC PROTEASE AT 120 K (SINGLE STRUCTURE MODEL) 3PRO ; 1.8 ; ALPHA-LYTIC PROTEASE COMPLEXED WITH C-TERMINAL TRUNCATED PRO REGION 4PRO ; 2.4 ; ALPHA-LYTIC PROTEASE COMPLEXED WITH PRO REGION 6XHZ ; 1.25 ; Alpha-lytic protease homolog N4 1GBJ ; 2.0 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA 1GBA ; 2.15 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY ALA 1GBB ; 2.15 ; Alpha-lytic protease with met 190 replaced by ALA AND GLY 216 replaced by ALA complex with METHOXYSUCCINYL-ALA-ALA-PRO-ALANINE BORONIC ACID 1GBC ; 2.2 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY ALA COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-LEUCINE BORONIC ACID 1GBD ; 2.2 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY ALA COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-PHENYLALANINE BORONIC ACID 1GBE ; 2.3 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY LEU 1GBF ; 2.15 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY LEU COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-ALANINE BORONIC ACID 1GBH ; 2.2 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY LEU COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-LEUCINE BORONIC ACID 1GBI ; 2.3 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA AND GLY 216 REPLACED BY LEU COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-PHENYLALANINE BORONIC ACID 1GBK ; 2.13 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-ALANINE BORONIC ACID 1GBL ; 2.15 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-LEUCINE BORONIC ACID 1GBM ; 2.28 ; ALPHA-LYTIC PROTEASE WITH MET 190 REPLACED BY ALA COMPLEX WITH METHOXYSUCCINYL-ALA-ALA-PRO-PHENYLALANINE BORONIC ACID 6XAQ ; 1.2 ; Alpha-methyl-glucose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 8RP4 ; 1.64 ; Alpha-Methylacyl-CoA racemase from Mycobacterium tuberculosis (D156A mutant) 8RP5 ; 1.85 ; Alpha-Methylacyl-CoA racemase from Mycobacterium tuberculosis (E241A mutant) 8RP3 ; 2.45 ; Alpha-Methylacyl-CoA racemase from Mycobacterium tuberculosis (H126A mutant) 1X74 ; 1.79 ; Alpha-methylacyl-CoA racemase from Mycobacterium tuberculosis- mutational and structural characterization of the fold and active site 8RMW ; 1.65 ; Alpha-Methylacyl-CoA racemase from Mycobacterium tuberculosis. 5WZR ; 2.79 ; Alpha-N-acetylgalactosaminidase NagBb from Bifidobacterium bifidum - Gal-NHAc-DNJ complex 5WZN ; 2.1 ; Alpha-N-acetylgalactosaminidase NagBb from Bifidobacterium bifidum - GalNAc complex 5WZP ; 2.64 ; Alpha-N-acetylgalactosaminidase NagBb from Bifidobacterium bifidum - ligand free 5WZQ ; 1.9 ; Alpha-N-acetylgalactosaminidase NagBb from Bifidobacterium bifidum - quadruple mutant 3ASI ; 2.3 ; Alpha-Neurexin-1 ectodomain fragment; LNS5-EGF3-LNS6 2JUQ ; ; alpha-RgIA, a Novel Conotoxin that Blocks the alpha9-alpha10 nAChR 1J2P ; 2.6 ; alpha-ring from the proteasome from archaeoglobus fulgidus 6IP1 ; 3.9 ; alpha-SNAP-SNARE subcomplex in the whole 20S complex 2F2V ; 1.85 ; alpha-spectrin SH3 domain A56G mutant 2CDT ; 2.54 ; alpha-SPECTRIN SH3 DOMAIN A56S MUTANT 2F2W ; 1.7 ; alpha-spectrin SH3 domain R21A mutant 2F2X ; 1.6 ; alpha-spectrin SH3 domain R21G mutant 1G2B ; 1.12 ; ALPHA-SPECTRIN SRC HOMOLOGY 3 DOMAIN, CIRCULAR PERMUTANT, CUT AT N47-D48 1TUD ; 1.77 ; ALPHA-SPECTRIN SRC HOMOLOGY 3 DOMAIN, CIRCULAR PERMUTANT, CUT AT N47-D48 1TUC ; 2.02 ; ALPHA-SPECTRIN SRC HOMOLOGY 3 DOMAIN, CIRCULAR PERMUTANT, CUT AT S19-P20 1QKX ; 1.8 ; Alpha-spectrin Src Homology 3 domain, N47A mutant in the distal loop. 1QKW ; 2.0 ; Alpha-spectrin Src Homology 3 domain, N47G mutant in the distal loop. 1AEY ; ; ALPHA-SPECTRIN SRC HOMOLOGY 3 DOMAIN, SOLUTION NMR, 15 STRUCTURES 8RRR ; 3.4 ; Alpha-synuclein amyloid fibril 8RQM ; 3.2 ; Alpha-synuclein amyloid fibrils 8CYR ; 4.2 ; Alpha-synuclein fibril from spontaneous control 7WMM ; 2.6 ; alpha-synuclein fibril-F0502B complex 7L7H ; 4.0 ; Alpha-synuclein fibrils 1ABZ ; ; ALPHA-T-ALPHA, A DE NOVO DESIGNED PEPTIDE, NMR, 23 STRUCTURES 1UMA ; 2.0 ; ALPHA-THROMBIN (HIRUGEN) COMPLEXED WITH NA-(N,N-DIMETHYLCARBAMOYL)-ALPHA-AZALYSINE 1W7G ; 1.65 ; Alpha-thrombin complex with sulfated hirudin (residues 54-65) and L- Arginine template inhibitor CS107 1TOM ; 1.8 ; ALPHA-THROMBIN COMPLEXED WITH HIRUGEN 1BCU ; 2.0 ; ALPHA-THROMBIN COMPLEXED WITH HIRUGEN AND PROFLAVIN 1CA1 ; 1.9 ; ALPHA-TOXIN FROM CLOSTRIDIUM PERFRINGENS 3FDM ; 2.26 ; alpha/beta foldamer in complex with Bcl-xL 6NY9 ; 1.66 ; Alpha/beta hydrolase domain-containing protein 10 from mouse 4PW0 ; 1.48 ; Alpha/beta hydrolase fold protein from Chitinophaga pinensis 4Y7D ; 1.68 ; Alpha/beta hydrolase fold protein from Nakamurella multipartita 2Q0X ; 2.2 ; Alpha/Beta hydrolase fold protein of unknown function 3C3H ; 2.2 ; alpha/beta-Peptide helix bundles: A GCN4-pLI analogue with an (alpha-alpha-beta) backbone and cyclic beta residues 3C3F ; 2.0 ; alpha/beta-Peptide helix bundles: The GCN4-pLI side chain sequence on an (alpha-alpha-alpha-beta) backbone 3C3G ; 1.8 ; alpha/beta-Peptide helix bundles: The GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone 3HF0 ; 2.1 ; alpha/beta-Peptide helix crystallized from detergent solution: GCN4-pLI side chain sequence on an (alpha-alpha-beta-alpha-beta-alpha-beta) backbone with cyclic beta-residues 1QMN ; 2.27 ; Alpha1-antichymotrypsin serpin in the delta conformation (partial loop insertion) 1KCT ; 3.46 ; ALPHA1-ANTITRYPSIN 8FE1 ; 3.0 ; Alpha1/BetaB Heteromeric Glycine Receptor in 1 mM Glycine 20 uM Ivermectin State 7TVI ; 3.2 ; Alpha1/BetaB Heteromeric Glycine Receptor in Glycine-Bound State 7TU9 ; 3.0 ; Alpha1/BetaB Heteromeric Glycine Receptor in Strychnine-Bound State 8F4V ; ; Alpha7 nicotinic acetylcholine receptor intracellular and transmembrane domains bound to ivermectin in a desensitized state 4HQP ; 3.51 ; Alpha7 nicotinic receptor chimera and its complex with Alpha bungarotoxin 5AFH ; 2.4 ; alpha7-AChBP in complex with lobeline 5AFJ ; 2.2 ; alpha7-AChBP in complex with lobeline and fragment 1 5AFK ; 2.381 ; alpha7-AChBP in complex with lobeline and fragment 2 5AFL ; 2.385 ; alpha7-AChBP in complex with lobeline and fragment 3 5AFM ; 2.85 ; alpha7-AChBP in complex with lobeline and fragment 4 5AFN ; 2.149 ; alpha7-AChBP in complex with lobeline and fragment 5 8UT1 ; 2.3 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine 8V80 ; 2.34 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine and (-)-TQS 8V88 ; 2.3 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine and GAT107 8UZJ ; 2.3 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine and ivermectin 8UTB ; 2.3 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine and NS-1738 8V82 ; 2.61 ; Alpha7-nicotinic acetylcholine receptor bound to epibatidine and PNU-120596 8V86 ; 2.47 ; Alpha7-nicotinic acetylcholine receptor bound to GAT107 8V8C ; 3.29 ; Alpha7-nicotinic acetylcholine receptor time resolved bound to epibatidine and PNU-120596 asymmetric state 1 8V8D ; 3.31 ; Alpha7-nicotinic acetylcholine receptor time resolved bound to epibatidine and PNU-120596 asymmetric state 2 8V8A ; 2.19 ; Alpha7-nicotinic acetylcholine receptor time resolved bound to epibatidine and PNU-120596 desensitized intermediate state 8V89 ; 2.53 ; Alpha7-nicotinic acetylcholine receptor time resolved resting state 4O02 ; 3.605 ; AlphaVBeta3 integrin in complex with monoclonal antibody FAB fragment. 4GUA ; 2.854 ; Alphavirus P23pro-zbd 1HML ; 1.7 ; ALPHA_LACTALBUMIN POSSESSES A DISTINCT ZINC BINDING SITE 1AZ1 ; 1.8 ; ALRESTATIN BOUND TO C298A/W219Y MUTANT HUMAN ALDOSE REDUCTASE 8CIK ; 2.22 ; Altai wapiti (Cervus elaphus sibiricus) chymosin at 2.2 A resolution 1MNI ; 2.07 ; ALTERATION OF AXIAL COORDINATION BY PROTEIN ENGINEERING IN MYOGLOBIN. BIS-IMIDAZOLE LIGATION IN THE HIS64-->VAL(SLASH)VAL68-->HIS DOUBLE MUTANT 2GIG ; 1.83 ; Alteration of sequence specificity of the type II restriction endonuclease HINCII through an indirect readout mechanism 1HJF ; 1.6 ; Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase: The role of arginine-258 1HJG ; 1.5 ; Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase: The role of arginine-258 2Q1E ; 2.55 ; Altered dimer interface decreases stability in an amyloidogenic kappa1 Bence Jones protein. 1H2G ; 2.0 ; Altered substrate specificity mutant of penicillin acylase 1JEA ; 2.0 ; ALTERED TOPOLOGY AND FLEXIBILITY IN ENGINEERED SUBTILISIN 3CCX ; 2.3 ; ALTERING SUBSTRATE SPECIFICITY AT THE HEME EDGE OF CYTOCHROME C PEROXIDASE 4CCX ; 1.9 ; ALTERING SUBSTRATE SPECIFICITY AT THE HEME EDGE OF CYTOCHROME C PEROXIDASE 1CCK ; 2.1 ; ALTERING SUBSTRATE SPECIFICITY OF CYTOCHROME C PEROXIDASE TOWARDS A SMALL MOLECULAR SUBSTRATE PEROXIDASE BY SUBSTITUTING TYROSINE FOR PHE 202 2RLA ; 3.0 ; ALTERING THE BINUCLEAR MANGANESE CLUSTER OF ARGINASE DIMINISHES THERMOSTABILITY AND CATALYTIC FUNCTION 3RLA ; 2.54 ; ALTERING THE BINUCLEAR MANGANESE CLUSTER OF ARGINASE DIMINISHES THERMOSTABILITY AND CATALYTIC FUNCTION 4RLA ; 2.94 ; ALTERING THE BINUCLEAR MANGANESE CLUSTER OF ARGINASE DIMINISHES THERMOSTABILITY AND CATALYTIC FUNCTION 5RLA ; 2.74 ; ALTERING THE BINUCLEAR MANGANESE CLUSTER OF ARGINASE DIMINISHES THERMOSTABILITY AND CATALYTIC FUNCTION 12CA ; 2.4 ; ALTERING THE MOUTH OF A HYDROPHOBIC POCKET. STRUCTURE AND KINETICS OF HUMAN CARBONIC ANHYDRASE II MUTANTS AT RESIDUE VAL-121 3K47 ; 2.05 ; Alternate Binding Modes Observed for the E- and Z-Isomers of 2,4-Diaminofuro[2,3-d]pyrimidines as Ternary Complexes with NADPH and Mouse Dihydrofolate Reductase 3K45 ; 1.6 ; Alternate Binding Modes Observed for the E- and Z-isomers of 2,4-Diaminofuro[2,3d]pyrimidines as Ternary Complexes with NADPH and Mouse Dihydrofolate Reductase 1C6X ; 2.5 ; ALTERNATE BINDING SITE FOR THE P1-P3 GROUP OF A CLASS OF POTENT HIV-1 PROTEASE INHIBITORS AS A RESULT OF CONCERTED STRUCTURAL CHANGE IN 80'S LOOP. 1C6Y ; 2.5 ; ALTERNATE BINDING SITE FOR THE P1-P3 GROUP OF A CLASS OF POTENT HIV-1 PROTEASE INHIBITORS AS A RESULT OF CONCERTED STRUCTURAL CHANGE IN 80'S LOOP. 1C6Z ; 2.5 ; ALTERNATE BINDING SITE FOR THE P1-P3 GROUP OF A CLASS OF POTENT HIV-1 PROTEASE INHIBITORS AS A RESULT OF CONCERTED STRUCTURAL CHANGE IN 80'S LOOP. 1C70 ; 2.5 ; ALTERNATE BINDING SITE FOR THE P1-P3 GROUP OF A CLASS OF POTENT HIV-1 PROTEASE INHIBITORS AS A RESULT OF CONCERTED STRUCTURAL CHANGE IN 80'S LOOP. 7RRL ; 2.05 ; Alternate Crystal Form of Human Malate Dehydrogenase I 254D ; 1.9 ; ALTERNATING AND NON-ALTERNATING DG-DC HEXANUCLEOTIDES CRYSTALLIZE AS CANONICAL A-DNA 256D ; 2.2 ; ALTERNATING AND NON-ALTERNATING DG-DC HEXANUCLEOTIDES CRYSTALLIZE AS CANONICAL A-DNA 257D ; 2.3 ; ALTERNATING AND NON-ALTERNATING DG-DC HEXANUCLEOTIDES CRYSTALLIZE AS CANONICAL A-DNA 275D ; 2.0 ; ALTERNATING AND NON-ALTERNATING DG-DC HEXANUCLEOTIDES CRYSTALLIZE AS CANONICAL A-DNA 5ZNF ; ; ALTERNATING ZINC FINGERS IN THE HUMAN MALE ASSOCIATED PROTEIN ZFY: 2D NMR STRUCTURE OF AN EVEN FINGER AND IMPLICATIONS FOR ""JUMPING-LINKER"" DNA RECOGNITION 7ZNF ; ; ALTERNATING ZINC FINGERS IN THE HUMAN MALE ASSOCIATED PROTEIN ZFY: 2D NMR STRUCTURE OF AN EVEN FINGER AND IMPLICATIONS FOR ""JUMPING-LINKER"" DNA RECOGNITION 3P4B ; 1.45 ; Alternatingly modified 2'Fluoro RNA octamer f/rA2U2-P3 3P4C ; 1.15 ; Alternatingly modified 2'Fluoro RNA octamer f/rA2U2-R32 3P4D ; 1.85 ; Alternatingly modified 2'Fluoro RNA octamer f/rC4G4 1G00 ; 2.3 ; ALTERNATION OF DNA AND SOLVENT LAYERS IN THE A FORM OF D(GGCGCC) OBTAINED BY ETHANOL CRYSTALLIZATION 3RUD ; 2.3 ; Alternative analogs as viable substrates of UDP-hexose 4-epimerases 3RUE ; 2.8 ; Alternative analogs as viable substrates of UDP-hexose 4-epimerases 3RUF ; 2.0 ; Alternative analogs as viable substrates of UDP-hexose 4-epimerases 3RUH ; 2.88 ; Alternative analogs as viable substrates of UDP-hexose 4-epimerases 3IMB ; 1.89 ; Alternative binding mode of restriction endonuclease BcnI to cognate DNA 4CLA ; 2.0 ; ALTERNATIVE BINDING MODES FOR CHLORAMPHENICOL AND 1-SUBSTITUTED CHLORAMPHENICOL ANALOGUES REVEALED BY SITE-DIRECTED MUTAGENESIS AND X-RAY CRYSTALLOGRAPHY OF CHLORAMPHENICOL ACETYLTRANSFERASE 6F0K ; 3.87 ; Alternative complex III 5IJO ; 21.4 ; Alternative composite structure of the inner ring of the human nuclear pore complex (16 copies of Nup188, 16 copies of Nup205) 2NNW ; 2.7 ; Alternative conformations of Nop56/58-fibrillarin complex and implication for induced-fit assenly of box C/D RNPs 3BJ5 ; 2.2 ; Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate binding b' domain 7EJ9 ; 2.6 ; Alternative crystal structure of mouse Cryptochrome 2 in complex with TH301 compound 5VGA ; 2.5 ; Alternative model for Fab 36-65 5HVQ ; 2.923 ; Alternative model of the MAGE-G1 NSE-1 complex 7UTI ; 4.8 ; ALTERNATIVE MODELING OF TROPOMYOSIN IN HUMAN CARDIAC THIN FILAMENT IN THE CALCIUM BOUND STATE 7UTL ; 6.6 ; ALTERNATIVE MODELING OF TROPOMYOSIN IN HUMAN CARDIAC THIN FILAMENT IN THE CALCIUM FREE STATE 2RIU ; 1.7 ; Alternative models for two crystal structures of Candida albicans 3,4-dihydroxy-2-butanone 4-phosphate synthase- alternate interpreation 1SIP ; 2.3 ; ALTERNATIVE NATIVE FLAP CONFORMATION REVEALED BY 2.3 ANGSTROMS RESOLUTION STRUCTURE OF SIV PROTEINASE 2FUN ; 3.0 ; alternative p35-caspase-8 complex 1RYF ; 1.75 ; Alternative Splicing of Rac1 Generates Rac1b, a Self-activating GTPase 1RYH ; 1.75 ; Alternative Splicing of Rac1 Generates Rac1b, a Self-activating GTPase 7ROQ ; 4.1 ; Alternative Structure of Human ABCA1 2RSU ; ; Alternative structure of Ubiquitin 1D56 ; 1.7 ; ALTERNATIVE STRUCTURES FOR ALTERNATING POLY(DA-DT) TRACTS: THE STRUCTURE OF THE B-DNA DECAMER C-G-A-T-A-T-A-T-C-G 1D57 ; 2.0 ; ALTERNATIVE STRUCTURES FOR ALTERNATING POLY(DA-DT) TRACTS: THE STRUCTURE OF THE B-DNA DECAMER C-G-A-T-A-T-A-T-C-G 1JTM ; 1.9 ; Alternative Structures of a Sequence Extended T4 Lysozyme Show that the Highly Conserved Beta-Sheet has Weak Intrinsic Folding Propensity 1JTN ; 2.3 ; Alternative Structures of a Sequence Extended T4 Lysozyme Show that the Highly Conserved Beta-Sheet Region has weak intrinsic Folding Propensity 4N5V ; 1.9 ; Alternative substrates of Mycobacterium tuberculosis anthranilate phosphoribosyl transferase 4N8Q ; 2.08 ; Alternative substrates of Mycobacterium tuberculosis anthranilate phosphoribosyl transferase 4N93 ; 2.03 ; Alternative substrates of Mycobacterium tuberculosis anthranilate phosphoribosyl transferase 1E8S ; 4.0 ; Alu domain of the mammalian SRP (potential Alu retroposition intermediate) 8BXB ; 3.9 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo in apo state (dataset 2) 8BXF ; 3.4 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo4 in apo state (Alpo4_apo, dataset 1) 8BXE ; 3.9 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo4 in apo state (Alpo4_comb dataset 3) 8BXD ; 6.2 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo4 in apo state (Alpo4_LMNG_Serotonin dataset 4) 8BX5 ; 4.2 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo4 in apo state (dataset 1) 8BYI ; 4.1 ; Alvinella pompejana nicotinic acetylcholine receptor Alpo4 in complex with CHAPS(Alpo4_CHAPS) 7XS3 ; 1.9 ; AlXyn26A E243A-X3X4X 5ONP ; 1.34 ; Alzheimer's Amyloid-Beta Peptide Fragment 1-40 in Complex with Cd-substituted Thermolysin 5ONR ; 1.39 ; Alzheimer's Amyloid-Beta Peptide Fragment 1-40 in Complex with Thermolysin 5ONQ ; 1.17 ; Alzheimer's Amyloid-Beta Peptide Fragment 29-40 in Complex with Cd-substituted Thermolysin 6GHX ; 1.156 ; Alzheimer's Amyloid-Beta Peptide Fragment 31-35 in Complex with Cd-substituted Thermolysin 1HZ3 ; ; ALZHEIMER'S DISEASE AMYLOID-BETA PEPTIDE (RESIDUES 10-35) 8FUG ; 2.7 ; Alzheimer's disease paired-helical filament in complex with PET tracer GTP-1 7SCI ; 1.9 ; AM0627 metallopeptidase from Akkermansia muciniphila 1Z40 ; 1.901 ; AMA1 from Plasmodium falciparum 8HBT ; 1.96 ; AmAT7-3 mutant A310G 2O9L ; ; AMBER refined NMR Structure of the Sigma-54 RpoN Domain Bound to the-24 Promoter Element 8IQ7 ; 2.1 ; Ambient Temperature Crystal Structure of Candida boidinii Formate Dehydrogenase 8HZ1 ; 2.0 ; Ambient temperature crystal structure of Escherichia coli CyaY 7C8I ; 2.5 ; Ambient temperature structure of Bifidobacgterium longum phosphoketolase with thiamine diphosphate and phosphoenol pyuruvate 7C8H ; 2.5 ; Ambient temperature structure of Bifidobacterium longum phosphoketolase with thiamine diphosphate 5J9A ; 1.997 ; Ambient temperature transition state structure of arginine kinase - crystal 11/Form II 5J99 ; 1.7 ; Ambient temperature transition state structure of arginine kinase - crystal 8/Form I 5BR8 ; 3.4 ; Ambient-temperature crystal structure of 30S ribosomal subunit from Thermus thermophilus in complex with paromomycin 7CWB ; 1.9 ; Ambient-Temperature Serial Femtosecond X-ray Crystal structure of SARS-CoV-2 Main Protease at 1.9 A Resolution (C121) 7CWC ; 2.1 ; Ambient-Temperature Serial Femtosecond X-ray Crystal structure of SARS-CoV-2 Main Protease at 2.1 A Resolution (P212121) 6VO3 ; 4.25 ; AMC009 SOSIP.v4.2 in complex with PGV04 Fab 7Z3A ; 3.95 ; AMC009 SOSIPv5.2 in complex with Fabs ACS101 and ACS124 7ZLK ; 3.99 ; AMC009 SOSIPv5.2 in complex with Fabs ACS101 and ACS124 6NC2 ; 5.2 ; AMC011 v4.2 SOSIP Env trimer in complex with fusion peptide targeting antibody ACS202 fragment antigen binding 6NC3 ; 4.5 ; AMC011 v4.2 SOSIP Env trimer in complex with fusion peptide targeting antibody VRC34 fragment antigen binding 7RSO ; 4.1 ; AMC016 SOSIP.v4.2 in complex with PGV04 Fab 7RSN ; 3.49 ; AMC018 SOSIP.v4.2 in complex with PGV04 Fab 3RM4 ; 1.9 ; AMCase in complex with Compound 1 3RM8 ; 1.8 ; AMCase in complex with Compound 2 3RM9 ; 2.1 ; AMCase in complex with Compound 3 3RME ; 1.8 ; AMCase in complex with Compound 5 7ODM ; 2.6 ; AmGSTF1 Y118S variant 6SUI ; 1.6 ; AMICOUMACIN KINASE AMIN 6SUL ; 1.35 ; Amicoumacin kinase AmiN in complex with AMP-PNP, Mg2+ and Ami 6SV5 ; 2.0 ; Amicoumacin kinase AmiN in complex with ATP 6SUN ; 1.35 ; Amicoumacin kinase hAmiN in complex with AMP-PNP, Ca2+ and Ami 6SUM ; 1.35 ; Amicoumacin kinase hAmiN in complex with AMP-PNP, MG2+ and Ami 1AAC ; 1.31 ; AMICYANIN OXIDIZED, 1.31 ANGSTROMS 1BXA ; 1.3 ; AMICYANIN REDUCED, PH 4.4, 1.3 ANGSTROMS 2RAC ; 1.3 ; AMICYANIN REDUCED, PH 7.7, 1.3 ANGSTROMS 2IH7 ; ; Amidated Pro6 Analogue of CMrVIA conotoxin 2IHA ; ; Amidated variant of CMrVIA conotoxin 8PYY ; 2.9 ; Amide bond synthetase from Streptomyces hindustanus in open conformation 8PYX ; 2.02 ; Amide bond synthetase from Streptomyces hindustanus K492H mutant in complex with Adenosine 8PPP ; 2.57 ; Amide bond synthetase from Streptomyces hindustanus K492H mutant in complex with AMP-CPP 4O41 ; 1.2 ; Amide linked RNA 1QO0 ; 2.25 ; Amide receptor of the amidase operon of Pseudomonas aeruginosa (AmiC) complexed with the negative regulator AmiR. 1PEA ; 2.1 ; AMIDE RECEPTOR/NEGATIVE REGULATOR OF THE AMIDASE OPERON OF PSEUDOMONAS AERUGINOSA (AMIC) COMPLEXED WITH ACETAMIDE 1QNL ; 2.7 ; AMIDE RECEPTOR/NEGATIVE REGULATOR OF THE AMIDASE OPERON OF PSEUDOMONAS AERUGINOSA (AMIC) COMPLEXED WITH BUTYRAMIDE 6DXG ; 1.905 ; amidobenzimidazole (ABZI) STING agonists 1B4D ; 2.0 ; AMIDOCARBAMATE INHIBITOR OF GLYCOGEN PHOSPHORYLASE 6UVZ ; 2.898 ; Amidohydrolase 2 from Bifidobacterium longum subsp. infantis 6SJ0 ; 1.75 ; Amidohydrolase, AHS 6SJ1 ; 2.06 ; Amidohydrolase, AHS 6SJ2 ; 1.25 ; Amidohydrolase, AHS with 3-HAA 6SJ3 ; 1.17 ; Amidohydrolase, AHS with 3-HBA 6SJ4 ; 1.81 ; Amidohydrolase, AHS with substrate analog 7QZN ; 1.64 ; Amine Dehydrogenase from Cystobacter fuscus (CfusAmDH) W145A mutant with NAD+ 7QZL ; 1.5 ; Amine Dehydrogenase from Cystobacter fuscus (CfusAmDH) W145A mutant with NADP+ and pentylamine 6IAU ; 1.97 ; Amine Dehydrogenase from Cystobacter fuscus in complex with NADP+ and cyclohexylamine 6G1M ; 2.32 ; Amine Dehydrogenase from Petrotoga mobilis; open and closed form 6G1H ; 1.79 ; Amine Dehydrogenase from Petrotoga mobilis; open form 7ZBO ; 2.32 ; Amine Dehydrogenase MATOUAmDH2 in complex with NADP+ 7R09 ; 2.08 ; Amine Dehydrogenase MATOUAmDH2 in complex with NADP+ and Cyclohexylamine 5LH9 ; 1.95 ; Amine transaminase crystal structure from an uncultivated Pseudomonas species in the PLP-bound (internal aldimine) form 5LHA ; 1.89 ; Amine transaminase crystal structure from an uncultivated Pseudomonas species in the PMP-bound form 1ND1 ; 1.93 ; Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. 1HLM ; 2.9 ; AMINO ACID SEQUENCE OF A GLOBIN FROM THE SEA CUCUMBER CAUDINA (MOLPADIA) ARENICOLA 1R1O ; 2.8 ; Amino Acid Sulfonamides as Transition-State Analogue Inhibitors of Arginase 1ECL ; 1.9 ; AMINO TERMINAL 67KDA DOMAIN OF ESCHERICHIA COLI DNA TOPOISOMERASE I (RESIDUES 2-590 OF MATURE PROTEIN) CLONING ARTIFACT ADDS TWO RESIDUES TO THE AMINO-TERMINUS WHICH WERE NOT OBSERVED IN THE EXPERIMENTAL ELECTRON DENSITY (GLY-2, SER-1). 1VCC ; 1.6 ; AMINO TERMINAL 9KDA DOMAIN OF VACCINIA VIRUS DNA TOPOISOMERASE I RESIDUES 1-77, EXPERIMENTAL ELECTRON DENSITY FOR RESIDUES 1-77 1ZYM ; 2.5 ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI 1EZD ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI NMR, 16 STRUCTURES 1EZA ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 2EZB ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 14 STRUCTURES 2EZC ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 14 STRUCTURES 1EZB ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURES 1EZC ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURES 2EZA ; ; AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 1QDN ; 2.3 ; AMINO TERMINAL DOMAIN OF THE N-ETHYLMALEIMIDE SENSITIVE FUSION PROTEIN (NSF) 1SUH ; ; AMINO-TERMINAL DOMAIN OF EPITHELIAL CADHERIN IN THE CALCIUM BOUND STATE, NMR, 20 STRUCTURES 2N3E ; ; Amino-terminal domain of Latrodectus hesperus MaSp1 with neutralized acidic cluster 1A7I ; ; AMINO-TERMINAL LIM DOMAIN FROM QUAIL CYSTEINE AND GLYCINE-RICH PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 1ZFO ; ; AMINO-TERMINAL LIM-DOMAIN PEPTIDE OF LASP-1, NMR 2H11 ; 1.89 ; Amino-terminal Truncated Thiopurine S-Methyltransferase Complexed with S-Adenosyl-L-Homocysteine 6KFR ; 3.1 ; Amino-transferase (AMT) Domain - Arg Complex of Hybrid Polyketide/Non-Ribosomal Peptide Synthetase 6KFM ; 1.7 ; Amino-transferase (AMT) Domain of Hybrid Polyketide/Non-Ribosomal Peptide Synthetase 3CUL ; 2.8 ; Aminoacyl-tRNA synthetase ribozyme 3CUN ; 3.0 ; Aminoacyl-tRNA synthetase ribozyme 4BBE ; 1.9 ; Aminoalkylpyrimidine Inhibitor Complexes with JAK2 4BBF ; 2.0 ; Aminoalkylpyrimidine Inhibitor Complexes with JAK2 1I2K ; 1.79 ; AMINODEOXYCHORISMATE LYASE FROM ESCHERICHIA COLI 1UA0 ; 2.1 ; Aminofluorene DNA adduct at the pre-insertion site of a DNA polymerase 1M44 ; 1.6 ; Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-APO Structure 1M4I ; 1.5 ; Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Kanamycin A 1M4G ; 1.8 ; Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Ribostamycin 1M4D ; 1.8 ; Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis-Complex with Coenzyme A and Tobramycin 7CRM ; 2.487 ; Aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis-APO Structure 7CSJ ; 2.168 ; Aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis-Complex with Coenzyme A and Gentamicin 7CS1 ; 1.966 ; Aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis-Complex with Coenzyme A and Neomycin 7CS0 ; 2.05 ; Aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis-Complex with Coenzyme A and Paromomycin 7CSI ; 1.89 ; Aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis-Complex with Coenzyme A and Sisomicin 6VR3 ; 2.0 ; Aminoglycoside N-2'-Acetyltransferase-Ia [AAC(2')-Ia] in complex with acetylated-netilmicin and CoA 6VOU ; 1.95 ; Aminoglycoside N-2'-Acetyltransferase-Ia [AAC(2')-Ia] in complex with acetylated-plazomicin and CoA 6VR2 ; 1.77 ; Aminoglycoside N-2'-Acetyltransferase-Ia [AAC(2')-Ia] in complex with acetylated-tobramycin and CoA 6VTA ; 1.42 ; Aminoglycoside N-2'-Acetyltransferase-Ia [AAC(2')-Ia] in complex with amikacin and acetyl-CoA 7JZS ; 1.3 ; Aminoglycoside N-2'-Acetyltransferase-Ia [AAC(2')-Ia] in complex with CoA 1S5K ; 2.4 ; Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 1) 1S60 ; 3.0 ; Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and N-terminal His(6)-tag (crystal form 2) 1S3Z ; 2.0 ; Aminoglycoside N-Acetyltransferase AAC(6')-Iy in Complex with CoA and Ribostamycin 5IQG ; 2.5 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GDP, Magnesium, and Gentamicin C1 5BYL ; 2.15 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPCP and Magnesium 5IQA ; 2.15 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPNP and Magnesium 5IQC ; 2.3 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPNP, Magnesium, and Gentamicin C1 5IQB ; 2.3 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPNP, Magnesium, and Kanamycin A 5IQE ; 2.5 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPNP, Magnesium, and Neomycin B 5IQD ; 2.2 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) in complex with GMPPNP, Magnesium, and Ribostamycin 5IQH ; 2.25 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) S214A mutant in complex with GMPPNP and Magnesium 5IQI ; 2.15 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of AAC(6')-Ie/APH(2'')-Ia) Y237F mutant in complex with GMPPNP and Magnesium 5IQF ; 2.35 ; Aminoglycoside Phosphotransferase (2'')-Ia (CTD of APH(6')-Ie/APH(2'')-Ia) in complex with GDP and Magnesium 6CGD ; 2.2 ; Aminoglycoside Phosphotransferase (2'')-Ia in complex with GMPPNP, Magnesium, and Amikacin 6CGG ; 2.4 ; Aminoglycoside Phosphotransferase (2'')-Ia in complex with GMPPNP, Magnesium, and Arbekacin 6CAV ; 2.6 ; Aminoglycoside Phosphotransferase (2'')-Ia in complex with GMPPNP, Magnesium, and Dibekacin 6CEY ; 2.4 ; Aminoglycoside Phosphotransferase (2'')-Ia in complex with GMPPNP, Magnesium, and Lividomycin moieties 6C5U ; 2.41 ; Aminoglycoside Phosphotransferase (2'')-Ia in complex with GMPPNP, Magnesium, and Ribostamycin, Alternate form 6CH4 ; 2.3 ; Aminoglycoside Phosphotransferase (2'')-Ia S376N mutant in complex with GMPPNP and Magnesium 7UY4 ; 1.98 ; Aminoglycoside-modifying enzyme ANT-3,9 in complex with spectinomycin and AMP-PNP 4ACU ; 1.75 ; Aminoimidazoles as BACE-1 Inhibitors. X-RAY CRYSTAL STRUCTURE OF BETA SECRETASE COMPLEXED WITH COMPOUND 14 4ACX ; 2.0 ; Aminoimidazoles as BACE-1 Inhibitors. X-RAY CRYSTAL STRUCTURE OF BETA SECRETASE COMPLEXED WITH COMPOUND 23 4B70 ; 1.6 ; Aminoimidazoles as BACE-1 Inhibitors: From De Novo Design to Ab- lowering in Brain 4B72 ; 1.6 ; Aminoimidazoles as BACE-1 Inhibitors: From De Novo Design to Ab- lowering in Brain 4B77 ; 1.8 ; Aminoimidazoles as BACE-1 Inhibitors: From De Novo Design to Ab- lowering in Brain 4B78 ; 1.5 ; Aminoimidazoles as BACE-1 Inhibitors: From De Novo Design to Ab- lowering in Brain 5T1U ; 1.78 ; Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality 5T1W ; 2.96 ; Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality 4LC7 ; 1.7 ; Aminooxazoline inhibitor of BACE-1 4WWV ; 3.006 ; Aminopeptidase APDkam598 from the archaeon Desulfurococcus kamchatkensis 2EK8 ; 1.8 ; Aminopeptidase from Aneurinibacillus sp. strain AM-1 2EK9 ; 1.97 ; Aminopeptidase from Aneurinibacillus sp. strain AM-1 with Bestatin 1CP7 ; 1.58 ; AMINOPEPTIDASE FROM STREPTOMYCES GRISEUS 4FUK ; 1.75 ; Aminopeptidase from Trypanosoma brucei 5DLL ; 2.51 ; Aminopeptidase N (pepN) from Francisella tularensis subsp. tularensis SCHU S4 2ZXG ; 1.55 ; Aminopeptidase N complexed with the aminophosphinic inhibitor of PL250, a transition state analogue 1JAW ; 2.7 ; AMINOPEPTIDASE P FROM E. COLI LOW PH FORM 1A16 ; 2.3 ; AMINOPEPTIDASE P FROM E. COLI WITH THE INHIBITOR PRO-LEU 1M35 ; 2.4 ; Aminopeptidase P from Escherichia coli 1N51 ; 2.3 ; Aminopeptidase P in complex with the inhibitor apstatin 1ZJC ; 1.8 ; Aminopeptidase S from S. aureus 2VVC ; 1.95 ; Aminopyrrolidine Factor Xa inhibitor 2VVU ; 2.3 ; Aminopyrrolidine Factor Xa inhibitor 2VWL ; 1.8 ; Aminopyrrolidine Factor Xa inhibitor 2VWM ; 1.96 ; Aminopyrrolidine Factor Xa inhibitor 2VWN ; 1.61 ; Aminopyrrolidine Factor Xa inhibitor 2VWO ; 1.6 ; Aminopyrrolidine Factor Xa inhibitor 2VVV ; 1.73 ; Aminopyrrolidine-related triazole Factor Xa inhibitor 2HXX ; 2.0 ; Aminotryptophan Barstar 7B3N ; 1.793 ; AmiP amidase-3 from Thermus parvatiensis 1H9D ; 2.6 ; Aml1/cbf-beta/dna complex 1E50 ; 2.6 ; AML1/CBFbeta complex 5I32 ; 1.18 ; Ammonia permeable aquaporin AtTIP2;1 7FZE ; 1.17 ; ammonium sulfate-based apo human FABP4, primitive orthorhombic form I 2B2H ; 1.54 ; Ammonium Transporter Amt-1 from A. fulgidus (AS) 2B2I ; 1.85 ; Ammonium Transporter Amt-1 from A. fulgidus (MA) 2B2J ; 1.85 ; Ammonium Transporter Amt-1 from A. fulgidus (Xe) 2B2F ; 1.72 ; Ammonium Transporter Amt-1 from A.fulgidus (Native) 8IH7 ; 2.48 ; AmnG-AmnH complex 4GX6 ; 2.5 ; AMP Complexes of Porcine Liver Fructose-1,6-bisphosphatase with Mutation E192Q 4GX4 ; 2.5 ; AMP Complexes of Porcine Liver Fructose-1,6-bisphosphatase with mutation R22M 8HU6 ; 2.33 ; AMP deaminase 2 in complex with AMP 8HUB ; 3.25 ; AMP deaminase 2 in complex with an inhibitor 1AM0 ; ; AMP RNA APTAMER COMPLEX, NMR, 8 STRUCTURES 6BX6 ; 2.9 ; AMP-Activated protein kinase (AMPK) inhibition by SBI-0206965: alpha 2 kinase domain bound to SBI-0206965 6C9F ; 2.924 ; AMP-activated protein kinase bound to pharmacological activator R734 6C9J ; 3.05 ; AMP-activated protein kinase bound to pharmacological activator R734 6C9G ; 2.7 ; AMP-activated protein kinase bound to pharmacological activator R739 3S1Y ; 1.4 ; AMP-C BETA-LACTAMASE (PSEUDOMONAS AERUGINOSA) in complex with a beta-lactamase inhibitor 3S22 ; 1.65 ; AMP-C BETA-LACTAMASE (PSEUDOMONAS AERUGINOSA) in complex with an inhibitor 4NK3 ; 1.9 ; Amp-c beta-lactamase (pseudomonas aeruginosa) in complex with mk-7655 2WZX ; 1.4 ; AMP-C BETA-LACTAMASE (PSEUDOMONAS AERUGINOSA)IN COMPLEX WITH compound M-02 2WZZ ; 1.57 ; AMP-C BETA-LACTAMASE (PSEUDOMONAS AERUGINOSA)IN COMPLEX WITH compound M-03 7PH3 ; 2.8 ; AMP-PNP bound nanodisc reconstituted MsbA with nanobodies, spin-labeled at position A60C 7PH4 ; 2.8 ; AMP-PNP bound nanodisc reconstituted MsbA with nanobodies, spin-labeled at position T68C 5J5P ; 1.97 ; AMP-PNP-stabilized ATPase domain of topoisomerase IV from Streptococcus pneumoniae, complex type I 5J5Q ; 2.83 ; AMP-PNP-stabilized ATPase domain of topoisomerase IV from Streptococcus pneumoniae, complex type II 5N6P ; 2.8 ; AMPA receptor NTD mutant 5L1B ; 4.0 ; AMPA subtype ionotropic glutamate receptor GluA2 in Apo state 5L1G ; 4.507 ; AMPA subtype ionotropic glutamate receptor GluA2 in complex with GYKI-Br 5L1E ; 4.37 ; AMPA subtype ionotropic glutamate receptor GluA2 in complex with noncompetitive inhibitor CP465022 5L1H ; 3.801 ; AMPA subtype ionotropic glutamate receptor GluA2 in complex with noncompetitive inhibitor GYKI53655 5L1F ; 4.0 ; AMPA subtype ionotropic glutamate receptor GluA2 in complex with noncompetitive inhibitor Perampanel 3KG2 ; 3.6 ; AMPA subtype ionotropic glutamate receptor in complex with competitive antagonist ZK 200775 2PU4 ; 2.0 ; AmpC beta-lacamase with bound covalent oxadiazole inhibitor 1FSW ; 1.9 ; AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CEPHALOTHINBORONIC ACID 1FSY ; 1.75 ; AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR CLOXACILLINBORONIC ACID 1C3B ; 2.25 ; AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH INHIBITOR, BENZO(B)THIOPHENE-2-BORONIC ACID (BZB) 2BLS ; 2.0 ; AMPC BETA-LACTAMASE FROM ESCHERICHIA COLI 3BLS ; 2.3 ; AMPC BETA-LACTAMASE FROM ESCHERICHIA COLI 2RCX ; 2.0 ; AmpC Beta-lactamase in complex with (1R)-1-(2-Thiophen-2-yl-acetylamino)-1-(3-(2-carboxyvinyl)-phenyl) methylboronic acid 4LV3 ; 1.42 ; AmpC beta-lactamase in complex with (3,5-di-tert-butylphenyl) boronic acid 2HDU ; 1.49 ; AmpC beta-lactamase in complex with 2-acetamidothiophene-3-carboxylic acid 2HDQ ; 2.1 ; AmpC beta-lactamase in complex with 2-carboxythiophene 1XGI ; 1.96 ; AmpC beta-lactamase in complex with 3-(3-nitro-phenylsulfamoyl)-thiophene-2-carboxylic acid 1XGJ ; 1.97 ; AmpC beta-lactamase in complex with 3-(4-carboxy-2-hydroxy-phenylsulfamoyl)-thiophene-2-carboxylic acid 2HDR ; 2.2 ; AmpC beta-lactamase in complex with 4-Amino-3-hydroxybenzoic acid 2HDS ; 1.16 ; AmpC beta-lactamase in complex with 4-Methanesulfonylamino benzoic acid 2I72 ; 2.2 ; AmpC beta-lactamase in complex with 5-diformylaminomethyl-benzo[b]thiophen-2-boronic acid 3BM6 ; 2.1 ; AmpC beta-lactamase in complex with a p.carboxyphenylboronic acid 1MXO ; 1.83 ; AmpC beta-lactamase in complex with an m.carboxyphenylglycylboronic acid bearing the cephalothin R1 side chain 1MY8 ; 1.72 ; AmpC beta-lactamase in complex with an M.carboxyphenylglycylboronic acid bearing the cephalothin R1 side chain 3GQZ ; 1.8 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GR2 ; 1.8 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GRJ ; 2.49 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GSG ; 2.1 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GTC ; 1.9 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GV9 ; 1.8 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 3GVB ; 1.8 ; AmpC beta-lactamase in complex with Fragment-based Inhibitor 4LV0 ; 1.652 ; AmpC beta-lactamase in complex with m-aminophenyl boronic acid 4LV1 ; 1.74 ; AmpC beta-lactamase in complex with [1-(3-chlorophenyl)-1H-pyrazol-4-yl] boronic acid 4LV2 ; 1.65 ; AmpC beta-lactamase in complex with [1-(6-chloropyrimidin-4-yl)-1H-pyrazol-4-yl] boronic acid 2FFY ; 1.07 ; AmpC beta-lactamase N289A mutant in complex with a boronic acid deacylation transition state analog compound SM3 2PU2 ; 1.86 ; AmpC beta-lactamase with bound Phthalamide inhibitor 2R9W ; 1.8 ; AmpC beta-lactamase with bound Phthalamide inhibitor 2R9X ; 1.9 ; AmpC beta-lactamase with bound Phthalamide inhibitor 3FKW ; 1.498 ; AmpC K67R mutant apo structure 3FKV ; 1.847 ; AmpC K67R mutant complexed with benzo(b)thiophene-2-boronic acid (bzb) 8JSO ; 3.4 ; AMPH-bound hTAAR1-Gs protein complex 3QQT ; 1.9 ; Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII 1URU ; 2.6 ; Amphiphysin BAR domain from Drosophila 5I22 ; ; Amphiphysin SH3 in complex with Chikungunya virus nsP3 peptide 7U4B ; 1.92 ; Ampicillin-CTX-M-15 5KQ5 ; 3.41 ; AMPK bound to allosteric activator 5T5T ; 3.46 ; AMPK bound to allosteric activator 4S35 ; 1.55 ; AMPPCP and TMP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 5X8C ; 2.07 ; AMPPCP and TMP bound crystal structure of thymidylate kinase from thermus thermophilus HB8 4RH3 ; 3.02 ; AMPPCP-bound structure of human platelet phosphofructokinase in an R-state, crystal form II 4W9M ; 2.7 ; AMPPNP bound Rad50 in complex with dsDNA 5ZMF ; 3.556 ; AMPPNP complex of C. reinhardtii ArsA1 3IQW ; 3.0 ; AMPPNP complex of C. therm. Get3 4WKM ; 2.15 ; AmpR effector binding domain from Citrobacter freundii bound to UDP-MurNAc-pentapeptide 1AVA ; 1.9 ; AMY2/BASI PROTEIN-PROTEIN COMPLEX FROM BARLEY SEED 7S8W ; 2.9 ; Amycolatopsis sp. T-1-60 N-succinylamino acid racemase/o-succinylbenzoate synthase R266Q mutant in complex with N-succinylphenylglycine 6GXV ; 2.07 ; Amylase in complex with acarbose 6GYA ; 2.95 ; Amylase in complex with branched ligand 8F2B ; 2.0 ; Amylin 3 Receptor in complex with Gs and Pramlintide analogue peptide San45 6O4J ; 1.402 ; Amyloid Beta KLVFFAENVGS 16-26 D23N Iowa mutation 7O1Q ; 3.4 ; Amyloid beta oligomer displayed on the alpha hemolysin scaffold 1QCM ; ; AMYLOID BETA PEPTIDE (25-35), NMR, 20 STRUCTURES 3MOQ ; 2.054 ; Amyloid beta(18-41) peptide fusion with new antigen receptor variable domain from sharks 5ZMZ ; 1.4 ; Amyloid core of RIP1 7ZJ2 ; 3.32 ; Amyloid fibril (in vitro) from full-length hnRNPA1 protein 7ZKY ; 2.56 ; Amyloid fibril from human systemic AA amyloidosis (vascular variant) 7QV6 ; 3.5 ; Amyloid fibril from the antimicrobial peptide aurein 3.3 7QV5 ; 3.0 ; Amyloid fibril from the antimicrobial peptide uperin 3.5 6ZCF ; 2.73 ; Amyloid fibril morphology i (in vitro) from murine SAA1.1 protein 6ZCH ; 3.5 ; Amyloid fibril morphology II (ex vivo) from murine SAA1.1 protein. 6ZCG ; 2.95 ; Amyloid fibril morphology ii (in vitro) from murine SAA1.1 protein 6Y1A ; 4.2 ; Amyloid fibril structure of islet amyloid polypeptide 6C3T ; 1.0 ; AMYLOID FORMING PEPTIDE AADTWE FROM TRANSTHYRETIN WITH ATTR-D38A MUTATION ASSOCIATED WITH A FAMILIAL FORM OF TRANSTHYRETIN AMYLOIDOSIS 6C3F ; 1.499 ; AMYLOID FORMING PEPTIDE IYKVEI FROM TRANSTHYRETIN 6C3G ; 1.601 ; AMYLOID FORMING PEPTIDE KALGIS FROM TRANSTHYRETIN 6C4O ; 1.79 ; AMYLOID FORMING PEPTIDE TIAALLS FROM TRANSTHYRETIN 6C3S ; 1.602 ; AMYLOID FORMING PEPTIDE YTIAAL FROM TRANSTHYRETIN 4RIK ; 1.854 ; Amyloid forming segment, AVVTGVTAV, from the NAC domain of Parkinson's disease protein alpha-synuclein, residues 69-77 6ZRF ; 3.6 ; amyloid structure of amylin (IAPP - islet amyloid polypeptide) 8FF2 ; 2.87 ; Amyloid-beta (1-40) fibrils derived from a CAA patient 8FF3 ; 3.09 ; Amyloid-beta (1-40) fibrils derived from familial Dutch-type CAA patient (population B) 6OIZ ; 1.1 ; Amyloid-Beta (20-34) wild type 6NB9 ; 1.05 ; Amyloid-Beta (20-34) with L-isoaspartate 23 8QN7 ; 2.7 ; Amyloid-beta 40 type 1 filament from the leptomeninges of individual with Alzheimer's disease and cerebral amyloid angiopathy 8QN6 ; 2.4 ; Amyloid-beta 40 type 2 filament from the leptomeninges of individual with Alzheimer's disease and cerebral amyloid angiopathy 8BFZ ; 2.8 ; Amyloid-beta 42 filaments extracted from the human brain with Arctic mutation (E22G) of Alzheimer's disease | ABeta42 7Y8Q ; ; Amyloid-beta assemblage on GM1-containing membranes 8BG0 ; 1.99 ; Amyloid-beta tetrameric filaments with the Arctic mutation (E22G) from Alzheimer's disease brains | ABeta40 6W0O ; 2.77 ; Amyloid-beta(1-40) fibril derived from Alzheimer's disease cortical tissue 3SGO ; 2.557 ; Amyloid-related segment of alphaB-crystallin residues 90-100 3SGP ; 1.4016 ; Amyloid-related segment of alphaB-crystallin residues 90-100 mutant V91L 7ROJ ; 1.6 ; Amyloid-related segment of alphaB-crystallin residues 90-100 with G95W mutation 7ROL ; 1.996 ; Amyloid-related segment of alphaB-crystallin residues 90-100 with G95W mutation, bromo derivative 3SGS ; 1.703 ; Amyloid-related segment of alphaB-crystallin residues 95-100 1LYY ; 1.8 ; AMYLOIDOGENIC VARIANT (ASP67HIS) OF HUMAN LYSOZYME 1LOZ ; 1.8 ; AMYLOIDOGENIC VARIANT (I56T) VARIANT OF HUMAN LYSOZYME 6M6T ; 2.75 ; Amylomaltase from Streptococcus agalactiae in complex with acarbose 4S3Q ; 2.1 ; Amylomaltase MalQ from Escherichia coli in complex with maltose 4S3R ; 2.1 ; Amylomaltase MalQ from Escherichia coli in complex with the pseudo-heptasaccharide acarviosine-glucose-acarbose 4S3P ; 2.8 ; Amylomaltase MalQ from Escherichia coli, apo structure 1G5A ; 1.4 ; AMYLOSUCRASE FROM NEISSERIA POLYSACCHAREA 1MW0 ; 2.01 ; Amylosucrase mutant E328Q co-crystallized with maltoheptaose then soaked with maltoheptaose. 1MVY ; 2.0 ; Amylosucrase mutant E328Q co-crystallized with maltoheptaose. 1ZS2 ; 2.16 ; Amylosucrase Mutant E328Q in a ternary complex with sucrose and maltoheptaose 1MW2 ; 2.1 ; Amylosucrase soaked with 100mM sucrose 1MW1 ; 2.1 ; Amylosucrase soaked with 14mM sucrose. 1MW3 ; 2.0 ; Amylosucrase soaked with 1M sucrose 1SPD ; 2.4 ; AMYOTROPHIC LATERAL SCLEROSIS AND STRUCTURAL DEFECTS IN CU,ZN SUPEROXIDE DISMUTASE 7WUD ; 1.9 ; An (R)-Selective Transaminase mutant 2LET ; ; AN 1H NMR DETERMINATION OF THE THREE DIMENSIONAL STRUCTURES OF MIRROR IMAGE FORMS OF A LEU-5 VARIANT OF THE TRYPSIN INHIBITOR ECBALLIUM ELATERIUM (EETI-II) 4RO1 ; 2.803 ; An 3'-5'-exoribonuclease that specifically recognizes RNAs. 4L4X ; 2.55 ; An A2-type ketoreductase from a modular polyketide synthase 6RW7 ; 1.4 ; An AA10 LPMO from the shipworm symbiont Teredinibacter turnerae 7EXK ; 2.14 ; An AA9 LPMO of Ceriporiopsis subvermispora 3U37 ; 2.1 ; An Acetyl Xylan Esterase (Est2A) from the Rumen Bacterium Butyrivibrio proteoclasticus. 4DEV ; 2.0 ; An Acetyl Xylan Esterase (Est2A) from the Rumen Bacterium Butyrivibrio proteoclasticus. 2GM4 ; 3.5 ; An activated, tetrameric gamma-delta resolvase: Hin chimaera bound to cleaved DNA 2GM5 ; 2.1 ; An activated, truncated gamma-delta resolvase tetramer 7F5Q ; 2.3 ; An active enzyme from the plant Viola yedoensis 1EFE ; ; AN ACTIVE MINI-PROINSULIN, M2PI 1A72 ; 2.6 ; AN ACTIVE-SITE DOUBLE MUTANT (PHE93->TRP, VAL203->ALA) OF HORSE LIVER ALCOHOL DEHYDROGENASE IN COMPLEX WITH THE ISOSTERIC NAD ANALOG CPAD 257L ; 1.9 ; AN ADAPTABLE METAL-BINDING SITE ENGINEERED INTO T4 LYSOZYME 258L ; 1.8 ; AN ADAPTABLE METAL-BINDING SITE ENGINEERED INTO T4 LYSOZYME 259L ; 1.92 ; AN ADAPTABLE METAL-BINDING SITE ENGINEERED INTO T4 LYSOZYME 260L ; 1.8 ; AN ADAPTABLE METAL-BINDING SITE ENGINEERED INTO T4 LYSOZYME 1H0T ; ; An affibody in complex with a target protein: structure and coupled folding 5YXU ; 2.7 ; an affinity enhanced T cell receptor in complex with HLA-A0201 restricted HCV NS3 peptide KLVALGINAV 7V68 ; 3.4 ; An Agonist and PAM-bound Class A GPCR with Gi protein complex structure 6PEX ; 1.581 ; An aldo keto reductase with 2-keto- L-gulonate reductase activity 1U0V ; 1.9 ; An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization of Specificity of Type III Polyketide Synthases: 18xCHS structure 1U0W ; 2.0 ; An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases: 18xCHS+resveratrol Structure 1U0U ; 2.11 ; An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases: Pine stilbene synthase structure 1DGD ; 2.8 ; AN ALKALI METAL ION SIZE-DEPENDENT SWITCH IN THE ACTIVE SITE STRUCTURE OF DIALKYLGLYCINE DECARBOXYLASE 1DGE ; 2.8 ; AN ALKALI METAL ION SIZE-DEPENDENT SWITCH IN THE ACTIVE SITE STRUCTURE OF DIALKYLGLYCINE DECARBOXYLASE 2F8Q ; 2.2 ; An alkali thermostable F/10 xylanase from alkalophilic Bacillus sp. NG-27 2FGL ; 2.2 ; An alkali thermostable F/10 xylanase from alkalophilic Bacillus sp. NG-27 3GS5 ; 2.75 ; An all-RNA hairpin ribozyme A38N1dA variant with a product mimic substrate strand 3GS8 ; 2.85 ; An all-RNA hairpin ribozyme A38N1dA38 variant with a transition-state mimic substrate strand 3GS1 ; 2.85 ; An all-RNA Hairpin Ribozyme with mutation A38N1dA 1X9C ; 2.19 ; An all-RNA Hairpin Ribozyme with mutation U39C 1X9K ; 3.17 ; An all-RNA Hairpin Ribozyme with mutation U39C 1RD4 ; 2.4 ; An allosteric inhibitor of LFA-1 bound to its I-domain 1NFD ; 2.8 ; AN ALPHA-BETA T CELL RECEPTOR (TCR) HETERODIMER IN COMPLEX WITH AN ANTI-TCR FAB FRAGMENT DERIVED FROM A MITOGENIC ANTIBODY 3F87 ; 2.4 ; An alpha/beta-Peptide Helix Bundle with a Pure beta-Amino Acid Core and a Distinctive Quarternary Structure: GCN4pLI derivative with beta residues at a and d heptad positions - higher symmetry crystal 3F86 ; 2.0 ; An alpha/beta-Peptide Helix Bundle with a Pure beta-Amino Acid Core and a Distinctive Quaternary Structure: GCN4pLI derivative with beta residues at a and d heptad positions 2OSN ; 2.5 ; An alternate description of a crystal structure of phospholipase A2 from Bungarus caeruleus 1MDG ; 1.5 ; An Alternating Antiparallel Octaplex in an RNA Crystal Structure 8EDA ; 1.63 ; An alternating AT dodecamer benzimidazole (DB1476) complex 2DD2 ; ; An alternating sheared AA pair in 5'GGUGAAGGCU/3'PCCGAAGCCG: I. The major conformation with A6/A15/A16 stack 2DD3 ; ; An alternating sheared AA pair in 5'GGUGAAGGCU/3'PCCGAAGCCG: II. The minor conformation with A6/A5/A16 stack 4ZV1 ; 1.52 ; An ancestral arginine-binding protein bound to arginine 4ZV2 ; 1.43 ; An ancestral arginine-binding protein bound to glutamine 1G99 ; 2.5 ; AN ANCIENT ENZYME: ACETATE KINASE FROM METHANOSARCINA THERMOPHILA 2ACQ ; 1.76 ; AN ANION BINDING SITE IN HUMAN ALDOSE REDUCTASE: MECHANISTIC IMPLICATIONS FOR THE BINDING OF CITRATE, CACODYLATE, AND GLUCOSE-6-PHOSPHATE 2ACR ; 1.76 ; AN ANION BINDING SITE IN HUMAN ALDOSE REDUCTASE: MECHANISTIC IMPLICATIONS FOR THE BINDING OF CITRATE, CACODYLATE, AND GLUCOSE-6-PHOSPHATE 2ACS ; 1.76 ; AN ANION BINDING SITE IN HUMAN ALDOSE REDUCTASE: MECHANISTIC IMPLICATIONS FOR THE BINDING OF CITRATE, CACODYLATE, AND GLUCOSE-6-PHOSPHATE 2QTO ; 3.201 ; An anisotropic model for potassium channel KcsA 6JD6 ; 2.2 ; An ankyrin-repeat protein complex guides cargos from inner envelope to thylakoid Tat pathway 5Z4E ; ; An anthrahydroquino-Gama-pyrone synthase Txn09 5Z36 ; ; An anthrahydroquino-Gama-pyrone synthase Txn09 complexed with PDM 5Z4F ; ; An anthrahydroquino-Gama-pyrone synthase Txn09 complexed with SUM 6C5V ; 4.8 ; An anti-gH/gL antibody that neutralizes dual-tropic infection defines a site of vulnerability on Epstein-Barr virus 1W5J ; 2.2 ; AN ANTI-PARALLEL FOUR HELIX BUNDLE 1W5K ; 1.92 ; AN ANTI-PARALLEL FOUR HELIX BUNDLE 1W5G ; 2.16 ; An anti-parallel four helix bundle (acetimide modification). 1W5H ; 2.5 ; An anti-parallel four helix bundle. 1W5L ; 2.17 ; An anti-parallel to parallel switch. 2FAT ; 1.77 ; An anti-urokinase plasminogen activator receptor (UPAR) antibody: Crystal structure and binding epitope 4K8R ; 3.22 ; An Antibody Against the C-terminal Domain of PCSK9 lowers LDL Cholesterol Levels in vivo 4LKC ; 2.2 ; An Antibody Against the C-terminal Domain of PCSK9 lowers LDL Cholesterol Levels in vivo 7UPY ; 3.1 ; An antibody from single human VH-rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion 4JN1 ; 1.89 ; An Antidote for Dabigatran 4JN2 ; 1.71 ; An Antidote for Dabigatran 5JQG ; 2.24 ; An apo tubulin-RB-TTL complex structure used for side-by-side comparison 8IKX ; 1.5 ; An Arabidopsis polygalacturonase PGLR 2O4V ; 1.94 ; An arginine ladder in OprP mediates phosphate specific transfer across the outer membrane 4K8W ; 1.67 ; An arm-swapped dimer of the S. pyogenes pilin specific assembly factor SipA 2MYU ; ; An arsenate reductase in oxidized state 2MYN ; ; An arsenate reductase in reduced state 2L19 ; ; An arsenate reductase in the intermediate state 2MYT ; ; An arsenate reductase in the intermediate state 2L18 ; ; An arsenate reductase in the phosphate binding state 2MYP ; ; An arsenate reductase in the phosphate binding state 2L17 ; ; An arsenate reductase in the reduced state 2KIK ; ; An artificial di-iron oxo-protein with phenol oxidase activity 1SA3 ; 1.95 ; An asymmetric complex of restriction endonuclease MspI on its palindromic DNA recognition site 8EAW ; 2.8 ; An asymmetric disk assembly formed by tandem dimers of the tobacco mosaic viral capsid protein (TMV) 1PZU ; 3.1 ; An asymmetric NFAT1-RHR homodimer on a pseudo-palindromic, Kappa-B site 3J32 ; 4.5 ; An asymmetric unit map from electron cryo-microscopy of Haliotis diversicolor molluscan hemocyanin isoform 1 (HdH1) 8JE1 ; 3.95 ; An asymmetry dimer of the Cul2-Rbx1-EloBC-FEM1B ubiquitin ligase complexed with BEX2 8FDQ ; 1.54 ; An AT-specific DNA 5-CGCAAATTTCGC-3' with benzimidazole (DB1476) complex 5L93 ; 3.9 ; An atomic model of HIV-1 CA-SP1 reveals structures regulating assembly and maturation 5GJR ; 3.5 ; An atomic structure of the human 26S proteasome 5VKU ; 3.9 ; An atomic structure of the human cytomegalovirus (HCMV) capsid with its securing layer of pp150 tegument protein 3P9A ; 1.755 ; An atomic view of the nonameric small terminase subunit of Bacteriophage P22 8HAV ; 2.1 ; An auto-activation mechanism of plant non-specific phospholipase C 8HAW ; 2.1 ; An auto-activation mechanism of plant non-specific phospholipase C 4JHR ; 2.8 ; An auto-inhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs 1CBV ; 2.66 ; AN AUTOANTIBODY TO SINGLE-STRANDED DNA: COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF THE UNLIGANDED FAB AND A DEOXYNUCLEOTIDE-FAB COMPLEX 1NBV ; 2.0 ; AN AUTOANTIBODY TO SINGLE-STRANDED DNA: COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF THE UNLIGANDED FAB AND A DEOXYNUCLEOTIDE-FAB COMPLEX 5BX0 ; 2.93 ; An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery 3AG7 ; 1.8 ; An auxilin-like J-domain containing protein, JAC1 J-domain 1GSU ; 1.94 ; AN AVIAN CLASS-MU GLUTATHIONE S-TRANSFERASE, CGSTM1-1 AT 1.94 ANGSTROM RESOLUTION 5LUR ; 2.7 ; An avidin mutant 4OAP ; 1.93 ; An Axe2 mutant (W190I), an acetyl-xylooligosaccharide esterase from Geobacillus Stearmophilus 6B0D ; 1.5 ; An E. coli DPS protein from ferritin superfamily 5O2I ; 2.0 ; An efficient setup for fixed-target, time-resolved serial crystallography with optical excitation 2CE8 ; 2.03 ; An EH1 peptide bound to the Groucho-TLE WD40 domain. 7Y9N ; 1.885 ; an engineered 5-helix bundle derived from SARS-CoV-2 S2 in complex with HR2P 4RA0 ; 3.07 ; An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis 5VFW ; ; An engineered cyclic peptide alleviates symptoms of inflammation in a murine model of inflammatory bowel disease 4GT7 ; 2.61 ; An engineered disulfide bond reversibly traps the IgE-Fc3-4 in a closed, non-receptor binding conformation 7MWN ; 1.902 ; An engineered PYL2-based WIN 55,212-2 synthetic cannabinoid sensor with a stabilized HAB1 variant 4WVO ; 2.251 ; An engineered PYR1 mandipropamid receptor in complex with mandipropamid and HAB1 1PIO ; 2.8 ; AN ENGINEERED STAPHYLOCOCCUS AUREUS PC1 BETA-LACTAMASE THAT HYDROLYSES THIRD GENERATION CEPHALOSPORINS 1KL4 ; 1.7 ; AN ENGINEERED STREPTAVIDIN WITH IMPROVED AFFINITY FOR THE STREP-TAG II PEPTIDE : apo-SAM2 1KL3 ; 1.7 ; an engineered streptavidin with improved affinity for the strep-tag II peptide : SAm1-StrepII 1KL5 ; 1.8 ; an engineered streptavidin with improved affinity for the strep-tag II peptide : SAm2-StrepII 1KFF ; 1.9 ; An engineered streptavidin with improved affinity for the strep-tag II peptide: apo-SAM1 1GKO ; 2.1 ; An Engineered Transthyretin Monomer that is Non-amyloidogenic - Unless Partially Denatured 3MI7 ; 2.2 ; An Enhanced Repressor of Human Papillomavirus E2 Protein 6W3W ; 1.55 ; An enumerative algorithm for de novo design of proteins with diverse pocket structures 6W40 ; 2.49 ; An enumerative algorithm for de novo design of proteins with diverse pocket structures 5W7G ; 4.5 ; An envelope of a filamentous hyperthermophilic virus carries lipids in a horseshoe conformation 7FA0 ; 1.8 ; An enzyme mutant from Viola yedoensis 2AEP ; 2.1 ; An epidemiologically significant epitope of a 1998 influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. 2AEQ ; 3.0 ; An epidemiologically significant epitope of a 1998 influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. 2H6M ; 1.4 ; An episulfide cation (thiiranium ring) trapped in the active site of HAV 3C proteinase inactivated by peptide-based ketone inhibitors 2H9H ; 1.39 ; An episulfide cation (thiiranium ring) trapped in the active site of HAV 3C proteinase inactivated by peptide-based ketone inhibitors 2HAL ; 1.35 ; An episulfide cation (thiiranium ring) trapped in the active site of HAV 3C proteinase inactivated by peptide-based ketone inhibitors 4Y1M ; 3.0 ; An Escherichia coli yybP-ykoY Mn riboswitch in the Mn2+-free state 8DHR ; 1.75 ; An ester mutant of SfGFP 5A2G ; 1.899 ; An esterase from anaerobic Clostridium hathewayi can hydrolyze aliphatic aromatic polyesters 3QE4 ; 2.3 ; An evolved aminoacyl-tRNA Synthetase with atypical polysubstrate specificity 4R9P ; 1.592 ; An Expansion to the Smad MH2-family: The structure of the N-MH2 expanded domain 5F67 ; 1.76 ; An exquisitely specific PDZ/target recognition revealed by the structure of INAD PDZ3 in complex with TRP channel tail 2DMF ; ; An extended conformation of the RWD domain of human Ring finger protein 25 1Q1H ; 2.9 ; An extended winged helix domain in general transcription factor E/IIE alpha 3LDY ; 1.97 ; An extraordinary mechanism of DNA perturbation exhibited by the rare-cutting HNH restriction endonuclease PacI 5NIP ; ; An i-motif containing the neutral cytidine protonated analogue pseudoisocytidine 8BQY ; ; An i-motif domain able to undergo pH-dependent conformational transitions (acidic structure) 8BV6 ; ; An i-motif domain able to undergo pH-dependent conformational transitions (neutral structure) 2KKK ; ; An i-motif structure with intercalated T T pairs 1VCR ; 9.5 ; An icosahedral assembly of light-harvesting chlorophyll a/b protein complex from pea thylakoid membranes 4JE3 ; 2.282 ; An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation 3PWV ; 2.696 ; An immmunodominant CTL epitope from rinderpest virus presented by cattle MHC class I molecule N*01801 (BoLA-A11) 3PWU ; 1.899 ; An immmunodominant CTL epitope from rinderpest virus presented by cattle MHC class I molecule N*01801(BoLA-A11) 3J2T ; 9.5 ; An improved model of the human apoptosome 5N29 ; 2.1 ; An improved model of the Trypanosoma brucei CTP synthase glutaminase domain:acivicin complex. 5AGD ; 1.2 ; An inactive (D125N) variant of the catalytic domain, BcGH76, of Bacillus circulans Aman6 in complex with alpha-1,6-mannopentaose 6SHM ; 1.9 ; An inactive (D136A and D137A) variant of alpha-1,6-mannanase, GH76A of Salegentibacter sp. HEL1_6 in complex with alpha-1,6-mannotetrose 6Y8F ; 1.472 ; An inactive (D136N and D137N) variant of alpha-1,6-mannanase, GH76A of Salegentibacter sp. HEL1_6 in complex with alpha-1,6-mannotriose 4P2P ; 2.4 ; AN INDEPENDENT CRYSTALLOGRAPHIC REFINEMENT OF PORCINE PHOSPHOLIPASE A2 AT 2.4 ANGSTROMS RESOLUTION 3Q01 ; 2.1 ; An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity 3Q05 ; 2.4 ; An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity 3Q06 ; 3.2 ; An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity 3MN3 ; 2.38 ; An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1 8C37 ; 2.15 ; An intermediate light exposed 2.15 Angstrom crystal structure of H132A variant of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under anaerobic conditions 4NEH ; 2.7505 ; An internal ligand-bound, metastable state of a leukocyte integrin, aXb2 4NEN ; 2.9012 ; An internal ligand-bound, metastable state of a leukocyte integrin, aXb2 4CN0 ; 1.75 ; An intertwined homodimer of the PDZ homology domain of AHNAK2 4CMZ ; 2.7 ; An intertwined homodimer of the PDZ homology domain of periaxin 3V16 ; 2.05 ; An intramolecular pi-cation latch in phosphatidylinositol-specific phospholipase C from S.aureus controls substrate access to the active site 1MYQ ; ; An intramolecular quadruplex of (GGA)(4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction 3GDD ; 2.8 ; An inverted anthraquinone-DNA crystal structure 2TPK ; ; AN INVESTIGATION OF THE STRUCTURE OF THE PSEUDOKNOT WITHIN THE GENE 32 MESSENGER RNA OF BACTERIOPHAGE T2 USING HETERONUCLEAR NMR METHODS 2NQ2 ; 2.4 ; An inward-facing conformation of a putative metal-chelate type ABC transporter. 5JY8 ; 2.942 ; An iron-bound structure of the isochorismate synthase EntC 5JY9 ; 2.162 ; An iron-bound structure of the salicylate synthase Irp9 7POA ; 1.6 ; An Irreversible, Promiscuous and Highly Thermostable Claisen-Condensation Biocatalyst Drives the Synthesis of Substituted Pyrroles 7POB ; 2.0 ; An Irreversible, Promiscuous and Highly Thermostable Claisen-Condensation Biocatalyst Drives the Synthesis of Substituted Pyrroles 7POC ; 2.6 ; An Irreversible, Promiscuous and Highly Thermostable Claisen-Condensation Biocatalyst Drives the Synthesis of Substituted Pyrroles 4X6Q ; 2.52 ; An Isoform-specific Myristylation Switch Targets RIIb PKA Holoenzymes to Membranes 4X6R ; 2.4 ; An Isoform-specific Myristylation Switch Targets RIIb PKA Holoenzymes to Membranes 1M1U ; 2.3 ; AN ISOLEUCINE-BASED ALLOSTERIC SWITCH CONTROLS AFFINITY AND SHAPE SHIFTING IN INTEGRIN CD11B A-DOMAIN 1NHR ; 2.1 ; AN L40C MUTATION CONVERTS THE CYSTEINE-SULFENIC ACID REDOX CENTRE IN ENTEROCOCCAL NADH PEROXIDASE TO A DISULFIDE 1NHS ; 2.0 ; AN L40C MUTATION CONVERTS THE CYSTEINE-SULFENIC ACID REDOX CENTRE IN ENTEROCOCCAL NADH PEROXIDASE TO A DISULFIDE 4TXS ; 2.78 ; An Ligand-observed Mass Spectrometry-based Approach Integrated into the Fragment Based Lead Discovery Pipeline 4TY8 ; 2.78 ; An Ligand-observed Mass Spectrometry-based Approach Integrated into the Fragment Based Lead Discovery Pipeline 4TY9 ; 2.78 ; An Ligand-observed Mass Spectrometry-based Approach Integrated into the Fragment Based Lead Discovery Pipeline 4TYA ; 2.94 ; An Ligand-observed Mass Spectrometry-based Approach Integrated into the Fragment Based Lead Discovery Pipeline 4TYB ; 2.93 ; An Ligand-observed Mass Spectrometry-based Approach Integrated into the Fragment Based Lead Discovery Pipeline 3VVK ; 2.3 ; An M-like Reaction State of the azide-bound purple form of pharaonis halorhodopsin 1BDK ; ; AN NMR, CD, MOLECULAR DYNAMICS, AND FLUOROMETRIC STUDY OF THE CONFORMATION OF THE BRADYKININ ANTAGONIST B-9340 IN WATER AND IN AQUEOUS MICELLAR SOLUTIONS 1PUT ; ; AN NMR-DERIVED MODEL FOR THE SOLUTION STRUCTURE OF OXIDIZED PUTIDAREDOXIN, A 2FE, 2-S FERREDOXIN FROM PSEUDOMONAS 2N8V ; ; An NMR/SAXS structure of the PKI domain of the honeybee dicistrovirus, Israeli acute paralysis virus (IAPV) IRES 4O2C ; 1.802 ; An Nt-acetylated peptide complexed with HLA-B*3901 7NFF ; 1.55 ; An octameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-I24A. 7NFL ; 1.44 ; An octameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-I24N. 7NFK ; 1.3 ; An octameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-I24S. 7NFM ; 1.45 ; An octameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-L21K. 7NFI ; 1.42 ; An octameric barrel state of a de novo coiled-coil assembly: CC-Type2-(LaId)4-L7Y. 1SN9 ; 1.2 ; An Oligomeric Domain-Swapped Beta-Beta-Alpha Mini-Protein 1SNA ; 1.5 ; An Oligomeric Domain-Swapped Beta-Beta-Alpha Mini-Protein 1SNE ; 1.5 ; An Oligomeric Domain-Swapped Beta-Beta-Alpha Mini-Protein 5OXF ; 3.94 ; An oligomerised bacterial dynamin pair provides a mechanism for the long range sensing and tethering of membranes 5OWV ; 3.72 ; An oligomerised bacterial dynamin pair provides a mechanism for the long-range sensing and tethering of membranes 4UDE ; 2.25 ; An oligomerization domain confers pioneer properties to the LEAFY master floral regulator 7WZA ; 1.50029 ; An open conformation Form 1 of switch II for RhoA 7WZC ; 1.79945 ; An open conformation Form2 of switch II for RhoA GDP-bound state 6V4A ; 3.83 ; An open conformation of a Pentameic ligand-gated ion channel with additional N-terminal domain 2FMX ; 1.82 ; An open conformation of switch I revealed by Sar1-GDP crystal structure at low Mg(2+) 7W2E ; 3.557 ; An open-like conformation of the sigma-1 receptor from Xenopus laevis 7W2F ; 3.1 ; An open-like conformation of the sigma-1 receptor from Xenopus laevis complexed with PRE084 by co-crystallization 7W2G ; 2.851 ; An open-like conformation of the sigma-1 receptor from Xenopus laevis complexed with PRE084 by soaking 3EAM ; 2.9 ; An open-pore structure of a bacterial pentameric ligand-gated ion channel 3KXO ; 2.1 ; An orally active inhibitor bound at the active site of HPGDS 2PHB ; 2.3 ; An Orally Efficacious Factor Xa Inhibitor 1SBG ; 2.3 ; AN ORALLY-BIOAVAILABLE HIV-1 PROTEASE INHIBITOR CONTAINING AN IMIDAZOLE-DERIVED PEPTIDE BOND REPLACEMENT. CRYSTALLOGRAPHIC AND PHARMACOKINETIC ANALYSIS 6OSW ; ; An order-to-disorder structural switch activates the FoxM1 transcription factor 4FKB ; 1.22 ; An Organic solvent tolerant lipase 42 6X94 ; 1.45 ; An orthogonal seryl-tRNA synthetase/tRNA pair for noncanonical amino acid mutagenesis in Escherichia coli 2VOX ; 1.9 ; An oxidized tryptophan facilitates copper-binding in Methylococcus capsulatus secreted protein MopE. The structure of mercury soaked MopE to 1.9AA 2VOW ; 1.65 ; An oxidized tryptophan facilitates copper-binding in Methylococcus capsulatus secreted protein MopE. The structure of recombinant MopE to 1.65AA 2VOV ; 1.35 ; An oxidized tryptophan facilitates copper-binding in Methylococcus capsulatus secreted protein MopE. The structure of wild-type MopE to 1.35AA 3QJP ; 3.2986 ; An RAMP protein binding different RNA substrates 7RWR ; ; An RNA aptamer that decreases flavin redox potential 6NOU ; 1.914 ; An scFv derived from ixekizumab 7K3Q ; 1.38 ; An ultra-potent human neutralizing antibody locks the SARS-CoV-2 spike in the closed conformation 5WDM ; 2.803 ; An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein 3DHA ; 0.95 ; An Ultral High Resolution Structure of N-Acyl Homoserine Lactone Hydrolase with the Product N-Hexanoyl-L-Homoserine Bound at An Alternative Site 1HXI ; 1.6 ; AN UNEXPECTED EXTENDED CONFORMATION FOR THE THIRD TPR MOTIF OF THE PEROXIN PEX5 FROM TRYPANOSOMA BRUCEI 6NSO ; 1.6 ; An Unexpected Intermediate in the Reaction Catalyzed by Quinolinate Synthase 6OR8 ; 1.65 ; An Unexpected Intermediate in the Reaction Catalyzed by Quinolinate Synthase 6ORA ; 2.2 ; An Unexpected Intermediate in the Reaction Catalyzed by Quinolinate Synthase 2N96 ; ; An unexpected mode of small molecule DNA binding provides the structural basis for DNA cleavage by the potent antiproliferative agent (-)-lomaiviticin A 2QPD ; 3.25 ; An unexpected outcome of surface-engineering an integral membrane protein: Improved crystallization of cytochrome ba3 oxidase from Thermus thermophilus 2QPE ; 2.9 ; An unexpected outcome of surface-engineering an integral membrane protein: Improved crystallization of cytochrome ba3 oxidase from Thermus thermophilus 7BI7 ; 3.0 ; An Unexpected P-Cluster like Intermediate En Route to the Nitrogenase FeMo-co 6C62 ; 1.95 ; An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. 6C6G ; 2.1 ; An unexpected vestigial protein complex reveals the evolutionary origins of an s-triazine catabolic enzyme. Inhibitor bound complex. 1ADS ; 1.65 ; AN UNLIKELY SUGAR SUBSTRATE SITE IN THE 1.65 ANGSTROMS STRUCTURE OF THE HUMAN ALDOSE REDUCTASE HOLOENZYME IMPLICATED IN DIABETIC COMPLICATIONS 4D7E ; 2.4 ; An unprecedented NADPH domain conformation in Lysine Monooxygenase NbtG from Nocardia farcinica 1TIA ; 2.1 ; AN UNUSUAL BURIED POLAR CLUSTER IN A FAMILY OF FUNGAL LIPASES 1TFG ; 1.95 ; AN UNUSUAL FEATURE REVEALED BY THE CRYSTAL STRUCTURE AT 2.2 ANGSTROMS RESOLUTION OF HUMAN TRANSFORMING GROWTH FACTOR-BETA2 1WQC ; ; An unusual fold for potassium channel blockers : NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis 1WQD ; ; An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis 1WQE ; ; An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis 5G01 ; 1.4 ; An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition and protein x-ray structure of Psammaplin C 5G03 ; 1.35 ; An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition and protein x-ray structure of Psammaplin C 5G0B ; 1.55 ; An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition and protein x-ray structure of Psammaplin C 5G0C ; 1.28 ; An unusual natural product primary sulfonamide: synthesis, carbonic anhydrase inhibition and protein x-ray structure of Psammaplin C 2NMR ; 2.1 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NOP ; 2.0 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NOW ; 2.2 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPC ; 2.1 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPD ; 2.1 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPE ; 2.1 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPG ; 2.0 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPJ ; 2.0 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 2NPK ; 2.0 ; An unusual twin-His arrangement in the pore of ammonia channels is essential for substrate conductance 4EHI ; 2.28 ; An X-ray Crystal Structure of a putative Bifunctional Phosphoribosylaminoimidazolecarboxamide Formyltransferase/IMP Cyclohydrolase 4EHJ ; 2.71 ; An X-ray Structure of a Putative Phosphogylcerate Kinase from Francisella tularensis subsp. tularensis SCHU S4 4FEY ; 2.3 ; An X-ray Structure of a Putative Phosphogylcerate Kinase with Bound ADP from Francisella tularensis subsp. tularensis SCHU S4 6KRC ; 1.39 ; An X-ray structure of ferric F43Y/F46S sperm whale myoglobin 6KRF ; 1.86 ; An X-ray structure of ferric F43Y/F46S sperm whale myoglobin in complex with guaiacol 7CEN ; 2.35 ; an x-ray structure of ferric L29E Mb in complex with Mg(II) 7CEZ ; 1.57 ; An x-ray structure of G5K/Q8K/A19K/V21K Mb mutant with a positive charge 6JP1 ; 1.99 ; An X-ray structure of met sperm whale F43Y/T67R myoglobin with Tyr-heme double cross-links 8LYZ ; 2.5 ; AN X-RAY STUDY OF THE STRUCTURE AND BINDING PROPERTIES OF IODINE-INACTIVATED LYSOZYME 7LNE ; 1.53 ; ANA modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 7UV2 ; ; Ana o 1 Leader Sequence Residues 82-132 6S5L ; 2.9 ; Anabaena Apo-C-Terminal Domain Homolog Of The Orange Carotenoid Protein In Native Conditions 6FEJ ; 2.75 ; Anabaena Apo-C-Terminal Domain Homolog Protein 2K2V ; ; Anabaena CcbP in the calcium-bound form 1P78 ; 2.25 ; Anabaena HU-DNA cocrystal structure (AHU2) 1P51 ; 2.5 ; Anabaena HU-DNA cocrystal structure (AHU6) 1P71 ; 1.9 ; Anabaena HU-DNA corcrystal structure (TR3) 1EWY ; 2.38 ; ANABAENA PCC7119 FERREDOXIN:FERREDOXIN-NADP+-REDUCTASE COMPLEX 1CZP ; 1.17 ; ANABAENA PCC7119 [2FE-2S] FERREDOXIN IN THE REDUCED AND OXIXIZED STATE AT 1.17 A 1XIO ; 2.0 ; Anabaena sensory rhodopsin 2II7 ; 2.8 ; Anabaena sensory rhodopsin transducer 2II8 ; 2.1 ; Anabaena sensory rhodopsin transducer 2II9 ; 2.0 ; Anabaena sensory rhodopsin transducer 2IIA ; 1.8 ; Anabaena sensory rhodopsin transducer 4EV1 ; 1.95 ; Anabaena Tic22 (protein transport) 7X99 ; 2.2 ; Anabolic ornithine carbamoyltransferases (OTCs) from Psychrobacter sp. PAMC 21119 4DUL ; 3.0 ; ANAC019 NAC domain crystal form IV 3SWP ; 4.113 ; ANAC019 NAC domain in complex with DNA 2XWP ; 1.9 ; ANAEROBIC COBALT CHELATASE (CbiK) FROM SALMONELLA TYPHIMURIUM IN COMPLEX WITH METALATED TETRAPYRROLE 2XWS ; 1.6 ; ANAEROBIC COBALT CHELATASE (CbiX) FROM ARCHAEOGLOBUS FULGIDUS 2XWQ ; 2.01 ; Anaerobic cobalt chelatase from Archeaoglobus fulgidus (CbiX) in complex with metalated sirohydrochlorin product 1QGO ; 2.4 ; ANAEROBIC COBALT CHELATASE IN COBALAMIN BIOSYNTHESIS FROM SALMONELLA TYPHIMURIUM 3OBP ; 1.5 ; Anaerobic complex of urate oxidase with uric acid 2EI0 ; 1.6 ; Anaerobic Crystal Structure Analysis of 1,2-dihydroxynaphthalene dioxygenase from Pseudomonas sp. strain C18 complexed with 3,4-dihydroxybiphenyl 2EHZ ; 1.35 ; Anaerobic Crystal Structure Analysis of 1,2-dihydroxynaphthalene dioxygenase from Pseudomonas sp. strain C18 complexed with 4-methylcatechol 2EI1 ; 1.52 ; Anaerobic Crystal Structure Analysis of the 1,2-dihydroxynaphthalene dioxygeanse of Pseudomonas sp. strain C18 complexes to 1,2-dihydroxynaphthalene 2EI3 ; 1.9 ; Anaerobic Crystal Structure Analysis of the 1,2-dihydroxynaphthalene dioxygenase from Pseudomonas sp. strain C18 complexes with 2,3-dihydroxybiphenyl 4QWT ; 2.002 ; Anaerobic crystal structure of delta413-417:GS LOX in complex with arachidonate 4IXK ; 2.1 ; Anaerobic crystal structure of iron soaked (2 h) ferritin from Pseudo-nitzschia multiseries 4ITW ; 2.0 ; Anaerobic crystal structure of iron soaked (75 min) ferritin from Pseudo-nitzschia multiseries 7VUA ; 2.695 ; Anaerobic hydroxyproline degradation involving C-N cleavage by a glycyl radical enzyme 8C33 ; 2.25 ; Anaerobic light exposed 2.25 Angstrom crystal structure of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH 1QYO ; 1.8 ; Anaerobic precylization intermediate crystal structure for S65G Y66G GFP variant 4U3E ; 1.64 ; Anaerobic ribonucleotide reductase 1F1V ; 1.9 ; ANAEROBIC SUBSTRATE COMPLEX OF HOMOPROTOCATECHUATE 2,3-DIOXYGENASE FROM ARTHROBACTER GLOBIFORMIS. (COMPLEX WITH 3,4-DIHYDROXYPHENYLACETATE) 2PPA ; 1.69 ; Anaerobically manipulated wild type oxidized AfNiR bound to nitrous oxide 1DAU ; ; Analog of dickerson-drew DNA dodecamer with 6'-alpha-methyl carbocyclic thymidines, NMR, minimized average structure 2LSQ ; ; Analog of the fragment 197-221 of beta-1 adrenoreceptor 1ELA ; 2.0 ; Analogous inhibitors of elastase do not always bind analogously 1ELB ; 2.1 ; Analogous inhibitors of elastase do not always bind analogously 1ELC ; 1.75 ; Analogous inhibitors of elastase do not always bind analogously 1LPN ; 2.18 ; ANALOGS OF REACTION INTERMEDIATES IDENTIFY A UNIQUE SUBSTRATE BINDING SITE IN CANDIDA RUGOSA LIPASE 1LPO ; 2.18 ; ANALOGS OF REACTION INTERMEDIATES IDENTIFY A UNIQUE SUBSTRATE BINDING SITE IN CANDIDA RUGOSA LIPASE 1LPP ; 2.18 ; ANALOGS OF REACTION INTERMEDIATES IDENTIFY A UNIQUE SUBSTRATE BINDING SITE IN CANDIDA RUGOSA LIPASE 2IWU ; 2.8 ; Analogues of radicicol bound to the ATP-binding site of Hsp90 2IWX ; 1.5 ; Analogues of radicicol bound to the ATP-binding site of Hsp90. 1B95 ; 2.05 ; ANALYSIS OF A MUTATIONAL HOT-SPOT IN THE ECORV RESTRICTION ENDONUCLEASE: A CATALYTIC ROLE FOR A MAIN CHAIN CARBONYL GROUP 1B96 ; 2.3 ; ANALYSIS OF A MUTATIONAL HOT-SPOT IN THE ECORV RESTRICTION ENDONUCLEASE: A CATALYTIC ROLE FOR A MAIN CHAIN CARBONYL GROUP 1B97 ; 1.9 ; ANALYSIS OF A MUTATIONAL HOT-SPOT IN THE ECORV RESTRICTION ENDONUCLEASE: A CATALYTIC ROLE FOR A MAIN CHAIN CARBONYL GROUP 3QT9 ; 2.05 ; Analysis of a new family of widely distributed metal-independent alpha mannosidases provides unique insight into the processing of N-linked glycans, Clostridium perfringens CPE0426 complexed with alpha-1,6-linked 1-thio-alpha-mannobiose 3QRY ; 1.75 ; Analysis of a new family of widely distributed metal-independent alpha mannosidases provides unique insight into the processing of N-linked glycans, Streptococcus pneumoniae SP_2144 1-deoxymannojirimycin complex 3QSP ; 2.1 ; Analysis of a new family of widely distributed metal-independent alpha mannosidases provides unique insight into the processing of N-linked glycans, Streptococcus pneumoniae SP_2144 non-productive substrate complex with alpha-1,6-mannobiose 3QT3 ; 2.35 ; Analysis of a New Family of Widely Distributed Metal-independent alpha-Mannosidases Provides Unique Insight into the Processing of N-linked Glycans, Clostridium perfringens CPE0426 apo-structure 3QPF ; 2.15 ; Analysis of a New Family of Widely Distributed Metal-independent alpha-Mannosidases Provides Unique Insight into the Processing of N-linked Glycans, Streptococcus pneumoniae SP_2144 apo-structure 7JY8 ; 2.4 ; Analysis of a strand exchange reaction with a mini filament of 9-RecA, 27-mer ssDNA, partially-homologous 67 bp dsDNA and ATPgammaS 7JY6 ; 2.5 ; Analysis of a strand exchange reaction with a mini filament of 9-RecA, oligo(dT)27 primary ssDNA, non-homologous 120 bp dsDNA and ATPgammaS 1I13 ; 1.84 ; ANALYSIS OF AN INVARIANT ASPARTIC ACID IN HPRTS-ALANINE MUTANT 1I0L ; 1.72 ; ANALYSIS OF AN INVARIANT ASPARTIC ACID IN HPRTS-ASPARAGINE MUTANT 1I14 ; 1.92 ; ANALYSIS OF AN INVARIANT ASPARTIC ACID IN HPRTS-GLUTAMIC ACID MUTANT 1I0I ; 2.06 ; ANALYSIS OF AN INVARIANT ASPARTIC ACID IN HPRTS-GLUTAMINE MUTANT 1LY3 ; 1.9 ; ANALYSIS OF QUINAZOLINE AND PYRIDOPYRIMIDINE N9-C10 REVERSED BRIDGE ANTIFOLATES IN COMPLEX WITH NADP+ AND PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE 1LY4 ; 2.1 ; Analysis of quinazoline and PYRIDO[2,3D]PYRIMIDINE N9-C10 reversed bridge antifolates in complex with NADP+ and Pneumocystis carinii dihydrofolate reductase 2CRD ; ; ANALYSIS OF SIDE-CHAIN ORGANIZATION ON A REFINED MODEL OF CHARYBDOTOXIN: STRUCTURAL AND FUNCTIONAL IMPLICATIONS 1YO5 ; 2.0 ; Analysis of the 2.0A crystal structure of the protein-DNA complex of human PDEF Ets domain bound to the prostate specific antigen regulatory site 1HDB ; 2.2 ; ANALYSIS OF THE CRYSTAL STRUCTURE, MOLECULAR MODELING AND INFRARED SPECTROSCOPY OF THE DISTAL BETA-HEME POCKET VALINE67(E11)-THREONINE MUTATION OF HEMOGLOBIN 1L55 ; 1.9 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L56 ; 1.8 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L57 ; 1.9 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L58 ; 1.65 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L59 ; 1.75 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L60 ; 1.7 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L61 ; 1.8 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L62 ; 1.7 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1L63 ; 1.75 ; ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME 1ITM ; ; ANALYSIS OF THE SOLUTION STRUCTURE OF HUMAN INTERLEUKIN 4 DETERMINED BY HETERONUCLEAR THREE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE TECHNIQUES 1KXW ; 1.96 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1KXX ; 1.71 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1KXY ; 1.79 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1RFP ; 1.75 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIA ; 1.76 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIB ; 1.76 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIC ; 1.95 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UID ; 1.95 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIE ; 1.95 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIF ; 1.85 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIG ; 1.95 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 1UIH ; 1.75 ; ANALYSIS OF THE STABILIZATION OF HEN LYSOZYME WITH THE HELIX DIPOLE AND CHARGED SIDE CHAINS 2M4X ; ; Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin, Huwentoxin-IV (-TRTX-Hh2a). 2M4Z ; ; Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin, Huwentoxin-IV (-TRTX-Hh2a). 2M50 ; ; Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin, Huwentoxin-IV (-TRTX-Hh2a). 3FM9 ; 2.7 ; Analysis of the Structural Determinants Underlying Discrimination between Substrate and Solvent in beta-Phosphoglucomutase Catalysis 1PD8 ; 2.1 ; Analysis of Three Crystal Structure Determinations of a 5-Methyl-6-N-Methylanilino Pyridopyrimidine Antifolate Complex with Human Dihydrofolate Reductase 1PD9 ; 2.2 ; Analysis of Three Crystal Structure Determinations of a 5-Methyl-6-N-Methylanilino Pyridopyrimidine antifolate Complex with Human Dihydrofolate Reductase 1PDB ; 2.2 ; Analysis of Three Crystal Structure Determinations of a 5-Methyl-6-N-Methylanilino Pyridopyrimidine Antifolate Complex with Human Dihydrofolate Reductase 1MVS ; 1.9 ; Analysis of Two Polymorphic Forms of a Pyrido[2,3-d]pyrimidine N9-C10 Reverse-Bridge Antifolate Binary Complex with Human Dihydrofolate Reductase 1MVT ; 1.8 ; Analysis of Two Polymorphic Forms of a Pyrido[2,3-d]pyrimidine N9-C10 Reverse-Bridge Antifolate Binary Complex with Human Dihydrofolate Reductase 4IPX ; 1.7 ; Analyzing the visible conformational substates of the FK506 binding protein FKBP12 7AX5 ; 1.756 ; Anammox-specific acyl carrier protein from Kuenenia stuttgartiensis; ensemble refinement 7AUF ; 1.76 ; anammox-specific acyl carrier protein from Kuenenia stuttgartiensis; normal refinement 8AYB ; 1.8 ; anammox-specific FabZ from Scalindua brodae 8AYD ; 2.8 ; Anammox-specific FabZ from the annamox bacterium Kuenenia stuttgartiensis 5IMX ; 2.12 ; Anaplastic lymphoma kinase (ALK) catalytic domain complexed with novel inhibitor 3-sulfonylpyrazol-4-amino pyrimidine 7N00 ; 2.27 ; Anaplastic lymphoma kinase (ALK) extracellular fragment of ligand binding region 648-1025 in complex with AUG-alpha 7MZY ; 1.5 ; Anaplastic lymphoma kinase (ALK) extracellular fragment of ligand binding region 673-986 7MZW ; ; Anaplastic lymphoma kinase (ALK) extracellular ligand binding region 673-1025 4Z55 ; 1.55 ; Anaplastic lymphoma kinase catalytic domain complexed with pyrazolopyrimidine derivative of LDK378 8ARJ ; 1.645 ; Anaplastic Lymphoma Kinase with a novel carboline inhibitor 1Q38 ; ; Anastellin 1GES ; 1.74 ; ANATOMY OF AN ENGINEERED NAD-BINDING SITE 1GET ; 2.0 ; ANATOMY OF AN ENGINEERED NAD-BINDING SITE 1GEU ; 2.2 ; ANATOMY OF AN ENGINEERED NAD-BINDING SITE 1OJI ; 2.15 ; Anatomy of glycosynthesis: Structure and kinetics of the Humicola insolens Cel7B E197A and E197S glycosynthase mutants 1OJJ ; 1.4 ; Anatomy of glycosynthesis: Structure and kinetics of the Humicola insolens Cel7BE197A and E197S glycosynthase mutants 1OJK ; 1.5 ; Anatomy of glycosynthesis: Structure and kinetics of the Humicola insolens Cel7BE197A and E197S glycosynthase mutants 5NYW ; 2.501 ; Anbu (ancestral beta-subunit) from Yersinia bercovieri 5NYG ; 2.4 ; Anbu (Gly-1) mutant from Hyphomicrobium sp. strain MC1 - SG P2(1)2(1)2(1) 5NYQ ; 1.95 ; Anbu (Gly-1) mutant from Hyphomicrobium sp. strain MC1 - SG:R32 5NYJ ; 3.2 ; Anbu from Hyphomicrobium sp. strain MC1 - SG: C2 5NYP ; 1.9 ; Anbu from Hyphomicrobium sp. strain MC1 - SG: R32 5NYR ; 2.0 ; Anbu from Hyphomicrobium sp. strain MC1 -SG: R3 7RAE ; 2.098 ; AncAR1 - progesterone - Tif2 7RAF ; 1.551 ; AncAR1-Rev - progesterone - Tif2 8JKU ; 2.57 ; Ancestal imine reductase 3ZDJ ; 2.4 ; Ancestral (ENCA) beta-lactamase class A 4B88 ; 2.05 ; Ancestral (GNCA) Beta-lactamase class A 7XPM ; 2.35 ; Ancestral ADH WT 6PPM ; 2.61 ; Ancestral Caspase 6 5TUJ ; 3.352 ; Ancestral Cationic Amino Acid Solute Binding Protein (AncCDT-1) 2Q3Y ; 2.4 ; Ancestral Corticiod Receptor in Complex with DOC 2Q1H ; 1.9 ; Ancestral Corticoid Receptor in Complex with Aldosterone 2Q1V ; 1.95 ; Ancestral corticoid receptor in complex with cortisol 6PDQ ; 1.83 ; Ancestral Effector Caspase 3/6/7 6GJF ; 1.45 ; Ancestral endocellulase Cel5A 7AL4 ; 3.0 ; Ancestral Flavin-containing monooxygenase (FMO) 1 (mammalian) 6Z1H ; 2.5 ; Ancestral glycosidase (family 1) 8JYT ; 1.79 ; Ancestral imine reducatase N560 8HWY ; 2.32 ; Ancestral imine reductase mutant N559_M6 4LTW ; 2.045 ; Ancestral Ketosteroid Receptor-Progesterone-Mifepristone Complex 7C4N ; 2.2 ; Ancestral L-amino acid oxidase (AncLAAO-N5) L-Phe binding form 7C4M ; 2.4 ; Ancestral L-amino acid oxidase (AncLAAO-N5) L-Trp binding form 7C4K ; 2.4 ; Ancestral L-amino acid oxidase (AncLAAO-N5) ligand free form 7X7K ; 1.6 ; Ancestral L-Lys oxidase (AncLLysO-2) L-Arg binding form 7X7J ; 1.4 ; Ancestral L-Lys oxidase (AncLLysO-2) L-Lys binding form 7X7I ; 1.55 ; Ancestral L-Lys oxidase (AncLLysO-2) ligand free form 7EIH ; 2.2 ; Ancestral L-Lys oxidase (ligand free form) 7EIJ ; 2.2 ; Ancestral L-Lys oxidase K387A variant (L-Arg binding form) 7EII ; 2.4 ; Ancestral L-Lys oxidase K387A variant (L-Lys binding form) 6K4D ; 1.7 ; Ancestral luciferase AncLamp in complex with ATP and D-luciferin 6K4C ; 2.1 ; Ancestral luciferase AncLamp in complex with DLSA 7DDT ; 2.9 ; Ancestral myoglobin aMbSe of Enaliarctos relative (imidazol ligand) 7DDS ; 2.3 ; Ancestral myoglobin aMbSp of Puijila Darwini relative 7DDR ; 1.5 ; Ancestral myoglobin aMbSp of Puijila Darwini relative (imidazol ligand) 5YCH ; 1.354 ; Ancestral myoglobin aMbWb of Basilosaurus relative (monophyly) 5YCI ; 1.97 ; Ancestral myoglobin aMbWb' of Basilosaurus relative (polyphyly) 5YCJ ; 1.58 ; Ancestral myoglobin aMbWb' of Basilosaurus relative (polyphyly) imidazole-ligand 5YCG ; 2.4 ; Ancestral myoglobin aMbWp of Pakicetus relative 8ETY ; 1.54 ; Ancestral PETase 35_442 8ETZ ; 1.68 ; Ancestral PETase 35_442 Mutant E13D 8EU0 ; 2.06 ; Ancestral PETase 35_442 Mutant E27Q 8EU1 ; 2.23 ; Ancestral PETase 35_442 Mutant F93L 8ETX ; 1.75 ; Ancestral PETase 55_547 4C6Y ; 1.799 ; Ancestral PNCA (last common ancestors of Gram-positive and Gram- negative bacteria) beta-lactamase class A 7R8Z ; 2.3 ; Ancestral protein AncEn of Phosphomethylpyrimidine kinases family 8G1H ; 2.7 ; Ancestral protein AncTh of Phosphomethylpirimidine kinases family 7R8Y ; 3.2 ; Ancestral protein AncThEn of Phosphomethylpyrimidine kinases family 7UKB ; 1.95 ; Ancestral reconstruction of a plant alpha/beta-hydrolase 4LY7 ; 1.36 ; Ancestral RNase H 4OLN ; 1.7 ; Ancestral Steroid Receptor 1 in complex with estrogen response element DNA 4OND ; 2.253 ; Ancestral Steroid Receptor 2 DBD helix mutant - ERE DNA complex 4OV7 ; 2.701 ; Ancestral Steroid Receptor 2 DBD helix mutant - SRE DNA complex 4OOR ; 2.701 ; Ancestral Steroid Receptor 2 DNA binding domain in complex with a steroid response element 5CBX ; 2.0 ; AncGR DNA Binding Domain - (+)GRE Complex 5CBY ; 1.997 ; AncGR2 DNA Binding Domain - (+)GRE Complex 3SE7 ; 3.07 ; ancient VanA 5CBZ ; 2.2 ; AncMR DNA Binding Domain - (+)GRE Complex 5CC0 ; 2.405 ; AncSR2 - TSLP nGRE complex 3RF4 ; 1.8 ; Ancylostoma ceylanicum mif in complex with furosemide 3RF5 ; 2.1 ; Ancylostoma ceylanicum mif in complex with n-(2,3,4,5,6-pentafluoro-benzyl)-4-sulfamoyl-benzamide 3S6S ; 2.4 ; Ancylostoma-secreted protein Ac-ASP-7 7WPY ; 2.25 ; AndA_M119A_N121V variant 6Q99 ; 2.951 ; Ande virus L protein N-terminus mutant K124A 4C46 ; 1.95 ; ANDREI-N-LVPAS fused to GCN4 adaptors 2LMU ; ; Androcam at high calcium 2LMV ; ; Androcam at high calcium with three explicit Ca2+ 2PIO ; 2.03 ; Androgen receptor LBD with small molecule 2PIP ; 1.8 ; Androgen receptor LBD with small molecule 2PIQ ; 2.4 ; androgen receptor LBD with small molecule 2PIR ; 2.1 ; Androgen receptor LBD with small molecule 2PIT ; 1.76 ; Androgen receptor LBD with small molecule 2PIU ; 2.12 ; Androgen receptor LBD with small molecule 2PKL ; 2.49 ; Androgen receptor LBD with small molecule 2PIV ; 1.95 ; Androgen receptor with small molecule 2PIW ; 2.58 ; Androgen receptor with small molecule 7CL9 ; 1.95 ; Androstenedione-bound structure of CYP154C2 from Streptomyces avermitilis in an open conformation 3CFA ; 1.75 ; Anemonia sulcata red fluorescent protein asRFP 1Q0C ; 2.1 ; Anerobic Substrate Complex of Homoprotocatechuate 2,3-Dioxygenase from Brevibacterium fuscum. (Complex with 3,4-Dihydroxyphenylacetate) 4EPU ; 2.098 ; Ang1 fibrinogen-related domain (FReD) 4JZC ; 1.9 ; Angiopoietin-2 fibrinogen domain TAG mutant 1Z3S ; 2.35 ; Angiopoietin-2 Receptor Binding Domain 2GY7 ; 3.7 ; Angiopoietin-2/Tie2 Complex Crystal Structure 2JP8 ; ; Angiotensin 1-7 3NXQ ; 1.99 ; Angiotensin Converting Enzyme N domain glycsoylation mutant (Ndom389) in complex with RXP407 6JOD ; 3.2 ; Angiotensin II type 2 receptor with ligand 4MWJ ; 1.8 ; Anhui N9 4MWU ; 1.799 ; Anhui N9-laninamivir 4MWQ ; 2.0 ; Anhui N9-oseltamivir carboxylate 4MWV ; 2.0 ; Anhui N9-peramivir 4MWR ; 1.797 ; Anhui N9-zanamivir 4WHR ; 1.58 ; Anhydride reaction intermediate trapped in Protocatechuate 3,4-dioxygenase (pseudomonas putida) at pH 8.5 7VGV ; 2.3 ; Anion free form of light-driven chloride ion-pumping rhodopsin, NM-R3, structure determined by serial femtosecond crystallography at SACLA 3QBG ; 1.8 ; Anion-free blue form of pharaonis halorhodopsin 1S8L ; 2.3 ; Anion-free form of the D85S mutant of bacteriorhodopsin from crystals grown in the presence of halide 1E54 ; 2.1 ; Anion-selective porin from Comamonas acidovorans 3F49 ; 1.7 ; Anion-triggered Engineered Subtilisin SUBT_BACAM 2STA ; 1.8 ; ANIONIC SALMON TRYPSIN IN COMPLEX WITH SQUASH SEED INHIBITOR (CUCURBITA MAXIMA TRYPSIN INHIBITOR I) 2STB ; 1.8 ; ANIONIC SALMON TRYPSIN IN COMPLEX WITH SQUASH SEED INHIBITOR (CUCURBITA PEPO TRYPSIN INHIBITOR II) 1MBQ ; 1.8 ; Anionic Trypsin from Pacific Chum Salmon 3FP6 ; 1.49 ; Anionic trypsin in complex with bovine pancreatic trypsin inhibitor (BPTI) determined to the 1.49 A resolution limit 1AND ; 2.3 ; ANIONIC TRYPSIN MUTANT WITH ARG 96 REPLACED BY HIS 1ANB ; 2.8 ; ANIONIC TRYPSIN MUTANT WITH SER 214 REPLACED BY GLU 1ANC ; 2.2 ; ANIONIC TRYPSIN MUTANT WITH SER 214 REPLACED BY LYS 3FP7 ; 1.46 ; Anionic trypsin variant S195A in complex with bovine pancreatic trypsin inhibitor (BPTI) cleaved at the scissile bond (LYS15-ALA16) determined to the 1.46 A resolution limit 3FP8 ; 1.46 ; Anionic trypsin variant S195A in complex with bovine pancreatic trypsin inhibitor (BPTI) determined to the 1.46 A resolution limit 1ANE ; 2.2 ; ANIONIC TRYPSIN WILD TYPE 3LSW ; 1.752 ; Aniracetam bound to the ligand binding domain of GluA3 6J1M ; 2.001 ; Anisodus acutangulus type III polyketide sythase AaPKS2 in complex with 4-carboxy-3-oxobutanoyl covalent to C166 6J1N ; 2.532 ; Anisodus acutangulus type III polyketide sythase AaPKS2 in complex with 4-carboxy-3-oxobutanoyl-CoA 2BF9 ; 0.99 ; Anisotropic refinement of avian (turkey) pancreatic polypeptide at 0. 99 Angstroms resolution. 2IGD ; 1.1 ; ANISOTROPIC STRUCTURE OF PROTEIN G IGG-BINDING DOMAIN III AT 1.1 ANGSTROM RESOLUTION 7BNA ; 1.9 ; ANISOTROPIC THERMAL-PARAMETER REFINEMENT OF THE DNA DODECAMER CGCGAATTCGCG BY THE SEGMENTED RIGID-BODY METHOD 2PFD ; 3.42 ; Anisotropically refined structure of FTCD 8DEH ; 1.815 ; Ankyrin domain of SKD3 8FDS ; 1.65 ; Ankyrin domain of SKD3 isoform 2 3ZNG ; 2.85 ; Ankyrin repeat and SOCS-box protein 9 (ASB9) in complex with ElonginB and ElonginC 6V9H ; 4.1 ; Ankyrin repeat and SOCS-box protein 9 (ASB9), ElonginB (ELOB), and ElonginC (ELOC) bound to its substrate Brain-type Creatine Kinase (CKB) 3LJN ; 2.9 ; Ankyrin repeat protein from Leishmania major 7UZU ; 2.3 ; Ankyrin-1 (N-terminal region of membrane binding domain, local refinement from consensus reconstruction; bound to N-terminal peptide from band 3) 7C4L ; 2.6 ; Anncestral L-amino acid oxidase (AncLAAO-N5) L-Gln binding form 7TII ; 2.45 ; Annealed structure of oxidized bovine cytochrome c oxidase with reduced metal centers induced by synchrotron X-ray exposure 6B3I ; 2.6 ; Annexin A13a 1W7B ; 1.52 ; Annexin A2: Does it induce membrane aggregation by a new multimeric state of the protein. 8H0J ; 2.23 ; Annexin A5 mutant 8GYC ; 1.8 ; Annexin A5 protein dimer mutant 8H9Z ; 1.42 ; Annexin A5 protein mutant 1N00 ; 2.1 ; Annexin Gh1 from cotton 1AII ; 1.95 ; ANNEXIN III 1ANN ; 2.3 ; ANNEXIN IV 1AOW ; 3.0 ; ANNEXIN IV 1G5N ; 1.9 ; ANNEXIN V COMPLEX WITH HEPARIN OLIGOSACCHARIDES 2IE7 ; 1.75 ; Annexin V under 2.0 MPa pressure of nitrous oxide 2IE6 ; 1.83 ; Annexin V under 2.0 MPa pressure of xenon 1DM5 ; 1.93 ; ANNEXIN XII E105K HOMOHEXAMER CRYSTAL STRUCTURE 7O8Z ; 1.8 ; Anomalous bromide substructure of NmHR under continuous illumination determined at 13.7 keV with serial crystallography 7O8Y ; 1.75 ; Anomalous bromide substructure of NmHR under dark state conditions determined at 13.7 keV with serial crystallography 6W2B ; 4.7 ; Anomalous bromine signal reveals the position of Br-paroxetine complexed with the serotonin transporter at the central site 6AWQ ; 4.046 ; Anomalous chloride signal reveals the position of sertraline complexed with the serotonin transporter at the central site 5SVT ; 3.794 ; Anomalous Cs+ signal reveals the site of Na+ ion entry to the channel pore of the human P2X3 ion channel through the extracellular fenestrations 6W2C ; 6.3 ; Anomalous iodine signal reveals the position of I-paroxetine complexed with the serotonin transporter at the central site 5SVS ; 4.025 ; Anomalous Mn2+ signal reveals a divalent cation-binding site in the head domain of the ATP-gated human P2X3 ion channel 5AI2 ; 1.75 ; Anomalous Neutron phased crystal structure of 113Cd-substituted Perdeuterated Pyrococcus furiosus rubredoxin to 1.75A resolution at 295K 1LZ9 ; 1.7 ; ANOMALOUS SIGNAL OF SOLVENT BROMINES USED FOR PHASING OF LYSOZYME 2G4X ; 1.95 ; Anomalous substructure od ribonuclease A (P3221) 2G4O ; 2.0 ; anomalous substructure of 3-ISOPROPYLMALATE DEHYDROGENASE 2G4N ; 2.3 ; Anomalous substructure of alpha-lactalbumin 2G4H ; 2.0 ; Anomalous substructure of apoferritin 2G4I ; 2.4 ; Anomalous substructure of Concanavalin A 2G4J ; 1.85 ; Anomalous substructure of Glucose isomerase 2G4K ; 1.82 ; Anomalous substructure of human ADP-ribosylhydrolase 3 2G4L ; 1.84 ; Anomalous substructure of hydroxynitrile lyase 2G4P ; 1.84 ; Anomalous substructure of lysozyme at pH 4.5 2G4Q ; 1.84 ; Anomalous substructure of lysozyme at pH 8.0 2G4R ; 1.92 ; anomalous substructure of MogA 2G4S ; 2.15 ; Anomalous substructure of NBR1PB1 2G4U ; 1.84 ; Anomalous substructure of porcine pancreatic elastaase (Ca) 2G4T ; 2.15 ; anomalous substructure of porcine pancreatic elastase (Na) 2G4V ; 2.14 ; anomalous substructure of proteinase K 2G4W ; 1.84 ; anomalous substructure of ribonuclease A (C2) 2G4Z ; 1.98 ; anomalous substructure of thermolysin 2ILL ; 2.2 ; Anomalous substructure of Titin-A168169 2G51 ; 1.84 ; anomalous substructure of trypsin (p1) 2G52 ; 1.84 ; Anomalous substructure of trypsin (P21) 2G55 ; 1.82 ; Anomalous substructure of trypsin (P3121) 5SVP ; 3.298 ; Anomalous sulfur signal reveals the position of agonist 2-methylthio-ATP bound to the ATP-gated human P2X3 ion channel in the desensitized state 1JLV ; 1.75 ; Anopheles dirus species B glutathione S-transferases 1-3 1JLW ; 2.45 ; Anopheles dirus species B glutathione S-transferases 1-4 3ZMK ; 2.2 ; Anopheles funestus glutathione-s-transferase epsilon 2 (GSTe2) protein structure from different alelles: A single amino acid change confers high level of DDT resistance and cross resistance to permethrin in a major malaria vector in Africa 3ZML ; 1.639 ; Anopheles funestus glutathione-s-transferase epsilon 2 (GSTe2) protein structure from different alelles: A single amino acid change confers high level of DDT resistance and cross resistance to permethrin in a major malaria vector in Africa 4E05 ; 2.304 ; Anophelin from the malaria vector inhibits thrombin through a novel reverse-binding mechanism 4E06 ; 3.196 ; Anophelin from the malaria vector inhibits thrombin through a novel reverse-binding mechanism 2MJT ; ; Anoplin R5F T8W in DPC micelles 2MJS ; ; Anoplin R5K T8W in DPC micelles 2MJR ; ; Anoplin R5W structure in DPC micelles 4N81 ; 1.901 ; Another flexible region at the active site of an inositol monophosphatase from Zymomonas mobilis 4XOS ; 1.559 ; ANP32A LRR domain 8CLD ; 3.2 ; Ansamitocin P3 bound to tubulin (T2R-TTL) complex 1AGD ; 2.05 ; ANTAGONIST HIV-1 GAG PEPTIDES INDUCE STRUCTURAL CHANGES IN HLA B8-HIV-1 GAG PEPTIDE (GGKKKYKL-INDEX PEPTIDE) 1AGC ; 2.1 ; ANTAGONIST HIV-1 GAG PEPTIDES INDUCE STRUCTURAL CHANGES IN HLA B8-HIV-1 GAG PEPTIDE (GGKKKYQL-7Q MUTATION) 1AGE ; 2.3 ; ANTAGONIST HIV-1 GAG PEPTIDES INDUCE STRUCTURAL CHANGES IN HLA B8-HIV-1 GAG PEPTIDE (GGKKKYRL-7R MUTATION) 1AGF ; 2.2 ; ANTAGONIST HIV-1 GAG PEPTIDES INDUCE STRUCTURAL CHANGES IN HLA B8-HIV-1 GAG PEPTIDE (GGKKRYKL-5R MUTATION) 1AGB ; 2.2 ; ANTAGONIST HIV-1 GAG PEPTIDES INDUCE STRUCTURAL CHANGES IN HLA B8-HIV-1 GAG PEPTIDE (GGRKKYKL-3R MUTATION) 6Q6P ; 3.0 ; Antarctic fish cytoglobin 1 from D.mawsoni 6SMO ; 2.7 ; AntDE:AntF (apo): type II PKS acyl-carrier protein in complex with its ketosynthase bound to the hexaketide 6SMP ; 2.9 ; AntDE:AntF (holo): type II PKS acyl-carrier protein in complex with its ketosynthase bound to the hexaketide 1KX8 ; 2.8 ; Antennal Chemosensory Protein A6 from Mamestra brassicae, tetragonal form 1KX9 ; 1.65 ; ANTENNAL CHEMOSENSORY PROTEIN A6 FROM THE MOTH MAMESTRA BRASSICAE 9ANT ; 2.4 ; ANTENNAPEDIA HOMEODOMAIN-DNA COMPLEX 6SM4 ; 1.85 ; AntF (apo): type II PKS acyl-carrier protein 6SM6 ; 2.4 ; AntF (holo): type II PKS acyl-carrier protein 7JXV ; 2.35 ; ANTH domain of CALM (clathrin-assembly lymphoid myeloid leukemia protein) bound to ubiquitin 1GP4 ; 2.1 ; Anthocyanidin synthase from Arabidopsis thaliana (selenomethionine substituted) 2BRT ; 2.2 ; ANTHOCYANIDIN SYNTHASE FROM ARABIDOPSIS THALIANA COMPLEXED with naringenin 1GP5 ; 2.2 ; Anthocyanidin synthase from Arabidopsis thaliana complexed with trans-dihydroquercetin 1GP6 ; 1.75 ; Anthocyanidin synthase from Arabidopsis thaliana complexed with trans-dihydroquercetin (with 30 min exposure to O2) 1AHL ; ; ANTHOPLEURIN-A,NMR, 20 STRUCTURES 1APF ; ; ANTHOPLEURIN-B, NMR, 20 STRUCTURES 1D54 ; 1.4 ; ANTHRACYCLINE BINDING TO DNA: HIGH RESOLUTION STRUCTURE OF D(TGTACA) COMPLEXED WITH 4'-EPIADRIAMYCIN 110D ; 1.9 ; ANTHRACYCLINE-DNA INTERACTIONS AT UNFAVOURABLE BASE BASE-PAIR TRIPLET-BINDING SITES: STRUCTURES OF D(CGGCCG)/DAUNOMYCIN AND D(TGGCCA)/ADRIAMYCIN COMPL 1DA9 ; 1.7 ; ANTHRACYCLINE-DNA INTERACTIONS AT UNFAVOURABLE BASE BASE-PAIR TRIPLET-BINDING SITES: STRUCTURES OF D(CGGCCG)/DAUNOMYCIN AND D(TGGCCA)/ADRIAMYCIN COMPL 4YI7 ; 1.853 ; Anthranilate bound at active site of anthranilate phosphoribosyl transferase from Acinetobacter (AnPRT; TrpD) 4OWM ; 1.99 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 3-fluoroanthranilate, PRPP and Magnesium 4OWQ ; 1.89 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 3-methylanthranilate, PRPP and Magnesium 4OWS ; 2.43 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 4-methylanthranilate, PRPP and Magnesium 4OWN ; 2.11 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 5-fluoroanthranilate, PRPP and Magnesium 4OWU ; 1.89 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 5-methylanthranilate, PRPP and Magnesium 4OWO ; 1.99 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with 6-fluoroanthranilate, PRPP and Magnesium 4OWV ; 1.9 ; Anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis in complex with anthranilate 4X58 ; 1.75 ; Anthranilate phosphoribosyl transferase variant N138A from Mycobacterium tuberculosis in complex with PRPP and Mg 1O17 ; 2.05 ; ANTHRANILATE PHOSPHORIBOSYL-TRANSFERASE (TRPD) 3GBR ; 2.25 ; Anthranilate phosphoribosyl-transferase (TRPD) double mutant D83G F149S from S. solfataricus 2GVQ ; 2.43 ; Anthranilate phosphoribosyl-transferase (TRPD) from S. solfataricus in complex with anthranilate 2BPQ ; 1.9 ; Anthranilate phosphoribosyltransferase (TrpD) from Mycobacterium tuberculosis (Apo structure) 3QR9 ; 1.87 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (apo structure) 3UU1 ; 1.82 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (complex with inhibitor ACS142) 3R88 ; 1.73 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (complex with inhibitor ACS145) 3QQS ; 1.97 ; Anthranilate phosphoribosyltransferase (TRPD) from Mycobacterium tuberculosis (complex with inhibitor ACS172) 3QS8 ; 2.0 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (complex with inhibitor ACS174) 3R6C ; 1.83 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (complex with inhibitor ACS179) 3QSA ; 2.18 ; Anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis (complex with inhibitor TAMU-A7) 7DSM ; 2.39 ; Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae 7DSO ; 2.34 ; Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae in complex with 4-fluoroanthranilate 7DSJ ; 2.44 ; Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae in complex with PRPP and Mg 1ZXY ; 2.56 ; Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus in complex with PRPP and Magnesium 5NOE ; 1.91 ; Anthranilate phosphoribosyltransferase from Thermococcus kodakaraensis 5NOF ; 2.42 ; Anthranilate phosphoribosyltransferase from Thermococcus kodakaraensis 1ZYK ; 2.4 ; Anthranilate Phosphoribosyltransferase in complex with PRPP, anthranilate and magnesium 1GXB ; 2.65 ; ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE IN COMPLEX WITH PYROPHOSPHATE AND MAGNESIUM 7DSR ; 2.5 ; Anthranilate phosphoribosyltransferase variant Gly141Asn from Saccharomyces cerevisiae in complex with 4-fluoroanthranilate 4X59 ; 1.8 ; Anthranilate phosphoribosyltransferase variant P180A from Mycobacterium tuberculosis in complex with PRPP and Mg 4X5A ; 1.93 ; Anthranilate phosphoribosyltransferase variant R193A from Mycobacterium tuberculosis remains ligand-free when co-crystallised with PRPP and Mg 4X5D ; 2.3 ; Anthranilate phosphoribosyltransferase variant R193A from Mycobacterium tuberculosis with anthranilate bound 4X5B ; 2.47 ; Anthranilate phosphoribosyltransferase variant R193L from Mycobacterium tuberculosis in complex with PRPP and Mg 4X5C ; 2.33 ; Anthranilate phosphoribosyltransferase variant R193L from Mycobacterium tuberculosis with pyrophosphate/PRPP and Mg2+ bound 4X5E ; 1.77 ; Anthranilate phosphoribosyltransferase variant R194A from Mycobacterium tuberculosis with pyrophosphate, Mg2+ and anthranilate bound 7DSP ; 1.95 ; Anthranilate phosphoribosyltransferase variant Ser121Ala from Saccharomyces cerevisiae with Mg bound 7BVD ; 1.7 ; Anthranilate synthase component I (TrpE)[Mycolicibacterium smegmatis] 1I7Q ; 1.95 ; ANTHRANILATE SYNTHASE FROM S. MARCESCENS 1I7S ; 2.4 ; ANTHRANILATE SYNTHASE FROM SERRATIA MARCESCENS IN COMPLEX WITH ITS END PRODUCT INHIBITOR L-TRYPTOPHAN 4DV8 ; 1.632 ; Anthrax Lethal Factor metalloproteinase in complex with the Hydroxamic acid based small molecule PT8421 6VRA ; 3.3 ; Anthrax octamer prechannel bound to full-length edema factor 6WJJ ; 3.8 ; Anthrax octamer prechannel bound to full-length lethal factor 1ACC ; 2.1 ; ANTHRAX PROTECTIVE ANTIGEN 1J7N ; 2.3 ; Anthrax Toxin Lethal factor 4PKR ; 2.2 ; Anthrax toxin lethal factor with bound small molecule inhibitor 10 4PKS ; 2.3 ; Anthrax toxin lethal factor with bound small molecule inhibitor 11 4PKT ; 2.4 ; Anthrax toxin lethal factor with bound small molecule inhibitor 13 4PKU ; 2.4 ; Anthrax toxin lethal factor with bound small molecule inhibitor 15 4PKV ; 2.5 ; Anthrax toxin lethal factor with bound small molecule inhibitor 16 4PKW ; 1.75 ; Anthrax toxin lethal factor with bound small molecule inhibitor GM6001 4WF6 ; 2.6521 ; Anthrax toxin lethal factor with bound small molecule inhibitor MK-31 4PKQ ; 2.2 ; Anthrax toxin lethal factor with bound zinc 5D1S ; 2.1 ; Anthrax toxin lethal factor with hydroxamic acid inhibitor 5D1T ; 2.2 ; Anthrax toxin lethal factor with hydroxamic acid inhibitor 5D1U ; 2.8503 ; Anthrax toxin lethal factor with hydroxamic acid inhibitor 4XM6 ; 2.352 ; Anthrax toxin lethal factor with ligand-induced binding pocket 4XM7 ; 2.7 ; Anthrax toxin lethal factor with ligand-induced binding pocket 4XM8 ; 2.7 ; Anthrax toxin lethal factor with ligand-induced binding pocket 7O85 ; 3.3 ; Anthrax toxin prepore in complex with the neutralizing Fab cAb29 6UZB ; 3.2 ; Anthrax toxin protective antigen channels bound to edema factor 6UZD ; 3.4 ; Anthrax toxin protective antigen channels bound to edema factor 6UZE ; 3.4 ; Anthrax toxin protective antigen channels bound to edema factor 6PSN ; 4.6 ; Anthrax toxin protective antigen channels bound to lethal factor 6ADM ; 2.84 ; Anthrax Toxin Receptor 1-bound full particles of Seneca Valley Virus in acidic conditions 6ADL ; 3.08 ; Anthrax Toxin Receptor 1-bound spent particles of Seneca Valley Virus in acidic conditions 6ADR ; 3.38 ; Anthrax Toxin Receptor 1-bound the Seneca Valley Virus in neutral conditions 4LCI ; 1.9 ; Anti canine CD28 antibody, 1C6 4R90 ; 1.746 ; Anti CD70 Llama glama Fab 27B3 2W60 ; 1.5 ; Anti citrullinated Collagen type 2 antibody acc4 2W65 ; 2.21 ; Anti citrullinated Collagen type 2 antibody acc4 in complex with a citrullinated peptide 4LRI ; 1.65 ; Anti CMV Fab Fragment 6HXA ; 1.85 ; AntI from P. luminescens catalyses terminal polyketide shortening in the biosynthesis of anthraquinones 6CJK ; 1.795 ; Anti HIV Fab 10A 8D54 ; 1.4 ; anti HIV gp120/CD4 complex antibody CG10 Fab 1CL7 ; 3.0 ; ANTI HIV1 PROTEASE FAB 1MF2 ; 2.6 ; ANTI HIV1 PROTEASE FAB COMPLEX 8QBI ; 1.55 ; AntI in closed state 8QBH ; 2.05 ; AntI in complex with 1-Naphthol 3IU4 ; 1.75 ; anti NeuGcGM3 ganglioside chimeric antibody chP3 6DSI ; 2.49 ; Anti recombinant prolactin receptor scFv 4HFW ; 2.601 ; Anti Rotavirus Antibody 8QD6 ; 1.7 ; AntI Ser245DHA (PMSF) 8QD5 ; 1.8 ; AntI Ser245DHA (PSF) 1AY1 ; 2.2 ; ANTI TAQ FAB TP7 2VQ1 ; 2.5 ; anti trimeric Lewis X Fab54-5C10-A 1GHF ; 2.7 ; ANTI-ANTI-IDIOTYPE GH1002 FAB FRAGMENT 2CK0 ; 2.2 ; ANTI-ANTI-IDIOTYPIC ANTIBODY AGAINST HUMAN ANGIOTENSIN II, COMPLEX WITH A SYNTHETIC CYCLIC PEPTIDE 3CK0 ; 3.0 ; ANTI-ANTI-IDIOTYPIC ANTIBODY AGAINST HUMAN ANGIOTENSIN II, COMPLEX WITH HUMAN ANGIOTENSIN II 1CK0 ; 2.5 ; ANTI-ANTI-IDIOTYPIC ANTIBODY AGAINST HUMAN ANGIOTENSIN II, UNLIGANDED FORM 7YB7 ; 2.2 ; anti-apoptotic protein BCL-2-M12 7R20 ; 1.42 ; Anti-Arc nanobody E5 5CMA ; 2.5 ; Anti-B7-H3 monoclonal antibody ch8H9 Fab fragment 3O11 ; 2.8 ; Anti-beta-amyloid antibody c706 fab in space group c2 3MCL ; 1.7 ; Anti-beta-amyloid antibody c706 fab in space group P21 4OUO ; 1.8 ; anti-Bla g 1 scFv 1JV5 ; 2.2 ; Anti-blood group A Fv 8F6O ; 2.31 ; anti-BTLA monoclonal antibody h22B3 in complex with BTLA 8F6L ; 1.85 ; anti-BTLA monoclonal antibody h25F7 in complex with BTLA 8F60 ; 1.64 ; anti-BTLA monoclonal antibody r23C8 in complex with BTLA 4R0L ; 3.3 ; Anti-canine CD28 antibody, 1C6, bound canine CD28 1CLO ; 2.1 ; ANTI-CARCINOEMBRYONIC ANTIGEN MONOCLONAL ANTIBODY A5B7 7KX4 ; 2.6 ; Anti-CCHFV ADI-36121 Fab 5IW3 ; 2.05 ; anti-CD20 monoclonal antibody Fc fragment 5IW6 ; 2.34 ; anti-CD20 monoclonal antibody Fc fragment 6O89 ; 2.09 ; Anti-CD28xCD3 CODV Fab 6O8D ; 3.547 ; Anti-CD28xCD3 CODV Fab bound to CD28 2A1W ; 2.7 ; Anti-cocaine antibody 7.5.21, crystal form I 2A77 ; 1.8 ; Anti-Cocaine Antibody 7.5.21, Crystal Form II 2AI0 ; 2.2 ; Anti-Cocaine Antibody 7.5.21, Crystal Form III 1RFD ; 2.09 ; ANTI-COCAINE ANTIBODY M82G2 1QYG ; 1.81 ; ANTI-COCAINE ANTIBODY M82G2 COMPLEXED WITH BENZOYLECGONINE 1Q72 ; 1.7 ; Anti-Cocaine Antibody M82G2 Complexed with Cocaine 1RIV ; 2.2 ; Anti-Cocaine Antibody M82G2 Complexed With meta-Oxybenzoylecgonine 1RIU ; 2.0 ; Anti-Cocaine Antibody M82G2 Complexed With Norbenzoylecgonine 7VZM ; ; Anti-CRISPR AcrIE4-F7 6EYY ; 2.5 ; Anti-CRISPR AcrIIa6 cubic form 6EYX ; 1.96 ; Anti-CRISPR AcrIIa6 tetragonal form 7B5J ; 1.34 ; Anti-CRISPR associated (Aca) protein, Aca2 7YHR ; 1.45 ; Anti-CRISPR protein AcrIC5 8HJJ ; 2.4 ; Anti-CRISPR protein AcrIC9 5XN4 ; ; Anti-CRISPR protein AcrIIA4 8F3K ; 2.1 ; Anti-CRISPR protein AcrIIC5 inhibits CRISPR-Cas9 by acting as a DNA mimic 5XLP ; 4.2 ; Anti-CRISPR proteins AcrF1/2 bound to Csy surveillance complex with a 20nt spacer crRNA backbone region 5XLO ; 3.8 ; Anti-CRISPR proteins AcrF1/2 bound to Csy surveillance complex with a 32nt spacer crRNA backbone region 7XI5 ; 1.76 ; Anti-CRISPR-associated Aca10 7EZY ; 1.92 ; anti-CRISPR-associated Aca2 5C2B ; 1.4049 ; anti-CXCL13 parental scFv - 3B4 5C6W ; 1.54 ; anti-CXCL13 scFv - E10 2OJZ ; 2.73 ; Anti-DNA antibody ED10 7OM5 ; 1.48 ; Anti-EGFR nanobody EgB4 3P0V ; 2.85 ; anti-EGFR/HER3 Fab DL11 alone 3P0Y ; 1.8 ; anti-EGFR/HER3 Fab DL11 in complex with domain III of EGFR extracellular region 3P11 ; 3.7 ; anti-EGFR/HER3 Fab DL11 in complex with domains I-III of the HER3 extracellular region 7OOI ; 2.28 ; Anti-EphA1 JD1 VH domain 7OMN ; 1.7 ; Anti-EphA1 JD1-1 VH domain 8OL9 ; 2.6 ; Anti-FIXa Fab in complex with human des-(Gla-EGF1) FIXa 7AHV ; 3.11 ; Anti-FIXa Fab of mim8 in complex with human FIXa 7AHU ; 2.6 ; Anti-FX Fab of mim8 in complex with human FXa 2KK9 ; ; Anti-group A streptococcal vaccine epitope: structure, stability and its ability to interact with HLA class II molecules 1YMH ; 2.6 ; anti-HCV Fab 19D9D6 complexed with protein L (PpL) mutant A66W 7RYU ; 1.51 ; Anti-HIV neutralizing antibody Ab1303 Fab isolated from sequentially immunized mcaques 7RYV ; 2.5 ; Anti-HIV neutralizing antibody Ab1573 Fab isolated from sequentially immunized macaques 7EKK ; 1.7 ; Anti-HIV-1 broadly neutralizing antibody delta-loop 4E10 modified with pyrene acetamide 6N35 ; 1.747 ; Anti-HIV-1 Fab 2G12 + Man1-2 re-refinement 6MUB ; 2.503 ; Anti-HIV-1 Fab 2G12 + Man5 re-refinement 6MU3 ; 2.327 ; Anti-HIV-1 Fab 2G12 + Man7 re-refinement 6MNF ; 2.758 ; Anti-HIV-1 Fab 2G12 + Man8 re-refinement 6N2X ; 3.0 ; Anti-HIV-1 Fab 2G12 + Man9 re-refinement 6CXL ; 3.586 ; anti-HIV-1 Fab 2G12 in complex with glycopeptide 10F5 6CXG ; 2.298 ; anti-HIV-1 Fab 2G12 in complex with glycopeptide 10V1S 6N32 ; 2.2 ; Anti-HIV-1 Fab 2G12 re-refinement 6MSY ; 1.999 ; Anti-HIV-1 Fab Fab 2G12 + Man4 re-refinement 8D5C ; 3.9 ; anti-HIV-1 gp120-sCD4 complex antibody CG10 Fab in complex with B41-sCD4 7SJM ; 1.8 ; anti-HtrA1 Fab15H6.v4 7SJP ; 2.1 ; anti-HtrA1 Fab15H6.v4 bound to HtrA1-LoopA peptide 8EW6 ; 1.904 ; Anti-human CD8 VHH complex with CD8 alpha 4HH9 ; 1.7 ; Anti-Human Cytomegalovirus (HCMV) Fab KE5 4HHA ; 1.6 ; Anti-Human Cytomegalovirus (HCMV) Fab KE5 with epitope peptide AD-2S1 1AIF ; 2.9 ; ANTI-IDIOTYPIC FAB 409.5.3 (IGG2A) FAB FROM MOUSE 3OJD ; 2.0 ; Anti-Indolicidin monoclonal antibody V2D2 (Fab fragment) 1UZ8 ; 1.8 ; anti-Lewis X Fab fragment in complex with Lewis X 1UZ6 ; 2.05 ; anti-Lewis X Fab fragment uncomplexed 3EYV ; 2.5 ; Anti-Lewis Y Fab fragment with Lewis Y antigen in the presence of zinc ions 1LQQ ; ; ANTI-MAMMAL AND ANTI-INSECT LQQIII SCORPION TOXIN, NMR, 15 STRUCTURES 6APO ; 1.168 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody A 6APP ; 1.75 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody A Complexed with Nucleoprotein C-terminal domain 6APQ ; 1.9 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody B 4W2O ; 3.2 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody B Complexed with Nucleoprotein C-terminal domain 4W2P ; 1.77 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody C 4W2Q ; 2.7 ; Anti-Marburgvirus Nucleoprotein Single Domain Antibody C Complexed with Nucleoprotein C-terminal domain 3GM0 ; 2.4 ; Anti-methamphetamine single chain Fv in complex with MDMA 1Q0Y ; 2.0 ; Anti-Morphine Antibody 9B1 Complexed with Morphine 1Q0X ; 1.6 ; Anti-morphine Antibody 9B1 Unliganded Form 4OUU ; 2.6 ; anti-MT1-MMP monoclonal antibody 1BLN ; 2.8 ; ANTI-P-GLYCOPROTEIN FAB MRK-16 1CFQ ; 2.8 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 1HH6 ; 2.6 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH A PEPTIDE 1HH9 ; 2.7 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH A PEPTIDE 1HI6 ; 2.55 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH A PEPTIDE 1BOG ; 2.6 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH AN EPITOPE-HOMOLOGOUS PEPTIDE 1CFN ; 2.65 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH AN EPITOPE-RELATED PEPTIDE 1CFT ; 2.8 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH AN EPITOPE-UNRELATED D-PEPTIDE 1CFS ; 2.75 ; ANTI-P24 (HIV-1) FAB FRAGMENT CB41 COMPLEXED WITH AN EPITOPE-UNRELATED PEPTIDE 3U1C ; 1.8 ; Anti-parallel dimer of N-terminal 98-aa fragment of smooth muscle tropomyosin alpha 4NQT ; 2.1 ; anti-parallel Fc-hole(T366S/L368A/Y407V) homodimer 4NQU ; 2.5 ; anti-parallel Fc-knob (T366W) homodimer 6E4Z ; 2.202 ; Anti-PCSK9 fab 6E2 bound to the modified N-terminal peptide from PCSK9 6MV5 ; 2.1 ; Anti-PCSK9 fab 6E2 bound to the N-terminal peptide from PCSK9 (E32K) 6E4Y ; 2.24 ; Anti-PCSK9 fab 6E2 bound to the N-terminal peptide from PCSK9, unmodified 6VL8 ; 2.42 ; Anti-PEG antibody 6-3 Fab fragment in complex with PEG 6VL9 ; 2.63 ; Anti-PEG antibody 6-3 Fab fragment in complex with PEG 6DF1 ; 2.3 ; Anti-phosphotyrosine antibody 4G10-4D5 Fab complexed with phosphotyrosine peptide 6DF0 ; 2.3 ; anti-phosphotyrosine antibody 4G10-4D5 Fab complexed with sulfate 6DEZ ; 3.2 ; Anti-phosphotyrosine antibody PY20-4D5 Fab complexed with sulfate 7KQK ; 2.6 ; anti-pTau C21-ABS Fab in complex with pTau peptide 5SV4 ; 2.7 ; Anti-Ricin A-chain Single Domain Antibody A3C8 6CWK ; 1.256 ; Anti-RTA VHH antibody 6QE7 ; 2.06 ; anti-sigma factor domain-containing protein 6QDI ; 1.13 ; anti-sigma factor domain-containing protein from Clostridium clariflavum 8IH8 ; 2.0 ; anti-sigmaF factor and Anti-sigmaF factor antagonist complex(usfx-RsfB) 4HIE ; 1.9 ; Anti-Streptococcus pneumoniae 23F Fab 023.102 4HIJ ; 2.1 ; Anti-Streptococcus pneumoniae 23F Fab 023.102 with bound L-rhamnose-(1-2)-alpha-D-galactose-(3-O)-phosphate-2-glycerol 4HII ; 2.3 ; Anti-Streptococcus pneumoniae 23F Fab 023.102 with bound rhamnose-galactose 4HIH ; 2.0 ; Anti-Streptococcus pneumoniae 23F Fab 023.102 with bound rhamnose. 6U50 ; 1.6 ; Anti-Sudan ebolavirus Nucleoprotein Single Domain Antibody Sudan B (SB) 6U51 ; 2.52 ; Anti-Sudan ebolavirus Nucleoprotein Single Domain Antibody Sudan B (SB) Complexed with Sudan ebolavirus Nucleoprotein C-terminal Domain 610-738 6U52 ; 1.9 ; Anti-Sudan ebolavirus Nucleoprotein Single Domain Antibody Sudan B (SB) Complexed with Sudan ebolavirus Nucleoprotein C-terminal Domain 634-738 3O6L ; 2.1 ; Anti-Tat HIV 11H6H1 Fab' complexed with a 15-mer Tat peptide 3O6M ; 2.4 ; Anti-Tat HIV 11H6H1 Fab' complexed with a 9-mer Tat peptide 5E2V ; 1.64 ; Anti-TAU AT8 FAB with doubly phosphorylated TAU peptide 5E2W ; 1.5 ; Anti-TAU AT8 FAB with triply phosphorylated TAU peptide 6PXR ; 1.556 ; Anti-TAU BIIB092 FAB with TAU peptide 3LS5 ; 1.9 ; Anti-tetrahydrocannabinol Fab Fragment, Free Form 7KQL ; 1.49 ; Anti-Tim3 antibody Fab complex 5W05 ; 1.64 ; ANTI-TISSUE FACTOR ANTIBODY M59, A HUMANIZED VERSION OF 10H10 6VVU ; 3.0 ; Anti-Tryptase fab E104.v1 bound to tryptase 7YHN ; 2.6 ; ANTI-TUMOR AGENT Y48 IN COMPLEX WITH TUBULIN 6S2I ; 2.285 ; Anti-tumor antibody 14F7-derived scFv in complex with NeuGc Gm3 6FFJ ; 2.2 ; Anti-tumor antibody 14F7-derived single chain fragment variable (scFv) 8IJZ ; 2.1 ; anti-VEGF mutant 8IIU ; 1.27 ; anti-VEGF nanobody 8IJS ; 1.752 ; anti-VEGF nanobody mutant 6U53 ; 1.49 ; Anti-Zaire ebolavirus Nucleoprotein Single Domain Antibody Zaire C (ZC) 6U54 ; 1.6 ; Anti-Zaire ebolavirus Nucleoprotein Single Domain Antibody Zaire C (ZC) Complexed with Zaire ebolavirus Nucleoprotein C-terminal Domain 634-739 6U55 ; 1.93 ; Anti-Zaire ebolavirus Nucleoprotein Single Domain Antibody Zaire E (ZE) Complexed with Sudan ebolavirus Nucleoprotein C-terminal Domain 634-738 4Z8D ; 2.0 ; Antibacterial FabH Inhibitors with Validated Mode of Action in Haemophilus Influenzae by in vitro resistance mutation mapping 5EG1 ; 3.42 ; Antibacterial peptide ABC transporter McjD with a resolved lipid 2JR3 ; ; Antibacterial Peptide from Eggshell Matrix: Structure and Self-assembly of beta-defensin Like Peptide from the Chinese Soft-shelled Turtle Eggshell 6IHA ; ; antibacterial peptide SibaCec-A 8GXT ; ; Antibacterial peptide, mehamycin 1T51 ; ; Antibiotic Activity and Structural Analysis of a Scorpion-derived Antimicrobial peptide IsCT and Its Analogs 1T52 ; ; Antibiotic Activity and Structural Analysis of a Scorpion-derived Antimicrobial peptide IsCT and Its Analogs 1T54 ; ; Antibiotic Activity and Structural Analysis of a Scorpion-derived Antimicrobial peptide IsCT and Its Analogs 1T55 ; ; Antibiotic Activity and Structural Analysis of a Scorpion-derived Antimicrobial peptide IsCT and Its Analogs 1NY9 ; ; Antibiotic binding domain of a TipA-class multidrug resistance transcriptional regulator 6BOH ; 3.4 ; Antibiotic blasticidin S and E. coli release factor 1 (containing deletion 302-304) bound to the 70S ribosome 6B4V ; 3.4 ; Antibiotic blasticidin S and E. coli release factor 1 bound to the 70S ribosome 3G5V ; 2.001 ; Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR 3G5X ; 2.3 ; Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR 3G5Y ; 1.59 ; Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR 3G5Z ; 2.6 ; Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR 7KQG ; 2.6 ; Antibodies that engage the hemagglutinin receptor-binding site of influenza B viruses 7KQH ; 3.5 ; Antibodies that engage the hemagglutinin receptor-binding site of influenza B viruses 7KQI ; 4.2 ; Antibodies that engage the hemagglutinin receptor-binding site of influenza B viruses 7M7W ; 2.65 ; Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape 7RM0 ; 2.71 ; Antibody 2E10.E9 in complex with P. vivax CSP peptide ANGAGNQPGANGAGNQPG 7RM3 ; 2.68 ; Antibody 2E10.E9 in complex with P. vivax CSP peptide ANGAGNQPGANGAGNQPGANGAGGQAA 7RLY ; 2.67 ; Antibody 2F2 in complex with P. vivax CSP peptide DRAAGQPAGDRADGQPA 7RM1 ; 3.19 ; Antibody 2F2 in complex with P. vivax CSP peptide EDGAGNQPGANGAGNQPGANGAGNQPG 7RLW ; 2.54 ; Antibody 2F2 in complex with P. vivax CSP peptide GDRAAGQPAGDRAAGQPA 7RLZ ; 2.27 ; Antibody 2F2 in complex with P. vivax CSP peptide GDRAAGQPAGNGAGGQAA 7RLX ; 1.97 ; Antibody 2F2 in complex with P. vivax CSP peptide GDRADGQPAGDRAAGQPA 7RLV ; 2.2 ; Antibody 2F2 in complex with P. vivax CSP peptide GDRADGQPAGDRADGQPA 3OAU ; 1.9 ; Antibody 2G12 Recognizes Di-Mannose Equivalently in Domain- and Non-Domain-Exchanged Forms, but only binds the HIV-1 Glycan Shield if Domain-Exchanged 1KEG ; 2.4 ; Antibody 64M-2 Fab complexed with dTT(6-4)TT 3VW3 ; 2.5 ; Antibody 64M-5 Fab in complex with a double-stranded DNA (6-4) photoproduct 6IDG ; 2.0 ; antibody 64M-5 Fab in complex with dT(6-4)T 6IDH ; 2.5 ; Antibody 64M-5 Fab in ligand-free form 6KDI ; 2.7 ; Antibody 64M-5 Fab including isoAsp in complex with dT(6-4)T 6KDH ; 2.47 ; Antibody 64M-5 Fab including isoAsp in ligand-free form 7SJ0 ; 3.36 ; Antibody A7V3 bound to N-terminal domain of the spike 7K78 ; 3.1 ; antibody and nucleosome complex 5W3P ; 1.92 ; ANTIBODY C706 IN COMPLEX WTH BETA-AMYLOID PEPTIDE 1-16 1MEX ; 1.25 ; Antibody Catalysis of a Bimolecular Cycloaddition Reaction 6FA1 ; 1.97 ; Antibody derived (Abd-4) small molecule binding to KRAS. 6FA2 ; 2.6 ; Antibody derived (Abd-5) small molecule binding to KRAS. 6FA3 ; 1.82 ; Antibody derived (Abd-6) small molecule binding to KRAS. 6FA4 ; 2.02 ; Antibody derived (Abd-7) small molecule binding to KRAS. 6F76 ; 2.2 ; Antibody derived (Abd-8) small molecule binding to KRAS. 8DKF ; 1.79 ; Antibody DH1030.1 Fab fragment 7TOW ; 2.15 ; Antibody DH1058 Fab fragment bound to SARS-CoV-2 fusion peptide 7KFG ; 3.002 ; Antibody Fab BDBV-289 2PCP ; 2.2 ; ANTIBODY FAB COMPLEXED WITH PHENCYCLIDINE 8F2T ; 2.12 ; Antibody Fab directed against SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) 8F2V ; 3.5 ; Antibody Fab directed against SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) 3VG0 ; 2.27 ; Antibody Fab fragment 5JQD ; 2.591 ; Antibody Fab Fragment 3C2A ; 2.1 ; Antibody Fab fragment 447-52D in complex with UG1033 peptide 5JO4 ; 2.53 ; Antibody Fab Fragment Complex 6QNK ; 1.9 ; Antibody FAB fragment targeting Gi protein heterotrimer 7QT0 ; 2.07 ; Antibody FenAb136 - fentanyl complex 7QT2 ; 1.92 ; Antibody FenAb208 - fentanyl complex 7QT3 ; 1.7 ; Antibody FenAb609 - fentanyl complex 7QT4 ; 2.32 ; Antibody FenAb709 - fentanyl complex 1I7Z ; 2.3 ; ANTIBODY GNC92H2 BOUND TO LIGAND 6Q1J ; 2.703 ; Antibody H2227 from the human antibody lineage 652 4XNQ ; 2.001 ; Antibody hemagglutinin Complexes 4XRC ; 2.74 ; Antibody hemagglutinin Complexes 4XNM ; 2.51 ; Antibody Influenza H5 Complex 1OAY ; 2.66 ; Antibody multispecificity mediated by conformational diversity 8TMA ; 3.2 ; Antibody N3-1 bound to RBD in the up conformation 8TM1 ; 2.79 ; Antibody N3-1 bound to RBDs in the up and down conformations 6PK8 ; 2.91 ; Antibody scFv-M204 dimeric state 6PIL ; 2.2 ; Antibody scFv-M204 monomeric state 6PSC ; 3.6 ; Antibody scFv-M204 trimeric state 3ZL4 ; 1.95 ; Antibody structural organization: Role of kappa - lambda chain constant domain switch in catalytic functionality 3I75 ; 1.95 ; Antibody Structure 1BEY ; 3.25 ; ANTIBODY TO CAMPATH-1H HUMANIZED FAB 8FR6 ; 2.5 ; Antibody vFP53.02 in complex with HIV-1 envelope trimer BG505 DS-SOSIP 6SXI ; 1.85 ; Antibody-anti-idiotype complex: AP33 Fab (hepatitis C virus E2 antibody) - B2.1A scFv (anti-idiotype) 5E94 ; 2.0 ; Antibody-bound Glucagon-like Peptide-1 receptor extracellular domain 1LNM ; 1.9 ; ANTICALIN DIGA16 IN COMPLEX WITH DIGITOXIGENIN 5KJ9 ; 1.2 ; Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand 3DLW ; 2.7 ; Antichymotrypsin 1VIP ; 2.2 ; ANTICOAGULANT CLASS II PHOSPHOLIPASE A2 FROM THE VENOM OF VIPERA RUSSELLI RUSSELLI 1COU ; ; ANTICOAGULANT PROTEIN FROM THE NEMATODE ANCYLOSTOMA CANINUM 1G6E ; ; ANTIFUNGAL PROTEIN FROM STREPTOMYCES TENDAE TU901, 30-CONFORMERS ENSEMBLE 1GH5 ; ; ANTIFUNGAL PROTEIN FROM STREPTOMYCES TENDAE TU901, NMR AVERAGE STRUCTURE 1VA5 ; 2.02 ; Antigen 85C with octylthioglucoside in active site 4QXG ; 2.3 ; Antigen binding fragment of an anti IFNAR1 antibody 6WLA ; 2.6 ; Antigen binding fragment of ch128.1 6WX1 ; 2.0 ; Antigen Binding Fragment of OKT9 6DG2 ; 1.96 ; Antigen Binding Fragment of the Pan-ebolavirus Monoclonal Antibody 6D6 5J1A ; 1.86 ; Antigen presenting molecule 3GIV ; 2.0 ; Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance 2HRP ; 2.2 ; ANTIGEN-ANTIBODY COMPLEX 1JFQ ; 1.9 ; ANTIGEN-BINDING FRAGMENT OF THE MURINE ANTI-PHENYLARSONATE ANTIBODY 36-71, ""FAB 36-71"" 8SVB ; ; Antimicrobial lasso peptide achromonodin-1 6MW6 ; ; Antimicrobial lasso peptide citrocin 8DYN ; ; Antimicrobial lasso peptide cloacaenodin 6POR ; ; Antimicrobial lasso peptide ubonodin 2L24 ; ; Antimicrobial peptide 5YKK ; ; Antimicrobial peptide Andersonin-Y1 (AY1) 5YKL ; ; Antimicrobial peptide AY1C designed from the skin secretion of Chinese Odorous frogs 7ALD ; ; Antimicrobial peptide Capitellacin from polychaeta Capitella teleta 8B4S ; ; Antimicrobial peptide capitellacin from polychaeta Capitella teleta in DPC (dodecylphosphocholine) micelles, dimeric form 8B4R ; ; Antimicrobial peptide capitellacin from polychaeta Capitella teleta in DPC (dodecylphosphocholine) micelles, monomeric form 2NC7 ; ; Antimicrobial peptide protegrin PG-5 7WKF ; ; Antimicrobial peptide-LaIT2 2JSO ; ; Antimicrobial resistance protein 6GFT ; ; Antinociceptive evaluation of cyriotoxin-1a, the first toxin purified from Cyriopagopus schioedtei spider venom 6ZX7 ; ; Antiparallel basket-type G-quadruplex DNA structure formed in human Bcl-2 promoter 6ZX6 ; ; Antiparallel basket-type G-quadruplex DNA structure formed in human Bcl-2 promoter containing 8-oxoG 5W0J ; 2.201 ; Antiparallel coiled coil hexamer formed by de novo peptides (ACC-Hex2). 2CCF ; 1.7 ; Antiparallel Configuration of pLI E20S 2B1F ; 1.5 ; Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat 2B22 ; 2.0 ; Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat 5NFD ; 2.18 ; Antiparallel monomeric coiled coil of Kif21A 1RB4 ; 1.9 ; ANTIPARALLEL TRIMER OF GCN4-LEUCINE ZIPPER CORE MUTANT AS N16A TETRAGONAL AUTOMATIC SOLUTION 1RB6 ; 1.9 ; ANTIPARALLEL TRIMER OF GCN4-LEUCINE ZIPPER CORE MUTANT AS N16A TETRAGONAL FORM 1RB5 ; 1.9 ; ANTIPARALLEL TRIMER OF GCN4-LEUCINE ZIPPER CORE MUTANT AS N16A TRIGONAL FORM 1CX5 ; ; ANTISENSE DNA/RNA HYBRID CONTAINING MODIFIED BACKBONE 7UZ0 ; 3.03 ; AntiT-tRNA flip UCCA 1SR5 ; 3.1 ; ANTITHROMBIN-ANHYDROTHROMBIN-HEPARIN TERNARY COMPLEX STRUCTURE 1AZX ; 2.9 ; ANTITHROMBIN/PENTASACCHARIDE COMPLEX 6F8H ; 2.002 ; antitoxin GraA 6FIX ; 3.8 ; antitoxin GraA in complex with its operator 4P7D ; 2.781 ; Antitoxin HicB3 crystal structure 4ZM0 ; 3.17 ; Antitoxin Phd from phage P1 in complex with its operator DNA inverted repeat 4ZM2 ; 3.88 ; Antitoxin Phd from phage P1 in complex with its operator DNA inverted repeat in a monoclinic space group 4XIC ; 2.69 ; ANTPHD WITH 15BP di-thioate modified DNA DUPLEX 4XID ; 2.701 ; AntpHD with 15bp DNA duplex 5JLW ; 2.088 ; AntpHD with 15bp DNA duplex R-monothioated at Cytidine-8 5JLX ; 2.748 ; AntpHD with 15bp DNA duplex S-monothioated at Cytidine-8 8AVQ ; 2.0 ; AO75L in Complex with UDP-Xylose 8D9U ; 20.0 ; AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated narrow membrane tubes, centered on beta-Arf1 8D9T ; 20.0 ; AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated narrow membrane tubes, centered on gamma-Arf1 8D9S ; 20.0 ; AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated wide membrane tubes, centered on beta-Arf1 8D9R ; 20.0 ; AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated wide membrane tubes, centered on gamma-Arf1 1KYF ; 1.22 ; AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE IN COMPLEX WITH EPS15 DPF PEPTIDE 1KYU ; 1.8 ; AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE IN COMPLEX WITH EPS15 DPF PEPTIDE 1KY6 ; 2.0 ; AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE IN COMPLEX WITH EPSIN DPW PEPTIDE 1KYD ; 2.0 ; AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE IN COMPLEX WITH EPSIN DPW PEPTIDE 6Y76 ; 1.98 ; AP01 - a redesigned transferrin receptor apical domain 8P0Z ; 1.88 ; AP01-S2.3 - a variant of a redesigned transferrin receptor apical domain 1W63 ; 4.0 ; AP1 clathrin adaptor core 7RWA ; 4.7 ; AP2 bound to heparin and Tgn38 tyrosine cargo peptide 7RW9 ; 3.9 ; AP2 bound to heparin in the bowl conformation 7RW8 ; 3.5 ; AP2 bound to heparin in the closed conformation 8T1O ; 3.3 ; AP2 bound to MSP2N2 nanodisc with Tgn38 cargo peptide; composite map 7RWC ; 3.8 ; AP2 bound to the APA domain of SGIP and heparin; partial signal subtraction and symmetry expansion 7RWB ; 3.9 ; AP2 bound to the APA domain of SGIP in the presence of heparin 2VGL ; 2.6 ; AP2 CLATHRIN ADAPTOR CORE 2XA7 ; 3.1 ; AP2 clathrin adaptor core in active complex with cargo peptides 7OG1 ; 3.25 ; AP2 clathrin adaptor core in complex with cargo peptide and FCHO2 2JKT ; 3.4 ; AP2 CLATHRIN ADAPTOR CORE with CD4 Dileucine peptide RM(phosphoS) EIKRLLSE Q to E mutant 2JKR ; 2.98 ; AP2 CLATHRIN ADAPTOR CORE with Dileucine peptide RM(phosphoS)QIKRLLSE 6QH6 ; 5.0 ; AP2 clathrin adaptor core with two cargo peptides in open+ conformation 6QH5 ; 2.56 ; AP2 clathrin adaptor mu2T156-phosphorylated core in closed conformation 6QH7 ; 3.4 ; AP2 clathrin adaptor mu2T156-phosphorylated core with two cargo peptides in open+ conformation 4UQI ; 2.79 ; AP2 controls clathrin polymerization with a membrane-activated switch 6YAE ; 3.9 ; AP2 core in physiological buffer 6YAH ; 10.2 ; AP2 in clathrin coats assembled on a membrane containing dileucine- and tyrosine-based cargo peptides 5C7Z ; 2.77 ; AP2 Mu2 adaptin C-terminal domain complexed with integrin alpha-4 peptide 6YAF ; 9.1 ; AP2 on a membrane containing tyrosine-based cargo peptide 3IK3 ; 1.9 ; AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance 3YGS ; 2.5 ; APAF-1 CARD IN COMPLEX WITH PRODOMAIN OF PROCASPASE-9 5WVE ; 4.4 ; Apaf-1-Caspase-9 holoenzyme 5HDW ; 2.0 ; ApaG Domain of FBxo3 5Z8H ; 1.79 ; APC with an inhibitor 7F7O ; 2.8 ; APC-Asef FP assay tracer 8GSJ ; 2.1 ; APC-Asef tripeptide inhibitor 8TAU ; 3.5 ; APC/C-CDH1-UBE2C-UBE2S-Ubiquitin-CyclinB 8TAR ; 4.0 ; APC/C-CDH1-UBE2C-Ubiquitin-CyclinB-NTD 1GQP ; 2.2 ; APC10/DOC1 SUBUNIT OF S. cerevisiae 5JG6 ; 2.0013 ; APC11-Ubv shows role of noncovalent RING-Ubiquitin interactions in processive multiubiquitination and Ubiquitin chain elongation by APC/C 6W43 ; 1.99 ; APE1 AP-endonuclease product complex R237C 7U50 ; 3.4 ; APE1 bound to a nucleosome core particle with AP-site at SHL-6 6W0Q ; 1.89 ; APE1 endonuclease product complex D148E 6W2P ; 1.94 ; APE1 endonuclease product complex L104R 5WN1 ; 2.3 ; APE1 exonuclease product complex 6W3N ; 2.69 ; APE1 exonuclease substrate complex D148E 6W3Q ; 2.49 ; APE1 exonuclease substrate complex L104R 6W3U ; 2.4 ; APE1 exonuclease substrate complex R237C 6W3L ; 2.59 ; APE1 exonuclease substrate complex wild-type 7SUV ; 1.99 ; APE1 exonuclease substrate complex with 8oxoG opposite A 7SVB ; 2.24 ; APE1 exonuclease substrate complex with 8oxoG opposite C 5WN0 ; 2.6 ; APE1 exonuclease substrate complex with a C/G match 5WN4 ; 2.1 ; APE1 exonuclease substrate complex with a C/T mismatch 5WN5 ; 2.2 ; APE1 exonuclease substrate complex with a C/T mismatch and Mn2+ 5WN2 ; 2.288 ; APE1 exonuclease substrate complex with phosphoglycolate 5WN3 ; 2.0 ; APE1 F266A exonuclease substrate complex with a C/T mismatch 7LPJ ; 2.56 ; APE1 Mn-bound phosphorothioate substrate complex with abasic ribonucleotide DNA 7LPH ; 1.99 ; APE1 Mn-bound product complex with abasic ribonucleotide DNA 7LPI ; 2.05 ; APE1 phosphorothioate substrate complex with abasic ribonucleotide DNA 7LPG ; 2.08 ; APE1 product complex with abasic ribonucleotide DNA 7TR7 ; 2.0 ; APE1 product complex with abasic ssDNA 6W4T ; 2.77 ; APE1 Y269A phosphorothioate substrate complex with abasic DNA 6W4I ; 2.2 ; APE1 Y269A product complex with abasic DNA 6KNM ; 3.2 ; Apelin receptor in complex with single domain antibody 7T9A ; 3.54 ; ApexGT2 in complex with GT2-d42.16 and RM20A3 Fabs 7T9B ; 3.72 ; ApexGT5 in complex with GT5-d42.16 and RM20A3 Fabs 5C4K ; 3.05 ; APH(2"")-IVa in complex with GET (G418) at room temperature 1WCG ; 1.1 ; Aphid myrosinase 5CDJ ; 1.75 ; apical domain of chloroplast chaperonin 60a 5CDK ; 1.5 ; Apical domain of chloroplast chaperonin 60b1 1ASS ; 2.3 ; APICAL DOMAIN OF THE CHAPERONIN FROM THERMOPLASMA ACIDOPHILUM 1ASX ; 2.8 ; APICAL DOMAIN OF THE CHAPERONIN FROM THERMOPLASMA ACIDOPHILUM 3S0G ; 1.85 ; Apis mellifera OBP 14 double mutant Gln44Cys, His97Cys 3S0D ; 1.24 ; Apis mellifera OBP 14 in complex with the citrus odorant citralva (3,7-dimethylocta-2,6-dienenitrile) 3RZS ; 1.88 ; Apis mellifera OBP14 in complex with Ta6Br14 3S0B ; 1.22 ; Apis mellifera OBP14 in complex with the fluorescent probe 1-N-phenylnaphthylamine (NPN) 3S0E ; 1.6 ; Apis mellifera OBP14 in complex with the odorant eugenol (2-methoxy-4(2-propenyl)-phenol) 3S0F ; 2.03 ; Apis mellifera OBP14 native apo, crystal form 2 3S0A ; 1.15 ; Apis mellifera OBP14, native apo-protein 3R72 ; 1.15 ; Apis mellifera odorant binding protein 5 5E50 ; 1.376 ; APLF/XRCC4 complex 1LBE ; 2.4 ; APLYSIA ADP RIBOSYL CYCLASE 1R15 ; 2.4 ; Aplysia ADP ribosyl cyclase with bound nicotinamide and R5P 1R16 ; 2.0 ; Aplysia ADP ribosyl cyclase with bound pyridylcarbinol and R5P 8Q1M ; 2.0 ; Aplysia californica acetylcholine-binding protein in complex with Spiroimine (+)-4 R 8QTL ; 1.85 ; Aplysia californica acetylcholine-binding protein in complex with Spiroimine (-)-4 S 8QX2 ; 2.1 ; Aplysia californica acetylcholine-binding protein in complex with with racemic spiroimine (+)/(-)-4 2W8F ; 2.7 ; Aplysia californica AChBP bound to in silico compound 31 2W8G ; 2.6 ; Aplysia californica AChBP bound to in silico compound 35 2Y7Y ; 1.895 ; APLYSIA CALIFORNICA ACHBP IN APO STATE 6QKK ; 2.2 ; Aplysia californica AChBP in complex with 2-Fluoro-(carbamoylpyridinyl)deschloroepibatidine analogue (1) 6QQP ; 2.4 ; Aplysia californica AChBP in complex with 2-Fluoro-(carbamoylpyridinyl)deschloroepibatidine analogue (2) 6QQO ; 2.5 ; Aplysia californica AChBP in complex with 2-Fluoro-(carbamoylpyridinyl)deschloroepibatidine analogue (3) 6T9R ; 1.72 ; Aplysia californica AChBP in complex with a cytisine derivative 4BQT ; 2.88 ; Aplysia californica AChBP in complex with Cytisine 4AFT ; 3.2 ; Aplysia californica AChBP in complex with Varenicline 7YVC ; 3.0 ; Aplysia californica FaNaC in apo state 7YVB ; 3.0 ; Aplysia californica FaNaC in ligand bound state 4DBM ; 2.3 ; Aplysia californica-AChBP in complex with triazole 18 1MBA ; 1.6 ; APLYSIA LIMACINA MYOGLOBIN. CRYSTALLOGRAPHIC ANALYSIS AT 1.6 ANGSTROMS RESOLUTION 3MBA ; 2.0 ; APLYSIA LIMACINA MYOGLOBIN. CRYSTALLOGRAPHIC ANALYSIS AT 1.6 ANGSTROMS RESOLUTION 4MBA ; 2.0 ; APLYSIA LIMACINA MYOGLOBIN. CRYSTALLOGRAPHIC ANALYSIS AT 1.6 ANGSTROMS RESOLUTION 7RJT ; 2.93 ; Aplysia Slo1 with Barium 7RK6 ; 2.91 ; Aplysia Slo1 with Barium 4WZ9 ; 2.65 ; APN1 from Anopheles gambiae 2J16 ; 2.7 ; Apo & Sulphate bound forms of SDP-1 3DHZ ; 1.63 ; Apo (iron free) structure of C. ammoniagenes R2 protein 6HRJ ; 1.7 ; Apo - YndL 8A29 ; 2.1 ; Apo 1-deoxy-D-xylulose 5-phosphate synthase from Pseudomonas aeruginosa 5K8M ; 2.75 ; Apo 5-nitroanthranilate aminohydrolase 6XUD ; 1.51 ; Apo Ab 1116NS19.9 6XUL ; 2.41 ; Apo Ab 5b1 8FQP ; 1.419 ; apo ADC-162 beta-lactamase 8FQR ; 1.24 ; Apo ADC-212 beta-lactamase 8FQT ; 1.89 ; Apo ADC-219 beta-lactamase 8FQV ; 1.48 ; apo ADC-30 beta-lactamase 8FQN ; 1.256 ; apo ADC-33 beta-lactamase 2BGQ ; 2.5 ; apo aldose reductase from barley 1WLR ; 2.1 ; Apo aminopeptidase P from E. coli 1PIW ; 3.0 ; APO AND HOLO STRUCTURES OF AN NADP(H)-DEPENDENT CINNAMYL ALCOHOL DEHYDROGENASE FROM SACCHAROMYCES CEREVISIAE 1Q1N ; 3.15 ; APO AND HOLO STRUCTURES OF AN NADP(H)-DEPENDENT CINNAMYL ALCOHOL DEHYDROGENASE FROM SACCHAROMYCES CEREVISIAE 3T8S ; 3.77 ; Apo and InsP3-bound Crystal Structures of the Ligand-Binding Domain of an InsP3 Receptor 3K6W ; 2.45 ; Apo and ligand bound structures of ModA from the archaeon Methanosarcina acetivorans 3C6Q ; 2.3 ; Apo and ligand-bound form of a thermophilic glucose/xylose binding protein 3N4T ; 2.2 ; apo APH(2"")-IVa form I 3N4V ; 2.4 ; apo APH(2"")-IVa form III 6WLK ; 10.0 ; Apo ATP-TTR-3 models, 10.0 Angstrom resolution 8DRJ ; 2.4 ; Apo B2 dimer (H60/H100/H104) formed in the presence of Cu(II) 6XAG ; 3.3 ; Apo BRAF dimer bound to 14-3-3 3BKU ; 2.1 ; Apo C-terminal Domain of NikR 7TR2 ; 3.0 ; Apo CaKip3[2-436]-L2-mutant(HsKHC) in complex with a microtubule 7TQZ ; 2.7 ; Apo CaKip3[2-482] in complex with a microtubule 8T64 ; 2.25 ; Apo Cam1(42-206) 3PXR ; 2.0 ; Apo CDK2 crystallized from Jeffamine 6MVI ; 1.89 ; Apo Cel45A from Neurospora crassa OR74A 2V5J ; 1.6 ; Apo Class II aldolase HpcH 6QRQ ; 2.562 ; Apo conformation of chemotaxis sensor ODP 6IBU ; 2.25 ; Apo Crh5 transglycosylase 4I1U ; 2.05 ; Apo crystal structure of a dephospho-CoA kinase from Burkholderia vietnamiensis 7QG4 ; 2.08 ; Apo crystal structure of a mutant of SN243 (D415N) 6IA8 ; 1.9 ; Apo crystal structure of archaeal Methanocaldococcus infernus Elp3 (del1-19) 6IAD ; 2.05 ; Apo crystal structure of archaeal Methanocaldococcus infernus Elp3 (del1-54) 8FWX ; 2.12 ; Apo crystal structure of beluga whale Gammacoronavirus SW1 Mpro 7ZEQ ; 1.89 ; Apo crystal structure of beta-xylosidase from Thermotoga maritima 4RGJ ; 2.303 ; Apo crystal structure of CDPK4 from Plasmodium falciparum, PF3D7_0717500 6JER ; 2.4 ; Apo crystal structure of class I type a peptide deformylase from Acinetobacter baumannii 6JES ; 1.75 ; Apo crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JF9 ; 1.7 ; Apo crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 4E76 ; 2.5 ; Apo crystal structure of HCV NS5B genotype 2A JFH-1 isolate with beta hairpin loop deletion 4WT9 ; 2.5 ; APO CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH E86Q E87Q S15G C223H V321I AND DELTA8 MUTATIONS 3HQN ; 2.0 ; Apo crystal structure of Leishmania mexicana(LmPYK)pyruvate kinase 1ZM8 ; 1.9 ; Apo Crystal structure of Nuclease A from Anabaena sp. 7DTQ ; 1.75 ; Apo Crystal Structure of Octaketide Synthase from A. arborescens 8PQK ; 2.0 ; APO crystal structure of PDGFRA-T674I kinase domain 3ILY ; 2.2 ; Apo crystal structure of protein tyrosine phosphatase from Entamoeba histolytica featuring a disordered active site 4KRZ ; 2.5 ; Apo crystal structure of pyruvate kinase (PYK) from Trypanosoma cruzi 6C3K ; 1.6 ; Apo crystal structure of S. aureus penicillin binding protein 4 (PBP4) mutant (E183A, F241R) 6D34 ; 2.1 ; Apo Crystal Structure of TerC, a Terfestatin Biosynthesis Enzyme 6E0V ; 1.75 ; Apo crystal structure of the colanidase tailspike protein gp150 of Phage Phi92 1EVX ; 2.0 ; APO CRYSTAL STRUCTURE OF THE HOMING ENDONUCLEASE, I-PPOI 7AB0 ; 1.74 ; Apo crystal structure of the MerTK kinase domain 6EH0 ; 1.49 ; Apo crystal structure of the Protein-Kinase A catalytic subunit from Criteculus 5ZHI ; 2.2 ; Apo crystal structure of TrmD from Mycobacterium tuberculosis 6C39 ; 1.69 ; Apo crystal structure of wild-type S. aureus penicillin binding protein 4 (PBP4) 5BJS ; 2.189 ; Apo ctPRC2 in an autoinhibited state 5VK3 ; 2.114 ; Apo ctPRC2 with E840A and K852D mutations in Ezh2 5K71 ; 2.57 ; apo Dbr1 7EQ3 ; 2.87 ; Apo diabody form of CRH2-directed antibody 9F8 5U7E ; 1.942 ; Apo dihydroneopterin triphosphate pyrophosphohydrolase from E. coli 1AOV ; 4.0 ; APO DUCK OVOTRANSFERRIN 5WXJ ; 1.85 ; Apo EarP 8F35 ; 3.17 ; Apo ELIC in spMSP1D1 nanodiscs with 2:1:1 POPC:POPE:POPG 5CB1 ; 3.3 ; Apo enzyme of human Polymerase lambda 4Q13 ; 2.24 ; Apo Estrogen Receptor Alpha Ligand Binding Domain D538G Mutant with a glucocorticoid receptor-interacting protein 1 NR box II peptide 6WLL ; 10.0 ; Apo F. nucleatum glycine riboswitch models, 10.0 Angstrom resolution 8TFR ; 2.99 ; Apo Fab from C10-S66K antibody 6DC7 ; 1.901 ; Apo Fab structure of mouse monoclonal antibody 8B2 7PPS ; 1.3 ; apo FabB from Pseudomonas aeruginosa with single point mutation C161A 5BXF ; 2.851 ; Apo FcRn Structure at pH 4.5 5KTA ; 1.89 ; Apo FdhC- a nucleotide-linked sugar GNAT 8CY8 ; 2.94 ; apo form Cryo-EM structure of Campylobacter jejune ketol-acid reductoisommerase crosslinked by Glutaraldehyde 5WY9 ; 1.45 ; Apo form crystal structure of human Lipocalin PGDS . 1ZCV ; 1.98 ; apo form of a mutant of glycogenin in which Asp159 is replaced by Asn 1ZCY ; 1.99 ; apo form of a mutant of glycogenin in which Asp159 is replaced by Ser 1EUH ; 1.82 ; APO FORM OF A NADP DEPENDENT ALDEHYDE DEHYDROGENASE FROM STREPTOCOCCUS MUTANS 6K1O ; 2.033 ; Apo form of a putative cystathionine gamma-lyase 4BG8 ; 1.96 ; Apo form of a putative sugar kinase MK0840 from Methanopyrus kandleri (monoclinic space group) 4BG9 ; 1.902 ; Apo form of a putative sugar kinase MK0840 from Methanopyrus kandleri (orthorhombic space group) 4L63 ; 1.8 ; Apo form of AB5 holotoxin 8SA6 ; 5.3 ; apo form of adenosylcobalamin riboswitch dimer 6G1P ; 1.55 ; Apo form of ADP-ribosylserine hydrolase ARH3 of Latimeria chalumnae 6Q3A ; 3.1 ; Apo form of Apolipoprotein N-acyltransferase (Lnt) 3APZ ; 2.6 ; Apo form of Arabidopsis medium/long-chain length prenyl pyrophosphate synthase 4P04 ; 1.95 ; Apo form of bacterial arylsulfate sulfotransferase (ASST) H436N mutant with MPO in the active site 4CBB ; 1.8 ; APO FORM OF BETAINE ALDEHYDE DEHYDROGENASE FROM Pseudomonas aeruginosa 6T5S ; 1.5 ; Apo form of C-type lysozyme from the upper gastrointestinal tract of Opisthocomus hoatzin 2N8Z ; ; Apo form of Calmodulin-Like Domain of Human Non-Muscle alpha-actinin 1 3TEO ; 2.4 ; APO Form of carbon disulfide hydrolase (selenomethionine form) 6QER ; 2.465 ; Apo Form Of ComR From S. Thermophilus in space group C2 8EVV ; 2.05 ; Apo form of DdlA from Pseudomonas aeruginosa PAO1 2ARA ; 2.8 ; APO FORM OF ESCHERICHIA COLI REGULATORY PROTEIN ARAC 5H3S ; 3.0 ; apo form of GEMIN5-WD 3ZSS ; 1.8 ; Apo form of GlgE isoform 1 from Streptomyces coelicolor 1O05 ; 2.25 ; Apo form of human mitochondrial aldehyde dehydrogenase 5A9R ; 1.55 ; Apo form of Imine reductase from Amycolatopsis orientalis 4ZQQ ; 1.8 ; Apo form of influenza strain H1N1 polymerase acidic subunit N-terminal region 5JHV ; 2.749 ; Apo form of influenza strain H1N1 polymerase acidic subunit N-terminal region crystallized with polyethylene glycol 8000 5JHT ; 1.751 ; Apo form of influenza strain H1N1 polymerase acidic subunit N-terminal region crystallized with potassium sodium tartrate 2GCA ; 2.4 ; apo form of L. casei FPGS 6E2S ; 1.791 ; apo form of MDDEF with buffer exchange 7DCY ; 1.972 ; Apo form of Mycoplasma genitalium RNase R 6HR4 ; 1.19 ; Apo form of penicillin-binding protein 3 from P. aeruginosa 6XI2 ; 2.57 ; Apo form of POMGNT2 2PRY ; 2.35 ; Apo form of S. cerevisiae orotate phosphoribosyltransferase 1ZCU ; 2.0 ; apo form of the 162S mutant of glycogenin 5WH1 ; 3.39 ; Apo form of the C-terminal region of human Transcription Factor IIB 2JCG ; 2.6 ; Apo form of the catabolite control protein A (ccpA) from bacillus megaterium, with the DNA binding domain 6HU8 ; 1.894 ; Apo form of the competence regulator ComR from Streptococcus vestibularis 6BJP ; 2.102 ; Apo form of the E124S mutant of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa 7ERY ; 1.77 ; apo form of the glycosyltransferase 3NSF ; 2.0 ; Apo form of the multicopper oxidase CueO 5ZO3 ; 1.493 ; apo form of the nuclease 5DBK ; 3.241 ; apo form of the quorum sensor NprR from B. thuringiensis 6SF4 ; 1.7 ; Apo form of the ribonucleotide reductase NrdB protein from Leeuwenhoekiella blandensis 5MIN ; 1.76 ; Apo form of the soluble PQQ-dependent Glucose Dehydrogenase from Acinetobacter calcoaceticus 2C0M ; 2.5 ; apo form of the TPR domain of the pex5p receptor 1XJA ; 2.4 ; Apo form of the Y31V mutant dimerization domain fragment of Escherichia coli regulatory protein AraC 7BFN ; 1.7 ; Apo form of Thermogutta terrifontis esterase 2 5EEB ; 3.038 ; Apo form of thermostable aldehyde dehydrogenase from Pyrobaculum sp. 1860 6U1C ; 2.2 ; Apo form of Thermus thermophilus D-alanine-D-alanine ligase 3AEY ; 1.92 ; Apo form of threonine synthase from Thermus thermophilus HB8 6FN4 ; 4.14 ; Apo form of UIC2 Fab complex of human-mouse chimeric ABCB1 (ABCB1HM) 7UK8 ; 1.85 ; Apo form of YgiC from Escherichia coli K-12 7UK6 ; 1.9 ; Apo form of YjfC from Escherichia coli K-12 6XLB ; 3.8 ; Apo full-length Hsc82 in complex with Aha1 6U84 ; 3.7 ; Apo full-length rat TRPV2 in nanodiscs, state 1 6U86 ; 4.0 ; Apo full-length rat TRPV2 in nanodiscs, state 2 2VOZ ; 1.7 ; Apo FutA2 from Synechocystis PCC6803 5F82 ; 0.96 ; Apo GES-5 C69G mutant 2YNU ; 2.06 ; Apo GIM-1 with 2Mol. Crystal structures of Pseudomonas aeruginosa GIM-1: active site plasticity in metallo-beta-lactamases 3I69 ; 2.38 ; Apo Glutathione Transferase A1-1 GIMF-helix mutant 4BYY ; 2.48 ; Apo GlxR 7CQL ; 2.801 ; Apo GmaS without ligand 8D97 ; 3.8 ; Apo gRAMP 4LO4 ; 2.871 ; Apo HA-70 4LO0 ; 2.055 ; Apo HA17-HA33 8C4S ; 3.27 ; Apo Hantaan virus polymerase core 8QGU ; 3.03 ; Apo Hantaan virus polymerase in dimeric state 8QE5 ; 2.6 ; Apo Hantaan virus polymerase in monomeric state 5O4N ; 2.05 ; Apo HcgC from Methanococcus maripaludis soaked with SAH and pyridinol 7RE4 ; 1.87 ; Apo Hemophilin from A. baumannii 7REA ; 1.49 ; Apo Hemophilin from A. baumannii 2AXQ ; 1.7 ; Apo histidine-tagged saccharopine dehydrogenase (L-Glu forming) from Saccharomyces cerevisiae 4EJ8 ; 2.347 ; Apo HIV Protease (PR) dimer in closed form with fragment 1F1 in the outside/top of flap 4EJL ; 2.445 ; Apo HIV Protease (PR) dimer in closed form with fragment 1F1-N in the outside/top of flap 7ULI ; 1.9 ; Apo HMG-CoA Reductase from Arabidopsis thaliana (HMG1) 7PN1 ; 3.9 ; Apo HsPepT1 in the outward facing open conformation 8ELM ; 2.19 ; Apo human biliverdin reductase beta (293K) 8ELL ; 1.52 ; Apo human biliverdin reductase beta (cryogenic) 6QP5 ; 1.9 ; Apo Human Calcium/Calmodulin-dependent kinase type 1D 3D93 ; 1.1 ; Apo Human carbonic anhydrase II bound with substrate carbon dioxide 7PQT ; 2.65 ; Apo human Kv3.1 cryo-EM structure 7WFW ; 3.1 ; Apo human Nav1.8 7AST ; 4.0 ; Apo Human RNA Polymerase III 8D0J ; 1.94 ; Apo Human SARM1 TIR domain 7QDR ; 3.7 ; Apo human SKI complex in the closed state 7QDS ; 3.8 ; Apo human SKI complex in the open state 7YUF ; 3.29 ; apo human SPNS2 3SPJ ; 3.307 ; Apo inward rectifier potassium channel Kir2.2 I223L mutant 4P3J ; 3.5 ; Apo inward-facing state of the glutamate transporter homologue GltPh in alkali-free conditions 2O8Y ; 2.4 ; Apo IRAK4 Kinase Domain 3VUA ; 1.85 ; Apo IsdH-NEAT3 in space group P3121 at a resolution of 1.85 A 6WWT ; 3.2 ; Apo KIF14[391-735] in complex with a microtubule 6WWP ; 3.1 ; Apo KIF14[391-743] in complex with a microtubule 6WWI ; 3.6 ; Apo KIF14[391-755] in complex with a microtubule 6WWE ; 3.9 ; Apo KIF14[391-772] in complex with a microtubule 8F1A ; 3.1 ; Apo KIF20A[1-565] class-1 in complex with a microtubule 8F18 ; 3.2 ; Apo KIF20A[1-565] class-2 in complex with a microtubule 8BJS ; 2.73 ; Apo KIF20A[55-510] crystal structure 6B0I ; 3.78 ; Apo KLP10A in complex with a microtubule 5UL8 ; 1.15 ; Apo KPC-2 beta-lactamase crystal structure at 1.15 Angstrom resolution 6XD5 ; 1.2 ; Apo KPC-2 N170A mutant at 1.20 A 7EZ0 ; 3.14 ; Apo L-21 ScaI Tetrahymena ribozyme 2V65 ; 2.35 ; Apo LDH from the psychrophile C. gunnari 7ZB2 ; 1.94 ; apo macrocyclase OphP 8ON8 ; 2.7 ; Apo Malacoceros FaNaC1 in lipid nanodiscs 4U3Z ; 2.09 ; APO MAP4K4 T181E Phosphomimetic Mutant 6UKP ; 3.81 ; Apo mBcs1 6QB3 ; 1.9 ; Apo Mcl1 in a complex with a scFv 4U3Y ; 1.45 ; Apo Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) 8FG5 ; 1.3 ; Apo mouse acidic mammalian chitinase, catalytic domain at 100 K 8FG7 ; 1.64 ; Apo mouse acidic mammalian chitinase, catalytic domain at 277 K 4HNY ; 2.249 ; Apo N-terminal acetyltransferase complex A 3SPU ; 2.1 ; apo NDM-1 Crystal Structure 6NL2 ; 1.92 ; Apo NIS synthetase DesD variant R306Q 6XRC ; 2.45 ; Apo NIS synthetase DesD variant R306Q 7EVG ; 2.48 ; Apo Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a psuedo-protofilament arrangement 2FW0 ; 1.55 ; Apo Open Form of Glucose/Galactose Binding Protein 1AIV ; 3.0 ; APO OVOTRANSFERRIN 6P17 ; 1.851 ; Apo PCuAC domain from PmoF1 5OVA ; 2.3 ; Apo PDZ domain from rat Shank3 4P71 ; 2.79 ; Apo PheRS from P. aeuriginosa 6P1F ; 1.654 ; apo PmoF2 PCuAC domain 6VUH ; 1.999 ; APO PreQ1 riboswitch aptamer grown in Mn2+ 5F1E ; 2.7 ; Apo protein of Sandercyanin 8U1E ; 1.43 ; Apo protein tyrosine phosphatase 1B (PTP1B) at high resolution (1.43 A) in space group P43212 with two distinctly ordered chains 8CN8 ; 1.8 ; apo Pseudomonas aeruginosa FabF C164A mutant 6UED ; 1.55 ; Apo Pseudomonas aeruginosa LpxD Structure 7RIN ; 1.85 ; Apo PTP1B by Native S-SAD at Room Temperature 1XGD ; 2.1 ; Apo R268A human aldose reductase 8EKP ; 2.75 ; Apo rat TRPV2 in nanodiscs, state 1 8EKQ ; 2.6 ; Apo rat TRPV2 in nanodiscs, state 2 8EKR ; 3.0 ; Apo rat TRPV2 in nanodiscs, state 3 2OAM ; 2.3 ; Apo RebH from Lechevalieria aerocolonigenes 4TVY ; 2.151 ; Apo resorufin ligase 7UEZ ; 1.08 ; Apo RibB from Vibrio cholera 6EU3 ; 3.3 ; Apo RNA Polymerase III - closed conformation (cPOL3) 6EU2 ; 3.4 ; Apo RNA Polymerase III - open conformation (oPOL3) 7LQ2 ; 1.85 ; Apo Rr RsiG- crystal form 1 1FF9 ; 2.0 ; APO SACCHAROPINE REDUCTASE 1E5L ; 2.4 ; Apo saccharopine reductase from Magnaporthe grisea 6UES ; 3.7 ; Apo SAM-IV Riboswitch 6WLQ ; 4.7 ; Apo SAM-IV riboswitch models, 4.7 Angstrom resolution 7E2X ; 3.0 ; Apo serotonin 1A (5-HT1A) receptor-Gi protein complex 7LI8 ; 3.9 ; apo serotonin transporter reconstituted in lipid nanodisc in presence of NaCl in inward open conformation 7LI7 ; 4.1 ; apo serotonin transporter reconstituted in lipid nanodisc in presence of NaCl in occluded conformation 7LI6 ; 3.5 ; apo SERT reconstituted in lipid nanodisc in KCl 2NC9 ; ; Apo solution structure of Hop TPR2A 8UF2 ; 1.6 ; Apo SOS2 crystal structure in P1 space group 7DZW ; 3.45 ; Apo spike protein from SARS-CoV2 8IRL ; 2.7 ; Apo state of Arabidopsis AZG1 at pH 7.4 8WO7 ; 2.9 ; Apo state of Arabidopsis AZG1 T440Y 7WKS ; 3.0 ; Apo state of AtPIN3 6QNM ; 2.1 ; Apo state of chemotaxis sensor ODP from T. denticola 7DGD ; 3.96 ; apo state of class C GPCR 5JWH ; 1.4 ; Apo structure 8FCH ; 1.956 ; Apo Structure of (N1G37) Methyltransferase from Mycobacterium avium 8TXA ; 1.591 ; Apo Structure of (N1G37) tRNA Methyltransferase from Mycobacterium marinum 4CY6 ; 2.76 ; apo structure of 2-hydroxybiphenyl 3-monooxygenase HbpA 5TEK ; 2.01 ; Apo Structure of 4-Hydroxy-tetrahydrodipicolinate Reductase from Mycobacterium tuberculosis 4CKK ; 1.9 ; Apo structure of 55 kDa N-terminal domain of E. coli DNA gyrase A subunit 6IER ; 2.246 ; Apo structure of a beta-glucosidase 1317 6Z3N ; 1.58 ; Apo Structure of a Hydrolase from Pseudomonas aeruginosa PAO1 2WYL ; 2.59 ; Apo structure of a metallo-b-lactamase 4O0Q ; 1.92 ; Apo structure of a methyltransferase component involved in O-demethylation 7JT8 ; 1.84 ; Apo structure of a pseudomurein peptide ligase type E from Methanothermus fervidus 4GMF ; 1.85 ; Apo Structure of a Thiazolinyl Imine Reductase from Yersinia enterocolitica (Irp3) 4OD4 ; 3.301 ; Apo structure of a UbiA homolog from Aeropyrum pernix K1 6MB8 ; 1.6 ; Apo structure of AAC-IIIb 5GT6 ; 2.6 ; Apo structure of Aldehyde Dehydrogenase from Bacillus cereus 5Y4G ; 2.0 ; Apo Structure of AmbP3 6JIZ ; 1.763 ; Apo structure of an imine reductase at 1.76 Angstrom resolution 6JZ1 ; 1.73 ; Apo structure of b-glucuronidase from Ruminococcus gnavus at 1.7 Angstrom resolution 1SXH ; 2.75 ; apo structure of B. megaterium transcription regulator 1W50 ; 1.75 ; Apo Structure of BACE (Beta Secretase) 3TPJ ; 1.61 ; APO structure of BACE1 3TPL ; 2.5 ; APO Structure of BACE1 5EN5 ; 2.3 ; Apo structure of bacterial efflux pump. 6D1N ; 2.2 ; Apo structure of Bacteroides uniformis Beta-glucuronidase 1 6D1P ; 2.35 ; Apo structure of Bacteroides uniformis beta-glucuronidase 3 5XD0 ; 1.79 ; Apo Structure of Beta-1,3-1,4-glucanase from Paenibacillus sp.X4 3FJP ; 2.3 ; Apo structure of Biotin protein ligase from Aquifex aeolicus 7QGJ ; 1.3 ; Apo structure of BIR2 Domain of BIRC2 5HOQ ; 1.793 ; Apo structure of CalS11, TDP-rhamnose 3'-o-methyltransferase, an enzyme in Calicheamicin biosynthesis 2YG1 ; 1.9 ; APO STRUCTURE OF CELLOBIOHYDROLASE 1 (CEL7A) FROM HETEROBASIDION ANNOSUM 2ZQ7 ; 0.94 ; Apo structure of Class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant 2ZQ8 ; 1.03 ; Apo structure of class a beta-lactamase Toho-1 R274N/R276N double mutant 8SJF ; 2.3 ; Apo Structure of Computationally Designed Homotrimer Tet4 8SJI ; 1.5 ; Apo Structure of Computationally Designed Homotrimer TP1 5B7S ; 2.58 ; Apo structure of Cysteine Desulfurase from Thermococcus onnurineus NA1 5B7U ; 1.9 ; Apo Structure of Cysteine Desulfurase from Thermococcus onnurineus NA1 at 1.89A 7CS2 ; 2.688 ; Apo structure of dimeric IiPLR1 6KI9 ; 1.64 ; Apo structure of FabMG, novel types of Enoyl-acyl carrier protein reductase 5GK5 ; 1.9 ; Apo structure of fructose 1,6-bisphosphate aldolase from Escherichia coli at 1.9 angstrom resolution 8IXP ; 2.45 ; Apo structure of glycosyltransferase LmbT wild type 1ZMO ; 2.0 ; Apo structure of haloalcohol dehalogenase HheA of Arthrobacter sp. AD2 8HOE ; 2.2 ; Apo structure of HopBF1 kinase from Ewingella americana 1PW2 ; 1.95 ; APO STRUCTURE OF HUMAN CYCLIN-DEPENDENT KINASE 2 2MNG ; ; Apo Structure of human HCN4 CNBD solved by NMR 5FWQ ; 2.047 ; Apo structure of human Leukotriene A4 hydrolase 5H7Z ; 3.057 ; Apo structure of immunity protein TplEi of T6SS from Pseudomonas aeruginosa 7LNV ; 2.2 ; Apo Structure of Isopentenyl Phosphate Kinase from Candidatus methanomethylophilus alvus 4XEH ; 1.391 ; Apo structure of KARI from Ignisphaera aggregans 7P1B ; 1.45 ; Apo structure of KDNase from Aspergillus Terrerus 7P1V ; 1.47 ; Apo structure of KDNase from Trichophyton Rubrum 5NSK ; 2.6 ; apo Structure of Leucyl aminopeptidase from Trypanosoma brucei 5NTF ; 2.3 ; apo Structure of Leucyl aminopeptidase from Trypanosoma cruzi 5G1W ; 1.76 ; Apo Structure of Linalool Dehydratase-Isomerase 7XGW ; 2.25 ; Apo structure of LW domain from Trypanosoma brucei 7OFP ; 1.92 ; Apo Structure of Mu2 Adaptin Subunit (Ap50) Of AP2 Clathrin Adaptor 6IXO ; 1.901 ; Apo structure of Myo2-GTD 4RS8 ; 2.29 ; Apo structure of novel pNOB8 plasmid centromere binding protein 6K9B ; 2.45 ; Apo structure of NrS-1 N terminal domain N305 5IKY ; 2.5 ; Apo structure of Obc1, a bifunctional enzyme for quorum sensing-dependent oxalogenesis 4NNA ; 2.103 ; Apo structure of ObcA 5NBT ; 2.4 ; Apo structure of p60N/p80C katanin 6H2O ; 1.9 ; APO structure of Phenylalanine ammonia-lyase from Petroselinum crispum 4JFY ; 2.63 ; Apo structure of phosphotyrosine (pYAb) scaffold 5BNF ; 2.3 ; Apo structure of porcine CD38 3HGW ; 2.25 ; Apo Structure of Pseudomonas aeruginosa Isochorismate-Pyruvate Lyase I87T mutant 5M2E ; 2.7 ; Apo structure of Pseudomonas aeruginosa Isocitrate Dehydrogenase, ICD. 6HZR ; 1.19 ; Apo structure of Pseudomonas aeruginosa Penicillin-Binding Protein 3 6R40 ; 2.2 ; Apo structure of R504C mutant of Pseudomonas aeruginosa Penicillin-Binding Protein 3 (PBP3) 3V7L ; 2.66 ; Apo Structure of Rat DNA polymerase beta K72E variant 4BMN ; 1.5 ; apo structure of short-chain alcohol dehydrogenase from Ralstonia sp. DSM 6428 2CEY ; 1.7 ; Apo Structure of SiaP 4OCH ; 1.4001 ; Apo structure of Smr domain of MutS2 from Deinococcus radiodurans 7V1K ; 3.287 ; Apo structure of sNASP core 5AHX ; 2.0 ; Apo structure of soluble epoxide hydrolase 7PF7 ; 1.7 ; Apo structure of SynFtn variant D65A 6D2V ; 1.901 ; Apo Structure of TerB, an NADP Dependent Oxidoreductase in the Terfestatin Biosynthesis Pathway 5ZTC ; 1.7 ; Apo structure of TetR family transcription regulator Lmo2088 of Listeria monocytogenes EGDe 4UBW ; 2.7 ; Apo structure of the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis 6NEW ; 2.5 ; Apo structure of the activated truncation of Vav1 2X0O ; 2.4 ; Apo structure of the Alcaligin biosynthesis protein C (AlcC) from Bordetella bronchiseptica 6T6H ; 1.18 ; Apo structure of the Bottromycin epimerase BotH 4NTS ; 2.9 ; Apo structure of the catalytic subunit of cAMP-dependent protein kinase 2V28 ; 1.95 ; Apo structure of the cold active phenylalanine hydroxylase from Colwellia psychrerythraea 34H 6V67 ; 1.07 ; Apo Structure of the De Novo PD-1 Binding Miniprotein GR918.2 6P01 ; 1.89 ; Apo structure of the E52D mutant of ANT-4 6TWJ ; 2.15 ; Apo structure of the Ectoine utilization protein EutD (DoeA) from Halomonas elongata 6TWL ; 2.0 ; Apo structure of the Ectoine utilization protein EutE (DoeB) from Ruegeria pomeroyi 6WJS ; 3.8 ; Apo structure of the FMN riboswitch aptamer domain in the presence of phosphate 6WJR ; 2.7 ; Apo structure of the FMN riboswitch aptamer domain in the presence of sulfate 4WWQ ; 1.8 ; Apo structure of the Grb7 SH2 domain 2P6U ; 3.14 ; Apo structure of the Hel308 superfamily 2 helicase 7LNY ; 2.1 ; Apo structure of the Histone chaperone ASF1A residues 1-155 6A2E ; 1.939 ; Apo structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase 7QH0 ; 2.15 ; Apo structure of the Leishmania mexicana triose-phosphate isomerase (LmTIM), N11A-E65Q variant, open conformation 6EAZ ; 2.504 ; Apo structure of the mitochondrial calcium uniporter protein MICU2 7EBJ ; 1.8 ; Apo structure of the mouse Trim66 PHD-Bromo dual domain 4FN7 ; 1.25 ; Apo Structure of the Mtb enoyol CoA isomerase (Rv0632c) 6IJM ; 2.016 ; Apo structure of the N6-methyl-AMP Deaminase from Arabidopsis thaliana 2MR7 ; ; apo structure of the Peptidyl Carrier Protein Domain 7 of the teicoplanin producing Non-ribosomal peptide synthetase 3LF1 ; 2.315 ; Apo structure of The Short Chain Oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 Containing an Atypical Catalytic Center 8BXJ ; ; apo structure of the specific silver chaperone needed for bacterial silver resistance 6NLT ; 1.9 ; Apo structure of the T130K mutant of ANT-4 7KD1 ; 1.9 ; Apo structure of the THF riboswitch aptamer domain 8F4O ; 3.1 ; Apo structure of the TPP riboswitch aptamer domain 6HZI ; 2.29 ; Apo structure of TP domain from Burkholderia pseudomallei penicillin-binding protein 3 6HZH ; 1.83 ; Apo structure of TP domain from Chlamydia trachomatis penicillin-binding protein 3 6HZJ ; 1.43 ; Apo structure of TP domain from clinical penicillin-resistant mutant Neisseria gonorrhoea strain 6140 Penicillin-Binding Protein 2 (PBP2) 6HZQ ; 1.95 ; Apo structure of TP domain from Escherichia coli Penicillin-Binding Protein 3 6HZO ; 2.44 ; Apo structure of TP domain from Haemophilus influenzae Penicillin-Binding Protein 3 5BS6 ; 2.35 ; Apo structure of transcriptional factor AraR from Bacteroides thetaiotaomicron VPI 5DD4 ; 2.56 ; Apo structure of transcriptional factor AraR from Bacteroides thetaiotaomicron VPI 7LWZ ; 2.32 ; Apo Structure of Vibrio cholerae dGTPase protein VC1979 7DUP ; 1.62 ; Apo structure of wild type Bt4394, a GH20 family sulfoglycosidase 2X0D ; 2.28 ; APO structure of WsaF 6OAU ; 2.48 ; Apo Structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in GnTI-deficient HEK293-F cells 6OAZ ; 3.04 ; Apo Structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in HEK293-F cells 6DTT ; 1.9 ; Apo T. maritima MalE2 6DTR ; 2.301 ; Apo T. maritima MalE3 3EQQ ; 3.2 ; Apo Toluene 2,3-Dioxygenase 4C7V ; 2.2 ; Apo Transketolase from Lactobacillus salivarius at 2.2A resolution 4UUM ; 1.368 ; Apo trichomonas vaginalis lactate dehydrogenase 4UUL ; 1.28 ; Apo trichomonas vaginalis lactate dehydrogenase L91R 4UUO ; 2.842 ; Apo Trichomonas vaginalis malate dehydrogenase 7ADN ; 1.92 ; apo tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant 7EQM ; 2.50002 ; Apo Truncated VhChiP (Delta 1-19) 7X5Q ; 2.7 ; Apo Truncated VhChiP (Delta 1-19) in complex with peptide (DGANSDAAK) 2EZ2 ; 1.85 ; Apo tyrosine phenol-lyase from Citrobacter freundii at pH 8.0 6WLT ; 4.8 ; Apo V. cholerae glycine riboswitch models, 4.8 Angstrom resolution 2PC0 ; 1.4 ; Apo Wild-type HIV Protease in the open conformation 4Q84 ; 2.64 ; Apo YcaO 4WEP ; 1.5 ; Apo YehZ from Escerichia coli 6Q1C ; 1.76 ; Apo YfeA extracted from the E. coli periplasm 6B2X ; 2.199 ; Apo YiuA Crystal Form 1 6B2Y ; 1.77 ; Apo YiuA Crystal Form 2 4XDD ; 1.599 ; Apo [FeFe]-Hydrogenase CpI 6GL6 ; 1.8 ; apo [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii, variant C377H 6LUU ; 1.2 ; apo- Carbonic Anhydrase II pH 7.8 0 atm CO2 6LUV ; 1.2 ; apo- Carbonic Anhydrase II pH 7.8 20 atm CO2 2RG7 ; 2.05 ; Apo- Crystal Structure of a Periplasmic Heme Binding Protein from Shigella dysenteriae 5H9G ; 2.6 ; apo-ACP from Helicobacter pylori 6J9K ; 2.234 ; Apo-AcrIIC2 7YP7 ; 3.1 ; apo-ADGRG2 coupled to Gs 8GF6 ; 3.1 ; Apo-apo MCR assembly intermediate 7XWD ; 2.396 ; Apo-AtPRT6 UBR box 6L1L ; 1.9 ; Apo-BacF structure from Bacillus subtillis 6N7U ; 2.03 ; apo-BDBV223 Fab 8QX7 ; 1.95 ; Apo-C-Terminal Domain Homolog of the Orange Carotenoid Protein from Anabaena at a resolution of 1.95 Angstroms 6CTB ; ; Apo-Calmodulin Bound to Calcium Voltage Gated Channel 1.2 IQ-Motif 7Y2L ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 120 K 7Y2M ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 140 K 7Y2N ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 160 K 7Y2O ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 180 K 7Y2Q ; 1.35 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 200 K 7Y2K ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA after UV at 90 K 7Y2J ; 1.25 ; apo-Carbonic Anhydrase II soaked in 3NPA before UV at 90 K 1CBI ; 2.7 ; APO-CELLULAR RETINOIC ACID BINDING PROTEIN I 1XCA ; 2.3 ; APO-CELLULAR RETINOIC ACID BINDING PROTEIN II 7SHS ; 4.1 ; Apo-ChRmine in MSP1E3D1 lipid nanodisc 7DCN ; 1.695 ; Apo-citrate lyase phosphoribosyl-dephospho-CoA transferase 1SWA ; 1.9 ; APO-CORE-STREPTAVIDIN AT PH 4.5 1SWC ; 1.8 ; APO-CORE-STREPTAVIDIN AT PH 4.5 1SWB ; 1.85 ; APO-CORE-STREPTAVIDIN AT PH 7.5 1SWD ; 1.9 ; APO-CORE-STREPTAVIDIN IN COMPLEX WITH BIOTIN (TWO UNOCCUPIED BINDING SITES) AT PH 4.5 1SWE ; 2.06 ; APO-CORE-STREPTAVIDIN IN COMPLEX WITH BIOTIN AT PH 4.5 8CI7 ; 2.4 ; Apo-crystal structure of a wild-type South African HIV-1 subtype C protease at 2.4 angstrom 4QVK ; 1.97 ; Apo-crystal structure of Podospora anserina methyltransferase PaMTH1 5FJD ; 1.5 ; APO-CSP1 (COPPER STORAGE PROTEIN 1) FROM METHYLOSINUS TRICHOSPORIUM OB3B 5FIG ; 1.7 ; APO-CSP3 (COPPER STORAGE PROTEIN 3) FROM BACILLUS SUBTILIS 5ARM ; 1.194 ; APO-CSP3 (COPPER STORAGE PROTEIN 3) FROM METHYLOSINUS 7U57 ; 2.37 ; apo-CTX-M-15 4OOQ ; 2.004 ; apo-dUTPase from Arabidopsis thaliana 7D48 ; 2.15 ; apo-form cyclic trinucleotide synthase CdnD 7D4S ; 1.93 ; apo-form cyclic trinucleotide synthase CdnD 6UAM ; 2.802 ; Apo-form Dimer of Y77A Mutant Putative Ryanodine Receptor from Bacteroides thetaiotaomicron VPI-5482 2ZYG ; 2.1 ; Apo-form of dimeric 6-phosphogluconate dehydrogenase 7UI3 ; 3.18 ; Apo-form of Human Tryptophan 2,3-Dioxygenase Induced by NADH Binding 3FN4 ; 1.96 ; Apo-form of NAD-dependent formate dehydrogenase from bacterium Moraxella sp.C-1 in closed conformation 3NAQ ; 1.7 ; Apo-form of NAD-dependent formate dehydrogenase from higher-plant Arabidopsis thaliana 8HK9 ; 2.0 ; Apo-form of Periplasmic terephthalate binding protein (TBP) from Ideonella sakaiensis 6HQJ ; 1.802 ; apo-form of polyphenol oxidase from Solanum lycopersicum 5EFY ; 2.7 ; Apo-form of SCO3201 3FUT ; 1.52 ; Apo-form of T. thermophilus 16S rRNA A1518 and A1519 methyltransferase (KsgA) in space group P21212 3FUV ; 1.95 ; Apo-form of T. thermophilus 16S rRNA A1518 and A1519 methyltransferase (KsgA) in space group P43212 2NXC ; 1.59 ; Apo-form of T. thermophilus ribosomal protein L11 methyltransferase (PrmA) 5AHL ; 1.951 ; Apo-form of the DeltaCBS mutant of IMPDH from Pseudomonas aeruginosa 2KLS ; ; Apo-form of the second Ca2+ binding domain of NCX1.4 5ZW0 ; 2.54 ; Apo-form PigA 6M5N ; 1.84 ; Apo-Form Structure of Borneol Dehydrogenase 6IIP ; 0.951 ; Apo-form structure of the HRP3 PWWP domain 3H7G ; 1.65 ; Apo-FR with AU ions 2Z5R ; 2.5 ; Apo-Fr with high content of Pd ions 2Z5Q ; 2.1 ; Apo-Fr with intermediate content of Pd ion 2Z5P ; 1.65 ; Apo-Fr with low content of Pd ions 3KDS ; 2.601 ; apo-FtsH crystal structure 4Y2M ; 1.4 ; apo-GolB protein 3FI6 ; 1.8 ; apo-H49AFr with high content of Pd ions 2C9R ; 2.0 ; apo-H91F CopC 3GZ0 ; 1.26 ; Apo-human carbonic anhydrase II revisited: Implications of the loss of a metal in protein structure, stability and solvent network 2HAV ; 2.7 ; Apo-Human Serum Transferrin (Glycosylated) 2HAU ; 2.7 ; Apo-Human Serum Transferrin (Non-Glycosylated) 8CP3 ; 2.35 ; Apo-LarE in complex with AMP-PNP 6O00 ; 4.18 ; apo-LRRC8A in MSP2N2 nanodisc constricted state 1BV4 ; 1.85 ; APO-MANNOSE-BINDING PROTEIN-C 7CED ; 1.9 ; Apo-methanol dehydrogenase (MDH) from Methylococcus capsulatus (Bath) 1Q5V ; 2.3 ; Apo-NikR 2CA9 ; 2.05 ; apo-NIKR from helicobacter pylori in closed trans-conformation 5K3V ; 1.9 ; apo-PDX1.3 (Arabidopsis) 1PZC ; 1.85 ; APO-PSEUDOAZURIN (METAL FREE PROTEIN) 6TI3 ; 1.96 ; Apo-SHMT from Streptococcus thermophilus Tyr55Ser variant in complex with D-Threonine 6JSH ; 5.1 ; Apo-state Fatty Acid Synthase 6J6K ; 3.3 ; Apo-state streptavidin 7AGX ; 3.6 ; Apo-state type 3 secretion system export apparatus complex from Salmonella enterica typhimurium 4A10 ; 2.25 ; Apo-structure of 2-octenoyl-CoA carboxylase reductase CinF from streptomyces sp. 4V2U ; 2.71 ; Apo-structure of alpha2,3-sialyltransferase from Pasteurella dagmatis 4V38 ; 1.96 ; Apo-structure of alpha2,3-sialyltransferase variant 1 from Pasteurella dagmatis 4V39 ; 2.6 ; Apo-structure of alpha2,3-sialyltransferase variant 2 from Pasteurella dagmatis 5LB4 ; 1.98 ; Apo-structure of humanised RadA-mutant humRadA14 5LB2 ; 2.1 ; Apo-structure of humanised RadA-mutant humRadA2 5KDD ; 1.99 ; Apo-structure of humanised RadA-mutant humRadA22 5J4L ; 1.13 ; Apo-structure of humanised RadA-mutant humRadA22F 5JEE ; 1.49 ; Apo-structure of humanised RadA-mutant humRadA26F 5JED ; 1.332 ; Apo-structure of humanised RadA-mutant humRadA28 5LBI ; 1.43 ; Apo-structure of humanised RadA-mutant humRadA3 5JEC ; 2.34 ; Apo-structure of humanised RadA-mutant humRadA33F 5L8V ; 1.5 ; Apo-structure of humanised RadA-mutant humRadA4 6GJV ; 2.11 ; apo-structure of IMPDH from Pseudomonas aeruginosa 7OE7 ; 3.73 ; Apo-structure of Lassa virus L protein (well-resolved alpha ribbon) [APO-RIBBON] 7OE3 ; 3.35 ; Apo-structure of Lassa virus L protein (well-resolved endonuclease) [APO-ENDO] 7OCH ; 3.14 ; Apo-structure of Lassa virus L protein (well-resolved polymerase core) [APO-CORE] 5UHM ; 1.9 ; Apo-Structure of Mature Growth Differentiation Factor 11 5A0P ; 1.398 ; Apo-structure of metalloprotease Zmp1 from Clostridium difficile 5A0S ; 2.56 ; Apo-structure of metalloprotease Zmp1 variant E143A from Clostridium difficile 3ZGY ; 2.71 ; Apo-structure of R-selective imine reductase from Streptomyces kanamyceticus 7QCW ; 2.81 ; Apo-structure of serine hydroxymethyltransferase (PbzB) involved in benzobactin biosynthesis in P. chlororaphis subsp. piscium DSM 21509 6G56 ; 2.15 ; Apo-structure of the alanine racemase from Staphylococcus aureus 2BLL ; 2.3 ; Apo-structure of the C-terminal decarboxylase domain of ArnA 4W99 ; 2.0 ; Apo-structure of the Y79F,W322E-double mutant of Etr1p 5EIP ; 1.49 ; apo-structure of YTH domain of SpMmi1 4Z9J ; 1.78 ; Apo-Tar from E. coli 6ZJ4 ; 2.1 ; apo-Trehalose transferase (apo-TreT) from Thermoproteus uzoniensis 8FIK ; 1.912 ; APOBEC3A E72A inactive mutant in complex with ATTC-hairpin DNA substrate 7KM6 ; 1.67 ; APOBEC3B antibody 5G7 Fv-clasp 5W2M ; 3.7 ; APOBEC3F Catalytic Domain Complex with a Single-Stranded DNA 5HX5 ; 2.33 ; APOBEC3F Catalytic Domain Crystal Structure 5ZVA ; 2.3 ; APOBEC3F Chimeric Catalytic Domain in Complex with DNA(dC9) 5ZVB ; 2.0 ; APOBEC3F Chimeric Catalytic Domain in Complex with DNA(dT9) 1OBQ ; 1.85 ; Apocrustacyanin C1 crystals grown in space and earth using vapour diffusion geometry 1OBU ; 2.0 ; Apocrustacyanin C1 crystals grown in space and earth using vapour diffusion geometry 1IEU ; ; APOCYTOCHROME B5, PH 6.2, 298 K, NMR, 10 STRUCTURES 1IET ; ; APOCYTOCHROME B5, PH 6.2, 298 K, NMR, MINIMIZED AVERAGE STRUCTURE 8GRX ; 3.0 ; APOE4 receptor in complex with APOE4 NTD 2H34 ; 2.8 ; Apoenzyme crystal structure of the tuberculosis serine/threonine kinase, PknE 3KAJ ; 2.0 ; Apoenzyme structure of homoglutathione synthetase from Glycine max in open conformation 6S61 ; 1.84 ; Apoferritin from mouse at 1.84 angstrom resolution 7RRP ; 1.27 ; Apoferritin structure at 1.27 angstrom resolution determined from a 300 kV Titan Krios G3i electron microscope with Falcon4 detector 7K3V ; 1.34 ; Apoferritin structure at 1.34 angstrom resolution determined from a 300 kV Titan Krios G3i electron microscope with K3 detector 7K3W ; 1.36 ; Apoferritin structure at 1.36 angstrom resolution determined from a 300 kV Titan Krios G3i electron microscope with Falcon4 detector 3F34 ; 1.68 ; Apoferritin: complex with 2,6-diethylphenol 3F35 ; 1.92 ; Apoferritin: complex with 2,6-diethylphenol 3F37 ; 1.54 ; Apoferritin: complex with 2,6-dimethylphenol 3F38 ; 1.75 ; Apoferritin: complex with 2,6-dimethylphenol 3F36 ; 1.7 ; Apoferritin: complex with 2-isopropylphenol 3F39 ; 1.85 ; Apoferritin: complex with phenol 3F33 ; 1.7 ; Apoferritin: complex with propofol 3U90 ; 1.9 ; apoferritin: complex with SDS 2BMV ; 2.11 ; Apoflavodoxin from Helicobacter pylori 7R4U ; 1.23 ; Apoform of FtrA/P19 from Rubrivivax gelatinosus 7R3P ; 1.4 ; Apoform of the periplasmic FtrA/P19 protein from Rubrivivax gelatinosus (His-tag) 7L6K ; ; ApoL1 N-terminal domain 1NFO ; 2.0 ; APOLIPOPROTEIN E2 (APOE2, D154A MUTATION) 1BZ4 ; 1.85 ; APOLIPOPROTEIN E3 (APO-E3), TRUNCATION MUTANT 165 1NFN ; 1.8 ; APOLIPOPROTEIN E3 (APOE3) 1OR2 ; 2.5 ; APOLIPOPROTEIN E3 (APOE3) TRUNCATION MUTANT 165 1OR3 ; 1.73 ; APOLIPOPROTEIN E3 (APOE3), TRIGONAL TRUNCATION MUTANT 165 1H7I ; 1.9 ; Apolipoprotein E3 22kD fragment LYS146GLN mutant 1EA8 ; 1.95 ; Apolipoprotein E3 22kD fragment LYS146GLU mutant 1B68 ; 2.0 ; APOLIPOPROTEIN E4 (APOE4), 22K FRAGMENT 1GS9 ; 1.7 ; Apolipoprotein E4, 22k domain 5XHQ ; 2.587 ; Apolipoprotein N-acyl Transferase 5VRH ; 2.137 ; Apolipoprotein N-acyltransferase C387S active site mutant 7Y69 ; 3.21 ; ApoSIDT2-pH5.5 7Y63 ; 3.16 ; ApoSIDT2-pH7.4 7VHR ; 2.756 ; Apostichopus japonicus ferritin 7Y74 ; 1.98 ; Apostichopus japonicus ferritin mutant-D129A/E132A 2IZC ; 1.4 ; APOSTREPTAVIDIN PH 2.0 I222 COMPLEX 2IZA ; 1.46 ; APOSTREPTAVIDIN PH 2.00 I4122 STRUCTURE 2IZD ; 1.6 ; APOSTREPTAVIDIN pH 3.0 I222 COMPLEX 2IZE ; 1.57 ; APOSTREPTAVIDIN PH 3.08 I222 COMPLEX 2IZB ; 1.2 ; APOSTREPTAVIDIN PH 3.12 I4122 STRUCTURE 2RTA ; 1.39 ; APOSTREPTAVIDIN, PH 2.97, SPACE GROUP I4122 2RTB ; 1.5 ; APOSTREPTAVIDIN, PH 3.32, SPACE GROUP I222 2RTC ; 1.5 ; APOSTREPTAVIDIN, PH 3.60, SPACE GROUP I222 1SLF ; 1.76 ; APOSTREPTAVIDIN, PH 5.6, TWO MOLECULES OF (SO4)2 BOUND AT THE BIOTIN BINDING SITE 5M0U ; 1.667 ; Apostructure structure of cAMP-dependent Protein Kinase (PKA) from CHO cells with a peptidic inhibitor fragment 2M6R ; ; apo_YqcA 3N4U ; 2.2 ; app APH(2"")-IVa form II 1R4M ; 3.0 ; APPBP1-UBA3-NEDD8, an E1-ubiquitin-like protein complex 1R4N ; 3.6 ; APPBP1-UBA3-NEDD8, an E1-ubiquitin-like protein complex with ATP 3IUR ; 2.05 ; apPEP_D266Nx+H2H3 opened state 3IUN ; 2.4 ; apPEP_D622N opened state 3IUQ ; 2.1 ; apPEP_D622N+PP closed state 3MUN ; 2.1 ; APPEP_PEPCLOSE closed state 3MUO ; 1.95 ; APPEP_PEPCLOSE+PP closed state 3IVM ; 2.05 ; apPEP_WT+PP closed state 3IUL ; 1.95 ; apPEP_WT1 opened state 3IUJ ; 1.8 ; apPEP_WT2 opened state 3IUM ; 2.25 ; apPEP_WTX opened state 1CRY ; 3.0 ; APPLICATION OF AN AUTOMATIC MOLECULAR REPLACEMENT PROCEDURE TO CRYSTAL STRUCTURE OF CYTOCHROME C2 FROM RHODOPSEUDOMONAS VIRIDIS 6K64 ; 1.933 ; Application of anti-helix antibodies in protein structure determination (8188-3LRH) 6K6A ; 1.94 ; Application of anti-helix antibodies in protein structure determination (8188cys-3LRHcys) 6K3M ; 1.8 ; Application of anti-helix antibodies in protein structure determination (8189-3LRH) 6K68 ; 3.2 ; Application of anti-helix antibodies in protein structure determination (8420-3MNZ) 6K6B ; 2.06 ; Application of anti-helix antibodies in protein structure determination (8496-3LRH) 6K67 ; 1.95 ; Application of anti-helix antibodies in protein structure determination (9011-3LRH) 6K65 ; 1.65 ; Application of anti-helix antibodies in protein structure determination (9014-1P4B) 6K69 ; 2.401 ; Application of anti-helix antibodies in protein structure determination (9213-3LRH) 1ULA ; 2.75 ; APPLICATION OF CRYSTALLOGRAPHIC AND MODELING METHODS IN THE DESIGN OF PURINE NUCLEOSIDE PHOSPHORYLASE INHIBITORS 1ULB ; 2.75 ; APPLICATION OF CRYSTALLOGRAPHIC AND MODELING METHODS IN THE DESIGN OF PURINE NUCLEOSIDE PHOSPHORYLASE INHIBITORS 5M4E ; 1.9 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 5M4H ; 2.0 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 5M4K ; 2.6 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 5M4M ; 2.4 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 5M4N ; 2.6 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 5M4P ; 2.3 ; Application of Off-Rate Screening in the Identification of Novel Pan-Isoform Inhibitors of Pyruvate Dehydrogenase Kinase 3ED8 ; 2.7 ; Application of the superfolder YFP bimolecular fluorescence complementation for studying protein-protein interactions in vitro 4NYI ; 2.9612 ; Approach for Targeting Ras with Small Molecules that Activate SOS-Mediated Nucleotide Exchange 4NYJ ; 2.8522 ; Approach for Targeting Ras with Small Molecules that Activate SOS-Mediated Nucleotide Exchange 4NYM ; 3.5529 ; Approach for Targeting Ras with Small Molecules that Activate SOS-Mediated Nucleotide Exchange 5A5Z ; 2.6 ; Approved Drugs Containing Thiols as Inhibitors of Metallo-beta- lactamases: Strategy To Combat Multidrug-Resistant Bacteria 6B3A ; 1.784 ; AprA Methyltransferase 1 - GNAT didomain in complex with Mn2+ and SAM 7UCH ; 2.18 ; AprA Methyltransferase 1 - GNAT in complex with Mn2+ , SAM, and Di-methyl-malonate 6B3B ; 1.85 ; AprA Methyltransferase 1 - GNAT in complex with Mn2+ , SAM, and Malonate 6B39 ; 2.392 ; AprA Methyltransferase 1 - GNAT in complex with SAH 6D6Y ; 2.246 ; AprA Methyltransferase 2 - GNAT didomain in complex with SAH 8CGR ; 2.12 ; Apramycin bound to the 30S body 3KT9 ; 1.65 ; Aprataxin FHA Domain 3U1J ; 1.8 ; Aprotinin bound to Dengue virus protease 1XNJ ; 1.98 ; APS complex of human PAPS synthetase 1 8A8H ; 1.77 ; APS kinase from Methanothermococcus thermolithotrophicus refined to 1.77 A 7E5P ; ; Aptamer enhancing peroxidase activity of myoglobin 2JC5 ; 1.5 ; Apurinic Apyrimidinic (AP) endonuclease (NApe) from Neisseria Meningitidis 1A9G ; ; APURINIC DNA WITH BOUND WATER AT THE DAMAGED SITE AND N3 OF CYTOSINE, BETA FORM, NMR, 1 STRUCTURE 1A9H ; ; APURINIC DNA WITH BOUND WATER AT THE DAMAGED SITE AND O2 OF CYTOSINE, BETA FORM, NMR, 1 STRUCTURE 1A9I ; ; APYRIMIDINIC DNA WITH BOUND WATER AT THE DAMAGED SITE, ALPHA FORM, NMR, 1 STRUCTURE 1A9J ; ; APYRIMIDINIC DNA WITH BOUND WATER AT THE DAMAGED SITE, BETA FORM, NMR, 1 STRUCTURE 8H0U ; ; AQEE-30 in a DPC solution 8H0G ; ; AQEE-30 in a HFIP solution 7STC ; 2.25 ; AQP5 T41H with Ni2+ 8AMW ; 3.0 ; AQP7 dimer of tetramers_C1 8AMX ; 2.55 ; AQP7 dimer of tetramers_D4 8C9H ; 3.2 ; AQP7_inhibitor 4DZT ; 1.95 ; Aqualysin I: the crystal structure of a serine protease from an extreme thermophile, Thermus aquaticus YT-1 3LLQ ; 2.01 ; Aquaporin structure from plant pathogen Agrobacterium Tumerfaciens 1SOR ; 3.0 ; Aquaporin-0 membrane junctions reveal the structure of a closed water pore 1Z0Q ; ; Aqueous Solution Structure of the Alzheimer's Disease Abeta Peptide (1-42) 1TZ7 ; 2.15 ; Aquifex aeolicus amylomaltase 2R6R ; 1.7 ; Aquifex aeolicus FtsZ 2R75 ; 1.402 ; Aquifex aeolicus FtsZ with 8-morpholino-GTP 2VF3 ; 2.2 ; Aquifex aeolicus IspE in complex with ligand 1FX6 ; 2.06 ; AQUIFEX AEOLICUS KDO8P SYNTHASE 1LRN ; 2.1 ; Aquifex aeolicus KDO8P synthase H185G mutant in complex with Cadmium 1LRO ; 1.8 ; Aquifex aeolicus KDO8P synthase H185G mutant in complex with PEP and Cadmium 1LRQ ; 1.8 ; Aquifex aeolicus KDO8P synthase H185G mutant in complex with PEP, A5P and Cadmium 1JCX ; 1.8 ; Aquifex aeolicus KDO8P synthase in complex with API and Cadmium 1FXP ; 1.8 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH CADMIUM 1FY6 ; 1.89 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH CADMIUM AND A5P 1FWN ; 1.94 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP 1FXQ ; 1.8 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP AND A5P 1FWS ; 1.9 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP AND CADMIUM 1FWW ; 1.85 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP, A5P AND CADMIUM 1FWT ; 1.9 ; AQUIFEX AEOLICUS KDO8P SYNTHASE IN COMPLEX WITH PEP, E4P AND CADMIUM 1JCY ; 1.9 ; Aquifex aeolicus KDO8P synthase in complex with R5P, PEP and Cadmium 1PE1 ; 1.74 ; Aquifex aeolicus KDO8PS in complex with cadmium and 2-PGA 1PCW ; 1.85 ; Aquifex aeolicus KDO8PS in complex with cadmium and APP, a bisubstrate inhibitor 2A2I ; 1.95 ; Aquifex aeolicus KDO8PS in complex with PEP, A5P, Zn2+ 2A21 ; 1.8 ; Aquifex aeolicus KDO8PS in complex with PEP, PO4, and Zn2+ 1PCK ; 1.8 ; Aquifex aeolicus KDO8PS in complex with Z-methyl-PEP 1ZJI ; 2.25 ; Aquifex aeolicus KDO8PS R106G mutant in complex with 2PGA and R5P 6IH0 ; 1.21 ; Aquifex aeolicus LpxC complex with ACHN-975 7A4F ; 3.5 ; Aquifex aeolicus lumazine synthase-derived nucleocapsid variant NC-1 (120-mer) 7A4G ; 4.2 ; Aquifex aeolicus lumazine synthase-derived nucleocapsid variant NC-1 (180-mer) 7A4H ; 4.5 ; Aquifex aeolicus lumazine synthase-derived nucleocapsid variant NC-2 (180-mer) 7A4I ; 7.04 ; Aquifex aeolicus lumazine synthase-derived nucleocapsid variant NC-3 7A4J ; 3.04 ; Aquifex aeolicus lumazine synthase-derived nucleocapsid variant NC-4 3SWG ; 1.81 ; AQUIFEX AEOLICUS MurA in complex with UDP-N-acetylmuramic acid and covalent adduct of PEP with Cys124 6LZI ; 1.69106 ; Aquifex aeolicus MutL ATPase domain complexed with ADP 6LZJ ; 1.72836 ; Aquifex aeolicus MutL ATPase domain complexed with AMPPCP 6LZK ; 3.1595 ; Aquifex aeolicus MutL ATPase domain with K252N mutation 8H1E ; 1.22 ; Aquifex aeolicus MutL endonuclease domain complexed with manganese ions 8H1F ; 1.22 ; Aquifex aeolicus MutL endonuclease domain complexed with zinc ions after soaking 5Z41 ; 1.7 ; Aquifex aeolicus MutL endonuclease domain with a single zinc ion. 5Z42 ; 1.3 ; Aquifex aeolicus MutL endonuclease domain with three zinc ions. 4NMN ; 3.301 ; Aquifex aeolicus replicative helicase (DnaB) complexed with ADP, at 3.3 resolution 8IEY ; 2.0 ; Aquifex aeolicus TsaD-TsaB 8IFX ; 2.0 ; Aquifex aeolicus TsaD-TsaB in complex with ADP 3NO0 ; 1.3004 ; Aquifex aeolicus type IIA topoisomerase C-terminal domain 2XKI ; 1.3 ; Aquo-met structure of C.lacteus mini-Hb 4FWZ ; 1.9 ; Aquoferric CuB myoglobin (L29H F43H sperm whale myoglobin) 4FWX ; 1.9 ; Aquoferric F33Y CuB myoglobin (F33Y L29H F43H sperm whale myoglobin) 4F6B ; 1.64 ; Aquomet structure of His100Phe Cerebratulus lacteus mini-hemoglobin 4F6G ; 1.64 ; Aquomet Structure of His100Trp Cerebratulus lacteus mini-hemoglobin 1A6K ; 1.1 ; AQUOMET-MYOGLOBIN, ATOMIC RESOLUTION 2PIX ; 2.4 ; AR LBD with small molecule 2QPY ; 2.5 ; AR LBD with small molecule 3BTR ; 2.6 ; AR-NLS:Importin-alpha complex 2LOU ; ; AR55 solubilised in DPC micelles 2LOV ; ; AR55 solubilised in LPPG micelles 2LOT ; ; AR55 solubilised in SDS micelles 7LXK ; ; Ara h 1 leader sequence, Ara h 1.0101 (25-83) A25G 6AWV ; 2.55 ; Ara h 8.01 in complex with epicatechin 4G01 ; 2.2 ; ARA7-GDP-Ca2+/VPS9a 2EFC ; 2.09 ; Ara7-GDP/AtVps9a 2EFH ; 2.1 ; Ara7-GDP/AtVps9a(D185N) 2EFE ; 2.08 ; Ara7-GDPNH2/AtVps9a 2EFD ; 3.0 ; Ara7/AtVps9a 8KA5 ; 2.8 ; Arabidopsis AP endonuclease ARP complex with 20bp THF-containing DNA 8KA4 ; 2.3 ; Arabidopsis AP endonuclease ARP complex with 21bp THF-containing DNA 8KA3 ; 3.0 ; Arabidopsis AP endonuclease ARP complex with 22bp THF-containing DNA 6YPO ; 1.67 ; Arabidopsis aspartate transcarbamoylase bound to UMP 6YVB ; 1.826 ; Arabidopsis aspartate transcarbamoylase complex with carbamoyl phosphate 6YS6 ; 1.55 ; Arabidopsis aspartate transcarbamoylase complex with PALA 6YSP ; 1.38 ; Arabidopsis aspartate transcarbamoylase complex with PALA and carbamoyl phosphate 6YY1 ; 3.06 ; Arabidopsis aspartate transcarbamoylase in apo state 6YW9 ; 1.68 ; Arabidopsis aspartate transcarbamoylase mutant F161A complex with PALA 6YWJ ; 2.4 ; Arabidopsis aspartate transcarbamoylase mutant F161A complex with UMP 7UX9 ; 3.2 ; Arabidopsis DDM1 bound to nucleosome (H2A.W, H2B, H3.3, H4, with 147 bp DNA) 6J9B ; 1.9 ; Arabidopsis FUS3-DNA complex 7X8K ; 3.0 ; Arabidopsis GDP-D-mannose pyrophosphorylase (VTC1) structure (product-bound) 7X8J ; 2.798 ; Arabidopsis GDP-D-mannose pyrophosphorylase (VTC1) structure (unliganded) 6OMS ; 1.942 ; Arabidopsis GH3.12 with Chorismate 2EBI ; ; Arabidopsis GT-1 DNA-binding domain with T133D phosphomimetic mutation 4QS9 ; 2.103 ; Arabidopsis Hexokinase 1 (AtHXK1) mutant S177A structure in glucose-bound form 4QS7 ; 2.001 ; Arabidopsis Hexokinase 1 (AtHXK1) structure in glucose-bound form 4QS8 ; 1.798 ; Arabidopsis Hexokinase 1 (AtHXK1) structure in ligand-free form 3T4O ; 1.75 ; Arabidopsis histidine kinase 4 sensor domain in complex with dihydrozeatin 3T4S ; 1.6 ; Arabidopsis histidine kinase 4 sensor domain in complex with kinetin 3T4K ; 1.77 ; Arabidopsis histidine kinase 4 sensor domain in complex with N-benzyladenine 3T4J ; 1.65 ; Arabidopsis histidine kinase 4 sensor domain in complex with N-isopentenyl adenine 3T4T ; 1.7 ; Arabidopsis histidine kinase 4 sensor domain in complex with thiadiazuron 3T4L ; 1.53 ; Arabidopsis histidine kinase 4 sensor domain in complex with trans-zeatin 3T4Q ; 2.3 ; Arabidopsis histidine kinase 4 sensor domain in complex with trans-zeatin riboside (hydrolysed) 4FRZ ; 2.4 ; Arabidopsis KCBP motor domain dimerized via regulatory domain 6R2V ; 2.503 ; Arabidopsis NF-Y/CCAAT-box complex 6HPG ; 2.0 ; Arabidopsis OM64 TPR domain 6Q3Q ; 2.0 ; Arabidopsis OM64 TPR domain 7RQS ; 3.57 ; Arabidopsis RNA-dependent RNA polymerase 2 5Z9X ; 2.8 ; Arabidopsis SMALL RNA DEGRADING NUCLEASE 1 in complex with an RNA substrate 6U9H ; 3.8 ; Arabidopsis thaliana acetohydroxyacid synthase complex 6VZ8 ; 3.45 ; Arabidopsis thaliana acetohydroxyacid synthase complex with valine bound 3E9Y ; 3.0 ; Arabidopsis thaliana acetohydroxyacid synthase in complex with monosulfuron 3EA4 ; 2.8 ; Arabidopsis thaliana acetohydroxyacid synthase in complex with monosulfuron-ester 1W07 ; 2.0 ; Arabidopsis thaliana acyl-CoA oxidase 1 8DAE ; 2.0 ; Arabidopsis thaliana bifunctional dihydrofolate reductase-thymidylate synthase 6XX6 ; 1.8492 ; Arabidopsis thaliana Casein Kinase 2 (CK2) alpha-1 crystal form I 6XX8 ; 1.8 ; Arabidopsis thaliana Casein Kinase 2 (CK2) alpha-1 crystal form II 6XX9 ; 1.84 ; Arabidopsis thaliana Casein Kinase 2 (CK2) alpha-1 crystal form III 6XX7 ; 2.4 ; Arabidopsis thaliana Casein Kinase 2 (CK2) alpha-1 crystal in complex with ANP 4BQE ; 1.7 ; Arabidopsis thaliana Cytosolic Alpha-1,4-glucan Phosphorylase (PHS2) 4BQF ; 2.35 ; Arabidopsis thaliana cytosolic alpha-1,4-glucan phosphorylase (PHS2) in complex with acarbose 4BQI ; 1.9 ; ARABIDOPSIS THALIANA cytosolic alpha-1,4-glucan phosphorylase (PHS2) in complex with maltotriose 6GIR ; 2.343 ; Arabidopsis thaliana cytosolic seryl-tRNA synthetase 6VVI ; 2.145 ; Arabidopsis thaliana dihydrodipicolinate synthase isoform 1 (DHDPS1) 6VVH ; 1.792 ; Arabidopsis thaliana dihydrodipicolinate synthase isoform 1 (DHDPS1) in complex with lysine 4OOP ; 1.5 ; Arabidopsis thaliana dUTPase with with magnesium and alpha,beta-imido-dUTP 3T34 ; 2.405 ; Arabidopsis thaliana dynamin-related protein 1A (AtDRP1A) in prefission state 3T35 ; 3.592 ; Arabidopsis thaliana dynamin-related protein 1A in postfission state 5KOR ; 2.2 ; Arabidopsis thaliana fucosyltransferase 1 (FUT1) in complex with GDP and a xylo-oligossacharide 5KOP ; 2.1 ; Arabidopsis thaliana fucosyltransferase 1 (FUT1) in its apo-form 7F3A ; 1.7 ; Arabidopsis thaliana GH1 beta-glucosidase AtBGlu42 6YEH ; 2.59 ; Arabidopsis thaliana glutamate dehydrogenase isoform 1 in apo form 6YEI ; 2.02 ; Arabidopsis thaliana glutamate dehydrogenase isoform 1 in complex with NAD 6EZY ; 2.35 ; ARABIDOPSIS THALIANA GSTF9, GSH AND GSOH BOUND 6F01 ; 2.5 ; ARABIDOPSIS THALIANA GSTF9, GSO3 AND GSOH BOUND 6F05 ; 2.2 ; ARABIDOPSIS THALIANA GSTF9, GSO3 BOUND 6EP7 ; 1.947 ; ARABIDOPSIS THALIANA GSTU23, GSH bound 6EP6 ; 1.592 ; ARABIDOPSIS THALIANA GSTU23, reduced 4NAI ; 1.5 ; Arabidopsis thaliana IspD apo 5MRQ ; 2.2 ; Arabidopsis thaliana IspD Asp262Ala Mutant 5MRN ; 2.0 ; Arabidopsis thaliana IspD Glu258Ala Mutant 5MRO ; 1.8 ; Arabidopsis thaliana IspD Glu258Ala mutant in complex with Azolopyrimidine (1) 5MRP ; 1.9 ; Arabidopsis thaliana IspD Glu258Ala mutant in complex with Azolopyrimidine (2) 5MRM ; 1.8 ; Arabidopsis thaliana IspD in complex with Isoxazole (4) 4NAK ; 1.8 ; Arabidopsis thaliana IspD in complex with pentabromo-pseudilin 4NAN ; 1.8 ; Arabidopsis thaliana IspD in complex with tetrabromo-pseudilin 4NAL ; 1.8 ; Arabidopsis thaliana IspD in complex with tribromodichloro-pseudilin 2IX4 ; 1.95 ; Arabidopsis thaliana mitochondrial beta-ketoacyl ACP synthase hexanoic acid complex 1W0I ; 2.1 ; Arabidopsis thaliana Mitochondrial KAS 2WTB ; 2.5 ; Arabidopsis thaliana multifuctional protein, MFP2 6YZZ ; 1.79 ; Arabidopsis thaliana Naa50 in complex with AcCoA 6Z00 ; 1.42 ; Arabidopsis thaliana Naa50 in complex with bisubstrate analogue CoA-Ac-MVNAL 5FT9 ; 3.05 ; Arabidopsis thaliana nuclear protein-only RNase P 2 (PRORP2) 1PA2 ; 1.45 ; ARABIDOPSIS THALIANA PEROXIDASE A2 1QO4 ; 3.0 ; ARABIDOPSIS THALIANA PEROXIDASE A2 AT ROOM TEMPERATURE 1QGJ ; 1.9 ; ARABIDOPSIS THALIANA PEROXIDASE N 8OJZ ; 3.24781 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase 1 (PPC1) G678S mutant 8CJ5 ; 3.00135 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 A651V mutant with bound phosphate 8OJ9 ; 3.24638 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 free form 8OJE ; 3.1424 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 in complex with L-malate 8CJ8 ; 3.48992 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 mutant A651V in complex with L-malate 8OJY ; 3.09894 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 T778 mutant with bound malate 8OJQ ; 3.04938 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 T778 mutant with bound phosphate 8OJF ; 3.03684 ; Arabidopsis thaliana Phosphoenolpyruvate carboxylase PPC1 with bound phosphate 5WP4 ; 1.341 ; Arabidopsis thaliana phosphoethanolamine N-methyltransferase 1 (AtPMT1, XIOPTL) in complex with SAH and phosphocholine 5WP5 ; 1.5 ; Arabidopsis thaliana phosphoethanolamine N-methyltransferase 2 (AtPMT2) in complex with SAH 5WMH ; 3.0 ; Arabidopsis thaliana prephenate aminotransferase 5WMK ; 1.398 ; Arabidopsis thaliana Prephenate Aminotransferase double mutant- T84V K169V 5WML ; 2.103 ; Arabidopsis thaliana Prephenate Aminotransferase mutant- K306A 5WMI ; 2.0 ; Arabidopsis thaliana Prephenate Aminotransferase mutant- T84V 7F2I ; 2.35 ; Arabidopsis thaliana protease-associated domain of vacuolar-sorting receptor 1 in complex with cruciferin 1 C-terminal pentapeptide RVAAA (pH6.5) 7F2D ; 2.45 ; Arabidopsis thaliana protease-associated domain of vacuolar-sorting receptor 1 in complex with cruciferin 1 C-terminal pentapeptide RVAAA (pH9) 5VJW ; 1.8 ; Arabidopsis thaliana Rhizobiales-like phosphatase 2 complexed with tungstate 1VOK ; 2.1 ; ARABIDOPSIS THALIANA TBP (DIMER) 6XZL ; 1.39 ; Arabidopsis UV-B photoreceptor UVR8 mutant D96N D107N 6XZM ; 2.10009 ; Arabidopsis UV-B photoreceptor UVR8 mutant D96N D107N W285A 6XZN ; 1.75 ; Arabidopsis UV-B photoreceptor UVR8 mutant G101S W285A 6X8D ; 1.0 ; Arabinose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 8IF8 ; 3.1 ; Arabinosyltransferase AftA 8IFE ; 2.57 ; Arbekacin-added human 80S ribosome 8IFC ; 2.9 ; Arbekacin-bound E.coli 70S ribosome in the PURE system 6HP3 ; 2.7 ; ARBITRIUM PEPTIDE RECEPTOR FROM SPBETA PHAGE 6HP5 ; 2.28 ; ARBITRIUM PEPTIDE RECEPTOR FROM SPBETA PHAGE 6HP7 ; 2.2 ; ARBITRIUM PEPTIDE RECEPTOR FROM SPBETA PHAGE in complex with 43 mer DNA 6S7I ; 2.4 ; Arbitrium receptor from a Bacillus subtilis Katmira33 phage 6S7L ; 2.6 ; Arbitrium receptor from a Bacillus subtilis Katmira33 phage 7Q0N ; 2.5 ; Arbitrium receptor from Katmira phage 1BDV ; 2.8 ; ARC FV10 COCRYSTAL 1BAZ ; 1.9 ; ARC REPRESSOR MUTANT PHE10VAL 1B28 ; ; ARC REPRESSOR MYL MUTANT FROM SALMONELLA BACTERIOPHAGE P22 5LY5 ; 2.0 ; Arcadin-1 from Pyrobaculum calidifontis 2LX0 ; ; Arced helix (ArcH) NMR structure of the reovirus p14 fusion-associated small transmembrane (FAST) protein transmembrane domain (TMD) in dodecyl phosphocholine (DPC) micelles 1AVB ; 1.9 ; ARCELIN-1 FROM PHASEOLUS VULGARIS L 1IOA ; 2.7 ; ARCELIN-5, A LECTIN-LIKE DEFENSE PROTEIN FROM PHASEOLUS VULGARIS 4LX9 ; 1.98 ; Archaeal amino-terminal acetyltransferase (NAT) bound to acetyl coenzyme A 5D1O ; 2.648 ; Archaeal ATP-dependent RNA ligase - form 1 5D1P ; 2.199 ; Archaeal ATP-dependent RNA ligase - form 2 5MQZ ; 2.1 ; Archaeal branched-chain amino acid aminotransferase from Archaeoglobus fulgidus; holoform 2OX1 ; 2.33 ; Archaeal Dehydroquinase 2ZJ2 ; 2.4 ; Archaeal DNA helicase Hjm apo state in form 1 2ZJ8 ; 2.0 ; Archaeal DNA helicase Hjm apo state in form 2 2ZJ5 ; 2.4 ; Archaeal DNA helicase Hjm complexed with ADP in form 1 2ZJA ; 2.7 ; Archaeal DNA helicase Hjm complexed with AMPPCP in form 2 7RPW ; 4.38 ; Archaeal DNA ligase and heterotrimeric PCNA in complex with adenylated DNA 7RPX ; 4.2 ; Archaeal DNA ligase and heterotrimeric PCNA in complex with end-joined DNA 7RPO ; 4.16 ; Archaeal DNA ligase and heterotrimeric PCNA in complex with non-ligatable DNA 5N41 ; 1.351 ; Archaeal DNA polymerase holoenzyme - SSO6202 at 1.35 Ang resolution 4BA1 ; 1.8 ; Archaeal exosome (Rrp4-Rrp41(D182A)-Rrp42) bound to inorganic phosphate 4BA2 ; 2.501 ; Archaeal exosome (Rrp4-Rrp41(D182A)-Rrp42) bound to inorganic phosphate 2BA0 ; 2.7 ; Archaeal exosome core 2BA1 ; 2.7 ; Archaeal exosome core 1OK4 ; 2.1 ; Archaeal fructose 1,6-bisphosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate 1JT8 ; ; ARCHAEAL INITIATION FACTOR-1A, AIF-1A 3E54 ; 2.5 ; Archaeal Intron-encoded Homing Endonuclease I-Vdi141I Complexed With DNA 3AII ; 1.65 ; Archaeal non-discriminating glutamyl-tRNA synthetase from Methanothermobacter thermautotrophicus 7FI3 ; 2.3 ; Archaeal oligopeptide permease A (OppA) from Thermococcus kodakaraensis in complex with an endogenous pentapeptide 7E9S ; 2.7 ; Archaeal oligosaccharyltransferase AglB from Archaeoglobus fulgidus in complex with an inhibitory peptide and a dolichol-phosphate 3VMF ; 2.3 ; Archaeal protein 2PMZ ; 3.4 ; Archaeal RNA polymerase from Sulfolobus solfataricus 4V8S ; 4.323 ; Archaeal RNAP-DNA binary complex at 4.32Ang 8HNP ; 3.39 ; Archaeal transcription factor Mutant 8HNO ; 2.84 ; Archaeal transcription factor Wild type 3ODM ; 2.95 ; Archaeal-type phosphoenolpyruvate carboxylase 5F4H ; 2.699 ; Archael RuvB-like Holiday junction helicase 5YWW ; 2.33 ; Archael RuvB-like Holiday junction helicase 4II7 ; 3.59 ; Archaellum Assembly ATPase FlaI 4IHQ ; 2.0 ; Archaellum Assembly ATPase FlaI bound to ADP 5TUG ; 2.47 ; Archaellum periplasmic stator protein complex FlaF and FlaG from Sulfolobus acidocaldarius 6PBK ; 2.805 ; Archaellum periplasmic stator protein complex FlaF and FlaG from Sulfolobus acidocaldarius 5TUH ; 1.929 ; Archaellum periplasmic stator protein FlaG from Sulfolobus acidocaldarius 8QG0 ; 3.43 ; Archaeoglobus fulgidus AfAgo complex with AfAgo-N protein (fAfAgo) bound with 17 nt RNA guide and 17 nt DNA target 8PVV ; 2.81 ; Archaeoglobus fulgidus AfAgo complex with AfAgo-N protein (fAfAgo) bound with 30 nt RNA guide and 51 nt DNA target 3NE2 ; 3.0 ; Archaeoglobus fulgidus aquaporin 6XU0 ; 1.9 ; Archaeoglobus fulgidus Argonaute protein with DNA oligoduplex 5'-pATCGTGGCCACGAT 6XUP ; 1.9 ; Archaeoglobus fulgidus Argonaute protein with DNA oligoduplex 5'-pATCGTGGCCACGAT 3M7N ; 2.4 ; archaeoglobus fulgidus exosome with RNA bound to the active site 3M85 ; 3.0 ; Archaeoglobus fulgidus exosome y70a with RNA bound to the active site 1I0S ; 1.65 ; ARCHAEOGLOBUS FULGIDUS FERRIC REDUCTASE COMPLEX WITH NADP+ 3O8W ; 2.28 ; Archaeoglobus fulgidus GlnK1 1GL9 ; 3.2 ; Archaeoglobus fulgidus reverse gyrase complexed with ADPNP 4XHM ; 1.95 ; Archaeoglobus fulgidus thioredoxin 3 M60H 7BGS ; 2.5 ; Archeal holliday junction resolvase from Thermus thermophilus phage 15-6 7BNX ; 2.551 ; Archeal holliday junction resolvase from Thermus thermophilus phage 15-6 4AF1 ; 2.0 ; Archeal Release Factor aRF1 7Q1V ; 6.18 ; Arches protomer (trimer of TrwG/VirB8peri) structure from the fully-assembled R388 type IV secretion system determined by cryo-EM. 4YX6 ; 1.86 ; Architectural hierarchy of trans-acting enoyl reductases from polyunsaturated fatty acid and trans-AT polyketide synthases 3JC9 ; ; Architectural model of the type IVa pilus machine in a non-piliated state 3JC8 ; ; Architectural model of the type IVa pilus machine in a piliated state 6O1L ; 3.37 ; Architectural principles for Hfq/Crc-mediated regulation of gene expression Hfq-Crc-amiE 2:3:2 complex 6O1K ; 3.13 ; Architectural principles for Hfq/Crc-mediated regulation of gene expression. Hfq-Crc-amiE 2:2:2 complex (core complex) 6O1M ; 3.15 ; Architectural principles for Hfq/Crc-mediated regulation of gene expression. Hfq-Crc-amiE 2:4:2 complex 6A2H ; 2.3 ; Architectural roles of Cren7 in folding crenarchaeal chromatin filament 6A2I ; 2.4 ; Architectural roles of Cren7 in folding crenarchaeal chromatin filament 4BXO ; 2.15 ; Architecture and DNA recognition elements of the Fanconi anemia FANCM- FAAP24 complex 6NJL ; 6.7 ; Architecture and subunit arrangement of native AMPA receptors 6NJM ; 6.5 ; Architecture and subunit arrangement of native AMPA receptors 6NJN ; 6.5 ; Architecture and subunit arrangement of native AMPA receptors 3BG0 ; 3.15 ; Architecture of a Coat for the Nuclear Pore Membrane 3BG1 ; 3.0 ; Architecture of a Coat for the Nuclear Pore Membrane 8CJH ; 2.982 ; Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin 7CXM ; 2.9 ; Architecture of a SARS-CoV-2 mini replication and transcription complex 7CXN ; 3.84 ; Architecture of a SARS-CoV-2 mini replication and transcription complex 7BRM ; 3.6 ; Architecture of curli complex 5KK2 ; 7.3 ; Architecture of fully occupied GluA2 AMPA receptor - TARP complex elucidated by single particle cryo-electron microscopy 6B19 ; 4.5 ; Architecture of HIV-1 reverse transcriptase initiation complex core 5FLC ; 5.9 ; Architecture of human mTOR Complex 1 - 5.9 Angstrom reconstruction 5J7Y ; 6.7 ; Architecture of loose respirasome 2CF2 ; 4.3 ; Architecture of mammalian fatty acid synthase 5GPN ; 5.4 ; Architecture of mammalian respirasome 5J8K ; 7.8 ; Architecture of supercomplex I-III2 8AFZ ; 10.0 ; Architecture of the ESCPE-1 membrane coat 3SOH ; 3.5 ; Architecture of the Flagellar Rotor 5KZ5 ; 14.3 ; Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery: the Complex Formed by the Iron Donor, the Sulfur Donor, and the Scaffold 7WJI ; 4.5 ; Architecture of the human NALCN channelosome 3RJ1 ; 4.3 ; Architecture of the Mediator Head module 8F5D ; 2.56 ; Architecture of the MurE-MurF ligase bacterial cell wall biosynthesis complex 1S5L ; 3.5 ; Architecture of the photosynthetic oxygen evolving center 4V1M ; 6.6 ; Architecture of the RNA polymerase II-Mediator core transcription initiation complex 4V1N ; 7.8 ; Architecture of the RNA polymerase II-Mediator core transcription initiation complex 4V1O ; 9.7 ; Architecture of the RNA polymerase II-Mediator core transcription initiation complex 2CDH ; 4.2 ; ARCHITECTURE OF THE THERMOMYCES LANUGINOSUS FUNGAL FATTY ACID SYNTHASE AT 5 ANGSTROM RESOLUTION. 5T0V ; 17.5 ; Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: the Sub-Complex Formed by the Iron Donor, Yfh1, and the Scaffold, Isu1 5TZS ; 5.1 ; Architecture of the yeast small subunit processome 5J4Z ; 5.8 ; Architecture of tight respirasome 4B6W ; 2.35 ; Architecture of Trypanosoma brucei Tubulin-Binding cofactor B 1GLN ; 2.5 ; ARCHITECTURES OF CLASS-DEFINING AND SPECIFIC DOMAINS OF GLUTAMYL-TRNA SYNTHETASE 5JHQ ; 3.2 ; ARCs 1-3 of human Tankyrase-1 bound to a peptide derived from IRAP 2WJ9 ; 1.62 ; ArdB 1JQU ; 2.6 ; Are Carboxy Terminii of Helices Coded by the Local Sequence or by Tertiary Structure Contacts 1LLH ; 1.8 ; ARE CARBOXY TERMINII OF HELICES CODED BY THE LOCAL SEQUENCE OR BY TERTIARY STRUCTURE CONTACTS 8BUU ; 2.9 ; ARE-ABCF VmlR2 bound to a 70S ribosome 4C0A ; 3.3 ; Arf1(Delta1-17)in complex with BRAG2 Sec7-PH domain 1S9D ; 1.8 ; ARF1[DELTA 1-17]-GDP-MG IN COMPLEX WITH BREFELDIN A AND A SEC7 DOMAIN 1R8S ; 1.46 ; ARF1[DELTA1-17]-GDP IN COMPLEX WITH A SEC7 DOMAIN CARRYING THE MUTATION OF THE CATALYTIC GLUTAMATE TO LYSINE 6L5K ; 2.91 ; ARF5 Aux/IAA17 Complex 7JSS ; 3.7 ; ArfB Rescue of a 70S Ribosome stalled on truncated mRNA with a partial A-site codon (+2-II) 7JSW ; 3.8 ; ArfB Rescue of a 70S Ribosome stalled on truncated mRNA with a partial A-site codon (+2-III) 7JSZ ; 3.7 ; ArfB Rescue of a 70S Ribosome stalled on truncated mRNA with a partial A-site codon (+2-IV) 2OLM ; 1.48 ; ArfGap domain of HIV-1 Rev binding protein 1ARJ ; ; ARG-BOUND TAR RNA, NMR 2PLZ ; 1.36 ; Arg-modified human beta-defensin 1 (HBD1) 1U85 ; ; ARG326-TRP mutant of the third zinc finger of BKLF 2ONN ; 2.75 ; Arg475Gln Mutant of Human Mitochondrial Aldehyde Dehydrogenase, Apo form 2ONP ; 2.0 ; Arg475Gln Mutant of Human Mitochondrial Aldehyde Dehydrogenase, complexed with NAD+ 2ONO ; 2.15 ; Arg475Gln Mutant of Mitochondrial Aldehyde Dehydrogenase, apo form, pseudo-merohedrally twinned 6CRT ; 1.995 ; Arg65Gln Mutagenic E.coli PCK 1G3Y ; 2.8 ; ARG80ALA DTXR 3ZOP ; 1.61 ; Arg90Cit chorismate mutase of Bacillus subtilis at 1.6 A resolution 3ZP4 ; 1.798 ; Arg90Cit chorismate mutase of Bacillus subtilis in complex with a transition state analog 3ZP7 ; 1.698 ; Arg90Cit chorismate mutase of Bacillus subtilis in complex with chorismate and prephenate 5YGE ; 2.039 ; ArgA complexed with AceCoA and glutamate 8D27 ; 2.25 ; Arginase Domain of Ornithine Decarboxylase/Arginase from Fusobacterium nucleatum 6VSU ; 2.25 ; Arginase from Arabidopsis thaliana in Complex with Ornithine 3CEV ; 2.4 ; ARGINASE FROM BACILLUS CALDEVELOX, COMPLEXED WITH L-ARGININE 5CEV ; 2.5 ; ARGINASE FROM BACILLUS CALDEVELOX, L-LYSINE COMPLEX 4CEV ; 2.7 ; ARGINASE FROM BACILLUS CALDEVELOX, L-ORNITHINE COMPLEX 2CEV ; 2.15 ; ARGINASE FROM BACILLUS CALDEVELOX, NATIVE STRUCTURE AT PH 8.5 1CEV ; 2.4 ; ARGINASE FROM BACILLUS CALDOVELOX, NATIVE STRUCTURE AT PH 5.6 6VSS ; 1.93 ; Arginase from Medicago truncatula 6VST ; 2.12 ; Arginase from Medicago truncatula in complex with ornithine 2ZAV ; 1.7 ; Arginase I (homo sapiens): native and unliganded structure at 1.70 A resolution 1ZPE ; 1.7 ; Arginase I covalently modified with butylamine at Q19C 1ZPG ; 1.9 ; Arginase I covalently modified with propylamine at Q19C 1T5F ; 2.2 ; arginase I-AOH complex 2A0M ; 1.603 ; Arginase superfamily protein from Trypanosoma cruzi 1T4P ; 2.6 ; Arginase-dehydro-ABH complex 1T4R ; 2.6 ; arginase-descarboxy-nor-NOHA complex 1T4T ; 2.2 ; arginase-dinor-NOHA complex 1T5G ; 2.4 ; Arginase-F2-L-Arginine complex 1T4S ; 2.8 ; arginase-L-valine complex 1NND ; 2.3 ; Arginine 116 is Essential for Nucleic Acid Recognition by the Fingers Domain of Moloney Murine Leukemia Virus Reverse Transcriptase 1ACM ; 2.8 ; ARGININE 54 IN THE ACTIVE SITE OF ESCHERICHIA COLI ASPARTATE TRANSCARBAMOYLASE IS CRITICAL FOR CATALYSIS: A SITE-SPECIFIC MUTAGENESIS, NMR AND X-RAY CRYSTALLOGRAPHY STUDY 6OWD ; 1.5 ; Arginine Containing Reengineered Coiled-Coiled Dimer to Examine the Impact of Proximal Cation Identity on Hydrophobically-Driven Assembly 2BUF ; 2.95 ; Arginine Feed-Back Inhibitable Acetylglutamate Kinase 6Y12 ; 1.7 ; Arginine hydroxylase VioC in complex with (3S)-OH-Arg, succinate and Fe after oxygen exposure using FT-SSX methods 6Y0N ; 1.86 ; Arginine hydroxylase VioC in complex with Arg, 2OG and Fe under anaerobic environment using FT-SSX methods 7VCJ ; 1.75 ; Arginine kinase H227A from Daphnia magna 1XIM ; 2.2 ; ARGININE RESIDUES AS STABILIZING ELEMENTS IN PROTEINS 2XIM ; 2.3 ; ARGININE RESIDUES AS STABILIZING ELEMENTS IN PROTEINS 3XIM ; 2.3 ; ARGININE RESIDUES AS STABILIZING ELEMENTS IN PROTEINS 5I2C ; 1.801 ; Arginine-bound CASTOR1 from Homo sapiens 4IFK ; 2.012 ; Arginines 51 and 239* from a Neighboring Subunit are Essential for Catalysis in a Zinc-dependent Decarboxylase 6IEM ; 2.2 ; Argininosuccinate lyase from Mycobacterium tuberculosis 5T7B ; 2.529 ; Argonaute-2 - 5'-(E)-vinylphosphonate 2'-O-methyl-uridine modified mrTTR guide RNA complex 3VPC ; 1.87 ; ArgX from Sulfolobus tokodaii complexed with ADP 3VPB ; 1.8 ; ArgX from Sulfolobus tokodaii complexed with LysW/Glu/ADP/Mg/Zn/Sulfate 7P6D ; 3.3 ; Argyrophilic grain disease type 1 tau filament 7P6E ; 3.4 ; Argyrophilic grain disease type 2 tau filament 1GV7 ; 2.1 ; ARH-I, an angiogenin/RNase A chimera 1UN5 ; 2.6 ; ARH-II, AN ANGIOGENIN/RNASE A CHIMERA 2P0H ; 1.9 ; ArhGAP9 PH domain in complex with Ins(1,3,4)P3 2P0F ; 1.91 ; ArhGAP9 PH domain in complex with Ins(1,3,5)P3 2P0D ; 1.811 ; ArhGAP9 PH domain in complex with Ins(1,4,5)P3 7G99 ; 1.78 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102102-001 7G9A ; 2.583 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102113-001 7G9B ; 2.553 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102116-001 7G9C ; 2.686 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102141-001 7G9D ; 2.659 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102179-001 7G9E ; 2.151 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102197-001 7G9F ; 1.935 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102209-001 7G9G ; 2.079 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102236-001 7G9H ; 2.746 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102245-001 7G9I ; 2.202 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102253-001 7G9J ; 1.97 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with PCM-0102281-001 7G8A ; 1.5 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z100642432 7G8B ; 1.42 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z100643660 7G8C ; 2.176 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1037511924 7G80 ; 1.671 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1041785508 7G8D ; 1.937 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z104474228 7G81 ; 1.51 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z104474512 7G8E ; 1.79 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z104479710 7G8F ; 1.42 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1079168976 7G82 ; 1.409 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1079512010 7G83 ; 1.31 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z108545814 7G84 ; 1.811 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1102357527 7G85 ; 1.735 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z111529496 7G8G ; 1.92 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z111529496 7G86 ; 1.699 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1137725943 7G87 ; 2.053 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1148165337 7G88 ; 1.869 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1148747945 7G89 ; 1.901 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1192341021 7G8H ; 1.67 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1198180782 7G8I ; 2.468 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1198316457 7G96 ; 2.3 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1203730981 7G8J ; 1.986 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1216861874 7G8K ; 1.491 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1217131798 7G8L ; 1.6 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1251207602 7G8M ; 2.029 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1255459547 7G8N ; 2.32 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1262549981 7G8O ; 1.579 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1267800292 7G8P ; 2.209 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1269184613 7G8Q ; 1.561 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1269220427 7G8R ; 1.44 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1270087714 7G8S ; 1.6 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1270393711 7G8T ; 1.385 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1273312142 7G8U ; 2.44 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z131833926 7G8V ; 1.451 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z133716556 7G8W ; 1.939 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1416193393 7G8X ; 1.711 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1416571195 7G8Y ; 1.75 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1449748885 7G8Z ; 1.509 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1493056027 7G90 ; 1.911 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1509195674 7G91 ; 2.292 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1509257513 7G92 ; 1.872 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1545313172 7G93 ; 1.693 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1565771450 7G94 ; 1.47 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z1575337975 7G95 ; 1.551 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z165170770 7G98 ; 2.878 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z4605084898 7G97 ; 2.3 ; ARHGEF2 PanDDA analysis group deposition -- ARHGEF2 and RhoA in complex with Z57899718 7E2Z ; 3.1 ; Aripiprazole-bound serotonin 1A (5-HT1A) receptor-Gi protein complex 1DGP ; 2.8 ; ARISTOLOCHENE SYNTHASE FARNESOL COMPLEX 2OA6 ; 2.15 ; Aristolochene synthase from Aspergillus terreus complexed with pyrophosphate 7BDX ; 2.6 ; Armadillo domain of HSF2BP in complex with BRCA2 peptide 7TD6 ; 3.0 ; aRML prion fibril 4LPZ ; 3.15 ; ARNT transcription factor/coactivator complex 4PKY ; 3.2 ; ARNT/HIF transcription factor/coactivator complex 5EWP ; 1.8 ; ARO (armadillo repeats only protein) from Plasmodium falciparum 1AY8 ; 2.3 ; AROMATIC AMINO ACID AMINOTRANSFERASE COMPLEX WITH 3-PHENYLPROPIONATE 1AY5 ; 2.5 ; AROMATIC AMINO ACID AMINOTRANSFERASE COMPLEX WITH MALEATE 2AY3 ; 2.4 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 3-(3,4-DIMETHOXYPHENYL)PROPIONIC ACID 2AY4 ; 2.2 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 3-(P-TOLYL)PROPIONIC ACID 2AY6 ; 2.2 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 3-INDOLEBUTYRIC ACID 2AY5 ; 2.4 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 3-INDOLEPROPIONIC ACID 2AY8 ; 2.2 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 4-(2-THIENYL)BUTYRIC ACID 2AY1 ; 2.2 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 4-AMINOHYDROCINNAMIC ACID 2AY7 ; 2.4 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 4-PHENYLBUTYRIC ACID 2AY9 ; 2.5 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH 5-PHENYLVALERIC ACID 2AY2 ; 2.4 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITH CYCLOHEXANE PROPIONIC ACID 1AY4 ; 2.33 ; AROMATIC AMINO ACID AMINOTRANSFERASE WITHOUT SUBSTRATE 6S8W ; 2.4 ; Aromatic aminotransferase AroH (Aro8) form Aspergillus fumigatus in complex with PLP (internal aldimine) 6M78 ; ; Aromatic interactions drive the coupled folding and binding of the intrinsically disordered Sesbania mosaic virus VPg protein 6LXF ; ; Aromatic interactions drive the coupled folding and binding of the intrinsically disordered Sesbania mosaic virus VPg protein. 4BTL ; 2.5 ; Aromatic interactions in acetylcholinesterase-inhibitor complexes 8UXW ; 2.7 ; Arp2/3 branch junction complex, ADP state 8UXX ; 3.2 ; Arp2/3 branch junction complex, BeFx state 3A4J ; 1.25 ; arPTE (K185R/D208G/N265D/T274N) 6Z5J ; 8.0 ; Arrangement of the matrix protein M1 in influenza A/Hong Kong/1/1968 VLPs (HA,NA,M1,M2) 3PO2 ; 3.3 ; Arrested RNA Polymerase II elongation complex 3PO3 ; 3.3 ; Arrested RNA Polymerase II reactivation intermediate 4BXX ; 3.28 ; Arrested RNA polymerase II-Bye1 complex 1AYR ; 3.3 ; ARRESTIN FROM BOVINE ROD OUTER SEGMENTS 1CF1 ; 2.8 ; ARRESTIN FROM BOVINE ROD OUTER SEGMENTS 1VQX ; ; ARRESTIN-BOUND NMR STRUCTURES OF THE PHOSPHORYLATED CARBOXY-TERMINAL DOMAIN OF RHODOPSIN, REFINED 1RXE ; 1.7 ; ArsC complexed with MNB 2FXI ; 1.8 ; Arsenate reductase (ArsC from pI258) C10S/C15A double mutant with sulfate in its active site 8P6M ; 1.65 ; Arsenate reductase (ArsC2) from Deinococcus indicus 8P5N ; 1.5 ; Arsenate reductase (ArsC2) from Deinococcus indicus, co-crystallized with arsenate 1JZW ; 1.76 ; Arsenate Reductase + Sodium Arsenate From E. coli 1SD9 ; 1.65 ; ARSENATE REDUCTASE C12S MUTANT +0.4M ARSENATE FROM E. COLI 1S3C ; 1.25 ; ARSENATE REDUCTASE C12S MUTANT FROM E. COLI 1I9D ; 1.65 ; ARSENATE REDUCTASE FROM E. COLI 3F0I ; 1.88 ; Arsenate reductase from Vibrio cholerae. 1SK2 ; 1.54 ; ARSENATE REDUCTASE R60A MUTANT +0.4M ARSENATE FROM E. COLI 1SK0 ; 1.8 ; ARSENATE REDUCTASE R60A MUTANT +0.4M ARSENITE FROM E. COLI 1S3D ; 1.54 ; ARSENATE REDUCTASE R60A MUTANT FROM E. COLI 1SK1 ; 1.55 ; ARSENATE REDUCTASE R60K MUTANT +0.4M ARSENATE FROM E. COLI 1SJZ ; 1.8 ; ARSENATE REDUCTASE R60K MUTANT +0.4M ARSENITE FROM E. COLI 1SD8 ; 1.59 ; ARSENATE REDUCTASE R60K MUTANT FROM E. COLI 1J9B ; 1.26 ; ARSENATE REDUCTASE+0.4M ARSENITE FROM E. COLI 7DHY ; 2.15 ; Arsenic-bound p53 DNA-binding domain mutant G245S 7DHZ ; 1.74 ; Arsenic-bound p53 DNA-binding domain mutant R249S 7V97 ; 2.02 ; Arsenic-bound p53 DNA-binding domain mutant V272M 5NQD ; 2.2 ; Arsenite oxidase AioAB from Rhizobium sp. str. NT-26 mutant AioBF108A 3ENZ ; 2.03 ; Arsenolytic structure of Plasmodium falciparum purine nucleoside phosphorylase with hypoxanthine, ribose and arsenate ion 7PLE ; 2.6 ; ArsH of Paracoccus denitrificans 4FSD ; 1.75 ; ArsM arsenic(III) S-adenosylmethionine methyltransferase with As(III) 4FR0 ; 2.75 ; ArsM arsenic(III) S-adenosylmethionine methyltransferase with SAM 4RSR ; 2.25 ; ArsM arsenic(III) S-adenosylmethionine methyltransferase with trivalent phenyl arsencial derivative-Roxarsone 2K4J ; ; ArsR DNA Binding Domain 2OQG ; 1.54 ; ArsR-like Transcriptional Regulator from Rhodococcus sp. RHA1 5AWP ; 2.0 ; Arthrobacter globiformis T6 isomalto-dextranase complexed with isomaltose 5AWO ; 1.44 ; Arthrobacter globiformis T6 isomalto-dextranse 5AWQ ; 1.48 ; Arthrobacter globiformis T6 isomalto-dextranse complexed with panose 8ECI ; 4.0 ; Arthrobacter phage Bridgette 1BQX ; ; ARTIFICIAL FE8S8 FERREDOXIN: THE D13C VARIANT OF BACILLUS SCHLEGELII FE7S8 FERREDOXIN 1BWE ; ; ARTIFICIAL FE8S8 FERREDOXIN: THE D13C VARIANT OF BACILLUS SCHLEGELII FE7S8 FERREDOXIN 6S9A ; 1.86 ; Artificial GTPase-BSE dimer of human Dynamin1 5CMU ; 2.113 ; Artificial HIV fusion inhibitor AP1 fused to the C-terminus of gp41 NHR 5CN0 ; 1.901 ; Artificial HIV fusion inhibitor AP2 fused to the C-terminus of gp41 NHR 5CMZ ; 2.574 ; Artificial HIV fusion inhibitor AP3 fused to the C-terminus of gp41 NHR 6ESS ; 1.91 ; Artificial imine reductase mutant S112A-N118P-K121A-S122M 6ESU ; 1.78 ; Artificial imine reductase mutant S112A-N118P-K121A-S122M 6UI0 ; 1.4 ; Artificial Iron Proteins: Modelling the Active Sites in Non-Heme Dioxygenases 6UIU ; 1.35 ; Artificial Iron Proteins: Modelling the Active Sites in Non-Heme Dioxygenases 6UIY ; 1.47 ; Artificial Iron Proteins: Modelling the Active Sites in Non-Heme Dioxygenases 6UIZ ; 1.85 ; Artificial Iron Proteins: Modelling the Active Sites in Non-Heme Dioxygenases 6US6 ; 1.5 ; Artificial Iron Proteins: Modelling the Active Sites in Non-Heme Dioxygenases 5Z75 ; 2.1 ; Artificial L-threonine 3-dehydrogenase designed by ancestral sequence reconstruction. 5Z76 ; 2.8 ; Artificial L-threonine 3-dehydrogenase designed by full consensus design 6AUO ; 1.7 ; Artificial Metalloproteins Containing a Co4O4 Active Site - 2xm-S112F 6AUH ; 1.6 ; Artificial Metalloproteins Containing a Co4O4 Active Site - 2xm-S112Y-a 6AUE ; 1.36 ; Artificial Metalloproteins Containing a Co4O4 Active Site - 2xm-S112Y-b 6AUL ; 1.36 ; Artificial Metalloproteins Containing a Co4O4 Active Site - 2xm-S112Y-b 6AUC ; 1.46 ; Artificial metalloproteins containing a Co4O4 active site - 2xm-Sav 6VO9 ; 1.5 ; Artificial Metalloproteins with Dinuclear Iron Centers 6VOB ; 1.7 ; Artificial Metalloproteins with Dinuclear Iron Centers 6VOZ ; 1.3 ; Artificial Metalloproteins with Dinuclear Iron Centers 6VP1 ; 1.45 ; Artificial Metalloproteins with Dinuclear Iron Centers 6VP2 ; 1.8 ; Artificial Metalloproteins with Dinuclear Iron Centers 6VP3 ; 1.65 ; Artificial Metalloproteins with Dinuclear Iron Centers 7KBY ; 1.7 ; Artificial Metalloproteins with Dinuclear Iron Centers 7KBZ ; 1.9 ; Artificial Metalloproteins with Dinuclear Iron Centers 7KNL ; 1.35 ; Artificial Metalloproteins with Dinuclear Iron Centers 1A3O ; 1.8 ; ARTIFICIAL MUTANT (ALPHA Y42H) OF DEOXY HEMOGLOBIN 8P5Y ; 1.88 ; Artificial transfer hydrogenase with a Mn-12 cofactor and Streptavidin S112Y-K121M mutant 8P5Z ; 1.56 ; Artificial transfer hydrogenase with a Mn-5 cofactor and Streptavidin S112Y-K121M mutant 3PK2 ; 1.9 ; Artificial Transfer Hydrogenases for the Enantioselective Reduction of Cyclic Imines 7ZNW ; 2.09 ; Artificial Unspecific Peroxygenase expressed in Escherichia coli at 2.09 Angstrom resolution 7ZNV ; 1.21 ; Artificial Unspecific Peroxygenase expressed in Pichia pastoris at 1.21 Angstrom resolution 7ZNM ; 2.01 ; Artificial Unspecific Peroxygenase expressed in Pichia pastoris at 2.01 Angstrom resolution 6ZVL ; 1.3 ; ARUK3000263 complex with Notum 7QVZ ; 1.47 ; ARUK3001043_Notum 4V7F ; 8.7 ; Arx1 pre-60S particle. 1N95 ; 2.3 ; Aryl Tetrahydrophyridine Inhbitors of Farnesyltranferase: Glycine, Phenylalanine and Histidine Derivatives 1N94 ; 3.5 ; Aryl Tetrahydropyridine Inhbitors of Farnesyltransferase: Glycine, Phenylalanine and Histidine Derivates 1E2T ; 2.8 ; Arylamine N-acetyltransferase (NAT) from Salmonella typhimurium 1W6F ; 2.1 ; Arylamine N-acetyltransferase from Mycobacterium smegmatis with the anti-tubercular drug isoniazid bound in the active site. 1HDH ; 1.3 ; Arylsulfatase from Pseudomonas aeruginosa 5EG5 ; 1.97 ; As (III) S-adenosylmethyltransferase cysteine mutant C72A bound Phenylarsine oxide (PhAs(III) in the arsenic binding site 4TZP ; 8.503 ; As Grown, Untreated Co-crystals of the Ternary Complex Containing a T-box Stem I RNA, its cognate tRNAGly, and B. subtilis YbxF protein 7QXK ; 1.35 ; As isolated MSOX movie series dataset 1 (0.4 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) 7QYC ; 1.35 ; As isolated MSOX movie series dataset 20 (8 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) 7QY4 ; 1.35 ; As isolated MSOX movie series dataset 5 (2 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) 6ZAR ; 1.1 ; As-isolated copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) at 1.1 A resolution (unrestrained, full matrix refinement by SHELX) 5K73 ; 2.08 ; as-isolated Dbr1 with Fe(II) and Zn(II) 1W9M ; 1.35 ; AS-isolated hybrid cluster protein from Desulfovibrio vulgaris X-ray structure at 1.35A resolution using iron anomalous signal 6T7J ; 2.43 ; As-isolated Ni-free crystal structure of carbon monoxide dehydrogenase from Thermococcus sp. AM4 produced without CooC maturase 5ONY ; 1.6 ; As-isolated resting state copper nitrite reductase from Achromobacter xylosoxidans 3KM2 ; 3.1 ; As-isolated TOMATO CHLOROPLAST SUPEROXIDE DISMUTASE 6I8X ; 2.3 ; As-p18, an extracellular fatty acid binding protein 1VPT ; 1.8 ; AS11 VARIANT OF VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYL-L-METHIONINE 7N2S ; 2.37 ; AS3.1-PRPF3-HLA*B27 7N2O ; 2.3 ; AS4.2-YEIH-HLA*B27 7N2R ; 2.28 ; AS4.3-PRPF3-HLA*B27 7N2P ; 2.5 ; AS4.3-RNASEH2b-HLA*B27 7N2Q ; 2.7 ; AS4.3-YEIH-HLA*B27 2X3B ; 2.28 ; AsaP1 inactive mutant E294A, an extracellular toxic zinc metalloendopeptidase 2X3A ; 2.0 ; AsaP1 inactive mutant E294Q, an extracellular toxic zinc metalloendopeptidase 2X3C ; 1.99 ; AsaP1 inactive mutant E294Q, an extracellular toxic zinc metalloendopeptidase 3FJU ; 1.6 ; Ascaris suum carboxypeptidase inhibitor in complex with human carboxypeptidase A1 1OAF ; 1.4 ; Ascobate peroxidase from soybean cytosol in complex with ascorbate 1V0H ; 1.46 ; ASCOBATE PEROXIDASE FROM SOYBEAN CYTOSOL IN COMPLEX WITH SALICYLHYDROXAMIC ACID 2YDG ; 2.0 ; Ascorbate co-crystallized HEWL. 2WD4 ; 1.4 ; Ascorbate Peroxidase as a heme oxygenase: w41A variant product with t-butyl peroxide 1OAG ; 1.75 ; Ascorbate peroxidase from soybean cytosol 2CL4 ; 1.8 ; Ascorbate Peroxidase R172A mutant 2Y6A ; 2.0 ; Ascorbate Peroxidase R38A mutant 2Y6B ; 1.9 ; Ascorbate Peroxidase R38K mutant 3ZCG ; 1.491 ; Ascorbate peroxidase W41A-H42C mutant 3ZCH ; 2.0 ; Ascorbate peroxidase W41A-H42M mutant 3ZCY ; 2.0 ; Ascorbate peroxidase W41A-H42Y mutant 5KK5 ; 3.289 ; AsCpf1(E993A)-crRNA-DNA ternary complex 7BCT ; 3.37 ; ASCT2 in the presence of the inhibitor ERA-21 in the outward-open conformation. 7BCS ; 3.43 ; ASCT2 in the presence of the inhibitor Lc-BPE (position ""down"") in the outward-open conformation. 7BCQ ; 3.43 ; ASCT2 in the presence of the inhibitor Lc-BPE (position ""up"") in the outward-open conformation. 6LNL ; 1.9286 ; ASFV core shell protein p15 6LIS ; 1.998 ; ASFV dUTPase in complex with dUMP 6LMJ ; 2.8 ; ASFV pA104R in complex with double-strand DNA 2M2T ; ; ASFV Pol X structure 8J87 ; 3.42 ; Asfv topoisomerase 2 - apo conformer Ia 8J88 ; 3.49 ; Asfv topoisomerase 2 - apo conformer Ib 8JA2 ; 1.73 ; ASFV Topoisomerase ATPase domain in complex with AMP-PNP and Mg2+ 8JA1 ; 1.14 ; ASFV Topoisomerase ATPase domain in complex with AMP-PNP and Mg2+ (oxidized form) 6FVI ; 1.0 ; ASH / PapD-like domain of human CEP192 (PapD-like domain 7) 4YPE ; 2.2 ; ASH1L SET domain H2193F mutant in complex with S-adenosyl methionine (SAM) 6WZW ; 1.69 ; Ash1L SET domain in complex with AS-85 4YPU ; 2.6 ; ASH1L SET domain K2264L mutant in complex with S-adenosyl methionine (SAM) 6X0P ; 1.69 ; Ash1L SET domain Q2265A mutant in complex with AS-5 4YPA ; 2.3 ; ASH1L SET domain Q2265A mutant in complex with S-adenosyl methionine (SAM) 4YNP ; 2.9 ; ASH1L SET domain S2259M mutant in complex with S-adenosyl methionine (SAM) 4YNM ; 2.19 ; ASH1L wild-type SET domain in complex with S-adenosyl methionine (SAM) 2L7P ; ; ASHH2 a CW domain 2F4T ; 3.0 ; Asite RNA + designer antibiotic 2F4U ; 2.6 ; Asite RNA + designer antibiotic 7MU7 ; 2.298 ; Ask1 bound to compound 3 6E2M ; 2.253 ; ASK1 kinase domain complex with inhibitor 6E2N ; 2.098 ; ASK1 kinase domain complex with inhibitor 6E2O ; 2.389 ; ASK1 kinase domain complex with inhibitor 6OYW ; 2.603 ; ASK1 kinase domain in complex with Compound 11 6OYT ; 2.824 ; ASK1 kinase domain in complex with GS-4997 5WCV ; ; AsK132958: A minimal homologue of ShK identified in the transcriptome of Anemonia sulcata 6DJ0 ; 1.3 ; ASLTVS segment from Human Immunoglobulin Light-Chain Variable Domain, Residues 73-78, assembled as an amyloid fibril 1XNL ; ; ASLV fusion peptide 5I81 ; 2.25 ; aSMase with zinc 5I8R ; 3.646 ; aSMase with zinc 5I85 ; 2.5 ; aSMase with zinc and phosphocholine 1SGN ; 1.8 ; ASN 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B 2ZGD ; 1.9 ; Asn-hydroxylation stabilises the ankyrin repeat domain fold 2ZGG ; 2.0 ; Asn-hydroxylation stabilises the ankyrin repeat domain fold 2OGY ; 2.3 ; Asn199Ala Mutant of the 5-methyltetrahydrofolate corrinoid/iron sulfur protein methyltransferase complexed with methyltetrahydrofolate to 2.3 Angstrom resolution 2SGD ; 1.8 ; ASP 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 10.7 1SGD ; 1.8 ; ASP 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 6.5 7UGD ; 2.95 ; Asp-bound GltPh RSMR mutant in IFS-A1 state 7UGV ; 2.94 ; Asp-bound GltPh RSMR mutant in IFS-A2 state 7UGX ; 2.96 ; Asp-bound GltPh RSMR mutant in IFS-B1 state 7UH6 ; 3.44 ; Asp-bound GltPh RSMR mutant in IFS-B2 state 7UH3 ; 2.99 ; Asp-bound GltPh RSMR mutant in iOFS state 4Z9H ; 1.452 ; Asp-Tar from E. coli 4Z9I ; 1.57 ; Asp-TarS from E. coli 8E1J ; 1.6 ; Asp1 kinase in complex with 1,5-IP8 8E1H ; 1.9 ; Asp1 kinase in complex with ADP Mg 5-IP7 8E1V ; 1.9 ; Asp1 kinase in complex with ADPNP Mg IP6 8E1T ; 1.71 ; Asp1 kinase in complex with ADPNP Mg IP7 8E1S ; 1.72 ; Asp1 kinase in complex with ADPNP Mn IP6 8E1I ; 2.0 ; Asp1 kinase in complex with ATP Mg 5-IP7 1EKS ; 2.5 ; ASP128ALA VARIANT OF MOAC PROTEIN FROM E. COLI 3S1F ; 2.0 ; Asp169Glu mutant of maize cytokinin oxidase/dehydrogenase complexed with N6-isopentenyladenine 1DZN ; 2.8 ; Asp170Ser mutant of vanillyl-alcohol oxidase 2BWT ; 2.9 ; Asp260Ala Escherichia coli Aminopeptidase P 2BWU ; 2.2 ; Asp271Ala Escherichia coli Aminopeptidase P 3PGR ; 2.6 ; Asp348Arg mutant of EcFadL 1C99 ; ; ASP61 DEPROTONATED FORM OF SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI 2CF7 ; 1.5 ; Asp74Ala mutant crystal structure for Dps-like peroxide resistance protein Dpr from Streptococcus suis. 1YNV ; 1.2 ; Asp79 makes a large, unfavorable contribution to the stability of RNase Sa 2E2A ; 2.1 ; ASP81LEU ENZYME IIA FROM THE LACTOSE SPECIFIC PTS FROM LACTOCOCCUS LACTIS 5K5R ; 3.09 ; AspA-32mer DNA,crystal form 2 4ECA ; 2.2 ; ASPARAGINASE FROM E. COLI, MUTANT T89V WITH COVALENTLY BOUND ASPARTATE 1HFJ ; 2.4 ; Asparaginase from Erwinia chrysanthemi, hexagonal form with sulfate 1HFK ; 2.17 ; Asparaginase from Erwinia chrysanthemi, hexagonal form with weak sulfate 6UOD ; 2.4 ; Asparaginase II from Escherichia coli 6UOG ; 2.29 ; Asparaginase II from Escherichia coli 6UOH ; 2.1 ; Asparaginase II from Escherichia coli 11AS ; 2.5 ; ASPARAGINE SYNTHETASE MUTANT C51A, C315A COMPLEXED WITH L-ASPARAGINE 12AS ; 2.2 ; ASPARAGINE SYNTHETASE MUTANT C51A, C315A COMPLEXED WITH L-ASPARAGINE AND AMP 6AZT ; 1.8 ; Asparaginyl endopeptidase 1 bound to AAN peptide, a tetrahedral intermediate 2XTI ; 2.4 ; Asparaginyl-tRNA synthetase from Brugia malayi complexed with ATP:Mg and L-Asp-beta-NOH adenylate:PPi:Mg 2XGT ; 1.9 ; Asparaginyl-tRNA synthetase from Brugia malayi complexed with the sulphamoyl analogue of asparaginyl-adenylate 1CQ7 ; 2.4 ; ASPARTATE AMINOTRANSFERASE (E.C. 2.6.1.1) COMPLEXED WITH C5-PYRIDOXAL-5P-PHOSPHATE 1CQ8 ; 2.4 ; ASPARTATE AMINOTRANSFERASE (E.C. 2.6.1.1) COMPLEXED WITH C6-PYRIDOXAL-5P-PHOSPHATE 1G4X ; 2.2 ; ASPARTATE AMINOTRANSFERASE ACTIVE SITE MUTANT N194A/R292L 1G7X ; 2.2 ; ASPARTATE AMINOTRANSFERASE ACTIVE SITE MUTANT N194A/R292L/R386L 1G7W ; 2.2 ; ASPARTATE AMINOTRANSFERASE ACTIVE SITE MUTANT N194A/R386L 1G4V ; 2.0 ; ASPARTATE AMINOTRANSFERASE ACTIVE SITE MUTANT N194A/Y225F 1IX6 ; 2.2 ; Aspartate Aminotransferase Active Site Mutant V39F 1IX7 ; 2.2 ; Aspartate Aminotransferase Active Site Mutant V39F maleate complex 1IX8 ; 2.2 ; Aspartate Aminotransferase Active Site Mutant V39F/N194A 1CQ6 ; 2.7 ; ASPARTATE AMINOTRANSFERASE COMPLEX WITH C4-PYRIDOXAL-5P-PHOSPHATE 1C9C ; 2.4 ; ASPARTATE AMINOTRANSFERASE COMPLEXED WITH C3-PYRIDOXAL-5'-PHOSPHATE 5EAA ; 2.4 ; ASPARTATE AMINOTRANSFERASE FROM E. COLI, C191S MUTATION 1B4X ; 2.45 ; ASPARTATE AMINOTRANSFERASE FROM E. COLI, C191S MUTATION, WITH BOUND MALEATE 1QIS ; 1.9 ; ASPARTATE AMINOTRANSFERASE FROM ESCHERICHIA COLI, C191F MUTATION, WITH BOUND MALEATE 1QIT ; 1.9 ; ASPARTATE AMINOTRANSFERASE FROM ESCHERICHIA COLI, C191W MUTATION, WITH BOUND MALEATE 1QIR ; 2.2 ; ASPARTATE AMINOTRANSFERASE FROM ESCHERICHIA COLI, C191Y MUTATION, WITH BOUND MALEATE 1J32 ; 2.1 ; Aspartate Aminotransferase from Phormidium lapideum 1YAA ; 2.05 ; ASPARTATE AMINOTRANSFERASE FROM SACCHAROMYCES CEREVISIAE CYTOPLASM 1BJW ; 1.8 ; ASPARTATE AMINOTRANSFERASE FROM THERMUS THERMOPHILUS 1BKG ; 2.6 ; ASPARTATE AMINOTRANSFERASE FROM THERMUS THERMOPHILUS WITH MALEATE 1AHE ; 2.3 ; ASPARTATE AMINOTRANSFERASE HEXAMUTANT 1AHF ; 2.3 ; ASPARTATE AMINOTRANSFERASE HEXAMUTANT 1AHG ; 2.5 ; ASPARTATE AMINOTRANSFERASE HEXAMUTANT 1AHX ; 2.0 ; ASPARTATE AMINOTRANSFERASE HEXAMUTANT 1AHY ; 2.3 ; ASPARTATE AMINOTRANSFERASE HEXAMUTANT 1YOO ; 2.4 ; ASPARTATE AMINOTRANSFERASE MUTANT ATB17 WITH ISOVALERIC ACID 1CZC ; 2.5 ; ASPARTATE AMINOTRANSFERASE MUTANT ATB17/139S/142N WITH GLUTARIC ACID 1CZE ; 2.4 ; ASPARTATE AMINOTRANSFERASE MUTANT ATB17/139S/142N WITH SUCCINIC ACID 2D7Y ; 2.66 ; Aspartate Aminotransferase Mutant MA 2D63 ; 2.05 ; Aspartate Aminotransferase Mutant MA With Isovaleric Acid 2D61 ; 2.01 ; Aspartate Aminotransferase Mutant MA With Maleic Acid 2D66 ; 2.18 ; Aspartate Aminotransferase Mutant MAB 2D7Z ; 2.65 ; Aspartate Aminotransferase Mutant MAB Complexed with Maleic Acid 2D65 ; 2.3 ; Aspartate Aminotransferase Mutant MABC 2D64 ; 2.05 ; Aspartate Aminotransferase Mutant MABC With Isovaleric Acid 2D5Y ; 1.98 ; Aspartate Aminotransferase Mutant MC With Isovaleric Acid 3K7Y ; 2.8 ; Aspartate Aminotransferase of Plasmodium falciparum 1BQD ; 2.1 ; ASPARTATE AMINOTRANSFERASE P138A/P195A DOUBLE MUTANT 1BQA ; 2.1 ; ASPARTATE AMINOTRANSFERASE P195A MUTANT 5VK7 ; 1.9 ; aspartate aminotransferase pH 4.0 1OXP ; 2.5 ; ASPARTATE AMINOTRANSFERASE, H-ASP COMPLEX, CLOSED CONFORMATION 1OXO ; 2.3 ; ASPARTATE AMINOTRANSFERASE, H-ASP COMPLEX, OPEN CONFORMATION 1ARG ; 2.2 ; Aspartate aminotransferase, phospho-5'-pyridoxyl aspartate complex 1ARI ; 2.3 ; Aspartate aminotransferase, W140H mutant, maleate complex 1ARH ; 2.3 ; ASPARTATE AMINOTRANSFERASE, Y225R/R386A MUTANT 1BRM ; 2.5 ; ASPARTATE BETA-SEMIALDEHYDE DEHYDROGENASE FROM ESCHERICHIA COLI 1GL3 ; 2.6 ; ASPARTATE BETA-SEMIALDEHYDE DEHYDROGENASE IN COMPLEX WITH NADP AND SUBSTRATE ANALOGUE S-METHYL CYSTEINE SULFOXIDE 4WOJ ; 2.45 ; Aspartate Semialdehyde Dehydrogenase from Francisella tularensis 1TU0 ; 2.55 ; Aspartate Transcarbamoylase Catalytic Chain Mutant E50A Complex with Phosphonoacetamide 1TUG ; 2.1 ; Aspartate Transcarbamoylase Catalytic Chain Mutant E50A Complex with Phosphonoacetamide, Malonate, and Cytidine-5-Prime-Triphosphate (CTP) 1TTH ; 2.8 ; Aspartate Transcarbamoylase Catalytic Chain Mutant Glu50Ala Complexed with N-(Phosphonacetyl-L-Aspartate) (PALA) 4FYV ; 2.0976 ; Aspartate Transcarbamoylase Complexed with dCTP 1D09 ; 2.1 ; ASPARTATE TRANSCARBAMOYLASE COMPLEXED WITH N-PHOSPHONACETYL-L-ASPARTATE (PALA) 5G1P ; 3.19 ; Aspartate transcarbamoylase domain of human CAD bound to carbamoyl phosphate 5G1N ; 2.1 ; Aspartate transcarbamoylase domain of human CAD bound to PALA 5G1O ; 2.1 ; Aspartate transcarbamoylase domain of human CAD in apo form 5NNN ; 2.26 ; Aspartate transcarbamoylase from Chaetomium thermophilum CAD-like 5NNQ ; 2.26 ; Aspartate transcarbamoylase from Chaetomium thermophilum CAD-like bound to carbamoyl phosphate 8BPL ; 1.58 ; Aspartate transcarbamoylase mutant (N2045C, R2238C) from Chaetomium thermophilum CAD-like bound to carbamoyl phosphate 8BPS ; 2.03 ; Aspartate transcarbamoylase mutant (N2045C, R2238C) from Chaetomium thermophilum CAD-like in apo form 1NBE ; 2.6 ; ASPARTATE TRANSCARBAMOYLASE REGULATORY CHAIN MUTANT (T82A) 1Q95 ; 2.46 ; Aspartate Transcarbamylase (ATCase) of Escherichia coli: A New Crystalline R State Bound to PALA, or to Product Analogues Phosphate and Citrate 1R0B ; 2.9 ; Aspartate Transcarbamylase (ATCase) of Escherichia coli: A New Crystalline R State Bound to PALA, or to Product Analogues Phosphate and Citrate 2ASI ; 2.15 ; ASPARTIC PROTEINASE 4Y9W ; 0.83 ; Aspartic Proteinase Sapp2 Secreted from Candida Parapsilosis at 0.82 A Resolution. 4YBF ; 1.24 ; Aspartic Proteinase Sapp2 Secreted from Candida Parapsilosis at 1.25 A Resolution 8DYM ; ; Aspartimidylated Graspetide Amycolimiditide 7LCW ; ; Aspartimidylated Lasso Peptide Lihuanodin 7LIF ; ; Aspartimidylated omega ester peptide fuscimiditide 1FY2 ; 1.2 ; Aspartyl Dipeptidase 1FYE ; 1.2 ; Aspartyl Dipeptidase (Anisotropic B-Factor Refinement) 3I7F ; 2.8 ; Aspartyl tRNA synthetase from Entamoeba histolytica 1G51 ; 2.4 ; ASPARTYL TRNA SYNTHETASE FROM THERMUS THERMOPHILUS AT 2.4 A RESOLUTION 1B8A ; 1.9 ; ASPARTYL-TRNA SYNTHETASE 3NEL ; 1.954 ; Aspartyl-tRNA synthetase complexed with aspartic acid 3NEM ; 1.89 ; Aspartyl-tRNA synthetase complexed with aspartyl adenylate 1L0W ; 2.01 ; Aspartyl-tRNA synthetase-1 from space-grown crystals 6Q9I ; 1.852 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) H679A in complex with Factor X peptide fragment (39mer-4Ser) 6Q9F ; 1.63 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) H679A in complex with Mn, NOG and Factor X peptide fragment (39mer-4Ser) 6QA5 ; 2.655 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) H679A in the apo form 7E6J ; 1.9 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) H725A in complex with Factor X peptide fragment (39mer-4Ser) 7YBC ; 1.84 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with (S)-4-hydroxy-4-methyl-2-oxoglutarate and factor X-derived peptide (39mer-4Ser) 7YB8 ; 1.98 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with D-2-hydroxyglutarate and factor X-derived peptide (39mer-4Ser) 7YBA ; 1.86 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with D-4-hydroxy-2-oxoglutarate 7YBB ; 1.68 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with D-4-hydroxy-2-oxoglutarate and factor X-derived peptide (39mer-4Ser) 7YB9 ; 1.54 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with L-2-hydroxyglutarate and factor X-derived peptide (39mer-4Ser) 6YYU ; 2.11 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese and 2-oxoglutarate 6YYV ; 1.77 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese and 3-methyl-2-oxoglutarate 6YYW ; 2.27 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 2-oxoglutarate, and factor X substrate peptide fragment(39mer-4Ser) 6Z6Q ; 1.81 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 3-ethyl-2-oxoglutarate, and factor X substrate peptide fragment(39mer-4Ser) 7BMI ; 1.66 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 3-fluoropyridine-2,4-dicarboxylic acid, and factor X substrate peptide fragment (39mer-4Ser) 6YYX ; 1.53 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 3-methyl-2-oxoglutarate, and factor X substrate peptide fragment(39mer-4Ser) 6YYY ; 2.29 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 4,4-dimethyl-2-oxoglutarate, and factor X substrate peptide fragment(39mer-4Ser) 7BMJ ; 1.75 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, 5-fluoropyridine-2,4-dicarboxylic acid, and factor X substrate peptide fragment (39mer-4Ser) 6Z6R ; 2.13 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH) oxygenase and TPR domains in complex with manganese, N-oxalyl-alpha-methylalanine, and factor X substrate peptide fragment(39mer-4Ser) 5JZ6 ; 2.354 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese and L-malate 5JZA ; 2.14 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese and N-oxalylglycine 5JTC ; 2.24 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, 2,4-pyridine dicarboxylate and factor X substrate peptide fragment(39mer-4Ser) 6RK9 ; 2.292 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, N-oxalylglycine and cyclic peptide substrate mimic of factor X 5JZU ; 2.5 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, N-oxalylglycine and factor X substrate peptide fragment (26mer) 5JQY ; 1.99 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, N-oxalylglycine and factor X substrate peptide fragment(39mer-4Ser) 5JZ8 ; 2.095 ; Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, N-oxalylglycine, and factor X substrate peptide fragment (39mer) 6DEY ; 1.63 ; Aspartylglucosaminuria mutant structure and function 1CYL ; ; ASPECTS OF RECEPTOR BINDING AND SIGNALLING OF INTERLEUKIN-4 INVESTIGATED BY SITE-DIRECTED MUTAGENESIS AND NMR SPECTROSCOPY 2CYK ; ; ASPECTS OF RECEPTOR BINDING AND SIGNALLING OF INTERLEUKIN-4 INVESTIGATED BY SITE-DIRECTED MUTAGENESIS AND NMR SPECTROSCOPY 8H4Q ; 2.22 ; Aspergillomarasmine A biosynthese complex with OPS 1IBQ ; 2.14 ; ASPERGILLOPEPSIN FROM ASPERGILLUS PHOENICIS 6Q3R ; 2.69 ; ASPERGILLUS ACULEATUS GALACTANASE 7Z6T ; 1.51 ; Aspergillus clavatus M36 protease without the propeptide 6AGY ; 1.8 ; Aspergillus fumigatus Af293 NDK 6ARE ; 1.75 ; Aspergillus fumigatus Cytosolic Thiolase in complex with two tetrahedral reaction intermediates and ammonium ions 6AQP ; 1.8 ; Aspergillus fumigatus Cytosolic Thiolase: Acetylated enzyme in complex with CoA and potassium ions 6ARR ; 1.822 ; Aspergillus fumigatus Cytosolic Thiolase: Apo enzyme in complex with cesium ions 6ART ; 2.25 ; Aspergillus fumigatus Cytosolic Thiolase: Apo enzyme in complex with cesium ions 6ARF ; 1.702 ; Aspergillus fumigatus Cytosolic Thiolase: Apo enzyme in complex with potassium ions 6ARG ; 1.782 ; Aspergillus fumigatus Cytosolic Thiolase: Apo enzyme in complex with rubidium ions 6ARL ; 1.9 ; Aspergillus fumigatus Cytosolic Thiolase: Apo enzyme in complex with rubidium ions 7RHV ; 2.0 ; Aspergillus fumigatus Enolase 7RHW ; 1.9 ; Aspergillus fumigatus Enolase Bound to 2-Phosphoglycerate 7RI0 ; 2.3 ; Aspergillus fumigatus Enolase Bound to Phosphoenolpyruvate and 2-Phosphoglycerate 5HWB ; 2.306 ; Aspergillus fumigatus FKBP12 apo protein in P212121 space group 5HWC ; 2.05 ; Aspergillus fumigatus FKBP12 P90G protein bound with FK506 in P212121 space group 6VCV ; 1.6 ; Aspergillus fumigatus FKBP12 protein bound with APX879 in P1 space group 4LNG ; 1.905 ; Aspergillus fumigatus protein farnesyltransferase complex with farnesyldiphosphate and tipifarnib 4LNB ; 1.752 ; Aspergillus fumigatus protein farnesyltransferase ternary complex with farnesyldiphosphate and ethylenediamine scaffold inhibitor 5 5ZVP ; 1.42 ; Aspergillus fumigatus Rho1 F25N 6JIK ; 2.35 ; Aspergillus fumigatus Rho1 GsGTP 6BPY ; 3.201 ; Aspergillus fumigatus Thioredoxin Reductase 5XH9 ; 2.3 ; Aspergillus kawachii beta-fructofuranosidase 5XHA ; 2.1 ; Aspergillus kawachii beta-fructofuranosidase complexed with fructose 5XH8 ; 2.1 ; Aspergillus kawachii beta-fructofuranosidase complexed with glycerol 2Z8G ; 1.7 ; Aspergillus niger ATCC9642 isopullulanase complexed with isopanose 6R3O ; 1.13 ; Aspergillus niger ferric acid decarboxylase (Fdc) L439G variant in complex with prFMN (purified in the radical form) and phenylpropiolic acid 6R32 ; 1.21 ; Aspergillus niger ferrulic acid decarboxylase (Fdc) in complex with the covalent adduct formed between prFMN cofactor and phenylpropiolic acid (Int1') 8OEH ; 1.77 ; Aspergillus niger ferulic acid decarboxylase (Fdc) C122-S261C (DB3) variant in complex with prenylated flavin 6R3G ; 1.13 ; Aspergillus niger ferulic acid decarboxylase (Fdc) E282Q variant in complex with the covalent adduct formed between prFMN cofactor and alphafluoro-cinnamic acid (Int2) 6R3F ; 1.25 ; Aspergillus niger ferulic acid decarboxylase (Fdc) E282Q variant in complex with the covalent adduct formed between prFMN cofactor and cinnamic acid (Int2) 6R3I ; 1.14 ; Aspergillus niger ferulic acid decarboxylase (Fdc) E282Q variant in complex with the covalent adduct formed between prFMN cofactor and pentafluorocinnamic acid (Int2) 6R2Z ; 1.08 ; Aspergillus niger ferulic acid decarboxylase (Fdc) F437L variant in complex with the covalent adduct formed between prFMN cofactor and phenylpropiolic acid (Int1') 6R2P ; 1.26 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with FMN and cinnamic acid 6R2R ; 1.13 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with prFMN (purified in dark) and alphafluorocinnamic acid 6R2T ; 1.29 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with prFMN (purified in the radical form) and phenylpropiolic acid 6R3N ; 1.02 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with the covalent adduct formed between prFMN cofactor and butynoic acid (Int1') 6R3L ; 1.24 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with the covalent adduct formed between prFMN cofactor and cinnamic acid following decarboxylation (Int3) 6R3J ; 1.39 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with the covalent adduct formed between prFMN cofactor and crotonic acid following decarboxylation (Int3) 6R34 ; 1.1 ; Aspergillus niger ferulic acid decarboxylase (Fdc) in complex with the covalent adduct formed between prFMN cofactor and phenyl acetylene (Int3') 6R30 ; 1.12 ; Aspergillus niger ferulic acid decarboxylase (Fdc) L439G variant in complex with the covalent adduct formed between prFMN cofactor and phenylpropiolic acid (Int1') 8OED ; 1.37 ; Aspergillus niger ferulic acid decarboxylase (Fdc) S145C-P289C (DB2) variant in complex with prenylated flavin hydroxylated at the C1 prime position 8CRD ; 1.35 ; Aspergillus niger ferulic acid decarboxylase (Fdc) T40C-S315C (DB1) variant in complex with prenylated flavin hydroxylated at the C1 prime position 8OEO ; 1.3 ; Aspergillus niger ferulic acid decarboxylase (Fdc) V186C-A296C (DB4) variant in complex with prenylated flavin 6R33 ; 1.01 ; Aspergillus niger ferulic acid decarboxylase (Fdc)in complex with the covalent adduct formed between prFMN cofactor and phenylpropiolic acid, following decarboxylation (Int3') 3K4P ; 2.4 ; Aspergillus niger Phytase 3K4Q ; 2.2 ; Aspergillus niger Phytase in complex with myo-inositol hexakis sulfate 8IWD ; 2.81 ; Aspergillus niger Rha-2 8IWF ; 2.86 ; Aspergillus niger Rha-2 and pNPR 6JU8 ; 1.27 ; Aspergillus oryzae active-tyrosinase copper-bound C92A mutant 6JU9 ; 1.42 ; Aspergillus oryzae active-tyrosinase copper-bound C92A mutant complexed with L-tyrosine 6JU6 ; 1.5 ; Aspergillus oryzae active-tyrosinase copper-depleted C92A mutant 6JU7 ; 1.42 ; Aspergillus oryzae active-tyrosinase copper-depleted C92A mutant complexed with L-tyrosine 6ZEQ ; 1.97 ; Aspergillus oryzae Leucine Aminopeptidase A mature enzyme 6JU5 ; 1.34 ; Aspergillus oryzae pro-tyrosinase C92A/F513Y mutant 6JU4 ; 1.35 ; Aspergillus oryzae pro-tyrosinase F513Y mutant 6JUA ; 1.45 ; Aspergillus oryzae pro-tyrosinase oxygen-bound C92A mutant 6JUC ; 1.44 ; Aspergillus oryzae pro-tyrosinase oxygen-bound C92A/H103F mutant 7XOI ; 2.3 ; Aspergillus sojae alpha-glucosidase AsojAgdL in complex with trehalose 1OXR ; 1.93 ; Aspirin induces its Anti-inflammatory effects through its specific binding to Phospholipase A2: Crystal structure of the complex formed between Phospholipase A2 and Aspirin at 1.9A resolution 6T1P ; 3.5 ; ASR Alternansucrase in complex with isomaltononaose 6SZI ; 3.0 ; ASR Alternansucrase in complex with isomaltose 6SYQ ; 3.0 ; ASR Alternansucrase in complex with isomaltotriose 6T18 ; 3.15 ; ASR Alternansucrase in complex with oligoalternan 6T16 ; 3.1 ; ASR Alternansucrase in complex with panose 3TOK ; 1.74 ; Assaying the energies of biological halogen bonds. 4YNW ; 2.95 ; Assembly Chaperone of RpL4 (Acl4) (Residues 1-338) 4YNV ; 2.95 ; Assembly Chaperone of RpL4 (Acl4) (Residues 28-338) 1VDF ; 2.05 ; ASSEMBLY DOMAIN OF CARTILAGE OLIGOMERIC MATRIX PROTEIN 1FBM ; 2.7 ; ASSEMBLY DOMAIN OF CARTILAGE OLIGOMERIC MATRIX PROTEIN IN COMPLEX WITH ALL-TRANS RETINOL 7PO4 ; 2.56 ; Assembly intermediate of human mitochondrial ribosome large subunit (largely unfolded rRNA with MALSU1, L0R8F8 and ACP) 7PO0 ; 2.9 ; Assembly intermediate of human mitochondrial ribosome small subunit without mS37 in complex with RBFA and IF3 7PNX ; 2.76 ; Assembly intermediate of human mitochondrial ribosome small subunit without mS37 in complex with RBFA and METTL15 conformation a 7PNY ; 3.06 ; Assembly intermediate of human mitochondrial ribosome small subunit without mS37 in complex with RBFA and METTL15 conformation b 7PNZ ; 3.09 ; Assembly intermediate of human mitochondrial ribosome small subunit without mS37 in complex with RBFA and METTL15 conformation c 7PNV ; 3.06 ; Assembly intermediate of mouse mitochondrial ribosome small subunit without mS37 in complex with RbfA and Mettl15 7PNT ; 3.19 ; Assembly intermediate of mouse mitochondrial ribosome small subunit without mS37 in complex with RbfA and Tfb1m 7PNU ; 3.06 ; Assembly intermediate of mouse mitochondrial ribosome small subunit without mS37 in complex with RbfA inward conformation 7A24 ; 3.8 ; Assembly intermediate of the plant mitochondrial complex I 6ZTS ; ; Assembly intermediates of orthoreovirus captured in the cell 6ZTY ; ; Assembly intermediates of orthoreovirus captured in the cell 6ZTZ ; ; Assembly intermediates of orthoreovirus captured in the cell 4BFQ ; 2.4 ; Assembly of a triple pi-stack of ligands in the binding site of Aplysia californica acetylcholine binding protein (AChBP) 5AFW ; 1.6 ; Assembly of methylated LSD1 and CHD1 drives AR-dependent transcription and translocation 6PYQ ; 1.79 ; Assembly of VIQKI D455(beta-L-homoaspartic acid)with human parainfluenza virus type 3 (HPIV3) fusion glycoprotein N-terminal heptad repeat domain 6VAS ; 1.49 ; Assembly of VIQKI I454(beta-L-homoisoleucine)with human parainfluenza virus type 3 (HPIV3) fusion glycoprotein N-terminal heptad repeat domain 6V3V ; 2.17 ; Assembly of VIQKI I456(beta-L-homoisoleucine)with human parainfluenza virus type 3 (HPIV3) fusion glycoprotein N-terminal heptad repeat domain 6PRL ; 1.87 ; Assembly of VIQKI P5(beta-L-homoproline) with human parainfluenza virus type 3 (HPIV3) fusion glycoprotein N-terminal heptad repeat domain 4UPF ; 7.5 ; Assembly principles of the unique cage formed by the ATPase RavA hexamer and the lysine decarboxylase LdcI decamer 6QEB ; ; Assessment of a large enzyme-drug complex by proton-detected solid-state NMR without deuteration 8ON9 ; 2.4 ; ASSFVRIa-bound Malacoceros FaNaC1 in lipid nanodiscs 4MET ; 2.095 ; Assigning the EPR Fine Structure Parameters of the Mn(II) Centers in Bacillus subtilis Oxalate Decarboxylase by Site-Directed Mutagenesis and DFT/MM Calculations 2LRM ; ; Assignment and structure of E coli periplasmic protein YmgD 2LRV ; ; Assignment of E coli periplasmic protein YmgD 2JUA ; ; Assignment, structure, and dynamics of de novo designed protein S836 1CEY ; ; ASSIGNMENTS, SECONDARY STRUCTURE, GLOBAL FOLD, AND DYNAMICS OF CHEMOTAXIS Y PROTEIN USING THREE-AND FOUR-DIMENSIONAL HETERONUCLEAR (13C,15N) NMR SPECTROSCOPY 3VM1 ; 1.5 ; assimilatory nitrite reductase (Nii3) - N226K mutant - HCO3 complex from tobacco leaf 3VLX ; 1.35 ; Assimilatory nitrite reductase (Nii3) - N226K mutant - ligand free form from tobacco leaf 3VM0 ; 1.695 ; Assimilatory nitrite reductase (Nii3) - N226K mutant - NO2 complex from tobacco leaf 3VLZ ; 2.07 ; Assimilatory nitrite reductase (Nii3) - N226K mutant - SO3 full complex from tobacco leaf 3VLY ; 1.55 ; Assimilatory nitrite reductase (Nii3) - N226K mutant - SO3 partial complex from tobacco leaf 3VKT ; 1.3 ; Assimilatory nitrite reductase (Nii3) - NH2OH complex from tobbaco leaf 3VKS ; 1.4 ; Assimilatory nitrite reductase (Nii3) - NO complex from tobbaco leaf 3VKR ; 1.6 ; Assimilatory nitrite reductase (Nii3) - NO2 complex from tobbaco leaf analysed with high X-ray dose 3VKP ; 1.4 ; Assimilatory nitrite reductase (Nii3) - NO2 complex from tobbaco leaf analysed with low X-ray dose 3VKQ ; 1.6 ; Assimilatory nitrite reductase (Nii3) - NO2 complex from tobbaco leaf analysed with middle X-ray dose 3B0G ; 1.25 ; Assimilatory nitrite reductase (Nii3) from tobbaco leaf 3B0H ; 2.306 ; Assimilatory nitrite reductase (Nii4) from tobbaco root 5G4V ; 2.87 ; Association of four two-k-turn units based on Kt-7 3bG,3nC, forming a square-shaped structure 2K88 ; ; Association of subunit d (Vma6p) and E (Vma4p) with G (Vma10p) and the NMR solution structure of subunit G (G1-59) of the Saccharomyces cerevisiae V1VO ATPase 3IYA ; 22.0 ; Association of the pr peptides with dengue virus blocks membrane fusion at acidic pH 6ZDG ; 4.7 ; Association of three complexes of largely structurally disordered Spike ectodomain with bound EY6A Fab 5G4U ; 2.65 ; Association of three two-k-turn units based on Kt-7 3bU,3nU, forming a triangular-shaped structure 6ZFO ; 4.4 ; Association of two complexes of largely structurally disordered Spike ectodomain with bound EY6A Fab 8CYL ; 1.888 ; Ast89 P domain 8IQV ; 1.91 ; Asterias forbesii ferritin 8IQZ ; 4.19 ; Asterias forbesii ferritin mutant-P156F 8IQY ; 2.1 ; Asterias forbesii ferritin mutant-P156H 2RMD ; ; Astressin-B 2RM9 ; ; Astressin2B 1VSK ; 2.2 ; ASV INTEGRASE CORE DOMAIN D64N MUTATION IN CITRATE BUFFER PH 6.0 1VSL ; 2.2 ; ASV INTEGRASE CORE DOMAIN D64N MUTATION WITH ZINC CATION 1VSM ; 2.15 ; ASV INTEGRASE CORE DOMAIN IN CITRATE BUFFER PH 5.0 1VSI ; 2.2 ; ASV INTEGRASE CORE DOMAIN WITH CA(II) COFACTOR 1VSJ ; 2.1 ; ASV INTEGRASE CORE DOMAIN WITH CD(II) COFACTORS 1A5W ; 2.0 ; ASV INTEGRASE CORE DOMAIN WITH HIV-1 INTEGRASE INHIBITOR Y3 1A5X ; 1.9 ; ASV INTEGRASE CORE DOMAIN WITH HIV-1 INTEGRASE INHIBITOR Y3 1A5V ; 1.9 ; ASV INTEGRASE CORE DOMAIN WITH HIV-1 INTEGRASE INHIBITOR Y3 AND MN CATION 1VSD ; 1.7 ; ASV INTEGRASE CORE DOMAIN WITH MG(II) COFACTOR AND HEPES LIGAND, HIGH MG CONCENTRATION FORM 1VSE ; 2.2 ; ASV INTEGRASE CORE DOMAIN WITH MG(II) COFACTOR AND HEPES LIGAND, LOW MG CONCENTRATION FORM 1VSF ; 2.05 ; ASV INTEGRASE CORE DOMAIN WITH MN(II) COFACTOR AND HEPES LIGAND, HIGH MG CONCENTRATION FORM 1VSH ; 1.95 ; ASV INTEGRASE CORE DOMAIN WITH ZN(II) COFACTORS 3G6W ; 2.9 ; Asymetric GTP bound structure of UPRTase from Sulfolobus solfataricus containing PRPP-mg2+ in half of the active sites and R5P and PPi in the other half 8QQU ; 2.9 ; Asymetric subunit of E. coli DNA gyrase bound to a linear part of a DNA minicircle 5O66 ; 5.9 ; Asymmetric AcrABZ-TolC 7M3E ; 3.2 ; Asymmetric Activation of the Calcium Sensing Receptor Homodimer 7M3F ; 2.8 ; Asymmetric Activation of the Calcium Sensing Receptor Homodimer 7M3G ; 2.5 ; Asymmetric Activation of the Calcium Sensing Receptor Homodimer 7M3J ; 4.1 ; Asymmetric Activation of the Calcium Sensing Receptor Homodimer 6R60 ; 1.75 ; asymmetric antiparallel assembly of two 5-bladed beta-propeller fragments 3QFQ ; 2.9001 ; Asymmetric Assembly of Merkel Cell Polyomavirus Large T-antigen Origin Binding Domains at the Viral Origin 1OFH ; 2.5 ; Asymmetric complex between HslV and I-domain deleted HslU (H. influenzae) 1OFI ; 3.2 ; Asymmetric complex between HslV and I-domain deleted HslU (H. influenzae) 6SZW ; 3.14 ; Asymmetric complex of Factor XII and kininogen with gC1qR/C1QBP/P32 is governed by allostery 3UCC ; 1.5 ; Asymmetric complex of human neuron specific enolase-1-PGA/PEP 3UCD ; 1.41 ; Asymmetric complex of human neuron specific enolase-2-PGA/PEP 3UJE ; 1.55 ; Asymmetric complex of human neuron specific enolase-3-PGA/PEP 3UJF ; 2.1 ; Asymmetric complex of human neuron specific enolase-4-PGA/PEP 3UJR ; 1.4 ; Asymmetric complex of human neuron specific enolase-5-PGA/PEP 3UJS ; 1.65 ; Asymmetric complex of human neuron specific enolase-6-PGA/PEP 1H6S ; 3.0 ; Asymmetric conductivity of engineered proteins 4A8A ; 14.2 ; Asymmetric cryo-EM reconstruction of E. coli DegQ 12-mer in complex with lysozyme 8FK0 ; 4.0 ; Asymmetric cryo-EM structure of a curved Saccharolobus solfataricus type IV pilus 8SP3 ; 3.52 ; Asymmetric dimer of MapSPARTA bound with gRNA/tDNA hybrid 8CEF ; 2.486 ; Asymmetric Dimerization in a Transcription Factor Superfamily is Promoted by Allosteric Interactions with DNA 4CRX ; 2.2 ; ASYMMETRIC DNA-BENDING IN THE CRE-LOXP SITE-SPECIFIC RECOMBINATION SYNAPSE 5CRX ; 2.7 ; ASYMMETRIC DNA-BENDING IN THE CRE-LOXP SITE-SPECIFIC RECOMBINATION SYNAPSE 8D4W ; 1.35 ; Asymmetric ene-reduction of alpha,beta-unsaturated compounds using MSMEG_2850 6OUC ; 2.8 ; Asymmetric focsued reconstruction of human norovirus GII.2 Snow Mountain Virus strain VLP asymmetric unit in T=1 symmetry 6OUT ; 2.6 ; Asymmetric focused reconstruction of human norovirus GI.1 Norwalk strain VLP asymmetric unit in T=3 symmetry 6OU9 ; 3.2 ; Asymmetric focused reconstruction of human norovirus GI.7 Houston strain VLP asymmetric unit in T=3 symmetry 6PGI ; 3.5 ; Asymmetric functions of a binuclear metal cluster within the transport pathway of the ZIP transition metal transporters 6OOY ; 2.5 ; Asymmetric hTNF-alpha 6OOZ ; 2.8 ; Asymmetric hTNF-alpha 6OP0 ; 2.55 ; Asymmetric hTNF-alpha 7KP9 ; 2.15 ; asymmetric hTNF-alpha 7KPA ; 2.3 ; asymmetric hTNF-alpha 6XLH ; 2.83 ; Asymmetric hydrolysis state of Hsc82 in complex with Aha1 bound with ADP and ATPgammaS 8JWT ; 3.4 ; Asymmetric middle segment of the bacteriophage M13 mini variant 6OPP ; 3.7 ; Asymmetric model of CD4- and 17-bound B41 HIV-1 Env SOSIP in complex with DDM 6X5C ; 4.04 ; Asymmetric model of CD4-bound B41 HIV-1 Env SOSIP in complex with small molecule GO52 7KP7 ; 2.65 ; asymmetric mTNF-alpha hTNFR1 complex 7KP8 ; 3.15 ; asymmetric mTNF-alpha hTNFR1 complex 4WZA ; 1.8995 ; Asymmetric Nucleotide Binding in the Nitrogenase Complex 8CKB ; 4.39 ; Asymmetric reconstruction of the crAss001 virion 4BP7 ; 39.0 ; Asymmetric structure of a virus-receptor complex 8FAD ; 4.0 ; Asymmetric structure of cleaved HIV-1 AD8 envelope glycoprotein trimer in styrene-maleic acid lipid nanoparticles 8FAE ; 3.8 ; Asymmetric structure of cleaved HIV-1 AE2 envelope glycoprotein trimer in styrene-maleic acid lipid nanoparticles (AE2.1) 8QO0 ; 10.62 ; Asymmetric structure of the Borrelia bacteriophage BB1 procapsid, 3D class 2 8QO1 ; 9.76 ; Asymmetric structure of the Borrelia bacteriophage BB1 procapsid, 3D class 3 8PHU ; 7.41 ; Asymmetric structure of the portal-containing cap of the Borrelia bacteriophage BB1 procapsid 2GIF ; 2.9 ; Asymmetric structure of trimeric AcrB from Escherichia coli 2HRT ; 3.0 ; Asymmetric structure of trimeric AcrB from Escherichia coli 5IKD ; 1.109 ; Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase 5IKG ; 1.95 ; Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase 2WX4 ; 2.8 ; Asymmetric trimer of the Drosophila melanogaster DCP1 C-terminal domain 2WX3 ; 2.31 ; Asymmetric trimer of the human DCP1a C-terminal domain 7LGG ; 6.2 ; Asymmetric unit for phage Qbeta oblate particle 7LGF ; 6.1 ; Asymmetric unit for phage Qbeta prolate particle 7LGH ; 8.9 ; Asymmetric unit for phage Qbeta small prolate particle 7LGE ; 5.6 ; Asymmetric unit for phage Qbeta T=4 particle 5KIP ; 3.7 ; Asymmetric unit for the coat proteins of phage Qbeta 5VLY ; 3.3 ; Asymmetric unit for the coat proteins of phage Qbeta 7UX3 ; 9.6 ; Asymmetric unit of AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated narrow membrane tubes 8D4E ; 9.2 ; Asymmetric unit of AP-1, Arf1, Nef lattice on MHC-I lipopeptide incorporated wide(r) membrane tubes 7VIK ; 3.76 ; Asymmetric unit of cryoEM structure of bacteriophage lambda capsid at 3.76 Angstrom 8FQK ; 3.5 ; Asymmetric unit of HK97 phage prohead I 6F9B ; 13.3 ; Asymmetric unit of Rift Valley fever virus glycoprotein shell 8PSF ; 2.8 ; Asymmetric unit of the yeast fatty acid synthase in non-rotated state with ACP at the acetyl transferase domain (FASx sample) 8PSP ; 2.9 ; Asymmetric unit of the yeast fatty acid synthase in rotated state with ACP at the acetyl transferase domain (FASx sample) 8PRV ; 2.9 ; Asymmetric unit of the yeast fatty acid synthase in the non-rotated state with ACP at the ketosreductase domain (FASamn sample) 8PS9 ; 2.9 ; Asymmetric unit of the yeast fatty acid synthase in the non-rotated state with ACP at the ketosynthase domain (FASam sample) 8PS1 ; 2.8 ; Asymmetric unit of the yeast fatty acid synthase in the non-rotated state with ACP at the ketosynthase domain (FASamn sample) 8PSK ; 2.8 ; Asymmetric unit of the yeast fatty acid synthase in the non-rotated state with ACP at the ketosynthase domain (FASx sample) 8PSM ; 3.1 ; Asymmetric unit of the yeast fatty acid synthase in the non-rotated state with ACP at the malonyl/palmitoyl transferase domain (FASx sample) 8PSG ; 3.7 ; Asymmetric unit of the yeast fatty acid synthase in the semi non-rotated state with ACP at the acetyl transferase domain (FASx sample) 8PS8 ; 4.0 ; Asymmetric unit of the yeast fatty acid synthase in the semi non-rotated state with ACP at the enoyl reductase domain (FASam sample) 8PSA ; 3.6 ; Asymmetric unit of the yeast fatty acid synthase in the semi non-rotated state with ACP at the ketosynthase domain (FASam sample) 8PSL ; 3.7 ; Asymmetric unit of the yeast fatty acid synthase in the semi non-rotated state with ACP at the ketosynthase domain (FASx sample) 8PSJ ; 3.4 ; Asymmetric unit of the yeast fatty acid synthase in the semi rotated state with ACP at the acetyl transferase domain (FASx sample) 8PS2 ; 2.9 ; Asymmetric unit of the yeast fatty acid synthase with ACP at the enoyl reductase domain (FASam sample) 8DEE ; 3.4 ; Asymmetric Unit of Western Equine Encephalitis Virus 6WCJ ; 6.3 ; Asymmetric vertex of the clathrin minicoat cage 2ONE ; 2.0 ; ASYMMETRIC YEAST ENOLASE DIMER COMPLEXED WITH RESOLVED 2'-PHOSPHOGLYCERATE AND PHOSPHOENOLPYRUVATE 6YKA ; 2.1 ; Asymmetric [Fe]-hydrogenase from Methanolacinia paynteri apo and in complex with FeGP at 2.1-A resolution 7MI5 ; 3.57 ; Asymmetrical PAM-Non PAM prespacer bound Cas4/Cas1/Cas2 complex 6U0L ; 3.3 ; Asymmetrically open conformational state (Class I) of HIV-1 Env trimer BG505 SOSIP.664 in complex with sCD4 and E51 Fab 6U0N ; 3.5 ; Asymmetrically open conformational state (Class II) of HIV-1 Env trimer BG505 SOSIP.664 in complex with sCD4 and E51 Fab 5ID2 ; 2.43 ; Asymmetry in the active site of Mycobacterium tuberculosis AhpE upon exposure to Mycothiol 1VTW ; 1.2 ; AT Base Pairs Are Less Stable than GC Base Pairs in Z-DNA: The Crystal Structure of D(M(5)CGTAM(5)CG) 8CZC ; 2.86 ; AT from first module of the pikromycin synthase 5M68 ; 2.64 ; AT-rich DNA dodecamer with extra helical guanine-nickel coordination 7M98 ; 1.6 ; ATAD2 bromodomain complexed with histone H4K5ac (res 1-10) ligand 7PX5 ; 2.18 ; ATAD2 in complex with 1-Methyl-2-quinolone 7Z9U ; 1.76 ; ATAD2 in complex with Acetyl-Lys 7QUK ; 1.47 ; ATAD2 in complex with FragLite1 7QXT ; 1.51 ; ATAD2 in complex with FragLite10 7QU7 ; 2.13 ; ATAD2 in complex with FragLite16 7QYK ; 1.43 ; ATAD2 in complex with FragLite18 7QUM ; 1.5 ; ATAD2 in complex with FragLite2 7QYL ; 1.44 ; ATAD2 in complex with FragLite23 7QZM ; 1.45 ; ATAD2 in complex with FragLite28 7QZY ; 1.93 ; ATAD2 in complex with FragLite29 7PPX ; 1.35 ; ATAD2 in complex with FragLite3 7QZZ ; 2.52 ; ATAD2 in complex with FragLite31 7R00 ; 1.48 ; ATAD2 in complex with FragLite33 7QWO ; 1.5 ; ATAD2 in complex with FragLite6 7QX1 ; 1.49 ; ATAD2 in complex with FragLite7 7Z9I ; 1.5 ; ATAD2 in complex with PepLite-Ala 7Z9S ; 1.5 ; ATAD2 in complex with PepLite-Arg 7Z9H ; 1.34 ; ATAD2 in complex with PepLite-Asp 7R0Y ; 1.43 ; ATAD2 in complex with PepLite-Glu 7Z9J ; 1.9 ; ATAD2 in complex with PepLite-Gly 7R05 ; 1.53 ; ATAD2 in complex with PepLite-Ile 7Z9O ; 1.47 ; ATAD2 in complex with PepLite-Tyr 7Z9N ; 1.34 ; ATAD2 in complex with PepLite-Val 6VEO ; 2.4 ; ATAD2B bromodomain in complex with 4-({[(3R,4R)-4-{[3-methyl-5-(5-methylpyridin-3-yl)-2-oxo-1,2-dihydro-1,7-naphthyridin-8-yl]amino}piperidin-3-yl]oxy}methyl)-1lambda~6~-thiane-1,1-dione (compound 38) 8HIW ; 3.34 ; AtALMT9 in the apo state 8HIY ; 3.8 ; AtALMT9 plus malate 7CHD ; 3.804 ; AtaT complexed with acetyl-methionyl-tRNAfMet 4WTH ; 2.25 ; Ataxin-3 Carboxy Terminal Region - Crystal C2 (triclinic) 4YS9 ; 2.0 ; Ataxin-3 Carboxy-Terminal Region - Crystal C1 (tetragonal) 4UD8 ; 2.088 ; AtBBE15 1ZFC ; 2.0 ; ATC Duplex B-DNA 1ZF3 ; 1.84 ; ATC Four-stranded DNA Holliday Junction 1ZF4 ; 1.65 ; ATC Four-stranded DNA Holliday Junction 9ATC ; 2.4 ; ATCASE Y165F MUTANT 3S2R ; 1.14 ; ATChloroNEET (H87C mutant) 7D34 ; 2.007 ; AtClpS1-peptide complex 6KWA ; 2.09429 ; AtDAO1(dioxygenase for auxin oxidation 1 from Arabidopsis thaliana) 6KWB ; 2.51839 ; AtDAO1(dioxygenase for auxin oxidation 1 from Arabidopsis thaliana) - 2-oxoglutarate binray complex 1SAA ; ; ATF-2 RECOGNITION SITE, NMR, 10 STRUCTURES 6J2Z ; 2.4 ; AtFKBP53 N-terminal Nucleoplasmin Domain 4J2G ; 2.29 ; Atg13 HORMA domain 3T7E ; 2.25 ; Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway 3T7F ; 1.89 ; Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway 3T7G ; 2.08 ; Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway 3T7H ; 1.6 ; Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway 6E1Q ; 2.148 ; AtGH3.15 acyl acid amido synthetase in complex with 2,4-DB 5A5K ; 2.77 ; AtGSTF2 from Arabidopsis thaliana in complex with camalexin 5A4U ; 2.0 ; AtGSTF2 from Arabidopsis thaliana in complex with indole-3-aldehyde 5A4V ; 2.38 ; AtGSTF2 from Arabidopsis thaliana in complex with quercetin 5A4W ; 2.25 ; AtGSTF2 from Arabidopsis thaliana in complex with quercetrin 6COD ; 1.8 ; AtHNL enantioselectivity mutant At-A9-H7 Apo Y13C,Y121L,P126F,L128W,C131T,F179L,A209I with benzaldehyde 6COE ; 1.844 ; AtHNL enantioselectivity mutant At-A9-H7 Apo Y13C,Y121L,P126F,L128W,C131T,F179L,A209I with benzaldehyde, MANDELIC ACID NITRILE 6COF ; 1.52 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,A209I 6COG ; 1.8 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,A209I with benzaldehyde 6COH ; 2.367 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,A209I with benzaldehyde, MANDELIC ACID NITRILE 6COI ; 2.024 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,A209I with CYANIDE, benzaldehyde, MANDELIC ACID NITRILE 6COB ; 1.82 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,F179L,A209I 6COC ; 1.93 ; AtHNL enantioselectivity mutant At-A9-H7 Apo, Y13C,Y121L,P126F,L128W,C131T,F179L,A209I with benzaldehyde 6RJ0 ; 3.7 ; Atlantic Cod Nervous Necrosis Virus-Like Particle produced in Nicotiana benthamiana 8OXM ; 3.3 ; ATM(Q2971A) activated by oxidative stress in complex with Mg AMP-PNP and p53 peptide 8OXO ; 3.0 ; ATM(Q2971A) dimeric C-terminal region activated by oxidative stress in complex with Mg AMP-PNP and p53 peptide 8OXQ ; 2.5 ; ATM(Q2971A) dimeric C-terminal region in complex with Mg AMP-PNP 8OXP ; 2.6 ; ATM(Q2971A) in complex with Mg AMP-PNP 6UV6 ; 2.72 ; AtmM with bound rebeccamycin analogue 6TGS ; 1.53 ; AtNBR1-PB1 domain 1SBT ; 2.5 ; ATOMIC COORDINATES FOR SUBTILISIN BPN (OR NOVO) 3IYL ; 3.3 ; Atomic CryoEM Structure of a Nonenveloped Virus Suggests How Membrane Penetration Protein is Primed for Cell Entry 5FWK ; 3.9 ; Atomic cryoEM structure of Hsp90-Cdc37-Cdk4 complex 5FWL ; 9.0 ; Atomic cryoEM structure of Hsp90-Cdc37-Cdk4 complex 5FWM ; 8.0 ; Atomic cryoEM structure of Hsp90-Cdc37-Cdk4 complex 5FWP ; 7.2 ; Atomic cryoEM structure of Hsp90-Cdc37-Cdk4 complex 7KW7 ; 3.57 ; Atomic cryoEM structure of Hsp90-Hsp70-Hop-GR 2BTV ; 3.5 ; ATOMIC MODEL FOR BLUETONGUE VIRUS (BTV) CORE 5TJ5 ; 3.9 ; Atomic model for the membrane-embedded motor of a eukaryotic V-ATPase 2YPW ; 12.4 ; Atomic model for the N-terminus of TraO fitted in the full-length structure of the bacterial pKM101 type IV secretion system core complex 6T34 ; 5.2 ; Atomic model for Turnip mosaic virus (TuMV) 3JAW ; 3.9 ; Atomic model of a microtubule seam based on a cryo-EM reconstruction of the EB3-bound microtubule (merged dataset containing tubulin bound to GTPgammaS, GMPCPP, and GDP) 1VAS ; 2.75 ; ATOMIC MODEL OF A PYRIMIDINE DIMER SPECIFIC EXCISION REPAIR ENZYME COMPLEXED WITH A DNA SUBSTRATE: STRUCTURAL BASIS FOR DAMAGED DNA RECOGNITION 4V7Q ; 3.8 ; Atomic model of an infectious rotavirus particle 6ZJM ; 11.4 ; Atomic model of Andes virus glycoprotein spike tetramer generated by fitting into a Tula virus reconstruction 3KTT ; 4.0 ; Atomic model of bovine TRiC CCT2(beta) subunit derived from a 4.0 Angstrom cryo-EM map 2BZX ; 2.8 ; Atomic model of CrkL-SH3C monomer 3JAZ ; 3.1 ; Atomic model of cytoplasmic polyhedrosis virus with ATP 3JB0 ; 2.9 ; Atomic model of cytoplasmic polyhedrosis virus with GTP 3JB1 ; 3.1 ; Atomic model of cytoplasmic polyhedrosis virus with SAM 3JB2 ; 3.1 ; Atomic model of cytoplasmic polyhedrosis virus with SAM and GTP 3JB3 ; 3.1 ; Atomic model of cytoplasmic polyhedrosis virus with SAM, GTP and ATP 3MFP ; 6.6 ; Atomic model of F-actin based on a 6.6 angstrom resolution cryoEM map 3LOS ; 4.3 ; Atomic Model of Mm-cpn in the Closed State 6WGF ; 7.7 ; Atomic model of mutant Mcm2-7 hexamer with Mcm6 WHD truncation 6WGG ; 8.1 ; Atomic model of pre-insertion mutant OCCM-DNA complex(ORC-Cdc6-Cdt1-Mcm2-7 with Mcm6 WHD truncation) 7SUN ; 3.6 ; Atomic model of prestin from gerbil (Meriones unguiculatus) 3J1P ; 6.5 ; Atomic model of rabbit hemorrhagic disease virus 7TFL ; 3.33 ; Atomic model of S. cerevisiae clamp loader RFC bound to DNA 7TFK ; 3.25 ; Atomic model of S. cerevisiae clamp loader RFC bound to two DNA molecules, one at the 5'-recessed end and the other at the 3'-recessed end 7TFJ ; 3.3 ; Atomic model of S. cerevisiae clamp-clamp loader complex PCNA-RFC bound to DNA with a closed clamp ring 8SNB ; 3.3 ; atomic model of sea urchin sperm doublet microtubule (48-nm periodicity) 6WGC ; 4.3 ; Atomic model of semi-attached mutant OCCM-DNA complex (ORC-Cdc6-Cdt1-Mcm2-7 with Mcm6 WHD truncation) 2MPZ ; ; Atomic model of the Abeta D23N ""Iowa"" mutant using solid-state NMR, EM and Rosetta modeling 2BGZ ; 9.0 ; ATOMIC MODEL OF THE BACTERIAL FLAGELLAR BASED ON DOCKING AN X-RAY DERIVED HOOK STRUCTURE INTO AN EM MAP. 3A69 ; 7.1 ; Atomic model of the bacterial flagellar hook based on docking an X-ray derived structure and terminal two alpha-helices into an 7.1 angstrom resolution cryoEM map 8EYI ; 2.7 ; Atomic model of the core modifying region of human fatty acid synthase 8EYK ; 2.7 ; Atomic model of the core modifying region of human fatty acid synthase in complex with TVB-2640 8GKC ; 2.45 ; Atomic model of the core modifying region of human fatty acid synthase in complex with TVB-2640 - C2 refinement 2Y7H ; 18.0 ; Atomic model of the DNA-bound methylase complex from the Type I restriction-modification enzyme EcoKI (M2S1). Based on fitting into EM map 1534. 6ZVP ; 4.0 ; Atomic model of the EM-based structure of the full-length tyrosine hydroxylase in complex with dopamine (residues 40-497) in which the regulatory domain (residues 40-165) has been included only with the backbone atoms 3J3V ; 13.3 ; Atomic model of the immature 50S subunit from Bacillus subtilis (state I-a) 3J3W ; 10.7 ; Atomic model of the immature 50S subunit from Bacillus subtilis (state II-a) 3IYF ; 8.0 ; Atomic Model of the Lidless Mm-cpn in the Open State 6W1S ; 4.02 ; Atomic model of the mammalian Mediator complex 6WGI ; 10.0 ; Atomic model of the mutant OCCM (ORC-Cdc6-Cdt1-Mcm2-7 with Mcm6 WHD truncation) loaded on DNA at 10.5 A resolution 2Y7C ; 18.0 ; Atomic model of the Ocr-bound methylase complex from the Type I restriction-modification enzyme EcoKI (M2S1). Based on fitting into EM map 1534. 7UWS ; 3.47 ; Atomic model of the partial VSV nucleocapsid 7TFI ; 3.41 ; Atomic model of the S. cerevisiae clamp-clamp loader complex PCNA-RFC bound to DNA with an open clamp 7TFH ; 3.09 ; Atomic model of the S. cerevisiae clamp-clamp loader complex PCNA-RFC bound to two DNA molecules, one at the 5'-recessed end and the other at the 3'-recessed end 5TCR ; 6.3 ; Atomic model of the Salmonella SPI-1 type III secretion injectisome basal body proteins InvG, PrgH, and PrgK 2XKV ; 13.5 ; Atomic Model of the SRP-FtsY Early Conformation 2LPZ ; ; Atomic model of the Type-III Secretion System Needle 3J9G ; 3.5 ; Atomic model of the VipA/VipB, the type six secretion system contractile sheath of Vibrio cholerae from cryo-EM 5MXN ; 3.7 ; Atomic model of the VipA/VipB/Hcp, the type six secretion system non-contractile sheath-tube of Vibrio cholerae from cryo-EM 3JAY ; 3.0 ; Atomic model of transcribing cytoplasmic polyhedrosis virus 1HRB ; 5.5 ; ATOMIC MODELS FOR THE POLYPEPTIDE BACKBONES OF MYOHEMERYTHRIN AND HEMERYTHRIN 6HY0 ; 3.5 ; Atomic models of P1, P4 C-terminal fragment and P8 fitted in the bacteriophage phi6 nucleocapsid reconstructed with icosahedral symmetry 1CBN ; 0.83 ; ATOMIC RESOLUTION (0.83 ANGSTROMS) CRYSTAL STRUCTURE OF THE HYDROPHOBIC PROTEIN CRAMBIN AT 130 K 2VHK ; 0.94 ; Atomic resolution (0.94 A) structure of purified thaumatin I grown in sodium L-tartrate at 22C 2VU6 ; 0.95 ; Atomic resolution (0.95 A) structure of purified Thaumatin I grown in sodium meso-tartrate at 19 C. 2VHR ; 0.95 ; Atomic resolution (0.95A) structure of purified thaumatin I grown in sodium L-tartrate at 4 C 1VL9 ; 0.97 ; Atomic resolution (0.97A) structure of the triple mutant (K53,56,121M) of bovine pancreatic phospholipase A2 2VI3 ; 0.98 ; Atomic resolution (0.98 A) structure of purified thaumatin I grown in sodium DL-tartrate at 20 C 1GQV ; 0.98 ; Atomic Resolution (0.98A) Structure of Eosinophil-Derived Neurotoxin 2VI1 ; 1.04 ; Atomic resolution (1.04 A) structure of purified thaumatin I grown in sodium D-tartrate at 22 C. 2VI2 ; 1.08 ; Atomic resolution (1.05 A) structure of purified Thaumatin I grown in sodium D-tartrate at 4C 1NKD ; 1.09 ; ATOMIC RESOLUTION (1.07 ANGSTROMS) STRUCTURE OF THE ROP MUTANT <2AA> 2VU7 ; 1.08 ; Atomic resolution (1.08 A) structure of purified thaumatin I grown in sodium meso-tartrate at 4 C 2VI4 ; 1.1 ; Atomic resolution (1.10 A) structure of purified thaumatin I grown in sodium DL-tartrate at 6 C. 1Q0E ; 1.15 ; Atomic resolution (1.15 ) crystal structure of bovine copper, zinc superoxide dismutase 1CZ9 ; 1.2 ; ATOMIC RESOLUTION ASV INTEGRASE CORE DOMAIN (D64N) FROM CITRATE 1CXQ ; 1.02 ; ATOMIC RESOLUTION ASV INTEGRASE CORE DOMAIN FROM AMMONIUM SULFATE 1CZB ; 1.06 ; ATOMIC RESOLUTION ASV INTEGRASE CORE DOMAIN FROM HEPES 6CVM ; 1.9 ; Atomic resolution cryo-EM structure of beta-galactosidase 1BZP ; 1.15 ; ATOMIC RESOLUTION CRYSTAL STRUCTURE ANALYSIS OF NATIVE DEOXY AND CO MYOGLOBIN FROM SPERM WHALE AT ROOM TEMPERATURE 1BZR ; 1.15 ; ATOMIC RESOLUTION CRYSTAL STRUCTURE ANALYSIS OF NATIVE DEOXY AND CO MYOGLOBIN FROM SPERM WHALE AT ROOM TEMPERATURE 1BZ6 ; 1.2 ; ATOMIC RESOLUTION CRYSTAL STRUCTURE AQUOMET-MYOGLOBIN FROM SPERM WHALE AT ROOM TEMPERATURE 6Q41 ; 1.03 ; Atomic resolution crystal structure of a BAA collagen heterotrimer 4N0K ; 1.05 ; Atomic resolution crystal structure of a cytochrome c-calixarene complex 1L2X ; 1.25 ; Atomic Resolution Crystal Structure of a Viral RNA Pseudoknot 6Q3P ; 1.03 ; Atomic resolution crystal structure of an AAB collagen heterotrimer 6Q43 ; 1.16 ; Atomic resolution crystal structure of an ABA collagen heterotrimer 5DA6 ; 1.05 ; Atomic resolution crystal structure of double-stranded RNA 32 base pairs long determined from random starting phases angles in the presence of pseudo translational symmetry using the direct methods program SIR2014. 2O90 ; 1.07 ; Atomic resolution crystal structure of E.coli dihydroneopterin aldolase in complex with neopterin 2V0A ; 1.15 ; Atomic resolution crystal structure of Human Superoxide Dismutase 4U2W ; 1.0 ; Atomic resolution crystal structure of HV-BBI protease inhibitor from amphibian skin in complex with bovine trypsin 4KEL ; 1.148 ; Atomic resolution crystal structure of Kallikrein-Related Peptidase 4 complexed with a modified SFTI inhibitor FCQR(N) 3U23 ; 1.11 ; Atomic resolution crystal structure of the 2nd SH3 domain from human CD2AP (CMS) in complex with a proline-rich peptide from human RIN3 2FWH ; 0.99 ; atomic resolution crystal structure of the C-terminal domain of the electron transfer catalyst DsbD (reduced form at pH7) 2WFI ; 0.75 ; Atomic resolution crystal structure of the PPIase domain of human cyclophilin G 2WFJ ; 0.75 ; Atomic resolution crystal structure of the PPIase domain of human cyclophilin G in complex with cyclosporin A. 4K1E ; 1.3 ; Atomic resolution crystal structures of Kallikrein-Related Peptidase 4 complexed with a modified SFTI inhibitor FCQR 4K8Y ; 1.0 ; Atomic resolution crystal structures of Kallikrein-Related Peptidase 4 complexed with Sunflower Trypsin Inhibitor (SFTI-1) 3EA6 ; 0.92 ; Atomic resolution of crystal structure of SEK 2KQ4 ; ; Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy 2LGI ; ; Atomic Resolution Protein Structures using NMR Chemical Shift Tensors 4LZT ; 0.95 ; ATOMIC RESOLUTION REFINEMENT OF TRICLINIC HEW LYSOZYME AT 295K 2ZL5 ; 1.47 ; Atomic resolution structural characterization of recognition of histo-blood group antigen by Norwalk virus 2ZL6 ; 1.43 ; Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus 2ZL7 ; 1.35 ; Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus 1OE3 ; 1.15 ; Atomic resolution structure of 'Half Apo' NiR 1M69 ; 1.1 ; Atomic Resolution Structure of 5Br-9amino-DACA with d[CGTACG]2 2NAO ; ; Atomic resolution structure of a disease-relevant Abeta(1-42) amyloid fibril 2BWD ; 1.15 ; Atomic Resolution Structure of Achromobacter cycloclastes Cu Nitrite Reductase with Endogenously bound Nitrite and NO 1KWF ; 0.94 ; Atomic Resolution Structure of an Inverting Glycosidase in Complex with Substrate 2HEU ; 1.04 ; Atomic resolution structure of apo-form of RafE from Streptococcus pneumoniae 1VB0 ; 0.92 ; Atomic resolution structure of atratoxin-b, one short-chain neurotoxin from Naja atra 5NB4 ; 1.14 ; Atomic resolution structure of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM at pH 7.5 1MXT ; 0.95 ; Atomic resolution structure of Cholesterol oxidase (Streptomyces sp. SA-COO) 1N4W ; 0.92 ; ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.3 (STREPTOMYCES SP. SA-COO) 1N1P ; 0.95 ; ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @ pH 7.4 (STREPTOMYCES SP. SA-COO) 2GEW ; 0.97 ; Atomic resolution structure of cholesterol oxidase @ pH 9.0 (Streptomyces sp. SA-COO) 1N4V ; 1.0 ; ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE @pH 5.8 (STREPTOMYCES SP. SA-COO) 1YLT ; 1.1 ; Atomic resolution structure of CTX-M-14 beta-lactamase 1YLP ; 1.2 ; Atomic resolution structure of CTX-M-27 beta-lactamase 1YLJ ; 0.98 ; Atomic resolution structure of CTX-M-9 beta-lactamase 2C9V ; 1.07 ; Atomic resolution structure of Cu-Zn Human Superoxide dismutase 3BWH ; 1.0 ; Atomic resolution structure of cucurmosin, a novel type 1 RIP from the sarcocarp of Cucurbita moschata 5SYA ; 1.1 ; Atomic resolution structure of D24N mutant human DJ-1 1OE2 ; 1.12 ; Atomic Resolution Structure of D92E Mutant of Alcaligenes xylosoxidans Nitrite Reductase 1EUW ; 1.05 ; ATOMIC RESOLUTION STRUCTURE OF E. COLI DUTPASE 5SY9 ; 1.1 ; Atomic resolution structure of E15Q mutant human DJ-1 1OEX ; 1.1 ; Atomic Resolution Structure of Endothiapepsin in Complex with a Hydroxyethylene Transition State Analogue Inhibitor H261 1O7J ; 1.0 ; Atomic resolution structure of Erwinia chrysanthemi L-asparaginase 4IAU ; 0.99 ; Atomic resolution structure of Geodin, a beta-gamma crystallin from Geodia cydonium 2WUR ; 0.9 ; Atomic resolution structure of GFP measured on a rotating anode 1A7S ; 1.12 ; ATOMIC RESOLUTION STRUCTURE OF HBP 6BWX ; 2.84 ; Atomic resolution structure of human bufavirus 1 6BX0 ; 3.79 ; Atomic resolution structure of human bufavirus 2 6BX1 ; 3.25 ; Atomic resolution structure of human bufavirus 3 6SFQ ; 1.0 ; Atomic resolution structure of human Carbonic Anhydrase II in complex with (R)-5-phenyloxazolidine-2,4-dione 6SG0 ; 1.13 ; Atomic resolution structure of Human Carbonic Anhydrase II in complex with furosemide 5SY6 ; 1.15 ; Atomic resolution structure of human DJ-1, DTT bound 6ENP ; 1.042 ; Atomic resolution structure of human RNase 6 in the presence of phosphate anions in P21 space group. 5NMN ; 0.95 ; Atomic resolution structure of LL-37 in a monomeric state 1GWE ; 0.88 ; Atomic resolution structure of Micrococcus Lysodeikticus catalase 1GWH ; 1.74 ; Atomic resolution structure of Micrococcus Lysodeikticus catalase complexed with NADPH 2V8U ; 1.05 ; Atomic resolution structure of Mn catalase from Thermus Thermophilus 5KK3 ; ; Atomic Resolution Structure of Monomorphic AB42 Amyloid Fibrils 1OEW ; 0.9 ; ATOMIC RESOLUTION STRUCTURE OF NATIVE ENDOTHIAPEPSIN 2BWI ; 1.1 ; Atomic Resolution Structure of Nitrite -soaked Achromobacter cycloclastes Cu Nitrite Reductase 5AKR ; 0.87 ; ATOMIC RESOLUTION STRUCTURE OF NITRITE BOUND STATE OF THE ACHROMOBACTER CYCLOCLASTES CU NITRITE REDUCTASE AT 0.87 A RESOLUTION 2BW5 ; 1.12 ; Atomic Resolution Structure of NO-bound Achromobacter cycloclastes Cu Nitrite Reductase 1QV0 ; 1.1 ; Atomic resolution structure of obelin from Obelia longissima 1QV1 ; 1.1 ; Atomic resolution structure of obelin from Obelia longissima 3W07 ; 1.03 ; Atomic resolution structure of orotidine 5'-monophosphate decarboxylase from Methanothermobacter thermoautotrophicus bound with UMP. 4MZC ; 0.949 ; Atomic Resolution Structure of PfGrx1 5SY4 ; 0.98 ; Atomic resolution structure of reduced E. coli YajL 2BW4 ; 0.9 ; Atomic Resolution Structure of Resting State of the Achromobacter cycloclastes Cu Nitrite Reductase 6ETK ; 0.85 ; Atomic resolution structure of RNase A (data collection 1) 6ETL ; 0.85 ; Atomic resolution structure of RNase A (data collection 2) 6ETM ; 0.92 ; Atomic resolution structure of RNase A (data collection 3) 6ETN ; 0.92 ; Atomic resolution structure of RNase A (data collection 4) 6ETO ; 1.02 ; Atomic resolution structure of RNase A (data collection 5) 6ETP ; 1.02 ; Atomic resolution structure of RNase A (data collection 6) 6ETQ ; 1.08 ; Atomic resolution structure of RNase A (data collection 7) 6ETR ; 1.17 ; Atomic resolution structure of RNase A (data collection 8) 1KF2 ; 1.1 ; Atomic Resolution Structure of RNase A at pH 5.2 1KF3 ; 1.05 ; Atomic Resolution Structure of RNase A at pH 5.9 1KF4 ; 1.1 ; Atomic Resolution Structure of RNase A at pH 6.3 1KF5 ; 1.15 ; Atomic Resolution Structure of RNase A at pH 7.1 1KF7 ; 1.15 ; Atomic Resolution Structure of RNase A at pH 8.0 1KF8 ; 1.15 ; Atomic resolution structure of RNase A at pH 8.8 2CNQ ; 1.0 ; Atomic resolution structure of SAICAR-synthase from Saccharomyces cerevisiae complexed with ADP, AICAR, succinate 2CNU ; 1.05 ; Atomic resolution structure of SAICAR-synthase from Saccharomyces cerevisiae complexed with aspartic acid 1DJT ; 1.2 ; ATOMIC RESOLUTION STRUCTURE OF SCORPION ALPHA-LIKE TOXIN BMK M1 IN A NEW CRYSTAL FORM 5MM8 ; 1.75 ; Atomic resolution structure of SplE protease from Staphylococcus aureus 6SF7 ; 1.7 ; Atomic resolution structure of SplF protease from Staphylococcus aureus 1LU0 ; 1.03 ; Atomic Resolution Structure of Squash Trypsin Inhibitor: Unexpected Metal Coordination 2BF6 ; 0.97 ; Atomic Resolution Structure of the bacterial sialidase NanI from Clostridium perfringens in complex with alpha-Sialic Acid (Neu5Ac). 2VZP ; 1.05 ; Atomic Resolution Structure of the C-terminal CBM35 from Amycolatopsis orientalis exo-chitosanase CsxA 2JLI ; 1.13 ; Atomic resolution structure of the cytoplasmic domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion 2BAX ; 1.1 ; Atomic Resolution Structure of the Double Mutant (K53,56M) of Bovine Pancreatic Phospholipase A2 4Q2L ; 1.071 ; Atomic Resolution Structure of the E. coli YajR Transporter YAM Domain 1R2M ; 1.0 ; Atomic resolution structure of the HFBII hydrophobin: a self-assembling amphiphile 1H1N ; 1.12 ; Atomic resolution structure of the major endoglucanase from Thermoascus aurantiacus 1OE1 ; 1.04 ; Atomic Resolution Structure of the Wildtype Native Nitrite Reductase from Alcaligenes xylosoxidans 3PUC ; 0.96 ; Atomic resolution structure of titin domain M7 2XOM ; 0.95 ; Atomic resolution structure of TmCBM61 in complex with beta-1,4- galactotriose 3D1P ; 0.98 ; Atomic resolution structure of uncharacterized protein from Saccharomyces cerevisiae 3CUX ; 1.7 ; Atomic Resolution Structures of Escherichia coli and Bacillis anthracis Malate Synthase A: Comparison with Isoform G and Implications for Structure Based Drug Design 3CUZ ; 1.04 ; Atomic Resolution Structures of Escherichia coli and Bacillis anthracis Malate Synthase A: Comparison with Isoform G and Implications for Structure Based Drug Design 3CV1 ; 1.68 ; Atomic Resolution Structures of Escherichia coli and Bacillis anthracis Malate Synthase A: Comparison with Isoform G and Implications for Structure Based Drug Design 3CV2 ; 1.4 ; Atomic Resolution Structures of Escherichia coli and Bacillis anthracis Malate Synthase A: Comparison with Isoform G and Implications for Structure Based Drug Design 1HJ9 ; 0.95 ; Atomic resolution structures of trypsin provide insight into structural radiation damage 4XXR ; 1.18 ; Atomic Resolution X-Ray Crystal Structure of a Ruthenocene Conjugated Beta-Lactam Antibiotic in Complex with CTX-M-14 E166A Beta-Lactamase 5TOP ; 1.18 ; Atomic Resolution X-Ray Crystal Structure of a Ruthenocene Conjugated Beta-Lactam Antibiotic in Complex with CTX-M-14 S70G Beta-Lactamase 5LXW ; 1.0 ; Atomic resolution X-ray crystal structure of cisplatin bound to hen egg white lysozyme stored for 5 years on the shelf 6Z9Z ; 1.04 ; Atomic resolution X-ray structure of the Uridine phosphorylase from Vibrio cholerae on crystals grown under microgravity 8PWH ; 3.17 ; Atomic structure and conformational variability of the HER2-Trastuzumab-Pertuzumab complex 8Q6J ; 3.3 ; Atomic structure and conformational variability of the HER2-Trastuzumab-Pertuzumab complex 5MUV ; 9.1 ; Atomic structure fitted into a localized reconstruction of bacteriophage phi6 packaging hexamer P4 1BBH ; 1.8 ; ATOMIC STRUCTURE OF A CYTOCHROME C' WITH AN UNUSUAL LIGAND-CONTROLLED DIMER DISSOCIATION AT 1.8 ANGSTROMS RESOLUTION 6NIZ ; 0.93 ; Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold 3J9D ; 3.3 ; Atomic structure of a non-enveloped virus reveals pH sensors for a coordinated process of cell entry 3J9E ; 3.3 ; Atomic structure of a non-enveloped virus reveals pH sensors for a coordinated process of cell entry 1T8Z ; 1.45 ; Atomic Structure of A Novel Tryptophan-Zipper Pentamer 1S9U ; 1.38 ; Atomic structure of a putative anaerobic dehydrogenase component 6CBE ; 2.78 ; Atomic structure of a rationally engineered gene delivery vector, AAV2.5 1SZT ; 2.4 ; ATOMIC STRUCTURE OF A THERMOSTABLE SUBDOMAIN OF HIV-1 GP41 2ADA ; 2.4 ; ATOMIC STRUCTURE OF ADENOSINE DEAMINASE COMPLEXED WITH A TRANSITION-STATE ANALOG: UNDERSTANDING CATALYSIS AND IMMUNODEFICIENCY MUTATIONS 4K6B ; 1.101 ; Atomic structure of bacteriophage HS1 tail needle knob 3RWN ; 1.0 ; Atomic structure of bacteriophage sf6 tail needle knob 7MIZ ; 3.4 ; Atomic structure of cortical microtubule from Toxoplasma gondii 1N40 ; 1.06 ; Atomic structure of CYP121, a mycobacterial P450 4HRF ; 1.68 ; Atomic structure of DUSP26 1FKF ; 1.7 ; ATOMIC STRUCTURE OF FKBP-FK506, AN IMMUNOPHILIN-IMMUNOSUPPRESSANT COMPLEX 1FKK ; 2.2 ; ATOMIC STRUCTURE OF FKBP12, AN IMMUNOPHILIN BINDING PROTEIN 1FKJ ; 1.7 ; ATOMIC STRUCTURE OF FKBP12-FK506, AN IMMUNOPHILIN IMMUNOSUPPRESSANT COMPLEX 1FKL ; 1.7 ; ATOMIC STRUCTURE OF FKBP12-RAPAYMYCIN, AN IMMUNOPHILIN-IMMUNOSUPPRESSANT COMPLEX 1MNZ ; 0.99 ; Atomic structure of Glucose isomerase 6E3D ; 1.271 ; Atomic structure of Mycobacterium tuberculosis DppA 6E4D ; 1.252 ; Atomic structure of Mycobacterium tuberculosis DppA 6N9Y ; 4.0 ; Atomic structure of Non-Structural protein 1 of bluetongue virus 5MUW ; 9.1 ; Atomic structure of P4 packaging enzyme fitted into a localized reconstruction of bacteriophage phi6 vertex 6R7G ; 2.2 ; Atomic structure of potato virus X, the prototype of the Alphaflexiviridae family 8UEE ; 3.2 ; Atomic structure of Salmonella SipA/F-actin complex by cryo-EM 2BPA ; 3.0 ; ATOMIC STRUCTURE OF SINGLE-STRANDED DNA BACTERIOPHAGE PHIX174 AND ITS FUNCTIONAL IMPLICATIONS 1ATN ; 2.8 ; Atomic structure of the actin:DNASE I complex 3JBT ; 3.8 ; Atomic structure of the Apaf-1 apoptosome 8B8F ; 1.0 ; Atomic structure of the beta-trefoil domain of the Laccaria bicolor lectin LBL in complex with lactose 1ECM ; 2.2 ; ATOMIC STRUCTURE OF THE BURIED CATALYTIC POCKET OF ESCHERICHIA COLI CHORISMATE MUTASE 1EAA ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1EAB ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1EAC ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1EAD ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1EAE ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1EAF ; 2.6 ; ATOMIC STRUCTURE OF THE CUBIC CORE OF THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 2N3D ; ; Atomic structure of the cytoskeletal bactofilin BacA revealed by solid-state NMR 6CT0 ; 3.1 ; Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex 1ENV ; 2.6 ; ATOMIC STRUCTURE OF THE ECTODOMAIN FROM HIV-1 GP41 6RVR ; 3.46 ; Atomic structure of the Epstein-Barr portal, structure I 6RVS ; 3.59 ; Atomic structure of the Epstein-Barr portal, structure II 5V7P ; 2.3 ; Atomic structure of the eukaryotic intramembrane Ras methyltransferase ICMT (isoprenylcysteine carboxyl methyltransferase), in complex with a monobody 2IJ2 ; 1.2 ; Atomic structure of the heme domain of flavocytochrome P450-BM3 5ZAP ; 3.1 ; Atomic structure of the herpes simplex virus type 2 B-capsid 4UI9 ; 3.6 ; Atomic structure of the human Anaphase-Promoting Complex 6Q1F ; 9.0 ; Atomic structure of the Human Herpesvirus 6B Capsid and Capsid-Associated Tegument Complexes 7TFM ; 1.055 ; Atomic Structure of the Leishmania spp. Hsp100 N-Domain 5OR7 ; 2.046 ; Atomic structure of the murine norovirus protruding domain and sCD300lf receptor complex 2ESW ; 2.01 ; Atomic structure of the N-terminal SH3 domain of mouse beta PIX,p21-activated kinase (PAK)-interacting exchange factor 7AP8 ; 3.15 ; Atomic structure of the poxvirus initially transcribing complex in conformation 2 7AP9 ; 3.01 ; Atomic structure of the poxvirus initially transcribing complex in conformation 3 7AOH ; 2.7 ; Atomic structure of the poxvirus late initially transcribing complex 7AOZ ; 2.85 ; Atomic structure of the poxvirus transcription initiation complex in conformation 1 7AOF ; 2.98 ; Atomic structure of the poxvirus transcription late pre-initiation complex 7AMV ; 2.8 ; Atomic structure of the poxvirus transcription pre-initiation complex in the initially melted state 1FKB ; 1.7 ; ATOMIC STRUCTURE OF THE RAPAMYCIN HUMAN IMMUNOPHILIN FKBP-12 COMPLEX 1HJR ; 2.5 ; ATOMIC STRUCTURE OF THE RUVC RESOLVASE: A HOLLIDAY JUNCTION-SPECIFIC ENDONUCLEASE FROM E. COLI 1TPS ; 1.9 ; ATOMIC STRUCTURE OF THE TRYPSIN-A90720A COMPLEX: A UNIFIED APPROACH TO STRUCTURE AND FUNCTION 1TYN ; 2.0 ; ATOMIC STRUCTURE OF THE TRYPSIN-CYCLOTHEONAMIDE A COMPLEX: LESSONS FOR THE DESIGN OF SERINE PROTEASE INHIBITORS 3OV5 ; 1.04 ; Atomic structure of the Xanthomonas citri VirB7 globular domain. 2NXU ; ; Atomic structure of translation initiation factor aIF2 beta-subunit from Archaebacteria sulfolobus solfataricus: high resolution NMR in solution 4QLP ; 1.1 ; Atomic structure of tuberculosis necrotizing toxin (TNT) complexed with its immunity factor IFT 8JIV ; 2.84 ; Atomic structure of wheat ribosome reveals unique features of the plant ribosomes 8JIW ; 2.88 ; Atomic structure of wheat ribosome reveals unique features of the plant ribosomes 6NHJ ; 5.0 ; Atomic structures and deletion mutant reveal different capsid-binding patterns and functional significance of tegument protein pp150 in murine and human cytomegaloviruses with implications for therapeutic development 3J9Q ; 3.5 ; Atomic structures of a bactericidal contractile nanotube in its pre- and post-contraction states 3J9R ; 3.9 ; Atomic structures of a bactericidal contractile nanotube in its pre- and post-contraction states 3FAP ; 1.85 ; ATOMIC STRUCTURES OF THE RAPAMYCIN ANALOGS IN COMPLEX WITH BOTH HUMAN FKBP12 AND FRB DOMAIN OF FRAP 4FAP ; 2.8 ; ATOMIC STRUCTURES OF THE RAPAMYCIN ANALOGS IN COMPLEX WITH BOTH HUMAN FKBP12 AND FRB DOMAIN OF FRAP 1SOS ; 2.5 ; ATOMIC STRUCTURES OF WILD-TYPE AND THERMOSTABLE MUTANT RECOMBINANT HUMAN CU, ZN SUPEROXIDE DISMUTASE 1HET ; 1.15 ; atomic X-ray structure of liver alcohol dehydrogenase containing a hydroxide adduct to NADH 1HEU ; 1.15 ; ATOMIC X-RAY STRUCTURE OF LIVER ALCOHOL DEHYDROGENASE CONTAINING Cadmium and a hydroxide adduct to NADH 1HF3 ; 1.95 ; ATOMIC X-RAY STRUCTURE OF LIVER ALCOHOL DEHYDROGENASE CONTAINING Cadmium and a hydroxide adduct to NADH 3J3Q ; ; Atomic-level structure of the entire HIV-1 capsid 3J3Y ; ; Atomic-level structure of the entire HIV-1 capsid (186 hexamers + 12 pentamers) 2MVX ; ; Atomic-resolution 3D structure of amyloid-beta fibrils: the Osaka mutation 6U0V ; 3.02 ; Atomic-Resolution Cryo-EM Structure of AAV2 VLP 2G8C ; 1.15 ; Atomic-resolution crystal structure of Borrelia burgdorferi OspA via surface entropy reduction 2J9J ; 1.04 ; Atomic-resolution Crystal Structure of Chemically-Synthesized HIV-1 Protease Complexed with Inhibitor JG-365 2J9K ; 1.2 ; Atomic-resolution Crystal Structure of Chemically-Synthesized HIV-1 Protease Complexed with Inhibitor MVT-101 2JE4 ; 1.07 ; Atomic-resolution crystal structure of chemically-synthesized HIV-1 protease in complex with JG-365 2QT4 ; 1.3 ; Atomic-resolution crystal structure of the natural form of Scytovirin 2QSK ; 1.0 ; Atomic-resolution crystal structure of the Recombinant form of Scytovirin 2A28 ; 1.07 ; Atomic-resolution crystal structure of the second SH3 domain of yeast Bzz1 determined from a pseudomerohedrally twinned crystal 2M5N ; ; Atomic-resolution structure of a cross-beta protofilament 2M5K ; 12.7 ; Atomic-resolution structure of a doublet cross-beta amyloid fibril 3ZPK ; ; Atomic-resolution structure of a quadruplet cross-beta amyloid fibril. 2M5M ; 12.2 ; Atomic-resolution structure of a triplet cross-beta amyloid fibril 2N0A ; ; Atomic-resolution structure of alpha-synuclein fibrils 6WAP ; ; Atomic-Resolution Structure of HIV-1 Capsid Tubes by Magic Angle Spinning NMR 6X63 ; ; Atomic-Resolution Structure of HIV-1 Capsid Tubes by Magic Angle Spinning NMR 6YTU ; 0.95 ; Atomic-resolution structure of the coiled-coil dimerisation domain of human Arc 2V1Q ; 1.2 ; Atomic-resolution structure of the yeast Sla1 SH3 domain 3 5BPT ; 3.2 ; Atomic-resolution structures of the APC/C subunits Apc4 and the Apc5 N-terminal domain 5BPW ; 3.4 ; Atomic-resolution structures of the APC/C subunits Apc4 and the Apc5 N-terminal domain 5BPZ ; 2.18 ; Atomic-resolution structures of the APC/C subunits Apc4 and the Apc5 N-terminal domain 8GRN ; 2.5 ; AtOSCA1.1 extended state 8GSO ; 3.3 ; AtOSCA3.1 channel extended state 8GRO ; 3.5 ; AtOSCA3.1 contracted state 5H5K ; 2.3 ; ATP and CMP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 7TVE ; 3.8 ; ATP and DNA bound SMC5/6 core complex 1RAW ; ; ATP BINDING RNA APTAMER IN COMPLEX WITH AMP, NMR, 10 STRUCTURES 1AM1 ; 2.0 ; ATP BINDING SITE IN THE HSP90 MOLECULAR CHAPERONE 4C69 ; 2.277 ; ATP binding to murine voltage-dependent anion channel 1 (mVDAC1). 7UUX ; 2.26 ; ATP binds to Cyclic GMP AMP synthase (cGAS) through Mg coordination 2NT8 ; 1.68 ; ATP bound at the active site of a PduO type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri 2FGH ; 2.8 ; ATP bound gelsolin 1W7A ; 2.27 ; ATP bound MutS 7C1Z ; 2.09617 ; ATP bound structure of Pseudouridine kinase (PUKI) from Arabidopsis thaliana 4U07 ; 2.64 ; ATP bound to eukaryotic FIC domain containing protein 7D4U ; 2.7 ; ATP complex with double mutant cyclic trinucleotide synthase CdnD 2HIX ; 2.87 ; ATP dependent DNA ligase from S. solfataricus bound to ATP 6KR1 ; 2.0 ; ATP dependent protease HslV from Staphylococcus aureus 3SL2 ; 1.61 ; ATP Forms a Stable Complex with the Essential Histidine Kinase WalK (YycG) Domain 1USY ; 2.52 ; ATP phosphoribosyl transferase (HisG:HisZ) complex from Thermotoga maritima 1Z7M ; 2.9 ; ATP Phosphoribosyl transferase (HisZG ATP-PRTase) from Lactococcus lactis 1Z7N ; 3.25 ; ATP Phosphoribosyl transferase (HisZG ATP-PRTase) from Lactococcus lactis with bound PRPP substrate 1NH7 ; 2.7 ; ATP PHOSPHORIBOSYLTRANSFERASE (ATP-PRTASE) FROM MYCOBACTERIUM TUBERCULOSIS 1NH8 ; 1.8 ; ATP PHOSPHORIBOSYLTRANSFERASE (ATP-PRTASE) FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH AMP AND HISTIDINE 8OY0 ; 2.4 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Acinetobacter baumanii 5M8H ; 2.34 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Psychrobacter arcticus 6FU7 ; 2.31 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Psychrobacter arcticus in complex with PRATP 6FTT ; 2.29 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Psychrobacter arcticus in complex with PRPP 6FUA ; 2.8 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Psychrobacter arcticus in complex with PRPP and ADP 6FU2 ; 2.71 ; ATP phosphoribosyltransferase (HisZG ATPPRT) from Psychrobacter arcticus in complex with PRPP and ATP 5LHT ; 2.0601 ; ATP Phosphoribosyltransferase from Mycobacterium tuberculosis in complex with the allosteric activator 3-(2-Thienyl)-L-alanine 5LHU ; 2.02 ; ATP Phosphoribosyltransferase from Mycobacterium tuberculosis in complex with the allosteric inhibitor L-Histidine 8A8D ; 2.1 ; ATP sulfurylase from Methanothermococcus thermolithotrophicus - monoclinic form 8A8G ; 1.97 ; ATP sulfurylase from Methanothermococcus thermolithotrophicus - orthorhombic form 1G8F ; 1.95 ; ATP SULFURYLASE FROM S. CEREVISIAE 1G8G ; 2.6 ; ATP SULFURYLASE FROM S. CEREVISIAE: THE BINARY PRODUCT COMPLEX WITH APS 1G8H ; 2.8 ; ATP SULFURYLASE FROM S. CEREVISIAE: THE TERNARY PRODUCT COMPLEX WITH APS AND PPI 1L2P ; 1.55 ; ATP Synthase b Subunit Dimerization Domain 3UD0 ; 2.0 ; ATP synthase C10 ring in proton-unlocked conformation at PH 5.5 3U2Y ; 2.5 ; ATP synthase c10 ring in proton-unlocked conformation at pH 6.1 3U2F ; 2.0 ; ATP synthase c10 ring in proton-unlocked conformation at PH 8.3 3U32 ; 2.0 ; ATP synthase c10 ring reacted with DCCD at pH 5.5 5DN6 ; 3.98 ; ATP synthase from Paracoccus denitrificans 8G7N ; 2.7 ; ATP- and mtHsp10-bound mtHsp60 V72I 8G7O ; 3.4 ; ATP- and mtHsp10-bound mtHsp60 V72I focus 1MT0 ; 2.6 ; ATP-binding domain of hemolysin B from Escherichia coli 7RAX ; 1.41 ; ATP-binding state of the nucleotide-binding domain of Hsp70 DnaK mutant T199A 1B0U ; 1.5 ; ATP-BINDING SUBUNIT OF THE HISTIDINE PERMEASE FROM SALMONELLA TYPHIMURIUM 7JIJ ; 5.5 ; ATP-bound AMP-activated protein kinase 7M74 ; 3.93 ; ATP-bound AMP-activated protein kinase 6M96 ; 2.05 ; ATP-bound conformation of the WzmWzt O antigen ABC transporter 4GT3 ; 1.68 ; ATP-bound form of the ERK2 kinase 3WV8 ; 1.8 ; ATP-bound HcgE from Methanothermobacter marburgensis 8G7L ; 2.5 ; ATP-bound mtHsp60 V72I 8G7M ; 3.2 ; ATP-bound mtHsp60 V72I focus 5E84 ; 2.99 ; ATP-bound state of BiP 4U1R ; 2.8 ; ATP-bound structure of human platelet phosphofructokinase in an R-state, crystal form II 7N6I ; 3.9 ; ATP-bound TnsC-TniQ complex from ShCAST system 7BMK ; 1.85 ; ATP-Competitive Partial Antagonists-'PAIR's-Rheostatically Modulate IRE1alpha's Kinase Helix-alphaC to Segregate its RNase-Mediated Biological Outputs 1R6O ; 2.25 ; ATP-dependent Clp protease ATP-binding subunit clpA/ATP-dependent Clp protease adaptor protein clpS 1A0I ; 2.6 ; ATP-DEPENDENT DNA LIGASE FROM BACTERIOPHAGE T7 COMPLEX WITH ATP 2CFM ; 1.8 ; ATP-DEPENDENT DNA LIGASE FROM PYROCOCCUS FURIOSUS 2HIV ; 2.05 ; ATP-dependent DNA ligase from S. solfataricus 8U6X ; 2.44 ; ATP-dependent DNA ligase Lig E from Neisseria gonorrhoeae 3TY6 ; 2.498 ; ATP-dependent Protease HslV from Bacillus anthracis str. Ames 8IJU ; 1.82 ; ATP-dependent RNA helicase DDX39A (URH49delta41) 4XQK ; 2.7 ; ATP-dependent Type ISP restriction-modification enzyme LlaBIII bound to DNA 7ZBH ; 3.3 ; ATP-dependent zinc metalloprotease FtsH (BB0789) from Borrelia burgdorferi 5C76 ; 3.94 ; ATP-driven lipid-linked oligosaccharide flippase PglK in apo-inward facing state (2) 5C78 ; 2.9 ; ATP-driven lipid-linked oligosaccharide flippase PglK in apo-inward state (1) 5C73 ; 5.9 ; ATP-driven lipid-linked oligosaccharide flippase PglK in outward-occluded conformation 5DAC ; 2.503 ; ATP-gamma-S bound Rad50 from Chaetomium thermophilum in complex with DNA 5DA9 ; 3.0 ; ATP-gamma-S bound Rad50 from Chaetomium thermophilum in complex with the Rad50-binding domain of Mre11 1VE4 ; 1.2 ; ATP-Phosphoribosyltransferase(hisG) from Thermus thermophilus HB8 4AAQ ; 8.0 ; ATP-triggered molecular mechanics of the chaperonin GroEL 4AAR ; 8.0 ; ATP-triggered molecular mechanics of the chaperonin GroEL 4AAS ; 8.5 ; ATP-triggered molecular mechanics of the chaperonin GroEL 4AAU ; 8.5 ; ATP-triggered molecular mechanics of the chaperonin GroEL 4AB2 ; 8.5 ; ATP-triggered molecular mechanics of the chaperonin GroEL 4AB3 ; 8.5 ; ATP-triggered molecular mechanics of the chaperonin GroEL 6WLJ ; 9.6 ; ATP-TTR-3 with AMP models, 9.6 Angstrom resolution 1MO7 ; ; ATPase 1MO8 ; ; ATPase 6J17 ; 1.975 ; ATPase 6J18 ; 2.0 ; ATPase 6J19 ; 1.978 ; ATPase 6JD4 ; 2.1 ; ATPase 6JD5 ; 2.2 ; ATPase 4BYG ; 2.85 ; ATPase crystal structure 4BEV ; 3.583 ; ATPase crystal structure with bound phosphate analogue 6TV1 ; 1.7 ; ATPase domain D3 of the EssC coupling protein from S. aureus USA300 3BH0 ; 2.35 ; ATPase Domain of G40P 1HJO ; 2.3 ; ATPase domain of human heat shock 70kDa protein 1 5UBV ; 2.45 ; ATPase domain of i-AAA protease from Myceliophthora thermophila 8RU5 ; 1.36 ; ATPase family AAA domain containing 2 with crystallization epitope mutations V1022R:Q1027E 4PHT ; 2.83 ; ATPase GspE in complex with the cytoplasmic domain of GspL from the Vibrio vulnificus type II Secretion system 1T4G ; 2.0 ; ATPase in complex with AMP-PNP 1XU4 ; 2.4 ; ATPASE IN COMPLEX WITH AMP-PNP, MAGNESIUM AND POTASSIUM CO-F 6UKS ; 3.2 ; ATPgammaS bound mBcs1 1XXH ; 3.45 ; ATPgS Bound E. Coli Clamp Loader Complex 7M99 ; 3.2 ; ATPgS bound TnsC filament from ShCAST system 7CS9 ; 2.80114 ; AtPrR1 in apo form 7CSA ; 1.96213 ; AtPrR1 with NADP+ 7CSD ; 1.7971 ; AtPrR1 with NADP+ and (+)lariciresinol 7CSB ; 2.00202 ; AtPrR1 with NADP+ and (+)pinoresinol 7CSE ; 2.44019 ; AtPrR1 with NADP+ and (-)lariciresinol 7CSC ; 2.51512 ; AtPrR1 with NADP+ and (-)pinoresinol 7CSF ; 1.98242 ; AtPrR1 with NADP+ and (-)secoisolariciresinol 7CSG ; 1.99689 ; AtPrR2 in apo form 7CSH ; 1.59078 ; AtPrR2 with NADP+ and (+)pinoresinol 1AXH ; ; ATRACOTOXIN-HVI FROM HADRONYCHE VERSUTA (AUSTRALIAN FUNNEL-WEB SPIDER, NMR, 20 STRUCTURES 7BRK ; 2.85 ; Atrial Natriuretic Peptide Receptor complexed with deletion mutant of human Atrial Natriuretic Peptide[5-27] 7BRJ ; 2.7 ; Atrial Natriuretic Peptide Receptor complexed with deletion mutant of human Atrial Natriuretic Peptide[7-28] 7BRL ; 3.2 ; Atrial Natriuretic Peptide Receptor complexed with Deletion mutant of rat Atrial Natriuretic Peptide[4-17,23] 7BRI ; 2.45 ; Atrial Natriuretic Peptide Receptor complexed with Dendroaspis Natriuretic Peptide 7BRH ; 2.45 ; Atrial Natriuretic Peptide Receptor complexed with human Atrial Natriuretic Peptide 7BRG ; 2.45 ; Atrial Natriuretic Peptide Receptor complexed with rat Atrial Natriuretic Peptide 8GW6 ; 3.3 ; AtSLAC1 6D mutant in closed state 8GW7 ; 3.3 ; AtSLAC1 6D mutant in open state 8J0J ; 2.7 ; AtSLAC1 8D mutant in closed state 8J1E ; 3.84 ; AtSLAC1 in open state 2KBT ; ; Attachment of an NMR-invisible solubility enhancement tag (INSET) using a sortase-mediated protein ligation method 7TBG ; 2.5 ; AtTPC1 D454N with 1 mM Ca2+ 7TDF ; 2.7 ; AtTPC1 D454N with 1 mM EDTA state I 7TDD ; 3.5 ; AtTPC1 D454N-EDTA state II 7TDE ; 3.2 ; AtTPC1 DDE mutant with 1 mM Ca2+ 8PKF ; 2.3673 ; ATTRG47E amyloid fibril from hereditary ATTR amloidosis 8PKG ; 2.99 ; ATTRV122I amyloid fibril from hereditary ATTR amloidosis 8PKE ; 3.39 ; ATTRV20I amyloid fibril from hereditary ATTR amloidosis 5YZY ; 2.61 ; AtVAL1 B3 domain in complex with 13bp-DNA 5YZZ ; 2.58 ; AtVAL1 B3 domain in complex with 13bp-DNA 5Z00 ; 2.587 ; AtVAL1 B3 domain in complex with 15bp-DNA 5YUG ; 1.57 ; AtVAL1 PHD-Like domain in the P31 space group 5YUH ; 1.801 ; AtVAL1 PHD-Like domain in the P6122 space group 5Z28 ; 2.245 ; AtVAL2 PHD-Like domain 2JP5 ; ; ATWLPPR an anti-angiogenic peptide 7Z0R ; 1.66 ; AtWRKY18 DNA-binding domain 4R6I ; 2.65 ; AtxA protein, a virulence regulator from Bacillus anthracis. 5TXC ; 2.401 ; AtxE2 Isopeptidase - APO 5TXE ; 2.2 ; AtxE2 Isopeptidase - S527A Variant with Astexin3-dC4 Bound 2J7I ; 2.9 ; ATYPICAL POLYPROLINE RECOGNITION BY THE CMS N-TERMINAL SH3 DOMAIN. CMS:CD2 HETERODIMER 2J6O ; 2.23 ; ATYPICAL POLYPROLINE RECOGNITION BY THE CMS N-TERMINAL SH3 DOMAIN. CMS:CD2 HETEROTRIMER 7KUB ; ; Au1 Domain of VEGF Readthrough Element 7MZX ; ; AUGalpha - FAM150B - ALKL2 77-152 7MZZ ; ; AUGbeta - FAM150A - ALKL1 60-128 7MK7 ; 2.42815 ; Augmentor domain of augmentor-beta 8SSP ; 2.6 ; AurA bound to danusertib and activating monobody Mb1 8SSO ; 1.97 ; AurA bound to danusertib and inhibiting monobody Mb2 2AAN ; 1.85 ; Auracyanin A: A ""blue"" copper protein from the green thermophilic photosynthetic bacterium,chloroflexus aurantiacus 1OV8 ; 1.9 ; Auracyanin B structure in space group, P65 1QHQ ; 1.55 ; AURACYANIN, A BLUE COPPER PROTEIN FROM THE GREEN THERMOPHILIC PHOTOSYNTHETIC BACTERIUM CHLOROFLEXUS AURANTIACUS 1BQB ; 1.72 ; AUREOLYSIN, STAPHYLOCOCCUS AUREUS METALLOPROTEINASE 7JFR ; 2.35 ; Auristatin bound to tubulin 3H0Y ; 2.5 ; Aurora A in complex with a bisanilinopyrimidine 3H0Z ; 2.92 ; Aurora A in complex with a bisanilinopyrimidine 4DEE ; 2.3 ; Aurora A in complex with ADP 5DN3 ; 2.05 ; Aurora A in complex with ATP and AA35. 4J8M ; 1.853 ; Aurora A in complex with CD532 4DEB ; 3.05 ; Aurora A in complex with RK2-17-01 3UNZ ; 2.8 ; Aurora A in Complex with RPM1679 3UO4 ; 2.45 ; Aurora A in complex with RPM1680 3UP2 ; 2.3001 ; Aurora A in complex with RPM1686 3UOD ; 2.5002 ; Aurora A in complex with RPM1693 3UOJ ; 2.9003 ; Aurora A in complex with RPM1715 3UOH ; 2.8002 ; Aurora A in complex with RPM1722 3UOL ; 2.4 ; Aurora A in complex with SO2-162 3UP7 ; 3.05 ; Aurora A in complex with YL1-038-09 4DEA ; 2.45 ; Aurora A in complex with YL1-038-18 4DED ; 3.05 ; Aurora A in complex with YL1-038-21 3UO5 ; 2.7012 ; Aurora A in complex with YL1-038-31 3UO6 ; 2.8002 ; Aurora A in complex with YL5-083 3UOK ; 2.9506 ; Aurora A in complex with YL5-81-1 3H10 ; 2.2 ; Aurora A inhibitor complex 2C6E ; 2.1 ; Aurora A kinase activated mutant (T287D) in complex with a 5- aminopyrimidinyl quinazoline inhibitor 2C6D ; 2.2 ; Aurora A kinase activated mutant (T287D) in complex with ADPNP 4J8N ; 3.135 ; Aurora A Kinase Apo 4BYI ; 2.6 ; Aurora A kinase bound to a highly selective imidazopyridine inhibitor 4BYJ ; 2.75 ; Aurora A kinase bound to a highly selective imidazopyridine inhibitor 5AAF ; 2.78 ; Aurora A kinase bound to an imidazopyridine inhibitor (14a) 5AAG ; 2.85 ; Aurora A kinase bound to an imidazopyridine inhibitor (14b) 5AAE ; 3.11 ; Aurora A kinase bound to an imidazopyridine inhibitor (14d) 5AAD ; 3.1 ; Aurora A kinase bound to an imidazopyridine inhibitor (7a) 3MYG ; 2.4 ; Aurora A Kinase complexed with SCH 1473759 4PRJ ; 2.8 ; Aurora A kinase domain with compound 2 (N-[1-(3-cyanobenzyl)-1H-pyrazol-4-yl]-6-(1H-pyrazol-4-yl)-1H-indazole-3-carboxamide) 3P9J ; 2.8 ; Aurora A kinase domain with phthalazinone pyrazole inhibitor 5OBR ; 2.62 ; Aurora A kinase in complex with 2-(3-chloro-5-fluorophenyl)quinoline-4-carboxylic acid and JNJ-7706621 5OBJ ; 2.901 ; Aurora A kinase in complex with 2-(3-fluorophenyl)quinoline-4-carboxylic acid and ATP 5DR9 ; 2.47 ; Aurora A Kinase in Complex with AA29 and JNJ-7706621 in Space Group P6122 5DR2 ; 2.46 ; Aurora A Kinase in Complex with AA30 and ATP in Space Group P6122 5DR6 ; 2.534 ; Aurora A Kinase in Complex with AA30 and JNJ-7706621 in Space Group P6122 5DOS ; 2.98 ; Aurora A Kinase in Complex with AA35 and ATP in Space Group P6122 5DT4 ; 2.86 ; Aurora A Kinase in Complex with AA35 and ATP in Space Group P6122 5DPV ; 2.285 ; Aurora A Kinase in Complex with AA35 and JNJ-7706621 in Space Group P6122 5DNR ; 1.95 ; Aurora A Kinase in complex with ATP in space group P41212 5DRD ; 2.13 ; Aurora A Kinase in Complex with ATP in Space Group P6122 5DT3 ; 2.33 ; Aurora A Kinase in Complex with ATP in Space Group P6122 5DT0 ; 2.15 ; Aurora A Kinase in Complex with JNJ-7706621 in Space Group P6122 8C1I ; 2.81 ; Aurora A kinase in complex with TPX2-inhibitor 10 8C1M ; 2.84 ; Aurora A kinase in complex with TPX2-inhibitor 2 8C15 ; 2.41 ; Aurora A kinase in complex with TPX2-inhibitor 3 8C1F ; 1.924 ; Aurora A kinase in complex with TPX2-inhibitor 6 8C1G ; 1.96 ; Aurora A kinase in complex with TPX2-inhibitor 7 8C1H ; 2.233 ; Aurora A kinase in complex with TPX2-inhibitor 8 8C14 ; 1.93 ; Aurora A kinase in complex with TPX2-inhibitor 9 8C1D ; 2.115 ; Aurora A kinase in complex with TPX2-inhibitor 9 8C1E ; 2.798 ; Aurora A kinase in complex with TPX2-inhibitor 9 8C1K ; 2.43 ; Aurora A kinase in complex with TPX2-inhibitor CAM2602 6C2R ; 1.96 ; Aurora A ligand complex 6C2T ; 1.73 ; Aurora A ligand complex 4C2V ; 1.49 ; Aurora B kinase in complex with the specific inhibitor Barasertib 4B8M ; 1.85 ; Aurora B kinase in complex with VX-680 4B8L ; 3.0 ; Aurora B kinase P353G mutant 3W10 ; 2.7 ; Aurora kinase A complexed to pyrazole aminoquinoline I 7O2V ; 3.1 ; AURORA KINASE A IN COMPLEX WITH THE AUR-A/PDK1 INHIBITOR VI8 3ZTX ; 1.95 ; Aurora kinase selective inhibitors identified using a Taxol-induced checkpoint sensitivity screen. 2BMC ; 2.6 ; Aurora-2 T287D T288D complexed with PHA-680632 2X6D ; 2.796 ; Aurora-A bound to an inhibitor 2X6E ; 3.35 ; Aurora-A bound to an inhibitor 6R49 ; 2.209 ; Aurora-A in complex with shape-diverse fragment 39 6R4A ; 1.937 ; Aurora-A in complex with shape-diverse fragment 55 6R4B ; 2.15 ; Aurora-A in complex with shape-diverse fragment 56 6R4C ; 2.04 ; Aurora-A in complex with shape-diverse fragment 57 6R4D ; 2.009 ; Aurora-A in complex with shape-diverse fragment 58 5ODT ; 2.021 ; Aurora-A in complex with TACC3 2WTV ; 2.4 ; Aurora-A Inhibitor Structure 2WTW ; 3.302 ; Aurora-A Inhibitor Structure (2nd crystal form) 2DWB ; 2.5 ; Aurora-A kinase complexed with AMPPNP 6I2U ; 2.5 ; Aurora-A kinase domain in complex with Coenzyme A 5L8L ; 1.67 ; Aurora-A kinase domain in complex with vNAR-D01 (crystal form 1) 5L8K ; 1.79 ; Aurora-A kinase domain in complex with vNAR-D01 (crystal form 2) 5L8J ; 1.68 ; Aurora-A kinase domain in complex with vNAR-D01 S93R 2XRU ; 2.9 ; AURORA-A T288E COMPLEXED WITH PHA-828300 4IRH ; 2.1 ; Auto-inhibited ERG Ets domain 4IRI ; 2.77 ; Auto-inhibited ERG Ets Domain-DNA Complex 4K44 ; 1.7 ; Auto-inhibition and phosphorylation-induced activation of PLC-gamma isozymes 4K45 ; 1.5 ; Auto-inhibition and phosphorylation-induced activation of PLC-gamma isozymes 4ROU ; 2.713 ; Auto-inhibition Mechanism of Human Mitochondrial RNase P Protein Complex 1U37 ; ; Auto-inhibition Mechanism of X11s/Mints Family Scaffold Proteins Revealed by the Closed Conformation of the Tandem PDZ Domains 1U38 ; ; Auto-inhibition Mechanism of X11s/Mints Family Scaffold Proteins Revealed by the Closed Conformation of the Tandem PDZ Domains 1U39 ; ; Auto-inhibition Mechanism of X11s/Mints Family Scaffold Proteins Revealed by the Closed Conformation of the Tandem PDZ Domains 1U3B ; ; Auto-inhibition Mechanism of X11s/Mints Family Scaffold Proteins Revealed by the Closed Conformation of the Tandem PDZ Domains 1QWT ; 2.1 ; Auto-inhibitory interferon regulation factor-3 (IRF3) transactivation domain 1RNR ; 2.5 ; AUTOCATALYTIC GENERATION OF DOPA IN THE ENGINEERED PROTEIN R2 F208Y FROM ESCHERICHIA COLI RIBONUCLEOTIDE REDUCTASE AND CRYSTAL STRUCTURE OF THE DOPA-208 PROTEIN 8TAF ; 3.2 ; Autographa californica multiple nucleopolyhedrovirus VP39 7MFE ; 4.07 ; Autoinhibited BRAF:(14-3-3)2 complex with the BRAF RBD resolved 7MFD ; 3.66 ; Autoinhibited BRAF:(14-3-3)2:MEK complex with the BRAF RBD resolved 5T4O ; 6.9 ; Autoinhibited E. coli ATP synthase state 1 5T4P ; 7.77 ; Autoinhibited E. coli ATP synthase state 2 5T4Q ; 8.53 ; Autoinhibited E. coli ATP synthase state 3 5ILS ; 1.399 ; Autoinhibited ETV1 5ILU ; 1.101 ; Autoinhibited ETV4 3OBV ; 2.75 ; Autoinhibited Formin mDia1 Structure 2OZO ; 2.6 ; Autoinhibited intact human ZAP-70 7MP5 ; 5.6 ; Autoinhibited neurofibrobmin 1TKI ; 2.0 ; AUTOINHIBITED SERINE KINASE DOMAIN OF THE GIANT MUSCLE PROTEIN TITIN 6F3F ; 2.41796 ; Autoinhibited Src kinase bound to ADP 4L9M ; 3.0 ; Autoinhibited state of the Ras-specific exchange factor RasGRP1 7PGU ; 3.3 ; Autoinhibited structure of human neurofibromin isoform 2 stabilized by Zinc. 3KY9 ; 2.731 ; Autoinhibited Vav1 1CXR ; ; AUTOMATED 2D NOESY ASSIGNMENT AND STRUCTURE CALCULATION OF CRAMBIN(S22/I25) WITH SELF-CORRECTING DISTANCE GEOMETRY BASED NOAH/DIAMOD PROGRAMS 2K22 ; ; Automated NMR Structure of the TA0895 by FAPSY 2K24 ; ; Automated NMR Structure of the TA0956 by FAPSY 2K25 ; ; Automated NMR Structure of the UBB by FAPSY 5OYQ ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 1 5OYZ ; 1.487 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 10 5P1H ; 1.528 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 100 5P1I ; 1.338 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 101 5P1J ; 1.369 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 102 5P1K ; 1.549 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 103 5P1L ; 1.249 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 104 5P1M ; 1.599 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 105 5P1N ; 1.516 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 106 5P1O ; 1.515 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 107 5P1P ; 1.319 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 108 5P1Q ; 1.17 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 109 5OZ0 ; 1.449 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 11 5P1R ; 1.329 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 110 5P1S ; 1.319 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 111 5P1T ; 1.403 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 112 5P1U ; 1.499 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 113 5P1V ; 1.301 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 114 5P1W ; 1.23 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 115 5P1X ; 1.196 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 116 5P1Y ; 1.518 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 117 5P1Z ; 1.459 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 118 5P20 ; 1.435 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 119 5OZ1 ; 1.478 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 12 5P22 ; 1.309 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 120 5P23 ; 1.713 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 121 5P24 ; 1.709 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 122 5P25 ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 123 5P26 ; 1.411 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 124 5P27 ; 1.451 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 125 5P28 ; 1.345 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 126 5P29 ; 1.477 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 127 5P2A ; 1.373 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 128 5P2B ; 1.7 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 129 5OZ2 ; 1.61 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 13 5P2C ; 1.749 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 130 5P2D ; 1.299 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 131 5P2E ; 1.527 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 132 5P2F ; 1.797 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 133 5P2G ; 1.489 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 134 5P2H ; 1.621 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 135 5P2I ; 1.428 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 136 5P2J ; 1.559 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 137 5P2K ; 1.822 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 138 5P2L ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 139 5OZ3 ; 1.754 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 14 5P2M ; 1.089 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 140 5P2N ; 1.549 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 141 5P2O ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 142 5P2Q ; 1.35 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 143 5P2R ; 1.169 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 144 5P2S ; 1.078 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 145 5P2T ; 1.098 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 146 5P2U ; 1.379 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 147 5P2V ; 1.317 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 148 5P2W ; 1.518 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 149 5OZ4 ; 1.478 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 15 5P2X ; 1.399 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 150 5P2Y ; 1.639 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 151 5P2Z ; 1.519 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 152 5P30 ; 1.845 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 153 5P31 ; 1.249 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 154 5P32 ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 155 5P33 ; 1.26 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 156 5P34 ; 1.209 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 157 5P35 ; 1.24 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 158 5P36 ; 1.369 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 159 5OZ5 ; 1.485 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 16 5P37 ; 1.419 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 160 5P38 ; 1.289 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 161 5P39 ; 1.188 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 162 5P3A ; 1.177 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 163 5P3B ; 1.239 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 164 5P3C ; 1.266 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 165 5P3D ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 166 5P3E ; 1.17 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 167 5P3F ; 1.257 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 168 5P3G ; 1.389 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 169 5OZ6 ; 1.546 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 17 5P3H ; 1.389 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 170 5P3I ; 1.25 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 171 5P3J ; 1.339 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 172 5P3K ; 1.747 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 173 5P3L ; 1.25 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 174 5P3M ; 1.189 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 175 5P3N ; 1.439 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 176 5P3O ; 1.249 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 177 5P3P ; 1.459 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 178 5P3Q ; 1.09 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 179 5OZ7 ; 1.608 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 18 5P3R ; 1.369 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 180 5P3S ; 1.17 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 181 5P3T ; 1.188 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 182 5P3U ; 1.2 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 183 5P3V ; 1.468 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 184 5P3W ; 1.238 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 185 5P3X ; 1.42 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 186 5P3Y ; 1.219 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 187 5P3Z ; 1.196 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 188 5P40 ; 1.228 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 189 5OZ8 ; 1.56 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 19 5P41 ; 1.278 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 190 5P42 ; 1.179 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 191 5P43 ; 1.189 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 192 5P44 ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 193 5P45 ; 1.189 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 194 5P46 ; 1.179 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 195 5P47 ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 196 5P48 ; 1.17 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 197 5P49 ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 198 5P4A ; 1.348 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 199 5OYR ; 1.488 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 2 5OZ9 ; 1.609 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 20 5P4B ; 1.199 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 200 5P4C ; 1.257 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 201 5P4D ; 1.247 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 202 5P4E ; 1.399 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 203 5P4F ; 1.409 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 204 5P4G ; 1.159 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 205 5P4H ; 1.448 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 206 5P4I ; 1.416 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 207 5P4J ; 1.517 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 208 5P4K ; 1.47 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 209 5OZA ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 21 5P4L ; 1.079 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 210 5P4M ; 1.07 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 211 5P4N ; 1.247 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 212 5P4O ; 1.06 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 213 5P4P ; 1.569 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 214 5P4Q ; 1.587 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 215 5P4R ; 1.13 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 216 5P4S ; 1.308 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 217 5P4T ; 1.699 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 218 5P4U ; 1.319 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 219 5OZB ; 1.488 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 22 5P4V ; 1.329 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 220 5P4W ; 1.15 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 221 5P4X ; 1.576 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 222 5P4Y ; 1.408 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 223 5P4Z ; 1.248 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 224 5P50 ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 225 5P51 ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 226 5P52 ; 1.27 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 227 5P53 ; 1.12 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 228 5P54 ; 1.087 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 229 5OZC ; 1.709 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 23 5P55 ; 1.299 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 230 5P56 ; 1.499 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 231 5P57 ; 1.418 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 232 5P58 ; 1.12 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 233 5P59 ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 234 5P5A ; 1.268 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 235 5P5B ; 1.209 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 236 5P5C ; 1.339 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 237 5P5D ; 1.579 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 238 5P5E ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 239 5OZD ; 1.37 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 24 5P5F ; 1.298 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 240 5P5G ; 1.661 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 241 5P5H ; 1.09 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 242 5P5I ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 243 5P5J ; 1.169 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 244 5P5K ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 245 5P5L ; 1.725 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 246 5P5M ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 247 5P5N ; 1.689 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 248 5P5O ; 1.199 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 249 5OZE ; 1.241 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 25 5P5P ; 1.09 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 250 5P5Q ; 1.284 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 251 5P5R ; 1.308 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 252 5P5S ; 1.139 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 253 5P5T ; 1.179 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 254 5P5U ; 1.419 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 255 5P5V ; 1.059 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 256 5P5W ; 1.299 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 257 5P5X ; 1.069 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 258 5P5Y ; 1.139 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 259 5OZF ; 1.527 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 26 5P5Z ; 1.169 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 260 5P60 ; 1.238 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 261 5P61 ; 1.089 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 262 5P62 ; 1.278 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 263 5P63 ; 1.199 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 264 5P64 ; 1.069 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 265 5P65 ; 1.1 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 266 5P66 ; 1.187 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 267 5P67 ; 1.116 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 268 5P68 ; 1.25 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 269 5OZG ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 27 5P69 ; 1.44 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 270 5P6A ; 1.158 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 271 5P6B ; 1.469 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 272 5P6C ; 1.339 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 273 5P6D ; 1.439 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 274 5P6E ; 1.209 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 275 5P6F ; 1.129 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 276 5P6G ; 1.088 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 277 5P6H ; 1.449 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 278 5P6I ; 1.198 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 279 5OZH ; 1.488 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 28 5P6J ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 280 5P6K ; 1.607 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 281 5P6L ; 1.049 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 282 5P6M ; 1.345 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 283 5P6N ; 1.109 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 284 5P6O ; 1.13 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 285 5P6P ; 1.278 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 286 5P6Q ; 1.238 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 287 5P6R ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 288 5P6S ; 1.339 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 289 5OZI ; 1.5 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 29 5P6T ; 1.457 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 290 5P6U ; 1.06 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 291 5P6V ; 1.276 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 292 5P6W ; 1.608 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 293 5P6X ; 1.397 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 294 5P6Y ; 1.18 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 295 5P6Z ; 1.279 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 296 5P70 ; 1.019 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 297 5P71 ; 1.03 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 298 5P72 ; 1.049 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 299 5OYS ; 1.649 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 3 5OZJ ; 1.489 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 30 5P73 ; 1.019 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 300 5P74 ; 1.04 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 301 5P75 ; 1.431 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 302 5P76 ; 1.039 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 303 5P77 ; 1.029 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 304 5P78 ; 1.687 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 305 5P79 ; 1.129 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 306 5P7A ; 1.248 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 307 5P7B ; 1.407 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 308 5P7C ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 309 5OZK ; 1.328 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 31 5P7D ; 1.169 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 310 5P7E ; 1.234 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 311 5P7F ; 1.079 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 312 5P7G ; 1.099 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 313 5P7H ; 1.188 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 314 5P7I ; 1.187 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 315 5P7J ; 1.307 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 316 5P7K ; 1.099 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 317 5P7L ; 1.17 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 318 5P7M ; 1.329 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 319 5OZL ; 1.74 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 32 5P7N ; 1.647 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 320 5P7O ; 1.482 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 321 5P7P ; 1.439 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 322 5P7Q ; 1.108 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 323 5P7R ; 1.476 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 324 5P7S ; 1.189 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 325 5P7T ; 1.459 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 326 5P7U ; 1.098 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 327 5P7V ; 1.28 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 328 5P7W ; 1.36 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 329 5OZM ; 1.487 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 33 5P7X ; 1.469 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 330 5P7Y ; 1.654 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 331 5P7Z ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 332 5P80 ; 1.239 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 333 5P81 ; 1.6 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 334 5P82 ; 1.22 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 335 5P83 ; 1.518 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 336 5P84 ; 1.289 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 337 5P85 ; 1.229 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 338 5P86 ; 1.33 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 339 5OZN ; 1.489 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 34 5P87 ; 1.349 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 340 5P88 ; 1.219 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 341 5P89 ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 342 5P8A ; 1.268 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 343 5P8B ; 1.548 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 344 5P8C ; 1.299 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 345 5P8D ; 1.179 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 346 5P8E ; 1.219 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 347 5P8F ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 348 5P8G ; 1.279 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 349 5OZO ; 1.579 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 35 5P8H ; 1.24 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 350 5P8I ; 1.219 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 351 5P8J ; 1.329 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 352 5P8K ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 353 5P8L ; 1.239 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 354 5P8M ; 1.199 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 355 5P8N ; 1.488 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 356 5P8O ; 1.477 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 357 5P8P ; 1.219 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 358 5P8Q ; 1.139 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 359 5OZP ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 36 5P8R ; 1.07 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 360 5P8S ; 1.109 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 361 5P8T ; 1.03 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 362 5P8U ; 1.44 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 363 5P8V ; 1.579 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 364 5OZQ ; 1.503 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 37 5OZR ; 1.769 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 38 5OZS ; 1.72 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 39 5OYT ; 1.589 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 4 5OZT ; 1.8 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 40 5OZU ; 1.118 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 41 5OZV ; 1.476 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 42 5OZW ; 1.54 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 43 5OZX ; 1.484 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 44 5OZY ; 1.489 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 45 5OZZ ; 1.527 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 46 5P00 ; 1.508 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 47 5P01 ; 1.514 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 48 5P02 ; 1.487 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 49 5OYU ; 1.25 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 5 5P03 ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 50 5P04 ; 1.669 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 51 5P05 ; 1.603 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 52 5P06 ; 1.319 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 53 5P07 ; 1.619 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 54 5P08 ; 1.605 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 55 5P09 ; 1.609 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 56 5P0A ; 1.818 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 57 5P0B ; 1.63 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 58 5P0C ; 1.819 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 59 5OYV ; 1.439 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 6 5P0D ; 1.849 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 60 5P0E ; 1.799 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 61 5P0F ; 1.249 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 62 5P0G ; 1.49 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 63 5P0H ; 1.8 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 64 5P0I ; 1.149 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 65 5P0J ; 1.15 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 66 5P0K ; 1.6 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 67 5P0L ; 1.508 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 68 5P0M ; 1.119 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 69 5OYW ; 1.483 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 7 5P0N ; 1.138 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 70 5P0O ; 1.328 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 71 5P0P ; 1.3 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 72 5P0Q ; 1.48 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 73 5P0R ; 1.249 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 74 5P0S ; 1.2 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 75 5P0T ; 1.129 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 76 5P0U ; 1.46 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 77 5P0V ; 1.4 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 78 5P0W ; 1.269 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 79 5OYX ; 1.654 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 8 5P0X ; 1.27 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 80 5P0Y ; 1.32 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 81 5P0Z ; 1.26 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 82 5P10 ; 1.488 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 83 5P11 ; 1.38 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 84 5P12 ; 1.549 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 85 5P13 ; 1.399 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 86 5P14 ; 1.24 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 87 5P15 ; 1.41 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 88 5P16 ; 1.64 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 89 5OYY ; 1.447 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 9 5P17 ; 1.399 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 90 5P18 ; 1.349 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 91 5P19 ; 1.129 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 92 5P1A ; 1.4 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 93 5P1B ; 1.378 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 94 5P1C ; 1.347 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 95 5P1D ; 1.279 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 96 5P1E ; 1.589 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 97 5P1F ; 1.259 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 98 5P1G ; 1.478 ; Automated refinement of diffraction data obtained from an endothiapepsin crystal treated with fragment 99 8B7V ; 3.0 ; Automated simulation-based refinement of maltoporin into a cryo-EM density 1NH5 ; ; AUTOMATIC ASSIGNMENT OF NMR DATA AND DETERMINATION OF THE PROTEIN STRUCTURE OF A NEW WORLD SCORPION NEUROTOXIN USING NOAH/DIAMOD 7F07 ; 2.25 ; Autonomous VH domain that interacts with eIF4E at the Capped mRNA Binding site. 2K6X ; ; Autoregulation of a Group 1 Bacterial Sigma Factor Involves the Formation of a Region 1.1- Induced Compacted Structure 7Z3L ; 2.4 ; Autotaxin in complex with hybrid compound ziritaxestat (GLPG1690) 7Z3K ; 2.0 ; Autotaxin in complex with orthosteric site-binder CpdA 5S9M ; 1.8 ; AUTOTAXIN, (3,5-dichlorophenyl)methyl (3aS,8aR)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,5,7,8,8a-octahydropyrrolo[3,4-d]azepine-6-carboxylate, 1.80A, P212121, Rfree=21.1% 5S9L ; 1.9 ; AUTOTAXIN, 4-[3-Oxo-3-(2-oxo-2,3-dihydro-benzooxazol-6-yl)-propyl]-piperazine-1-carboxylic acid 3,5-dichloro-benzyl ester, 1.90A, P212121, Rfree=19.1% 5S9N ; 1.8 ; AUTOTAXIN, [4-(trifluoromethoxy)phenyl]methyl (3aS,6aS)-2-(1H-benzotriazole-5-carbonyl)-1,3,3a,4,6,6a-hexahydropyrrolo[3,4-c]pyrrole-5-carboxylate, 1.80A, P212121, Rfree=23.3% 5NLN ; 1.9 ; Auxiliary activity 9 5NLO ; 1.33 ; Auxiliary activity 9 5NLP ; 1.59 ; Auxiliary activity 9 5NLQ ; 1.5 ; Auxiliary activity 9 5NLR ; 2.0 ; Auxiliary activity 9 5NLS ; 1.75 ; Auxiliary activity 9 4ND8 ; 2.0 ; Av Nitrogenase MoFe Protein High pH Form 6G3B ; 1.8 ; AvaII restriction endonuclease in complex with an RNA/DNA hybrid 6S48 ; 1.9 ; AvaII RESTRICTION ENDONUCLEASE IN COMPLEX WITH PARTIALLY CLEAVED dsDNA 6S58 ; 2.32 ; AvaII restriction endonuclease in the absence of nucleic acids 6WP9 ; 2.0 ; AvaR1 bound to Avenolide 4DWL ; 2.69 ; Avd molecule from Bordetella bacteriophage DGR 6WP7 ; 2.4 ; Avenolide Binding Autoregulator AvaR1 1ITT ; 1.0 ; Average Crystal Structure of (Pro-Pro-Gly)9 at 1.0 angstroms Resolution 1KSM ; ; AVERAGE NMR SOLUTION STRUCTURE OF CA LN CALBINDIN D9K 1C9Q ; ; AVERAGE NMR SOLUTION STRUCTURE OF THE BIR-2 DOMAIN OF XIAP 1F9X ; ; AVERAGE NMR SOLUTION STRUCTURE OF THE BIR-3 DOMAIN OF XIAP 1JAV ; ; AVERAGE NMR SOLUTION STRUCTURE OF THE TRP-RICH PEPTIDE OF HIV GP41 BOUND TO DPC MICELLES 2JOL ; ; Average NMR structure of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei 1S2F ; ; Average solution structure of a pseudo-5'-splice site from the negative regulator of splicing of Rous Sarcoma virus 1EKI ; ; AVERAGE SOLUTION STRUCTURE OF D(TTGGCCAA)2 BOUND TO CHROMOMYCIN-A3 AND COBALT 1N6V ; ; Average structure of the interferon-binding ectodomain of the human type I interferon receptor 1QTG ; ; AVERAGED NMR MODEL OF SWITCH ARC, A DOUBLE MUTANT OF ARC REPRESSOR 6IZV ; 4.2 ; Averaged strand structure of a 15-stranded ParM filament from Clostridium botulinum 1JOK ; ; Averaged structure for Staphylococcal nuclease-H124L in ternary complex with Ca2+ and thymidine-3',5'-bisphosphate 1JOO ; ; Averaged structure for unligated Staphylococcal nuclease-H124L 4X3R ; 1.86 ; Avi-GCPII structure in complex with FITC-conjugated GCPII-specific inhibitor 8TEX ; 2.54 ; Avian Adeno-associated virus - empty capsid 8TEY ; 3.06 ; Avian Adeno-associated virus - empty capsid 6MYU ; 1.97 ; Avian mitochondrial complex II crystallized in the presence of HQNO 6MYT ; 2.27 ; Avian mitochondrial complex II with Atpenin A5 bound, sidechain in pocket 6MYS ; 2.37 ; Avian mitochondrial complex II with Atpenin A5 bound, sidechain outside 6MYQ ; 1.97 ; Avian mitochondrial complex II with ferulenol bound 6MYO ; 2.2 ; Avian mitochondrial complex II with flutolanyl bound 6MYR ; 2.15 ; Avian mitochondrial complex II with thiapronil bound 6MYP ; 2.1 ; Avian mitochondrial complex II with TTFA (thenoyltrifluoroacetone) bound 2H88 ; 1.74 ; Avian Mitochondrial Respiratory Complex II at 1.8 Angstrom Resolution 1YQ4 ; 2.33 ; Avian respiratory complex ii with 3-nitropropionate and ubiquinone 2FBW ; 2.06 ; Avian respiratory complex II with carboxin bound 2H89 ; 2.4 ; Avian Respiratory Complex II with Malonate Bound 1YQ3 ; 2.2 ; Avian respiratory complex ii with oxaloacetate and ubiquinone 1ASV ; 2.2 ; Avian sarcoma virus integrase catalytic core domain 1ASU ; 1.7 ; AVIAN SARCOMA VIRUS INTEGRASE CATALYTIC CORE DOMAIN CRYSTALLIZED FROM 2% PEG 400, 2M AMMONIUM SULFATE, HEPES PH 7.5 1ASW ; 1.8 ; AVIAN SARCOMA VIRUS INTEGRASE CATALYTIC CORE DOMAIN CRYSTALLIZED FROM 20% PEG 4000, 10% ISOPROPANOL, HEPES PH 7.5 USING SELENOMETHIONINE SUBSTITUTED PROTEIN; DATA COLLECTED AT-165 DEGREES C 4OOY ; 1.1 ; Avibactam and class C beta-lactamases: mechanism of inhibition, conservation of binding pocket and implications for resistance 7KEP ; 1.92 ; avibactam-CDD-1 2 minute complex 7KER ; 1.93 ; avibactam-CDD-1 45 minute complex 7KEQ ; 2.0 ; avibactam-CDD-1 6 minute complex 7ZN1 ; 2.33 ; Avidin + Biotin-Tempo 7ZYL ; 2.08 ; Avidin + Biotin-Tempo 8CK7 ; 2.2 ; Avidin complexed to theophylline 2A5B ; 2.49 ; Avidin complexed with 8-oxodeoxyguanosine 2CAM ; 2.2 ; AVIDIN MUTANT (K3E,K9E,R26D,R124L) 2FHL ; 1.05 ; avidin related protein (AVR4)-BNA complex 2FHN ; 1.3 ; Avidin related protein AVR4 (C122S, K109I mutant) in complex with BNA 6XND ; 1.58 ; Avidin-Biotin-Phenol 1LDQ ; 2.7 ; avidin-homobiotin complex 1LDO ; 2.2 ; avidin-norbioitn complex 6BN0 ; 1.95 ; Avirulence protein 4 (Avr4) from Cladosporium fulvum bound to the hexasaccharide of chitin 4Z4A ; 1.7 ; Avirulence protein 4 (Avr4) from Pseudocercospora fuligena 7FE0 ; 2.2 ; AvmM Catalyzes Macrocyclization in Alchivemycin A Biosynthesis 7FE5 ; 2.09 ; AvmM Catalyzes Macrocyclization in Alchivemycin A Biosynthesis 7FE6 ; 2.5 ; AvmM Catalyzes Macrocyclization in Alchivemycin A Biosynthesis 3M5M ; 1.7 ; Avoiding drug resistance against HCV NS3/4A protease inhibitors 7BB6 ; 4.2 ; AVP-V2R-Galphas-beta1-gamma2-Nb35 (L state) 7BB7 ; 4.4 ; AVP-V2R-Galphas-beta1-gamma2-Nb35(T state) 2OPZ ; 3.0 ; AVPF bound to BIR3-XIAP 7C96 ; 2.51 ; Avr1d:GmPUB13 U-box 1WBI ; 1.4 ; AVR2 5OD4 ; 1.1 ; Avr2 effector protein from the fungal plant pathogen Fusarium oxysporum 6BE0 ; 2.438 ; AvrA delL154 with IP6, CoA 8TXF ; 1.29 ; AvrB bound with RIN4 C-NOI motif 8TWO ; 2.09 ; AvrB bound with UDP and RIN4_T166-Rha 8TWS ; 2.85 ; AvrB bound with UDP-rhamnose and RIN4 C-NOI motif 8TWJ ; 1.9 ; AvrB_R266A bound with UDP 8DGC ; 3.4 ; Avs3 bound to phage PhiV-1 terminase 8DGF ; 2.9 ; Avs4 bound to phage PhiV-1 portal 7KUC ; ; Ax1 Domain of VEGF Readthrough Element 7KUD ; ; Ax2 Domain of VEGF Readthrough Element 1OA8 ; 1.7 ; AXH domain of human spinocerebellar ataxin-1 1V06 ; ; AXH domain of the transcription factor HBP1 from M.musculus 3MFL ; 1.78 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3MI1 ; 1.74 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3MI5 ; 1.78 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3MV4 ; 1.59 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3MV6 ; 1.86 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3T63 ; 1.54 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 3T67 ; 1.67 ; Axial Ligand Swapping In Double Mutant Maintains Intradiol-cleavage Chemistry in Protocatechuate 3,4-Dioxygenase 4HLJ ; 1.8 ; Axon Guidance Receptor 8QD4 ; 1.8 ; Ayg1p active site converted to tetrahedral sulfonate ester 8QD1 ; 1.7 ; Ayg1p from A. fumigatus catalyzes polyketide shortening in the biosynthesis of DHN-melanin 8QD3 ; 1.7 ; Ayg1p in complex with 1,3,6,8-Tetrahydroxynaphthalene 8QD2 ; 1.75 ; Ayg1p in complex with 1,3-Dihydroxynaphthalene 4RAB ; 2.264 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 4RAC ; 2.05 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 4RAD ; 2.0 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 4RAN ; 2.549 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 4RAO ; 1.871 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 4RAQ ; 2.53 ; Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their pro-drugs as antimalarial agents 5K86 ; 1.127 ; Aza-glycine containing collagen peptide 7OME ; 1.501 ; Azacoelenterazine-bound Renilla-type engineered ancestral luciferase variant (AncFT7) 7QXR ; 2.052 ; Azacoelenterazine-bound Renilla-type luciferase (AncFT) 4ZAU ; 2.8 ; AZD9291 complex with wild type EGFR 2VHB ; 1.76 ; AZIDE ADDUCT OF THE BACTERIAL HEMOGLOBIN FROM VITREOSCILLA STERCORARIA 4PJY ; 1.501 ; Azide bound Cysteine Dioxygenase at pH 6.2 2E86 ; 1.5 ; Azide bound to copper containing nitrite reductase from A. faecalis S-6 3BGO ; 1.8 ; Azide complex of Engineered Subtilisin SUBT_BACAM 1RSV ; 2.2 ; azide complex of the diferrous E238A mutant R2 subunit of ribonucleotide reductase 1RSR ; 2.0 ; azide complex of the diferrous F208A mutant R2 subunit of ribonucleotide reductase 2CK3 ; 1.95 ; Azide inhibited bovine F1-ATPase 5ZCQ ; 1.65 ; Azide-bound cytochrome c oxidase structure determined using the crystals exposed to 10 mM azide solution for 2 days 5ZCO ; 1.9 ; azide-bound cytochrome c oxidase structure determined using the crystals exposed to 2 mM azide solution for 2 days 5ZCP ; 1.65 ; azide-bound cytochrome c oxidase structure determined using the crystals exposed to 20 mM azide solution for 2 days 5Z86 ; 1.85 ; azide-bound cytochrome c oxidase structure determined using the crystals exposed to 20 mM azide solution for 3 days 1YAZ ; 1.7 ; AZIDE-BOUND YEAST CU(II)/ZN SUPEROXIDE DISMUTASE ROOM TEMPERATURE (298K) STRUCTURE 6UBE ; 1.6 ; Azide-triggered subtilisin SUBT_BACAM complexed with the peptide LFRAL 1NNI ; 2.5 ; Azobenzene Reductase from Bacillus subtilis 7A20 ; 2.5 ; Azobenzene-Based Inhibitors for Tryptophan Synthase 7AWV ; 2.2 ; Azoreductase (AzoRo) from Rhodococcus opacus 1CP 7ZL5 ; 1.479 ; Azosemide in complex with Carbonic Anhydrase I 7ZL6 ; 1.383 ; Azosemide in complex with human Carbonic anhydrase II (hCA II) 1FRH ; 2.3 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FRI ; 2.1 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FRJ ; 2.3 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FRK ; 2.1 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FRL ; 2.3 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FRM ; 2.3 ; AZOTOBACTER VINELANDII FERREDOXIN I: ALTERATION OF INDIVIDUAL SURFACE CHARGES AND THE [4FE-4S] CLUSTER REDUCTION POTENTIAL 1FDD ; 1.9 ; AZOTOBACTER VINELANDII FERREDOXIN I: ASPARTATE 15 FACILITATES PROTON TRANSFER TO THE REDUCED [3FE-4S] CLUSTER 5K9B ; 1.174 ; Azotobacter vinelandii Flavodoxin II 2PYG ; 2.1 ; Azotobacter vinelandii Mannuronan C-5 epimerase AlgE4 A-module 2PYH ; 2.7 ; Azotobacter vinelandii Mannuronan C-5 epimerase AlgE4 A-module complexed with mannuronan trisaccharide 5LW3 ; 1.19 ; Azotobacter vinelandii Mannuronan C-5 epimerase AlgE6 A-module 1ATG ; 1.2 ; AZOTOBACTER VINELANDII PERIPLASMIC MOLYBDATE-BINDING PROTEIN 5N6Y ; 1.35 ; Azotobacter vinelandii vanadium nitrogenase 1LWX ; 2.3 ; AZT DIPHOSPHATE BINDING TO NUCLEOSIDE DIPHOSPHATE KINASE 1RT3 ; 3.0 ; AZT DRUG RESISTANT HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH 1051U91 2ZQC ; 1.07 ; Aztreonam acyl-intermediate structure of class a beta-lactam Toho-1 E166A/R274N/R276N triple mutant 7VT2 ; 2.4 ; Azumapecten Farreri ferritin 6MJT ; 1.893 ; Azurin 122F/124W/126Re 6MJR ; 2.012 ; Azurin 122W/124F/126Re 6MJS ; 1.85 ; Azurin 122W/124W/126Re 3FQY ; 1.9 ; Azurin C112D 3FQ2 ; 1.91 ; Azurin C112D/M121F 3FQ1 ; 1.9 ; Azurin C112D/M121I 3FPY ; 2.1 ; Azurin C112D/M121L 1JVL ; 2.0 ; Azurin dimer, covalently crosslinked through bis-maleimidomethylether 1JVO ; 2.75 ; Azurin dimer, crosslinked via disulfide bridge 6GYI ; 1.6 ; Azurin fom Pseudomonas aeruginosa treated with hydrosulfide 1E65 ; 1.85 ; Azurin from Pseudomonas aeruginosa, apo form 1E5Y ; 2.0 ; Azurin from Pseudomonas aeruginosa, reduced form, pH 5.5 1E5Z ; 2.0 ; Azurin from Pseudomonas aeruginosa, reduced form, pH 9.0 8F5K ; 1.25 ; Azurin from Pseudomonas aeruginosa, Y72F/Y108F/F110A mutant 8F5L ; 1.15 ; Azurin from Pseudomonas aeruginosa, Y72F/Y108F/F110L mutant 3N2J ; 1.35 ; Azurin H117G, oxidized form 2TSA ; 2.2 ; AZURIN MUTANT M121A 2TSB ; 2.3 ; AZURIN MUTANT M121A-AZIDE 4QLW ; 2.0 ; Azurin mutant M121E with iron 4QKT ; 1.641 ; Azurin mutant M121EM44K with copper 1URI ; 1.94 ; AZURIN MUTANT WITH MET 121 REPLACED BY GLN 1ETJ ; 2.3 ; AZURIN MUTANT WITH MET 121 REPLACED BY GLU 1A4C ; 2.45 ; AZURIN MUTANT WITH MET 121 REPLACED BY HIS, PH 3.5 CRYSTAL FORM, DATA COLLECTED AT-180 DEGREES CELSIUS 1A4A ; 1.89 ; AZURIN MUTANT WITH MET 121 REPLACED BY HIS, PH 6.5 CRYSTAL FORM, DATA COLLECTED AT 16 DEGREES CELSIUS 1A4B ; 1.91 ; AZURIN MUTANT WITH MET 121 REPLACED BY HIS, PH 6.5 CRYSTAL FORM, DATA COLLECTED AT-180 DEGREES CELSIUS 5I26 ; 1.888 ; Azurin T30R1, crystal form I 5I28 ; 1.95 ; Azurin T30R1, crystal form II 7TIO ; ; B Domain of Staphylococcal protein A: Native backbone 7NPN ; 10.38 ; B-brick bare in 5 mM Mg2+ 7SCB ; 2.5 ; B-cylinder of Synechocystis PCC 6803 Phycobilisome, complex with OCP - local refinement 1ZEW ; 2.25 ; B-DNA 1ZF0 ; 1.5 ; B-DNA 5T3L ; 1.58 ; B-DNA (CGCGAATTCGCG)2 soaked with selenourea for 1 min 1DCV ; 2.5 ; B-DNA DECAMER WITH CENTRAL TA DINUCLEOTIDE 1EI4 ; 1.43 ; B-DNA DODECAMER CGCGAAT(TLC)CGCG WITH INCORPORATED [3.3.0]BICYCLO-ARABINO-THYMINE-5'-PHOSPHATE 1QV4 ; 2.5 ; B-DNA Dodecamer CGTGAATTCACG complexed with minor groove binder methylproamine 1QV8 ; 2.5 ; B-DNA Dodecamer d(CGCGAATTCGCG)2 complexed with proamine 2QEG ; 1.6 ; B-DNA with 7-deaza-dG modification 1DPN ; 0.95 ; B-DODECAMER CGCGAA(TAF)TCGCG WITH INCORPORATED 2'-DEOXY-2'-FLUORO-ARABINO-FURANOSYL THYMINE 2LY7 ; ; B-flap domain of RNA polymerase (B. subtilis) 3IE4 ; 1.45 ; b-glucan binding domain of Drosophila GNBP3 defines a novel family of pattern recognition receptor 1GNX ; 1.68 ; b-glucosidase from Streptomyces sp 1GON ; 2.2 ; b-glucosidase from Streptomyces sp 6JZ6 ; 1.605 ; b-glucuronidase from Ruminococcus gnavus in complex with C6-substituted uronic isofagomine 6JZ8 ; 1.583 ; b-glucuronidase from Ruminococcus gnavus in complex with D-glucaro 1,5-lactone 6JZ4 ; 1.712 ; b-glucuronidase from Ruminococcus gnavus in complex with D-glucaro-d-lactam 6JZ5 ; 1.58 ; b-glucuronidase from Ruminococcus gnavus in complex with D-glucuronic acid 6JZ7 ; 1.45 ; b-glucuronidase from Ruminococcus gnavus in complex with N1-substituted uronic isofagomine 6JZ3 ; 1.502 ; b-glucuronidase from Ruminococcus gnavus in complex with uronic deoxynojirimycin 6JZ2 ; 1.29 ; b-glucuronidase from Ruminococcus gnavus in complex with uronic isofagomine at 1.3 Angstroms resolution 4H29 ; 1.991 ; B-raf dimer DNA quadruplex 5CSW ; 2.66 ; B-RAF in complex with Dabrafenib 3Q96 ; 3.1 ; B-Raf kinase domain in complex with a tetrahydronaphthalene inhibitor 4EHG ; 3.5 ; B-Raf Kinase Domain in Complex with an Aminopyridimine-based Inhibitor 4EHE ; 3.3 ; B-Raf Kinase Domain in Complex with an Aminothienopyrimidine-based Inhibitor 4XV9 ; 2.0 ; B-Raf Kinase domain in complex with PLX5568 4JVG ; 3.09 ; B-Raf Kinase in Complex with Birb796 3C4C ; 2.57 ; B-Raf Kinase in Complex with PLX4720 4CQE ; 2.3 ; B-Raf Kinase V600E mutant in complex with a diarylthiazole B-Raf Inhibitor 4XV2 ; 2.5 ; B-Raf Kinase V600E oncogenic mutant in complex with Dabrafenib 4FK3 ; 2.65 ; B-Raf Kinase V600E Oncogenic Mutant in Complex with PLX3203 3OG7 ; 2.45 ; B-Raf Kinase V600E oncogenic mutant in complex with PLX4032 4XV1 ; 2.47 ; B-Raf Kinase V600E oncogenic mutant in complex with PLX7904 4XV3 ; 2.8 ; B-Raf Kinase V600E oncogenic mutant in complex with PLX7922 4G9R ; 3.2 ; B-Raf V600E Kinase Domain Bound to a Type II Dihydroquinazoline Inhibitor 3IDP ; 2.7 ; B-Raf V600E kinase domain in complex with an aminoisoquinoline inhibitor 7P3V ; 2.37 ; B-Raf V600E structure bound to a new inhibitor 5FD2 ; 2.89 ; B-Raf wild-type kinase domain in complex with a purinylpyridinylamino-based inhibitor 6UAN ; 3.9 ; B-Raf:14-3-3 complex 2Y5P ; 1.3 ; B-repeat of Listeria monocytogenes InlB (internalin B) 2RJ4 ; 1.47 ; B-specific alpha-1,3-galactosyltransferase G176R +UDP+ADA 2RJ9 ; 1.69 ; B-specific alpha-1,3-galactosyltransferase (GTB) + UDP+ Amino-deoxy-acceptor 2RJ8 ; 1.69 ; B-specific alpha-1,3-galactosyltransferase (GTB) +UDP+ H-antigen disaccharide 2RJ1 ; 1.55 ; B-specific alpha-1,3-galactosyltransferase (GTB) G176R mutant + UDP + H-antigen disaccharide 2RJ0 ; 1.52 ; B-specific alpha-1,3-galactosyltransferase G176R mutant + UDP+ Mn2+ 2RJ6 ; 1.41 ; B-specific alpha-1,3-galactosyltransferase G176R S235G mutant (AABB) + H-antigen disaccharide 2RJ7 ; 1.7 ; B-specific alpha-1,3-galactosyltransferase G176R S235G mutant (AABB) + UDPGal + Deoxy-acceptor 2RJ5 ; 1.45 ; B-specific alpha-1,3-galactosyltransferase G176R S235G mutant (AABB) +UDP 2RIY ; 1.55 ; B-specific-1,3-galactosyltransferase (GTB)+H-antigen acceptor 2RIX ; 1.75 ; B-specific-1,3-galactosyltransferase)(GTB) + UDP 7QE4 ; 1.7 ; B-trefoil lectin from Salpingoeca rosetta in complex with GalNAc 7R55 ; 1.84 ; B-trefoil lectin from Salpingoeca rosetta in complex with Gb3 5DYN ; 2.48 ; B. fragilis cysteine protease 4L7T ; 1.61 ; B. fragilis NanU 2G8U ; 2.7 ; B. halodurans RNase H catalytic domain D132N mutant in complex with Mg2+ and RNA/DNA hybrid (non-P nick at the active site) 2G8K ; 1.65 ; B. halodurans RNase H catalytic domain D192N mutant in complex with Ca2+ and RNA/DNA hybrid (non-P nick at the active site) 2G8H ; 1.85 ; B. halodurans RNase H catalytic domain D192N mutant in complex with Mg2+ and RNA/DNA hybrid (non-P nick at the active site) 2G8I ; 1.65 ; B. halodurans RNase H catalytic domain D192N mutant in complex with Mn2+ and RNA/DNA hybrid (non-P nick at the active site) 2G8W ; 2.05 ; B. halodurans RNase H catalytic domain E188A mutant in complex with Ca2+ and RNA/DNA hybrid 2G8F ; 1.65 ; B. halodurans RNase H catalytic domain E188A mutant in complex with Mg2+ and RNA/DNA hybrid (non-P nick at the active site) 2G8V ; 1.85 ; B. halodurans RNase H catalytic domain E188A mutant in complex with Mg2+ and RNA/DNA hybrid (reaction product) 7RPS ; 2.09 ; B. miyamotoi FbpB complement inhibitory domain 6MQ1 ; 2.5 ; B. pseudomallei KatG crystalized in the presence of ABTS 6MPY ; 2.0 ; B. pseudomallei KatG crystallized in the presence of benzoyl hydrazide 6MQ0 ; 1.9 ; B. pseudomallei KatG crystallized in the presence of furoyl hydrazide 5SYL ; 1.95 ; B. pseudomallei KatG with KCN bound 8QCQ ; 2.3 ; B. subtilis ApdA-stalled ribosomal complex 4AOO ; 2.3 ; B. subtilis dUTPase YncF in complex with dU PPi and Mg in H32 4AOZ ; 2.05 ; B. subtilis dUTPase YncF in complex with dU, PPi and Mg (P212121) 4B0H ; 1.18 ; B. subtilis dUTPase YncF in complex with dU, PPi and Mg b (P212121) 4LNO ; 2.9 ; B. subtilis glutamine synthetase structures reveal large active site conformational changes and basis for isoenzyme specific regulation: form two of GS-1 4LNN ; 3.1 ; B. subtilis glutamine synthetase structures reveal large active site conformational changes and basis for isoenzyme specific regulation: structure of apo form of GS 4LNK ; 2.87 ; B. subtilis glutamine synthetase structures reveal large active site conformational changes and basis for isoenzyme specific regulation: structure of GS-glutamate-AMPPCP complex 4LNF ; 2.949 ; B. subtilis glutamine synthetase structures reveal large active site conformational changes and basis for isoenzyme specific regulation: structure of GS-Q 4LNI ; 2.5793 ; B. subtilis glutamine synthetase structures reveal large active site conformational changes and basis for isoenzyme specific regulation: structure of the transition state complex 5AN5 ; 1.2 ; B. subtilis GpsB C-terminal Domain 4UG3 ; 2.8 ; B. subtilis GpsB N-terminal Domain 7TFC ; 1.96 ; B. subtilis GS(14)-Q-GlnR peptide 3ZQD ; ; B. subtilis L,D-transpeptidase 4AO5 ; 1.6 ; B. subtilis prophage dUTPase YosS in complex with dUMP 6BHW ; 2.208 ; B. subtilis SsbA 6BHX ; 2.936 ; B. subtilis SsbA with DNA 3VDY ; 2.8 ; B. subtilis SsbB/ssDNA 6UFY ; 2.71 ; B. theta Bile Salt Hydrolase 6UH4 ; 3.51 ; B. theta Bile Salt Hydrolase with covalent inhibitor 3CKC ; 1.5 ; B. thetaiotaomicron SusD 3CK7 ; 2.1 ; B. thetaiotaomicron SusD with alpha-cyclodextrin 3CK8 ; 2.1 ; B. thetaiotaomicron SusD with beta-cyclodextrin 3CK9 ; 2.2 ; B. thetaiotaomicron SusD with maltoheptaose 3CKB ; 2.3 ; B. thetaiotaomicron SusD with maltotriose 3LCZ ; 2.06 ; B.licheniformis Anti-TRAP can assemble into two types of dodecameric particles with the same symmetry but inverted orientation of trimers 3B3D ; 2.3 ; B.subtilis YtbE 3F7J ; 1.7 ; B.subtilis YvgN 3I97 ; 2.9 ; B1 domain of human Neuropilin-1 bound with small molecule EG00229 4RN5 ; 1.73 ; B1 domain of human Neuropilin-1 with acetate ion in a ligand-binding site 1A6U ; 2.1 ; B1-8 FV FRAGMENT 1A6V ; 1.8 ; B1-8 FV fragment complexed with a (4-hydroxy-3-nitrophenyl) acetate compound 1A6W ; 2.0 ; B1-8 FV FRAGMENT COMPLEXED WITH A (4-HYDROXY-5-IODO-3-NITROPHENYL) ACETATE COMPOUND 6H0Q ; ; B1-type ACP domain from module 7 of MLSB 2J85 ; 2.39 ; B116 of Sulfolobus turreted icosahedral virus (STIV) 7QBV ; 2.701 ; B12-dependent radical SAM methyltransferase, Mmp10 with [4Fe-4S] cluster, cobalamin, and S-adenosyl-L-homocysteine bound. 7QBT ; 1.9 ; B12-dependent radical SAM methyltransferase, Mmp10 with [4Fe-4S] cluster, cobalamin, and S-methyl-5'-thioadenosine bound. 7QBU ; 2.298 ; B12-dependent radical SAM methyltransferase, Mmp10 with [4Fe-4S] cluster, cobalamin, and S-methyl-5'-thioadenosine bound. 7QBS ; 2.327 ; B12-dependent radical SAM methyltransferase, Mmp10 with [4Fe-4S] cluster, cobalamin, S-adenosyl-L-methionine, and peptide bound. 4AQZ ; ; B2 domain of Neisseria meningitidis Pilus assembly protein PilQ 2IV9 ; 1.9 ; B2-appendage from AP2 in complex with Eps15 peptide 6X4X ; ; B24Y DKP insulin 8HQ4 ; 2.12 ; B27 in complex with CRM1-Ran-RanBP1 8HUF ; 2.29 ; B28 in complex with CRM1-Ran-RanBP1 6NI3 ; 3.8 ; B2V2R-Gs protein subcomplex of a GPCR-G protein-beta-arrestin mega-complex 6EDU ; 4.06 ; B41 SOSIP.664 in complex with soluble CD4 (D1-D2), the co-receptor mimicking antibody 21c and the broadly neutralizing antibody 8ANC195 6OKP ; 3.28 ; B41 SOSIP.664 in complex with the silent-face antibody SF12 and V3-targeting antibody 10-1074 1JY4 ; ; B4DIMER: A DE NOVO DESIGNED EIGHT-STRANDED BETA-SHEET ASSEMBLED USING A DISULFIDE BOND 1JY6 ; ; B4DIMERA: A DE NOVO DESIGNED FOUR-STRANDED BETA-SHEET ASSEMBLED USING A DISULFIDE BOND 7M52 ; 1.5 ; B6 Fab fragment bound to the HKU4 spike stem helix peptide 7M55 ; 1.4 ; B6 Fab fragment bound to the MERS-CoV spike stem helix peptide 7M51 ; 1.8 ; B6 Fab fragment bound to the OC43 spike stem helix peptide 7M53 ; 1.4 ; B6 Fab fragment bound to the SARS-CoV/SARS-CoV-2 spike stem helix peptide 8AQU ; 3.22 ; BA.1 SARS-CoV-2 Spike bound to mouse ACE2 (local) 8WGV ; 2.92 ; BA.2(S375) Spike (S6P)/hACE2 complex 8CIM ; 3.0 ; BA.2-07 FAB IN COMPLEX WITH SARS-COV-2 BA.2.12.1 SPIKE GLYCOPROTEIN 8AQV ; 2.96 ; BA.2.12.1 SARS-CoV-2 Spike bound to mouse ACE2 (local) 8AQS ; 2.92 ; BA.4/5 SARS-CoV-2 Spike bound to human ACE2 (local) 8AQW ; 3.3 ; BA.4/5 SARS-CoV-2 Spike bound to mouse ACE2 (local) 8CIN ; 2.7 ; BA.4/5-5 FAB IN COMPLEX WITH SARS-COV-2 BA.4 SPIKE GLYCOPROTEIN 6K12 ; 2.794 ; Babesia microti lactate dehydrogenase apo form (BmLDH) 6J9D ; 2.904 ; Babesia microti lactate dehydrogenase R99A (BmLDHR99A) 7W8A ; 2.671 ; Babesia orientalis lactate dehydrogenase, BoLDH apo 1W51 ; 2.55 ; BACE (Beta Secretase) in complex with a nanomolar non-peptidic inhibitor 4ZSM ; 1.96 ; BACE crystal structure with bicyclic aminothiazine fragment 4ZSP ; 1.91 ; BACE crystal structure with bicyclic aminothiazine inhibitor 6BFW ; 1.84 ; BACE crystal structure with hydroxy morpholine inhibitor 6BFD ; 1.62 ; BACE crystal structure with hydroxy pyrrolidine inhibitor 6BFE ; 1.51 ; BACE crystal structure with hydroxy pyrrolidine inhibitor 6BFX ; 1.99 ; BACE crystal structure with hydroxy pyrrolidine inhibitor 4ZSQ ; 2.3 ; BACE crystal structure with tricyclic aminothiazine inhibitor 4ZSR ; 1.65 ; BACE crystal structure with tricyclic aminothiazine inhibitor 3BRA ; 2.3 ; BACE-1 complexed with compound 1 3BUF ; 2.3 ; BACE-1 complexed with compound 2 3BUG ; 2.5 ; BACE-1 complexed with compound 3 3BUH ; 2.3 ; BACE-1 complexed with compound 4 5HE7 ; 1.71 ; BACE-1 in complex with (4aR,7aS)-7a-(2,4-difluorophenyl)-6-(5-fluoro-4-methoxy-6-methylpyrimidin-2-yl)-2-imino-3-methyloctahydro-4H-pyrrolo[3,4-d]pyrimidin-4-one 5HE4 ; 1.53 ; BACE-1 in complex with (4aR,7aS)-7a-(2,6-difluorophenyl)-6-(5-fluoro-4-methoxy-6-methylpyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 5HD0 ; 1.65 ; BACE-1 in complex with (7aR)-7a-(4-(3-cyanophenyl)thiophen-2-yl)-6-(5-fluoropyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 5HDX ; 1.602 ; BACE-1 in complex with (7aR)-7a-(5-cyanothiophen-2-yl)-6-(4-ethoxy-5-fluoro-6-methylpyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 5HE5 ; 1.55 ; BACE-1 in complex with (7aR)-7a-(5-cyanothiophen-2-yl)-6-(5-fluoro-4-methyl-6-(methylamino)pyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 5HDZ ; 1.49 ; BACE-1 in complex with (7aR)-7a-(5-cyanothiophen-2-yl)-6-(5-fluoro-4-methyl-6-(methylthio)pyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 4R93 ; 1.71 ; BACE-1 in complex with (R)-4-(2-cyclohexylethyl)-1-methyl-5-oxo-4-(((1S,3R)-3-(3-phenylureido)cyclohexyl)methyl)imidazolidin-2-iminium 4R91 ; 1.58 ; BACE-1 in complex with (R)-4-(2-cyclohexylethyl)-4-(((1S,3R)-3-(cyclopentylamino)cyclohexyl)methyl)-1-methyl-5-oxoimidazolidin-2-iminium 4R92 ; 1.71 ; BACE-1 in complex with (R)-4-(2-cyclohexylethyl)-4-(((1S,3R)-3-(isonicotinamido)cyclohexyl)methyl)-1-methyl-5-oxoimidazolidin-2-iminium 4R8Y ; 1.9 ; BACE-1 in complex with (R)-4-(2-cyclohexylethyl)-4-(((R)-1-(2-cyclopentylacetyl)pyrrolidin-3-yl)methyl)-1-methyl-5-oxoimidazolidin-2-iminium 4R95 ; 1.99 ; BACE-1 in complex with 2-(((1R,3S)-3-(((R)-4-(2-cyclohexylethyl)-2-iminio-1-methyl-5-oxoimidazolidin-4-yl)methyl)cyclohexyl)amino)quinolin-1-ium 4DPF ; 1.8 ; BACE-1 in complex with a HEA-macrocyclic type inhibitor 3KYR ; 2.6 ; Bace-1 in complex with a norstatine type inhibitor 6UVV ; 1.63 ; BACE-1 in complex with compound #17 6UVY ; 1.71 ; BACE-1 in complex with compound #18 7MYR ; 1.72 ; BACE-1 in complex with compound #18 7MYU ; 1.94 ; BACE-1 in complex with compound #22 6UVP ; 1.56 ; BACE-1 in complex with compound #3 6UWP ; 1.29 ; BACE-1 in complex with compound #32 6UWV ; 1.47 ; BACE-1 in complex with compound #34 7MYI ; 1.25 ; BACE-1 in complex with compound #6 3N4L ; 2.7 ; BACE-1 in complex with ELN380842 3NSH ; 2.2 ; BACE-1 in complex with ELN475957 4DPI ; 1.9 ; BACE-1 in complex with HEA-macrocyclic inhibitor, MV078512 4GMI ; 1.8 ; BACE-1 in complex with HEA-type macrocyclic inhibitor, MV078571 7N66 ; 2.1 ; BACE-1 in complex with ligand 12 5MXD ; 2.52 ; BACE-1 IN COMPLEX WITH LIGAND 32397778 5HDU ; 1.58 ; BACE-1 incomplex with (7aR)-7a-(4-(3-cyanophenyl)thiophen-2-yl)-6-(5-fluoro-4-methoxypyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 5HDV ; 1.71 ; BACE-1 incomplex with (7aR)-7a-(5-cyanothiophen-2-yl)-6-(5-fluoro-4-methoxy-6-methylpyrimidin-2-yl)-3-methyl-4-oxooctahydro-2H-pyrrolo[3,4-d]pyrimidin-2-iminium 4K9H ; 2.29 ; Bace-1 inhibitor complex 3IGB ; 2.238 ; Bace-1 with Compound 3 3L3A ; 2.362 ; Bace-1 with the aminopyridine Compound 32 7N4N ; 1.41 ; BACE-2 in complex with ligand 36 6EJ3 ; 1.94 ; BACE1 compound 23 6EJ2 ; 1.46 ; BACE1 compound 28 5HU1 ; 1.5 ; BACE1 in complex with (R)-N-(3-(3-amino-2,5-dimethyl-1,1-dioxido-5,6-dihydro-2H-1,2,4-thiadiazin-5-yl)-4-fluorophenyl)-5-fluoropicolinamide 5HTZ ; 1.95 ; BACE1 in complex with (S)-5-(3-chloro-5-(5-(prop-1-yn-1-yl)pyridin-3-yl)thiophen-2-yl)-2,5-dimethyl-1,2,4-thiadiazinan-3-iminium 1,1-dioxide 5HU0 ; 1.83 ; BACE1 in complex with 4-(3-(furan-2-carboxamido)phenyl)-1-methyl-5-oxo-4-phenylimidazolidin-2-iminium 4ZPE ; 1.7 ; BACE1 in complex with 4-(cyclohexylamino)-1-(3-fluorophenyl)-8-(3-isopropoxybenzyl)-1,3,8-triazaspiro[4.5]dec-3-en-2-one 4ZPF ; 1.8 ; BACE1 in complex with 8-(3-((1-aminopropan-2-yl)oxy)benzyl)-4-(cyclohexylamino)-1-(3-fluorophenyl)-1,3,8-triazaspiro[4.5]dec-3-en-2-one 4ZPG ; 2.0 ; BACE1 in complex with 8-benzyl-4-(cyclohexylamino)-1-(3-fluorophenyl)-7-methyl-1,3,8-triazaspiro[4.5]dec-3-en-2-one 6NV7 ; 2.132 ; BACE1 in complex with a macrocyclic inhibitor 6NV9 ; 2.13 ; BACE1 in complex with a macrocyclic inhibitor 6NW3 ; 2.352 ; BACE1 in complex with a macrocyclic inhibitor 7B1E ; 1.62 ; BACE1 IN COMPLEX WITH compound 3 (NB-641) 5V0N ; 2.155 ; BACE1 in complex with inhibitor 5g 3OOZ ; 1.8 ; Bace1 in complex with the aminohydantoin Compound 102 3LHG ; 2.1 ; Bace1 in complex with the aminohydantoin Compound 4g 3L38 ; 2.1 ; Bace1 in complex with the aminopyridine Compound 44 2QU2 ; 2.6 ; BACE1 with Compound 1 2QU3 ; 2.0 ; BACE1 with Compound 2 3IN3 ; 2.0 ; Bace1 with Compound 30 3IN4 ; 2.3 ; Bace1 with Compound 38 3IND ; 2.246 ; Bace1 with the aminohydantoin Compound 29 3INF ; 1.852 ; Bace1 with the aminohydantoin Compound 37 3INH ; 1.8 ; Bace1 with the aminohydantoin Compound R-58 3INE ; 1.996 ; Bace1 with the aminohydantoin Compound S-34 3ZKM ; 1.85 ; BACE2 FAB COMPLEX 3ZKN ; 2.0 ; BACE2 FAB INHIBITOR COMPLEX 3ZL7 ; 3.2 ; BACE2 FYNOMER COMPLEX 3ZKG ; 1.9 ; BACE2 MUTANT APO STRUCTURE 6UJ1 ; 3.03 ; BACE2 mutant in complex with a macrocyclic compound 3ZKI ; 2.4 ; BACE2 MUTANT STRUCTURE WITH LIGAND 3ZKQ ; 1.51 ; BACE2 XAPERONE COMPLEX 3ZLQ ; 2.1 ; BACE2 XAPERONE COMPLEX 4BEL ; 1.85 ; BACE2 XAPERONE COMPLEX 4BFB ; 2.21 ; BACE2 XAPERONE COMPLEX 3ZKS ; 2.11 ; BACE2 XAPERONE COMPLEX WITH INHIBITOR 7F1G ; 1.5 ; BACE2 xaperone complex with N-{3-[(4R,5R,6R)-2-amino-5-fluoro-4,6-dimethyl-5,6-dihydro-4H-1,3-thiazin-4-yl]-4-fluorophenyl}-2H,3H-[1,4]dioxino[2,3-c]pyridine-7-carboxamide 7D5B ; 1.31 ; BACE2 xaperone complex with N-{3-[(5R)-3-amino-2,5-dimethyl-1,1-dioxo-5,6-dihydro-2H-1lambda6,2,4-thiadiazin-5-yl]-4-fluorophenyl}-5-fluoropyridine-2-carboxamide 6JSZ ; 1.53 ; BACE2 xaperone complex with N-{3-[(5R)-3-amino-5-methyl-9,9-dioxo-2,9lambda6-dithia-4-azaspiro[5.5]undec-3-en-5-yl]-4-fluorophenyl}-5-(fluoromethoxy)pyrazine-2-carboxamide 7D5U ; 2.04 ; BACE2 xaperone complex with N-{3-[(9S)-7-amino-2,2-difluoro-9-(prop-1-yn-1-yl)-6-oxa-8-azaspiro[3.5]non-7-en-9-yl]-4-fluorophenyl}-5-cyanopyridine-2-carboxamide 7F65 ; 2.202 ; Bacetrial Cocaine Esterase with mutations T172R/G173Q/V116K/S117A/A51L, bound to benzoic acid 7NS0 ; 2.4 ; Bacilladnavirus capsid structure 7A76 ; 1.65 ; Bacillithiol Disulfide Reductase Bdr (YpdA) from Bacillus cereus 7A7B ; 2.9 ; Bacillithiol Disulfide Reductase Bdr (YpdA) from Staphylococcus aureus 7APR ; 3.1 ; Bacillithiol Disulfide Reductase Bdr (YpdA) from Staphylococcus aureus 2YOW ; 1.8 ; Bacillus amyloliquefaciens CBM33 2YOX ; 1.9 ; Bacillus amyloliquefaciens CBM33 in complex with Cu(I) after photoreduction 2YOY ; 1.7 ; Bacillus amyloliquefaciens CBM33 in complex with Cu(I) reduced using ascorbate 3S9U ; 1.9 ; Bacillus anthracis Dihydrofolate Reductase bound to propargyl-linked TMP analog, UCP120J 3E0B ; 2.25 ; Bacillus anthracis Dihydrofolate Reductase complexed with NADPH and 2,4-diamino-5-(3-(2,5-dimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120B) 3MMX ; 2.552 ; Bacillus anthracis NadD (baNadD) in complex with compound 1_02_3 3HFJ ; 2.02 ; Bacillus anthracis nicotinate mononucleotide adenylytransferase (nadD) in complex with inhibitor CID 3289443 1HZ9 ; 1.8 ; BACILLUS CALDOLYTICUS COLD-SHOCK PROTEIN MUTANTS TO STUDY DETERMINANTS OF PROTEIN STABILITY 1HZA ; 1.8 ; BACILLUS CALDOLYTICUS COLD-SHOCK PROTEIN MUTANTS TO STUDY DETERMINANTS OF PROTEIN STABILITY 1HZB ; 1.28 ; BACILLUS CALDOLYTICUS COLD-SHOCK PROTEIN MUTANTS TO STUDY DETERMINANTS OF PROTEIN STABILITY 1HZC ; 1.32 ; BACILLUS CALDOLYTICUS COLD-SHOCK PROTEIN MUTANTS TO STUDY DETERMINANTS OF PROTEIN STABILITY 1I5F ; 1.4 ; BACILLUS CALDOLYTICUS COLD-SHOCK PROTEIN MUTANTS TO STUDY DETERMINANTS OF PROTEIN STABILITY 3JX7 ; 1.6 ; Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA containing a 3-METHYLADENINE analog 3JXY ; 1.5 ; Bacillus cereus Alkylpurine DNA Glycosylase AlkD Bound to DNA Containing a GT Mismatch 3JY1 ; 1.754 ; Bacillus cereus Alkylpurine DNA Glycosylase AlkD Bound to DNA Containing an Abasic Site (across from C) 3JXZ ; 1.75 ; Bacillus cereus Alkylpurine DNA Glycosylase AlkD Bound to DNA Containing an Abasic Site (across from T) 1B90 ; 2.5 ; BACILLUS CEREUS BETA-AMYLASE APO FORM 1B9Z ; 2.1 ; BACILLUS CEREUS BETA-AMYLASE COMPLEXED WITH MALTOSE 5JD9 ; 1.63 ; Bacillus cereus CotH kinase 5JDA ; 1.401 ; Bacillus cereus CotH kinase plus Mg2+/AMP 5KUB ; 1.73 ; Bacillus cereus DNA glycosylase AlkD bound to 7-methylguanine nucleobase and DNA containing an oxocarbenium-intermediate analog 7LXH ; 1.667 ; Bacillus cereus DNA glycosylase AlkD bound to a CC1065-adenine nucleobase adduct and DNA containing an abasic site 7LXJ ; 1.93 ; Bacillus cereus DNA glycosylase AlkD bound to a duocarmycin SA-adenine nucleobase adduct and DNA containing an abasic site 5UUH ; 1.569 ; Bacillus cereus DNA glycosylase AlkD bound to a yatakemycin-adenine nucleobase adduct and DNA containing a fluorinated abasic site (9-mer product complex) 5UUF ; 1.612 ; Bacillus cereus DNA glycosylase AlkD bound to a yatakemycin-adenine nucleobase adduct and DNA containing an abasic site (12-mer product complex) 5UUG ; 1.712 ; Bacillus cereus DNA glycosylase AlkD bound to a yatakemycin-adenine nucleobase adduct and DNA containing an abasic site (9-mer product complex) 5G3P ; 1.78 ; Bacillus cereus formamidase (BceAmiF) acetylated at the active site. 5G3O ; 2.15 ; Bacillus cereus formamidase (BceAmiF) inhibited with urea. 7NMQ ; 1.36 ; Bacillus cereus HblL1 toxin component 2BG8 ; 2.5 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH4.5 using 20 Micromolar ZnSO4 in the buffer. 1mM DTT and 1mM TCEP-HCl were used as reducing agents. 2BG7 ; 2.1 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH4.5 using 20 Micromolar ZnSO4 in the buffer. 1mM DTT was used as a reducing agent. Cys221 is oxidized. 2BFZ ; 2.3 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH4.5 using 20mM ZnSO4 in buffer. 1mM DTT was used as a reducing agent. Cys221 is oxidized. 2BG2 ; 2.4 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH4.5 using 20mM ZnSO4 in the buffer. 1mM DTT and 1mM TCEP- HCl were used as reducing agents. Cys221 is reduced. 2BG6 ; 2.3 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH5 using 20 Micromolar ZnSO4 in the buffer. 1mM DTT was used as a reducing agent. Cys221 is oxidized. 2BFL ; 1.8 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH5 using 20mM ZnSO4 in buffer. 1mM DTT was used as a reducing agent. 2BGA ; 2.7 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH7 using 20 Micromolar ZnSO4 in the buffer. 1mM DTT was used as a reducing agent. Cys221 is oxidized. 2BFK ; 2.0 ; Bacillus cereus metallo-beta-lactamase (BcII) Arg (121) Cys mutant. Solved at pH7 using 20mM ZnSO4 in buffer. 1mM DTT was used as a reducing agent 3KNR ; 1.71 ; Bacillus cereus metallo-beta-lactamase Cys221Asp mutant, 1 mM Zn(II) 3KNS ; 1.58 ; Bacillus cereus metallo-beta-lactamase Cys221Asp mutant, 20 mM Zn(II) 3I0V ; 1.6 ; Bacillus cereus metallo-beta-lactamase: apo form 3UN5 ; 1.8 ; Bacillus cereus phosphopentomutase T85E variant 3UNY ; 1.95 ; Bacillus cereus phosphopentomutase T85E variant soaked with glucose 1,6-bisphosphate 3I13 ; 1.74 ; Bacillus cereus Zn-dependent metallo-beta-lactamase at pH 5.8 4NQ4 ; 1.67 ; Bacillus cereus Zn-dependent metallo-beta-lactamase at pH 7 5W8W ; 2.25 ; Bacillus cereus Zn-dependent metallo-beta-lactamase at pH 7 - new refinement 4NQ5 ; 2.29 ; Bacillus cereus Zn-dependent metallo-beta-lactamase at pH 7 complexed with compound CS319 4NQ6 ; 1.8 ; Bacillus cereus Zn-dependent metallo-beta-lactamase at pH 7 complexed with compound L-CS319 1OT1 ; 2.0 ; Bacillus circulans strain 251 Cyclodextrin glycosyl transferase mutant D135A 1OT2 ; 2.1 ; Bacillus circulans strain 251 Cyclodextrin glycosyl transferase mutant D135N 1KCK ; 2.43 ; Bacillus circulans strain 251 Cyclodextrin glycosyl transferase mutant N193G 1EO5 ; 2.0 ; Bacillus circulans strain 251 cyclodextrin glycosyltransferase in complex with maltoheptaose 1EO7 ; 2.48 ; BACILLUS CIRCULANS STRAIN 251 CYCLODEXTRIN GLYCOSYLTRANSFERASE IN COMPLEX WITH MALTOHEXAOSE 1DTU ; 2.4 ; BACILLUS CIRCULANS STRAIN 251 CYCLODEXTRIN GLYCOSYLTRANSFERASE: A MUTANT Y89D/S146P COMPLEXED TO AN HEXASACCHARIDE INHIBITOR 1PJ9 ; 2.0 ; Bacillus circulans strain 251 loop mutant 183-195 1PEZ ; 2.32 ; Bacillus circulans strain 251 mutant A230V 1KCL ; 1.94 ; Bacillus ciruclans strain 251 Cyclodextrin glycosyl transferase mutant G179L 3TYJ ; 2.15 ; Bacillus collagen-like protein of anthracis P159S mutant 4EZ6 ; 1.64 ; Bacillus DNA Polymerase I Large Fragment Complex 1 4EZ9 ; 1.64 ; Bacillus DNA Polymerase I Large Fragment Complex 2 4F8R ; 1.64 ; Bacillus DNA Polymerase I Large Fragment complex 7 7A02 ; 3.0 ; Bacillus endospore appendages form a novel family of disulfide-linked pili 6P5C ; 2.2 ; Bacillus Fragment DNA polymerase mutant I716M 1W9X ; 2.1 ; Bacillus halmapalus alpha amylase 5CJ9 ; 2.409 ; Bacillus halodurans Arginine repressor, ArgR 1ZBI ; 1.85 ; Bacillus halodurans RNase H catalytic domain mutant D132N in complex with 12-mer RNA/DNA hybrid 1ZBL ; 2.2 ; Bacillus halodurans RNase H catalytic domain mutant D192N in complex with 12-mer RNA/DNA hybrid 5SWM ; 1.5 ; BACILLUS HALODURANS RNASE H MUTANT D132N IN COMPLEX WITH 12-MER FRNA/DNA HYBRID 3ZZL ; 1.67 ; Bacillus halodurans trp RNA-binding attenuation protein (TRAP): a 12- subunit assembly 1C9N ; 1.5 ; BACILLUS LENTUS SUBSTILISIN VARIANT (SER 87) K27R/V104Y/N123S/T274A 1NDQ ; 1.8 ; Bacillus lentus subtilisin 1C9J ; 1.8 ; BACILLUS LENTUS SUBTILISIN K27R/N87S/V104Y/N123S/T274A VARIANT 1NDU ; 1.6 ; Bacillus lentus subtilisin variant S101G/V104N 1C9M ; 1.67 ; BACILLUS LENTUS SUBTILSIN (SER 87) N76D/S103A/V104I 1BLI ; 1.9 ; BACILLUS LICHENIFORMIS ALPHA-AMYLASE 1GBG ; 1.8 ; BACILLUS LICHENIFORMIS BETA-GLUCANASE 4CAG ; 2.498 ; Bacillus licheniformis Rhamnogalacturonan Lyase PL11 5OV4 ; 2.692 ; Bacillus megaterium porphobilinogen deaminase D82A mutant 5OV5 ; 1.81 ; Bacillus megaterium porphobilinogen deaminase D82E mutant 5OV6 ; 1.87 ; Bacillus megaterium porphobilinogen deaminase D82N mutant 5BOI ; 1.8 ; Bacillus megaterium YpeB C-terminal domain 5IZO ; 1.95 ; Bacillus NanoRNase A (H103A) + 2 divalent cations + PO4 at the active site 5IUF ; 1.95 ; Bacillus NanoRNase A active site mutant bound to pAp 8AIL ; 2.45 ; Bacillus phage VMY22 p56 in complex with Bacillus weidmannii Ung 6N2Y ; 3.0 ; Bacillus PS3 ATP synthase class 1 6N2Z ; 3.0 ; Bacillus PS3 ATP synthase class 2 6N30 ; 3.2 ; Bacillus PS3 ATP synthase class 3 6N2D ; 3.3 ; Bacillus PS3 ATP synthase membrane region 4QOM ; 1.65 ; Bacillus pumilus catalase with pyrogallol bound 7R25 ; 0.87 ; Bacillus pumilus Lipase A 1XWL ; 1.7 ; BACILLUS STEAROTHERMOPHILUS (NEWLY IDENTIFIED STRAIN AS YET UNNAMED) DNA POLYMERASE FRAGMENT 1ZIP ; 1.85 ; BACILLUS STEAROTHERMOPHILUS ADENYLATE KINASE 1HVX ; 2.0 ; BACILLUS STEAROTHERMOPHILUS ALPHA-AMYLASE 1JQA ; 2.05 ; Bacillus stearothermophilus glycerol dehydrogenase complex with glycerol 1JQ5 ; 1.7 ; Bacillus Stearothermophilus Glycerol dehydrogenase complex with NAD+ 1H2E ; 1.69 ; BACILLUS STEAROTHERMOPHILUS PHOE (previously known as yhfr) in complex with phosphate 1H2F ; 2.0 ; BACILLUS STEAROTHERMOPHILUS PHOE (previously known as yhfr) in complex with trivanadate 1EBB ; 2.3 ; Bacillus stearothermophilus YhfR 4YZR ; 1.35 ; Bacillus subtilis 168 Bacillaene Polyketide Synthase (PKS) Cytochrome P450 PksS 5CFE ; 1.84 ; Bacillus subtilis AP endonuclease ExoA 6WNN ; 2.59 ; Bacillus subtilis BioA in complex with amino donor L-Lys 7QV2 ; 3.5 ; Bacillus subtilis collided disome (Collided 70S) 7QV1 ; 3.5 ; Bacillus subtilis collided disome (Leading 70S) 7OLH ; 3.65 ; Bacillus subtilis Complex structure 1 of diadenylate cyclase CdaA cytoplasmic domain (CdaACD) and the phosphoglucomutase GlmM short variant (GlmMF369) 1UX1 ; 2.36 ; Bacillus subtilis cytidine deaminase with a Cys53His and an Arg56Gln substitution 1UWZ ; 1.99 ; Bacillus subtilis cytidine deaminase with an Arg56 - Ala substitution 1UX0 ; 1.99 ; Bacillus subtilis cytidine deaminase with an Arg56 - Gln substitution 8UVZ ; 0.93 ; Bacillus subtilis DHFR bound to NADP+ and folate 3ZH9 ; 2.1 ; Bacillus subtilis DNA clamp loader delta protein (YqeN) 8BV3 ; 2.38 ; Bacillus subtilis DnaA domain III structure 7O9F ; 2.51 ; Bacillus subtilis Ffh in complex with ppGpp 4OZ5 ; 2.71 ; Bacillus subtilis HmoB 7OJ1 ; 2.44 ; Bacillus subtilis IMPDH in complex with Ap4A 7OJ2 ; 1.76 ; Bacillus subtilis IMPDH in complex with Ap4A 7BRA ; 1.785 ; Bacillus subtilis IRG1 1R4Z ; 1.8 ; Bacillus subtilis lipase A with covalently bound Rc-IPG-phosphonate-inhibitor 1R50 ; 1.45 ; Bacillus subtilis lipase A with covalently bound Sc-IPG-phosphonate-inhibitor 2EV0 ; 1.65 ; Bacillus subtilis manganese transport regulator (MNTR) bound to cadmium 2EV5 ; 2.0 ; Bacillus subtilis manganese transport regulator (MNTR) bound to calcium 2F5E ; 2.2 ; Bacillus subtilis manganese transport regulator (MNTR) bound to manganese, AB conformation, pH 6.5 1ON1 ; 1.75 ; Bacillus Subtilis Manganese Transport Regulator (Mntr) Bound To Manganese, AB Conformation. 2F5D ; 1.9 ; Bacillus subtilis manganese transport regulator (MNTR) bound to manganese, AC conformation, pH 6.5 2F5F ; 2.4 ; Bacillus subtilis manganese transport regulator (MNTR) bound to manganese, AC conformation, pH 8.5 2F5C ; 2.4 ; Bacillus subtilis Manganese transport regulator (MNTR) bound to manganese, hexagonal crystal form 2EV6 ; 1.7 ; Bacillus subtilis manganese transport regulator (MNTR) bound to zinc 1ON2 ; 1.61 ; Bacillus subtilis Manganese Transport Regulator (MntR), D8M Mutant, Bound to Manganese 8R55 ; 3.57 ; Bacillus subtilis MutS2-collided disome complex (collided 70S) 7QV3 ; 5.14 ; Bacillus subtilis MutS2-collided disome complex (MutS2 conf.2; Leading 70S) 8QPP ; 3.4 ; Bacillus subtilis MutS2-collided disome complex (stalled 70S) 7PI1 ; 1.729 ; Bacillus subtilis PabB 1BN8 ; 1.8 ; BACILLUS SUBTILIS PECTATE LYASE 2BSP ; 1.8 ; BACILLUS SUBTILIS PECTATE LYASE R279K MUTANT 7OML ; 2.9 ; Bacillus subtilis phosphoglucomutase GlmM (metal bound) 7OJR ; 3.05 ; Bacillus subtilis phosphoglucomutase GlmM (phosphate bound) 2Y1T ; 1.89 ; Bacillus subtilis prophage dUTPase in complex with dUDP 7AS8 ; 2.9 ; Bacillus subtilis ribosome quality control complex state B. Ribosomal 50S subunit with P-tRNA, RqcH, and RqcP/YabO 7AS9 ; 3.5 ; Bacillus subtilis ribosome-associated quality control complex state A. Ribosomal 50S subunit with peptidyl tRNA in the A/P position and RqcH. 7ASA ; 3.5 ; Bacillus subtilis ribosome-associated quality control complex state B, multibody refinement focussed on RqcH. Ribosomal 50S subunit with P-tRNA, RqcH, and RqcP/YabO 8T9N ; 1.9 ; Bacillus subtilis RsgI GGG mutant 3ZII ; 2.2 ; Bacillus subtilis SepF G109K, C-terminal domain 8HZT ; ; Bacillus subtilis SepF protein assembly (G137N mutant) 8HZQ ; ; Bacillus subtilis SepF protein assembly (wild type) 3ZIH ; 2.0 ; Bacillus subtilis SepF, C-terminal domain 8A0A ; 2.9 ; Bacillus subtilis SPbeta prophage master regulator MrpR 2FXV ; 2.05 ; Bacillus subtilis Xanthine Phosphoribosyltransferase in Complex with Guanosine 5'-monophosphate (GMP) 1QD9 ; 1.7 ; Bacillus subtilis YABJ 4KQY ; 3.02 ; Bacillus subtilis yitJ S box/SAM-I riboswitch 4XHP ; 3.2 ; Bacillus thuringiensis ParM hybrid protein with ADP, containing two ParM mutants 4XE7 ; 2.0 ; Bacillus thuringiensis ParM in apo form 4XE8 ; 2.381 ; Bacillus thuringiensis ParM with ADP 4XHN ; 2.6 ; Bacillus thuringiensis ParM with AMPPNP 4XHO ; 2.65 ; Bacillus thuringiensis ParM with ATP 5VOL ; 1.98 ; Bacint_04212 ferulic acid esterase 4O0R ; 2.4 ; Back pocket flexibility provides group-II PAK selectivity for type 1 kinase inhibitors 4O0T ; 2.6 ; Back pocket flexibility provides group-II PAK selectivity for type 1 kinase inhibitors 4O0V ; 2.8 ; Back pocket flexibility provides group-II PAK selectivity for type 1 kinase inhibitors 4O0X ; 2.483 ; Back pocket flexibility provides group-II PAK selectivity for type 1 kinase inhibitors 4O0Y ; 2.2 ; Back pocket flexibility provides group-II PAK selectivity for type 1 kinase inhibitors 7VBC ; 3.01 ; Back track state of human RNA Polymerase I Elongation Complex 1WAC ; 3.0 ; Back-priming mode of Phi6 RNA-dependent RNA polymerase 2MBE ; ; Backbone 1H and 15N Chemical Shift Assignments for the first domain of FAT10 2MES ; ; Backbone 1H, 13C, 15N resonance assignments of calcium-bound calmodulin in complex with PSD95 N-terminal peptide 2MRL ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments and NMR structure for potential drug target from Burkholderia thailandensis E264 2MJ3 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments and structure of Iron-sulfur cluster binding protein from Ehrlichia chaffeensis 2MAZ ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for Bovine Apo Calbindin 2LXK ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for cold shock protein, LmCsp 2LXJ ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for cold shock protein, LmCsp with dT7 2MO0 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for cold shock protein, TaCsp 2MO1 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for cold shock protein, TaCsp with dT7 2NBS ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for designed protein E_1r26 2LJP ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for E.coli Ribonuclease P protein 2KZ3 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for human Rad51D from 1 to 83 2LXD ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for LMO2(LIM2)-Ldb1(LID) 2MCK ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for murine norovirus CR6 NS1/2 protein 2MCH ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for murine norovirus NS1/2 CW3 WT 2MCD ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for murine norovirus NS1/2 D94E mutant 2KSW ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for Oryctin 2RT6 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for PriC N-terminal domain 2LGT ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for QFM(Y)F 2LN7 ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for the catalytic domain of B. anthracis SrtD 2L2N ; ; Backbone 1H, 13C, and 15N Chemical Shift Assignments for the first dsRBD of protein HYL1 2N0V ; ; Backbone 1H, Chemical Shift Assignments for Cn-APM1 2MNU ; ; Backbone and side chain 1H, 13C, and 15N Chemical Shift Assignments for EDB and specific binding aptide 2GI9 ; 1.14 ; Backbone Conformational Constraints in a Microcrystalline U-15N-Labeled Protein by 3D Dipolar-Shift Solid-State NMR Spectroscopy 6CGX ; ; Backbone cyclised conotoxin Vc1.1 mutant - D11A, E14A 8T0I ; ; Backbone Dialkylation in Peptide Hairpins: (R)-Ethylpropylglycine variant 8T0H ; ; Backbone Dialkylation in Peptide Hairpins: (S)-Ethylpropylglycine variant 8T0G ; ; Backbone Dialkylation in Peptide Hairpins: Natural Backbone Prototype 2MW5 ; ; Backbone fold of Human Small Ubiquitin like Modifier protein-1 (SUMO-1) based on Prot3D-NMR approach. 1FH1 ; ; BACKBONE FOLD OF NODF 6E5P ; 8.8 ; Backbone model based on cryo-EM map at 8.5 A of domain-swapped, glycan-reactive, neutralizing antibody 2G12 bound to HIV-1 Env BG505 DS-SOSIP, which was also bound to CD4-binding site antibody VRC03 5VLZ ; 4.4 ; Backbone model for phage Qbeta capsid 3K1Q ; 4.5 ; Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics 8GLT ; 6.5 ; Backbone model of de novo-designed chlorophyll-binding nanocage O32-15 8ES2 ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: Aib10Asn11 turn 8ERZ ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: Aib10Gly11 turn 8ERY ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: Asp10Asn11 turn 8ES1 ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: deltaOrn10-11 turn 8ES0 ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: DPro10Gly11 turn 8ES3 ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: DPro10Pro11 turn 8G0Y ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: Iva10Asn11 turn 8G0X ; ; Backbone modifications in the inter-helix loop of designed miniprotein oPPalpha: Pro10DPro11 turn 4OZC ; 2.301 ; Backbone Modifications in the Protein GB1 Helix and Loops: beta-ACPC21, beta-ACPC24, beta-3-Lys28, beta-3-Lys31, beta-ACPC35, beta-ACPC40 5HI1 ; 2.15 ; Backbone Modifications in the Protein GB1 Helix: Aib24, beta-3-Lys28, beta-3-Lys31, Aib35 5HFY ; 1.95 ; Backbone Modifications in the Protein GB1 Helix: beta-2-Ala24, beta-3-Lys28, beta-3-Lys31, beta-3-Asn35 4OZA ; 2.201 ; Backbone Modifications in the Protein GB1 Helix: beta-3-Ala24, beta-3-Lys28, beta-3-Gln32, beta-3-Asp36 5HG2 ; 1.8 ; Backbone Modifications in the Protein GB1 Helix: beta-3-Ala24, beta-3-Lys28, beta-3-Lys31, beta-2-Asn35 4KGR ; 2.0 ; Backbone Modifications in the Protein GB1 Helix: beta-3-Ala24, beta-3-Lys28, beta-3-Lys31, beta-3-Asn35 4OZB ; 1.8 ; Backbone Modifications in the Protein GB1 Helix: beta-ACPC24, beta-3-Lys28, beta-3-Lys31, beta-ACPC35 4KGS ; 1.95 ; Backbone Modifications in the Protein GB1 Loops: beta-3-Val21, beta-3-Asp40 4KGT ; 2.0 ; Backbone Modifications in the Protein GB1 Turns: Aib10, D-Pro47 1RWD ; ; Backbone NMR Structure of a Mutant P. Furiosus Rubredoxin Using Residual Dipolar Couplings 1RWS ; ; Backbone Solution Structure of mixed alpha/beta protein PF1061 1SF0 ; ; BACKBONE SOLUTION STRUCTURE OF MIXED ALPHA/BETA PROTEIN PF1061 2MOT ; ; Backbone Structure of Actin Depolymerizing Factor (ADF) of Toxoplasma gondii Based on Prot3DNMR Approach 6F3V ; ; Backbone structure of bradykinin (BK) peptide bound to human Bradykinin 2 Receptor (B2R) determined by MAS SSNMR 1XGF ; 2.61 ; Backbone Structure of COCOSIN, an 11S storage protein from cocos nucifera 6F3Y ; ; Backbone structure of Des-Arg10-Kallidin (DAKD) peptide bound to human Bradykinin 1 Receptor (B1R) determined by DNP-enhanced MAS SSNMR 6F3X ; ; Backbone structure of Des-Arg10-Kallidin (DAKD) peptide in frozen DDM/CHS detergent micelle solution determined by DNP-enhanced MAS SSNMR 6F3W ; ; Backbone structure of free bradykinin (BK) in DDM/CHS detergent micelle determined by MAS SSNMR 2LOQ ; ; Backbone structure of human membrane protein FAM14B (Interferon alpha-inducible protein 27-like protein 1) 2LOM ; ; Backbone structure of human membrane protein HIGD1A 2LON ; ; Backbone structure of human membrane protein HIGD1B 2LOR ; ; Backbone structure of human membrane protein TMEM141 2LOP ; ; Backbone structure of human membrane protein TMEM14A 2LOO ; ; Backbone structure of human membrane protein TMEM14A from NOE data 2LOS ; ; Backbone structure of human membrane protein TMEM14C 2KSD ; ; Backbone structure of the membrane domain of E. coli histidine kinase receptor ArcB, Center for Structures of Membrane Proteins (CSMP) target 4310C 2KSF ; ; Backbone structure of the membrane domain of E. coli histidine kinase receptor KdpD, Center for Structures of Membrane Proteins (CSMP) target 4312C 2KSE ; ; Backbone structure of the membrane domain of E. coli histidine kinase receptor QseC, Center for Structures of Membrane Proteins (CSMP) target 4311C 5VJ8 ; ; Backbone structure of the Yersinia pestis outer membrane protein Ail in phospholipid bilayer nanodisc 2LD9 ; ; Backbone Structure of Ubiquitin determined using Backbone amide NOEs and Backbone N-H and N-C RDCs 3IYM ; 4.7 ; Backbone Trace of the Capsid Protein Dimer of a Fungal Partitivirus from Electron Cryomicroscopy and Homology Modeling 7TIQ ; ; Backbone-modified variant of the B domain of Staphylococcal protein A: Aib residues in helix 2 7TIS ; ; Backbone-modified variant of the B domain of Staphylococcal protein A: Aib residues in helix 3 7URJ ; ; Backbone-modified variant of the B domain of Staphylococcal protein A: beta3- and ACPC-residues in helix 2 7TIP ; ; Backbone-modified variant of the B domain of Staphylococcal protein A: beta3-residues in helix 2 7TIR ; ; Backbone-modified variant of the B domain of Staphylococcal protein A: beta3-residues in helix 3 6PV1 ; ; Backbone-modified variant of zinc finger 2 from the transcription factor Sp1 DNA binding domain: Aib in the metal-binding turn 6PV3 ; ; Backbone-modified variant of zinc finger 2 from the transcription factor Sp1 DNA binding domain: altered helix, loop, turn, and sheet 6UCO ; ; Backbone-modified variant of zinc finger 2 from the transcription factor Sp1 DNA binding domain: BTD in the metal-binding turn 6PV0 ; ; Backbone-modified variant of zinc finger 2 from the transcription factor Sp1 DNA binding domain: D-Pro in the metal-binding turn 6PV2 ; ; Backbone-modified variant of zinc finger 2 from the transcription factor Sp1 DNA binding domain: Orn in the metal-binding turn 3GTQ ; 3.8 ; Backtracked RNA polymerase II complex induced by damage 3GTG ; 3.78 ; Backtracked RNA polymerase II complex with 12mer RNA 3GTJ ; 3.42 ; Backtracked RNA polymerase II complex with 13mer RNA 3GTL ; 3.38 ; Backtracked RNA polymerase II complex with 13mer with G<>U mismatch 3GTO ; 4.0 ; Backtracked RNA polymerase II complex with 15mer RNA 3GTK ; 3.8 ; Backtracked RNA polymerase II complex with 18mer RNA 3GTP ; 3.9 ; Backtracked RNA polymerase II complex with 24mer RNA 7NYI ; ; BacSp222 bacteriocin: succinyl-K20 form 7NAT ; 3.59 ; Bacterial 30S ribosomal subunit assembly complex state A (Consensus refinement) 7AFD ; 3.44 ; Bacterial 30S ribosomal subunit assembly complex state A (head domain) 7NAS ; 3.31 ; Bacterial 30S ribosomal subunit assembly complex state A (multibody refinement for body domain of 30S ribosome) 7AFO ; 3.93 ; Bacterial 30S ribosomal subunit assembly complex state B (body domain) 7AFN ; 3.86 ; Bacterial 30S ribosomal subunit assembly complex state B (head domain) 7AFI ; 3.53 ; Bacterial 30S ribosomal subunit assembly complex state C (body domain) 7NAU ; 3.78 ; Bacterial 30S ribosomal subunit assembly complex state C (Consensus Refinement) 7AFH ; 3.59 ; Bacterial 30S ribosomal subunit assembly complex state C (head domain) 7NAV ; 4.8 ; Bacterial 30S ribosomal subunit assembly complex state D (Consensus refinement) 7AFK ; 4.9 ; Bacterial 30S ribosomal subunit assembly complex state D (head domain) 7AFL ; 4.2 ; Bacterial 30S ribosomal subunit assembly complex state D (multibody refinement for body domain of 30S ribosome) 7BOG ; 2.75 ; Bacterial 30S ribosomal subunit assembly complex state E (body domain) 7AF8 ; 2.75 ; Bacterial 30S ribosomal subunit assembly complex state E (head domain) 7AFA ; 2.95 ; Bacterial 30S ribosomal subunit assembly complex state F (head domain) 7BOI ; 2.98 ; Bacterial 30S ribosomal subunit assembly complex state F (multibody refinement for body domain of 30S ribosome) 7BOF ; 2.92 ; Bacterial 30S ribosomal subunit assembly complex state I (body domain) 7AF5 ; 2.96 ; Bacterial 30S ribosomal subunit assembly complex state I (head domain) 7BOD ; 2.88 ; Bacterial 30S ribosomal subunit assembly complex state M (body domain) 7BOE ; 2.9 ; Bacterial 30S ribosomal subunit assembly complex state M (Consensus refinement) 7AF3 ; 2.82 ; Bacterial 30S ribosomal subunit assembly complex state M (head domain) 6PVK ; 3.4 ; Bacterial 45SRbgA ribosomal particle class A 6PPF ; 3.4 ; Bacterial 45SRbgA ribosomal particle class B 8A1H ; 1.65 ; Bacterial 6-4 photolyase from Vibrio cholerase 1L7V ; 3.2 ; Bacterial ABC Transporter Involved in B12 Uptake 2WUS ; 2.9 ; Bacterial actin MreB assembles in complex with cell shape protein RodZ 5U5O ; 1.15 ; Bacterial adhesin from Mobiluncus mulieris containing intramolecular disulfide, isopeptide, and ester bond cross-links (space group P1) 5U6F ; 1.5 ; Bacterial adhesin from Mobiluncus mulieris containing intramolecular disulfide, isopeptide, and ester bond cross-links (space group P21) 3TEG ; 2.2044 ; Bacterial and Eukaryotic Phenylalanyl-tRNA Synthetases Catalyze Misaminoacylation of tRNAPhe with 3,4-Dihydroxy-L-Phenylalanine (L-Dopa) 4P07 ; 2.59 ; Bacterial aryl sulfotransferase (ASST) soaked with human urine 4P06 ; 2.1 ; Bacterial arylsulfate sulfotransferase (ASST) H436N mutant with 4-methylumbelliferyl sulfate (MUS) in the active site 4P05 ; 2.05 ; Bacterial arylsulfate sulfotransferase (ASST) H436N mutant with 4-nitrophenyl sulfate (PNS) in the active site 6F2G ; 2.92 ; Bacterial asc transporter crystal structure in open to in conformation 6F2W ; 3.4 ; Bacterial asc transporter crystal structure in open to in conformation 6M1T ; 1.9 ; Bacterial beta class Sphingomonas chungbukensis Glutathione S-transferase 6HQ6 ; 2.05 ; Bacterial beta-1,3-oligosaccharide phosphorylase from GH149 6HQ8 ; 2.25 ; Bacterial beta-1,3-oligosaccharide phosphorylase from GH149 with laminarihexaose bound at a surface site 5FJS ; 2.6 ; Bacterial beta-glucosidase reveals the structural and functional basis of genetic defects in human glucocerebrosidase 2 (GBA2) 7L2Z ; 3.4 ; Bacterial cellulose synthase BcsB hexamer 7LBY ; 4.2 ; Bacterial cellulose synthase BcsB with polyalanine BcsA model 5EIY ; 2.95 ; Bacterial cellulose synthase bound to a substrate analogue 4P00 ; 3.2 ; Bacterial Cellulose Synthase in complex with cyclic-di-GMP and UDP 6TZK ; 1.852 ; Bacterial cellulose synthase outermembrane channel BcsC with terminal TPR repeat 5EJZ ; 2.94 ; Bacterial Cellulose Synthase Product-Bound State 7SHH ; 1.9 ; Bacterial cereblon homologue in complex with (R)-3-(4-methoxyphenyl)piperidine-2,6-dione 4D06 ; 2.0 ; Bacterial chalcone isomerase complexed with naringenin 8B7U ; 2.8 ; Bacterial chalcone isomerase H33A with taxifolin 8B7Z ; 3.0 ; Bacterial chalcone isomerase H33A with taxifolin 3ZPH ; 2.8 ; Bacterial chalcone isomerase in closed conformation from Eubacterium ramulus at 2.8 A resolution 4C9S ; 1.8 ; BACTERIAL CHALCONE ISOMERASE IN open CONFORMATION FROM EUBACTERIUM RAMULUS AT 1.8 A RESOLUTION 4C9T ; 1.98 ; BACTERIAL CHALCONE ISOMERASE IN open CONFORMATION FROM EUBACTERIUM RAMULUS AT 2.0 A RESOLUTION, SelenoMet derivative 8B7R ; 2.15 ; Bacterial chalcone isomerase with taxifolin chalcone 1QBB ; 2.0 ; BACTERIAL CHITOBIASE COMPLEXED WITH CHITOBIOSE (DINAG) 1QBA ; 1.85 ; BACTERIAL CHITOBIASE, GLYCOSYL HYDROLASE FAMILY 20 1JU4 ; 1.63 ; BACTERIAL COCAINE ESTERASE COMPLEX WITH PRODUCT 1JU3 ; 1.58 ; BACTERIAL COCAINE ESTERASE COMPLEX WITH TRANSITION STATE ANALOG 1E9R ; 2.4 ; Bacterial conjugative coupling protein TrwBdeltaN70. Trigonal form in complex with sulphate. 1E9S ; 2.5 ; Bacterial conjugative coupling protein TrwBdeltaN70. Unbound monoclinic form. 6KGZ ; 2.3 ; bacterial cystathionine gamma-lyase MccB of Staphylococcus aureus 6KHQ ; 2.3 ; bacterial cystathionine gamma-lyase MccB of Staphylococcus aureus with cofactor PLP 1RA5 ; 1.4 ; Bacterial cytosine deaminase D314A mutant bound to 5-fluoro-4-(S)-hydroxyl-3,4-dihydropyrimidine. 1R9Y ; 1.57 ; Bacterial cytosine deaminase D314A mutant. 1RA0 ; 1.12 ; Bacterial cytosine deaminase D314G mutant bound to 5-fluoro-4-(S)-hydroxy-3,4-dihydropyrimidine. 1R9X ; 1.58 ; Bacterial cytosine deaminase D314G mutant. 1RAK ; 1.32 ; Bacterial cytosine deaminase D314S mutant bound to 5-fluoro-4-(S)-hydroxyl-3,4-dihydropyrimidine. 1R9Z ; 1.32 ; Bacterial cytosine deaminase D314S mutant. 3G77 ; 1.8 ; Bacterial cytosine deaminase V152A/F316C/D317G mutant 1VHB ; 1.83 ; BACTERIAL DIMERIC HEMOGLOBIN FROM VITREOSCILLA STERCORARIA 7Y4F ; 1.918 ; bacterial DPP4 2J69 ; 3.0 ; Bacterial dynamin-like protein BDLP 2J68 ; 3.1 ; Bacterial dynamin-like protein BDLP, GDP bound 2W6D ; 9.0 ; BACTERIAL DYNAMIN-LIKE PROTEIN LIPID TUBE BOUND 4LRJ ; 1.619 ; Bacterial Effector NleH1 Kinase Domain with AMPPNP and Mg2+ 4LRK ; 2.274 ; Bacterial Effector NleH2 Kinase Domain 2VQ7 ; 2.6 ; Bacterial flavin-containing monooxygenase in complex with NADP: native data 2VQB ; 2.8 ; Bacterial flavin-containing monooxygenase in complex with NADP: soaking in aerated solution 5Z9B ; 2.1 ; Bacterial GyrB ATPase domain in complex with (3,4-dichlorophenyl)hydrazine 5Z4H ; 2.0 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z4O ; 1.73 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9E ; 1.8 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9F ; 1.76 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9L ; 1.6 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9M ; 2.74 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9P ; 1.45 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 5Z9Q ; 1.8 ; Bacterial GyrB ATPase domain in complex with a chemical fragment 1LZL ; 1.3 ; Bacterial Heroin Esterase 1LZK ; 1.45 ; BACTERIAL HEROIN ESTERASE COMPLEX WITH TRANSITION STATE ANALOG DIMETHYLARSENIC ACID 7QBJ ; 2.27 ; bacterial IMPDH chimera 7QDX ; 2.9 ; bacterial IMPDH chimera 7QEM ; 3.09 ; bacterial IMPDH chimera 5HE8 ; 2.6 ; Bacterial initiation protein 5HE9 ; 1.9 ; Bacterial initiation protein in complex with Phage inhibitor protein 1LUC ; 1.5 ; BACTERIAL LUCIFERASE 1XKJ ; 2.5 ; BACTERIAL LUCIFERASE BETA2 HOMODIMER 6RYO ; 1.924 ; Bacterial membrane enzyme structure by the in meso method at 1.9 A resolution 6RYP ; 2.3 ; Bacterial membrane enzyme structure by the in meso method at 2.3 A resolution 7K41 ; 2.0 ; Bacterial O-GlcNAcase (OGA) with compound 3RCE ; 3.4 ; Bacterial oligosaccharyltransferase PglB 6GXC ; 3.401 ; Bacterial oligosaccharyltransferase PglB in complex with an inhibitory peptide and a reactive lipid-linked oligosaccharide analog 4FPP ; 2.2 ; Bacterial phosphotransferase 4HBH ; 2.93 ; Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides with ILE M265 replaced with ASN 4HBJ ; 2.74 ; Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides with ILE M265 replaced with GLN 4H9L ; 2.77 ; Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides with ILE M265 replaced with SER 4H99 ; 2.97 ; Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides with ILE M265 replaced with THR 4Y25 ; 2.821 ; Bacterial polysaccharide outer membrane secretin 7E5C ; 2.22 ; Bacterial prolidase mutant D45W/L225Y/H226L/H343I 6NAK ; 3.14 ; BACTERIAL PROTEIN COMPLEX TM BDE complex 6A7H ; 2.301 ; Bacterial protein toxins 1GYZ ; ; Bacterial ribosomal protein L20 from Aquifex aeolicus 1PED ; 2.15 ; BACTERIAL SECONDARY ALCOHOL DEHYDROGENASE (APO-FORM) 4LTO ; 3.46 ; Bacterial sodium channel in high calcium, I222 space group 4LTP ; 3.8 ; Bacterial sodium channel in high calcium, I222 space group, crystal 2 4LTQ ; 5.5 ; Bacterial sodium channel in low calcium, P42 space group 5HJ8 ; 3.7 ; Bacterial sodium channel neck 3G mutant 5HK6 ; 5.5 ; Bacterial sodium channel neck 3G mutant, SAD 5HKD ; 3.8 ; Bacterial sodium channel neck 7G mutant 5IWN ; 3.75 ; Bacterial sodium channel pore domain, high bromide 5IWO ; 3.33 ; Bacterial sodium channel pore domain, low bromide 5HK7 ; 2.95 ; Bacterial sodium channel pore, 2.95 Angstrom resolution 4LTR ; 5.8 ; Bacterial sodium channel, His245Gly mutant, I222 space group 8HY8 ; 2.568 ; Bacterial STING from Epilithonimonas lactis 8HWJ ; 2.553 ; Bacterial STING from Epilithonimonas lactis in complex with 3'3'-c-di-AMP 8HWI ; 2.73 ; Bacterial STING from Larkinella arboricola in complex with 3'3'-c-di-GMP 8HYN ; 2.089 ; Bacterial STING from Riemerella anatipestifer 8HY9 ; 1.462 ; Bacterial STING from Riemerella anatipestifer in complex with 3'3'-c-di-GMP 7EBD ; 2.25 ; Bacterial STING in complex with c-di-GMP 7EBL ; 2.17 ; Bacterial STING in complex with c-di-GMP 8Q3N ; 2.63 ; Bacterial transcription termination factor Rho + ADP 8Q3O ; 3.0 ; Bacterial transcription termination factor Rho + pppGpp 8Q3P ; 3.5 ; Bacterial transcription termination factor Rho G150D mutant 8Q3Q ; 3.3 ; Bacterial transcription termination factor Rho G152D mutant 4B3X ; 1.95 ; Bacterial translation initiation factor IF2 (1-363), apo form 4B43 ; 1.937 ; Bacterial translation initiation factor IF2 (1-363), apo form, double mutant K86L H130A 4B47 ; 2.301 ; Bacterial translation initiation factor IF2 (1-363), complex with GDP at pH6.5 4B44 ; 2.7 ; Bacterial translation initiation factor IF2 (1-363), complex with GDP at pH8.0 4B48 ; 2.8 ; Bacterial translation initiation factor IF2 (1-363), complex with GTP 4KGM ; 2.361 ; Bacterial tRNA(HIS) Guanylyltransferase (Thg1)-Like Protein in complex with ATP 4KGK ; 2.95 ; Bacterial tRNA(HIS) Guanylyltransferase (Thg1)-Like Protein in complex with GTP 1NBC ; 1.75 ; BACTERIAL TYPE 3A CELLULOSE-BINDING DOMAIN 4RP9 ; 1.651 ; Bacterial vitamin C transporter UlaA/SgaT in C2 form 4RP8 ; 2.359 ; Bacterial vitamin C transporter UlaA/SgaT in P21 form 4JNW ; 2.06 ; Bacterially expressed Titin Kinase 1MPA ; 2.6 ; BACTERICIDAL ANTIBODY AGAINST NEISSERIA MENINGITIDIS 2MPA ; 2.6 ; BACTERICIDAL ANTIBODY AGAINST NEISSERIA MENINGITIDIS 6D41 ; 1.9 ; Bacteriodes uniformis beta-glucuronidase 1 bound to D-glucaro-1,5-lactone 4AM2 ; 1.8 ; Bacterioferritin from Blastochloris viridis 4AM4 ; 1.68 ; Bacterioferritin from Blastochloris viridis 4AM5 ; 1.58 ; Bacterioferritin from Blastochloris viridis 5FS4 ; 1.73 ; Bacteriophage AP205 coat protein 6YFI ; 1.248 ; Bacteriophage EMS014 coat protein 6IBG ; 1.95 ; Bacteriophage G20c portal protein crystal structure for construct with intact N-terminus 1GAV ; 3.4 ; BACTERIOPHAGE GA PROTEIN CAPSID 1HJI ; ; BACTERIOPHAGE HK022 NUN-PROTEIN-NUTBOXB-RNA COMPLEX 2FRP ; 7.5 ; Bacteriophage HK97 Expansion Intermediate IV 2FTE ; ; Bacteriophage HK97 Expansion Intermediate IV 2FT1 ; 3.9 ; Bacteriophage HK97 Head II 2FS3 ; 4.2 ; Bacteriophage HK97 K169Y Head I 2FSY ; 3.8 ; Bacteriophage HK97 Pepsin-treated Expansion Intermediate IV 2GP1 ; 5.2 ; Bacteriophage HK97 Prohead II crystal structure 8ELD ; 3.3 ; Bacteriophage HRP29 Icosohedral Reconstruction 8EM6 ; 3.5 ; Bacteriophage HRP29 Procapsid Icosohedral Reconstruction 1RH6 ; 1.7 ; Bacteriophage Lambda Excisionase (Xis)-DNA Complex 1C5E ; 1.1 ; BACTERIOPHAGE LAMBDA HEAD PROTEIN D 3D3D ; 2.6 ; Bacteriophage lambda lysozyme complexed with a chitohexasaccharide 1D9U ; 2.6 ; BACTERIOPHAGE LAMBDA LYSOZYME COMPLEXED WITH A CHITOHEXASACHARIDE 7SJ5 ; 2.695 ; Bacteriophage lambda major capsid protein mutant - W308A 1QFQ ; ; Bacteriophage Lambda N-protein-NutboxB-RNA Complex 7UJL ; 3.3 ; Bacteriophage Lambda Red-Beta N-terminal domain helical assembly in complex with dsDNA 1G5B ; 2.15 ; BACTERIOPHAGE LAMBDA SER/THR PROTEIN PHOSPHATASE 3C82 ; 1.68 ; Bacteriophage lysozyme T4 lysozyme mutant K85A/R96H 1AQ3 ; 2.8 ; BACTERIOPHAGE MS2 CAPSID PROTEIN/RNA COMPLEX 1BCO ; 2.4 ; BACTERIOPHAGE MU TRANSPOSASE CORE DOMAIN 1BCM ; 2.8 ; BACTERIOPHAGE MU TRANSPOSASE CORE DOMAIN WITH 2 MONOMERS PER ASYMMETRIC UNIT 6DT7 ; 2.5 ; Bacteriophage N4 RNA polymerase II and DNA complex 6DT8 ; 3.2 ; Bacteriophage N4 RNA polymerase II elongation complex 1 6DTA ; 2.694 ; Bacteriophage N4 RNA polymerase II elongation complex 2 5C6K ; 1.9 ; Bacteriophage P2 integrase catalytic domain 5UU5 ; 3.3 ; Bacteriophage P22 mature virion capsid protein 4V4K ; 3.251 ; Bacteriophage P22 Portal Protein bound to middle Tail Factor GP4. This file contain the second biological assembly 2EX3 ; 3.0 ; Bacteriophage phi29 DNA polymerase bound to terminal protein 5LII ; 3.8 ; bacteriophage phi812K1-420 major capsid protein 5LI2 ; 6.2 ; bacteriophage phi812K1-420 tail sheath and tail tube protein in native tail 5LI4 ; 4.2 ; bacteriophage phi812K1-420 tail sheath protein after contraction 7ZZZ ; 4.1 ; Bacteriophage phiCjT23 capsid 8A01 ; 3.2 ; Bacteriophage phiCjT23 major capsid protein trimer type 1 8A02 ; 3.2 ; Bacteriophage phiCjT23 major capsid protein trimer type 2 8A03 ; 3.2 ; Bacteriophage phiCjT23 major capsid protein trimer type 3 8A04 ; 3.2 ; Bacteriophage phiCjT23 major capsid protein trimer type 4 8A05 ; 3.4 ; Bacteriophage phiCjT23 spike protein penton domain 6P20 ; 1.749 ; Bacteriophage phiKZ gp163.1 PAAR repeat protein in complex with a T4 gp5 beta-helix fragment modified to mimic the phiKZ central spike gp164 6P1Z ; 2.099 ; Bacteriophage phiKZ gp163.1 PAAR repeat protein in complex with the C-terminal part of the T4 gp5 beta-helical domain 4JPN ; 2.101 ; Bacteriophage phiX174 H protein residues 143-221 4JPP ; 2.4 ; Bacteriophage phiX174 H protein residues 143-282 7OOK ; 2.23 ; Bacteriophage PRD1 Major Capsid Protein P3 in complex with CPZ 1QBE ; 3.5 ; BACTERIOPHAGE Q BETA CAPSID 7TJE ; 2.799 ; Bacteriophage Q beta capsid protein A38K 7TJD ; 3.5 ; Bacteriophage Q beta capsid protein in T1 symmetry 7TJM ; 3.54 ; Bacteriophage Q beta capsid protein in T3 symmetry 7TJG ; 3.903 ; Bacteriophage Q beta capsid protein, A38K/A40C/D102C in T1 symmetry 4L8H ; 2.4 ; Bacteriophage Qbeta coat protein in complex with RNA operator hairpin 5MNT ; 3.32 ; Bacteriophage Qbeta maturation protein 7BY7 ; ; Bacteriophage SPO1 protein Gp46 6R3A ; 4.0 ; BACTERIOPHAGE SPP1 MATURE CAPSID PROTEIN 6R3B ; 4.5 ; BACTERIOPHAGE SPP1 PROCAPSID-I PROTEIN 6RTL ; 4.2 ; BACTERIOPHAGE SPP1 PROCAPSID-II PROTEIN 7Z4A ; 4.6 ; Bacteriophage SU10 tail and bottom part of the capsid (C1) 7Z4B ; 7.4 ; Bacteriophage SU10 virion (C1) 1N80 ; 2.45 ; Bacteriophage T4 baseplate structural protein gp8 1N8B ; 2.9 ; Bacteriophage T4 baseplate structural protein gp8 8GMO ; 3.9 ; Bacteriophage T4 capsid shell containing 9DE insertions into the gp23* major capsid protein subunits 1YUE ; 2.9 ; Bacteriophage T4 capsid vertex protein gp24 1C1K ; 1.45 ; BACTERIOPHAGE T4 GENE 59 HELICASE ASSEMBLY PROTEIN 1QEX ; 2.3 ; BACTERIOPHAGE T4 GENE PRODUCT 9 (GP9), THE TRIGGER OF TAIL CONTRACTION AND THE LONG TAIL FIBERS CONNECTOR 1S2E ; 2.3 ; BACTERIOPHAGE T4 GENE PRODUCT 9 (GP9), THE TRIGGER OF TAIL CONTRACTION AND THE LONG TAIL FIBERS CONNECTOR, ALTERNATIVE FIT OF THE FIRST 19 RESIDUES 3EZK ; 34.0 ; Bacteriophage T4 gp17 motor assembly based on crystal structures and cryo-EM reconstructions 5VF3 ; 3.3 ; Bacteriophage T4 isometric capsid 256L ; 1.8 ; BACTERIOPHAGE T4 LYSOZYME 1D9W ; 1.91 ; BACTERIOPHAGE T4 LYSOZYME MUTANT 3C83 ; 1.84 ; Bacteriophage T4 lysozyme mutant D89A in wildtype background at room temperature 3CDO ; 1.87 ; Bacteriophage T4 lysozyme mutant R96V in wildtype background at low temperature 8GAO ; 4.1 ; bacteriophage T4 stalled primosome with mutant gp41-E227Q 5MF2 ; 2.0 ; Bacteriophage T5 distal tail protein pb9 co-crystallized with Tb-Xo4 8QKY ; 2.0 ; Bacteriophage T5 dUTPase 8QLD ; 2.1 ; Bacteriophage T5 dUTPase mutant with loop deletion (30-35 aa) 4BG7 ; 1.9 ; Bacteriophage T5 Homolog of the Eukaryotic Transcription Coactivator PC4 Implicated in Recombination-Dependent DNA Replication 2MXZ ; ; Bacteriophage T5 l-alanoyl-d-glutamate peptidase comlpex with Zn2+ (Endo T5-ZN2+) 8P3A ; ; bacteriophage T5 l-alanoyl-d-glutamate peptidase Zn2+/Ca2+ form 3IZG ; 10.9 ; Bacteriophage T7 prohead shell EM-derived atomic model 4RNP ; 3.0 ; BACTERIOPHAGE T7 RNA POLYMERASE, HIGH SALT CRYSTAL FORM, LOW TEMPERATURE DATA, ALPHA-CARBONS ONLY 7EY7 ; 4.3 ; bacteriophage T7 tail complex 5LLW ; 3.0 ; Bacteriophytochrome activated diguanylyl cyclase from Idiomarina species A28L 5LLX ; 2.8 ; Bacteriophytochrome activated diguanylyl cyclase from Idiomarina species A28L with GTP bound 6XVU ; 2.1 ; Bacteriophytochrome response regulator from Deinococcus radiodurans 5IC5 ; 1.9 ; Bacteriophytochrome response regulator RtBRR 1PY6 ; 1.8 ; Bacteriorhodopsin crystallized from bicells 1XJI ; 2.2 ; Bacteriorhodopsin crystallized in bicelles at room temperature 1JV6 ; 2.0 ; BACTERIORHODOPSIN D85S/F219L DOUBLE MUTANT AT 2.00 ANGSTROM RESOLUTION 1C8R ; 1.8 ; BACTERIORHODOPSIN D96N BR STATE AT 2.0 A RESOLUTION 1C8S ; 2.0 ; BACTERIORHODOPSIN D96N LATE M STATE INTERMEDIATE 4X32 ; 1.9 ; Bacteriorhodopsin ground state structure collected in cryo conditions from crystals obtained in LCP with PEG as a precipitant. 5J7A ; 2.3 ; Bacteriorhodopsin ground state structure obtained with Serial Femtosecond Crystallography 1M0K ; 1.43 ; BACTERIORHODOPSIN K INTERMEDIATE AT 1.43 A RESOLUTION 1O0A ; 1.62 ; BACTERIORHODOPSIN L INTERMEDIATE AT 1.62 A RESOLUTION 1M0M ; 1.43 ; BACTERIORHODOPSIN M1 INTERMEDIATE AT 1.43 A RESOLUTION 1P8H ; 1.52 ; BACTERIORHODOPSIN M1 INTERMEDIATE PRODUCED AT ROOM TEMPERATURE 2WJL ; 2.15 ; Bacteriorhodopsin mutant E194D 2WJK ; 2.3 ; Bacteriorhodopsin mutant E204D 1P8U ; 1.62 ; BACTERIORHODOPSIN N' INTERMEDIATE AT 1.62 A RESOLUTION 1JV7 ; 2.25 ; BACTERIORHODOPSIN O-LIKE INTERMEDIATE STATE OF THE D85S MUTANT AT 2.25 ANGSTROM RESOLUTION 6GA4 ; 1.8 ; Bacteriorhodopsin, 1 ps state, real-space refined against 15% extrapolated map 6GA6 ; 1.8 ; Bacteriorhodopsin, 10 ps state, real-space refined against 10% extrapolated map 6GA7 ; 1.8 ; BACTERIORHODOPSIN, 240FS STATE, REAL-SPACE REFINED AGAINST 10% EXTRAPOLATED MAP 6GA5 ; 1.9 ; Bacteriorhodopsin, 3 ps state, REAL-SPACE REFINEMED AGAINST 10% EXTRAPOLATED MAP 6GA3 ; 2.1 ; Bacteriorhodopsin, 33 ms state, ensemble refinement 6GA8 ; 1.8 ; BACTERIORHODOPSIN, 330 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GA9 ; 1.8 ; BACTERIORHODOPSIN, 390 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAA ; 1.8 ; BACTERIORHODOPSIN, 430 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAB ; 1.8 ; BACTERIORHODOPSIN, 460 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAC ; 1.8 ; BACTERIORHODOPSIN, 490 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAD ; 1.8 ; BACTERIORHODOPSIN, 530 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAE ; 1.8 ; BACTERIORHODOPSIN, 560 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAF ; 1.8 ; BACTERIORHODOPSIN, 590 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAG ; 1.8 ; BACTERIORHODOPSIN, 630 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAH ; 1.8 ; BACTERIORHODOPSIN, 680 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GAI ; 1.8 ; BACTERIORHODOPSIN, 740 FS STATE, REAL-SPACE REFINED AGAINST 15% EXTRAPOLATED STRUCTURE FACTORS 6GA1 ; 1.7 ; Bacteriorhodopsin, dark state, cell 1 6GA2 ; 1.8 ; Bacteriorhodopsin, dark state, cell 2 6RMK ; 1.8 ; Bacteriorhodopsin, dark state, cell 2, refined using the same protocol as sub-ps time delays 2NTW ; 1.53 ; Bacteriorhodopsin, wild type, after illumination to produce the L intermediate 2NTU ; 1.53 ; Bacteriorhodopsin, wild type, before illumination 1F50 ; 1.7 ; BACTERIORHODOPSIN-BR STATE OF THE E204Q MUTANT AT 1.7 ANGSTROM RESOLUTION 1F4Z ; 1.8 ; BACTERIORHODOPSIN-M PHOTOINTERMEDIATE STATE OF THE E204Q MUTANT AT 1.8 ANGSTROM RESOLUTION 1BRX ; 2.3 ; BACTERIORHODOPSIN/LIPID COMPLEX 1M0L ; 1.47 ; BACTERIORHODOPSIN/LIPID COMPLEX AT 1.47 A RESOLUTION 1C3W ; 1.55 ; BACTERIORHODOPSIN/LIPID COMPLEX AT 1.55 A RESOLUTION 2I1X ; 2.0 ; Bacteriorhodopsin/lipid complex, D96A mutant 2I20 ; 2.08 ; Bacteriorhodopsin/lipid complex, M state of D96A mutant 2I21 ; 1.84 ; Bacteriorhodopsin/lipid complex, T46V mutant 2Z55 ; 2.5 ; Bacterioruberin in the trimeric structure of archaerhodopsin-2 8H3X ; 1.66 ; Bacteroide Fragilis Toxin in complex with nanobody 282 8H3Y ; 2.25 ; Bacteroide Fragilis Toxin in complex with nanobody 327 6ED1 ; 2.9 ; Bacteroides dorei Beta-glucuronidase 8DEB ; 1.94 ; Bacteroides fragilis carboxyspermidine dehydrogenase 7YW0 ; 1.98 ; Bacteroides fragilis Hcp5 6NE9 ; 1.738 ; Bacteroides intestinalis acetyl xylan esterase (BACINT_01039) 6MOT ; 1.71 ; Bacteroides intestinalis feruloyl esterase, Bacint_01033 6MOU ; 2.24 ; Bacteroides intestinalis feruloyl esterase, Bacint_01033 6D8K ; 2.65 ; Bacteroides multiple species beta-glucuronidase 8G0K ; 2.2 ; Bacteroides multispecies type VI secretion system Ntox15 domain effector and immunity Tde1/Tdi1 3ZMR ; 1.43 ; Bacteroides ovatus GH5 xyloglucanase in complex with a XXXG heptasaccharide 6DHT ; 1.42 ; Bacteroides ovatus GH9 Bacova_02649 5NBO ; 1.8 ; Bacteroides ovatus mixed linkage glucan PUL (MLGUL) GH16 5NBP ; 1.8 ; Bacteroides ovatus mixed linkage glucan PUL (MLGUL) GH16 in complex with G4G4G3G Product 6E60 ; 1.5 ; Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-A 6E61 ; 2.51 ; Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-A in complex with mixed-linkage heptasaccharide 6DMF ; 2.4 ; Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-A with cellohexaose 6E57 ; 2.71 ; Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-B in complex with mixed-linkage heptasaccharide 6E9B ; 3.15 ; Bacteroides ovatus mixed-linkage glucan utilization locus (MLGUL) SGBP-B in complex with mixed-linkage heptasaccharide 5JOU ; 1.5 ; Bacteroides ovatus Xyloglucan PUL GH31 5JOV ; 1.5 ; Bacteroides ovatus Xyloglucan PUL GH31 with bound 5FIdoF 5JP0 ; 2.3 ; Bacteroides ovatus Xyloglucan PUL GH3B with bound glucose 5JOW ; 1.6 ; Bacteroides ovatus Xyloglucan PUL GH43A 5JOX ; 1.8 ; Bacteroides ovatus Xyloglucan PUL GH43A in complex with AraDNJ 5JOY ; 1.9 ; Bacteroides ovatus Xyloglucan PUL GH43A in complex with AraLOG 5JOZ ; 2.28 ; Bacteroides ovatus Xyloglucan PUL GH43B 6T5O ; 1.91 ; Bacteroides salyersiae GH164 beta-mannosidase 6T75 ; 2.55 ; Bacteroides salyersiae GH164 beta-mannosidase 2-deoxy-2-fluoro-beta-D-mannosyl enzyme intermediate 6T7G ; 1.8 ; Bacteroides salyersiae GH164 beta-mannosidase in complex with mannoimidazole 6T6G ; 2.06 ; Bacteroides salyersiae GH164 beta-mannosidase in complex with noeuromycin 8FZY ; 2.9 ; Bacteroides spp. Ntox15 domain type VI secretion system effector Tde1 8BMX ; 3.72 ; Bacteroides thetaiotaomicron B12 TonB dependent transporter in complex with a surface lipoprotein 7XRT ; 2.007 ; Bacteroides thetaiotaomicron ferulic acid esterase (BT_4077) 7XRV ; 2.713 ; Bacteroides thetaiotaomicron ferulic acid esterase - S150A (BT_4077-S150A) complex with trans-methylferulate 2JIW ; 1.95 ; Bacteroides thetaiotaomicron GH84 O-GlcNAcase in complex with 2- Acetylamino-2-deoxy-1-epivalienamine 2J47 ; 1.98 ; Bacteroides thetaiotaomicron GH84 O-GlcNAcase in complex with a imidazole-pugnac hybrid inhibitor 2J4G ; 2.25 ; Bacteroides thetaiotaomicron GH84 O-GlcNAcase in complex with n-butyl- thiazoline inhibitor 2CHO ; 1.85 ; Bacteroides thetaiotaomicron hexosaminidase with O-GlcNAcase activity 2CHN ; 1.95 ; Bacteroides thetaiotaomicron hexosaminidase with O-GlcNAcase activity- NAG-thiazoline complex 7OP6 ; 2.05 ; Bacteroides thetaiotaomicron mannosidase GH2 with beta-manno-configured cyclophellitol aziridine 7OP7 ; 1.85 ; Bacteroides thetaiotaomicron mannosidase GH2 with beta-manno-configured N-alkyl cyclophellitol aziridine 5CU7 ; 1.73 ; Bacteroides Thetaiotaomicron Multiple Inositol Polyphosphate Phosphatase A324D Mutant 8BMY ; 1.72 ; Bacteroides thetaiotaomicron surface lipoprotein bound to cyanocobalamin 8BMZ ; 2.3 ; Bacteroides thetaiotaomicron surface lipoprotein BT1954 bound to adenosylcobalamin 8BN0 ; 1.33 ; Bacteroides thetaiotaomicron surface protein BT1954 bound to 4C1R ; 2.1 ; Bacteroides thetaiotaomicron VPI-5482 mannosyl-6-phosphatase Bt3783 7DWC ; 1.804 ; Bacteroides thetaiotaomicron VPI5482 BTAxe1 6D6W ; 1.8 ; Bacteroides uniformis beta-glucuronidase 1 bound to glucuronate 6D7F ; 2.4 ; Bacteroides uniformis beta-glucuronidase 1 bound to thiophenyl-beta-D-glucuronide 6D89 ; 2.0 ; Bacteroides uniformis beta-glucuronidase 1 with N-terminal loop deletion 6NZG ; 2.43 ; Bacteroides uniformis beta-glucuronidase 2 covalently bound to cyclophellitol-6-carboxylate aziridine 6PAL ; 1.818 ; Bacteroides uniformis endo-laminarinase BuGH158 from the beta(1,3)-glucan utilization locus 6D50 ; 2.5 ; Bacteroides uniforms beta-glucuronidase 2 bound to D-glucaro-1,5-lactone 6DK2 ; 2.02 ; Bacteroidetes AC2a SusD-like 6RIA ; 3.5 ; Bactofilin from Thermus thermophilus, F105R mutant crystal structure 3SA2 ; 2.25 ; Bacuills anthracis Dihydrofolate Reductase bound propargyl-linked TMP analog, UCP1014 3SA1 ; 2.5 ; Bacuills anthracis Dihydrofolate Reductase bound propargyl-linked TMP analog, UCP1021 3SAI ; 2.25 ; Bacuills anthracis Dihydrofolate Reductase bound to propargyl-linked TMP analog, UCP1015 6Y48 ; 2.087 ; Baeyer-Villiger monooxygenase BVMOAFL210 from Aspergillus flavus in complex with NADP 5J7X ; 1.9 ; Baeyer-Villiger monooxygenase BVMOAFL838 from Aspergillus flavus 7Z21 ; 1.629 ; BAF A12T bound to the lamin A/C Ig-fold domain 5Y9J ; 2.05 ; BAFF in complex with belimumab 1I6Z ; ; BAG DOMAIN OF BAG1 COCHAPERONE 4U2V ; 2.3 ; Bak BH3-in-Groove dimer (GFP) 5VWV ; 1.897 ; Bak core latch dimer in complex with Bim-BH3 - Cubic 5VWX ; 2.489 ; Bak core latch dimer in complex with Bim-h0-h3Glt 5VWY ; 1.555 ; Bak core latch dimer in complex with Bim-h3Pc-RT 5VWW ; 2.802 ; Bak core latch dimer in complex with Bim-RT - Tetragonal 4U2U ; 2.9 ; Bak domain swapped dimer induced by BidBH3 with CHAPS 5VX0 ; 1.599 ; Bak in complex with Bim-h3Glg 5VWZ ; 1.622 ; Bak in complex with Bim-h3Pc 5VX1 ; 1.224 ; Bak L100A 3QBR ; 2.601 ; BakBH3 in complex with sjA 1HHU ; 0.89 ; Balhimycin in complex with D-Ala-D-Ala 1GO6 ; 0.98 ; Balhimycin in complex with Lys-D-ala-D-ala 7YE4 ; 3.4 ; BAM-EspP complex structure with BamA-G431C and G781C/EspP-N1293C and A1043C mutations in nanodisc 8BNZ ; 3.5 ; BAM-EspP complex structure with BamA-G431C/EspP-N1293C mutations in nanodisc 7YE6 ; 3.4 ; BAM-EspP complex structure with BamA-N427C/EspP-R1297C mutations in nanodisc 8BO2 ; 3.1 ; BAM-EspP complex structure with BamA-S425C/EspP-S1299C mutations in nanodisc 5OR1 ; 2.92 ; BamA structure of Salmonella enterica 7TTC ; 3.6 ; BamABCDE bound to substrate EspP 7TSZ ; 4.5 ; BamABCDE bound to substrate EspP class 1 7TT0 ; 4.3 ; BamABCDE bound to substrate EspP class 2 7TT2 ; 4.2 ; BamABCDE bound to substrate EspP class 3 7TT1 ; 4.3 ; BamABCDE bound to substrate EspP class 4 7TT3 ; 4.3 ; BamABCDE bound to substrate EspP class 5 7TT4 ; 4.2 ; BamABCDE bound to substrate EspP class 6 7TT7 ; 4.8 ; BamABCDE bound to substrate EspP in the barrelized EspP/continuous open BamA state 7TT6 ; 4.3 ; BamABCDE bound to substrate EspP in the intermediate-open EspP state 7TT5 ; 4.3 ; BamABCDE bound to substrate EspP in the open-sheet EspP state 5D0O ; 2.9 ; BamABCDE complex, outer membrane beta barrel assembly machinery entire complex 6SMX ; 6.65 ; BamABCDE in MSP1D1 nanodisc 6SN0 ; 10.8 ; BamABCDE in MSP1D1 nanodisc ensemble 0-1 6SN2 ; 9.5 ; BamABCDE in MSP1D1 nanodisc ensemble 0-2 6SN3 ; 8.4 ; BamABCDE in MSP1D1 nanodisc ensemble 0-3 6SN4 ; 9.5 ; BamABCDE in MSP1D1 nanodisc ensemble 0-4 6SN5 ; 9.8 ; BamABCDE in MSP1D1 nanodisc ensemble 0-5 6SN7 ; 8.9 ; BamABCDE in MSP1D1 nanodisc ensemble 0-6 6SN8 ; 8.4 ; BamABCDE in MSP1D1 nanodisc ensemble 0-7 6SN9 ; 9.8 ; BamABCDE in MSP1D1 nanodisc ensemble 0-8 6SOA ; 10.8 ; BamABCDE in MSP1D1 nanodisc ensemble 0-9 6SO7 ; 10.5 ; BamABCDE in MSP1D1 nanodisc ensemble 1-2 6SO8 ; 9.8 ; BamABCDE in MSP1D1 nanodisc ensemble 1-3 6SOB ; 8.5 ; BamABCDE in MSP1D1 nanodisc ensemble 1-4 6SOC ; 9.0 ; BamABCDE in MSP1D1 nanodisc ensemble 1-5 6SOG ; 8.3 ; BamABCDE in MSP1D1 nanodisc ensemble 1-6 6SOH ; 9.5 ; BamABCDE in MSP1D1 nanodisc ensemble 1-7 6SOJ ; 10.4 ; BamABCDE in MSP1D1 nanodisc ensemble 1-8 5D0Q ; 3.5 ; BamACDE complex, outer membrane beta-barrel assembly machinery (BAM) complex 3ZZV ; 1.68 ; BambL complexed with Htype2 tetrasaccharide 5MTI ; ; Bamb_5917 Acyl-Carrier Protein 6TDM ; ; Bam_5920cDD 5919nDD docking domains 6TDD ; ; Bam_5924 docking domain 6TDN ; ; Bam_5925cDD 5924nDD docking domains 3MLA ; 1.75 ; BaNadD in complex with inhibitor 1_02 3MLB ; 1.8 ; BaNadD in complex with inhibitor 1_02_1 8HXK ; 3.8 ; BANAL-20-236 S1 in complex with R. Affinis ACE2 8I3W ; 2.8 ; BANAL-20-236 Spike trimer 8HXJ ; 3.5 ; BANAL-20-52 Spike trimer 2BMY ; 2.5 ; Banana Lectin 2BN0 ; 2.8 ; Banana Lectin bound to Laminaribiose 2BMZ ; 2.4 ; Banana Lectin bound to Xyl-b1,3 Man-a-O-Methyl (XM) 7UZ3 ; 2.35 ; Band 3-Glycophorin A complex, outward facing 7V07 ; 2.8 ; Band 3-I-TM local refinement from erythrocyte ankyrin-1 complex consensus reconstruction 2K56 ; ; Bank Vole Prion Protein (121-231) 4CUO ; 1.67 ; Banyan peroxidase with glycosylation 8SVF ; 3.2 ; BAP1/ASXL1 bound to the H2AK119Ub Nucleosome 8CEG ; 2.03 ; BAR domain protein FAM92A1 essential for mitochondrial membrane remodeling 1C40 ; 2.3 ; BAR-HEADED GOOSE HEMOGLOBIN (AQUOMET FORM) 1A4F ; 2.0 ; BAR-HEADED GOOSE HEMOGLOBIN (OXY FORM) 3KCH ; 1.94 ; Baranase crosslinked by glutaraldehyde 6UC4 ; 9.2 ; Barbed end side of a cofilactin cluster 4YD8 ; 1.8 ; Bardet-Biedl Syndrome 9 Protein (aa1-407), Homo sapiens 6VAU ; 3.5 ; Bare actin filament from a partially cofilin-decorated sample 3GOM ; 2.3 ; Barium bound to the Holliday junction sequence d(TCGGCGCCGA)4 3GOJ ; 2.6 ; Barium bound to the Holliday sequence d(CCGGCGCCGG)4 3VG5 ; 2.0 ; Barium derivative of human LFABP 3VG6 ; 2.22 ; Barium derivative of human LFABP 3FQB ; 1.67 ; Barium interactions with Z-DNA 6CMC ; 3.671 ; Barium sites in the structure of a desensitized acid sensing ion channel 5WKX ; 4.034 ; Barium sites in the structure of a resting acid sensing ion channel 1AQ0 ; 2.0 ; BARLEY 1,3-1,4-BETA-GLUCANASE IN MONOCLINIC SPACE GROUP 2VDG ; 1.92 ; Barley Aldose Reductase 1 complex with butanol 3BSH ; 3.0 ; Barley alpha-amylase isozyme 1 (AMY1) double mutant Y105A/Y380A in complex with inhibitor acarbose 3BSG ; 1.95 ; Barley alpha-amylase isozyme 1 (AMY1) H395A mutant 1BG9 ; 2.8 ; BARLEY ALPHA-AMYLASE WITH SUBSTRATE ANALOGUE ACARBOSE 2Y5E ; 2.49 ; BARLEY LIMIT DEXTRINASE IN COMPLEX WITH ALPHA-CYCLODEXTRIN 2Y4S ; 2.1 ; BARLEY LIMIT DEXTRINASE IN COMPLEX WITH BETA-CYCLODEXTRIN 1LIP ; ; BARLEY LIPID TRANSFER PROTEIN (NMR, 4 STRUCTURES) 2WHD ; 2.6 ; Barley NADPH-dependent thioredoxin reductase 2 7EW6 ; 3.4 ; Barley photosystem I-LHCI-Lhca5 supercomplex 7EWK ; 3.88 ; Barley photosystem I-LHCI-Lhca6 supercomplex 1BNR ; ; BARNASE 1BNE ; 2.1 ; BARNASE A43C/S80C DISULFIDE MUTANT 2KF6 ; ; Barnase bound to d(CGAC) high pressure 2KF5 ; ; Barnase bound to d(CGAC), low pressure 2F4Y ; 2.15 ; Barnase cross-linked with glutaraldehyde 2F56 ; 1.955 ; Barnase cross-linked with glutaraldehyde soaked in 6M urea 2KF4 ; ; Barnase high pressure structure 1BRI ; 1.9 ; BARNASE MUTANT WITH ILE 76 REPLACED BY ALA 1BRJ ; 2.0 ; BARNASE MUTANT WITH ILE 88 REPLACED BY ALA 1BRK ; 2.0 ; BARNASE MUTANT WITH ILE 96 REPLACED BY ALA 1BRH ; 2.0 ; BARNASE MUTANT WITH LEU 14 REPLACED BY ALA 1BNG ; 2.1 ; BARNASE S85C/H102C DISULFIDE MUTANT 1BNF ; 2.0 ; BARNASE T70C/S92C DISULFIDE MUTANT 1A2P ; 1.5 ; BARNASE WILDTYPE STRUCTURE AT 1.5 ANGSTROMS RESOLUTION 1BNI ; 2.1 ; BARNASE WILDTYPE STRUCTURE AT PH 6.0 1B2X ; 1.8 ; BARNASE WILDTYPE STRUCTURE AT PH 7.5 FROM A CRYO_COOLED CRYSTAL AT 100K 1BNJ ; 2.1 ; BARNASE WILDTYPE STRUCTURE AT PH 9.0 2KF3 ; ; Barnase, low pressure reference NMR structure 6URE ; 1.653 ; Barrier-to-autointegration factor Aqueous: 1 of 14 in MSCS set 6USI ; 1.653 ; Barrier-to-autointegration factor soaked in 1,6-hexanediol: 1 of 14 in MSCS set 6URJ ; 1.653 ; Barrier-to-autointegration factor soaked in Acetone: 1 of 14 in MSCS set 6URR ; 1.8 ; Barrier-to-autointegration factor soaked in Dioxane: 1 of 14 in MSCS set 6UNT ; 1.75 ; Barrier-to-autointegration factor soaked in DMSO: 1 of 14 in MSCS set 6USD ; 1.653 ; Barrier-to-autointegration factor soaked in ethanol: 1 of 14 in MSCS set 6URK ; 1.86 ; Barrier-to-autointegration factor soaked in Glycerol: 1 of 14 in MSCS set 6US1 ; 1.653 ; Barrier-to-autointegration factor soaked in isobutanol: 1 of 14 in MSCS set 6URL ; 1.72 ; Barrier-to-autointegration factor soaked in isopropanol: 1 of 14 in MSCS set 6URZ ; 1.653 ; Barrier-to-autointegration factor soaked in methanol: 1 of 14 in MSCS set 6US0 ; 1.653 ; Barrier-to-autointegration factor soaked in R,S,R-bisfuranol (RSR): 1 of 14 in MSCS set 6US7 ; 1.653 ; Barrier-to-autointegration factor soaked in TMAO: 1 of 14 in MSCS set 6USB ; 1.68 ; Barrier-to-autointegration factor soaked in urea: 1 of 14 in MSCS set 6URN ; 1.68 ; Barrier-to-autointegration factor t-butanol: 1 of 14 in MSCS set 1A19 ; 2.76 ; BARSTAR (FREE), C82A MUTANT 4ZI3 ; 2.0 ; BART-like domain of BARTL1/CCDC104 aa1-133 in complex with Arl3FL bound to GppNHp in P1 21 1 4ZI2 ; 2.2 ; BART-like domain of BARTL1/CCDC104 in complex with Arl3FL bound to GppNHp in P21 21 21 5NH2 ; 2.321 ; Bartonella henselae BepA Fic domain in complex with its antitoxin homologue BiaA 7MPM ; 1.95 ; Bartonella henselae NrnC bound to pAA 7MPO ; 1.95 ; Bartonella henselae NrnC bound to pAp 7MPN ; 1.94 ; Bartonella henselae NrnC bound to pGC 7MPL ; 1.8 ; Bartonella henselae NrnC bound to pGG 7MQC ; 3.64 ; Bartonella henselae NrnC bound to pGG. C1 reconstruction. 7MQB ; 3.25 ; Bartonella henselae NrnC bound to pGG. D4 Symmetry 7MPP ; 2.0 ; Bartonella henselae NrnC cleaving pGG in the presence of Mg2+ 7MPQ ; 2.35 ; Bartonella henselae NrnC cleaving pGG in the presence of Mn2+ 7MQI ; 3.21 ; Bartonella henselae NrnC complexed with pAAAGG in the presence of Ca2+. C1 reconstruction. 7MQH ; 3.1 ; Bartonella henselae NrnC complexed with pAAAGG in the presence of Ca2+. D4 Symmetry. 7MQG ; 3.25 ; Bartonella henselae NrnC complexed with pAAAGG. C1 reconstruction. 7MQF ; 2.88 ; Bartonella henselae NrnC complexed with pAAAGG. D4 symmetry. 7MQE ; 3.69 ; Bartonella henselae NrnC complexed with pAGG. C1 reconstruction. 7MQD ; 3.25 ; Bartonella henselae NrnC complexed with pAGG. D4 symmetry. 3NAZ ; 3.0 ; Basal state form of Yeast Glycogen Synthase 8HMC ; 3.6 ; base module state 1 of Tetrahymena IFT-A 8HMD ; 4.7 ; base module state 2 of Tetrahymena IFT-A 1DNS ; 2.0 ; BASE ONLY BINDING OF SPERMINE IN THE DEEP GROOVE OF THE A-DNA OCTAMER D(GTGTACAC) 5HN2 ; 1.5 ; Base Pairing and Structure Insights into the 5-Formylcytosine in RNA Duplex 5HNJ ; 1.24 ; Base Pairing and Structure Insights into the 5-Formylcytosine in RNA Duplex 5HNQ ; 2.4 ; Base Pairing and Structure Insights into the 5-Formylcytosine in RNA Duplex 4FS2 ; 2.05 ; Base pairing mechanism of N2,3-ethenoguanine with dCTP by human polymerase iota 4FS1 ; 2.5 ; Base pairing mechanism of N2,3-ethenoguanine with dTTP by human polymerase iota 1D40 ; 1.3 ; BASE SPECIFIC BINDING OF COPPER(II) TO Z-DNA: THE 1.3-ANGSTROMS SINGLE CRYSTAL STRUCTURE OF D(M5CGUAM5CG) IN THE PRESENCE OF CUCL2 2N4M ; ; Base-displaced intercalated structure of the N-(2'deoxyguanosin-8-yl)-3-aminobenzanthrone DNA adduct 206D ; 2.5 ; BASE-PAIR OPENING AND SPERMINE BINDING-B-DNA FEATURES DISPLAYED IN THE CRYSTAL STRUCTURE OF A GAL OPERON FRAGMENT: IMPLICATIONS FOR PROTEIN-DNA RECOGNITION 1QP5 ; 2.6 ; BASE-PAIRING SHIFT IN A DODECAMER CONTAINING A (CA)N TRACT 330D ; 2.7 ; BASE-PAIRING SHIFT IN THE MAJOR GROOVE OF (CA)N TRACTS BY B-DNA CRYSTAL STRUCTURES 2AWE ; 2.1 ; Base-Tetrad Swapping Results in Dimerization of RNA Quadruplexes: Implications for Formation of I-Motif RNA Octaplex 7KH1 ; 3.2 ; Baseplate Complex for Myoviridae Phage XM1 8HQZ ; 3.8 ; Baseplate of DT57C bacteriophage in the full state 6TEH ; 3.99 ; Baseplate of native GTA particle computed with C3 symmetry 8TEK ; 3.6 ; Baseplate of Nexin-dynein regulatory complex from Tetrahymena thermophila 1BLA ; ; BASIC FIBROBLAST GROWTH FACTOR (FGF-2) MUTANT WITH CYS 78 REPLACED BY SER AND CYS 96 REPLACED BY SER, NMR 1BLD ; ; BASIC FIBROBLAST GROWTH FACTOR (FGF-2) MUTANT WITH CYS 78 REPLACED BY SER AND CYS 96 REPLACED BY SER, NMR 1BFC ; 2.2 ; BASIC FIBROBLAST GROWTH FACTOR COMPLEXED WITH HEPARIN HEXAMER FRAGMENT 1BFB ; 1.9 ; BASIC FIBROBLAST GROWTH FACTOR COMPLEXED WITH HEPARIN TETRAMER FRAGMENT 9PTI ; 1.22 ; BASIC PANCREATIC TRYPSIN INHIBITOR (MET 52 OXIDIZED) 1B4W ; 2.6 ; BASIC PHOSPHOLIPASE A2 FROM AGKISTRODON HALYS PALLAS-IMPLICATIONS FOR ITS ASSOCIATION AND ANTICOAGULANT ACTIVITIES BY X-RAY CRYSTALLOGRAPHY 1PVP ; 2.35 ; BASIS FOR A SWITCH IN SUBSTRATE SPECIFICITY: CRYSTAL STRUCTURE OF SELECTED VARIANT OF CRE SITE-SPECIFIC RECOMBINASE, ALSHG BOUND TO THE ENGINEERED RECOGNITION SITE LOXM7 1PVQ ; 2.75 ; BASIS FOR A SWITCH IN SUBSTRATE SPECIFICITY: CRYSTAL STRUCTURE OF SELECTED VARIANT OF CRE SITE-SPECIFIC RECOMBINASE, LNSGG BOUND TO THE ENGINEERED RECOGNITION SITE LOXM7 1PVR ; 2.65 ; BASIS FOR A SWITCH IN SUBSTRATE SPECIFICITY: CRYSTAL STRUCTURE OF SELECTED VARIANT OF CRE SITE-SPECIFIC RECOMBINASE, LNSGG BOUND TO THE LOXP (WILDTYPE) RECOGNITION SITE 6RPO ; 2.39 ; bat circovirus without DNA VLP 6MWM ; ; Bat coronavirus HKU4 SUD-C 6T0V ; 3.02 ; Bat Influenza A polymerase elongation complex with incoming UTP analogue (complete polymerase) 6SZV ; 2.5 ; Bat Influenza A polymerase elongation complex with incoming UTP analogue (core + endonuclease only) 6T0N ; 2.54 ; Bat Influenza A polymerase pre-initiation complex 6SZU ; 2.41 ; Bat Influenza A polymerase pre-termination complex with pyrophosphate using 44-mer vRNA template with mutated oligo(U) sequence 6T0U ; 3.12 ; Bat Influenza A polymerase product dissociation complex using 44-mer vRNA template with intact oligo(U) sequence 6T0R ; 2.82 ; Bat Influenza A polymerase product dissociation complex using 44-mer vRNA template with mutated oligo(U) sequence 6T2C ; 3.52 ; Bat Influenza A polymerase recycling complex 6T0S ; 3.04 ; Bat Influenza A polymerase stuttering complex using 44-mer vRNA template with intact oligo(U) sequence 6TW1 ; 2.7 ; Bat Influenza A polymerase termination complex with pyrophosphate using 44-mer vRNA template with mutated oligo(U) sequence 4WSB ; 2.65 ; Bat Influenza A polymerase with bound vRNA promoter 5M3H ; 2.5 ; Bat influenza A/H17N10 polymerase bound to four heptad repeats of serine 5 phosphorylated Pol II CTD 4QZV ; 2.592 ; Bat-derived coronavirus HKU4 uses MERS-CoV receptor human CD26 for cell entry 8PPK ; 2.98 ; Bat-Hp-CoV Nsp1 and eIF1 bound to the human 40S small ribosomal subunit 6WFU ; 3.03 ; BatAAV-10HB - empty particles 6WFT ; 3.03 ; BatAAV-10HB - genome-containing particles 2GZB ; 1.7 ; Bauhinia bauhinioides cruzipain inhibitor (BbCI) 2K7W ; ; BAX Activation is Initiated at a Novel Interaction Site 4BDU ; 2.998 ; Bax BH3-in-Groove dimer (GFP) 4BD6 ; 2.494 ; Bax domain swapped dimer in complex with BaxBH3 4BD2 ; 2.206 ; Bax domain swapped dimer in complex with BidBH3 4BD8 ; 2.22 ; Bax domain swapped dimer induced by BimBH3 with CHAPS 4BD7 ; 2.801 ; Bax domain swapped dimer induced by octylmaltoside 6FOE ; 2.6 ; BaxB01 Fab fragment 5NHY ; 1.72 ; BAY-707 in complex with MTH1 7QZC ; 2.1 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 104 7QYV ; 2.25 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 109 7QYW ; 2.1 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 111 7QZI ; 1.98 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 113 7QWU ; 1.6 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 44 7QWF ; 2.25 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 45 7R0B ; 2.345 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 47 7QWY ; 2.443 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 61 7QX2 ; 1.428 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 63 7QX9 ; 1.5 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 65 7QXL ; 1.15 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 77 7QYE ; 1.65 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 78 7QYO ; 0.983 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 79 7QYT ; 2.6 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 80 7QZ0 ; 2.1 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 83 7QZ4 ; 2.3 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 87 7QYU ; 1.5 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 88 7QZB ; 2.151 ; BAZ2A bromodomain in complex with acetylpyrrole derivative compound 98 7QVU ; 2.4 ; BAZ2A bromodomain in complex with acetylpyrrole derivative fragment 25 7BLC ; 2.3 ; BAZ2A bromodomain in complex with compound UP39 7BLD ; 2.35 ; BAZ2A bromodomain in complex with compound UZH23 7B7G ; 1.428 ; BAZ2A bromodomain in complex with compounds MS04 and B11 7BL9 ; 1.3 ; BAZ2A bromodomain in complex with GSK2801 chemical probe 7BLB ; 2.3 ; BAZ2A bromodomain in complex with GSK4027 chemical probe 7QZT ; 2.183 ; BAZ2A bromodomain in complex with isoquinoline derivative fragment 9 7R01 ; 2.256 ; BAZ2A bromodomain in complex with N-acetylpiperazine derivative fragment 18 7QVT ; 2.6 ; BAZ2A bromodomain in complex with picolinamide derivative fragment 13 7QVV ; 2.601 ; BAZ2A bromodomain in complex with pyridone derivative fragment 36 7BL8 ; 2.5 ; BAZ2A bromodomain in complex with the chemical probe BAZ2-ICR 7BLA ; 1.086 ; BAZ2A bromodomain in complex with TP-238 chemical probe 7B7B ; 1.4 ; BAZ2A bromodomain in complex with triazole compound MS04 7B7I ; 1.15 ; BAZ2A bromodomain in complex with triazole compound MS04-TN02 7B82 ; 1.25 ; BAZ2A bromodomain in complex with triazole compound MS04-TN03 7BC2 ; 2.0 ; BAZ2A bromodomain in complex with triazole compound MS04-TN04 6PSJ ; 1.8 ; Bazedoxifene in Complex with Y537S Estrogen Receptor Alpha Ligand Binding Domain 8P33 ; 2.1 ; BB0238 from Borrelia burgdorferi 8P32 ; 2.15 ; BB0238 from Borrelia burgdorferi, Se-Met data for Leu240Met mutant 1W33 ; 2.7 ; BbCRASP-1 from Borrelia Burgdorferi 6FXE ; 2.4 ; BBE31 from Lyme disease agent Borrelia (Borreliella) burgdorferi playing a vital role in successful colonization of the mammalian host 6FZE ; 2.26 ; BBE31 from Lyme disease agent Borrelia (Borreliella) burgdorferi playing a vital role in successful colonization of the mammalian host (native data) 8D1N ; 1.93 ; bBest2_345 Ca2+-bound open state 6B40 ; 4.3 ; BbRAGL-3'TIR synaptic complex with nicked DNA refined with C2 symmetry 5BKK ; 3.5 ; bbTBA-bound closed MthK channel in nanodisc 6EG7 ; 3.0 ; BbvCI B2 dimer with I3C clusters 6M9G ; 2.35 ; BbvCI B2 dimer with Ta6Br14 clusters 4HQ6 ; 2.7 ; BC domain in the presence of citrate 2XNX ; 3.3 ; BC1 fragment of streptococcal M1 protein in complex with human fibrinogen 5IVO ; 1.8 ; BC2 nanobody 5IVN ; 1.0 ; BC2 nanobody in complex with the BC2 peptide tag 7TCH ; 3.7 ; BceAB E169Q variant ATP-bound conformation 7TCG ; 3.8 ; BceAB nucleotide-free conformation 8G3F ; 3.7 ; BceAB-S nucleotide free BceS state 1 8G3L ; 3.5 ; BceAB-S nucleotide free BceS state 2 8G3A ; 3.4 ; BceAB-S nucleotide free TM state 1 8G3B ; 3.5 ; BceAB-S nucleotide free TM state 2 8G4C ; 3.1 ; BceABS ATPgS high res TM 8G4D ; 3.6 ; BceABS ATPgS tilted BceS 2Y0E ; 1.75 ; BceC and the final step of UGDs reaction 2Y0D ; 2.8 ; BceC mutation Y10K 2Y0C ; 1.75 ; BceC mutation Y10S 6Z0P ; 1.85 ; BceF Tyrosine Kinase Domain 5AGW ; 2.695 ; Bcl-2 alpha beta-1 complex 5AGX ; 2.24 ; Bcl-2 alpha beta-1 LINEAR complex 5VAU ; 1.754 ; Bcl-2 complex with Beclin 1 BH3 domain 5VAX ; 2.0 ; Bcl-2 complex with Beclin 1 BH3 domain 5VAY ; 1.804 ; Bcl-2 complex with Beclin 1 T108D BH3 domain 8U27 ; ; Bcl-2-xL complexed with compound 35 2B48 ; 3.45 ; Bcl-XL 3D Domain Swapped Dimer 4BPK ; 1.756 ; Bcl-xL bound to alpha beta Puma BH3 peptide 5 6DCO ; 2.198 ; Bcl-xL complex with Beclin 1 BH3 domain T108D 6DCN ; 2.444 ; Bcl-xL complex with Beclin 1 BH3 domain T108pThr 6RNU ; 2.4 ; BCL-XL in a complex with a covalent small molecule inhibitor 5VX3 ; 1.945 ; Bcl-xL in complex with Bim-h3Pc-RT 8WLS ; ; Bcl-xL in complex with HBx BH3 delta C peptide 4TUH ; 1.8 ; Bcl-xL in complex with inhibitor (Compound 10) 5FMK ; 1.731 ; Bcl-xL with Bak BH3 complex 5FMJ ; 2.43 ; Bcl-xL with mouse Bak BH3 Q75L complex 5JSN ; 2.1 ; Bcl2-inhibitor complex 6CQ1 ; 1.69921 ; BCL6 BTB domain in complex with 15a 2WRA ; 1.1 ; BclA lectin from Burkholderia cenocepacia complexed with aMan1(aMan1- 6)-3Man trisaccharide 4LVT ; 2.05 ; Bcl_2-Navitoclax (ABT-263) Complex 4MAN ; 2.07 ; Bcl_2-Navitoclax Analog (with Indole) Complex 4LXD ; 1.9 ; Bcl_2-Navitoclax Analog (without Thiophenyl) Complex 6U1Y ; 2.17 ; bcs1 AAA domain 7ZZQ ; 2.6 ; BcsH-BcsD 'beads-on-a-string' filament, local refine 4D3F ; 1.81 ; BcSIRED from Bacillus cereus in complex with NADPH 6TAD ; 1.822 ; Bd0314 DslA E143Q mutant 6TAF ; 1.336 ; Bd0314 DslA E154Q mutant 6TA9 ; 1.361 ; Bd0314 DslA wild-type form 1 6TAB ; 1.26 ; Bd0314 DslA wild-type form 2 5CER ; 2.48 ; Bd0816 Predatory Endopeptidase from Bdellovibrio bacteriovorus in complex with immunity protein Bd3460 3TM8 ; 1.28 ; Bd1817, a HDG""Y""P protein from Bdellovibrio bacteriovorus 3TMB ; 1.7 ; Bd1817, a HDG""Y""P protein from Bdellovibrio bacteriovorus 3TMC ; 1.55 ; Bd1817, a HDG""Y""P protein from Bdellovibrio bacteriovorus 3TMD ; 2.641 ; Bd1817, a HDG""Y""P protein from Bdellovibrio bacteriovorus 7S3P ; 2.89 ; BD2 domain of human BRD3 bound to Physachenolide C 7BYR ; 3.84 ; BD23-Fab in complex with the S ectodomain trimer 6SD8 ; 1.51 ; Bd2924 apo-form 6SDA ; 1.87 ; Bd2924 C10 acyl-coenzymeA bound form 5CEC ; 1.36 ; Bd3459 Predatory Endopeptidase from Bdellovibrio bacteriovorus in complex with immunity protein Bd3460 5CEB ; 1.93 ; Bd3459 Predatory Endopeptidase from Bdellovibrio bacteriovorus, K38M form 3V39 ; 1.45 ; Bd3459, A Predatory Peptidoglycan Endopeptidase from Bdellovibrio bacteriovorus 5CEA ; 1.85 ; Bd3460 Immunity Protein from Bdellovibrio bacteriovorus 7KEJ ; 3.8 ; BDBV-289 bound to EBOV GPdMuc Makona 6N7J ; 3.684 ; BDBV223 Fab bound to synthetic peptide of Bundibugyo virus Glycoprotein Stalk 6HC0 ; 1.87 ; Bdellovibrio bacteriovorus DgcB FHA domain, tail complex 6HC1 ; 1.49 ; Bdellovibrio bacteriovorus DgcB FHA in complex with phosphorylated N-terminal peptide 6HBZ ; 1.79 ; Bdellovibrio bacteriovorus DgcB Full-length 5JP6 ; 1.5 ; Bdellovibrio bacteriovorus peptidoglycan deacetylase Bd3279 7NTG ; 1.67 ; Bdellovibrio bacteriovorus PGI in complex with fructose-6-phosphate 7O0A ; 1.74 ; Bdellovibrio bacteriovorus PGI in P1211 spacegroup 7NSS ; 1.84 ; Bdellovibrio bacteriovorus PGI in P3121 spacegroup 5GNT ; 2.665 ; BDLP-like folding of Mitofusin 1 7OUL ; 2.8 ; BDM88832 inhibitor bound to the transmembrane domain of AcrB-R971A 7OUK ; 2.6 ; BDM88855 inhibitor bound to the transmembrane domain of AcrB 7OUM ; 2.45 ; BDM88855 inhibitor bound to the transmembrane domain of AcrB-R971A 1PGL ; 2.8 ; BEAN POD MOTTLE VIRUS (BPMV), MIDDLE COMPONENT 1PGW ; 2.9 ; BEAN POD MOTTLE VIRUS (BPMV), TOP COMPONENT 5M3V ; 1.97 ; BEAT Fc 6G1E ; 1.88 ; BEAT Fc with improved heterodimerization (Q3A-D84.4Q) 5EFM ; 1.95 ; Beclin 1 Flexible-helical Domian (FHD) (141-171) 5K7B ; 2.3 ; Beclin 2 CCD homodimer 5K9L ; 2.52 ; Beclin 2 CCD N187L mutant homodimer 8EYW ; 2.1 ; Beetroot dimer bound to ThT 3NNS ; 1.9 ; BeF3 Activated DrrB Receiver Domain 3NNN ; 2.2 ; BeF3 Activated DrrD Receiver Domain 8CNN ; 1.48 ; BeF3 Phospho-HRas GSA complex 1ZES ; 1.9 ; BeF3- activated PhoB receiver domain 6M0D ; 2.2 ; Beijerinckia indica beta-fructosyltransferase 6M0E ; 1.35 ; Beijerinckia indica beta-fructosyltransferase complexed with fructose 8I2Q ; 2.15 ; Beijerinckia indica beta-fructosyltransferase variant H395R/F473Y 8I2R ; 1.36 ; Beijerinckia indica beta-fructosyltransferase variant H395R/F473Y in complex with fructose 7ZYB ; 1.5 ; BeKdgF with Ca 7ZYC ; 2.0 ; BeKdgF with Zn 4I4O ; 1.12 ; BEL beta-trefoil apo crystal form 1 4I4P ; 1.279 ; BEL beta-trefoil apo crystal form 2 4I4Q ; 1.51 ; BEL beta-trefoil apo crystal form 3 4I4R ; 1.77 ; BEL beta-trefoil apo crystal form 4 4I4U ; 1.57 ; BEL beta-trefoil complex with galactose 4I4S ; 1.4 ; BEL beta-trefoil complex with lactose 4I4V ; 1.5 ; BEL beta-trefoil complex with N-acetylgalactosamine 4I4Y ; 1.9 ; BEL beta-trefoil complex with T-Antigen 4I4X ; 1.72 ; BEL beta-trefoil complex with T-Antigen disaccharide 5KS9 ; 2.55 ; Bel502-DQ8-glia-alpha1 complex 5KSA ; 2.0 ; Bel602-DQ8.5-glia-gamma1 complex 2OMB ; 2.9 ; Bence Jones KWR Protein- Immunoglobulin Light Chain Dimer, P3(1)21 Crystal Form 2OLD ; 2.6 ; Bence Jones KWR Protein- Immunoglobulin Light Chain Dimer, P3(2)21 Crystal Form 2OMN ; 2.2 ; Bence Jones KWR Protein- Immunoglobulin Light Chain Dimer, P4(3)2(1)2 Crystal Form 1LIL ; 2.65 ; BENCE JONES PROTEIN CLE, A LAMBDA III IMMUNOGLOBULIN LIGHT-CHAIN DIMER 1B6D ; 2.74 ; BENCE JONES PROTEIN DEL: AN ENTIRE IMMUNOGLOBULIN KAPPA LIGHT-CHAIN DIMER 4L1H ; 1.68 ; Bence-Jones immunoglobulin REI variable portion with seven point mutations 1BWW ; 1.7 ; BENCE-JONES IMMUNOGLOBULIN REI VARIABLE PORTION, T39K MUTANT 8JLV ; 2.99864 ; Beneficial flip of substrate orientation enable determine substrate specificity for zearalenone lactone hydrolase 5TJ1 ; ; Benenodin-1-dC5, state 1 6B5W ; ; Benenodin-1-dC5, state 2 2F6G ; 1.908 ; BenM effector binding domain 2F78 ; 2.05 ; BenM effector binding domain with its effector benzoate 2F7A ; 1.9 ; BenM effector binding domain with its effector, cis,cis-muconate 2F6P ; 2.001 ; BenM effector binding domain- SeMet derivative 2F8D ; 2.7 ; BenM effector-Binding domain crystallized from high pH conditions 8D15 ; 3.61 ; Bent ADP-F-actin 8D16 ; 3.71 ; Bent ADP-Pi-F-actin 2E7E ; 1.85 ; Bent-binding of cyanide to the heme iron in rat heme oxygenase-1 3A5S ; 1.8 ; Benzalacetone synthase (I207L/L208F) 3A5Q ; 1.8 ; Benzalacetone synthase from Rheum palmatum 3A5R ; 1.6 ; Benzalacetone synthase from Rheum palmatum complexed with 4-coumaroyl-primed monoketide intermediate 5UCD ; 2.28 ; Benzaldehyde Dehydrogenase, a Class 3 Aldehyde Dehydrogenase, with bound NADP+ and Benzoate Adduct 1V2V ; 1.8 ; Benzamidine in complex with bovine trypsin variant X(SSAI)bT.C1 1V2S ; 1.72 ; Benzamidine in complex with bovine trypsin variant X(SSFI.Glu)bT.D1 1V2J ; 1.9 ; BENZAMIDINE IN COMPLEX WITH BOVINE TRYPSIN VARIANT X(SSRI)bT.C1 1V2M ; 1.65 ; Benzamidine in complex with bovine trypsin variant X(triple.Glu)bT.A1 1V2L ; 1.6 ; Benzamidine in complex with bovine trypsin variant X(triple.Glu)bT.D1 1V2U ; 1.8 ; Benzamidine in complex with bovine trypsin varinat X(SSAI)bT.D1 1J15 ; 2.0 ; BENZAMIDINE IN COMPLEX WITH RAT TRYPSIN MUTANT X99/175/190RT 1J16 ; 1.6 ; BENZAMIDINE IN COMPLEX WITH RAT TRYPSIN MUTANT X99/175/190RT 1J14 ; 2.4 ; BENZAMIDINE IN COMPLEX WITH RAT TRYPSIN MUTANT X99RT 3DMX ; 1.8 ; Benzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 4JSZ ; 1.9 ; Benzenesulfonamide bound to hCAII H94C 4JSA ; 1.5 ; Benzenesulfonamide complexed with hCAII H94D 6ODZ ; 1.3 ; Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects 6OE0 ; 1.3 ; Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects 6OE1 ; 1.45 ; Benzensulfonamides bearing spyrohydantoin moieties act as potent inhibitors of human carbonic anhydrases II and VII and show neuropathic pain attenuating effects 4ALU ; 2.6 ; Benzofuropyrimidinone Inhibitors of Pim-1 4ALV ; 2.59 ; Benzofuropyrimidinone Inhibitors of Pim-1 4ALW ; 1.92 ; Benzofuropyrimidinone Inhibitors of Pim-1 5UCO ; 2.85 ; Benzophenone synthase from Hypericum androsaemum 5VOM ; 1.67 ; Benzopiperazine BET bromodomain inhibitor in complex with BD1 of Brd4 2I0G ; 2.5 ; Benzopyrans are Selective Estrogen Receptor beta Agonists (SERBAs) with Novel Activity in Models of Benign Prostatic Hyperplasia 2I0J ; 2.9 ; Benzopyrans are Selective Estrogen Receptor beta Agonists (SERBAs) with Novel Activity in Models of Benign Prostatic Hyperplasia 2POG ; 1.84 ; Benzopyrans as Selective Estrogen Receptor b Agonists (SERBAs). Part 2: Structure Activity Relationship Studies on the Benzopyran Scaffold. 3SOS ; 2.58 ; Benzothiazinone inhibitor in complex with FXIa 3LC3 ; 1.9 ; Benzothiophene Inhibitors of Factor IXa 5DGD ; 1.13 ; Benzoylformate decarboxylase F464I and A460V mutant from Pseudomonas putida 1BFD ; 1.6 ; BENZOYLFORMATE DECARBOXYLASE FROM PSEUDOMONAS PUTIDA 5DEI ; 1.3 ; BENZOYLFORMATE DECARBOXYLASE FROM PSEUDOMONAS PUTIDA 1MCZ ; 2.8 ; BENZOYLFORMATE DECARBOXYLASE FROM PSEUDOMONAS PUTIDA COMPLEXED WITH AN INHIBITOR, R-MANDELATE 5DGT ; 1.081 ; BENZOYLFORMATE DECARBOXYLASE H70A MUTANT at pH 8.5 FROM PSEUDOMONAS PUTIDA 4MPR ; 1.401 ; Benzoylformate Decarboxylase: Is the tetramer vital for activity? 7PXP ; 2.0 ; Benzoylsuccinyl-CoA thiolase 7PYT ; 1.7 ; Benzoylsuccinyl-CoA thiolase with coenzyme A 7YXM ; 1.7 ; Benzoylsuccinyl-CoA thiolase with coenzyme A 1DXA ; ; BENZO[A]PYRENE DIOL EPOXIDE ADDUCT OF DA IN DUPLEX DNA 1BMA ; 1.8 ; BENZYL METHYL AMINIMIDE INHIBITOR COMPLEXED TO PORCINE PANCREATIC ELASTASE 3HUK ; 1.29 ; Benzylacetate in complex with T4 lysozyme L99A/M102Q 1EH8 ; 2.5 ; BENZYLATED HUMAN O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE 2IWC ; 2.1 ; Benzylpenicilloyl-acylated MecR1 extracellular antibiotic-sensor domain. 5BWD ; 2.0 ; Benzylsuccinate alpha-gamma bound to fumarate 4PKC ; 2.6 ; Benzylsuccinate alpha-gamma complex 4PKF ; 2.002 ; Benzylsuccinate synthase alpha-beta-gamma complex 5BWE ; 3.3 ; Benzylsuccinate synthase alpha-beta-gamma complex with bound toluene and fumarate 4PZF ; 2.2 ; Berberine bridge enzyme G164A variant, a reticuline dehydrogenase 2PL1 ; 1.9 ; Berrylium Fluoride activated receiver domain of E.coli PhoP 7QTV ; 4.05 ; Beryllium fluoride form of the Na+,K+-ATPase (E2-BeFx) 1W0J ; 2.2 ; Beryllium fluoride inhibited bovine F1-ATPase 6BR7 ; 1.86 ; Beryllium fluorinated receiver domain of BfmR from Acinetobacter baumannii 2FTK ; 3.05 ; berylloflouride Spo0F complex with Spo0B 6NIE ; 1.95 ; BesD with Fe(II), chloride, and alpha-ketoglutarate 1HO9 ; ; BEST 20 NMR CONFORMERS OF D130I MUTANT T3-I2, A 32 RESIDUE PEPTIDE FROM THE ALPHA 2A ADRENERGIC RECEPTOR 6U3E ; 53.0 ; Best fitting antiparallel model for Volume 1 of truncated dimeric Cytohesin-3 (Grp1; amino acids 14-399) 6U3G ; 53.0 ; Best fitting antiparallel model for Volume 2 of truncated dimeric Cytohesin-3 (Grp1; amino acids 14-399) 1GX7 ; ; Best model of the electron transfer complex between cytochrome c3 and [Fe]-hydrogenase 6N27 ; 3.0 ; BEST1 calcium-bound closed state 6N28 ; 2.9 ; BEST1 calcium-bound open state 6N26 ; 3.0 ; BEST1 calcium-free closed state 6N23 ; 3.1 ; BEST1 in a calcium-bound inactivated state 6N25 ; 2.7 ; BEST1 open state W287F mutant, calcium-bound 6N24 ; 3.0 ; BEST1 open state W287F mutant, calcium-free 4ZLA ; 1.9 ; Bestatin complex structure of leucine aminopeptidase from Helicobacter pylori 3H8G ; 1.5 ; Bestatin complex structure of leucine aminopeptidase from Pseudomonas putida 6VX5 ; 3.03 ; bestrophin-2 Ca2+- unbound state (250 nM Ca2+) 6VX9 ; 2.17 ; bestrophin-2 Ca2+- unbound state 1 (EGTA only) 6VX8 ; 2.33 ; bestrophin-2 Ca2+- unbound state 2 (EGTA only) 6VX6 ; 3.0 ; bestrophin-2 Ca2+-bound state (250 nM Ca2+) 6VX7 ; 2.36 ; bestrophin-2 Ca2+-bound state (5 mM Ca2+) 3DHM ; 1.8 ; Beta 2 microglobulin mutant D59P 3DHJ ; 2.0 ; Beta 2 microglobulin mutant W60C 2IV8 ; 2.8 ; beta appendage in complex with b-arrestin peptide 2G30 ; 1.6 ; beta appendage of AP2 complexed with ARH peptide 2FGY ; 2.2 ; Beta Carbonic Anhydrase from the Carboxysomal Shell of Halothiobacillus neapolitanus (CsoSCA) 8THM ; 2.3 ; Beta carbonic anhydrase from the carboxysome of Cyanobium PCC 7001 6D2O ; 1.9 ; Beta Carbonic anhydrase in complex with 4-methylimidazole 6D2N ; 1.9 ; Beta Carbonic anhydrase in complex with a sulfonamide anion 6D2J ; 2.1 ; Beta Carbonic anhydrase in complex with thiocyanate 6D2M ; 1.9 ; Beta Carbonic anhydrase in complex with thiocyanate 1BEC ; 1.7 ; BETA CHAIN OF A T CELL ANTIGEN RECEPTOR 5DWU ; 3.97 ; Beta common receptor in complex with a Fab 5NSA ; 1.273 ; Beta domain of human transcobalamin bound to Co-beta-[2-(2,4-difluorophenyl)ethinyl]cobalamin 5NRP ; 1.569 ; Beta domain of human transcobalamin bound to cobinamide 5NP4 ; 1.434 ; Beta domain of human transcobalamin bound to cyanocobalamin 5NO0 ; 1.57 ; Beta domain of human transcobalamin in apo form 1C4P ; 2.4 ; BETA DOMAIN OF STREPTOKINASE 1CPX ; 2.0 ; BETA FORM OF CARBOXYPEPTIDASE A (RESIDUES 3-307) FROM BOVINE PANCREAS IN AN ORTHORHOMBIC CRYSTAL FORM WITH TWO ZINC IONS IN THE ACTIVE SITE. 2BV2 ; 1.55 ; beta gamma crystallin from Ciona Intestinalis 7JXN ; 2.0 ; Beta hairpin derived from Abeta17-36 with an F20Cha mutation 1E5M ; 1.54 ; Beta ketoacyl acyl carrier protein synthase II (KASII) from Synechocystis sp. 6ZBS ; 2.35 ; Beta ODAP Synthetase (BOS) 2AK5 ; 1.85 ; beta PIX-SH3 complexed with a Cbl-b peptide 1ZSG ; ; beta PIX-SH3 complexed with an atypical peptide from alpha-PAK 8AQT ; 4.4 ; Beta SARS-CoV-2 Spike bound to mouse ACE2 (local) 3KNQ ; 2.13 ; Beta Turn Optimization of the Gene-3-Protein of Filamentous Phage Fd 7R16 ; 3.5 ; Beta Variant SARS-CoV-2 Spike with 1 Erect RBD 7R17 ; 3.7 ; Beta Variant SARS-CoV-2 Spike with 2 Erect RBDs 4UNI ; 2.6 ; beta-(1,6)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 in complex with galactose 4UOZ ; 2.3 ; beta-(1,6)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 nucleophile mutant E324A in complex with galactose 7Q9P ; 4.5 ; Beta-06 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 5B0R ; 1.8 ; Beta-1,2-Mannobiose phosphorylase from Listeria innocua - beta-1,2-mannobiose complex 5B0S ; 2.1 ; Beta-1,2-Mannobiose phosphorylase from Listeria innocua - beta-1,2-mannotriose complex 5B0P ; 1.9 ; Beta-1,2-Mannobiose phosphorylase from Listeria innocua - glycerol complex 5B0Q ; 2.3 ; beta-1,2-Mannobiose phosphorylase from Listeria innocua - mannose complex 1WC2 ; 1.2 ; Beta-1,4-D-endoglucanase Cel45A from blue mussel Mytilus edulis at 1.2A 8BZQ ; 1.3 ; Beta-1,4-D-endoglucanase Cel45A from Gloeophyllum trabeum 6GP5 ; 1.93 ; Beta-1,4-galactanase from Bacteroides thetaiotaomicron 6GPA ; 1.79 ; Beta-1,4-galactanase from Bacteroides thetaiotaomicron with galactose 1NWG ; 2.32 ; BETA-1,4-GALACTOSYLTRANSFERASE COMPLEX WITH ALPHA-LACTALBUMIN AND N-BUTANOYL-GLUCOAMINE 1NMM ; 2.0 ; beta-1,4-galactosyltransferase mutant Cys342Thr complex with alpha-lactalbumin and GlcNAc 1TW1 ; 2.3 ; beta-1,4-galactosyltransferase mutant Met344His (m344H-Gal-T1) complex with UDP-galactose and magnesium 1TVY ; 2.3 ; beta-1,4-galactosyltransferase mutant Met344His (M344H-Gal-T1) complex with UDP-galactose and manganese 1EXP ; 1.8 ; BETA-1,4-GLYCANASE CEX-CD 3VUP ; 1.05 ; Beta-1,4-mannanase from the common sea hare Aplysia kurodai 5XXA ; 1.76 ; beta-1,4-mannanase-SeMet-RmMan134A 1XNK ; 1.55 ; Beta-1,4-xylanase from Chaetomium thermophilum complexed with methyl thioxylopentoside 8A7T ; 3.0 ; beta-2-microglobulin D76N amyloid fibril form 2PFa 8A7O ; 3.0 ; beta-2-microglobulin DeltaN6 amyloid fibril form 2PFa 8A7P ; 3.4 ; beta-2-microglobulin DeltaN6 amyloid fibril form 2PFb 8A7Q ; 2.8 ; beta-2-microglobulin V27M amyloid fibril form 4PF 7Q9J ; 4.0 ; Beta-26 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 7Q9K ; 4.5 ; Beta-32 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 7Q9I ; 4.9 ; Beta-43 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 7Q9F ; 3.6 ; Beta-50 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 7Q9M ; 3.7 ; Beta-53 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 4MTU ; 0.97 ; beta-Alanyl-CoA:Ammonia Lyase from Clostridium propionicum 4MZQ ; 1.587 ; beta-Alanyl-CoA:Ammonia Lyase from Clostridium propionicum in complex with propionyl-CoA 5BCA ; 2.2 ; BETA-AMYLASE FROM BACILLUS CEREUS VAR. MYCOIDES 1ITC ; 2.1 ; Beta-Amylase from Bacillus cereus var. mycoides Complexed with Maltopentaose 1J12 ; 2.1 ; Beta-Amylase from Bacillus cereus var. mycoides in Complex with alpha-EBG 1J11 ; 2.0 ; beta-amylase from Bacillus cereus var. mycoides in complex with alpha-EPG 1J10 ; 2.1 ; beta-amylase from Bacillus cereus var. mycoides in complex with GGX 1J0Y ; 2.1 ; Beta-amylase from Bacillus cereus var. mycoides in complex with glucose 1J0Z ; 2.2 ; Beta-amylase from Bacillus cereus var. mycoides in complex with maltose 1BFN ; 2.07 ; BETA-AMYLASE/BETA-CYCLODEXTRIN COMPLEX 1E0R ; 2.8 ; Beta-apical domain of thermosome 8D9W ; 9.3 ; beta-Arf1 homodimeric interface within AP-1, Arf1, Nef, MHC-I lattice on narrow tubes 8D4C ; 9.3 ; beta-Arf1 mediated dimeric assembly of AP-1, Arf1, Nef complex within lattice on MHC-I lipopeptide incorporated narrow membrane tubes 8D4F ; 9.8 ; beta-Arf1 mediated dimeric assembly of AP-1, Arf1, Nef complex within lattice on MHC-I lipopeptide incorporated wide(r) membrane tubes 6KL7 ; 2.794 ; Beta-arrestin 1 mutant S13D/T275D 8QYP ; 2.759 ; Beta-cardiac myosin motor domain in the pre-powerstroke state 8QYR ; 1.8 ; Beta-cardiac myosin motor domain in the pre-powerstroke state complexed to Mavacamten 6FSA ; 2.33 ; Beta-Cardiac myosin post-rigor 8QYQ ; 2.61 ; Beta-cardiac myosin S1 fragment in the pre-powerstroke state complexed to Mavacamten 8QYU ; 1.96 ; Beta-cardiac myosin S1 fragment in the pre-powerstroke state complexed to Omecamtiv mecarbil 1M1E ; 2.1 ; Beta-catenin armadillo repeat domain bound to ICAT 1QZ7 ; 2.2 ; Beta-catenin binding domain of Axin in complex with beta-catenin 8Y14 ; 2.8 ; Beta-catenin Crystal Structure 1TH1 ; 2.5 ; Beta-catenin in complex with a phosphorylated APC 20aa repeat fragment 7AFW ; 1.814 ; Beta-Catenin in complex with compound 6 1I7X ; 3.0 ; BETA-CATENIN/E-CADHERIN COMPLEX 1I7W ; 2.0 ; BETA-CATENIN/PHOSPHORYLATED E-CADHERIN COMPLEX 2RAY ; 1.798 ; beta-chlorophenetole in complex with T4 lysozyme L99A 2A8F ; 1.35 ; beta-cinnamomin after sterol removal 2AIB ; 1.1 ; beta-cinnamomin in complex with ergosterol 1BEO ; 2.2 ; BETA-CRYPTOGEIN 1LRI ; 1.45 ; BETA-CRYPTOGEIN-CHOLESTEROL COMPLEX 1EX1 ; 2.2 ; BETA-D-GLUCAN EXOHYDROLASE FROM BARLEY 1YI7 ; 1.9 ; Beta-d-xylosidase (selenomethionine) XYND from Clostridium Acetobutylicum 1Y7B ; 1.6 ; BETA-D-XYLOSIDASE, A FAMILY 43 GLYCOSIDE HYDROLASE 6TUB ; ; Beta-endorphin amyloid fibril 3PIG ; 1.87 ; beta-fructofuranosidase from Bifidobacterium longum 3PIJ ; 1.8 ; beta-fructofuranosidase from Bifidobacterium longum - complex with fructose 1W2T ; 1.87 ; beta-fructosidase from Thermotoga maritima in complex with raffinose 4V40 ; 2.5 ; BETA-GALACTOSIDASE 6DRV ; 2.2 ; Beta-galactosidase 4TTG ; 1.6 ; Beta-galactosidase (E. coli) in the presence of potassium chloride. 5DMY ; 1.95 ; Beta-galactosidase - construct 33-930 1YQ2 ; 1.9 ; beta-galactosidase from Arthrobacter sp. C2-2 (isoenzyme C2-2-1) 6TSH ; 2.3 ; Beta-galactosidase in complex with deoxygalacto-nojirimycin 6TSK ; 2.3 ; Beta-galactosidase in complex with L-ribose 6TTE ; 2.2 ; Beta-galactosidase in complex with PETG 1TBG ; 2.1 ; BETA-GAMMA DIMER OF THE HETEROTRIMERIC G-PROTEIN TRANSDUCIN 5XIV ; ; Beta-Ginkgotides: Hyperdisulfide-constrained peptides from Ginkgo biloba 6QZG ; 2.47 ; Beta-glucose 1,6-bisphosphonate bound to wild type beta-phosphoglucomutse in an open conformation. 7F1N ; 2.14 ; Beta-Glucosidase 1BGA ; 2.4 ; BETA-GLUCOSIDASE A FROM BACILLUS POLYMYXA 3TA9 ; 3.0 ; beta-Glucosidase A from the halothermophile H. orenii 2O9R ; 2.3 ; beta-glucosidase B complexed with thiocellobiose 2JIE ; 2.3 ; BETA-GLUCOSIDASE B FROM BACILLUS POLYMYXA COMPLEXED WITH 2-F-GLUCOSE 2O9T ; 2.15 ; beta-glucosidase B from Bacillus polymyxa complexed with glucose 2O9P ; 2.1 ; beta-glucosidase B from Paenibacillus polymyxa 2Z1S ; 2.46 ; Beta-glucosidase B from paenibacillus polymyxa complexed with cellotetraose 8IVY ; 1.95 ; Beta-Glucosidase BglA mutant E166Q in complex with glucose 8IDZ ; 4.0 ; Beta-glucosidase BglPcC1 1QOX ; 2.7 ; Beta-glucosidase from Bacillus circulans sp. alkalophilus 5OST ; 2.1 ; Beta-glucosidase from Thermoanaerobacterium xylolyticum GH116 in complex with Gluco-1H-imidazole 2J7H ; 1.95 ; Beta-glucosidase from Thermotoga maritima in complex with azafagomine 2CBV ; 1.95 ; Beta-glucosidase from Thermotoga maritima in complex with calystegine B2 2J7F ; 2.28 ; Beta-glucosidase from Thermotoga maritima in complex with carboxylate- substituted glucoimidazole 2CBU ; 1.85 ; Beta-glucosidase from Thermotoga maritima in complex with castanospermine 2JAL ; 1.9 ; Beta-glucosidase from Thermotoga maritima in complex with cyclophellitol 2J77 ; 2.1 ; Beta-glucosidase from Thermotoga maritima in complex with deoxynojirimycin 2J79 ; 1.94 ; Beta-glucosidase from Thermotoga maritima in complex with galacto- hydroximolactam 2J78 ; 1.65 ; Beta-glucosidase from Thermotoga maritima in complex with gluco- hydroximolactam 2J7B ; 1.87 ; Beta-glucosidase from Thermotoga maritima in complex with gluco- tetrazole 5OSS ; 1.7 ; Beta-glucosidase from Thermotoga maritima in complex with Gluco-1H-imidazole 2CES ; 2.15 ; Beta-glucosidase from Thermotoga maritima in complex with glucoimidazole 2J7D ; 2.24 ; Beta-glucosidase from Thermotoga maritima in complex with methoxycarbonyl-substituted glucoimidazole 2J7E ; 2.19 ; Beta-glucosidase from Thermotoga maritima in complex with methyl acetate-substituted glucoimidazole 2J7G ; 1.91 ; Beta-glucosidase from Thermotoga maritima in complex with methyl acetic acid-substituted glucoimidazole 2VRJ ; 1.9 ; Beta-glucosidase from Thermotoga maritima in complex with N-octyl-5- deoxy-6-oxa-N-(thio)carbamoylcalystegine 2J75 ; 1.85 ; Beta-glucosidase from Thermotoga maritima in complex with noeuromycin 2CET ; 1.97 ; Beta-glucosidase from Thermotoga maritima in complex with phenethyl- substituted glucoimidazole 2J7C ; 2.09 ; Beta-glucosidase from Thermotoga maritima in complex with phenylaminomethyl-derived glucoimidazole 8IN1 ; 2.7 ; beta-glucosidase protein from Aplysia kurodai 5VQD ; 2.1 ; Beta-glucoside phosphorylase BglX 5VQE ; 1.889 ; Beta-glucoside phosphorylase BglX bound to 2FGlc 8OGX ; 2.0 ; Beta-glucuronidase from Acidobacterium capsulatum in complex with inhibitor R3794 7KGY ; 2.2 ; Beta-glucuronidase from Faecalibacterium prausnitzii bound to the inhibitor UNC10201652-glucuronide 5G0M ; 1.8 ; beta-glucuronidase with an activity-based probe (N-acyl cyclophellitol aziridine) bound 5G0Q ; 1.65 ; beta-glucuronidase with an activity-based probe (N-alkyl cyclophellitol aziridine) bound 1VFF ; 2.5 ; beta-glycosidase from Pyrococcus horikoshii 1GOW ; 2.6 ; BETA-GLYCOSIDASE FROM SULFOLOBUS SOLFATARICUS 2CEQ ; 2.14 ; Beta-glycosidase from Sulfolobus solfataricus in complex with glucoimidazole 2CER ; 2.29 ; Beta-glycosidase from Sulfolobus solfataricus in complex with phenethyl-substituted glucoimidazole 3AZ8 ; 3.1 ; Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Plasmodium falciparum in complex with NAS21 3AZ9 ; 2.75 ; Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Plasmodium falciparum in complex with NAS91 3AZA ; 2.7 ; Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Plasmodium falciparum in complex with NAS91-10 3AZB ; 2.6 ; Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Plasmodium falciparum in complex with NAS91-11 1B3N ; 2.65 ; BETA-KETOACYL CARRIER PROTEIN SYNTHASE AS A DRUG TARGET, IMPLICATIONS FROM THE CRYSTAL STRUCTURE OF A COMPLEX WITH THE INHIBITOR CERULENIN. 1EK4 ; 1.85 ; BETA-KETOACYL [ACYL CARRIER PROTEIN] SYNTHASE I IN COMPLEX WITH DODECANOIC ACID TO 1.85 RESOLUTION 4X0O ; 2.2 ; Beta-ketoacyl-(acyl carrier protein) synthase III-2 (FabH2) from Vibrio cholerae soaked with Acetyl-CoA 2VBA ; 1.36 ; beta-ketoacyl-ACP synthase I (KAS) from E. coli with bound amino- thiazole inhibitor 2VB8 ; 1.52 ; beta-ketoacyl-ACP synthase I (KAS) from E. coli with bound inhibitor thiolactomycin 2VB9 ; 1.5 ; beta-ketoacyl-ACP synthase I (KAS) from E. coli, apo structure 2VB7 ; 1.6 ; beta-ketoacyl-ACP synthase I (KAS) from E. coli, apo structure after soak in PEG solution 1KAS ; 2.4 ; BETA-KETOACYL-ACP SYNTHASE II FROM ESCHERICHIA COLI 5KP2 ; 2.0 ; Beta-ketoacyl-ACP synthase III -2 (FabH2) (C113A) from Vibrio Cholerae cocrystallized with octanoyl-CoA: hydrolzed ligand 4X9O ; 2.3 ; Beta-ketoacyl-ACP synthase III -2 (FabH2) (C113A) from Vibrio Cholerae soaked with octanoyl-CoA: conformational changes without clearly bound substrate 4X9K ; 1.61 ; Beta-ketoacyl-acyl carrier protein synthase III-2 (FabH2)(C113A) from Vibrio cholerae 1F91 ; 2.4 ; BETA-KETOACYL-[ACYL-CARRIER-PROTEIN] SYNTHASE I IN COMPLEX WITH C10 FATTY ACID SUBSTRATE 8QF2 ; 2.35 ; Beta-L-Arabinofurano-cyclitol Aziridines are Cysteine-directed Broad-spectrum Inhibitors and Activity-based Probes for Retaining Beta-L-arabinofuranosidases 5OPJ ; 2.05 ; Beta-L-arabinofuranosidase 1M1Z ; 1.95 ; BETA-LACTAM SYNTHETASE APO ENZYME 1MB9 ; 2.11 ; BETA-LACTAM SYNTHETASE COMPLEXED WITH ATP 1MC1 ; 2.16 ; BETA-LACTAM SYNTHETASE WITH PRODUCT (DGPC), AMP AND PPI 1MBZ ; 2.47 ; BETA-LACTAM SYNTHETASE WITH TRAPPED INTERMEDIATE 3Q7V ; 2.1 ; Beta-Lactam-Sensor Domain of BlaR1 (Apo) from Staphylococcus Aureus with Carboxylated Lys392 8SJ3 ; 1.5 ; Beta-lactamase CTX-M-14 E166Y/N170G 8DPQ ; 1.67 ; Beta-lactamase CTX-M-14 N170A 8DOD ; 1.61 ; Beta-lactamase CTX-M-14 S130A 8DON ; 1.36 ; Beta-lactamase CTX-M-14 T215A 8DP4 ; 1.402 ; Beta-lactamase CTX-M-14 T235A 1I2S ; 1.7 ; BETA-LACTAMASE FROM BACILLUS LICHENIFORMIS BS3 1I2W ; 1.7 ; BETA-LACTAMASE FROM BACILLUS LICHENIFORMIS BS3 COMPLEXED WITH CEFOXITIN 6N36 ; 1.45 ; Beta-lactamase from Chitinophaga pinensis 6N9K ; 1.6 ; Beta-lactamase from Escherichia coli str. Sakai 1BSG ; 1.85 ; BETA-LACTAMASE FROM STREPTOMYCES ALBUS G 7K8F ; 2.60003 ; Beta-lactamase mixed with Ceftriaxone, 10ms 7K8H ; 2.60006 ; Beta-lactamase mixed with Ceftriaxone, 50ms 7K8E ; 2.40006 ; Beta-lactamase mixed with Ceftriaxone, 5ms 7K8K ; 2.7 ; Beta-lactamase mixed with Sulbactam, 60ms 2BLM ; 2.0 ; BETA-LACTAMASE OF BACILLUS LICHENIFORMIS 749(SLASH)C AT 2 ANGSTROMS RESOLUTION 4BLM ; 2.0 ; BETA-LACTAMASE OF BACILLUS LICHENIFORMIS 749(SLASH)C. REFINEMENT AT 2 ANGSTROMS RESOLUTION AND ANALYSIS OF HYDRATION 6MU9 ; 0.97 ; Beta-lactamase penicillinase from Bacillus megaterium 6NFD ; 1.17 ; beta-lactamase SHV-11 from Klebsiella pneumoniae strain NTUH-K2044 1BZA ; 1.8 ; BETA-LACTAMASE TOHO-1 FROM ESCHERICHIA COLI TUH12191 5O7N ; 1.5 ; Beta-lactamase VIM-2 in complex with (2R)-1-(2-Benzyl-3-mercaptopropanoyl)piperidine-2-carboxylic acid 6B68 ; 2.15 ; Beta-Lactamase, 100ms timepoint, mixed, shards crystal form 6B6A ; 2.298 ; Beta-Lactamase, 2secs timepoint, mixed, shards crystal form 6B69 ; 2.2 ; Beta-Lactamase, 500ms timepoint, mixed, shards crystal form 6B5Y ; 2.75 ; Beta-lactamase, mixed with Ceftriaxone, 30ms time point, Shards crystal form 6B6D ; 1.8 ; Beta-Lactamase, mixed with Ceftriaxone, needles crystal form, 100ms 6B6F ; 2.05 ; Beta-Lactamase, mixed with Ceftriaxone, needles crystal form, 2sec 6B6C ; 1.9 ; Beta-Lactamase, mixed with Ceftriaxone, needles crystal form, 30ms 6B6E ; 1.901 ; Beta-Lactamase, mixed with Ceftriaxone, needles crystal form, 500ms 7K8L ; 2.80001 ; Beta-lactamase, Unmixed 6B6B ; 1.8 ; Beta-Lactamase, unmixed needles crystal form 6B5X ; 2.45 ; Beta-Lactamase, unmixed shards crystal form 2Q39 ; 2.5 ; Beta-lactoglobulin (low humidity) 2Q2M ; 2.1 ; Beta-lactoglobulin (native) 2Q2P ; 2.96 ; Beta-lactoglobulin (reverse native) 4KII ; 1.85 ; Beta-lactoglobulin in complex with Cp*Rh(III)Cl N,N-di(pyridin-2-yl)dodecanamide 7Q2N ; 1.7 ; Beta-lactoglobulin mutant FAF (I56F/L39A/M107F) in complex with desipramine (FAF-DSM) 7Q18 ; 1.804 ; Beta-lactoglobulin mutant FAF (I56F/L39A/M107F), unliganded form 7Q2O ; 1.8 ; Beta-lactoglobulin mutant FAW (I56F/L39A/M107W) in complex with desipramine (FAW-DSM#1) 7Q2P ; 1.69 ; Beta-lactoglobulin mutant FAW (I56F/L39A/M107W) in complex with desipramine (FAW-DSM#2) 7Q19 ; 1.55 ; Beta-lactoglobulin mutant FAW (I56F/L39A/M107W) in complex with desipramine (FAW-DSM#3) 7Q17 ; 1.8 ; Beta-lactoglobulin mutant FAW (I56F/L39A/M107W), unliganded form 8AF1 ; 1.57 ; Beta-Lytic Protease from Lysobacter capsici 1BQC ; 1.5 ; BETA-MANNANASE FROM THERMOMONOSPORA FUSCA 1CF5 ; 2.55 ; BETA-MOMORCHARIN STRUCTURE AT 2.55 A 8P4L ; 2.79 ; Beta-N-acetylgalactosaminidase from Niabella aurantiaca 1C7S ; 1.8 ; BETA-N-ACETYLHEXOSAMINIDASE MUTANT D539A COMPLEXED WITH DI-N-ACETYL-BETA-D-GLUCOSAMINE (CHITOBIASE) 1C7T ; 1.9 ; BETA-N-ACETYLHEXOSAMINIDASE MUTANT E540D COMPLEXED WITH DI-N ACETYL-D-GLUCOSAMINE (CHITOBIASE) 3BMX ; 1.4 ; Beta-N-hexosaminidase (YbbD) from Bacillus subtilis 3LK6 ; 2.88 ; Beta-N-hexosaminidase N318D mutant (YBBD_N318D) from bacillus subtilis 6H8W ; 1.98 ; Beta-phosphoglucomutase from Lactococcus lactis in an open conformer complexed with aluminium tetrafluoride to 1.9 A. 6H8X ; 1.83 ; Beta-phosphoglucomutase from Lactococcus lactis in an open conformer complexed with magnesium trifluoride to 1.8 A. 6H8V ; 1.84 ; Beta-phosphoglucomutase from Lactococcus lactis in an open conformer in the P21 spacegroup to 1.8 A. 6H8U ; 1.9 ; Beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 1.9 A. 6YDM ; 2.1 ; beta-phosphoglucomutase from Lactococcus lactis with citrate, tris and acetate bound 6H93 ; 1.77 ; Beta-phosphoglucomutase from Lactococcus lactis with inorganic phosphate bound in an open conformer to 1.8 A. 3WQ6 ; 1.8 ; beta-Primeverosidase in complex with disaccharide substrate-analog N-beta-primeverosylamidine, artificial aglycone derivative 3WQ5 ; 1.8 ; beta-Primeverosidase in complex with disaccharide substrate-analog N-beta-primeverosylamidine, natural aglycone derivative 1H6L ; 1.8 ; beta-propeller phytase in complex with phosphate and calcium ions 4KYP ; 1.7 ; Beta-Scorpion Toxin folded in the periplasm of E.coli 3DM6 ; 2.6 ; Beta-secretase 1 complexed with statine-based inhibitor 7CRG ; 1.8 ; Beta-strand-mediated dimeric formation of the extended Ig-like domains of human lamin A/C 4OW4 ; 2.148 ; Beta-trefoil designed by folding nucleus symmetric expansion (""Phifoil"") 1BJU ; 1.8 ; BETA-TRYPSIN COMPLEXED WITH ACPU 1BJV ; 1.8 ; BETA-TRYPSIN COMPLEXED WITH APPU 1MAX ; 1.8 ; BETA-TRYPSIN PHOSPHONATE INHIBITED 1MAY ; 1.8 ; BETA-TRYPSIN PHOSPHONATE INHIBITED 4A6L ; 2.05 ; beta-tryptase inhibitor 8PT4 ; 3.33 ; beta-Ureidopropionase tetramer 3K1U ; 1.55 ; Beta-xylosidase, family 43 glycosyl hydrolase from Clostridium acetobutylicum 7Q6E ; 2.7 ; Beta049 fab in complex with SARS-CoV2 beta-Spike glycoprotein, The Beta mAb response underscores the antigenic distance to other SARS-CoV-2 variants 4YEF ; 1.72 ; beta1 carbohydrate binding module (CBM) of AMP-activated protein kinase (AMPK) in complex with glucosyl-beta-cyclododextrin 7C12 ; 2.803 ; beta1 domain-swapped structure of monothiol cGrx1(C16S) 7C13 ; 2.799 ; beta1 domain-swapped structure of monothiol cGrx1(C16S) 4YC5 ; 1.755 ; Beta1 synthetic solenoid protein 4YCQ ; 2.405 ; Beta1 synthetic solenoid protein 4YDT ; 3.31 ; Beta1 synthetic solenoid protein 5DI5 ; 2.28 ; beta1 t801 loop variant in P3221 1TW5 ; 2.3 ; beta1,4-galactosyltransferase mutant M344H-Gal-T1 in complex with Chitobiose 4YEI ; 3.55 ; Beta1mut synthetic solenoid protein 4YFO ; 3.39 ; beta1_ex1 7OM8 ; 10.5 ; Beta2 appendage domain of AP2 bound to terminal domains beneath the hub of the 28 triskelia mini clathrin coat complex, class 15 4Y0G ; 1.6 ; beta2 carbohydrate binding module (CBM) of AMP-activated protein kinase (AMPK) 4YEE ; 2.0 ; beta2 carbohydrate binding module (CBM) of AMP-activated protein kinase (AMPK) in complex with glucosyl-beta-cyclodextrin 1PY4 ; 2.9 ; Beta2 microglobulin mutant H31Y displays hints for amyloid formations 1E42 ; 1.7 ; Beta2-adaptin appendage domain, from clathrin adaptor AP2 3O81 ; 2.0 ; Beta2-microglobulin from Gallus gallus 5D6L ; 3.2 ; beta2AR-T4L - CIM 1VYT ; 2.6 ; beta3 subunit complexed with aid 1VYU ; 2.3 ; Beta3 subunit of Voltage-gated Ca2+-channel 1VYV ; 3.0 ; beta4 subunit of Ca2+ channel 7K7U ; 3.03 ; BetaB2-crystallin 1A4S ; 2.1 ; BETAINE ALDEHYDE DEHYDROGENASE FROM COD LIVER 1BPW ; 2.8 ; BETAINE ALDEHYDE DEHYDROGENASE FROM COD LIVER 2WOX ; 2.3 ; Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with NAD(P) H-catalytic thiol adduct. 4M3P ; 1.895 ; Betaine-Homocysteine S-Methyltransferase from Homo sapiens complexed with Homocysteine 7WBI ; 1.8 ; BF2*1901-FLU 7WBG ; 2.0 ; BF2*1901/RY8 7YNP ; 2.8 ; BF227-bound alpha-synuclein fibrils 6RJP ; 2.57 ; Bfl-1 in complex with alpha helical peptide 8DI0 ; 2.85 ; Bfo2290: Tannerella forsythia chondroitin sulfate A sulfatase 8DI1 ; 2.2 ; Bfo2294: Tannerella forsythia 2-Keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and 4-Hydroxy-2-oxoglutarate aldolase (KHG) 8SW7 ; 3.37 ; BG505 Boost2 SOSIP.664 in complex with NHP polyclonal antibody FP1 6DFG ; 4.42 ; BG505 MD39 SOSIP trimer in complex with mature BG18 fragment antigen binding 6DFH ; 3.85 ; BG505 MD64 N332-GT2 SOSIP trimer in complex with germline-reverted BG18 fragment antigen binding 6NF5 ; 3.71 ; BG505 MD64 N332-GT5 SOSIP trimer in complex with BG18-like precursor HMP1 fragmentantigen binding and base-binding RM20A3 fragment antigen binding 6NFC ; 3.43 ; BG505 MD64 N332-GT5 SOSIP trimer in complex with BG18-like precursor HMP42 fragmentantigen binding and base-binding RM20A3 fragment antigen binding 6CM3 ; 3.54 ; BG505 SOSIP in complex with sCD4, 17b, 8ANC195 7MDU ; 3.3 ; BG505 SOSIP MD39 in complex with the monoclonal antibodies Rh.33104 mAb.1 and RM20A3 7L86 ; 3.4 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-1 from animal Rh.32034 (Wk26 time point) 7L8A ; 3.3 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-1 from animal Rh.33104 (Wk26 time point) 7L87 ; 3.6 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-2 from animal Rh.32034 (Wk26 time point) 7L8B ; 3.7 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-2 from animal Rh.33104 (Wk26 time point) 7L88 ; 3.6 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-3 from animal Rh.32034 (Wk26 time point) 7L8C ; 3.4 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-3 from animal Rh.33104 (Wk26 time point) 7L89 ; 3.8 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-4 from animal Rh.32034 (Wk26 time point) 7L8D ; 4.6 ; BG505 SOSIP MD39 in complex with the polyclonal Fab pAbC-4 from animal Rh.33104 (Wk26 time point) 7L7T ; 3.7 ; BG505 SOSIP reconstructed from a designed nanoparticle, BG505 SOSIP-T33-31 (Component A) 7L7U ; 3.8 ; BG505 SOSIP reconstructed from a designed nanoparticle, BG505 SOSIP-T33-31 (Component B) 6VL5 ; 4.5 ; BG505 SOSIP reconstructed from a designed tetrahedral nanoparticle, BG505 SOSIP-T33_dn2 6P6F ; 4.5 ; BG505 SOSIP-I53-50NP 5VIY ; 6.2 ; BG505 SOSIP.664 in complex with broadly neutralizing antibodies BG1 and 8ANC195 5VJ6 ; 11.5 ; BG505 SOSIP.664 in complex with broadly neutralizing antibodies PG9 and 8ANC195 7KDE ; 3.55 ; BG505 SOSIP.664 in complex with the V3-targeting rhesus macaque antibody 1485 and human gp120-gp41 interface antibody 8ANC195 6V0R ; 3.87 ; BG505 SOSIP.664 Trimer 5V8L ; 4.3 ; BG505 SOSIP.664 trimer in complex with broadly neutralizing HIV antibodies 3BNC117 and PGT145 5V8M ; 4.4 ; BG505 SOSIP.664 trimer in complex with broadly neutralizing HIV antibody 3BNC117 6OZC ; 3.79 ; BG505 SOSIP.664 with 2G12 Fab2 6VN0 ; 4.25 ; BG505 SOSIP.v4.1 in complex with rhesus macaque Fab RM20F 6VO0 ; 3.52 ; BG505 SOSIP.v5.2 in complex with rabbit Fab 43A2 6VLR ; 4.42 ; BG505 SOSIP.v5.2 in complex with rhesus macaque Fab RM20E1 and PGT122 Fab 6VO1 ; 3.88 ; BG505 SOSIP.v5.2 in complex with rhesus macaque Fab RM20J 7MDT ; 3.6 ; BG505 SOSIP.v5.2 in complex with the monoclonal antibody Rh4O9.8 (as Fab fragment) 7LG6 ; 3.28 ; BG505 SOSIP.v5.2 in complex with VRC40.01 and RM19R Fabs 7L8T ; 3.7 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-1 from animal Rh.33311 (Wk26 time point) 7L8U ; 4.5 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-2 from animal Rh.33311 (Wk26 time point) 7L8W ; 4.1 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-3 from animal Rh.33311 (Wk26 time point) 7L8X ; 3.0 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-4 from animal Rh.33311 (Wk26 time point) 7L8Y ; 4.2 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-5 from animal Rh.33311 (Wk26 time point) 7L8Z ; 3.8 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-7 from animal Rh.33311 (Wk26 time point) 7L90 ; 4.5 ; BG505 SOSIP.v5.2 N241/N289 in complex with the polyclonal Fab pAbC-8 from animal Rh.33311 (Wk26 time point) 7MEP ; 3.5 ; BG505 SOSIP.v5.2(7S) in complex with the monoclonal antibodies Rh.33172 mAb.1 and RM19R 7L8E ; 4.2 ; BG505 SOSIP.v5.2(7S) in complex with the polyclonal Fab pAbC-1 from animal Rh.33172 (Wk38 time point) 7L8F ; 3.66 ; BG505 SOSIP.v5.2(7S) in complex with the polyclonal Fab pAbC-2 from animal Rh.33172 (Wk38 time point) 7L8G ; 4.3 ; BG505 SOSIP.v5.2(7S) in complex with the polyclonal Fab pAbC-3 from animal Rh.33172 (Wk38 time point) 7L8S ; 4.3 ; BG505 SOSIP.v5.2(7S) in complex with the polyclonal Fab pAbC-4 from animal Rh.33172 (Wk38 time point) 6VKN ; 3.7 ; BG505 SOSIP.v5.2.N241.N289 in complex with rhesus macaque Fab RM19R 8EQN ; 3.7 ; BG505 UFO-E2p-L4P nanoparticle reconstructed by focused refinement with a mask around the nanoparticle core 6VFL ; 4.14 ; BG505-SOSIP model reconstructed by subparticle extraction and refinement from a tetrahedral nanoparticle T33_dn10 7SQ1 ; 3.8 ; BG505.MD39TS Env trimer in complex with Fab from antibody C05 1SXP ; 2.5 ; BGT in complex with a 13mer DNA containing a central A:G mismatch 1SXQ ; 1.8 ; BGT in complex with a 13mer DNA containing a central C:G base pair and UDP 4OPK ; 1.539 ; Bh-RNaseH:2'-SMe-DNA complex 4OPJ ; 1.541 ; Bh-RNaseH:tcdA-DNA complex 6ODH ; 2.3 ; BH3 domain swapped dimer of a BAK fragment 1MQL ; 2.9 ; BHA of Ukr/63 1MQM ; 2.6 ; BHA/LSTa 1MQN ; 3.2 ; BHA/LSTc 3HC3 ; 1.72 ; BHA10 IgG1 Fab double mutant variant - antibody directed at human LTBR 3HC4 ; 1.62 ; BHA10 IgG1 Fab quadruple mutant variant - antibody directed at human LTBR 3HC0 ; 1.9 ; BHA10 IgG1 wild-type Fab - antibody directed at human LTBR 1UMY ; 2.5 ; BHMT from rat liver 5VAJ ; 1.95 ; BhRNase H - amide-RNA/DNA complex 8HJW ; 4.1 ; Bi-functional malonyl-CoA reductuase from Chloroflexus aurantiacus 2AB5 ; 2.2 ; bI3 LAGLIDADG Maturase 4GIU ; 1.667 ; Bianthranilate-like analogue bound in inner site of anthranilate phosphoribosyltransferase (AnPRT; trpD). 4GKM ; 1.6683 ; Bianthranilate-like analogue bound in the outer site of anthranilate phosphoribosyltransferase (AnPRT; trpD) 4IJ1 ; 1.79 ; Bianthranilate-like analogue bound to anthranilate phosphoribosyltransferase (AnPRT; trpD) in absence of substrates. 5BO2 ; 2.0 ; Bianthranilate-like inhibitor with 4-atom ""line"" and phosphonate ""hook"" fishing for hydrogen bond donors in Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 5BO3 ; 1.75 ; Bianthranilate-like inhibitor with 5 atom ""line"" and phosphonate ""hook"" fishing for hydrogen bond donors in Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 5BNE ; 2.15 ; Bianthranilate-like inhibitor with 6 atom ""line"" and phosphonate ""hook"" fishing for hydrogen bond donors in Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 7EGK ; 2.7 ; Bicarbonate transporter complex SbtA-SbtB bound to AMP 7EGL ; 3.2 ; Bicarbonate transporter complex SbtA-SbtB bound to HCO3- 4BL6 ; 2.18 ; Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to co-ordinate recruitment of cargos to dynein 2K1A ; ; Bicelle-embedded integrin alpha(IIB) transmembrane segment 2RMZ ; ; Bicelle-embedded integrin beta3 transmembrane segment 6RW2 ; 2.26 ; Bicycle Toxin Conjugate bound to EphA2 5I8M ; 2.13 ; Bicyclic antimibrocial peptides 5I8X ; 1.89 ; Bicyclic antimibrocial peptides 5NGQ ; 1.17 ; Bicyclic antimicrobial peptides 8PI1 ; 2.5 ; Bicyclic INCYPRO Pseudomonas fluorescens esterase 6Y14 ; 0.9 ; Bicyclic peptide bp65 crystallized as racemic mixture at 0.9 Angstrom resolution 6Y1S ; 1.04 ; Bicyclic peptide bp70 in I4132 at 1.0 Angstrom resolution 6Y13 ; 1.112 ; Bicyclic stapled peptide bp70 at 1.1 Angstrom resolution 5I6A ; 0.813 ; bicyclo[3.3.2]decapeptide 8P1R ; 1.659 ; Bifidobacterium asteroides alpha-L-fucosidase (TT1819) catalytic mutant. 2HEZ ; 2.5 ; Bifidobacterium longum bile salt hydrolase 2HF0 ; 2.3 ; Bifidobacterium longum bile salt hydrolase 4A7K ; 2.0 ; Bifunctional Aldos-2-ulose dehydratase 8CQ3 ; 1.55 ; Bifunctional chorismate mutase/cyclohexadienyl dehydratase from Aequoribacter fuscus 8CQ6 ; 2.44 ; Bifunctional cyclohexadienyl dehydratase/chorismate mutase from Duganella sacchari 8CQ4 ; 1.65 ; Bifunctional cyclohexadienyl dehydratase/chorismate mutase from Janthinobacterium sp. HH01 2HXD ; 2.3 ; Bifunctional dCTP deaminase-dUTPase mutant enzyme variant E145A from Methanocaldococcus jannaschii in complex with alpha,beta-imido dUTP and magnesium 3GF0 ; 2.62 ; Bifunctional dCTP deaminase-dUTPase mutant enzyme variant E145Q from Methanocaldococcus jannaschii in complex with pyrophosphate and magnesium 2QXX ; 2.0 ; Bifunctional dCTP deaminase: dUTPase from Mycobacterium tuberculosis in complex with dTTP 2QLP ; 2.47 ; Bifunctional dCTP deaminase:dUTPase from Mycobacterium tuberculosis, apo form 5D2A ; 2.134 ; Bifunctional dendrimers 1RNI ; 1.85 ; Bifunctional DNA primase/polymerase domain of ORF904 from the archaeal plasmid pRN1 1RO2 ; 1.6 ; Bifunctional DNA primase/polymerase domain of ORF904 from the archaeal plasmid pRN1- Triple mutant F50M/L107M/L110M manganese soak 1RO0 ; 1.8 ; Bifunctional DNA primase/polymerase domain of ORF904 from the archaeal plasmid pRN1- Triple mutant F50M/L107M/L110M SeMet remote 4CXO ; 1.67 ; bifunctional endonuclease in complex with ssDNA 7KR9 ; 1.9 ; Bifunctional enzyme GlmU bound to Zn(II) 6MLY ; 2.7 ; Bifunctional GH43-CE Bacteroides eggerthii, BACEGG_01304 1BEA ; 1.95 ; BIFUNCTIONAL HAGEMAN FACTOR/AMYLASE INHIBITOR FROM MAIZE 5IDM ; 1.9 ; Bifunctional histidine kinase CckA (domain, CA) in complex with c-di-GMP and AMPPNP/Mg2+ 5IDJ ; 3.02 ; Bifunctional histidine kinase CckA (domains DHp-CA) in complex with ADP/Mg2+ 8D7I ; 3.63 ; Bifunctional Inhibition of Neutrophil Elastase and Cathepsin G by Eap1 from S. aureus 8D7K ; 3.1 ; Bifunctional Inhibition of Neutrophil Elastase and Cathepsin G by Eap2 from S. aureus 8F8U ; 2.85 ; Bifunctional ligase/repressor BirA from Klebsiella pneumoniae (Domain Swapped Dimer) 8FI3 ; 2.9 ; Bifunctional ligase/repressor BirA from Klebsiella pneumoniae complexed with biotin (Domain Swapped Dimer) 5K2M ; 2.18 ; Bifunctional LysX/ArgX from Thermococcus kodakarensis with LysW-gamma-AAA 5FA9 ; 2.302 ; Bifunctional Methionine Sulfoxide Reductase AB (MsrAB) from Treponema denticola 1BIP ; ; BIFUNCTIONAL PROTEINASE INHIBITOR TRYPSIN/A-AMYLASE FROM SEEDS OF RAGI (ELEUSINE CORACANA GAERTNERI) 8KHQ ; 2.69 ; Bifunctional sulfoxide synthase OvoA_Th2 in complex with histidine and cysteine 3AWI ; 3.0 ; Bifunctional tRNA modification enzyme MnmC from Escherichia coli 6JBS ; 2.4 ; Bifunctional xylosidase/glucosidase LXYL 7EY2 ; 2.43 ; Bifunctional xylosidase/glucosidase LXYL D300N mutant with intermediate substrate xylose 6KJ0 ; 2.27 ; Bifunctional xylosidase/glucosidase LXYL mutant E529Q C2221 7EY1 ; 2.46 ; Bifunctional xylosidase/glucosidase LXYL with intermediate substrate xylose 7YO6 ; 2.54 ; Bifunctional xylosidase/glucosidase LXYL with intermediate substrate xylose for 5 sec 8GYY ; 2.07 ; Bifunctional xylosidase/glucosidase LXYL with intermediate substrate xylose, 120 seconds 7YO7 ; 1.81 ; Bifunctional xylosidase/glucosidase LXYL with intermediate substrate xylose, 5 seconds 6FC5 ; 1.88 ; Bik1 CAP-Gly domain 6FC6 ; 1.8 ; Bik1 CAP-Gly domain with ETF peptide from Bim1 6TMM ; 2.398 ; BIL2 domain from T.thermophila BUBL1 locus (C1A-N143A) 6Y75 ; 2.3 ; BIL2 domain from T.thermophila BUBL1 locus (C1A-N143A) 7SVE ; 2.15 ; Bile Salt Hydrolase A from Lactobacillus acidophilus 8ETK ; 1.83 ; Bile salt hydrolase A from Lactobacillus gasseri bound to covalent probe 8EWT ; 2.03 ; Bile salt hydrolase A from Lactobacillus gasseri bound to covalent probe 7SVG ; 1.35 ; Bile Salt Hydrolase A from Lactobacillus gasseri with chenodeoxycholate and taurine bound 7SVF ; 2.05 ; Bile salt hydrolase A from Lactobacillus gasseri with taurine bound 7SVH ; 1.56 ; Bile Salt Hydrolase B from Lactobacillus gasseri 8ESG ; 2.18 ; Bile Salt Hydrolase B from Lactobacillus gasseri with covalent inhibitor bound 8ETF ; 1.79 ; Bile Salt Hydrolase B from Lactobacillus gasseri with covalent inhibitor bound 8FAO ; 2.14 ; Bile Salt Hydrolase B from Lactobacillus gasseri with covalent inhibitor bound 7SVI ; 1.45 ; Bile Salt Hydrolase C from Lactobacillus johnsonii 8ESL ; 3.11 ; Bile Salt Hydrolase from a Bacteroidales species with covalent inhibitor bound 8VRX ; 2.04 ; Bile salt hydrolase from Arthrobacter citreus 8VSY ; 1.6 ; Bile salt hydrolase from Arthrobacter citreus with covalent inhibitor AAA-10 bound 8ESI ; 2.35 ; Bile Salt Hydrolase from B. longum with covalent inhibitor bound 8ETE ; 2.3 ; Bile Salt Hydrolase from B. longum with covalent inhibitor bound 7SVJ ; 1.43 ; Bile Salt Hydrolase from Lactobacillus ingluviei 7SVK ; 1.66 ; Bile Salt Hydrolase from Lactobacillus reuteri 5HKE ; 1.9 ; bile salt hydrolase from Lactobacillus salivarius 5Y7P ; 2.1 ; Bile salt hydrolase from lactobacillus salivarius complex with glycocholic acid and cholic acid 6P4L ; 3.1 ; Bile salts alter the mouse norovirus capsid conformation; possible implications for cell attachment and immune evasion. 7Z5P ; 2.991 ; Bilirubin oxidase from Bacillus pumilus 6I3J ; 2.59 ; Bilirubin oxidase from Myrothecium verrucaria in complex with ferricyanide 6I3K ; 1.6 ; Bilirubin oxidase from Myrothecium verrucaria, mutant W396A in complex with ferricyanide 6I3L ; 2.1 ; Bilirubin oxidase from Myrothecium verrucaria, mutant W396F 3FDL ; 1.78 ; Bim BH3 peptide in complex with Bcl-xL 6X8O ; 1.31 ; BimBH3 peptide tetramer 6OT9 ; 2.4 ; Bimetallic dodecameric cage design 1 (BMC1) from cytochrome cb562 6OT4 ; 1.4 ; Bimetallic dodecameric cage design 2 (BMC2) from cytochrome cb562 6OT7 ; 1.85 ; Bimetallic dodecameric cage design 3 (BMC3) from cytochrome cb562 6OT8 ; 1.5 ; Bimetallic hexameric cage design 4 (BMC4) from cytochrome cb562 3IO8 ; 2.3 ; BimL12F in complex with Bcl-xL 3IO9 ; 2.4 ; BimL12Y in complex with Mcl-1 6MB7 ; 2.2 ; Binary (paromomycin) structure of AAC-IIIb 6MB4 ; 2.302 ; Binary (sisomicin) structure of AAC-IIIb 1SKS ; 2.3 ; Binary 3' complex of T7 DNA polymerase with a DNA primer/template containing a cis-syn thymine dimer on the template 1SKW ; 2.3 ; Binary 3' complex of T7 DNA polymerase with a DNA primer/template containing a disordered cis-syn thymine dimer on the template 1SL1 ; 2.2 ; Binary 5' complex of T7 DNA polymerase with a DNA primer/template containing a cis-syn thymine dimer on the template 3HB5 ; 2.0 ; Binary and ternary crystal structures of a novel inhibitor of 17 beta-HSD type 1: a lead compound for breast cancer therapy 3S9D ; 1.9999 ; binary complex between IFNa2 and IFNAR2 8BV0 ; 4.5 ; Binary complex between the NB-ARC domain from the Tomato immune receptor NRC1 and the SPRY domain-containing effector SS15 from the potato cyst nematode 6N2R ; 2.1 ; Binary complex crystal structure of DNA polymerase Beta with 5-carboxy-dC (5-caC) at the templating position 5J0O ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with A:A mismatch at the primer terminus 5J0P ; 2.2 ; Binary complex crystal structure of DNA polymerase Beta with A:C mismatch at the primer terminus 5J0Q ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with A:G mismatch at the primer terminus 5J0R ; 2.001 ; Binary complex crystal structure of DNA polymerase Beta with C:A mismatch at the primer terminus 5J0S ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with C:T mismatch at the primer terminus 5J0T ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with G:A mismatch at the primer terminus 5J0U ; 2.1 ; Binary complex crystal structure of DNA polymerase Beta with G:G mismatch at the primer terminus 5TZV ; 2.0 ; Binary complex crystal structure of DNA Polymerase Beta with G:T mismatch at the primer terminus 5J0W ; 2.4 ; Binary complex crystal structure of DNA polymerase Beta with T:C mismatch at the primer terminus 5J0X ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with T:G mismatch at the primer terminus 5J0Y ; 2.0 ; Binary complex crystal structure of DNA polymerase Beta with T:T mismatch at the primer terminus 4R64 ; 2.2 ; Binary complex crystal structure of E295K mutant of DNA polymerase Beta 4R63 ; 1.85 ; Binary complex crystal structure of R258A mutant of DNA polymerase Beta 6Y1D ; 1.38 ; Binary complex of 14-3-3 sigma (C38N) with the Estrogen Related Receptor gamma (DBD) phosphopeptide 6Y58 ; 1.904 ; Binary complex of 14-3-3 sigma (C38N) with the Estrogen Related Receptor gamma (LBD) phosphopeptide 6TCH ; 1.801 ; Binary complex of 14-3-3 sigma and a high-affinity non-canonical 9-mer peptide binder 3LW1 ; 1.28 ; Binary complex of 14-3-3 sigma and p53 pT387-peptide 8A9G ; 1.961 ; Binary complex of 14-3-3 zeta Glucocorticoid Receptor (GR) pT524 peptide stabilised by (R)-para chloropyrrolidone1 6YMO ; 2.02 ; Binary complex of 14-3-3 zeta with Glucocorticoid Receptor (GR) pS617 peptide 6YO8 ; 2.09 ; Binary complex of 14-3-3 zeta with Glucocorticoid Receptor (GR) pT524 peptide 6YOS ; 2.75 ; Binary complex of 14-3-3 zeta with Glucocorticoid Receptor (GR) pT524 pS617 peptide 6F09 ; 1.594 ; Binary complex of 14-3-3 zeta with ubiquitin specific protease 8 (USP8) pSer718 peptide 4K8X ; 2.28 ; Binary complex of 9N DNA polymerase in the replicative state 6F9Q ; 1.4 ; Binary complex of a 7S-cis-cis-nepetalactol cyclase from Nepeta mussinii with NAD+ 3MGH ; 2.4 ; Binary complex of a DNA polymerase lambda loop mutant 3PVX ; 3.03 ; Binary complex of Aflatoxin B1 Adduct modified DNA (AFB1-FAPY) with DNA Polymerase IV 2M2U ; ; Binary complex of African Swine Fever Virus Pol X with MgdGTP 4DQS ; 1.66 ; Binary complex of Bacillus DNA Polymerase I Large Fragment and duplex DNA with rC in primer terminus paired with dG of template 4E0D ; 1.58 ; Binary complex of Bacillus DNA Polymerase I Large Fragment E658A and duplex DNA 1EH4 ; 2.8 ; BINARY COMPLEX OF CASEIN KINASE-1 FROM S. POMBE WITH AN ATP COMPETITIVE INHIBITOR, IC261 2CSN ; 2.5 ; BINARY COMPLEX OF CASEIN KINASE-1 WITH CKI7 1CSN ; 2.0 ; BINARY COMPLEX OF CASEIN KINASE-1 WITH MGATP 2FLN ; 2.5 ; binary complex of catalytic core of human DNA polymerase iota with DNA (template A) 5O98 ; 1.55 ; Binary complex of Catharanthus roseus Vitrosamine Synthase with NADP+ 3RJG ; 2.0 ; Binary complex of DNA Polymerase Beta with a gapped DNA containing 8odG:dA base-pair at primer Terminus 7S9N ; 1.71 ; Binary complex of DNA Polymerase Beta with Fapy-dG in the template position 7S9O ; 2.23 ; Binary complex of DNA Polymerase Beta with Ring open Intermediate Fapy-dG in the template position 7CO6 ; 1.9 ; Binary complex of DNA polymerase Mu with 1-nt gapped DNA (templating thymine) 2W9B ; 2.28 ; Binary complex of Dpo4 bound to N2,N2-dimethyl-deoxyguanosine modified DNA 2HMY ; 2.61 ; BINARY COMPLEX OF HHAI METHYLTRANSFERASE WITH ADOMET FORMED IN THE PRESENCE OF A SHORT NONPSECIFIC DNA OLIGONUCLEOTIDE 3ISB ; 2.0 ; Binary complex of human DNA polymerase beta with a gapped DNA 3ISC ; 2.0 ; Binary complex of human DNA polymerase beta with an abasic site (THF) in the gapped DNA 3H40 ; 2.3 ; Binary complex of human DNA polymerase iota with template U/T 6P1M ; 1.65 ; Binary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG 4YCX ; 2.1 ; Binary complex of human DNA Polymerase Mu with 2-nt gapped DNA substrate 4LZG ; 1.599 ; Binary complex of human DNA Polymerase Mu with DNA 6IPL ; 1.64 ; Binary Complex of Human DNA Polymerase Mu with MgdATP 6IPM ; 1.72 ; Binary Complex of Human DNA Polymerase Mu with MgdCTP 6IPN ; 1.6 ; Binary Complex of Human DNA Polymerase Mu with MgdGTP 6IPK ; 2.15 ; Binary Complex of Human DNA Polymerase Mu with Mn8oxodGTP 6AEC ; 1.72 ; Binary complex of human DNA Polymerase Mu with MnATP 6AK6 ; 1.75 ; Binary Complex of Human DNA Polymerase Mu with MnCTP 6IPH ; 1.65 ; Binary Complex of Human DNA Polymerase Mu with MndATP 6IPI ; 1.8 ; Binary Complex of Human DNA Polymerase Mu with MndCTP 5ZLC ; 2.0 ; Binary complex of human DNA Polymerase Mu with MndGTP 6IPJ ; 1.98 ; Binary Complex of Human DNA Polymerase Mu with MndTTP 6AK5 ; 1.7 ; Binary Complex of Human DNA Polymerase Mu with MnGTP 6AEH ; 1.64 ; Binary complex of human DNA Polymerase Mu with MnUTP 1M6W ; 2.3 ; Binary complex of Human glutathione-dependent formaldehyde dehydrogenase and 12-Hydroxydodecanoic acid 1MP0 ; 2.2 ; Binary Complex of Human Glutathione-Dependent Formaldehyde Dehydrogenase with NAD(H) 6E8Z ; 2.1 ; Binary complex of Human glycerol 3-phosphate dehydrogenase with NAD 6PYP ; 1.95 ; Binary Complex of Human Glycerol 3-Phosphate Dehydrogenase, R269A mutant 5DDY ; 3.36 ; Binary complex of human Polymerase lambda with dCTP 4XVI ; 3.1 ; Binary complex of human polymerase nu and DNA with the finger domain ajar 4XVK ; 2.95 ; Binary complex of human polymerase nu and DNA with the finger domain closed 4XVM ; 3.2 ; Binary complex of human polymerase nu and DNA with the finger domain closed and thumb domain rotated out 4XVL ; 3.301 ; Binary complex of human polymerase nu and DNA with the finger domain open 1JCN ; 2.5 ; BINARY COMPLEX OF HUMAN TYPE-I INOSINE MONOPHOSPHATE DEHYDROGENASE WITH 6-CL-IMP 4O22 ; 1.7 ; Binary complex of metal-free PKAc with SP20. 4I2D ; 2.3 ; Binary complex of mouse TdT with AMPcPP 4I2I ; 2.5 ; Binary complex of mouse TdT with AP5A 4I2J ; 2.7 ; Binary complex of mouse TdT with dCTP 4I2F ; 2.1 ; Binary complex of mouse TdT with ssDNA 4I2G ; 2.5 ; Binary complex of mouse TdT with ssDNA 4I29 ; 2.2 ; Binary complex of mouse TdT with ssDNA and Mn++ 4I28 ; 2.15 ; Binary complex of mouse TdT with ssDNA and Zn++ 4I2A ; 1.9 ; Binary complex of mouse TdT with ssDNA in absence of divalent transition metal ion 1KDH ; 3.0 ; Binary Complex of Murine Terminal Deoxynucleotidyl Transferase with a Primer Single Stranded DNA 6O4X ; 2.3 ; Binary complex of native hAChE with 9-aminoacridine 6O50 ; 2.352 ; Binary complex of native hAChE with BW284c51 6O4W ; 2.35 ; Binary complex of native hAChE with Donepezil 6U3P ; 3.0 ; Binary complex of native hAChE with oxime reactivator LG-703 6O5V ; 2.152 ; Binary complex of native hAChE with oxime reactivator RS-170B 6U34 ; 2.4 ; Binary complex of native hAChE with oxime reactivator RS194B 4NNB ; 2.0 ; Binary complex of ObcA with oxaloacetate 1BCP ; 2.7 ; BINARY COMPLEX OF PERTUSSIS TOXIN AND ATP 5XFP ; 2.3 ; Binary complex of PHF1 and a double stranded DNA 1Q5M ; 1.32 ; Binary complex of rabbit 20alpha-hydroxysteroid dehydrogenase with NADPH 2FL3 ; 2.39 ; Binary Complex of Restriction Endonuclease HinP1I with Cognate DNA 2XC9 ; 2.2 ; BINARY COMPLEX OF SULFOLOBUS SOLFATARICUS DPO4 DNA POLYMERASE AND 1, N2-ETHENOGUANINE MODIFIED DNA, MAGNESIUM FORM 7KQM ; 2.73 ; Binary complex of TERT (telomerase reverse transcriptase) with RNA/telomeric DNA hybrid 2FLP ; 2.4 ; Binary complex of the catalytic core of human DNA polymerase iota with DNA (template G) 4KTQ ; 2.5 ; BINARY COMPLEX OF THE LARGE FRAGMENT OF DNA POLYMERASE I FROM T. AQUATICUS BOUND TO A PRIMER/TEMPLATE DNA 4C8M ; 1.568 ; Binary complex of the large fragment of DNA polymerase I from Thermus Aquaticus with the aritificial base pair d5SICS-dNaM at the postinsertion site (sequence context 2) 4C8O ; 1.75 ; Binary complex of the large fragment of DNA polymerase I from Thermus Aquaticus with the aritificial base pair dNaM-d5SICS at the postinsertion site (sequence context 2) 4C8N ; 1.88 ; Binary complex of the large fragment of DNA polymerase I from Thermus Aquaticus with the aritificial base pair dNaM-d5SICS at the postinsertion site (sequence context 3) 4C8L ; 1.7 ; Binary complex of the large fragment of DNA polymerase I from Thermus Aquaticus with the artificial base pair dNaM-d5SICS at the postinsertion site (sequence context 1) 2W5Y ; 2.0 ; Binary Complex of the Mixed Lineage Leukaemia (MLL1) SET Domain with the cofactor product S-Adenosylhomocysteine. 1J8R ; 1.8 ; BINARY COMPLEX OF THE PAPG RECEPTOR-BINDING DOMAIN BOUND TO GBO4 RECEPTOR 5X8G ; 1.9 ; Binary complex structure of a double mutant I454RA456K of o-Succinylbenzoate CoA Synthetase (MenE) from Bacillus Subtilis bound with its product analogue OSB-NCoA at 1.90 angstrom 1J1C ; 2.1 ; Binary complex structure of human tau protein kinase I with ADP 1J1B ; 1.8 ; Binary complex structure of human tau protein kinase I with AMPPNP 4N56 ; 2.2 ; Binary complex structure of Klenow fragment of Taq DNA polymerase I707L mutant (Cs3C KlenTaq) with DNA 4XIU ; 2.5 ; Binary complex structure of Klenow fragment of Taq DNA polymerase I707L mutant with DNA containing TTT overhang 6NMK ; 1.94 ; Binary complex structure of the T130K mutant of ANT-4'' with Neomycin 5JKM ; 1.8 ; Binary crystal structure of positively and negatively supercharged variants Ftn(pos) and Ftn(neg) from human heavy chain ferritin (Mg acetate condition) 5JKL ; 1.8 ; Binary crystal structure of positively and negatively supercharged variants Ftn(pos) and Ftn(neg) from human heavy chain ferritin (Mg formate condition) 6H6T ; 1.9 ; Binary crystal structure of positively and negatively supercharged variants Ftn(pos) and Ftn(neg) from human heavy chain ferritin (propandiol condition, coordination number 8) 8PP3 ; 1.55 ; Binary crystal structure of positively supercharged ferritin variant Ftn(pos) and crystal contact tuned negatively supercharged ferritin variant Ftn(neg)-m1 (Mg formate condition) 8PP2 ; 2.001 ; Binary crystal structure of positively supercharged ferritin variant Ftn(pos) and native(K86Q) human heavy chain ferritin (Mg formate condition) 8PP4 ; 1.999 ; Binary crystal structure of positively supercharged ferritin variant Ftn(pos) and reduced charge negatively supercharged ferritin variant Ftn(neg)-m3 (Mg formate condition) 1OS9 ; 1.85 ; Binary enzyme-product complexes of human MMP12 2JYB ; ; binary hvDHFR1:folate complex 6PH5 ; 2.602 ; Binary product complex crystal structure of DNA polymerase Beta with an extra-helical template base 7JYB ; 2.76 ; Binary soak structure of alkanesulfonate monooxygenase MsuD from Pseudomonas fluorescens with FMN 8BI7 ; 1.4 ; Binary structure of 14-3-3s and PKR phosphopeptide 8BFC ; 1.4 ; Binary structure of 14-3-3s and RND3 phosphopeptide 6MP3 ; 1.907 ; Binary structure of DNA polymerase eta in complex with templating hypoxanthine 6MQ8 ; 1.969 ; Binary structure of DNA polymerase eta in complex with templating hypoxanthine 2ORE ; 2.99 ; Binary Structure of Escherichia coli DNA Adenine Methyltransferase and S-adenosylhomocysteine 1W73 ; 2.1 ; Binary structure of human DECR solved by SeMet SAD. 1W8D ; 2.2 ; Binary structure of human DECR. 1Q0S ; 2.3 ; Binary Structure of T4DAM with AdoHcy 6P04 ; 2.3 ; Binary structure of the E52D mutant of ANT-4'' with Neomycin 3RR7 ; 1.95 ; Binary Structure of the large fragment of Taq DNA polymerase bound to an abasic site 7K64 ; 2.8 ; Binary titrated soak structure of alkanesulfonate monooxygenase MsuD from Pseudomonas fluorescens with FMN 2MUF ; ; Binding activity, structure, and immunogenicity of synthetic peptides derived from Plasmodium falciparum CelTOS and TRSP proteins 5ZUJ ; 2.6 ; Binding and Enhanced Binding between Key Immunity Proteins TRAF6 and TIFA 6A33 ; 2.1 ; Binding and Enhanced Binding between Key Immunity Proteins TRAF6 and TIFA 5FIU ; 1.84 ; Binding and structural studies of a 5,5-difluoromethyl adenosine nucleoside with the fluorinase enzyme 5TPC ; 2.0 ; Binding domain of BoNT/A complexed with ganglioside 5TPB ; 2.6 ; Binding domain of BoNT/A complexed with ganglioside variant 6TWP ; 1.15 ; Binding domain of BoNT/A5 6TWO ; 1.35 ; Binding domain of BoNT/A6 4ISQ ; 2.65 ; Binding domain of Botulinum neurotoxin DC in complex with human synaptotagmin I 4ISR ; 2.59 ; Binding domain of Botulinum neurotoxin DC in complex with rat synaptotagmin II 5LR0 ; 2.59 ; Binding domain of Botulinum Neurotoxin DC in complex with SialylT 7OVW ; 2.2 ; Binding domain of botulinum neurotoxin E in complex with GD1a 1C47 ; 2.7 ; BINDING DRIVEN STRUCTURAL CHANGES IN CRYSTALINE PHOSPHOGLUCOMUTASE ASSOCIATED WITH CHEMICAL REACTION 7CYH ; 3.9 ; Binding interface of SARS-CoV-2 RBD and its neutralizing antibody HB27 5MBA ; 1.9 ; BINDING MODE OF AZIDE TO FERRIC APLYSIA LIMACINA MYOGLOBIN. CRYSTALLOGRAPHIC ANALYSIS AT 1.9 ANGSTROMS RESOLUTION 1HSR ; 1.6 ; BINDING MODE OF BENZHYDROXAMIC ACID TO ARTHROMYCES RAMOSUS PEROXIDASE 1C8I ; 2.0 ; BINDING MODE OF HYDROXYLAMINE TO ARTHROMYCES RAMOSUS PEROXIDASE 1CK6 ; 1.9 ; BINDING MODE OF SALICYLHYDROXAMIC ACID TO ARTHROMYCES RAMOSUS PEROXIDASE 7RKY ; 3.8 ; Binding mode of US27-Gi-scFv16 in OCL-state 4UVR ; 2.48 ; Binding mode, selectivity and potency of N-indolyl-oxopyridinyl-4- amino-propanyl-based inhibitors targeting Trypanosoma cruzi CYP51 1KTI ; 1.97 ; BINDING OF 100 MM N-ACETYL-N'-BETA-D-GLUCOPYRANOSYL UREA TO GLYCOGEN PHOSPHORYLASE B: KINETIC AND CRYSTALLOGRAPHIC STUDIES 2PRI ; 2.3 ; BINDING OF 2-DEOXY-GLUCOSE-6-PHOSPHATE TO GLYCOGEN PHOSPHORYLASE B 3JQM ; 2.5 ; Binding of 5'-GTP to molybdenum cofactor biosynthesis protein MoaC from Thermus theromophilus HB8 1SPR ; 2.5 ; BINDING OF A HIGH AFFINITY PHOSPHOTYROSYL PEPTIDE TO THE SRC SH2 DOMAIN: CRYSTAL STRUCTURES OF THE COMPLEXED AND PEPTIDE-FREE FORMS 1SPS ; 2.7 ; BINDING OF A HIGH AFFINITY PHOSPHOTYROSYL PEPTIDE TO THE SRC SH2 DOMAIN: CRYSTAL STRUCTURES OF THE COMPLEXED AND PEPTIDE-FREE FORMS 1FDG ; 1.6 ; BINDING OF A MACROCYCLIC BISACRIDINE AND AMETANTRONE TO CGTACG INVOLVES SIMILAR UNUSUAL INTERCALATION PLATFORMS (AMETANTRONE COMPLEX) 1FD5 ; 1.1 ; BINDING OF A MACROCYCLIC BISACRIDINE AND AMETANTRONE TO CGTACG INVOLVES SIMILAR UNUSUAL INTERCALATION PLATFORMS (BISACRIDINE COMPLEX) 3APR ; 1.8 ; BINDING OF A REDUCED PEPTIDE INHIBITOR TO THE ASPARTIC PROTEINASE FROM RHIZOPUS CHINENSIS. IMPLICATIONS FOR A MECHANISM OF ACTION 11BA ; 2.06 ; BINDING OF A SUBSTRATE ANALOGUE TO A DOMAIN SWAPPING PROTEIN IN THE COMPLEX OF BOVINE SEMINAL RIBONUCLEASE WITH URIDYLYL-2',5'-ADENOSINE 6BNA ; 2.21 ; BINDING OF AN ANTITUMOR DRUG TO DNA. NETROPSIN AND C-G-C-G-A-A-T-T-BRC-G-C-G 2BZS ; 2.0 ; Binding of anti-cancer prodrug CB1954 to the activating enzyme NQO2 revealed by the crystal structure of their complex. 1B0S ; ; BINDING OF AR-1-144, A TRI-IMIDAZOLE DNA MINOR GROOVE BINDER, TO CCGG SEQUENCE ANALYZED BY NMR SPECTROSCOPY 6V7G ; 1.4 ; Binding of Benzoic Acid and Anions Within the Cupin Domains of the Vicillin Protein Canavalin from Jack Bean (canavalia ensiformis): Crystal Structures 1XC7 ; 1.83 ; Binding of beta-D-glucopyranosyl bismethoxyphosphoramidate to glycogen phosphorylase b: Kinetic and crystallographic studies 3MGS ; 3.15 ; Binding of Cesium ions to the Nucleosome Core particle 2DSU ; 2.2 ; Binding of chitin-like polysaccharide to protective signalling factor: Crystal structure of the complex formed between signalling protein from sheep (SPS-40) with a tetrasaccharide at 2.2 A resolution 2DSW ; 2.8 ; Binding of chitin-like polysaccharides to protective signalling factor: crystal structure of the complex of signalling protein from sheep (SPS-40) with a pentasaccharide at 2.8 A resolution 1PAD ; 2.8 ; Binding of chloromethyl ketone substrate analogues to crystalline papain 2PAD ; 2.8 ; BINDING OF CHLOROMETHYL KETONE SUBSTRATE ANALOGUES TO CRYSTALLINE PAPAIN 4PAD ; 2.8 ; Binding of chloromethyl ketone substrate analogues to crystalline papain 5PAD ; 2.8 ; BINDING OF CHLOROMETHYL KETONE SUBSTRATE ANALOGUES TO CRYSTALLINE PAPAIN 6PAD ; 2.8 ; Binding of chloromethyl ketone substrate analogues to crystalline papain 3MGP ; 2.44 ; Binding of Cobalt ions to the Nucleosome Core Particle 1V5Y ; 1.9 ; Binding of coumarins to NAD(P)H:FMN oxidoreductase 1V5Z ; 2.0 ; Binding of coumarins to NAD(P)H:FMN oxidoreductase 308D ; 1.5 ; BINDING OF DAUNOMYCIN TO B-D-GLUCOSYLATED DNA FOUND IN PROTOZOA TRYPANOSOMA BRUCEI STUDIED BY X-RAY CRYSTALLOGRAPH 1C4A ; 2.4 ; BINDING OF EXOGENOUSLY ADDED CARBON MONOXIDE AT THE ACTIVE SITE OF THE FE-ONLY HYDROGENASE (CPI) FROM CLOSTRIDIUM PASTEURIANUM 1C4C ; 2.4 ; BINDING OF EXOGENOUSLY ADDED CARBON MONOXIDE AT THE ACTIVE SITE OF THE FE-ONLY HYDROGENASE (CPI) FROM CLOSTRIDIUM PASTEURIANUM 1HLF ; 2.26 ; BINDING OF GLUCOPYRANOSYLIDENE-SPIRO-THIOHYDANTOIN TO GLYCOGEN PHOSPHORYLASE B: KINETIC AND CRYSTALLOGRAPHIC STUD 3U82 ; 3.164 ; Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion 1SFG ; ; BINDING OF HEXA-N-ACETYLCHITOHEXAOSE: A POWDER DIFFRACTION STUDY 8BNA ; 2.2 ; BINDING OF HOECHST 33258 TO THE MINOR GROOVE OF B-DNA 4TLN ; 2.3 ; BINDING OF HYDROXAMIC ACID INHIBITORS TO CRYSTALLINE THERMOLYSIN SUGGESTS A PENTACOORDINATE ZINC INTERMEDIATE IN CATALYSIS 5TLN ; 2.3 ; BINDING OF HYDROXAMIC ACID INHIBITORS TO CRYSTALLINE THERMOLYSIN SUGGESTS A PENTACOORDINATE ZINC INTERMEDIATE IN CATALYSIS 1HGD ; 2.7 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGE ; 2.6 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGF ; 3.0 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGG ; 2.9 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGH ; 2.7 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGI ; 2.7 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 1HGJ ; 2.7 ; BINDING OF INFLUENZA VIRUS HEMAGGLUTININ TO ANALOGS OF ITS CELL-SURFACE RECEPTOR, SIALIC ACID: ANALYSIS BY PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND X-RAY CRYSTALLOGRAPHY 2HU7 ; 2.01 ; Binding of inhibitors by Acylaminoacyl peptidase 2HU8 ; 2.4 ; Binding of inhibitors by Acylaminoacyl peptidase 2HU5 ; 2.0 ; Binding of inhibitors by Acylaminoacyl-peptidase 3O5W ; 2.7 ; Binding of kinetin in the active site of mistletoe lectin I 1SF6 ; ; BINDING OF N,N',N""-TRIACETYLCHITOTRIOSE TO HEW LYSOZYME: A POWDER DIFFRACTION STUDY 1SF4 ; ; BINDING OF N,N'-DIACETYLCHITOBIOSE TO HEW LYSOZYME: A POWDER DIFFRACTION STUDY 2PRJ ; 2.3 ; Binding of N-acetyl-beta-D-glucopyranosylamine to Glycogen Phosphorylase B 1JA2 ; 2.87 ; BINDING OF N-ACETYLGLUCOSAMINE TO CHICKEN EGG LYSOZYME: A POWDER DIFFRACTION STUDY 1JA4 ; 2.94 ; BINDING OF N-ACETYLGLUCOSAMINE TO CHICKEN EGG LYSOZYME: A POWDER DIFFRACTION STUDY 1JA6 ; 2.96 ; BINDING OF N-ACETYLGLUCOSAMINE TO CHICKEN EGG LYSOZYME: A POWDER DIFFRACTION STUDY 1JA7 ; 2.98 ; BINDING OF N-ACETYLGLUCOSAMINE TO CHICKEN EGG LYSOZYME: A POWDER DIFFRACTION STUDY 1TMN ; 1.9 ; Binding of n-carboxymethyl dipeptide inhibitors to thermolysin determined by x-ray crystallography. a novel class of transition-state analogues for zinc peptidases 4EJ1 ; 1.75 ; Binding of Nb113 camelid antibody fragment with the binary DHFR:folate complex 3MGQ ; 2.65 ; Binding of Nickel ions to the Nucleosome Core Particle 1W4O ; 1.6 ; Binding of Nonnatural 3'-Nucleotides to Ribonuclease A 1W4P ; 1.69 ; Binding of Nonnatural 3'-Nucleotides to Ribonuclease A 1W4Q ; 1.68 ; Binding of Nonnatural 3'-Nucleotides to Ribonuclease A 1HIY ; 2.6 ; Binding of nucleotides to NDP kinase 1SFB ; ; BINDING OF PENTA-N-ACETYLCHITOPENTAOSE TO HEW LYSOZYME: A POWDER DIFFRACTION STUDY 1H52 ; 2.0 ; Binding of Phosphate and Pyrophosphate ions at the active site of human Angiogenin as revealed by X-ray Crystallography 1H53 ; 2.0 ; Binding of Phosphate and Pyrophosphate ions at the active site of human Angiogenin as revealed by X-ray Crystallography 1HBY ; 2.0 ; Binding of Phosphate and Pyrophosphate ions at the active site of human angiogenin as revealed by X-ray Crystallography 3MGR ; 2.3 ; Binding of Rubidium ions to the Nucleosome Core Particle 1SF7 ; ; BINDING OF TETRA-N-ACETYLCHITOTETRAOSE TO HEW LYSOZYME: A POWDER DIFFRACTION STUDY 2KCE ; 2.2 ; BINDING OF THE ANTICANCER DRUG ZD1694 TO E. COLI THYMIDYLATE SYNTHASE: ASSESSING SPECIFICITY AND AFFINITY 1D21 ; 1.7 ; BINDING OF THE ANTITUMOR DRUG NOGALAMYCIN AND ITS DERIVATIVES TO DNA: STRUCTURAL COMPARISON 1D22 ; 1.8 ; BINDING OF THE ANTITUMOR DRUG NOGALAMYCIN AND ITS DERIVATIVES TO DNA: STRUCTURAL COMPARISON 1PIV ; 2.9 ; BINDING OF THE ANTIVIRAL DRUG WIN51711 TO THE SABIN STRAIN OF TYPE 3 POLIOVIRUS: STRUCTURAL COMPARISON WITH DRUG BINDING IN RHINOVIRUS 14 5LZP ; 3.5 ; Binding of the C-terminal GQYL motif of the bacterial proteasome activator Bpa to the 20S proteasome 380D ; 2.0 ; BINDING OF THE MODIFIED DAUNORUBICIN WP401 ADJACENT TO A T-G BASE PAIR INDUCES THE REVERSE WATSON-CRICK CONFORMATION: CRYSTAL STRUCTURES OF THE WP401-TGGCCG AND WP401-CGG[BR5C]CG COMPLEXES 381D ; 2.1 ; BINDING OF THE MODIFIED DAUNORUBICIN WP401 ADJACENT TO A T-G BASE PAIR INDUCES THE REVERSE WATSON-CRICK CONFORMATION: CRYSTAL STRUCTURES OF THE WP401-TGGCCG AND WP401-CGG[BR5C]CG COMPLEXES 6ZO9 ; 2.7 ; Binding of two rifabutins to the access pocket of AcrB-G621P T protomer 3BXX ; 2.9 ; Binding of two substrate analogue molecules to dihydroflavonol 4-reductase alters the functional geometry of the catalytic site 3C1T ; 2.252 ; Binding of two substrate analogue molecules to dihydroflavonol 4-reductase alters the functional geometry of the catalytic site 2IOD ; 2.06 ; Binding of two substrate analogue molecules to dihydroflavonol-4-reductase alters the functional geometry of the catalytic site 2NNL ; 2.1 ; Binding of two substrate analogue molecules to dihydroflavonol-4-reductase alters the functional geometry of the catalytic site 6KD9 ; 2.44 ; Binding pose 1 of 2-CF3 bound AsqJ complex 6K30 ; 2.684 ; Binding pose 2 of 2-CF3 bound AsqJ complex 1T1M ; 12.0 ; Binding position of ribosome recycling factor (RRF) on the E. coli 70S ribosome 3Q2C ; 2.5 ; Binding properties to HLA class I molecules and the structure of the leukocyte Ig-like receptor A3 (LILRA3/ILT6/LIR4/CD85e) 5HI3 ; 2.15 ; Binding site elucidation and structure guided design of macrocyclic IL-17A antagonists 5HI4 ; 1.8 ; Binding site elucidation and structure guided design of macrocyclic IL-17A antagonists 5HI5 ; 1.8 ; Binding site elucidation and structure guided design of macrocyclic IL-17A antagonists 3GOK ; 3.2 ; Binding site mapping of protein ligands 5JDB ; 1.901 ; Binding specificity of P[8] VP8* proteins of rotavirus vaccine strains with histo-blood group antigens 1OKX ; 2.8 ; Binding Structure of Elastase Inhibitor Scyptolin A 1UY1 ; 1.8 ; Binding sub-site dissection of a family 6 carbohydrate-binding module by X-ray crystallography and isothermal titration calorimetry 1UY2 ; 1.7 ; Binding sub-site dissection of a family 6 carbohydrate-binding module by X-ray crystallography and isothermal titration calorimetry 1UY3 ; 1.89 ; Binding sub-site dissection of a family 6 carbohydrate-binding module by X-ray crystallography and isothermal titration calorimetry 1UY4 ; 1.69 ; Binding sub-site dissection of a family 6 carbohydrate-binding module by X-ray crystallography and isothermal titration calorimetry 7L30 ; 4.4 ; Binjari virus (BinJV) 7SXF ; 1.94 ; BIO-2895 (BRD0705) bound GSK3alpha-axin complex 7SXJ ; 1.85 ; BIO-2895 (BRD0705) bound GSK3beta-axin complex 7SXG ; 2.4 ; BIO-8546 bound GSK3alpha-axin complex 7SXH ; 2.09 ; BIO-8546 bound GSK3beta-axin complex 3FNN ; 2.3 ; Biochemical and structural analysis of an atypical ThyX: Corynebacterium glutamicum NCHU 87078 depends on ThyA for thymidine biosynthesis 2JAH ; 1.8 ; Biochemical and structural analysis of the Clavulanic acid dehydeogenase (CAD) from Streptomyces clavuligerus 1H4C ; 1.65 ; Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA 1H4D ; 1.74 ; Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA 1H4E ; 1.65 ; Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA 1HJJ ; 1.65 ; Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA 1HJL ; 2.0 ; Biochemical and Structural Analysis of the Molybdenum Cofactor Biosynthesis protein MobA 4BIF ; 2.46 ; Biochemical and structural characterisation of a novel manganese- dependent hydroxynitrile lyase from bacteria 8C10 ; 1.0 ; Biochemical and structural characterisation of an alkaline family GH5 cellulase from a shipworm symbiont 1DYW ; 1.8 ; Biochemical and structural characterization of a divergent loop cyclophilin from Caenorhabditis elegans 3NNK ; 2.58 ; Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway 4RMF ; 2.4 ; Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target 4AXV ; 2.17 ; Biochemical and structural characterization of the MpaA amidase as part of a conserved scavenging pathway for peptidoglycan derived peptides in gamma-proteobacteria 3DVT ; 2.3 ; Biochemical and structural characterization of the PAK1- LC8 interaction 5W11 ; 2.311 ; Biochemical and structural insights into the catalytic mechanism of thermostable cellobiohydrolase Cel7A from industrially relevant fungus Myceliophthora thermophila 4G68 ; 1.8 ; Biochemical and structural insights into xylan utilization by the thermophilic bacteriumcaldanaerobius polysaccharolyticus 2A8N ; 1.6 ; Biochemical and Structural Studies of A-to-I Editing by tRNA:A34 Deaminases at the Wobble Position of Transfer RNA 1N8I ; 2.1 ; Biochemical and Structural Studies of Malate Synthase from Mycobacterium tuberculosis 1N8W ; 2.7 ; Biochemical and Structural Studies of Malate Synthase from Mycobacterium tuberculosis 4V2I ; 1.686 ; Biochemical characterization and structural analysis of a new cold- active and salt tolerant esterase from the marine bacterium Thalassospira sp 2HDH ; 2.2 ; BIOCHEMICAL CHARACTERIZATION AND STRUCTURE DETERMINATION OF HUMAN HEART SHORT CHAIN L-3-HYDROXYACYL COA DEHYDROGENASE PROVIDE INSIGHT INTO CATALYTIC MECHANISM 3HAD ; 2.0 ; BIOCHEMICAL CHARACTERIZATION AND STRUCTURE DETERMINATION OF HUMAN HEART SHORT CHAIN L-3-HYDROXYACYL COA DEHYDROGENASE PROVIDE INSIGHT INTO CATALYTIC MECHANISM 7Z1U ; 2.24 ; Biochemical implications of the substitution of a unique cysteine residue in sugar beet phytoglobin BvPgb 1.2 4AO9 ; 1.5 ; Biochemical properties and crystal structure of a novel beta- phenylalanine aminotransferase from Variovorax paradoxus 4AOA ; 2.28 ; Biochemical properties and crystal structure of a novel beta- phenylalanine aminotransferase from Variovorax paradoxus 4X9X ; 1.199 ; Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid Binding Protein Family 3PS7 ; 2.85 ; Biochemical studies and crystal structure determination of dihydrodipicolinate synthase from Pseudomonas aeruginosa 6YKY ; 2.52 ; Biochemical, Cellular and Structural Characterization of Novel ERK3 Inhibitors 6YLC ; 2.43 ; Biochemical, Cellular and Structural Characterization of Novel ERK3 Inhibitors 6YLL ; 2.89 ; Biochemical, Cellular and Structural Characterization of Novel ERK3 Inhibitors 7C7R ; 3.07 ; Biofilm associated protein - B domain 7C7U ; 1.93 ; Biofilm associated protein - BSP domain 7DM0 ; 1.55 ; Biofilm associated protein - C region 7V9A ; 3.94 ; biogenesis module of human telomerase holoenzyme 4HFO ; 3.0 ; Biogenic amine-binding protein selenomethionine derivative 8BV2 ; 2.0 ; Biological and structural analysis of new potent Integrase-LEDGF allosteric HIV-1 inhibitors 2J4T ; 2.02 ; Biological and Structural Features of Murine Angiogenin-4, an Angiogenic Protein 1ANT ; 3.0 ; BIOLOGICAL IMPLICATIONS OF A 3 ANGSTROMS STRUCTURE OF DIMERIC ANTITHROMBIN 4B97 ; 1.276 ; Biomass sensing modules from putative Rsgi-like proteins of Clostridium thermocellum resemble family 3 carbohydrate-binding module of cellulosome 4B9P ; 1.182 ; Biomass sensoring module from putative Rsgi2 protein of Clostridium thermocellum resemble family 3 carbohydrate-binding module of cellulosome 4B9C ; 1.171 ; Biomass sensoring modules from putative Rsgi-like proteins of Clostridium thermocellum resemble family 3 carbohydrate-binding module of cellulosome 5F1U ; 2.35 ; biomimetic design results in a potent allosteric inhibitor of dihydrodipicolinate synthase from Campylobacter jejuni 5F1V ; 2.2 ; biomimetic design results in a potent allosteric inhibitor of dihydrodipicolinate synthase from Campylobacter jejuni 4AOD ; 6.0 ; Biomphalaria glabrata Acetylcholine-binding protein type 1 (BgAChBP1) 4AOE ; 6.0 ; Biomphalaria glabrata Acetylcholine-binding protein type 2 (BgAChBP2) 5FUC ; 2.7 ; Biophysical and cellular characterisation of a junctional epitope antibody that locks IL-6 and gp80 together in a stable complex: implications for new therapeutic strategies 8FTG ; 1.13 ; Biophysical and Structural Characterization of an Anti-Caffeine VHH Antibody 5YZV ; 2.6 ; Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA 2L7C ; ; Biophysical studies of lipid interacting regions of DGD2 in Arabidopsis thaliana 6EBE ; 1.88 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 6ECZ ; 2.21 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 6EDA ; 1.879 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 6EEA ; 1.63 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 6EEH ; 1.629 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 6EEO ; 1.719 ; Bioreductive 4-hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII and show hypoxia-enhanced cytotoxicity against human cancer cell lines. 1N3R ; 2.8 ; Biosynthesis of pteridins. Reaction mechanism of GTP cyclohydrolase I 1N3S ; 2.55 ; Biosynthesis of pteridins. Reaction mechanism of GTP cyclohydrolase I 1N3T ; 3.2 ; Biosynthesis of pteridins. Reaction mechanism of GTP cyclohydrolase I 5MWQ ; ; Biosynthetic engineered A21K-B31K-B32R human insulin monomer structure in water/acetonitrile solution 5MHD ; ; Biosynthetic engineered A22S-B3K-B31R human insulin monomer structure in water/acetonitrile solutions. 2M1E ; ; Biosynthetic engineered B28K-B29P human insulin monomer structure in in water solutions. 2M1D ; ; Biosynthetic engineered B28K-B29P human insulin monomer structure in in water/acetonitrile solutions. 4DD5 ; 1.25 ; Biosynthetic Thiolase (ThlA1) from Clostridium difficile 2VTZ ; 2.3 ; Biosynthetic thiolase from Z. ramigera. Complex of the C89A mutant with coenzyme A. 2WL4 ; 1.8 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. COMPLEX OF THE H348A MUTANT WITH COENZYME A. 2WL5 ; 1.8 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. COMPLEX OF THE H348N MUTANT WITH COENZYME A. 2WKT ; 2.0 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. COMPLEX OF THE N316A MUTANT WITH COENZYME A. 2WKV ; 2.5 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. COMPLEX OF THE N316D MUTANT WITH COENZYME A. 2VU0 ; 1.87 ; Biosynthetic thiolase from Z. ramigera. Complex of the oxidised enzyme with coenzyme A. 2VU1 ; 1.51 ; Biosynthetic thiolase from Z. ramigera. Complex of with O-pantheteine- 11-pivalate. 2VU2 ; 2.65 ; Biosynthetic thiolase from Z. ramigera. Complex with S-pantetheine-11- pivalate. 2WKU ; 2.3 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. THE N316H MUTANT. 2WL6 ; 2.98 ; BIOSYNTHETIC THIOLASE FROM Z. RAMIGERA. THE N316H-H348N MUTANT. 1QFL ; 1.92 ; BIOSYNTHETIC THIOLASE FROM ZOOGLOEA RAMIGERA IN COMPLEX WITH A REACTION INTERMEDIATE. 1OU6 ; 2.07 ; Biosynthetic thiolase from Zoogloea ramigera in complex with acetyl-O-pantetheine-11-pivalate 1DLV ; 2.29 ; BIOSYNTHETIC THIOLASE FROM ZOOGLOEA RAMIGERA IN COMPLEX WITH COA 1M3Z ; 1.87 ; Biosynthetic thiolase, C89A mutant, complexed with acetyl coenzyme A 1M4S ; 1.87 ; Biosynthetic thiolase, Cys89 acetylated, unliganded form 1M4T ; 1.77 ; Biosynthetic thiolase, Cys89 butyrylated 1M3K ; 1.7 ; biosynthetic thiolase, inactive C89A mutant 1M1T ; 1.94 ; Biosynthetic thiolase, Q64A mutant 1XNY ; 2.2 ; Biotin and propionyl-CoA bound to Acyl-CoA Carboxylase Beta Subunit from S. coelicolor (PccB) 1O78 ; ; Biotin carboxyl carrier domain of transcarboxylase (1.3S) [10-48] deletion mutant 1DCZ ; ; BIOTIN CARBOXYL CARRIER DOMAIN OF TRANSCARBOXYLASE (TC 1.3S) 1DD2 ; ; BIOTIN CARBOXYL CARRIER DOMAIN OF TRANSCARBOXYLASE (TC 1.3S) 5H80 ; 1.7 ; Biotin Carboxylase domain of single-chain bacterial carboxylase 7KC7 ; 2.2 ; Biotin Carboxylase domain of Thermophilic 2-Oxoglutarate Carboxylase bound to ADP without Magnesium with disordered phosphate tail 7KBL ; 2.3 ; Biotin Carboxylase domain of Thermophilic 2-Oxoglutarate Carboxylase bound to Bicarbonate 3T6F ; 1.22 ; Biotin complex of Y54F core streptavidin 5MLK ; 1.939 ; Biotin dependent carboxylase AccA3 dimer from Mycobacterium tuberculosis (Rv3285) 3EFS ; 2.3 ; Biotin protein ligase from Aquifex aeolicus in complex with biotin and ATP 3EFR ; 2.55 ; Biotin protein ligase R40G mutant from Aquifex aeolicus in complex with biotin 6J6J ; 3.2 ; Biotin-bound streptavidin 5TV5 ; 2.5 ; BioW from Aquifex aeoulicus 6ASY ; 1.85 ; BiP-ATP2 8OK2 ; 4.1 ; Bipartite interaction of TOPBP1 with the GINS complex 8G8S ; 2.1 ; bipartite p52 NLS in complex with Importin alpha 2 2IZP ; 2.1 ; BipD - an invasion protein associated with the type-III secretion system of Burkholderia pseudomallei. 2IXR ; 2.6 ; BipD of Burkholderia Pseudomallei 2J9T ; 2.7 ; BipD of Burkholderia Pseudomallei 1ULI ; 2.2 ; Biphenyl dioxygenase (BphA1A2) derived from Rhodococcus sp. strain RHA1 1ULJ ; 2.6 ; Biphenyl dioxygenase (BphA1A2) in complex with the substrate 6LLF ; 1.93 ; Biphenyl-2,2',3-triol-soaked resting complex of Oxy and Fd in carbazole 1,9a-dioxygenase 6LLK ; 2.3 ; Biphenyl-2,2',3-triol-soaked terminal oxygenase of carbazole 1,9a-dioxygenase 6LLH ; 1.99 ; Biphenyl-2,3-diol-soaked resting complex of Oxy and Fd in carbazole 1,9a-dioxygenase 6LLM ; 1.9 ; Biphenyl-2,3-diol-soaked terminal oxygenase of carbazole 1,9a-dioxygenase 4S0I ; 2.36 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: 11BIF, 42F, 79S, and 123A mutant 4S0J ; 2.1 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: 11BIF, 42F, 79S, and 123V mutant 4S0K ; 2.1 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: 11BIF, 42F, 79V, and 123A mutant 4S02 ; 1.95 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: I11BIF, F42W, Y79A, and F123Y mutant 4S03 ; 2.05 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: I11BIF, Y79I, and F123A mutant 4S0L ; 2.5 ; Biphenylalanine modified threonyl-tRNA synthetase from Pyrococcus abyssi: I11BIF, Y79V, and F123V mutant 2LJE ; ; Biphosphorylated (747pY, 759pY) beta3 integrin cytoplasmic tail under membrane mimetic conditions 5O6T ; 1.57 ; BIRC4 RING in complex with dimeric ubiquitin variant 1B6F ; ; BIRCH POLLEN ALLERGEN BET V 1 1BV1 ; 2.0 ; BIRCH POLLEN ALLERGEN BET V 1 1LLT ; 3.1 ; BIRCH POLLEN ALLERGEN BET V 1 MUTANT E45S 1QMR ; 2.15 ; BIRCH POLLEN ALLERGEN BET V 1 MUTANT N28T, K32Q, E45S, P108G 1CQA ; 2.4 ; BIRCH POLLEN PROFILIN 1A49 ; 2.1 ; BIS MG-ATP-K-OXALATE COMPLEX OF PYRUVATE KINASE 4H0W ; 2.4 ; Bismuth bound human serum transferrin 3RA7 ; 2.798 ; Bispecific digoxigenin binding antibodies for targeted payload delivery 2ZO3 ; 1.7 ; Bisphenylic Thrombin Inhibitors 3DHK ; 1.73 ; Bisphenylic Thrombin Inhibitors 6XK1 ; 1.7 ; Biuret Hydrolase (BiuH) from Rhodococcus sp. Mel C169S Apo form 6XJM ; 2.05 ; Biuret Hydrolase (BiuH) from Rhodococcus sp. Mel C169S bound with biuret 1MNB ; ; BIV TAT PEPTIDE (RESIDUES 68-81), NMR, MINIMIZED AVERAGE STRUCTURE 5JWM ; 1.71 ; Bivalent BET Bromodomain Inhibition 5AD2 ; 2.01 ; Bivalent binding to BET bromodomains 5AD3 ; 1.49 ; Bivalent binding to BET bromodomains 6FIC ; 2.18 ; Bivalent Inhibitor UNC4512 Bound to the TAF1 Bromodomain Tandem 4MGS ; 1.8 ; BiXyn10A CBM1 APO 4QPW ; 1.14 ; BiXyn10A CBM1 with Xylohexaose Bound 2VV6 ; 1.5 ; BJFIXLH IN FERRIC FORM 1XJ3 ; 1.9 ; bjFixLH in unliganded ferrous form 2VV7 ; 1.81 ; BJFIXLH IN UNLIGANDED FERROUS FORM 8JTD ; 4.9 ; BJOX2000.664 trimer in complex with Fab fragment of broadly neutralizing HIV antibody PGT145 6ESB ; 3.4 ; BK polyomavirus + 20 mM GT1b oligosaccharide 7ZIQ ; 1.9 ; BK Polyomavirus VP1 in complex with 6'-Sialyllactose glycomacromolecules (aromatic linker) 7PA7 ; 2.6 ; BK polyomavirus VP1 in complex with scFv 29B1 8AGH ; 1.887 ; BK Polyomavirus VP1 mutant E73A 8AGO ; 1.853 ; BK Polyomavirus VP1 mutant E73Q 8AH1 ; 2.006 ; BK Polyomavirus VP1 mutant N-Q 8AH0 ; 1.798 ; BK Polyomavirus VP1 mutant VQQ 7B6A ; 1.44 ; BK Polyomavirus VP1 pentamer core (residues 30-299) 7B69 ; 1.474 ; BK Polyomavirus VP1 pentamer core(residues 26-299) mutant C104S 7B6C ; 2.484 ; BK Polyomavirus VP1 pentamer fusion with long C-terminal extended arm 4MJ0 ; 1.7 ; BK Polyomavirus VP1 pentamer in complex with GD3 oligosaccharide 1JXP ; 2.2 ; BK STRAIN HEPATITIS C VIRUS (HCV) NS3-NS4A 4X6B ; 2.1 ; BK6 TCR apo structure 4EBN ; 2.85 ; BlaC Amoxicillin Acyl-Intermediate Complex 3VFH ; 2.57 ; BlaC E166A CDC-1 Acyl-Intermediate 3VFF ; 2.777 ; BlaC E166A CDC-OMe Acyl-Intermediate Complex 4EBP ; 2.29 ; BlaC E166A Cefotaxime Acyl-Intermediate Complex 4EBL ; 2.1 ; BlaC E166A Faropenem Acyl-Intermediate Complex 3QM9 ; 0.91 ; Blackfin tuna azido-myoglobin, atomic resolution 3QM7 ; 0.96 ; Blackfin tuna carbonmonoxy-myoglobin, atomic resolution 3QM8 ; 0.91 ; Blackfin tuna cyanomet-myoglobin, atomic resolution 3QM6 ; 0.91 ; Blackfin tuna deoxy-myoglobin, atomic resolution 2NRL ; 0.91 ; Blackfin tuna myoglobin 3QMA ; 0.94 ; Blackfin tuna myoglobin imidazole complex, atomic resolution 3QM5 ; 0.91 ; Blackfin tuna oxy-myoglobin, atomic resolution 3UY6 ; 2.1 ; BlaR1 sensor domain from Staphylococcus aureus with N439V mutation 8H49 ; 2.0 ; Blasnase-M57P 8H44 ; 1.8 ; Blasnase-P55N 7C8Q ; 1.89 ; Blasnase-T13A with D-asn 7C91 ; 1.98 ; Blasnase-T13A with D-asn 7CBR ; 1.8 ; Blasnase-T13A with D-asn 7CBW ; 1.978 ; Blasnase-T13A with D-asn 7C8X ; 1.994 ; Blasnase-T13A with L-asn 7CBU ; 2.25 ; Blasnase-T13A with L-Asp 8H4D ; 1.9 ; Blasnase-T13A/M57N 8H4G ; 1.81 ; Blasnase-T13A/M57N 8H4A ; 1.9 ; Blasnase-T13A/M57P 8H4C ; 1.6 ; Blasnase-T13A/M57P 8H4B ; 2.0 ; Blasnase-T13A/M57P with L-asn 8H47 ; 1.9 ; Blasnase-T13A/P55F 8H4F ; 1.9 ; Blasnase-T13A/P55F with D-asn 8H48 ; 1.8 ; Blasnase-T13A/P55F with L-asn 8H45 ; 1.97 ; Blasnase-T13A/P55N 8H4E ; 2.06 ; Blasnase-T13A/P55N with D-asn 8H46 ; 1.8 ; Blasnase-T13A/P55N with L-asn 5M7K ; 3.5 ; Blastochloris viridis photosynthetic reaction center - RC_vir_xfel 5M7J ; 3.5 ; Blastochloris viridis photosynthetic reaction center structure using best crystal approach 5M7L ; 3.6 ; Blastochloris viridis photosynthetic reaction center synchrotron structure 4OAY ; 1.95 ; BldD CTD-c-di-GMP complex 4OAZ ; 2.25 ; BldD CTD-c-di-GMP complex 2VZ3 ; 1.9 ; bleached galactose oxidase 1BYL ; 2.3 ; BLEOMYCIN RESISTANCE PROTEIN FROM STREPTOALLOTEICHUS HINDUSTANUS 2J9A ; 1.73 ; blLAP in Complex with Microginin FR1 6I5R ; 1.6 ; BlMnBP1 binding protein of an ABC transporter from Bifidobacterium animalis subsp. lactis ATCC27673 in complex with mannobiose 6I5W ; 1.9 ; BlMnBP1 binding protein of an ABC transporter from Bifidobacterium animalis subsp. lactis ATCC27673 in complex with mannobiose 6I5V ; 2.01 ; BlMnBP1 binding protein of an ABC transporter from Bifidobacterium animalis subsp. lactis ATCC27673 in complex with mannotriose 5BKI ; 3.1 ; Blocker-free closed MthK channel in nanodisc 6NMR ; 2.42 ; Blocking Fab 119 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 6NMS ; 2.11 ; Blocking Fab 136 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 7KPG ; 2.27 ; Blocking Fab 25 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 4ZET ; 2.9 ; Blood dendritic cell antigen 2 (BDCA-2) complexed with GalGlcNAcMan 4ZES ; 1.65 ; Blood dendritic cell antigen 2 (BDCA-2) complexed with methyl-mannoside 5F7N ; 2.28 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with blood group A Lewis b pentasaccharide 5F7Y ; 2.44 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with blood group A type-1 hexasaccharide 5F7W ; 2.81 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with blood group B Lewis b heptasaccharide 5F7M ; 2.72 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with blood group H Lewis b hexasaccharide 5F7L ; 2.74 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with Nanobody Nb-ER14 5F7K ; 2.17 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain 17875 in complex with Nanobody Nb-ER19 5F97 ; 2.62 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain A730 in complex with blood group A type 1 hexasaccharide 5F93 ; 2.99 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain A730 in complex with blood group H Lewis b hexasaccharide 5F9A ; 2.44 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain P436 in complex with blood group H Lewis b hexasaccharide 5F9D ; 2.59 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain P436 in complex with Lewis b blood group B heptasaccharide 5F8R ; 2.44 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain S831 in complex with blood group H Lewis b hexasaccharide 5F8Q ; 2.59 ; Blood group antigen binding adhesin BabA of Helicobacter pylori strain S831 in complex with Nanobody Nb-ER19 5M7B ; 1.5 ; Blood group synthase AAGlyB in complex with UDP and cryoprotected with glycerol 5M7C ; 1.6 ; Blood group synthase AAGlyB in complex with UDP and cryoprotected with PEG 3350 5M7D ; 1.2 ; Blood group synthase AAGlyB in complex with UDP-Gal and cryoprotected with glycerol 6GX0 ; 1.25 ; Blood group synthase AAGlyB in complex with UDP-Gal and cryoprotected with PEG 3350 6GX2 ; 1.07 ; Blood group synthase AAGlyB in complex with UDP-GalNAc and cryoprotected with glycerol 6GX1 ; 1.6 ; Blood group synthase AAGlyB in complex with UDP-GalNAc and cryoprotected with PEG 3350 5M79 ; 1.3 ; Blood group synthase AAGlyB in complex with UMP and cryoprotected with glycerol 5M7A ; 1.304 ; Blood group synthase AAGlyB in complex with UMP and cryoprotected with PEG 3350 6GWY ; 1.4 ; Blood group synthase AAGlyB in its apo form cryoprotected with glycerol 6GWZ ; 1.65 ; Blood group synthase AAGlyB in its apo form cryoprotected with PEG 3350 2BYC ; 1.9 ; BlrB - a BLUF protein, dark state structure 2KB2 ; ; BlrP1 BLUF 6W6Z ; 1.71 ; BlsA ground state 6W72 ; 1.76 ; BlsA photo-activated state 2ISK ; 2.1 ; BluB bound to flavin anion (charge transfer complex) 2ISJ ; 2.3 ; BluB bound to oxidized FMN 2ISL ; 2.9 ; BluB bound to reduced flavin (FMNH2) and molecular oxygen. (clear crystal form) 4ORN ; 1.71 ; Blue Fluorescent Protein mKalama1 2M7U ; ; Blue Light-Absorbing State of TePixJ, an Active Cyanobacteriochrome Domain 1BFP ; 2.1 ; BLUE VARIANT OF GREEN FLUORESCENT PROTEIN 3IYK ; 7.0 ; Bluetongue virus structure reveals a sialic acid binding domain, amphipathic helices and a central coiled coil in the outer capsid proteins 2XZ3 ; 1.95 ; BLV TM hairpin 1BMO ; 3.1 ; BM-40, FS/EC DOMAIN PAIR 3RPG ; 2.6485 ; Bmi1/Ring1b-UbcH5c complex structure 1BKT ; ; BMKTX TOXIN FROM SCORPION BUTHUS MARTENSII KARSCH, NMR, 25 STRUCTURES 4IY9 ; 2.1 ; Bmlp3 - C2 crystal form 4IY8 ; 2.36 ; Bmlp3 - P21 crystal form 6BTO ; 2.05 ; BMP1 complexed with (2~{S})-2-[[(1~{R},3~{S},4~{S})-2-[(2~{R})-2-[2-(oxidanylamino)-2-oxidanylidene-ethyl]heptanoyl]-2-azabicyclo[2.2.1]heptan-3-yl]carbonylamino]-2-phenyl-ethanoic acid 6BTP ; 1.93 ; BMP1 complexed with a hydroxamate 6BTQ ; 1.75 ; BMP1 complexed with a hydroxamate - compound 2 6BSM ; 2.33 ; BMP1 complexed with a reverse hydroxamate - compound 4 6BTN ; 2.05 ; BMP1 complexed with a reverse hydroxymate - compound 1 6BSL ; 1.45 ; BMP1 complexed with a reverse hydroxymate - compound 22 8E3G ; 2.8 ; BMP2/GDF5 heterodimer 7YI6 ; 2.28 ; bnAb 3D1 in complex with 6-mer HR1 peptide from HCoV-229E S protein 6KPP ; 2.74524 ; BNC105 in complex with tubulin 1Y64 ; 3.05 ; Bni1p Formin Homology 2 Domain complexed with ATP-actin 1DKJ ; 2.0 ; BOBWHITE QUAIL LYSOZYME 1DKK ; 1.9 ; BOBWHITE QUAIL LYSOZYME WITH NITRATE 6SGA ; 3.1 ; Body domain of the mt-SSU assemblosome from Trypanosoma brucei 5GAP ; 3.6 ; Body region of the U4/U6.U5 tri-snRNP 2BW2 ; ; BofC from Bacillus subtilis 8DGE ; 1.89 ; BoGH13ASus from Bacteroides ovatus 8DL2 ; 1.99 ; BoGH13ASus from Bacteroides ovatus bound to acarbose 8DL1 ; 2.09 ; BoGH13ASus-E523Q from Bacteroides ovatus bound to maltoheptaose 1SI9 ; 2.27 ; Boiling stable protein isolated from Populus tremula 4PUI ; 1.698 ; BolA domain of SufE1 from Arabidopsis thaliana 4PUG ; 1.998 ; BolA1 from Arabidopsis thaliana 6LGA ; 1.85 ; Bombyx mori GH13 sucrose hydrolase 6LGD ; 1.75 ; Bombyx mori GH13 sucrose hydrolase complexed with 1,4-dideoxy-1,4-imino-D-arabinitol 6LGC ; 1.9 ; Bombyx mori GH13 sucrose hydrolase complexed with 1-deoxynojirimycin 6LGE ; 1.75 ; Bombyx mori GH13 sucrose hydrolase complexed with acarbose 6LGB ; 1.7 ; Bombyx mori GH13 sucrose hydrolase complexed with glucose 6LGF ; 1.85 ; Bombyx mori GH13 sucrose hydrolase mutant D247N complexed with sucrose 6LGG ; 1.84 ; Bombyx mori GH13 sucrose hydrolase mutant E322Q complexed with sucrose 6LGH ; 1.7 ; Bombyx mori GH13 sucrose hydrolase mutant E322Q covalent intermediate 6LGI ; 1.6 ; Bombyx mori GH13 sucrose hydrolase mutant E322Q covalent intermediate complexed with fructose 7BWB ; 1.8 ; Bombyx mori GH32 beta-fructofuranosidase BmSUC1 7BWC ; 1.95 ; Bombyx mori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose 4PC4 ; 1.8 ; Bombyx mori lipoprotein 6 4EFR ; 2.5 ; Bombyx mori lipoprotein 7 (crystal form II) at 2.50 A resolution 4EFQ ; 1.94 ; Bombyx mori lipoprotein 7 - platinum derivative at 1.94 A resolution 4EFP ; 1.33 ; Bombyx mori lipoprotein 7 isolated from its natural source at 1.33 A resolution 1DQE ; 1.8 ; BOMBYX MORI PHEROMONE BINDING PROTEIN 2P70 ; 2.1 ; Bombyx mori pheromone binding protein bound to bell pepper odorant 2P71 ; 2.006 ; Bombyx mori pheromone binding protein bound to iodohexadecane 8GH6 ; 3.08 ; Bombyx mori R2 retrotransposon initiating target-primed reverse transcription 6KXK ; 2.5 ; BON1 6KXU ; 2.83 ; BON1 6KXT ; 1.25 ; BON1-C2B 3ONB ; 1.45 ; Bond breakage and relocation of a covalently bound bromine of IDD594 in a complex with hAR T113A mutant after extensive radiation dose 3ONC ; 1.06 ; Bond breakage and relocation of a covalently bound bromine of IDD594 in a complex with hAR T113A mutant after moderate radiation dose 3UNX ; 1.26 ; Bond length analysis of asp, glu and his residues in subtilisin Carlsberg at 1.26A resolution 4YTA ; 1.2 ; BOND LENGTH ANALYSIS OF ASP, GLU AND HIS RESIDUES IN TRYPSIN AT 1.2A RESOLUTION 4NY7 ; 1.44 ; Bond length analysis of the PqqC Y175F mutant structure shows evidence for bound PQQ in the reduced form 6I99 ; 2.001 ; Bone Marrow Tyrosine Kinase in Chromosome X in complex with a newly designed covalent inhibitor JS24 6SF1 ; 2.8 ; Bone morphogenetic protein 10 (BMP10) complexed with extracellular domain of activin receptor-like kinase 1 (ALK1). 6SF3 ; 2.30001 ; Bone morphogenetic protein 10 (BMP10) in complex with extracellular domain of activin receptor-like kinase 1 (ALK1) at 2.3 Angstrom 1BMP ; 2.8 ; BONE MORPHOGENETIC PROTEIN-7 1S3T ; 2.1 ; BORATE INHIBITED BACILLUS PASTEURII UREASE CRYSTAL STRUCTURE 5G17 ; 1.51 ; Bordetella Alcaligenes HDAH (T101A) bound to 9,9,9-trifluoro-8,8- dihydroxy-N-phenylnonanamide. 5G1A ; 1.42 ; Bordetella Alcaligenes HDAH bound to PFSAHA 5G1B ; 1.7 ; Bordetella Alcaligenes HDAH native 1Y9U ; 1.39 ; Bordetella ferric binding protein 6RFM ; ; Bordetella pertussis adenylate cyclase toxin transmembrane segment 411-490 in DPC micelles 6M9A ; 2.3 ; Bordetella pertussis globin coupled sensor regulatory domain (BpeGReg) 7RW6 ; 2.55 ; BORF2-APOBEC3Bctd Complex 1LWV ; 2.3 ; Borohydride-trapped hOgg1 Intermediate Structure Co-Crystallized with 8-aminoguanine 1LWW ; 2.1 ; Borohydride-trapped hOgg1 Intermediate Structure Co-Crystallized with 8-bromoguanine 8PKH ; 3.35 ; Borrelia bacteriophage BB1 procapsid, fivefold-symmetrized outer shell 7MZT ; 4.07 ; Borrelia burgdorferi BBK32-C in complex with an autolytic fragment of human C1r at 4.1A 6SHU ; 1.43003 ; Borrelia burgdorferi BmpD nucleoside binding protein bound to adenosine 7U4C ; 2.28 ; Borrelia burgdorferi HtpG N-terminal domain (1-228) in complex with BX-2819 6J6B ; 1.901 ; Borrelia burgdorferi OspA via surface entropy reduction (form2) 6J6C ; 1.6 ; Borrelia burgdorferi OspA via surface entropy reduction (form3) 6J6D ; 1.9 ; Borrelia burgdorferi OspA via surface entropy reduction (form4) 6J6E ; 1.5 ; Borrelia burgdorferi OspA via surface entropy reduction (form5) 4ALY ; 2.4 ; Borrelia burgdorferi outer surface lipoprotein BBA64 4AXZ ; 2.09 ; Borrelia burgdorferi outer surface lipoprotein BBA73 7RPR ; 1.9 ; Borrelia miyamotoi FbpA complement inhibitory domain 7TAY ; 2.95 ; Bos Taurus Mitochondrial BC1 in complex with Pyramoxadone 6CFX ; 2.0 ; Bosea sp GapR solved in the presence of DNA 6CFY ; 2.4 ; Bosea sp Root 381 apo GapR structure 3VEK ; 2.63 ; Both Zn Fingers of GATA1 Bound to Palindromic DNA Recognition Site, P1 Crystal Form 3VD6 ; 1.98 ; Both Zn Fingers of GATA1 Bound to Palindromic DNA Recognition Site, P21 Crystal Form 5TOS ; 2.35 ; Botrytis-induced kinase 1 (BIK1) from Arabidopsis thaliana 8PHS ; 2.82 ; Bottom cap of the Borrelia bacteriophage BB1 procapsid, fivefold-symmetrized outer shell 7Z48 ; 4.0 ; Bottom part (C5) of bacteriophage SU10 capsid 8IXK ; 3.3 ; bottom segment of the bacteriophage M13 mini variant 8JWX ; 3.3 ; bottom segment of the bacteriophage M13 mini variant 5LHJ ; 1.76 ; Bottromycin maturation enzyme BotP 5LHK ; 2.32 ; Bottromycin maturation enzyme BotP in complex with Mn 2ISE ; 2.2 ; Botulinum Neurotoxin A Light Chain WT Crystal Form A 2ISG ; 2.0 ; Botulinum Neurotoxin A Light Chain WT Crystal Form B 2ISH ; 2.0 ; Botulinum Neurotoxin A Light Chain WT Crystal Form C 6F0O ; 1.6 ; Botulinum neurotoxin A3 Hc domain 6THY ; 1.75 ; Botulinum neurotoxin A3 Hc domain in complex with GD1a 7QPT ; 2.3 ; Botulinum neurotoxin A4 cell binding domain in complex with GD1a oligosaccharide 6F0P ; 1.34 ; Botulinum neurotoxin A4 Hc domain 7QPU ; 2.4 ; Botulinum neurotoxin A5 cell binding domain in complex with GM1b oligosaccharide 8ALP ; 1.5 ; Botulinum neurotoxin A6 cell binding domain crystal form II 6ZVM ; 1.8 ; Botulinum neurotoxin B2 binding domain in complex with GD1a 6ZVN ; 2.5 ; Botulinum neurotoxin B2 binding domain in complex with human synaptotagmin I 8BYP ; 3.12 ; Botulinum neurotoxin serotype X in complex with NTNH/X 8AGK ; 1.5 ; Botulinum neurotoxin subtype A6 cell binding domain in complex with GD1a ganglioside 1F82 ; 2.2 ; BOTULINUM NEUROTOXIN TYPE B CATALYTIC DOMAIN 7T5F ; 2.6 ; Botulinum neurotoxin Type B Light Chain complexed with nanobodies JLJ-G3 and JNE-B10 3MPP ; 1.98 ; Botulinum Neurotoxin Type G Receptor Binding Domain 7KY2 ; 2.78 ; Botulism Neurooxin Light Chain A app form 7KYF ; 2.33 ; Botulism Neurooxin Light Chain A app form 7KYH ; 2.91 ; Botulism Neurooxin Light Chain A app form 1BFZ ; ; BOUND CONFORMATION OF N-TERMINAL CLEAVAGE PRODUCT PEPTIDE MIMIC (P1-P9 OF RELEASE SITE) WHILE BOUND TO HCMV PROTEASE AS DETERMINED BY TRANSFERRED NOESY EXPERIMENTS (P1-P5 SHOWN ONLY), NMR, 32 STRUCTURES 2O8Z ; ; Bound Structure of CRF1 Extracellular Domain Antagonist 4OI0 ; 2.2 ; bound to ssRNA dinucleotide GC, ADP, AlF4-, and Mg2+(transition state, data set I) 4OHZ ; 2.4 ; bound to ssRNA tetranucleotide GAAA, ADP, and Mg2+ 1VFA ; 1.8 ; BOUND WATER MOLECULES AND CONFORMATIONAL STABILIZATION HELP MEDIATE AN ANTIGEN-ANTIBODY ASSOCIATION 1VFB ; 1.8 ; BOUND WATER MOLECULES AND CONFORMATIONAL STABILIZATION HELP MEDIATE AN ANTIGEN-ANTIBODY ASSOCIATION 7WQG ; 2.5 ; Bovin Alpha-lactalbumin binding with zinc ions 7WQL ; 2.001 ; Bovin Beta-lactoglobulin binding with zinc ions 4BS3 ; 2.301 ; Bovin insulin structure determined by in situ crystal analysis and sulfur-SAD phasing at room temperature 7DR7 ; 3.3 ; bovine 20S immunoproteasome 7DRW ; 4.2 ; Bovine 20S immunoproteasome in complex with two human PA28alpha-beta activators 8AZK ; 3.1 ; Bovine 20S proteasome, untreated 2X24 ; 2.4 ; bovine ACC2 CT domain in complex with inhibitor 1AYF ; 1.85 ; BOVINE ADRENODOXIN (OXIDIZED) 4WFV ; 1.4 ; Bovine allergen Bos d 2 in the monoclinic space group C2. 4WFU ; 1.75 ; Bovine allergen Bos d 2 in the trigonal space group P3221. 4Q2K ; 2.2 ; Bovine alpha chymotrypsin bound to a cyclic peptide inhibitor, 5b 1MTN ; 2.8 ; BOVINE ALPHA-CHYMOTRYPSIN:BPTI CRYSTALLIZATION 3L1F ; 1.53 ; Bovine AlphaA crystallin 3L1E ; 1.15 ; Bovine AlphaA crystallin Zinc Bound 1AVC ; 2.9 ; BOVINE ANNEXIN VI (CALCIUM-BOUND) 7AJB ; 9.2 ; bovine ATP synthase dimer state1:state1 7AJC ; 11.9 ; bovine ATP synthase dimer state1:state2 7AJD ; 9.0 ; bovine ATP synthase dimer state1:state3 7AJE ; 9.4 ; bovine ATP synthase dimer state2:state1 7AJF ; 8.45 ; bovine ATP synthase dimer state2:state2 7AJG ; 10.7 ; bovine ATP synthase dimer state2:state3 7AJH ; 9.7 ; bovine ATP synthase dimer state3:state1 7AJI ; 11.4 ; bovine ATP synthase dimer state3:state2 7AJJ ; 13.1 ; bovine ATP synthase dimer state3:state3 6YY0 ; 3.23 ; bovine ATP synthase F1-peripheral stalk domain, state 1 6Z1R ; 3.29 ; bovine ATP synthase F1-peripheral stalk domain, state 2 6Z1U ; 3.47 ; bovine ATP synthase F1c8-peripheral stalk domain, state 3 6ZBB ; 3.61 ; bovine ATP synthase Fo domain 6ZPO ; 4.0 ; bovine ATP synthase monomer state 1 (combined) 6ZQM ; 3.29 ; bovine ATP synthase monomer state 2 (combined) 6ZQN ; 4.0 ; bovine ATP synthase monomer state 3 (combined) 6ZG8 ; 3.49 ; bovine ATP synthase rotor domain state 2 6ZG7 ; 3.49 ; bovine ATP synthase rotor domain, state 1 6ZIK ; 3.66 ; bovine ATP synthase rotor domain, state 3 6ZIQ ; 4.33 ; bovine ATP synthase stator domain, state 1 6ZIT ; 3.49 ; bovine ATP synthase Stator domain, state 2 6ZIU ; 6.02 ; bovine ATP synthase stator domain, state 3 3PH5 ; 2.4 ; Bovine beta lactoglobulin crystallized through ligandation of yttrium cations 3PH6 ; 2.53 ; Bovine beta lactoglobulin crytsallized through ligandation of yttrium 3NPO ; 2.2 ; Bovine beta lactoglobulin unliganded form 4IB8 ; 2.3 ; Bovine beta-lactoglobulin (isoform A) in complex with dodecyl sulphate (SDS) 4IB7 ; 2.2 ; Bovine beta-lactoglobulin (isoform A) in complex with dodecyltrimethylammonium (DTAC) 4IB6 ; 2.2 ; Bovine beta-lactoglobulin (isoform A) in complex with lauric acid (C12) 4IBA ; 2.3 ; Bovine beta-lactoglobulin (isoform B) in complex with dodecyl sulphate (SDS) 4IB9 ; 2.2 ; Bovine beta-lactoglobulin (isoform B) in complex with dodecyltrimethylammonium (DTAC) 1CJ5 ; ; BOVINE BETA-LACTOGLOBULIN A 3NQ3 ; 1.9 ; Bovine beta-lactoglobulin complex with capric acid 3NQ9 ; 1.9 ; Bovine beta-lactoglobulin complex with caprylic acid 5IO7 ; 2.85 ; Bovine beta-lactoglobulin complex with dodecane at high pressure (0.43 GPa) 5IO6 ; 2.851 ; Bovine beta-lactoglobulin complex with dodecane, ambient pressure 4GNY ; 1.6367 ; Bovine beta-lactoglobulin complex with dodecyl sulfate 3UEU ; 2.1 ; Bovine beta-lactoglobulin complex with lauric acid 4DQ4 ; 2.1 ; Bovine beta-lactoglobulin complex with linoleic acid 3UEV ; 1.9 ; Bovine beta-lactoglobulin complex with myristic acid 5LKF ; 2.5 ; Bovine beta-lactoglobulin complex with myristic acid at high pressure (0.55 GPa) 5LKE ; 2.8 ; Bovine beta-lactoglobulin complex with myristic acid, ambient pressure 4DQ3 ; 2.1 ; Bovine beta-lactoglobulin complex with oleic acid 3UEW ; 2.0 ; Bovine beta-lactoglobulin complex with palmitic acid 4Y0R ; 2.3 ; Bovine beta-lactoglobulin complex with pramocaine crystallized from ammonium sulphate (BLG-PRM2) 4Y0Q ; 2.0 ; Bovine beta-lactoglobulin complex with pramocaine crystallized from sodium citrate (BLG-PRM1) 3UEX ; 2.1 ; Bovine beta-lactoglobulin complex with stearic acid 4Y0P ; 2.2 ; Bovine beta-lactoglobulin complex with tetracaine (BLG-TET) 1B0O ; 2.5 ; BOVINE BETA-LACTOGLOBULIN COMPLEXED WITH PALMITATE, LATTICE Z 1GX9 ; 2.34 ; BOVINE BETA-LACTOGLOBULIN COMPLEXED WITH RETINOIC ACID, TRIGONAL LATTICE Z 1GXA ; 2.35 ; BOVINE BETA-LACTOGLOBULIN COMPLEXED WITH RETINOL AND PALMITIC ACID, TRIGONAL LATTICE Z 1GX8 ; 2.4 ; BOVINE BETA-LACTOGLOBULIN COMPLEXED WITH RETINOL, TRIGONAL LATTICE Z 4LZU ; 2.4 ; Bovine beta-lactoglobulin crystallized in the presence of 2 mM zinc chloride 4LZV ; 2.44 ; Bovine beta-lactoglobulin crystallized in the presence of 20 mM zinc chloride 6FXB ; 2.0 ; Bovine beta-lactoglobulin variant A at pH 4.0 1BEB ; 1.8 ; BOVINE BETA-LACTOGLOBULIN, LATTICE X 1G3D ; 1.8 ; BOVINE BETA-TRYPSIN BOUND TO META-AMIDINO SCHIFF BASE COPPER (II) CHELATE 1G3B ; 1.8 ; BOVINE BETA-TRYPSIN BOUND TO META-AMIDINO SCHIFF BASE MAGNESIUM(II) CHELATE 3AAV ; 1.7 ; Bovine beta-trypsin bound to meta-diamidino schiff base copper (II) chelate 3AAU ; 1.8 ; Bovine beta-trypsin bound to meta-diguanidino schiff base copper (II) chelate 3AAS ; 1.75 ; Bovine beta-trypsin bound to meta-guanidino schiff base copper (II) chelate 1G3C ; 1.8 ; BOVINE BETA-TRYPSIN BOUND TO PARA-AMIDINO SCHIFF BASE IRON(III) CHELATE 1G3E ; 1.8 ; BOVINE BETA-TRYPSIN BOUND TO PARA-AMIDINO SCHIFF-BASE COPPER (II) CHELATE 1IG5 ; 1.5 ; BOVINE CALBINDIN D9K BINDING MG2+ 1IGV ; 1.85 ; BOVINE CALBINDIN D9K BINDING MN2+ 6X5Z ; 4.24 ; Bovine Cardiac Myosin in Complex with Chicken Skeletal Actin and Human Cardiac Tropomyosin in the Rigor State 4AA8 ; 1.801 ; Bovine chymosin at 1.8A resolution 4AUC ; 1.6 ; Bovine chymosin in complex with Pepstatin A 1CA0 ; 2.1 ; BOVINE CHYMOTRYPSIN COMPLEXED TO APPI 1CBW ; 2.6 ; BOVINE CHYMOTRYPSIN COMPLEXED TO BPTI 2CGA ; 1.8 ; BOVINE CHYMOTRYPSINOGEN A. X-RAY CRYSTAL STRUCTURE ANALYSIS AND REFINEMENT OF A NEW CRYSTAL FORM AT 1.8 ANGSTROMS RESOLUTION 7QSL ; 2.76 ; Bovine complex I in lipid nanodisc, Active-apo 7QSK ; 2.84 ; Bovine complex I in lipid nanodisc, Active-Q10 7QSN ; 2.81 ; Bovine complex I in lipid nanodisc, Deactive-apo 7QSM ; 2.3 ; Bovine complex I in lipid nanodisc, Deactive-ligand (composite) 7QSO ; 3.02 ; Bovine complex I in lipid nanodisc, State 3 (Slack) 7QSD ; 3.1 ; Bovine complex I in the active state at 3.1 A 7R41 ; 2.3 ; Bovine complex I in the presence of IM1761092, active class i (Composite map) 7R42 ; 2.3 ; Bovine complex I in the presence of IM1761092, active class ii (Composite map) 7R43 ; 2.4 ; Bovine complex I in the presence of IM1761092, active class iii (Composite map) 7R44 ; 2.4 ; Bovine complex I in the presence of IM1761092, active class iv (Composite map) 7R45 ; 2.4 ; Bovine complex I in the presence of IM1761092, deactive class i (Composite map) 7R46 ; 2.4 ; Bovine complex I in the presence of IM1761092, deactive class ii (Composite map) 7R47 ; 2.3 ; Bovine complex I in the presence of IM1761092, deactive class iii (Composite map) 7R48 ; 2.3 ; Bovine complex I in the presence of IM1761092, deactive class iv (Composite map) 7R4C ; 2.3 ; Bovine complex I in the presence of IM1761092, deactive class v (Composite map) 7R4D ; 2.3 ; Bovine complex I in the presence of IM1761092, deactive class vi (Composite map) 7R4F ; 2.4 ; Bovine complex I in the presence of IM1761092, slack class i (Composite map) 7R4G ; 2.5 ; Bovine complex I in the presence of IM1761092, slack class ii (Composite map) 1VIN ; 2.0 ; BOVINE CYCLIN A3 1IHG ; 1.8 ; Bovine Cyclophilin 40, monoclinic form 1IIP ; 2.0 ; Bovine Cyclophilin 40, Tetragonal Form 1CYO ; 1.5 ; BOVINE CYTOCHROME B(5) 1PPJ ; 2.1 ; Bovine cytochrome bc1 complex with stigmatellin and antimycin 1PP9 ; 2.1 ; Bovine cytochrome bc1 complex with stigmatellin bound 2A06 ; 2.1 ; Bovine cytochrome bc1 complex with stigmatellin bound 7W3E ; 1.45 ; Bovine cytochrome c oxidese in CN-bound fully reduced state at 50 K 7VVR ; 1.65 ; Bovine cytochrome c oxidese in CN-bound mixed valence state at 50 K 1PID ; 1.3 ; BOVINE DESPENTAPEPTIDE INSULIN 1EUF ; 2.4 ; BOVINE DUODENASE(NEW SERINE PROTEASE), CRYSTAL STRUCTURE 1NSE ; 1.9 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE 1DM8 ; 2.25 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,2,4-TRIAZOLE-CARBOXAMIDINE (H4B BOUND) 1D1Y ; 2.2 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,3-PBITU (H4B FREE) 1D1X ; 2.0 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1,4-PBITU (H4B BOUND) 1FOI ; 1.93 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 1400W(H4B-FREE) 1D1W ; 2.0 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 2-AMINOTHIAZOLINE (H4B BOUND) 1D0C ; 1.65 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 3-BROMO-7-NITROINDAZOLE (H4B FREE) 1D0O ; 1.95 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 3-BROMO-7-NITROINDAZOLE (H4B PRESENT) 1DMK ; 1.9 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 4-AMINO-6-PHENYL-TETRAHYDROPTERIDINE 1DMJ ; 2.35 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 5,6-CYCLIC-TETRAHYDROPTERIDINE 1DMI ; 2.0 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 6S-H4B 1FOJ ; 2.1 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH 7-NITROINDAZOLE-2-CARBOXAMIDINE (H4B PRESENT) 1DM7 ; 2.1 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH HOMOARGININE (H4B FREE) 1ED4 ; 1.86 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH IPITU (H4B FREE) 1FOP ; 2.3 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH L-ARG AND NO(H4B-BOUND) 1FOO ; 2.0 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH L-ARG AND NO(H4B-FREE) 1ED6 ; 2.05 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH L-NIO (H4B FREE) 1DM6 ; 1.95 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH N-(4-CHLOROPHENYL)-N'-HYDROXYGUANIDINE (H4B FREE) 1I83 ; 2.0 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH N1,N14-BIS((S-METHYL)ISOTHIOUREIDO)TETRADECANE (H4B FREE) 1ED5 ; 1.8 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH NNA(H4B FREE) 1D1V ; 1.93 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH S-ETHYL-N-PHENYL-ISOTHIOUREA (H4B BOUND) 1Q2O ; 1.74 ; Bovine endothelial nitric oxide synthase N368D mutant heme domain dimer with L-N(omega)-nitroarginine-2,4-L-diaminobutyramide bound 2NSE ; 2.34 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE SUBSTRATE COMPLEX 9NSE ; 2.24 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, ETHYL-ISOSELENOUREA COMPLEX 7NSE ; 2.35 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, H4B-FREE, ADMA COMPLEX 6NSE ; 2.35 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, H4B-FREE, CANAVANINE COMPLEX 5NSE ; 1.9 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, H4B-FREE, HYDROXY-ARG COMPLEX 4NSE ; 1.95 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, H4B-FREE, L-ARG COMPLEX 8NSE ; 2.25 ; BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE, NNA COMPLEX 1P6M ; 2.27 ; Bovine endothelial NOS heme domain with (4S)-N-(4-amino-5-[aminoethyl]aminopentyl)-N'-nitroguanidine bound 1RS8 ; 2.3 ; Bovine endothelial NOS heme domain with D-lysine-D-nitroarginine amide bound 1RS9 ; 2.22 ; Bovine endothelial NOS heme domain with D-phenylalanine-D-nitroarginine amide bound 1P6N ; 2.5 ; Bovine endothelial NOS heme domain with L-N(omega)-nitroarginine-(4R)-amino-L-proline amide bound 1P6L ; 2.35 ; Bovine endothelial NOS heme domain with L-N(omega)-nitroarginine-2,4-L-diaminobutyric amide bound 2HX2 ; 1.95 ; Bovine eNOS heme domain complexed with (4S)-N-{4-Amino-5-[(2-aminoethyl)-hydroxyamino]-pentyl}-N'-nitroguanidine 1ZZS ; 1.85 ; Bovine eNOS N368D single mutant with L-N(omega)-Nitroarginine-(4R)-Amino-L-Proline Amide Bound 1ZZT ; 2.14 ; Bovine eNOS N368D/V106M double mutant with L-N(omega)-Nitroarginine-(4R)-Amino-L-Proline Amide Bound 3NSE ; 2.1 ; BOVINE ENOS, H4B-FREE, SEITU COMPLEX 6T40 ; 1.67 ; Bovine enterovirus F3 in complex with a Cysteinylglycine dipeptide 6T4C ; 1.8 ; Bovine enterovirus F3 in complex with glutathione 6T48 ; 2.17 ; Bovine enterovirus F3 in complex with glutathione and a Cysteinylglycine dipeptide 1BEV ; 3.0 ; BOVINE ENTEROVIRUS VG-5-27 1E79 ; 2.4 ; Bovine F1-ATPase inhibited by DCCD (dicyclohexylcarbodiimide) 4Z1M ; 3.3 ; Bovine F1-ATPase inhibited by three copies of the inhibitor protein IF1 crystallised in the presence of thiophosphate. 8ECV ; 1.81 ; Bovine Fab 2F12 8ECQ ; 2.0 ; Bovine Fab 2G3 8ECZ ; 2.82 ; Bovine Fab 4C1 8ED1 ; 2.31 ; Bovine Fab 5C1 5E99 ; 2.06 ; Bovine Fab fragment F08_B11 8EDF ; 3.4 ; Bovine Fab SKD in complex with Sars COV-2 receptor binding domain 1KIG ; 3.0 ; BOVINE FACTOR XA 2BAF ; ; Bovine Fibrinogen alpha-C Domain 4WBO ; 2.81 ; Bovine G Protein Coupled Receptor Kinase 1 in Complex with Amlexanox 4L9I ; 2.32 ; Bovine G Protein Coupled Receptor Kinase 1 in Complex with Paroxetine 4PNI ; 1.85 ; Bovine G protein-coupled receptor kinase 1 in complex with GSK2163632A 6DHK ; 3.5 ; Bovine glutamate dehydrogenase complexed with ADP 6DHL ; 3.624 ; Bovine glutamate dehydrogenase complexed with epicatechin-3-gallate (ECG) 6DHN ; 3.3 ; Bovine glutamate dehydrogenase complexed with Eu3+ 1HWY ; 3.2 ; BOVINE GLUTAMATE DEHYDROGENASE COMPLEXED WITH NAD AND 2-OXOGLUTARATE 6DHD ; 2.5 ; Bovine glutamate dehydrogenase complexed with NADH, GTP, glutamate 6DHQ ; 2.3 ; Bovine glutamate dehydrogenase complexed with NADPH, glutamate, and GTP 6DHM ; 3.0 ; Bovine glutamate dehydrogenase complexed with zinc 8AR8 ; 2.4 ; Bovine glutamate dehydrogenase in complex with ADP at 2.4 A resolution 8AR7 ; 2.448 ; Bovine glutamate dehydrogenase in ternary complex with the allosteric activators ADP and leucine 7PK1 ; 1.65 ; Bovine Glycine N-Acyltransferase 7PK2 ; 1.25 ; Bovine Glycine N-Acyltransferase 7PK0 ; 1.5 ; Bovine Glycine N-Acyltransferase complexed with Benzoyl-CoA 3PSC ; 2.67 ; Bovine GRK2 in complex with Gbetagamma subunits 3PVU ; 2.48 ; Bovine GRK2 in complex with Gbetagamma subunits and a selective kinase inhibitor (CMPD101) 3PVW ; 2.49 ; Bovine GRK2 in complex with Gbetagamma subunits and a selective kinase inhibitor (CMPD103A) 5HE0 ; 2.56 ; Bovine GRK2 in complex with Gbetagamma subunits and CCG215022 5HE2 ; 2.79 ; Bovine GRK2 in complex with Gbetagamma subunits and CCG224406 5HE3 ; 2.74 ; Bovine GRK2 in complex with Gbetagamma subunits and CCG224411 5UKM ; 3.03 ; bovine GRK2 in complex with human Gbetagamma subunits and CCG258208 (14as) 3KLR ; 0.88 ; Bovine H-protein at 0.88 angstrom resolution 5HR5 ; 1.82 ; Bovine Heart 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase (PFKFB2) 5COD ; 6.74 ; Bovine heart complex I membrane domain 1V54 ; 1.8 ; Bovine heart cytochrome c oxidase at the fully oxidized state 2DYR ; 1.8 ; Bovine heart cytochrome C oxidase at the fully oxidized state 2OCC ; 2.3 ; BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY OXIDIZED STATE 2ZXW ; 2.5 ; Bovine heart cytochrome c oxidase at the fully oxidized state (1-s X-ray exposure dataset) 3ABL ; 2.1 ; Bovine heart cytochrome c oxidase at the fully oxidized state (15-s X-ray exposure dataset) 3ABM ; 1.95 ; Bovine heart cytochrome c oxidase at the fully oxidized state (200-s X-ray exposure dataset) 1V55 ; 1.9 ; Bovine heart cytochrome c oxidase at the fully reduced state 3ABK ; 2.0 ; Bovine heart cytochrome c oxidase at the NO-bound fully reduced state (50K) 7CP5 ; 1.76 ; Bovine heart cytochrome c oxidase in a catalytic intermediate of E at 1.76 angstrom resolution 7D5W ; 1.84 ; Bovine heart cytochrome c oxidase in a catalytic intermediate of O at 1.84 angstrom resolution 7D5X ; 1.74 ; Bovine heart cytochrome c oxidase in a catalytic intermediate, IO10, at 1.74 angstrom resolution 1OCZ ; 2.9 ; BOVINE HEART CYTOCHROME C OXIDASE IN AZIDE-BOUND STATE 1OCO ; 2.8 ; BOVINE HEART CYTOCHROME C OXIDASE IN CARBON MONOXIDE-BOUND STATE 6JUW ; 1.8 ; BOVINE HEART CYTOCHROME C OXIDASE IN CATALITIC INTERMEDIATES AT 1.80 ANGSTROM RESOLUTION 7YPY ; 1.5 ; Bovine heart cytochrome c oxidase in fully oxidized state at 1.5 angstrom resolution 8H8R ; 1.7 ; Bovine Heart Cytochrome c Oxidase in the Calcium-bound Fully Oxidized State 8H8S ; 1.7 ; Bovine Heart Cytochrome c Oxidase in the Calcium-bound Fully Reduced State 3AG2 ; 1.802 ; Bovine Heart Cytochrome c Oxidase in the Carbon Monoxide-bound Fully Reduced State at 100 K 3AG1 ; 2.2 ; Bovine Heart Cytochrome c Oxidase in the Carbon Monoxide-bound Fully Reduced State at 280 K 7EV7 ; 1.7 ; Bovine heart cytochrome c oxidase in the carbon monoxide-bound fully reduced state at a 50 K 5B3S ; 1.68 ; Bovine heart cytochrome c oxidase in the carbon monoxide-bound mixed-valence state at 1.68 angstrom resolution (50 K) 3AG4 ; 2.05 ; Bovine Heart Cytochrome c Oxidase in the Cyanide Ion-bound Fully Reduced State at 100 K 7VUW ; 1.6 ; Bovine heart cytochrome c oxidase in the cyanide-bound fully oxidized state at 50 K 5B1A ; 1.5 ; Bovine heart cytochrome c oxidase in the fully oxidized state at 1.5 angstrom resolution 3ASO ; 2.3 ; Bovine heart cytochrome C oxidase in the fully oxidized state measured at 0.9 angstrom wavelength 3ASN ; 3.0 ; Bovine heart cytochrome C oxidase in the fully oxidized state measured at 1.7470 angstrom wavelength 5XDQ ; 1.77 ; Bovine heart cytochrome c oxidase in the fully oxidized state with pH 7.3 at 1.77 angstrom resolution 1OCR ; 2.35 ; BOVINE HEART CYTOCHROME C OXIDASE IN THE FULLY REDUCED STATE 2EIJ ; 1.9 ; Bovine heart cytochrome C oxidase in the fully reduced state 5B1B ; 1.6 ; Bovine heart cytochrome c oxidase in the fully reduced state at 1.6 angstrom resolution 3AG3 ; 1.8 ; Bovine Heart Cytochrome c Oxidase in the Nitric Oxide-bound Fully Reduced State at 100 K 8IJN ; 1.8 ; Bovine Heart Cytochrome c Oxidase in the Nitric Oxide-Bound Fully Reduced State at 100 K 5XDX ; 1.99 ; Bovine heart cytochrome c oxidase in the reduced state with pH 7.3 at 1.99 angstrom resolution 2DYS ; 2.2 ; Bovine heart cytochrome C oxidase modified by DCCD 2Y69 ; 1.95 ; Bovine heart cytochrome c oxidase re-refined with molecular oxygen 4YXW ; 3.1 ; Bovine heart mitochondrial F1-ATPase inhibited by AMP-PNP and ADP in the presence of thiophosphate. 2QSP ; 1.85 ; Bovine Hemoglobin at pH 5.7 2QSS ; 1.75 ; Bovine hemoglobin at pH 6.3 1BIV ; ; BOVINE IMMUNODEFICIENCY VIRUS TAT-TAR COMPLEX, NMR, 5 STRUCTURES 6QQ7 ; 1.65 ; Bovine insulin at ambient pressure 6Q8Q ; 2.0 ; Bovine Insulin under 2 kbar of argon 1D9C ; 2.0 ; BOVINE INTERFERON-GAMMA AT 2.0 ANGSTROMS 1D9G ; 2.9 ; BOVINE INTERFERON-GAMMA AT 2.9 ANGSTROMS 1LFC ; ; BOVINE LACTOFERRICIN (LFCINB), NMR, 20 STRUCTURES 6T42 ; 1.95 ; Bovine lactoglobulin complex with decanol 1LCP ; 1.65 ; BOVINE LENS LEUCINE AMINOPEPTIDASE COMPLEXED WITH L-LEUCINE PHOSPHONIC ACID 1BJ7 ; 1.8 ; BOVINE LIPOCALIN ALLERGEN BOS D 2 1VDV ; 1.98 ; Bovine Milk Xanthine Dehydrogenase Y-700 Bound Form 5ARA ; 7.4 ; Bovine mitochondrial ATP synthase state 1a 5ARE ; 6.7 ; Bovine mitochondrial ATP synthase state 1b 5ARH ; 7.2 ; Bovine mitochondrial ATP synthase state 2a 5ARI ; 7.4 ; Bovine mitochondrial ATP synthase state 2b 5FIJ ; 7.4 ; Bovine mitochondrial ATP synthase state 2c 5FIK ; 6.4 ; Bovine mitochondrial ATP synthase state 3a 5FIL ; 7.1 ; Bovine mitochondrial ATP synthase state 3b 1BMF ; 2.85 ; BOVINE MITOCHONDRIAL F1-ATPASE 1E1Q ; 2.61 ; BOVINE MITOCHONDRIAL F1-ATPASE AT 100K 1COW ; 3.1 ; BOVINE MITOCHONDRIAL F1-ATPASE COMPLEXED WITH AUROVERTIN B 1OHH ; 2.8 ; BOVINE MITOCHONDRIAL F1-ATPASE complexed with the inhibitor protein IF1 1EFR ; 3.1 ; BOVINE MITOCHONDRIAL F1-ATPASE COMPLEXED WITH THE PEPTIDE ANTIBIOTIC EFRAPEPTIN 1H8H ; 2.9 ; Bovine mitochondrial F1-ATPase crystallised in the presence of 5mm AMPPNP 1E1R ; 2.5 ; BOVINE MITOCHONDRIAL F1-ATPASE INHIBITED BY MG2+ADP AND ALUMINIUM FLUORIDE 8F4B ; 3.27 ; Bovine multidrug resistance protein 1 (MRP1) bound to cyclic peptide inhibitor 1 (CPI1) 8SX7 ; 2.7 ; Bovine multidrug resistance protein 4 (MRP4) bound to DHEA-S in MSP lipid nanodisc 8SX8 ; 3.5 ; Bovine multidrug resistance protein 4 (MRP4) bound to prostaglandin E1 in MSP lipid nanodisc 8SXB ; 2.9 ; Bovine multidrug resistance protein 4 (MRP4) bound to prostaglandin E2 in MSP lipid nanodisc 8SWN ; 3.1 ; Bovine multidrug resistance protein 4 (MRP4) E1202Q mutant bound to ATP in MSP lipid nanodisc 8BS8 ; 1.59 ; Bovine naive ultralong antibody AbD08 collected at 100K 8CIF ; 2.2 ; Bovine naive ultralong antibody AbD08 collected at 293K 1NPO ; 3.0 ; BOVINE NEUROPHYSIN II COMPLEX WITH OXYTOCIN 2HLV ; 1.65 ; Bovine Odorant Binding Protein deswapped triple mutant 2BO5 ; ; Bovine oligomycin sensitivity conferral protein N-terminal domain 1CE5 ; 1.9 ; BOVINE PANCREAS BETA-TRYPSIN IN COMPLEX WITH BENZAMIDINE 2BZA ; 1.9 ; BOVINE PANCREAS BETA-TRYPSIN IN COMPLEX WITH BENZYLAMINE 1LJV ; ; Bovine Pancreatic Polypeptide Bound to DPC Micelles 1C0B ; 1.9 ; BOVINE PANCREATIC RIBONUCLEASE A DESICCATED FOR 2.5 DAYS 1C0C ; 2.0 ; BOVINE PANCREATIC RIBONUCLEASE A DESICCATED FOR 4.0 DAYS 1S0R ; 1.02 ; Bovine Pancreatic Trypsin inhibited with Benzamidine at Atomic resolution 2ZJX ; 1.09 ; Bovine pancreatic trypsin inhibitor (BPTI) containing only the [5,55] disulfide bond 1QLQ ; 1.42 ; Bovine Pancreatic Trypsin Inhibitor (BPTI) Mutant with Altered Binding Loop Sequence 1BHC ; 2.7 ; BOVINE PANCREATIC TRYPSIN INHIBITOR CRYSTALLIZED FROM THIOCYANATE 7BS6 ; 1.04 ; Bovine Pancreatic Trypsin with 2-Methyltryptamine (Cryo) 7BRZ ; 1.3 ; Bovine Pancreatic Trypsin with 2-Methyltryptamine (Room Temperature) 7BS3 ; 1.28 ; Bovine Pancreatic Trypsin with 4-Bromo-benzamidine (Cryo) 7BRV ; 1.55 ; Bovine Pancreatic Trypsin with 4-Bromobenzamidine (Room Temperature) 7BSA ; 1.22 ; Bovine Pancreatic Trypsin with 5-Chlorotryptamine (Cryo) 7BRW ; 1.6 ; Bovine Pancreatic Trypsin with 5-chlorotryptamine (Room Temperature) 7BS4 ; 1.04 ; Bovine Pancreatic Trypsin with 5-Methoxytryptamine (Cryo) 7BRX ; 1.35 ; Bovine Pancreatic Trypsin with 5-Methoxytryptamine (Room Temperature) 7BS5 ; 1.17 ; Bovine Pancreatic Trypsin with 6-Methoxytryptamine (Cryo) 7BRY ; 1.65 ; Bovine Pancreatic Trypsin with 6-Methoxytryptamine (Room Temperature) 7BS7 ; 1.04 ; Bovine Pancreatic Trypsin with aniline (Cryo) 7BS0 ; 1.85 ; Bovine Pancreatic Trypsin with aniline (Room Temperature) 7BS8 ; 1.37 ; Bovine Pancreatic Trypsin with Benzamidine (Cryo) 7BS1 ; 1.5 ; Bovine Pancreatic Trypsin with benzamidine (Room Temperature) 7BS9 ; 1.05 ; Bovine Pancreatic Trypsin with serotonin (Cryo) 7BS2 ; 1.8 ; Bovine Pancreatic Trypsin with serotonin (Room Temperature) 7APD ; 3.9 ; Bovine Papillomavirus E1 DNA helicase-replication fork complex 3IYJ ; 4.2 ; Bovine papillomavirus type 1 outer capsid 4IJ9 ; 2.55 ; Bovine PKA C-alpha in complex with 2-[[5-(4-pyridyl)-1H-1,2,4-triazol-3-yl]sulfanyl]-1-(2-thiophenyl)ethanone 4IE9 ; 1.92 ; Bovine PKA C-alpha in complex with 3-pyridylmethyl-5-methyl-1H-pyrazole-3-carboxylate 1DWY ; ; Bovine prion protein fragment 121-230 1DWZ ; ; Bovine prion protein fragment 121-230 1DX0 ; ; BOVINE PRION PROTEIN RESIDUES 23-230 1DX1 ; ; BOVINE PRION PROTEIN RESIDUES 23-230 1NL2 ; 2.3 ; BOVINE PROTHROMBIN FRAGMENT 1 IN COMPLEX WITH CALCIUM AND LYSOPHOSPHOTIDYLSERINE 1NL1 ; 1.9 ; BOVINE PROTHROMBIN FRAGMENT 1 IN COMPLEX WITH CALCIUM ION 1A9P ; 2.4 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH 9-DEAZAINOSINE AND PHOSPHATE 1A9T ; 2.0 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH 9-DEAZAINOSINE AND PHOSPHATE 1A9R ; 2.0 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH HYPOXANTHINE AND SULFATE 1A9Q ; 2.0 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH INOSINE 1A9S ; 2.0 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH INOSINE AND SULFATE 1A9O ; 2.0 ; BOVINE PURINE NUCLEOSIDE PHOSPHORYLASE COMPLEXED WITH PHOSPHATE 1XPT ; 1.9 ; BOVINE RIBONUCLEASE A (PHOSPHATE-FREE) 1XPS ; 1.8 ; BOVINE RIBONUCLEASE A (PHOSPHATE-FREE) (93 % HUMIDITY) 5WD6 ; 2.0 ; bovine salivary protein form 30b 6O1T ; 2.3 ; BOVINE SALIVARY PROTEIN FORM 30B WITH OLEIC ACID 1BSR ; 1.9 ; BOVINE SEMINAL RIBONUCLEASE STRUCTURE AT 1.9 ANGSTROMS RESOLUTION 3DJO ; 1.6 ; Bovine Seminal Ribonuclease uridine 2' phosphate complex 3DJV ; 1.6 ; Bovine Seminal Ribonuclease- cytidine 3' phosphate complex 3DJX ; 1.69 ; Bovine Seminal Ribonuclease- cytidine 5' phosphate complex 3DJP ; 1.6 ; Bovine Seminal Ribonuclease- Uridine 3' phosphate complex 3DJQ ; 1.53 ; Bovine Seminal Ribonuclease- Uridine 5' diphosphate complex 6QS9 ; 2.802 ; Bovine Serum Albumin in complex with Ketoprofen 7MFI ; 2.81 ; Bovine sigma-2 receptor bound to cholesterol 7M93 ; 2.94 ; Bovine sigma-2 receptor bound to PB28 7M94 ; 2.71 ; Bovine sigma-2 receptor bound to Roluperidone 7M95 ; 2.41 ; Bovine sigma-2 receptor bound to Z1241145220 7M96 ; 2.41 ; Bovine sigma-2 receptor bound to Z4857158944 8OU0 ; 3.5 ; bovine sperm endpiece singlet microtubules (one tubulin dimer and associated microtubule inner proteins) 1UVU ; 2.8 ; BOVINE THROMBIN--BM12.1700 COMPLEX 1UVT ; 2.5 ; BOVINE THROMBIN--BM14.1248 COMPLEX 1UVS ; 2.8 ; BOVINE THROMBIN--BM51.1011 COMPLEX 3D4U ; 1.7 ; Bovine thrombin-activatable fibrinolysis inhibitor (TAFIa) in complex with tick-derived carboxypeptidase inhibitor. 1QA0 ; 1.8 ; BOVINE TRYPSIN 2-AMINOBENZIMIDAZOLE COMPLEX 1QBN ; 1.8 ; Bovine Trypsin 2-[amino(imino)methyl]-2-hydroxyphenoxy]-6-[3-(4,5-dihydro-1H-imidazol-2-yl)phenoxy]pyridine-4-carboxylic Acid (ZK-806688) Complex 1QB6 ; 1.8 ; BOVINE TRYPSIN 3,3'-[3,5-DIFLUORO-4-METHYL-2, 6-PYRIDINEDIYLBIS(OXY)]BIS(BENZENECARBOXIMIDAMIDE) (ZK-805623) COMPLEX 1QB9 ; 1.8 ; BOVINE TRYPSIN 7-[[2-[[1-(1-IMINOETHYL)PIPERIDIN-4-YL]OXY]-9H-CARBOZOL-9-YL] METHYL]NAPHTHALENE-2-CARBOXIMIDAMIDE (ZK-806450) COMPLEX 1QBO ; 1.8 ; BOVINE TRYPSIN 7-[[6-[[1-(1-IMINOETHYL)PIPERIDIN-4-YL]OXY]-2-METHYL-BENZIMIDAZOL-1-YL]METHYL]NAPHTHALENE-2-CARBOXIMIDAMID ZK-806711 INHIBITOR COMPLEX 4I8H ; 0.75 ; Bovine trypsin at 0.75 resolution 3MI4 ; 0.8 ; Bovine trypsin at 0.8 A resolution, non-restrained refinement 3MFJ ; 0.8 ; Bovine trypsin at 0.8 A resolution, restrained refinement 4I8G ; 0.8 ; Bovine trypsin at 0.8 resolution 4I8K ; 0.85 ; Bovine trypsin at 0.85 resolution 4I8J ; 0.87 ; Bovine trypsin at 0.87 A resolution 4I8L ; 0.87 ; Bovine trypsin at 0.87 resolution 2FX4 ; 1.65 ; Bovine trypsin bound by 4-piperidinebutyrate to make acylenzyme complex 6BFP ; 1.292 ; Bovine trypsin bound to potent inhibitor 7Q0W ; 1.2 ; Bovine Trypsin co-crystallized with V(IV)OSO4 and phen 7Q0X ; 1.09 ; Bovine Trypsin co-crystallized with V(IV)OSO4 and pic 1TAW ; 1.8 ; BOVINE TRYPSIN COMPLEXED TO APPI 1AZ8 ; 1.8 ; BOVINE TRYPSIN COMPLEXED TO BIS-PHENYLAMIDINE INHIBITOR 1AUJ ; 2.1 ; BOVINE TRYPSIN COMPLEXED TO META-CYANO-BENZYLIC INHIBITOR 2FX6 ; 1.57 ; bovine trypsin complexed with 2-aminobenzamidazole 1TX8 ; 1.7 ; Bovine Trypsin complexed with AMSO 1TX7 ; 1.75 ; Bovine Trypsin complexed with p-amidinophenylmethylphosphinic acid (AMPA) 1F0U ; 1.9 ; BOVINE TRYPSIN COMPLEXED WITH RPR128515 1F0T ; 1.8 ; BOVINE TRYPSIN COMPLEXED WITH RPR131247 5EG4 ; 1.32 ; BOVINE TRYPSIN IN COMPLEX WITH CYCLIC INHIBITOR 8UO7 ; 2.2 ; Bovine trypsin in complex with deacetylated wild type microviridin J 2XTT ; 0.93 ; Bovine trypsin in complex with evolutionary enhanced Schistocerca gregaria protease inhibitor 1 (SGPI-1-P02) 4KTU ; 1.35 ; Bovine trypsin in complex with microviridin J at pH 6.5 4KTS ; 1.3 ; Bovine trypsin in complex with microviridin J at pH 8.5 4MTB ; 1.22 ; Bovine trypsin in complex with small molecule inhibitor 2BTC ; 1.5 ; BOVINE TRYPSIN IN COMPLEX WITH SQUASH SEED INHIBITOR (CUCURBITA PEPO TRYPSIN INHIBITOR II) 6T9V ; 1.12643 ; Bovine Trypsin in complex with the synthetic inhibitor (S)-3-(3-(4-(3-(tert-butyl)ureido)piperidin-1-yl)-2-((3'-fluoro-4'-(hydroxymethyl)-[1,1'-biphenyl])-3-sulfonamido)-3-oxopropyl)benzimidamide (MI-1904) 8UTL ; 1.56 ; Bovine trypsin in complex with Thr3Dap mutated microviridin J 3LJJ ; 1.55 ; Bovine trypsin in complex with UB-THR 10 3LJO ; 1.5 ; Bovine trypsin in complex with UB-THR 11 5T3H ; 1.55 ; bovine trypsin soaked with selenourea for 5 min 6FID ; 2.2 ; Bovine trypsin solved by S-SAD on ID30B 3PWB ; 1.63 ; Bovine trypsin variant X(tripleGlu217Ile227) in complex with small molecule inhibitor 3PWC ; 1.6 ; Bovine trypsin variant X(tripleGlu217Ile227) in complex with small molecule inhibitor 3PYH ; 2.0 ; Bovine trypsin variant X(tripleGlu217Ile227) in complex with small molecule inhibitor 3Q00 ; 1.7 ; Bovine trypsin variant X(tripleGlu217Ile227) in complex with small molecule inhibitor 3UWI ; 1.43 ; Bovine trypsin variant X(tripleGlu217Phe227) in complex with small molecule inhibitor 3UY9 ; 3.22 ; Bovine trypsin variant X(tripleGlu217Phe227) in complex with small molecule inhibitor 3V0X ; 1.9 ; Bovine trypsin variant X(tripleGlu217Phe227) in complex with small molecule inhibitor 3V12 ; 1.8 ; Bovine trypsin variant X(tripleGlu217Phe227) in complex with small molecule inhibitor 3V13 ; 1.63 ; Bovine trypsin variant X(tripleGlu217Phe227) in complex with small molecule inhibitor 3PLB ; 1.18 ; Bovine trypsin variant X(tripleIle227) in complex with small molecule inhibitor 3PLK ; 1.53 ; Bovine trypsin variant X(tripleIle227) in complex with small molecule inhibitor 3PLP ; 1.63 ; Bovine trypsin variant X(tripleIle227) in complex with small molecule inhibitor 3PM3 ; 1.53 ; Bovine trypsin variant X(tripleIle227) in complex with small molecule inhibitor 3PMJ ; 1.45 ; Bovine trypsin variant X(tripleIle227) in complex with small molecule inhibitor 3UNQ ; 1.62 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UNS ; 1.8 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UOP ; 1.69 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UPE ; 1.54 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UQO ; 1.8 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UQV ; 2.4 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 3UUZ ; 2.1 ; Bovine trypsin variant X(triplePhe227) in complex with small molecule inhibitor 1QB1 ; 1.8 ; Bovine Trypsin with 1-[2-[5-[amino(imino)methyl]-2-hydroxyphenoxy]-6-[3-(4,5-dihydro-1-methyl-1H-imidazol-2-yl)phenoxy]pyridin-4-yl]piperidine-3-carboxylic Acid (ZK-806974) 1K1I ; 2.2 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1J ; 2.2 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1L ; 2.5 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1M ; 2.2 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1N ; 2.0 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1O ; 2.0 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 1K1P ; 1.9 ; BOVINE TRYPSIN-INHIBITOR COMPLEX 6T9U ; 1.06751 ; Bovine Trypsine in complex with the synthetic inhibitor (S)-3'-(N-(1-(4-(3-(tert-butyl)ureido)piperidin-1-yl)-3-(3-carbamimidoylphenyl)-1-oxopropan-2-yl)sulfamoyl)-[1,1'-biphenyl]-3-carboximidamide (MI-490) 2CJQ ; 2.6 ; Bovine viral diarrhea virus CP7-R12 RNA-dependent RNA polymerase 3AX7 ; 2.34 ; Bovine Xanthine Oxidase, protease cleaved form 3AX9 ; 2.3 ; Bovine xanthine oxidase, protease cleaved form 8J79 ; 1.99 ; Bovine Xanthine Oxidoreductase Crystallized with oxypurinol 3AMZ ; 2.1 ; Bovine Xanthine Oxidoreductase urate bound form 2W3P ; 1.5 ; BoxC crystal structure 6HZE ; 2.7 ; BP0997, GH138 enzyme targeting pectin rhamnogalacturonan II 6HZF ; 1.95 ; BP0997, GH138 enzyme targeting pectin rhamnogalacturonan II 6HZG ; 1.6 ; BP0997, GH138 enzyme targeting pectin rhamnogalacturonan II 4AK6 ; 1.9 ; BpGH117_H302E mutant glycoside hydrolase 4AW7 ; 1.33 ; BpGH86A: A beta-porphyranase of glycoside hydrolase family 86 from the human gut bacterium Bacteroides plebeius 2JPF ; ; Bpp3783_115-220 2H05 ; 1.8 ; Br Derivitation of A-DNA Octamer GTG(Ubr)ACAC 4YHT ; 3.05 ; bRaf complexed with an inhibitor 6U2H ; 2.5 ; BRAF dimer bound to 14-3-3 4E26 ; 2.55 ; BRAF in complex with an organic inhibitor 7898734 4H58 ; 3.1 ; BRAF in complex with compound 3 6N0P ; 2.37 ; BRAF in complex with N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide (LXH254) 5VAL ; 2.26 ; BRAF in Complex with N-(3-(tert-butyl)phenyl)-4-methyl-3-(6-morpholinopyrimidin-4-yl)benzamide 6N0Q ; 2.04 ; BRAF in complex with N-(4-methyl-3-(1-methyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide. 5CT7 ; 3.17 ; BRAF in Complex with RAF265 5VAM ; 2.1 ; BRAF in Complex with RAF709 5HID ; 2.5 ; BRAF Kinase domain b3aC loop deletion mutant in complex with AZ628 5HIE ; 3.0 ; BRAF Kinase domain b3aC loop deletion mutant in complex with dabrafenib 5HI2 ; 2.512 ; BRAF Kinase domain b3aC loop deletion mutant in complex with sorafenib 8F7P ; 2.74 ; BRAF kinase in complex with LXH254 (naporafenib) 8F7O ; 3.54 ; BRAF kinase in complex with TAK580 (tovorafenib) 6U2G ; 2.886 ; BRAF-MEK complex with AMP-PCP bound to BRAF 5JSM ; 2.19 ; BRAFV600E Kinase Domain In Complex with Chemically Linked Vemurafenib Inhibitor VEM-3-VEM 5JRQ ; 2.287 ; BRAFV600E Kinase Domain In Complex with Chemically Linked Vemurafenib Inhibitor VEM-6-VEM 5JT2 ; 2.702 ; BRAFV600E Kinase Domain In Complex with Chemically Linked Vemurafenib Inhibitor VEM-BISAMIDE 5NLV ; 2.4 ; Brag2 Sec7-PH (390-763) 5NLY ; 2.0 ; Brag2 Sec7-PH (390-763), P212121 6W3H ; 3.38 ; Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys 1B8M ; 2.75 ; BRAIN DERIVED NEUROTROPHIC FACTOR, NEUROTROPHIN-4 5KYA ; 2.598 ; Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core 5KYJ ; 2.8 ; Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core 1Q7F ; 1.95 ; Brain Tumor NHL domain 8EZD ; 2.83 ; Brain-derived 42-residue amyloid-beta fibril type A 8EZE ; 2.76 ; Brain-derived 42-residue amyloid-beta fibril type B 3LQV ; 2.38 ; Branch Recognition by SF3b14 8EGQ ; 1.955 ; Branched chain ketoacid dehydrogenase kinase complexes 8EGU ; 1.923 ; Branched chain ketoacid dehydrogenase kinase complexes 8EGD ; 2.047 ; Branched chain ketoacid dehydrogenase kinase in complex with inhibitor 8EGF ; 1.85 ; Branched chain ketoacid dehydrogenase kinase in complex with inhibitor 7NPO ; 2.19 ; Branched K48-K63-Ub3 8A67 ; 1.86 ; Branched Lys48- and Lys63-linked tri-ubiquitin (K48-K63-Ub3) in complex with matured synthetic nanobody NbSL3.3Q (3rd generation) 7NBB ; 1.55 ; Branched Lys48- and Lys63-linked tri-ubiquitin (K48-K63-Ub3) in complex with synthetic nanobody NbSL3 1UM9 ; 2.2 ; branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8 in apo-form 1UMB ; 2.1 ; branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8 in holo-form 1UMD ; 1.9 ; branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8 with 4-methyl-2-oxopentanoate as an intermediate 1UMC ; 2.4 ; branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8 with 4-methylpentanoate 1GKX ; 2.3 ; Branched-chain alpha-ketoacid dehydrogenase kinase (BCK) 1GKZ ; 2.2 ; Branched-chain alpha-ketoacid dehydrogenase kinase (BCK) complxed with ADP 1GJV ; 2.7 ; Branched-chain alpha-ketoacid dehydrogenase kinase (BCK) complxed with ATP-gamma-S 1A3G ; 2.5 ; BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE FROM ESCHERICHIA COLI 7SFA ; 1.65 ; Branchiostoma floridae fluorescent protein LanFP10A2 7SF9 ; 1.8 ; Branchiostoma Floridae Violet Fluorescent Protein 17RA ; ; BRANCHPOINT HELIX FROM YEAST AND BINDING SITE FOR PHAGE GA/MS2 COAT PROTEINS, NMR, 12 STRUCTURES 5UZL ; ; Brassica napus DGAT1 exosite 1CWU ; 2.5 ; BRASSICA NAPUS ENOYL ACP REDUCTASE A138G MUTANT COMPLEXED WITH NAD+ AND THIENODIAZABORINE 1ENO ; 1.9 ; BRASSICA NAPUS ENOYL ACP REDUCTASE/NAD BINARY COMPLEX AT PH 8.0 AND ROOM TEMPERATURE 1ENP ; 2.6 ; BRASSICA NAPUS ENOYL ACP REDUCTASE/NADH BINARY COMPLEX AT PH 8.0 AND ROOM TEMPERATURE 1CDZ ; 3.2 ; BRCT DOMAIN FROM DNA-REPAIR PROTEIN XRCC1 5UEW ; 1.83 ; BRD2 Bromodomain2 with A-1360579 8DNQ ; 1.84 ; BRD2-BD1 in complex with cyclic peptide 2.2B 7USI ; 2.5 ; BRD2-BD1 in complex with MDP5 6U61 ; 2.29 ; BRD2-BD1 in complex with the cyclic peptide 3.1_3 6U8H ; 2.07 ; BRD2-BD1 in complex with the cyclic peptide 3.2_2 6ULQ ; 2.7 ; BRD2-BD1 in complex with the cyclic peptide 4.2_3 7JX7 ; 1.75 ; BRD2-BD2 in complex with a diacetylated-H2A.Z peptide 7USG ; 1.2 ; BRD2-BD2 in complex with MDP5 7USH ; 1.27 ; BRD2-BD2 in complex with SF2523 6U71 ; 1.47 ; BRD2-BD2 in complex with the cyclic peptide 3.1_3 6ULT ; 2.8 ; BRD2-BD2 in complex with the cyclic peptide 4.2_3 6ONY ; 1.98 ; BRD2_Bromodomain1 complex with inhibitor 744 6E6J ; 2.44 ; BRD2_Bromodomain2 complex with inhibitor 744 6VIY ; 1.904 ; BRD2_Bromodomain2 complex with pyrrolopyridone compound 27 5HJC ; 2.6 ; BRD3 second bromodomain in complex with histone H3 acetylation at K18 7TO7 ; 1.93 ; BRD3-BD1 in complex with RaPID linear peptide 1xAcK.4XE (monoAcK.4xE) 7TO8 ; 1.5 ; BRD3-BD1 in complex with RaPID linear peptide 2xAcK.1 (diAcK.1) 7TO9 ; 1.6 ; BRD3-BD1 in complex with RaPID linear peptide 2xAcK.4xE (diAcK.4xE) 7TOA ; 1.41 ; BRD3-BD1 in complex with RaPID linear peptide 3xAcK.1 (triAcK.1) 6U4A ; 1.88 ; BRD3-BD1 in complex with the cyclic peptide 3.1_3 6ULP ; 2.8 ; BRD3-BD2 in complex with the cyclic peptide 3.2_3 6G0E ; 1.613 ; BRD4 (BD1) in complex with APSC-derived ligands 6G0D ; 1.314 ; BRD4 (BD1) in complex with APSC-derived ligands (e.g. LY294002) 6G0H ; 1.907 ; BRD4 (BD1) in complex with APSC-derived ligands (e.g. SSLH01 a sulfasalazine derivate) 6G0G ; 1.478 ; BRD4 (BD1) in complex with APSC-derived ligands (e.g. sulfasalazine) 6G0F ; 1.618 ; BRD4 (BD1) in complex with docking-derived ligand 6LIH ; 1.62031 ; BRD4 BD1 bound with compound 10 6C7R ; 1.5 ; BRD4 BD1 in complex with compound CF53 6C7Q ; 1.51 ; BRD4 BD2 in complex with compound CE277 5XHY ; 1.976 ; BRD4 bound with compound Bdi1 5XI2 ; 1.909 ; BRD4 bound with compound Bdi2 5XI3 ; 1.674 ; BRD4 bound with compound Bdi3 5XI4 ; 1.486 ; BRD4 bound with compound Bdi4 4HXL ; 1.52 ; Brd4 Bromodomain 1 complex with 3-CYCLOHEXYL-N-{3-(2-OXO-2,3-DIHYDRO-1,3-THIAZOL-4-YL)-5-[(THIOPHEN-2-YLSULFONYL)AMINO]PHENYL}PROPANAMIDE inhibitor 4HXO ; 1.76 ; Brd4 Bromodomain 1 complex with 3-{[(3-METHYL-1,2-OXAZOL-5-YL)METHYL]SULFANYL}[1,2,4]TRIAZOLO[4,3-A]PYRIDINE inhibitor 4HXN ; 1.49 ; Brd4 Bromodomain 1 complex with 4-(2-FLUOROPHENYL)-1,3-THIAZOL-2(3H)-ONE inhibitor 4HXP ; 1.73 ; Brd4 Bromodomain 1 complex with 4-(2-OXO-1,3-OXAZOLIDIN-3-YL)BENZAMIDE inhibitor 4HXK ; 1.61 ; Brd4 Bromodomain 1 complex with 6,7-DIHYDROTHIENO[3,2-C]PYRIDIN-5(4H)-YL(1H-IMIDAZOL-1-YL)METHANONE inhibitor 4DON ; 1.52 ; Brd4 Bromodomain 1 complex with a fragment 3,4-Dihydro-3-methyl-2(1H)-quinazolinon 4QR3 ; 1.374 ; Brd4 Bromodomain 1 complex with its novel inhibitors 4QR4 ; 1.28 ; Brd4 Bromodomain 1 complex with its novel inhibitors 4QR5 ; 1.41 ; Brd4 Bromodomain 1 complex with its novel inhibitors 4HXS ; 1.43 ; Brd4 Bromodomain 1 complex with N-[3-(2-OXO-2,3-DIHYDRO-1,3-THIAZOL-4-YL)PHENYL]-1-PHENYLMETHANESULFONAMIDE inhibitor 4HXR ; 1.53 ; Brd4 Bromodomain 1 complex with N-[3-(2-OXO-2,3-DIHYDRO-1,3-THIAZOL-4-YL)PHENYL]THIOPHENE-2-SULFONAMIDE inhibitor 4HXM ; 1.5 ; Brd4 Bromodomain 1 complex with N-{3-(2-OXO-2,3-DIHYDRO-1,3-THIAZOL-4-YL)-5-[(THIOPHEN-2-YLSULFONYL)AMINO]PHENYL}BUTANAMIDE inhibitor 6DL2 ; 1.47 ; BRD4 bromodomain 1 in complex with HYB157 6X7D ; 2.5 ; BRD4 Bromodomain 1 in complex with multi-action inhibitor SF2523P 6X7C ; 2.7 ; BRD4 Bromodomain 1 in complex with multi-action inhibitor SRX3212 6X7B ; 1.951 ; BRD4 Bromodomain 1 in complex with multi-action inhibitor SRX3212P 6WW8 ; 2.302 ; BRD4 Bromodomain 1 in complex with triple CDK4/6-PI3K-BET inhibitor 5Z8G ; 1.701 ; BRD4 Bromodomain 1 with an inhibitor 5Z8R ; 2.0 ; BRD4 Bromodomain 1 with an inhibitor 5Z8Z ; 1.8 ; BRD4 Bromodomain 1 with an inhibitor 5Z90 ; 1.8 ; BRD4 Bromodomain 1 with an inhibitor 5Z9K ; 1.89 ; BRD4 Bromodomain 1 with an inhibitor 4KV4 ; 2.0 ; Brd4 Bromodomain 2 in Complex with Acetylated Rel Peptide 5UOO ; 1.69 ; BRD4 bromodomain 2 in complex with CD161 4Z93 ; 1.27 ; BRD4 bromodomain 2 in complex with gamma-carboline-containing compound, number 18. 5UVY ; 2.25 ; BRD4 Bromodomain 2 with A-1349391 5UVZ ; 1.63 ; BRD4 Bromodomain 2 with A-1354689 5UVX ; 1.53 ; BRD4 Bromodomain 2 with A-1359643 5UVV ; 1.99 ; BRD4 Bromodomain 2 with A-1457066 5KU3 ; 1.14 ; BRD4 bromodomain in complex with Cpd59 ((S)-1-(3-((2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)phenyl)amino)-1-(tetrahydrofuran-3-yl)-6,7-dihydro-1H-pyrazolo[4,3-c]pyridin-5(4H)-yl)ethanone) 6KED ; 2.54845 ; BRD4 Bromodomain1 with an inhibitor 6KEF ; 2.44468 ; BRD4 Bromodomain1 with an inhibitor 6KEG ; 2.232 ; BRD4 Bromodomain1 with an inhibitor 5U2E ; 1.991 ; BRD4 first bromodomain (BD1) in complex with dual PI3 kinase (PI3K) inhibitor SF2535 5U2F ; 2.525 ; BRD4 first bromodomain (BD1) in complex with dual PI3 kinase (PI3K) inhibitor SF2558HA 5U28 ; 1.798 ; BRD4 first bromodomain (BD1) in complex with dual PI3 kinase inhibitor SF2523 6JJ3 ; 1.718 ; BRD4 in complex with 138A 8C11 ; 1.8 ; BRD4 in complex with 2-(2-(4-(3,5-dimethylisoxazol-4-yl)-1H-pyrazol-1-yl)acetamido)-N-ethylpropanamide 6JJ5 ; 1.2 ; BRD4 in complex with 259 6JJ6 ; 1.4 ; BRD4 in complex with 500 7ZG2 ; 1.18 ; BRD4 in complex with Acetyl-Lys 5I80 ; 1.4501 ; BRD4 in complex with Cpd2 (N,N-dimethyl-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)benzamide) 5I88 ; 1.4 ; BRD4 in complex with Cpd4 ((E)-3-(6-(but-2-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamide) 5LRQ ; 1.7 ; BRD4 in complex with ERK5 inhibitor XMD8-92 7Z9W ; 0.988 ; BRD4 in complex with FragLite1 7ZE6 ; 1.04 ; BRD4 in complex with FragLite10 7ZAA ; 1.15 ; BRD4 in complex with FragLite11 7ZAD ; 1.07 ; BRD4 in complex with FragLite12 7ZAE ; 1.1 ; BRD4 in complex with FragLite15 7ZAJ ; 1.0 ; BRD4 in complex with FragLite16 7ZAR ; 1.14 ; BRD4 in complex with FragLite18 7ZAQ ; 1.11 ; BRD4 in complex with FragLite19 7Z9Y ; 1.04 ; BRD4 in complex with FragLite2 7ZAT ; 1.15 ; BRD4 in complex with FragLite20 7ZE7 ; 1.23 ; BRD4 in complex with FragLite21 7ZEF ; 1.12 ; BRD4 in complex with FragLite22 7ZEN ; 1.14 ; BRD4 in complex with FragLite23 7ZFN ; 1.12 ; BRD4 in complex with FragLite24 7ZFO ; 1.09 ; BRD4 in complex with FragLite28 7ZFS ; 1.25 ; BRD4 in complex with FragLite32 7ZFT ; 1.28 ; BRD4 in complex with FragLite33 7ZA6 ; 1.12 ; BRD4 in complex with FragLite4 7ZA7 ; 1.06 ; BRD4 in complex with FragLite5 7ZA8 ; 1.04 ; BRD4 in complex with FragLite6 7ZA9 ; 1.05 ; BRD4 in complex with FragLite7 7ZFV ; 1.37 ; BRD4 in complex with PepLite-Ala 7ZFY ; 1.15 ; BRD4 in complex with PepLite-Gly 7ZFU ; 1.29 ; BRD4 in complex with PepLite-Pro 7ZG1 ; 1.16 ; BRD4 in complex with PepLite-Tyr 7ZFZ ; 1.08 ; BRD4 in complex with PepLite-Val 6JJB ; 1.508 ; BRD4 in complex with ZZM1 5U2C ; 3.3 ; BRD4 second bromodomain (BD2) in complex with dual PI3 kinase (PI3K) inhibitor SF2558HA 6CZV ; 1.88 ; BRD4(BD1) complexed with 2759 6CZU ; 1.47 ; BRD4(BD1) complexed with 3219 6LIM ; 1.7591 ; BRD4-BD1 bound with compound 40 6JI3 ; 2.2 ; BRD4-BD1 bound with ligand 103 6JI4 ; 1.6 ; brd4-bd1 bound with ligand 138 6JI5 ; 2.0 ; brd4-bd1 bound with ligand 167 7WWZ ; 1.16 ; BRD4-BD1 complexed with NEO2734 7KHL ; 1.286 ; BRD4-BD1 Compound6 (methyl 4-(3,5-difluoropyridin-2-yl)-10-methyl-7-((methylsulfonyl)methyl)-11-oxo-3,4,10,11-tetrahydro-1H-1,4,10-triazadibenzo[cd,f]azulene-6-carboxylate) 5VZS ; 1.707 ; BRD4-BD1 in complex with Cpd19 (3-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-N-methyl-1-(tetrahydro-2H-pyran-4-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxamide) 7EHY ; 1.51 ; BRD4-BD1 in complex with LT-448-138 7EHW ; 1.65 ; BRD4-BD1 in complex with LT-642-602 7EIG ; 1.3 ; BRD4-BD1 in complex with LT-730-903 7EIL ; 1.7 ; BRD4-BD1 in complex with LT-909-110 6ULS ; 1.5 ; BRD4-BD1 in complex with the a diacetylated-E2F1 peptide 6U74 ; 1.85 ; BRD4-BD1 in complex with the cyclic peptide 3.1_2 6U72 ; 2.3 ; BRD4-BD1 in complex with the cyclic peptide 3.1_2_AcK5toA 6U6K ; 1.7 ; BRD4-BD1 in complex with the cyclic peptide 3.1_3 6U8M ; 1.95 ; BRD4-BD1 in complex with the cyclic peptide 3.2_1 6ULV ; 2.2 ; BRD4-BD1 in complex with the cyclic peptide 4.2_1 7USJ ; 2.08 ; BRD4-BD2 in complex with SF2523 6U6L ; 2.6 ; BRD4-BD2 in complex with the cyclic peptide 3.1_2 6U8G ; 2.6 ; BRD4-BD2 in complex with the cyclic peptide 3.1_2_AcK7toA 6U8I ; 2.5 ; BRD4-BD2 in complex with the cyclic peptide 3.2_2 7USK ; 1.22 ; BRD4-BD2 Ligand free 8DYR ; 1.47 ; BRD4-D1 in complex with BET inhibitor 8E17 ; 1.47 ; BRD4-D1 in complex with BET inhibitor 8E3W ; 1.47 ; BRD4-D1 in complex with BET inhibitor 5UF0 ; 1.35 ; BRD4_BD2-A-35165 5UEU ; 2.26 ; BRD4_BD2_A-1107604 5UET ; 2.29 ; BRD4_BD2_A-1308586 5UEZ ; 1.51 ; BRD4_BD2_A-1342843 5UES ; 1.62 ; BRD4_BD2_A-1344772 5UER ; 1.87 ; BRD4_BD2_A-1359930 5UEQ ; 1.7 ; BRD4_BD2_A-1390146 5UEO ; 1.85 ; BRD4_BD2_A-1395017 5UVS ; 2.15 ; BRD4_BD2_A-1406537 5UEY ; 2.41 ; BRD4_BD2_A-1412838 5UVT ; 1.67 ; BRD4_BD2_A-1454056 5UVU ; 1.66 ; BRD4_BD2_A-1461028 5UEX ; 2.29 ; BRD4_BD2_A-1497627 5UEV ; 1.94 ; BRD4_BD2_A-556343 5UEP ; 1.77 ; BRD4_BD2_A-581577 6VIW ; 2.429 ; BRD4_Bromodomain1 complex with pyrrolopyridone compound 18 6VIZ ; 2.391 ; BRD4_Bromodomain1 complex with pyrrolopyridone compound 27 5UVW ; 2.14 ; BRD4_Bromodomain1-A1376855 6VIX ; 2.116 ; BRD4_Bromodomain2 complex with pyrrolopyridone compound 18 6BQA ; 1.031 ; BRD9 bromodomain in complex with 3-(6-(but-3-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamide 5I40 ; 1.0402 ; BRD9 in complex with Cpd1 (6-methyl-1,6-dihydro-7H-pyrrolo[2,3-c]pyridin-7-one) 5I7X ; 1.1752 ; BRD9 in complex with Cpd2 (N,N-dimethyl-3-(6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)benzamide) 5I7Y ; 1.4514 ; BRD9 in complex with Cpd4 ((E)-3-(6-(but-2-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamide) 6YQW ; 1.5 ; BRD9 with 4-chloro-2-methyl-methylamino-pyridazinone 6YQR ; 1.684 ; BRD9 with Biphenyl-methylamino-dimethylpyridazinone 6YQS ; 1.683 ; BRD9 with methylpiperazinyl-benzyl-amino-dimethylpyridazinone 4KCX ; 2.0 ; BRDT in complex with Dinaciclib 8IEG ; 3.44 ; Bre1(mRBD-RING)/Rad6-Ub/nucleosome complex 8GUI ; 2.81 ; Bre1-nucleosome complex (Model I) 8GUJ ; 2.8 ; Bre1-nucleosome complex (Model II) 2NOV ; 2.67 ; Breakage-reunion domain of S.pneumoniae topo IV: crystal structure of a gram-positive quinolone target 5FS5 ; 1.42 ; Breaking down the wall: mutation of the tyrosine gate of the universal Escherichia coli fimbrial adhesin FimH 5FWR ; 2.13 ; Breaking down the wall: mutation of the tyrosine gate of the universal Escherichia coli fimbrial adhesin FimH 5FX3 ; 1.9 ; Breaking down the wall: mutation of the tyrosine gate of the universal Escherichia coli fimbrial adhesin FimH 1JKM ; 1.85 ; BREFELDIN A ESTERASE, A BACTERIAL HOMOLOGUE OF HUMAN HORMONE SENSITIVE LIPASE 7BCV ; 2.28 ; Brevibacterium linens encapsulin structure 8QJR ; 3.17 ; BRG1 bromodomain in complex with VBC via compound 17 2YAD ; 2.2 ; BRICHOS domain of Surfactant protein C precursor protein 6WZ5 ; 2.2 ; Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin 6WZ9 ; 2.8 ; Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin 6X0L ; 3.9 ; Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin 6X0M ; 6.3 ; Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin 6X0N ; 10.0 ; Bridging of double-strand DNA break activates PARP2/HPF1 to modify chromatin 8BVG ; 2.38 ; Bright fluorescent protein BrUSLEE with subnanosecond fluorescence lifetime 2IOV ; 1.8 ; Bright-state structure of the reversibly switchable fluorescent protein Dronpa 2V0E ; ; BRK domain from human CHD7 2V0F ; ; BRK domain from human CHD7 8QJT ; 2.568 ; BRM (SMARCA2) Bromodomain in complex with ligand 10 4JIO ; 3.6 ; Bro1 V domain and ubiquitin 8CQM ; 2.0 ; Broad-range phospholipase C from Listeria monocytogenes 8ELI ; 1.49 ; Broadly neutralizing antibody VRC34-combo.1 in complex with HIV fusion peptide (residue 512-519) 7B4T ; 1.95 ; Broadly neutralizing DARPin bnD.1 in complex with the HIV-1 envelope variable loop 3 crown mimetic peptide V3-IF (BG505) 7B4U ; 1.45 ; Broadly neutralizing DARPin bnD.2 in complex with the HIV-1 envelope variable loop 3 crown mimetic peptide V3-IF (BG505) 7B4V ; 1.4 ; Broadly neutralizing DARPin bnD.2 in complex with the HIV-1 envelope variable loop 3 crown mimetic peptide V3-IF (BG505) 7B4W ; 1.9 ; Broadly neutralizing DARPin bnD.3 in complex with the HIV-1 envelope variable loop 3 crown mimetic peptide V3-IF (BG505) 7Z7C ; 1.22 ; Broadly neutralizing DARPin bnD.8 in complex with the HIV-1 envelope variable loop 3 peptide V3 (BF520) 8AED ; 1.17 ; Broadly neutralizing DARPin bnD.9 in complex with the HIV-1 envelope variable loop 3 peptide V3 (BG505) 6N5B ; 3.5 ; Broadly protective antibodies directed to a subdominant influenza hemagglutinin epitope 6N5D ; 3.0 ; Broadly protective antibodies directed to a subdominant influenza hemagglutinin epitope 6N5E ; 3.0 ; Broadly protective antibodies directed to a subdominant influenza hemagglutinin epitope 1JS9 ; 3.4 ; Brome Mosaic Virus 5WKY ; 4.0 ; Bromide sites in the structure of an acid sensing ion channel in a resting state 3S8Y ; 2.1 ; Bromide soaked structure of an esterase from the oil-degrading bacterium Oleispira antarctica 5AHZ ; 2.45 ; Bromide-bound form of Halorhodopsin from Halobacterium salinarum in a new rhombohedral crystal form 3QBK ; 2.2 ; Bromide-bound form of pharaonis halorhodopsin 3VQH ; 1.95 ; Bromine SAD partially resolves multiple binding modes for PKA inhibitor H-89 4WHU ; 2.11 ; BROMO domain of CREB binding protein 3SGM ; 1.7006 ; Bromoderivative-2 of amyloid-related segment of alphaB-crystallin residues 90-100 3SGN ; 2.807 ; Bromoderivative-8 of amyloid-related segment of alphaB-crystallin residues 90-100 8IBQ ; 1.45 ; Bromodomain and Extra-terminal Domain (BET) BRD4 8IDH ; 1.57 ; Bromodomain and Extra-terminal Domain (BET) BRD4 8WIU ; 1.4 ; Bromodomain and Extra-terminal Domain (BET) BRD4 1E6I ; 1.87 ; Bromodomain from GCN5 complexed with acetylated H4 peptide 5TPX ; 2.1 ; Bromodomain from Plasmodium Faciparum Gcn5, complexed with compound 5KO4 ; 1.44 ; Bromodomain from Trypanosoma brucei Tb427.10.8150 7UGE ; 2.004 ; Bromodomain of CBP liganded with BMS-536924 8FUP ; 1.7 ; Bromodomain of CBP liganded with BMS-536924 and CCS-1477 7UGL ; 1.5 ; Bromodomain of CBP liganded with BMS-536924 and SGC-CBP30 8FV2 ; 1.87 ; Bromodomain of CBP liganded with CCS-1477 8FVS ; 1.75 ; Bromodomain of CBP liganded with CCS1477int 8FXA ; 1.65 ; Bromodomain of CBP liganded with iCBP4 8FXE ; 1.55 ; Bromodomain of CBP liganded with iCBP6 8FXN ; 2.0 ; Bromodomain of CBP liganded with iCBP7 8FXO ; 1.74 ; Bromodomain of CBP liganded with iCBP8 8G6T ; 1.75 ; Bromodomain of CBP liganded with inhibitor iCBP2 8GA2 ; 1.85 ; Bromodomain of CBP liganded with inhibitor iCBP5 7UGI ; 2.0 ; Bromodomain of EP300 liganded with BMS-536924 8FVF ; 2.1 ; Bromodomain of EP300 liganded with CCS-1477 5MKY ; 1.67 ; BROMODOMAIN OF HUMAN BRD9 WITH 4-chloro-2-methyl-5-((2-methyl-1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one 4UIT ; 1.3 ; BROMODOMAIN OF HUMAN BRD9 WITH 7-(3,4-dimethoxyphenyl)-2-(4- methanesulfonylpiperazine-1-carbonyl)-5-methyl-4H,5H-thieno-3,2-c- pyridin-4-one 4UIU ; 1.64 ; BROMODOMAIN OF HUMAN BRD9 WITH 7-(3,4-dimethoxyphenyl)-N-(1,1-dioxo-1- thian-4-yl)-5-methyl-4-oxo-4H,5H-thieno-3,2-c-pyridine-2-carboxamide 4UIW ; 1.73 ; BROMODOMAIN OF HUMAN BRD9 WITH N-(1,1-dioxo-1-thian-4-yl)-5-ethyl-4- oxo-7-3-(trifluoromethyl)phenyl-4H,5H-thieno-3,2-c-pyridine-2- carboximidamide 4UIV ; 1.72 ; BROMODOMAIN OF HUMAN BRD9 WITH N-(1,1-dioxo-1-thian-4-yl)-5-methyl-4- oxo-7-3-(trifluoromethyl)phenyl-4H,5H-thieno-3,2-c-pyridine-2- carboximidamide 4UYE ; 1.65 ; BROMODOMAIN OF HUMAN BRPF1 WITH N-1,3-dimethyl-2-oxo-6-(piperidin-1- yl)-2,3-dihydro-1H-1,3-benzodiazol-5-yl-2-methoxybenzamide 5G4R ; 1.96 ; BROMODOMAIN OF HUMAN BRPF1 WITH N-1,3-dimethyl-6-2R-2- methylpiperazin-1-yl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl-2- methoxybenzamide 5G4S ; 1.6 ; BROMODOMAIN OF HUMAN BRPF1 WITH N-1,3-dimethyl-6-2R-2- methylpiperazin-1-yl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl-N- ethyl-2-methoxybenzamide 4A9K ; 1.81 ; BROMODOMAIN OF HUMAN CREBBP WITH N-(4-hydroxyphenyl)acetamide 5MLJ ; 1.8 ; Bromodomain of Human GCN5 with 4-bromo-2-methyl-5-(((3R,5R)-1-methyl-5-phenylpiperidin-3-yl)amino)pyridazin-3(2H)-one 7P4S ; 2.17 ; BROMODOMAIN OF HUMAN TAF1 (2) WITH naphthyridinone compound 5ML0 ; 1.64 ; Bromodomain of Mouse PCAF with (R)-4-chloro-2-methyl-5-((1-methylpiperidin-3-yl)amino)pyridazin-3(2H)-one 5VS7 ; 2.04 ; Bromodomain of PF3D7_1475600 from Plasmodium falciparum complexed with peptide H4K5ac 4PKL ; 1.251 ; Bromodomain of Trypanosoma brucei BDF2 With IBET-151 7Q5O ; 1.519 ; Bromodomain-containing 2 BD2 in complex with the inhibitor CRCM5484 7C2Z ; 1.3 ; Bromodomain-containing 4 BD1 in complex with 3',4',7,8-Tetrahydroxyflavone 7Q3F ; 1.21 ; Bromodomain-containing 4 BD1 in complex with the inhibitor CRCM5484 7C6P ; 1.73 ; Bromodomain-containing 4 BD2 in complex with 3',4',7,8- Tetrahydroxyflavonoid 6P05 ; 1.54 ; Bromodomain-containing protein 4 (BRD4) bromodomain 1 (BD1) complexed with compound 27 7RUI ; 1.35 ; Bromodomain-containing protein 4 (BRD4) bromodomain 1 (BD1) complexed with XR844 7JKY ; 1.16 ; Bromodomain-containing protein 4 (BRD4) bromodomain 1 (BD1) complexed with YF3-126 7JKX ; 1.2 ; Bromodomain-containing protein 4 (BRD4) bromodomain 1 (BD1) complexed with YF3-6 7JKW ; 1.2 ; Bromodomain-containing protein 4 (BRD4) bromodomain 1 (BD1) complexed with ZN1-99 7RUH ; 1.7 ; Bromodomain-containing protein 4 (BRD4) bromodomain 2 (BD2) complexed with XR844 7JKZ ; 2.49 ; Bromodomain-containing protein 4 (BRD4) bromodomain 2 (BD2) complexed with YF3-126 3DN2 ; 1.8 ; Bromopentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 1A8Q ; 1.75 ; BROMOPEROXIDASE A1 1BRO ; 2.05 ; BROMOPEROXIDASE A2 1BRT ; 1.5 ; BROMOPEROXIDASE A2 MUTANT M99T 4RIP ; 2.1 ; BromoUracil substituted structure of intercalation-locked DNA tetraplex 5N49 ; 1.94 ; BRPF2 in complex with Compound 7 4F91 ; 2.697 ; Brr2 Helicase Region 4F92 ; 2.662 ; Brr2 Helicase Region S1087L 4F93 ; 2.92 ; Brr2 Helicase Region S1087L, Mg-ATP 8HDN ; 1.7 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation-I258M/K262T 8HS5 ; 2.3 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation-I258M/K262T-NAD+ 8HDE ; 2.7 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation/I258M 8HDI ; 1.99 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation/K262T 8HS4 ; 2.0 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation/K262T-NAD+ 8HSA ; 3.0 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant: 1-53 truncation/M196I/I258M/K262T-NAD+ 8HS6 ; 2.35 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant:1-53 truncation 8HS9 ; 3.25 ; Brucella melitensis 7-alpha-Hydroxysteroid Dehydrogenase mutant:I258M/K262T 8HAX ; 3.25 ; Brucella melitensis 7alpha-Hydroxysteroid Dehydrogenase mutant-I258M/K262T 7MPR ; 1.42 ; Brucella melitensis NrnC 7MPU ; 1.72 ; Brucella melitensis NrnC bound to pGG 7MPT ; 1.75 ; Brucella melitensis NrnC with bound Mg2+ 7MPS ; 1.45 ; Brucella melitensis NrnC with engaged loop 5TEU ; 1.62 ; Brucella periplasmic binding protein YehZ 5E0O ; 3.0 ; Brugia malayi Trehalose-6 Phosphate Phosphatase in complex with PEG at the active site. 2KHC ; ; Bruno RRM3+ 8E2M ; 1.904 ; Bruton's tyrosine kinase (BTK) with compound 13 5VGO ; 1.621 ; Bruton's tyrosine kinase (BTK) with compound G-744 5VFI ; 1.59 ; Bruton's tyrosine kinase (BTK) with GDC-0853 4RX5 ; 1.356 ; Bruton's tyrosine kinase (BTK) with pyridazinone compound 23 5KUP ; 1.389 ; Bruton's tyrosine kinase (BTK) with pyridazinone compound 9 8EJB ; 1.58 ; Bruton's tyrosine kinase in complex with 3-{[4-(1-acetylpiperidin-4-yl)phenyl]amino}-5-[(3R)-3-(3-methyl-2-oxoimidazolidin-1-yl)piperidin-1-yl]pyrazine-2-carboxamide 8GC7 ; 1.9 ; Bruton's tyrosine kinase in complex with 5-(piperidin-1-yl)-3-{[4-(piperidin-4-yl)phenyl]amino}pyrazine-2-carboxamide 4YHF ; 2.2 ; Bruton's tyrosine kinase in complex with a t-butyl cyanoacrylamide inhibitor 8FLG ; 2.2 ; Bruton's tyrosine kinase in complex with an orthosteric inhibitor 8FLH ; 1.55 ; Bruton's tyrosine kinase in complex with an orthosteric inhibitor 6W07 ; 1.51 ; Bruton's tyrosine kinase in complex with compound 1 7N4R ; 1.62 ; Bruton's tyrosine kinase in complex with compound 21 7LTY ; 1.69 ; Bruton's tyrosine kinase in complex with compound 23 8FLV ; 1.3 ; Bruton's tyrosine kinase in complex with compound 34 7N4Q ; 1.5 ; Bruton's tyrosine kinase in complex with compound 45 6VXQ ; 1.4 ; Bruton's tyrosine kinase in complex with compound 5 7LTZ ; 1.53 ; Bruton's tyrosine kinase in complex with compound 51 6W06 ; 1.55 ; Bruton's tyrosine kinase in complex with compound 6 7N4S ; 2.05 ; Bruton's tyrosine kinase in complex with compound 65 8U2D ; 1.95 ; Bruton's tyrosine kinase in complex with N-[(2R)-1-[(3R)-3-(methylcarbamoyl)-1H,2H,3H,4H,9H-pyrido[3,4-b]indol-2-yl]-3-(3-methylphenyl)-1-oxopropan-2-yl]-1H-indazole-5-carboxamide 8U2E ; 1.9 ; Bruton's tyrosine kinase in complex with N-[(2R)-1-[(3R)-3-(methylcarbamoyl)-1H,2H,3H,4H,9H-pyrido[3,4-b]indol-2-yl]-3-(3-methylphenyl)-1-oxopropan-2-yl]-1H-indazole-5-carboxamide 8GC8 ; 1.75 ; Bruton's tyrosine kinase L528W mutant in complex with 5-(piperidin-1-yl)-3-{[4-(piperidin-4-yl)phenyl]amino}pyrazine-2-carboxamide 6NZM ; 1.72 ; Brutons tyrosine kinase in complex with compound 50. 6FRL ; 2.5 ; BrvH, a flavin-dependent halogenase from Brevundimonas sp. BAL3 7RZB ; 1.6 ; BrxA from Staphylococcus aureus with bacillithiol mixed disulfide 7ZGE ; 2.09 ; BrxA, BREX phage defence protein 7T8L ; 2.0 ; BrxR from Acinetobacter BREX type I phage restriction system 7T8K ; 2.3 ; BrxR from Acinetobacter BREX type I phage restriction system bound to DNA 7QFZ ; 2.15 ; BrxR, a WYL-domain containing transcriptional regulator 7P9K ; 2.12 ; BrxU, GmrSD-family Type IV restriction enzyme 7P9M ; 2.85 ; BrxU, GmrSD-family Type IV restriction enzyme 8HPD ; 2.74 ; Bry-LHCII heterotrimer of Bryopsis corticulans 8HLV ; 2.55 ; Bry-LHCII homotrimer of Bryopsis corticulans 8HQ8 ; 2.6 ; Bry-LHCII homotrimer of Bryopsis corticulans 1BRY ; 2.1 ; BRYODIN TYPE I RIP 7PUD ; 1.25 ; Bryoporin - actinoporin from moss Physcomitrium patens 7OMS ; 2.05 ; Bs164 in complex with mannocyclophellitol aziridine 7OMI ; 1.76 ; Bs164 in complex with mannocyclophellitol epoxide 1KNV ; 2.17 ; Bse634I restriction endonuclease 6D9T ; 2.0 ; BshA from Staphylococcus aureus complexed with UDP 6N1X ; 2.35 ; BshA from Staphylococcus aureus complexed with UDP and N-acetylglucosamine 6ULL ; 1.45 ; BshB from Bacillus subtilis complexed with a substrate analogue 6P2T ; 1.853 ; BshB from Bacillus subtilis complexed with citrate 3LVV ; 2.2 ; BSO-inhibited ScGCL 4Z1P ; 1.89 ; BspA_C_mut 4Z23 ; 2.45 ; BspA_C_WT 7AGZ ; 1.52 ; BsrV no-histagged 6MU4 ; 1.62 ; Bst DNA polymerase I FANA/DNA binary complex 8SCG ; 2.0 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 0h (Ground State) 8SCI ; 2.67 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 1h 8SCN ; 2.3 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 24h (Product State) 8SCJ ; 2.68 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 2h 8SCK ; 2.3 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 4h 8SCL ; 2.44 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 6h 8SCM ; 2.3 ; Bst DNA polymerase I Large Fragment mutant F710Y/D598A with 3'-amino primer, dGTP, and calcium time-resolved 8h 8SCO ; 1.92 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 0h (Ground State) 8SCP ; 2.08 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 1h 8SCT ; 2.34 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 24h 8SCQ ; 2.18 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 2h 8SCU ; 2.38 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 48h (Product State) 8SCR ; 2.0 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 4h 8SCS ; 2.1 ; Bst DNA polymerase I Large Fragment wildtype D598A with 3'-amino primer, dGTP, and calcium time-resolved 8h 6DSX ; 1.99 ; Bst DNA polymerase I post-chemistry (n+1 with dATP soak) structure 6DSY ; 1.98 ; Bst DNA polymerase I post-chemistry (n+1) structure 6DSV ; 1.99 ; Bst DNA polymerase I post-chemistry (n+2) structure 6DSW ; 1.589 ; Bst DNA polymerase I pre-chemistry (n) structure 6DSU ; 1.98 ; Bst DNA polymerase I pre-insertion complex structure 7K5O ; 2.16 ; Bst DNA polymerase I time-resolved structure, 1 min post dATP addition 7K5R ; 2.3 ; Bst DNA polymerase I time-resolved structure, 120 min post dATP addition 7K5T ; 2.3 ; Bst DNA polymerase I time-resolved structure, 25.5 hr post dATP and dCTP addition 7K5S ; 1.67 ; Bst DNA polymerase I time-resolved structure, 4 hr post dATP and dCTP addition 7K5P ; 1.97 ; Bst DNA polymerase I time-resolved structure, 4 min post dATP addition 7K5U ; 2.0 ; Bst DNA polymerase I time-resolved structure, 48 hr post dATP and dCTP addition 7K5Q ; 2.0 ; Bst DNA polymerase I time-resolved structure, 8 min post dATP addition 6MU5 ; 1.912 ; Bst DNA polymerase I TNA/DNA binary complex 3HQ2 ; 2.9 ; BsuCP Crystal Structure 6Q63 ; 2.44 ; BT0459 5MUJ ; 1.37 ; BT0996 RGII Chain B Complex 3EHN ; 2.8 ; BT1043 with N-acetyllactosamine 6Q64 ; 2.4 ; BT1044SeMet E190Q 5G2T ; 1.9 ; BT1596 in complex with its substrate 4,5 unsaturated uronic acid alpha 1,4 D-Glucosamine-2-N, 6-O-disulfate 7BR2 ; 2.33 ; BT4096 a gut microbial diltiazem-metabolizing enzyme 5CK0 ; 1.996 ; BT4246 5CJZ ; 1.803 ; BT4246 with galactose 4U77 ; 2.03 ; BTB domain from Drosophila CP190 1BUO ; 1.9 ; BTB DOMAIN FROM PLZF 4CXI ; 2.35 ; BTB domain of KEAP1 4CXJ ; 2.8 ; BTB domain of KEAP1 C151W mutant 4CXT ; 2.66 ; BTB domain of KEAP1 in complex with CDDO 7X4X ; 2.96 ; BTB domain of KEAP1 in complex with MEF 5GIT ; 2.19 ; BTB domain of KEAP1 in complex with XX3 6GUV ; 2.29 ; BTB domain of mouse PATZ1 6GUW ; 1.8 ; BTB domain of zebrafish PATZ1 6ML4 ; 1.482 ; BTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 3) 8SAK ; 3.0 ; BtCoV-422 in complex with neutralizing antibody JC57-11 8UYE ; 5.9 ; BtCoV-HKU5 5' proximal stem-loop 5, conformation 1 8UYG ; 6.4 ; BtCoV-HKU5 5' proximal stem-loop 5, conformation 2 8UYJ ; 7.3 ; BtCoV-HKU5 5' proximal stem-loop 5, conformation 4 6RGN ; 2.01 ; BteA131 2WZH ; 2.2 ; BtGH84 D242N in complex with MeUMB-derived oxazoline 2WZI ; 1.9 ; BtGH84 D243N in complex with 5F-oxazoline 2XJ7 ; 2.0 ; BtGH84 in complex with 6-acetamido-6-deoxy-castanospermine 2W67 ; 2.25 ; BtGH84 in complex with FMA34 2W66 ; 2.27 ; BtGH84 in complex with HQ602 2XM2 ; 1.95 ; BtGH84 in complex with LOGNAc 2XM1 ; 2.0 ; BtGH84 in complex with N-acetyl gluconolactam 2WCA ; 2.3 ; BtGH84 in complex with n-butyl pugnac 2VVN ; 1.85 ; BtGH84 in complex with NH-Butylthiazoline 2W4X ; 2.42 ; BtGH84 in complex with STZ 2X0H ; 2.21 ; BtGH84 Michaelis complex 5MI4 ; 1.8 ; BtGH84 mutant with covalent modification by MA3 5MI5 ; 2.15 ; BtGH84 mutant with covalent modification by MA3 in complex with PUGNAc 5MI6 ; 2.0 ; BtGH84 mutant with covalent modification by MA3 in complex with Thiamet G 5MI7 ; 2.1 ; BtGH84 mutant with covalent modification by MA4 in complex with PUGNAc 2VVS ; 2.24 ; BtGH84 structure in complex with PUGNAc 7ROX ; 2.1 ; BthTX-I complexed with inhibitor MMV 4WTB ; 2.16 ; BthTX-I, a svPLA2s-like toxin, complexed with zinc ions 7RJZ ; 1.7 ; BthTX-II variant a, from Bothrops jararacussu venom, complexed with benzoic acid 7RJI ; 1.71 ; BthTX-II variant b, from Bothrops jararacussu venom, complexed with stearic acid 6BKE ; 1.95 ; BTK complex with compound 10 6BKH ; 1.792 ; BTK complex with compound 11 6BKW ; 1.499 ; BTK complex with compound 12 6BLN ; 1.3 ; BTK complex with compound 13 6BIK ; 1.901 ; BTK complex with compound 7 6XE4 ; 1.6 ; BTK Fluorocyclopropyl amide inhibitor, Compound 25 7R60 ; 1.94 ; BTK in complex with 18A 7R61 ; 1.52 ; BTK in complex with 25A 6S90 ; 1.82 ; BTK in complex with an inhibitor 5P9F ; 1.71 ; BTK IN COMPLEX WITH GDC-0834 6O8I ; 1.42 ; BTK In Complex With Inhibitor 6NFH ; 1.4 ; BTK in complex with inhibitor 8-(2,3-dihydro-1H-inden-5-yl)-2-({4-[(2S)-3-(dimethylamino)-2-hydroxypropoxy]phenyl}amino)-5,8-dihydropteridine-6,7-dione 6NFI ; 2.41 ; BTK in complex with inhibitor N-(3-{[(2,6-dimethylphenyl)methyl]amino}-7-methoxyindeno[1,2-c]pyrazol-6-yl)methanesulfonamide 6TFP ; 2.0 ; BTK in complex with LOU064, a potent and highly selective covalent inhibitor 5FBN ; 1.8 ; BTK kinase domain with inhibitor 1 5FBO ; 1.894 ; BTK-inhibitor co-structure 5P9M ; 1.41 ; BTK1 BINDS COVALENTLY TO HY-15771 ONO-4059 5P9J ; 1.08 ; BTK1 COCRYSTALLIZED WITH IBRUTINIB 5P9H ; 1.95 ; BTK1 COCRYSTALLIZED WITH RN983 5P9L ; 1.25 ; BTK1 IN COMPLEX WITH CC 292 7KXO ; 1.94 ; BTK1 SOAKED WITH COMPOUND 24 7KXP ; 1.83 ; BTK1 SOAKED WITH COMPOUND 25 7KXN ; 1.34 ; BTK1 SOAKED WITH COMPOUND 26 7KXQ ; 1.38 ; BTK1 SOAKED WITH COMPOUND 30 7KXL ; 1.84 ; BTK1 SOAKED WITH COMPOUND 5, Y551 IS SEQUESTERED 7KXM ; 1.33 ; BTK1 SOAKED WITH COMPOUND 5, Y551 IS SEQUESTERED 5P9I ; 1.11 ; BTK1 SOAKED WITH IBRUTINIB-Rev 4V1P ; 2.04 ; BTN3 Structure 7SKR ; 2.89 ; BtSCoV-Rf1.2004 Papain-Like protease bound to the non-covalent inhibitor 37 7SKQ ; 3.16 ; BtSCoV-Rf1.2004 Papain-Like protease bound to the non-covalent inhibitor GRL-0617 8P97 ; 2.75 ; BtuB3G3 bound to cyanocobalamin with disordered EL8 8P98 ; 2.97 ; BtuB3G3 bound to cyanocobalamin with ordered EL8 7QUQ ; 2.6 ; BtubA(R284G,K286D,F287G):BtubB bacterial tubulin M-loop mutant forming a single protofilament (Prosthecobacter dejongeii) 5O09 ; 3.6 ; BtubABC mini microtubule 5KD2 ; 2.15 ; BT_4244 metallopeptidase from Bacteroides thetaiotaomicron 5KD5 ; 1.65 ; BT_4244 metallopeptidase from Bacteroides thetaiotaomicron 5KD8 ; 2.3 ; BT_4244 metallopeptidase in complex with Tn antigen. 2I3S ; 1.9 ; Bub3 complex with Bub1 GLEBS motif 2I3T ; 2.8 ; Bub3 complex with Mad3 (BubR1) GLEBS motif 2H8U ; 2.1 ; Bucain, a cardiotoxin from the Malayan Krait Bungarus candidus 1B77 ; 2.1 ; BUILDING A REPLISOME STRUCTURE FROM INTERACTING PIECES: A SLIDING CLAMP COMPLEXED WITH AN INTERACTION PEPTIDE FROM DNA POLYMERASE 5MPQ ; 1.78 ; Bulgecin A: The key to a broad-spectrum inhibitor that targets lytic transglycosylases 1K8S ; ; BULGED ADENOSINE IN AN RNA DUPLEX 7EEN ; 1.7 ; Bulged-G motif composed of RNA, DNA and 2'-O-methyl RNA 7EEO ; 2.701 ; Bulged-G motif composed of RNA, DNA and 2'-O-methyl RNA 1H8P ; 1.82 ; Bull seminal plasma PDC-109 fibronectin type II module 3RBC ; 2.7 ; Bullfrog M ferritin with iron(III) bound to the ferroxidase site 1RCE ; 2.4 ; BULLFROG RED CELL L FERRITIN SULFATE/MN/PH 6.3 1RCG ; 2.2 ; BULLFROG RED CELL L FERRITIN SULFATE/MN/PH 6.3 1RCC ; 2.4 ; BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5 1RCD ; 2.0 ; BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5 1RCI ; 2.0 ; BULLFROG RED CELL L FERRITIN TARTRATE/MG/PH 5.5 7KFE ; 6.6 ; Bundibugyo virus GP (mucin deleted) bound to antibody Fab BDBV-329 7KEW ; 4.16 ; Bundibugyo virus GP (mucin deleted) bound to antibody Fab BDBV-43 6DZM ; 4.29 ; Bundibugyo virus GP (mucin-deleted) in complex with pan-ebolavirus human antibody ADI-15878 Fab 6H3V ; 2.9 ; Bunyamwera Virus Glycoprotein Gc Head Domain 7PCE ; 2.9 ; BurG (apo): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCM ; 2.05 ; BurG (holo) in complex with (Z)-2,3-dihydroxy-6-methyl-hept-2-enoate (13): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCL ; 2.05 ; BurG (holo) in complex with 2-hydroxy-2-(hydroxy(isopropyl)amino)acetate (11): Biosynthesis of cyclopropanolrings in bacterial toxins 7PCG ; 1.9 ; BurG (holo) in complex with cyclopropane-1,1-dicarboxylate (7): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCN ; 1.6 ; BurG (holo) in complex with gonyenediol (14), trigonic acid (6) and DMS: Biosynthesis of cyclopropanol rings in bacterial toxins 7PCI ; 1.9 ; BurG (holo) in complex with hydroxypyruvate-enol (8): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCO ; 1.55 ; BurG E232Q mutant (holo) in complex with 2R,3R-2,3-dihydroxy-6-methyl-heptanoate (12): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCT ; 1.35 ; BurG E232Q mutant (holo) in complex with enol-oxalacetate (15): Biosynthesis of cyclopropanol rings in bacterial toxins 7PCC ; 1.85 ; BurG in complex with Mg2+ and NAD+ (holo): Biosynthesis of cyclopropanol rings in bacterial toxins 1GEV ; 2.1 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GEZ ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF0 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF3 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF4 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF5 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF6 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1GF7 ; 1.8 ; BURIED POLAR MUTANT HUMAN LYSOZYME 1YS1 ; 1.1 ; Burkholderia cepacia lipase complexed with hexylphosphonic acid (R)-2-methyl-3-phenylpropyl ester 1YS2 ; 1.5 ; Burkholderia cepacia lipase complexed with hexylphosphonic acid (S) 2-methyl-3-phenylpropyl ester 2NW6 ; 1.8 ; Burkholderia cepacia lipase complexed with S-inhibitor 7LUJ ; 2.31 ; Burkholderia pseudomallei Disulfide bond forming protein A (DsbA) liganded with fragment 4-methoxy-N-phenylbenzenesulfonamide 7LUH ; 1.84 ; Burkholderia pseudomallei Disulfide bond forming protein A (DsbA) liganded with fragment bromophenoxy propanamide 4UT4 ; 1.94 ; Burkholderia pseudomallei heptokinase WcbL, D-mannose complex. 4UTG ; 1.93 ; Burkholderia pseudomallei heptokinase WcbL,AMPPNP (ATP analogue) complex. 5TZB ; 1.977 ; Burkholderia sp. beta-aminopeptidase 7MLW ; 2.7 ; Burkholderia sp. TJI49 Guanidine-I riboswitch 4CJA ; 2.651 ; BurrH DNA-binding protein from Burkholderia rhizoxinica in complex with its target DNA 4CJ9 ; 2.214 ; BurrH DNA-binding protein from Burkholderia rhizoxinica in its apo form 6DHI ; 3.1 ; Butelase 1: Auto-Catalytic Cleavage as an Evolutionary Constraint for Macrocyclizing Endopeptidases 8SL7 ; 2.07 ; Butyricicoccus sp. BIOML-A1 tryptophanase complex with (3S) ALG-05 6EYF ; 2.6 ; Butyrylcolinesterase expressed in CHO cells co-crystallised with a rivastigmine analogue 7V51 ; 2.42 ; BVMO_negative mutant D432V 4RZR ; 2.2 ; Bypass of a bulky adduct dG1,8 by DPO4 2IA6 ; 2.5 ; Bypass of Major Benzopyrene-dG Adduct by Y-Family DNA Polymerase with Unique Structural Gap 2IBK ; 2.25 ; Bypass of Major Benzopyrene-dG Adduct by Y-Family DNA Polymerase with Unique Structural Gap 1ZMF ; 1.88 ; C domain of human cyclophilin-33(hcyp33) 4ZMD ; 1.87 ; C domain of staphylococcal protein A mutant - Q9W 5EWR ; 2.35 ; C merolae U4 snRNP protein Snu13 7PON ; 2.1 ; C TERMINAL DOMAIN OF NIPAH VIRUS PHOSPHOPROTEIN 7PNO ; 2.79 ; C terminal domain of Nipah Virus Phosphoprotein fused to the Ntail alpha more of the Nucleoprotein. 6F1V ; 3.4 ; C terminal region of the dynein heavy chains in the dynein tail/dynactin/BICDR1 complex 1QVP ; ; C terminal SH3-like domain from Diphtheria toxin Repressor residues 144-226. 4OFT ; 2.6 ; C- Orthorombic NaGST1 6NPU ; 2.33 ; C-abl Kinase domain with the activator(cmpd29), N-(1-(3,4-dichlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)acetamide 6NPV ; 1.86 ; C-abl Kinase domain with the activator(cmpd51), N-(1-(3,4-dichlorophenyl)-4-(2-hydroxyethyl)-4,5-dihydro-1H-pyrazol-3-yl)isonicotinamide 6NPE ; 2.15 ; C-abl Kinase domain with the activator(cmpd6), 2-cyano-N-(4-(3,4-dichlorophenyl)thiazol-2-yl)acetamide 4BML ; 4.7 ; C-alpha backbone trace of major capsid protein gp39 found in marine virus Syn5. 3IZ1 ; 6.0 ; C-alpha model fitted into the EM structure of Cx26M34A 3IZ2 ; 10.0 ; C-alpha model fitted into the EM structure of Cx26M34Adel2-7 2D25 ; 1.75 ; C-C-A-G-G-C-M5C-T-G-G; HELICAL FINE STRUCTURE, HYDRATION, AND COMPARISON WITH C-C-A-G-G-C-C-T-G-G 1L3W ; 3.08 ; C-cadherin Ectodomain 1N2T ; 2.0 ; C-DES Mutant K223A with GLY Covalenty Linked to the PLP-cofactor 4QKA ; 3.2 ; c-di-AMP riboswitch from Thermoanaerobacter pseudethanolicus, iridium hexamine soak 1OZS ; ; C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I 3H13 ; 2.2 ; c-FLIPL protease-like domain 2I0V ; 2.8 ; c-FMS tyrosine kinase in complex with a quinolone inhibitor 1IAQ ; 2.9 ; C-H-RAS P21 PROTEIN MUTANT WITH THR 35 REPLACED BY SER (T35S) COMPLEXED WITH GUANOSINE-5'-[B,G-IMIDO] TRIPHOSPHATE 4YC8 ; 2.9 ; C-Helix-Out Binding of Dasatinib Analog to c-Abl Kinase 4YBK ; 2.5 ; C-Helix-Out Dasatinib Analog Crystallized with c-Src Kinase 2R9S ; 2.4 ; c-Jun N-terminal Kinase 3 with 3,5-Disubstituted Quinoline inhibitor 8PQ9 ; 1.7 ; c-KIT kinase domain in complex with avapritinib 8PQD ; 1.5 ; c-KIT kinase domain in complex with avapritinib derivative 10 8PQE ; 2.0 ; c-KIT kinase domain in complex with avapritinib derivative 11 8PQF ; 1.9 ; c-KIT kinase domain in complex with avapritinib derivative 12 8PQA ; 1.65 ; c-KIT kinase domain in complex with avapritinib derivative 4 8PQB ; 1.87 ; c-KIT kinase domain in complex with avapritinib derivative 8 8PQC ; 1.77 ; c-KIT kinase domain in complex with avapritinib derivative 9 8PQG ; 2.4 ; c-KIT T670I mutated kinase domain in complex with avapritinib 8AU5 ; 2.72 ; c-MET F1200I mutant in complex with Tepotinib 4KNB ; 2.4 ; C-Met in complex with OSI ligand 3QTI ; 2.0 ; c-Met Kinase in Complex with NVP-BVU972 8AU3 ; 2.26 ; c-MET Y1234E,Y1235E mutant in complex with Tepotinib 8AW1 ; 2.14 ; c-MET Y1235D mutant in complex with Tepotinib 7ZGT ; 2.05 ; C-Methyltransferase PsmD from Streptomyces griseofuscus (apo form) 7ZKH ; 1.4 ; C-Methyltransferase PsmD from Streptomyces griseofuscus with bound cofactor (crystal form 1) 7ZKG ; 2.3 ; C-Methyltransferase PsmD from Streptomyces griseofuscus with bound cofactor (crystal form 2) 6M75 ; 2.57 ; C-Myc DNA binding protein complex 7C36 ; ; c-Myc DNA binding protein structure 2OKV ; 2.0 ; c-Myc DNA Unwinding Element Binding Protein 6HRN ; 1.513 ; C-Phycocyanin from heterocyst forming filamentous cyanobacterium Nostoc sp. WR13 7PKF ; 2.8 ; C-reactive protein decamer at pH 5 7PKH ; 3.0 ; C-reactive protein decamer at pH 5 with phosphocholine ligand 7PK9 ; 2.8 ; C-reactive protein decamer at pH 7.5 7PKD ; 3.3 ; C-reactive protein decamer at pH 7.5 with phosphocholine ligand 7PKG ; 3.3 ; C-reactive protein pentamer at pH 5 7PKB ; 3.2 ; C-reactive protein pentamer at pH 7.5 7PKE ; 3.3 ; C-reactive protein pentamer at pH 7.5 with phosphocholine ligand 6R5G ; ; C-SH2 domain of SHP-2 in complex with phospho-ITSM of PD-1 1A1A ; 2.0 ; C-SRC (SH2 DOMAIN WITH C188A MUTATION) COMPLEXED WITH ACE-FORMYL PHOSPHOTYR-GLU-(N,N-DIPENTYL AMINE) 1A08 ; 2.2 ; C-SRC (SH2 DOMAIN) COMPLEXED WITH ACE-DIFLUORO PHOSPHOTYR-GLU-(N,N-DIPENTYL AMINE) 1A09 ; 2.0 ; C-src (SH2 domain) complexed with ace-formyl phosphotyr-glu-(n,n-dipentyl amine) 1A07 ; 2.2 ; C-SRC (SH2 DOMAIN) COMPLEXED WITH ACE-MALONYL TYR-GLU-(N,N-DIPENTYL AMINE) 1A1E ; 2.2 ; C-SRC (SH2 DOMAIN) COMPLEXED WITH ACE-PHOSPHOTYR-GLU-(3-BUTYLPIPERIDINE) 1A1B ; 2.2 ; C-SRC (SH2 DOMAIN) COMPLEXED WITH ACE-PHOSPHOTYR-GLU-(N,N-DIPENTYL AMINE) 1A1C ; 2.4 ; C-SRC (SH2 DOMAIN) COMPLEXED WITH ACE-PHOSPHOTYR-GLU-(N-ME(-(CH2)3-CYCLOPENTYL)) 6WIW ; 2.3 ; c-Src Bound to ATP-Competitive Inhibitor I14 5XP7 ; 2.012 ; C-Src in complex with ATP-CHCl 5XP5 ; 2.101 ; C-Src in complex with ATP-Chf 8JF3 ; 2.84648 ; C-Src in complex with compound 9 7D57 ; 2.104 ; C-Src in complex with FIIN-2 6L8L ; 2.888 ; C-Src in complex with ibrutinib 7WF5 ; 1.798 ; c-Src in complex with ponatinib 4U5J ; 2.26 ; C-Src in complex with Ruxolitinib 7D5O ; 2.69 ; C-Src in complex with TAS-120 3UQF ; 2.27 ; c-SRC kinase domain in complex with BKI RM-1-89 3UQG ; 2.2 ; c-SRC kinase domain in complex with bumpless BKI analog UW1243 5T0P ; 2.5 ; c-Src kinase domain in complex with Rao-IV-151 4DGG ; 2.65 ; c-SRC kinase domain in complex with RM-1-176 3F6X ; 2.35 ; c-Src kinase domain in complex with small molecule inhibitor 3DQW ; 2.017 ; c-Src kinase domain Thr338Ile mutant in complex with ATPgS 1QWE ; ; C-SRC SH3 DOMAIN COMPLEXED WITH LIGAND APP12 1QWF ; ; C-SRC SH3 DOMAIN COMPLEXED WITH LIGAND VSL12 5SYS ; 2.8 ; c-Src V281C bound to N-[3-({6-[(1E)-2-cyano-3-(methylamino)-3-oxoprop-1-en-1-yl]-7-(2-methoxyethyl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl}ethynyl)-4-methylphenyl]-3-(trifluoromethyl)benzamide inhibitor 5SWH ; 2.5 ; c-Src V281C kinase domain in complex with Rao-IV-151 5TEH ; 2.99 ; c-Src V281C kinase domain in complex with Rao-IV-156 1YI6 ; 2.0 ; C-term tail segment of human tyrosine kinase (258-533) 3K7D ; 2.4 ; C-terminal (adenylylation) domain of E.coli Glutamine Synthetase Adenylyltransferase 8EBF ; 2.5 ; C-terminal (TPR) domain of LIC11990 from Leptospira interrogans 5U0J ; 1.72 ; C-terminal ankyrin repeats from human kidney-type glutaminase (KGA) - monoclinic crystal form 5U0I ; 1.423 ; C-terminal ankyrin repeats from human kidney-type glutaminase (KGA) - tetragonal crystal form 5U0K ; 2.548 ; C-terminal ankyrin repeats from human liver-type glutaminase (GAB/LGA) 3DIW ; 2.1 ; c-terminal beta-catenin bound TIP-1 structure 6MOA ; 1.271 ; C-terminal bromodomain of human BRD2 in complex with 4-(2-cyclopropyl-7-(6-methylquinolin-5-yl)-1H-benzo[d]imidazol-5-yl)-3,5-dimethylisoxazole inhibitor 8B5H ; 1.603 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH (R)-7-((R)-1,2-dihydroxyethyl)-1,3-dimethyl-5-(1-methyl-1H-pyrazol-4-yl)-1,3-dihydro-2H-benzo[d]azepin-2-one 7NPZ ; 1.28 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH (R)-N5-cyclopropyl-N3-methyl-2-oxo-1-(1-phenylethyl)-1,2-dihydropyridine-3,5-dicarboxamide 8PX8 ; 1.603 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH (S)-5-(1-((1-acetylpiperidin-3-yl)methyl)-5-bromo-1H-benzo[d]imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one 7NQ7 ; 1.7 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH (S)-N-ethyl-3-(1-methyl-1H-1,2,3-triazol-4-yl)-4-(1-phenylethoxy)benzamide 7NQ2 ; 1.735 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH (S)-N4-cyclopropyl-N2-methyl-6-(1-phenylethyl)pyridine-2,4-dicarboxamide 8PX2 ; 1.622 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1,3-dimethyl-5-(1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one 7OET ; 1.41 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1,5-dimethyl-N-(2-(methylamino)-2-oxo-1-(tetrahydro-2H-pyran-4-yl)ethyl)-6-oxo-N-(2-phenyl-2-(pyridin-2-yl)ethyl)-1,6-dihydropyridine-3-carboxamide 7OES ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1,5-dimethyl-N-(2-(methylamino)-2-oxoethyl)-6-oxo-N-(2-phenylpropyl)-1,6-dihydropyridine-3-carboxamide 6ZB0 ; 1.613 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1-benzyl-N-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide 7OGY ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1-benzyl-N5-cyclopropyl-N3-methyl-1H-pyrazole-3,5-dicarboxamide 7NQ9 ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 2-benzyl-N-cyclopropyl-6-(1-methyl-1H-1,2,3-triazol-4-yl)isonicotinamide 7NQI ; 1.603 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 2-benzyl-N-cyclopropyl-6-(1-methyl-1H-1,2,3-triazol-4-yl)isonicotinamide 7NQ5 ; 1.6 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 3-(2-(benzyloxy)phenyl)-5-methyl-1H-1,2,4-triazole 7OEP ; 1.801 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 5-(1-(1,3-dimethoxypropan-2-yl)-5-morpholino-1H-benzo[d]imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one 7NQ1 ; 1.6 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 6-((S)-hydroxy(phenyl)methyl)-N2-methyl-N4-((1S,2S)-2-methylcyclopropyl)pyridine-2,4-dicarboxamide 7NPY ; 1.601 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 6-benzyl-N2-methyl-N4-((1S,2S)-2-methylcyclopropyl)pyridine-2,4-dicarboxamide 8B5I ; 1.604 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 7,8-dimethoxy-1,3-dimethyl-1,3-dihydro-2H-benzo[d]azepin-2-one 8B5J ; 1.603 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 7,8-dimethoxy-1,3-dimethyl-1,3-dihydro-2H-benzo[d]azepin-2-one 8B5G ; 1.619 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 7,8-dimethoxy-3-methyl-1,3-dihydro-2H-benzo[d]azepin-2-one 6ZB2 ; 2.282 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH GSK549 6ZB1 ; 1.6 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH GSK620 6Z8P ; 1.55 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH GSK973 4UYG ; 2.5 ; C-Terminal bromodomain of Human BRD2 with I-BET726 (GSK1324726A) 6SWO ; 1.601 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH iBET-BD1 (GSK778) 6SWP ; 1.604 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH iBET-BD2 (GSK046) 7OER ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-(2,2-diphenylethyl)-1,5-dimethyl-N-(2-(methylamino)-2-oxoethyl)-6-oxo-1,6-dihydropyridine-3-carboxamide 6Z7F ; 1.605 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-(2-(1H-imidazol-4-yl)ethyl)-4-acetamido-3-(benzyloxy)benzamide 7NQJ ; 1.734 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-ethyl-2-(1-methyl-1H-1,2,3-triazol-4-yl)-6-(1-phenylethyl)isonicotinamide 7NQ8 ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-ethyl-3-(1-methyl-1H-1,2,3-triazol-4-yl)-4-(pyridin-2-ylmethoxy)benzamide 7OE4 ; 1.653 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-methyl-4-propionyl-1H-pyrrole-2-carboxamide 7NQ3 ; 1.603 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N4-((1R,5S,6r)-3-oxabicyclo[3.1.0]hexan-6-yl)-6-((S)-methoxy(phenyl)methyl)-N2-methylpyridine-2,4-dicarboxamide 7OE6 ; 1.762 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N4-hydroxycyclohexyl-N2-methyl-5-phenylethyl-furan-2,4-dicarboxamide 7OE8 ; 1.301 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N5-((1R,5S,6r)-3-oxabicyclo[3.1.0]hexan-6-yl)-3-(1H-indol-4-yl)-N7-methyl-2,3-dihydrobenzofuran-5,7-dicarboxamide 7OE5 ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N5-hydroxycyclohexyl-N3-methyl-1-phenylethyl-1H-pyrazole-3,5-dicarboxamide 7NQ0 ; 1.3 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH oxabicyclo(hexan-6-yl)-N2-methyl-6-((S)-1-phenylethyl)pyridine-2,4-dicarboxamide 7OE9 ; 1.602 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH rac-N5-((1R,5S)-3-oxabicyclo[3.1.0]hexan-6-yl)-N7,3-dimethyl-3-phenyl-2,3-dihydrobenzofuran-5,7-dicarboxamide 7OEO ; 1.51 ; C-TERMINAL BROMODOMAIN OF HUMAN BRD4 N-(2,2-diphenylethyl)-4-methoxy-3,5-dimethyl-N-(2-(methylamino)-2-oxoethyl)benzamide 7L4V ; 1.75 ; C-terminal bZIP domain of human C/EBPbeta Bound to DNA with Consensus Recognition with GT Mismatch 6MG1 ; 1.75 ; C-terminal bZIP domain of human C/EBPbeta with 16bp Methylated Oligonucleotide Containing Consensus Recognition Sequence-C2 Crystal Form 6MG2 ; 1.928 ; C-terminal bZIP domain of human C/EBPbeta with 16bp Methylated Oligonucleotide Containing Consensus Recognition Sequence-C2221 Crystal Form 2VZQ ; 1.7 ; C-terminal CBM35 from Amycolatopsis orientalis exo-chitosanase CsxA in complex with digalacturonic acid 2VZR ; 1.95 ; C-terminal CBM35 from Amycolatopsis orientalis exo-chitosanase CsxA in complex with glucuronic acid 6IRB ; 2.661 ; C-terminal coiled coil domain of Drosophila phospholipase C beta NORPA, selenomethionine 1HF9 ; ; C-Terminal Coiled-Coil Domain from Bovine IF1 4GIF ; 2.8 ; C-terminal coiled-coil domain of transient receptor potential channel TRPP3 (PKD2L1, Polycystin-L) 6DYM ; 2.02 ; C-terminal condensation domain of Ebony 6DYS ; 2.3 ; C-terminal condensation domain of Ebony in complex with beta-alanyl-dopamine 6DYR ; 2.45 ; C-terminal condensation domain of Ebony in complex with Carcinine 6DYN ; 2.102 ; C-terminal condensation domain of Ebony in complex with Histamine 6DYO ; 2.84 ; C-terminal condensation domain of Ebony in complex with L-Dopamine 2XOZ ; 2.374 ; C-terminal cysteine rich domain of human CHFR bound to AMP 2XP0 ; 1.978 ; C-terminal cysteine-rich domain of human CHFR 2XOC ; 1.89 ; C-terminal cysteine-rich domain of human CHFR bound to mADPr 2XOY ; 2.6 ; C-terminal cysteine-rich domain of human CHFR bound to P(1),P(2)- Diadenosine-5'-pyrophosphate 1SOP ; ; C-terminal cystine-rich domain of Minicollagen-I from Hydra 2B0L ; 2.9 ; C-terminal DNA binding domain of transcriptional pleiotropic repressor CodY. 1QMC ; ; C-terminal DNA-binding domain of HIV-1 integrase, NMR, 42 structures 1VPC ; ; C-TERMINAL DOMAIN (52-96) OF THE HIV-1 REGULATORY PROTEIN VPR, NMR, 1 STRUCTURE 1RTG ; 2.6 ; C-TERMINAL DOMAIN (HAEMOPEXIN-LIKE DOMAIN) OF HUMAN MATRIX METALLOPROTEINASE-2 2P5M ; 1.95 ; C-terminal domain hexamer of AhrC bound with L-arginine 4AM6 ; 2.7 ; C-TERMINAL DOMAIN OF ACTIN-RELATED PROTEIN ARP8 FROM S. CEREVISIAE 7C7Y ; 2.6 ; C-terminal domain of B. cereus TubY 3GAB ; 2.5 ; C-terminal domain of Bacillus subtilis MutL crystal form I 3KDG ; 2.0 ; C-terminal domain of Bacillus subtilis MutL crystal form II 2XR4 ; 1.9 ; C-terminal domain of BC2L-C Lectin from Burkholderia cenocepacia 8EIL ; 2.25 ; C-Terminal Domain of BrxL from Acinetobacter BREX type I phage restriction system 4PH1 ; 2.46 ; C-terminal domain of capsid protein from bovine leukemia virus 2N5X ; ; C-terminal domain of Cdc37 cochaperone 6F1S ; 2.4 ; C-terminal domain of CglI restriction endonuclease H subunit 4CU2 ; 2.11 ; C-terminal domain of CTP1L endolysin mutant V195P that reduces autoproteolysis 1K4Z ; 2.3 ; C-terminal Domain of Cyclase Associated Protein 1KQ5 ; 3.0 ; C-terminal Domain of Cyclase Associated Protein with PRO 505 Replaced by SER (P505S) 4PQK ; 3.401 ; C-Terminal domain of DNA binding protein 6IRC ; 3.538 ; C-terminal domain of Drosophila phospholipase b NORPA, methylated 5J3N ; 2.45 ; C-terminal domain of EcoR124I HsdR subunit fused with the pH-sensitive GFP variant ratiometric pHluorin 1WSU ; 2.3 ; C-terminal domain of elongation factor selB complexed with SECIS RNA 4CU5 ; 2.24 ; C-terminal domain of endolysin from phage CD27L is a trigger and release factor 2E5U ; ; C-terminal domain of Epsilon subunit of F1F0-ATP synthase from the Thermophilic Bacillus PS3 2E5T ; ; C-terminal domain of Epsilon subunit of F1F0-ATP synthase from the Thermophilic bacillus PS3 in the presence of ATP condition 1XXC ; 2.8 ; C-TERMINAL DOMAIN OF ESCHERICHIA COLI ARGININE REPRESSOR 1XXB ; 2.6 ; C-TERMINAL DOMAIN OF ESCHERICHIA COLI ARGININE REPRESSOR/ L-ARGININE COMPLEX 1XXA ; 2.2 ; C-TERMINAL DOMAIN OF ESCHERICHIA COLI ARGININE REPRESSOR/ L-ARGININE COMPLEX; PB DERIVATIVE 1YUA ; ; C-TERMINAL DOMAIN OF ESCHERICHIA COLI TOPOISOMERASE I 6E0T ; 2.02 ; C-terminal domain of Fission Yeast OFD1 1GEN ; 2.15 ; C-TERMINAL DOMAIN OF GELATINASE A 3TBF ; 2.28 ; C-terminal domain of glucosamine-fructose-6-phosphate aminotransferase from Francisella tularensis. 7R1Z ; 1.94 ; C-terminal domain of hArc in complex with nanobodies H11 and C11, collapsed crystal form 2N67 ; ; C-terminal domain of Hemolysin II-P87M-BMRB 5TC2 ; 1.84 ; C-terminal domain of HIV-1 integrase, crystal structure 5EPW ; 1.5 ; C-Terminal Domain Of Human Coronavirus Nl63 Nucleocapsid Protein 3LOF ; 2.4 ; C-terminal domain of human heat shock 70kDa protein 1B. 2LSK ; ; C-terminal domain of human REV1 in complex with DNA-polymerase H (eta) 2JDQ ; 2.2 ; C-terminal domain of influenza A virus polymerase PB2 subunit in complex with human importin alpha5 6SYI ; 1.6 ; C-TERMINAL DOMAIN OF INFLUENZA POLYMERASE PA SUBUNIT AND OPTIMIZED SMALL PEPTIDE INHIBITOR 4EW5 ; 1.87 ; C-terminal domain of inner membrane protein CigR from Salmonella enterica. 1RMJ ; ; C-terminal domain of insulin-like growth factor (IGF) binding protein-6: structure and interaction with IGF-II 1ZT3 ; 1.8 ; C-terminal domain of Insulin-like Growth Factor Binding Protein-1 isolated from human amniotic fluid 1ZT5 ; 1.818 ; C-terminal domain of Insulin-like Growth Factor Binding Protein-1 isolated from human amniotic fluid complexed with Iron(II) 2ZP2 ; 3.01 ; C-terminal domain of KipI from Bacillus subtilis 6ELT ; 1.35 ; C-terminal domain of MdPPO1 upon self-cleavage (Ccleaved-domain) 6G13 ; 1.97 ; C-terminal domain of MERS-CoV nucleocapsid 2KVE ; ; C-terminal domain of mesencephalic astrocyte-derived neurotrophic factor (MANF) 1MKH ; 2.01 ; C-terminal domain of methionyl-tRNA synthetase from Pyrococcus abyssi 1MKC ; ; C-TERMINAL DOMAIN OF MIDKINE 8QB1 ; 1.601 ; C-terminal domain of mirolase from Tannerella forsythia 1C8Z ; 1.9 ; C-TERMINAL DOMAIN OF MOUSE BRAIN TUBBY PROTEIN 1I7E ; 1.95 ; C-Terminal Domain Of Mouse Brain Tubby Protein bound to Phosphatidylinositol 4,5-bis-phosphate 6VZ0 ; 1.75 ; C-terminal domain of mouse surfactant protein B crystallized at high pH 6VZE ; 1.9 ; C-terminal domain of mouse surfactant protein B crystallized at low pH 3KZ7 ; 1.95 ; C-terminal domain of Murine FKBP25 rapamycin complex 2JRB ; ; C-terminal domain of ORF1p from mouse LINE-1 3IR9 ; 2.207 ; C-terminal domain of Peptide Chain Release Factor from Methanosarcina mazei. 3DED ; 2.14 ; C-terminal domain of Probable hemolysin from Chromobacterium violaceum 3RKV ; 2.41 ; C-terminal domain of protein C56C10.10, a putative peptidylprolyl isomerase, from Caenorhabditis elegans 3FW2 ; 1.74 ; C-terminal domain of putative thiol-disulfide oxidoreductase from Bacteroides thetaiotaomicron. 7LRH ; 1.92 ; C-terminal domain of RibD from Brucella abortus (5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate reductase) 5F22 ; 2.155 ; C-terminal domain of SARS-CoV nsp8 complex with nsp7 4KSN ; 1.86 ; C-terminal domain of SdbC protein from Legionella pneumophila. 3WWV ; 2.4 ; C-terminal domain of stomatin operon partner protein 1510-C from Pyrococcus horikoshii 5EOV ; 1.701 ; C-terminal domain of the 16S/23S rRNA (cytidine-2'-O)-methyltransferase TlyA. 1NRF ; 2.5 ; C-terminal domain of the Bacillus licheniformis BlaR penicillin-receptor 1AA3 ; ; C-TERMINAL DOMAIN OF THE E. COLI RECA, NMR, MINIMIZED AVERAGE STRUCTURE 1H8G ; 2.4 ; C-terminal domain of the major autolysin (C-LytA) from Streptococcus pneumoniae 5CES ; 2.102 ; C-terminal domain of the R-type pyocin baseplate protein PA0618 4IP6 ; 2.23 ; C-terminal domain of the thiol:disulfide interchange protein DsbD, Q488A mutant 4IP1 ; 2.47 ; C-terminal domain of the thiol:disulfide interchange protein DsbD, Q488K mutant 1IGU ; 2.2 ; C-terminal Domain of the Transcriptional Repressor Protein KorB 6HS6 ; 3.08 ; C-terminal domain of the TssA component of the type VI secretion system from Burkholderia cenocepacia 1IGQ ; 1.7 ; C-terminal Domain of Transcriptional Repressor Protein KorB 6RJU ; 3.2 ; C-terminal domain of TssA protein from T6SS of Escherichia coli. 6RIU ; 3.9 ; C-terminal domain of TssA protein from T6SS of Vibrio cholerae. 1JAD ; 2.4 ; C-terminal Domain of Turkey PLC-beta 3N1B ; 2.398 ; C-terminal domain of Vps54 subunit of the GARP complex 7VE4 ; 1.87 ; C-terminal domain of VraR 7VE5 ; 2.0 ; C-terminal domain of VraR 5DCF ; 2.3 ; C-terminal domain of XerD recombinase in complex with gamma domain of FtsK 5M4T ; ; C-terminal domain structure of VSG M1.1 6CTD ; 5.8 ; C-terminal domain truncation of the Mycobacterium tuberculosis Mechanosensitive Channel of Large Conductance MscL 2UWM ; 2.31 ; C-TERMINAL DOMAIN(WH2-WH4) OF ELONGATION FACTOR SELB IN COMPLEX WITH SECIS RNA 6IPA ; 2.47 ; C-terminal EMAP II-like domain of p43 refined against twinned data 3WYD ; 1.53 ; C-terminal esterase domain of LC-Est1 4CQ4 ; 1.7 ; C-terminal fragment of Af1503-sol: transmembrane receptor Af1503 from Archaeoglobus fulgidus engineered for solubility 4M03 ; 2.24 ; C-terminal fragment(residues 576-751) of binding region of SraP 2FH2 ; 2.5 ; C-terminal half of gelsolin soaked in EGTA at pH 4.5 2FH4 ; 3.0 ; C-terminal half of gelsolin soaked in EGTA at pH 8 2FH1 ; 1.55 ; C-terminal half of gelsolin soaked in low calcium at pH 4.5 2FH3 ; 2.87 ; C-terminal half of gelsolin soaked in low calcium at pH 8 1VVD ; ; C-TERMINAL HALF OF VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN, NMR, 21 STRUCTURES 1VVE ; ; C-TERMINAL HALF OF VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN, NMR, 21 STRUCTURES 1VVC ; ; C-TERMINAL HALF OF VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 7O23 ; 1.4 ; C-terminal head domain of the trimeric autotransporter adhesin BpaC from Burkholderia pseudomallei fused to a GCN4 anchor 5DKU ; 2.9 ; C-terminal His tagged apPOL exonuclease mutant 6SK3 ; 2.7 ; C-terminal HsNMT1 deltaC3 truncation in complex with both MyrCoA and GNCFSKPR substrates 1KHM ; ; C-TERMINAL KH DOMAIN OF HNRNP K (KH3) 1H30 ; 2.2 ; C-terminal LG domain pair of human Gas6 1B9W ; 1.8 ; C-TERMINAL MEROZOITE SURFACE PROTEIN 1 FROM PLASMODIUM CYNOMOLGI 4ETP ; 2.3 ; C-terminal motor and motor homology domain of Kar3Vik1 fused to a synthetic heterodimeric coiled coil 4RY7 ; 3.0 ; C-terminal mutant (D559E) of HCV/J4 RNA polymerase 4RY6 ; 2.52 ; C-terminal mutant (W550A) of HCV/J4 RNA polymerase 4RY5 ; 2.71 ; C-terminal mutant (W550N) of HCV/J4 RNA polymerase 4RY4 ; 2.59 ; C-terminal mutant (Y448F) of HCV/J4 RNA polymerase 6EY5 ; 2.85 ; C-terminal part (residues 224-515) of PorM 6EY6 ; 2.1 ; C-terminal part (residues 315-516) of PorM with the llama nanobody nb130 5XZT ; 1.8 ; C-terminal peptide depleted mutant of hydroxynitrile lyase from Passiflora edulis (PeHNL) 5Y02 ; 1.8 ; C-terminal peptide depleted mutant of hydroxynitrile lyase from Passiflora edulis (PeHNL) bound with (R)-mandelonitrile 1UG3 ; 2.24 ; C-terminal portion of human eIF4GI 1RXZ ; 2.0 ; C-terminal region of A. fulgidus FEN-1 complexed with A. fulgidus PCNA 1RXM ; 2.8 ; C-terminal region of FEN-1 bound to A. fulgidus PCNA 6NK8 ; 2.24 ; C-terminal region of the Burkholderia pseudomallei OLD protein 6NJV ; 2.3 ; C-terminal region of the Xanthomonas campestris pv. campestris OLD protein phased with iodine 6NJX ; 1.95 ; C-terminal region of the Xanthomonas campestris pv. campestris OLD protein phased with mercury 6NJW ; 1.86 ; C-terminal region of the Xanthomonas campestris pv. campestris OLD protein phased with platinum 6VWA ; 2.196 ; C-terminal regulatory domain of the chloride transporter KCC-1 from C. elegans 6VW9 ; 1.8 ; C-terminal regulatory domain of the chloride transporter KCC-1 from C. elegans, proteolyzed during crystallization 8R07 ; 1.74 ; C-terminal Rel-homology Domain of NFAT1 8R3F ; 1.55 ; C-terminal Rel-homology Domain of NFAT1 3EGN ; 2.5 ; C-terminal RNA Recognition Motif of the U11/U12 65K Protein 8D4Y ; 2.9 ; C-terminal SANT-SLIDE domain of human Chromodomain-helicase-DNA-binding protein 4 (CHD4) 6WAX ; 1.5 ; C-terminal SH2 domain of p120RasGAP 6WAY ; 1.5 ; C-terminal SH2 domain of p120RasGAP in complex with p190RhoGAP phosphotyrosine peptide 2EYX ; ; C-Terminal SH3 domain of CT10-Regulated Kinase 2M7N ; ; C-terminal structure of (Y81F)-EhCaBP1 6IFV ; 3.11 ; C-terminal truncated KsgA from Bacillus subtilis 168 1HP3 ; ; C-TERMINAL TRUNCATION OF OMEGA-ATRACOTOXIN-HV2A (CT-HV2A) 1HEH ; ; C-terminal xylan binding domain from Cellulomonas fimi xylanase 11A 1HEJ ; ; C-terminal xylan binding domain from Cellulomonas fimi xylanase 11A 5XEK ; ; C-terminal zinc finger of RING finger protein 141 2L46 ; ; C-terminal zinc finger of the HIVNCp7 with platinated DNA 2L44 ; ; C-terminal zinc knuckle of the HIVNCp7 2L45 ; ; C-terminal zinc knuckle of the HIVNCp7 with DNA 6S09 ; 1.502 ; C-terminally extended and N-terminally truncated variant of FimA E. coli at 1.5 Angstrom resolution 5OXI ; 1.63 ; C-terminally retracted ubiquitin L67S mutant 5OXH ; 1.601 ; C-terminally retracted ubiquitin T66V/L67N mutant 7L68 ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor 7L67 ; 1.2 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Fuc-(alpha1-3)-GlcNAc 7L61 ; 1.35 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with L-fucose-(alpha 1-2)-D-galactose-(beta1-4)-D-glucose 7L62 ; 1.55 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with L-fucose-(alpha 1-2)-D-galactose-(beta1-4)-D-glucose 7L63 ; 1.65 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with L-fucose-(alpha 1-2)-D-galactose-(beta1-4)-D-glucose 7L64 ; 1.35 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Lewis-a 7JUE ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Man-alpha1-2Man 7JUF ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Man-alpha1-2Man 7JUG ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Man-alpha1-6Man 7JUH ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Man-alpha1-6Man 7L65 ; 1.35 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Methyl-GlcNAc 7L66 ; 1.75 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with Methyl-GlcNAc 7JUB ; 1.2 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with methyl-mannoside 7JUC ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with methyl-mannoside 7JUD ; 1.4 ; C-type carbohydrate-recognition domain 4 of the mannose receptor complexed with methyl-mannoside 6TP9 ; 2.19 ; c-type cytochrome NirC 7SIZ ; 3.1 ; C-type inactivation in a voltage gated K+ channel 5F2Q ; 2.95 ; C-type lectin from Bothrops jararacussu 3WHD ; 2.29 ; C-type lectin, human MCL 8A59 ; 1.92 ; C-type lectin-like domain (CTLD) and Sushi-like domain of human CD93 6M4C ; 2.65 ; C. albicans actin interacting protein Aip5 8EEL ; 1.97 ; C. ammoniagenes monoamine oxidase (MAO) bound to 5-aminopentanol 8EEG ; 2.15 ; C. ammoniagenes monoamine oxidase (MAO) bound to dopamine 8EEM ; 1.56 ; C. ammoniagenes monoamine oxidase (MAO) bound to norepinephrine 8EEF ; 2.21 ; C. ammoniagenes monoamine oxidase (MAO) bound to octopamine 8EEH ; 1.78 ; C. ammoniagenes monoamine oxidase (MAO) bound to tryptamine 8EEK ; 1.51 ; C. ammoniagenes monoamine oxidase (MAO) bound to tyramine 8EEN ; 1.46 ; C. ammoniagenes monoamine oxidase (MAO) C424S variant 8EEJ ; 1.54 ; C. ammoniagenes monoamine oxidase (MAO) C424S variant bound to dopamine 8EEO ; 1.94 ; C. ammoniagenes monoamine oxidase bound to cadaverine 4Z03 ; 1.4 ; C. bescii Family 3 pectate lyase double mutant K108A in complex with trigalacturonic acid 4YZX ; 1.25 ; C. bescii Family 3 pectate lyase double mutant K108A/D107N in complex with trigalacturonic acid 4YZ0 ; 1.15 ; C. bescii Family 3 pectate lyase double mutant K108A/E39Q in complex with trigalacturonic acid 4YZA ; 1.25 ; C. bescii Family 3 pectate lyase double mutant K108A/Q111A in complex with trigalacturonic acid 4YZQ ; 1.48 ; C. bescii Family 3 pectate lyase double mutant K108A/Q111N in complex with trigalacturonic acid 4Z06 ; 1.55 ; C. bescii Family 3 pectate lyase double mutant K108A/R133A in complex with ALPHA-D-GALACTOPYRANURONIC ACID 4Z05 ; 1.5 ; C. bescii Family 3 pectate lyase mutant E84A 4CZJ ; 2.0 ; C. crescentus MreB, double filament, AMPPNP 4CZE ; 2.0 ; C. crescentus MreB, double filament, empty 4CZL ; 1.6 ; C. crescentus MreB, monomeric, ADP 4CZM ; 2.2 ; C. crescentus MreB, monomeric, AMPPNP 4CZF ; 1.64 ; C. crescentus MreB, single filament, ADP 4CZG ; 1.5 ; C. crescentus MreB, single filament, ADP, A22 inhibitor 4CZH ; 1.644 ; C. crescentus MreB, single filament, ADP, MP265 inhibitor 4CZK ; 2.602 ; C. crescentus MreB, single filament, AMPPNP, MP265 inhibitor 4CZI ; 1.8 ; C. crescentus MreB, single filament, empty 4OI2 ; 2.6 ; C. Elegans Clp1 and ADP and Mg2+ (turnover state) 4OHX ; 1.98 ; C. Elegans Clp1 bound to ADP and Mg2+ (RNA released state) 4OHV ; 2.3 ; C. Elegans Clp1 bound to AMP-PNP, and Mg2+ 4OHW ; 2.3 ; C. Elegans Clp1 bound to ATP, and Mn2+(ATP-bound state) 4OHY ; 2.0 ; C. Elegans Clp1 bound to ssRNA dinucleotide GC, AMP-PNP, and Mg2+(inhibited substrate bound state) 3KBF ; 1.3 ; C. elegans Cu,Zn Superoxide Dismutase 5TD6 ; 2.034 ; C. elegans FOG-3 BTG/Tob domain - H47N, C117A 4AG7 ; 1.55 ; C. elegans glucosamine-6-phosphate N-acetyltransferase (GNA1): coenzyme A adduct 4AG9 ; 1.76 ; C. elegans glucosamine-6-phosphate N-acetyltransferase (GNA1): ternary complex with coenzyme A and GlcNAc 3RHW ; 3.26 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab and ivermectin 4TNW ; 3.2 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab and POPC in a lipid-modulated conformation 4TNV ; 3.6 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab in a non-conducting conformation 3RIF ; 3.345 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab, ivermectin and glutamate. 3RIA ; 3.8 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab, ivermectin and iodide. 3RI5 ; 3.4 ; C. elegans glutamate-gated chloride channel (GluCl) in complex with Fab, ivermectin and picrotoxin 4TZM ; 2.3 ; C. elegans HTP-2 bound to HTP-3 closure motif 1 5H1R ; 3.6 ; C. elegans INX-6 gap junction channel 5H1Q ; 3.3 ; C. elegans INX-6 gap junction hemichannel 1GRW ; 2.6 ; C. elegans major sperm protein 5CV1 ; 3.599 ; C. elegans PGL-1 Dimerization Domain 8P2M ; 3.82 ; C. elegans TIR-1 protein. 8BY5 ; 1.73 ; C. elegans TOFU-6 eTUDOR TOFU-1 peptide complex 4XLG ; 1.78 ; C. glabrata Slx1 in complex with Slx4CCD. 4XM5 ; 2.34 ; C. glabrata Slx1. 2DAP ; 2.2 ; C. GLUTAMICUM DAP DEHYDROGENASE IN COMPLEX WITH DAP 1DAP ; 2.2 ; C. GLUTAMICUM DAP DEHYDROGENASE IN COMPLEX WITH NADP+ 3DAP ; 2.2 ; C. GLUTAMICUM DAP DEHYDROGENASE IN COMPLEX WITH NADP+ AND THE INHIBITOR 5S-ISOXAZOLINE 8JZH ; 2.2 ; C. glutamicum S-adenosylmethionine synthase 8JZG ; 2.39 ; C. glutamicum S-adenosylmethionine synthase co-crystallized with Adenosine, triphosphate, and SAM 1D2K ; 2.2 ; C. IMMITIS CHITINASE 1 AT 2.2 ANGSTROMS RESOLUTION 5W4A ; 1.5 ; C. japonica N-domain 5W4D ; 1.599 ; C. japonica N-domain, Selenomethionine mutant 6B10 ; 2.09 ; C. Jejuni Agmatine Deiminase 6B2W ; 2.5 ; C. Jejuni C315S Agmatine Deiminase with Substrate Bound 3KHJ ; 2.8 ; C. parvum inosine monophosphate dehydrogenase bound by inhibitor C64 8OSE ; 1.35 ; C. perfringens chitinase CP4_3455 in complex with inhibitor bisdionin C 5COW ; 1.6 ; C. remanei PGL-1 Dimerization Domain 5CV3 ; 3.17015 ; C. remanei PGL-1 Dimerization Domain - Hg 7KGM ; 2.6 ; C. rodentium YcbB - ertapenem complex 7BGJ ; 6.9 ; C. thermophilum Pyruvate Dehydrogenase Complex Core 2IUA ; 2.7 ; C. trachomatis LpxD 2B5A ; 1.543 ; C.BclI, Control Element of the BclI Restriction-Modification System 6ELK ; 1.65 ; C.elegans MnSOD-3 mutant - Q142H 4I8T ; 3.0 ; C.Esp1396I bound to a 19 base pair DNA duplex 4IWR ; 2.4 ; C.Esp1396I bound to a 25 base pair operator site 3UFD ; 2.8 ; C.Esp1396I bound to its highest affinity operator site OM 2XKG ; 1.6 ; C.lacteus mini-Hb Leu86Ala mutant 4AVD ; 1.5 ; C.lacteus nerve Hb in complex with CO 4AVE ; 1.9 ; C.lacteus nerve Hb in the deoxy form 7YNR ; 2.9 ; C05-03-bound alpha-synuclein fibrils 7ETO ; 4.0 ; C1 CVSC-binding penton vertex in the virion capsid of Human Cytomegalovirus 2FNF ; ; C1 domain of Nore1 7N6G ; 3.6 ; C1 of central pair 7UT6 ; 1.91 ; C1 symmetric cryoEM structure of Azotobacter vinelandii MoFeP under non-turnover conditions 5B3K ; 1.7 ; C101A mutant of Flavodoxin from Pseudomonas aeruginosa 5B3L ; 1.8 ; C101S mutant of Flavodoxin from Pseudomonas aeruginosa 6ZVR ; 8.2 ; C11 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 3OQR ; 2.4 ; C112D/M121E Azurin, pH 10.0 3NP3 ; 2.1 ; C112D/M121E Pseudomonas Aeruginosa Azurin 3NP4 ; 2.25 ; C112D/M121E Pseudomonas aeruginosa Azurin 1RYW ; 2.3 ; C115S MurA liganded with reaction products 8HEU ; 4.6 ; C12 portal in HCMV A-capsid 8HEV ; 4.2 ; C12 portal in HCMV B-capsid 6ZVS ; 7.2 ; C12 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 2NU6 ; 2.55 ; C123aA Mutant of E. coli Succinyl-CoA Synthetase 2NU7 ; 2.2 ; C123aS Mutant of E. coli Succinyl-CoA Synthetase 2NU8 ; 2.15 ; C123aT Mutant of E. coli Succinyl-CoA Synthetase 2NU9 ; 2.9 ; C123aT Mutant of E. coli Succinyl-CoA Synthetase Orthorhombic Crystal Form 2NUA ; 2.95 ; C123aV Mutant of E. coli Succinyl-CoA Synthetase 6ZVT ; 7.0 ; C13 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 5YTM ; 1.5 ; C135A mutant of copper-containing nitrite reductase from Geobacillus thermodenitrificans determined by in-ouse source 5YTN ; 1.75 ; C135A mutant of copper-containing nitrite reductase from Geobacillus thermodenitrificans in complex with peroxide 3WKP ; 1.901 ; C135A mutant of Geobacillus thermodenitrificans copper-containing nitrite reductase in complex with nitrite 6ZW4 ; 6.5 ; C14 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 8GI7 ; 3.3 ; C143A variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 8GIW ; 3.15 ; C143K variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 8S9D ; 2.57 ; C143S variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 8S97 ; 2.7 ; C143W variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 6ZW5 ; 7.0 ; C15 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 1DBZ ; 2.65 ; C153S MUTANT OF PEA FRUCTOSE-1,6-BISPHOSPHATASE 6ZW6 ; 7.4 ; C16 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 7ZJE ; 3.12 ; C16-2 6ZW7 ; 9.4 ; C17 symmetry: Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. 6T9H ; 2.58 ; C171S mutant of Linalool Dehydratase Isomerase 4JIW ; 3.402 ; c1882 PAAR-repeat protein from Escherichia coli in complex with a VgrG-like beta-helix that is based on a fragment of T4 gp5 3OOJ ; 2.5 ; C1A mutant of E. coli GlmS in complex with glucose-6P and glutamate 7KND ; 1.39 ; C1B domain of Protein kinase C in apo form 7L92 ; 1.75 ; C1B domain of Protein kinase C in complex with diacylglycerol and dodecyl 2-(trimethylammonio)ethyl phosphate 7LEO ; 1.65 ; C1B domain of Protein kinase C in complex with diacylglycerol-lactone (AJH-836) and 1,2-diheptanoyl-sn-glycero-3-phosphocholine 7LF3 ; 1.13 ; C1B domain of Protein kinase C in complex with diacylglycerol-lactone AJH-836 7KO6 ; 1.8 ; C1B domain of Protein kinase C in complex with ingenol-3-angelate and phosphocholine 7KNJ ; 1.57 ; C1B domain of Protein kinase C in complex with Phorbol ester and Phosphatidylcholine 7LCB ; 1.7 ; C1B domain of Protein kinase C in complex with prostratin and phosphatidylcholine 1AB0 ; 1.9 ; C1G/V32D/F57H MUTANT OF MURINE ADIPOCYTE LIPID BINDING PROTEIN AT PH 4.5 6F39 ; 5.801 ; C1r homodimer CUB1-EGF-CUB2 6F1C ; 4.2 ; C1rC1s complex 6F1H ; 4.5 ; C1rC1s complex 4LMF ; 2.921 ; C1s CUB1-EGF-CUB2 4LOR ; 2.5 ; C1s CUB1-EGF-CUB2 in complex with a collagen-like peptide from C1q 4LOS ; 1.996 ; C1s CUB2-CCP1 4LOT ; 2.92 ; C1s CUB2-CCP1-CCP2 5CFG ; 1.8 ; C2 crystal form of APE1 with Mg2+ 3F5V ; 1.36 ; C2 Crystal form of mite allergen DER P 1 3PZV ; 2.867 ; C2 crystal form of the endo-1,4-beta-glucanase from Bacillus subtilis 168 1F4N ; 1.9 ; C2 CRYSTAL STRUCTURE OF ALA2ILE2-6, A VERSION OF ROP WITH A REPACKED HYDROPHOBIC CORE AND A NEW FOLD. 1DSY ; 2.6 ; C2 DOMAIN FROM PROTEIN KINASE C (ALPHA) COMPLEXED WITH CA2+ AND PHOSPHATIDYLSERINE 1A25 ; 2.7 ; C2 DOMAIN FROM PROTEIN KINASE C (BETA) 1BDY ; 2.2 ; C2 DOMAIN FROM PROTEIN KINASE C DELTA 1BCI ; ; C2 DOMAIN OF CYTOSOLIC PHOSPHOLIPASE A2, NMR, MINIMIZED AVERAGE STRUCTURE 1WFJ ; ; C2 domain-containing protein from putative elicitor-responsive gene 8IGG ; 4.09 ; C2 reconstruction of the concave tetramer in the cube-like assembly of 201Phi2-1 gp105 7UT7 ; 1.91 ; C2 symmetric cryoEM structure of Azotobacter vinelandii MoFeP under non-turnover conditions 6UFU ; 1.101 ; C2 symmetric peptide design number 1, Zappy, crystal form 1 6UG2 ; 1.1 ; C2 symmetric peptide design number 1, Zappy, crystal form 2 8T8G ; 1.5 ; C208A Streptococcus pyogenes Sortase A (spySrtA) bound to LPALA peptide 5TEQ ; 2.3 ; C20S C293G MUTANT N-TERMINAL HUMAN ATP CITRATE LYASE BOUND TO CITRATE 5TE1 ; 2.25 ; C20S, C293G Mutant N-terminal Human ATP Citrate Lyase Bound to 4R-Hydroxycitrate 4NV6 ; 4.19 ; C212A mutant of Synechococcus VKOR 7XX0 ; 2.199 ; C281S glycylthricin complex 2NRC ; 2.05 ; C28A Mutant of Succinyl-CoA:3-Ketoacid CoA Transferase from Pig Heart 2NRB ; 2.0 ; C28S Mutant of Succinyl-CoA:3-Ketoacid CoA Transferase from Pig Heart 7ZX3 ; 1.683 ; C295D Mutant of Recombinant CODH-II 2K45 ; ; C2A domain of synaptototagmin I solution structure in the FGF-1-C2A binary complex: key component in the fibroblast growthfactor non-classical pathway 6KAF ; 3.73 ; C2S2M2N2-type PSII-LHCII 2WIN ; 3.9 ; C3 convertase (C3bBb) stabilized by SCIN 1UZI ; 1.89 ; C3 EXOENZYME FROM CLOSTRIDIUM BOTULINUM, TETRAGONAL FORM 6UG3 ; 1.1 ; C3 symmetric peptide design number 1, Sporty, crystal form 1 6UG6 ; 1.1 ; C3 symmetric peptide design number 1, Sporty, crystal form 2 6UGB ; 0.95 ; C3 symmetric peptide design number 2, Baby Basil 6UGC ; 0.9 ; C3 symmetric peptide design number 3 5JVN ; 2.9 ; C3-type pyruvate phosphate dikinase: intermediate state of the central domain in the swiveling mechanism 1XMC ; 2.0 ; C323M mutant structure of mouse carnitine octanoyltransferase 3K79 ; 1.96 ; C38A, C52V Cysteine-Free Variant of Rop (Rom) 8HK3 ; 3.2 ; C3aR-Gi-apo protein complex 8HK2 ; 2.9 ; C3aR-Gi-C3a protein complex 3G6J ; 3.1 ; C3b in complex with a C3b specific Fab 7BAG ; 2.0 ; C3b in complex with CP40 8G8I ; 3.92 ; C3HR3_9r_shift4: Extendable repeat protein fiber 4TR5 ; 2.3 ; C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae 5DZQ ; 1.892 ; C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae, Orthorhombic Form 6XNS ; 3.19 ; C3_crown-05 6XT4 ; 2.4 ; C3_HD-1069 (1BH-69) - fusion protein of helical bundle and repeat protein 7W0V ; ; C4'-SCF3-DT modifeid DNA-DNA duplex 5JVL ; 2.9 ; C4-type pyruvate phospate dikinase: nucleotide binding domain with bound ATP analogue 5LU4 ; 2.9 ; C4-type pyruvate phosphate dikinase: conformational intermediate of central domain in the swiveling mechanism 5JVJ ; 2.898 ; C4-type pyruvate phosphate dikinase: different conformational states of the nucleotide binding domain in the dimer 3VCB ; 2.4 ; C425S mutant of the C-terminal cytoplasmic domain of non-structural protein 4 from mouse hepatitis virus A59 1HZF ; 2.3 ; C4ADG FRAGMENT OF HUMAN COMPLEMENT FACTOR C4A 8GA9 ; 3.71 ; C4HR1_4r: Extendable repeat protein tetramer 2ZIA ; 1.8 ; C4S dCK variant of dCK in complex with cladribine+UDP 2ZI6 ; 1.77 ; C4S dCK variant of dCK in complex with D-dA+UDP 2NO1 ; 1.91 ; C4S dCK variant of dCK in complex with D-dC+ADP 2ZI7 ; 1.97 ; C4S dCK variant of dCK in complex with D-dG+UDP 2NO6 ; 1.9 ; C4S dCK variant of dCK in complex with FTC+ADP 2NO0 ; 1.8 ; C4S dCK variant of dCK in complex with gemcitabine+ADP 2ZI4 ; 2.1 ; C4S dCK variant of dCK in complex with L-dA+ADP 2ZI5 ; 1.77 ; C4S dCK variant of dCK in complex with L-dA+UDP 2NO7 ; 1.7 ; C4S dCK variant of dCK in complex with L-dC+ADP 2ZI9 ; 2.51 ; C4S-E247A dCK variant of dCK in complex with cladribine+ADP 2ZI3 ; 2.3 ; C4S-E247A dCK variant of dCK in complex with D-dA+ADP 8HEX ; 4.0 ; C5 portal vertex in HCMV B-capsid 7ET3 ; 4.2 ; C5 portal vertex in the enveloped virion capsid 7ETJ ; 4.0 ; C5 portal vertex in the partially-enveloped virion capsid 3NT0 ; 1.8 ; C500S (T1D) Mutant of CueO soaked in and bound to Cu(I) 3NSC ; 1.5 ; C500S MUTANT OF CueO BOUND TO Cu(II) 4NV5 ; 2.79 ; C50A mutant of Synechococcus VKOR, C2 crystal form (dehydrated) 4NV2 ; 3.61 ; C50A mutant of Synechococcus VKOR, C2221 crystal form 7PTH ; 1.85 ; C54S mutant of choline-sulfatase from E. meliloti CECT4857 bound to choline 7PTJ ; 2.1 ; C54S mutant of choline-sulfatase from E. meliloti CECT4857 bound to HEPES 7FB6 ; 1.8 ; C57D/C146D mutant of Human Cu, Zn Superoxide Dismutase (SOD1) 8HK5 ; 3.0 ; C5aR1-Gi-C5a protein complex 7U2L ; 3.2 ; C5guano-uOR-Gi-scFv16 8GAQ ; 3.73 ; C5HR2_4r: Extendable repeat protein pentamer 7ETM ; 5.9 ; C6 portal vertex in the enveloped virion capsid 7U2K ; 3.3 ; C6-guano bound Mu Opioid Receptor-Gi Protein Complex 2JRE ; ; C60-1, a PDZ domain designed using statistical coupling analysis 4AF2 ; 1.97 ; C61S mutant of thiol peroxidase form E. coli. 5HBQ ; 1.66 ; C63D mutant of the rhodanese domain of YgaP 1YOB ; 2.25 ; C69A Flavodoxin II from Azotobacter vinelandii 2GBT ; 1.7 ; C6A/C111A CuZn Superoxide dismutase 2GBU ; 2.0 ; C6A/C111A/C57A/C146A apo CuZn Superoxide dismutase 2GBV ; 2.0 ; C6A/C111A/C57A/C146A holo CuZn Superoxide dismutase 8GAA ; 4.24 ; C6HR1_4r: Extendable repeat protein hexamer 3C9V ; 4.7 ; C7 Symmetrized Structure of Unliganded GroEL at 4.7 Angstrom Resolution from CryoEM 1RWJ ; 1.7 ; c7-type three-heme cytochrome domain 3QD9 ; 3.3 ; C72S/C353S mutant of Trypanosoma brucei QSOX containing an interdomain disulfide 3T58 ; 2.4 ; C76A/C455S mutant of mouse QSOX1 containing an interdomain disulfide 3T59 ; 2.8 ; C76A/C455S mutant of mouse QSOX1 containing an interdomain disulfide 7B6Y ; 5.7 ; C8(355-600) from the MiniTRAPPIII complex 1GPX ; ; C85S GAPDX, NMR, 20 STRUCTURES 1ES3 ; 2.2 ; C98A mutant of streptomyces K15 DD-transpeptidase 7SWO ; 4.1 ; C98C7 Fab in complex with SARS-CoV-2 Spike 6P (RBD local reconstruction) 1ES4 ; 1.9 ; C98N mutant of streptomyces K15 DD-transpeptidase 5IMG ; 1.844 ; C9A mutant of C69-family cysteine dipeptidase from Lactobacillus farciminis 7MQ3 ; 1.4 ; C9A N55A Streptococcus pneumoniae CstR in the reduced state 7MQ1 ; 2.02 ; C9A Streptococcus pneumoniae CstR in the reduced state, space group C2 7MQ2 ; 2.29 ; C9A Streptococcus pneumoniae CstR in the reduced state, space group P21 2LJT ; ; C9L,C14L-LeuA 2HHU ; 1.8 ; C:O6-methyl-guanine in the polymerase postinsertion site (-1 basepair position) 2HHT ; 2.05 ; C:O6-methyl-guanine pair in the polymerase-2 basepair position 8DVQ ; 2.19 ; CA domain of VanSA histidine kinase 8DWZ ; 2.21 ; CA domain of VanSA histidine kinase, 7 keV data 8SAF ; 1.23 ; CA II in complex with the coumarin benzene sulfonamide SG1-51 6E8X ; 1.6 ; CA IX mimic Complexed with Steroidal Sulfamate Compound STX 140 6E91 ; 1.8 ; CA IX mimic Complexed with Steroidal Sulfamate Compound STX 2484 6E92 ; 1.772 ; CA IX mimic Complexed with Steroidal Sulfamate Compound STX 2845 6E8P ; 1.9 ; CA IX mimic Complexed with Steroidal Sulfamate Compound STX 49 3IYG ; 4.0 ; Ca model of bovine TRiC/CCT derived from a 4.0 Angstrom cryo-EM map 5E1P ; 1.01 ; Ca(2+)-Calmodulin from Paramecium tetraurelia qFit disorder model 4CFR ; 1.4 ; Ca-bound S100A4 C3S, C81S, C86S and F45W mutant complexed with non- muscle myosin IIA 4CFQ ; 1.37 ; Ca-bound truncated (delta13C) and C3S, C81S and C86S mutated S100A4 complexed with non-muscle myosin IIA 3JXH ; 1.701 ; CA-like domain of human PTPRG 3JXF ; 2.004 ; CA-like domain of human PTPRZ 3JXG ; 1.7 ; CA-like domain of mouse PTPRG 2KBM ; ; Ca-S100A1 interacting with TRTK12 1W2M ; 2.4 ; Ca-substituted form of E. coli aminopeptidase P 7N9U ; 3.19 ; CA-targeting nanobody is a tool for studying HIV-1 capsid lattice interactions 7N9V ; 3.45 ; CA-targeting nanobody is a tool for studying HIV-1 capsid lattice interactions 7N9X ; 3.511 ; CA-targeting nanobody is a tool for studying HIV-1 capsid lattice interactions 4XYL ; 1.95 ; Ca. Korarchaeum cryptofilum ACD1 in complex with coenzyme A 4YAJ ; 2.2 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 (apo form) 4XZ3 ; 2.398 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 (Se-Met derivative) in complex with coenzyme A and Mg-AMPPCP, phosphohistidine segment pointing towards nucleotide binding site 4Y8V ; 2.099 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with ADP and additional ADP bound to phosphate binding site 4YBZ ; 2.1 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with ADP and with phosphorylated phosphohistidine segment (site I orientation) 4YAK ; 2.464 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with coenzyme A, acetyl-coenzyme A and with phosphorylated phosphohistidine segment (site I orientation) 4XYM ; 1.9 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with coenzyme A, Ca-AMPCP and HgCl+ 4YB8 ; 1.9 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with phosphate and ADP 5HBR ; 1.995 ; Ca. Korarchaeum cryptofilum dinucleotide forming Acetyl-coenzyme A synthetase 1 in complex with phosphate and coenzyme A 7TE8 ; 1.998 ; CA14-CBD-DB21 ternary complex 4EIG ; 2.5 ; CA1698 camel antibody fragment in complex with DHFR 5TJ6 ; 3.5 ; Ca2+ bound aplysia Slo1 5TJI ; 3.8 ; Ca2+ bound aplysia Slo1 7PXE ; 2.38 ; Ca2+ bound Drosophila Slo channel 5DBR ; 2.25 ; Ca2+ CaM with human cardiac Na+ channel (NaV1.5) inactivation gate 3UOM ; 2.02 ; Ca2+ complex of Human skeletal calsequestrin 7PXF ; 2.68 ; Ca2+ free Drosophila Slo channel 3KLA ; 1.65 ; Ca2+ release from the endoplasmic reticulum of NY-ESO-1 specific T cells is modulated by the affinity of T cell receptor and by the use of the CD8 co-receptor 6ZHG ; 4.0 ; Ca2+-ATPase from Listeria Monocytogenes in complex with AlF 6ZHH ; 3.0 ; Ca2+-ATPase from Listeria Monocytogenes with G4 insertion. 1KJU ; 6.0 ; Ca2+-ATPase in the E2 State 1JHW ; 2.8 ; Ca2+-binding Mimicry in the Crystal Structure of the Eu3+-Bound Mutant Human Macrophage Capping Protein Cap G 6Y94 ; ; Ca2+-bound Calmodulin mutant N53I 4L75 ; 2.393 ; Ca2+-bound D184N mutant MthK RCK domain at 2.4 Angstrom 4L76 ; 2.992 ; Ca2+-bound E212Q mutant MthK RCK domain 6DR2 ; 4.33 ; Ca2+-bound human type 3 1,4,5-inositol trisphosphate receptor 4L74 ; 1.841 ; Ca2+-bound MthK RCK domain at 1.9 Angstrom with single ligand 4L73 ; 2.5 ; Ca2+-bound MthK RCK domain at 2.5 Angstrom 3ZWH ; 1.94 ; Ca2+-bound S100A4 C3S, C81S, C86S and F45W mutant complexed with myosin IIA 1IJ6 ; 3.1 ; CA2+-BOUND STRUCTURE OF MULTIDOMAIN EF-HAND PROTEIN, CBP40, FROM TRUE SLIME MOLD 7BF2 ; 1.43 ; Ca2+-Calmodulin in complex with human muscle form creatine kinase peptide in extended 1:2 binding mode 7BF1 ; 1.24 ; Ca2+-Calmodulin in complex with peptide from brain-type creatine kinase in extended 1:2 binding mode 6JK4 ; 1.06 ; Ca2+-dependent type II antifreeze protein 6JK5 ; 1.25 ; Ca2+-dependent type II antifreeze protein (Ca2+-free form) 6Y95 ; ; Ca2+-free Calmodulin mutant N53I 6A7T ; 1.6 ; Ca2+-independent C-type lectin SPL-1 from Saxidomus purpuratus 6A7S ; 2.0 ; Ca2+-independent C-type lectin SPL-2 from Saxidomus purpuratus 5NOG ; 11.0 ; Ca2+-induced Movement of Tropomyosin on Native Cardiac Thin Filaments - ""Blocked"" state 5NOL ; 8.0 ; Ca2+-induced Movement of Tropomyosin on Native Cardiac Thin Filaments - ""Closed"" state 5NOJ ; 11.0 ; Ca2+-induced Movement of Tropomyosin on Native Cardiac Thin Filaments - ""OPEN"" state 1JWD ; ; Ca2+-induced Structural Changes in Calcyclin: High-resolution Solution Structure of Ca2+-bound Calcyclin. 1S6I ; ; Ca2+-regulatory region (CLD) from soybean calcium-dependent protein kinase-alpha (CDPK) in the presence of Ca2+ and the junction domain (JD) 2K7O ; ; Ca2+-S100B, refined with RDCs 1MQ1 ; ; Ca2+-S100B-TRTK-12 complex 4P99 ; 1.8 ; Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice 8T65 ; 2.09 ; cA4 bound Cam1 8PHJ ; 3.67 ; cA4-bound Cami1 in complex with 70S ribosome 8T66 ; 1.85 ; cA6 bound Cam1 6AIM ; 2.04 ; Cab2 mutant H337A complex with phosphopantothenate-cysteine 6AIK ; 1.83 ; Cab2 mutant H337A complex with phosphopantothenoyl-CMP 6AI8 ; 2.3 ; Cab2 mutant-H337A 6AI9 ; 2.09 ; Cab2 mutant-H337A complex with phosphopantothenate 6AIP ; 1.99 ; Cab2 mutant-H337A complex with phosphopantothenoylcystine 1YC7 ; 1.6 ; cAbAn33 VHH fragment against VSG 1YC8 ; 2.7 ; cAbAn33- Y37V/E44G/R45L triple mutant 1ZMY ; 3.0 ; cAbBCII-10 VHH framework with CDR loops of cAbLys3 grafted on it and in complex with hen egg white lysozyme 3EBA ; 1.85 ; CAbHul6 FGLW mutant (humanized) in complex with human lysozyme 3S6U ; 2.7 ; Caclcium-bound Ac-ASP-7 1BHL ; 2.2 ; CACODYLATED CATALYTIC DOMAIN OF HIV-1 INTEGRASE 3PM8 ; 2.0 ; CAD domain of PFF0520w, Calcium dependent protein kinase 7A7D ; 26.0 ; Cadherin fit into cryo-ET map 2X28 ; 2.15 ; cadmium bound structure of SporoSAG 3VG3 ; 2.22 ; Cadmium derivative of human LFABP 3VG4 ; 2.5 ; Cadmium derivative of human LFABP 5Y4A ; 2.34 ; Cadmium directed assembly of adenine phosphoribosyltransferase from Yersinia pseudotuberculosis. 1CVM ; 2.4 ; CADMIUM INHIBITED CRYSTAL STRUCTURE OF PHYTASE FROM BACILLUS AMYLOLIQUEFACIENS 2EIL ; 2.1 ; Cadmium ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized state 2EIK ; 2.1 ; Cadmium ion binding structure of bovine heart cytochrome C oxidase in the fully reduced state 6GV7 ; ; Cadmium(II) form of A44H mutant of shortened metallothionein from Pseudomonas fluorescens Q2-87 (residues 1-52) 6GRV ; ; Cadmium(II) form of full-length metallothionein from Pseudomonas fluorescens Q2-87 (PflQ2 MT) 6GV6 ; ; Cadmium(II) form of shortened metallothionein from Pseudomonas fluorescens Q2-87 (residues: 1-52) 8AP5 ; ; Cadmium-loaded form of Caenorhabditis elegans MTL-2 1ELM ; 2.0 ; CADMIUM-SUBSTITUTED BOVINE PACREATIC CARBOXYPEPTIDASE A (ALFA-FORM) AT PH 5.5 AND 2 MM CHLORIDE IN MONOCLINIC CRYSTAL FORM. 1ELL ; 1.76 ; CADMIUM-SUBSTITUTED BOVINE PANCREATIC CARBOXYPEPTIDASE A (ALFA-FORM) AT PH 7.5 AND 0.25 M CHLORIDE IN MONOCLINIC CRYSTAL FORM. 1EE3 ; 1.7 ; Cadmium-substituted bovine pancreatic carboxypeptidase A (alfa-form) at pH 7.5 and 2 mM chloride in monoclinic crystal form 1R0I ; 1.5 ; cadmium-substituted rubredoxin 6DY3 ; 2.7 ; Caenorhabditis elegans N-acylethanolamine-hydrolyzing acid amidase (NAAA) ortholog 7LHY ; 1.3 ; Caenorhabditis elegans SWSN-4 (SMARCA4-BRG1) ATPase Bromodomain in complex with a modified histone H3, N6-epsilon-acetyl-L-lysine 14 (H3K14ac) polypeptide 6OM8 ; 2.449 ; Caenorhabditis Elegans UDP-Glucose Dehydrogenase in complex with UDP-Xylose 2OS7 ; 2.9 ; Caf1M periplasmic chaperone tetramer 4PGG ; 2.015 ; Caffeic acid O-methyltransferase from Sorghum bicolor 4PGH ; 2.8 ; Caffeic acid O-methyltransferase from Sorghum bicolor 6QTL ; 2.25 ; Caffeine recognizing nanobody 8AA6 ; 1.15 ; CAII in complex with meta-carboran-propylsulfonamid 8AAE ; 1.15 ; CAII in complex with para-carboran-propylsulfonamid 7TR0 ; 2.7 ; CaKip3[2-436] - AMP-PNP in complex with a microtubule 7TR1 ; 3.1 ; CaKip3[2-436]-L2-mutant(HsKHC) - AMP-PNP in complex with a microtubule 7TQY ; 2.6 ; CaKip3[2-482] - ADP-AlFx in complex with a microtubule 7TR3 ; 3.9 ; CaKip3[2-482] - AMP-PNP in complex with a dolastatin-10-stabilized tubulin ring 7TQX ; 2.8 ; CaKip3[2-482] - AMP-PNP in complex with a microtubule 5IC3 ; 1.7 ; CAL PDZ domain with peptide and inhibitor 5K4F ; 1.36 ; CAL PDZ mutant C319A with a peptide 8I4Y ; 3.84 ; CalA3 complex structure with amidation product 8I4Z ; 3.97 ; CalA3 with hydrolysis product 7WVZ ; 3.38 ; CalA3_modular PKS_KS-AT-DH-KR 6D00 ; 4.0 ; Calcarisporiella thermophila Hsp104 1BF0 ; ; CALCICLUDINE (CAC) FROM GREEN MAMBA DENDROASPIS ANGUSTICEPS, NMR, 15 STRUCTURES 7TYO ; 2.7 ; Calcitonin receptor in complex with Gs and human calcitonin peptide 8F0J ; 2.0 ; Calcitonin Receptor in complex with Gs and Pramlintide analogue peptide San45 7TYL ; 3.3 ; Calcitonin Receptor in complex with Gs and rat amylin peptide, bypass motif 7TYI ; 3.3 ; Calcitonin Receptor in complex with Gs and rat amylin peptide, CT-like state 7TYN ; 2.6 ; Calcitonin Receptor in complex with Gs and salmon calcitonin peptide 6PYO ; 2.0 ; Calcium Activated Chloride Channel Regulator 1 (CLCA1) VWA Domain 6PYX ; 2.6 ; Calcium Activated Chloride Channel Regulator 1 (CLCA1) VWA Domain 5CBG ; 3.14 ; Calcium activated non-selective cation channel 3J7T ; 3.4 ; Calcium atpase structure with two bound calcium ions determined by electron crystallography of thin 3D crystals 6ZHF ; 4.0 ; Calcium ATPase-1 from Listeria monocytogenes in complex with BeF 1UOV ; 1.65 ; Calcium binding domain C2B 1UOW ; 1.04 ; Calcium binding domain C2B 2AAA ; 2.12 ; CALCIUM BINDING IN ALPHA-AMYLASES: AN X-RAY DIFFRACTION STUDY AT 2.1 ANGSTROMS RESOLUTION OF TWO ENZYMES FROM ASPERGILLUS 2P0Q ; ; Calcium binding protein in the calcium-binding form 2P0P ; ; Calcium binding protein in the free form 3TEC ; 2.0 ; CALCIUM BINDING TO THERMITASE. CRYSTALLOGRAPHIC STUDIES OF THERMITASE AT 0, 5 AND 100 MM CALCIUM 1QMD ; 2.2 ; calcium bound closed form alpha-toxin from Clostridium perfringens 1ALV ; 1.9 ; CALCIUM BOUND DOMAIN VI OF PORCINE CALPAIN 6GDK ; ; Calcium bound form of human calmodulin mutant F141L 1WD9 ; 2.6 ; Calcium bound form of human peptidylarginine deiminase type4 (PAD4) 2WFK ; 2.3 ; Calcium bound LipL32 5UG7 ; 1.8 ; Calcium bound Perforin C2 Domain - T431D 2IIC ; 2.93 ; Calcium bound structure of alpha-11 giardin 3CHK ; 1.65 ; Calcium bound structure of alpha-14 giardin 3GNK ; 2.1 ; Calcium bound to the Holliday junction sequence d(TCGGCGCCGA)4 6KZP ; 3.1 ; calcium channel-ligand 2C4S ; 3.0 ; CALCIUM CHONDROITIN 4-SULFATE. MOLECULAR CONFORMATION AND ORGANIZATION OF POLYSACCHARIDE CHAINS IN A PROTEOGLYCAN 476D ; 1.3 ; CALCIUM FORM OF B-DNA UNDECAMER GCGAATTCGCG 463D ; 1.45 ; CALCIUM FORM OF D(CGCGAATTCGCG)2 1UWO ; ; CALCIUM FORM OF HUMAN S100B, NMR, 20 STRUCTURES 477D ; 1.7 ; CALCIUM FORM OF THE B-DNA DODECAMER GGCGAATTCGCG 1WD8 ; 2.8 ; Calcium free form of human peptidylarginine deiminase type4 (PAD4) 1GNV ; 1.9 ; CALCIUM INDEPENDENT SUBTILISIN BPN' MUTANT 3AR3 ; 2.3 ; Calcium pump crystal structure with bound ADP and TG 2ZBG ; 2.55 ; Calcium pump crystal structure with bound AlF4 and TG in the absence of calcium 3AR8 ; 2.6 ; Calcium pump crystal structure with bound AlF4, TNP-AMP and TG 3AR2 ; 2.5 ; Calcium pump crystal structure with bound AMPPCP and Ca2+ 3AR4 ; 2.15 ; Calcium pump crystal structure with bound ATP and TG in the absence of Ca2+ 2ZBF ; 2.4 ; Calcium pump crystal structure with bound BeF3 and TG in the absence of calcium 2ZBE ; 3.8 ; Calcium pump crystal structure with bound BeF3 in the absence of calcium and TG 3AR9 ; 2.6 ; Calcium pump crystal structure with bound BeF3, TNP-AMP and TG in the absence of calcium 3AR6 ; 2.2 ; Calcium pump crystal structure with bound TNP-ADP and TG in the absence of calcium 3AR5 ; 2.2 ; Calcium pump crystal structure with bound TNP-AMP and TG 3AR7 ; 2.15 ; Calcium pump crystal structure with bound TNP-ATP and TG in the absence of Ca2+ 4HKR ; 3.3511 ; Calcium release-activated calcium (CRAC) channel ORAI 4HKS ; 3.3516 ; Calcium release-activated calcium (CRAC) channel ORAI, K163W mutant 6AKI ; 4.496 ; Calcium release-activated calcium channel protein 1, P288L mutant 2LUX ; ; Calcium saturated form of human C85M S100A1 mutant 6I1T ; 1.8 ; Calcium structure of Trichoderma reesei Carbohydrate-Active Enzymes Family AA12 4XQZ ; 2.151 ; Calcium(II) and copper(II) bound to the Z-DNA form of d(CGCGCG), complexed by chloride and MES 5IHD ; 1.57 ; Calcium(II) and copper(II) bound to the Z-DNA form of d(CGCGCG), complexed by L-lactate and succinate 5T5N ; 3.1 ; Calcium-activated chloride channel bestrophin-1 (BEST1), triple mutant: I76A, F80A, F84A; in complex with an Fab antibody fragment, chloride, and calcium 4RDQ ; 2.85 ; Calcium-activated chloride channel bestrophin-1, from chicken, in complex with Fab antibody fragments, chloride and calcium 1OTM ; 1.93 ; Calcium-binding mutant of the internalin B LRR domain 1OTN ; 1.97 ; Calcium-binding mutant of the Internalin B LRR domain 1OTO ; 1.96 ; Calcium-binding mutant of the internalin B LRR domain 1NKF ; ; CALCIUM-BINDING PEPTIDE, NMR, 30 STRUCTURES 7JOF ; 2.0 ; Calcium-bound C2A Domain from Human Dysferlin 8BD2 ; ; Calcium-bound Calmodulin variant G113R 1B8L ; 1.7 ; Calcium-bound D51A/E101D/F102W Triple Mutant of Beta Carp Parvalbumin 1SMG ; ; CALCIUM-BOUND E41A MUTANT OF THE N-DOMAIN OF CHICKEN TROPONIN C, NMR, 40 STRUCTURES 1KP4 ; 1.6 ; CALCIUM-BOUND FORM OF PROKARYOTIC PHOSPHOLIPASE A2 6QW3 ; 1.3 ; Calcium-bound gelsolin domain 2 3SH5 ; 2.8 ; Calcium-bound Laminin G like domain 3 from human perlecan 6U5R ; 3.6 ; Calcium-bound MthK closed state 6U5P ; 3.3 ; Calcium-bound MthK gating ring state 1 6U5N ; 3.2 ; Calcium-bound MthK gating ring state 2 6U68 ; 4.5 ; Calcium-bound MthK open-inactivated state 1 6U6E ; 6.3 ; Calcium-bound MthK open-inactivated state 2 6U6H ; 5.0 ; Calcium-bound MthK open-inactivated state 3 3JVT ; 2.1 ; Calcium-bound Scallop Myosin Regulatory Domain (Lever Arm) with Reconstituted Complete Light Chains 4QNH ; 2.02 ; Calcium-calmodulin (T79D) complexed with the calmodulin binding domain from a small conductance potassium channel SK2-a 4J9Y ; 1.51 ; Calcium-calmodulin complexed with the calmodulin binding domain from a small conductance potassium channel splice variant 4G28 ; 1.63 ; Calcium-calmodulin complexed with the calmodulin binding domain from a small conductance potassium channel splice variant and EBIO-1 4J9Z ; 1.66 ; Calcium-calmodulin complexed with the calmodulin binding domain from a small conductance potassium channel splice variant and NS309 4G27 ; 1.65 ; Calcium-calmodulin complexed with the calmodulin binding domain from a small conductance potassium channel splice variant and phenylurea 3DF0 ; 2.95 ; Calcium-dependent complex between m-calpain and calpastatin 5FYO ; 1.5 ; Calcium-dependent phosphoinositol-specific phospholipase C from a Gram-negative bacterium, Pseudomonas sp, apo form, crystal form 1 5FYP ; 1.17 ; Calcium-dependent phosphoinositol-specific phospholipase C from a Gram-negative bacterium, Pseudomonas sp, apo form, crystal form 2 5FYR ; 1.45 ; Calcium-dependent phosphoinositol-specific phospholipase C from a Gram-negative bacterium, Pseudomonas sp, apo form, myoinositol complex 4M97 ; 2.05 ; Calcium-Dependent Protein Kinase 1 from Neospora caninum 3I79 ; 2.04 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) 3I7C ; 1.98 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with bumped kinase inhibitor NA-PP2 3I7B ; 1.988 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with bumped kinase inhibitor NM-PP1 3N51 ; 2.1 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with bumped kinase inhibitor RM-1-95 3T3U ; 2.1 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with Bumped Kinase Inhibitor, RM-1-130 3SX9 ; 2.65 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with Bumped Kinase Inhibitor, RM-1-132 3T3V ; 2.04 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with Bumped Kinase Inhibitor, RM-1-87 3SXF ; 2.04 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with Bumped Kinase Inhibitor, RM-1-89 3UPZ ; 2.2 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with bumpless BKI analog UW1243 3V51 ; 1.95 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor RM-1-176 4JBV ; 1.95 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1268 3V5P ; 2.1 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1288 3V5T ; 2.13 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1299 3UPX ; 2.27 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1300 4M84 ; 1.998 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1455 4ONA ; 2.4 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1517 6BFA ; 2.8 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1553 4TZR ; 2.0 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1561 4WG3 ; 2.2 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1610 4WG4 ; 2.3 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1613 4YJN ; 2.6 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1639 4WG5 ; 2.3 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with inhibitor UW1647 3NYV ; 1.88 ; Calcium-Dependent Protein Kinase 1 from Toxoplasma gondii (TgCDPK1) in complex with non-specific inhibitor WHI-P180 4YSM ; 3.19 ; Calcium-Dependent Protein Kinase from Eimeria tenella 4YSJ ; 2.7 ; Calcium-Dependent Protein Kinase from Eimeria tenella in complex with ADP 2WCE ; 1.77 ; calcium-free (apo) S100A12 2WCF ; 2.78 ; calcium-free (apo) S100A12 1CFC ; ; CALCIUM-FREE CALMODULIN 1CFD ; ; CALCIUM-FREE CALMODULIN 4OY4 ; 2.03 ; calcium-free CaMPARI v0.2 5JOL ; ; Calcium-free EF-hand domain of L-plastin 3EKJ ; 2.8 ; Calcium-free GCaMP2 (calcium binding deficient mutant) 2JWW ; ; Calcium-free rat alpha-parvalbumin 3JTD ; 2.57 ; Calcium-free Scallop Myosin Regulatory Domain with ELC-D19A Point Mutation 6AUN ; 3.951 ; calcium-independent phospholipase A2 beta 1SUB ; 1.75 ; CALCIUM-INDEPENDENT SUBTILISIN BY DESIGN 1SUC ; 1.8 ; CALCIUM-INDEPENDENT SUBTILISIN BY DESIGN 1SUD ; 1.9 ; CALCIUM-INDEPENDENT SUBTILISIN BY DESIGN 1SL8 ; 1.7 ; Calcium-loaded apo-aequorin from Aequorea victoria 5JOJ ; ; Calcium-loaded EF-hand domain of L-plastin 1RLW ; 2.4 ; CALCIUM-PHOSPHOLIPID BINDING DOMAIN FROM CYTOSOLIC PHOSPHOLIPASE A2 3EK7 ; 1.85 ; Calcium-saturated GCaMP2 dimer 3EK4 ; 2.65 ; Calcium-saturated GCaMP2 Monomer 3EK8 ; 2.8 ; Calcium-saturated GCaMP2 T116V/G87R mutant monomer 3EKH ; 2.0 ; Calcium-saturated GCaMP2 T116V/K378W mutant monomer 7ST4 ; 2.0 ; Calcium-saturated jGCaMP8.410.80 7PGF ; 3.5 ; Calcium-selective Sp1 channel pore domain only 1DQ1 ; 2.15 ; Calcium;Calcium concanavalin A 5L34 ; ; Calculated solution structure of [D-Trp3]-Contryphan-Vc2 5IK2 ; 2.6 ; Caldalaklibacillus thermarum F1-ATPase (epsilon mutant) 5HKK ; 3.0 ; Caldalaklibacillus thermarum F1-ATPase (wild type) 6FJ7 ; 1.05 ; Caldiarchaeum Subterraneum Ubiquitin 6FNN ; 1.85 ; Caldiarchaeum Subterraneum Ubiquitin:Rpn11-homolog complex 6FNO ; 1.95 ; Caldiarchaeum Subterraneum Ubiquitin:Rpn11-homolog complex, zinc soak 1V48 ; 2.2 ; Calf spleen purine nucleoside phosphorylase (PNP) binary complex with 9-(5,5-difluoro-5-phosphonopenthyl)guanine 7DSD ; 2.9 ; CALHM1 close state with disordered CTH 7DSE ; 3.2 ; CALHM1 close state with ordered CTH 7DSC ; 3.5 ; CALHM1 open state with disordered CTH 2PIK ; ; CALICHEAMICIN GAMMA1I-DNA COMPLEX, NMR, 6 STRUCTURES 1HF8 ; 2.0 ; CALM-N N-terminal domain of clathrin assembly lymphoid myeloid leukaemia protein 1HG5 ; 2.0 ; CALM-N N-terminal domain of clathrin assembly lymphoid myeloid leukaemia protein, inositol(1,2,3,4,5,6)P6 complex 1HG2 ; 2.0 ; CALM-N N-terminal domain of clathrin assembly lymphoid myeloid leukaemia protein, Inositol(4,5)P2 complex 1HFA ; 2.0 ; CALM-N N-terminal domain of clathrin assembly lymphoid myeloid leukaemia protein, PI(4,5)P2 complex 4E50 ; 2.7 ; Calmodulin and Ng peptide complex 4E53 ; 2.69 ; Calmodulin and Nm peptide complex 6Y4O ; 1.83549 ; Calmodulin bound to cardiac ryanodine receptor (RyR2) calmodulin binding domain 3GP2 ; 1.46 ; Calmodulin bound to peptide from calmodulin kinase II (CaMKII) 3GOF ; 1.45 ; Calmodulin bound to peptide from macrophage nitric oxide synthase 2O60 ; 1.55 ; Calmodulin bound to peptide from neuronal nitric oxide synthase 1WRZ ; 2.0 ; Calmodulin complexed with a peptide from a human death-associated protein kinase 2K0F ; ; Calmodulin complexed with calmodulin-binding peptide from smooth muscle myosin light chain kinase 2VAY ; 1.94 ; Calmodulin complexed with CaV1.1 IQ peptide 1QIW ; 2.3 ; Calmodulin complexed with N-(3,3,-diphenylpropyl)-N'-[1-R-(3,4-bis-butoxyphenyl)-ethyl]-propylenediamine (DPD) 1QIV ; 2.64 ; CALMODULIN COMPLEXED WITH N-(3,3,-DIPHENYLPROPYL)-N'-[1-R-(3,4-BIS-BUTOXYPHENYL)-ETHYL]-PROPYLENEDIAMINE (DPD), 1:2 COMPLEX 1A29 ; 2.74 ; CALMODULIN COMPLEXED WITH TRIFLUOPERAZINE (1:2 COMPLEX) 1LIN ; 2.0 ; CALMODULIN COMPLEXED WITH TRIFLUOPERAZINE (1:4 COMPLEX) 7NQC ; ; Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane targeting motifs 1ZUZ ; 1.91 ; Calmodulin in complex with a mutant peptide from human DRP-1 kinase 6OS4 ; 2.05 ; Calmodulin in complex with farnesyl cysteine methyl ester 6O5G ; 1.89 ; Calmodulin in complex with isomalbrancheamide D 6EEB ; 1.96 ; Calmodulin in complex with malbrancheamide 4BW7 ; 1.81 ; Calmodulin in complex with strontium 6GDL ; ; Calmodulin mutant - F141L apo-form Unstructured C-domain 1AHR ; 1.8 ; CALMODULIN MUTANT WITH A TWO RESIDUE DELETION IN THE CENTRAL HELIX 6Y4P ; 2.13326 ; Calmodulin N53I variant bound to cardiac ryanodine receptor (RyR2) calmodulin binding domain 1CLL ; 1.7 ; CALMODULIN STRUCTURE REFINED AT 1.7 ANGSTROMS RESOLUTION 4BW8 ; 1.8 ; Calmodulin with small bend in central helix 2KNE ; ; Calmodulin wraps around its binding domain in the plasma membrane CA2+ pump anchored by a novel 18-1 motif 2KZ2 ; ; Calmodulin, C-terminal domain, F92E mutant 4BYA ; ; Calmodulin, C-terminal domain, M144H mutant 2M3S ; ; Calmodulin, i85l, f92e, h107i, l112r, a128t, m144r mutant 1DMO ; ; CALMODULIN, NMR, 30 STRUCTURES 6DMW ; 4.4 ; Calmodulin-bound full-length rbTRPV5 1A06 ; 2.5 ; CALMODULIN-DEPENDENT PROTEIN KINASE FROM RAT 2LC5 ; ; Calmodulin-like Protein from Entamoeba histolytica: Solution Structure and Calcium-Binding Properties of a Partially Folded Protein 2O5G ; 1.08 ; Calmodulin-smooth muscle light chain kinase peptide complex 2F3Y ; 1.45 ; Calmodulin/IQ domain complex 2F3Z ; 1.6 ; Calmodulin/IQ-AA domain complex 1IQ5 ; 1.8 ; Calmodulin/nematode CA2+/Calmodulin dependent kinase kinase fragment 1CKK ; ; CALMODULIN/RAT CA2+/CALMODULIN DEPENDENT PROTEIN KINASE FRAGMENT 2G8E ; 2.25 ; Calpain 1 proteolytic core in complex with SNJ-1715, a cyclic hemiacetal-type inhibitor 2G8J ; 1.61 ; Calpain 1 proteolytic core in complex with SNJ-1945, a alpha-ketoamide-type inhibitor. 2NQI ; 2.04 ; Calpain 1 proteolytic core inactivated by WR13(R,R), an epoxysuccinyl-type inhibitor. 2NQG ; 2.04 ; Calpain 1 proteolytic core inactivated by WR18(S,S), an epoxysuccinyl-type inhibitor. 2R9C ; 1.8 ; Calpain 1 proteolytic core inactivated by ZLAK-3001, an alpha-ketoamide 2R9F ; 1.6 ; Calpain 1 proteolytic core inactivated by ZLAK-3002, an alpha-ketoamide 1NX2 ; 2.2 ; Calpain Domain VI 1AJ5 ; 2.3 ; CALPAIN DOMAIN VI APO 1NX1 ; 2.0 ; Calpain Domain VI Complexed with Calpastatin Inhibitory Domain C (DIC) 1NX3 ; 2.45 ; Calpain Domain VI in Complex with the Inhibitor PD150606 1DVI ; 2.3 ; CALPAIN DOMAIN VI WITH CALCIUM BOUND 6QLB ; 2.32 ; Calpain small subunit 1, RNA-binding protein Hfq 6P3Q ; 2.8 ; Calpain-5 (CAPN5) Protease Core (PC) 8UC6 ; 2.701 ; Calpain-7:IST1 Complex 1AA2 ; 2.0 ; CALPONIN HOMOLOGY (CH) DOMAIN FROM HUMAN BETA-SPECTRIN 1BKR ; 1.1 ; CALPONIN HOMOLOGY (CH) DOMAIN FROM HUMAN BETA-SPECTRIN AT 1.1 ANGSTROM RESOLUTION 1HHN ; ; Calreticulin P-domain 6YNU ; 3.12 ; CaM-P458 complex (crystal form 1) 6YNS ; 3.94 ; CaM-P458 complex (crystal form 2) 5JQA ; 1.8 ; CaM:RM20 complex 7LNJ ; 2.68 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA 7LT5 ; 2.54 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Cofactor SAH 8CY3 ; 2.65 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 15 8CY4 ; 2.34 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 16 8CY1 ; 2.38 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 19 8CXU ; 2.28 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 2 8CXV ; 2.26 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 3 8CY5 ; 2.5 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 39 8CXX ; 2.34 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Compound 6 8FS1 ; 2.74 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor 11a (YD905) 8FS2 ; 2.59 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor 11b (YD907) 8CY2 ; 2.81 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor APNEA (Compound 9) 7RFM ; 2.68 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor EPZ004777 8CY0 ; 2.65 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor MC4756 (Compound 178) 8CXS ; 2.49 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor MTA 8CXY ; 2.19 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor N6-(2-Phenethyl)adenosine (Compound 8) 8CXZ ; 2.35 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor N6-(3-Phenylpropyl)adenosine (Compound 14) 8CXT ; 2.61 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor N6-benzyladenosine (Compound 1) 8CXW ; 2.78 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor piclidenoson (Compound 4) 7RFL ; 2.38 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor SGC0946 7RFN ; 2.5 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor SGC8158 7RFK ; 2.05 ; CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA and Inhibitor Sinefungin 1QNN ; 1.8 ; Cambialistic superoxide dismutase from Porphyromonas gingivalis 8APQ ; 2.49 ; CaMct - Mesaconyl-CoA C1:C4 CoA Transferase of Chloroflexus aurantiacus 8APR ; 2.1 ; CaMct - Mesaconyl-CoA C1:C4 CoA Transferase of Chloroflexus aurantiacus 4AA9 ; 1.6 ; Camel chymosin at 1.6A resolution 7OPZ ; 2.55 ; Camel GSTM1-1 in complex with glutathione 7OPY ; 2.05 ; Camel GSTM1-1 in complex with S-(p-nitrobenzyl)glutathione 7TPR ; 2.39 ; Camel nanobodies 7A3 and 8A2 broadly neutralize SARS-CoV-2 variants 5U64 ; 1.153 ; Camel nanobody VHH-28 5U65 ; 2.3 ; Camel Nanobody VHH-5 4QGY ; 1.38 ; Camelid (llama) nanobody n25 (VHH) against type 6 secretion system TssM protein 1QD0 ; 2.5 ; CAMELID HEAVY CHAIN VARIABLE DOMAINS PROVIDE EFFICIENT COMBINING SITES TO HAPTENS 1KXQ ; 1.6 ; Camelid VHH Domain in Complex with Porcine Pancreatic alpha-Amylase 1KXT ; 2.0 ; Camelid VHH Domains in Complex with Porcine Pancreatic alpha-Amylase 1KXV ; 1.6 ; Camelid VHH Domains in Complex with Porcine Pancreatic alpha-Amylase 6W4O ; 4.8 ; CaMKII alpha-30 Cryo-EM reconstruction 6W4P ; 6.6 ; CaMKII alpha-30 Cryo-EM reconstruction - Class B 3KK8 ; 1.72 ; CaMKII Substrate Complex A 3KK9 ; 3.206 ; CaMKII Substrate Complex B 3KL8 ; 3.372 ; CaMKIINtide Inhibitor Complex 5KBF ; 2.0 ; cAMP bound PfPKA-R (141-441) 5K8S ; 1.15 ; cAMP bound PfPKA-R (297-441) 3D0S ; 2.0 ; cAMP receptor protein from m.tuberculosis, cAMP-free form 4OLL ; 1.9 ; cAMP-binding acyltransferase from Mycobacterium smegmatis 4ONU ; 2.25 ; cAMP-binding acyltransferase from Mycobacterium smegmatis, E234A mutant 4ORF ; 2.0 ; cAMP-binding acyltransferase from Mycobacterium smegmatis, mutant R95K 7NP4 ; 3.3 ; cAMP-bound rabbit HCN4 stabilized in LMNG-CHS detergent mixture 8PD8 ; 3.3 ; cAMP-bound SpSLC9C1 in lipid nanodiscs, dimer 8PD9 ; 3.6 ; cAMP-bound SpSLC9C1 in lipid nanodiscs, protomer state 1 5MHI ; 1.489 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule (5-chloro-2-methoxyphenyl)methanamine 5N1M ; 1.436 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule (5-chloro-2-methoxyphenyl)methanamine 5N3G ; 1.16 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule (R)-1,4-oxazepan-6-ol 5N3P ; 1.58 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 1H-Indol-5-ol 5N1L ; 1.489 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2,5-dimethyl-N-pyridin-4-ylfuran-3-carboxamide 5N39 ; 1.45 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)pyrrolidine 5N3R ; 1.36 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-(carbamoylamino)-4-methylsulfanylbutanoic acid 5N3B ; 1.64 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-(pyridin-3-yl)ethanamine 5N1K ; 1.8 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-amino-1-(4-fluorophenyl)ethanol 5N1O ; 1.8 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-chloro-4-(chloromethyl)-5-hydroxyphenyl)ethan-1-one 5N1N ; 1.405 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 2-chloro-9-propan-2-ylpurine 5N3O ; 1.32 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 3-(1,3-oxazol-5-yl)aniline 5N7P ; 1.501 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 3-amino-5-(pyrrolidin-1-yl)-1H-pyrazole-4-carbonitrile 5N33 ; 1.434 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 3-amino-5-(trifluoromethyl)-1H-pyridin-2-one 5N3Q ; 1.31 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 3-Aminobenzamide 5N36 ; 1.58 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 3H-isoindol-2-ium-1-amine 5N1G ; 1.14 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-(2-Amino-1,3-thiazol-4-yl)-1-oxaspiro[4.5]decan-2-one 5N3D ; 1.77 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-(trifluoromethyl)benzenecarboximidamide 5N7U ; 1.371 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-Bromo-3,5-dimethyl-1H-pyrazole 5N32 ; 1.833 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-chlorobenzyl carbamimidothioate 5N3S ; 1.14 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-Hydroxybenzamide 5N3A ; 1.404 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-methyl-5-(1-methylimidazol-2-yl)-1,3-thiazol-2-amine 5N3J ; 1.12 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-Nitrobenzoic acid 5N3L ; 1.38 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 4-[(1R)-2-amino-1-hydroxyethyl]benzene-1,2-diol 5N3T ; 1.209 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 5-Chlorothiophene-2-sulfonamide 5N3E ; 1.529 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule 6-dimethylaminopyridine-3-carboxylic acid 5N3M ; 1.229 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule D-arginine 5N3I ; 1.14 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule methyl (2S)-2-amino-3-phenylpropanoate 5N1H ; 1.18 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule Methyl 4-(aminomethyl)benzoate 5N1E ; 1.529 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule N-(1,3-benzodioxol-5-yl)-2-piperidin-1-ylacetamide 5N37 ; 1.589 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule N-(1,3-benzodioxol-5-ylmethyl)cyclopentanamine 5N1D ; 1.609 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule N-methyl-1-(5-pyridin-3-yloxyfuran-2-yl)methanamine 5N1F ; 1.12 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule N-quinolin-5-ylpyridine-3-carboxamide 5N3F ; 1.68 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule N-[3-(aminomethyl)phenyl]acetamide 5N3K ; 1.33 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule O-guanidino-L-homoserine 5N3H ; 1.36 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule pyridine-3-carboxamide 5N3C ; 1.772 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule Thiophene-3-Carboximidamide 5N3N ; 1.224 ; cAMP-dependent Protein Kinase A from Cricetulus griseus in complex with fragment like molecule [(2R)-2,4-dihydroxy-4-oxobutyl]-trimethylazanium 1CDK ; 2.0 ; CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT (E.C.2.7.1.37) (PROTEIN KINASE A) COMPLEXED WITH PROTEIN KINASE INHIBITOR PEPTIDE FRAGMENT 5-24 (PKI(5-24) ISOELECTRIC VARIANT CA) AND MN2+ ADENYLYL IMIDODIPHOSPHATE (MNAMP-PNP) AT PH 5.6 AND 7C AND 4C 2GFC ; 1.87 ; cAMP-dependent protein kinase PKA catalytic subunit with PKI-5-24 3DND ; 2.26 ; cAMP-dependent protein kinase PKA catalytic subunit with PKI-5-24 3DNE ; 2.0 ; cAMP-dependent protein kinase PKA catalytic subunit with PKI-5-24 4YXS ; 2.11 ; CAMP-DEPENDENT PROTEIN KINASE PKA CATALYTIC SUBUNIT WITH PKI-5-24 1STC ; 2.3 ; CAMP-DEPENDENT PROTEIN KINASE, ALPHA-CATALYTIC SUBUNIT IN COMPLEX WITH STAUROSPORINE 7NP3 ; 3.3 ; cAMP-free rabbit HCN4 stabilized in LMNG-CHS detergent mixture 1BFO ; 2.6 ; CAMPATH-1G IGG2B RAT MONOCLONAL FAB 6WE6 ; 2.16 ; Camphor bound P450cam D251E structure 6WFL ; 1.6 ; Camphor soaked P450cam D251E 8UUZ ; 3.77 ; Campylobacter jejuni CosR apo form 6D57 ; 1.81 ; Campylobacter jejuni ferric uptake regulator S1 metalated 7LAT ; 2.47 ; Campylobacter jejuni keto-acid reductoisomerase in complex with Mg2+ 6Z05 ; 5.8 ; Campylobacter jejuni serine protease HtrA 5E6F ; 2.6 ; Canarypox virus resolvase 2EF6 ; 2.1 ; Canavalia gladiata lectin complexed with Man1-3Man-OMe 5BYN ; 2.651 ; Canavalia maritima lectin complexed with synthetic selenoamino acid 8SZO ; 2.5 ; Canavalia villosa lectin in complex with alpha-methyl-mannoside 2CAU ; 2.1 ; CANAVALIN FROM JACK BEAN 2CAV ; 2.0 ; CANAVALIN FROM JACK BEAN 5BK8 ; 2.25 ; Cancer-associated SHP2/T507K mutant 8CDK ; 3.32 ; CAND1 b-hairpin++-SCF-SKP2 CAND1 partly engaged SCF partly rocked 8CDJ ; 3.4 ; CAND1 b-hairpin++-SCF-SKP2 CAND1 rolling SCF engaged 7ZBZ ; 3.1 ; CAND1 delhairpin-SCF-SKP2 CAND1 partly engaged SCF partly rocked 7Z8R ; 2.7 ; CAND1-CUL1-RBX1 8OR2 ; 3.2 ; CAND1-CUL1-RBX1-DCNL1 8OR0 ; 3.1 ; CAND1-CUL1-RBX1-SKP1-SKP2-CKS1-CDK2 8OR3 ; 2.9 ; CAND1-CUL1-RBX1-SKP1-SKP2-DCNL1 7Z8V ; 2.7 ; CAND1-SCF-SKP2 (SKP1deldel) CAND1 engaged SCF rocked 7Z8T ; 3.0 ; CAND1-SCF-SKP2 CAND1 engaged SCF rocked 7ZBW ; 3.5 ; CAND1-SCF-SKP2 CAND1 rolling-2 SCF engaged 1AI9 ; 1.85 ; CANDIDA ALBICANS DIHYDROFOLATE REDUCTASE 1IA3 ; 1.78 ; Candida albicans dihydrofolate reductase complex in which the dihydronicotinamide moiety of dihydro-nicotinamide-adenine-dinucleotide phosphate (NADPH) is displaced by 5-[(4-TERT-BUTYLPHENYL)SULFANYL]-2,4-QUINAZOLINEDIAMINE (GW995) 1IA4 ; 1.85 ; Candida albicans dihydrofolate reductase complex in which the dihydronicotinamide moiety of dihydro-nicotinamide-adenine-dinucleotide phosphate (NADPH) is displaced by 5-{[4-(4-MORPHOLINYL)PHENYL]SULFANYL}-2,4-QUINAZOLINEDIAMIN (GW2021) 1AOE ; 1.6 ; CANDIDA ALBICANS DIHYDROFOLATE REDUCTASE COMPLEXED WITH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (NADPH) AND 1,3-DIAMINO-7-(1-ETHYEPROPYE)-7H-PYRRALO-[3,2-F]QUINAZOLINE (GW345) 1M79 ; 1.7 ; Candida albicans Dihydrofolate Reductase Complexed with Dihydro-Nicotinamide-Adenine-Dinucleotide Phosphate (NADPH) and 5-(4-methoxyphenoxy)-2,4-quinazolinediamine (GW1466) 1IA1 ; 1.7 ; Candida albicans dihydrofolate reductase complexed with dihydro-nicotinamide-adenine-dinucleotide phosphate (NADPH) and 5-(PHENYLSULFANYL)-2,4-QUINAZOLINEDIAMINE (GW997) 1M78 ; 1.71 ; CANDIDA ALBICANS DIHYDROFOLATE REDUCTASE COMPLEXED WITH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (NADPH) AND 5-CHLORYL-2,4,6-QUINAZOLINETRIAMINE (GW1225) 1IA2 ; 1.82 ; Candida albicans dihydrofolate reductase complexed with dihydro-nicotinamide-adenine-dinucleotide phosphate (NADPH) and 5-[(4-METHYLPHENYL)SULFANYL]-2,4-QUINAZOLINEDIAMINE (GW578) 1M7A ; 1.76 ; CANDIDA ALBICANS DIHYDROFOLATE REDUCTASE COMPLEXED WITH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (NADPH) AND 7-[2-methoxy-1-(methoxymethyl)ethyl]-7H-pyrrolo[3,2-f] quinazoline-1,3-diamine (GW557) 4HOE ; 1.76 ; Candida albicans dihydrofolate reductase complexed with NADPH and 5-[3-(2,5-dimethoxy-4-phenylphenyl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine (UCP111E) 3QLW ; 2.504 ; Candida albicans dihydrofolate reductase complexed with NADPH and 5-[3-(2,5-dimethoxyphenyl)prop-1-yn-1-yl]-6-ethylpyrimidine-2,4-diamine (UCP120B) 4HOF ; 1.76 ; Candida albicans dihydrofolate reductase complexed with NADPH and 5-[3-(2-methoxy-4-phenylphenyl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine (UCP111H) 4H96 ; 2.6 ; Candida albicans dihydrofolate reductase complexed with NADPH and 5-{3-[3-(2,3-dihydro-1,4-benzodioxin-6-yl)-5-methoxyphenyl]prop-1-yn-1-yl}-6-ethylpyrimidine-2,4-diamine (UCP1018) 4H97 ; 2.2 ; Candida albicans dihydrofolate reductase complexed with NADPH and 5-{3-[3-methoxy-5-(4-methylphenyl)phenyl]but-1-yn-1-yl}-6-methylpyrimidine-2,4-diamine (UCP111D4M) 4H95 ; 2.6 ; Candida albicans dihydrofolate reductase complexed with NADPH and 6-ethyl-5-{3-[3-methoxy-5-(pyridin-4-yl)phenyl]but-1-yn-1-yl}pyrimidine-2,4-diamine (UCP1006) 3QLR ; 2.149 ; Candida albicans dihydrofolate reductase complexed with NADPH and 6-methyl-5-[(3R)-3-(3,4,5-trimethoxyphenyl)pent-1-yn-1-yl]pyrimidine-2,4-diamine (UCP112A) 3QLS ; 1.733 ; Candida albicans dihydrofolate reductase complexed with NADPH and 6-methyl-5-[3-methyl-3-(3,4,5-trimethoxyphenyl)but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP115A) 5HW6 ; 2.401 ; Candida albicans FKBP12 apo protein in C2 space group 5HW7 ; 2.291 ; Candida albicans FKBP12 apo protein in P21212 space group 5HW8 ; 2.86 ; Candida albicans FKBP12 P104G protein bound with FK506 in C2 space group 6LNK ; 2.639 ; Candida albicans Fructose-1,6-bisphosphate aldolase 8UK6 ; 2.73 ; Candida albicans glutaminyl tRNA synthetase (GLN4) in complex with N-pyrimidinyl-beta-thiophenylacrylamide 6CJI ; 1.64 ; Candida albicans Hsp90 nucleotide binding domain 6CJJ ; 1.74 ; Candida albicans Hsp90 nucleotide binding domain in complex with ADP 6CJS ; 1.9 ; Candida albicans Hsp90 nucleotide binding domain in complex with AUY922 6CJL ; 1.6972 ; Candida albicans Hsp90 nucleotide binding domain in complex with radicicol 6CJP ; 2.6 ; Candida albicans Hsp90 nucleotide binding domain in complex with radicicol 6CJR ; 1.8 ; Candida albicans Hsp90 nucleotide binding domain in complex with SNX-2112 1PMI ; 1.7 ; Candida Albicans Phosphomannose Isomerase 4C0T ; 3.16 ; Candida albicans PKh Kinase Domain 3DRA ; 1.8 ; Candida albicans protein geranylgeranyltransferase-I complexed with GGPP 3QNE ; 2.0 ; Candida albicans seryl-tRNA synthetase 5CU9 ; 1.48 ; CANDIDA ALBICANS SUPEROXIDE DISMUTASE 5 (SOD5), APO 4N3T ; 1.4 ; Candida albicans Superoxide Dismutase 5 (SOD5), Cu(I) 4N3U ; 1.75 ; Candida albicans Superoxide Dismutase 5 (SOD5), Cu(II) 5KBM ; 1.416 ; Candida Albicans Superoxide Dismutase 5 (SOD5), D113N Mutant 5KBK ; 1.411 ; Candida Albicans Superoxide Dismutase 5 (SOD5), E110A Mutant 5KBL ; 1.414 ; Candida Albicans Superoxide Dismutase 5 (SOD5), E110Q Mutant 2J6I ; 1.55 ; Candida boidinii formate dehydrogenase (FDH) C-terminal mutant 2FSS ; 1.7 ; Candida boidinii formate dehydrogenase (FDH) K47E mutant 8HTY ; 1.4 ; Candida boidinii Formate Dehydrogenase Crystal Structure at 1.4 Angstrom Resolution 8IVJ ; 1.9 ; Candida boidinii Formate Dehydrogenase V120T Mutant 3EEM ; 2.11 ; Candida glabrata Dihydrofolate Reductase complexed with 2,4-diamino-5-[3-methyl-3-(3-methoxy-5-(2,6-dimethylphenyl)phenyl)prop-1-ynyl]-6-methylpyrimidine(UCP111D26M) and NADPH 3EEL ; 1.95 ; Candida glabrata Dihydrofolate Reductase complexed with 2,4-diamino-5-[3-methyl-3-(3-methoxy-5-(3,5-dimethylphenyl)phenyl)prop-1-ynyl]-6-methylpyrimidine(UCP11153TM) and NADPH 3EEK ; 2.03 ; Candida glabrata Dihydrofolate Reductase complexed with 2,4-diamino-5-[3-methyl-3-(3-methoxy-5-(4-methylphenyl)phenyl)prop-1-ynyl]-6-methylpyrimidine(UCP111D4M) and NADPH 3EEJ ; 2.11 ; Candida glabrata Dihydrofolate Reductase complexed with 2,4-diamino-5-[3-methyl-3-(3-methoxy-5-phenylphenyl)prop-1-ynyl]-6-methylpyrimidine(UCP111D) and NADPH 3CSE ; 1.6 ; Candida glabrata Dihydrofolate Reductase complexed with NADPH and 2,4-diamino-5-(3-(2,5-dimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120B) 3QLZ ; 1.94 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 5-[3-(2,5-dimethoxyphenyl)prop-1-yn-1-yl]-6-propylpyrimidine-2,4-diamine (UCP130B) 4HOG ; 2.0 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 5-[3-(2-methoxy-4-phenylphenyl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine (UCP111H) 4H98 ; 2.9 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 5-{3-[3-(2,3-dihydro-1,4-benzodioxin-6-yl)-5-methoxyphenyl]prop-1-yn-1-yl}-6-ethylpyrimidine-2,4-diamine (UCP1018) 3ROA ; 2.301 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 6-ethyl-5-[(3R)-3-[3-methoxy-5-(morpholin-4-yl)phenyl]but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP1004) 3RO9 ; 2.596 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 6-ethyl-5-[(3R)-3-[3-methoxy-5-(pyridin-4-yl)phenyl]but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP1006) 3QLX ; 2.239 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 6-methyl-5-[(3R)-3-(3,4,5-trimethoxyphenyl)pent-1-yn-1-yl]pyrimidine-2,4-diamine (UCP112A) 3QLY ; 2.519 ; Candida glabrata dihydrofolate reductase complexed with NADPH and 6-methyl-5-[3-methyl-3-(3,4,5-trimethoxyphenyl)but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP115A) 8UPT ; 2.8 ; Candidatus Methanomethylophilus alvus tRNAPyl in A-site of ribosome 2WBV ; 1.9 ; Canine adenovirus 2 fibre head in complex with sialic acid 2J2J ; 1.5 ; Canine adenovirus fibre head at 1.5 A resolution 2W9L ; 2.91 ; CANINE ADENOVIRUS TYPE 2 FIBRE HEAD IN COMPLEX WITH CAR DOMAIN D1 AND SIALIC ACID 1BYU ; 2.15 ; CANINE GDP-RAN 1QG4 ; 2.5 ; CANINE GDP-RAN F72Y MUTANT 3RAN ; 2.15 ; CANINE GDP-RAN Q69L MUTANT 1QG2 ; 2.5 ; CANINE GDP-RAN R76E MUTANT 1C8D ; 3.0 ; CANINE PANLEUKOPENIA VIRUS EMPTY CAPSID STRUCTURE 7M3N ; 2.4 ; Canine parvovirus and Fab14 asymmetric reconstruction 7M3L ; 3.2 ; Canine parvovirus and Fab14 at partial occupancy 7M3M ; 2.26 ; Canine parvovirus and Fab14 at partial occupancy 7M3O ; 2.4 ; Canine parvovirus asymmetric map 3JCX ; 4.1 ; Canine Parvovirus complexed with Fab E 1C8H ; 3.5 ; CANINE PARVOVIRUS STRAIN D EMPTY CAPSID STRUCTURE AT PH 5.5 8K8J ; 2.88 ; Cannabinoid Receptor 1 bound to Fenofibrate coupling MiniGsq and Nb35 Complex 6N4B ; 3.0 ; Cannabinoid Receptor 1-G Protein Complex 8GHV ; 2.8 ; Cannabinoid Receptor 1-G Protein Complex 8GAG ; 3.3 ; Cannabinoid receptor 1-Gi complex with novel ligand 7SGY ; 2.5 ; Cannabis sativa bibenzyl synthase 4EPP ; 1.95 ; Canonical poly(ADP-ribose) glycohydrolase from Tetrahymena thermophila. 4EPQ ; 2.399 ; canonical poly(ADP-ribose) glycohydrolase RBPI inhibitor complex from Tetrahymena thermophila 1N52 ; 2.11 ; Cap Binding Complex 1N54 ; 2.72 ; Cap Binding Complex m7GpppG free 6Z9K ; 1.5 ; CAP domain of Enterococcal PrgA 6XYA ; 1.35 ; Cap-binding domain of SFTSV L protein 2GPQ ; ; Cap-free structure of eIF4E suggests basis for its allosteric regulation 4N48 ; 2.704 ; Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 Protein in complex with capped RNA fragment 4N49 ; 1.9 ; Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 Protein in complex with m7GpppG and SAM 6VVJ ; ; Cap1G-TPUA 6VU1 ; ; Cap3G-TAR-F1 is an RNA hairpin. The 1H-1H NOESY data was collected at 308 K in 10 mM KH2PO4 pH 7.4. 4AFH ; 1.88 ; Capitella teleta AChBP in complex with lobeline 4B5D ; 2.195 ; Capitella teleta AChBP in complex with psychonicline (3-((2(S)- Azetidinyl)methoxy)-5-((1S,2R)-2-(2-hydroxyethyl)cyclopropyl)pyridine) 4AFG ; 2.001 ; Capitella teleta AChBP in complex with varenicline 7E13 ; 2.86 ; Caprylic acid targets a serine hydroxymethyltransferase to kill horseweed 3J7V ; 4.6 ; Capsid Expansion Mechanism Of Bacteriophage T7 Revealed By Multi-State Atomic Models Derived From Cryo-EM Reconstructions 3J7W ; 3.5 ; Capsid Expansion Mechanism Of Bacteriophage T7 Revealed By Multi-State Atomic Models Derived From Cryo-EM Reconstructions 3J7X ; 3.6 ; Capsid Expansion Mechanism Of Bacteriophage T7 Revealed By Multi-State Atomic Models Derived From Cryo-EM Reconstructions 2MJZ ; ; Capsid model of M13 bacteriophage virus from Magic-angle spinning NMR and Rosetta modeling 8HQK ; 3.6 ; Capsid of DT57C bacteriophage in the empty state 8HO3 ; 2.9 ; Capsid of DT57C bacteriophage in the full state 6TSU ; 3.42 ; Capsid of empty GTA particle computed with C5 symmetry 8TUX ; 3.9 ; Capsid of mature PP7 virion with 3'end region of PP7 genomic RNA 6TB9 ; 3.56 ; Capsid of native GTA particle computed with C5 symmetry 8H89 ; 3.7 ; Capsid of Ralstonia phage GP4 6OMC ; 3.8 ; capsid of T5 virion 6B23 ; 3.7 ; Capsid protein and C-terminal part of CpmB protein in the Staphylococcus aureus pathogenicity island 1 80alpha-derived procapsid 6B0X ; 3.8 ; Capsid protein and C-terminal part of scaffolding protein in the Staphylococcus aureus phage 80alpha procapsid 4PH0 ; 2.7497 ; capsid protein from bovine leukemia virus 6C21 ; 5.2 ; Capsid protein in the Staphylococcus aureus phage 80alpha mature capsid 6C22 ; 8.4 ; Capsid protein in the Staphylococcus aureus phage 80alpha-derived SaPI1 mature capsid 6E39 ; 3.5 ; Capsid protein of PCV2 with 2-O-sulfo-alpha-L-idopyranuronic acid and N,O6-DISULFO-GLUCOSAMINE 6E32 ; 3.4 ; Capsid protein of PCV2 with N,O6-DISULFO-GLUCOSAMINE 6E34 ; 3.6 ; Capsid protein of PCV2 with N,O6-DISULFO-GLUCOSAMINE and 2-O-sulfo-alpha-L-idopyranuronic acid 1VD0 ; ; Capsid stabilizing protein GPD, NMR, 20 Structures 4AN5 ; 8.8 ; Capsid structure and its Stability at the Late Stages of Bacteriophage SPP1 Assembly 6J3Q ; 3.53 ; Capsid structure of a freshwater cyanophage Siphoviridae Mic1 8R0G ; 2.6 ; Capsid structure of Giardiavirus (GLV) CAT strain 8R0F ; 2.14 ; Capsid structure of Giardiavirus (GLV) HP strain 7DOD ; 2.9 ; Capsid structure of human sapovirus 6Y83 ; 3.65 ; Capsid structure of Leishmania RNA virus 1 6WH3 ; 2.96 ; Capsid structure of Penaeus monodon metallodensovirus at pH 8.2 6WH7 ; 2.78 ; Capsid structure of Penaeus monodon metallodensovirus following EDTA treatment 2VQ0 ; 3.6 ; Capsid structure of Sesbania mosaic virus coat protein deletion mutant rCP(delta 48 to 59) 7X30 ; 3.6 ; Capsid structure of Staphylococcus jumbo bacteriophage S6 8EGT ; 3.5 ; Capsid structure of Staphylococcus phage Andhra 8I4L ; 3.23 ; Capsid structure of the Cyanophage P-SCSP1u 2XD8 ; 4.6 ; Capsid structure of the infectious Prochlorococcus Cyanophage P-SSP7 8A5T ; 3.78 ; Capsid structure of the L-A helper virus from native viral communities 3JB5 ; 3.7 ; Capsid Structure of the Propionibacterium acnes Bacteriophage ATCC_Clear 8A0M ; 3.6 ; Capsular polysaccharide synthesis multienzyme in complex with capsular polymer fragment 8A0C ; 2.9 ; Capsular polysaccharide synthesis multienzyme in complex with CMP 6YUV ; 2.0 ; Capsule O-acetyltransferase of Neisseria meningitidis serogroup A 6YUS ; 2.0 ; Capsule O-acetyltransferase of Neisseria meningitidis serogroup A H228A mutant in complex with CoA 6YUO ; 2.2 ; Capsule O-acetyltransferase of Neisseria meningitidis serogroup A in complex with caged Gadolinium 6YUQ ; 1.95 ; Capsule O-acetyltransferase of Neisseria meningitidis serogroup A in complex with polysaccharide 4AY2 ; 2.8 ; Capturing 5' tri-phosphorylated RNA duplex by RIG-I 5BQ1 ; 1.6 ; Capturing Carbon Dioxide in beta Carbonic Anhydrase 4N7N ; 2.754 ; Capturing the haemoglobin allosteric transition in a single crystal form; Crystal structure of full-liganded human haemoglobin with phosphate at 2.75 A resolution. 4N7O ; 2.502 ; Capturing the haemoglobin allosteric transition in a single crystal form; Crystal structure of half-liganded human haemoglobin with phosphate at 2.5 A resolution. 4N7P ; 2.809 ; Capturing the haemoglobin allosteric transition in a single crystal form; Crystal structure of half-liganded human haemoglobin without phosphate at 2.8 A resolution. 301D ; 3.0 ; CAPTURING THE STRUCTURE OF A CATALYTIC RNA INTERMEDIATE: RNA HAMMERHEAD RIBOZYME, MG(II)-SOAKED 300D ; 3.0 ; CAPTURING THE STRUCTURE OF A CATALYTIC RNA INTERMEDIATE: RNA HAMMERHEAD RIBOZYME, MN(II)-SOAKED 299D ; 3.0 ; CAPTURING THE STRUCTURE OF A CATALYTIC RNA INTERMEDIATE: THE HAMMERHEAD RIBOZYME 1B7B ; 2.8 ; Carbamate kinase from Enterococcus faecalis 2WE4 ; 2.02 ; Carbamate kinase from Enterococcus faecalis bound to a sulfate ion and two water molecules, which mimic the substrate carbamyl phosphate 2WE5 ; 1.39 ; Carbamate kinase from Enterococcus faecalis bound to MgADP 4JZ7 ; 2.6 ; Carbamate kinase from Giardia lamblia bound to AMP-PNP 4JZ8 ; 2.1 ; Carbamate kinase from Giardia lamblia bound to citric acid 4JZ9 ; 2.4 ; Carbamate kinase from Giardia lamblia bound to citric acid 4OLC ; 2.6 ; Carbamate kinase from Giardia lamblia thiocarbamoylated by disulfiram on Cys242 6TFB ; 1.68 ; Carbamazepine binds Frizzled8 1JDB ; 2.1 ; CARBAMOYL PHOSPHATE SYNTHETASE FROM ESCHERICHIA COLI 1CE8 ; 2.1 ; CARBAMOYL PHOSPHATE SYNTHETASE FROM ESCHERICHIS COLI WITH COMPLEXED WITH THE ALLOSTERIC LIGAND IMP 1A9X ; 1.8 ; CARBAMOYL PHOSPHATE SYNTHETASE: CAUGHT IN THE ACT OF GLUTAMINE HYDROLYSIS 6FLD ; 2.4 ; Carbamylated T. californica acetylcholineterase bound to uncharged hybrid reactivator 1 6FQN ; 2.30003 ; Carbamylated T. californica acetylcholineterase bound to uncharged hybrid reactivator 2 1Q15 ; 2.3 ; Carbapenam Synthetase 1Q19 ; 2.4 ; Carbapenam Synthetase 6MKQ ; 1.9 ; Carbapenemase VCC-1 bound to avibactam 6MK6 ; 1.7 ; Carbapenemase VCC-1 from Vibrio cholerae N14-02106 7VWT ; 1.73 ; Carbazole Prenyl Transferase CqsB4 7VWS ; 1.71 ; Carbazole Prenyl Transferase LvqB4 3VMI ; 2.0 ; Carbazole- and oxygen-bound complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 4NBB ; 2.05 ; Carbazole- and oxygen-bound oxygenase with Ile262 replaced by Val and ferredoxin complex of carbazole 1,9a-dioxygenase 4NBH ; 2.15 ; Carbazole-bound Oxygenase with Gln282 replaced by Tyr and ferredoxin complex of carbazole 1,9a-dioxygenase 4NBA ; 2.1 ; Carbazole-bound oxygenase with Ile262 replaced by Val and ferredoxin complex of carbazole 1,9a-dioxygenase 4NBD ; 1.95 ; Carbazole-bound oxygenase with Phe275 replaced by Trp and ferredoxin complex of carbazole 1,9a-dioxygenase (form2) 6LL0 ; 2.2 ; Carbazole-soaked reduced oxygenase in carbazole 1,9a-dioxygenase 7ZOH ; 1.56 ; Carbohydrate binding domain CBMXX from a multi-catalytic glucanase-chitinase from Chitinophaga pinensis DSM 2588 7ZOI ; 1.4 ; Carbohydrate binding domain CBMXX from a multi-catalytic glucanase-chitinase from Chitinophaga pinensis DSM 2588 7ZOO ; 1.84 ; Carbohydrate binding domain CBMXX from a multi-catalytic glucanase-chitinase from Chitinophaga pinensis DSM 2588 in complex with gentiobiose 7ZON ; 1.77 ; Carbohydrate binding domain CBMXX from a multi-catalytic glucanase-chitinase from Chitinophaga pinensis DSM 2588 in complex with glucose 7ZOP ; 1.68 ; Carbohydrate binding domain CBMXX from a multi-catalytic glucanase-chitinase from Chitinophaga pinensis DSM 2588 in complex with sophorose. 4ZXK ; 1.84 ; Carbohydrate binding domain from Streptococcus pneumoniae NanA sialidase 4C1W ; 1.84 ; Carbohydrate binding domain from Streptococcus pneumoniae NanA sialidase complexed with 3'-sialyllactose 4C1X ; 1.84 ; Carbohydrate binding domain from Streptococcus pneumoniae NanA sialidase complexed with 6'-sialyllactose 1UXZ ; 1.4 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A 1UYX ; 1.47 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A in complex with cellobiose 1UYY ; 1.47 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A in complex with cellotriose 1UY0 ; 1.65 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A in complex with glc-1,3-glc-1,4-glc-1,3-glc 1UZ0 ; 2.0 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A in complex with Glc-4Glc-3Glc-4Glc 1UYZ ; 1.6 ; Carbohydrate binding module (CBM6cm-2) from Cellvibrio mixtus lichenase 5A in complex with xylotetraose 1GMM ; 2.0 ; Carbohydrate binding module CBM6 from xylanase U Clostridium thermocellum 4AZZ ; 1.7 ; Carbohydrate binding module CBM66 from Bacillus subtilis 4B1L ; 1.65 ; CARBOHYDRATE BINDING MODULE CBM66 FROM BACILLUS SUBTILIS 4B1M ; 1.1 ; CARBOHYDRATE BINDING MODULE CBM66 FROM BACILLUS SUBTILIS 1GWK ; 2.34 ; Carbohydrate binding module family29 1GWM ; 1.15 ; Carbohydrate binding module family29 complexed with glucohexaose 1GWL ; 1.51 ; Carbohydrate binding module family29 complexed with mannohexaose 6TKX ; 2.06 ; Carbohydrate esterase from gut microbiota 2NWH ; 1.86 ; Carbohydrate kinase from Agrobacterium tumefaciens 1R13 ; 2.1 ; Carbohydrate recognition and neck domains of surfactant protein A (SP-A) 1R14 ; 2.5 ; Carbohydrate recognition and neck domains of surfactant protein A (Sp-A) containing samarium 2DP8 ; 2.5 ; Carbohydrate recognition by lactoferrin: Crystal structure of the complex of C-terminal lobe of bovine lactoferrin with trisaccharide at 2.5 A resolution 2E0S ; 2.15 ; Carbohydrate recognition of C-terminal half of lactoferrin: Crystal structure of the complex of C-lobe with rhamnose at 2.15 A resolution 1UX7 ; 1.5 ; Carbohydrate-Binding Module CBM36 in complex with calcium and xylotriose 2YLK ; 2.2 ; Carbohydrate-binding module CBM3b from the cellulosomal cellobiohydrolase 9A from Clostridium thermocellum 3ZQX ; 1.04 ; Carbohydrate-binding module CBM3b from the cellulosomal cellobiohydrolase 9A from Clostridium thermocellum 2V8L ; 1.8 ; Carbohydrate-binding of the starch binding domain of Rhizopus oryzae glucoamylase in complex with beta-cyclodextrin and maltoheptaose 2V8M ; 2.3 ; Carbohydrate-binding of the starch binding domain of Rhizopus oryzae glucoamylase in complex with beta-cyclodextrin and maltoheptaose 2VQ4 ; 1.25 ; Carbohydrate-binding of the starch binding domain of Rhizopus oryzae glucoamylase in complex with beta-cyclodextrin and maltoheptaose 6H6C ; 1.75 ; Carbomonoxy murine neuroglobin F106A mutant 6H6J ; 2.6 ; Carbomonoxy murine neuroglobin Gly-loop mutant 1SU7 ; 1.12 ; Carbon Monoxide Dehydrogenase from Carboxydothermus hydrogenoformans- DTT reduced state 1SUF ; 1.15 ; Carbon Monoxide Dehydrogenase from Carboxydothermus hydrogenoformans-Inactive state 1SU6 ; 1.64 ; Carbon monoxide dehydrogenase from Carboxydothermus hydrogenoformans: CO reduced state 1FFV ; 2.25 ; CARBON MONOXIDE DEHYDROGENASE FROM HYDROGENOPHAGA PSEUDOFLAVA 1FFU ; 2.35 ; CARBON MONOXIDE DEHYDROGENASE FROM HYDROGENOPHAGA PSEUDOFLAVA WHICH LACKS THE MO-PYRANOPTERIN MOIETY OF THE MOLYBDENUM COFACTOR 6ELQ ; 2.52 ; Carbon Monoxide Dehydrogenase IV from Carboxydothermus hydrogenoformans 1SU8 ; 1.1 ; Carbon Monoxide Induced Decomposition of the Active Site [Ni-4Fe-5S] Cluster of CO Dehydrogenase 6MMC ; 1.42 ; Carbon regulatory PII-like protein SbtB from Cyanobium sp. 7001 bound to ADP 6MMO ; 1.86 ; Carbon regulatory PII-like protein SbtB from Cyanobium sp. 7001 bound to AMP 6MM2 ; 1.04 ; Carbon regulatory PII-like protein SbtB from Cyanobium sp. 7001 bound to ATP and calcium 6MMQ ; 2.02 ; Carbon regulatory PII-like protein SbtB from Cyanobium sp. 7001 bound to cAMP 5O3S ; 2.2 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in Apo state, hexagonal crystal form 5O3P ; 1.75 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in Apo state, trigonal crystal form 7R30 ; 1.9 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with ADP and AMP resulting from ADP soak 5O3R ; 1.9 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with AMP 7R2Z ; 2.4 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with ATP and ADP resulting from long ATP soak 7R2Y ; 2.15 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with ATP resulting from short ATP soak, conflicting T-loop and C-loop with partial occupancy 5O3Q ; 1.75 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with cyclic AMP (cAMP) 7OBJ ; 2.0 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803 in complex with cyclic di-AMP (c-di-AMP) 7R31 ; 1.52 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803, C105A+C110A variant, in complex with ATP (co-crystal), tetragonal crystal form 7R32 ; 1.75 ; Carbon regulatory PII-like protein SbtB from Synechocystis sp. 6803, delta104 variant, in complex with ADP (co-crystal), tetragonal crystal form 8IRK ; 2.35 ; Carbon Sulfoxide lyase 8IRY ; 2.35 ; Carbon Sulfoxide lyase 8IRZ ; 2.86 ; Carbon Sulfoxide lyase 8IS0 ; 3.02 ; Carbon Sulfoxide lyase - Y106F 5UTS ; 2.303 ; Carbon Sulfoxide lyase, Egt2 in the Ergothioneine biosynthesis pathway 5V1X ; 2.558 ; Carbon Sulfoxide lyase, Egt2 Y134F in complex with its substrate 6C7X ; 1.5 ; Carbonic anhydrase 2 in complex with 2-chloro-5'-O-sulfamoyladenosine 6U4Q ; 1.306 ; Carbonic anhydrase 2 in complex with SB4197 8OLM ; 1.5 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl AKI1 8OMP ; 1.41 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl AKI33 8OLI ; 1.4 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl AKI_12 8OLK ; 1.27 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl AKI_13 8OKQ ; 1.0 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl AKI_2 8OMB ; 1.35 ; Carbonic Anhydrase 2 in Complex with Steriod_Sulphamoyl VK42 6C7W ; 1.28 ; Carbonic anhydrase 2 in complex with [(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDRO-2-FURANYL]METHYL SULFAMATE inhibitor 6UFB ; 1.67 ; Carbonic anhydrase 2 with inhibitor (2Z)-2-benzylidene-3-oxo-N-(4-sulfamoylphenyl)butanamide (11a/D1) 6UFC ; 1.325 ; Carbonic anhydrase 2 with inhibitor (2Z)-2-[(4-methoxyphenyl)methylidene]-3-oxo-N-(4-sulfamoylphenyl)butanamide (11d/D4) 6UFD ; 1.48 ; Carbonic anhydrase 2 with inhibitor (2Z)-3-oxo-N-(4-sulfamoylphenyl)-2-[(thiophen-2-yl)methylidene]butanamide (11g/D7) 6U4T ; 1.356 ; Carbonic anhydrase 9 in complex with SB4197 2FMG ; 1.6 ; Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII and XIV with L- and D- phenylalanine and crystallographic analysis of their adducts with isozyme II: sterospecific recognition within the active site of an enzyme and its consequences for the drug design, structure with L-phenylalanine 2FMZ ; 1.6 ; Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII and XIV with L- and D- phenylalanine, structure with D-Phenylalanine. 2EZ7 ; 2.0 ; Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII and XIV with L- and D-histidine and crystallographic analysis of their adducts with isoform II: engineering proton transfer processes within the active site of an enzyme 2FW4 ; 2.0 ; Carbonic anhydrase activators. The first X-ray crystallographic study of an activator of isoform I, structure with L-histidine. 3EFI ; 1.75 ; Carbonic anhydrase activators: Kinetic and X-ray crystallographic study for the interaction of d- and l-tryptophan with the mammalian isoforms I-XIV 2HKK ; 1.9 ; Carbonic anhydrase activators: Solution and X-ray crystallography for the interaction of andrenaline with various carbonic anhydrase isoforms 2ABE ; 2.0 ; Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators 4XIW ; 2.6 ; Carbonic anhydrase Cah3 from Chlamydomonas reinhardtii in complex with acetazolamide 4XIX ; 2.7 ; Carbonic anhydrase Cah3 from Chlamydomonas reinhardtii in complex with phosphate. 6RZX ; 1.0 ; Carbonic Anhydrase CAIX mimic in complex with inhibitor FBSA 6S03 ; 1.38 ; Carbonic Anhydrase CAIX mimic in complex with inhibitor I39LT379 6GXB ; 1.35 ; Carbonic Anhydrase CAIX mimic in complex with inhibitor JS13 6GXE ; 1.3 ; Carbonic Anhydrase CAIX mimic in complex with inhibitor JS14 6GWU ; 2.2 ; Carbonic anhydrase CaNce103p from Candida albicans 3RYJ ; 1.39 ; Carbonic Anhydrase complexed with 4-sulfamoyl-N-(2,2,2-trifluoroethyl)benzamide 3RYV ; 1.2 ; Carbonic Anhydrase complexed with N-ethyl-4-sulfamoylbenzamide 5ZTP ; 2.96 ; Carbonic anhydrase from Glaciozyma antarctica 3BOH ; 1.7 ; Carbonic anhydrase from marine diatom Thalassiosira weissflogii- cadmium bound domain 1 with acetate (CDCA1-R1) 3BOJ ; 1.45 ; Carbonic anhydrase from marine diatom Thalassiosira weissflogii- cadmium bound domain 1 without bound metal (CDCA1-R1) 3BOB ; 1.45 ; Carbonic anhydrase from marine diatom Thalassiosira weissflogii- cadmium bound domain 2 3BOE ; 1.4 ; Carbonic anhydrase from marine diatom Thalassiosira weissflogii- cadmium bound domain 2 with acetate (CDCA1-R2) 3BOC ; 1.8 ; Carbonic anhydrase from marine diatom Thalassiosira weissflogii- zinc bound domain 2 (CDCA1-R2) 1THJ ; 2.8 ; CARBONIC ANHYDRASE FROM METHANOSARCINA 7PRI ; 1.679 ; Carbonic Anhydrase from Schistosoma Mansoni in complex with clorsulon 1HEA ; 2.0 ; CARBONIC ANHYDRASE II (CARBONATE DEHYDRATASE) (HCA II) (E.C.4.2.1.1) MUTANT WITH LEU 198 REPLACED BY ARG (L198R) 1G3Z ; 1.86 ; CARBONIC ANHYDRASE II (F131V) 1G4O ; 1.96 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-PHENYLMETHYLBENZAMIDE 1G4J ; 1.84 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,3,4,5,6-PENTAFLUOROPHENYL)METHYL]-BENZAMIDE 1I9O ; 1.86 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,3,4-TRIFLUOROPHENYL)METHYL]-BENZAMIDE 1G46 ; 1.84 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,3-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1I9P ; 1.92 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,4,6-TRIFLUOROPHENYL)METHYL]-BENZAMIDE 1I9M ; 1.84 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,4-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1I9N ; 1.86 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,5-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1G48 ; 1.86 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,6-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1G45 ; 1.83 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2-FLUOROPHENYL)METHYL]-BENZAMIDE 1I9Q ; 1.8 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(3,4,5-TRIFLUOROPHENYL)METHYL]-BENZAMIDE 1I9L ; 1.93 ; CARBONIC ANHYDRASE II (F131V) COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(4-FLUOROPHENYL)METHYL]-BENZAMIDE 1OKL ; 2.1 ; CARBONIC ANHYDRASE II COMPLEX WITH THE 1OKL INHIBITOR 5-DIMETHYLAMINO-NAPHTHALENE-1-SULFONAMIDE 1OKM ; 2.2 ; CARBONIC ANHYDRASE II COMPLEX WITH THE 1OKM INHIBITOR 4-SULFONAMIDE-[1-(4-AMINOBUTANE)]BENZAMIDE 1OKN ; 2.4 ; CARBONIC ANHYDRASE II COMPLEX WITH THE 1OKN INHIBITOR 4-SULFONAMIDE-[1-(4-N-(5-FLUORESCEIN THIOUREA)BUTANE)] 1IF7 ; 1.98 ; Carbonic Anhydrase II Complexed With (R)-N-(3-Indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide 1IF8 ; 1.94 ; Carbonic Anhydrase II Complexed With (S)-N-(3-Indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide 1IF5 ; 2.0 ; Carbonic Anhydrase II Complexed With 2,6-difluorobenzenesulfonamide 6WQ4 ; 1.35 ; Carbonic Anhydrase II Complexed with 2-((2-Cyanoethyl)(phenethyl)amino)-N-phenethyl-N-(4-sulfamoylphenethyl)acetamide 6WQ7 ; 1.304 ; Carbonic Anhydrase II Complexed with 2-((3-Aminopropyl)(phenethyl)amino)-N-(4-fluorobenzyl)-N-(4-sulfamoylphenethyl)acetamide 6WQ5 ; 1.304 ; Carbonic Anhydrase II Complexed with 2-((3-Aminopropyl)(phenethyl)amino)-N-(furan-2-ylmethyl)-N-(4-sulfamoylphenethyl)acetamide 1IF6 ; 2.09 ; Carbonic Anhydrase II Complexed With 3,5-difluorobenzenesulfonamide 6WQ8 ; 1.405 ; Carbonic Anhydrase II Complexed with 3-((2-((Furan-2-ylmethyl)(4-sulfamoylphenethyl)amino)-2-oxoethyl)(phenethyl)amino)propanoic acid 6WQ9 ; 1.305 ; Carbonic Anhydrase II Complexed with 3-((2-((Naphthalen-2-ylmethyl)(4-sulfamoylphenethyl)amino)-2-oxoethyl)(phenethyl)amino)propanoic acid 7K6K ; 1.306 ; Carbonic Anhydrase II complexed with 4-(2-(3-(3,5-dimethylphenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6L ; 1.655 ; Carbonic Anhydrase II complexed with 4-(2-(3-(4-fluorophenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6J ; 1.755 ; Carbonic Anhydrase II complexed with 4-(2-(3-(4-methylphenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6I ; 1.406 ; Carbonic Anhydrase II complexed with 4-(2-(3-phenylureido)ethylsulfonamido)benzenesulfonamide 1G54 ; 1.86 ; CARBONIC ANHYDRASE II COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,3,4,5,6-PENTAFLUOROPHENYL)METHYL]-BENZAMIDE 1G52 ; 1.8 ; CARBONIC ANHYDRASE II COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,3-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1G53 ; 1.94 ; CARBONIC ANHYDRASE II COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2,6-DIFLUOROPHENYL)METHYL]-BENZAMIDE 1G1D ; 2.04 ; CARBONIC ANHYDRASE II COMPLEXED WITH 4-(AMINOSULFONYL)-N-[(2-FLUOROPHENYL)METHYL]-BENZAMIDE 1IF4 ; 1.93 ; Carbonic Anhydrase II Complexed With 4-fluorobenzenesulfonamide 1I91 ; 2.0 ; CARBONIC ANHYDRASE II COMPLEXED WITH AL-6619 2H-THIENO[3,2-E]-1,2-THIAZINE-6-SULFONAMIDE, 2-(3-HYDROXYPHENYL)-3-(4-MORPHOLINYL)-, 1,1-DIOXIDE 1I8Z ; 1.93 ; CARBONIC ANHYDRASE II COMPLEXED WITH AL-6629 2H-THIENO[3,2-E]-1,2-THIAZINE-6-SULFONAMIDE, 2-(3-METHOXYPHENYL)-3-(4-MORPHOLINYL)-, 1,1-DIOXIDE 1I90 ; 2.0 ; CARBONIC ANHYDRASE II COMPLEXED WITH AL-8520 2H-THIENO[3,2-E]-1,2-THIAZINE-6-SULFONAMIDE, 4-AMINO-3,4-DIHYDRO-2-(3-METHOXYPROPYL)-, 1,1-DIOXIDE, (R) 6OUK ; 1.498 ; Carbonic Anhydrase II complexed with benzene sulfonamide MB10-580B 6OUJ ; 1.466 ; Carbonic Anhydrase II complexed with benzene sulfonamide MB11-689A 6OUB ; 1.418 ; Carbonic Anhydrase II complexed with benzene sulfonamide MB11-694B 6OUE ; 1.415 ; Carbonic Anhydrase II complexed with benzene sulfonamide MB11-707A 7JNV ; 1.49 ; Carbonic Anhydrase II Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)butyramide 7JNZ ; 1.289 ; Carbonic Anhydrase II Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)cyclohexanecarboxamide 7JNW ; 1.292 ; Carbonic Anhydrase II Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)isobutyramide 7JNX ; 1.286 ; Carbonic Anhydrase II Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)pivalamide 7JNR ; 1.443 ; Carbonic Anhydrase II Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)propionamide 1IF9 ; 2.0 ; Carbonic Anhydrase II Complexed With N-[2-(1H-Indol-5-yl)-butyl]-4-sulfamoyl-benzamide 6UX1 ; 1.36 ; Carbonic Anhydrase II Complexed with Salicylic Acid 6OTP ; 1.466 ; Carbonic Anhydrase II complexed with ureic benzene sulfonamide MB10-586B 6OTQ ; 1.467 ; Carbonic Anhydrase II complexed with ureic benzene sulfonamide MB10-596B 6OTO ; 1.496 ; Carbonic Anhydrase II complexed with ureic benzene sulfonamide MB9-561B 3KNE ; 1.35 ; Carbonic Anhydrase II H64C mutant in complex with an in situ formed triazole 7RNY ; 1.29 ; Carbonic Anhydrase II in complex with 3-ureido benzenesulfonamide derivative 5SZ1 ; 1.55 ; Carbonic anhydrase II in complex with 4-(2-methylphenyl)-benzenesulfonamide 5SZ2 ; 1.63 ; Carbonic anhydrase II in complex with 4-(3-formylphenyl)-benzenesulfonamide 5SZ3 ; 1.689 ; Carbonic anhydrase II in complex with 4-(3-quinolinyl)-benzenesulfonamide 5SZ0 ; 1.63 ; Carbonic anhydrase II in complex with 4-(phenyl)-benzenesulfonamide 7RNZ ; 1.3 ; Carbonic Anhydrase II in complex with 4-ureido benzenesulfonamide derivative 1ZE8 ; 2.0 ; Carbonic anhydrase II in complex with a membrane-impermeant sulfonamide inhibitor 5W8B ; 1.601 ; Carbonic anhydrase II in complex with activating histamine pyridinium derivative 5WLV ; 1.4 ; Carbonic Anhydrase II in complex with aryloxy-2-hydroxypropylammine sulfonamide 7RRE ; 1.44 ; Carbonic Anhydrase II in complex with Beta-Galactose-2C 4M2U ; 1.999 ; Carbonic Anhydrase II in complex with Dorzolamide 1ZFQ ; 1.55 ; carbonic anhydrase II in complex with ethoxzolamidphenole as sulfonamide inhibitor 4FPT ; 0.98 ; Carbonic Anhydrase II in complex with ethyl (2Z,4R)-2-(sulfamoylimino)-1,3-thiazolidine-4-carboxylate 6MBY ; 1.496 ; Carbonic Anhydrase II in complex with Ferulic Acid 1Z9Y ; 1.66 ; carbonic anhydrase II in complex with furosemide as sulfonamide inhibitor 7OYM ; 0.98 ; Carbonic anhydrase II in complex with Hit2 (MH65) 7OYN ; 0.98 ; Carbonic anhydrase II in complex with Hit3 (MH57) 7OYP ; 1.05 ; Carbonic anhydrase II in complex with Hit3-t1 (MH172) 7OYQ ; 1.15 ; Carbonic anhydrase II in complex with Hit3-t2 (MH174) 7OYR ; 1.15 ; Carbonic anhydrase II in complex with Hit3-t4 (MH181) 7OYO ; 1.03 ; Carbonic anhydrase II in complex with Hit4 (MH70) 8DJ9 ; 1.54 ; Carbonic Anhydrase II in complex with Ibuprofen 4FRC ; 0.98 ; Carbonic Anhydrase II in complex with N'-sulfamoylpyrrolidine-1-carboximidamide 4FVN ; 1.05 ; Carbonic Anhydrase II in complex with N-(tetrahydropyrimidin-2(1H)-ylidene)sulfuric diamide 1ZH9 ; 1.7 ; carbonic anhydrase II in complex with N-4-Methyl-1-piperazinyl-N'-(p-sulfonamide)phenylthiourea as sulfonamide inhibitor 1ZFK ; 1.56 ; carbonic anhydrase II in complex with N-4-sulfonamidphenyl-N'-4-methylbenzosulfonylurease as sulfonamide inhibitor 4FVO ; 1.05 ; Carbonic Anhydrase II in complex with N-[(2E)-3,4-dihydroquinazolin-2(1H)-ylidene]sulfuric diamide 4FU5 ; 0.98 ; Carbonic Anhydrase II in complex with N-[(2Z)-1,3-oxazolidin-2-ylidene]sulfuric diamide 1OQ5 ; 1.5 ; CARBONIC ANHYDRASE II IN COMPLEX WITH NANOMOLAR INHIBITOR 6MBV ; 1.695 ; Carbonic Anhydrase II in complex with Nicotinic Acid 6B59 ; 1.638 ; Carbonic anhydrase II in complex with nitrogenous base-bearing benezenesulfonamide 3M04 ; 1.4 ; Carbonic Anhydrase II in complex with novel sulfonamide inhibitor 3M14 ; 1.38 ; Carbonic Anhydrase II in complex with novel sulfonamide inhibitor 3M2X ; 1.87 ; Carbonic Anhydrase II in complex with novel sulfonamide inhibitor 3M2Y ; 1.17 ; Carbonic Anhydrase II in complex with novel sulfonamide inhibitor 1ZGE ; 1.65 ; carbonic anhydrase II in complex with p-Sulfonamido-o,o'-dichloroaniline as sulfonamide inhibitor 6VJ3 ; 1.35 ; Carbonic Anhydrase II in complex with pyrimidine-based inhibitor 2Q1B ; 1.7 ; Carbonic Anhydrase II in Complex with Saccharin 2Q38 ; 1.95 ; Carbonic Anhydrase II in complex with Saccharin at 1.95 Angstrom 8OMH ; 1.45 ; Carbonic Anhydrase II in Complex with Steriod_Sulphamoyl (BS1982) 8OMN ; 1.4 ; Carbonic Anhydrase II in Complex with Steriod_Sulphamoyl VK4 5EIJ ; 1.99 ; Carbonic Anhydrase II in complex with Sulfonamide Inhibitor 8FQY ; 1.466 ; Carbonic Anhydrase II in complex with the alkyl urea 3h 8FQZ ; 1.467 ; Carbonic Anhydrase II in complex with the alkyl urea 3j 8FQX ; 1.496 ; Carbonic Anhydrase II in complex with the alkyl ureas 3g 8SAG ; 1.52 ; Carbonic anhydrase II in complex with the coumarin benzene sulfonamide SG1-57 8EM3 ; 1.62 ; Carbonic Anhydrase II in complex with the diaryl urea molecule J2 1ZGF ; 1.75 ; carbonic anhydrase II in complex with trichloromethiazide as sulfonamide inhibitor 5JN7 ; 1.517 ; Carbonic Anhydrase II In Complex WITH U-CH3 1BN1 ; 2.1 ; CARBONIC ANHYDRASE II INHIBITOR 1BN3 ; 2.2 ; CARBONIC ANHYDRASE II INHIBITOR 1BN4 ; 2.1 ; CARBONIC ANHYDRASE II INHIBITOR 1BNM ; 2.6 ; CARBONIC ANHYDRASE II INHIBITOR 1BNN ; 2.3 ; CARBONIC ANHYDRASE II INHIBITOR 1BNQ ; 2.4 ; CARBONIC ANHYDRASE II INHIBITOR 1BNT ; 2.15 ; CARBONIC ANHYDRASE II INHIBITOR 1BNU ; 2.15 ; CARBONIC ANHYDRASE II INHIBITOR 1BNV ; 2.4 ; CARBONIC ANHYDRASE II INHIBITOR 1BNW ; 2.25 ; CARBONIC ANHYDRASE II INHIBITOR 5NXG ; 1.2 ; Carbonic Anhydrase II Inhibitor RA1 5NXM ; 1.25 ; Carbonic Anhydrase II Inhibitor RA1 5NY1 ; 1.1 ; Carbonic Anhydrase II Inhibitor RA10 5NY3 ; 1.4 ; Carbonic Anhydrase II Inhibitor RA11 5NY6 ; 1.1 ; Carbonic Anhydrase II Inhibitor RA12 5NYA ; 1.2 ; Carbonic Anhydrase II Inhibitor RA13 5NXI ; 1.16 ; Carbonic Anhydrase II Inhibitor RA2 5NXO ; 1.2 ; Carbonic Anhydrase II Inhibitor RA6 5NXP ; 1.25 ; Carbonic Anhydrase II Inhibitor RA7 5NXV ; 1.1 ; Carbonic Anhydrase II Inhibitor RA8 5NXW ; 1.1 ; Carbonic Anhydrase II Inhibitor RA9 1AM6 ; 2.0 ; CARBONIC ANHYDRASE II INHIBITOR: ACETOHYDROXAMATE 6OUH ; 1.449 ; Carbonic Anhydrase II mimic complexed with benzene sulfonamide MB11-710A 7ONQ ; 1.65 ; Carbonic anhydrase II mutant (E69C) dually binding an IrCp* complex to generate an artificial transfer hydrogenase (ATHase) 7ONV ; 1.04 ; Carbonic anhydrase II mutant (I91C) dually binding an IrCp* complex to generate an artificial transfer hydrogenase (ATHase) 7ONM ; 1.769 ; Carbonic anhydrase II mutant (N67G-E69R-I91C) dually binding an IrCp* complex to generate an artificial transfer hydrogenase (ATHase) 1ZSA ; 2.5 ; CARBONIC ANHYDRASE II MUTANT E117Q, APO FORM 1ZSC ; 1.8 ; CARBONIC ANHYDRASE II MUTANT E117Q, HOLO FORM 1ZSB ; 2.0 ; CARBONIC ANHYDRASE II MUTANT E117Q, TRANSITION STATE ANALOGUE ACETAZOLAMIDE 3M5S ; 1.4 ; Carbonic Anhydrase II mutant H64C in complex with carbonate 3M1Q ; 1.69 ; Carbonic Anhydrase II mutant W5C-H64C with opened disulfide bond 8SD1 ; 1.298 ; Carbonic anhydrase II radiation damage RT 1-30 8SD9 ; 1.904 ; Carbonic anhydrase II radiation damage RT 121-150 8SD6 ; 1.397 ; Carbonic anhydrase II radiation damage RT 31-60 8SD7 ; 1.704 ; Carbonic anhydrase II radiation damage RT 61-90 8SD8 ; 1.789 ; Carbonic anhydrase II radiation damage RT 91-120 8SF1 ; 1.7 ; Carbonic anhydrase II XFEL radiation damage RT 6XWZ ; 1.38 ; Carbonic Anhydrase II-mediated hydrolysis of selenolester 3M1K ; 1.35 ; Carbonic Anhydrase in complex with fragment 3NI5 ; 2.1 ; Carbonic anhydrase inhibitor: C1 family 3F4X ; 1.9 ; Carbonic anhydrase inhibitors. Comparison of chlorthalidone and indapamide X-ray crystal structures in adducts with isozyme II: when three water molecules make the difference 3B4F ; 1.89 ; Carbonic anhydrase inhibitors. Interaction of 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide with twelve mammalian isoforms: kinetic and X-Ray crystallographic studies 3BL0 ; 1.9 ; Carbonic anhydrase inhibitors. Interaction of 2-N,N-Dimethylamino-1,3,4-thiadiazole-5-methanesulfonamide with twelve mammalian isoforms: kinetic and X-Ray crystallographic studies 2Q1Q ; 1.9 ; Carbonic anhydrase inhibitors. Interaction of the antiepileptic drug sulthiame with twelve mammalian isoforms: kinetic and X-Ray crystallographic studies 3DD8 ; 1.9 ; Carbonic anhydrase inhibitors. Interaction of the antitumor sulfamate EMD-486019 with twelve mammalian isoforms: kinetic and X-Ray crystallographic studies 3BL1 ; 2.1 ; Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited old leads for new applications 2H15 ; 1.9 ; Carbonic anhydrase inhibitors: Clashing with Ala65 as a means of designing isozyme-selective inhibitors that show low affinity for the ubiquitous isozyme II 3MNU ; 1.8 ; Carbonic anhydrase inhibitors: crystallographic and solution binding studies for the interaction of a boron containing aromatic sulfamide with mammalian isoforms I-XV 4Z0Q ; 1.45 ; Carbonic anhydrase inhibitors: Design and synthesis of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms (hCA VII, hCA IX, and hCA XIV) 4Z1E ; 2.01 ; Carbonic anhydrase inhibitors: Design and synthesis of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms (hCA VII, hCA IX, and hCA XIV) 4Z1J ; 1.27 ; Carbonic anhydrase inhibitors: Design and synthesis of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms (hCA VII, hCA IX, and hCA XIV) 4Z1K ; 1.35 ; Carbonic anhydrase inhibitors: Design and synthesis of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms (hCA VII, hCA IX, and hCA XIV) 4Z1N ; 1.47 ; Carbonic anhydrase inhibitors: Design and synthesis of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms (hCA VII, hCA IX, and hCA XIV) 2AW1 ; 1.46 ; Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II ""selective"" inhibitor Celecoxib 8FR1 ; 2.0 ; Carbonic Anhydrase IX in complex with the alkyl urea compound 3g 8OKE ; 1.05 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor AKI_1 8OKJ ; 1.4 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor AKI_12 8OKO ; 1.25 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor AKI_2 8OKP ; 1.25 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor AKI_33 8OLF ; 1.45 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor BS1982 8OLA ; 1.4 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor VK4 8OKT ; 1.5 ; Carbonic Anhydrase IX like mutant in Complex with Steriod_Sulphamoyl inhibitor VK42 7K6X ; 1.76 ; Carbonic Anhydrase IX mimic complexed with 4-(2-(3-(3,5-dimethylphenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6Z ; 1.657 ; Carbonic Anhydrase IX mimic complexed with 4-(2-(3-(4-fluorophenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6U ; 1.605 ; Carbonic Anhydrase IX mimic complexed with 4-(2-(3-(4-methylphenyl)ureido)ethylsulfonamido)benzenesulfonamide 7K6T ; 1.759 ; Carbonic Anhydrase IX mimic complexed with 4-(2-(3-phenylureido)ethylsulfonamido)benzenesulfonamide 6OUM ; 1.559 ; Carbonic Anhydrase IX mimic complexed with benzene sulfonamide MB10-580B 6OUD ; 1.256 ; Carbonic Anhydrase IX mimic complexed with benzene sulfonamide MB11-694B 6OUF ; 1.358 ; Carbonic Anhydrase IX mimic complexed with benzene sulfonamide MB11-707A 6OUI ; 1.528 ; Carbonic Anhydrase IX mimic complexed with benzene sulfonamide MB11-710A 7JOC ; 1.385 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)adamantanecarboxamide 7JO1 ; 1.499 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)butyramide 7JOB ; 1.381 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)cyclohexanecarboxamide 7JO2 ; 1.307 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)isobutyramide 7JO3 ; 1.454 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)pivalamide 7JO0 ; 1.607 ; Carbonic Anhydrase IX Mimic Complexed with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)propionamide 6OTM ; 1.307 ; Carbonic Anhydrase IX mimic complexed with ureic benzene sulfonamide MB10-586B 6OTI ; 2.0 ; Carbonic Anhydrase IX mimic complexed with ureic benzene sulfonamide MB9-561B 6OTK ; 1.123 ; Carbonic Anhydrase IX mimic complexed with ureido benzene sulfonamide MB10-596B 4BCW ; 1.5 ; Carbonic anhydrase IX mimic in complex with (E)-2-(5-bromo-2- hydroxyphenyl)ethenesulfonic acid 7SUY ; 1.405 ; Carbonic Anhydrase IX-mimic Complexed with 2-((3-Aminopropyl)(phenethyl)amino)-N-(4-fluorobenzyl)-N-(4-sulfamoylphenethyl)acetamide 7SV8 ; 1.388 ; Carbonic Anhydrase IX-mimic Complexed with 3-((2-((Furan-2-ylmethyl)(4-sulfamoylphenethyl)amino)-2-oxoethyl)(phenethyl)amino)propanoic acid 7SV1 ; 1.559 ; Carbonic Anhydrase IX-mimic Complexed with 3-((2-((Naphthalen-2-ylmethyl)(4-sulfamoylphenethyl)amino)-2-oxoethyl)(phenethyl)amino)propanoic acid 5SZ5 ; 1.274 ; Carbonic anhydrase IX-mimic in complex with 4-(2-methylphenyl)-benzenesulfonamide 5SZ6 ; 1.15 ; Carbonic anhydrase IX-mimic in complex with 4-(3-formylphenyl)-benzenesulfonamide 5SZ7 ; 1.776 ; Carbonic anhydrase IX-mimic in complex with 4-(3-quinolinyl)-benzenesulfonamide 5SZ4 ; 1.6 ; Carbonic anhydrase IX-mimic in complex with 4-(phenyl)-benzenesulfonamide 5WLR ; 1.49 ; Carbonic Anhydrase IX-mimic in complex with aryloxy-2-hydroxypropylammine sulfonamide 5WLT ; 1.57 ; Carbonic Anhydrase IX-mimic in complex with aryloxy-2-hydroxypropylammine sulfonamide 5WLU ; 1.39 ; Carbonic Anhydrase IX-mimic in complex with aryloxy-2-hydroxypropylammine sulfonamide 7RRF ; 1.45 ; Carbonic Anhydrase IX-mimic in complex with Beta-Galactose_2C 6B5A ; 1.622 ; Carbonic anhydrase IX-mimic in complex with nitrogenous base-bearing benezenesulfonamide 6CJV ; 1.547 ; Carbonic anhydrase IX-mimic in complex with sucralose 8FR2 ; 1.307 ; Carbonic Anhydrase IX-mimic in complex with the alkyl urea compound 3h 8FR4 ; 1.123 ; Carbonic Anhydrase IX-mimic in complex with the alkyl urea compound 3j 6UZU ; 1.5 ; Carbonic Anhydrase IX-mimic In Complex WITH U-CH3 5JN3 ; 1.6 ; Carbonic Anhydrase IX-mimic IN Complex WITH U-F 5JMZ ; 1.9 ; Carbonic Anhydrase IX-mimic IN Complex WITH U-NO2 7SUW ; 1.456 ; Carbonic Anhydrase IX-mimic with 2-((3-Aminopropyl)(phenethyl)amino)-N-(furan-2-ylmethyl)-N-(4-sulfamoylphenethyl)acetamide 7P1A ; 1.58 ; Carbonic Anhydrase VII Sultam Based Inhibitors 6XVH ; 1.8 ; carbonic anhydrase with bound arylsulfonamide- boronic acid 3M1W ; 1.38 ; Carbonic Anhyrdase II mutant W5CH64C with closed disulfide bond in complex with sulfate 4DWU ; 1.44 ; Carbonmonoxy dehaloperoxidase-hemoglobin A structure at 1.44 Angstrom resolution 4DWT ; 2.05 ; Carbonmonoxy dehaloperoxidase-hemoglobin A structure at 2.05 Angstrom resolution 1SPG ; 1.95 ; CARBONMONOXY HEMOGLOBIN FROM THE TELEOST FISH LEIOSTOMUS XANTHURUS 6XD9 ; 2.1 ; Carbonmonoxy hemoglobin in complex with the antisickling agent 2-hydroxy-6-((6-(hydroxymethyl)pyridin-2-yl)methoxy)benzaldehyde (VZHE039) 6BNR ; 1.95 ; Carbonmonoxy hemoglobin in complex with the antisickling agent 5-methoxy-2-(pyridin-2-ylmethoxy)benzaldehyde (INN310) 6XE7 ; 2.0 ; Carbonmonoxy hemoglobin in complex with the antisickling agent methyl 2-((2-formyl-3-hydroxyphenoxy)methyl)nicotinate 6XDT ; 1.9 ; Carbonmonoxy hemoglobin in complex with the antisickling agent methyl 5-((2-formyl-4-methoxyphenoxy)methyl)picolinate 6KAU ; 1.6 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 140 K: Dark 6KAV ; 1.7 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 140 K: Light 6L5Y ; 1.65 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 140 K: Light (2 min) 6KAS ; 1.65 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 95 K: Dark 6KAT ; 1.7 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 95 K: Light 6L5X ; 1.65 ; Carbonmonoxy human hemoglobin A in the R2 quaternary structure at 95 K: Light (2 min) 6KAQ ; 1.5 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 140 K: Dark 6KAR ; 1.6 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 140 K: Light 6L5W ; 1.5 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 140 K: Light (2 min) 6KAO ; 1.4 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 95 K: Dark 6KAP ; 1.45 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 95 K: Light 6L5V ; 1.45 ; Carbonmonoxy human hemoglobin C in the R quaternary structure at 95 K: Light (2 min) 1G08 ; 1.9 ; CARBONMONOXY LIGANDED BOVINE HEMOGLOBIN PH 5.0 1G09 ; 2.04 ; CARBONMONOXY LIGANDED BOVINE HEMOGLOBIN PH 7.2 1G0A ; 2.04 ; CARBONMONOXY LIGANDED BOVINE HEMOGLOBIN PH 8.5 1G0B ; 1.9 ; CARBONMONOXY LIGANDED EQUINE HEMOGLOBIN PH 8.5 1AJG ; 1.69 ; CARBONMONOXY MYOGLOBIN AT 40 K 3GLN ; 2.26 ; Carbonmonoxy Ngb under Xenon pressure 3E55 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser off 3EDA ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [150 min] 3ECX ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [30 min] 2ZSN ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [300 min] 2ZSO ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [450 min] 2ZSZ ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [600 min] 2ZT0 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [750 min] 2ZT1 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 100 K: Laser on [810 min] 3E5I ; 1.22 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser off 3EDB ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [150 min] 3ECZ ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [30 min] 2ZSP ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [300 min] 2ZSR ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [450 min] 2ZT2 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [600 min] 2ZT3 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [750 min] 2ZT4 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 120 K: Laser on [810 min] 3E5O ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser off 2ZSQ ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [150 min] 3ED9 ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [30 min] 2ZSS ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [300 min] 2ZST ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [450 min] 2ZSX ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [600 min] 2ZSY ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 140 K: Laser on [750 min] 3E4N ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 40 K: Laser off 3ECL ; 1.21 ; Carbonmonoxy Sperm Whale Myoglobin at 40 K: Laser on 4MQC ; 2.2 ; Carbonmonoxy Structure of Hemoglobin Evans alphaV62Mbetawt 4F6F ; 1.56 ; Carbonmonoxy structure of His100Phe Cerebratulus lacteus mini-hemoglobin 4F6J ; 1.45 ; Carbonmonoxy structure of His100Trp Cerebratulus lacteus mini-hemoglobin 4MQK ; 2.242 ; Carbonmonoxy Structure of the Human Fetal Hemoglobin Mutant HbF Toms River alphawtgammaV67M 4F69 ; 1.6 ; Carbonmonoxy structure of Tyr11Phe/Gln44Leu/Thr48Val/Ala55Trp Cerebratulus lacteus mini-hemoglobin 1OUU ; 2.5 ; CARBONMONOXY TROUT HEMOGLOBIN I 1DO4 ; 1.7 ; CARBONMONOXY-MYOGLOBIN (MUTANT L29W) AFTER PHOTOLYSIS AT T<180K 1DO3 ; 1.55 ; CARBONMONOXY-MYOGLOBIN (MUTANT L29W) AFTER PHOTOLYSIS AT T>180K 1DO7 ; 1.85 ; CARBONMONOXY-MYOGLOBIN (MUTANT L29W) REBINDING STRUCTURE AFTER PHOTOLYSIS AT T< 180K 1DO1 ; 1.5 ; CARBONMONOXY-MYOGLOBIN MUTANT L29W AT 105K 1A6G ; 1.15 ; CARBONMONOXY-MYOGLOBIN, ATOMIC RESOLUTION 1CYD ; 1.8 ; CARBONYL REDUCTASE COMPLEXED WITH NADPH AND 2-PROPANOL 1SNY ; 1.75 ; Carbonyl reductase Sniffer of D. melanogaster 7EMG ; 2.449 ; Carbonyl Reductase Variant 4 (R123C/L209P/F183Y/V61K) from Serratia marcescens complexed with NADP+ 4NSH ; 2.1 ; Carboplatin binding to HEWL in 0.2M NH4SO4, 0.1M NaAc in 25% PEG 4000 at pH 4.6 4NSI ; 2.3 ; Carboplatin binding to HEWL in 20% propanol, 20% PEG 4000 at pH5.6 4NSJ ; 1.7 ; Carboplatin binding to HEWL in 2M NH4formate, 0.1M HEPES at pH 7.5 4YEM ; 1.47 ; Carboplatin binding to HEWL in NaBr crystallisation conditions studied at an X-ray wavelength of 0.9163A - new refinement 4NSG ; 2.0 ; Carboplatin binding to HEWL in NaBr crystallisation conditions studied at an X-ray wavelength of 1.5418A 4OWA ; 1.796 ; Carboplatin binding to HEWL under sodium iodide crystallisation conditions 6YZQ ; 1.04 ; Carborane closo-butyl-sulfonamide in complex with CA II 6YZW ; 1.03 ; Carborane closo-hexyl-sulfonamide in complex with CA II 6YZO ; 1.5 ; Carborane closo-hexyl-sulfonamide in complex with CA IX mimic 6YZS ; 1.05 ; Carborane closo-pentyl-sulfonamide in complex with CA II 6YZK ; 0.99 ; Carborane closo-pentyl-sulfonamide in complex with CA IX mimic 6T7U ; 1.2 ; Carborane inhibitor of Carbonic Anhydrase IX 6YZR ; 1.2 ; Carborane nido-butyl-sulfonamide in complex with CA II 6YZX ; 1.1 ; Carborane nido-hexyl-sulfonamide in complex with CA II 6YZP ; 1.35 ; Carborane nido-hexyl-sulfonamide in complex with CA IX mimic 6YZU ; 1.0 ; Carborane nido-pentyl-sulfonamide in complex with CA II 6YZM ; 1.5 ; Carborane nido-pentyl-sulfonamide in complex with CA IX mimic 8UM2 ; ; Carboxy terminus of Oleate Hydratase in phosphate buffer 1UPB ; 2.35 ; Carboxyethylarginine synthase from Streptomyces clavuligerus 1UPC ; 2.45 ; Carboxyethylarginine synthase from Streptomyces clavuligerus 1UPA ; 2.35 ; Carboxyethylarginine synthase from Streptomyces clavuligerus (SeMet structure) 2IHV ; 2.3 ; Carboxyethylarginine synthase from Streptomyces clavuligerus: 5-guanidinovaleric acid complex 2IHU ; 2.05 ; Carboxyethylarginine synthase from Streptomyces clavuligerus: putative reaction intermediate complex 2IHT ; 2.0 ; Carboxyethylarginine synthase from Streptomyces clavuligerus: SeMet structure 7YII ; 1.78 ; Carboxylesterase - RoCE 2O7V ; 2.3 ; Carboxylesterase AeCXE1 from Actinidia eriantha covalently inhibited by paraoxon 1AUO ; 1.8 ; CARBOXYLESTERASE FROM PSEUDOMONAS FLUORESCENS 1IRB ; 1.9 ; CARBOXYLIC ESTER HYDROLASE 1FDK ; 1.91 ; CARBOXYLIC ESTER HYDROLASE (PLA2-MJ33 INHIBITOR COMPLEX) 1L8S ; 1.55 ; CARBOXYLIC ESTER HYDROLASE COMPLEX (DIMERIC PLA2 + LPC-ether + ACETATE + PHOSPHATE IONS) 1FXF ; 1.85 ; CARBOXYLIC ESTER HYDROLASE COMPLEX (DIMERIC PLA2 + MJ33 INHIBITOR + PHOSPHATE IONS) 1FX9 ; 2.0 ; CARBOXYLIC ESTER HYDROLASE COMPLEX (DIMERIC PLA2 + MJ33 INHIBITOR + SULPHATE IONS) 1MKV ; 1.89 ; CARBOXYLIC ESTER HYDROLASE COMPLEX (PLA2 + TRANSITION STATE ANALOG COMPLEX) 1UNE ; 1.5 ; CARBOXYLIC ESTER HYDROLASE, 1.5 ANGSTROM ORTHORHOMBIC FORM OF THE BOVINE RECOMBINANT PLA2 1MKT ; 1.72 ; CARBOXYLIC ESTER HYDROLASE, 1.72 ANGSTROM TRIGONAL FORM OF THE BOVINE RECOMBINANT PLA2 ENZYME 1LE7 ; 2.09 ; CARBOXYLIC ESTER HYDROLASE, C 2 2 21 space group 1MKU ; 1.8 ; CARBOXYLIC ESTER HYDROLASE, ORTHORHOMBIC FORM OF THE TRIPLE MUTANT 1LE6 ; 1.97 ; CARBOXYLIC ESTER HYDROLASE, P 1 21 1 SPACE GROUP 1KVY ; 1.9 ; CARBOXYLIC ESTER HYDROLASE, SINGLE MUTANT D49E COORDINATED TO CALCIUM 2ZP5 ; 1.9 ; Carboxylic ester hydrolase, single mutant d49k of bovine pancreatic pla2 enzyme 2ZP3 ; 1.9 ; Carboxylic ester hydrolase, single mutant d49n of bovine pancreatic pla2 enzyme 1KVX ; 1.9 ; CARBOXYLIC ESTER HYDROLASE, SINGLE MUTANT D99A OF BOVINE PANCREATIC PLA2, 1.9 A ORTHORHOMBIC FORM 2ZP4 ; 1.9 ; Carboxylic ester hydrolase, single mutant h48n of bovine pancreatic pla2 enzyme 1KVW ; 1.95 ; CARBOXYLIC ESTER HYDROLASE, SINGLE MUTANT H48Q OF BOVINE PANCREATIC PLA2 ENZYME 1MKS ; 1.9 ; CARBOXYLIC ESTER HYDROLASE, TRIGONAL FORM OF THE TRIPLE MUTANT 5FIF ; 2.494 ; Carboxyltransferase domain of a single-chain bacterial carboxylase 4L6W ; 1.95 ; Carboxyltransferase subunit (AccD6) of Mycobacterium tuberculosis acetyl-CoA carboxylase 2A7K ; 2.24 ; carboxymethylproline synthase (CarB) from pectobacterium carotovora, apo enzyme 2A81 ; 3.15 ; carboxymethylproline synthase (CarB) from pectobacterium carotovora, complexed with acetyl CoA and bicine 8BKN ; 1.29 ; Carboxymyoglobin dark state for comparison with 5 mJ/cm2 time series 8BKH ; 1.35 ; Carboxymyoglobin dark state for comparison with power titration and 23 / 101 mJ/cm2 time series 1F57 ; 1.75 ; CARBOXYPEPTIDASE A COMPLEX WITH D-CYSTEINE AT 1.75 A 1BAV ; 1.6 ; CARBOXYPEPTIDASE A COMPLEXED WITH 2-BENZYL-3-IODO-PROPANOIC ACID (BIP) 3I1U ; 1.391 ; Carboxypeptidase A Inhibited by a Thiirane Mechanism-Based inactivator 3HLP ; 1.6 ; Carboxypeptidase A liganded to an organic small-molecule: conformational changes 3HUV ; 1.9 ; Carboxypeptidase A liganded to an organic small-molecule: conformational changes 3KGQ ; 1.7 ; Carboxypeptidase A liganded to an organic small-molecule: conformational changes 1ARL ; 1.88 ; CARBOXYPEPTIDASE A WITH ZN REMOVED 1ARM ; 1.76 ; CARBOXYPEPTIDASE A WITH ZN REPLACED BY HG 3WC6 ; 1.65 ; Carboxypeptidase B in complex with 2nd zinc 3WAB ; 2.154 ; Carboxypeptidase B in complex with DD2 5ZEQ ; 1.9 ; Carboxypeptidase B in complex with DD28 3WC5 ; 1.7 ; Carboxypeptidase B in complex with DD9 3WC7 ; 1.9 ; Carboxypeptidase B in complex with EF6265 5JC6 ; 1.4 ; Carboxypeptidase B with 2-nd zinc and acetate ion 4Z65 ; 1.25 ; Carboxypeptidase B with Sulphamoil Arginine 5J1Q ; 1.74 ; Carboxypeptidase B with Sulphamoil Phenylalanine 1CG2 ; 2.5 ; CARBOXYPEPTIDASE G2 6XJ5 ; 3.11 ; Carboxypeptidase G2 modified with a versatile bioconjugate for metalloprotein design 1OBR ; 2.3 ; CARBOXYPEPTIDASE T 3QNV ; 1.69 ; Carboxypeptidase T 6F79 ; 1.9 ; Carboxypeptidase T mutant L211Q with Sulphamoil Arginine 3V38 ; 1.5 ; Carboxypeptidase T mutant L254N 6Z28 ; 2.3 ; Carboxypeptidase T mutant L254N with N-sulfamoyl-L-glutamic acid 6F6Q ; 1.79 ; Carboxypeptidase T mutant L254N with Sulphamoil Arginine 6F75 ; 1.89 ; Carboxypeptidase T mutant L254N with Sulphamoil Leucine 7Q87 ; 1.73 ; Carboxypeptidase T with (S)-3-phenyllactic acid 4F8Z ; 1.38 ; Carboxypeptidase T with Boc-Leu 3V7Z ; 1.61 ; Carboxypeptidase T with GEMSA 4DUK ; 1.57 ; Carboxypeptidase T with L-BENZYLSUCCINIC ACID 6SN6 ; 1.93 ; CARBOXYPEPTIDASE T WITH N-SULFAMOYL-L-GLUTAMIC ACID 6GO2 ; 1.9 ; Carboxypeptidase T with N-sulfamoyl-L-Leucine 6T9Y ; 1.92 ; CARBOXYPEPTIDASE T WITH N-SULFAMOYL-L-LYSIN 4DJL ; 1.55 ; Carboxypeptidase T with N-sulfamoyl-L-phenylalanine 6TNK ; 1.9 ; CARBOXYPEPTIDASE T WITH N-SULFAMOYL-L-VALINE 4GM5 ; 1.39 ; Carboxypeptidase T with Sulphamoil Arginine 2EWH ; 1.4 ; Carboxysome protein CsoS1A from Halothiobacillus neapolitanus 2A1B ; 2.9 ; Carboxysome shell protein ccmK2 2A10 ; 1.803 ; carboxysome shell protein ccmK4 2A18 ; 2.28 ; carboxysome shell protein ccmK4, crystal form 2 5LSR ; 1.65 ; Carboxysome shell protein CcmP from Synechococcus elongatus PCC 7942 5LT5 ; 1.45 ; Carboxysome shell protein CcmP from Synechococcus elongatus PCC 7942 3CIM ; 1.3 ; Carboxysome shell protein, CcmK2 C-terminal deletion mutant 3DNC ; 2.05 ; Carboxysome shell protein, CcmK2 C-terminal deletion mutant, with a closer spacing between hexamers 2RCF ; 2.15 ; Carboxysome Shell protein, OrfA from H. Neapolitanus 3BN4 ; 2.0 ; Carboxysome Subunit, CcmK1 3DN9 ; 2.28 ; Carboxysome Subunit, CcmK1 C-terminal deletion mutant 2QW7 ; 2.4 ; Carboxysome Subunit, CcmL 2YGS ; 1.6 ; CARD DOMAIN FROM APAF-1 7JH7 ; 3.8 ; cardiac actomyosin complex 8G9R ; 3.28 ; Cardiac amyloid fibrils extracted from a wild-type ATTR amyloidosis patient 8GBR ; 3.4 ; Cardiac amyloid fibrils extracted from a wild-type ATTR amyloidosis patient 7TIJ ; 8.0 ; Cardiac F-actin decorated with regulatory M-domain of cardiac myosin binding protein C 4DB1 ; 2.6 ; Cardiac human myosin S1dC, beta isoform complexed with Mn-AMPPNP 5N6A ; 3.1 ; Cardiac muscle myosin motor domain in the pre-powerstroke state 5N69 ; 2.45 ; Cardiac muscle myosin S1 fragment in the pre-powerstroke state co-crystallized with the activator Omecamtiv Mecarbil 6UZ3 ; 3.5 ; Cardiac sodium channel 7XSU ; 3.4 ; Cardiac sodium channel in complex with LqhIII 6UZ0 ; 3.24 ; Cardiac sodium channel with flecainide 7K18 ; 3.3 ; Cardiac Sodium channel with toxin bound 6CXI ; 11.0 ; Cardiac thin filament decorated with C0C1 fragment of cardiac myosin binding protein C mode 1 6CXJ ; 11.0 ; Cardiac thin filament decorated with C0C1 fragment of cardiac myosin binding protein C mode 2 7TJ7 ; 8.0 ; Cardiac thin filament decorated with C1 Ig-domain and regulatory M-domain of cardiac myosin binding protein C (cMyBP-C) 7TIT ; 8.0 ; Cardiac thin filament decorated with regulatory M-domain of cardiac myosin binding protein C 1CRE ; ; CARDIOTOXIN II FROM TAIWAN COBRA VENOM, NAJA NAJA ATRA: STRUCTURE IN SOLUTION AND COMPARISION AMONG HOMOLOGOUS CARDIOTOXINS 1CRF ; ; CARDIOTOXIN II FROM TAIWAN COBRA VENOM, NAJA NAJA ATRA: STRUCTURE IN SOLUTION AND COMPARISION AMONG HOMOLOGOUS CARDIOTOXINS 2CRS ; ; CARDIOTOXIN III FROM TAIWAN COBRA (NAJA NAJA ATRA) DETERMINATION OF STRUCTURE IN SOLUTION AND COMPARISON WITH SHORT NEUROTOXINS 2CRT ; ; CARDIOTOXIN III FROM TAIWAN COBRA (NAJA NAJA ATRA) DETERMINATION OF STRUCTURE IN SOLUTION AND COMPARISON WITH SHORT NEUROTOXINS 1CDT ; 2.5 ; CARDIOTOXIN V4/II FROM NAJA MOSSAMBICA MOSSAMBICA: THE REFINED CRYSTAL STRUCTURE 4TLW ; 2.55 ; CARDS TOXIN, FULL-LENGTH 4TLV ; 1.9 ; CARDS TOXIN, NICKED 1YAL ; 1.7 ; CARICA PAPAYA CHYMOPAPAIN AT 1.7 ANGSTROMS RESOLUTION 8CK1 ; 3.9 ; Carin 1 bacteriophage tail, connector and tail fibers assembly 8CJZ ; 3.5 ; Carin1 bacteriophage mature capsid 8CK0 ; 3.8 ; Carin1 bacteriophage portal assembly 5XD6 ; 1.898 ; CARK1 phosphorylates ABA receptors 7FAJ ; 2.24507 ; CARM1 bound with compound 43 7FAI ; 2.09749 ; CARM1 bound with compound 9 7PPY ; 2.42 ; CARM1 in complex with EML709 7PV6 ; 2.4 ; CARM1 in complex with EML734 7PPQ ; 2.1 ; CARM1 in complex with EML736 7PU8 ; 2.19 ; CARM1 in complex with EML980 7PUC ; 2.19 ; CARM1 in complex with EML981 7PUQ ; 2.09 ; CARM1 in complex with EML982 4WXH ; 1.9 ; Carminomycin-4-O-methyltransferase (DnrK) variant (298Ser insert) in complex with S-adenosyl-L-homocysteine (SAH) and aclacinomycin T 1NDF ; 1.9 ; Carnitine Acetyltransferase in Complex with Carnitine 1NDI ; 2.3 ; Carnitine Acetyltransferase in complex with CoA 7VUD ; 2.8 ; Carotenoid Cleavage Dioxygenase 1 from Osmanthus fragrans 6FM2 ; 2.8 ; CARP domain of mouse cyclase-associated protein 1 (CAP1) bound to ADP-actin 4RUQ ; 1.35 ; Carp Fishelectin, apo form 4RUS ; 1.7 ; Carp Fishelectin, holo form 7LIX ; 2.8 ; CaRSP1 and scaffolded phycoerythrin beta subunits from the phycobilisome of Porphyridium purpureum 7LIY ; 2.8 ; CaRSP2 and scaffolded phycoerythrin beta subunits from the phycobilisome of Porphyridium purpureum 6AY7 ; 1.77 ; Cartilage homing cysteine-dense-peptides 6AY8 ; 1.78 ; Cartilage homing cysteine-dense-peptides 8IEW ; 3.1 ; Cas005-crRNA-DNA complex 5VVK ; 2.9 ; Cas1-Cas2 bound to full-site mimic 5VVL ; 3.31 ; Cas1-Cas2 bound to full-site mimic with Ni 5VVJ ; 3.89 ; Cas1-Cas2 bound to half-site intermediate 6QXF ; 3.6 ; Cas1-Cas2-Csn2-DNA complex from the Type II-A CRISPR-Cas system 6QXT ; 8.9 ; Cas1-Cas2-Csn2-DNA dimer complex from the Type II-A CRISPR-Cas system 5WFE ; 3.64 ; Cas1-Cas2-IHF-DNA holo-complex 8FLJ ; 3.48 ; Cas1-Cas2/3 integrase and IHF bound to CRISPR leader, repeat and foreign DNA 8D4A ; 2.74 ; Cas12a2 quaternary complex 8BD5 ; 3.3 ; Cas12k-sgRNA-dsDNA-S15-TniQ-TnsC transposon recruitment complex 8BD6 ; 4.1 ; Cas12k-sgRNA-dsDNA-TnsC non-productive complex. 5B7I ; 2.6 ; Cas3-AcrF3 complex 4C97 ; 1.7 ; Cas6 (TTHA0078) H37A mutant 4C8Z ; 2.503 ; Cas6 (TTHA0078) product complex 4C8Y ; 1.8 ; Cas6 (TTHA0078) substrate mimic complex 4C9D ; 3.0 ; Cas6 (TTHB231) product complex 7KFU ; 3.9 ; Cas6-RT-Cas1--Cas2 complex 8EEX ; 2.95 ; Cas7-11 in complex with Csx29 8EEY ; 2.53 ; Cas7-11 in complex with DR-mismatched target RNA, Csx29 and Csx30 7S4V ; 3.28 ; Cas9 bound to 12-14MM DNA, 60 min time-point, kinked conformation 7S4X ; 2.76 ; Cas9:gRNA in complex with 18-20MM DNA, 1 minute time-point, kinked active conformation 7S37 ; 3.2 ; Cas9:sgRNA (S. pyogenes) in the open-protein conformation 7S38 ; 3.3 ; Cas9:sgRNA:DNA (S. pyogenes) forming a 3-base-pair R-loop 7S36 ; 3.2 ; Cas9:sgRNA:DNA (S. pyogenes) with 0 RNA:DNA base pairs, closed-protein/bent-DNA conformation 7S3H ; 2.5 ; Cas9:sgRNA:DNA (S. pyogenes) with 0 RNA:DNA base pairs, open-protein/linear-DNA conformation 7TR6 ; 3.4 ; Cascade complex from type I-A CRISPR-Cas system 7TR8 ; 3.6 ; Cascade complex from type I-A CRISPR-Cas system 7TR9 ; 3.9 ; Cascade complex from type I-A CRISPR-Cas system 7TRA ; 3.3 ; Cascade complex from type I-A CRISPR-Cas system 4GRB ; 2.15 ; Casein kinase 2 (CK2) bound to inhibitor 3U4U ; 2.2 ; Casein kinase 2 in complex with AZ-Inhibitor 1CKJ ; 2.46 ; CASEIN KINASE I DELTA TRUNCATION MUTANT CONTAINING RESIDUES 1-317 COMPLEX WITH BOUND TUNGSTATE 4GUB ; 2.2 ; Casein Kinase II bound to Inhibitor 6DKF ; 3.7 ; Caseinolytic protease (ClpP) from Staphylococcus aureus mutant - V7A 3NFR ; 1.57 ; Casimiroin analog inhibitor of quinone reductase 2 3C0G ; 2.19 ; CASK CaM-Kinase Domain- 3'-AMP complex, P1 form 3C0I ; 1.85 ; CASK CaM-Kinase Domain- 3'-AMP complex, P212121 form 3C0H ; 2.3 ; CASK CaM-Kinase Domain- AMPPNP complex, P1 form 3MFS ; 2.1 ; CASK-4M CaM Kinase Domain, AMPPNP 3MFU ; 2.3 ; CASK-4M CaM Kinase Domain, AMPPNP-Mn2+ 3MFT ; 2.2 ; CASK-4M CaM Kinase Domain, Mn2+ 3MFR ; 2.0 ; CASK-4M CaM Kinase Domain, native 5L1M ; 2.751 ; CASKIN2 SAM domain tandem 7LVM ; 1.47 ; CASP8 isoform B DED domain 7LVJ ; 1.5 ; CASP8 isoform G DED domain 3KJF ; 2.0 ; Caspase 3 Bound to a covalent inhibitor 5I9B ; 1.8 ; Caspase 3 V266A 5I9T ; 1.95 ; Caspase 3 V266C 5IAB ; 1.79 ; Caspase 3 V266D 5IAE ; 1.55 ; Caspase 3 V266F 5IBC ; 1.66 ; Caspase 3 V266I 5IBR ; 1.74 ; Caspase 3 V266K 5IAJ ; 1.58 ; Caspase 3 V266L 5IBP ; 1.38 ; Caspase 3 V266M 5IAN ; 2.7 ; Caspase 3 V266N 5IAG ; 1.98 ; Caspase 3 V266Q 5IAK ; 1.82 ; Caspase 3 V266S 5IAR ; 1.76 ; Caspase 3 V266W 5IAS ; 1.54 ; Caspase 3 V266Y 3KJN ; 1.8 ; Caspase 8 bound to a covalent inhibitor 3KJQ ; 1.8 ; Caspase 8 with covalent inhibitor 6KN0 ; 2.793 ; caspase-1 P20/P10 C285A in complex with human GSDMD-C domain 6KMV ; 3.35 ; caspase-11 C254A P22/P10 in complex with mouse GSDMD-C domain 3R7B ; 1.8 ; Caspase-2 bound to one copy of Ac-DVAD-CHO 3R7N ; 2.33 ; Caspase-2 bound with two copies of Ac-DVAD-CHO 3R6L ; 1.9 ; Caspase-2 T380A bound with Ac-VDVAD-CHO 3GJQ ; 2.6 ; Caspase-3 Binds Diverse P4 Residues in Peptides 3GJR ; 2.2 ; Caspase-3 Binds Diverse P4 Residues in Peptides 3GJS ; 1.9 ; Caspase-3 Binds Diverse P4 Residues in Peptides 3GJT ; 2.2 ; Caspase-3 Binds Diverse P4 Residues in Peptides 4QTY ; 1.602 ; Caspase-3 E190A 3PD0 ; 2.0 ; Caspase-3 E246A 3PCX ; 1.5 ; Caspase-3 E246A, K242A Double Mutant 4QU9 ; 1.561 ; Caspase-3 F128A 4QUI ; 1.758 ; Caspase-3 F128AV266H 4QUL ; 1.898 ; Caspase-3 F55W 2XZD ; 2.1 ; Caspase-3 in Complex with an Inhibitory DARPin-3.4 2Y0B ; 2.1 ; Caspase-3 in Complex with an Inhibitory DARPin-3.4_S76R 2XZT ; 2.7 ; Caspase-3 in Complex with DARPin-3.4_I78S 6X8K ; 2.17 ; Caspase-3 in complex with elongated ketomethylene inhibitor 6X8I ; 1.5 ; Caspase-3 in complex with ketomethylene inhibitor reveals tetrahedral adduct 4QUB ; 1.689 ; Caspase-3 K137A 3PD1 ; 1.62 ; Caspase-3 K242A 4QUG ; 1.917 ; Caspase-3 M61A 4QU8 ; 1.715 ; Caspase-3 M61A V266H 6BG0 ; 2.125 ; Caspase-3 Mutant - D9A,D28A,S150D 6BG1 ; 1.88 ; Caspase-3 Mutant - D9A,D28A,S150E 6BGQ ; 1.97 ; Caspase-3 Mutant - S150D 6BGR ; 2.16 ; Caspase-3 Mutant - S150E 6BGS ; 1.6 ; Caspase-3 Mutant - S150Y 6BH9 ; 1.94 ; Caspase-3 Mutant - T152A 6BHA ; 1.603 ; Caspase-3 Mutant - T152V 6BFJ ; 1.543 ; Caspase-3 Mutant - T245D,S249D 6BGK ; 1.87 ; Caspase-3 Mutant- D9A,D28A,T152D 6BFL ; 1.87 ; Caspase-3 Mutant- D9A,D28A,T245D 6BG4 ; 1.87 ; Caspase-3 Mutant- T152D 6BFK ; 1.753 ; Caspase-3 Mutant- T245A 6BFO ; 1.54 ; Caspase-3 Mutant- T245D 4JJ8 ; 2.937 ; Caspase-3 specific unnatural amino acid peptides 4JJE ; 1.481 ; Caspase-3 specific unnatural amino acid peptides 4JJ7 ; 1.178 ; Caspase-3 specific unnatural amino acid-based peptides 4QUD ; 1.995 ; Caspase-3 T140F 4QUH ; 1.759 ; Caspase-3 T140G 4QUJ ; 1.498 ; Caspase-3 T140GV266H 4QU5 ; 1.908 ; Caspase-3 T140V 1NMS ; 1.7 ; Caspase-3 tethered to irreversible inhibitor 4QTX ; 1.974 ; Caspase-3 Y195A 4QU0 ; 1.954 ; Caspase-3 Y195AV266H 4QUA ; 1.892 ; Caspase-3 Y195F 4QUE ; 1.843 ; Caspase-3 Y195FV266H 2XYP ; 1.86 ; Caspase-3:CAS26049945 2XYG ; 1.54 ; Caspase-3:CAS329306 2XYH ; 1.89 ; Caspase-3:CAS60254719 6KMZ ; 3.61 ; caspase-4 P22/P10 C258A in complex with human GSDMD-C domain 8SPB ; 3.2 ; Caspase-4/Pro-IL-18 complex 3QNW ; 2.65 ; Caspase-6 in complex with Z-VAD-FMK inhibitor 8DJ3 ; 3.2 ; Caspase-7 bound to novel allosteric inhibitor 8DGZ ; 2.8 ; Caspase-7 bound to substrate mimic and allosteric inhibitor 6CL2 ; 2.35 ; Caspase-7 in complex with Ac-ATS009-KE 6CL1 ; 2.651 ; Caspase-7 in complex with Ac-DW3-KE 4JB8 ; 1.7 ; Caspase-7 in Complex with DARPin C7_16 4LSZ ; 2.26 ; Caspase-7 in Complex with DARPin D7.18 1SHJ ; 2.8 ; Caspase-7 in complex with DICA allosteric inhibitor 6X8L ; 2.45 ; Caspase-7 in complex with elongated ketomethylene inhibitor 1SHL ; 3.0 ; CASPASE-7 IN COMPLEX WITH FICA ALLOSTERIC INHIBITOR 6X8J ; 2.604 ; Caspase-7 in complex with ketomethylene inhibitor reveals tetrahedral adduct 5K20 ; 2.2 ; Caspase-7 S239E Phosphomimetic 4ZVS ; 2.5 ; Caspase-7 Variant 1 (V1) with reprogrammed substrate specificity due to Y230A/W232M/S234N substitutions, bound to DEVD inhibitor. 4ZVT ; 2.85 ; Caspase-7 Variant 1 (V1) with reprogrammed substrate specificity due to Y230A/W232M/S234N substitutions, bound to VEID inhibitor. 4ZVP ; 2.5 ; Caspase-7 Variant 2 (V2) with reprogrammed substrate specificity due to Y230V/W232M/Q276C substitutions bound to DEVD inhibitor. 4ZVQ ; 2.5 ; Caspase-7 Variant 2 (V2) with reprogrammed substrate specificity due to Y230V/W232M/Q276C substitutions bound to VEID inhibitor. 4ZVR ; 2.3 ; Caspase-7 Variant 4 (V4) with reprogrammed substrate specificity due to Y230V/W232Y/S234V/Q276D substitutions bound to DEVD inhibitor. 4ZVO ; 2.85 ; Caspase-7 Variant 4 (V4) with reprogrammed substrate specificity due to Y230V/W232Y/S234V/Q276D substitutions bound to VEID inhibitor. 4ZVU ; 2.601 ; Caspase-7 wild-type bound to the caspase-6 cognate tetrapeptide inhibitor Ac-VEID-cho 6X8H ; 1.48 ; Caspase-8 in complex with AOMK inhibitor, Ac-DW3-KE, forms tetrahedral adduct 2Y1L ; 1.8 ; Caspase-8 in Complex with DARPin-8.4 4PRY ; 1.7 ; Caspase-8 specific unnatural amino acid peptides 4PRZ ; 2.123 ; Caspase-8 specific unnatural amino acid peptides 4PS0 ; 1.63 ; Caspase-8 specific unnatural amino acid peptides 4PS1 ; 1.731 ; Caspase-8 specific unnatural amino acid peptides 1F9E ; 2.9 ; CASPASE-8 SPECIFICITY PROBED AT SUBSITE S4: CRYSTAL STRUCTURE OF THE CASPASE-8-Z-DEVD-CHO 3RJM ; 2.55 ; CASPASE2 IN COMPLEX WITH CHDI LIGAND 33c 6WI4 ; 1.57 ; Caspases from Scleractinian Coral 6OPM ; 3.1 ; Casposase bound to integration product 6NY3 ; 3.7 ; CasX ternary complex with 30bp target DNA 6NY1 ; 4.2 ; CasX-gRNA-DNA(30bp) State II 6NY2 ; 3.2 ; CasX-gRNA-DNA(45bp) state I 8SZQ ; 2.711 ; Cat DHX9 bound to ADP 8SZS ; 2.38 ; Cat DHX9 bound to GDP 2MC9 ; ; Cat r 1 6AMM ; 2.8 ; CAT192 Fab Insertion Mutant H0/L1 6AO0 ; 2.35 ; CAT192 Fab Insertion Mutant H2/L2 6ANP ; 2.45 ; CAT192 Fab Insertion Mutant H5/L0 6AMJ ; 2.49 ; CAT192 Fab Wild Type 1DXH ; 2.5 ; Catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa 7XJT ; 2.598 ; Catabolic ornithine carbamoyltransferases (OTCs) from Psychrobacter sp. PAMC 21119 6ZY1 ; 1.99 ; Catabolic reductive dehalogenase NpRdhA, N-terminally tagged in complex with 3-bromo-4-hydroxybenzoic acid 6ZY0 ; 2.13 ; Catabolic reductive dehalogenase NpRdhA, N-terminally tagged, K488Q variant 6ZXU ; 1.73 ; Catabolic reductive dehalogenase NpRdhA, N-terminally tagged. 6ZXX ; 1.99 ; Catabolic reductive dehalogenase NpRdhA, N-terminally tagged. 5ONC ; 2.19 ; Catabolism of the Cholesterol Side Chain in Mycobacterium tuberculosis is Controlled by a Redox-Sensitive Thiol Switch 1RUO ; 2.7 ; CATABOLITE GENE ACTIVATOR PROTEIN (CAP) MUTANT/DNA COMPLEX + ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE 1CGP ; 3.0 ; CATABOLITE GENE ACTIVATOR PROTEIN (CAP)/DNA COMPLEX + ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE 1J59 ; 2.5 ; CATABOLITE GENE ACTIVATOR PROTEIN (CAP)/DNA COMPLEX + ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE 1RUN ; 2.7 ; CATABOLITE GENE ACTIVATOR PROTEIN (CAP)/DNA COMPLEX + ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE 2CGP ; 2.2 ; CATABOLITE GENE ACTIVATOR PROTEIN/DNA COMPLEX, ADENOSINE-3',5'-CYCLIC-MONOPHOSPHATE 6NT1 ; 2.2 ; Catalase 3 from N.Crassa in ferrous state (2.89 MGy) 6NT0 ; 2.2 ; Catalase 3 from N.Crassa in ferrous state, X-ray reduced (1.315 MGy) 4AJ9 ; 1.85 ; Catalase 3 from Neurospora crassa 4BIM ; 2.95 ; CATALASE 3 FROM NEUROSPORA CRASSA IN TETRAGONAL FORM EXPOSES A MODIFIED TETRAMERIC ORGANIZATION 1A4E ; 2.4 ; CATALASE A FROM SACCHAROMYCES CEREVISIAE 2CAG ; 2.7 ; CATALASE COMPOUND II 1HBZ ; 1.5 ; Catalase from Micrococcus lysodeikticu 3J7B ; 3.2 ; Catalase solved at 3.2 Angstrom resolution by MicroED 6JNT ; 3.0 ; Catalase structure determined by eEFD (dataset 1) 6JNU ; 3.0 ; Catalase structure determined by eEFD (dataset 2) 5GKN ; 3.2 ; Catalase structure determined by electron crystallography of thin 3D crystals 5A0T ; 2.283 ; Catalysis and 5' end sensing by ribonuclease RNase J of the metallo- beta-lactamase family 5A0V ; 2.8 ; Catalysis and 5' end sensing by ribonuclease RNase J of the metallo- beta-lactamase family 1QH6 ; 2.0 ; CATALYSIS AND SPECIFICITY IN ENZYMATIC GLYCOSIDE HYDROLASES: A 2,5B CONFORMATION FOR THE GLYCOSYL-ENZYME INTERMIDIATE REVEALED BY THE STRUCTURE OF THE BACILLUS AGARADHAERENS FAMILY 11 XYLANASE 1QH7 ; 1.78 ; CATALYSIS AND SPECIFICITY IN ENZYMATIC GLYCOSIDE HYDROLASES: A 2,5B CONFORMATION FOR THE GLYCOSYL-ENZYME INTERMIDIATE REVEALED BY THE STRUCTURE OF THE BACILLUS AGARADHAERENS FAMILY 11 XYLANASE 2PGJ ; 1.71 ; Catalysis associated conformational changes revealed by human cd38 complexed with a non-hydrolyzable substrate analog 2PGL ; 1.76 ; Catalysis associated conformational changes revealed by human CD38 complexed with a non-hydrolyzable substrate analog 4TGL ; 2.6 ; CATALYSIS AT THE INTERFACE: THE ANATOMY OF A CONFORMATIONAL CHANGE IN A TRIGLYCERIDE LIPASE 1A3L ; 1.95 ; CATALYSIS OF A DISFAVORED REACTION: AN ANTIBODY EXO DIELS-ALDERASE-TSA-INHIBITOR COMPLEX AT 1.95 A RESOLUTION 4IVV ; 1.05 ; Catalytic amidase domain of the major autolysin LytA from Streptococcus pneumaniae 8B3A ; 3.8 ; catalytic amyloid fibril formed by Ac-LHLHLRL-amide 8T9F ; 2.6 ; Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1 8T9H ; 3.37 ; Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1 8THU ; 3.1 ; Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1 1LUV ; 1.85 ; CATALYTIC AND STRUCTURAL EFFECTS OF AMINO-ACID SUBSTITUTION AT HIS 30 IN HUMAN MANGANESE SUPEROXIDE DISMUTASE: INSERTION OF VAL CGAMMA INTO THE SUBSTRATE ACCESS CHANNEL 1LUW ; 2.3 ; CATALYTIC AND STRUCTURAL EFFECTS OF AMINO-ACID SUBSTITUTION AT HIS 30 IN HUMAN MANGANESE SUPEROXIDE DISMUTASE: INSERTION OF VAL CGAMMA INTO THE SUBSTRATE ACCESS CHANNEL 1N0N ; 1.82 ; Catalytic and Structural Effects of Amino-Acid Substitution at His30 in Human Manganese Superoxide Dismutase 2WZJ ; 2.786 ; Catalytic and UBA domain of kinase MARK2/(Par-1) K82R, T208E double mutant 2HAK ; 2.6 ; Catalytic and ubiqutin-associated domains of MARK1/PAR-1 1Y8G ; 2.501 ; Catalytic and ubiqutin-associated domains of MARK2/PAR-1: Inactive double mutant with selenomethionine 1ZMV ; 3.105 ; Catalytic and ubiqutin-associated domains of MARK2/PAR-1: K82R mutant 1ZMW ; 2.802 ; Catalytic and ubiqutin-associated domains of MARK2/PAR-1: T208A/S212A inactive double mutant 1ZMU ; 2.9 ; Catalytic and ubiqutin-associated domains of MARK2/PAR-1: Wild type 1UM6 ; 1.8 ; catalytic antibody 21h3 1UM5 ; 1.6 ; Catalytic Antibody 21H3 with alcohol substrate 1UM4 ; 1.8 ; Catalytic Antibody 21H3 with hapten 1KEM ; 2.2 ; CATALYTIC ANTIBODY 28B4 FAB FRAGMENT 1KEL ; 1.9 ; CATALYTIC ANTIBODY 28B4 FAB FRAGMENT COMPLEXED WITH HAPTEN (1-[N-4'-NITROBENZYL-N-4'-CARBOXYBUTYLAMINO] METHYLPHOSPHONIC ACID) 1F3D ; 1.87 ; CATALYTIC ANTIBODY 4B2 IN COMPLEX WITH ITS AMIDINIUM HAPTEN. 25C8 ; 2.0 ; CATALYTIC ANTIBODY 5C8, FAB-HAPTEN COMPLEX 35C8 ; 2.0 ; CATALYTIC ANTIBODY 5C8, FAB-INHIBITOR COMPLEX 15C8 ; 2.5 ; CATALYTIC ANTIBODY 5C8, FREE FAB 5XQW ; 2.2 ; Catalytic antibody 7B9 1CT8 ; 2.2 ; CATALYTIC ANTIBODY 7C8 COMPLEX 1YEJ ; 1.85 ; CATALYTIC ANTIBODY COMPLEX 1KN2 ; 1.9 ; CATALYTIC ANTIBODY D2.3 COMPLEX 1KN4 ; 1.9 ; CATALYTIC ANTIBODY D2.3 COMPLEX 1YEI ; 1.9 ; CATALYTIC ANTIBODY D2.3 COMPLEX 1YEK ; 2.1 ; CATALYTIC ANTIBODY D2.3 COMPLEX 2CWT ; 1.82 ; Catalytic base deletion in copper amine oxidase from arthrobacter globiformis 7QPB ; 2.342 ; Catalytic C-lobe of the HECT-type ubiquitin ligase E6AP in complex with a hybrid foldamer-peptide macrocycle 1CGU ; 2.5 ; CATALYTIC CENTER OF CYCLODEXTRIN GLYCOSYLTRANSFERASE DERIVED FROM X-RAY STRUCTURE ANALYSIS COMBINED WITH SITE-DIRECTED MUTAGENESIS 1PYD ; 2.4 ; CATALYTIC CENTERS IN THE THIAMIN DIPHOSPHATE DEPENDENT ENZYME PYRUVATE DECARBOXYLASE AT 2.4 ANGSTROMS RESOLUTION 3FGU ; 2.15 ; Catalytic complex of Human Glucokinase 2GSM ; 2.0 ; Catalytic Core (Subunits I and II) of Cytochrome c oxidase from Rhodobacter sphaeroides 1FL2 ; 1.9 ; CATALYTIC CORE COMPONENT OF THE ALKYLHYDROPEROXIDE REDUCTASE AHPF FROM E.COLI 1QOZ ; 1.9 ; Catalytic core domain of acetyl xylan esterase from Trichoderma reesei 5UB9 ; 1.9 ; Catalytic core domain of Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni 5UBH ; 2.0 ; Catalytic core domain of Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni with bound ATP 5UBG ; 1.9 ; Catalytic core domain of Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni with bound Phosphoribosyl-ATP 5UBI ; 2.14 ; Catalytic core domain of Adenosine triphosphate phosphoribosyltransferase from Campylobacter jejuni with bound PRPP 8CT5 ; 1.97 ; Catalytic Core Domain of HIV-1 Integrase (F185K) 8CT7 ; 2.13 ; Catalytic Core Domain of HIV-1 Integrase (F185K) bound with BI-224436 8QYE ; 2.05 ; Catalytic core of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) concieved by deep network hallucination: dEngBF4 8QZK ; 3.25 ; Catalytic core of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) concieved by deep network hallucination: dEngBF4 Hexagonal form 7V99 ; 3.54 ; catalytic core of human telomerase holoenzyme 3BJY ; 2.41 ; Catalytic core of Rev1 in complex with DNA (modified template guanine) and incoming nucleotide 1CLX ; 1.8 ; CATALYTIC CORE OF XYLANASE A 1XYS ; 2.5 ; CATALYTIC CORE OF XYLANASE A E246C MUTANT 3DTU ; 2.15 ; Catalytic core subunits (I and II) of cytochrome c oxidase from Rhodobacter sphaeroides complexed with deoxycholic acid 3FYE ; 2.15 ; Catalytic core subunits (I and II) of cytochrome c oxidase from Rhodobacter sphaeroides in the reduced state 3FYI ; 2.2 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides in the reduced state bound with cyanide 3OMI ; 2.15 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides with D132A mutation 3OMN ; 2.15 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides with D132A mutation in the reduced state 6CI0 ; 2.4 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides with E101A (II) mutation 3OMA ; 2.3 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides with K362M mutation 3OM3 ; 2.6 ; Catalytic core subunits (I and II) of cytochrome C oxidase from Rhodobacter sphaeroides with K362M mutation in the reduced state 3DJG ; 1.8 ; Catalytic cycle of human glutathione reductase near 1 A resolution 3DJJ ; 1.1 ; Catalytic cycle of human glutathione reductase near 1 A resolution 3DK4 ; 1.2 ; Catalytic cycle of human glutathione reductase near 1 A resolution 3DK8 ; 1.1 ; Catalytic cycle of human glutathione reductase near 1 A resolution 3DK9 ; 0.95 ; Catalytic cycle of human glutathione reductase near 1 A resolution 6IBO ; 2.17 ; Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability 4N72 ; 2.25 ; Catalytic domain from dihydrolipoamide acetyltransferase of pyruvate dehydrogenase from Escherichia coli 1E2O ; 3.0 ; CATALYTIC DOMAIN FROM DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE 7OKR ; 1.35 ; Catalytic domain from the Aliivibrio salmonicida lytic polysaccharide monooxygenase AsLPMO10B 1C4T ; 3.0 ; CATALYTIC DOMAIN FROM TRIMERIC DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE 4YN5 ; 1.8 ; Catalytic domain of Bacillus sp. JAMB-750 GH26 Endo-beta-1,4-mannanase 1AIH ; 2.5 ; CATALYTIC DOMAIN OF BACTERIOPHAGE HP1 INTEGRASE 3WZ1 ; 1.6 ; Catalytic domain of beta-agarase from Microbulbifer thermotolerans JAMB-A94 2FYD ; 2.0 ; catalytic domain of bovine beta 1, 4-galactosyltransferase in complex with alpha-lactalbumin, glucose, Mn, and UDP-N-acetylgalactosamine 3QAY ; 2.0 ; Catalytic domain of CD27L endolysin targeting Clostridia Difficile 2FW2 ; 2.2 ; Catalytic domain of CDY 7CBD ; 1.3 ; Catalytic domain of Cellulomonas fimi Cel6B 1ITX ; 1.1 ; Catalytic Domain of Chitinase A1 from Bacillus circulans WL-12 4XWL ; 2.051 ; Catalytic domain of Clostridium Cellulovorans Exgs 2YIK ; 2.1 ; Catalytic domain of Clostridium thermocellum CelT 5B6S ; 1.7 ; Catalytic domain of Coprinopsis cinerea GH62 alpha-L-arabinofuranosidase 5B6T ; 1.48 ; Catalytic domain of Coprinopsis cinerea GH62 alpha-L-arabinofuranosidase complexed with Pb 6MJF ; 2.198 ; Catalytic Domain of dbOphMA 2BX2 ; 2.85 ; Catalytic domain of E. coli RNase E 2C4R ; 3.6 ; Catalytic domain of E. coli RNase E 2C0B ; 3.18 ; Catalytic domain of E. coli RNase E in complex with 13-mer RNA 6PBR ; 3.0 ; Catalytic domain of E.coli dihydrolipoamide succinyltransferase in I4 space group 1RR9 ; 2.1 ; Catalytic domain of E.coli Lon protease 2BOD ; 1.5 ; Catalytic domain of endo-1,4-glucanase Cel6A from Thermobifida fusca in complex with methyl cellobiosyl-4-thio-beta-cellobioside 2BOE ; 1.15 ; Catalytic domain of endo-1,4-glucanase Cel6A mutant Y73S from Thermobifida fusca 2BOF ; 1.64 ; Catalytic domain of endo-1,4-glucanase Cel6A mutant Y73S from Thermobifida fusca in complex with cellotetrose 2BOG ; 1.04 ; Catalytic domain of endo-1,4-glucanase Cel6A mutant Y73S from Thermobifida fusca in complex with methyl cellobiosyl-4-thio-beta- cellobioside 4FET ; 1.909 ; Catalytic domain of germination-specific lytic tansglycosylase SleB from Bacillus anthracis 6M5Z ; 1.65 ; Catalytic domain of GH30 xylanase C from Talaromyces cellulolyticus 6K0P ; 1.424 ; Catalytic domain of GH87 alpha-1,3-glucanase D1045A in complex with nigerose 6K0Q ; 1.564 ; Catalytic domain of GH87 alpha-1,3-glucanase D1068A in complex with nigerose 6K0U ; 1.95 ; Catalytic domain of GH87 alpha-1,3-glucanase D1068A in complex with tetrasaccharides 6K0S ; 1.534 ; Catalytic domain of GH87 alpha-1,3-glucanase D1069A in complex with nigerose 6K0V ; 2.504 ; Catalytic domain of GH87 alpha-1,3-glucanase D1069A in complex with tetrasaccharides 6K0M ; 1.6 ; Catalytic domain of GH87 alpha-1,3-glucanase from Paenibacillus glycanilyticus FH11 6K0N ; 1.6 ; Catalytic domain of GH87 alpha-1,3-glucanase in complex with nigerose 3EQA ; 1.9 ; Catalytic domain of glucoamylase from aspergillus niger complexed with tris and glycerol 8FG8 ; 2.35 ; Catalytic domain of GtfB in complex with inhibitor 2-[(2,4,5-Trihydroxyphenyl)methylidene]-1-benzofuran-3-one 8UF5 ; 2.5 ; Catalytic domain of GtfB in complex with inhibitor G43 3A0X ; 1.89 ; Catalytic domain of histidine kinase ThkA (TM1359) (nucleotide free form 1: ammomium phosphate, monoclinic) 3A0Y ; 1.57 ; Catalytic domain of histidine kinase ThkA (TM1359) (nucleotide free form 3: 1,2-propanediol, orthorombic) 3A0Z ; 1.75 ; Catalytic domain of histidine kinase ThkA (TM1359) (nucleotide free form 4: isopropanol, orthorombic) 3A0W ; 1.69 ; Catalytic domain of histidine kinase ThkA (TM1359) for MAD phasing (nucleotide free form 2, orthorombic) 3A0T ; 1.91 ; Catalytic domain of histidine kinase ThkA (TM1359) in complex with ADP and Mg ion (trigonal) 1BI4 ; 2.5 ; CATALYTIC DOMAIN OF HIV-1 INTEGRASE 1BL3 ; 2.0 ; CATALYTIC DOMAIN OF HIV-1 INTEGRASE 2ITG ; 2.6 ; CATALYTIC DOMAIN OF HIV-1 INTEGRASE: ORDERED ACTIVE SITE IN THE F185H CONSTRUCT 3ITM ; 2.49 ; Catalytic domain of hPDE2A 2NQA ; 2.2 ; Catalytic Domain of Human Calpain 8 2ARY ; 2.4 ; Catalytic domain of Human Calpain-1 1ZIV ; 2.31 ; Catalytic Domain of Human Calpain-9 3LKA ; 1.8 ; Catalytic domain of human MMP-12 complexed with hydroxamic acid and paramethoxy-sulfonyl amide 4FIG ; 3.01 ; Catalytic domain of human PAK4 4FIJ ; 2.3 ; Catalytic domain of human PAK4 4FIH ; 1.97 ; Catalytic domain of human PAK4 with QKFTGLPRQW peptide 4FIF ; 2.6 ; Catalytic domain of human PAK4 with RPKPLVDP peptide 4FII ; 2.0 ; Catalytic domain of human PAK4 with RPKPLVDP peptide 6XVW ; 2.0 ; Catalytic domain of human PARP-1 in complex with the inhibitor MC2050 1KW0 ; 2.5 ; Catalytic Domain of Human Phenylalanine Hydroxylase (Fe(II)) in Complex with Tetrahydrobiopterin and Thienylalanine 1J8T ; 1.7 ; Catalytic Domain of Human Phenylalanine Hydroxylase Fe(II) 1J8U ; 1.5 ; Catalytic Domain of Human Phenylalanine Hydroxylase Fe(II) in Complex with Tetrahydrobiopterin 1TAZ ; 1.77 ; Catalytic Domain Of Human Phosphodiesterase 1B 1SO2 ; 2.4 ; CATALYTIC DOMAIN OF HUMAN PHOSPHODIESTERASE 3B In COMPLEX WITH A DIHYDROPYRIDAZINE INHIBITOR 1SOJ ; 2.9 ; CATALYTIC DOMAIN OF HUMAN PHOSPHODIESTERASE 3B IN COMPLEX WITH IBMX 1XM6 ; 1.92 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With (R)-Mesopram 1XMY ; 2.4 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With (R)-Rolipram 1XN0 ; 2.31 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With (R,S)-Rolipram 1Y2H ; 2.4 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With 1-(2-chloro-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester 1Y2J ; 2.55 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With 3,5-dimethyl-1-(3-nitro-phenyl)-1H-pyrazole-4-carboxylic acid ethyl ester 3LY2 ; 2.6 ; Catalytic Domain of Human Phosphodiesterase 4B in Complex with A Coumarin-Based Inhibitor 1TB5 ; 2.15 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With AMP 1XLX ; 2.19 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Cilomilast 1XLZ ; 2.06 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Filaminast 1XM4 ; 2.31 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Piclamilast 1XMU ; 2.3 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Roflumilast 1XOS ; 2.28 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Sildenafil 1XOT ; 2.34 ; Catalytic Domain Of Human Phosphodiesterase 4B In Complex With Vardenafil 1F0J ; 1.77 ; CATALYTIC DOMAIN OF HUMAN PHOSPHODIESTERASE 4B2B 3O56 ; 2.42 ; Catalytic domain of human phosphodiesterase 4b2b in complex with a 5-heterocycle pyrazolopyridine inhibitor 3O57 ; 2.0 ; Catalytic domain of human phosphodiesterase 4b2b in complex with a 5-heterocycle pyrazolopyridine inhibitor 3FRG ; 1.7 ; Catalytic Domain of Human Phosphodiesterase 4B2B in Complex with a Quinoline Inhibitor 3GWT ; 1.75 ; Catalytic domain of human phosphodiesterase 4B2B in complex with a quinoline inhibitor 3HMV ; 2.23 ; Catalytic domain of human phosphodiesterase 4B2B in complex with a tetrahydrobenzothiophene inhibitor 1Y2E ; 2.1 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 1-(4-amino-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester 1Y2D ; 1.7 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 1-(4-methoxy-phenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester 1Y2K ; 1.36 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 3,5-dimethyl-1-(3-nitro-phenyl)-1H-pyrazole-4-carboxylic acid ethyl ester 1Y2C ; 1.67 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 3,5-dimethyl-1-phenyl-1H-pyrazole-4-carboxylic acid ethyl ester 1Y2B ; 1.4 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With 3,5-dimethyl-1H-pyrazole-4-carboxylic acid ethyl ester 1TB7 ; 1.63 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With AMP 1XOM ; 1.55 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With Cilomilast 1XON ; 1.72 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With Piclamilast 1XOQ ; 1.83 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With Roflumilast 1TBB ; 1.6 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With Rolipram 1XOR ; 1.54 ; Catalytic Domain Of Human Phosphodiesterase 4D In Complex With Zardaverine 1T9R ; 2.1 ; Catalytic Domain Of Human Phosphodiesterase 5A 1T9S ; 2.0 ; Catalytic Domain Of Human Phosphodiesterase 5A in Complex with GMP 1TBF ; 1.3 ; Catalytic Domain Of Human Phosphodiesterase 5A in Complex with Sildenafil 1XOZ ; 1.37 ; Catalytic Domain Of Human Phosphodiesterase 5A In Complex With Tadalafil 1XP0 ; 1.79 ; Catalytic Domain Of Human Phosphodiesterase 5A In Complex With Vardenafil 3H62 ; 1.4 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Mn2+ atoms complexed with cantharidic acid 3H64 ; 1.9 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Mn2+ atoms complexed with endothall 3H63 ; 1.3 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Mn2+ atoms originally soaked with cantharidin (which is present in the structure in the hydrolyzed form) 3H61 ; 1.45 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Mn2+ atoms originally soaked with norcantharidin (which is present in the structure in the hydrolyzed form) 3H66 ; 2.59 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Zn2+ atoms 3H69 ; 2.1 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c) with two Zn2+ atoms complexed with endothall 3H60 ; 2.0 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c)with two Mn2+ atoms 3H67 ; 1.65 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c)with two Zn2+ atoms complexed with cantharidic acid 3H68 ; 1.5 ; Catalytic domain of human Serine/Threonine Phosphatase 5 (PP5c)with two Zn2+ atoms originally soaked with cantharidin (which is present in the structure in the hydrolyzed form) 3ZM0 ; 1.5 ; Catalytic domain of human SHP2 3ZM1 ; 1.4 ; Catalytic domain of human SHP2 3ZM2 ; 1.5 ; Catalytic domain of human SHP2 3ZM3 ; 1.5 ; Catalytic domain of human SHP2 1BDA ; 3.35 ; CATALYTIC DOMAIN OF HUMAN SINGLE CHAIN TISSUE PLASMINOGEN ACTIVATOR IN COMPLEX WITH DANSYL-EGR-CMK (DANSYL-GLU-GLY-ARG CHLOROMETHYL KETONE) 2SRT ; ; CATALYTIC DOMAIN OF HUMAN STROMELYSIN-1 AT PH 5.5 AND 40OC COMPLEXED WITH INHIBITOR 1A5H ; 2.9 ; CATALYTIC DOMAIN OF HUMAN TWO-CHAIN TISSUE PLASMINOGEN ACTIVATOR COMPLEX OF A BIS-BENZAMIDINE 1YRP ; 3.1 ; Catalytic domain of human ZIP kinase phosphorylated at Thr265 1MK0 ; 1.6 ; catalytic domain of intron endonuclease I-TevI, E75A mutant 5L2V ; 1.1 ; Catalytic domain of LPMO Lmo2467 from Listeria monocytogenes 5CTV ; 1.05 ; Catalytic domain of LytA, the major autolysin of Streptococcus pneumoniae, (C60A, H133A, C136A mutant) complexed with peptidoglycan fragment 5K4P ; 1.318 ; Catalytic Domain of MCR-1 phosphoethanolamine transferase 2XMI ; 1.74 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, complexed with citrate 2Y1P ; 1.82 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, complexed with citrate 2Y3X ; 2.1 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, complexed with sulfate 2YOZ ; 2.1 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, crystallized with 2'-AMPS 2YP0 ; 2.3 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, crystallized with 2'-AMPS 2YDD ; 2.4 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, soaked with 2',3'-cyclic AMP 2YDB ; 2.15 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, soaked with 2',3'-cyclic NADP 2YDC ; 2.05 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, soaked with GTP 4WBL ; 2.501 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation F235A 4WC9 ; 2.0 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation F235L 4WCA ; 1.85 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H230Q, complexed with citrate 2YPH ; 2.1 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H230S, crystallized with 2',3-(RP)- cyclic-AMPS 3ZBR ; 2.304 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H230S, crystallized with NADP 4WCB ; 1.57 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H309Q 2YPE ; 1.9 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H309S, crystallized with 2',3'- cyclic AMP 2YPC ; 1.894 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation H309S, crystallized with 2',3-(SP)-Cyclic-AMPS 4WCC ; 2.7 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation P225G 4WDA ; 1.85 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation P296G, complexed with 2'-AMP 4WDB ; 1.6 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation R307Q, complexed with 2'-AMP 4WFR ; 2.0 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation T232A, complexed with 2'-AMP 4WDD ; 2.101 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation T232A, complexed with citrate 4WDE ; 2.4 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation T311A 4WDF ; 2.0 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation V321A, complexed with 2',5'-ADP 4WDG ; 2.05 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation V321A, complexed with 2',5'-ADP 2YQ9 ; 1.9 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation V321A, crystallized with 2'-AMP 3ZBS ; 2.45 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation V321A, crystallized with 2'-AMPS 3ZBZ ; 2.1 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation V321A, crystallized with 2'-AMPS 4WDH ; 1.9 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation Y168A 4WEX ; 2.1 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutation Y168S 4WBI ; 2.0 ; Catalytic domain of mouse 2',3'-cyclic nucleotide 3'- phosphodiesterase, with mutations H230Q and H309Q 5HQN ; 2.6 ; Catalytic domain of murine Acid Sphingomyelinase (ASMase, ASM, SMPD1) 1MUY ; 1.4 ; CATALYTIC DOMAIN OF MUTY FROM ESCHERICHIA COLI 1MUN ; 1.2 ; CATALYTIC DOMAIN OF MUTY FROM ESCHERICHIA COLI D138N MUTANT 1WEG ; 1.8 ; Catalytic Domain Of Muty From Escherichia Coli K142A Mutant 1WEF ; 1.9 ; Catalytic Domain Of Muty From Escherichia Coli K20A Mutant 1WEI ; 1.45 ; Catalytic Domain Of Muty From Escherichia Coli K20A Mutant Complexed To Adenine 1MUD ; 1.8 ; CATALYTIC DOMAIN OF MUTY FROM ESCHERICHIA COLI, D138N MUTANT COMPLEXED TO ADENINE 6AII ; 1.63 ; Catalytic domain of PdAgaC 1O6Y ; 2.2 ; Catalytic domain of PknB kinase from Mycobacterium tuberculosis 1QRZ ; 2.0 ; CATALYTIC DOMAIN OF PLASMINOGEN 5K1P ; 1.499 ; Catalytic domain of polyspecific pyrrolysyl-tRNA synthetase mutant N346A/C348A in complex with AMPPNP 5K1X ; 1.95 ; Catalytic domain of polyspecific pyrrolysyl-tRNA synthetase mutant Y306A/N346A/C348A/Y384F in complex with AMPPNP 1EAK ; 2.66 ; Catalytic domain of proMMP-2 E404Q mutant 2FUM ; 2.89 ; Catalytic domain of protein kinase PknB from Mycobacterium tuberculosis in complex with mitoxantrone 6NEN ; 2.151 ; Catalytic domain of Proteus mirabilis ScsC 4CS4 ; 1.349 ; Catalytic domain of Pyrrolysyl-tRNA synthetase mutant Y306A, Y384F in complex with AMPPNP 4CS3 ; 1.499 ; Catalytic domain of Pyrrolysyl-tRNA synthetase mutant Y306A, Y384F in complex with an adenylated furan-bearing noncanonical amino acid and pyrophosphate 4CS2 ; 1.9 ; Catalytic domain of Pyrrolysyl-tRNA synthetase mutant Y306A, Y384F in its apo form 4ZD5 ; 2.07 ; Catalytic domain of Sst2 F403A mutant 4ZFR ; 1.72 ; Catalytic domain of Sst2 F403A mutant bound to ubiquitin 4ZD4 ; 1.634 ; Catalytic domain of Sst2 F403W mutant 4ZFT ; 2.304 ; Catalytic domain of Sst2 F403W mutant bound to ubiquitin 6GNE ; 2.55 ; Catalytic domain of Starch Synthase IV from Arabidopsis thaliana bound to ADP and acarbose 3OHL ; 2.36 ; catalytic domain of stromelysin-1 in complex with N-Hydroxy-2-(4-methoxy-N-(pyridine-3-ylmethyl)phenylsulfonamido)acetamide 3OHO ; 2.5 ; catalytic domain of stromelysin-1 in complex with N-Hydroxy-2-(4-methylphenylsulfonamido)acetamide 5GCN ; ; CATALYTIC DOMAIN OF TETRAHYMENA GCN5 HISTONE ACETYLTRANSFERASE IN COMPLEX WITH COENZYME A 1M55 ; 1.4 ; Catalytic domain of the Adeno Associated Virus type 5 Rep protein 4QPB ; 1.78 ; Catalytic domain of the antimicrobial peptidase lysostaphin from Staphylococcus simulans crystallized in the absence of phosphate 4QP5 ; 1.26 ; Catalytic domain of the antimicrobial peptidase lysostaphin from Staphylococcus simulans crystallized in the presence of phosphate 3VOG ; 1.45 ; Catalytic domain of the cellobiohydrolase, CcCel6A, from Coprinopsis cinerea 3G1N ; 2.6 ; Catalytic domain of the human E3 ubiquitin-protein ligase HUWE1 2ONI ; 2.2 ; Catalytic Domain of the Human NEDD4-like E3 Ligase 6QH3 ; 2.9 ; Catalytic domain of the human ubiquitin-conjugating enzyme UBE2S C118M 4TUF ; 2.7 ; Catalytic domain of the major endoglucanase from Xanthomonas campestris pv. campestris 2P0C ; 2.4 ; Catalytic Domain of the Proto-oncogene Tyrosine-protein Kinase MER 5FUV ; 2.3 ; catalytic domain of Thymidine kinase from Trypanosoma brucei with dThd 5FUX ; 2.2 ; catalytic domain of Thymidine kinase from Trypanosoma brucei with dTMP 5FUY ; 2.8 ; catalytic domain of Thymidine kinase from Trypanosoma brucei with dTMP 5FUW ; 2.2 ; catalytic domain of Thymidine kinase from Trypanosoma brucei with dTMP or dThd 1BKC ; 2.0 ; CATALYTIC DOMAIN OF TNF-ALPHA CONVERTING ENZYME (TACE) 3A7S ; 2.2 ; Catalytic domain of UCH37 7ZKC ; 1.769 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum (apo form) 7ZLL ; 1.649 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with the 5-[(morpholin-4-yl)methyl]quinolin-8-ol inhibitor 7ZXW ; 2.246 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with the 5-[(morpholin-4-yl)methyl]quinolin-8-ol inhibitor 7ZLE ; 1.823 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with UDP 7ZLU ; 2.049 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with UDP-2-deoxy-2-fluoro-D-glucose 6FSN ; 1.19 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with UDP-glucose (conformation 1) 7ZHB ; 1.89 ; Catalytic domain of UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum in complex with UDP-glucose (conformation 2) 4FML ; 1.93 ; Catalytic domain of VahC from Aeromonas hydrophila 1A5I ; 2.9 ; CATALYTIC DOMAIN OF VAMPIRE BAT (DESMODUS ROTUNDUS) SALIVA PLASMINOGEN ACTIVATOR IN COMPLEX WITH EGR-CMK (GLU-GLY-ARG CHLOROMETHYL KETONE) 8HRF ; 2.5 ; Catalytic domain of Vibrio parahaemolyticus chitinase 1 3NTS ; 3.4 ; Catalytic domain of VsdC from Aeromonas hydrophila 1Y0L ; 2.5 ; Catalytic elimination antibody 34E4 in complex with hapten 3KI0 ; 1.29 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-D 3KI1 ; 1.43 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-F 3KI2 ; 1.28 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-G 3KI3 ; 1.27 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-H 3KI7 ; 1.32 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-I 3KI6 ; 1.54 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-L 3KI5 ; 1.55 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-M 3KI4 ; 1.65 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with inhibitor GP-P 3NY6 ; 1.68 ; Catalytic fragment of cholix toxin from vibrio cholerae in complex with inhibitor V30 3ESS ; 1.191 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with the 1,8-Naphthalimide inhibitor 2Q6M ; 1.25 ; Catalytic fragment of Cholix toxin from Vibrio Cholerae in complex with the PJ34 inhibitor 4AYK ; ; CATALYTIC FRAGMENT OF HUMAN FIBROBLAST COLLAGENASE COMPLEXED WITH CGS-27023A, NMR, 30 STRUCTURES 3AYK ; ; CATALYTIC FRAGMENT OF HUMAN FIBROBLAST COLLAGENASE COMPLEXED WITH CGS-27023A, NMR, MINIMIZED AVERAGE STRUCTURE 4DJZ ; 3.2 ; Catalytic fragment of masp-1 in complex with its specific inhibitor developed by directed evolution on sgci scaffold 7PQO ; 3.39 ; Catalytic fragment of MASP-1 in complex with P1 site mutant ecotin 7PQN ; 2.40002 ; Catalytic fragment of MASP-2 in complex with ecotin 3TVJ ; 1.28 ; Catalytic fragment of MASP-2 in complex with its specific inhibitor developed by directed evolution on SGCI scaffold 3AVR ; 1.803 ; Catalytic fragment of UTX/KDM6A bound with histone H3K27me3 peptide, N-oxyalylglycine, and Ni(II) 3AVS ; 1.85 ; Catalytic fragment of UTX/KDM6A bound with N-oxyalylglycine, and Ni(II) 3ZSC ; 1.94 ; Catalytic function and substrate recognition of the pectate lyase from Thermotoga maritima 5BRU ; 1.6 ; Catalytic Improvement of an Artificial Metalloenzyme by Computational Design 5BRV ; 1.6 ; Catalytic Improvement of an Artificial Metalloenzyme by Computational Design 5BRW ; 1.4 ; Catalytic Improvement of an Artificial Metalloenzyme by Computational Design 3AEX ; 2.1 ; Catalytic intermediate analogue of threonine synthase from Thermus thermophilus HB8 7YNH ; 1.94 ; Catalytic intermediate of copper amine oxidase determined by serial femtosecond X-ray crystallography using a single-flow liquid jet system 2AU8 ; 1.65 ; Catalytic intermediate structure of inorganic pyrophosphatase 7WIS ; 1.9 ; Catalytic intermediate structure of N381A mutant of copper amine oxidase from Arthrobacter globiformis 7VQK ; 2.0 ; Catalytic manifolds of a FMN-dependent oxidoreductase RubE7, expanding the functional diversity of the flavoenzyme superfamily 1JYK ; 1.5 ; Catalytic Mechanism of CTP:phosphocholine Cytidylyltransferase from Streptococcus pneumoniae (LicC) 1JYL ; 2.4 ; Catalytic Mechanism of CTP:phosphocholine Cytidylyltransferase from Streptococcus pneumoniae (LicC) 9ICD ; 2.5 ; CATALYTIC MECHANISM OF NADP+-DEPENDENT ISOCITRATE DEHYDROGENASE: IMPLICATIONS FROM THE STRUCTURES OF MAGNESIUM-ISOCITRATE AND NADP+ COMPLEXES 1G72 ; 1.9 ; CATALYTIC MECHANISM OF QUINOPROTEIN METHANOL DEHYDROGENASE: A THEORETICAL AND X-RAY CRYSTALLOGRAPHIC INVESTIGATION 1ELS ; 2.4 ; CATALYTIC METAL ION BINDING IN ENOLASE: THE CRYSTAL STRUCTURE OF ENOLASE-MN2+-PHOSPHONOACETOHYDROXAMATE COMPLEX AT 2.4 ANGSTROMS RESOLUTION 8PJN ; 3.4 ; Catalytic module of human CTLH E3 ligase bound to multiphosphorylated UBE2H~ubiquitin 2YA0 ; 1.85 ; Catalytic Module of the Multi-modular glycogen-degrading pneumococcal virulence factor SpuA 2YA2 ; 2.37 ; Catalytic Module of the Multi-modular glycogen-degrading pneumococcal virulence factor SpuA in complex with an inhibitor. 7NS4 ; 3.9 ; Catalytic module of yeast Chelator-GID SR4 E3 ubiquitin ligase 8PMQ ; 3.53 ; Catalytic module of yeast GID E3 ligase bound to multiphosphorylated Ubc8~ubiquitin 1LO0 ; 2.0 ; Catalytic Retro-Diels-Alderase Transition State Analogue Complex 488D ; 3.1 ; CATALYTIC RNA ENZYME-PRODUCT COMPLEX 3WFA ; 2.0 ; Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase 6USS ; 2.5 ; Catalytic S88C mutant of gut microbial sulfatase from Bacteroides fragilis CAG:558 6FCC ; 1.89 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) 6FD9 ; 2.2 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) in complex with AMP 6FCW ; 2.0 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) in complex with PRATP 6FCA ; 2.09 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) in complex with PRPP 6FCY ; 1.96 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) in complex with PRPP and ADP 6FCT ; 1.89 ; Catalytic subunit HisG from Psychrobacter arcticus ATP phosphoribosyltransferase (HisZG ATPPRT) in complex with PRPP and ATP 7Z8U ; 2.0 ; Catalytic subunit HisG R56A mutant from Psychrobacter arcticus ATPPRT (HisGZ) in complex with ATP and PRPP 6MM7 ; 1.85 ; Catalytic subunit of cAMP-dependent protein kinase A in complex with RyR2 K2879A, S2813D phosphomimetic (2699-2904) crystal form 1 6MM8 ; 1.85 ; Catalytic subunit of cAMP-dependent protein kinase A in complex with RyR2 K2879A, S2813D phosphomimetic (2699-2904) crystal form 2 6MM5 ; 1.95 ; Catalytic subunit of cAMP-dependent protein kinase A in complex with RyR2 peptide (2799-2810) 6MM6 ; 2.39 ; Catalytic subunit of cAMP-dependent protein kinase A in complex with RyR2 phosphorylation domain (2699-2904) 7C6O ; 1.801 ; Catalytic Subunit of Cobaltochelatase from Mycobacterium tuberculosis 2RGW ; 2.8 ; Catalytic Subunit of M. jannaschii Aspartate Transcarbamoylase 3E2P ; 3.0 ; Catalytic subunit of M. Jannaschii aspartate transcarbamoylase in an orthorhombic crystal form 3CSU ; 1.88 ; CATALYTIC TRIMER OF ESCHERICHIA COLI ASPARTATE TRANSCARBAMOYLASE 4HVB ; 2.35 ; Catalytic unit of PI3Kg in complex with PI3K/mTOR dual inhibitor PF-04979064 1LVM ; 1.8 ; CATALYTICALLY ACTIVE TOBACCO ETCH VIRUS PROTEASE COMPLEXED WITH PRODUCT 2F5S ; 2.35 ; Catalytically inactive (E3Q) MutM crosslinked to oxoG:C containing DNA CC1 2F5Q ; 2.35 ; Catalytically inactive (E3Q) MutM crosslinked to oxoG:C containing DNA CC2 1YQL ; 2.6 ; Catalytically inactive hOGG1 crosslinked with 7-deaza-8-azaguanine containing DNA 1YQM ; 2.5 ; Catalytically inactive human 8-oxoguanine glycosylase crosslinked to 7-deazaguanine containing DNA 1YQR ; 2.43 ; Catalytically inactive human 8-oxoguanine glycosylase crosslinked to oxoG containing DNA 1LVB ; 2.2 ; CATALYTICALLY INACTIVE TOBACCO ETCH VIRUS PROTEASE COMPLEXED WITH SUBSTRATE 7R9G ; 2.4 ; Catalytically inactive yeast Pseudouridine Synthase, PUS1, bound to RNA 7ZJZ ; 1.9 ; catalytically non active S532A mutant of oligopeptidase B from S. proteomaculans 7NE5 ; 1.88 ; catalytically non active S532A mutant of oligopeptidase B from S. proteomaculans with modified hinge region 5ZSZ ; 2.4 ; Catechol 2,3-dioxygenase (C23O64) from Diaphorobacter sp DS2 5ZSX ; 2.2 ; Catechol 2,3-dioxygenase with 3-fluorocatechol from Diaphorobacter sp DS2 5ZNH ; 2.4 ; Catechol 2,3-dioxygenase with 4-methyl catechol from Diaphorobacter sp DS2 1XEP ; 1.55 ; Catechol in complex with T4 lysozyme L99A/M102Q 5ZY6 ; 2.099 ; catechol methyltransferase spCOMT 1H1D ; 2.0 ; Catechol O-Methyltransferase 1VID ; 2.0 ; CATECHOL O-METHYLTRANSFERASE 1JR4 ; 2.63 ; CATECHOL O-METHYLTRANSFERASE BISUBSTRATE-INHIBITOR COMPLEX 8C9T ; 1.5 ; Catechol O-methyltransferase from Streptomyces avermitilis 8C9S ; 1.8 ; Catechol O-methyltransferase from Streptomyces avermitilis in complex with SAH 1BT1 ; 2.7 ; CATECHOL OXIDASE FROM IPOMOEA BATATAS (SWEET POTATOES) IN THE NATIVE CU(II)-CU(II) STATE 1BT3 ; 2.5 ; CATECHOL OXIDASE FROM IPOMOEA BATATAS (SWEET POTATOES) IN THE NATIVE CU(II)-CU(II) STATE 1BT2 ; 2.7 ; CATECHOL OXIDASE FROM IPOMOEA BATATAS (SWEET POTATOES) IN THE REDUCED CU(I)-CU(I) STATE 1BUG ; 2.7 ; CATECHOL OXIDASE FROM IPOMOEA BATATAS (SWEET POTATOES)-INHIBITOR COMPLEX WITH PHENYLTHIOUREA (PTU) 2CL5 ; 1.6 ; Catechol-O-methyltransferase in complex with an inhibitor 2LR7 ; ; Cathelicidin-PY 1PFP ; 2.3 ; CATHELIN-LIKE MOTIF OF PROTEGRIN-3 1GMY ; 1.9 ; Cathepsin B complexed with dipeptidyl nitrile inhibitor 5MBL ; 1.81 ; Cathepsin B in complex with DARPin 81 5MBM ; 2.76 ; Cathepsin B in complex with DARPin 8h6 3K9M ; 2.61 ; Cathepsin B in complex with stefin A 3AI8 ; 2.11 ; Cathepsin B in complex with the nitroxoline 8CC2 ; 1.2 ; Cathepsin B1 from Schistosoma mansoni in complex with gallinamide A 8CCU ; 1.6 ; Cathepsin B1 from Schistosoma mansoni in complex with gallinamide analog 1 8CD9 ; 1.55 ; Cathepsin B1 from Schistosoma mansoni in complex with gallinamide analog 6 1LYW ; 2.5 ; CATHEPSIN D AT PH 7.5 4N8W ; 2.02 ; cathepsin K - chondroitin sulfate complex 4YVA ; 1.8 ; Cathepsin K co-crystallized with actinomycetes extract 1YT7 ; 2.3 ; Cathepsin K complexed with a constrained ketoamide inhibitor 1YK8 ; 2.6 ; Cathepsin K complexed with a cyanamide-based inhibitor 1YK7 ; 2.5 ; Cathepsin K complexed with a cyanopyrrolidine inhibitor 1TU6 ; 1.75 ; Cathepsin K complexed with a ketoamide inhibitor 2BDL ; 2.0 ; Cathepsin K complexed with a pyrrolidine ketoamide-based inhibitor 2AUX ; 2.4 ; Cathepsin K complexed with a semicarbazone inhibitor 2AUZ ; 2.3 ; Cathepsin K complexed with a semicarbazone inhibitor 1SNK ; 2.4 ; Cathepsin K complexed with carbamate derivatized norleucine aldehyde 1Q6K ; 2.1 ; Cathepsin K complexed with t-butyl(1S)-1-cyclohexyl-2-oxoethylcarbamate 3O1G ; 1.65 ; Cathepsin K covalently bound to a 2-cyano pyrimidine inhibitor with a benzyl P3 group. 3O0U ; 1.8 ; Cathepsin K covalently bound to a cyano-pyrimidine inhibitor with improved selectivity over hERG 3OVZ ; 2.02 ; Cathepsin K in complex with a covalent inhibitor with a ketoamide warhead 3KWZ ; 1.49 ; Cathepsin K in complex with a non-selective 2-cyano-pyrimidine inhibitor 3KX1 ; 1.51 ; Cathepsin K in complex with a selective 2-cyano-pyrimidine inhibitor 4DMX ; 1.7 ; Cathepsin K inhibitor 4DMY ; 1.63 ; Cathepsin K inhibitor 5MAE ; 1.0 ; CATHEPSIN L IN COMPLEX WITH (2S,4R)-4-(2-Chloro-4-methoxy-benzenesulfonyl)-1-[3-(5-chloro-pyridin-2-yl)-azetidine-3-carbonyl]-pyrrolidine-2-car boxylic acid (1-cyano-cyclopropyl)-amide 5F02 ; 1.43 ; CATHEPSIN L IN COMPLEX WITH (2S,4R)-4-(2-Chloro-4-methoxy-benzenesulfonyl)-1-[3-(5-chloro-pyridin-2-yl)-azetidine-3-carbonyl]-pyrrolidine-2-carboxylic acid (1-cyano-cyclopropyl)-amide 6EZP ; 1.37 ; CATHEPSIN L IN COMPLEX WITH (3S,14E)-19-chloro-N-(1-cyanocyclopropyl)-5-oxo-12,17-dioxa-4-azatricyclo[16.2.2.06,11]docosa-1(21),6(11),7,9,14,18(22),19-heptaene-3-carboxamide 6EZX ; 2.34 ; CATHEPSIN L IN COMPLEX WITH (3S,14E)-19-chloro-N-(1-cyanocyclopropyl)-5-oxo-17-oxa-4-azatricyclo[16.2.2.06,11]docosa-1(21),6,8,10,14,18(22),19-heptaene-3-carboxamide 6F06 ; 2.02 ; CATHEPSIN L IN COMPLEX WITH (3S,14E)-8-(azetidin-3-yl)-19-chloro-N-(1-cyanocyclopropyl)-5-oxo-12,17-dioxa-4-azatricyclo[16.2.2.06,11]docosa-1(21),6,8,10,14,18(22),19-heptaene-3-carboxamide 5MQY ; 1.13 ; CATHEPSIN L IN COMPLEX WITH 4-[1,3-benzodioxol-5-ylmethyl(2-phenoxyethyl)amino]-5-fluoropyrimidine-2-carbonitrile 5MAJ ; 1.0 ; CATHEPSIN L IN COMPLEX WITH 4-[cyclopentyl(imidazo[1,2-a]pyridin-2-ylmethyl)amino]-6-morpholino-1,3,5-triazine-2-carbonitrile 8UAC ; 1.4 ; CATHEPSIN L IN COMPLEX WITH AC1115 2XU1 ; 1.45 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2XU3 ; 0.9 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2XU4 ; 1.12 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2XU5 ; 1.6 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2YJ2 ; 1.15 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2YJ8 ; 1.3 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2YJ9 ; 1.35 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2YJB ; 1.4 ; CATHEPSIN L WITH A NITRILE INHIBITOR 2YJC ; 1.14 ; CATHEPSIN L WITH A NITRILE INHIBITOR 3HWN ; 2.33 ; CATHEPSIN L with AZ13010160 2R9M ; 1.97 ; Cathepsin S complexed with Compound 15 2R9N ; 2.0 ; Cathepsin S complexed with Compound 26 2R9O ; 2.0 ; Cathepsin S complexed with Compound 8 3OVX ; 1.49 ; Cathepsin S in complex with a covalent inhibitor with an aldehyde warhead 2HHN ; 1.55 ; Cathepsin S in complex with non covalent arylaminoethyl amide. 2F1G ; 1.9 ; Cathepsin S in complex with non-covalent 2-(Benzoxazol-2-ylamino)-acetamide 2FQ9 ; 1.65 ; Cathepsin S with nitrile inhibitor 1KYN ; 3.5 ; Cathepsin-G 6QM0 ; 1.9 ; Cathepsin-K in complex with amino-oxaazabicyclo[3.3.0]octanyl containing inhibitor 6QLX ; 2.1 ; Cathepsin-K in complex with fluoro-oxa-azabicyclo[3.3.0]octanyl containing inhibitor 6QLM ; 1.5 ; Cathepsin-K in complex with MIV-701 6QLW ; 2.0 ; Cathepsin-K in complex with MIV-710 6QL8 ; 1.8 ; Cathepsin-K in complex with MIV-711 2VHS ; 1.5 ; Cathsilicatein, a chimera 1GLH ; 2.0 ; CATION BINDING TO A BACILLUS (1,3-1,4)-BETA-GLUCANASE. GEOMETRY, AFFINITY AND EFFECT ON PROTEIN STABILITY 8GI9 ; 2.84 ; Cation channelrhodopsin from Hyphochytrium catenoides (HcCCR) embedded in peptidisc 1GLC ; 2.65 ; CATION PROMOTED ASSOCIATION (CPA) OF A REGULATORY AND TARGET PROTEIN IS CONTROLLED BY PHOSPHORYLATION 1GLD ; 2.93 ; CATION PROMOTED ASSOCIATION (CPA) OF A REGULATORY AND TARGET PROTEIN IS CONTROLLED BY PHOSPHORYLATION 1GLE ; 2.94 ; CATION PROMOTED ASSOCIATION (CPA) OF A REGULATORY AND TARGET PROTEIN IS CONTROLLED BY PHOSPHORYLATION 3HWB ; 3.0 ; Cation selective pathway of OmpF porin revealed by anomalous diffraction 3HW9 ; 2.61 ; Cation selective pathway of OmpF porin revealed by anomalous x-ray diffraction 3FAR ; 2.4 ; Cation-dependent self-cleavage activity in the duplex form of the subtype-B HIV-1 RNA Dimerization Initiation Site 1ND0 ; 2.45 ; CATIONIC CYCLIZATION ANTIBODY 4C6 COMPLEX WITH TRANSITION STATE ANALOG 1NCW ; 1.3 ; Cationic Cyclization Antibody 4C6 in Complex with Benzoic Acid 5HCJ ; 2.95 ; Cationic Ligand-Gated Ion Channel 5MN1 ; 0.79 ; Cationic trypsin in complex with 2-aminopyridine (deuterated sample at 100 K) 5MNB ; 0.939 ; Cationic trypsin in complex with 2-aminopyridine (deuterated sample at 295 K) 6SY3 ; 0.95 ; Cationic Trypsin in Complex with a D-DiPhe-Pro-pyridine derivative 6T0P ; 1.19 ; Cationic Trypsin in Complex with a D-Phe-Pro-2-aminopyridine derivative 6YDY ; 1.45 ; Cationic Trypsin in Complex with a D-Phe-Pro-benzylamine derivative 6T0M ; 1.51 ; Cationic Trypsin in Complex with a D-Phe-Pro-diaminopyridine derivative 6QL0 ; 1.634 ; Cationic Trypsin in Complex with a D-Phe-Pro-p-aminopyridine derivative 6T5W ; 1.13 ; Cationic Trypsin in Complex with a D-Phe-Pro-p-aminopyridine Derivative (cocrystallizaton at 291 K) 6ZQ2 ; 1.29 ; Cationic trypsin in complex with a derivative of benzamidine 5MNQ ; 1.337 ; Cationic trypsin in complex with a derivative of N-amidinopiperidine 5MNC ; 0.916 ; Cationic trypsin in complex with aniline (deuterated sample at 100 K) 5MNA ; 1.441 ; Cationic trypsin in complex with aniline (deuterated sample at 295 K) 5MNG ; 0.86 ; Cationic trypsin in complex with benzamidine (deuterated sample at 100 K) 5MNH ; 0.93 ; Cationic trypsin in complex with benzamidine (deuterated sample at 295 K) 5MNM ; 0.98 ; Cationic trypsin in complex with benzylamine (at 295 K) 5MNK ; 0.799 ; Cationic trypsin in complex with benzylamine (deuterated sample at 100 K) 5MNL ; 1.039 ; Cationic trypsin in complex with benzylamine (deuterated sample at 295 K) 4AOQ ; 2.0 ; Cationic trypsin in complex with mutated Spinacia oleracea trypsin inhibitor III (SOTI-III) (F14A) 5MNP ; 1.01 ; Cationic trypsin in complex with N-amidinopiperidine (at 295 K) 5MNN ; 0.859 ; Cationic trypsin in complex with N-amidinopiperidine (deuterated sample at 100 K) 5MNO ; 0.96 ; Cationic trypsin in complex with N-amidinopiperidine (deuterated sample at 295 K) 4AOR ; 1.702 ; Cationic trypsin in complex with the Spinacia oleracea trypsin inhibitor III (SOTI-III) 5MNE ; 1.008 ; Cationic trypsin in its apo form (deuterated sample at 100 K) 5MNF ; 0.99 ; Cationic trypsin in its apo form (deuterated sample at 295 K) 5GXP ; 2.8 ; Cationic Trypsin With GOL/PGE as Dimer at pH 4.6 2F7B ; 1.9 ; CatM effector binding domain 2F7C ; 2.162 ; CatM effector binding domain with its effector cis,cis-muconate 5Y17 ; 2.3 ; CATPO mutant - E316F 7WCA ; 1.78 ; CATPO mutant - E484A 5XVZ ; 1.9 ; CATPO mutant - H246W 7VN0 ; 1.4 ; CATPO mutant - T188A 5YEM ; 1.49 ; CATPO mutant - T188F 5XZN ; 1.47 ; CATPO mutant - V228C 5XZM ; 1.41 ; CATPO mutant - V228I 5XY4 ; 1.8 ; CATPO mutant - V536W 2XFX ; 1.9 ; cattle MHC class I N01301 presenting an 11mer from Theileria parva 5I4H ; 1.42 ; Caught in the Act: The Crystal Structure of cleaved Cathepsin L bound to the active site of Cathepsin L 4P4H ; 3.4 ; Caught-in-action signaling complex of RIG-I 2CARD domain and MAVS CARD domain 2W4Z ; 3.6 ; Caulobacter bacteriophage 5 2W4Y ; 2.9 ; Caulobacter bacteriophage 5 - virus-like particle 6XL0 ; 3.4 ; Caulobacter crescentus FljK filament 6XKY ; 3.2 ; Caulobacter crescentus FljK filament, straightened 5YIU ; 1.42 ; Caulobacter crescentus GcrA DNA-binding domain (DBD) 5YIW ; 1.551 ; Caulobacter crescentus GcrA DNA-binding domain (DBD) in complex with methylated dsDNA (crystal form 2) 5YIV ; 2.914 ; Caulobacter crescentus GcrA DNA-binding domain(DBD) in complex with methylated dsDNA(crystal form 1) 5Z7I ; 1.601 ; Caulobacter crescentus GcrA DNA-binding domain(DBD)in complex with unmethylated dsDNA 5YIX ; 2.302 ; Caulobacter crescentus GcrA sigma-interacting domain (SID) in complex with domain 2 of sigma 70 5WCE ; 1.9 ; Caulobacter crescentus pol III beta 6ESX ; 2.797 ; Caulobacter crescentus Trx1 7PLD ; 1.7 ; Caulobacter crescentus xylonolactonase with (R)-4-hydroxy-2-pyrrolidone 7PLB ; 1.73 ; Caulobacter crescentus xylonolactonase with D-xylose 7PLC ; 2.15 ; Caulobacter crescentus xylonolactonase with D-xylose, P21 space group 7TNB ; 1.79 ; Caulobacter segnis arene reductase (CSAR) - WT 5V2P ; 2.0 ; CaV beta2a subunit: CaV1.2 AID-CAP complex 5V2Q ; 1.7 ; CaV beta2a subunit: CaV1.2 AID-CEN complex 2J1K ; 2.3 ; CAV-2 fibre head in complex with CAR D1 8GAI ; 2.65 ; Cavia porcellus (guinea pig) importin-alpha 1 in complex with Bimax2 peptide 1QSQ ; 1.9 ; CAVITY CREATING MUTATION 3Q7Z ; 1.87 ; CBAP-acylated BlaR1 sensor domain from Staphylococcus aureus 6U8A ; 3.4 ; CBD-bound full-length rat TRPV2 in nanodiscs, state 1 6U88 ; 3.2 ; CBD-bound full-length rat TRPV2 in nanodiscs, state 2 6S4S ; 2.15 ; CBDP35 Native structure 6THJ ; 2.2 ; CBDP35 Native structure 6S3Y ; 2.043 ; CBDP35 SeMet structure 7K79 ; 4.0 ; CBF3 6F07 ; 3.6 ; CBF3 Core Complex 3MQK ; 2.8 ; Cbf5-Nop10-Gar1 complex binding with 17mer RNA containing ACA trinucleotide 6CEL ; 1.7 ; CBH1 (E212Q) CELLOPENTAOSE COMPLEX 5CEL ; 1.9 ; CBH1 (E212Q) CELLOTETRAOSE COMPLEX 7CEL ; 1.9 ; CBH1 (E217Q) IN COMPLEX WITH CELLOHEXAOSE AND CELLOBIOSE 1DY4 ; 1.9 ; CBH1 IN COMPLEX WITH S-PROPRANOLOL 1W90 ; 2.5 ; CBM29-2 mutant D114A: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1W8U ; 1.3 ; CBM29-2 mutant D83A complexed with mannohexaose: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1W8T ; 1.4 ; CBM29-2 mutant K74A complexed with cellulohexaose: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1W8Z ; 1.85 ; CBM29-2 mutant K85A: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1W9F ; 2.25 ; CBM29-2 mutant R112A: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1W8W ; 2.1 ; CBM29-2 mutant Y46A: Probing the Mechanism of Ligand Recognition by Family 29 Carbohydrate Binding Modules 1WCU ; 1.5 ; CBM29_1, A Family 29 Carbohydrate Binding Module from Piromyces equi 7D29 ; 1.7 ; CBM32 of AlyQ 7D2A ; 1.57 ; CBM32 of AlyQ in complex with 4,5-unsaturated mannuronic acid 2W46 ; 1.9 ; CBM35 from Cellvibrio japonicus Abf62 4JO5 ; 1.98 ; CBM3a-L domain with flanking linkers from scaffoldin cipA of cellulosome of Clostridium thermocellum 1GU3 ; 2.3 ; CBM4 structure and function 1GUI ; 1.9 ; CBM4 structure and function 5FRA ; 2.0 ; CBM40_CPF0721-6'SL 2YFU ; 1.65 ; CBM62 FROM CLOSTRIDIUM THERMOCELLUM XYL5A 2YFZ ; 1.8 ; CBM62 FROM CLOSTRIDIUM THERMOCELLUM XYL5A 2YG0 ; 1.8 ; CBM62 FROM CLOSTRIDIUM THERMOCELLUM XYL5A 2YB7 ; 1.7 ; CBM62 in complex with 6-alpha-D-Galactosyl-mannotriose 1UXX ; 1.6 ; CBM6ct from Clostridium thermocellum in complex with xylopentaose 7UWV ; 1.7 ; CBM74 from Ruminococcus bromii Sas6 with maltodecaose 7JUO ; 2.2 ; CBP bromodomain complexed with YF2-23 5I8B ; 1.5218 ; CBP in complex with Cpd23 ((R)-6-(3-(benzyloxy)phenyl)-4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one) 5I8G ; 1.41 ; CBP in complex with Cpd637 ((R)-4-methyl-6-(1-methyl-3-(1-methyl-1H-pyrazol-4-yl)-1H-indazol-5-yl)-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one) 7WX2 ; 1.24 ; CBP-BrD complexed with NEO2734 1PBJ ; 1.4 ; CBS domain protein 2RIH ; 2.1 ; CBS domain protein PAE2072 from Pyrobaculum aerophilum 2RIF ; 2.35 ; CBS domain protein PAE2072 from Pyrobaculum aerophilum complexed with AMP 5G5R ; 2.4 ; CBS domain tandem of site-2 protease from Archaeoglobus fulgidus in complex with llama Nanobody - apo form 5G5X ; 2.8 ; CBS domain tandem of site-2 protease from Archaeoglobus fulgidus in complex with llama Nanobody - nucleotide-bound form 5T1I ; 1.6 ; CBX3 chromo shadow domain in complex with histone H3 peptide 7QWC ; 1.69 ; CC-Type1-(UbUc)4 7QWB ; 1.64 ; CC-Type2-(Ue)4 7QWD ; 1.35 ; CC-Type2-(Ug)4 7QWE ; 1.34 ; CC-Type2-(Ug)4 7QWA ; 1.54 ; CC-Type2-(UgUe)4 6EI6 ; 2.461 ; CC2D1B coordinates ESRCT-III activity during the mitotic reformation of the nuclear envelope 2BKA ; 1.7 ; CC3(TIP30)Crystal Structure 1YMZ ; ; CC45, An Artificial WW Domain Designed Using Statistical Coupling Analysis 7RU5 ; 3.6 ; CC6.30 fragment antigen binding in complex with SARS-CoV-2-6P-Mut7 S protein (non-uniform refinement) 7RU8 ; 3.8 ; CC6.30 fragment antigen binding in complex with SARS-CoV-2-6P-Mut7 S protein (RBD/Fv local refinement) 7RU3 ; 3.3 ; CC6.33 IgG in complex with SARS-CoV-2-6P-Mut7 S protein (non-uniform refinement) 7RU4 ; 3.3 ; CC6.33 IgG in complex with SARS-CoV-2-6P-Mut7 S protein (RBD/Fv local refinement) 7YNF ; 2.5 ; CCA-bound alpha-synuclein fibrils 7AW9 ; 3.5 ; CCAAT-binding complex and HapX bound to Aspergillus fumigatus cccA DNA 7AW7 ; 3.4 ; CCAAT-binding complex and HapX bound to Aspergillus nidulans cccA DNA 6Y36 ; 2.3 ; CCAAT-binding complex from Aspergillus fumigatus with cccA DNA 6Y35 ; 2.6 ; CCAAT-binding complex from Aspergillus fumigatus with cycA DNA 4G91 ; 1.9 ; CCAAT-binding complex from Aspergillus nidulans 6Y37 ; 2.2 ; CCAAT-binding complex from Aspergillus nidulans with cccA DNA 4G92 ; 1.8 ; CCAAT-binding complex from Aspergillus nidulans with DNA 7SIY ; 1.48 ; cCBL TKB domain in complex with pZAP70 peptide 1ZF1 ; 1.35 ; CCC A-DNA 3VOH ; 2.4 ; CcCel6A catalytic domain complexed with cellobiose 3VOI ; 2.0 ; CcCel6A catalytic domain complexed with p-nitrophenyl beta-D-cellotrioside 3VOJ ; 2.29 ; CcCel6A catalytic domain mutant D164A 3A9B ; 1.2 ; CcCel6C, a glycoside hydrolase family 6 enzyme, complexed with cellobiose 3ABX ; 1.4 ; CcCel6C, a glycoside hydrolase family 6 enzyme, complexed with p-nitrophenyl beta-D-cellotrioside 3TCJ ; 1.93 ; CcdB dimer from V. fisheri in complex with one C-terminal domain of F-plasmid CcdA 3HPW ; 1.452 ; CcdB dimer in complex with one C-terminal CcdA domain 3G7Z ; 2.351 ; CcdB dimer in complex with two C-terminal CcdA domains 1VUB ; 2.6 ; CCDB, A TOPOISOMERASE POISON FROM E. COLI 2VUB ; 2.45 ; CCDB, A TOPOISOMERASE POISON FROM E. COLI 3VUB ; 1.4 ; CCDB, A TOPOISOMERASE POISON FROM E. COLI 4VUB ; 1.45 ; CCDB, A TOPOISOMERASE POISON FROM ESCHERICHIA COLI 1X75 ; 2.8 ; CcdB:GyrA14 complex 3JSC ; 1.5 ; CcdBVfi-FormI-pH7.0 3JRZ ; 1.7 ; CcdBVfi-FormII-pH5.6 4ELY ; 1.932 ; CCDBVFI:GYRA14EC 4ELZ ; 2.2 ; CCDBVFI:GYRA14VFI 1ZEX ; 1.65 ; CCG A-DNA 8JLX ; 3.0 ; CCHFV envelope protein Gc in complex with Gc13 8JLW ; 3.0 ; CCHFV envelope protein Gc in complex with Gc8 7L7R ; 2.1 ; CCHFV Gc prefusion monomer bound to ADI-36121 and ADI-37801 Fabs 6VKF ; 2.524 ; CCHFV GP38 (IbAr10200) 8DC5 ; 3.21 ; CCHFV GP38 Hoti/Kosovo 8DCY ; 3.62 ; CCHFV GP38 Hoti/Kosovo bound with 13G8 Fab 8DDK ; 3.86 ; CCHFV GP38 Hoti/Kosovo bound with CC5_17 4Y5O ; 2.35 ; CCM2 HHD in complex with MEKK3 NPB1 4WJ7 ; 2.753 ; CCM2 PTB domain in complex with KRIT1 NPxY/F3 4TVQ ; 2.8 ; CCM3 in complex with CCM2 LD-like motif 4LIW ; 1.6 ; CcmK1 Carboxysome Shell Protein from Synechocystis PCC6803, L11K Point Mutant 3SSS ; 2.05 ; CcmK1 with residues 103-113 deleted 3SSQ ; 2.2 ; CcmK2 - form 1 dodecamer 3SSR ; 1.6 ; CcmK2 dodecamer - form 2 4N8F ; 2.0 ; CcmL from Thermosynechococcus elongatus BP-1 7US9 ; 3.8 ; CCoV-HuPn-2018 S in the proximal conformation (local refinement of domain 0) 7USB ; 3.1 ; CCoV-HuPn-2018 S in the swung out conformation (local refinement of domain 0) 4XV4 ; 1.69 ; CcP gateless cavity 4XV5 ; 1.65 ; CcP gateless cavity 4XV6 ; 1.55 ; CcP gateless cavity 4XV7 ; 1.62 ; CcP gateless cavity 4XV8 ; 1.57 ; CcP gateless cavity 5U5U ; 1.33 ; CcP gateless cavity 5U5V ; 1.222 ; CcP gateless cavity 5U5W ; 1.29 ; CcP gateless cavity 5U5X ; 1.55 ; CcP gateless cavity 5U5Y ; 1.3 ; CcP gateless cavity 5U5Z ; 1.26 ; CcP gateless cavity 5U60 ; 1.5 ; CcP gateless cavity 5U61 ; 1.222 ; CcP gateless cavity 5UG2 ; 1.34 ; CcP gateless cavity 3HQ8 ; 2.4 ; CcpA from G. sulfurreducens S134P/V135K variant 3HQ7 ; 2.31 ; CcpA from G. sulfurreducens, G94K/K97Q/R100I variant 3HQ9 ; 1.52 ; CcpA from G. sulfurreducens, S134P variant 3OQO ; 2.97 ; Ccpa-hpr-ser46p-syn cre 7Y8Z ; 1.6 ; CcpS 7Y86 ; 1.5 ; CcpS mutant 2RLL ; ; CCR5 Nt(7-15) 2MZX ; ; CCR5-ECL2 helical structure, residues Q186-T195 8SH9 ; 2.7 ; CCT G beta 5 complex best PhLP1 class 8SHO ; 3.0 ; CCT G beta 5 complex close state 11 8SFF ; 3.2 ; CCT G beta 5 complex closed state 0 8SG8 ; 3.0 ; CCT G beta 5 complex closed state 1 8SHD ; 2.9 ; CCT G beta 5 complex closed state 10 8SHQ ; 2.9 ; CCT G beta 5 complex closed state 12 8SHP ; 3.0 ; CCT G beta 5 complex closed state 13 8SHT ; 3.0 ; CCT G beta 5 complex closed state 14 8SGL ; 2.9 ; CCT G beta 5 complex closed state 15 8SGC ; 2.9 ; CCT G beta 5 complex closed state 2 8SG9 ; 2.9 ; CCT G beta 5 complex closed state 3 8SHL ; 3.0 ; CCT G beta 5 complex closed state 5 8SHG ; 2.8 ; CCT G beta 5 complex closed state 9 8SGQ ; 3.7 ; CCT G beta 5 complex intermediate state 8SHA ; 3.0 ; CCT-G beta 5 complex closed state 4 8SHN ; 2.8 ; CCT-G beta 5 complex closed state 6 8SHF ; 3.0 ; CCT-G beta 5 complex closed state 7 8SHE ; 2.8 ; CCT-G beta 5 complex closed state 8 5MHQ ; 1.3 ; CCT068127 in complex with CDK2 8T8O ; 4.0 ; CCW Flagellar Switch Complex - FliF, FliG, FliM, and FliN forming 34-mer C-ring from Salmonella 4LYC ; 1.35 ; Cd ions within a lysoyzme single crystal 1G3W ; 2.4 ; CD-CYS102SER DTXR 7X4G ; 2.6 ; CD-NTase ClCdnE in complex with substrate UTP 7X4P ; 1.6 ; CD-NTase EfCdnE in complex with intermediate pppUpU 8HYK ; 2.021 ; CD-NTase EfCdnE in complex with intermediate pppU[2'-5']p 7UTW ; 1.33 ; Cd-substituted Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 6TSI ; 2.38 ; cd1 nitrite reductase NirS with bound dihydro-heme d1 1CD1 ; 2.67 ; CD1(MOUSE) ANTIGEN PRESENTING MOLECULE 2O7N ; 1.75 ; CD11A (LFA1) I-domain complexed with 7A-[(4-cyanophenyl)methyl]-6-(3,5-dichlorophenyl)-5-oxo-2,3,5,7A-tetrahydro-1H-pyrrolo[1,2-A]pyrrole-7-carbonitrile 2ICA ; 1.56 ; CD11a (LFA1) I-domain complexed with BMS-587101 aka 5-[(5S, 9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro [4.4]non-7-yl]methyl]-3-thiophenecarboxylicacid 3M6F ; 1.85 ; CD11A I-domain complexed with 6-((5S,9R)-9-(4-CYANOPHENYL)-3-(3,5-DICHLOROPHENYL)-1-METHYL-2,4-DIOXO-1,3,7- TRIAZASPIRO[4.4]NON-7-YL)NICOTINIC ACID 1ZOO ; 3.0 ; CD11A I-DOMAIN WITH BOUND MAGNESIUM ION 1ZOP ; 2.0 ; CD11A I-DOMAIN WITH BOUND MAGNESIUM ION 1LFA ; 1.8 ; CD11A I-DOMAIN WITH BOUND MN++ 1ZON ; 2.0 ; CD11A I-DOMAIN WITHOUT BOUND CATION 6LYN ; 2.776 ; CD146 D4-D5/AA98 Fab 4X6E ; 2.1 ; CD1a binary complex with lysophosphatidylcholine 4X6F ; 1.91 ; CD1a binary complex with sphingomyelin 4X6D ; 2.98 ; CD1a ternary complex with endogenous lipids and BK6 TCR 4X6C ; 2.8 ; CD1a ternary complex with lysophosphatidylcholine and BK6 TCR 7KOZ ; 2.25 ; CD1a-36:2 SM binary complex 7KP0 ; 2.4 ; CD1a-42:1 SM binary complex 7KP1 ; 2.02 ; CD1a-42:2 SM binary complex 7RYO ; 3.0 ; CD1a-dideoxymycobactin-gdTCR complex 7RYM ; 3.2 ; CD1a-endo-gdTCR complex 6NUX ; 2.2 ; CD1a-lipid binary complex 7SH4 ; 2.0 ; CD1a-phosphatidylglycerol binary structure 7RYN ; 2.7 ; CD1a-sulfatide-gdTCR complex 1GZP ; 2.8 ; CD1b in complex with GM2 ganglioside 1GZQ ; 2.26 ; CD1b in complex with Phophatidylinositol 3OV6 ; 2.502 ; CD1c in complex with MPM (mannosyl-beta1-phosphomycoketide) 6C15 ; 3.21 ; CD1c in complex with phosphatidylcholine 4ONO ; 2.705 ; CD1c in complex with PM (phosphomycoketide) 7MX4 ; 1.73 ; CD1c with antigen analogue 1 7MXF ; 2.0 ; CD1c with antigen analogue 2 7MXH ; 2.11 ; CD1c with antigen analogue 3 1CDC ; 2.0 ; CD2, N-TERMINAL DOMAIN (1-99), TRUNCATED FORM 5VL3 ; 3.1 ; CD22 d1-d3 in complex with therapeutic Fab Epratuzumab 7O52 ; 2.41 ; CD22 d6-d7 in complex with Fab m971 2H2T ; 1.3 ; CD23 Lectin domain, Calcium 2+-bound 7F9W ; 3.2 ; CD25 in complex with Fab 1L2Z ; ; CD2BP2-GYF domain in complex with proline-rich CD2 tail segment peptide 1XMW ; ; CD3 EPSILON AND DELTA ECTODOMAIN FRAGMENT COMPLEX IN SINGLE-CHAIN CONSTRUCT 1JBJ ; ; CD3 Epsilon and gamma Ectodomain Fragment Complex in Single-Chain Construct 3U4H ; 1.878 ; CD38 structure-based inhibitor design using the N1-cyclic inosine 5'-diphosphate ribose template 3U4I ; 2.118 ; CD38 structure-based inhibitor design using the N1-cyclic inosine 5'-diphosphate ribose template 3B71 ; 2.82 ; CD4 endocytosis motif bound to the Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 6OPQ ; 3.8 ; CD4- and 17-bound HIV-1 Env B41 SOSIP frozen with LMNG 6OPN ; 3.5 ; CD4- and 17-bound HIV-1 Env B41 SOSIP in complex with small molecule GO35 5SC6 ; 1.327 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with POB0019 5SC7 ; 1.197 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with POB0120 5SBP ; 1.275 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z1229798311 5SBK ; 1.23 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z1258992717 5SBR ; 1.286 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z1259341012 5SBM ; 1.14 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z1267885772 5SBL ; 1.198 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z126932614 5SBY ; 1.217 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z1878656559 5SC2 ; 1.208 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z190780124 5SBW ; 1.148 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z2856434874 5SBO ; 1.274 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z2856434878 5SC0 ; 1.192 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z2856434899 5SBV ; 1.109 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z31721798 5SBS ; 1.024 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z340495298 5SC3 ; 1.24 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z422471910 5SC1 ; 1.165 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z431807512 5SBT ; 1.16 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z445856640 5SBQ ; 0.988 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z44592329 5SBX ; 1.051 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z53825479 5SC5 ; 1.171 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z56827661 5SBN ; 1.181 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z57040482 5SBZ ; 1.17 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z768399682 5SBU ; 1.044 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z839988838 5SC4 ; 1.165 ; CD44 PanDDA analysis group deposition -- The hyaluronan-binding domain of CD44 in complex with Z927412236 5IWL ; 2.8 ; CD47-diabody complex 7BBJ ; 2.72 ; CD73 in complex with the humanized antagonistic antibody mAb19 2ARJ ; 2.88 ; CD8alpha-alpha in complex with YTS 105.18 Fab 6JMR ; 4.1 ; CD98hc extracellular domain bound to HBJ127 Fab and MEM-108 Fab 6HVL ; 2.8 ; CdaA complex with c-di-AMP and AMP 8C4R ; 1.55 ; CdaA-adenine complex 8C4M ; 1.51 ; CdaA-Adenosine complex 8C4N ; 1.75 ; CdaA-AMP complex 8C4Q ; 1.45 ; CdaA-Apo 6HVN ; 2.234 ; CdaA-APO Y187A Mutant 8C4O ; 1.97 ; CdaA-ATP complex 8C4J ; 1.83 ; CdaA-compound 4 complex 8C4P ; 1.2 ; CdaA-compound 7 complex 6SBW ; 2.24 ; CdbA Form One 6SBX ; 2.33 ; CdbA Form Two 6XD4 ; 2.1 ; CDC-like protein 3KAE ; 2.298 ; Cdc27 N-terminus 4MDK ; 2.6095 ; Cdc34-ubiquitin-CC0651 complex 7M2K ; 2.47 ; CDC34A-Ubiquitin-2ab inhibitor complex 5UPL ; 3.003 ; CDC42 binds PAK4 via an extended GTPase-effector inteface - 2 peptide: PAK4FL, CDC42 - UNREFINED 5UPK ; 2.4 ; CDC42 binds PAK4 via an extended GTPase-effector interface - 3 peptide: PAK4cat, PAK4-N45, CDC42 2QRZ ; 2.4 ; Cdc42 bound to GMP-PCP: Induced Fit by Effector is Required 1E0A ; ; Cdc42 complexed with the GTPase binding domain of p21 activated kinase 1AJE ; ; CDC42 FROM HUMAN, NMR, 20 STRUCTURES 2KB0 ; ; Cdc42(T35A) 1CF4 ; ; CDC42/ACK GTPASE-BINDING DOMAIN COMPLEX 1AN0 ; 2.8 ; CDC42HS-GDP COMPLEX 6OMB ; 3.7 ; Cdc48 Hexamer (Subunits A to E) with substrate bound to the central pore 6OPC ; 3.7 ; Cdc48 Hexamer in a complex with substrate and Shp1(Ubx Domain) 6CHS ; 4.3 ; Cdc48-Npl4 complex in the presence of ATP-gamma-S 6OAA ; 4.1 ; Cdc48-Npl4 complex processing poly-ubiquitinated substrate in the presence of ADP-BeFx, state 1 6OAB ; 3.6 ; Cdc48-Npl4 complex processing poly-ubiquitinated substrate in the presence of ADP-BeFx, state 2 6OA9 ; 3.9 ; Cdc48-Npl4 complex processing poly-ubiquitinated substrate in the presence of ATP 1GGW ; ; CDC4P FROM SCHIZOSACCHAROMYCES POMBE 6YA8 ; 1.79 ; Cdc7-Dbf4 bound to ADP-BeF3 6YA7 ; 1.67 ; Cdc7-Dbf4 bound to an Mcm2-S40 derived bivalent substrate 7MEA ; 1.73 ; CDD-1 beta-lactamase in imidazole/MPD 1 minute avibactam complex 7MEF ; 1.9 ; CDD-1 beta-lactamase in imidazole/MPD 10 minute avibactam complex 7MEB ; 1.8 ; CDD-1 beta-lactamase in imidazole/MPD 2 minute avibactam complex 7MEG ; 1.8 ; CDD-1 beta-lactamase in imidazole/MPD 30 minute avibactam complex 7ME9 ; 1.7 ; CDD-1 beta-lactamase in imidazole/MPD 30 seconds avibactam complex 7MEC ; 1.73 ; CDD-1 beta-lactamase in imidazole/MPD 4 minute avibactam complex 7MED ; 1.78 ; CDD-1 beta-lactamase in imidazole/MPD 5 minute avibactam complex 7MEE ; 1.88 ; CDD-1 beta-lactamase in imidazole/MPD 6 minute avibactam complex 7MEH ; 1.8 ; CDD-1 beta-lactamase in imidazole/MPD 60 minute avibactam complex 5J5V ; 2.75 ; CdiA-CT from uropathogenic Escherichia coli in complex with cognate immunity protein and CysK 5J43 ; 2.7 ; CdiA-CT from uropathogenic Escherichia coli in complex with CysK 5J4A ; 2.004 ; CdiA-CT toxin from Burkholderia pseudomallei E479 in complex with cognate CdiI immunity protein 4G6V ; 2.64 ; CdiA-CT/CdiI toxin and immunity complex from Burkholderia pseudomallei 4NTQ ; 2.4 ; CdiA-CT/CdiI toxin and immunity complex from Enterobacter cloacae 4G6U ; 2.353 ; CdiA-CT/CdiI toxin and immunity complex from Escherichia coli 4ZQU ; 2.09 ; CdiA-CT/CdiI toxin and immunity complex from Yersinia pseudotuberculosis 6WIL ; 2.4 ; CdiB from Acinetobacter baumannii 6WIM ; 2.6 ; CdiB from Escherichia coli 4ZQW ; 2.001 ; CdiI from Escherichia coli EC869 in complex with a macrocyclic peptide 4ZQV ; 1.803 ; CdiI Immunity protein from Yersinia kristensenii 3EZR ; 1.9 ; CDK-2 with indazole inhibitor 17 bound at its active site 3EZV ; 1.99 ; CDK-2 with indazole inhibitor 9 bound at its active site 3F5X ; 2.4 ; CDK-2-Cyclin complex with indazole inhibitor 9 bound at its active site 4YC6 ; 2.6 ; CDK1/CKS1 6GU7 ; 2.75 ; CDK1/Cks2 in complex with AZD5438 6GU6 ; 2.33 ; CDK1/Cks2 in complex with Dinaciclib 6GU3 ; 2.65 ; CDK1/CyclinB/Cks2 in complex with AZD5438 6GU4 ; 2.73 ; CDK1/CyclinB/Cks2 in complex with CGP74514A 6GU2 ; 2.0 ; CDK1/CyclinB/Cks2 in complex with Flavopiridol 4YC3 ; 2.7 ; CDK1/CyclinB1/CKS2 Apo 5LQF ; 2.06 ; CDK1/CyclinB1/CKS2 in complex with NU6102 7UKZ ; 2.6 ; CDK11 in complex with small molecule inhibitor OTS964 1R78 ; 2.0 ; CDK2 complex with a 4-alkynyl oxindole inhibitor 1KE5 ; 2.2 ; CDK2 complexed with N-methyl-4-{[(2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]amino}benzenesulfonamide 7ZPC ; 1.4 ; CDK2 in complex 9K-DOS 3PXQ ; 1.9 ; CDK2 in complex with 3 molecules of 8-anilino-1-naphthalene sulfonate 4ACM ; 1.63 ; CDK2 IN COMPLEX WITH 3-AMINO-6-(4-{[2-(DIMETHYLAMINO)ETHYL]SULFAMOYL}-PHENYL)-N-PYRIDIN-3-YLPYRAZINE-2-CARBOXAMIDE 1H01 ; 1.79 ; CDK2 in complex with a disubstituted 2, 4-bis anilino pyrimidine CDK4 inhibitor 1H08 ; 1.8 ; CDK2 in complex with a disubstituted 2, 4-bis anilino pyrimidine CDK4 inhibitor 1H00 ; 1.6 ; CDK2 in complex with a disubstituted 4, 6-bis anilino pyrimidine CDK4 inhibitor 1H07 ; 1.85 ; CDK2 in complex with a disubstituted 4, 6-bis anilino pyrimidine CDK4 inhibitor 1V1K ; 2.31 ; CDK2 IN COMPLEX WITH A DISUBSTITUTED 4, 6-BIS ANILINO PYRIMIDINE CDK4 INHIBITOR 4D1Z ; 1.851 ; CDK2 in complex with a Luciferin derivate 2VV9 ; 1.9 ; CDK2 in complex with an imidazole piperazine 1URW ; 1.6 ; CDK2 IN COMPLEX WITH AN IMIDAZO[1,2-b]PYRIDAZINE 6GUH ; 1.5 ; CDK2 in complex with AZD5438 6GUK ; 1.3 ; CDK2 in complex with CGP74514A 7RA5 ; 1.67 ; CDK2 IN COMPLEX WITH COMPOUND 4 6OQI ; 2.0 ; CDK2 in complex with Cpd14 (5-fluoro-4-(4-methyl-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepin-3-yl)-N-(5-(4-methylpiperazin-1-yl)pyridin-2-yl)pyrimidin-2-amine) 4KD1 ; 1.7 ; CDK2 in complex with Dinaciclib 6Q3C ; 1.29 ; CDK2 in complex with FragLite1 6Q4B ; 1.12 ; CDK2 in complex with FragLite13 6Q4A ; 1.13 ; CDK2 in complex with FragLite14 6Q4C ; 1.73 ; CDK2 in complex with FragLite16 6Q3B ; 1.11 ; CDK2 in complex with FragLite2 6Q3F ; 1.18 ; CDK2 in complex with FragLite2 6Q4D ; 1.07 ; CDK2 in complex with FragLite31 6Q4F ; 1.21 ; CDK2 in complex with FragLite32 6Q4E ; 1.06 ; CDK2 in complex with FragLite33 6Q4J ; 1.05 ; CDK2 in complex with FragLite34 6Q4I ; 1.11 ; CDK2 in complex with FragLite35 6Q4H ; 1.0 ; CDK2 in complex with FragLite36 6Q4G ; 0.98 ; CDK2 in complex with FragLite37 6Q4K ; 1.06 ; CDK2 in complex with FragLite38 6Q49 ; 1.0 ; CDK2 in complex with FragLite6 6Q48 ; 1.03 ; CDK2 in complex with FragLite7 3QL8 ; 1.9 ; CDK2 in complex with inhibitor JWS-6-260 3QZF ; 2.0 ; CDK2 in complex with inhibitor JWS-6-52 3QZG ; 1.75 ; CDK2 in complex with inhibitor JWS-6-76 3PXY ; 1.8 ; CDK2 in complex with inhibitor JWS648 3R1Q ; 1.85 ; CDK2 in complex with inhibitor KVR-1-102 3QZH ; 1.95 ; CDK2 in complex with inhibitor KVR-1-124 3QZI ; 1.75 ; CDK2 in complex with inhibitor KVR-1-126 3R1S ; 1.8 ; CDK2 in complex with inhibitor KVR-1-127 3R1Y ; 1.8 ; CDK2 in complex with inhibitor KVR-1-134 3R28 ; 1.75 ; CDK2 in complex with inhibitor KVR-1-140 3QWJ ; 1.75 ; CDK2 in complex with inhibitor KVR-1-142 3QWK ; 1.85 ; CDK2 in complex with inhibitor KVR-1-150 3ROY ; 1.75 ; CDK2 in complex with inhibitor KVR-1-154 3RPO ; 1.75 ; CDK2 in complex with inhibitor KVR-1-156 3R6X ; 1.75 ; CDK2 in complex with inhibitor KVR-1-158 3RAI ; 1.7 ; CDK2 in complex with inhibitor KVR-1-160 3R71 ; 1.75 ; CDK2 in complex with inhibitor KVR-1-162 3R73 ; 1.7 ; CDK2 in complex with inhibitor KVR-1-164 3QX2 ; 1.75 ; CDK2 in complex with inhibitor KVR-1-190 3R7E ; 1.9 ; CDK2 in complex with inhibitor KVR-1-67 3R7I ; 1.85 ; CDK2 in complex with inhibitor KVR-1-74 3R7U ; 1.75 ; CDK2 in complex with inhibitor KVR-1-75 3QX4 ; 1.92 ; CDK2 in complex with inhibitor KVR-1-78 3QXO ; 1.75 ; CDK2 in complex with inhibitor KVR-1-84 3R7V ; 1.95 ; CDK2 in complex with inhibitor KVR-1-9 3RM7 ; 1.85 ; CDK2 in complex with inhibitor KVR-1-91 3RM6 ; 1.6 ; CDK2 in complex with inhibitor KVR-2-80 3R7Y ; 1.9 ; CDK2 in complex with inhibitor KVR-2-88 3R83 ; 1.75 ; CDK2 in complex with inhibitor KVR-2-92 3QQF ; 1.75 ; CDK2 in complex with inhibitor L1 3QQJ ; 1.7 ; CDK2 in complex with inhibitor L2 3QQH ; 1.87 ; CDK2 in complex with inhibitor L2-2 3QQG ; 1.9 ; CDK2 in complex with inhibitor L2-5 3QQL ; 1.85 ; CDK2 in complex with inhibitor L3 3R8M ; 1.8 ; CDK2 in complex with inhibitor L3-3 3R8L ; 1.9 ; CDK2 in complex with inhibitor L3-4 3QQK ; 1.86 ; CDK2 in complex with inhibitor L4 3RJC ; 1.85 ; CDK2 in complex with inhibitor L4-12 3S00 ; 1.8 ; CDK2 in complex with inhibitor L4-14 3QRU ; 1.95 ; CDK2 in complex with inhibitor NSK-MC1-12 3R8P ; 1.8 ; CDK2 in complex with inhibitor NSK-MC1-6 3QRT ; 1.75 ; CDK2 in complex with inhibitor NSK-MC2-55 3R8U ; 2.0 ; CDK2 in complex with inhibitor RC-1-132 3R8V ; 1.9 ; CDK2 in complex with inhibitor RC-1-135 3R8Z ; 1.85 ; CDK2 in complex with inhibitor RC-1-136 3QTQ ; 1.8 ; CDK2 in complex with inhibitor RC-1-137 3S0O ; 2.0 ; CDK2 in complex with inhibitor RC-1-138 3QTR ; 1.85 ; CDK2 in complex with inhibitor RC-1-148 3QTS ; 1.9 ; CDK2 in complex with inhibitor RC-2-12 3QTW ; 1.85 ; CDK2 in complex with inhibitor RC-2-13 3QTU ; 1.82 ; CDK2 in complex with inhibitor RC-2-132 3R9D ; 1.95 ; CDK2 in complex with inhibitor RC-2-135 3R9H ; 2.1 ; CDK2 in complex with inhibitor RC-2-142 3R9O ; 1.9 ; CDK2 in complex with inhibitor RC-2-143 3R9N ; 1.75 ; CDK2 in complex with inhibitor RC-2-21 3RAH ; 1.75 ; CDK2 in complex with inhibitor RC-2-22 3RZB ; 1.9 ; CDK2 in complex with inhibitor RC-2-23 3RAK ; 1.75 ; CDK2 in complex with inhibitor RC-2-32 3RMF ; 1.75 ; CDK2 in complex with inhibitor RC-2-33 3RAL ; 1.75 ; CDK2 in complex with inhibitor RC-2-34 3QTX ; 1.95 ; CDK2 in complex with inhibitor RC-2-35 3QTZ ; 2.0 ; CDK2 in complex with inhibitor RC-2-36 3QU0 ; 1.95 ; CDK2 in complex with inhibitor RC-2-38 3S1H ; 1.75 ; CDK2 in complex with inhibitor RC-2-39 3RPY ; 1.9 ; CDK2 in complex with inhibitor RC-2-40 3RPR ; 1.75 ; CDK2 in complex with inhibitor RC-2-49 3RK7 ; 1.8 ; CDK2 in complex with inhibitor RC-2-71 3RK5 ; 2.0 ; CDK2 in complex with inhibitor RC-2-72 3RKB ; 2.0 ; CDK2 in complex with inhibitor RC-2-73 3RK9 ; 1.85 ; CDK2 in complex with inhibitor RC-2-74 3RPV ; 1.8 ; CDK2 in complex with inhibitor RC-2-88 3RNI ; 1.95 ; CDK2 in complex with inhibitor RC-3-86 3QXP ; 1.75 ; CDK2 in complex with inhibitor RC-3-89 4GCJ ; 1.42 ; CDK2 in complex with inhibitor RC-3-89 3SQQ ; 1.85 ; CDK2 in complex with inhibitor RC-3-96 3PY0 ; 1.75 ; CDK2 in complex with inhibitor SU9516 3UNJ ; 1.9001 ; CDK2 in complex with inhibitor YL1-038-31 3UNK ; 2.1 ; CDK2 in complex with inhibitor YL5-083 4D1X ; 2.1 ; CDK2 in complex with Luciferin 3TIZ ; 2.02 ; CDK2 in complex with NSC 111848 4EZ3 ; 2.0 ; CDK2 in complex with NSC 134199 3TIY ; 1.84 ; CDK2 in complex with NSC 35676 4ERW ; 2.0 ; CDK2 in complex with staurosporine 4EZ7 ; 2.49 ; CDK2 in complex with staurosporine and 2 molecules of 8-anilino-1-naphthalene sulfonic acid 3TI1 ; 1.99 ; CDK2 in complex with SUNITINIB 2W17 ; 2.15 ; CDK2 in complex with the imidazole pyrimidine amide, compound (S)-8b 3PXF ; 1.8 ; CDK2 in complex with two molecules of 8-anilino-1-naphthalene sulfonate 8FP5 ; 1.7 ; CDK2 liganded with ATP and Mg2+ 7UG1 ; 1.84 ; CDK2 liganded with para chloro ANS 3PXZ ; 1.7 ; CDK2 ternary complex with JWS648 and ANS 3PY1 ; 2.05 ; CDK2 ternary complex with SU9516 and ANS 7M2F ; 1.632 ; CDK2 with compound 14 inhibitor with carboxylate 4RJ3 ; 1.63 ; CDK2 with EGFR inhibitor compound 8 6YL6 ; 1.7 ; Cdk2(F80C) 6YLK ; 1.65 ; Cdk2(F80C) with Covalent Adduct TK22 at F80C 6YL1 ; 1.66 ; Cdk2(F80C) with Covalent Adduct TK37 at F80C 5OO1 ; 2.0 ; Cdk2(F80C, C177A) covalent adduct with C37 at F80C 5OSM ; 1.77 ; Cdk2(F80C, C177A) with covalent adduct at C80 5OO3 ; 1.73 ; Cdk2(F80C, C177A) with covalent ligand at F80C 5OO0 ; 1.6 ; Cdk2(WT) covalent adduct with D28 at C177 5OSJ ; 1.83 ; Cdk2(WT) with covalent adduct at C177 8VQ4 ; 1.9 ; CDK2-CyclinE1 in complex with allosteric inhibitor I-125A. 8VQ3 ; 1.84 ; CDK2-CyclinE1 in complex with allosteric inhibitor I-198. 2I40 ; 2.8 ; Cdk2/Cyclin A complexed with a thiophene carboxamide inhibitor 5CYI ; 2.0 ; CDK2/Cyclin A covalent complex with 6-(cyclohexylmethoxy)-N-(4-(vinylsulfonyl)phenyl)-9H-purin-2-amine (NU6300) 1H25 ; 2.5 ; CDK2/Cyclin A in complex with an 11-residue recruitment peptide from retinoblastoma-associated protein 5NEV ; 2.97 ; CDK2/Cyclin A in complex with compound 73 6ATH ; 1.82 ; Cdk2/cyclin A/p27-KID-deltaC 7B7S ; 2.54 ; CDK2/cyclin A2 in complex with 3H-pyrazolo[4,3-f]quinoline-based derivative HSD1368 7ACK ; 1.8 ; CDK2/cyclin A2 in complex with an imidazo[1,2-c]pyrimidin-5-one inhibitor 6RIJ ; 2.2 ; CDK2/cyclin A2 in complex with open-ring 5-nitrosopyrimidine inhibitor LC436 6GVA ; 2.15 ; CDK2/cyclin A2 in complex with pyrazolo[4,3-d]pyrimidine inhibitor LGR4455 8B54 ; 2.6 ; CDK2/cyclin A2 in complex with pyrazolo[4,3-d]pyrimidine inhibitor LGR6768 3EOC ; 3.2 ; Cdk2/CyclinA complexed with a imidazo triazin-2-amine 3EID ; 3.15 ; CDK2/CyclinA complexed with a pyrazolopyridazine inhibitor 3EJ1 ; 3.22 ; CDK2/CyclinA complexed with a pyrazolopyridazine inhibitor 1H24 ; 2.5 ; CDK2/CyclinA in complex with a 9 residue recruitment peptide from E2F 1H28 ; 2.8 ; CDK2/CyclinA in complex with an 11-residue recruitment peptide from p107 1H27 ; 2.2 ; CDK2/CyclinA in complex with an 11-residue recruitment peptide from p27 1H26 ; 2.24 ; CDK2/CyclinA in complex with an 11-residue recruitment peptide from p53 6GUE ; 1.99 ; CDK2/CyclinA in complex with AZD5438 6GUF ; 2.65 ; CDK2/CyclinA in complex with CGP74514A 3MY5 ; 2.1 ; CDk2/cyclinA in complex with DRB 6GUB ; 2.52 ; CDK2/CyclinA in complex with Flavopiridol 6GUC ; 2.0 ; CDK2/CyclinA in complex with SU9516 3NUP ; 2.6 ; CDK6 (monomeric) in complex with inhibitor 3NUX ; 2.7 ; CDK6 (monomeric) in complex with inhibitor 4EZ5 ; 2.7 ; CDK6 (monomeric) in complex with inhibitor 6OQL ; 2.707 ; CDK6 in complex with Cpd13 (R)-5-fluoro-4-(4-methyl-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepin-3-yl)-N-(5-(4-methylpiperazin-1-yl)pyridin-2-yl)pyrimidin-2-amine 6OQO ; 1.977 ; CDK6 in complex with Cpd24 N-(5-(6-ethyl-2,6-diazaspiro[3.3]heptan-2-yl)pyridin-2-yl)-5-fluoro-4-(4-methyl-5,6,7,8-tetrahydro-4H-pyrazolo[1,5-a]azepin-3-yl)pyrimidin-2-amine 5IDP ; 2.65 ; CDK8-CYCC IN COMPLEX WITH (3-Amino-1H-indazol-5-yl)-[(S)-2-(4-fluoro-phenyl)-piperidin-1-yl]-methanone 5HBH ; 2.5 ; CDK8-CYCC IN COMPLEX WITH 5-{5-Chloro-4-[1-(2-methoxy-ethyl)-1,8-diaza-spiro[4.5]dec-8-yl]-pyridin-3-yl}-1-methyl-1,3-dihydro-benzo[c]isothiazole 2,2-dioxide 5I5Z ; 2.6 ; CDK8-CYCC IN COMPLEX WITH 8-(1-Methyl-2,2-dioxo-2,3-dihydro-1H-2l6-benzo[c]isothiazol-5-yl)-[1,6]naphthyridine-2-carboxylic acid methylamide 5HBJ ; 3.0 ; CDK8-CYCC IN COMPLEX WITH 8-[2-Amino-3-chloro-5-(1-methyl-1H-indazol-5-yl)-pyridin-4-yl]-2,8-diaza-spiro[4.5]decan-1-one 5FGK ; 2.36 ; CDK8-CYCC IN COMPLEX WITH 8-[3-(3-Amino-1H-indazol-6-yl)-5-chloro- pyridine-4-yl]-2,8-diaza-spiro[4.5]decan-1-one 5HBE ; 2.38 ; CDK8-CYCC IN COMPLEX WITH 8-[3-Chloro-5-(1-methyl-2,2-dioxo-2, 3-dihydro-1H-2l6-benzo[c]isothiazol-5-yl)-pyridin- 4-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-2-one 5XS2 ; 2.04 ; CDK8-CYCC IN COMPLEX WITH COMPOUND 17:3-chloro-4-(4-pyridyl)-1H-pyrrole-2-carboxamide 5IDN ; 2.26 ; CDK8-CYCC IN COMPLEX WITH [(S)-2-(4-Chloro-phenyl)-pyrrolidin-1-yl]-(3-methyl-1H-pyrazolo[3,4-b]pyridin-5-yl)-methanone 5ICP ; 2.18 ; CDK8-CYCC IN COMPLEX WITH [(S)-2-(4-Chloro-phenyl)-pyrrolidin-1-yl]-(5-methyl-imidazo[5,1-b][1,3,4]thiadiazol-2-yl)-methanone 5HNB ; 2.35 ; CDK8-CYCC IN COMPLEX WITH [6-Hydroxy-3-(3-methyl-benzyl)-1H-indazol-5-yl]-((S)-3-hydroxy-pyrrolidin-1-yl)-methanone 5BNJ ; 2.64 ; CDK8/CYCC IN COMPLEX WITH 8-{3-Chloro-5-[4-(1-methyl-1H-pyrazol-4-yl)-phenyl]-pyridin- 4-yl}-2,8-diaza-spiro[4.5]decan-1-one 5HVY ; 2.39 ; CDK8/CYCC IN COMPLEX WITH COMPOUND 20 6T41 ; 2.45 ; CDK8/Cyclin C in complex with N-(4-chlorobenzyl)isoquinolin-4-amine 6TPA ; 2.8 ; CDK8/CyclinC in complex with drug ETP-50775 6Z45 ; 3.37 ; CDK9-Cyclin-T1 complex bound by compound 24 3TN8 ; 2.95 ; CDK9/cyclin T in complex with CAN508 3TNH ; 3.202 ; CDK9/cyclin T in complex with CAN508 8K5R ; 3.751 ; CDK9/cyclin T1 in complex with KB-0742 2GSJ ; 1.73 ; cDNA cloning and 1.75A crystal structure determination of PPL2, a novel chimerolectin from Parkia platycephala seeds exhibiting endochitinolytic activity 2LT4 ; ; CdnLNt from Myxoccoccus xanthus 4YUQ ; 2.8 ; CDPK1 from Eimeria tenella in complex with inhibitor UW1354 4YZB ; 2.9 ; CDPK1 from Eimeria tenella in complex with inhibitor UW1521 4MXA ; 3.0 ; CDPK1 from Neospora caninum in complex with inhibitor RM-1-132 4MX9 ; 3.1 ; CDPK1 from Neospora caninum in complex with inhibitor UW1294 4YGA ; 2.94 ; CDPK1, from Toxoplasma gondii, bound to inhibitory VHH-1B7 8T6J ; 3.5 ; CDPPB-bound inactive mGlu5 4LYB ; 1.21 ; CdS within a lysoyzme single crystal 4QQ0 ; 2.0 ; CdsD - The structural protein of the Type III secretion system of Chlamydia trachomatis: C-terminal domain 6RP4 ; 2.5 ; CDT of SidD, deAMPylase from Legionella pneumophila 6OKS ; 4.2 ; CDTb Double Heptamer Long Form Mask 1 Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6OKT ; 4.2 ; CDTb Double Heptamer Long Form Mask 1 Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6OKU ; 3.8 ; CDTb Double Heptamer Long Form Mask 3 Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6O2M ; 6.3 ; CDTb Double Heptamer Long Form Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6O2O ; 4.53 ; CDTb Double Heptamer Short Form Modeled from Cryo-EM Map Reconstructed using C1 Symmetry 6O2N ; 3.7 ; CDTb Double Heptamer Short Form Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6OKR ; 4.2 ; CDTb Pre-Insertion form Modeled from Cryo-EM Map Reconstructed using C7 Symmetry 6V8W ; 2.8 ; CDYL2 chromodomain in complex with a synthetic peptide 5V84 ; 2.7 ; CECR2 in complex with Cpd6 (6-allyl-N,2-dimethyl-7-oxo-N-(1-(1-phenylethyl)piperidin-4-yl)-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine-4-carboxamide) 1F0H ; ; Cecropin A(1-8)-magainin 2(1-12) A2 in dodecylphosphocholine micelles 1F0F ; ; Cecropin A(1-8)-magainin 2(1-12) gig deletion modification in dodecylphosphocholine micelles 1F0D ; ; Cecropin A(1-8)-magainin 2(1-12) in dodecylphosphocholine micelles 1F0G ; ; Cecropin A(1-8)-magainin 2(1-12) L2 in dodecylphosphocholine micelles 1F0E ; ; Cecropin A(1-8)-magainin 2(1-12) modified gig to P in dodecylphosphocholine micelles 3QWY ; 2.52 ; CED-2 3QWX ; 2.01 ; CED-2 1-174 6THG ; 4.074 ; Cedar Virus attachment glycoprotein (G) in complex with human ephrin-B1 2Z2M ; 2.6 ; Cefditoren-Acylated Penicillin-Binding Protein 2X (PBP2X) from Streptococcus pneumoniae 2ZQA ; 0.95 ; Cefotaxime acyl-intermediate structure of class a beta-lacta Toho-1 E166A/R274N/R276N triple mutant 1CEF ; 2.04 ; CEFOTAXIME COMPLEXED WITH THE STREPTOMYCES R61 DD-PEPTIDASE 2ZQD ; 1.19 ; Ceftazidime acyl-intermediate structure of class a beta-lact Toho-1 E166A/R274N/R276N triple mutant 3N9M ; 2.493 ; ceKDM7A from C.elegans, alone 3PUQ ; 2.25 ; CEKDM7A from C.Elegans, complex with alpha-KG 3PUR ; 2.1 ; CEKDM7A from C.Elegans, complex with D-2-HG 3N9L ; 2.796 ; ceKDM7A from C.elegans, complex with H3K4me3 peptide and NOG 3N9Q ; 2.3 ; ceKDM7A from C.elegans, complex with H3K4me3 peptide, H3K27me2 peptide and NOG 3N9O ; 2.309 ; ceKDM7A from C.elegans, complex with H3K4me3 peptide, H3K9me2 peptide and NOG 3N9P ; 2.388 ; ceKDM7A from C.elegans, complex with H3K4me3K27me2 peptide and NOG 3N9N ; 2.299 ; ceKDM7A from C.elegans, complex with H3K4me3K9me2 peptide and NOG 1QJW ; 1.9 ; CEL6A (Y169F) WITH A NON-HYDROLYSABLE CELLOTETRAOSE 1HGW ; 2.1 ; CEL6A D175A mutant 1HGY ; 2.2 ; CEL6A D221A mutant 1QK0 ; 2.1 ; CEL6A WITH A NON-HYDROLYSABLE CELLOTETRAOSE 3ALP ; 2.804 ; Cell adhesion protein 4DRR ; 1.5 ; Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen 4DRV ; 1.56 ; Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen 4DS0 ; 1.56 ; Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen 2CEA ; 2.75 ; CELL DIVISION PROTEIN FTSH 6RVM ; 2.155 ; Cell division protein FtsZ from Staphylococcus aureus, apo form 7AL1 ; 1.4 ; Cell division protein SepF from Methanobrevibacter smithii 7AL2 ; 2.701 ; Cell division protein SepF from Methanobrevibacter smithii in complex with FtsZ-CTD 6SAT ; 1.6 ; Cell Division Protein SepF in complex with C-terminal domain of FtsZ 6SCP ; 1.8 ; Cell Division Protein SepF in complex with C-terminal domain of FtsZ 6SCQ ; 1.5 ; Cell Division Protein SepF in complex with C-terminal domain of FtsZ 6SCS ; 2.2 ; Cell Division Protein SepF in complex with C-terminal domain of FtsZ 2FPH ; 1.7 ; Cell division protein ylmH from Streptococcus pneumoniae 6GPZ ; 1.6 ; Cell division regulator GpsB in complex with peptide fragment of L. monocytogenes Penicillin Binding Protein PBPA1 6GQA ; 1.9 ; Cell division regulator S. pneumoniae GpsB 6GP7 ; 1.95002 ; Cell division regulator, B. subtilis GpsB, in complex with peptide fragment of Penicillin Binding Protein PBP1A 6GQN ; 1.8 ; Cell division regulator, S. pneumoniae GpsB, in complex with peptide fragment of Penicillin Binding Protein PBP2a 8HD0 ; 3.11 ; Cell divisome sPG hydrolysis machinery FtsEX-EnvC 3R4S ; 2.15 ; Cell entry of botulinum neurotoxin type C is dependent upon interaction with two ganglioside molecules 3R4U ; 2.2 ; Cell entry of botulinum neurotoxin type C is dependent upon interaction with two ganglioside molecules 5FP3 ; 2.05 ; Cell penetrant inhibitors of the JMJD2 (KDM4) and JARID1 (KDM5) families of histone lysine demethylases 5IX9 ; ; Cell surface anchoring domain 7YL4 ; 2.5 ; Cell surface protein YwfG protein (apo form) 7YL6 ; 2.95 ; Cell surface protein YwfG protein complexed with alpha-1,2-mannobiose 7YL5 ; 3.0 ; Cell surface protein YwfG protein complexed with mannose 6D48 ; 1.776 ; Cell Surface Receptor 6D49 ; 1.801 ; Cell Surface Receptor in Complex with Ligand at 1.80-A Resolution 6D4A ; 1.751 ; Cell Surface Receptor with Bound Ligand at 1.75-A Resolution 1JZU ; ; Cell transformation by the myc oncogene activates expression of a lipocalin: analysis of the gene (Q83) and solution structure of its protein product 6HX0 ; 1.59 ; Cell wall binding domain of endolysin from Listeria phage A500. 7AQH ; 2.49 ; Cell wall binding domain of the Staphylococcal phage 2638A endolysin 2XPK ; 2.4 ; Cell-penetrant, nanomolar O-GlcNAcase inhibitors selective against lysosomal hexosaminidases 1EGN ; 1.6 ; CELLOBIOHYDROLASE CEL7A (E223S, A224H, L225V, T226A, D262G) MUTANT 5O59 ; 1.75 ; Cellobiohydrolase Cel7A from T. atroviride 5O5D ; 1.72 ; Cellobiohydrolase Cel7A from T. atroviride 1Q2B ; 1.6 ; CELLOBIOHYDROLASE CEL7A WITH DISULPHIDE BRIDGE ADDED ACROSS EXO-LOOP BY MUTATIONS D241C AND D249C 1Q2E ; 1.75 ; CELLOBIOHYDROLASE CEL7A WITH LOOP DELETION 245-252 AND BOUND NON-HYDROLYSABLE CELLOTETRAOSE 1GPI ; 1.32 ; Cellobiohydrolase Cel7D (CBH 58) from Phanerochaete chrysosporium. Catalytic module at 1.32 Angstrom resolution 5OA5 ; 2.1 ; CELLOBIOHYDROLASE I (CEL7A) FROM HYPOCREA JECORINA WITH IMPROVED THERMAL STABILITY 6GRN ; 1.79 ; CELLOBIOHYDROLASE I (CEL7A) FROM Trichoderma reesei with S-dihydroxypropranolol in the active site 2YOK ; 1.67 ; Cellobiohydrolase I Cel7A from Trichoderma harzianum at 1.7 A resolution 2Y9N ; 2.89 ; Cellobiohydrolase I Cel7A from Trichoderma harzianum at 2.9 A resolution 1BVW ; 1.92 ; CELLOBIOHYDROLASE II (CEL6A) FROM HUMICOLA INSOLENS 2BVW ; 1.7 ; CELLOBIOHYDROLASE II (CEL6A) FROM HUMICOLA INSOLENS IN COMPLEX WITH GLUCOSE AND CELLOTETRAOSE 1CB2 ; 2.0 ; CELLOBIOHYDROLASE II, CATALYTIC DOMAIN, MUTANT Y169F 3VOF ; 1.6 ; Cellobiohydrolase mutant, CcCel6C D102A, in the closed form 4ZLI ; 1.8 ; Cellobionic acid phosphorylase - 3-O-beta-D-glucopyranosyl-alpha-D-glucopyranuronic acid complex 4ZLF ; 1.6 ; Cellobionic acid phosphorylase - cellobionic acid complex 4ZLG ; 1.75 ; Cellobionic acid phosphorylase - gluconic acid complex 4ZLE ; 2.1 ; Cellobionic acid phosphorylase - ligand free structure 6MVJ ; 1.809 ; Cellobiose complex Cel45A from Neurospora crassa OR74A 2A3H ; 2.0 ; CELLOBIOSE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHERANS AT 2.0 A RESOLUTION 1NAA ; 1.8 ; Cellobiose Dehydrogenase Flavoprotein Fragment in Complex with Cellobionolactam 4QI6 ; 3.2 ; Cellobiose dehydrogenase from Myriococcum thermophilum, MtCDH 4QI7 ; 2.9 ; Cellobiose dehydrogenase from Neurospora crassa, NcCDH 3S4A ; 1.99 ; Cellobiose phosphorylase from Cellulomonas uda in complex with cellobiose 3S4B ; 2.4 ; Cellobiose phosphorylase from Cellulomonas uda in complex with glucose 3RSY ; 1.81 ; Cellobiose phosphorylase from Cellulomonas uda in complex with sulfate and glycerol 8A3H ; 0.97 ; Cellobiose-derived imidazole complex of the endoglucanase cel5A from Bacillus agaradhaerens at 0.97 A resolution 8H2K ; 1.37 ; Cellodextrin phosphorylase from Clostridium thermocellum mutant - all cysteine residues were substituted with serines 8H2V ; 1.68 ; Cellodextrin phosphorylase from Clostridium thermocellum mutant - all cysteine residues were substituted with serines 8H2W ; 1.21 ; Cellodextrin phosphorylase from Clostridium thermocellum mutant - all cysteine residues were substituted with serines 8HNU ; 2.28 ; Cellodextrin phosphorylase stable variant from Clostridium thermocellum 2Y6G ; 1.3 ; Cellopentaose binding mutated (X-2 L110F) CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 3AMM ; 1.98 ; Cellotetraose complex of cellulase 12A from thermotoga maritima 3A3H ; 1.64 ; CELLOTRIOSE COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHERANS AT 1.6 A RESOLUTION 2W7X ; 2.07 ; Cellular inhibition of checkpoint kinase 2 and potentiation of cytotoxic drugs by novel Chk2 inhibitor PV1019 2G19 ; 1.7 ; Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2) 2G1M ; 2.2 ; Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2) 4P76 ; 2.9 ; Cellular response to a crystal-forming protein 2CBR ; 2.8 ; CELLULAR RETINOIC ACID BINDING PROTEIN I IN COMPLEX WITH A RETINOBENZOIC ACID (AM80) 3CBS ; 2.0 ; CELLULAR RETINOIC ACID BINDING PROTEIN II IN COMPLEX WITH A SYNTHETIC RETINOIC ACID (RO-12 7310) 2CBS ; 2.1 ; CELLULAR RETINOIC ACID BINDING PROTEIN II IN COMPLEX WITH A SYNTHETIC RETINOIC ACID (RO-13 6307) 7RY5 ; 2.0 ; Cellular Retinoic Acid Binding Protein II with Bound Inhibitor 4-[6-({4-[(fluorosulfonyl)oxy]phenyl}ethynyl)-4,4-dimethyl-3,4-dihydroquinolin-1(2H)-yl]-4-oxobutanoic acid 7JVG ; 1.4 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 1-arachidonoylglycerol 7JZ5 ; 1.567 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 1-arachodonoyl-1-thio-glycerol 7JVY ; 1.3 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 2-arachidonylglyceryl ether 7K3I ; 1.2 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 2-lauroylglycerol 7JWD ; 1.35 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 2-linoleoylglycerol 7JWR ; 1.3 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 2-oleoylglycerol 7JX2 ; 1.8 ; Cellular retinol-binding protein 2 (CRBP2) in complex with 2-palmitoylglycerol 1CEO ; 1.9 ; CELLULASE (CELC) MUTANT WITH GLU 140 REPLACED BY GLN 1CEN ; 2.3 ; CELLULASE (CELC) MUTANT WITH GLU 140 REPLACED BY GLN COMPLEXED WITH CELLOHEXAOSE 1EGZ ; 2.3 ; CELLULASE CEL5 FROM ERWINIA CHRYSANTHEMI, A FAMILY GH 5-2 ENZYME 5WH8 ; 1.57 ; Cellulase Cel5C_n 1TVN ; 1.41 ; Cellulase cel5G from Pseudoalteromonas haloplanktis, A family GH 5-2 enzyme 2X2Y ; 2.35 ; Cellulomonas fimi endo-beta-1,4-mannanase double mutant 3CUF ; 1.67 ; Cellulomonas fimi Xylanase/Cellulase Cex (Cf Xyn10A) in complex with cellobiose-like isofagomine 3CUG ; 1.68 ; Cellulomonas fimi Xylanase/Cellulase Cex (Cf Xyn10A) in complex with cellotetraose-like isofagomine 3CUH ; 1.89 ; Cellulomonas fimi Xylanase/Cellulase Cex (Cf Xyn10A) in complex with cellotriose-like isofagomine 3CUJ ; 1.7 ; Cellulomonas fimi Xylanase/Cellulase Cex (Cf Xyn10A) in complex with sulfur substituted beta-1,4 xylopentaose. 3CUI ; 1.5 ; Cellulomonas fimi Xylanase/Cellulase Cex (Cf Xyn10A) in complex with sulfur substituted beta-1,4 xylotetraose 2XYL ; 1.9 ; CELLULOMONAS FIMI XYLANASE/CELLULASE COMPLEXED WITH 2-DEOXY-2-FLUORO-XYLOBIOSE 2HIS ; 1.84 ; CELLULOMONAS FIMI XYLANASE/CELLULASE DOUBLE MUTANT E127A/H205N WITH COVALENT CELLOBIOSE 3ZYP ; 1.5 ; Cellulose induced protein, Cip1 2WHM ; 1.5 ; Cellvibrio japonicus Man26A E121A and E320G double mutant in complex with mannobiose 2VX6 ; 1.57 ; CELLVIBRIO JAPONICUS MANNANASE CJMAN26C Gal1Man4-BOUND FORM 2VX7 ; 1.8 ; CELLVIBRIO JAPONICUS MANNANASE CJMAN26C MANNOBIOSE-BOUND FORM 2VX5 ; 1.47 ; CELLVIBRIO JAPONICUS MANNANASE CJMAN26C MANNOSE-BOUND FORM 2VX4 ; 1.7 ; CELLVIBRIO JAPONICUS MANNANASE CJMAN26C NATIVE FORM 7S5L ; 1.58 ; Cembrene A synthase from Eleutherobia rubra 1QOU ; 1.9 ; CEN (Centroradialis) protein from Antirrhinum 6MUO ; 3.6 ; CENP-A nucleosome bound by two copies of CENP-C(CD) and one copy CENP-N(NT) 6MUP ; 3.5 ; CENP-A nucleosome bound by two copies of CENP-C(CD) and two copies CENP-N(NT) 6TEM ; 3.9 ; CENP-A nucleosome core particle with 145 base pairs of the Widom 601 sequence by cryo-EM 7ON1 ; 3.35 ; Cenp-A nucleosome in complex with Cenp-C 8HFH ; 1.8 ; CENP-E motor domain in complex with AMPPNP and Mg2+ 7PB4 ; 2.49 ; Cenp-HIK 3-protein complex 2KSM ; ; Central B domain of Rv0899 from Mycobacterium tuberculosis 5AL6 ; 0.8 ; Central Coiled-Coil Domain (CCCD) of Drosophila melanogaster Ana2. A natural, parallel, tetrameric coiled-coil bundle. 5LHW ; 0.91 ; Central Coiled-Coil Domain of Human STIL 1GXE ; ; Central domain of cardiac myosin binding protein C 6JDL ; 2.249 ; Central domain of FleQ H287A mutant in complex with ATPgS and Mg 6JDI ; 1.95 ; Central domain of FleQ H287N mutant in complex with ATPgS and Mg 4XNG ; 3.0 ; Central Domain of Mycoplasma Genitalium Terminal Organelle protein MG491 4GCO ; 1.6 ; Central domain of stress-induced protein-1 (STI-1) from C.elegans 5DGG ; 1.93 ; Central domain of uncharacterized Lpg1148 protein from Legionella pneumophila 6Q9M ; 2.453 ; Central Fibronectin-III array of RIM-binding protein 7Z45 ; 3.5 ; Central part (C10) of bacteriophage SU10 capsid 6ORJ ; 2.37 ; Central spike of phiKZ phage tail 2OBH ; 1.8 ; Centrin-XPC peptide 5I7C ; 2.804 ; Centrosomin-motif 2 (CM2) domain of Drosophila melanogaster Centrosomin (Cnn) 5JO8 ; 1.4 ; CEP104 TOG domain 8IBH ; 2.1 ; Cep57 C-terminal domain 1OB4 ; 0.95 ; Cephaibol A 1OB6 ; 0.89 ; Cephaibol B 1OB7 ; 0.89 ; Cephaibol C 1ODS ; 1.9 ; Cephalosporin C deacetylase from Bacillus subtilis 1ODT ; 1.7 ; cephalosporin C deacetylase mutated, in complex with acetate 2ZQ9 ; 1.07 ; Cephalothin acyl-intermediate structure of class a beta-lactamase Toho-1 E166A/R274N/R276N triple mutant 1CEG ; 1.8 ; CEPHALOTHIN COMPLEXED WITH DD-PEPTIDASE 2ZXC ; 2.2 ; Ceramidase complexed with C2 5EPM ; 1.75 ; Ceratotoxin variant in complex with specific antibody Fab fragment 5V3O ; 3.2 ; Cereblon in complex with DDB1 and CC-220 5HXB ; 3.6 ; Cereblon in complex with DDB1, CC-885, and GSPT1 6XK9 ; 3.64 ; Cereblon in complex with DDB1, CC-90009, and GSPT1 7BQV ; 1.8 ; Cereblon in complex with SALL4 and (S)-5-hydroxythalidomide 7BQU ; 1.9 ; Cereblon in complex with SALL4 and (S)-thalidomide 8C3H ; 1.71 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex a long aspartimide degron peptide 8BC7 ; 1.719 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex an aminoglutarimide degron peptide 8BC6 ; 1.72 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex an aspartimide degron peptide 5OHA ; 1.55 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with 2-Thiohydantoin 7PJK ; 1.99 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with a benzotriazole analog of thalidomide 5OH1 ; 1.7 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Aminoglutethimide 7PSO ; 1.52 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Avadomide (CC-122) 6R18 ; 1.35 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 11a 6R1C ; 1.5 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 12a 8AOP ; 1.944 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 14r 6R1W ; 1.35 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 16b 6R19 ; 1.45 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 20a 8AOQ ; 2.088 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 20a 6R1A ; 1.54 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 20b 6R0S ; 1.55 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 4a and hydrolysis product 6R0U ; 1.7 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 5a and hydrolysis product 6R11 ; 1.75 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 5b 6R1X ; 1.8 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 7a 6R12 ; 1.74 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 7b 6R1K ; 1.94 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 7c 6R1D ; 1.1 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 7d, co-crystallized 6R13 ; 1.65 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with compound 7f 4V31 ; 1.8 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Deoxyuridine 5OH3 ; 2.1 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Ethosuximide 6R0V ; 1.6 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with hydrolysis product of compound 4b 7PS9 ; 1.8 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Iberdomide (CC-220) 5OH7 ; 1.85 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Imidazolidine-2,4-dione (Hydantoin) 4V30 ; 1.85 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Lenalidomide 5OHB ; 1.7 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Piperidin-2-one (Valerolactam) 5OH4 ; 2.3 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Piperidine-2,6-dione (Glutarimide) 4V2Z ; 1.45 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Pomalidomide 5OH2 ; 1.9 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Pyrrolidin-2-one (Butyrolactam) 5OH8 ; 1.95 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Rolipram 8RDP ; 1.76 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with spiro-isoxazol based compound 8a 8RDQ ; 2.03 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with spiro-isoxazol based compound 8b 8RDR ; 1.58 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with spiro-isoxazol based compound 8g 8RDS ; 2.0 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with spiro-isoxazol based compound 8i 8RDT ; 1.95 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with spiro-isoxazol based compound 8j 4V2Y ; 1.4 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thalidomide 5AMH ; 1.2 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thalidomide, trigonal crystal form 5AMI ; 1.75 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thalidomide, Wash I structure 5AMJ ; 1.75 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thalidomide, Wash II structure 4V32 ; 1.9 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thalidomide, Y101F mutant 5OH9 ; 1.65 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with Thiazolidine-2,4-dione 5AMK ; 2.9 ; Cereblon isoform 4 from Magnetospirillum gryphiswaldense in multiple conformations, hexagonal crystal form 8OU4 ; 2.25 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11a 8OU5 ; 2.3 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11b 8OU6 ; 1.84 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11c 8OU7 ; 1.7 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11d 8OU9 ; 1.75 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11e 8OUA ; 1.85 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 11f 8OU3 ; 1.47 ; Cereblon isoform 4 in complex with novel Benzamide-Type Cereblon Binder 8d 8D7Z ; 3.1 ; Cereblon-DDB1 bound to CC-92480 and Ikaros ZF1-2-3 8CVP ; 3.4 ; Cereblon-DDB1 in the Apo form 8D7Y ; 3.4 ; Cereblon-DDB1 in the Apo form with DDB1 in the twisted conformation 8D7W ; 3.1 ; Cereblon~DDB1 bound to CC-92480 with DDB1 in the hinged conformation 8D7U ; 3.1 ; Cereblon~DDB1 bound to CC-92480 with DDB1 in the linear conformation 8D7V ; 3.2 ; Cereblon~DDB1 bound to CC-92480 with DDB1 in the twisted conformation 8D80 ; 3.6 ; Cereblon~DDB1 bound to Iberdomide and Ikaros ZF1-2-3 8D81 ; 3.9 ; Cereblon~DDB1 bound to Pomalidomide 8D7X ; 3.4 ; Cereblon~DDB1 in the Apo form with DDB1 in the hinged conformation 3RQE ; 2.8 ; Cerebral cavernous malformation 3 (CCM3) in complex with paxillin LD1 3RQF ; 2.7 ; Cerebral cavernous malformation 3 (CCM3) in complex with paxillin LD2 3RQG ; 2.5 ; Cerebral cavernous malformation 3 (CCM3) in complex with paxillin LD4 2J5W ; 2.8 ; Ceruloplasmin revisited: structural and functional roles of various metal cation binding sites 3IJ4 ; 3.0 ; Cesium sites in the crystal structure of a functional acid sensing ion channel in the desensitized state 4NTY ; 2.65 ; Cesium sites in the crystal structure of acid-sensing ion channel in complex with snake toxin 5ITF ; 2.51 ; Cetuximab Fab in complex with 2-bromophenylalanine meditope variant 5IR1 ; 2.482 ; Cetuximab Fab in complex with 3-bromophenylalanine meditope variant 5IOP ; 2.499 ; Cetuximab Fab in complex with 4-bromophenylalanine meditope variant 5HYQ ; 2.477 ; Cetuximab Fab in complex with amidated meditope 5ID0 ; 2.48 ; Cetuximab Fab in complex with aminoheptanoic acid-linked meditope 5IVZ ; 2.48 ; Cetuximab Fab in complex with Arg8Cir meditope variant 5IV2 ; 2.481 ; Cetuximab Fab in complex with Arg9Cir meditope variant 5T1L ; 2.48 ; Cetuximab Fab in complex with CQA(Ph)2DLSTRRLKC peptide 5T1K ; 2.48 ; Cetuximab Fab in complex with CQFDA(Ph)2STRRLKC 5ICX ; 2.6 ; Cetuximab Fab in complex with CQFDLSTRRLRCGGSK meditope 5T1M ; 2.53 ; Cetuximab Fab in complex with CQYDLSTRRLKC 5ESQ ; 2.55 ; Cetuximab Fab in complex with cyclic beta-alanine-linked meditope 5HPM ; 2.67 ; Cetuximab Fab in complex with cyclic linked meditope 5EUK ; 2.5 ; Cetuximab Fab in complex with F3H meditope variant 5ICZ ; 2.55 ; Cetuximab Fab in complex with GQFDLSTRRLKG peptide 5FF6 ; 2.5 ; Cetuximab Fab in complex with L10Q meditope variant 5ETU ; 2.53 ; Cetuximab Fab in complex with L5E meditope variant 5TH2 ; 1.84 ; Cetuximab Fab in complex with L5Q meditope variant 5F88 ; 2.481 ; Cetuximab Fab in complex with L5Y meditope variant 5ICY ; 2.5 ; Cetuximab Fab in complex with linear meditope 5ID1 ; 2.49 ; Cetuximab Fab in complex with MPT-Cys meditope 3ZID ; 2.0 ; CetZ from Methanosaeta thermophila strain DSM 6194 4B46 ; 1.9 ; CetZ1 from Haloferax volcanii - GDP bound monomer 4B45 ; 2.1 ; CetZ2 from Haloferax volcanii - GTPgS bound protofilament 5MBQ ; 1.33 ; CeuE (H227A variant) a periplasmic protein from Campylobacter jejuni 5MBU ; 1.81 ; CeuE (H227A, Y288F variant) a periplasmic protein from Campylobacter jejuni 5LWQ ; 1.52 ; CeuE (H227L variant) a periplasmic protein from Campylobacter jejuni 5MBT ; 1.8 ; CeuE (H227L, Y288F variant) a periplasmic protein from Campylobacter jejuni 5LWH ; 1.47 ; CeuE (Y288F variant) a periplasmic protein from Campylobacter jejuni. 2CHU ; 2.4 ; CeuE in complex with mecam 3P6Y ; 2.9 ; CF Im25-CF Im68-UGUAA complex 8I56 ; 2.84 ; CfbA S11T variant 8IYU ; 2.1 ; CfbA S11T variant with Ni(II) ions 6TV4 ; 1.53 ; CFF-Notum complex 3P5T ; 2.7 ; CFIm25-CFIm68 complex 2I0Y ; 1.9 ; cFMS tyrosine kinase (FGF KID) in complex with an arylamide inhibitor 3BEA ; 2.02 ; cFMS tyrosine kinase (tie2 KID) in complex with a pyrimidinopyridone inhibitor 2I1M ; 1.8 ; cFMS tyrosine kinase (tie2 KID) in complex with an arylamide inhibitor 3KRJ ; 2.1 ; cFMS tyrosine kinase in complex with 4-Cyano-1H-imidazole-2-carboxylic acid (2-cyclohex-1-enyl-4-piperidin-4-yl-phenyl)-amide 3KRL ; 2.4 ; cFMS Tyrosine kinase in complex with 5-Cyano-furan-2-carboxylic acid [4-(4-methyl-piperazin-1-yl)-2-piperidin-1-yl-phenyl]-amide 3DPK ; 1.95 ; cFMS tyrosine kinase in complex with a pyridopyrimidinone inhibitor 7LVK ; 2.2 ; Cfr-modified 50S subunit from Escherichia coli 7S1K ; 2.42 ; Cfr-modified Escherichia coli stalled ribosome with antibiotic radezolid 4Q6H ; 1.903 ; CFTR Associated Ligand (CAL) bound to last 6 residues of CFTR (decameric peptide: iCAL36VQDTRL) 4JOJ ; 1.2 ; CFTR Associated Ligand (CAL) domain bound to peptide F-iCAL36 (ANSRFPTSII) 4K78 ; 1.8 ; CFTR Associated Ligand (CAL) E317A PDZ domain bound to peptide iCAL36-QDTRL (ANSRWQDTRL) 4Q6S ; 1.45 ; CFTR Associated Ligand (CAL) PDZ bound to biotinylated peptide BT-L-iCAL36 4JOP ; 1.8 ; CFTR Associated Ligand (CAL) PDZ bound to HPV16 E6 oncoprotein C-terminal peptide (TRRETQL) 4JOR ; 1.34 ; CFTR Associated Ligand (CAL) PDZ domain bound to HPV18 E6 oncoprotein C-terminal peptide (RLQRRRETQV) 4JOE ; 1.14 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide A-iCAL36 (ANSRAPTSII) 4JOH ; 1.47 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide H-iCAL36 (ANSRHPTSII) 4NMO ; 1.4 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(Ac-K-1)(ANSRWPTS[Ac-K]I) 4NMP ; 1.3 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(Ac-K-3) (ANSRWP[Ac-K]SII) 4NMQ ; 1.4 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(Ac-K-4) (ANSRW[Ac-K]TSII) 4NMR ; 1.55 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(Ac-K-5) (ANSR[Ac-K]PTSII) 4NMV ; 1.4 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(BRB-K-1) (ANSRWPTS[4-bromobenzoic-acyl-K]I) 4NMT ; 1.4 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36(TFA-K-1) (ANSRWPTS[Tfa-acyl-K]I) 4K6Y ; 1.48 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36-Q (ANSRWQTSII) 4K75 ; 1.5 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36-QDTRL (ANSRWQDTRL) 4K76 ; 1.75 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36-TRL (ANSRWPTTRL) 4K72 ; 1.9 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide iCAL36-VQD (ANSRVQDSII) 6OV7 ; 1.71 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide kCAL01 4JOF ; 1.2 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide L-iCAL36 (ANSRLPTSII) 4JOG ; 1.465 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide V-iCAL36 (ANSRVPTSII) 4JOK ; 1.09 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptide Y-iCAL36 (ANSRYPTSII) 6V84 ; 1.64 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptidomimetic LyCALAc 7JZR ; 1.54 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptidomimetic LyCALAEB 7JZP ; 1.95 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptidomimetic LyCALBF 7JZQ ; 1.35 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptidomimetic LyCALPMB 7JZO ; 1.61 ; CFTR Associated Ligand (CAL) PDZ domain bound to peptidomimetic LyCALTPP 4NMS ; 1.7 ; CFTR Associated Ligand (CAL)PDZ domain bound to peptide iCAL36(FLB-K-1) (ANSRWPTS[4-fluorobenzoic-acyl-K]I) 6S7G ; 1.841 ; Cfucosylated linker peptide SBL1 bound to Fucose binding Lectin LecB (PA-IIL) from Pseudomonas aeruginosa at 1.84 Angstrom resolution 6S5P ; 1.46 ; Cfucosylated peptide SBL2 bound to Fucose binding Lectin LecB (PA-IIL) from Pseudomonas aeruginosa at 1.46 Angstrom resolution 6S5R ; 2.076 ; Cfucosylated second generation peptide dendrimer SBD6 bound to Fucose binding Lectin LecB (PA-IIL) from Pseudomonas aeruginosa at 2.08 Angstrom resolution, incomplete structure 6S5S ; 1.433 ; Cfucosylated second generation peptide dendrimer SBD8 bound to Fucose binding Lectin LecB (PA-IIL) from Pseudomonas aeruginosa at 1.43 Angstrom resolution 1QMJ ; 2.15 ; CG-16, a homodimeric agglutinin from chicken liver 2JYZ ; ; CG7054 solution structure 8OL1 ; 3.5 ; cGAS-Nucleosome in complex with SPSB3-ELOBC (composite structure) 1ZEY ; 1.7 ; CGG A-DNA 7KJU ; 3.102 ; Cgi121-tRNA complex 1ULF ; 2.36 ; CGL2 in complex with Blood Group A tetrasaccharide 1ULD ; 2.1 ; CGL2 in complex with blood group H type II 1ULC ; 2.6 ; CGL2 in complex with lactose 1ULE ; 2.15 ; CGL2 in complex with linear B2 trisaccharide 1ULG ; 2.2 ; CGL2 in complex with Thomsen-Friedenreich antigen 1UL9 ; 2.22 ; CGL2 ligandfree 8PDU ; 3.22 ; cGMP-bound SpSLC9C1 in lipid nanodiscs, dimer 8PDV ; 3.26 ; cGMP-bound SpSLC9C1 in lipid nanodiscs, protomer 8RF9 ; 3.28 ; CgsiGP1 sample in nanodisc 8RFE ; 3.8 ; CgsiGP2 sample in nanodisc 8RFG ; 3.35 ; CgsiGP3 sample in nanodisc 1VF4 ; 2.45 ; cGSTA1-1 apo form 1VF1 ; 1.77 ; cGSTA1-1 in complex with glutathione 1VF3 ; 2.15 ; cGSTA1-1 in complex with glutathione conjugate of CDNB 1VF2 ; 2.15 ; cGSTA1-1 in complex with S-hexyl-glutathione 5HEC ; 2.395 ; CgT structure in dimer 5HEA ; 2.003 ; CgT structure in hexamer 1A47 ; 2.56 ; CGTASE FROM THERMOANAEROBACTERIUM THERMOSULFURIGENES EM1 IN COMPLEX WITH A MALTOHEXAOSE INHIBITOR 6L2H ; 2.096 ; CGTase mutant-Y167H 3U4B ; 2.893 ; CH04H/CH02L Fab P4 3U46 ; 2.906 ; CH04H/CH02L P212121 5OKF ; 3.2 ; CH1 chimera of human 14-3-3 sigma with the HSPB6 phosphopeptide in a conformation with self-bound phosphopeptides 5OK9 ; 2.35 ; CH1 chimera of human 14-3-3 sigma with the HSPB6 phosphopeptide in a conformation with swapped phosphopeptides 5VR9 ; 2.15 ; CH1/Ckappa Fab based on Matuzumab 5VSI ; 1.51 ; CH1/Ckappa Fab mutant 15.1 5VSH ; 2.55 ; CH1/Clambda Fab based on Pertuzumab 5OM0 ; 3.2 ; CH2 chimera of human 14-3-3 sigma with the Gli1 phosphopeptide around Ser640 6UGA ; 2.5 ; ch28/11 Fab (monoclinic form) 5OMA ; 3.9 ; CH3 chimera of human 14-3-3 sigma with the StARD1 peptide including Ser57 8SXI ; 4.5 ; CH505 Disulfide Stapled SOSIP Bound to b12 Fab 8SXJ ; 4.0 ; CH505 Disulfide Stapled SOSIP Bound to CH235.12 Fab 4HKB ; 3.6 ; CH67 Fab (unbound) from the CH65-67 Lineage 7OP2 ; 1.59 ; Chadox1/ Chimpanzee adenovirus Y25 fiber knob protein 8B3J ; 3.1 ; Chaetoceros socialis forma radians RNA virus 1 empty capsid atomic model 8B38 ; 3.0 ; Chaetoceros socialis forma radians RNA virus 1 full capsid atomic model 4WP2 ; 1.7 ; Chaetomium Mex67 UBA domain 5M5Z ; 1.25 ; Chaetomium thermophilum beta-1-3-glucanase 5M60 ; 1.5 ; Chaetomium thermophilum beta-1-3-glucanase 6SZ6 ; 2.988 ; Chaetomium thermophilum beta-glucosidase 5T8V ; 2.798 ; Chaetomium thermophilum cohesin loader SCC2, C-terminal fragment 6ZS1 ; 1.56 ; Chaetomium thermophilum CuZn-superoxide dismutase 6ZE7 ; 1.5 ; Chaetomium thermophilum FAD-dependent oxidoreductase in complex with 4-nitrophenol 7AA2 ; 1.4 ; Chaetomium thermophilum FAD-dependent oxidoreductase in complex with ABTS 8ODU ; 5.0 ; Chaetomium thermophilum Get1/Get2 heterotetramer in complex with a Get3 dimer (amphipol) 8ODV ; 4.7 ; Chaetomium thermophilum Get1/Get2 heterotetramer in complex with a Get3 dimer (nanodisc) 8PUW ; 3.01 ; Chaetomium thermophilum Las1-Grc3-complex 8ONZ ; 2.94 ; Chaetomium thermophilum Methionine Aminopeptidase 2 at the 80S ribosome 8OO0 ; 3.1 ; Chaetomium thermophilum Methionine Aminopeptidase 2 autoproteolysis product at the 80S ribosome 4WP5 ; 2.9 ; Chaetomium thermophilum Mex67 NTF2-like domain complexed with Mtr2 7ZR1 ; 4.0 ; Chaetomium thermophilum Mre11-Rad50-Nbs1 complex bound to ATPyS (composite structure) 7OJU ; 1.1 ; Chaetomium thermophilum Naa50 GNAT-domain in complex with bisubstrate analogue CoA-Ac-MVNAL 4CYJ ; 2.59 ; Chaetomium thermophilum Pan2:Pan3 complex 4CYI ; 2.42 ; Chaetomium thermophilum Pan3 5WF7 ; 2.5 ; Chaetomium thermophilum Polycomb Repressive Complex 2 bound to GSK126 8PV7 ; 2.12 ; Chaetomium thermophilum pre-60S State 1 - pre-5S rotation (Arx1/Nog2 state) - Composite structure 8PV2 ; 2.63 ; Chaetomium thermophilum pre-60S State 10 - pre-5S rotation with Ytm1-Erb1 8PV4 ; 2.9 ; Chaetomium thermophilum pre-60S State 2 - pre-5S rotation with Rix1 complex - composite structure 8PV6 ; 2.94 ; Chaetomium thermophilum pre-60S State 3 - post-5S rotation with Rix1 complex with Foot - composite structure 8PV8 ; 2.91 ; Chaetomium thermophilum pre-60S State 4 - post-5S rotation with Rix1 complex without Foot - composite structure 8PVK ; 2.55 ; Chaetomium thermophilum pre-60S State 5 - pre-5S rotation - L1 inward - composite structure 8PV1 ; 2.56 ; Chaetomium thermophilum pre-60S State 6 - pre-5S rotation - L1 intermediate - composite structure 8PVL ; 2.19 ; Chaetomium thermophilum pre-60S State 7 - pre-5S rotation lacking Utp30/ITS2 - composite structure 8PV5 ; 2.86 ; Chaetomium thermophilum pre-60S State 8 - pre-5S rotation without Foot - composite structure 8PV3 ; 2.8 ; Chaetomium thermophilum pre-60S State 9 - pre-5S rotation - immature H68/H69 - composite structure 7ZQY ; 2.51 ; Chaetomium thermophilum Rad50 Zn hook 8PTW ; 2.91 ; Chaetomium thermophilum Rix1-complex 8FTK ; 4.56 ; Chaetomium thermophilum SETX (Full-length) 8FTH ; 3.17 ; Chaetomium thermophilum SETX - NPPC internal deletion 6TS8 ; 4.6 ; Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) double cysteine mutant G177C/A786C. 6TRT ; 4.58 ; Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) double cysteine mutant S180C/T742C. 6TRF ; 4.106 ; Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) purified from cells treated with kifunensine. 4WPX ; 3.31 ; Chaetomium theromophilum TREX2 CID domain complex 3CBK ; 2.67 ; chagasin-cathepsin B 3CBJ ; 1.8 ; Chagasin-Cathepsin B complex 6MAE ; 1.8 ; CHAIN A. UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase PA-LPXC Complexed with (R)-3-((S)-3-(4-(cyclopropylethynyl)phenyl)-2-oxooxazolidin-5-yl)-N-hydroxy-2-methyl-2-(methylsulfonyl)propenamide 1EYP ; 2.5 ; CHALCONE ISOMERASE 1EYQ ; 1.85 ; Chalcone isomerase and naringenin 1JEP ; 2.1 ; Chalcone Isomerase Complexed with 4'-hydroxyflavanone 1FM8 ; 2.3 ; CHALCONE ISOMERASE COMPLEXED WITH 5,4'-DIDEOXYFLAVANONE 1FM7 ; 2.3 ; CHALCONE ISOMERASE COMPLEXED WITH 5-DEOXYFLAVANONE 5YX3 ; 2.7 ; Chalcone isomerase from the Antarctic vascular plant Deschampsia Antarctica (DaCHI1) 1JX1 ; 2.3 ; Chalcone Isomerase--T48A mutant 1JX0 ; 2.85 ; Chalcone Isomerase--Y106F mutant 1ZGD ; 1.7 ; Chalcone Reductase Complexed With NADP+ at 1.7 Angstrom Resolution 1I8B ; 1.95 ; Chalcone synthase (G256F) 1I89 ; 1.86 ; Chalcone synthase (G256L) 1I88 ; 1.45 ; CHALCONE SYNTHASE (G256V) 1D6I ; 2.0 ; CHALCONE SYNTHASE (H303Q MUTANT) 1D6F ; 1.69 ; CHALCONE SYNTHASE C164A MUTANT 1BI5 ; 1.56 ; CHALCONE SYNTHASE FROM ALFALFA 1CHW ; 1.9 ; CHALCONE SYNTHASE FROM ALFALFA COMPLEXED WITH HEXANOYL-COA 1CML ; 1.69 ; CHALCONE SYNTHASE FROM ALFALFA COMPLEXED WITH MALONYL-COA 1CGK ; 1.84 ; CHALCONE SYNTHASE FROM ALFALFA COMPLEXED WITH NARINGENIN 1CGZ ; 1.7 ; CHALCONE SYNTHASE FROM ALFALFA COMPLEXED WITH RESVERATROL 1BQ6 ; 1.56 ; CHALCONE SYNTHASE FROM ALFALFA WITH COENZYME A 7BUS ; 2.52 ; Chalcone synthase from Glycine max (L.) Merr (soybean) 7BUR ; 1.82 ; Chalcone synthase from Glycine max (L.) Merr (soybean) complexed with naringenin 8B32 ; 1.7 ; Chalcone synthase from Hordeum vulgare complexed with CoA 8B3C ; 2.0 ; Chalcone synthase from Hordeum vulgare complexed with CoA and eriodictyol 8B35 ; 2.0 ; Chalcone synthase from Hordeum vulgare complexed with CoA and naringenin 5UC5 ; 2.102 ; Chalcone synthase from Malus domestica 1I86 ; 1.5 ; CHALCONE SYNTHASE, G256A MUTANT 1JWX ; 1.63 ; Chalcone Synthase--F215S mutant 1D6H ; 2.15 ; CHALONE SYNTHASE (N336A MUTANT COMPLEXED WITH COA) 1QAC ; 1.8 ; CHANGE IN DIMERIZATION MODE BY REMOVAL OF A SINGLE UNSATISFIED POLAR RESIDUE 5N2V ; 3.1 ; Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme 2MEA ; 2.2 ; CHANGES IN CONFORMATIONAL STABILITY OF A SERIES OF MUTANT HUMAN LYSOZYMES AT CONSTANT POSITIONS 2MEB ; 1.8 ; CHANGES IN CONFORMATIONAL STABILITY OF A SERIES OF MUTANT HUMAN LYSOZYMES AT CONSTANT POSITIONS 2MEC ; 2.2 ; CHANGES IN CONFORMATIONAL STABILITY OF A SERIES OF MUTANT HUMAN LYSOZYMES AT CONSTANT POSITIONS 2MEG ; 1.8 ; CHANGES IN CONFORMATIONAL STABILITY OF A SERIES OF MUTANT HUMAN LYSOZYMES AT CONSTANT POSITIONS. 3SOD ; 2.1 ; CHANGES IN CRYSTALLOGRAPHIC STRUCTURE AND THERMOSTABILITY OF A CU,ZN SUPEROXIDE DISMUTASE MUTANT RESULTING FROM THE REMOVAL OF BURIED CYSTEINE 1TMT ; 2.2 ; CHANGES IN INTERACTIONS IN COMPLEXES OF HIRUDIN DERIVATIVES AND HUMAN ALPHA-THROMBIN DUE TO DIFFERENT CRYSTAL FORMS 1TMU ; 2.5 ; Changes in interactions in complexes of hirudin derivatives and human alpha-thrombin due to different crystal forms 2MU9 ; ; Changing ABRA protein peptide to fit the HLA-DR B1*0301 molecule renders it protection-inducing 3DGS ; 1.9 ; Changing the determinants of protein stability from covalent to non-covalent interactions by in-vitro evolution: a structural and energetic analysis 2KIX ; ; Channel domain of BM2 protein from influenza B virus 3CQX ; 2.3 ; Chaperone Complex 4IT5 ; 2.152 ; Chaperone HscB from Vibrio cholerae 5WO2 ; 1.769 ; Chaperone Spy bound to Casein Fragment (Casein un-modeled) 5WO3 ; 1.87 ; Chaperone Spy bound to Im7 (Im7 un-modeled) 5WNW ; 1.79 ; Chaperone Spy bound to Im7 6-45 ensemble 5WO1 ; 1.87 ; Chaperone Spy H96L bound to Im7 L18A L19A L37A (Im7 un-modeled) 6K73 ; 2.7742 ; Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis 2WPU ; 1.92 ; Chaperoned ruthenium metallodrugs that recognize telomeric DNA 8PBB ; 2.49 ; CHAPSO treated partial catalytic component (comprising only AnfD & AnfK, lacking AnfG and FeFeco) of iron nitrogenase from Rhodobacter capsulatus 8CXP ; 2.47 ; Characterisation of a Seneca Valley Virus Thermostable Mutant 4YEG ; 2.23 ; Characterisation of Polyphosphate Kinase 2 from the Intracellular Pathogen Francisella tularensis 1E8P ; ; Characterisation of the cellulose docking domain from Piromyces equi 1E8Q ; ; Characterisation of the cellulose docking domain from Piromyces equi 3PB0 ; 2.0 ; Characterisation of the first monomeric dihydrodipicolinate synthase variant reveals evolutionary insights 3PB2 ; 1.9 ; Characterisation of the first monomeric dihydrodipicolinate synthase variant reveals evolutionary insights 2K8P ; ; Characterisation of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation 3S1S ; 2.35 ; Characterization and crystal structure of the type IIG restriction endonuclease BpuSI 2VCE ; 1.9 ; Characterization and engineering of the bifunctional N- and O- glucosyltransferase involved in xenobiotic metabolism in plants 2VCH ; 1.45 ; Characterization and engineering of the bifunctional N- and O- glucosyltransferase involved in xenobiotic metabolism in plants 2VG8 ; 1.75 ; Characterization and engineering of the bifunctional N- and O- glucosyltransferase involved in xenobiotic metabolism in plants 6L7M ; 2.4 ; Characterization and structural analysis of a thermostable zearalenone-degrading enzyme 2MPK ; ; Characterization and structure of the MIT1 domain of a chitin synthase from the Oomycete Saprolegnia monoica 6EVS ; 1.9 ; Characterization of 2-deoxyribosyltransferase from psychrotolerant bacterium Bacillus psychrosaccharolyticus: a suitable biocatalyst for the industrial synthesis of antiviral and antitumoral nucleosides 3UFC ; 2.03 ; Characterization of a Cas6-related gene from Pyrococcus furiosus 2J7M ; 2.3 ; Characterization of a Family 32 CBM 2M3I ; ; Characterization of a Novel Alpha4/6-Conotoxin TxIC from Conus textile that Potently Blocks alpha3beta4 Nicotinic Acetylcholine Receptors 5FRE ; 1.9 ; Characterization of a novel CBM from Clostridium perfringens 4UHM ; 1.33 ; Characterization of a Novel Transaminase from Pseudomonas sp. Strain AAC 4UHN ; 2.21 ; Characterization of a Novel Transaminase from Pseudomonas sp. Strain AAC 4UHO ; 1.24 ; Characterization of a Novel Transaminase from Pseudomonas sp. Strain AAC 2QY2 ; 2.0 ; Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domainm. 4RV7 ; 2.8 ; Characterization of an essential diadenylate cyclase 6RK6 ; 3.15 ; Characterization of an intertidal zone metagenome oligoribonuclease and the role of the intermolecular disulfide bond for homodimer formation and nuclease activity. 5TWT ; 1.296 ; Characterization of class III peroxidase from switchgrass (Panicum virgatum) 6GV5 ; 1.55 ; Characterization of extracellular matrix binding protein- (Embp)-mediated Staphylococcus epidermidis adherence to fibronectin 6GV8 ; 1.394 ; Characterization of extracellular matrix binding protein- (Embp)-mediated Staphylococcus epidermidis adherence to fibronectin 6D43 ; 2.04 ; CHARACTERIZATION OF HUMAN TRIOSEPHOSPHATE ISOMERASE S-NITROSYLATION 1N4H ; 2.1 ; Characterization of ligands for the orphan nuclear receptor RORbeta 1NQ7 ; 1.5 ; Characterization of ligands for the orphan nuclear receptor RORbeta 4GRQ ; 1.65 ; Characterization of N- and C- terminus mutants of human MIF 4GRR ; 1.47 ; characterization of N- and C- terminus mutants of human MIF 7DNO ; 2.03 ; Characterization of Peptide Ligands Against WDR5 Isolated Using Phage Display Technique 3JBB ; 26.0 ; Characterization of red-shifted phycobiliprotein complexes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris 4LZI ; 2.2 ; Characterization of Solanum tuberosum Multicystatin and Significance of Core Domains 2V0H ; 1.79 ; Characterization of Substrate Binding and Catalysis of the Potential Antibacterial Target N-acetylglucosamine-1-phosphate Uridyltransferase (GlmU) 2V0I ; 1.89 ; Characterization of Substrate Binding and Catalysis of the Potential Antibacterial Target N-acetylglucosamine-1-phosphate Uridyltransferase (GlmU) 2V0J ; 2.0 ; Characterization of Substrate Binding and Catalysis of the Potential Antibacterial Target N-acetylglucosamine-1-phosphate Uridyltransferase (GlmU) 2V0K ; 2.3 ; Characterization of Substrate Binding and Catalysis of the Potential Antibacterial Target N-acetylglucosamine-1-phosphate Uridyltransferase (GlmU) 2V0L ; 2.2 ; Characterization of Substrate Binding and Catalysis of the Potential Antibacterial Target N-acetylglucosamine-1-phosphate Uridyltransferase (GlmU) 2LDX ; 2.96 ; CHARACTERIZATION OF THE ANTIGENIC SITES ON THE REFINED 3-ANGSTROMS RESOLUTION STRUCTURE OF MOUSE TESTICULAR LACTATE DEHYDROGENASE C4 3JVR ; 1.76 ; Characterization of the Chk1 allosteric inhibitor binding site 3JVS ; 1.9 ; Characterization of the Chk1 allosteric inhibitor binding site 8TX1 ; 3.62 ; Characterization of the Chlamydomonas Flagellar Mastigoneme Filament Structure at 3.6A 8TXB ; 3.9 ; Characterization of the Chlamydomonas Flagellar Mastigoneme Filament Structure at 3.9A 8TXC ; 3.9 ; Characterization of the Chlamydomonas Flagellar Mastigoneme Filament Subunit MST1 Structure at 3.9 angstrom 1R0Q ; 1.61 ; Characterization of the conversion of the malformed, recombinant cytochrome rc552 to a 2-formyl-4-vinyl (Spirographis) heme 3MOU ; 1.711 ; Characterization of the Inhibitor Binding Site of the Dehaloperoxidase-Hemoglobin from Amphitrite ornata using High-Pressure Xenon Derivatization 1QYZ ; 1.4 ; Characterization of the malformed, recombinant cytochrome rC552 6CDK ; 2.1 ; Characterization of the P1+ intermediate state of nitrogenase P-cluster 2MZD ; ; Characterization of the p300 Taz2-p53 TAD2 Complex and Comparison with the p300 Taz2-p53 TAD1 Complex 6X6P ; 3.22 ; Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis 1G9X ; 2.6 ; CHARACTERIZATION OF THE TWINNING STRUCTURE OF MJ1267, AN ATP-BINDING CASSETTE OF AN ABC TRANSPORTER 8Q5B ; ; Characterization of the zinc finger u-protein HVO_0758 from Haloferax volcanii: biological roles, zinc binding, and NMR solution structure 1LCL ; 1.8 ; CHARCOT-LEYDEN CRYSTAL PROTEIN 1QKQ ; 1.8 ; CHARCOT-LEYDEN CRYSTAL PROTEIN - MANNOSE COMPLEX 1HDK ; 1.8 ; Charcot-Leyden Crystal Protein - pCMBS Complex 6A1S ; 1.63 ; Charcot-Leyden crystal protein/Galectin-10 variant E33A 6A1T ; 1.97 ; Charcot-Leyden crystal protein/Galectin-10 variant E33A with lactose 6A1U ; 1.62 ; Charcot-Leyden crystal protein/Galectin-10 variant E33D 6A1V ; 1.984 ; Charcot-Leyden crystal protein/Galectin-10 variant E33Q 6A1X ; 1.99 ; Charcot-Leyden crystal protein/Galectin-10 variant W127A 6A1Y ; 1.63 ; Charcot-Leyden crystal protein/Galectin-10 variant Y35A 1G86 ; 1.8 ; CHARCOT-LEYDEN CRYSTAL PROTEIN/N-ETHYLMALEIMIDE COMPLEX 2AZX ; 2.8 ; Charged and uncharged tRNAs adopt distinct conformations when complexed with human tryptophanyl-tRNA synthetase 6QFS ; 2.2 ; Chargeless variant of the Cellulose-binding domain from Cellulomonas fimi 4IHF ; 2.1 ; Chasing Acyl Carrier Protein Through a Catalytic Cycle of Lipid A Production 4IHG ; 2.89 ; Chasing Acyl Carrier Protein Through a Catalytic Cycle of Lipid A Production 4IHH ; 2.132 ; Chasing Acyl Carrier Protein Through a Catalytic Cycle of Lipid A Production 7XDM ; 1.74 ; ChCODH2 A559W mutant in anaerobic condition 8OO2 ; 1.85 ; ChdA complex with amido-chelocardin 6Y1Y ; 1.5 ; CheA dimerization domain of Treponema denticola 1TQG ; 0.98 ; CheA phosphotransferase domain from Thermotoga maritima 1CHD ; 1.75 ; CHEB METHYLESTERASE DOMAIN 1EBG ; 2.1 ; CHELATION OF SER 39 TO MG2+ LATCHES A GATE AT THE ACTIVE SITE OF ENOLASE: STRUCTURE OF THE BIS(MG2+) COMPLEX OF YEAST ENOLASE AND THE INTERMEDIATE ANALOG PHOSPHONOACETOHYDROXAMATE AT 2.1 ANGSTROMS RESOLUTION 1M1Y ; 3.2 ; Chemical Crosslink of Nitrogenase MoFe Protein and Fe Protein 2VUR ; 2.2 ; Chemical dissection of the link between Streptozotocin, O-GlcNAc and pancreatic cell death 2L8H ; ; Chemical probe bound to HIV TAR RNA 2LPM ; ; Chemical Shift and Structure Assignments for Sma0114 2LEQ ; ; Chemical Shift Assignment and Solution Structure of ChR145 from Cytophaga Hutchinsonii, Northeast Structural Genomics Consortium Target ChR145 2LRQ ; ; Chemical Shift Assignment and Solution Structure of Fr822A from Drosophila melanogaster. Northeast Structural Genomics Consortium Target Fr822A 2LCE ; ; Chemical shift assignment of Hr4436B from Homo Sapiens, Northeast Structural Genomics Consortium 2LHL ; ; Chemical Shift Assignments and solution structure of human apo-S100A1 E32Q mutant 2N8F ; ; Chemical shift assignments and structure calculation of spider toxin pi-hexatoxin-Hi1a 2N8K ; ; Chemical Shift Assignments and Structure Determination for spider toxin, U33-theraphotoxin-Cg1c 2MNI ; ; Chemical Shift Assignments and structure of Q4D059, a hypothetical protein from Trypanosoma cruzi 2N0K ; ; Chemical shift assignments and structure of the alpha-crystallin domain from human, HSPB5 2RUH ; ; Chemical Shift Assignments for MIP and MDM2 in bound state 2KJA ; ; Chemical shift assignments, constraints, and coordinates for CN5 scorpion toxin 2K5X ; ; Chemical shift structure of COLICIN E9 DNASE domain with its cognate immunity protein IM9 8GJV ; 0.9 ; Chemical synthesis of maxamycins: Intermediate compound 10 1Q2R ; 2.9 ; Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate 1Q2S ; 3.2 ; Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate 3KWX ; 2.4 ; Chemically modified Taka alpha-amylase 3OCH ; 1.79 ; Chemically Self-assembled Antibody Nanorings (CSANs): Design and Characterization of an Anti-CD3 IgM Biomimetic 5GCH ; 2.7 ; CHEMISTRY OF CAGED ENZYMES /II$. PHOTOACTIVATION OF INHIBITED CHYMOTRYPSIN 3GCH ; 1.9 ; CHEMISTRY OF CAGED ENZYMES. BINDING OF PHOTOREVERSIBLE CINNAMATES TO CHYMOTRYPSIN 1N8U ; 1.8 ; Chemosensory Protein in Complex with bromo-dodecanol 1N8V ; 1.39 ; Chemosensory Protein in complex with bromo-dodecanol 8C5V ; 12.0 ; Chemotaxis core signalling unit from E protein lysed E. coli cells 1U0S ; 1.9 ; Chemotaxis kinase CheA P2 domain in complex with response regulator CheY from the thermophile thermotoga maritima 6ER7 ; 2.62 ; CHEMOTAXIS PROTEIN CHEY FROM Pyrococcus horikoshiI 6EXR ; 2.16 ; CHEMOTAXIS PROTEIN CHEY FROM Pyrococcus horikoshiI 1BC5 ; 2.2 ; CHEMOTAXIS RECEPTOR RECOGNITION BY PROTEIN METHYLTRANSFERASE CHER 1AF7 ; 2.0 ; CHER FROM SALMONELLA TYPHIMURIUM 1TMY ; 1.9 ; CHEY FROM THERMOTOGA MARITIMA (APO-I) 2TMY ; 2.3 ; CHEY FROM THERMOTOGA MARITIMA (APO-II) 4TMY ; 2.8 ; CHEY FROM THERMOTOGA MARITIMA (MG-IV) 3TMY ; 2.2 ; CHEY FROM THERMOTOGA MARITIMA (MN-III) 1UDR ; 1.9 ; CHEY MUTANT WITH LYS 91 REPLACED BY ASP, LYS 92 REPLACED BY ALA, ILE 96 REPLACED BY LYS AND ALA 98 REPLACED BY LEU (STABILIZING MUTATIONS IN HELIX 4) 1EAY ; 2.0 ; CHEY-BINDING (P2) DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM ESCHERICHIA COLI 1FWP ; ; CHEY-BINDING DOMAIN OF CHEA (RESIDUES 159-227), NMR, MINIMIZED AVERAGE STRUCTURE 1A0O ; 2.95 ; CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY 1FFG ; 2.1 ; CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY AT 2.1 A RESOLUTION 1FFS ; 2.4 ; CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM CRYSTALS SOAKED IN ACETYL PHOSPHATE 1FFW ; 2.7 ; CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY WITH A BOUND IMIDO DIPHOSPHATE 6C40 ; 2.7 ; CheY41PyTyrD54K from Thermotoga maritima 8DF1 ; 3.3 ; Chi3l1 bound by antibody C59 2XTK ; 2.0 ; ChiA1 from Aspergillus fumigatus in complex with acetazolamide 2XVP ; 2.0 ; ChiA1 from Aspergillus fumigatus, apostructure 3U18 ; 1.9 ; Chicago Sky Blue 6B, A Novel Inhibitor for Macrophage Migration Inhibitory Factor 8DZV ; 1.2 ; Chicken anti-cardiac Troponin I antibody in complex with peptide 1A5J ; ; CHICKEN B-MYB DNA BINDING DOMAIN, REPEAT 2 AND REPEAT3, NMR, 32 STRUCTURES 3DQX ; 2.3 ; chicken c-Src kinase domain in complex with ATPgS 8GMQ ; 3.36 ; Chicken CALHM1 purified from mammalian cells 1UP5 ; 1.9 ; Chicken Calmodulin 1AL6 ; 1.85 ; CHICKEN CITRATE SYNTHASE COMPLEX WITH N-HYDROXYAMIDO-COA AND OXALOACETATE 1AMZ ; 1.8 ; CHICKEN CITRATE SYNTHASE COMPLEX WITH NITROMETHYLDE-COA AND MALATE 6CSC ; 2.25 ; CHICKEN CITRATE SYNTHASE COMPLEX WITH TRIFLUOROACETONYL-COA AND CITRATE 7MRM ; 2.75 ; Chicken CNTN3 APP complex 7MRK ; 2.05 ; Chicken CNTN4 APP complex 7MRQ ; 3.2 ; Chicken CNTN4 FN1-FN3 domains with T751A, V752A, Y781A, E786A mutations 3CWB ; 3.51 ; Chicken Cytochrome BC1 Complex inhibited by an iodinated analogue of the polyketide Crocacin-D 3H1L ; 3.21 ; Chicken cytochrome BC1 complex with ascochlorin bound at QO and QI sites 3L72 ; 3.06 ; Chicken cytochrome BC1 complex with kresoxim-I-dimethyl bound 3H1K ; 3.48 ; Chicken cytochrome BC1 complex with ZN++ and an iodinated derivative of kresoxim-methyl bound 1A67 ; ; CHICKEN EGG WHITE CYSTATIN WILDTYPE, NMR, 16 STRUCTURES 3IJV ; 1.7 ; Chicken egg white lysozyme by classical hanging drop vapour diffusion method 3IJU ; 1.6 ; Chicken egg white lysozyme by highly ordered APA (Anodic Porous Alumina) nanotemplate crystallization method 1AZF ; 1.8 ; CHICKEN EGG WHITE LYSOZYME CRYSTAL GROWN IN BROMIDE SOLUTION 4WVW ; 1.47 ; Chicken Galectin-8 N-terminal domain complexed with 3'-sialyl-lactose 4WVV ; 1.205 ; Chicken Galectin-8 N-terminal domain complexed with lactose 5NM6 ; 1.458 ; Chicken GRIFIN (crystallisation pH: 4.6) 5NM1 ; 2.099 ; Chicken GRIFIN (crystallisation pH: 6.2) 5NMJ ; 1.399 ; Chicken GRIFIN (crystallisation pH: 6.5) 5NLD ; 0.96 ; Chicken GRIFIN (crystallisation pH: 7.5) 5NLE ; 1.845 ; Chicken GRIFIN (crystallisation pH: 8.0) 5NLH ; 1.1 ; Chicken GRIFIN (crystallisation pH: 8.5) 7P8H ; 1.13 ; chicken GRIFIN bound to blood group tetrasaccharide B (type 1) 2L21 ; ; chicken IGF2R domain 11 7Y7I ; 3.42 ; chicken KNL2 in complex with the CENP-A nucleosome 1IIU ; 2.5 ; Chicken plasma retinol-binding protein (RBP) 5EZB ; 2.3 ; Chicken prestin STAS domain 7LKH ; 3.5 ; Chicken Scap D435V L1-L7 domain / Fab complex focused map 5U76 ; 3.76 ; Chicken Slo2.2 in a closed conformation vitrified in the presence of 300 mM NaCl 5U70 ; 3.76 ; Chicken Slo2.2 in an open conformation vitrified in the presence of 300 mM NaCl 5M05 ; 2.675 ; Chicken smooth muscle myosin motor domain co-crystallized with the specific CK-571 inhibitor, MgADP form 5T45 ; 2.8 ; Chicken smooth muscle myosin motor domain co-crystallized with the specific CK-571 inhibitor, MgADP.BeFx form 6WVE ; 2.429 ; Chicken SPCS1 2PTK ; 2.35 ; CHICKEN SRC TYROSINE KINASE 3R18 ; 2.4 ; Chicken sulfite oxidase double mutant with altered activity and substrate affinity 3R19 ; 2.1 ; Chicken sulfite oxidase triple mutant with altered activity and substrate affinity 4P61 ; 1.34 ; CHICKEN TRIOSEPHOSPHATE ISOMERASE WITH LOOP6 MUTATIONS, V167P AND W168E. 2F4K ; 1.05 ; Chicken villin subdomain HP-35, K65(NLE), N68H, K70(NLE), PH9 1WY4 ; 1.55 ; Chicken villin subdomain HP-35, K65(NLE), N68H, pH5.1 1WY3 ; 0.95 ; Chicken villin subdomain HP-35, K65(NLE), N68H, pH7.0 1YRI ; 1.0 ; Chicken villin subdomain HP-35, N68H, pH6.4 1YRF ; 1.07 ; Chicken villin subdomain HP-35, N68H, pH6.7 7TH8 ; ; Chickpea (Cicer arientinum) nodule-specific cysteine-rich peptide NCR13: Solution NMR structure of the isomer with C4:C10, C15:C30, and C23:C28 disulfide bonds 8ULM ; ; Chickpea (Cicer arientinum) nodule-specific cysteine-rich peptide NCR13: Solution NMR structure of the isomer with C4:C23, C15:C30, and C10:C28 disulfide bonds 2XFC ; 9.0 ; CHIKUNGUNYA E1 E2 ENVELOPE GLYCOPROTEINS FITTED IN SEMLIKI FOREST VIRUS cryo-EM MAP 2XFB ; 9.0 ; CHIKUNGUNYA E1 E2 ENVELOPE GLYCOPROTEINS FITTED IN SINDBIS VIRUS cryo- EM MAP 4GQ9 ; 2.995 ; Chikungunya virus neutralizing antibody 9.8B Fab fragment 8DWW ; 3.13 ; Chikungunya VLP in complex with neutralizing Fab 506.A08 (asymmetric unit) 8DWX ; 3.27 ; Chikungunya VLP in complex with neutralizing Fab 506.C01 (asymmetric unit) 8DWY ; 3.18 ; Chikungunya VLP in complex with neutralizing Fab CHK-265 (asymmetric unit) 6TKB ; 2.0 ; ChiLob 7/4 H2 HC-C224S F(ab')2 6TKE ; 2.35 ; ChiLob 7/4 H2 HC-C224S Kappa LC-C214S F(ab')2 6TKC ; 2.3 ; ChiLob 7/4 H2 HC-C225S F(ab')2 6TKF ; 2.18 ; ChiLob 7/4 H2 HC-C225S KappaLC-C214S F(ab')2 6TKD ; 1.9 ; ChiLob 7/4 H2 HC-C228S F(ab')2 8EB1 ; ; Chim2 - Intragenic antimicrobial peptide 2JMC ; ; Chimer between Spc-SH3 and P41 3VML ; 1.56 ; Chimera 3-isopropylmalate dehydrogenase between Shewanella oneidensis MR-1 (O) and Shewanella benthica DB21 MT-2 (M) from N-terminal: 20% O middle 70% M residual 10% O 1XAC ; 2.1 ; CHIMERA ISOPROPYLMALATE DEHYDROGENASE BETWEEN BACILLUS SUBTILIS (M) AND THERMUS THERMOPHILUS (T) FROM N-TERMINAL: 20% T MIDDLE 20% M RESIDUAL 60% T, MUTATED AT S82R. LOW TEMPERATURE (100K) STRUCTURE. 1XAD ; 2.1 ; CHIMERA ISOPROPYLMALATE DEHYDROGENASE BETWEEN BACILLUS SUBTILIS (M) AND THERMUS THERMOPHILUS (T) FROM N-TERMINAL: 20% T MIDDLE 20% M RESIDUAL 60% T, MUTATED AT S82R. LOW TEMPERATURE (150K) STRUCTURE. 3FPC ; 1.4 ; Chimera of alcohol dehydrogenase by exchange of the cofactor binding domain res 153-294 of T. brockii ADH by E. histolytica ADH 3FPL ; 1.9 ; Chimera of alcohol dehydrogenase by exchange of the cofactor binding domain res 153-295 of C. beijerinckii ADH by T. brockii ADH 3FSR ; 2.2 ; Chimera of alcohol dehydrogenase by exchange of the cofactor binding domain res 153-295 of T. brockii ADH by C. beijerinckii ADH 7Z5C ; 4.16 ; Chimera of AP2 with FCHO2 linker domain as a fusion on Cmu2 subunit 6P2A ; 1.9 ; Chimera of bacteriophage OBP gp146 central spike protein and a T4 gp5 beta-helix fragment 8BJI ; 1.75 ; chimera of ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo fused to a proline-Rich-Domain (PRD) and profilin, bound to ADP-Mg-actin and a sulfate ion 6CGB ; 2.994 ; chimera of mouse cadherin-11 EC1 and mouse cadherin-6 EC2 8BJH ; 1.69 ; chimera of the inactive ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo MARTX toxin, with the double mutation K3528M and K3535I, fused to a proline-Rich-Domain (PRD) and profilin, bound to Latrunculin B-ADP-Mg-actin 4R98 ; 2.22 ; Chimera of the N-terminal domain of E. coli FeoB 4Z8G ; 2.1 ; Chimera of Tropomodulin-1 and Leiomodin-1 Actin-Binding Site 2 (TL1 ABS2) 8QBX ; 2.2 ; Chimeric Adenovirus-derived dodecamer 1NGW ; 2.6 ; Chimeric Affinity Matured Fab 7g12 complexed with mesoporphyrin 1HO6 ; ; CHIMERIC ARABINONUCLEIC ACID (ANA) HAIRPIN WITH ANA/RNA HYBRID STEM 6KHT ; 3.305 ; Chimeric beta-glucosidase Cel1b-H13 7PHD ; 1.53 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with a region from 10-decarboxylase TamK 7OWB ; 2.45 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with a region from 10-hydroxylase CalMB 7PGJ ; 2.13 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with regions from 10-decarboxylate TamK and 10-hydroxylase RdmB, together with a single point mutation F297G 7PGA ; 2.77 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with regions from 10-hydroxylase RdmB and 10-decarboxylase TamK 7PHE ; 2.32 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with regions from 10-hydroxylase RdmB and 10-decarboxylase TamK 7PHF ; 2.21 ; Chimeric carminomycin-4-O-methyltransferase (DnrK) with regions from 10-hydroxylase RdmB and 10-decarboxylase TamK 8SMH ; 1.37 ; Chimeric ETS-domain of murine PU.1 harboring the corresponding beta-strand 3 (S3) residues from murine Ets-1 in complex with d(AATAAGCGGAAGTGGG) 8SMJ ; 1.39 ; Chimeric ETS-domain of murine PU.1 harboring the corresponding beta-strand 3 (S3) residues from murine Ets-1 in complex with d(AATAAGCGGAATGGGG) 8SP1 ; 1.62 ; Chimeric ETS-domain of murine PU.1 harboring the corresponding beta-strand 3 (S3) residues from murine Ets-1 in complex with d(AATAAGCGIAAGTGGG) 4GXP ; 3.0 ; Chimeric Family 1 beta-glucosidase made with non-contiguous SCHEMA 7KV8 ; 2.5 ; Chimeric flavivirus between Binjari virus and Dengue virus serotype-2 7KVB ; 3.7 ; Chimeric flavivirus between Binjari virus and Murray Valley encephalitis virus 7KV9 ; 2.9 ; Chimeric flavivirus between Binjari virus and West Nile (Kunjin) virus 1NGX ; 1.8 ; Chimeric Germline Fab 7g12 with jeffamine fragment bound 1NGZ ; 1.6 ; Chimeric Germline Fab 7g12-apo 3H4I ; 1.3 ; Chimeric Glycosyltransferase for the generation of novel natural products 3H4T ; 1.15 ; Chimeric Glycosyltransferase for the generation of novel natural products - GtfAH1 in complex with UDP-2F-Glc 4RIG ; 1.9 ; Chimeric Glycosyltransferase LanGT2S8Ac 4RIH ; 2.22 ; Chimeric Glycosyltransferase LanGT2S8Ac, carbasugar substrate complex 4RII ; 2.0 ; Chimeric Glycosyltransferase LanGT2S8Ac, TDP complex 5LCZ ; 2.325 ; Chimeric GST 5LD0 ; 1.6 ; Chimeric GST 4ECB ; 2.2 ; Chimeric GST Containing Inserts of Kininogen Peptides 4ECC ; 2.2 ; Chimeric GST Containing Inserts of Kininogen Peptides 1ME0 ; ; Chimeric hairpin with 2',5'-linked RNA loop and DNA stem 1ME1 ; ; Chimeric hairpin with 2',5'-linked RNA loop and RNA stem 8FW5 ; 3.08 ; Chimeric HsGATOR1-SpGtr-SpLam complex 1JEB ; 2.1 ; Chimeric Human/Mouse Carbonmonoxy Hemoglobin (Human Zeta2 / Mouse Beta2) 1BYX ; ; CHIMERIC HYBRID DUPLEX R(GCAGUGGC).R(GCCA)D(CTGC) COMPRISING THE TRNA-DNA JUNCTION FORMED DURING INITIATION OF HIV-1 REVERSE TRANSCRIPTION 1NGY ; 2.2 ; Chimeric Mature Fab 7g12-Apo 6C59 ; 2.03 ; Chimeric Pol kappa RIR Rev1 C-terminal domain 6C8C ; 1.5 ; Chimeric Pol kappa RIR Rev1 C-terminal domain in complex with JHRE06 8B9X ; 3.066 ; Chimeric protein of human UFM1 E3 ligase, UFL1, and DDRGK1 1ROD ; ; CHIMERIC PROTEIN OF INTERLEUKIN 8 AND HUMAN MELANOMA GROWTH STIMULATING ACTIVITY PROTEIN, NMR 6JV7 ; 1.309 ; Chimeric Rat C5a 1HOQ ; ; CHIMERIC RNA/DNA HAIRPIN 7B74 ; 1.85 ; Chimeric Streptavidin With A Dimerization Domain For Artificial Transfer Hydrogenation 6E52 ; 1.93 ; Chimeric structure of Saccharomyces cerevisiae GCN4 leucine zipper fused to Staphylococcus aureus AgrC cytoplasmic histidine kinase module (dataset anisotropically truncated by STARANISO) 6E95 ; 2.25 ; Chimeric structure of Saccharomyces cerevisiae GCN4 leucine zipper fused to Staphylococcus aureus AgrC cytoplasmic histidine kinase module (dataset isotropically truncated by HKL2000) 6SDB ; 2.8 ; Chimeric titin Z1Z2 functionalized with a KLER exogenous peptide from decorin 6FWX ; 3.0 ; Chimeric titin Z1Z2-Z1Z2 tandem (Z1212) functionalized with a GRGDS exogenous peptide from fibronectin 7QR3 ; 2.18 ; Chimpanzee CPEB3 HDV-like ribozyme 6OHY ; 4.1 ; Chimpanzee SIV Env trimeric ectodomain. 8SUV ; 1.63 ; CHIP-TPR in complex with the C-terminus of CHIC2 1D97 ; 2.17 ; CHIRAL PHOSPHOROTHIOATE ANALOGUES OF B-DNA: THE CRYSTAL STRUCTURE OF RP-D(GP(S) CPGP(S)CPGP(S)C) 2RTS ; ; Chitin binding domain1 8J0P ; 2.4 ; Chitin binding SusD-like protein AqSusD from a marine Bacteroidetes 8JXZ ; 2.2 ; Chitin binding SusD-like protein AqSusD in complex with (GlcNAc)3 2VYO ; 1.5 ; Chitin deacetylase family member from Encephalitozoon cuniculi 7EHO ; 1.79 ; Chitin oligosaccharide binding protein 7EHP ; 2.01 ; Chitin oligosaccharide binding protein 7EHQ ; 1.7 ; Chitin oligosaccharide binding protein 7EHU ; 1.2 ; Chitin oligosaccharide binding protein 7STL ; 2.95 ; Chitin Synthase 2 from Candida albicans at the apo state 7STN ; 3.19 ; Chitin Synthase 2 from Candida albicans bound to Nikkomycin Z 7STO ; 3.15 ; Chitin Synthase 2 from Candida albicans bound to polyoxin D 7STM ; 3.02 ; Chitin Synthase 2 from Candida albicans bound to UDP-GlcNAc 8GUL ; 2.44 ; Chitin-active AA10 LPMO (GbpA) complexed with Cu(II) from Vibrio campbellii 8GUM ; 2.35 ; Chitin-active AA10 LPMO (GbpA) from Vibrio campbellii 7P3U ; 1.5 ; Chitin-active fungal AA11 LPMO 7EBI ; 1.5 ; Chitin-specific solute binding protein from Vibrio harveyi co-crystalized with chitotetraose. 6LZQ ; 1.8 ; Chitin-specific solute binding protein from Vibrio harveyi in complex with chitotriose. 1K9T ; 1.8 ; Chitinase a complexed with tetra-N-acetylchitotriose 2WM0 ; 1.9 ; Chitinase A from Serratia marcescens ATCC990 in complex with Chitobio- thiazoline thioamide. 2WLZ ; 1.82 ; Chitinase A from Serratia marcescens ATCC990 in complex with Chitobio- thiazoline. 2WK2 ; 2.05 ; Chitinase A from Serratia marcescens ATCC990 in complex with Chitotrio-thiazoline dithioamide. 2WLY ; 2.4 ; Chitinase A from Serratia marcescens ATCC990 in complex with Chitotrio-thiazoline. 1E15 ; 1.9 ; Chitinase B from Serratia Marcescens 1O6I ; 1.7 ; Chitinase B from Serratia marcescens complexed with the catalytic intermediate mimic cyclic dipeptide CI4. 1GPF ; 1.85 ; CHITINASE B FROM SERRATIA MARCESCENS IN COMPLEX WITH INHIBITOR PSAMMAPLIN 1E6P ; 1.7 ; Chitinase B from Serratia marcescens inactive mutant E144Q 1E6N ; 2.25 ; Chitinase B from Serratia marcescens inactive mutant E144Q in complex with N-acetylglucosamine-pentamer 1OGB ; 1.85 ; Chitinase b from Serratia marcescens mutant D142N 1OGG ; 1.97 ; chitinase b from serratia marcescens mutant d142n in complex with inhibitor allosamidin 1E6Z ; 1.99 ; CHITINASE B FROM SERRATIA MARCESCENS WILDTYPE IN COMPLEX WITH CATALYTIC INTERMEDIATE 1E6R ; 2.5 ; Chitinase B from Serratia marcescens wildtype in complex with inhibitor allosamidin 6BT9 ; 2.26 ; Chitinase ChiA74 from Bacillus thuringiensis 6Y0R ; 1.611 ; Chitooligosaccharide oxidase 7VTZ ; 2.1 ; Chitoporin from Escherichia coli 7VU0 ; 1.85 ; Chitoporin from Escherichia coli 7VU1 ; 1.9 ; Chitoporin from Escherichia coli complex with chitohexaose 7VU2 ; 1.85 ; Chitoporin from Serratia marcescens 7VU3 ; 2.7 ; Chitoporin from Serratia marcescens in-complex with chitohexaose 2VZS ; 1.85 ; Chitosan Product complex of Amycolatopsis orientalis exo-chitosanase CsxA 4OLT ; 1.59 ; Chitosanase complex structure 1QGI ; 1.6 ; CHITOSANASE FROM BACILLUS CIRCULANS 2D05 ; 2.0 ; Chitosanase From Bacillus circulans mutant K218P 4QYF ; 2.15 ; CHK1 kinase domain in complex with aminopyrazine compound 13 4QYE ; 2.05 ; CHK1 kinase domain in complex with diarylpyrazine compound 1 4QYG ; 1.75 ; CHK1 kinase domain in complex with diazacarbazole compound 14 4QYH ; 1.9 ; CHK1 kinase domain in complex with diazacarbazole GNE-783 4RVM ; 1.86 ; CHK1 kinase domain with diazacarbazole compound 19 4RVL ; 1.85 ; CHK1 kinase domain with diazacarbazole compound 7: 3-(2-hydroxyphenyl)-9H-pyrrolo[2,3-b:5,4-c']dipyridine-6-carbonitrile 4RVK ; 1.85 ; CHK1 kinase domain with diazacarbazole compound 8: N-[3-(6-cyano-9H-pyrrolo[2,3-b:5,4-c']dipyridin-3-yl)phenyl]acetamide 6FC8 ; 1.61 ; CHK1 KINASE IN COMPLEX WITH COMPOUND 13 6FCK ; 1.9 ; CHK1 KINASE IN COMPLEX WITH COMPOUND 13 6FCF ; 1.85 ; CHK1 KINASE IN COMPLEX WITH COMPOUND 44 4P40 ; 1.2 ; Chlamydia pneumoniae CopN 4P3Z ; 1.77 ; Chlamydia pneumoniae CopN (D29 construct) 6GJT ; 1.98 ; Chlamydia protein Pgp3 studied at high resolution in a new crystal form 2IU9 ; 3.1 ; Chlamydia trachomatis LpxD with 100mM UDPGlcNAc (Complex II) 2IU8 ; 2.2 ; Chlamydia trachomatis LpxD with 25mM UDPGlcNAc (Complex I) 4D8F ; 2.2 ; Chlamydia trachomatis NrdB with a Mn/Fe cofactor (procedure 1 - high Mn) 4D8G ; 1.75 ; Chlamydia trachomatis NrdB with a Mn/Fe cofactor (procedure 2 - low Mn) 3QRX ; 2.2 ; Chlamydomonas reinhardtii centrin bound to melittin 9B4H ; 3.1 ; Chlamydomonas reinhardtii mastigoneme filament 7P9E ; 2.36 ; Chlamydomonas reinhardtii NADPH Dependent Thioredoxin Reductase 1 domain CS mutant 7JRJ ; 3.03 ; Chlamydomonas reinhardtii radial spoke head and neck (recombinant) 7JR9 ; 2.95 ; Chlamydomonas reinhardtii radial spoke minimal head complex 7R3K ; 2.52 ; Chlamydomonas reinhardtii TSP9 mutant small Photosystem I complex 1UZD ; 2.4 ; Chlamydomonas,Spinach Chimeric Rubisco 7EQI ; 3.1 ; ChlB3 [Aceyltransferase] 7FCO ; 2.51 ; ChlB4 Halogenase 2I9D ; 2.3 ; chloramphenicol acetyltransferase 6X7Q ; 1.68 ; Chloramphenicol acetyltransferase type III in complex with chloramphenicol and acetyl-oxa(dethia)-CoA 1QHN ; 2.7 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE FROM STREPTOMYCES VENEZUELAE 1QHY ; 2.6 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE FROM STREPTOMYCES VENEZUELAE IN COMPLEX WITH ATPGAMMAS AND CHLORAMPHENICOL 1GRR ; 2.9 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE IN COMPLEX WITH 2-Nac-CHLORAMPHENICOL FROM STREPTOMYCES VENEZUELAE 1QHX ; 2.5 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE IN COMPLEX WITH ATP FROM STREPTOMYCES VENEZUELAE 1QHS ; 2.8 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE IN COMPLEX WITH CHLORAMPHENICOL FROM STREPTOMYCES VENEZUELAE 1GRQ ; 2.9 ; CHLORAMPHENICOL PHOSPHOTRANSFERASE IN COMPLEX WITH P-AMINO-CHLORAMPHENICOL FROM STREPTOMYCES VENEZUELAE 3SO2 ; 1.6428 ; Chlorella dUTPase 7SP6 ; 3.1 ; Chlorella virus hyaluronan synthase 7SP8 ; 2.7 ; Chlorella virus Hyaluronan Synthase bound to UDP-GlcNAc 7SP9 ; 2.9 ; Chlorella virus Hyaluronan Synthase in the GlcNAc-primed channel-closed state 7SPA ; 2.8 ; Chlorella virus Hyaluronan Synthase in the GlcNAc-primed, channel-open state 7SP7 ; 3.1 ; Chlorella virus hyaluronan synthase inhibited by UDP 1K0N ; 1.8 ; Chloride Intracellular Channel 1 (CLIC1) complexed with glutathione 9AZ7 ; 2.0 ; Chloride Sites in Photoactive Yellow Protein 9AZ9 ; 2.0 ; Chloride Sites in Photoactive Yellow Protein (Chloride-Free Reference Structure) 5D4J ; 2.0 ; Chloride-bound form of a copper nitrite reductase from Alcaligenes faecals 2W3T ; 1.69 ; Chloro complex of the Ni-Form of E.coli deformylase 2YMP ; 1.96 ; Chloroacetic acid complex bound L-haloacid dehalogenase from a Rhodobacteraceae family bacterium 4CMY ; 2.59 ; Chlorobium tepidum Ferritin 2BD0 ; 1.7 ; Chlorobium tepidum Sepiapterin Reductase complexed with NADP and Sepiapterin 1A7D ; 1.8 ; CHLOROMET MYOHEMERYTHRIN FROM THEMISTE ZOSTERICOLA 3DN1 ; 1.8 ; Chloropentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 1CPO ; 1.9 ; CHLOROPEROXIDASE 2CPO ; 2.1 ; CHLOROPEROXIDASE 2CIV ; 1.8 ; Chloroperoxidase bromide complex 2CIZ ; 1.3 ; chloroperoxidase complexed with acetate 2CIY ; 1.7 ; Chloroperoxidase complexed with cyanide and DMSO 2CIX ; 1.8 ; chloroperoxidase complexed with cyclopentanedione 2CJ1 ; 1.7 ; chloroperoxidase complexed with formate (ethylene glycol cryoprotectant) 2CJ2 ; 1.6 ; chloroperoxidase complexed with formate (sugar cryoprotectant) 2CJ0 ; 1.75 ; chloroperoxidase complexed with nitrate 1A8S ; 1.8 ; CHLOROPEROXIDASE F/PROPIONATE COMPLEX 1VNC ; 2.1 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS 1VNE ; 2.15 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS: MUTANT D292A 1VNG ; 2.2 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS: MUTANT H404A 1VNH ; 2.11 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS: MUTANT H496A 1VNF ; 2.35 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS: MUTANT R360A 1VNI ; 2.15 ; CHLOROPEROXIDASE FROM THE FUNGUS CURVULARIA INAEQUALIS: RECOMBINANT HOLO-CHLOROPEROXIDASE 2CIW ; 1.15 ; Chloroperoxidase iodide complex 1A88 ; 1.9 ; CHLOROPEROXIDASE L 2J18 ; 1.75 ; Chloroperoxidase mixture of ferric and ferrous states (low dose data set) 1A7U ; 1.75 ; CHLOROPEROXIDASE T 1A8U ; 1.6 ; CHLOROPEROXIDASE T/BENZOATE COMPLEX 6VMD ; 4.53 ; Chloroplast ATP synthase (C1, CF1) 6VMB ; 5.23 ; Chloroplast ATP synthase (C1, CF1FO) 6VM4 ; 7.08 ; Chloroplast ATP synthase (C2, CF1FO) 6VM1 ; 7.9 ; Chloroplast ATP synthase (C3, CF1FO) 6VOI ; 4.03 ; Chloroplast ATP synthase (O1, CF1) 6VOH ; 4.16 ; Chloroplast ATP synthase (O1, CF1FO) 6VOG ; 4.35 ; Chloroplast ATP synthase (O2, CF1) 6VOF ; 4.51 ; Chloroplast ATP synthase (O2, CF1FO) 6VMG ; 6.46 ; Chloroplast ATP synthase (O3, CF1FO) 6VOO ; 3.05 ; Chloroplast ATP synthase (R1, CF1) 6VON ; 3.35 ; Chloroplast ATP synthase (R1, CF1FO) 6VOM ; 3.6 ; Chloroplast ATP synthase (R2, CF1) 6VOL ; 4.06 ; Chloroplast ATP synthase (R2, CF1FO) 6VOK ; 3.85 ; Chloroplast ATP synthase (R3, CF1) 6VOJ ; 4.34 ; Chloroplast ATP synthase (R3, CF1FO) 5CDI ; 3.807 ; Chloroplast chaperonin 60b1 of Chlamydomonas 6FKF ; 3.15 ; Chloroplast F1Fo conformation 1 6FKH ; 4.2 ; Chloroplast F1Fo conformation 2 6FKI ; 4.3 ; Chloroplast F1Fo conformation 3 4BM5 ; 4.2 ; Chloroplast inner membrane protein TIC110 1CIV ; 2.8 ; CHLOROPLAST NADP-DEPENDENT MALATE DEHYDROGENASE FROM FLAVERIA BIDENTIS 7EU3 ; 3.7 ; Chloroplast NDH complex 7ZGI ; 2.6 ; chloroplast trigger factor (TIG1) 2YMQ ; 1.72 ; Chloropropionic acid complex bound L-haloacid dehalogenase from a Rhodobacteraceae family bacterium 1CEQ ; 2.0 ; CHLOROQUINE BINDS IN THE COFACTOR BINDING SITE OF PLASMODIUM FALCIPARUM LACTATE DEHYDROGENASE. 1CET ; 2.05 ; CHLOROQUINE BINDS IN THE COFACTOR BINDING SITE OF PLASMODIUM FALCIPARUM LACTATE DEHYDROGENASE. 7FH4 ; 1.996 ; Chlorovirus PBCV-1 bi-functional dCMP/dCTP deaminase bi-DCD 7FH9 ; 1.9 ; chlorovirus PBCV-1 bi-functional dCMP/dCTP deaminase bi-DCD with dTTP/dTMP bound 3RTF ; 1.7 ; Chlorowillardiine bound to the ligand binding domain of GluA2 3RT8 ; 2.426 ; Chlorowillardiine bound to the ligand binding domain of GluA3 7ZCH ; 3.6 ; CHMP2A-CHMP3 heterodimer (410 Angstrom diameter) 7ZCG ; 3.3 ; CHMP2A-CHMP3 heterodimer (430 Angstrom diameter) 5WA1 ; 1.868 ; CHMP4C A232T in complex with ALIX BRO1 5V3R ; 1.906 ; CHMP4C in complex with ALIX BRO1 1C9W ; 2.4 ; CHO REDUCTASE WITH NADP+ 5WDS ; 1.85 ; Choanoflagellate Salpingoeca rosetta Ras with GDP bound 5WDR ; 1.6 ; Choanoflagellate Salpingoeca rosetta Ras with GMP-PNP 1S5B ; 2.13 ; Cholera holotoxin with an A-subunit Y30S mutation Form 3 1S5C ; 2.5 ; Cholera holotoxin with an A-subunit Y30S mutation, Crystal form 1 1S5D ; 1.75 ; Cholera holotoxin with an A-subunit Y30S mutation, Crystal form 2 1S5E ; 1.9 ; Cholera holotoxin, Crystal form 1 1S5F ; 2.6 ; Cholera holotoxin, Crystal form 2 1XTC ; 2.4 ; CHOLERA TOXIN 2A5G ; 2.66 ; Cholera toxin A1 subunit bound to ARF6(Q67L) 2A5F ; 2.02 ; Cholera toxin A1 subunit bound to its substrate, NAD+, and its human protein activator, ARF6 7LVB ; 2.25 ; CHOLERA TOXIN B SUBUNIT WITH ATTACHED SIV EPITOPE 1RCV ; 1.6 ; Cholera Toxin B-Pentamer Complexed With Bivalent Nitrophenol-Galactoside Ligand BV1 1RD9 ; 1.44 ; Cholera Toxin B-Pentamer Complexed With Bivalent Nitrophenol-Galactoside Ligand BV2 1RDP ; 1.35 ; Cholera Toxin B-Pentamer Complexed With Bivalent Nitrophenol-Galactoside Ligand BV3 1RF2 ; 1.35 ; Cholera Toxin B-Pentamer Complexed With Bivalent Nitrophenol-Galactoside Ligand BV4 2CHB ; 2.0 ; CHOLERA TOXIN B-PENTAMER COMPLEXED WITH GM1 PENTASACCHARIDE 3CHB ; 1.25 ; CHOLERA TOXIN B-PENTAMER COMPLEXED WITH GM1 PENTASACCHARIDE 1EEI ; 2.0 ; CHOLERA TOXIN B-PENTAMER COMPLEXED WITH METANITROPHENYL-ALPHA-D-GALACTOSE 1PZK ; 1.35 ; Cholera Toxin B-Pentamer Complexed With N-Acyl Phenyl Galactoside 9h 1PZJ ; 1.46 ; Cholera Toxin B-Pentamer Complexed With Nitrophenyl Galactoside 5 1CT1 ; 2.3 ; CHOLERA TOXIN B-PENTAMER MUTANT G33R BOUND TO RECEPTOR PENTASACCHARIDE 1MD2 ; 1.45 ; CHOLERA TOXIN B-PENTAMER WITH DECAVALENT LIGAND BMSC-0013 1JR0 ; 1.3 ; CHOLERA TOXIN B-PENTAMER WITH LIGAND BMSC-0011 1LLR ; 1.46 ; CHOLERA TOXIN B-PENTAMER WITH LIGAND BMSC-0012 5ELD ; 1.4 ; Cholera toxin classical B-pentamer in complex with A Lewis-y 6HMW ; 1.95 ; Cholera toxin classical B-pentamer in complex with fucose 6HMY ; 1.6 ; Cholera toxin classical B-pentamer in complex with fucosyl-GM1 5LZH ; 1.13 ; Cholera toxin classical B-pentamer in complex with inhibitor PC262 6HJD ; 1.54 ; Cholera toxin classical B-pentamer in complex with Lewis-x 5ELB ; 1.08 ; Cholera toxin classical B-pentamer in complex with Lewis-y 5ELE ; 1.6 ; Cholera toxin El Tor B-pentamer in complex with A Lewis-y 5ELF ; 1.55 ; Cholera toxin El Tor B-pentamer in complex with A-pentasaccharide 5LZJ ; 1.2 ; Cholera toxin El Tor B-pentamer in complex with inhibitor Laura237 5LZG ; 1.13 ; Cholera toxin El Tor B-pentamer in complex with inhibitor PC262 5ELC ; 1.5 ; Cholera toxin El Tor B-pentamer in complex with Lewis-y 2YOO ; 1.69 ; Cholest-4-en-3-one bound structure of CYP142 from Mycobacterium smegmatis 3D4S ; 2.8 ; Cholesterol bound form of human beta2 adrenergic receptor. 7XEM ; 3.17 ; Cholesterol bound state of mTRPV2 1LLF ; 1.4 ; Cholesterol Esterase (Candida Cylindracea) Crystal Structure at 1.4A resolution 2BCE ; 1.6 ; CHOLESTEROL ESTERASE FROM BOS TAURUS 7COG ; 2.098 ; Cholesterol esterase from Burkholderia stabilis (monoclinic crystal form) 7COF ; 1.084 ; Cholesterol esterase from Burkholderia stabilis (orthorhombic crystal form) 2I0K ; 1.6 ; Cholesterol Oxidase from Brevibacterium sterolicum- His121Ala Mutant 1B4V ; 1.5 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES 1N4U ; 0.95 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES @ pH 4.5 (STREPTOMYCES SP. SA-COO) 1IJH ; 1.53 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES ASN485LEU MUTANT 1B8S ; 1.65 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES GLU361GLN MUTANT 1CBO ; 1.8 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES HIS447ASN MUTANT 1CC2 ; 2.2 ; CHOLESTEROL OXIDASE FROM STREPTOMYCES HIS447GLN MUTANT 3CNJ ; 0.95 ; Cholesterol oxidase from Streptomyces sp. F359W mutant (0.95A) 3GYI ; 1.0 ; Cholesterol oxidase from Streptomyces sp. N485D mutant (1.0A) 3GYJ ; 0.92 ; Cholesterol oxidase from Streptomyces sp. N485L mutant (0.92A) 4U2T ; 1.223 ; Cholesterol oxidase in the oxidised state complexed with isopropanol 4U2S ; 1.12 ; Cholesterol oxidase in the reduced state complexed with isopropanol 1GVM ; 2.8 ; CHOLINE BINDING DOMAIN OF THE MAJOR AUTOLYSIN (C-LYTA) FROM STREPTOCOCCUS PNEUMONIAE 1HCX ; 2.6 ; Choline binding domain of the major autolysin (C-LytA) from Streptococcus pneumoniae 4DA5 ; 2.4 ; Choline Kinase alpha acts through a double-displacement kinetic mechanism involving enzyme isomerisation, as determined through enzyme and inhibitor kinetics and structural biology 5W6O ; 2.35 ; Choline Kinase Alpha in Complex with TCD-717 6G5Z ; 1.98 ; Choline sulfatase from Ensifer (Sinorhizobium) meliloti 6G60 ; 1.84 ; Choline sulfatase from Ensifer (Sinorhizobium) meliloti cocrystalized with choline 7WWB ; 3.86 ; Choline transporter-like protein 1 8UBW ; 2.59 ; Choline-bound FLVCR1 8UBY ; 2.67 ; Choline-bound FLVCR1 8UBZ ; 3.02 ; Choline-bound FLVCR1 6J66 ; 1.953 ; Chondroitin sulfate/dermatan sulfate endolytic 4-O-sulfatase 1C4S ; 3.0 ; CHONDROITIN-4-SULFATE. THE STRUCTURE OF A SULFATED GLYCOSAMINOGLYCAN 1CB8 ; 1.9 ; CHONDROITINASE AC LYASE FROM FLAVOBACTERIUM HEPARINUM 5A3K ; 2.753 ; Chorismatase mechanisms reveal fundamentally different types of reaction in a single conserved protein fold 5AG3 ; 1.898 ; Chorismatase mechanisms reveal fundamentally different types of reaction in a single conserved protein fold 1G1B ; 1.99 ; CHORISMATE LYASE (WILD-TYPE) WITH BOUND PRODUCT 1JD3 ; 2.03 ; Chorismate lyase G90A mutant with bound product 1FW9 ; 1.4 ; CHORISMATE LYASE WITH BOUND PRODUCT 1G81 ; 1.71 ; CHORISMATE LYASE WITH BOUND PRODUCT, ORTHORHOMBIC CRYSTAL FORM 2AHC ; 2.4 ; Chorismate lyase with inhibitor Vanilate 1XLR ; 1.94 ; CHORISMATE LYASE WITH INHIBITOR VANILLATE 1TT8 ; 1.0 ; CHORISMATE LYASE WITH PRODUCT, 1.0 A RESOLUTION 1DBF ; 1.3 ; CHORISMATE MUTASE FROM BACILLUS SUBTILIS AT 1.30 ANGSTROM 1XHO ; 2.2 ; Chorismate mutase from Clostridium thermocellum Cth-682 1L0S ; 2.3 ; Choristoneura fumiferana (spruce budworm) antifreeze protein isoform 337 1M8N ; 2.45 ; Choristoneura Fumiferana (Spruce Budworm) Antifreeze Protein Isoform 501 7SFJ ; 2.74 ; ChRmine in MSP1E3D1 lipid nanodisc 7SFK ; 2.74 ; ChRmine in MSP1E3D1 lipid nanodisc 2Y9Y ; 3.25 ; Chromatin Remodeling Factor ISW1a(del_ATPase) 2Y9Z ; 3.601 ; Chromatin Remodeling Factor ISW1a(del_ATPase) in DNA complex 8RU1 ; 1.66 ; Chromatin remodeling regulator CECR2 with in crystallo disulfide bond 6GEJ ; 3.6 ; Chromatin remodeller-nucleosome complex at 3.6 A resolution. 6GEN ; 3.6 ; Chromatin remodeller-nucleosome complex at 4.5 A resolution. 1KNA ; 2.1 ; Chromo domain of HP1 complexed with histone H3 tail containing dimethyllysine 9. 1KNE ; 2.4 ; Chromo domain of HP1 complexed with histone H3 tail containing trimethyllysine 9 5JJZ ; 2.0 ; Chromo domain of human Chromodomain Protein, Y-Like 2 3MTS ; 2.2 ; Chromo Domain of Human Histone-Lysine N-Methyltransferase SUV39H1 1E0B ; 1.9 ; Chromo shadow domain from fission yeast swi6 protein. 5T1G ; 1.9 ; chromo shadow domain of CBX1 in complex with a histone peptide 8UX2 ; 1.87 ; Chromobacterium violaceum mono-ADP-ribosyltransferase CteC in complex with NAD+ 2N88 ; ; Chromodomain 3 (CD3) of cpSRP43 4MN3 ; 1.542 ; Chromodomain antagonists that target the polycomb-group methyllysine reader protein Chromobox homolog 7 (CBX7) 6AT0 ; 1.285 ; Chromodomain HP1 with a p-nitro-L-phenylalanine mutation at position 24 bound to histone H3 peptide containing trimethyl lysine 6ASZ ; 1.518 ; Chromodomain HP1 with Y24F mutation bound to histone H3 peptide containing trimethyl lysine 3G7L ; 2.2 ; Chromodomain of Chp1 in complex with Histone H3K9me3 peptide 1Q3L ; 1.64 ; Chromodomain Of HP1 Complexed With Histone H3 Tail Containing monomethyllysine 9. 6SAW ; 3.0 ; Chromophore binding domain of bacteriophytochrome linked diguanylyl cyclase from Idiomarina species A28L (dimeric Pfr-like state). 6SAX ; 2.4 ; Chromophore binding domain of bacteriophytochrome linked diguanylyl cyclase from Idiomarina species A28L (Pr-state monomer). 2R0G ; 2.37 ; Chromopyrrolic acid-soaked RebC with bound 7-carboxy-K252c 4EIQ ; 2.76 ; Chromopyrrolic acid-soaked RebC-10x with bound 7-carboxy-K252c 1BF4 ; 1.6 ; CHROMOSOMAL DNA-BINDING PROTEIN SSO7D/D(GCGAACGC) COMPLEX 6XRW ; 1.77 ; Chromosomal ParDE TA system from P. aeruginosa 6CJ0 ; 1.9 ; Chromosomal trehalose-6-phosphate phosphatase from P. aeruginosa 6D3V ; 1.8 ; Chromosomal trehalose-6-phosphate phosphatase from P. aeruginosa 6D3W ; 1.9 ; Chromosomal trehalose-6-phosphate phosphatase from P. aeruginosa 1VZ0 ; 2.3 ; Chromosome segregation protein Spo0J from Thermus thermophilus 8BYN ; 2.6 ; Chronic traumatic encephalopathy tau filaments with PET ligand flortaucipir 6NWP ; 2.3 ; Chronic traumatic encephalopathy Type I Tau filament 6NWQ ; 3.4 ; Chronic traumatic encephalopathy Type II Tau filament 3NE9 ; 2.5 ; Chronobacterium ammoiniagenes apo-ACPS structure 3NFD ; 1.89 ; Chronobacterium ammoniagenes ACPS-CoA complex 7MGV ; 2.44 ; Chryseobacterium gregarium RiPP-associated ATP-grasp ligase in complex with ADP, and a leader and core peptide 7LG9 ; 2.03 ; ChsB1 7LGB ; 2.21 ; ChsB1 in complex with NAD+ 5FFQ ; 2.0 ; ChuY: An Anaerobillin Reductase from Escherichia coli O157:H7 1CZI ; 2.3 ; CHYMOSIN COMPLEX WITH THE INHIBITOR CP-113972 7UBZ ; 1.75 ; Chymotrypsin digested toxin/immunity complex for a T6SS lipase effector from E. cloacae 1QH2 ; ; CHYMOTRYPSIN INHIBITOR (C2) FROM NICOTIANA ALATA 2JZM ; ; Chymotrypsin inhibitor C1 from Nicotiana alata 1CHG ; 2.5 ; CHYMOTRYPSINOGEN,2.5 ANGSTROMS CRYSTAL STRUCTURE, COMPARISON WITH ALPHA-CHYMOTRYPSIN,AND IMPLICATIONS FOR ZYMOGEN ACTIVATION 6Q9B ; 3.9 ; CI Membrane Arm focused refinement from Ovine respiratory SC I+III2 6Q9D ; 3.8 ; CI Peripheral Arm focused refinement from Ovine respiratory SC I+III2 6QIY ; 1.5 ; CI-2, conformation 1 6QIZ ; 1.65 ; CI-2, conformation 2 6TRI ; 2.277 ; CI-MOR repressor-antirepressor complex of the temperate bacteriophage TP901-1 from Lactococcus lactis 1CQ4 ; 1.8 ; CI2 MUTANT WITH TETRAGLUTAMINE (MGQQQQGM) REPLACING MET59 3MUP ; 2.6 ; cIAP1-BIR3 domain in complex with the Smac-mimetic compound Smac037 3OZ1 ; 3.0 ; cIAP1-BIR3 domain in complex with the Smac-mimetic compound Smac066 4EB9 ; 2.6 ; cIAP1-BIR3 in complex with a divalent Smac mimetic 3D9T ; 1.5 ; CIAP1-BIR3 in complex with N-terminal peptide from Caspase-9 (ATPFQE) 6J10 ; 2.3 ; Ciclopirox inhibits Hepatitis B Virus secretion by blocking capsid assembly 4JXT ; 1.9 ; CID of human RPRD1A in complex with a phosphorylated peptide from RPB1-CTD 4FU3 ; 1.9 ; CID of human RPRD1B 4HFG ; 2.0 ; CID of human RPRD1B 4Q96 ; 1.85 ; CID of human RPRD1B in complex with an unmodified CTD peptide 4FLB ; 1.802 ; CID of human RPRD2 1D4B ; ; CIDE-N DOMAIN OF HUMAN CIDE-B 6YMX ; 3.17 ; CIII2/CIV respiratory supercomplex from Saccharomyces cerevisiae 7SQC ; 3.8 ; Ciliary C1 central pair apparatus isolated from Chlamydomonas reinhardtii 7SOM ; 3.7 ; Ciliary C2 central pair apparatus isolated from Chlamydomonas reinhardtii 3JAO ; 23.0 ; Ciliary microtubule doublet 1CNT ; 2.4 ; CILIARY NEUROTROPHIC FACTOR 2K6D ; ; CIN85 Sh3-C domain in complex with ubiquitin 6VBY ; 1.7 ; Cinnamate 4-hydroxylase (C4H1) from Sorghum bicolor 5TQM ; 2.9 ; Cinnamoyl-CoA Reductase 1 from Sorghum bicolor in complex with NADP+ 5VKT ; 1.827 ; Cinnamyl alcohol dehydrogenases (SbCAD4) from Sorghum bicolor (L.) Moench 2JGS ; 1.9 ; Circular permutant of avidin 6I69 ; 1.2 ; Circular permutant of ribosomal protein S6, adding 5aa to C terminal of P97-3, L10A mutant 6I6W ; 1.49 ; Circular permutant of ribosomal protein S6, adding 6aa to C terminal of P68-69 6I6I ; 1.5 ; Circular permutant of ribosomal protein S6, adding 6aa to C terminal of P68-69, L75A mutant 6I6S ; 1.46 ; Circular permutant of ribosomal protein S6, adding 9aa to C terminal of P68-69, L75A mutant 6I6U ; 1.57 ; Circular permutant of ribosomal protein S6, adding 9aa to N terminal of P81-82, L75A mutant 3ZZP ; 0.96 ; Circular permutant of ribosomal protein S6, lacking edge strand beta- 2 of wild-type S6. 7B8V ; 1.863 ; Circular permutant of ribosomal protein S6, P54-55 7BFC ; 2.13 ; Circular permutant of ribosomal protein S6, P54-55 truncated, 7BFF ; 1.66 ; Circular permutant of ribosomal protein S6, P54-55 truncated, I25A mutant. 7B90 ; 2.05 ; Circular permutant of ribosomal protein S6, P54-55 truncated, I8A mutant 7BFE ; 1.95 ; Circular permutant of ribosomal protein S6, P54-55 truncated, L21A mutant. 7BFG ; 2.01 ; Circular permutant of ribosomal protein S6, P54-55 truncated, V37A mutant. 7BFD ; 2.57 ; Circular permutant of ribosomal protein S6, P54-55 truncated, Y4A mutant. 6I6Y ; 2.15 ; Circular permutant of ribosomal protein S6, swap helix 2 6I6O ; 1.9 ; Circular permutant of ribosomal protein S6, swap helix 2, L75A mutant 7OS7 ; 1.65 ; Circular permutant of ribosomal protein S6, swap helix 2, L75A, A92K mutant 6I6E ; 1.2 ; Circular permutant of ribosomal protein S6, swap strand 1 , L10A mutant 3KML ; 3.011 ; Circular Permutant of the Tobacco Mosaic Virus 2MDU ; ; Circular Permutant of the WW Domain with Loop 1 Excised 1P5C ; 2.5 ; Circular permutation of Helix A in T4 lysozyme 2M7C ; ; Circular Permutation of the Trp-cage: Fold Rescue upon Addition of a Hydrophobic Staple 2XHH ; 1.6 ; Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules 2XHJ ; 1.73 ; Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. SeMet form of vCBM60. 4GDA ; 1.0 ; Circular Permuted Streptavidin A50/N49 1SWF ; 2.0 ; CIRCULAR PERMUTED STREPTAVIDIN E51/A46 1SWG ; 1.8 ; CIRCULAR PERMUTED STREPTAVIDIN E51/A46 IN COMPLEX WITH BIOTIN 4GD9 ; 1.5 ; Circular Permuted Streptavidin N49/G48 7RDR ; 6.5 ; Circular tandem repeat protein with novel repeat topology and enhanced subunit contact surfaces 5SYD ; 2.397 ; Circularly permutated azurin (cpAz) based on P. aeruginosa azurin sequence 1AJO ; 2.07 ; CIRCULARLY PERMUTED (1-3,1-4)-BETA-D-GLUCAN 4-GLUCANOHYDROLASE CPA16M-127 1AJK ; 1.8 ; CIRCULARLY PERMUTED (1-3,1-4)-BETA-D-GLUCAN 4-GLUCANOHYDROLASE CPA16M-84 1BD7 ; 2.78 ; CIRCULARLY PERMUTED BB2-CRYSTALLIN 1ALQ ; 1.8 ; CIRCULARLY PERMUTED BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS PC1 6NLU ; 1.607 ; Circularly permuted Haliangium ochraceum BMC-H 1FW8 ; 2.3 ; CIRCULARLY PERMUTED PHOSPHOGLYCERATE KINASE FROM YEAST: PGK P72 7L0N ; 2.78 ; Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity 1BH4 ; ; CIRCULIN A FROM CHASSALIA PARVIFLORA, NMR, 12 STRUCTURES 7B26 ; 3.4 ; CirpA1 in complex with pseudo-monomeric Properdin lacking TSR2-3 6BJG ; 2.29 ; CIRV p19 mutant T111H in complex with siRNA 6BJH ; 2.58 ; CIRV p19 mutant T111S in complex with siRNA 6BJV ; 2.198 ; CIRV p19 protein in complex with siRNA 2M0Z ; ; cis form of a photoswitchable PDZ domain crosslinked with an azobenzene derivative 6D5Z ; ; Cis form of Hemolysin II C-terminal domain 7QLK ; 1.458 ; Cis structure intermediate of rsKiiro Illuminated at 200 K 7QLI ; 1.155 ; Cis structure of rsKiiro at 290 K 2H4B ; ; cis-4-aminomethylphenylazobenzoic acid-avian pancreatic polypeptide 1ANR ; ; CIS-ACTING RNA REGULATORY ELEMENT (HIV-1 TAR), NMR, 20 STRUCTURES 2H3S ; ; cis-Azobenzene-avian pancreatic polypeptide bound to DPC micelles 1BDB ; 2.0 ; CIS-BIPHENYL-2,3-DIHYDRODIOL-2,3-DEHYDROGENASE FROM PSEUDOMONAS SP. LB400 4BX5 ; 1.431 ; cis-divalent streptavidin 6LUA ; 3.1 ; Cis-mutant R349A of the central AAA+ domain of the flagellar regulatory protein FlrC 1KV0 ; 1.4 ; Cis/trans Isomerization of Non-prolyl Peptide Bond Observed in Crystal Structure of an Scorpion Toxin 4OWB ; 1.69 ; Cisplatin binding to HEWL under sodium bromide crystallisation conditions 2R7Z ; 3.8 ; Cisplatin lesion containing RNA polymerase II elongation complex 1AZ2 ; 2.9 ; CITRATE BOUND, C298A/W219Y MUTANT HUMAN ALDOSE REDUCTASE 5H5B ; 2.05 ; Citrate ion bound crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 1Z6K ; 2.3 ; Citrate lyase beta subunit complexed with oxaloacetate and magnesium from M. tuberculosis 8GMI ; 2.7 ; Citrate Synthase (CitA) in Mycobacterium tuberculosis modified by Ebselen at C143 residue 1AJ8 ; 1.9 ; CITRATE SYNTHASE FROM PYROCOCCUS FURIOSUS 1O7X ; 2.7 ; Citrate synthase from Sulfolobus solfataricus 7WBR ; 2.19 ; Citrate synthase/lyase from Desulfurella acetivorans Desace_08345 5LTG ; 2.0 ; Citrate-bound Pichia angusta Atg18 8BIY ; 1.61 ; Citrate-free extracytoplasmic PAS domain mutant R93A of sensor histidine kinase CitA from Geobacillus thermodenitrificans 6G2D ; 5.4 ; Citrate-induced acetyl-CoA carboxylase (ACC-Cit) filament at 5.4 A resolution 6MQQ ; 2.05 ; Citrobacter freundii F448A mutant tyrosine phenol-lyase complexed with 4-hydroxypyridine and aminoacrylate from S-ethyl-L-cysteine 1RGY ; 1.52 ; Citrobacter freundii GN346 Class C beta-Lactamase Complexed with Transition-State Analog of Cefotaxime 6MPD ; 1.79 ; Citrobacter freundii tyrosine phenol-lyase complexed with 4-hydroxypyridine and aminoacrylate from 3-F-L-tyrosine 6MO3 ; 1.79 ; Citrobacter freundii tyrosine phenol-lyase complexed with 4-hydroxypyridine and aminoacrylate from L-serine 6MLS ; 1.77 ; Citrobacter freundii tyrosine phenol-lyase complexed with 4-hydroxypyridine and aminoacrylate from L-tyrosine 6MME ; 1.9 ; Citrobacter freundii tyrosine phenol-lyase complexed with 4-hydroxypyridine and aminoacrylate from S-ethyl-L-cysteine 6DUR ; 1.8 ; Citrobacter freundii tyrosine phenol-lyase complexed with L-phenylalanine 6DXV ; 2.2 ; Citrobacter freundii tyrosine phenol-lyase F448A mutant 6DYT ; 2.05 ; Citrobacter freundii tyrosine phenol-lyase F448A mutant complexed with L-alanine 6DZ5 ; 2.26 ; Citrobacter freundii tyrosine phenol-lyase F448A mutant complexed with L-alanine 6ECG ; 2.27 ; Citrobacter freundii tyrosine phenol-lyase F448A mutant complexed with L-methionine 6DVX ; 2.27 ; Citrobacter freundii tyrosine phenol-lyase F448A mutant complexed with L-phenylalanine 6LLN ; 1.8 ; citronellol catabolism dehydrogenase (AtuB) [Pseudomonas aeruginosa PAO1] 3B3I ; 1.86 ; Citrullination-dependent differential presentation of a self-peptide by HLA-B27 subtypes 7UW9 ; 4.2 ; Citrus V-ATPase State 1, H in contact with subunit a 7UWA ; 4.3 ; Citrus V-ATPase State 1, H in contact with subunits AB 7UWC ; 4.0 ; Citrus V-ATPase State 2, H in contact with subunit a 7UWD ; 4.1 ; Citrus V-ATPase State 2, H in contact with subunits AB 7UWB ; 3.9 ; Citrus V-ATPase State 2, Highest-Resolution Class 6QCL ; 1.6 ; Citryl-CoA lyase core module of Chlorobium limicola ATP citrate lyase in complex with acetyl-CoA and L-malate 6Z2H ; 1.8 ; Citryl-CoA lyase module of human ATP citrate lyase in complex with (3S)-citryl-CoA. 7KWS ; 2.09 ; Cj1441 with NAD+ and UDP-glucose 8BQC ; 1.57 ; CjCel5B endo-glucanase 8BQA ; 1.67 ; CjCel5B endo-glucanase bound to CB665 covalent inhibitor 8BN7 ; 2.182 ; CjCel5C endo-glucanase 8BQB ; 2.701 ; CjCel5C endo-glucanase bound to CB396 covalent inhibitor 8OZ1 ; 1.3 ; CjCel5D endo-xyloglucanase bounc to CB665 covalent inhibitor 8PEJ ; 1.5 ; CjGH35 with a Galactosidase Activity-Based Probe 6JMS ; 1.5 ; CJP38, a beta-1,3-glucanase and allergen of Cryptomeria japonica pollen 4KBK ; 2.1 ; CK1d in complex with (3S)-3-{4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridin-2-yl}morpholine inhibitor 4KB8 ; 1.95 ; CK1d in complex with 1-{4-[3-(4-FLUOROPHENYL)-1-METHYL-1H-PYRAZOL-4-YL]PYRIDIN-2-YL}-N-METHYLMETHANAMINE ligand 4KBA ; 1.98 ; CK1d in complex with 9-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2,3,4,5-tetrahydropyrido[2,3-f][1,4]oxazepine inhibitor 4TN6 ; 2.41 ; CK1d in complex with inhibitor 4KBC ; 1.98 ; CK1d in complex with {4-[3-(4-FLUOROPHENYL)-1H-PYRAZOL-4-YL]PYRIDIN-2-YL}METHANOL inhibitor 6Z83 ; 2.171 ; CK2 alpha bound to chemical probe SGC-CK2-1 6Z84 ; 2.5 ; CK2 alpha bound to chemical probe SGC-CK2-1 derivative 6YUL ; 2.4 ; CK2 alpha bound to Macrocycle 6YUM ; 2.75 ; CK2 alpha bound to unclosed Macrocycle 8C5Q ; 2.5 ; CK2 kinase bound to inhibitor AB668 5NQC ; 2.0 ; CK2alpha in complex with NMR154 1DKT ; 2.9 ; CKSHS1: HUMAN CYCLIN DEPENDENT KINASE SUBUNIT, TYPE 1 COMPLEX WITH METAVANADATE 1DKS ; 3.2 ; CKSHS1: HUMAN CYCLIN DEPENDENT KINASE SUBUNIT, TYPE 1 IN COMPLEX WITH PHOSPHATE 3ARK ; 1.81 ; Cl- binding hemoglobin component V form Propsilocerus akamusi under 1 M NaCl at pH 4.6 3ARJ ; 1.81 ; Cl- binding hemoglobin component V form Propsilocerus akamusi under 500 mM NaCl at pH 4.6 3ARL ; 1.81 ; Cl- binding hemoglobin component V form Propsilocerus akamusi under 500 mM NaCl at pH 5.5 4YLI ; 2.45 ; CL-K1 trimer 4YMD ; 2.87 ; CL-K1 trimer bound to man(alpha1-2)man 8AM4 ; 2.02 ; Cl-rsEGFP2 Long Wavelength Structure 4B8V ; 1.59 ; Cladosporium fulvum LysM effector Ecp6 in complex with a beta-1,4- linked N-acetyl-D-glucosamine tetramer 4B9H ; 2.1 ; Cladosporium fulvum LysM effector Ecp6 in complex with a beta-1,4- linked N-acetyl-D-glucosamine tetramer: I3C heavy atom derivative 6FQ5 ; 3.8 ; Class 1 : canonical nucleosome 6SE0 ; 3.8 ; Class 1 : CENP-A nucleosome 6DQN ; 3.33 ; Class 1 IP3-bound human type 3 1,4,5-inositol trisphosphate receptor 7ZOS ; 1.9 ; Class 1 Phytoglobin from Sugar beet (BvPgb1.2) 6FQ6 ; 4.0 ; Class 2 : distorted nucleosome 6DQV ; 3.82 ; Class 2 IP3-bound human type 3 1,4,5-inositol trisphosphate receptor 8CTE ; 2.9 ; Class 2 of erythrocyte ankyrin-1 complex (Composite map) 6FQ8 ; 4.8 ; Class 3 : translocated nucleosome 1AD3 ; 2.6 ; CLASS 3 ALDEHYDE DEHYDROGENASE COMPLEX WITH NICOTINAMIDE-ADENINE-DINUCLEOTIDE 6DQS ; 4.12 ; Class 3 IP3-bound human type 3 1,4,5-inositol trisphosphate receptor 6DQZ ; 6.01 ; Class 4 IP3-bound human type 3 1,4,5-inositol trisphosphate receptor 6DR0 ; 4.47 ; Class 5 IP3-bound human type 3 1,4,5-inositol trisphosphate receptor 6WIP ; 1.4 ; Class A beta-lactamase from Micromonospora aurantiaca ATCC 27029 4YFM ; 1.4 ; Class A beta-lactamase from Mycobacterium abscessus 3BFF ; 1.9 ; class A beta-lactamase SED-G238C complexed with faropenem 3BFC ; 2.2 ; class A beta-lactamase SED-G238C complexed with imipenem 3BFG ; 2.0 ; class A beta-lactamase SED-G238C complexed with meropenem 6WIF ; 2.15 ; Class C beta-lactamase from Acinetobacter baumannii in complex with 4-(Ethyl(methyl)carbamoyl)phenyl boronic acid 6XG1 ; 1.22 ; Class C beta-lactamase from Escherichia coli 6WHF ; 1.4 ; class C beta-lactamase from Escherichia coli in complex with cephalothin 6XFS ; 2.7 ; Class C beta-lactamase from Escherichia coli in complex with Tazobactam 6W5G ; 1.451 ; Class D beta-lactamase BAT-2 6W5O ; 2.55 ; Class D beta-lactamase BAT-2 delta mutant 6W5E ; 1.3 ; Class D beta-lactamase BSU-2 6W5F ; 1.5 ; Class D beta-lactamase BSU-2 delta mutant 6PXX ; 1.5 ; Class D beta-lactamase in complex with beta-lactam antibiotic 7AD3 ; 3.3 ; Class D GPCR Ste2 dimer coupled to two G proteins 7Y50 ; 2.0 ; Class I diterpene synthase (CyS) from Streptomyces cattleya 7Y88 ; 1.87 ; class I diterpene synthase (CyS-GGPP-Mg2+) from Streptomyces cattleya 7Y87 ; 2.3 ; class I diterpene synthase mutant (CyS-C59A) from Streptomyces cattleya 2AU4 ; ; Class I GTP aptamer 1B0G ; 2.5 ; CLASS I HISTOCOMPATIBILITY ANTIGEN (HLA-A2.1)/BETA 2-MICROGLOBULIN/PEPTIDE P1049 COMPLEX 7RE8 ; 2.82 ; Class I MHC (HLA-A*02) presenting alpha fetoprotein peptide (AFP) 7E4O ; 2.5 ; Class I Pimarane-Type Diterpene Synthases from Actinomycetes 7E4M ; 1.57 ; Class I Pimarane-Type Diterpene Synthases Stt4548 8H4P ; 1.47 ; class I sesquiterpene synthase 8H6Q ; 2.0 ; Class I sesquiterpene synthase BCBOT2 (apo) 8H6U ; 2.78 ; Class I sesquiterpene synthase BCBOT2 (complex) 8H72 ; 2.09 ; Class I sesquiterpene synthase DbPROS (complex) 8FZA ; 2.3 ; Class I type III preQ1 riboswitch from E. coli 2V5K ; 2.2 ; Class II aldolase HpcH - magnesium - oxamate complex 1ASY ; 2.9 ; CLASS II AMINOACYL TRANSFER RNA SYNTHETASES: CRYSTAL STRUCTURE OF YEAST ASPARTYL-TRNA SYNTHETASE COMPLEXED WITH TRNA ASP 1GYN ; 2.0 ; Class II fructose 1,6-bisphosphate aldolase with Cadmium (not Zinc) in the active site 1ZEN ; 2.5 ; CLASS II FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE 5UCN ; 1.67 ; Class II fructose-1,6-bisphosphate aldolase E142A variant of Helicobacter pylori with DHAP 5UCP ; 1.444 ; Class II fructose-1,6-bisphosphate aldolase E142A variant of Helicobacter pylori with FBP and cleavage products 5UCS ; 1.408 ; Class II fructose-1,6-bisphosphate aldolase E149A variant of Helicobacter pylori 5UD0 ; 1.647 ; Class II fructose-1,6-bisphosphate aldolase E149A variant of Helicobacter pylori with cleavage products 5UCZ ; 1.78 ; Class II fructose-1,6-bisphosphate aldolase E149A variant of Helicobacter pylori with DHAP 3C56 ; 2.3 ; Class II fructose-1,6-bisphosphate aldolase from helicobacter pylori in complex with N-(3-Hydroxypropyl)-glycolohydroxamic acid bisphosphate, a competitive inhibitor 3N9S ; 1.85 ; Class II fructose-1,6-bisphosphate aldolase from helicobacter pylori in complex with N-(4-hydroxybutyl)- glycolohydroxamic acid bis-phosphate, a competitive inhibitor 3N9R ; 1.8 ; Class II fructose-1,6-bisphosphate aldolase from helicobacter pylori in complex with N-(4-hydroxybutyl)-phosphoglycolohydroxamic acid, a competitive inhibitor 3C52 ; 2.3 ; Class II fructose-1,6-bisphosphate aldolase from helicobacter pylori in complex with phosphoglycolohydroxamic acid, a competitive inhibitor 1RV8 ; 2.3 ; Class II fructose-1,6-bisphosphate aldolase from Thermus aquaticus in complex with cobalt 5UD1 ; 1.795 ; Class II fructose-1,6-bisphosphate aldolase H180Q variant of Helicobacter pylori 5UD2 ; 1.775 ; Class II fructose-1,6-bisphosphate aldolase H180Q variant of Helicobacter pylori with DHAP 5UD3 ; 1.44 ; Class II fructose-1,6-bisphosphate aldolase H180Q variant of Helicobacter pylori with FBP 5UD4 ; 1.5 ; Class II fructose-1,6-bisphosphate aldolase H180Q variant of Helicobacter pylori with TBP 1B57 ; 2.0 ; CLASS II FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE IN COMPLEX WITH PHOSPHOGLYCOLOHYDROXAMATE 5VJE ; 1.65 ; Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with D-glucitol 1,6-bisphosphate 5VJD ; 1.701 ; Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with DHAP 5UCK ; 1.782 ; Class II fructose-1,6-bisphosphate aldolase of Helicobacter pylori with cleavage products 5VJF ; 1.85 ; Class II fructose-1,6-bisphosphate aldolase of Helicobacter pylori with DHAP 3FTM ; 2.7 ; Class II ligase ribozyme product-template duplex, structure 1 3FS0 ; 2.3 ; Class II ligase ribozyme product-template duplex, structure 2 2IAD ; 2.4 ; CLASS II MHC I-AD IN COMPLEX WITH AN INFLUENZA HEMAGGLUTININ PEPTIDE 126-138 1IAO ; 2.6 ; CLASS II MHC I-AD IN COMPLEX WITH OVALBUMIN PEPTIDE 323-339 7VJ4 ; 3.0 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (1 ms time-point) 7VJ0 ; 2.3 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (1 us time-point) 7VIX ; 2.5 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (10 ns time-point) 7VJ1 ; 2.25 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (10 us time-point) 7VJ2 ; 3.0 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (125 us time-point) 7VIZ ; 2.4 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (250 ns time-point) 7VJ3 ; 2.4 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (400 us time-point) 7VJ5 ; 1.87 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (5 ms time-point) 7VIY ; 2.25 ; class II photolyase MmCPDII oxidized to semiquinone TR-SFX studies (50 ns time-point) 7VJG ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (1 us time-point) 7VJA ; 2.15 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (10 ns time-point) 7VJI ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (10 us time-point) 7VJC ; 2.3 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (100 ns time-point) 7VJK ; 2.15 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (100 us time-point) 7VJB ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (30 ns time-point) 7VJJ ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (30 us time-point) 7VJE ; 2.5 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (300 ns time-point) 7VJH ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (5 us time-point) 7VJ9 ; 2.1 ; class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (semiquinone dark structure) 7SH1 ; 2.04 ; Class II UvrA protein - Ecm16 7WSX ; 3.0 ; Class III hybrid cluster protein (HCP) C67Y variant from Methanothermobacter marburgensis 7E0L ; 2.82 ; Class III hybrid cluster protein (HCP) from Methanothermobacter marburgensis 6XKN ; 2.73 ; Class III PreQ1 riboswitch mutant A52G 6XKO ; 2.75 ; Class III PreQ1 riboswitch mutant A84G 3HBE ; 1.55 ; Class IV chitinase structure from Picea abies at 1.55A 3HBD ; 1.8 ; Class IV chitinase structure from Picea abies at 1.8A 3HBH ; 2.25 ; Class IV chitinase structure from Picea abies at 2.25A 8ETS ; 3.04 ; Class1 of the INO80-Hexasome complex 8ETT ; 6.68 ; Class1 of the INO80-Hexasome complex 8EU9 ; 3.48 ; Class1 of the INO80-Nucleosome complex 8EUE ; 3.48 ; Class1 of the INO80-Nucleosome complex 6SEG ; 3.1 ; Class1: CENP-A nucleosome in complex with CENP-C central region 6SE6 ; 3.5 ; Class2 : CENP-A nucleosome in complex with CENP-C central region 8ETU ; 2.8 ; Class2 of the INO80-Hexasome complex 8ETV ; 3.16 ; Class2 of the INO80-Hexasome complex 8EUF ; 3.41 ; Class2 of the INO80-Nucleosome complex 8EUJ ; 3.36 ; Class2 of the INO80-Nucleosome complex 6SEE ; 4.2 ; Class2A : CENP-A nucleosome in complex with CENP-C central region 6SEF ; 3.7 ; Class2C : CENP-A nucleosome in complex with CENP-C central region 8ETW ; 2.64 ; Class3 of INO80-Hexasome complex 8EU2 ; 2.93 ; Class3 of the INO80-Hexasome complex 3JSO ; 2.29 ; Classic Protein With a New Twist: crystal structure of a LexA repressor DNA complex 3JSP ; 2.9 ; Classic Protein With a New Twist: crystal structure of a LexA repressor DNA complex 3PSH ; 1.5 ; Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein MolA (MolA bound to Molybdate) 3PSA ; 1.7 ; Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein MolA (MolA bound to tungstate) 1XI4 ; 7.9 ; Clathrin D6 Coat 3IYV ; 7.9 ; Clathrin D6 coat as full-length Triskelions 1XI5 ; 12.0 ; Clathrin D6 coat with auxilin J-domain 5M5U ; 2.15 ; Clathrin heavy chain N-terminal domain bound to a clathrin-box motif from hepatitis D virus large antigen (clade 1) 5M5V ; 1.96 ; Clathrin heavy chain N-terminal domain bound to a clathrin-box motif from hepatitis D virus large antigen (clade 2) 5M5T ; 1.7 ; Clathrin heavy chain N-terminal domain bound to a non-natural clathrin-box motif peptide (Amph4T1) 5M5S ; 1.88 ; Clathrin heavy chain N-terminal domain bound to amphiphysin clathrin-box motif 5M61 ; 1.84 ; Clathrin heavy chain N-terminal domain bound to an extended amphiphysin clathrin-box motif 5M5R ; 1.76 ; Clathrin heavy chain N-terminal domain bound to beta2 adaptin clathrin box motif 6QNN ; 2.03 ; CLATHRIN HEAVY CHAIN N-TERMINAL DOMAIN BOUND TO GTSE1 LIDL MOTIF 6QNP ; 2.7 ; CLATHRIN HEAVY CHAIN N-TERMINAL DOMAIN BOUND TO GTSE1 LIDL MOTIF 7BN2 ; 1.965 ; Clathrin heavy chain N-terminal domain bound to Non structured protein 3 from Eastern Equine Encephalitis Virus 7BN1 ; 1.97 ; Clathrin heavy chain N-terminal domain complexed with peptide from Protein mu-NS of Reovirus type 1 1B89 ; 2.6 ; CLATHRIN HEAVY CHAIN PROXIMAL LEG SEGMENT (BOVINE) 1BPO ; 2.6 ; CLATHRIN HEAVY-CHAIN TERMINAL DOMAIN AND LINKER 7ZX4 ; 2.08 ; Clathrin N-terminal domain in complex with a HURP phospho-peptide 2XZG ; 1.7 ; Clathrin Terminal Domain Complexed with Pitstop 1 4G55 ; 1.69 ; Clathrin terminal domain complexed with pitstop 2 1UTC ; 2.3 ; Clathrin terminal domain complexed with TLPWDLWTT 6YAI ; 9.2 ; Clathrin with bound beta2 appendage of AP2 2WOL ; 1.45 ; Clavulanic acid biosynthesis oligopeptide binding protein 2 2WOP ; 1.7 ; Clavulanic acid biosynthesis oligopeptide binding protein 2 complexed with arginine 2WOK ; 1.7 ; Clavulanic acid biosynthesis oligopeptide binding protein 2 complexed with bradykinin 2IOT ; 1.6 ; Clavulanic Acid bound to Elastase 2JAP ; 2.1 ; Clavulanic Acid Dehydrogenase: Structural and Biochemical Analysis of the Final Step in the Biosynthesis of the beta-Lactamase Inhibitor Clavulanic acid 7U48 ; 1.67 ; Clavulanic acid-CTX-M-15 4E6X ; 2.24 ; ClbP in complex boron-based inhibitor 4E6W ; 2.19 ; ClbP in complex with 3-aminophenyl boronic acid 7BXU ; 3.7 ; CLC-7/Ostm1 membrane protein complex 7RP6 ; 3.78 ; CLC-ec1 at pH 4.5 100 mM NaGluconate Swap 7RSB ; 3.68 ; CLC-ec1 at pH 4.5 100 mM NaGluconate Turn 7N8P ; 3.42 ; CLC-ec1 at pH 4.5 100mM Cl Swap 7RP5 ; 3.72 ; CLC-ec1 at pH 4.5 100mM Cl Turn 7RQ7 ; 3.95 ; CLC-ec1 at pH 4.5 100mM Cl TWIST2 7RO0 ; 3.75 ; CLC-ec1 at pH 7.5 100 mM NaGluconate Swap 7RNX ; 3.42 ; CLC-ec1 at pH 7.5 100mM Cl Swap 8GA0 ; 3.5 ; CLC-ec1 E202Y at pH 4.5 100mM Cl Turn 4MQX ; 3.516 ; CLC-ec1 Fab Complex Cysless A399C-A432C mutant 8GA5 ; 2.6 ; CLC-ec1 L25C/A450C/C85A at pH 4.5 100mM Cl Intermediate 8GAH ; 2.9 ; CLC-ec1 L25C/A450C/C85A at pH 4.5 100mM Cl Twist 7N9W ; 4.16 ; CLC-ec1 pH 4.5 100mM Cl Twist1 8GA1 ; 2.6 ; CLC-ec1 R230C/L249C/C85A at pH 4.5 100mM Cl Swap 8GA3 ; 3.1 ; CLC-ec1 R230C/L249C/C85A at pH 4.5 100mM Cl Turn 6M8Q ; 2.49 ; Cleavage and Polyadenylation Specificity Factor Subunit 3 (CPSF3) in complex with NVP-LTM531 5CF9 ; 1.52 ; Cleavage of nicotinamide adenine dinucleotide by the ribosome inactivating protein of Momordica charantia - enzyme-NADP+ co-crystallisation. 4YP2 ; 1.35 ; Cleavage of nicotinamide adenine dinucleotides by the ribosome inactivating protein from Momordica charantia 1QMB ; 2.6 ; Cleaved alpha-1-antitrypsin polymer 3CAA ; 2.4 ; CLEAVED ANTICHYMOTRYPSIN A347R 1AS4 ; 2.1 ; CLEAVED ANTICHYMOTRYPSIN A349R 4CAA ; 2.9 ; CLEAVED ANTICHYMOTRYPSIN T345R 3NDD ; 1.5 ; Cleaved antitrypsin with P10 Pro, and P9-P6 Asp 3NDF ; 2.7 ; Cleaved antitrypsin with P8-P6 Asp 6MAM ; 4.1 ; Cleaved Ebola GP in complex with a broadly neutralizing human antibody, ADI-15946 6SAZ ; 3.0 ; Cleaved human fetuin-b in complex with crayfish astacin 3F02 ; 1.8 ; Cleaved human neuroserpin 4P0O ; 1.8 ; Cleaved Serpin 42Da 4P0F ; 1.7 ; Cleaved Serpin 42Da (C 2 2 21) 9PAI ; 2.7 ; CLEAVED SUBSTRATE VARIANT OF PLASMINOGEN ACTIVATOR INHIBITOR-1 7DJX ; 1.98 ; Clec4f Nanobody 246 7DJY ; 2.7 ; Clec4f Nanobody 322 8F0A ; 2.6 ; Client-bound structure of a DegP trimer within a 12mer cage 8CGD ; 1.98 ; Clindamycin bound to the 50S subunit 3Q4B ; 2.19 ; Clinically Useful Alkyl Amine Renin Inhibitors 3Q5H ; 2.16 ; Clinically Useful Alkyl Amine Renin Inhibitors 6ZWA ; 1.68 ; CLIP peptide bound to chicken MHC class II molecule (BL-2) from B19 haplotype 7APZ ; 1.97 ; CLIP peptide bound to chicken MHC class II molecule (BL-2) from B2 haplotype with a decamer mode of binding 5XAC ; 1.701 ; CLIR - LC3B 3NBC ; 1.01 ; Clitocybe nebularis ricin B-like lectin (CNL) in complex with lactose, crystallized at pH 4.4 3NBD ; 1.15 ; Clitocybe nebularis ricin B-like lectin (CNL) in complex with lactose, crystallized at pH 7.1 3NBE ; 1.86 ; Clitocybe nebularis ricin B-like lectin (CNL) in complex with N,N'-diacetyllactosediamine 3H6R ; 1.948 ; Clitocypin, a beta-trefoil cysteine protease inhibitor 6YTE ; 2.3 ; CLK1 bound with benzothiazole Tg003 (Cpd 2) 6YTG ; 1.95 ; CLK1 bound with beta-carboline KH-CARB13 (Cpd 3) 7AK3 ; 2.5 ; CLK1 bound with CAF052 6YTI ; 2.4 ; CLK1 bound with ETH1610 (Cpd 17) 6ZLN ; 1.7 ; CLK1 bound with GW807982X (Cpd 8) 6YTA ; 2.3 ; CLK1 bound with imidazopyridazine (Cpd 1) 6RAA ; 2.1 ; CLK1 Kinase domain with bound imidazopyridin inhibitor TP003 6YTD ; 2.0 ; CLK1 V324A mutant bound with benzothiazole Tg003 (Cpd 2) 6Q8K ; 2.29 ; CLK1 with bound pyridoquinazoline 6YTY ; 1.76 ; CLK3 A319V mutant bound with benzothiazole Tg003 (Cpd 2) 6Z2V ; 2.6 ; CLK3 A319V mutant bound with beta-carboline KH-CARB13 (Cpd 3) 6YTW ; 2.0 ; CLK3 bound with benzothiazole Tg003 (Cpd 2) 6YU1 ; 1.9 ; CLK3 bound with beta-carboline KH-CARB13 (Cpd 3) 1ZOX ; 2.1 ; CLM-1 Mouse Myeloid Receptor Extracellular Domain 8JXX ; 3.06 ; Clobenpropit-bound H4R/Gi complex 7LAD ; 2.65 ; Clobetasol propionate bound to CYP3A5 2B2C ; 2.5 ; Cloning, expression, characterisation and three- dimensional structure determination of the Caenorhabditis elegans spermidine synthase 1DT0 ; 2.1 ; CLONING, SEQUENCE, AND CRYSTALLOGRAPHIC STRUCTURE OF RECOMBINANT IRON SUPEROXIDE DISMUTASE FROM PSEUDOMONAS OVALIS 8XJK ; 2.63 ; Cloprosetnol bound Prostaglandin F2-alpha receptor-Gq Protein Complex 8XJN ; 3.06 ; Cloprosetnol bound Thromboxane A2 receptor-Gq Protein Complex 3LNW ; 2.302 ; Close correlation of protein thermostability and self-buried area rate revealed by crystal structure of HPr from Thermoanaerobacter tengcongensis MB4 1BLB ; 3.3 ; CLOSE PACKING OF AN OLIGOMERIC EYE LENS BETA-CRYSTALLIN INDUCES LOSS OF SYMMETRY AND ORDERING OF SEQUENCE EXTENSIONS 8DTP ; 2.7 ; Close state of T4 bacteriophage gp41 hexamer bound with single strand DNA 7YPK ; 3.4 ; Close-ring hexamer of the substrate-bound Lon protease with an S678A mutation 6BY2 ; 2.35 ; Closed and deep-inactivated conformation of KcsA-T75A mutant 3KD1 ; 2.66 ; Closed binary complex of an RB69 gp43 fingers domain mutant complexed with an acyclic GMP terminated primer template pair. 2ZTL ; 1.8 ; Closed conformation of D-3-hydroxybutyrate dehydrogenase complexed with NAD+ and L-3-hydroxybutyrate 7BNM ; 3.6 ; Closed conformation of D614G SARS-CoV-2 spike protein 3LI2 ; 2.2 ; Closed Conformation of HtsA Complexed with Staphyloferrin A 5VKH ; 2.25 ; Closed conformation of KcsA Y82A-F103A mutant 4BE4 ; 2.6 ; Closed conformation of O. piceae sterol esterase 7YWP ; 2.2 ; Closed conformation of Oligopeptidase B from Serratia proteomaculans with covalently bound TCK 6H04 ; 5.6 ; Closed conformation of the Membrane Attack Complex 7M2Y ; 4.03 ; Closed conformation of the Yeast wild-type gamma-TuRC 3GWD ; 2.3 ; Closed crystal structure of cyclohexanone monooxygenase 3R1A ; 3.5 ; Closed crystal structure of cytochrome P450 2B4 covalently bound to the mechanism-based inactivator tert-butylphenylacetylene 5NP0 ; 5.7 ; Closed dimer of human ATM (Ataxia telangiectasia mutated) 6UAG ; 2.709 ; Closed Dimer of Y77A Mutant Putative Ryanodine Receptor from Bacteroides thetaiotaomicron VPI-5482 6UG5 ; 2.357 ; Closed Dimer of Y77A Mutant Putative Ryanodine Receptor from Bacteroides thetaiotaomicron VPI-5482 1QM6 ; 2.5 ; Closed form of Clostridium perfringens alpha-toxin strain NCTC8237 5FI9 ; 2.543 ; Closed form of murine Acid Sphingomyelinase in complex with bisphosphonate inhibitor AbPA 7CTR ; 1.2 ; Closed form of PET-degrading cutinase Cut190 with thermostability-improving mutations of S226P/R228S/Q138A/D250C-E296C/Q123H/N202H 7R8Q ; 2.0 ; Closed form of SAOUHSC_02373 in complex with ADP, citrate, Mg2+ and Na+ 3MA0 ; 2.2 ; Closed liganded crystal structure of xylose binding protein from Escherichia coli 5MLY ; 1.598 ; Closed loop conformation of PhaZ7 Y105E mutant 7WHM ; 2.7 ; Closed spike of Bombyx mori cytoplasmic polyhedrosis virus 5VJH ; 4.0 ; Closed State CryoEM Reconstruction of Hsp104:ATPyS and FITC casein 4UEJ ; 1.74 ; Closed state of galactitol-1-phosphate 5-dehydrogenase from E. coli in complex with glycerol. 7SBK ; 3.1 ; Closed state of pre-fusion SARS-CoV-2 Delta variant spike protein 7SBP ; 3.1 ; Closed state of pre-fusion SARS-CoV-2 Kappa variant spike protein 7STB ; 2.72 ; Closed state of Rad24-RFC:9-1-1 bound to a 5' ss/dsDNA junction 8DR0 ; 2.42 ; Closed state of RFC:PCNA bound to a 3' ss/dsDNA junction 8DR3 ; 2.2 ; Closed state of RFC:PCNA bound to a 3' ss/dsDNA junction (DNA2) with NTD 8DR6 ; 2.39 ; Closed state of RFC:PCNA bound to a nicked dsDNA 8D55 ; 2.8 ; Closed state of SARS-CoV-2 BA.2 variant spike protein 6CMR ; 2.21 ; Closed structure of active SHP2 mutant E76D bound to SHP099 inhibitor 6CMS ; 2.68 ; Closed structure of active SHP2 mutant E76K bound to SHP099 inhibitor 6CMP ; 1.8 ; Closed structure of inactive SHP2 mutant C459E 3KD5 ; 2.69 ; Closed ternary complex of an RB69 gp43 fingers domain mutant complexed with an acyclic GMP terminated primer template pair and phosphonoformic acid. 4F5Q ; 2.25 ; Closed ternary complex of R283K DNA polymerase beta 3HPH ; 2.64 ; Closed tetramer of Visna virus integrase (residues 1-219) in complex with LEDGF IBD 4P19 ; 3.25 ; Closed, apo inward-facing state of the glutamate transporter homologue GltPh 5OMF ; 2.092 ; Closed, ternary structure of KOD DNA polymerase 6ZLU ; 4.2 ; Closed-closed state of the Bt1762-Bt1763 levan transport system 6UHI ; 2.88 ; Closed-form Crystal Structure of Chimera Bt-hRyR_12 from Bacteroides thetaiotaomicron /human 6UHE ; 2.892 ; Closed-form Crystal Structure of Human RYR Receptor 3 ( 848-1055) 6W0J ; 2.5 ; Closed-gate KcsA incubated in BaCl2/NaCl 6W0F ; 2.4 ; Closed-gate KcsA soaked in 0mM KCl/5mM BaCl2 6W0I ; 2.328 ; Closed-gate KcsA soaked in 10mM KCl/5mM BaCl2 6W0G ; 2.6 ; Closed-gate KcsA soaked in 1mM KCl/5mM BaCl2 6W0H ; 2.6 ; Closed-gate KcsA soaked in 5mM KCl/5mM BaCl2 8T1E ; 2.77 ; Closed-state cryo-EM structure of full-length human TRPV4 in the presence of 4a-PDD 4MDG ; 1.35 ; Closo Carborane Carbonic Anhydrase Inhibitor 6YZN ; 0.95 ; Closo-carborane butyl-sulfonamide in complex with CA IX mimic 6YZV ; 1.65 ; Closo-carborane ethyl-sulfonamide in complex with CA II 6YZJ ; 1.2 ; Closo-carborane ethyl-sulfonamide in complex with CA IX mimic 6YZL ; 1.2 ; Closo-carborane methyl-sulfonamide in complex with CA IX mimic 6YZT ; 1.05 ; Closo-carborane propyl-sulfonamide in complex with CA II 4D59 ; 1.84 ; Clostridial Cysteine protease Cwp84 C116A after propeptide cleavage 4D5A ; 1.6 ; Clostridial Cysteine protease Cwp84 C116A after propeptide cleavage 8EKM ; 3.56 ; Clostridioides difficile binary toxin translocase CDTb double mutant - D623A D734A 8EKL ; 3.06 ; Clostridioides difficile binary toxin translocase CDTb wild-type after calcium depletion from receptor binding domain 1 (RBD1) - Class 1 8EKK ; 3.28 ; Clostridioides difficile binary toxin translocase CDTb wild-type after calcium depletion from receptor binding domain 1 (RBD1) - Class 2 8DX4 ; 2.487 ; Clostridioides difficile R20291 minor pilin - PilW fused with Maltose Binding Protein 7L7B ; 3.26 ; Clostridioides difficile RNAP with fidaxomicin 6AR6 ; 9.0 ; Clostridioides difficile toxinB with DLD-4 darpin 6HG6 ; 1.75 ; Clostridium beijerinckii aldo-keto reductase Cbei_3974 with NADPH 2FDX ; 1.65 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT N137A OXIDIZED 4NUL ; 1.9 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: D58P OXIDIZED 1FLN ; 1.9 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: D58P REDUCED 3NLL ; 2.4 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57A OXIDIZED 4NLL ; 1.9 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57D OXIDIZED 1FLA ; 1.9 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57D REDUCED 1FVX ; 1.9 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57N OXIDIZED 1FLD ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57T OXIDIZED 2FLV ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57T REDUCED (150K) 2FVX ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57T REDUCED (277K) 5NUL ; 1.6 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: G57T SEMIQUINONE (150K) 2FAX ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: N137A OXIDIZED (150K) 6NUL ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN MUTANT: N137A REDUCED (150K) 5NLL ; 1.75 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN: OXIDIZED 5ULL ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN: REDUCED 2FOX ; 1.8 ; CLOSTRIDIUM BEIJERINCKII FLAVODOXIN: SEMIQUINONE 3WIN ; 3.5 ; Clostridium botulinum Hemagglutinin 2IMA ; 1.94 ; Clostridium botulinum Neurotoxin Serotype A Light Chain Inhibited by 2,4-dichlorocinnamic hydroxamate 7N18 ; 2.03 ; Clostridium botulinum Neurotoxin Serotype A Light Chain Inhibited by a Chiral Hydroxamic Acid 2IMB ; 2.41 ; Clostridium botulinum Neurotoxin Serotype A Light Chain Inhibited by L-arginine hydroxamate 2IMC ; 2.0 ; Clostridium botulinum Neurotoxin Serotype A Light Chain, Residues 1-424 4XCQ ; 2.39 ; Clostridium botulinum phage c-st TubZ (C-terminal tail truncated protein) 2ILP ; 1.9 ; Clostridium botulinum Serotype A Light Chain inhibited by 4-chlorocinnamic hydroxamate 4HEV ; 2.5 ; Clostridium Botulinum Serotype A Light Chain Inhibited By Adamantane Hydroxamate 4KYS ; 2.18 ; Clostridium botulinum thiaminase I in complex with thiamin 1T3C ; 1.9 ; Clostridium botulinum type E catalytic domain E212Q mutant 6UWR ; 2.8 ; Clostridium difficile binary toxin translocase CDTb in asymmetric tetradecamer conformation 6UWT ; 3.1 ; Clostridium difficile binary toxin translocase CDTb tetradecamer in symmetric conformation 4X2C ; 1.8 ; Clostridium difficile Fic protein_0569 mutant S31A, E35A 4X2D ; 2.5 ; Clostridium difficile Fic protein_0569 mutant S31A, E35A in complex with ATP 5UMI ; 3.23 ; Clostridium difficile TcdA-CROPs bound to PA50 Fab 5VQM ; 2.79 ; Clostridium difficile TcdB-GTD bound to PA41 Fab 4R04 ; 3.26 ; Clostridium difficile Toxin A (TcdA) 3SS1 ; 2.202 ; Clostridium difficile toxin A (TcdA) glucolsyltransferase domain 3SRZ ; 2.58 ; Clostridium difficile toxin A (TcdA) glucolsyltransferase domain bound to UDP-glucose 5UQK ; 1.851 ; Clostridium difficile toxin A (TcdA) glucosyltransferase domain in complex with U2F 5UQL ; 1.97 ; Clostridium difficile toxin A (TcdA) glucosyltransferase domain in complex with U2F 2F6E ; 1.85 ; Clostridium difficile Toxin A C-terminal fragment 1 (TcdA-f1) 2G7C ; 2.0 ; Clostridium difficile Toxin A Fragment Bound to aGal(1,3)bGal(1,4)bGlcNAc 5UQT ; 2.75 ; Clostridium difficile Toxin B (TcdB) glucosyltransferase domain co-crystallized with apigenin 5UQM ; 2.03 ; Clostridium difficile Toxin B (TcdB) glucosyltransferase domain in complex with U2F 5UQN ; 2.06 ; Clostridium difficile Toxin B (TcdB) glucosyltransferase domain in complex with U2F 4NP4 ; 2.89 ; Clostridium difficile toxin B CROP domain in complex with FAB domains of neutralizing antibody bezlotoxumab 4X2E ; 3.104 ; Clostridium difficile wild type Fic protein 1CLF ; ; CLOSTRIDIUM PASTEURIANUM FERREDOXIN 1BE7 ; 1.65 ; CLOSTRIDIUM PASTEURIANUM RUBREDOXIN C42S MUTANT 1B13 ; 1.5 ; CLOSTRIDIUM PASTEURIANUM RUBREDOXIN G10A MUTANT 1B2O ; 1.9 ; CLOSTRIDIUM PASTEURIANUM RUBREDOXIN G10VG43A MUTANT 1B2J ; 1.6 ; CLOSTRIDIUM PASTEURIANUM RUBREDOXIN G43A MUTANT 2WXT ; 2.0 ; Clostridium perfringens alpha-toxin strain NCTC8237 2WXU ; 1.8 ; Clostridium perfringens alpha-toxin strain NCTC8237 mutant T74I 2WY6 ; 3.2 ; Clostridium perfringens alpha-toxin strain NCTC8237 mutant T74I 8OTB ; 1.5 ; Clostridium perfringens chitinase CP4_3455 8OYE ; 1.35 ; Clostridium perfringens chitinase CP4_3455 E196Q with chitin 8OWF ; 1.3 ; Clostridium perfringens chitinase CP4_3455 with chitosan 8OVR ; 1.6 ; Clostridium perfringens chitinase CP56_3454 apo form 2YGT ; 2.4 ; Clostridium perfringens delta-toxin 2XH6 ; 2.69 ; Clostridium perfringens enterotoxin 3AM2 ; 2.51 ; Clostridium perfringens enterotoxin 2YHJ ; 4.0 ; Clostridium perfringens Enterotoxin at 4.0 Angstrom Resolution 3ZIX ; 1.9 ; Clostridium perfringens Enterotoxin with the N-terminal 37 residues deleted 3ZIW ; 1.9 ; Clostridium perfringens enterotoxin, D48A mutation and N-terminal 37 residues deleted 3ZJX ; 2.4 ; Clostridium perfringens epsilon toxin mutant H149A bound to octyl glucoside 1UYJ ; 2.6 ; Clostridium perfringens epsilon toxin shows structural similarity with the pore forming toxin aerolysin 6AZH ; 1.75 ; Clostridium perfringens putative fatty acid metabolism regulator 2W47 ; 1.4 ; Clostridium thermocellum CBM35 in complex with delta-4,5- anhydrogalacturonic acid 5NZ7 ; 2.3 ; Clostridium thermocellum cellodextrin phosphorylase ligand free form 5NZ8 ; 3.0 ; Clostridium thermocellum cellodextrin phosphorylase with cellotetraose and phosphate bound 7R1L ; 1.45 ; Clostridium thermocellum CtCBM50 structure in complex with beta-1,4-GlcNAc trisaccharide 2VPT ; 1.4 ; Clostridium thermocellum family 3 carbohydrate esterase 3PH4 ; 2.07 ; Clostridium thermocellum Ribose-5-Phosphate Isomerase B with d-allose 3PH3 ; 2.07 ; Clostridium thermocellum Ribose-5-Phosphate Isomerase B with d-ribose 8I23 ; 3.03 ; Clostridium thermocellum RNA polymerase transcription open complex with SigI1 and its promoter 8I24 ; 3.36 ; Clostridium thermocellum RNA polymerase transcription open complex with SigI6 and its promoter 6UW2 ; 2.92 ; Clotrimazole bound complex of Acanthamoeba castellanii CYP51 3MDV ; 2.4 ; Clotrimazole complex of Cytochrome P450 46A1 8JXV ; 3.21 ; Clozapine-bound H4R/Gi complex 4OI1 ; 2.3 ; Clp1 bound to ssRNA dinucleotide GC, ADP, AlF4-, and Mg2+(transition state, data set II) 2NPI ; 2.95 ; Clp1-ATP-Pcf11 complex 6W23 ; 3.1 ; ClpA Disengaged State bound to RepA-GFP (Focused Classification) 6W22 ; 3.0 ; ClpA Engaged1 State bound to RepA-GFP (ClpA Focused Refinement) 6W24 ; 3.4 ; ClpA Engaged2 State bound to RepA-GFP (Focused Classification) 6UQE ; 3.0 ; ClpA/ClpP Disengaged State bound to RepA-GFP 6UQO ; 3.1 ; ClpA/ClpP Engaged State bound to RepA-GFP 7UIX ; 3.24 ; ClpAP complex bound to ClpS N-terminal extension, class I 7UIV ; 3.38 ; ClpAP complex bound to ClpS N-terminal extension, class IIa 7UIW ; 3.33 ; ClpAP complex bound to ClpS N-terminal extension, class IIb 7UIZ ; 3.24 ; ClpAP complex bound to ClpS N-terminal extension, class IIc 7UIY ; 3.22 ; ClpAP complex bound to ClpS N-terminal extension, class IIIa 7UJ0 ; 3.26 ; ClpAP complex bound to ClpS N-terminal extension, class IIIb 6W20 ; 3.0 ; ClpAP Disengaged State bound to RepA-GFP 6W1Z ; 2.7 ; ClpAP Engaged1 State bound to RepA-GFP 6W21 ; 3.3 ; ClpAP Engaged2 State bound to RepA-GFP 6QS6 ; 3.9 ; ClpB (DWB and K476C mutant) bound to casein in presence of ATPgammaS - state KC-1 6QS7 ; 3.8 ; ClpB (DWB and K476C mutant) bound to casein in presence of ATPgammaS - state KC-2A 6QS8 ; 3.9 ; ClpB (DWB and K476C mutant) bound to casein in presence of ATPgammaS - state KC-2B 6RN2 ; 6.2 ; ClpB (DWB mutant) bound to casein in presence of ATPgammaS - state WT-1 6RN3 ; 4.0 ; ClpB (DWB mutant) bound to casein in presence of ATPgammaS - state WT-2A 6RN4 ; 4.2 ; ClpB (DWB mutant) bound to casein in presence of ATPgammaS - state WT-2B 4LJ5 ; 2.4 ; ClpB NBD2 from T. thermophilus in complex with ADP 4LJ6 ; 1.9 ; ClpB NBD2 from T. thermophilus in complex with AMPPCP 4LJ4 ; 2.8 ; ClpB NBD2 from T. thermophilus, nucleotide-free 4LJ7 ; 2.8 ; ClpB NBD2 K601Q from T. thermophilus in complex with MANT-dADP 4LJ8 ; 2.1 ; ClpB NBD2 R621Q from T. thermophilus in complex with ADP 4LJ9 ; 1.7 ; ClpB NBD2 R621Q from T. thermophilus in complex with AMPPCP 4LJA ; 2.0 ; ClpB NBD2 R621Q from T. thermophilus in complex with AMPPCP and guanidinium chloride 5HBN ; 1.602 ; ClpC N-terminal domain with bound phospho-arginine 1R6Q ; 2.35 ; ClpNS with fragments 1YG6 ; 1.9 ; ClpP 6WR2 ; 2.88 ; ClpP and ClpX IGF loop in ClpX-ClpP complex bound to ssrA tagged GFP 6PPE ; 3.19 ; ClpP and ClpX IGF loop in ClpX-ClpP complex with D7 symmetry 7KR2 ; 3.2 ; ClpP from Neisseria meningitidis - Compressed conformation 5DL1 ; 3.0 ; ClpP from Staphylococcus aureus in complex with AV145 4MXI ; 2.3 ; ClpP Ser98dhA 4JCQ ; 2.0 ; ClpP1 from Listeria monocytogenes 6PBU ; 2.0 ; ClpP1 from Mycobacterium smegmatis 4JCR ; 2.1 ; ClpP1 N165D mutant from Listeria monocytogenes 4RYF ; 2.8 ; ClpP1/2 heterocomplex from Listeria monocytogenes 6VGK ; 3.1 ; ClpP1P2 complex from M. tuberculosis 6VGN ; 3.1 ; ClpP1P2 complex from M. tuberculosis bound to ADEP 6VGQ ; 3.5 ; ClpP1P2 complex from M. tuberculosis with GLF-CMK bound to ClpP1 8DLA ; 2.66 ; ClpP2 from Chlamydia trachomatis bound by MAS1-12 6X60 ; 2.81 ; ClpP2 from Chlamydia trachomatis with resolved handle loop 4JCT ; 2.6 ; ClpP2 from Listeria monocytogenes 6PP8 ; 4.12 ; ClpX in ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 1 6PP7 ; 4.05 ; ClpX in ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 2 6PP6 ; 4.28 ; ClpX in ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 3 6PP5 ; 3.98 ; ClpX in ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 4 6WRF ; 3.14 ; ClpX-ClpP complex bound to GFP-ssrA, recognition complex 6WSG ; 3.16 ; ClpX-ClpP complex bound to ssrA-tagged GFP, intermediate complex 6POS ; 4.12 ; ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 1 6POD ; 4.05 ; ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 2 6PO3 ; 4.28 ; ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 3 6PO1 ; 4.2 ; ClpX-ClpP complex bound to substrate and ATP-gamma-S, class 4 6VFS ; 3.3 ; ClpXP from Neisseria meningitidis - Conformation A 6VFX ; 2.9 ; ClpXP from Neisseria meningitidis - Conformation B 1N67 ; 1.9 ; Clumping Factor A from Staphylococcus aureus 1YCT ; ; Clustered abasic lesions in dna: nmr solution structure of clustered bistranded +1 abasic lesion 1YCW ; ; Clustered abasic lesions in dna: nmr solution structures of clustered bistranded-1 abasic lesion 4PHO ; 2.123 ; ClyA CC6/264 ox (2-303) 4PHQ ; 1.94 ; ClyA CC6/264 ox (6-303) 7MGP ; 1.65 ; CmcA from Type II Cut MCP 7MN4 ; 1.8 ; CmcB E35G mutant from Type II Cut MCP 7MPW ; 3.001 ; CmcB from Type II Cut MCP 7MPX ; 2.1 ; CmcC E36G mutant from Type II Cut MCP 7MPV ; 2.292 ; CmcC from Type II Cut MCP 2BR3 ; 2.79 ; cmcI-D160 Mg 2BR4 ; 2.59 ; cmcI-D160 Mg-SAM 2BM8 ; 2.5 ; CmcI-N160 apo-structure 2BM9 ; 2.94 ; cmcI-N160 in complex with SAM 2BR5 ; 2.83 ; cmcI-N160 SAH 6ZU2 ; 1.55 ; CML1 crystal structure in complex with H-type 1 trisaccharide 6ZV5 ; 1.95 ; CML1 crystal structure in complex with Lewis a tetrasaccharide 5KIL ; 2.72 ; CmlA beta-hydroxylase E377D mutant 5KIK ; 2.2 ; CmlA beta-hydroxylase in chemically reduced diferrous state 5HYH ; 2.03 ; CmlI (chemically reduced state), arylamine oxygenase of chloramphenicol biosynthetic pathway 5HYG ; 2.03 ; CmlI (peroxo bound state), arylamine oxygenase of chloramphenicol biosynthetic pathway 1CKE ; 1.75 ; CMP KINASE FROM ESCHERICHIA COLI FREE ENZYME STRUCTURE 3ASZ ; 2.25 ; CMP-complex structure of uridine kinase from Thermus thermophilus HB8 6QVT ; 1.7 ; CMP-Sialic acid bound structure of the human wild type Beta-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal1) 8DI7 ; 1.89 ; CMY-2 8JTM ; 5.14 ; CNE55.664 trimer in complex with broadly neutralizing HIV antibody PGT145 3SWF ; 2.14 ; CNGA1 621-690 containing CLZ domain 3SWY ; 1.9 ; CNGA3 626-672 containing CLZ domain 4CT4 ; 2.3 ; CNOT1 MIF4G domain - DDX6 complex 8BFH ; 2.2 ; CNOT11 8BFJ ; 2.23 ; CNOT11-GGNBP2 complex 4CT6 ; 2.099 ; CNOT9-CNOT1 complex 4CT7 ; 1.897 ; CNOT9-CNOT1 complex with bound tryptophan 3T9V ; 1.975 ; CNQX bound to a reduced double cysteine mutant (A452C/S652C) of the ligand binding domain of GluA2 3T9U ; 1.97 ; CNQX bound to an oxidized double cysteine mutant (A452C/S652C) of the ligand binding domain of GluA2 4F1Y ; 1.79 ; CNQX bound to the ligand binding domain of GluA3 7ADR ; 1.0 ; CO bound as bridging ligand at the active site of vanadium nitrogenase VFe protein 5X19 ; 2.2 ; CO bound cytochrome c oxidase at 100 micro sec after pump laser irradiation to release CO from O2 reduction center 5X1B ; 2.4 ; CO bound cytochrome c oxidase at 20 nsec after pump laser irradiation to release CO from O2 reduction center 5X1F ; 2.2 ; CO bound cytochrome c oxidase without pump laser irradiation at 278K 1DXC ; 1.4 ; CO complex of Myoglobin Mb-YQR at 100K 1MYZ ; 1.6 ; CO COMPLEX OF MYOGLOBIN MB-YQR AT RT SOLVED FROM LAUE DATA. 6NA4 ; 1.722 ; Co crystal structure of ECR with Butryl-CoA 1CG8 ; 1.9 ; CO Form Hemoglobin from Dasyatis Akajei 1GCW ; 2.0 ; CO form hemoglobin from mustelus griseus 6DYC ; 1.33 ; Co(II)-bound structure of the engineered cyt cb562 variant, CH3 6DYI ; 1.964 ; Co(II)-bound structure of the engineered cyt cb562 variant, H3 3SCH ; 2.1 ; Co(II)-HppE with R-HPP 6HY4 ; 1.83 ; Co(II)-substituted Wells-Dawson binding to Hen Egg-White Lysozyme (HEWL) 1G5L ; ; CO(III)-BLEOMYCIN-OOH BOUND TO AN OLIGONUCLEOTIDE CONTAINING A PHOSPHOGLYCOLATE LESION 1GJ2 ; ; CO(III)-BLEOMYCIN-OOH BOUND TO AN OLIGONUCLEOTIDE CONTAINING A PHOSPHOGLYCOLATE LESION 2R2U ; 2.3 ; Co(III)bleomycinB2 bithiazole/C-terminal tail domain bound to d(ATTTAGTTAACTAAAT) complexed with MMLV RT catalytic fragment 2R2S ; 2.8 ; Co(III)bleomycinB2 bound to d(ATTAGTTATAACTAAT) complexed with MMLV RT catalytic fragment 6LV3 ; 1.2 ; Co- Carbonic Anhydrase II pH 11.0 0 atm CO2 6LV4 ; 1.2 ; Co- Carbonic Anhydrase II pH 11.0 20 atm CO2 6LV1 ; 1.2 ; Co- Carbonic Anhydrase II pH 7.8 0 atm CO2 6LV2 ; 1.2 ; Co- Carbonic Anhydrase II pH 7.8 20 atm CO2 6PZ6 ; 1.7 ; Co-assembly of VIQKI D452(beta-L-homoaspartic acid) with human parainfluenza virus type 3 (HPIV3) fusion glycoprotein N-terminal heptad repeat domain 2C32 ; 7.01 ; Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D-crystals 6IAV ; 2.0 ; CO-AZURIN FROM PSEUDOMONAS AERUGINOSA TREATED WITH HYDROSULFIDE 7N4G ; 1.93 ; Co-bound crystal structure of the engineered cyt cb562 variant, AB2-H100A, crystallized in the presence of Co(II) 7MK4 ; 1.27 ; Co-bound crystal structure of the engineered cyt cb562 variant, DiCyt2 7LRR ; 1.89 ; Co-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Cu(II) (M1) and Co(II) (M2) 5U7F ; 1.789 ; Co-bound dihydroneopterin triphosphate pyrophosphohydrolase from E. coli 2Y3B ; 1.554 ; Co-bound form of Cupriavidus metallidurans CH34 CnrXs 5BVH ; 1.53 ; CO-bound form of Selenium incorporated nitrogenase MoFe-protein (Av1-Se-CO) from A. vinelandii 4TKV ; 1.5 ; CO-bound Nitrogenase MoFe-protein from A. vinelandii 7A45 ; 1.75 ; CO-bound sperm whale myoglobin measured by serial femtosecond crystallography 7A44 ; 1.75 ; CO-bound sperm whale myoglobin measured by serial synchrotron crystallography 6MV0 ; 1.97 ; CO-bound Sperm Whale Myoglobin, room temperature structure solved by serial 5degree oscillation crystallography 6N02 ; 2.0 ; CO-bound Sperm Whale Myoglobin, room temperature structure, first 2 degrees of 5 degree total oscillation 6N03 ; 2.1 ; CO-bound Sperm Whale Myoglobin, room temperature structure, last 2 degrees of 5 degree total oscillation and 160 kGy dose 6WZ2 ; 2.0006 ; Co-bound structure of an engineered protein trimer, TriCyt3 6X7E ; 1.9987 ; Co-bound structure of an engineered protein trimer, TriCyt3, with delta isomerism at the hexahistidine coordination site 1XJ2 ; 2.0 ; CO-bound structure of bjFixLH 1XJ4 ; 1.8 ; CO-bound structure of BjFixLH 2VV8 ; 1.61 ; Co-bound structure of bjFixLH 8AIO ; 1.52 ; CO-bound [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) 8ALN ; 1.34 ; CO-bound [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) at 1.34 Angstrom 7JRF ; 1.33 ; CO-CO-BOUND NITROGENASE MOFE-PROTEIN FROM A. VINELANDII 7N3L ; 1.631 ; Co-complex CYP46A1 with 0420 (compound 6) 7N3M ; 1.698 ; Co-complex CYP46A1 with 0431 (compound 17) 7LRL ; 1.995 ; Co-complex CYP46A1 with 7742 (Soticlestat/TAK-935)) 7LS3 ; 2.15 ; Co-complex CYP46A1 with 8114 (3f) 7LS4 ; 2.05 ; Co-complex CYP46A1 with 9129 (1b) 7N6F ; 1.4 ; Co-complex CYP46A1 with compound 3f 3GTM ; 3.8 ; Co-complex of Backtracked RNA polymerase II with TFIIS 6UKD ; 1.589 ; Co-complex of S. pyogenes 10782 streptopain bound with a nitrile-based specific covalent inhibitor 6UQD ; 2.02 ; Co-complex of S. pyogenes 10782 streptopain bound with a SuFEx-based optimized small molecule inhibitor 7N0E ; 2.3 ; Co-complex of the histidine kinase region of RetS and the dimerization and histidine phosphotransfer domain of GacS 4A1T ; 2.05 ; Co-Complex of the of NS3-4A protease with the inhibitory peptide CP5- 46-A (in-House data) 2W03 ; 2.95 ; Co-complex Structure of Achromobactin Synthetase Protein D (AcsD) with adenosine, sulfate and citrate from Pectobacterium Chrysanthemi 2X3K ; 2.5 ; CO-COMPLEX STRUCTURE OF ACHROMOBACTIN SYNTHETASE PROTEIN D (ACSD) WITH AMP AND SULFATE FROM PECTOBACTERIUM CHRYSANTHEMI 2X3J ; 2.0 ; CO-COMPLEX STRUCTURE OF ACHROMOBACTIN SYNTHETASE PROTEIN D (ACSD) WITH ATP AND N-CITRYL-ETHYLENEDIAMINE FROM PECTOBACTERIUM CHRYSANTHEMI 2W02 ; 2.2 ; Co-complex Structure of Achromobactin Synthetase Protein D (AcsD) with ATP from Pectobacterium Chrysanthemi 2W04 ; 2.8 ; Co-complex Structure of Achromobactin Synthetase Protein D (AcsD) with citrate in ATP binding site from Pectobacterium Chrysanthemi 2X0Q ; 1.96 ; CO-COMPLEX STRUCTURE OF ALCALIGIN BIOSYNTHESIS PROTEIN C (ALCC) WITH ATP FROM Bordetella bronchiseptica 2X0P ; 2.1 ; CO-COMPLEX STRUCTURE OF ALCALIGIN BIOSYNTHETASE PROTEIN C (ALCC) WITH ADENOSINE FROM Bordetella bronchiseptica 4ABJ ; 1.45 ; Co-complex structure of bovine trypsin with a modified Bowman-Birk inhibitor (IcA)SFTI-1(1,14), that was 1,5-disubstituted with 1,2,3- trizol to mimic a cis amide bond 4ABI ; 1.55 ; Co-complex structure of bovine trypsin with a modified Bowman-Birk inhibitor (PtA)SFTI-1(1,14), that was 1,4-disubstituted with a 1,2,3- trizol to mimic a trans amide bond 4A1X ; 1.9 ; Co-Complex structure of NS3-4A protease with the inhibitory peptide CP5-46-A (Synchrotron data) 4A1V ; 2.2 ; Co-Complex structure of NS3-4A protease with the optimized inhibitory peptide CP5-46A-4D5E 5OJY ; 1.851 ; Co-complex structure of regulator protein 2 (PamR2) with pamamycin 607 from Streptomyces alboniger 4WEM ; 1.55 ; Co-complex structure of the F4 fimbrial adhesin FaeG variant ac with llama single domain antibody V1 4WEN ; 1.89 ; Co-complex structure of the F4 fimbrial adhesin FaeG variant ac with llama single domain antibody V2 4WEU ; 2.61 ; Co-complex structure of the F4 fimbrial adhesin FaeG variant ad with llama single domain antibody V3 4W6W ; 2.51 ; Co-complex structure of the lectin domain of F18 fimbrial adhesin FedF with inhibitory nanobody NbFedF6 4W6X ; 1.88 ; Co-complex structure of the lectin domain of F18 fimbrial adhesin FedF with inhibitory nanobody NbFedF7 4W6Y ; 1.57 ; Co-complex structure of the lectin domain of F18 fimbrial adhesin FedF with inhibitory nanobody NbFedF9 4EAJ ; 2.609 ; Co-crystal of AMPK core with AMP soaked with ATP 4EAL ; 2.506 ; Co-crystal of AMPK core with ATP soaked with AMP 5DQC ; 2.4651 ; Co-crystal of BACE1 with compound 0211 2IHN ; 3.0 ; Co-crystal of Bacteriophage T4 RNase H with a fork DNA substrate 1G15 ; 1.9 ; CO-CRYSTAL OF E. COLI RNASE HI WITH TWO MN2+ IONS BOUND IN THE THE ACTIVE SITE 7EBA ; 2.3 ; Co-crystal of kurarinone with sEH 6EAS ; 2.0 ; Co-crystal of pseudokinase DRIK1 (drought responsive inactive kinase 1) bound to ENMD-2076 8B1S ; 1.6 ; co-crystal of SUDV VP40 with salicylic acid 7EQ7 ; 2.111 ; Co-Crystal Structure Analysis of Annexin A2 and 5alpha-EAL 2DWX ; 2.55 ; Co-crystal Structure Analysis of GGA1-GAE with the WNSF motif 1KNJ ; 2.8 ; Co-Crystal Structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate Synthase (ispF) from E. coli Involved in Mevalonate-Independent Isoprenoid Biosynthesis, Complexed with CMP/MECDP/Mn2+ 4YS7 ; 2.502 ; Co-crystal structure of 2-[2-(5,8-dimethyl[1,2,4]triazolo[1,5-a]pyrazin-2-yl)ethyl]-3-methyl-3H-imidazo[4,5-f]quinoline (compound 39) with PDE10A 3K14 ; 1.7 ; Co-crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with FOL fragment 535, ethyl 3-methyl-5,6-dihydroimidazo[2,1-b][1,3]thiazole-2-carboxylate 3F0F ; 2.09 ; Co-crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with hydrolyzed CDP 3F0G ; 2.08 ; Co-crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase with CMP 4Y2B ; 2.2 ; Co-crystal structure of 3-ethyl-2-(isopropylamino)-7-(pyridin-3-yl)thieno[3,2-d]pyrimidin-4(3H)-one bound to PDE7A 5F6R ; 1.179 ; Co-crystal Structure of 3-hydroxydecanoyl-(acyl carrier protein) Dehydratase from Yersinia pestis with 5-Benzoylpentanoic Acid 8SWJ ; 1.6 ; Co-crystal structure of 53BP1 tandem Tudor domains in complex with UNC8531 1W8C ; 2.05 ; CO-CRYSTAL STRUCTURE OF 6-CYCLOHEXYLMETHOXY-8-ISOPROPYL-9H-PURIN-2- YLAMINE AND MONOMERIC CDK2 3IWN ; 3.2 ; Co-crystal structure of a bacterial c-di-GMP riboswitch 5O14 ; 2.195 ; Co-crystal structure of a cross-reactive bactericidal human antibody targeting meningococcal vaccine antigen factor H binding protein 7C52 ; 2.89 ; Co-crystal structure of a photosynthetic LH1-RC in complex with electron donor HiPIP 2XM8 ; 3.4 ; Co-crystal structure of a small molecule inhibitor bound to the kinase domain of Chk2 4LCK ; 3.2 ; Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA 5XGL ; 3.439 ; Co-crystal structure of Ac-AChBPP in complex with alpha-conotoxin LvIA 6M4Z ; 2.803 ; Co-crystal structure of Ac-AChBPP in complex with alpha-conotoxin [D11A]LvIA 7EGR ; 2.503 ; Co-crystal structure of Ac-AChBPP in complex with RgIA 6M4X ; 2.998 ; Co-crystal structure of Ac-AChBPP in complex with [N9A]LvIA 4EWH ; 2.5 ; Co-crystal structure of ACK1 with inhibitor 6C6B ; 2.0 ; Co-crystal structure of adenylyl-sulfate kinase from Cryptococcus neoformans bound to ADP 7NH4 ; 2.3 ; Co-Crystal Structure of Akt1 in Complex with Covalent-Allosteric Akt Inhibitor 3 7NH5 ; 1.9 ; Co-Crystal Structure of Akt1 in Complex with Covalent-Allosteric Akt Inhibitor 6 7JTY ; 2.21 ; Co-crystal structure of alpha glucosidase with compound 1 7KBR ; 2.09 ; Co-crystal structure of alpha glucosidase with compound 10 7KRY ; 2.55 ; Co-crystal structure of alpha glucosidase with compound 11 7K9N ; 2.07 ; Co-crystal structure of alpha glucosidase with compound 2 7K9O ; 2.302 ; Co-crystal structure of alpha glucosidase with compound 3 7K9Q ; 2.3 ; Co-crystal structure of alpha glucosidase with compound 4 7K9T ; 2.1 ; Co-crystal structure of alpha glucosidase with compound 5 7KAD ; 2.506 ; Co-crystal structure of alpha glucosidase with compound 6 7KB6 ; 2.2 ; Co-crystal structure of alpha glucosidase with compound 7 7KB8 ; 2.385 ; Co-crystal structure of alpha glucosidase with compound 8 7KBJ ; 2.21 ; Co-crystal structure of alpha glucosidase with compound 9 4EAI ; 2.285 ; Co-crystal structure of an AMPK core with AMP 4EAK ; 2.5 ; Co-crystal structure of an AMPK core with ATP 4EAG ; 2.701 ; Co-crystal structure of an chimeric AMPK core with ATP 5ZXI ; 2.1 ; Co-crystal structure of an Inhibitor in complex with human PPARdelta LBD 5NAF ; 2.493 ; Co-crystal structure of an MeCP2 peptide with TBLR1 WD40 domain 1K73 ; 3.01 ; Co-crystal Structure of Anisomycin Bound to the 50S Ribosomal Subunit 3CC4 ; 2.7 ; Co-crystal Structure of Anisomycin Bound to the 50S Ribosomal Subunit 4QIC ; 2.05 ; Co-Crystal Structure of Anti-anti-sigma factor PhyR complexed with Anti-sigma factor NepR from Bartonella quintana 1M1K ; 3.2 ; Co-crystal structure of azithromycin bound to the 50S ribosomal subunit of Haloarcula marismortui 6PZ4 ; 1.85 ; co-crystal structure of BACE with inhibitor AM-6494 1KC8 ; 3.01 ; Co-crystal Structure of Blasticidin S Bound to the 50S Ribosomal Subunit 3G71 ; 2.85 ; Co-crystal structure of Bruceantin bound to the large ribosomal subunit 7YC9 ; 1.4 ; Co-crystal structure of BTK kinase domain with inhibitor 6J6M ; 1.25 ; Co-crystal structure of BTK kinase domain with Zanubrutinib 8HIG ; 2.329 ; Co-crystal structure of C-terminal DNA binding domain of Saccharopolyspora erythraea GlnR in complex with its cognate promoter DNA 8GL9 ; 2.81 ; Co-crystal structure of caPCNA bound to AOH1160 derivative 1LE 8GLA ; 3.77 ; Co-crystal structure of caPCNA bound to the AOH1996 derivative, AOH1996-1LE 1K8A ; 3.0 ; Co-crystal structure of Carbomycin A bound to the 50S ribosomal subunit of Haloarcula marismortui 4OFG ; 2.0 ; Co-crystal structure of carboxy cGMP binding domain of Plasmodium falciparum PKG with cGMP 8GCY ; 1.81 ; Co-crystal structure of CBL-B in complex with N-Aryl isoindolin-1-one inhibitor 1M90 ; 2.8 ; Co-crystal structure of CCA-Phe-caproic acid-biotin and sparsomycin bound to the 50S ribosomal subunit 7XBE ; 1.65 ; co-crystal structure of CcpE-RD with citrate 7T8V ; 2.3 ; Co-crystal structure of Chaetomium glucosidase I with EB-0159 7R6J ; 1.905 ; Co-crystal structure of Chaetomium glucosidase with compound 1 8E6G ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 10 8ECW ; 2.25 ; Co-crystal structure of Chaetomium glucosidase with compound 11 8EGV ; 2.09 ; Co-crystal structure of Chaetomium glucosidase with compound 12 8EHP ; 2.68 ; Co-crystal structure of Chaetomium glucosidase with compound 13 8EID ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 14 8EKN ; 2.29 ; Co-crystal structure of Chaetomium glucosidase with compound 15 8ELE ; 2.6 ; Co-crystal structure of Chaetomium glucosidase with compound 16 8EPJ ; 2.15 ; Co-crystal structure of Chaetomium glucosidase with compound 17 8EPO ; 2.2 ; Co-crystal structure of Chaetomium glucosidase with compound 18 8EPR ; 1.99 ; Co-crystal structure of Chaetomium glucosidase with compound 19 7RD2 ; 2.61 ; Co-crystal structure of Chaetomium glucosidase with compound 2 8EQ7 ; 2.21 ; Co-crystal structure of Chaetomium glucosidase with compound 20 8EQX ; 2.5 ; Co-crystal structure of Chaetomium glucosidase with compound 21 8EUD ; 2.37 ; Co-crystal structure of Chaetomium glucosidase with compound 22 8ER4 ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 23 8ETL ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 24 8ETO ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 25 8EUR ; 2.61 ; Co-crystal structure of Chaetomium glucosidase with compound 26 8EUT ; 2.8 ; Co-crystal structure of Chaetomium glucosidase with compound 27 8EUX ; 2.8 ; Co-crystal structure of Chaetomium glucosidase with compound 28 7REV ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 3 8E3J ; 2.71 ; Co-crystal structure of Chaetomium glucosidase with compound 4 8E3P ; 2.3 ; Co-crystal structure of Chaetomium glucosidase with compound 5 8E4I ; 2.2 ; Co-crystal structure of Chaetomium glucosidase with compound 6 8E4K ; 2.2 ; Co-crystal structure of Chaetomium glucosidase with compound 7 8E4Z ; 2.37 ; Co-crystal structure of Chaetomium glucosidase with compound 8 8E5U ; 2.33 ; Co-crystal structure of Chaetomium glucosidase with compound 9 7T66 ; 2.19 ; Co-crystal structure of Chaetomium glucosidase with compound UV-4 7T68 ; 2.32 ; Co-crystal structure of Chaetomium glucosidase with compound UV-5 1ZYS ; 1.7 ; Co-crystal structure of Checkpoint Kinase Chk1 with a pyrrolo-pyridine inhibitor 4QWP ; 1.7 ; co-crystal structure of chitosanase OU01 with substrate 6UD2 ; 1.7 ; co-crystal structure of compound 1 bound to human Mcl-1 8G1Q ; 3.73 ; Co-crystal structure of Compound 1 in complex with the bromodomain of human SMARCA4 and pVHL:ElonginC:ElonginB 8G1P ; 2.7 ; Co-crystal structure of Compound 11 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB 4QFD ; 2.85 ; Co-crystal structure of compound 2 (3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid) and FAD bound to human DAAO at 2.85A 4QFC ; 2.4 ; Co-crystal structure of compound 3 (4-hydroxy-6-[2-(7-hydroxy-2-oxo-4-phenyl-2h-chromen-6-yl)ethyl]pyridazin-3(2h)-one) and FAD bound to human DAAO at 2.4A 8XAM ; 1.3 ; Co-crystal structure of compound 7 in complex with MAT2A 4EA1 ; 2.46 ; Co-crystal structure of dehydrosqualene synthase (Crtm) from S. aureus with SQ-109 3UFM ; 1.95 ; Co-crystal structure of Deinococcus radiodurans uracil-DNA glycosylase and the C-terminus of the single-stranded DNA-binding protein 5K5M ; 2.01 ; Co-Crystal Structure of Dengue Virus Serotype 2 RNA Dependent RNA Polymerase with Compound 27 3NRR ; 1.8 ; Co-crystal structure of dihydrofolate reductase-thymidylate synthase from Babesia bovis with dUMP, Raltitrexed and NADP 3K2H ; 2.2 ; Co-crystal structure of dihydrofolate reductase/thymidylate synthase from Babesia bovis with dUMP, Pemetrexed and NADP 5VTA ; 2.8 ; Co-Crystal Structure of DPPIV with a Chemibody Inhibitor 1WSF ; 2.3 ; Co-crystal structure of E.coli RNase HI active site mutant (D134A*) with Mn2+ 1WSE ; 2.3 ; Co-crystal structure of E.coli RNase HI active site mutant (E48A*) with Mn2+ 1WSG ; 2.2 ; Co-crystal structure of E.coli RNase HI active site mutant (E48A/D134N*) with Mn2+ 4DT6 ; 2.6 ; Co-crystal structure of eIF4E with inhibitor 4DUM ; 2.95 ; Co-crystal structure of eIF4E with inhibitor 5EHC ; 2.4 ; Co-crystal structure of eIF4E with nucleotide mimetic inhibitor. 5EI3 ; 1.71 ; Co-crystal structure of eIF4E with nucleotide mimetic inhibitor. 5EIR ; 2.69 ; Co-crystal structure of eIF4E with nucleotide mimetic inhibitor. 5EKV ; 3.61 ; Co-crystal structure of eIF4E with nucleotide mimetic inhibitor. 3UF7 ; 1.2 ; Co-crystal structure of Escherichia coli uracil-DNA glycosylase and a C-terminal fragement of the single-stranded DNA-binding protein 8PPZ ; 1.85 ; Co-crystal structure of FKBP12, compound 7 and the FRB fragment of mTOR 8IT9 ; 2.14 ; Co-crystal structure of FTO bound to 22 7WCV ; 2.3 ; Co-crystal structure of FTO bound to 6e 6VKV ; 2.22 ; Co-crystal structure of GS-6207 bound to HIV-1 capsid hexamer 3I7E ; 1.7 ; Co-crystal structure of HIV-1 protease bound to a mutant resistant inhibitor UIC-98038 6CMN ; 1.796 ; Co-Crystal Structure of HIV-1 TAR Bound to Lab-Evolved RRM TBP6.7 6XH2 ; 1.71 ; Co-crystal structure of HIV-1 TAR RNA in complex with lab-evolved RRM 6.6 6XH3 ; 2.353 ; Co-crystal structure of HIV-1 TAR RNA in complex with lab-evolved RRM TBP6.3 6XH1 ; 2.601 ; Co-crystal structure of HIV-1 TAR RNA in complex with lab-evolved RRM TBP6.7 mutant 6XH0 ; 3.1 ; Co-crystal structure of HIV-1 TAR RNA in complex with lab-evolved RRM TBP6.9 3G6E ; 2.7 ; Co-crystal structure of Homoharringtonine bound to the large ribosomal subunit 8Q61 ; 2.32 ; Co-crystal structure of human AKT2 with compound 3 7U9I ; 2.0 ; Co-crystal structure of human CARM1 in complex with MT556 inhibitor 1MZC ; 2.0 ; Co-Crystal Structure Of Human Farnesyltransferase With Farnesyldiphosphate and Inhibitor Compound 33a 1LD8 ; 1.8 ; Co-crystal structure of Human Farnesyltransferase with farnesyldiphosphate and inhibitor compound 49 1LD7 ; 2.0 ; Co-crystal structure of Human Farnesyltransferase with farnesyldiphosphate and inhibitor compound 66 5YJF ; 2.49 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with small molecule analog of Nicotinamide 7NBJ ; 2.275 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with the bisubstrate-like inhibitor (1) 7NBM ; 2.691 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with the bisubstrate-like inhibitor (33) 7BKG ; 2.326 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with the tricyclic inhibitor (2) 7BLE ; 2.809 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with the tricyclic inhibitor (3) 7NBQ ; 2.479 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with the tricyclic inhibitor (4) 7ET7 ; 2.61 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with tricyclic small molecule inhibitor JBSNF-000028 7EU5 ; 2.731 ; Co-crystal structure of Human Nicotinamide N-methyltransferase (NNMT) with tricyclic small molecule inhibitor JBSNF-000107 6ORR ; 2.25 ; Co-crystal structure of human NicotinamideN-Methyltransferase (NNMT) in complex with High-Affinity Alkynyl Bisubstrate Inhibitor NS1 6VQN ; 2.49 ; Co-crystal structure of human PD-L1 complexed with Compound A 7T39 ; 2.81 ; Co-crystal structure of human PRMT9 in complex with MT221 inhibitor 7RBQ ; 2.2 ; Co-crystal structure of human PRMT9 in complex with MT556 inhibitor 8GOD ; 2.88 ; Co-crystal structure of Human Protein-arginine deiminase type-4 (PAD4) with small molecule inhibitor JBI-589 6M5W ; 3.1 ; Co-crystal structure of human serine hydroxymethyltransferase 1 in complex with Pyridoxal 5'-phosphate (PLP) and glycodeoxycholic acid 6M5O ; 2.30001 ; Co-crystal structure of human serine hydroxymethyltransferase 2 in complex with Pyridoxal 5'-phosphate (PLP) and glycodeoxycholic acid 5HQ8 ; 1.72 ; Co-crystal Structure of human SMYD3 with a MEKK2 peptide at 2.13A 5HI7 ; 2.15 ; Co-crystal structure of human SMYD3 with an aza-SAH compound 6P6G ; 1.59 ; Co-crystal Structure of human SMYD3 with Isoxazole Amides Inhibitors 6P6K ; 1.55 ; Co-crystal Structure of human SMYD3 with Isoxazole Amides Inhibitors 6P7Z ; 1.19 ; Co-crystal Structure of human SMYD3 with Isoxazole Amides Inhibitors 6PAF ; 1.241 ; Co-crystal Structure of human SMYD3 with Isoxazole Amides Inhibitors 6I7A ; 2.2 ; Co-crystal structure of human SPOP MATH domain (D140N) and human BRD3 fragment 6I5P ; 1.81 ; Co-crystal structure of human SPOP MATH domain (E47K) and human BRD3 fragment 6I68 ; 1.85 ; Co-crystal structure of human SPOP MATH domain (M117V) and human BRD3 fragment 6I41 ; 1.9 ; Co-crystal structure of human SPOP MATH domain (wild-type) and human BRD3 fragment 8VL7 ; 1.88 ; Co-crystal structure of human TREX1 in complex with an inhibitor 3RBQ ; 2.0 ; Co-crystal structure of human UNC119 (retina gene 4) and an N-terminal Transducin-alpha mimicking peptide 1UBD ; 2.5 ; CO-CRYSTAL STRUCTURE OF HUMAN YY1 ZINC FINGER DOMAIN BOUND TO THE ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT 4JIF ; 1.701 ; Co-crystal structure of ICAP1 PTB domain in complex with a KRIT1 peptide 5WL0 ; 2.4 ; Co-crystal structure of Influenza A H3N2 PB2 (241-741) bound to VX-787 5XMX ; 2.0 ; Co-crystal structure of Inhibitor compound in complex with human PPARdelta LBD 7F80 ; 2.8 ; Co-crystal structure of Inhibitor compound MA-211 in complex with human PPARdelta LBD 3TJD ; 2.9 ; co-crystal structure of Jak2 with thienopyridine 19 3TJC ; 2.4 ; Co-crystal structure of jak2 with thienopyridine 8 4L7F ; 1.95 ; Co-crystal Structure of JNK1 and AX13587 3V7K ; 2.271 ; Co-crystal structure of K72E variant of rat polymerase beta: Enzyme-DNA binary complex 5YXZ ; 1.7 ; Co-crystal Structure of KRAS (G12C) covalently bound with Quinazoline based inhibitor JBI484 5YY1 ; 1.69 ; Co-crystal Structure of KRAS (G12C) covalently bound with Quinazoline based inhibitor JBI739 8T7V ; 2.25 ; Co-crystal structure of KRIT1 with a 1-hydroxy 2-naphthaldehyde derivative (6-(furan-2-yl)-2-hydroxy-1-naphthaldehyde) 8SU8 ; 2.01 ; Co-crystal structure of KRIT1 with a 1-hydroxy 2-naphthaldehyde derivative (6-(furan-2-yl)-2-hydroxy-1-naphthaldehyde). 8T09 ; 2.15 ; Co-crystal structure of KRIT1 with a 1-hydroxy 2-naphthaldehyde derivative (6-ethynyl-2-hydroxy-1-naphthaldehyde) 3BYS ; 2.2 ; co-crystal structure of Lck and aminopyrimidine amide 10b 3BYU ; 2.3 ; co-crystal structure of Lck and aminopyrimidine reverse amide 23 5ES3 ; 2.29 ; Co-crystal structure of LDH liganded with oxamate 7RJ4 ; 3.32 ; Co-crystal structure of lenacapavir bound to N74D mutant of disulfide stabilized HIV-1 CA hexamer 7RJ2 ; 2.32 ; Co-crystal structure of lenacapavir bound to Q67H/N74D mutant of disulfide stabilized HIV-1 CA hexamer 1Z56 ; 3.92 ; Co-Crystal Structure of Lif1p-Lig4p 4ZOP ; 2.62 ; Co-crystal Structure of Lipid Kinase PI3K alpha with a selective phosphatidylinositol-3 kinase alpha inhibitor 5KQG ; 1.5 ; Co-crystal structure of LMW-PTP in complex with 2-(benzothiazol-2-ylamino)-2-oxo-1-phenylethanesulfonic acid 5KQL ; 1.45 ; Co-crystal structure of LMW-PTP in complex with 2-oxo-1-phenyl-2-(phenylamino)ethanesulfonic acid 5KQM ; 1.91 ; Co-crystal structure of LMW-PTP in complex with MES 6UFH ; 3.104 ; Co-crystal structure of M. tuberculosis ileS T-box in complex with tRNA-3'-2'3'cyclic phosphate 6UFG ; 2.929 ; Co-crystal structure of M. tuberculosis ileS T-box in complex with tRNA-3'-OH 7PQK ; 1.15 ; Co-Crystal Structure of M. tuberculosis LeuRS in Complex with the Adduct Formed by Prodrug Cmpd1 with Adenosine-monophosphate 6O4U ; 1.7 ; Co-crystal structure of Mcl1 with inhibitor 6O6F ; 1.6 ; Co-crystal structure of Mcl1 with inhibitor 6O6G ; 2.4 ; Co-crystal structure of Mcl1 with inhibitor 6OQB ; 1.6 ; Co-crystal structure of Mcl1 with inhibitor 10 4OAS ; 1.7 ; co-crystal structure of MDM2 (17-111) in complex with compound 25 4QO4 ; 1.7 ; co-crystal structure of MDM2 (17-111) with compound 16, {(3R,5R,6S)-5-(3-CHLOROPHENYL)-6-(4-CHLOROPHENYL)-1-[(1S)-1-(6-CYCLOPROPYLPYRIDIN-2-YL)PROPYL]-3-METHYL-2-OXOPIPERIDIN-3-YL}ACETIC ACID 4WT2 ; 1.42 ; Co-crystal Structure of MDM2 in Complex with AM-7209 4OGN ; 1.377 ; Co-Crystal Structure of MDM2 with Inhbitor Compound 3 4OGT ; 1.5361 ; Co-Crystal Structure of MDM2 with Inhbitor Compound 46 4JVR ; 1.7 ; Co-crystal structure of MDM2 with inhibitor (2'S,3R,4'S,5'R)-N-(2-aminoethyl)-6-chloro-4'-(3-chloro-2-fluorophenyl)-2'-(2,2-dimethylpropyl)-2-oxo-1,2-dihydrospiro[indole-3,3'-pyrrolidine]-5'-carboxamide 4JVE ; 2.3 ; Co-crystal structure of MDM2 with inhibitor (2R,3E)-2-[(2S,3R,6S)-2,3-bis(4-chlorophenyl)-6-(4-fluorobenzyl)-5-oxomorpholin-4-yl]pent-3-enoic acid 4JV7 ; 2.2 ; Co-crystal structure of MDM2 with inhibitor (2S,5R,6S)-2-benzyl-5,6-bis(4-bromophenyl)-4-methylmorpholin-3-one 4JV9 ; 2.5 ; Co-crystal structure of MDM2 with inhibitor (2S,5R,6S)-2-benzyl-5,6-bis(4-chlorophenyl)-4-methylmorpholin-3-one 4OBA ; 1.602 ; Co-crystal structure of MDM2 with Inhibitor Compound 4 4ODE ; 1.8 ; Co-Crystal Structure of MDM2 with Inhibitor Compound 4 4ODF ; 2.2006 ; Co-Crystal Structure of MDM2 with Inhibitor Compound 47 4OGV ; 2.197 ; Co-Crystal Structure of MDM2 with Inhibitor Compound 49 4JWR ; 2.35 ; Co-crystal structure of MDM2 with inhibitor {(2S,5R,6S)-6-(3-chlorophenyl)-5-(4-chlorophenyl)-4-[(2S)-1-hydroxybutan-2-yl]-3-oxomorpholin-2-yl}acetic acid 4OCC ; 1.8 ; co-crystal structure of MDM2(17-111) in complex with compound 48 6CJH ; 3.6 ; Co-crystal structure of MNK2 in complex with an inhibitor 6CKI ; 2.95 ; Co-crystal structure of MNK2 in Complex With Inhibitor 5YJI ; 1.99 ; Co-crystal structure of Mouse Nicotinamide N-methyltransferase (NNMT) with small molecule analog of Nicotinamide 3I55 ; 3.11 ; Co-crystal structure of Mycalamide A Bound to the Large Ribosomal Subunit 5NSD ; 2.046 ; Co-crystal structure of NAMPT dimer with KPT-9274 5FGL ; 2.4 ; Co-crystal Structure of NicR2_Hsp 3VNR ; 1.75 ; Co-crystal structure of NRPS adenylation protein CytC1 with aminobutyric acid and AMP from streptomyces 3VNQ ; 2.1 ; Co-crystal structure of NRPS adenylation protein CytC1 with ATP from streptomyces 3VNS ; 2.001 ; Co-crystal structure of NRPS adenylation protein CytC1 with D-valine and AMP from streptomyces 8U0Q ; 1.69 ; Co-crystal structure of optimized analog TDI-13537 provided new insights into the potency determinants of the sulfonamide inhibitor series 1ZCW ; 2.25 ; Co-crystal structure of Orf2 an aromatic prenyl transferase from Streptomyces sp. strain CL190 complexed with GPP 1ZB6 ; 1.95 ; Co-Crystal Structure of ORF2 an Aromatic Prenyl Transferase from Streptomyces sp. strain cl190 complexed with GSPP and 1,6-dihydroxynaphtalene 1ZDW ; 2.02 ; Co-crystal structure of Orf2 an aromatic prenyl transferase from Streptomyces sp. strain CL190 complexed with GSPP and Flaviolin 1ZDY ; 1.44 ; Co-crystal structure of Orf2 an aromatic prenyl transferase from Streptomyces sp. strain CL190 complexed with TAPS 6MO4 ; 1.844 ; Co-Crystal structure of P. aeruginosa LpxC-50067 complex 6MO5 ; 1.851 ; Co-Crystal structure of P. aeruginosa LpxC-50228 complex 6MOD ; 1.85 ; Co-Crystal structure of P. aeruginosa LpxC-50432 complex 6MOO ; 2.2 ; Co-Crystal structure of P. aeruginosa LpxC-achn975 complex 8P64 ; 3.312 ; Co-crystal structure of PD-L1 with low molecular weight inhibitor 8R6Q ; 2.17 ; Co-crystal structure of PD-L1 with low molecular weight inhibitor 6W4N ; 2.623 ; Co-crystal structure of Pd_dinase with probe glycine-propargylglycine-AOMK 4X7O ; 2.65 ; Co-crystal Structure of PERK bound to 1-[5-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2,3-dihydro-1H-indol-1-yl]-2-[3-fluoro-5-(trifluoromethyl)phenyl]ethanone inhibitor 4X7N ; 2.35 ; Co-crystal Structure of PERK bound to 4-[2-amino-4-methyl-3-(2-methylquinolin-6-yl)benzoyl]-1-methyl-2,5-diphenyl-1,2-dihydro-3H-pyrazol-3-one inhibitor 4X7K ; 1.8 ; Co-crystal Structure of PERK bound to 4-{2-amino-3-[5-fluoro-2-(methylamino)quinazolin-6-yl]-4-methylbenzoyl}-1-methyl-2,5-diphenyl-1,2-dihydro-3H-pyrazol-3-one inhibitor 4X7L ; 1.9 ; Co-crystal Structure of PERK bound to 4-{2-amino-4-methyl-3-[2-(methylamino)-1,3-benzothiazol-6-yl]benzoyl}-1-methyl-2,5-diphenyl-1,2-dihydro-3H-pyrazol-3-one inhibitor 4X7H ; 2.0 ; Co-crystal Structure of PERK bound to N-{5-[(6,7-dimethoxyquinolin-4-yl)oxy]pyridin-2-yl}-1-methyl-3-oxo-2-phenyl-5-(pyridin-4-yl)-2,3-dihydro-1H-pyrazole-4-carboxamide inhibitor 4X7J ; 2.3 ; Co-crystal Structure of PERK with 2-amino-N-[4-methoxy-3-(trifluoromethyl)phenyl]-4-methyl-3-[2-(methylamino)quinazolin-6-yl]benzamide inhibitor 8EQ9 ; 2.86 ; Co-crystal structure of PERK with compound 11 8EQD ; 2.92 ; Co-crystal structure of PERK with compound 24 8EQE ; 2.559 ; Co-crystal structure of PERK with compound 26 7MF0 ; 2.809 ; Co-crystal structure of PERK with inhibitor (R)-2-amino-N-cyclopropyl-5-(4-(2-(3,5-difluorophenyl)-2-hydroxyacetamido)-2-methylphenyl)nicotinamide 8U8J ; 2.1 ; Co-crystal structure of phosphorylated ERK2 in complex with ERK1/2 inhibitor #16 8U8K ; 2.1 ; Co-crystal structure of phosphorylated ERK2 in complex with ERK1/2 inhibitor #8 4RPV ; 3.05 ; co-crystal structure of Pim1 with compound 3 5KJX ; 1.9 ; Co-crystal Structure of PKA RI alpha CNB-B domain with cAMP 5KJY ; 2.0 ; Co-crystal structure of PKA RI alpha CNB-B mutant (G316R/A336T) with cAMP 5KJZ ; 1.347 ; Co-crystal structure of PKA RI alpha CNB-B mutant (G316R/A336T) with cGMP 1FT2 ; 3.4 ; CO-CRYSTAL STRUCTURE OF PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A FARNESYL DIPHOSPHATE SUBSTRATE 7N10 ; 1.65 ; Co-crystal structure of Prx with ComR DNA binding domain 7RHN ; 2.46 ; Co-crystal structure of Q67H mutant of disulfide stabilized HIV-1 CA hexamer and lenacapavir 4DXA ; 1.95 ; Co-crystal structure of Rap1 in complex with KRIT1 3UXP ; 2.723 ; Co-crystal Structure of Rat DNA polymerase beta Mutator I260Q: Enzyme-DNA-ddTTP 1D8D ; 2.0 ; CO-CRYSTAL STRUCTURE OF RAT PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A K-RAS4B PEPTIDE SUBSTRATE AND FPP ANALOG AT 2.0A RESOLUTION 3BPC ; 1.85 ; co-crystal structure of S25-2 Fab in complex with 5-deoxy-4-epi-2,3-dehydro Kdo (4.8) Kdo 7UO3 ; 1.8 ; Co-crystal structure of Salmonella Typhimurium Tlde1a in complex with D-alanine 7UO8 ; 1.6 ; Co-crystal structure of Salmonella Typhimurium Tlde1a in complex with D-methionine 7TA7 ; 2.28 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 10/11 7TB2 ; 1.8 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 12/13 7TBT ; 2.45 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 13/14 7TC4 ; 1.94 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 15/16 7T70 ; 2.35 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 4/5 7T8M ; 1.6 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 5/6 7T8R ; 1.74 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 7/8 7T9Y ; 2.18 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 8/9 7TA4 ; 1.78 ; Co-crystal structure of SARS-CoV-2 Mpro C145A with substrate peptide 9/10 8TBE ; 2.15 ; Co-crystal structure of SARS-CoV-2 Mpro with Pomotrelvir 4RDD ; 1.601 ; Co-crystal structure of SHP2 in complex with a Cefsulodin derivative 7ZLS ; 1.92 ; co-crystal structure of SOCS2:ElonginB:ElonginC in complex with compound 13 1KD1 ; 3.0 ; Co-crystal Structure of Spiramycin bound to the 50S Ribosomal Subunit of Haloarcula marismortui 6F8G ; 2.03 ; Co-crystal structure of SPOP MATH domain and hamster Pdx1 fragment 6F8F ; 2.0 ; Co-crystal structure of SPOP MATH domain and human Pdx1 fragment 6USN ; 2.773 ; Co-crystal structure of SPR with compound 5 1SVL ; 1.95 ; Co-crystal structure of SV40 large T antigen helicase domain and ADP 1SVM ; 1.94 ; Co-crystal structure of SV40 large T antigen helicase domain and ATP 4N3R ; 1.9 ; Co-crystal structure of tankyrase 1 with compound 2 (5-(2-aminoquinazolin-6-yl)-N-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-7-yl)-2-fluorobenzamide) 4N4T ; 2.315 ; Co-crystal structure of tankyrase 1 with compound 3 [(4S)-3-{4-[6-amino-5-(pyrimidin-2-yl)pyridin-3-yl]phenyl}-5,5-dimethyl-4-phenyl-1,3-oxazolidin-2-one] 4MSK ; 2.3 ; Co-crystal structure of tankyrase 1 with compound 34 4N4V ; 2.0 ; Co-crystal structure of tankyrase 1 with compound 4 [(4S)-3-{trans-4-[6-amino-5-(pyrimidin-2-yl)pyridin-3-yl]cyclohexyl}-5,5-dimethyl-4-phenyl-1,3-oxazolidin-2-one] 4MT9 ; 2.0 ; Co-crystal structure of tankyrase 1 with compound 49 1VTL ; 2.25 ; CO-CRYSTAL STRUCTURE OF TBP RECOGNIZING THE MINOR GROOVE OF A TATA ELEMENT 8HML ; 2.95 ; Co-crystal structure of the C terminal DNA binding domain of Saccharopolyspora erythraea GlnR in complex with its conserved promoter DNA in 2.95 Angstrom resolution 4RV8 ; 2.053 ; Co-Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Cryptosporidium parvum and the inhibitor p131 4QJ1 ; 2.415 ; Co-crystal structure of the catalytic domain of the inosine monophosphate dehydrogenase from Cryptosporidium parvum with inhibitor N109 8EM8 ; 2.54 ; Co-crystal structure of the cGMP-dependent protein kinase PKG from Plasmodium falciparum in complex with RY-1-165 5GPG ; 1.67 ; Co-crystal structure of the FK506 binding domain of human FKBP25, Rapamycin and the FRB domain of human mTOR 6V9B ; 2.4 ; Co-crystal structure of the fluorogenic Mango-IV homodimer bound to TO1-Biotin 6V9D ; 2.8 ; Co-crystal structure of the fluorogenic Mango-IV homodimer bound to TO1-Biotin 5V3F ; 1.7 ; Co-crystal structure of the fluorogenic RNA Mango 6OD9 ; 4.102 ; Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser 4MGN ; 3.2 ; Co-crystal structure of the G. kaustophilus glyQS T box riboswitch Stem I in complex with tRNA 6PMO ; 2.65703 ; Co-crystal structure of the Geobacillus kaustophilus glyQ T-box riboswitch discriminator domain in complex with tRNA-Gly 1VTN ; 2.5 ; CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE H5 3RLR ; 1.7 ; Co-crystal structure of the HSP90 ATP binding domain in complex with 4-(2,4-dichloro-5-methoxyphenyl)-2,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile 3RLQ ; 1.9 ; Co-crystal structure of the HSP90 ATP binding domain in complex with 4-(2,4-dichloro-5-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidine-5- carbonitrile 3RLP ; 1.7 ; Co-crystal structure of the HSP90 ATP binding domain in complex with 4-(2,4-dichloro-5-methoxyphenyl)-6-methylpyrimidin-2-amine 3K3B ; 2.4 ; Co-crystal structure of the human kinesin Eg5 with a novel tetrahydro-beta-carboline 5E16 ; 1.65 ; Co-crystal structure of the N-termial cGMP binding domain of Plasmodium falciparum PKG with cGMP 4DRI ; 1.45 ; Co-crystal structure of the PPIase domain of FKBP51, Rapamycin and the FRB fragment of mTOR 4DRH ; 2.3 ; Co-crystal structure of the PPIase domain of FKBP51, Rapamycin and the FRB fragment of mTOR at low pH 5J3U ; 1.8 ; Co-crystal structure of the regulatory domain of Toxoplasma gondii PKA with cAMP 5KBX ; 2.8 ; Co-crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer signaling protein Ypd1 and the receiver domain of its downstream response regulator Ssk1 3KKA ; 2.4 ; Co-crystal structure of the sam domains of EPHA1 AND EPHA2 8PH4 ; 1.69 ; Co-Crystal structure of the SARS-CoV2 main protease Nsp5 with an Uracil-carrying X77-like inhibitor 5UXX ; 2.45 ; Co-crystal structure of the sigma factor RpoE in complex with the anti-sigma factor NepR from Bartonella quintana 4Z07 ; 2.5 ; Co-crystal structure of the tandem CNB (CNB-A/B) domains of human PKG I beta with cGMP 8T55 ; 2.2 ; Co-crystal structure of the WD-repeat domain of human WDR91 in complex with MR46654 3G4S ; 3.2 ; Co-crystal structure of Tiamulin bound to the large ribosomal subunit 4K4F ; 2.9 ; Co-crystal structure of TNKS1 with compound 18 [4-[(4S)-5,5-dimethyl-2-oxo-4-phenyl-1,3-oxazolidin-3-yl]-N-(quinolin-8-yl)benzamide] 4K4E ; 2.3 ; Co-crystal structure of tnks1 with compound 52 [N~2-(5-chloro-2-methoxyphenyl)-N-[trans-4-(2-oxo-2,3-dihydro-1H-benzimidazol-1-yl)cyclohexyl]glycinamide] 7EVU ; 1.697 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with HFG and JE6 7EVV ; 1.704 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with JE6 and L-pro 7FAK ; 1.899 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with L96 and L-pro 7FAM ; 2.42 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with L97 and L-pro 7FAN ; 1.769 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with T35 and L-pro 7FAL ; 3.219 ; Co-crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in complex with T36 and L-pro 3D8A ; 2.55 ; Co-crystal structure of TraM-TraD complex. 3I56 ; 2.9 ; Co-crystal structure of Triacetyloleandomcyin Bound to the Large Ribosomal Subunit 1K9M ; 3.0 ; Co-crystal structure of tylosin bound to the 50S ribosomal subunit of Haloarcula marismortui 7QG6 ; 2.95 ; Co-crystal structure of UPF3A-RRM-NOPS-L with UPF2-MIF4GIII 7NWU ; 2.6 ; Co-crystal structure of UPF3B-RRM-NOPS-L with UPF2-MIF4GIII 7AQY ; 1.9 ; Co-Crystal Structure of Variant Surface Glycoprotein VSG2 in complex with Nanobody VSG2(NB11) 7AQZ ; 1.3 ; Co-Crystal Structure of Variant Surface Glycoprotein VSG2 in complex with Nanobody VSG2(NB14) 7AR0 ; 2.139 ; Co-Crystal Structure of Variant Surface Glycoprotein VSG2 in complex with Nanobody VSG2(NB19) 7AQX ; 1.499 ; Co-Crystal Structure of Variant Surface Glycoprotein VSG2 in complex with Nanobody VSG2(NB9) 4AZV ; 3.291 ; Co-crystal structure of WbdD and kinase inhibitor GW435821x. 4AZT ; 2.34 ; Co-crystal structure of WbdD and kinase inhibitor LY294002. 3V7J ; 2.25 ; Co-crystal structure of Wild Type Rat polymerase beta: Enzyme-DNA binary complex 4DI5 ; 2.3 ; Co-crystal structure of WT 5-epi-Aristolochene synthase from Nicotiana tobaccum with geraniline 1TF6 ; 3.1 ; CO-CRYSTAL STRUCTURE OF XENOPUS TFIIIA ZINC FINGER DOMAIN BOUND TO THE 5S RIBOSOMAL RNA GENE INTERNAL CONTROL REGION 2H7V ; 2.6 ; Co-crystal structure of YpkA-Rac1 2G45 ; 1.99 ; Co-crystal structure of znf ubp domain from the deubiquitinating enzyme isopeptidase T (isot) in complex with ubiquitin 6W0T ; 1.95 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W7H ; 1.95 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W8K ; 1.8 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W8M ; 1.75 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W8Q ; 2.34 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W8Y ; 2.1 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W8Z ; 1.9 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 6W91 ; 2.21 ; Co-crystal structures of CHIKV nsP3 macrodomain with pyrimidone fragments 4ZVZ ; 2.0 ; Co-crystal structures of PP5 in complex with 5-methyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid 4ZX2 ; 1.23 ; Co-crystal structures of PP5 in complex with 5-methyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid 4JPS ; 2.2 ; Co-crystal Structures of the Lipid Kinase PI3K alpha with Pan and Isoform Selective Inhibitors 8OR1 ; 3.5 ; Co-crystal strucutre of PD-L1 with low molecular weight inhibitor 7RH3 ; 1.05 ; Co-crystallization of human galectin-3 CRD complex with Methyl 2-O-(2-nitro-4-chloro)-benzoyl-3-O-toluoyl-b-D-talopyranoside 7RH4 ; 1.201 ; Co-crystallization of human galectin-3 CRD complex with Methyl 2-O-(2-nitro-4-fluoro)-benzoyl-3-O-toluoyl-b-D-talopyranoside 4IRW ; 1.396 ; Co-crystallization of streptavidin-biotin complex with a lanthanide-ligand complex gives rise to a novel crystal form 3EOG ; 3.391 ; Co-crystallization showing exon recognition by a group II intron 3O9M ; 2.98 ; Co-crystallization studies of full length recombinant BChE with cocaine offers insights into cocaine detoxification 4K5A ; 1.5 ; Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W 4K5B ; 1.85 ; Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W 6YHW ; 1.962 ; Co-crystals in the P212121 space group, of a beta-cyclodextrin spacered by triazole heptyl from alpha-D-mannose, with FimH lectin at 2.00 A resolution. 6VJT ; 1.782 ; Co-crystals of broadly neutralizing antibody with the linear epitope from Hepatitis B surface antigen 1ONA ; 2.35 ; CO-CRYSTALS OF CONCANAVALIN A WITH METHYL-3,6-DI-O-(ALPHA-D-MANNOPYRANOSYL)-ALPHA-D-MANNOPYRANOSIDE 2ENR ; 2.35 ; CO-CRYSTALS OF DEMETALLIZED CONCANAVALIN A WITH CADMIUM HAVING A CADMIUM ION BOUND IN BOTH THE S1 SITE AND THE S2 SITE 1ENR ; 1.83 ; CO-CRYSTALS OF DEMETALLIZED CONCANAVALIN A WITH ZINC AND CALCIUM HAVING A ZINC ION BOUND IN THE S1 SITE AND A CALCIUM ION BOUND IN THE S2 SITE 1ENQ ; 2.5 ; CO-CRYSTALS OF DEMETALLIZED CONCANAVALIN A WITH ZINC HAVING A ZINC ION BOUND IN THE S1 SITE 4TZZ ; 3.64 ; Co-crystals of the Ternary Complex Containing a T-box Stem I RNA, its Cognate tRNAGly, and B. subtilis YbxF protein, treated by removing lithium sulfate and increasing PEG3350 concentration from 20% to 45% post crystallization 4TZW ; 4.671 ; Co-crystals of the Ternary Complex Containing a T-box Stem I RNA, its Cognate tRNAGly, and B. subtilis YbxF protein, treated by removing lithium sulfate and replacing Mg2+ with Sr2+ post crystallization 4TZV ; 5.03 ; Co-crystals of the Ternary Complex Containing a T-box Stem I RNA, its Cognate tRNAGly, and B. subtilis YbxF protein, treated by removing lithium sulfate post crystallization 6CK3 ; 2.9 ; Co-crytsal Structure of MNK2 in Complex With an Inhibitor 3CD6 ; 2.75 ; Co-cystal of large Ribosomal Subunit mutant G2616A with CC-Puromycin 6YUA ; 3.16 ; CO-dehydrogenase coupled to the N-terminal domain of the Acetyl-CoA synthase from Clostridium autoethanogenum isolated after tryptic digestion. 6YU9 ; 1.904 ; CO-dehydrogenase homodimer from Clostridium autoethanogenum at 1.90-A resolution 6YTT ; 3.01 ; CO-dehydrogenase/Acetyl-CoA synthase (CODH/ACS) from Clostridium autoethanogenum at 3.0-A resolution 2FMY ; 2.2 ; CO-dependent transcription factor CooA from Carboxydothermus hydrogenoformans (Imidazole-bound form) 4O59 ; 1.52 ; Co-enzyme Induced Conformational Changes in Bovine Eye Glyceraldehyde 3-Phosphate Dehydrogenase 4O63 ; 1.93 ; Co-enzyme Induced Conformational Changes in Bovine Eye Glyceraldehyde 3-Phosphate Dehydrogenase 1Y39 ; 2.8 ; Co-evolution of protein and RNA structures within a highly conserved ribosomal domain 5ZTX ; 2.0 ; co-factor free Transaminase 7JH5 ; 2.103 ; Co-LOCKR: de novo designed protein switch 2L5G ; ; Co-ordinates and 1H, 13C and 15N chemical shift assignments for the complex of GPS2 53-90 and SMRT 167-207 6JSI ; 4.7 ; Co-purified Fatty Acid Synthase 7ADY ; 1.05 ; CO-removed state of the active site of vanadium nitrogenase VFe protein 7RZK ; 1.9 ; Co-soak crystal structure of the N-terminal domain of Staphylococcus aureus Fatty Acid Kinase A (FakA, residues 1-208) in complex with ADP to 1.9 Angstrom resolution - SAD data 8BZB ; 1.7 ; co-soak stabilizers for ERa - 14-3-3 interaction (884_AZ275) 8BZW ; 1.1 ; Co-soaked stabilizers for ERa - 14-3-3 interaction (844_AZ210) 8BZC ; 1.1 ; co-soaked stabilizers for ERa - 14-3-3 interaction (884_AZ244) 8C04 ; 1.1 ; Co-soaked stabilizers for ERa - 14-3-3 interaction (884_AZ354) 2Y8T ; 1.95 ; Co-structure of AMA1 with a surface exposed region of RON2 from Toxoplasma gondii 2Y8S ; 2.55 ; Co-structure of an AMA1 mutant (Y230A) with a surface exposed region of RON2 from Toxoplasma gondii 6X3N ; 1.95 ; Co-structure of BTK kinase domain with L-005085737 inhibitor 6X3O ; 1.9 ; Co-structure of BTK kinase domain with L-005191930 inhibitor 6X3P ; 1.34 ; Co-structure of BTK kinase domain with L-005298385 inhibitor 3TT0 ; 2.8 ; Co-structure of Fibroblast Growth Factor Receptor 1 kinase domain with 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (BGJ398) 1X0X ; 2.75 ; Co-Structure of Homo Sapiens Glycerol-3-Phosphate Dehydrogenase 1 complex with NAD 6V6L ; 2.19 ; Co-structure of human glycogen synthase kinase beta with 1-(6-((2-((6-amino-5-nitropyridin-2-yl)amino)ethyl)amino)-2-(2,4-dichlorophenyl)pyridin-3-yl)-4-methylpiperazin-2-one 6B8J ; 2.595 ; Co-structure of human glycogen synthase kinase beta with a selective (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine inhibitor 8SBC ; 2.3 ; Co-structure of Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform and brain penetrant inhibitors 7SSB ; 1.4 ; Co-structure of PKG1 regulatory domain with compound 33 2WOR ; 1.7 ; co-structure of S100A7 with 1,8 ANS 8SKH ; 1.882 ; Co-structure of SARS-CoV-2 (COVID-19 with covalent pyrazoline based inhibitors 8SK4 ; 2.0 ; Co-structure of SARS-CoV-2 (COVID-19 with covalent pyrazoline based inhibitors) 8FPJ ; 2.74 ; Co-structure of the Human Metapneunomovirus RNA-dependent RNA polymerase with MRK-1 8FPI ; 2.52 ; Co-structure of the Respiratory Syncytial Virus RNA-dependent RNA polymerase with MRK-1 8SBJ ; 3.1 ; Co-structure Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform complexed with brain penetrant inhibitors 6RUN ; 1.1 ; Co-substituted alpha-Keggin bound to Proteinase K solved by EP 6RUG ; 1.1 ; Co-substituted alpha-Keggin bound to Proteinase K solved by MR 6RVE ; 1.15 ; Co-substituted beta-Keggin bound to Proteinase K solved by MR 6RVG ; 1.1 ; Co-substituted beta-Keggin bound to Proteinase K solved by MR 7A9F ; 1.62 ; Co-substituted Keggin silicotungstate with covalent bond to proteinase K 7A9K ; 1.62 ; Co-substituted Keggin silicotungstate with covalent bond to proteinase K 7EGQ ; 3.35 ; Co-transcriptional capping machineries in SARS-CoV-2 RTC: Coupling of N7-methyltransferase and 3'-5' exoribonuclease with polymerase reveals mechanisms for capping and proofreading 6FPK ; 1.95 ; Co-translational folding intermediate dictates membrane targeting of the signal recognition particle (SRP)- receptor 6FPR ; 2.65 ; Co-translational folding intermediate dictates membrane targeting of the signal recognition particle (SRP)- receptor 4UDX ; 1.03 ; CO2 bound to cluster C of Ni,Fe-CO dehydrogenase at true-atomic resolution 4HT5 ; 2.51 ; CO2 concentrating mechanism protein P, CcmP form 1 4HT7 ; 3.301 ; CO2 concentrating mechanism protein P, CcmP form 2 5YUI ; 1.2 ; CO2 release in human carbonic anhydrase II crystals: reveal histidine 64 and solvent dynamics 5YUJ ; 1.25 ; CO2 release in human carbonic anhydrase II crystals: reveal histidine 64 and solvent dynamics 5YUK ; 1.45 ; CO2 release in human carbonic anhydrase II crystals: reveal histidine 64 and solvent dynamics 3IUH ; 2.0 ; Co2+-bound form of Pseudomonas stutzeri L-rhamnose isomerase 4XX0 ; 2.1 ; CoA bound to pig GTP-specific succinyl-CoA synthetase 5U4X ; 1.88 ; Coactivator-associated arginine methyltransferase 1 with TP-064 1JBU ; 2.0 ; Coagulation Factor VII Zymogen (EGF2/Protease) in Complex with Inhibitory Exosite Peptide A-183 8G6I ; 4.23 ; Coagulation factor VIII bound to a patient-derived anti-C1 domain antibody inhibitor 1FAC ; ; COAGULATION FACTOR VIII, NMR, 1 STRUCTURE 1FAX ; 3.0 ; COAGULATION FACTOR XA INHIBITOR COMPLEX 1FXY ; 2.15 ; COAGULATION FACTOR XA-TRYPSIN CHIMERA INHIBITED WITH D-PHE-PRO-ARG-CHLOROMETHYLKETONE 6USY ; 1.26 ; COAGULATION FACTOR XI CATALYTIC DOMAIN (C123S) IN COMPLEX WITH NVP-XIV936 6R8X ; 2.04 ; COAGULATION FACTOR XI CATALYTIC DOMAIN IN COMPLEX WITH FAB-PORTION OF MAA868 6TS4 ; 1.17 ; Coagulation factor XI protease domain in complex with active site inhibitor 6TS5 ; 1.29 ; Coagulation factor XI protease domain in complex with active site inhibitor 6TS6 ; 1.33 ; Coagulation factor XI protease domain in complex with active site inhibitor 6TS7 ; 2.63 ; Coagulation factor XI protease domain in complex with active site inhibitor 8BO4 ; 1.75 ; COAGULATION FACTOR XI PROTEASE DOMAIN IN COMPLEX WITH ACTIVE SITE INHIBITOR 1 8BO6 ; 1.25 ; COAGULATION FACTOR XI PROTEASE DOMAIN IN COMPLEX WITH ACTIVE SITE INHIBITOR 2 8BO5 ; 1.7 ; COAGULATION FACTOR XI PROTEASE DOMAIN IN COMPLEX WITH ACTIVE SITE INHIBITOR 3 8BO7 ; 1.25 ; COAGULATION FACTOR XI PROTEASE DOMAIN IN COMPLEX WITH ACTIVE SITE INHIBITOR 34 8BO3 ; 1.841 ; COAGULATION FACTOR XI PROTEASE DOMAIN IN COMPLEX WITH ACTIVE SITE INHIBITOR Asundexian 4XDE ; 2.14 ; Coagulation Factor XII protease domain crystal structure 4XE4 ; 2.4 ; Coagulation Factor XII protease domain crystal structure 1MGX ; ; COAGULATION FACTOR, MG(II), NMR, 7 STRUCTURES (BACKBONE ATOMS ONLY) 1WHF ; ; COAGULATION FACTOR, NMR, 15 STRUCTURES 1WHE ; ; COAGULATION FACTOR, NMR, 20 STRUCTURES 1MOF ; 1.7 ; COAT PROTEIN 1Q7Q ; 3.1 ; Cobalamin-dependent methionine synthase (1-566) from T. maritima (Oxidized, Orthorhombic) 1Q7Z ; 1.7 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima (Cd2+ complex) 1Q85 ; 2.0 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima (Cd2+ complex, Se-Met) 1Q8J ; 1.9 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima (Cd2+, Hcy, methyltetrahydrofolate complex) 1Q8A ; 1.7 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima (Cd2+:L-Hcy complex, Se-Met) 3BOL ; 1.85 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima complexed with Zn2+ 3BOF ; 1.7 ; Cobalamin-dependent methionine synthase (1-566) from Thermotoga maritima complexed with Zn2+ and Homocysteine 1Q7M ; 2.1 ; Cobalamin-dependent methionine synthase (MetH) from Thermotoga maritima (Oxidized, Monoclinic) 8I7Q ; 2.83 ; Cobalt and Calcium coordinated Concanavalin A at pH 7.4 from Canavalia ensiformis 4JKY ; 2.373 ; Cobalt between two ADP's in the active site of adenylate kinase 3TA5 ; 1.52 ; Cobalt bound structure of an archaeal member of the LigD 3'-phosphoesterase DNA repair enzyme family 2XVZ ; 2.4 ; Cobalt chelatase CbiK (periplasmatic) from Desulvobrio vulgaris Hildenborough (co-crystallized with cobalt) 2XVX ; 1.9 ; Cobalt chelatase CbiK (periplasmatic) from Desulvobrio vulgaris Hildenborough (Native) 2XVY ; 1.7 ; Cobalt chelatase CbiK (periplasmic) from Desulvobrio vulgaris Hildenborough (co-crystallised with cobalt and SHC) 1BSJ ; 3.0 ; COBALT DEFORMYLASE INHIBITOR COMPLEX FROM E.COLI 1XAM ; 1.86 ; Cobalt hexammine induced tautameric shift in Z-DNA: structure of d(CGCGCA).d(TGCGCG) in two crystal forms. 1XA2 ; 1.71 ; Cobalt hexammine induced tautomeric shift in Z-DNA: the structure of d(CGCGCA).d(TGCGCG) in two crystal forms 2O5S ; 1.6 ; Cobalt horse heart myoglobin, nitrite modified 2O5T ; 1.6 ; Cobalt horse heart myoglobin, oxidized 1YOG ; 1.65 ; COBALT MYOGLOBIN (DEOXY) 1YOH ; 1.65 ; COBALT MYOGLOBIN (MET) 1YOI ; 1.65 ; COBALT MYOGLOBIN (OXY) 1QQ0 ; 1.76 ; COBALT SUBSTITUTED CARBONIC ANHYDRASE FROM METHANOSARCINA THERMOPHILA 1H0N ; 2.4 ; Cobalt substitution of mouse R2 ribonucleotide reductase to model the reactive diferrous state 1H0O ; 2.2 ; Cobalt substitution of mouse R2 ribonucleotide reductase to model the reactive diferrous state 4MKI ; 2.3 ; Cobalt transporter ATP-binding subunit 8ASM ; 1.7 ; Cobalt(II) bound to a non-canonical quadruplex 3MF3 ; 2.5 ; Cobalt(II)-Substituted Haemophilus influenzae B-Carbonic Anhydrase 8EIW ; 1.65 ; Cobalt(II)-substituted Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8EIX ; 2.46 ; Cobalt(II)-substituted S48A Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8EIY ; 2.55 ; Cobalt(II)-substituted S48T Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 1AO2 ; ; cobalt(III)-deglycopepleomycin determined by NMR studies 1AO4 ; ; COBALT(III)-PEPLOMYCIN COMPLEX DETERMINED BY NMR STUDIES 8E3V ; 2.0 ; Cobalt-reconstituted nitrogenase MoFeP mutant S188A from Azotobacter vinelandii after IDS oxidation 6P5Z ; 2.26 ; Cobalt-sirohydrochlorin-bound S. typhimurium siroheme synthase 3I11 ; 1.45 ; Cobalt-substituted metallo-beta-lactamase from Bacillus cereus 3I15 ; 1.55 ; Cobalt-substituted metallo-beta-lactamase from Bacillus cereus: residue Cys168 fully oxidized 3I14 ; 1.55 ; Cobalt-substituted metallo-beta-lactamase from Bacillus cereus: residue Cys168 partially oxidized 1R0H ; 1.7 ; cobalt-substituted rubredoxin 1PJV ; ; Cobatoxin 1 from Centruroides noxius Scorpion venom: Chemical Synthesis, 3-D Structure in Solution, Pharmacology and Docking on K+ channels 4FDV ; 1.68 ; CobH from Rhodobacter capsulatus (SB1003) in complex with HBA 4X7G ; 1.22 ; CobK precorrin-6A reductase 5C4N ; 1.63 ; CobK precorrin-6A reductase 5C4R ; 3.17 ; CobK precorrin-6A reductase 3CB0 ; 1.6 ; CobR 4IRA ; 2.2 ; CobR in complex with FAD 4EC7 ; 2.6 ; Cobra NGF in complex with lipid 3HRZ ; 2.2 ; Cobra Venom Factor (CVF) in complex with human factor B 3HS0 ; 3.0 ; Cobra Venom Factor (CVF) in complex with human factor B 6PU6 ; 2.293 ; CobT from Methanocaldococcus jannaschii in complex with Alpha-Ribozole 5'-Phosphate, Nicotinic Acid, and Nicotinic Acid Mononucleotide 1HY9 ; ; COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT 3I2G ; 2.5 ; Cocaine Esterase with mutation G173Q, bound to DTT adduct 3I2H ; 1.65 ; Cocaine Esterase with mutation L169K, bound to DTT adduct 3I2I ; 2.14 ; Cocaine Esterase with mutation T172R, bound to DTT adduct 3PUI ; 1.53 ; Cocaine Esterase with mutations G4C, S10C 3I2F ; 2.5 ; Cocaine Esterase with mutations T172R / G173Q, bound to DTT adduct 3I2K ; 1.51 ; Cocaine Esterase, wild type, bound to a DTT adduct 3I2J ; 2.01 ; Cocaine Esterase, wild type, without a ligand 3PUH ; 2.3 ; Cocaine Esterase, wild-type biologically active dimer 1NJ9 ; 2.35 ; Cocaine hydrolytic antibody 15A10 3UCJ ; 1.85 ; Coccomyxa beta-carbonic anhydrase in complex with acetazolamide 3UCN ; 2.25 ; Coccomyxa beta-carbonic anhydrase in complex with azide 3UCO ; 2.5 ; Coccomyxa beta-carbonic anhydrase in complex with iodide 3UCK ; 2.5 ; Coccomyxa beta-carbonic anhydrase in complex with phosphate 3UCM ; 2.513 ; Coccomyxa beta-carbonic anhydrase in complex with thiocyanate 5MB0 ; 1.149 ; Cocktail experiment A: fragments 63, 267, and 291 in complex with Endothiapepsin 5MB7 ; 1.299 ; Cocktail experiment B: fragments 224 and 236 at 50mM concentration 5MB5 ; 0.98 ; Cocktail experiment C: fragments 103 and 171 in complex with Endothiapepsin 5MB6 ; 1.201 ; Cocktail experiment D: fragments 308 and 333 at 50mM concentration 6ZZ2 ; 1.14885 ; Cocktail experiment E: fragments 52, 58, and 63 at 90 mM concentration in complex with Endothiapepsin 7ADG ; 1.07946 ; Cocktail experiment G: fragments 216 and 338 at 90 mM concentration in complex with Endothiapepsin 8HBJ ; 2.9 ; cocktail of FMDV (A/TUR/14/98) in complex with M678F and M688F 6PGR ; 1.95 ; Cocomplex structure of Deoxyhypusine synthase with inhibitor 6-BROMO-N-(1H-INDOL-4-YL)-1-BENZOTHIOPHENE-2-CARBOXAMIDE 6WKZ ; 2.23 ; Cocomplex structure of Deoxyhypusine synthase with inhibitor 6-[(1R)-2-AMINO-1-PHENYLETHYL]-3-(PYRIDIN-3-YL)-4H,5H,6H,7H-THIENO[2,3-C]PYRIDIN-7-ONE 6WL6 ; 2.12 ; Cocomplex structure of Deoxyhypusine synthase with inhibitor 6-[(2R)-1-AMINO-4-METHYLPENTAN-2-YL]-3-(PYRIDIN-3-YL)-4H,5H,6H,7H-THIENO[2,3-C]PYRIDIN-7-ONE 7PR3 ; 2.37 ; Cocrystal Form I of a cytochrome c, sulfonato-thiacalix[4]arene - zinc cluster 8R3B ; 1.66 ; Cocrystal form I of the Pent - sulfonato-calix[8]arene complex 7PR4 ; 1.32 ; Cocrystal Form II of a cytochrome c, sulfonato-thiacalix[4]arene - zinc cluster 8R3C ; 1.58 ; Cocrystal form II of the Pent - sulfonato-calix[8]arene complex 7PR5 ; 1.94 ; Cocrystal of an RSL-N23H and sulfonato-thiacalix[4]arene - zinc complex 6UWX ; 1.307 ; Cocrystal of BRD4(D1) with a ethyl carbamate thiazepane inhibitor 6UVJ ; 1.38 ; Cocrystal of BRD4(D1) with a methyl carbamate thiazepane inhibitor 6UVM ; 1.51 ; Cocrystal of BRD4(D1) with a methyl carbamate thiazepane inhibitor 6WGX ; 1.53 ; Cocrystal of BRD4(D1) with a selective inhibitor 7R9C ; 1.5 ; Cocrystal of BRD4(D1) with N,N-dimethyl-2-[(3R)-3-(5-{2-[2-methyl-5-(propan-2-yl)phenoxy]pyrimidin-4-yl}-4-[4-(trifluoromethyl)phenyl]-1H-imidazol-1-yl)pyrrolidin-1-yl]ethan-1-amine 7PR2 ; 1.73 ; Cocrystal of cytochrome c and sulfonato-thiacalix[4]arene 3FU2 ; 2.85 ; Cocrystal structure of a class-I preQ1 riboswitch 3K1V ; 2.2 ; Cocrystal structure of a mutant class-I preQ1 riboswitch 2RKJ ; 4.5 ; Cocrystal structure of a tyrosyl-tRNA synthetase splicing factor with a group I intron RNA 5HIX ; 2.48 ; Cocrystal structure of an anti-parallel DNA G-quadruplex and a tetra-Quinoline Foldamer 2DEU ; 3.4 ; Cocrystal structure of an RNA sulfuration enzyme MnmA and tRNA-Glu in the adenylated intermediate state 2DER ; 3.1 ; Cocrystal structure of an RNA sulfuration enzyme MnmA and tRNA-Glu in the initial tRNA binding state 2DET ; 3.4 ; Cocrystal structure of an RNA sulfuration enzyme MnmA and tRNA-Glu in the pre-reaction state 3EYZ ; 2.1 ; Cocrystal structure of Bacillus fragment DNA polymerase I with duplex DNA (open form) 3EZ5 ; 1.9 ; Cocrystal structure of Bacillus fragment DNA polymerase I with duplex DNA , dCTP, and zinc (closed form). 5M75 ; 1.538 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a (S)-methyl substitued Fasudil-derivative 5M6V ; 1.418 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a double methylated Fasudil-derivative 5M6Y ; 1.367 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a methylisoquinoline Fasudil-derivative 5LCT ; 1.615 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a R-methyl-piperazine substituted Fasudil-derivative (Ligand 02) 5LCU ; 1.579 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a S-methyl-piperazine substituted Fasudil-derivative (Ligand 01) 5M0B ; 1.506 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a short-chained N-(2-aminoethyl)isoquinoline-5-sulfonamide) Fasudil-derivative (Ligand 03) 5M71 ; 1.488 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with an (R)-methyl substitued Fasudil-derivative. 5LCP ; 1.433 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with Fasudil (M77) 5LCQ ; 1.423 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with long-chain Fasudil-derivative (Ligand 05) 5LCR ; 1.565 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with open-chain Fasudil-derivative (Ligand 04) 5M0C ; 1.734 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with the Fasudil-fragment isoquinoline-5-sulfonamide 5M0L ; 1.465 ; Cocrystal structure of cAMP-dependent Protein Kinase (PKA) in complex with the methylated Fasudil-derived fragment N-methylisoquinoline-5-sulfonamide (Ligand 02) 1BKM ; 2.0 ; COCRYSTAL STRUCTURE OF D-AMINO ACID SUBSTITUTED PHOSPHOPEPTIDE COMPLEX 4PV7 ; 3.24 ; Cocrystal structure of dipeptidyl-peptidase 4 with an indole scaffold inhibitor 1EJ4 ; 2.25 ; COCRYSTAL STRUCTURE OF EIF4E/4E-BP1 PEPTIDE 5ML9 ; 2.35 ; Cocrystal structure of Fc gamma receptor IIIa interacting with Affimer F4, a specific binding protein which blocks IgG binding to the receptor. 5MN2 ; 2.35 ; Cocrystal structure of Fc gamma receptor IIIa interacting with Affimer G3, a specific binding protein which blocks IgG binding to the receptor. 4H1D ; 2.8975 ; Cocrystal structure of GlpG and DFP 6X5Q ; 2.14 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluA1 7UJP ; 2.56 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B 7UJQ ; 2.25 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B 7UJR ; 1.95 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B 7UJS ; 2.75 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B in complex with ADP 7KL0 ; 2.4 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B(S1303D) 7KL1 ; 2.4 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B(S1303D) 7KL2 ; 2.56 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B(S1303D) 7UIS ; 2.58 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B(S1303D) 7UJT ; 2.1 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and GluN2B(S1303D) in complex with ATP 6X5G ; 1.85 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and LRRC7 inhibitory domain 7UIQ ; 3.11 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and Tiam1 7UIR ; 3.1 ; Cocrystal structure of human CaMKII-alpha (CAMK2A)kinase domain and Tiam1 in complex with ATP 3RU0 ; 1.849 ; Cocrystal structure of human SMYD3 with inhibitor Sinefungin bound 4J36 ; 2.13 ; Cocrystal Structure of kynurenine 3-monooxygenase in complex with UPF 648 inhibitor(KMO-394UPF) 3GZ8 ; 2.43 ; Cocrystal structure of NUDIX domain of Shewanella oneidensis NrtR complexed with ADP ribose 7Q9R ; 2.5 ; Cocrystal structure of PDE6D bound to NRAS peptide 3R9V ; 1.9 ; Cocrystal Structure of Proteolytically Truncated Form of IpaD from Shigella flexneri Bound to Deoxycholate 1DP7 ; 1.5 ; COCRYSTAL STRUCTURE OF RFX-DBD IN COMPLEX WITH ITS COGNATE X-BOX BINDING SITE 1F2I ; 2.35 ; COCRYSTAL STRUCTURE OF SELECTED ZINC FINGER DIMER BOUND TO DNA 1RP3 ; 2.3 ; Cocrystal structure of the flagellar sigma/anti-sigma complex, Sigma-28/FlgM 5SYM ; 1.55 ; Cocrystal structure of the human acyl protein thioesterase 1 with an isoform-selective inhibitor, ML348 5SYN ; 1.64 ; Cocrystal structure of the human acyl protein thioesterase 2 with an isoform-selective inhibitor, ML349 5U9O ; 3.37 ; Cocrystal structure of the intermembrane space region of the plastid division proteins PARC6 and PDV1 1EJ1 ; 2.2 ; COCRYSTAL STRUCTURE OF THE MESSENGER RNA 5' CAP-BINDING PROTEIN (EIF4E) BOUND TO 7-METHYL-GDP 1L8B ; 1.8 ; Cocrystal Structure of the Messenger RNA 5' Cap-binding Protein (eIF4E) bound to 7-methylGpppG 6UFM ; 2.82 ; Cocrystal Structure of the Nocardia farcinica ileS T-box riboswitch in complex with its cognate tRNA 3QQU ; 2.9 ; Cocrystal structure of unphosphorylated igf with pyrimidine 8 1SKJ ; 2.0 ; COCRYSTAL STRUCTURE OF UREA-SUBSTITUTED PHOSPHOPEPTIDE COMPLEX 7F3B ; 2.81 ; cocrystallization of Escherichia coli dihydrofolate reductase (DHFR) and its pyrrolo[3,2-f]quinazoline inhibitor. 7MBF ; 2.4 ; codeinone reductase isoform 1.3 Apo form 7ZKJ ; 2.04 ; CODH/ACS complex of C. hydrogenoformans 7QXQ ; 2.251 ; Coelenteramide-bound Renilla-type luciferase (AncFT) 8A56 ; 2.05 ; Coenzyme A-persulfide reductase (CoAPR) from Enterococcus faecalis 1QV9 ; 1.54 ; Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: A methanogenic enzyme with an unusual quarternary structure 4XOM ; 1.9 ; Coenzyme F420:L-glutamate ligase (FbiB) from Mycobacterium tuberculosis (C-terminal domain). 2GD1 ; 2.5 ; COENZYME-INDUCED CONFORMATIONAL CHANGES IN GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM BACILLUS STEAROTHERMOPHILLUS 2QOJ ; 2.4 ; Coevolution of a homing endonuclease and its host target sequence 4UQW ; 1.5 ; Coevolution of the ATPase ClpV, the TssB-TssC Sheath and the Accessory HsiE Protein Distinguishes Two Type VI Secretion Classes 4UQX ; 1.2 ; Coevolution of the ATPase ClpV, the TssB-TssC Sheath and the Accessory HsiE Protein Distinguishes Two Type VI Secretion Classes 4UQY ; 1.6 ; Coevolution of the ATPase ClpV, the TssB-TssC Sheath and the Accessory HsiE Protein Distinguishes Two Type VI Secretion Classes 4UQZ ; 1.599 ; Coevolution of the ATPase ClpV, the TssB-TssC Sheath and the Accessory HsiE Protein Distinguishes Two Type VI Secretion Classes 8DA3 ; 1.06 ; Coevolved affibody-Z domain pair LL1.c1 8DA4 ; 1.92 ; Coevolved affibody-Z domain pair LL1.c2 8DA5 ; 1.0 ; Coevolved affibody-Z domain pair LL1.c4 8DA6 ; 1.5 ; Coevolved affibody-Z domain pair LL1.c5 8DA7 ; 1.02 ; Coevolved affibody-Z domain pair LL1.c6 8DA8 ; 1.29 ; Coevolved affibody-Z domain pair LL2.c1 8DAB ; 1.134 ; Coevolved affibody-Z domain pair LL2.c17 8DAC ; 1.19 ; Coevolved affibody-Z domain pair LL2.c22 8DA9 ; 1.35 ; Coevolved affibody-Z domain pair LL2.c3 8DAA ; 1.75 ; Coevolved affibody-Z domain pair LL2.c7 4OUA ; 2.763 ; Coexistent single-crystal structure of latent and active mushroom tyrosinase (abPPO4) mediated by a hexatungstotellurate(VI) 2G5G ; 1.9 ; Cofacial heme binding to ChaN of Campylobacter jejuni 1AL3 ; 1.8 ; COFACTOR BINDING FRAGMENT OF CYSB FROM KLEBSIELLA AEROGENES 1KLI ; 1.69 ; Cofactor-and substrate-assisted activation of factor VIIa 2FL5 ; 3.0 ; Cofactor-containing antibodies: Crystal structure of the original yellow antibody 8R3T ; 3.1 ; Cofactor-free Tau 4R2N isoform 3IDD ; 2.8 ; Cofactor-Independent Phosphoglycerate Mutase from Thermoplasma acidophilum DSM 1728 3KD8 ; 2.6 ; Cofactor-Independent Phosphoglycerate mutase from Thermoplasma Acidophilum DSM 1728 6JI7 ; ; Coffeetides: iron-binding cysteine rich peptides from coffee waste 5YU8 ; 3.8 ; Cofilin decorated actin filament 1HQZ ; 2.1 ; Cofilin homology domain of a yeast actin-binding protein ABP1P 2W1N ; 1.8 ; cohesin and fibronectin type-III double module construct from the Clostridium perfringens glycoside hydrolase GH84C 6YUF ; 3.94 ; Cohesin complex with loader gripping DNA 2VO8 ; 1.7 ; Cohesin module from Clostridium perfringens ATCC13124 family 33 glycoside hydrolase. 1G1K ; 2.0 ; COHESIN MODULE FROM THE CELLULOSOME OF CLOSTRIDIUM CELLULOLYTICUM 4UX3 ; 3.3 ; cohesin Smc3-HD:Scc1-N complex from yeast 5F0N ; 3.2 ; Cohesin subunit Pds5 5F0O ; 3.5 ; Cohesin subunit Pds5 in complex with Scc1 4UVJ ; 2.1 ; Cohesin subunit Scc3 from yeast, 674-1072 4UVK ; 2.6 ; Cohesin subunit Scc3 from Z. rouxii, 88-1035 1ANU ; 2.15 ; COHESIN-2 DOMAIN OF THE CELLULOSOME FROM CLOSTRIDIUM THERMOCELLUM 4IU2 ; 2.001 ; Cohesin-dockerin -X domain complex from Ruminococcus flavefacience 4IU3 ; 1.97 ; Cohesin-dockerin -X domain complex from Ruminococcus flavefacience 1OHZ ; 2.2 ; Cohesin-Dockerin complex from the cellulosome of Clostridium thermocellum 6LK9 ; 2.099 ; Coho salmon ferritin 8I33 ; 1.62 ; Coil 1a of lamin A (residue 25-65) 5M48 ; 2.593 ; Coiled coil domain of Rtt103p 4C1A ; 1.55 ; Coiled coil domain of the ZfL2-1 ORF1 protein from the zebrafish ZfL2- 1 retrotransposon 5U5A ; 3.23 ; Coiled Coil Peptide Metal Coordination Framework: Dimer Fold 5U59 ; 2.2 ; Coiled Coil Peptide Metal Coordination Framework: Dimer Fold Grown with Citrate 5U5C ; 2.1 ; Coiled Coil Peptide Metal Coordination Framework: Tetramer Fold 5U5B ; 2.4 ; Coiled Coil Peptide Metal Coordination Framework: Trimer Fold 1IJ0 ; 1.86 ; Coiled Coil Trimer GCN4-pVLS Ser at Buried D Position 1D7M ; 2.7 ; COILED-COIL DIMERIZATION DOMAIN FROM CORTEXILLIN I 1WT6 ; 1.6 ; Coiled-Coil domain of DMPK 6J9R ; 2.5 ; Coiled-coil Domain of Drosophila TRIM Protein Brat 8OYK ; 1.9 ; Coiled-Coil Domain of Human STIL, L736E Mutant 8OYL ; 1.92 ; Coiled-Coil Domain of Human STIL, Q729L Mutant 8AMR ; 3.8 ; Coiled-coil domain of human TRIM3 4LTB ; 2.59 ; Coiled-coil domain of TRIM25 3IV1 ; 2.5 ; Coiled-coil domain of tumor susceptibility gene 101 6H9M ; 2.1 ; Coiled-coil domain-containing protein 90B residues 43-125 from Homo sapiens fused to a GCN4 adaptor 3QFL ; 1.997 ; Coiled-Coil Domain-Dependent Homodimerization of Intracellular MLA Immune Receptors Defines a Minimal Functional Module for Triggering Cell Death 3TE3 ; 2.694 ; Coiled-coil oligomerization domain of the polycystin transient receptor potential channel PKD2L1 5LXN ; 2.08 ; Coiled-coil protein 5LXO ; 2.179 ; Coiled-coil protein 8P4Y ; 2.052 ; Coiled-coil protein origami triangle 2V71 ; 2.24 ; Coiled-coil region of NudEL 6TZW ; 2.35 ; Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility 7D2G ; 1.7 ; Coiled-coil structure of liprin-alpha2_H2delC 1UIX ; 1.8 ; Coiled-coil structure of the RhoA-binding domain in Rho-kinase 6V5I ; 1.9 ; Coiled-coil Trimer with Ala:Leu:Ala Triad 6V5G ; 1.68 ; Coiled-coil Trimer with Ala:Leu:Lys Triad 6OVU ; 2.101 ; Coiled-coil Trimer with Glu:3,4-difluorophenylalanine:Lys Triad 6OVV ; 2.201 ; Coiled-coil Trimer with Glu:4-pyridinylalanine:Lys Triad 6U47 ; 2.301 ; Coiled-coil Trimer with Glu:Ala:Lys Triad 6Q22 ; 1.599 ; Coiled-coil Trimer with Glu:Aminobutyric acid:Lys Triad 6V5J ; 1.7 ; Coiled-coil Trimer with Glu:Leu:Ala Triad 6Q25 ; 1.893 ; Coiled-coil Trimer with Glu:Leu:Lys Triad 6V58 ; 2.201 ; Coiled-coil Trimer with Glu:Norleucine:Lys Triad 6V57 ; 1.696 ; Coiled-coil Trimer with Glu:Norvaline:Lys Triad 6OS8 ; 2.15 ; Coiled-coil Trimer with Glu:p-fluorophenylalanine:Lys Triad 6OV9 ; 2.1 ; Coiled-coil Trimer with Glu:p-nitrophenylalanine:Lys Triad 6OSD ; 2.15 ; Coiled-coil Trimer with Glu:Phe:Lys Triad 6V50 ; 2.285 ; Coiled-coil Trimer with Glu:Ser:Lys Triad with K7A mutation 5UXT ; 2.197 ; Coiled-coil Trimer with Glu:Trp:Lys Triad 6OVS ; 1.8 ; Coiled-coil Trimer with Glu:Tyr:Lys Triad 6V4Y ; 1.85 ; Coiled-coil Trimer with Glu:Tyr:Lys Triad with a K7A mutation 6Q1W ; 1.498 ; Coiled-coil Trimer with Glu:Val:Lys Triad 1P9I ; 1.17 ; Coiled-coil X-ray structure at 1.17 A resolution 8CLB ; 3.0 ; Colchicine bound to tubulin (T2R-TTL) complex 6ZXS ; 3.0 ; Cold grown Pea Photosystem I 1A59 ; 2.09 ; COLD-ACTIVE CITRATE SYNTHASE 6ETZ ; 1.8 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB 6H1P ; 3.009 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB - data collected at room temperature 6SED ; 2.233 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB in complex with galactose 6SEB ; 2.272 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB in complex with IPTG 6ZJV ; 2.25 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant D207A 6ZJW ; 2.119 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant D207A in complex with galactose 6ZJX ; 2.206 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant D207A in complex with saccharose 6SE8 ; 1.835 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q 6ZJS ; 1.5 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q in complex with galactose 6SEA ; 1.869 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q in complex with lactose bound in deep mode 6SE9 ; 1.965 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q in complex with lactose bound in shallow mode 6ZJT ; 1.97 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q in complex with lactulose 6ZJU ; 1.75 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E441Q in complex with saccharose 6ZJP ; 1.85 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E517Q 6ZJQ ; 1.7 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E517Q in complex with galactose 6ZJR ; 2.0 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cB mutant E517Q in complex with lactulose 6SEC ; 2.768 ; Cold-adapted beta-D-galactosidase from Arthrobacter sp. 32cBon complex with ONPG 4UUR ; 2.21 ; Cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 2TBS ; 1.8 ; COLD-ADAPTION OF ENZYMES: STRUCTURAL COMPARISON BETWEEN SALMON AND BOVINE TRYPSINS 4WMJ ; 1.5 ; Colias eurytheme Phosphoglucose isomerase. Homodimer from 4-5(18) genotype. 5ZNM ; 1.85 ; Colicin D Central Domain and C-terminal tRNase domain 6WXH ; 3.09 ; Colicin E1 fragment in nanodisc-embedded TolC 6WXI ; 2.84 ; Colicin E1 fragment in nanodisc-embedded TolC 1AYI ; 2.0 ; COLICIN E7 IMMUNITY PROTEIN IM7 1GXH ; ; Colicin E8 DNAse immunity protein: Im8 1IMP ; ; COLICIN E9 IMMUNITY PROTEIN IM9, NMR, 21 STRUCTURES 1IMQ ; ; COLICIN E9 IMMUNITY PROTEIN IM9, NMR, MINIMIZED AVERAGE STRUCTURE 1CII ; 3.0 ; COLICIN IA 1A87 ; 3.1 ; COLICIN N 7NSU ; 4.7 ; ColicinE9 intact translocation complex 7NST ; 3.7 ; ColicinE9 partial translocation complex 2X3H ; 1.6 ; COLIPHAGE K5A LYASE 1BKV ; 2.0 ; COLLAGEN 2F6A ; 3.29 ; Collagen Adhesin and Collagen Complex Structure 7LXQ ; 1.3 ; Collagen Mimetic Peptide with a Yaa-position Aza-proline 7LXP ; 1.4 ; Collagen Mimetic Peptide with an Xaa-position Aza-proline 2CUO ; 1.33 ; Collagen model peptide (PRO-PRO-GLY)9 6M80 ; 1.1 ; Collagen peptide containing aza-proline and aza-glycine 1AMX ; 2.0 ; COLLAGEN-BINDING DOMAIN FROM A STAPHYLOCOCCUS AUREUS ADHESIN 7WSS ; 2.19 ; Collagenase from Grimontia (Vibrio) hollisae 1706B 7XEB ; 2.39 ; Collagenase from Grimontia (Vibrio) hollisae 1706B complexed with Gly-Pro-Hyp 8JT1 ; 2.0 ; COLLAGENASE FROM GRIMONTIA (VIBRIO) HOLLISAE 1706B COMPLEXED WITH GLY-PRO-HYP-GLY-PRO-HYP 1PEX ; 2.7 ; COLLAGENASE-3 (MMP-13) C-TERMINAL HEMOPEXIN-LIKE DOMAIN 2D1N ; 2.37 ; Collagenase-3 (MMP-13) complexed to a hydroxamic acid inhibitor 830C ; 1.6 ; COLLAGENASE-3 (MMP-13) COMPLEXED TO A SULPHONE-BASED HYDROXAMIC ACID 8FWC ; 2.96 ; Collar sheath structure of Agrobacterium phage Milano 7ZUX ; 2.5 ; Collided ribosome in a disome unit from S. cerevisiae 6ANI ; 2.4 ; Coltuximab Fab in complex with anti-Kappa VHH domain 1HXH ; 1.22 ; COMAMONAS TESTOSTERONI 3BETA/17BETA HYDROXYSTEROID DEHYDROGENASE 5NX1 ; 1.853 ; Combinatorial Engineering of Proteolytically Resistant APPI Variants that Selectively Inhibit Human Kallikrein 6 for Cancer Therapy 5NX3 ; 2.296 ; Combinatorial Engineering of Proteolytically Resistant APPI Variants that Selectively Inhibit Human Kallikrein 6 for Cancer Therapy 2BH8 ; 1.9 ; Combinatorial Protein 1b11 5RXN ; 1.2 ; COMBINED CRYSTALLOGRAPHIC REFINEMENT AND ENERGY MINIMIZATION OF RUBREDOXIN AT 1.2 ANGSTROM RESOLUTION 2KMS ; ; Combined high- and low-resolution techniques reveal compact structure in central portion of factor H despite long inter-modular linkers 8TID ; 3.6 ; Combined linker domain of N-DRC and associated proteins Tetrahymena 1F6H ; 3.31 ; COMBINED RIETVELD AND STEREOCHEMICAL RESTRAINT REFINEMENT OF A PROTEIN 6F3K ; 4.1 ; Combined solid-state NMR, solution-state NMR and EM data for structure determination of the tetrahedral aminopeptidase TET2 from P. horikoshii 3SCZ ; 1.95 ; Combining crystallographic, thermodynamic, and molecular dynamics studies of Mycobacterium tuberculosis purine nucleoside phosphorylase 2WGR ; 1.7 ; Combining crystallography and molecular dynamics: The case of Schistosoma mansoni phospholipid glutathione peroxidase 1K1T ; 1.2 ; Combining Mutations in HIV-1 Protease to Understand Mechanisms of Resistance 1K1U ; 1.55 ; Combining Mutations in HIV-1 Protease to Understand Mechanisms of Resistance 1K2B ; 1.7 ; Combining Mutations in HIV-1 Protease to Understand Mechanisms of Resistance 1K2C ; 2.2 ; Combining Mutations in HIV-1 Protease to Understand Mechanisms of Resistance 5HQ1 ; 1.0 ; Comment on S. W. M. Tanley and J. R. Helliwell Structural dynamics of cisplatin binding to histidine in a protein Struct. Dyn. 1, 034701 (2014) regarding the refinement of 4mwk, 4mwm, 4mwn and 4oxe and the method we have adopted. 5IDD ; 1.13 ; Comment on S. W. M. Tanley and J. R. Helliwell Structural dynamics of cisplatin binding to histidine in a protein Struct. Dyn. 1, 034701 (2014) regarding the refinement of 4mwk, 4mwm, 4mwn and 4oxe and the method we have adopted. 1UZ4 ; 1.71 ; Common inhibition of beta-glucosidase and beta-mannosidase by isofagomine lactam reflects different conformational intineraries for glucoside and mannoside hydrolysis 6HD0 ; 3.728 ; Common mode of remodeling AAA ATPases p97/CDC48 by their disassembly cofactors ASPL/PUX1 6HD3 ; 2.8 ; Common mode of remodeling AAA ATPases p97/CDC48 by their disassembly cofactors ASPL/PUX1 7UNQ ; 3.4 ; Compact IF2-GDP bound to the Pseudomonas aeruginosa 70S ribosome initiation complex, from focused classification and refinement (I-A) 7UNT ; 3.6 ; Compact IF2-GDP bound to the Pseudomonas aeruginosa 70S ribosome initiation complex, from focused classification and refinement (I-B) 1HIH ; 2.2 ; COMPARATIVE ANALYSIS OF THE X-RAY STRUCTURES OF HIV-1 AND HIV-2 PROTEASES IN COMPLEX WITH CGP 53820, A NOVEL PSEUDOSYMMETRIC INHIBITOR 1HII ; 2.3 ; COMPARATIVE ANALYSIS OF THE X-RAY STRUCTURES OF HIV-1 AND HIV-2 PROTEASES IN COMPLEX WITH CGP 53820, A NOVEL PSEUDOSYMMETRIC INHIBITOR 6OJN ; 8.6 ; Comparative Model of SGIV Major Coat Protein (MCP) Trimer Based on Cryo-EM Map 1SJI ; 2.4 ; Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization 1SGU ; 1.9 ; Comparing the Accumulation of Active Site and Non-active Site Mutations in the HIV-1 Protease 1SH9 ; 2.5 ; Comparing the Accumulation of Active Site and Non-active Site Mutations in the HIV-1 Protease 1NI6 ; 2.1 ; Comparisions of the Heme-Free and-Bound Crystal Structures of Human Heme Oxygenase-1 2PAS ; ; COMPARISON BETWEEN THE CRYSTAL AND THE SOLUTION STRUCTURES OF THE EF HAND PARVALBUMIN 3PAT ; ; COMPARISON BETWEEN THE CRYSTAL AND THE SOLUTION STRUCTURES OF THE EF HAND PARVALBUMIN 1PVA ; 1.65 ; COMPARISON BETWEEN THE CRYSTAL AND THE SOLUTION STRUCTURES OF THE EF HAND PARVALBUMIN (ALPHA COMPONENT FROM PIKE MUSCLE) 3LLN ; 3.0 ; Comparison between the orthorhombic an tetragonal form of the heptamer sequence d(GCG(xT)GCG)/d(CGCACGC). 1XIA ; 2.3 ; COMPARISON OF BACKBONE STRUCTURES OF GLUCOSE ISOMERASE FROM STREPTOMYCES AND ARTHROBACTER 1P1X ; 0.99 ; Comparison of class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase determined at 0.99 Angstrom resolution 1WTL ; 1.9 ; COMPARISON OF CRYSTAL STRUCTURES OF TWO HOMOLOGOUS PROTEINS: STRUCTURAL ORIGIN OF ALTERED DOMAIN INTERACTIONS IN IMMUNOGLOBULIN LIGHT CHAIN DIMERS 1OA2 ; 1.5 ; Comparison of Family 12 Glycoside Hydrolases and Recruited Substitutions Important for Thermal Stability 1OA3 ; 1.7 ; Comparison of Family 12 Glycoside Hydrolases and Recruited Substitutions Important for Thermal Stability 1OA4 ; 1.5 ; Comparison of Family 12 Glycoside Hydrolases and Recruited Substitutions Important for Thermal Stability 3LYT ; 1.9 ; COMPARISON OF RADIATION-INDUCED DECAY AND STRUCTURE REFINEMENT FROM X-RAY DATA COLLECTED FROM LYSOZYME CRYSTALS AT LOW AND AMBIENT TEMPERATURES 4LYT ; 1.9 ; COMPARISON OF RADIATION-INDUCED DECAY AND STRUCTURE REFINEMENT FROM X-RAY DATA COLLECTED FROM LYSOZYME CRYSTALS AT LOW AND AMBIENT TEMPERATURES 5LYT ; 1.9 ; COMPARISON OF RADIATION-INDUCED DECAY AND STRUCTURE REFINEMENT FROM X-RAY DATA COLLECTED FROM LYSOZYME CRYSTALS AT LOW AND AMBIENT TEMPERATURES 6LYT ; 1.9 ; COMPARISON OF RADIATION-INDUCED DECAY AND STRUCTURE REFINEMENT FROM X-RAY DATA COLLECTED FROM LYSOZYME CRYSTALS AT LOW AND AMBIENT TEMPERATURES 8QVI ; 2.2 ; Comparison of room-temperature and cryogenic structures of soluble Epoxide Hydrolase with ligands bound. 1DAJ ; 2.3 ; COMPARISON OF TERNARY COMPLEXES OF PNEUMOCYSTIS CARINII AND WILD TYPE HUMAN DIHYDROFOLATE REDUCTASE WITH COENZYME NADPH AND A NOVEL CLASSICAL ANTITUMOR FURO[2,3D]PYRIMIDINE ANTIFOLATE 1HFP ; 2.1 ; COMPARISON OF TERNARY CRYSTAL COMPLEXES OF HUMAN DIHYDROFOLATE REDUCTASE WITH NADPH AND A CLASSICAL ANTITUMOR FUROPYRIMDINE 1HFQ ; 2.1 ; COMPARISON OF TERNARY CRYSTAL COMPLEXES OF HUMAN DIHYDROFOLATE REDUCTASE WITH NADPH AND A CLASSICAL ANTITUMOR FUROPYRIMDINE 1HFR ; 2.1 ; COMPARISON OF TERNARY CRYSTAL COMPLEXES OF HUMAN DIHYDROFOLATE REDUCTASE WITH NADPH AND A CLASSICAL ANTITUMOR FUROPYRIMDINE 2GPB ; 2.3 ; COMPARISON OF THE BINDING OF GLUCOSE AND GLUCOSE-1-PHOSPHATE DERIVATIVES TO T-STATE GLYCOGEN PHOSPHORYLASE B 3GPB ; 2.3 ; COMPARISON OF THE BINDING OF GLUCOSE AND GLUCOSE-1-PHOSPHATE DERIVATIVES TO T-STATE GLYCOGEN PHOSPHORYLASE B 4GPB ; 2.3 ; COMPARISON OF THE BINDING OF GLUCOSE AND GLUCOSE-1-PHOSPHATE DERIVATIVES TO T-STATE GLYCOGEN PHOSPHORYLASE B 5GPB ; 2.3 ; COMPARISON OF THE BINDING OF GLUCOSE AND GLUCOSE-1-PHOSPHATE DERIVATIVES TO T-STATE GLYCOGEN PHOSPHORYLASE B 3MU1 ; 1.74 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region A of the crystal. Fifth step of radiation damage 3MTY ; 1.101 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region A of the crystal. First step of radiation damage 3ODF ; 1.1 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region A of the crystal. Second step of radiation damage 3MU0 ; 1.401 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region A of the crystal. Third step of radiation damage 3MU8 ; 1.553 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region B of the crystal. Fifth step of radiation damage 3MU4 ; 1.101 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region B of the crystal. First step of radiation damage 3ODD ; 1.1 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region B of the crystal. Second step of radiation damage 3MU5 ; 1.404 ; Comparison of the character and the speed of X-ray-induced structural changes of porcine pancreatic elastase at two temperatures, 100 and 15K. The data set was collected from region B of the crystal. Third step of radiation damage 4LZM ; 1.7 ; COMPARISON OF THE CRYSTAL STRUCTURE OF BACTERIOPHAGE T4 LYSOZYME AT LOW, MEDIUM, AND HIGH IONIC STRENGTHS 5LZM ; 1.8 ; COMPARISON OF THE CRYSTAL STRUCTURE OF BACTERIOPHAGE T4 LYSOZYME AT LOW, MEDIUM, AND HIGH IONIC STRENGTHS 6LZM ; 1.8 ; COMPARISON OF THE CRYSTAL STRUCTURE OF BACTERIOPHAGE T4 LYSOZYME AT LOW, MEDIUM, AND HIGH IONIC STRENGTHS 7LZM ; 1.8 ; COMPARISON OF THE CRYSTAL STRUCTURE OF BACTERIOPHAGE T4 LYSOZYME AT LOW, MEDIUM, AND HIGH IONIC STRENGTHS 2FX2 ; 1.9 ; COMPARISON OF THE CRYSTAL STRUCTURES OF A FLAVODOXIN IN ITS THREE OXIDATION STATES AT CRYOGENIC TEMPERATURES 3FX2 ; 1.9 ; COMPARISON OF THE CRYSTAL STRUCTURES OF A FLAVODOXIN IN ITS THREE OXIDATION STATES AT CRYOGENIC TEMPERATURES 4FX2 ; 1.9 ; COMPARISON OF THE CRYSTAL STRUCTURES OF A FLAVODOXIN IN ITS THREE OXIDATION STATES AT CRYOGENIC TEMPERATURES 5FX2 ; 1.9 ; COMPARISON OF THE CRYSTAL STRUCTURES OF A FLAVODOXIN IN ITS THREE OXIDATION STATES AT CRYOGENIC TEMPERATURES 1MSD ; 3.2 ; COMPARISON OF THE CRYSTAL STRUCTURES OF GENETICALLY ENGINEERED HUMAN MANGANESE SUPEROXIDE DISMUTASE AND MANGANESE SUPEROXIDE DISMUTASE FROM THERMUS THERMOPHILUS. DIFFERENCES IN DIMER-DIMER INTERACTIONS. 4MT2 ; 2.0 ; COMPARISON OF THE NMR SOLUTION STRUCTURE AND THE X-RAY CRYSTAL STRUCTURE OF RAT METALLOTHIONEIN-2 4MGW ; 1.93 ; Comparison of the structural and dynamic effects of 5-methylcytosine and 5-chlorocytosine in a CpG dinucleotide sequence 4MKW ; 1.219 ; Comparison of the structural and dynamic effects of 5-methylcytosine and 5-chlorocytosine in a CpG dinucleotide sequence 5A7F ; 1.86 ; Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1 5A7G ; 1.48 ; Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1 5A7H ; 2.01 ; Comparison of the structure and activity of glycosylated and aglycosylated Human Carboxylesterase 1 1R8H ; 1.9 ; Comparison of the structure and DNA binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus 1TPE ; 2.1 ; COMPARISON OF THE STRUCTURES AND THE CRYSTAL CONTACTS OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE IN FOUR DIFFERENT CRYSTAL FORMS 1TPF ; 1.8 ; COMPARISON OF THE STRUCTURES AND THE CRYSTAL CONTACTS OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE IN FOUR DIFFERENT CRYSTAL FORMS 1LRP ; 3.2 ; COMPARISON OF THE STRUCTURES OF CRO AND LAMBDA REPRESSOR PROTEINS FROM BACTERIOPHAGE LAMBDA 2HPE ; 2.0 ; COMPARISON OF THE STRUCTURES OF HIV-2 PROTEASE COMPLEXES IN THREE CRYSTAL SPACE GROUPS WITH AN HIV-1 PROTEASE COMPLEX STRUCTURE 2HPF ; 3.0 ; COMPARISON OF THE STRUCTURES OF HIV-2 PROTEASE COMPLEXES IN THREE CRYSTAL SPACE GROUPS WITH AN HIV-1 PROTEASE COMPLEX STRUCTURE 7CPA ; 2.0 ; COMPARISON OF THE STRUCTURES OF THREE CARBOXYPEPTIDASE A-PHOSPHONATE COMPLEXES DETERMINED BY X-RAY CRYSTALLOGRAPHY 8CPA ; 2.0 ; COMPARISON OF THE STRUCTURES OF THREE CARBOXYPEPTIDASE A-PHOSPHONATE COMPLEXES DETERMINED BY X-RAY CRYSTALLOGRAPHY 1GAD ; 1.8 ; COMPARISON OF THE STRUCTURES OF WILD TYPE AND A N313T MUTANT OF ESCHERICHIA COLI GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASES: IMPLICATION FOR NAD BINDING AND COOPERATIVITY 1GAE ; 2.17 ; COMPARISON OF THE STRUCTURES OF WILD TYPE AND A N313T MUTANT OF ESCHERICHIA COLI GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASES: IMPLICATION FOR NAD BINDING AND COOPERATIVITY 1B2W ; 2.9 ; COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF A HUMANIZED AND A CHIMERIC FAB OF AN ANTI-GAMMA-INTERFERON ANTIBODY 1B4J ; 2.9 ; COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF A HUMANIZED AND A CHIMERIC FAB OF AN ANTI-GAMMA-INTERFERON ANTIBODY 5RSA ; 2.0 ; COMPARISON OF TWO INDEPENDENTLY REFINED MODELS OF RIBONUCLEASE-A 5RSA ; 2.0 ; COMPARISON OF TWO INDEPENDENTLY REFINED MODELS OF RIBONUCLEASE-A 5IYE ; 1.694 ; Comparison of X-ray crystal structures of a tetradecamer sequence d(CCCGGGTACCCGGG)2 at 1.7 resolution 5IYG ; 1.701 ; Comparison of X-ray crystal structures of a tetradecamer sequence d(CCCGGGTACCCGGG)2 at 1.7 resolution 5IYJ ; 1.701 ; Comparison of X-ray crystal structures of a tetradecamer sequence d(CCCGGGTACCCGGG)2 at 1.7 resolution 1CZH ; 1.86 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 1CZK ; 1.9 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 1CZL ; 1.8 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 1CZO ; 1.85 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 1CZR ; 1.9 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 1D04 ; 1.85 ; COMPARISONS OF WILD TYPE AND MUTANT FLAVODOXINS FROM ANACYSTIS NIDULANS. STRUCTURAL DETERMINANTS OF THE REDOX POTENTIALS. 3V2N ; 1.8 ; COMPcc in complex with fatty acids 3V2P ; 1.873 ; COMPcc in complex with fatty acids 3V2Q ; 2.2 ; COMPcc in complex with fatty acids 3V2R ; 2.75 ; COMPcc in complex with fatty acids 1SS7 ; ; Compensating bends in a 16 base-pair DNA oligomer containing a T3A3 segment 1SSV ; ; Compensating bends in a 16 base-pair DNA oligomer containing a T3A3 segment 5CPF ; 3.409 ; Compensation of the effect of isoleucine to alanine mutation by designed inhibition in the InhA enzyme 1CNB ; 2.35 ; COMPENSATORY PLASTIC EFFECTS IN THE REDESIGN OF PROTEIN-ZINC BINDING SITES 1CNC ; 2.2 ; COMPENSATORY PLASTIC EFFECTS IN THE REDESIGN OF PROTEIN-ZINC BINDING SITES 4CT8 ; 2.16 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4CT9 ; 2.14 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4CTA ; 2.21 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4UOC ; 2.46 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4UUW ; 1.98 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4UUX ; 1.99 ; Competence or damage-inducible protein CinA from Thermus thermophilus 4OYR ; 2.2995 ; Competition of the small inhibitor PT91 with large fatty acyl substrate of the Mycobacterium tuberculosis enoyl-ACP reductase InhA by induced substrate-binding loop refolding 2N27 ; ; Competitive inhibition of TRPV1 calmodulin interaction by vanilloids 3TDA ; 2.67 ; Competitive replacement of thioridazine by prinomastat in crystals of cytochrome P450 2D6 2WII ; 2.7 ; Complement C3b in complex with factor H domains 1-4 8COE ; 4.2 ; complement C5 in complex with the LCP0195 nanobody 7Q6C ; 2.29274 ; complement C6 FIM1-2 bound to CP010 antibody 2I6Q ; 2.1 ; Complement component C2a 2I6S ; 2.7 ; Complement component C2a 2ODP ; 1.9 ; Complement component C2a, the catalytic fragment of C3- and C5-convertase of human complement 2ODQ ; 2.3 ; Complement component C2a, the catalytic fragment of C3- and C5-convertase of human complement 6EHG ; 2.65 ; complement component C3b in complex with a nanobody 6DLW ; 3.9 ; Complement component polyC9 6CXO ; 2.2 ; Complement component-9 3RJ3 ; 2.35 ; Complement components factor H CCP19-20 (S1191L mutant) and C3D in complex 3OXU ; 2.1 ; Complement components factor H CCP19-20 and C3d in complex 6T8W ; 1.7 ; Complement factor B in complex with (-)-4-(1-((5,7-Dimethyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoic acid 6T8V ; 2.29 ; Complement factor B in complex with (S)-5,7-Dimethyl-4-((2-phenylpiperidin-1-yl)methyl)-1H-indole 6T8U ; 2.84 ; Complement factor B in complex with 5-Bromo-3-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-7-methyl-1H-indol-4-amine 6QSX ; 1.77 ; Complement factor B protease domain in complex with the reversible inhibitor ((2S,4S)-1-((5,7-dimethyl-1H-indol-4-yl)methyl)-4-methoxypiperidin-2-yl)methanol. 6RAV ; 1.7 ; Complement factor B protease domain in complex with the reversible inhibitor 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoic acid 6QSW ; 1.64 ; Complement factor B protease domain in complex with the reversible inhibitor N-(2-bromo-4-methylnaphthalen-1-yl)-4,5-dihydro-1H-imidazol-2-amine. 5NB7 ; 1.33 ; Complement factor D 6FTY ; 1.67 ; COMPLEMENT FACTOR D COMPLEXED WITH COMPOUND 5 6FTZ ; 1.67 ; COMPLEMENT FACTOR D COMPLEXED WITH COMPOUND 6 5MT4 ; 1.65 ; COMPLEMENT FACTOR D IN COMPLEX WITH A REVERSIBLE BENZOIC ACID BASED INHIBITOR 5MT0 ; 1.29 ; COMPLEMENT FACTOR D IN COMPLEX WITH A REVERSIBLE INDOLE CARBOXYLIC ACID BASED INHIBITOR 5FBI ; 1.47 ; COMPLEMENT FACTOR D IN COMPLEX WITH COMPOUND 3b 5FCK ; 1.86 ; COMPLEMENT FACTOR D IN COMPLEX WITH COMPOUND 5 5FBE ; 1.43 ; COMPLEMENT FACTOR D IN COMPLEX WITH COMPOUND2 5NAW ; 1.25 ; Complement factor D in complex with the inhibitor (1R,3S,5R)-2-Aza-bicyclo[3.1.0]hexane-2,3-dicarboxylic acid 2-[(1-carbamoyl-1H-indol-3-yl)-amide] 3-[(3-trifluoromethoxy-phenyl)-amide] 5NBA ; 1.87 ; Complement factor D in complex with the inhibitor (2S,4R)-4-Fluoro-pyrrolidine-1,2-dicarboxylic acid 1-[(1-carbamoyl-1H-indol-3-yl)-amide] 2-[(3-trifluoromethoxy-phenyl)-amide] 5NB6 ; 1.75 ; Complement factor D in complex with the inhibitor (2S,4S)-4-Amino-pyrrolidine-1,2-dicarboxylic acid 1-[(1-carbamoyl-1H-indol-3-yl)-amide] 2-[(3-trifluoromethoxy-phenyl)-amide] 6FUH ; 1.37 ; Complement factor D in complex with the inhibitor (4-((3-(aminomethyl)phenyl)amino)quinazolin-2-yl)-L-valine 6QMR ; 2.0 ; Complement factor D in complex with the inhibitor (S)-2-(2-((3'-(1-amino-2-hydroxyethyl)-[1,1'-biphenyl]-3-yl)methoxy)phenyl)acetic acid 6FUT ; 1.5 ; Complement factor D in complex with the inhibitor (S)-3'-(aminomethyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-[1,1'-biphenyl]-3-carboxamide 5NAR ; 1.55 ; Complement factor D in complex with the inhibitor (S)-pyrrolidine-1,2-dicarboxylic acid 1-[(1-carbamoyl-1H-indol-3-yl)-amide] 2-[(3-trifluoromethoxy-phenyl)-amide] 5NAT ; 1.17 ; Complement factor D in complex with the inhibitor (S)-Pyrrolidine-1,2-dicarboxylic acid 1-[(1-methyl-1H-indol-3-yl)-amide] 2-[(3-trifluoromethoxy-phenyl)-amide] 6QMT ; 1.8 ; Complement factor D in complex with the inhibitor 2-(2-(3'-(aminomethyl)-[1,1'-biphenyl]-3-carboxamido)phenyl)acetic acid 6FUG ; 2.21 ; Complement factor D in complex with the inhibitor 3-((3-((3-(aminomethyl)phenyl)amino)-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)phenol 6FUI ; 1.38 ; Complement factor D in complex with the inhibitor 3-((3-((3-(aminomethyl)phenyl)amino)-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)phenol 6FUJ ; 2.25 ; Complement factor D in complex with the inhibitor N-(3'-(aminomethyl)-[1,1'-biphenyl]-3-yl)-3-methylbutanamide 5TCA ; 3.15 ; Complement Factor D inhibited with JH3 5TCC ; 3.37 ; Complement Factor D inhibited with JH4 4ZH1 ; 2.24 ; Complement factor H in complex with the GM1 glycan 7B2D ; 1.96 ; Complement inhibitor CirpA1 from Rhipicephalus pulchellus 7B28 ; 2.1 ; Complement inhibitor CirpA3 from Rhipicephalus pulchellus 7B29 ; 1.83 ; Complement inhibitor CirpA4 from Rhipicephalus appendiculatus 7B2A ; 1.91 ; Complement inhibitor CirpA5 from Rhipicephalus appendiculatus 8TYP ; 1.8 ; Complement Protease C1s Inhibited by 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide 2ATY ; ; Complement receptor chimaeric conjugate CR2-Ig 2GSX ; ; Complement Receptor Type 2 4BOD ; 3.15 ; Complement regulator acquiring outer surface protein BbCRASP-4 or ErpC from Borrelia burgdorferi 4BXM ; 2.15 ; Complement regulator acquiring outer surface protein BbCRASP-4 or ErpC from Borrelia burgdorferi 1NT9 ; 4.2 ; Complete 12-subunit RNA polymerase II 1WCM ; 3.8 ; Complete 12-Subunit RNA Polymerase II at 3.8 Angstrom 8G9F ; 3.2 ; Complete auto-inhibitory complex of Xenopus laevis DNA polymerase alpha-primase 7BOH ; 2.82 ; Complete Bacterial 30S ribosomal subunit assembly complex state E (+RbfA)(Consensus Refinement) 7NAR ; 3.0 ; Complete Bacterial 30S ribosomal subunit assembly complex state F (+RsgA)(Consensus Refinement) 7NAX ; 2.96 ; Complete Bacterial 30S ribosomal subunit assembly complex state I (Consensus Refinement) 4C01 ; 2.3 ; Complete crystal structure of carboxylesterase Cest-2923 (lp_2923) from Lactobacillus plantarum WCFS1 4BZZ ; 3.0 ; Complete crystal structure of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1 4BZW ; 2.148 ; Complete crystal structure of the carboxylesterase Cest-2923 (lp_2923) from Lactobacillus plantarum WCFS1 6SL0 ; 3.7 ; Complete CtTel1 dimer with C2 symmetry 4R24 ; 2.25 ; Complete dissection of B. subtilis nitrogen homeostatic circuitry 8G9O ; 4.4 ; Complete DNA elongation subcomplex of Xenopus laevis DNA polymerase alpha-primase 8UCV ; 3.81 ; Complete DNA termination subcomplex 1 of Xenopus laevis DNA polymerase alpha-primase 8UCW ; 3.64 ; Complete DNA termination subcomplex 2 of Xenopus laevis DNA polymerase alpha-primase 2HYN ; ; Complete ensemble of NMR structures of unphosphorylated human phospholamban pentamer 2WNG ; 2.49 ; complete extracellular structure of human signal regulatory protein (SIRP) alpha 4OAV ; 2.1 ; Complete human RNase L in complex with 2-5A (5'-ppp heptamer), AMPPCP and RNA substrate. 4OAU ; 2.6 ; Complete human RNase L in complex with biological activators. 2WGM ; 2.35 ; Complete ion-coordination structure in the rotor ring of Na-dependent F-ATP synthase 2KTX ; ; COMPLETE KALIOTOXIN FROM ANDROCTONUS MAURETANICUS MAURETANICUS, NMR, 18 STRUCTURES 6PH2 ; 2.34 ; Complete LOV domain from the LOV-HK sensory protein from Brucella abortus (mutant C69S, construct 15-155) 7ANQ ; 2.2 ; Complete PCSK9 C-ter domain in complex with VHH P1.40 2JQ4 ; ; Complete resonance assignments and solution structure calculation of ATC2521 (NESG ID: AtT6) from Agrobacterium tumefaciens 1Y1W ; 4.0 ; Complete RNA Polymerase II elongation complex 3HOU ; 3.2 ; Complete RNA polymerase II elongation complex I with a T-U mismatch 3HOV ; 3.5 ; Complete RNA polymerase II elongation complex II 3HOW ; 3.6 ; Complete RNA polymerase II elongation complex III with a T-U mismatch and a frayed RNA 3'-uridine 3HOZ ; 3.65 ; Complete RNA polymerase II elongation complex IV with a T-U mismatch and a frayed RNA 3'-guanine 3HOX ; 3.65 ; Complete RNA polymerase II elongation complex V 3HOY ; 3.4 ; Complete RNA polymerase II elongation complex VI 1Y77 ; 4.5 ; Complete RNA Polymerase II elongation complex with substrate analogue GMPCPP 2B63 ; 3.8 ; Complete RNA Polymerase II-RNA inhibitor complex 5XA7 ; 3.2 ; Complete structure factors and an atomic model of the calcium pump (SERCA1A) and associated phospholipids in the E1-2CA2+ crystals 5XA8 ; 3.2 ; Complete structure factors and an atomic model of the calcium pump (SERCA1A) and associated phospholipids in the E1-ALF4-ADP-2CA2+ crystals 5XAB ; 3.2 ; Complete structure factors and an atomic model of the calcium pump (SERCA1A) and associated phospholipids in the E2(TG) crystals 5XA9 ; 3.2 ; Complete structure factors and an atomic model of the calcium pump (SERCA1A) and associated phospholipids in the E2-ALF-(TG) crystals of C2 symmetry 5XAA ; 3.2 ; Complete structure factors and an atomic model of the calcium pump (SERCA1A) and associated phospholipids in the E2-ALF-(TG) crystals of P21212 symmetry 5FX8 ; 2.6 ; Complete structure of manganese lipoxygenase of Gaeumannomyces graminis and partial structure of zonadhesin of Komagataella pastoris 3QE5 ; 2.5 ; Complete structure of Streptococcus mutans Antigen I/II carboxy-terminus 2YCL ; 1.95 ; complete structure of the corrinoid,iron-sulfur protein including the N-terminal domain with a 4Fe-4S cluster 5KWA ; 2.9 ; complete structure of the Mycobacterium tuberculosis proteasomal ATPase Mpa 7TMM ; 3.5 ; Complete V1 Complex from Saccharomyces cerevisiae 4YSC ; 2.03 ; Completely oxidized structure of copper nitrite reductase from Alcaligenes faecalis 4YSA ; 1.43 ; Completely oxidized structure of copper nitrite reductase from Geobacillus thermodenitrificans 1JRH ; 2.8 ; COMPLEX (ANTIBODY/ANTIGEN) 1XJ7 ; 2.7 ; Complex Androgen Receptor LBD and RAC3 peptide 6KYU ; 1.5 ; Complex assembly, crystallization and preliminary X-ray crystallographic studies of duck MHC class I molecule 3QDQ ; 2.6 ; Complex between 4-hydroxybutyrate CoA-transferase from Clostridium aminobutyricum and CoA 1CXL ; 1.81 ; COMPLEX BETWEEN A COVALENT INTERMEDIATE AND BACILLUS CIRCULANS STRAIN 251 CGTASE E257Q 6CCU ; 1.75 ; Complex between a GID4 fragment and a short peptide 6ZT5 ; 2.2 ; Complex between a homodimer of Mycobacterium smegmatis MfpA and a single copy of the N-terminal 47 kDa fragment of the Mycobacterium smegmatis DNA Gyrase B subunit 1CXK ; 2.09 ; COMPLEX BETWEEN A MALTONONAOSE SUBSTRATE AND BACILLUS CIRCULANS STRAIN 251 CGTASE E257Q/D229N 6SU7 ; 2.75 ; Complex between a UDP-glucosyltransferase from Polygonum tinctorium capable of glucosylating indoxyl and 3,4-Dichloroaniline 5NLM ; 2.14 ; Complex between a UDP-glucosyltransferase from Polygonum tinctorium capable of glucosylating indoxyl and indoxyl sulfate 6SU6 ; 2.4 ; Complex between a UDP-glucosyltransferase from Polygonum tinctorium capable of glucosylating indoxyl and UDP-glucose 2CH4 ; 3.5 ; Complex between Bacterial Chemotaxis histidine kinase CheA domains P4 and P5 and receptor-adaptor protein CheW 1OSG ; 3.0 ; Complex between BAFF and a BR3 derived peptide presented in a beta-hairpin scaffold 2L5E ; ; Complex between BD1 of Brd3 and GATA-1 C-tail 1ES7 ; 2.9 ; COMPLEX BETWEEN BMP-2 AND TWO BMP RECEPTOR IA ECTODOMAINS 2WNV ; 1.25 ; Complex between C1q globular heads and deoxyribose 2WNU ; 2.3 ; Complex between c1q globular heads and heparan sulfate 6AL5 ; 3.0 ; COMPLEX BETWEEN CD19 (N138Q MUTANT) AND B43 FAB 1AM4 ; 2.7 ; COMPLEX BETWEEN CDC42HS.GMPPNP AND P50 RHOGAP (H. SAPIENS) 8PE9 ; 3.152 ; Complex between DDR1 DS-like domain and PRTH-101 Fab 1VOM ; 1.9 ; COMPLEX BETWEEN DICTYOSTELIUM MYOSIN AND MGADP AND VANADATE AT 1.9A RESOLUTION 1TEZ ; 1.8 ; COMPLEX BETWEEN DNA AND THE DNA PHOTOLYASE FROM ANACYSTIS NIDULANS 5H5J ; 2.5 ; Complex between ferredoxin and ferredoxin-NADP+ reductase from maize root 1F3R ; ; COMPLEX BETWEEN FV ANTIBODY FRAGMENT AND AN ANALOGUE OF THE MAIN IMMUNOGENIC REGION OF THE ACETYLCHOLINE RECEPTOR 1OQO ; 2.3 ; Complex between G0 version of an Fc bound to a minimized version of Protein A called Mini-Z 2ET3 ; 2.8 ; Complex Between Gentamicin C1A and the 16S-RRNA A-Site 5TL5 ; 1.8 ; COMPLEX BETWEEN HUMAN CD27 AND ANTIBODY M2177 5TLK ; 2.7 ; COMPLEX BETWEEN HUMAN CD27 AND FAB FRAGMENTS OF ANTIBODIES M2177 AND H2191 5TLJ ; 3.5 ; COMPLEX BETWEEN HUMAN CD27 AND FAB FRAGMENTS OF ANTIBODIES M2177 AND M2191 3UIP ; 2.293 ; Complex between human RanGAP1-SUMO1, UBC9 and the IR1 domain from RanBP2 containing IR2 Motif II 3UIN ; 2.597 ; Complex between human RanGAP1-SUMO2, UBC9 and the IR1 domain from RanBP2 3UIO ; 2.602 ; Complex between human RanGAP1-SUMO2, UBC9 and the IR1 domain from RanBP2 containing IR2 Motif II 5D2M ; 2.4 ; Complex between human SUMO2-RANGAP1, UBC9 and ZNF451 1BD2 ; 2.5 ; COMPLEX BETWEEN HUMAN T-CELL RECEPTOR B7, VIRAL PEPTIDE (TAX) AND MHC CLASS I MOLECULE HLA-A 0201 1AO7 ; 2.6 ; COMPLEX BETWEEN HUMAN T-CELL RECEPTOR, VIRAL PEPTIDE (TAX), AND HLA-A 0201 5M2J ; 1.9 ; Complex between human TNF alpha and Llama VHH2 5M2M ; 2.3 ; Complex between human TNF alpha and Llama VHH3 5VJQ ; 1.9 ; Complex between HyHEL10 Fab fragment heavy chain mutant (I29F, S52T, Y53F) and Pekin duck egg lysozyme isoform I (DEL-I) 5VJO ; 2.43 ; Complex between HyHEL10 Fab fragment heavy chain mutant I29F and Pekin duck egg lysozyme isoform I (DEL-I) 2ESI ; 3.0 ; Complex between Kanamycin A and the 16S-Rrna A Site. 5E7F ; 2.7 ; Complex between lactococcal phage Tuc2009 RBP head domain and a nanobody (L06) 1ESV ; 2.0 ; COMPLEX BETWEEN LATRUNCULIN A:RABBIT MUSCLE ALPHA ACTIN:HUMAN GELSOLIN DOMAIN 1 2ESJ ; 2.2 ; Complex between Lividomycin A and the 16S-Rrna A Site 7UD5 ; 4.25 ; Complex between MLL1-WRAD and an H2B-ubiquitinated nucleosome 7PNL ; 1.83 ; Complex between monomolecular human telomeric G-quadruplex and a sulfonamide derivative of the natural alkaloid Berberine 6F20 ; 2.0 ; Complex between MTH1 and compound 1 (a 7-azaindole-4-ester derivative) 6F23 ; 1.84 ; Complex between MTH1 and compound 16 (a 4-amino-7-azaindole derivative) 6F22 ; 1.55 ; Complex between MTH1 and compound 29 (a 4-amino-2,7-diazaindole derivative) 6F1X ; 1.9 ; Complex between MTH1 and compound 7 (a 7-azaindole-2-amide derivative) 1DMY ; 2.45 ; COMPLEX BETWEEN MURINE MITOCHONDRIAL CARBONIC ANYHDRASE V AND THE TRANSITION STATE ANALOGUE ACETAZOLAMIDE 8QF5 ; 1.5 ; Complex between N-lobe of Arc and nanobody E5 8QF4 ; 1.02 ; Complex between N-lobe of Arc and nanobody H11 1NMC ; 2.5 ; COMPLEX BETWEEN NC10 ANTI-INFLUENZA VIRUS NEURAMINIDASE SINGLE CHAIN ANTIBODY WITH A 15 RESIDUE LINKER AND INFLUENZA VIRUS NEURAMINIDASE 1A14 ; 2.5 ; COMPLEX BETWEEN NC10 ANTI-INFLUENZA VIRUS NEURAMINIDASE SINGLE CHAIN ANTIBODY WITH A 5 RESIDUE LINKER AND INFLUENZA VIRUS NEURAMINIDASE 2ET8 ; 2.5 ; Complex Between Neamine and the 16S-RRNA A-Site 2ET4 ; 2.4 ; Complex Between Neomycin B and the 16S-RRNA A-Site 1QO3 ; 2.3 ; Complex between NK cell receptor Ly49A and its MHC class I ligand H-2Dd 1AOI ; 2.8 ; COMPLEX BETWEEN NUCLEOSOME CORE PARTICLE (H3,H4,H2A,H2B) AND 146 BP LONG DNA FRAGMENT 1J7T ; 2.5 ; Complex between Paromomycin and the 16S-rRNA A-site at 2.5 A resolution 2BEE ; 2.6 ; Complex Between Paromomycin derivative JS4 and the 16S-Rrna A Site 2BE0 ; 2.63 ; Complex Between Paromomycin Derivative JS5-39 and the 16S-Rrna A-Site. 5LP5 ; 2.74 ; Complex between Penicillin-Binding Protein (PBP2) and MreC from Helicobacter pylori 3C5W ; 2.8 ; Complex between PP2A-specific methylesterase PME-1 and PP2A core enzyme 1S70 ; 2.7 ; Complex between protein ser/thr phosphatase-1 (delta) and the myosin phosphatase targeting subunit 1 (MYPT1) 1EQY ; 2.3 ; COMPLEX BETWEEN RABBIT MUSCLE ALPHA-ACTIN: HUMAN GELSOLIN DOMAIN 1 1P8Z ; 2.6 ; Complex Between Rabbit Muscle alpha-Actin: Human Gelsolin Residues Val26-Glu156 8DU4 ; 3.55 ; Complex between RbBP5-WDR5 and an H2B-ubiquitinated nucleosome 2ET5 ; 2.2 ; Complex Between Ribostamycin and the 16S-RRNA A-Site 7SKL ; 1.6 ; Complex between S. aureus aureolysin and IMPI mutant I57I 7SKM ; 1.85 ; Complex between S. aureus aureolysin and wt IMPI. 6ZVQ ; 2.03 ; Complex between SMAD2 MH2 domain and peptide from Ski corepressor 6O1F ; 2.15 ; Complex between soybean trypsin inhibitor beta1-tryptase and a humanized fab 1RSU ; 1.7 ; COMPLEX BETWEEN STREPTAVIDIN AND THE STREP-TAG II PEPTIDE 1RST ; 1.7 ; COMPLEX BETWEEN STREPTAVIDIN AND THE STREP-TAG PEPTIDE 1OAI ; 1.0 ; Complex between Tap UBA domain and FxFG nucleoporin peptide 3BX1 ; 1.85 ; Complex between the Barley alpha-Amylase/Subtilisin Inhibitor and the subtilisin Savinase 7PA5 ; 3.184 ; Complex between the beta-lactamase CMY-2 with an inhibitory nanobody 7AG0 ; 3.104 ; Complex between the bone morphogenetic protein 2 and its antagonist Noggin 2F9Z ; 2.4 ; Complex between the chemotaxis deamidase CheD and the chemotaxis phosphatase CheC from Thermotoga maritima 1ELU ; 1.55 ; COMPLEX BETWEEN THE CYSTINE C-S LYASE C-DES AND ITS REACTION PRODUCT CYSTEINE PERSULFIDE. 6GZL ; 1.953 ; Complex between the dynein light chain DYNLL1/DLC8 and a peptide from the large myelin-associated glycoprotein L-MAG 6GZJ ; 1.977 ; Complex between the dynein light chain DYNLL1/DLC8 and the specific domain of large myelin-associated glycoprotein L-MAG 1EBP ; 2.8 ; COMPLEX BETWEEN THE EXTRACELLULAR DOMAIN OF ERYTHROPOIETIN (EPO) RECEPTOR [EBP] AND AN AGONIST PEPTIDE [EMP1] 1EBA ; 2.7 ; COMPLEX BETWEEN THE EXTRACELLULAR DOMAIN OF ERYTHROPOIETIN (EPO) RECEPTOR [EBP] AND AN INACTIVE PEPTIDE [EMP33] CONTAINS 3,5-DIBROMOTYROSINE IN POSITION 4 (DENOTED DBY) 7MSQ ; 2.29 ; Complex between the Fab arm of AB-3467 and the SARS-CoV-2 receptor binding domain (RBD) 6F5Z ; 1.35 ; Complex between the Haloferax volcanii Trm112 methyltransferase activator and the Hvo_0019 putative methyltransferase 3TVL ; 2.3 ; Complex between the human thiamine triphosphatase and triphosphate 3DKO ; 2.0 ; Complex between the kinase domain of human ephrin type-a receptor 7 (epha7) and inhibitor alw-ii-49-7 1PJJ ; 1.9 ; Complex between the Lactococcus lactis Fpg and an abasic site containing DNA. 5MVW ; 1.82 ; Complex between the Leucine Zipper (LZ) and Centrosomin-motif 2 (CM2) domains of Drosophila melanogaster Centrosomin (Cnn) 5MW0 ; 2.0 ; Complex between the Leucine Zipper (LZ) and Centrosomin-motif 2 (CM2) domains of Drosophila melanogaster Centrosomin (Cnn) - L535E mutant form 5MW9 ; 2.2 ; Complex between the Leucine Zipper (LZ) and Centrosomin-motif 2 (CM2) domains of Drosophila melanogaster Centrosomin (Cnn) - L535E mutant form 5MWE ; 2.02 ; Complex between the Leucine Zipper (LZ, residues 490-567) and Centrosomin-motif 2 (CM2) domains of Drosophila melanogaster Centrosomin (Cnn) 2IWG ; 2.35 ; COMPLEX BETWEEN THE PRYSPRY DOMAIN OF TRIM21 AND IGG FC 4EMJ ; 2.4 ; Complex between the reductase and ferredoxin components of toluene dioxygenase 4PUF ; 3.296 ; Complex between the Salmonella T3SS effector SlrP and its human target thioredoxin-1 2V9T ; 1.7 ; Complex between the second LRR domain of Slit2 and The first Ig domain from Robo1 3S9M ; 3.32 ; Complex between transferrin receptor 1 and transferrin with iron in the N-Lobe, cryocooled 1 3S9L ; 3.22 ; Complex between transferrin receptor 1 and transferrin with iron in the N-Lobe, cryocooled 2 3S9N ; 3.25 ; Complex between transferrin receptor 1 and transferrin with iron in the N-Lobe, room temperature 4AFI ; 2.8 ; Complex between Vamp7 longin domain and fragment of delta-adaptin from AP3 1VPP ; 1.9 ; COMPLEX BETWEEN VEGF AND A RECEPTOR BLOCKING PEPTIDE 1OXB ; 2.3 ; Complex between YPD1 and SLN1 response regulator domain in space group P2(1)2(1)2(1) 1OXK ; 2.1 ; Complex between YPD1 and SLN1 response regulator domain in space group P3(2) 4R41 ; 1.61 ; Complex Crystal structure of 4-nitro-2-phosphono-benzoic acid with sp-Aspartate-Semialdehyde Dehydrogenase and Nicotinamide-dinucleotide 3M94 ; 2.05 ; Complex crystal structure of Ascaris suum eIF4E-3 with m2,2,7G cap 3M93 ; 2.9 ; Complex crystal structure of Ascaris suum eIF4E-3 with m7G cap 4FAS ; 2.1 ; Complex crystal structure of hydroxylamine oxidoreductase and NE1300 from Nitrosomonas europaea 8PTC ; 1.51 ; COMPLEX CRYSTAL STRUCTURE OF MUTANT HUMAN MONOGLYCERIDE LIPASE WITH COMPOUND 5d 8PTQ ; 1.55 ; COMPLEX CRYSTAL STRUCTURE OF MUTANT HUMAN MONOGLYCERIDE LIPASE WITH COMPOUND 5l 8PTR ; 1.73 ; COMPLEX CRYSTAL STRUCTURE OF MUTANT HUMAN MONOGLYCERIDE LIPASE WITH COMPOUND 5r 4R54 ; 1.81 ; Complex crystal structure of sp-Aspartate-Semialdehyde-Dehydrogenase with 3-carboxy-ethyl-phthalic acid 1TXC ; 2.3 ; Complex crystal structure of SPE16 with ANS 7ZEW ; ; Complex Cyp33-RRM : AAUAAA RNA 7ZEY ; ; Complex Cyp33-RRM : MLL1-PHD3 7ZEX ; ; Complex Cyp33-RRMdelta alpha : UAAUGUCG RNA 8IIE ; 1.67 ; Complex form of MsmUdgX and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX 8IIG ; 2.3 ; Complex form of MsmUdgX H109A mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by UdgX H109A 8III ; 1.72 ; Complex form of MsmUdgX H109C mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX H109C 8IIL ; 2.3 ; Complex form of MsmUdgX H109G mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX H109G 8IIN ; 1.61 ; Complex form of MsmUdgX H109K mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX H109K 8IIP ; 1.63 ; Complex form of MsmUdgX H109Q mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX H109Q 8IIT ; 1.61 ; Complex form of MsmUdgX H109S/R184A double mutant and uracil- obtained from uracil DNA (ttUtt) post its cleavage by MsmUdgX H109S/R184A 6AJP ; 1.334 ; Complex form of Uracil DNA glycosylase X and deoxyuridine monophosphate. 6AJR ; 1.341 ; Complex form of Uracil DNA glycosylase X and uracil 6AJO ; 2.269 ; Complex form of Uracil DNA glycosylase X and uracil-DNA. 1FSK ; 2.9 ; COMPLEX FORMATION BETWEEN A FAB FRAGMENT OF A MONOCLONAL IGG ANTIBODY AND THE MAJOR ALLERGEN FROM BIRCH POLLEN BET V 1 1BJR ; 2.44 ; COMPLEX FORMED BETWEEN PROTEOLYTICALLY GENERATED LACTOFERRIN FRAGMENT AND PROTEINASE K 7TNP ; 3.96 ; Complex GGGG of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 7TNO ; 4.02 ; Complex GGGN of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 7TNN ; 3.91 ; Complex GGNN of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 7TNL ; 3.59 ; Complex GNGN1 of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 7TNM ; 4.74 ; Complex GNGN2 of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 7TNK ; 4.5 ; Complex GNNN of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 1XCT ; 3.05 ; Complex HCV core-Fab 19D9D6-Protein L mutant (D55A, L57H, Y64W) in space group P21212 1XCQ ; 3.5 ; Complex HCV core-Fab 19D9D6-Protein L mutant (D55A,L57H,Y64W) in space group P21 1XF5 ; 2.6 ; Complex HCV core-Fab 19D9D6-Protein L mutant (H74C, Y64W)in space group P21212 2L0Y ; ; Complex hMia40-hCox17 6ZKC ; 3.1 ; Complex I during turnover, closed 6ZKD ; 2.7 ; Complex I during turnover, open1 6ZKE ; 2.6 ; Complex I during turnover, open2 6ZKF ; 2.8 ; Complex I during turnover, open3 7P62 ; 3.6 ; Complex I from E. coli, DDM-purified, Apo, Resting state 7P61 ; 3.2 ; Complex I from E. coli, DDM-purified, with NADH, Resting state 7P7C ; 2.4 ; Complex I from E. coli, DDM/LMNG-purified, Apo, Open state 7P7E ; 2.7 ; Complex I from E. coli, DDM/LMNG-purified, Apo, Resting state 7P7M ; 3.2 ; Complex I from E. coli, DDM/LMNG-purified, inhibited by Piericidin A, Open state 7P63 ; 3.4 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 6, Closed state 7P64 ; 2.5 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 6, Open state 7P69 ; 3.0 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 6, Resting state 7Z80 ; 2.93 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 8, Closed state 7Z83 ; 2.88 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 8, Open state 7Z84 ; 2.87 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 8, Open-ready state 7ZC5 ; 3.0 ; Complex I from E. coli, DDM/LMNG-purified, under Turnover at pH 8, Resting state 7P7J ; 2.7 ; Complex I from E. coli, DDM/LMNG-purified, with DQ, Open state 7P7K ; 3.1 ; Complex I from E. coli, DDM/LMNG-purified, with DQ, Resting state 7P7L ; 3.0 ; Complex I from E. coli, DDM/LMNG-purified, with NADH and FMN, Open state 7Z7R ; 3.36 ; Complex I from E. coli, LMNG-purified, Apo, Open-ready state 7Z7S ; 2.4 ; Complex I from E. coli, LMNG-purified, under Turnover at pH 6, Closed state 7Z7T ; 3.1 ; Complex I from E. coli, LMNG-purified, under Turnover at pH 6, Open state 7Z7V ; 2.29 ; Complex I from E. coli, LMNG-purified, under Turnover at pH 6, Open-ready state 7ZCI ; 2.69 ; Complex I from E. coli, LMNG-purified, under Turnover at pH 6, Resting state 7ZDM ; 3.44 ; Complex I from Ovis aries at pH5.5, Closed state 7ZDJ ; 3.25 ; Complex I from Ovis aries at pH5.5, Open state 7ZDH ; 3.46 ; Complex I from Ovis aries at pH7.4, Closed state 7ZEB ; 3.8 ; Complex I from Ovis aries at pH9, Closed state 7ZDP ; 3.88 ; Complex I from Ovis aries at pH9, Open state 7ZD6 ; 3.16 ; Complex I from Ovis aries, at pH7.4, Open state 6ZKK ; 3.7 ; Complex I inhibited by rotenone, closed 6ZKL ; 3.1 ; Complex I inhibited by rotenone, open1 6ZKM ; 2.8 ; Complex I inhibited by rotenone, open2 6ZKN ; 2.9 ; Complex I inhibited by rotenone, open3 6ZKG ; 3.4 ; Complex I with NADH, closed 6ZKH ; 3.0 ; Complex I with NADH, open1 6ZKI ; 2.8 ; Complex I with NADH, open2 6ZKJ ; 3.0 ; Complex I with NADH, open3 2ACZ ; 3.1 ; Complex II (Succinate Dehydrogenase) From E. Coli with Atpenin A5 inhibitor co-crystallized at the ubiquinone binding site 1NEN ; 2.9 ; Complex II (Succinate Dehydrogenase) From E. Coli with Dinitrophenol-17 inhibitor co-crystallized at the ubiquinone binding site 1NEK ; 2.6 ; Complex II (Succinate Dehydrogenase) From E. Coli with ubiquinone bound 6Q9E ; 3.9 ; Complex III2 focused refinement from Ovine respiratory supercomplex I+III2 7RJA ; 3.0 ; Complex III2 from Candida albicans, inhibitor free 7RJB ; 3.2 ; Complex III2 from Candida albicans, inhibitor free, Rieske head domain in b position 7RJD ; 3.2 ; Complex III2 from Candida albicans, inhibitor free, Rieske head domain in c position 7RJC ; 3.3 ; Complex III2 from Candida albicans, inhibitor free, Rieske head domain in intermediate position 7RJE ; 3.3 ; Complex III2 from Candida albicans, Inz-5 bound 8ABH ; 3.0 ; Complex III2 from Yarrowia lipolytica, antimycin A bound, b-position 8ABJ ; 3.7 ; Complex III2 from Yarrowia lipolytica, antimycin A bound, c-position 8ABM ; 2.8 ; Complex III2 from Yarrowia lipolytica, apo, b-position 8AC4 ; 2.7 ; Complex III2 from Yarrowia lipolytica, apo, c-position 8AC3 ; 2.8 ; Complex III2 from Yarrowia lipolytica, apo, int-position 8AB9 ; 3.3 ; Complex III2 from Yarrowia lipolytica, ascorbate-reduced, b-position 8ABB ; 3.2 ; Complex III2 from Yarrowia lipolytica, ascorbate-reduced, c-position 8ABA ; 3.2 ; Complex III2 from Yarrowia lipolytica, ascorbate-reduced, int-position 8AB7 ; 3.3 ; Complex III2 from Yarrowia lipolytica, atovaquone and antimycin A bound 8AB6 ; 2.0 ; Complex III2 from Yarrowia lipolytica, combined datasets, consensus refinement 8ABK ; 2.5 ; Complex III2 from Yarrowia lipolytica, decylubiquinol bound, b-position 8ABE ; 2.3 ; Complex III2 from Yarrowia lipolytica, oxidised with ferricyanide, b-position 8ABG ; 2.3 ; Complex III2 from Yarrowia lipolytica, oxidised with ferricyanide, c-position 8ABF ; 2.3 ; Complex III2 from Yarrowia lipolytica, oxidised with ferricyanide, int-position 8ABL ; 2.1 ; Complex III2 from Yarrowia lipolytica, with decylubiquinol and antimycin A, consensus refinement 8AC5 ; 3.1 ; Complex III2 from Yarrowia lipolytica, with decylubiquinol, oxidised, b-position 8ABI ; 3.0 ; Complex III2 from Yarrowia lipolytica,antimycin A bound, int-position 8AB8 ; 2.6 ; Complex III2, b-position, with decylubiquinone and ascorbate-reduced 8B7W ; 2.85 ; Complex IL-17A/anti-IL-17A-76 3MA2 ; 2.05 ; Complex membrane type-1 matrix metalloproteinase (MT1-MMP) with tissue inhibitor of metalloproteinase-1 (TIMP-1) 7TNJ ; 4.02 ; Complex NNNN of AMPA-subtype iGluR GluA2 in complex with auxiliary subunit gamma2 (Stargazin) at low glutamate concentration (20 uM) in the presence of cyclothiazide (100 uM) 1JAQ ; 2.4 ; COMPLEX OF 1-HYDROXYLAMINE-2-ISOBUTYLMALONYL-ALA-GLY-NH2 WITH THE CATALYTIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (MET80 FORM) 3UBW ; 1.9 ; Complex of 14-3-3 isoform epsilon, a Mlf1 phosphopeptide and a small fragment hit from a FBDD screen 6BD2 ; 2.9 ; Complex of 14-3-3 theta with an IRSp53 peptide doubly-phosphorylated at T340 and S366 6BQT ; 2.8 ; Complex of 14-3-3 theta with an IRSp53 peptide doubly-phosphorylated at T340 and T360 6BD1 ; 2.35 ; Complex of 14-3-3 theta with an IRSp53 peptide phosphorylated at S366 6BCR ; 1.986 ; Complex of 14-3-3 theta with an IRSp53 peptide phosphorylated at T340 6BCY ; 2.3 ; Complex of 14-3-3 theta with an IRSp53 peptide phosphorylated at T360 5EN4 ; 1.52 ; Complex of 17-beta-hydroxysteroid dehydrogenase type 14 with inhibitor. 1I76 ; 1.2 ; COMPLEX OF 2-(BIPHENYL-4-SULFONYL)-1,2,3,4-TETRAHYDRO-ISOQUINOLINE-3-CARBOXYLIC ACID (D-TIC DERIVATIVE) WITH T CATALITIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (MET80 FORM) 2KMB ; 2.0 ; COMPLEX OF 3'-NEUAC-LEWIS-X WITH A SELECTIN-LIKE MUTANT OF MANNOSE-BINDING PROTEIN A 3KMB ; 1.95 ; COMPLEX OF 3'-SULFO-LEWIS-X WITH A SELECTIN-LIKE MUTANT OF MANNOSE-BINDING PROTEIN A 4DZU ; 2.1 ; Complex of 3-alpha bound to gp41-5 1JAO ; 2.4 ; COMPLEX OF 3-MERCAPTO-2-BENZYLPROPANOYL-ALA-GLY-NH2 WITH THE CATALYTIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (MET80 FORM) 4KMB ; 2.0 ; COMPLEX OF 4'-SULFO-LEWIS-X WITH A SELECTIN-LIKE MUTANT OF MANNOSE-BINDING PROTEIN A 4DZV ; 2.1 ; Complex of 4-alpha/beta bound to gp41-5 3NK2 ; 2.65 ; Complex of 6-hydroxy-L-nicotine oxidase with dopamine 3NH3 ; 2.1 ; Complex of 6-hydroxy-L-nicotine oxidase with final ketone product formed during catalytic turnover 3NK0 ; 2.15 ; Complex of 6-hydroxy-L-nicotine oxidase with inhibitor bound at active site and turnover product at exit cavity 3NGC ; 2.25 ; Complex of 6-hydroxy-L-nicotine oxidase with intermediate methylmyosmine product formed during catalytic turnover 3NN0 ; 2.75 ; Complex of 6-hydroxy-L-nicotine oxidase with nicotinamide 3NHO ; 2.85 ; Complex of 6-hydroxy-L-nicotine oxidase with product bound at active site 3NK1 ; 2.2 ; Complex of 6-hydroxy-L-nicotine oxidase with serotonin 2DHN ; 2.2 ; COMPLEX OF 7,8-DIHYDRONEOPTERIN ALDOLASE FROM STAPHYLOCOCCUS AUREUS WITH 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN AT 2.2 A RESOLUTION 4WZD ; 3.1 ; Complex of 70S ribosome with cognate tRNA-Tyr in the P-site 4WZO ; 3.3 ; Complex of 70S ribosome with tRNA-fMet and mRNA 4WSM ; 3.3 ; Complex of 70S ribosome with tRNA-Leu and mRNA with G-U mismatch in the first position in the A- and P-sites 4WT1 ; 3.05 ; Complex of 70S ribosome with tRNA-Phe and mRNA with A-A mismatch in the second position in the A-site 4WQR ; 3.15 ; Complex of 70S ribosome with tRNA-Phe and mRNA with C-A mismatch in the first position in the A-site. 4WRO ; 3.05 ; Complex of 70S ribosome with tRNA-Phe and mRNA with C-A mismatch in the second position in the A-site 4WSD ; 2.95 ; Complex of 70S ribosome with tRNA-Phe and mRNA with C-A mismatch in the second position in the A-site and with antibiotic paromomycin. 4WRA ; 3.05 ; Complex of 70S ribosome with tRNA-Tyr and mRNA with A-A mismatch in the first position in the A-site and with antibiotic paromomycin. 4WR6 ; 3.05 ; Complex of 70S ribosome with tRNA-Tyr and mRNA with A-A mismatch in the first position in the A-site. 4WQ1 ; 3.1 ; Complex of 70S ribosome with tRNA-Tyr and mRNA with C-A mismatch in the first position in the A-site. 4WU1 ; 3.2 ; Complex of 70S ribosome with tRNA-Tyr and mRNA with G-U mismatch in the second position in the P-site 1CXF ; 2.1 ; COMPLEX OF A (D229N/E257Q) DOUBLE MUTANT CGTASE FROM BACILLUS CIRCULANS STRAIN 251 WITH MALTOTETRAOSE AT 120 K AND PH 9.1 OBTAINED AFTER SOAKING THE CRYSTAL WITH ALPHA-CYCLODEXTRIN 4CW1 ; 2.58 ; COMPLEX OF A B14 CHICKEN MHC CLASS I MOLECULE AND A 9MER CHICKEN PEPTIDE 4D0D ; 3.13 ; COMPLEX OF A B2 CHICKEN MHC CLASS I MOLECULE AND A 8MER CHICKEN PEPTIDE 4CVX ; 3.3 ; COMPLEX OF A B2 CHICKEN MHC CLASS I MOLECULE AND A 9MER CHICKEN PEPTIDE 2YEZ ; 2.9 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 10MER CHICKEN PEPTIDE 4CVZ ; 2.39 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 10MER CHICKEN PEPTIDE 4D0B ; 2.8 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 10MER CHICKEN PEPTIDE 4D0C ; 2.81 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 10MER CHICKEN PEPTIDE 5ACZ ; 2.69 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 11MER CHICKEN PEPTIDE 5AD0 ; 2.84 ; COMPLEX OF A B21 CHICKEN MHC CLASS I MOLECULE AND A 11MER CHICKEN PEPTIDE 4CIM ; 1.5 ; Complex of a Bcl-w BH3 mutant with a BH3 domain 5OGI ; 2.8 ; Complex of a binding protein and human adenovirus C 5 hexon 4GQJ ; 2.951 ; Complex of a binuclear Ruthenium compound D,D-([mu-(11,11')-bi(dppz)-(1,10-phenanthroline)4-Ru2]4+) bound to d(CGTACG) 5OXD ; 2.6 ; Complex of a C. perfringens O-GlcNAcase with a fragment hit 2P45 ; 1.1 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 1.1A resolution: SE5B-ORTHO-1 crystal form with five se-met sites (L4M, M34, M51, F68M, M83) in vhh scaffold. 2P49 ; 1.38 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 1.4A resolution: native mono_1 crystal form 2P43 ; 1.65 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 1.65A resolution: SE3-mono-1 crystal form with three se-met sites (M34, M51, M83) in vhh scaffold 2P42 ; 1.8 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 1.8A resolution: SE3-mono-2 crystal form with three se-met sites (M34, M51, M83) in vhh scaffold 2P44 ; 1.8 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 1.8A resolution: SE5A-mono-1 crystal form with five se-met sites (M34, M51, F68M, M83, L86M) in vhh scaffold 2P48 ; 2.3 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 2.3A resolution: SE5B-tetra crystal form with five se-met sites (L4M, M34, M51, F68M, M83) in vhh scaffold. 2P46 ; 2.5 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 2.5A resolution: se5b-ortho-2 crystal form with five se-met sites (L4M, M34, M51, F68M, M83) in vhh scaffold. 2P47 ; 2.5 ; Complex of a camelid single-domain vhh antibody fragment with RNASE A at 2.5A resolution: SE5B-TRI crystal form with five se-met sites (L4M, M34, M51, F68M, M83) in vhh scaffold. 3O3Z ; 2.6 ; Complex of a chimeric alpha/beta-peptide based on the gp41 CHR domain bound to a gp41 NHR domain peptide 3O40 ; 2.1 ; Complex of a chimeric alpha/beta-peptide based on the gp41 CHR domain bound to gp41-5 1H0G ; 2.0 ; Complex of a chitinase with the natural product cyclopentapeptide argadin from Clonostachys 1H0I ; 2.0 ; Complex of a chitinase with the natural product cyclopentapeptide argifin from Gliocladium 1DIT ; 2.3 ; COMPLEX OF A DIVALENT INHIBITOR WITH THROMBIN 1BZQ ; 2.8 ; COMPLEX OF A DROMEDARY SINGLE-DOMAIN VHH ANTIBODY FRAGMENT WITH RNASE A 7QP4 ; 2.3 ; Complex of a Gemini-cholesterol analogue with Retinoid-related Orphan Receptor gamma 7WX7 ; 1.781 ; complex of a legionella acetyltransferase VipF and COA/ACO 3GXE ; 2.6 ; Complex of a Low Affinity Collagen Site with the Fibronectin 8-9FnI Domain Pair 1GZG ; 1.66 ; Complex of a Mg2-dependent porphobilinogen synthase from Pseudomonas aeruginosa (mutant D139N) with 5-fluorolevulinic acid 3HHW ; 2.7 ; Complex of a vesicular stomatitis virus empty capsid with the nucleocapsid-binding domain of the phosphoprotein 2DIJ ; 2.6 ; COMPLEX OF A Y195F MUTANT CGTASE FROM B. CIRCULANS STRAIN 251 COMPLEXED WITH A MALTONONAOSE INHIBITOR AT PH 9.8 OBTAINED AFTER SOAKING THE CRYSTAL WITH ACARBOSE AND MALTOHEXAOSE 1DJ6 ; 1.0 ; COMPLEX OF A Z-DNA HEXAMER, D(CG)3, WITH SYNTHETIC POLYAMINE AT ROOM TEMPERATURE 1H9A ; 2.16 ; COMPLEX OF ACTIVE MUTANT (Q365->C) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM L. MESENTEROIDES WITH COENZYME NADP 1E77 ; 2.69 ; COMPLEX OF ACTIVE MUTANT (Q365->C) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES WITH SUBSTRATE 1H94 ; 2.5 ; COMPLEX OF ACTIVE MUTANT (S215->C) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM L.MESENTEROIDES WITH COENZYME NAD 1DAN ; 2.0 ; Complex of active site inhibited human blood coagulation factor VIIA with human recombinant soluble tissue factor 2A2Q ; 1.8 ; Complex of Active-site Inhibited Human Coagulation Factor VIIa with Human Soluble Tissue Factor in the Presence of Ca2+, Mg2+, Na+, and Zn2+ 8GH4 ; 3.8 ; Complex of Adam 10 disentegrin cysteine rich domains with human monoclonal antibody 4PKH ; 2.15 ; Complex of ADP-actin With the N-terminal Actin-Binding Domain of Tropomodulin 4GCA ; 0.9 ; Complex of Aldose Reductase with inhibitor IDD 1219 2PEV ; 0.9 ; Complex of Aldose Reductase with NADP+ and simaltaneously bound competetive inhibitors Fidarestat and IDD594. Concentration of Fidarestat in soaking solution exceeds concentration of IDD594. 2PF8 ; 0.85 ; Complex of Aldose Reductase with NADP+ and simaltaneously bound competetive inhibitors Fidarestat and IDD594. Concentration of Fidarestat in soaking solution is equal to concentration of IDD594. 2PFH ; 0.85 ; Complex of Aldose Reductase with NADP+ and simaltaneously bound competetive inhibitors Fidarestat and IDD594. Concentration of Fidarestat in soaking solution is less than concentration of IDD594. 1AGR ; 2.8 ; COMPLEX OF ALF4-ACTIVATED GI-ALPHA-1 WITH RGS4 1JL8 ; 3.2 ; Complex of alpha-amylase II (TVA II) from Thermoactinomyces vulgaris R-47 with beta-cyclodextrin based on a co-crystallization with methyl beta-cyclodextrin 1JIB ; 3.3 ; Complex of Alpha-amylase II (TVA II) from Thermoactinomyces vulgaris R-47 with Maltotetraose Based on a Crystal Soaked with Maltohexaose. 7RX0 ; 3.89 ; Complex of AMPPNP-Kif7 and Gli2 Zinc-Finger domain bound to microtubules 2VZU ; 2.1 ; Complex of Amycolatopsis orientalis exo-chitosanase CsxA D469A with PNP-beta-D-glucosamine 2VZT ; 2.2 ; Complex of Amycolatopsis orientalis exo-chitosanase CsxA E541A with PNP-beta-D-glucosamine 3O42 ; 3.0 ; Complex of an alpha/beta-peptide based on the gp41 CHR domain bound to gp41-5 3O43 ; 2.8 ; Complex of an alpha/beta-peptide based on the gp41 CHR domain bound to gp41-5 7DR4 ; 2.49 ; Complex of anti-human IL-2 antibody and human IL-2 6ERF ; 3.01 ; Complex of APLF factor and Ku heterodimer bound to DNA 1XZ3 ; 1.75 ; Complex of apoferritin with isoflurane 6Q37 ; 2.211 ; Complex of Arginase 2 with Example 23 6Q39 ; 2.213 ; Complex of Arginase 2 with Example 49 3DOE ; 2.25 ; Complex of ARL2 and BART, Crystal Form 1 3DOF ; 3.3 ; Complex of ARL2 and BART, Crystal Form 2 1KSG ; 2.3 ; Complex of Arl2 and PDE delta, Crystal Form 1 1KSH ; 1.8 ; Complex of Arl2 and PDE delta, Crystal Form 2 (native) 1KSJ ; 2.6 ; Complex of Arl2 and PDE delta, Crystal Form 2 (SeMet) 1EAI ; 2.4 ; COMPLEX OF ASCARIS CHYMOTRPSIN/ELASTASE INHIBITOR WITH PORCINE ELASTASE 3G0I ; 2.1 ; Complex of Aspergillus niger epoxide hydrolase with valpromide (2-propylpentanamide) 4PKI ; 2.3 ; Complex of ATP-actin With the C-terminal Actin-Binding Domain of Tropomodulin 4PKG ; 1.8 ; Complex of ATP-actin With the N-terminal Actin-Binding Domain of Tropomodulin 4B0G ; 2.5 ; Complex of Aurora-A bound to an Imidazopyridine-based inhibitor 2BFY ; 1.8 ; Complex of Aurora-B with INCENP and Hesperadin. 4WKZ ; 1.79 ; Complex of autonomous ScaG cohesin CohG and X-doc domains 1YAK ; 2.5 ; Complex of Bacillus subtilis TenA with 4-amino-2-methyl-5-hydroxymethylpyrimidine 2ODG ; ; Complex of barrier-to-autointegration factor and LEM-domain of emerin 1MMB ; 2.1 ; COMPLEX OF BB94 WITH THE CATALYTIC DOMAIN OF MATRIX METALLOPROTEINASE-8 4CIN ; 2.693 ; Complex of Bcl-xL with its BH3 domain 1G5J ; ; COMPLEX OF BCL-XL WITH PEPTIDE FROM BAD 1C9T ; 3.3 ; COMPLEX OF BDELLASTASIN WITH BOVINE TRYPSIN 1C9P ; 2.8 ; COMPLEX OF BDELLASTASIN WITH PORCINE TRYPSIN 1RTF ; 2.3 ; COMPLEX OF BENZAMIDINE WITH THE CATALYTIC DOMAIN OF HUMAN TWO CHAIN TISSUE PLASMINOGEN ACTIVATOR [(TC)-T-PA] 7MXL ; 3.2 ; Complex of Bet v 1 with the Fab fragments of a three antibody cocktail 1UNN ; 1.9 ; Complex of beta-clamp processivity factor and little finger domain of PolIV 6PSE ; 2.404 ; Complex of BICD2 with a Dynein Light Intermediate Chain Peptide 4A7Z ; 2.6 ; Complex of bifunctional aldos-2-ulose dehydratase with the reaction intermediate ascopyrone M 1PBO ; 2.2 ; COMPLEX OF BOVINE ODORANT BINDING PROTEIN (OBP) WITH A SELENIUM CONTAINING ODORANT 1GT1 ; 1.71 ; Complex of Bovine Odorant Binding Protein with Aminoanthracene and pyrazine 1GT3 ; 1.8 ; Complex of Bovine Odorant Binding Protein with dihydromyrcenol 1GT4 ; 2.1 ; Complex of Bovine Odorant Binding Protein with undecanal 3AM9 ; 2.17 ; Complex of bovine xanthine dehydrogenase and trihydroxy FYX-051 6XZU ; 1.5 ; Complex of C-terminal domain of murine complement C3b with the hC3Nb3 nanobody 5ABY ; 1.95 ; Complex of C. elegans eIF4E-3 with the 4E-binding protein Mextli 5ABX ; 1.66 ; Complex of C. elegans eIF4E-3 with the 4E-binding protein Mextli and cap analog 2YGG ; 2.227 ; Complex of CaMBR and CaM 6HN1 ; 1.55 ; Complex of Caprine Serum Albumin with diclofenac 4LL8 ; 3.578 ; Complex of carboxy terminal domain of Myo4p and She3p middle fragment 1DQ9 ; 2.8 ; COMPLEX OF CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH HMG-COA 4JS0 ; 1.9 ; Complex of Cdc42 with the CRIB-PR domain of IRSp53 1CXE ; 2.1 ; COMPLEX OF CGTASE WITH MALTOTETRAOSE AT ROOM TEMPERATURE AND PH 9.1 BASED ON DIFFRACTION DATA OF A CRYSTAL SOAKED WITH ALPHA-CYCLODEXTRIN 1CXH ; 2.41 ; COMPLEX OF CGTASE WITH MALTOTETRAOSE AT ROOM TEMPERATURE AND PH 9.6 BASED ON DIFFRACTION DATA OF A CRYSTAL SOAKED WITH MALTOHEPTAOSE 6UG9 ; 2.74 ; Complex of ch28/11 Fab and SSEA-4 (hexagonal form) 6UG8 ; 1.89 ; Complex of ch28/11 Fab and SSEA-4 (monoclinic form) 6UG7 ; 1.52 ; Complex of ch28/11 Fab and SSEA-4 (tetragonal form) 4D0K ; 1.89 ; Complex of Chaetomium thermophilum PAN2 (WD40-CS1) with PAN3 (C-term) 4GNT ; 2.41 ; Complex of ChREBP and 14-3-3beta 4ANM ; 1.7 ; Complex of CK2 with a CDC7 inhibitor 3ZRJ ; 1.94 ; Complex of ClpV N-domain with VipB peptide 6PSD ; 2.66 ; Complex of CRACR2a with a Dynein Light Intermediate Chain Peptide 4K9T ; 2.5 ; Complex of CYP3A4 with a desoxyritonavir analog 4K9V ; 2.6 ; Complex of CYP3A4 with a desoxyritonavir analog 5GUW ; 3.2 ; Complex of Cytochrome cd1 Nitrite Reductase and Nitric Oxide Reductase in Denitrification of Pseudomonas aeruginosa 1EM0 ; 0.9 ; COMPLEX OF D(CCTAGG) WITH TETRA-[N-METHYL-PYRIDYL] PORPHYRIN 1IOV ; 2.2 ; COMPLEX OF D-ALA:D-ALA LIGASE WITH ADP AND A PHOSPHORYL PHOSPHONATE 8GQP ; 2.0 ; Complex of D-protein binder D-19437 and L-target L-Pep-1 4UEA ; 2.62 ; Complex of D. melanogaster eIF4E with a designed 4E-binding protein (Form I) 4UEB ; 2.52 ; Complex of D. melanogaster eIF4E with a designed 4E-binding protein (Form II) 4UEC ; 2.4 ; Complex of D. melanogaster eIF4E with eIF4G and cap analog 4UE8 ; 1.1 ; Complex of D. melanogaster eIF4E with the 4E binding protein Thor 4UE9 ; 2.15 ; Complex of D. melanogaster eIF4E with the 4E-binding protein 4E-T 5ABV ; 2.13 ; Complex of D. melanogaster eIF4E with the 4E-binding protein Mextli 5ABU ; 2.16 ; Complex of D. melanogaster eIF4E with the 4E-binding protein Mextli and cap analog 1K9I ; 2.5 ; Complex of DC-SIGN and GlcNAc2Man3 1K9J ; 1.9 ; Complex of DC-SIGNR and GlcNAc2Man3 3CIP ; 1.6 ; Complex of Dictyostelium Discoideum Actin with Gelsolin 3CHW ; 2.3 ; Complex of Dictyostelium discoideum Actin with Profilin and the Last Poly-Pro of Human VASP 1XDT ; 2.65 ; COMPLEX OF DIPHTHERIA TOXIN AND HEPARIN-BINDING EPIDERMAL GROWTH FACTOR 3NG7 ; 1.95 ; Complex of dithionite-reduced 6-hydroxy-L-nicotine oxidase with substrate bound at active site and inhibitor at exit cavity 7QO1 ; 4.4 ; complex of DNA ligase I and FEN1 on PCNA and DNA 6L84 ; 2.602 ; Complex of DNA polymerase IV and D-DNA duplex 6L97 ; 2.362 ; Complex of DNA polymerase IV and L-DNA duplex 5JUW ; 2.28 ; complex of Dot1l with SS148 6V2A ; 2.0 ; Complex of double mutant (T89V,K162T) of E. coli L-asparaginase II with L-Asn 6V2B ; 2.05 ; Complex of double mutant (T89V,K162T) of E. coli L-asparaginase II with L-Asn 6V27 ; 2.3 ; Complex of double mutant (T89V,K162T) of E. coli L-asparaginase II with L-Asp 6V28 ; 1.95 ; Complex of double mutant (T89V,K162T) of E. coli L-asparaginase II with L-Asp 6V29 ; 2.0 ; Complex of double mutant (T89V,K162T) of E. coli L-asparaginase II with L-Asp 1OOH ; 1.25 ; Complex of Drosophila odorant binding protein LUSH with butanol 1OOF ; 1.49 ; Complex of Drosophila odorant binding protein LUSH with ethanol 1OOG ; 1.45 ; Complex of Drosophila odorant binding protein LUSH with propanol 1KKF ; 2.6 ; Complex of E. coli Adenylosuccinate Synthetase with IMP, Hadacidin, Pyrophosphate, and Mg 1USQ ; 1.9 ; Complex of E. Coli DraE adhesin with Chloramphenicol 7Z6W ; 1.84 ; Complex of E. coli LolA and lipoprotein 6F3Z ; 2.0 ; Complex of E. coli LolA and periplasmic domain of LolC 7Z6X ; 2.06 ; Complex of E. coli LolA R43L mutant and lipoprotein 5TMP ; 1.98 ; COMPLEX OF E. COLI THYMIDYLATE KINASE WITH THE BISUBSTRATE INHIBITOR AZTP5A 4TMK ; 1.98 ; COMPLEX OF E. COLI THYMIDYLATE KINASE WITH THE BISUBSTRATE INHIBITOR TP5A 1CY6 ; 2.5 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 3' THYMIDINE MONOPHOSPHATE 1CY0 ; 2.45 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 3'-5'-ADENOSINE DIPHOSPHATE 1CY7 ; 2.4 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 5'-THYMIDINE MONOPHOSPHATE 1CY8 ; 2.45 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 5'-THYMIDINE MONOPHOSPHATE AND 3'-THYMIDINE MONOPHOSPHATE 1CY1 ; 2.3 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 5'PTPTPT 1CY4 ; 2.55 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH 5'pTpTpTp3' 1CY2 ; 2.3 ; COMPLEX OF E.COLI DNA TOPOISOMERASE I WITH TPTPTP3' 7XXA ; 3.09 ; Complex of Echo 18 and FcRn at pH7.4 8B8R ; 3.1 ; Complex of Echovirus 11 with its attaching receptor decay-accelerating factor (CD55) 2C8I ; 14.0 ; Complex Of Echovirus Type 12 With Domains 1, 2, 3 and 4 Of Its Receptor Decay Accelerating Factor (Cd55) By Cryo Electron Microscopy At 16 A 1UPN ; 16.0 ; COMPLEX OF ECHOVIRUS TYPE 12 WITH DOMAINS 3 AND 4 OF ITS RECEPTOR DECAY ACCELERATING FACTOR (CD55) BY CRYO ELECTRON MICROSCOPY AT 16 A 1RV5 ; 2.1 ; COMPLEX OF ECORV ENDONUCLEASE WITH D(AAAGAT)/D(ATCTT) 1H9I ; 1.9 ; COMPLEX OF EETI-II MUTANT WITH PORCINE TRYPSIN 1H9H ; 1.5 ; COMPLEX OF EETI-II WITH PORCINE TRYPSIN 3DEG ; 10.9 ; Complex of elongating Escherichia coli 70S ribosome and EF4(LepA)-GMPPNP 5H7L ; 3.1 ; Complex of Elongation factor 2-50S ribosomal protein L12 1O2F ; ; COMPLEX OF ENZYME IIAGLC AND IIBGLC PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 1GGR ; ; COMPLEX OF ENZYME IIAGLC AND THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 1VRC ; ; Complex of enzyme IIAmannose and the histidine-containing phosphocarrier protein HPr from escherichia coli nmr, restrained regularized mean structure 2FEW ; ; Complex of enzyme IIAMTL and phosphorylated enzyme IIBMTL from Escherichia coli NMR, restrained regularized mean structure 1J6T ; ; COMPLEX OF ENZYME IIAMTL AND THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 2GYD ; 1.72 ; Complex of equine apoferritin with the H-diaziflurane photolabeling reagent 5WP1 ; 1.4 ; Complex of ERK2 with 5,7-dihydroxychromone 4N0S ; 1.7992 ; Complex of ERK2 with caffeic acid 4ZXT ; 2.0 ; Complex of ERK2 with catechol 3SA0 ; 1.5947 ; Complex of ERK2 with norathyriol 1KKB ; 2.6 ; Complex of Escherichia coli Adenylosuccinate Synthetase with IMP and Hadacidin 4RTQ ; 1.997 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoHcy and a 5-bp non-canonical site (GTTTA ) 4RTN ; 2.59 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoHcy and with DNA Containing Proximal Pap Regulon Sequence 4RTS ; 2.49 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoMet and a 5-bp non-canonical site (GTCTA) 4RTR ; 2.393 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoMet and a 5-bp non-canonical site (GTTTA ) 4RTM ; 2.5 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoMet and with DNA Containing Distal Pap Regulon Sequence 4RTP ; 2.39 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with AdoMet and with DNA Containing Proximal Pap Regulon Sequence 4RTK ; 1.96 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with SAH and with DNA Containing Distal Pap Regulon Sequence 4RTL ; 2.193 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with Sinefungin and with DNA Containing Distal Pap Regulon Sequence 4RTO ; 2.69 ; Complex of Escherichia coli DNA Adenine Methyltransferase (DAM) with Sinefungin and with DNA Containing Proximal Pap Regulon Sequence 8VGC ; 1.42 ; Complex of ExbD with D-box peptide: Orthorhombic form 8VGD ; 1.42 ; Complex of ExbD with D-box peptide: Tetragonal form 7LR4 ; 2.1 ; Complex of Fab 2/1.12 with domain 3 of P. berghei HAP2 7LR3 ; 2.8 ; Complex of Fab 2/6.14 with domain 3 of P. berghei HAP2 8EGW ; 2.3 ; Complex of Fat4(EC1-4) bound to Dchs1(EC1-3) 8EGX ; 3.688 ; Complex of Fat4(EC1-4) bound to Dchs1(EC1-4) 3RY6 ; 3.8 ; Complex of fcgammariia (CD32) and the FC of human IGG1 2D0Q ; 1.65 ; Complex of Fe-type NHase with Cyclohexyl isocyanide, photo-activated for 1hr at 277K 2ZPG ; 1.39 ; Complex of Fe-type nitrile hydratase with tert-butylisonitrile, photo-activated for 120min at 293K 2ZPF ; 1.482 ; Complex of Fe-type nitrile hydratase with tert-butylisonitrile, photo-activated for 18min at 293K 2ZPH ; 1.59 ; Complex of Fe-type nitrile hydratase with tert-butylisonitrile, photo-activated for 340min at 293K 2ZPI ; 1.491 ; Complex of Fe-type nitrile hydratase with tert-butylisonitrile, photo-activated for 440min at 293K 3JWN ; 2.69 ; Complex of FimC, FimF, FimG and FimH 5MTS ; 2.6 ; Complex of FimH lectin with a TazMan (thiazolylaminomannosides) family member known as potent anti-adhesive agent at 2.6 A resolution 3O5R ; 1.1 ; Complex of Fk506 with the Fk1 domain mutant A19T of FKBP51 4YXC ; 2.3 ; Complex of FliM(SPOA)::FliN fusion protein and FliH(APAR)::T4lysozyme fusion protein 7FEJ ; 3.91 ; Complex of FMDV A/AF/72 and bovine neutralizing scFv antibody R55 7FEI ; 3.91 ; Complex of FMDV A/WH/CHA/09 and bovine neutralizing scFv antibody R55 8GRR ; 3.72 ; Complex of FMDV A/WH/CHA/09 and bovine neutralizing scFv antibody W125 8GSP ; 3.75 ; Complex of FMDV A/WH/CHA/09 and bovine neutralizing scFv antibody W2 7DSS ; 3.9 ; Complex of FMDV and M8 Nab 4H0B ; 1.26 ; Complex of G65T Myoglobin with DMSO in its Distal Cavity 4H07 ; 1.14 ; Complex of G65T Myoglobin with Phenol in its Proximal Cavity 3D32 ; 1.3 ; Complex of GABA(A) receptor-associated protein (GABARAP) with a synthetic peptide 7T0W ; 3.0 ; Complex of GABA-A synaptic receptor with autoimmune antibody Fab115 7T0Z ; 3.0 ; Complex of GABA-A synaptic receptor with autoimmune antibody Fab175 1FS0 ; 2.1 ; COMPLEX OF GAMMA/EPSILON ATP SYNTHASE FROM E.COLI 1PY1 ; 2.6 ; Complex of GGA1-VHS domain and beta-secretase C-terminal phosphopeptide 1LF8 ; 2.3 ; Complex of GGA3-VHS Domain and CI-MPR C-terminal Phosphopeptide 6J74 ; 3.212 ; Complex of GGTaseIII and full-length Ykt6 6J7F ; 2.883 ; Complex of GGTaseIII, farnesyl-Ykt6 (C-terminal methylated), and GGPP 6J7X ; 2.75 ; Complex of GGTaseIII, farnesyl-Ykt6, and GGPP 6CD8 ; 1.6 ; Complex of GID4 fragment with short peptide 2I55 ; 2.9 ; Complex of glucose-1,6-bisphosphate with phosphomannomutase from Leishmania mexicana 1NOI ; 2.5 ; COMPLEX OF GLYCOGEN PHOSPHORYLASE WITH A TRANSITION STATE ANALOGUE NOJIRIMYCIN TETRAZOLE AND PHOSPHATE IN THE T AND R STATES 1NOJ ; 2.4 ; COMPLEX OF GLYCOGEN PHOSPHORYLASE WITH A TRANSITION STATE ANALOGUE NOJIRIMYCIN TETRAZOLE AND PHOSPHATE IN THE T STATE 1NOK ; 2.4 ; COMPLEX OF GLYCOGEN PHOSPHORYLASE WITH A TRANSITION STATE ANALOGUE NOJIRIMYCIN TETRAZOLE AND PHOSPHATE IN THE T STATE 5D28 ; 2.845 ; Complex of GM-CSF/IL-2 inhibition factor with Granulocyte-macrophage colony-stimulating factor 1TL7 ; 2.8 ; Complex Of Gs- With The Catalytic Domains Of Mammalian Adenylyl Cyclase: Complex With 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-triphosphate and Mn 2GVD ; 2.9 ; Complex Of Gs- With The Catalytic Domains Of Mammalian Adenylyl Cyclase: Complex With TNP-ATP and Mn 1AZS ; 2.3 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE 1CUL ; 2.4 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH 2',5'-DIDEOXY-ADENOSINE 3'-TRIPHOSPHATE AND MG 1CS4 ; 2.5 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH 2'-DEOXY-ADENOSINE 3'-MONOPHOSPHATE, PYROPHOSPHATE AND MG 1CJK ; 3.0 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH ADENOSINE 5'-(ALPHA THIO)-TRIPHOSPHATE (RP), MG, AND MN 3MAA ; 3.0 ; Complex of GS-Alpha with the Catalytic Domains of Mammalian Adenylyl Cyclase: Complex with Adenosine 5-O-(l-Thiophosphate) and Low Ca Concentration 3C16 ; 2.87 ; Complex of GS-Alpha with the Catalytic Domains of Mammalian Adenylyl Cyclase: Complex with Adenosine-5'-Triphosphate and Ca 1CJU ; 2.8 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH BETA-L-2',3'-DIDEOXYATP AND MG 1CJV ; 3.0 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH BETA-L-2',3'-DIDEOXYATP, MG, AND ZN 1CJT ; 2.8 ; COMPLEX OF GS-ALPHA WITH THE CATALYTIC DOMAINS OF MAMMALIAN ADENYLYL CYCLASE: COMPLEX WITH BETA-L-2',3'-DIDEOXYATP, MN, AND MG 3G82 ; 3.11 ; Complex of GS-alpha with the catalytic domains of mammalian adenylyl cyclase: complex with MANT-ITP and Mn 3C14 ; 2.68 ; Complex of GS-Alpha with the Catalytic Domains of Mammalian Adenylyl Cyclase: Complex with Pyrophosphate and Ca 3C15 ; 2.78 ; Complex of GS-Alpha with the Catalytic Domains of Mammalian Adenylyl Cyclase: Complex with Pyrophosphate and Mg 6LWU ; 2.419 ; Complex of Gynuella sunshinyii GH46 chitosanase GsCsn46A E19A with chitopentaose 6X2Q ; 2.27 ; Complex of Gynuella sunshinyii GH46 chitosanase GsCsn46A with chitotetraose 5NWE ; 2.0 ; Complex of H275Y mutant variant of neuraminidase from H1N1 influenza virus with oseltamivir 5NZF ; 1.75 ; Complex of H275Y/I223V mutant variant of neuraminidase from H1N1 influenza virus with oseltamivir 5NZN ; 1.73 ; Complex of H275Y/S247N mutant variant of neuraminidase from H1N1 influenza virus with oseltamivir 1XZ1 ; 1.75 ; Complex of halothane with apoferritin 1HTW ; 1.7 ; COMPLEX OF HI0065 WITH ADP AND MAGNESIUM 4KJY ; 1.93 ; Complex of high-affinity SIRP alpha variant FD6 with CD47 1UU1 ; 2.38 ; Complex of Histidinol-phosphate aminotransferase (HisC) from Thermotoga maritima (Apo-form) 1G70 ; ; COMPLEX OF HIV-1 RRE-IIB RNA WITH RSG-1.2 PEPTIDE 6VR1 ; 2.37 ; Complex of HLA-A2, a class I MHC, with a p53 peptide 6VR5 ; 2.38 ; Complex of HLA-A2, a class I MHC, with a p53 peptide 8ECG ; 2.13 ; Complex of HMG1 with pitavastatin 6B9H ; 1.5 ; Complex of Hook Domain with a Dynein Light Intermediate Chain Peptide 1US7 ; 2.3 ; Complex of Hsp90 and P50 4AWO ; 1.7 ; Complex of HSP90 ATPase domain with tropane derived inhibitors 4AWP ; 1.82 ; Complex of HSP90 ATPase domain with tropane derived inhibitors 4AWQ ; 1.6 ; Complex of HSP90 ATPase domain with tropane derived inhibitors 2JKI ; 3.3 ; Complex of Hsp90 N-terminal and Sgt1 CS domain 2XCM ; 2.2 ; COMPLEX OF HSP90 N-TERMINAL, SGT1 CS AND RAR1 CHORD2 DOMAIN 5LTW ; 4.5 ; Complex of human 14-3-3 sigma CLU1 mutant with phosphorylated heat shock protein B6 1HAO ; 2.8 ; COMPLEX OF HUMAN ALPHA-THROMBIN WITH A 15MER OLIGONUCLEOTIDE GGTTGGTGTGGTTGG (BASED ON NMR MODEL OF DNA) 1HAP ; 2.8 ; COMPLEX OF HUMAN ALPHA-THROMBIN WITH A 15MER OLIGONUCLEOTIDE GGTTGGTGTGGTTGG (BASED ON X-RAY MODEL OF DNA) 1A3B ; 1.8 ; COMPLEX OF HUMAN ALPHA-THROMBIN WITH THE BIFUNCTIONAL BORONATE INHIBITOR BOROLOG1 1A3E ; 1.85 ; COMPLEX OF HUMAN ALPHA-THROMBIN WITH THE BIFUNCTIONAL BORONATE INHIBITOR BOROLOG2 3VBD ; 1.05 ; Complex of human carbonic anhydrase II with 4-(6-methoxy-3,4-dihydroisoquinolin-1-yl)benzenesulfonamide 3V7X ; 1.03 ; Complex of human carbonic anhydrase II with N-[2-(3,4-dimethoxyphenyl)ethyl]-4-sulfamoylbenzamide 6FAX ; 2.99 ; Complex of Human CD40 Ectodomain with Lob 7.4 Fab 4CRU ; 1.65 ; Complex of human CNOT9 and CNOT1 including one tryptophan 4CRV ; 2.05 ; Complex of human CNOT9 and CNOT1 including two tryptophans 6FP6 ; 3.0 ; Complex of human Cu,Zn SOD1 with the human copper chaperone for SOD1 in a compact conformation 4K9U ; 2.85 ; Complex of human CYP3A4 with a desoxyritonavir analog 4K9W ; 2.399 ; Complex of human CYP3A4 with a desoxyritonavir analog 4K9X ; 2.76 ; Complex of human CYP3A4 with a desoxyritonavir analog 6O1V ; 3.2 ; Complex of human cystic fibrosis transmembrane conductance regulator (CFTR) and GLPG1837 4CRW ; 1.75 ; Complex of human DDX6 (RECA-C) and CNOT1 (MIF4G) 2WV8 ; 1.9 ; Complex of human dihydroorotate dehydrogenase with the inhibitor 221290 4UED ; 1.75 ; Complex of human eIF4E with the 4E binding protein 4E-BP1 4Y22 ; 2.5 ; Complex of human Galectin-1 and (3OSO3)Galbeta1-3GlcNAc 4Y1Y ; 1.86 ; Complex of human Galectin-1 and (6OSO3)Galbeta1-3GlcNAc 4Y1V ; 2.32 ; Complex of human Galectin-1 and Galbeta1-3GlcNAc 4Y1Z ; 2.23 ; Complex of human Galectin-1 and Galbeta1-4(6CO2)GlcNAc 4Y1X ; 2.45 ; Complex of human Galectin-1 and Galbeta1-4(6OSO3)GlcNAc 4Y1U ; 1.762 ; Complex of human Galectin-1 and Galbeta1-4GlcNAc 4Y20 ; 2.204 ; Complex of human Galectin-1 and NeuAcalpha2-3Galbeta1-4Glc 4Y24 ; 2.32 ; Complex of human Galectin-1 and TD-139 4Y26 ; 2.611 ; Complex of human Galectin-7 and Galbeta1-3(6OSO3)GlcNAc 7AIA ; 2.2 ; Complex of human GDAP1 with hexadecanedioic acid 1YD8 ; 2.8 ; COMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITIN 1BKD ; 2.8 ; COMPLEX OF HUMAN H-RAS WITH HUMAN SOS-1 5AIS ; 1.85 ; Complex of human hematopoietic prostagandin D2 synthase (hH-PGDS) in complex with an active site inhibitor. 5AIV ; 2.04 ; Complex of human hematopoietic prostagandin D2 synthase (hH-PGDS) in complex with an active site inhibitor. 5AIX ; 2.1 ; Complex of human hematopoietic prostagandin D2 synthase (hH-PGDS) in complex with an active site inhibitor. 2VJ8 ; 1.8 ; Complex of human leukotriene A4 hydrolase with a hydroxamic acid inhibitor 1OP9 ; 1.86 ; Complex of human lysozyme with camelid VHH HL6 antibody fragment 1B59 ; 1.8 ; COMPLEX OF HUMAN METHIONINE AMINOPEPTIDASE-2 COMPLEXED WITH OVALICIN 1KBQ ; 1.8 ; Complex of Human NAD(P)H quinone Oxidoreductase with 5-methoxy-1,2-dimethyl-3-(4-nitrophenoxymethyl)indole-4,7-dione (ES936) 5MGT ; 1.9 ; Complex of human NKR-P1 and LLT1 in deglycosylated forms 5OO6 ; 2.8 ; Complex of human nuclear cap-binding complex with ARS2 C-terminal peptide 5OOB ; 2.79 ; COMPLEX OF HUMAN NUCLEAR CAP-BINDING COMPLEX WITH M7GTP AND NELF-E C-TERMINAL PEPTIDE 2V4L ; 2.5 ; complex of human phosphoinositide 3-kinase catalytic subunit gamma (p110 gamma) with PIK-284 1KBO ; 2.3 ; Complex of Human recombinant NAD(P)H:Quinone Oxide reductase type 1 with 5-methoxy-1,2-dimethyl-3-(phenoxymethyl)indole-4,7-dione (ES1340) 4C78 ; 2.0 ; Complex of human Sirt3 with Bromo-Resveratrol and ACS2 peptide 4C7B ; 2.1 ; Complex of human Sirt3 with Bromo-Resveratrol and Fluor-De-Lys peptide 8COT ; 2.1 ; Complex of human soluble adenylyl cyclase 10 catalytic core with inhibitor TDI-10962 7MJ5 ; 2.15 ; complex of human thrombin with XC-43 8DW5 ; 1.52 ; Complex of Human Transthyretin with 3',5'-Dichlorophenylanthranilic Acid 8AMS ; 2.4 ; Complex of human TRIM2 RING domain, UBCH5C, and Ubiquitin 4CC3 ; 1.97 ; Complex of human Tuba C-terminal SH3 domain and Mena proline-rich peptide - H3 4CC2 ; 1.55 ; Complex of human Tuba C-terminal SH3 domain with human N-WASP proline- rich peptide - P212121 4CYM ; 2.8 ; Complex of human VARP-ANKRD1 with Rab32-GppCp 4CZ2 ; 2.97 ; Complex of human VARP-ANKRD1 with Rab32-GppCp. Selenomet derivative. 1K6E ; 1.85 ; COMPLEX OF HYDROLYTIC HALOALKANE DEHALOGENASE LINB FROM SPHINGOMONAS PAUCIMOBILIS UT26 WITH 1,2-PROPANEDIOL (PRODUCT OF DEHALOGENATION OF 1,2-DIBROMOPROPANE) AT 1.85A 1K63 ; 1.8 ; Complex of hydrolytic haloalkane dehalogenase linb from sphingomonas paucimobilis with UT26 2-BROMO-2-PROPENE-1-OL at 1.8A resolution 2GGQ ; 2.0 ; complex of hypothetical glucose-1-phosphate thymidylyltransferase from sulfolobus tokodaii 5NZ4 ; 1.36 ; Complex of I223V mutant variant of neuraminidase from H1N1 influenza virus with oseltamivir 6UQR ; 3.65029 ; Complex of IgE and Ligelizumab 1H59 ; 2.1 ; Complex of IGFBP-5 with IGF-I 2CZ6 ; 1.5 ; Complex of Inactive Fe-type NHase with Cyclohexyl isocyanide 2DPG ; 2.5 ; COMPLEX OF INACTIVE MUTANT (H240->N) OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES WITH NADP+ 1A53 ; 2.0 ; COMPLEX OF INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS WITH INDOLE-3-GLYCEROLPHOSPHATE AT 2.0 A RESOLUTION 5NT1 ; 2.82 ; Complex of influenza A NS1 effector domain with TRIM25 coiled coil 5NT2 ; 4.259 ; Complex of influenza A NS1 with TRIM25 coiled coil domain 5DLM ; 2.2 ; Complex of Influenza M2e and Antibody 3RT3 ; 2.006 ; Complex of influenza virus protein with host anti-viral factor 4CC4 ; 2.6 ; Complex of InlC of Listeria monocytogenes and human Tuba C-terminal SH3 domain 7Y1T ; 3.24 ; Complex of integrin alphaV/beta8 and L-TGF-beta1 at a ratio of 1:2 4M1L ; 2.1 ; Complex of IQCG and Ca2+-bound CaM 4LZX ; 1.5 ; Complex of IQCG and Ca2+-free CaM 5JEM ; 2.5 ; Complex of IRF-3 with CBP 6O2P ; 3.3 ; Complex of ivacaftor with cystic fibrosis transmembrane conductance regulator (CFTR) 6RGO ; 3.701 ; Complex of KlAtg21 with coiled-coil of AgAtg16 4HEP ; 1.75 ; Complex of lactococcal phage TP901-1 with a llama vHH (vHH17) binder (nanobody) 5B6B ; 3.536 ; Complex of LATS1 and phosphomimetic MOB1b 1LDT ; 1.9 ; COMPLEX OF LEECH-DERIVED TRYPTASE INHIBITOR WITH PORCINE TRYPSIN 8BSG ; 1.89 ; COMPLEX OF LEPORINE SERUM ALBUMIN WITH DICLOFENAC 1RUT ; 1.3 ; Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain 3ZX7 ; 2.84 ; Complex of lysenin with phosphocholine 7JTR ; 2.5 ; Complex of maltose-binding protein (MBP) with single-chain Fv (scFv) 2Q97 ; 2.5 ; Complex of mammalian actin with toxofilin from toxoplasma gondii 6JTF ; ; Complex of MarH and L-Trp 3V96 ; 1.9 ; Complex of matrix metalloproteinase-10 catalytic domain (MMP-10cd) with tissue inhibitor of metalloproteinases-1 (TIMP-1) 4ILW ; 2.103 ; Complex of matrix metalloproteinase-10 catalytic domain (MMP-10cd) with tissue inhibitor of metalloproteinases-2 (TIMP-2) 6D1T ; 2.25 ; Complex of MBD1-MBD and methylated DNA 1KZE ; 1.8 ; Complex of MBP-C and bivalent Man-terminated glycopeptide 1KZD ; 1.9 ; Complex of MBP-C and GlcNAc-terminated core 1KZC ; 1.85 ; Complex of MBP-C and high-affinity linear trimannose 1KZA ; 1.74 ; Complex of MBP-C and Man-a13-Man 1KZB ; 1.8 ; Complex of MBP-C and trimannosyl core 4JA8 ; 1.55 ; Complex of Mitochondrial Isocitrate Dehydrogenase R140Q Mutant with AGI-6780 Inhibitor 5IBW ; 1.9 ; Complex of MlcC bound to the tandem IQ motif of MyoC 1EL5 ; 1.8 ; COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR DIMETHYLGLYCINE 1ELI ; 2.0 ; COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR PYRROLE-2-CARBOXYLATE 1EL8 ; 1.9 ; COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR [METHYLSELENO]CETATE 1EL9 ; 2.0 ; COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR [METHYLTHIO]ACETATE 1EL7 ; 1.9 ; COMPLEX OF MONOMERIC SARCOSINE OXIDASE WITH THE INHIBITOR [METHYTELLURO]ACETATE 4GZA ; 7.0 ; Complex of mouse Plexin A2 - Semaphorin 3A - Neuropilin-1 3G2D ; 2.3 ; Complex of Mth0212 and a 4 bp dsDNA with 3'-overhang 3G0R ; 2.4 ; Complex of Mth0212 and an 8bp dsDNA with distorted ends 5YVQ ; 2.103 ; Complex of Mu phage tail fiber and its chaperone 5H9O ; 2.37 ; Complex of Murine endoplasmic reticulum alpha-glucosidase II with D-Glucose 6V25 ; 1.78 ; Complex of mutant (K162M) of E. coli L-asparaginase II with L-Asp 6V26 ; 1.8 ; Complex of mutant (K162M) of E. coli L-asparaginase II with L-Asp 6V2C ; 2.0 ; Complex of mutant (K162M) of E. coli L-asparaginase II with L-Asp. Covalent acyl-enzyme intermediate and tetrahedral intermediate 6V2G ; 1.9 ; Complex of mutant (K162M) of E. coli L-asparaginase II with L-Asp. Covalent acyl-enzyme intermediate and tetrahedral intermediate. 6V24 ; 1.9 ; Complex of mutant (K162M) of E. coli L-asparaginase II with L-Asp. Covalent acyl-enzyme intermediate. 6WZ4 ; 1.58 ; Complex of mutant (K173M) of Pseudomonas 7A Glutaminase-Asparaginase with L-Asp at pH 6. Covalent acyl-enzyme intermediate 6WZ6 ; 1.15 ; Complex of mutant (K173M) of Pseudomonas 7A Glutaminase-Asparaginase with L-Glu at pH 5. Covalent acyl-enzyme intermediate 5JY7 ; 3.6 ; Complex of Mycobacterium smegmatis trehalose synthase with maltokinase 8ATC ; 2.5 ; COMPLEX OF N-PHOSPHONACETYL-L-ASPARTATE WITH ASPARTATE CARBAMOYLTRANSFERASE. X-RAY REFINEMENT, ANALYSIS OF CONFORMATIONAL CHANGES AND CATALYTIC AND ALLOSTERIC MECHANISMS 6HP0 ; 1.88 ; Complex of Neuraminidase from H1N1 Influenza Virus in Complex with Oseltamivir Triazol Derivative 6G01 ; 1.61 ; Complex of neuraminidase from H1N1 influenza virus with tamiphosphor monomethyl ester 6G02 ; 1.84 ; Complex of neuraminidase from H1N1 influenza virus with tamiphosphor omega-azidohexyl ester 4CZX ; 1.85 ; Complex of Neurospora crassa PAN2 (WD40) with PAN3 (C-TERM) 4CZY ; 3.4 ; Complex of Neurospora crassa PAN2 (WD40-CS1) with PAN3 (pseudokinase and C-term) 5V5V ; 4.11 ; Complex of NLGN2 with MDGA1 Ig1-Ig2 4XL1 ; 2.3 ; Complex of Notch1 (EGF11-13) bound to Delta-like 4 (N-EGF1) 4XLW ; 3.39 ; Complex of Notch1 (EGF11-13) bound to Delta-like 4 (N-EGF2) 5UK5 ; 2.506 ; Complex of Notch1(EGF8-12) bound to Jagged1(N-EGF3) 7L05 ; 2.21 ; Complex of novel maytansinoid M24 bound to T2R-TTL (two tubulin alpha/beta heterodimers, RB3 stathmin-like domain, and tubulin tyrosine ligase) 7NOW ; 1.85 ; Complex of Nucleoporin-98 and nanobody MS98-27 solved at 1.85A resolution 7KB1 ; 1.85 ; Complex of O-acety-L-homoserine aminocarboxypropyltransferase (MetY) from Thermotoga maritima and a key reaction intermediate 4LUH ; 2.2 ; Complex of ovine serum albumin with 3,5-diiodosalicylic acid 6HN0 ; 2.12 ; Complex of Ovine Serum Albumin with diclofenac 6M7L ; 2.6483 ; Complex of OxyA with the X-domain from GPA biosynthesis 8AOM ; 2.202 ; Complex of PD-L1 with VHH1 8AOK ; 1.6 ; Complex of PD-L1 with VHH6 3CI5 ; 1.7 ; Complex of Phosphorylated Dictyostelium Discoideum Actin with Gelsolin 3ENE ; 2.4 ; Complex of PI3K gamma with an inhibitor 3AG9 ; 2.0 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-1012 3AGL ; 2.1 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-1039 5IZF ; 2.1 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-1408 5IZJ ; 1.85 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-1411 5J5X ; 2.6 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-1416 3AGM ; 2.0 ; Complex of PKA with the bisubstrate protein kinase inhibitor ARC-670 3BWJ ; 2.3 ; Complex of PKA with the bisubstrate protein kinase inhibitor lead compound Arc-1034 7V05 ; 3.4 ; Complex of Plasmodium falciparum circumsporozoite protein with 850 Fab 2H4L ; 2.4 ; Complex of PMM/PGM with ribose 1-phosphate 3JBF ; 4.8 ; Complex of poliovirus with VHH PVSP19B 3JBC ; 6.5 ; Complex of Poliovirus with VHH PVSP29F 3JBD ; 4.8 ; Complex of poliovirus with VHH PVSP6A 3JBG ; 3.8 ; Complex of poliovirus with VHH PVSS21E 3JBE ; 4.2 ; Complex of poliovirus with VHH PVSS8A 4IEF ; 2.3 ; Complex of Porphyromonas gingivalis RgpB pro- and mature domains 5L83 ; 1.9 ; Complex of potato ATG8 protein with a peptide from Irish potato famine pathogen effector protein PexRD54 8HM3 ; 2.26 ; Complex of PPIase-BfUbb 1JAP ; 1.82 ; COMPLEX OF PRO-LEU-GLY-HYDROXYLAMINE WITH THE CATALYTIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (MET80 FORM) 1JAN ; 2.5 ; COMPLEX OF PRO-LEU-GLY-HYDROXYLAMINE WITH THE CATALYTIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (PHE79 FORM) 1I73 ; 1.4 ; COMPLEX OF PRO-LEU-L-TRP PHOSPHONATE WITH THE CATALITIC DOMAIN OF MATRIX METALLO PROTEINASE-8 (MET80 FORM) 6WZ8 ; 1.7 ; Complex of Pseudomonas 7A Glutaminase-Asparaginase with Citrate Anion at pH 5.5. Covalent Acyl-Enzyme Intermediate 4KT1 ; 2.497 ; Complex of R-spondin 1 with LGR4 extracellular domain 2XGY ; 1.8 ; Complex of Rabbit Endogenous Lentivirus (RELIK)Capsid with Cyclophilin A 8F6M ; 2.15 ; Complex of Rabbit muscle pyruvate kinase with ADP and the phosphonate analogue of PEP mimicking the Michaelis complex. 2W2X ; 2.3 ; Complex of Rac2 and PLCg2 spPH Domain 2YBF ; 2.0 ; Complex of Rad18 (Rad6 binding domain) with Rad6b 1IBR ; 2.3 ; COMPLEX OF RAN WITH IMPORTIN BETA 3KUC ; 1.92 ; Complex of Rap1A(E30D/K31E)GDP with RafRBD(A85K/N71R) 3L8Y ; 2.02 ; Complex of Ras with cyclen 3KUD ; 2.15 ; Complex of Ras-GDP with RafRBD(A85K) 8A8J ; 3.1 ; Complex of RecF and DNA from Thermus thermophilus. 8BPR ; 3.65 ; Complex of RecF-RecO-RecR-DNA from Thermus thermophilus (low resolution reconstruction). 8A93 ; 3.05 ; Complex of RecF-RecR-DNA from Thermus thermophilus. 8AB0 ; 6.09 ; Complex of RecO-RecR-DNA from Thermus thermophilus. 7N0U ; 3.0 ; Complex of recombinant Bet v 1 with Fab fragment of REGN5713 7N0V ; 3.71 ; Complex of recombinant Bet v 1 with Fab fragment of REGN5715 1OYT ; 1.67 ; COMPLEX OF RECOMBINANT HUMAN THROMBIN WITH A DESIGNED FLUORINATED INHIBITOR 2CN0 ; 1.3 ; Complex of Recombinant Human Thrombin with a Designed Inhibitor 2CF8 ; 1.3 ; Complex of recombinant human thrombin with an inhibitor 2CF9 ; 1.79 ; Complex of recombinant human thrombin with an inhibitor 7BUI ; 2.15 ; Complex of reduced oxygenase and oxidized ferredoxin in carbazole 1,9a- dioxygenase 1QUQ ; 2.5 ; COMPLEX OF REPLICATION PROTEIN A SUBUNITS RPA14 AND RPA32 1GMP ; 1.7 ; COMPLEX OF RIBONUCLEASE FROM STREPTOMYCES AUREOFACIENS WITH 2'-GMP AT 1.7 ANGSTROMS RESOLUTION 1GMQ ; 1.8 ; COMPLEX OF RIBONUCLEASE FROM STREPTOMYCES AUREOFACIENS WITH 2'-GMP AT 1.7 ANGSTROMS RESOLUTION 1GMR ; 1.77 ; COMPLEX OF RIBONUCLEASE FROM STREPTOMYCES AUREOFACIENS WITH 2'-GMP AT 1.7 ANGSTROMS RESOLUTION 7NLJ ; 1.8 ; Complex of rice blast (Magnaporthe oryzae) effector protein APikL2A with host target sHMA25 from Setaria italica 7NMM ; 2.3 ; Complex of rice blast (Magnaporthe oryzae) effector protein APikL2F with the host target sHMA94 from Setaria italica 6Q76 ; 1.9 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-Pia with the HMA domain of Pikp-1 from rice (Oryza sativa) 7PP2 ; 2.69 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-Pii with the host target Exo70F2 from Rice (Oryza sativa) 6FUD ; 1.3 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikA with the HMA domain of Pikm-1 from rice (Oryza sativa) 7QPX ; 2.05 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikC with an engineered HMA domain of Pikp-1 (Pikp-SNK-EKE) from rice (Oryza sativa) 7A8W ; 2.15 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikC with an engineered HMA domain of Pikp-1 from rice (Oryza sativa) 7A8X ; 2.3 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikC with the HMA domain of Pikh-1 from rice (Oryza sativa) 7BNT ; 1.32 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikD with a predicted ancestral HMA domain of Pik-1 from Oryza spp. 6R8K ; 1.6 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikD with an engineered HMA domain of Pikp-1 from rice (Oryza sativa) 6FU9 ; 1.2 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikD with the HMA domain of Pikm-1 from rice (Oryza sativa) 6G10 ; 1.35 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikD with the HMA domain of Pikp-1 from rice (Oryza sativa) 5A6W ; 1.6 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikD with the HMA domain of Pikp1 from rice (Oryza sativa) 6R8M ; 1.85 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikE with an engineered HMA domain of Pikp-1 from rice (Oryza sativa) 6FUB ; 1.3 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikE with the HMA domain of Pikm-1 from rice (Oryza sativa) 6G11 ; 1.9 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikE with the HMA domain of Pikp-1 from rice (Oryza sativa) 8B2R ; 1.22 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikF with a rice (Oryza sativa) RGA5 HMA domain mutant. 7QZD ; 2.2 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikF with an engineered HMA domain of Pikp-1 (Pikp-SNK-EKE) from rice (Oryza sativa) 7B1I ; 1.9 ; Complex of rice blast (Magnaporthe oryzae) effector protein AVR-PikF with the HMA domain of OsHIPP19 from rice (Oryza sativa) 8R7A ; 1.8 ; Complex of rice blast (Magnaporthe oryzae) effector protein PWL2 with the HMA domain of OsHIPP43 from rice (Oryza sativa) 8R7D ; 2.5 ; Complex of rice blast (Magnaporthe oryzae) mutant effector protein PWL2-SNDE with the HMA domain of OsHIPP43 from rice (Oryza sativa) 3EJ5 ; 2.5 ; complex of Ricin A chain and pyrimidine-based inhibitor 5EME ; 1.15 ; Complex of RNA r(GCAGCAGC) with antisense PNA p(CTGCTGC) 1TDG ; 1.8 ; Complex of S130G SHV-1 beta-lactamase with tazobactam 5NZE ; 1.69 ; Complex of S247N mutant variant of neuraminidase from H1N1 influenza virus with oseltamivir 3B7A ; 1.9 ; Complex of S52A Substituted Droposphila LUSH protein with Ethanol 3B6X ; 2.0 ; Complex of S52A Substituted Drosophila LUSH protein with Butanol 7M42 ; 3.3 ; Complex of SARS-CoV-2 receptor binding domain with the Fab fragments of neutralizing antibodies REGN10985 and REGN10989 6XDG ; 3.9 ; Complex of SARS-CoV-2 receptor binding domain with the Fab fragments of two neutralizing antibodies 7A5S ; 3.9 ; Complex of SARS-CoV-2 spike and CR3022 Fab (Homogeneous Refinement) 7A5R ; 3.7 ; Complex of SARS-CoV-2 spike and CR3022 Fab (Non-Uniform Refinement) 7CWM ; 3.6 ; Complex of SARS-CoV-2 spike protein and Fab P17 with one RBD in open state and two RBD in closed state 7CYP ; 3.5 ; Complex of SARS-CoV-2 spike trimer with its neutralizing antibody HB27 5TH7 ; 1.95 ; Complex of SETD8 with MS453 8IYA ; 2.43 ; Complex of SETDB1-derived peptide bound to UBE2E1 4P2C ; 2.818 ; Complex of Shiga toxin 2e with a neutralizing single-domain antibody 3V50 ; 1.45 ; Complex of SHV S130G mutant beta-lactamase complexed to SA2-13 4V8Q ; 3.1 ; Complex of SmpB, a tmRNA fragment and EF-Tu-GDP-Kirromycin with the 70S ribosome 5X0X ; 3.97 ; Complex of Snf2-Nucleosome complex with Snf2 bound to position +6 of the nucleosome 5X0Y ; 4.69 ; Complex of Snf2-Nucleosome complex with Snf2 bound to SHL2 of the nucleosome 4YXA ; 2.35 ; Complex of SpaO(SPOA1,2 SeMet) and OrgB(APAR)::T4lysozyme fusion protein 4YX7 ; 2.0007 ; Complex of SpaO(SPOA1,2) and OrgB(APAR)::T4lysozyme fusion protein 1KTK ; 3.0 ; Complex of Streptococcal pyrogenic enterotoxin C (SpeC) with a human T cell receptor beta chain (Vbeta2.1) 1IKI ; 1.25 ; COMPLEX OF STREPTOMYCES R61 DD-PEPTIDASE WITH THE PRODUCTS OF A SPECIFIC PEPTIDOGLYCAN SUBSTRATE FRAGMENT 3EWR ; 2.01 ; complex of substrate ADP-ribose with HCoV-229E Nsp3 ADRP domain 3EWP ; 2.0 ; complex of substrate ADP-ribose with IBV Nsp3 ADRP domain 5FFN ; 1.8 ; Complex of subtilase SubTY from Bacillus sp. TY145 with chymotrypsin inhibitor CI2A 6K5T ; ; Complex of SUMO1 and phosphorylated hcmv protein IE2 6JXW ; ; Complex of SUMO2 bound SLS4 from ICP0. 6K5R ; ; Complex of SUMO2 with Phosphorylated viral SIM IE2 6UK4 ; 2.7 ; Complex of T cell Receptor with HHAT Neoantigen Peptide KQWLVWLFL Presented by HLA-A206 6UK2 ; 3.13881 ; Complex of T cell Receptor with HHAT Wild Type Peptide KQWLVWLLL Presented by HLA-A206 3B87 ; 2.0 ; Complex of T57A Substituted Droposphila LUSH protein with Butanol 3B88 ; 2.0 ; Complex of T57A Substituted Drosophila LUSH Protein with Ethanol 1W4L ; 2.16 ; Complex of TcAChE with bis-acting galanthamine derivative 1W6R ; 2.05 ; Complex of TcAChE with galanthamine derivative 2A5R ; ; Complex of tetra-(4-n-methylpyridyl) porphin with monomeric parallel-stranded DNA tetraplex, snap-back 3+1 3' G-tetrad, single-residue chain reversal loops, GAG triad in the context of GAAG diagonal loop, C-MYC promoter, NMR, 6 struct. 3TDT ; 2.0 ; COMPLEX OF TETRAHYDRODIPICOLINATE N-SUCCINYLTRANSFERASE WITH 2-AMINO-6-OXOPIMELATE AND COENZYME A 2TDT ; 2.0 ; COMPLEX OF TETRAHYDRODIPICOLINATE N-SUCCINYLTRANSFERASE WITH 2-AMINOPIMELATE AND COENZYME A 2XQN ; 2.62 ; Complex of the 2nd and 3rd LIM domains of TES with the EVH1 DOMAIN of MENA and the N-Terminal domain of actin-like protein Arp7A 1SLY ; 2.8 ; COMPLEX OF THE 70-KDA SOLUBLE LYTIC TRANSGLYCOSYLASE WITH BULGECIN A 3EZB ; ; COMPLEX OF THE AMINO TERMINAL DOMAIN OF ENZYME I AND THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI 3EZA ; ; COMPLEX OF THE AMINO TERMINAL DOMAIN OF ENZYME I AND THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 3EZE ; ; COMPLEX OF THE AMINO TERMINAL DOMAIN OF ENZYME I AND THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI NMR, RESTRAINED REGULARIZED MEAN STRUCTURE 1UZF ; 2.0 ; Complex of the anti-hypertensive drug captopril an the human testicular angiotensin I-converting enzyme 1UZE ; 1.82 ; Complex of the anti-hypertensive drug enalaprilat and the human testicular angiotensin I-converting enzyme 1JC2 ; ; COMPLEX OF THE C-DOMAIN OF TROPONIN C WITH RESIDUES 1-40 OF TROPONIN I 2LEX ; ; Complex of the C-terminal WRKY domain of AtWRKY4 and a W-box DNA 4B0M ; 1.8 ; Complex of the Caf1AN usher domain, Caf1M chaperone and Caf1 subunit from Yersinia pestis 1G6V ; 3.5 ; Complex of the camelid heavy-chain antibody fragment CAB-CA05 with bovine carbonic anhydrase 1BML ; 2.9 ; COMPLEX OF THE CATALYTIC DOMAIN OF HUMAN PLASMIN AND STREPTOKINASE 1HWK ; 2.22 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH ATORVASTATIN 1HWJ ; 2.26 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH CERIVASTATIN 1HW8 ; 2.1 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH COMPACTIN (ALSO KNOWN AS MEVASTATIN) 1HWI ; 2.3 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH FLUVASTATIN 1DQ8 ; 2.1 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH HMG AND COA 1DQA ; 2.0 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH HMG, COA, AND NADP+ 1HWL ; 2.1 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH ROSUVASTATIN (FORMALLY KNOWN AS ZD4522) 1HW9 ; 2.33 ; COMPLEX OF THE CATALYTIC PORTION OF HUMAN HMG-COA REDUCTASE WITH SIMVASTATIN 1C7U ; ; Complex of the DNA binding core domain of the transcription factor MEF2A with a 20mer oligonucleotide 2BRU ; ; Complex of the domain I and domain III of Escherichia coli transhydrogenase 1OCQ ; 1.08 ; COMPLEX OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHEARANS AT 1.08 ANGSTROM RESOLUTION with cellobio-derived isofagomine 2H5A ; 1.72 ; Complex of the enzyme PMM/PGM with xylose 1-phosphate 4AW5 ; 2.33 ; Complex of the EphB4 kinase domain with an oxindole inhibitor 5ABZ ; 2.4 ; Complex of the FimH lectin with a C-linked naphtyl alpha-D-mannoside in soaked trigonal crystals at 2.40 A resolution 5AAL ; 2.45 ; Complex of the FimH lectin with a C-linked para-biphenyl ethylene alpha-D-mannoside in soaked trigonal crystals at 2.45 A resolution 5AAP ; 1.302 ; Complex of the FimH lectin with a C-linked para-biphenyl methylene alpha-D-mannoside 2HA1 ; ; Complex of the first and second type III domains of human Fibronectin in solution 5BXJ ; 1.24 ; Complex of the Fk1 domain mutant A19T of FKBP51 with 4-Nitrophenol 2OCY ; 3.3 ; Complex of the guanine exchange factor Sec2p and the Rab GTPase Sec4p 1BVY ; 2.03 ; COMPLEX OF THE HEME AND FMN-BINDING DOMAINS OF THE CYTOCHROME P450(BM-3) 2XAT ; 3.2 ; COMPLEX OF THE HEXAPEPTIDE XENOBIOTIC ACETYLTRANSFERASE WITH CHLORAMPHENICOL AND DESULFO-COENZYME A 5ZAU ; ; Complex of the human FYN SH3 and monobody binder 1AKJ ; 2.65 ; COMPLEX OF THE HUMAN MHC CLASS I GLYCOPROTEIN HLA-A2 AND THE T CELL CORECEPTOR CD8 1SEB ; 2.7 ; COMPLEX OF THE HUMAN MHC CLASS II GLYCOPROTEIN HLA-DR1 AND THE BACTERIAL SUPERANTIGEN SEB 1IRA ; 2.7 ; COMPLEX OF THE INTERLEUKIN-1 RECEPTOR WITH THE INTERLEUKIN-1 RECEPTOR ANTAGONIST (IL1RA) 1J4W ; ; COMPLEX OF THE KH3 and KH4 DOMAINS OF FBP WITH A SINGLE_STRANDED 29mer DNA OLIGONUCLEOTIDE FROM THE FUSE ELEMENT OF THE C-MYC ONCOGENE 1J5K ; ; COMPLEX OF THE KH3 DOMAIN OF HNRNP K WITH A SINGLE_STRANDED 10MER DNA OLIGONUCLEOTIDE 1NWX ; 3.5 ; COMPLEX OF THE LARGE RIBOSOMAL SUBUNIT FROM DEINOCOCCUS RADIODURANS WITH ABT-773 1NWY ; 3.3 ; COMPLEX OF THE LARGE RIBOSOMAL SUBUNIT FROM DEINOCOCCUS RADIODURANS WITH AZITHROMYCIN 1SM1 ; 3.42 ; COMPLEX OF THE LARGE RIBOSOMAL SUBUNIT FROM DEINOCOCCUS RADIODURANS WITH QUINUPRISTIN AND DALFOPRISTIN 3D2Z ; 2.8 ; Complex of the N-acetylmuramyl-L-alanine amidase AmiD from E.coli with the product L-Ala-D-gamma-Glu-L-Lys 3D2Y ; 1.75 ; Complex of the N-acetylmuramyl-L-alanine amidase AmiD from E.coli with the substrate anhydro-N-acetylmuramic acid-L-Ala-D-gamma-Glu-L-Lys 2BRR ; 1.95 ; Complex of the neisserial PorA P1.4 epitope peptide and two Fab- fragments (antibody MN20B9.34) 6H9N ; 2.6 ; Complex of the periplasmic domains of bacterial cell division proteins FtsQ and FtsB 6H9O ; 2.8 ; Complex of the periplasmic domains of bacterial cell division proteins FtsQ and FtsB 8UBR ; 2.7 ; Complex of the phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) with CFTRinh-172 and ATP/Mg 1ZHI ; 2.7 ; Complex of the S. cerevisiae Orc1 and Sir1 interacting domains 1TFX ; 2.6 ; COMPLEX OF THE SECOND KUNITZ DOMAIN OF TISSUE FACTOR PATHWAY INHIBITOR WITH PORCINE TRYPSIN 3HHZ ; 3.5 ; Complex of the vesicular stomatitis virus nucleocapsid and the nucleocapsid-binding domain of the phosphoprotein 1BCR ; 2.5 ; COMPLEX OF THE WHEAT SERINE CARBOXYPEPTIDASE, CPDW-II, WITH THE MICROBIAL PEPTIDE ALDEHYDE INHIBITOR, ANTIPAIN, AND ARGININE AT ROOM TEMPERATURE 1BCS ; 2.08 ; COMPLEX OF THE WHEAT SERINE CARBOXYPEPTIDASE, CPDW-II, WITH THE MICROBIAL PEPTIDE ALDEHYDE INHIBITOR, CHYMOSTATIN, AND ARGININE AT 100 DEGREES KELVIN 4TX3 ; 2.5 ; Complex of the X-domain and OxyB from Teicoplanin Biosynthesis 7QIJ ; 4.1 ; Complex of the Yersinia enterocolitica Type III secretion export gate YscV with substrate:chaperone complex YscX:YscY 7QIH ; 1.92 ; Complex of the Yersinia enterocolitica Type III secretion proteins YscX and YscY 7QII ; 3.29 ; Complex of the Yersinia enterocolitica Type III secretion proteins YscX and YscY 5AA0 ; 5.0 ; Complex of Thermous thermophilus ribosome (A-and P-site tRNA) bound to BipA-GDPCP 5A9Z ; 4.7 ; Complex of Thermous thermophilus ribosome bound to BipA-GDPCP 1NG3 ; 2.6 ; Complex of ThiO (glycine oxidase) with acetyl-glycine 1AD8 ; 2.0 ; COMPLEX OF THROMBIN WITH AND INHIBITOR CONTAINING A NOVEL P1 MOIETY 1VZQ ; 1.54 ; Complex of thrombin with designed inhibitor 7165 6MAV ; 2.37 ; Complex of tissue inhibitor of metalloproteinase-1 (TIMP-1) mutant L34G with matrix metalloproteinase-3 catalytic domain (MMP-3cd) 6N9D ; 2.67 ; Complex of tissue inhibitor of metalloproteinases-1 (TIMP-1) mutant (L34G/L133P/L151C/G154A) with matrix metalloproteinase-3 catalytic domain (MMP-3cd) 7S7M ; 3.0 ; Complex of tissue inhibitor of metalloproteinases-1 (TIMP-1) mutant (L34G/M66D/T98G/P131S/Q153N) with matrix metalloproteinase-3 catalytic domain (MMP-3cd) 7S7L ; 2.34 ; Complex of tissue inhibitor of metalloproteinases-1 (TIMP-1) mutant (L34G/M66S/E67Y/L133N/S155L) with matrix metalloproteinase-3 catalytic domain (MMP-3cd) 2G9J ; ; Complex of TM1a(1-14)Zip with TM9a(251-284): a model for the polymerization domain (""overlap region"") of tropomyosin, Northeast Structural Genomics Target OR9 1GAN ; 2.23 ; COMPLEX OF TOAD OVARY GALECTIN WITH N-ACETYLGALACTOSE 1A78 ; 2.0 ; COMPLEX OF TOAD OVARY GALECTIN WITH THIO-DIGALACTOSE 1UCW ; 2.2 ; COMPLEX OF TRANSALDOLASE WITH THE REDUCED SCHIFF-BASE INTERMEDIATE 1NGS ; 2.4 ; COMPLEX OF TRANSKETOLASE WITH THIAMIN DIPHOSPHATE, CA2+ AND ACCEPTOR SUBSTRATE ERYTHROSE-4-PHOSPHATE 2Z5N ; 3.2 ; Complex of Transportin 1 with hnRNP D NLS 2Z5O ; 3.2 ; Complex of Transportin 1 with JKTBP NLS 2Z5K ; 2.6 ; Complex of Transportin 1 with TAP NLS 2Z5M ; 3.0 ; Complex of Transportin 1 with TAP NLS, crystal form 2 7Q9O ; 1.35 ; Complex of Transthyretin with resveratrol exhibits multiple binding modes 5FER ; 2.34 ; Complex of TRIM25 RING with UbcH5-Ub 1A2X ; 2.3 ; COMPLEX OF TROPONIN C WITH A 47 RESIDUE (1-47) FRAGMENT OF TROPONIN I 7CQP ; 1.9 ; Complex of TRPC4 and Calmodulin_Nlobe 7CQV ; 1.78 ; Complex of TRP_CBS1 and Calmodulin_Nlobe 7CQH ; 2.15 ; Complex of TRP_CBS2 and Calmodulin_Clobe 3K8C ; 2.1 ; Complex of Trypanosoma cruzi ribose 5-phosphate isomerase type B with 4-deoxy-4-phospho-D-erythronohydroxamic acid 3K7S ; 1.9 ; Complex of Trypanosoma cruzi ribose 5-phosphate isomerase type B with ribose 5-phosphate 2WQA ; 2.85 ; Complex of TTR and RBP4 and Oleic Acid 1CIR ; ; COMPLEX OF TWO FRAGMENTS OF CI2 [(1-40)(DOT)(41-64)] 1CIQ ; 2.2 ; COMPLEX OF TWO FRAGMENTS OF CI2, RESIDUES 1-40 AND 41-64 7D2Y ; 2.68 ; complex of two RRM domains 4TKP ; 2.08 ; Complex of Ubc13 with the RING domain of the TRIM5alpha retroviral restriction factor 7UN6 ; 3.3 ; Complex of UBE2O with NAP1L1 7UN3 ; 3.5 ; Complex of UBE2O with NAP1L1 and ubiquitylated uL2 3FCK ; 1.64 ; Complex of UNG2 and a fragment-based design inhibitor 3FCF ; 1.84 ; Complex of UNG2 and a fragment-based designed inhibitor 3FCI ; 1.27 ; Complex of UNG2 and a fragment-based designed inhibitor 3FCL ; 1.7 ; Complex of UNG2 and a fragment-based designed inhibitor 2HXM ; 1.3 ; Complex of UNG2 and a small Molecule synthetic Inhibitor 4B93 ; 2.0 ; Complex of Vamp7 cytoplasmic domain with 2nd ankyrin repeat domain of Varp 1C0Q ; 1.0 ; COMPLEX OF VANCOMYCIN WITH 2-ACETOXY-D-PROPANOIC ACID 1C0R ; 1.0 ; COMPLEX OF VANCOMYCIN WITH D-LACTIC ACID 1FVM ; 1.8 ; Complex of vancomycin with DI-acetyl-LYS-D-ALA-D-ALA 1QD8 ; 1.0 ; COMPLEX OF VANCOMYCIN WITH N-ACETYL GLYCINE 4P9O ; 2.89 ; Complex of Voltage-gated ion channel in a the presence of channel blocking compound 6A90 ; 2.8 ; Complex of voltage-gated sodium channel NavPaS from American cockroach Periplaneta americana and Dc1a 6A91 ; 3.2 ; Complex of voltage-gated sodium channel NavPaS from American cockroach Periplaneta americana bound with saxitoxin and Dc1a 6A95 ; 2.6 ; Complex of voltage-gated sodium channel NavPaS from American cockroach Periplaneta americana bound with tetrodotoxin and Dc1a 5LS7 ; 1.16 ; Complex of wild type E. coli alpha aspartate decarboxylase with its processing factor PanZ 3U3E ; 1.21 ; Complex of Wild Type Myoglobin with Phenol in its Proximal Cavity 4QTJ ; 2.1 ; Complex of WOPR domain of Wor1 in Candida albicans with the 13bp dsDNA 4QTK ; 2.99 ; Complex of WOPR domain of Wor1 in Candida albicans with the 17bp dsDNA 6ERG ; 2.9 ; Complex of XLF and heterodimer Ku bound to DNA 6ERH ; 2.8 ; Complex of XLF and heterodimer Ku bound to DNA 6P4O ; 3.15 ; Complex of XPB helicase with Bax1 endonuclease from Sulfurisphaera tokodaii at 3.15 Angstroms resolution 1IOW ; 1.9 ; COMPLEX OF Y216F D-ALA:D-ALA LIGASE WITH ADP AND A PHOSPHORYL PHOSPHINATE 5DAT ; 3.15 ; Complex of yeast 80S ribosome with hypusine-containing eIF5A 5DGF ; 3.3 ; Complex of yeast 80S ribosome with hypusine-containing/non-modified eIF5A and/or a peptidyl-tRNA analog 5DGV ; 3.1 ; Complex of yeast 80S ribosome with hypusine-containing/non-modified eIF5A and/or a peptidyl-tRNA analog 5DC3 ; 3.25 ; Complex of yeast 80S ribosome with non-modified eIF5A 4P4Q ; 2.01 ; Complex of yeast cytochrome c peroxidase (W191F) with iso-1 cytochrome c 5CIF ; 2.01 ; Complex of yeast cytochrome c peroxidase (W191F) with iso-1 cytochrome c 5CIB ; 3.011 ; Complex of yeast cytochrome c peroxidase (W191G) bound to 2,4-dimethylaniline with iso-1 cytochrome c 5CIC ; 2.103 ; Complex of yeast cytochrome c peroxidase (W191G) bound to 3-aminobenzotrifluoride with iso-1 cytochrome c 5CIE ; 2.6 ; Complex of yeast cytochrome c peroxidase (W191G) bound to aniline with iso-1 cytochrome c 5CID ; 2.763 ; Complex of yeast cytochrome c peroxidase (W191G) bound to o-toluidine with iso-1 cytochrome c 5CIG ; 2.06 ; Complex of yeast cytochrome c peroxidase (W191G) with iso-1 cytochrome c 5CIH ; 2.6 ; Complex of yeast cytochrome c peroxidase (W191Y) with iso-1 cytochrome c 6KIQ ; 3.62 ; Complex of yeast cytoplasmic dynein MTBD-High and MT with DTT 6KIO ; 3.94 ; Complex of yeast cytoplasmic dynein MTBD-High and MT without DTT 3ESW ; 3.4 ; Complex of yeast PNGase with GlcNAc2-IAc. 2R25 ; 1.7 ; Complex of YPD1 and SLN1-R1 with bound Mg2+ and BeF3- 1NLI ; 1.93 ; Complex of [E160A-E189A] trichosanthin and adenine 1THD ; 9.5 ; COMPLEX ORGANIZATION OF DENGUE VIRUS E PROTEIN AS REVEALED BY 9.5 ANGSTROM CRYO-EM RECONSTRUCTION 1P58 ; 9.5 ; Complex Organization of Dengue Virus Membrane Proteins as Revealed by 9.5 Angstrom Cryo-EM reconstruction 1AVW ; 1.75 ; COMPLEX PORCINE PANCREATIC TRYPSIN/SOYBEAN TRYPSIN INHIBITOR, ORTHORHOMBIC CRYSTAL FORM 1AVX ; 1.9 ; COMPLEX PORCINE PANCREATIC TRYPSIN/SOYBEAN TRYPSIN INHIBITOR, TETRAGONAL CRYSTAL FORM 1CG9 ; 2.7 ; COMPLEX RECOGNITION OF THE SUPERTYPIC BW6-DETERMINANT ON HLA-B AND-C MOLECULES BY THE MONOCLONAL ANTIBODY SFR8-B6 2FSI ; 2.11 ; Complex SecA:ADP from Escherichia coli 2FSH ; 2.0 ; Complex SecA:AMP-PNP from Escherichia coli 2FSG ; 2.2 ; Complex SecA:ATP from Escherichia coli 5XUL ; 1.98 ; Complex structure (RmMan134A-M6). 5Z4T ; 1.68 ; Complex structure - AxMan113A-M3 4H9N ; 1.95 ; Complex structure 1 of DAXX/H3.3(sub5)/H4 4H9O ; 2.053 ; Complex structure 2 of DAXX/H3.3(sub5,G90M)/H4 7OJS ; 4.2 ; Complex structure 2 of the Bacillus subtilis CdaA c-di-AMP cyclase domain (CdaACD) and the phosphoglucomutase GlmM short variant (GlmMF369) 4H9P ; 2.198 ; Complex structure 3 of DAXX/H3.3(sub5,G90A)/H4 4H9Q ; 1.95 ; Complex structure 4 of DAXX(E225A)/H3.3(sub5)/H4 4H9R ; 2.197 ; Complex structure 5 of DAXX(E225A)/H3.3(sub5,G90A)/H4 4H9S ; 2.6 ; Complex structure 6 of DAXX/H3.3(sub7)/H4 7BNH ; 0.84 ; Complex structure at atomic resolution of SH3b domain with benzoic acid 5LB7 ; 1.5 ; Complex structure between p60N/p80C katanin and a peptide derived from ASPM 3KDJ ; 1.878 ; Complex structure of (+)-ABA-bound PYL1 and ABI1 7BSC ; 2.31 ; Complex structure of 1G5.3 Fab bound to DENV2 NS1c 7BSD ; 2.53 ; Complex structure of 1G5.3 Fab bound to ZIKV NS1c 3RRL ; 2.29 ; Complex structure of 3-oxoadipate coA-transferase subunit A and B from Helicobacter pylori 26695 6A3W ; 2.0 ; Complex structure of 4-1BB and utomilumab 4FS9 ; 3.1 ; Complex structure of a broad specificity amino acid racemase (Bar) within the reactive intermediate 7XHL ; 3.25 ; Complex structure of a Glucose 6-Phosphate Dehydrogenase from Zymomonas mobilis 7CR5 ; 2.08 ; Complex structure of a human monoclonal antibody with SARS-CoV-2 nucleocapsid protein NTD 7VVE ; 1.98 ; Complex structure of a leaf-branch compost cutinase variant in complex with mono(2-hydroxyethyl) terephthalic acid 7W45 ; 1.94 ; Complex structure of a leaf-branch compost cutinase variant LCC ICCG_KIP 7W1N ; 1.88 ; Complex structure of a leaf-branch compost cutinase variant LCC ICCG_KRP 7W44 ; 1.85 ; Complex structure of a leaf-branch compost cutinase variant LCC ICCG_RIP 7CDX ; 2.103 ; Complex STRUCTURE OF A NOVEL VIRULENCE REGULATION FACTOR SghR with its effector sucrose 8H3E ; 3.06 ; Complex structure of a small molecule (SPC-14) bound SARS-CoV-2 spike protein, closed state 4DSC ; 1.95 ; Complex structure of abscisic acid receptor PYL3 with (+)-ABA in spacegroup of H32 at 1.95A 4DSB ; 2.7 ; Complex Structure of Abscisic Acid Receptor PYL3 with (+)-ABA in Spacegroup of I 212121 at 2.70A 4JDA ; 2.65 ; Complex structure of abscisic acid receptor PYL3 with (-)-ABA 4DS8 ; 2.21 ; Complex structure of abscisic acid receptor PYL3-(+)-ABA-HAB1 in the presence of Mn2+ 2ZH1 ; 2.8 ; Complex structure of AFCCA with tRNAminiDA 2ZH2 ; 2.66 ; Complex structure of AFCCA with tRNAminiDAC 2ZH3 ; 2.5 ; Complex structure of AFCCA with tRNAminiDCA 2ZH4 ; 2.65 ; Complex structure of AFCCA with tRNAminiDCG 2ZH5 ; 2.6 ; Complex structure of AFCCA with tRNAminiDCU 2ZH6 ; 2.5 ; Complex structure of AFCCA with tRNAminiDCU and ATP 2ZH7 ; 3.0 ; Complex structure of AFCCA with tRNAminiDG 2ZH8 ; 2.65 ; Complex structure of AFCCA with tRNAminiDGC 2ZH9 ; 2.9 ; Complex structure of AFCCA with tRNAminiDU 2ZHA ; 2.95 ; Complex structure of AFCCA with tRNAminiDU and CTP 2ZHB ; 3.05 ; Complex structure of AFCCA with tRNAminiDUC 7W12 ; 2.25 ; Complex structure of alginate lyase AlyB-OU02 with G9 6A40 ; 1.8 ; complex structure of Alginate lyase AlyF-OU02 with G4 7BZ0 ; 1.8 ; complex structure of alginate lyase AlyF-OU02 with G6 7W16 ; 1.9 ; Complex structure of alginate lyase AlyV with M8 7W18 ; 1.7 ; Complex structure of alginate lyase PyAly with M5 7W13 ; 1.65 ; Complex structure of alginate lyase PyAly with M8 4RFR ; 1.5 ; Complex structure of AlkB/rhein 4JOL ; 2.906 ; Complex structure of AML1-ETO NHR2 domain with HEB fragment 6JIT ; 2.052 ; Complex structure of an imine reductase at 2.05 Angstrom resolution 3WKT ; 4.3 ; Complex structure of an open form of NADPH-cytochrome P450 reductase and heme oxygenase-1 5XJM ; 3.2 ; Complex structure of angiotensin II type 2 receptor with Fab 7EJY ; 3.04 ; Complex Structure of antibody BD-503 and RBD of COVID-19 7F6Z ; 3.0 ; Complex Structure of antibody BD-503 and RBD-501Y.V2 of COVID-19 7F6Y ; 3.0 ; Complex Structure of antibody BD-503 and RBD-E484K of COVID-19 7EK0 ; 2.7 ; Complex Structure of antibody BD-503 and RBD-N501Y of COVID-19 7EJZ ; 3.63 ; Complex Structure of antibody BD-503 and RBD-S477N of COVID-19 8GQD ; 3.41 ; Complex Structure of Arginine Kinase McsB and McsA from Staphylococcus aureus 4N0O ; 2.65 ; Complex structure of Arterivirus nonstructural protein 10 (helicase) with DNA 7VC8 ; 1.606 ; Complex structure of AtHPPD with inhibitor PYQ3 7EZQ ; 1.886 ; Complex structure of AtHPPD with inhibitor Y15832 7CJK ; 1.698 ; Complex structure of AtHPPD with inhibitor Y18093 8WQM ; 1.796 ; Complex structure of AtHPPD with LB553 7WJ8 ; 1.805 ; Complex structure of AtHPPD-PyQ1 7WJJ ; 1.603 ; Complex structure of AtHPPD-PyQ2 7WJK ; 1.704 ; Complex structure of AtHPPD-ZWJ 4W5A ; 2.6 ; Complex structure of ATRX ADD bound to H3K9me3S10ph peptide 3QLC ; 2.5 ; Complex structure of ATRX ADD domain bound to unmodified H3 1-15 peptide 7Y9I ; 2.07 ; Complex structure of AtYchF1 with ppGpp 6JCK ; 3.09 ; Complex structure of Axin-DIX and Dvl2-DIX 3EX8 ; 2.56 ; Complex structure of bacillus subtilis RibG reduction mechanism in riboflavin biosynthesis 4G3M ; 2.56 ; Complex Structure of Bacillus subtilis RibG: The Deamination Process in Riboflavin Biosynthesis 3AQN ; 3.3 ; Complex structure of bacterial protein (apo form II) 7YUK ; 2.11 ; Complex structure of BANP BEN domain bound to DNA 6L8Q ; 3.1 ; Complex structure of bat CD26 and MERS-RBD 4YK9 ; 1.7 ; Complex structure of BCL-XL and mutated BIM BH3 domain 8GNH ; 3.74 ; Complex structure of BD-218 and Spike protein 3OGR ; 1.5 ; Complex structure of beta-galactosidase from Trichoderma reesei with galactose 3OGS ; 1.75 ; Complex structure of beta-galactosidase from Trichoderma reesei with IPTG 3OGV ; 1.4 ; Complex structure of beta-galactosidase from Trichoderma reesei with PETG 6LSA ; 2.204 ; Complex structure of bovine herpesvirus 1 glycoprotein D and bovine nectin-1 IgV 4U4A ; 3.51 ; Complex Structure of BRCA1 BRCT with singly phospho Abraxas 2M0U ; ; Complex structure of C-terminal CFTR peptide and extended PDZ1 domain from NHERF1 2M0V ; ; Complex structure of C-terminal CFTR peptide and extended PDZ2 domain from NHERF1 4XWM ; 1.703 ; Complex structure of catalytic domain of Clostridium Cellulovorans Exgs and Cellobiose 4XWN ; 2.884 ; Complex structure of catalytic domain of Clostridium Cellulovorans Exgs and Cellotetraose 8HDD ; 3.0 ; Complex structure of catalytic, small, and a partial electron transfer subunits from Burkholderia cepacia FAD glucose dehydrogenase 2DR5 ; 2.8 ; Complex structure of CCA adding enzyme with mini-helix lacking CCA 2DRB ; 2.8 ; Complex structure of CCA-adding enzyme with tRNAminiCCA 2DR7 ; 2.8 ; Complex structure of CCA-adding enzyme with tRNAminiDC 2DR8 ; 2.5 ; Complex structure of CCA-adding enzyme with tRNAminiDC and CTP 2DR9 ; 2.8 ; Complex structure of CCA-adding enzyme with tRNAminiDCC 2DRA ; 2.5 ; Complex structure of CCA-adding enzyme with tRNAminiDCC and ATP 2DVI ; 2.61 ; Complex structure of CCA-adding enzyme, mini-DCC and CTP 8IVD ; 3.24 ; COMPLEX STRUCTURE OF CD93-IGFBP7 8H6P ; 2.44 ; Complex structure of CDK2/Cyclin E1 and a potent, selective macrocyclic inhibitor 8H6T ; 3.0 ; Complex structure of CDK2/Cyclin E1 and a potent, selective small molecule inhibitor 7SLW ; 2.3 ; Complex structure of CDYL2 with an antagonist 8SP6 ; 1.45 ; COMPLEX STRUCTURE OF CDYL2 WITH AN ANTAGONIST 6LQL ; 1.8 ; Complex structure of CHAO with product from Erythrobacteraceae bacterium 7YVQ ; 3.18 ; Complex structure of Clostridioides difficile binary toxin folded CDTa-bound CDTb-pore (short). 7YVS ; 2.8 ; Complex structure of Clostridioides difficile binary toxin unfolded CDTa-bound CDTb-pore (short). 7VNN ; 2.64 ; Complex structure of Clostridioides difficile enzymatic component (CDTa) and binding component (CDTb) pore with long stem 7VNJ ; 2.56 ; Complex structure of Clostridioides difficile enzymatic component (CDTa) and binding component (CDTb) pore with short stem 2ZU2 ; 1.8 ; complex structure of CoV 229E 3CL protease with EPDTC 6A73 ; 2.447 ; Complex structure of CSN2 with IP6 2ZTX ; 1.72 ; Complex structure of CVB3 3C protease with EPDTC 2ZU3 ; 1.75 ; Complex structure of CVB3 3C protease with TG-0204998 5Y7Z ; 2.804 ; Complex structure of cyclin G-associated kinase with gefitinib 5Y80 ; 2.5 ; Complex structure of cyclin G-associated kinase with gefitinib 3LQS ; 1.9 ; Complex Structure of D-Amino Acid Aminotransferase and 4-amino-4,5-dihydro-thiophenecarboxylic acid (ADTA) 7XPC ; 3.31 ; Complex structure of D-glycerate-3-kinase(GLYK) and AVRvnt1 3P13 ; 2.35 ; Complex Structure of D-ribose Pyranase Sa240 with D-ribose 2QKY ; 3.1 ; complex structure of dipeptidyl peptidase IV and a oxadiazolyl ketone 7CPW ; 2.849 ; Complex structure of DNA with self-catalyzed depurination activity 7ZHH ; 1.6 ; Complex structure of drosophila Unr CSD789 and a poly(A) RNA sequence 7ZHR ; 2.99 ; Complex structure of drosophila Unr CSD789 and pAbp RRM3 5XJ4 ; 2.3 ; Complex structure of durvalumab-scFv/PD-L1 2MX6 ; ; Complex structure of Dvl PDZ domain with ligand 2L29 ; ; Complex structure of E4 mutant human IGF2R domain 11 bound to IGF-II 3K26 ; 1.58 ; Complex structure of EED and trimethylated H3K4 3K27 ; 1.76 ; Complex structure of EED and trimethylated H3K9 7F9H ; 1.78 ; complex structure of EnrR-DNA 4OB6 ; 1.7 ; Complex structure of esterase rPPE S159A/W187H and substrate (S)-Ac-CPA 5IYT ; 1.73 ; Complex structure of EV-B93 main protease 3C with N-Ethyl 4-((1-cycloheptyl-1,2-dihydropyrazol-3-one-5-yl)-amino)-4-oxo-2Z-butenamide 5HBT ; 2.61 ; Complex structure of Fab35 and human nAChR alpha1 5HBV ; 2.7 ; Complex structure of Fab35 and mouse nAChR alpha1 6BZ3 ; 2.497 ; Complex structure of FAK FAT domain and DCC P3 motif 3L1B ; 1.9 ; Complex Structure of FXR Ligand-binding domain with a tetrahydroazepinoindole compound 3DOW ; 2.3 ; Complex structure of GABA type A receptor associated protein and its binding epitope on calreticulin 5YLK ; 2.09 ; Complex structure of GH 113 family beta-1,4-mannanase with mannobiose 5YLI ; 2.37 ; Complex structure of GH113 beta-1,4-mannanase 6KO5 ; 3.3 ; Complex structure of Ghrelin receptor with Fab 7N54 ; 2.0 ; Complex structure of GLAU4 with glaucine 7EEJ ; 1.47798 ; Complex structure of glycoside hydrolase family 12 beta-1,3-1,4-glucanase with cellobiose 7EEE ; 1.66079 ; Complex structure of glycoside hydrolase family 12 beta-1,3-1,4-glucanase with gentiobiose 6J14 ; 1.4 ; Complex structure of GY-14 and PD-1 6J15 ; 2.6 ; Complex structure of GY-5 Fab and PD-1 5XL3 ; 2.203 ; Complex structure of H4 hemagglutinin from avian influenza H4N6 virus with LSTa 1NJT ; 2.5 ; COMPLEX STRUCTURE OF HCMV PROTEASE AND A PEPTIDOMIMETIC INHIBITOR 1NJU ; 2.7 ; Complex structure of HCMV Protease and a peptidomimetic inhibitor 1NKK ; 2.6 ; COMPLEX STRUCTURE OF HCMV PROTEASE AND A PEPTIDOMIMETIC INHIBITOR 1NKM ; 2.7 ; Complex structure of HCMV Protease and a peptidomimetic inhibitor 3Q3Y ; 1.32 ; Complex structure of HEVB EV93 main protease 3C with Compound 1 (AG7404) 3RUO ; 1.5 ; Complex structure of HevB EV93 main protease 3C with Rupintrivir (AG7088) 7N65 ; 4.15 ; Complex structure of HIV superinfection Fab QA013.2 and BG505.SOSIP.664 7EJL ; 1.89 ; Complex Structure of HLA-A*2402 with the Peptide from HCoV(CoV-2) spike protein 7EJM ; 1.71 ; Complex Structure of HLA-A*2402 with the Peptide from HCoV(CoV-229E) spike protein 7EJN ; 2.11 ; Complex Structure of HLA-A*2402 with the Peptide from HCoV(CoV-HKU1) spike protein 7EU2 ; 2.8 ; Complex structure of HLA0201 with recognizing SARS-CoV-2 epitope S1 7F4W ; 2.9 ; Complex structure of HLA2402 with recognizing SARS-CoV-2 epitope pep4 8HN4 ; 2.853 ; Complex structure of HLA2402 with recognizing SARS-CoV-2 epitope QYIKWPWYI 8IF1 ; 2.5 ; Complex structure of HLA2402 with recognizing SARS-CoV-2 Y453F epitope NYNYLFRLF 6LGT ; 1.794 ; Complex structure of HPPD with an inhibitor Y16542 7CQS ; 1.998 ; Complex structure of HPPD with Topramezone 7CQR ; 1.947 ; Complex structure of HPPD with Y16550 1BDJ ; 2.68 ; COMPLEX STRUCTURE OF HPT DOMAIN AND CHEY 6A3V ; 3.391 ; Complex structure of human 4-1BB and 4-1BBL 5B4P ; 2.4 ; Complex structure of human C5a and its binding repebody 8J3S ; 3.09 ; Complex structure of human cytomegalovirus protease and a macrocyclic peptide ligand 8J3T ; 2.9 ; Complex structure of human cytomegalovirus protease and a non-covalent small-molecule ligand 5DQS ; 2.1 ; Complex structure of human elongation factor 1B alpha and gamma GST-like domains 5JPO ; 1.998 ; Complex structure of human elongation factor 1B gamma GST-liked domain and delta N-terminal domain 1MEN ; 2.23 ; complex structure of human GAR Tfase and substrate beta-GAR 2V5P ; 4.1 ; COMPLEX STRUCTURE OF HUMAN IGF2R DOMAINS 11-13 BOUND TO IGF-II 5LQB ; 1.95 ; Complex structure of human IL2 mutant, Proleukin, with Fab fragment of NARA1 antibody 6URQ ; 2.05 ; Complex structure of human poly-ADP-ribosyltransferase TNKS1 ARC2-ARC3 and P antigen family member 4 (PAGE4) 7UK1 ; 2.7 ; Complex Structure of Human Polypyrimidine Splicing Factor (PSF/SFPQ) with Murine Virus-like 30S Transcript-1 (VS30-1) Reveals Cooperative Binding of RNA 4FBX ; 2.33 ; Complex structure of human protein kinase CK2 catalytic subunit crystallized in the presence of a bisubstrate inhibitor 5M44 ; 2.71 ; Complex structure of human protein kinase CK2 catalytic subunit with a thieno[2,3-d]pyrimidin inhibitor crystallized under high-salt conditions 5M4C ; 1.935 ; Complex structure of human protein kinase CK2 catalytic subunit with a thieno[2,3-d]pyrimidin inhibitor crystallized under low-salt conditions 5M4I ; 2.218 ; Complex structure of human protein kinase CK2 catalytic subunit with the inhibitor 4'-carboxy-6,8-chloro-flavonol (FLC21) crystallized under high-salt conditions 5M4F ; 1.519 ; Complex structure of human protein kinase CK2 catalytic subunit with the inhibitor 4'-carboxy-6,8-chloro-flavonol (FLC21) crystallized under low-salt conditions 5WRV ; 1.7 ; Complex structure of human SRP72/SRP68 4HL5 ; 2.2 ; Complex structure of human tankyrase 2 with 7-hydroxy -4'-methoxyflavone 4HKK ; 1.95 ; Complex structure of human tankyrase 2 with apigenin 4HKN ; 2.05 ; Complex structure of human tankyrase 2 with luteolin 3U9H ; 1.75 ; Complex structure of human tankyrase 2 with nicotinamide 1EB1 ; 1.8 ; Complex structure of human thrombin with N-methyl-arginine inhibitor 6IRE ; 3.25 ; Complex structure of INAD PDZ45 and NORPA CC-PBM 6IRD ; 2.813 ; Complex structure of INADL PDZ89 and PLCb4 C-terminal CC-PBM 3F5P ; 2.9 ; Complex Structure of Insulin-like Growth Factor Receptor and 3-Cyanoquinoline Inhibitor 2ZM3 ; 2.5 ; Complex Structure of Insulin-like Growth Factor Receptor and Isoquinolinedione Inhibitor 6KLW ; 2.9 ; Complex structure of Iota toxin enzymatic component (Ia) and binding component (Ib) pore with long stem 6KLO ; 2.8 ; Complex structure of Iota toxin enzymatic component (Ia) and binding component (Ib) pore with short stem 5XJ3 ; 3.2 ; Complex structure of ipilimumab-scFv and CTLA-4 5FBJ ; 2.42 ; Complex structure of JMJD5 and substrate 6AX3 ; 2.25 ; Complex structure of JMJD5 and Symmetric Dimethyl-Arginine (SDMA) 6AVS ; 2.02 ; Complex structure of JMJD5 and Symmetric Monomethyl-Arginine (MMA) 7C88 ; 1.997 ; Complex structure of JS003 and PD-L1 8FMN ; 3.101 ; Complex structure of K210 deletion Troponin complex 8FMQ ; 3.248 ; Complex structure of K210 deletion Troponin complex with alendronate 8FMR ; 3.238 ; Complex structure of K210 deletion Troponin complex with ibandronate 8FMS ; 3.435 ; Complex structure of K210 deletion Troponin complex with neridronate 8FMP ; 3.24 ; Complex structure of K210 deletion Troponin complex with pamidronate 8FMO ; 2.612 ; Complex structure of K210 deletion Troponin complex with risedronate 6J9U ; 2.79 ; Complex structure of Lactobacillus casei lactate dehydrogenase penta mutant with pyruvate 6J9T ; 2.7 ; Complex structure of Lactobacillus casei lactate dehydrogenase with fructose-1,6-bisphosphate 7XQL ; 2.272 ; complex structure of LegA15 with GNP 2Z3M ; 2.7 ; complex structure of LF-transferase and dAF 2Z3P ; 2.5 ; complex structure of LF-transferase and leucine 2Z3L ; 2.75 ; complex structure of LF-transferase and peptide A 2Z3N ; 2.5 ; complex structure of LF-transferase and peptide B 2Z3O ; 2.4 ; complex structure of LF-transferase and phenylalanine 2Z3K ; 2.85 ; complex structure of LF-transferase and rAF 6K7O ; 3.004 ; Complex structure of LILRB4 and h128-3 antibody 6BYX ; 2.208 ; Complex structure of LOR107 mutant (R259N) with tetrasaccharide substrate 6BYT ; 2.2 ; Complex structure of LOR107 mutant (R320) with tetrasaccharide substrate 4FWF ; 2.7 ; Complex structure of LSD2/AOF1/KDM1b with H3K4 mimic 3KFC ; 2.4 ; Complex Structure of LXR with an agonist 7YMR ; 2.69 ; Complex structure of lysoplasmalogen specific phopholipase D, F211L mutant with LPC 5LEO ; 1.6 ; Complex structure of lysostaphin SH3b domain with peptidoglycan fragment 6J5D ; 1.8 ; Complex structure of MAb 4.2-scFv with louping ill virus envelope protein Domain III 6J5G ; 3.291 ; Complex structure of MAb 4.2-scFv with tick-borne encephalitis virus envelope protein 6J5F ; 1.801 ; Complex structure of MAb 4.2-scFv with tick-borne encephalitis virus envelope protein Domain III 6ISC ; 2.2 ; complex structure of mCD226-ecto and hCD155-D1 4KR0 ; 2.702 ; Complex structure of MERS-CoV spike RBD bound to CD26 5DO2 ; 2.409 ; Complex structure of MERS-RBD bound with 4C2 antibody 4GAM ; 2.902 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit 7S6S ; 1.98 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit DBL1 7S6Q ; 1.96 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit DBL2 7S7H ; 2.4 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit DBL2 7S6T ; 1.82 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit H33A 7M8Q ; 2.08 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit with fluorosubstituted tryptophans 7M8R ; 2.22 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit with fluorosubstituted tryptophans 7S6R ; 1.89 ; Complex structure of Methane monooxygenase hydroxylase and regulatory subunit with H5A mutation 6D7K ; 2.6 ; Complex structure of Methane monooxygenase hydroxylase in complex with inhibitory subunit 7W9G ; 2.5 ; Complex structure of Mpro with ebselen-derivative inhibitor 4U5K ; 2.65 ; Complex structure of mutant CtCel5E (E314A) with cellobiose 4U5I ; 2.5 ; Complex structure of mutant CtCel5E (E314A) with xylobiose 2N13 ; ; Complex structure of MyUb (1080-1122) of human Myosin VI with K63-diUb 4F8Y ; 1.796 ; Complex structure of NADPH:quinone oxidoreductase with menadione in Streptococcus mutans 4H5S ; 1.7 ; Complex structure of Necl-2 and CRTAM 4GJT ; 3.1001 ; complex structure of nectin-4 bound to MV-H 7YOO ; 3.11 ; Complex structure of Neuropeptide Y Y2 receptor in complex with NPY and Gi 7YON ; 2.95 ; Complex structure of Neuropeptide Y Y2 receptor in complex with PYY(3-36) and Gi 5Y1Y ; 1.912 ; Complex structure of nitroxoline with the first bromodomain of BRD4 5CL1 ; 3.8 ; Complex structure of Norrin with human Frizzled 4 7N4Z ; 2.21 ; Complex structure of NOS4 with noscapine 4IP3 ; 2.3 ; Complex structure of OspI and Ubc13 5EE3 ; 2.9 ; COMPLEX STRUCTURE OF OSYCHF1 WITH AMP-PNP 5EE9 ; 2.75 ; Complex structure of OSYCHF1 with GMP-PNP 6F55 ; ; Complex structure of PACSIN SH3 domain and TRPV4 proline rich region 7N53 ; 1.6 ; Complex structure of PAP4 with papaverine 7CMW ; 2.7 ; Complex structure of PARP1 catalytic domain with pamiparib 1WUG ; ; complex structure of PCAF bromodomain with small chemical ligand NP1 1WUM ; ; Complex structure of PCAF bromodomain with small chemical ligand NP2 5YCO ; 2.199 ; Complex structure of PCNA with UHRF2 4ZM4 ; 2.4 ; Complex structure of PctV K276R mutant with PMP and 3-dehydroshkimate 5WT9 ; 2.401 ; Complex structure of PD-1 and nivolumab-Fab 7CGW ; 3.2 ; Complex structure of PD-1 and tislelizumab Fab 7VUX ; 1.64 ; Complex structure of PD1 and 609A-Fab 7WEG ; 2.0 ; Complex structure of PDZD7 and FCHSD2 4ZUH ; 2.394 ; Complex structure of PEDV 3CLpro mutant (C144A) with a peptide substrate. 5ZQG ; 1.6 ; Complex structure of PEDV 3CLpro mutant (C144A) with NEMO-231 peptite substrate 6L70 ; 1.56 ; Complex structure of PEDV 3CLpro with GC376 1N5Z ; 2.7 ; Complex structure of Pex13p SH3 domain with a peptide of Pex14p 6WAT ; 1.8 ; complex structure of PHF1 6WAU ; 1.75 ; Complex structure of PHF19 4Y6K ; 3.855 ; Complex structure of presenilin homologue PSH bound to an inhibitor 2VCQ ; 1.95 ; Complex structure of prostaglandin D2 synthase at 1.95A. 2VCW ; 1.95 ; Complex structure of prostaglandin D2 synthase at 1.95A. 2VCZ ; 1.95 ; Complex structure of prostaglandin D2 synthase at 1.95A. 2VCX ; 2.1 ; Complex structure of prostaglandin D2 synthase at 2.1A. 2VD1 ; 2.25 ; Complex structure of prostaglandin D2 synthase at 2.25A. 2VD0 ; 2.2 ; Complex structure of prostaglandin D2 synthase at 2.2A. 4OD7 ; 1.597 ; Complex structure of Proteus mirablis DsbA (C30S) with a non-covalently bound peptide PWATCDS 6IF3 ; 1.5 ; Complex structure of Rab35 and its effector ACAP2 6IF2 ; 2.4 ; Complex structure of Rab35 and its effector RUSC2 5XU5 ; 2.02 ; Complex structure of RmMan134A-M4 8GXP ; 2.45 ; Complex structure of RORgama with betulinic acid 7N4W ; 1.64 ; Complex structure of ROTU4 with rotundine 3T7K ; 2.028 ; Complex structure of Rtt107p and phosphorylated histone H2A 7DWH ; 3.1 ; Complex structure of SAM-dependent methyltransferase ribozyme 2Z9J ; 1.95 ; Complex structure of SARS-CoV 3C-like protease with EPDTC 2Z9L ; 2.1 ; complex structure of SARS-CoV 3C-like protease with JMF1586 2Z9K ; 1.85 ; Complex structure of SARS-CoV 3C-like protease with JMF1600 2Z9G ; 1.86 ; Complex structure of SARS-CoV 3C-like protease with PMA 2Z94 ; 1.78 ; Complex structure of SARS-CoV 3C-like protease with TDT 2ZU4 ; 1.93 ; Complex structure of SARS-CoV 3CL protease with TG-0204998 2ZU5 ; 1.65 ; complex structure of SARS-CoV 3CL protease with TG-0205486 7C8R ; 2.3 ; Complex Structure of SARS-CoV-2 3CL Protease with TG-0203770 7C8T ; 2.05 ; Complex Structure of SARS-CoV-2 3CL Protease with TG-0205221 7BQG ; 1.55011 ; Complex structure of SAV1 and Dendrin 7V3D ; 2.28 ; Complex structure of serine hydroxymethyltransferase from Enterococcus faecium and its inhibitor 3MP6 ; 1.48 ; Complex Structure of Sgf29 and dimethylated H3K4 3MP1 ; 2.6 ; Complex structure of Sgf29 and trimethylated H3K4 7BNI ; 1.31 ; Complex structure of SH3b domain with 2-hydroxybenzoic acid 7BNG ; 1.47 ; Complex structure of SH3b domain with L-canavanine 3L0I ; 2.85 ; Complex structure of SidM/DrrA with the wild type Rab1 7EYS ; 1.95 ; Complex structure of SptF with Fe, alpha-ketoglutarate, and andiconin D 5WTB ; 3.3 ; Complex Structure of Staphylococcus aureus SdrE with human complement factor H 2R66 ; 2.8 ; Complex Structure of Sucrose Phosphate Synthase (SPS)-F6P of Halothermothrix orenii 2R68 ; 2.4 ; Complex Structure of Sucrose Phosphate Synthase (SPS)-S6P of Halothermothrix orenii 2V9W ; 3.0 ; Complex structure of Sulfolobus solfataricus DPO4 and DNA duplex containing a hydrophobic thymine isostere 2,4-difluorotoluene nucleotide in the template strand 2VA2 ; 2.8 ; Complex structure of Sulfolobus solfataricus DPO4 and DNA duplex containing a hydrophobic thymine isostere 2,4-difluorotoluene nucleotide in the template strand 2VA3 ; 2.98 ; Complex structure of Sulfolobus solfataricus DPO4 and DNA duplex containing a hydrophobic thymine isostere 2,4-difluorotoluene nucleotide in the template strand 3IMA ; 2.03 ; Complex structure of tarocystatin and papain 7FAX ; 1.8 ; Complex structure of TbLeo1 and LW domain from Trypanosoma brucei 1G9Q ; 2.3 ; COMPLEX STRUCTURE OF THE ADPR-ASE AND ITS SUBSTRATE ADP-RIBOSE 5V1D ; 2.799 ; Complex structure of the bovine PERK luminal domain and its substrate peptide 1WTB ; ; Complex structure of the C-terminal RNA-binding domain of hnRNP D (AUF1) with telomere DNA 1X0F ; ; Complex structure of the C-terminal RNA-binding domain of hnRNP D(AUF1) with telomeric DNA 2K2Q ; ; complex structure of the external thioesterase of the Surfactin-synthetase with a carrier domain 5WUU ; 1.724 ; Complex structure of the first bromodomain of BRD4 with an inhibitor that containing a 2H-chromen-2-one ring 5GRS ; 5.4 ; Complex structure of the fission yeast SREBP-SCAP binding domains 5C2J ; 2.5 ; Complex structure of the GAP domain of MgcRacGAP and Cdc42 2W5O ; 2.05 ; Complex structure of the GH93 alpha-L-arabinofuranosidase of Fusarium graminearum with arabinobiose 6IIR ; 2.2 ; Complex structure of the HRP3 PWWP domain with a 10-bp GC-rich DNA 6IIQ ; 1.85 ; Complex structure of the HRP3 PWWP domain with a 16-bp TA-rich DNA 6IIT ; 2.1 ; Complex structure of the HRP3 PWWP domain with both a 16-bp TA-rich DNA and an H3K36me2-containing histone peptide 6IIS ; 2.358 ; Complex structure of the HRP3 PWWP domain with both a 16-bp TA-rich DNA and an H3K36me3-containing histone peptide 2XFM ; ; Complex structure of the MIWI Paz domain bound to methylated single stranded RNA 6J7M ; 2.301 ; Complex structure of the Pseudomonas aeruginosa rhamnosyltransferase EarP with the acceptor elongation factor EF-P 2RR4 ; ; Complex structure of the zf-CW domain and the H3K4me3 peptide 4XSE ; 3.1 ; Complex structure of thymidylate synthase from varicella zoster virus 4XSD ; 2.9 ; Complex structure of thymidylate synthase from varicella zoster virus with a dUMP 4XSC ; 2.901 ; Complex structure of thymidylate synthase from varicella zoster virus with a phosphorylated BVDU 8FMT ; 2.8 ; Complex structure of TnnT-R205L Troponin complex 6JBT ; 2.47 ; Complex structure of toripalimab-Fab and PD-1 7MK9 ; 3.54 ; Complex structure of trailing EC of EC+EC (trailing EC-focused) 7CE1 ; 3.2 ; Complex STRUCTURE OF TRANSCRIPTION FACTOR SghR with its COGNATE DNA 5H1T ; 1.951 ; Complex structure of TRIM24 PHD-bromodomain and inhibitor 1 5H1U ; 1.901 ; Complex structure of TRIM24 PHD-bromodomain and inhibitor 2 5H1V ; 2.002 ; Complex structure of TRIM24 PHD-bromodomain and inhibitor 6 2EJU ; 1.95 ; Complex structure of Trm1 from Pyrococcus horikoshii with S-adenosyl-L-Homocystein 2YTZ ; 2.65 ; Complex structure of Trm1 from Pyrococcus horikoshii with S-adenosyl-L-Homocystein in the orthorhombic crystal-lattice 2EJT ; 2.2 ; Complex structure of Trm1 from Pyrococcus horikoshii with S-adenosyl-L-Methionine 3AXT ; 2.491 ; Complex structure of tRNA methyltransferase Trm1 from Aquifex aeolicus with S-adenosyl-L-Methionine 3AXS ; 2.162 ; Complex structure of tRNA methyltransferase Trm1 from Aquifex aeolicus with sinefungin 4M5F ; 2.5 ; complex structure of Tse3-Tsi3 7D1L ; 1.95 ; complex structure of two RRM domains 7C1M ; ; Complex structure of tyrosinated alpha-tubulin carboxy-terminal peptide and A1aY1 binder 6D3U ; 2.21 ; Complex structure of Ulvan lyase from Nonlaben Ulvanivorans- NLR48 3WV5 ; 2.2 ; Complex structure of VinN with 3-methylaspartate 3WVN ; 2.2 ; Complex structure of VinN with L-aspartate 4Q7J ; 2.9 ; Complex structure of viral RNA polymerase 4FWT ; 3.2 ; Complex structure of viral RNA polymerase form III 3VNU ; 3.2 ; Complex structure of viral RNA polymerase I 3VNV ; 2.604 ; Complex structure of viral RNA polymerase II 6RJM ; 2.112 ; Complex structure of virulence factor SghA and its hydrolysis product glucose 6RK2 ; 2.09 ; Complex structure of virulence factor SghA mutant with its substrate SAG 6RJO ; 1.804 ; Complex structure of virulence factor SghA with its substrate analog salicin 6ONO ; 1.85 ; Complex structure of WhiB1 and region 4 of SigA in C2221 space group 6ONU ; 1.85 ; Complex structure of WhiB1 and region 4 of SigA in P21 space group. 8CWT ; 1.35 ; Complex structure of WhiB3 and the SigmaAr4-RNAP Beta flap tip chimera in space group P43212 8CWR ; 1.5 ; Complex structure of WhiB3 and the SigmaAr4-RNAP Beta flap tip chimera in space group R3 6KZ1 ; 1.694 ; Complex structure of Whirlin and Myosin XVa 8FMM ; 3.112 ; Complex structure of wild type Troponin complex 2X0E ; 2.81 ; Complex structure of WsaF with dTDP 2RSF ; ; Complex structure of WWE in RNF146 with ATP 1XL3 ; 2.2 ; Complex structure of Y.pestis virulence Factors YopN and TyeA 8FSR ; 1.78 ; Complex Structure of YejA with fMccA 8FSS ; 2.0 ; Complex Structure of YejA-S481A with Microcin C7 5NXU ; 3.0 ; Complex structure with maltose of Providencia stuartii Omp-Pst1 porin 5XUG ; 2.31 ; Complex structure(RmMan134A-M5). 2RNY ; ; Complex Structures of CBP Bromodomain with H4 ack20 Peptide 2Z59 ; ; Complex Structures of Mouse Rpn13 (22-130aa) and ubiquitin 5OID ; 4.6 ; Complex Trichoplax STIL-NTD:human CEP85 coiled coil domain 4 1FGH ; 2.05 ; COMPLEX WITH 4-HYDROXY-TRANS-ACONITATE 6T6C ; 1.25 ; Complex with chitin oligomer of C-type lysozyme from the upper gastrointestinal tract of Opisthocomus hoatzin 5OEX ; 2.0 ; Complex with iodine ion for thiocyanate dehydrogenase from Thioalkalivibrio paradoxus 2UXR ; 2.3 ; Complex with isocitrate and the protein isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila 7O25 ; 1.34 ; Complex-B bound [FeFe]-hydrogenase maturase HydE from T. maritima (reaction triggered in the crystal) 7O26 ; 1.5 ; Complex-B bound [FeFe]-hydrogenase maturase HydE fromT. Maritima (5'dA + Methionine) 7O1O ; 1.25 ; Complex-B bound [FeFe]-hydrogenase maturase HydE fromT. Maritima (Auxiliary cluster deleted variant) 7O1S ; 1.39 ; Complex-B bound [FeFe]-hydrogenase maturase HydE fromT. Maritima (Wild-type protein) 4JMO ; 1.8 ; Complexe of ARNO Sec7 domain with the protein-protein interaction inhibitor N-(4-hydroxy-2,6-dimethylphenyl)-4-methoxybenzenesulfonamide 4JXH ; 1.47 ; Complexe of ARNO Sec7 domain with the protein-protein interaction inhibitor N-(4-hydroxy-2,6-dimethylphenyl)benzenesulfonamide at pH 8.5 4L5M ; 1.8 ; Complexe of ARNO Sec7 domain with the protein-protein interaction inhibitor N-(4-hydroxy-2,6-dimethylphenyl)benzenesulfonamide at pH6.5 4JWL ; 1.95 ; Complexe of ARNO Sec7 domain with the protein-protein interaction inhibitor N-(4-hydroxy-2,6-dimethylphenyl)benzenesulfonamide at pH7.5 1GT5 ; 2.08 ; Complexe of Bovine Odorant Binding Protein with benzophenone 6JDG ; 2.388 ; Complexed crystal structure of PaSSB with ssDNA dT20 at 2.39 angstrom resolution 6IRQ ; 1.91 ; Complexed crystal structure of PaSSB with ssDNA dT25 at 1.91 angstrom resolution 2CC6 ; 1.27 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CC7 ; 1.8 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CC8 ; 1.9 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CC9 ; 1.55 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CCB ; 1.65 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CCC ; 1.7 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CIE ; 1.8 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CIF ; 2.8 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2CJC ; 1.85 ; Complexes of Dodecin with Flavin and Flavin-like Ligands 2VKF ; 1.7 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 2VKG ; 1.8 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 4B2H ; 1.6 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 4B2J ; 1.9 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 4B2K ; 1.7 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 4B2M ; 2.0 ; COMPLEXES OF DODECIN WITH FLAVIN AND FLAVIN-LIKE LIGANDS 4ANU ; 2.81 ; Complexes of PI3Kgamma with isoform selective inhibitors. 4ANV ; 2.13 ; Complexes of PI3Kgamma with isoform selective inhibitors. 4ANW ; 2.31 ; Complexes of PI3Kgamma with isoform selective inhibitors. 4ANX ; 2.73 ; Complexes of PI3Kgamma with isoform selective inhibitors. 1WQZ ; 3.0 ; Complicated water orientations in the minor groove of B-DNA decamer D(CCATTAATGG)2 observed by neutron diffraction measurements 1HQI ; ; COMPONENT P2 FROM THE MULTICOMPONENT PHENOL HYDROXYLASE, NMR, 11 STRUCTURES 1T1O ; 12.0 ; Components of the control 70S ribosome to provide reference for the RRF binding site 8EMM ; 2.1 ; Composite 70S ribosome structure for ""Atomistic simulations of the E. coli ribosome provide selection criteria for translationally active substrates 6V8I ; 3.7 ; Composite atomic model of the Staphylococcus aureus phage 80alpha baseplate 8HY0 ; 3.1 ; Composite cryo-EM structure of the histone deacetylase complex Rpd3S in complex with nucleosome 8F5Z ; 3.2 ; Composite map of CryoEM structure of Arabidopsis thaliana phytochrome A 7WF3 ; 3.4 ; Composite map of human Kv1.3 channel in apo state with beta subunits 7WF4 ; 3.4 ; Composite map of human Kv1.3 channel in dalazatide-bound state with beta subunits 7TN2 ; 2.3 ; Composite model of a Chd1-nucleosome complex in the nucleotide-free state derived from 2.3A and 2.7A Cryo-EM maps 6Z7P ; 4.8 ; Composite model of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide 8CS9 ; 2.74 ; Composite reconstruction of Class 1 of the erythrocyte ankyrin-1 complex 7Z8F ; 20.0 ; Composite structure of dynein-dynactin-BICDR on microtubules 8PTK ; 10.0 ; Composite structure of Dynein-Dynactin-JIP3-LIS1 7MEI ; 3.54 ; Composite structure of EC+EC 7N5D ; 2.8 ; Composite Structure of Mechanosensitive Ion Channel Flycatcher1 in GDN 5O8C ; 1.7 ; Composite structure of rsEGFP2 1ps following 400nm-laser irradiation of the off-state. 7TBM ; 37.0 ; Composite structure of the dilated human nuclear pore complex (NPC) generated with a 37A in situ cryo-ET map of CD4+ T cell NPC 7TBK ; 37.0 ; Composite structure of the dilated human nuclear pore complex (NPC) symmetric core generated with a 37A in situ cryo-ET map of CD4+ T cell NPC 7TBL ; 23.0 ; Composite structure of the human nuclear pore complex (NPC) cytoplasmic face generated with a 12A cryo-ET map of the purified HeLa cell NPC 7TBJ ; 23.0 ; Composite structure of the human nuclear pore complex (NPC) symmetric core generated with a 12A cryo-ET map of the purified HeLa cell NPC 5IJN ; 21.4 ; Composite structure of the inner ring of the human nuclear pore complex (32 copies of Nup205) 7TBI ; 25.0 ; Composite structure of the S. cerevisiae nuclear pore complex (NPC) 8F78 ; 2.65 ; Compound 1 bound to procaspase-6 5ENM ; 1.98 ; Compound 10 8F99 ; 2.86 ; Compound 10 bound to procaspase-6 8F9A ; 2.55 ; Compound 11 bound to procaspase-6 5ENK ; 2.11 ; Compound 18 8F9B ; 2.65 ; Compound 19 bound to procaspase-6 6OB0 ; 2.81 ; Compound 2 bound structure of WT Lipoprotein Lipase in Complex with GPIHBP1 Mutant N78D N82D produced in HEK293-F cells 7ZYR ; 1.85 ; Compound 20 Bound to CK2alpha 8F9C ; 2.8 ; Compound 20 bound to procaspase-6 4HLE ; 2.78 ; Compound 21 (1-alkyl-substituted 1,2,4-triazoles) 8F9D ; 2.65 ; Compound 21 bound to procaspase-6 8F96 ; 2.95 ; Compound 3 bound to procaspase-6 8F97 ; 2.32 ; Compound 5 bound to procaspase-6 8FBV ; 2.86 ; Compound 7 bound to procaspase-6 8F98 ; 2.7 ; Compound 8 bound to procaspase-6 7ZYK ; 1.31 ; Compound 9 Bound to CK2alpha 7ZYO ; 1.58 ; Compound 9 Bound to CK2alpha 5JAD ; 2.05 ; Compound binding to Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2)discovered through fragment screening 1MQF ; 2.5 ; Compound I from Proteus mirabilis catalase 1GWF ; 1.96 ; Compound II structure of Micrococcus Lysodeikticus catalase 7E14 ; 2.9 ; Compound2_GLP-1R_OWL833_Gs complex structure 5THQ ; 2.3 ; Comprehensive Analysis of a Novel Ketoreductase for Pentangular Polyphenol Biosynthesis 5TII ; 2.6 ; Comprehensive Analysis of a Novel Ketoreductase for Pentangular Polyphenol Biosynthesis 5G1Q ; 2.84 ; Compressed conformation of Francisella tularensis ClpP at 2.84 A 7S65 ; 3.2 ; Compressed conformation of nighttime state KaiC 1A1P ; ; COMPSTATIN, NMR, 21 STRUCTURES 2HP4 ; 2.1 ; Computational design and crystal structure of an enhanced affinity mutant human CD8-alpha-alpha co-receptor 4NDL ; 3.5 ; Computational design and experimental verification of a symmetric homodimer 2MG4 ; ; Computational design and experimental verification of a symmetric protein homodimer 5EIL ; 2.25 ; Computational design of a high-affinity metalloprotein homotrimer containing a metal chelating non-canonical amino acid 3V86 ; 2.91 ; Computational Design of a Protein Crystal 2LLE ; ; Computational design of an eight-stranded (beta/alpha)-barrel from fragments of different folds 4IWW ; 2.3 ; Computational Design of an Unnatural Amino Acid Metalloprotein with Atomic Level Accuracy 4IX0 ; 2.5 ; Computational Design of an Unnatural Amino Acid Metalloprotein with Atomic Level Accuracy 4QTR ; 3.2 ; Computational design of co-assembling protein-DNA nanowires 7KXS ; 2.6 ; Computational design of constitutively active cGAS 7LZ3 ; 2.18 ; Computational design of constitutively active cGAS 8EJA ; 2.81 ; Computational design of potent and selective inhibitors of Bak and Bax 5K7V ; 3.165 ; Computational Design of Self-Assembling Cyclic Protein Homooligomers 5KBA ; 2.601 ; Computational Design of Self-Assembling Cyclic Protein Homooligomers 8A9Q ; 2.0 ; Computational design of stable mammalian serum albumins for bacterial expression 8V2D ; 6.77 ; Computational Designed Nanocage O43_129 8V3B ; 6.4 ; Computational Designed Nanocage O43_129_+4 6U07 ; 1.76 ; Computational Stabilization of T Cell Receptor Constant Domains 3E0L ; 2.37 ; Computationally Designed Ammelide Deaminase 6VEH ; 2.303 ; Computationally designed C3-symmetric homotrimer from HEAT repeat protein 6V8E ; 2.53 ; Computationally designed C3-symmetric homotrimer from TPR repeat protein 5HRY ; 2.0 ; Computationally Designed Cyclic Dimer ank3C2_1 5HS0 ; 2.4 ; Computationally Designed Cyclic Tetramer ank1C4_7 3MFC ; 1.7 ; Computationally designed end0-1,4-beta,xylanase 3MF6 ; 1.28 ; Computationally designed endo-1,4-beta-xylanase 3MF9 ; 1.7 ; Computationally designed endo-1,4-beta-xylanase 3MFA ; 1.63 ; Computationally designed endo-1,4-beta-xylanase 5TVY ; 1.0 ; Computationally Designed Fentanyl Binder - Fen49 5TVV ; 1.79 ; Computationally Designed Fentanyl Binder - Fen49* Apo 5TZO ; 1.67 ; Computationally Designed Fentanyl Binder - Fen49*-Complex 5N7W ; 1.96 ; Computationally designed functional antibody 5VLI ; 1.799 ; Computationally designed inhibitor peptide HB1.6928.2.3 in complex with influenza hemagglutinin (A/PuertoRico/8/1934) 5BYO ; 2.503 ; Computationally designed left-handed alpha/alpha toroid with 12 repeats 4YY2 ; 1.854 ; Computationally designed left-handed alpha/alpha toroid with 3 repeats in space group P212121 4YY5 ; 2.78 ; Computationally designed left-handed alpha/alpha toroid with 3 repeats in space group P43212 4YXX ; 2.18 ; Computationally designed left-handed alpha/alpha toroid with 6 repeats 4YXZ ; 2.496 ; Computationally designed left-handed alpha/alpha toroid with 9 repeats 4YXY ; 3.203 ; Computationally designed left-handed alpha/alpha toroid with 9 repeats; two linked rings of 12 repeats each structure 7UCP ; 0.85 ; computationally designed macrocycle 6DVK ; 2.55 ; Computationally designed mini tetraloop-tetraloop receptor by the RNAMake program - construct 6 (miniTTR 6) 1PSV ; ; COMPUTATIONALLY DESIGNED PEPTIDE WITH A BETA-BETA-ALPHA FOLD SELECTION, NMR, 32 STRUCTURES 6XR2 ; 3.2 ; Computationally designed right-handed alpha/alpha homotrimeric toroid with 3 repeats per subunit 6XR1 ; 2.1 ; Computationally designed right-handed alpha/alpha single-chain toroid with 9 repeats 4DDF ; 3.15 ; Computationally Designed Self-assembling Octahedral Cage protein, O333, Crystallized in space group P4 3VCD ; 2.35 ; Computationally Designed Self-assembling Octahedral Cage protein, O333, Crystallized in space group R32 4DCL ; 3.35 ; Computationally Designed Self-assembling tetrahedron protein, T308, Crystallized in space group F23 4EGG ; 2.21 ; Computationally Designed Self-assembling tetrahedron protein, T310 5KWD ; 2.75 ; Computationally Designed Symmetric Homotetramer 5J7D ; 2.4 ; Computationally Designed Thioredoxin dF106 7Q3J ; 1.9 ; Computationally designed thioredoxin subjected to stability optimizing mutations. 7Q3K ; 2.25 ; Computationally designed thioredoxin subjected to stability optimizing mutations. 4TQL ; 2.8 ; Computationally designed three helix bundle 3TDM ; 2.4 ; Computationally designed TIM-barrel protein, HalfFLR 5HRZ ; 2.15 ; Computationally Designed Trimer 1na0C3_3 7RKC ; 2.35 ; Computationally designed tunable C2 symmetric tandem repeat homodimer, D_3_633 4NWN ; 4.5 ; Computationally Designed Two-Component Self-Assembling Tetrahedral Cage T32-28 4NWO ; 2.8 ; Computationally Designed Two-Component Self-Assembling Tetrahedral Cage T33-15 4NWR ; 3.5 ; Computationally Designed Two-Component Self-Assembling Tetrahedral Cage T33-28 4NWQ ; 2.8 ; Computationally Designed Two-Component Self-Assembling Tetrahedral Cage, T33-21, Crystallized in Space Group F4132 4NWP ; 2.1 ; Computationally Designed Two-Component Self-Assembling Tetrahedral Cage, T33-21, Crystallized in Space Group R32 3TDN ; 1.4 ; Computationally designed two-fold symmetric Tim-barrel protein, FLR 6OB5 ; 2.208 ; Computationally-designed, modular sense/response system (S3-2D) 5TJD ; 2.1 ; Computer-based rational design of improved functionality for antibody catalysts toward organophosphorus compounds 3B83 ; 2.4 ; Computer-Based Redesign of a beta Sandwich Protein Suggests that Extensive Negative Design Is Not Required for De Novo beta Sheet Design. 7XGI ; 2.0 ; COMT SAH Mg opicapone complex 6VEQ ; 3.25 ; Con-Ins G1 in complex with the human insulin microreceptor in turn in complex with Fv 83-7 5KKM ; ; Con-Vc11-22 1JBC ; 1.15 ; CONCANAVALIN A 1NLS ; 0.94 ; CONCANAVALIN A AND ITS BOUND SOLVENT AT 0.94A RESOLUTION 7MGB ; 2.45 ; Concanavalin A bound to a DNA glycoconjugate, A(Man-T)AT 7MGC ; 2.92 ; Concanavalin A bound to a DNA glycoconjugate, G(Man-T)AC 7MGA ; 2.0 ; Concanavalin A bound to a DNA glycoconjugate, Man-AAATTT 7MG6 ; 1.7 ; Concanavalin A bound to a DNA glycoconjugate, Man-AGCT 7MG5 ; 2.1 ; Concanavalin A bound to a DNA glycoconjugate, Man-ATAT 7MG8 ; 3.0 ; Concanavalin A bound to a DNA glycoconjugate, Man-CGCG 7MG7 ; 1.75 ; Concanavalin A bound to a DNA glycoconjugate, Man-GTAC 7MGD ; 2.05 ; Concanavalin A bound to a DNA glycoconjugate, T(Man-T)TT 7MG9 ; 2.55 ; Concanavalin A bound to DNA glycoconjugates, Man-TTTT and Man-AAAA 1CJP ; 2.78 ; CONCANAVALIN A COMPLEX WITH 4'-METHYLUMBELLIFERYL-ALPHA-D-GLUCOPYRANOSIDE 1VAL ; 3.0 ; CONCANAVALIN A COMPLEX WITH 4'-NITROPHENYL-ALPHA-D-GLUCOPYRANOSIDE 1VAM ; 2.75 ; CONCANAVALIN A COMPLEX WITH 4'-NITROPHENYL-ALPHA-D-MANNOPYRANOSIDE 3D4K ; 1.8 ; Concanavalin A Complexed to a Synthetic Analog of the Trimannoside 1BXH ; 2.75 ; CONCANAVALIN A COMPLEXED TO METHYL ALPHA1-2 MANNOBIOSIDE 1CVN ; 2.3 ; CONCANAVALIN A COMPLEXED TO TRIMANNOSIDE 1GIC ; 2.0 ; CONCANAVALIN A COMPLEXED WITH METHYL ALPHA-D-GLUCOPYRANOSIDE 7MG4 ; 2.0 ; Concanavalin A crystallized in the presence of Gal-ATAT 7MG3 ; 1.6 ; Concanavalin A crystallized in the presence of H2N-ATAT 7MG2 ; 1.8 ; Concanavalin A crystallized in the presence of Man-8 7MG1 ; 2.0 ; Concanavalin A crystallized without DNA glycoconjugate 6GW9 ; 2.1 ; Concanavalin A structure determined with data from the EuXFEL, the first MHz free electron laser 1GKB ; 1.56 ; CONCANAVALIN A, NEW CRYSTAL FORM 1JUI ; 2.75 ; CONCANAVALIN A-CARBOHYDRATE MIMICKING 10-MER PEPTIDE COMPLEX 1I3H ; 1.2 ; CONCANAVALIN A-DIMANNOSE STRUCTURE 1JOJ ; 3.0 ; CONCANAVALIN A-HEXAPEPTIDE COMPLEX 1JYI ; 2.75 ; CONCANAVALIN A/12-MER PEPTIDE COMPLEX 1JYC ; 2.75 ; CONCANAVALIN A/15-mer PEPTIDE COMPLEX 6GWA ; 2.1 ; Concanavalin B structure determined with data from the EuXFEL, the first MHz free electron laser 1AZD ; 3.0 ; CONCANAVALIN FROM CANAVALIA BRASILIENSIS 6RLS ; ; Concerted dynamics of metallo-base pairs in an A/B-form helical transition (apo species) 6FY6 ; ; Concerted dynamics of metallo-base pairs in an A/B-form helical transition (major species) 6FY7 ; ; Concerted dynamics of metallo-base pairs in an A/B-form helical transition (minor species) 5A6C ; 2.901 ; Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation 8OEL ; 8.2 ; Condensed RPA-DNA nucleoprotein filament 6YVV ; 7.5 ; Condensin complex from S.cerevisiae ATP-free apo bridged state 6YVU ; 7.5 ; Condensin complex from S.cerevisiae ATP-free apo non-engaged state 5BP1 ; 2.203 ; Condensing di-domain (KS-AT) of a mycocerosic acid synthase-like (MAS-like) PKS 2K10 ; ; Confirmational analysis of the broad-spectrum antibacterial peptide, rantuerin-2csa: identification of a full length helix-turn-helix motif 2C7U ; 2.38 ; Conflicting selective forces affect CD8 T-cell receptor contact sites in an HLA-A2 immunodominant HIV epitope. 7DWX ; 8.3 ; Conformation 1 of S-ACE2-B0AT1 ternary complex 8H3M ; 2.48 ; Conformation 1 of SARS-CoV-2 Omicron BA.1 Variant Spike protein complexed with MO1 Fab 7NRS ; 2.68 ; Conformation 1 of straight filament from primary age-related tauopathy brain 8FPC ; 2.78 ; Conformation 1 of the ligand binding domain (LBDconf1) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg) 8JET ; 3.1 ; Conformation 1 of the plant potassium channel SKOR 8H3N ; 2.73 ; Conformation 2 of SARS-CoV-2 Omicron BA.1 Variant Spike protein complexed with MO1 Fab 7NRT ; 2.68 ; Conformation 2 of straight filament from primary age-related tauopathy brain 8FPH ; 3.14 ; Conformation 2 of the ligand binding domain (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg) 8JEU ; 3.5 ; Conformation 2 of the plant potassium channel SKOR 1ZNA ; 1.5 ; CONFORMATION AND DYNAMICS IN A Z-DNA TETRAMER 1CAP ; 3.0 ; CONFORMATION AND MOLECULAR ORGANIZATION IN FIBERS OF THE CAPSULAR POLYSACCHARIDE FROM ESCHERICHIA COLI M41 MUTANT 1D6V ; 2.0 ; CONFORMATION EFFECTS IN BIOLOGICAL CATALYSIS INTRODUCED BY OXY-COPE ANTIBODY MATURATION 2LBR ; ; Conformation Effects of Base Modification on the Anticodon Stem-loop of Bacillus subtilis tRNATYR 7XLC ; 5.0 ; conformation II of apo-IGF1R states 1EFS ; ; CONFORMATION OF A DNA-RNA HYBRID 1KAJ ; ; CONFORMATION OF AN RNA PSEUDOKNOT FROM MOUSE MAMMARY TUMOR VIRUS, NMR, 1 STRUCTURE 1MRT ; ; CONFORMATION OF CD-7 METALLOTHIONEIN-2 FROM RAT LIVER IN AQUEOUS SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2MRT ; ; CONFORMATION OF CD-7 METALLOTHIONEIN-2 FROM RAT LIVER IN AQUEOUS SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 6TPO ; 1.861 ; Conformation of cd1 nitrite reductase NirS without bound heme d1 2JQS ; ; Conformation of DIP-AST5 from 2D NMR data 2JQU ; ; Conformation of DIP-AST8 from 2D NMR data 3IZP ; ; Conformation of EF-G during translocation 1KES ; 3.0 ; CONFORMATION OF KERATAN SULPHATE 6C4I ; 3.24 ; Conformation of methylated GGQ in the peptidyl transferase center during translation termination 6C4H ; 3.1 ; Conformation of methylated GGQ in the peptidyl transferase center during translation termination (PTC region) 6C5L ; 3.2 ; Conformation of methylated GGQ in the Peptidyl Transferase Center during translation termination (T. thermophilus) 2HQC ; 3.56 ; Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway 2HQD ; 3.65 ; Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway 2HQF ; 3.38 ; Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway 2HQG ; 3.38 ; Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway 1D75 ; 2.8 ; CONFORMATION OF THE GUANINE.8-OXOADENINE BASE PAIRS IN THE CRYSTAL STRUCTURE OF D(CGCGAATT(O8A)GCG) 1ALE ; ; CONFORMATION OF TWO PEPTIDES CORRESPONDING TO HUMAN APOLIPOPROTEIN C-I RESIDUES 7-24 AND 35-53 IN THE PRESENCE OF SODIUM DODECYLSULFATE BY CD AND NMR SPECTROSCOPY 1ALF ; ; CONFORMATION OF TWO PEPTIDES CORRESPONDING TO HUMAN APOLIPOPROTEIN C-I RESIDUES 7-24 AND 35-53 IN THE PRESENCE OF SODIUM DODECYLSULFATE BY CD AND NMR SPECTROSCOPY 1Y4S ; 2.9 ; Conformation rearrangement of heat shock protein 90 upon ADP binding 1Y4U ; 2.9 ; Conformation rearrangement of heat shock protein 90 upon ADP binding 5C4L ; 2.35 ; Conformational alternate of sisomicin in complex with APH(2"")-IVa 2LTJ ; ; Conformational analysis of StrH, the surface-attached exo- beta-D-N-acetylglucosaminidase from Streptococcus pneumoniae 2L5R ; ; Conformational and membrane interactins studies of antimicrobial peptide Alyteserin-1C 1ZE1 ; 2.9 ; Conformational Change of Pseudouridine 55 Synthase upon Its Association with RNA Substrate 1ZE2 ; 3.0 ; Conformational change of pseudouridine 55 synthase upon its association with RNA substrate 5JBS ; 1.95 ; Conformational changes during monomer-to-dimer transition of Brucella suis VirB8 6C79 ; 1.1 ; Conformational Changes in a Class A Beta lactamase that Prime it for Catalysis 6C7A ; 1.05 ; Conformational Changes in a Class A Beta lactamase that Prime it for Catalysis 1APH ; 2.0 ; CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11 1BPH ; 2.0 ; CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11 1CPH ; 1.9 ; CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11 1DPH ; 1.9 ; CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11 2TUN ; 3.1 ; CONFORMATIONAL CHANGES IN THE (ALA-84-VAL) MUTANT OF TUMOR NECROSIS FACTOR 2YJ3 ; 2.2 ; Conformational changes in the catalytic domain of the CPx-ATPase CopB- B upon nucleotide binding 2YJ4 ; 2.4 ; Conformational changes in the catalytic domain of the CPx-ATPase CopB- B upon nucleotide binding 2YJ5 ; 2.4 ; Conformational changes in the catalytic domain of the CPx-ATPase CopB- B upon nucleotide binding 2YJ6 ; 2.2 ; Conformational changes in the catalytic domain of the CPx-ATPase CopB- B upon nucleotide binding 1NNO ; 2.65 ; CONFORMATIONAL CHANGES OCCURRING UPON NO BINDING IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 1BL9 ; 2.9 ; CONFORMATIONAL CHANGES OCCURRING UPON REDUCTION IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 3BCG ; 2.48 ; Conformational changes of the AcrR regulator reveal a mechanism of induction 4YS0 ; 1.897 ; Conformational changes of the clamp of the protein translocation ATPase SecA from Thermotoga maritima 3F6Y ; 1.45 ; Conformational Closure of the Catalytic Site of Human CD38 Induced by Calcium 4AOK ; 1.5 ; Conformational dynamics of aspartate alpha-decarboxylase active site revealed by protein-ligand complexes: 1-methyl-L-aspartate complex 4AON ; 1.5 ; Conformational dynamics of aspartate alpha-decarboxylase active site revealed by protein-ligand complexes: 1-methyl-L-aspartate complex 4F7Z ; 2.6 ; Conformational dynamics of exchange protein directly activated by cAMP 2L0R ; ; Conformational Dynamics of the Anthrax Lethal Factor Catalytic Center 8IF6 ; 7.09 ; Conformational Dynamics of the D53-D3-D14 Complex in Strigolactone Signaling 5O8Y ; 2.3 ; Conformational dynamism for DNA interaction in Salmonella typhimurium RcsB response regulator. 5O8Z ; 2.1 ; Conformational dynamism for DNA interaction in Salmonella typhimurium RcsB response regulator. 6EO2 ; 2.6 ; Conformational dynamism for DNA interaction in Salmonella typhimurium RcsB response regulator. S207C crossed 6EO3 ; 2.5 ; Conformational dynamism for DNA interaction in Salmonella typhimurium RcsB response regulator. S207C P212121 2LWA ; ; Conformational ensemble for the G8A mutant of the influenza hemagglutinin fusion peptide 7QLF ; ; Conformational ensemble of solnatide in solution 2F1M ; 2.71 ; Conformational flexibility in the multidrug efflux system protein AcrA 2CEK ; 2.2 ; Conformational Flexibility in the Peripheral Site of Torpedo californica Acetylcholinesterase Revealed by the Complex Structure with a Bifunctional Inhibitor 1W28 ; 2.3 ; Conformational flexibility of the C-terminus with implications for substrate binding and catalysis in a new crystal form of deacetoxycephalosporin C synthase 2BKE ; 3.2 ; Conformational Flexibility Revealed by the Crystal Structure of a Crenarchaeal RadA 1ND7 ; 2.1 ; Conformational Flexibility Underlies Ubiquitin Ligation Mediated by the WWP1 HECT domain E3 Ligase 6SLH ; 1.89 ; Conformational flexibility within the small domain of human serine racemase. 1D87 ; 2.25 ; CONFORMATIONAL INFLUENCE OF THE RIBOSE 2'-HYDROXYL GROUP: CRYSTAL STRUCTURES OF DNA-RNA CHIMERIC DUPLEXES 1D88 ; 2.0 ; CONFORMATIONAL INFLUENCE OF THE RIBOSE 2'-HYDROXYL GROUP: CRYSTAL STRUCTURES OF DNA-RNA CHIMERIC DUPLEXES 1EDP ; ; CONFORMATIONAL ISOMERISM OF ENDOTHELIN IN ACIDIC AQUEOUS MEDIA: A QUANTITATIVE NOESY ANALYSIS 1TIB ; 1.84 ; CONFORMATIONAL LABILITY OF LIPASES OBSERVED IN THE ABSENCE OF AN OIL-WATER INTERFACE: CRYSTALLOGRAPHIC STUDIES OF ENZYMES FROM THE FUNGI HUMICOLA LANUGINOSA AND RHIZOPUS DELEMAR 1TIC ; 2.6 ; CONFORMATIONAL LABILITY OF LIPASES OBSERVED IN THE ABSENCE OF AN OIL-WATER INTERFACE: CRYSTALLOGRAPHIC STUDIES OF ENZYMES FROM THE FUNGI HUMICOLA LANUGINOSA AND RHIZOPUS DELEMAR 5VGZ ; 4.5 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHF ; 5.7 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHH ; 6.1 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHI ; 6.8 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHJ ; 8.5 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHM ; 8.3 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHN ; 7.3 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHO ; 8.3 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHP ; 7.9 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHQ ; 8.9 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHR ; 7.7 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 5VHS ; 8.8 ; Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle 1SSZ ; ; Conformational Mapping of Mini-B: An N-terminal/C-terminal Construct of Surfactant Protein B Using 13C-Enhanced Fourier Transform Infrared (FTIR) Spectroscopy 1ERF ; ; CONFORMATIONAL MAPPING OF THE N-TERMINAL FUSION PEPTIDE OF HIV-1 GP41 USING 13C-ENHANCED FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 1P5A ; ; Conformational Mapping of the N-terminal Peptide of HIV-1 GP41 in lipid detergent and aqueous environments using 13C-enhanced Fourier Transform Infrared Spectroscopy 1DFW ; ; CONFORMATIONAL MAPPING OF THE N-TERMINAL SEGMENT OF SURFACTANT PROTEIN B IN LIPID USING 13C-ENHANCED FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 2GGN ; 1.35 ; Conformational mobility in the active site of a heme peroxidase 2GHC ; 1.25 ; Conformational mobility in the active site of a heme peroxidase 2GHD ; 1.4 ; Conformational mobility in the active site of a heme peroxidase 2GHE ; 1.75 ; Conformational mobility in the active site of a heme peroxidase 2GHH ; 2.013 ; Conformational mobility in the active site of a heme peroxidase 2GHK ; 1.999 ; Conformational mobility in the active site of a heme peroxidase 5CA2 ; 2.1 ; CONFORMATIONAL MOBILITY OF HIS-64 IN THE THR-200 (RIGHT ARROW) SER MUTANT OF HUMAN CARBONIC ANHYDRASE II 1CE4 ; ; CONFORMATIONAL MODEL FOR THE CONSENSUS V3 LOOP OF THE ENVELOPE PROTEIN GP120 OF HIV-1 3MPA ; 2.1 ; Conformational plasticity of p38 MAP kinase DFG motif mutants in response to inhibitor binding 3O8P ; 2.1 ; Conformational plasticity of p38 MAP kinase DFG motif mutants in response to inhibitor binding 3O8U ; 2.1 ; Conformational plasticity of p38 MAP kinase DFG motif mutants in response to inhibitor binding 3OC1 ; 2.59 ; Conformational plasticity of p38 MAP kinase DFG motif mutants in response to inhibitor binding 3OBG ; 2.8 ; Conformational plasticity of p38 MAP kinase DFG mutants in response to inhibitor binding 3OBJ ; 2.4 ; Conformational plasticity of p38 MAP kinase DFG mutants in response to inhibitor binding 3O8T ; 2.0 ; Conformational plasticity of p38 MAP kinase DFG-motif mutants in response to inhibitor binding 3IAO ; 2.8 ; Conformational plasticity of the coiled coil domain of BmrR is required for bmr promoter binding-the unliganded structure of BmrR 1XH3 ; 1.48 ; Conformational Restraints and Flexibility of 14-Meric Peptides in Complex with HLA-B*3501 1QX3 ; 1.9 ; Conformational restrictions in the active site of unliganded human caspase-3 5T9I ; 2.091 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5T9K ; 2.1 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5T9Q ; 2.1 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAC ; 2.04 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAD ; 2.09 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAE ; 2.302 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAI ; 2.301 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAJ ; 2.031 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 5TAK ; 2.003 ; Conformational Sampling Differences across the Arrhenius Plot Biphasic Break Point at Ambient Temperature in the Enzyme Thermolysin 3J3P ; 9.1 ; Conformational Shift of a Major Poliovirus Antigen Confirmed by Immuno-Cryogenic Electron Microscopy: 135S Poliovirus and C3-Fab Complex 3J3O ; 11.1 ; Conformational Shift of a Major Poliovirus Antigen Confirmed by Immuno-Cryogenic Electron Microscopy: 160S Poliovirus and C3-Fab Complex 6O0X ; 3.28 ; Conformational states of Cas9-sgRNA-DNA ternary complex in the presence of magnesium 6O0Y ; 3.37 ; Conformational states of Cas9-sgRNA-DNA ternary complex in the presence of magnesium 6O0Z ; 3.3 ; Conformational states of Cas9-sgRNA-DNA ternary complex in the presence of magnesium 1SRB ; ; CONFORMATIONAL STUDIES ON SRTB, A NON-SELECTIVE ENDOTHELIN RECEPTOR AGONIST, AND ON IRL 1620, AN ETB RECEPTOR SPECIFIC AGONIST 1T0M ; 2.0 ; Conformational switch in polymorphic H-2K molecules containing an HSV peptide 1T0N ; 1.8 ; Conformational switch in polymorphic H-2K molecules containing an HSV peptide 6ND4 ; 4.3 ; Conformational switches control early maturation of the eukaryotic small ribosomal subunit 2GUS ; 1.75 ; Conformational Transition between Four- and Five-stranded Phenylalanine Zippers Determined by a Local Packing Interaction 2GUV ; 1.4 ; Conformational Transition between Four- and Five-stranded Phenylalanine Zippers Determined by a Local Packing Interaction 4FBP ; 2.5 ; CONFORMATIONAL TRANSITION OF FRUCTOSE-1,6-BISPHOSPHATASE: STRUCTURE COMPARISON BETWEEN THE AMP COMPLEX (T FORM) AND THE FRUCTOSE 6-PHOSPHATE COMPLEX (R FORM) 1OEL ; 2.8 ; CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION 1MEC ; 3.2 ; CONFORMATIONAL VARIABILITY OF A PICORNAVIRUS CAPSID: PH-DEPENDENT STRUCTURAL CHANGES OF MENGO VIRUS RELATED TO ITS HOST RECEPTOR ATTACHMENT SITE AND DISASSEMBLY 4EBC ; 2.901 ; Conformationally Restrained North-methanocarba-2'-deoxyadenosine Corrects the Error-Prone Nature of Human DNA Polymerase Iota 4EBD ; 2.571 ; Conformationally Restrained North-methanocarba-2'-deoxyadenosine Corrects the Error-Prone Nature of Human DNA Polymerase Iota 4EBE ; 2.1 ; Conformationally Restrained North-methanocarba-2'-deoxyadenosine Corrects the Error-Prone Nature of Human DNA Polymerase Iota 8Q7J ; ; Conformations of macrocyclic peptides sampled by exact NOEs: models for cell-permeability 8QAQ ; ; Conformations of macrocyclic peptides sampled by exact NOEs: models for cell-permeability. Conformation 1 of omphalotin A in apolar solvents. 8QAS ; ; Conformations of macrocyclic peptides sampled by exact NOEs: models for cell-permeability. NMR structure of Omphalotin A in methanol / water indoleOut conformation. 8QBP ; ; Conformations of macrocyclic peptides sampled by exact NOEs: models for cell-permeability. NMR structure of Omphalotin A in methanol / water indoleOut conformation. 1CCJ ; 2.1 ; CONFORMER SELECTION BY LIGAND BINDING OBSERVED WITH PROTEIN CRYSTALLOGRAPHY 1WLD ; 1.6 ; Congerin II T88I single mutant 1WLW ; 1.8 ; Congerin II Y16S single mutant 1WLC ; 2.0 ; Congerin II Y16S/T88I double mutant 5CVV ; 1.73 ; coniferyl alcohol bound monolignol 4-O-methyltransferase 9 6XZ1 ; 2.3 ; Conjugate of the HECT domain of HUWE1 with ubiquitin 4PCB ; 2.5 ; Conjugative Relaxase TrwC in complex with mutant OriT Dna 1ZM5 ; 2.5 ; Conjugative Relaxase TRWC in complex with ORIT dna, cooper-bound structure 1QX0 ; 2.26 ; CONJUGATIVE RELAXASE TRWC IN COMPLEX WITH ORIT DNA. METAL-BOUND STRUCTURE 1S6M ; 2.28 ; Conjugative Relaxase Trwc In Complex With Orit DNA. Metal-Bound Structure 1OMH ; 1.95 ; Conjugative Relaxase TrwC in complex with OriT Dna. Metal-free structure. 1OSB ; 2.65 ; Conjugative Relaxase TrwC in complex with OriT Dna. Metal-free structure. 2CA7 ; ; Conkunitzin-S1 Is The First Member Of A New Kunitz-Type Neurotoxin Family- Structural and Functional Characterization 2J6D ; ; CONKUNITZIN-S2 - CONE SNAIL NEUROTOXIN - DENOVO STRUCTURE 6ZVZ ; 2.3 ; Connectase MJ0548 from Methanocaldococcus jannaschii 6ZW0 ; 3.05 ; Connectase MJ0548 from Methanocaldococcus jannaschii in complex with an MtrA-derived peptide 7L96 ; ; Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability 7L98 ; ; Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability 7L9D ; ; Connecting hydrophobic surfaces in cyclic peptides increases membrane permeability 1FOU ; 3.2 ; CONNECTOR PROTEIN FROM BACTERIOPHAGE PHI29 1JNB ; 3.2 ; CONNECTOR PROTEIN FROM BACTERIOPHAGE PHI29 5KJG ; ; Connexin 26 G12R mutant NMR structure 5KJ3 ; ; Connexin 26 WT peptide NMR Structure 5KK9 ; ; Connexin 32 G12R N-Terminal Mutant, 1R5S ; ; Connexin 43 Carboxyl Terminal Domain 5ER7 ; 3.286 ; Connexin-26 Bound to Calcium 7Z1T ; 2.26 ; Connexin43 gap junction channel structure in digitonin 7Z22 ; 2.95 ; Connexin43 gap junction channel structure in nanodisc 7Z23 ; 3.98 ; Connexin43 hemi channel in nanodisc 2LOC ; ; Conotoxin analogue [D-Ala2]BuIIIB 7PX1 ; 2.33 ; Conotoxin from Conus mucronatus 1AG7 ; ; CONOTOXIN GS, NMR, 20 STRUCTURES 7PX2 ; 2.12 ; Conotoxin Mu8.1 from Conus mucronatus 2LER ; ; Conotoxin pc16a 4C75 ; 2.2 ; Consensus (ALL-CON) beta-lactamase class A 7BWE ; ; Consensus Chitin binding domain 7BWO ; ; Consensus chitin binding protein 8DR1 ; 2.14 ; Consensus closed state of RFC:PCNA bound to a 3' ss/dsDNA junction (DNA2) 6DSL ; ; Consensus engineered intein (Cat) with atypical split site 7CCS ; 6.2 ; Consensus mutated xCT-CD98hc complex 7V0K ; 2.4 ; Consensus refinement of human erythrocyte ankyrin-1 complex (Composite map) 7SI3 ; 3.19 ; Consensus structure of ATP7B 7PGS ; 3.4 ; Consensus structure of human Neurofibromin isoform 2 2XKM ; 3.3 ; Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR 6XM0 ; 2.7 ; Consensus structure of SARS-CoV-2 spike at pH 5.5 7OBI ; 3.0 ; Consensus tetratricopeptide repeat protein type RV4 7ST3 ; 2.78 ; Consequences of HLA single chain trimer mutations on peptide presentation and binding affinity 7STG ; 2.7 ; Consequences of HLA single chain trimer mutations on peptide presentation and binding affinity 149L ; 2.6 ; CONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYME 150L ; 2.2 ; CONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYME 151L ; 2.2 ; CONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYME 152L ; 2.0 ; CONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYME 5OK7 ; 1.34 ; Conservatively refined structure of Gan1D-E170Q, a catalytic mutant of a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus 5OKE ; 1.31 ; Conservatively refined structure of Gan1D-E170Q, a catalytic mutant of a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with cellobiose-6-phosphate 5OKK ; 2.02 ; Conservatively refined structure of Gan1D-WT, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-beta-galactose 5OKR ; 2.15 ; Conservatively refined structure of Gan1D-WT, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-beta-glucose 5OKH ; 1.98 ; Conservatively refined structure of Gan1D-WT, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in the C2 spacegroup 7F5W ; 1.654 ; Conserved and divergent strigolactone signaling in Saccharum spontaneum 16VP ; 2.1 ; CONSERVED CORE OF THE HERPES SIMPLEX VIRUS TRANSCRIPTIONAL REGULATORY PROTEIN VP16 2G7Z ; 2.05 ; Conserved DegV-like Protein of Unknown Function from Streptococcus pyogenes M1 GAS Binds Long-chain Fatty Acids 2FPE ; 1.75 ; Conserved dimerization of the ib1 src-homology 3 domain 1EO0 ; ; CONSERVED DOMAIN COMMON TO TRANSCRIPTION FACTORS TFIIS, ELONGIN A, CRSP70 2I7R ; 2.2 ; conserved domain protein 3HVP ; 2.8 ; CONSERVED FOLDING IN RETROVIRAL PROTEASES. CRYSTAL STRUCTURE OF A SYNTHETIC HIV-1 PROTEASE 2XET ; 1.6 ; Conserved hydrophobic clusters on the surface of the Caf1A usher C-terminal domain are important for F1 antigen assembly 2EHW ; 2.22 ; Conserved hypothetical proteim (TTHB059) from Thermo thermophilus HB8 2EJQ ; 2.08 ; Conserved hypothetical protein (TTHA0227) from Thermo thermophilus HB8 1YBX ; 1.8 ; Conserved hypothetical protein Cth-383 from Clostridium thermocellum 1YBY ; 1.95 ; Conserved hypothetical protein Cth-95 from Clostridium thermocellum 1XRG ; 2.2 ; Conserved hypothetical protein from Clostridium thermocellum Cth-2968 1YBZ ; 1.82 ; Conserved hypothetical protein from Pyrococcus furiosus Pfu-1581948-001 1VK1 ; 1.2 ; Conserved hypothetical protein from Pyrococcus furiosus Pfu-392566-001 1XX7 ; 2.261 ; Conserved hypothetical protein from Pyrococcus furiosus Pfu-403030-001 4WBX ; 2.301 ; Conserved hypothetical protein PF1771 from Pyrococcus furiosus solved by sulfur SAD using Swiss Light Source data 1YD7 ; 2.3 ; Conserved hypothetical protein Pfu-1647980-001 from Pyrococcus furiosus 1YB3 ; 1.6 ; Conserved hypothetical protein Pfu-178653-001 from Pyrococcus furiosus 1YCY ; 2.8 ; Conserved hypothetical protein Pfu-1806301-001 from Pyrococcus furiosus 1Y82 ; 2.3 ; Conserved hypothetical protein Pfu-367848-001 from Pyrococcus furiosus 1Y81 ; 1.701 ; Conserved hypothetical protein Pfu-723267-001 from Pyrococcus furiosus 1YEM ; 2.3 ; Conserved hypothetical protein Pfu-838710-001 from Pyrococcus furiosus 1XG7 ; 1.88 ; Conserved hypothetical protein Pfu-877259-001 from Pyrococcus furiosus 7OAA ; 1.4 ; conserved hypothetical protein residues 311-335 from Candidatus Magnetomorum sp. HK-1 fused to GCN4 adaptors 7OAC ; 2.15 ; conserved hypothetical protein residues 311-335 from Candidatus Magnetomorum sp. HK-1 fused to GCN4 adaptors, mutant beta1/A, crystal form I 7OAD ; 2.0 ; conserved hypothetical protein residues 311-335 from Candidatus Magnetomorum sp. HK-1 fused to GCN4 adaptors, mutant beta1/A, crystal form II 7OAF ; 1.45 ; conserved hypothetical protein residues 311-335 from Candidatus Magnetomorum sp. HK-1 fused to GCN4 adaptors, mutant beta1/A, crystal form III 7OAH ; 1.694 ; conserved hypothetical protein residues 311-335 from Candidatus Magnetomorum sp. HK-1 fused to GCN4 adaptors, mutant beta2/A 1WCJ ; ; Conserved Hypothetical Protein TM0487 from Thermotoga maritima 2ESR ; 1.8 ; conserved hypothetical protein- streptococcus pyogenes 4UXO ; 6.3 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UXP ; 6.3 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UXR ; 7.0 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UXS ; 7.0 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UXT ; 7.4 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UXY ; 6.5 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 4UY0 ; 7.7 ; Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins 2YGV ; 2.94 ; Conserved N-terminal domain of the yeast Histone Chaperone Asf1 in complex with the C-terminal fragment of Rad53 4LX3 ; 1.5 ; Conserved Residues that Modulate Protein trans-Splicing of Npu DnaE Split Intein 1VOP ; ; CONSERVED RNA COMPONENT OF THE PEPTIDYL TRANSFERASE CENTER, NMR, 33 STRUCTURES 1KP7 ; ; Conserved RNA Structure within the HCV IRES eIF3 Binding Site 8QO2 ; 7.1 ; Conserved Structures and Dynamics in 5-Proximal Regions of Betacoronavirus RNA Genomes 8QO3 ; 6.6 ; Conserved Structures and Dynamics in 5-Proximal Regions of Betacoronavirus RNA Genomes 8QO4 ; 5.9 ; Conserved Structures and Dynamics in 5-Proximal Regions of Betacoronavirus RNA Genomes 8QO5 ; 6.5 ; Conserved Structures and Dynamics in 5-Proximal Regions of Betacoronavirus RNA Genomes 6XWW ; ; Constitutive decay element CDE1 from human 3'UTR 6XXB ; ; Constitutive decay element CDE1 from human 3'UTR 6XWJ ; ; Constitutive decay element CDE2 from human 3'UTR 6XXA ; ; Constitutive decay element CDE2 from human 3'UTR 5C32 ; 3.053 ; Constitutively active Sin recombinase cataltyic domain - I100T 5C34 ; 2.655 ; Constitutively active Sin recombinase cataltyic domain - I100T/Q115R 5C35 ; 2.4 ; Constitutively active Sin recombinase cataltyic domain - T77II100T/Q115R 5C31 ; 3.1 ; Constitutively active Sin recombinase catalytic domain reveals two rotational intermediates 2R27 ; 2.0 ; Constitutively zinc-deficient mutant of human superoxide dismutase (SOD), C6A, H80S, H83S, C111S 4TXI ; 2.309 ; Construct of MICAL-1 containing the monooxygenase and calponin homology domains 4TXK ; 2.878 ; Construct of MICAL-1 containing the monooxygenase and calponin homology domains 4OPT ; 2.6 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase 4OPU ; 2.7 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase 4OPC ; 1.4 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. 4OPD ; 1.81 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. 4OPG ; 2.07 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. 4OPI ; 2.24 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. 4OPL ; 2.51 ; Constructing tailored isoprenoid products by structure-guided modification of geranylgeranyl reductase. 1CCE ; 2.3 ; CONSTRUCTION OF A BIS-AQUO HEME ENZYME AND REPLACEMENT WITH EXOGENOUS LIGAND 1CCG ; 2.1 ; CONSTRUCTION OF A BIS-AQUO HEME ENZYME AND REPLACEMENT WITH EXOGENOUS LIGAND 4JD9 ; 2.601 ; Contact pathway inhibitor from a sand fly 1X18 ; 13.5 ; Contact sites of ERA GTPase on the THERMUS THERMOPHILUS 30S SUBUNIT 8EY3 ; 1.0 ; Contact-dependent growth inhibition (CDI) immunity protein from E. coli O32:H37 6CP9 ; 2.55 ; Contact-dependent growth inhibition toxin - immunity protein complex from Klebsiella pneumoniae 342 8EY4 ; 1.83 ; Contact-dependent growth inhibition toxin-immunity protein complex from E. coli O32:H37 6CP8 ; 2.201 ; Contact-dependent growth inhibition toxin-immunity protein complex from from E. coli 3006 6VEK ; 2.25 ; Contact-dependent growth inhibition toxin-immunity protein complex from from E. coli 3006, full-length 5I4Q ; 2.35 ; Contact-dependent inhibition system from Escherichia coli NC101 - ternary CdiA/CdiI/EF-Tu complex (domains 2 and 3) 5I4R ; 3.3 ; Contact-dependent inhibition system from Escherichia coli NC101 - ternary CdiA/CdiI/EF-Tu complex (trypsin-modified) 7M5F ; 1.59 ; Contact-dependent inhibition system from Serratia marcescens BWH57 1CIS ; ; CONTEXT DEPENDENCE OF PROTEIN SECONDARY STRUCTURE FORMATION. THE THREE-DIMENSIONAL STRUCTURE AND STABILITY OF A HYBRID BETWEEN CHYMOTRYPSIN INHIBITOR 2 AND HELIX E FROM SUBTILISIN CARLSBERG 5DRN ; 1.994 ; Context-independent anti-hypusine antibody FabHpu24 in complex with hypusine 5DSC ; 2.4 ; Context-independent anti-hypusine antibody FabHpu24.B in complex with hypusine 5DUB ; 2.0 ; Context-independent anti-hypusine antibody FabHpu98 in complex with deoxyhypusine 5DS8 ; 1.95 ; Context-independent anti-hypusine antibody FabHpu98 in complex with hypusine 5DTF ; 1.9 ; context-independent anti-hypusine antibody FabHpu98.61 in complex with hypusine 7AZY ; 2.877 ; Context-specific inhibition of eukaryotic translation by macrolide antibiotics 8QQO ; 2.47 ; Continuously illuminated structure of Sensory Rhodopsin II solved by serial millisecond crystallography 8C38 ; 1.64 ; Contracted cowpea chlorotic mottle virus 6B8F ; 1.06 ; Contracted Human Heavy-Chain Ferritin Crystal-Hydrogel Hybrid 5N8N ; 3.28 ; Contracted sheath of a Pseudomonas aeruginosa type six secretion system consisting of TssB1 and TssC1 1F23 ; 2.3 ; CONTRIBUTION OF A BURIED HYDROGEN BOND TO HIV-1 ENVELOPE GLYCOPROTEIN STRUCTURE AND FUNCTION 3C8Q ; 1.64 ; Contribution of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 1FFA ; 1.69 ; CONTRIBUTION OF CUTINASE SERINE 42 SIDE CHAIN TO THE STABILIZATION OF THE OXYANION TRANSITION STATE 1FFB ; 1.75 ; CONTRIBUTION OF CUTINASE SERINE 42 SIDE CHAIN TO THE STABILIZATION OF THE OXYANION TRANSITION STATE 1FFC ; 1.75 ; CONTRIBUTION OF CUTINASE SERINE 42 SIDE CHAIN TO THE STABILIZATION OF THE OXYANION TRANSITION STATE 1FFD ; 1.69 ; CONTRIBUTION OF CUTINASE SERINE 42 SIDE CHAIN TO THE STABILIZATION OF THE OXYANION TRANSITION STATE 1FFE ; 1.69 ; CONTRIBUTION OF CUTINASE SERINE 42 SIDE CHAIN TO THE STABILIZATION OF THE OXYANION TRANSITION STATE 3W6L ; 1.751 ; Contribution of disulfide bond toward thermostability in hyperthermostable endocellulase 3W6M ; 1.948 ; Contribution of disulfide bond toward thermostability in hyperthermostable endocellulase 4DM1 ; 1.75 ; Contribution of disulfide bond toward thermostability in hyperthermostable endocellulase 4DM2 ; 1.95 ; Contribution of disulfide bond toward thermostability in hyperthermostable endocellulase 1WQM ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1WQN ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1WQO ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1WQP ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1WQQ ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1WQR ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1B5U ; 1.8 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANT 1B5V ; 2.17 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS 1B5W ; 2.17 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS 1B5X ; 2.0 ; Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutants 1B5Y ; 2.2 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS 1B5Z ; 2.2 ; CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS 2BQA ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQB ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQC ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQD ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQE ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQF ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQG ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQH ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQI ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQJ ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQK ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQL ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQM ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQN ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2BQO ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2MED ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2MEE ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2MEF ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2MEH ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 2MEI ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC EFFECT TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME 1YAM ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS 1YAN ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS 1YAO ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS 1YAP ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS 1YAQ ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS 1OUA ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE I56T MUTANT 1OUB ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V100A MUTANT 1OUC ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V110A MUTANT 1OUD ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V121A MUTANT 1OUE ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V125A MUTANT 1OUF ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V130A MUTANT 1OUG ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V2A MUTANT 1OUH ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V74A MUTANT 1OUI ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V93A MUTANT 1OUJ ; 1.8 ; CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE V99A MUTANT 2NVB ; 2.8 ; Contribution of Pro275 to the Thermostability of the Alcohol Dehydrogenases (ADHs) 1W8O ; 1.7 ; Contribution of the Active Site Aspartic Acid to Catalysis in the Bacterial Neuraminidase from Micromonospora viridifaciens 1W8N ; 2.1 ; Contribution of the Active Site Aspartic Acid to Catalysis in the Bacterial Neuraminidase from Micromonospora viridifaciens. 3VKE ; 1.77 ; Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides 2HEA ; 1.8 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 2HEB ; 2.2 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 2HEC ; 1.8 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 2HED ; 1.8 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 2HEE ; 1.8 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 2HEF ; 1.8 ; CONTRIBUTION OF WATER MOLECULES IN THE INTERIOR OF A PROTEIN TO THE CONFORMATIONAL STABILITY 1ZTE ; 1.85 ; Contribution to Structure and Catalysis of Tyrosine 34 in Human Manganese Suerpoxide Dismutase 1ZSP ; 1.9 ; Contribution to Structure and Catalysis of Tyrosine 34 in Human Manganese Superoxide Dismutase 1ZUQ ; 2.0 ; Contribution to Structure and Catalysis of Tyrosine 34 in Human Manganese Superoxide Dismutase 2P4K ; 1.48 ; Contribution to Structure and Catalysis of Tyrosine 34 in Human Manganese Superoxide Dismutase 3C8R ; 1.8 ; Contributions of all 20 amino acids at site 96 to stability and structure of T4 lysozyme 3C7W ; 1.77 ; Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 3C8S ; 1.68 ; Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 3CDQ ; 1.68 ; Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 3CDT ; 1.63 ; Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 3CDV ; 1.73 ; Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme 1L37 ; 1.85 ; CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS 1L38 ; 1.8 ; CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS 1L39 ; 1.85 ; CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS 1L40 ; 1.85 ; CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS 1L41 ; 1.75 ; CONTRIBUTIONS OF ENGINEERED SURFACE SALT BRIDGES TO THE STABILITY OF T4 LYSOZYME DETERMINED BY DIRECTED MUTAGENESIS 1L02 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L03 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L04 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L05 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L06 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L07 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L08 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L09 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L11 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L12 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L13 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L14 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L15 ; 1.7 ; CONTRIBUTIONS OF HYDROGEN BONDS OF THR 157 TO THE THERMODYNAMIC STABILITY OF PHAGE T4 LYSOZYME 1L21 ; 1.85 ; CONTRIBUTIONS OF LEFT-HANDED HELICAL RESIDUES TO THE STRUCTURE AND STABILITY OF BACTERIOPHAGE T4 LYSOZYME 1L22 ; 1.7 ; CONTRIBUTIONS OF LEFT-HANDED HELICAL RESIDUES TO THE STRUCTURE AND STABILITY OF BACTERIOPHAGE T4 LYSOZYME 1L33 ; 1.7 ; CONTRIBUTIONS OF LEFT-HANDED HELICAL RESIDUES TO THE STRUCTURE AND STABILITY OF BACTERIOPHAGE T4 LYSOZYME 1JMF ; 2.5 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1JMG ; 2.2 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1JMH ; 2.5 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1JMI ; 2.5 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1TVU ; 2.5 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1TVV ; 2.3 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 1TVW ; 2.5 ; CONTRIBUTIONS OF ORIENTATION AND HYDROGEN BONDING TO CATALYSIS IN ASN-229 MUTANTS OF THYMIDYLATE SYNTHASE 155L ; 1.85 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 156L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 157L ; 1.85 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 158L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 159L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 160L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 161L ; 1.7 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 162L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 163L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 164L ; 1.8 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 165L ; 1.75 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 166L ; 1.75 ; CONTROL OF ENZYME ACTIVITY BY AN ENGINEERED DISULFIDE BOND 1B4G ; ; CONTROL OF K+ CHANNEL GATING BY PROTEIN PHOSPHORYLATION: STRUCTURAL SWITCHES OF THE INACTIVATION GATE, NMR, 22 STRUCTURES 1B4I ; ; Control of K+ Channel Gating by protein phosphorylation: structural switches of the inactivation gate, NMR, 22 structures 1ABB ; 2.8 ; CONTROL OF PHOSPHORYLASE B CONFORMATION BY A MODIFIED COFACTOR: CRYSTALLOGRAPHIC STUDIES ON R-STATE GLYCOGEN PHOSPHORYLASE RECONSTITUTED WITH PYRIDOXAL 5'-DIPHOSPHATE 4V9O ; 2.9 ; Control of ribosomal subunit rotation by elongation factor G 4V9P ; 2.9 ; Control of ribosomal subunit rotation by elongation factor G 5AP9 ; 1.8 ; Controlled lid-opening in Thermomyces lanuginosus lipase - a switch for activity and binding 7Y1H ; 1.99 ; Controlling fibrosis using compound with novel binding mode to prolyl-tRNA synthetase 1 7Y1W ; 2.5 ; Controlling fibrosis using compound with novel binding mode to prolyl-tRNA synthetase 1 7Y28 ; 2.29 ; Controlling fibrosis using compound with novel binding mode to prolyl-tRNA synthetase 1 7Y3S ; 2.6 ; Controlling fibrosis using compound with novel binding mode to prolyl-tRNA synthetase 1 6OLO ; 2.3 ; Controlling the Self-Assembly of Synthetic Metal-Coordinating Coiled-Coil Peptides: Hexagonal Lattice from a Trimeric Coiled Coil 6OLN ; 2.5 ; Controlling the Self-Assembly of Synthetic Metal-Coordinating Coiled-Coil Peptides: Orthorhombic Lattice from a Trimeric Coiled Coil 2V5H ; 2.75 ; Controlling the storage of nitrogen as arginine: the complex of PII and acetylglutamate kinase from Synechococcus elongatus PCC 7942 1CF8 ; 2.7 ; Convergence of catalytic antibody and terpene cyclase mechanisms: polyene cyclization directed by carbocation-pi interactions 5MYD ; 2.3 ; Convergent evolution involving dimeric and trimeric dUTPases in signalling. 5MYF ; 1.85 ; Convergent evolution involving dimeric and trimeric dUTPases in signalling. 5MYI ; 1.9 ; Convergent evolution involving dimeric and trimeric dUTPases in signalling. 1TRB ; 2.0 ; CONVERGENT EVOLUTION OF SIMILAR FUNCTION IN TWO STRUCTURALLY DIVERGENT ENZYMES 1SHM ; 1.9 ; Convergent solutions to VHH domain stabilization from natural and in vitro evolution 4NEC ; 1.5 ; Conversion of a Disulfide Bond into a Thioacetal Group during Echinomycin Biosynthesis 7YLO ; 1.83 ; Conversion of indole-3-acetic acid into indole-3-aldehyde in bacteria Metabolic network of tryptophan around the indole-3-aldehyde formation 1JML ; 1.9 ; Conversion of Monomeric Protein L to an Obligate Dimer by Computational Protein Design 7E4L ; 1.6 ; Conversion of pyrophosphate-dependent myo-inositol-1 kinase into myo-inositol-3 kinase by N78L/S89L mutation 4F4J ; 2.45 ; Conversion of the enzyme guanylate kinase into a mitotic spindle orienting protein by a single mutation that inhibits gmp- induced closing 7O3D ; 3.71 ; Cooperation between the intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly 7O6B ; 3.88 ; Cooperation between the intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly 5AQE ; 1.1 ; Cooperative bio-metallic selectivity in a tailored protease enables creation of a C-C cross-coupling Heckase 5ARB ; 1.15 ; Cooperative bio-metallic selectivity in a tailored protease enables creation of a C-C cross-coupling Heckase 5ARC ; 1.1 ; Cooperative bio-metallic selectivity in a tailored protease enables creation of a C-C cross-coupling Heckase 5ARD ; 1.55 ; Cooperative bio-metallic selectivity in a tailored protease enables creation of a C-C cross-coupling Heckase 5U01 ; 2.5 ; Cooperative DNA binding by two RelA dimers 1RWB ; 2.0 ; Cooperative Effect of Two Surface Amino Acid Mutations (Q252L and E170K) of Glucose Dehydrogenase from Bacillus megaterium IWG3 for the stabilization of Oligomeric State 7X8V ; 1.84 ; Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity 1GOA ; 1.9 ; COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION 1GOB ; 2.0 ; COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION 1GOC ; 2.0 ; COOPERATIVE STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY INSERTION OF GLY-80B AND GLY-77-> ALA SUBSTITUTION 2MKC ; ; Cooperative Structure of the Heterotrimeric pre-mRNA Retention and Splicing Complex 5DHB ; 1.8 ; Cooperativity and Downstream Binding in RNA Replication 5DHC ; 1.55 ; Cooperativity and Downstream Binding in RNA Replication 1AXR ; 2.3 ; COOPERATIVITY BETWEEN HYDROGEN-BONDING AND CHARGE-DIPOLE INTERACTIONS IN THE INHIBITION OF BETA-GLYCOSIDASES BY AZOLOPYRIDINES: EVIDENCE FROM A STUDY WITH GLYCOGEN PHOSPHORYLASE B 1D1O ; ; COOPERATIVITY IN EF-HAND CA2+-BINDING PROTEINS: EVIDENCE OF SITE-SITE COMMUNICATION FROM BINDING-INDUCED CHANGES IN STRUCTURE AND DYNAMICS OF N56A CALBINDIN D9K 2JYP ; ; Coordinates for lowest energy structure of Aragonite protein-7, C-terminal domain 3DG2 ; 10.0 ; Coordinates of 16S and 23S rRNAs fitted into the cryo-EM map of a pretranslocation complex 3DG0 ; 10.8 ; Coordinates of 16S and 23S rRNAs fitted into the cryo-EM map of EF-G-bound translocation complex 3DG4 ; 12.8 ; Coordinates of 16S and 23S rRNAs fitted into the cryo-EM map of RF1-bound termination complex 3DG5 ; 15.5 ; Coordinates of 16S and 23S rRNAs fitted into the cryo-EM map of RF3-bound termination complex 8J7A ; 3.06 ; Coordinates of Cryo-EM structure of the Arabidopsis thaliana PSI in state 1 (PSI-ST1) 8J7B ; 3.22 ; Coordinates of Cryo-EM structure of the Arabidopsis thaliana PSI in state 2 (PSI-ST2) 1R2X ; 9.0 ; Coordinates of L11 with 58nts of 23S rRNA fitted into the cryo-EM map of EF-Tu ternary complex (GDP.Kirromycin) bound 70S ribosome 1R2W ; 9.0 ; Coordinates of L11 with 58nts of 23S rRNA fitted into the cryo-EM map of the 70S ribosome 6WG7 ; 8.3 ; Coordinates of NanR dimer fitted in Hexameric NanR-DNA hetero-complex cryo-EM map 1GOL ; 2.8 ; COORDINATES OF RAT MAP KINASE ERK2 WITH AN ARGININE MUTATION AT POSITION 52 1ZN0 ; 15.5 ; Coordinates of RRF and EF-G fitted into Cryo-EM map of the 50S subunit bound with both EF-G (GDPNP) and RRF 1ZN1 ; 14.1 ; Coordinates of RRF fitted into Cryo-EM map of the 70S post-termination complex 1PN8 ; 10.8 ; Coordinates of S12, L11 proteins and E-site tRNA from 70S crystal structure separately fitted into the Cryo-EM map of E.coli 70S.EF-G.GDPNP complex. The atomic coordinates originally from the E-site tRNA were fitted in the position of the hybrid P/E-site tRNA. 1PN7 ; 10.8 ; Coordinates of S12, L11 proteins and P-tRNA, from the 70S X-ray structure aligned to the 70S Cryo-EM map of E.coli ribosome 1QZC ; 9.0 ; Coordinates of S12, SH44, LH69 and SRL separately fitted into the cryo-EM map of EF-Tu ternary complex (GDP.Kirromycin) bound 70S ribosome 1QZB ; 9.0 ; Coordinates of the A-site tRNA model fitted into the cryo-EM map of 70S ribosome in the pre-translocational state 1QZA ; 10.0 ; Coordinates of the A/T site tRNA model fitted into the cryo-EM map of EF-Tu ternary complex (GDP.Kirromycin) bound 70S ribosome 3IYX ; 9.0 ; Coordinates of the b1b bridge-forming protein structures fitted into the Cryo-EM map of E.coli 70S ribosome (EMD-1056) 3IYY ; 10.9 ; Coordinates of the b1b bridge-forming protein structures fitted into the Cryo-EM map of EFG.GDPNP-bound E.coli 70S ribosome(EMD-1363) 4BTG ; 4.4 ; Coordinates of the bacteriophage phi6 capsid subunits (P1A and P1B) fitted into the cryoEM reconstruction of the procapsid at 4.4 A resolution 4BTQ ; 7.5 ; Coordinates of the bacteriophage phi6 capsid subunits fitted into the cryoEM map EMD-1206 2BCW ; 11.2 ; Coordinates of the N-terminal domain of ribosomal protein L11,C-terminal domain of ribosomal protein L7/L12 and a portion of the G' domain of elongation factor G, as fitted into cryo-em map of an Escherichia coli 70S*EF-G*GDP*fusidic acid complex 2R1G ; 12.5 ; Coordinates of the thermus thermophilus 30S components neighboring RbfA as obtained by fitting into the CRYO-EM map of A 30S-RBFA complex 2R1C ; 12.5 ; Coordinates of the thermus thermophilus ribosome binding factor A (RbfA) homology model as fitted into the CRYO-EM map of a 30S-RBFA complex 1ZC8 ; 13.0 ; Coordinates of tmRNA, SmpB, EF-Tu and h44 fitted into Cryo-EM map of the 70S ribosome and tmRNA complex 5VKX ; 1.37 ; Coordination Chemistry within a Protein Host: Regulation of the Secondary Coordination Sphere 5VL5 ; 1.46 ; Coordination Chemistry within a Protein Host: Regulation of the Secondary Coordination Sphere 5VL8 ; 1.7 ; Coordination Chemistry within a Protein Host: Regulation of the Secondary Coordination Sphere 7B7Q ; 1.35 ; CooS-V with oxidized hybrid cluster 7B7T ; 1.38 ; CooS-V with oxidized hybrid cluster 7B97 ; 1.45 ; CooS-V with oxidized hybrid cluster by hydroxylamine for 30 min 7B95 ; 1.4 ; CooS-V with partially oxidized hybrid cluster by hydroxylamine 7B9A ; 2.5 ; CooS-V with Xe-soaked 8GR5 ; 2.1 ; Cop4 from Antrodia cinnamomea in apo form 8GR7 ; 1.9 ; Cop4 from Antrodia cinnamomea in complex with pyrophosphate and magnesium 2B8E ; 2.3 ; CopA ATP Binding Domain 6NFQ ; 2.0 ; CopC from Pseudomonas fluorescens 6NFR ; 1.0 ; CopC from Pseudomonas fluorescens 6NFS ; 1.5 ; CopC from Pseudomonas fluorescens 8BSH ; 3.8 ; COPII inner coat 6ZGA ; 4.6 ; COPII on membranes, inner coat 6ZL0 ; 40.0 ; COPII on membranes, outer coat left-handed rod 6ZG5 ; 40.0 ; COPII on membranes, outer coat right-handed rod, class1 6ZG6 ; 12.0 ; COPII on membranes, outer coat vertex 5DGE ; 3.45 ; Coping with proline stalling: structural basis of hypusine-induced protein synthesis by the eukaryotic ribosome 6HUF ; 2.82 ; Coping with strong translational non-crystallographic symmetry and extreme anisotropy in molecular replacement with Phaser: human Rab27a 5FFA ; 1.501 ; CopM (with an N-terminal His-tag) in the apo form 5FFD ; 1.451 ; CopM in the Ag-bound form (by co-crystallization) 5FFE ; 2.096 ; CopM in the Ag-bound form (by soaking) 5FFB ; 1.702 ; CopM in the apo form 5FEJ ; 2.5 ; CopM in the Cu(I)-bound form 5FFC ; 2.007 ; CopM in the Cu(II)-bound form 4NRH ; 2.2 ; CopN-Scc3 complex 3RE7 ; 2.82 ; Copper (II) loaded Bullfrog Ferritin M chain 5ZP3 ; 1.782 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 10 at 288 K (1) 5ZP4 ; 1.799 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 10 at 288 K (2) 5ZP5 ; 1.767 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 277 K (1) 5ZP6 ; 1.688 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 277 K (2) 5ZP7 ; 1.631 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 277 K (3) 5ZP8 ; 1.66 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 277 K (4) 5ZP9 ; 1.7 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 283 K (1) 5ZPA ; 1.689 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 283 K (2) 5ZPB ; 1.793 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 283 K (3) 5ZPC ; 1.741 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 283 K (4) 5ZPD ; 1.665 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 288 K (1) 5ZOW ; 1.778 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 288 K (2) 5ZPE ; 1.689 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 288 K (2) 5ZPF ; 1.759 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 288 K (3) 5ZPI ; 1.747 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 293 K (3) 5ZOX ; 1.691 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 7 at 288 K (1) 5ZOY ; 1.695 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 7 at 288 K (2) 5ZOZ ; 1.702 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 8 at 288 K (1) 5ZP0 ; 1.738 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 8 at 288 K (2) 5ZP1 ; 1.669 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 9 at 288 K (1) 5ZP2 ; 1.748 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 9 at 288 K (2) 5ZOU ; 1.68 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH6 at 288 K (1) 5ZPG ; 1.649 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH6 at 293K (1) 5ZPH ; 1.72 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH6 at 293K (2) 3X3Y ; 1.499 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by histamine 3X3X ; 1.57 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine 5ZPS ; 1.748 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 10 at 288 K (1) 5ZPT ; 1.902 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 10 at 288 K (2) 5ZPJ ; 1.647 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 6 at 288 K (1) 5ZPK ; 1.65 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 6 at 288 K (2) 5ZPL ; 1.6 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 7 at 288 K (1) 5ZPM ; 1.65 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 7 at 288 K (2) 5ZPN ; 1.6 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 8 at 288 K (1) 5ZPO ; 1.73 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 8 at 288 K (2) 5ZPP ; 1.81 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 8 at 288 K (3) 5ZPQ ; 1.849 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 9 at 288 K (1) 5ZPR ; 1.922 ; Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pH 9 at 288 K (2) 3X3Z ; 1.51 ; Copper amine oxidase from Arthrobacter globiformis: Aminoresorcinol form produced by anaerobic reduction with ethylamine hydrochloride 3X41 ; 1.87 ; Copper amine oxidase from Arthrobacter globiformis: Product Schiff-base form produced by anaerobic reduction in the presence of sodium bromide 3X40 ; 1.85 ; Copper amine oxidase from Arthrobacter globiformis: Product Schiff-base form produced by anaerobic reduction in the presence of sodium chloride 1A2V ; 2.4 ; COPPER AMINE OXIDASE FROM HANSENULA POLYMORPHA 6IBH ; 1.82 ; Copper binding protein from Laetisaria arvalis (LaX325) 6IBI ; 2.08 ; Copper binding protein from Laetisaria arvalis (LaX325) 6IBJ ; 2.1 ; Copper binding protein from Laetisaria arvalis (LaX325) 1N68 ; 1.7 ; Copper bound to the Multicopper Oxidase CueO 2XMT ; 1.5 ; Copper chaperone Atx1 from Synechocystis PCC6803 (Cu1 form) 2XMV ; 1.8 ; Copper chaperone Atx1 from Synechocystis PCC6803 (Cu1, trimeric form, His61Tyr mutant) 2XMU ; 1.75 ; Copper chaperone Atx1 from Synechocystis PCC6803 (Cu2 form) 1CPZ ; ; COPPER CHAPERONE OF ENTEROCOCCUS HIRAE (APO-FORM) 8SY3 ; 3.2 ; Copper Complex of Peanut USP-type BURP Domain Peptide Cyclase 6Q58 ; 1.5 ; Copper loading to a cytosolic copper storage protein from Streptomyces lividans (five coppers) 6GBB ; 1.48 ; Copper nitrite reductase from Achromobacter cycloclastes: large cell polymorph dataset 1 6GCG ; 1.80015 ; Copper nitrite reductase from Achromobacter cycloclastes: large polymorph dataset 15 6GBY ; 1.48 ; Copper nitrite reductase from Achromobacter cycloclastes: non-polymorph separated dataset 1 6GB8 ; 1.48 ; Copper nitrite reductase from Achromobacter cycloclastes: small cell polymorph dataset 1 4YSO ; 1.5 ; Copper nitrite reductase from Geobacillus thermodenitrificans - 0.064 MGy 4KNU ; 1.8 ; Copper nitrite reductase from Nitrosomonas europaea at pH 6.5 4KNT ; 1.9 ; Copper nitrite reductase from Nitrosomonas europaea pH 8.5 6RYV ; 2.3 ; Copper oxidase from Colletotrichum graminicola 6RYW ; 2.6 ; Copper oxidase from Colletotrichum graminicola 6RYX ; 2.65 ; Copper oxidase from Colletotrichum graminicola 6STX ; 1.9 ; Copper oxidase from Colletotrichum graminicola 6WIS ; 2.0 ; Copper resistance protein copG- Form 1 6WJE ; 2.5 ; Copper resistance protein copG- Form 2 1K0V ; ; Copper trafficking: the solution structure of Bacillus subtilis CopZ 6FOK ; 1.97 ; Copper transporter OprC 6FOM ; 2.9 ; Copper transporter OprC 6Z8Q ; 2.71 ; Copper transporter OprC 6Z8R ; 2.38 ; Copper transporter OprC 6Z8S ; 2.37 ; Copper transporter OprC 6Z8T ; 2.86 ; Copper transporter OprC 6Z8U ; 2.61 ; Copper transporter OprC 6Z8Y ; 2.78 ; Copper transporter OprC 6Z8Z ; 2.56 ; Copper transporter OprC 6Z91 ; 2.6 ; Copper transporter OprC 6Z99 ; 2.68 ; Copper transporter OprC 6Z9N ; 2.73 ; Copper transporter OprC 6Z9Y ; 2.95 ; Copper transporter OprC 7PGE ; 2.0 ; copper transporter PcoB 6A72 ; 2.1 ; Copper transporter protein 2RSQ ; ; Copper(I) loaded form of the first domain of the human copper chaperone for SOD1, CCS 8BAE ; 1.2 ; Copper(II) bound to a non-canonical quadruplex 8BAG ; 1.13 ; Copper(II) bound to a non-canonical quadruplex containing the damaged base 8-oxoguanine 4XSN ; 1.452 ; Copper(II) bound to the Z-DNA form of d(CGCGCG) 3BKT ; 1.5 ; Copper-bound C-terminal Domain of NikR 6WEF ; 2.501 ; Copper-bound D92H variant of Campylobacter jejuni P19 6WED ; 1.9 ; Copper-bound E44Q variant of Campylobacter jejuni P19 5I0Y ; 1.4 ; COPPER-BOUND E46Q VARIANT OF UROPATHOGENIC ESCHERICHIA COLI STRAIN F11 FETP 6WEE ; 2.3 ; Copper-bound M88I variant of Campylobacter jejuni P19 5I0X ; 1.5 ; COPPER-BOUND M90I VARIANT OF UROPATHOGENIC ESCHERICHIA COLI STRAIN F11 FETP 6P1G ; 2.05 ; Copper-bound PCuAC domain from PmoF2 3WKQ ; 1.15 ; Copper-containing nitrite reductase from Geobacillus thermodenitrificans in complex with formate 4ZK8 ; 1.15 ; Copper-containing nitrite reductase from thermophilic bacterium Geobacillus thermodenitrificans (Re-refined) 3S0P ; 3.0 ; Copper-reconstituted Tomato Chloroplast Superoxide Dismutase 6AHX ; 2.0 ; Copper-Sensing Operon Regulator Protein (CsoRGz) 4BBJ ; 2.75 ; Copper-transporting PIB-ATPase in complex with beryllium fluoride representing the E2P state 5U9M ; 2.35 ; Copper-Zinc Superoxide Dismutase is Activated through a Sulfenic Acid Intermediate at a Copper-ion Entry Site 2K4B ; ; CopR Repressor Structure 8BBV ; 2.19 ; Coproporphyrin III - LmCpfC complex soaked 2min with Fe2+ 8OMM ; 2.15 ; Coproporphyrin III - LmCpfC complex soaked 3min with Fe2+ 8OFL ; 2.1 ; Coproporphyrin III - LmCpfC complex soaked 4min with Fe2+ 5EO6 ; 1.45 ; Coproporphyrinogen III oxidase (HemF) from Acinetobacter baumannii 1OLT ; 2.07 ; Coproporphyrinogen III oxidase (HemN) from Escherichia coli is a Radical SAM enzyme. 3EJO ; 2.3 ; Coproporphyrinogen III oxidase from Leishmania donovani 1VJU ; 1.401 ; Coproporphyrinogen III oxidase from Leishmania major 2QT8 ; 1.75 ; Coproporphyrinogen III oxidase from Leishmania major 3E8J ; 2.27 ; Coproporphyrinogen III oxidase from Leishmania naiffi 5M5Q ; 2.2 ; COPS5(2-257) IN COMPLEX WITH A AZAINDOLE (COMPOUND 4) 6FF2 ; 1.3 ; CopZ metallochaperone 3DPT ; 2.9 ; COR domain of Rab family protein (Roco) 4EEB ; 3.8 ; CorA coiled-coil mutant under Mg2+ absence 4EED ; 3.92 ; CorA coiled-coil mutant under Mg2+ presence 4BZ4 ; 1.6 ; CorA is a surface-associated copper-binding protein important in Methylomicrobium album BG8 copper acquisition 1SFK ; 3.2 ; Core (C) protein from West Nile Virus, subtype Kunjin 2JHB ; ; CORE BINDING FACTOR BETA 6VLM ; 2.32 ; Core Catalytic Domain of HIV Integrase in complex with virtual screening hit 6GSA ; 4.2 ; Core Centromere Binding Factor 3 (CBF3) with monomeric Ndc10 8BH1 ; 3.8 ; Core divisome complex FtsWIQBL from Pseudomonas aeruginosa 1QS4 ; 2.1 ; Core domain of HIV-1 integrase complexed with Mg++ and 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone 4Y99 ; 2.0 ; Core domain of human cardiac troponin 5DS2 ; 1.85 ; Core domain of the class I small heat-shock protein HSP 18.1 from Pisum sativum 5DS1 ; 2.63 ; Core domain of the class II small heat-shock protein HSP 17.7 from Pisum sativum 1GPC ; 2.2 ; CORE GP32, DNA-BINDING PROTEIN 7PFO ; 3.2 ; Core human replisome 5N9J ; 3.4 ; Core Mediator of transcriptional regulation 7UI9 ; 3.3 ; Core Mediator-PICearly (Copy A) 3JCA ; 4.8 ; Core model of the Mouse Mammary Tumor Virus intasome 7YFN ; 3.8 ; Core module of the NuA4 complex in S. cerevisiae 3J0P ; 10.6 ; Core of mammalian 80S pre-ribosome in complex with tRNAs fitted to a 10.6A cryo-em map: rotated PRE state 1 3J0Q ; 10.6 ; Core of mammalian 80S pre-ribosome in complex with tRNAs fitted to a 10.6A cryo-em map: rotated PRE state 2 3J0L ; 9.8 ; Core of mammalian 80S pre-ribosome in complex with tRNAs fitted to a 9.8A cryo-EM map: classic PRE state 1 3J0O ; 9.0 ; Core of mammalian 80S pre-ribosome in complex with tRNAs fitted to a 9A cryo-EM map: classic PRE state 2 1E8O ; 3.2 ; Core of the Alu domain of the mammalian SRP 6H55 ; 6.0 ; core of the human pyruvate dehydrogenase (E2) 7EYB ; 3.7 ; core proteins 1P3N ; 1.55 ; CORE REDESIGN BACK-REVERTANT I103V/CORE10 1KFM ; 2.0 ; Core side-chain packing and backbone conformation in Lpp-56 coiled-coil mutants 1KFN ; 1.65 ; Core side-chain packing and backbone conformation in Lpp-56 coiled-coil mutants 1I9H ; 2.4 ; CORE STREPTAVIDIN-BNA COMPLEX 2EBO ; 1.9 ; CORE STRUCTURE OF GP2 FROM EBOLA VIRUS 2IEQ ; 1.747 ; Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein 1EQ7 ; 1.9 ; CORE STRUCTURE OF THE OUTER MEMBRANE LIPOPROTEIN FROM ESCHERICHIA COLI AT 1.9 ANGSTROM RESOLUTION 4N0T ; 1.7 ; Core structure of the U6 small nuclear ribonucleoprotein at 1.7 Angstrom resolution 8AA3 ; 2.7 ; Core SusCD transporter units from the inactive levan utilisome in the presence of levan fructo-oligosaccharides DP 15-25 8AA1 ; 2.9 ; Core SusCD transporter units from the levan utilisome with levan fructo-oligosaccharides DP 8-12 7AD8 ; 3.5 ; Core TFIIH-XPA-DNA complex with modelled p62 subunit 4DFC ; 2.803 ; Core UvrA/TRCF complex 8OHS ; 4.1 ; Core-binding domain of fungal E3-binding domain bound to the native pyruvate dehydrogenase E2 core 7R5M ; 3.3 ; Core-binding domain of fungal E3-binding domain bound to the pyruvate dehydrogenase E2 core 1SWS ; 2.0 ; CORE-STREPTAVIDIN MUTANT D128A AT PH 4.5 1SWT ; 2.0 ; CORE-STREPTAVIDIN MUTANT D128A IN COMPLEX WITH BIOTIN AT PH 4.5 3MG5 ; 1.3 ; Core-streptavidin mutant F130L in complex with biotin 1SWL ; 1.8 ; CORE-STREPTAVIDIN MUTANT W108F AT PH 7.0 1SWN ; 2.2 ; CORE-STREPTAVIDIN MUTANT W108F IN COMPLEX WITH BIOTIN AT PH 7.0 1SWQ ; 1.9 ; CORE-STREPTAVIDIN MUTANT W120A AT PH 7.5 1SWR ; 1.9 ; CORE-STREPTAVIDIN MUTANT W120A IN COMPLEX WITH BIOTIN AT PH 7.5 1SWO ; 1.95 ; CORE-STREPTAVIDIN MUTANT W120F AT PH 7.5 1SWP ; 2.0 ; CORE-STREPTAVIDIN MUTANT W120F IN COMPLEX WITH BIOTIN AT PH 7.5 1SWH ; 1.7 ; CORE-STREPTAVIDIN MUTANT W79F AT PH 4.5 1SWJ ; 2.0 ; CORE-STREPTAVIDIN MUTANT W79F AT PH 4.5 1SWK ; 2.0 ; CORE-STREPTAVIDIN MUTANT W79F IN COMPLEX WITH BIOTIN AT PH 4.5 4A2F ; 1.9 ; Coriolopsis gallica laccase collected at 12.65 keV 4A2G ; 1.8 ; Coriolopsis gallica laccase collected at 8.98 keV 4A2D ; 2.3 ; Coriolopsis gallica Laccase T2 Copper Depleted at pH 4.5 5DLI ; 2.1 ; Corkscrew assembly of SOD1 residues 28-38 5WOR ; 2.77 ; Corkscrew assembly of SOD1 residues 28-38 with familial mutation G37R 5IIW ; 2.0 ; Corkscrew assembly of SOD1 residues 28-38 without potassium iodide 1P9S ; 2.54 ; Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of anti-SARS Drugs 1P9U ; 2.37 ; Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of anti-SARS Drugs 4M1M ; 3.8 ; Corrected Structure of Mouse P-glycoprotein 4M2S ; 4.4 ; Corrected Structure of Mouse P-glycoprotein bound to QZ59-RRR 4M2T ; 4.35 ; Corrected Structure of Mouse P-glycoprotein bound to QZ59-SSS 1YYF ; 4.16 ; Correction of X-ray Intensities from an HslV-HslU co-crystal containing lattice translocation defects 1CNR ; 1.05 ; CORRELATED DISORDER OF THE PURE PRO22(SLASH)LEU25 FORM OF CRAMBIN AT 150K REFINED TO 1.05 ANGSTROMS RESOLUTION 4NH7 ; 2.0 ; Correlation between chemotype-dependent binding conformations of HSP90 alpha/beta and isoform selectivity 4NH8 ; 1.65 ; Correlation between chemotype-dependent binding conformations of HSP90 alpha/beta and isoform selectivity 4NH9 ; 2.77 ; Correlation between chemotype-dependent binding conformations of HSP90 alpha/beta and isoform selectivity 2TMD ; 2.4 ; CORRELATION OF X-RAY DEDUCED AND EXPERIMENTAL AMINO ACID SEQUENCES OF TRIMETHYLAMINE DEHYDROGENASE 3F8Y ; 1.45 ; Correlations of Human Dihydrofolate Reductase with Structural Data for Human Active Site Mutant Enzyme Complexes 3FS6 ; 1.23 ; Correlations of Inhibitor Kinetics for Pneumocystis jirovecii and Human Dihydrofolate Reductase with Structural Data for Human Active Site Mutant Enzyme Complexes 2H9A ; 1.9 ; Corrinoid Iron-Sulfur Protein 4C1N ; 2.53 ; Corrinoid protein reactivation complex with activator 4C41 ; 1.8 ; Corticosteroid-binding globulin with engineered disulphide bridge between residues 100 and 236 8GTM ; 2.6 ; Corticotropin-releasing hormone receptor 1(CRF1R) bound with BMK-C203 by XFEL 8GTI ; 2.2 ; Corticotropin-releasing hormone receptor 1(CRF1R) bound with BMK-C205 by XFEL 8GTG ; 2.75 ; Corticotropin-releasing hormone receptor 1(CRF1R) bound with BMK-I-152 by XFEL 6Y1Q ; ; Cortistatin analog with improved immunoregulatory activity 1M9H ; 2.0 ; Corynebacterium 2,5-DKGR A and Phe 22 replaced with Tyr (F22Y), Lys 232 replaced with Gly (K232G), Arg 238 replaced with His (R238H)and Ala 272 replaced with Gly (A272G)in presence of NADH cofactor 6TR8 ; ; Corynebacterium diphtheriae methionine sulfoxide reductase B (MsrB) solution structure - reduced form 4AC6 ; 2.54 ; Corynebacterium glutamicum AcnR AU derivative structure 5WAT ; 2.141 ; Corynebacterium glutamicum Full length Homoserine kinase 5WAS ; 1.799 ; Corynebacterium glutamicum Hydrolyzed Homoserine kinase 3RH0 ; 1.724 ; Corynebacterium glutamicum mycothiol/mycoredoxin1-dependent arsenate reductase Cg_ArsC2 6G1D ; 1.992 ; Corynebacterium glutamicum OxyR C206 mutant 6G4R ; 2.62 ; Corynebacterium glutamicum OxyR C206S mutant, H2O2-bound 6G1B ; 2.28 ; Corynebacterium glutamicum OxyR, oxidized form 3T38 ; 2.2 ; Corynebacterium glutamicum thioredoxin-dependent arsenate reductase Cg_ArsC1' 8UVX ; 2.9 ; CosR DNA bound form I 8UVK ; 2.21 ; CosR DNA bound form II 3F8E ; 2.0 ; Coumarins are a novel class of suicide carbonic anhydrase inhibitors 1BV7 ; 2.0 ; COUNTERACTING HIV-1 PROTEASE DRUG RESISTANCE: STRUCTURAL ANALYSIS OF MUTANT PROTEASES COMPLEXED WITH XV638 AND SD146, CYCLIC UREA AMIDES WITH BROAD SPECIFICITIES 1ZL3 ; 2.8 ; Coupling of active site motions and RNA binding 1FN7 ; 2.6 ; COUPLING OF DAMAGE RECOGNITION AND CATALYSIS BY A HUMAN BASE-EXCISION DNA REPAIR PROTEIN 1N3H ; ; Coupling of Folding and Binding in the PTB Domain of the Signaling Protein Shc 1OY2 ; ; Coupling of Folding and Binding in the PTB Domain of the Signaling Protein Shc 7EIZ ; ; Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading 4U8V ; 2.298 ; Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB 4U8Y ; 2.099 ; Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB 4U95 ; 2.0 ; Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB 4U96 ; 2.2 ; Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB 6G79 ; 3.78 ; Coupling specificity of heterotrimeric Go to the serotonin 5-HT1B receptor 1PW8 ; 1.3 ; Covalent Acyl Enzyme Complex Of The R61 DD-Peptidase with A Highly Specific Cephalosporin 1PWD ; 1.2 ; Covalent acyl enzyme complex of the Streptomyces R61 DD-peptidase with cephalosporin C 1H84 ; 2.0 ; COVALENT ADDUCT BETWEEN POLYAMINE OXIDASE AND N1ethylN11((cycloheptyl)methyl)4,8diazaundecane at pH 4.6 1H86 ; 2.0 ; COVALENT ADDUCT BETWEEN POLYAMINE OXIDASE AND N1ethylN11((cycloheptyl)methyl)4,8diazaundecane at pH 7.0 6VB9 ; 1.881 ; Covalent adduct of cis-2,3-epoxysuccinic acid with Isocitrate Lyase-1 from Mycobacterium tuberculosis 1DAO ; 3.2 ; COVALENT ADDUCT OF D-AMINO ACID OXIDASE FROM PIG KIDNEY WITH 3-METHYL-2-OXO-VALERIC ACID 8AOA ; 1.62 ; Covalent and non-covalent inhibitor of ERK2 (two sites) 1GJM ; 2.2 ; Covalent attachment of an electroactive sulphydryl reagent in the active site of cytochrome P450cam 3U9X ; 1.8 ; Covalent attachment of pyridoxal-phosphate derivatives to 14-3-3 proteins 8HHQ ; 2.4 ; Covalent bond formation between cysteine of PPARg-LBD and iodoacetic acid 5ZWF ; 2.1 ; Covalent bond formation between histidine of Vitamin D receptor (VDR) and a full agonist having a enone with a beta methyl group via conjugate addition reaction 5ZWE ; 2.72 ; Covalent bond formation between histidine of Vitamin D receptor (VDR) and a full agonist having a vinyl ketone group via conjugate addition reaction 5ZWH ; 2.38 ; Covalent bond formation between histidine of Vitamin D receptor (VDR) and a full agonist having an ene-ynone group via conjugate addition reaction 6JEY ; 2.2 ; Covalent bond formation between ynone moiety of synthetic fatty acid and hPPARg-LBD 5WR1 ; 2.34 ; Covalent bond formation of bifunctional ligand with hPPARg-LBD 5WQX ; 2.29 ; Covalent bond formation of synthetic ligand with hPPARg-LBD 7QV0 ; 2.49 ; Covalent complex between Scalindua brodae amxFabZ and amxACP 4S2C ; 2.2 ; Covalent complex of E. coli transaldolase TalB with fructose-6-phosphate 4S2B ; 1.46 ; Covalent complex of E. coli transaldolase TalB with tagatose-6-phosphate 2E6Y ; 1.6 ; Covalent complex of orotidine 5'-monophosphate decarboxylase (ODCase) with 6-Iodo-UMP 2ZZ3 ; 1.8 ; Covalent complex of orotidine monophosphate decarboxylase D70A mutant from M. thermoautotrophicus with 6-cyano-UMP 2ZZ4 ; 1.67 ; Covalent complex of orotidine monophosphate decarboxylase D75N mutant from M. thermoautotrophicum with 6-cyano-UMP 2ZZ6 ; 1.66 ; Covalent complex of orotidine monophosphate decarboxylase from M. thermoautotrophicum with 6-azido-UMP 6XHN ; 1.377 ; Covalent complex of SARS-CoV main protease with 4-methoxy-N-[(2S)-4-methyl-1-oxo-1-({(2S)-3-oxo-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)pentan-2-yl]-1H-indole-2-carboxamide 6XHO ; 1.446 ; Covalent complex of SARS-CoV main protease with ethyl (4R)-4-({N-[(4-methoxy-1H-indol-2-yl)carbonyl]-L-leucyl}amino)-5-[(3S)-2-oxopyrrolidin-3-yl]pentanoate 6XHL ; 1.471 ; Covalent complex of SARS-CoV main protease with N-[(2S)-1-({(2S,3S)-3,4-dihydroxy-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide 6XHM ; 1.406 ; Covalent complex of SARS-CoV-2 main protease with N-[(2S)-1-({(2S,3S)-3,4-dihydroxy-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl}amino)-4-methyl-1-oxopentan-2-yl]-4-methoxy-1H-indole-2-carboxamide 2QCN ; 1.85 ; Covalent complex of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase with 6-iodo-UMP 2RG3 ; 1.8 ; Covalent complex structure of elastase 7ACE ; ; Covalent dimer of Capra hircus Cathelicidin-1 in water 4UNV ; 1.6 ; Covalent dimer of lambda variable domains 5QIO ; 1.46 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with P11 5QIP ; 1.63 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102153 5QIR ; 1.43 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102305 5QIS ; 1.53 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102500 5QIW ; 1.71 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102660 5QIT ; 1.46 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102821 5QIY ; 1.58 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102954 5QIV ; 1.39 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0102998 5QIX ; 1.39 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0103007 5QIU ; 1.56 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0103011 5QIQ ; 1.44 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0103050 5QIZ ; 1.63 ; Covalent fragment group deposition -- Crystal Structure of OUTB2 in complex with PCM-0103080 1H6M ; 1.64 ; Covalent glycosyl-enzyme intermediate of hen egg white lysozyme 4C4D ; 1.32 ; Covalent glycosyl-enzyme intermediate of Hypocrea jecorina Cel7a E217Q mutant trapped using DNP-2-deoxy-2-fluoro-cellotrioside 5KYK ; 2.702 ; Covalent GTP-competitive inhibitors of KRAS G12C: Guanosine bisphosphonate Analogs 5O8V ; 2.0 ; Covalent Inhibitor 4a bound to the Lipid Pocket of p38alpha Mutant S251C 5O8U ; 2.0 ; Covalent Inhibitor 4b bound to the Lipid Pocket of p38alpha Mutant S252C 5KRE ; 2.0 ; Covalent inhibitor of LYPLAL1 2OWW ; 2.2 ; Covalent intermediate in amylomaltase in complex with the acceptor analog 4-deoxyglucose 1S46 ; 2.2 ; Covalent intermediate of the E328Q amylosucrase mutant 6JF0 ; 3.4 ; Covalent labeling of hPPARg-LBD by turn-on fluorescent probe mediated by conjugate addition and cyclization 6JEZ ; 2.3 ; Covalent labeling of rVDR-LBD by turn-on fluorescent probe mediated by conjugate addition and cyclization 1D39 ; 1.2 ; COVALENT MODIFICATION OF GUANINE BASES IN DOUBLE STRANDED DNA: THE 1.2 ANGSTROMS Z-DNA STRUCTURE OF D(CGCGCG) IN THE PRESENCE OF CUCL2 4L1S ; 1.5 ; Covalent modification of transthyretin K15 by yielding the fluorescent conjugate (E)-3-(dimethylamino)-5-(4-hydroxy-3,5-dimethylstyryl)benzamide 1PWG ; 1.074 ; Covalent Penicilloyl Acyl Enzyme Complex Of The Streptomyces R61 DD-Peptidase With A Highly Specific Penicillin 1TQH ; 1.63 ; Covalent Reaction intermediate Revealed in Crystal Structure of the Geobacillus stearothermophilus Carboxylesterase Est30 8D2M ; 1.821 ; Covalent Schiff base complex of YedK C2A and abasic DNA 1MHT ; 2.6 ; COVALENT TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE, DNA AND S-ADENOSYL-L-HOMOCYSTEINE 2IBI ; 2.2 ; Covalent Ubiquitin-USP2 Complex 3IHP ; 2.8 ; Covalent Ubiquitin-Usp5 Complex 7ACB ; ; Covalent/noncovalent tetramer of Capra hircus Cathelicidin-1 in DPC (dodecylphosphocholine) micelles 6CG5 ; 2.08 ; Covalently crosslinked trimer of a macrocyclic peptide derived from Abeta (17-36) - (ORN)LCVFFCED(ORN)AII(2-nitrobenzylglycine)L(ORN)V 6CG4 ; 2.083 ; Covalently crosslinked trimer of a macrocyclic peptide derived from Abeta(17-36) - (ORN)LCVFFCED(ORN)AII(2-nitrobenzylglycine)L(ORN)V 7U4P ; 1.803 ; Covalently stabilized triangular trimer composed of Abeta17-36 beta-hairpins 8ECA ; 2.27 ; Covalently stabilized triangular trimer derived from Abeta16-36 8EC9 ; 2.169 ; Covalently stabilized triangular trimer derived from Abeta16-36 with p-iodo-phenylalanine 7BZF ; 3.26 ; COVID-19 RNA-dependent RNA polymerase post-translocated catalytic complex 7C2K ; 2.93 ; COVID-19 RNA-dependent RNA polymerase pre-translocated catalytic complex 7Q9G ; 3.3 ; COVOX-222 fab in complex with SARS-CoV-2 beta-Spike glycoprotein 1NY7 ; 3.0 ; COWPEA MOSAIC VIRUS (CPMV) 5MS1 ; 4.25 ; Cowpea mosaic virus top component (CPMV-T) - naturally occurring empty particles 5MSH ; 4.25 ; Cowpea mosaic virus top component (CPMV-T) - naturally occurring empty particles 5WBE ; 2.75 ; COX-1:MOFEZOLAC COMPLEX STRUCTURE 5U6X ; 2.93 ; COX-1:P6 COMPLEX STRUCTURE 6S3A ; 1.52 ; Coxsackie B3 2C protein in complex with S-Fluoxetine 6T3W ; 1.82 ; Coxsackie B3 2C protein in complex with S-Fluoxetine 7TQU ; 3.8 ; Coxsackievirus A21 capsid subdomain in complex with mouse polyclonal antibody pAbC-1 7TQS ; 3.9 ; Coxsackievirus A21 capsid subdomain in complex with mouse polyclonal antibody pAbC-3 7TQT ; 4.1 ; Coxsackievirus A21 capsid subdomain in complex with mouse polyclonal antibody pAbC-5 7QB5 ; 1.728 ; Coxsackievirus A24v (CVA24v) in complex with a dimeric C2-C9-linked sialic acid inhibitor 6EIT ; 3.9 ; Coxsackievirus A24v in complex with the D1-D2 fragment of ICAM-1 7C9Z ; 3.6 ; Coxsackievirus B1 F-particle 7VY5 ; 3.15 ; Coxsackievirus B3 (VP3-234Q) incubation with CD55 at pH7.4 3DDK ; 2.25 ; Coxsackievirus B3 3Dpol RNA Dependent RNA Polymerase 4WFZ ; 1.803 ; Coxsackievirus B3 3Dpol RNA Dependent RNA Polymerase - NaCl Crystal Form 7VXL ; 3.3 ; Coxsackievirus B3 A-particle at pH7.4 (VP3-234Q) 7VYL ; 2.79 ; Coxsackievirus B3 at pH5.5 (VP3-234Q) incubation with coxsackievirus and adenovirus receptor for 20min 7VYM ; 3.68 ; Coxsackievirus B3 at pH7.4 (VP3-234E) incubation with coxsackievirus and adenovirus receptor for 10min 7W14 ; 2.2 ; Coxsackievirus B3 at pH7.4 (VP3-234E) incubation with coxsackievirus and adenovirus receptor for 20min 7VYK ; 2.79 ; Coxsackievirus B3 at pH7.4 (VP3-234Q) incubation with coxsackievirus and adenovirus receptor for 10min 7VXZ ; 3.19 ; Coxsackievirus B3 at pH7.4 (VP3-234Q) incubation with coxsackievirus and adenovirus receptor for 20min 1COV ; 3.5 ; COXSACKIEVIRUS B3 COAT PROTEIN 7VXN ; 3.53 ; Coxsackievirus B3 Empty particle at pH7.4 (VP3-234Q) 7W17 ; 2.5 ; Coxsackievirus B3 full particle at pH7.4 (VP3-234E) 7VY0 ; 2.7 ; Coxsackievirus B3 full particle at pH7.4 (VP3-234N) 7VXH ; 2.95 ; Coxsackievirus B3 full particle at pH7.4 (VP3-234Q) 6ZCL ; 2.8 ; Coxsackievirus B3 in complex with capsid binder compound 17 4ZPC ; 1.59 ; Coxsackievirus B3 Polymerase - A341G mutant 4ZPD ; 1.797 ; Coxsackievirus B3 Polymerase - A345V mutant 4WFY ; 2.06 ; Coxsackievirus B3 Polymerase - F232L Mutant - AmSO4 Crystal Form 4WFX ; 1.808 ; Coxsackievirus B3 Polymerase - F232L Mutant - NaCl Crystal Form 4ZP6 ; 1.648 ; Coxsackievirus B3 Polymerase - F364A mutant 4ZP9 ; 1.799 ; Coxsackievirus B3 Polymerase - F364I mutant 4ZP8 ; 1.894 ; Coxsackievirus B3 Polymerase - F364L mutant 4ZP7 ; 1.901 ; Coxsackievirus B3 Polymerase - F364V mutant 4ZPB ; 1.797 ; Coxsackievirus B3 Polymerase - F364W mutant 4ZPA ; 2.665 ; Coxsackievirus B3 Polymerase - F364Y mutant 4K4Y ; 2.72 ; Coxsackievirus B3 polymerase elongation complex (r2+1_form) 4K4X ; 2.37 ; Coxsackievirus B3 polymerase elongation complex (r2_form), rna 4K4Z ; 2.17 ; Coxsackievirus B3 polymerase elongation complex (r2_Mg_form) 7VY6 ; 3.02 ; Coxsackievirus B3(VP3-234N) incubate with CD55 at pH7.4 6ZCK ; 2.7 ; Coxsackievirus B4 in complex with capsid binder compound 48 6ZMS ; 3.4 ; Coxsackievirus B4 strain E2 7C9Y ; 3.5 ; Coxsackievirus B5 (CVB5) F-particle 2GG4 ; 2.1 ; CP4 EPSP synthase (unliganded) 2GGD ; 1.7 ; CP4 EPSP synthase Ala100Gly liganded with S3P and Glyphosate 2GG6 ; 1.64 ; CP4 EPSP synthase liganded with S3P 2GGA ; 1.7 ; CP4 EPSP synthase liganded with S3P and Glyphosate 2PQB ; 1.8 ; CP4 EPSPS liganded with (R)-difluoromethyl tetrahedral intermediate analog 2PQC ; 1.6 ; CP4 EPSPS liganded with (R)-phosphonate tetrahedral reaction intermediate analog 7Z0F ; 2.396 ; CPAP:S-TUBULIN:IIH5 ALPHAREP COMPLEX 7Q1F ; 2.347 ; CPAP:TUBULIN:IE5 ALPHAREP COMPLEX 7Z0G ; 3.487 ; CPAP:TUBULIN:IE5 ALPHAREP COMPLEX P1 SPACE GROUP 7Q1E ; 2.7 ; CPAP:TUBULIN:IIH5 ALPHAREP COMPLEX 2JA5 ; 3.8 ; CPD lesion containing RNA Polymerase II elongation complex A 2JA6 ; 4.0 ; CPD lesion containing RNA Polymerase II elongation complex B 2JA7 ; 3.8 ; CPD lesion containing RNA Polymerase II elongation complex C 2JA8 ; 3.8 ; CPD lesion containing RNA Polymerase II elongation complex D 3REN ; 2.0 ; CPF_2247, a novel alpha-amylase from Clostridium perfringens 8C56 ; 2.4 ; CpG specific M.MpeI methyltransferase crystallized in the presence of 2'-deoxy-5-methylzebularine (5mZ) and 5-methylcytosine containing dsDNA 8C57 ; 1.95 ; CpG specific M.MpeI methyltransferase crystallized in the presence of 5,6-dihydro-5-azacytosine (converted to 5m-dhaC) and 5-methylcytosine containing dsDNA 8C59 ; 1.7 ; CpG specific M.MpeI methyltransferase crystallized in the presence of 5-bromocytosine (converted to 5mC) and 5-methylcytosine containing dsDNA 8C58 ; 1.85 ; CpG specific M.MpeI methyltransferase crystallized in the presence of 5-hydroxycytosine and 5-methylcytosine containing dsDNA 4DKJ ; 2.15 ; CpG specific methyltransferase in complex with target DNA 4A4A ; 1.9 ; CpGH89 (E483Q, E601Q), from Clostridium perfringens, in complex with its substrate GlcNAc-alpha-1,4-galactose 4A3Z ; 1.55 ; CpGH89CBM32-4 (seleno-methionine labeled) produced by Clostridium perfringens 4A6O ; 2.8 ; CpGH89CBM32-4, produced by Clostridium perfringens, in complex with glcNAc-alpha-1,4-galactose 4A41 ; 1.55 ; CpGH89CBM32-5, from Clostridium perfringens, in complex with galactose 4A45 ; 1.75 ; CpGH89CBM32-5, from Clostridium perfringens, in complex with GalNAc- beta-1,3-galactose 4AAX ; 1.9 ; CpGH89CBM32-5, from Clostridium perfringens, in complex with N- acetylgalactosamine 4A44 ; 1.7 ; CpGH89CBM32-5, from Clostridium perfringens, in complex with the Tn Antigen 4A42 ; 1.55 ; CpGH89CBM32-6 produced by Clostridium perfringens 1K5O ; ; CPI-17(35-120) deletion mutant 4R9F ; 1.4 ; CpMnBP1 with Mannobiose Bound 4R9G ; 2.2 ; CpMnBP1 with Mannotriose Bound 3N26 ; 2.1 ; Cpn0482 : the arginine binding protein from the periplasm of chlamydia Pneumoniae 4ZXL ; 2.6 ; CpOGA D298N in complex with Drosophila HCF -derived Thr-O-GlcNAc peptide 2YDQ ; 2.6 ; CpOGA D298N in complex with hOGA-derived O-GlcNAc peptide 6RHE ; 3.1 ; CpOGA D298N in complex with hOGA-derived S-GlcNAc peptide 2YDR ; 2.75 ; CpOGA D298N in complex with p53-derived O-GlcNAc peptide 2YDS ; 2.55 ; CpOGA D298N in complex with TAB1-derived O-GlcNAc peptide 7KHV ; 2.3 ; CpOGA IN COMPLEX WITH LIGAND 54 7OB6 ; 2.598 ; CPR-C4 - a conserved novel protease from the Candidate Phyla Radiation 7OB7 ; 2.682 ; CPR-C4 - novel protease from the Candidate Phyla Radiation (CPR) 3E6C ; 1.8 ; CprK OCPA DNA Complex 6UEL ; 1.9 ; CPS1 bound to allosteric inhibitor H3B-193 6W2J ; 2.62 ; CPS1 bound to allosteric inhibitor H3B-374 4B4N ; 1.813 ; CPSF6 defines a conserved capsid interface that modulates HIV-1 replication 8B7T ; ; CPSF73 CTD3 1IJS ; 3.25 ; CPV (STRAIN D) mutant A300D, complex (VIRAL COAT/DNA), VP2, PH=7.5, T=4 DEGREES C 7UTP ; 3.8 ; CPV Affinity Purified Polyclonal Fab A Site Fab 7UTR ; 3.7 ; CPV Affinity Purified Polyclonal Fab B Site Fab 7UTS ; 3.6 ; CPV Total-Fab Polyclonal A Site Fab 7UTU ; 3.0 ; CPV Total-Fab Polyclonal B Site Fab (1 of 2) 7UTV ; 3.0 ; CPV Total-Fab Polyclonal B Site Fab (2 of 2) 4GW1 ; 2.24 ; cQFD Meditope 4GW5 ; 2.2 ; cQYN meditope - Cetuximab Fab 7YNG ; 3.1 ; CR-bound alpha-synuclein fibrils 2MCZ ; ; CR1 Sushi domains 1 and 2 2MCY ; ; CR1 Sushi domains 2 and 3 5W1G ; 2.0 ; CR1-07 unliganded Fab 6H6M ; 2.38 ; CR10 murine norovirus protruding domain in complex with the CD300lf receptor and glycochenodeoxycholate (GCDCA) 1GHQ ; 2.04 ; CR2-C3D COMPLEX STRUCTURE 7OXX ; 1.33 ; CrabP2 mutant R30AK31A 7OXW ; 1.16 ; CrabP2 mutant R30DK31D 1EJG ; 0.54 ; CRAMBIN AT ULTRA-HIGH RESOLUTION: VALENCE ELECTRON DENSITY. 1JXT ; 0.89 ; CRAMBIN MIXED SEQUENCE FORM AT 160 K. PROTEIN/WATER SUBSTATES 1JXW ; 0.89 ; CRAMBIN MIXED SEQUENCE FORM AT 180 K. PROTEIN/WATER SUBSTATES 1JXX ; 0.89 ; CRAMBIN MIXED SEQUENCE FORM AT 200 K. PROTEIN/WATER SUBSTATES 1JXY ; 0.89 ; CRAMBIN MIXED SEQUENCE FORM AT 220 K. PROTEIN/WATER SUBSTATES 1JXU ; 0.99 ; CRAMBIN MIXED SEQUENCE FORM AT 240 K. PROTEIN/WATER SUBSTATES 6LIJ ; 2.1 ; Crassostrea gigas ferritin 6LJG ; 1.799 ; Crassostrea gigas ferritin mutant-D119G 7DLB ; 2.502 ; Crassostrea gigas ferritin mutant-D119K 2D3P ; 2.8 ; Cratylia Floribunda seed lectin crystallized at basic pH 2D3R ; 2.9 ; Cratylia folibunda seed lectin at acidic pH 1MVQ ; 1.77 ; Cratylia mollis lectin (isoform 1) in complex with methyl-alpha-D-mannose 5FCM ; 2.229 ; CrBld10-N 1-70 7EKO ; 3.3 ; CrClpP-S1 7EKQ ; 3.6 ; CrClpP-S2c 1KBU ; 2.2 ; CRE RECOMBINASE BOUND TO A LOXP HOLLIDAY JUNCTION 7RHY ; 3.91 ; Cre recombinase mutant (D33A/A36V/R192A) in complex with loxA DNA hairpin 3MGV ; 2.29 ; Cre recombinase-DNA transition state 3CRX ; 2.5 ; CRE RECOMBINASE/DNA COMPLEX INTERMEDIATE I 1CRX ; 2.4 ; CRE RECOMBINASE/DNA COMPLEX REACTION INTERMEDIATE I 3C29 ; 2.2 ; Cre-loxP Synaptic structure 4CR5 ; 2.0 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CR9 ; 1.7 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRA ; 1.8 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRB ; 1.85 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRC ; 1.6 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRD ; 2.1 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRE ; 1.73 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRF ; 2.3 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 4CRG ; 1.25 ; Creating novel F1 inhibitors through fragment based lead generation and structure aided drug design 3A6D ; 1.9 ; Creatininase complexed with 1-methylguanidine 1J2T ; 1.8 ; Creatininase Mn 1J2U ; 1.85 ; Creatininase Zn 1V7Z ; 1.6 ; creatininase-product complex 6ALB ; 2.053 ; CREBBP bromodomain in complex with Cpd 30 (1-(3-(3-(1-methyl-1H-pyrazol-4-yl)isoquinolin-8-yl)-1-(tetrahydro-2H-pyran-4-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)ethan-1-one) 6ALC ; 1.391 ; CREBBP bromodomain in complex with Cpd 4 (1-(1-(cyclopropylmethyl)-3-(1H-indol-4-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)ethan-1-one) 5KTW ; 1.087 ; CREBBP bromodomain in complex with Cpd 44 (3-((5-acetyl-1-(cyclopropylmethyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridin-3-yl)amino)-N-isopropylbenzamide) 5W0L ; 1.549 ; CREBBP Bromodomain in complex with Cpd10 (1-(3-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-1-(tetrahydro-2H-pyran-4-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)ethan-1-one) 6AY3 ; 1.391 ; CREBBP bromodomain in complex with Cpd16 (5-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-N-methyl-1H-indole-3-carboxamide) 6AY5 ; 1.44 ; CREBBP bromodomain in complex with Cpd17 (5-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-3-methylbenzo[d]thiazol-2(3H)-one) 5W0Q ; 1.7 ; CREBBP Bromodomain in complex with Cpd17 (N,2,7-trimethyl-2,3-dihydro-4H-benzo[b][1,4]oxazine-4-carboxamide) 5W0E ; 1.41 ; CREBBP bromodomain in complex with Cpd19 (3-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-N-methyl-1-(tetrahydro-2H-pyran-4-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxamide) 5W0F ; 1.6 ; CREBBP Bromodomain in complex with Cpd3 ((S)-1-(3-(6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-1-(tetrahydrofuran-3-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)ethan-1-one) 5KTX ; 1.27 ; CREBBP bromodomain in complex with Cpd59 ((S)-1-(3-((2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)phenyl)amino)-1-(tetrahydrofuran-3-yl)-6,7-dihydro-1H-pyrazolo[4,3-c]pyridin-5(4H)-yl)ethanone) 6AXQ ; 1.3 ; CREBBP bromodomain in complex with Cpd6 (methyl 1H-indole-3-carboxylate) 5W0I ; 1.43 ; CREBBP Bromodomain in complex with Cpd8 (1-(3-(7-(difluoromethyl)-6-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydroquinolin-1(2H)-yl)-1-(tetrahydrofuran-3-yl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)ethan-1-one) 5DN7 ; 2.2 ; Crescerin uses a TOG domain array to regulate microtubules in the primary cilium 1BTI ; 2.2 ; CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A 1FAN ; 2.0 ; CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A 1NAG ; 1.9 ; CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A 1BPT ; 2.0 ; CREVICE-FORMING MUTANTS OF BPTI: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A 6P9X ; 2.91 ; CRF1 Receptor Gs GPCR protein complex with CRF1 peptide 6IBW ; 2.8 ; Crh5 transglycosylase in complex with NAG 1B35 ; 2.4 ; CRICKET PARALYSIS VIRUS (CRPV) 3MJ3 ; 3.1 ; Cricket Paralysis Virus IGR IRES Domain 3 RNA bound to selenate 3MJA ; 2.8 ; Cricket Paralysis Virus IGR IRES Domain 3 RNA bound to selenate, structure #2 3MJB ; 2.8 ; Cricket Paralysis Virus IGR IRES Domain 3 RNA bound to sulfate 6C3R ; 2.6 ; Cricket paralysis virus RNAi suppressor protein CrPV-1A 5FMR ; 2.0 ; crIFT52 N-terminal domain 5FMT ; 1.878 ; CrIFT54 CH-domain 2ICF ; 4.1 ; CRIg bound to C3b 2ICE ; 3.1 ; CRIg bound to C3c 2L7X ; ; Crimean Congo Hemorrhagic Fever Gn zinc finger 3ZNH ; 2.3 ; Crimean Congo Hemorrhagic Fever Virus OTU domain in complex with ubiquitin-propargyl. 7A5A ; 2.989 ; Crimean-Congo Hemorrhagic Fever Virus Envelope Glycoprotein Gc W1191H/W1197A/W1199A Mutant in Postfusion Conformation (Monoclinic Crystal Form) 7A59 ; 2.197 ; Crimean-Congo Hemorrhagic Fever Virus Envelope Glycoprotein Gc W1191H/W1197A/W1199A Mutant in Postfusion Conformation (Orthorhombic Crystal Form) 6WEM ; 2.04 ; Crimson 0.9 5YI6 ; 1.852 ; CRISPR associated protein Cas6 6NBU ; 2.75 ; CRISPR Complex Subunit Csm2 from Staphylococcus epidermidis RP62a 6NBT ; 2.4 ; CRISPR Complex Subunit Csm3 from Staphylococcus epidermidis RP62a 4ILM ; 3.068 ; CRISPR RNA Processing endoribonuclease 5U07 ; 3.8 ; CRISPR RNA-guided surveillance complex 5U0A ; 3.3 ; CRISPR RNA-guided surveillance complex 6C66 ; 3.66 ; CRISPR RNA-guided surveillance complex, pre-nicking 5H1O ; 1.65 ; CRISPR-associated protein 5H1P ; 1.75 ; CRISPR-associated protein 2YK3 ; 1.55 ; CRITHIDIA FASCICULATA CYTOCHROME C 5UNI ; 2.2 ; Critical role of water molecules for proton translocation of the membrane-bound transhydrogenase 2VRW ; 1.85 ; Critical structural role for the PH and C1 domains of the Vav1 exchange factor 1B07 ; 2.5 ; CRK SH3 DOMAIN COMPLEXED WITH PEPTOID INHIBITOR 5JN0 ; 1.677 ; CRK-II SH2 domain 6LIX ; 2.385 ; CRL Protein of Arabidopsis 8B3I ; 3.5 ; CRL4CSA-E2-Ub (state 2) 1ORC ; 1.54 ; CRO REPRESSOR INSERTION MUTANT K56-[DGEVK] 2ORC ; ; CRO REPRESSOR INSERTION MUTANT K56-[DGEVK], NMR, 32 STRUCTURES 6I86 ; 2.0 ; Crocagin biosynthetic gene J 7PD7 ; 1.96 ; Crocagin methyl transferase CgnL 6DN4 ; 1.99 ; Cronobacter sakazakii (Enterobacter sakazakii) Metallo-beta-lactamse HARLDQ motif 6DQH ; 1.104 ; Cronobacter sakazakii (Enterobacter sakazakii) Metallo-beta-lactamse HARLDQ motif 6NC5 ; 2.074 ; Cronobacter sakazakii (Enterobacter sakazakii) Metallo-beta-lactamse HARLDQ motif 6DQ2 ; 2.158 ; Cronobacter sakazakii (Enterobacter sakazakii) Metallo-beta-lactamse HARLDQ motif mutant S60 6DGN ; 1.999 ; Cronobacter turicensis BDSF synthase RpfF in complex with the RpfR quorum-sensing receptor FI domain 6DGJ ; 2.294 ; Cronobacter turicensis RpfR quorum-sensing receptor PAS domain in complex with BDSF 6DGG ; 1.498 ; Cronobacter turicensis RpfR quorum-sensing receptor PAS domain in complex with C12:0 6DGA ; 1.19 ; Cronobacter turicensis RpfR quorum-sensing receptor RpfF interaction domain 6O3N ; 3.7 ; Cross-alpha Amyloid-like Structure alphaAmA 6C4Y ; 2.5 ; Cross-alpha Amyloid-like Structure alphaAmG 6C4Z ; 3.3 ; Cross-alpha Amyloid-like Structure alphaAmG - low resolution 6C51 ; 2.0 ; Cross-alpha Amyloid-like Structure alphaAmL 6D02 ; 2.5 ; Cross-alpha Amyloid-like Structure alphaAmL, 2nd form 6C4X ; 3.55 ; Cross-alpha Amyloid-like Structure alphaAmmem 6C50 ; 2.503 ; Cross-alpha Amyloid-like Structure alphaAmS 6C52 ; 1.6 ; Cross-alpha Amyloid-like Structure alphaTet 1ZEI ; 1.9 ; CROSS-LINKED B28 ASP INSULIN 2F5W ; 2.001 ; Cross-linked barnase soaked in 3 M thiourea 2F5M ; 1.95 ; Cross-linked barnase soaked in bromo-ethanol 2LYO ; 1.93 ; CROSS-LINKED CHICKEN LYSOZYME CRYSTAL IN 90% ACETONITRILE-WATER 3LYO ; 1.93 ; CROSS-LINKED CHICKEN LYSOZYME CRYSTAL IN 95% ACETONITRILE-WATER 4LYO ; 2.05 ; CROSS-LINKED CHICKEN LYSOZYME CRYSTAL IN NEAT ACETONITRILE, THEN BACK-SOAKED IN WATER 3W5U ; 2.7 ; Cross-linked complex between Ferredoxin and Ferredoxin-NADP+ reductase 3W5V ; 3.81 ; Cross-linked complex between Ferredoxin and Ferredoxin-NADP+ reductase 8OQG ; 1.6 ; Cross-linked crystal of dirhodium tetraacetate/ribonuclease A adduct in the P3221 space group (high temperature data collection) 8OQF ; 1.5 ; Cross-linked crystal of Dirhodium tetraacetate/ribonuclease A adduct in the P3221 space group (low temperature data collection) 1CLS ; 1.9 ; CROSS-LINKED HUMAN HEMOGLOBIN DEOXY 1LYO ; 1.93 ; CROSS-LINKED LYSOZYME CRYSTAL IN NEAT WATER 1SDK ; 1.8 ; CROSS-LINKED, CARBONMONOXY HEMOGLOBIN A 1SDL ; 1.8 ; CROSS-LINKED, CARBONMONOXY HEMOGLOBIN A 8EN8 ; 2.70001 ; Cross-reactive 3180 TCR recognition of HLA-B*35:01-NP4 epitope from 1972 influenza strain 8ENH ; 2.50003 ; Cross-reactive 3180 TCR recognition of HLA-B*35:01-NP7 epitope from 2002 H3N2 influenza strain 8EO8 ; 2.3 ; Cross-reactive 3180 TCR recognition of HLA-B*35:01-NP8 epitope from 2005 H1N1 influenza strain 2J23 ; 1.41 ; Cross-reactivity and crystal structure of Malassezia sympodialis Thioredoxin (Mala s 13), a member of a new pan-allergen family 4IML ; 2.931 ; CrossFab binding to human Angiopoietin 2 6N3P ; 2.5 ; Crosslinked AcpP=FabZ complex from E. coli Type II FAS 6KA9 ; 1.4 ; Crosslinked alpha(Fe-CO)-beta(Ni) human hemoglobin A in the T quaternary structure at 95 K: Dark 6KAE ; 1.45 ; Crosslinked alpha(Fe-CO)-beta(Ni) human hemoglobin A in the T quaternary structure at 95 K: Light 6KAI ; 1.45 ; Crosslinked alpha(Ni)-beta(Fe) human hemoglobin A in the T quaternary structure at 95 K: Light 6KAH ; 1.45 ; Crosslinked alpha(Ni)-beta(Fe-CO) human hemoglobin A in the T quaternary structure at 95 K: Dark 6LCW ; 1.4 ; Crosslinked alpha(Ni)-beta(Ni) human hemoglobin A in the T quaternary structure at 95 K: Dark 6LCX ; 1.4 ; Crosslinked alpha(Ni)-beta(Ni) human hemoglobin A in the T quaternary structure at 95 K: Light 3M1F ; 2.89 ; Crosslinked complex of actin with first W domain of Vibrio parahaemolyticus VopL 6U0J ; 1.9 ; Crosslinked Crystal Structure of Malonyl-CoA Acyl Carrier Protein Transacylase, FabD, and Acyl Carrier Protein, AcpP 8DLE ; 2.3 ; Crosslinked Crystal Structure of the 8-amino-7-oxonanoate synthase, BioF, and Benzene Sulfonyl Fluoride-crypto Acyl Carrier Protein, BSF-ACP 5KOF ; 2.4 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabB, and Acyl Carrier Protein, AcpP 6OKC ; 1.55 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabB, and C12-crypto Acyl Carrier Protein, AcpP 7SQI ; 1.7 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabB, and C14-crypto Acyl Carrier Protein, AcpP 6OKF ; 2.5 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabB, and C16-crypto Acyl Carrier Protein, AcpP 7SZ9 ; 2.2 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabB, and C16:1-crypto Acyl Carrier Protein, AcpP 6OLT ; 2.35 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabF, and C12-crypto Acyl Carrier Protein, AcpP 6OKG ; 2.3 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabF, and C16-crypto Acyl Carrier Protein, AcpP 7L4E ; 2.0 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabF, and C16:1-crypto Acyl Carrier Protein, AcpP 7L4L ; 2.65 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase Ketosynthase, FabF, and C8-crypto Acyl Carrier Protein, AcpP 8SMS ; 1.93 ; Crosslinked Crystal Structure of Type II Fatty Acid Synthase, FabB, and cerulenin crosslinker-crypto Acyl Carrier Protein, AcpP 4KEH ; 1.901 ; Crosslinked Crystal Structure of Type II Fatty Synthase Dehydratase, FabA, and Acyl Carrier Protein, AcpP 1HAB ; 2.3 ; CROSSLINKED HAEMOGLOBIN 1HAC ; 2.6 ; CROSSLINKED HAEMOGLOBIN 1NYI ; 2.85 ; Crosslinked Hammerhead Ribozyme Initial State 1BIJ ; 2.3 ; CROSSLINKED, DEOXY HUMAN HEMOGLOBIN A 2GJB ; 2.2 ; Crosslinking of DNA duplexes: X-ray crystal structure of an unsubstituted bisacridine with the oligonucleotide d(CGTACG) 1E4W ; 1.95 ; crossreactive binding of a circularized peptide to an anti-TGFalpha antibody Fab-fragment 1E4X ; 1.9 ; crossreactive binding of a circularized peptide to an anti-TGFalpha antibody Fab-fragment 1V11 ; 1.95 ; CROSSTALK BETWEEN COFACTOR BINDING AND THE PHOSPHORYLATION LOOP CONFORMATION IN THE BCKD MACHINE 1V16 ; 1.9 ; CROSSTALK BETWEEN COFACTOR BINDING AND THE PHOSPHORYLATION LOOP CONFORMATION IN THE BCKD MACHINE 1V1M ; 2.0 ; CROSSTALK BETWEEN COFACTOR BINDING AND THE PHOSPHORYLATION LOOP CONFORMATION IN THE BCKD MACHINE 1V1R ; 1.8 ; CROSSTALK BETWEEN COFACTOR BINDING AND THE PHOSPHORYLATION LOOP CONFORMATION IN THE BCKD MACHINE 4A46 ; 1.85 ; Crosstalk between Cu(I) and Zn(II) homeostasis 4A47 ; 1.9 ; Crosstalk between Cu(I) and Zn(II) homeostasis 4A48 ; 1.4 ; Crosstalk between Cu(I) and Zn(II) homeostasis 4A4J ; 1.25 ; Crosstalk between Cu(I) and Zn(II) homeostasis 4GI2 ; 3.0 ; Crotonyl-CoA Carboxylase/Reductase 2QOG ; 2.28 ; Crotoxin B, the basic PLA2 from Crotalus durissus terrificus. 4A2U ; 2.63 ; CRP(CAP) from Myco. Tuberculosis, with cAMP 7AKT ; 1.11 ; CrPetF variant - A39G_A41V 7D54 ; 1.85 ; Crstal structure MsGATase with Gln 6LL6 ; 2.5 ; Crsyal structure of EcFtsZ (residues 11-316) 4YOA ; 1.697 ; Crsystal structure HIV-1 Protease MDR769 L33F Complexed with darunavir 6JP9 ; 2.1 ; Crsytal structure of a XMP complexed ATPPase subunit of M. jannaschii GMP synthetase 6T65 ; 2.35 ; Crsytal structure of Acinetobacter baumannii FabG inhibitor complex at 2.35 A resolution 6M0V ; 3.0 ; Crsytal structure of streptococcus thermophilus Cas9 in complex with the GGAA PAM 7D8P ; 2.0 ; CRTC1 pSer151 peptide in complex with 14-3-3 zeta 7D9V ; 2.21 ; CRTC1 pSer245 peptide in complex with 14-3-3 zeta 7D8H ; 2.42 ; CRTC1 pSer64 peptide in complex with 14-3-3 zeta 8J9G ; 3.5 ; CrtSPARTA hetero-dimer bound with guide-target, state 1 8JAY ; 4.2 ; CrtSPARTA Octamer bound with guide-target 3WFL ; 1.6 ; Crtstal structure of glycoside hydrolase family 5 beta-mannanase from Talaromyces trachyspermus 7JUJ ; 2.2 ; Cruzain bound to Gallinamide inhibitor 1EWP ; 1.75 ; CRUZAIN BOUND TO MOR-LEU-HPQ 6UX6 ; 1.94 ; Cruzain covalently bound by a vinylsulfone compound 3KKU ; 1.28 ; Cruzain in complex with a non-covalent ligand 1AIM ; 2.0 ; CRUZAIN INHIBITED BY BENZOYL-TYROSINE-ALANINE-FLUOROMETHYLKETONE 2AIM ; 2.2 ; CRUZAIN INHIBITED WITH BENZOYL-ARGININE-ALANINE-FLUOROMETHYLKETONE 8WRZ ; 3.6 ; Cry-EM structure of cannabinoid receptor-arrestin 2 complex 7V6A ; 3.6 ; Cry-EM structure of M4-c110-G protein complex 7XF2 ; 3.73 ; Cry-EM structure of vp51 in white spot syndrome virus capsid 4QX2 ; 2.9 ; Cry3A Toxin structure obtained by injecting Bacillus thuringiensis cells in an XFEL beam, collecting data by serial femtosecond crystallographic methods and processing data with the cctbx.xfel software suite 4QX3 ; 2.9 ; Cry3A Toxin structure obtained by injecting Bacillus thuringiensis cells in an XFEL beam, collecting data by serial femtosecond crystallographic methods and processing data with the CrystFEL software suite 4QX0 ; 2.8 ; Cry3A Toxin structure obtained by Serial Femtosecond Crystallography from in vivo grown crystals isolated from Bacillus thuringiensis and data processed with the cctbx.xfel software suite 4QX1 ; 2.8 ; Cry3A Toxin structure obtained by Serial Femtosecond Crystallography from in vivo grown crystals isolated from Bacillus thuringiensis and data processed with the CrystFEL software suite 6LFP ; 3.31 ; Cry3Aa protein for enzyme entrapment 1GEG ; 1.7 ; CRYATAL STRUCTURE ANALYSIS OF MESO-2,3-BUTANEDIOL DEHYDROGENASE 4OCA ; 2.3 ; Cryatal structure of ArnB K188A complexted with PLP and UDP-Ara4N 3N9T ; 2.0 ; Cryatal structure of Hydroxyquinol 1,2-dioxygenase from Pseudomonas putida DLL-E4 7WR2 ; 1.54 ; Cryatal structure of OspC3 C-terminal ankyrin-repeat domain 5FVM ; 6.7 ; Cryo electron microscopy of a complex of Tor and Lst8 5AJ0 ; 3.5 ; Cryo electron microscopy of actively translating human polysomes (POST state). 5FOJ ; 2.8 ; Cryo electron microscopy structure of Grapevine Fanleaf Virus complex with Nanobody 6U9V ; 2.9 ; Cryo electron microscopy structure of the ATP-gated rat P2X7 ion channel in the apo, closed state 6U9W ; 3.3 ; Cryo electron microscopy structure of the ATP-gated rat P2X7 ion channel in the ATP-bound, open state 5AJ2 ; 40.0 ; Cryo electron tomography of the Naip5-Nlrc4 inflammasome 7RYJ ; 3.3 ; Cryo EM analysis reveals inherent flexibility of authentic murine papillomavirus capsids 5IJ0 ; 3.8 ; Cryo EM density of microtubule assembled from human TUBB3 5IJ9 ; 3.7 ; Cryo EM density of microtubule assembled from human TUBB3-D417H mutant 7ARQ ; 10.0 ; Cryo EM of 3D DNA origami 16 helix bundle 7E20 ; 2.7 ; Cryo EM structure of a K+-bound Na+,K+-ATPase in the E2 state 7E1Z ; 3.2 ; Cryo EM structure of a Na+-bound Na+,K+-ATPase in the E1 state 7E21 ; 2.9 ; Cryo EM structure of a Na+-bound Na+,K+-ATPase in the E1 state with ATP-gamma-S 5UZ9 ; 3.4 ; Cryo EM structure of anti-CRISPRs, AcrF1 and AcrF2, bound to type I-F crRNA-guided CRISPR surveillance complex 8IZ8 ; 3.13 ; cryo EM structure of apo hMRP4 7P1I ; 3.15 ; Cryo EM structure of bison NHA2 in detergent and N-terminal extension helix 7P1J ; 3.04 ; Cryo EM structure of bison NHA2 in detergent structure 7P1K ; 3.64 ; Cryo EM structure of bison NHA2 in nano disc structure 7YDJ ; 3.03 ; Cryo EM structure of CD97/miniG12 complex 7YDH ; 3.1 ; Cryo EM structure of CD97/miniG13 complex 2B6B ; 25.0 ; Cryo EM structure of Dengue complexed with CRD of DC-SIGN 6DS5 ; 3.8 ; Cryo EM structure of human SEIPIN 7FJM ; 3.3 ; Cryo EM structure of lysosomal ATPase 7FJP ; 3.0 ; Cryo EM structure of lysosomal ATPase 7FJQ ; 3.6 ; Cryo EM structure of lysosomal ATPase 7XC2 ; 3.0 ; Cryo EM structure of oligomeric complex formed by wheat CNL Sr35 and the effector AvrSr35 of the wheat stem rust pathogen 7WCD ; 3.3 ; Cryo EM structure of SARS-CoV-2 spike in complex with TAU-2212 mAbs in conformation 4 7P9V ; 3.4 ; Cryo EM structure of System XC- 7P9U ; 3.7 ; Cryo EM structure of System XC- in complex with glutamate 5N8O ; 3.9 ; Cryo EM structure of the conjugative relaxase TraI of the F/R1 plasmid system 5OG1 ; 4.5 ; Cryo EM structure of the E. coli disaggregase ClpB (BAP form, DWB mutant), in the ATPgammaS state 5OFO ; 4.6 ; Cryo EM structure of the E. coli disaggregase ClpB (BAP form, DWB mutant), in the ATPgammaS state, bound to the model substrate casein 6QCM ; 4.21 ; Cryo em structure of the Listeria stressosome 7D06 ; 3.1 ; Cryo EM structure of the nucleotide free Acinetobacter MlaFEDB complex 8K9R ; 2.68 ; Cryo EM structure of the products-bound PGAP1(Bst1)-H443N from Chaetomium thermophilum 8C8H ; 3.84 ; Cryo EM structure of the vaccinia complete RNA polymerase complex lacking the capping enzyme 8EVU ; 2.5804 ; Cryo EM structure of Vibrio cholerae NQR 8EW3 ; 2.65159 ; Cryo EM structure of Vibrio cholerae NQR 7Q22 ; 6.3 ; cryo iDPC-STEM structure recorded with CSA 2.0 7Q23 ; 4.3 ; cryo iDPC-STEM structure recorded with CSA 3.0 7Q2Q ; 4.3 ; cryo iDPC-STEM structure recorded with CSA 3.5 7Q2R ; 3.5 ; cryo iDPC-STEM structure recorded with CSA 4.0 7Q2S ; 3.7 ; cryo iDPC-STEM structure recorded with CSA 4.5 6Q8T ; 1.74009 ; Cryo structure of HEWL at 81 kGy 8ECF ; 2.736 ; Cryo structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 3 hours 6BC4 ; 2.049 ; Cryo X-ray structure of acetyl coenzyme A bound AAC-VIa 6BC2 ; 2.195 ; Cryo X-ray structure of acetylsisomicin bound AAC-VIa 6BC6 ; 2.2 ; Cryo X-ray structure of apo AAC-VIa 6BC5 ; 2.2 ; Cryo X-ray structure of coenzyme A bound AAC-VIa 6BC3 ; 2.047 ; Cryo X-ray structure of sisomicin bound AAC-VIa 6BC7 ; 1.8 ; Cryo X-ray structure of sisomicin bound AAC-VIa 8WIF ; 2.9 ; Cryo- EM structure of Mycobacterium smegmatis 30S ribosomal subunit (body 2) of 70S ribosome and RafH. 8WI9 ; 3.5 ; Cryo- EM structure of Mycobacterium smegmatis 30S ribosomal subunit (body 2) of 70S ribosome, bS1 and RafH. 8WID ; 3.5 ; Cryo- EM structure of Mycobacterium smegmatis 30S ribosomal subunit (body 2) of 70S ribosome, E- tRNA and RafH. 8WHY ; 2.7 ; Cryo- EM structure of Mycobacterium smegmatis 50S ribosomal subunit (body 1) of 70S ribosome and RafH. 8WI8 ; 2.7 ; Cryo- EM structure of Mycobacterium smegmatis 50S ribosomal subunit (body 1) of 70S ribosome, bS1 and RafH. 8WIC ; 3.5 ; Cryo- EM structure of Mycobacterium smegmatis 50S ribosomal subunit (body 1) of 70S ribosome, E- tRNA and RafH. 8WHX ; 2.8 ; Cryo- EM structure of Mycobacterium smegmatis 70S ribosome and RafH. 8WI7 ; 3.5 ; Cryo- EM structure of Mycobacterium smegmatis 70S ribosome, bS1 and RafH. 8WIB ; 3.5 ; Cryo- EM structure of Mycobacterium smegmatis 70S ribosome, E- tRNA and RafH. 6TRA ; 2.85 ; Cryo- EM structure of the Thermosynechococcus elongatus photosystem I in the presence of cytochrome c6 6TRC ; 2.98 ; Cryo- EM structure of the Thermosynechococcus elongatus photosystem I in the presence of cytochrome c6 6TRD ; 3.16 ; Cryo- EM structure of the Thermosynechococcus elongatus photosystem I in the presence of cytochrome c6 1A5B ; 2.0 ; CRYO-CRYSTALLOGRAPHY OF A TRUE SUBSTRATE, INDOLE-3-GLYCEROL PHOSPHATE, BOUND TO A MUTANT (ALPHA D60N) TRYPTOPHAN SYNTHASE ALPHA2BETA2 COMPLEX REVEALS THE CORRECT ORIENTATION OF ACTIVE SITE ALPHA GLU 49 1A5A ; 1.9 ; CRYO-CRYSTALLOGRAPHY OF A TRUE SUBSTRATE, INDOLE-3-GLYCEROL PHOSPHATE, BOUND TO A MUTANT (ALPHAD60N) TRYPTOPHAN SYNTHASE ALPHA2BETA2 COMPLEX REVEALS THE CORRECT ORIENTATION OF ACTIVE SITE ALPHA GLU 49 7WGR ; 2.92 ; Cryo-electron microscopic structure of the 2-oxoglutarate dehydrogenase (E1) component of the human alpha-ketoglutarate (2-oxoglutarate) dehydrogenase complex 6H05 ; 2.9 ; Cryo-electron microscopic structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate (2-oxoglutarate) dehydrogenase complex [residues 218-453] 7THR ; 2.21 ; Cryo-electron microscopy of Adeno-associated virus serotype 4 at 2.2 A 3J91 ; 8.8 ; Cryo-electron microscopy of Enterovirus 71 (EV71) procapsid in complex with Fab fragments of neutralizing antibody 22A12 4D1K ; 9.4 ; Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. 4BBL ; 18.0 ; Cryo-electron microscopy reconstruction of the helical part of influenza A virus ribonucleoprotein isolated from virions. 3JBP ; 6.7 ; Cryo-electron microscopy reconstruction of the Plasmodium falciparum 80S ribosome bound to E-tRNA 3JBN ; 4.7 ; Cryo-electron microscopy reconstruction of the Plasmodium falciparum 80S ribosome bound to P-tRNA 3JBO ; 5.8 ; Cryo-electron microscopy reconstruction of the Plasmodium falciparum 80S ribosome bound to P/E-tRNA 5TR1 ; 3.95 ; Cryo-electron microscopy structure of a bovine CLC-K chloride channel, alternate (class 2) conformation 5TQQ ; 3.76 ; Cryo-electron microscopy structure of a bovine CLC-K chloride channel, main (class 1) conformation 3JCL ; 4.0 ; Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer 6SMH ; 4.3 ; Cryo-electron microscopy structure of a RbcL-Raf1 supercomplex from Synechococcus elongatus PCC 7942 5W3S ; 2.94 ; Cryo-electron microscopy structure of a TRPML3 ion channel 8D46 ; 2.84 ; Cryo-electron microscopy structure of human kidney Aldehyde Dehydrogenase 1A1 8D44 ; 2.8 ; Cryo-electron microscopy structure of human kidney Fructose-bisphosphate aldolase B 7U2A ; 4.1 ; Cryo-electron microscopy structure of human mt-SerRS in complex with mt-tRNA (GCU) 7U2B ; 4.1 ; Cryo-electron microscopy structure of human mt-SerRS in complex with mt-tRNA(GCU-TL) 8FFY ; 3.6 ; Cryo-electron microscopy structure of human mt-SerRS in complex with mt-tRNA(UGA-TL) 6CV0 ; 3.93 ; Cryo-electron microscopy structure of infectious bronchitis coronavirus spike protein 6VSJ ; 3.94 ; Cryo-electron microscopy structure of mouse coronavirus spike protein complexed with its murine receptor 8DEU ; 2.95 ; Cryo-electron microscopy structure of Neisseria gonorrhoeae multidrug efflux pump MtrD with CASP peptide complex 8DEV ; 3.08 ; Cryo-electron microscopy structure of Neisseria gonorrhoeae multidrug efflux pump MtrD with colistin complex 8DEW ; 2.89 ; Cryo-electron microscopy structure of Neisseria gonorrhoeae multidrug efflux pump MtrD with LL-37 complex 6MPV ; 7.17 ; Cryo-electron microscopy structure of Plasmodium falciparum Rh5/CyRPA/Ripr invasion complex 6B7N ; 3.3 ; Cryo-electron microscopy structure of porcine delta coronavirus spike protein in the pre-fusion state 5AN8 ; 3.8 ; Cryo-electron microscopy structure of rabbit TRPV2 ion channel 3JBY ; 3.7 ; Cryo-electron microscopy structure of RAG Paired Complex (C2 symmetry) 3JBW ; 4.6 ; Cryo-electron microscopy structure of RAG Paired Complex (with NBD, no symmetry) 3JBX ; 3.4 ; Cryo-electron microscopy structure of RAG Signal End Complex (C2 symmetry) 5TX1 ; 3.7 ; Cryo-Electron microscopy structure of species-D human adenovirus 26 4A2I ; 16.5 ; Cryo-electron Microscopy Structure of the 30S Subunit in Complex with the YjeQ Biogenesis Factor 7KF7 ; 2.8 ; Cryo-electron microscopy structure of the heavy metal efflux pump CusA in a heterogeneous 1 open and 2 closed protomer conformation 7KF8 ; 3.0 ; Cryo-electron microscopy structure of the heavy metal efflux pump CusA in a heterogeneous 2 open and 1 closed protomer conformation 7KF6 ; 3.4 ; Cryo-electron microscopy structure of the heavy metal efflux pump CusA in a homogeneous binding copper(1) state 7KF5 ; 3.2 ; Cryo-electron microscopy structure of the heavy metal efflux pump CusA in the symmetric closed state 5IV5 ; 4.11 ; Cryo-electron microscopy structure of the hexagonal pre-attachment T4 baseplate-tail tube complex 5IV7 ; 6.77 ; Cryo-electron microscopy structure of the star-shaped, hubless post-attachment T4 baseplate 6WHI ; 4.2 ; Cryo-electron microscopy structure of the type I-F CRISPR RNA-guided surveillance complex bound to the anti-CRISPR AcrIF9 8GHT ; 3.05 ; Cryo-electron microscopy structure of the zinc transporter from Bordetella bronchiseptica 7MCS ; 3.56 ; Cryo-electron microscopy structure of TnsC(1-503)A225V bound to DNA 6VKS ; 3.02 ; Cryo-electron microscopy structures of a gonococcal multidrug efflux pump illuminate a mechanism of drug recognition with ampicillin 6VKT ; 2.72 ; Cryo-electron microscopy structures of a gonococcal multidrug efflux pump illuminate a mechanism of erythromycin drug recognition 3JA6 ; 12.7 ; Cryo-electron Tomography and All-atom Molecular Dynamics Simulations Reveal a Novel Kinase Conformational Switch in Bacterial Chemotaxis Signaling 5A9E ; 7.7 ; Cryo-electron tomography and subtomogram averaging of Rous-Sarcoma- Virus deltaMBD virus-like particles 7SOX ; 7.6 ; Cryo-electron tomography structure of membrane-bound EHD4 complex 7EYF ; 5.3 ; Cryo-EM (SPA) structure of human Nup155 C-terminus (864-1337) at 5.3 Angstroms resolution 7EYQ ; 5.4 ; Cryo-EM (SPA) structure of human Nup155 Longer N-terminus (19-1069) at 5.4 Angstrom resolution 7EYE ; 5.1 ; Cryo-EM (SPA) structure of Nup155 N-terminus (19-863) at 5.1 Angstrom resolution 2X8Q ; 18.3 ; Cryo-EM 3D model of the icosahedral particle composed of Rous sarcoma virus capsid protein pentamers 8EMT ; 2.92 ; Cryo-EM analysis of the human aldehyde oxidase from liver 5XTI ; 17.4 ; Cryo-EM architecture of human respiratory chain megacomplex-I2III2IV2 8CYE ; 3.9 ; Cryo-EM asymmetric reconstruction of the EPEC H6 bacterial flagellar filament Normal Waveform 6QCC ; 3.22 ; Cryo-EM Atomic Structure of Broad Bean Stain Virus (BBSV) 2I68 ; 7.5 ; Cryo-EM based theoretical model structure of transmembrane domain of the multidrug-resistance antiporter from E. coli EmrE 8C8X ; 3.93 ; Cryo-EM captures early ribosome assembly in action 8C8Y ; 3.03 ; Cryo-EM captures early ribosome assembly in action 8C8Z ; 3.12 ; Cryo-EM captures early ribosome assembly in action 8C90 ; 3.15 ; Cryo-EM captures early ribosome assembly in action 8C91 ; 4.19 ; Cryo-EM captures early ribosome assembly in action 8C92 ; 3.79 ; Cryo-EM captures early ribosome assembly in action 8C93 ; 4.17 ; Cryo-EM captures early ribosome assembly in action 8C94 ; 3.8 ; Cryo-EM captures early ribosome assembly in action 8C95 ; 4.92 ; Cryo-EM captures early ribosome assembly in action 8C96 ; 4.43 ; Cryo-EM captures early ribosome assembly in action 8C97 ; 4.07 ; Cryo-EM captures early ribosome assembly in action 8C98 ; 3.66 ; Cryo-EM captures early ribosome assembly in action 8C99 ; 3.29 ; Cryo-EM captures early ribosome assembly in action 8C9A ; 4.86 ; Cryo-EM captures early ribosome assembly in action 8C9B ; 5.9 ; Cryo-EM captures early ribosome assembly in action 8C9C ; 6.62 ; Cryo-EM captures early ribosome assembly in action 8F3C ; 3.4 ; Cryo-EM consensus structure of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase minus preQ1 ligand 8G4W ; 3.8 ; Cryo-EM consensus structure of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase plus preQ1 ligand 4UQJ ; 10.4 ; Cryo-EM density map of GluA2em in complex with ZK200775 6O8W ; 3.53 ; Cryo-EM image reconstruction of the 70S Ribosome Enterococcus faecalis Class01 6O8X ; 3.68 ; Cryo-EM image reconstruction of the 70S Ribosome Enterococcus faecalis Class02 6O8Y ; 4.14 ; Cryo-EM image reconstruction of the 70S Ribosome Enterococcus faecalis Class03 6O8Z ; 3.49 ; Cryo-EM image reconstruction of the 70S Ribosome Enterococcus faecalis Class04 6O90 ; 3.49 ; Cryo-EM image reconstruction of the 70S Ribosome Enterococcus faecalis Class05 8G3K ; 2.2 ; Cryo-EM imaging scaffold subunits A and B used to display KRAS G12C complex with GDP 6I00 ; 3.4 ; Cryo-EM informed directed evolution of Nitrilase 4 leads to a change in quaternary structure. 6I5T ; 3.9 ; Cryo-EM informed directed evolution of Nitrilase 4 leads to a change in quaternary structure. 6I5U ; 3.9 ; Cryo-EM informed directed evolution of Nitrilase 4 leads to a change in quaternary structure. 8OII ; 2.84 ; Cryo-EM KSB domain of RhiE from Burkholderia rhizoxinica 8DEQ ; 6.0 ; Cryo-EM local refinement of antibody SKV09 in complex with VEEV alphavirus spike glycoprotein 8DER ; 3.3 ; Cryo-EM local refinement of antibody SKV16 in complex with VEEV alphavirus spike glycoprotein 3J1N ; 16.0 ; Cryo-EM map of a yeast minimal preinitiation complex interacting with the Mediator Head module 3J1O ; 16.0 ; Cryo-EM map of a yeast minimal preinitiation complex interacting with the Mediator Head module 6HMS ; 7.1 ; Cryo-EM map of DNA polymerase D from Pyrococcus abyssi in complex with DNA 7QXA ; 3.2 ; Cryo-EM map of human telomerase-DNA-TPP1 complex (sharpened) 7QXB ; 3.9 ; Cryo-EM map of human telomerase-DNA-TPP1-POT1 complex (sharpened map) 6H5S ; 3.3 ; Cryo-EM map of in vitro assembled Measles virus N into nucleocapsid-like particles (NCLPs) bound to viral genomic 5-prime RNA hexamers. 7Y6T ; 4.2 ; Cryo-EM map of IPEC-J2 cell-derived PEDV PT52 S protein one D0-down and two D0-up 7Y6S ; 3.1 ; Cryo-EM map of IPEC-J2 cell-derived PEDV PT52 S protein with three D0-up 7RYQ ; 4.6 ; Cryo-EM map of KIFBP 7W6M ; 4.7 ; Cryo-EM map of PEDV (Pintung 52) S protein with all three protomers in the D0-down conformation determined in situ on intact viral particles. 7W73 ; 6.4 ; Cryo-EM map of PEDV S protein with one protomer in the D0-up conformation while the other two in the D0-down conformation 5UCY ; 4.6 ; Cryo-EM map of protofilament of microtubule doublet 8EKD ; 3.6 ; Cryo-EM map of SARS-CoV-2 Omicron BA.2 spike in complex with 2130-1-0114-112 7MO9 ; 4.0 ; Cryo-EM map of the c-MET II/HGF I/HGF II (K4 and SPH) sub-complex 4C4Q ; 8.5 ; Cryo-EM map of the CSFV IRES in complex with the small ribosomal 40S subunit and DHX29 8OOH ; 7.0 ; Cryo-EM map of the focused refinement of the subfamily III haloalkane dehalogenase from Haloferax mediterranei dimer forming hexameric assembly. 7A1D ; 4.19 ; Cryo-EM map of the large glutamate dehydrogenase composed of 180 kDa subunits from Mycobacterium smegmatis (open conformation) 8C7H ; 2.7 ; Cryo-EM Map of the latTGF-beta 28G11 Fab complex 7ZRM ; 3.7 ; Cryo-EM map of the unphosphorylated KdpFABC complex in the E1-P_ADP conformation, under turnover conditions 7ZRL ; 4.0 ; Cryo-EM map of the unphosphorylated KdpFABC complex in the E2-P conformation, under turnover conditions 7ZRD ; 3.3 ; Cryo-EM map of the WT KdpFABC complex in the E1-P tight conformation, stabilised with the inhibitor orthovanadate 7ZRE ; 3.4 ; Cryo-EM map of the WT KdpFABC complex in the E1-P tight conformation, under turnover conditions 7ZRK ; 3.1 ; Cryo-EM map of the WT KdpFABC complex in the E1-P_ADP conformation, under turnover conditions 7ZRG ; 3.5 ; Cryo-EM map of the WT KdpFABC complex in the E1_ATPearly conformation, under turnover conditions 4URD ; 7.7 ; Cryo-EM map of Trigger Factor bound to a translating ribosome 8ORD ; 3.9 ; Cryo-EM map of zebrafish cardiac F-actin 5VN8 ; 3.6 ; Cryo-EM model of B41 SOSIP.664 in complex with fragment antigen binding variable domain of b12 5VN3 ; 3.7 ; Cryo-EM model of B41 SOSIP.664 in complex with soluble CD4 (D1-D2) and fragment antigen binding variable domain of 17b 6X96 ; 3.4 ; Cryo-EM model of HIV-1 Env BG505 SOSIP.664 in complex with rabbit monoclonal antibody 10A fragment antigen binding variable domain 6X97 ; 3.65 ; Cryo-EM model of HIV-1 Env BG505 SOSIP.664 in complex with rabbit monoclonal antibody 11A fragment antigen binding variable domain 6X98 ; 3.38 ; Cryo-EM model of HIV-1 Env BG505 SOSIP.664 in complex with rabbit monoclonal antibody 11B fragment antigen binding variable domain 7TDZ ; 6.9 ; Cryo-EM model of protomer of the cytoplasmic ring of the nuclear pore complex from Xenopus laevis 8GTC ; 4.5 ; Cryo-EM model of the marine siphophage vB_DshS-R4C baseplate-tail complex 8GTD ; 4.7 ; Cryo-EM model of the marine siphophage vB_DshS-R4C portal-adaptor complex 8GTF ; 6.6 ; Cryo-EM model of the marine siphophage vB_DshS-R4C stopper-terminator complex 3IYO ; 10.5 ; Cryo-EM model of virion-sized HEV virion-sized capsid 7LQE ; 3.4 ; Cryo-EM of 1-protofilament of the KFE8 thinner nanotube 4CRM ; 8.75 ; Cryo-EM of a pre-recycling complex with eRF1 and ABCE1 4CRN ; 9.1 ; Cryo-EM of a pretermination complex with eRF1 and eRF3 7TXI ; 3.5 ; Cryo-EM of A. pernix flagellum 8E5G ; 3.9 ; Cryo-EM of A. veneficus cytochrome filament 7B1D ; 3.41 ; Cryo-EM of Aedes Aegypti Toll5A 7B1B ; 4.23 ; Cryo-EM of Aedes Aegypti Toll5A dimer bound to Spz1C 7B1C ; 3.74 ; Cryo-EM of Aedes Aegypti Toll5A trimer bound to Spz1C 7TXJ ; 3.9 ; Cryo-EM of AFV6 5FUA ; 7.6 ; Cryo-EM of BK polyomavirus 5LUF ; 9.1 ; Cryo-EM of bovine respirasome 8FOF ; 2.6 ; Cryo-EM of BP-ffsy filaments 7UEG ; 4.0 ; Cryo-EM of bundling pili from Pyrobaculum calidifontis 8U1K ; 3.5 ; Cryo-EM of Caulobacter crescentus Tad pilus 6TQL ; 3.96 ; Cryo-EM of elastase-treated human uromodulin (UMOD)/Tamm-Horsfall protein (THP) filament 6WD0 ; 3.0 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure I-A) 6WD1 ; 3.3 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure I-B) 6WD2 ; 3.6 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-A) 6WD3 ; 3.6 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-B1) 6WD4 ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-B2) 6WD5 ; 3.6 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-C1) 6WD6 ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-C2) 6WD7 ; 3.9 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure II-D) 6WD8 ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure III-A) 6WD9 ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure III-B) 6WDA ; 3.8 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure III-C) 6WDB ; 4.0 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure IV-A) 6WDC ; 4.2 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure IV-B) 6WDD ; 3.2 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure V-A) 6WDE ; 3.0 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure V-B) 6WDF ; 3.3 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure VI-A) 6WDG ; 3.3 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Cognate Structure VI-B) 6WDH ; 4.3 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure IV-B1) 6WDI ; 4.0 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure IV-B2) 6WDJ ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure V-A1) 6WDK ; 3.6 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure V-A2) 6WDL ; 3.7 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure V-B1) 6WDM ; 3.6 ; Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading (Non-cognate Structure V-B2) 6WKX ; 4.2 ; Cryo-EM of Form 1 related peptide filament, 15-10-3 6WKY ; 4.2 ; Cryo-EM of Form 1 related peptide filament, 29-24-3 6WL1 ; 4.0 ; Cryo-EM of Form 1 related peptide filament, 36-31-3 6WL0 ; 4.4 ; Cryo-EM of Form 1 related peptide filament, 36-31-3-RD 6WL7 ; 3.8 ; Cryo-EM of Form 2 like peptide filament, 29-20-2 6WL9 ; 4.2 ; Cryo-EM of Form 2 like peptide filament, Form2a 6WL8 ; 4.1 ; Cryo-EM of Form 2 peptide filament 7RA3 ; 3.24 ; cryo-EM of human Gastric inhibitory polypeptide receptor GIPR bound to GIP 6XOX ; 3.1 ; cryo-EM of human GLP-1R bound to non-peptide agonist LY3502970 7RGP ; 2.9 ; cryo-EM of human Glucagon-like peptide 1 receptor GLP-1R bound to tirzepatide 7RG9 ; 3.2 ; cryo-EM of human Glucagon-like peptide 1 receptor GLP-1R in apo form 7LQF ; 3.8 ; Cryo-EM of KFE8 ribbon filament 7LQI ; 3.5 ; Cryo-EM of KFE8 thicker nanotube 7LQH ; 3.4 ; Cryo-EM of KFE8 thinner nanotube (class 2, 2-sub-1) 8TIF ; 3.89 ; Cryo-EM of mono-pilus from S. islandicus REY15A 6TQK ; 3.35 ; Cryo-EM of native human uromodulin (UMOD)/Tamm-Horsfall protein (THP) filament. 7T6E ; 3.1 ; Cryo-EM of NBD-ffsy filaments (class 1) 8DST ; 3.2 ; Cryo-EM of NBD-ffsy filaments (class 2) 8E5F ; 3.8 ; Cryo-EM of P. calidifontis cytochrome filament 6X5I ; 4.3 ; Cryo-EM of peptide-like filament of 1-KMe3 7UIT ; 3.9 ; Cryo-EM of pH-controlled and self-assembled fibers, peptide 2 7UII ; 2.6 ; Cryo-EM of self-assembled cannula CanA 7UUQ ; 3.1 ; Cryo-EM of self-assembling pyrene IDP 8GI5 ; 3.0 ; Cryo-EM of self-assembling pyrene peptide with Ca2+ 6MK1 ; 6.0 ; Cryo-EM of self-assembly peptide filament HEAT_R1 6HQE ; 4.4 ; Cryo-EM of self-assembly peptide filament LRV_M3delta1 7EO4 ; 2.86 ; Cryo-EM of Sphingosine 1-phosphate receptor 1 / Gi complex bound to BAF312 7EO2 ; 2.89 ; Cryo-EM of Sphingosine 1-phosphate receptor 1 / Gi complex bound to FTY720p 7WF7 ; 3.4 ; Cryo-EM of Sphingosine 1-phosphate receptor 1 / Gi complex bound to S1P 7Q3N ; 7.4 ; Cryo-EM of the complex between human uromodulin (UMOD)/Tamm-Horsfall protein (THP) and the FimH lectin domain from uropathogenic E. coli 6DLU ; 3.75 ; Cryo-EM of the GMPPCP-bound human dynamin-1 polymer assembled on the membrane in the constricted state 6DLV ; 10.1 ; Cryo-EM of the GTP-bound human dynamin-1 polymer assembled on the membrane in the super constricted state 7LQG ; 3.4 ; Cryo-EM of the KFE8 thinner nanotube (class 1, C2) 7TFS ; 4.3 ; Cryo-EM of the OmcE nanowires from Geobacter sulfurreducens 6EF8 ; 3.7 ; Cryo-EM of the OmcS nanowires from Geobacter sulfurreducens 8D9M ; 4.2 ; Cryo-EM of the OmcZ nanowires from Geobacter sulfurreducens 6W8U ; 3.8 ; Cryo-EM of the Pyrobaculum arsenaticum pilus 6WQ2 ; 4.0 ; Cryo-EM of the S. islandicus filamentous virus, SIFV 6W8X ; 3.4 ; Cryo-EM of the S. solfataricus pilus 6WQ0 ; 2.8 ; Cryo-EM of the S. solfataricus rod-shaped virus, SSRV1 4CG6 ; 7.8 ; Cryo-em of the Sec61-complex bound to the 80s ribosome translating a membrane-inserting substrate 4CG5 ; 7.4 ; Cryo-EM of the Sec61-complex bound to the 80S ribosome translating a secretory substrate 4CG7 ; 6.9 ; Cryo-EM of the Sec61-complex bound to the idle 80S ribosome 7LRD ; 3.22 ; Cryo-EM of the SLFN12-PDE3A complex: Consensus subset model 7LRC ; 2.97 ; Cryo-EM of the SLFN12-PDE3A complex: PDE3A body refinement 7LRE ; 2.76 ; Cryo-EM of the SLFN12-PDE3A complex: SLFN12 body refinement 8TIB ; 3.47 ; Cryo-EM of tri-pilus from S. islandicus REY15A 8UHF ; 3.8 ; Cryo-EM of Vibrio cholerae toxin co-regulated pilus - asymmetric reconstruction 6EQC ; 7.4 ; Cryo-EM reconstruction of a complex of a binding protein and human adenovirus C5 hexon 7RX4 ; 3.8 ; Cryo-EM reconstruction of AS2 nanotube (Form II like) 5LQP ; 6.0 ; Cryo-EM reconstruction of bacteriophage AP205 virus-like particles. 5FNA ; 4.8 ; Cryo-EM reconstruction of caspase-1 CARD 6NRV ; 4.0 ; Cryo-EM reconstruction of CFA/I pili 3J35 ; 35.0 ; Cryo-EM reconstruction of Dengue virus at 37 C 4C0Y ; 16.0 ; Cryo-EM reconstruction of empty enterovirus 71 in complex with a neutralizing antibody E18 4C10 ; 13.0 ; Cryo-EM reconstruction of empty enterovirus 71 in complex with a neutralizing antibody E19 4C0U ; 10.0 ; Cryo-EM reconstruction of enterovirus 71 in complex with a neutralizing antibody E18 3JBJ ; 7.6 ; Cryo-EM reconstruction of F-actin 7RX5 ; 3.4 ; Cryo-EM reconstruction of Form1-N2 nanotube (Form I like) 6D5F ; 3.7 ; Cryo-EM reconstruction of membrane-enveloped filamentous virus SFV1 (Sulfolobus filamentous virus 1) 3ZX8 ; 11.5 ; Cryo-EM reconstruction of native and expanded Turnip Crinkle virus 3ZX9 ; 17.0 ; Cryo-EM reconstruction of native and expanded Turnip Crinkle virus 5VXX ; 5.1 ; Cryo-EM reconstruction of Neisseria gonorrhoeae Type IV pilus 5KUA ; 6.0 ; Cryo-EM reconstruction of Neisseria meningitidis Type IV pilus 5VXY ; 8.0 ; Cryo-EM reconstruction of PAK pilus from Pseudomonas aeruginosa 3J8F ; 4.0 ; Cryo-EM reconstruction of poliovirus-receptor complex 6NXE ; 3.16 ; Cryo-EM Reconstruction of Protease-Activateable Adeno-Associated Virus 9 (AAV9-L001) 6V7B ; 3.4 ; Cryo-EM reconstruction of Pyrobaculum filamentous virus 2 (PFV2) 3J8V ; 13.9 ; Cryo-EM reconstruction of quasi-HPV16 complex with H16.14J Fab 3J8Z ; 14.0 ; Cryo-EM reconstruction of quasi-HPV16 complex with H16.1A Fab 3J8W ; 13.0 ; Cryo-EM reconstruction of quasi-HPV16 complex with H263.A2 Fab 8UR6 ; 3.03 ; Cryo-EM reconstruction of Staphylococcus aureus oleate hydratase (OhyA) dimer with a disordered C-terminal membrane-association domain 8UR3 ; 2.61 ; Cryo-EM reconstruction of Staphylococcus aureus Oleate hydratase (OhyA) dimer with an ordered C-terminal membrane-association domain 6NAV ; 4.1 ; Cryo-EM reconstruction of Sulfolobus islandicus LAL14/1 Pilus 7RO2 ; 5.1 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 1 7ROG ; 3.8 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 10 7ROH ; 4.0 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 11 7ROI ; 4.3 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 12 7RO3 ; 4.8 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 2 7RO4 ; 4.3 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 3 7RO5 ; 4.1 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 4 7RO6 ; 4.1 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 5 7ROB ; 3.9 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 6 7ROC ; 3.7 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 7 7ROD ; 3.8 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 8 7ROE ; 3.7 ; Cryo-EM reconstruction of Sulfolobus monocaudavirus SMV1, symmetry 9 6OJ0 ; 3.7 ; Cryo-EM reconstruction of Sulfolobus polyhedral virus 1 (SPV1) 4V8Y ; 4.3 ; Cryo-EM reconstruction of the 80S-eIF5B-Met-itRNAMet Eukaryotic Translation Initiation Complex 4V8Z ; 6.6 ; Cryo-EM reconstruction of the 80S-eIF5B-Met-itRNAMet Eukaryotic Translation Initiation Complex 8EHR ; 3.2 ; Cryo-EM reconstruction of the CFA/I bacterial adhesion pili 8EHS ; 3.3 ; Cryo-EM reconstruction of the CS17 bacterial adhesion pili 8EHT ; 3.4 ; Cryo-EM reconstruction of the CS20 bacterial adhesion pili 7R4X ; 2.15 ; Cryo-EM reconstruction of the human 40S ribosomal subunit - Full map 5M0R ; 8.2 ; Cryo-EM reconstruction of the maedi-visna virus (MVV) strand transfer complex 3JBK ; 8.2 ; Cryo-EM reconstruction of the metavinculin-actin interface 8OIU ; 3.35 ; Cryo-EM reconstruction of the native 24-mer E2o core of the 2-oxoglutarate dehydrogenase complex of C. thermophilum at 3.35 A resolution 6UOV ; 3.5 ; Cryo-EM reconstruction of the PrgHK periplasmic ring from Salmonella's needle complex assembled in the absence of the export apparatus 6V1I ; 3.8 ; Cryo-EM reconstruction of the thermophilic bacteriophage P74-26 small terminase- symmetric 6RIB ; 4.2 ; Cryo-EM reconstruction of Thermus thermophilus bactofilin double helical filaments 6RLP ; 2.3 ; Cryo-EM reconstruction of TMV coat protein 6WXF ; 4.3 ; Cryo-EM reconstruction of VP5*/VP8* assembly from rhesus rotavirus particles - Intermediate conformation 6WXG ; 3.3 ; Cryo-EM reconstruction of VP5*/VP8* assembly from rhesus rotavirus particles - Reversed conformation 6WXE ; 3.4 ; Cryo-EM reconstruction of VP5*/VP8* assembly from rhesus rotavirus particles - Upright conformation 3J0B ; 10.3 ; cryo-EM reconstruction of West Nile virus 6GQB ; 3.9 ; Cryo-EM reconstruction of yeast 80S ribosome in complex with mRNA, tRNA and eEF2 (GDP+AlF4/sordarin) 6GQ1 ; 4.4 ; Cryo-EM reconstruction of yeast 80S ribosome in complex with mRNA, tRNA and eEF2 (GMPPCP/sordarin) 5SYG ; 3.5 ; Cryo-EM reconstruction of zampanolide-bound microtubule 6GQV ; 4.0 ; Cryo-EM recosntruction of yeast 80S ribosome in complex with mRNA, tRNA and eEF2 (GMPPCP) 7MLY ; 2.7 ; Cryo-EM reveals partially and fully assembled native glycine receptors,heteromeric pentamer 7MLU ; 4.1 ; Cryo-EM reveals partially and fully assembled native glycine receptors,homomeric pentamer 7MLV ; 4.1 ; Cryo-EM reveals partially and fully assembled native glycine receptors,homomeric tetramer 5A0Q ; 3.5 ; Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core 8DMK ; 3.7 ; Cryo-EM reveals the molecular basis of laminin polymerization and LN-lamininopathies 5A42 ; 16.0 ; Cryo-EM single particle 3D reconstruction of the native conformation of E. coli alpha-2-macroglobulin (ECAM) 7XJZ ; 3.9 ; Cryo-EM strucrture of Oryza sativa plastid glycyl-tRNA synthetase in complex with tRNA (tRNA binding state) 7XK0 ; 3.59 ; Cryo-EM strucrture of Oryza sativa plastid glycyl-tRNA synthetase in complex with tRNA (tRNA locked state) 7O0U ; 2.35 ; Cryo-EM structure (model_1a) of the RC-dLH complex from Gemmatimonas phototrophica at 2.4 A 7O0V ; 2.5 ; Cryo-EM structure (model_2a) of the RC-dLH complex from Gemmatimonas phototrophica at 2.5 A 7O0X ; 2.44 ; Cryo-EM structure (model_2b) of the RC-dLH complex from Gemmatimonas phototrophica at 2.44 A 6JBH ; 3.94 ; Cryo-EM structure and transport mechanism of a wall teichoic acid ABC transporter 8B0O ; 3.02 ; Cryo-EM structure apolipoprotein N-acyltransferase Lnt from E.coli in complex with FP3 6MPG ; 3.2 ; Cryo-EM structure at 3.2 A resolution of HIV-1 fusion peptide-directed antibody, A12V163-b.01, elicited by vaccination of Rhesus macaques, in complex with stabilized HIV-1 Env BG505 DS-SOSIP, which was also bound to antibodies VRC03 and PGT122 6CDI ; 3.6 ; Cryo-EM structure at 3.6 A resolution of vaccine-elicited antibody vFP16.02 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 6MPH ; 3.8 ; Cryo-EM structure at 3.8 A resolution of HIV-1 fusion peptide-directed antibody, DF1W-a.01, elicited by vaccination of Rhesus macaques, in complex with stabilized HIV-1 Env BG505 DS-SOSIP, which was also bound to antibodies VRC03 and PGT122 6CDE ; 3.8 ; Cryo-EM structure at 3.8 A resolution of vaccine-elicited antibody vFP20.01 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 6N1V ; 4.0 ; Cryo-EM structure at 4.0 A resolution of vaccine-elicited antibody A12V163-a.01 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 6CUE ; 4.0 ; Cryo-EM structure at 4.0 A resolution of vaccine-elicited antibody vFP7.04 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 6N1W ; 4.2 ; Cryo-EM structure at 4.2 A resolution of vaccine-elicited antibody DFPH-a.15 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 6CUF ; 4.0 ; Cryo-EM structure at 4.2 A resolution of vaccine-elicited antibody vFP1.01 in complex with HIV-1 Env BG505 DS-SOSIP, and antibodies VRC03 and PGT122 8QEO ; 3.26 ; cryo-EM structure complex of Frizzled-7 and Clostridioides difficile toxin B 8AVD ; 4.42 ; Cryo-EM structure for a 3:3 complex between mouse leptin and the mouse LEP-R ectodomain (local refinement) 5WTH ; 4.2 ; Cryo-EM structure for Hepatitis A virus complexed with FAB 5WTF ; 3.9 ; Cryo-EM structure for Hepatitis A virus empty particle 5WTE ; 3.4 ; Cryo-EM structure for Hepatitis A virus full particle 8AVB ; 4.43 ; Cryo-EM structure for mouse leptin in complex with the mouse LEP-R ectodomain (1:2 mLEP:mLEPR model). 7BW7 ; 4.1 ; Cryo-EM Structure for the Ectodomain of the Full-length Human Insulin Receptor in Complex with 1 Insulin. 7BWA ; 4.9 ; Cryo-EM Structure for the Ectodomain of the Full-length Human Insulin Receptor in Complex with 2 Insulin 7BW8 ; 3.8 ; Cryo-EM Structure for the Insulin Binding Region in the Ectodomain of the Full-length Human Insulin Receptor in Complex with 1 Insulin 8B7Q ; 4.02 ; Cryo-EM structure for the mouse LEPR-CRH2:Leptin:LEPR-Ig complex following symmetry expansion in combination with local refinement 7Y6P ; 3.3 ; Cryo-EM structure if bacterioferritin holoform 8C2S ; 3.9 ; Cryo-EM structure NDUFS4 knockout complex I from Mus musculus heart (Class 1). 8CA4 ; 3.25 ; Cryo-EM structure NDUFS4 knockout complex I from Mus musculus heart (Class 2 N-domain). 8CA3 ; 3.2 ; Cryo-EM structure NDUFS4 knockout complex I from Mus musculus heart (Class 2). 8CA5 ; 3.9 ; Cryo-EM structure NDUFS4 knockout complex I from Mus musculus heart (Class 3). 7ZZ4 ; 2.63 ; Cryo-EM structure of ""BC closed"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ5 ; 2.43 ; Cryo-EM structure of ""BC open"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ3 ; 2.41 ; Cryo-EM structure of ""BC react"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ0 ; 2.26 ; Cryo-EM structure of ""CT empty"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZYZ ; 2.47 ; Cryo-EM structure of ""CT oxa"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ2 ; 2.48 ; Cryo-EM structure of ""CT pyr"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ1 ; 2.27 ; Cryo-EM structure of ""CT react"" conformation of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ6 ; 2.15 ; Cryo-EM structure of ""CT-CT dimer"" of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7LSX ; 3.61 ; Cryo-EM structure of 13S proteasome core particle assembly intermediate purified from Pre3-1 proteasome mutant (G34D) 8SCZ ; 3.4 ; Cryo-EM structure of 14aa-GS RIG-I in complex with p3SLR30 7K61 ; 2.85 ; Cryo-EM structure of 197bp nucleosome aided by scFv 7MO8 ; 4.5 ; Cryo-EM structure of 1:1 c-MET I/HGF I complex after focused 3D refinement of holo-complex 8DYT ; 3.3 ; Cryo-EM structure of 227 Fab in complex with (NPNA)8 peptide 8DYW ; 3.72 ; Cryo-EM structure of 239 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 7SZK ; 2.94 ; Cryo-EM structure of 27a bound to E. coli RNAP and rrnBP1 promoter complex 7LY9 ; 3.91 ; Cryo-EM structure of 2909 Fab in complex with 3BNC117 Fab and CAP256.wk34.c80 SOSIP.RnS2 N160K HIV-1 Env trimer 7MO7 ; 4.8 ; Cryo-EM structure of 2:2 c-MET/HGF holo-complex 7MOB ; 5.0 ; Cryo-EM structure of 2:2 c-MET/NK1 complex 8JIF ; 2.28 ; Cryo-EM Structure of 3-axis block of AAV9P31-Car4 complex 8DYX ; 3.0 ; Cryo-EM structure of 311 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 8DYY ; 3.62 ; Cryo-EM structure of 334 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 8DZ3 ; 2.7 ; Cryo-EM structure of 337 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 8DZ4 ; 3.2 ; Cryo-EM structure of 356 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 8DZ5 ; 3.84 ; Cryo-EM structure of 364 Fab in complex with recombinant shortened Plasmodium falciparum circumsporozoite protein (rsCSP) 8G00 ; 3.4 ; Cryo-EM structure of 3DVA component 0 of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase minus preQ1 ligand 8G7E ; 3.9 ; Cryo-EM structure of 3DVA component 0 of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase plus preQ1 ligand 8G1S ; 3.7 ; Cryo-EM structure of 3DVA component 1 of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase minus preQ1 ligand 8G8Z ; 4.3 ; Cryo-EM structure of 3DVA component 1 of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase plus preQ1 ligand 8G2W ; 3.7 ; Cryo-EM structure of 3DVA component 2 of Escherichia coli que-PEC (paused elongation complex) RNA Polymerase minus preQ1 ligand 8EYY ; 4.9 ; Cryo-EM structure of 4 insulins bound full-length mouse IR mutant with physically decoupled alpha CTs (C684S/C685S/C687S, denoted as IR-3CS) Asymmetric conformation 2 8EYX ; 4.5 ; Cryo-EM structure of 4 insulins bound full-length mouse IR mutant with physically decoupled alpha CTs (C684S/C685S/C687S; denoted as IR-3CS) Asymmetric conformation 1 8EZ0 ; 3.7 ; Cryo-EM structure of 4 insulins bound full-length mouse IR mutant with physically decoupled alpha CTs (C684S/C685S/C687S; denoted as IR-3CS) Symmetric conformation 7YLA ; 2.52 ; Cryo-EM structure of 50S-HflX complex 6SJ6 ; 3.23 ; Cryo-EM structure of 50S-RsfS complex from Staphylococcus aureus 6W1J ; 2.92 ; Cryo-EM structure of 5HT3A receptor in presence of Alosetron 6NP0 ; 2.92 ; Cryo-EM structure of 5HT3A receptor in presence of granisetron 6W1M ; 3.06 ; Cryo-EM structure of 5HT3A receptor in presence of Ondansetron 6W1Y ; 3.35 ; Cryo-EM structure of 5HT3A receptor in presence of Palonosetron 7OIZ ; 2.9 ; Cryo-EM structure of 70S ribosome stalled with TnaC peptide 7P3K ; 2.9 ; Cryo-EM structure of 70S ribosome stalled with TnaC peptide (control) 7OJ0 ; 3.5 ; Cryo-EM structure of 70S ribosome stalled with TnaC peptide and RF2 7TUZ ; 3.12 ; Cryo-EM structure of 7alpha,25-dihydroxycholesterol-bound EBI2/GPR183 in complex with Gi protein 7SLQ ; 3.7 ; Cryo-EM structure of 7SK core RNP with circular RNA 7SLP ; 4.1 ; Cryo-EM structure of 7SK core RNP with linear RNA 3J1B ; 4.9 ; Cryo-EM structure of 8-fold symmetric rATcpn-alpha in apo state 7YQH ; 5.6 ; Cryo-EM structure of 8-subunit Smc5/6 7YLM ; 6.17 ; Cryo-EM structure of 8-subunit Smc5/6 hinge region 7CPU ; 2.82 ; Cryo-EM structure of 80S ribosome from mouse kidney 7CPV ; 3.03 ; Cryo-EM structure of 80S ribosome from mouse testis 3J1C ; 9.1 ; Cryo-EM structure of 9-fold symmetric rATcpn-alpha in apo state 3J1E ; 8.3 ; Cryo-EM structure of 9-fold symmetric rATcpn-beta in apo state 3J1F ; 6.2 ; Cryo-EM structure of 9-fold symmetric rATcpn-beta in ATP-binding state 7D5S ; 4.6 ; Cryo-EM structure of 90S preribosome with inactive Utp24 (state A2) 7D63 ; 12.3 ; Cryo-EM structure of 90S preribosome with inactive Utp24 (state C) 7D5T ; 6.0 ; Cryo-EM structure of 90S preribosome with inactive Utp24 (state F1) 7D4I ; 4.0 ; Cryo-EM structure of 90S small ribosomal precursors complex with the DEAH-box RNA helicase Dhr1 (State F) 6LQP ; 3.2 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State A) 6LQU ; 3.7 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State A1) 6LQQ ; 4.1 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State B) 6LQR ; 8.6 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State C) 6LQV ; 4.8 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State C1) 6LQS ; 3.8 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State D) 6LQT ; 4.9 ; Cryo-EM structure of 90S small subunit preribosomes in transition states (State E) 6HA1 ; 3.1 ; Cryo-EM structure of a 70S Bacillus subtilis ribosome translating the ErmD leader peptide in complex with telithromycin 7O5B ; 3.33 ; Cryo-EM structure of a Bacillus subtilis MifM-stalled ribosome-nascent chain complex with (p)ppGpp-SRP bound 7X7R ; 3.5 ; Cryo-EM structure of a bacterial protein 7X8A ; 2.8 ; Cryo-EM structure of a bacterial protein complex 7XC7 ; 3.1 ; Cryo-EM structure of a bacterial protein complex 6YG8 ; 3.0 ; Cryo-EM structure of a BcsB pentamer in the context of an assembled Bcs macrocomplex 5THR ; 8.9 ; Cryo-EM structure of a BG505 Env-sCD4-17b-8ANC195 complex 6XF6 ; 4.0 ; Cryo-EM structure of a biotinylated SARS-CoV-2 spike probe in the prefusion state (1 RBD up) 6XF5 ; 3.45 ; Cryo-EM structure of a biotinylated SARS-CoV-2 spike probe in the prefusion state (RBDs down) 8BC3 ; 2.1 ; Cryo-EM Structure of a BmSF-TAL - Sulfofructose Schiff Base Complex 8BC4 ; 2.7 ; Cryo-EM Structure of a BmSF-TAL - Sulfofructose Schiff Base Complex in symmetry group C1 8JNS ; 4.2 ; cryo-EM structure of a CED-4 hexamer 8I9W ; 3.1 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - Dbp10-3 8I9R ; 3.1 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State 5S RNP 8I9T ; 3.6 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State Dbp10-1 8I9V ; 3.1 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State Dbp10-2 8I9P ; 3.0 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State Mak16 8IA0 ; 2.7 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State Puf6 8I9Z ; 2.7 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - State Spb4 8I9X ; 2.8 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - Ytm1-1 8I9Y ; 3.1 ; Cryo-EM structure of a Chaetomium thermophilum pre-60S ribosomal subunit - Ytm1-2 7K63 ; 3.03 ; Cryo-EM structure of a chromatosome containing chimeric linker histone gH1.10-ncH1.4 7K5X ; 2.93 ; Cryo-EM structure of a chromatosome containing human linker histone H1.0 7K60 ; 3.12 ; Cryo-EM structure of a chromatosome containing human linker histone H1.10 7K5Y ; 2.76 ; Cryo-EM structure of a chromatosome containing human linker histone H1.4 6LFM ; 3.5 ; Cryo-EM structure of a class A GPCR 6LFO ; 3.4 ; Cryo-EM structure of a class A GPCR monomer 6KPF ; 2.9 ; Cryo-EM structure of a class A GPCR with G protein complex 7V69 ; 3.4 ; Cryo-EM structure of a class A GPCR-G protein complex 7VUH ; 3.22 ; Cryo-EM structure of a class A orphan GPCR 7VUI ; 3.3 ; Cryo-EM structure of a class A orphan GPCR 7VUJ ; 3.8 ; Cryo-EM structure of a class A orphan GPCR 7Y3G ; 2.77 ; Cryo-EM structure of a class A orphan GPCR 7VUG ; 3.2 ; Cryo-EM structure of a class A orphan GPCR in complex with Gi 7XP6 ; 3.01 ; Cryo-EM structure of a class T GPCR in active state 7XP4 ; 3.01 ; Cryo-EM structure of a class T GPCR in apo state 7XP5 ; 3.08 ; Cryo-EM structure of a class T GPCR in ligand-free state 8UPL ; 5.4 ; Cryo-EM structure of a Clockwise locked form of the Salmonella enterica Typhimurium flagellar C-ring, with C34 symmetry applied 8BKY ; 3.6 ; Cryo-EM structure of a contractile injection system in Streptomyces coelicolor, the contracted sheath shell. 8BL4 ; 3.9 ; Cryo-EM structure of a contractile injection system in Streptomyces coelicolor, the sheath-tube module in extended state. 8UOX ; 4.6 ; Cryo-EM structure of a Counterclockwise locked form of the Salmonella enterica Typhimurium flagellar C-ring, with C34 symmetry applied 7ZOQ ; 3.2 ; Cryo-EM structure of a CRISPR effector in complex with a caspase regulator 7ZOL ; 3.03 ; Cryo-EM structure of a CRISPR effector in complex with regulator 7L48 ; 3.9 ; Cryo-EM structure of a CRISPR-Cas12f Binary Complex 6U1S ; 7.6 ; Cryo-EM structure of a de novo designed 16-helix transmembrane nanopore, TMHC8_R. 8ET3 ; 3.7 ; Cryo-EM structure of a delivery complex containing the SspB adaptor, an ssrA-tagged substrate, and the AAA+ ClpXP protease 6YTK ; 4.07 ; Cryo-EM structure of a dimer of decameric human CALHM4 in the absence of Ca2+ 6YTO ; 4.24 ; Cryo-EM structure of a dimer of decameric human CALHM4 in the presence of Ca2+ 6VAI ; 3.68 ; Cryo-EM structure of a dimer of undecameric human CALHM2 6YTL ; 3.82 ; Cryo-EM structure of a dimer of undecameric human CALHM4 in the absence of Ca2+ 6YTQ ; 4.02 ; Cryo-EM structure of a dimer of undecameric human CALHM4 in the presence of Ca2+ 7W0N ; 4.21 ; Cryo-EM structure of a dimeric GPCR-Gi complex with peptide 7W0L ; 3.57 ; Cryo-EM structure of a dimeric GPCR-Gi complex with small molecule 8SEA ; 3.4 ; Cryo-EM structure of a double loaded human UBA7-UBE2L6-ISG15 thioester mimetic complex (Form 1) 8SE9 ; 3.2 ; Cryo-EM structure of a double loaded human UBA7-UBE2L6-ISG15 thioester mimetic complex (Form 2) 8SV8 ; 3.38 ; Cryo-EM structure of a double loaded human UBA7-UBE2L6-ISG15 thioester mimetic complex from a composite map 7Y5H ; 3.72 ; Cryo-EM structure of a eukaryotic ZnT8 at a low pH 7Y5G ; 3.85 ; Cryo-EM structure of a eukaryotic ZnT8 in the presence of zinc 5JBH ; 5.34 ; Cryo-EM structure of a full archaeal ribosomal translation initiation complex in the P-IN conformation 5JB3 ; 5.34 ; Cryo-EM structure of a full archaeal ribosomal translation initiation complex in the P-REMOTE conformation 8PWL ; 4.73 ; Cryo-EM structure of a full-length HACE1 dimer 8T1H ; 5.97 ; Cryo-EM structure of a full-length, native Drp1 dimer 7W0P ; 3.16 ; Cryo-EM structure of a GPCR-Gi complex with peptide 8H2H ; 3.2 ; Cryo-EM structure of a Group II Intron Complexed with its Reverse Transcriptase 8FLI ; 3.8 ; Cryo-EM structure of a group II intron immediately before branching 7D1A ; 3.8 ; cryo-EM structure of a group II intron RNP complexed with its reverse transcriptase 7DEG ; 3.4 ; Cryo-EM structure of a heme-copper terminal oxidase dimer provides insights into its catalytic mechanism 8DIT ; 5.1 ; Cryo-EM structure of a HOPS core complex containing Vps33, Vps16, and Vps18 5Z58 ; 4.9 ; Cryo-EM structure of a human activated spliceosome (early Bact) at 4.9 angstrom. 5Z56 ; 5.1 ; cryo-EM structure of a human activated spliceosome (mature Bact) at 5.1 angstrom. 7BSP ; 4.0 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in E1-AMPPCP state 7BSS ; 3.3 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in E1AlF state 7BSQ ; 3.2 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in E1AlF-ADP state 7BSW ; 3.9 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in PtdEtn-occluded E2-AlF state 7BSU ; 3.2 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in PtdSer-bound E2BeF state 7BSV ; 3.0 ; Cryo-EM structure of a human ATP11C-CDC50A flippase in PtdSer-occluded E2-AlF state 7VSH ; 3.4 ; Cryo-EM structure of a human ATP11C-CDC50A flippase reconstituted in the Nanodisc in E1P state. 7VSG ; 3.9 ; Cryo-EM structure of a human ATP11C-CDC50A flippase reconstituted in the Nanodisc in PtdSer-occluded E2-Pi state. 8GBJ ; 3.11 ; Cryo-EM structure of a human BCDX2/ssDNA complex 5JLH ; 3.9 ; Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution 6ID1 ; 2.86 ; Cryo-EM structure of a human intron lariat spliceosome after Prp43 loaded (ILS2 complex) at 2.9 angstrom resolution 6ID0 ; 2.9 ; Cryo-EM structure of a human intron lariat spliceosome prior to Prp43 loaded (ILS1 complex) at 2.9 angstrom resolution 6ICZ ; 3.0 ; Cryo-EM structure of a human post-catalytic spliceosome (P complex) at 3.0 angstrom 7WTT ; 3.1 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-A1 (with CK1) 7WTU ; 3.0 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-A1 (without CK1) 7WTV ; 3.5 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-A2 7WTW ; 3.2 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-A3 7WTX ; 3.1 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-B1 7WTZ ; 3.0 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-B2 7WU0 ; 3.3 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State RRP12-B3 7WTS ; 3.2 ; Cryo-EM structure of a human pre-40S ribosomal subunit - State UTP14 6LU8 ; 3.13 ; Cryo-EM structure of a human pre-60S ribosomal subunit - state A 8QO9 ; 5.29 ; Cryo-EM structure of a human spliceosomal B complex protomer 5MQF ; 5.9 ; Cryo-EM structure of a human spliceosome activated for step 2 of splicing (C* complex) 5WP6 ; 3.8 ; Cryo-EM structure of a human TRPM4 channel in complex with calcium and decavanadate 6NT4 ; 3.5 ; Cryo-EM structure of a human-cockroach hybrid Nav channel bound to alpha-scorpion toxin AaH2. 6NT3 ; 3.4 ; Cryo-EM structure of a human-cockroach hybrid Nav channel. 6G5H ; 3.6 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - Mature 6G4W ; 4.5 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State A 6G4S ; 4.0 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State B 6G18 ; 3.6 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State C 6G51 ; 4.1 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State D 6G53 ; 4.5 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State E 6ZXD ; 3.2 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State F1 6ZXE ; 3.0 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State F2 6ZXF ; 3.7 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State G 6ZXG ; 2.6 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State H1 6ZXH ; 2.7 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State H2 6G5I ; 3.5 ; Cryo-EM structure of a late human pre-40S ribosomal subunit - State R 6EML ; 3.6 ; Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae 7S8U ; 3.7 ; Cryo-EM structure of a mammalian peptide transporter (PepT1/slc15a1) in nanodisc 7FJF ; 3.1 ; Cryo-EM structure of a membrane protein(CS) 7FJE ; 3.0 ; Cryo-EM structure of a membrane protein(LL) 7FJD ; 3.2 ; Cryo-EM structure of a membrane protein(WT) 6DT0 ; 3.7 ; Cryo-EM structure of a mitochondrial calcium uniporter 7W0O ; 3.78 ; Cryo-EM structure of a monomeric GPCR-Gi complex with peptide 7W0M ; 3.71 ; Cryo-EM structure of a monomeric GPCR-Gi complex with small molecule 5MC6 ; 3.8 ; Cryo-EM structure of a native ribosome-Ski2-Ski3-Ski8 complex from S. cerevisiae 7M5D ; 2.8 ; Cryo-EM structure of a non-rotated E.coli 70S ribosome in complex with RF3-GTP, RF1 and P-tRNA (state I) 5Z3G ; 3.65 ; Cryo-EM structure of a nucleolar pre-60S ribosome (Rpf1-TAP) 6A69 ; 4.11 ; Cryo-EM structure of a P-type ATPase 7C4W ; 3.4 ; Cryo-EM structure of A particle Coxsackievirus A10 at pH 5.5 7C4T ; 3.6 ; Cryo-EM structure of A particle Coxsackievirus A10 at pH 7.4 6Y6K ; 3.78 ; Cryo-EM structure of a Phenuiviridae L protein 6D03 ; 3.68 ; Cryo-EM structure of a Plasmodium vivax invasion complex essential for entry into human reticulocytes; one molecule of parasite ligand. 6D04 ; 3.74 ; Cryo-EM structure of a Plasmodium vivax invasion complex essential for entry into human reticulocytes; two molecules of parasite ligand, subclass 1. 6D05 ; 3.8 ; Cryo-EM structure of a Plasmodium vivax invasion complex essential for entry into human reticulocytes; two molecules of parasite ligand, subclass 2. 6R5K ; 4.8 ; Cryo-EM structure of a poly(A) RNP bound to the Pan2-Pan3 deadenylase 6ENF ; 3.2 ; Cryo-EM structure of a polyproline-stalled ribosome in the absence of EF-P 8EKA ; 3.7 ; Cryo-EM structure of a potent anti-malarial antibody L9 in complex with Plasmodium falciparum circumsporozoite protein (PfCSP)(class 2) 8EK1 ; 3.6 ; Cryo-EM structure of a potent anti-malarial antibody L9 in complex with Plasmodium falciparum circumsporozoite protein (PfCSP)(dominant class) 6LSR ; 3.13 ; Cryo-EM structure of a pre-60S ribosomal subunit - state B 6LQM ; 3.09 ; Cryo-EM structure of a pre-60S ribosomal subunit - state C 6LSS ; 3.23 ; Cryo-EM structure of a pre-60S ribosomal subunit - state preA 7D0G ; 5.0 ; Cryo-EM structure of a pre-catalytic group II intron 7D0F ; 5.0 ; cryo-EM structure of a pre-catalytic group II intron RNP 5O9Z ; 4.5 ; Cryo-EM structure of a pre-catalytic human spliceosome primed for activation (B complex) 8OE4 ; 3.6 ; Cryo-EM structure of a pre-dimerized human IL-23 complete extracellular signaling complex. 8PB1 ; 3.5 ; Cryo-EM structure of a pre-dimerized murine IL-12 complete extracellular signaling complex (Class 1), obtained after local refinement. 8ODZ ; 3.6 ; Cryo-EM structure of a pre-dimerized murine IL-12 complete extracellular signaling complex (Class 1). 8OE0 ; 4.6 ; Cryo-EM structure of a pre-dimerized murine IL-12 complete extracellular signaling complex (Class 2). 7AD1 ; 2.92 ; Cryo-EM structure of a prefusion stabilized SARS-CoV-2 Spike (D614N, R682S, R685G, A892P, A942P and V987P)(One up trimer) 7A4N ; 2.75 ; Cryo-EM structure of a prefusion stabilized SARS-CoV-2 Spike (D614N, R682S, R685G, A892P, A942P and V987P)(S-closed trimer) 7F4V ; 2.04 ; Cryo-EM structure of a primordial cyanobacterial photosystem I 7JI3 ; 3.46 ; Cryo-EM structure of a proton-activated chloride channel 7ZAI ; 2.6 ; Cryo-EM structure of a Pyrococcus abyssi 30S bound to Met-initiator tRNA, mRNA and aIF1A. 7ZAH ; 2.7 ; Cryo-EM structure of a Pyrococcus abyssi 30S bound to Met-initiator tRNA, mRNA, aIF1A and aIF5B 7ZAG ; 2.77 ; Cryo-EM structure of a Pyrococcus abyssi 30S bound to Met-initiator tRNA,mRNA, aIF1A and the C-terminal domain of aIF5B. 6JNX ; 4.08 ; Cryo-EM structure of a Q-engaged arrested complex 7OYD ; 2.3 ; Cryo-EM structure of a rabbit 80S ribosome with zebrafish Dap1b 8DGS ; 4.3 ; Cryo-EM structure of a RAS/RAF complex (state 1) 8DGT ; 3.9 ; Cryo-EM structure of a RAS/RAF complex (state 2) 7O71 ; 2.4 ; Cryo-EM structure of a respiratory complex I 6RFQ ; 3.3 ; Cryo-EM structure of a respiratory complex I assembly intermediate with NDUFAF2 6Y79 ; 2.96 ; Cryo-EM structure of a respiratory complex I F89A mutant 6RFS ; 4.04 ; Cryo-EM structure of a respiratory complex I mutant lacking NDUFS4 8EWG ; 2.9 ; Cryo-EM structure of a riboendonclease 8H4U ; 3.5 ; Cryo-EM structure of a riboendonuclease 6GXP ; 4.4 ; Cryo-EM structure of a rotated E. coli 70S ribosome in complex with RF3-GDPCP(RF3-only) 6GXO ; 3.9 ; Cryo-EM structure of a rotated E. coli 70S ribosome in complex with RF3-GDPCP, RF1(GAQ) and P/E-tRNA (State IV) 5MZ6 ; 3.8 ; Cryo-EM structure of a Separase-Securin complex from Caenorhabditis elegans at 3.8 A resolution 8HPO ; 2.6 ; Cryo-EM structure of a SIN3/HDAC complex from budding yeast 6F3A ; 8.2 ; Cryo-EM structure of a single dynein tail domain bound to dynactin and BICD2N 8SEB ; 3.24 ; Cryo-EM structure of a single loaded human UBA7-UBE2L6-ISG15 adenylate complex 8UMX ; 4.0 ; Cryo-EM structure of a single subunit of a Clockwise-locked form of the Salmonella enterica Typhimurium flagellar C-ring. 8UMD ; 3.6 ; Cryo-EM structure of a single subunit of a Counterclockwise-locked form of the Salmonella enterica Typhimurium flagellar C-ring. 8BYV ; 2.89 ; Cryo-EM structure of a Staphylococus aureus 30S-RbfA complex 8F6X ; 3.25 ; cryo-EM structure of a structurally designed Human metapneumovirus F protein in complex with antibody MPE8 8AFA ; 3.16 ; Cryo-EM structure of a substrate-bound glutamate transporter homologue GltTk encapsulated within a nanodisc 6V05 ; 4.1 ; Cryo-EM structure of a substrate-engaged Bam complex 8TI1 ; 2.9 ; Cryo-EM structure of a SUR1/Kir6.2-Q52R ATP-sensitive potassium channel in the presence of PIP2 in the open conformation 8TI2 ; 3.28 ; Cryo-EM structure of a SUR1/Kir6.2-Q52R ATP-sensitive potassium channel in the presence of PIP2 in the open conformation 7UDB ; 3.5 ; Cryo-EM structure of a synaptobrevin-Munc18-1-syntaxin-1 complex class 2 8AUR ; 3.47 ; Cryo-EM structure of a TasA fibre 7KQ5 ; 2.0 ; Cryo-EM structure of a thermostable encapsulin from T. maritima 7T5Q ; 3.4 ; Cryo-EM Structure of a Transition State of Arp2/3 Complex Activation 7RTT ; 3.5 ; Cryo-EM structure of a TTYH2 cis-dimer 7RTU ; 3.89 ; Cryo-EM structure of a TTYH2 trans-dimer 7RTW ; 3.23 ; Cryo-EM structure of a TTYH3 cis-dimer 7OB4 ; 3.22 ; Cryo-EM structure of a twisted-dimer transthyretin amyloid fibril from vitreous body of the eye 7WTL ; 3.3 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Dis-D 7WTM ; 3.5 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Dis-E 7WTN ; 3.4 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Tsr1-1 (with Rps2) 7WTO ; 3.5 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Tsr1-1 (without Rps2) 7WTP ; 3.8 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Tsr1-2 (with Rps2) 7WTQ ; 3.7 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Tsr1-2 (without Rps2) 7WTR ; 3.5 ; Cryo-EM structure of a yeast pre-40S ribosomal subunit - State Tsr1-3 8F6H ; 3.9 ; Cryo-EM structure of a Zinc-loaded asymmetrical TMD D70A mutant of the YiiP-Fab complex 8F6J ; 3.7 ; Cryo-EM structure of a Zinc-loaded D287A mutant of the YiiP-Fab complex 8F6F ; 3.6 ; Cryo-EM structure of a Zinc-loaded D51A mutant of the YiiP-Fab complex 8F6K ; 3.46 ; Cryo-EM structure of a Zinc-loaded H263A/D287A mutant of the YiiP-Fab complex 8F6I ; 4.03 ; Cryo-EM structure of a Zinc-loaded symmetrical D70A mutant of the YiiP-Fab complex 8F6E ; 3.8 ; Cryo-EM structure of a Zinc-loaded wild-type YiiP-Fab complex 7F53 ; 3.0 ; Cryo-EM structure of a-MSH-MC4R-Gs_Nb35 complex 6LRQ ; 3.49 ; Cryo-EM structure of A53T alpha-synuclein amyloid fibril 8THK ; 2.6 ; Cryo-EM structure of A61603-bound alpha-1A-adrenergic receptor in complex with heterotrimeric Gq-protein 7CKX ; 3.54 ; Cryo-EM structure of A77636 bound dopamine receptor DRD1-Gs signaling complex 7NA6 ; 3.35 ; Cryo-EM structure of AAV True Type 6NZ0 ; 2.4 ; Cryo-EM structure of AAV-2 in complex with AAVR PKD domains 1 and 2 7UD4 ; 2.24 ; Cryo-EM structure of AAV-PHP.eB 8FZN ; 3.62 ; Cryo-EM Structure of AAV2-R404A Variant 8HVH ; 3.07 ; Cryo-EM structure of ABC transporter ABCC3 7QKS ; 3.1 ; Cryo-EM structure of ABC transporter STE6-2p from Pichia pastoris in apo conformation at 3.1 A resolution 7QKR ; 3.2 ; Cryo-EM structure of ABC transporter STE6-2p from Pichia pastoris with Verapamil at 3.2 A resolution 7OZ1 ; 4.0 ; Cryo-EM structure of ABCG1 E242Q mutant with ATP and cholesteryl hemisuccinate bound 7JR7 ; 3.3 ; Cryo-EM structure of ABCG5/G8 in complex with Fab 2E10 and 11F4 8GZ8 ; 2.35 ; Cryo-EM structure of Abeta2 fibril polymorph1 8GZ9 ; 2.62 ; Cryo-EM structure of Abeta2 fibril polymorph2 8I3D ; 2.81 ; Cryo-EM structure of abscisic acid transporter AtABCG25 8I38 ; 2.9 ; Cryo-EM structure of abscisic acid transporter AtABCG25 in inward conformation 8I3B ; 3.08 ; Cryo-EM structure of abscisic acid transporter AtABCG25 in nanodisc 8I3A ; 3.04 ; Cryo-EM structure of abscisic acid transporter AtABCG25 in outward conformation 8I39 ; 2.85 ; Cryo-EM structure of abscisic acid transporter AtABCG25 with ABA 8I3C ; 2.85 ; Cryo-EM structure of abscisic acid transporter AtABCG25 with CHS 8HRN ; 3.9 ; Cryo-EM structure of ACE2 8HRU ; 3.9 ; Cryo-EM structure of ACE2 7T8X ; 3.21 ; Cryo-EM structure of ACh-bound M2R-Go signaling complex in S1 state 7T90 ; 3.32 ; Cryo-EM structure of ACh-bound M2R-Go signaling complex in S2 state 8DZJ ; 2.9 ; Cryo-EM structure of Acidibacillus sulfuroxidans Cas12f in complex with sgRNA and target DNA 8K5C ; 3.13 ; Cryo-EM structure of Acipimox bound human hydroxy-carboxylic acid receptor 2 (Local refinement) 8I7V ; 2.77 ; Cryo-EM structure of Acipimox bound human hydroxy-carboxylic acid receptor 2 in complex with Gi heterotrimer 7SK4 ; 3.3 ; Cryo-EM structure of ACKR3 in complex with chemokine N-terminal mutant CXCL12_LRHQ, an intracellular Fab, and an extracellular Fab 7SK5 ; 4.0 ; Cryo-EM structure of ACKR3 in complex with CXCL12 and an intracellular Fab 7SK3 ; 3.8 ; Cryo-EM structure of ACKR3 in complex with CXCL12, an intracellular Fab, and an extracellular Fab 7BC5 ; 3.1 ; Cryo-EM structure of ACP domain from Pichia pastoris fatty acid synthase (FAS) 6IV6 ; 3.6 ; Cryo-EM structure of AcrVA5-acetylated MbCas12a in complex with crRNA 6VRB ; 3.0 ; Cryo-EM structure of AcrVIA1-Cas13(crRNA) complex 8GY7 ; 3.3 ; Cryo-EM structure of ACTH-bound melanocortin-2 receptor in complex with MRAP1 and Gs protein 3G37 ; 6.0 ; Cryo-EM structure of actin filament in the presence of phosphate 4C3G ; 8.6 ; cryo-EM structure of activated and oligomeric restriction endonuclease SgrAI 7NAL ; 3.0 ; Cryo-EM structure of activated human SARM1 in complex with NMN and 1AD (ARM and SAM domains) 7NAK ; 2.9 ; Cryo-EM structure of activated human SARM1 in complex with NMN and 1AD (TIR:1AD) 7K0Y ; 3.7 ; Cryo-EM structure of activated-form DNA-PK (complex VI) 8XEG ; 1.76 ; Cryo-EM structure of Adeno-associated Virus 9P31 in 1.76 angstrom. 7RK9 ; 2.32 ; Cryo-EM Structure of Adeno-Associated Virus Serotype 1 with Engineered Peptide Domain PHP.B (AAV1-PHP.B) 7RK8 ; 2.27 ; Cryo-EM Structure of Adeno-Associated Virus Serotype 9 with Engineered Peptide Domain PHP.B (AAV9-PHP.B) 8Q7C ; 2.9 ; Cryo-EM structure of Adenovirus C5 hexon 8G2Y ; 3.44 ; Cryo-EM structure of ADGRF1 coupled to miniGs/q 6PPJ ; 3.5 ; Cryo-EM structure of AdnA(D934A)-AdnB(D1014A) in complex with AMPPNP 6PPR ; 3.5 ; Cryo-EM structure of AdnA(D934A)-AdnB(D1014A) in complex with AMPPNP and DNA 7SJR ; 3.8 ; Cryo-EM structure of AdnA-AdnB(W325A) in complex with DNA and AMPPNP 6PPU ; 3.5 ; Cryo-EM structure of AdnAB-AMPPNP-DNA complex 6DJO ; 3.6 ; Cryo-EM structure of ADP-actin filaments 8OID ; 2.3 ; Cryo-EM structure of ADP-bound, filamentous beta-actin harboring the N111S mutation 8OI8 ; 2.28 ; Cryo-EM structure of ADP-bound, filamentous beta-actin harboring the R183W mutation 6DJN ; 3.1 ; Cryo-EM structure of ADP-Pi-actin filaments 8HN1 ; 2.9 ; Cryo-EM structure of AdTx1-alpha1AAR-Nb6 5JZT ; 7.4 ; Cryo-EM structure of aerolysin pore in LMNG micelle 5JZH ; 3.9 ; Cryo-EM structure of aerolysin prepore 7F4F ; 2.9 ; Cryo-EM structure of afamelanotide-bound melanocortin-1 receptor in complex with Gs protein and scFv16 7F4H ; 2.7 ; Cryo-EM structure of afamelanotide-bound melanocortin-1 receptor in complex with Gs protein, Nb35 and scFv16 7F54 ; 3.0 ; Cryo-EM structure of afamelanotide-MC4R-Gs_Nb35 complex 8HVR ; 3.35 ; Cryo-EM structure of AfsR-dependent transcription activation complex with afsS promoter 7ZKI ; 3.6 ; Cryo-EM structure of aIF1A:aIF5B:Met-tRNAiMet complex from a Pyrococcus abyssi 30S initiation complex 7K3R ; 3.2 ; Cryo-EM structure of AIM2-PYD filament 7WM2 ; 2.69 ; Cryo-EM structure of AKT1 7WM1 ; 2.8 ; Cryo-EM structure of AKT1-AtKC1 8B0A ; 3.0 ; Cryo-EM structure of ALC1 bound to an asymmetric, site-specifically PARylated nucleosome 7OTQ ; 4.8 ; Cryo-EM structure of ALC1/CHD1L bound to a PARylated nucleosome 6AHC ; 3.45 ; Cryo-EM structure of aldehyde-alcohol dehydrogenase reveals a high-order helical architecture critical for its activity 7U5J ; 2.96 ; Cryo-EM Structure of ALDOA 8EW2 ; 3.1 ; Cryo-EM structure of Aldolase embedded in crystalline ice 8F6T ; 2.76 ; Cryo-EM structure of alkane 1-monooxygenase AlkB-AlkG complex from Fontimonas thermophila 7E55 ; 5.9 ; Cryo-EM structure of alpha 7 homo-tetradecamer 7F4D ; 3.0 ; Cryo-EM structure of alpha-MSH-bound melanocortin-1 receptor in complex with Gs protein and Nb35 6A6B ; 3.07 ; cryo-em structure of alpha-synuclein fiber 6L4S ; 3.37 ; cryo-em structure of alpha-synuclein fiber mutation type E46K 6RT0 ; 3.1 ; cryo-em structure of alpha-synuclein fibril polymorph 2A 6SSX ; 2.98 ; cryo-em structure of alpha-synuclein fibril polymorph 2A 6RTB ; 3.46 ; cryo-em structure of alpha-synuclein fibril polymorph 2B 6SST ; 3.4 ; cryo-em structure of alpha-synuclein fibril polymorph 2B 8BQW ; 2.3 ; Cryo-EM structure of alpha-synuclein filaments doublet from Juvenile-onset synucleinopathy 8A9L ; 2.2 ; Cryo-EM structure of alpha-synuclein filaments from Parkinson's disease and dementia with Lewy bodies 6PEO ; 3.3 ; Cryo-EM structure of alpha-synuclein H50Q Narrow Fibril 6PES ; 3.6 ; Cryo-EM structure of alpha-synuclein H50Q Wide Fibril 8BQV ; 2.0 ; Cryo-EM structure of alpha-synuclein singlet filament from Juvenile-onset synucleinopathy 7YMJ ; 3.35 ; Cryo-EM structure of alpha1AAR-Nb6 complex bound to tamsulosin 6K42 ; 4.1 ; cryo-EM structure of alpha2BAR-Gi1 complex 6K41 ; 2.9 ; cryo-EM structure of alpha2BAR-GoA complex 7V4T ; 4.04 ; Cryo-EM structure of Alphavirus M1 7VGA ; 6.0 ; Cryo-EM structure of alphavirus, Getah virus 7WC2 ; 3.5 ; Cryo-EM structure of alphavirus, Getah virus 7WCO ; 3.8 ; Cryo-EM structure of alphavirus, Getah virus 7VGF ; 3.3 ; cryo-EM structure of AMP-PNP bound human ABCB7 6DJM ; 3.1 ; Cryo-EM structure of AMPPNP-actin filaments 7VQO ; 2.19 ; Cryo-EM structure of Ams1 bound to the FW domain of Nbr1 7DWV ; 3.07 ; Cryo-EM structure of amyloid fibril formed by familial prion disease-related mutation E196K 6LNI ; 2.702 ; Cryo-EM structure of amyloid fibril formed by full-length human prion protein 7VZF ; 2.95 ; Cryo-EM structure of amyloid fibril formed by full-length human SOD1 7VQQ ; 2.9 ; Cryo-EM structure of amyloid fibril formed by FUS low complexity domain 7BX7 ; 2.8 ; Cryo-EM structure of amyloid fibril formed by hnRNPA1 low complexity domain 7DA4 ; 4.24 ; Cryo-EM structure of amyloid fibril formed by human RIPK3 7YPG ; 2.5 ; Cryo-EM structure of amyloid fibril formed by tau (297-391) 7YYO ; 2.87 ; Cryo-EM structure of an a-carboxysome RuBisCO enzyme at 2.9 A resolution 6OWS ; 2.98 ; Cryo-EM structure of an Acinetobacter baumannii multidrug efflux pump 7EZH ; 3.2 ; Cryo-EM structure of an activated Cholecystokinin A receptor (CCKAR)-Gi complex 7EZM ; 2.9 ; Cryo-EM structure of an activated Cholecystokinin A receptor (CCKAR)-Gq complex 7EZK ; 3.1 ; Cryo-EM structure of an activated Cholecystokinin A receptor (CCKAR)-Gs complex 6VN7 ; 3.2 ; Cryo-EM structure of an activated VIP1 receptor-G protein complex 6V4X ; 3.2 ; Cryo-EM structure of an active human histone pre-mRNA 3'-end processing machinery at 3.2 Angstrom resolution 7FD2 ; 2.81 ; Cryo-EM structure of an alphavirus, Getah virus 6IMM ; 3.5 ; Cryo-EM structure of an alphavirus, Sindbis virus 7XW3 ; 4.04 ; Cryo-EM structure of an apo-form of human DICER 6K0A ; 4.6 ; cryo-EM structure of an archaeal Ribonuclease P 6GWT ; 3.8 ; Cryo-EM structure of an E. coli 70S ribosome in complex with RF3-GDPCP, RF1(GAQ) and Pint-tRNA (State I) 6GXM ; 3.8 ; Cryo-EM structure of an E. coli 70S ribosome in complex with RF3-GDPCP, RF1(GAQ) and Pint-tRNA (State II) 6GXN ; 3.9 ; Cryo-EM structure of an E. coli 70S ribosome in complex with RF3-GDPCP, RF1(GAQ) and Pint-tRNA (State III) 5JTE ; 3.6 ; Cryo-EM structure of an ErmBL-stalled ribosome in complex with A-, P-, and E-tRNA 5JU8 ; 3.6 ; Cryo-EM structure of an ErmBL-stalled ribosome in complex with P-, and E-tRNA 6Y69 ; 2.86 ; Cryo-EM structure of an Escherichia coli 70S ribosome in complex with antibiotic TetracenomycinX 7OTC ; 2.9 ; Cryo-EM structure of an Escherichia coli 70S ribosome in complex with elongation factor G and the antibiotic Argyrin B 6X6T ; 3.2 ; Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B1 (TTC-B1) containing an mRNA with a 24 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site 6X7F ; 3.5 ; Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B2 (TTC-B2) containing an mRNA with a 24 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site 6X7K ; 3.1 ; Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B3 (TTC-B3) containing an mRNA with a 24 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site 6X9Q ; 4.8 ; Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B3 (TTC-B3) containing an mRNA with a 27 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site 6XDQ ; 3.7 ; Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B3 (TTC-B3) containing an mRNA with a 30 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site 6TC3 ; 2.7 ; Cryo-EM structure of an Escherichia coli ribosome-SpeFL complex stalled in response to L-ornithine (Replicate 1) 6TBV ; 2.7 ; Cryo-EM structure of an Escherichia coli ribosome-SpeFL complex stalled in response to L-ornithine (Replicate 2) 7CHW ; 3.58 ; Cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) 7C97 ; 3.68 ; Cryo-EM structure of an Escherichia coli RNAP-promoter open complex (RPo) with SspA 7O1A ; 2.4 ; Cryo-EM structure of an Escherichia coli TnaC(R23F)-ribosome complex stalled in response to L-tryptophan 7O1C ; 2.6 ; Cryo-EM structure of an Escherichia coli TnaC(R23F)-ribosome-RF2 complex stalled in response to L-tryptophan 7O19 ; 2.9 ; Cryo-EM structure of an Escherichia coli TnaC-ribosome complex stalled in response to L-tryptophan 7CYQ ; 2.83 ; Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis 7AEF ; 2.8 ; Cryo-EM structure of an extracellular contractile injection system in marine bacterium Algoriphagus machipongonensis, the baseplate complex in extended state applied 3-fold symmetry. 7AEB ; 2.7 ; Cryo-EM structure of an extracellular contractile injection system in marine bacterium Algoriphagus machipongonensis, the baseplate complex in extended state applied 6-fold symmetry. 7ADZ ; 2.5 ; Cryo-EM structure of an extracellular contractile injection system in marine bacterium Algoriphagus machipongonensis, the cap portion in extended state. 7AEK ; 2.5 ; Cryo-EM structure of an extracellular contractile injection system in marine bacterium Algoriphagus machipongonensis, the contracted sheath shell. 7AE0 ; 2.4 ; Cryo-EM structure of an extracellular contractile injection system in marine bacterium Algoriphagus machipongonensis, the sheath-tube module in extended state. 6J0N ; 3.5 ; Cryo-EM Structure of an Extracellular Contractile Injection System, baseplate in extended state, refined in C6 symmetry 6J0M ; 3.9 ; Cryo-EM Structure of an Extracellular Contractile Injection System, PVC baseplate in extended state (reconstructed with C3 symmetry) 6J0C ; 3.7 ; Cryo-EM Structure of an Extracellular Contractile Injection System, PVC sheath complex in contracted state 6J0B ; 2.9 ; Cryo-EM Structure of an Extracellular Contractile Injection System, PVC sheath-tube complex in extended state 6J0F ; 3.8 ; Cryo-EM Structure of an Extracellular Contractile Injection System, PVC sheath/tube terminator in extended state 6RQC ; 4.4 ; Cryo-EM structure of an MCM loading intermediate 8G05 ; 3.0 ; Cryo-EM structure of an orphan GPCR-Gi protein signaling complex 6VAL ; 3.87 ; Cryo-EM structure of an undecameric chicken CALHM1 and human CALHM2 chimera 7EG0 ; 3.4 ; Cryo-EM structure of anagrelide-induced PDE3A-SLFN12 complex 4UX1 ; 8.0 ; Cryo-EM structure of antagonist-bound E2P gastric H,K-ATPase (SCH.E2. AlF) 4UX2 ; 7.0 ; Cryo-EM structure of antagonist-bound E2P gastric H,K-ATPase (SCH.E2. MgF) 6W1X ; 3.9 ; Cryo-EM structure of anti-CRISPR AcrIF9, bound to the type I-F crRNA-guided CRISPR surveillance complex 7UKL ; 3.09 ; Cryo-EM structure of Antibody 12-16 in complex with prefusion SARS-CoV-2 Spike glycoprotein 7UKM ; 3.03 ; Cryo-EM structure of Antibody 12-19 in complex with prefusion SARS-CoV-2 Spike glycoprotein 8DUL ; 4.17 ; Cryo-EM Structure of Antibody SKT05 in complex with Western Equine Encephalitis Virus spike (local refinement from VLP particles) 8DUN ; 5.84 ; Cryo-EM Structure of Antibody SKW11 in complex with Western Equine Encephalitis Virus spike (local refinement from VLP particles) 7TZ5 ; 3.41 ; Cryo-EM structure of antibody TJ5-5 bound to H3 COBRA TJ5 hemagglutinin 7FES ; 3.4 ; Cryo-EM structure of apo BsClpP at pH 4.2 7FEQ ; 3.2 ; Cryo-EM structure of apo BsClpP at pH 6.5 8QEN ; 3.4 ; cryo-EM structure of apo Clostridioides difficile toxin B 8E76 ; 2.51 ; Cryo-EM structure of Apo form ME3 7Y6F ; 2.7 ; Cryo-EM structure of Apo form of ScBfr 7EWL ; 3.52 ; cryo-EM structure of apo GPR158 7E1V ; 2.68 ; Cryo-EM structure of apo hybrid respiratory supercomplex consisting of Mycobacterium tuberculosis complexIII and Mycobacterium smegmatis complexIV 7Y49 ; 3.67 ; Cryo-EM Structure of apo mitochondrial ABC transporter ABCB10 from Biortus 6ZY2 ; 3.6 ; Cryo-EM structure of apo MlaFEDB 7Y9S ; 3.0 ; Cryo-EM structure of apo SARS-CoV-2 Omicron spike protein (S-2P-GSAS) 8J1D ; 3.59 ; Cryo-EM structure of apo state mTRPV4 7YK2 ; 2.8 ; Cryo-EM structure of Apo-alpha-syn fibril 6K3O ; 3.4 ; Cryo-EM structure of Apo-bacterioferritin from Streptomyces coelicolor 6VNW ; 3.44 ; Cryo-EM structure of apo-BBSome 8I4B ; 3.13 ; Cryo-EM structure of apo-form ABCC4 8XOG ; 2.9 ; Cryo-EM structure of apo-GPR30-Gq complex structure 7XGD ; 4.0 ; Cryo-EM structure of Apo-IGF1R map 1 6WJ6 ; 2.58 ; Cryo-EM structure of apo-Photosystem II from Synechocystis sp. PCC 6803 7Y15 ; 2.9 ; Cryo-EM structure of apo-state MrgD-Gi complex 7Y13 ; 3.1 ; Cryo-EM structure of apo-state MrgD-Gi complex (local) 7RHS ; 2.93 ; Cryo-EM structure of apo-state of human CNGA3/CNGB3 channel 8H0I ; 2.8 ; Cryo-EM structure of APOBEC3G-Vif complex 8J62 ; 2.5 ; Cryo-EM structure of APOBEC3G-Vif complex 8B0K ; 3.0 ; Cryo-EM structure of apolipoprotein N-acyltransferase Lnt from E. coli (Apo form) 8B0N ; 2.67 ; Cryo-EM structure of apolipoprotein N-acyltransferase Lnt from E. coli in complex with Lyso-PE 8B0P ; 2.86 ; Cryo-EM structure of apolipoprotein N-acyltransferase Lnt from E. coli in complex with Pam3 8B0L ; 3.13 ; Cryo-EM structure of apolipoprotein N-acyltransferase Lnt from E. coli in complex with PE 8B0M ; 3.01 ; Cryo-EM structure of apolipoprotein N-acyltransferase Lnt from E. coli in complex with PE (C387S mutant) 7JVQ ; 3.0 ; Cryo-EM structure of apomorphine-bound dopamine receptor 1 in complex with Gs protein 7CHK ; 2.87 ; Cryo-EM Structure of Apple Latent Spherical Virus (ALSV) 7NZ3 ; 11.0 ; Cryo-EM structure of apposed MukBEF-MatP monomers on DNA 7SVA ; 3.26 ; Cryo-EM structure of Arabidopsis Ago10-guide RNA complex 7SWQ ; 3.79 ; Cryo-EM structure of Arabidopsis Ago10-guide-target RNA complex in a bent duplex conformation 7SWF ; 3.79 ; Cryo-EM structure of Arabidopsis Ago10-guide-target RNA complex in a central duplex conformation 6M79 ; 3.1 ; Cryo-EM structure of Arabidopsis CRY under blue light-mediated activation 7X0X ; 2.56 ; Cryo-EM Structure of Arabidopsis CRY2 in active conformation 7X0Y ; 3.89 ; Cryo-EM Structure of Arabidopsis CRY2 tetramer in complex with CIB1 fragment 7ELE ; 4.9 ; Cryo-EM structure of Arabidopsis DCL1 in complex with pre-miRNA 166f 7ELD ; 4.6 ; Cryo-EM structure of Arabidopsis DCL1 in complex with pri-miRNA 166f 7VG3 ; 3.73 ; Cryo-EM structure of Arabidopsis DCL3 in complex with a 30-bp RNA 7VG2 ; 3.1 ; Cryo-EM structure of Arabidopsis DCL3 in complex with a 40-bp RNA 8IFF ; 3.1 ; Cryo-EM structure of Arabidopsis phytochrome A. 8DTG ; 3.9 ; Cryo-EM structure of Arabidopsis SPY alternative conformation 1 8DTH ; 3.6 ; Cryo-EM structure of Arabidopsis SPY alternative conformation 2 8DTI ; 3.8 ; Cryo-EM structure of Arabidopsis SPY in complex with GDP-fucose 7AR8 ; 3.53 ; Cryo-EM structure of Arabidopsis thaliana complex-I (closed conformation) 7ARB ; 3.41 ; Cryo-EM structure of Arabidopsis thaliana Complex-I (complete composition) 7AQQ ; 3.06 ; Cryo-EM structure of Arabidopsis thaliana Complex-I (membrane core) 7AQW ; 3.17 ; Cryo-EM structure of Arabidopsis thaliana Complex-I (membrane tip) 7AR7 ; 3.72 ; Cryo-EM structure of Arabidopsis thaliana complex-I (open conformation) 7AQR ; 2.91 ; Cryo-EM structure of Arabidopsis thaliana Complex-I (peripheral arm) 6VXM ; 3.06 ; Cryo-EM structure of Arabidopsis thaliana MSL1 6VXN ; 2.96 ; Cryo-EM structure of Arabidopsis thaliana MSL1 A320V 6VXP ; 3.39 ; Cryo-EM structure of Arabidopsis thaliana MSL1 in lipid nanodisc 7Y3E ; 2.8 ; Cryo-EM structure of Arabidopsis thaliana SOS1 in an occluded state 8HYA ; 3.4 ; Cryo-EM structure of Arabidopsis thaliana SOS1 in an occluded state, with expanded TMD 6H9C ; 3.74 ; Cryo-EM structure of archaeal extremophilic internal membrane-containing Haloarcula californiae icosahedral virus 1 (HCIV-1) at 3.74 Angstroms resolution. 6K0B ; 4.3 ; cryo-EM structure of archaeal Ribonuclease P with mature tRNA 7ZL4 ; 3.45 ; Cryo-EM structure of archaic chaperone-usher Csu pilus of Acinetobacter baumannii 7TAP ; 2.8 ; Cryo-EM structure of archazolid A bound to yeast VO V-ATPase 7XRD ; 3.9 ; Cryo-EM structure of Arf6 helical polymer assembled on lipid membrane 7JPN ; 3.24 ; Cryo-EM structure of Arpin-bound Arp2/3 complex 6TGA ; 3.26 ; Cryo-EM Structure of as isolated form of NAD+-dependent Formate Dehydrogenase from Rhodobacter capsulatus 6N1H ; 3.17 ; Cryo-EM structure of ASC-CARD filament 8ALZ ; 3.4 ; Cryo-EM structure of ASCC3 in complex with ASC1 8J89 ; 2.31 ; Cryo-EM structure of Asfv topoisomerase 2 - apo conformer IIa 8J8A ; 2.51 ; Cryo-EM structure of Asfv topoisomerase 2 - apo conformer IIb 8J8B ; 2.43 ; Cryo-EM structure of Asfv topoisomerase 2 - apo conformer IIIa 8J8C ; 2.69 ; Cryo-EM structure of Asfv topoisomerase 2 - apo conformer IIIb 8J3W ; 3.07 ; Cryo-EM structure of aspirin-bound ABCC4 6LYP ; 3.3 ; Cryo-EM structure of AtMSL1 wild type 8TDK ; 3.5 ; Cryo-EM structure of AtMSL10-G556V 8TDM ; 3.7 ; Cryo-EM structure of AtMSL10-K539E 6TGN ; 3.9 ; Cryo-EM structure of AtNBR1-PB1 filament (L-type) 6TGP ; 4.4 ; Cryo-EM structure of AtNBR1-PB1 filament (S-type) 8JPO ; 3.4 ; Cryo-EM structure of ATP bound human ClC-6 7W02 ; 3.3 ; Cryo-EM structure of ATP-bound ABCA3 7JHG ; 3.47 ; Cryo-EM structure of ATP-bound fully inactive AMPK in complex with Dorsomorphin (Compound C) and Fab-nanobody 7JHH ; 3.92 ; Cryo-EM structure of ATP-bound fully inactive AMPK in complex with Fab and nanobody 8IZA ; 3.48 ; cryo-EM structure of ATP-bound hMRP4 7SHM ; 3.14 ; Cryo-EM structure of ATP-bound human peroxisomal fatty acid transporter ABCD1 7VX8 ; 2.8 ; Cryo-EM structure of ATP-bound human very long-chain fatty acid ABC transporter ABCD1 7T54 ; 4.5 ; Cryo-EM structure of ATP-bound PCAT1 in the outward-facing conformation 6BHU ; 3.14 ; Cryo-EM structure of ATP-bound, outward-facing bovine multidrug resistance protein 1 (MRP1) 8J3Z ; 3.17 ; Cryo-EM structure of ATP-U46619-bound ABCC4 7N77 ; 3.2 ; Cryo-EM structure of ATP13A2 D458N/D962N mutant in the AlF-bound E1P-like state 7N75 ; 2.9 ; Cryo-EM structure of ATP13A2 D458N/D962N mutant in the E1-apo state, Conformation 1 7N76 ; 2.9 ; Cryo-EM structure of ATP13A2 D458N/D962N mutant in the E1-apo state, Conformation 2 7N74 ; 2.8 ; Cryo-EM structure of ATP13A2 D508N mutant in the E1-ATP-like state 7N73 ; 2.9 ; Cryo-EM structure of ATP13A2 in the ADP-AlF-bound E1P-ADP-like state 7N72 ; 2.5 ; Cryo-EM structure of ATP13A2 in the AlF-bound E2-Pi-like state 7N70 ; 2.8 ; Cryo-EM structure of ATP13A2 in the BeF-bound E2P-like state 8IEK ; 3.2 ; Cryo-EM structure of ATP13A2 in the E1-ATP state 8IEL ; 5.65 ; Cryo-EM structure of ATP13A2 in the E1-like state 8IES ; 3.73 ; Cryo-EM structure of ATP13A2 in the E1P-ADP state 7N78 ; 3.0 ; Cryo-EM structure of ATP13A2 in the E2-Pi state 8IEN ; 3.25 ; Cryo-EM structure of ATP13A2 in the E2-Pi state 8IEM ; 3.35 ; Cryo-EM structure of ATP13A2 in the E2P state 8IEO ; 3.78 ; Cryo-EM structure of ATP13A2 in the nominal E1P state 8IER ; 4.87 ; Cryo-EM structure of ATP13A2 in the putative of E2 state 8OX4 ; 3.4 ; Cryo-EM structure of ATP8B1-CDC50A in E1-ATP conformation 8OX6 ; 2.39 ; Cryo-EM structure of ATP8B1-CDC50A in E1P conformation 8OX5 ; 2.9 ; Cryo-EM structure of ATP8B1-CDC50A in E1P-ADP conformation 8OXB ; 2.99 ; Cryo-EM structure of ATP8B1-CDC50A in E2-Pi conformation with occluded PC 8OXC ; 2.58 ; Cryo-EM structure of ATP8B1-CDC50A in E2-Pi conformation with occluded PI 8OXA ; 2.76 ; Cryo-EM structure of ATP8B1-CDC50A in E2-Pi conformation with occluded PS 8OX9 ; 2.72 ; Cryo-EM structure of ATP8B1-CDC50A in E2P active conformation with bound PC 8OX7 ; 2.56 ; Cryo-EM structure of ATP8B1-CDC50A in E2P autoinhibited ""closed"" conformation 8OX8 ; 2.98 ; Cryo-EM structure of ATP8B1-CDC50A in E2P autoinhibited ""open"" conformation 7PY4 ; 3.1 ; Cryo-EM structure of ATP8B1-CDC50A in E2P autoinhibited state 7WNQ ; 2.7 ; Cryo-EM structure of AtSLAC1 S59A mutant 6R9T ; 6.2 ; Cryo-EM structure of autoinhibited human talin-1 7ABR ; 3.7 ; Cryo-EM structure of B. subtilis ClpC (DWB mutant) hexamer bound to a substrate polypeptide 5WJV ; 5.5 ; Cryo-EM structure of B. subtilis flagellar filaments A233V 5WJU ; 4.3 ; Cryo-EM structure of B. subtilis flagellar filaments A39V, N133H 5WJZ ; 5.7 ; Cryo-EM structure of B. subtilis flagellar filaments E115G 5WJW ; 4.4 ; Cryo-EM structure of B. subtilis flagellar filaments H84R 5WJT ; 3.8 ; Cryo-EM structure of B. subtilis flagellar filaments N226Y 5WJX ; 6.7 ; Cryo-EM structure of B. subtilis flagellar filaments S17P 5WJY ; 4.5 ; Cryo-EM structure of B. subtilis flagellar filaments S285P 7R1C ; 3.2 ; Cryo-EM structure of Bacillus megaterium gas vesicles 6WVJ ; 3.36 ; Cryo-EM structure of Bacillus subtilis RNA Polymerase elongation complex 6WVK ; 3.36 ; Cryo-EM structure of Bacillus subtilis RNA Polymerase in complex with HelD 8TVV ; 3.7 ; Cryo-EM structure of backtracked Pol II 8TVS ; 4.4 ; Cryo-EM structure of backtracked Pol II in complex with Rad26 6GFW ; 3.7 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 holoenzyme initial transcribing complex 6GH6 ; 4.1 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 holoenzyme intermediate partially loaded complex 6GH5 ; 3.4 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 holoenzyme transcription open complex 8REA ; 3.4 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 5nt post-translocated complex 8RE4 ; 2.8 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 5nt pre-translocated complex 8REB ; 3.4 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 6nt complex 8REC ; 3.5 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 7nt complex 8RED ; 3.9 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 8nt complex 8REE ; 3.8 ; Cryo-EM structure of bacterial RNA polymerase-sigma54 initial transcribing complex - 9nt complex 6R9B ; 3.8 ; Cryo-EM structure of bacterial RNAP with a DNA mimic protein Ocr from T7 phage 7Y6G ; 3.6 ; Cryo-EM structure of bacterioferritin holoform 1a 7VI9 ; 5.03 ; Cryo-EM structure of bacteriophage lambda procapsid at 5.03 Angstrom 5L35 ; 2.89 ; Cryo-EM structure of bacteriophage Sf6 at 2.9 Angstrom resolution 7YPO ; 3.5 ; Cryo-EM structure of baculovirus LEF-3 in complex with ssDNA 7TAO ; 3.2 ; Cryo-EM structure of bafilomycin A1 bound to yeast VO V-ATPase 7KHR ; 3.62 ; Cryo-EM structure of bafilomycin A1-bound intact V-ATPase from bovine brain 8H1T ; 3.0 ; Cryo-EM structure of BAP1-ASXL1 bound to chromatosome 6SCL ; 3.0 ; Cryo-EM Structure of Barley Yellow Dwarf Virus VLP 7CN4 ; 2.93 ; Cryo-EM structure of bat RaTG13 spike glycoprotein 8CZO ; 4.3 ; Cryo-EM structure of BCL10 CARD - MALT1 DD filament 6BZE ; 4.0 ; Cryo-EM structure of BCL10 CARD filament 8CZD ; 4.6 ; Cryo-EM structure of BCL10 R58Q filament 6XMX ; 3.7 ; Cryo-EM structure of BCL6 bound to BI-3802 7JGB ; 3.5 ; Cryo-EM structure of bedaquiline-free Mycobacterium smegmatis ATP synthase FO region 7JG5 ; 3.4 ; Cryo-EM structure of bedaquiline-free Mycobacterium smegmatis ATP synthase rotational state 1 7JG6 ; 3.7 ; Cryo-EM structure of bedaquiline-free Mycobacterium smegmatis ATP synthase rotational state 2 (backbone model) 7JG7 ; 3.5 ; Cryo-EM structure of bedaquiline-free Mycobacterium smegmatis ATP synthase rotational state 3 (backbone model) 7JGC ; 3.4 ; Cryo-EM structure of bedaquiline-saturated Mycobacterium smegmatis ATP synthase FO region 7JG8 ; 3.3 ; Cryo-EM structure of bedaquiline-saturated Mycobacterium smegmatis ATP synthase rotational state 1 (backbone model) 7JG9 ; 3.4 ; Cryo-EM structure of bedaquiline-saturated mycobacterium smegmatis ATP synthase rotational state 2 (backbone model) 7JGA ; 3.2 ; Cryo-EM structure of bedaquiline-saturated Mycobacterium smegmatis ATP synthase rotational state 3 7PL9 ; 3.21 ; Cryo-EM structure of Bestrhodopsin (rhodopsin-rhodopsin-bestrophin) complex 8HW2 ; 3.65 ; Cryo-EM structure of beta-estradiol 17-(beta-D-glucuronide)-bound human ABC transporter ABCC3 in nanodiscs 8BK8 ; 2.9 ; Cryo-EM structure of beta-galactosidase at 2.9 A resolution plunged 205 ms after mixing with apoferritin 8BKG ; 3.2 ; Cryo-EM structure of beta-galactosidase at 3.2 A resolution plunged 35 ms after mixing with apoferritin 8BK7 ; 3.3 ; Cryo-EM structure of beta-galactosidase at 3.3 A resolution plunged 5 ms after mixing with apoferritin 7UGQ ; 3.4 ; Cryo-EM structure of BG24 Fabs with an inferred germline CDRL1 and 10-1074 Fabs in complex with HIV-1 Env 6405-SOSIP.664 7UGP ; 4.2 ; Cryo-EM structure of BG24 Fabs with an inferred germline light chain and 10-1074 Fabs in complex with HIV-1 Env immunogen BG505-SOSIPv4.1-GT1 containing the N276 gp120 glycan- Class 1 7UGN ; 3.4 ; Cryo-EM structure of BG24 inferred germline Fabs with germline CDR3s and 10-1074 Fabs in complex with HIV-1 Env immunogen BG505-SOSIPv4.1-GT1 - Class 1 7UGO ; 4.1 ; Cryo-EM structure of BG24 inferred germline Fabs with mature CDR3s and 10-1074 Fabs in complex with HIV-1 Env immunogen BG505-SOSIPv4.1-GT1 7LL2 ; 3.73 ; Cryo-EM structure of BG505 DS-SOSIP in complex with Glycan276-Dependent Broadly Neutralizing Antibody VRC33.01 Fab 7LL1 ; 3.73 ; Cryo-EM structure of BG505 DS-SOSIP in complex with glycan276-dependent broadly neutralizing antibody VRC40.01 Fab 7TXD ; 3.87 ; Cryo-EM structure of BG505 SOSIP HIV-1 Env trimer in complex with CD4 receptor (D1D2) and broadly neutralizing darpin bnD.9 8C8T ; 3.2 ; cryo-EM structure of BG505 SOSIP.664 HIV-1 Env trimer in complex with bNAbs EPTC112 and 3BNC117 8TTW ; 2.96 ; Cryo-EM structure of BG505 SOSIP.664 HIV-1 Env trimer in complex with temsavir, 8ANC195, and 10-1074 6MN7 ; 4.8 ; Cryo-EM structure of BG505.SOSIP.664 in complex with BF520.1 antigen binding fragment 7CYF ; 3.15 ; Cryo-EM structure of bicarbonate transporter SbtA in complex with PII-like signaling protein SbtB from Synechocystis sp. PCC 6803 8JXQ ; 3.32 ; Cryo-EM structure of bilirubin ditaurate (BDT) bound human ABC transporter ABCC2 7Y48 ; 2.85 ; Cryo-EM Structure of biliverdin-bound mitochondrial ABC transporter ABCB10 from Biortus 6OVH ; 2.6 ; Cryo-EM structure of Bimetallic dodecameric cage design 3 (BMC3) from cytochrome cb562 7XVG ; 3.6 ; Cryo-EM structure of binary complex of plant NLR Sr35 and effector AvrSr35 8HLB ; 3.63 ; Cryo-EM structure of biparatopic antibody Bp109-92 in complex with TNFR2 8E2D ; 2.07 ; Cryo-EM structure of BIRC6 (consensus) 8E2K ; 3.21 ; Cryo-EM structure of BIRC6/HtrA2-S306A 8E2I ; 3.04 ; Cryo-EM structure of BIRC6/Smac 8E2J ; 3.44 ; Cryo-EM structure of BIRC6/Smac (from local refinement 1) 6GG0 ; 4.24 ; Cryo-EM structure of BK polyomavirus like particle in complex with single chain antibody ScFv41F17 7RTN ; 3.4 ; Cryo-EM structure of bluetongue virus capsid protein VP5 at low endosomal pH 7RTO ; 3.8 ; Cryo-EM structure of bluetongue virus capsid protein VP5 at low endosomal pH intermediate state 2 7UFR ; 2.7 ; Cryo-EM Structure of Bl_Man38A at 2.7 A 7UFU ; 2.7 ; Cryo-EM Structure of Bl_Man38A nucleophile mutant in complex with mannose at 2.7 A 7UFS ; 3.4 ; Cryo-EM Structure of Bl_Man38B at 3.4 A 7UFT ; 2.9 ; Cryo-EM Structure of Bl_Man38C at 2.9 A 7Y66 ; 2.9 ; Cryo-EM structure of BM213-bound C5aR1 in complex with Gi protein 7PE2 ; 3.2 ; Cryo-EM structure of BMV-derived VLP expressed in E. coli (eVLP) 7PE1 ; 3.0 ; Cryo-EM structure of BMV-derived VLP expressed in E. coli and assembled in the presence of tRNA (tVLP) 8C8G ; 2.98 ; Cryo-EM structure of BoNT/Wo-NTNH complex 7QFQ ; 3.6 ; Cryo-EM structure of Botulinum neurotoxin serotype B 7QFP ; 3.7 ; Cryo-EM structure of Botulinum neurotoxin serotype E 8TZ3 ; 2.31 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with GS-441524, consensus reconstruction 8TZ4 ; 3.23 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with GS-441524, subset reconstruction 8TZ7 ; 3.0 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Molnupiravir, condition 1, INT1-INT1-INT1 conformation 8TZ8 ; 3.19 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Molnupiravir, condition 1, INT1-INT1-INT3 conformation 8TZD ; 3.2 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Molnupiravir, condition 1, INT1-INT1-OFS conformation (3DVA analysis) 8TZA ; 3.43 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Molnupiravir, condition 2, INT2-INT1-INT1 conformation 8TZ9 ; 3.67 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Molnupiravir, condition 2, INT2-INT2-INT2 conformation 8TZ5 ; 2.74 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with N-hydroxycytidine 8TZ6 ; 2.69 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with PSI-6206 8TZ1 ; 2.54 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in complex with Ribavirin 8TZ2 ; 2.8 ; Cryo-EM structure of bovine concentrative nucleoside transporter 3 in MSP2N2 nanodiscs, apo state 5UJ9 ; 3.49 ; Cryo-EM structure of bovine multidrug resistance protein 1 (MRP1) 5UJA ; 3.34 ; Cryo-EM structure of bovine multidrug resistance protein 1 (MRP1) bound to leukotriene C4 7WBU ; 3.42 ; Cryo-EM structure of bovine NLRP9 7VAE ; 3.55 ; Cryo-EM structure of bovine NTCP complexed with YN69202Fab 8UFI ; 3.1 ; Cryo-EM structure of bovine phosphodiesterase 6 8UGS ; 3.2 ; Cryo-EM structure of bovine phosphodiesterase 6 bound to cGMP 8ULG ; 3.2 ; Cryo-EM structure of bovine phosphodiesterase 6 bound to IBMX 8UGB ; 3.0 ; Cryo-EM structure of bovine phosphodiesterase 6 bound to udenafil 7M8K ; ; Cryo-EM structure of Brazil (P.1) SARS-CoV-2 spike glycoprotein variant in the prefusion state (1 RBD up) 8GRQ ; 3.87 ; Cryo-EM structure of BRCA1/BARD1 bound to H2AK127-UbcH5c-Ub nucleosome 7F55 ; 3.1 ; Cryo-EM structure of bremelanotide-MC4R-Gs_Nb35 complex 7N5H ; 3.24 ; Cryo-EM structure of broadly neutralizing antibody 2-36 in complex with prefusion SARS-CoV-2 spike glycoprotein 7N28 ; 4.2 ; Cryo-EM structure of broadly neutralizing V2-apex-targeting antibody J033 in complex with HIV-1 Env 7MXD ; 3.4 ; Cryo-EM structure of broadly neutralizing V2-apex-targeting antibody J038 in complex with HIV-1 Env 7JVR ; 2.8 ; Cryo-EM structure of Bromocriptine-bound dopamine receptor 2 in complex with Gi protein 7OS1 ; 3.3 ; Cryo-EM structure of Brr2 in complex with Fbp21 7OS2 ; 2.76 ; Cryo-EM structure of Brr2 in complex with Jab1/MPN and C9ORF78 7FER ; 3.4 ; Cryo-EM structure of BsClpP-ADEP1 complex at pH 4.2 7FEP ; 3.1 ; Cryo-EM structure of BsClpP-ADEP1 complex at pH 6.5 8DZE ; 2.99 ; Cryo-EM structure of bundle-forming pilus extension ATPase from E. coli in the presence of AMP-PNP (class-1) 8DZG ; 3.1 ; Cryo-EM structure of bundle-forming pilus extension ATPase from E.coli in the presence of ADP 8DZF ; 3.69 ; Cryo-EM structure of bundle-forming pilus extension ATPase from E.coli in the presence of AMP-PNP (class-2) 7ZLH ; 2.75 ; Cryo-EM structure of C-mannosyltransferase CeDPY19, in apo state, bound to CMT2-Fab and anti-Fab nanobody 7ZLG ; 2.72 ; Cryo-EM structure of C-mannosyltransferase CeDPY19, in complex with acceptor peptide and bound to CMT2-Fab and anti-Fab nanobody 7ZLI ; 2.99 ; Cryo-EM structure of C-mannosyltransferase CeDPY19, in complex with Dol25-P-Man and bound to CMT2-Fab and anti-Fab nanobody 7ZLJ ; 3.63 ; Cryo-EM structure of C-mannosyltransferase CeDPY19, in ternary complex with Dol25-P-C-Man and acceptor peptide, bound to CMT2-Fab and anti-Fab nanobody 8E2H ; 2.3 ; Cryo-EM structure of C-terminal arm of BIRC6 (from local refinement 4) 6LTN ; 3.1 ; cryo-EM structure of C-terminal truncated human Pannexin1 8QGY ; 3.71 ; Cryo-EM structure of C-terminally truncated Apoptosis signal-regulating kinase 1 (ASK1) 6E88 ; 4.8 ; Cryo-EM structure of C. elegans GDP-microtubule 7Y67 ; 2.8 ; Cryo-EM structure of C089-bound C5aR1(I116A) mutant in complex with Gi protein 7VZB ; 3.59 ; Cryo-EM structure of C22:0-CoA bound human very long-chain fatty acid ABC transporter ABCD1 8IA8 ; 2.86 ; Cryo-EM structure of C3aR-Gi-scFv16 bound with E7 peptide 7Y65 ; 3.2 ; Cryo-EM structure of C5a peptide-bound C5aR1 in complex with Gi protein 7Y64 ; 2.9 ; Cryo-EM structure of C5a-bound C5aR1 in complex with Gi protein 6LT0 ; 3.2 ; cryo-EM structure of C9ORF72-SMCR8-WDR41 6V38 ; 3.8 ; Cryo-EM structure of Ca2+-bound hsSlo1 channel 6V22 ; 3.2 ; Cryo-EM structure of Ca2+-bound hsSlo1-beta4 channel complex 8BC0 ; 3.09 ; Cryo-EM structure of Ca2+-bound mTMEM16F F518A Q623A mutant in GDN open/closed 8BC1 ; 2.93 ; Cryo-EM Structure of Ca2+-bound mTMEM16F F518A_Q623A mutant in GDN 8B8J ; 2.96 ; Cryo-EM structure of Ca2+-bound mTMEM16F F518H mutant in Digitonin 8B8K ; 3.01 ; Cryo-EM structure of Ca2+-bound mTMEM16F N562A mutant in Digitonin closed/closed 8B8M ; 3.49 ; Cryo-EM structure of Ca2+-bound mTMEM16F N562A mutant in Digitonin open/closed 6V3G ; 4.0 ; Cryo-EM structure of Ca2+-free hsSlo1 channel 6V35 ; 3.5 ; Cryo-EM structure of Ca2+-free hsSlo1-beta4 channel complex 8B8G ; 3.39 ; Cryo-EM structure of Ca2+-free mTMEM16F F518H mutant in Digitonin 6X6L ; 3.0 ; Cryo-EM Structure of CagX and CagY within the dCag3 Helicobacter pylori PR 6X6J ; 3.5 ; Cryo-EM Structure of CagX and CagY within the Helicobacter pylori PR 8P6W ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor BS-181 8P6X ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor BS-194 8PLZ ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor CT7030 8P78 ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor dinaciclib 8P6Z ; 2.1 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0510-R 8P70 ; 2.0 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0510-S 8P71 ; 2.0 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0574 8P72 ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0768 8P73 ; 2.0 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0829 8P75 ; 2.0 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0880 (ring-down conformation) 8P74 ; 2.2 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0880 (ring-up conformation) 8P76 ; 2.0 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0914 8P6V ; 1.9 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0942 8P77 ; 1.8 ; Cryo-EM structure of CAK in complex with inhibitor ICEC0943 8P6Y ; 1.9 ; Cryo-EM structure of CAK in complex with nucleotide analogue ATPgS 8P79 ; 1.7 ; Cryo-EM structure of CAK with averaged inhibitor density 8ORM ; 1.9 ; Cryo-EM structure of CAK-THZ1 6QP6 ; 3.2 ; Cryo-EM structure of calcium-bound mTMEM16F lipid scramblase in digitonin 6QPC ; 3.5 ; Cryo-EM structure of calcium-bound mTMEM16F lipid scramblase in nanodisc 6QM5 ; 3.6 ; Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in DDM 6QMB ; 3.6 ; Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (closed state) 6QMA ; 3.7 ; Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (intermediate state) 6QM9 ; 3.6 ; Cryo-EM structure of calcium-bound nhTMEM16 lipid scramblase in nanodisc (open state) 6P48 ; 3.2 ; Cryo-EM structure of calcium-bound TMEM16F in nanodisc with supplement of PIP2 in Cl1 6P49 ; 3.3 ; Cryo-EM structure of calcium-bound TMEM16F in nanodisc with supplement of PIP2 in Cl2 6QPB ; 3.6 ; Cryo-EM structure of calcium-free mTMEM16F lipid scramblase in digitonin 6QPI ; 3.3 ; Cryo-EM structure of calcium-free mTMEM16F lipid scramblase in nanodisc 6QM6 ; 3.7 ; Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in DDM 6QM4 ; 3.8 ; Cryo-EM structure of calcium-free nhTMEM16 lipid scramblase in nanodisc 7V4I ; 3.3 ; Cryo-EM Structure of Camellia sinensis glutamine synthetase CsGSIb decamer assembly 7V4J ; 3.5 ; Cryo-EM Structure of Camellia sinensis glutamine synthetase CsGSIb inactive Pentamer State I 7V4K ; ; Cryo-EM Structure of Camellia sinensis glutamine synthetase CsGSIb inactive Pentamer State II 7V4L ; 3.4 ; Cryo-EM Structure of Camellia sinensis glutamine synthetase CsGSIb inactive Pentamer State III 8GUA ; 2.77 ; Cryo-EM structure of cancer-specific PI3Kalpha mutant E542K in complex with BYL-719 8GUD ; 2.62 ; Cryo-EM structure of cancer-specific PI3Kalpha mutant E545K in complex with BYL-719 8GUB ; 2.73 ; Cryo-EM structure of cancer-specific PI3Kalpha mutant H1047R in complex with BYL-719 6VTT ; 3.7 ; Cryo-EM Structure of CAP256-VRC26.25 Fab bound to HIV-1 Env trimer CAP256.wk34.c80 SOSIP.RnS2 7DQ4 ; 3.8 ; Cryo-EM structure of CAR triggered Coxsackievirus B1 A-particle 8IQ4 ; 2.7 ; Cryo-EM structure of Carboprost-bound prostaglandin-F2-alpha receptor-miniGq-Nb35 complex 8B11 ; 2.52 ; cryo-EM structure of carboxysomal mini-shell: icosahedral assembly from CsoS4A/1A and CsoS2 co-expression (T = 4) 8B12 ; 1.86 ; cryo-EM structure of carboxysomal mini-shell: icosahedral assembly from CsoS4A/1A and CsoS2 co-expression (T = 9) 8B0Y ; 2.79 ; cryo-EM structure of carboxysomal mini-shell: icosahedral assembly from CsoS4A/1A co-expression (T = 3) 6XKJ ; 3.54 ; Cryo-EM structure of CARD8-CARD filament 8E7E ; 3.61 ; Cryo-EM structure of cardiac amyloid fibril from a variant ATTR I84S amyloidosis patient 8E7J ; 3.1 ; Cryo-EM structure of cardiac amyloid fibril from a variant ATTR I84S amyloidosis patient 8TDO ; 3.1 ; Cryo-EM structure of cardiac amyloid fibril from a variant ATTR I84S amyloidosis patient-3, variant-type morphology 8TDN ; 3.1 ; Cryo-EM structure of cardiac amyloid fibril from a variant ATTR I84S amyloidosis patient-3, wild-type morphology 8E7I ; 3.65 ; Cryo-EM structure of cardiac amyloid fibril from a variant ATTR P24S amyloidosis patient 8E7H ; 3.7 ; Cryo-EM structure of cardiac amyloid fibril from a wild-type amyloidosis patient 6HUD ; 4.0 ; Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain (AL) amyloidosis patient. 8DMY ; 3.07 ; Cryo-EM structure of cardiac muscle alpha-actin 8HJV ; 3.1 ; Cryo-EM structure of carotenoid-depleted RC-LH complex from Roseiflexus castenholzii at 10,000 lux 6XMF ; 3.1 ; Cryo-EM structure of Cas12g binary complex 6XMG ; 4.8 ; Cryo-EM structure of Cas12g ternary complex 8I3Q ; 3.1 ; Cryo-EM structure of Cas12g-sgRNA binary complex 6W5C ; 2.9 ; Cryo-EM structure of Cas12i(E894A)-crRNA-dsDNA complex 6W62 ; 3.9 ; Cryo-EM structure of Cas12i-crRNA complex 6W64 ; 3.9 ; Cryo-EM structure of Cas12i-crRNA-dsDNA complex in I1 state 8INB ; 3.1 ; Cryo-EM structure of Cas12j-SF05-crRNA-dsDNA complex 8AXB ; 2.87 ; Cryo-EM structure of Cas12k-sgRNA binary complex (type V-K CRISPR-associated transposon) 6VRC ; 3.2 ; Cryo-EM structure of Cas13(crRNA) 8FYB ; 3.1 ; Cryo-EM structure of Cas1:Cas2-DEDDh:half-site integration complex 8FYD ; 3.9 ; Cryo-EM structure of Cas1:Cas2-DEDDh:half-site integration complex bent CRISPR repeat conformation 8FYC ; 4.1 ; Cryo-EM structure of Cas1:Cas2-DEDDh:half-site integration complex linear CRISPR repeat conformation 8FYA ; 2.91 ; Cryo-EM structure of Cas1:Cas2-DEDDh:PAM-containing prespacer complex 8FY9 ; 3.1 ; Cryo-EM structure of Cas1:Cas2-DEDDh:PAM-deficient prespacer complex 7YN9 ; 3.53 ; Cryo-EM structure of Cas7-11-crRNA binary complex 7YNA ; 3.64 ; Cryo-EM structure of Cas7-11-crRNA bound to target RNA-1 7YNB ; 3.46 ; Cryo-EM structure of Cas7-11-crRNA bound to target RNA-2 7YNC ; 3.14 ; Cryo-EM structure of Cas7-11-crRNA bound to target RNA-3 7YND ; 3.29 ; Cryo-EM structure of Cas7-11-crRNA-Csx29 ternary complex 7S4U ; 3.56 ; Cryo-EM structure of Cas9 in complex with 12-14MM DNA substrate, 5 minute time-point 8FD2 ; 3.65 ; Cryo-EM structure of Cascade complex in type I-B CAST system 8FCJ ; 2.83 ; Cryo-EM structure of Cascade-DNA (P23) complex in type I-B CAST system 8FF5 ; 3.13 ; Cryo-EM structure of Cascade-DNA-fullRloop in type I-B CAST system 8FF4 ; 3.6 ; Cryo-EM structure of Cascade-DNA-TniQ-TnsC complex (composite) in type I-B CAST system 8FCU ; 3.19 ; Cryo-EM structure of Cascade-DNA-TniQ-TnsC complex in type I-B CAST system 8FD3 ; 3.12 ; Cryo-EM structure of Cascade-PAM complex in type I-B CAST system 6V9Q ; 2.9 ; Cryo-EM structure of Cascade-TniQ binary complex 6VBW ; 3.2 ; Cryo-EM structure of Cascade-TniQ-dsDNA ternary complex 8DC2 ; 2.99 ; Cryo-EM structure of CasLambda (Cas12l) bound to crRNA and DNA 5L08 ; 4.6 ; Cryo-EM structure of Casp-8 tDED filament 7M5O ; 3.54 ; Cryo-EM structure of CasPhi-2 (Cas12j) bound to crRNA 7LYS ; 3.05 ; Cryo-EM structure of CasPhi-2 (Cas12j) bound to crRNA and DNA 7LYT ; 2.9 ; Cryo-EM structure of CasPhi-2 (Cas12j) bound to crRNA and Phosphorothioate-DNA 7C8D ; 3.0 ; Cryo-EM structure of cat ACE2 and SARS-CoV-2 RBD 7ZYV ; 2.13 ; Cryo-EM structure of catalytically active Spinacia oleracea cytochrome b6f in complex with endogenous plastoquinones at 2.13 A resolution 7QRM ; 2.7 ; Cryo-EM structure of catalytically active Spinacia oleracea cytochrome b6f in complex with endogenous plastoquinones at 2.7 A resolution 8WU1 ; 3.2 ; Cryo-EM structure of CB1-beta-arrestin1 complex 6KPG ; 3.0 ; Cryo-EM structure of CB1-G protein complex 8GUQ ; 3.08 ; Cryo-EM structure of CB2-G protein complex 8OW0 ; 3.4 ; Cryo-EM structure of CBF1-CCAN bound topologically to a centromeric CENP-A nucleosome 8OVW ; 3.4 ; Cryo-EM structure of CBF1-CCAN bound topologically to centromeric DNA 7FGF ; 2.8 ; Cryo-EM structure of CCHFV envelope protein Gc in postfusion conformation 8JKD ; 2.6 ; Cryo-EM structure of CCHFV envelope protein Gc trimer in complex with Gc13 Fab 8IL3 ; 3.86 ; Cryo-EM structure of CD38 in complex with FTL004 7TFN ; 4.0 ; Cryo-EM structure of CD4bs antibody Ab1303 in complex with HIV-1 Env trimer BG505 SOSIP.664 7YDM ; 2.89 ; Cryo-EM structure of CD97/Gq complex 7YDP ; 3.1 ; Cryo-EM structure of CD97/miniGs complex 8BZO ; 3.5 ; Cryo-EM structure of CDK2-CyclinA in complex with p27 from the SCFSKP2 E3 ligase Complex 8P7L ; 2.1 ; Cryo-EM structure of CDK7 subunit of CAK in complex with inhibitor LDC4297 8POK ; 3.4 ; Cryo-EM structure of cell-free synthesized human histamine H2 receptor coupled to heterotrimeric Gs protein in lipid environment 8H6H ; 2.3 ; cryo-EM structure of cellodextrin phosphorylase from Clostridium thermocellum 7EVZ ; 3.07 ; Cryo-EM structure of cenerimod -bound Sphingosine-1-phosphate receptor 1 in complex with Gi protein 7U46 ; 2.68 ; Cryo-EM structure of CENP-A nucleosome (palindromic alpha satellite DNA) in complex with CENP-N 6BUZ ; 3.92 ; Cryo-EM structure of CENP-A nucleosome in complex with kinetochore protein CENP-N 8ETP ; 3.52 ; Cryo-EM structure of cGMP bound closed state of human CNGA3/CNGB3 channel in GDN 8EU3 ; 3.62 ; Cryo-EM structure of cGMP bound human CNGA3/CNGB3 channel in GDN, transition state 1 8EUC ; 3.61 ; Cryo-EM structure of cGMP bound human CNGA3/CNGB3 channel in GDN, transition state 2 8EV8 ; 3.11 ; Cryo-EM structure of cGMP bound truncated human CNGA3/CNGB3 channel in lipid nanodisc, closed state 8EVC ; 3.33 ; Cryo-EM structure of cGMP bound truncated human CNGA3/CNGB3 channel in lipid nanodisc, open state 8EVB ; 3.6 ; Cryo-EM structure of cGMP bound truncated human CNGA3/CNGB3 channel in lipid nanodisc, pre-open state 8EV9 ; 3.33 ; Cryo-EM structure of cGMP bound truncated human CNGA3/CNGB3 channel in lipid nanodisc, transition state 1 8EVA ; 3.33 ; Cryo-EM structure of cGMP bound truncated human CNGA3/CNGB3 channel in lipid nanodisc, transition state 2 7ZNU ; 4.0 ; cryo-EM structure of CGT ABC transporter in detergent micelle 7ZO8 ; 3.6 ; cryo-EM structure of CGT ABC transporter in nanodisc apo state 7ZOA ; 4.0 ; cryo-EM structure of CGT ABC transporter in presence of CBG substrate 7ZO9 ; 3.5 ; cryo-EM structure of CGT ABC transporter in vanadate trapped state 7TCO ; 4.19 ; Cryo-EM structure of CH235.12 in complex with HIV-1 Env trimer CH505TF.N279K.G458Y.SOSIP.664 with high-mannose glycans 7T9T ; 3.7 ; Cryo-EM structure of CH235.12 in complex with HIV-1 Env trimer CH505TF.N279K.SOSIP.664 with complex glycans 7TCN ; 4.1 ; Cryo-EM structure of CH235.12 in complex with HIV-1 Env trimer CH505TF.N279K.SOSIP.664 with high-mannose glycans 6UDA ; 4.2 ; Cryo-EM structure of CH235UCA bound to Man5-enriched CH505.N279K.G458Y.SOSIP.664 8EU8 ; 3.73 ; Cryo-EM structure of CH848 10.17DT DS-SOSIP-2P Env 8DZZ ; 4.1 ; Cryo-EM structure of chi dynein bound to Lis1 1SJJ ; 20.0 ; Cryo-EM Structure of Chicken Gizzard Smooth Muscle alpha-Actinin 8FCG ; 3.09 ; Cryo-EM structure of Chikungunya virus asymmetric unit 7CVY ; 5.2 ; Cryo-EM structure of Chikungunya virus in complex with Fab fragments of mAb CHK-124 7CVZ ; 4.7 ; Cryo-EM structure of Chikungunya virus in complex with Fab fragments of mAb CHK-263 7CW2 ; 4.5 ; Cryo-EM structure of Chikungunya virus in complex with Fab fragments of mAb CHK-263 (subregion around icosahedral 5-fold vertex) 7CW0 ; 5.9 ; Cryo-EM structure of Chikungunya virus in complex with mAb CHK-263 IgG 7CW3 ; 9.4 ; Cryo-EM structure of Chikungunya virus in complex with mAb CHK-263 IgG (subregion around icosahedral 2-fold vertex) 7X01 ; 2.62 ; Cryo-EM Structure of Chikungunya Virus Nonstructural Protein 1 with inhibitor FHA 7FGH ; 2.18 ; Cryo-EM Structure of Chikungunya Virus Nonstructural Protein 1 with m7GMP 7FGI ; 2.51 ; Cryo-EM Structure of Chikungunya Virus Nonstructural Protein 1 with m7Gppp-AU 8JCE ; 2.41 ; Cryo-EM Structure of Chikungunya Virus Nonstructural Protein 1 with m7GpppAmU 7FGG ; 2.19 ; Cryo-EM Structure of Chikungunya Virus Nonstructural Protein 1 with m7GTP 7VCF ; 2.5 ; Cryo-EM structure of Chlamydomonas TOC-TIC supercomplex 8IGR ; 3.1 ; Cryo-EM structure of CII-dependent transcription activation complex 5UBQ ; 5.7 ; Cryo-EM structure of ciliary microtubule doublet 8SZF ; 2.8 ; Cryo-EM structure of cinacalcet-bound active-state human calcium-sensing receptor CaSR in lipid nanodiscs 8SZH ; 3.1 ; Cryo-EM structure of cinacalcet-bound human calcium-sensing receptor CaSR-Gi complex in lipid nanodiscs 8SZG ; 3.6 ; Cryo-EM structure of cinacalcet-bound human calcium-sensing receptor CaSR-Gq complex in lipid nanodiscs 7Q2X ; 3.0 ; Cryo-EM structure of clamped S.cerevisiae condensin-DNA complex (Form I) 7Q2Y ; 3.0 ; Cryo-EM structure of clamped S.cerevisiae condensin-DNA complex (form II) 8JPJ ; 3.5 ; Cryo-EM structure of ClC-6 apo state 8OSK ; 3.6 ; Cryo-EM structure of CLOCK-BMAL1 bound to a nucleosomal E-box at position SHL+5.8 (composite map) 8OSJ ; 6.2 ; Cryo-EM structure of CLOCK-BMAL1 bound to a nucleosomal E-box at position SHL-6.2 (DNA conformation 1) 8OSL ; 4.9 ; Cryo-EM structure of CLOCK-BMAL1 bound to the native Por enhancer nucleosome (map 2, additional 3D classification and flexible refinement) 6SFX ; 4.0 ; Cryo-EM structure of ClpP1/2 in the LmClpXP1/2 complex 8XOP ; 2.8 ; Cryo-EM structure of ClpP1P2 in complex with ADEP1 from Streptomyces hawaiiensis 8OUW ; 3.75 ; Cryo-EM structure of CMG helicase bound to TIM-1/TIPN-1 and homodimeric DNSN-1 on fork DNA (Caenorhabditis elegans) 8SG1 ; 2.94 ; Cryo-EM structure of CMKLR1 signaling complex 8R8D ; 2.6 ; Cryo-EM structure of coagulation factor beta-XIIa in complex with the garadacimab Fab fragment (symmetric dimer) 8FDG ; 3.2 ; Cryo-EM structure of coagulation factor V short 8TY1 ; 3.46 ; Cryo-EM structure of coagulation factor VIII bound to NB2E9 8HF7 ; 3.8 ; Cryo-EM structure of ComA bound to its mature substrate CSP peptide 5G05 ; 3.4 ; Cryo-EM structure of combined apo phosphorylated APC 7YRF ; 2.91 ; Cryo-EM structure of compact CA16 empty particle in complex with a neutralizing antibody 8C4 7YRH ; 3.35 ; Cryo-EM structure of compact coxsackievirus A16 empty particle in complex with a neutralizing antibody 9B5 7B2Q ; 3.76 ; Cryo-EM structure of complement C4b in complex with nanobody B12 7B2P ; 3.43 ; Cryo-EM structure of complement C4b in complex with nanobody B5 7B2M ; 3.39 ; Cryo-EM structure of complement C4b in complex with nanobody E3 8CML ; 3.6 ; Cryo-EM structure of complement C5 in complex with nanobodies UNbC5-1 and UNbC5-2 7YL9 ; 4.7 ; Cryo-EM structure of complete transmembrane channel E289A mutant Vibrio cholerae Cytolysin 8JII ; 3.17 ; Cryo-EM structure of compound 9n and niacin bound ketone body receptor HCAR2-Gi signaling complex 8JHY ; 2.87 ; Cryo-EM structure of compound 9n bound ketone body receptor HCAR2-Gi signaling complex 8DFU ; 3.44 ; Cryo-EM structure of conjugation pili from Aeropyrum pernix 7JSV ; 3.9 ; Cryo-EM structure of conjugative pili from carbapenem-resistant Klebsiella pneumoniae 8DFT ; 4.1 ; Cryo-EM structure of conjugative pili from Pyrobaculum calidifontis 7LXM ; 3.41 ; Cryo-EM structure of ConM SOSIP.v7 (ConM) in complex with bNAb PGT122 7ZXM ; 2.14 ; cryo-EM structure of Connexin 32 gap junction channel 7ZXN ; 3.06 ; cryo-EM structure of Connexin 32 gap junction channel 7ZXO ; 2.5 ; cryo-EM structure of Connexin 32 gap junction channel 7ZXP ; 2.39 ; cryo-EM structure of Connexin 32 R22G mutation gap junction channel 7ZXQ ; 3.53 ; cryo-EM structure of Connexin 32 R22G mutation hemi channel 7ZXT ; 2.9 ; cryo-EM structure of Connexin 32 W3S mutation hemi channel 8EG8 ; 3.3 ; Cryo-EM structure of consensus elemental paused elongation complex with a folded TL 8EGB ; 3.8 ; Cryo-EM structure of consensus elemental paused elongation complex with an unfolded TL 7LX2 ; 3.12 ; Cryo-EM structure of ConSOSL.UFO.664 (ConS) in complex with bNAb PGT122 7XN5 ; 3.18 ; Cryo-EM structure of CopC-CaM-caspase-3 with ADPR 7XN6 ; 3.45 ; Cryo-EM structure of CopC-CaM-caspase-3 with ADPR-deacylization 7XN4 ; 3.35 ; Cryo-EM structure of CopC-CaM-caspase-3 with NAD+ 8P94 ; 3.3 ; Cryo-EM structure of cortactin stabilized Arp2/3-complex nucleated actin branches 8TAH ; 2.89 ; Cryo-EM structure of Cortactin-bound to Arp2/3 complex 7TRY ; 3.7 ; Cryo-EM structure of corticotropin releasing factor receptor 2 bound to Urocortin 1 and coupled with heterotrimeric G11 protein 7TS0 ; 2.8 ; Cryo-EM structure of corticotropin releasing factor receptor 2 bound to Urocortin 1 and coupled with heterotrimeric Go protein 7YMS ; 2.9 ; Cryo-EM structure of Coxsackievirus A16 in complex with a neutralizing antibody 9B5 7QVX ; 2.5 ; Cryo-EM structure of coxsackievirus A6 altered particle 7QVY ; 2.82 ; Cryo-EM structure of coxsackievirus A6 empty particle 7QW9 ; 2.68 ; Cryo-EM structure of coxsackievirus A6 mature virion 7X37 ; 3.31 ; Cryo-EM structure of Coxsackievirus B1 A particle in complex with nAb 2E6 (CVB1-A:2E6) 7X46 ; 3.85 ; Cryo-EM structure of Coxsackievirus B1 A-particle in complex with nAb 2E6 (classified from CVB1 mature virion in complex with 8A10 and 2E6) 7X3F ; 3.52 ; Cryo-EM structure of Coxsackievirus B1 A-particle in complex with nAb 9A3 (CVB1-A:9A3) 7DPG ; 3.4 ; Cryo-EM structure of Coxsackievirus B1 empty particle 7X47 ; 3.66 ; Cryo-EM structure of Coxsackievirus B1 empty particle in complex with nAb 2E6 (classified from CVB1 mature virion in complex with 8A10 and 2E6) 7X38 ; 3.52 ; Cryo-EM structure of Coxsackievirus B1 empty particle in complex with nAb 8A10 (CVB1-E:8A10) 7X4K ; 3.82 ; Cryo-EM structure of Coxsackievirus B1 empty particle in complex with nAb 9A3 (classified from CVB1 mature virion in complex with 8A10 and 9A3) 7X3Y ; 3.32 ; Cryo-EM structure of Coxsackievirus B1 empty particle in complex with nAb 9A3 (CVB1-E:9A3) 7X2G ; 3.58 ; Cryo-EM structure of Coxsackievirus B1 empty particle in complex with nAb nAb 2E6 (CVB1-E:2E6) 7DPF ; 3.2 ; Cryo-EM structure of Coxsackievirus B1 mature virion 7X2O ; 3.15 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 2E6 (CVB1-M:2E6) 7DQ7 ; 3.2 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 5F5 7X40 ; 3.02 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 8A10 (classified from CVB1 mature virion in complex with 8A10 and 2E6) 7X49 ; 3.13 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 8A10 (classified from CVB1 mature virion in complex with 8A10 and 9A3) 7X4M ; 3.34 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 8A10 (classified from CVB1 mature virion in complex with 8A10, 2E6 and 9A3) 7X2T ; 3.69 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 8A10 (CVB1-M:8A10) 7X3D ; 3.48 ; Cryo-EM structure of Coxsackievirus B1 mature virion in complex with nAb 9A3 (CVB1-M:9A3) 7X3C ; 3.03 ; Cryo-EM structure of Coxsackievirus B1 muture virion in complex with nAbs 8A10 and 5F5 (CVB1-M:8A10:5F5) 7X2I ; 3.29 ; Cryo-EM structure of Coxsackievirus B1 pre-A particle in complex with nAb 2E6 (CVB1-pre-A:2E6) 7X2W ; 3.24 ; Cryo-EM structure of Coxsackievirus B1 pre-A particle in complex with nAb 8A10 (CVB1-pre-A:8A10) 7X42 ; 3.88 ; Cryo-EM structure of Coxsackievirus B1 pre-A-particle in complex with nAb 8A10 (classified from CVB1 mature virion in complex with 8A10 and 2E6) 7X3E ; 3.44 ; Cryo-EM structure of Coxsackievirus B1 pre-A-particle in complex with nAb 9A3 (CVB1-pre-A:9A3) 7DPZ ; 3.8 ; Cryo-EM structure of Coxsackievirus B1 virion in complex with CAR 7DQ1 ; 3.6 ; Cryo-EM structure of Coxsackievirus B1 virion in complex with CAR at physiological temperature 1JEW ; 22.0 ; CRYO-EM STRUCTURE OF COXSACKIEVIRUS B3(M STRAIN) WITH ITS CELLULAR RECEPTOR, COXSACKIEVIRUS AND ADENOVIRUS RECEPTOR (CAR). 8GUR ; 2.84 ; Cryo-EM structure of CP-CB2-G protein complex 8HFQ ; 2.64 ; Cryo-EM structure of CpcL-PBS from cyanobacterium Synechocystis sp. PCC 6803 8TVY ; 3.1 ; Cryo-EM structure of CPD lesion containing RNA Polymerase II elongation complex with Rad26 and Elf1 (closed state) 8TVQ ; 4.6 ; Cryo-EM structure of CPD stalled 10-subunit Pol II in complex with Rad26 8TVW ; 3.6 ; Cryo-EM structure of CPD-stalled Pol II (conformation 1) 8TVX ; 3.7 ; Cryo-EM structure of CPD-stalled Pol II (Conformation 2) 8TUG ; 3.5 ; Cryo-EM structure of CPD-stalled Pol II in complex with Rad26 (engaged state) 8TVP ; 3.7 ; Cryo-EM structure of CPD-stalled Pol II in complex with Rad26 (open state) 8CPD ; 3.46 ; Cryo-EM structure of CRaf dimer with 14:3:3 8CHF ; 4.25 ; cryo-EM Structure of Craf:14-3-3:Mek1 8AHL ; 4.1 ; Cryo-EM structure of crescentin filaments (stutter mutant, C1 symmetry and large box) 8AFE ; 3.3 ; Cryo-EM structure of crescentin filaments (stutter mutant, C1 symmetry and small box) 8AJB ; 4.3 ; Cryo-EM structure of crescentin filaments (stutter mutant, C2 symmetry and large box) 8AFH ; 3.9 ; Cryo-EM structure of crescentin filaments (stutter mutant, C2, symmetry and small box) 8AIA ; 5.1 ; Cryo-EM structure of crescentin filaments (wildtype, C1 symmetry and large box) 8AFL ; 4.4 ; Cryo-EM structure of crescentin filaments (wildtype, C1 symmetry and small box) 8AIX ; 5.8 ; Cryo-EM structure of crescentin filaments (wildtype, C2 symmetry and large box) 8AFM ; 4.8 ; Cryo-EM structure of crescentin filaments (wildtype, C2 symmetry and small box) 7JZZ ; 3.2 ; Cryo-EM structure of CRISPR-Cas surveillance complex with AcrIF14 7JZW ; 3.2 ; Cryo-EM structure of CRISPR-Cas surveillance complex with AcrIF4 7JZX ; 3.4 ; Cryo-EM structure of CRISPR-Cas surveillance complex with AcrIF7 7L49 ; 3.1 ; Cryo-EM structure of CRISPR-Cas12f Ternary Complex 8K9G ; 3.49 ; Cryo-EM structure of Crt-SPARTA-gRNA-tDNA dimer (conformation-1) 8IT0 ; 3.5 ; Cryo-EM structure of Crt-SPARTA-gRNA-tDNA dimer (conformation-2) 8ISZ ; 3.27 ; Cryo-EM structure of Crt-SPARTA-gRNA-tDNA monomer 8IT1 ; 3.41 ; Cryo-EM structure of Crt-SPARTA-gRNA-tDNA tetramer (NADase active form) 8FO1 ; 3.3 ; Cryo-EM structure of Cryptococcus neoformans trehalose-6-phosphate synthase homotetramer in apo form 8FHW ; 3.2 ; Cryo-EM structure of Cryptococcus neoformans trehalose-6-phosphate synthase homotetramer in complex with uridine diphosphate and glucose-6-phosphate 7Y7B ; 2.66 ; Cryo-EM structure of cryptophyte photosystem I 7Y8A ; 2.71 ; Cryo-EM structure of cryptophyte photosystem I 6IQW ; 3.35 ; Cryo-EM structure of Csm effector complex 6MUU ; 3.0 ; Cryo-EM structure of Csm-crRNA binary complex in type III-A CRISPR-Cas system 6O7I ; 3.2 ; Cryo-EM structure of Csm-crRNA-target RNA ternary bigger complex in complex with cA4 in type III-A CRISPR-Cas system 6O7E ; 3.2 ; Cryo-EM structure of Csm-crRNA-target RNA ternary complex in complex with AMPPNP in type III-A CRISPR-Cas system 6O7H ; 2.9 ; Cryo-EM structure of Csm-crRNA-target RNA ternary complex in complex with cA4 in type III-A CRISPR-Cas system 6MUR ; 3.1 ; Cryo-EM structure of Csm-crRNA-target RNA ternary complex in type III-A CRISPR-Cas system 6W6W ; 3.0 ; Cryo-EM structure of CST bound to telomeric single-stranded DNA 7T3J ; 3.2 ; Cryo-EM structure of Csy-AcrIF24 7T3K ; 3.5 ; Cryo-EM structure of Csy-AcrIF24 dimer 7T3L ; 3.6 ; Cryo-EM structure of Csy-AcrIF24-DNA dimer 6S2E ; 4.2 ; Cryo-EM structure of Ctf18-1-8 in complex with the catalytic domain of DNA polymerase epsilon 6S2F ; 5.8 ; Cryo-EM structure of Ctf18-1-8 in complex with the catalytic domain of DNA polymerase epsilon (Class 2) 8WQA ; 3.39 ; Cryo-EM structure of CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CCDC89 (conformation 1) 8WQB ; 3.37 ; Cryo-EM structure of CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CCDC89 (conformation 2) 8WQE ; 3.38 ; Cryo-EM structure of CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CUX1 (conformation 1) 8WQF ; 3.27 ; cryo-EM structure of CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CUX1 (conformation 2) 6V9I ; 5.2 ; cryo-EM structure of Cullin5 bound to RING-box protein 2 (Cul5-Rbx2) 6IIJ ; 2.84 ; Cryo-EM structure of CV-A10 mature virion 6IIO ; 3.12 ; Cryo-EM structure of CV-A10 native empty particle 6AKT ; 2.8 ; Cryo-EM structure of CVA10 A-particle 6AKU ; 2.7 ; Cryo-EM structure of CVA10 empty particle 6AKS ; 3.0 ; Cryo-EM structure of CVA10 mature virus 5YHQ ; 3.0 ; Cryo-EM Structure of CVA6 VLP 8IC0 ; 3.41 ; Cryo-EM structure of CXCL8 bound C-X-C chemokine receptor 1 in complex with Gi heterotrimer 6L7O ; 3.2 ; cryo-EM structure of cyanobacteria Fd-NDH-1L complex 6L7P ; 3.6 ; cryo-EM structure of cyanobacteria NDH-1LdelV complex 8IOA ; 2.63 ; Cryo-EM structure of cyanobacteria phosphoketolase 8IO9 ; 2.36 ; Cryo-EM structure of cyanobacteria phosphoketolase complexed with AMPPNP in dodecameric assembly 8IO8 ; 2.17 ; Cryo-EM structure of cyanobacteria phosphoketolase complexed with AMPPNPin dimeric assembly 8IOE ; 2.86 ; Cryo-EM structure of cyanobacteria phosphoketolase in dodecameric assembly 8WM8 ; 3.54 ; Cryo-EM structure of cyanobacterial nitrate/nitrite transporter NrtBCD in complex with nitrate 8WM7 ; 3.53 ; Cryo-EM structure of cyanobacterial nitrate/nitrite transporter NrtBCD in complex with signalling protein PII 7FIX ; 1.97 ; Cryo-EM structure of cyanobacterial photosystem I in the presence of ferredoxin and cytochrome c6 7EYD ; 3.9 ; Cryo-EM structure of cyanobacterial phycobilisome from Anabaena sp. PCC 7120 7EXT ; 3.5 ; Cryo-EM structure of cyanobacterial phycobilisome from Synechococcus sp. PCC 7002 8DCS ; 2.5 ; Cryo-EM structure of cyanopindolol-bound beta1-adrenergic receptor in complex with heterotrimeric Gs-protein 7EW4 ; 3.2 ; Cryo-EM structure of CYM-5541-bound Sphingosine 1-phosphate receptor 3 in complex with Gi protein 8DKM ; 3.39 ; Cryo-EM structure of cystine-bound cystinosin in a lumen-open state 8DKE ; 3.18 ; Cryo-EM structure of cystinosin in a cytosol-open state 8DKI ; 3.32 ; Cryo-EM structure of cystinosin in a lumen-open state 8DKW ; 3.09 ; Cryo-EM structure of cystinosin N288K mutant in a cytosol-open state at pH5.0 8DKX ; 3.0 ; Cryo-EM structure of cystinosin N288K mutant in a cytosol-open state at pH7.5 8B6J ; 2.8 ; Cryo-EM structure of cytochrome bc1 complex (complex-III) from respiratory supercomplex of Tetrahymena thermophila 8B4O ; 2.0 ; Cryo-EM structure of cytochrome bd oxidase from C. glutamicum 7XMC ; 3.09 ; Cryo-EM structure of Cytochrome bo3 from Escherichia coli, apo structure with DMSO 7XMD ; 2.99 ; Cryo-EM structure of Cytochrome bo3 from Escherichia coli, the structure complexed with an allosteric inhibitor N4 8B6H ; 2.6 ; Cryo-EM structure of cytochrome c oxidase dimer (complex IV) from respiratory supercomplex of Tetrahymena thermophila 7USD ; 3.0 ; Cryo-EM structure of D-site Rac1-bound WAVE Regulatory Complex 8HWD ; 3.3 ; Cryo-EM Structure of D5 ADP form 8HWF ; 3.3 ; Cryo-EM Structure of D5 ADP-ssDNA form 8HWC ; 3.3 ; Cryo-EM Structure of D5 Apo 8HWH ; 3.6 ; Cryo-EM Structure of D5 Apo-ssDNA form 8HWE ; 3.3 ; Cryo-EM Structure of D5 ATP-ADP form 7ZSS ; 2.63 ; cryo-EM structure of D614 spike in complex with de novo designed binder 8ADG ; 3.0 ; Cryo-EM structure of Darobactin 22 bound BAM complex 8ADI ; 3.4 ; Cryo-EM structure of Darobactin 9 bound BAM complex 8TNP ; 3.3 ; Cryo-EM structure of DDB1dB:CRBN:Pomalidomide:SD40 8TNQ ; 2.41 ; Cryo-EM structure of DDB1dB:CRBN:PT-179:SD40, conformation 1 8TNR ; 2.5 ; Cryo-EM structure of DDB1dB:CRBN:PT-179:SD40, conformation 2 8G46 ; 2.2 ; Cryo-EM structure of DDB1deltaB-DDA1-DCAF16-BRD4(BD2)-MMH2 8TL6 ; 2.63 ; Cryo-EM structure of DDB1deltaB-DDA1-DCAF5 6YTV ; 4.39 ; Cryo-EM structure of decameric human CALHM6 in the presence of Ca2+ 2ZLE ; 28.0 ; Cryo-EM structure of DegP12/OMP 8HW4 ; 3.52 ; Cryo-EM structure of dehydroepiandrosterone sulfate-bound human ABC transporter ABCC3 in nanodiscs 4C2I ; 6.0 ; Cryo-EM structure of Dengue virus serotype 1 complexed with Fab fragments of human antibody 1F4 7DWT ; 19.0 ; Cryo-EM structure of Dengue virus serotype 1 strain WestPac 74 in complex with human antibody 1C19 Fab at 37 deg C (Class 1 particle) 7DWU ; 19.0 ; Cryo-EM structure of Dengue virus serotype 1 strain WestPac 74 in complex with human antibody 1C19 Fab at 37 deg C (Class 2 particle) 7BUE ; 7.8 ; Cryo-EM structure of Dengue virus serotype 2 complexed with Fab SIgN-3C at pH 5.0 7BUB ; 4.2 ; Cryo-EM structure of Dengue virus serotype 2 complexed with Fab SIgN-3C at pH 6.5 7BUD ; 4.5 ; Cryo-EM structure of Dengue virus serotype 2 complexed with Fab SIgN-3C at pH 8.0 7BUF ; 6.1 ; Cryo-EM structure of Dengue virus serotype 2 complexed with SIgN-3C IgG 4UIF ; 6.5 ; Cryo-EM structure of Dengue virus serotype 2 in complex with antigen-binding fragments of human antibody 2D22 7CTH ; 3.5 ; Cryo-EM structure of dengue virus serotype 2 in complex with the scFv fragment of the broadly neutralizing antibody EDE1 C10 4UIH ; 20.0 ; Cryo-EM structure of Dengue virus serotype 2 strain New Guinea-C complexed with human antibody 2D22 Fab at 37 degree C. The Fab molecules were added to the virus before 37 degree C incubation. 5A1Z ; 6.9 ; Cryo-EM structure of Dengue virus serotype 2 strain PVP94-07 complexed with human antibody 2D22 Fab at 37 degrees C 3J6S ; 6.0 ; Cryo-EM structure of Dengue virus serotype 3 at 28 degrees C 3J6T ; 7.0 ; Cryo-EM structure of Dengue virus serotype 3 at 37 degrees C 3J6U ; 9.0 ; Cryo-EM structure of Dengue virus serotype 3 in complex with human antibody 5J7 Fab 8T13 ; 3.45 ; Cryo-EM structure of DENV2 NS5 in complex with human STAT2 with the N-terminal domain of STAT2 disordered 8T12 ; 3.34 ; Cryo-EM structure of DENV2 NS5 in complex with human STAT2 with the N-terminal domain of STAT2 ordered. 7VYV ; 2.32 ; Cryo-EM structure of Depo32, a Klebsiella phage depolymerase targets the K2 serotype K. pneumoniae 7VZ3 ; 2.46 ; Cryo-EM structure of Depo32, a Klebsiella phage depolymerase targets the K2 serotype K. pneumoniae 7PEC ; 4.24 ; cryo-EM structure of DEPTOR bound to human mTOR complex 1, DEPt-bound subset local refinement 7PEB ; 3.67 ; cryo-EM structure of DEPTOR bound to human mTOR complex 1, focussed on one protomer 7PEA ; 4.07 ; cryo-EM structure of DEPTOR bound to human mTOR complex 1, overall refinement 7PE9 ; 3.7 ; cryo-EM structure of DEPTOR bound to human mTOR complex 2, DEPt-bound subset local refinement 7PE8 ; 3.2 ; cryo-EM structure of DEPTOR bound to human mTOR complex 2, focussed on one protomer 7PE7 ; 3.41 ; cryo-EM structure of DEPTOR bound to human mTOR complex 2, overall refinement 8SK7 ; 2.93 ; Cryo-EM structure of designed Influenza HA binder, HA_20, bound to Influenza HA (Strain: Iowa43) 7EQ9 ; 3.3 ; Cryo-EM structure of designed protein nanoparticle TIP60 (Truncated Icosahedral Protein composed of 60-mer fusion proteins) 7DRE ; 2.54 ; Cryo-EM structure of DfgA-B at 2.54 angstrom resolution 7DRD ; 2.85 ; Cryo-EM structure of DgpB-C at 2.85 angstrom resolution 7LU9 ; 5.6 ; Cryo-EM structure of DH851.3 bound to HIV-1 CH505 Env 7LUA ; 4.7 ; Cryo-EM structure of DH898.1 Fab-dimer bound near the CD4 binding site of HIV-1 Env CH848 SOSIP trimer 7L6M ; 4.7 ; Cryo-EM structure of DH898.1 Fab-dimer from local refinement of the Fab-dimer bound near the CD4 binding site of HIV-1 Env CH848 SOSIP trimer 7XKD ; 2.4 ; Cryo-EM structure of DHEA-ADGRG2-BT-Gs complex 7XKF ; 2.4 ; Cryo-EM structure of DHEA-ADGRG2-BT-Gs complex at lower state 7XKE ; 2.9 ; Cryo-EM structure of DHEA-ADGRG2-FL-Gs complex 8POC ; 4.0 ; Cryo-EM structure of Dickeya dadantii BcsD 6QQ5 ; 3.9 ; Cryo-EM structure of dimeric quinol dependent nitric oxide reductase (qNOR) from Alcaligenes xylosoxidans 6L3H ; 3.06 ; Cryo-EM structure of dimeric quinol dependent Nitric Oxide Reductase (qNOR) from the pathogen Neisseria meninigitidis 6QQ6 ; 3.3 ; Cryo-EM structure of dimeric quinol dependent nitric oxide reductase (qNOR) Val495Ala mutant from Alcaligenes xylosoxidans 8P82 ; 3.36 ; Cryo-EM structure of dimeric UBR5 8IY7 ; 3.71 ; Cryo-EM structure of DIP-2I8I fibril polymorph1 8IZZ ; 3.75 ; Cryo-EM structure of DIP-2I8I polymorph 2 8I4A ; 3.4 ; Cryo-EM structure of dipyridamole-bound ABCC4 7LZE ; 3.23 ; Cryo-EM Structure of disulfide stabilized HMPV F v4-B 7L2S ; 2.71 ; cryo-EM structure of DkTx-bound minimal TRPV1 at the pre-bound state 7L2R ; 3.3 ; Cryo-EM structure of DkTx-bound minimal TRPV1 at the pre-open state 7L2U ; 3.47 ; cryo-EM structure of DkTx-bound minimal TRPV1 in open state 7L2T ; 3.08 ; cryo-EM structure of DkTx-bound minimal TRPV1 in partial open state 7L2M ; 3.84 ; Cryo-EM structure of DkTx/RTX-bound full-length TRPV1 7YK8 ; 2.8 ; Cryo-EM structure of dLAG3-alpha-syn fibril 6P1H ; 3.2 ; Cryo-EM Structure of DNA Polymerase Delta Holoenzyme 6ZHE ; 7.24 ; Cryo-EM structure of DNA-PK dimer 6ZHA ; 3.91 ; Cryo-EM structure of DNA-PK monomer 6ZH2 ; 3.92 ; Cryo-EM structure of DNA-PKcs (State 1) 6ZFP ; 3.24 ; Cryo-EM structure of DNA-PKcs (State 2) 6ZH4 ; 3.62 ; Cryo-EM structure of DNA-PKcs (State 3) 7OTM ; 3.33 ; Cryo-EM structure of DNA-PKcs in complex with NU7441 6ZH8 ; 4.14 ; Cryo-EM structure of DNA-PKcs:DNA 6ZH6 ; 3.93 ; Cryo-EM structure of DNA-PKcs:Ku80ct194 5W1R ; 4.4 ; Cryo-EM structure of DNAPKcs 6LCR ; 3.4 ; Cryo-EM structure of Dnf1 from Chaetomium thermophilum in the E1-ATP state 6LCP ; 3.48 ; Cryo-EM structure of Dnf1 from Chaetomium thermophilum in the E2P state 7DSH ; 3.67 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in 90PS with AMPPCP (E1-ATP state) 7DRX ; 2.9 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in 90PS with beryllium fluoride (E2P state) 7WHW ; 3.1 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in detergent with AMPPCP (E1-ATP state) 7WHV ; 2.8 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in detergent with beryllium fluoride (E2P state) 7DSI ; 3.21 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in yeast lipids with AMPPCP ( resting state ) 7F7F ; 3.81 ; Cryo-EM structure of Dnf1 from Saccharomyces cerevisiae in yeast lipids with beryllium fluoride (resting state) 7EG1 ; 3.2 ; Cryo-EM structure of DNMDP-induced PDE3A-SLFN12 complex 7R77 ; 3.0 ; Cryo-EM structure of DNMT5 binary complex with hemimethylated DNA 7R76 ; 3.2 ; Cryo-EM structure of DNMT5 in apo state 7T02 ; 3.8 ; Cryo-EM structure of DNMT5 pseudo-ternary complex solved by incubation with hemimethylated DNA and SAM 7R78 ; 3.5 ; cryo-EM structure of DNMT5 quaternary complex with hemimethylated DNA, AMP-PNP and SAH 7U5H ; 3.32 ; Cryo-EM Structure of DNPEP 8PD0 ; 3.58 ; cryo-EM structure of Doa10 in MSP1E3D1 8PDA ; 3.58 ; cryo-EM structure of Doa10 with RING domain in MSP1E3D1 8DCR ; 2.6 ; Cryo-EM structure of dobutamine-bound beta1-adrenergic receptor in complex with heterotrimeric Gs-protein 7WUB ; 3.0 ; Cryo-EM structure of dodecamer P97 8UC1 ; 3.4 ; Cryo-EM structure of dolphin Prestin in low Cl buffer 7S9A ; 3.8 ; Cryo-EM Structure of dolphin Prestin: Inhibited I (Chloride + Salicylate) 7S9E ; 3.7 ; Cryo-EM Structure of dolphin Prestin: Inhibited II (Sulfate +Salicylate) state 7S9D ; 4.6 ; Cryo-EM Structure of dolphin Prestin: Intermediate state 7S9B ; 4.2 ; Cryo-EM Structure of dolphin Prestin: Sensor Down I (Expanded) state 7S9C ; 6.7 ; Cryo-EM Structure of dolphin Prestin: Sensor Down II (Expanded II) state 7S8X ; 3.3 ; Cryo-EM Structure of dolphin Prestin: Sensor Up (compact) state 7CKZ ; 3.1 ; Cryo-EM structure of Dopamine and LY3154207 bound dopamine receptor DRD1-Gs signaling complex 7F0T ; 3.1 ; Cryo-EM structure of dopamine receptor 1 and mini-Gs complex with dopamine bound 7XCR ; 2.57 ; Cryo-EM structure of Dot1L and H2BK34ub-H3K79Nle nucleosome 1:1 complex 7XCT ; 2.72 ; Cryo-EM structure of Dot1L and H2BK34ub-H3K79Nle nucleosome 2:1 complex 6JMA ; 6.8 ; cryo-EM structure of DOT1L bound to H2B ubiquitinated nucleosome 6JM9 ; 7.3 ; cryo-EM structure of DOT1L bound to unmodified nucleosome 7KNH ; 3.74 ; Cryo-EM Structure of Double ACE2-Bound SARS-CoV-2 Trimer Spike at pH 5.5 7KMZ ; 3.62 ; Cryo-EM structure of double ACE2-bound SARS-CoV-2 trimer Spike at pH 7.4 7XOK ; 2.7 ; Cryo-EM structure of double occupied ring (DOR) of GroEL-UGT1A complex at 2.7 Ang. resolution 8V6V ; 2.8 ; Cryo-EM structure of doubly-bound SNF2h-nucleosome complex 7U5K ; 2.78 ; Cryo-EM Structure of DPYSL2 8AVX ; 3.5 ; Cryo-EM structure of DrBphP in Pfr state 8AVW ; 3.62 ; Cryo-EM structure of DrBphP in Pr state 8AVV ; 3.4 ; Cryo-EM structure of DrBphP photosensory module in Pr state 7YKT ; 5.9 ; Cryo-EM structure of Drg1 hexamer in helical state treated with ADP/AMPPNP/benzo-diazaborine 7YKZ ; 4.3 ; Cryo-EM structure of Drg1 hexamer in the planar state treated with ADP/AMPPNP/Diazaborine 7YKK ; 5.9 ; Cryo-EM structure of Drg1 hexamer treated with ADP 7YKL ; 5.6 ; Cryo-EM structure of Drg1 hexamer treated with AMPPNP 7WD3 ; 3.8 ; Cryo-EM structure of Drg1 hexamer treated with ATP and benzo-diazaborine 7SN8 ; 2.74 ; Cryo-EM structure of Drosophila Integrator cleavage module (IntS4-IntS9-IntS11) in complex with IP6 7OH4 ; 3.0 ; Cryo-EM structure of Drs2p-Cdc50p in the E1 state with PI4P and Mg2+ bound 7OH5 ; 2.9 ; Cryo-EM structure of Drs2p-Cdc50p in the E1-AlFx-ADP state 7OH7 ; 3.8 ; Cryo-EM structure of Drs2p-Cdc50p in the E1-AMPPCP state with PI4P bound 7OH6 ; 3.0 ; Cryo-EM structure of Drs2p-Cdc50p in the [PS]E2-AlFx state 8WYC ; 3.0 ; Cryo-EM structure of DSR2 (H171A)-tube-NAD+ (partial) complex 8WYB ; 3.37 ; Cryo-EM structure of DSR2 (H171A)-tube-NAD+ complex 8WY9 ; 2.57 ; Cryo-EM structure of DSR2 apo (partial) complex 8WY8 ; 3.1 ; Cryo-EM structure of DSR2 apo complex 8WYE ; 2.49 ; Cryo-EM structure of DSR2-DSAD1 (partial) complex 8WYD ; 2.56 ; Cryo-EM structure of DSR2-DSAD1 complex 8WYF ; 2.85 ; Cryo-EM structure of DSR2-DSAD1-NAD+ (partial) complex 8WYA ; 3.62 ; Cryo-EM structure of DSR2-tube complex 3JAS ; 3.5 ; Cryo-EM structure of dynamic GDP-microtubule (14 protofilaments) decorated with kinesin 5AFU ; 8.2 ; Cryo-EM structure of dynein tail-dynactin-BICD2N complex 8FIZ ; 3.8 ; Cryo-EM structure of E. coli 70S Ribosome containing mRNA and tRNA (in the transcription-translation complex) 8ENR ; 3.8 ; Cryo-EM structure of E. coli CsgA fibril (260 pixel box size) 6U5Z ; 3.5 ; Cryo-EM structure of E. coli LonA S679A 8U3B ; 3.23 ; Cryo-EM structure of E. coli NarL-transcription activation complex at 3.2A 6WTZ ; 3.15 ; Cryo-EM structure of E. Coli OmpF 7LHI ; 7.6 ; Cryo-EM structure of E. coli P pilus tip assembly intermediate PapC-PapD-PapK-PapF-PapG 7LHG ; 3.8 ; Cryo-EM structure of E. coli P pilus tip assembly intermediate PapC-PapD-PapK-PapG in the first conformation 7LHH ; 7.2 ; Cryo-EM structure of E. coli P pilus tip assembly intermediate PapC-PapD-PapK-PapG in the second conformation 6RIN ; 3.7 ; Cryo-EM structure of E. coli RNA polymerase backtracked elongation complex bound to GreB transcription factor 8FIX ; 3.9 ; Cryo-EM structure of E. coli RNA polymerase backtracked elongation complex harboring a terminal mismatch 6RI9 ; 3.7 ; Cryo-EM structure of E. coli RNA polymerase backtracked elongation complex in non-swiveled state 6RIP ; 3.4 ; Cryo-EM structure of E. coli RNA polymerase backtracked elongation complex in swiveled state 6RH3 ; 3.6 ; Cryo-EM structure of E. coli RNA polymerase elongation complex bound to CTP substrate 6RI7 ; 3.9 ; Cryo-EM structure of E. coli RNA polymerase elongation complex bound to GreB transcription factor 8FIY ; 7.3 ; Cryo-EM structure of E. coli RNA polymerase Elongation complex in the Transcription-Translation Complex (RNAP in an anti-swiveled conformation) 8HKC ; 2.49 ; Cryo-EM structure of E. coli RNAP sigma32 complex 6C9Y ; 4.25 ; Cryo-EM structure of E. coli RNAP sigma70 holoenzyme 6CA0 ; 5.75 ; Cryo-EM structure of E. coli RNAP sigma70 open complex 6XLN ; 2.8 ; Cryo-EM structure of E. coli RNAP-DNA elongation complex 2 (RDe2) in EcmrR-dependent transcription 6XLL ; 2.7 ; Cryo-EM structure of E. coli RNAP-promoter initial transcribing complex with 5-nt RNA transcript (RPitc-5nt) 7PIK ; 2.68 ; Cryo-EM structure of E. coli TnsB in complex with right end fragment of Tn7 transposon 7WI4 ; 3.4 ; Cryo-EM structure of E.Coli FtsH protease cytosolic domains 7WI3 ; 4.0 ; Cryo-EM structure of E.Coli FtsH-HflkC AAA protease complex 7CH7 ; 3.9 ; Cryo-EM structure of E.coli MlaFEB 7CH6 ; 3.4 ; Cryo-EM structure of E.coli MlaFEB with AMPPNP 7V9U ; 3.12 ; Cryo-EM structure of E.coli retron-Ec86 (RT-msDNA-RNA) at 3.2 angstrom 7XJG ; 2.51 ; Cryo-EM structure of E.coli retron-Ec86 in complex with its effector at 2.5 angstrom 7V9X ; 2.82 ; Cryo-EM structure of E.coli retron-Ec86 in complex with its effector at 2.8 angstrom 6XLM ; 3.2 ; Cryo-EM structure of E.coli RNAP-DNA elongation complex 1 (RDe1) in EcmrR-dependent transcription 8TQM ; 3.2 ; Cryo-EM structure of E3 ubiquitin ligase Doa10 from Saccharomyces cerevisiae 7YI1 ; 2.8 ; Cryo-EM structure of Eaf3 CHD bound to H3K36me3 nucleosome 8HXZ ; 3.4 ; Cryo-EM structure of Eaf3 CHD in complex with nucleosome 6N8K ; 3.6 ; Cryo-EM structure of early cytoplasmic-immediate (ECI) pre-60S ribosomal subunit 6N8L ; 3.6 ; Cryo-EM structure of early cytoplasmic-late (ECL) pre-60S ribosomal subunit 8DWO ; 3.5 ; Cryo-EM Structure of Eastern Equine Encephalitis Virus in complex with SKE26 Fab 6XFA ; 3.6 ; Cryo-EM structure of EBV BFLF1 7FBI ; 3.9 ; Cryo-EM structure of EBV gB in complex with nAbs 3A3 and 3A5 7YP1 ; 3.54 ; Cryo-EM structure of EBV gHgL-gp42 in complex with mAb 10E4 (localized refinement) 7YP2 ; 3.52 ; Cryo-EM structure of EBV gHgL-gp42 in complex with mAb 6H2 (localized refinement) 7YOY ; 3.64 ; Cryo-EM structure of EBV gHgL-gp42 in complex with mAbs 3E8 and 5E3 (localized refinement) 6LB1 ; 2.58 ; Cryo-EM structure of echovirus 11 A-particle at pH 5.5 6LAP ; 2.49 ; Cryo-EM structure of echovirus 11 A-particle at pH 7.4 6LAO ; 2.64 ; Cryo-EM structure of echovirus 11 complexed with its attaching receptor CD55 at pH 5.5 6LA5 ; 2.86 ; Cryo-EM structure of echovirus 11 complexed with its attaching receptor CD55 at pH 7.4 6LA7 ; 2.82 ; Cryo-EM structure of echovirus 11 complexed with its uncoating receptor FcRn at pH 5.5 6LA6 ; 2.39 ; Cryo-EM structure of echovirus 11 complexed with its uncoating receptor FcRn at pH 7.4 6LBQ ; 2.6 ; Cryo-EM structure of echovirus 11 empty particle at pH 5.5 6LBO ; 3.18 ; Cryo-EM structure of echovirus 11 empty particle at pH 7.4 6ILJ ; 3.6 ; Cryo-EM structure of Echovirus 6 complexed with its attachment receptor CD55 at PH 5.5 6ILK ; 3.0 ; Cryo-EM structure of Echovirus 6 complexed with its attachment receptor CD55 at PH 7.4 6ILL ; 3.8 ; Cryo-EM structure of Echovirus 6 complexed with its uncoating receptor FcRn at PH 5.5 6ILM ; 3.4 ; Cryo-EM structure of Echovirus 6 complexed with its uncoating receptor FcRn at PH 7.4 6XLA ; 3.1 ; Cryo-EM structure of EcmrR-DNA complex in EcmrR-RPitc-3nt 6XLK ; 3.3 ; Cryo-EM structure of EcmrR-DNA complex in EcmrR-RPitc-4nt 6XL6 ; 3.0 ; Cryo-EM structure of EcmrR-DNA complex in EcmrR-RPo 6XL9 ; 2.5 ; Cryo-EM structure of EcmrR-RNAP-promoter initial transcribing complex with 3-nt RNA transcript (EcmrR-RPitc-3nt) 6XLJ ; 2.7 ; Cryo-EM structure of EcmrR-RNAP-promoter initial transcribing complex with 4-nt RNA transcript (EcmrR-RPitc-4nt) 6XL5 ; 2.5 ; Cryo-EM structure of EcmrR-RNAP-promoter open complex (EcmrR-RPo) 7LXN ; 3.85 ; Cryo-EM structure of EDC-crosslinked ConM SOSIP.v7 (ConM-EDC) in complex with bNAb PGT122 7LX3 ; 3.45 ; Cryo-EM structure of EDC-crosslinked ConSOSL.UFO.664 (ConS-EDC) in complex with bNAb PGT122 7XDD ; 2.93 ; Cryo-EM structure of EDS1 and PAD4 7XJP ; 2.71 ; Cryo-EM structure of EDS1 and SAG101 with ATP-APDR 8FZ0 ; 2.94 ; Cryo-EM Structure of empty AAV2 capsid 7C4Z ; 3.3 ; Cryo-EM structure of empty Coxsackievirus A10 at pH 5.5 7C4Y ; 3.5 ; Cryo-EM structure of empty Coxsackievirus A10 at pH 7.4 6ILO ; 3.2 ; Cryo-EM structure of empty Echovirus 6 particle at PH 7.4 7XON ; 3.1 ; Cryo-EM structure of empty ring subunit 1 (ER1) from single empty ring of GroEL-UGT1A complex 7XOO ; 3.0 ; Cryo-EM structure of empty ring subunit 2 (ER2) from GroEL-UGT1A single empty ring complex 6BQN ; 3.9 ; Cryo-EM structure of ENaC 7P1T ; 2.29 ; Cryo-EM structure of encapsulin from Mycobacterium tuberculosis 8HCQ ; 3.01 ; Cryo-EM structure of endothelin1-bound ETAR-Gq complex 8HCX ; 3.5 ; Cryo-EM structure of Endothelin1-bound ETBR-Gq complex 8FSJ ; 3.65 ; Cryo-EM structure of engineered hepatitis C virus E1E2 ectodomain in complex with antibodies AR4A, HEPC74, and IGH520 6WKV ; 2.99 ; Cryo-EM structure of engineered variant of the Encapsulin from Thermotoga maritima (TmE) 8SOY ; 2.85 ; Cryo-EM structure of Enoyl-CoA hydratase from Mycobacterium smegmatis 8POG ; 4.15 ; Cryo-EM structure of Enterobacter sp. 638 BcsD 7KHW ; 3.4 ; Cryo-EM structure of enteropathogenic Escherichia coli type III secretion system EspA filament 7KX7 ; 3.8 ; Cryo-EM structure of Ephydatia fluviatilis PiwiA-piRNA complex 7KX9 ; 3.5 ; Cryo-EM structure of Ephydatia fluviatilis PiwiA-piRNA-target complex 8THL ; 3.1 ; Cryo-EM structure of epinephrine-bound alpha-1A-adrenergic receptor in complex with heterotrimeric Gq-protein 5V7V ; 3.9 ; Cryo-EM structure of ERAD-associated E3 ubiquitin-protein ligase component HRD3 6VEF ; 4.08 ; Cryo-EM Structure of Escherichia coli 2-oxoglutarate dehydrogenase E1 component sucA 6SGU ; 3.27 ; Cryo-EM structure of Escherichia coli AcrB and DARPin in Saposin A-nanodisc 6SGT ; 3.46 ; Cryo-EM structure of Escherichia coli AcrB and DARPin in Saposin A-nanodisc with cardiolipin 6SGS ; 3.2 ; Cryo-EM structure of Escherichia coli AcrBZ and DARPin in Saposin A-nanodisc 6SGR ; 3.17 ; Cryo-EM structure of Escherichia coli AcrBZ and DARPin in Saposin A-nanodisc with cardiolipin 6KJ6 ; 3.8 ; cryo-EM structure of Escherichia coli Crl transcription activation complex 8GO3 ; 3.09 ; Cryo-EM structure of Escherichia coli cytochrome bo3 in DDM detergent 7YPA ; 3.05 ; Cryo-EM structure of Escherichia coli hairpin-nucleation complex of transcription termination (TTC-hairpin) 7YP9 ; 3.58 ; Cryo-EM structure of Escherichia coli paused complex of transcription termination (TTC-pause) 7YPB ; 3.48 ; Cryo-EM structure of Escherichia coli release complex of transcription termination (TTC-release) 7MKI ; 3.5 ; Cryo-EM structure of Escherichia coli RNA polymerase bound to lambda PR (-5G to C) promoter DNA 7MKD ; 3.2 ; Cryo-EM structure of Escherichia coli RNA polymerase bound to lambda PR promoter DNA (class 1) 7MKE ; 3.7 ; Cryo-EM structure of Escherichia coli RNA polymerase bound to lambda PR promoter DNA (class 2) 7MKJ ; 2.9 ; Cryo-EM structure of Escherichia coli RNA polymerase bound to T7A1 promoter DNA 6OUL ; 3.4 ; Cryo-EM structure of Escherichia coli RNAP polymerase bound to rpsTP2 promoter DNA 6N57 ; 3.7 ; Cryo-EM structure of Escherichia coli RNAP polymerase bound with TraR in conformation I 6N58 ; 3.78 ; Cryo-EM structure of Escherichia coli RNAP polymerase bound with TraR in conformation II 6P1K ; 4.05 ; Cryo-EM structure of Escherichia coli sigma70 bound RNAP polymerase holoenzyme 8W6J ; 3.4 ; Cryo-EM structure of Escherichia coli Str K12 FtsE(E163Q)X/EnvC complex with ATP in peptidisc 8W6I ; 3.7 ; Cryo-EM structure of Escherichia coli Str K12 FtsEX complex with ATP-gamma-S in peptidisc 6VU3 ; 3.7 ; Cryo-EM structure of Escherichia coli transcription-translation complex A (TTC-A) containing mRNA with a 12 nt long spacer 6ZH3 ; 3.2 ; Cryo-EM structure of ESCRT-III helical Vps24 filaments 8J9J ; 3.03 ; Cryo-EM structure of Euglena gracilis complex I, NADH state 8J9I ; 2.87 ; Cryo-EM structure of Euglena gracilis complex I, turnover state 6TDU ; 4.32 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, full dimer, rotational states 1 6TDV ; 2.8 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, membrane region 6TDY ; 3.04 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, OSCP/F1/c-ring in rotational state 1 6TDZ ; 3.14 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, OSCP/F1/c-ring, rotational state 2 6TE0 ; 3.92 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, OSCP/F1/c-ring, rotational state 3 6TDW ; 3.8 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, peripheral stalk, rotational state 1 6TDX ; 3.3 ; Cryo-EM structure of Euglena gracilis mitochondrial ATP synthase, rotor, rotational state 1 8J9H ; 3.11 ; Cryo-EM structure of Euglena gracilis respiratory complex I, deactive state 8IUF ; 2.81 ; Cryo-EM structure of Euglena gracilis super-complex I+III2+IV, composite 8IUJ ; 3.06 ; Cryo-EM structure of Euglena gracilis super-complex III2+IV2, composite 3JCT ; 3.08 ; Cryo-em structure of eukaryotic pre-60S ribosomal subunits 6M62 ; 3.2 ; Cryo-Em structure of eukaryotic pre-60S ribosome subunit from Saccharomyces cerevisiae rpf2 delta 255-344 strain, C4 state. 7ZH7 ; 3.3 ; Cryo-EM structure of ex vivo AA amyloid from renal tissue of a short hair cat deceased in a shelter 7AJQ ; 4.0 ; cryo-EM structure of ExbBD from Serratia Marcescens 7YV2 ; 3.36 ; Cryo-EM structure of expanded coxsackievirus A16 empty particle after incubation with 8C4 antibody 7YV7 ; 3.8 ; Cryo-EM structure of expanded coxsackievirus A16 empty particle in complex with antibody 9B5 6Q2J ; 4.1 ; Cryo-EM structure of extracellular dimeric complex of RET/GFRAL/GDF15 6ANU ; 7.0 ; Cryo-EM structure of F-actin complexed with the beta-III-spectrin actin-binding domain 5ONV ; 4.1 ; Cryo-EM structure of F-actin in complex with ADP 5OOF ; 3.4 ; Cryo-EM structure of F-actin in complex with ADP-BeFx 6FHL ; 3.3 ; Cryo-EM structure of F-actin in complex with ADP-Pi 5OOE ; 3.6 ; Cryo-EM structure of F-actin in complex with AppNHp (AMPPNP) 8F8P ; 2.26 ; Cryo-EM structure of F-actin in the ADP state 8A2Z ; 2.15 ; Cryo-EM structure of F-actin in the Ca2+-ADP nucleotide state. 8A2U ; 2.21 ; Cryo-EM structure of F-actin in the Ca2+-ADP-BeF3- nucleotide state. 8A2Y ; 2.15 ; Cryo-EM structure of F-actin in the Ca2+-ADP-Pi nucleotide state. 8A2T ; 2.24 ; Cryo-EM structure of F-actin in the Mg2+-ADP nucleotide state. 8A2R ; 2.17 ; Cryo-EM structure of F-actin in the Mg2+-ADP-BeF3- nucleotide state. 8A2S ; 2.22 ; Cryo-EM structure of F-actin in the Mg2+-ADP-Pi nucleotide state. 7AHN ; 2.9 ; Cryo-EM structure of F-actin stabilized by cis-optoJASP-8 7AHQ ; 3.6 ; Cryo-EM structure of F-actin stabilized by trans-optoJASP-8 6VEC ; 3.9 ; Cryo-EM structure of F-actin/Plastin2-ABD2 complex 7Y5B ; 4.4 ; Cryo-EM structure of F-ATP synthase from Mycolicibacterium smegmatis (rotational state 1) 7Y5C ; 4.7 ; Cryo-EM structure of F-ATP synthase from Mycolicibacterium smegmatis (rotational state 2) 7Y5D ; 7.3 ; Cryo-EM structure of F-ATP synthase from Mycolicibacterium smegmatis (rotational state 3) (backbone) 7BC4 ; 3.1 ; Cryo-EM structure of fatty acid synthase (FAS) from Pichia pastoris 7CTT ; 3.2 ; Cryo-EM structure of Favipiravir bound to replicating polymerase complex of SARS-CoV-2 in the pre-catalytic state. 7CKW ; 3.22 ; Cryo-EM structure of Fenoldopam bound dopamine receptor DRD1-Gs signaling complex 7U5L ; 2.67 ; Cryo-EM Structure of Ferritin 8CU8 ; 1.91 ; Cryo-EM structure of Ferritin 2 from Caenorhabditis elegans, FTN-2 8J24 ; 2.6 ; Cryo-EM structure of FFAR2 complex bound with acetic acid 8J22 ; 3.2 ; Cryo-EM structure of FFAR2 complex bound with TUG-1375 8J20 ; 3.2 ; Cryo-EM structure of FFAR3 bound with valeric acid and AR420626 8J21 ; 3.3 ; Cryo-EM structure of FFAR3 complex bound with butyrate acid 7XYF ; 4.3 ; Cryo-EM structure of Fft3-nucleosome complex with Fft3 bound to SHL+2 position of the nucleosome 7XYG ; 5.4 ; Cryo-EM structure of Fft3-nucleosome complex with Fft3 bound to SHL+3 position of the nucleosome 7YSH ; 2.74 ; Cryo-EM Structure of FGF23-FGFR1c-aKlotho-HS Quaternary Complex 7YSU ; 3.2 ; Cryo-EM Structure of FGF23-FGFR3c-aKlotho-HS Quaternary Complex 7YSW ; 3.03 ; Cryo-EM Structure of FGF23-FGFR4-aKlotho-HS Quaternary Complex 6VY1 ; 6.0 ; Cryo-EM structure of filamentous PFD from Methanocaldococcus jannaschii 8GHZ ; 2.78 ; Cryo-EM structure of fish immunogloblin M-Fc 6D8C ; 3.54 ; Cryo-EM structure of FLNaABD E254K bound to phalloidin-stabilized F-actin 6M32 ; 2.7 ; Cryo-EM structure of FMO-RC complex from green sulfur bacteria 7VW6 ; 2.19 ; Cryo-EM Structure of Formate Dehydrogenase 1 from Methylorubrum extorquens AM1 6OMM ; 3.17 ; Cryo-EM structure of formyl peptide receptor 2/lipoxin A4 receptor in complex with Gi 7YTD ; 3.71 ; Cryo-EM structure of four human FcmR bound to IgM-Fc/J 8ISY ; 3.27 ; Cryo-EM structure of free-state Crt-SPARTA 8SBB ; 3.59 ; Cryo-EM structure of FtAlkB 6LA4 ; 2.34 ; Cryo-EM structure of full echovirus 11 particle at pH 5.5 6LA3 ; 2.32 ; Cryo-EM structure of full echovirus 11 particle at pH 7.4 6ILN ; 3.4 ; Cryo-EM structure of full Echovirus 6 particle at PH 5.5 6ILP ; 2.9 ; Cryo-EM structure of full Echovirus 6 particle at PH 7.4 6LTO ; 3.1 ; cryo-EM structure of full length human Pannexin1 6O1P ; 3.0 ; Cryo-EM structure of full length TRPV5 in nanodisc 6NT6 ; 4.0 ; Cryo-EM structure of full-length chicken STING in the apo state 6NT7 ; 4.0 ; Cryo-EM structure of full-length chicken STING in the cGAMP-bound dimeric state 6NT8 ; 6.5 ; Cryo-EM structure of full-length chicken STING in the cGAMP-bound tetrameric state 7T6X ; 3.83 ; Cryo-EM structure of full-length hepatitis C virus E1E2 glycoprotein in complex with AR4A, AT12009, and IGH505 Fabs 8ADY ; 5.2 ; Cryo-EM structure of full-length human immunoglobulin M - F(ab')2 conformation 1 8ADZ ; 6.7 ; Cryo-EM structure of full-length human immunoglobulin M - F(ab')2 conformation 2 8AE0 ; 7.1 ; Cryo-EM structure of full-length human immunoglobulin M - F(ab')2 conformation 3 8AE3 ; 6.8 ; Cryo-EM structure of full-length human immunoglobulin M - F(ab')2 conformation 4 8AE2 ; 8.5 ; Cryo-EM structure of full-length human immunoglobulin M - F(ab')2 conformation 5 8FW2 ; 3.8 ; Cryo-EM structure of full-length human NLRC4 inflammasome with C11 symmetry 8FW9 ; 4.46 ; Cryo-EM structure of full-length human NLRC4 inflammasome with C12 symmetry 6NT5 ; 4.1 ; Cryo-EM structure of full-length human STING in the apo state 8T1B ; 3.0 ; Cryo-EM structure of full-length human TRPV4 in apo state 8T1F ; 3.49 ; Cryo-EM structure of full-length human TRPV4 in complex with antagonist HC-067047 8P83 ; 3.87 ; Cryo-EM structure of full-length human UBR5 (homotetramer) 6PYH ; 4.3 ; Cryo-EM structure of full-length IGF1R-IGF1 complex. Only the extracellular region of the complex is resolved. 6PXV ; 3.2 ; Cryo-EM structure of full-length insulin receptor bound to 4 insulin. 3D refinement was focused on the extracellular region. 6PXW ; 3.1 ; Cryo-EM structure of full-length insulin receptor bound to 4 insulin. 3D refinement was focused on the top part of the receptor complex. 7SGS ; 3.3 ; Cryo-EM structure of full-length MAP7 bound to the microtubule 7YV9 ; 4.78 ; Cryo-EM structure of full-length Myosin Va in the autoinhibited state 7WO9 ; 2.81 ; Cryo-EM structure of full-length Nup188 7LP9 ; 2.63 ; Cryo-EM structure of full-length TRPV1 at 4 degrees Celsius 7LPC ; 3.06 ; Cryo-EM structure of full-length TRPV1 at 48 degrees Celsius 7L2I ; 3.7 ; Cryo-EM structure of full-length TRPV1 at pH6a state 7L2K ; 3.89 ; Cryo-EM structure of full-length TRPV1 at pH6b state 7L2J ; 3.66 ; Cryo-EM structure of full-length TRPV1 at pH6c state 7LPB ; 3.54 ; Cryo-EM structure of full-length TRPV1 with capsaicin at 25 degrees Celsius 7LPA ; 3.37 ; Cryo-EM structure of full-length TRPV1 with capsaicin at 4 degrees Celsius 7LPD ; 3.55 ; Cryo-EM structure of full-length TRPV1 with capsaicin at 48 degrees Celsius, in an intermediate state, class 2 7LPE ; 3.72 ; Cryo-EM structure of full-length TRPV1 with capsaicin at 48 degrees Celsius, in an open state, class 1 8JD2 ; 2.8 ; Cryo-EM structure of G protein-free mGlu2-mGlu3 heterodimer in Acc state 8JD4 ; 2.9 ; Cryo-EM structure of G protein-free mGlu2-mGlu4 heterodimer in Acc state 8IEQ ; 2.73 ; Cryo-EM structure of G-protein free GPR156 8X51 ; 2.92 ; Cryo-EM structure of Gabija GajA in complex with DNA(focused refinement) 5FN3 ; 4.1 ; Cryo-EM structure of gamma secretase in class 1 of the apo- state ensemble 5FN4 ; 4.0 ; Cryo-EM structure of gamma secretase in class 2 of the apo- state ensemble 5FN5 ; 4.3 ; Cryo-EM structure of gamma secretase in class 3 of the apo- state ensemble 5FN2 ; 4.2 ; Cryo-EM structure of gamma secretase in complex with a drug DAPT 6IDF ; 2.7 ; Cryo-EM structure of gamma secretase in complex with a Notch fragment 5FLZ ; 6.9 ; Cryo-EM structure of gamma-TuSC oligomers in a closed conformation 7YQK ; 3.38 ; cryo-EM structure of gammaH2AXK15ub-H4K20me2 nucleosome bound to 53BP1 7U5M ; 2.28 ; Cryo-EM Structure of GAPDH 2YN9 ; 8.0 ; Cryo-EM structure of gastric H+,K+-ATPase with bound rubidium 6CET ; 4.4 ; Cryo-EM structure of GATOR1 6CES ; 4.0 ; Cryo-EM structure of GATOR1-RAG 6EVZ ; 3.8 ; Cryo-EM structure of GDP-microtubule co-polymerised with doublecortin 6EW0 ; 3.8 ; Cryo-EM structure of GDP-microtubule co-polymerised with doublecortin and supplemented with Taxol 3JAR ; 3.4 ; Cryo-EM structure of GDP-microtubule co-polymerized with EB3 6EVX ; 4.2 ; Cryo-EM structure of GDP.Pi-microtubule rapidly co-polymerised with doublecortin 8FYW ; 2.84 ; Cryo-EM Structure of genome containing AAV2 7WLG ; 2.73 ; Cryo-EM structure of GH31 alpha-1,3-glucosidase from Lactococcus lactis subsp. cremoris 7VIF ; 2.83 ; Cryo-EM structure of Gi coupled Sphingosine 1-phosphate receptor bound with (S)-FTY720-P 7VIG ; 2.89 ; Cryo-EM structure of Gi coupled Sphingosine 1-phosphate receptor bound with CBP-307 7VIH ; 2.98 ; Cryo-EM structure of Gi coupled Sphingosine 1-phosphate receptor bound with CBP-307 7VIE ; 2.86 ; Cryo-EM structure of Gi coupled Sphingosine 1-phosphate receptor bound with S1P 7E9G ; 3.5 ; Cryo-EM structure of Gi-bound metabotropic glutamate receptor mGlu2 7E9H ; 4.0 ; Cryo-EM structure of Gi-bound metabotropic glutamate receptor mGlu4 8JD6 ; 3.4 ; Cryo-EM structure of Gi1-bound metabotropic glutamate receptor mGlu4 8JD3 ; 3.3 ; Cryo-EM structure of Gi1-bound mGlu2-mGlu3 heterodimer 8JD5 ; 3.6 ; Cryo-EM structure of Gi1-bound mGlu2-mGlu4 heterodimer 6JJA ; 2.91 ; Cryo-EM structure of giant freshwater prawn Macrobrachium rosenbergii extra small virus (XSV) VLP 6JJD ; 3.21 ; Cryo-EM structure of giant freshwater prawn Macrobrachium rosenbergii nodavirus (MrNV) full VLP 6JJC ; 2.92 ; Cryo-EM structure of giant freshwater prawn Macrobrachium rosenbergii nodavirus (MrNV) semi-empty VLP 7PWO ; 2.75 ; Cryo-EM structure of Giardia lamblia ribosome at 2.75 A resolution 8ITL ; 3.23 ; Cryo-EM structure of GIPR splice variant 1 (SV1) in complex with Gs protein 8ITM ; 3.13 ; Cryo-EM structure of GIPR splice variant 2 (SV2) in complex with Gs protein 6WYL ; 3.9 ; Cryo-EM structure of GltPh L152C-G351C mutant in the intermediate outward-facing state. 5KBV ; 6.8 ; Cryo-EM structure of GluA2 bound to antagonist ZK200775 at 6.8 Angstrom resolution 5KBS ; 8.7 ; Cryo-EM structure of GluA2-0xSTZ at 8.7 Angstrom resolution 5KBT ; 6.4 ; Cryo-EM structure of GluA2-1xSTZ complex at 6.4 Angstrom resolution 5KBU ; 7.8 ; Cryo-EM structure of GluA2-2xSTZ complex at 7.8 Angstrom resolution 5IDE ; 8.25 ; Cryo-EM structure of GluA2/3 AMPA receptor heterotetramer (model I) 5IDF ; 10.31 ; Cryo-EM structure of GluA2/3 AMPA receptor heterotetramer (model II) 5IPV ; 9.25 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 1 5IPQ ; 13.5 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 2 5IPR ; 14.1 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 3 5IPS ; 13.5 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 4 5IPT ; 14.1 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 5 5IPU ; 15.4 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the DCKA/D-APV-bound conformation, state 6 5IOU ; 7.0 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the glutamate/glycine-bound conformation 5IOV ; 7.5 ; Cryo-EM structure of GluN1/GluN2B NMDA receptor in the glutamate/glycine/Ro25-6981-bound conformation 7TE9 ; 3.92 ; Cryo-EM structure of GluN1b-2B NMDAR complexed to Fab2 class1 7TEB ; 4.23 ; Cryo-EM structure of GluN1b-2B NMDAR complexed to Fab2 non-active1-like 7TEE ; 6.59 ; Cryo-EM structure of GluN1b-2B NMDAR complexed to Fab2 Non-active2-like 7TEQ ; 7.51 ; Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 active conformation 7TES ; 4.7 ; Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 in Non-active1 conformation 7TET ; 4.45 ; Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 in non-active2-like conformation 7TER ; 5.23 ; Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 non-active2 conformation 5K12 ; 1.8 ; Cryo-EM structure of glutamate dehydrogenase at 1.8 A resolution 6JN9 ; 3.8 ; Cryo-EM structure of glutamate dehydrogenase from Thermococcus profundus 6JNA ; 3.8 ; Cryo-EM structure of glutamate dehydrogenase from Thermococcus profundus 6JNC ; 3.7 ; Cryo-EM structure of glutamate dehydrogenase from Thermococcus profundus 6JND ; 3.9 ; Cryo-EM structure of glutamate dehydrogenase from Thermococcus profundus 8XCR ; 2.6 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus in complex with NADP and GLU in the initial stage of reaction 8XD5 ; 2.75 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus in complex with NADP and GLU in the steady stage of reaction 8XCS ; 2.63 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus in complex with NADPH, AKG and NH4 in the initial stage of reaction 8XD6 ; 2.79 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus in complex with NADPH, AKG and NH4 in the steady stage of reaction 8XCP ; 2.64 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the initial stage of reaction 8XCQ ; 2.6 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the initial stage of reaction 8XCX ; 2.83 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XCY ; 2.91 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XCZ ; 2.83 ; Cryo-EM structure of glutamate dehydrogenase from thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XD2 ; 2.64 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XD3 ; 2.87 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XD4 ; 2.87 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP and GLU in the steady stage of reaction 8XCV ; 2.83 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP in the steady stage of reaction 8XD1 ; 2.96 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADP in the steady stage of reaction 8XCW ; 2.87 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADPH and AKG in the steady stage of reaction 8XD0 ; 2.83 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADPH and AKG in the steady stage of reaction 8XCO ; 2.64 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADPH in the initial stage of reaction 8XCT ; 2.87 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADPH in the steady stage of reaction 8XCU ; 2.83 ; Cryo-EM structure of Glutamate dehydrogenase from Thermococcus profundus incorporating NADPH, AKG and GLU in the steady stage of reaction 8EW0 ; 2.7 ; Cryo-EM structure of glutamate dehydrogenase frozen at various temperature 7U5N ; 2.58 ; Cryo-EM Structure of Glutamine Synthetase 7V4H ; 2.9 ; Cryo-EM Structure of Glycine max glutamine synthetase GmGS Beta2 7W6K ; 3.5 ; Cryo-EM structure of GmALMT12/QUAC1 anion channel 7W7P ; 3.67 ; Cryo-EM structure of gMCM8/9 helicase 3JAT ; 3.5 ; Cryo-EM structure of GMPCPP-microtubule (14 protofilaments) decorated with kinesin 6EVW ; 4.4 ; Cryo-EM structure of GMPCPP-microtubule co-polymerised with doublecortin 3JAL ; 3.5 ; Cryo-EM structure of GMPCPP-microtubule co-polymerized with EB3 7ZCW ; 3.6 ; Cryo-EM structure of GMPCPP-microtubules in complex with VASH2-SVBP 7D73 ; 3.0 ; Cryo-EM structure of GMPPA/GMPPB complex bound to GTP (State I) 7D74 ; 3.1 ; Cryo-EM structure of GMPPA/GMPPB complex bound to GTP (state II) 8IMY ; 3.22 ; Cryo-EM structure of GPI-T (inactive mutant) with GPI and proULBP2, a proprotein substrate 8IMX ; 2.85 ; Cryo-EM structure of GPI-T with a chimeric GPI-anchored protein 7WCN ; 2.87 ; Cryo-EM structure of GPR119-Gs Complex with small molecule agonist AR231453 7WCM ; 2.33 ; Cryo-EM structure of GPR119-Gs Complex with small molecule agonist MBX-2982 8IEB ; 3.03 ; Cryo-EM structure of GPR156 of GPR156-miniGo-scFv16 complex (local refine) 8IED ; 3.33 ; Cryo-EM structure of GPR156-miniGo-scFv16 complex 8IEI ; 2.62 ; Cryo-EM structure of GPR156A/B of G-protein free GPR156 (local refine) 8IEP ; 2.61 ; Cryo-EM structure of GPR156C/D of G-protein free GPR156 (local refine) 7SHF ; 3.4 ; Cryo-EM structure of GPR158 coupled to the RGS7-Gbeta5 complex 8HIX ; 3.12 ; Cryo-EM structure of GPR21_m5_Gs 8XOH ; 3.2 ; Cryo-EM structure of GPR30-Gq complex structure in the presence of E2 8XOI ; 3.2 ; Cryo-EM structure of GPR30-Gq complex structure in the presence of fulvestrant 8XOJ ; 3.1 ; Cryo-EM structure of GPR30-Gq complex structure in the presence of G-1 8SAI ; 3.27 ; Cryo-EM structure of GPR34-Gi complex 6LI3 ; 3.32 ; cryo-EM structure of GPR52-miniGs-NB35 8TB7 ; 2.94 ; Cryo-EM Structure of GPR61- 8TB0 ; 3.47 ; Cryo-EM Structure of GPR61-G protein complex stabilized by scFv16 8HJ5 ; 3.0 ; Cryo-EM structure of Gq-coupled MRGPRX1 bound with Compound-16 7XOJ ; 2.8 ; Cryo-EM structure of GroEL bound to unfolded substrate (UGT1A) at 2.8 Ang. resolution (Consensus Refinement) 8K5D ; 3.74 ; Cryo-EM structure of GSK256073 bound human hydroxy-carboxylic acid receptor 2 (Local refinement) 8I7W ; 3.39 ; Cryo-EM structure of GSK256073 bound human hydroxy-carboxylic acid receptor 2 in complex with Gi heterotrimer 7TUY ; 2.98 ; Cryo-EM structure of GSK682753A-bound EBI2/GPR183 6EVY ; 4.4 ; Cryo-EM structure of GTPgammaS-microtubule co-polymerised with doublecortin 3JAK ; 3.3 ; Cryo-EM structure of GTPgammaS-microtubule co-polymerized with EB3 (merged dataset with and without kinesin bound) 8D1V ; 2.82 ; Cryo-EM structure of guide RNA and target RNA bound Cas7-11 8WUC ; 2.5 ; Cryo-EM structure of H. thermoluteolus GroEL-GroES2 football complex 8WUX ; 2.6 ; Cryo-EM structure of H. thermophilus GroEL-GroES bullet complex 8WUW ; 2.6 ; Cryo-EM structure of H. thermophilus GroEL-GroES2 asymmetric football complex 7X6O ; 3.5 ; Cryo-EM structure of H1 hemagglutinin from A/Washington/05/2011 in complex with a neutralizing antibody 28-12 7XD0 ; 3.48 ; cryo-EM structure of H2BK34ub nucleosome 7X6L ; 3.7 ; Cryo-EM structure of H3 hemagglutinin from A/HongKong/01/1968 in complex with a neutralizing antibody 28-12 8HAE ; 4.55 ; Cryo-EM structure of HACE1 dimer 8H8X ; 3.92 ; Cryo-EM structure of HACE1 monomer 7YA1 ; 3.11 ; Cryo-EM structure of hACE2-bound SARS-CoV-2 Omicron spike protein with L371S, P373S and F375S mutations (local refinement) 7YA0 ; 3.1 ; Cryo-EM structure of hACE2-bound SARS-CoV-2 Omicron spike protein with L371S, P373S and F375S mutations (S-6P-RRAR) 8GCL ; 2.89 ; Cryo-EM structure of hAQP2 in DDM 8IHI ; 3.11 ; Cryo-EM structure of HCA2-Gi complex with acifran 8IHB ; 2.85 ; Cryo-EM structure of HCA2-Gi complex with GSK256073 8IHH ; 3.06 ; Cryo-EM structure of HCA2-Gi complex with LUF6283 8IHF ; 2.97 ; Cryo-EM structure of HCA2-Gi complex with MK6892 8IHJ ; 3.07 ; Cryo-EM structure of HCA3-Gi complex with acifran 8IHK ; 3.21 ; Cryo-EM structure of HCA3-Gi complex with acifran (local) 7E2G ; 3.61 ; Cryo-EM structure of hDisp1NNN-3C 7E2H ; 3.68 ; Cryo-EM structure of hDisp1NNN-3C-Cleavage 7E2I ; 4.07 ; Cryo-EM structure of hDisp1NNN-ShhN 7KOD ; 1.655 ; Cryo-EM structure of heavy chain mouse apoferritin 5AHV ; 13.6 ; Cryo-EM structure of helical ANTH and ENTH tubules on PI(4,5)P2-containing membranes 8E2E ; 1.98 ; Cryo-EM structure of helical arch of BIRC6 (from local refinement 1) 6U7M ; 3.8 ; Cryo-EM Structure of Helical Lipoprotein Lipase 6ODY ; 3.8 ; Cryo-EM structure of Helicobacter pylori VacA hexamer 8AW5 ; 2.8 ; Cryo-EM structure of heme A synthase trimer from Aquifex aeolicus 8IPS ; 3.6 ; Cryo-EM structure of heme transporter CydDC from Escherichia coli in the inward facing heme loading state 8IPT ; 3.5 ; Cryo-EM structure of heme transporter CydDC from Escherichia coli in the occluded ATP bound state 8IPQ ; 3.5 ; Cryo-EM structure of heme transporter CydDC from Mycobacterium smegmatis in the inward facing apo state 8IPR ; 3.0 ; Cryo-EM structure of heme transporter CydDC from Mycobacterium smegmatis in the outward facing ATP bound state 7XGY ; 3.5 ; cryo-EM structure of hemoglobin 6QJQ ; 3.7 ; Cryo-EM structure of heparin-induced 2N3R tau filaments 6QJP ; 3.5 ; Cryo-EM structure of heparin-induced 2N4R tau jagged filaments 6QJH ; 3.3 ; Cryo-EM structure of heparin-induced 2N4R tau snake filaments 6QJM ; 3.3 ; Cryo-EM structure of heparin-induced 2N4R tau twister filaments 6BVN ; 4.0 ; Cryo-EM Structure of Hepatitis B virus T=3 capsid in complex with the fluorescent allosteric modulator HAP-TAMRA 6WFS ; 4.6 ; Cryo-EM Structure of Hepatitis B virus T=4 capsid in complex with the antiviral molecule DBT1 6BVF ; 4.0 ; Cryo-EM Structure of Hepatitis B virus T=4 capsid in complex with the fluorescent allosteric modulator HAP-TAMRA 6OGE ; 4.36 ; Cryo-EM structure of Her2 extracellular domain-Trastuzumab Fab-Pertuzumab Fab complex 7K5W ; 2.87 ; Cryo-EM structure of heterologous protein complex loaded Thermotoga maritima encapsulin capsid 8A57 ; 2.3 ; Cryo-EM structure of HflXr bound to the Listeria monocytogenes 50S ribosomal subunit. 8BVM ; 3.8 ; Cryo-EM structure of Hfq-Crc-rbsB translation repression complex 8TU9 ; 3.26 ; Cryo-EM structure of HGSNAT-acetyl-CoA complex at pH 7.5 7YFX ; 3.4 ; Cryo-EM structure of Hili in complex with piRNA 8EH8 ; 3.4 ; Cryo-EM structure of his-elemental paused elongation complex with a folded TL and a rotated RH-FL (1) 8EH9 ; 3.9 ; Cryo-EM structure of his-elemental paused elongation complex with a folded TL and a rotated RH-FL (2) 8EHA ; 3.7 ; Cryo-EM structure of his-elemental paused elongation complex with a folded TL and a rotated RH-FL (out) 8EHF ; 3.3 ; Cryo-EM structure of his-elemental paused elongation complex with an unfolded TL (1) 8EHI ; 5.5 ; Cryo-EM structure of his-elemental paused elongation complex with an unfolded TL (2) 7DFL ; 3.3 ; Cryo-EM structure of histamine H1 receptor Gq complex 8EUU ; 2.7 ; Cryo-EM structure of HIV-1 BG505 DS-SOSIP ENV trimer bound to VRC34.01 FAB 8EUV ; 2.6 ; Cryo-EM structure of HIV-1 BG505 DS-SOSIP ENV trimer bound to VRC34.01-COMBO1 FAB 8EUW ; 2.7 ; Cryo-EM structure of HIV-1 BG505 DS-SOSIP ENV trimer bound to VRC34.01-MM28 FAB 7L6O ; 3.9 ; Cryo-EM structure of HIV-1 Env CH848.3.D0949.10.17chim.6R.DS.SOSIP.664 7TFO ; 4.1 ; Cryo-EM structure of HIV-1 Env trimer BG505 SOSIP.664 in complex with CD4bs antibody Ab1573 8DP1 ; 3.46 ; Cryo-EM structure of HIV-1 Env(BG505.T332N SOSIP) in complex with DH1030.1 Fab 8DOW ; 3.69 ; Cryo-EM structure of HIV-1 Env(CH848 10.17 DS.SOSIP_DT) in complex with DH1030.1 Fab 6UM5 ; 4.2 ; Cryo-EM structure of HIV-1 neutralizing antibody DH270 UCA3 in complex with CH848 10.17DT Env 6UM6 ; 4.3 ; Cryo-EM structure of HIV-1 neutralizing antibody DH270.6 in complex with CH848 10.17DT Env 7Z2G ; 3.65 ; Cryo-EM structure of HIV-1 reverse transcriptase with a DNA aptamer in complex with doravirine 7OZW ; 3.38 ; Cryo-EM structure of HIV-1 reverse transcriptase with a DNA aptamer in complex with fragment 166 at the transient P-pocket 7P15 ; 3.58 ; Cryo-EM structure of HIV-1 reverse transcriptase with a DNA aptamer in complex with fragment F04 at the transient P-pocket 7Z24 ; 3.32 ; Cryo-EM structure of HIV-1 reverse transcriptase with a DNA aptamer in complex with nevirapine 7Z2D ; 3.38 ; Cryo-EM structure of HIV-1 reverse transcriptase with a DNA aptamer in complex with rilpivirine 7XUE ; 3.17 ; Cryo-EM structure of HK022 putRNA-associated E.coli RNA polymerase elongation complex 7XUG ; 3.57 ; cryo-EM structure of HK022 putRNA-less E.coli RNA polymerase elongation complex 7TL0 ; 3.06 ; Cryo-EM structure of hMPV preF bound by Fabs MPE8 and SAN32-2 8IP4 ; 2.7 ; Cryo-EM structure of hMRS-highEDTA 8IP5 ; 2.5 ; Cryo-EM structure of hMRS2-lowEDTA 8IP3 ; 2.6 ; Cryo-EM structure of hMRS2-Mg 8IP6 ; 2.9 ; Cryo-EM structure of hMRS2-rest 8IK7 ; 3.69 ; Cryo-EM structure of hnRAC1 fibril. 8IKB ; 3.71 ; Cryo-EM structure of hnRAC1-2I fibril. 8IKS ; 3.75 ; Cryo-EM structure of hnRAC1-2I8I fibril. 8IKP ; 2.98 ; Cryo-EM structure of hnRAC1-8I fibril 7ZIR ; 2.5 ; Cryo-EM structure of hnRNPDL amyloid fibrils 8JB0 ; 4.2 ; Cryo-EM structure of Holo form of ScBfr in C1 symmetry 8JAX ; 3.27 ; Cryo-EM structure of Holo form of ScBfr with O symmetry 6K4M ; 4.5 ; Cryo-EM structure of Holo-bacterioferritin form-II from Streptomyces coelicolor 6K43 ; 3.7 ; Cryo-EM structure of Holo-bacterioferritin-form-I from Streptomyces coelicolor 7ZPA ; 3.9 ; Cryo-EM structure of holo-PdxR from Bacillus clausii bound to its target DNA in the closed conformation, C1 symmetry 7ZN5 ; 3.7 ; Cryo-EM structure of holo-PdxR from Bacillus clausii bound to its target DNA in the closed conformation, C2 symmetry. 7ZLA ; 3.99 ; Cryo-EM structure of holo-PdxR from Bacillus clausii bound to its target DNA in the half-closed conformation 7ZTH ; 4.0 ; Cryo-EM structure of holo-PdxR from Bacillus clausii bound to its target DNA in the open conformation 8F0O ; 2.99 ; cryo-EM structure of homomeric kainate receptor GluK2 in resting (apo) state 8DG8 ; 3.62 ; Cryo-EM Structure of HPIV3 prefusion F trimer in complex with 3x1 Fab 6VJY ; 4.3 ; Cryo-EM structure of Hrd1/Hrd3 monomer 8GHG ; 3.3 ; Cryo-EM structure of hSlo1 in digitonin, Ca2+-free and EDTA-free 8GHF ; 2.7 ; cryo-EM structure of hSlo1 in plasma membrane vesicles 8GH9 ; 3.8 ; Cryo-EM structure of hSlo1 in total membrane vesicles 7L7I ; 3.3 ; Cryo-EM structure of Hsp90:FKBP51:p23 closed-state complex 7L7J ; 3.1 ; Cryo-EM structure of Hsp90:p23 closed-state complex 8KFA ; 3.04 ; Cryo-EM structure of HSV-1 gB with D48 Fab complex 6VOY ; 3.7 ; Cryo-EM structure of HTLV-1 instasome 8GUS ; 2.97 ; Cryo-EM structure of HU-CB2-G protein complex 8CVN ; 2.4 ; Cryo-EM Structure of Human 15-PGDH in Complex with Small Molecule SW209415 8CWL ; 2.9 ; Cryo-EM structure of Human 15-PGDH in complex with small molecule SW222746 6Z6M ; 3.1 ; Cryo-EM structure of human 80S ribosomes bound to EBP1, eEF2 and SERBP1 6MST ; 2.7 ; Cryo-EM structure of human AA amyloid fibril 8JX7 ; 3.6 ; Cryo-EM structure of human ABC transporter ABCC2 8JY5 ; 4.17 ; Cryo-EM structure of human ABC transporter ABCC2 in apo"" state 8JY4 ; 3.58 ; Cryo-EM structure of human ABC transporter ABCC2 in apo' state 8JXU ; 3.55 ; Cryo-EM structure of human ABC transporter ABCC2 under active turnover condition 5XJY ; 4.1 ; Cryo-EM structure of human ABCA1 7E7Q ; 3.3 ; Cryo-EM structure of human ABCA4 in ATP-bound state 7E7O ; 3.4 ; Cryo-EM structure of human ABCA4 in NRPE-bound state 7E7I ; 3.3 ; Cryo-EM structure of human ABCA4 in the apo state 8EDW ; 3.6 ; Cryo-EM Structure of human ABCA7 in BPL/Ch Nanodiscs 8EEB ; 3.9 ; Cryo-EM structure of human ABCA7 in Digitonin 8EE6 ; 4.0 ; Cryo-EM Structure of human ABCA7 in PE/Ch nanodiscs 7D7N ; 5.2 ; Cryo-EM structure of human ABCB6 transporter 7EHL ; ; Cryo-EM structure of human ABCB8 transporter in nucleotide binding state 7X0Z ; 2.96 ; Cryo-EM structure of human ABCD1 E630Q in the presence of ATP and Magnesium in outward-facing state 7X1W ; 3.3 ; Cryo-EM structure of human ABCD1 E630Q in the presence of ATP in inward-facing state 7XEC ; 3.34 ; Cryo-EM structure of human ABCD1 E630Q in the presence of ATP in inward-facing state 2 7X0T ; 3.3 ; Cryo-EM structure of human ABCD1 E630Q in the presence of C26:0-CoA and ATP 7X07 ; 3.78 ; Cryo-EM structure of human ABCD1 in the presence of C26:0 8PHF ; 3.6 ; Cryo-EM structure of human ACAD9-S191A 7DDO ; 3.4 ; Cryo-EM structure of human ACE2 and GD/1/2019 RBD 7DDP ; 3.4 ; Cryo-EM structure of human ACE2 and GX/P2V/2017 RBD 7ZDQ ; 3.2 ; Cryo-EM structure of Human ACE2 bound to a high-affinity SARS CoV-2 mutant 7WBL ; 3.4 ; Cryo-EM structure of human ACE2 complexed with SARS-CoV-2 Omicron RBD 7L7F ; 3.24 ; Cryo-EM structure of human ACE2 receptor bound to protein encoded by vaccine candidate BNT162b1 7SK9 ; 3.7 ; Cryo-EM structure of human ACKR3 in complex with a small molecule partial agonist CCX662, and an intracellular Fab 7SK6 ; 4.0 ; Cryo-EM structure of human ACKR3 in complex with chemokine N-terminal mutant CXCL12_LRHQ and an intracellular Fab 7SK8 ; 3.3 ; Cryo-EM structure of human ACKR3 in complex with CXCL12, a small molecule partial agonist CCX662, an extracellular Fab, and an intracellular Fab 7SK7 ; 3.3 ; Cryo-EM structure of human ACKR3 in complex with CXCL12, a small molecule partial agonist CCX662, and an extracellular Fab 5GKA ; 3.7 ; cryo-EM structure of human Aichi virus 7YIM ; 2.6 ; Cryo-EM structure of human Alpha-fetoprotein 7F6G ; 2.9 ; Cryo-EM structure of human angiotensin receptor AT1R in complex Gq proteins and Sar1-AngII 7TY4 ; 2.99 ; Cryo-EM structure of human Anion Exchanger 1 7TY6 ; 2.98 ; Cryo-EM structure of human Anion Exchanger 1 bound to 4,4'-Diisothiocyanatodihydrostilbene-2,2'-Disulfonic Acid (H2DIDS) 8T6V ; 2.95 ; Cryo-EM structure of human Anion Exchanger 1 bound to 4,4'-Diisothiocyanatostilbene-2,2'-Disulfonic Acid (DIDS) 7TY7 ; 3.37 ; Cryo-EM structure of human Anion Exchanger 1 bound to Bicarbonate 8T6U ; 3.13 ; Cryo-EM structure of human Anion Exchanger 1 bound to Dipyridamole 7TY8 ; 3.18 ; Cryo-EM structure of human Anion Exchanger 1 bound to Niflumic Acid 7TYA ; 3.07 ; Cryo-EM structure of human Anion Exchanger 1 modified with Diethyl Pyrocarbonate (DEPC) 7TW3 ; 4.4 ; Cryo-EM structure of human ankyrin complex (B2P1A1) from red blood cell 7TW5 ; 5.7 ; Cryo-EM structure of human ankyrin complex (B2P1A2) from red blood cell 7TW6 ; 5.6 ; Cryo-EM structure of human ankyrin complex (B4P1A1) from red blood cell 7LFT ; 2.6 ; Cryo-EM structure of human Apo CNGA1 channel in K+/Ca2+ 7Y7V ; 2.2 ; Cryo-EM structure of human apo GABA transporter GAT1 in an inward-open state 7A6H ; 3.3 ; Cryo-EM structure of human apo RNA Polymerase III 8CX1 ; 3.3 ; Cryo-EM structure of human APOBEC3G/HIV-1 Vif/CBFbeta/ELOB/ELOC dimeric complex in State 1 8CX2 ; 3.2 ; Cryo-EM structure of human APOBEC3G/HIV-1 Vif/CBFbeta/ELOB/ELOC dimeric complex in State 2 8CX0 ; 2.7 ; Cryo-EM structure of human APOBEC3G/HIV-1 Vif/CBFbeta/ELOB/ELOC monomeric complex 6WX6 ; 2.0 ; Cryo-EM Structure of Human Apoferritin Light Chain Vitrified Using Back-it-up 7JLO ; 3.4 ; Cryo-EM structure of human ATG9A in amphipols 7JLQ ; 4.0 ; cryo-EM structure of human ATG9A in LMNG micelles 7JLP ; 3.4 ; cryo-EM structure of human ATG9A in nanodiscs 6O0H ; 3.67 ; Cryo-EM structure of human ATP-citrate lyase in complex with inhibitor NDI-091143 5YZ0 ; 4.7 ; Cryo-EM Structure of human ATR-ATRIP complex 7TW2 ; 4.8 ; Cryo-EM structure of human band 3 dimer from red blood cell 7TW1 ; 4.6 ; Cryo-EM structure of human band 3-protein 4.2 complex (B2P2vertical) 7TVZ ; 3.6 ; Cryo-EM structure of human band 3-protein 4.2 complex in diagonal conformation 7TW0 ; 4.6 ; Cryo-EM structure of human band 3-protein 4.2 complex in vertical conformation 7RB3 ; 3.1 ; Cryo-EM structure of human binary NatC complex with a Bisubstrate inhibitor 8ATU ; 3.3 ; Cryo-EM structure of human BIRC6 8ATX ; 7.0 ; Cryo-EM structure of human BIRC6 - no substrate 8AUK ; 6.2 ; Cryo-EM structure of human BIRC6 in complex with HTRA2. 8AUW ; 7.2 ; Cryo-EM structure of human BIRC6 in complex with SMAC. 7F6H ; 2.9 ; Cryo-EM structure of human bradykinin receptor BK2R in complex Gq proteins and bradykinin 7F6I ; 2.8 ; Cryo-EM structure of human bradykinin receptor BK2R in complex Gq proteins and kallidin 7X1G ; 2.94 ; Cryo-EM structure of human BTR1 in the inward-facing state at pH 5.5 7X1H ; 2.96 ; Cryo-EM structure of human BTR1 in the inward-facing state with R125H mutation 7X1J ; 2.84 ; Cryo-EM structure of human BTR1 in the outward-facing state in the presence of NH4Cl. 7X1I ; 2.94 ; Cryo-EM structure of human BTR1 in the outward-facing state. 7Y60 ; 3.8 ; Cryo-EM structure of human CAF1LC bound right-handed Di-tetrasome 6VAK ; 3.48 ; Cryo-EM structure of human CALHM2 6UIX ; 3.5 ; Cryo-EM structure of human CALHM2 gap junction 6UIW ; 2.7 ; Cryo-EM structure of human CALHM2 in a ruthenium red-bound inhibited state 6UIV ; 3.3 ; Cryo-EM structure of human CALHM2 in an active/open state 7D65 ; 2.94 ; Cryo-EM Structure of human CALHM5 in the presence of Ca2+ 7D61 ; 2.8 ; Cryo-EM Structure of human CALHM5 in the presence of EDTA 7D60 ; 2.61 ; Cryo-EM Structure of human CALHM5 in the presence of rubidium red 6PT0 ; 3.2 ; Cryo-EM structure of human cannabinoid receptor 2-Gi protein in complex with agonist WIN 55,212-2 8EL9 ; 2.27 ; Cryo-EM structure of human catalase 6Z6L ; 3.0 ; Cryo-EM structure of human CCDC124 bound to 80S ribosomes 8GYX ; 3.7 ; Cryo-EM structure of human CEPT1 8GYW ; 3.9 ; Cryo-EM structure of human CEPT1 complexed with CDP-choline 7LG1 ; 2.7 ; Cryo-EM structure of human cGMP-bound CNGA1_E365Q channel in Na+/Ca2+ 7LFW ; 2.9 ; Cryo-EM structure of human cGMP-bound open CNGA1 channel in K+/Ca2+ 7LFY ; 3.6 ; Cryo-EM structure of human cGMP-bound open CNGA1 channel in Na+ 7LFX ; 3.1 ; Cryo-EM structure of human cGMP-bound open CNGA1 channel in Na+/Ca2+ 8U5B ; 5.3 ; Cryo-EM structure of human claudin-4 complex with Clostridium perfringens enterotoxin C-terminal domain and sFab COP-1 8U4V ; 2.99 ; Cryo-EM structure of human claudin-4 complex with Clostridium perfringens enterotoxin C-terminal domain, sFab COP-1, and Nanobody 8D7H ; 3.4 ; Cryo-EM structure of human CLCF1 in complex with CRLF1 and CNTFR alpha 8D7R ; 3.9 ; Cryo-EM structure of human CLCF1 signaling complex: model containing the interaction core region 8D74 ; 3.03 ; Cryo-EM structure of human CNTF signaling complex: model containing the interaction core region 8D7E ; 2.93 ; Cryo-EM structure of human CNTFR alpha in complex with the Fab fragments of two antibodies 7W1M ; 6.5 ; Cryo-EM structure of human cohesin-CTCF-DNA complex 6WG3 ; 5.3 ; Cryo-EM structure of human Cohesin-NIPBL-DNA complex 6WGE ; 3.9 ; Cryo-EM structure of human Cohesin-NIPBL-DNA complex without STAG1 1Z7Z ; 8.0 ; Cryo-em structure of human coxsackievirus A21 complexed with five domain icam-1kilifi 6BLY ; 3.36 ; Cryo-EM structure of human CPSF-160-WDR33 complex at 3.36A resolution 6BM0 ; 3.8 ; Cryo-EM structure of human CPSF-160-WDR33 complex at 3.8 A resolution 6DNH ; 3.4 ; Cryo-EM structure of human CPSF-160-WDR33-CPSF-30-PAS RNA complex at 3.4 A resolution 6URG ; 3.0 ; Cryo-EM structure of human CPSF160-WDR33-CPSF30-CPSF100 PIM complex 6URO ; 3.6 ; Cryo-EM structure of human CPSF160-WDR33-CPSF30-PAS RNA-CstF77 complex 7U5C ; 4.6 ; Cryo-EM structure of human CST bound to DNA polymerase alpha-primase in a recruitment state 8SOJ ; 3.8 ; Cryo-EM structure of human CST bound to POT1(ESDL)/TPP1 in the absence of telomeric ssDNA 8SOK ; 4.1 ; Cryo-EM structure of human CST bound to POT1(ESDL)/TPP1 in the presence of telomeric ssDNA 8ARI ; 3.0 ; Cryo-EM structure of human CtBP1/RAI2(303-362) delta(331-341) filament 8D9X ; 3.8 ; Cryo-EM structure of human DELE1 in oligomeric form 6VYI ; 3.0 ; Cryo-EM structure of human diacylglycerol O-acyltransferase 1 6VZ1 ; 3.2 ; Cryo-EM structure of human diacylglycerol O-acyltransferase 1 complexed with acyl-CoA substrate 5ZAK ; 4.4 ; Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate 5ZAL ; 4.7 ; Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate 5ZAM ; 5.7 ; Cryo-EM structure of human Dicer and its complexes with a pre-miRNA substrate 7XW2 ; 3.04 ; Cryo-EM structure of human DICER-pre-miRNA in a dicing state 8QJ7 ; 3.07 ; Cryo-EM structure of human DNA polymerase alpha-primase in pre-initiation stage 1 5Y3R ; 6.6 ; Cryo-EM structure of Human DNA-PK Holoenzyme 7XIB ; 2.23 ; Cryo-EM structure of human DNMT1 (aa:351-1616) in complex with ubiquitinated H3 and hemimethylated DNA analog (CXXC-disordered form) 7XI9 ; 2.52 ; Cryo-EM structure of human DNMT1 (aa:351-1616) in complex with ubiquitinated H3 and hemimethylated DNA analog (CXXC-ordered form) 8EIK ; 3.19 ; Cryo-EM structure of human DNMT3B homo-hexamer 8EIH ; 3.04 ; Cryo-EM structure of human DNMT3B homo-tetramer (form I) 8EII ; 3.12 ; Cryo-EM structure of human DNMT3B homo-tetramer (form II) 8EIJ ; 3.34 ; Cryo-EM structure of human DNMT3B homo-trimer 6J99 ; 4.1 ; Cryo-EM structure of human DOT1L in complex with an H2B-monoubiquitinated nucleosome 7D3F ; 2.6 ; Cryo-EM structure of human DUOX1-DUOXA1 in high-calcium state 7D3E ; 2.8 ; Cryo-EM structure of human DUOX1-DUOXA1 in low-calcium state 6Z6N ; 2.9 ; Cryo-EM structure of human EBP1-80S ribosomes (focus on EBP1) 8J0N ; 3.47 ; cryo-EM structure of human EMC 8J0O ; 3.32 ; cryo-EM structure of human EMC and VDAC 7TAH ; 2.3 ; Cryo-EM structure of Human Enterovirus D68 US/MO/14-18947 strain in complex with inhibitor 11526091 (no/low occupancy-no inhibitor modeled) 7TAJ ; 2.0 ; Cryo-EM structure of Human Enterovirus D68 US/MO/14-18947 strain in complex with inhibitor 11526093 (no/low occupancy-no inhibitor modeled) 7T9P ; 2.0 ; Cryo-EM structure of Human Enterovirus D68 US/MO/14-18947 strain native virion 7TAF ; 2.0 ; Cryo-EM structure of Human Enterovirus D68 US/MO/14-18947 strain virion in complex with inhibitor 11526092 7TAG ; 2.7 ; Cryo-EM structure of Human Enterovirus D68 US/MO/14-18947 strain virion in complex with pleconaril 7ADP ; 3.6 ; Cryo-EM structure of human ER membrane protein complex in GDN detergent 7ADO ; 3.39 ; Cryo-EM structure of human ER membrane protein complex in lipid nanodiscs 7NPW ; 3.99 ; Cryo-EM structure of Human excitatory amino acid transporters-1 (EAAT1) in potassium buffer 7AU2 ; 2.43 ; Cryo-EM structure of human exostosin-like 3 (EXTL3) 7AUA ; 2.93 ; Cryo-EM structure of human exostosin-like 3 (EXTL3) in complex with UDP 7KVE ; 3.3 ; Cryo-EM structure of human Factor V at 3.3 Angstrom resolution 7KVF ; 3.6 ; Cryo-EM structure of human Factor V at 3.6 Angstrom resolution 7KXY ; 4.4 ; Cryo-EM structure of human Factor Va at 4.4 Angstrom resolution 7YTC ; 3.39 ; Cryo-EM structure of human FcmR bound to IgM-Fc/J 7YSG ; 3.18 ; Cryo-EM structure of human FcmR bound to sIgM 8DL6 ; 3.0 ; Cryo-EM structure of human ferroportin/slc40 bound to Ca2+ in nanodisc 8DL8 ; 3.0 ; Cryo-EM structure of human ferroportin/slc40 bound to Co2+ in nanodisc 8DL7 ; 2.7 ; Cryo-EM structure of human ferroportin/slc40 bound to minihepcidin PR73 in nanodisc 7QNA ; 3.0 ; Cryo-EM structure of human full-length alpha4beta3gamma2 GABA(A)R in complex with GABA and nanobody Nb25 7QN8 ; 3.1 ; Cryo-EM structure of human full-length beta3delta GABA(A)R in complex with histamine and nanobody Nb25 7QN6 ; 2.9 ; Cryo-EM structure of human full-length beta3delta GABA(A)R in complex with nanobody Nb25 7QNB ; 3.1 ; Cryo-EM structure of human full-length beta3gamma2 GABA(A)R in complex with GABA and nanobody Nb25 7QN7 ; 3.0 ; Cryo-EM structure of human full-length extrasynaptic alpha4beta3delta GABA(A)R in complex with GABA, histamine and nanobody Nb25 7QN9 ; 2.9 ; Cryo-EM structure of human full-length extrasynaptic alpha4beta3delta GABA(A)R in complex with GABA, histamine and nanobody Nb25 in a pre-open/closed state 7QN5 ; 2.5 ; Cryo-EM structure of human full-length extrasynaptic alpha4beta3delta GABA(A)R in complex with nanobody Nb25 7QNC ; 2.9 ; Cryo-EM structure of human full-length extrasynaptic alpha4beta3delta GABA(A)R in complex with THIP (gaboxadol), histamine and nanobody Nb25 7QND ; 3.4 ; Cryo-EM structure of human full-length extrasynaptic beta3delta GABA(A)R in complex with THIP (gaboxadol), histamine and nanobody Nb25 7QNE ; 2.7 ; Cryo-EM structure of human full-length synaptic alpha1beta3gamma2 GABA(A)R in complex with Ro15-4513 and megabody Mb38 7Y7W ; 2.4 ; Cryo-EM structure of human GABA transporter GAT1 bound with GABA in NaCl solution in an inward-occluded state at 2.4 angstrom 7Y7Y ; 2.4 ; Cryo-EM structure of human GABA transporter GAT1 bound with nipecotic acid in NaCl solution in an inward-occluded state at 2.4 angstrom 7Y7Z ; 3.2 ; Cryo-EM structure of human GABA transporter GAT1 bound with tiagabine in NaCl solution in an inward-open state at 3.2 angstrom 7CUM ; 3.52 ; Cryo-EM structure of human GABA(B) receptor bound to the antagonist CGP54626 7CA3 ; 4.5 ; Cryo-EM structure of human GABA(B) receptor bound to the positive allosteric modulator rac-BHFF 7CA5 ; 7.6 ; Cryo-EM structure of human GABA(B) receptor in apo state 7EB2 ; 3.5 ; Cryo-EM structure of human GABA(B) receptor-Gi protein complex 7XBD ; 3.11 ; Cryo-EM structure of human galanin receptor 2 7RBT ; 3.08 ; cryo-EM structure of human Gastric inhibitory polypeptide receptor GIPR bound to tirzepatide 7W40 ; 3.0 ; Cryo-EM Structure of Human Gastrin Releasing Peptide Receptor in complex with the agonist Bombesin (6-14) [D-Phe6, beta-Ala11, Phe13, Nle14] and Gq heterotrimers 7W3Z ; 3.0 ; Cryo-EM Structure of Human Gastrin Releasing Peptide Receptor in complex with the agonist Gastrin Releasing Peptide and Gq heterotrimers 7S05 ; 3.1 ; Cryo-EM structure of human GlcNAc-1-phosphotransferase A2B2 subcomplex 7S06 ; 3.3 ; Cryo-EM structure of human GlcNAc-1-phosphotransferase A2B2 subcomplex 7WSN ; 3.31 ; Cryo-EM structure of human glucose transporter GLUT4 bound to cytochalasin B in detergent micelles 7WSM ; 3.25 ; Cryo-EM structure of human glucose transporter GLUT4 bound to cytochalasin B in lipid nanodiscs 8E4Y ; 3.4 ; Cryo-EM structure of human glycerol-3-phosphate acyltransferase 1 (GPAT1) in complex with 2-oxohexadecyl-CoA 8E50 ; 3.67 ; Cryo-EM structure of human glycerol-3-phosphate acyltransferase 1 (GPAT1) in complex with CoA and palmitoyl-LPA 8DN4 ; 4.1 ; Cryo-EM structure of human Glycine Receptor alpha-1 beta heteromer, glycine-bound state3(desensitized state) 8DN3 ; 3.55 ; Cryo-EM structure of human Glycine Receptor alpha1-beta heteromer, apo state 8DN2 ; 3.9 ; Cryo-EM structure of human Glycine Receptor alpha1-beta heteromer, glycine-bound state 2(expanded open) 8DN5 ; 3.63 ; Cryo-EM structure of human Glycine Receptor alpha1-beta heteromer, glycine-bound state1(open state) 7SHE ; 3.4 ; Cryo-EM structure of human GPR158 7EWP ; 4.3 ; Cryo-EM structure of human GPR158 in complex with RGS7-Gbeta5 in a 2:1:1 ratio 7EWR ; 4.7 ; Cryo-EM structure of human GPR158 in complex with RGS7-Gbeta5 in a 2:2:2 ratio 8IJB ; 3.23 ; Cryo-EM structure of human HCAR2-Gi complex with acipimox 8IJD ; 3.25 ; Cryo-EM structure of human HCAR2-Gi complex with MK-6892 8IJA ; 2.69 ; Cryo-EM structure of human HCAR2-Gi complex with niacin 8IJ3 ; 3.28 ; Cryo-EM structure of human HCAR2-Gi complex without ligand (apo state) 8INZ ; 2.72 ; Cryo-EM structure of human HCN3 channel in apo state 8IO3 ; 3.02 ; Cryo-EM structure of human HCN3 channel with cilobradine 8EOB ; 3.1 ; Cryo-EM structure of human HSP90B in the closed state 8EOA ; 3.9 ; Cryo-EM structure of human HSP90B-AIPL1 complex 7JQ9 ; 3.1 ; Cryo-EM structure of human HUWE1 7MOP ; 3.3 ; Cryo-EM structure of human HUWE1 in complex with DDIT4 7Y09 ; 3.71 ; Cryo-EM structure of human IgM-Fc in complex with the J chain and the DBL domain of DBLMSP 7YG2 ; 3.32 ; Cryo-EM structure of human IgM-Fc in complex with the J chain and the DBL domain of DBLMSP2 6KXS ; 3.4 ; Cryo-EM structure of human IgM-Fc in complex with the J chain and the ectodomain of pIgR 7Y0J ; 3.62 ; Cryo-EM structure of human IgM-Fc in complex with the J chain and the P. falciparum TM284VAR1 7Y0H ; 3.56 ; Cryo-EM structure of human IgM-Fc in complex with the J chain and the P. falciparum VAR2CSA FCR3 8D85 ; 3.81 ; Cryo-EM structure of human IL-27 signaling complex: model containing the interaction core region 8D82 ; 3.22 ; Cryo-EM structure of human IL-6 signaling complex in detergent: model containing full extracellular domains 6AVO ; 3.8 ; Cryo-EM structure of human immunoproteasome with a novel noncompetitive inhibitor that selectively inhibits activated lymphocytes 6B7Y ; 6.5 ; Cryo-EM structure of human insulin degrading enzyme 6BF6 ; 6.5 ; Cryo-EM structure of human insulin degrading enzyme 6B7Z ; 6.5 ; Cryo-EM structure of human insulin degrading enzyme in complex with FAB H11 heavy chain and FAB H11 light chain 6BF7 ; 6.5 ; Cryo-EM structure of human insulin degrading enzyme in complex with FAB H11-E heavy chain, FAB H11-E light chain 6BF9 ; 7.2 ; Cryo-EM structure of human insulin degrading enzyme in complex with FAB H11-E heavy chain, FAB H11-E light chain 6B70 ; 3.7 ; Cryo-EM structure of human insulin degrading enzyme in complex with FAB H11-E heavy chain, FAB H11-E light chain and insulin 6B3Q ; 3.7 ; Cryo-EM structure of human insulin degrading enzyme in complex with insulin 6BF8 ; 4.2 ; Cryo-EM structure of human insulin degrading enzyme in complex with insulin 6BFC ; 3.7 ; Cryo-EM structure of human insulin degrading enzyme in complex with insulin 7NWL ; 3.1 ; Cryo-EM structure of human integrin alpha5beta1 (open form) in complex with fibronectin and TS2/16 Fv-clasp 7NXD ; 4.6 ; Cryo-EM structure of human integrin alpha5beta1 in the half-bent conformation 8R4I ; 4.01 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP) 6VW2 ; 3.4 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP, or amylin) fibrils 7M61 ; 3.8 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP, or amylin) fibrils seeded by patient extracted fibrils, polymorph 1 7M62 ; 3.9 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP, or amylin) fibrils seeded by patient extracted fibrils, polymorph 2 7M64 ; 4.0 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP, or amylin) fibrils seeded by patient extracted fibrils, polymorph 3 7M65 ; 4.1 ; Cryo-EM structure of human islet amyloid polypeptide (hIAPP, or amylin) fibrils seeded by patient extracted fibrils, polymorph 4 7Y1F ; 3.3 ; Cryo-EM structure of human k-opioid receptor-Gi complex 6C3P ; 5.6 ; Cryo-EM structure of human KATP bound to ATP and ADP in propeller form 6C3O ; 3.9 ; Cryo-EM structure of human KATP bound to ATP and ADP in quatrefoil form 7BYL ; 2.5 ; Cryo-EM structure of human KCNQ4 7BYN ; 3.3 ; Cryo-EM structure of human KCNQ4 with linopirdine 7BYM ; 3.1 ; Cryo-EM structure of human KCNQ4 with retigabine 8D45 ; 2.62 ; Cryo-EM structure of human Kidney Betaine-Homocysteine Methyltransferase 8D43 ; 2.88 ; Cryo-EM structure of human Kidney Glucosidase II 6C0W ; 4.0 ; Cryo-EM structure of human kinetochore protein CENP-N with the centromeric nucleosome containing CENP-A 8QUC ; 2.9 ; Cryo-EM Structure of Human Kv3.1 in Complex with Modulator AUT1 8QUD ; 2.5 ; Cryo-EM Structure of Human Kv3.1 in Complex with Modulator AUT5 8D6A ; 3.54 ; Cryo-EM structure of human LIF signaling complex: model containing the interaction core region 8EMR ; 2.92 ; Cryo-EM structure of human liver glucosidase II 8EMS ; 2.65 ; Cryo-EM structure of human liver glycogen phosphorylase 7XZH ; 2.78 ; Cryo-EM structure of human LRRC8A 6JBJ ; 3.6 ; Cryo-EM structure of human lysosomal cobalamin exporter ABCD4 6LZ0 ; 3.3 ; Cryo-EM structure of human MCT1 in complex with Basigin-2 in the presence of lactate 8E78 ; 2.77 ; Cryo-EM structure of human ME3 in the presence of citrate 8E8O ; 2.77 ; Cryo-EM structure of human ME3 in the presence of citrate 8CTH ; 3.3 ; Cryo-EM structure of human METTL1-WDR4-tRNA(Phe) complex 8CTI ; 3.6 ; Cryo-EM structure of human METTL1-WDR4-tRNA(Val) complex 7CP9 ; 3.0 ; Cryo-EM structure of human mitochondrial translocase TOM complex at 3.0 angstrom. 6KIX ; 4.1 ; Cryo-EM structure of human MLL1-NCP complex, binding mode1 6KIZ ; 4.5 ; Cryo-EM structure of human MLL1-NCP complex, binding mode2 6KIU ; 3.2 ; Cryo-EM structure of human MLL1-ubNCP complex (3.2 angstrom) 6KIV ; 4.0 ; Cryo-EM structure of human MLL1-ubNCP complex (4.0 angstrom) 6KIW ; 4.0 ; Cryo-EM structure of human MLL3-ubNCP complex (4.0 angstrom) 7QDO ; 3.6 ; Cryo-EM structure of human monomeric IgM-Fc 6ZWO ; 3.0 ; cryo-EM structure of human mTOR complex 2, focused on one half 6ZWM ; 3.2 ; cryo-EM structure of human mTOR complex 2, overall refinement 7CM3 ; 3.1 ; Cryo-EM structure of human NALCN in complex with FAM155A 6VP9 ; 3.46 ; Cryo-EM structure of human NatB complex 7STX ; 3.14 ; Cryo-EM structure of human NatB in complex with CoA-Alpha-Synuclein 6PPL ; 3.02 ; Cryo-EM structure of human NatE complex (NatA/Naa50) 6PW9 ; 4.03 ; Cryo-EM structure of human NatE/HYPK complex 7W77 ; 3.3 ; cryo-EM structure of human NaV1.3/beta1/beta2-bulleyaconitineA 7W7F ; 3.35 ; Cryo-EM structure of human NaV1.3/beta1/beta2-ICA121431 8GZ1 ; 3.4 ; Cryo-EM structure of human NaV1.6/beta1/beta2,apo state 8GZ2 ; 3.3 ; Cryo-EM structure of human NaV1.6/beta1/beta2-4,9-anhydro-tetrodotoxin 7W9T ; 3.0 ; Cryo-EM structure of human Nav1.7(E406K) in complex with auxiliary beta subunits, huwentoxin-IV and saxitoxin (S6IV alpha helix conformer) 7W9P ; 2.9 ; Cryo-EM structure of human Nav1.7(E406K) in complex with auxiliary beta subunits, huwentoxin-IV and saxitoxin (S6IV pi helix conformer) 7W9M ; 3.0 ; Cryo-EM structure of human Nav1.7(E406K) in complex with auxiliary beta subunits, ProTx-II and tetrodotoxin (S6IV pi helix conformer) 7W9L ; 3.5 ; Cryo-EM structure of human Nav1.7(E406K)-beta1-beta2 complex 7W9K ; 2.2 ; Cryo-EM structure of human Nav1.7-beta1-beta2 complex at 2.2 angstrom resolution 7XMF ; 3.07 ; Cryo-EM structure of human NaV1.7/beta1/beta2-Nav1.7-IN2 7XMG ; 3.09 ; Cryo-EM structure of human NaV1.7/beta1/beta2-TCN-1752 7XM9 ; 3.22 ; Cryo-EM structure of human NaV1.7/beta1/beta2-XEN907 8FHT ; 3.02 ; Cryo-EM structure of human NCC 8FHO ; 2.95 ; Cryo-EM structure of human NCC (class 1) 8FHN ; 3.0 ; Cryo-EM structure of human NCC (class 2) 8FHP ; 3.04 ; Cryo-EM structure of human NCC (class 3-1) 8FHQ ; 2.81 ; Cryo-EM structure of human NCC (class 3-2) 8FHR ; 2.9 ; Cryo-EM structure of human NCC (class 3-3) 8SGJ ; 3.1 ; Cryo-EM structure of human NCX1 in apo inactivated state 8SGT ; 3.6 ; Cryo-EM structure of human NCX1 in Ca2+ bound, activated state (group II in the presence of 0.5 mM Ca2+) 8FVU ; 3.6 ; Cryo-EM structure of human Needle/NAIP/NLRC4 (R288A) 8GS4 ; 3.5 ; Cryo-EM structure of human Neuroligin 2 8GS3 ; 3.9 ; Cryo-EM structure of human Neuroligin 3 7XK2 ; 3.1 ; Cryo-EM Structure of Human Niacin Receptor HCA2-Gi protein complex 6PZT ; 3.46 ; cryo-EM structure of human NKCC1 7ZGO ; 2.55 ; Cryo-EM structure of human NKCC1 (TM domain) 7S1Y ; 3.6 ; Cryo-EM structure of human NKCC1 K289NA492E bound with bumetanide 7S1Z ; 3.3 ; Cryo-EM structure of Human NKCC1 K289NA492EL671C 7S1X ; 2.9 ; Cryo-EM structure of human NKCC1 K289NA492EL671C bound with bumetanide 7WSI ; 3.32 ; Cryo-EM structure of human NTCP (wild-type) complexed with YN69202Fab 7VAD ; 3.41 ; Cryo-EM structure of human NTCP complexed with YN69202Fab 7VAG ; 3.32 ; Cryo-EM structure of human NTCP complexed with YN69202Fab in the presence of myristoylated preS1 peptide 8RQF ; 3.41 ; Cryo-EM structure of human NTCP-Bulevirtide complex 8HRY ; 3.11 ; Cryo-EM structure of human NTCP-myr-preS1-YN9016Fab complex 8HRX ; 2.89 ; Cryo-EM structure of human NTCP-myr-preS1-YN9048Fab complex 7VZ4 ; 1.89 ; Cryo-EM structure of human nucleosome core particle composed of the Widom 601L DNA sequence 8HNB ; 3.53 ; Cryo-EM structure of human OATP1B1 in apo state 8HNC ; 3.73 ; Cryo-EM structure of human OATP1B1 in complex with bilirubin 8K6L ; 2.92 ; Cryo-EM structure of human OATP1B1 in complex with DCF 8HND ; 3.19 ; Cryo-EM structure of human OATP1B1 in complex with estrone-3-sulfate 8HNH ; 3.73 ; Cryo-EM structure of human OATP1B1 in complex with simeprevir 7YEH ; 3.92 ; Cryo-EM structure of human OGT-OGA complex 6S7O ; 3.5 ; Cryo-EM structure of human oligosaccharyltransferase complex OST-A 6S7T ; 3.5 ; Cryo-EM structure of human oligosaccharyltransferase complex OST-B 5FTK ; 2.4 ; Cryo-EM structure of human p97 bound to ADP 5FTL ; 3.3 ; Cryo-EM structure of human p97 bound to ATPgS (Conformation I) 5FTM ; 3.2 ; Cryo-EM structure of human p97 bound to ATPgS (Conformation II) 5FTN ; 3.3 ; Cryo-EM structure of human p97 bound to ATPgS (Conformation III) 7RLI ; 3.1 ; Cryo-EM structure of human p97 bound to CB-5083 and ADP. 7RLJ ; 3.8 ; Cryo-EM structure of human p97 bound to CB-5083 and ATPgS. 5FTJ ; 2.3 ; Cryo-EM structure of human p97 bound to UPCDC30245 inhibitor 7LMY ; 2.4 ; Cryo-EM structure of human p97 in complex with NMS-873 in the presence of ATP, Npl4/Ufd1, and Ub6 7LN5 ; 3.09 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and polyubiquitinated Ub-Eos (CHAPSO, Class 1, Close State) 7LN6 ; 3.58 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and polyubiquitinated Ub-Eos (CHAPSO, Class 2, Open State) 7LN2 ; 3.63 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and polyubiquitinated Ub-Eos (FOM, Class 1) 7LN3 ; 3.45 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and polyubiquitinated Ub-Eos (FOM, Class 2) 7LN4 ; 3.0 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and polyubiquitinated Ub-Eos (FOM, Class 3) 7LMZ ; 3.06 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and Ub6 (Class 1) 7LN0 ; 2.98 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and Ub6 (Class 2) 7LN1 ; 3.4 ; Cryo-EM structure of human p97 in complex with Npl4/Ufd1 and Ub6 (Class 3) 7RLB ; 3.3 ; Cryo-EM structure of human p97-A232E mutant bound to ADP 7RLC ; 3.2 ; Cryo-EM structure of human p97-A232E mutant bound to ATPgS. 7RLG ; 3.7 ; Cryo-EM structure of human p97-D592N mutant bound to ADP. 7RLH ; 3.0 ; Cryo-EM structure of human p97-D592N mutant bound to ATPgS. 7RLD ; 3.4 ; Cryo-EM structure of human p97-E470D mutant bound to ADP. 7RLF ; 3.1 ; Cryo-EM structure of human p97-E470D mutant bound to ATPgS. 7RL6 ; 3.7 ; Cryo-EM structure of human p97-R155H mutant bound to ADP. 7RL7 ; 3.0 ; Cryo-EM structure of human p97-R155H mutant bound to ATPgS. 7RL9 ; 3.3 ; Cryo-EM structure of human p97-R191Q mutant bound to ADP. 7RLA ; 3.1 ; Cryo-EM structure of human p97-R191Q mutant bound to ATPgS. 6KWX ; 3.75 ; cryo-EM structure of human PA200 6V6D ; 3.77 ; Cryo-EM structure of human pannexin 1 6M02 ; 3.2 ; cryo-EM structure of human Pannexin 1 channel 6WBM ; 2.86 ; Cryo-EM structure of human Pannexin 1 channel N255A mutant 6WBN ; 2.83 ; Cryo-EM structure of human Pannexin 1 channel N255A mutant, gap junction 6WBK ; 6.01 ; Cryo-EM structure of human Pannexin 1 channel with deletion of N-terminal helix and C-terminal tail 6WBL ; 5.13 ; Cryo-EM structure of human Pannexin 1 channel with deletion of N-terminal helix and C-terminal tail, in complex with CBX 6WBG ; 2.97 ; Cryo-EM structure of human Pannexin 1 channel with its C-terminal tail cleaved by caspase-7 6WBI ; 4.39 ; Cryo-EM structure of human Pannexin 1 channel with its C-terminal tail cleaved by caspase-7, in complex with CBX 7XLB ; 3.44 ; Cryo-EM structure of human pannexin 2 8F7C ; 3.92 ; Cryo-EM structure of human pannexin 2 7XL6 ; 3.25 ; Cryo-EM structure of human pannexin 3 8HWQ ; 3.58 ; Cryo-EM structure of human pannexin 3 with C-terminal truncated 7F8J ; 3.6 ; Cryo-EM structure of human pannexin-1 in a nanodisc 8GTT ; 3.2 ; Cryo-EM structure of human Pannexin1 resembling Pannexin2 pore with W74R/R75Dmutations 6MJZ ; 4.3 ; Cryo-EM structure of Human Parainfluenza Virus Type 3 (hPIV3) in complex with antibody PIA174 7YRQ ; 3.35 ; Cryo-EM structure of human Peroxisomal ABC Transporter ABCD1 1DGI ; 22.0 ; Cryo-EM structure of human poliovirus(serotype 1)complexed with three domain CD155 8EKW ; 2.83 ; Cryo-EM structure of human PRDX4 7TPP ; 4.1 ; Cryo-em structure of human prothrombin:prothrombinase at 4.1 Angstrom resolution 7TPQ ; 5.3 ; Cryo-em structure of human prothrombinase on a nanodisc at 5.3 Angstrom resolution 7JNC ; 3.73 ; cryo-EM structure of human proton-activated chloride channel PAC at pH 4 7JNA ; 3.6 ; Cryo-EM structure of human proton-activated chloride channel PAC at pH 8 7RL4 ; 2.86 ; Cryo-EM structure of human PrP23-144 amyloid fibrils 6DMB ; 3.9 ; Cryo-EM structure of human Ptch1 6DMY ; 3.6 ; Cryo-EM structure of human Ptch1 and ShhN complex 6DMO ; 4.1 ; Cryo-EM structure of human Ptch1 with three mutations L282Q/T500F/P504L 7WTA ; 3.9 ; Cryo-EM structure of human pyruvate carboxylase in apo state 7WTB ; 3.7 ; Cryo-EM structure of human pyruvate carboxylase with acetyl-CoA 7WTC ; 4.0 ; Cryo-EM structure of human pyruvate carboxylase with acetyl-CoA in the ground state 7WTD ; 3.9 ; Cryo-EM structure of human pyruvate carboxylase with acetyl-CoA in the intermediate state 1 7WTE ; 3.3 ; Cryo-EM structure of human pyruvate carboxylase with acetyl-CoA in the intermediate state 2 5XTD ; 3.7 ; Cryo-EM structure of human respiratory complex I 5XTB ; 3.4 ; Cryo-EM structure of human respiratory complex I matrix arm 5XTC ; 3.7 ; Cryo-EM structure of human respiratory complex I transmembrane arm 5XTE ; 3.4 ; Cryo-EM structure of human respiratory complex III (cytochrome bc1 complex) 5XTH ; 3.9 ; Cryo-EM structure of human respiratory supercomplex I1III2IV1 7UJA ; 3.7 ; Cryo-EM structure of Human respiratory syncytial virus F variant (construct pXCS847A) 1D3I ; 26.0 ; CRYO-EM STRUCTURE OF HUMAN RHINOVIRUS 14 (HRV14) COMPLEXED WITH A TWO-DOMAIN FRAGMENT OF ITS CELLULAR RECEPTOR, INTERCELLULAR ADHESION MOLECULE-1 (D1D2-ICAM-1). IMPLICATIONS FOR VIRUS-RECEPTOR INTERACTIONS. ALPHA CARBONS ONLY 1D3E ; 28.0 ; CRYO-EM STRUCTURE OF HUMAN RHINOVIRUS 16 (HRV16) COMPLEXED WITH A TWO-DOMAIN FRAGMENT OF ITS CELLULAR RECEPTOR, INTERCELLULAR ADHESION MOLECULE-1 (D1D2-ICAM-1). IMPLICATIONS FOR VIRUS-RECEPTOR INTERACTIONS. ALPHA CARBONS ONLY 6AHR ; 3.92 ; Cryo-EM structure of human Ribonuclease P 6AHU ; 3.66 ; Cryo-EM structure of human Ribonuclease P with mature tRNA 7OBA ; 3.1 ; Cryo-EM structure of human RNA Polymerase I in complex with RRN3 7OB9 ; 2.7 ; Cryo-EM structure of human RNA Polymerase I in elongation state 7OBB ; 3.3 ; Cryo-EM structure of human RNA Polymerase I Open Complex 7AE1 ; 2.8 ; Cryo-EM structure of human RNA Polymerase III elongation complex 1 7AEA ; 3.4 ; Cryo-EM structure of human RNA Polymerase III elongation complex 2 7AE3 ; 3.1 ; Cryo-EM structure of human RNA Polymerase III elongation complex 3 7D59 ; 3.1 ; cryo-EM structure of human RNA polymerase III in apo state 7D58 ; 2.9 ; cryo-EM structure of human RNA polymerase III in elongating state 7RHL ; 3.03 ; Cryo-EM structure of human rod Apo CNGA1/B1 channel with CLZ coiled coil 7RH9 ; 2.61 ; Cryo-EM structure of human rod CNGA1/B1 channel in apo state 7RHG ; 2.88 ; Cryo-EM structure of human rod CNGA1/B1 channel in cAMP-bound state 7RHH ; 3.31 ; Cryo-EM structure of human rod CNGA1/B1 channel in cGMP-bound openI state 7RHI ; 3.31 ; Cryo-EM structure of human rod CNGA1/B1 channel in cGMP-bound openII state 7RHJ ; 2.88 ; Cryo-EM structure of human rod CNGA1/B1 channel in L-cis-Diltiazem-blocked open state 7RHK ; 3.27 ; Cryo-EM structure of human rod CNGA1/B1 channel in L-cis-Diltiazem-trapped closed state 8JHR ; 3.52 ; Cryo-EM structure of human S1P transporter SPNS2 bound with an inhibitor 16d 8JHQ ; 3.6 ; Cryo-EM structure of human S1P transporter SPNS2 bound with S1P 6LX3 ; 3.15 ; Cryo-EM structure of human secretory immunoglobulin A 6LXW ; 3.27 ; Cryo-EM structure of human secretory immunoglobulin A in complex with the N-terminal domain of SpsA 8QI7 ; 2.9 ; Cryo-EM Structure of Human Serine Hydroxymethyltransferase, isoform 2 (SHMT2) 8WOS ; 3.37 ; Cryo-EM structure of human SIDT1 protein with C1 symmetry at low pH 8WOQ ; 2.85 ; Cryo-EM structure of human SIDT1 protein with C1 symmetry at neutral pH 8WOT ; 3.18 ; Cryo-EM structure of human SIDT1 protein with C2 symmetry at low pH 8WOR ; 2.66 ; Cryo-EM structure of human SIDT1 protein with C2 symmetry at neutral pH 7T5P ; 3.4 ; Cryo-EM structure of human SIMC1-SLF2 complex 8WX2 ; 3.44 ; Cryo-EM structure of human SLC15A3 (outward-facing partially occluded) 8WX3 ; 2.83 ; Cryo-EM structure of human SLC15A4 (outward-facing open) 8QSL ; 2.81 ; Cryo-EM structure of human SLC15A4 dimer in outward open state in LMNG 8QSK ; 3.3 ; Cryo-EM structure of human SLC15A4 dimer in outward open state in MSP1D1 nanodisc 8WX4 ; 3.12 ; Cryo-EM structure of human SLC15A4 in complex with Lys-Leu (outward-facing open) 8WX5 ; 3.91 ; Cryo-EM structure of human SLC15A4 in complex with TASL (inward-facing open) 8P6A ; 3.63 ; cryo-EM structure of human SLC15A4 in outward-open state 8QSM ; 3.69 ; Cryo-EM structure of human SLC15A4 monomer in outward open state in LMNG 8QSN ; 3.54 ; Cryo-EM structure of human SLC15A4 monomer in outward open state in PMAL C8 7YNZ ; 3.5 ; Cryo-EM structure of human Slo1-LRRC26 complex with C1 symmetry 7YO3 ; 3.1 ; Cryo-EM structure of human Slo1-LRRC26 complex with C4 symmetry 7YO0 ; 3.6 ; Cryo-EM structure of human Slo1-LRRC26 complex with Symmetry Expansion 7Y6I ; 2.85 ; Cryo-EM structure of human sodium-chloride cotransporter 7YG0 ; 3.75 ; Cryo-EM structure of human sodium-chloride cotransporter 7WJ5 ; 3.72 ; Cryo-EM structure of human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand binding specificity 6IGM ; 4.0 ; Cryo-EM Structure of Human SRCAP Complex 8UCD ; 3.0 ; Cryo-EM structure of human STEAP1 in complex with AMG 509 Fab 7X57 ; 3.63 ; Cryo-EM structure of human subnucleosome (closed form) 7YOZ ; 4.3 ; Cryo-EM structure of human subnucleosome (intermediate form) 7X58 ; 3.93 ; Cryo-EM structure of human subnucleosome (open form) 8ALY ; 2.98 ; Cryo-EM structure of human tankyrase 2 SAM-PARP filament (G1032W mutant) 7QXS ; 3.9 ; Cryo-EM structure of human telomerase-DNA-TPP1-POT1 complex (with POT1 side chains) 7MX2 ; 3.64 ; Cryo-EM structure of human ternary NatC complex with a Bisubstrate inhibitor 7X1R ; 3.9 ; Cryo-EM structure of human thioredoxin reductase bound by Au 7B75 ; 3.2 ; Cryo-EM Structure of Human Thyroglobulin 7C76 ; 3.4 ; Cryo-EM structure of human TLR3 in complex with UNC93B1 7CYN ; 4.2 ; Cryo-EM structure of human TLR7 in complex with UNC93B1 7N7P ; 3.24 ; Cryo-EM structure of human TMEM120A 7F3T ; 3.69 ; Cryo-EM structure of human TMEM120A in the CoASH-bound state 7F3U ; 4.0 ; Cryo-EM structure of human TMEM120A in the CoASH-free state 7CXR ; 3.4 ; Cryo-EM structure of human TMEM120A/TACAN 7F73 ; 4.0 ; Cryo-EM structure of human TMEM120B 7OQZ ; 3.27 ; Cryo-EM structure of human TMEM45A 8WUA ; 3.6 ; cryo-EM structure of human TMEM63A 8HTT ; 3.6 ; Cryo-EM structure of human TMEM87A, gluconate-bound 8HSI ; 3.1 ; Cryo-EM structure of human TMEM87A, PE-bound 7YQ8 ; 3.9 ; Cryo-EM structure of human topoisomerase II beta in complex with DNA and etoposide 6OIF ; 4.4 ; Cryo-EM structure of human TorsinA filament 6NQ1 ; 3.5 ; Cryo-EM structure of human TPC2 channel in the apo state 6NQ2 ; 3.4 ; Cryo-EM structure of human TPC2 channel in the ligand-bound closed state 6NQ0 ; 3.7 ; Cryo-EM structure of human TPC2 channel in the ligand-bound open state 7WIY ; 3.09 ; Cryo-EM structure of human TPH2 tetramer 7ZQS ; 2.54 ; Cryo-EM Structure of Human Transferrin Receptor 1 bound to DNA Aptamer 7X3U ; 3.3 ; cryo-EM structure of human TRiC-ADP 7X0V ; 3.2 ; cryo-EM structure of human TRiC-ADP-AlFx 7X6Q ; 4.5 ; cryo-EM structure of human TRiC-ATP-closed state 7X7Y ; 3.8 ; Cryo-EM structure of Human TRiC-ATP-open state 7X0A ; 3.1 ; Cryo-EM structure of human TRiC-NPP state 7WZ3 ; 4.1 ; Cryo-EM structure of human TRiC-tubulin-S1 state 7X3J ; 4.2 ; Cryo-EM structure of human TRiC-tubulin-S2 6PQQ ; 2.81 ; Cryo-EM structure of human TRPA1 C621S mutant in the apo state 5ZBG ; 4.36 ; Cryo-EM structure of human TRPC3 at 4.36A resolution 5YX9 ; 3.8 ; Cryo-EM structure of human TRPC6 at 3.8A resolution 6UZ8 ; 2.84 ; Cryo-EM structure of human TRPC6 in complex with agonist AM-0883 6UZA ; 3.08 ; Cryo-EM structure of human TRPC6 in complex with antagonist AM-1473 6E7Z ; 3.73 ; cryo-EM structure of human TRPML1 with ML-SA1 and PI35P2 6E7P ; 3.5 ; cryo-EM structure of human TRPML1 with PI35P2 6E7Y ; 3.57 ; cryo-EM structure of human TRPML1 with PI45P2 8GF9 ; 2.58 ; Cryo-EM structure of human TRPV1 in cNW11 nanodisc and POPC:POPE:POPG lipids 8GF8 ; 2.9 ; Cryo-EM structure of human TRPV1 in cNW11 nanodisc and soybean lipids 8GFA ; 2.29 ; Cryo-EM structure of human TRPV1 in complex with the analgesic drug SB-366791 6UW4 ; 3.1 ; Cryo-EM structure of human TRPV3 determined in lipid nanodisc 8T1C ; 3.49 ; Cryo-EM structure of human TRPV4 ankyrin repeat domain in complex with GTPase RhoA 6BO9 ; 4.0 ; Cryo-EM structure of human TRPV6 in amphipols 7K4E ; 4.34 ; Cryo-EM structure of human TRPV6 in complex with (4- phenylcyclohexyl)piperazine inhibitor 30 7K4F ; 3.75 ; Cryo-EM structure of human TRPV6 in complex with (4- phenylcyclohexyl)piperazine inhibitor 31 7K4D ; 3.66 ; Cryo-EM structure of human TRPV6 in complex with (4- phenylcyclohexyl)piperazine inhibitor 3OG 7K4C ; 3.78 ; Cryo-EM structure of human TRPV6 in complex with (4- phenylcyclohexyl)piperazine inhibitor Br-cis-22a 7K4B ; 3.1 ; Cryo-EM structure of human TRPV6 in complex with (4- phenylcyclohexyl)piperazine inhibitor cis-22a 6E2F ; 3.9 ; Cryo-EM structure of human TRPV6 in complex with Calmodulin 7S8B ; 2.43 ; Cryo-EM structure of human TRPV6 in complex with channel blocker ruthenium red 7S8C ; 2.85 ; Cryo-EM structure of human TRPV6 in complex with inhibitor econazole 8FOA ; 2.66 ; Cryo-EM structure of human TRPV6 in complex with the natural phytoestrogen genistein 6BO8 ; 3.6 ; Cryo-EM structure of human TRPV6 in nanodiscs 7K4A ; 3.26 ; Cryo-EM structure of human TRPV6 in the open state 8FOB ; 2.71 ; Cryo-EM structure of human TRPV6 in the open state 6BOA ; 4.2 ; Cryo-EM structure of human TRPV6-R470E in amphipols 6D7S ; 4.34 ; Cryo-EM structure of human TRPV6-Y467A in amphipols 6D7T ; 4.44 ; Cryo-EM structure of human TRPV6-Y467A in complex with 2-Aminoethoxydiphenyl borate (2-APB) 7DL2 ; 4.4 ; Cryo-EM structure of human TSC complex 7P5J ; 4.0 ; Cryo-EM structure of human TTYH1 in GDN 7P54 ; 3.3 ; Cryo-EM structure of human TTYH2 in GDN 7P5M ; 3.92 ; Cryo-EM structure of human TTYH2 in lipid nanodiscs 7P5C ; 3.2 ; Cryo-EM structure of human TTYH3 in Ca2+ and GDN 7DW9 ; 2.6 ; Cryo-EM structure of human V2 vasopressin receptor in complex with an Gs protein 7VQX ; 2.74 ; Cryo-EM structure of human vasoactive intestinal polypeptide receptor 2 (VIP2R) in complex with PACAP27 and Gs 7VWC ; 3.53 ; Cryo-EM structure of human very long-chain fatty acid ABC transporter ABCD1 8FHD ; 3.1 ; Cryo-EM structure of human voltage-gated sodium channel Nav1.6 7DCE ; 3.8 ; Cryo-EM structure of human XKR8-basigin complex bound to Fab fragment 8XEJ ; 3.66 ; Cryo-EM structure of human XKR8-basigin complex in lipid nanodisc 8HF3 ; 3.4 ; Cryo-EM structure of human ZDHHC9/GCP16 complex 6XPD ; 3.8 ; Cryo-EM structure of human ZnT8 double mutant - D110N and D224N, determined in outward-facing conformation 6XPF ; 5.9 ; Cryo-EM structure of human ZnT8 WT, in the absence of zinc, determined in heterogeneous conformations- one subunit in an inward-facing and the other in an outward-facing conformation 6XPE ; 4.1 ; Cryo-EM structure of human ZnT8 WT, in the presence of zinc, determined in outward-facing conformation 7E1X ; 2.93 ; Cryo-EM structure of hybrid respiratory supercomplex consisting of Mycobacterium tuberculosis complexIII and Mycobacterium smegmatis complexIV in presence of TB47 7E1W ; 2.67 ; Cryo-EM structure of hybrid respiratory supercomplex consisting of Mycobacterium tuberculosis complexIII and Mycobacterium smegmatis complexIV in the presence of Q203 7QV7 ; 3.4 ; Cryo-EM structure of Hydrogen-dependent CO2 reductase. 8J80 ; 2.68 ; Cryo-EM structure of hZnT7-Fab complex in zinc state 1, determined in heterogeneous conformations- one subunit in an inward-facing zinc-bound and the other in an outward-facing zinc-unbound conformation 8J7W ; 2.92 ; Cryo-EM structure of hZnT7-Fab complex in zinc state 2, determined in heterogeneous conformations- one subunit in an inward-facing zinc-bound and the other in an outward-facing zinc-bound conformation 8J7U ; 3.12 ; Cryo-EM structure of hZnT7-Fab complex in zinc-bound state, determined in outward-facing conformation 8J7V ; 2.79 ; Cryo-EM structure of hZnT7-Fab complex in zinc-unbound state, determined in heterogeneous conformations- one subunit in an inward-facing and the other in an outward-facing conformation 8J7T ; 2.2 ; Cryo-EM structure of hZnT7-Fab complex in zinc-unbound state, determined in outward-facing conformation 8J7Y ; 3.4 ; Cryo-EM structure of hZnT7DeltaHis-loop-Fab complex in zinc-bound state, determined in outward-facing conformation 8J7X ; 3.4 ; Cryo-EM structure of hZnT7DeltaHis-loop-Fab complex in zinc-unbound state, determined in outward-facing conformation 6PR5 ; 3.3 ; Cryo-EM structure of HzTransib strand transfer complex (STC) 6PQR ; 3.4 ; Cryo-EM structure of HzTransib/intact TIR substrate DNA pre-reaction complex (PRC) 6PQX ; 4.6 ; Cryo-EM structure of HzTransib/nicked TIR substrate DNA hairpin forming complex (HFC) 6PQU ; 3.3 ; Cryo-EM structure of HzTransib/nicked TIR substrate DNA pre-reaction complex (PRC) 6PQY ; 4.2 ; Cryo-EM structure of HzTransib/TIR DNA transposon end complex (TEC) 8H2T ; 2.59 ; Cryo-EM structure of IadD/E dioxygenase bound with IAA 8Q63 ; 3.68 ; Cryo-EM structure of IC8', a second state of yeast mitochondrial RNA polymerase transcription initiation complex with 8-mer RNA, pppGpGpUpApApApUpG 2WWA ; 8.9 ; Cryo-EM structure of idle yeast Ssh1 complex bound to the yeast 80S ribosome 7YRR ; 4.3 ; Cryo-EM structure of IGF1R with two IGF1 complex 6IDK ; 25.0 ; Cryo-EM structure of Immature Dengue virus serotype 3 in complex with human antibody 1H10 Fab at pH 5.0 (Class I particle) 6IDL ; 25.0 ; Cryo-EM structure of Immature Dengue virus serotype 3 in complex with human antibody 1H10 Fab at pH 5.0 (Class II particle) 6IDI ; 12.0 ; Cryo-EM structure of Immature Dengue virus serotype 3 in complex with human antibody 1H10 Fab at pH 8.0. 6ZQW ; 7.8 ; Cryo-EM structure of immature Spondweni virus 5U4W ; 9.1 ; Cryo-EM Structure of Immature Zika Virus 6LNU ; 9.0 ; Cryo-EM structure of immature Zika virus 6LNT ; 8.0 ; Cryo-EM structure of immature Zika virus in complex with human antibody DV62.5 Fab 8GCN ; 3.95 ; CRYO-EM STRUCTURE OF IMPORTIN ALPHA1/BETA HETERODIMER 8DYO ; 7.1 ; Cryo-EM structure of Importin-4 bound to RanGTP 8F7A ; 3.78 ; Cryo-EM structure of Importin-9 bound to RanGTP 6H5Q ; 3.3 ; Cryo-EM structure of in vitro assembled Measles virus N into nucleocapsid-like particles (NCLPs) bound to polyA RNA hexamers. 7YMN ; 3.46 ; Cryo-EM structure of in vitro PHF fibril 8C83 ; 3.0 ; Cryo-EM structure of in vitro reconstituted Otu2-bound Ub-40S complex 8EAN ; 3.7 ; Cryo-EM structure of in-situ tailspike in bacteriophage P22 8J9O ; 3.4 ; Cryo-EM structure of inactive FZD1 7EPA ; 3.6 ; Cryo-EM structure of inactive mGlu2 homodimer 7EPD ; 3.9 ; Cryo-EM structure of inactive mGlu2-7 heterodimer 7WI8 ; 4.17 ; Cryo-EM structure of inactive mGlu3 bound to LY341495 7EPC ; 4.0 ; Cryo-EM structure of inactive mGlu7 homodimer 8DIU ; 2.61 ; Cryo-EM structure of influenza A virus A/Bayern/7/1995 hemagglutinin bound to CR6261 Fab 6WXB ; 2.9 ; Cryo-EM Structure of Influenza Hemagglutinin (HA) Trimer Vitrified Using Back-it-up 8H69 ; 3.7 ; Cryo-EM structure of influenza RNA polymerase 8SBD ; 3.2 ; Cryo-EM structure of insulin amyloid-like fibril that is composed of two antiparallel protofilaments 8DTM ; 3.5 ; Cryo-EM structure of insulin receptor (IR) bound with S597 component 2 8DTL ; 5.4 ; Cryo-EM structure of insulin receptor (IR) bound with S597 peptide 7TYM ; 3.4 ; Cryo-EM Structure of insulin receptor-related receptor (IRR) in active-state captured at pH 9. The 3D refinement was applied with C2 symmetry 7TYK ; 3.5 ; Cryo-EM Structure of insulin receptor-related receptor (IRR) in apo-state captured at pH 7. The 3D refinement was applied with C2 symmetry 7TYJ ; 3.3 ; Cryo-EM Structure of insulin receptor-related receptor (IRR) in apo-state captured at pH 7. The 3D refinement was focused on one of two halves with C1 symmetry applied 8IJ5 ; 3.0 ; Cryo-EM structure of Integrin AVB3 7X3V ; 3.09 ; Cryo-EM structure of IOC3-N2 nucleosome 8HBD ; 2.99 ; Cryo-EM structure of IRL1620-bound ETBR-Gi complex 6VCD ; 3.0 ; Cryo-EM structure of IRP2-FBXL5-SKP1 complex 5K10 ; 3.8 ; Cryo-EM structure of isocitrate dehydrogenase (IDH1) 5K11 ; 3.8 ; Cryo-EM structure of isocitrate dehydrogenase (IDH1) in inhibitor-bound state 7EBF ; 2.63 ; Cryo-EM structure of Isocitrate lyase-1 from Candida albicans 7X3W ; 3.1 ; Cryo-EM structure of ISW1-N1 nucleosome 7X3T ; 5.4 ; Cryo-EM structure of ISW1a-dinucleosome 7KNS ; 2.77 ; Cryo-EM structure of jack bean urease 6T23 ; 3.1 ; Cryo-EM structure of jasplakinolide-stabilized F-actin (aged) 6T24 ; 3.7 ; Cryo-EM structure of jasplakinolide-stabilized F-actin (aged) 5OOC ; 3.6 ; Cryo-EM structure of jasplakinolide-stabilized F-actin in complex with ADP 5OOD ; 3.7 ; Cryo-EM structure of jasplakinolide-stabilized F-actin in complex with ADP-Pi 5OGW ; 3.8 ; Cryo-EM structure of jasplakinolide-stabilized malaria parasite F-actin at near-atomic resolution 7CN0 ; 3.9 ; Cryo-EM structure of K+-bound hERG channel 7CN1 ; 3.7 ; Cryo-EM structure of K+-bound hERG channel in the presence of astemizole 8JEK ; 2.7 ; Cryo-EM Structure of K-ferricyanide Oxidized Membrane-bound Fructose Dehydrogenase from Gluconobacter japonicus 6XIR ; 3.2 ; Cryo-EM Structure of K63 Ubiquitinated Yeast Translocating Ribosome under Oxidative Stress 6XIQ ; 4.2 ; Cryo-EM Structure of K63R Ubiquitin Mutant Ribosome under Oxidative Stress 8F19 ; 3.49 ; Cryo-EM structure of Kap114 bound to Gsp1 (RanGTP) 8F1E ; 3.28 ; Cryo-EM structure of Kap114 bound to Gsp1 (RanGTP) and H2A-H2B 8F0X ; 3.21 ; Cryo-EM structure of Kap114 bound to H2A-H2B 8SGH ; 3.17 ; Cryo-EM structure of Karyopherin-beta2 bound to HNRNPH2 PY-NLS 8JKB ; 3.27 ; Cryo-EM structure of KCTD5 in complex with Gbeta gamma subunits 8I79 ; 2.8 ; Cryo-EM structure of KCTD7 in complex with Cullin3 7BH1 ; 3.38 ; Cryo-EM Structure of KdpFABC in E1 state with K 7LC6 ; 3.7 ; Cryo-EM Structure of KdpFABC in E2-P state with BeF3 7BH2 ; 3.0 ; Cryo-EM Structure of KdpFABC in E2Pi state with BeF3 and K+ 7BGY ; 2.9 ; Cryo-EM Structure of KdpFABC in E2Pi state with MgF4 8K20 ; 3.7 ; Cryo-EM structure of KEOPS complex from Arabidopsis thaliana 7RSQ ; 3.8 ; Cryo-EM structure of KIFBP core 7RYP ; 4.8 ; Cryo-EM structure of KIFBP:KIF15 7RS6 ; 4.1 ; Cryo-EM structure of Kip3 (AMPPNP) bound to GMPCPP-Stabilized Microtubules 7RS5 ; 3.9 ; Cryo-EM structure of Kip3 (AMPPNP) bound to Taxol-Stabilized Microtubules 7XY1 ; 3.3 ; Cryo-EM structure of Klebsiella phage Kp9 type I tail fiber gp42 in vitro 8IBN ; 3.03 ; Cryo-EM structure of KpFtsZ single filament 8H1O ; 2.67 ; Cryo-EM structure of KpFtsZ-monobody double helical tube 7ZT6 ; 3.5 ; Cryo-EM structure of Ku 70/80 bound to inositol hexakisphosphate 5YYS ; 4.2 ; Cryo-EM structure of L-fucokinase, GDP-fucose pyrophosphorylase (FKP)in Bacteroides fragilis 8EH5 ; 3.36 ; Cryo-EM structure of L9 Fab in complex with rsCSP 6Z6G ; 3.06 ; Cryo-EM structure of La Crosse virus polymerase at pre-initiation stage 5K0Z ; 2.8 ; Cryo-EM structure of lactate dehydrogenase (LDH) in inhibitor-bound state 7ZYY ; 2.12 ; Cryo-EM structure of Lactococcus lactis pyruvate carboxylase with acetyl-CoA 7ZZ8 ; 3.29 ; Cryo-EM structure of Lactococcus lactis pyruvate carboxylase with acetyl-CoA and cyclic di-AMP 5MBV ; 3.8 ; Cryo-EM structure of Lambda Phage protein GamS bound to RecBCD. 7PWG ; 2.75 ; Cryo-EM structure of large subunit of Giardia lamblia ribosome at 2.7 A resolution 6MUS ; 3.6 ; Cryo-EM structure of larger Csm-crRNA-target RNA ternary complex in type III-A CRISPR-Cas system 8IQ6 ; 3.4 ; Cryo-EM structure of Latanoprost-bound prostaglandin-F2-alpha receptor-miniGq-Nb35 complex 7OI6 ; 5.7 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 1 7OI7 ; 3.5 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 2 7OI8 ; 3.5 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 3A 7OI9 ; 3.3 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 3B 7OIA ; 3.2 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 3C 7OIB ; 3.3 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 3D 7OIC ; 3.1 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 4 7OID ; 3.7 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 5A 7OIE ; 3.5 ; Cryo-EM structure of late human 39S mitoribosome assembly intermediates, state 5B 6N8J ; 3.5 ; Cryo-EM structure of late nuclear (LN) pre-60S ribosomal subunit 6P7M ; 3.0 ; Cryo-EM structure of LbCas12a-crRNA: AcrVA4 (1:2 complex) 6P7N ; 4.9 ; Cryo-EM structure of LbCas12a-crRNA: AcrVA4 (2:2 complex) 7QH2 ; 2.43 ; Cryo-EM structure of Ldh-EtfAB complex from Acetobacterium woodii 8GUT ; 2.98 ; Cryo-EM structure of LEI-CB2-Gi complex 8A98 ; 2.46 ; CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : snoRNA MUTANT 8A3W ; 2.89 ; CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : WILD TYPE 7WHR ; 3.4 ; Cryo-EM Structure of Leishmanial GDP-mannose pyrophosphorylase 7WHT ; 3.5 ; Cryo-EM Structure of Leishmanial GDP-mannose pyrophosphorylase in complex with GDP-Mannose 7WHS ; 3.1 ; Cryo-EM Structure of Leishmanial GDP-mannose pyrophosphorylase in complex with GTP 8HN8 ; 3.0 ; Cryo-EM structure of ligand histamine-bound Histamine H4 receptor Gi complex 8HOC ; 3.0 ; Cryo-EM structure of ligand histamine-bound Histamine H4 receptor Gi complex 7LD0 ; 3.1 ; Cryo-EM structure of ligand-free Human SARM1 7PBW ; 2.1 ; Cryo-EM structure of light harvesting complex 2 from Rba. sphaeroides. 8A5I ; 2.3 ; Cryo-EM structure of Lincomycin bound to the Listeria monocytogenes 50S ribosomal subunit. 6BAJ ; 3.2 ; Cryo-EM structure of lipid bilayer in the native cell membrane nanoparticles of AcrB 6MLU ; 4.0 ; Cryo-EM structure of lipid droplet formation protein Seipin/BSCL2 8A63 ; 3.1 ; Cryo-EM structure of Listeria monocytogenes 50S ribosomal subunit. 7VLY ; 2.45 ; Cryo-EM structure of Listeria monocytogenes man-PTS complexed with pediocin PA-1 7XTG ; 2.2 ; Cryo-EM structure of Listeria monocytogenes man-PTS complexed with pediocin PA-1 7LPN ; 3.61 ; Cryo-EM structure of llama J3 VHH antibody in complex with HIV-1 Env BG505 DS-SOSIP.664 8U4B ; 3.9 ; Cryo-EM structure of long form insulin receptor (IR-B) in the apo state 8U4C ; 3.6 ; Cryo-EM structure of long form insulin receptor (IR-B) with four IGF2 bound, symmetric conformation. 8U4E ; 4.2 ; Cryo-EM structure of long form insulin receptor (IR-B) with three IGF2 bound, asymmetric conformation. 8IU2 ; 3.35 ; Cryo-EM structure of Long-wave-sensitive opsin 1 7XV3 ; 2.76 ; Cryo-EM structure of LPS-bound GPR174 in complex with Gs protein 6S8H ; 3.7 ; Cryo-EM structure of LptB2FG in complex with LPS 6S8G ; 3.5 ; Cryo-EM structure of LptB2FGC in complex with AMP-PNP 6S8N ; 3.1 ; Cryo-EM structure of LptB2FGC in complex with lipopolysaccharide 8EM7 ; 2.97 ; Cryo-EM structure of LRP2 at pH 5.2 8EM4 ; 2.83 ; Cryo-EM structure of LRP2 at pH 7.5 8U7H ; 3.8 ; Cryo-EM structure of LRRK2 bound to type I inhibitor GNE-7915 8FO7 ; 3.52 ; Cryo-EM structure of LRRK2 bound to type I inhibitor LRRK2-IN-1 8U7L ; 3.6 ; Cryo-EM structure of LRRK2 bound to type II inhibitor GZD824 8U8A ; 3.4 ; Cryo-EM structure of LRRK2 bound to type II inhibitor ponatinib 8U8B ; 3.7 ; Cryo-EM structure of LRRK2 bound to type II inhibitor rebastinib 8SMC ; 4.02 ; Cryo-EM structure of LRRK2 bound with type-I inhibitor DNL201 6N8N ; 3.8 ; Cryo-EM structure of Lsg1-engaged (LE) pre-60S ribosomal subunit 7DMQ ; 3.06 ; Cryo-EM structure of LshCas13a-crRNA-anti-tag RNA complex 7VKT ; 2.9 ; cryo-EM structure of LTB4-bound BLT1 in complex with Gi protein 8F25 ; 2.6 ; Cryo-EM structure of Lumazine synthase nanoparticle linked to VP8* antigen 7WIH ; 3.68 ; Cryo-EM structure of LY2794193-bound mGlu3 7WI6 ; 3.71 ; Cryo-EM structure of LY341495/NAM-bound mGlu3 7EPB ; 3.1 ; Cryo-EM structure of LY354740-bound mGlu2 homodimer 8XOF ; 2.6 ; Cryo-EM structure of Lys05 bound GPR30-Gq complex structure 6VY2 ; 4.86 ; Cryo-EM structure of M1214_N1 Fab in complex with CH505 TF chimeric SOSIP.664 Env trimer 7RAI ; 3.24 ; Cryo-EM structure of M4008_N1 Fab in complex with BG505 DS-SOSIP.664 Env trimer 7VH1 ; 4.2 ; Cryo-EM structure of Machupo virus dimeric L-Z complex 7VH2 ; 5.1 ; Cryo-EM structure of Machupo virus dimeric polymerase L 7VH3 ; 3.6 ; Cryo-EM structure of Machupo virus polymerase L 7VGQ ; 4.0 ; Cryo-EM structure of Machupo virus polymerase L in complex with matrix protein Z 8UH4 ; 3.72 ; Cryo-EM structure of Maize Streak Virus (MSV) - single head Geminivirus 7KVC ; 4.7 ; Cryo-EM structure of Mal de Rio Cuarto virus P9-1 viroplasm protein (decamer) 7KVD ; 6.8 ; Cryo-EM structure of Mal de Rio Cuarto virus P9-1 viroplasm protein (dodecamer) 8YBE ; 2.3 ; Cryo-EM structure of Maltose Binding Protein 5WPV ; 3.59 ; Cryo-EM structure of mammalian endolysosomal TRPML1 channel in nanodiscs at 3.59 Angstrom resolution 5WPQ ; 3.64 ; Cryo-EM structure of mammalian endolysosomal TRPML1 channel in nanodiscs in closed I conformation at 3.64 Angstrom resolution 5WPT ; 3.75 ; Cryo-EM structure of mammalian endolysosomal TRPML1 channel in nanodiscs in closed II conformation at 3.75 Angstrom resolution 5GUP ; 4.0 ; Cryo-EM structure of mammalian respiratory supercomplex I1III2IV1 6UKT ; 3.87 ; Cryo-EM structure of mammalian Ric-8A:Galpha(i):nanobody complex 7B7U ; 2.8 ; Cryo-EM structure of mammalian RNA polymerase II in complex with human RPAP2 7BZO ; 3.2 ; Cryo-EM structure of mature Coxsackievirus A10 at pH 5.5 7BZN ; 3.1 ; Cryo-EM structure of mature Coxsackievirus A10 at pH 7.4 7BZU ; 3.0 ; Cryo-EM structure of mature Coxsackievirus A10 in complex with KRM1 at pH 5.5 7BZT ; 3.0 ; Cryo-EM structure of mature Coxsackievirus A10 in complex with KRM1 at pH 7.4 6ZQU ; 3.1 ; Cryo-EM structure of mature Dengue virus 2 at 3.1 angstrom resolution 6ZQV ; 2.6 ; Cryo-EM structure of mature Spondweni virus 3J6C ; 9.6 ; Cryo-EM structure of MAVS CARD filament 7TB3 ; 2.57 ; cryo-EM structure of MBP-KIX-apoferritin 7TBH ; 2.3 ; cryo-EM structure of MBP-KIX-apoferritin complex with peptide 7 7W8G ; 2.52 ; Cryo-EM structure of MCM double hexamer 7V3V ; 2.9 ; Cryo-EM structure of MCM double hexamer bound with DDK in State I 7V3U ; 3.2 ; Cryo-EM structure of MCM double hexamer with structured Mcm4-NSD 5BK4 ; 3.9 ; Cryo-EM structure of Mcm2-7 double hexamer on dsDNA 7JL2 ; 4.3 ; Cryo-EM structure of MDA5-dsRNA filament in complex with TRIM65 PSpry domain (Trimer) 7JL0 ; 4.3 ; Cryo-EM structure of MDA5-dsRNA in complex with TRIM65 PSpry domain (Monomer) 7WZW ; 4.0 ; Cryo-EM structure of MEC1-DDC2-MMS 7WZR ; 4.7 ; Cryo-EM structure of Mec1-HU 6VYL ; 3.4 ; Cryo-EM structure of mechanosensitive channel MscS in PC-10 nanodiscs 6VYK ; 3.2 ; Cryo-EM structure of mechanosensitive channel MscS in PC-18:1 nanodiscs 6VYM ; 3.7 ; Cryo-EM structure of mechanosensitive channel MscS in PC-18:1 nanodiscs treated with beta-cyclodextran 6UZH ; 3.3 ; Cryo-EM structure of mechanosensitive channel MscS reconstituted into peptidiscs 7OJ5 ; 2.4 ; Cryo-EM structure of Medicago truncatula HISN5 protein 8GY2 ; 2.5 ; Cryo-EM Structure of Membrane-Bound Alcohol Dehydrogenase from Gluconobacter oxydans 8GY3 ; 2.7 ; Cryo-EM Structure of Membrane-Bound Aldehyde Dehydrogenase from Gluconobacter oxydans 7W2J ; 3.6 ; Cryo-EM Structure of Membrane-bound Fructose Dehydrogenase from Gluconobacter japonicus 7WSQ ; 3.8 ; Cryo-EM Structure of Membrane-bound Fructose Dehydrogenase from Gluconobacter japonicus 7YN0 ; 4.1 ; Cryo-EM structure of MERS-CoV spike protein, all RBD-down conformation 7YMZ ; 4.39 ; Cryo-EM structure of MERS-CoV spike protein, intermediate conformation 7YMY ; 4.96 ; Cryo-EM structure of MERS-CoV spike protein, One RBD-up conformation 1 7YMX ; 4.44 ; Cryo-EM structure of MERS-CoV spike protein, One RBD-up conformation 2 7YMW ; 6.05 ; Cryo-EM structure of MERS-CoV spike protein, One RBD-up conformation 4 7YMV ; 6.74 ; Cryo-EM structure of MERS-CoV spike protein, Two RBD-up conformation 1 7YMT ; 6.55 ; Cryo-EM structure of MERS-CoV spike protein, Two RBD-up conformation 2 7TC8 ; 2.4 ; Cryo-EM structure of methane monooxygenase hydroxylase (by graphene) 7TC7 ; 2.9 ; Cryo-EM structure of methane monooxygenase hydroxylase (by quantifoil) 5Z1L ; 4.0 ; Cryo-EM structure of Methanoccus maripaludis archaellum 8TFC ; 6.9 ; Cryo-EM structure of Methanosarcina mazie glutamine synthetase captured as partial oligomer 7N98 ; 3.5 ; Cryo-EM structure of MFSD2A 8JCU ; 2.8 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495 (dimerization mode I) 8JCV ; 3.4 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495 (dimerization mode II) 8JCW ; 3.0 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495 and NAM563 (dimerization mode I) 8JCX ; 3.0 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495 and NAM563 (dimerization mode II) 8JCY ; 2.9 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495, NAM563, and LY2389575 (dimerization mode I) 8JCZ ; 3.0 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of LY341495, NAM563, and LY2389575 (dimerization mode III) 8JD0 ; 3.3 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in presence of NAM563 8JD1 ; 3.7 ; Cryo-EM structure of mGlu2-mGlu3 heterodimer in Rco state 6MLQ ; 4.2 ; Cryo-EM structure of microtubule-bound Kif7 in the ADP state 6MLR ; 4.2 ; Cryo-EM structure of microtubule-bound Kif7 in the AMPPNP state 6VPO ; 4.4 ; Cryo-EM structure of microtubule-bound KLP61F motor domain in the AMPPNP state 6VPP ; 4.4 ; Cryo-EM structure of microtubule-bound KLP61F motor with tail domain in the nucleotide-free state 8IEC ; 3.18 ; Cryo-EM structure of miniGo-scFv16 of GPR156-miniGo-scFv16 complex (local refine) 7MZ9 ; 3.18 ; Cryo-EM structure of minimal TRPV1 with 1 partially bound RTX 7MZ6 ; 2.91 ; Cryo-EM structure of minimal TRPV1 with 1 perturbed PI 7MZA ; 3.46 ; Cryo-EM structure of minimal TRPV1 with 2 bound RTX in adjacent pockets 7MZE ; 3.42 ; Cryo-EM structure of minimal TRPV1 with 2 bound RTX in opposite pockets 7MZB ; 3.72 ; Cryo-EM structure of minimal TRPV1 with 3 bound RTX and 1 perturbed PI 7MZ7 ; 3.35 ; Cryo-EM structure of minimal TRPV1 with 4 partially bound RTX 7MZC ; 3.03 ; Cryo-EM structure of minimal TRPV1 with RTX bound in C1 state 7MZD ; 2.9 ; Cryo-EM structure of minimal TRPV1 with RTX bound in C2 state 8T21 ; 3.6 ; Cryo-EM structure of mink variant Y453F trimeric spike protein 8TAZ ; 3.75 ; Cryo-EM structure of mink variant Y453F trimeric spike protein bound to one mink ACE2 receptors 8T22 ; 3.83 ; Cryo-EM structure of mink variant Y453F trimeric spike protein bound to one mink ACE2 receptors at downRBD conformation 8T20 ; 3.36 ; Cryo-EM structure of mink variant Y453F trimeric spike protein bound to two mink ACE2 receptors 6WDO ; 3.6 ; Cryo-EM structure of mitochondrial calcium uniporter holocomplex in high Ca2+ 6WDN ; 3.2 ; Cryo-EM structure of mitochondrial calcium uniporter holocomplex in low Ca2+ 7B93 ; 3.04 ; Cryo-EM structure of mitochondrial complex I from Mus musculus inhibited by IACS-2858 at 3.0 A 7U5I ; 3.26 ; Cryo-EM Structure of Mitochondrial Creatine Kinase 8JZ7 ; 2.6 ; Cryo-EM structure of MK-6892-bound HCAR2 in complex with Gi protein 6ZY4 ; 4.1 ; Cryo-EM structure of MlaFEDB in complex with ADP 6ZY9 ; 3.3 ; Cryo-EM structure of MlaFEDB in complex with AMP-PNP 6ZY3 ; 3.3 ; Cryo-EM structure of MlaFEDB in complex with phospholipid 6XBD ; 3.05 ; Cryo-EM structure of MlaFEDB in nanodiscs with phospholipid substrates 8B9L ; 3.45 ; Cryo-EM structure of MLE 8B9J ; 3.45 ; Cryo-EM structure of MLE in complex with ADP:AlF4 8B9K ; 4.04 ; Cryo-EM structure of MLE in complex with ADP:AlF4 and SL7modUUC RNA 8B9G ; 2.86 ; Cryo-EM structure of MLE in complex with ADP:AlF4 and U10 RNA 8B9I ; 2.95 ; Cryo-EM structure of MLE in complex with ADP:AlF4 and UUC RNA 8PJJ ; 4.24 ; Cryo-EM structure of MLE in complex with SL7UUC RNA and ADP 8PJB ; 3.62 ; Cryo-EM structure of MLE in complex with UUC RNA and ADP 6PWV ; 6.2 ; Cryo-EM structure of MLL1 core complex bound to the nucleosome 6PWW ; 4.4 ; Cryo-EM structure of MLL1 in complex with RbBP5 and WDR5 bound to the nucleosome 6W5I ; 6.9 ; Cryo-EM structure of MLL1 in complex with RbBP5, WDR5, SET1, and ASH2L bound to the nucleosome (Class01) 6W5M ; 4.6 ; Cryo-EM structure of MLL1 in complex with RbBP5, WDR5, SET1, and ASH2L bound to the nucleosome (Class02) 6W5N ; 6.0 ; Cryo-EM structure of MLL1 in complex with RbBP5, WDR5, SET1, and ASH2L bound to the nucleosome (Class05) 7MBM ; ; Cryo-EM structure of MLL1-NCP (H3K4M) complex, mode01 7MBN ; ; Cryo-EM structure of MLL1-NCP (H3K4M) complex, mode02 8JIM ; 2.98 ; Cryo-EM structure of MMF bound ketone body receptor HCAR2-Gi signaling complex 8QKK ; 3.23 ; Cryo-EM structure of MmpL3 from Mycobacterium smegmatis reconstituted into peptidiscs 8HOY ; 2.76 ; Cryo-EM structure of monkeypox virus DNA replication holoenzyme F8, A22 and E4 complex without DNA at 2.76 angostram 8IFK ; 2.54 ; Cryo-EM structure of monomeric SPARTA gRNA-ssDNA target complex 7RTV ; 3.96 ; Cryo-EM structure of monomeric TTYH2 6RW9 ; 3.27 ; Cryo-EM structure of Morganella morganii TcdA4 7SQ6 ; 2.32 ; Cryo-EM structure of mouse agonist ML-SA1-bound TRPML1 channel at 2.32 Angstrom resolution 7SQ8 ; 2.598 ; Cryo-EM structure of mouse apo TRPML1 channel at 2.598 Angstrom resolution 8IVQ ; 3.6 ; Cryo-EM structure of mouse BIRC6, Global map 6RZB ; 4.1 ; Cryo-EM structure of mouse cytoplasmic dynein-1 microtubule binding domain bound to microtubules 8AVG ; 4.01 ; Cryo-EM structure of mouse Elp123 with bound SAM 8RQB ; 1.09 ; Cryo-EM structure of mouse heavy-chain apoferritin 7A4M ; 1.22 ; Cryo-EM structure of mouse heavy-chain apoferritin at 1.22 A 8BK9 ; 2.1 ; Cryo-EM structure of mouse heavy-chain apoferritin at 2.1 A plunged 5ms after mixing with b-galactosidase 8BKB ; 2.2 ; Cryo-EM structure of mouse heavy-chain apoferritin at 2.2 A plunged 205ms after mixing with b-galactosidase 8BKA ; 2.7 ; Cryo-EM structure of mouse heavy-chain apoferritin at 2.7 A plunged 35ms after mixing with b-galactosidase 7VTQ ; 3.55 ; Cryo-EM structure of mouse NLRP3 (full-length) dodecamer 8A3B ; 3.1 ; Cryo-EM structure of mouse Pannexin 1 purified in Salipro nanoparticles 7SQ7 ; 2.41 ; Cryo-EM structure of mouse PI(3,5)P2-bound TRPML1 channel at 2.41 Angstrom resolution 8IMZ ; 3.66 ; Cryo-EM structure of mouse Piezo1-MDFIC complex (composite map) 8DJA ; 3.92 ; Cryo-EM structure of mouse PrP23-144 amyloid fibrils (polymorph 1) 6OEP ; 3.7 ; Cryo-EM structure of mouse RAG1/2 12RSS-NFC/23RSS-PRC complex (DNA1) 6OEQ ; 4.3 ; Cryo-EM structure of mouse RAG1/2 12RSS-PRC/23RSS-NFC complex (DNA1) 6CG0 ; 3.17 ; Cryo-EM structure of mouse RAG1/2 HFC complex (3.17 A) 6CIJ ; 3.9 ; Cryo-EM structure of mouse RAG1/2 HFC complex containing partial HMGB1 linker(3.9 A) 6OEO ; 3.69 ; Cryo-EM structure of mouse RAG1/2 NFC complex (DNA1) 6OER ; 3.29 ; Cryo-EM structure of mouse RAG1/2 NFC complex (DNA2) 6OEM ; 3.6 ; Cryo-EM structure of mouse RAG1/2 PRC complex (DNA0) 6OEN ; 4.3 ; Cryo-EM structure of mouse RAG1/2 PRC complex (DNA1) 6OET ; 3.4 ; Cryo-EM structure of mouse RAG1/2 STC complex 6OES ; 3.06 ; Cryo-EM structure of mouse RAG1/2 STC complex (without NBD domain) 7SQ9 ; 2.11 ; Cryo-EM structure of mouse temsirolimus/PI(3,5)P2-bound TRPML1 channel at 2.11 Angstrom resolution 7C77 ; 3.3 ; Cryo-EM structure of mouse TLR3 in complex with UNC93B1 6C96 ; 3.4 ; Cryo-EM structure of mouse TPC1 channel in the apo state 6C9A ; 3.2 ; Cryo-EM structure of mouse TPC1 channel in the PtdIns(3,5)P2-bound state 6DVW ; 4.3 ; Cryo-EM structure of mouse TRPV3 6PVL ; 4.4 ; Cryo-EM structure of mouse TRPV3 in closed state at 42 degrees Celsius 6DVY ; 4.0 ; Cryo-EM structure of mouse TRPV3 in complex with 2-Aminoethoxydiphenyl borate (2-APB) 6PVM ; 4.5 ; Cryo-EM structure of mouse TRPV3 in putative sensitized state at 42 degrees Celsius 6DVZ ; 4.24 ; Cryo-EM structure of mouse TRPV3-Y564A in complex with 2-Aminoethoxydiphenyl borate (2-APB) 6PVQ ; 4.75 ; Cryo-EM structure of mouse TRPV3-Y564A in intermediate state at 37 degrees Celsius 6PVP ; 4.48 ; Cryo-EM structure of mouse TRPV3-Y564A in open state at 37 degrees Celsius 6PVO ; 5.18 ; Cryo-EM structure of mouse TRPV3-Y564A in putative sensitized state at 37 degrees Celsius 6PVN ; 4.07 ; Cryo-EM structure of mouse TRPV3-Y564A in putative sensitized state at 4 degrees Celsius 6V0V ; 3.61 ; Cryo-EM structure of mouse WT RAG1/2 NFC complex (DNA0) 8HXC ; 3.12 ; Cryo-EM structure of MPXV M2 heptamer in complex with human B7.2 8HXB ; 2.7 ; Cryo-EM structure of MPXV M2 hexamer in complex with human B7.2 8HXA ; 3.04 ; Cryo-EM structure of MPXV M2 in complex with human B7.1 7Y12 ; 3.1 ; Cryo-EM structure of MrgD-Gi complex with beta-alanine 7Y14 ; 3.2 ; Cryo-EM structure of MrgD-Gi complex with beta-alanine (local) 5TTP ; 4.8 ; Cryo-EM structure of MsbA-nanodisc with ADP-vanadate 5Y4O ; 3.8 ; Cryo-EM structure of MscS channel, YnaI 8CT4 ; 2.17 ; Cryo-EM structure of Mtb Lpd bound to inhibitor complex with 2-((2-cyano-N,5-dimethyl-1H-indole)-7-sulfonamido)-N-(4-(oxetan-3-yl)-3,4-dihydro-2H-benzo[b] [1,4]oxazin-7-yl)acetamide 7XM1 ; 3.96 ; Cryo-EM structure of mTIP60-Ba (metal-ion induced TIP60 (K67E) complex with barium ions 5H64 ; 4.4 ; Cryo-EM structure of mTORC1 6SB2 ; 6.2 ; cryo-EM structure of mTORC1 bound to active RagA/C GTPases 6SB0 ; 5.5 ; cryo-EM structure of mTORC1 bound to PRAS40-fused active RagA/C GTPases 6IZL ; 3.3 ; Cryo-EM structure of Mud crab tombus-like virus at 3.3 Angstroms resolution 6IOK ; 3.64 ; Cryo-EM structure of multidrug efflux pump MexAB-OprM (0 degree state) 6IOL ; 3.76 ; Cryo-EM structure of multidrug efflux pump MexAB-OprM (60 degree state) 6DSO ; 3.0 ; Cryo-EM structure of murine AA amyloid fibril 7RPH ; 2.5 ; Cryo-EM structure of murine Dispatched 'R' conformation 7RPI ; 2.5 ; Cryo-EM structure of murine Dispatched 'T' conformation 7RPK ; 2.7 ; Cryo-EM structure of murine Dispatched in complex with Sonic hedgehog 7RPJ ; 3.2 ; Cryo-EM structure of murine Dispatched NNN mutant 6S6L ; 3.1 ; Cryo-EM structure of murine norovirus (MNV-1) 6IUK ; 3.5 ; Cryo-EM structure of Murine Norovirus capsid 8U18 ; 3.6 ; Cryo-EM structure of murine Thrombopoietin receptor ectodomain in complex with Tpo 6DZI ; 3.46 ; Cryo-EM Structure of Mycobacterium smegmatis 70S C(minus) ribosome 70S-MPY complex 7BVG ; 3.1 ; Cryo-EM structure of Mycobacterium smegmatis arabinosyltransferase EmbA-EmbB-AcpM2 in complex with di-arabinose. 7BVC ; 2.9 ; Cryo-EM structure of Mycobacterium smegmatis arabinosyltransferase EmbA-EmbB-AcpM2 in complex with ethambutol 7BVE ; 2.81 ; Cryo-EM structure of Mycobacterium smegmatis arabinosyltransferase EmbC2-AcpM2 in complex with ethambutol 6DZK ; 3.6 ; Cryo-EM Structure of Mycobacterium smegmatis C(minus) 30S ribosomal subunit with MPY 6DZP ; 3.42 ; Cryo-EM Structure of Mycobacterium smegmatis C(minus) 50S ribosomal subunit 7LHL ; 3.6 ; cryo-EM structure of Mycobacterium smegmatis Lhr helicase C-terminal domain 7WNX ; 3.36 ; Cryo-EM structure of Mycobacterium smegmatis MmpL3 complexed with ST004 in lipid nanodiscs 7F0D ; 3.3 ; Cryo-EM structure of Mycobacterium tuberculosis 50S ribosome subunit bound with clarithromycin 8IGQ ; 5.7 ; Cryo-EM structure of Mycobacterium tuberculosis ADP bound FtsEX/RipC complex in peptidisc 7BVF ; 2.97 ; Cryo-EM structure of Mycobacterium tuberculosis arabinosyltransferase EmbA-EmbB-AcpM2 in complex with ethambutol 8JIA ; 3.9 ; Cryo-EM structure of Mycobacterium tuberculosis ATP bound FtsE(E165Q)X/RipC complex in peptidisc 8IDD ; 4.0 ; Cryo-EM structure of Mycobacterium tuberculosis ATP bound FtsEX/RipC complex in peptidisc 7PHM ; 2.2 ; Cryo-EM structure of Mycobacterium tuberculosis encapsulin 8IDB ; 3.9 ; Cryo-EM structure of Mycobacterium tuberculosis FtsEX complex in peptidisc 8IDC ; 3.9 ; Cryo-EM structure of Mycobacterium tuberculosis FtsEX/RipC complex in peptidisc 7WIW ; 3.12 ; Cryo-EM structure of Mycobacterium tuberculosis irtAB complexed with ATP in an occluded conformation 7WIX ; 3.53 ; Cryo-EM structure of Mycobacterium tuberculosis irtAB in complex with ADP 7WIV ; 2.88 ; Cryo-EM structure of Mycobacterium tuberculosis irtAB in complex with an AMP-PNP 7WIU ; 3.48 ; Cryo-EM structure of Mycobacterium tuberculosis irtAB in inward-facing state 8JA7 ; 3.02 ; Cryo-EM structure of Mycobacterium tuberculosis LpqY-SugABC in complex with trehalose 8J5T ; 2.98 ; Cryo-EM structure of Mycobacterium tuberculosis OppABCD in the catalytic intermediate state 8J5S ; 3.0 ; Cryo-EM structure of Mycobacterium tuberculosis OppABCD in the pre-catalytic intermediate state 8J5Q ; 3.25 ; Cryo-EM structure of Mycobacterium tuberculosis OppABCD in the pre-translocation state 8J5R ; 3.28 ; Cryo-EM structure of Mycobacterium tuberculosis OppABCD in the resting state 7Z8Q ; 4.08 ; Cryo-EM structure of Mycobacterium tuberculosis RNA polymerase core 7PP4 ; 3.84 ; Cryo-EM structure of Mycobacterium tuberculosis RNA polymerase holoenzyme comprising sigma factor SigB 7Q59 ; 4.36 ; Cryo-EM structure of Mycobacterium tuberculosis RNA polymerase holoenzyme dimer comprising sigma factor SigB 7Q4U ; 4.39 ; Cryo-EM structure of Mycobacterium tuberculosis RNA polymerase holoenzyme octamer comprising sigma factor SigB 8HIH ; 3.66 ; Cryo-EM structure of Mycobacterium tuberculosis transcription initiation complex with transcription factor GlnR 8W41 ; 3.54 ; Cryo-EM structure of Myosin VI in the autoinhibited state 8E2G ; 2.99 ; Cryo-EM structure of N-terminal arm (aa68-966) of BIRC6 (from local refinement 3) 8E2F ; 2.47 ; Cryo-EM structure of N-terminal arm of BIRC6 (from local refinement 2) 7WBJ ; 3.42 ; Cryo-EM structure of N-terminal modified human vasoactive intestinal polypeptide receptor 2 (VIP2R) in complex with PACAP27 and Gs 7OMM ; 3.4 ; Cryo-EM structure of N. gonorhoeae LptDE in complex with ProMacrobodies (MBPs have not been built de novo) 7X3X ; 3.2 ; Cryo-EM structure of N1 nucleosome-RA 8K1L ; 3.44 ; Cryo-EM structure of Na+,K+-ATPase alpha2 from Artemia salina in cation-free E2P form 8JFZ ; 3.5 ; Cryo-EM structure of Na+,K+-ATPase in the E1.Mg2+ state. 7WYU ; 3.4 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by ATP 7WYV ; 3.7 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by ATP in the presence of 40 mM Mg2+ 7WYX ; 3.4 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by ATP with istaroxime 7WYZ ; 3.4 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by ATP with ouabain 7WYW ; 3.8 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by inorganic phosphate 7WYY ; 3.9 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by inorganic phosphate with istaroxime 7WZ0 ; 3.0 ; Cryo-EM structure of Na+,K+-ATPase in the E2P state formed by inorganic phosphate with ouabain 7XK3 ; 3.1 ; Cryo-EM structure of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, state 1 7XK4 ; 3.1 ; Cryo-EM structure of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, state 2 7XK5 ; 3.1 ; Cryo-EM structure of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, state 3 7XK6 ; 3.0 ; Cryo-EM structure of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, with aurachin D-42 7XK7 ; 2.9 ; Cryo-EM structure of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae, with korormicin 8JEJ ; 2.5 ; Cryo-EM Structure of Na-dithionite Reduced Membrane-bound Fructose Dehydrogenase from Gluconobacter japonicus 8C54 ; 2.52 ; Cryo-EM structure of NADH bound SLA dehydrogenase RlGabD from Rhizobium leguminosarum bv. trifolii SRD1565 6TG9 ; 3.24 ; Cryo-EM Structure of NADH reduced form of NAD+-dependent Formate Dehydrogenase from Rhodobacter capsulatus 8B6F ; 2.8 ; Cryo-EM structure of NADH:ubiquinone oxidoreductase (complex-I) from respiratory supercomplex of Tetrahymena thermophila 8I41 ; 3.42 ; Cryo-EM structure of nanodisc (asolectin) reconstituted GLIC at pH 7.5 8I42 ; 2.92 ; Cryo-EM structure of nanodisc (PE:PS:PC) reconstituted GLIC at pH 7.5 7RRA ; 4.4 ; Cryo-EM Structure of Nanodisc reconstituted ABCD1 in inward open conformation 7RR9 ; 3.5 ; Cryo-EM Structure of Nanodisc reconstituted ABCD1 in nucleotide bound outward open conformation 8EOP ; 3.7 ; Cryo-EM Structure of Nanodisc reconstituted human ABCA7 EQ mutant in ATP bound closed state 6SNI ; 3.0 ; Cryo-EM structure of nanodisc reconstituted yeast ALG6 in complex with 6AG9 Fab 7TDT ; 4.0 ; Cryo-EM structure of nanodisc-embedded human ABCA1 8BWO ; 3.2 ; Cryo-EM structure of nanodisc-reconstituted human MRP4 with E1202Q mutation (outward-facing occluded conformation) 8BWP ; 3.6 ; Cryo-EM structure of nanodisc-reconstituted wildtype human MRP4 (in complex with methotrexate) 8BWR ; 4.0 ; Cryo-EM structure of nanodisc-reconstituted wildtype human MRP4 (in complex with prostaglandin E2) 8BWQ ; 3.9 ; Cryo-EM structure of nanodisc-reconstituted wildtype human MRP4 (in complex with topotecan) 8BJF ; 3.0 ; Cryo-EM structure of nanodisc-reconstituted wildtype human MRP4 (inward-facing conformation) 8WU4 ; 3.3 ; Cryo-EM structure of native H. thermoluteolus TH-1 GroEL 7Q5Z ; 3.25 ; Cryo-EM structure of native human A2ML1 8WA2 ; 3.0 ; cryo-EM structure of native mastigonemes isolated from Chlamydomonas reinhardtii at 3.0 angstrom resolution 8FJP ; 3.3 ; Cryo-EM structure of native mosquito salivary gland surface protein 1 (SGS1) 8CAH ; 3.0 ; Cryo-EM structure of native Otu2-bound ubiquitinated 43S pre-initiation complex 8CAS ; 3.3 ; Cryo-EM structure of native Otu2-bound ubiquitinated 48S initiation complex (partial) 8R2I ; 2.9 ; Cryo-EM Structure of native Photosystem II assembly intermediate from Chlamydomonas reinhardtii 8HJU ; 2.8 ; Cryo-EM structure of native RC-LH complex from Roseiflexus castenholzii at 10,000 lux 8J5O ; 2.9 ; Cryo-EM structure of native RC-LH complex from Roseiflexus castenholzii at 100lux 8J5P ; 3.1 ; Cryo-EM structure of native RC-LH complex from Roseiflexus castenholzii at 2,000lux 8GI2 ; 3.0 ; Cryo-EM structure of Natrinema sp. J7-2 Type IV pilus 7EG4 ; 3.2 ; Cryo-EM structure of nauclefine-induced PDE3A-SLFN12 complex 8G1A ; 2.8 ; Cryo-EM structure of Nav1.7 with CBD 8S9C ; 3.2 ; Cryo-EM structure of Nav1.7 with CBZ 8S9B ; 2.9 ; Cryo-EM structure of Nav1.7 with LCM 8THH ; 2.7 ; Cryo-EM structure of Nav1.7 with LTG 8THG ; 2.9 ; Cryo-EM structure of Nav1.7 with RLZ 7YMH ; 3.52 ; Cryo-EM structure of Nb29-alpha1AAR-miniGsq complex bound to noradrenaline 7YM8 ; 2.92 ; Cryo-EM structure of Nb29-alpha1AAR-miniGsq complex bound to oxymetazoline 6R93 ; 4.0 ; Cryo-EM structure of NCP-6-4PP 6R8Y ; 4.3 ; Cryo-EM structure of NCP-6-4PP(-1)-UV-DDB 6R90 ; 4.5 ; Cryo-EM structure of NCP-THF2(+1)-UV-DDB class A 6R92 ; 4.8 ; Cryo-EM structure of NCP-THF2(+1)-UV-DDB class B 6R8Z ; 3.9 ; Cryo-EM structure of NCP_THF2(-1)-UV-DDB 6R94 ; 3.5 ; Cryo-EM structure of NCP_THF2(-3) 6R91 ; 4.1 ; Cryo-EM structure of NCP_THF2(-3)-UV-DDB 7AK6 ; 3.82 ; Cryo-EM structure of ND6-P25L mutant respiratory complex I from Mus musculus at 3.8 A 8WQG ; 4.09 ; cryo-EM structure of neddylated CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CCDC89 (conformation 1) 8WQH ; 3.44 ; cryo-EM structure of neddylated CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CCDC89 (conformation 2) 8WQC ; 3.54 ; cryo-EM structure of neddylated CUL2-RBX1-ELOB-ELOC-FEM1B bound with the C-degron of CDK5R1 8JE2 ; 3.63 ; Cryo-EM structure of neddylated Cul2-Rbx1-EloBC-FEM1B complexed with FNIP1-FLCN 7X9A ; 3.2 ; Cryo-EM structure of neuropeptide Y Y1 receptor in complex with NPY and Gi 7X9B ; 3.4 ; Cryo-EM structure of neuropeptide Y Y2 receptor in complex with NPY and Gi 7X9C ; 3.0 ; Cryo-EM structure of neuropeptide Y Y4 receptor in complex with PP and Gi 7LS9 ; 3.42 ; Cryo-EM structure of neutralizing antibody 1-57 in complex with prefusion SARS-CoV-2 spike glycoprotein 7NFC ; 4.14 ; Cryo-EM structure of NHEJ super-complex (dimer) 7NFE ; 4.29 ; Cryo-EM structure of NHEJ super-complex (monomer) 8BOT ; 7.76 ; Cryo-EM structure of NHEJ supercomplex(trimer) 8K5B ; 3.43 ; Cryo-EM structure of niacin bound human hydroxy-carboxylic acid receptor 2 (Local refinement) 8H2G ; 3.01 ; Cryo-EM structure of niacin bound human hydroxy-carboxylic acid receptor 2 in complex with Gi heterotrimer 8JIL ; 3.5 ; Cryo-EM structure of niacin bound ketone body receptor HCAR2-Gi signaling complex 8SZA ; 2.75 ; Cryo-EM Structure of NINJ1 Filament at 2.75 Angstrom Resolution 8SZB ; 3.07 ; Cryo-EM Structure of NINJ2 Filament at 3.07 Angstrom Resolution 6NPL ; 2.9 ; Cryo-EM structure of NKCC1 8STE ; 3.34 ; Cryo-EM structure of NKCC1 Fu_CTD 8FML ; 2.93 ; Cryo-EM structure of NLR family apoptosis inhibitory protein 5 (NAIP5) in complex with a full-length flagellin (FliC) ligand 6MKS ; 3.4 ; Cryo-EM structure of NLRC4-CARD filament 6N1I ; 3.58 ; Cryo-EM structure of NLRC4-CARD filament 6X6A ; 3.6 ; Cryo-EM structure of NLRP1-DPP9 complex 6X6C ; 2.9 ; Cryo-EM structure of NLRP1-DPP9-VbP complex 6NPY ; 3.8 ; Cryo-EM structure of NLRP3 bound to NEK7 8SWK ; 4.32 ; Cryo-EM structure of NLRP3 closed hexamer 7LFH ; 4.2 ; Cryo-EM structure of NLRP3 double-ring cage, 6-fold (12-mer) 8SWF ; 3.39 ; Cryo-EM structure of NLRP3 open octamer 6NCV ; 3.7 ; Cryo-EM structure of NLRP6 PYD filament 7Z2H ; 3.58 ; Cryo-EM structure of NNRTI resistant M184I/E138K mutant HIV-1 reverse transcriptase with a DNA aptamer in complex with doravirine 7Z29 ; 3.38 ; Cryo-EM structure of NNRTI resistant M184I/E138K mutant HIV-1 reverse transcriptase with a DNA aptamer in complex with nevirapine 7Z2E ; 3.45 ; Cryo-EM structure of NNRTI resistant M184I/E138K mutant HIV-1 reverse transcriptase with a DNA aptamer in complex with rilpivirine 7X21 ; 2.8 ; Cryo-EM structure of non gastric H,K-ATPase alpha2 K794A in (K+)E2-AlF state 7X22 ; 3.0 ; Cryo-EM structure of non gastric H,K-ATPase alpha2 K794S in (2K+)E2-AlF state 7X24 ; 3.4 ; Cryo-EM structure of non gastric H,K-ATPase alpha2 SPWC mutant in (2K+)E2-AlF state 7X23 ; 3.2 ; Cryo-EM structure of non gastric H,K-ATPase alpha2 SPWC mutant in 3Na+E1-AMPPCPF state 7OSL ; 3.1 ; Cryo-EM structure of nonameric EPEC SctV-C 8DNH ; 2.99 ; Cryo-EM structure of nonmuscle beta-actin 8DNF ; 3.38 ; Cryo-EM structure of nonmuscle gamma-actin 8PKI ; 2.58 ; Cryo-EM structure of NR5A2-nucleosome complex SHL+5.5 7YMD ; 4.176 ; Cryo-EM structure of Nse1/3/4 7SDE ; 3.2 ; Cryo-EM structure of Nse5/6 heterodimer 7L2D ; 3.55 ; Cryo-EM structure of NTD-directed neutralizing antibody 1-87 in complex with prefusion SARS-CoV-2 spike glycoprotein 7LQW ; 4.47 ; Cryo-EM structure of NTD-directed neutralizing antibody 2-17 Fab in complex with SARS-CoV-2 S2P spike 7L2E ; 2.97 ; Cryo-EM structure of NTD-directed neutralizing antibody 4-18 in complex with prefusion SARS-CoV-2 spike glycoprotein 7LQV ; 3.25 ; Cryo-EM structure of NTD-directed neutralizing antibody 4-8 Fab in complex with SARS-CoV-2 S2P spike 7L2F ; 3.9 ; Cryo-EM structure of NTD-directed neutralizing antibody 5-24 in complex with prefusion SARS-CoV-2 spike glycoprotein 7RW2 ; 3.5 ; Cryo-EM structure of NTD-directed neutralizing antibody 5-7 in complex with prefusion SARS-CoV-2 spike glycoprotein 7MXP ; 4.46 ; Cryo-EM structure of NTD-directed neutralizing antibody LP5 Fab in complex with SARS-CoV-2 S2P spike 8CSJ ; 3.53 ; Cryo-EM structure of NTD-directed non-neutralizing antibody 4-33 in complex with prefusion SARS-CoV-2 spike glycoprotein 8JPB ; 3.07 ; cryo-EM structure of NTSR1-GRK2-Galpha(q) complexes 1 8JPC ; 3.07 ; cryo-EM structure of NTSR1-GRK2-Galpha(q) complexes 2 7M1X ; 3.7 ; Cryo-EM Structure of Nucleosome containing mouse histone variant H2A.Z 6PWE ; 3.95 ; Cryo-EM structure of nucleosome core particle 7OHC ; 2.5 ; Cryo-EM structure of nucleosome core particle composed of the Widom 601 DNA sequence 6DZT ; 2.99 ; Cryo-EM structure of nucleosome in complex with a single chain antibody fragment 7W9V ; 3.95 ; Cryo-EM structure of nucleosome in complex with p300 acetyltransferase catalytic core (complex I) 8HF4 ; 2.8 ; Cryo-EM structure of nucleotide-bound ComA at outward-facing state with EC gate closed conformation 8HF5 ; 2.9 ; Cryo-EM structure of nucleotide-bound ComA at outward-facing state with EC gate open conformation 8HF6 ; 3.1 ; Cryo-EM structure of nucleotide-bound ComA E647Q mutant 8K7A ; 4.2 ; Cryo-EM structure of nucleotide-bound ComA E647Q mutant with Mg2+ 8K4B ; 3.9 ; Cryo-EM structure of nucleotide-bound ComA with ZinC ion 7W01 ; 3.3 ; Cryo-EM structure of nucleotide-free ABCA3 6UZ2 ; 4.2 ; Cryo-EM structure of nucleotide-free MsbA reconstituted into peptidiscs, conformation 1 6UZL ; 4.4 ; Cryo-EM structure of nucleotide-free MsbA reconstituted into peptidiscs, conformation 2 6XE0 ; 6.8 ; Cryo-EM structure of NusG-CTD bound to 70S ribosome (30S: NusG-CTD fragment) 7XOP ; 3.2 ; Cryo-EM structure of occupied ring subunit 1 (OR1) of GroEL from GroEL-UGT1A double occupied ring complex 7XOQ ; 3.3 ; Cryo-EM structure of occupied ring subunit 2 (OR2) of GroEL from GroEL-UGT1A double occupied ring complex 7XOR ; 3.3 ; Cryo-EM structure of occupied ring subunit 3 (OR3) of GroEL from GroEL-UGT1A double occupied ring complex 7XOM ; 3.2 ; Cryo-EM structure of occupied ring subunit 4 (OR4) of GroEL complexed with polyalanine model of UGT1A from GroEL-UGT1A double occupied ring complex 7XOS ; 3.2 ; Cryo-EM structure of occupied ring subunit 4 (OR4) of GroEL from GroEL-UGT1A double occupied ring complex 8IHQ ; 2.71 ; Cryo-EM structure of ochratoxin A-detoxifying amidohydrolase ADH3 8IHS ; 2.5 ; Cryo-EM structure of ochratoxin A-detoxifying amidohydrolase ADH3 in complex with ochratoxin A 8IHR ; 2.5 ; Cryo-EM structure of ochratoxin A-detoxifying amidohydrolase ADH3 in complex with Phe 8J85 ; 2.7 ; Cryo-EM structure of ochratoxin A-detoxifying amidohydrolase ADH3 mutant S88E in complex with ochratoxin A 6XHI ; 4.19 ; Cryo-EM structure of octadecameric TF55 (beta-only) complex from S. solfataricus bound to ADP 6XHJ ; 3.62 ; Cryo-EM structure of octadecameric TF55 (beta-only) complex from S. solfataricus bound to ATP 6VAM ; 3.63 ; Cryo-EM structure of octameric chicken CALHM1 8GMR ; 3.76 ; Cryo-EM structure of octameric human CALHM1 8S8Z ; 3.91 ; Cryo-EM structure of octameric human CALHM1 (I109W) in complex with ruthenium red 8S90 ; 4.73 ; Cryo-EM structure of octameric human CALHM1 (I109W) in complex with ruthenium red (C1) 8GMP ; 2.8 ; Cryo-EM structure of octameric human CALHM1 with a I109W point mutation 8EIS ; 2.62 ; Cryo-EM structure of octopus sensory receptor CRT1 6AZ3 ; 2.5 ; Cryo-EM structure of of the large subunit of Leishmania ribosome bound to paromomycin 7SHN ; 3.1 ; Cryo-EM structure of oleoyl-CoA-bound human peroxisomal fatty acid transporter ABCD1 7LQ5 ; 3.4 ; Cryo-EM structure of OmcZ nanowire from Geobacter sulfurreducens 8GTQ ; 3.1 ; cryo-EM structure of Omicron BA.5 S protein in complex with S2L20 8GTO ; 3.2 ; cryo-EM structure of Omicron BA.5 S protein in complex with XGv282 8GTP ; 3.1 ; cryo-EM structure of Omicron BA.5 S protein in complex with XGv289 7XCP ; 3.05 ; Cryo-EM structure of Omicron RBD complexed with ACE2 and 304 Fab 7WK5 ; 3.66 ; Cryo-EM structure of Omicron S-ACE2, C2 state 7ZRV ; 2.8 ; cryo-EM structure of omicron spike in complex with de novo designed binder, full map 7ZSD ; 3.29 ; cryo-EM structure of omicron spike in complex with de novo designed binder, local 8I8R ; 2.93 ; Cryo-EM Structure of OmpC3-MlaA Complex in MSP2N2 Nanodiscs 8I8X ; 3.25 ; Cryo-EM Structure of OmpC3-MlaA-MlaC Complex in MSP2N2 Nanodiscs 7SZI ; 2.7 ; Cryo-EM structure of OmpK36-TraN mating pair stabilization proteins from carbapenem-resistant Klebsiella pneumoniae 7YPQ ; 3.1 ; Cryo-EM structure of one baculovirus LEF-3 molecule in complex with ssDNA 6C70 ; 3.5 ; Cryo-EM structure of Orco 8PKD ; 2.33 ; Cryo-EM structure of Orrella dioscoreae BcsD 8K66 ; 2.53 ; Cryo-EM structure of Oryza sativa HKT2;1 at 2.5 angstrom 8K69 ; 2.33 ; Cryo-EM structure of Oryza sativa HKT2;2/1 at 2.3 angstrom 7XJY ; 3.6 ; Cryo-EM structure of Oryza sativa plastid glycyl-tRNA synthetase (apo form) 7XK1 ; 4.3 ; Cryo-EM structure of Oryza sativa plastid glycyl-tRNA synthetase in complex with two tRNAs (both in tRNA binding states) 8H1C ; 4.5 ; Cryo-EM structure of Oryza sativa plastid glycyl-tRNA synthetase in complex with two tRNAs (one in tRNA binding state and the other in tRNA locked state) 8XS4 ; 3.23 ; Cryo-EM structure of OSCA1.2-DOPC-1:20-contracted1 state 8XS5 ; 3.33 ; Cryo-EM structure of OSCA1.2-DOPC-1:20-contracted2 state 8XVX ; 3.32 ; Cryo-EM structure of OSCA1.2-DOPC-1:20-expanded state 8XW2 ; 3.59 ; Cryo-EM structure of OSCA1.2-DOPC-1:50-contracted state 8XW3 ; 3.63 ; Cryo-EM structure of OSCA1.2-DOPC-1:50-expanded state 8XAJ ; 3.29 ; Cryo-EM structure of OSCA1.2-liposome-inside-in open state 8XNG ; 3.56 ; Cryo-EM structure of OSCA1.2-liposome-inside-out closed state 8XW1 ; 4.49 ; Cryo-EM structure of OSCA1.2-V335W-DDM state 8XS0 ; 3.89 ; Cryo-EM structure of OSCA3.1-1.1ver(Y367N-G454S-Y458I)-open/'desensitized' state 8XRY ; 3.84 ; Cryo-EM structure of OSCA3.1-1.1ver(Y367N-G454S-Y458I)-open/open state 8XVZ ; 3.78 ; Cryo-EM structure of OSCA3.1-2E(R611E-R619E)-closed/'desensitized' state 8XVY ; 3.71 ; Cryo-EM structure of OSCA3.1-2E(R611E-R619E)-closed/open state 8XW0 ; 3.11 ; Cryo-EM structure of OSCA3.1-GDN state 6O84 ; 3.92 ; Cryo-EM structure of OTOP3 from xenopus tropicalis 8CBJ ; 3.8 ; Cryo-EM structure of Otu2-bound cytoplasmic pre-40S ribosome biogenesis complex 7EW0 ; 3.42 ; Cryo-EM structure of ozanimod -bound Sphingosine-1-phosphate receptor 1 in complex with Gi protein 5WK5 ; 4.2 ; Cryo-EM structure of P. aeruginosa flagellar filaments A443V 5WK6 ; 4.3 ; Cryo-EM structure of P. aeruginosa flagellar filaments G420A 7JGD ; 3.38 ; Cryo-EM structure of P. falciparum VAR2CSA FCR3 core at 3.4 A 7JGE ; 4.0 ; Cryo-EM structure of P. falciparum VAR2CSA FCR3 core at 4 A 7JGF ; 4.69 ; Cryo-EM structure of P. falciparum VAR2CSA FCR3 domains DBL5 and DBL6 at 4.69 A 7JGG ; 4.88 ; Cryo-EM structure of P. falciparum VAR2CSA NF45 DBL5 and DBL6 domains at 4.88 A 7JGH ; 3.36 ; Cryo-EM structure of P. falciparum VAR2CSA NF54 core in complex with CSA at 3.36 A 8RDW ; 2.74 ; Cryo-EM structure of P. urativorans 70S ribosome in complex with hibernation factor Balon and EF-Tu(GDP) (structure 3). 8RDV ; 2.6 ; Cryo-EM structure of P. urativorans 70S ribosome in complex with hibernation factor Balon, mRNA and P-site tRNA (structure 2). 8RD8 ; 2.62 ; Cryo-EM structure of P. urativorans 70S ribosome in complex with hibernation factors Balon and RaiA (structure 1). 7CH9 ; 3.5 ; Cryo-EM structure of P.aeruginosa MlaFEBD 7CH8 ; 3.9 ; Cryo-EM structure of P.aeruginosa MlaFEBD with ADP-V 7CHA ; 3.9 ; Cryo-EM structure of P.aeruginosa MlaFEBD with AMPPNP 7MYN ; 2.79 ; Cryo-EM Structure of p110alpha in complex with p85alpha 7MYO ; 2.92 ; Cryo-EM structure of p110alpha in complex with p85alpha inhibited by BYL-719 6K4N ; 9.8 ; Cryo-EM structure of p300 5XZC ; 10.7 ; Cryo-EM structure of p300-p53 protein complex 7OP5 ; 3.7 ; Cryo-EM structure of P5B-ATPase E2P 7OP1 ; 3.7 ; Cryo-EM structure of P5B-ATPase E2PiAlF/SPM 7OP8 ; 3.5 ; Cryo-EM structure of P5B-ATPase E2Pinhibit 7OP3 ; 3.5 ; Cryo-EM structure of P5B-ATPase E2PiSPM 6TGY ; 3.5 ; Cryo-EM structure of p62-PB1 filament (L-type) 6TH3 ; 4.0 ; Cryo-EM structure of p62-PB1 filament (S-type) 8EDX ; 2.81 ; Cryo-EM Structure of P74-26 tail-like tubes 8FCL ; 3.51 ; Cryo-EM structure of p97:UBXD1 closed state 8FCR ; 4.12 ; Cryo-EM structure of p97:UBXD1 H4-bound state 8FCT ; 3.42 ; Cryo-EM structure of p97:UBXD1 lariat mutant 8FCO ; 3.31 ; Cryo-EM structure of p97:UBXD1 meta state 8FCM ; 3.27 ; Cryo-EM structure of p97:UBXD1 open state 8FCP ; 3.52 ; Cryo-EM structure of p97:UBXD1 para state 8FCQ ; 3.93 ; Cryo-EM structure of p97:UBXD1 PUB-in state 8FCN ; 2.95 ; Cryo-EM structure of p97:UBXD1 VIM-only state 5GQH ; 4.2 ; Cryo-EM structure of PaeCas3-AcrF3 complex 8SZI ; 3.5 ; Cryo-EM structure of PAM-free human calcium-sensing receptor CaSR-Gi complex in lipid nanodiscs 8WCN ; 3.2 ; Cryo-EM structure of PAO1-ImcA with GMPCPP 7UFG ; 3.28 ; Cryo-EM structure of PAPP-A in complex with IGFBP5 8SL1 ; 3.13 ; Cryo-EM structure of PAPP-A2 6NBF ; 3.0 ; Cryo-EM structure of parathyroid hormone receptor type 1 in complex with a long-acting parathyroid hormone analog and G protein 6NBH ; 3.5 ; Cryo-EM structure of parathyroid hormone receptor type 1 in complex with a long-acting parathyroid hormone analog and G protein 6NBI ; 4.0 ; Cryo-EM structure of parathyroid hormone receptor type 1 in complex with a long-acting parathyroid hormone analog and G protein 7F16 ; 2.8 ; Cryo-EM structure of parathyroid hormone receptor type 2 in complex with a tuberoinfundibular peptide of 39 residues and G protein 7V6Y ; 3.5 ; Cryo-EM structure of Patched in lipid nanodisc - the wildtype, 3.5 angstrom (re-processed with dataset of 7dzq) 7V6Z ; 3.64 ; Cryo-EM structure of Patched1 (V1084A mutant) in lipid nanodisc, 3.64 angstrom (reprocessed with the dataset of 7dzp) 6V9Z ; 3.35 ; Cryo-EM structure of PCAT1 bound to its CtA peptide substrate 7T56 ; 3.7 ; Cryo-EM structure of PCAT1 in the inward-facing intermediate conformation under ATP turnover condition 7T57 ; 3.7 ; Cryo-EM structure of PCAT1 in the inward-facing narrow conformation under ATP turnover condition 7T55 ; 4.1 ; Cryo-EM structure of PCAT1 in the inward-facing wide conformation under ATP turnover condition 7CN8 ; 2.5 ; Cryo-EM structure of PCoV_GX spike glycoprotein 8CRB ; 4.6 ; Cryo-EM structure of PcrV/Fab(11-E5) 8CR9 ; 4.2 ; Cryo-EM structure of PcrV/Fab(30-B8) 7LAR ; 3.8 ; Cryo-EM structure of PCV2 Replicase bound to ssDNA 7LAS ; 4.4 ; Cryo-EM structure of PCV2 Replicase bound to ssDNA 5ZBO ; 4.12 ; Cryo-EM structure of PCV2 VLPs 7U6R ; 2.5 ; Cryo-EM structure of PDF-2180 Spike glycoprotein 7P04 ; 2.85 ; Cryo-EM structure of Pdr5 from Saccharomyces cerevisiae in inward-facing conformation with ADP/ATP 7P05 ; 3.13 ; Cryo-EM structure of Pdr5 from Saccharomyces cerevisiae in inward-facing conformation with ADP/ATP and rhodamine 6G 7P03 ; 3.45 ; Cryo-EM structure of Pdr5 from Saccharomyces cerevisiae in inward-facing conformation without nucleotides 7P06 ; 3.77 ; Cryo-EM structure of Pdr5 from Saccharomyces cerevisiae in outward-facing conformation with ADP-orthovanadate/ATP 7XML ; 3.2 ; Cryo-EM structure of PEIP-Bs_enolase complex 7NCR ; 2.9 ; Cryo-EM structure of Pepper cryptic virus 1 VLP 8WA3 ; 2.86 ; Cryo-EM structure of peptide free and Gs-coupled GIPR 6TUP ; 3.2 ; Cryo-EM structure of Pf4 bacteriophage coat protein with single-stranded DNA 6TUQ ; 3.9 ; Cryo-EM structure of Pf4 bacteriophage coat protein without ssDNA 8JPX ; 2.9 ; Cryo-EM structure of PfAgo-guide DNA-target DNA complex 7MXY ; 2.18 ; Cryo-EM structure of PfFNT-inhibitor complex 7EW2 ; 3.1 ; Cryo-EM structure of pFTY720-bound Sphingosine 1-phosphate receptor 3 in complex with Gi protein 8FK5 ; 3.4 ; Cryo-EM Structure of PG9RSH DU011 Fab in complex with BG505 DS-SOSIP.664 8FL1 ; 3.75 ; Cryo-EM Structure of PG9RSH DU025 Fab in complex with BG505 DS-SOSIP.664 8IZ9 ; 2.95 ; cryo-EM structure of PGE1-bound hMRP4 5ACO ; 4.36 ; Cryo-EM structure of PGT128 Fab in complex with BG505 SOSIP.664 Env trimer 8FLW ; 3.58 ; Cryo-EM Structure of PGT145 DU303 Fab in complex with BG505 DS-SOSIP.664 8VXQ ; 3.1 ; Cryo-EM structure of phage DEV ejection proteins gp72:gp73 6T25 ; 3.6 ; Cryo-EM structure of phalloidin-Alexa Flour-546-stabilized F-actin (copolymerized) 6T20 ; 3.7 ; Cryo-EM structure of phalloidin-stabilized F-actin (aged) 6T1Y ; 3.3 ; Cryo-EM structure of phalloidin-stabilized F-actin (copolymerized) 7PEM ; 3.1 ; Cryo-EM structure of phophorylated Drs2p-Cdc50p in a PS and ATP-bound E2P state 6MZB ; 3.4 ; Cryo-EM structure of phosphodiesterase 6 6LXV ; 2.1 ; Cryo-EM structure of phosphoketolase from Bifidobacterium longum 8IO7 ; 2.62 ; Cryo-EM structure of phosphoketolase from Bifidobacterium longum in dimeric assembly 8IO6 ; 2.68 ; Cryo-EM structure of phosphoketolase from Bifidobacterium longum in octameric assembly 6OXL ; 3.5 ; CRYO-EM STRUCTURE OF PHOSPHORYLATED AP-2 (mu E302K) BOUND TO NECAP IN THE PRESENCE OF SS DNA 6OWO ; 3.2 ; CRYO-EM STRUCTURE OF PHOSPHORYLATED AP-2 CORE BOUND TO NECAP 6L1T ; 3.22 ; Cryo-EM structure of phosphorylated Tyr39 a-synuclein amyloid fibril 6L1U ; 3.37 ; Cryo-EM structure of phosphorylated Tyr39 alpha-synuclein amyloid fibril 6RW6 ; 2.75 ; Cryo-EM structure of Photorhabdus luminescens TcdA1 6RWA ; 4.0 ; Cryo-EM structure of Photorhabdus luminescens TcdA4 8C29 ; 2.785 ; Cryo-EM structure of photosystem II C2S2 supercomplex from Norway spruce (Picea abies) at 2.8 Angstrom resolution 8ILR ; 3.05 ; Cryo-EM structure of PI3Kalpha in complex with compound 16 8ILS ; 3.1 ; Cryo-EM structure of PI3Kalpha in complex with compound 17 8ILV ; 3.19 ; Cryo-EM structure of PI3Kalpha in complex with compound 18 6X67 ; 3.47 ; Cryo-EM structure of piggyBac transposase strand transfer complex (STC) 6X68 ; 3.66 ; Cryo-EM structure of piggyBac transposase synaptic complex with hairpin DNA (SNHP) 7TGG ; 4.1 ; Cryo-EM structure of PilA-N and PilA-C from Geobacter sulfurreducens 6VK9 ; 3.8 ; Cryo-EM structure of PilA-N/C from Geobacter sulfurreducens 7SSA ; 3.2 ; Cryo-EM structure of pioneer factor Cbf1 bound to the nucleosome 6WB8 ; 3.24 ; Cryo-EM structure of PKD2 C331S disease variant 7CRB ; 3.16 ; Cryo-EM structure of plant NLR RPP1 LRR-ID domain in complex with ATR1 7DFV ; 2.99 ; Cryo-EM structure of plant NLR RPP1 tetramer core part 7CRC ; 3.02 ; Cryo-EM structure of plant NLR RPP1 tetramer in complex with ATR1 7XE0 ; 3.33 ; Cryo-EM structure of plant NLR Sr35 resistosome 7W3T ; 3.59 ; Cryo-EM structure of plant receptor like kinase NbBAK1 in RXEG1-BAK1-XEG1 complex 7W3X ; 3.21 ; Cryo-EM structure of plant receptor like protein RXEG1 7DRC ; 2.92 ; Cryo-EM structure of plant receptor like protein RXEG1 in complex with xyloglucanase XEG1 and BAK1 8JVH ; 3.19 ; Cryo-EM structure of Plasmodium falciparum multidrug resistance protein 1 in the apo state with H1 helix 8JW4 ; 3.13 ; Cryo-EM structure of Plasmodium falciparum multidrug resistance protein 1 in the apo state without H1 helix 8JWF ; 3.64 ; Cryo-EM structure of Plasmodium falciparum multidrug resistance protein 1 with H1 helix in complex with MFQ 8JWG ; 3.54 ; Cryo-EM structure of Plasmodium falciparum multidrug resistance protein 1 without H1 helix in complex with MFQ 6VYG ; 3.5 ; Cryo-EM structure of Plasmodium vivax hexokinase (Closed state) 6VYF ; 3.3 ; Cryo-EM structure of Plasmodium vivax hexokinase (Open state) 3J48 ; 5.5 ; Cryo-EM structure of Poliovirus 135S particles 7PZR ; 3.0 ; Cryo-EM structure of POLRMT in free form. 7ZC4 ; 3.24 ; Cryo-EM structure of POLRMT mutant. 5T4D ; 3.0 ; Cryo-EM structure of Polycystic Kidney Disease protein 2 (PKD2), residues 198-703 5Z1W ; 3.38 ; Cryo-EM structure of polycystic kidney disease-like channel PKD2L1 7ARD ; 3.11 ; Cryo-EM structure of Polytomella Complex-I (complete composition) 7AR9 ; 2.97 ; Cryo-EM structure of Polytomella Complex-I (membrane arm) 7ARC ; 2.88 ; Cryo-EM structure of Polytomella Complex-I (peripheral arm) 6RDD ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Primary rotary state 2, monomer-masked refinement 6REP ; 3.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Primary rotary state 3, composite map 6RDJ ; 2.9 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1A, focussed refinement of F1 head and rotor 6RDI ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1A, monomer-masked refinement 6RDK ; 3.7 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1B, composite map 6RDM ; 3.44 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1B, focussed refinement of F1 head and rotor 6RDL ; 3.7 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1B, monomer-masked refinement 6RDO ; 3.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1C, composite map 6RDP ; 2.8 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1C, focussed refinement of F1 head and rotor 6RDN ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1C, monomer-masked refinement 6RDQ ; 4.0 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1D, composite map 6RDS ; 3.8 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1D, focussed refinement of F1 head and rotor 6RDR ; 4.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1D, monomer-masked refinement 6RDT ; 3.4 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1E, composite map 6RDV ; 3.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1E, focussed refinement of F1 head and rotor 6RDU ; 3.5 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1E, monomer-masked refinement 6RDW ; 3.8 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1F, composite map 6RDY ; 3.6 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1F, focussed refinement of F1 head and rotor 6RDX ; 3.9 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 1F, monomer-masked refinement 6RDZ ; 3.5 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2A, composite map 6RE1 ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2A, focussed refinement of F1 head and rotor 6RE0 ; 3.6 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2A, monomer-masked refinement 6RE2 ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2B, composite map 6RE4 ; 3.0 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2B, focussed refinement of F1 head and rotor 6RE3 ; 3.3 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2B, monomer-masked refinement 6RE5 ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2C, composite map 6RE7 ; 3.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2C, focussed refinement of F1 head and rotor 6RE6 ; 3.4 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2C, monomer-masked refinement 6RE8 ; 3.8 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2D, composite map 6REA ; 3.6 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2D, focussed refinement of F1 head and rotor 6RE9 ; 3.9 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 2D, monomer-masked refinement 6REB ; 3.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3A, composite map 6RED ; 3.0 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3A, focussed refinement of F1 head and rotor 6REC ; 3.3 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3A, monomer-masked refinement 6REE ; 3.1 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3B, composite map 6RER ; 2.9 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3B, focussed refinement of F1 head and rotor 6REF ; 3.3 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3B, monomer-masked refinement 6RES ; 4.3 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3C, composite map 6REU ; 4.2 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3C, focussed refinement of F1 head and rotor 6RET ; 4.3 ; Cryo-EM structure of Polytomella F-ATP synthase, Rotary substate 3C, monomer-masked refinement 8UF7 ; 3.2 ; Cryo-EM structure of POmAb, a Type-I anti-prothrombin antiphospholipid antibody, bound to kringle-1 of human prothrombin 6VV5 ; 3.5 ; Cryo-EM structure of porcine epidemic diarrhea virus (PEDV) spike protein 6SCO ; 3.3 ; Cryo-EM Structure of Potato Leaf Roll Virus VLP 8HTU ; 2.87 ; Cryo-EM structure of PpPSI-L 8GRM ; 3.05 ; Cryo-EM structure of PRC1 bound to H2AK119-UbcH5b-Ub nucleosome 6C23 ; 3.9 ; Cryo-EM structure of PRC2 bound to cofactors AEBP2 and JARID2 in the Compact Active State 6C24 ; 3.5 ; Cryo-EM structure of PRC2 bound to cofactors AEBP2 and JARID2 in the Extended Active State 7KSO ; 3.9 ; Cryo-EM structure of PRC2:EZH1-AEBP2-JARID2 7LS6 ; 3.17 ; Cryo-EM structure of Pre-15S proteasome core particle assembly intermediate purified from Pre3-1 proteasome mutant (G34D) 7UG6 ; 2.9 ; Cryo-EM structure of pre-60S ribosomal subunit, unmethylated G2922 7BT6 ; 3.12 ; Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae rpl4delta63-87 strain at 3.12 Angstroms resolution(state R1) 7BTB ; 3.22 ; Cryo-EM structure of pre-60S ribosome from Saccharomyces cerevisiae rpl4delta63-87 strain at 3.22 Angstroms resolution(state R2) 8EG7 ; 3.2 ; Cryo-EM structure of pre-consensus elemental paused elongation complex 7NZM ; 3.96 ; Cryo-EM structure of pre-dephosphorylation complex of phosphorylated eIF2alpha with trapped holophosphatase (PP1A_D64A/PPP1R15A/G-actin/DNase I) 6N8M ; 3.5 ; Cryo-EM structure of pre-Lsg1 (PL) pre-60S ribosomal subunit 7RHX ; 3.23 ; Cryo-EM structure of precleavage Cre tetrameric complex 7KS9 ; 4.75 ; Cryo-EM structure of prefusion SARS-CoV-2 spike glycoprotein in complex with 910-30 Fab 7THK ; 3.11 ; Cryo-EM structure of prefusion SARS-CoV-2 spike omicron B.1.1.529 variant 7MPG ; 3.4 ; Cryo-EM structure of Prefusion-stabilized RSV F (DS-Cav1) in complex with Fab AM14 7WIJ ; 3.17 ; Cryo-EM structure of prenyltransferase domain of Macrophoma phaseolina macrophomene synthase 7L7K ; 3.29 ; Cryo-EM structure of protein encoded by vaccine candidate BNT162b2 8IWY ; 2.68 ; Cryo-EM structure of protonated LHCII in detergent solution at low pH value 8IX1 ; 2.63 ; Cryo-EM structure of protonated LHCII nanodisc at low pH value 7FJ3 ; 4.53 ; Cryo-EM structure of PRV A-capid 7VV6 ; 3.3 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with C48/80 (local) 7VV5 ; 2.76 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with C48/80, state1 7VDH ; 2.9 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with C48/80, state2 7VDL ; 3.22 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with circular cortistatin-14 7VV3 ; 2.97 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with linear cortistatin-14 7VV4 ; 2.97 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with linear cortistatin-14, local 7VV0 ; 3.5 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with PAMP-12, local 7VUZ ; 2.89 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with PAMP-12, state2 7VUY ; 2.84 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with PAMP-12. state1 7VDM ; 2.98 ; Cryo-EM structure of pseudoallergen receptor MRGPRX2 complex with substance P 8I6R ; 4.0 ; Cryo-EM structure of Pseudomonas aeruginosa FtsE(E163Q)X/EnvC complex with ATP in peptidisc 8I6S ; 4.4 ; Cryo-EM structure of Pseudomonas aeruginosa FtsE(E163Q)X/EnvC complex with ATP in peptidisc 8I6Q ; 4.23 ; Cryo-EM structure of Pseudomonas aeruginosa FtsE(WT)X complex in peptidisc 8I6O ; 3.8 ; Cryo-EM structure of Pseudomonas aeruginosa FtsE(WT)X/EnvC complex in peptidisc 7VF9 ; 4.04 ; Cryo-EM structure of Pseudomonas aeruginosa RNAP sigmaS holoenzyme complexes 7XL4 ; 3.86 ; Cryo-EM structure of Pseudomonas aeruginosa RNAP sigmaS holoenzyme complexes with transcription factor SutA (closed lobe) 7XL3 ; 3.13 ; Cryo-EM structure of Pseudomonas aeruginosa RNAP sigmaS holoenzyme complexes with transcription factor SutA (open lobe) 7YR7 ; 3.8 ; Cryo-EM structure of Pseudomonas aeruginosa RsmZ RNA in complex with three RsmA protein dimers 7YR6 ; 4.8 ; Cryo-EM structure of Pseudomonas aeruginosa RsmZ RNA in complex with two RsmA protein dimers 7F0R ; 5.8 ; Cryo-EM structure of Pseudomonas aeruginosa SutA transcription activation complex 8THE ; 2.5 ; Cryo-EM structure of Pseudomonas aeruginosa TonB-dependent transporter PhuR in complex with synthetic antibody and heme 7FJ1 ; 4.43 ; Cryo-EM structure of pseudorabies virus C-capsid 7D1T ; 1.95 ; Cryo-EM Structure of PSII at 1.95 angstrom resolution 7D1U ; 2.08 ; Cryo-EM Structure of PSII at 2.08 angstrom resolution 7DXH ; 3.14 ; Cryo-EM structure of PSII intermediate Psb28-PSII complex 7XAQ ; 3.59 ; Cryo-EM structure of PvrA-DNA complex 7CKY ; 3.2 ; Cryo-EM structure of PW0464 bound dopamine receptor DRD1-Gs signaling complex 7VTP ; 3.23 ; Cryo-EM structure of PYD-deleted human NLRP3 hexamer 7K20 ; 3.2 ; Cryo-EM structure of pyrene-labeled ADP-actin filaments 7K21 ; 3.0 ; Cryo-EM structure of pyrene-labeled ADP-Pi-actin filaments 7OHF ; 3.0 ; Cryo-EM structure of pyrococcus furiosus apoferritin in nanofluidic channels 7LLK ; 4.8 ; Cryo-EM structure of Q23.17_DS-SOSIP in complex with Glycan276-Dependent Broadly Neutralizing Antibody 179NC75 Fab 7XLT ; 4.4 ; Cryo-EM Structure of R-loop monoclonal antibody S9.6 in recognizing RNA:DNA hybrids 8FO8 ; 3.88 ; Cryo-EM structure of Rab29-LRRK2 complex in the LRRK2 dimer state 8FO2 ; 4.13 ; Cryo-EM structure of Rab29-LRRK2 complex in the LRRK2 monomer state 8FO9 ; 3.48 ; Cryo-EM structure of Rab29-LRRK2 complex in the LRRK2 tetramer state 7K0T ; 4.3 ; Cryo-EM structure of rabbit RyR1 in the presence of AMP-PCP in nanodisc 7UMZ ; 3.09 ; Cryo-EM structure of rabbit RyR1 in the presence of high Mg2+ and AMP-PCP in nanodisc 7K0S ; 4.5 ; Cryo-EM structure of rabbit RyR1 in the presence of Mg2+ and AMP-PCP in nanodisc 7X3K ; 6.0 ; Cryo-EM structure of RAC in the State C2 RNC-RAC complex 6DBI ; 3.4 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS nicked DNA intermediates 6DBJ ; 3.0 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS nicked DNA intermediates 6DBL ; 5.0 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBO ; 4.4 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBQ ; 4.22 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBT ; 4.3 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBU ; 3.9 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBV ; 4.29 ; Cryo-EM structure of RAG in complex with 12-RSS and 23-RSS substrate DNAs 6DBW ; 4.7 ; Cryo-EM structure of RAG in complex with 12-RSS substrate DNA 6DBX ; 4.2 ; Cryo-EM structure of RAG in complex with 12-RSS substrate DNA 6DBR ; 4.0 ; Cryo-EM structure of RAG in complex with one melted RSS and one unmelted RSS 8UX1 ; 2.5 ; Cryo-EM structure of Ran bound to RCC1 and the nucleosome core particle 8T6L ; 3.3 ; Cryo-EM structure of rat cardiac sodium channel NaV1.5 with batrachotoxin analog BTX-B 7VAF ; 3.11 ; Cryo-EM structure of Rat NTCP complexed with YN69202Fab 8BW7 ; 3.53 ; Cryo-EM structure of rat SLC22A6 bound to alpha-ketoglutaric acid 8OMU ; 3.43 ; Cryo-EM structure of rat SLC22A6 bound to alpha-ketoglutaric acid in a low occupancy state 8BVT ; 3.94 ; Cryo-EM structure of rat SLC22A6 bound to probenecid 8BVS ; 3.61 ; Cryo-EM structure of rat SLC22A6 bound to tenofovir 8BVR ; 3.52 ; Cryo-EM structure of rat SLC22A6 in the apo state 6E2G ; 3.6 ; Cryo-EM structure of rat TRPV6 in complex with Calmodulin 6BOB ; 3.9 ; Cryo-EM structure of rat TRPV6* in nanodiscs 6PWX ; 4.2 ; Cryo-EM structure of RbBP5 bound to the nucleosome 6LRS ; 3.37 ; Cryo-EM structure of RbcL8-RbcS4 from Anabaena sp. PCC 7120 8DXS ; 3.76 ; Cryo-EM structure of RBD-directed neutralizing antibody P2B4 in complex with prefusion SARS-CoV-2 spike glycoprotein 8IDN ; 3.35 ; Cryo-EM structure of RBD/E77-Fab complex 8B64 ; 2.589 ; Cryo-EM structure of RC-LH1-PufX photosynthetic core complex from Rba. capsulatus 7YO5 ; 3.9 ; Cryo-EM structure of RCK1 mutated human Slo1 apo 7YO1 ; 3.6 ; Cryo-EM structure of RCK1 mutated human Slo1-LRRC26 complex 7YO2 ; 3.3 ; Cryo-EM structure of RCK1-RCK2 mutated human Slo1 apo 7YO4 ; 3.9 ; Cryo-EM structure of RCK1-RCK2 mutated human Slo1-LRRC26 complex 7ZNN ; 4.8 ; Cryo-EM structure of RCMV-E E27 bound to human DDB1 (deltaBPB) and full-length rat STAT2 7ZN7 ; 3.78 ; Cryo-EM structure of RCMV-E E27 bound to human DDB1 (deltaBPB) and rat STAT2 CCD 7MR0 ; 3.7 ; Cryo-EM structure of RecBCD with docked RecBNuc and flexible RecD 7MR2 ; 4.3 ; Cryo-EM structure of RecBCD with undocked RecBNuc and flexible RecD 7MR1 ; 4.2 ; Cryo-EM structure of RecBCD with undocked RecBNuc and flexible RecD C-terminus 5LD2 ; 3.83 ; Cryo-EM structure of RecBCD+DNA complex revealing activated nuclease domain 7MR3 ; 3.6 ; Cryo-EM structure of RecBCD-DNA complex with docked RecBNuc and stabilized RecD 7MR4 ; 4.5 ; Cryo-EM structure of RecBCD-DNA complex with undocked RecBNuc and flexible RecD 8G2V ; 2.715 ; Cryo-EM structure of recombinant human LECT2 amyloid fibril core 6WOU ; 3.27 ; Cryo-EM structure of recombinant mouse Ryanodine Receptor type 2 mutant R176Q in complex with FKBP12.6 in nanodisc 6WOV ; 5.1 ; Cryo-EM structure of recombinant mouse Ryanodine Receptor type 2 wild type in complex with FKBP12.6 6WOT ; 3.54 ; Cryo-EM structure of recombinant rabbit Ryanodine Receptor type 1 mutant R164C in complex with FKBP12.6 6ZTQ ; 3.0 ; Cryo-EM structure of respiratory complex I from Mus musculus inhibited by piericidin A at 3.0 A 6GCS ; 4.32 ; Cryo-EM structure of respiratory complex I from Yarrowia lipolytica 6RFR ; 3.2 ; Cryo-EM structure of respiratory complex I from Yarrowia lipolytica at 3.2 A resolution 6ZR2 ; 3.1 ; Cryo-EM structure of respiratory complex I in the active state from Mus musculus at 3.1 A 7AK5 ; 3.17 ; Cryo-EM structure of respiratory complex I in the deactive state from Mus musculus at 3.2 A 7O6Y ; 3.4 ; Cryo-EM structure of respiratory complex I under turnover 7TGH ; 2.6 ; Cryo-EM structure of respiratory super-complex CI+III2 from Tetrahymena thermophila 6Q2N ; 4.4 ; Cryo-EM structure of RET/GFRa1/GDNF extracellular complex 6Q2R ; 4.3 ; Cryo-EM structure of RET/GFRa2/NRTN extracellular complex in the tetrameric form 6Q2O ; 3.65 ; Cryo-EM structure of RET/GFRa2/NRTN extracellular complex. The 3D refinement was applied with C2 symmetry. 6Q2S ; 3.8 ; Cryo-EM structure of RET/GFRa3/ARTN extracellular complex. The 3D refinement was applied with C2 symmetry. 6SK7 ; 2.9 ; Cryo-EM structure of rhinovirus-A89 6SK6 ; 3.2 ; Cryo-EM structure of rhinovirus-B5 6SK5 ; 3.6 ; Cryo-EM structure of rhinovirus-B5 complexed to antiviral OBR-5-340 7F47 ; 2.99 ; Cryo-EM structure of Rhizobium etli MprF 7URG ; 3.46 ; cryo-EM structure of ribonucleotide reductase from Synechococcus phage S-CBP4 bound with TTP 8B6C ; 2.79 ; Cryo-EM structure of ribosome-Sec61 in complex with cyclotriazadisulfonamide derivative CK147 8B5L ; 2.86 ; Cryo-EM structure of ribosome-Sec61-TRAP (TRanslocon Associated Protein) translocon complex 7SZJ ; 3.11 ; Cryo-EM structure of Rifamycin bound to E. coli RNAP and rrnBP1 promoter complex 8DVS ; 3.0 ; Cryo-EM structure of RIG-I bound to the end of OHSLR30 (+ATP) 8DVR ; 3.3 ; Cryo-EM structure of RIG-I bound to the end of p3SLR30 (+AMPPNP) 7TO1 ; 3.66 ; Cryo-EM structure of RIG-I bound to the end of p3SLR30 (+ATP) 8DVU ; 2.9 ; Cryo-EM structure of RIG-I bound to the internal sites of OHSLR30 (+ATP) 7TO2 ; 3.2 ; Cryo-EM structure of RIG-I bound to the internal sites of p3SLR30 (+ATP) 7TO0 ; 3.5 ; Cryo-EM structure of RIG-I in complex with OHdsRNA 7TNZ ; 3.54 ; Cryo-EM structure of RIG-I in complex with p1dsRNA 7TNY ; 3.2 ; Cryo-EM structure of RIG-I in complex with p2dsRNA 7TNX ; 3.54 ; Cryo-EM structure of RIG-I in complex with p3dsRNA 8SD0 ; 3.8 ; Cryo-EM structure of RIG-I in complex with p3SLR14 7JL3 ; 4.2 ; Cryo-EM structure of RIG-I:dsRNA filament in complex with RIPLET PrySpry domain (trimer) 7JL1 ; 3.9 ; Cryo-EM structure of RIG-I:dsRNA in complex with RIPLET PrySpry domain (monomer) 5N60 ; 7.7 ; Cryo-EM structure of RNA polymerase I in complex with Rrn3 and Core Factor (Orientation I) 5N5Z ; 7.7 ; Cryo-EM structure of RNA polymerase I in complex with Rrn3 and Core Factor (Orientation II) 5N5Y ; 7.7 ; Cryo-EM structure of RNA polymerase I in complex with Rrn3 and Core Factor (Orientation III) 7YOT ; 3.0 ; Cryo-EM structure of RNA polymerase in complex with P protein tetramer of Newcastle disease virus 7YOU ; 3.41 ; Cryo-EM structure of RNA polymerase in complex with P protein tetramer of Newcastle disease virus 7YOV ; 3.25 ; Cryo-EM structure of RNA polymerase in complex with P protein tetramer of Newcastle disease virus 5NSR ; 3.8 ; Cryo-EM structure of RNA polymerase-sigma54 holo enzyme with promoter DNA closed complex 7QXI ; 3.4 ; Cryo-EM structure of RNA polymerase-sigma54 holo enzyme with promoter DNA closed complex 5NSS ; 5.8 ; Cryo-EM structure of RNA polymerase-sigma54 holoenzyme with promoter DNA and transcription activator PspF intermedate complex 8IGS ; 3.4 ; Cryo-EM structure of RNAP-promoter open complex at lambda promoter PRE 8CGL ; 4.1 ; Cryo-EM structure of RNase J from Helicobacter pylori 8FN4 ; 3.7 ; Cryo-EM structure of RNase-treated RESC-A in trypanosomal RNA editing 8FNI ; 3.4 ; Cryo-EM structure of RNase-treated RESC-B in trypanosomal RNA editing 8FNC ; 3.3 ; Cryo-EM structure of RNase-treated RESC-C in trypanosomal RNA editing 8FN6 ; 3.7 ; Cryo-EM structure of RNase-untreated RESC-A in trypanosomal RNA editing 8FNK ; 3.7 ; Cryo-EM structure of RNase-untreated RESC-B in trypanosomal RNA editing 8FNF ; 3.5 ; Cryo-EM structure of RNase-untreated RESC-C in trypanosomal RNA editing 7X34 ; 3.1 ; Cryo-EM structure of RNC-RAC complex in presence of Ssb from S. cerevisiae 2 7CRW ; 3.18 ; Cryo-EM structure of rNLRP1-rDPP9 complex 8G7T ; 3.2 ; Cryo-EM structure of RNP end 8G7U ; 4.0 ; Cryo-EM structure of RNP end 2 8G7V ; 3.9 ; Cryo-EM structure of RNP inter 7VWY ; 4.57 ; Cryo-EM structure of Rob-dependent transcription activation complex in a unique conformation 7VWZ ; 4.0 ; Cryo-EM structure of Rob-dependent transcription activation complex in a unique conformation 8P00 ; 3.8 ; Cryo-EM structure of Rotavirus B NSP2 7JN3 ; 3.21 ; Cryo-EM structure of Rous sarcoma virus cleaved synaptic complex (CSC) with HIV-1 integrase strand transfer inhibitor MK-2048 7KUI ; 3.4 ; Cryo-EM structure of Rous sarcoma virus cleaved synaptic complex (CSC) with HIV-1 integrase strand transfer inhibitor MK-2048. CIC region of a cluster identified by 3-dimensional variability analysis in cryoSPARC. 7KU7 ; 3.4 ; Cryo-EM structure of Rous sarcoma virus cleaved synaptic complex (CSC) with HIV-1 integrase strand transfer inhibitor MK-2048. Cluster identified by 3-dimensional variability analysis in cryoSPARC. 8E14 ; 3.36 ; Cryo-EM structure of Rous sarcoma virus strand transfer complex 7YI0 ; 3.2 ; Cryo-EM structure of Rpd3S complex 7YI4 ; 3.96 ; Cryo-EM structure of Rpd3S complex bound to H3K36me3 nucleosome in close state 7YI5 ; 3.96 ; Cryo-EM structure of Rpd3S complex bound to H3K36me3 nucleosome in loose state 7YI3 ; 3.3 ; Cryo-EM structure of Rpd3S in close-state Rpd3S-NCP complex 7YI2 ; 3.4 ; Cryo-EM structure of Rpd3S in loose-state Rpd3S-NCP complex 6N8O ; 3.5 ; Cryo-EM structure of Rpl10-inserted (RI) pre-60S ribosomal subunit 7LUC ; 3.21 ; Cryo-EM structure of RSV preF bound by Fabs 32.4K and 01.4B 8T7A ; 2.8 ; Cryo-EM structure of RSV preF in complex with Fab 2.4K 8DG9 ; 2.24 ; Cryo-EM Structure of RSV prefusion F trimer in complex with three MxR Fabs 7L2O ; 3.64 ; Cryo-EM structure of RTX-bound full-length TRPV1 at pH 5.5 7L2N ; 3.09 ; Cryo-EM structure of RTX-bound full-length TRPV1 in C1 state 7MZ5 ; 2.76 ; Cryo-EM structure of RTX-bound full-length TRPV1 in C2 state 7L2L ; 3.42 ; Cryo-EM structure of RTX-bound full-length TRPV1 in O1 state 7L2W ; 3.16 ; cryo-EM structure of RTX-bound minimal TRPV1 with NMDG at state a 7L2V ; 3.64 ; cryo-EM structure of RTX-bound minimal TRPV1 with NMDG at state b 7L2X ; 3.26 ; cryo-EM structure of RTX-bound minimal TRPV1 with NMDG at state c 7XSD ; 3.3 ; Cryo-EM structure of RuBisCO assembly intermediate RbcL8Raf18RbcX16 6LRR ; 3.37 ; Cryo-EM structure of RuBisCO-Raf1 from Anabaena sp. PCC 7120 8SEN ; 3.49 ; Cryo-EM Structure of RyR1 8SEU ; 3.0 ; Cryo-EM Structure of RyR1 (Local Refinement of TMD) 8SES ; 3.98 ; Cryo-EM Structure of RyR1 + Adenine 8SEZ ; 3.54 ; Cryo-EM Structure of RyR1 + Adenine (Local Refinement of TMD) 8SER ; 3.42 ; Cryo-EM Structure of RyR1 + Adenosine 8SEY ; 2.99 ; Cryo-EM Structure of RyR1 + Adenosine (Local Refinement of TMD) 8SEP ; 3.57 ; Cryo-EM Structure of RyR1 + ADP 8SEW ; 2.89 ; Cryo-EM Structure of RyR1 + ADP (Local Refinement of TMD) 8SEQ ; 3.4 ; Cryo-EM Structure of RyR1 + AMP 8SEX ; 2.84 ; Cryo-EM Structure of RyR1 + AMP (Local Refinement of TMD) 8SEO ; 3.92 ; Cryo-EM Structure of RyR1 + ATP-gamma-S 8SEV ; 3.17 ; Cryo-EM Structure of RyR1 + ATP-gamma-S (Local Refinement of TMD) 8SET ; 3.42 ; Cryo-EM Structure of RyR1 + cAMP 8SF0 ; 2.9 ; Cryo-EM Structure of RyR1 + cAMP (Local Refinement of TMD) 6JG3 ; 6.1 ; Cryo-EM structure of RyR2 (Ca2+ alone dataset) 5GO9 ; 4.4 ; Cryo-EM structure of RyR2 in closed state 5GOA ; 4.2 ; Cryo-EM structure of RyR2 in open state 7XOG ; 3.5 ; Cryo-EM structure of S glycoprotein encoded by the Covid-19 mRNA vaccine candidate RQ3013 (Postfusion state) 7XOE ; 3.9 ; Cryo-EM structure of S glycoprotein encoded by the Covid-19 mRNA vaccine candidate RQ3013 (Prefusion state) 7FG7 ; 6.9 ; Cryo-EM structure of S protein trimer of SARS-CoV2 8EXS ; 4.3 ; Cryo-EM structure of S. aureus BlaR1 F284A mutant 8EXT ; 4.6 ; Cryo-EM structure of S. aureus BlaR1 F284A mutant in complex with ampicillin 8EXR ; 3.8 ; Cryo-EM structure of S. aureus BlaR1 TM and zinc metalloprotease domain 8EXQ ; 4.9 ; Cryo-EM structure of S. aureus BlaR1 with C1 symmetry 8EXP ; 4.2 ; Cryo-EM structure of S. aureus BlaR1 with C2 symmetry 8FOE ; 5.6 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase complex bound to a template DNA 8FOD ; 3.8 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase complex in Apo state conformation II 8FOK ; 3.56 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase complex in the DNA elongation state 8FOJ ; 4.8 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase complex in the post RNA handoff state 8FOH ; 4.6 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase complex in the RNA synthesis state 8FOC ; 3.7 ; Cryo-EM structure of S. cerevisiae DNA polymerase alpha-primase in Apo state conformation I 6PSY ; 2.8 ; Cryo-EM structure of S. cerevisiae Drs2p-Cdc50p in the autoinhibited apo form 6PSX ; 3.3 ; Cryo-EM structure of S. cerevisiae Drs2p-Cdc50p in the PI4P-activated form 6HV8 ; 4.4 ; Cryo-EM structure of S. cerevisiae Polymerase epsilon deltacat mutant 8E9B ; 3.5 ; Cryo-EM structure of S. pombe Arp2/3 complex in the branch junction 7L1K ; 3.16 ; Cryo-EM structure of S. Pombe NatC complex with a Bisubstrate inhibitor and inositol hexaphosphate 6ZZ6 ; 3.4 ; Cryo-EM structure of S.cerevisiae cohesin-Scc2-DNA complex 7Q2Z ; 3.2 ; Cryo-EM structure of S.cerevisiae condensin Ycg1-Brn1-DNA complex 7NTM ; 2.86 ; Cryo-EM structure of S.cerevisiae native alcohol dehydrogenase 1 (ADH1) in its tetrameric apo state 7T94 ; 3.16 ; Cryo-EM structure of S1 state ACh-bound M2R-Go signaling complex with a PAM 7EW3 ; 3.1 ; Cryo-EM structure of S1P-bound Sphingosine 1-phosphate receptor 3 in complex with Gi protein 7T96 ; 3.22 ; Cryo-EM structure of S2 state ACh-bound M2R-Go signaling complex with a PAM 7YAD ; 2.66 ; Cryo-EM structure of S309-RBD-RBD-S309 in the S309-bound Omicron spike protein (local refinement) 8JFT ; 3.31 ; Cryo-EM structure of SaCas9-AcrIIA15 CTD-sgRNA complex 7VW3 ; 3.8 ; Cryo-EM structure of SaCas9-sgRNA-DNA ternary complex 8DH6 ; 2.94 ; Cryo-EM structure of Saccharomyces cerevisiae cytochrome c oxidase (Complex IV) extracted in lipid nanodiscs 7KTX ; 4.3 ; Cryo-EM structure of Saccharomyces cerevisiae ER membrane protein complex bound to a Fab in DDM detergent 7KRA ; 3.2 ; Cryo-EM structure of Saccharomyces cerevisiae ER membrane protein complex bound to Fab-DH4 in lipid nanodiscs 8DH7 ; 2.99 ; Cryo-EM structure of Saccharomyces cerevisiae Succinyl-CoA:acetate CoA-transferase (Ach1p) 6EMK ; 8.0 ; Cryo-EM Structure of Saccharomyces cerevisiae Target of Rapamycin Complex 2 7PQH ; 3.87 ; Cryo-EM structure of Saccharomyces cerevisiae TOROID (TORC1 Organized in Inhibited Domains). 6M39 ; 3.55 ; Cryo-EM structure of SADS-CoV spike 7YI8 ; 2.7 ; Cryo-EM structure of SAH-bound MTA1-MTA9-p1-p2 complex 7YI9 ; 2.6 ; Cryo-EM structure of SAM-bound MTA1-MTA9-p1-p2 complex 7VKU ; 3.2 ; Cryo-EM structure of SAM-Tom40 intermediate complex 8EKE ; 3.36 ; Cryo-EM structure of SARS CoV-2 Mpro WT protease 8WOZ ; 3.25 ; Cryo-EM structure of SARS-CoV RBD in complex with rabbit ACE2 7X7V ; 3.83 ; Cryo-EM structure of SARS-CoV spike protein in complex with three nAbs X01, X10 and X17 7WSF ; 2.87 ; Cryo-EM structure of SARS-CoV spike receptor-binding domain in complex with minke whale ACE2 7WSG ; 3.03 ; Cryo-EM structure of SARS-CoV spike receptor-binding domain in complex with sea lion ACE2 7L09 ; 3.1 ; Cryo-EM structure of SARS-CoV-2 2P S ectodomain bound domain-swapped antibody 2G12 from masked 3D refinement 7L02 ; 3.2 ; Cryo-EM structure of SARS-CoV-2 2P S ectodomain bound to one copy of domain-swapped antibody 2G12 7L06 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 2P S ectodomain bound to two copies of domain-swapped antibody 2G12 8DLI ; 2.56 ; Cryo-EM structure of SARS-CoV-2 Alpha (B.1.1.7) spike protein 8DLJ ; 2.91 ; Cryo-EM structure of SARS-CoV-2 Alpha (B.1.1.7) spike protein in complex with human ACE2 8DLK ; 3.04 ; Cryo-EM structure of SARS-CoV-2 Alpha (B.1.1.7) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8H7Z ; 3.07 ; Cryo-EM structure of SARS-CoV-2 BA.2 RBD in complex with BA7535 fab (local refinement) 8H7L ; 2.44 ; Cryo-EM Structure of SARS-CoV-2 BA.2 Spike protein in complex with BA7535 8KC2 ; 2.6 ; Cryo-EM structure of SARS-CoV-2 BA.3 RBD in complex with golden hamster ACE2 (local refinement) 8IX3 ; 3.98 ; Cryo-EM structure of SARS-CoV-2 BA.4/5 spike protein in complex with 1G11 (local refinement) 8DLL ; 2.56 ; Cryo-EM structure of SARS-CoV-2 Beta (B.1.351) spike protein 8DLM ; 2.89 ; Cryo-EM structure of SARS-CoV-2 Beta (B.1.351) spike protein in complex with human ACE2 8DLN ; 3.04 ; Cryo-EM structure of SARS-CoV-2 Beta (B.1.351) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8DI5 ; 3.04 ; Cryo-EM structure of SARS-CoV-2 Beta (B.1.351) spike protein in complex with VH domain F6 (focused refinement of RBD and VH F6) 7WP2 ; 3.52 ; Cryo-EM structure of SARS-CoV-2 C.1.2 S6P trimer in complex with neutralizing antibody VacW-209 (local refinement) 8DLZ ; 2.57 ; Cryo-EM structure of SARS-CoV-2 D614G spike protein in complex with VH ab6 8DM0 ; 3.21 ; Cryo-EM structure of SARS-CoV-2 D614G spike protein in complex with VH ab6 (focused refinement of NTD and VH ab6) 7TEY ; 2.25 ; Cryo-EM structure of SARS-CoV-2 Delta (B.1.617.2) spike protein 7TEX ; 3.27 ; Cryo-EM structure of SARS-CoV-2 Delta (B.1.617.2) spike protein in complex with human ACE2 7TEW ; 3.52 ; Cryo-EM structure of SARS-CoV-2 Delta (B.1.617.2) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 7XCZ ; 3.2 ; Cryo-EM structure of SARS-CoV-2 Delta RBD in complex with BA7054 and BA7125 fab (local refinement) 7XDA ; 2.98 ; Cryo-EM structure of SARS-CoV-2 Delta RBD in complex with BA7208 and BA7125 fab (local refinement) 8KA8 ; 2.96 ; Cryo-EM structure of SARS-CoV-2 Delta RBD in complex with golden hamster ACE2 (local refinement) 7WP0 ; 3.71 ; Cryo-EM structure of SARS-CoV-2 Delta S6P trimer in complex with neutralizing antibody VacW-209 (local refinement) 7XDK ; 3.2 ; Cryo-EM structure of SARS-CoV-2 Delta Spike protein in complex with BA7054 and BA7125 fab 7XDL ; 3.08 ; Cryo-EM structure of SARS-CoV-2 Delta Spike protein in complex with BA7208 and BA7125 fab 7X7U ; 3.77 ; Cryo-EM structure of SARS-CoV-2 Delta variant spike protein in complex with three nAbs X01, X10 and X17 7Y6D ; 4.39 ; Cryo-EM structure of SARS-CoV-2 Delta variant spike proteins on intact virions: 3 Closed RBD 8DLT ; 2.4 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein 8DLW ; 2.16 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein in complex with Fab S2M11 8DLU ; 3.14 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein in complex with human ACE2 8DLV ; 3.11 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8DLX ; 2.45 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein in complex with VH ab6 8DLY ; 3.0 ; Cryo-EM structure of SARS-CoV-2 Epsilon (B.1.429) spike protein in complex with VH ab6 (focused refinement of NTD and VH ab6) 8DLO ; 2.25 ; Cryo-EM structure of SARS-CoV-2 Gamma (P.1) spike protein 8DLR ; 2.51 ; Cryo-EM structure of SARS-CoV-2 Gamma (P.1) spike protein in complex with Fab 4-8 (focused refinement of NTD and 4-8) 8DLS ; 2.66 ; Cryo-EM structure of SARS-CoV-2 Gamma (P.1) spike protein in complex with Fab 4A8 (focused refinement of NTD and 4A8) 8DLP ; 2.64 ; Cryo-EM structure of SARS-CoV-2 Gamma (P.1) spike protein in complex with human ACE2 8DLQ ; 2.77 ; Cryo-EM structure of SARS-CoV-2 Gamma (P.1) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 7TF3 ; 2.25 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) Q484A spike protein 7TF2 ; 3.62 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) Q484I spike protein 7TF1 ; 3.57 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) Q484I spike protein (focused refinement of RBD) 7TF5 ; 3.16 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) spike protein 7TF4 ; 3.01 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) spike protein (focused refinement of RBD) 7TF0 ; 3.02 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) spike protein in complex with human ACE2 7TEZ ; 3.27 ; Cryo-EM structure of SARS-CoV-2 Kappa (B.1.617.1) spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8CTK ; 3.52 ; Cryo-EM structure of SARS-CoV-2 M protein in a lipid nanodisc 7S82 ; 3.5 ; Cryo-EM structure of SARS-CoV-2 Main protease C145S in complex with N-terminal peptide 8EY2 ; 3.5 ; Cryo-EM structure of SARS-CoV-2 Main protease C145S in complex with N-terminal peptide 7WP1 ; 3.77 ; Cryo-EM structure of SARS-CoV-2 Mu S6P trimer in complex with neutralizing antibody VacW-209 (local refinement) 7N0B ; 3.9 ; Cryo-EM structure of SARS-CoV-2 nsp10-nsp14 (WT)-RNA complex 7ME0 ; 2.48 ; Cryo-EM structure of SARS-CoV-2 NSP15 NendoU at pH 6.0 7RB0 ; 2.98 ; Cryo-EM structure of SARS-CoV-2 NSP15 NendoU at pH 7.5 7RB2 ; 3.27 ; Cryo-EM structure of SARS-CoV-2 NSP15 NendoU in BIS-Tris pH 6.0 7WRH ; 2.66 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.1 spike protein in complex with mouse ACE2 8DM9 ; 2.56 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.1 spike protein in complex with mouse ACE2 8DMA ; 2.79 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.1 spike protein in complex with mouse ACE2 (focused refinement of RBD and ACE2) 8HFX ; 2.98 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.1 spike protein in complex with white-tailed deer ACE2 8HPF ; 2.34 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 RBD in complex with fab L4.65 and L5.34 7YV8 ; 2.94 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 RBD in complex with golden hamster ACE2 (local refinement) 7YJ3 ; 3.14 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 RBD in complex with human ACE2 (local refinement) 7YVU ; 3.2 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 RBD in complex with mouse ACE2 (local refinement) 8GRY ; 3.29 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 RBD in complex with rat ACE2 (local refinement) 8HP9 ; 2.75 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 S-trimer in complex with fab L4.65 and L5.34 8DM1 ; 3.04 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein 8DM2 ; 2.91 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein (focused refinement of NTD) 8DM3 ; 2.37 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with Fab 4A8 8DM4 ; 2.45 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with Fab 4A8 (focused refinement of NTD and 4A8) 8DM5 ; 2.51 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with human ACE2 8DM6 ; 2.77 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8DM7 ; 2.49 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with mouse ACE2 8DM8 ; 2.68 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2 spike protein in complex with mouse ACE2 (focused refinement of RBD and ACE2) 7YHW ; 3.09 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.2.12.1 RBD in complex with human ACE2 (local refinement) 8HPU ; 2.56 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4 RBD in complex with fab L4.65 and L5.34 8HPQ ; 2.85 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4 S-trimer in complex with fab L4.65 and L5.34 8H06 ; 2.66 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4/5 RBD in complex with human ACE2 (local refinement) 8WOY ; 3.14 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4/5 RBD in complex with rabbit ACE2 (local refinement) 8IFY ; 2.55 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4/5 spike protein in complex with white-tailed deer ACE2 8IFZ ; 2.85 ; Cryo-EM structure of SARS-CoV-2 Omicron BA.4/5 spike protein receptor-binding domain in complex with white-tailed deer ACE2 8HQ7 ; 2.7 ; Cryo-EM structure of SARS-CoV-2 Omicron Prototype RBD in complex with fab L4.65 and L5.34 8HPV ; 2.65 ; Cryo-EM structure of SARS-CoV-2 Omicron Prototype S-trimer in complex with fab L4.65 and L5.34 7XCI ; 3.2 ; Cryo-EM structure of SARS-CoV-2 Omicron RBD in complex with human ACE2 ectodomain (local refinement) 7XCK ; 2.5 ; Cryo-EM structure of SARS-CoV-2 Omicron RBD in complex with S309 fab (local refinement) 7WP5 ; 3.9 ; Cryo-EM structure of SARS-CoV-2 Omicron S6P trimer in complex with neutralizing antibody VacW-209 (local refinement) 7XST ; 3.04 ; Cryo-EM structure of SARS-CoV-2 Omicron spike glycoprotein in complex with three F61 Fab and three D2 Fab 7TCC ; 3.86 ; Cryo-EM structure of SARS-CoV-2 Omicron spike in complex with antibodies A19-46.1 and B1-182.1 7TCA ; 3.85 ; Cryo-EM structure of SARS-CoV-2 Omicron spike in complex with antibody A19-46.1 7Y9Z ; 2.85 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein (S-6P-RRAR) in complex with human ACE2 ectodomain (one-RBD-up state) 7XCH ; 3.4 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein (S-6P-RRAR) in complex with human ACE2 ectodomain (two-RBD-up state) 7XCO ; 2.5 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein (S-6P-RRAR) in complex with S309 fab 7XDB ; 2.62 ; Cryo-EM structure of SARS-CoV-2 Omicron Spike protein in complex with BA7208 fab 7T9K ; 2.45 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein in complex with human ACE2 7T9L ; 2.66 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 7WK4 ; 3.69 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein with ACE2, C1 state 7WK6 ; 3.67 ; Cryo-EM structure of SARS-CoV-2 Omicron spike protein with human ACE2 (focus refinement on RBD-1/ACE2) 7WVP ; 3.7 ; Cryo-EM structure of SARS-CoV-2 Omicron Spike protein with human ACE2 receptor, C2 state 7WVQ ; 4.04 ; Cryo-EM structure of SARS-CoV-2 Omicron Spike protein with human ACE2 receptor, C3 state 7WRI ; 3.03 ; Cryo-EM structure of SARS-CoV-2 Omicron spike receptor-binding domain in complex with mouse ACE2 6XDC ; 2.9 ; Cryo-EM structure of SARS-CoV-2 ORF3a 7KJR ; 2.08 ; Cryo-EM structure of SARS-CoV-2 ORF3a 8FDW ; 2.9 ; Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane 8WOX ; 2.75 ; Cryo-EM structure of SARS-CoV-2 prototype RBD in complex with rabbit ACE2 (local refinement) 8WLO ; 2.62 ; Cryo-EM structure of SARS-CoV-2 prototype spike protein in complex with hippopotamus ACE2 8HFZ ; 2.71 ; Cryo-EM structure of SARS-CoV-2 prototype spike protein in complex with white-tailed deer ACE2 8WLR ; 3.12 ; Cryo-EM structure of SARS-CoV-2 prototype spike protein receptor-binding domain in complex with hippopotamus ACE2 8HG0 ; 3.51 ; Cryo-EM structure of SARS-CoV-2 prototype spike protein receptor-binding domain in complex with white-tailed deer ACE2 8DW3 ; 4.26 ; Cryo-EM structure of SARS-CoV-2 RBD in complex with anti-SARS-CoV-2 DARPin,SR16m, and two antibody Fabs, S309 and CR3022 8DW2 ; 4.11 ; Cryo-EM structure of SARS-CoV-2 RBD in complex with anti-SARS-CoV-2 DARPin,SR22, and two antibody Fabs, S309 and CR3022 7Y6K ; 3.34 ; Cryo-EM structure of SARS-CoV-2 receptor binding domain in complex with K202.B bispecific antibody 7WP6 ; 3.81 ; Cryo-EM structure of SARS-CoV-2 recombinant spike protein STFK in complex with three neutralizing antibodies 7WP8 ; 3.88 ; Cryo-EM structure of SARS-CoV-2 recombinant spike protein STFK1628x in complex with three neutralizing antibodies 7V7Z ; 3.1 ; Cryo-EM structure of SARS-CoV-2 S-Beta variant (B.1.351) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form 7V8C ; 3.4 ; Cryo-EM structure of SARS-CoV-2 S-Beta variant (B.1.351), Cleavable form, one RBD-up conformation 7V76 ; 3.2 ; Cryo-EM structure of SARS-CoV-2 S-Beta variant (B.1.351), uncleavable form, one RBD-up conformation 7V77 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-Beta variant (B.1.351), uncleavable form, two RBD-up conformation 7EH5 ; 4.0 ; Cryo-EM structure of SARS-CoV-2 S-D614G variant in complex with neutralizing antibodies, RBD-chAb15 and RBD-chAb45 7V89 ; 2.8 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form conformation 1 7V8A ; 2.7 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form conformation 2 7V88 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, two ACE2-bound form 7V7N ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), all RBD-down conformation 7V7O ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), one RBD-up conformation 1 7V7P ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), one RBD-up conformation 2 7V7Q ; 2.8 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), one RBD-up conformation 3 7V7R ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), one RBD-up conformation 4 7V7S ; 3.0 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), one RBD-up conformation 5 7V7T ; 3.0 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), two RBD-up conformation 1 7V7U ; 3.0 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), two RBD-up conformation 2 7V7V ; 3.1 ; Cryo-EM structure of SARS-CoV-2 S-Delta variant (B.1.617.2), two RBD-up conformation 3 7V82 ; 2.8 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form conformation 1 7V83 ; 2.8 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form conformation 2 7V81 ; 3.2 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, two ACE2-bound form 7V78 ; 3.4 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1), one RBD-up conformation 1 7V79 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1), one RBD-up conformation 2 7V7A ; 3.4 ; Cryo-EM structure of SARS-CoV-2 S-Gamma variant (P.1), two RBD-up conformation 7V86 ; 2.8 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, three ACE2-bound form 7V85 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain, two ACE2-bound form 7V7D ; 3.0 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), all RBD-down conformation 7V7H ; 3.2 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), dimer of S trimer conformation 1 7V7I ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), dimer of S trimer conformation 2 7V7J ; 3.4 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), dimer of S trimer conformation 3 7V7E ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), one RBD-up conformation 1 7V7F ; 2.9 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), one RBD-up conformation 2 7V7G ; 3.1 ; Cryo-EM structure of SARS-CoV-2 S-Kappa variant (B.1.617.1), two RBD-up conformation 7EDJ ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-UK variant (B.1.1.7) in complex with Angiotensin-converting enzyme 2 (ACE2) ectodomain 7EDF ; 3.2 ; Cryo-EM structure of SARS-CoV-2 S-UK variant (B.1.1.7), one RBD-up conformation 1 7EDG ; 3.2 ; Cryo-EM structure of SARS-CoV-2 S-UK variant (B.1.1.7), one RBD-up conformation 2 7EDH ; 3.6 ; Cryo-EM structure of SARS-CoV-2 S-UK variant (B.1.1.7), one RBD-up conformation 3 7EDI ; 3.3 ; Cryo-EM structure of SARS-CoV-2 S-UK variant (B.1.1.7), two RBD-up conformation 7WON ; 3.9 ; Cryo-EM structure of SARS-CoV-2 S2P trimer in complex with neutralizing antibody VacW-209 (local refinement) 8BEV ; 5.92 ; Cryo-EM structure of SARS-CoV-2 spike (HexaPro variant) in complex with nanobody W25 (map 3, focus refinement on RBD, W25 and adjacent NTD) 8BGG ; 6.04 ; Cryo-EM structure of SARS-CoV-2 spike (Omicron BA.1 variant) in complex with nanobody W25 (map 5, focus refinement on RBD, W25 and adjacent NTD) 7Z6V ; 3.1 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11 nanobody complex 7Z9Q ; 3.6 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11-A10 nanobody complex 7Z85 ; 3.1 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11-B5 nanobody complex 6Z43 ; 3.3 ; Cryo-EM Structure of SARS-CoV-2 Spike : H11-D4 Nanobody Complex 7Z86 ; 3.4 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11-H4 Q98R H100E nanobody complex in 1Up2Down conformation 7Z9R ; 4.2 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11-H4 Q98R H100E nanobody complex in 2Up1Down conformation 7Z7X ; 3.3 ; CRYO-EM STRUCTURE OF SARS-COV-2 SPIKE : H11-H6 nanobody complex 7EAZ ; 3.5 ; Cryo-EM structure of SARS-CoV-2 Spike D614G variant, one RBD-up conformation 1 7EB0 ; 3.6 ; Cryo-EM structure of SARS-CoV-2 Spike D614G variant, one RBD-up conformation 2 7EB3 ; 3.6 ; Cryo-EM structure of SARS-CoV-2 Spike D614G variant, one RBD-up conformation 3 7EB4 ; 3.5 ; Cryo-EM structure of SARS-CoV-2 Spike D614G variant, two RBD-up conformation 1 7EB5 ; 3.4 ; Cryo-EM structure of SARS-CoV-2 Spike D614G variant, two RBD-up conformation 2 7CN9 ; 4.7 ; Cryo-EM structure of SARS-CoV-2 Spike ectodomain 7XMZ ; 3.25 ; Cryo-EM structure of SARS-CoV-2 spike glycoprotein in complex with three D2 Fab 7XMX ; 3.62 ; Cryo-EM structure of SARS-CoV-2 spike glycoprotein in complex with three F61 Fab 7F62 ; 3.6 ; Cryo-EM structure of SARS-CoV-2 spike in complex with a neutralizing antibody chAb-25 (Focused refinement of S-RBD and chAb-25 region) 7F63 ; 3.9 ; Cryo-EM structure of SARS-CoV-2 spike in complex with a neutralizing antibody chAb-45 (Focused refinement of S-RBD and chAb-45 region) 7EJ4 ; 3.6 ; Cryo-EM structure of SARS-CoV-2 spike in complex with a neutralizing antibody RBD-chAb-25 7EJ5 ; 3.5 ; Cryo-EM structure of SARS-CoV-2 spike in complex with a neutralizing antibody RBD-chAb-45 7TB8 ; 2.83 ; Cryo-EM structure of SARS-CoV-2 spike in complex with antibodies B1-182.1 and A19-61.1 7KML ; 3.8 ; cryo-EM structure of SARS-CoV-2 spike in complex with Fab 15033-7, three RBDs bound 7KMK ; 4.2 ; cryo-EM structure of SARS-CoV-2 spike in complex with Fab 15033-7, two RBDs bound 7TYZ ; 3.51 ; Cryo-EM structure of SARS-CoV-2 spike in complex with FSR22, an anti-SARS-CoV-2 DARPin 7TZ0 ; 4.17 ; Cryo-EM structure of SARS-CoV-2 spike in complex with FSR22, an anti-SARS-CoV-2 DARPin (Local refinement of FSR22 and RBD) 7YC5 ; 3.1 ; Cryo-EM structure of SARS-CoV-2 spike in complex with K202.B bispecific antibody 7LRS ; 3.89 ; Cryo-EM structure of SARS-CoV-2 spike in complex with neutralizing antibody A23-58.1 that targets the receptor-binding domain 7LRT ; 3.54 ; Cryo-EM structure of SARS-CoV-2 spike in complex with neutralizing antibody A23-58.1 that targets the receptor-binding domain 7MLZ ; 3.71 ; Cryo-EM structure of SARS-CoV-2 spike in complex with neutralizing antibody B1-182.1 that targets the receptor-binding domain 7MM0 ; 3.15 ; Cryo-EM structure of SARS-CoV-2 spike in complex with neutralizing antibody B1-182.1 that targets the receptor-binding domain 7RQ6 ; 4.18 ; Cryo-EM structure of SARS-CoV-2 spike in complex with non-neutralizing NTD-directed CV3-13 Fab isolated from convalescent individual 7XY3 ; 4.6 ; Cryo-EM structure of SARS-CoV-2 spike in complex with VHH14 7XY4 ; 3.3 ; Cryo-EM structure of SARS-CoV-2 spike in complex with VHH21 8H6F ; 3.3 ; Cryo-EM structure of SARS-CoV-2 Spike protein in complex with A6 repebody 8IV8 ; 3.92 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with double nAbs 3E2 and 1C4 (local refinement) 8IV5 ; 3.77 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with double nAbs 8H12 and 1C4 (local refinement) 8IV4 ; 3.59 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with double nAbs 8H12 and 3E2 (local refinement) 8IVA ; 3.95 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with double nAbs XMA01 and 3E2 (local refinement) 7XRP ; 3.88 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with nanobody C5G2 (localized refinement) 7X7T ; 3.48 ; Cryo-EM structure of SARS-CoV-2 spike protein in complex with three nAbs X01, X10 and X17 6ZWV ; 3.5 ; Cryo-EM structure of SARS-CoV-2 Spike Proteins on intact virions: 3 Closed RBDs 7WSE ; 2.93 ; Cryo-EM structure of SARS-CoV-2 spike receptor-binding domain complexed with its receptor minke whale ACE2 7WSH ; 2.89 ; Cryo-EM structure of SARS-CoV-2 spike receptor-binding domain in complex with sea lion ACE2 8EPN ; 2.8 ; Cryo-EM structure of SARS-CoV-2 Spike trimer S2D14 in the 3-RBD Down conformation 8EPQ ; 3.3 ; Cryo-EM structure of SARS-CoV-2 Spike trimer S2D14 with two RBDs exposed 8EPP ; 3.1 ; Cryo-EM structure of SARS-CoV-2 Spike trimer S2D14 with two RBDs in the open conformation 8VKK ; 2.81 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein 8VKO ; 2.68 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein in complex with human ACE2 8VKP ; 2.77 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein in complex with human ACE2 (focused refinement of RBD and ACE2) 8VKM ; 2.83 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein in complex with mouse ACE2 (conformation 1) 8VKL ; 2.91 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein in complex with mouse ACE2 (conformation 2) 8VKN ; 2.93 ; Cryo-EM structure of SARS-CoV-2 XBB.1.5 spike protein in complex with mouse ACE2 (focused refinement of RBD and mouse ACE2) 8J1V ; 3.01 ; Cryo-EM structure of SARS-CoV2 Omicron BA.5 spike in complex with 8-9D Fabs 7DQA ; 2.8 ; Cryo-EM structure of SARS-CoV2 RBD-ACE2 complex 7X7A ; 3.2 ; Cryo-EM structure of SbCas7-11 in complex with crRNA and target RNA 6M49 ; 3.7 ; cryo-EM structure of Scap/Insig complex in the present of 25-hydroxyl cholesterol. 7ETW ; 4.1 ; Cryo-EM structure of Scap/Insig complex in the present of digitonin. 7D0I ; 3.0 ; Cryo-EM structure of Schizosaccharomyces pombe Atg9 7XY9 ; 2.12 ; Cryo-EM structure of secondary alcohol dehydrogenases TbSADH after carrier-free immobilization based on weak intermolecular interactions 6CX1 ; 3.8 ; Cryo-EM structure of Seneca Valley Virus-Anthrax Toxin Receptor 1 complex 8W8B ; 3.0 ; Cryo-EM structure of SEP-363856 bounded serotonin 1A (5-HT1A) receptor-Gi protein complex 8GF7 ; 4.8 ; Cryo-EM structure of serine 87 O-GlcNAc-modified alpha-synuclein fibrils 6BE1 ; 4.31 ; Cryo-EM structure of serotonin receptor 7D20 ; 3.0 ; Cryo-EM structure of SET8-CENP-A-nucleosome complex 7D1Z ; 3.15 ; Cryo-EM structure of SET8-nucleosome complex 7EW7 ; 3.27 ; Cryo-EM structure of SEW2871-bound Sphingosine-1-phosphate receptor 1 in complex with Gi protein 8ORE ; 2.5 ; Cryo-EM structure of SH-SY5Y seeded with filaments from Alzheimer's Disease 8ORF ; 2.5 ; Cryo-EM structure of SH-SY5Y seeded with filaments from corticobasal degeneration extracts 8ORG ; 2.3 ; Cryo-EM structure of SH-SY5Y seeded with filaments from corticobasal degeneration extracts (Type II) 6QT9 ; 3.8 ; Cryo-EM structure of SH1 full particle. 7PLA ; 3.04 ; Cryo-EM structure of ShCas12k in complex with a sgRNA and a dsDNA target 8AXA ; 2.96 ; Cryo-EM structure of shCas12k-sgRNA-dsDNA ternary complex (type V-K CRISPR-associated transposon) 7U6V ; 4.1 ; Cryo-EM structure of Shiga toxin 2 in complex with the native ribosomal P-stalk 6XRT ; 3.9 ; Cryo-EM structure of SHIV-elicited RHA1.V2.01 in complex with HIV-1 Env BG505 DS-SOSIP.664 7UR6 ; 3.46 ; Cryo-EM structure of SHIV-elicited, FP-directed Rhesus Fab RM6561.DH1021.14 in complex with stabilized HIV-1 Env Ce1176 DS-SOSIP.664 7UPI ; 2.89 ; Cryo-EM structure of SHOC2-PP1c-MRAS holophosphatase complex 8VJB ; 3.6 ; Cryo-EM structure of short form insulin receptor (IR-A) with four IGF2 bound, symmetric conformation. 8VJC ; 3.8 ; Cryo-EM structure of short form insulin receptor (IR-A) with three IGF2 bound, asymmetric conformation. 7F4I ; 3.1 ; Cryo-EM structure of SHU9119-bound melanocortin-1 receptor in complex with Gs protein and Nb35 8QFS ; 2.7 ; Cryo-EM structure of SidH from Legionella pneumophila 8QHC ; 3.1 ; Cryo-EM structure of SidH from Legionella pneumophila in complex with LubX 7MIR ; 2.5 ; Cryo-EM structure of SidJ-SdeA-CaM reaction intermediate complex 7MIS ; 2.8 ; Cryo-EM structure of SidJ-SdeC-CaM reaction intermediate complex 8JUN ; 2.38 ; Cryo-EM structure of SIDT1 E555Q mutant 8JUL ; 2.92 ; Cryo-EM structure of SIDT1 in complex with phosphatidic acid 7XUI ; 3.61 ; Cryo-EM structure of sigma70 bound HK022 putRNA-associated E.coli RNA polymerase elongation complex 7KNE ; 3.85 ; Cryo-EM structure of single ACE2-bound SARS-CoV-2 trimer spike at pH 5.5 7KNB ; 3.93 ; Cryo-EM structure of single ACE2-bound SARS-CoV-2 trimer spike at pH 7.4 7XOL ; 3.26 ; Cryo-EM structure of single empty ring 2 (SER2) of GroEL-UGT1A complex at 3.2 Ang. resolution 8V4Y ; 2.8 ; Cryo-EM structure of singly-bound SNF2h-nucleosome complex with SNF2h at inactive SHL2 (conformation 1) 8V7L ; 2.9 ; Cryo-EM structure of singly-bound SNF2h-nucleosome complex with SNF2h at inactive SHL2 (conformation 2) 6NE3 ; 3.9 ; Cryo-EM structure of singly-bound SNF2h-nucleosome complex with SNF2h bound at SHL-2 7V0N ; 5.9 ; Cryo-EM structure of SINV/EEEV in complex with Fab fragment of a moderately/weakly neutralizing human antibody IgG-21 7V0O ; 6.6 ; Cryo-EM structure of SINV/EEEV in complex with Fab fragment of a moderately/weakly neutralizing human antibody IgG-94 7V0P ; 5.2 ; Cryo-EM structure of SINV/EEEV in complex with Fab fragment of a potently neutralizing human antibody IgG-106 7EVY ; 2.98 ; Cryo-EM structure of siponimod -bound Sphingosine-1-phosphate receptor 1 in complex with Gi protein 7EW1 ; 3.4 ; Cryo-EM structure of siponimod -bound Sphingosine-1-phosphate receptor 5 in complex with Gi protein 8DVD ; 4.12 ; Cryo-EM structure of SIVmac239 SOS-2P Env trimer in complex with human bNAb PGT145 8DMX ; 3.37 ; Cryo-EM structure of skeletal muscle alpha-actin 7JV5 ; 3.0 ; Cryo-EM structure of SKF-81297-bound dopamine receptor 1 in complex with Gs protein 7JVP ; 2.9 ; Cryo-EM structure of SKF-83959-bound dopamine receptor 1 in complex with Gs protein 7CRH ; 3.3 ; Cryo-EM structure of SKF83959 bound dopamine receptor DRD1-Gs signaling complex 8BYL ; 3.5 ; Cryo-EM structure of SKP1-SKP2-CKS1 from the SCFSKP2 E3 ligase complex 8BYA ; 3.38 ; Cryo-EM structure of SKP1-SKP2-CKS1-CDK2-CyclinA-p27KIP1 Complex 7XTK ; 2.89 ; Cryo-EM structure of SLC19A1 6VYH ; 3.0 ; Cryo-EM structure of SLC40/ferroportin in complex with Fab 6WIK ; 3.4 ; Cryo-EM structure of SLC40/ferroportin with Fab in the presence of hepcidin 7OJF ; 3.9 ; CRYO-EM STRUCTURE OF SLYB13-BAMA FROM ESCHERICHIA COLI 7PWF ; 2.85 ; Cryo-EM structure of small subunit of Giardia lamblia ribosome at 2.9 A resolution 6V4U ; 3.8 ; Cryo-EM structure of SMCR8-C9orf72-WDR41 complex 8PS0 ; 3.37 ; Cryo-EM structure of Sodium proton exchanger NhaA with bound cardiolipin 7CYE ; 3.54 ; Cryo-EM structure of sodium-dependent bicarbonate transporter SbtA from Synechocystis sp. PCC 6803 7FJO ; 3.34 ; Cryo-EM structure of South African (B.1.351) SARS-CoV-2 spike glycoprotein in complex with three T6 Fab 7FJN ; 3.25 ; Cryo-EM structure of South African (B.1.351) SARS-CoV-2 spike glycoprotein in complex with two T6 Fab 7W5Y ; 4.2 ; Cryo-EM structure of SoxS-dependent transcription activation complex with fpr promoter DNA 7W5W ; 4.55 ; Cryo-EM structure of SoxS-dependent transcription activation complex with micF promoter DNA 7W5X ; 3.4 ; Cryo-EM structure of SoxS-dependent transcription activation complex with zwf promoter DNA 8K34 ; 2.81 ; Cryo-EM structure of SPARTA gRNA binary complex 5Y36 ; 5.2 ; Cryo-EM structure of SpCas9-sgRNA-DNA ternary complex 8DT3 ; 3.3 ; Cryo-EM structure of spike binding to Fab of neutralizing antibody (locally refined) 6JX7 ; 3.31 ; Cryo-EM structure of spike protein of feline infectious peritonitis virus strain UU4 3JCU ; 3.2 ; Cryo-EM structure of spinach PSII-LHCII supercomplex at 3.2 Angstrom resolution 6ZQI ; 3.8 ; Cryo-EM structure of Spondweni virus prME 7YJ1 ; 3.1 ; Cryo-EM structure of SPT-ORMDL3 (ORMDL3-deltaN2) complex 7YJ2 ; 2.9 ; Cryo-EM structure of SPT-ORMDL3 (ORMDL3-N13A) complex 7YIY ; 2.7 ; Cryo-EM structure of SPT-ORMDL3 complex 7F75 ; 4.2 ; Cryo-EM structure of Spx-dependent transcription activation complex 7V59 ; 5.26 ; Cryo-EM structure of spyCas9-sgRNA-DNA dimer 8G07 ; 2.8 ; Cryo-EM structure of SQ31f-bound Mycobacterium smegmatis ATP synthase FO region 8G08 ; 2.8 ; Cryo-EM structure of SQ31f-bound Mycobacterium smegmatis ATP synthase rotational state 1 (backbone model) 8G09 ; 3.1 ; Cryo-EM structure of SQ31f-bound Mycobacterium smegmatis ATP synthase rotational state 2 (backbone model) 8G0A ; 2.9 ; Cryo-EM structure of SQ31f-bound Mycobacterium smegmatis ATP synthase rotational state 3 8EIZ ; 3.13 ; Cryo-EM structure of squid sensory receptor CRB1 7XX2 ; 3.6 ; Cryo-EM structure of Sr35 resistosome induced by AvrSr35 R381A 7KC1 ; 3.41 ; Cryo-EM structure of SRR2899884.46167H+MEDI8852L fab in complex with Victoria HA 8HQY ; 3.05 ; Cryo-EM structure of SSX1 bound to the H2AK119Ub nucleosome at a resolution of 3.05 angstrom 8HR1 ; 3.02 ; Cryo-EM structure of SSX1 bound to the unmodified nucleosome at a resolution of 3.02 angstrom 6RJG ; 3.2 ; Cryo-EM structure of St1Cas9-sgRNA-AcrIIA6-tDNA59-ntPAM complex. 6RJA ; 3.0 ; Cryo-EM structure of St1Cas9-sgRNA-tDNA20-AcrIIA6 dimeric assembly. 6RJ9 ; 3.2 ; Cryo-EM structure of St1Cas9-sgRNA-tDNA20-AcrIIA6 monomeric assembly. 6RJD ; 3.3 ; Cryo-EM structure of St1Cas9-sgRNA-tDNA59-ntPAM complex. 6VRW ; 3.71 ; Cryo-EM structure of stabilized HIV-1 Env trimer CAP256.wk34.c80 SOSIP.RnS2 8BHF ; 3.1 ; Cryo-EM structure of stalled rabbit 80S ribosomes in complex with human CCR4-NOT and CNOT4 8FXH ; 2.8 ; Cryo-EM structure of Stanieria sp. CphA2 8FXI ; 2.7 ; Cryo-EM structure of Stanieria sp. CphA2 in complex with ADPCP and 4x(beta-Asp-Arg) 8J5D ; 3.0 ; Cryo-EM structure of starch degradation complex of BAM1-LSF1-MDH 6VZG ; 4.2 ; Cryo-EM structure of Sth1-Arp7-Arp9-Rtt102 6VZ4 ; 3.9 ; Cryo-EM structure of Sth1-Arp7-Arp9-Rtt102 bound to the nucleosome in ADP Beryllium Fluoride state 8IK0 ; 3.3 ; Cryo-EM structure of Stimulator of interferon genes 8FLK ; 4.0 ; Cryo-EM structure of STING oligomer bound to cGAMP and NVS-STG2 8FLM ; 2.9 ; Cryo-EM structure of STING oligomer bound to cGAMP, NVS-STG2 and C53 8GVK ; 2.2 ; Cryo-EM structure of streptavidin 8HRM ; 2.56 ; Cryo-EM structure of streptavidin 7VPD ; 3.77 ; Cryo-EM structure of Streptomyces coelicolor RNAP-promoter open complex with one Zur dimers 7X75 ; 3.45 ; Cryo-EM structure of Streptomyces coelicolor RNAP-promoter open complex with three Zur dimers 7X76 ; 3.67 ; Cryo-EM structure of Streptomyces coelicolor RNAP-promoter open complex with two Zur dimers 7VPZ ; 4.14 ; Cryo-EM structure of Streptomyces coelicolor transcription initial complex with one Zur dimer 7X74 ; 3.7 ; Cryo-EM structure of Streptomyces coelicolor transcription initial complex with two Zur dimers. 5L3P ; 3.7 ; Cryo-EM structure of stringent response factor RelA bound to ErmCL-stalled ribosome complex 7K36 ; 3.3 ; Cryo-EM structure of STRIPAK complex 8OTW ; 3.68 ; Cryo-EM structure of Strongylocentrotus purpuratus SLC9C1 in presence of cAMP 8OTQ ; 3.22 ; Cryo-EM structure of Strongylocentrotus purpuratus sperm-specific Na+/H+ exchanger SLC9C1 in GDN 8OTX ; 3.08 ; Cryo-EM structure of Strongylocentrotus purpuratus sperm-specific Na+/H+ exchanger SLC9C1 in nanodisc 8PNV ; 2.048 ; Cryo-EM structure of styrene oxide isomerase 8PNU ; 2.12 ; Cryo-EM structure of styrene oxide isomerase bound to benzylamine inhibitor 7WBB ; 3.6 ; Cryo-EM structure of substrate engaged Drg1 hexamer 8D8O ; 3.35 ; Cryo-EM structure of substrate unbound PAPP-A 8E91 ; 2.57 ; Cryo-EM structure of substrate-free ClpX.ClpP 8E8Q ; 3.12 ; Cryo-EM structure of substrate-free DNClpX.ClpP 8E7V ; 3.1 ; Cryo-EM structure of substrate-free DNClpX.ClpP from singly capped particles 8B6G ; 3.0 ; Cryo-EM structure of succinate dehydrogenase complex (complex-II) in respiratory supercomplex of Tetrahymena thermophila 6JD1 ; 3.38 ; Cryo-EM Structure of Sulfolobus solfataricus ketol-acid reductoisomerase (Sso-KARI) in complex with Mg2+, NADH, and CPD at pH7.5 6JCZ ; 3.35 ; Cryo-EM Structure of Sulfolobus solfataricus ketol-acid reductoisomerase (Sso-KARI) in complex with Mg2+, NADPH, and CPD at pH7.5 6JCV ; 2.92 ; Cryo-EM structure of Sulfolobus solfataricus ketol-acid reductoisomerase (Sso-KARI) with Mg2+ at pH7.5 6JCW ; 3.04 ; Cryo-EM Structure of Sulfolobus solfataricus ketol-acid reductoisomerase (Sso-KARI) with Mg2+ at pH8.5 6M3X ; 2.24 ; Cryo-EM structure of sulfur oxygenase reductase from Sulfurisphaera tokodaii 8IZ7 ; 3.8 ; cryo-EM structure of sulindac-bound hMRP4 8GZH ; 2.96 ; Cryo-EM structure of Synechocystis sp. PCC 6803 CTP-bound RPitc 8GZG ; 3.13 ; Cryo-EM structure of Synechocystis sp. PCC 6803 RPitc 8H7Q ; 3.8 ; Cryo-EM structure of Synechocystis sp. PCC6714 Cascade at 3.8 angstrom resolution 8GEL ; 3.9 ; Cryo-EM structure of synthetic tetrameric building block sC4 6SKF ; 2.95 ; Cryo-EM Structure of T. kodakarensis 70S ribosome 6TH6 ; 2.55 ; Cryo-EM Structure of T. kodakarensis 70S ribosome 6SKG ; 2.65 ; Cryo-EM Structure of T. kodakarensis 70S ribosome in TkNat10 deleted strain 8DOK ; 3.2 ; Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer in complex with 8ANC195 and 10-1074 6NQD ; 3.9 ; Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer in complex with 8ANC195 Fab 8G6U ; 3.16 ; Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer with LMHS mutations in complex with 8ANC195 and 10-1074 8CZZ ; 3.14 ; Cryo-EM structure of T/F100 SOSIP.664 HIV-1 Env trimer with LMHS mutations in complex with Temsavir, 8ANC195, and 10-1074 7A8Z ; 3.35 ; Cryo-EM structure of T275P KatG from M. tuberculosis 8UNH ; 3.21 ; Cryo-EM structure of T4 Bacteriophage Clamp Loader with Sliding Clamp 8UNF ; 3.15 ; Cryo-EM structure of T4 Bacteriophage Clamp Loader with Sliding Clamp and DNA 6YSZ ; 3.6 ; Cryo-EM structure of T7 bacteriophage DNA translocation gp15 core protein intermediate assembly 6YT5 ; 3.0 ; Cryo-EM structure of T7 bacteriophage DNA translocation gp15-gp16 core complex intermediate assembly 6R21 ; 3.33 ; Cryo-EM structure of T7 bacteriophage fiberless tail complex 6QXM ; 4.1 ; Cryo-EM structure of T7 bacteriophage portal protein, 12mer, open valve 6AB5 ; 3.7 ; Cryo-EM structure of T=1 Penaeus vannamei nodavirus 6AB6 ; 3.5 ; Cryo-EM structure of T=3 Penaeus vannamei nodavirus 7N0K ; 3.5 ; Cryo-EM structure of TACAN in the apo form (TMEM120A) 7N0L ; 2.8 ; Cryo-EM structure of TACAN in the H196A H197A mutant form (TMEM120A) 8G0B ; 2.8 ; Cryo-EM structure of TBAJ-876-bound Mycobacterium smegmatis ATP synthase FO region 8G0C ; 2.8 ; Cryo-EM structure of TBAJ-876-bound Mycobacterium smegmatis ATP synthase rotational state 1 (backbone model) 8G0D ; 2.9 ; Cryo-EM structure of TBAJ-876-bound Mycobacterium smegmatis ATP synthase rotational state 2 (backbone model) 8G0E ; 2.6 ; Cryo-EM structure of TBAJ-876-bound Mycobacterium smegmatis ATP synthase rotational state 3 7Q3U ; 3.7 ; Cryo-EM structure of TDP43 core peptide amyloid fiber 7F4U ; 4.2 ; Cryo-EM structure of TELO2-TTI1-TTI2 complex 6MUT ; 3.1 ; Cryo-EM structure of ternary Csm-crRNA-target RNA with anti-tag sequence complex in type III-A CRISPR-Cas system 3J9Y ; 3.9 ; Cryo-EM structure of tetracycline resistance protein TetM bound to a translating E.coli ribosome 7YC8 ; 4.14 ; Cryo-EM structure of Tetrahymena ribozyme conformation 1 undergoing the first-step self-splicing 7YG9 ; 2.68 ; Cryo-EM structure of Tetrahymena ribozyme conformation 1 undergoing the second-step self-splicing 7YCG ; 3.18 ; Cryo-EM structure of Tetrahymena ribozyme conformation 2 undergoing the first-step self-splicing 7YGA ; 2.35 ; Cryo-EM structure of Tetrahymena ribozyme conformation 2 undergoing the second-step self-splicing 7YCH ; 3.09 ; Cryo-EM structure of Tetrahymena ribozyme conformation 3 undergoing the first-step self-splicing 7YGB ; 2.62 ; Cryo-EM structure of Tetrahymena ribozyme conformation 3 undergoing the second-step self-splicing 7YCI ; 2.98 ; Cryo-EM structure of Tetrahymena ribozyme conformation 4 undergoing the first-step self-splicing 7YGC ; 2.65 ; Cryo-EM structure of Tetrahymena ribozyme conformation 4 undergoing the second-step self-splicing 7YG8 ; 2.97 ; Cryo-EM structure of Tetrahymena ribozyme conformation 5 undergoing the second-step self-splicing 7YGD ; 3.41 ; Cryo-EM structure of Tetrahymena ribozyme conformation 6 undergoing the second-step self-splicing 6YNW ; 3.1 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - central stalk/cring 6YO0 ; 2.9 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - F1/peripheral stalk 6YNY ; 2.7 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - F1Fo composite dimer model 6YNZ ; 3.1 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - F1Fo composite tetramer model 6YNX ; 2.5 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - Fo-subcomplex 6YNV ; 2.8 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial ATP synthase - Fo-wing region 7W5Z ; 3.02 ; Cryo-EM structure of Tetrahymena thermophila mitochondrial complex IV, composite dimer model 8GYM ; 2.96 ; Cryo-EM structure of Tetrahymena thermophila respiratory mega-complex MC IV2+(I+III2+II)2 8GZU ; 4.18 ; Cryo-EM structure of Tetrahymena thermophila respiratory Megacomplex MC (IV2+I+III2+II)2 6N7G ; 6.8 ; Cryo-EM structure of tetrameric Ptch1 in complex with ShhNp (form I) 6N7K ; 6.5 ; Cryo-EM structure of tetrameric Ptch1 in complex with ShhNp (form II) 8IFL ; 3.11 ; Cryo-EM structure of tetrameric SPARTA gRNA-ssDNA target complex in state 1 8IFM ; 2.92 ; Cryo-EM structure of tetrameric SPARTA gRNA-ssDNA target complex in state 2 7WM4 ; 3.2 ; Cryo-EM structure of tetrameric TLR3 in complex with dsRNA (90 bp) 7TAC ; 3.6 ; Cryo-EM structure of the (TGA3)2-(NPR1)2-(TGA3)2 complex 7OYA ; 3.2 ; Cryo-EM structure of the 1 hpf zebrafish embryo 80S ribosome 8JLD ; 2.48 ; Cryo-EM structure of the 145 bp human nucleosome containing acetylated H3 tail 8JLB ; 2.36 ; Cryo-EM structure of the 145 bp human nucleosome containing H3.2 C110A mutant 7E9C ; 3.5 ; Cryo-EM structure of the 1:1 Orc1 BAH domain in complex with nucleosome 7TEJ ; 2.74 ; Cryo-EM structure of the 20S Alpha 3 Deletion proteasome core particle 7TEO ; 2.97 ; Cryo-EM structure of the 20S Alpha 3 Deletion proteasome core particle in complex with FUB1 6N7H ; 3.6 ; Cryo-EM structure of the 2:1 hPtch1-Shhp complex 7E9F ; 4.0 ; Cryo-EM structure of the 2:1 Orc1 BAH domain in complex with nucleosome 8J6Q ; 2.6 ; Cryo-EM structure of the 3-HB and compound 9n-bound human HCAR2-Gi1 complex 8J18 ; 2.89 ; Cryo-EM structure of the 3-OH-C12-bound GPR84 receptor-Gi complex 8IYJ ; 3.5 ; Cryo-EM structure of the 48-nm repeat doublet microtubule from mouse sperm 6YS3 ; 2.58 ; Cryo-EM structure of the 50S ribosomal subunit at 2.58 Angstroms with modeled GBC SecM peptide 6QDW ; 2.83 ; Cryo-EM structure of the 50S ribosomal subunit at 2.83 Angstroms with modeled GBC SecM peptide 8DPF ; 2.84 ; Cryo-EM structure of the 5HT2C receptor (INI isoform) bound to lorcaserin 8DPG ; 3.6 ; Cryo-EM structure of the 5HT2C receptor (INI isoform) bound to psilocin 8DPH ; 3.2 ; Cryo-EM structure of the 5HT2C receptor (VGV isoform) bound to lorcaserin 8DPI ; 3.4 ; Cryo-EM structure of the 5HT2C receptor (VSV isoform) bound to lorcaserin 7OYB ; 2.4 ; Cryo-EM structure of the 6 hpf zebrafish embryo 80S ribosome 4V8T ; 8.1 ; Cryo-EM Structure of the 60S Ribosomal Subunit in Complex with Arx1 and Rei1 5V93 ; 4.0 ; Cryo-EM structure of the 70S ribosome from Mycobacterium tuberculosis bound with Capreomycin 8ID3 ; 3.1 ; Cryo-EM structure of the 9-hydroxystearic acid bound GPR120-Gi complex 5JPQ ; 7.3 ; Cryo-EM structure of the 90S pre-ribosome 6RXT ; 7.0 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state A 6RXY ; 4.7 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state a 6RXZ ; 4.4 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state b 6RXU ; 3.5 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state B1 6RXV ; 4.0 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state B2 6RXX ; 7.1 ; Cryo-EM structure of the 90S pre-ribosome (Kre33-Noc4) from Chaetomium thermophilum, state C, Poly-Ala 5OQL ; 3.2 ; Cryo-EM structure of the 90S pre-ribosome from Chaetomium thermophilum 6ZQA ; 4.4 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state A (Poly-Ala) 6ZQB ; 3.9 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state B2 6ZQE ; 7.1 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state Dis-A (Poly-Ala) 6ZQF ; 4.9 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state Dis-B (Poly-Ala) 6ZQG ; 3.5 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state Dis-C 6ZQD ; 3.8 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state Post-A1 6ZQC ; 3.8 ; Cryo-EM structure of the 90S pre-ribosome from Saccharomyces cerevisiae, state Pre-A1 5WYJ ; 8.7 ; Cryo-EM structure of the 90S small subunit pre-ribosome (Dhr1-depleted, Enp1-TAP, state 1) 5WYK ; 4.5 ; Cryo-EM structure of the 90S small subunit pre-ribosome (Mtr4-depleted, Enp1-TAP) 7AJU ; 3.8 ; Cryo-EM structure of the 90S-exosome super-complex (state Post-A1-exosome) 7AJT ; 4.6 ; Cryo-EM structure of the 90S-exosome super-complex (state Pre-A1-exosome) 6IC4 ; 8.7 ; Cryo-EM structure of the A. baumannii MLA complex at 8.7 A resolution 6Z5U ; 3.9 ; Cryo-EM structure of the A. baumannii MlaBDEF complex bound to APPNHP 8W8R ; 3.3 ; Cryo-EM structure of the AA-14-bound GPR101-Gs complex 8W8S ; 3.3 ; Cryo-EM structure of the AA14-bound GPR101 complex 7Y35 ; 2.9 ; Cryo-EM structure of the Abaloparatide-bound human PTH1R-Gs complex 6HA8 ; 3.5 ; Cryo-EM structure of the ABCF protein VmlR bound to the Bacillus subtilis ribosome 6HBU ; 3.09 ; Cryo-EM structure of the ABCG2 E211Q mutant bound to ATP and Magnesium 6HZM ; 3.09 ; Cryo-EM structure of the ABCG2 E211Q mutant bound to ATP and Magnesium (alternative placement of Magnesium into the cryo-EM density) 6HCO ; 3.58 ; Cryo-EM structure of the ABCG2 E211Q mutant bound to estrone 3-sulfate and 5D3-Fab 8WD6 ; 2.87 ; Cryo-EM structure of the ABCG25 8WBX ; 3.23 ; Cryo-EM structure of the ABCG25 bound to ABA 8WBA ; 3.1 ; Cryo-EM structure of the ABCG25 bound to CHS 8WAM ; 3.23 ; Cryo-EM structure of the ABCG25 E232Q mutant bound to ATP and Magnesium 8CA1 ; 4.3 ; Cryo-EM structure of the ACADVL dimer from Mus musculus. 7SQD ; 3.7 ; Cryo-EM structure of the Achromobacter flagellar filament 6V3E ; 4.4 ; Cryo-EM structure of the Acinetobacter baumannii Ribosome: 30S subunit 6V3D ; 2.95 ; Cryo-EM structure of the Acinetobacter baumannii Ribosome: 50S subunit 6V3B ; 2.91 ; Cryo-EM structure of the Acinetobacter baumannii Ribosome: 70S in Empty state 6V3A ; 2.82 ; Cryo-EM structure of the Acinetobacter baumannii Ribosome: 70S with E-site tRNA 6V39 ; 3.04 ; Cryo-EM structure of the Acinetobacter baumannii Ribosome: 70S with P-site tRNA 6ROJ ; 2.9 ; Cryo-EM structure of the activated Drs2p-Cdc50p 5VAI ; 4.1 ; Cryo-EM structure of the activated Glucagon-like peptide-1 receptor in complex with G protein 7DVQ ; 2.89 ; Cryo-EM Structure of the Activated Human Minor Spliceosome (minor Bact Complex) 3JBL ; 4.7 ; Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization 6BCU ; 3.8 ; Cryo-EM structure of the activated RHEB-mTORC1 refined to 3.4 angstrom 5GM6 ; 3.5 ; Cryo-EM structure of the activated spliceosome (Bact complex) at 3.5 angstrom resolution 7DCO ; 2.5 ; Cryo-EM structure of the activated spliceosome (Bact complex) at an atomic resolution of 2.5 angstrom 8EJ4 ; 3.4 ; Cryo-EM structure of the active NLRP3 inflammasome disk 2WW9 ; 8.6 ; Cryo-EM structure of the active yeast Ssh1 complex bound to the yeast 80S ribosome 6E3Y ; 3.3 ; Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor 7PMD ; 2.9 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er) 7PMF ; 3.4 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 1) 7PMG ; 3.3 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 3) 7PMH ; 3.4 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 4) 7PMI ; 3.3 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 5) 7PMJ ; 3.4 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 6) 7PML ; 3.3 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 1er, class 8) 7PME ; 2.9 ; Cryo-EM structure of the actomyosin-V complex in the post-rigor transition state (AppNHp, central 3er/2er) 7PLT ; 3.3 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er) 7PLV ; 3.5 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, class 1) 7PLW ; 3.5 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, class 2) 7PLX ; 3.6 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, class 4) 7PLY ; 3.2 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, young JASP-stabilized F-actin) 7PM0 ; 3.6 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, young JASP-stabilized F-actin, class 1) 7PM1 ; 3.5 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, young JASP-stabilized F-actin, class 2) 7PM2 ; 3.6 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 1er, young JASP-stabilized F-actin, class 4) 7PLU ; 3.2 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 3er/2er) 7PLZ ; 3.2 ; Cryo-EM structure of the actomyosin-V complex in the rigor state (central 3er/2er, young JASP-stabilized F-actin) 7PM5 ; 3.1 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er) 7PM7 ; 3.5 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 2) 7PM8 ; 3.5 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 3) 7PM9 ; 3.7 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 4) 7PMA ; 3.6 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 5) 7PMB ; 3.6 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 6) 7PMC ; 3.7 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 1er, class 7) 7PM6 ; 3.0 ; Cryo-EM structure of the actomyosin-V complex in the strong-ADP state (central 3er/2er) 6GDG ; 4.11 ; Cryo-EM structure of the adenosine A2A receptor bound to a miniGs heterotrimer 7WU2 ; 2.8 ; Cryo-EM structure of the adhesion GPCR ADGRD1 in complex with miniGs 7WU4 ; 3.4 ; Cryo-EM structure of the adhesion GPCR ADGRF1 in complex with miniGi 7WU3 ; 3.1 ; Cryo-EM structure of the adhesion GPCR ADGRF1 in complex with miniGs 7WU5 ; 3.0 ; Cryo-EM structure of the adhesion GPCR ADGRF1(H565A/T567A) in complex with miniGi 7R8V ; 2.82 ; Cryo-EM structure of the ADP state actin filament 7RB8 ; 3.63 ; cryo-EM structure of the ADP state wild type myosin-15-F-actin complex 7UDU ; 4.15 ; cryo-EM structure of the ADP state wild type myosin-15-F-actin complex (symmetry expansion and re-centering) 8J9V ; 2.71 ; Cryo-EM structure of the African swine fever virus topoisomerase 2 complexed with Cut02aDNA and etoposide (EDI-1) 8J9X ; 3.0 ; Cryo-EM structure of the African swine fever virus topoisomerase 2 complexed with Cut02aDNA and m-AMSA (EDI-3) 8J9W ; 2.76 ; Cryo-EM structure of the African swine fever virus topoisomerase 2 complexed with Cut02bDNA and etoposide (EDI-2) 7PIU ; 2.58 ; Cryo-EM structure of the agonist setmelanotide bound to the active melanocortin-4 receptor (MC4R) in complex with the heterotrimeric Gs protein at 2.6 A resolution. 8FAI ; 3.0 ; Cryo-EM structure of the Agrobacterium T-pilus 6LOD ; 3.2 ; Cryo-EM structure of the air-oxidized photosynthetic alternative complex III from Roseiflexus castenholzii 7XUF ; 3.3 ; Cryo-EM structure of the AKT1-AtKC1 complex from Arabidopsis thaliana 8WXB ; 4.2 ; Cryo-EM structure of the alpha-carboxysome shell vertex from Prochlorococcus MED4 8INR ; 2.73 ; Cryo-EM structure of the alpha-MSH-bound human melanocortin receptor 5 (MC5R)-Gs complex 7W7E ; 3.4 ; Cryo-EM structure of the alpha2A adrenergic receptor GoA signaling complex bound to a biased agonist 7W6P ; 3.47 ; Cryo-EM structure of the alpha2A adrenergic receptor GoA signaling complex bound to a G protein biased agonist 7DD9 ; 2.4 ; Cryo-EM structure of the Ams1 and Nbr1 complex 6VPS ; 2.6 ; Cryo-EM structure of the amyloid core of Drosophila Orb2 isolated from head 8P23 ; 3.17 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its dimeric, ATP/CTP-bound state 8P2S ; 2.4 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its dimeric, ATP/dTTP/GTP-bound state 8P27 ; 2.73 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its dimeric, dATP-bound state 8P39 ; 2.58 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its dimeric, dGTP/ATP-bound state 8P2C ; 2.59 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its tetrameric state produced in the presence of dATP and CTP 8P28 ; 2.77 ; Cryo-EM structure of the anaerobic ribonucleotide reductase from Prevotella copri in its tetrameric, dATP-bound state 8S4G ; 3.2 ; Cryo-EM structure of the Anaphase-promoting complex/cyclosome (APC/C) bound to co-activator Cdh1 at 3.2 Angstrom resolution 6TLJ ; 3.8 ; Cryo-EM structure of the Anaphase-promoting complex/Cyclosome, in complex with the Mitotic checkpoint complex (APC/C-MCC) at 3.8 angstrom resolution 5LCW ; 4.2 ; Cryo-EM structure of the Anaphase-promoting complex/Cyclosome, in complex with the Mitotic checkpoint complex (APC/C-MCC) at 4.2 angstrom resolution 6TM5 ; 3.9 ; Cryo-EM structure of the Anaphase-promoting complex/Cyclosome, in complex with the Nek2A substrate at 3.9 angstrom resolution 6RGL ; 5.4 ; Cryo-EM structure of the anti-feeding prophage (AFP) baseplate in contracted state 6RBK ; 3.4 ; Cryo-EM structure of the anti-feeding prophage (AFP) baseplate in extended state, 3-fold symmetrised 6RAO ; 3.1 ; Cryo-EM structure of the anti-feeding prophage (AFP) baseplate, 6-fold symmetrised 6RC8 ; 3.8 ; Cryo-EM structure of the anti-feeding prophage (AFP) helical sheath in contracted state 6RBN ; 2.8 ; Cryo-EM structure of the anti-feeding prophage (AFP) helical sheath-tube complex in extended state 6RAP ; 3.3 ; Cryo-EM structure of the anti-feeding prophage cap (AFP tube terminating cap) 6Q6G ; 3.2 ; Cryo-EM structure of the APC/C-Cdc20-Cdk2-cyclinA2-Cks2 complex, the D1 box class 6Q6H ; 3.2 ; Cryo-EM structure of the APC/C-Cdc20-Cdk2-cyclinA2-Cks2 complex, the D2 box class 7DDE ; 2.26 ; Cryo-EM structure of the Ape4 and Nbr1 complex 8PKP ; 3.2 ; Cryo-EM structure of the apo Anaphase-promoting complex/cyclosome (APC/C) at 3.2 Angstrom resolution 7VL8 ; 2.9 ; Cryo-EM structure of the Apo CCR1-Gi complex 7X9Y ; 3.1 ; Cryo-EM structure of the apo CCR3-Gi complex 7F1S ; 2.8 ; Cryo-EM structure of the apo chemokine receptor CCR5 in complex with Gi 6UGH ; 3.4 ; Cryo-EM structure of the apo form of human PRMT5:MEP50 complex at a resolution of 3.4 angstrom 7BV1 ; 2.8 ; Cryo-EM structure of the apo nsp12-nsp7-nsp8 complex 8HQE ; 2.97 ; Cryo-EM structure of the apo-GPR132-Gi 8BEF ; 2.13 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI membrane core) 8BEH ; 2.29 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI membrane tip) 8BEE ; 2.04 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI peripheral core) 8BED ; 2.03 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CI peripheral tip) 8BEL ; 2.25 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CIII membrane domain) 8BEP ; 2.29 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (CIII MPP domain) 8BPX ; 2.09 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (Complete composition) 8BQ5 ; 2.73 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (Complete conformation 1 composition) 8BQ6 ; 2.8 ; Cryo-EM structure of the Arabidopsis thaliana I+III2 supercomplex (Complete conformation 2 composition) 8J6Z ; 2.79 ; Cryo-EM structure of the Arabidopsis thaliana photosystem I(PSI-LHCII-ST2) 6H82 ; 3.78 ; Cryo-EM structure of the archaeal extremophilic internal membrane containing Haloarcula hispanica icosahedral virus 2 (HHIV-2) at 3.78 Angstroms resolution. 6YW7 ; 4.5 ; Cryo-EM structure of the ARP2/3 1A5C isoform complex. 6YW6 ; 4.2 ; Cryo-EM structure of the ARP2/3 1B5CL isoform complex. 8J3R ; 2.95 ; Cryo-EM structure of the AsCas12f-HKRA-sgRNAS3-5v7-target DNA 8J12 ; 3.08 ; Cryo-EM structure of the AsCas12f-sgRNA-target DNA ternary complex 8J1J ; 2.91 ; Cryo-EM structure of the AsCas12f-YHAM-sgRNAS3-5v7-target DNA 7WJU ; 2.69 ; Cryo-EM structure of the AsCas12f1-sgRNAv1-dsDNA ternary complex 6UT4 ; 3.1 ; Cryo-EM structure of the asymmetric AAA+ domain hexamer from Thermococcus gammatolerans McrB 6LBA ; 4.1 ; Cryo-EM structure of the AtMLKL2 tetramer 6KA4 ; 3.4 ; Cryo-EM structure of the AtMLKL3 tetramer 7VR1 ; 3.4 ; Cryo-EM structure of the ATP-binding cassette sub-family D member 1 from Homo sapiens 5XMK ; 4.18 ; Cryo-EM structure of the ATP-bound Vps4 mutant-E233Q complex with Vta1 (masked) 5XMI ; 3.9 ; Cryo-EM Structure of the ATP-bound VPS4 mutant-E233Q hexamer (masked) 6PWF ; 4.07 ; Cryo-EM structure of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome 7OQ4 ; 3.27 ; Cryo-EM structure of the ATV RNAP Inhibitory Protein (RIP) bound to the DNA-binding channel of the host's RNA polymerase 6ROH ; 2.8 ; Cryo-EM structure of the autoinhibited Drs2p-Cdc50p 7LJY ; 5.6 ; Cryo-EM structure of the B dENE construct complexed with a 28-mer poly(A) 3J9W ; 3.9 ; Cryo-EM structure of the Bacillus subtilis MifM-stalled ribosome complex 8T7E ; 3.08 ; Cryo-EM structure of the Backtracking Initiation Complex (VII) of Human Mitochondrial DNA Polymerase Gamma 7C7Q ; 3.0 ; Cryo-EM structure of the baclofen/BHFF-bound human GABA(B) receptor in active state 6GYB ; 3.28 ; Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri 8BTG ; 3.2 ; Cryo-EM structure of the bacterial replication origin opening basal unwinding system 7XNO ; 2.54 ; Cryo-EM structure of the bacteriocin-receptor-immunity ternary complex from Lactobacillus sakei 3JA7 ; 3.6 ; Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution 7WSR ; 2.9 ; Cryo-EM structure of the barley Yellow stripe 1 transporter 7WST ; 2.7 ; Cryo-EM structure of the barley Yellow stripe 1 transporter in complex with Fe(III)-DMA 7WSU ; 2.9 ; Cryo-EM structure of the barley Yellow stripe 1 transporter in complex with Fe(III)-PDMA 7TYR ; 3.33 ; Cryo-EM structure of the basal state of the Artemis:DNA-PKcs complex (see COMPND 13/14) 6VOA ; 4.0 ; Cryo-EM structure of the BBSome-ARL6 complex 7D76 ; 3.1 ; Cryo-EM structure of the beclomethasone-bound adhesion receptor GPR97-Go complex 6DW1 ; 3.1 ; Cryo-EM structure of the benzodiazepine-sensitive alpha1beta1gamma2S tri-heteromeric GABAA receptor in complex with GABA (ECD map) 6DW0 ; 3.8 ; Cryo-EM structure of the benzodiazepine-sensitive alpha1beta1gamma2S tri-heteromeric GABAA receptor in complex with GABA (Whole map) 8QMO ; 2.76 ; Cryo-EM structure of the benzo[a]pyrene-bound Hsp90-XAP2-AHR complex 8JJL ; 3.2 ; cryo-EM structure of the beta2-AR-mBRIL/1b3 Fab/Glue complex with a full agonist 8JJ8 ; 3.2 ; Cryo-EM structure of the beta2AR-mBRIL/1b3 Fab/Glue complex with a partial agonist 8JJO ; 3.4 ; Cryo-EM structure of the beta2AR-mBRIL/1b3 Fab/Glue complex with an antagonist 3J5M ; 5.8 ; Cryo-EM structure of the BG505 SOSIP.664 HIV-1 Env trimer with 3 PGV04 Fabs 8HI4 ; 3.35 ; Cryo-EM structure of the bi-functional malonyl-CoA reductase from Roseiflexus castenholzii 7X8R ; 2.61 ; Cryo-EM structure of the Boc5-bound hGLP-1R-Gs complex 7JZV ; 3.9 ; Cryo-EM structure of the BRCA1-UbcH5c/BARD1 E3-E2 module bound to a nucleosome 6H3C ; 3.9 ; Cryo-EM structure of the BRISC complex bound to SHMT2 8T3S ; 3.07 ; Cryo-EM structure of the Butyrate bound FFA2-Gq complex 8PB9 ; 3.3 ; Cryo-EM structure of the c-di-GMP-bound FleQ-FleN master regulator complex from Pseudomonas aeruginosa 8P53 ; 2.7 ; Cryo-EM structure of the c-di-GMP-free FleQ-FleN master regulator complex of P. aeruginosa 7MOA ; 4.9 ; Cryo-EM structure of the c-MET II/HGF I complex bound with HGF II in a rigid conformation 6RF2 ; 4.2 ; Cryo-EM structure of the C-terminal DC repeat (CDC) of human doublecortin (DCX) bound to 13-protofilament GDP.Pi-microtubule 7F8O ; 3.6 ; Cryo-EM structure of the C-terminal deletion mutant of human PANX1 in a nanodisc 7YG1 ; 3.77 ; Cryo-EM structure of the C-terminal domain of the human sodium-chloride cotransporter 6VNO ; 3.5 ; Cryo-EM structure of the C-terminal half of the Parkinson's Disease-linked protein Leucine Rich Repeat Kinase 2 (LRRK2) 6VP6 ; 3.47 ; Cryo-EM structure of the C-terminal half of the Parkinson's Disease-linked protein Leucine Rich Repeat Kinase 2 (LRRK2) 6VP7 ; 3.5 ; Cryo-EM structure of the C-terminal half of the Parkinson's Disease-linked protein Leucine Rich Repeat Kinase 2 (LRRK2) 6VP8 ; 3.5 ; Cryo-EM structure of the C-terminal half of the Parkinson's Disease-linked protein Leucine Rich Repeat Kinase 2 (LRRK2) 6LMV ; 3.6 ; Cryo-EM structure of the C. elegans CLHM-1 6OO4 ; 3.3 ; Cryo-EM structure of the C2-symmetric TRPV2/RTx complex in amphipol resolved to 3.3 A 6OO5 ; 4.2 ; Cryo-EM structure of the C2-symmetric TRPV2/RTx complex in amphipol resolved to 4.2 A 6OO7 ; 3.8 ; Cryo-EM structure of the C2-symmetric TRPV2/RTx complex in nanodiscs 8IZD ; 3.09 ; Cryo-EM structure of the C26-CoA-bound Lac1-Lip1 complex 6KAC ; 2.7 ; Cryo-EM structure of the C2S2-type PSII-LHCII supercomplex from Chlamydomonas reihardtii 6KAD ; 3.4 ; Cryo-EM structure of the C2S2M2L2-type PSII-LHCII supercomplex from Chlamydomonas reihardtii 6OO3 ; 2.9 ; Cryo-EM structure of the C4-symmetric TRPV2/RTx complex in amphipol resolved to 2.9 A 7YIU ; 2.9 ; Cryo-EM structure of the C6-ceramide-bound SPT-ORMDL3 complex 8IW9 ; 3.08 ; Cryo-EM structure of the CAD-bound mTAAR9-Gs complex 6LYG ; 3.1 ; Cryo-EM structure of the calcium homeostasis modulator 1 channel 6LMW ; 3.4 ; Cryo-EM structure of the CALHM chimeric construct (8-mer) 6LMX ; 3.4 ; Cryo-EM structure of the CALHM chimeric construct (9-mer) 8H3Q ; 3.76 ; Cryo-EM Structure of the CAND1-Cul3-Rbx1 complex 7ZNY ; 3.26 ; Cryo-EM structure of the canine distemper virus tetrameric attachment glycoprotein 8F8Q ; 2.79 ; Cryo-EM structure of the CapZ-capped barbed end of F-actin 7V93 ; 3.0 ; Cryo-EM structure of the Cas12c2-sgRNA binary complex 7V94 ; 2.7 ; Cryo-EM structure of the Cas12c2-sgRNA-target DNA ternary complex 7C7L ; 3.3 ; Cryo-EM structure of the Cas12f1-sgRNA-target DNA complex 7N3O ; 3.8 ; Cryo-EM structure of the Cas12k-sgRNA complex 7N3P ; 3.65 ; Cryo-EM structure of the Cas12k-sgRNA-dsDNA complex 8PM4 ; 2.93 ; Cryo-EM structure of the Cas12m-crRNA-target DNA complex 8HIO ; 3.73 ; Cryo-EM structure of the Cas12m2-crRNA binary complex 8HHL ; 2.87 ; Cryo-EM structure of the Cas12m2-crRNA-target DNA full R-loop complex 8HHM ; 3.08 ; Cryo-EM structure of the Cas12m2-crRNA-target DNA ternary complex intermediate state 7VTN ; 3.38 ; Cryo-EM structure of the Cas13bt3-crRNA-target RNA ternary complex 8FTI ; 3.5 ; Cryo-EM structure of the Cas13bt3-crRNA-target RNA ternary complex in activated state 5VZL ; 3.9 ; cryo-EM structure of the Cas9-sgRNA-AcrIIA4 anti-CRISPR complex 7KEU ; 3.9 ; Cryo-EM structure of the Caspase-1-CARD:ASC-CARD octamer 5GMK ; 3.4 ; Cryo-EM structure of the Catalytic Step I spliceosome (C complex) at 3.4 angstrom resolution 5WSG ; 4.0 ; Cryo-EM structure of the Catalytic Step II spliceosome (C* complex) at 4.0 angstrom resolution 6GYS ; 4.4 ; Cryo-EM structure of the CBF3-CEN3 complex of the budding yeast kinetochore 6GYP ; 3.6 ; Cryo-EM structure of the CBF3-core-Ndc10-DBD complex of the budding yeast kinetochore 6GYU ; 3.0 ; Cryo-EM structure of the CBF3-msk complex of the budding yeast kinetochore 8HAL ; 4.4 ; Cryo-EM structure of the CBP catalytic core bound to the H4K12acK16ac nucleosome, class 1 8HAM ; 4.5 ; Cryo-EM structure of the CBP catalytic core bound to the H4K12acK16ac nucleosome, class 2 8HAN ; 4.2 ; Cryo-EM structure of the CBP catalytic core bound to the H4K12acK16ac nucleosome, class 3 7VL9 ; 2.6 ; Cryo-EM structure of the CCL15(26-92) bound CCR1-Gi complex 7VLA ; 2.7 ; Cryo-EM structure of the CCL15(27-92) bound CCR1-Gi complex 7XA3 ; 2.9 ; Cryo-EM structure of the CCL2 bound CCR2-Gi complex 8IKL ; 2.33 ; Cryo-EM structure of the CD97-G13 complex 5XF8 ; 7.1 ; Cryo-EM structure of the Cdt1-MCM2-7 complex in AMPPNP state 8JOL ; 3.0 ; cryo-EM structure of the CED-4/CED-3 holoenzyme 7OQY ; 2.61 ; Cryo-EM structure of the cellular negative regulator TFS4 bound to the archaeal RNA polymerase 6E0C ; 2.63 ; Cryo-EM structure of the CENP-A nucleosome (W601) in complex with a single chain antibody fragment 6E0P ; 2.6 ; Cryo-EM structure of the centromeric nucleosome (Native alpha satellite DNA) in complex with a single chain antibody fragment 6O1D ; 3.395 ; Cryo-EM structure of the centromeric nucleosome with native alpha satellite DNA 8CAD ; 2.85 ; Cryo-EM structure of the Ceres homohexamer from Galleria mellonella saliva 6MDR ; 3.47 ; Cryo-EM structure of the Ceru+32/GFP-17 protomer 7OI3 ; 4.0 ; Cryo-EM structure of the Cetacean morbillivirus nucleoprotein-RNA complex 7C7S ; 2.9 ; Cryo-EM structure of the CGP54626-bound human GABA(B) receptor in inactive state. 8WCC ; 3.04 ; Cryo-EM structure of the CHA-bound mTAAR1 complex 8WCB ; 3.1 ; Cryo-EM structure of the CHA-bound mTAAR1-Gq complex 7F1Q ; 2.9 ; Cryo-EM structure of the chemokine receptor CCR5 in complex with MIP-1a and Gi 7F1R ; 3.0 ; Cryo-EM structure of the chemokine receptor CCR5 in complex with RANTES and Gi 6U0R ; 2.91 ; Cryo-EM structure of the chimeric vector AAV2.7m8 7F8V ; 3.3 ; Cryo-EM structure of the cholecystokinin receptor CCKBR in complex with gastrin-17 and Gi 7F8W ; 3.1 ; Cryo-EM structure of the cholecystokinin receptor CCKBR in complex with gastrin-17 and Gq 8CA9 ; 2.29 ; Cryo-EM structure of the Cibeles-Demetra 3:3 heterocomplex from Galleria mellonella saliva 6MB3 ; 3.37 ; Cryo-EM structure of the circumsporozoite protein of Plasmodium falciparum with a vaccine-elicited antibody reveals maturation of inter-antibody contacts 6MHG ; 3.57 ; Cryo-EM structure of the circumsporozoite protein of Plasmodium falciparum with a vaccine-elicited antibody reveals maturation of inter-antibody contacts 8XON ; 1.96 ; Cryo-EM structure of the ClpC1:ClpP1P2 degradation complex in Streptomyces hawaiiensis 8XOO ; 1.84 ; Cryo-EM structure of the ClpC1:ClpP1P2 degradation complex in Streptomyces hawaiiensis 8XN4 ; 2.34 ; Cryo-EM structure of the ClpP degradation system in Streptomyces hawaiiensis 6SFW ; 6.0 ; Cryo-EM Structure of the ClpX component of the ClpXP1/2 degradation machinery. 8IFG ; 3.2 ; Cryo-EM structure of the Clr6S (Clr6-HDAC) complex from S. pombe 8XZI ; 2.7 ; Cryo-EM structure of the CMF-019-bound human APLNR-Gi complex 6SKL ; 3.7 ; Cryo-EM structure of the CMG Fork Protection Complex at a replication fork - Conformation 1 6IP5 ; 3.9 ; Cryo-EM structure of the CMV-stalled human 80S ribosome (Structure ii) 6IP6 ; 4.5 ; Cryo-EM structure of the CMV-stalled human 80S ribosome with HCV IRES (Structure iii) 8HR5 ; 3.73 ; Cryo-EM structure of the CnCas12f1-sgRNA-DNA complex 8BLQ ; 3.97 ; Cryo-EM structure of the CODV-IL13-RefAb triple complex 6NT9 ; 3.3 ; Cryo-EM structure of the complex between human TBK1 and chicken STING 7DUQ ; 2.5 ; Cryo-EM structure of the compound 2 and GLP-1-bound human GLP-1 receptor-Gs complex 7DUR ; 3.3 ; Cryo-EM structure of the compound 2-bound human GLP-1 receptor-Gs complex 7EVM ; 2.5 ; Cryo-EM structure of the compound 2-bound human GLP-1 receptor-Gs complex 7YK6 ; 3.03 ; Cryo-EM structure of the compound 4-bound human relaxin family peptide receptor 4 (RXFP4)-Gi complex 6SCT ; 4.69 ; Cryo-EM structure of the consensus triskelion hub of the clathrin coat complex 7B5H ; 3.2 ; Cryo-EM structure of the contractile injection system base plate from Anabaena PCC7120 7B5I ; 2.8 ; Cryo-EM structure of the contractile injection system cap complex from Anabaena PCC7120 8CAN ; 1.93 ; Cryo-EM structure of the Cora homohexamer from Galleria mellonella saliva 6FE8 ; 3.7 ; Cryo-EM structure of the core Centromere Binding Factor 3 complex 7D7R ; 4.0 ; Cryo-EM structure of the core domain of human ABCB6 transporter 7U8G ; 3.2 ; Cryo-EM structure of the core human NADPH oxidase NOX2 8SCX ; 2.7 ; Cryo-EM structure of the core TIM23 complex from S. cerevisiae 7D77 ; 2.9 ; Cryo-EM structure of the cortisol-bound adhesion receptor GPR97-Go complex 7KR5 ; 3.3 ; Cryo-EM structure of the CRAC channel Orai in an open conformation; H206A gain-of-function mutation in complex with an antibody 8U1N ; 3.9 ; Cryo-EM structure of the cross-linked HSP90 dimer (NTD-MD) in the semi-open state 8IUN ; 2.85 ; Cryo-EM structure of the CRT-LESS RC-LH core complex from roseiflexus castenholzii 7TAX ; 2.8 ; Cryo-EM structure of the Csy-AcrIF24-promoter DNA complex 7TAW ; 2.7 ; Cryo-EM structure of the Csy-AcrIF24-promoter DNA dimer 8CIO ; 3.5 ; Cryo-EM structure of the CupE pilus from Pseudomonas aeruginosa 8W9M ; 3.1 ; Cryo-EM structure of the cyanobacterial nitrate transporter NrtBCD in complex with ATP 7NKZ ; 2.5 ; Cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 A resolution 7A6U ; 3.62 ; Cryo-EM structure of the cytoplasmic domain of human TRPC6 7YK7 ; 2.75 ; Cryo-EM structure of the DC591053-bound human relaxin family peptide receptor 4 (RXFP4)-Gi complex 7OKQ ; 8.4 ; Cryo-EM Structure of the DDB1-DCAF1-CUL4A-RBX1 Complex 7DCQ ; 2.9 ; cryo-EM structure of the DEAH-box helicase Prp2 7DCP ; 3.15 ; cryo-EM structure of the DEAH-box helicase Prp2 and coactivator Spp2 7DCR ; 3.15 ; cryo-EM structure of the DEAH-box helicase Prp2 in complex with its coactivator Spp2 7KHA ; 3.13 ; Cryo-EM Structure of the Desulfovibrio vulgaris Type I-C Apo Cascade 8T3V ; 3.39 ; Cryo-EM structure of the DHA bound FFA1-Gq complex 8T3Q ; 3.14 ; Cryo-EM structure of the DHA bound FFA4-Gq complex 7B9K ; 3.16 ; Cryo-EM structure of the dihydrolipoyl transacetylase cubic core of the E. coli pyruvate dehydrogenase complex including lipoyl domains 7YJK ; 3.2 ; Cryo-EM structure of the dimeric atSPT-ORM1 complex 6B2Z ; 3.6 ; Cryo-EM structure of the dimeric FO region of yeast mitochondrial ATP synthase 8P2D ; 2.59 ; Cryo-EM structure of the dimeric form of the anaerobic ribonucleotide reductase from Prevotella copri produced in the presence of dATP and CTP 8IQF ; 4.6 ; Cryo-EM structure of the dimeric human CAF1-H3-H4 complex 7Y5V ; 6.1 ; Cryo-EM structure of the dimeric human CAF1LC-H3-H4 complex 7PQD ; 2.9 ; Cryo-EM structure of the dimeric Rhodobacter sphaeroides RC-LH1 core complex at 2.9 A: the structural basis for dimerisation 6M4N ; 3.8 ; Cryo-EM structure of the dimeric SPT-ORMDL3 complex 6LOE ; 3.5 ; Cryo-EM structure of the dithionite-reduced photosynthetic alternative complex III from Roseiflexus castenholzii 7ALN ; 3.77 ; Cryo-EM structure of the divergent actomyosin complex from Plasmodium falciparum Myosin A in the Rigor state 8ITF ; 3.46 ; Cryo-EM structure of the DMCHA-bound mTAAR9-Gs complex 6T8H ; 3.77 ; Cryo-EM structure of the DNA-bound PolD-PCNA processive complex from P. abyssi 8OJJ ; 5.47 ; Cryo-EM structure of the DnaD-NTD tetramer 7X2F ; 3.0 ; Cryo-EM structure of the dopamine and LY3154207-bound D1 dopamine receptor and mini-Gs complex 8J6T ; 6.6 ; Cryo-EM structure of the double CAF-1 bound right-handed Di-tetrasome 6LFG ; 9.58 ; Cryo-EM structure of the Drosophila CTP synthase product-bound filament 6L6Z ; 6.09 ; Cryo-EM structure of the Drosophila CTP synthase substrate-bound filament 6VCC ; 3.6 ; Cryo-EM structure of the Dvl2 DIX filament 6ZNL ; 3.8 ; Cryo-EM structure of the dynactin complex 8PYS ; 2.7 ; Cryo-EM structure of the DyP peroxidase-loaded encapsulin nanocompartment from Mycobacterium tuberculosis with icosahedral symmetry imposed. 5U05 ; 7.9 ; Cryo-EM structure of the E. coli CTP synthase tetramer 6RKO ; 2.68 ; Cryo-EM structure of the E. coli cytochrome bd-I oxidase at 2.68 A resolution 5FKW ; 7.3 ; cryo-EM structure of the E. coli replicative DNA polymerase complex bound to DNA (DNA polymerase III alpha, beta, epsilon) 5FKV ; 8.04 ; cryo-EM structure of the E. coli replicative DNA polymerase complex bound to DNA (DNA polymerase III alpha, beta, epsilon, tau complex) 5FKU ; 8.34 ; cryo-EM structure of the E. coli replicative DNA polymerase complex in DNA free state (DNA polymerase III alpha, beta, epsilon, tau complex) 5M1S ; 6.7 ; Cryo-EM structure of the E. coli replicative DNA polymerase-clamp-exonuclase-theta complex bound to DNA in the editing mode 7QQ3 ; 2.1 ; Cryo-EM structure of the E.coli 50S ribosomal subunit in complex with the antibiotic Myxovalargin A. 8B7Y ; 3.0 ; Cryo-EM structure of the E.coli 70S ribosome in complex with the antibiotic Myxovalargin B. 7YFQ ; 3.2 ; Cryo-EM structure of the EfPiwi (N959K)-piRNA-target ternary complex 7YG6 ; 3.2 ; Cryo-EM structure of the EfPiwi(N959K) in complex with piRNA 8ID9 ; 3.0 ; Cryo-EM structure of the eicosapentaenoic acid bound GPR120-Gi complex 8A5E ; 3.4 ; Cryo-EM structure of the electron bifurcating Fe-Fe hydrogenase HydABC complex from Acetobacterium woodii in the reduced state 8BEW ; 3.49 ; Cryo-EM structure of the electron bifurcating Fe-Fe hydrogenase HydABC complex from Thermoanaerobacter kivui in the oxidised state 8A6T ; 3.1 ; Cryo-EM structure of the electron bifurcating Fe-Fe hydrogenase HydABC complex from Thermoanaerobacter kivui in the reduced state 8OH9 ; 3.2 ; Cryo-EM structure of the electron bifurcating transhydrogenase StnABC complex from Sporomusa Ovata (state 1) 8OH5 ; 3.0 ; Cryo-EM structure of the electron bifurcating transhydrogenase StnABC complex from Sporomusa Ovata (state 2) 7LY4 ; 3.8 ; Cryo-EM structure of the elongation module of the bacillamide NRPS, BmdB, in complex with the oxidase, BmdC 7BOK ; 3.7 ; Cryo-EM structure of the encapsulated DyP-type peroxidase from Mycobacterium smegmatis 7BOJ ; 2.5 ; Cryo-EM structure of the encapsulin shell from Mycobacterium smegmatis 8IKA ; 2.75 ; Cryo-EM structure of the encapsulin shell from Mycobacterium tuberculosis 8E1M ; 2.9 ; Cryo-EM structure of the endogenous core TIM23 complex from S. cerevisiae 7SN4 ; 3.6 ; Cryo-EM structure of the enterohemorrhagic E. coli O157:H7 flagellar filament 7SN7 ; 4.2 ; Cryo-EM structure of the enteropathogenic E. coli O127:H6 flagellar filament 6ZY7 ; 4.64 ; Cryo-EM structure of the entire Human topoisomerase II alpha in State 1 6ZY8 ; 7.4 ; Cryo-EM structure of the entire Human topoisomerase II alpha in State 2 8IBU ; 3.51 ; Cryo-EM structure of the erythromycin-bound motilin receptor-Gq protein complex 8SYL ; 2.9 ; Cryo-EM structure of the Escherichia coli 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs 5KCR ; 3.6 ; Cryo-EM structure of the Escherichia coli 70S ribosome in complex with antibiotic Avilamycin C, mRNA and P-site tRNA at 3.6A resolution 5KCS ; 3.9 ; Cryo-EM structure of the Escherichia coli 70S ribosome in complex with antibiotic Evernimycin, mRNA, TetM and P-site tRNA at 3.9A resolution 6UT6 ; 3.28 ; Cryo-EM structure of the Escherichia coli McrBC complex 6MAT ; 4.5 ; Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7 7CX4 ; 2.9 ; Cryo-EM structure of the Evatanepag-bound EP2-Gs complex 8HUD ; 3.43 ; Cryo-EM structure of the EvCas9-sgRNA-target DNA ternary complex 5YFP ; 4.4 ; Cryo-EM Structure of the Exocyst Complex 7SYD ; 3.1 ; Cryo-EM structure of the extracellular module of the full-length EGFR bound to EGF ""tips-juxtaposed"" conformation 7SYE ; 3.3 ; Cryo-EM structure of the extracellular module of the full-length EGFR bound to EGF. ""tips-separated"" conformation 7SZ5 ; 3.6 ; Cryo-EM structure of the extracellular module of the full-length EGFR bound to TGF-alpha ""tips-separated"" conformation 7SZ7 ; 3.4 ; Cryo-EM structure of the extracellular module of the full-length EGFR bound to TGF-alpha. ""tips-juxtaposed"" conformation 7SZ0 ; 3.3 ; Cryo-EM structure of the extracellular module of the full-length EGFR L834R bound to EGF. ""tips-juxtaposed"" conformation 7SZ1 ; 3.4 ; Cryo-EM structure of the extracellular module of the full-length EGFR L834R bound to EGF. ""tips-separated"" conformation 3ZFS ; 4.0 ; Cryo-EM structure of the F420-reducing NiFe-hydrogenase from a methanogenic archaeon with bound substrate 8CH5 ; 3.2 ; Cryo-EM structure of the fd bacteriophage capsid major coat protein pVIII 7X2C ; 3.2 ; Cryo-EM structure of the fenoldopam-bound D1 dopamine receptor and mini-Gs complex 7F29 ; 3.1 ; Cryo-EM structure of the fibril formed by disaccharide-modified amyloid-beta(1-42) 7CBM ; 3.2 ; Cryo-EM structure of the flagellar distal rod with partial hook from Salmonella 7CG4 ; 3.6 ; Cryo-EM structure of the flagellar export apparatus with FliE from Salmonella 7CGB ; 3.4 ; Cryo-EM structure of the flagellar hook from Salmonella 5JXL ; 3.5 ; Cryo-EM structure of the flagellar hook of Campylobacter jejuni 7CBL ; 2.8 ; Cryo-EM structure of the flagellar LP ring from Salmonella 8UCS ; 2.4 ; Cryo-EM structure of the flagellar MotAB stator bound to FliG 7CGO ; 3.9 ; Cryo-EM structure of the flagellar motor-hook complex from Salmonella 7CG7 ; 3.61 ; Cryo-EM structure of the flagellar MS ring with C34 symmetry from Salmonella 7E81 ; 4.5 ; Cryo-EM structure of the flagellar MS ring with FlgB-Dc loop and FliE-helix 1 from Salmonella 7CG0 ; 3.2 ; Cryo-EM structure of the flagellar proximal rod with FliF peptides from Salmonella 7E80 ; 3.67 ; Cryo-EM structure of the flagellar rod with hook and export apparatus from Salmonella 7E82 ; 3.3 ; Cryo-EM structure of the flagellar rod with partial hook from Salmonella 6ULG ; 3.31 ; Cryo-EM structure of the FLCN-FNIP2-Rag-Ragulator complex 7NNT ; 3.4 ; Cryo-EM structure of the folate-specific ECF transporter complex in DDM micelles 7NNU ; 2.7 ; Cryo-EM structure of the folate-specific ECF transporter complex in MSP2N2 lipid nanodiscs 8BMQ ; 3.6 ; Cryo-EM structure of the folate-specific ECF transporter complex in MSP2N2 lipid nanodiscs bound to AMP-PNP 8BMP ; 3.2 ; Cryo-EM structure of the folate-specific ECF transporter complex in MSP2N2 lipid nanodiscs bound to ATP and ADP 6SKO ; 3.4 ; Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork - conformation 2 MCM CTD:ssDNA 7BZ2 ; 3.82 ; Cryo-EM structure of the formoterol-bound beta2 adrenergic receptor-Gs protein complex. 8F8R ; 3.3 ; Cryo-EM structure of the free barbed end of F-actin 8F8S ; 2.84 ; Cryo-EM structure of the free pointed end of F-actin 7DHR ; 3.8 ; Cryo-EM structure of the full agonist isoprenaline-bound beta2 adrenergic receptor-Gs protein complex. 8DTF ; 3.7 ; Cryo-EM structure of the full length Arabidopsis SPY with complete TPRs 8H3V ; 4.5 ; Cryo-EM structure of the full transcription activation complex NtcA-NtcB-TAC 6VXK ; 3.1 ; Cryo-EM Structure of the full-length A39R/PlexinC1 complex 6POM ; 4.9 ; Cryo-EM structure of the full-length Bacillus subtilis glyQS T-box riboswitch in complex with tRNA-Gly 6YEJ ; 18.2 ; Cryo-EM structure of the Full-length disease type human Huntingtin 6JK8 ; 5.0 ; Cryo-EM structure of the full-length human IGF-1R in complex with insulin 8E20 ; 3.6 ; Cryo-EM structure of the full-length human NF1 dimer 8EDL ; 3.7 ; Cryo-EM structure of the full-length human NF1 dimer 8EDM ; 3.6 ; Cryo-EM structure of the full-length human NF1 dimer 8EDN ; 3.8 ; Cryo-EM structure of the full-length human NF1 dimer 8EDO ; 3.4 ; Cryo-EM structure of the full-length human NF1 dimer 3JD8 ; 4.43 ; cryo-EM structure of the full-length human NPC1 at 4.4 angstrom 7RQX ; 3.36 ; Cryo-EM structure of the full-length TRPV1 with RTx at 25 degrees Celsius, in an intermediate-open state, class A 7RQY ; 3.04 ; Cryo-EM structure of the full-length TRPV1 with RTx at 25 degrees Celsius, in an open state, class B 7RQU ; 3.05 ; Cryo-EM structure of the full-length TRPV1 with RTx at 4 degrees Celsius, in a closed state, class I 7RQV ; 3.45 ; Cryo-EM structure of the full-length TRPV1 with RTx at 4 degrees Celsius, in an intermediate-closed state, class II 7RQW ; 3.11 ; Cryo-EM structure of the full-length TRPV1 with RTx at 4 degrees Celsius, in an open state, class III 7RQZ ; 3.32 ; Cryo-EM structure of the full-length TRPV1 with RTx at 48 degrees Celsius, in an open state, class alpha 6XIS ; 3.9 ; Cryo-EM structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in apo form 6XIT ; 3.3 ; Cryo-EM structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with PIP2 7XJJ ; 3.3 ; Cryo-EM structure of the galanin-bound GALR1-miniGo complex 7XJK ; 3.3 ; Cryo-EM structure of the galanin-bound GALR2-miniGq complex 8IOC ; 2.86 ; Cryo-EM structure of the gamma-MSH-bound human melanocortin receptor 3 (MC3R)-Gs complex 6CB8 ; 3.8 ; Cryo-EM structure of the Gasdermin A3 membrane pore 8GTN ; 3.17 ; Cryo-EM structure of the gasdermin B pore 7W4A ; 2.76 ; Cryo-EM structure of the gastric proton pump complexed with revaprazan 7ET1 ; 2.6 ; Cryo-EM structure of the gastric proton pump K791S/E820D/Y340N/E936V/Y799W mutant in K+-occluded (K+)E2-AlF state 8IJV ; 2.1 ; Cryo-EM structure of the gastric proton pump with bound DQ-02 8IJW ; 2.19 ; Cryo-EM structure of the gastric proton pump with bound DQ-06 8IJX ; 2.08 ; Cryo-EM structure of the gastric proton pump with bound DQ-18 8JMN ; 2.26 ; Cryo-EM structure of the gastric proton pump with bound DQ-21 8WA5 ; 2.51 ; Cryo-EM structure of the gastric proton pump Y799W/E936Q mutant in K+-occluded (K+)E2-AlF state 7F1O ; 3.13 ; Cryo-EM structure of the GDP-bound dopamine receptor 1 and mini-Gs complex with Nb35 7F1Z ; 3.46 ; Cryo-EM structure of the GDP-bound dopamine receptor 1 and mini-Gs complex without Nb35 7W2Z ; 2.8 ; Cryo-EM structure of the ghrelin-bound human ghrelin receptor-Go complex 7V9M ; 3.29 ; Cryo-EM structure of the GHRH-bound human GHRHR splice variant 1 complex 7V35 ; 3.5 ; Cryo-EM structure of the GIPR/GLP-1R/GCGR triagonist peptide 20-bound human GCGR-Gs complex 7FIN ; 3.1 ; Cryo-EM structure of the GIPR/GLP-1R/GCGR triagonist peptide 20-bound human GIPR-Gs complex 7VBH ; 3.0 ; Cryo-EM structure of the GIPR/GLP-1R/GCGR triagonist peptide 20-bound human GLP-1R-Gs complex 8JIT ; 2.91 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist MEDI0382-bound human GCGR-Gs complex 8JIP ; 2.85 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist MEDI0382-bound human GLP-1R-Gs complex 8JIQ ; 3.4 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist Peptide 15-bound human GCGR-Gs complex 8JIS ; 2.46 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist peptide15-bound human GLP-1R-Gs complex 8JIU ; 2.76 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist SAR425899-bound human GCGR-Gs complex 8JIR ; 2.57 ; Cryo-EM structure of the GLP-1R/GCGR dual agonist SAR425899-bound human GLP-1R-Gs complex 6WYK ; 4.0 ; Cryo-EM structure of the GltPh L152C-G321C mutant in the intermediate chloride conducting state. 6WYJ ; 3.7 ; Cryo-EM structure of the GltPh L152C-G321C mutant in the intermediate state 8JRU ; 3.5 ; Cryo-EM structure of the glucagon receptor bound to beta-arrestin 1 in ligand-free state 8JRV ; 3.3 ; Cryo-EM structure of the glucagon receptor bound to glucagon and beta-arrestin 1 6VCB ; 3.3 ; Cryo-EM structure of the Glucagon-like peptide-1 receptor in complex with G protein, GLP-1 peptide and a positive allosteric modulator 8EC6 ; 3.1 ; Cryo-EM structure of the Glutaminase C core filament (fGAC) 7EVP ; 3.2 ; Cryo-EM structure of the Gp168-beta-clamp complex 8K9Q ; 2.84 ; Cryo-EM structure of the GPI inositol-deacylase (PGAP1/Bst1) from Chaetomium thermophilum 8W8Q ; 2.89 ; Cryo-EM structure of the GPR101-Gs complex 8KH4 ; 3.1 ; Cryo-EM structure of the GPR161-Gs complex 8KH5 ; 2.83 ; Cryo-EM structure of the GPR174-Gs complex bound to endogenous lysoPS 8IYX ; 3.34 ; Cryo-EM structure of the GPR34 receptor in complex with the antagonist YL-365 8KGK ; 3.16 ; Cryo-EM structure of the GPR61-Gs complex 8J1A ; 3.24 ; Cryo-EM structure of the GPR84 receptor-Gi complex with no ligand modeled 8FFW ; 3.23 ; Cryo-EM structure of the GR-Hsp90-FKBP51 complex 8FFV ; 3.01 ; Cryo-EM structure of the GR-Hsp90-FKBP52 complex 7B03 ; 2.93 ; Cryo-EM structure of the green-light absorbing proteorhodopsin 7PBX ; 3.43 ; Cryo-EM structure of the GroEL-GroES complex with ADP bound to both rings (""tight"" conformation). 7PBJ ; 3.4 ; Cryo-EM structure of the GroEL-GroES complex with ADP bound to both rings (""wide"" conformation). 7F23 ; 3.58 ; Cryo-EM structure of the GTP-bound dopamine receptor 1 and mini-Gs complex with Nb35 7F24 ; 4.16 ; Cryo-EM structure of the GTP-bound dopamine receptor 1 and mini-Gs complex without Nb35 8G5O ; 2.61 ; Cryo-EM structure of the Guide loop Engagement Complex (IV) of Human Mitochondrial DNA Polymerase Gamma 8G5P ; 2.78 ; Cryo-EM structure of the Guide loop Engagement Complex (V) of Human Mitochondrial DNA Polymerase Gamma 8G5N ; 2.73 ; Cryo-EM structure of the Guide loop Engagement Complex (VI) of Human Mitochondrial DNA Polymerase Gamma 7YHK ; 3.14 ; Cryo-EM structure of the HA trimer of A/Beijing/262/1995(H1N1) in complex with neutralizing antibody 12H5 7RAM ; 3.43 ; Cryo-EM Structure of the HCMV gHgLgO Trimer Derived from AD169 and TR strains in complex with PDGFRalpha 7M30 ; 3.81 ; Cryo-EM structure of the HCMV pentamer bound by antibodies 1-103, 1-32 and 2-25 7KBB ; 4.02 ; Cryo-EM structure of the HCMV pentamer bound by Fabs 2-18 and 8I21 7M22 ; 3.65 ; Cryo-EM structure of the HCMV pentamer bound by human neuropilin 2 6U7H ; 3.1 ; Cryo-EM structure of the HCoV-229E spike glycoprotein 6IP8 ; 3.9 ; Cryo-EM structure of the HCV IRES dependently initiated CMV-stalled 80S ribosome (Structure iv) 7C1D ; 3.8 ; Cryo-EM structure of the hE46K cross-seeded hWT alpha-synuclein fibril 6QYD ; 3.2 ; Cryo-EM structure of the head in mature bacteriophage phi29 1I84 ; 20.0 ; CRYO-EM STRUCTURE OF THE HEAVY MEROMYOSIN SUBFRAGMENT OF CHICKEN GIZZARD SMOOTH MUSCLE MYOSIN WITH REGULATORY LIGHT CHAIN IN THE DEPHOSPHORYLATED STATE. ONLY C ALPHAS PROVIDED FOR REGULATORY LIGHT CHAIN. ONLY BACKBONE ATOMS PROVIDED FOR S2 FRAGMENT. 7FIF ; 6.5 ; Cryo-EM structure of the hedgehog release protein Disp from water bear (Hypsibius dujardini) 6X6K ; 3.1 ; Cryo-EM Structure of the Helicobacter pylori dCag3 OMC 6X6S ; 3.4 ; Cryo-EM Structure of the Helicobacter pylori OMC 8EDG ; 4.64 ; Cryo-EM structure of the Hermes transposase bound to two left-ends of its DNA transposon 8SJD ; 5.1 ; Cryo-EM structure of the Hermes transposase bound to two right-ends of its DNA transposon. 7VH6 ; 3.8 ; Cryo-EM structure of the hexameric plasma membrane H+-ATPase in the active state (pH 6.0, BeF3-, conformation 1, C1 symmetry) 7VH5 ; 3.2 ; Cryo-EM structure of the hexameric plasma membrane H+-ATPase in the autoinhibited state (pH 7.4, C1 symmetry) 7P6X ; 4.1 ; Cryo-Em structure of the hexameric RUVBL1-RUVBL2 in complex with ZNHIT2 7EH8 ; 3.06 ; Cryo-EM structure of the hexameric state of C-phycocyanin from Thermoleptolyngbya sp. O-77 8BVH ; 3.6 ; Cryo-EM structure of the Hfq-Crc-amiE translation repression assembly. 6ZJ3 ; 3.15 ; Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis 7YFC ; 3.0 ; Cryo-EM structure of the histamine-bound histamine H4 receptor and Gq complex 8HXX ; 3.0 ; Cryo-EM structure of the histone deacetylase complex Rpd3S 8JHO ; 7.6 ; Cryo-EM structure of the histone deacetylase complex Rpd3S in complex with di-nucleosome 8HXY ; 3.1 ; Cryo-EM structure of the histone deacetylase complex Rpd3S in complex with nucleosome 7XPX ; 3.2 ; Cryo-EM structure of the histone methyltransferase SET8 bound to H4K20Ecx-nucleosome 7RU6 ; 4.4 ; Cryo-EM structure of the HIV-1 restriction factor human SERINC3 6N06 ; 3.4 ; Cryo-EM structure of the HO BMC shell: BMC-T1 in the assembled shell 6MZU ; 3.4 ; Cryo-EM structure of the HO BMC shell: BMC-TD focused structure, closed state 6MZV ; 3.4 ; Cryo-EM structure of the HO BMC shell: BMC-TD focused structure, widened inner ring 6MZX ; 3.0 ; Cryo-EM structure of the HO BMC shell: Icosahedral reconstruction (main population) 6MZY ; 3.3 ; Cryo-EM structure of the HO BMC shell: Icosahedral reconstruction of the compacted subpopulation 6N09 ; 3.5 ; Cryo-EM structure of the HO BMC shell: subregion classified for BMC-T: TD-TDTDTD 6N0F ; 3.9 ; Cryo-EM structure of the HO BMC shell: subregion classified for BMC-T: TD-TSTSTS 6N0G ; 3.6 ; Cryo-EM structure of the HO BMC shell: subregion classified for BMC-T: TS-TDTDTD 8U1M ; 3.5 ; Cryo-EM structure of the HSP90 dimer (NTD-MD) in the semi-open state 7L20 ; 3.15 ; Cryo-EM structure of the human 39S mitoribosomal subunit in complex with RRFmt and EF-G2mt. 7L08 ; 3.49 ; Cryo-EM structure of the human 55S mitoribosome-RRFmt complex. 7DNY ; 3.4 ; Cryo-EM structure of the human ABCB6 (coproporphyrin III-bound) 7DNZ ; 3.6 ; Cryo-EM structure of the human ABCB6 (Hemin and GSH-bound) 6HIJ ; 3.56 ; Cryo-EM structure of the human ABCG2-MZ29-Fab complex with cholesterol and PE lipids docked 5Z57 ; 6.5 ; Cryo-EM structure of the human activated spliceosome (late Bact) at 6.5 angstrom 6D9H ; 3.6 ; Cryo-EM structure of the human adenosine A1 receptor-Gi2-protein complex bound to its endogenous agonist 7LD4 ; 3.3 ; Cryo-EM structure of the human adenosine A1 receptor-Gi2-protein complex bound to its endogenous agonist 7LD3 ; 3.2 ; Cryo-EM structure of the human adenosine A1 receptor-Gi2-protein complex bound to its endogenous agonist and an allosteric ligand 6A96 ; 3.51 ; Cryo-EM structure of the human alpha5beta3 GABAA receptor in complex with GABA and Nb25 7KH0 ; 2.8 ; Cryo-EM structure of the human arginine vasopressin AVP-vasopressin receptor V2R-Gs signaling complex 7VPI ; 3.6 ; Cryo-EM structure of the human ATP13A2 (E1-ATP state) 7VPJ ; 3.54 ; Cryo-EM structure of the human ATP13A2 (E1P-ADP state) 7VPK ; 3.92 ; Cryo-EM structure of the human ATP13A2 (SPM-bound E2P state) 7VPL ; 3.78 ; Cryo-EM structure of the human ATP13A2 (SPM-bound E2Pi state) 7SQK ; 8.0 ; Cryo-EM structure of the human augmin complex 8FAZ ; 2.3 ; Cryo-EM structure of the human BCDX2 complex 6R8F ; 3.8 ; Cryo-EM structure of the Human BRISC-SHMT2 complex 7B5Q ; 2.5 ; Cryo-EM structure of the human CAK bound to ICEC0942 (PHENIX-OPLS3e) 7B5O ; 2.5 ; Cryo-EM structure of the human CAK bound to ICEC0942 at 2.5 Angstroms resolution 6LMU ; 3.4 ; Cryo-EM structure of the human CALHM2 8G4L ; 6.4 ; Cryo-EM structure of the human cardiac myosin filament 7YKD ; 2.81 ; Cryo-EM structure of the human chemerin receptor 1 complex with the C-terminal nonapeptide of chemerin 6WWZ ; 3.34 ; Cryo-EM structure of the human chemokine receptor CCR6 in complex with CCL20 and a Go protein 7XBX ; 3.4 ; Cryo-EM structure of the human chemokine receptor CX3CR1 in complex with CX3CL1 and Gi1 7XBW ; 2.8 ; Cryo-EM structure of the human chemokine receptor CX3CR1 in complex with Gi1 7FDV ; 3.26 ; Cryo-EM structure of the human cholesterol transporter ABCG1 in complex with cholesterol 8TA6 ; 4.03 ; Cryo-EM structure of the human CLC-2 chloride channel C-terminal domain 8TA3 ; 2.46 ; Cryo-EM structure of the human CLC-2 chloride channel transmembrane domain Apo state with resolved N-terminal hairpin 8TA2 ; 2.74 ; Cryo-EM structure of the human CLC-2 chloride channel transmembrane domain with bound inhibitor AK-42 8TA4 ; 2.75 ; Cryo-EM structure of the human CLC-2 chloride channel transmembrane domain with symmetric C-terminal 6KSW ; 3.6 ; Cryo-EM structure of the human concentrative nucleoside transporter CNT3 6FUW ; 3.07 ; Cryo-EM structure of the human CPSF160-WDR33-CPSF30 complex bound to the PAS AAUAAA motif at 3.1 Angstrom resolution 5U03 ; 6.1 ; Cryo-EM structure of the human CTP synthase filament 7BHP ; 3.3 ; Cryo-EM structure of the human Ebp1 - 80S ribosome 6SXO ; 3.3 ; Cryo-EM structure of the human Ebp1-ribosome complex 7DPA ; 3.8 ; Cryo-EM structure of the human ELMO1-DOCK5-Rac1 complex 7WU9 ; 3.375 ; Cryo-EM structure of the human EP3-Gi signaling complex 5VA1 ; 3.7 ; Cryo-EM structure of the human ether-a-go-go related K+ channel 5VA2 ; 3.8 ; Cryo-EM structure of the human ether-a-go-go related K+ channel 5VA3 ; 4.0 ; Cryo-EM structure of the human ether-a-go-go related K+ channel 7SCH ; 3.1 ; Cryo-EM structure of the human Exostosin-1 and Exostosin-2 heterodimer 7SCJ ; 3.4 ; Cryo-EM structure of the human Exostosin-1 and Exostosin-2 heterodimer in complex with a 4-sugar oligosaccharide acceptor analog 7SCK ; 2.8 ; Cryo-EM structure of the human Exostosin-1 and Exostosin-2 heterodimer in complex with a 7-sugar oligosaccharide acceptor analog 7UQY ; 3.0 ; Cryo-EM structure of the human Exostosin-1 and Exostosin-2 heterodimer in complex with UDP-GlcA 7UQX ; 3.3 ; Cryo-EM structure of the human Exostosin-1 and Exostosin-2 heterodimer in complex with UDP-GlcNAc 7ND2 ; 4.0 ; Cryo-EM structure of the human FERRY complex 7WVU ; 3.3 ; Cryo-EM structure of the human formyl peptide receptor 1 in complex with fMLF and Gi1 7WVY ; 3.0 ; Cryo-EM structure of the human formyl peptide receptor 2 in complex with Abeta42 and Gi2 7WVX ; 2.8 ; Cryo-EM structure of the human formyl peptide receptor 2 in complex with fhumanin and Gi2 7WVV ; 2.9 ; Cryo-EM structure of the human formyl peptide receptor 2 in complex with fMLFII and Gi2 7WVW ; 3.1 ; Cryo-EM structure of the human formyl peptide receptor 2 in complex with fMYFINILTL and Gi2 5A63 ; 3.4 ; Cryo-EM structure of the human gamma-secretase complex at 3.4 angstrom resolution. 8CQB ; 3.7 ; Cryo-EM structure of the human GBP1 dimer bound to GDP-AlF3 8EM2 ; 3.02 ; Cryo-EM structure of the human GDH/6PGL endoplasmic bifunctional protein 6LML ; 3.9 ; Cryo-EM structure of the human glucagon receptor in complex with Gi1 6LMK ; 3.7 ; Cryo-EM structure of the human glucagon receptor in complex with Gs 7D68 ; 3.0 ; Cryo-EM structure of the human glucagon-like peptide-2 receptor-Gs protein complex 7WLD ; 2.53 ; Cryo-EM structure of the human glycosylphosphatidylinositol transamidase complex at 2.53 Angstrom resolution 7CZ5 ; 2.6 ; Cryo-EM structure of the human growth hormone-releasing hormone receptor-Gs protein complex 7ZBN ; 2.62 ; Cryo-EM structure of the human GS-GN complex in the inhibited state 6RZA ; 4.5 ; Cryo-EM structure of the human inner arm dynein DNAH7 microtubule binding domain bound to microtubules 7ZI4 ; 3.2 ; Cryo-EM structure of the human INO80 complex bound to a WT nucleosome 6HTS ; 4.8 ; Cryo-EM structure of the human INO80 complex bound to nucleosome 7ZDZ ; 4.3 ; Cryo-EM structure of the human inward-rectifier potassium 2.1 channel (Kir2.1) 7DA5 ; 3.3 ; Cryo-EM structure of the human MCT1 D309N mutant in complex with Basigin-2 in the inward-open conformation. 7CKO ; 2.95 ; Cryo-EM structure of the human MCT1/Basigin-2 complex in the presence of anti-cancer drug candidate 7ACC2 in the inward-open conformation 6LYY ; 3.2 ; Cryo-EM structure of the human MCT1/Basigin-2 complex in the presence of anti-cancer drug candidate AZD3965 in the outward-open conformation. 7CKR ; 3.0 ; Cryo-EM structure of the human MCT1/Basigin-2 complex in the presence of anti-cancer drug candidate BAY-8002 in the outward-open conformation. 7BP3 ; 3.8 ; Cryo-EM structure of the human MCT2 8Y6O ; 3.38 ; Cryo-EM Structure of the human minor pre-B complex (pre-precatalytic spliceosome) U11 and tri-snRNP part 8Y7E ; 4.66 ; Cryo-EM Structure of the human minor pre-B complex (pre-precatalytic spliceosome) U12 snRNP part 7CGP ; 3.7 ; Cryo-EM structure of the human mitochondrial translocase TIM22 complex at 3.7 angstrom. 8E3Q ; 2.68 ; CRYO-EM STRUCTURE OF the human MPSF 8E3I ; 2.53 ; CRYO-EM STRUCTURE OF the human MPSF IN COMPLEX WITH THE AUUAAA poly(A) signal 8R8R ; 2.79 ; Cryo-EM structure of the human mPSF with PAPOA C-terminus peptide (PAPOAc) 8TUL ; 2.8 ; Cryo-EM structure of the human MRS2 magnesium channel under Mg2+ condition 8TUP ; 3.3 ; Cryo-EM structure of the human MRS2 magnesium channel under Mg2+-free condition 7QH6 ; 3.08 ; Cryo-EM structure of the human mtLSU assembly intermediate upon MRM2 depletion - class 1 7QH7 ; 2.89 ; Cryo-EM structure of the human mtLSU assembly intermediate upon MRM2 depletion - class 4 7TJ9 ; 2.9 ; Cryo-EM structure of the human Nax channel in complex with beta3 solved in GDN 7TJ8 ; 3.2 ; Cryo-EM structure of the human Nax channel in complex with beta3 solved in nanodiscs 6GCT ; 3.85 ; cryo-EM structure of the human neutral amino acid transporter ASCT2 6MP6 ; 3.54 ; Cryo-EM structure of the human neutral amino acid transporter ASCT2 6MPB ; 3.84 ; Cryo-EM structure of the human neutral amino acid transporter ASCT2 8KB5 ; 2.26133 ; Cryo-EM structure of the human nucleosome containing H3.8 7LYB ; 3.28 ; Cryo-EM structure of the human nucleosome core particle in complex with BRCA1-BARD1-UbcH5c 8SN2 ; 3.6 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c (UbcH5c chemically conjugated to histone H2A) 8SN9 ; 3.9 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c with backside ubiquitin (UbcH5c chemically conjugated to histone H2A) (class 1) 8SNA ; 4.0 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c with backside ubiquitin (UbcH5c chemically conjugated to histone H2A) (class 2) 8SN3 ; 3.8 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 1) 8SN4 ; 3.7 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 2) 8SN5 ; 3.9 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 3) 8SN6 ; 3.7 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 4) 8SN7 ; 3.7 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 5) 8SN8 ; 3.7 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A) (class 6) 8SMW ; 3.3 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (class 1) 8SMX ; 3.2 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (class 2) 8SMY ; 3.2 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (class 3) 8SMZ ; 3.2 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (Class 4) 8SN0 ; 3.2 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (class 5) 8SN1 ; 3.3 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168 and UbcH5c~Ub (UbcH5c chemically conjugated to histone H2A. No density for Ub.) (class 6) 8UPF ; 3.2 ; Cryo-EM structure of the human nucleosome core particle in complex with RNF168-UbcH5c 8TXV ; 3.8 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A K15 in complex with RNF168 (Class 1) 8TXW ; 3.6 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A K15 in complex with RNF168 (Class 2) 8TXX ; 3.7 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A K15 in complex with RNF168 (Class 3) 7LYC ; 2.94 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A Lys13 and Lys15 in complex with BARD1 (residues 415-777) 8U13 ; 3.8 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A lysine 15 in complex with RNF168-UbcH5c (class 1) 8U14 ; 3.9 ; Cryo-EM structure of the human nucleosome core particle ubiquitylated at histone H2A lysine 15 in complex with RNF168-UbcH5c (class 2) 7LYA ; 2.91 ; Cryo-EM structure of the human nucleosome core particle with linked histone proteins H2A and H2B 8JLA ; 3.44 ; Cryo-EM structure of the human nucleosome lacking N-terminal region of H2A, H2B, H3, and H4 8JL9 ; 2.65 ; Cryo-EM structure of the human nucleosome with scFv 6K7G ; 3.3 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1 state class1) 6K7H ; 3.22 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1 state class2) 6K7K ; 3.04 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1-ADP-Pi state) 6K7J ; 3.08 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1-ATP state class1) 6K7I ; 3.22 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1-ATP state class2) 6K7N ; 2.84 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E1P state) 6K7L ; 2.83 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E2P state class2) 6K7M ; 2.95 ; Cryo-EM structure of the human P4-type flippase ATP8A1-CDC50 (E2Pi-PL state) 7VGI ; 3.36 ; Cryo-EM structure of the human P4-type flippase ATP8B1-CDC50A in the auto-inhibited E2P state 7VGJ ; 3.98 ; Cryo-EM structure of the human P4-type flippase ATP8B1-CDC50A in the auto-inhibited E2Pi-PS state 7VGH ; 3.39 ; Cryo-EM structure of the human P4-type flippase ATP8B1-CDC50B in the auto-inhibited E2P state 6LPB ; 3.9 ; Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein 7BWM ; 2.9 ; Cryo-EM structure of the human pathogen Mycoplasma pneumoniae P1 8HMZ ; 2.9 ; Cryo-EM structure of the human post-catalytic TSEN/pre-tRNA complex 8EKY ; 3.47 ; Cryo-EM structure of the human PRDX4-ErP46 complex 8HMY ; 2.94 ; Cryo-EM structure of the human pre-catalytic TSEN/pre-tRNA complex 8H1P ; 3.48 ; Cryo-EM structure of the human RAD52 protein 7TX7 ; 3.8 ; Cryo-EM structure of the human reduced folate carrier 7TX6 ; 3.3 ; Cryo-EM structure of the human reduced folate carrier in complex with methotrexate 8DEP ; 3.6 ; Cryo-EM structure of the human reduced folate carrier, apo condition 8GS8 ; 2.86 ; cryo-EM structure of the human respiratory complex II 6W6L ; 3.84 ; Cryo-EM structure of the human ribosome-TMCO1 translocon 7KTR ; 2.93 ; Cryo-EM structure of the human SAGA coactivator complex (TRRAP, core) 8H7G ; 3.7 ; Cryo-EM structure of the human SAGA complex 8DNV ; 3.03 ; Cryo-EM structure of the human Sec61 complex in a partially-open apo state (Class 1) 8DNW ; 3.4 ; Cryo-EM structure of the human Sec61 complex in a partially-open apo state (Class 2) 8DNZ ; 2.57 ; Cryo-EM structure of the human Sec61 complex inhibited by apratoxin F 8DNX ; 2.98 ; Cryo-EM structure of the human Sec61 complex inhibited by cotransin 8DO2 ; 2.95 ; Cryo-EM structure of the human Sec61 complex inhibited by cyclotriazadisulfonamide (CADA) 8DNY ; 2.85 ; Cryo-EM structure of the human Sec61 complex inhibited by decatransin 8DO3 ; 3.22 ; Cryo-EM structure of the human Sec61 complex inhibited by eeyarestatin I 8DO1 ; 3.01 ; Cryo-EM structure of the human Sec61 complex inhibited by ipomoeassin F 8DO0 ; 2.86 ; Cryo-EM structure of the human Sec61 complex inhibited by mycolactone 8A11 ; 3.52 ; Cryo-EM structure of the Human SHMT1-RNA complex 8C60 ; 3.4 ; Cryo-EM structure of the human SIN3B full-length complex at 3.4 Angstrom resolution 8BPA ; 3.7 ; Cryo-EM structure of the human SIN3B histone deacetylase complex at 3.7 Angstrom 8BPB ; 2.8 ; Cryo-EM structure of the human SIN3B histone deacetylase core complex at 2.8 Angstrom 8BPC ; 2.8 ; Cryo-EM structure of the human SIN3B histone deacetylase core complex with SAHA at 2.8 Angstrom 6CNM ; 3.4 ; Cryo-EM structure of the human SK4/calmodulin channel complex 6CNN ; 3.5 ; Cryo-EM structure of the human SK4/calmodulin channel complex in the Ca2+ bound state I 6CNO ; 4.7 ; Cryo-EM structure of the human SK4/calmodulin channel complex in the Ca2+ bound state II 8Q7N ; 3.1 ; cryo-EM structure of the human spliceosomal B complex protomer (tri-snRNP core region) 5XJC ; 3.6 ; Cryo-EM structure of the human spliceosome just prior to exon ligation at 3.6 angstrom 7MQA ; 2.7 ; Cryo-EM structure of the human SSU processome, state post-A1 7MQ8 ; 3.6 ; Cryo-EM structure of the human SSU processome, state pre-A1 7MQ9 ; 3.87 ; Cryo-EM structure of the human SSU processome, state pre-A1* 6I53 ; 3.2 ; Cryo-EM structure of the human synaptic alpha1-beta3-gamma2 GABAA receptor in complex with Megabody38 in a lipid nanodisc 7F6V ; 3.66 ; Cryo-EM structure of the human TACAN channel in a closed state 5U1D ; 3.97 ; Cryo-EM structure of the human TAP ATP-Binding Cassette Transporter 6NMI ; 3.7 ; Cryo-EM structure of the human TFIIH core complex 6ZY5 ; 3.6 ; Cryo-EM structure of the Human topoisomerase II alpha DNA-binding/cleavage domain in State 1 6ZY6 ; 4.1 ; Cryo-EM structure of the Human topoisomerase II alpha DNA-binding/cleavage domain in State 2 7OR1 ; 2.64 ; Cryo-EM structure of the human TRPA1 ion channel in complex with the antagonist 3-60, conformation 1 7OR0 ; 2.64 ; Cryo-EM structure of the human TRPA1 ion channel in complex with the antagonist 3-60, conformation 2 6PQP ; 3.06 ; Cryo-EM structure of the human TRPA1 ion channel in complex with the covalent agonist BITC 6PQO ; 2.88 ; Cryo-EM structure of the human TRPA1 ion channel in complex with the covalent agonist JT010 7X6I ; 3.93 ; Cryo-EM structure of the human TRPC5 ion channel in complex with G alpha i3 subunits, class1 8GVX ; 3.91 ; Cryo-EM structure of the human TRPC5 ion channel in complex with G alpha i3 subunits, class2 7X6C ; 3.15 ; Cryo-EM structure of the human TRPC5 ion channel in lipid nanodiscs, class1 8GVW ; 3.59 ; Cryo-EM structure of the human TRPC5 ion channel in lipid nanodiscs, class2 6UW8 ; 4.02 ; Cryo-EM structure of the human TRPV3 K169A mutant briefly exposed to 2-APB for 3 minutes, determined in lipid nanodisc 6UW6 ; 3.66 ; Cryo-EM structure of the human TRPV3 K169A mutant determined in lipid nanodisc 6UW9 ; 4.33 ; Cryo-EM structure of the human TRPV3 K169A mutant in the presence of 2-APB, determined in lipid nanodisc 8FCA ; 3.41 ; Cryo-EM structure of the human TRPV4 - RhoA in complex with 4alpha-Phorbol 12,13-didecanoate 8FCB ; 3.55 ; Cryo-EM structure of the human TRPV4 - RhoA in complex with GSK1016790A 8FC7 ; 3.3 ; Cryo-EM structure of the human TRPV4 - RhoA in complex with GSK2798745 8FC9 ; 3.75 ; Cryo-EM structure of the human TRPV4 - RhoA, apo condition 8FC8 ; 3.47 ; Cryo-EM structure of the human TRPV4 in complex with GSK1016790A 7CAL ; 3.2 ; Cryo-EM Structure of the Hyperpolarization-Activated Inwardly Rectifying Potassium Channel KAT1 from Arabidopsis 6V1Y ; 3.8 ; Cryo-EM Structure of the Hyperpolarization-Activated Potassium Channel KAT1: Octamer 6V1X ; 3.5 ; Cryo-EM Structure of the Hyperpolarization-Activated Potassium Channel KAT1: Tetramer 8BQS ; 2.9 ; Cryo-EM structure of the I-II-III2-IV2 respiratory supercomplex from Tetrahymena thermophila 7V3P ; 3.6 ; Cryo-EM structure of the IGF1R/insulin complex 7YFD ; 3.1 ; Cryo-EM structure of the imetit-bound histamine H4 receptor and Gq complex 6N89 ; 7.5 ; Cryo-EM structure of the Importin beta:Histone H1.0 complex 6N88 ; 6.2 ; Cryo-EM structure of the Importin7:Importin beta:Histone H1.0 complex 8EAO ; 3.2 ; Cryo-EM structure of the in-situ gp1-gp4 complex from bacteriophage P22 8EAP ; 3.3 ; Cryo-EM structure of the in-situ gp10-gp26 from bacteriophage P22 8EB7 ; 3.8 ; Cryo-EM structure of the in-situ gp4-gp10-gp9N from bacteriophage P22 8IKJ ; 3.2 ; Cryo-EM structure of the inactive CD97 7ZUB ; 2.85 ; Cryo-EM structure of the indirubin-bound Hsp90-XAP2-AHR complex 7WOT ; 3.73 ; Cryo-EM structure of the inner ring monomer of the Saccharomyces cerevisiae nuclear pore complex 7WOO ; 3.71 ; Cryo-EM structure of the inner ring protomer of the Saccharomyces cerevisiae nuclear pore complex 7YJ4 ; 3.19 ; Cryo-EM structure of the INSL5-bound human relaxin family peptidereceptor 4 (RXFP4)-Gi complex 7CFN ; 3.0 ; Cryo-EM structure of the INT-777-bound GPBAR-Gs complex 5Y88 ; 3.46 ; Cryo-EM structure of the intron-lariat spliceosome ready for disassembly from S.cerevisiae at 3.5 angstrom 7WKK ; 4.2 ; Cryo-EM structure of the IR subunit from X. laevis NPC 8HUJ ; 3.76 ; Cryo-EM structure of the J-K-St region of EMCV IRES in complex with eIF4G-HEAT1 and eIF4A 8J7R ; 3.7 ; Cryo-EM structure of the J-K-St region of EMCV IRES in complex with eIF4G-HEAT1 and eIF4A (J-K-St/eIF4G focused) 8H3F ; 6.73 ; Cryo-EM Structure of the KBTBD2-CRL3-CSN complex 8H3R ; 6.36 ; Cryo-EM Structure of the KBTBD2-CRL3~N8 dimeric complex 8H3A ; 7.51 ; Cryo-EM Structure of the KBTBD2-CRL3~N8(removed)-CSN complex 8H38 ; 4.25 ; Cryo-EM Structure of the KBTBD2-CRL3~N8-CSN(mutate) complex 8GQ6 ; 3.96 ; Cryo-EM Structure of the KBTBD2-CUL3-Rbx1 dimeric complex 8H34 ; 7.99 ; Cryo-EM Structure of the KBTBD2-Cul3-Rbx1 hexameric complex 8H35 ; 7.41 ; Cryo-EM Structure of the KBTBD2-Cul3-Rbx1 octameric complex 8H33 ; 7.86 ; Cryo-EM Structure of the KBTBD2-Cul3-Rbx1 tetrameric complex 8H36 ; 4.6 ; Cryo-EM Structure of the KBTBD2-CUL3-Rbx1-p85a dimeric complex 8H37 ; 7.52 ; Cryo-EM Structure of the KBTBD2-CUL3-Rbx1-p85a tetrameric complex 7ZRH ; 3.4 ; Cryo-EM structure of the KdpFABC complex in a nucleotide-free E1 conformation loaded with K+ 7ZRI ; 3.5 ; Cryo-EM structure of the KdpFABC complex in a nucleotide-free E1 conformation loaded with K+ 7ZRJ ; 3.7 ; Cryo-EM structure of the KdpFABC complex in a nucleotide-free E1 conformation loaded with K+ 6HRA ; 3.7 ; Cryo-EM structure of the KdpFABC complex in an E1 outward-facing state (state 1) 7NNL ; 3.1 ; Cryo-EM structure of the KdpFABC complex in an E1-ATP conformation loaded with K+ 6HRB ; 4.0 ; Cryo-EM structure of the KdpFABC complex in an E2 inward-facing state (state 2) 6LMT ; 2.66 ; Cryo-EM structure of the killifish CALHM1 8W4J ; 3.06 ; Cryo-EM structure of the KLHL22 E3 ligase bound to human glutamate dehydrogenase I 7WIG ; 2.7 ; Cryo-EM structure of the L-054,264-bound human SSTR2-Gi1 complex 8IZF ; 3.85 ; Cryo-EM structure of the Lac1-Lip1 (Lip1-S74F) complex 5V7Q ; 3.7 ; Cryo-EM structure of the large ribosomal subunit from Mycobacterium tuberculosis bound with a potent linezolid analog 8IUL ; 2.78 ; Cryo-EM structure of the latanoprost-bound human PTGFR-Gq complex 6NMD ; 3.49 ; cryo-EM Structure of the LbCas12a-crRNA-AcrVA1 complex 7Y5W ; 3.5 ; Cryo-EM structure of the left-handed Di-tetrasome 8HG3 ; 2.94 ; Cryo-EM structure of the Lhcp complex from Ostreococcus tauri 7NL0 ; 3.5 ; Cryo-EM structure of the Lin28B nucleosome core particle 8ID4 ; 3.1 ; Cryo-EM structure of the linoleic acid bound GPR120-Gi complex 8UUA ; 2.7 ; Cryo-EM structure of the Listeria innocua 50S ribosomal subunit in complex with HflXr (structure III) 8UU8 ; 3.1 ; Cryo-EM structure of the Listeria innocua 70S ribosome (head-swiveled) in complex with HflXr and pe/E-tRNA (structure II-C) 8UU5 ; 3.0 ; Cryo-EM structure of the Listeria innocua 70S ribosome (head-swiveled) in complex with pe/E-tRNA (structure I-B) 8UU7 ; 3.2 ; Cryo-EM structure of the Listeria innocua 70S ribosome in complex with HflXr, HPF, and E-site tRNA (structure II-B) 8UU4 ; 3.0 ; Cryo-EM structure of the Listeria innocua 70S ribosome in complex with HPF (structure I-A) 8J19 ; 3.23 ; Cryo-EM structure of the LY237-bound GPR84 receptor-Gi complex 5GAQ ; 3.1 ; Cryo-EM structure of the Lysenin Pore 6NZD ; 3.6 ; Cryo-EM Structure of the Lysosomal Folliculin Complex (FLCN-FNIP2-RagA-RagC-Ragulator) 3JCF ; 3.8 ; Cryo-EM structure of the magnesium channel CorA in the closed symmetric magnesium-bound state 3JCG ; 7.06 ; Cryo-EM structure of the magnesium channel CorA in the magnesium-free, asymmetric open state I 3JCH ; 7.06 ; Cryo-EM structure of the magnesium channel CorA in the magnesium-free, asymmetric open state II 8I8A ; 3.21 ; Cryo-EM structure of the major capsid protein VP39 of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 5UZB ; 7.0 ; Cryo-EM structure of the MAL TIR domain filament 5JYG ; 6.5 ; Cryo-EM structure of the MamK filament at 6.5 A 6J5K ; 6.2 ; Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1 6J5I ; 3.34 ; Cryo-EM structure of the mammalian DP-state ATP synthase 6J5A ; 4.35 ; Cryo-EM structure of the mammalian DP-state ATP synthase FO section 6J5J ; 3.45 ; Cryo-EM structure of the mammalian E-state ATP synthase 6J54 ; 3.94 ; Cryo-EM structure of the mammalian E-state ATP synthase FO section 6FTJ ; 4.7 ; Cryo-EM Structure of the Mammalian Oligosaccharyltransferase Bound to Sec61 and the Non-programmed 80S Ribosome 6FTI ; 4.2 ; Cryo-EM Structure of the Mammalian Oligosaccharyltransferase Bound to Sec61 and the Programmed 80S Ribosome 7NQK ; 3.5 ; Cryo-EM structure of the mammalian peptide transporter PepT2 2WWB ; 6.48 ; CRYO-EM STRUCTURE OF THE MAMMALIAN SEC61 COMPLEX BOUND TO THE ACTIVELY TRANSLATING WHEAT GERM 80S RIBOSOME 6KG7 ; 3.8 ; Cryo-EM Structure of the Mammalian Tactile Channel Piezo2 8GTA ; 3.63 ; Cryo-EM structure of the marine siphophage vB_Dshs-R4C capsid 8GTB ; 3.43 ; Cryo-EM structure of the marine siphophage vB_DshS-R4C tail tube protein 7KO8 ; 4.4 ; Cryo-EM structure of the mature and infective Mayaro virus 3JA8 ; 3.8 ; Cryo-EM structure of the MCM2-7 double hexamer 5U0S ; 7.8 ; Cryo-EM structure of the Mediator-RNAPII complex 8W87 ; 2.8 ; Cryo-EM structure of the METH-TAAR1 complex 8TFB ; 2.99 ; Cryo-EM structure of the Methanosarcina mazei apo glutamin synthetase structure: dodecameric form 8TFK ; 2.66 ; Cryo-EM structure of the Methanosarcina mazei glutamine synthetase (GS) with Met-Sox-P and ADP 6LBH ; 3.7 ; Cryo-EM structure of the MgtE Mg2+ channel under Mg2+-free conditions 7YGN ; 3.0 ; Cryo-EM structure of the Mili in complex with piRNA 7YFY ; 3.4 ; Cryo-EM structure of the Mili-piRNA- target ternary complex 7F3E ; 3.62 ; Cryo-EM structure of the minimal protein-only RNase P from Aquifex aeolicus 8G5M ; 2.58 ; Cryo-EM structure of the Mismatch Locking Complex (III) of Human Mitochondrial DNA Polymerase Gamma 8G5I ; 2.75 ; Cryo-EM structure of the Mismatch Sensing Complex (I) of Human Mitochondrial DNA Polymerase Gamma 8G5J ; 2.63 ; Cryo-EM structure of the Mismatch Uncoupling Complex (II) of Human Mitochondrial DNA Polymerase Gamma 6D7W ; 3.8 ; Cryo-EM structure of the mitochondrial calcium uniporter from N. fischeri at 3.8 Angstrom resolution 6D80 ; 5.0 ; Cryo-EM structure of the mitochondrial calcium uniporter from N. fischeri bound to saposin 6DNF ; 3.2 ; Cryo-EM structure of the mitochondrial calcium uniporter MCU from the fungus Cyphellophora europaea 6UCU ; 3.06 ; Cryo-EM structure of the mitochondrial TOM complex from yeast (dimer) 6UCV ; 4.1 ; Cryo-EM structure of the mitochondrial TOM complex from yeast (tetramer) 8J6P ; 2.55 ; Cryo-EM structure of the MK-6892-bound human HCAR2-Gi1 complex 8J6R ; 2.76 ; Cryo-EM structure of the MK-6892-bound human HCAR2-Gi1 complex 8XZH ; 2.6 ; Cryo-EM structure of the MM07-bound human APLNR-Gi complex 7YJO ; 2.8 ; Cryo-EM structure of the monomeric atSPT-ORM1 (LCB2a-deltaN5) complex 7YJN ; 3.4 ; Cryo-EM structure of the monomeric atSPT-ORM1 (ORM1-N17A) complex 7YJM ; 3.2 ; Cryo-EM structure of the monomeric atSPT-ORM1 complex 7N0C ; 3.4 ; Cryo-EM structure of the monomeric form of SARS-CoV-2 nsp10-nsp14 (E191A)-RNA complex 8IQG ; 3.5 ; Cryo-EM structure of the monomeric human CAF1-H3-H4 complex 7Y5U ; 3.8 ; Cryo-EM structure of the monomeric human CAF1LC-H3-H4 complex 6M4O ; 3.4 ; Cryo-EM structure of the monomeric SPT-ORMDL3 complex 8IBV ; 3.19 ; Cryo-EM structure of the motilin-bound motilin receptor-Gq protein complex 7V5C ; 3.2 ; Cryo-EM structure of the mouse ABCB9 (ADP.BeF3-bound) 7V5D ; 3.4 ; Cryo-EM structure of the mouse ABCB9 (PG-bound) 6LQI ; 4.5 ; Cryo-EM structure of the mouse Piezo1 isoform Piezo1.1 7VFI ; 3.98 ; Cryo-EM structure of the mouse TAPL (9mer-peptide bound) 7LJF ; 4.0 ; Cryo-EM structure of the Mpa hexamer in the presence of ATP and the Pup-FabD substrate 6Q8Y ; 3.1 ; Cryo-EM structure of the mRNA translating and degrading yeast 80S ribosome-Xrn1 nuclease complex 5NL2 ; 6.6 ; cryo-EM structure of the mTMEM16A ion channel at 6.6 A resolution. 7UXH ; 3.2 ; cryo-EM structure of the mTORC1-TFEB-Rag-Ragulator complex 7UXC ; 3.2 ; cryo-EM structure of the mTORC1-TFEB-Rag-Ragulator complex with symmetry expansion 7NZ4 ; 13.0 ; Cryo-EM structure of the MukBEF dimer 7NYY ; 6.8 ; Cryo-EM structure of the MukBEF monomer 7NYW ; 3.1 ; Cryo-EM structure of the MukBEF-MatP-DNA head module 7NYX ; 4.6 ; Cryo-EM structure of the MukBEF-MatP-DNA monomer (closed conformation) 7NZ0 ; 6.3 ; Cryo-EM structure of the MukBEF-MatP-DNA monomer (open conformation) 7NYZ ; 6.5 ; Cryo-EM structure of the MukBEF-MatP-DNA monomer (partially open conformation) 7NZ2 ; 11.0 ; Cryo-EM structure of the MukBEF-MatP-DNA tetrad 6LVF ; 3.7 ; Cryo-EM structure of the multiple peptide resistance factor (MprF) loaded with one lysyl-phosphatidylglycerol molecule 7DUW ; 2.96 ; Cryo-EM structure of the multiple peptide resistance factor (MprF) loaded with two lysyl-phosphatidylglycerol molecules 8BMS ; 2.6 ; Cryo-EM structure of the mutant solitary ECF module 2EQ in MSP2N2 lipid nanodiscs in the ATPase closed and ATP-bound conformation 7ZPP ; 4.5 ; Cryo-EM structure of the MVV CSC intasome at 4.5A resolution 4V8L ; 7.5 ; Cryo-EM Structure of the Mycobacterial Fatty Acid Synthase 8V9J ; 3.1 ; Cryo-EM structure of the Mycobacterium smegmatis 70S ribosome in complex with hibernation factor Msmeg1130 (Balon) (Structure 4) 8V9L ; 3.0 ; Cryo-EM structure of the Mycobacterium smegmatis 70S ribosome in complex with hibernation factor Msmeg1130 (Balon) and MsmegEF-Tu(GDP) (Composite structure 6) 8V9K ; 3.1 ; Cryo-EM structure of the Mycobacterium smegmatis 70S ribosome in complex with hibernation factor Rv2629 (Balon) (Structure 5) 7Y0D ; 3.1 ; Cryo-EM structure of the Mycobacterium smegmatis DNA integrity scanning protein (MsDisA). 8HCR ; ; Cryo-EM structure of the Mycobacterium tuberculosis cytochrome bcc:aa3 supercomplex and a novel inhibitor targeting subunit cytochrome cI 7NVH ; 3.0 ; Cryo-EM structure of the mycolic acid transporter MmpL3 from M. tuberculosis 7Y5A ; 3.5 ; Cryo-EM structure of the Mycolicibacterium smegmatis F1-ATPase 7LC9 ; 3.2 ; Cryo-EM structure of the N-terminal alpha-synuclein truncation 41-140 6REV ; 3.8 ; Cryo-EM structure of the N-terminal DC repeat (NDC) of human doublecortin (DCX) bound to 13-protofilament GDP-microtubule 6RF8 ; 3.8 ; Cryo-EM structure of the N-terminal DC repeat (NDC) of NDC-NDC chimera (human sequence) bound to 13-protofilament GDP-microtubule 6RFD ; 3.9 ; Cryo-EM structure of the N-terminal DC repeat (NDC) of NDC-NDC chimera (human sequence) bound to 14-protofilament GDP-microtubule 7WSV ; 4.5 ; Cryo-EM structure of the N-terminal deletion mutant of human pannexin-1 in a nanodisc 7YOX ; 3.95 ; Cryo-EM structure of the N-terminal domain of hMCM8/9 and HROB 6OSM ; 3.4 ; Cryo-EM structure of the N-terminally acetylated C-terminal Alpha-synuclein truncation Ac1-103 6OSL ; 3.0 ; Cryo-EM structure of the N-terminally acetylated C-terminal Alpha-synuclein truncation Ac1-122 6OSJ ; 2.8 ; Cryo-EM structure of the N-terminally acetylated full length alpha-synuclein fibrils (Ac1-140) 7Y45 ; 3.3 ; Cryo-EM structure of the Na+,K+-ATPase in the E2.2K+ state 7Y46 ; 7.2 ; Cryo-EM structure of the Na+,K+-ATPase in the E2.2K+ state after addition of ATP 6B5B ; 5.2 ; Cryo-EM structure of the NAIP5-NLRC4-flagellin inflammasome 6OFJ ; 4.5 ; Cryo-EM structure of the native rhodopsin dimer from rod photoreceptor cells 4BGN ; 9.0 ; cryo-EM structure of the NavCt voltage-gated sodium channel 7RYE ; 3.9 ; Cryo-EM structure of the needle filament-tip complex of the Salmonella type III secretion injectisome 7W56 ; 2.9 ; Cryo-EM structure of the neuromedin S-bound neuromedin U receptor 1-Gq protein complex 7W57 ; 3.2 ; Cryo-EM structure of the neuromedin S-bound neuromedin U receptor 2-Gq protein complex 7XK8 ; 3.3 ; Cryo-EM structure of the Neuromedin U receptor 2 (NMUR2) in complex with G Protein and its endogeneous Peptide-Agonist NMU25 7W53 ; 3.2 ; Cryo-EM structure of the neuromedin U-bound neuromedin U receptor 1-Gq protein complex 7W55 ; 2.8 ; Cryo-EM structure of the neuromedin U-bound neuromedin U receptor 2-Gq protein complex 8B4I ; 3.32 ; Cryo-EM structure of the Neurospora crassa TOM core complex at 3.3 angstrom 7UR4 ; 3.34 ; Cryo-EM Structure of the Neutralizing Antibody MPV467 in Complex with Prefusion Human Metapneumovirus F Glycoprotein 8CQR ; 3.8 ; Cryo-EM structure of the NINJ1 filament 6ZBY ; 3.1 ; Cryo-EM structure of the nitrilase from Pseudomonas fluorescens EBC191 at 3.3 Angstroms 8AHX ; 3.11 ; Cryo-EM structure of the nitrogen-fixation associated NADH:ferredoxin oxidoreductase RNF from Azotobacter vinelandii 6XKK ; 3.72 ; Cryo-EM structure of the NLRP1-CARD filament 7PZC ; 3.9 ; Cryo-EM structure of the NLRP3 decamer bound to the inhibitor CRID3 7PZD ; 3.6 ; Cryo-EM structure of the NLRP3 PYD filament 8JA0 ; 3.52 ; Cryo-EM structure of the NmeCas9-sgRNA-AcrIIC4 ternary complex 7VAB ; 3.2 ; Cryo-EM structure of the non-acylated tirzepatide (LY3298176)-bound human GIPR-Gs complex 7VBI ; 3.0 ; Cryo-EM structure of the non-acylated tirzepatide (LY3298176)-bound human GLP-1R-Gs complex 7K08 ; 4.7 ; Cryo-EM structure of the nonameric EscV cytosolic domain from the type III secretion system 7FEB ; 2.11 ; Cryo-EM structure of the nonameric SsaV cytosolic domain in the context of the InvA-SsaV chimeric protein 7FEC ; 3.64 ; Cryo-EM structure of the nonameric SsaV cytosolic domain with C9 symmetry 7FED ; 3.55 ; Cryo-EM structure of the nonameric SsaV cytosolic domain with D9 symmetry 7WB4 ; 5.6 ; Cryo-EM structure of the NR subunit from X. laevis NPC 8GZQ ; 3.9 ; Cryo-EM structure of the NS5-NS3-SLA complex 8GZP ; 3.6 ; Cryo-EM structure of the NS5-SLA complex 7Y00 ; 3.96 ; Cryo-EM structure of the nucleosome containing 169 base-pair DNA with a p53 target sequence 7XZY ; 3.97 ; Cryo-EM structure of the nucleosome containing 193 base-pair DNA with a p53 target sequence 7D69 ; 3.57 ; Cryo-EM structure of the nucleosome containing Giardia histones 7WLR ; 3.54 ; Cryo-EM structure of the nucleosome containing Komagataella pastoris histones 8PKJ ; 2.5 ; Cryo-EM structure of the nucleosome containing Nr5a2 motif at SHL+5.5 7XZZ ; 4.07 ; Cryo-EM structure of the nucleosome in complex with p53 7XZX ; 4.53 ; Cryo-EM structure of the nucleosome in complex with p53 DNA-binding domain 7Q64 ; 2.76 ; Cryo-em structure of the Nup98 fibril polymorph 1 7Q65 ; 3.32 ; Cryo-em structure of the Nup98 fibril polymorph 2 7Q66 ; 2.79 ; Cryo-em structure of the Nup98 fibril polymorph 3 7Q67 ; 3.37 ; Cryo-em structure of the Nup98 fibril polymorph 4 8CI8 ; 2.67 ; Cryo-EM structure of the Nup98(298-327) fibril 7Q9Y ; 3.84 ; Cryo-EM structure of the octameric pore of Clostridium perfringens beta-toxin. 7EH7 ; 3.71 ; Cryo-EM structure of the octameric state of C-phycocyanin from Thermoleptolyngbya sp. O-77 7Y24 ; 3.25 ; Cryo-EM structure of the octreotide-bound SSTR2-miniGo-scFv16 complex 7Y26 ; 3.3 ; Cryo-EM structure of the octreotide-bound SSTR2-miniGq-scFv16 complex 8ID6 ; 2.8 ; Cryo-EM structure of the oleic acid bound GPR120-Gi complex 7WM0 ; 3.35 ; Cryo-EM structure of the Omicron RBD in complex with 35B5 Fab( local refinement of the RBD and 35B5 Fab) 7WLY ; 3.4 ; Cryo-EM structure of the Omicron S in complex with 35B5 Fab(1 down- and 2 up RBDs) 7WLZ ; 2.98 ; Cryo-EM structure of the Omicron S in complex with 35B5 Fab(1 down-, 1 up- and 1 invisible RBDs) 8ET7 ; 3.77 ; Cryo-EM structure of the organic cation transporter 1 in complex with diphenhydramine 8ET8 ; 3.45 ; Cryo-EM structure of the organic cation transporter 1 in complex with verapamil 8ET6 ; 3.57 ; Cryo-EM structure of the organic cation transporter 1 in the apo state 8ET9 ; 3.61 ; Cryo-EM structure of the organic cation transporter 2 in complex with 1-methyl-4-phenylpyridinium 7BC6 ; 3.2 ; Cryo-EM structure of the outward open proton coupled folate transporter at pH 7.5 8JWI ; 2.94 ; Cryo-EM structure of the outward-facing Plasmodium falciparum multidrug resistance protein 1 8HAG ; 3.2 ; Cryo-EM structure of the p300 catalytic core bound to the H4K12acK16ac nucleosome, class 1 (3.2 angstrom resolution) 8HAI ; 4.7 ; Cryo-EM structure of the p300 catalytic core bound to the H4K12acK16ac nucleosome, class 1 (4.7 angstrom resolution) 8HAH ; 3.9 ; Cryo-EM structure of the p300 catalytic core bound to the H4K12acK16ac nucleosome, class 2 (3.9 angstrom resolution) 8HAJ ; 4.8 ; Cryo-EM structure of the p300 catalytic core bound to the H4K12acK16ac nucleosome, class 2 (4.8 angstrom resolution) 8HAK ; 4.5 ; Cryo-EM structure of the p300 catalytic core bound to the H4K12acK16ac nucleosome, class 4 (4.5 angstrom resolution) 7CFM ; 3.0 ; Cryo-EM structure of the P395-bound GPBAR-Gs complex 8ED0 ; 2.72 ; Cryo-EM Structure of the P74-26 Tail Tube 8E3X ; 2.3 ; Cryo-EM structure of the PAC1R-PACAP27-Gs complex 5TWV ; 6.3 ; Cryo-EM structure of the pancreatic ATP-sensitive K+ channel SUR1/Kir6.2 in the presence of ATP and glibenclamide 7U24 ; 3.58 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel bound to ATP and glibenclamide with Kir6.2-CTD in the up conformation 7TYT ; 3.6 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel bound to ATP and repaglinide with Kir6.2-CTD in the down conformation 7TYS ; 3.41 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel bound to ATP and repaglinide with Kir6.2-CTD in the up conformation 7U1Q ; 3.9 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel bound to ATP and repaglinide with SUR1-in conformation 7U1S ; 3.8 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel bound to ATP and repaglinide with SUR1-out conformation 7UQR ; 4.55 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel in the apo form with Kir6.2-CTD in the down conformation 7U2X ; 4.1 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel in the presence of carbamazepine and ATP with Kir6.2-CTD in the down conformation 7U7M ; 5.2 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel in the presence of carbamazepine and ATP with Kir6.2-CTD in the up conformation 7U6Y ; 7.4 ; Cryo-EM structure of the pancreatic ATP-sensitive potassium channel in the presence of glibenclamide and ATP with Kir6.2-CTD in the down conformation 6BAA ; 3.63 ; Cryo-EM structure of the pancreatic beta-cell KATP channel bound to ATP and glibenclamide 6PZB ; 4.55 ; Cryo-EM structure of the pancreatic beta-cell SUR1 Apo state 6PZA ; 3.74 ; Cryo-EM structure of the pancreatic beta-cell SUR1 bound to ATP and glibenclamide 6PZ9 ; 3.65 ; Cryo-EM structure of the pancreatic beta-cell SUR1 bound to ATP and repaglinide 6PZI ; 4.5 ; Cryo-EM structure of the pancreatic beta-cell SUR1 bound to ATP only 6PZC ; 4.34 ; Cryo-EM structure of the pancreatic beta-cell SUR1 bound to carbamazepine 7DHI ; 3.26 ; Cryo-EM structure of the partial agonist salbutamol-bound beta2 adrenergic receptor-Gs protein complex. 6ROI ; 3.7 ; Cryo-EM structure of the partially activated Drs2p-Cdc50p 8WCA ; 3.48 ; Cryo-EM structure of the PEA-bound hTAAR1-Gs complex 8WC6 ; 3.2 ; Cryo-EM structure of the PEA-bound mTAAR1-Gs complex 8IWM ; 3.17 ; Cryo-EM structure of the PEA-bound mTAAR9 complex 8IW1 ; 3.4 ; Cryo-EM structure of the PEA-bound mTAAR9-Golf complex 8IW7 ; 2.97 ; Cryo-EM structure of the PEA-bound mTAAR9-Gs complex 8W89 ; 3.0 ; Cryo-EM structure of the PEA-bound TAAR1-Gs complex 8QVW ; 3.0 ; Cryo-EM structure of the peptide binding domain of human SRP68/72 8IOD ; 2.59 ; Cryo-EM structure of the PG-901-bound human melanocortin receptor 5 (MC5R)-Gs complex 7CX2 ; 2.8 ; Cryo-EM structure of the PGE2-bound EP2-Gs complex 8IUK ; 2.67 ; Cryo-EM structure of the PGF2-alpha-bound human PTGFR-Gq complex 8K9F ; 2.9 ; Cryo-EM structure of the photosynthetic alternative complex III from Chloroflexus aurantiacus at 2.9 angstrom 8K9E ; 3.33 ; Cryo-EM structure of the photosynthetic alternative complex III from Chloroflexus aurantiacus at 3.3 angstrom 8X2J ; 2.7 ; Cryo-EM structure of the photosynthetic alternative complex III with a quinone inhibitor HQNO from Chloroflexus aurantiacus 8CMO ; 2.81 ; Cryo-EM structure of the Photosystem I - LHCI supercomplex from Coelastrella sp. 8BD3 ; 2.73 ; Cryo-EM structure of the Photosystem II - LHCII supercomplex from Chlorella ohadi 6R4R ; 3.4 ; Cryo-EM Structure of the PI3-Kinase SH3 Domain Amyloid Fibril 8AUV ; 2.38 ; Cryo-EM structure of the plant 40S subunit 8AZW ; 2.14 ; Cryo-EM structure of the plant 60S subunit 8B2L ; 2.2 ; Cryo-EM structure of the plant 80S ribosome 6IUG ; 3.9 ; Cryo-EM structure of the plant actin filaments from Zea mays pollen 3J79 ; 3.2 ; Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine, large subunit 3J7A ; 3.2 ; Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine, small subunit 6OKK ; 3.3 ; Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine, small subunit 7OAE ; 2.0 ; Cryo-EM structure of the plectasin fibril (double strands) 7OAG ; 3.4 ; Cryo-EM structure of the plectasin fibril (single strand) 8I6V ; 3.06 ; Cryo-EM structure of the polyphosphate polymerase VTC complex(Vtc4/Vtc3/Vtc1) 5YLZ ; 3.6 ; Cryo-EM Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae at 3.6 angstrom 7WSW ; 3.4 ; Cryo-EM structure of the Potassium channel AKT1 from Arabidopsis thaliana 7FCV ; 2.9 ; Cryo-EM structure of the Potassium channel AKT1 mutant from Arabidopsis thaliana 6UKN ; 3.65 ; Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs 8IU0 ; 2.66 ; Cryo-EM structure of the potassium-selective channelrhodopsin HcKCR1 H225F mutant in lipid nanodisc 8H86 ; 2.56 ; Cryo-EM structure of the potassium-selective channelrhodopsin HcKCR1 in lipid nanodisc 8H87 ; 2.53 ; Cryo-EM structure of the potassium-selective channelrhodopsin HcKCR2 in lipid nanodisc 8TTB ; 2.77 ; Cryo-EM structure of the PP2A:B55-ARPP19 complex 8SO0 ; 2.79961 ; Cryo-EM structure of the PP2A:B55-FAM122A complex 8TWE ; 2.55 ; Cryo-EM structure of the PP2A:B55-FAM122A complex, B55 body 8TWI ; 2.69 ; Cryo-EM structure of the PP2A:B55-FAM122A complex, PP2Ac body 7SJX ; 8.2 ; Cryo-EM Structure of the PR-RT components of the HIV-1 Pol Polyprotein 8HG5 ; 2.9 ; Cryo-EM structure of the prasinophyte-specific light-harvesting complex (Lhcp)from Ostreococcus tauri 8HG6 ; 3.44 ; Cryo-EM structure of the prasinophyte-specific light-harvesting complex (Lhcp)from Ostreococcus tauri 7DD3 ; 3.2 ; Cryo-EM structure of the pre-mRNA-loaded DEAH-box ATPase/helicase Prp2 in complex with Spp2 7LS5 ; 2.74 ; Cryo-EM structure of the Pre3-1 20S proteasome core particle 6XYE ; 4.3 ; Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain 6UOT ; 3.3 ; Cryo-EM structure of the PrgHK periplasmic ring from the Salmonella SPI-1 type III secretion needle complex solved at 3.3 angstrom resolution 8G5L ; 3.0 ; Cryo-EM structure of the Primer Separation Complex (IX) of Human Mitochondrial DNA Polymerase Gamma 8K9T ; 2.66 ; Cryo-EM structure of the products-bound PGAP1(Bst1)-S327A from Chaetonium thermophilum 8JKZ ; 3.6 ; Cryo-EM structure of the prokaryotic SPARSA system complex 8JL0 ; 3.1 ; Cryo-EM structure of the prokaryotic SPARSA system complex 5O2R ; 3.4 ; Cryo-EM structure of the proline-rich antimicrobial peptide Api137 bound to the terminating ribosome 8ANA ; 2.1 ; Cryo-EM structure of the proline-rich antimicrobial peptide drosocin bound to the 50S ribosomal subunit 8AM9 ; 2.8 ; Cryo-EM structure of the proline-rich antimicrobial peptide drosocin bound to the elongating ribosome 8AKN ; 2.3 ; Cryo-EM structure of the proline-rich antimicrobial peptide drosocin bound to the terminating ribosome 7D7M ; 3.3 ; Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein 8GCM ; 3.5 ; Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein 8GDC ; 3.5 ; Cryo-EM Structure of the Prostaglandin E2 Receptor 3 Coupled to G Protein 8GCP ; 3.1 ; Cryo-EM Structure of the Prostaglandin E2 Receptor 4 Coupled to G Protein 8GD9 ; 3.2 ; Cryo-EM Structure of the Prostaglandin E2 Receptor 4 Coupled to G Protein 8GDA ; 3.3 ; Cryo-EM Structure of the Prostaglandin E2 Receptor 4 Coupled to G Protein 8GDB ; 3.1 ; Cryo-EM Structure of the Prostaglandin E2 Receptor 4 Coupled to G Protein 7BC7 ; 3.3 ; Cryo-EM structure of the proton coupled folate transporter at pH 6.0 bound to pemetrexed 7P34 ; 3.59 ; Cryo-EM structure of the proton-dependent antibacterial peptide transporter SbmA-FabS11-1 in nanodiscs 8BCP ; 3.88 ; Cryo-EM structure of the proximal end of bacteriophage T5 tail : p142 tail terminator protein hexamer and pb6 tail tube protein trimer 8BCU ; 4.05 ; Cryo-EM structure of the proximal end of bacteriophage T5 tail, after interaction with its receptor : p142 tail terminator protein hexamer and pb6 tail tube protein trimer 8DSP ; 3.3 ; Cryo-EM structure of the proximal half fiber in del7.3K2R1 mature phage 7YCA ; 2.94 ; Cryo-EM structure of the PSI-LHCI-Lhcp supercomplex from Ostreococcus tauri 5MDX ; 5.3 ; Cryo-EM structure of the PSII supercomplex from Arabidopsis thaliana 7XXI ; 3.0 ; Cryo-EM structure of the purinergic receptor P2Y12R in complex with 2MeSADP and Gi 7XXH ; 2.9 ; Cryo-EM structure of the purinergic receptor P2Y1R in complex with 2MeSADP and G11 6MB2 ; 5.0 ; Cryo-EM structure of the PYD filament of AIM2 7XTQ ; 3.2 ; Cryo-EM structure of the R399-bound GPBAR-Gs complex 3JBR ; 4.2 ; Cryo-EM structure of the rabbit voltage-gated calcium channel Cav1.1 complex at 4.2 angstrom 8BW9 ; 3.32 ; Cryo-EM structure of the RAF activating complex KSR-MEK-CNK-HYP 8U1L ; 3.7 ; Cryo-EM structure of the RAF1-HSP90-CDC37 complex in the closed state 7UX2 ; 2.9 ; cryo-EM structure of the Raptor-TFEB-Rag-Ragulator complex 8RQ3 ; 3.21 ; Cryo-em structure of the rat Multidrug resistance-associated protein 2 (rMrp2) in an autoinhibited state (nucleotide-free) 8RQ4 ; 3.45 ; Cryo-em structure of the rat Multidrug resistance-associated protein 2 (rMrp2) in complex with probenecid 8UU9 ; 3.1 ; Cryo-EM structure of the ratcheted Listeria innocua 70S ribosome (head-swiveled) in complex with HflXr and pe/E-tRNA (structure II-D) 8UU6 ; 3.3 ; Cryo-EM structure of the ratcheted Listeria innocua 70S ribosome in complex with p/E-tRNA (structure II-A) 2WVW ; 9.0 ; Cryo-EM structure of the RbcL-RbcX complex 8T25 ; 3.62 ; Cryo-EM structure of the RBD-ACE2 interface of the SARS-CoV-2 trimeric spike protein bound to ACE2 receptor after local refinement at downRBD conformation. 8T23 ; 3.87 ; Cryo-EM structure of the RBD-ACE2 interface of the SARS-CoV-2 trimeric spike protein bound to ACE2 receptor after local refinement at upRBD conformation 7O0W ; 2.47 ; Cryo-EM structure of the RC-dLH complex (model_1b) from Gemmatimonas phototrophica at 2.47 A 5YQ7 ; 4.1 ; Cryo-EM structure of the RC-LH core complex from Roseiflexus castenholzii 8IUG ; 2.86 ; Cryo-EM structure of the RC-LH core complex from roseiflexus castenholzii 8AMF ; 3.8 ; Cryo-EM structure of the RecA postsynaptic filament from S. pneumoniae 8AMD ; 3.9 ; Cryo-EM structure of the RecA presynaptic filament from S.pneumoniae 6SJE ; 4.1 ; Cryo-EM structure of the RecBCD Chi partially-recognised complex 6SJB ; 3.7 ; Cryo-EM structure of the RecBCD Chi recognised complex 6SJF ; 3.9 ; Cryo-EM structure of the RecBCD Chi unrecognised complex 6T2U ; 3.6 ; Cryo-EM structure of the RecBCD in complex with Chi-minus2 substrate 6T2V ; 3.8 ; Cryo-EM structure of the RecBCD in complex with Chi-plus2 substrate 6SJG ; 3.8 ; Cryo-EM structure of the RecBCD no Chi negative control complex 6AEI ; 2.89 ; Cryo-EM structure of the receptor-activated TRPC5 ion channel 5ZGB ; 3.63 ; Cryo-EM structure of the red algal PSI-LHCR 5ZGH ; 3.82 ; Cryo-EM structure of the red algal PSI-LHCR 6ZHY ; 3.0 ; Cryo-EM structure of the regulatory linker of ALC1 bound to the nucleosome's acidic patch: hexasome class. 6ZHX ; 2.5 ; Cryo-EM structure of the regulatory linker of ALC1 bound to the nucleosome's acidic patch: nucleosome class. 7TMW ; 3.2 ; Cryo-EM structure of the relaxin receptor RXFP1 in complex with heterotrimeric Gs 8CDP ; 3.4 ; Cryo-EM structure of the RESC1-RESC2 complex 6PZK ; 3.2 ; Cryo-EM Structure of the Respiratory Syncytial Virus Polymerase (L) Protein Bound by the Tetrameric Phosphoprotein (P) 8SNX ; 3.4 ; Cryo-EM structure of the respiratory syncytial virus polymerase (L:P) bound to the leader promoter 8SNY ; 3.41 ; Cryo-EM structure of the respiratory syncytial virus polymerase (L:P) bound to the trailer complementary promoter 6UEN ; 3.67 ; Cryo-EM structure of the respiratory syncytial virus RNA polymerase 7PIL ; 2.5 ; Cryo-EM structure of the Rhodobacter sphaeroides RC-LH1-PufXY monomer complex at 2.5 A 7OY8 ; 2.5 ; Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex 7QEP ; 2.7 ; Cryo-EM structure of the ribosome from Encephalitozoon cuniculi 7Z3N ; 3.2 ; Cryo-EM structure of the ribosome-associated RAC complex on the 80S ribosome - RAC-1 conformation 7Z3O ; 3.3 ; Cryo-EM structure of the ribosome-associated RAC complex on the 80S ribosome - RAC-2 conformation 7UVP ; 3.7 ; Cryo-EM structure of the ribosome-bound Bacteroides thetaiotaomicron EF-G2 8DMF ; 4.0 ; Cryo-EM structure of the ribosome-bound Bacteroides thetaiotaomicron EF-G2 6HD5 ; 4.8 ; Cryo-EM structure of the ribosome-NatA complex 6HD7 ; 3.4 ; Cryo-EM structure of the ribosome-NatA complex 7RB9 ; 3.76 ; Cryo-EM structure of the rigor state Jordan myosin-15-F-actin complex 7R91 ; 2.83 ; cryo-EM structure of the rigor state wild type myosin-15-F-actin complex 7UDT ; 3.17 ; cryo-EM structure of the rigor state wild type myosin-15-F-actin complex (symmetry expansion and re-centering) 5JCS ; 9.5 ; CRYO-EM STRUCTURE OF THE RIX1-REA1 PRE-60S PARTICLE 6TUT ; 3.25 ; Cryo-EM structure of the RNA Polymerase III-Maf1 complex 8UHB ; 3.35 ; Cryo-EM Structure of the Ro5256390-bound hTA1-Gs heterotrimer signaling complex 8W8A ; 2.8 ; Cryo-EM structure of the RO5256390-TAAR1 complex 8IHN ; 3.37 ; Cryo-EM structure of the Rpd3S core complex 7SEP ; 3.8 ; Cryo-EM Structure of the RT component of the HIV-1 Pol Polyprotein 8EZJ ; 3.3 ; Cryo-EM structure of the S. cerevisiae Arf-like protein Arl1 bound to the Arf guanine nucleotide exchange factor Gea2 7UQI ; 3.8 ; Cryo-EM structure of the S. cerevisiae chromatin remodeler Yta7 hexamer bound to ADP 7UQK ; 3.1 ; Cryo-EM structure of the S. cerevisiae chromatin remodeler Yta7 hexamer bound to ADP 7UQJ ; 3.0 ; Cryo-EM structure of the S. cerevisiae chromatin remodeler Yta7 hexamer bound to ATPgS and histone H3 tail in state II 8EZQ ; 3.7 ; Cryo-EM structure of the S. cerevisiae guanine nucleotide exchange factor Gea2 6IWW ; 3.9 ; Cryo-EM structure of the S. typhimurium oxaloacetate decarboxylase beta-gamma sub-complex 8JG9 ; 3.82 ; Cryo-EM structure of the SaCas9-sgRNA-AcrIIA15-promoter DNA dimer 5OJS ; 3.7 ; Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 8IOW ; 3.2 ; Cryo-EM structure of the sarilumab Fab/IL-6R complex 7SXR ; 3.0 ; Cryo-EM structure of the SARS-CoV-2 D614G mutant spike protein ectodomain 7SXY ; 2.79 ; Cryo-EM structure of the SARS-CoV-2 D614G mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SXX ; 2.66 ; Cryo-EM structure of the SARS-CoV-2 D614G mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7SXS ; 2.64 ; Cryo-EM structure of the SARS-CoV-2 D614G,L452R mutant spike protein ectodomain 7SY0 ; 3.0 ; Cryo-EM structure of the SARS-CoV-2 D614G,L452R mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SXZ ; 2.61 ; Cryo-EM structure of the SARS-CoV-2 D614G,L452R mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7SXT ; 2.31 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y mutant spike protein ectodomain 7SY2 ; 3.11 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SY1 ; 2.83 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7SXU ; 3.0 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K mutant spike protein ectodomain 7SY4 ; 3.35 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SY3 ; 2.95 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7SXV ; 2.79 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417N mutant spike protein ectodomain 7SY6 ; 2.81 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417N mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SY5 ; 2.59 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417N mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7SXW ; 2.85 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417T mutant spike protein ectodomain 7SY8 ; 3.14 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417T mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7SY7 ; 2.81 ; Cryo-EM structure of the SARS-CoV-2 D614G,N501Y,E484K,K417T mutant spike protein ectodomain bound to human ACE2 ectodomain (global refinement) 7E7B ; 2.6 ; Cryo-EM structure of the SARS-CoV-2 furin site mutant S-Trimer from a subunit vaccine candidate 7RZQ ; 2.09 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex 7RZU ; 2.3 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with A942S mutation 7RZR ; 2.27 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with D936Y mutation 8CZI ; 2.22 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with extended HR2 7RZS ; 2.52 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with L938F mutation 8FA1 ; 2.51 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with N969K mutation 7RZT ; 2.35 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with S940F mutation 7RZV ; 2.11 ; Cryo-EM structure of the SARS-CoV-2 HR1HR2 fusion core complex with V1176F mutation 7MJG ; 2.81 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain 7MJJ ; 3.32 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to Fab ab1 (class 1) 7MJK ; 2.73 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to Fab ab1 (class 2) 7MJL ; 2.95 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to Fab ab1 (focused refinement of RBD and Fab ab1) 7MJM ; 2.83 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to human ACE2 ectodomain 7MJN ; 3.29 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to human ACE2 ectodomain (focused refinement of RBD and ACE2) 7MJH ; 2.66 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to VH ab8 7MJI ; 2.81 ; Cryo-EM structure of the SARS-CoV-2 N501Y mutant spike protein ectodomain bound to VH ab8 (focused refinement of RBD and VH ab8) 8FA2 ; 2.82 ; Cryo-EM structure of the SARS-CoV-2 Omicron HR1-42G complex 7T9J ; 2.79 ; Cryo-EM structure of the SARS-CoV-2 Omicron spike protein 7F46 ; 4.79 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with 35B5 Fab (state1, local refinement of the RBD, NTD and 35B5 Fab) 7E9N ; 3.69 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with 35B5 Fab(1 down RBD, state1) 7E9Q ; 3.65 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with 35B5 Fab(1 out RBD, state3) 7E9O ; 3.41 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with 35B5 Fab(3 up RBDs, state2) 7E9P ; 3.69 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with 35B5 Fab(state2, local refinement of the RBD and 35B5 Fab) 7CHH ; 3.49 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with BD-368-2 Fabs 7ENF ; 2.76 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with Fab30 7ENG ; 3.59 ; Cryo-EM structure of the SARS-CoV-2 S-6P in complex with Fab30 (local refinement of the RBD and Fab30) 7L57 ; 5.87 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-15 6XEY ; 3.25 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-4 7L56 ; 3.6 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-43 7LSS ; 3.72 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab 2-7 7L58 ; 5.07 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein bound to Fab H4 7Y42 ; 3.45 ; Cryo-EM structure of the SARS-CoV-2 spike glycoprotein in complex with all-trans retinoic acid 7VQ0 ; 3.03 ; Cryo-EM structure of the SARS-CoV-2 spike protein (2-up RBD) bound to neutralizing nanobodies P86 6ZXN ; 2.93 ; Cryo-EM structure of the SARS-CoV-2 spike protein bound to neutralizing nanobodies (Ty1) 7A25 ; 3.06 ; Cryo-EM structure of the SARS-CoV-2 spike protein bound to neutralizing sybodies (Sb23) 7A29 ; 2.94 ; Cryo-EM structure of the SARS-CoV-2 spike protein bound to neutralizing sybodies (Sb23) 2-up conformation 7E7D ; 3.2 ; Cryo-EM structure of the SARS-CoV-2 wild-type S-Trimer from a subunit vaccine candidate 8ADL ; 2.95 ; Cryo-EM structure of the SEA complex 8AE6 ; 2.7 ; Cryo-EM structure of the SEA complex wing (SEACIT) 7SQJ ; 6.3 ; Cryo-EM structure of the seam subunits of the enteropathogenic E. coli O127:H6 flagellar filament 7KAP ; 4.1 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec61 pore mutant, class with Sec62, conformation 1 (C1) 7KAQ ; 4.0 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec61 pore mutant, class with Sec62, conformation 2 (C2) 7KAO ; 4.0 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec61 pore mutant, class without Sec62 7KAU ; 4.0 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec61 pore ring and Sec63 FN3 double mutant, class with Sec62 7KAT ; 4.4 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec61 pore ring and Sec63 FN3 double mutant, class without Sec62 7KAS ; 3.9 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec63 FN3 mutant, class with Sec62 7KAR ; 4.0 ; Cryo-EM structure of the Sec complex from S. cerevisiae, Sec63 FN3 mutant, class without Sec62 7KAI ; 3.2 ; Cryo-EM structure of the Sec complex from S. cerevisiae, wild-type, class with Sec62, conformation 1 (C1) 7KAJ ; 3.1 ; Cryo-EM structure of the Sec complex from S. cerevisiae, wild-type, class with Sec62, conformation 2 (C2) 7KAH ; 3.1 ; Cryo-EM structure of the Sec complex from S. cerevisiae, wild-type, class without Sec62 7KAN ; 3.7 ; Cryo-EM structure of the Sec complex from T. lanuginosus, Sec62-lacking mutant (Delta Sec62) 7KAM ; 3.8 ; Cryo-EM structure of the Sec complex from T. lanuginosus, wild-type, class with Sec62, plug-closed conformation 7KAL ; 4.0 ; Cryo-EM structure of the Sec complex from T. lanuginosus, wild-type, class with Sec62, plug-open conformation 7KAK ; 3.9 ; Cryo-EM structure of the Sec complex from T. lanuginosus, wild-type, class without Sec62 7KB5 ; 3.8 ; Cryo-EM structure of the Sec complex from yeast, Sec63 FN3 and residues 210-216 mutated 7M0R ; 3.7 ; Cryo-EM structure of the Sema3A/PlexinA4/Neuropilin 1 complex 8WC3 ; 3.0 ; Cryo-EM structure of the SEP363856-bound mTAAR1-Gs complex 8W88 ; 2.6 ; Cryo-EM structure of the SEP363856-bound TAAR1-Gs complex 7YS6 ; 3.0 ; Cryo-EM structure of the Serotonin 6 (5-HT6) receptor-DNGs-scFv16 complex 7SD0 ; 2.95 ; Cryo-EM structure of the SHOC2:PP1C:MRAS complex 7AFT ; 4.4 ; Cryo-EM structure of the signal sequence-engaged post-translational Sec translocon 8I03 ; 3.2 ; Cryo-EM structure of the SIN3L complex from S. pombe 8I02 ; 2.9 ; Cryo-EM structure of the SIN3S complex from S. pombe 8J6S ; 3.8 ; Cryo-EM structure of the single CAF-1 bound right-handed Di-tetrasome 7SN9 ; 3.5 ; Cryo-EM structure of the Sinorhizobium meliloti flagellar filament 5A6E ; 4.5 ; Cryo-EM structure of the Slo2.2 Na-activated K channel 5A6F ; 4.2 ; Cryo-EM structure of the Slo2.2 Na-activated K channel 5A6G ; 5.2 ; Cryo-EM structure of the Slo2.2 Na-activated K channel 6AZ1 ; 2.7 ; Cryo-EM structure of the small subunit of Leishmania ribosome bound to paromomycin 3JD5 ; 7.0 ; Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome 6XIW ; 2.8 ; Cryo-EM structure of the sodium leak channel NALCN-FAM155A complex 7RTM ; 3.4 ; Cryo-EM Structure of the Sodium-driven Chloride/Bicarbonate Exchanger NDCBE (SLC4A8) 8IW4 ; 3.49 ; Cryo-EM structure of the SPE-bound mTAAR9-Gs complex 8IWE ; 3.4 ; Cryo-EM structure of the SPE-mTAAR9 complex 7XJL ; 3.5 ; Cryo-EM structure of the spexin-bound GALR2-miniGq complex 7TB4 ; 3.29 ; Cryo-EM structure of the spike of SARS-CoV-2 Omicron variant of concern 5MLC ; 3.6 ; Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions 3JCM ; 3.8 ; Cryo-EM structure of the spliceosomal U4/U6.U5 tri-snRNP 7WIC ; 2.8 ; Cryo-EM structure of the SS-14-bound human SSTR2-Gi1 complex 7Y27 ; 3.48 ; Cryo-EM structure of the SST-14-bound SSTR2-miniGq-scFv16 complex 8FGX ; 2.62 ; Cryo-EM structure of the STAR-0215 Fab in complex with active human plasma kallikrein 8AA5 ; 2.46 ; Cryo-EM structure of the strand transfer complex of the TnsB transposase (type V-K CRISPR-associated transposon) 7CQI ; 3.2 ; Cryo-EM structure of the substrate-bound SPT-ORMDL3 complex 7CQK ; 3.3 ; Cryo-EM structure of the substrate-bound SPT-ORMDL3 complex 7OK0 ; 2.9 ; Cryo-EM structure of the Sulfolobus acidocaldarius RNA polymerase at 2.88 A 8CXM ; 3.21 ; Cryo-EM structure of the supercoiled E. coli K12 flagellar filament core, Normal waveform 8CVI ; 3.4 ; Cryo-EM structure of the supercoiled EPEC H6 flagellar filament core Curly I waveform 8CWM ; 3.4 ; Cryo-EM structure of the supercoiled S. islandicus REY15A archaeal flagellar filament 7V9L ; 2.6 ; Cryo-EM structure of the SV1-Gs complex. 6O1O ; 3.8 ; Cryo-EM structure of the T. thermophilus Csm complex bound to target ssRNA 5WLN ; 3.57 ; Cryo-EM structure of the T2SS secretin XcpQ from Pseudomonas aeruginosa 5W5F ; 3.4 ; Cryo-EM structure of the T4 tail tube 7XPG ; 3.51 ; Cryo-EM structure of the T=3 lake sinai virus 1 (delta-N48) virus-like capsid at pH 6.5 7XPD ; 3.74 ; Cryo-EM structure of the T=3 lake sinai virus 2 virus-like capsid at pH 6.5 7XPA ; 3.33 ; Cryo-EM structure of the T=3 lake sinai virus 2 virus-like capsid at pH 7.5 7XPF ; 3.13 ; Cryo-EM structure of the T=3 lake sinai virus 2 virus-like capsid at pH 8.5 7XPB ; 3.91 ; Cryo-EM structure of the T=4 lake sinai virus 2 virus-like capsid at pH 6.5 7XGZ ; 3.24 ; Cryo-EM structure of the T=4 lake sinai virus 2 virus-like capsid at pH 7.5 7XPE ; 3.32 ; Cryo-EM structure of the T=4 lake sinai virus 2 virus-like capsid at pH 8.5 8IUM ; 3.14 ; Cryo-EM structure of the tafluprost acid-bound human PTGFR-Gq complex 7CX3 ; 2.8 ; Cryo-EM structure of the Taprenepag-bound EP2-Gs complex 8IN8 ; 3.0 ; Cryo-EM structure of the target ssDNA-bound SIR2-APAZ/Ago-gRNA quaternary complex 7X2D ; 3.3 ; Cryo-EM structure of the tavapadon-bound D1 dopamine receptor and mini-Gs complex 8AW3 ; 3.6 ; Cryo-EM structure of the Tb ADAT2/3 deaminase in complex with tRNA 5LKI ; 3.46 ; Cryo-EM structure of the Tc toxin TcdA1 in its pore state 5LKH ; 3.46 ; Cryo-EM structure of the Tc toxin TcdA1 in its pore state (obtained by flexible fitting) 8JI0 ; 3.0 ; Cryo-EM structure of the TcsH-CROP in complex with TMPRSS2 8JHZ ; 3.2 ; Cryo-EM structure of the TcsH-TMPRSS2 complex 8X2H ; 2.9 ; Cryo-EM structure of the TcsL at pH 5.0 in its closed conformation 8X2I ; 2.5 ; Cryo-EM structure of the TcsL at pH 5.0 in its open conformation 7OLE ; 3.41 ; Cryo-EM structure of the TELO2-TTI1-TTI2-RUVBL1-RUVBL2 complex 7Y36 ; 2.8 ; Cryo-EM structure of the Teriparatide-bound human PTH1R-Gs complex 7NDG ; 5.98 ; Cryo-EM structure of the ternary complex between Netrin-1, Neogenin and Repulsive Guidance Molecule B 7N0D ; 2.5 ; Cryo-EM structure of the tetrameric form of SARS-CoV-2 nsp10-nsp14 (E191A)-RNA complex 6K61 ; 2.37 ; Cryo-EM structure of the tetrameric photosystem I from a heterocyst-forming cyanobacterium Anabaena sp. PCC7120 8GZR ; 2.8 ; Cryo-EM structure of the the NS5-NS3 RNA-elongation complex 6UT5 ; 2.44 ; Cryo-EM structure of the Thermococcus gammatolerans McrBC complex 6LO8 ; 3.83 ; Cryo-EM structure of the TIM22 complex from yeast 7FIM ; 3.4 ; Cryo-EM structure of the tirzepatide (LY3298176)-bound human GLP-1R-Gs complex 7FIY ; 3.4 ; Cryo-EM structure of the tirzepatide-bound human GIPR-Gs complex 8WC5 ; 3.3 ; Cryo-EM structure of the TMA-bound mTAAR1-Gs complex 7X83 ; 3.4 ; Cryo-EM structure of the TMEM106B fibril from normal elder 7X84 ; 3.0 ; Cryo-EM structure of the TMEM106B fibril from Parkinson's disease dementia 6BGJ ; 3.8 ; Cryo-EM structure of the TMEM16A calcium-activated chloride channel in LMNG 6BGI ; 3.8 ; Cryo-EM structure of the TMEM16A calcium-activated chloride channel in nanodisc 8H1J ; 3.1 ; Cryo-EM structure of the TnpB-omegaRNA-target DNA ternary complex 8J6F ; 3.3 ; Cryo-EM structure of the Tocilizumab Fab/IL-6R complex 8H40 ; 3.6 ; Cryo-EM structure of the transcription activation complex NtcA-TAC 5U0P ; 4.4 ; Cryo-EM structure of the transcriptional Mediator 6JNF ; 3.81 ; Cryo-EM structure of the translocator of the outer mitochondrial membrane 7XW9 ; 2.7 ; Cryo-EM structure of the TRH-bound human TRHR-Gq complex 8THJ ; 2.99 ; Cryo-EM structure of the Tripartite ATP-independent Periplasmic (TRAP) transporter SiaQM from Haemophilus influenzae (antiparallel dimer) 8THI ; 3.36 ; Cryo-EM structure of the Tripartite ATP-independent Periplasmic (TRAP) transporter SiaQM from Haemophilus influenzae (parallel dimer) 8B01 ; 3.03 ; Cryo-EM structure of the Tripartite ATP-independent Periplasmic (TRAP) transporter SiaQM from Photobacterium profundum in a nanodisc 7QHA ; 2.97 ; Cryo-EM structure of the Tripartite ATP-independent Periplasmic (TRAP) transporter SiaQM from Photobacterium profundum in amphipol 8F8T ; 3.26 ; Cryo-EM structure of the Tropomodulin-capped pointed end of F-actin 6NR3 ; 3.4 ; Cryo-EM structure of the TRPM8 ion channel in complex with high occupancy icilin, PI(4,5)P2, and calcium 6NR2 ; 4.0 ; Cryo-EM structure of the TRPM8 ion channel in complex with the menthol analog WS-12 and PI(4,5)P2 6NR4 ; 4.3 ; Cryo-EM structure of the TRPM8 ion channel with low occupancy icilin, PI(4,5)P2, and calcium 6HIY ; 3.27 ; Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the body of the small mitoribosomal subunit in complex with mt-IF-3 6HIV ; 7.8 ; Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete mitoribosome 6HIW ; 3.37 ; Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete small mitoribosomal subunit in complex with mt-IF-3 6HIZ ; 3.08 ; Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the head of the small mitoribosomal subunit 6HIX ; 3.39 ; Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the large mitoribosomal subunit 6DZY ; 4.1 ; Cryo-EM structure of the ts2-active human serotonin transporter in complex with 15B8 Fab and 8B6 ScFv bound to ibogaine 6DZW ; 4.3 ; Cryo-EM structure of the ts2-inactive human serotonin transporter in complex with paroxetine and 15B8 Fab and 8B6 ScFv 8T3O ; 3.06 ; Cryo-EM structure of the TUG-891 bound FFA4-Gq complex 8ID8 ; 3.0 ; Cryo-EM structure of the TUG891 bound GPR120-Gi complex 8G59 ; 2.64 ; Cryo-EM structure of the TUG891 bound GPR120-Giq complex 7Y61 ; 5.6 ; Cryo-EM structure of the two CAF1LCs bound right-handed Di-tetrasome 7EIB ; 3.0 ; Cryo-EM structure of the type 1 bradykinin receptor in complex with the des-Arg10-kallidin and an Gq protein 6C53 ; 4.2 ; Cryo-EM structure of the Type 1 pilus rod 7F2O ; 2.9 ; Cryo-EM structure of the type 2 bradykinin receptor in complex with the bradykinin and an Gq protein 6SIC ; 3.52 ; Cryo-EM structure of the Type III-B Cmr-beta bound to cognate target RNA 6S8B ; 2.41 ; Cryo-EM structure of the Type III-B Cmr-beta bound to cognate target RNA and AMPPnP, state 1 6SHB ; 3.07 ; Cryo-EM structure of the Type III-B Cmr-beta bound to cognate target RNA and AMPPnP, state 1, in the presence of ssDNA 6S91 ; 2.68 ; Cryo-EM structure of the Type III-B Cmr-beta bound to cognate target RNA and AMPPnP, state 2 6SH8 ; 3.14 ; Cryo-EM structure of the Type III-B Cmr-beta bound to cognate target RNA and AMPPnP, state 2, in the presence of ssDNA 6S8E ; 3.1 ; Cryo-EM structure of the type III-B Cmr-beta complex bound to non-cognate target RNA 8OI6 ; 3.59 ; Cryo-EM structure of the undecorated barbed end of filamentous beta/gamma actin 7RAV ; 3.3 ; Cryo-EM structure of the unliganded form of NLR family apoptosis inhibitory protein 5 (NAIP5) 8V0F ; 2.81 ; Cryo-EM structure of the unliganded hexameric prenyltransferase in bifunctional copalyl diphosphate synthase from Penicillium fellutanum with an open conformation 8CXO ; 3.7 ; Cryo-EM structure of the unliganded mSMO-PGS2 in a lipidic environment 8E3Y ; 2.3 ; Cryo-EM structure of the VPAC1R-PACAP27-Gs complex 8E3Z ; 2.7 ; Cryo-EM structure of the VPAC1R-VIP-Gs complex 7MFG ; 3.87 ; Cryo-EM structure of the VRC310 clinical trial, vaccine-elicited, human antibody 310-030-1D06 Fab in complex with an H1 NC99 HA trimer 6WXL ; 2.76 ; Cryo-EM structure of the VRC315 clinical trial, vaccine-elicited, human antibody 1D12 in complex with an H7 SH13 HA trimer 7L0L ; 2.85 ; Cryo-EM structure of the VRC316 clinical trial, vaccine-elicited, human antibody 316-310-1B11 in complex with an H2 CAN05 HA trimer 8D21 ; 3.96 ; Cryo-EM structure of the VRC321 clinical trial, vaccine-elicited, human antibody 1B06 in complex with a stabilized NC99 HA trimer 7X8S ; 3.09 ; Cryo-EM structure of the WB4-24-bound hGLP-1R-Gs complex 8G5K ; 2.9 ; Cryo-EM structure of the Wedge Alignment Complex (VIII) of Human Mitochondrial DNA Polymerase Gamma 7Z6Q ; 2.5 ; Cryo-EM structure of the whole photosynthetic complex from the green sulfur bacteria 8SUG ; 4.2 ; Cryo-EM structure of the wild type P. aeruginosa flagellar filament 8OQI ; 3.1 ; Cryo-EM structure of the wild-type alpha-synuclein fibril. 8TDJ ; 3.7 ; Cryo-EM structure of the wild-type AtMSL10 in GDN 8TDL ; 3.6 ; Cryo-EM structure of the wild-type AtMSL10 in saposin 6T17 ; 2.8 ; Cryo-EM structure of the wild-type flagellar filament of the Firmicute Kurthia 6VRK ; 4.1 ; Cryo-EM structure of the wild-type human serotonin transporter complexed with Br-paroxetine and 8B6 Fab 6VRL ; 3.8 ; Cryo-EM structure of the wild-type human serotonin transporter complexed with I-paroxetine and 8B6 Fab 6VRH ; 3.3 ; Cryo-EM structure of the wild-type human serotonin transporter complexed with paroxetine and 8B6 Fab 7LWD ; 3.65 ; Cryo-EM structure of the wild-type human serotonin transporter complexed with vilazodone, imipramine and 15B8 Fab 6DZZ ; 3.6 ; Cryo-EM Structure of the wild-type human serotonin transporter in complex with ibogaine and 15B8 Fab in the inward conformation 8BMR ; 3.8 ; Cryo-EM structure of the wild-type solitary ECF module in MSP2N2 lipid nanodiscs in the ATPase open and nucleotide-free conformation 8XZJ ; 3.0 ; Cryo-EM structure of the WN353-bound human APLNR-Gi complex 8XZF ; 3.0 ; Cryo-EM structure of the WN561-bound human APLNR-Gi complex 7OYC ; 2.4 ; Cryo-EM structure of the Xenopus egg 80S ribosome 5ZWO ; 3.9 ; Cryo-EM structure of the yeast B complex at average resolution of 3.9 angstrom 6J6H ; 3.6 ; Cryo-EM structure of the yeast B*-a1 complex at an average resolution of 3.6 angstrom 6J6G ; 3.2 ; Cryo-EM structure of the yeast B*-a2 complex at an average resolution of 3.2 angstrom 6J6N ; 3.86 ; Cryo-EM structure of the yeast B*-b1 complex at an average resolution of 3.86 angstrom 6J6Q ; 3.7 ; Cryo-EM structure of the yeast B*-b2 complex at an average resolution of 3.7 angstrom 7MPE ; 3.2 ; Cryo-EM structure of the yeast cadmium factor 1 protein (Ycf1p) 6OUA ; 4.18 ; Cryo-EM structure of the yeast Ctf3 complex 8PRW ; 1.9 ; Cryo-EM structure of the yeast fatty acid synthase at 1.9 angstrom resolution 8OW1 ; 3.7 ; Cryo-EM structure of the yeast Inner kinetochore bound to a CENP-A nucleosome. 7E4H ; 3.01 ; Cryo-EM structure of the yeast mitochondrial SAM-Tom40 complex at 3.0 angstrom 7E4I ; 3.05 ; Cryo-EM structure of the yeast mitochondrial SAM-Tom40/Tom5/Tom6 complex at 3.0 angstrom 6EZN ; 3.3 ; Cryo-EM structure of the yeast oligosaccharyltransferase (OST) complex 5ZWN ; 3.4 ; Cryo-EM structure of the yeast pre-B complex at an average resolution of 3.3 angstrom (Part II: U1 snRNP region) 5ZWM ; 3.4 ; Cryo-EM structure of the yeast pre-B complex at an average resolution of 3.4~4.6 angstrom (tri-snRNP and U2 snRNP Part) 6N3Q ; 3.68 ; Cryo-EM structure of the yeast Sec complex 3JB9 ; 3.6 ; Cryo-EM structure of the yeast spliceosome at 3.6 angstrom resolution 8C82 ; 3.4 ; Cryo-EM structure of the yeast SPT-Orm1-Dimer complex 8C80 ; 3.4 ; Cryo-EM structure of the yeast SPT-Orm1-Monomer complex 8C81 ; 3.3 ; Cryo-EM structure of the yeast SPT-Orm1-Sac1 complex 8IAJ ; 3.1 ; Cryo-EM structure of the yeast SPT-ORM2 (ORM2-S3A) complex 8IAK ; 3.1 ; Cryo-EM structure of the yeast SPT-ORM2 (ORM2-S3A-N71A) complex 8IAM ; 3.1 ; Cryo-EM structure of the yeast SPT-ORM2 (ORM2-S3D) complex 7C4J ; 2.89 ; Cryo-EM structure of the yeast Swi/Snf complex in a nucleosome free state 7LUV ; 3.7 ; Cryo-EM structure of the yeast THO-Sub2 complex 8W5J ; 4.4 ; Cryo-EM structure of the yeast TOM core complex (from TOM-TIM23 complex) 8W5K ; 3.6 ; Cryo-EM structure of the yeast TOM core complex crosslinked by BS3 (from TOM-TIM23 complex) 8I2Z ; 2.3 ; Cryo-EM structure of the zeaxanthin-bound kin4B8 8JV5 ; 3.23 ; Cryo-EM structure of the zebrafish P2X4 receptor in complex with BX430 6PKW ; 4.5 ; Cryo-EM structure of the zebrafish TRPM2 channel in the apo conformation, processed with C2 symmetry (pseudo C4 symmetry) 6PKV ; 4.3 ; Cryo-EM structure of the zebrafish TRPM2 channel in the apo conformation, processed with C4 symmetry 6PKX ; 4.2 ; Cryo-EM structure of the zebrafish TRPM2 channel in the presence of ADPR and Ca2+ 6D73 ; 3.8 ; Cryo-EM structure of the zebrafish TRPM2 channel in the presence of Ca2+ 8DE7 ; 3.27 ; Cryo-EM structure of the zebrafish two pore domain K+ channel TREK1 (K2P2.1) in DDM detergent 8DE8 ; 2.82 ; Cryo-EM structure of the zebrafish two pore domain K+ channel TREK1 (K2P2.1) in DDM/POPA mixed micelles 8DE9 ; 3.4 ; Cryo-EM structure of the zebrafish two pore domain K+ channel TREK1 (K2P2.1) in DDM/POPE mixed micelles 8WC8 ; 2.9 ; Cryo-EM structure of the ZH8651-bound hTAAR1-Gs complex 8WC9 ; 3.2 ; Cryo-EM structure of the ZH8651-bound mTAAR1-Gq complex 8WC4 ; 3.1 ; Cryo-EM structure of the ZH8651-bound mTAAR1-Gs complex 8WC7 ; 3.1 ; Cryo-EM structure of the ZH8667-bound mTAAR1-Gs complex 6MID ; 4.0 ; Cryo-EM structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195 8XZG ; 3.2 ; Cryo-EM structure of the [Pyr1]-apelin-13-bound human APLNR-Gi complex 8J6I ; 2.92 ; Cryo-EM structure of thehydroxycarboxylic acid receptor 2-Gi protein complex bound MK-6892 8J6L ; 3.05 ; Cryo-EM structure of thehydroxycarboxylic acid receptor 2-Gi protein complex bound niacin 8J6J ; 2.8 ; Cryo-EM structure of thehydroxycarboxylic acid receptor 2-Gi protein complex bound with GSK256073 5IZ7 ; 3.7 ; Cryo-EM structure of thermally stable Zika virus strain H/PF/2013 6PW4 ; 3.53 ; Cryo-EM Structure of Thermo-Sensitive TRP Channel TRP1 from the Alga Chlamydomonas reinhardtii in Detergent 6PW5 ; 3.45 ; Cryo-EM Structure of Thermo-Sensitive TRP Channel TRP1 from the Alga Chlamydomonas reinhardtii in Nanodiscs 6KF3 ; 3.9 ; Cryo-EM structure of Thermococcus kodakarensis RNA polymerase 6KF4 ; 3.97 ; Cryo-EM structure of Thermococcus kodakarensis RNA polymerase 6KF9 ; 3.79 ; Cryo-EM structure of Thermococcus kodakarensis RNA polymerase 6M6A ; 5.0 ; Cryo-EM structure of Thermus thermophilus Mfd in complex with RNA polymerase 6M6B ; 4.1 ; Cryo-EM structure of Thermus thermophilus Mfd in complex with RNA polymerase and ATP-gamma-S 7RDQ ; 3.0 ; Cryo-EM structure of Thermus thermophilus reiterative transcription complex with 11nt oligo-G RNA 8A1R ; 3.6 ; cryo-EM structure of thioredoxin glutathione reductase in complex with a non-competitive inhibitor 7F58 ; 3.1 ; Cryo-EM structure of THIQ-MC4R-Gs_Nb35 complex 8I88 ; 3.7 ; Cryo-EM structure of TIR-APAZ/Ago-gRNA complex 8I87 ; 3.1 ; Cryo-EM structure of TIR-APAZ/Ago-gRNA-DNA complex 6LW1 ; 2.8 ; Cryo-EM structure of TLR7/Cpd-7 (DSR-139970) complex in open form 7SAQ ; 2.9 ; Cryo-EM structure of TMEM106B fibrils extracted from a FTLD-TDP patient, polymorph 1 7SAR ; 3.2 ; Cryo-EM structure of TMEM106B fibrils extracted from a FTLD-TDP patient, polymorph 2 7SAS ; 3.7 ; Cryo-EM structure of TMEM106B fibrils extracted from a FTLD-TDP patient, polymorph 3 6P46 ; 3.5 ; Cryo-EM structure of TMEM16F in digitonin with calcium bound 6P47 ; 3.9 ; Cryo-EM structure of TMEM16F in digitonin without calcium 8EHW ; 3.8 ; cryo-EM structure of TMEM63A in nanodisc 8EHX ; 3.6 ; cryo-EM structure of TMEM63B in LMNG 8XW4 ; 3.84 ; Cryo-EM structure of TMEM63B-Digitonin state 8K0B ; 3.56 ; Cryo-EM structure of TMEM63C 8CTJ ; 4.74 ; Cryo-EM structure of TMEM87A 4UDV ; 3.35 ; Cryo-EM structure of TMV at 3.35 A resolution 6SAE ; 1.9 ; Cryo-EM structure of TMV in water 6SAG ; 2.0 ; Cryo-EM structure of TMV with Ca2+ at low pH 7QD8 ; 3.6 ; Cryo-EM structure of Tn4430 TnpA transposase from Tn3 family in apo state 7QD4 ; 2.9 ; Cryo-EM structure of Tn4430 TnpA transposase from Tn3 family in complex with 100 bp long transposon end DNA 7QD5 ; 3.1 ; Cryo-EM structure of Tn4430 TnpA transposase from Tn3 family in complex with 48 bp long transposon end DNA 7QD6 ; 3.0 ; Cryo-EM structure of Tn4430 TnpA transposase from Tn3 family in complex with strand-transfer like DNA product 8FCX ; 3.04 ; Cryo-EM structure of TnsC oligomer in type I-B CAST system 8FCW ; 2.87 ; Cryo-EM structure of TnsC-DNA complex in type I-B CAST system 8FCV ; 2.95 ; Cryo-EM structure of TnsC-TniQ-DNA complex in type I-B CAST system 7XZJ ; 2.97 ; Cryo-EM structure of TOC complex from Chlamydomonas reinhardtii. 7XZI ; 2.77 ; Cryo-EM structure of TOC-TIC supercomplex from Chlamydomonas reinhardtii 7SMM ; 2.5 ; Cryo-EM structure of Torpedo acetylcholine receptor in apo form 7SMQ ; 2.74 ; Cryo-EM structure of Torpedo acetylcholine receptor in apo form with added cholesterol 6UWZ ; 2.69 ; Cryo-EM structure of Torpedo acetylcholine receptor in complex with alpha-bungarotoxin 7SMR ; 2.77 ; Cryo-EM structure of Torpedo acetylcholine receptor in complex with carbachol, desensitized state 7SMS ; 3.18 ; Cryo-EM structure of Torpedo acetylcholine receptor in complex with d-tubocurarine 7SMT ; 2.56 ; Cryo-EM structure of Torpedo acetylcholine receptor in complex with d-tubocurarine and carbachol 7Z14 ; 3.15 ; Cryo-EM structure of Torpedo nicotinic acetylcholine receptor in complex with a short-chain neurotoxin. 8F6Y ; 2.79 ; Cryo-EM structure of Torpedo nicotinic acetylcholine receptor in complex with etomidate, desensitized-like state 8F2S ; 2.9 ; Cryo-EM structure of Torpedo nicotinic acetylcholine receptor in complex with rocuronium, pore-blocked state 8ESK ; 2.9 ; Cryo-EM structure of Torpedo nicotinic acetylcholine receptor in complex with rocuronium, resting-like state 8F6Z ; 2.7 ; Cryo-EM structure of Torpedo nicotinic acetylcholine receptor in complex with succinylcholine, desensitized-like state 6TMK ; 2.9 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase dimer, composite model 6TMG ; 2.8 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase dimer, membrane region model 6TMH ; 3.1 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase dimer, OSCP/F1/c-ring model 6TMI ; 3.5 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase dimer, peripheral stalk model 6TMJ ; 3.5 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase dimer, rotor-stator model 6TML ; 4.8 ; Cryo-EM structure of Toxoplasma gondii mitochondrial ATP synthase hexamer, composite model 6T9I ; 3.9 ; cryo-EM structure of transcription coactivator SAGA 7TDO ; 3.15 ; Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state 6Y9B ; 2.97 ; Cryo-EM structure of trimeric human STEAP1 bound to three Fab120.545 fragments 6ZQJ ; 4.2 ; Cryo-EM structure of trimeric prME spike of Spondweni virus 6F0X ; 4.6 ; Cryo-EM structure of TRIP13 in complex with ATP gamma S, p31comet, C-Mad2 and Cdc20 7KNI ; 3.91 ; Cryo-EM structure of Triple ACE2-bound SARS-CoV-2 Trimer Spike at pH 5.5 7KMS ; 3.64 ; Cryo-EM structure of triple ACE2-bound SARS-CoV-2 trimer spike at pH 7.4 8ED7 ; 3.7 ; cryo-EM structure of TRPM3 ion channel in apo state 8DDX ; 3.8 ; cryo-EM structure of TRPM3 ion channel in complex with Gbg in the presence of PIP2, tethered by ALFA-nanobody 8DDW ; 4.7 ; cryo-EM structure of TRPM3 ion channel in complex with Gbg, tethered by ALFA-nanobody 8DDR ; 3.2 ; cryo-EM structure of TRPM3 ion channel in the absence of PIP2 8ED8 ; 3.2 ; cryo-EM structure of TRPM3 ion channel in the presence of PIP2 and PregS, state 1 8DDS ; 3.5 ; cryo-EM structure of TRPM3 ion channel in the presence of PIP2, state1 8DDT ; 3.1 ; cryo-EM structure of TRPM3 ion channel in the presence of PIP2, state2 8DDU ; 3.0 ; cryo-EM structure of TRPM3 ion channel in the presence of PIP2, state3 8DDV ; 3.2 ; Cryo-EM structure of TRPM3 ion channel in the presence of PIP2, state4 8DDQ ; 2.7 ; cryo-EM structure of TRPM3 ion channel in the presence of soluble Gbg, focused on channel 8ED9 ; 3.4 ; cryo-EM structure of TRPM3 ion channel in the presence with PIP2 and PregS, state 2 6BCL ; 3.54 ; cryo-EM structure of TRPM4 in apo state with long coiled coil at 3.5 angstrom resolution 6BCJ ; 3.14 ; cryo-EM structure of TRPM4 in apo state with short coiled coil at 3.1 angstrom resolution 6BCQ ; 3.25 ; cryo-EM structure of TRPM4 in ATP bound state with long coiled coil at 3.3 angstrom resolution 6BCO ; 2.88 ; cryo-EM structure of TRPM4 in ATP bound state with short coiled coil at 2.9 angstrom resolution 8SI3 ; 2.61 ; Cryo-EM structure of TRPM7 in GDN detergent in apo state 8SI7 ; 2.59 ; Cryo-EM structure of TRPM7 in GDN detergent in complex with inhibitor VER155008 in closed state 8SI2 ; 2.19 ; Cryo-EM structure of TRPM7 in MSP2N2 nanodisc in apo state 8SI6 ; 2.44 ; Cryo-EM structure of TRPM7 in MSP2N2 nanodisc in complex with agonist naltriben in closed state 8SI5 ; 2.17 ; Cryo-EM structure of TRPM7 in MSP2N2 nanodisc in complex with agonist naltriben in open state 8SIB ; 2.62 ; Cryo-EM structure of TRPM7 MHR1-3 domain 8SIA ; 2.91 ; Cryo-EM structure of TRPM7 N1098Q mutant in GDN detergent in complex with inhibitor NS8593 in closed state 8SI8 ; 2.99 ; Cryo-EM structure of TRPM7 N1098Q mutant in GDN detergent in complex with inhibitor VER155008 in closed state 8SI4 ; 2.46 ; Cryo-EM structure of TRPM7 N1098Q mutant in GDN detergent in open state 7UGG ; 3.16 ; Cryo-EM structure of TRPV3 in complex with the anesthetic dyclonine 6LGP ; 3.3 ; cryo-EM structure of TRPV3 in lipid nanodisc 6O1N ; 2.9 ; Cryo-EM structure of TRPV5 (1-660) in nanodisc 7T6L ; 3.7 ; Cryo-EM structure of TRPV5 at pH5 in nanodiscs 7T6K ; 3.0 ; Cryo-EM structure of TRPV5 at pH6 in nanodiscs 7T6J ; 3.2 ; Cryo-EM structure of TRPV5 at pH8 in nanodiscs 7T6N ; 2.9 ; Cryo-EM structure of TRPV5 in nanodiscs at pH6 state 2 7T6O ; 2.6 ; Cryo-EM structure of TRPV5 in nanodiscs at pH6 state 3 7T6M ; 2.8 ; Cryo-EM structure of TRPV5 in nanodiscs with PI(4,5)P2 at pH6 state 1 7T6P ; 2.8 ; Cryo-EM structure of TRPV5 T709D in nanodiscs 7T6R ; 3.0 ; Cryo-EM structure of TRPV5 T709D in nanodiscs in the presence of Calmodulin 7T6Q ; 3.4 ; Cryo-EM structure of TRPV5 T709D with PI(4,5)P2 in nanodiscs 6O1U ; 2.8 ; Cryo-EM structure of TRPV5 W583A in nanodisc 6O20 ; 3.3 ; Cryo-EM structure of TRPV5 with calmodulin bound 8OVA ; 2.47 ; CRYO-EM STRUCTURE OF TRYPANOSOMA BRUCEI PROCYCLIC FORM 80S RIBOSOME : PARENTAL STRAIN 8OVE ; 2.6 ; CRYO-EM STRUCTURE OF TRYPANOSOMA BRUCEI PROCYCLIC FORM 80S RIBOSOME : TB11CS6H1 snoRNA mutant 5N5N ; 4.2 ; Cryo-EM structure of tsA201 cell alpha1B and betaI and betaIVb microtubules 8WD8 ; 2.9 ; Cryo-EM structure of TtdAgo-guide DNA-target DNA complex 8VGR ; 3.2 ; Cryo-EM structure of Tulane virus 9-6-17 variant capsid protein VP1 5-12-18 8VJS ; 2.73 ; Cryo-EM structure of Tulane virus 9-6-17 variant capsid protein VP1 9-14-18 without DTT treatment 8VJR ; 2.63 ; Cryo-EM structure of Tulane virus 9-6-17 variant capsid protein VP1 9-14-18, DTT-treated 6F1T ; 3.5 ; Cryo-EM structure of two dynein tail domains bound to dynactin and BICDR1 6F38 ; 6.7 ; Cryo-EM structure of two dynein tail domains bound to dynactin and HOOK3 8EYR ; 4.0 ; Cryo-EM structure of two IGF1 bound full-length mouse IGF1R mutant (four glycine residues inserted in the alpha-CT; IGF1R-P674G4): symmetric conformation 7Q5B ; 3.98 ; Cryo-EM structure of Ty3 retrotransposon targeting a TFIIIB-bound tRNA gene 6UQK ; 3.77 ; Cryo-EM structure of type 3 IP3 receptor revealing presence of a self-binding peptide 8IP0 ; 3.6 ; Cryo-EM structure of type I-B Cascade bound to a PAM-containing dsDNA target at 3.6 angstrom resolution 6B45 ; 3.5 ; Cryo-EM structure of Type I-F CRISPR crRNA-guided Csy surveillance complex 6B46 ; 3.1 ; Cryo-EM structure of Type I-F CRISPR crRNA-guided Csy surveillance complex with bound anti-CRISPR protein AcrF1 6B48 ; 3.6 ; Cryo-EM structure of Type I-F CRISPR crRNA-guided Csy surveillance complex with bound anti-CRISPR protein AcrF10 6B47 ; 3.2 ; Cryo-EM structure of Type I-F CRISPR crRNA-guided Csy surveillance complex with bound anti-CRISPR protein AcrF2 6B44 ; 2.9 ; Cryo-EM structure of Type I-F CRISPR crRNA-guided Csy surveillance complex with bound target dsDNA 6IFK ; 3.2 ; Cryo-EM structure of type III-A Csm-CTR1 complex, AMPPNP bound 6IFU ; 3.05 ; Cryo-EM structure of type III-A Csm-CTR2-dsDNA complex 6IFL ; 3.16 ; Cryo-EM structure of type III-A Csm-NTR complex 6TJO ; 3.2 ; Cryo-EM structure of TypeI tau filaments extracted from the brains of individuals with Corticobasal degeneration 6TJX ; 3.0 ; Cryo-EM structure of TypeII tau filaments extracted from the brains of individuals with Corticobasal degeneration 8I4C ; 3.08 ; Cryo-EM structure of U46619-bound ABCC4 7VGG ; 3.1 ; Cryo-EM structure of Ultraviolet-B activated UVR8 in complex with COP1 6YTX ; 6.23 ; Cryo-EM structure of undecameric human CALHM6 in the presence of Ca2+ 7OJG ; 3.4 ; CRYO-EM STRUCTURE OF UNDECAMERIC SLYB FROM ESCHERICHIA COLI K12 7L2H ; 2.63 ; Cryo-EM structure of unliganded full-length TRPV1 at neutral pH 7L2P ; 2.6 ; cryo-EM structure of unliganded minimal TRPV1 7NTF ; 5.32 ; Cryo-EM structure of unliganded O-GlcNAc transferase 7JTH ; 4.0 ; Cryo-EM structure of unliganded octameric prenyltransferase domain of Phomopsis amygdali fusicoccadiene synthase 7XD1 ; 3.2 ; cryo-EM structure of unmodified nucleosome 8IWX ; 2.59 ; Cryo-EM structure of unprotonated LHCII in detergent solution at high pH value 8IWZ ; 2.52 ; Cryo-EM structure of unprotonated LHCII in detergent solution at low pH value 8IX0 ; 2.64 ; Cryo-EM structure of unprotonated LHCII nanodisc at high pH value 8IX2 ; 2.8 ; Cryo-EM structure of unprotonated LHCII nanodisc at low pH value 6PB0 ; 3.0 ; Cryo-EM structure of Urocortin 1-bound Corticotropin-releasing factor 1 receptor in complex with Gs protein and Nb35 6PB1 ; 2.8 ; Cryo-EM structure of Urocortin 1-bound Corticotropin-releasing factor 2 receptor in complex with Gs protein and Nb35 8A9K ; 2.85 ; Cryo-EM structure of USP1-UAF1 bound to FANCI and mono-ubiquitinated FANCD2 with ML323 (consensus reconstruction) 8A9J ; 2.8 ; Cryo-EM structure of USP1-UAF1 bound to FANCI and mono-ubiquitinated FANCD2 without ML323 (consensus reconstruction) 7AY1 ; 3.7 ; Cryo-EM structure of USP1-UAF1 bound to mono-ubiquitinated FANCD2, and FANCI 8WG5 ; 3.05 ; Cryo-EM structure of USP16 bound to H2AK119Ub nucleosome 7YXX ; 3.3 ; Cryo-EM structure of USP9X 7YXY ; 3.1 ; Cryo-EM structure of USP9X, local refinement of monomer 6XBW ; 3.37 ; Cryo-EM structure of V-ATPase from bovine brain, state 1 6XBY ; 3.79 ; Cryo-EM structure of V-ATPase from bovine brain, state 2 6OSY ; 4.3 ; Cryo-EM structure of vaccine-elicited antibody 0PV-a.01 in complex with HIV-1 Env BG505 DS-SOSIP and antibodies VRC03 and PGT122 6OT1 ; 3.5 ; Cryo-EM structure of vaccine-elicited antibody 0PV-b.01 in complex with HIV-1 Env BG505 DS-SOSIP and antibodies VRC03 and PGT122 6NF2 ; 3.7 ; Cryo-EM structure of vaccine-elicited antibody 0PV-c.01 in complex with HIV-1 Env BG505 DS-SOSIP and antibodies VRC03 and PGT122 8U1D ; 4.25 ; Cryo-EM structure of vaccine-elicited CD4 binding site antibody DH1285 bound to HIV-1 CH505TFchim.6R.SOSIP.664v4.1 Env Local Refinement 6UM7 ; 3.5 ; Cryo-EM structure of vaccine-elicited HIV-1 neutralizing antibody DH270.mu1 in complex with CH848 10.17DT Env 6XSK ; 3.85 ; Cryo-EM Structure of Vaccine-Elicited Rhesus Antibody 789-203-3C12 in Complex with Stabilized SI06 (A/Solomon Islands/3/06) Influenza Hemagglutinin Trimer 7VFD ; 2.25 ; Cryo-EM structure of Vaccinia virus scaffolding protein D13 7VFG ; 3.87 ; Cryo-EM structure of Vaccinia virus scaffolding protein D13 trimer doublet 7VFH ; 3.9 ; Cryo-EM structure of Vaccinia virus scaffolding protein D13 trimer sextet 7VFF ; 4.1 ; Cryo-EM structure of Vaccinia virus scaffolding protein D13 with N-terminal 17 residue truncation 7VFE ; 2.63 ; Cryo-EM structure of Vaccinia virus scaffolding protein D13 with N-terminal polyhistidine tag 6MI8 ; 4.3 ; Cryo-EM Structure of vanadate-trapped E.coli LptB2FGC 7NNH ; 4.0 ; Cryo-EM structure of VAR2CSA FCR3 domain DBL5/6 6WSL ; 3.1 ; Cryo-EM structure of VASH1-SVBP bound to microtubules 7EK1 ; 3.0 ; Cryo-EM structure of VCCN1 in detergent 7EK2 ; 2.7 ; Cryo-EM structure of VCCN1 in lipid nanodisc 7EK3 ; 2.7 ; Cryo-EM structure of VCCN1 Y332A mutant in lipid nanodisc 7FFE ; 3.5 ; Cryo-EM structure of VEEV VLP 7FFQ ; 3.5 ; Cryo-EM structure of VEEV VLP at the 2-fold axes 7FFO ; 3.5 ; Cryo-EM structure of VEEV VLP at the 5-fold axes 7FFL ; 3.1 ; Cryo-EM structure of VEEV VLP-LDLRAD3-D1 complex at the 2-fold axes 7FFN ; 3.0 ; Cryo-EM structure of VEEV VLP-LDLRAD3-D1 complex at the 5-fold axes 8G9W ; 4.66 ; Cryo-EM structure of vFP49.02 Fab in complex with HIV-1 Env BG505 DS-SOSIP.664 (conformation 1) 8G9X ; 4.46 ; Cryo-EM structure of vFP49.02 Fab in complex with HIV-1 Env BG505 DS-SOSIP.664 (conformation 2) 8G9Y ; 4.28 ; Cryo-EM structure of vFP49.02 Fab in complex with HIV-1 Env BG505 DS-SOSIP.664 (conformation 3) 8JC7 ; 2.06 ; Cryo-EM structure of Vibrio campbellii alpha-hemolysin 8TZJ ; 3.51 ; Cryo-EM structure of Vibrio cholerae FtsE/FtsX complex 8TZL ; 3.55 ; Cryo-EM structure of Vibrio cholerae FtsE/FtsX/EnvC complex, full-length 8TZK ; 3.55 ; Cryo-EM structure of Vibrio cholerae FtsE/FtsX/EnvC complex, shortened 8J9Y ; 3.16 ; cryo-EM structure of viral topoisomerase in conformation 1 8J9Z ; 3.13 ; cryo-EM structure of viral topoisomerase in conformation 2 6P6W ; 4.0 ; Cryo-EM structure of voltage-gated sodium channel NavAb N49K/L109A/M116V/G94C/Q150C disulfide crosslinked mutant in the resting state 6VI0 ; 3.43 ; Cryo-EM structure of VRC01.23 in complex with HIV-1 Env BG505 DS.SOSIP 7YTJ ; 3.0 ; Cryo-EM structure of VTC complex 7WN3 ; 3.29 ; Cryo-EM structure of VWF D'D3 dimer (2M mutant) complexed with D1D2 at 3.29 angstron resolution (2 units) 7WN6 ; 3.29 ; Cryo-EM structure of VWF D'D3 dimer (R1136M/E1143M mutant) complexed with D1D2 at 3.29 angstron resolution (2 units) 7WN4 ; 3.4 ; Cryo-EM structure of VWF D'D3 dimer (wild type) complexed with D1D2 at 3.4 angstron resolution (1 unit) 7WPP ; 2.85 ; Cryo-EM structure of VWF D'D3 dimer complexed with D1D2 at 2.85 angstron resolution (1 unit) 7WPQ ; 3.267 ; Cryo-EM structure of VWF D'D3 dimer complexed with D1D2 at 3.27 angstron resolution (2 units) 7WPS ; 4.32 ; Cryo-EM structure of VWF D'D3 dimer complexed with D1D2 at 4.3 angstron resolution (7 units) 7WQT ; 4.3 ; Cryo-EM structure of VWF D'D3 dimer complexed with D1D2 at 4.3 angstron resolution (VWF tube) 7A7C ; 3.16 ; Cryo-EM structure of W107R after heme uptake (1heme molecule) KatG from M. tuberculosis 7A7A ; 3.08 ; Cryo-EM structure of W107R after heme uptake (2heme molecules) KatG from M. tuberculosis 7A2I ; 3.3 ; Cryo-EM structure of W107R KatG from M. tuberculosis 7THX ; 2.96 ; Cryo-EM structure of W6 possum enterovirus 7USC ; 3.0 ; Cryo-EM structure of WAVE Regulatory Complex 7USE ; 3.0 ; Cryo-EM structure of WAVE regulatory complex with Rac1 bound on both A and D site 8HF2 ; 4.14 ; Cryo-EM structure of WeiTsing 8DEC ; 4.7 ; Cryo-EM Structure of Western Equine Encephalitis Virus 8DED ; 4.1 ; Cryo-EM Structure of Western Equine Encephalitis Virus VLP in complex with SKW19 fab 8DEF ; 4.2 ; Cryo-EM Structure of Western Equine Encephalitis Virus VLP in complex with SKW24 fab 6WBF ; 2.83 ; Cryo-EM structure of wild type human Pannexin 1 channel 6UY0 ; 3.23 ; Cryo-EM structure of wild-type bovine multidrug resistance protein 1 (MRP1) under active turnover conditions 8ISS ; 3.19 ; Cryo-EM structure of wild-type human tRNA Splicing Endonuclease Complex bound to pre-tRNA-ARG at 3.19 A resolution 6ZJI ; 3.7 ; Cryo-EM structure of wild-type KatG from M. tuberculosis 7AG8 ; 2.68 ; Cryo-EM structure of wild-type KatG from M. tuberculosis 8E7D ; 3.31 ; Cryo-EM structure of wild-type transthyretin amyloid from heart tissue 8FFO ; 3.5 ; Cryo-EM structure of wildtype rabbit TRPV5 with PI(4,5)P2 in nanodiscs 6EDJ ; 4.52 ; Cryo-EM structure of Woodchuck hepatitis virus capsid 8F38 ; 2.64 ; Cryo-EM structure of X6 COBRA (H1N1) hemagglutinin bound to CR6261 Fab 6J9E ; 3.41 ; Cryo-EM structure of Xanthomonos oryzae transcription elongation complex with NusA and the bacteriophage protein P7 6J9F ; 3.95 ; Cryo-EM structure of Xanthomonos oryzae transcription elongation complex with the bacteriophage protein P7 7VOP ; 8.7 ; Cryo-EM structure of Xenopus laevis nuclear pore complex cytoplasmic ring subunit 7RHQ ; 3.53 ; Cryo-EM structure of Xenopus Patched-1 in complex with GAS1 and Sonic Hedgehog 7RHR ; 3.0 ; Cryo-EM structure of Xenopus Patched-1 in nanodisc 6UZY ; 3.38 ; Cryo-EM structure of Xenopus tropicalis pannexin 1 6VD7 ; 3.02 ; Cryo-EM structure of Xenopus tropicalis pannexin 1 channel 6RW8 ; 2.84 ; Cryo-EM structure of Xenorhabdus nematophila XptA1 8JPR ; 3.4 ; Cryo-EM structure of Y553C human ClC-6 6SNH ; 3.9 ; Cryo-EM structure of yeast ALG6 in complex with 6AG9 Fab and Dol25-P-Glc 5FJ9 ; 4.6 ; Cryo-EM structure of yeast apo RNA polymerase III at 4.6 A 8OVX ; 3.4 ; Cryo-EM structure of yeast CENP-OPQU+ bound to the CENP-A N-terminus 5VLJ ; 10.5 ; Cryo-EM structure of yeast cytoplasmic dynein with Walker B mutation at AAA3 in presence of ATP-VO4 5VH9 ; 7.7 ; Cryo-EM structure of yeast cytoplasmic dynein-1 with Lis1 and ATP 5G06 ; 4.2 ; Cryo-EM structure of yeast cytoplasmic exosome 8ASV ; 4.35 ; Cryo-EM structure of yeast Elongator complex 8ASW ; 3.96 ; Cryo-EM structure of yeast Elp123 in complex with alanine tRNA 8AT6 ; 3.7 ; Cryo-EM structure of yeast Elp456 subcomplex 8HFC ; 3.5 ; Cryo-EM structure of yeast Erf2/Erf4 complex 6Z6J ; 3.4 ; Cryo-EM structure of yeast Lso2 bound to 80S ribosomes under native condition 6YMV ; 3.1 ; Cryo-EM structure of yeast mitochondrial RNA polymerase partially-melted transcription initiation complex (PmIC) 6YMW ; 3.71 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex 8ATT ; 3.44 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with 4-mer RNA, pppGpGpUpA (IC4) 8ATV ; 3.39 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with 5-mer RNA, pppGpGpApApA (IC5) 8ATW ; 3.62 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with 6-mer RNA, pppGpGpApApApU (IC6) 8C5S ; 3.75 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with 7-mer RNA, pppGpGpUpApApApU (IC7) 8C5U ; 3.62 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with 8-mer RNA, pppGpGpUpApApApUpG (IC8) 8AP1 ; 3.47 ; Cryo-EM structure of yeast mitochondrial RNA polymerase transcription initiation complex with two GTP molecules poised for de novo initiation (IC2) 7OCI ; 3.46 ; Cryo-EM structure of yeast Ost6p containing oligosaccharyltransferase complex 8JCH ; 2.7 ; Cryo-EM structure of yeast Rat1-bound Pol II pre-termination transcription complex 1 (Pol II Rat1-PTTC1) 8K5P ; 2.8 ; Cryo-EM structure of yeast Rat1-bound Pol II pre-termination transcription complex 2 (Pol II Rat1-PTTC2) 6Z6K ; 3.4 ; Cryo-EM structure of yeast reconstituted Lso2 bound to 80S ribosomes 7C79 ; 2.5 ; Cryo-EM structure of yeast Ribonuclease MRP 7C7A ; 2.8 ; Cryo-EM structure of yeast Ribonuclease MRP with substrate ITS1 6AGB ; 3.48 ; Cryo-EM structure of yeast Ribonuclease P 6AH3 ; 3.48 ; Cryo-EM structure of yeast Ribonuclease P with pre-tRNA substrate 5FJA ; 4.65 ; Cryo-EM structure of yeast RNA polymerase III at 4.7 A 5FJ8 ; 3.9 ; Cryo-EM structure of yeast RNA polymerase III elongation complex at 3. 9 A 7OXP ; 2.7 ; Cryo-EM structure of yeast Sei1 7OXR ; 3.3 ; Cryo-EM structure of yeast Sei1 with locking helix deletion 7V2Y ; 3.4 ; cryo-EM structure of yeast THO complex with Sub2 6OGD ; 4.4 ; Cryo-EM structure of YenTcA in its prepore state 6RWB ; 3.25 ; Cryo-EM structure of Yersinia pseudotuberculosis TcaA-TcaB 7KZX ; 4.0 ; Cryo-EM structure of YiiP-Fab complex in Apo state 7KZZ ; 3.42 ; Cryo-EM structure of YiiP-Fab complex in Holo state 7PM3 ; 3.1 ; Cryo-EM structure of young JASP-stabilized F-actin (central 3er) 7MBU ; ; Cryo-EM structure of zebrafish TRPM5 E337A mutant in the presence of 5 mM calcium (high calcium occupancy in the transmembrane domain) 7MBT ; ; Cryo-EM structure of zebrafish TRPM5 E337A mutant in the presence of 5 mM calcium (low calcium occupancy in the transmembrane domain) 7MBP ; 2.8 ; Cryo-EM structure of zebrafish TRPM5 in the presence of 1 mM EDTA 7MBQ ; 2.3 ; Cryo-EM structure of zebrafish TRPM5 in the presence of 5 mM calcium 7MBV ; 2.8 ; Cryo-EM structure of zebrafish TRPM5 in the presence of 5 mM calcium and 0.5 mM NDNA 7MBR ; ; Cryo-EM structure of zebrafish TRPM5 in the presence of 6 uM calcium (apo state) 7MBS ; ; Cryo-EM structure of zebrafish TRPM5 in the presence of 6 uM calcium (open state) 5H32 ; 12.0 ; Cryo-EM structure of zika virus complexed with Fab C10 at pH 5.0 5H30 ; 4.4 ; Cryo-EM structure of zika virus complexed with Fab C10 at pH 6.5 5H37 ; 4.0 ; Cryo-EM structure of zika virus complexed with Fab C10 at pH 8.0 5Y0A ; 22.0 ; Cryo-EM structure of zika virus complexed with Fab of ZKA190 at pH 8.0 and 37 celsius degree 7BU8 ; 3.8 ; Cryo-EM structure of zika virus complexed with Fab SIgN-3C at pH 6.5 7BUA ; 4.8 ; Cryo-EM structure of zika virus complexed with Fab SIgN-3C at pH 8.0 7KCR ; 4.0 ; Cryo-EM structure of Zika virus in complex with E protein cross-linking human monoclonal antibody ADI30056 8CYI ; 3.14 ; Cryo-EM structures and computational analysis for enhanced potency in MTA-synergic inhibition of human protein arginine methyltransferase 5 6MSB ; 3.0 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSD ; 3.2 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSE ; 3.3 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSG ; 3.5 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSH ; 3.6 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSJ ; 3.3 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 6MSK ; 3.2 ; Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome 8HKU ; 2.72 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HKV ; 4.94 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HKX ; 3.14 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HKY ; 4.45 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HKZ ; 4.78 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HL1 ; 3.93 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HL2 ; 4.1 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HL3 ; 4.8 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HL4 ; 4.62 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 8HL5 ; 5.72 ; Cryo-EM Structures and Translocation Mechanism of Crenarchaeota Ribosome 7UDC ; 3.7 ; cryo-EM structures of a synaptobrevin-Munc18-1-syntaxin-1 complex class1 7KGG ; 2.97 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-ET-I 7KGH ; 3.79 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-ET-II 7KGI ; 3.34 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-ET-III 7KGD ; 3.64 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-I 7KGE ; 3.21 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-II 7KGF ; 3.42 ; Cryo-EM Structures of AdeB from Acinetobacter baumannii: AdeB-III 5JZW ; 4.46 ; Cryo-EM structures of aerolysin post-prepore and quasipore 7CYC ; 3.21 ; Cryo-EM structures of Alphacoronavirus spike glycoprotein 7CYD ; 3.55 ; Cryo-EM structures of Alphacoronavirus spike glycoprotein 8T2V ; 3.4 ; Cryo-EM Structures of Full-length Integrin alphaIIbbeta3 in Native Lipids 8T2U ; 3.1 ; Cryo-EM Structures of Full-length Integrin alphaIIbbeta3 in Native Lipids complexed with Eptifibatide 6M15 ; 2.38 ; Cryo-EM structures of HKU2 spike glycoproteins 7PLS ; 2.49 ; Cryo-EM structures of human fucosidase FucA1 reveal insight into substate recognition and catalysis. 7PM4 ; 2.49 ; Cryo-EM structures of human fucosidase FucA1 reveal insight into substate recognition and catalysis. 7D72 ; 3.4 ; Cryo-EM structures of human GMPPA/GMPPB complex bound to GDP-Mannose 7XDF ; 2.72 ; Cryo-EM structures of human mitochondrial NAD(P)+-dependent malic enzyme in a ternary complex with NAD+ and allosteric inhibitor EA 7XDG ; 2.84 ; Cryo-EM structures of human mitochondrial NAD(P)+-dependent malic enzyme in a ternary complex with NAD+ and allosteric inhibitor MDSA 7XDE ; 2.72 ; Cryo-EM structures of human mitochondrial NAD(P)+-dependent malic enzyme in apo form 7VLX ; 3.12 ; Cryo-EM structures of Listeria monocytogenes man-PTS 6QIK ; 3.1 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 6QT0 ; 3.4 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 6QTZ ; 3.5 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 6RI5 ; 3.3 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 6RZZ ; 3.2 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 6S05 ; 3.9 ; Cryo-EM structures of Lsg1-TAP pre-60S ribosomal particles 8WG8 ; 2.71 ; Cryo-EM structures of peptide free and Gs-coupled GCGR 8WG7 ; 2.54 ; Cryo-EM structures of peptide free and Gs-coupled GLP-1R 4D5L ; 9.0 ; Cryo-EM structures of ribosomal 80S complexes with termination factors and cricket paralysis virus IRES reveal the IRES in the translocated state 4D5N ; 9.0 ; Cryo-EM structures of ribosomal 80S complexes with termination factors and cricket paralysis virus IRES reveal the IRES in the translocated state 4D5Y ; 9.0 ; Cryo-EM structures of ribosomal 80S complexes with termination factors and cricket paralysis virus IRES reveal the IRES in the translocated state 4D61 ; 9.0 ; Cryo-EM structures of ribosomal 80S complexes with termination factors and cricket paralysis virus IRES reveal the IRES in the translocated state 4D67 ; 9.0 ; Cryo-EM structures of ribosomal 80S complexes with termination factors and cricket paralysis virus IRES reveal the IRES in the translocated state 6M16 ; 2.83 ; Cryo-EM structures of SADS-CoV spike glycoproteins 5ADY ; 4.5 ; Cryo-EM structures of the 50S ribosome subunit bound with HflX 4CSU ; 5.5 ; Cryo-EM structures of the 50S ribosome subunit bound with ObgE 3J4K ; 8.0 ; Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state 8JV7 ; 3.6 ; Cryo-EM structures of the panda P2X7 receptor in complex with PPADS 8JV8 ; 3.34 ; Cryo-EM structures of the panda P2X7 receptor in complex with PPNDS 8JV6 ; 3.43 ; Cryo-EM structures of the zebrafish P2X4 receptor in complex with BAY-1797 3ZIF ; 4.5 ; Cryo-EM structures of two intermediates provide insight into adenovirus assembly and disassembly 7CFS ; 3.56 ; Cryo-EM strucutre of human acid-sensing ion channel 1a at pH 8.0 7CFT ; 3.9 ; Cryo-EM strucutre of human acid-sensing ion channel 1a in complex with snake toxin Mambalgin1 at pH 8.0 3JAC ; 4.8 ; Cryo-EM study of a channel 5A8H ; 23.0 ; cryo-ET subtomogram averaging of BG505 SOSIP.664 in complex with sCD4, 17b, and 8ANC195 1QLE ; 3.0 ; CRYO-STRUCTURE OF THE PARACOCCUS DENITRIFICANS FOUR-SUBUNIT CYTOCHROME C OXIDASE IN THE COMPLETELY OXIDIZED STATE COMPLEXED WITH AN ANTIBODY FV FRAGMENT 6GNI ; 4.9 ; Cryo-tomography and subtomogram averaging of Sar1-Sec23-Sec24 - fitted model. 3U4L ; 2.4 ; Cryocooled bovine profilin:actin crystal structure to 2.4 A 3J8D ; 26.0 ; Cryoelectron microscopy of dengue-Fab E104 complex at pH 5.5 8EMH ; 3.63 ; CryoEM characterization of a unique AAA+ BrxL phage restriction factor 8EMC ; 3.6 ; CryoEM characterization of BrxL -- a unique AAA+ phage restriction Factor. 6PZW ; 3.0 ; CryoEM derived model of NA-22 Fab in complex with N9 Shanghai2 6PZY ; 3.17 ; CryoEM derived model of NA-73 Fab in complex with N9 Shanghai2 6PZZ ; 3.6 ; CryoEM derived model of NA-80 Fab in complex with N9 Shanghai2 3J06 ; 3.3 ; CryoEM Helical Reconstruction of TMV 6KNF ; 2.99 ; CryoEM map and model of Nitrite Reductase at pH 6.2 6KNG ; 2.85 ; CryoEM map and model of Nitrite Reductase at pH 8.1 7T3D ; 3.38 ; CryoEM map of anchor 222-1C06 Fab and lateral patch 2B05 Fab binding H1 HA 2VOY ; 18.0 ; CryoEM model of CopA, the copper transporting ATPase from Archaeoglobus fulgidus 2WYY ; 10.6 ; CRYOEM MODEL OF THE VESICULAR STOMATITIS VIRUS 8EF7 ; 9.68 ; CryoEM of the soluble OPA1 dimer from the apo helical assembly on a lipid membrane 8EEW ; 5.48 ; CryoEM of the soluble OPA1 dimer from the GDP-AlFx bound helical assembly on a lipid membrane 8EFT ; 9.68 ; CryoEM of the soluble OPA1 interfaces from the apo helical assembly on a lipid membrane 8EFR ; 5.48 ; CryoEM of the soluble OPA1 interfaces with GDP-AlFx bound from the helical assembly on a lipid membrane 8EFS ; 9.68 ; CryoEM of the soluble OPA1 tetramer from the apo helical assembly on a lipid membrane 8EFF ; 5.48 ; CryoEM of the soluble OPA1 tetramer from the GDP-AlFx bound helical assembly on a lipid membrane 6PEW ; 3.2 ; CryoEM Plasmodium falciparum glutamine synthetase 6PEV ; 3.2 ; CryoEM Plasmodium falciparum M18 aspartyl aminopeptidase 3J24 ; 9.0 ; CryoEM reconstruction of complement decay-accelerating factor 6QOZ ; 3.4 ; CryoEM reconstruction of Cowpea Mosaic Virus (CPMV) bound to an Affimer reagent 6TZA ; 7.2 ; CryoEM reconstruction of ESCRT-III filament composed of IST1 NTD R16E K27E double mutant 6I2T ; 5.7 ; CryoEM reconstruction of full-length, fully-glycosylated human butyrylcholinesterase tetramer 8PK3 ; 3.4 ; CryoEM reconstruction of hemagglutinin HK68 of Influenza A virus bound to an Affimer reagent 5KNE ; 5.64 ; CryoEM Reconstruction of Hsp104 Hexamer 6AHF ; 6.78 ; CryoEM Reconstruction of Hsp104 N728A Hexamer 5TQY ; 5.2 ; CryoEM reconstruction of human IKK1, closed conformation 3 5TQX ; 5.4 ; CryoEM reconstruction of human IKK1, intermediate conformation 2 5TQW ; 5.6 ; CryoEM reconstruction of human IKK1, open conformation 1 6E8G ; 2.9 ; CryoEM reconstruction of IST1-CHMP1B copolymer filament bound to ssDNA at 2.9 Angstrom resolution 6TZ9 ; 6.2 ; CryoEM reconstruction of membrane-bound ESCRT-III filament composed of CHMP1B only 6TZ5 ; 3.1 ; CryoEM reconstruction of membrane-bound ESCRT-III filament composed of CHMP1B+IST1 (left-handed) 6TZ4 ; 3.2 ; CryoEM reconstruction of membrane-bound ESCRT-III filament composed of CHMP1B+IST1 (right-handed) 7PLM ; 2.9 ; CryoEM reconstruction of pyruvate ferredoxin oxidoreductase (PFOR) in anaerobic conditions 7T0O ; 8.7 ; cryoEM reconstruction of the HIV gp140 in complex with the extracellular domains of CD4 and the adnectin domain of Combinectin. The gp140 and CD4 coordinates from entry 6EDU were rigid body fitted to the EM map along withe the crystal structure of CD4+adnectin 3J9C ; 2.9 ; CryoEM single particle reconstruction of anthrax toxin protective antigen pore at 2.9 Angstrom resolution 6B43 ; 4.2 ; CryoEM structure and atomic model of the Kaposi's sarcoma-associated herpesvirus capsid 6R83 ; 5.1 ; CryoEM structure and molecular model of squid hemocyanin (Todarodes pacificus , TpH) 7LO5 ; 2.86 ; cryoEM structure DrdV-DNA complex 7LVV ; 3.25 ; cryoEM structure DrdV-DNA complex 8OOK ; 5.69 ; CryoEM Structure INO80core Hexasome complex Arp5 grappler refinement state1 8OOF ; 2.9 ; CryoEM Structure INO80core Hexasome complex Arp5 Ies6 refinement state1 8OOT ; 2.85 ; CryoEM Structure INO80core Hexasome complex Arp5 Ies6 refinement state2 8OO9 ; 3.2 ; CryoEM Structure INO80core Hexasome complex ATPase-DNA refinement state1 8OOS ; 3.29 ; CryoEM Structure INO80core Hexasome complex ATPase-hexasome refinement state 2 8OO7 ; 2.8 ; CryoEM Structure INO80core Hexasome complex composite model state1 8OOP ; 2.7 ; CryoEM Structure INO80core Hexasome complex composite model state2 8OOA ; 3.18 ; CryoEM Structure INO80core Hexasome complex Hexasome refinement state1 8OOC ; 2.93 ; CryoEM Structure INO80core Hexasome complex Rvb core refinement state1 8OOR ; 2.87 ; CryoEM Structure INO80core Hexasome complex Rvb core refinement state2 6FML ; 4.34 ; CryoEM Structure INO80core Nucleosome complex 8OIX ; 2.89 ; CryoEM structure of 20S Trichomonas vaginalis proteasome in complex with proteasome inhibitor Salinosporamid A 7NYD ; 3.27 ; cryoEM structure of 2C9-sMAC 7NYC ; 3.54 ; cryoEM structure of 3C9-sMAC 3J80 ; 3.75 ; CryoEM structure of 40S-eIF1-eIF1A preinitiation complex 3JAM ; 3.46 ; CryoEM structure of 40S-eIF1A-eIF1 complex from yeast 6QFA ; 2.49 ; CryoEM structure of a beta3K279T GABA(A)R homomer in complex with histamine and megabody Mb25 8EQF ; 3.16 ; cryoEM structure of a broadly neutralizing anti-SARS-CoV-2 antibody STI-9167 8TL7 ; 4.05 ; CryoEM Structure of a Computationally Designed T3 Tetrahedral Nanocage 7JZY ; 3.6 ; CryoEM structure of a CRISPR-Cas complex 7WUS ; 3.4 ; CryoEM structure of a dimer of loose sNS1 tetramer 7A5V ; 1.7 ; CryoEM structure of a human gamma-aminobutyric acid receptor, the GABA(A)R-beta3 homopentamer, in complex with histamine and megabody Mb25 in lipid nanodisc 7UNF ; 4.08 ; CryoEM structure of a mEAK7 bound human V-ATPase complex 3J81 ; 4.0 ; CryoEM structure of a partial yeast 48S preinitiation complex 5V4S ; 4.2 ; CryoEM Structure of a Prokaryotic Cyclic Nucleotide-Gated Ion Channel 6CFW ; 3.7 ; cryoEM structure of a respiratory membrane-bound hydrogenase 8Q9T ; 2.84 ; CryoEM structure of a S. Cerevisiae Ski238 complex bound to RNA 8QCA ; 2.84 ; CryoEM structure of a S. Cerevisiae Ski2387 complex in the closed state bound to RNA 8QCB ; 2.8 ; CryoEM structure of a S. Cerevisiae Ski2387 complex in the open state 8SO3 ; 3.61 ; CryoEM structure of a therapeutic antibody (favezelimab) bound to human LAG3 8SR0 ; 3.53 ; CryoEM structure of a therapeutic antibody (favezelimab) bound to human LAG3 local refined 7K8A ; 3.65 ; CryoEM structure of a trehalose monomycolate transporter in lipid nanodiscs 7K8B ; 2.94 ; CryoEM structure of a trehalose monomycolate transporter in lipid nanodiscs 7K8C ; 4.27 ; CryoEM structure of a trehalose monomycolate transporter in lipid nanodiscs 7K8D ; 4.33 ; CryoEM structure of a trehalose monomycolate transporter in TMM lipid nanodiscs (form II) 8C0Z ; 3.22 ; CryoEM structure of a tungsten-containing aldehyde oxidoreductase from Aromatoleum aromaticum 3J9O ; 3.7 ; CryoEM structure of a type VI secretion system 7KGB ; 2.7 ; CryoEM structure of A2296-methylated Mycobacterium tuberculosis ribosome bound with SEQ-9 6JPQ ; 4.44 ; CryoEM structure of Abo1 hexamer - ADP complex 6JPU ; 4.27 ; CryoEM structure of Abo1 hexamer - apo complex 6JQ0 ; 3.54 ; CryoEM structure of Abo1 Walker B (E372Q) mutant hexamer - ATP complex 6MCC ; 3.9 ; CryoEM structure of AcrIIA2 homolog in complex with CRISPR-Cas9 6MCB ; 3.4 ; CryoEM structure of AcrIIA2 in complex with CRISPR-Cas9 7K10 ; 3.3 ; CryoEM structure of activated-form FATKIN domain of DNA-PK 6F2S ; 3.3 ; CryoEM structure of Ageratum Yellow Vein virus (AYVV) 8CPE ; 4.0 ; CryoEM structure of AL55 amyloid fibrils extracted from the kidney of an AL amyloidosis patient. 8CYX ; 3.0 ; CryoEM structure of amplified alpha-synuclein fibril class A type I with compact core from DLB case III 8CZ2 ; 3.0 ; CryoEM structure of amplified alpha-synuclein fibril class A type I with extended core from DLB case VII 8CZ6 ; 3.2 ; CryoEM structure of amplified alpha-synuclein fibril class A type I with extended core from DLB case X 8CYY ; 3.1 ; CryoEM structure of amplified alpha-synuclein fibril class B mixed type I/II with extended core from DLB case V 8CZ0 ; 2.9 ; CryoEM structure of amplified alpha-synuclein fibril class B type I with extended core from DLB case VII 8CZ3 ; 3.2 ; CryoEM structure of amplified alpha-synuclein fibril class B type I with extended core from DLB case X 8CZ1 ; 3.0 ; CryoEM structure of amplified alpha-synuclein fibril class B type II with extended core from DLB case VII 8HJ4 ; 3.1 ; CryoEM structure of an anti-CRISPR protein AcrIIC5 bound to Nme1Cas9-sgRNA complex 7UIN ; 2.8 ; CryoEM Structure of an Group II Intron Retroelement 7UIM ; 3.1 ; CryoEM Structure of an Group II Intron Retroelement (apo-complex) 5UJZ ; 4.8 ; CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface - Class 1 5UK0 ; 4.8 ; CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface - Class 2 5UK1 ; 4.8 ; CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface - Class 3 5UK2 ; 4.8 ; CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface - Class 4 8T60 ; 3.29 ; CryoEM structure of an inward-facing MelBSt at a Na(+)-bound and sugar low-affinity conformation 8DBY ; 2.26 ; CryoEM structure of anaerobically prepared nitrogenase MoFe-protein on ultrathin carbon 7W84 ; 3.4 ; CryoEM structure of apo form ZmRDR2 at 3.4 Angstroms resolution 6OIT ; 3.5 ; CryoEM structure of Arabidopsis DDR' complex (DRD1 peptide-DMS3-RDM1) 6OIS ; 3.6 ; CryoEM structure of Arabidopsis DR complex (DMS3-RDM1) 7YHP ; 3.1 ; CryoEM structure of Arabidopsis ROS1 in complex with 5mC-dsDNA at 3.1 Angstroms resolution 7YHQ ; 3.9 ; CryoEM structure of Arabidopsis ROS1 in complex with a covalent-linked reaction intermediate at 3.9 Angstroms resolution 7YHO ; 3.3 ; CryoEM structure of Arabidopsis ROS1 in complex with TG mismatch dsDNA at 3.3 Angstroms resolution 7RZW ; 3.3 ; CryoEM structure of Arabidopsis thaliana phytochrome B 8C0B ; 3.98 ; CryoEM structure of Aspergillus nidulans UTP-glucose-1-phosphate uridylyltransferase 7UT9 ; 2.44 ; CryoEM structure of Azotobacter vinelandii nitrogenase complex (1:1 FeP:MoFeP, ADP/ATP-bound) during catalytic N2 reduction 7UT8 ; 2.43 ; CryoEM structure of Azotobacter vinelandii nitrogenase complex (1:1 FeP:MoFeP, ATP-bound) during catalytic N2 reduction 7UTA ; 2.4 ; CryoEM structure of Azotobacter vinelandii nitrogenase complex (2:1 FeP:MoFeP) inhibited by BeFx during catalytic N2 reduction 8DPN ; 2.49 ; CryoEM structure of Azotobacter vinelandii nitrogenase MoFeP during catalytic N2 reduction 8B0I ; 4.28 ; CryoEM structure of bacterial RapZ.GlmZ complex central to the control of cell envelope biogenesis 8B0J ; 3.99 ; CryoEM structure of bacterial RNaseE.RapZ.GlmZ complex central to the control of cell envelope biogenesis 7QWP ; 3.4 ; CryoEM structure of bacterial transcription close complex (RPc) 7QV9 ; 3.5 ; CryoEM structure of bacterial transcription intermediate complex mediated by activator PspF 7VII ; 5.6 ; cryoEM structure of bacteriophage lambda capsid at 5.6 Angstrom 8FEH ; 3.28 ; CryoEM structure of bacteriophage Q-beta coat protein dimer with AYGG linker 8UNL ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class A) 8UNM ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class B) 8UNN ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class C) 8UNO ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class D) 8UNP ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class E) 8UNQ ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class F) 8UNR ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class G) 8UNS ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class H) 8UNT ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class I) 8UNU ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class J) 8UNV ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class K) 8UNW ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class L) 8UNX ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class M) 8UNY ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class N) 8UNZ ; 3.8 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class O) 8UO0 ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class P) 8UO1 ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class Q) 8UO2 ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class R) 8UO3 ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class S) 8UO4 ; 4.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (Class T) 8GFV ; 3.1 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #1 of 20) 8GG4 ; 3.2 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #10 of 20) 8GG5 ; 3.2 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #11 of 20) 8GG6 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #12 of 20) 8GG7 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #13 of 20) 8GG8 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #14 of 20) 8GG9 ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #15 of 20) 8GGA ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #16 of 20) 8GGB ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #17 of 20) 8GGC ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #18 of 20) 8GGE ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #19 of 20) 8GFW ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #2 of 20) 8GGF ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #20 of 20) 8GFX ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #3 of 20) 8GFY ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #4 of 20) 8GFZ ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #5 of 20) 8GG0 ; 2.9 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #6 of 20) 8GG1 ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #7 of 20) 8GG2 ; 3.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #8 of 20) 8GG3 ; 3.1 ; CryoEM structure of beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #9 of 20) 8GDZ ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#1 of 20) 8GE9 ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#10 of 20) 8GEA ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#11 of 20) 8GEB ; 3.6 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#12 of 20) 8GEC ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#13 of 20) 8GED ; 3.5 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#14 of 20) 8GEE ; 3.7 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#15 of 20) 8GEF ; 3.8 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#16 of 20) 8GEG ; 3.8 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#17 of 20) 8GEH ; 4.0 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#18 of 20) 8GEI ; 4.1 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#19 of 20) 8GE1 ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#2 of 20) 8GEJ ; 4.2 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#20 of 20) 8GE2 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#3 of 20) 8GE3 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#4 of 20) 8GE4 ; 3.3 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#5 of 20) 8GE5 ; 3.2 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#6 of 20) 8GE6 ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#7 of 20) 8GE7 ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#8 of 20) 8GE8 ; 3.4 ; CryoEM structure of beta-2-adrenergic receptor in complex with nucleotide-free Gs heterotrimer (#9 of 20) 8ECY ; 2.0 ; cryoEM structure of bovine bestrophin-2 and glutamine synthetase complex 6FO0 ; 4.1 ; CryoEM structure of bovine cytochrome bc1 in complex with the anti-malarial compound GSK932121 6FO6 ; 4.1 ; CryoEM structure of bovine cytochrome bc1 in complex with the anti-malarial inhibitor SCR0911 6FO2 ; 4.4 ; CryoEM structure of bovine cytochrome bc1 with no ligand bound 6WU0 ; 3.59 ; CryoEM structure of Burkholderia pseudomallei hopanoid biosynthesis-associated RND transporter HpnN 8B0F ; 3.0 ; CryoEM structure of C5b8-CD59 6R7X ; 3.47 ; CryoEM structure of calcium-bound human TMEM16K / Anoctamin 10 in detergent (2mM Ca2+, closed form) 6R7Y ; 4.2 ; CryoEM structure of calcium-bound human TMEM16K / Anoctamin 10 in detergent (low Ca2+, closed form) 6R7Z ; 5.14 ; CryoEM structure of calcium-free human TMEM16K / Anoctamin 10 in detergent (closed form) 6LNC ; 3.21 ; CryoEM structure of Cascade-TniQ complex 6LNB ; 3.18 ; CryoEM structure of Cascade-TniQ-dsDNA complex 7U4D ; 8.1 ; CryoEM structure of CENP-N promoted nucleosome stacks with CENP-A and 601 DNA sequence 7U47 ; 7.5 ; CryoEM structure of CENP-N promoted nucleosome stacks with CENP-A and palindromic alpha satellite DNA sequence 7A08 ; 3.11 ; CryoEM Structure of cGAS Nucleosome complex 6MX4 ; 4.4 ; CryoEM structure of chimeric Eastern Equine Encephalitis Virus 6MW9 ; 7.3 ; CryoEM structure of chimeric Eastern Equine Encephalitis Virus with Fab of EEEV-3 antibody 6MUI ; 7.7 ; CryoEM structure of chimeric Eastern Equine Encephalitis Virus with Fab of EEEV-42 antibody 6MWC ; 7.5 ; CryoEM structure of chimeric Eastern Equine Encephalitis Virus with Fab of EEEV-5 antibody 6MWV ; 7.3 ; CryoEM structure of Chimeric Eastern Equine Encephalitis Virus with Fab of EEEV-58 Antibody 6MWX ; 8.2 ; CryoEM structure of Chimeric Eastern Equine Encephalitis Virus with Fab of EEEV-69 Antibody 6MX7 ; 4.8 ; CryoEM structure of chimeric Eastern Equine Encephalitis Virus: Genome-Binding Capsid N-terminal Domain 7WJM ; 3.3 ; CryoEM structure of chitin synthase 1 from Phytophthora sojae 7WJO ; 3.2 ; CryoEM structure of chitin synthase 1 from Phytophthora sojae complexed with nikkomycin Z 7X05 ; 3.9 ; CryoEM structure of chitin synthase 1 from Phytophthora sojae complexed with the nascent chitooligosaccharide 7X06 ; 3.1 ; CryoEM structure of chitin synthase 1 from Phytophthora sojae complexed with UDP 7WJN ; 3.3 ; CryoEM structure of chitin synthase 1 mutant E495A from Phytophthora sojae complexed with UDP-GlcNAc 8SZZ ; 2.9 ; CryoEM Structure of Computationally Designed Nanocage O32-ZL4 8FEI ; 3.0 ; CryoEM structure of Conalbumin from chicken egg white (sigma-Cas 1391-06-6) 7D5K ; 3.5 ; CryoEM structure of cotton cellulose synthase isoform 7 5MW1 ; 3.8 ; cryoEM structure of crenactin double helical filament at 3.8A resolution 6ALF ; 4.1 ; CryoEM structure of crosslinked E.coli RNA polymerase elongation complex 8G16 ; 2.07 ; CryoEM structure of cytoplasmic GAPDH under 24h Oxidative Stress 3IZ3 ; 3.9 ; CryoEM structure of cytoplasmic polyhedrosis virus 8GNK ; 3.1 ; CryoEM structure of cytosol-facing, substrate-bound ratGAT1 8G13 ; 2.3 ; CryoEM structure of cytosolic GAPDH under 8h Oxidative Stress 8G14 ; 2.3 ; CryoEM structure of cytosolic GAPDH under 8h Oxidative Stress, class2 7V7B ; 4.2 ; CryoEM structure of DDB1-VprBP complex in ARM-up conformation 7V7C ; 3.7 ; CryoEM structure of DDB1-VprBP-Vpr-UNG2(94-313) complex 7V20 ; 2.86 ; CryoEM structure of del68-76/del679-688 prefusion-stabilized spike 7V23 ; 2.96 ; CryoEM structure of del68-76/del679-688 prefusion-stabilized spike in complex with the Fab of N12-9 3J27 ; 3.6 ; CryoEM structure of Dengue virus 3J2P ; 3.6 ; CryoEM structure of Dengue virus envelope protein heterotetramer 6XSS ; 3.7 ; CryoEM structure of designed helical fusion protein C4_nat_HFuse-7900 8F6R ; 4.0 ; CryoEM structure of designed modular protein oligomer C6-79 8F6Q ; 3.6 ; CryoEM structure of designed modular protein oligomer C8-71 8SB4 ; 3.6 ; CryoEM structure of DH270.1-CH848.10.17 8SB3 ; 4.1 ; CryoEM structure of DH270.2-CH848.10.17 8SAY ; 3.4 ; CryoEM structure of DH270.3-CH848.10.17 8SAU ; 3.3 ; CryoEM structure of DH270.4-CH848.10.17 8SAS ; 4.0 ; CryoEM structure of DH270.5-CH848.10.17 8SAQ ; 3.9 ; CryoEM structure of DH270.6-CH848.0526.25 8SAR ; 3.82 ; CryoEM structure of DH270.6-CH848.10.17 8SB5 ; 3.9 ; CryoEM structure of DH270.I1.6-CH848.10.17 8SB2 ; 3.5 ; CryoEM structure of DH270.I2-CH848.10.17 8SB1 ; 4.3 ; CryoEM structure of DH270.I3-CH848.10.17 8SB0 ; 4.2 ; CryoEM structure of DH270.I4.6-CH848.10.17 8SAZ ; 3.9 ; CryoEM structure of DH270.I5.6-CH848.10.17 8SAX ; 4.0 ; CryoEM structure of DH270.UCA-CH848.10.17DT 8SAW ; 3.3 ; CryoEM structure of DH270.UCA.G57R-CH848.10.17DT 8A0E ; 2.8 ; CryoEM structure of DHS-eIF5A1 complex 7NIQ ; 4.3 ; CryoEM structure of disease related M854K MDA5-dsRNA filament in complex with ADP-AlF4(Major class) 7NIC ; 4.3 ; CryoEM structure of disease related M854K MDA5-dsRNA filament in complex with ADP-AlF4(minor class) 7BKP ; 2.8 ; CryoEM structure of disease related M854K MDA5-dsRNA filament in complex with ATP 7OPL ; 4.12 ; CryoEM structure of DNA Polymerase alpha - primase bound to SARS CoV nsp1 7K19 ; 4.3 ; CryoEM structure of DNA-PK catalytic subunit complexed with DNA (Complex I) 7K1B ; 4.3 ; CryoEM structure of DNA-PK catalytic subunit complexed with DNA (Complex II) 7SU3 ; 3.3 ; CryoEM structure of DNA-PK complex VII 7SUD ; 3.6 ; CryoEM structure of DNA-PK complex VIII 7X7P ; 7.02 ; CryoEM structure of dsDNA-RuvB-RuvA domain3 complex 5ADX ; 4.0 ; CryoEM structure of dynactin complex at 4.0 angstrom resolution 6XAS ; 3.8 ; CryoEM Structure of E. coli Rho-dependent Transcription Pre-termination Complex 6XAV ; 7.7 ; CryoEM Structure of E. coli Rho-dependent Transcription Pre-termination Complex bound with NusG 7UWE ; 2.9 ; CryoEM Structure of E. coli Transcription-Coupled Ribonucleotide Excision Repair (TC-RER) complex 7UWH ; 3.1 ; CryoEM Structure of E. coli Transcription-Coupled Ribonucleotide Excision Repair (TC-RER) complex bound to ribonucleotide substrate 6ASX ; 3.8 ; CryoEM structure of E.coli his pause elongation complex 6BJS ; 5.5 ; CryoEM structure of E.coli his pause elongation complex without pause hairpin 6ALH ; 4.4 ; CryoEM structure of E.coli RNA polymerase elongation complex 7PYJ ; 4.2 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA (NusA elongation complex in less-swiveled conformation) 7PYK ; 4.1 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA (NusA elongation complex in more-swiveled conformation) 7PY3 ; 3.8 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA (the consensus NusA-EC) 7PY6 ; 4.1 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA and NusG (NusA and NusG elongation complex in less-swiveled conformation) 7PY7 ; 4.1 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA and NusG (NusA and NusG elongation complex in more-swiveled conformation) 7PY5 ; 3.9 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusA and NusG (the consensus NusA-NusG-EC) 7PY8 ; 3.8 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusG (NusG-EC in less-swiveled conformation) 7PY0 ; 4.5 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusG (NusG-EC in more-swiveled conformation) 7PY1 ; 3.8 ; CryoEM structure of E.coli RNA polymerase elongation complex bound to NusG (the consensus NusG-EC) 6C6U ; 3.7 ; CryoEM structure of E.coli RNA polymerase elongation complex bound with NusG 6C6S ; 3.7 ; CryoEM structure of E.coli RNA polymerase elongation complex bound with RfaH 6C6T ; 3.5 ; CryoEM structure of E.coli RNA polymerase elongation complex bound with RfaH 6FLQ ; 3.6 ; CryoEM structure of E.coli RNA polymerase paused elongation complex bound to NusA 6FLP ; 4.1 ; CryoEM structure of E.coli RNA polymerase paused elongation complex without RNA hairpin bound to NusA 8FVR ; 2.42 ; CryoEM structure of E.coli transcription elongation complex 8FVW ; 2.1 ; CryoEM structure of E.coli transcription elongation complex bound to ppGpp 6XO4 ; 4.2 ; CryoEM structure of Eastern Equine Encephalitis (EEEV) VLP 6XOB ; 8.5 ; CryoEM structure of Eastern Equine Encephalitis (EEEV) VLP with Fab EEEV-143. 7Q4W ; 3.78 ; CryoEM structure of electron bifurcating Fe-Fe hydrogenase HydABC complex A. woodii in the oxidised state 7LQ6 ; 3.28 ; CryoEM structure of Escherichia coli PBP1b 6JBQ ; 4.02 ; CryoEM structure of Escherichia coli sigmaE transcription initiation complex containing 5nt of RNA 5ZDH ; 3.2 ; CryoEM structure of ETEC Pilotin-Secretin AspS-GspD complex 8B6Z ; 2.9 ; CryoEM Structure of Extended eEF1A bound to the Ribosome in the Classical Pre State 5NED ; 3.1 ; CryoEM Structure of Foot and Mouth Disease Virus O PanAsia 5NEJ ; 3.1 ; CryoEM Structure of Foot and Mouth Disease Virus O1 Manisa 7VWX ; 7.6 ; CryoEM structure of football-shaped GroEL:ES2 with RuBisCO 7DYS ; 3.18 ; CryoEM structure of full length mouse TRPML2 7UL6 ; 3.73 ; CryoEM structure of full-length dimeric ClbP 7MTR ; 3.3 ; CryoEM Structure of Full-Length mGlu2 Bound to Ago-PAM ADX55164 and Glutamate 7MTQ ; 3.65 ; CryoEM Structure of Full-Length mGlu2 in Inactive-State Bound to Antagonist LY341495 6WCZ ; 4.0 ; CryoEM structure of full-length ZIKV NS5-hSTAT2 complex 7E0F ; 3.02 ; CryoEM structure of G51D alpha-synuclein amyloid fibril 6W2Y ; 3.2 ; CryoEM Structure of GABAB1b Homodimer 8VY9 ; 2.88 ; CryoEM structure of Ggust-coupled TAS2R14 with cholesterol and an intracellular tastant 8JGG ; 3.0 ; CryoEM structure of Gi-coupled MRGPRX1 with peptide agonist BAM8-22 8JGB ; 2.84 ; CryoEM structure of Gi-coupled MRGPRX1 with peptide agonist CNF-Tx2 7S8M ; 2.54 ; CryoEM structure of Gi-coupled MRGPRX2 with peptide agonist Cortistatin-14 7S8O ; 2.58 ; CryoEM structure of Gi-coupled MRGPRX2 with small molecule agonist (R)-Zinc-3573 8VY7 ; 2.68 ; CryoEM structure of Gi-coupled TAS2R14 with cholesterol and an intracellular tastant 6XEV ; 3.5 ; CryoEM structure of GIRK2-PIP2/CHS - G protein-gated inwardly rectifying potassium channel GIRK2 with modulators cholesteryl hemisuccinate and PIP2 6XEU ; 3.2 ; CryoEM structure of GIRK2PIP2* - G protein-gated inwardly rectifying potassium channel GIRK2 with PIP2 8HHO ; 3.2 ; cryoEM structure of glutamate dehydrogenase from Thermococcus profundus in complex with NADP 8HIQ ; 3.2 ; cryoEM structure of glutamate dehydrogenase from Thermococcus profundus in complex with NADP 8HIZ ; 3.08 ; cryoEM structure of glutamate dehydrogenase from Thermococcus profundus in complex with NADP 8HJ3 ; 3.29 ; cryoEM structure of glutamate dehydrogenase from Thermococcus profundus in complex with NADP 8HJ9 ; 3.12 ; cryoEM structure of glutamate dehydrogenase from Thermococcus profundus in complex with NADP 8OWN ; 3.26 ; CryoEM structure of glutamate dehydrogenase isoform 2 from Arabidopsis thaliana in apo-form 7UM5 ; 2.73 ; CryoEM structure of Go-coupled 5-HT5AR in complex with 5-CT 7UM6 ; 2.79 ; CryoEM structure of Go-coupled 5-HT5AR in complex with Lisuride 7UM7 ; 2.75 ; CryoEM structure of Go-coupled 5-HT5AR in complex with Methylergometrine 8FN1 ; 2.88 ; CryoEM structure of Go-coupled NTSR1 8FN0 ; 2.89 ; CryoEM structure of Go-coupled NTSR1 with a biased allosteric modulator 7D7D ; 4.5 ; CryoEM structure of gp45-dependent transcription activation complex 7D7C ; 3.6 ; CryoEM structure of gp55-dependent RNA polymerase-promoter open complex 8DWH ; 3.25 ; CryoEM structure of Gq-coupled MRGPRX1 with ligand Compound-16 8DWC ; 2.87 ; CryoEM structure of Gq-coupled MRGPRX1 with peptide agonist BAM8-22 8JGF ; 2.7 ; CryoEM structure of Gq-coupled MRGPRX1 with peptide agonist BAM8-22 8DWG ; 2.71 ; CryoEM structure of Gq-coupled MRGPRX1 with peptide ligand BAM8-22 and positive allosteric modulator ML382 7S8L ; 2.45 ; CryoEM structure of Gq-coupled MRGPRX2 with peptide agonist Cortistatin-14 7S8N ; 2.9 ; CryoEM structure of Gq-coupled MRGPRX2 with small molecule agonist (R)-Zinc-3573 7S8P ; 2.6 ; CryoEM structure of Gq-coupled MRGPRX4 with small molecule agonist MS47134 8BA8 ; 3.4 ; CryoEM structure of GroEL-ADP.BeF3-Rubisco. 8BA9 ; 3.7 ; CryoEM structure of GroEL-GroES-ADP.AlF3-Rubisco. 8EFP ; 3.8 ; CryoEM structure of GSDMB in complex with shigella IpaH7.8 8ET1 ; 4.48 ; CryoEM structure of GSDMB pore without transmembrane beta-barrel 5NI1 ; 3.2 ; CryoEM structure of haemoglobin at 3.2 A determined with the Volta phase plate 8DBZ ; 4.1 ; CryoEM structure of Hantavirus ANDV Gn(H) protein complex with 2Fabs ANDV-5 and ANDV-34 3J2V ; 3.5 ; CryoEM structure of HBV core 6NSJ ; 2.7 ; CryoEM structure of Helicobacter pylori urea channel in closed state 6NSK ; 2.7 ; CryoEM structure of Helicobacter pylori urea channel in open state. 8HC1 ; 2.3 ; CryoEM structure of Helicobacter pylori UreFD/urease complex 6CGR ; 4.2 ; CryoEM structure of herpes simplex virus 1 capsid with associated tegument protein complexes. 6U8Q ; 4.67 ; CryoEM structure of HIV-1 cleaved synaptic complex (CSC) intasome 6VDK ; 4.5 ; CryoEM structure of HIV-1 conserved Intasome Core 6ALG ; 3.7 ; CryoEM structure of HK022 Nun - E.coli RNA polymerase elongation complex 8ESA ; 3.4 ; CryoEM structure of HLA-A2 bound to MAGEA4 (230-239) peptide 8ESB ; 3.12 ; CryoEM structure of HLA-A2 bound to MAGEA8 (232-241) peptide 8FJA ; 3.0 ; CryoEM structure of HLA-A2 MAGEA4 (230-239) in complex with REGN6972 Fab 8FJB ; 3.06 ; CryoEM structure of HLA-A2 MAGEA4 (286-294) in complex with H2aM31345N Fab 6Z3Y ; 3.51 ; CryoEM structure of horse sodium/proton exchanger NHE9 in an inward-facing conformation 6Z3Z ; 3.19 ; CryoEM structure of horse sodium/proton exchanger NHE9 without C-terminal regulatory domain in an inward-facing conformation 8HNV ; 3.1 ; CryoEM structure of HpaCas9-sgRNA-dsDNA in the presence of AcrIIC4 6VJZ ; 4.3 ; CryoEM structure of Hrd1-Usa1/Der1/Hrd3 complex of the expected topology 6VK0 ; 4.1 ; CryoEM structure of Hrd1-Usa1/Der1/Hrd3 of the flipped topology 6VK1 ; 3.9 ; CryoEM structure of Hrd1/Hrd3 part from Hrd1-Usa1/Der1/Hrd3 complex 6VK3 ; 3.7 ; CryoEM structure of Hrd3/Yos9 complex 7ZR0 ; 3.4 ; CryoEM structure of HSP90-CDC37-BRAF(V600E) complex. 7ZR5 ; 3.9 ; CryoEM structure of HSP90-CDC37-BRAF(V600E)-PP5(closed) complex 7ZR6 ; 4.2 ; CryoEM structure of HSP90-CDC37-BRAF(V600E)-PP5(open) complex 8FWK ; 3.5 ; CryoEM structure of Human ABCB6 Transporter 7WNZ ; 3.4 ; CryoEM structure of human alpha-synuclein A53T fibril 7WO0 ; 2.7 ; CryoEM structure of human alpha-synuclein A53T fibril induced by calcium ions 6UR8 ; 3.71 ; CryoEM structure of human alpha4beta2 nicotinic acetylcholine receptor in complex with varenicline 6USF ; 3.87 ; CryoEM structure of human alpha4beta2 nicotinic acetylcholine receptor with varenicline in complex with anti-BRIL synthetic antibody BAK5 6UHC ; 3.9 ; CryoEM structure of human Arp2/3 complex with bound NPFs 6XTY ; 6.77 ; CryoEM structure of human CMG bound to AND-1 (CMGA) 6XTX ; 3.29 ; CryoEM structure of human CMG bound to ATPgammaS and DNA 8T9A ; 3.17 ; CryoEM structure of human DDB1-DCAF12 in complex with MAGEA3 7OZI ; 3.73 ; CryoEM structure of human enterovirus 70 A-particle 7OZJ ; 4.29 ; CryoEM structure of human enterovirus 70 empty particle 7OZK ; 2.31 ; CryoEM structure of human enterovirus 70 in complex with Pleconaril 7OZL ; 2.74 ; CryoEM structure of human enterovirus 70 in complex with WIN51711 7OPX ; 2.63 ; CryoEM structure of human enterovirus 70 native virion 6CS4 ; 2.73 ; CryoEM structure of human enterovirus D68 A-particle (pH 5.5 and 33 degrees Celsius) 6CS6 ; 3.25 ; CryoEM structure of human enterovirus D68 A-particle (pH 5.5 and room temperature) 6CRS ; 3.24 ; CryoEM structure of human enterovirus D68 A-particle (pH 7.2 and 4 degrees Celsius) 6CRP ; 3.24 ; CryoEM structure of human enterovirus D68 abortive product 1 (pH 7.2 and 4 degrees Celsius) 6CS5 ; 3.24 ; CryoEM structure of human enterovirus D68 abortive product 2 (pH 7.2 and 4 degrees Celsius) 6CV3 ; 3.56 ; CryoEM structure of human enterovirus D68 emptied particle 6CV4 ; 3.03 ; CryoEM structure of human enterovirus D68 emptied particle (after incubation with low molecular weight heparin) 6CSH ; 2.9 ; CryoEM structure of human enterovirus D68 emptied particle (pH 5.5 and 33 degrees Celsius) 6CSA ; 3.75 ; CryoEM structure of human enterovirus D68 emptied particle (pH 5.5 and room temperature) 6CRU ; 3.32 ; CryoEM structure of human enterovirus D68 emptied particle (pH 7.2 and 4 degrees Celsius) 6MZI ; 3.46 ; CryoEM structure of human enterovirus D68 expanded 1 particle (pH 6.5, 4 degrees Celsius, 3 min) 6CS3 ; 3.31 ; CryoEM structure of human enterovirus D68 expanded 1 particle (pH 7.2 and 4 degrees Celsius) 6CSG ; 2.17 ; CryoEM structure of human enterovirus D68 full native virion 6CRR ; 3.24 ; CryoEM structure of human enterovirus D68 full native virion (pH 7.2 and 4 degrees Celsius) 6CV1 ; 2.76 ; CryoEM structure of human enterovirus D68 full particle (after incubation with heparin-derived hexasaccharide) 6CV5 ; 2.79 ; CryoEM structure of human enterovirus D68 full particle (after incubation with low molecular weight heparin) 6CV2 ; 2.86 ; CryoEM structure of human enterovirus D68 full virion 6CVB ; 2.43 ; CryoEM structure of human enterovirus D68 in complex with 6'-sialyl-N-acetyllactosamine 6HUK ; 3.69 ; CryoEM structure of human full-length alpha1beta3gamma2L GABA(A)R in complex with bicuculline and megabody Mb38. 6HUP ; 3.58 ; CryoEM structure of human full-length alpha1beta3gamma2L GABA(A)R in complex with diazepam (Valium), GABA and megabody Mb38. 6HUG ; 3.1 ; CryoEM structure of human full-length alpha1beta3gamma2L GABA(A)R in complex with picrotoxin and megabody Mb38. 6HUO ; 3.26 ; CryoEM structure of human full-length heteromeric alpha1beta3gamma2L GABA(A)R in complex with alprazolam (Xanax), GABA and megabody Mb38. 6HUJ ; 3.04 ; CryoEM structure of human full-length heteromeric alpha1beta3gamma2L GABA(A)R in complex with picrotoxin, GABA and megabody Mb38. 7D8X ; 2.6 ; CryoEM structure of human gamma-secretase in complex with E2012 and L685458 7W6N ; 3.4 ; CryoEM structure of human KChIP1-Kv4.3 complex 7W6T ; 3.85 ; CryoEM structure of human KChIP1-Kv4.3-DPP6 complex 7W6S ; 2.8 ; CryoEM structure of human KChIP2-Kv4.3 complex 7F0J ; 2.9 ; CryoEM structure of human Kv4.2 7E8B ; 4.2 ; CryoEM structure of human Kv4.2-DPP6S complex 7E89 ; 4.0 ; CryoEM structure of human Kv4.2-DPP6S complex, extracellular region 7E8H ; 4.5 ; CryoEM structure of human Kv4.2-DPP6S-KChIP1 complex 7E8G ; 4.5 ; CryoEM structure of human Kv4.2-DPP6S-KChIP1 complex, extracellular region 7E8E ; 3.9 ; CryoEM structure of human Kv4.2-DPP6S-KChIP1 complex, transmembrane and intracellular region 7E84 ; 3.1 ; CryoEM structure of human Kv4.2-KChIP1 complex 7F3F ; 3.1 ; CryoEM structure of human Kv4.2-KChIP1 complex 7W3Y ; 3.0 ; CryoEM structure of human Kv4.3 7ULW ; 3.1 ; CryoEM structure of human LACTB filament 7WLI ; 3.3 ; CryoEM structure of human low-voltage activated T-type calcium channel CaV3.3 (apo) 7WLJ ; 3.9 ; CryoEM structure of human low-voltage activated T-type calcium channel Cav3.3 in complex with mibefradil (MIB) 7WLK ; 3.6 ; CryoEM structure of human low-voltage activated T-type calcium channel Cav3.3 in complex with Otilonium Bromide(OB) 7WLL ; 3.6 ; CryoEM structure of human low-voltage activated T-type calcium channel Cav3.3 in complex with pimozide(PMZ) 8D9K ; 3.72 ; CryoEM structure of human METTL1-WDR4 in complex with Lys-tRNA 8EG0 ; 3.53 ; CryoEM structure of human METTL1-WDR4 in complex with Lys-tRNA and SAH 8D9L ; 4.04 ; CryoEM structure of human METTL1-WDR4 in complex with Lys-tRNA and SAM 7MXO ; 3.47 ; CryoEM structure of human NKCC1 7N3N ; 3.33 ; CryoEM structure of human NKCC1 state Fu-I 7R1Y ; 3.0 ; cryoEM structure of human Nup155 (residues 19-981) 8D1B ; 3.57 ; CryoEM structure of human orphan GPCR GPR179 in complex with extracellular matrix protein pikachurin 6M1H ; 3.6 ; CryoEM structure of human PAC1 receptor in complex with maxadilan 6M1I ; 3.5 ; CryoEM structure of human PAC1 receptor in complex with PACAP38 8GTR ; 3.91 ; CryoEM structure of human Pannexin isoform 3 8GTS ; 3.87 ; CryoEM structure of human Pannexin1 with R217H congenital mutation. 6T9O ; 3.39 ; CryoEM structure of human polycystin-2/PKD2 in UDM supplemented with PI(3,5)P2 6T9N ; 2.96 ; CryoEM structure of human polycystin-2/PKD2 in UDM supplemented with PI(4,5)P2 6XOU ; 4.0 ; CryoEM structure of human presequence protease in open state 6XOW ; 4.6 ; CryoEM structure of human presequence protease in partial close state 2, induced by presequence of citrate synthase 6XOV ; 3.3 ; CryoEM structure of human presequence protease in partial closed state 1 6XOS ; 3.7 ; CryoEM structure of human presequence protease in partial open state 1 6XOT ; 3.9 ; CryoEM structure of human presequence protease in partial open state 2 7Y5Z ; 3.4 ; CryoEM structure of human PS2-containing gamma-secretase 5NP7 ; 4.2 ; CryoEM structure of Human Rad51 on single-stranded DNA to 4.2A resolution. 8OQ6 ; 3.21 ; CryoEM structure of human rho1 GABAA receptor apo state 8OP9 ; 3.36 ; CryoEM structure of human rho1 GABAA receptor in complex with GABA 8OQA ; 2.9 ; CryoEM structure of human rho1 GABAA receptor in complex with GABA and picrotoxin 8OQ7 ; 2.2 ; CryoEM structure of human rho1 GABAA receptor in complex with inhibitor TPMPA 8OQ8 ; 2.9 ; CryoEM structure of human rho1 GABAA receptor in complex with pore blocker picrotoxin 8CT1 ; 4.8 ; CryoEM structure of human S-OPA1 assembled on lipid membrane in membrane-adjacent state 8CT9 ; 6.8 ; CryoEM structure of human S-OPA1 assembled on lipid membrane in membrane-distal state 6CAA ; 3.9 ; CryoEM structure of human SLC4A4 sodium-coupled acid-base transporter NBCe1 8DQL ; 3.0 ; CryoEM structure of IglD 7K1J ; 3.9 ; CryoEM structure of inactivated-form DNA-PK (Complex III) 7K1K ; 4.1 ; CryoEM structure of inactivated-form DNA-PK (Complex IV) 7K1N ; 3.9 ; CryoEM structure of inactivated-form DNA-PK (Complex V) 7K11 ; 3.21 ; CryoEM structure of inactivated-form FATKIN domain of DNA-PK 6W2X ; 3.6 ; CryoEM Structure of Inactive GABAB Heterodimer 7UL3 ; 3.0 ; CryoEM Structure of Inactive H2R Bound to Famotidine, Nb6M, and NabFab 7UL4 ; 2.8 ; CryoEM Structure of Inactive MOR Bound to Alvimopan and Mb6 7UL2 ; 2.4 ; CryoEM Structure of Inactive NTSR1 Bound to SR48692 and Nb6 7UL5 ; 3.1 ; CryoEM Structure of Inactive SSTR2 bound to Nb6 8DIS ; 2.62 ; CryoEM structure of Influenza A virus A/Melbourne/1/1946 (H1N1) hemagglutinin bound to CR6261 Fab 8DIM ; 2.62 ; CryoEM structure of Influenza A virus A/Ohio/09/2015 hemagglutinin bound to CR6261 Fab 6XGC ; 4.1 ; CryoEM structure of influenza hemagglutinin A/Michigan/45/2015 in complex with cyno antibody 1C4 6WZT ; 4.7 ; CryoEM structure of influenza hemagglutinin A/Victoria/361/2011 in complex with cyno antibody 3B10 8AV6 ; 4.68 ; CryoEM structure of INO80 core nucleosome complex in closed grappler conformation 6FHS ; 3.754 ; CryoEM Structure of INO80core 8VC1 ; 2.85 ; CryoEM structure of insect gustatory receptor BmGr9 8VC2 ; 3.98 ; CryoEM structure of insect gustatory receptor BmGr9 in the presence of fructose 8DK1 ; 2.95 ; CryoEM structure of JetABC (head construct) from Pseudomonas aeruginosa PA14 7TIL ; 3.7 ; CryoEM structure of JetD from Pseudomonas aeruginosa 8FEG ; 2.54 ; CryoEM structure of Kappa Opioid Receptor bound to a semi-peptide and Gi1 7RXC ; 3.2 ; CryoEM structure of KDELR with Legobody 7LC3 ; 3.23 ; CryoEM Structure of KdpFABC in E1-ATP state 7Y3T ; 3.9 ; CryoEM structure of Klebsiella phage Kp7 icosahedral head 7Y22 ; 4.0 ; CryoEM structure of Klebsiella phage Kp7 tail complex applied with C6 symmetry 7Y5S ; 3.0 ; CryoEM structure of Klebsiella phage Kp7 type I tail fiber gp51 in vitro 7XYC ; 3.8 ; CryoEM structure of Klebsiella phage Kp7 type II tail fiber gp52 in vitro 7Y23 ; 3.2 ; CryoEM structure of Klebsiella phage Kp9 icosahedral head 7Y1C ; 3.13 ; CryoEM structure of Klebsiella phage Kp9 tail complex applied with C6 symmetry 8HCN ; 2.7 ; CryoEM Structure of Klebsiella pneumoniae UreD/urease complex 7ZVT ; 2.74 ; CryoEM structure of Ku heterodimer bound to DNA 7ZWA ; 2.8 ; CryoEM structure of Ku heterodimer bound to DNA and PAXX 7ZYG ; 2.68 ; CryoEM structure of Ku heterodimer bound to DNA, PAXX and XLF 7UI6 ; 3.7 ; CryoEM structure of LARGE1 from C1 reconstruction 7UI7 ; 3.4 ; CryoEM structure of LARGE1 from C2 reconstruction 6N4V ; 3.0 ; CryoEM structure of Leviviridae PP7 WT coat protein dimer capsid (PP7PP7-WT) 7KHF ; 3.54 ; CryoEM structure of LILRB1 D3D4 domain-inserted antibody MDB1 Fab in complex with Plasmodium RIFIN (PF3D7_1373400) V2 domain 8ERL ; 3.9 ; CryoEM Structure of Lipoprotein Lipase Dimer 7WUU ; 8.3 ; CryoEM structure of loose sNS1 tetramer 8UGQ ; 3.17 ; CryoEM Structure of Maize Streak Virus (MSV) - Geminivirus 7QUN ; 2.1 ; CryoEM structure of mammalian AAP in complex with Meropenem 7PX8 ; 3.27 ; CryoEM structure of mammalian acylaminoacyl-peptidase 7DYR ; 2.28 ; CryoEM Structure of Mannose Transporter ManYZ and Microcin E492 (MceA) complex 7LIH ; 4.4 ; CryoEM structure of Mayaro virus icosahedral subunit 7BKQ ; 3.4 ; CryoEM structure of MDA5-dsRNA filament in complex with ADP with 92-degree helical twist 6ZML ; 3.4 ; CryoEM Structure of Merkel Cell Polyomavirus Virus-like Particle 7S4H ; 2.14 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO in a native lipid nanodisc at 2.14 Angstrom resolution 7S4J ; 2.16 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO in a native lipid nanodisc at 2.16 Angstrom resolution 7S4I ; 2.26 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO in a native lipid nanodisc at 2.26 Angstrom resolution 7S4K ; 2.36 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO in a native lipid nanodisc at 2.34 Angstrom resolution 7T4P ; 3.62 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO treated with potassium cyanide and copper in a native lipid nanodisc at 3.62 Angstrom resolution 7T4O ; 3.65 ; CryoEM structure of Methylococcus capsulatus (Bath) pMMO treated with potassium cyanide in a native lipid nanodisc at 3.65 Angstrom resolution 7S4M ; 2.42 ; CryoEM structure of Methylocystis sp. str. Rockwell pMMO in a POPC nanodisc at 2.42 Angstrom resolution 7S4L ; 2.46 ; CryoEM structure of Methylotuvimicrobium alcaliphilum 20Z pMMO in a POPC nanodisc at 2.46 Angstrom resolution 8TAN ; 3.05 ; CryoEM structure of MFRV-VILP bound to IGF1Rzip 7MTS ; 3.2 ; CryoEM Structure of mGlu2 - Gi Complex 6AV9 ; 3.9 ; CryoEM structure of Mical Oxidized Actin (Class 1) 6AVB ; 3.9 ; CryoEM structure of Mical Oxidized Actin (Class 1) 8E9X ; 2.7 ; CryoEM structure of miniGo-coupled hM4Di in complex with DCZ 8E9Y ; 2.79 ; CryoEM structure of miniGq-coupled hM3Dq in complex with CNO 8E9W ; 2.69 ; CryoEM structure of miniGq-coupled hM3Dq in complex with DCZ 8E9Z ; 2.69 ; CryoEM structure of miniGq-coupled hM3R in complex with Iperoxo 8EA0 ; 2.56 ; CryoEM structure of miniGq-coupled hM3R in complex with iperoxo (local refinement) 7ZM7 ; 2.77 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (inhibited by DDM) 7ZM8 ; 2.76 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (inhibited by DDM) - membrane arm 7ZMG ; 2.44 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (state 1) 7ZMH ; 2.47 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (state 1) - membrane arm 7ZMB ; 2.75 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (state 2) 7ZME ; 2.83 ; CryoEM structure of mitochondrial complex I from Chaetomium thermophilum (state 2) - membrane arm 6RTK ; 3.47 ; CryoEM structure of modified Turnip Yellows Virus devoid of minor capsid protein readthrough domain 7S6D ; 3.1 ; CryoEM structure of modular PKS holo-Lsd14 bound to antibody fragment 1B2, composite structure 7S6C ; 3.1 ; CryoEM structure of modular PKS holo-Lsd14 stalled at the condensation step and bound to antibody fragment 1B2, composite structure 7MEM ; 3.2 ; CryoEM structure of monoclonal Fab 045-09 2B05 binding the lateral patch of influenza virus H1 HA 6WXR ; 3.2 ; CryoEM structure of mouse DUOX1-DUOXA1 complex in the absence of NADPH 6WXU ; 2.7 ; CryoEM structure of mouse DUOX1-DUOXA1 complex in the dimer-of-dimer state 6WXV ; 3.3 ; CryoEM structure of mouse DUOX1-DUOXA1 complex in the presence of NADPH 6C14 ; 4.5 ; CryoEM structure of mouse PCDH15-1EC-LHFPL5 complex 6C13 ; 11.33 ; CryoEM structure of mouse PCDH15-4EC-LHFPL5 complex 7T2H ; 3.2 ; CryoEM structure of mu-opioid receptor - Gi protein complex bound to lofentanil (LFT) 7T2G ; 2.5 ; CryoEM structure of mu-opioid receptor - Gi protein complex bound to mitragynine pseudoindoxyl (MP) 6IIC ; 3.3 ; CryoEM structure of Mud Crab Dicistrovirus 6SB5 ; 5.0 ; CryoEM structure of murine perforin-2 ectodomain in a pore form 6SB3 ; 3.5 ; CryoEM structure of murine perforin-2 ectodomain in a pre-pore form 7BES ; 2.85 ; CryoEM structure of Mycobacterium tuberculosis UMP Kinase (UMPK) in complex with UDP and UTP 6XLY ; 3.1 ; CRYOEM STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS ZINC METALLOPROTEASE ZMP1 IN OPEN STATE 6BNQ ; 5.5 ; CryoEM structure of Myosin VI-Actin complex in the ADP state 6BNW ; 5.5 ; CryoEM structure of Myosin VI-Actin complex in the ADP state, backbone-averaged with side chains truncated to alanine 6BNP ; 4.6 ; CryoEM structure of MyosinVI-actin complex in the rigor (nucleotide-free) state 6BNV ; 4.6 ; CryoEM structure of MyosinVI-actin complex in the rigor (nucleotide-free) state, backbone-averaged with side chains truncated to alanine 8TJ2 ; 3.0 ; CryoEM structure of Myxococcus xanthus type IV pilus 6N4Q ; 3.6 ; CryoEM structure of Nav1.7 VSD2 (actived state) in complex with the gating modifier toxin ProTx2 6N4R ; 4.2 ; CryoEM structure of Nav1.7 VSD2 (deactived state) in complex with the gating modifier toxin ProTx2 7MY3 ; 2.9 ; CryoEM structure of neutralizing nanobody Nb12 in complex with SARS-CoV2 spike 7MY2 ; 2.65 ; CryoEM structure of neutralizing nanobody Nb30 in complex with SARS-CoV2 spike 8CRS ; 2.04 ; CryoEM Structure of nitrogenase MoFe-protein in detergent 7SMP ; 3.28 ; CryoEM structure of NKCC1 Bu-I 8ETR ; 3.5 ; CryoEM Structure of NLRP3 NACHT domain in complex with G2394 7MK2 ; 3.8 ; CryoEM Structure of NPR1 8G15 ; 2.07 ; CryoEM structure of nuclear GAPDH under 24h Oxidative Stress 8G12 ; 2.17 ; CryoEM structure of nuclear GAPDH under 8h Oxidative Stress 8BA7 ; 4.4 ; CryoEM structure of nucleotide-free GroEL-Rubisco. 7W88 ; 3.5 ; CryoEM structure of open form ZmRDR2 at 3.5 Angstroms resolution 8DBX ; 1.92 ; CryoEM structure of partially oxidized MoFe-protein on ultrathin carbon 7EV9 ; 2.6 ; cryoEM structure of particulate methane monooxygenase associated with Cu(I) 8GQY ; 3.4 ; CryoEM structure of pentameric MotA from Aquifex aeolicus 8TU6 ; 3.12 ; CryoEM structure of PI3Kalpha 6OLJ ; 7.8 ; CryoEM structure of PilB from Geobacter metallireducens: C2ccocco conformation 6OLM ; 4.4 ; CryoEM structure of PilT4 from Geobacter metallireducens with added ATP: C6cccccc conformation 6OLL ; 4.1 ; CryoEM structure of PilT4 from Geobacter metallireducens without adding nucleotide: C2oocooc conformation 6OLK ; 4.0 ; CryoEM structure of PilT4 from Geobacter metallireducens without adding nucleotide: C3ocococ conformation 7T8T ; 3.68 ; CryoEM structure of PLCg1 8ES9 ; 3.25 ; CryoEM structure of PN45428 TCR-CD3 in complex with HLA-A2 MAGEA4 8ES7 ; 3.04 ; CryoEM structure of PN45545 TCR-CD3 complex 8ES8 ; 2.65 ; CryoEM structure of PN45545 TCR-CD3 in complex with HLA-A2 MAGEA4 (230-239) 1NN8 ; 15.0 ; CryoEM structure of poliovirus receptor bound to poliovirus 3EPC ; 8.0 ; CryoEM structure of poliovirus receptor bound to poliovirus type 1 3EPF ; 9.0 ; CryoEM structure of poliovirus receptor bound to poliovirus type 2 3EPD ; 9.0 ; CryoEM structure of poliovirus receptor bound to poliovirus type 3 5MKF ; 4.2 ; cryoEM Structure of Polycystin-2 in complex with calcium and lipids 5MKE ; 4.3 ; cryoEM Structure of Polycystin-2 in complex with cations and lipids 6RD7 ; 2.73 ; CryoEM structure of Polytomella F-ATP synthase, c-ring position 1, focussed refinement of Fo and peripheral stalk 6RD8 ; 3.08 ; CryoEM structure of Polytomella F-ATP synthase, c-ring position 2, focussed refinement of Fo and peripheral stalk 6RD5 ; 2.69 ; CryoEM structure of Polytomella F-ATP synthase, focussed refinement of Fo and peripheral stalk, C2 symmetry 6RD6 ; 2.75 ; CryoEM structure of Polytomella F-ATP synthase, focussed refinement of upper peripheral stalk 6RD4 ; 2.9 ; CryoEM structure of Polytomella F-ATP synthase, Full dimer, composite map 6RD9 ; 3.0 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 1, composite map 6RDB ; 2.8 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 1, focussed refinement of F1 head and rotor 6RDA ; 3.04 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 1, monomer-masked refinement 6RDC ; 3.2 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 2, composite map 6RDE ; 2.9 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 2, focussed refinement of F1 head and rotor 6RDG ; 2.9 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 3, focussed refinement of F1 head and rotor 6RDF ; 3.2 ; CryoEM structure of Polytomella F-ATP synthase, Primary rotary state 3, monomer-masked refinement 6RDH ; 3.0 ; CryoEM structure of Polytomella F-ATP synthase, Rotary substate 1A, composite map 7M05 ; 2.39 ; CryoEM structure of PRMT5 bound to covalent PBM-site inhibitor BRD-6988 7Y5T ; 2.9 ; CryoEM structure of PS1-containing gamma-secretase in complex with MRK-560 7Y5X ; 3.0 ; CryoEM structure of PS2-containing gamma-secretase treated with MRK-560 8DK2 ; 4.1 ; CryoEM structure of Pseudomonas aeruginosa PA14 JetABC in an unclamped state trapped in ATP dependent dimeric form 8DK3 ; 3.28 ; CryoEM structure of Pseudomonas aeruginosa PA14 JetC ATPase domain bound to DNA and cWHD domain of JetA 6U5K ; 3.5 ; CryoEM Structure of Pyocin R2 - postcontracted - baseplate 6U5J ; 3.5 ; CryoEM Structure of Pyocin R2 - postcontracted - collar 6U5B ; 3.5 ; CryoEM Structure of Pyocin R2 - precontracted - baseplate 6U5F ; 3.8 ; CryoEM Structure of Pyocin R2 - precontracted - collar 6U5H ; 4.0 ; CryoEM Structure of Pyocin R2 - precontracted - hub 6PYT ; 2.9 ; CryoEM Structure of Pyocin R2 - precontracted - trunk 7Y58 ; 3.8 ; CryoEM structure of QacA (D411N), an antibacterial efflux transporter from Staphylococcus aureus 8BGW ; 2.2 ; CryoEM structure of quinol-dependent Nitric Oxide Reductase (qNOR) from Alcaligenes xylosoxidans at 2.2 A resolution 8SDA ; 3.32 ; CryoEM structure of rat Kv2.1(1-598) L403A mutant in nanodiscs 8SD3 ; 2.95 ; CryoEM structure of rat Kv2.1(1-598) wild type in nanodiscs 7RXD ; 3.6 ; CryoEM structure of RBD domain of COVID-19 in complex with Legobody 5OW6 ; 4.2 ; CryoEM structure of recombinant CMV particles with Tetanus-epitope 7FDA ; 4.2 ; CryoEM Structure of Reconstituted V-ATPase, state1 8EL7 ; 2.8 ; CryoEM structure of Resistance to Inhibitors of Cholinesterase-8B (Ric-8B) in complex with G alpha s 8EL8 ; 3.2 ; CryoEM structure of Resistance to Inhibitors of Cholinesterase-8B (Ric-8B) in complex with olfactory G protein alpha olf 5W3M ; 2.26 ; CryoEM structure of rhinovirus B14 in complex with C5 Fab (33 degrees Celsius, molar ratio 1:1, full particle) 5W3O ; 3.01 ; CryoEM structure of rhinovirus B14 in complex with C5 Fab (33 degrees Celsius, molar ratio 1:3, empty particle) 5W3E ; 2.53 ; CryoEM structure of rhinovirus B14 in complex with C5 Fab (33 degrees Celsius, molar ratio 1:3, full particle) 5W3L ; 2.71 ; CryoEM structure of rhinovirus B14 in complex with C5 Fab (4 degrees Celsius, molar ratio 1:3, full particle) 7PKO ; 3.9 ; CryoEM structure of Rotavirus NSP2 6Z1F ; 2.86 ; CryoEM structure of Rubisco Activase with its substrate Rubisco from Nostoc sp. (strain PCC7120) 7X5A ; 3.01 ; CryoEM structure of RuvA-Holliday junction complex 7X7Q ; 7.02 ; CryoEM structure of RuvA-RuvB-Holliday junction complex 7CLR ; 3.5 ; CryoEM structure of S.typhimurium flagellar LP ring 6JY0 ; 3.56 ; CryoEM structure of S.typhimurium R-type straight flagellar filament made of FljB (A461V) 8J1Q ; 3.3 ; CryoEM structure of SARS CoV-2 RBD and Aptamer complex 8J26 ; 3.4 ; CryoEM structure of SARS CoV-2 RBD and Aptamer complex 7ME7 ; 3.73 ; CryoEM structure of SARS-CoV-2 RBD in complex with nanobodies Nb17 and Nb105 7MDW ; 3.58 ; CryoEM structure of SARS-CoV-2 RBD in complex with nanobodies Nb21 and Nb105 7MEJ ; 3.55 ; CryoEM structure of SARS-CoV-2 RBD in complex with nanobodies Nb21 and Nb36 7THT ; 3.42 ; CryoEM structure of SARS-CoV-2 S protein in complex with Receptor Binding Domain antibody DH1042 7N9T ; 3.18 ; CryoEM structure of SARS-CoV-2 Spike in complex with Nb17 7ZBU ; 4.31 ; CryoEM structure of SARS-CoV-2 spike monomer in complex with neutralising antibody P008_60 7N0G ; 3.02 ; CryoEm structure of SARS-CoV-2 spike protein (S-6P, 1-up) in complex with sybodies (Sb45) 7N0H ; 3.34 ; CryoEM structure of SARS-CoV-2 spike protein (S-6P, 2-up) in complex with sybodies (Sb45) 8UCQ ; 3.7 ; CryoEM structure of Sec7 autoinhibited conformation 6LN5 ; 2.8 ; CryoEM structure of SERCA2b T1032stop in E1-2Ca2+-AMPPCP (class1) 6LN6 ; 2.9 ; CryoEM structure of SERCA2b T1032stop in E1-2Ca2+-AMPPCP (class2) 6LN7 ; 2.8 ; CryoEM structure of SERCA2b T1032stop in E1-2Ca2+-AMPPCP (class3) 6LN8 ; 3.1 ; CryoEM structure of SERCA2b T1032stop in E2-BeF3- state (class1) 6LN9 ; 3.4 ; CryoEM structure of SERCA2b T1032stop in E2-BeF3- state (class2) 6LLE ; 2.9 ; CryoEM structure of SERCA2b WT in E1-2Ca2+-AMPPCP state. 6LLY ; 2.8 ; CryoEM structure of SERCA2b WT in E2-BeF3- state 6SP2 ; 3.33 ; CryoEM structure of SERINC from Drosophila melanogaster 7TDM ; 6.9 ; CryoEM Structure of sFab COP-2 Complex with human claudin-4 and Clostridium perfringens enterotoxin C-terminal domain 7TDN ; 5.0 ; CryoEM Structure of sFab COP-3 Complex with human claudin-4 and Clostridium perfringens enterotoxin C-terminal domain 7SLA ; 3.15 ; CryoEM structure of SGLT1 at 3.15 Angstrom resolution 7SL8 ; 3.4 ; CryoEM structure of SGLT1 at 3.4 A resolution 6K4Y ; 3.79 ; CryoEM structure of sigma appropriation complex 6OMF ; 3.26 ; CryoEM structure of SigmaS-transcription initiation complex with activator Crl 7PEL ; 3.34 ; CryoEM structure of simian T-cell lymphotropic virus intasome in complex with PP2A regulatory subunit B56 gamma 8T8E ; 3.3 ; cryoEM structure of Smc5/6 5mer 7SL9 ; 3.5 ; CryoEM structure of SMCT1 7WUR ; 3.5 ; CryoEM structure of sNS1 complexed with Fab5E3 7WUV ; 8.0 ; CryoEM structure of sNS1 hexamer 7T11 ; 2.7 ; CryoEM structure of somatostatin receptor 2 in complex with Octreotide and Gi3. 7T10 ; 2.5 ; CryoEM structure of somatostatin receptor 2 in complex with somatostatin-14 and Gi3 7XMS ; 2.9 ; CryoEM structure of somatostatin receptor 4 (SSTR4) in complex with Gi1 and its endogeneous ligand SST-14 7XMT ; 2.8 ; CryoEM structure of somatostatin receptor 4 (SSTR4) with Gi1 and J-2156 8OZE ; 2.91 ; cryoEM structure of SPARTA complex dimer high resolution 8OZD ; 3.89 ; cryoEM structure of SPARTA complex dimer-3 8OZC ; 4.0 ; cryoEM structure of SPARTA complex heterodimer apo 8OZ6 ; 3.97 ; cryoEM structure of SPARTA complex ligand-free 8OZI ; 3.22 ; cryoEM structure of SPARTA complex pre-NAD cleavage 8OZG ; 3.37 ; cryoEM structure of SPARTA complex Tetramer Post-NAD cleavage-1 8OZF ; 3.73 ; cryoEM structure of SPARTA complex Tetramer Post-NAD cleavage-2 7YAG ; 3.1 ; CryoEM structure of SPCA1a in E1-Ca-AMPPCP state subclass 1 7YAH ; 3.12 ; CryoEM structure of SPCA1a in E1-Ca-AMPPCP state subclass 2 7YAI ; 3.14 ; CryoEM structure of SPCA1a in E1-Ca-AMPPCP state subclass 3 7YAJ ; 3.16 ; CryoEM structure of SPCA1a in E1-Mn-AMPPCP state subclass 1 7YAM ; 3.3 ; CryoEM structure of SPCA1a in E2P state 7WUT ; 3.5 ; CryoEM structure of stable sNS1 tetramer 7JI0 ; 2.95 ; CryoEM structure of Streptococcus thermophilus SHP pheromone receptor Rgg3 in complex with SHP3 8ACB ; 2.6 ; CryoEM structure of sweet potato feathery mottle virus VLP 8ACC ; 2.9 ; CryoEM structure of sweet potato mild mottle virus VLP 6D6V ; 4.8 ; CryoEM structure of Tetrahymena telomerase with telomeric DNA at 4.8 Angstrom resolution 7TAD ; 3.6 ; CryoEM structure of the (NPR1)2-(TGA3)2 complex 8DFC ; 2.48 ; CryoEM structure of the 1:1 ADP-tetrafluoroaluminate stabilized nitrogenase complex from Azotobacter vinelandii 8DFD ; 2.12 ; CryoEM structure of the 2:1 ADP-tetrafluoroaluminate stabilized nitrogenase complex from Azotobacter vinelandii 8DN8 ; 3.7 ; CryoEM structure of the A. aeolicus WzmWzt transporter bound to 3-O-methyl-D-mannose 8DOU ; 3.54 ; CryoEM structure of the A. aeolicus WzmWzt transporter bound to ADP 8DKU ; 3.2 ; CryoEM structure of the A. aeolicus WzmWzt transporter bound to the native O antigen 8DNC ; 3.3 ; CryoEM structure of the A. aeolicus WzmWzt transporter bound to the native O antigen and ADP 8DNE ; 3.5 ; CryoEM structure of the A.aeolicus WzmWzt transporter bound to ATP 7OW8 ; 3.5 ; CryoEM structure of the ABC transporter BmrA E504A mutant in complex with ATP-Mg 7QBA ; 3.78 ; CryoEM structure of the ABC transporter NosDFY complexed with nitrous oxide reductase NosZ 6UUN ; 3.0 ; CryoEM Structure of the active Adrenomedullin 1 receptor G protein complex with adrenomedullin peptide 6UVA ; 2.3 ; CryoEM Structure of the active Adrenomedullin 2 receptor G protein complex with adrenomedullin 2 peptide 6UUS ; 2.4 ; CryoEM Structure of the active Adrenomedullin 2 receptor G protein complex with adrenomedullin peptide 7T32 ; 3.4 ; CryoEM structure of the adenosine 2A receptor-BRIL/Anti BRIL Fab complex with ZM241385 8QLO ; 2.57 ; CryoEM structure of the apo SPARTA (BabAgo/TIR-APAZ) complex 7KNT ; 3.15 ; CryoEM structure of the apo-CGRP receptor in a detergent micelle 6X8T ; 2.9 ; CryoEM structure of the apo-SrpI encapasulin complex from Synechococcus elongatus PCC 7942 6TGB ; 5.5 ; CryoEM structure of the binary DOCK2-ELMO1 complex 6WTS ; 3.3 ; CryoEM structure of the C. sordellii lethal toxin TcsL in complex with SEMA6A 7U5S ; 4.16 ; CryoEM structure of the Candida albicans Aro1 dimer 8A64 ; 4.6 ; cryoEM structure of the catalytically inactive EndoS from S. pyogenes in complex with the Fc region of immunoglobulin G1. 7SC0 ; 3.4 ; CryoEM structure of the Caveolin-1 8S complex 8B3Q ; 2.58 ; CryoEM structure of the central filamentous region of the f1 filamentous bacteriophage, consisting of the major capsid protein pVIII 7KNU ; 3.49 ; CryoEM structure of the CGRP receptor with bound CGRP peptide in a detergent micelle 8AOV ; 2.48 ; CryoEM structure of the Chikungunya virus nsP1 capping pores in complex with GTP 8AOW ; 2.7 ; CryoEM structure of the Chikungunya virus nsP1 capping pores in complex with m7GTP and SAH ligands 8AOX ; 2.8 ; CryoEM structure of the Chikungunya virus nsP1 capping pores in complex with SAM 8APX ; 3.2 ; CryoEM structure of the Chikungunya virus nsP1 capping pores in covalent complex with a 7GMP cap structure 6Z0U ; 2.9 ; CryoEM structure of the Chikungunya virus nsP1 complex 6Z0V ; 2.6 ; CryoEM structure of the Chikungunya virus nsP1 complex 6RKW ; 6.6 ; CryoEM structure of the complete E. coli DNA Gyrase complex bound to a 130 bp DNA duplex 7T0V ; 3.67 ; CryoEM structure of the crosslinked Rix7 AAA-ATPase 5U3C ; 4.6 ; CryoEM structure of the CTP synthase filament at 4.6 Angstrom resolution 8EKI ; 4.5 ; CryoEM structure of the Dsl1 complex bound to SNAREs Sec20 and Use1 7QSR ; 3.4 ; CryoEM structure of the Ectodomain of Human PLA2R 5V6P ; 4.1 ; CryoEM structure of the ERAD-associated E3 ubiquitin-protein ligase HRD1 5K0U ; 2.79 ; CryoEM structure of the full virion of a human rhinovirus C 6WHC ; 3.4 ; CryoEM Structure of the glucagon receptor with a dual-agonist peptide 8ET2 ; 4.96 ; CryoEM structure of the GSDMB pore 7T4Q ; 2.9 ; CryoEM structure of the HCMV Pentamer gH/gL/UL128/UL130/UL131A in complex with neutralizing fabs 2C12, 7I13 and 13H11 7T4S ; 3.1 ; CryoEM structure of the HCMV Pentamer gH/gL/UL128/UL130/UL131A in complex with NRP2 and neutralizing fabs 8I21 and 13H11 7T4R ; 3.3 ; CryoEM structure of the HCMV Pentamer gH/gL/UL128/UL130/UL131A in complex with THBD and neutralizing fabs MSL-109 and 13H11 7LBF ; 2.8 ; CryoEM structure of the HCMV Trimer gHgLgO in complex with human Platelet-derived growth factor receptor alpha and neutralizing fabs 13H11 and MSL-109 7LBG ; 2.6 ; CryoEM structure of the HCMV Trimer gHgLgO in complex with human Transforming growth factor beta receptor type 3 and neutralizing fabs 13H11 and MSL-109 7LBE ; 2.9 ; CryoEM structure of the HCMV Trimer gHgLgO in complex with neutralizing fabs 13H11 and MSL-109 5UOT ; 4.6 ; CryoEM structure of the helical assembly of full length MxB 8ENM ; 2.14 ; CryoEM structure of the high pH nitrogenase MoFe-protein under non-turnover conditions 8ENL ; 2.37 ; CryoEM structure of the high pH turnover-inactivated nitrogenase MoFe-protein 8T7T ; 3.2 ; CryoEM structure of the HisRS-like domain of human GCN2 8X5X ; 3.5 ; CryoEM structure of the histamine H1 receptor in apo-form 8X5Y ; 3.0 ; CryoEM structure of the histamine H1 receptor-BRIL/Anti BRIL Fab complex with astemizole 8X64 ; 3.4 ; CryoEM structure of the histamine H1 receptor-BRIL/Anti BRIL Fab complex with desloratadine 8X63 ; 3.2 ; CryoEM structure of the histamine H1 receptor-BRIL/Anti BRIL Fab complex with mepyramine 6X8M ; 2.2 ; CryoEM structure of the holo-SrpI encapsulin complex from Synechococcus elongatus PCC 7942 7TQL ; 3.2 ; CryoEM structure of the human 40S small ribosomal subunit in complex with translation initiation factors eIF1A and eIF5B. 6QVC ; 4.0 ; CryoEM structure of the human ClC-1 chloride channel, CBS state 1 6QVD ; 4.34 ; CryoEM structure of the human ClC-1 chloride channel, CBS state 2 6QVB ; 4.34 ; CryoEM structure of the human ClC-1 chloride channel, CBS state 3 6QVU ; 4.2 ; CryoEM structure of the human ClC-1 chloride channel, low pH 6QV6 ; 3.63 ; CryoEM structure of the human ClC-1 chloride channel, membrane domain 7E87 ; 3.4 ; CryoEM structure of the human Kv4.2-DPP6S complex, transmembrane and intracellular region 7E83 ; 3.1 ; CryoEM structure of the human Kv4.2-KChIP1 complex, intracellular region 7E7Z ; 3.2 ; CryoEM structure of the human Kv4.2-KChIP1 complex, transmembrane region 8AS5 ; 3.53 ; CryoEM structure of the human Nucleophosmin 1 core 5K47 ; 4.22 ; CryoEM structure of the human Polycystin-2/PKD2 TRP channel 5T2C ; 3.6 ; CryoEM structure of the human ribosome at 3.6 Angstrom resolution 7NJ0 ; 3.6 ; CryoEM structure of the human Separase-Cdk1-cyclin B1-Cks1 complex 7NJ1 ; 2.9 ; CryoEM structure of the human Separase-Securin complex 7B4L ; 3.1 ; CryoEM structure of the human sodium proton exchanger NHA2 7B4M ; 7.2 ; CryoEM structure of the human sodium proton exchanger NHA2 in nanodisc 6Z1G ; 8.2 ; CryoEM structure of the interaction between Rubisco Activase small-subunit-like (SSUL) domain with Rubisco from Nostoc sp. (strain PCC7120) 6NMC ; 4.24 ; CryoEM structure of the LbCas12a-crRNA-2xAcrVA1 complex 6NMA ; 3.38 ; CryoEM structure of the LbCas12a-crRNA-AcrVA4 complex 6NM9 ; 3.38 ; CryoEM structure of the LbCas12a-crRNA-AcrVA4 dimer 6OMV ; 3.9 ; CryoEM structure of the LbCas12a-crRNA-AcrVA4-DNA complex 5T2A ; 2.9 ; CryoEM structure of the Leishmania donovani 80S ribosome at 2.9 Angstrom resolution 7NGA ; 3.9 ; CryoEM structure of the MDA5-dsRNA filament in complex with ADP with 88-degree helical twist 6GKH ; 4.06 ; CryoEM structure of the MDA5-dsRNA filament in complex with ADP-AlF4 6GJZ ; 4.06 ; CryoEM structure of the MDA5-dsRNA filament in complex with AMPPNP 6GKM ; 3.87 ; CryoEM structure of the MDA5-dsRNA filament in complex with ATP (10 mM) 6G19 ; 3.68 ; CryoEM structure of the MDA5-dsRNA filament with 74-degree helical twist 6G1S ; 3.93 ; CryoEM structure of the MDA5-dsRNA filament with 87-degree helical twist 6H61 ; 4.02 ; CryoEM structure of the MDA5-dsRNA filament with 89 degree twist and without nucleotide 6G1X ; 3.93 ; CryoEM structure of the MDA5-dsRNA filament with 91-degree helical twist 6H66 ; 4.16 ; CryoEM structure of the MDA5-dsRNA filament with 93 degree twist and without nucleotide 5LY6 ; 4.5 ; CryoEM structure of the membrane pore complex of Pneumolysin at 4.5A 8CW4 ; 3.0 ; CryoEM structure of the N-pilus from Escherichia coli 7SWL ; 2.88 ; CryoEM structure of the N-terminal-deleted Rix7 AAA-ATPase 5JZG ; 3.16 ; CryoEM structure of the native empty particle of a human rhinovirus C 7NT5 ; 3.5 ; CryoEM structure of the Nipah virus nucleocapsid single helical turn assembly 7NT6 ; 4.3 ; CryoEM structure of the Nipah virus nucleocapsid spiral clam-shaped assembly 8DL0 ; 4.1 ; CryoEM structure of the nucleotide-free and open channel A.aeolicus WzmWzt transporter 7OFH ; 2.7 ; CryoEM structure of the outer membrane secretin pore pIV from the f1 filamentous bacteriophage. 7U1E ; 4.52 ; CryoEM structure of the pancreatic ATP-sensitive potassium channel bound to ATP with Kir6.2-CTD in the down conformation 7UAA ; 5.7 ; CryoEM structure of the pancreatic ATP-sensitive potassium channel in the ATP-bound state with Kir6.2-CTD in the up conformation 6VQR ; 2.78 ; CryoEM Structure of the PfFNT-inhibitor complex 8RFH ; 3.9 ; CryoEM structure of the plant helper NLR NRC2 in its resting state 6X87 ; 3.2 ; CryoEM structure of the Plasmodium berghei circumsporozoite protein in complex with inhibitory mouse antibody 3D11. 6VQQ ; 2.56 ; CryoEM Structure of the Plasmodium falciparum transporter PfFNT 8B3O ; 2.97 ; CryoEM structure of the pointy tip (proteins pIII/pVI/pVIII) from the f1 filamentous bacteriophage 8BR2 ; 2.9 ; CryoEM structure of the post-synaptic RAD51 nucleoprotein filament in the presence of ATP and Ca2+ 8BQ2 ; 3.8 ; CryoEM structure of the pre-synaptic RAD51 nucleoprotein filament in the presence of ATP and Ca2+ 6PK7 ; 3.1 ; cryoEM structure of the product-bound human CTP synthase 2 filament 8BSC ; 3.6 ; CryoEM structure of the RAD51 nucleoprotein filament in the presence of ADP and Ca2+ 8GYK ; 3.14 ; CryoEM structure of the RAD51_ADP filament 6XZC ; 3.37 ; CryoEM structure of the ring-shaped virulence factor EspB from Mycobacterium tuberculosis 7T3I ; 4.3 ; CryoEM structure of the Rix7 D2 Walker B mutant 8QLP ; 3.14 ; CryoEM structure of the RNA/DNA bound SPARTA (BabAgo/TIR-APAZ) tetrameric complex 8B3P ; 2.81 ; CryoEM structure of the round tip (proteins pVII/pVIII/pIX) from the f1 filamentous bacteriophage 7WCH ; 3.19 ; CryoEM structure of the SARS-CoV-2 S6P(B.1.617.2) in complex with SWA9 Fab 7WCP ; 3.01 ; CryoEM structure of the SARS-CoV-2 S6P(B.1.617.2) in complex with SWC11 Fab 6ND1 ; 4.1 ; CryoEM structure of the Sec Complex from yeast 5W7V ; 3.8 ; CryoEM structure of the segment, DLIIKGISVHI, assembled into a triple-helical fibril 6WJ3 ; 3.9 ; CryoEM structure of the SLC38A9-RagA-RagC-Ragulator complex in the post-GAP state 6WJ2 ; 3.2 ; CryoEM structure of the SLC38A9-RagA-RagC-Ragulator complex in the pre-GAP state 7QCD ; 8.0 ; CryoEM structure of the Smc5/6-holocomplex (composite structure) 7XMR ; 3.1 ; CryoEM structure of the somatostatin receptor 2 (SSTR2) in complex with Gi1 and its endogeneous peptide ligand SST-14 6PK4 ; 3.5 ; cryoEM structure of the substrate-bound human CTP synthase 2 filament 7AX3 ; 3.74 ; CryoEM structure of the super-constricted two-start dynamin 1 filament 8CUE ; 3.2 ; CryoEM structure of the T-pilus from Agrobacterium tumefaciens 6TGC ; 4.1 ; CryoEM structure of the ternary DOCK2-ELMO1-RAC1 complex. 7UXU ; 2.74 ; CryoEM structure of the TIR domain from AbTir in complex with 3AD 7OQH ; 3.32 ; CryoEM structure of the transcription termination factor Rho from Mycobacterium tuberculosis 6NIL ; 3.9 ; cryoEM structure of the truncated HIV-1 Vif/CBFbeta/A3F complex 6XXD ; 3.22 ; CryoEM structure of the type IV pilin PilA4 from Thermus thermophilus 6XXE ; 3.49 ; CryoEM structure of the type IV pilin PilA5 from Thermus thermophilus 7T6D ; 3.9 ; CryoEM structure of the YejM/LapB complex 5VRF ; 4.1 ; CryoEM Structure of the Zinc Transporter YiiP from helical crystals 6M6C ; 3.1 ; CryoEM structure of Thermus thermophilus RNA polymerase elongation complex 5WQ9 ; 4.22 ; CryoEM structure of type II secretion system secretin GspD G453A mutant in Vibrio cholerae 5WQ7 ; 3.04 ; CryoEM structure of type II secretion system secretin GspD in E.coli K12 5WQ8 ; 3.26 ; CryoEM structure of type II secretion system secretin GspD in Vibrio cholerae 7Y80 ; 2.71 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA binary complex 7Y81 ; 2.54 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA complex bound to non-self RNA target 7Y82 ; 2.83 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA complex bound to self RNA target 7Y84 ; 2.61 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA in complex with TPR-CHAT protease 7Y83 ; 2.93 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA in complex with TPR-CHAT protease bound to non-self RNA target 7Y85 ; 2.73 ; CryoEM structure of type III-E CRISPR Craspase gRAMP-crRNA in complex with TPR-CHAT protease bound to self RNA target 7XG3 ; 3.0 ; CryoEM structure of type IV-A CasDinG bound NTS-nicked Csf-crRNA-dsDNA quaternary complex 7XG4 ; 3.7 ; CryoEM structure of type IV-A CasDinG bound NTS-nicked Csf-crRNA-dsDNA quaternary complex in a second state 7XG1 ; 3.3 ; CryoEM structure of type IV-A Csf-crRNA binary complex 7XG0 ; 2.6 ; CryoEM structure of type IV-A Csf-crRNA-dsDNA ternary complex 7XFZ ; 3.0 ; CryoEM structure of type IV-A Csf-crRNAsp14-dsDNA ternary complex 7XG2 ; 2.8 ; CryoEM structure of type IV-A NTS-nicked dsDNA bound Csf-crRNA ternary complex 6UVN ; 3.1 ; CryoEM structure of VcCascasde-TniQ complex 7SFU ; 4.2 ; CryoEM structure of Venezuelan Equine Encephalitis virus (VEEV) TC-83 strain VLP 7SFV ; 4.0 ; CryoEM structure of Venezuelan Equine Encephalitis virus (VEEV) TC-83 strain VLP in complex with Fab hVEEV-63 7SFW ; 3.2 ; CryoEM structure of Venezuelan Equine Encephalitis virus (VEEV) TC-83 strain VLP in complex with Fab hVEEV-63 (focus refine of the asymmetric unit) 7N1I ; 4.2 ; CryoEM structure of Venezuelan equine encephalitis virus VLP 7N1H ; 4.3 ; CryoEM structure of Venezuelan equine encephalitis virus VLP in complex with the LDLRAD3 receptor 7RZY ; 3.5 ; CryoEM structure of Vibrio cholerae transposon Tn6677 AAA+ ATPase TnsC 8SAL ; 4.9 ; CryoEM structure of VRC01-CH848.0358.80 8SAV ; 4.0 ; CryoEM structure of VRC01-CH848.0526.25 8SAN ; 4.6 ; CryoEM structure of VRC01-CH848.0836.10 8SAT ; 4.5 ; CryoEM structure of VRC01-CH848.10.17 8DAQ ; 4.35 ; CryoEM structure of Western equine encephalitis virus VLP 8DAN ; 4.74 ; CryoEM structure of Western equine encephalitis virus VLP in complex with the avian MXRA8 receptor 8EWF ; 3.92 ; CryoEM structure of Western equine encephalitis virus VLP in complex with the avian MXRA8 receptor 8SQN ; 3.89 ; CryoEM structure of Western equine encephalitis virus VLP in complex with the chimeric Du-D1-Mo-D2 MXRA8 receptor 8R6F ; 2.34 ; CryoEM structure of wheat 40S ribosomal subunit, body domain 8R57 ; 2.55 ; CryoEM structure of wheat 40S ribosomal subunit, head domain 8G17 ; 1.98 ; CryoEM structure of wild-type GAPDH 5VMS ; 3.7 ; CryoEM structure of Xenopus KCNQ1 channel 6WOO ; 2.9 ; CryoEM structure of yeast 80S ribosome with Met-tRNAiMet, eIF5B, and GDP 8E3S ; 3.1 ; CryoEM structure of yeast Arginyltransferase 1 (ATE1) 8FZR ; 3.6 ; CryoEM structure of yeast Arginyltransferase 1 (ATE1) 6PDT ; 3.8 ; cryoEM structure of yeast glucokinase filament 8G3G ; 3.5 ; CryoEM structure of yeast recombination mediator Rad52 7KUE ; 3.5 ; CryoEM structure of Yeast TFIIK (Kin28/Ccl1/Tfb3) Complex 6PLV ; 3.3 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in nanodisc, closed state 6PLU ; 3.3 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in nanodisc, desensitized state 6PLZ ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in SMA, closed state 6PLX ; 2.9 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in SMA, desensitized state 6PLY ; 2.9 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in SMA, open state 6PLW ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with GABA in SMA, super-open state 6PLR ; 3.2 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with glycine in nanodisc, desensitized state 6PM5 ; 3.1 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Glycine in SMA, desensitized state 6PM6 ; 2.9 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Glycine in SMA, open state 6PM4 ; 4.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Glycine in SMA, super-open state 6PLT ; 3.2 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with taurine in nanodisc, closed state 6PLS ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with taurine in nanodisc, desensitized state 6PM3 ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, closed state 6PM1 ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, desensitized state 6PM2 ; 3.0 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, open state 6PM0 ; 3.1 ; CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, super-open state 6PLP ; 3.3 ; CryoEM structure of zebra fish alpha-1 glycine receptor YGF mutant bound with GABA in SMA, desensitized state 6PLQ ; 3.4 ; CryoEM structure of zebra fish alpha-1 glycine receptor YGF mutant bound with GABA in SMA, super-open state 6PLO ; 3.3 ; CryoEM structure of zebra fish alpha-1 glycine receptor YGF mutant bound with GABA in SMA,open state 6PXD ; 2.9 ; CryoEM structure of zebra fish alpha-1 glycine receptor, Apo state 7CBP ; 4.1 ; CryoEM structure of Zika virus with Fab at 4.1 Angstrom 5UPW ; 5.0 ; CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations 8CYT ; 3.0 ; CryoEM structures of amplified alpha-synuclein fibril class A type I with extended core from DLB case I 8CYV ; 3.5 ; CryoEM structures of amplified alpha-synuclein fibril class B mixed type I/II with extended core from DLB case II 8CYW ; 3.1 ; CryoEM structures of amplified alpha-synuclein fibril class B type I with compact core from DLB case III 8CYS ; 3.1 ; CryoEM structures of amplified alpha-synuclein fibril class B type II with extended core from DLB case I 8E34 ; 6.0 ; CryoEM structures of bAE1 captured in multiple states 8D9N ; 4.4 ; CryoEM structures of bAE1 captured in multiple states. 8EEQ ; 6.3 ; CryoEM structures of bAE1 captured in multiple states. 7FDE ; 3.8 ; CryoEM Structures of Reconstituted V-ATPase, Oxr1 bound V1 7FDC ; 6.6 ; CryoEM Structures of Reconstituted V-ATPase, state3 7FDB ; 4.8 ; CryoEM Structures of Reconstituted V-ATPase,State2 8FTE ; 3.8 ; CryoEM strucutre of 22-mer RBM2 of the Salmonella MS-ring 8FTF ; 2.9 ; CryoEM strucutre of 33-mer RBM3 of the Salmonella MS-ring 7YAT ; 2.2 ; CryoEM tetra protofilament structure of the hamster prion 108-144 fibril 6U02 ; 3.05 ; CryoEM-derived model of NA-63 Fab in complex with N9 Shanghai2 7S8Y ; 1.59 ; Cryogenic apo Human Hsp90a-NTD 7MRX ; 2.29 ; Cryogenic crystal structure of barnase A43C/S80C bound to barstar C40A/C82A 6PQK ; 1.2 ; Cryogenic crystal structure of barnase A43C/S80C bound to barstar C40A/S59C/A67C/C82A 1CXP ; 1.8 ; CRYOGENIC CRYSTAL STRUCTURE OF HUMAN MYELOPEROXIDASE ISOFORM C 2OEO ; 2.0 ; Cryogenic crystal structure of Staphylococcal Nuclease variant truncated Delta+PHS I92D 1TQO ; 2.0 ; Cryogenic Crystal Structure of Staphylococcal Nuclease Variant truncated Delta+PHS I92E 1TT2 ; 1.85 ; Cryogenic crystal structure of Staphylococcal nuclease variant truncated Delta+PHS I92K 8QFE ; 1.5 ; Cryogenic crystal structure of the Photoactivated Adenylate Cyclase OaPAC 8QFG ; 1.7 ; Cryogenic crystal structure of the Photoactivated Adenylate Cyclase OaPAC after 5 seconds of blue light illumination 8QFF ; 2.1 ; Cryogenic crystal structure of the Photoactivated Adenylate Cyclase OaPAC with ATP bound 2OF1 ; 1.92 ; Cryogenic crystal structure of the Staphylococcal Nuclease variant truncated Delta+PHS I92W 7UXF ; 2.7 ; Cryogenic electron microscopy 3D map of F-actin 7UTJ ; 2.77 ; Cryogenic electron microscopy 3D map of F-actin bound by human dimeric alpha-catenin 7UUW ; 3.36 ; Cryogenic electron microscopy 3D map of F-actin bound by the Actin Binding Domain of alpha-catenin ortholog, HMP1 7KTT ; 4.17 ; Cryogenic electron microscopy model of full-length human metavinculin 7KTV ; 4.5 ; Cryogenic electron microscopy model of full-length human metavinculin H1' kinked conformation 7KTU ; 4.15 ; Cryogenic electron microscopy model of full-length human metavinculin H1'-parallel conformation 1 7KTW ; 4.27 ; Cryogenic electron microscopy model of full-length human metavinculin H1'-parallel conformation 2 6YX9 ; 2.404 ; Cryogenic human adiponectin receptor 2 (ADIPOR2) at 2.4 A resolution determined by Serial Crystallography (SSX) using CrystalDirect 6YXF ; 3.025 ; Cryogenic human adiponectin receptor 2 (ADIPOR2) with Gd-DO3 ligand determined by Serial Crystallography (SSX) using CrystalDirect 6YXG ; 3.01 ; Cryogenic human adiponectin receptor 2 (ADIPOR2) with Tb-XO4 ligand determined by Serial Crystallography (SSX) using CrystalDirect 6YXH ; 2.6 ; Cryogenic human alkaline ceramidase 3 (ACER3) at 2.6 A resolution determined by Serial Crystallography (SSX) using CrystalDirect 7S90 ; 1.79 ; Cryogenic Human Hsp90a-NTD bound to adenine 7S9F ; 2.3 ; Cryogenic Human Hsp90a-NTD bound to BIIB021 7S9H ; 1.45 ; Cryogenic Human Hsp90a-NTD bound to EC144 7S98 ; 1.9 ; Cryogenic Human Hsp90a-NTD bound to N6M 3K0M ; 1.25 ; Cryogenic structure of CypA 3K0R ; 2.424 ; Cryogenic structure of CypA mutant Arg55Lys 3K0P ; 1.649 ; Cryogenic structure of CypA mutant Ser99Thr 3K0Q ; 2.317 ; Cryogenic structure of CypA mutant Ser99Thr (2) 1BU7 ; 1.65 ; CRYOGENIC STRUCTURE OF CYTOCHROME P450BM-3 HEME DOMAIN 6JCF ; 2.153 ; Cryogenic structure of HIV-1 Integrase catalytic core domain by synchrotron 5CP4 ; 1.75 ; CRYOGENIC STRUCTURE OF P450CAM 3QOJ ; 1.6 ; Cryogenic structure of Staphylococcal nuclease variant D+PHS/V23K 8IVK ; 1.5 ; Cryogenic temperature crystal structure of Escherichia coli CyaY 8IWI ; 1.3 ; Cryogenic Temperature Crystal Structure of Escherichia coli CyaY protein at pH 5 6QQI ; 1.7 ; Cryogenic temperature structure of blue light-irradiated AtPhot2LOV2 recorded after an accumulated dose of 24 kGy 6QSA ; 1.7 ; Cryogenic temperature structure of blue light-irradiated AtPhot2LOV2 recorded after an accumulated dose of 48 kGy 6QQD ; 1.92 ; Cryogenic temperature structure of Hen Egg White Lysozyme recorded after an accumulated dose of 10 MGy 6QQC ; 1.42 ; Cryogenic temperature structure of Hen Egg White Lysozyme recorded after an accumulated dose of 110 kGy 6QQ8 ; 1.46 ; Cryogenic temperature structure of the fluorescent protein Cerulean recorded after an accumulated dose of 290 kGy 6QQ9 ; 1.82 ; Cryogenic temperature structure of the fluorescent protein Cerulean recorded after an accumulated dose of 5.8 MGy 6QQH ; 1.38 ; Cryogenic temperature structure of the ground state of AtPhot2LOV2 recorded after an accumulated dose of 2.68 MGy 4KJJ ; 1.15 ; Cryogenic WT DHFR 4P3R ; 1.15 ; Cryogenic WT DHFR, time-averaged ensemble 1OT6 ; 0.95 ; CRYOTRAPPED CRYSTAL STRUCTURE OF THE E46Q MUTANT OF PHOTOACTIVE YELLOW PROTEIN UNDER CONTINUOUS ILLUMINATION AT 110K 1OT9 ; 1.0 ; CRYOTRAPPED STATE IN WILD TYPE PHOTOACTIVE YELLOW PROTEIN, INDUCED WITH CONTINUOUS ILLUMINATION AT 110K 7DFW ; 2.69 ; Cryo_EM structure of delta N-NPC1L1-CLR 7DFZ ; 3.58 ; Cryo_EM structure of delta N-NPC1L1-EZE 5FOR ; 2.5 ; Cryptic TIR 2J4D ; 1.9 ; Cryptochrome 3 from Arabidopsis thaliana 3ZXS ; 2.7 ; Cryptochrome B from Rhodobacter sphaeroides 5V4L ; 2.1 ; Cryptococcus neoformans adenylosuccinate lyase 7LVP ; 2.24 ; Cryptococcus neoformans AIR synthetase 7LVO ; 2.0 ; Cryptococcus neoformans GAR synthetase 7K9R ; 1.95 ; Cryptococcus neoformans Hsp90 nucleotide binding domain 7K9U ; 1.92 ; Cryptococcus neoformans Hsp90 nucleotide binding domain in complex with BUCMD00429 7K9V ; 1.91 ; Cryptococcus neoformans Hsp90 nucleotide binding domain in complex with BUCMD00452 7K9W ; 2.13 ; Cryptococcus neoformans Hsp90 nucleotide binding domain in complex with BUCMD00461 7K9S ; 3.21 ; Cryptococcus neoformans Hsp90 nucleotide binding domain in complex with NVP-AUY922 7T0A ; 2.099 ; Cryptococcus neoformans protein farnesyltransferase co-crystallized with FPP and inhibitor 2f 3Q79 ; 2.506 ; Cryptococcus neoformans protein farnesyltransferase in complex with farnesyl-DDPTASACNIQ product 3Q7F ; 2.2 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and ethylenediamine inhibitor 1 7T0E ; 2.223 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2b 7T09 ; 1.984 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2d 7T0C ; 1.903 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2e 7T0B ; 2.026 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2g 7T0D ; 1.906 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2k 7T08 ; 1.803 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and inhibitor 2q 3Q7A ; 2.0 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPP and L-778,123 3SFY ; 2.1 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPT-II and ethylenediamine inhibitor 2 3SFX ; 2.0 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPT-II and tipifarnib 3Q75 ; 2.14 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPT-II and TKCVVM peptide 8T70 ; 1.892 ; Cryptococcus neoformans protein farnesyltransferase in complex with FPTII and TKCMIIM peptide 3Q78 ; 2.2 ; Cryptococcus neoformans protein farnesyltransferase in complex with FSPP and DDPTASACNIQ peptide 3Q73 ; 2.3 ; Cryptococcus neoformans protein farnesyltransferase, apo enzyme 2AAZ ; 2.08 ; Cryptococcus neoformans thymidylate synthase complexed with substrate and an antifolate 2QG5 ; 2.3 ; Cryptosporidium parvum calcium dependent protein kinase cgd7_1840 3NIZ ; 2.4 ; Cryptosporidium parvum cyclin-dependent kinase cgd5_2510 with ADP bound. 2QKR ; 2.6 ; Cryptosporidium parvum cyclin-dependent kinase cgd5_2510 with indirubin 3'-monoxime bound 2POY ; 1.8 ; Cryptosporidium parvum cyclophilin type peptidyl-prolyl cis-trans isomerase cgd2_4120 in complex with cyclosporin A 2O1O ; 2.42 ; Cryptosporidium parvum putative polyprenyl pyrophosphate synthase (cgd4_2550) in complex with risedronate. 2Q58 ; 2.37 ; Cryptosporidium parvum putative polyprenyl pyrophosphate synthase (cgd4_2550) in complex with zoledronate 6P0Y ; 2.6 ; Cryptosporidium parvum pyruvate kinase in complex with ADP 3TD7 ; 2.21 ; Crysal structure of the mimivirus sulfhydryl oxidase R596 3K8V ; 2.1 ; Crysatl structure of a bacterial cell-surface flagellin N20C20 3K8W ; 1.7 ; Crysatl structure of a bacterial cell-surface flagellin N20C45 3B8G ; 2.6 ; Crysta structure of N-acetylglutamate synthase from Neisseria gonorrhoeae complexed with coenzyme A and N-acetyl-glutamate 5Y9W ; 1.847 ; Crystal 1 for AtLURE1.2-AtPRK6LRR 5YAH ; 2.104 ; Crystal 2 for AtLURE1.2-AtPRK6LRR 2BJK ; 1.4 ; Crystal Analysis of 1-Pyrroline-5-Carboxylate Dehydrogenase from Thermus with bound NAD and citrate. 2EHU ; 1.8 ; Crystal analysis of 1-pyrroline-5-carboxylate dehydrogenase from thermus with bound NAD and Inhibitor L-serine 2BHP ; 1.8 ; Crystal Analysis of 1-Pyrroline-5-Carboxylate Dehydrogenase from Thermus with bound NAD. 2BJA ; 1.9 ; Crystal Analysis of 1-Pyrroline-5-Carboxylate Dehydrogenase from Thermus with bound NADH 2EHQ ; 1.55 ; Crystal analysis of 1-pyrroline-5-carboxylate dehydrogenase from thermus with bound NADP 2BHQ ; 1.4 ; Crystal Analysis of 1-Pyrroline-5-Carboxylate Dehydrogenase from Thermus with bound product glutamate. 1UFY ; 0.96 ; Crystal analysis of chorismate mutase from thermus thermophilus 1UI9 ; 1.65 ; Crystal analysis of chorismate mutase from thermus thermophilus 1ODE ; 1.65 ; Crystal Analysis Of Chorismate Mutase From Thermus Thermophilus. 2EJ6 ; 2.06 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound D-proline 2EJD ; 1.85 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound L-alanine 2EIT ; 1.65 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound L-alanine and NAD 2EIW ; 1.9 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound L-proline 2EJL ; 1.5 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound L-serine 2EII ; 1.88 ; Crystal analysis of delta1-pyrroline-5-carboxylate dehydrogenase from Thermus thermophilus with bound L-valine and NAD. 1V9C ; 2.2 ; Crystal Analysis of Precorrin-8x Methyl Mutase from Thermus Thermophilus 3QHN ; 1.99 ; Crystal analysis of the complex structure, E201A-cellotetraose, of endocellulase from pyrococcus horikoshii 3QHM ; 2.01 ; Crystal analysis of the complex structure, E342A-cellotetraose, of endocellulase from pyrococcus horikoshii 3QHO ; 1.65 ; Crystal analysis of the complex structure, Y299F-cellotetraose, of endocellulase from pyrococcus horikoshii 3CSQ ; 1.8 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 3CSR ; 1.8 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 3CSZ ; 1.8 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 3CT0 ; 1.77 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 3CT1 ; 1.51 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 3CT5 ; 1.37 ; Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage phi29 tail 2AYH ; 1.6 ; CRYSTAL AND MOLECULAR STRUCTURE AT 1.6 ANGSTROMS RESOLUTION OF THE HYBRID BACILLUS ENDO-1,3-1,4-BETA-D-GLUCAN 4-GLUCANOHYDROLASE H(A16-M) 1CAG ; 1.85 ; CRYSTAL AND MOLECULAR STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9 ANGSTROM RESOLUTION 1D24 ; 1.9 ; CRYSTAL AND MOLECULAR STRUCTURE OF A DNA DUPLEX CONTAINING THE CARCINOGENIC LESION O6-METHYLGUANINE 1D76 ; 1.3 ; CRYSTAL AND MOLECULAR STRUCTURE OF A DNA FRAGMENT CONTAINING A 2-AMINO ADENINE MODIFICATION: THE RELATIONSHIP BETWEEN CONFORMATION, PACKING, AND HYDRATION IN Z-DNA HEXAMERS 1D28 ; 2.7 ; CRYSTAL AND MOLECULAR STRUCTURE OF A DNA FRAGMENT: D(CGTGAATTCACG) 210D ; 1.35 ; CRYSTAL AND MOLECULAR STRUCTURE OF A NEW Z-DNA CRYSTAL FORM: D[CGT(2-NH2-A)CG] AND ITS PLATINATED DERIVATIVE 1AMY ; 2.8 ; CRYSTAL AND MOLECULAR STRUCTURE OF BARLEY ALPHA-AMYLASE 1TYT ; 2.6 ; CRYSTAL AND MOLECULAR STRUCTURE OF CRITHIDIA FASCICULATA TRYPANOTHIONE REDUCTASE AT 2.6 ANGSTROMS RESOLUTION 119D ; 2.25 ; CRYSTAL AND MOLECULAR STRUCTURE OF D(CGTAGATCTACG) AT 2.25 ANGSTROMS RESOLUTION 1D82 ; 2.5 ; CRYSTAL AND MOLECULAR STRUCTURE OF D(GTCTAGAC) 118D ; 1.64 ; CRYSTAL AND MOLECULAR STRUCTURE OF D(GTGCGCAC): INVESTIGATION OF THE EFFECTS OF BASE SEQUENCE ON THE CONFORMATION OF OCTAMER DUPLEXES 1AVH ; 2.3 ; CRYSTAL AND MOLECULAR STRUCTURE OF HUMAN ANNEXIN V AFTER REFINEMENT. IMPLICATIONS FOR STRUCTURE, MEMBRANE BINDING AND ION CHANNEL FORMATION OF THE ANNEXIN FAMILY OF PROTEINS 1AVR ; 2.3 ; CRYSTAL AND MOLECULAR STRUCTURE OF HUMAN ANNEXIN V AFTER REFINEMENT. IMPLICATIONS FOR STRUCTURE, MEMBRANE BINDING AND ION CHANNEL FORMATION OF THE ANNEXIN FAMILY OF PROTEINS 1PK4 ; 1.9 ; CRYSTAL AND MOLECULAR STRUCTURE OF HUMAN PLASMINOGEN KRINGLE 4 REFINED AT 1.9-ANGSTROMS RESOLUTION 157D ; 1.8 ; CRYSTAL AND MOLECULAR STRUCTURE OF R(CGCGAAUUAGCG): AN RNA DUPLEX CONTAINING TWO G(ANTI).A(ANTI) BASE-PAIRS 116D ; 2.5 ; CRYSTAL AND MOLECULAR STRUCTURE OF THE A-DNA DODECAMER D(CCGTACGTACGG): CHOICE OF FRAGMENT HELICAL AXIS 117D ; 2.55 ; CRYSTAL AND MOLECULAR STRUCTURE OF THE ALTERNATING DODECAMER D(GCGTACGTACGC) IN THE A-DNA FORM: COMPARISON WITH THE ISOMORPHOUS NON-ALTERNATING DODECAMER D(CCGTACGTACGG) 1ACB ; 2.0 ; CRYSTAL AND MOLECULAR STRUCTURE OF THE BOVINE ALPHA-CHYMOTRYPSIN-EGLIN C COMPLEX AT 2.0 ANGSTROMS RESOLUTION 2CI2 ; 2.0 ; CRYSTAL AND MOLECULAR STRUCTURE OF THE SERINE PROTEINASE INHIBITOR CI-2 FROM BARLEY SEEDS 1HTR ; 1.62 ; CRYSTAL AND MOLECULAR STRUCTURES OF HUMAN PROGASTRICSIN AT 1.62 ANGSTROMS RESOLUTION 2ATC ; 3.0 ; CRYSTAL AND MOLECULAR STRUCTURES OF NATIVE AND CTP-LIGANDED ASPARTATE CARBAMOYLTRANSFERASE FROM ESCHERICHIA COLI 1CHO ; 1.8 ; CRYSTAL AND MOLECULAR STRUCTURES OF THE COMPLEX OF ALPHA-*CHYMOTRYPSIN WITH ITS INHIBITOR TURKEY OVOMUCOID THIRD DOMAIN AT 1.8 ANGSTROMS RESOLUTION 4LRS ; 1.55 ; Crystal and solution structures of the bifunctional enzyme (Aldolase/Aldehyde dehydrogenase) from Thermomonospora curvata, reveal a cofactor-binding domain motion during NAD+ and CoA accommodation whithin the shared cofactor-binding site 4LRT ; 1.5 ; Crystal and solution structures of the bifunctional enzyme (Aldolase/Aldehyde dehydrogenase) from Thermomonospora curvata, reveal a cofactor-binding domain motion during NAD+ and CoA accommodation whithin the shared cofactor-binding site 295D ; 1.5 ; CRYSTAL AND SOLUTION STRUCTURES OF THE OLIGONUCLEOTIDE D(ATGCGCAT)2: A COMBINED X-RAY AND NMR STUDY 1IHO ; 1.7 ; CRYSTAL APO-STRUCTURE OF PANTOTHENATE SYNTHETASE FROM E. COLI 2CMY ; 2.25 ; Crystal complex between bovine trypsin and Veronica hederifolia trypsin inhibitor 6BL3 ; 2.217 ; Crystal Complex of Cyclooxygenase-2 with indomethacin-butyldiamine-dansyl conjugate 6BL4 ; 2.22 ; Crystal Complex of Cyclooxygenase-2 with indomethacin-ethylenediamine-dansyl conjugate 5W58 ; 2.267 ; Crystal Complex of Cyclooxygenase-2: (S)-ARN-2508 (a dual COX and FAAH inhibitor) 6LQY ; 1.598 ; Crystal complex of endo-deglycosylated hydroxynitrile lyase isozyme 5 of Prunus communis with benzaldehyde 7BWP ; 1.802 ; Crystal complex of endo-deglycosylated PcHNL5 with (R)-mandelonitrile 8ET0 ; 2.15 ; Crystal Complex of murine Cyclooxygenase-2 with alpaca nanobody F9 3L4T ; 1.9 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with BJ2661 3CTT ; 2.1 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with Casuarine 3L4U ; 1.9 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with de-O-sulfonated kotalanol 3L4V ; 2.1 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with kotalanol 3L4W ; 2.0 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with miglitol 3L4X ; 1.9 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with NR4-8 3L4Y ; 1.8 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with NR4-8II 3L4Z ; 2.0 ; Crystal complex of N-terminal Human Maltase-Glucoamylase with Salacinol 3LPP ; 2.15 ; Crystal complex of N-terminal sucrase-isomaltase with kotalanol 7EAX ; 2.55 ; Crystal complex of p53-V272M and antimony ion 4MQV ; 1.95 ; Crystal complex of Rpa32c and Smarcal1 N-terminus 3C2G ; 2.5 ; Crystal complex of SYS-1/POP-1 at 2.5A resolution 1QA7 ; 1.9 ; CRYSTAL COMPLEX OF THE 3C PROTEINASE FROM HEPATITIS A VIRUS WITH ITS INHIBITOR AND IMPLICATIONS FOR THE POLYPROTEIN PROCESSING IN HAV 4R51 ; 1.81 ; Crystal complex structure of sp-Aspartate-Semialdehyde-Dehydrogenase with Nicotinamide Adenine dinucleotide phosphate and phthalic acid 3HMS ; 1.7 ; Crystal Crystal structure of the N-terminal fragment (28-126) of the human hepatocyte growth factor/scatter factor, orthorhombic crystal form 6H9S ; 1.9 ; Crystal dimeric structure of Petrotoga mobilis lactate dehydrogenase with NADH 7CGS ; 1.6 ; Crystal endo-deglycosylated hydroxynitrile lyase isozyme 5 mutant L343F from Prunus communis 8G4G ; 2.17 ; Crystal Engineering with One 8-mer DNA 6FTP ; 1.8 ; Crystal form 1 of Alpha1-antichymotrypsin variant DBS-II-allo: an allosterically modulated drug-binding serpin for doxorubicin 7YCW ; 2.2 ; Crystal Form 1 of Truncated Antitoxin ParD (2-54,containg RHH domain) from Pseudoalteromonas rubra 5OM8 ; 2.2 ; Crystal form 2 of Alpha1-antichymotrypsin variant DBS-II-allo: an allosterically modulated drug-binding serpin for doxorubicin 6UER ; 2.5 ; Crystal form 2: Structure of TBP bound to C-C mismatch at pH 7 7PJO ; 2.248 ; Crystal form 3 of CPR-C4: a cysteine protease from the Candidate Phyla Radiation 2R6D ; 3.7 ; Crystal Form B1 2R6E ; 5.019 ; Crystal Form B2 2R6A ; 2.9 ; Crystal Form BH1 2R6C ; 4.0 ; Crystal Form BH2 2FKC ; 2.39 ; Crystal Form I of Pre-Reactive Complex of Restriction Endonuclease HinP1I with Cognate DNA and Calcium Ion 4ANC ; 2.8 ; CRYSTAL FORM I OF THE D93N MUTANT OF NUCLEOSIDE DIPHOSPHATE KINASE FROM MYCOBACTERIUM TUBERCULOSIS 5EAZ ; 2.151 ; crystal form I of YfiB belonging to space groups P21 1M3J ; 3.0 ; CRYSTAL form II of perfringolysin O 2FKH ; 3.09 ; Crystal Form II of Pre-Reactive Complex of Restriction Endonuclease HinP1I with Cognate DNA and Calcium Ions 4AND ; 2.808 ; CRYSTAL FORM II OF THE D93N MUTANT OF NUCLEOSIDE DIPHOSPHATE KINASE FROM MYCOBACTERIUM TUBERCULOSIS 5EB0 ; 2.8 ; crystal form II of YfiB belonging to P41 2DQU ; 1.7 ; Crystal form II: high resolution crystal structure of the complex of the hydrolytic antibody Fab 6D9 and a transition-state analog 1BDN ; 2.6 ; CRYSTAL LATTICE PACKING IS IMPORTANT IN DETERMINING THE BEND OF A DNA DODECAMER CONTAINING AN ADENINE TRACT 5H9K ; 1.352 ; Crystal of a leukotriene-binding salivary lipocalin 5DXZ ; 2.25 ; Crystal of AmtR from Corynebacterium glutamicum 5DY0 ; 3.0 ; Crystal of AmtR from Corynebacterium glutamicum in complex with DNA 7DF9 ; 3.17 ; Crystal of Arrestin2-V2Rpp-1-Fab30 complex 7DFC ; 2.49 ; Crystal of Arrestin2-V2Rpp-3-Fab30 complex 7DFA ; 2.54 ; Crystal of Arrestin2-V2Rpp-4-Fab30 complex 7DFB ; 3.28 ; Crystal of Arrestin2-V2Rpp-6-7-Fab30 complex 3HGL ; 1.9 ; crystal of AvrPtoB 121-205 7RXT ; 1.68 ; Crystal of BRD4(D1) with 2-[(3R)-3-{5-[2-(3,5-dimethylphenoxy)pyrimidin-4-yl]-4-(4-iodophenyl)-1H-imidazol-1-yl}pyrrolidin-1-yl]ethan-1-amine 7RXS ; 1.43 ; Crystal of BRD4(D1) with 2-[(3S)-3-{5-[2-(3,5-dimethylphenoxy)pyrimidin-4-yl]-4-(4-iodophenyl)-1H-imidazol-1-yl}pyrrolidin-1-yl]ethan-1-amine 3GMZ ; 1.43 ; Crystal of human arginase in complex with L-ornithine. Resolution 1.43 A. 4Y33 ; 2.7 ; Crystal of NO66 in complex with Ni(II)and N-oxalylglycine (NOG) 4MLN ; 2.1 ; Crystal of PhnZ bound to (R)-2-amino-1-hydroxyethylphosphonic acid 3VGJ ; 2.212 ; Crystal of Plasmodium falciparum tyrosyl-tRNA synthetase (PfTyrRS)in complex with adenylate analog 3RZ2 ; 2.8 ; Crystal of Prl-1 complexed with peptide 5WSC ; 2.4 ; Crystal of pyruvate kinase (PYK) from Mycobacterium tuberculosis in complex with Oxalate, soaked with allosteric activators AMP and Glucose 6-Phosphate 8HBS ; 1.78 ; Crystal of rAlfNmt 3ZJ6 ; 2.4 ; Crystal of Raucaffricine Glucosidase in complex with inhibitor 5DY1 ; 2.651 ; Crystal of Selenomethionine substituted AmtR from Corynebacterium glutamicum 2H14 ; 1.48 ; Crystal of WDR5 (apo-form) 2QMT ; 1.05 ; Crystal Polymorphism of Protein GB1 Examined by Solid-state NMR and X-ray Diffraction 2NVW ; 2.1 ; Crystal sctucture of transcriptional regulator Gal80p from kluyveromymes lactis 2PVG ; 2.4 ; Crystal srtucture of the binary complex between ferredoxin and ferredoxin:thioredoxin reductase 2PU9 ; 1.65 ; Crystal srtucture of the binary complex between ferredoxin: thioredoxin reductase and thioredoxin f 2PUO ; 1.7 ; Crystal srtucture of the NEM modified ferredoxin:thioredoxin reductase 2PVD ; 1.95 ; Crystal srtucture of the reduced ferredoxin:thioredoxin reductase 2PVO ; 3.4 ; Crystal srtucture of the ternary complex between thioredoxin f, ferredoxin, and ferredoxin: thioredoxin reductase 6LST ; 2.94 ; Crystal straucture of Uso1-1 3K1I ; 2.7 ; Crystal strcture of FliS-HP1076 complex in H. pylori 3GUS ; 1.53 ; Crystal strcture of human Pi class glutathione S-transferase GSTP1-1 in complex with 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) 2OKN ; 2.45 ; Crystal Strcture of Human Prolidase 6A9U ; 2.4 ; Crystal strcture of Icp55 from Saccharomyces cerevisiae bound to apstatin inhibitor 4MUE ; 2.06 ; Crystal strcture of pantothenate synthetase in complex with 2-(5-methoxy-2-(4-(trifluoromethyl)phenylsulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 7FCN ; 1.6 ; Crystal strcture of PirA insecticidal protein from Photorhabdus akhurstii 3VIR ; 2.7 ; Crystal strcture of Swi5 from fission yeast 4XSL ; 1.6 ; Crystal strcutre of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with glycerol 8I4N ; 2.41 ; Crystal strcuture of 6-phosphogluconate dehydrogenase from Corynebacterium glutamicum 7CZ3 ; 2.9 ; Crystal strcuture of Acyl-CoA thioesterase from Bacillus cereus ATCC 14579 2I5G ; 2.6 ; Crystal strcuture of amidohydrolase from Pseudomonas aeruginosa 6L3P ; 2.5 ; Crystal strcuture of Feruloyl-CoA hydratase lyase(FCHL) complexed with CoA 6L3O ; 1.65 ; Crystal strcuture of Feruloyl-CoA hydratase lyase(FCHL) from Pseudomonas putida KT2440 7CYX ; 2.41 ; Crystal strcuture of Glycine oxidase from Bacillus cereus ATCC 14579 6KUQ ; 1.91 ; Crystal strcuture of PETase A248D, R280K mutant from Ideonella sakaiensis 6KUO ; 1.9 ; Crystal strcuture of PETase N246D mutant from Ideonella sakaiensis 6KUS ; 1.8 ; Crystal strcuture of PETase S121E, D186H, S242T, N246D mutant from Ideonella sakaiensis 7VSP ; 2.1 ; Crystal strcuture of the tandem B-Box domains of COL2 7VSQ ; 2.7 ; Crystal strcuture of the tandem B-Box domains of CONSTANS 3N12 ; 1.2 ; Crystal stricture of chitinase in complex with zinc atoms from Bacillus cereus NCTU2 3N13 ; 1.7 ; Crystal stricture of D143A chitinase in complex with NAG from Bacillus cereus NCTU2 3N1A ; 2.0 ; Crystal stricture of E145G/Y227F chitinase in complex with cyclo-(L-His-L-Pro) from Bacillus cereus NCTU2 3N18 ; 1.6 ; Crystal stricture of E145G/Y227F chitinase in complex with NAG from Bacillus cereus NCTU2 3N15 ; 1.94 ; Crystal stricture of E145Q chitinase in complex with NAG from Bacillus cereus NCTU2 3N17 ; 1.2 ; Crystal stricture of E145Q/Y227F chitinase in complex with NAG from Bacillus cereus NCTU2 3N11 ; 1.35 ; Crystal stricture of wild-type chitinase from Bacillus cereus NCTU2 3RIR ; 2.6 ; Crystal Strucrture of Biotin Protein Ligase from S. aureus 4PZK ; 1.5 ; Crystal strucrure of putative RNA methyltransferase from Bacillus anthracis. 5OKZ ; 3.20004 ; Crystal Strucrure of the Mpp6 Exosome complex 7XRF ; 2.137 ; Crystal structaure of DgpB/C complex 5JBM ; 3.0 ; Crystal structgure of Cac1 C-terminus 4OIC ; 1.999 ; Crystal structrual of a soluble protein 3S4E ; 1.26 ; Crystal Structrue of a Novel Mitogen-activated Protein Kinase Phosphatase, SKRP1 2PEZ ; 1.4 ; Crystal structrue of deletion mutant of APS-kinase domain of human PAPS-synthetase 1 in complex with cyclic PAPS and dADP 5HOE ; 1.45 ; Crystal structrue of Est24, a carbohydrate acetylesterase from Sinorhizobium meliloti 1XWO ; 2.8 ; crystal structrue of goose delta crystallin 5D43 ; 2.82 ; crystal structrue of Mouse centrin 1 in calcium-saturated form 5B77 ; 1.551 ; Crystal structrue of MOZ double PHD finger in complex with histone H3 propionylation at K14 8HL8 ; 2.5 ; Crystal structrue of MtdL R257K mutant 7XPS ; 2.1 ; Crystal structrue of MtdL:GDP:Mn 7XPT ; 2.0 ; Crystal structrue of MtdL:GDP:Mn soaked with GDP-Glc 6T9B ; 1.46 ; Crystal structrue of RSL W31A lectin mutant in complex with alpha-methylfucoside 6T9A ; 2.0 ; Crystal structrue of RSL W31FW76F lectin mutant in complex with L-fucose 6T99 ; 2.7 ; Crystal structrue of RSL W31YW76Y lectin mutant in complex with alpha-methylfucoside 7XPR ; 2.1 ; Crystal structrue of SeMet-MtdL:GDP 5YT1 ; 2.0 ; Crystal structrure of near infrared fluoresecent protein mNeptune684 3A1V ; 2.4 ; Crystal structue of the cytosolic domain of T. maritima FeoB iron iransporter in apo form 3A1S ; 1.5 ; Crystal structue of the cytosolic domain of T. maritima FeoB iron iransporter in GDP form I 3A1T ; 1.8 ; Crystal structue of the cytosolic domain of T. maritima FeoB iron iransporter in GDP form II 3A1U ; 1.8 ; Crystal structue of the cytosolic domain of T. maritima FeoB iron iransporter in GMPPNP form 3A1W ; 1.9001 ; Crystal structue of the G domain of T. maritima FeoB iron iransporter 1SL3 ; 1.81 ; crystal structue of Thrombin in complex with a potent P1 heterocycle-Aryl based inhibitor 4L1W ; 2.2 ; Crystal Structuer of Human 3-alpha Hydroxysteroid Dehydrogenase Type 3 in Complex with NADP+ and Progesterone 4L1X ; 2.0 ; Crystal Structuer of Human 3-alpha Hydroxysteroid Dehydrogenase Type 3 V54L Mutant in Complex with NADP+ and Progesterone 1W2I ; 1.5 ; Crystal structuore of acylphosphatase from Pyrococcus horikoshii complexed with formate 3KM8 ; 2.0 ; Crystal structuore of adenosine deaminase from mus musculus complexed with 9-deazainosine 4Z85 ; 1.7 ; Crystal structur of Pseudomonas fluorescens 2-nitrobenzoate 2-nitroreductase NbaA 4MG3 ; 1.798 ; Crystal Structural Analysis of 2A Protease from Coxsackievirus A16 1SS9 ; 2.6 ; Crystal Structural Analysis of Active Site Mutant Q189E of LgtC 2ZA4 ; 1.58 ; Crystal Structural Analysis of Barnase-barstar Complex 3ECY ; 1.88 ; Crystal structural analysis of Drosophila melanogaster dUTPase 3A4K ; 2.17 ; Crystal structural analysis of HindIII restriction endonuclease in complex with cognate DNA and divalent cations at 2.17 angstrom resolution 2E52 ; 2.0 ; Crystal structural analysis of HindIII restriction endonuclease in complex with cognate DNA at 2.0 angstrom resolution 1BSA ; 2.0 ; CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE 1BSB ; 2.0 ; CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE 1BSC ; 2.0 ; CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE 1BSD ; 2.3 ; CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE 1BSE ; 2.0 ; CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE 8JJ7 ; 1.769 ; Crystal structural analysis of PaL 1EJJ ; 1.9 ; CRYSTAL STRUCTURAL ANALYSIS OF PHOSPHOGLYCERATE MUTASE COCRYSTALLIZED WITH 3-PHOSPHOGLYCERATE 7BPD ; 2.04 ; Crystal structural analysis of Swine dUTPase 3DUW ; 1.2 ; Crystal Structural Analysis of the O-methyltransferase from Bacillus cereus in complex SAH 1TNV ; 5.0 ; CRYSTAL STRUCTURAL ANALYSIS OF TOBACCO NECROSIS VIRUS (TNV) AT 5 ANGSTROMS RESOLUTION 2GX0 ; 1.9 ; Crystal structural and functional analysis of GFP-like fluorescent protein 2GX2 ; 1.8 ; Crystal structural and functional analysis of GFP-like fluorescent protein Dronpa 4WZF ; 1.699 ; Crystal structural basis for Rv0315, an immunostimulatory antigen and pseudo beta-1, 3-glucanase of Mycobacterium tuberculosis 6KY0 ; 2.06 ; Crystal structural of active-site human glutathione-specific gamma-glutamylcyclotransferase 2(ChaC2) mutant with Glutamate 74 replaced by Glutamine 3I3C ; 2.48 ; Crystal Structural of CBX5 Chromo Shadow Domain 3D3I ; 1.78 ; Crystal structural of Escherichia coli K12 YgjK, a glucosidase belonging to glycoside hydrolase family 63 6AKP ; 2.323 ; Crystal Structural of FOXC2 DNA binding domain bound to PC promoter 6K95 ; 2.29 ; Crystal structural of human glutathione-specific gamma-glutamylcyclotransferase 2 (ChaC2) 6KY1 ; 2.04 ; Crystal structural of human glutathione-specific gamma-glutamylcyclotransferase 2 (ChaC2)mutant with Glutamate 83 replaced by Glutamine 5VIA ; 1.764 ; Crystal structural of Leishmania major pseudoperoxidase 6LH4 ; 1.999 ; Crystal structural of MacroD1-ADPr complex 7XG9 ; 1.5 ; Crystal structural of methylenetetrahydrofolate reductase from Sphingobium sp. SYK-6 2ZJG ; 3.0 ; Crystal structural of mouse kynurenine aminotransferase III 3PDX ; 2.91 ; Crystal structural of mouse tyrosine aminotransferase 3N9H ; 2.5 ; Crystal Structural of mutant Y305A in the copper amine oxidase from hansenula polymorpha 3BZL ; 1.71 ; Crystal structural of native EscU C-terminal domain 3BZO ; 1.5 ; Crystal structural of native EscU C-terminal domain 3C01 ; 2.6 ; Crystal structural of native SpaS C-terminal domain 3ULX ; 2.6 ; Crystal structural of the conserved domain of Rice Stress-responsive NAC1 5IL0 ; 1.882 ; Crystal structural of the METTL3-METTL14 complex for N6-adenosine methylation 3C00 ; 1.41 ; Crystal structural of the mutated G247T EscU/SpaS C-terminal domain 3BZP ; 1.499 ; Crystal structural of the mutated N262A EscU C-terminal domain 3BZT ; 1.5 ; Crystal structural of the mutated P263A EscU C-terminal domain 3BZZ ; 1.407 ; Crystal structural of the mutated R313T EscU/SpaS C-terminal domain 3BZV ; 1.94 ; Crystal structural of the mutated T264A EscU C-terminal domain 5EJC ; 3.1 ; Crystal structural of the TSC1-TBC1D7 complex 4EUK ; 1.95 ; Crystal structure 4LX8 ; 2.2 ; Crystal structure (2.2A) of Mg2+ bound CheY3 of Vibrio cholerae 1RU9 ; 2.5 ; Crystal Structure (A) of u.v.-irradiated cationic cyclization antibody 4C6 Fab at pH 4.6 with a data set collected in-house. 1RUA ; 1.75 ; Crystal structure (B) of u.v.-irradiated cationic cyclization antibody 4C6 fab at pH 4.6 with a data set collected at SSRL beamline 11-1. 1RUK ; 1.4 ; Crystal structure (C) of native cationic cyclization antibody 4C6 fab at pH 4.6 with a data set collected at SSRL beamline 9-1 6UB4 ; 1.6 ; Crystal structure (C2 form) of a GH128 (subgroup IV) endo-beta-1,3-glucanase from Lentinula edodes (LeGH128_IV) in complex with laminaritriose 1RUL ; 1.88 ; Crystal Structure (D) of u.v.-irradiated cationic cyclization antibody 4C6 Fab at pH 5.6 with a data set collected at SSRL beamline 11-1. 1RUM ; 1.48 ; Crystal structure (F) of H2O2-soaked cationic cyclization antibody 4C6 fab at pH 8.5 with a data set collected at SSRL beamline 9-1. 5XAK ; 1.5 ; Crystal structure (form II) of thymidylate kinase from Thermus thermophilus HB8 1RUP ; 1.4 ; Crystal structure (G) of native cationic cyclization antibody 4C6 fab at pH 8.5 with a data set collected at APS beamline 19-ID 1RUQ ; 1.86 ; Crystal Structure (H) of u.v.-irradiated Diels-Alder antibody 13G5 Fab at pH 8.0 with a data set collected in house. 1RUR ; 1.5 ; Crystal Structure (I) of native Diels-Alder antibody 13G5 Fab at pH 8.0 with a data set collected at SSRL beamline 9-1. 2ANN ; 2.3 ; Crystal structure (I) of Nova-1 KH1/KH2 domain tandem with 25 nt RNA hairpin 2ANR ; 1.94 ; Crystal structure (II) of Nova-1 KH1/KH2 domain tandem with 25nt RNA hairpin 6Y2F ; 1.95 ; Crystal structure (monoclinic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b) 1FCQ ; 1.6 ; CRYSTAL STRUCTURE (MONOCLINIC) OF BEE VENOM HYALURONIDASE 7ZJC ; 1.6 ; Crystal structure (native) of outer surface protein BBA14 (OrfD) from Borrelia burgdorferi 6Y2G ; 2.2 ; Crystal structure (orthorhombic form) of the complex resulting from the reaction between SARS-CoV-2 (2019-nCoV) main protease and tert-butyl (1-((S)-1-(((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-3-cyclopropyl-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate (alpha-ketoamide 13b) 6Q6T ; 0.94 ; Crystal structure (orthorombic form) of C36S mutant of thioredoxin h1 from Chlamydomonas reinhardtii 6UB5 ; 1.3 ; Crystal structure (P21 form) of a GH128 (subgroup IV) endo-beta-1,3-glucanase from Lentinula edodes (LeGH128_IV) in complex with laminaritriose 6Q6V ; 1.22 ; Crystal structure (trigonal form) of C36S mutant of thioredoxin h1 from Chlamydomonas reinhardtii 1FCU ; 2.1 ; CRYSTAL STRUCTURE (TRIGONAL) OF BEE VENOM HYALURONIDASE 3U54 ; 2.35 ; Crystal structure (Type-1) of SAICAR synthetase from Pyrococcus horikoshii OT3 4NZY ; 2.15 ; Crystal structure (type-2) of dTMP kinase (st1543) from Sulfolobus Tokodaii Strain7 3U55 ; 1.9 ; Crystal structure (Type-2) of SAICAR synthetase from Pyrococcus horikoshii OT3 4RZX ; 2.3 ; Crystal structure (type-3) of dTMP kinase (st1543) from Sulfolobus Tokodaii Strain7 5M2D ; 2.097 ; CRYSTAL STRUCTURE 4Ac Endoglucanase-like protein from Acremonium chrysogenum 479D ; 1.9 ; CRYSTAL STRUCTURE A DNA:RNA HYBRID DUPLEX, A DYNAMIC MODEL FOR RNASE H RECOGNITION 3UV1 ; 2.0 ; Crystal structure a major allergen from dust mite 6K00 ; 2.198 ; Crystal structure A of ceNAP1-H2A-H2B complex 6EN5 ; 1.75 ; Crystal structure A of the Angiotensin-1 converting enzyme N-domain in complex with a diprolyl inhibitor. 6XTF ; 2.23 ; Crystal structure a Thioredoxin Reductase from Gloeobacter violaceus bound to its electron donor 3DCY ; 1.748 ; Crystal Structure a TP53-induced glycolysis and apoptosis regulator protein from Homo sapiens. 2J0M ; 2.8 ; Crystal structure a two-chain complex between the FERM and kinase domains of focal adhesion kinase. 5EZ3 ; 2.15 ; Crystal structure Acyl-CoA dehydrogenase from Brucella melitensis in complex with FAD 2ZGU ; 2.4 ; Crystal structure Agrocybe aegerita lectin AAL mutant I144G 2X2Z ; 2.0 ; Crystal structure AMA1 from Toxoplasma gondii 3S3Y ; 2.0 ; Crystal Structure an Tandem Cyanovirin-N Dimer, CVN2L0 3S3Z ; 1.75 ; Crystal Structure an Tandem Cyanovirin-N Dimer, CVN2L10 2EBS ; 2.4 ; Crystal Structure Anaalysis of Oligoxyloglucan reducing-end-specific cellobiohydrolase (OXG-RCBH) D465N Mutant Complexed with a Xyloglucan Heptasaccharide 1V8S ; 2.2 ; Crystal structure analusis of the ADP-ribose pyrophosphatase complexed with AMP and Mg 1R4X ; 1.9 ; Crystal Structure Analys of the Gamma-COPI Appendage domain 4PCY ; 2.15 ; CRYSTAL STRUCTURE ANALYSES OF REDUCED (CUI) POPLAR PLASTOCYANIN AT SIX PH VALUES 5PCY ; 1.8 ; CRYSTAL STRUCTURE ANALYSES OF REDUCED (CUI) POPLAR PLASTOCYANIN AT SIX PH VALUES 6PCY ; 1.9 ; CRYSTAL STRUCTURE ANALYSES OF REDUCED (CUI) POPLAR PLASTOCYANIN AT SIX PH VALUES 2OI0 ; 2.0 ; Crystal structure analysis 0f the TNF-a Coverting Enzyme (TACE) in complexed with Aryl-sulfonamide 4CTS ; 2.9 ; CRYSTAL STRUCTURE ANALYSIS AND MOLECULAR MODEL OF A COMPLEX OF CITRATE SYNTHASE WITH OXALOACETATE AND S-ACETONYL-COENZYME A 2Z6B ; 3.11 ; Crystal Structure Analysis of (gp27-gp5)3 conjugated with Fe(III) protoporphyrin 3BFJ ; 2.7 ; Crystal structure analysis of 1,3-propanediol oxidoreductase 3D61 ; 1.95 ; Crystal Structure Analysis of 1,5-alpha-arabinanase catalytic mutant (AbnBD147A) complexed to arabinobiose 3D5Z ; 1.9 ; Crystal Structure Analysis of 1,5-alpha-arabinanase catalytic mutant (AbnBE201A) complexed to arabinotriose 3D60 ; 1.9 ; Crystal Structure Analysis of 1,5-alpha-arabinanase catalytic mutant (D27A) 4KOA ; 1.93 ; Crystal Structure Analysis of 1,5-anhydro-D-fructose reductase from Sinorhizobium meliloti 5XD7 ; 2.198 ; Crystal structure analysis of 3,6-anhydro-L-galactonate cycloisomerase 5XD8 ; 2.505 ; Crystal structure analysis of 3,6-anhydro-L-galactonate cycloisomerase 5XD9 ; 2.6 ; Crystal structure analysis of 3,6-anhydro-L-galactonate cycloisomerase 4GWG ; 1.3907 ; Crystal Structure Analysis of 6-phosphogluconate dehydrogenase apo-form 2QJ6 ; 2.5 ; Crystal structure analysis of a 14 repeat C-terminal fragment of toxin TcdA in Clostridium difficile 3BSE ; 1.6 ; Crystal structure analysis of a 16-base-pair B-DNA 1MLX ; 1.25 ; Crystal Structure Analysis of a 2'-O-[2-(Methylthio)-ethyl]-Modified Oligodeoxynucleotide Duplex 2AXB ; 1.61 ; Crystal Structure Analysis Of A 2-O-[2-(methoxy)ethyl]-2-thiothymidine Modified Oligodeoxynucleotide Duplex 1MHK ; 2.5 ; Crystal Structure Analysis of a 26mer RNA molecule, representing a new RNA motif, the hook-turn 3UA8 ; 1.9 ; Crystal Structure Analysis of a 6-Amino Quinazolinedione Sulfonamide bound to human GluR2 1WIY ; 2.0 ; Crystal Structure Analysis of a 6-coordinated Cytochorome P450 from Thermus thermophilus HB8 4H0S ; 1.55 ; Crystal structure analysis of a basic phospholipase A2 from Trimeresurus stejnegeri venom 3K83 ; 2.251 ; Crystal Structure Analysis of a Biphenyl/Oxazole/Carboxypyridine alpha-ketoheterocycle Inhibitor Bound to a Humanized Variant of Fatty Acid Amide Hydrolase 2NO4 ; 1.93 ; Crystal Structure analysis of a Dehalogenase 2NO5 ; 2.6 ; Crystal Structure analysis of a Dehalogenase with intermediate complex 1JBZ ; 1.5 ; CRYSTAL STRUCTURE ANALYSIS OF A DUAL-WAVELENGTH EMISSION GREEN FLUORESCENT PROTEIN VARIANT AT HIGH PH 1JBY ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF A DUAL-WAVELENGTH EMISSION GREEN FLUORESCENT PROTEIN VARIANT AT LOW PH 6IYX ; 1.8 ; Crystal Structure Analysis of a Eukaryotic Membrane Protein 6IZ0 ; 2.3 ; Crystal Structure Analysis of a Eukaryotic Membrane Protein 6IZ1 ; 2.399 ; Crystal Structure Analysis of a Eukaryotic Membrane Protein 6IZ5 ; 3.701 ; Crystal Structure Analysis of a Eukaryotic Membrane Protein 2CE2 ; 1.0 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH GDP 2CLD ; 1.22 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH GDP (2) 2CL0 ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH GppNHp 2CL7 ; 1.25 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH GTP 2CLC ; 1.3 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH GTP (2) 2EVW ; 1.05 ; Crystal structure analysis of a fluorescent form of H-Ras p21 in complex with R-caged GTP 2CL6 ; 1.24 ; CRYSTAL STRUCTURE ANALYSIS OF A FLUORESCENT FORM OF H-RAS P21 IN COMPLEX WITH S-caged GTP 3F8T ; 1.9 ; Crystal structure analysis of a full-length MCM homolog from Methanopyrus kandleri 4FMV ; 2.01 ; Crystal Structure Analysis of a GH30 Endoxylanase from Clostridium papyrosolvens C71 3I4U ; 2.1 ; Crystal Structure Analysis of a helicase associated domain 1JUC ; 2.35 ; Crystal Structure Analysis of a Holliday Junction Formed by CCGGTACCGG 1QSW ; 1.85 ; CRYSTAL STRUCTURE ANALYSIS OF A HUMAN LYSOZYME MUTANT W64C C65A 1MCV ; 1.8 ; Crystal Structure Analysis of a Hybrid Squash Inhibitor in Complex with Porcine Pancreatic Elastase 2ALM ; 2.6 ; Crystal structure analysis of a mutant beta-ketoacyl-[acyl carrier protein] synthase II from Streptococcus pneumoniae 2TIR ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF A MUTANT ESCHERICHIA COLI THIOREDOXIN IN WHICH LYSINE 36 IS REPLACED BY GLUTAMIC ACID 5CDW ; 2.602 ; Crystal Structure Analysis of a mutant Grb2 SH2 domain (W121G) with a pYVNV peptide 1S5T ; 2.3 ; Crystal Structure Analysis of a mutant of DIHYDRODIPICOLINATE SYNTHASE--residue thr44 to val44 1S5V ; 2.35 ; Crystal Structure Analysis of a mutant of DIHYDRODIPICOLINATE SYNTHASE--residue Tyr107 to Phe107 1S5W ; 2.32 ; Crystal Structure Analysis of a mutant of DIHYDRODIPICOLINATE SYNTHASE--residue Tyr133 to Phe133 1HR2 ; 2.25 ; CRYSTAL STRUCTURE ANALYSIS OF A MUTANT P4-P6 DOMAIN (DELC209) OF TETRAHYMENA THEMOPHILA GROUP I INTRON. 2D42 ; 2.07 ; Crystal structure analysis of a non-toxic crystal protein from Bacillus thuringiensis 1T4U ; 2.0 ; Crystal Structure Analysis of a novel Oxyguanidine bound to Thrombin 1T4V ; 2.0 ; Crystal Structure Analysis of a novel Oxyguanidine bound to Thrombin 3K84 ; 2.25 ; Crystal Structure Analysis of a Oleyl/Oxadiazole/pyridine Inhibitor Bound to a Humanized Variant of Fatty Acid Amide Hydrolase 3K7F ; 1.95 ; Crystal Structure Analysis of a Phenhexyl/Oxazole/Carboxypyridine alpha-Ketoheterocycle Inhibitor Bound to a Humanized Variant of Fatty Acid Amide Hydrolase' 6WK7 ; 2.423 ; Crystal Structure Analysis of a poly(thymine) DNA duplex 3R7X ; 2.1 ; Crystal Structure Analysis of a Quinazolinedione sulfonamide bound to human GluR2: A Novel Class of Competitive AMPA Receptor Antagonists with Oral Activity 2AHA ; 1.98 ; Crystal structure analysis of a rate-enhanced variant of redox-sensitive green fluorescent protein in the reduced form, roGFP1-R8. 3TKK ; 1.99 ; Crystal Structure Analysis of a recombinant predicted acetamidase/ formamidase from the thermophile thermoanaerobacter tengcongensis 1JC1 ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF A REDOX-SENSITIVE GREEN FLUORESCENT PROTEIN VARIANT IN A OXIDIZED FORM 1JC0 ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF A REDOX-SENSITIVE GREEN FLUORESCENT PROTEIN VARIANT IN A REDUCED FORM 1LNI ; 1.0 ; CRYSTAL STRUCTURE ANALYSIS OF A RIBONUCLEASE FROM STREPTOMYCES AUREOFACIENS AT ATOMIC RESOLUTION (1.0 A) 3LLM ; 2.8 ; Crystal Structure Analysis of a RNA Helicase 4KAG ; 1.12 ; Crystal structure analysis of a single amino acid deletion mutation in EGFP 4KEX ; 1.6 ; Crystal structure analysis of a single amino acid deletion mutation in EGFP 2RJT ; 1.75 ; Crystal Structure Analysis of a Surface Entropy Reduction Mutant of S. pneumoniae FabF 1MFQ ; 3.1 ; Crystal Structure Analysis of a Ternary S-Domain Complex of Human Signal Recognition Particle 1I9V ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF A TRNA-NEOMYCIN COMPLEX 1QZN ; 1.9 ; Crystal Structure Analysis of a type II cohesin domain from the cellulosome of Acetivibrio cellulolyticus 1ZV9 ; 1.28 ; Crystal structure analysis of a type II cohesin domain from the cellulosome of Acetivibrio cellulolyticus- SeMet derivative 8ECM ; 1.89 ; Crystal Structure Analysis of Acetyl-CoA acetyltransferase from Firmicutes bacterium 1V8M ; 1.8 ; Crystal structure analysis of ADP-ribose pyrophosphatase complexed with ADP-ribose and Gd 1EV5 ; 1.7 ; CRYSTAL STRUCTURE ANALYSIS OF ALA167 MUTANT OF ESCHERICHIA COLI 7MJC ; 2.68 ; Crystal Structure Analysis of ALDH1B1 7MJD ; 2.12 ; Crystal Structure Analysis of ALDH1B1 7RAD ; 2.3 ; Crystal Structure Analysis of ALDH1B1 4KWG ; 2.1 ; Crystal Structure Analysis of ALDH2+ALDiB13 4KWF ; 2.31 ; Crystal Structure Analysis of ALDH2+ALDiB33 1EPX ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF ALDOLASE FROM L. MEXICANA 1F2J ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF ALDOLASE FROM T. BRUCEI 1UA7 ; 2.21 ; Crystal Structure Analysis of Alpha-Amylase from Bacillus Subtilis complexed with Acarbose 3BT4 ; 2.1 ; Crystal Structure Analysis of AmFPI-1, fungal protease inhibitor from Antheraea mylitta 1AAJ ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF AMICYANIN AND APOAMICYANIN FROM PARACOCCUS DENITRIFICANS AT 2.0 ANGSTROMS AND 1.8 ANGSTROMS RESOLUTION 1AAN ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF AMICYANIN AND APOAMICYANIN FROM PARACOCCUS DENITRIFICANS AT 2.0 ANGSTROMS AND 1.8 ANGSTROMS RESOLUTION 28DN ; 2.4 ; CRYSTAL STRUCTURE ANALYSIS OF AN A(DNA) OCTAMER D(GTACGTAC) 9DNA ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF AN A-DNA FRAGMENT AT 1.8 ANGSTROMS RESOLUTION. D(GCCCGGGC) 3HKX ; 1.66 ; Crystal structure analysis of an amidase from Nesterenkonia sp. 1P2C ; 2.0 ; crystal structure analysis of an anti-lysozyme antibody 6IYU ; 2.199 ; Crystal Structure Analysis of an Eukaryotic Membrane Protein 1XQI ; 2.5 ; Crystal Structure Analysis of an NDP kinase from Pyrobaculum aerophilum 1L3Z ; 2.01 ; Crystal Structure Analysis of an RNA Heptamer 1Q1J ; 2.5 ; Crystal Structure Analysis of anti-HIV-1 Fab 447-52D in complex with V3 peptide 2B0S ; 2.3 ; Crystal structure analysis of anti-HIV-1 V3 Fab 2219 in complex with MN peptide 2B1A ; 2.348 ; Crystal structure analysis of anti-HIV-1 V3 Fab 2219 in complex with UG1033 peptide 2B1H ; 2.0 ; Crystal structure analysis of anti-HIV-1 V3 Fab 2219 in complex with UG29 peptide 2QSC ; 2.8 ; Crystal structure analysis of anti-HIV-1 V3-Fab F425-B4e8 in complex with a V3-peptide 1K3O ; 1.8 ; Crystal Structure Analysis of apo Glutathione S-Transferase 2FGZ ; 1.75 ; Crystal Structure Analysis of apo pullulanase from Klebsiella pneumoniae 4HEL ; 3.2 ; Crystal structure analysis of apo-GroEL structure 3NYJ ; 3.2 ; Crystal Structure Analysis of APP E2 domain 4PV6 ; 3.32 ; Crystal Structure Analysis of Ard1 from Thermoplasma volcanium 1I49 ; 2.8 ; CRYSTAL STRUCTURE ANALYSIS OF ARFAPTIN 1G8J ; 2.03 ; CRYSTAL STRUCTURE ANALYSIS OF ARSENITE OXIDASE FROM ALCALIGENES FAECALIS 1G8K ; 1.64 ; CRYSTAL STRUCTURE ANALYSIS OF ARSENITE OXIDASE FROM ALCALIGENES FAECALIS 3LNB ; 2.01 ; Crystal Structure Analysis of Arylamine N-acetyltransferase C from Bacillus anthracis 8GKO ; 1.06 ; Crystal Structure Analysis of Aspergillus fumigatus alkaline protease 8GKP ; 1.55 ; Crystal Structure Analysis of Aspergillus fumigatus alkaline protease 8GKQ ; 1.65 ; Crystal Structure Analysis of Aspergillus fumigatus alkaline protease 8U45 ; 2.1 ; Crystal Structure Analysis of Aspergillus fumigatus alkaline protease 3FI0 ; 2.7 ; Crystal Structure Analysis of B. stearothermophilus Tryptophanyl-tRNA Synthetase Complexed with Tryptophan, AMP, and Inorganic Phosphate 1VEM ; 1.85 ; Crystal Structure Analysis of Bacillus Cereus Beta-Amylase at the optimum pH (6.5) 6IA5 ; 1.88 ; Crystal Structure Analysis of Bacillus subtilis 168 XepA 2GLX ; 2.2 ; Crystal Structure Analysis of bacterial 1,5-AF Reductase 1HV4 ; 2.8 ; CRYSTAL STRUCTURE ANALYSIS OF BAR-HEAD GOOSE HEMOGLOBIN (DEOXY FORM) 6VO4 ; 1.74 ; Crystal Structure Analysis of BFL1 2QJ9 ; 2.44 ; Crystal structure analysis of BMP-2 in complex with BMPR-IA variant B1 2QJA ; 2.6 ; Crystal structure analysis of BMP-2 in complex with BMPR-IA variant B12 2QJB ; 2.5 ; Crystal structure analysis of BMP-2 in complex with BMPR-IA variant IA/IB 2R52 ; 2.5 ; Crystal structure analysis of Bone Morphogenetic Protein-6 (BMP-6) 2R53 ; 2.1 ; Crystal structure analysis of Bone Morphogenetic Protein-6 variant B2 (B2-BMP-6) 1SQB ; 2.69 ; Crystal Structure Analysis of Bovine Bc1 with Azoxystrobin 1SQQ ; 3.0 ; Crystal Structure Analysis of Bovine Bc1 with Methoxy Acrylate Stilbene (MOAS) 1SQP ; 2.7 ; Crystal Structure Analysis of Bovine Bc1 with Myxothiazol 1SQX ; 2.6 ; Crystal Structure Analysis of Bovine Bc1 with Stigmatellin A 1SQV ; 2.85 ; Crystal Structure Analysis of Bovine Bc1 with UHDBT 1V9E ; 1.95 ; Crystal Structure Analysis of Bovine Carbonic Anhydrase II 6IHX ; 1.46 ; Crystal Structure Analysis of bovine Hemoglobin modified by SNP 1ZYE ; 3.3 ; Crystal structure analysis of Bovine Mitochondrial Peroxiredoxin III 1ITO ; 2.286 ; Crystal Structure Analysis of Bovine Spleen Cathepsin B-E64c complex 5C4Q ; 1.932 ; Crystal Structure Analysis of bromodomain from Leishmania donovani complexed with bromosporine 1ISF ; 2.5 ; Crystal Structure Analysis of BST-1/CD157 1ISI ; 2.1 ; Crystal Structure Analysis of BST-1/CD157 complexed with ethenoNAD 1ISH ; 2.4 ; Crystal Structure Analysis of BST-1/CD157 complexed with ethenoNADP 1ISM ; 3.0 ; Crystal Structure Analysis of BST-1/CD157 complexed with nicotinamide 1ISJ ; 2.3 ; Crystal Structure Analysis of BST-1/CD157 complexed with NMN 1ISG ; 2.6 ; Crystal Structure Analysis of BST-1/CD157 with ATPgammaS 5C5Z ; 1.45 ; Crystal structure analysis of c4763, a uropathogenic E. coli-specific protein 5HIT ; 2.85 ; Crystal Structure Analysis of Ca2+-calmodulin and a C-terminal EAG1 channel fragment 1KYZ ; 2.2 ; Crystal Structure Analysis of Caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase Ferulic Acid Complex 1KYW ; 2.4 ; Crystal Structure Analysis of Caffeic Acid/5-hydroxyferulic acid 3/5-O-methyltransferase in complex with 5-hydroxyconiferaldehyde 2ZIB ; 1.34 ; Crystal structure analysis of calcium-independent type II antifreeze protein 1KRQ ; 2.7 ; CRYSTAL STRUCTURE ANALYSIS OF CAMPYLOBACTER JEJUNI FERRITIN 5GHK ; 3.2 ; Crystal Structure Analysis of Canine serum albumin 2NZ7 ; 1.9 ; Crystal Structure Analysis of Caspase-recruitment Domain (CARD) of Nod1 1M7S ; 1.8 ; Crystal Structure Analysis of Catalase CatF of Pseudomonas syringae 2J2M ; 2.4 ; Crystal Structure Analysis of Catalase from Exiguobacterium oxidotolerans 5C1V ; 3.35 ; CRYSTAL STRUCTURE ANALYSIS OF CATALYTIC SUBUNIT OF HUMAN CALCINEURIN 3WT0 ; 2.0 ; Crystal Structure Analysis of Cell Division Protein 3RRS ; 1.7 ; Crystal structure analysis of cellobiose phosphorylase from Cellulomonas uda 1FP1 ; 1.82 ; CRYSTAL STRUCTURE ANALYSIS OF CHALCONE O-METHYLTRANSFERASE 4EQ2 ; 2.502 ; Crystal Structure Analysis of Chicken Interferon Gamma Receptor Alpha Chain 3ARO ; 2.22 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - apo structure 3ARS ; 2.45 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - apo structure of mutant W275G 3ARY ; 1.35 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with 2-(imidazolin-2-yl)-5-isothiocyanatobenzofuran 3ARZ ; 1.82 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with 2-(imidazolin-2-yl)-5-isothiocyanatobenzofuran 3ARW ; 1.5 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with chelerythrine 3ARP ; 1.55 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with DEQUALINIUM 3ARQ ; 1.5 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with IDARUBICIN 3ARR ; 1.65 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with PENTOXIFYLLINE 3ARX ; 1.16 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with Propentofylline 3ARV ; 1.5 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - complex structure with Sanguinarine 3AS3 ; 2.4 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with 2-(imidazolin-2-yl)-5-isothiocyanatobenzofuran 3AS1 ; 2.0 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with chelerythrine 3ART ; 2.23 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with DEQUALINIUM 3ARU ; 1.9 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with PENTOXIFYLLINE 3AS2 ; 1.8 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with Propentofylline 3AS0 ; 2.0 ; Crystal Structure Analysis of Chitinase A from Vibrio harveyi with novel inhibitors - W275G mutant complex structure with Sanguinarine 1FNK ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF CHORISMATE MUTASE MUTANT C88K/R90S 1FNJ ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF CHORISMATE MUTASE MUTANT C88S/R90K 1U9T ; 2.16 ; Crystal Structure Analysis of ChuS, an E. coli Heme Oxygenase 5XHZ ; 1.319 ; Crystal Structure Analysis of CIN85-SH3B in complex with ARAP1-P2 3RBG ; 2.3 ; Crystal structure analysis of Class-I MHC restricted T-cell associated molecule 1KHO ; 2.4 ; Crystal Structure Analysis of Clostridium perfringens alpha-Toxin Isolated from Avian Strain SWCP 1QVR ; 3.0 ; Crystal Structure Analysis of ClpB 1MBU ; 2.3 ; Crystal Structure Analysis of ClpSN heterodimer 1MBV ; 3.3 ; CRYSTAL STRUCTURE ANALYSIS OF ClpSN HETERODIMER TETRAGONAL FORM 1MBX ; 2.25 ; CRYSTAL STRUCTURE ANALYSIS OF ClpSN WITH TRANSITION METAL ION BOUND 6II1 ; 1.34 ; Crystal Structure Analysis of CO form hemoglobin from Bos taurus 2R7E ; 3.7 ; Crystal Structure Analysis of Coagulation Factor VIII 2IJH ; 1.8 ; Crystal structure analysis of ColE1 ROM mutant F14W 2IJJ ; 1.9 ; Crystal structure analysis of ColE1 ROM mutant F14Y 7RKA ; 1.8 ; Crystal structure analysis of Colorado potato beetle glutathione-S transferase LdGSTu1 4EMS ; 1.7534 ; Crystal Structure Analysis of Coniferyl Alcohol 9-O-Methyltransferase from Linum Nodiflorum 4E70 ; 1.6093 ; Crystal Structure Analysis of Coniferyl Alcohol 9-O-Methyltransferase from Linum Nodiflorum in Complex with Coniferyl Alcohol 4EVI ; 2.015 ; Crystal Structure Analysis of Coniferyl Alcohol 9-O-Methyltransferase from Linum Nodiflorum in Complex with Coniferyl Alcohol 9-Methyl Ether and S -Adenosyl-L-Homocysteine 7Y90 ; 2.09 ; Crystal Structure Analysis of cp1 bound BCL2 7YA5 ; 1.85 ; Crystal structure analysis of cp1 bound BCL2/G101V 7Y99 ; 1.9 ; Crystal Structure Analysis of cp2 bound BCLxl 7YAA ; 1.4 ; Crystal structure analysis of cp3 bound BCLxl 2RFH ; 1.7 ; Crystal Structure Analysis of CPA-2-benzyl-3-nitropropanoic acid complex 1K7U ; 2.2 ; Crystal Structure Analysis of crosslinked-WGA3/GlcNAcbeta1,4GlcNAc complex 1K7T ; 2.4 ; Crystal Structure Analysis of crosslinked-WGA3/GlcNAcbeta1,6Gal complex 1K7V ; 2.2 ; Crystal Structure Analysis of crosslinked-WGA3/GlcNAcbeta1,6Galbeta1,4Glc 1F29 ; 2.15 ; CRYSTAL STRUCTURE ANALYSIS OF CRUZAIN BOUND TO A VINYL SULFONE DERIVED INHIBITOR (I) 1F2A ; 1.6 ; CRYSTAL STRUCTURE ANALYSIS OF CRUZAIN BOUND TO A VINYL SULFONE DERIVED INHIBITOR (II) 4XUI ; 2.508 ; Crystal structure analysis of cruzain bound to the no-covalent analog of WRR-483 (WRR-669) 4PI3 ; 1.27 ; Crystal structure analysis of cruzain bound to vinyl sulfone analog of WRR-483 (WRR-666) 1F2B ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF CRUZAIN BOUND TO VINYL SULFONE DERIVED INHIBITOR (III) 2OZ2 ; 1.95 ; Crystal structure analysis of cruzain bound to vinyl sulfone derived inhibitor (K11777) 3LXS ; 1.5 ; Crystal structure analysis of cruzain bound to vinyl sulfone derived inhibitor (WRR483) 4W5B ; 2.701 ; Crystal structure analysis of cruzain with Fragment 1 (N-(1H-benzimidazol-2-yl)-1,3-dimethyl-pyrazole-4-carboxamide) 4W5C ; 3.27 ; Crystal structure analysis of cruzain with three Fragments: 1 (N-(1H-benzimidazol-2-yl)-1,3-dimethyl-pyrazole-4-carboxamide), 6 (2-amino-4,6-difluorobenzothiazole) and 9 (N-(1H-benzimidazol-2-yl)-3-(4-fluorophenyl)-1H-pyrazole-4-carboxamide). 1F2C ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF CRYZAIN BOUND TO VINYL SULFONE DERIVED INHIBITOR (IV) 3TT8 ; 1.12 ; Crystal Structure Analysis of Cu Human Insulin Derivative 2COL ; 2.2 ; Crystal structure analysis of CyaA/C-Cam with Pyrophosphate 3WCQ ; 0.97 ; Crystal structure analysis of Cyanidioschyzon melorae ferredoxin D58N mutant 1EV8 ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF CYS167 MUTANT OF ESCHERICHIA COLI 1EVF ; 1.7 ; CRYSTAL STRUCTURE ANALYSIS OF CYS167 MUTANT OF ESCHERICHIA COLI 1EVG ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF CYS167 MUTANT OF ESCHERICHIA COLI WITH UNMODIFIED CATALYTIC CYSTEINE 1EG6 ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF D(CG(5-BRU)ACG) COMPLEXES TO A PHENAZINE 1C0K ; 1.46 ; CRYSTAL STRUCTURE ANALYSIS OF D-AMINO ACID OXIDASE IN COMPLEX WITH L-LACTATE 1GG1 ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF DAHP SYNTHASE IN COMPLEX WITH MN2+ AND 2-PHOSPHOGLYCOLATE 1XY1 ; 1.04 ; CRYSTAL STRUCTURE ANALYSIS OF DEAMINO-OXYTOCIN. CONFORMATIONAL FLEXIBILITY AND RECEPTOR BINDING 1XY2 ; 1.2 ; CRYSTAL STRUCTURE ANALYSIS OF DEAMINO-OXYTOCIN. CONFORMATIONAL FLEXIBILITY AND RECEPTOR BINDING 1DLK ; 2.14 ; CRYSTAL STRUCTURE ANALYSIS OF DELTA-CHYMOTRYPSIN BOUND TO A PEPTIDYL CHLOROMETHYL KETONE INHIBITOR 3IRC ; 2.25 ; Crystal structure analysis of dengue-1 envelope protein domain III 1MH9 ; 1.8 ; Crystal Structure Analysis of deoxyribonucleotidase 2PO3 ; 2.1 ; Crystal Structure Analysis of DesI in the presence of its TDP-sugar product 2YXX ; 1.7 ; Crystal structure analysis of Diaminopimelate decarboxylate (lysA) 1JUV ; 1.7 ; Crystal structure analysis of Dihydrofolate reductase from Bacteriophage T4 2E3U ; 2.3 ; Crystal structure analysis of Dim2p from Pyrococcus horikoshii OT3 1YHT ; 2.0 ; Crystal structure analysis of Dispersin B 5AXE ; 0.95 ; Crystal Structure Analysis of DNA Duplexes containing sulfoamide-bridged nucleic acid (SuNA-NH) 5AXF ; 1.13 ; Crystal Structure Analysis of DNA Duplexes containing sulfoamide-bridged nucleic acid (SuNA-NMe) 6U9Q ; 1.83 ; Crystal Structure Analysis of DNA-BCL11A Znf domain complex 2RAL ; 2.8 ; Crystal Structure Analysis of double cysteine mutant of S.epidermidis adhesin SdrG: Evidence for the Dock,Lock and Latch ligand binding mechanism 3EIO ; 2.0 ; Crystal Structure Analysis of DPPIV Inhibitor 4IQH ; 1.764 ; Crystal Structure Analysis of Dysferlin C2A variant 1 (C2Av1) 4TWZ ; 2.8 ; Crystal Structure Analysis of E Coli. RecA Protein 1HO3 ; 2.5 ; CRYSTAL STRUCTURE ANALYSIS OF E. COLI L-ASPARAGINASE II (Y25F MUTANT) 1T43 ; 3.2 ; Crystal Structure Analysis of E.coli Protein (N5)-Glutamine Methyltransferase (HemK) 3A9Q ; 1.896 ; Crystal Structure Analysis of E173A variant of the soybean ferritin SFER4 3UVH ; 1.84 ; Crystal Structure Analysis of E81M mutant of human CLIC1 5UOE ; 3.8 ; Crystal Structure Analysis of Elbow-Engineered-Fab-Bound Human Insulin Degrading Enzyme (IDE) 5CJO ; 3.287 ; Crystal Structure Analysis of Elbow-Engineered-Fab-Bound Human Insulin Degrading Enzyme (IDE) in Complex with Insulin 6KWC ; 1.3 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II 6K9R ; 1.3 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KVV ; 1.19 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KW9 ; 1.22 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KWD ; 1.298 ; Crystal Structure Analysis of Endo-beta-1,4-Xylanase II Complexed with Xylotriose 6KWE ; 1.503 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KWF ; 1.22 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KWG ; 1.694 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6KWH ; 1.808 ; Crystal Structure Analysis of Endo-beta-1,4-xylanase II Complexed with Xylotriose 3JU4 ; 0.98 ; Crystal Structure Analysis of EndosialidaseNF at 0.98 A Resolution 2AL1 ; 1.5 ; Crystal Structure Analysis of Enolase Mg Subunit Complex at pH 8.0 2AL2 ; 1.85 ; Crystal Structure Analysis of Enolase Mg Subunit Complex at pH 8.0 3QTP ; 1.9 ; Crystal Structure Analysis of Entamoeba histolytica Enolase 3E5V ; 2.1 ; Crystal Structure Analysis of eqFP611 Double Mutant T122R, N143S 3WBK ; 3.3 ; crystal structure analysis of eukaryotic translation initiation factor 5B and 1A complex 3WBI ; 2.35 ; Crystal structure analysis of eukaryotic translation initiation factor 5B structure I 3WBJ ; 2.495 ; Crystal structure analysis of eukaryotic translation initiation factor 5B structure II 2OQJ ; 2.8 ; Crystal structure analysis of Fab 2G12 in complex with peptide 2G12.1 4IOF ; 3.353 ; Crystal structure analysis of Fab-bound human Insulin Degrading Enzyme (IDE) 4M1C ; 3.5007 ; Crystal Structure Analysis of Fab-Bound Human Insulin Degrading Enzyme (IDE) in Complex with Amyloid-Beta (1-40) 5WOB ; 3.95 ; Crystal Structure Analysis of Fab1-Bound Human Insulin Degrading Enzyme (IDE) in Complex with Insulin 5YXE ; 3.40242 ; Crystal Structure Analysis of feline serum albumin 1IUE ; 1.7 ; Crystal Structure Analysis of ferredoxin from Plasmodium falciparum 3UD7 ; 2.8 ; Crystal Structure Analysis of FGF1-Disaccharide(NI21) complexes 3UD8 ; 2.37 ; Crystal Structure Analysis of FGF1-Disaccharide(NI22) complex 3UD9 ; 2.34 ; Crystal Structure Analysis of FGF1-Disaccharide(NI23) complex 3UDA ; 2.51 ; Crystal Structure Analysis of FGF1-Disaccharide(NI24) complex 4OEE ; 1.5 ; Crystal Structure Analysis of FGF2-Disaccharide (S3I2) complex 4OEF ; 1.8 ; Crystal Structure Analysis of FGF2-Disaccharide (S6I2) complex 4OEG ; 1.6 ; Crystal Structure Analysis of FGF2-Disaccharide (S9I2) complex 4LAX ; 2.007 ; Crystal Structure Analysis of FKBP52, Complex with FK506 4LAY ; 1.7 ; Crystal Structure Analysis of FKBP52, Complex with I63 4LAV ; 1.8 ; Crystal Structure Analysis of FKBP52, Crystal Form II 4LAW ; 2.4 ; Crystal Structure Analysis of FKBP52, Crystal Form III 3BZ3 ; 2.2 ; Crystal Structure Analysis of Focal Adhesion Kinase with a Methanesulfonamide Diaminopyrimidine Inhibitor 3Q9T ; 2.24 ; Crystal structure analysis of formate oxidase 3E5T ; 1.1 ; Crystal Structure Analysis of FP611 3E5W ; 1.71 ; Crystal Structure Analysis of FP611 4QNQ ; 2.3 ; Crystal Structure Analysis of full-length Bcl-XL in complex with the inhibitor ABT-263 1K9A ; 2.5 ; Crystal structure analysis of full-length carboxyl-terminal Src kinase at 2.5 A resolution 3FJW ; 2.8 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 3FKG ; 1.81 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 3FM1 ; 1.78 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 3FM4 ; 2.11 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 3FM6 ; 1.13 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 3FMU ; 1.04 ; Crystal Structure Analysis of Fungal Versatile Peroxidase from Pleurotus eryngii 5ABO ; 1.095 ; CRYSTAL STRUCTURE ANALYSIS OF FUNGAL VERSATILE PEROXIDASE FROM PLEUROTUS ERYNGII. MUTANT VPi-br. MUTATED RESIDUES T2K, D69S, T70D, S86E, A131K, D146T, Q202L, Q219K, H232E, Q239R, L288R, S301K, A308R, A309K AND A314R. 5ABQ ; 2.293 ; CRYSTAL STRUCTURE ANALYSIS OF FUNGAL VERSATILE PEROXIDASE FROM PLEUROTUS ERYNGII. MUTANT VPi-SS. MUTATED RESIDUES T2K, A49C, A61C, D69S, T70D, S86E, A131K, D146T, Q202L, Q219K, H232E, Q239R, L288R, S301K, A308R,A309K AND A314R. 5ABN ; 2.194 ; CRYSTAL STRUCTURE ANALYSIS OF FUNGAL VERSATILE PEROXIDASE FROM PLEUROTUS ERYNGII. MUTANT VPi. MUTATED RESIDUES D69S, T70D, S86E, D146T, Q202L, H232E, Q239R AND S301K. 2DWY ; 2.3 ; Crystal Structure Analysis of GGA1-GAE 2D7J ; 1.89 ; Crystal Structure Analysis of Glutamine Amidotransferase from Pyrococcus horikoshii OT3 1XA8 ; 2.4 ; Crystal Structure Analysis of Glutathione-dependent formaldehyde-activating enzyme (Gfa) 2AF9 ; 2.0 ; Crystal Structure analysis of GM2-Activator protein complexed with phosphatidylcholine 2AG2 ; 2.0 ; Crystal Structure Analysis of GM2-activator protein complexed with Phosphatidylcholine 2AG4 ; 1.8 ; Crystal Structure Analysis of GM2-activator protein complexed with phosphatidylcholine 2P4Q ; 2.37 ; Crystal Structure Analysis of Gnd1 in Saccharomyces cerevisiae 1K34 ; 1.88 ; Crystal structure analysis of gp41 core mutant 4HJ2 ; 2.1 ; Crystal Structure Analysis of GSTA1-1 in complex with chlorambucil 3A0G ; 2.5 ; Crystal structure analysis of guinea pig oxyhemoglobin at 2.5 angstroms resolution 3QR6 ; 1.78 ; Crystal Structure Analysis of H185F Mutant of Human CLIC1 3P90 ; 2.3 ; Crystal Structure Analysis of H207F Mutant of Human CLIC1 3SWL ; 2.35 ; Crystal Structure Analysis of H74A Mutant of Human CLIC1 1NNF ; 1.1 ; Crystal Structure Analysis of Haemophlius Influenzae Ferric-ion Binding Protein H9Q Mutant Form 1LGD ; 1.9 ; Crystal Structure Analysis of HCA II Mutant T199P in Complex with Bicarbonate 1LG6 ; 2.2 ; Crystal Structure Analysis of HCA II Mutant T199P in Complex with Thiocyanate 3SZS ; 1.95 ; Crystal structure analysis of hellethionin D 2HTX ; 1.56 ; Crystal Structure Analysis of Hen Egg White Lysozyme Crosslinked by Polymerized Glutaraldehyde in Acidic Environment 2EPE ; 2.5 ; Crystal structure analysis of Hen egg white lysozyme grown by capillary method 2HU1 ; 1.63 ; Crystal structure Analysis of Hen Egg White Lyszoyme 1Q9B ; 1.5 ; CRYSTAL STRUCTURE ANALYSIS OF Hev b 6.02 (HEVEIN) AT 1.5 ANGSTROMS RESOLUTION 2FBB ; 1.46 ; Crystal Structure Analysis of Hexagonal Lysozyme 1JOV ; 1.57 ; Crystal Structure Analysis of HI1317 2NNK ; 1.25 ; Crystal structure analysis of HIV-1 protease mutant I84V with a inhibitor saquinavir 2NNP ; 1.2 ; Crystal structure analysis of HIV-1 protease mutant I84V with a inhibitor saquinavir 2IEO ; 1.53 ; Crystal structure analysis of HIV-1 protease mutant I84V with a potent non-peptide inhibitor (UIC-94017) 2AOC ; 1.3 ; Crystal structure analysis of HIV-1 protease mutant I84V with a substrate analog P2-NC 2NMY ; 1.1 ; Crystal structure analysis of HIV-1 protease mutant V82A with a inhibitor saquinavir 2NMZ ; 0.97 ; Crystal structure analysis of HIV-1 protease mutant V82A with a inhibitor saquinavir 2IDW ; 1.1 ; Crystal structure analysis of HIV-1 protease mutant V82A with a potent non-peptide inhibitor (UIC-94017) 2AOE ; 1.54 ; crystal structure analysis of HIV-1 protease mutant V82A with a substrate analog CA-P2 2AOF ; 1.32 ; Crystal structure analysis of HIV-1 Protease mutant V82A with a substrate analog P1-P6 2AOG ; 1.1 ; Crystal structure analysis of HIV-1 protease mutant V82A with a substrate analog P2-NC 2AOH ; 1.42 ; Crystal structure analysis of HIV-1 Protease mutant V82A with a substrate analog P6-PR 2IEN ; 1.3 ; Crystal structure analysis of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) 2AOI ; 1.4 ; Crystal structure analysis of HIV-1 protease with a substrate analog P1-P6 2AOD ; 1.4 ; Crystal structure analysis of HIV-1 protease with a substrate analog P2-NC 2AOJ ; 1.6 ; Crystal structure analysis of HIV-1 protease with a substrate analog P6-PR 2R5P ; 2.3 ; Crystal Structure Analysis of HIV-1 Subtype C Protease Complexed with Indinavir 2R5Q ; 2.3 ; Crystal Structure Analysis of HIV-1 Subtype C Protease Complexed with Nelfinavir 1IXV ; 2.3 ; Crystal Structure Analysis of homolog of oncoprotein gankyrin, an interactor of Rb and CDK4/6 2PLN ; 1.8 ; Crystal structure analysis of HP1043, an orphan resonse regulator of h. pylori 6VQM ; 2.87 ; Crystal Structure Analysis of human ACK1 7U5W ; 1.13 ; Crystal Structure Analysis of human Carbonic anhydrase 2 7U5X ; 1.04 ; Crystal Structure Analysis of human Carbonic anhydrase 2 2HL4 ; 1.55 ; Crystal structure analysis of human carbonic anhydrase II in complex with a benzenesulfonamide derivative 7MKX ; 3.08 ; Crystal Structure Analysis of human CDK2 and CCNA2 complex 2B2V ; 2.65 ; Crystal structure analysis of human CHD1 chromodomains 1 and 2 bound to histone H3 resi 1-15 MeK4 7TUN ; 2.93 ; Crystal structure analysis of human CKB complex with a covalent compound 5VXS ; 2.954 ; Crystal Structure Analysis of human CLYBL in apo form 5VXC ; 1.872 ; Crystal Structure Analysis of human CLYBL in complex with free CoASH 5VXO ; 2.266 ; Crystal Structure Analysis of human CLYBL in complex with propionyl-CoA 2O72 ; 2.0 ; Crystal Structure Analysis of human E-cadherin (1-213) 2EC9 ; 2.0 ; Crystal structure analysis of human Factor VIIa , Souluble tissue factor complexed with BCX-3607 3MX7 ; 1.76 ; Crystal Structure Analysis of Human FAIM-NTD 1K3Y ; 1.3 ; Crystal Structure Analysis of human Glutathione S-transferase with S-hexyl glutatione and glycerol at 1.3 Angstrom 3F07 ; 3.3 ; Crystal Structure Analysis of Human HDAC8 complexed with APHA in a new monoclinic crystal form 3F0R ; 2.54 ; Crystal Structure Analysis of Human HDAC8 complexed with trichostatin A in a new monoclinic crystal form 3F06 ; 2.55 ; Crystal Structure Analysis of Human HDAC8 D101A Variant. 3EZT ; 2.85 ; Crystal Structure Analysis of Human HDAC8 D101E Variant 3EW8 ; 1.8 ; Crystal Structure Analysis of human HDAC8 D101L variant 3EZP ; 2.65 ; Crystal Structure Analysis of human HDAC8 D101N variant 3EWF ; 2.5 ; Crystal Structure Analysis of human HDAC8 H143A variant complexed with substrate. 2CVD ; 1.45 ; Crystal structure analysis of human hematopoietic prostaglandin D synthase complexed with HQL-79 1JQE ; 1.91 ; Crystal Structure Analysis of Human Histamine Methyltransferase (Ile105 Polymorphic Variant) Complexed with AdoHcy and Antimalarial Drug Quinacrine 1JQD ; 2.28 ; Crystal Structure Analysis of Human Histamine Methyltransferase (Thr105 Polymorphic Variant) Complexed with AdoHcy and Histamine 4KZO ; 2.204 ; Crystal Structure Analysis of human IDH1 mutants in complex with NADP+ and Ca2+/alpha-Ketoglutarate 4L03 ; 2.1 ; Crystal Structure Analysis of human IDH1 mutants in complex with NADP+ and Ca2+/alpha-Ketoglutarate 4L04 ; 2.87 ; Crystal Structure Analysis of human IDH1 mutants in complex with NADP+ and Ca2+/alpha-Ketoglutarate 4L06 ; 2.282 ; Crystal Structure Analysis of human IDH1 mutants in complex with NADP+ and Ca2+/alpha-Ketoglutarate 3LRE ; 2.2 ; Crystal Structure Analysis of Human Kinesin-8 Motor Domain 7KMR ; 1.51 ; Crystal structure analysis of human KRAS mutant 3PCV ; 1.9 ; Crystal structure analysis of human leukotriene C4 synthase at 1.9 angstrom resolution 3U0V ; 1.72 ; Crystal Structure Analysis of human LYPLAL1 1IWT ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 113K. 1IWU ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 127K. 1IWV ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 147K. 1IWW ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 152K. 1IWX ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 161K. 1IWY ; 1.4 ; Crystal Structure Analysis of Human lysozyme at 170K. 1IWZ ; 1.48 ; Crystal Structure Analysis of Human lysozyme at 178K. 1JIZ ; 2.6 ; Crystal Structure Analysis of human Macrophage Elastase MMP-12 6VAJ ; 1.42 ; Crystal Structure Analysis of human PIN1 7EFJ ; 1.992 ; Crystal Structure Analysis of human PIN1 7SZA ; 1.9 ; Crystal Structure Analysis of human PRPK complex with a compound 7SZB ; 2.02 ; Crystal Structure Analysis of human PRPK complex with a compound 7SZC ; 1.71 ; Crystal Structure Analysis of human PRPK complex with a compound 7SZD ; 2.05 ; Crystal Structure Analysis of human PRPK complex with a compound 2FV2 ; 2.2 ; Crystal Structure Analysis of human Rcd-1 conserved region 3T0O ; 1.59 ; Crystal Structure Analysis of Human RNase T2 2H2K ; 2.0 ; Crystal Structure Analysis of Human S100A13 1P5J ; 2.5 ; Crystal Structure Analysis of Human Serine Dehydratase 3A73 ; 2.19 ; Crystal Structure Analysis of Human serum albumin complexed with delta 12-prostaglandin J2 4EMX ; 2.3 ; Crystal structure analysis of Human Serum Albumin in complex with chloride anions at cryogenic temperature 2R83 ; 2.7 ; Crystal structure analysis of human synaptotagmin 1 C2A-C2B 7LI5 ; 1.68 ; Crystal Structure Analysis of human TEAD1 7TUO ; 1.96 ; Crystal structure analysis of human USP28 complex with a compound 7S7G ; 1.34 ; Crystal Structure Analysis of Human VLCAD 5CZG ; 1.451 ; Crystal Structure Analysis of hypothetical bromodomain Tb427.10.7420 from Trypanosoma brucei in complex with bromosporine 1YWR ; 1.95 ; Crystal Structure Analysis of inactive P38 kinase domain in complex with a Monocyclic Pyrazolone Inhibitor 3SNP ; 2.8 ; Crystal structure analysis of iron regulatory protein 1 in complex with ferritin H IRE RNA 3SN2 ; 2.99 ; Crystal structure analysis of iron regulatory protein 1 in complex with transferrin receptor IRE B RNA 1FP2 ; 1.4 ; CRYSTAL STRUCTURE ANALYSIS OF ISOFLAVONE O-METHYLTRANSFERASE 1CUO ; 1.6 ; CRYSTAL STRUCTURE ANALYSIS OF ISOMER-2 AZURIN FROM METHYLOMONAS J 1R5Q ; 2.0 ; Crystal Structure Analysis of Kai A from PCC7120 1R5P ; 2.2 ; Crystal Structure Analysis of KaiB from PCC7120 1GG0 ; 3.0 ; CRYSTAL STRUCTURE ANALYSIS OF KDOP SYNTHASE AT 3.0 A 4ZGC ; 2.5 ; Crystal Structure Analysis of Kelch protein (with disulfide bond) from Plasmodium falciparum 4YY8 ; 1.81 ; Crystal Structure Analysis of Kelch protein from Plasmodium falciparum 1FPZ ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF KINASE ASSOCIATED PHOSPHATASE (KAP) WITH A SUBSTITUTION OF THE CATALYTIC SITE CYSTEINE (CYS140) TO A SERINE 3H8N ; 2.5 ; Crystal Structure Analysis of KIR2DS4 2FH6 ; 1.8 ; Crystal Structure Analysis of Klebsiella pneumoniae pullulanase complexed with glucose 2FH8 ; 1.9 ; Crystal Structure Analysis of Klebsiella pneumoniae pullulanase complexed with isomaltose 2FHB ; 1.8 ; Crystal Structure Analysis of Klebsiella pneumoniae pullulanase complexed with maltose 2FHF ; 1.65 ; Crystal Structure Analysis of Klebsiella pneumoniae pullulanase complexed with maltotetraose 2FHC ; 1.85 ; Crystal Structure Analysis of Klebsiella pneumoniae pullulanase complexed with maltotriose 2WNH ; 1.68 ; Crystal Structure Analysis of Klebsiella sp ASR1 Phytase 2WNI ; 2.57 ; Crystal Structure Analysis of Klebsiella sp ASR1 Phytase 2WU0 ; 2.57 ; Crystal Structure Analysis of Klebsiella sp ASR1 Phytase 3U6V ; 2.2 ; Crystal Structure Analysis of L23A mutant of human GST A1-1 6C5B ; 1.42 ; Crystal Structure Analysis of LaPhzM 4GNJ ; 1.93 ; Crystal Structure Analysis of Leishmania siamensis Triosephosphate Isomerase 2QEI ; 1.85 ; Crystal structure analysis of LeuT complexed with L-alanine, sodium, and clomipramine 2QB4 ; 1.9 ; Crystal Structure Analysis of LeuT complexed with L-leucine, sodium and desipramine 2Q6H ; 1.85 ; Crystal Structure Analysis of LeuT complexed with L-leucine, sodium, and clomipramine 2Q72 ; 1.7 ; Crystal Structure Analysis of LeuT complexed with L-leucine, sodium, and imipramine 4EGS ; 2.3 ; Crystal Structure Analysis of Low Molecular Weight Protein Tyrosine Phosphatase from T. tengcongensis 4R36 ; 1.9 ; Crystal structure analysis of LpxA, a UDP-N-acetylglucosamine acyltransferase from Bacteroides fragilis 9343 4R37 ; 1.9 ; Crystal structure analysis of LpxA, a UDP-N-acetylglucosamine acyltransferase from Bacteroides fragilis 9343 with UDP-GlcNAc 1HQK ; 1.6 ; CRYSTAL STRUCTURE ANALYSIS OF LUMAZINE SYNTHASE FROM AQUIFEX AEOLICUS 3QE8 ; 1.49 ; Crystal Structure Analysis of Lysozyme-bound fac-[Re(CO)3(H2O)(Im)]+ 3QNG ; 1.55 ; Crystal Structure Analysis of Lysozyme-bound fac-[Re(CO)3(L-serine)] 3O3T ; 1.7 ; Crystal Structure Analysis of M32A mutant of human CLIC1 3LLY ; 2.25 ; Crystal Structure Analysis of Maclura pomifera agglutinin 3LLZ ; 1.55 ; Crystal Structure Analysis of Maclura pomifera agglutinin complex with Gal-beta-1,3-GalNAc 3LM1 ; 2.1 ; Crystal Structure Analysis of Maclura pomifera agglutinin complex with p-nitrophenyl-GalNAc 4P0H ; 1.93 ; Crystal Structure Analysis of Macrophage Migration Inhibitory Factor in complex with Dimethylformamide 4P01 ; 2.07 ; Crystal Structure Analysis of Macrophage Migration Inhibitory Factor in complex with N-[(4-cyanophenyl)methyl]methanethioamide 1IZC ; 1.7 ; Crystal Structure Analysis of Macrophomate synthase 3LZQ ; 1.41 ; Crystal Structure Analysis of Manganese treated P19 protein from Campylobacter jejuni at 1.41 A at pH 9 3LZR ; 2.73 ; Crystal Structure Analysis of Manganese treated P19 protein from Campylobacter jejuni at 2.73 A at pH 9 and Manganese peak wavelength (1.893 A) 6XDJ ; 2.2 ; Crystal Structure Analysis of MBP-SIN3 1P9E ; 2.4 ; Crystal Structure Analysis of Methyl Parathion Hydrolase from Pseudomonas sp WBC-3 1IXK ; 1.9 ; Crystal Structure Analysis of Methyltransferase Homolog Protein from Pyrococcus Horikoshii 3IF5 ; 2.44 ; Crystal Structure Analysis of Mglu 3IHA ; 2.6 ; Crystal Structure Analysis of Mglu in its glutamate form 3IH8 ; 2.3 ; Crystal Structure Analysis of Mglu in its native form 3IHB ; 2.4 ; Crystal Structure Analysis of Mglu in its tris and glutamate form 3IH9 ; 2.5 ; Crystal Structure Analysis of Mglu in its tris form 3N52 ; 1.9 ; crystal Structure analysis of MIP2 2P2V ; 1.85 ; Crystal structure analysis of monofunctional alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni 3IKK ; 2.5 ; Crystal structure analysis of msp domain 4R43 ; 1.8 ; Crystal Structure Analysis of MTB PEPCK 5I67 ; 2.602 ; Crystal Structure Analysis of MTB PEPCK mutant C273S 4RCG ; 2.6 ; Crystal Structure Analysis of MTB PEPCK without Mn+2 2QJK ; 3.1 ; Crystal Structure Analysis of mutant rhodobacter sphaeroides bc1 with stigmatellin and antimycin 4DKY ; 2.478 ; Crystal structure Analysis of N terminal region containing the dimerization domain and DNA binding domain of HU protein(Histone like protein-DNA binding) from Mycobacterium tuberculosis [H37Ra] 4PT4 ; 2.04 ; Crystal structure Analysis of N terminal region containing the dimerization domain and DNA binding domain of HU protein(Histone like protein-DNA binding) from Mycobacterium tuberculosis [H37Ra] 1F5Z ; 1.88 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM I 1F6K ; 1.6 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM II 1F74 ; 1.6 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM II COMPLEXED WITH 4-DEOXY-SIALIC ACID 1F7B ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM II IN COMPLEX WITH 4-OXO-SIALIC ACID 1F6P ; 2.25 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM III 1F73 ; 1.95 ; CRYSTAL STRUCTURE ANALYSIS OF N-ACETYLNEURAMINATE LYASE FROM HAEMOPHILUS INFLUENZAE: CRYSTAL FORM III IN COMPLEX WITH SIALIC ACID ALDITOL 1NEG ; 2.3 ; Crystal Structure Analysis of N-and C-terminal labeled SH3-domain of alpha-Chicken Spectrin 1FO6 ; 1.95 ; CRYSTAL STRUCTURE ANALYSIS OF N-CARBAMoYL-D-AMINO-ACID AMIDOHYDROLASE 1JSZ ; 1.93 ; Crystal Structure Analysis of N7,9-dimethylguanine-VP39 complex 1FVF ; 3.2 ; CRYSTAL STRUCTURE ANALYSIS OF NEURONAL SEC1 FROM THE SQUID L. PEALEI 1FVH ; 2.8 ; CRYSTAL STRUCTURE ANALYSIS OF NEURONAL SEC1 FROM THE SQUID L. PEALEI 2ZWS ; 1.4 ; Crystal Structure Analysis of neutral ceramidase from Pseudomonas aeruginosa 4OI6 ; 2.04 ; Crystal structure analysis of nickel-bound form SCO4226 from Streptomyces coelicolor A3(2) 1F9A ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF NMN ADENYLYLTRANSFERASE FROM METHANOCOCCUS JANNASCHII 3D9W ; 2.7 ; Crystal Structure Analysis of Nocardia farcinica Arylamine N-acetyltransferase 1IHM ; 3.4 ; CRYSTAL STRUCTURE ANALYSIS OF NORWALK VIRUS CAPSID 4XGS ; 2.25 ; Crystal structure analysis of novel iron uptake mechanism of Gram-negative bacterial ferritin 2I0W ; 2.5 ; Crystal structure analysis of NP24-I, a thaumatin-like protein 1F8Y ; 2.4 ; CRYSTAL STRUCTURE ANALYSIS OF NUCLEOSIDE 2-DEOXYRIBOSYLTRANSFERASE COMPLEXED WITH 5-METHYL-2'-DEOXYPSEUDOURIDINE 1S9X ; 2.5 ; Crystal Structure Analysis of NY-ESO-1 epitope analogue, SLLMWITQA, in complex with HLA-A2 1S9Y ; 2.3 ; Crystal Structure Analysis of NY-ESO-1 epitope analogue, SLLMWITQS, in complex with HLA-A2 1S9W ; 2.2 ; Crystal Structure Analysis of NY-ESO-1 epitope, SLLMWITQC, in complex with HLA-A2 4LMA ; 2.3 ; Crystal structure analysis of O-acetylserine sulfhydrylase CysK1 from Microcystis aeruginosa 7806 4LMB ; 1.91 ; Crystal structure analysis of O-acetylserine sulfhydrylase CysK2 complexed with cystine from Microcystis aeruginosa 7806 1FHU ; 1.65 ; CRYSTAL STRUCTURE ANALYSIS OF O-SUCCINYLBENZOATE SYNTHASE FROM E. COLI 1FHV ; 1.77 ; CRYSTAL STRUCTURE ANALYSIS OF O-SUCCINYLBENZOATE SYNTHASE FROM E. COLI COMPLEXED WITH MG AND OSB 1SQJ ; 2.2 ; Crystal Structure Analysis of Oligoxyloglucan reducing-end-specific cellobiohydrolase (OXG-RCBH) 1X7D ; 1.6 ; Crystal Structure Analysis of Ornithine Cyclodeaminase Complexed with NAD and ornithine to 1.6 Angstroms 4G2U ; 1.85 ; Crystal Structure Analysis of Ostertagia ostertagi ASP-1 4AZU ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF OXIDIZED PSEUDOMONAS AERUGINOSA AZURIN AT PH 5.5 AND PH 9.0. A PH-INDUCED CONFORMATIONAL TRANSITION INVOLVES A PEPTIDE BOND FLIP 5AZU ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF OXIDIZED PSEUDOMONAS AERUGINOSA AZURIN AT PH 5.5 AND PH 9.0. A PH-INDUCED CONFORMATIONAL TRANSITION INVOLVES A PEPTIDE BOND FLIP 2EHD ; 2.4 ; Crystal Structure Analysis of Oxidoreductase 4DQW ; 2.51 ; Crystal Structure Analysis of PA3770 1CVZ ; 1.7 ; CRYSTAL STRUCTURE ANALYSIS OF PAPAIN WITH CLIK148(CATHEPSIN L SPECIFIC INHIBITOR) 3LX2 ; 2.4 ; Crystal Structure analysis of PCNA from Thermococcus kodakaraensis tk0582 3LX1 ; 2.0 ; Crystal Structure analysis of PCNA1 from Thermococcus kodakaraensis tk0535 2ZPL ; 1.7 ; Crystal structure analysis of PDZ domain A 2ZPM ; 0.98 ; Crystal structure analysis of PDZ domain B 3B4N ; 1.45 ; Crystal Structure Analysis of Pectate Lyase PelI from Erwinia chrysanthemi 1Z15 ; 1.7 ; Crystal structure analysis of periplasmic Leu/Ile/Val-binding protein in superopen form 1Z16 ; 1.72 ; Crystal structure analysis of periplasmic Leu/Ile/Val-binding protein with bound leucine 1Z17 ; 1.96 ; Crystal structure analysis of periplasmic Leu/Ile/Val-binding protein with bound ligand isoleucine 1Z18 ; 2.1 ; Crystal structure analysis of periplasmic Leu/Ile/Val-binding protein with bound valine 4REG ; 2.494 ; Crystal Structure Analysis of PF0642 1UB0 ; 2.05 ; Crystal Structure Analysis of Phosphomethylpyrimidine Kinase (ThiD) from Thermus Thermophilus Hb8 3KPX ; 1.899 ; Crystal Structure Analysis of photoprotein clytin 3WU2 ; 1.9 ; Crystal structure analysis of Photosystem II complex 5B5E ; 1.87 ; Crystal structure analysis of Photosystem II complex 5B66 ; 1.85 ; Crystal structure analysis of Photosystem II complex 6DUN ; 1.59 ; Crystal Structure Analysis of PIN1 6O33 ; 1.74 ; Crystal Structure Analysis of PIN1 6O34 ; 1.57 ; Crystal Structure Analysis of PIN1 6OSP ; 2.21 ; Crystal Structure Analysis of PIP4K2A 6UX9 ; 1.71 ; Crystal Structure Analysis of PIP4K2A 3GPE ; 2.0 ; Crystal Structure Analysis of PKC (alpha)-C2 domain complexed with Ca2+ and PtdIns(4,5)P2 3WLH ; 1.65 ; Crystal Structure Analysis of Plant Exohydrolase 3WLI ; 1.45 ; Crystal Structure Analysis of Plant Exohydrolase 3WLO ; 1.55 ; Crystal Structure Analysis of Plant Exohydrolase 3WLP ; 1.57 ; Crystal Structure Analysis of Plant Exohydrolase 3WLQ ; 1.65 ; Crystal Structure Analysis of Plant Exohydrolase 3WLR ; 2.21 ; Crystal Structure Analysis of Plant Exohydrolase 6MD6 ; 1.68 ; CRYSTAL STRUCTURE ANALYSIS OF PLANT EXOHYDROLASE IN COMPLEX WITH METHYL 2-THIO-BETA-SOPHOROSIDE 1NHW ; 2.35 ; Crystal Structure Analysis of Plasmodium falciparum enoyl-acyl-carrier-protein reductase 1VRW ; 2.4 ; Crystal structure analysis of plasmodium falciparum enoyl-acyl-carrier-protein reductase with nadh 1NHG ; 2.43 ; CRYSTAL STRUCTURE ANALYSIS OF PLASMODIUM FALCIPARUM ENOYL-ACYL-CARRIER-PROTEIN REDUCTASE WITH TRICLOSAN 1NNU ; 2.5 ; Crystal Structure Analysis of Plasmodium falciparum enoyl-acyl-carrier-protein reductase with Triclosan Analog 3VI2 ; 2.1 ; Crystal Structure Analysis of Plasmodium falciparum OMP Decarboxylase in complex with inhibitor HMOA 3PHZ ; 1.7 ; Crystal Structure Analysis of Polyporus squamosus lectin bound to human-type influenza-binding epitope Neu5Aca2-6Galb1-4GlcNAc 5C8G ; 1.95 ; Crystal Structure Analysis of PP-BRD20 from Tb427tmp complexed with BI-2536 1I1H ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF PRECORRIN-8X METHYLMUTASE COMPLEX WITH HYDROGENOBYRINIC ACID 1F2V ; 2.1 ; CRYSTAL STRUCTURE ANALYSIS OF PRECORRIN-8X METHYLMUTASE OF AEROBIC VITAMIN B12 SYNTHESIS 5WTN ; 2.8 ; Crystal Structure Analysis of primosome protein DnaB (resiues 1-300) from Geobacillus stearothermophilus 1YJ3 ; 1.6 ; Crystal structure analysis of product bound methionine aminopeptidase Type 1c from Mycobacterium Tuberculosis 6K9O ; 1.06 ; Crystal Structure Analysis of Protein 6K9X ; 1.2 ; Crystal Structure Analysis of Protein 2CZW ; 1.9 ; Crystal structure analysis of protein component Ph1496p of P.horikoshii ribonuclease P 1GA1 ; 1.4 ; CRYSTAL STRUCTURE ANALYSIS OF PSCP (PSEUDOMONAS SERINE-CARBOXYL PROTEINASE) COMPLEXED WITH A FRAGMENT OF IODOTYROSTATIN (THIS ENZYME RENAMED ""SEDOLISIN"" IN 2003) 1GA6 ; 1.0 ; CRYSTAL STRUCTURE ANALYSIS OF PSCP (PSEUDOMONAS SERINE-CARBOXYL PROTEINASE) COMPLEXED WITH A FRAGMENT OF TYROSTATIN (THIS ENZYME RENAMED ""SEDOLISIN"" IN 2003) 1GA4 ; 1.4 ; CRYSTAL STRUCTURE ANALYSIS OF PSCP (PSEUDOMONAS SERINE-CARBOXYL PROTEINASE) COMPLEXED WITH INHIBITOR PSEUDOIODOTYROSTATIN (THIS ENZYME RENAMED ""SEDOLISIN"" IN 2003) 1I2H ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF PSD-ZIP45(HOMER1C/VESL-1L)CONSERVED HOMER 1 DOMAIN 4R32 ; 3.505 ; Crystal Structure Analysis of Pyk2 and Paxillin LD motifs 1G3Q ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF PYROCOCCUS FURIOSUS CELL DIVISION ATPASE MIND 1G3R ; 2.7 ; CRYSTAL STRUCTURE ANALYSIS OF PYROCOCCUS FURIOSUS CELL DIVISION ATPASE MIND 2E28 ; 2.4 ; Crystal structure analysis of pyruvate kinase from Bacillus stearothermophilus 1SG0 ; 1.5 ; Crystal structure analysis of QR2 in complex with resveratrol 3P8W ; 2.0 ; Crystal Structure Analysis of R29M/E81M double mutant of human CLIC1 1G98 ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF RABBIT PHOSPHOGLUCOSE ISOMERASE COMPLEXED WITH 5-PHOSPHOARABINONATE, A TRANSITION STATE ANALOGUE 1I4D ; 2.5 ; CRYSTAL STRUCTURE ANALYSIS OF RAC1-GDP COMPLEXED WITH ARFAPTIN (P21) 1I4L ; 2.7 ; CRYSTAL STRUCTURE ANALYSIS OF RAC1-GDP IN COMPLEX WITH ARFAPTIN (P41) 1I4T ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF RAC1-GMPPNP IN COMPLEX WITH ARFAPTIN 1MJ3 ; 2.1 ; Crystal Structure Analysis of rat enoyl-CoA hydratase in complex with hexadienoyl-CoA 2Z9S ; 2.9 ; Crystal Structure Analysis of rat HBP23/Peroxiredoxin I, Cys52Ser mutant 1U5I ; 2.86 ; Crystal Structure analysis of rat m-calpain mutant Lys10 Thr 1TB3 ; 2.3 ; Crystal Structure Analysis of Recombinant Rat Kidney Long-chain Hydroxy Acid Oxidase 3OOT ; 2.55 ; Crystal Structure Analysis of Renin-indole-piperazin inhibitor complexes 3OQK ; 2.9 ; Crystal Structure Analysis of Renin-indole-piperazin inhibitor complexes 3OQF ; 2.78 ; Crystal Structure Analysis of Renin-indole-piperazine inhibitor complexes 1P2F ; 1.8 ; Crystal Structure Analysis of Response Regulator DrrB, a Thermotoga maritima OmpR/PhoB Homolog 4V8C ; 3.3 ; Crystal structure analysis of ribosomal decoding (near-cognate tRNA-leu complex with paromomycin). 4V8B ; 3.0 ; Crystal structure analysis of ribosomal decoding (near-cognate tRNA-leu complex). 4V8F ; 3.3 ; Crystal structure analysis of ribosomal decoding (near-cognate tRNA-ttyr complex with paromomycin). 4V8E ; 3.3 ; Crystal structure analysis of ribosomal decoding (near-cognate tRNA-tyr complex). 4V87 ; 3.1 ; Crystal structure analysis of ribosomal decoding. 5YSM ; 1.9 ; Crystal Structure Analysis of Rif16 5YSW ; 2.6 ; Crystal Structure Analysis of Rif16 in complex with R-L 3BK1 ; 2.33 ; Crystal Structure Analysis of RNase J 1K3L ; 1.5 ; Crystal Structure Analysis of S-hexyl-glutathione Complex of Glutathione Transferase at 1.5 Angstroms Resolution 2IP1 ; 1.8 ; Crystal Structure Analysis of S. cerevisiae Tryptophanyl tRNA Synthetase 3GVA ; 2.0 ; Crystal Structure Analysis of S. Pombe ATL 3GYH ; 2.8 ; Crystal Structure Analysis of S. Pombe ATL in complex with damaged DNA containing POB 3GX4 ; 2.7 ; Crystal Structure Analysis of S. Pombe ATL in complex with DNA 1R17 ; 1.86 ; Crystal Structure Analysis of S.epidermidis adhesin SdrG binding to Fibrinogen (adhesin-ligand complex) 1R19 ; 3.51 ; Crystal Structure Analysis of S.epidermidis adhesin SdrG binding to Fibrinogen (Apo structure) 8CUC ; 2.09 ; Crystal structure analysis of SALL4 zinc finger domain in complex with DNA 4OI3 ; 1.3 ; Crystal structure analysis of SCO4226 from Streptomyces coelicolor A3(2) 4EQ3 ; 2.001 ; Crystal Structure Analysis of Selenomethionine (Se-Met) Substituted Chicken Interferon Gamma Receptor Alpha Chain 1FPQ ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF SELENOMETHIONINE SUBSTITUTED CHALCONE O-METHYLTRANSFERASE 6CIG ; 1.65 ; CRYSTAL STRUCTURE ANALYSIS OF SELENOMETHIONINE SUBSTITUTED ISOFLAVONE O-METHYLTRANSFERASE 1QQQ ; 1.5 ; CRYSTAL STRUCTURE ANALYSIS OF SER254 MUTANT OF ESCHERICHIA COLI THYMIDYLATE SYNTHASE 3CH2 ; 1.8 ; Crystal Structure Analysis of SERA5E from plasmodium falciparum 3CH3 ; 1.79 ; Crystal Structure Analysis of SERA5E from plasmodium falciparum 2WBF ; 1.6 ; Crystal Structure Analysis of SERA5E from plasmodium falciparum with loop 690-700 ordered 1XUZ ; 2.2 ; Crystal structure analysis of sialic acid synthase (NeuB)from Neisseria meningitidis, bound to Mn2+, Phosphoenolpyruvate, and N-acetyl mannosaminitol 6XAW ; 1.84 ; Crystal Structure Analysis of SIN3-UME6 4KA9 ; 1.58 ; Crystal structure analysis of single amino acid deletion mutations in EGFP 1QVC ; 2.2 ; CRYSTAL STRUCTURE ANALYSIS OF SINGLE STRANDED DNA BINDING PROTEIN (SSB) FROM E.COLI 3U71 ; 2.72 ; Crystal Structure Analysis of South African wild type HIV-1 Subtype C Protease 6W8E ; 2.68 ; Crystal Structure Analysis of Space-grown Lysozyme 6W7P ; 1.6 ; Crystal Structure Analysis of Space-grown Lysozyme - Ground experiment 1K30 ; 1.9 ; Crystal Structure Analysis of Squash (Cucurbita moschata) glycerol-3-phosphate (1)-acyltransferase 2QXL ; 2.41 ; Crystal Structure Analysis of Sse1, a yeast Hsp110 4GHO ; 1.1 ; Crystal Structure Analysis of Streptomyces aureofaciens Ribonuclease S24A mutant 4J5G ; 1.31 ; Crystal structure analysis of Streptomyces aureofaciens ribonuclease Sa T95A mutant 4J5K ; 1.23 ; Crystal structure analysis of Streptomyces aureofaciens ribonuclease Sa Y51F mutant 3CZE ; 1.9 ; Crystal Structure Analysis of Sucrose hydrolase (SUH)- Tris complex 3CZG ; 1.8 ; Crystal Structure Analysis of Sucrose hydrolase (SUH)-glucose complex 3CZL ; 2.0 ; Crystal Structure Analysis of Sucrose hydrolase(SUH) E322Q-glucose complex 3CZK ; 2.2 ; Crystal Structure Analysis of Sucrose hydrolase(SUH) E322Q-sucrose complex 3B4X ; 1.94 ; Crystal Structure Analysis of Sulfolobus tokodaii strain7 cytochrom P450 1R5B ; 2.35 ; Crystal structure analysis of sup35 1R5N ; 2.9 ; Crystal Structure Analysis of sup35 complexed with GDP 1R5O ; 3.2 ; crystal structure analysis of sup35 complexed with GMPPNP 6DQY ; 2.3 ; Crystal Structure analysis of Superoxide Dismutase from Trichoderma reesei 1J9J ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF SURE PROTEIN FROM T.MARITIMA 2D73 ; 1.6 ; Crystal Structure Analysis of SusB 3FFV ; 2.0 ; Crystal Structure Analysis of Syd 1NP7 ; 1.9 ; Crystal Structure Analysis of Synechocystis sp. PCC6803 cryptochrome 6P38 ; 2.8 ; Crystal Structure Analysis of TAF1 Bromodomain 6P39 ; 2.941 ; Crystal Structure Analysis of TAF1 Bromodomain 6P3A ; 2.99 ; Crystal Structure Analysis of TAF1 Bromodomain 2FJ1 ; 2.2 ; Crystal Structure Analysis of Tet Repressor (class D) in Complex with 7-Chlortetracycline-Nickel(II) 2O7O ; 1.89 ; Crystal structure analysis of TetR(D) complex with doxycycline 3LZP ; 1.65 ; Crystal Structure Analysis of the 'as-isolated' P19 protein from Campylobacter jejuni at 1.65 A at pH 9.0 4R3W ; 1.91 ; Crystal Structure Analysis of the 1,2,3-tricarboxylate benzoic acid bound to sp-ASADH-2'5'-ADP complex 2EI2 ; 1.69 ; Crystal Structure Analysis of the 1,2-dihydroxynaphthalene dioxygenase from Pseudomonas sp. stain C18 4NFO ; 1.96 ; Crystal Structure Analysis of the 16mer GCAGACUUAAGUCUGC 4NFQ ; 1.7 ; Crystal Structure Analysis of the 16mer GCAGNCUUAAGUCUGC containing 7-triazolyl-8-aza-7-deazaadenosine 4NFP ; 1.85 ; Crystal Structure Analysis of the 16mer GCAGNCUUAAGUCUGC containing 8-aza-7-deaza-7-ethynyl Adenosine 3HQ0 ; 2.0 ; Crystal Structure Analysis of the 2,3-dioxygenase LapB from Pseudomonas in complex with a product 3HPY ; 1.94 ; Crystal Structure Analysis of the 2,3-dioxygenase LapB from Pseudomonas in the complex with 4-methylcatechol 3HPV ; 2.3 ; Crystal Structure Analysis of the 2,3-dioxygenase LapB from Pseudomonas sp. KL28 1S9C ; 3.0 ; Crystal structure analysis of the 2-enoyl-CoA hydratase 2 domain of human peroxisomal multifunctional enzyme type 2 2YW3 ; 1.67 ; Crystal Structure Analysis of the 4-hydroxy-2-oxoglutarate aldolase/2-deydro-3-deoxyphosphogluconate aldolase from TTHB1 2YW4 ; 2.53 ; Crystal Structure Analysis of the 4-hydroxy-2-oxoglutarate aldolase/2-deydro-3-deoxyphosphogluconate aldolase from TTHB1 1SZO ; 1.9 ; Crystal Structure Analysis of the 6-Oxo Camphor Hydrolase His122Ala Mutant Bound to Its Natural Product (2S,4S)-alpha-Campholinic Acid 2FIJ ; 1.19 ; Crystal Structure Analysis of the A-DNA Decamer GCGT-2'OMeA-aU-ACGC, with Incorporated 2'-O-Methylated-Adenosine (2'OMeA) and Arabino-Uridine (aU) 2FIL ; 1.69 ; Crystal Structure Analysis of the A-DNA Decamer GCGT-2'OMeA-faT-ACGC, with Incorporated 2'-O-Methylated-Adenosine (2'OMeA) and 2'-Fluoroarabino-Thymidine (faT) 1JI0 ; 2.0 ; Crystal Structure Analysis of the ABC transporter from Thermotoga maritima 1J0A ; 2.5 ; Crystal Structure Analysis of the ACC deaminase homologue 1J0B ; 2.7 ; Crystal Structure Analysis of the ACC deaminase homologue complexed with inhibitor 4KSI ; 2.2 ; Crystal Structure Analysis of the Acidic Leucine Aminopeptidase of Tomato 1YRT ; 2.1 ; Crystal Structure analysis of the adenylyl cyclaes catalytic domain of adenylyl cyclase toxin of Bordetella pertussis in presence of c-terminal calmodulin 1YRU ; 2.5 ; Crystal Structure analysis of the adenylyl cyclaes catalytic domain of adenylyl cyclase toxin of Bordetella pertussis in presence of c-terminal calmodulin and 1mM calcium chloride 1V8I ; 1.76 ; Crystal Structure Analysis of the ADP-ribose pyrophosphatase 1V8R ; 1.8 ; Crystal structure analysis of the ADP-ribose pyrophosphatase complexed with ADP-ribose and Zn 1V8T ; 2.6 ; Crystal Structure analysis of the ADP-ribose pyrophosphatase complexed with ribose-5'-phosphate and Zn 1V8N ; 1.74 ; Crystal structure analysis of the ADP-ribose pyrophosphatase complexed with Zn 1V8U ; 1.9 ; Crystal structure analysis of the ADP-ribose pyrophosphatase of E82Q mutant with SO4 and Mg 1V8W ; 1.66 ; Crystal structure analysis of the ADP-ribose pyrophosphatase of E82Q mutant, complexed with SO4 and Zn 1V8V ; 1.97 ; Crystal structure analysis of the ADP-ribose pyrophosphatase of E86Q mutant, complexed with ADP-ribose and Mg 1V8Y ; 1.65 ; Crystal structure analysis of the ADP-ribose pyrophosphatase of E86Q mutant, complexed with ADP-ribose and Zn 1L6B ; 1.5 ; CRYSTAL STRUCTURE ANALYSIS OF THE ALL DNA HOLLIDAY JUNCTION STRUCTURE OF CCGGTACM5CGG 2G91 ; 1.5 ; Crystal Structure Analysis of the an RNA nonamer r(GGUGCGC)d(BrC)r(C) 1KGZ ; 2.4 ; Crystal Structure Analysis of the Anthranilate Phosphoribosyltransferase from Erwinia carotovora (current name, Pectobacterium carotovorum) 1KHD ; 1.86 ; Crystal Structure Analysis of the anthranilate phosphoribosyltransferase from Erwinia carotovora at 1.9 resolution (current name, Pectobacterium carotovorum) 2Y06 ; 2.5 ; CRYSTAL STRUCTURE ANALYSIS OF THE ANTI-(4-HYDROXY-3-NITROPHENYL) - ACETYL MURINE GERMLINE ANTIBODY BBE6.12H3 FAB FRAGMENT IN COMPLEX WITH A PHAGE DISPLAY DERIVED DODECAPEPTIDE GDPRPSYISHLL 2Y07 ; 2.4 ; CRYSTAL STRUCTURE ANALYSIS OF THE ANTI-(4-HYDROXY-3-NITROPHENYL) - ACETYL MURINE GERMLINE MONOCLONAL ANTIBODY BBE6.12H3 FAB FRAGMENT IN COMPLEX WITH A PHAGE DISPLAY DERIVED DODECAPEPTIDE PPYPAWHAPGNI 2Y36 ; 2.7 ; Crystal structure analysis of the anti-(4-hydroxy-3-nitrophenyl)- acetyl murine germline antibody BBE6.12H3 Fab fragment in complex with a phage display derived dodecapeptide DLWTTAIPTIPS 2XZQ ; 2.4 ; CRYSTAL STRUCTURE ANALYSIS OF THE ANTI-(4-HYDROXY-3-NITROPHENYL)- ACETYL MURINE GERMLINE MONOCLONAL ANTIBODY BBE6.12H3 FAB FRAGMENT IN COMPLEX WITH A PHAGE DISPLAY DERIVED DODECAPEPTIDE YQLRPNAETLRF 2A6J ; 2.7 ; Crystal structure analysis of the anti-arsonate germline antibody 36-65 2A6I ; 2.5 ; Crystal structure analysis of the anti-arsonate germline antibody 36-65 in complex with a phage display derived dodecapeptide KLASIPTHTSPL 2A6D ; 2.9 ; Crystal structure analysis of the anti-arsonate germline antibody 36-65 in complex with a phage display derived dodecapeptide RLLIADPPSPRE 1L7T ; 2.1 ; Crystal Structure Analysis of the anti-testosterone Fab fragment 1VPO ; 2.15 ; Crystal Structure Analysis of the Anti-testosterone Fab in Complex with Testosterone 3LZN ; 1.59 ; Crystal Structure Analysis of the apo P19 protein from Campylobacter jejuni at 1.59 A at pH 9 1IQV ; 2.1 ; Crystal Structure Analysis of the archaebacterial ribosomal protein S7 4DCN ; 3.01 ; Crystal Structure Analysis of the Arfaptin2 BAR domain in Complex with ARL1 3VLH ; 1.73 ; Crystal Structure Analysis of the Arg409Leu Variants of KatG from HALOARCULA MARISMORTUI 1ULY ; 2.5 ; Crystal structure analysis of the ArsR homologue DNA-binding protein from P. horikoshii OT3 3LZL ; 1.45 ; Crystal Structure Analysis of the as-solated P19 protein from Campylobacter jejuni at 1.45 A at pH 9.0 1S23 ; 1.6 ; Crystal Structure Analysis of the B-DNA Decamer CGCAATTGCG 2FIH ; 1.13 ; Crystal Structure Analysis of the B-DNA Dodecamer CGCGAA-aU-TCGCG, with Incorporated Arabino-Uridine (aU) 2FII ; 1.24 ; Crystal Structure Analysis of the B-DNA Dodecamer CGCGAAT-aU-CGCG, with Incorporated Arabino-Uridin (aU) 1N5C ; 1.79 ; Crystal Structure Analysis of the B-DNA Dodecamer CGCGAATT(ethenoC)GCG 1JGR ; 1.2 ; Crystal Structure Analysis of the B-DNA Dodecamer CGCGAATTCGCG with Thallium Ions. 1D29 ; 2.5 ; CRYSTAL STRUCTURE ANALYSIS OF THE B-DNA DODECAMER CGTGAATTCACG 1S9B ; 2.81 ; Crystal Structure Analysis of the B-DNA GAATTCG 1C9O ; 1.17 ; CRYSTAL STRUCTURE ANALYSIS OF THE BACILLUS CALDOLYTICUS COLD SHOCK PROTEIN BC-CSP 2ES2 ; 1.78 ; Crystal Structure Analysis of the Bacillus Subtilis Cold Shock Protein Bs-CspB in Complex with Hexathymidine 2QXT ; 2.0 ; Crystal Structure Analysis of the Bacillus subtilis lipase crystallized at pH 4.5 2QXU ; 1.9 ; Crystal Structure Analysis of the Bacillus subtilis lipase crystallized at pH 5.0 4HYX ; 1.99 ; Crystal Structure Analysis of the Bacteriorhodopsin in Facial Amphiphile-4 DMPC Bicelle 4HWL ; 2.0 ; Crystal Structure Analysis of the Bacteriorhodopsin in Facial Amphiphile-7 DMPC Bicelle 1RRK ; 2.0 ; Crystal Structure Analysis of the Bb segment of Factor B 1RTK ; 2.3 ; Crystal Structure Analysis of the Bb segment of Factor B complexed with 4-guanidinobenzoic acid 1RS0 ; 2.6 ; Crystal Structure Analysis of the Bb segment of Factor B complexed with Di-isopropyl-phosphate (DIP) 1S4U ; 2.1 ; Crystal Structure analysis of the beta-propeller protein Ski8p 1NEP ; 1.7 ; Crystal Structure Analysis of the Bovine NPC2 (Niemann-Pick C2) Protein 5Y8C ; 1.42 ; Crystal Structure Analysis of the BRD4 5Y8W ; 1.76 ; Crystal Structure Analysis of the BRD4 5Y8Y ; 1.87 ; Crystal Structure Analysis of the BRD4 5Y8Z ; 1.84 ; Crystal Structure Analysis of the BRD4 5Y93 ; 1.62 ; Crystal Structure Analysis of the BRD4 5Y94 ; 2.0 ; Crystal Structure Analysis of the BRD4 5YQX ; 1.82 ; Crystal Structure Analysis of the BRD4 5Z1R ; 1.62 ; Crystal Structure Analysis of the BRD4 7DHS ; 1.76 ; Crystal Structure Analysis of the BRD4 5Z1S ; 1.42 ; Crystal Structure Analysis of the BRD4(1) 5Z1T ; 1.42 ; Crystal Structure Analysis of the BRD4(1) 1I7N ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF THE C DOMAIN OF SYNAPSIN II FROM RAT BRAIN 1U13 ; 2.01 ; Crystal structure analysis of the C37L/C151T/C442A-triple mutant of CYP51 from Mycobacterium tuberculosis 1Q42 ; 1.75 ; Crystal structure analysis of the Candida albicans Mtr2 3CN7 ; 2.99 ; Crystal Structure Analysis of the Carboxylesterase PA3859 from Pseudomonas aeruginosa PAO1- MONOCLINIC CRYSTAL FORM 3CN9 ; 2.09 ; Crystal Structure Analysis of the Carboxylesterase PA3859 from Pseudomonas aeruginosa PAO1- orthorhombic crystal form 3N5N ; 2.3 ; Crystal structure analysis of the catalytic domain and interdomain connector of human MutY homologue 1KWI ; 2.19 ; Crystal Structure Analysis of the Cathelicidin Motif of Protegrins 5XXH ; 1.62 ; Crystal Structure Analysis of the CBP 3QIL ; 3.92 ; Crystal structure analysis of the clathrin trimerization domain 2E46 ; 2.3 ; Crystal Structure Analysis of the clock protein EA4 2E47 ; 2.11 ; Crystal Structure Analysis of the clock protein EA4 (glycosylation form) 3VOR ; 0.9 ; Crystal Structure Analysis of the CofA 5E9A ; 2.561 ; Crystal structure analysis of the cold-adamped beta-galactosidase from Rahnella sp. R3 3A1H ; 1.08 ; Crystal Structure Analysis of the Collagen-like Peptide, (PPG)4-OTG-(PPG)4 2EFF ; 1.8 ; Crystal structure analysis of the complex between CyaY and Co(II) 2P1X ; 1.42 ; Crystal structure analysis of the complex between CyaY and Eu(III) 1L0P ; 2.1 ; CRYSTAL STRUCTURE ANALYSIS OF THE COMPLEX BETWEEN PSYCHROPHILIC ALPHA AMYLASE FROM PSEUDOALTEROMONAS HALOPLANCTIS AND NITRATE 1CQP ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF THE COMPLEX LFA-1 (CD11A) I-DOMAIN / LOVASTATIN AT 2.6 A RESOLUTION 1I7L ; 2.35 ; CRYSTAL STRUCTURE ANALYSIS OF THE COMPLEX OF THE C DOMAIN OF SYNAPSIN II FROM RAT WITH ATP 3LZO ; 1.65 ; Crystal Structure Analysis of the copper-reconstituted P19 protein from Campylobacter jejuni at 1.65 A at pH 10.0 3QAX ; 2.0 ; Crystal structure analysis of the cpb0502 6KZ5 ; 4.45 ; Crystal Structure Analysis of the Csn-B-bounded NUR77 Ligand binding Domain 1ZOT ; 2.2 ; crystal structure analysis of the CyaA/C-Cam with PMEAPP 3VLJ ; 1.7 ; Crystal Structure Analysis of the Cyanide Arg409Leu Variant Complexes with o-Dianisidine in KatG from HALOARCULA MARISMORTUI 3VLI ; 1.7 ; Crystal Structure Analysis of the Cyanide Arg409Leu Variant KatG from HALOARCULA MARISMORTUI 1MJ4 ; 1.2 ; Crystal Structure Analysis of the cytochrome b5 domain of human sulfite oxidase 6M4S ; 1.85 ; Crystal Structure Analysis of the cytochrome P450 CYP-Sb21 6CYS ; 1.85 ; Crystal structure analysis of the D150G mutant of Superoxide Dismutase from Trichoderma reesei 1PTJ ; 2.61 ; Crystal structure analysis of the DI and DIII complex of transhydrogenase with a thio-nicotinamide nucleotide analogue 1ZI6 ; 1.7 ; Crystal Structure Analysis of the dienelactone hydrolase (C123S) mutant- 1.7 A 1ZIC ; 1.7 ; Crystal Structure Analysis of the dienelactone hydrolase (C123S, R206A) mutant- 1.7 A 1ZI9 ; 1.5 ; Crystal Structure Analysis of the dienelactone hydrolase (E36D, C123S) mutant- 1.5 A 1ZIY ; 1.9 ; Crystal Structure Analysis of the dienelactone hydrolase mutant (C123S) bound with the PMS moiety of the protease inhibitor, Phenylmethylsulfonyl fluoride (PMSF)- 1.9 A 1ZJ4 ; 1.7 ; Crystal Structure Analysis of the dienelactone hydrolase mutant (E36D, C123S) bound with the PMS moiety of the protease inhibitor, Phenylmethylsulfonyl fluoride (PMSF)- 1.7 A 1ZJ5 ; 1.7 ; Crystal Structure Analysis of the dienelactone hydrolase mutant (E36D, C123S, A134S, S208G, A229V, K234R) bound with the PMS moiety of the protease inhibitor, Phenylmethylsulfonyl fluoride (PMSF)- 1.7 A 1ZIX ; 1.8 ; Crystal Structure Analysis of the dienelactone hydrolase mutant (E36D, R105H, C123S, G211D, K234N)- 1.8 A 1ZI8 ; 1.4 ; Crystal Structure Analysis of the dienelactone hydrolase mutant(E36D, C123S, A134S, S208G, A229V, K234R)- 1.4 A 2CZS ; 1.5 ; Crystal Structure Analysis of the Diheme c-type Cytochrome DHC2 1PT9 ; 2.42 ; Crystal Structure Analysis of the DIII Component of Transhydrogenase with a Thio-Nicotinamide Nucleotide Analogue 2OYA ; 1.77 ; Crystal structure analysis of the dimeric form of the SRCR domain of mouse MARCO 1S45 ; 2.2 ; Crystal structure analysis of the DNA quadruplex d(TGGGGT) S1 1S47 ; 2.5 ; Crystal structure analysis of the DNA quadruplex d(TGGGGT)S2 4RZG ; 2.7 ; Crystal Structure Analysis of the DNPA-bounded NUR77 Ligand binding Domain 1J0W ; 2.5 ; Crystal Structure Analysis of the Dok-5 PTB Domain 2FYN ; 3.2 ; Crystal Structure Analysis of the double mutant Rhodobacter Sphaeroides bc1 complex 3GLX ; 1.85 ; Crystal Structure Analysis of the DtxR(E175K) complexed with Ni(II) 6ADV ; 1.96 ; Crystal Structure Analysis of the duplex containing the S2T(2',4'-BNA/LNA)G mismatch pairs 1EN4 ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF THE E. COLI MANGANESE SUPEROXIDE DISMUTASE Q146H MUTANT 1EN6 ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS OF THE E. COLI MANGANESE SUPEROXIDE DISMUTASE Q146L MUTANT 1EN5 ; 2.3 ; CRYSTAL STRUCTURE ANALYSIS OF THE E. COLI MANGANESE SUPEROXIDE DISMUTASE Y34F MUTANT 4LJZ ; 3.5871 ; Crystal Structure Analysis of the E.coli holoenzyme 4LK1 ; 3.8369 ; Crystal Structure Analysis of the E.coli holoenzyme 4LLG ; 3.7936 ; Crystal Structure Analysis of the E.coli holoenzyme/Gp2 complex 4LK0 ; 3.9103 ; Crystal Structure Analysis of the E.coli holoenzyme/T7 Gp2 complex 1JLL ; 2.69 ; Crystal Structure Analysis of the E197betaA Mutant of E. coli SCS 4IQA ; 2.49 ; Crystal Structure Analysis of the E228L Mutant of Human CLIC1 3EMR ; 1.85 ; Crystal Structure Analysis of the ectoine hydroxylase ECTD from Salibacillus salexigens 4QP0 ; 2.3 ; Crystal Structure Analysis of the Endo-1,4-beta-mannanase from Rhizomucor miehei 6DDM ; 1.3 ; Crystal Structure Analysis of the Epitope of an Anti-MICA Antibody 6DDR ; 1.9 ; Crystal Structure Analysis of the Epitope of an Anti-MICA Antibody 6DDV ; 2.05 ; Crystal Structure Analysis of the Epitope of an Anti-MICA Antibody 3M8L ; 3.4 ; Crystal Structure Analysis of the Feline Calicivirus Capsid Protein 1GAW ; 2.2 ; CRYSTAL STRUCTURE ANALYSIS OF THE FERREDOXIN-NADP+ REDUCTASE FROM MAIZE LEAF 1SM4 ; 2.5 ; Crystal Structure Analysis of the Ferredoxin-NADP+ Reductase from Paprika 1NUN ; 2.9 ; Crystal Structure Analysis of the FGF10-FGFR2b Complex 1J4H ; 1.8 ; crystal structure analysis of the FKBP12 complexed with 000107 small molecule 1J4I ; 1.8 ; crystal structure analysis of the FKBP12 complexed with 000308 small molecule 3A8S ; 2.9 ; Crystal structure analysis of the fluorescent protein KillerRed 7SVS ; 2.8 ; Crystal structure analysis of the G73A mutant of Superoxide Dismutase from Trichoderma reesei 2HM7 ; 2.0 ; Crystal Structure Analysis of the G84S EST2 mutant 1C16 ; 3.1 ; CRYSTAL STRUCTURE ANALYSIS OF THE GAMMA/DELTA T CELL LIGAND T22 2A6K ; 3.0 ; Crystal Structure Analysis of the germline antibody 36-65 Fab in complex with the dodecapeptide SLGDNLTNHNLR 6J31 ; 2.244 ; Crystal Structure Analysis of the Glycotransferase of kitacinnamycin 6J32 ; 2.5 ; Crystal Structure Analysis of the Glycotransferase of kitacinnamycin 1K33 ; 1.75 ; Crystal structure analysis of the gp41 core mutant 1I08 ; 2.2 ; CRYSTAL STRUCTURE ANALYSIS OF THE H30A MUTANT OF MANGANESE SUPEROXIDE DISMUTASE FROM E. COLI 6CYP ; 2.0 ; Crystal structure analysis of the H75I mutant of Superoxide Dismutase from Trichoderma reesei 1LG5 ; 1.75 ; Crystal Structure Analysis of the HCA II Mutant T199P in complex with beta-mercaptoethanol 2ZZQ ; 3.81 ; Crystal structure analysis of the HEV capsid protein, PORF2 5Z79 ; 2.9 ; Crystal Structure Analysis of the HPPK-DHPS in complex with substrates 2GD8 ; 1.46 ; Crystal structure analysis of the human carbonic anhydrase II in complex with a 2-substituted estradiol bis-sulfamate 2AAQ ; 2.6 ; Crystal Structure Analysis of the human Glutahione Reductase, complexed with GoPI 1FP5 ; 2.3 ; CRYSTAL STRUCTURE ANALYSIS OF THE HUMAN IGE-FC CEPSILON3-CEPSILON4 FRAGMENT. 4FG3 ; 2.001 ; Crystal Structure Analysis of the Human Insulin 4RVB ; 1.93 ; Crystal Structure Analysis of the Human Leukotriene A4 Hydrolase 1S31 ; 2.704 ; Crystal Structure Analysis of the human Tub protein (isoform a) spanning residues 289 through 561 1MWO ; 2.2 ; Crystal Structure Analysis of the Hyperthermostable Pyrocoocus woesei alpha-amylase 1N64 ; 2.34 ; Crystal structure analysis of the immunodominant antigenic site on Hepatitis C virus protein bound to mAb 19D9D6 4ITC ; 1.55 ; Crystal Structure Analysis of the K1 Cleaved Adhesin domain of Lys-gingipain (Kgp) from Porphyromonas gingivalis W83 3F2L ; 1.85 ; Crystal structure analysis of the K171A mutation of N-terminal type II cohesin 1 from the cellulosomal ScaB subunit of Acetivibrio cellulolyticus 3KM5 ; 1.4 ; Crystal Structure Analysis of the K2 Cleaved Adhesin Domain of Lys-gingipain (Kgp) 3M1H ; 1.56 ; Crystal Structure Analysis of the K3 Cleaved Adhesin Domain of Lys-gingipain (Kgp) from Porphyromonas gingivalis w83 2DU2 ; 2.1 ; Crystal Structure Analysis of the L-Lactate Oxidase 3Q74 ; 1.79 ; Crystal Structure Analysis of the L7A Mutant of the Apo Form of Human Alpha Class Glutathione Transferase 6CYX ; 2.3 ; Crystal structure analysis of the L80F mutant of Superoxide Dismutase from Trichoderma reesei 1U4N ; 2.1 ; Crystal Structure Analysis of the M211S/R215L EST2 mutant 1QWR ; 1.8 ; Crystal Structure Analysis of the Mannose 6-Phosphate Isomerase from Bacillus subtilis 4QKY ; 2.9 ; Crystal Structure Analysis of the Membrane Transporter FhaC 4QL0 ; 2.5 ; Crystal Structure Analysis of the Membrane Transporter FhaC (double mutant V169T, I176N) 3VLM ; 2.33 ; Crystal Structure Analysis of the Met244Ala Variant of KatG from Haloarcula marismortui 3JWH ; 2.2 ; Crystal structure analysis of the methyltransferase domain of bacterial-AvHen1-C 3JWJ ; 2.5 ; Crystal structure analysis of the methyltransferase domain of bacterial-AvHen1-CN 3JWG ; 1.9 ; Crystal structure analysis of the methyltransferase domain of bacterial-CtHen1-C 3JWI ; 2.2 ; Crystal structure analysis of the methyltransferase domain of bacterial-CtHen1-CN 1IU4 ; 2.4 ; Crystal Structure Analysis of the Microbial Transglutaminase 3FCG ; 2.85 ; Crystal Structure Analysis of the Middle Domain of the Caf1A Usher 3VZ8 ; 1.9 ; Crystal Structure Analysis of the Mini-chaperonin variant with Leu 185, Val 186, Pro 187, Arg 188 and Ser 190 replaced with all Gly 3VZ7 ; 1.8 ; Crystal Structure Analysis of the mini-chaperonin variant with Pro 187 Gly 3VZ6 ; 1.5 ; Crystal Structure Analysis of the Mini-chaperonines, variant with Gly 184 replaced with Ile and Leu 185 replaced Val and Val 186 replaced with Leu. 1ZPI ; 1.6 ; Crystal structure analysis of the minor groove binding quinolinium quaternary salt SN 8224 complexed with CGCGAATTCGCG 1ZPH ; 1.8 ; Crystal structure analysis of the minor groove binding quinolinium quaternary salt SN 8315 complexed with CGCGAATTCGCG 2OW9 ; 1.74 ; Crystal structure analysis of the MMP13 catalytic domain in complex with specific inhibitor 2OY3 ; 1.78 ; Crystal structure analysis of the monomeric SRCR domain of mouse MARCO 1N1X ; 1.45 ; Crystal Structure Analysis of the monomeric [S-carboxyamidomethyl-Cys31, S-carboxyamidomethyl-Cys32] Bovine seminal ribonuclease 3AA9 ; 2.3 ; Crystal Structure Analysis of the Mutant CutA1 (E61V) from E. coli 3AA8 ; 2.3 ; Crystal Structure Analysis of the Mutant CutA1 (S11V/E61V) from E. coli 1JD9 ; 2.5 ; CRYSTAL STRUCTURE ANALYSIS OF THE MUTANT K300Q OF PSEUDOALTEROMONAS HALOPLANCTIS ALPHA-AMYLASE 1JD7 ; 2.25 ; CRYSTAL STRUCTURE ANALYSIS OF THE MUTANT K300R OF PSEUDOALTEROMONAS HALOPLANCTIS ALPHA-AMYLASE 1FNQ ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF THE MUTANT REACTION CENTER PRO L209-> GLU FROM THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOBACTER SPHAEROIDES 1FNP ; 2.6 ; CRYSTAL STRUCTURE ANALYSIS OF THE MUTANT REACTION CENTER PRO L209-> PHE FROM THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOBACTER SPHAEROIDES 1F6N ; 2.8 ; CRYSTAL STRUCTURE ANALYSIS OF THE MUTANT REACTION CENTER PRO L209-> TYR FROM THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOBACTER SPHAEROIDES 1KDQ ; 2.55 ; Crystal Structure Analysis of the Mutant S189D Rat Chymotrypsin 1X0J ; 1.8 ; Crystal structure analysis of the N-terminal bromodomain of human Brd2 2DVQ ; 2.04 ; Crystal structure analysis of the N-terminal bromodomain of human BRD2 complexed with acetylated histone H4 peptide 2DVR ; 2.3 ; Crystal structure analysis of the N-terminal bromodomain of human BRD2 complexed with acetylated histone H4 peptide 2DVS ; 2.04 ; Crystal structure analysis of the N-terminal bromodomain of human BRD2 complexed with acetylated histone H4 peptide 3W9S ; 1.7 ; Crystal Structure Analysis of the N-terminal Receiver domain of Response Regulator PmrA 1LV1 ; 2.1 ; Crystal Structure Analysis of the non-active site mutant of tethered HIV-1 protease to 2.1A resolution 4RZE ; 2.49 ; Crystal Structure Analysis of the NUR77 Ligand Binding Domain, L437W,D594E mutant 4RZF ; 1.99 ; Crystal Structure Analysis of the NUR77 Ligand Binding Domain, S441W mutant 1SQ2 ; 1.45 ; Crystal Structure Analysis of the Nurse Shark New Antigen Receptor (NAR) Variable Domain in Complex With Lysozyme 1T6V ; 1.7 ; Crystal structure analysis of the nurse shark new antigen receptor (NAR) variable domain in complex with lysozyme 2I27 ; 1.92 ; Crystal Structure Analysis of the Nurse Shark New Antigen Receptor Ancestral variable domain 2I26 ; 2.5 ; Crystal structure analysis of the nurse shark new antigen receptor ancestral variable domain in complex with lysozyme 2I24 ; 1.35 ; Crystal structure analysis of the nurse shark New Antigen Receptor PBLA8 variable domain 2I25 ; 1.8 ; Crystal structure analysis of the nurse shark New antigen Receptor PBLA8 variable domain in complex with lysozyme 3DUL ; 1.8 ; Crystal Structure Analysis of the O-methyltransferase from Bacillus cereus 1YI9 ; 1.7 ; Crystal Structure Analysis of the oxidized form of the M314I mutant of Peptidylglycine alpha-Hydroxylating Monooxygenase 3VJJ ; 3.0 ; Crystal Structure Analysis of the P9-1 3VQF ; 1.199 ; Crystal Structure Analysis of the PDZ Domain Derived from the Tight Junction Regulating Protein 3VQG ; 1.35 ; Crystal Structure Analysis of the PDZ Domain Derived from the Tight Junction Regulating Protein 1M21 ; 1.8 ; Crystal structure analysis of the peptide amidase PAM in complex with the competitive inhibitor chymostatin 2DX8 ; 2.7 ; Crystal Structure Analysis of the PHD domain of the Transcription Coactivator Pygophus 1FU0 ; 1.9 ; CRYSTAL STRUCTURE ANALYSIS OF THE PHOSPHO-SERINE 46 HPR FROM ENTEROCOCCUS FAECALIS 3QO6 ; 2.5 ; Crystal structure analysis of the plant protease Deg1 1FQ2 ; 1.2 ; CRYSTAL STRUCTURE ANALYSIS OF THE POTASSIUM FORM OF B-DNA DODECAMER CGCGAATTCGCG 1QTR ; 2.32 ; CRYSTAL STRUCTURE ANALYSIS OF THE PROLYL AMINOPEPTIDASE FROM SERRATIA MARCESCENS 4MM0 ; 2.6 ; Crystal Structure Analysis of the Putative Thioether Synthase SgvP Involved in the Tailoring Step of Griseoviridin 1VB5 ; 2.2 ; Crystal Structure Analysis of the Pyrococcus horikoshii OT3 translation initiation factor eIF-2B 1HM5 ; 1.8 ; CRYSTAL STRUCTURE ANALYSIS OF THE RABBIT D-GLUCOSE 6-PHOSPHATE ISOMERASE (NO LIGAND BOUND) 2EMS ; 2.9 ; Crystal Structure Analysis of the radixin FERM domain complexed with adhesion molecule CD43 2EMT ; 2.8 ; Crystal Structure Analysis of the radixin FERM domain complexed with adhesion molecule PSGL-1 3LOA ; 2.299 ; Crystal Structure Analysis of the RNA construct with two adjacent ligand binding sites of helix h44 in 16S ribosomal RNA 2G92 ; 1.61 ; Crystal Structure Analysis of the RNA Dodecamer CGC-(NF2)-AAUUAGCG, with an Incorporated 2,4-Difluorotoluyl Residue (NF2) 2Q1O ; 1.1 ; Crystal Structure Analysis of the RNA Dodecamer CGC-NF2-AAUUGGCG, with an Incorporated 2,4-Difluorotoluyl Residue (NF2) 2Q1R ; 1.12 ; Crystal Structure Analysis of the RNA Dodecamer CGCGAAUUAGCG, with a G-A mismatch. 3BK2 ; 2.1 ; Crystal Structure Analysis of the RNase J/UMP complex 6J1L ; 2.3 ; Crystal Structure Analysis of the ROR gamma(C455E) 1KS2 ; 1.5 ; Crystal Structure Analysis of the rpiA, Structural Genomics, protein EC1268. 1S4D ; 2.7 ; Crystal Structure Analysis of the S-adenosyl-L-methionine dependent uroporphyrinogen-III C-methyltransferase SUMT 5XHE ; 1.4 ; Crystal structure analysis of the second bromodomain of BRD2 covalently linked to b-mercaptoethanol 1NTE ; 1.24 ; CRYSTAL STRUCTURE ANALYSIS OF THE SECOND PDZ DOMAIN OF SYNTENIN 1PN2 ; 1.95 ; Crystal structure analysis of the selenomethionine labelled 2-enoyl-CoA hydratase 2 domain of Candida tropicalis multifunctional enzyme type 2 1EW0 ; 1.4 ; CRYSTAL STRUCTURE ANALYSIS OF THE SENSOR DOMAIN OF RMFIXL(FERROUS FORM) 3VLK ; 2.0 ; Crystal Structure Analysis of the Ser305Ala variant of KatG from Haloarcula marismortui 3VLL ; 2.0 ; Crystal Structure Analysis of the Ser305Ala variant of KatG from HALOARCULA MARISMORTUI Complexes with Inhibitor SHA 3UW8 ; 2.35 ; Crystal Structure Analysis of the Ser305Thr Variants of KatG from Haloarcula marismortui 1JWO ; 2.5 ; Crystal Structure Analysis of the SH2 Domain of the Csk Homologous Kinase CHK 1PL5 ; 2.5 ; Crystal Structure Analysis of the Sir4p C-terminal Coiled Coil 1V9I ; 2.95 ; Crystal Structure Analysis of the site specific mutant (Q253C) of bovine carbonic anhydrase II 2Z41 ; 3.51 ; Crystal Structure Analysis of the Ski2-type RNA helicase 1DD1 ; 2.62 ; CRYSTAL STRUCTURE ANALYSIS OF THE SMAD4 ACTIVE FRAGMENT 2ZHJ ; 1.35 ; Crystal Structure Analysis of the Sodium-Bound Annexin A4 at 1.34 A resolution 2ZHI ; 1.58 ; Crystal Structure Analysis of the Sodium-Bound Annexin A4 at 1.58 A resolution 4OYB ; 1.7 ; Crystal Structure Analysis of the solAC 5GHL ; 2.0 ; Crystal structure Analysis of the starch-binding domain of glucoamylase from Aspergillus niger 7E7M ; 2.85 ; Crystal Structure Analysis of the Streptococcus agalactiae Ribose Binding Protein RbsB 3CX3 ; 2.4 ; Crystal structure Analysis of the Streptococcus pneumoniae AdcAII protein 3TJT ; 1.801 ; Crystal Structure Analysis of the superoxide dismutase from Clostridium difficile 3W8V ; 2.1 ; Crystal Structure Analysis of the synthetic GCN4 coiled coil peptide 3W93 ; 1.5 ; Crystal Structure Analysis of the synthetic GCN4 Ester coiled coil peptide 3W92 ; 1.35 ; Crystal Structure Analysis of the synthetic GCN4 Thioester coiled coil peptide 1G94 ; 1.74 ; CRYSTAL STRUCTURE ANALYSIS OF THE TERNARY COMPLEX BETWEEN PSYCHROPHILIC ALPHA AMYLASE FROM PSEUDOALTEROMONAS HALOPLANCTIS IN COMPLEX WITH A HEPTA-SACCHARIDE AND A TRIS MOLECULE 1ZZI ; 1.8 ; Crystal Structure Analysis of the third KH domain of hnRNP K in complex with ssDNA 1ILV ; 2.0 ; Crystal Structure Analysis of the TM107 3VQT ; 1.8 ; Crystal structure analysis of the translation factor RF3 3VR1 ; 3.0 ; Crystal structure analysis of the translation factor RF3 1J4G ; 2.0 ; crystal structure analysis of the trichosanthin delta C7 2HDZ ; 2.0 ; Crystal Structure Analysis of the UBF HMG box5 6MI1 ; 2.3 ; CRYSTAL STRUCTURE ANALYSIS OF THE VARIANT PLANT EXOHYDROLASE ARG158ALA-GLU161ALA IN COMPLEX WITH METHYL 6-THIO-BETA-GENTIOBIOSIDE 2P5P ; 2.8 ; Crystal Structure Analysis of the West Nile virus envelope (E) protein domain III 1LNS ; 2.2 ; Crystal Structure Analysis of the X-Prolyl Dipeptidyl Aminopeptidase From Lactococcus lactis 5O8W ; 1.67 ; CRYSTAL STRUCTURE ANALYSIS OF THE YEAST ELONGATION FACTOR COMPLEX EEF1A:EEF1BA 1Q32 ; 2.03 ; Crystal Structure Analysis of the Yeast Tyrosyl-DNA Phosphodiesterase 3SQ8 ; 2.1 ; Crystal Structure Analysis of the Yeast Tyrosyl-DNA Phosphodiesterase 1 H432R Mutant (SCAN1 Mutant) 3SQ3 ; 2.5 ; Crystal Structure Analysis of the Yeast Tyrosyl-DNA Phosphodiesterase H182A Mutant 3SQ5 ; 2.3 ; Crystal Structure Analysis of the Yeast Tyrosyl-DNA Phosphodiesterase H432N Mutant 3SQ7 ; 2.0 ; Crystal Structure Analysis of the Yeast Tyrosyl-DNA Phosphodiesterase H432N_Glu Mutant 3WBO ; 0.98 ; Crystal Structure Analysis of the Z-DNA hexamer CGCGCG with 40 mM NaCl 1JI1 ; 1.6 ; Crystal Structure Analysis of Thermoactinomyces vulgaris R-47 alpha-Amylase 1 1Z9G ; 1.7 ; Crystal Structure Analysis of Thermolysin Complexed with the Inhibitor (R)-retro-thiorphan 1ZDP ; 1.7 ; Crystal Structure Analysis of Thermolysin Complexed with the Inhibitor (S)-thiorphan 4YZO ; 1.7 ; Crystal Structure Analysis of Thiolase-like protein, ST0096 from Sulfolobus Tokodaii 1V98 ; 1.82 ; Crystal Structure Analysis of Thioredoxin from Thermus thermophilus 4LOY ; 1.77 ; Crystal Structure Analysis of thrombin in complex with compound D57, 5-Chlorothiophene-2-carboxylic acid [(S)-2-[2-methyl-3-(2- oxopyrrolidin-1-yl)benzenesulfonylamino]-3-(4-methylpiperazin-1- yl)-3-oxopropyl]amide (SAR107375) 4LXB ; 1.61 ; Crystal Structure Analysis of thrombin in complex with compound D58 1M6Y ; 1.9 ; Crystal Structure Analysis of TM0872, a Putative SAM-dependent Methyltransferase, Complexed with SAH 1N2X ; 1.9 ; Crystal Structure Analysis of TM0872, a Putative SAM-dependent Methyltransferase, Complexed with SAM 3SJM ; 1.35 ; Crystal Structure Analysis of TRF2-Dbd-DNA complex 6IZ4 ; 3.098 ; Crystal Structure Analysis of TRIC counter-ion channels in calcium release 6IZ6 ; 3.293 ; Crystal Structure Analysis of TRIC counter-ion channels in calcium release 3C2J ; 1.78 ; Crystal structure analysis of trioxacarcin A covalently bound to d(AACCGGTT) 3EE6 ; 2.35 ; Crystal Structure Analysis of Tripeptidyl peptidase -I 1VEP ; 2.06 ; Crystal Structure Analysis of Triple (T47M/Y164E/T328N)/maltose of Bacillus cereus Beta-Amylase at pH 6.5 2QAE ; 1.9 ; Crystal Structure Analysis of Trypanosoma cruzi Lipoamide dehydrogenase 5DK4 ; 1.9 ; Crystal structure analysis of Tryptophanyl-trna synthetase from Bacillus stearothermophilus in complex with indolmycin and Mg*ATP 2DST ; 2.0 ; Crystal Structure Analysis of TT1977 5ZDL ; 2.6 ; Crystal Structure Analysis of TtQRS in co-crystallised with ATP 5ZDO ; 2.8 ; Crystal Structure Analysis of TtQRS in co-crystallised with ATP 5ZDK ; 2.45 ; Crystal Structure Analysis of TtQRS in complex with ATP 1TYJ ; 1.6 ; Crystal Structure Analysis of type II Cohesin A11 from Bacteroides cellulosolvens 1FX5 ; 2.2 ; CRYSTAL STRUCTURE ANALYSIS OF ULEX EUROPAEUS LECTIN I 1YBD ; 2.6 ; Crystal structure analysis of uridylate kinase from Neisseria meningitidis 3VE6 ; 2.829 ; Crystal Structure Analysis of Venezuelan Equine Encephalitis Virus Capsid Protein NLS and Importin Alpha 1CW0 ; 2.3 ; CRYSTAL STRUCTURE ANALYSIS OF VERY SHORT PATCH REPAIR (VSR) ENDONUCLEASE IN COMPLEX WITH A DUPLEX DNA 3AZ1 ; 1.5 ; Crystal Structure Analysis of Vitamin D receptor 3AZ2 ; 1.69 ; Crystal Structure Analysis of Vitamin D receptor 3AZ3 ; 1.36 ; Crystal Structure Analysis of Vitamin D receptor 3W0A ; 1.8 ; Crystal Structure Analysis of Vitamin D receptor 3W0C ; 1.9 ; Crystal Structure Analysis of Vitamin D receptor 3W0Y ; 1.98 ; Crystal Structure Analysis of Vitamin D receptor 3WGP ; 2.0 ; Crystal Structure Analysis of Vitamin D receptor 1JTE ; 2.0 ; Crystal Structure Analysis of VP39 F180W mutant 1JTF ; 2.6 ; Crystal Structure Analysis of VP39-F180W mutant and m7GpppG complex 3L0H ; 2.13 ; Crystal Structure Analysis of W21A mutant of human GSTA1-1 in complex with S-hexylglutathione 3TGZ ; 2.3 ; Crystal Structure Analysis of W35F/H207W Mutant of Human CLIC1 3LU1 ; 2.5 ; Crystal Structure Analysis of WbgU: a UDP-GalNAc 4-epimerase 7MW8 ; 1.9 ; Crystal Structure Analysis of Xac Nucleotide Pyrophosphatase/Phosphodiesterase 7N1S ; 2.0 ; Crystal Structure Analysis of Xac Nucleotide Pyrophosphatase/Phosphodiesterase 8EBK ; 1.29 ; Crystal Structure Analysis of xHDMX in complex with the stapled peptide PROTAC analog 1VEN ; 2.02 ; Crystal Structure Analysis of Y164E/maltose of Bacilus cereus Beta-amylase at pH 4.6 1VEO ; 2.12 ; Crystal Structure Analysis of Y164F/maltose of Bacillus cereus Beta-Amylase at pH 4.6 1PV1 ; 2.3 ; Crystal Structure Analysis of Yeast Hypothetical Protein: YJG8_YEAST 2DZN ; 2.2 ; Crystal structure analysis of yeast Nas6p complexed with the proteasome subunit, rpt3 2DZO ; 3.0 ; Crystal structure analysis of yeast Nas6p complexed with the proteasome subunit, rpt3 3PR6 ; 1.8 ; Crystal structure analysis of yeast TRAPP associate protein Tca17 3C8E ; 1.5 ; Crystal Structure Analysis of yghU from E. Coli 3R2Q ; 1.05 ; Crystal Structure Analysis of yibF from E. Coli 6V4E ; 1.62 ; Crystal Structure Analysis of Zebra Fish MDM 6V4F ; 1.35 ; Crystal Structure Analysis of Zebra Fish MDMX 6V4G ; 1.25 ; Crystal Structure Analysis of Zebra fish MDMX 6V4H ; 1.53 ; Crystal Structure Analysis of Zebra Fish MDMX 1NBA ; 2.0 ; CRYSTAL STRUCTURE ANALYSIS, REFINEMENT AND ENZYMATIC REACTION MECHANISM OF N-CARBAMOYLSARCOSINE AMIDOHYDROLASE FROM ARTHROBACTER SP. AT 2.0 ANGSTROMS RESOLUTION 1NZJ ; 1.5 ; Crystal Structure and Activity Studies of Escherichia Coli Yadb ORF 3PFQ ; 4.0 ; Crystal Structure and Allosteric Activation of Protein Kinase C beta II 2HIM ; 1.82 ; Crystal Structure and Allosteric Regulation of the Cytoplasmic Escherichia coli L-Asparaginase I 2P2D ; 1.89 ; Crystal Structure and Allosteric Regulation of the Cytoplasmic Escherichia coli L-Asparaginase I 2P2N ; 1.9 ; Crystal Structure and Allosteric Regulation of the Cytoplasmic Escherichia coli L-Asparaginase I 3F3H ; 2.1 ; Crystal structure and anti-tumor activity of LZ-8 from the fungus Ganoderma lucidium 1GME ; 2.7 ; Crystal structure and assembly of an eukaryotic small heat shock protein 2BOL ; 2.5 ; CRYSTAL STRUCTURE AND ASSEMBLY OF TSP36, A METAZOAN SMALL HEAT SHOCK PROTEIN 2O8T ; 1.45 ; Crystal Structure and Binding Epitopes of Urokinase-type Plasminogen Activator (C122A/N145Q) in complex with Inhibitors 2O8U ; 1.7 ; Crystal Structure and Binding Epitopes of Urokinase-type Plasminogen Activator (C122A/N145Q/S195A) in complex with Inhibitors 2O8W ; 1.86 ; Crystal Structure and Binding Epitopes of Urokinase-type Plasminogen Activator (C122A/N145Q/S195A) in complex with Inhibitors 2DRU ; 2.6 ; Crystal structure and binding properties of the CD2 and CD244 (2B4) binding protein, CD48 3BU7 ; 2.8 ; Crystal Structure and Biochemical Characterization of GDOsp, a Gentisate 1,2-Dioxygenase from Silicibacter Pomeroyi 3E3R ; 2.65 ; Crystal structure and biochemical characterization of recombinant human calcyphosine delineates a novel EF-hand-containing protein family 5GT2 ; 2.093 ; Crystal Structure and Biochemical Features of dye-decolorizing peroxidase YfeX from Escherichia coli O157 7VEP ; 2.15 ; Crystal structure and biophysical characterization of TPR domain of EccA5 from ESX-5 pathway of Mycobacterium tuberculosis H37RVR 1JTH ; 2.0 ; Crystal structure and biophysical properties of a complex between the N-terminal region of SNAP25 and the SNARE region of syntaxin 1a 7WNJ ; 1.7 ; Crystal structure and Cap Binding analysis of the methyltransferase of Langat virus 4I5Q ; 1.962 ; Crystal structure and catalytic mechanism for peroplasmic disulfide-bond isomerase DsbC from Salmonella enterica serovar Typhimurium 5WYQ ; 2.16 ; Crystal Structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa 5WYR ; 2.45 ; Crystal structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa 6JKI ; 2.59 ; Crystal structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa 2BTN ; 2.0 ; Crystal Structure and Catalytic Mechanism of the Quorum-Quenching N- Acyl Homoserine Lactone Hydrolase 5JVV ; 1.589 ; Crystal structure and characterization an elongating GH family 16 beta-1,3-glucosyltransferase 4GKF ; 2.1 ; Crystal structure and characterization of Cmr5 protein from Pyrococcus furiosus 7KQY ; 2.913 ; Crystal Structure and Characterization of Human Heavy-Chain only Antibodies reveals a novel, stable dimeric structure similar to Monoclonal Antibodies 4REK ; 0.74 ; Crystal structure and charge density studies of cholesterol oxidase from Brevibacterium sterolicum at 0.74 ultra-high resolution 3HWP ; 2.0 ; Crystal structure and computational analyses provide insights into the catalytic mechanism of 2, 4-diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens 4H20 ; 1.9 ; Crystal Structure and Computational Modeling of the Fab Fragment from the Protective anti-Ricin Monoclonal Antibody RAC18 3ZX3 ; 1.7 ; Crystal Structure and Domain Rotation of NTPDase1 CD39 2CJL ; 1.5 ; CRYSTAL STRUCTURE AND ENZYMATIC PROPERTIES OF A BACTERIAL FAMILY 19 CHITINASE REVEAL DIFFERENCES WITH PLANT ENZYMES 6IUQ ; 2.348 ; Crystal structure and expression patterns of prolyl 4-hydroxylases from Phytophthora capsici 2F0X ; 2.3 ; Crystal structure and function of human thioesterase superfamily member 2(THEM2) 1ENY ; 2.2 ; CRYSTAL STRUCTURE AND FUNCTION OF THE ISONIAZID TARGET OF MYCOBACTERIUM TUBERCULOSIS 1ENZ ; 2.7 ; CRYSTAL STRUCTURE AND FUNCTION OF THE ISONIAZID TARGET OF MYCOBACTERIUM TUBERCULOSIS 1OVN ; 1.9 ; Crystal Structure and Functional Analysis of Drosophila Wind-- a PDI-Related Protein 3E5R ; 2.3 ; Crystal structure and Functional Analysis of Glyceraldehyde-3-phosphate Dehydrogenase from Oryza Sativa 3E6A ; 3.77 ; Crystal structure and Functional Analysis of Glyceraldehyde-3-phosphate Dehydrogenase from Oryza Sativa 4WOY ; 2.4 ; Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1 3LUO ; 2.55 ; Crystal Structure and functional characterization of the thermophilic prolyl isomerase and chaperone SlyD 4PQ1 ; 2.097 ; Crystal structure and functional implications of a DsbF homologue from Corynebacterium diphtheriae 5CB0 ; 3.207 ; Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli 4HVK ; 1.43 ; Crystal structure and functional studies of an unusual L-cysteine desulfurase from Archaeoglobus fulgidus. 4MH1 ; 2.7 ; Crystal structure and functional studies of quinoprotein L-sorbose dehydrogenase from Ketogulonicigenium vulgare Y25 2B8I ; 1.8 ; Crystal Structure and Functional Studies Reveal that PAS Factor from Vibrio vulnificus is a Novel Member of the Saposin-Fold Family 2QN5 ; 3.0 ; Crystal Structure and Functional Study of the Bowman-Birk Inhibitor from Rice Bran in Complex with Bovine Trypsin 3RON ; 2.19 ; Crystal Structure and Hemolytic Activity of the Cyt1Aa Toxin from Bacillus thuringiensis subsp. israelensis 468D ; 1.8 ; CRYSTAL STRUCTURE AND IMPROVED ANTISENSE PROPERTIES OF 2'-O-(2-METHOXYETHYL)-RNA 469D ; 1.7 ; CRYSTAL STRUCTURE AND IMPROVED ANTISENSE PROPERTIES OF 2'-O-(2-METHOXYETHYL)-RNA 470D ; 1.95 ; CRYSTAL STRUCTURE AND IMPROVED ANTISENSE PROPERTIES OF 2'-O-(2-METHOXYETHYL)-RNA 471D ; 2.7 ; CRYSTAL STRUCTURE AND IMPROVED ANTISENSE PROPERTIES OF 2'-O-(2-METHOXYETHYL)-RNA 1PTS ; 2.0 ; CRYSTAL STRUCTURE AND LIGAND BINDING STUDIES OF A SCREENED PEPTIDE COMPLEXED WITH STREPTAVIDIN 5TV0 ; 1.648 ; crystal structure and light induced structural changes in orange carotenoid protein bound with 3 'OH echinenone 5TUX ; 1.5 ; crystal structure and light induced structural changes in orange carotenoid protein bound with echinenone 1RQP ; 1.8 ; Crystal structure and mechanism of a bacterial fluorinating enzyme 1RQR ; 2.67 ; Crystal structure and mechanism of a bacterial fluorinating enzyme, product complex 4LGJ ; 1.55 ; Crystal structure and mechanism of a type III secretion protease 4IW0 ; 4.0 ; Crystal structure and mechanism of activation of TBK1 4IWO ; 2.61 ; Crystal structure and mechanism of activation of TBK1 4IWP ; 3.065 ; Crystal structure and mechanism of activation of TBK1 4IWQ ; 3.0 ; Crystal structure and mechanism of activation of TBK1 2H94 ; 2.9 ; Crystal Structure and Mechanism of human Lysine-Specific Demethylase-1 1JDW ; 1.9 ; CRYSTAL STRUCTURE AND MECHANISM OF L-ARGININE: GLYCINE AMIDINOTRANSFERASE: A MITOCHONDRIAL ENZYME INVOLVED IN CREATINE BIOSYNTHESIS 2JDW ; 2.1 ; CRYSTAL STRUCTURE AND MECHANISM OF L-ARGININE: GLYCINE AMIDINOTRANSFERASE: A MITOCHONDRIAL ENZYME INVOLVED IN CREATINE BIOSYNTHESIS 3JDW ; 2.4 ; CRYSTAL STRUCTURE AND MECHANISM OF L-ARGININE: GLYCINE AMIDINOTRANSFERASE: A MITOCHONDRIAL ENZYME INVOLVED IN CREATINE BIOSYNTHESIS 4JDW ; 2.5 ; CRYSTAL STRUCTURE AND MECHANISM OF L-ARGININE: GLYCINE AMIDINOTRANSFERASE: A MITOCHONDRIAL ENZYME INVOLVED IN CREATINE BIOSYNTHESIS 6VPT ; 2.718 ; Crystal structure and mechanistic molecular modeling studies of Rv3377c: the Mycobacterium tuberculosis diterpene cyclase 3HH8 ; 1.87 ; Crystal Structure and metal binding properties of the lipoprotein MtsA 7Q1G ; 1.6 ; Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system 4RS4 ; 2.955 ; Crystal structure and mutational analysis of the endoribonuclease from human coronavirus 229E 3NV0 ; 1.84 ; Crystal structure and mutational analysis of the NXF2/NXT1 heterodimeric complex from caenorhabditis elegans at 1.84 A resolution 2V1C ; 3.8 ; Crystal structure and mutational study of RecOR provide insight into its role in DNA repair 4R5Q ; 2.65 ; Crystal structure and nuclease activity of the CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis containing a [2Fe-2S] cluster 2GER ; 3.1 ; Crystal Structure and Oxidative Mechanism of Human Pyrroline-5-carboxylate Reductase 2ADF ; 1.9 ; Crystal Structure and Paratope Determination of 82D6A3, an Antithrombotic Antibody Directed Against the von Willebrand factor A3-Domain 5FMO ; 2.3 ; Crystal structure and proteomics analysis of empty virus like particles of Cowpea mosaic virus 3CGL ; 2.09 ; Crystal Structure and Raman Studies of dsFP483, a Cyan Fluorescent Protein from Discosoma striata 1U08 ; 2.35 ; Crystal Structure and Reactivity of YbdL from Escherichia coli Identify a Methionine Aminotransferase Function. 1CPT ; 2.3 ; CRYSTAL STRUCTURE AND REFINEMENT OF CYTOCHROME P450-TERP AT 2.3 ANGSTROMS RESOLUTION 3THP ; 3.2 ; Crystal structure and RNA binding properties of the RRM/AlkB domains in human ABH8, an enzyme catalyzing tRNA hypermodification, Northeast Structural Genomics Consortium Target HR5601B 3THT ; 3.01 ; Crystal structure and RNA binding properties of the RRM/AlkB domains in human ABH8, an enzyme catalyzing tRNA hypermodification, Northeast Structural Genomics Consortium Target HR5601B 1DNM ; 2.5 ; CRYSTAL STRUCTURE AND SEQUENCE-DEPENDENT CONFORMATION OF THE A.G MIS-PAIRED OLIGONUCLEOTIDE D(CGCAAGCTGGCG) 1MAC ; 2.3 ; CRYSTAL STRUCTURE AND SITE-DIRECTED MUTAGENESIS OF BACILLUS MACERANS ENDO-1,3-1,4-BETA-GLUCANASE 2O6V ; 2.2 ; Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH 3TKA ; 2.25 ; crystal structure and solution saxs of methyltransferase rsmh from E.coli 111D ; 2.25 ; CRYSTAL STRUCTURE AND STABILITY OF A DNA DUPLEX CONTAINING A(ANTI).G(SYN) BASE-PAIRS 1J93 ; 2.3 ; Crystal Structure and Substrate Binding Modeling of the Uroporphyrinogen-III Decarboxylase from Nicotiana tabacum: Implications for the Catalytic Mechanism 3ZRP ; 1.75 ; Crystal structure and substrate specificity of a thermophilic archaeal serine : pyruvate aminotransferase from Sulfolobus solfataricus 3ZRQ ; 1.8 ; Crystal structure and substrate specificity of a thermophilic archaeal serine : pyruvate aminotransferase from Sulfolobus solfataricus 3ZRR ; 1.99 ; Crystal structure and substrate specificity of a thermophilic archaeal serine : pyruvate aminotransferase from Sulfolobus solfataricus 1LYN ; 2.75 ; CRYSTAL STRUCTURE AND SUBUNIT DYNAMICS OF THE LYSIN DIMER: EGG ENVELOPES DISSOCIATE DIMERS, THE MONOMER IS THE ACTIVE SPECIES 5D1V ; 1.74 ; Crystal Structure and Thermal Stability of Hemoglobin from Thermophilic Phototrophic Bacterium Chloroflexus aurantiacus 3E8U ; 2.1 ; Crystal structure and thermodynamic analysis of diagnostic Fab 106.3 complexed with BNP 5-13 (C10A) reveal basis of selective molecular recognition 2BBA ; 1.65 ; Crystal Structure and Thermodynamic Characterization of the EphB4 Receptor in Complex with an ephrin-B2 Antagonist Peptide Reveals the Determinants for Receptor Specificity. 3LI6 ; 2.502 ; Crystal structure and trimer-monomer transition of N-terminal domain of EhCaBP1 from Entamoeba histolytica 4LCT ; 2.7 ; Crystal Structure and Versatile Functional Roles of the COP9 Signalosome Subunit 1 5U5P ; 2.171 ; Crystal Structure and X-ray Diffraction Data Collection of Importin-alpha from Mus Musculus Complexed with a MLH1 NLS Peptide 5U5R ; 2.1 ; Crystal Structure and X-ray Diffraction Data Collection of Importin-alpha from Mus musculus Complexed with a PMS2 NLS Peptide 7U63 ; 2.3 ; Crystal Structure Anti-Oxycodone Antibody HY2-A12 Fab Complexed with Oxycodone 5IF1 ; 2.61 ; Crystal structure apo CDK2/cyclin A 6F0F ; 2.0 ; Crystal structure ASF1-ip2_s 6F0G ; 2.3 ; Crystal structure ASF1-ip3 6F0H ; 1.98 ; Crystal structure ASF1-ip4 2CWS ; 1.0 ; Crystal structure at 1.0 A of alginate lyase A1-II', a member of polysaccharide lyase family-7 1M2D ; 1.05 ; Crystal structure at 1.05 Angstroms resolution of the Cys59Ser variant of the thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus 1M2B ; 1.25 ; Crystal structure at 1.25 Angstroms resolution of the Cys55Ser variant of the thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus 6AIL ; 1.335 ; CRYSTAL STRUCTURE AT 1.3 ANGSTROMS RESOLUTION OF A NOVEL UDG, UdgX, FROM Mycobacterium smegmatis 2CYG ; 1.45 ; Crystal structure at 1.45- resolution of the major allergen endo-beta-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome 3RGW ; 1.5 ; Crystal structure at 1.5 A resolution of an H2-reduced, O2-tolerant hydrogenase from Ralstonia eutropha unmasks a novel iron-sulfur cluster 4LJI ; 1.508 ; Crystal structure at 1.5 angstrom resolution of the PsbV2 cytochrome from the cyanobacterium thermosynechococcus elongatus 1D53 ; 1.5 ; CRYSTAL STRUCTURE AT 1.5 ANGSTROMS RESOLUTION OF D(CGCICICG), AN OCTANUCLEOTIDE CONTAINING INOSINE, AND ITS COMPARISON WITH D(CGCG) AND D(CGCGCG) STRUCTURES 1M2A ; 1.5 ; Crystal structure at 1.5 Angstroms resolution of the wild type thioredoxin-like [2Fe-2S] ferredoxin from Aquifex aeolicus 1KGS ; 1.5 ; Crystal Structure at 1.50 A of an OmpR/PhoB Homolog from Thermotoga maritima 1HT6 ; 1.5 ; CRYSTAL STRUCTURE AT 1.5A RESOLUTION OF THE BARLEY ALPHA-AMYLASE ISOZYME 1 2BOP ; 1.7 ; CRYSTAL STRUCTURE AT 1.7 ANGSTROMS OF THE BOVINE PAPILLOMAVIRUS-1 E2 DNA-BINDING DOMAIN BOUND TO ITS DNA TARGET 1IQ9 ; 1.8 ; crystal structure at 1.8 A of toxin a from Naja nigricollis venom 1RKX ; 1.8 ; Crystal Structure at 1.8 Angstrom of CDP-D-glucose 4,6-dehydratase from Yersinia pseudotuberculosis 1MO1 ; 1.8 ; CRYSTAL STRUCTURE AT 1.8 ANGSTROMS OF SELENO METHIONYLED CRH, THE BACILLUS SUBTILIS CATABOLITE REPRESSION CONTAINING PROTEIN CRH REVEALS AN UNEXPECTED SWAPPING DOMAIN AS AN UNTERTWINNED DIMER 1MU4 ; 1.8 ; CRYSTAL STRUCTURE AT 1.8 ANGSTROMS OF THE BACILLUS SUBTILIS CATABOLITE REPRESSION HISTIDINE CONTAINING PROTEIN (CRH) 1MZN ; 1.9 ; CRYSTAL STRUCTURE at 1.9 ANGSTROEMS RESOLUTION OF THE HOMODIMER OF HUMAN RXR ALPHA LIGAND BINDING DOMAIN BOUND TO THE SYNTHETIC AGONIST COMPOUND BMS 649 AND A COACTIVATOR PEPTIDE 1HSG ; 2.0 ; CRYSTAL STRUCTURE AT 1.9 ANGSTROMS RESOLUTION OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) II PROTEASE COMPLEXED WITH L-735,524, AN ORALLY BIOAVAILABLE INHIBITOR OF THE HIV PROTEASES 1HSH ; 1.9 ; CRYSTAL STRUCTURE AT 1.9 ANGSTROMS RESOLUTION OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) II PROTEASE COMPLEXED WITH L-735,524, AN ORALLY BIOAVAILABLE INHIBITOR OF THE HIV PROTEASES 1HSI ; 2.5 ; CRYSTAL STRUCTURE AT 1.9 ANGSTROMS RESOLUTION OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) II PROTEASE COMPLEXED WITH L-735,524, AN ORALLY BIOAVAILABLE INHIBITOR OF THE HIV PROTEASES 3C2E ; 1.9 ; Crystal structure at 1.9A of the apo quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae 3RLB ; 2.0 ; Crystal structure at 2.0 A of the S-component for thiamin from an ECF-type ABC transporter 4DVE ; 2.09 ; Crystal structure at 2.1 A of the S-component for biotin from an ECF-type ABC transporter 3K6K ; 2.2 ; Crystal structure at 2.2 angstrom of HSL-homolog EstE7 from a metagenome library 1DYN ; 2.2 ; CRYSTAL STRUCTURE AT 2.2 ANGSTROMS RESOLUTION OF THE PLECKSTRIN HOMOLOGY DOMAIN FROM HUMAN DYNAMIN 1DFO ; 2.4 ; CRYSTAL STRUCTURE AT 2.4 ANGSTROM RESOLUTION OF E. COLI SERINE HYDROXYMETHYLTRANSFERASE IN COMPLEX WITH GLYCINE AND 5-FORMYL TETRAHYDROFOLATE 1EKM ; 2.5 ; CRYSTAL STRUCTURE AT 2.5 A RESOLUTION OF ZINC-SUBSTITUTED COPPER AMINE OXIDASE OF HANSENULA POLYMORPHA EXPRESSED IN ESCHERICHIA COLI 4AMT ; 2.6 ; Crystal structure at 2.6A of human prorenin 1JVQ ; 2.6 ; Crystal structure at 2.6A of the ternary complex between antithrombin, a P14-P8 reactive loop peptide, and an exogenous tetrapeptide 1JJC ; 2.6 ; Crystal structure at 2.6A resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese 1HNG ; 2.8 ; CRYSTAL STRUCTURE AT 2.8 ANGSTROMS RESOLUTION OF A SOLUBLE FORM OF THE CELL ADHESION MOLECULE CD2 5FYJ ; 3.11 ; Crystal Structure at 3.4 A Resolution of Fully Glycosylated HIV-1 Clade G X1193.c1 SOSIP.664 Prefusion Env Trimer in Complex with Broadly Neutralizing Antibodies PGT122, 35O22 and VRC01 7VT9 ; 3.3 ; CRYSTAL STRUCTURE AT 3.4 ANGSTROMS RESOLUTION OF Maltodextrin glucosidase, MalZ, FROM Escherichia coli 5FYL ; 3.1 ; Crystal Structure at 3.7 A Resolution of Fully Glycosylated HIV-1 Clade A BG505 SOSIP.664 Prefusion Env Trimer in Complex with Broadly Neutralizing Antibodies PGT122 and 35O22 5FYK ; 3.107 ; Crystal Structure at 3.7 A Resolution of Fully Glycosylated HIV-1 Clade B JR-FL SOSIP.664 Prefusion Env Trimer in Complex with Broadly Neutralizing Antibodies PGT122, 35O22 and VRC01 5V7J ; 2.907 ; Crystal Structure at 3.7 A Resolution of Glycosylated HIV-1 Clade A BG505 SOSIP.664 Prefusion Env Trimer with Four Glycans (N197, N276, N362, and N462) removed in Complex with Neutralizing Antibodies 3H+109L and 35O22. 6DE7 ; 4.123 ; Crystal Structure at 4.3 A Resolution of Glycosylated HIV-1 Clade A BG505 SOSIP.664 Prefusion Env Trimer with Interdomain Stabilization 113C-429GCG in Complex with Broadly Neutralizing Antibodies PGT122 and 35O22 3GQG ; 1.73 ; Crystal structure at acidic pH of the ferric form of the Root effect hemoglobin from Trematomus bernacchii. 6JGU ; 1.02 ; Crystal structure at atomic resolution reveals the catalytic mechanism in peptidyl-tRNA hydrolase from Acinetobacter baumannii. 5FNW ; 2.45 ; Crystal structure at pH 7.0 of a potato STI-Kunitz bi-functional inhibitor of serine and aspartic proteases in space group p4322 and ph 9.0 5FNX ; 2.65 ; Crystal structure at pH 9.0 of a potato STI-Kunitz bi-functional inhibitor of serine and aspartic proteases in space group p4322 and ph 9.0 4XNC ; 2.23 ; Crystal structure at room temperature of cyclophilin D in complex with an inhibitor 4XRL ; 2.554 ; Crystal structure at room temperature of Erk2 in complex with an inhibitor 4XN6 ; 1.35 ; Crystal structure at room temperature of hen-egg lysozyme in complex with benzamidine 8DO8 ; 2.41 ; Crystal structure ATG9 HDIR in complex with the ATG13:ATG101 HORMA dimer 6K09 ; 2.248 ; Crystal structure B of ceNAP1-H2A-H2B complex 6EN6 ; 1.8 ; Crystal structure B of the Angiotensin-1 converting enzyme N-domain in complex with a diprolyl inhibitor. 5HP4 ; 1.86 ; Crystal structure bacteriohage T5 D15 flap endonuclease (D155K) pseudo-enzyme-product complex with DNA and metal ions 6K13 ; 1.89 ; Crystal Structure Basis for BmLDH Complex 4XFQ ; 1.65 ; Crystal Structure Basis for PEDV 3C Like Protease 5XBC ; 1.249 ; Crystal Structure Basis for PEDV nsp1 5A8Q ; 1.9 ; Crystal structure beta-glucanase SdGluc5_26A from Saccharophagus degradans in complex with tetrasaccharide A obtained by soaking 5A8P ; 2.2 ; Crystal structure beta-glucanase SdGluc5_26A from Saccharophagus degradans in complex with tetrasaccharide B 3U9Z ; 2.09 ; Crystal structure between actin and a protein construct containing the first beta-thymosin domain of drosophila ciboulot (residues 2-58) with the three mutations N26D/Q27K/D28S 5C7K ; 4.6019 ; Crystal structure BG505 SOSIP gp140 HIV-1 Env trimer bound to broadly neutralizing antibodies PGT128 and 8ANC195 7PLK ; 2.48781 ; Crystal structure bovine Hsc70(aa1-554)E213A/D214A in complex with nicotinic-acid-derivative 5XGG ; 1.72 ; Crystal Structure C-terminal SH3 domain of Myosin IB from Entamoeba histolytica 6A9C ; 1.98 ; Crystal Structure c-terminal SH3 domain of Myosin IB from Entamoeba histolytica bound to EhFP10(GEF) peptide. 4KU2 ; 1.974 ; Crystal Structure C143A from Xanthomonas campestris Bound with Myristoyl-CoA 7QBZ ; 3.25 ; Crystal structure Cadmium translocating P-type ATPase 2RL7 ; 2.0 ; Crystal Structure cation-dependent mannose 6-phosphate receptor at pH 4.8 2RL8 ; 1.45 ; Crystal Structure cation-dependent mannose 6-phosphate receptor at pH 6.5 bound to M6P 2RLB ; 1.75 ; Crystal Structure cation-dependent mannose 6-phosphate receptor at pH 6.5 bound to M6P in absence of Mn 2RL9 ; 2.4 ; Crystal Structure cation-dependent mannose 6-phosphate receptor at pH 6.5 bound to trimannoside 3CY4 ; 1.51 ; Crystal Structure cation-dependent mannose 6-phosphate receptor at pH 7.4 5NCM ; 2.8 ; Crystal structure Cbk1(NTR)-Mob2 complex 1TDZ ; 1.8 ; Crystal Structure Complex Between the Lactococcus Lactis FPG (Mutm) and a FAPY-dG Containing DNA 1NNJ ; 1.9 ; Crystal structure Complex between the Lactococcus lactis Fpg and an abasic site containing DNA 1XC8 ; 1.95 ; CRYSTAL STRUCTURE COMPLEX BETWEEN THE WILD-TYPE LACTOCOCCUS LACTIS FPG (MUTM) AND A FAPY-DG CONTAINING DNA 2O3B ; 2.3 ; Crystal structure complex of Nuclease A (NucA) with intra-cellular inhibitor NuiA 4KE6 ; 2.8 ; Crystal structure D196N mutant of Monoglyceride lipase from Bacillus sp. H257 in complex with 1-rac-lauroyl glycerol 5NCN ; 3.501 ; Crystal structure Dbf2(NTR)-Mob1 complex 5HKN ; 1.761 ; Crystal structure de novo designed fullerene organizing protein complex with fullerene 7JZJ ; 2.46 ; Crystal structure demonstrating CTD-CTD interactions of Zaire Ebola virus VP40 dimer 6NW0 ; 1.85 ; Crystal Structure Desulfovibrio desulfuricans Nickel-Substituted Rubredoxin 6NW1 ; 1.86 ; Crystal Structure Desulfovibrio desulfuricans Nickel-Substituted Rubredoxin V37N 2LAL ; 1.8 ; CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT AT 2.3 ANGSTROMS RESOLUTION OF THE LENTIL LECTIN 1THC ; 2.3 ; CRYSTAL STRUCTURE DETERMINATION AT 2.3A OF HUMAN TRANSTHYRETIN-3',5'-DIBROMO-2',4,4',6-TETRA-HYDROXYAURONE COMPLEX 1GYC ; 1.9 ; CRYSTAL STRUCTURE DETERMINATION AT ROOM TEMPERATURE OF A LACCASE FROM TRAMETES VERSICOLOR IN ITS OXIDISED FORM CONTAINING A FULL COMPLEMENT OF COPPER IONS 5NYV ; 1.6 ; Crystal structure determination from picosecond infrared laser ablated protein crystals by serial synchrotron crystallography 5O2G ; 2.1 ; Crystal structure determination from picosecond infrared laser ablated protein crystals by serial synchrotron crystallography 2QT6 ; 1.5 ; Crystal Structure Determination of a Blue Laccase from Lentinus Tigrinus 1RTT ; 1.28 ; Crystal structure determination of a putative NADH-dependent reductase using sulfur anomalous signal 2PHD ; 2.9 ; Crystal Structure Determination of a Salicylate 1,2-Dioxygenase from Pseudaminobacter salicylatoxidans 3FG5 ; 2.5 ; Crystal structure determination of a ternary complex of phospholipase A2 with a pentapeptide FLSYK and Ajmaline at 2.5 A resolution 1JFL ; 1.9 ; CRYSTAL STRUCTURE DETERMINATION OF ASPARTATE RACEMASE FROM AN ARCHAEA 4WL3 ; 2.01 ; Crystal structure determination of Bile Salt Hydrolase from Enterococcus feacalis 3CY5 ; 2.0 ; Crystal structure determination of buffalo (Bubalus bubalis) hemoglobin at 2 angstrom resolution 3GDJ ; 2.0 ; Crystal structure determination of camel(Camelus dromedarius)hemoglobin at 2 angstrom resolution 3GQP ; 2.0 ; Crystal structure determination of cat (Felis silvestris catus) hemoglobin at 2.0 angstrom resolution 3D4X ; 2.2 ; Crystal structure determination of cat (Felis silvestris catus) hemoglobin at 2.2 angstrom resolution 3GQR ; 2.4 ; Crystal structure determination of cat (Felis silvestris catus) hemoglobin at 2.4 angstrom resolution 3GYS ; 2.9 ; Crystal structure determination of cat (Felis silvestris catus) hemoglobin at 2.9 angstrom resolution 3I4Y ; 1.85 ; Crystal structure determination of Catechol 1,2-Dioxygenase from Rhodococcus opacus 1CP in complex with 3,5-dichlorocatechol 3I4V ; 2.0 ; Crystal structure determination of catechol 1,2-dioxygenase from rhodococcus opacus 1CP in complex with 3-chlorocatechol 3I51 ; 1.8 ; Crystal structure determination of Catechol 1,2-Dioxygenase from Rhodococcus opacus 1CP in complex with 4,5-dichlorocatechol 3HJ8 ; 2.4 ; Crystal structure determination of catechol 1,2-dioxygenase from rhodococcus opacus 1CP in complex with 4-chlorocatechol 3HHY ; 1.55 ; Crystal structure determination of Catechol 1,2-Dioxygenase from Rhodococcus opacus 1CP in complex with catechol 3HKP ; 1.85 ; Crystal structure determination of Catechol 1,2-Dioxygenase from Rhodococcus opacus 1CP in complex with protocatechuate 3HHX ; 2.0 ; Crystal structure determination of Catechol 1,2-Dioxygenase from Rhodococcus opacus 1CP in complex with pyrogallol 5GS7 ; 1.5 ; Crystal structure determination of Cys2Ala mutant of Bile Salt Hydrolase from Enterococcus feacalis 3EOK ; 2.1 ; Crystal structure determination of duck (Anas platyrhynchos) hemoglobin at 2.1 Angstrom resolution 8RE2 ; 2.2 ; Crystal Structure determination of Dye-decolorizing Peroxidase (DyP) from Deinoccoccus radiodurans 8RE3 ; 1.51 ; Crystal Structure determination of Dye-decolorizing Peroxidase (DyP) mutant M190G from Deinoccoccus radiodurans 2FX3 ; 3.4 ; Crystal Structure Determination of E. coli Elongation Factor, Tu using a Twinned Data Set 3EU1 ; 3.0 ; Crystal Structure determination of goat hemoglobin (Capra hircus) at 3 angstrom resolution 3D1A ; 2.61 ; Crystal Structure Determination of Goat Hemoglobin at 2.61 Angstrom Resolution 2RI4 ; 2.7 ; Crystal Structure determination of Goat Methemoglobin at 2.7 Angstrom 1EEY ; 2.25 ; Crystal Structure Determination Of HLA A2 Complexed to Peptide GP2 with the substitution (I2L/V5L/L9V) 1EEZ ; 2.3 ; Crystal Structure Determination of HLA-A2.1 Complexed to GP2 Peptide Variant(I2L/V5L) 6MF0 ; 3.2 ; Crystal Structure Determination of Human/Porcine Chimera Coagulation Factor VIII 3FH9 ; 1.62 ; Crystal structure determination of indian flying fox (Pteropus giganteus) at 1.62 A resolution 3MJP ; 2.76 ; Crystal structure determination of Japanese quail (Coturnix coturnix japonica) hemoglobin at 2.76 Angstrom resolution 3LQD ; 2.8 ; Crystal structure determination of Lepus europaeus 2.8 A resolution 3DHR ; 2.0 ; Crystal Structure Determination of Methemoglobin from Pigeon at 2 Angstrom Resolution (Columba livia) 3FS4 ; 2.22 ; Crystal structure determination of Ostrich hemoglobin at 2.2 Angstrom resolution 3MJU ; 3.5 ; Crystal structure determination of pigeon (columba livia) haemoglobin at 3.5 angstrom resolution 1QPW ; 1.8 ; CRYSTAL STRUCTURE DETERMINATION OF PORCINE HEMOGLOBIN AT 1.8A RESOLUTION 4LX4 ; 1.556 ; Crystal Structure Determination of Pseudomonas stutzeri endoglucanase Cel5A using a Twinned Data Set 2QU0 ; 2.7 ; Crystal structure determination of sheep methemoglobin at 2.7 Angstrom resolution 3MKB ; 1.9 ; Crystal structure determination of Shortfin Mako (Isurus oxyrinchus) hemoglobin at 1.9 Angstrom resolution 1NJJ ; 2.45 ; Crystal structure determination of T. brucei ornithine decarboxylase bound to D-ornithine and to G418 4EMR ; 1.75 ; Crystal Structure determination of type1 ribosome inactivating protein complexed with 7-methylguanosine-triphosphate at 1.75A 4UQM ; 1.35 ; Crystal structure determination of uracil-DNA N-glycosylase (UNG) from Deinococcus radiodurans in complex with DNA - new insights into the role of the Leucine-loop for damage recognition and repair 1HOE ; 2.0 ; CRYSTAL STRUCTURE DETERMINATION, REFINEMENT AND THE MOLECULAR MODEL OF THE ALPHA-AMYLASE INHIBITOR HOE-467A 3RS6 ; 1.8 ; Crystal structure Dioclea virgata lectin in complexed with X-mannose 1RTA ; 2.5 ; CRYSTAL STRUCTURE DISPOSITION OF THYMIDYLIC ACID TETRAMER IN COMPLEX WITH RIBONUCLEASE A 1RTB ; 2.5 ; CRYSTAL STRUCTURE DISPOSITION OF THYMIDYLIC ACID TETRAMER IN COMPLEX WITH RIBONUCLEASE A 3ETJ ; 1.6 ; Crystal structure E. coli Purk in complex with Mg, ADP, and Pi 2X5I ; 3.1 ; Crystal structure echovirus 7 3P85 ; 1.9 ; Crystal structure enoyl-coa hydratase from mycobacterium avium 5JDU ; 1.7 ; Crystal structure for human thrombin mutant D189A 5VRC ; 2.0 ; Crystal structure for Methylobacterium extorquens PqqC (truncation of natural CD fusion) 5VRD ; 2.85 ; Crystal structure for Methylobacterium extorquens PqqCD (natural fusion) 6O3V ; 3.5 ; Crystal structure for RVA-VP3 7ASJ ; 1.43 ; Crystal structure for the complex of human carbonic anhydrase II and 3-(3-methyl-3-phenethylureido)benzenesulfonamide 6YPW ; 1.1 ; Crystal structure for the complex of human carbonic anhydrase II and 4-((1-(2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methoxy)benzenesulfonamide 5JNC ; 2.0 ; Crystal structure for the complex of human carbonic anhydrase IV and 4-aminomethylbenzene sulfonamide 5JN8 ; 1.85 ; Crystal Structure for the complex of human carbonic anhydrase IV and acetazolamide 5JN9 ; 2.1 ; Crystal structure for the complex of human carbonic anhydrase IV and ethoxyzolamide 5KU6 ; 1.8 ; Crystal structure for the complex of human carbonic anhydrase IV and methazolamide 5JNA ; 2.0 ; Crystal structure for the complex of human carbonic anhydrase IV and topiramate 3QSE ; 1.75 ; Crystal structure for the complex of substrate-reduced msox with sarcosine 4MLF ; 2.2 ; Crystal structure for the complex of thrombin mutant D102N and hirudin 8AV2 ; 1.75 ; Crystal structure for the FnIII module of mouse LEP-R in complex with the anti-LEP-R nanobody VHH-4.80 3QSM ; 1.9 ; Crystal structure for the MSOX.chloride binary complex 3QSS ; 1.85 ; Crystal structure for the MSOX.chloride.MTA ternary complex 2AZJ ; 2.4 ; Crystal structure for the mutant D81C of Sulfolobus solfataricus hexaprenyl pyrophosphate synthase 2AZL ; 2.8 ; Crystal structure for the mutant F117E of Thermotoga maritima octaprenyl pyrophosphate synthase 2AZK ; 2.7 ; Crystal structure for the mutant W136E of Sulfolobus solfataricus hexaprenyl pyrophosphate synthase 2VJZ ; 1.8 ; Crystal structure form ultalente insulin microcrystals 2VK0 ; 2.2 ; Crystal structure form ultalente insulin microcrystals 3IT1 ; 1.691 ; Crystal Structure Francisella tularensis histidine acid phosphatase complexed with L(+)-tartrate 3IT0 ; 1.692 ; Crystal Structure Francisella tularensis histidine acid phosphatase complexed with phosphate 4E3W ; 1.75 ; Crystal Structure Francisella tularensis histidine acid phosphatase cryoprotected with proline 3IT3 ; 1.5 ; Crystal Structure Francisella tularensis histidine acid phosphatase D261A mutant complexed with substrate 3'-AMP 5DLE ; 1.55 ; Crystal structure from a domain (Thr161-F265) from fructose-specific iiabc component (Pts system) from Borrelia burgdorferi 2WKC ; 2.6 ; Crystal structure from a single-stranded DNA binding protein from the lactococcal phage p2 7KEH ; 2.59 ; Crystal structure from SARS-CoV-2 NendoU NSP15 7KF4 ; 2.61 ; Crystal structure from SARS-CoV-2 NendoU NSP15 7KEG ; 2.9 ; Crystal structure from SARS-COV2 NendoU NSP15 3FYN ; 1.449 ; Crystal structure from the mobile metagenome of Cole Harbour Salt Marsh: Integron Cassette Protein HFX_CASS3 3FXH ; 1.837 ; Crystal structure from the mobile metagenome of Halifax Harbour Sewage Outfall: Integron Cassette Protein HFX_CASS2 3GHJ ; 1.471 ; Crystal structure from the mobile metagenome of Halifax Harbour Sewage Outfall: Integron Cassette Protein HFX_CASS4 3GK6 ; 1.8 ; Crystal structure from the mobile metagenome of Vibrio cholerae. Integron cassette protein VCH_CASS2. 2XZ9 ; 1.677 ; CRYSTAL STRUCTURE FROM THE PHOSPHOENOLPYRUVATE-BINDING DOMAIN OF ENZYME I IN COMPLEX WITH PYRUVATE FROM THE THERMOANAEROBACTER TENGCONGENSIS PEP-SUGAR PHOSPHOTRANSFERASE SYSTEM (PTS) 4ANO ; 1.7 ; Crystal Structure Geobacillus thermodenitrificans EssB cytoplasmic fragment 5M6G ; 1.829 ; Crystal structure Glucan 1,4-beta-glucosidase from Saccharopolyspora erythraea 6F68 ; 1.696 ; Crystal structure glutathione transferase Omega 3S from Trametes versicolor in complex with 2,4,4'-trihydroxybenzophenone 7C5P ; 2.35 ; Crystal Structure Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with G3P at 2.35 Angstrom resolution. 3G9D ; 2.5 ; Crystal structure glycohydrolase 5WES ; 2.706 ; Crystal Structure H2-Dd with disulfide-linked 5mer peptide 5EBH ; 1.2 ; Crystal Structure HEW Lysozyme processed with the CrystalDirect automated mounting and cryo-cooling technology 3DNM ; 2.8 ; Crystal Structure Hormone-Sensitive Lipase from a Metagenome Library 4EVD ; 2.2 ; Crystal Structure HP-NAP from strain YS29 cadmium loaded (Cocrystallization 50mM) 4EVE ; 2.1 ; Crystal Structure HP-NAP from strain YS29 in apo form 4EVC ; 2.4 ; Crystal Structure HP-NAP from strain YS39 cadmium loaded (Cocrystallization 50mM) 3T9J ; 2.2 ; Crystal structure HP-NAP from strain YS39 in apo form 3TA8 ; 2.5 ; Crystal structure HP-NAP from strain YS39 iron loaded (cocrystallization 5mM) 4EVB ; 2.5 ; Crystal Structure HP-NAP from strain YS39 zinc soaked (20mM) 6AL7 ; 1.687 ; Crystal structure HpiC1 F138S 5WPR ; 1.49 ; Crystal structure HpiC1 in C2 space group 6AL6 ; 2.088 ; Crystal structure HpiC1 in P42 space group 5WPP ; 1.7 ; Crystal structure HpiC1 W73M/K132M 5WPS ; 1.389 ; Crystal structure HpiC1 Y101F 6AL8 ; 1.641 ; Crystal structure HpiC1 Y101F/F138S 5WPU ; 1.39 ; Crystal structure HpiC1 Y101S 8P0S ; 2.2 ; Crystal structure HR1 domain of Rho-associated coiled-coil protein kinases (ROCK-HR1) 5SSX ; 1.02 ; Crystal Structure human formylglycine generating enzyme E130D mutant 7JXR ; 2.04 ; Crystal Structure Human Immunodeficiency Virus-1 Matrix protein Mutant Q63R Crystal Form 1 7JXS ; 2.35 ; Crystal Structure Human Immunodeficiency Virus-1 Matrix protein Mutant Q63R Crystal Form 2 4QF5 ; 2.8 ; Crystal structure I of MurF from Acinetobacter baumannii 4QDI ; 1.8 ; Crystal structure II of MurF from Acinetobacter baumannii 8QHE ; 1.6 ; Crystal structure IR-09 2ITF ; 1.9 ; Crystal structure IsdA NEAT domain from Staphylococcus aureus with heme bound 6B1H ; 1.8 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 4234 by co-crystallization 6B1F ; 1.44 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 4234 by soaking 6B1W ; 1.73 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 5107 by co-crystallization 6B1J ; 1.6 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 5107 by soaking 6B1Y ; 1.8 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 5153 by co-crystallization 6B1X ; 1.45 ; Crystal structure KPC-2 beta-lactamase complexed with WCK 5153 by soaking 4COB ; 2.37 ; Crystal structure kynurenine formamidase from Pseudomonas aeruginosa 3E9G ; 2.5 ; Crystal structure long-form (residue1-124) of Eaf3 chromo domain 7WCJ ; 2.24 ; Crystal structure LpqY from Mycobacterium tuberculosis 7WDA ; 1.91 ; Crystal structure LpqY in complex with Trehalose from Mycobacterium tuberculosis 5OVK ; 1.45 ; Crystal structure MabA bound to NADPH from M. smegmatis 8G1W ; 1.2 ; Crystal Structure Matriptase (C731S) in Complex with Inhibitor VD4162B 6CC8 ; 1.95 ; Crystal structure MBD3 MBD domain in complex with methylated CpG DNA 6CCG ; 1.9 ; Crystal structure MBD3 MBD domain in complex with methylated CpG DNA 4LG7 ; 2.5 ; Crystal structure MBD4 MBD domain in complex with methylated CpG DNA 4JKX ; 2.35 ; Crystal structure Mistletoe Lectin I from Viscum album in complex with kinetin at 2.35 A resolution. 4EB2 ; 1.94 ; Crystal structure Mistletoe Lectin I from Viscum album in complex with n-acetyl-d-glucosamine at 1.94 A resolution. 5CUH ; 1.83 ; Crystal structure MMP-9 complexes with a constrained hydroxamate based inhibitor LT4 4NDO ; 1.35 ; Crystal structure Molybdenum Storage Protein with fully Mo-loaded cavity 4NDP ; 1.6 ; Crystal structure Molybdenum Storage Protein with fully Mo-loaded cavity 4NDQ ; 1.751 ; Crystal structure Molybdenum Storage Protein with fully Mo-loaded cavity 4NDR ; 2.0 ; Crystal structure Molybdenum Storage Protein with fully Mo-loaded cavity 4L7W ; 2.305 ; Crystal structure mutant H77A of human HD domain-containing protein 2, Genomics Consortium (NESG) Target HR6723 5IBF ; 1.7 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 19a 5IBD ; 1.77 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 24a 5IBE ; 1.624 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 25a 5IBG ; 2.1 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 25b 5IBI ; 2.2 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 26a 5IBH ; 2.0201 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 26h 5IBJ ; 2.5 ; Crystal structure Mycobacterium tuberculosis CYP121 in complex with inhibitor fragment 6 8UR1 ; 2.1 ; Crystal structure N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (pyruvate bound halide free active site) 6T3F ; 3.2 ; Crystal structure Nipah virus fusion glycoprotein in complex with a neutralising Fab fragment 5D5K ; 1.9 ; Crystal Structure NLS from human PARP-2 complexed with Importin alpha delta IBB 6X5X ; 1.92 ; Crystal structure o BmooMP-I, a P-I metalloproteinase from Bothrops moojeni 4ITM ; 2.1994 ; Crystal structure of ""apo"" form LpxK from Aquifex aeolicus in complex with ATP at 2.2 angstrom resolution 4ITN ; 2.1912 ; Crystal structure of ""compact P-loop"" LpxK from Aquifex aeolicus in complex with chloride at 2.2 angstrom resolution 3O3Q ; 1.6 ; Crystal structure of ""L44F/M67I/L73V/A103G/deletion 104-106/F108Y/V109L/L111I/C117V/R119G/deletion 120-122"" mutant form of Human acidic fibroblast growth factor 1S61 ; 2.1 ; Crystal Structure of ""Truncated"" Hemoglobin N (HbN) from Mycobacterium tuberculosis, Soaked with Butyl-isocyanide 1S56 ; 2.43 ; Crystal Structure of ""Truncated"" Hemoglobin N (HbN) from Mycobacterium tuberculosis, Soaked with Xe Atoms 3NRP ; 1.6 ; Crystal structure of 'as isolated' uropathogenic E. coli strain F11 FetP recombinantly expressed in the periplasm of E. coli BL21(DE3) 6TT1 ; 1.8 ; Crystal structure of 'Res_S2 mutant human Angiotensin-1 converting enzyme N-domain in complex with 33RE. 6TT4 ; 1.8 ; Crystal structure of 'Res_S2 mutant human Angiotensin-1 converting enzyme N-domain in complex with omapatrilat. 6TT3 ; 1.7 ; Crystal structure of 'Res_S2 mutant human Angiotensin-1 converting enzyme N-domain in complex with SG6. 2JEW ; 1.4 ; Crystal structure of ((2S)-5-amino-2-((1-n-propyl-1H-imidazol-4-yl) methyl)pentanoic acid) UK396,082 a TAFIa inhibitor, Bound to Activated Porcine Pancreatic carboxypeptidaseB 3G4F ; 2.651 ; Crystal Structure of (+)- -Cadinene Synthase from Gossypium arboreum in complex with 2-fluorofarnesyl diphosphate 3JRS ; 2.05 ; Crystal structure of (+)-ABA-bound PYL1 3JRQ ; 2.1 ; Crystal structure of (+)-ABA-bound PYL1 in complex with ABI1 1N1B ; 2.0 ; Crystal Structure of (+)-Bornyl Diphosphate Synthase from Sage 3G4D ; 2.403 ; Crystal Structure of (+)-delta-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis 5UV1 ; 2.4 ; Crystal Structure of (+)-Limonene Synthase Complexed with 2-Fluorogeranyl Diphosphate 5UV2 ; 2.2 ; Crystal Structure of (+)-Limonene Synthase Complexed with 2-Fluoroneryl Diphosphate 6ONM ; 2.7 ; Crystal Structure of (+)-Limonene Synthase Complexed with 8,9-Difluorolinalyl Diphosphate 5UV0 ; 2.3 ; Crystal Structure of (+)-Limonene Synthase from Citrus sinensis 7EQL ; 2.72 ; Crystal structure of (+)-pulegone reductase from Mentha piperita 7VR2 ; 2.4 ; Crystal structure of (-)-pulegone reductase PR1292 from Nepeta tenuifolia 7VR4 ; 1.69 ; Crystal structure of (-)-pulegone reductase PR1294 from Nepeta tenuifolia in complex with NADPH 3IDC ; 2.7 ; Crystal structure of (102-265)RIIb:C holoenzyme of cAMP-dependent protein kinase 3IDB ; 1.62 ; Crystal structure of (108-268)RIIb:C holoenzyme of cAMP-dependent protein kinase 4L53 ; 2.55 ; Crystal Structure of (1R,4R)-4-{4-[7-amino-2-(1,2,3-benzothiadiazol-7-yl)-3-chlorofuro[2,3-c]pyridin-4-yl]-1H-pyrazol-1-yl}cyclohexan-1-ol bound to TAK1-TAB1 6SYS ; 1.3 ; Crystal structure of (3aR,4S,9bS)-4-(4-hydroxyphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide with carbonic anhydrase 2 4RV2 ; 2.7 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium smegmatis 4RLJ ; 1.75 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium tuberculosis 4RLU ; 2.198 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium tuberculosis complexed with 2',4,4'-trihydroxychalcone 4RLW ; 2.196 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium tuberculosis complexed with Butein 4RLT ; 2.049 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadAB hetero-dimer from Mycobacterium tuberculosis complexed with Fisetin 8PWZ ; 2.00197 ; Crystal Structure of (3R)-hydroxyacyl-ACP dehydratase HadBD from Mycobacterium tuberculosis 3CF9 ; 2.6 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with apigenin 3DOY ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3i 3DP2 ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3j 3DOZ ; 2.5 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3k 3DP0 ; 2.5 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3m 3DP1 ; 2.3 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3n 3DP3 ; 2.3 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with compound 3q 3ED0 ; 2.3 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with emodin 3CF8 ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with quercetin 3D04 ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Helicobacter pylori in complex with sakuranetin 2GLL ; 2.2 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) from Helicobacter pylori 2GLP ; 2.42 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) from Helicobacter pylori complexed with compound 1 2GLM ; 2.6 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) from Helicobacter pylori complexed with Compound 2 3B7J ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) from Helicobacter pylori complexed with juglone 4ZJB ; 2.55 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) in complex with holo-ACP from Helicobacter pylori 2GLV ; 2.5 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) mutant(Y100A) from Helicobacter pylori 6IHC ; 2.4 ; Crystal structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase(FabZ) Y100A mutant in complex with holo-ACP from Helicobacter pylori 4I83 ; 2.6 ; Crystal Structure of (3R)-Hydroxymyristoyl-ACP Dehydratase from Neisseria meningitidis FAM18 4H4G ; 2.65 ; Crystal Structure of (3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase from Burkholderia thailandensis E264 5AZ9 ; 1.82 ; Crystal structure of (5-residue deleted)MBP-Tom20 fusion protein tethered with ALDH presequence via a disulfide bond 7YKN ; 2.5 ; Crystal structure of (6-4) photolyase from Vibrio cholerae 3PVB ; 3.3 ; Crystal structure of (73-244)RIa:C holoenzyme of cAMP-dependent Protein kinase 2PKR ; 2.4 ; Crystal structure of (A+CTE)4 chimeric form of photosyntetic glyceraldehyde-3-phosphate dehydrogenase, complexed with NADP 3NQJ ; 2.1 ; Crystal structure of (CENP-A/H4)2 heterotetramer 5UHR ; 1.798 ; Crystal structure of (Cit)LANFLV heptapeptide segment from islet amyloid polypeptide (IAPP) incorporated into a macrocyclic beta-sheet template 6OH7 ; 2.19 ; Crystal structure of (E)-biformene synthase LrdC from Streptomyces sp. strain K155 in complex with Mg 6OH6 ; 2.07 ; Crystal structure of (E)-biformene synthase LrdC from Streptomyces sp. strain K155 in complex with Mg and PPi 6OH8 ; 2.17 ; Crystal structure of (E)-biformene synthase LrdC from Streptomyces sp. strain K155 in the dimeric form 4DQF ; 1.9 ; Crystal Structure of (G16A/L38A) HIV-1 Protease in Complex with DRV 4DQC ; 1.94 ; Crystal Structure of (G16C/L38C) HIV-1 Protease in Complex with DRV 4DQE ; 1.3 ; Crystal Structure of (G16C/L38C) HIV-1 Protease in Complex with DRV 4XW1 ; 2.302 ; Crystal structure of (GCCU(G-LNA)CCUG)2 duplex 4XW0 ; 1.81 ; Crystal structure of (GCCU(G-LNA)CCUGC)2 duplex 3B0S ; 1.45 ; Crystal Structure of (Gly-Pro-Hyp)9 1P92 ; 2.1 ; Crystal Structure of (H79A)DtxR 1XCV ; 2.1 ; Crystal Structure Of (H79AC102D)Dtxr complexed with Nickel(II) 2WJZ ; 2.601 ; Crystal structure of (HisH) K181A Y138A mutant of imidazoleglycerolphosphate synthase (HisH HisF) which displays constitutive glutaminase activity 3ABN ; 1.02 ; Crystal structure of (Pro-Pro-Gly)4-Hyp-Asp-Gly-(Pro-Pro-Gly)4 at 1.02 A 3ADM ; 1.18 ; Crystal structure of (Pro-Pro-Gly)4-Hyp-Ser-Gly-(Pro-Pro-Gly)4 3AH9 ; 1.08 ; Crystal structure of (Pro-Pro-Gly)9 at 1.1 A resolution 1ZG8 ; 2.0 ; Crystal Structure of (R)-2-(3-{[amino(imino)methyl]amino}phenyl)-3-sulfanylpropanoic acid Bound to Activated Porcine Pancreatic Carboxypeptidase B 6ZZS ; 1.85 ; Crystal structure of (R)-3-hydroxybutyrate dehydrogenase from Acinetobacter baumannii complexed with NAD+ and 3-oxovalerate 6ZZQ ; 1.93 ; Crystal structure of (R)-3-hydroxybutyrate dehydrogenase from Acinetobacter baumannii complexed with NAD+ and acetoacetate 6ZZP ; 1.84 ; Crystal structure of (R)-3-hydroxybutyrate dehydrogenase from Psychrobacter arcticus complexed with NAD+ and 3-oxovalerate 6ZZO ; 1.28 ; Crystal structure of (R)-3-hydroxybutyrate dehydrogenase from Psychrobacter arcticus complexed with NAD+ and acetoacetate 4N5L ; 1.65 ; Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase from Ralstonia eutropha 4N5M ; 1.34 ; Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase from Ralstonia eutropha in complexed with acetoacetyl-CoA 4N5N ; 1.9 ; Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase from Ralstonia eutropha in complexed with NADP 3WLF ; 2.3 ; Crystal structure of (R)-carbonyl reductase from Candida Parapsilosis in complex with (R)-1-phenyl-1,2-ethanediol 3WLE ; 2.164 ; Crystal structure of (R)-carbonyl reductase from Candida Parapsilosis in complex with NAD 3WNQ ; 2.95 ; Crystal structure of (R)-carbonyl reductase H49A mutant from Candida Parapsilosis in complex with 2-hydroxyacetophenone 3MF7 ; 1.65 ; Crystal Structure of (R)-oxirane-2-carboxylate inhibited cis-CaaD 5IEX ; 2.03 ; Crystal structure of (R,S)-S-{4-[(5-Bromo-4-{[(2R,3R)-2-hydroxy-1-methylpropyl]oxy}- pyrimidin-2-yl)amino]phenyl}-S-cyclopropylsulfoximide bound to CDK2 4DQH ; 1.79 ; Crystal Structure of (R14C/E65C) HIV-1 Protease in complex with DRV 8HP5 ; 2.5 ; Crystal structure of (S)-2-haloacid dehalogenase 8HP6 ; 2.2 ; Crystal structure of (S)-2-haloacid dehalogenase D12A mutant 8HP7 ; 1.43 ; Crystal structure of (S)-2-haloacid dehalogenase K152A mutant trapped with (2R)-4-amino-2-hydroxybutanoic acid 4R1N ; 1.8 ; Crystal structure of (S)-3-hydroxybutylryl-CoA dehydrogenase form the n-butanol sysnthesizing bacterium, Clostridium butyricum. 6ACQ ; 2.5 ; Crystal structure of (S)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium acetobutylicum, apo form 4PZC ; 2.6 ; Crystal structure of (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 from Ralstonia eutropha 4PZE ; 2.7 ; Crystal structure of (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 in complex with acetoacetyl-CoA 4PZD ; 2.61 ; Crystal structure of (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 in complex with NAD+ 6AA8 ; 2.1 ; Crystal structure of (S)-3-hydroxybutyryl-coenzymeA dehydrogenase from Clostridium acetobutylicum complexed with NAD+ 2F6U ; 1.55 ; Crystal Structure of (S)-3-O-Geranylgeranylglyceryl Phosphate Synthase complexed with citrate 2F6X ; 2.0 ; Crystal Structure of (S)-3-O-Geranylgeranylglyceryl Phosphate Synthase complexed with sn-G1P and MPD 6JO3 ; 2.35 ; Crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase from Thermoplasma acidophilum in complex with substrate sn-glycerol-1-phosphate 5Z5M ; 1.85 ; Crystal structure of (S)-allantoin synthase 5ICC ; 1.9 ; Crystal structure of (S)-norcoclaurine 6-O-methyltransferase with S-adenosyl-L-homocysteine 5ICE ; 1.6 ; Crystal structure of (S)-norcoclaurine 6-O-methyltransferase with S-adenosyl-L-homocysteine and norlaudanosoline 5ICF ; 1.8 ; Crystal structure of (S)-norcoclaurine 6-O-methyltransferase with S-adenosyl-L-homocysteine and sanguinarine 4E2Q ; 2.5 ; Crystal Structure of (S)-Ureidoglycine Aminohydrolase from Arabidopsis thaliana 4E2S ; 2.59 ; Crystal structure of (S)-Ureidoglycine Aminohydrolase from Arabidopsis thaliana in complex with its substrate, (S)-Ureidoglycine 2C8L ; 3.1 ; Crystal Structure of (SR) Calcium-ATPase E2(Tg) form 4UU0 ; 2.5 ; CRYSTAL STRUCTURE OF (SR) CALCIUM-ATPASE E2(TG) IN THE PRESENCE OF 14:1 PC 4UU1 ; 2.8 ; CRYSTAL STRUCTURE OF (SR) CALCIUM-ATPASE E2(TG) IN THE PRESENCE OF DOPC 2C8K ; 2.8 ; Crystal Structure of (SR) Calcium-ATPase E2(Tg) with partially occupied AMPPCP site 2C88 ; 3.1 ; Crystal Structure Of (SR) Calcium-ATPase E2(Tg):AMPPCP form 2PD2 ; 2.06 ; Crystal structure of (ST0148) conserved hypothetical from Sulfolobus Tokodaii Strain7 7O6W ; 2.64 ; Crystal structure of (the) VEL1 VEL polymerising domain (I664D mutant) 5FHQ ; 1.63 ; Crystal structure of (WT) Rat Catechol-O-Methyltransferase in complex with AdoMet and 3,5-dinitrocatechol (DNC) 3VFZ ; 1.901 ; Crystal structure of -35 promoter binding domain of SigD of Mycobacterium tuberculosis 4U4M ; 3.09 ; Crystal structure of 0.5M urea unfolded YagE, a KDG aldolase protein in complex with Pyruvate 5LYD ; 2.02 ; Crystal structure of 1 in complex with tafCPB 5LYF ; 2.01 ; Crystal structure of 1 in complex with tafCPB 5LYI ; 1.64 ; Crystal structure of 1 in complex with tafCPB 5LYL ; 1.83 ; Crystal structure of 1 in complex with tafCPB 2EAB ; 1.12 ; Crystal structure of 1,2-a-L-fucosidase from Bifidobacterium bifidum (apo form) 2EAC ; 2.1 ; Crystal structure of 1,2-a-L-fucosidase from Bifidobacterium bifidum in complex with deoxyfuconojirimycin 2EAD ; 1.89 ; Crystal structure of 1,2-a-L-fucosidase from Bifidobacterium bifidum in complex with substrate 2EAE ; 1.8 ; Crystal structure of 1,2-a-L-fucosidase from Bifidobacterium bifidum in complexes with products 5H3Z ; 2.0 ; Crystal Structure of 1,2-beta-oligoglucan phosphorylase from Lachnoclostridium phytofermentans 5H42 ; 2.1 ; Crystal Structure of 1,2-beta-oligoglucan phosphorylase from Lachnoclostridium phytofermentans in complex with alpha-d-glucose-1-phosphate 5H40 ; 2.2 ; Crystal Structure of 1,2-beta-oligoglucan phosphorylase from Lachnoclostridium phytofermentans in complex with sophorose 5H41 ; 2.0 ; Crystal Structure of 1,2-beta-oligoglucan phosphorylase from Lachnoclostridium phytofermentans in complex with sophorose, isofagomine, sulfate ion 1JA9 ; 1.5 ; Crystal structure of 1,3,6,8-tetrahydroxynaphthalene reductase in complex with NADPH and pyroquilon 1U0M ; 2.22 ; Crystal Structure of 1,3,6,8-Tetrahydroxynaphthalene Synthase (THNS) from Streptomyces coelicolor A3(2): a Bacterial Type III Polyketide Synthase (PKS) Provides Insights into Enzymatic Control of Reactive Polyketide Intermediates 1FGG ; 2.3 ; CRYSTAL STRUCTURE OF 1,3-GLUCURONYLTRANSFERASE I (GLCAT-I) COMPLEXED WITH GAL-GAL-XYL, UDP, AND MN2+ 3VSF ; 2.757 ; Crystal structure of 1,3Gal43A, an exo-beta-1,3-Galactanase from Clostridium thermocellum 1W91 ; 2.2 ; crystal structure of 1,4-BETA-D-XYLAN XYLOHYDROLASE solve using anomalous signal from Seleniomethionine 6OJM ; 1.6 ; Crystal structure of 1,4-dihydroxy-2-naphthoyl-CoA synthase Elizabethkingia anophelis NUHP1 6YYK ; 2.04 ; Crystal Structure of 1,5-dimethylindoline-2,3-dione covalently bound to the PH domain of Bruton's tyrosine kinase mutant R28C 3VSJ ; 2.3 ; Crystal structure of 1,6-APD (2-ANIMOPHENOL-1,6-DIOXYGENASE) complexed with intermediate products 5NX6 ; 1.63 ; Crystal structure of 1,8-cineole synthase from Streptomyces clavuligerus in complex with 2-fluoroneryl diphosphate 5NX7 ; 1.51 ; Crystal structure of 1,8-cineole synthase from Streptomyces clavuligerus in complex with 2-fluoroneryl diphosphate and 2-fluorogeranyl diphosphate 1M2P ; 2.0 ; Crystal structure of 1,8-di-hydroxy-4-nitro-anthraquinone/CK2 kinase complex 1M2Q ; 1.79 ; Crystal structure of 1,8-di-hydroxy-4-nitro-xanten-9-one/CK2 kinase complex 2XX9 ; 1.97 ; Crystal structure of 1-((2-fluoro-4-(3-(trifluoromethyl)-4,5,6,7- tetrahydro-1H-indazol-1-yl)phenyl)methyl)-2-pyrrolidinone in complex with the ligand binding domain of the Rat GluA2 receptor and glutamate at 2.2A resolution. 2XXI ; 1.6 ; Crystal structure of 1-((4-(3-(trifluoromethyl)-6,7-dihydropyrano(4,3- c(pyrazol-1(4H)-yl)phenyl)methyl)-2-pyrrolidinone in complex with the ligand binding domain of the Rat GluA2 receptor and glutamate at 1.6A resolution. 2XX7 ; 2.2 ; Crystal structure of 1-(4-(1-pyrrolidinylcarbonyl)phenyl)-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazole in complex with the ligand binding domain of the Rat GluA2 receptor and glutamate at 2.2A resolution. 2XXH ; 1.5 ; Crystal structure of 1-(4-(2-oxo-2-(1-pyrrolidinyl)ethyl)phenyl)-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazole in complex with the ligand binding domain of the Rat GluA2 receptor and glutamate at 1.5A resolution. 4L52 ; 2.54 ; Crystal Structure of 1-(4-{4-[7-amino-2-(1,2,3-benzothiadiazol-7-yl)furo[2,3-c]pyridin-4-yl]-1H-pyrazol-1-yl}piperidin-1-yl)ethan-1-one bound to TAK1-TAB1 4GJ1 ; 2.152 ; Crystal structure of 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase (hisA). 3G2I ; 2.0 ; Crystal structure of 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazole 3G2K ; 2.0 ; Crystal structure of 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazole 3G2H ; 2.03 ; Crystal structure of 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazoles in complex with glycogen phosphorylase 3G2J ; 2.14 ; Crystal structure of 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazoles in complex with glycogen phosphorylase 3G2L ; 2.3 ; Crystal structure of 1-(beta-D-glucopyranosyl)-4-substituted-1,2,3-triazoles in complex with glycogen phosphorylase 1TZJ ; 1.99 ; Crystal Structure of 1-aminocyclopropane-1-carboxylate deaminase complexed with d-vinyl glycine 1TZK ; 2.0 ; Crystal structure of 1-aminocyclopropane-1-carboxylate-deaminase complexed with alpha-keto-butyrate 1TZ2 ; 2.1 ; Crystal structure of 1-aminocyclopropane-1-carboyxlate deaminase complexed with ACC 1TYZ ; 2.0 ; Crystal structure of 1-Aminocyclopropane-1-carboyxlate Deaminase from Pseudomonas 3ANM ; 2.0 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) complexed with 5-phenylpyridin-2-ylmethylphosphonic acid 3RAS ; 2.55 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) complexed with a lipophilic phosphonate inhibitor 3ANL ; 2.1 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) complexed with pyridin-2-ylmethylphosphonic acid 3ANN ; 2.0 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) complexed with quinolin-2-ylmethylphosphonic acid 2EGH ; 2.2 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase complexed with a magnesium ion, NADPH and fosmidomycin 1R0K ; 1.91 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Zymomonas mobilis 1JVS ; 2.2 ; Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase; a target enzyme for antimalarial drugs 6MH5 ; 2.887 ; Crystal Structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Staphylococcus schleiferi in complex with Fosmidomycin (FOM) 6MH4 ; 2.15 ; Crystal Structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Staphylococcus schleiferi, Apoenzyme 4Q83 ; 1.55 ; Crystal structure of 1-hydroxy-3-(trifluoromethyl)pyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q7P ; 1.65 ; Crystal Structure of 1-hydroxy-3-methylpyridine-2(1H)-thione bound to hCAII 4Q81 ; 1.55 ; Crystal structure of 1-hydroxy-4,6-dimethylpyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q87 ; 1.55 ; Crystal structure of 1-hydroxy-4-(trifluoromethyl)pyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q8Z ; 1.5 ; Crystal structure of 1-hydroxy-4-methylpyridin-2(1H)-one bound to human carbonic anhydrase II 4Q7S ; 1.8 ; Crystal Structure of 1-hydroxy-4-methylpyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q8X ; 1.55 ; Crystal structure of 1-hydroxy-5-(trifluoromethyl)pyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q7V ; 1.6 ; Crystal structure of 1-hydroxy-5-methylpyridine-2(1H)-thione bound to human carbonic anhydrase II 4Q7W ; 1.45 ; Crystal structure of 1-hydroxy-6-methylpyridine-2(1H)-thione bound to human carbonic anhydrase II 5TH4 ; 1.47 ; Crystal Structure of 1-hydroxypyridine-2(1H)-thione bound to human carbonic anhydrase 2 L198G 6TSE ; 1.41 ; Crystal Structure of 1-methylindoline-2,3-dione covalently bound to the PH domain of Bruton's tyrosine kinase mutant R28C 4O0K ; 1.5 ; Crystal structure of 1-pyrroline-4-hydroxy-2-carboxylate deaminase from Brucella melitensis with covalently bound substrate 3QAN ; 1.95 ; Crystal structure of 1-pyrroline-5-carboxylate dehydrogenase from bacillus halodurans 3RJL ; 2.2 ; Crystal structure of 1-pyrroline-5-carboxylate dehydrogenase from Bacillus licheniformis (Target NYSGRC-000337) 2AMF ; 2.2 ; Crystal structure of 1-Pyrroline-5-Carboxylate Reductase from Human Pathogen Streptococcus Pyogenes 3CQZ ; 2.8 ; Crystal structure of 10 subunit RNA polymerase II in complex with the inhibitor alpha-amanitin 4FQ2 ; 1.9 ; Crystal Structure of 10-1074 Fab 7XBO ; 2.2 ; Crystal Structure of 10-dml-bound cytochrome P450 PikC with the unnatural amino acid p-Acetyl-L-Phenylalanine incorporated at position 238 7ZRN ; 1.82 ; Crystal structure of 10-epi-cubebol synthase from Sorangium cellulosum (ScCubS) in complex with Pyrophosphate 6KJ5 ; 3.75 ; Crystal structure of 10-Hydroxygeraniol Dehydrogenase apo form from Cantharanthus roseus 6K3G ; 2.41 ; Crystal structure of 10-Hydroxygeraniol Dehydrogenase from Cantharanthus roseus in complex with NADP+ 5GRD ; 1.8 ; Crystal structure of 10-mer peptide from EBV in complex with HLA-A1101. 3O41 ; 1.95 ; Crystal Structure of 101F Fab Bound to 15-mer Peptide Epitope 3O45 ; 2.872 ; Crystal Structure of 101F Fab Bound to 17-mer Peptide Epitope 5JNY ; 3.041 ; Crystal Structure of 10E8 Fab 4U6G ; 4.2012 ; Crystal structure of 10E8 Fab in complex with a hydrocarbon-stapled HIV-1 gp41 MPER peptide 4G6F ; 2.1 ; Crystal Structure of 10E8 Fab in Complex with an HIV-1 gp41 Peptide 5T6L ; 2.1 ; Crystal structure of 10E8 Fab in complex with the MPER epitope scaffold T117v2 5T80 ; 2.62 ; Crystal structure of 10E8 Fab in complex with the MPER epitope scaffold T117v2 and phosphatidic acid (06:0 PA) 5T85 ; 2.373 ; Crystal structure of 10E8 Fab in complex with the MPER epitope scaffold T117v2 and phosphatidylglycerol (06:0 PG) 5TFW ; 2.168 ; Crystal structure of 10E8 Fab light chain mutant2 against the MPER region of the HIV-1 Env, in complex with T117v2 epitope scaffold 5T29 ; 2.03 ; Crystal structure of 10E8 Fab light chain mutant3, against the MPER region of the HIV-1 Env, in complex with the MPER epitope scaffold T117v2 5JO5 ; 1.7 ; Crystal structure of 10E8 gHV-gLV antigen-binding fragment. 5JR1 ; 1.601 ; Crystal structure of 10E8 gHV-matureL antigen-binding fragment. 5IQ7 ; 3.2869 ; Crystal structure of 10E8-S74W Fab in complex with an HIV-1 gp41 peptide. 5IQ9 ; 2.4 ; Crystal structure of 10E8v4 Fab in complex with an HIV-1 gp41 peptide. 5WDF ; 3.1 ; Crystal structure of 10E8v4-5R+100cF Fab in complex with HIV-1 gp41 peptide 7CNZ ; 2.7 ; Crystal structure of 10PE bound PSD from E. coli (2.70 A) 4HX5 ; 2.19 ; Crystal structure of 11 beta-HSD1 in complex with SAR184841 3A1L ; 2.5 ; Crystal Structure of 11,11'-Dichlorochromopyrrolic Acid Bound Cytochrome P450 StaP (CYP245A1) 7F06 ; 1.95 ; Crystal Structure of 1144 3TFQ ; 1.8 ; Crystal structure of 11b-hsd1 double mutant (l262r, f278e) complexed with 8-{[(2-CYANOPYRIDIN-3-YL)METHYL]SULFANYL}-6-HYDROXY-3,4-DIHYDRO-1H-PYRANO[3,4-C]PYRIDINE-5-CARBONITRILE 4IJU ; 2.35 ; Crystal structure of 11b-HSD1 double mutant (L262R, F278E) in complex with (1S,4S)-4-[8-(2-fluorophenoxy)[1,2,4]triazolo[4,3-a]pyridin-3-yl]bicyclo[2.2.1]heptan-1-ol 4IJV ; 2.35 ; Crystal structure of 11b-HSD1 double mutant (L262R, F278E) in complex with 3-[1-(4-chlorophenyl)cyclopropyl]-8-(2-fluorophenoxy)[1,2,4]triazolo[4,3-a]pyridine 4IJW ; 2.35 ; Crystal structure of 11b-HSD1 double mutant (L262R, F278E) in complex with 3-[1-(4-chlorophenyl)cyclopropyl]-8-cyclopropyl[1,2,4]triazolo[4,3-a]pyridine 3D5Q ; 2.55 ; Crystal Structure of 11b-HSD1 in Complex with Triazole Inhibitor 3FRJ ; 2.3 ; Crystal Structure of 11b-Hydroxysteroid Dehydrogenase-1 (11b-HSD1) in Complex with Piperidyl Benzamide Inhibitor 3CH6 ; 2.35 ; Crystal Structure of 11beta-HSD1 Double Mutant (L262R, F278E) Complexed with (3,3-dimethylpiperidin-1-yl)(6-(3-fluoro-4-methylphenyl)pyridin-2-yl)methanone 5PGV ; 2.35 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 1-(3-HYDROXYAZETIDIN-1-YL)-2-[(2S,5R)-2-(4-FLUOROPHENYL)-5-METHOXYADAMANTAN-2-YL]ETHAN-1-ONE 5PGX ; 2.5 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 2-(2-BENZYL-6-HYDROXYADAMANTAN-2-YL)-1-(3-HYDROXYAZETIDIN-1-YL)ETHAN-1-ONE 5QII ; 2.45 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 2-(3-(1-(4-CHLOROPHENYL)CYCLOPROPYL) -[1,2,4]TRIAZOLO[4,3-A]PYRIDIN-8-YL)PROPAN-2-OL 5PGW ; 2.37 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 2-[(1R,3S,5R,7S)-2-[4-(4-FLUOROPHENYL)PHENYL]-6-HYDROXYADAMANTAN-2-YL]-1-(3- HYDROXYAZETIDIN-1-YL)ETHAN-1-ONE 5PGY ; 2.07 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 2-[(5R,7S)-6-HYDROXY-2-PHENYLADAMANTAN-2-YL]-1-(3-HYDROXYAZETIDIN-1-YL)ETHAN-1-ONE (BMS-816336) 5PGU ; 2.35 ; CRYSTAL STRUCTURE OF 11BETA-HSD1 DOUBLE MUTANT (L262R, F278E) COMPLEXED WITH 2-[2-(4-fluorophenyl)-2-adamantyl]-1-(3-methoxyazetidin-1-yl)ethanone 3FCO ; 2.65 ; Crystal Structure of 11beta-Hydroxysteroid Dehydrogenase 1 (11b-HSD1) in Complex with Benzamide Inhibitor 3QQP ; 2.72 ; Crystal Structure of 11beta-Hydroxysteroid Dehydrogenase 1 (11b-HSD1) in Complex with Urea Inhibitor 3OQ1 ; 2.6 ; Crystal Structure of 11beta-Hydroxysteroid Dehydrogenase-1 (11b-HSD1) in Complex with Diarylsulfone Inhibitor 5XTY ; 2.2 ; Crystal Structure of 11S allergen from Cocos nucifera L. 1ICS ; 2.3 ; CRYSTAL STRUCTURE OF 12-OXOPHYTODIENOATE REDUCTASE 1 FROM TOMATO 1ICQ ; 2.0 ; CRYSTAL STRUCTURE OF 12-OXOPHYTODIENOATE REDUCTASE 1 FROM TOMATO COMPLEXED WITH 9R,13R-OPDA 1ICP ; 1.9 ; CRYSTAL STRUCTURE OF 12-OXOPHYTODIENOATE REDUCTASE 1 FROM TOMATO COMPLEXED WITH PEG400 2HSA ; 1.5 ; Crystal structure of 12-oxophytodienoate reductase 3 (OPR3) from tomato 6D01 ; 3.2 ; Crystal structure of 1210 Fab in complex with circumsporozoite protein NANP5 5XCS ; 2.2 ; Crystal structure of 12CA5 Fv-clasp fragment with its antigen peptide 5XCU ; 2.454 ; Crystal structure of 12CA5 Fv-clasp fragment with its antigen peptide 2OV3 ; 2.4 ; Crystal structure of 138-173 ZnuA deletion mutant plus zinc bound 4HXA ; 2.06 ; Crystal structure of 13D9 FAB 7C8E ; 3.16 ; Crystal Structure of 14-3-3 epsilon with 9J10 peptide 7V9B ; 1.85 ; Crystal Structure of 14-3-3 epsilon with FOXO3a peptide 3UAL ; 1.8 ; Crystal Structure of 14-3-3 epsilon with Mlf1 peptide 3UZD ; 1.86 ; Crystal structure of 14-3-3 GAMMA 2B05 ; 2.55 ; Crystal Structure of 14-3-3 gamma in complex with a phosphoserine peptide 8C30 ; 1.4 ; Crystal structure of 14-3-3 in complex with PyrinpS242 and a protein/peptide interface fragment 4F7R ; 3.2 ; Crystal structure of 14-3-3 protein from Giardia intestinalis 7NMA ; 1.75 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide 7NND ; 1.4 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide and fragment 09 7NMX ; 2.3 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide and fragment 12 7NNE ; 1.96 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide and fragment 22 7NMW ; 1.5 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide and fragment 40 7NN2 ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with 13mer Amot-p130 peptide and fragment 41 7NP2 ; 1.27 ; Crystal structure of 14-3-3 sigma in complex with 20mer Amot-p130 peptide 7NPB ; 1.37 ; Crystal structure of 14-3-3 sigma in complex with 20mer Amot-p130 peptide and fragment 09 7NPG ; 1.37 ; Crystal structure of 14-3-3 sigma in complex with 20mer Amot-p130 peptide and fragment 22 7PWT ; 2.312 ; Crystal structure of 14-3-3 sigma in complex with a C-terminal Estrogen Receptor alpha phosphopeptide, stabilised by pyrrolidone derivative 228 7PWZ ; 2.5 ; Crystal structure of 14-3-3 sigma in complex with a C-terminal Estrogen Receptoralpha phosphopeptide, stabilised by Pyrrolidone1 derivative 228 6QIU ; 1.802 ; Crystal structure of 14-3-3 sigma in complex with Ataxin-1 Ser776 phosphopeptide 7BM9 ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with CIP2ApS904 peptide 7BMC ; 2.0 ; Crystal structure of 14-3-3 sigma in complex with CIP2ApS904 peptide and stabilizing Fusicoccin A 7OB5 ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with LDB1 phosphopeptide 7OB8 ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with LDB1 phosphopeptide and stabilizer Fusicoccin-A 7OBG ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with NPM1 phosphopeptide 7OBH ; 2.0 ; Crystal structure of 14-3-3 sigma in complex with NPM1 phosphopeptide and stabilizer Fusicoccin-A 7OBC ; 1.9 ; Crystal structure of 14-3-3 sigma in complex with Phosphorylated and Farnesylated Rnd3 peptide 7OBD ; 2.0 ; Crystal structure of 14-3-3 sigma in complex with Phosphorylated and Farnesylated Rnd3 peptide and stabilizer Fusicoccin-A 7OBK ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with PKR phosphopeptide 7OBL ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with PKR phosphopeptide and stabilizer Fusicoccin-A 7OBS ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with RIPK2 phosphopeptide 7OBT ; 2.3 ; Crystal structure of 14-3-3 sigma in complex with RIPK2 phosphopeptide and stabilizer Fusicoccin-A 6FCP ; 1.45 ; Crystal structure of 14-3-3 sigma in complex with Shroom3 P1244L 7OBX ; 1.8 ; Crystal structure of 14-3-3 sigma in complex with SSBP4 phosphopeptide 7OBY ; 2.1 ; Crystal structure of 14-3-3 sigma in complex with SSBP4 phosphopeptide and stabilizer Fusicoccin-A 6FBB ; 1.3 ; Crystal structure of 14-3-3 sigma in complex with wild-type Shroom3 5ULO ; 2.14 ; Crystal Structure of 14-3-3 zeta in Complex with a Serine 124-phosphorylated TBC1D7 peptide 4WRQ ; 2.409 ; Crystal Structure of 14-3-3 zeta with Chibby peptide 5MHC ; 1.2 ; Crystal structure of 14-3-3sigma and a p53 C-terminal 12-mer synthetic phosphopeptide 5MOC ; 1.8 ; Crystal structure of 14-3-3sigma and a p53 C-terminal 12-mer synthetic phosphopeptide 5MXO ; 1.2 ; Crystal structure of 14-3-3sigma and a p53 C-terminal 12-mer synthetic phosphopeptide stabilized by Fusicoccin-A 6QDR ; 1.615 ; Crystal structure of 14-3-3sigma in complex with a PAK6 pT99 phosphopeptide 6QDS ; 1.72 ; Crystal structure of 14-3-3sigma in complex with a PAK6 pT99 phosphopeptide stabilized by semi-synthetic fusicoccane FC-NCPC 6QDT ; 1.702 ; Crystal structure of 14-3-3sigma in complex with a RapGef2 pT740 phosphopeptide 6QDU ; 1.632 ; Crystal structure of 14-3-3sigma in complex with a RapGef2 pT740 phosphopeptide inhibited by semi-synthetic fusicoccane FC-NCPC 4N84 ; 2.5 ; Crystal structure of 14-3-3zeta in complex with a 12-carbon-linker cyclic peptide derived from ExoS 4N7Y ; 2.16 ; Crystal structure of 14-3-3zeta in complex with a 8-carbon-linker cyclic peptide derived from ExoS 5JM4 ; 2.34 ; Crystal structure of 14-3-3zeta in complex with a cyclic peptide involving an adamantyl and a dicarboxy side chain 6RLZ ; 3.7 ; Crystal Structure of 14-3-3zeta in complex with a macrocyclic 8-mer peptide derived from ExoS 4N7G ; 2.25 ; Crystal structure of 14-3-3zeta in complex with a peptide derived from ExoS 5J31 ; 2.4 ; Crystal structure of 14-3-3zeta in complex with an alkyne cross-linked cyclic peptide derived from ExoS 4ZDR ; 2.899 ; Crystal structure of 14-3-3[zeta]-LKB1 fusion protein 5JZI ; 2.5 ; Crystal structure of 1406 TCR bound to HLA-A2 with HCV 1406-1415 antigen peptide 6D11 ; 3.4 ; Crystal structure of 1450 Fab in complex with circumsporozoite protein NANP5 2GDZ ; 1.65 ; Crystal structure of 15-hydroxyprostaglandin dehydrogenase type1, complexed with NAD+ 1Z7F ; 2.1 ; Crystal structure of 16 base pair RNA duplex containing a C-A mismatch 5WCU ; 5.53 ; Crystal structure of 167 bp nucleosome bound to the globular domain of linker histone H5 4J3C ; 2.0 ; Crystal structure of 16S ribosomal RNA methyltransferase RsmE 2DYI ; 2.0 ; Crystal structure of 16S ribosomal RNA processing protein RimM from Thermus thermophilus HB8 3MTE ; 1.805 ; Crystal Structure of 16S rRNA Methyltranferase 3MQ2 ; 1.69 ; Crystal Structure of 16S rRNA Methyltranferase KamB 6PI9 ; 1.85 ; Crystal structure of 16S rRNA methyltransferase RmtF in complex with S-Adenosyl-L-homocysteine 2PJD ; 2.1 ; Crystal structure of 16S rRNA methyltransferase RsmC 4E8B ; 2.249 ; Crystal structure of 16S rRNA Methyltransferase RsmE from E.coli 2HE5 ; 2.9 ; Crystal structure of 17alpha-hydroxysteroid dehydrogenase in binary complex with NADP(H) in an open conformation 2HEJ ; 1.35 ; Crystal structure of 17alpha-hydroxysteroid dehydrogenase in complex with NADP(H) in a closed conformation 2IPF ; 1.85 ; Crystal structure of 17alpha-hydroxysteroid dehydrogenase in complex with NADP+ and epi-testosterone 2HE8 ; 1.9 ; Crystal structure of 17alpha-hydroxysteroid dehydrogenase in its apo-form 2IPG ; 1.9 ; Crystal structure of 17alpha-hydroxysteroid dehydrogenase mutant K31A in complex with NADP+ and epi-testosterone 3DEY ; 1.7 ; Crystal structure of 17beta-HSD1 with DHT in normal and reverse orientation. 3IS3 ; 1.48 ; Crystal structure of 17beta-Hydroxysteroid dehydrogenase (Apo form) from fungus Cochliobolus lunatus 5JSF ; 1.842 ; Crystal structure of 17beta-hydroxysteroid dehydrogenase 14 S205 variant in complex with NAD. 5JS6 ; 2.002 ; Crystal structure of 17beta-hydroxysteroid dehydrogenase 14 T205 variant in complex with NAD. 1JTV ; 1.54 ; Crystal structure of 17beta-Hydroxysteroid Dehydrogenase Type 1 complexed with Testosterone 5ICS ; 1.52 ; Crystal structure of 17beta-hydroxysteroid dehydrogenase type 14 apoenzyme. 6U28 ; 2.95 ; Crystal structure of 1918 NS1-ED W187A in complex with the p85-beta-iSH2 domain of human PI3K 4JUG ; 2.7 ; Crystal structure of 1918 pandemic influenza virus hemagglutinin mutant D225G 4JUH ; 2.805 ; Crystal structure of 1918 pandemic influenza virus hemagglutinin mutant D225G complexed with avian receptor analogue LSTa 4JUJ ; 3.013 ; Crystal structure of 1918 pandemic influenza virus hemagglutinin mutant D225G complexed with human receptor analogue LSTc 3TIA ; 1.8 ; Crystal structure of 1957 pandemic H2N2 neuraminidase complexed with laninamivir 3TIB ; 2.201 ; Crystal structure of 1957 pandemic H2N2 neuraminidase complexed with laninamivir octanoate 3TIC ; 1.89 ; Crystal structure of 1957 pandemic H2N2 neuraminidase complexed with zanamivir 3W6I ; 2.693 ; Crystal structure of 19F probe-labeled hCAI 3W6H ; 2.964 ; Crystal structure of 19F probe-labeled hCAI in complex with acetazolamide 4E5C ; 1.7 ; Crystal Structure of 19mer double-helical RNA containing CUG/CGG-repeats 1C0G ; 2.0 ; CRYSTAL STRUCTURE OF 1:1 COMPLEX BETWEEN GELSOLIN SEGMENT 1 AND A DICTYOSTELIUM/TETRAHYMENA CHIMERA ACTIN (MUTANT 228: Q228K/T229A/A230Y/E360H) 2O5X ; 2.05 ; Crystal structure of 1E9 LeuH47Trp/ArgH100Trp, an engineered Diels-Alderase Fab with nM steroid-binding affinity 3O2V ; 2.3 ; Crystal structure of 1E9 PheL89Ser/LeuH47Trp/MetH100bPhe, an engineered Diels-Alderase Fab with modified specificity and catalytic activity 7W7Q ; 1.96 ; Crystal structure of 1F11S antibody(ScFv) 3MKP ; 2.81 ; Crystal structure of 1K1 mutant of Hepatocyte Growth Factor/Scatter Factor fragment NK1 in complex with heparin 4LGH ; 2.84 ; Crystal structure of 1NM-PP1 bound to analog-sensitive Src kinase 4KNQ ; 1.82 ; Crystal structure of 1nt-5'-overhanging double-helical CCG-repetitive RNA 20mer complexed with RSS p19 1VGJ ; 1.94 ; Crystal structure of 2'-5' RNA ligase from Pyrococcus horikoshii 3H5X ; 1.77 ; Crystal Structure of 2'-amino-2'-deoxy-cytidine-5'-triphosphate bound to Norovirus GII RNA polymerase 2R9Q ; 2.2 ; Crystal structure of 2'-deoxycytidine 5'-triphosphate deaminase from Agrobacterium tumefaciens 5DO5 ; 1.2 ; Crystal Structure of 2'-Fluoro-RNA bearing a phosphorodithioate 1I7J ; 1.19 ; CRYSTAL STRUCTURE OF 2'-O-ME(CGCGCG)2: AN RNA DUPLEX AT 1.19 A RESOLUTION. 2-METHYL-2,4-PENTANEDIOL AND MAGNESIUM BINDING. 310D ; 1.3 ; Crystal structure of 2'-O-Me(CGCGCG)2: an RNA duplex at 1.3 A resolution. Hydration pattern of 2'-O-methylated RNA 5E36 ; 1.6 ; Crystal structure of 2'-propargyl-modified DNA 8mer-duplex 5DW8 ; 2.4 ; Crystal structure of 2'AMP bound SaIMPase-II 6M53 ; 1.55 ; Crystal structure of 2, 3-dihydroxybenzoic acid decarboxylase from Fusarium oxysporum 7BPC ; 2.45 ; Crystal structure of 2, 3-dihydroxybenzoic acid decarboxylase from Fusarium oxysporum in complex with 2,5-DHBA 7BP1 ; 1.97 ; Crystal structure of 2, 3-dihydroxybenzoic acid decarboxylase from Fusarium oxysporum in complex with Catechol 3VB0 ; 2.1 ; Crystal structure of 2,2',3-trihydroxybiphenyl 1,2-dioxygenase from dibenzofuran-degrading Sphingomonas wittichii strain RW1 4XMB ; 2.428 ; Crystal structure of 2,2'-(naphthalene-1,4-diylbis(((4-methoxyphenyl)sulfonyl)azanediyl))diacetamide bound to human Keap1 Kelch domain 6CKT ; 1.8 ; Crystal structure of 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase from Legionella pneumophila Philadelphia 1 6WQM ; 2.15 ; Crystal structure of 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase from Bartonella henselae 3EG4 ; 1.87 ; Crystal structure of 2,3,4,5-Tetrahydropyridine-2-carboxylate N-Succinyltransferase from Brucella melitensis biovar abortus 2308 3CJ8 ; 1.95 ; Crystal structure of 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase from Enterococcus faecalis V583 5UM0 ; 1.85 ; Crystal structure of 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase from Neisseria gonorrhoeae 5VPU ; 1.5 ; Crystal Structure of 2,3-bisphosphoglycerate-independent phosphoglycerate mutase bound to 3-phosphoglycerate, from Acinetobacter baumannii 8SBV ; 1.55 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (ADP bound) 8SBX ; 2.1 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (Apo, hexagonal form) 8SBW ; 1.75 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (Apo, orthorhombic form) 8U9A ; 1.5 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (DBH bound) 8SBY ; 2.3 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (NAD and sulfate bound, hexagonal form) 8SBZ ; 1.9 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (NAD bound, No sulfate hexagonal form) 8SC0 ; 1.81 ; Crystal Structure of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase from Klebsiella aerogenes (NAD bound, orthorhombic form) 3LM4 ; 1.8 ; Crystal Structure of 2,3-Dihydroxy Biphenyl dioxygenase from Rhodococcus sp. (strain RHA1) 7WKM ; 1.8 ; Crystal Structure of 2,3-Dihydroxybenzoate Decarboxylase Complexed with Catechol 7WMB ; 2.2 ; Crystal structure of 2,3-dihydroxybenzoate decarboxylase mutant W23Y from Aspergillus oryzae in complex with catechol 1KW3 ; 1.45 ; Crystal structure of 2,3-dihydroxybiphenyal dioxygenase (BphC) at 1.45 A resolution 1LKD ; 1.7 ; CRYSTAL STRUCTURE OF 2,3-DIHYDROXYBIPHENYL 1,2-DIOXYGENASE (DHBD) COMPLEXED WITH 2',6'-DICL DIHYDROXYBIPHENYL (DHB) 1LGT ; 1.7 ; CRYSTAL STRUCTURE OF 2,3-DIHYDROXYBIPHENYL 1,2-DIOXYGENASE (DHBD) COMPLEXED WITH 2'-Cl DIHYDROXYBIPHENYL (DHB) 1KMY ; 2.0 ; Crystal Structure of 2,3-dihydroxybiphenyl 1,2-dioxygenase Complexed with 2,3-dihydroxybiphenyl under Anaerobic Condition 1KNF ; 1.9 ; Crystal Structure of 2,3-dihydroxybiphenyl 1,2-dioxygenase Complexed with 3-methyl Catechol under Anaerobic Condition 1KND ; 1.9 ; Crystal Structure of 2,3-dihydroxybiphenyl 1,2-dioxygenase Complexed with Catechol under Anaerobic Condition 1KW6 ; 1.45 ; Crystal structure of 2,3-dihydroxybiphenyl dioxygenase (BphC) in complex with 2,3-dihydroxybiphenyl at 1.45 A resolution 1KW9 ; 1.95 ; Crystal structure of 2,3-dihydroxybiphenyl dioxygenase (BphC) in complex with 2,3-dihydroxybiphenyl at 2.0A resolution 2ZVI ; 2.3 ; Crystal structure of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase from Bacillus subtilis 8DOP ; 2.0 ; Crystal structure of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase from Klebsiella aerogenes (P1 Form) 8DOQ ; 1.65 ; Crystal structure of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase from Klebsiella aerogenes (P21 Form) 3FA4 ; 2.18 ; Crystal structure of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member, triclinic crystal form 3FA3 ; 2.6 ; Crystal structure of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member, trigonal crystal form 1VP5 ; 2.4 ; Crystal structure of 2,5-diketo-D-gluconic acid reductase (TM1009) from Thermotoga maritima at 2.40 A resolution 2DVU ; 1.9 ; Crystal Structure of 2,6-Dihydroxybenzoate Decarboxylase Complexed with 2,6-Dihydroxybenzoate 2DVX ; 1.7 ; Crystal Structure of 2,6-Dihydroxybenzoate Decarboxylase Complexed with inhibitor 2,3-dihydroxybenzaldehyde 2DVT ; 1.7 ; Crystal Structure of 2,6-Dihydroxybenzoate Decarboxylase from Rhizobium 4L3P ; 2.68 ; Crystal Structure of 2-(1-benzothiophen-7-yl)-4-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]furo[2,3-c]pyridin-7-amine bound to TAK1-TAB1 4TPM ; 2.77 ; Crystal structure of 2-(3-alkoxy-1-azetidinyl) quinolines as PDE10A Inhibitors 1ZG7 ; 1.75 ; Crystal Structure of 2-(5-{[amino(imino)methyl]amino}-2-chlorophenyl)-3-sulfanylpropanoic acid Bound to Activated Porcine Pancreatic Carboxypeptidase B 3R74 ; 2.9 ; Crystal structure of 2-amino-2-desoxyisochorismate synthase (ADIC) synthase PhzE from Burkholderia lata 383 3R76 ; 2.6 ; Crystal structure of 2-amino-2-desoxyisochorismate synthase (ADIC) synthase PhzE from Burkholderia lata 383 in complex with benzoate, pyruvate and glutamine 3R75 ; 2.1 ; Crystal structure of 2-amino-2-desoxyisochorismate synthase (ADIC) synthase PhzE from Burkholderia lata 383 in complex with benzoate, pyruvate, glutamine and contaminating Zn2+ 1M32 ; 2.2 ; Crystal Structure of 2-aminoethylphosphonate Transaminase 5KLN ; 1.992 ; Crystal structure of 2-aminomuconate 6-semialdehyde dehydrogenase N169A in complex with NAD+ 5KJ5 ; 2.113 ; Crystal structure of 2-aminomuconate 6-semialdehyde dehydrogenase N169D in complex with NAD+ 5KLK ; 2.006 ; Crystal structure of 2-aminomuconate 6-semialdehyde dehydrogenase N169D in complex with NAD+ and 2-hydroxymuconate-6-semialdehyde 7BZV ; 1.988 ; Crystal structure of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas species AP-3 1T0D ; 2.2 ; Crystal Structure of 2-aminopurine labelled bacterial decoding site RNA 1T0E ; 1.7 ; Crystal Structure of 2-aminopurine labelled bacterial decoding site RNA 1KNK ; 2.8 ; Crystal Structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate Synthase (ispF) from E. coli involved in Mevalonate-Independent Isoprenoid Biosynthesis 5IWX ; 1.99 ; Crystal structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Bacillus subtitis 5IWY ; 1.99 ; Crystal structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Bacillus subtitis complexed with CMP and Mg2+ 3QHD ; 1.7 ; Crystal structure of 2-C-METHYL-D-ERYTHRITOL 2,4-CYCLODIPHOSPHATE Synthase from BURKHOLDERIA PSEUDOMALLEI bound to CYTIDINE, FOL795 and FOL955 5L03 ; 1.469 ; Crystal structure of 2-C-METHYL-D-ERYTHRITOL 2,4-CYCLODIPHOSPHATE Synthase from BURKHOLDERIA PSEUDOMALLEI bound to L-tryptophan hydroxamate 3P10 ; 1.7 ; Crystal structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with cytidine and FOL694, 2-(thiophen-2-yl)phenyl methanol 3P0Z ; 1.95 ; Crystal structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with cytidine and FOL955, 4-(1H-imidazol)-1-yl)phenol 3RE3 ; 2.645 ; Crystal Structure of 2-C-Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase from Francisella tularensis 3T80 ; 2.5 ; Crystal structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Salmonella typhimurium bound to cytidine 3FPI ; 2.8 ; Crystal Structure of 2-C-Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase IspF complexed with Cytidine Triphosphate 3F6M ; 2.96 ; Crystal Structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF from Yersinia pestis 4YS8 ; 2.45 ; Crystal Structure of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) from Burkholderia thailandensis 4ZDQ ; 2.3 ; Crystal Structure of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) from Burkholderia thailandensis complexed with CTP 3N9W ; 1.9 ; Crystal structure of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) in complex with 1,2-Propanediol 1VPA ; 2.67 ; Crystal structure of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (TM1393) from Thermotoga maritima at 2.67 A resolution 3F1C ; 2.3 ; CRYSTAL STRUCTURE OF 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase from Listeria monocytogenes 2PX7 ; 2.2 ; Crystal structure of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase from Thermus thermophilus HB8 4M0X ; 2.7 ; Crystal structure of 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP 1M5A ; 1.2 ; Crystal Structure of 2-Co(2+)-Insulin at 1.2A Resolution 2AFB ; 2.05 ; Crystal structure of 2-dehydro-3- deoxygluconokinase (EC 2.7.1.45) (tm0067) from THERMOTOGA MARITIMA at 2.05 A resolution 3NZR ; 1.9 ; Crystal structure of 2-dehydro-3-deoxyphosphogluconate aldolase from Vibrio fischeri ES114 1VLW ; 2.3 ; Crystal structure of 2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase (TM0066) from Thermotoga maritima at 2.30 A resolution 3FS2 ; 1.85 ; Crystal structure of 2-Dehydro-3-Deoxyphosphooctonate aldolase from Bruciella melitensis at 1.85A resolution 3T4C ; 1.95 ; Crystal structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Burkholderia ambifaria 3TML ; 1.9 ; Crystal structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Burkholderia cenocepacia 3SZ8 ; 2.05 ; Crystal structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Burkholderia pseudomallei 3E9A ; 1.8 ; Crystal structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Vibrio cholerae O1 biovar eltor str. N16961 3HN2 ; 2.5 ; Crystal structure of 2-dehydropantoate 2-reductase FROM Geobacter metallireducens GS-15 3I83 ; 1.9 ; Crystal structure of 2-dehydropantoate 2-reductase from Methylococcus capsulatus 2QYT ; 2.15 ; Crystal structure of 2-dehydropantoate 2-reductase from Porphyromonas gingivalis W83 2D2X ; 2.3 ; Crystal structure of 2-deoxy-scyllo-inosose synthase 2GRU ; 2.15 ; Crystal structure of 2-deoxy-scyllo-inosose synthase complexed with carbaglucose-6-phosphate, NAD+ and Co2+ 5DBU ; 2.797 ; Crystal structure of 2-deoxyribose-5-phosphate aldolase (1-220) from Streptococcus suis 2VCY ; 2.41 ; Crystal Structure of 2-Enoyl Thioester Reductase of Human FAS II 1PN4 ; 2.35 ; Crystal structure of 2-enoyl-CoA hydratase 2 domain of Candida tropicalis multifunctional enzyme type 2 complexed with (3R)-hydroxydecanoyl-CoA. 3Q8F ; 2.1 ; Crystal structure of 2-Fluorohistine labeled Protective Antigen (pH 5.8) 3VAY ; 1.979 ; Crystal structure of 2-Haloacid Dehalogenase from Pseudomonas syringae pv. Tomato DC3000 1WLY ; 1.3 ; Crystal Structure of 2-Haloacrylate Reductase 6XN8 ; 1.95 ; Crystal Structure of 2-hydroxyacyl CoA lyase (HACL) from Rhodospirillales bacterium URHD0017 4Z2R ; 2.3 ; Crystal structure of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica 5BRT ; 2.3 ; Crystal Structure of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica with 2-hydroxybiphenyl in the active site 6EM0 ; 2.78 ; Crystal Structure of 2-hydroxybiphenyl 3-monooxygenase M321A from Pseudomonas azelaica 4Z2U ; 2.5 ; Crystal Structure of 2-hydroxybiphenyl 3-monooxygenase R242Q from Pseudomonas azelaica 4Z2T ; 2.45 ; Crystal Structure of 2-hydroxybiphenyl 3-monooxygenase W225Y from Pseudomonas azelaica 5THJ ; 1.5 ; Crystal Structure of 2-hydroxycyclohepta-2,4,6-trien-1-one bound to human carbonic anhydrase 2 5THI ; 1.5 ; Crystal Structure of 2-hydroxycyclohepta-2,4,6-trien-1-one bound to human carbonic anhydrase 2 L198G 5THN ; 1.33 ; Crystal Structure of 2-Hydroxycyclohepta-2,4,6-triene-1-thione bound to human carbonic anhydrase 2 5TI0 ; 1.42 ; Crystal Structure of 2-Hydroxycyclohepta-2,4,6-triene-1-thione bound to human carbonic anhydrase 2 L198G 3QDF ; 2.05 ; Crystal structure of 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase from Mycobacterium marinum 6HE0 ; 2.31 ; Crystal structure of 2-Hydroxyisobutyryl-CoA Ligase (HCL) in complex with 2-HIB-AMP and CoA in the thioesterfication state 6HDW ; 2.3 ; Crystal structure of 2-Hydroxyisobutyryl-CoA Ligase (HCL) in the postadenylation state in complex with 2-HIB-AMP 6HDX ; 2.2 ; Crystal structure of 2-Hydroxyisobutyryl-CoA Ligase (HCL) in the postadenylation state in complex with R3-HIB-AMP 6HDY ; 2.2 ; Crystal structure of 2-Hydroxyisobutyryl-CoA Ligase (HCL) in the postadenylation state in complex with S3-HB-AMP 4R3U ; 2.5 ; Crystal structure of 2-Hydroxyisobutyryl-CoA Mutase 4Q8Y ; 1.45 ; Crystal structure of 2-hydroxyisoquinoline-1(2H)-thione bound to human carbonic anhydrase II 5KLM ; 2.102 ; Crystal structure of 2-hydroxymuconate-6-semialdehyde derived intermediate in NAD(+)-bound 2-aminomuconate 6-semialdehyde dehydrogenase N169D 5KLL ; 2.17 ; Crystal structure of 2-hydroxymuconate-6-semialdehyde derived tautomeric intermediate in 2-aminomuconate 6-semialdehyde dehydrogenase N169D 1SV6 ; 2.9 ; Crystal structure of 2-hydroxypentadienoic acid hydratase from Escherichia Coli 4BK9 ; 2.77 ; Crystal structure of 2-keto-3-deoxy-6-phospho-gluconate aldolase from Zymomonas mobilis ATCC 29191 1MXS ; 2.2 ; Crystal structure of 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase from Pseudomonas putida. 4Z9Y ; 1.63 ; Crystal structure of 2-keto-3-deoxy-D-gluconate dehydrogenase from Pectobacterium carotovorum 4U8G ; 2.9 ; Crystal structure of 2-keto-3-deoxy-D-gluconate dehydrogenase from Streptococcus agalactiae 4Z9X ; 1.7 ; Crystal structure of 2-keto-3-deoxy-D-gluconate dehydrogenase from Streptococcus pyogenes 4LU0 ; 2.8 ; Crystal structure of 2-Keto-3-deoxy-D-manno-octulosonate-8-phosphate synthase from Pseudomonas aeruginosa. 1WYE ; 2.8 ; Crystal structure of 2-keto-3-deoxygluconate kinase (form 1) from Sulfolobus Tokodaii 2DCN ; 2.25 ; Crystal structure of 2-keto-3-deoxygluconate kinase from Sulfolobus tokodaii complexed with 2-keto-6-phosphogluconate (alpha-furanose form) 4HGN ; 1.8 ; Crystal Structure of 2-keto-3-deoxyoctulosonate 8-phosphate PHOSPHOHYDROLASE from Bacteroides thetaiotaomicron 4HGP ; 1.8 ; Crystal Structure of 2-keto-3-deoxyoctulosonate 8-phosphate phosphohydrolase from Haemophilus influenzae in complex with transition state mimic 4Q99 ; 1.5 ; Crystal structure of 2-mercapto-4-methylphenol bound to human carbonic anhydrase II 3GMB ; 2.1 ; Crystal Structure of 2-Methyl-3-hydroxypyridine-5-carboxylic acid Oxygenase 4GF7 ; 1.581 ; Crystal structure of 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), unliganded form 3GMC ; 2.1 ; Crystal Structure of 2-Methyl-3-hydroxypyridine-5-carboxylic acid Oxygenase with substrate bound 4JY3 ; 1.77 ; Crystal structure of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, 5-pyridoxic acid bound form 3ALM ; 1.77 ; Crystal structure of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, mutant C294A 3ALL ; 1.78 ; Crystal structure of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, mutant Y270A 4JY2 ; 1.935 ; Crystal structure of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, native and unliganded form 3ALJ ; 1.48 ; Crystal structure of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase, reduced form 1SZQ ; 2.7 ; Crystal Structure of 2-methylcitrate dehydratase 5MUX ; 2.0 ; Crystal structure of 2-methylcitrate dehydratase (MmgE) from Bacillus subtilis. 6S62 ; 2.36 ; Crystal structure of 2-methylcitrate dehydratase (PrpD) from Pseudomonas aeruginosa in apo form. 5MVI ; 3.05 ; Crystal structure of 2-methylcitrate dehydratase (PrpD) from Salmonella enterica 6S6F ; 1.53 ; Crystal structure of 2-methylcitrate synthase (PrpC) from Pseudomonas aeruginosa in apo form. 6S87 ; 1.65 ; Crystal structure of 2-methylcitrate synthase (PrpC) from Pseudomonas aeruginosa in complex with oxaloacetate. 3O8J ; 2.41 ; Crystal structure of 2-methylcitrate synthase (PrpC) from Salmonella typhimurium 5UQO ; 2.5 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus 5UQQ ; 2.3 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus 5UQR ; 1.75 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus 6BOP ; 2.71 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus 6BON ; 2.35 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus with oxaloacetate and coenzyme-A. 6BOO ; 2.6 ; Crystal structure of 2-methylcitrate synthase from Aspergillus fumigatus with oxaloacetate and coenzyme-A. 4LA5 ; 1.849 ; Crystal structure of 2-methylisoborneol synthase from Streptomyces coelicolor A3(2) 3V1X ; 1.955 ; Crystal structure of 2-methylisoborneol synthase from Streptomyces coelicolor A3(2) in complex with Mg2+ and 2-fluorogeranyl diphosphate 4LA6 ; 2.001 ; Crystal structure of 2-methylisoborneol synthase from Streptomyces coelicolor A3(2) in complex with Mg2+ and 2-fluoroneryl diphosphate 3V1V ; 1.8 ; Crystal structure of 2-methylisoborneol synthase from Streptomyces coelicolor A3(2) in complex with Mg2+ and geranyl-S-thiolodiphosphate 6T4V ; 1.807 ; Crystal structure of 2-methylisocitrate lyase (PrpB) from Pseudomonas aeruginosa in apo form. 6T5M ; 1.76 ; Crystal structure of 2-methylisocitrate lyase (PrpB) from Pseudomonas aeruginosa in complex with Mg(II)-pyruvate. 1UJQ ; 2.1 ; Crystal structure of 2-methylisocitrate lyase (PrpB) from Salmonella enterica serovar typhimurium 2GJL ; 2.0 ; Crystal Structure of 2-nitropropane dioxygenase 2GJN ; 2.3 ; crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate 4KTP ; 1.9 ; Crystal structure of 2-O-alpha-glucosylglycerol phosphorylase in complex with glucose 4KTR ; 2.3 ; Crystal structure of 2-O-alpha-glucosylglycerol phosphorylase in complex with isofagomine and glycerol 7MWA ; 2.6 ; Crystal structure of 2-octaprenyl-6-methoxyphenol hydroxylase UbiH from Acinetobacter baumannii, apoenzyme 3R1X ; 2.093 ; Crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae 3O7H ; 1.79 ; Crystal structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase from Klebsiella pneumoniae 3O7I ; 1.5 ; Crystal structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase from Klebsiella pneumoniae 3O7J ; 2.0 ; Crystal structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase from Klebsiella pneumoniae 3O7K ; 1.98 ; Crystal structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase from Klebsiella pneumoniae 6N2N ; 1.937 ; Crystal structure of 2-oxoglutarate:ferredoxin oxidoreductase from Magnetococcus marinus 3C3E ; 3.0 ; Crystal structure of 2-phospho-(S)-lactate transferase from Methanosarcina mazei in complex with Fo and GDP. Northeast Structural Genomics Consortium target MaR46 3C3D ; 2.5 ; Crystal structure of 2-phospho-(S)-lactate transferase from Methanosarcina mazei in complex with Fo and phosphate. Northeast Structural Genomics Consortium target MaR46 3CGW ; 3.1 ; Crystal structure of 2-phospho-(S)-lactate transferase from Methanosarcina mazei. Northeast Structural Genomics Consortium target MaR46 3HGD ; 1.57 ; Crystal Structure of 2-Se-Thymidine Derivatized DNA 4F4N ; 1.3 ; Crystal structure of 2-se-thymidine derivatized dna 8mer 4JAH ; 1.5 ; Crystal structure of 2-Selenouridine containing RNA 3LQ1 ; 2.6 ; Crystal structure of 2-succinyl-6-hydroxy-2,4-cyclohexadiene 1-carboxylic acid synthase/2-oxoglutarate decarboxylase FROM Listeria monocytogenes str. 4b F2365 5DQL ; 1.782 ; Crystal Structure of 2-vinyl glyoxylate modified isocitrate lyase from Mycobacterium tuberculosis 3TI3 ; 1.8 ; Crystal structure of 2009 pandemic H1N1 neuraminidase complexed with laninamivir 3TI4 ; 1.602 ; Crystal structure of 2009 pandemic H1N1 neuraminidase complexed with laninamivir octanoate 3TI6 ; 1.69 ; Crystal structure of 2009 pandemic H1N1 neuraminidase complexed with oseltamivir 3TI5 ; 1.9 ; Crystal structure of 2009 pandemic H1N1 neuraminidase complexed with Zanamivir 4JTV ; 2.997 ; Crystal structure of 2009 pandemic influenza virus hemagglutinin complexed with human receptor analogue LSTc 4JTX ; 2.997 ; Crystal structure of 2009 pandemic influenza virus hemagglutinin mutant D225E 4JU0 ; 2.908 ; Crystal structure of 2009 pandemic influenza virus hemagglutinin mutant D225E complexed with human receptor analogue LSTc 4X7D ; 2.15 ; Crystal structure of 2012 NSW GII.4 P domain in complex with Nano-85 7BQ7 ; 2.37 ; Crystal structure of 2019-nCoV nsp16-nsp10 complex 6M5I ; 2.496 ; Crystal structure of 2019-nCoV nsp7-nsp8c complex 7CE0 ; 1.5 ; Crystal structure of 2019-nCoV nucleocapsid C-terminal domain (CTD) protein 7CDZ ; 1.8 ; Crystal structure of 2019-nCoV nucleocapsid N-terminal domain (NTD) protein 2R40 ; 2.402 ; Crystal structure of 20E bound EcR/USP 3HYE ; 2.5 ; Crystal structure of 20S proteasome in complex with hydroxylated salinosporamide 4EU2 ; 2.509 ; Crystal structure of 20s proteasome with novel inhibitor K-7174 6O23 ; 2.0 ; Crystal structure of 2243 Fab in complex with circumsporozoite protein NANP5 2Z6X ; 2.3 ; Crystal structure of 22G, the wild-type protein of the photoswitchable GFP-like protein Dronpa 3IF1 ; 2.39 ; Crystal structure of 237mAb in complex with a GalNAc 3IET ; 2.2 ; Crystal Structure of 237mAb with antigen 6NVM ; 1.75 ; Crystal structure of 23S rRNA methyltransferase ErmE 4DUH ; 1.5 ; Crystal structure of 24 kDa domain of E. coli DNA gyrase B in complex with small molecule inhibitor 6CCB ; 6.5 ; Crystal structure of 253-11 SOSIP trimer in complex with 10-1074 Fab 6ULE ; 2.55 ; Crystal structure of 2541 Fab in complex with circumsporozoite protein NANP5 3AF7 ; 1.58 ; Crystal Structure of 25Pd(allyl)/apo-Fr 4L5O ; 2.09 ; Crystal structure of 26 kDa GST D26H mutant of Clonorchis sinensis 4L5L ; 2.2 ; Crystal structure of 26 kDa GST of Clonorchis sinensis in P212121 symmetry 3ISO ; 1.9 ; Crystal structure of 26 kDa GST of Clonorchis sinensis in P3221 symmetry 4ADY ; 2.7 ; Crystal structure of 26S proteasome subunit Rpn2 4X2S ; 4.21 ; Crystal structure of 276S/M395R-GltPh in inward-facing conformation 3CU1 ; 2.6 ; Crystal Structure of 2:2:2 FGFR2D2:FGF1:SOS complex 5X45 ; 2.602 ; Crystal structure of 2A protease from Human rhinovirus C15 3W95 ; 1.85 ; Crystal structure of 2A proteinase (C110A) from enterovirus 71 8V52 ; 2.5 ; Crystal structure of 2A10 Fab bound to Human TGF-beta3 5GQ1 ; 2.493 ; Crystal structure of 2C helicase from enterovirus 71 (EV71) 5GRB ; 2.803 ; Crystal structure of 2C helicase from enterovirus 71 (EV71) bound with ATPgammaS 3ERN ; 2.1 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with AraCMP 3ELC ; 2.5 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with ligand 3EOR ; 2.9 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with ligand 3ESJ ; 2.7 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with ligand 3FBA ; 3.1 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with ligand 5L12 ; 1.716 ; Crystal structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase from BURKHOLDERIA PSEUDOMALLEI double mutant 1VHA ; 2.35 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 6MWI ; 1.75 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in complex with ligand HGN-0456 6MWF ; 1.75 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in complex with ligand HGN-0459 6MWJ ; 2.05 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in complex with ligand HGN-0863 6MWK ; 1.8 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in complex with ligand HGN-0883 6NMO ; 1.45 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in complex with ligand SR-4 6V3M ; 1.55 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) Burkholderia pseudomallei in compomplex with ligand HGN-0961 (BSI110840) 3F0E ; 2.05 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei 3K2X ; 1.85 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei in complex with 5'-iodo-cytosine 3KE1 ; 2.05 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei in complex with a fragment-nucleoside fusion D000161829 3Q8H ; 1.75 ; Crystal structure of 2c-methyl-d-erythritol 2,4-cyclodiphosphate synthase from burkholderia pseudomallei in complex with cytidine derivative EBSI01028 3IEW ; 2.1 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with bound CTP and CDP 3IEQ ; 2.1 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with cytidine 3IKE ; 2.3 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with cytosine 3MBM ; 1.8 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with cytosine and FoL fragment 717, imidazo[2,1-b][1,3]thiazol-6-ylmethanol 3IKF ; 2.07 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with FOL fragment 717, imidazo[2,,1-b][1,3]thiazol-6-ylmethanol 3B6N ; 2.26 ; Crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase PV003920 from Plasmodium vivax 3JVH ; 1.69 ; Crystal structure of 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase from Burkholderia pseudomallei with FOL fragment 8395 1T0A ; 1.6 ; Crystal Structure of 2C-Methyl-D-Erythritol-2,4-cyclodiphosphate Synthase from Shewanella Oneidensis 5NMV ; 1.65 ; Crystal structure of 2F22 Fab fragment against TFPI1 1RFK ; 1.25 ; Crystal Structure of 2Fe2S Ferredoxin from Thermophilic Cyanobacterium Mastigocladus Laminosus 4NHG ; 8.001 ; Crystal Structure of 2G12 IgG Dimer 5YWF ; 2.206 ; Crystal structure of 2H4 Fab 2JIL ; 1.5 ; Crystal structure of 2nd PDZ domain of glutamate receptor interacting protein-1 (GRIP1) 6GDY ; 2.04 ; Crystal structure of 2OG oxygenase JMJD6 (aa 1-343) in complex with Fe(II) and 2OG 5JYB ; 1.647 ; Crystal structure of 3 mutant of Ba3275 (S116A, E243A, H313A), the member of S66 family of serine peptidases 2IS5 ; 1.85 ; Crystal structure of 3 residues truncated version of protein NMB1012 from Neisseria meningitides 4HXV ; 2.6 ; Crystal structure of 3'(2'),5'-bisphosphate nucleotidase1 from Entamoeba histolytica in complex with AMP and metal ions 1J7L ; 2.2 ; Crystal Structure of 3',5""-Aminoglycoside Phosphotransferase Type IIIa ADP Complex 1L8T ; 2.4 ; Crystal Structure Of 3',5""-Aminoglycoside Phosphotransferase Type IIIa ADP Kanamycin A Complex 2B0Q ; 2.7 ; Crystal Structure Of 3',5""-Aminoglycoside Phosphotransferase Type IIIa ADP Neomycin B Complex 3TM0 ; 2.1 ; Crystal Structure of 3',5""-Aminoglycoside Phosphotransferase Type IIIa AMPPNP Butirosin A Complex 1J7U ; 2.4 ; Crystal Structure of 3',5""-Aminoglycoside Phosphotransferase Type IIIa AMPPNP Complex 1J7I ; 3.2 ; Crystal Structure of 3',5""-Aminoglycoside Phosphotransferase Type IIIa Apoenzyme 3Q2J ; 2.1501 ; Crystal Structure of 3',5""-Aminoglycoside Phosphotransferase Type IIIa Protein Kinase Inhibitor CKI-7 Complex 6TVV ; 2.8 ; Crystal structure of 3'-5' RecJ exonuclease from M. Jannaschii 8SH5 ; 2.75 ; Crystal structure of 3'cap-independent translation enhancers (CITE) from Pea enation mosaic virus RNA 2 (PEMV2) with Fab BL3-6K170A 5WHU ; 2.2 ; Crystal structure of 3'SL bound ArtB 5WHT ; 1.932 ; Crystal structure of 3'SL bound PltB 1G57 ; 1.4 ; CRYSTAL STRUCTURE OF 3,4-DIHYDROXY-2-BUTANONE 4-PHOSPHATE SYNTHASE 1K49 ; 1.5 ; Crystal Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase (cation free form) 3LQU ; 2.522 ; Crystal structure of 3,4-Dihydroxy-2-butanone 4-phosphate synthase complexed with Ribulose-5 phosphate 3MIO ; 1.8 ; Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase domain from Mycobacterium tuberculosis at pH 6.00 3MK5 ; 2.06 ; Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase domain from Mycobacterium tuberculosis with sulfate and zinc at pH 4.00 3H07 ; 1.95 ; Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Yersinia pestis CO92 1G58 ; 1.55 ; CRYSTAL STRUCTURE OF 3,4-DIHYDROXY-2-BUTANONE 4-PHOSPHATE SYNTHASE GOLD DERIVATIVE 1K4O ; 1.1 ; Crystal Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with one Manganese, and a glycerol 3LS6 ; 1.86 ; Crystal structure of 3,4-Dihydroxy-2-butanone 4-phosphate synthase in complex with sulfate and zinc 3LRJ ; 2.803 ; Crystal structure of 3,4-Dihydroxy-2-butanone 4-phosphate synthase in complex with sulfate ion. 1K4I ; 0.98 ; Crystal Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with two Magnesium ions 1K4L ; 1.6 ; Crystal Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with two Manganese ions 1K4P ; 1.0 ; Crystal Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with zinc ions 1TKS ; 1.6 ; Crystal structure of 3,4-Dihydroxy-2-butanone 4-phosphate Synthase of Candida albicans 1TKU ; 1.66 ; Crystal Structure of 3,4-Dihydroxy-2-butanone 4-phosphate Synthase of Candida albicans in complex with Ribulose-5-phosphate 2RIS ; 1.6 ; Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of candida albicans- alternate interpretation 8IQ8 ; 1.8 ; Crystal structure of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (DHPAO) from Acinetobacter baumannii 1B9H ; 2.0 ; CRYSTAL STRUCTURE OF 3-AMINO-5-HYDROXYBENZOIC ACID (AHBA) SYNTHASE 1B9I ; 2.0 ; CRYSTAL STRUCTURE OF 3-AMINO-5-HYDROXYBENZOIC ACID (AHBA) SYNTHASE 1F8M ; 1.8 ; CRYSTAL STRUCTURE OF 3-BROMOPYRUVATE MODIFIED ISOCITRATE LYASE (ICL) FROM MYCOBACTERIUM TUBERCULOSIS 1RE5 ; 2.6 ; Crystal structure of 3-carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida 1MQ5 ; 2.1 ; Crystal Structure of 3-chloro-N-[4-chloro-2-[[(4-chlorophenyl)amino]carbonyl]phenyl]-4-[(4-methyl-1-piperazinyl)methyl]-2-thiophenecarboxamide Complexed with Human Factor Xa 1MQ6 ; 2.1 ; Crystal Structure of 3-chloro-N-[4-chloro-2-[[(5-chloro-2-pyridinyl)amino]carbonyl]-6-methoxyphenyl]-4-[[(4,5-dihydro-2-oxazolyl)methylamino]methyl]-2-thiophenecarboxamide Complexed with Human Factor Xa 2BOY ; 1.9 ; Crystal structure of 3-ChloroCatechol 1,2-Dioxygenase from Rhodococcus Opacus 1CP 1L9W ; 2.1 ; CRYSTAL STRUCTURE OF 3-DEHYDROQUINASE FROM SALMONELLA TYPHI COMPLEXED WITH REACTION PRODUCT 4RHC ; 2.68 ; Crystal structure of 3-Dehydroquinate dehydratase from Acinetobacter baumannii at 2.68 A resolution 2YR1 ; 2.0 ; Crystal Structure of 3-dehydroquinate dehydratase from Geobacillus kaustophilus HTA426 3N76 ; 1.9 ; Crystal structure of 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with compound 5 3N7A ; 2.0 ; Crystal structure of 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with inhibitor 2 3N87 ; 2.4 ; Crystal structure of 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with inhibitor 3 3N86 ; 1.9 ; Crystal structure of 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with inhibitor 4 3N8N ; 2.5 ; Crystal structure of 3-dehydroquinate dehydratase from Mycobacterium tuberculosis in complex with inhibitor 6 8DQC ; 2.7 ; Crystal structure of 3-dehydroquinate dehydratase I from Klebsiella oxytoca (I222 Form) 8DQB ; 2.5 ; Crystal structure of 3-dehydroquinate dehydratase I from Klebsiella oxytoca (I23 Form) 6CV6 ; 2.6 ; Crystal structure of 3-dehydroquinate dehydratase, type II, from Burkholderia phymatum STM815 1NUA ; 2.85 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ 1NVA ; 2.62 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ and ADP 1NVB ; 2.7 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ and carbaphosphonate 1NVD ; 2.51 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ and carbaphosphonate 1NRX ; 2.9 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ and NAD 1NVE ; 2.58 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+ and NAD 1NVF ; 2.8 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+, ADP and carbaphosphonate 1NR5 ; 2.1 ; Crystal structure of 3-dehydroquinate synthase (DHQS) in complex with ZN2+, NAD and carbaphosphonate 3CLH ; 2.4 ; Crystal structure of 3-dehydroquinate synthase (DHQS)from Helicobacter pylori 1VS1 ; 2.3 ; Crystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHP synthase) from Aeropyrum pernix in complex with Mn2+ and PEP 1RZM ; 2.2 ; Crystal structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) from Thermotoga maritima complexed with Cd2+, PEP and E4P 6U8J ; 2.492 ; Crystal structure of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase/phospho-2-dehydro-3-deoxyheptonate aldolase (Aro3) from Candida auris 4UM7 ; 1.64 ; Crystal structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase (kdsC) from Moraxella catarrhalis in complex with Magnesium ion 4UMD ; 2.29 ; Crystal structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis in complex with citrate 4UME ; 2.09 ; Crystal structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis in complex with Magnesium ion and KDO molecule 4UM5 ; 2.34 ; Crystal structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis in complex with Magnesium ion and Phosphate ion 4UMF ; 2.28 ; Crystal structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Moraxella catarrhalis in complex with Magnesium ion, Phosphate ion and KDO molecule 7T35 ; 2.65 ; Crystal Structure of 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC from Klebsiella pneumoniae subsp. pneumoniae 2QKF ; 1.75 ; Crystal structure of 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 3DUV ; 2.3 ; Crystal structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Haemophilus influenzae complexed with the substrate 3-deoxy-manno-octulosonate in the-configuration 8EES ; 2.5 ; Crystal structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Klebsiella pneumoniae 3AJX ; 1.6 ; Crystal Structure of 3-Hexulose-6-Phosphate Synthase 2RFQ ; 1.65 ; Crystal structure of 3-HSA hydroxylase from Rhodococcus sp. RHA1 1TVZ ; 2.0 ; Crystal structure of 3-hydroxy-3-methylglutaryl-coenzyme A synthase from Staphylococcus aureus 5BUX ; 1.9 ; Crystal Structure of 3-hydroxyacyl-ACP dehydratase (FabZ) from Yersinia pestis with glycerol bound 1ZCJ ; 1.9 ; Crystal structure of 3-hydroxyacyl-CoA dehydrogenase 4J0E ; 1.6 ; Crystal structure of 3-hydroxyacyl-CoA dehydrogenase from Caenorhadbitis elegans in P1 space group 4J0F ; 2.2 ; Crystal structure of 3-hydroxyacyl-CoA dehydrogenase from Caenorhadbitis elegans in P212121 space group 4XGN ; 1.65 ; Crystal structure of 3-hydroxyacyl-CoA dehydrogenase in complex with NAD from Burkholderia thailandensis 3PPI ; 2.0 ; Crystal structure of 3-hydroxyacyl-CoA dehydrogenase type-2 from Mycobacterium avium 4PN3 ; 2.15 ; Crystal structure of 3-hydroxyacyl-CoA-dehydrogenase from Brucella melitensis 3FE5 ; 2.51 ; Crystal structure of 3-hydroxyanthranilate 3,4-dioxygenase from bovine kidney 1YFU ; 1.9 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase from Ralstonia metallidurans 1YFY ; 3.2 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase from Ralstonia metallidurans complexed with 3-hydroxyanthranilic acid 1YFX ; 2.0 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase from Ralstonia metallidurans complexed with 4-chloro-3-hydroxyanthranilic acid and NO 1YFW ; 2.0 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase from Ralstonia metallidurans complexed with 4-chloro-3-hydroxyanthranilic acid and O2 6BVR ; 1.9 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142A from Cupriavidus metallidurans 6CD3 ; 2.612 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142A from Cupriavidus metallidurans in complex with 3-HAA 6BVS ; 2.318 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142A from Cupriavidus metallidurans in complex with 4-Cl-3-HAA 6D60 ; 2.22 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142P from Cupriavidus metallidurans 6D62 ; 1.77 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142P from Cupriavidus metallidurans in complex with 3-HAA 6D61 ; 1.74 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase I142P from Cupriavidus metallidurans in complex with 4-Cl-3-HAA 6BVP ; 1.903 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase N27A from Cupriavidus metallidurans 6BVQ ; 2.084 ; Crystal structure of 3-hydroxyanthranilate-3,4-dioxygenase N27A from Cupriavidus metallidurans in complex with 4-Cl-3-HAA 4BK1 ; 1.73 ; Crystal structure of 3-hydroxybenzoate 6-hydroxylase uncovers lipid- assisted flavoprotein strategy for regioselective aromatic hydroxylation: H213S mutant in complex with 3-hydroxybenzoate 4BJZ ; 1.51 ; Crystal structure of 3-hydroxybenzoate 6-hydroxylase uncovers lipid- assisted flavoprotein strategy for regioselective aromatic hydroxylation: Native data 4BJY ; 1.52 ; Crystal structure of 3-hydroxybenzoate 6-hydroxylase uncovers lipid- assisted flavoprotein strategy for regioselective aromatic hydroxylation: Platinum derivative 4BK2 ; 2.47 ; Crystal structure of 3-hydroxybenzoate 6-hydroxylase uncovers lipid- assisted flavoprotein strategy for regioselective aromatic hydroxylation: Q301E mutant 4BK3 ; 1.78 ; Crystal structure of 3-hydroxybenzoate 6-hydroxylase uncovers lipid- assisted flavoprotein strategy for regioselective aromatic hydroxylation: Y105F mutant 2DKH ; 1.8 ; Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni, in complex with the substrate 2DKI ; 2.5 ; Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni, under pressure of xenon gas (12 atm) 4KUE ; 2.0 ; Crystal structure of 3-hydroxybutylryl-CoA dehydrogenase from Clostridium butyricum 4KUH ; 2.51 ; Crystal structure of 3-hydroxybutylryl-CoA dehydrogenase with acetoacetyl-CoA from Clostridium butyricum 4KUG ; 2.3 ; Crystal structure of 3-hydroxybutylryl-CoA dehydrogenase with NAD from Clostridium butyricum 3MOG ; 2.2 ; Crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Escherichia coli K12 substr. MG1655 3Q62 ; 1.4 ; Crystal Structure of 3-hydroxydecanoyl-(acyl carrier protein) dehydratase from Yersinia pestis 4FQ9 ; 2.02 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa 4B0C ; 2.7 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa in complex with 3-(pentylthio)-4H-1,2,4-triazole 4B0B ; 1.9 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa in complex with 3-(pyridin-2-yloxy)aniline 4B0J ; 2.5 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa in complex with 5-(2- thienyl)-3-isoxazolyl methanol 7BK9 ; 1.94 ; Crystal structure of 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) from Pseudomonas aeruginosa in complex with DDD00078426 7BHJ ; 2.11 ; Crystal structure of 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) from Pseudomonas aeruginosa in complex with DDD00084774 7BKA ; 1.88 ; Crystal structure of 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) from Pseudomonas aeruginosa in complex with DDD01870824 4B8U ; 2.76 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa in complex with N- isobutyl-2-(5-(2-thienyl)-1,2-oxazol-3-yl-)methoxy)acetamide 4CL6 ; 2.41 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) from Pseudomonas aeruginosa in complex with N-(4- Chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine 8B72 ; 1.87 ; Crystal structure of 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) from Pseudomonas aeruginosa in complex with Z30857828 4B0I ; 2.03 ; Crystal Structure of 3-hydroxydecanoyl-Acyl Carrier Protein Dehydratase (FabA) mutant (H70N) from Pseudomonas aeruginosa in complex with 3-hydroxydecanoyl-N-acetyl cysteamine 7BIS ; 1.96 ; Crystal structure of 3-hydroxydecanoyl-acyl carrier protein dehydratase (FabA)from Pseudomonas aeruginosa in complex with DDD00082063 3G0O ; 1.8 ; Crystal structure of 3-hydroxyisobutyrate dehydrogenase (ygbJ) from Salmonella typhimurium 6MFB ; 2.5 ; Crystal structure of 3-hydroxykynurenine transaminase from Aedes aegypti 5ZAI ; 1.8 ; Crystal structure of 3-Hydroxypropionyl-CoA dehydratase from Metallosphaera sedula 2PKP ; 2.1 ; Crystal structure of 3-isopropylmalate dehydratase (leuD)from Methhanocaldococcus Jannaschii DSM2661 (MJ1271) 4Y1P ; 2.2 ; Crystal structure of 3-isopropylmalate dehydrogenase (Saci_0600) from Sulfolobus acidocaldarius complex with 3-isopropylmalate and Mg2+ 1VLC ; 1.9 ; Crystal structure of 3-isopropylmalate dehydrogenase (TM0556) from Thermotoga maritima at 1.90 A resolution 4XXV ; 1.7 ; Crystal structure of 3-isopropylmalate dehydrogenase from Burkholderia thailandensis in complex with NAD 6WN6 ; 1.86 ; Crystal structure of 3-keto-D-glucoside 4-epimerase, YcjR, from E. coli, apo form 1KV8 ; 1.62 ; Crystal Structure of 3-Keto-L-Gulonate 6-Phosphate Decarboxylase 1XBZ ; 1.8 ; Crystal structure of 3-keto-L-gulonate 6-phosphate decarboxylase E112D/R139V/T169A mutant with bound L-xylulose 5-phosphate 1XBV ; 1.66 ; Crystal structure of 3-keto-L-gulonate 6-phosphate decarboxylase with bound D-ribulose 5-phosphate 1KW1 ; 2.2 ; Crystal Structure of 3-Keto-L-Gulonate 6-Phosphate Decarboxylase with bound L-gulonate 6-phosphate 3IEB ; 2.1 ; Crystal structure of 3-keto-L-gulonate-6-phosphate decarboxylase from Vibrio cholerae O1 biovar El Tor str. N16961 4M8S ; 2.0 ; Crystal structure of 3-ketoacyl -(acyl carrier protein) reductase (FabG) from Neisseria meningitidis 4WK6 ; 2.21 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) (G141A) from Vibrio cholerae in complex with NADPH 4AFN ; 2.3 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa at 2.3A resolution 4AG3 ; 1.8 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with NADPH at 1.8A resolution 3RRO ; 2.0 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) from Vibrio cholerae 3TZH ; 2.1 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG)(F187A) from Vibrio cholerae 3TZK ; 1.8 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG)(G92A) from Vibrio cholerae 3U09 ; 1.75 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG)(G92D) from Vibrio cholerae 3TZC ; 2.45 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG)(Y155F) from Vibrio cholerae 3N74 ; 2.2 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Brucella melitensis 6B9U ; 1.8 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Brucella melitensis complexed with NADH 3FTP ; 2.05 ; Crystal structure of 3-Ketoacyl-(acyl-carrier-protein) reductase from Burkholderia pseudomallei at 2.05 A resolution 3LLS ; 2.4 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Mycobacterium tuberculosis 3F9I ; 2.25 ; Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase Rickettsia prowazekii 5LP7 ; 2.2 ; Crystal structure of 3-Ketoacyl-CoA Thiolase (MmgA) from Bacillus subtilis. 4C3X ; 2.0 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Rhodococcus erythropolis SQ1 4C3Y ; 2.3 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Rhodococcus erythropolis SQ1 in complex with 1,4-androstadiene-3,17- dione 8KCZ ; 2.3 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Rhodococcus erythropolis SQ1 in complex with 1,4-androstadiene-3,17- dione 8JBZ ; 2.079 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Rhodococcus erythropolis SQ1 in complex with 4-androstadiene-3,17- dione 8JOJ ; 2.819 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Rhodococcus erythropolis SQ1 in complex with 9,11-epoxy-17-hydroxypregn-4-ene-3,20-dione actate 7P18 ; 1.84 ; Crystal structure of 3-ketosteroid delta1-dehydrogenase from Sterolibacterium denitrificans in complex with 1,4-androstadiene-3,17-dione 2ZYL ; 2.3 ; Crystal structure of 3-ketosteroid-9-alpha-hydroxylase (KshA) from M. tuberculosis 4QCK ; 2.46 ; Crystal structure of 3-ketosteroid-9-alpha-hydroxylase (KshA) from M. tuberculosis in complex with 4-androstene-3,17-dione 4QDD ; 2.6 ; Crystal structure of 3-ketosteroid-9-alpha-hydroxylase 5 (KshA5) from R. rhodochrous in complex with 1,4-30Q-CoA 4QDC ; 1.9 ; Crystal structure of 3-ketosteroid-9-alpha-hydroxylase 5 (KshA5) from R. rhodochrous in complex with FE2/S2 (INORGANIC) CLUSTER 1OZ3 ; 1.85 ; Crystal Structure of 3-MBT repeats of lethal (3) malignant Brain Tumor (Native-I) at 1.85 angstrom 1OZ2 ; 1.55 ; CRYSTAL STRUCTURE OF 3-MBT REPEATS OF LETHAL (3) MALIGNANT BRAIN TUMOR (NATIVE-II) AT 1.55 ANGSTROM 1OYX ; 1.85 ; CRYSTAL STRUCTURE OF 3-MBT REPEATS OF LETHAL (3) MALIGNANT BRAIN TUMOR (SELENO-MET) AT 1.85 ANGSTROM 5WQJ ; 1.2 ; Crystal structure of 3-Mercaptopyruvate Sulfurtransferase(3MST) in complex with compound1 5WQK ; 1.7 ; Crystal structure of 3-Mercaptopyruvate Sulfurtransferase(3MST) in complex with compound1 1O66 ; 1.75 ; Crystal structure of 3-methyl-2-oxobutanoate hydroxymethyltransferase 1O68 ; 2.1 ; Crystal structure of 3-methyl-2-oxobutanoate hydroxymethyltransferase 3EZ4 ; 2.1 ; Crystal structure of 3-methyl-2-oxobutanoate hydroxymethyltransferase from Burkholderia pseudomallei 3VAV ; 1.8 ; Crystal structure of 3-methyl-2-oxobutanoate hydroxymethyltransferase from Burkholderia thailandensis 2OFK ; 1.5 ; Crystal Structure of 3-methyladenine DNA glycosylase I (TAG) 2OFI ; 1.85 ; Crystal Structure of 3-methyladenine DNA Glycosylase I (TAG) bound to DNA/3mA 4Q9Y ; 1.55 ; Crystal structure of 3-methylthiophenol bound to human carbonic anhydrase II 4NDA ; 1.7 ; Crystal structure of 3-nitro-tyrosine tRNA synthetase (5B) bound to 3-nitro-tyrosine 6C4C ; 2.2 ; Crystal structure of 3-nitropropionate modified isocitrate lyase from Mycobacterium tuberculosis with glyoxylate and pyruvate 6C4A ; 1.8 ; Crystal structure of 3-nitropropionate modified isocitrate lyase from Mycobacterium tuberculosis with pyruvate 3UAN ; 1.844 ; Crystal structure of 3-O-sulfotransferase (3-OST-1) with bound PAP and heptasaccharide substrate 6XKG ; 1.55 ; Crystal structure of 3-O-Sulfotransferase isoform 3 in complex with 8mer oligosaccharide with 6S sulfation 6XL8 ; 2.34 ; Crystal structure of 3-O-Sulfotransferase isoform 3 in complex with 8mer oligosaccharide with no 6S sulfation 2IDB ; 2.9 ; Crystal Structure of 3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD) from Escherichia coli, Northeast Structural Genomics Target ER459. 4IMR ; 1.96 ; Crystal structure of 3-oxoacyl (acyl-carrier-protein) reductase (target EFI-506442) from agrobacterium tumefaciens C58 with NADP bound 1O5I ; 2.5 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) reductase (TM1169) from Thermotoga maritima at 2.50 A resolution 3E60 ; 1.95 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) synthase II from Bartonella henselae 3KZU ; 1.75 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) synthase II from Brucella melitensis 3LED ; 1.45 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) synthase III from Rhodopseudomonas palustris CGA009 3FK5 ; 2.05 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) synthase III, FabH (Xoo4209) from Xanthomonas oryzae pv. oryzae KACC10331 2X3E ; 1.81 ; Crystal structure of 3-oxoacyl-(acyl carrier protein) synthase III, FabH from Pseudomonas aeruginosa PAO1 4EFI ; 1.35 ; Crystal Structure of 3-oxoacyl-(Acyl-carrier protein) Synthase from Burkholderia Xenovorans LB400 1J3N ; 2.0 ; Crystal Structure of 3-oxoacyl-(acyl-carrier protein) Synthase II from Thermus thermophilus HB8 4BO2 ; 1.9 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 1-(1-ethylbenzimidazol-2- yl)-3-(2-methoxyphenyl)urea at 1.9A resolution 4BO8 ; 2.7 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 1-(2-amino-4- phenylimidazol-1-yl)-3-(2-fluorophenyl)urea at 2.7A resolution 4BNV ; 2.5 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 1-(2-chlorophenyl)-3-(1- methylbenzimidazol-2-yl)urea at 2.5A resolution 4BO0 ; 2.4 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 1-(4-methoxy-1- methylindazol-3-yl)-3-(2-methoxyphenyl)urea at 2.4A resolution 4BNZ ; 2.5 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 1-methyl-N-phenylindole- 3-carboxamide at 2.5A resolution 4BO6 ; 2.8 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 2,3-dihydroindol-1-yl-(2- thiophen-3-yl-1,3-thiazol-4-yl)methanone at 2.8A resolution 4BO3 ; 2.5 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 2-(3-(trifluoromethyl) anilino)pyridine-3-sulfonamide at 2.5A resolution 4BNT ; 2.3 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 2-(trifluoromethyl)-1H- benzimidazole at 2.3A resolution 4BNU ; 2.0 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 2-phenyl-4-(1,2,4- triazol-4-yl)quinazoline at 2.0A resolution 4BNY ; 1.8 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 4-(2-phenylthieno(3,2-d) pyrimidin-4-yl)morpholine at 1.8A resolution 4BO9 ; 2.9 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 5-(2-(furan-2-ylmethoxy) phenyl)-2-phenyltetrazole at 2.9A resolution 4BNX ; 2.3 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with 6-(4-(2-chloroanilino)- 1H-quinazolin-2-ylidene)cyclohexa-2, 4-dien-1-one at 2.3A resolution 4BNW ; 1.6 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with an unknown ligand at 1. 6A resolution 4BO7 ; 2.6 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with N-(2,3-dihydro-1H-inden- 5-yl)tetrazolo(1,5-b)pyridazin-6-amine at 2.6A resolution 4BO5 ; 2.6 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with N-(2-chlorophenyl)-4- pyrrol-1-yl-1,3,5-triazin-2-amine at 2.6A resolution 4BO4 ; 2.7 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with N-(2-methoxyphenyl)-3,4- dihydro-2H-quinoline-1-carboxamide at 2.7A resolution 4BO1 ; 2.2 ; Crystal structure of 3-oxoacyl-(acyl-carrier-protein) reductase (FabG) from Pseudomonas aeruginosa in complex with N-(4-chloro-2,5- dimethoxyphenyl)quinoline-8-carboxamide at 2.2A resolution 8JF9 ; 1.9 ; Crystal structure of 3-oxoacyl-ACP reductase FabG from Helicobacter pylori 8JFI ; 2.38 ; Crystal structure of 3-oxoacyl-ACP reductase FabG in complex with NADP+ and 3-keto-hexanoyl-ACP from Helicobacter pylori 8JFG ; 2.83 ; Crystal structure of 3-oxoacyl-ACP reductase FabG in complex with NADP+ and 3-keto-octanoyl-ACP from Helicobacter pylori 8JFH ; 1.8 ; Crystal structure of 3-oxoacyl-ACP reductase FabG in complex with NADP+ and 3-keto-octanoyl-ACP from Helicobacter pylori in an inactive form that priors the acyl substrate delivery 8JFA ; 2.55 ; Crystal structure of 3-oxoacyl-ACP reductase FabG in complex with NADPH from Helicobacter pylori 2PH3 ; 1.91 ; Crystal structure of 3-oxoacyl-[acyl carrier protein] reductase TTHA0415 from Thermus thermophilus 4NBR ; 1.35 ; Crystal Structure of 3-oxoacyl-[acyl-carrier protein] reductase from Brucella melitensis ATCC 23457 5VN2 ; 1.9 ; Crystal structure of 3-oxoacyl-[acyl-carrier protein] reductase from Brucella melitensis in complex with NAD 4JRO ; 1.92 ; Crystal structure of 3-oxoacyl-[acyl-carrier protein]reductase (FabG)from Listeria monocytogenes in complex with NADP+ 8CXA ; 1.65 ; Crystal Structure of 3-oxoacyl-[acyl-carrier-protein] reductase from Mycobacterium smegmatis with bound NAD 4DDO ; 1.9 ; Crystal structure of 3-oxoacyl-[acyl-carrier-protein] synthase ii from burkholderia vietnamiensis 4F32 ; 1.9 ; Crystal structure of 3-oxoacyl-[acyl-carrier-protein] synthase II from Burkholderia vietnamiensis in complex with platencin 2EBD ; 2.1 ; Crystal structure of 3-oxoacyl-[acyl-carrier-protein] synthase III from Aquifex aeolicus VF5 4DFE ; 2.35 ; Crystal structure of 3-oxoacyl-[acyl-carrier-protein] synthase III from Burkholderia xenovorans 4NFY ; 2.45 ; Crystal Structure of 3-phosphoglycerate Dehydrogenase from Entamoeba histolytica 3OZ7 ; 2.7 ; Crystal Structure of 3-Phosphopglycerate Kinase of Plasmodium falciparum 3WDS ; 1.72 ; Crystal structure of 3-quinuclidinone reductase from Agrobacterium tumefaciens 7N37 ; 1.3 ; Crystal structure of 3-site deamidated variant of human gamma(S)-crystallin 4YHZ ; 2.304 ; Crystal structure of 304M3-B Fab in complex with H3K4me3 peptide 4YHP ; 2.53 ; Crystal structure of 309M3-B Fab in complex with H3K9me3 peptide 4YHY ; 1.9 ; Crystal structure of 309M3-B in complex with trimethylated Lys 7JLZ ; 1.64 ; Crystal structure of 30S ribosomal A1408 methyltransferase from an uncultured bacterium (UncKam) 3R3T ; 2.302 ; Crystal Structure of 30S Ribosomal Protein S from Bacillus anthracis 1VMB ; 1.7 ; Crystal structure of 30S ribosomal protein S6 (TM0603) from Thermotoga maritima at 1.70 A resolution 3RF2 ; 2.16 ; Crystal Structure of 30S Ribosomal Protein S8 from Aquifex Aeolicus 4JI0 ; 3.492 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI1 ; 3.144 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI2 ; 3.64 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI3 ; 3.35 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI4 ; 3.692 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI5 ; 3.85 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI6 ; 3.55 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI7 ; 3.5 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4JI8 ; 3.742 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF4 ; 3.3421 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF5 ; 3.753 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF6 ; 3.3052 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF7 ; 3.1484 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF8 ; 3.1484 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LF9 ; 3.2811 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LFA ; 3.6461 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LFB ; 3.009 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4LFC ; 3.602 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4X62 ; 3.4492 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4X64 ; 3.35 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4X65 ; 3.345 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 4X66 ; 3.446 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNP ; 3.3 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNQ ; 3.5 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNR ; 3.5 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNS ; 3.5 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNT ; 3.3 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNU ; 3.4 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 5WNV ; 3.3 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 6CAQ ; 3.4 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus 6CAP ; 3.4 ; Crystal Structure of 30S ribosomal subunit from Thermus thermophilus in complex with Sisomicin 4I2N ; 1.9 ; Crystal structure of 31kD Heat Shock Protein, VcHsp31 from Vibrio cholerae 4I46 ; 2.5 ; Crystal structure of 31kD Heat Shock Protein, VcHsp31 from Vibrio cholerae 6O26 ; 1.8 ; Crystal structure of 3246 Fab in complex with circumsporozoite protein NANA 1VQ0 ; 2.2 ; Crystal structure of 33 kDa chaperonin (Heat shock protein 33 homolog) (HSP33) (TM1394) from Thermotoga maritima at 2.20 A resolution 4X3N ; 1.89 ; Crystal structure of 34 kDa F-actin bundling protein from Dictyostelium discoideum 5VVF ; 2.0 ; Crystal Structure of 354BG1 Fab 5UD9 ; 1.3 ; Crystal structure of 354BG18 Fab 5UEL ; 1.6 ; Crystal structure of 354NC102 Fab 5UEM ; 2.7 ; Crystal structure of 354NC37 Fab in complex with HIV-1 clade AE strain 93TH057 gp120 6O25 ; 2.9 ; Crystal structure of 3945 Fab in complex with circumsporozoite protein NANP3 and anti-Kappa VHH domain 4UIA ; 2.18 ; Crystal structure of 3a in complex with tafCPB 1ZGL ; 2.8 ; Crystal structure of 3A6 TCR bound to MBP/HLA-DR2a 3S96 ; 1.9 ; Crystal structure of 3B5H10 4QT5 ; 2.5 ; Crystal Structure of 3BD10: A Monoclonal Antibody against the TSH Receptor 5I9Q ; 3.0 ; Crystal structure of 3BNC55 Fab in complex with 426c.TM4deltaV1-3 gp120 5FEC ; 3.17 ; Crystal structure of 3BNC60 Fab germline precursor in complex with 426c.TM4deltaV1-3 gp120 4GW4 ; 2.65 ; Crystal structure of 3BNC60 Fab with P61A mutation 5HXF ; 1.39 ; Crystal structure of 3C protease from a mild Human enterovirus 71 in complex with rupintrivir 5WQ2 ; 1.39 ; Crystal structure of 3C protease from a mild Human enterovirus 71 in complex with rupintrivir 2ZTY ; 1.72 ; crystal structure of 3C protease from CVB3 in space group C2 2ZTZ ; 2.0 ; crystal structure of 3C protease from CVB3 in space group P21 3ZZ3 ; 1.89 ; Crystal structure of 3C protease mutant (N126Y) of coxsackievirus B3 3ZZ4 ; 2.1 ; Crystal structure of 3C protease mutant (T68A and N126Y) of coxsackievirus B3 3ZZC ; 2.1 ; Crystal structure of 3C protease mutant (T68A and N126Y) of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 83 3ZZD ; 2.1 ; Crystal structure of 3C protease mutant (T68A and N126Y) of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 85 3ZYE ; 1.85 ; Crystal structure of 3C protease mutant (T68A) of coxsackievirus B3 3ZYD ; 1.7 ; Crystal structure of 3C protease of coxsackievirus B3 3ZZ5 ; 2.2 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 74 3ZZ7 ; 1.8 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 81 3ZZ8 ; 1.85 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 82 3ZZ9 ; 1.9 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 83 3ZZA ; 1.8 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 84 3ZZB ; 2.1 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with alpha, beta-unsaturated ethyl ester inhibitor 85 3ZZ6 ; 2.05 ; Crystal structure of 3C protease of coxsackievirus B3 complexed with Michael receptor inhibitor 75 3ZV8 ; 2.4 ; Crystal structure of 3C protease of Enterovirus 68 7XAR ; 1.6 ; Crystal structure of 3C-like protease from SARS-CoV-2 in complex with covalent inhibitor 1JS0 ; 2.2 ; Crystal Structure of 3D Domain-swapped RNase A Minor Trimer 6X8U ; 1.55 ; Crystal structure of 3D11 Fab in complex with Plasmodium berghei circumsporozoite protein Mixed peptide 6X8S ; 1.55 ; Crystal structure of 3D11 Fab in complex with Plasmodium berghei circumsporozoite protein NAND peptide 6X8P ; 2.27 ; Crystal structure of 3D11 Fab in complex with Plasmodium berghei circumsporozoite protein NPND peptide 6X8Q ; 1.6 ; Crystal structure of 3D11 Fab in complex with Plasmodium berghei circumsporozoite protein PAPP peptide 4R19 ; 1.8 ; Crystal Structure of 3D7 strain Plasmodium falciparum AMA1 4R1B ; 1.6 ; Crystal Structure of 3D7 strain Plasmodium falciparum AMA1 4R1C ; 2.0 ; Crystal Structure of 3D7 strain Plasmodium falciparum AMA1 4HDI ; 2.449 ; Crystal Structure of 3E5 IgG3 FAB from mus musculus 6REO ; 1.5 ; Crystal structure of 3fPizza6-SH with Sulphate ion 6REN ; 1.3 ; Crystal structure of 3fPizza6-SH with Zn2+ 4UIB ; 1.94 ; Crystal structure of 3p in complex with tafCPB 3FJG ; 2.2 ; Crystal structure of 3PG bound PEB3 4N7F ; 1.102 ; Crystal structure of 3rd WW domain of human Nedd4-1 6WRK ; 1.95 ; Crystal structure of 3rd-generation Mj 3-nitro-tyrosine tRNA synthetase (""A7"") bound to 3-nitro-tyrosine 1QE1 ; 2.85 ; CRYSTAL STRUCTURE OF 3TC-RESISTANT M184I MUTANT OF HIV-1 REVERSE TRANSCRIPTASE 3QMN ; 1.85 ; Crystal Structure of 4'-Phosphopantetheinyl Transferase AcpS from Vibrio cholerae O1 biovar eltor 7Y8P ; 1.5 ; Crystal structure of 4'-selenoRNA duplex 7N14 ; 1.537 ; Crystal structure of 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound CYP199A4 1UEK ; 1.7 ; Crystal structure of 4-(cytidine 5'-diphospho)-2C-methyl-D-erythritol kinase 3D6U ; 2.2 ; Crystal structure of 4-(trifluoromethyldiazirinyl)phenylalanyl-tRNA synthetase 3D6V ; 2.2 ; Crystal structure of 4-(trifluoromethyldiazirinyl)phenylalanyl-tRNA synthetase 7D4B ; 3.14 ; Crystal structure of 4-1BB in complex with a VHH 6CU0 ; 3.2 ; Crystal structure of 4-1BBL/4-1BB (C121S) complex in P21 space group 6CPR ; 2.7 ; Crystal structure of 4-1BBL/4-1BB complex in C2 space group 1K1W ; 2.8 ; Crystal structure of 4-alpha-glucanotransferase from thermococcus litoralis 1K1X ; 2.4 ; Crystal structure of 4-alpha-glucanotransferase from thermococcus litoralis 2Y4R ; 1.75 ; CRYSTAL STRUCTURE OF 4-AMINO-4-DEOXYCHORISMATE LYASE FROM PSEUDOMONAS AERUGINOSA 8HX6 ; 2.14 ; Crystal structure of 4-amino-4-deoxychorismate synthase from Streptomyces venezuelae 8HX8 ; 2.55 ; Crystal structure of 4-amino-4-deoxychorismate synthase from Streptomyces venezuelae co-crystallized with chorismate 8HX7 ; 1.95 ; Crystal structure of 4-amino-4-deoxychorismate synthase from Streptomyces venezuelae co-crystallized with L-glutamine 8HX9 ; 2.03 ; Crystal structure of 4-amino-4-deoxychorismate synthase from Streptomyces venezuelae with chorismate 2EO5 ; 1.9 ; Crystal structure of 4-aminobutyrate aminotransferase from Sulfolobus tokodaii strain7 3R4T ; 2.5 ; Crystal structure of 4-aminobutyrate aminotransferase GabT from Mycobacterium marinum covalently bound to pyridoxal phosphate 7JH3 ; 2.68 ; Crystal structure of 4-aminobutyrate aminotransferase PuuE from Escherichia coli in complex with PLP 3OKS ; 1.8 ; Crystal structure of 4-aminobutyrate transaminase from mycobacterium smegmatis 3Q8N ; 2.05 ; Crystal structure of 4-aminobutyrate transaminase from Mycobacterium smegmatis 1S9A ; 2.47 ; Crystal Structure of 4-Chlorocatechol 1,2-dioxygenase from Rhodococcus opacus 1CP 3O32 ; 2.85 ; Crystal Structure of 4-Chlorocatechol Dioxygenase from Rhodococcus opacus 1CP in complex with 3,5-dichlorocatechol 3O6J ; 2.9 ; Crystal Structure of 4-Chlorocatechol Dioxygenase from Rhodococcus opacus 1CP in complex with hydroxyquinol 3O5U ; 2.35 ; Crystal Structure of 4-Chlorocatechol Dioxygenase from Rhodococcus opacus 1CP in complex with protocatechuate 3O6R ; 2.6 ; Crystal Structure of 4-Chlorocatechol Dioxygenase from Rhodococcus opacus 1CP in complex with pyrogallol 5BSR ; 1.5 ; Crystal structure of 4-coumarate:CoA ligase complexed with adenosine monophosphate and Coenzyme A 5BSU ; 1.75 ; Crystal structure of 4-coumarate:CoA ligase complexed with caffeoyl adenylate 5BST ; 1.61 ; Crystal structure of 4-coumarate:CoA ligase complexed with coumaroyl adenylate 5BSV ; 1.7 ; Crystal structure of 4-coumarate:CoA ligase complexed with feruloyl adenylate 5BSM ; 2.32 ; Crystal structure of 4-coumarate:CoA ligase complexed with magnesium and Adenosine triphosphate 5BSW ; 2.1 ; Crystal structure of 4-coumarate:CoA ligase delta-V341 mutant complexed with feruloyl adenylate 1YWK ; 2.95 ; Crystal structure of 4-deoxy-1-threo-5-hexosulose-uronate ketol-isomerase from Enterococcus faecalis 4U8F ; 1.55 ; Crystal structure of 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase complexed with a tartrate 4U8E ; 2.0 ; Crystal structure of 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase from Streptococcus agalactiae 3PYD ; 2.101 ; crystal structure of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis 1I52 ; 1.5 ; CRYSTAL STRUCTURE OF 4-DIPHOSPHOCYTIDYL-2-C-METHYLERYTHRITOL (CDP-ME) SYNTHASE (YGBP) INVOLVED IN MEVALONATE INDEPENDENT ISOPRENOID BIOSYNTHESIS 1INI ; 1.82 ; CRYSTAL STRUCTURE OF 4-DIPHOSPHOCYTIDYL-2-C-METHYLERYTHRITOL (CDP-ME) SYNTHETASE (YGBP) INVOLVED IN MEVALONATE INDEPENDENT ISOPRENOID BIOSYNTHESIS, COMPLEXED WITH CDP-ME AND MG2+ 1VGT ; 1.8 ; Crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol synthase 1VGU ; 2.8 ; Crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol synthase 1VGW ; 2.35 ; Crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol synthase 1VGZ ; 3.0 ; Crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol synthase 4NCP ; 2.5 ; Crystal Structure of 4-HBT like thioesterase SAV1878 from Staphylococcus aureus subsp. aureus Mu50 4YWJ ; 1.8 ; Crystal structure of 4-hydroxy-tetrahydrodipicolinate reductase (HTPA reductase) from Pseudomonas aeruginosa 6MQH ; 1.7 ; Crystal structure of 4-hydroxy-tetrahydrodipicolinate synthase (HTPA synthase) from Burkholderia mallei 1Q4U ; 1.6 ; Crystal structure of 4-hydroxybenzoyl CoA thioesterase from arthrobacter sp. strain SU complexed with 4-hydroxybenzyl CoA 1Q4T ; 1.6 ; crystal structure of 4-hydroxybenzoyl CoA thioesterase from Arthrobacter sp. strain SU complexed with 4-hydroxyphenyl CoA 3D3U ; 2.8 ; Crystal structure of 4-hydroxybutyrate CoA-transferase (abfT-2) from Porphyromonas gingivalis. Northeast Structural Genomics Consortium target PgR26 3GK7 ; 1.85 ; Crystal structure of 4-hydroxybutyrate CoA-Transferase from Clostridium aminobutyricum 2OAS ; 2.4 ; Crystal Structure of 4-hydroxybutyrate coenzyme A transferase (AtoA) in complex with CoA from Shewanella oneidensis, Northeast Structural Genomics Target SoR119. 1U8V ; 1.6 ; Crystal Structure of 4-Hydroxybutyryl-CoA Dehydratase from Clostridium aminobutyricum: Radical catalysis involving a [4Fe-4S] cluster and flavin 5ZBF ; 1.6 ; Crystal structure of 4-hydroxyphenylpyruvic acid bound AerE from Microcystis aeruginosa 6XMY ; 1.4 ; Crystal Structure of 4-hydroxythreonine-4-phosphate dehydrogenase from Legionella pneumophila in complex with NAD 3LXY ; 1.7 ; Crystal structure of 4-hydroxythreonine-4-phosphate dehydrogenase from Yersinia pestis CO92 6E6I ; 2.4 ; Crystal structure of 4-methyl HOPDA bound to LigY from Sphingobium sp. strain SYK-6 3DZV ; 2.57 ; Crystal structure of 4-methyl-5-(beta-hydroxyethyl)thiazole kinase (NP_816404.1) from ENTEROCOCCUS FAECALIS V583 at 2.57 A resolution 3HFK ; 1.9 ; Crystal structure of 4-methylmuconolactone methylisomerase (H52A) in complex with 4-methylmuconolactone 3HF5 ; 1.4 ; Crystal structure of 4-methylmuconolactone methylisomerase in complex with 3-methylmuconolactone 3HDS ; 1.45 ; Crystal structure of 4-methylmuconolactone methylisomerase in complex with MES 4Q90 ; 1.54 ; Crystal structure of 4-methylpyridine-2(1H)-thione bound to human carbonic anhydrase II 1VJR ; 2.4 ; Crystal structure of 4-nitrophenylphosphatase (TM1742) from Thermotoga maritima at 2.40 A resolution 3WAU ; 1.7 ; Crystal structure of 4-O-beta-D-mannosyl-D-glucose phosphorylase MGP complexed with M1P 3WAT ; 1.6 ; Crystal structure of 4-O-beta-D-mannosyl-D-glucose phosphorylase MGP complexed with Man+Glc 3WAS ; 1.5 ; Crystal structure of 4-O-beta-D-mannosyl-D-glucose phosphorylase MGP complexed with Man-Glc+PO4 4KMI ; 1.8 ; Crystal structure of 4-O-beta-D-mannosyl-D-glucose phosphorylase MGP complexed with PO4 4X1C ; 1.7 ; Crystal structure of 4-OT from Pseudomonas putida mt-2 with an enamine adduct on the N-terminal proline at 1.7 Angstrom resolution 6BGN ; 1.51 ; Crystal Structure of 4-Oxalocrotonate Tautomerase After Incubation with 5-Fluoro-2-hydroxy-2,4-pentadienoate 1BJP ; 2.4 ; CRYSTAL STRUCTURE OF 4-OXALOCROTONATE TAUTOMERASE INACTIVATED BY 2-OXO-3-PENTYNOATE AT 2.4 ANGSTROMS RESOLUTION 5TIG ; 2.7 ; CRYSTAL STRUCTURE OF 4-OXALOCROTONATE TAUTOMERASE INACTIVATED BY BrHPD 6FPS ; 1.9 ; Crystal structure of 4-oxalocrotonate tautomerase triple mutant L8Y/M45Y/F50A 2GWG ; 1.8 ; Crystal Structure of 4-Oxalomesaconate Hydratase, LigJ, from Rhodopseudomonas palustris, Northeast Structural Genomics Target RpR66. 2D0T ; 2.3 ; Crystal structure of 4-phenylimidazole bound form of human indoleamine 2,3-dioxygenase 4U72 ; 2.0 ; Crystal structure of 4-phenylimidazole bound form of human indoleamine 2,3-dioxygenase (A260G mutant) 4U74 ; 2.31 ; Crystal structure of 4-phenylimidazole bound form of human indoleamine 2,3-dioxygenase (G262A mutant) 3WDL ; 2.4 ; Crystal structure of 4-phosphopantoate-beta-alanine ligase complexed with ATP 3WDK ; 2.3 ; Crystal structure of 4-phosphopantoate-beta-alanine ligase complexed with reaction intermediate 3WDM ; 2.0 ; Crystal structure of 4-phosphopantoate-beta-alanine ligase from Thermococcus kodakarensis 4KEQ ; 2.279 ; Crystal structure of 4-pyridoxolactonase, 5-pyridoxolactone bound 4KEP ; 1.83 ; Crystal structure of 4-pyridoxolactonase, wild-type 3HGA ; 1.3 ; Crystal Structure of 4-Se-Uridine Derivatized RNA 1D59 ; 2.3 ; CRYSTAL STRUCTURE OF 4-STRANDED OXYTRICHA TELOMERIC DNA 1FSU ; 2.5 ; Crystal Structure of 4-Sulfatase (human) 5FA2 ; 2.0 ; Crystal structure of 426c.TM4deltaV1-3 p120 6VLW ; 3.42 ; Crystal Structure of 426cOD in Complex with VRC01 Fab 6UTK ; 3.8 ; Crystal structure of 438-B11 Fab in complex with an uncleaved prefusion optimized (UFO) soluble BG505 trimer and Fab 35O22 at 3.80 Angstrom 6O2B ; 2.1 ; Crystal structure of 4493 Fab in complex with circumsporozoite protein DND and anti-kappa VHH domain 6O28 ; 1.93 ; Crystal structure of 4493 Fab in complex with circumsporozoite protein KQPA and anti-kappa VHH domain 6O2C ; 2.017 ; Crystal structure of 4493 Fab in complex with circumsporozoite protein NANP3 and anti-kappa VHH domain 6O2A ; 2.15 ; Crystal structure of 4493 Fab in complex with circumsporozoite protein NDN and anti-kappa VHH domain 6O29 ; 2.4 ; Crystal structure of 4493 Fab in complex with circumsporozoite protein NPDP and anti-kappa VHH domain 6VLN ; 1.63 ; Crystal structure of 4498 Fab in complex with circumsporozoite protein DND3 and anti-Kappa VHH domain 6O24 ; 1.4 ; Crystal structure of 4498 Fab in complex with circumsporozoite protein NANP3 and anti-Kappa VHH domain 6ULF ; 1.7 ; Crystal structure of 4498 Fab in complex with circumsporozoite protein NDN3 and anti-Kappa VHH domain 5YII ; 1.8 ; Crystal Structure of 45 amino acid deleted from N-terminal of Phosphoserine Aminotransferase (PSAT) of Entamoeba histolytica 6JT8 ; 1.9 ; Crystal structure of 450-451_deletion mutant of FGAM Synthetase 6JT7 ; 1.86 ; Crystal structure of 452-453_deletion mutant of FGAM Synthetase 7EKB ; 1.45 ; Crystal structure of 4E10 modified with pyrene acetamide 4XPC ; 1.68 ; Crystal structure of 5'- CTTATAAATTTATAAG in a host-guest complex 4XPE ; 1.78 ; Crystal structure of 5'-CTTATGGGCCCATAAG in a host-guest complex 4XNO ; 1.985 ; Crystal structure of 5'-CTTATPPPZZZATAAG 4XO0 ; 1.7 ; Crystal structure of 5'-CTTATPPTAZZATAAG in a host-guest complex 1WTA ; 1.78 ; Crystal Structure of 5'-Deoxy-5'-methylthioadenosine from Aeropyrum pernix (R32 form) 1JDU ; 2.5 ; CRYSTAL STRUCTURE OF 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE 1JP7 ; 1.8 ; Crystal Structure of 5'-deoxy-5'-methylthioadenosine phosphorylase 3T94 ; 1.452 ; Crystal structure of 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) II complexed with 5'-deoxy-5'-methylthioadenosine and sulfate 1JDV ; 2.0 ; CRYSTAL STRUCTURE OF 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH ADENOSINE AND SULFATE ION 1JDT ; 2.0 ; CRYSTAL STRUCTURE OF 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH MTA AND SULFATE ION 1JE0 ; 1.6 ; CRYSTAL STRUCTURE OF 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH PHOSPHATE AND TRIS MOLECULE 1JPV ; 1.8 ; Crystal Structure of 5'-deoxy-5'-methylthioadenosine phosphorylase complexed with SO4 1K27 ; 1.95 ; Crystal Structure of 5'-Deoxy-5'-Methylthioadenosine Phosphorylase in Complex with a Transition State Analogue 1JDZ ; 2.0 ; CRYSTAL STRUCTURE OF 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE WITH FORMYCIN B AND SULFATE ION 2A8Y ; 1.45 ; Crystal structure of 5'-deoxy-5'methylthioadenosine phosphorylase complexed with 5'-deoxy-5'methylthioadenosine and sulfate 4QEZ ; 2.7 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Bacillus anthracis 4FFS ; 1.9 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Helicobacter pylori with butyl-thio-DADMe-Immucillin-A 3EEI ; 1.78 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from neisseria meningitidis in complex with methylthio-immucillin-A 4F1W ; 1.36 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Salmonella enterica with Adenine 4F3C ; 1.93 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Salmonella enterica with butyl-thio-DADMe-Immucillin-A 4F2P ; 1.64 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Salmonella enterica with diEtglycol-thio-DADMe-Immucillin-A 4F3K ; 1.85 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Salmonella enterica with homocysteine-DADMe-Immucillin-A 4F2W ; 2.0 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Salmonella enterica with methyl-thio-DADMe-Immucillin-A 5UE1 ; 1.14 ; Crystal structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase in complex with adenine from Vibrio fischeri ES114 3OZB ; 2.8 ; Crystal Structure of 5'-methylthioinosine phosphorylase from Psedomonas aeruginosa in complex with hypoxanthine 3C9F ; 1.9 ; Crystal structure of 5'-nucleotidase from Candida albicans SC5314 5H7W ; 1.9 ; Crystal structure of 5'-nucleotidase from venom of Naja atra 2Z1A ; 1.75 ; Crystal structure of 5'-nucleotidase precursor from Thermus thermophilus HB8 3ONN ; 1.87 ; Crystal structure of 5'-nucleotidase SDT1 from saccharomyces cerevisiae 5UME ; 2.7 ; Crystal Structure of 5,10-Methylenetetrahydrofolate Reductase MetF from Haemophilus influenzae 1M2R ; 1.7 ; Crystal structure of 5,8-di-amino-1,4-di-hydroxy-anthraquinone/CK2 kinase complex 6YYG ; 1.95 ; Crystal Structure of 5-(trifluoromethoxy)indoline-2,3-dione covalently bound to the PH domain of Bruton's tyrosine kinase mutant R28C 1OHP ; 1.53 ; CRYSTAL STRUCTURE OF 5-3-KETOSTEROID ISOMERASE MUTANT D38N FROM PSEUDOMONAS TESTOSTERONI COMPLEXED WITH 5ALPHA-ESTRAN-3,17-DIONE 1OHS ; 1.7 ; CRYSTAL STRUCTURE OF 5-3-KETOSTEROID ISOMERASE MUTANT Y14F/D38N FROM PSEUDOMONAS TESTOSTERONI COMPLEXED WITH ANDROSTANEDIONE 1OGZ ; 2.3 ; Crystal Structure Of 5-3-Ketosteroid Isomerase Mutants P39A Complexed With Equilenin From Pseudomonas Testosteroni 2Z1B ; 3.3 ; Crystal Structure of 5-aminolevulinic acid dehydratase (ALAD) from Mus musculs 2Z0I ; 3.2 ; Crystal Structure of 5-aminolevulinic acid dehydratase (ALAD) from Mus musculus 6TVN ; 2.31 ; Crystal Structure of 5-bromoindoline-2,3-dione covalently bound to the PH domain of Bruton's tyrosine kinase 4Y52 ; 3.5 ; Crystal structure of 5-Carboxycytosine Recognition by RNA Polymerase II during Transcription Elongation. 5ZAT ; 1.06 ; Crystal structure of 5-carboxylcytosine containing decamer dsDNA 4JJ9 ; 1.76 ; Crystal Structure of 5-carboxymethyl-2-hydroxymuconate delta-isomerase 4NG3 ; 1.751 ; Crystal structure of 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis complexed with 4-Hydroxy-3-methoxy-5-nitrobenzoic acid 4L6D ; 1.449 ; Crystal structure of 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis complexed with vanillic acid 4ICM ; 1.825 ; Crystal structure of 5-carboxyvanillate decarboxylase LigW from Sphingomonas paucimobilis 4NI8 ; 1.64 ; Crystal structure of 5-carboxyvanillate decarboxylase LigW from Sphingomonas paucimobilis complexed with Mn and 5-methoxyisophtalic acid 4QTG ; 1.47 ; CRYSTAL STRUCTURE of 5-CARBOXYVANILLATE DECARBOXYLASE LIGW2 (TARGET EFI-505250) FROM NOVOSPHINGOBIUM AROMATICIVORANS DSM 12444 COMPLEXED WITH MANGANESE 4QS6 ; 1.76 ; CRYSTAL STRUCTURE of 5-CARBOXYVANILLATE DECARBOXYLASE LIGW2 FROM NOVOSPHINGOBIUM AROMATICIVORANS DSM 12444 (TARGET EFI-505250) WITH BOUND 4-HYDROXY-3-METHOXY-5-NITROBENZOIC ACID, NO METAL, THE D314N MUTANT 4QS5 ; 1.8 ; CRYSTAL STRUCTURE of 5-CARBOXYVANILLATE DECARBOXYLASE LIGW2 FROM NOVOSPHINGOBIUM AROMATICIVORANS DSM 12444 (TARGET EFI-505250) WITH BOUND MANGANESE AND 3-methoxy-4-hydroxy-5-nitrobenzoic acid, THE D314N MUTANT 7XUY ; 2.001 ; Crystal structure of 5-chloro-2-hydroxymuconate tautomerase CnbG 6YYF ; 1.93 ; Crystal Structure of 5-chloroindoline-2,3-dione covalently bound to the PH domain of Bruton's tyrosine kinase mutant R28C 4FPI ; 2.2 ; Crystal Structure of 5-chloromuconolactone isomerase from Rhodococcus opacus 1CP 6ZRZ ; 1.696 ; Crystal structure of 5-dimethylallyl tryptophan synthase from Streptomyces coelicolor in complex with DMASPP and Trp 6ZS0 ; 1.5 ; Crystal structure of 5-dimethylallyltryptophan synthase from Streptomyces coelicolor 5XWB ; 2.2 ; Crystal Structure of 5-Enolpyruvulshikimate-3-phosphate Synthase from a Psychrophilic Bacterium, Colwellia psychrerythraea 3M00 ; 2.1 ; Crystal Structure of 5-epi-aristolochene synthase M4 mutant complexed with (2-cis,6-trans)-2-fluorofarnesyl diphosphate 1DL8 ; 1.55 ; CRYSTAL STRUCTURE OF 5-F-9-AMINO-(N-(2-DIMETHYLAMINO)ETHYL)ACRIDINE-4-CARBOXAMIDE BOUND TO D(CGTACG)2 4OM8 ; 1.55 ; Crystal structure of 5-formly-3-hydroxy-2-methylpyridine 4-carboxylic acid (FHMPC) 5-dehydrogenase, an NAD+ dependent dismutase. 5ZAS ; 1.56 ; Crystal structure of 5-formylcytosine containing decamer dsDNA 5V54 ; 3.9 ; Crystal structure of 5-HT1B receptor in complex with methiothepin 7C61 ; 3.0 ; Crystal structure of 5-HT1B-BRIL and SRP2070_Fab complex 8JT8 ; 2.7 ; Crystal structure of 5-HT2AR in complex with (R)-IHCH-7179 7VOE ; 2.9 ; Crystal structure of 5-HT2AR in complex with aripiprazole 7VOD ; 3.3 ; Crystal structure of 5-HT2AR in complex with cariprazine 6A93 ; 3.0 ; Crystal structure of 5-HT2AR in complex with risperidone 6A94 ; 2.9 ; Crystal structure of 5-HT2AR in complex with zotepine 6BQG ; 3.0 ; Crystal structure of 5-HT2C in complex with ergotamine 6BQH ; 2.7 ; Crystal structure of 5-HT2C in complex with ritanserin 6JV3 ; 2.851 ; Crystal structure of 5-hydoxylmethylcytosine containing decamer dsDNA 4F3U ; 1.401 ; Crystal structure of 5-hydroxy-2'-deoxycytidine base paired with 2'-deoxyguanosine in Dickerson Drew Dodecamer 2H1X ; 1.98 ; Crystal structure of 5-hydroxyisourate Hydrolase (formerly known as TRP, Transthyretin Related Protein) 2H6U ; 1.7 ; Crystal structure of 5-hydroxyisourate hydrolase (formerly known as TRP, transthyretin related protein) 4Q14 ; 1.7 ; Crystal structure of 5-hydroxyisourate hydrolase from Brucella melitensis 4UDP ; 1.9 ; Crystal structure of 5-hydroxymethylfurfural oxidase (HMFO) in the oxidized state 4UDQ ; 1.6 ; Crystal structure of 5-hydroxymethylfurfural oxidase (HMFO) in the reduced state 1XRU ; 1.94 ; Crystal Structure of 5-keto-4-deoxyuronate Isomerase from Eschericia coli 7COL ; 1.95 ; Crystal structure of 5-ketofructose reductase complexed with NADPH 6JV5 ; 1.401 ; Crystal structure of 5-methylcytosine containing decamer dsDNA 4R88 ; 1.952 ; Crystal structure of 5-methylcytosine deaminase from Klebsiella pneumoniae liganded with 5-fluorocytosine 4R85 ; 1.802 ; Crystal structure of 5-methylcytosine deaminase from Klebsiella pneumoniae liganded with 5-methylcytosine 4R7W ; 1.902 ; Crystal structure of 5-methylcytosine deaminase from Klebsiella pneumoniae liganded with phosphonocytosine 2YRF ; 2.7 ; Crystal structure of 5-methylthioribose 1-phosphate isomerase from Bacillus subtilis complexed with sulfate ion 6A34 ; 2.3 ; Crystal structure of 5-methylthioribose 1-phosphate isomerase from Pyrococcus horikoshii OT3 - Form I 6A35 ; 2.65 ; Crystal structure of 5-methylthioribose 1-phosphate isomerase from Pyrococcus horikoshii OT3 - Form II 2YVK ; 2.4 ; Crystal structure of 5-methylthioribose 1-phosphate isomerase product complex from Bacillus subtilis 2OLC ; 2.0 ; Crystal structure of 5-methylthioribose kinase in complex with ADP-2Ho 4RY8 ; 1.75 ; Crystal structure of 5-methylthioribose transporter solute binding protein TLET_1677 from Thermotoga lettingae TMO TARGET EFI-511109 in complex with 5-methylthioribose 3RSR ; 2.3 ; Crystal Structure of 5-NITP Inhibition of Yeast Ribonucleotide Reductase 7N38 ; 1.22 ; Crystal structure of 5-site deamidated variant of human gamma(S)-crystallin 3HG8 ; 1.38 ; Crystal Structure of 5-SMe Derivatized DNA 1ZG9 ; 2.0 ; Crystal Structure of 5-{[amino(imino)methyl]amino}-2-(sulfanylmethyl)pentanoic acid Bound to Activated Porcine Pancreatic Carboxypeptidase B 2QIH ; 1.897 ; Crystal structure of 527-665 fragment of UspA1 protein from Moraxella catarrhalis 8U4U ; 3.79 ; Crystal structure of 53BP1 tandem Tudor domain homodimer engineered with two disulfide bridges 2G3R ; 1.25 ; Crystal Structure of 53BP1 tandem tudor domains at 1.2 A resolution 4CRI ; 2.35 ; Crystal Structure of 53BP1 tandem tudor domains in complex with methylated K810 Rb peptide 6IVZ ; 2.4 ; Crystal structure of 5A ScFv complexed with YFV-China sE in postfusion state 6IW0 ; 3.6 ; Crystal structure of 5A ScFv in complex with YFV-17D sE in postfusion state 6IW2 ; 2.9 ; Crystal structure of 5A ScFv in complex with YFV-17D sE in prefusion state 3UZW ; 1.892 ; Crystal structure of 5beta-reductase (AKR1D1) E120H mutant in complex with NADP+ 3UZY ; 1.832 ; Crystal structure of 5beta-reductase (AKR1D1) E120H mutant in complex with NADP+ and 5beta-dihydrotestosterone 3UZZ ; 1.82 ; Crystal structure of 5beta-reductase (AKR1D1) E120H mutant in complex with NADP+ and delta4-androstenedione 3UZX ; 1.637 ; Crystal structure of 5beta-reductase (AKR1D1) E120H mutant in complex with NADP+ and epiandrosterone 3CAS ; 2.0 ; Crystal structure of 5beta-reductase (AKR1D1) in complex with NADP+ and 4-androstenedione 3DOP ; 2.0 ; Crystal structure of 5beta-reductase (AKR1D1) in complex with NADP+ and 5beta-dihydrotestosterone, Resolution 2.00A 3CAV ; 1.9 ; Crystal structure of 5beta-reductase (AKR1D1) in complex with NADP+ and 5beta-pregnan-3,20-dione 3CAQ ; 2.2 ; Crystal structure of 5beta-reductase (AKR1D1) in complex with NADPH 5W24 ; 1.5 ; Crystal Structure of 5C4 Fab 5NIV ; 1.498 ; Crystal structure of 5D3 Fab 3A5E ; 1.6 ; Crystal structure of 5K RNase Sa 3VWM ; 1.6 ; Crystal structure of 6-aminohexanoate-dimer hydrolase G181D/R187A/H266N/D370Y mutant 3VWN ; 1.2 ; Crystal structure of 6-aminohexanoate-dimer hydrolase G181D/R187G/H266N/D370Y mutant 3VWL ; 1.6 ; Crystal structure of 6-aminohexanoate-dimer hydrolase G181D/R187S/H266N/D370Y mutant 2DCF ; 1.4 ; Crystal structure of 6-aminohexanoate-dimer hydrolase S112A/G181D/H266N mutant with substrate 3A65 ; 1.7 ; Crystal structure of 6-aminohexanoate-dimer hydrolase S112A/G181D/H266N mutant with substrate 2ZMA ; 1.51 ; Crystal Structure of 6-Aminohexanoate-dimer Hydrolase S112A/G181D/H266N/D370Y Mutant with Substrate 3A66 ; 1.6 ; Crystal structure of 6-aminohexanoate-dimer hydrolase S112A/G181D/H266N/D370Y mutant with substrate 3VWR ; 1.65 ; Crystal structure of 6-aminohexanoate-dimer hydrolase S112A/G181D/R187G/H266N/D370Y mutant complexd with 6-aminohexanoate 3VWP ; 1.55 ; Crystal structure of 6-aminohexanoate-dimer hydrolase S112A/G181D/R187S/H266N/D370Y mutant complexd with 6-aminohexanoate 6ZRX ; 1.7 ; Crystal structure of 6-dimethylallyltryptophan synthase from Micromonospora olivasterospora in complex with DMASPP and Trp 3VPK ; 1.94 ; Crystal Structure of 6-Guanidinohexanoyl Trypsin 2BVG ; 3.18 ; Crystal structure of 6-hydoxy-D-nicotine oxidase from Arthrobacter nicotinovorans. Crystal Form 1 (P21) 2BVH ; 2.9 ; Crystal structure of 6-hydoxy-D-nicotine oxidase from Arthrobacter nicotinovorans. Crystal Form 2 (P21) 2BVF ; 1.92 ; Crystal structure of 6-hydoxy-D-nicotine oxidase from Arthrobacter nicotinovorans. Crystal Form 3 (P1) 3K7M ; 1.95 ; Crystal structure of 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans 1EX8 ; 1.85 ; CRYSTAL STRUCTURE OF 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN PYROPHOSPHOKINASE COMPLEXED WITH HP4A, THE TWO-SUBSTRATE-MIMICKING INHIBITOR 5EOW ; 2.1 ; Crystal Structure of 6-Hydroxynicotinic Acid 3-Monooxygenase from Pseudomonas putida KT2440 3QOM ; 1.498 ; Crystal structure of 6-phospho-beta-glucosidase from Lactobacillus plantarum 4GZE ; 2.31 ; Crystal structure of 6-phospho-beta-glucosidase from Lactobacillus plantarum (apo form) 4GWK ; 1.534 ; Crystal structure of 6-phosphogluconate dehydrogenase complexed with 3-phosphoglyceric acid 8I4Q ; 1.9 ; Crystal structure of 6-phosphogluconate dehydrogenase from Corynebacterium glutamicum 5UQ9 ; 3.0 ; Crystal structure of 6-phosphogluconate dehydrogenase with ((4R,5R)-5-(hydroxycarbamoyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl dihydrogen phosphate 1VL1 ; 1.55 ; Crystal structure of 6-phosphogluconolactonase (TM1154) from Thermotoga maritima at 1.70A resolution 3CH7 ; 2.29 ; Crystal structure of 6-phosphogluconolactonase from Leishmania braziliensis 3CSS ; 1.7 ; Crystal structure of 6-phosphogluconolactonase from Leishmania guyanensis 4TM8 ; 1.81 ; Crystal structure of 6-phosphogluconolactonase from Mycobacterium smegmatis N131D mutant 4TM7 ; 1.39 ; Crystal structure of 6-phosphogluconolactonase from Mycobacterium smegmatis N131D mutant soaked with CuSO4 3OC6 ; 2.1 ; Crystal structure of 6-phosphogluconolactonase from mycobacterium smegmatis, apo form 3ICO ; 2.15 ; Crystal structure of 6-phosphogluconolactonase from Mycobacterium tuberculosis 3E7F ; 2.2 ; Crystal structure of 6-phosphogluconolactonase from Trypanosoma brucei complexed with 6-phosphogluconic acid 3EB9 ; 2.0 ; Crystal structure of 6-phosphogluconolactonase from trypanosoma brucei complexed with citrate 2DJ6 ; 2.1 ; Crystal structure of 6-pyruvoyl tetrahydrobiopterin synthase from Pyrococcus horikoshii OT3 2DTT ; 2.2 ; Crystal structure of 6-pyruvoyl tetrahydrobiopterin synthase from Pyrococcus horikoshii OT3 complexed with (1'R,2'S)-biopterin 2A0S ; 2.2 ; Crystal structure of 6-pyruvoyl tetrahydropterin synthase (PTPS) from Plasmodium vivax at 2.2 A resolution 5J36 ; 2.55 ; Crystal structure of 60-mer BFDV Capsid Protein 5J37 ; 2.3 ; Crystal structure of 60-mer BFDV Capsid Protein in complex with single stranded DNA 3PQY ; 3.192 ; Crystal Structure of 6218 TCR in complex with the H2Db-PA224 5BK0 ; 3.15 ; Crystal structure of 663 Fab bound to circumsporozoite protein NANP 5-mer 5JPJ ; 2.0 ; Crystal structure of 6aJL2-R24G 4Y0U ; 2.6 ; Crystal Structure of 6Alpha-Hydroxymethylpenicillanate Complexed with OXA-58, a Carbapenem hydrolyzing Class D betalactamase from Acinetobacter baumanii. 4HXB ; 2.45 ; Crystal structure of 6B9 FAB 7XJF ; 2.6 ; Crystal structure of 6MW3211 Fab in complex with CD47 3OGP ; 1.7 ; Crystal Structure of 6s-98S FIV Protease with Darunavir bound 3OGQ ; 1.8 ; Crystal Structure of 6s-98S FIV Protease with Lopinavir bound 6WAE ; 2.13 ; Crystal Structure of 6X-His tagged SmcR 8ANT ; 1.9 ; Crystal structure of 6xhis-tagged phi3T_93 protein 4QKS ; 1.7 ; Crystal Structure of 6xTrp/PV2: de novo designed beta-trefoil architecture with symmetric primary structure (L22W/L44W/L64W/L85W/L108W/L132W his Primitive Version 2) 4QKR ; 1.746 ; Crystal Structure of 6xTyr/PV2: de novo designed beta-trefoil architecture with symmetric primary structure (L22Y/L44Y/L64Y/L85Y/L108Y/L132Y, Primitive Version 2) 3DRD ; 2.17 ; Crystal Structure of 7,8 Diaminopelargonic Acid Synthase Apoenzyme in Bacillus subtilis 1QJ5 ; 1.8 ; Crystal structure of 7,8-diaminopelargonic acid synthase 4WYE ; 1.75 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis complexed with a DSF fragment hit 4WYG ; 1.62 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis complexed with a fragment hit 4W1X ; 1.8 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with 1-(4-(4-(3-chlorobenzoyl)piperazin-1-yl)phenyl)ethanone 4W1W ; 1.9 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with 7-(diethylamino)-3-(thiophene-2-carbonyl)-2H-chromen-2-one 4WYF ; 2.25 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a DSF fragment hit 4WYA ; 2.5 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a fragment hit 4XEW ; 2.47 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a HTS lead compound 4XJL ; 1.85 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a HTS lead compound 4XJM ; 1.6 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a HTS lead compound 5TE2 ; 1.8 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a mechanism-based inhibitor 4WYC ; 1.7 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a thiazole benzamide inhibitor 4W1V ; 2.24 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with a thiazole inhibitor 4XJO ; 1.5 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS lead 4XJP ; 1.6 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS lead 5KGT ; 2.25 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS lead: 1-[4-[4-(3-chlorophenyl)carbonylpiperidin-1-yl]phenyl]ethanone 5KGS ; 2.1 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, complexed with an inhibitor optimized from HTS lead: 5-[4-(1,3-benzodioxol-5-ylcarbonyl)piperazin-1-yl]-2,3-dihydroinden-1-one 3TFU ; 1.94 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, post-reaction complex with a 3,6-dihydropyrid-2-one heterocycle inhibitor 3TFT ; 1.95 ; Crystal structure of 7,8-diaminopelargonic acid synthase (BioA) from Mycobacterium tuberculosis, pre-reaction complex with a 3,6-dihydropyrid-2-one heterocycle inhibitor 6ED7 ; 2.43 ; Crystal structure of 7,8-diaminopelargonic acid synthase bound to inhibitor MAC13772 1QJ3 ; 2.7 ; Crystal structure of 7,8-diaminopelargonic acid synthase in complex with 7-keto-8-aminopelargonic acid 1MLY ; 1.81 ; Crystal Structure of 7,8-Diaminopelargonic Acid Synthase in complex with the cis isomer of amiclenomycin 1MLZ ; 2.15 ; Crystal Structure of 7,8-Diaminopelargonic Acid Synthase in complex with the trans-isomer of amiclenomycin. 1SQL ; 2.2 ; Crystal structure of 7,8-dihydroneopterin aldolase in complex with guanine 7D1X ; 2.5 ; Crystal structure of 7-alpha-hydroxyl bile acid sulfotransferase (Sult2a8) 1UNM ; 2.0 ; Crystal structure of 7-Aminoactinomycin D with non-complementary DNA 3RJ4 ; 1.75 ; Crystal Structure of 7-cyano-7-deazaguanine Reductase, QueF from Vibrio cholerae 3UXV ; 1.56 ; Crystal Structure of 7-cyano-7-deazaguanine reductase, QueF from Vibrio cholerae complexed with NADP and PreQ 3UXJ ; 1.401 ; Crystal Structure of 7-cyano-7-deazaguanine reductase, QueF from Vibrio cholerae complexed with NADP and PreQ0 4IQI ; 1.5 ; Crystal Structure of 7-cyano-7-deazaguanine Reductase, QueF from Vibrio cholerae O1 biovar El Tor complexed with cytosine 3DU4 ; 2.2 ; Crystal structure of 7-keto-8-aminopelargonic acid bound 7,8-diaminopelargonic acid synthase in bacillus subtilis 7N39 ; 1.56 ; Crystal structure of 7-site deamidated variant of human gamma(S)-crystallin 4V8U ; 3.7 ; Crystal Structure of 70S Ribosome with Both Cognate tRNAs in the E and P Sites Representing an Authentic Elongation Complex. 4V4P ; 5.5 ; Crystal structure of 70S ribosome with thrS operator and tRNAs. 6LCS ; 2.6 ; Crystal structure of 73MuL9 Fv-clasp fragment in complex with GA-pyridine analogue 7ST8 ; 2.75 ; Crystal structure of 7H2.2 Fab in complex with SAS1B C-terminal region 1SGF ; 3.15 ; CRYSTAL STRUCTURE OF 7S NGF: A COMPLEX OF NERVE GROWTH FACTOR WITH FOUR BINDING PROTEINS (SERINE PROTEINASES) 1Z43 ; 2.6 ; Crystal structure of 7S.S SRP RNA of M. jannaschii 1DJ9 ; 2.0 ; CRYSTAL STRUCTURE OF 8-AMINO-7-OXONANOATE SYNTHASE (OR 7-KETO-8AMINIPELARGONATE OR KAPA SYNTHASE) COMPLEXED WITH PLP AND THE PRODUCT 8(S)-AMINO-7-OXONANONOATE (OR KAPA). THE ENZYME OF BIOTIN BIOSYNTHETIC PATHWAY. 4IW7 ; 2.25 ; Crystal structure of 8-amino-7-oxononanoate synthase (bioF) from Francisella tularensis. 6ONN ; 1.8 ; Crystal structure of 8-amino-7-oxononanoate synthase from Burkholderia phymatum 6PET ; 2.203 ; Crystal structure of 8-hydroxychromene compound 30 bound to estrogen receptor alpha 6IRL ; 2.1 ; Crystal structure of 8-mer peptide from avian influenza H5N1 virus in complex with BF2*1501 6KX9 ; 2.902 ; Crystal structure of 8-mer peptide from avian influenza H5N1 virus in complex with BF2*1501 5YMW ; 1.997 ; Crystal structure of 8-mer peptide from Rous sarcoma virus in complex with BF2*1201 1XQP ; 1.69 ; Crystal structure of 8-oxoguanosine complexed Pa-AGOG, 8-oxoguanine DNA glycosylase from Pyrobaculum aerophilum 3RDT ; 2.7 ; Crystal Structure of 809.B5 TCR complexed with MHC Class II I-Ab/3k peptide 4YWG ; 2.998 ; Crystal structure of 830A in complex with V1V2 4P9M ; 2.13 ; Crystal structure of 8ANC195 Fab 5CJX ; 3.584 ; Crystal structure of 8ANC195 Fab in complex with BG505 SOSIP.664 HIV-1 Env trimer 4P9H ; 3.0 ; Crystal structure of 8ANC195 Fab in complex with gp120 of 93TH057 HIV-1 and soluble CD4 D1D2 3MBS ; 1.27 ; Crystal structure of 8mer PNA 7CNY ; 2.12 ; Crystal structure of 8PE bound PSD from E. coli (2.12 A) 2CV6 ; 2.65 ; Crystal Structure of 8Salpha Globulin, the Major Seed Storage Protein of Mungbean 4LXO ; 1.42 ; Crystal structure of 9,10Fn3-elegantin chimera 1FN1 ; 1.6 ; CRYSTAL STRUCTURE OF 9-AMINO-(N-(2-DIMETHYLAMINO)BUTYL)ACRIDINE-4-CARBOXAMIDE BOUND TO D(CG(5BR)UACG)2 1KCI ; 1.8 ; Crystal Structure of 9-amino-N-[2-(4-morpholinyl)ethyl]-4-acridinecarboxamide Bound to d(CGTACG)2 5YMV ; 2.197 ; Crystal structure of 9-mer peptide from influenza virus in complex with BF2*1201 7N3A ; 1.5 ; Crystal structure of 9-site deamidated variant of human gamma(S)-crystallin 4LFH ; 2.3 ; Crystal Structure of 9C2 TCR 4LHU ; 2.87 ; Crystal Structure of 9C2 TCR bound to CD1d 5CKK ; 2.801 ; Crystal structure of 9DB1* deoxyribozyme 5CKI ; 2.985 ; Crystal structure of 9DB1* deoxyribozyme (Cobalt hexammine soaked crystals) 4GH8 ; 1.85 ; Crystal structure of a 'humanized' E. coli dihydrofolate reductase 1MXG ; 1.6 ; Crystal Structure of a (Ca,Zn)-dependent alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei in complex with acarbose 7SMG ; 2.3 ; Crystal structure of a (p)ppApp hydrolase from Bacteroides caccae 6ECL ; 2.385 ; Crystal Structure of a 1,2,4-Triazole Allosteric RNase H Inhibitor in Complex with HIV Reverse Transcriptase 3EDC ; 2.1 ; Crystal Structure of a 1.6-hexanediol Bound Tetrameric Form of Escherichia coli Lac-repressor Refined to 2.1 Resolution 433D ; 2.1 ; CRYSTAL STRUCTURE OF A 14 BASE PAIR RNA DUPLEX WITH NONSYMMETRICAL TANDEM G.U WOBBLE BASE PAIRS 3EFZ ; 2.08 ; Crystal Structure of a 14-3-3 protein from cryptosporidium parvum (cgd1_2980) 1FUF ; 1.7 ; CRYSTAL STRUCTURE OF A 14BP RNA OLIGONUCLEOTIDE CONTAINING DOUBLE UU BULGES: A NOVEL INTRAMOLECULAR U*(AU) BASE TRIPLE 1IK5 ; 1.8 ; Crystal Structure of a 14mer RNA Containing Double UU Bulges in Two Crystal Forms: A Novel U*(AU) Intramolecular Base Triple 2QLA ; 2.9 ; Crystal Structure of a 16-Helix Bundle Architecture Produced by the Zinc-Mediated Self Assembly of Four Cytochrome cb562 Molecules 420D ; 1.9 ; CRYSTAL STRUCTURE OF A 16-MER RNA DUPLEX WITH NON-ADJACENT A(ANTI).G(SYN) MISMATCHES 3QWI ; 2.5 ; Crystal structure of a 17beta-hydroxysteroid dehydrogenase (holo form) from fungus Cochliobolus lunatus in complex with NADPH and coumestrol 1QC0 ; 1.55 ; CRYSTAL STRUCTURE OF A 19 BASE PAIR COPY CONTROL RELATED RNA DUPLEX 5NL0 ; 5.4 ; Crystal structure of a 197-bp palindromic 601L nucleosome in complex with linker histone H1 5W21 ; 3.0 ; Crystal Structure of a 1:1:1 FGF23-FGFR1c-aKlotho Ternary Complex 3S7C ; 1.1 ; Crystal structure of a 2'-azido-uridine-modified RNA 6AMY ; 2.85 ; Crystal structure of a 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase from Acinetobacter baumannii 3S8U ; 1.2 ; Crystal structure of a 2-azido-adenine-modified RNA 3TMQ ; 2.1 ; Crystal structure of a 2-dehydro-3-deoxyphosphooctonate aldolase from Burkholderia pseudomallei in complex with D-arabinose-5-phosphate 6MDY ; 2.55 ; Crystal structure of a 2-dehydro-3-deoxyphosphooctonate aldolase from Legionella pneumophila Philadelphia 1 3VPL ; 1.2 ; Crystal structure of a 2-fluoroxylotriosyl complex of the Vibrio sp. AX-4 Beta-1,3-xylanase 4DLL ; 2.11 ; Crystal structure of a 2-hydroxy-3-oxopropionate reductase from Polaromonas sp. JS666 5UV5 ; 3.0 ; Crystal Structure of a 2-Hydroxyisoquinoline-1,3-dione RNase H Active Site Inhibitor with Multiple Binding Modes to HIV Reverse Transcriptase 3EEG ; 2.78 ; Crystal structure of a 2-isopropylmalate synthase from Cytophaga hutchinsonii 3LZG ; 2.6 ; Crystal structure of a 2009 H1N1 influenza virus hemagglutinin 4M4Y ; 2.2 ; Crystal structure of a 2009 H1N1 influenza virus hemagglutinin with a stabilization mutation HA2 E47G 6JF2 ; 2.0 ; Crystal structure of a 20kDa fragment of FlgG 2D4X ; 1.9 ; Crystal structure of a 26K fragment of HAP3 (FlgL) 4DI3 ; 3.05 ; Crystal structure of a 2:1 complex of Treponema pallidum TatP(T) (Tp0957) bound to TatT (Tp0956) 1VH8 ; 2.35 ; Crystal structure of a 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 7O62 ; 2.4 ; Crystal structure of a 2`-deoxyribosyltransferase from the psychrophilic bacterium Desulfotalea psychrophila. 2R64 ; 2.3 ; Crystal structure of a 3-aminoindazole compound with CDK2 4K7G ; 2.0 ; Crystal structure of a 3-hydroxyproline dehydratse from agrobacterium vitis, target efi-506470, with bound pyrrole 2-carboxylate, ordered active site 4IWH ; 1.75 ; Crystal structure of a 3-isopropylmalate dehydrogenase from Burkholderia pseudomallei 3V8B ; 2.7 ; Crystal Structure of a 3-ketoacyl-ACP reductase from Sinorhizobium meliloti 1021 2JG6 ; 1.7 ; CRYSTAL STRUCTURE OF A 3-METHYLADENINE DNA GLYCOSYLASE I FROM STAPHYLOCOCCUS AUREUS 5VP5 ; 1.8 ; Crystal structure of a 3-oxoacyl-acyl-carrier protein reductase FabG4 from Mycobacterium smegmatis bound to NAD 4O6V ; 1.85 ; Crystal Structure of a 3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100) from Brucella suis 4ONE ; 1.65 ; Crystal Structure of a 3-oxoacyl-[acyl-carrier protein] reductase from Brucella melitensis 5TS3 ; 1.55 ; Crystal Structure of a 3-oxoacyl-[acyl-carrier protein] Reductase with bound NAD from Brucella melitensis 3E4Y ; 2.6 ; Crystal structure of a 33kDa catalase-related protein from Mycobacterium avium subsp. paratuberculosis. I2(1)2(1)2(1) crystal form 3E4W ; 1.8 ; Crystal structure of a 33kDa catalase-related protein from Mycobacterium avium subsp. paratuberculosis. P2(1)2(1)2(1) crystal form. 4DI4 ; 2.714 ; Crystal structure of a 3:1 complex of Treponema pallidum TatP(T) (Tp0957) bound to TatT (Tp0956) 4IS3 ; 2.0 ; Crystal structure of a 3alpha-hydroxysteroid dehydrogenase (BaiA2) associated with secondary bile acid synthesis from Clostridium scindens VPI12708 in complex with a putative NAD(+)-OH- adduct at 2.0 A resolution 3JUY ; 2.5 ; Crystal Structure of a 3B3 Variant, a Broadly Neutralizing HIV-1 scFv Antibody 1A2W ; 2.1 ; CRYSTAL STRUCTURE OF A 3D DOMAIN-SWAPPED DIMER OF BOVINE PANCREATIC RIBONUCLEASE A 2HJ1 ; 2.1 ; Crystal structure of a 3D domain-swapped dimer of protein HI0395 from Haemophilus influenzae 4FFC ; 1.8 ; Crystal structure of a 4-aminobutyrate aminotransferase (GabT) from Mycobacterium abscessus 4G9Q ; 1.77 ; Crystal structure of a 4-carboxymuconolactone decarboxylase 6MFX ; 2.2 ; Crystal structure of a 4-domain construct of a mutant of LgrA in the substrate donation state 6MFW ; 2.5 ; Crystal structure of a 4-domain construct of LgrA in the substrate donation state 4Q60 ; 2.1 ; Crystal structure of a 4-hydroxyproline epimerase from Burkholderia Multivorans atcc 17616, target EFI-506586, open form, with bound pyrrole-2-carboxylate 4K7X ; 1.75 ; Crystal structure of a 4-hydroxyproline epimerase from burkholderia multivorans, target efi-506479, with bound phosphate, closed domains 4NV1 ; 2.1 ; Crystal structure of a 4-N formyltransferase from Francisella tularensis 3ABF ; 1.94 ; Crystal Structure of a 4-Oxalocrotonate Tautomerase Homologue (TTHB242) 5CLN ; 2.71 ; Crystal structure of a 4-oxalocrotonate tautomerase mutant at 2.7 Angstrom 5CLO ; 2.3 ; Crystal structure of a 4-oxalocrotonate tautomerase mutant in complex with nitrostyrene at 2.3 Angstrom 4KR6 ; 2.85 ; Crystal structure of a 4-thiouridine synthetase - RNA complex 4KR9 ; 3.5 ; Crystal structure of a 4-thiouridine synthetase - RNA complex at 3.5 Angstrom resolution 4KR7 ; 3.421 ; Crystal structure of a 4-thiouridine synthetase - RNA complex with bound ATP 2ESC ; 2.1 ; Crystal structure of a 40 KDa protective signalling protein from Bovine (SPC-40) at 2.1 A resolution 1OWQ ; 2.0 ; Crystal structure of a 40 kDa signalling protein (SPC-40) secreted during involution 1XHG ; 2.9 ; Crystal structure of a 40 kDa signalling protein from Porcine (SPP-40) at 2.89A resolution 2D4Y ; 2.1 ; Crystal structure of a 49K fragment of HAP1 (FlgK) 5DK6 ; 2.27 ; CRYSTAL STRUCTURE OF A 5'-METHYLTHIOADENOSINE/S-ADENOSYLHOMOCYSTEINE (MTA/SAH) NUCLEOSIDASE (MTAN) FROM COLWELLIA PSYCHRERYTHRAEA 34H (CPS_4743, TARGET PSI-029300) IN COMPLEX WITH ADENINE AT 2.27 A RESOLUTION 4JCU ; 2.4 ; Crystal structure of a 5-carboxymethyl-2-hydroxymuconate isomerase from Deinococcus radiodurans R1 6MFY ; 2.5 ; Crystal structure of a 5-domain construct of LgrA in the substrate donation state 6MG0 ; 6.0 ; Crystal structure of a 5-domain construct of LgrA in the thiolation state 1WKC ; 1.7 ; Crystal structure of a 5-formyltetrahydrofolate cycloligase-related protein from Thermus thermophilus HB8 3PL2 ; 1.89 ; Crystal structure of a 5-keto-2-deoxygluconokinase (NCgl0155, Cgl0158) from Corynebacterium glutamicum ATCC 13032 KITASATO at 1.89 A resolution 5J26 ; 2.5047 ; Crystal structure of a 53BP1 Tudor domain in complex with a ubiquitin variant 2INR ; 2.8 ; Crystal structure of a 59 kDa fragment of topoisomerase IV subunit A (GrlA) from Staphylococcus aureus 5TUQ ; 2.705 ; Crystal Structure of a 6-Cyclohexylmethyl-3-hydroxypyrimidine-2,4-dione Inhibitor in Complex with HIV Reverse Transcriptase 3R47 ; 2.5002 ; Crystal structure of a 6-helix coiled coil CC-hex-H24 4KVU ; 1.8 ; Crystal structure of a 6-helix coiled coil CC-Hex-L17C-W224BF 4KVT ; 1.6 ; Crystal structure of a 6-helix coiled coil CC-Hex-L24C 7M1R ; 1.98 ; Crystal structure of a 6-phospho-beta-galactosidase from Bacillus licheniformis 6WGD ; 2.2 ; Crystal structure of a 6-phospho-beta-glucosidase from Bacillus licheniformis 3NWP ; 1.4 ; Crystal structure of a 6-phosphogluconolactonase (Sbal_2240) from Shewanella baltica OS155 at 1.40 A resolution 3QN9 ; 2.93 ; Crystal structure of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli 3QNA ; 2.5 ; Crystal structure of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli complexed sepiapterin 3UGF ; 1.7 ; Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis 3UGG ; 2.9 ; Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 1-kestose 3UGH ; 2.9 ; Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 6-kestose 1UNJ ; 2.5 ; Crystal structure of a 7-Aminoactinomycin D complex with non-complementary DNA 3S25 ; 1.88 ; Crystal structure of a 7-bladed beta-propeller-like protein (EUBREC_1955) from Eubacterium rectale ATCC 33656 at 1.88 A resolution 4V4I ; 3.71 ; Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements. 5AZ4 ; 2.45 ; Crystal structure of a 79KDa fragment of FlgE, the hook protein from Campylobacter jejuni 7S5M ; 2.25 ; Crystal Structure of a 8-amino-7-oxononanoate synthase/2-amino-3-ketobutyrate coenzyme A ligase from Mycobacterium smegmatis 5EK8 ; 2.7 ; Crystal structure of a 9R-lipoxygenase from Cyanothece PCC8801 at 2.7 Angstroms 2PGC ; 2.53 ; Crystal structure of a a marine metagenome protein (jcvi_pep_1096685590403) from uncultured marine organism at 2.53 A resolution 3SBT ; 1.799 ; Crystal structure of a Aar2-Prp8 complex 4ONY ; 2.1 ; Crystal structure of a ABC transporter, periplasmic substrate-binding protein from Brucella melitensis 4RFP ; 1.6 ; Crystal structure of a acidic PLA2 from Trimeresurus stejnegeri venom 4TLP ; 1.9 ; Crystal structure of a alanine91 mutant of WCI 1VHE ; 1.9 ; Crystal structure of a aminopeptidase/glucanase homolog 6A8X ; 2.35 ; Crystal structure of a apo form cyclase from Fischerella sp. 7U0U ; 1.9 ; Crystal Structure of a Aspergillus fumigatus Calcineurin A - Calcineurin B fusion bound to FKBP12 and FK-506 4GRL ; 2.86 ; Crystal structure of a autoimmune TCR-MHC complex 1VGX ; 1.9 ; Crystal structure of a autoinducer-2 synthesis protein 1VH2 ; 2.0 ; Crystal structure of a autoinducer-2 synthesis protein 1VJE ; 1.64 ; Crystal structure of a autoinducer-2 synthesis protein with bound selenomethionine 1D77 ; 2.4 ; CRYSTAL STRUCTURE OF A B-DNA DODECAMER CONTAINING INOSINE, D(CGCIAATTCGCG), AT 2.4 ANGSTROMS RESOLUTION AND ITS COMPARISON WITH OTHER B-DNA DODECAMERS 1N1O ; 1.2 ; Crystal Structure of a B-form DNA Duplex Containing (L)-alpha-threofuranosyl (3'-2') Nucleosides: A Four-Carbon Sugar is Easily Accommodated into the Backbone of DNA 5CJY ; 1.55 ; Crystal structure of a B-form DNA duplex containing 5-hydroxylmethylcytidine 2FNJ ; 1.8 ; Crystal structure of a B30.2/SPRY domain-containing protein GUSTAVUS in complex with Elongin B and Elongin C 8D78 ; 2.12 ; Crystal structure of a Ba stabilized four-tetrad, parallel Tetrahymena thermophila telomeric G-quadruplex in complex with N-methyl mesoporphyrin IX 6HPA ; 1.554 ; Crystal structure of a BA3943 mutant,a CE4 family pseudoenzyme 6HM9 ; 1.71311 ; Crystal structure of a BA3943 mutant,a CE4 family pseudoenzyme with restored enzymatic activity. 6GO1 ; 2.59 ; Crystal Structure of a Bacillus anthracis peptidoglycan deacetylase 6OWK ; 2.698 ; Crystal structure of a Bacillus thuringiensis Cry1B.867 tryptic core variant 6OVB ; 2.611 ; Crystal structure of a Bacillus thuringiensis Cry1Da tryptic core variant 3H16 ; 2.5 ; Crystal structure of a bacteria TIR domain, PdTIR from Paracoccus denitrificans 4TQU ; 3.204 ; Crystal structure of a bacterial ABC transporter involved in the import of the acidic polysaccharide alginate 4TQV ; 4.504 ; Crystal structure of a bacterial ABC transporter involved in the import of the acidic polysaccharide alginate 3ELQ ; 2.0 ; Crystal structure of a bacterial arylsulfate sulfotransferase 3ETS ; 2.4 ; Crystal structure of a bacterial arylsulfate sulfotransferase catalytic intermediate with 4-methylumbelliferone bound in the active site 3ETT ; 2.1 ; Crystal structure of a bacterial arylsulfate sulfotransferase catalytic intermediate with 4-nitrophenol bound in the active site 4WD8 ; 2.3 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae 4WD7 ; 2.9 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae by Zn-SAD phasing 6JLF ; 2.548 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae D179A mutation - HR 6IVW ; 3.72 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation D269A 6IV0 ; 2.9 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation I180A 6IV1 ; 3.18 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation I180T 5X87 ; 3.14 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation L177T 6IV3 ; 2.515 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation W252A 6IV4 ; 3.14 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation W252F 6IV2 ; 2.62 ; Crystal structure of a bacterial Bestrophin homolog from Klebsiella pneumoniae with a mutation Y211A 5OQT ; 2.86 ; Crystal structure of a bacterial cationic amino acid transporter (CAT) homologue 6F34 ; 3.13 ; Crystal structure of a bacterial cationic amino acid transporter (CAT) homologue bound to Arginine. 2ZBI ; 2.0 ; Crystal structure of a bacterial cell-surface flagellin 1CTN ; 2.3 ; CRYSTAL STRUCTURE OF A BACTERIAL CHITINASE AT 2.3 ANGSTROMS RESOLUTION 4U63 ; 1.67 ; Crystal structure of a bacterial class III photolyase from Agrobacterium tumefaciens at 1.67A resolution 7R65 ; 1.45 ; Crystal structure of a bacterial cyclic UMP synthase from Burkholderia cepacia LK29 5LD5 ; 2.1906 ; Crystal structure of a bacterial dehydrogenase at 2.19 Angstroms resolution 4F35 ; 3.196 ; Crystal Structure of a bacterial dicarboxylate/sodium symporter 2ETS ; 2.25 ; CRYSTAL STRUCTURE OF A BACTERIAL DOMAIN OF UNKNOWN FUNCTION FROM DUF1798 FAMILY (MW1337) FROM STAPHYLOCOCCUS AUREUS SUBSP. AUREUS AT 2.25 A RESOLUTION 4WSJ ; 1.64 ; Crystal structure of a bacterial fucodiase in complex with 1-((1R,2R,3R,4R,5R,6R)-2,3,4-trihydroxy-5-methyl-7-azabicyclo[4.1.0]heptan-7-yl)ethan-1-one 4JL2 ; 1.7 ; Crystal structure of a bacterial fucosidase with a monovalent iminocyclitol inhibitor 4JL1 ; 1.68 ; Crystal structure of a bacterial fucosidase with a multivalent iminocyclitol inhibitor 4PCT ; 2.1 ; Crystal structure of a bacterial fucosidase with iminocyclitol (2S,3S,4R,5S)-3,4-dihydroxy-2-ethynyl-5-methylpyrrolidine 5HDR ; 2.3 ; Crystal structure of a bacterial fucosidase with iminocyclitol (2S,3S,4R,5S)-3,4-dihydroxy-2-ethynyl-5-methylpyrrolidine 5I5R ; 2.1 ; Crystal structure of a bacterial fucosidase with iminocyclitol (2S,3S,4R,5S)-3,4-dihydroxy-2-ethynyl-5-methylpyrrolidine 4PCS ; 1.77 ; Crystal structure of a bacterial fucosidase with iminosugar (2S,3S,4R,5S)-3,4-dihydroxy-2-[2'-phenyl]ethynyl-5-methylpyrrolidine 4JFU ; 1.66 ; Crystal structure of a bacterial fucosidase with iminosugar inhibitor 4JFV ; 1.88 ; Crystal structure of a bacterial fucosidase with iminosugar inhibitor (2S,3S,4R,5S)-2-[N-(methylferrocene)]aminoethyl-5-methylpyrrolidine-3,4-diol 4JFW ; 2.1 ; Crystal structure of a bacterial fucosidase with iminosugar inhibitor (2S,3S,4R,5S)-2-[N-(propylferrocene)]aminoethyl-5-methylpyrrolidine-3,4-diol 4JFS ; 2.0 ; Crystal structure of a bacterial fucosidase with iminosugar inhibitor 4-epi-(+)-Codonopsinine 4JFT ; 2.1 ; Crystal structure of a bacterial fucosidase with iminosugar inhibitor N-desmethyl-4-epi-(+)-Codonopsinine 4PEE ; 1.95 ; Crystal structure of a bacterial fucosidase with inhibitor 1-phenyl-4-[(2S,3S,4R,5S)-3,4-dihydroxy-5-methylpyrrolidin-2-yl]triazole 6HZY ; 1.7 ; Crystal structure of a bacterial fucosidase with inhibitor FucPUG 4WSK ; 1.92 ; Crystal structure of a bacterial fucosidase with phenyl((1R,2R,3R,4R,5R,6R)-2,3,4-trihydroxy-5-methyl-7-azabicyclo[4.1.0]heptan-7-yl)methanone 2GDR ; 2.1 ; Crystal structure of a bacterial glutathione transferase 1N2A ; 1.9 ; Crystal Structure of a Bacterial Glutathione Transferase from Escherichia coli with Glutathione Sulfonate in the Active Site 6E8J ; 3.091 ; Crystal Structure of A Bacterial Homolog to Human Lysosomal Transporter, Spinster, in Inward-facing And Occupied Conformation 6EBA ; 3.812 ; Crystal Structure of A Bacterial Homolog to Human Lysosomal Transporter, Spinster, in Inward-facing And Unoccupied Conformation 5AYO ; 3.3 ; Crystal structure of a bacterial homologue of iron transporter ferroportin in inward-facing state 5AYN ; 2.202 ; Crystal structure of a bacterial homologue of iron transporter ferroportin in outward-facing state 5AYM ; 3.0 ; Crystal structure of a bacterial homologue of iron transporter ferroportin in outward-facing state with soaked iron 4RNG ; 2.4 ; Crystal structure of a bacterial homologue of SWEET transporters 3ZUX ; 2.2 ; Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. 3ZUY ; 2.2 ; Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. 4HU8 ; 2.0 ; Crystal Structure of a Bacterial Ig-like Domain Containing GH10 Xylanase from Termite Gut 4KDV ; 2.42 ; Crystal structure of a bacterial immunoglobulin-like domain from the M. primoryensis ice-binding adhesin 4KDW ; 1.35 ; Crystal structure of a bacterial immunoglobulin-like domain from the M. primoryensis ice-binding adhesin 7F28 ; 1.877 ; Crystal structure of a bacterial ketosynthase 1QWD ; 1.75 ; CRYSTAL STRUCTURE OF A BACTERIAL LIPOCALIN, THE BLC GENE PRODUCT FROM E. COLI 3GF6 ; 1.69 ; Crystal structure of a bacterial lipoprotein (bt_1233) from bacteroides thetaiotaomicron vpi-5482 at 1.69 A resolution 1XBN ; 2.5 ; Crystal structure of a bacterial nitric oxide sensor: an ortholog of mammalian soluble guanylate cyclase heme domain 1MMO ; 2.2 ; CRYSTAL STRUCTURE OF A BACTERIAL NON-HAEM IRON HYDROXYLASE THAT CATALYSES THE BIOLOGICAL OXIDATION OF METHANE 7W54 ; 2.64 ; Crystal structure of a bacterial OTU DUB with Ub-PA 3OLP ; 1.95 ; Crystal structure of a bacterial phosphoglucomutase, an enzyme important in the virulence of multiple human pathogens 3NA5 ; 1.7 ; Crystal structure of a bacterial phosphoglucomutase, an enzyme important in the virulence of several human pathogens. 5ZNJ ; 1.84 ; Crystal structure of a bacterial ProRS with ligands 5ZNK ; 2.07 ; Crystal structure of a bacterial ProRS with ligands 7QFD ; 2.35 ; Crystal structure of a bacterial pyranose 2-oxidase complex with D-glucose 7QF8 ; 2.009 ; Crystal structure of a bacterial pyranose 2-oxidase from Pseudoarthrobacter siccitolerans 7QVA ; 2.6 ; Crystal structure of a bacterial pyranose 2-oxidase in complex with mangiferin 1L3L ; 1.66 ; Crystal structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA 4ZHU ; 2.3968 ; Crystal structure of a bacterial repressor protein 3Q1R ; 4.21 ; Crystal structure of a bacterial RNase P holoenzyme in complex with TRNA and in the presence of 5' leader 7VKC ; 1.46 ; Crystal structure of a bacterial Ser/Thr kinase 1KN9 ; 2.4 ; CRYSTAL STRUCTURE OF A BACTERIAL SIGNAL PEPTIDASE APO-ENZYME, IMPLICATIONS FOR SIGNAL PEPTIDE BINDING AND THE SER-LYS DYAD MECHANISM. 4ZHY ; 1.969 ; Crystal structure of a bacterial signalling complex 4ZHV ; 1.585 ; Crystal structure of a bacterial signalling protein 4ZHW ; 1.391 ; Crystal structure of a bacterial signalling protein (N-terminal truncation) 7T1M ; 1.6 ; Crystal structure of a bacterial sterol transporter 7T1S ; 1.91 ; Crystal structure of a bacterial sterol transporter 3M4A ; 1.65 ; Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site 6LG3 ; 1.90057 ; Crystal structure of a bacterial toxin from Mycobacterium tuberculosis 8G52 ; 1.88 ; Crystal structure of a bacterial TPAT family transporter 8G53 ; 1.03 ; Crystal structure of a bacterial TPAT family transporter 2CX3 ; 2.64 ; Crystal structure of a bacterioferritin comigratory protein peroxiredoxin from the Aeropyrum pernix K1 (form-1 crystal) 2CX4 ; 2.3 ; Crystal structure of a bacterioferritin comigratory protein peroxiredoxin from the Aeropyrum pernix K1 (form-2 crystal) 1HX1 ; 1.9 ; CRYSTAL STRUCTURE OF A BAG DOMAIN IN COMPLEX WITH THE HSC70 ATPASE DOMAIN 5EFR ; 2.0 ; Crystal Structure of a BamA-BamD fusion 3CAZ ; 3.344 ; Crystal structure of a BAR protein from Galdieria sulphuraria 1RNB ; 1.9 ; CRYSTAL STRUCTURE OF A BARNASE-D(*GP*C) COMPLEX AT 1.9 ANGSTROMS RESOLUTION 3HNW ; 2.196 ; Crystal Structure of a Basic Coiled-Coil Protein of Unknown Function from Eubacterium eligens ATCC 27750 3S99 ; 2.05 ; Crystal structure of a basic membrane lipoprotein from brucella melitensis, iodide soak 3JTY ; 2.58 ; Crystal structure of a BenF-like porin from Pseudomonas fluorescens Pf-5 4EAT ; 1.798 ; Crystal structure of a benzoate coenzyme A ligase 4RM2 ; 1.77 ; Crystal structure of a benzoate coenzyme A ligase with 2-Fluoro benzoic acid 4RM3 ; 1.76 ; Crystal structure of a benzoate coenzyme A ligase with 2-Furoic acid 4RMN ; 1.72 ; Crystal structure of a benzoate coenzyme A ligase with 2-Thiophene Carboxylic acid 4ZJZ ; 1.7 ; Crystal structure of a benzoate coenzyme A ligase with Benzoyl-AMP 4RLQ ; 1.63 ; Crystal structure of a benzoate coenzyme A ligase with o-Toluic acid 4RLF ; 1.73 ; Crystal structure of a benzoate coenzyme A ligase with p-Toluic acid and o-Toluic acid 2P8O ; 1.5 ; Crystal Structure of a Benzohydroxamic Acid/Vanadate complex bound to chymotrypsin A 1S0M ; 2.7 ; Crystal structure of a Benzo[a]pyrene Diol Epoxide adduct in a ternary complex with a DNA polymerase 3FZ1 ; 1.9 ; Crystal structure of a benzthiophene inhibitor bound to human Cyclin-dependent Kinase-2 (CDK-2) 3FYK ; 3.5 ; Crystal structure of a benzthiophene lead bound to MAPKAP Kinase-2 (MK-2) 1D63 ; 2.0 ; CRYSTAL STRUCTURE OF A BERENIL-D(CGCAAATTTGCG) COMPLEX; AN EXAMPLE OF DRUG-DNA RECOGNITION BASED ON SEQUENCE-DEPENDENT STRUCTURAL FEATURES 2DBE ; 2.5 ; CRYSTAL STRUCTURE OF A BERENIL-DODECANUCLEOTIDE COMPLEX: THE ROLE OF WATER IN SEQUENCE-SPECIFIC LIGAND BINDING 5Z6E ; 1.864 ; Crystal structure of a beta gamma-crystallin domain of Abundant Perithecial Protein (APP) from Neurospora crassa in the Ca2+-bound form 5HW3 ; 1.45 ; Crystal structure of a beta lactamase from Burkholderia vietnamiensis 5H4E ; 1.863 ; Crystal structure of a beta-1,3-glucanase domain (GH64) from Clostridium beijerinckii 4PQ9 ; 1.2 ; Crystal Structure of a Beta-1,3-glucanase from Mycobacterium marinum 5I77 ; 1.8 ; Crystal structure of a beta-1,4-endoglucanase from Aspergillus niger 5I78 ; 1.58 ; Crystal structure of a beta-1,4-endoglucanase from Aspergillus niger 5I79 ; 2.35 ; Crystal structure of a beta-1,4-endoglucanase mutant from Aspergillus niger in complex with sugar 1J18 ; 2.0 ; Crystal Structure of a Beta-Amylase from Bacillus cereus var. mycoides Cocrystallized with Maltose 4PUX ; 1.43 ; Crystal structure of a beta-barrel like protein (ABAYE2633) from Acinetobacter baumannii AYE at 1.43 A resolution 2GL7 ; 2.6 ; Crystal Structure of a beta-catenin/BCL9/Tcf4 complex 3D3A ; 2.15 ; Crystal structure of a beta-galactosidase from Bacteroides thetaiotaomicron 6ZIV ; 1.95 ; Crystal structure of a Beta-glucosidase from Alicyclobacillus acidiphilus 6WIU ; 3.511 ; Crystal structure of a beta-glucosidase from Exiguobacterium marinum 3GM8 ; 2.4 ; Crystal structure of a beta-glycosidase from Bacteroides vulgatus 7JVI ; 1.85 ; Crystal structure of a beta-helix domain retrieved from capybara gut metagenome 3V1U ; 2.5 ; Crystal structure of a beta-ketoacyl reductase FabG4 from Mycobacterium tuberculosis H37Rv complexed with NAD+ and Hexanoyl-CoA at 2.5 Angstrom resolution 4EWG ; 2.25 ; Crystal structure of a Beta-ketoacyl synthase from Burkholderia phymatum STM815 3I7J ; 2.2 ; Crystal Structure of a beta-lactamase (Mb2281c) from Mycobacterium bovis, Northeast Structural Genomics Consortium Target MbR246 5I0P ; 2.5 ; Crystal Structure of a Beta-lactamase domain protein from Burkholderia ambifaria 5IHV ; 1.1 ; Crystal structure of a beta-lactamase from Burkholderia ambifaria 6AO1 ; 1.8 ; Crystal structure of a beta-lactamase from Burkholderia phymatum 3QH8 ; 1.6 ; Crystal structure of a beta-lactamase-like protein bound to AMP from brucella melitensis, long wavelength synchrotron data 3MD7 ; 1.27 ; Crystal structure of a beta-lactamase-like protein bound to GMP from brucella melitensis 3PY5 ; 1.7 ; Crystal structure of a beta-lactamase-like protein from brucella melitensis bound to AMP 3PY6 ; 1.7 ; Crystal Structure of a Beta-Lactamase-Like Protein from Brucella Melitensis bound to GMP 6JE8 ; 1.798 ; crystal structure of a beta-N-acetylhexosaminidase 6JEA ; 2.275 ; crystal structure of a beta-N-acetylhexosaminidase 6JEB ; 1.498 ; crystal structure of a beta-N-acetylhexosaminidase 3I9H ; 2.0 ; Crystal structure of a betagamma-crystallin domain from Clostridium beijerinckii 3IAJ ; 2.1 ; Crystal structure of a betagamma-crystallin domain from Clostridium beijerinckii-in alternate space group I422 3HZB ; 1.74 ; Crystal structure of a betagamma-crystallin domain from Flavobacterium johnsoniae 3HZ2 ; 1.86 ; Crystal structure of a betagamma-crystallin from an Archaea 6WSB ; 1.55 ; Crystal structure of a betaine aldehyde dehydrogenase from Burkholderia pseudomallei bound to cofactor NAD 6WSA ; 2.05 ; Crystal structure of a betaine aldehyde dehydrogenase from Burkholderia pseudomallei without cofactor 3NYW ; 2.16 ; Crystal Structure of a betaketoacyl-[ACP] reductase (FabG) from Bacteroides thetaiotaomicron 2V6Q ; 2.7 ; Crystal Structure of a BHRF-1 : Bim BH3 complex 1NVM ; 1.7 ; Crystal structure of a bifunctional aldolase-dehydrogenase : sequestering a reactive and volatile intermediate 2B3Z ; 2.41 ; Crystal structure of a bifunctional deaminase and reductase involved in riboflavin biosynthesis 2D5N ; 2.97 ; Crystal structure of a bifunctional deaminase and reductase involved in riboflavin biosynthesis 5VMK ; 2.55 ; Crystal structure of a bifunctional GlmU UDP-N-acetylglucosamine diphosphorylase/glucosamine-1- phosphate N-acetyltransferase from Acinetobacter baumannii 3LN7 ; 3.2 ; Crystal structure of a bifunctional glutathione synthetase from Pasteurella multocida 3LN6 ; 2.95 ; Crystal structure of a bifunctional glutathione synthetase from Streptococcus agalactiae 2W3X ; 1.75 ; Crystal structure of a bifunctional hotdog fold thioesterase in enediyne biosynthesis, CalE7 2QJO ; 2.6 ; crystal structure of a bifunctional NMN adenylyltransferase/ADP ribose pyrophosphatase (NadM) complexed with ADPRP and NAD from Synechocystis sp. 2QJT ; 2.3 ; Crystal structure of a bifunctional NMN adenylyltransferase/ADP ribose pyrophosphatase complexed with AMP and MN ion from Francisella tularensis 2R5W ; 2.3 ; Crystal structure of a bifunctional NMN adenylyltransferase/ADP ribose pyrophosphatase from Francisella tularensis 1GD7 ; 2.0 ; CRYSTAL STRUCTURE OF A BIFUNCTIONAL PROTEIN (CSAA) WITH EXPORT-RELATED CHAPERONE AND TRNA-BINDING ACTIVITIES. 4LGC ; 2.19 ; Crystal structure of a bile acid-coenzyme A ligase (baiB) from Clostridium scindens (VPI 12708) at 2.19 A resolution 4L8P ; 1.6 ; Crystal structure of a bile-acid 7-alpha dehydratase (CLOHIR_00079) from Clostridium hiranonis DSM 13275 at 1.60 A resolution 4N3V ; 1.89 ; Crystal structure of a bile-acid 7-alpha dehydratase (CLOHIR_00079) from Clostridium hiranonis DSM 13275 at 1.89 A resolution with product added 4L8O ; 2.2 ; Crystal structure of a bile-acid 7-alpha dehydratase (CLOHYLEM_06634) from Clostridium hylemonae DSM 15053 at 2.20 A resolution 4LEH ; 2.9 ; Crystal structure of a bile-acid 7-alpha dehydratase (CLOSCI_03134) from Clostridium scindens ATCC 35704 at 2.90 A resolution 1LC3 ; 1.5 ; Crystal Structure of a Biliverdin Reductase Enzyme-Cofactor Complex 2QYI ; 2.6 ; Crystal structure of a binary complex between an engineered trypsin inhibitor and Bovine trypsin 3I29 ; 2.4 ; Crystal structure of a binary complex between an mutant trypsin inhibitor with bovine trypsin 1AJ2 ; 2.0 ; CRYSTAL STRUCTURE OF A BINARY COMPLEX OF E. COLI DIHYDROPTEROATE SYNTHASE 1RB0 ; 1.35 ; CRYSTAL STRUCTURE OF A BINARY COMPLEX OF E. COLI HPPK WITH 6-HYDROXYMETHYLPTERIN-DIPHOSPHATE AT 1.35 ANGSTROM RESOLUTION 4QRM ; 4.315 ; crystal structure of a binary complex of FliM-FliG middle domains from T.maritima 1DAW ; 2.2 ; CRYSTAL STRUCTURE OF A BINARY COMPLEX OF PROTEIN KINASE CK2 (ALPHA-SUBUNIT) AND MG-AMPPNP 1DAY ; 2.2 ; CRYSTAL STRUCTURE OF A BINARY COMPLEX OF PROTEIN KINASE CK2 (ALPHA-SUBUNIT) AND MG-GMPPNP 1LP4 ; 1.86 ; Crystal structure of a binary complex of the catalytic subunit of protein kinase CK2 with Mg-AMPPNP 3N5L ; 1.97 ; Crystal structure of a binding protein component of ABC phosphonate transporter (PA3383) from Pseudomonas aeruginosa at 1.97 A resolution 7CY9 ; 1.36 ; Crystal structure of a biodegradable plastic-degrading cutinase from Paraphoma sp. B47-9 solved by getting the phase from anomalous scattering of uncovalently coordinated arsenic (cacodylate). 7CY3 ; 1.27 ; Crystal structure of a biodegradable plastic-degrading cutinase from Paraphoma sp. B47-9. 7CW1 ; 1.7 ; Crystal structure of a biodegradable plastic-degrading cutinase-like enzyme from the phyllosphere yeast, Pseudozyma antarctica, solved by getting the phase from anomalous scattering of uncovalently coordinated arsenic (cacodylate). 1EKU ; 2.9 ; CRYSTAL STRUCTURE OF A BIOLOGICALLY ACTIVE SINGLE CHAIN MUTANT OF HUMAN IFN-GAMMA 3BFM ; 1.7 ; Crystal structure of a biotin protein ligase-like protein of unknown function (tm1040_0394) from silicibacter sp. tm1040 at 1.70 A resolution 1F27 ; 1.3 ; CRYSTAL STRUCTURE OF A BIOTIN-BINDING RNA PSEUDOKNOT 2PXH ; 1.97 ; Crystal structure of a bipyridylalanyl-tRNA synthetase 2PGG ; 2.5 ; Crystal Structure of a Birnavirus (IBDV) RNA-dependent RNA Polymerase VP1 6T9E ; 2.989 ; Crystal structure of a bispecific DutaFab in complex with human PDGF 6T9D ; 2.905 ; Crystal structure of a bispecific DutaFab in complex with human VEGF121 4FR9 ; 1.2 ; Crystal structure of a BLIP-like protein (BF1215) from Bacteroides fragilis NCTC 9343 at 1.20 A resolution 4KNF ; 2.6 ; Crystal structure of a blue-light absorbing proteorhodopsin double-mutant D97N/Q105L from HOT75 4KLY ; 2.7 ; Crystal structure of a blue-light absorbing proteorhodopsin mutant D97N from HOT75 1TR0 ; 1.8 ; Crystal Structure of a boiling stable protein SP1 3O2E ; 1.95 ; Crystal structure of a bol-like protein from babesia bovis 2VE7 ; 2.88 ; Crystal structure of a bonsai version of the human Ndc80 complex 2FID ; 2.8 ; Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin 2FIF ; 2.49 ; Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin 1PBI ; 2.7 ; CRYSTAL STRUCTURE OF A BOWMAN-BIRK INHIBITOR FROM PEA SEEDS 2R33 ; 2.5 ; Crystal structure of a Bowman-Birk inhibitor from Vigna unguiculata seeds 2FI4 ; 1.58 ; Crystal structure of a BPTI variant (Cys14->Ser) in complex with trypsin 2FI3 ; 1.58 ; Crystal structure of a BPTI variant (Cys14->Ser, Cys38->Ser) in complex with trypsin 2FI5 ; 1.58 ; Crystal structure of a BPTI variant (Cys38->Ser) in complex with trypsin 4WO5 ; 2.83 ; Crystal structure of a BRAF kinase domain monomer 3LKB ; 2.4 ; Crystal structure of a branched chain amino acid ABC transporter from Thermus thermophilus with bound valine 3N0W ; 1.88 ; Crystal structure of a branched chain amino acid ABC transporter periplasmic ligand-binding protein (Bxe_C0949) from BURKHOLDERIA XENOVORANS LB400 at 1.88 A resolution 1YCO ; 2.4 ; Crystal structure of a branched-chain phosphotransacylase from Enterococcus faecalis V583 8R2G ; 3.45 ; Crystal structure of a BRCA2-DMC1 complex 7YAO ; 1.5 ; Crystal structure of a bright green fluorescent protein (oxStayGold) in jellyfish Cytaeis uchidae from Biortus 7Y40 ; 1.7 ; Crystal structure of a bright green fluorescent protein (StayGold) in jellyfish Cytaeis uchidae from Biortus 8J2K ; 1.7 ; Crystal structure of a bright green fluorescent protein (StayGold) with double mutation (N137A, Q140S) in jellyfish Cytaeis uchidae from Biortus 8J2L ; 1.7 ; Crystal structure of a bright green fluorescent protein (StayGold) with double mutations (N137A, Y187F) in jellyfish Cytaeis uchidae from Biortus 8J3J ; 1.7 ; Crystal structure of a bright green fluorescent protein (StayGold) with double mutations (Q140S, Y187F) in jellyfish Cytaeis uchidae from Biortus 8GYF ; 2.0 ; Crystal structure of a bright green fluorescent protein (StayGold) with single mutation (K192Y) in jellyfish Cytaeis uchidae from Biortus 8J2H ; 1.7 ; Crystal structure of a bright green fluorescent protein (StayGold) with single mutation (N137A) in jellyfish Cytaeis uchidae from Biortus 8J2I ; 1.75 ; Crystal structure of a bright green fluorescent protein (StayGold) with single mutation (Q140S) in jellyfish Cytaeis uchidae from Biortus 8J2J ; 1.9 ; Crystal structure of a bright green fluorescent protein (StayGold) with single mutation (Y187F) in jellyfish Cytaeis uchidae from Biortus 7YRE ; 2.3 ; Crystal structure of a bright green fluorescent protein (StayGold) with triple mutations (N137A, Q140S, Y187F) in jellyfish Cytaeis uchidae from Biortus 4DYJ ; 2.45 ; Crystal structure of a broad specificity amino acid racemase (Bar) within internal aldimine linkage 1N0X ; 1.8 ; Crystal Structure of a Broadly Neutralizing Anti-HIV-1 Antibody in Complex with a Peptide Mimotope 1QBP ; 2.1 ; CRYSTAL STRUCTURE OF A BROMINATED RNA HELIX WITH FOUR MISMATCHED BASE PAIRS 6V6R ; 2.7 ; Crystal Structure of a Bromine Derivatized Self-Assembling DNA Crystal Scaffold with Rhombohedral Symmetry. 3PL0 ; 1.91 ; Crystal structure of a bsmA homolog (Mpe_A2762) from Methylobium petroleophilum PM1 at 1.91 A resolution 1TFV ; 2.9 ; CRYSTAL STRUCTURE OF A BUFFALO SIGNALING GLYCOPROTEIN (SPB-40) SECRETED DURING INVOLUTION 1JZV ; 1.7 ; Crystal structure of a bulged RNA from the SL2 stem-loop of the HIV-1 psi-RNA 1P79 ; 1.1 ; Crystal structure of a bulged RNA tetraplex: implications for a novel binding site in RNA tetraplex 2PU5 ; 2.3 ; Crystal Structure of a C-C bond hydrolase, BphD, from Burkholderia xenovorans LB400 4O88 ; 2.9 ; Crystal structure of a C-tagged Nuclease 3HRN ; 1.9 ; crystal structure of a C-terminal coiled coil domain of Transient receptor potential (TRP) channel subfamily P member 2 (TRPP2, polycystic kidney disease 2) 3HRO ; 1.9 ; Crystal structure of a C-terminal coiled coil domain of Transient receptor potential (TRP) channel subfamily P member 2 (TRPP2, polycystic kidney disease 2) 1PJK ; 2.5 ; Crystal Structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit 3AQJ ; 1.27 ; Crystal Structure of a C-terminal domain of the bacteriophage P2 tail spike protein, gpV 1LVA ; 2.12 ; Crystal structure of a C-terminal fragment of Moorella thermoacetica elongation factor SelB 1O6A ; 1.85 ; CRYSTAL STRUCTURE OF A C-TERMINAL FRAGMENT OF THE PUTATIVE FLAGELLAR MOTOR SWITCH PROTEIN FLIN (TM0680) FROM THERMOTOGA MARITIMA AT 1.85 A RESOLUTION 6H3Z ; 3.0 ; Crystal structure of a C-terminal MIF4G domain in NOT1 4Q20 ; 2.5 ; Crystal structure of a C-terminal part of tyrosine kinase (DivL) from Caulobacter crescentus CB15 at 2.50 A resolution (PSI Community Target, Shapiro) 2NV5 ; 2.0 ; Crystal structure of a C-terminal phosphatase domain of Rattus norvegicus ortholog of human protein tyrosine phosphatase, receptor type, D (PTPRD) 6CUM ; 1.6 ; Crystal structure of a C-terminal proteolytic fragment of a protein annotated as an LAO/AO transport system ATPase but likely MeaB and MMAA-like GTPase from Mycobacterium smegmatis 5IZT ; 1.9 ; Crystal structure of a C-terminal proteolytic fragment of an outer surface protein from Borrelia burgdorferi 1YZ7 ; 2.26 ; Crystal structure of a C-terminal segment of the alpha subunit of aIF2 from Pyrococcus abyssi 3M1L ; 2.52 ; Crystal structure of a C-terminal trunacted mutant of a putative ketoacyl reductase (FabG4) from Mycobacterium tuberculosis H37Rv at 2.5 Angstrom resolution 4ICA ; 2.7 ; Crystal structure of a C-terminal truncated form of the matrix subunit (p15) of Feline Immunodeficiency Virus (FIV) 4JHS ; 3.0 ; Crystal structure of a C-terminal two domain fragment of human beta-2-glycoprotein 1 5IHX ; 2.298 ; Crystal Structure of a C-terminally truncated Aspergillus nidulans mitochondrial tyrosyl-tRNA synthetase 5IJX ; 2.63 ; Crystal Structure of a C-terminally truncated Coccidioides posadasii mitochondrial tyrosyl-tRNA synthetase 1Y42 ; 1.95 ; Crystal structure of a C-terminally truncated CYT-18 protein 4OJM ; 1.95 ; Crystal structure of a C-terminally truncated CYT-18 protein including N-terminal residues 6EJQ ; 2.3 ; Crystal structure of a C-terminally truncated small terminase protein from the thermophilic bacteriophage G20c 5OW3 ; 2.75 ; Crystal structure of a C-terminally truncated trimeric ectodomain of the Arabidopsis thaliana gamete fusion protein HAP2 4OJE ; 2.57 ; Crystal structure of a C-terminally truncated trimeric ectodomain of the C. elegans fusion protein EFF-1 4OJD ; 2.26 ; Crystal structure of a C-terminally truncated trimeric ectodomain of the C. elegans fusion protein EFF-1 G260A/D321E/D322E mutant 5MF1 ; 3.3 ; Crystal structure of a C-terminally truncated trimeric ectodomain of the Chlamydomonas reinhardtii gamete fusion protein HAP2 8QTT ; 2.35 ; Crystal structure of a C-terminally truncated version of Arabidopsis thaliana 14-3-3 omega in complex with a phosphopeptide from the inhibitor protein BKI1. 8QTF ; 1.9 ; Crystal structure of a C-terminally truncated version of Arabidopsis thaliana 14-3-3 omega in complex with a phosphopeptide from the transcription factor BZR1. 1KTG ; 1.8 ; Crystal Structure of a C. elegans Ap4A Hydrolase Binary Complex 5UJC ; 1.35 ; Crystal structure of a C.elegans B12-trafficking protein CblC, a human MMACHC homologue 7XPL ; 2.213 ; Crystal structure of a C/D-free RNA-guided RNA 2'-O-methyltransferase 2R4H ; 2.05 ; Crystal structure of a C1190S mutant of the 6th PDZ domain of human membrane associated guanylate kinase 3FDW ; 2.2 ; Crystal structure of a C2 domain from human synaptotagmin-like protein 4 4DNL ; 1.9 ; Crystal structure of a C2 domain of a protein kinase C alpha (PRKCA) from Homo sapiens at 1.90 A resolution 7DF2 ; 1.7 ; Crystal structure of a C2 domain protein from Ramazzottius varieornatus 4PO3 ; 1.96 ; Crystal structure of a C4-C4 SN3 tributyrin phosphonate inhibited by ESTERASE B from LACTOBACILLUS RHAMNOSIS 8AJK ; 1.6 ; Crystal structure of a C43S variant from the disulfide reductase MerA from Staphylococcus aureus 1OWS ; 2.3 ; Crystal structure of a C49 Phospholipase A2 from Indian cobra reveals carbohydrate binding in the hydrophobic channel 4OUK ; 2.0 ; Crystal structure of a C6-C4 SN3 inhibited ESTERASE B from LACTOBACILLUS RHAMNOSIS 1SJ4 ; 2.7 ; Crystal structure of a C75U mutant Hepatitis Delta Virus ribozyme precursor, in Cu2+ solution 4N5I ; 2.0 ; Crystal Structure of a C8-C4 Sn3 Inhibited Esterase B from Lactobacillus Rhamnosis 1S36 ; 1.96 ; Crystal structure of a Ca2+-discharged photoprotein: Implications for the mechanisms of the calcium trigger and the bioluminescence 3B5O ; 1.35 ; CRYSTAL STRUCTURE OF A CADD-LIKE PROTEIN OF UNKNOWN FUNCTION (NPUN_F6505) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.35 A RESOLUTION 3B5P ; 2.0 ; Crystal structure of a cadd-like protein of unknown function (npun_f6505) from nostoc punctiforme pcc 73102 at 2.00 A resolution 8AK1 ; 1.84 ; Crystal structure of a CagI:K2 complex 4ED9 ; 1.95 ; Crystal structure of a CAIB/BAIF family protein from Brucella suis 3U1W ; 2.0 ; Crystal structure of a Calcium binding protein (BDI_1975) from Parabacteroides distasonis ATCC 8503 at 2.00 A resolution 6QM3 ; 2.0 ; Crystal structure of a calcium- and sodium-bound mouse Olfactomedin-1 disulfide-linked dimer of the Olfactomedin domain and part of coiled coil 2GHS ; 1.55 ; CRYSTAL STRUCTURE OF A CALCIUM-BINDING PROTEIN, REGUCALCIN (AGR_C_1268) FROM AGROBACTERIUM TUMEFACIENS STR. C58 AT 1.55 A RESOLUTION 1MH7 ; 2.0 ; Crystal Structure of a Calcium-Free Isoform of Phospholipase A2 from Naja naja sagittifera at 2.0 A Resolution 1CLP ; 2.8 ; CRYSTAL STRUCTURE OF A CALCIUM-INDEPENDENT PHOSPHOLIPASELIKE MYOTOXIC PROTEIN FROM BOTHROPS ASPER VENOM 4PWY ; 1.9 ; Crystal structure of a Calmodulin-lysine N-methyltransferase fragment 1MEL ; 2.5 ; CRYSTAL STRUCTURE OF A CAMEL SINGLE-DOMAIN VH ANTIBODY FRAGMENT IN COMPLEX WITH LYSOZYME 2XXC ; 1.67 ; Crystal structure of a camelid VHH raised against the HIV-1 capsid protein C-terminal domain. 1OL0 ; 1.8 ; Crystal structure of a camelised human VH 6M63 ; 2.25 ; Crystal structure of a cAMP sensor G-Flamp1. 7OOL ; 2.85 ; Crystal structure of a Candidatus photodesmus katoptron thioredoxin chimera containing an ancestral loop 4QYK ; 3.5 ; Crystal structure of a canine parvovirus variant 6TKU ; 1.8 ; Crystal structure of a capsule-specific depolymerase produced by Klebsiella phage 5B5S ; 1.5 ; Crystal structure of a carbohydrate esterase family 3 from Talaromyces cellulolyticus 1U4J ; 2.18 ; Crystal structure of a carbohydrate induced dimer of group I phospholipase A2 from Bungarus caeruleus at 2.1 A resolution 3K5W ; 2.6 ; Crystal structure of a Carbohydrate kinase (YjeF family)from Helicobacter pylori 4GKX ; 2.7 ; Crystal structure of a carbohydrate-binding domain 4GKY ; 2.4201 ; Crystal structure of a carbohydrate-binding domain 3R1W ; 1.73 ; Crystal structure of a carbonic anhydrase from a crude oil degrading psychrophilic library 3CTM ; 2.69 ; Crystal Structure of a Carbonyl Reductase from Candida Parapsilosis with anti-Prelog Stereo-specificity 5WQM ; 2.6 ; Crystal structure of a carbonyl reductase from Pseudomonas aeruginosa PAO1 (condition I) 5WQN ; 2.0 ; Crystal structure of a carbonyl reductase from Pseudomonas aeruginosa PAO1 (condition II) 5WQO ; 1.78 ; Crystal structure of a carbonyl reductase from Pseudomonas aeruginosa PAO1 in complex with NADP (condition I) 5WQP ; 1.7 ; Crystal structure of a carbonyl reductase from Pseudomonas aeruginosa PAO1 in complex with NADP (condition II) 8JQK ; 1.63 ; Crystal structure of a carbonyl reductase SSCR mutant from Sporobolomyces Salmonicolor 4FHZ ; 2.01 ; Crystal structure of a carboxyl esterase at 2.0 angstrom resolution 4FTW ; 2.3 ; Crystal structure of a carboxyl esterase N110C/L145H at 2.3 angstrom resolution 1MEG ; 2.0 ; CRYSTAL STRUCTURE OF A CARICAIN D158E MUTANT IN COMPLEX WITH E-64 4HDT ; 1.6 ; Crystal structure of a Carnitinyl-CoA dehydratase from Mycobacterium thermoresistibile 5X62 ; 2.204 ; Crystal structure of a carnosine N-methyltransferase bound by AdoHcy 1EAP ; 2.4 ; CRYSTAL STRUCTURE OF A CATALYTIC ANTIBODY WITH A SERINE PROTEASE ACTIVE SITE 2GFB ; 3.0 ; CRYSTAL STRUCTURE OF A CATALYTIC FAB HAVING ESTERASE-LIKE ACTIVITY 4JJ4 ; 2.13 ; Crystal structure of a catalytic mutant of Axe2 (Axe2-D191A), an acetylxylan esterase from Geobacillus stearothermophilus 4JJ6 ; 1.8 ; Crystal structure of a catalytic mutant of Axe2 (Axe2-H194A), an acetylxylan esterase from Geobacillus stearothermophilus 4JKO ; 1.9 ; Crystal structure of a catalytic mutant of Axe2 (Axe2_S15A), an acetylxylan esterase from Geobacillus stearothermophilus 1ZCP ; 2.3 ; Crystal Structure of a catalytic site mutant E. coli TrxA (CACA) 1P14 ; 1.9 ; Crystal structure of a catalytic-loop mutant of the insulin receptor tyrosine kinase 3PLA ; 3.15 ; Crystal structure of a catalytically active substrate-bound box C/D RNP from Sulfolobus solfataricus 2W2D ; 2.59 ; Crystal Structure of a Catalytically Active, Non-toxic Endopeptidase Derivative of Clostridium botulinum Toxin A 6VJB ; 2.24 ; Crystal structure of a catalytically inactive CXC Chemokine-degrading protease SpyCEP from Streptococcus pyogenes 2W8S ; 2.4 ; CRYSTAL STRUCTURE OF A catalytically promiscuous PHOSPHONATE MONOESTER HYDROLASE FROM Burkholderia caryophylli 8H0R ; 1.201 ; Crystal structure of a cataract-causing crystallin mutant (mouse CRYBB1 Y202X) 2EY4 ; 2.11 ; Crystal Structure of a Cbf5-Nop10-Gar1 Complex 3U28 ; 1.9 ; Crystal structure of a Cbf5-Nop10-Gar1 complex from Saccharomyces cerevisiae 2UV4 ; 1.33 ; Crystal Structure of a CBS domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP 2UV5 ; 1.69 ; Crystal Structure of a CBS domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP 2UV6 ; 2.0 ; Crystal Structure of a CBS domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP 2UV7 ; 2.0 ; Crystal Structure of a CBS domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP 1VR9 ; 1.7 ; CRYSTAL STRUCTURE OF A CBS DOMAIN PAIR/ACT DOMAIN PROTEIN (TM0892) FROM THERMOTOGA MARITIMA AT 1.70 A RESOLUTION 1O50 ; 1.87 ; Crystal structure of a cbs domain-containing protein (tm0935) from thermotoga maritima at 1.87 A resolution 3DDJ ; 1.8 ; Crystal structure of a cbs domain-containing protein in complex with amp (sso3205) from sulfolobus solfataricus at 1.80 A resolution 6Q5P ; 1.44 ; Crystal structure of a CC-Hex mutant that forms a parallel six-helix coiled coil CC-Hex*-II 6Q5J ; 1.69 ; Crystal structure of a CC-Hex mutant that forms a parallel six-helix coiled coil CC-Hex*-L24E 6Q5N ; 2.0 ; Crystal structure of a CC-Hex mutant that forms a parallel six-helix coiled coil CC-Hex*-L24Nle 6Q5H ; 1.2 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-L24D 6Q5M ; 1.5 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-L24Dab 6Q5I ; 1.76 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-L24E 6Q5L ; 1.41 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-L24H 6Q5K ; 1.65 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-L24K 6Q5O ; 1.0 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-LL 6Q5R ; 1.61 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex*-LL-KgEb 6Q5Q ; 1.08 ; Crystal structure of a CC-Hex mutant that forms an antiparallel four-helix coiled coil CC-Hex-KgEb 1ZVV ; 2.98 ; Crystal structure of a ccpa-crh-dna complex 3TYF ; 2.806 ; Crystal structure of a CD1d-lysophosphatidylcholine reactive iNKT TCR 2ATP ; 2.4 ; Crystal structure of a CD8ab heterodimer 4LPA ; 2.9 ; Crystal structure of a Cdc6 phosphopeptide in complex with Cks1 5IEY ; 1.66 ; Crystal structure of a CDK inhibitor bound to CDK2 4TTH ; 2.9 ; Crystal structure of a CDK6/Vcyclin complex with inhibitor bound 3HKO ; 1.8 ; Crystal structure of a cdpk kinase domain from cryptosporidium Parvum, cgd7_40 1TY4 ; 2.2 ; Crystal structure of a CED-9/EGL-1 complex 1N0E ; 2.7 ; CRYSTAL STRUCTURE OF A CELL DIVISION AND CELL WALL BIOSYNTHESIS PROTEIN UPF0040 FROM MYCOPLASMA PNEUMONIAE: INDICATION OF A NOVEL FOLD WITH A POSSIBLE NEW CONSERVED SEQUENCE MOTIF 1N0F ; 2.8 ; CRYSTAL STRUCTURE OF A CELL DIVISION AND CELL WALL BIOSYNTHESIS PROTEIN UPF0040 FROM MYCOPLASMA PNEUMONIAE: INDICATION OF A NOVEL FOLD WITH A POSSIBLE NEW CONSERVED SEQUENCE MOTIF 1N0G ; 2.8 ; Crystal Structure of A Cell Division and Cell Wall Biosynthesis Protein UPF0040 from Mycoplasma pneumoniae: Indication of A Novel Fold with A Possible New Conserved Sequence Motif 1RJ1 ; 1.87 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco 2CJ5 ; 1.84 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco (pH 5.0) 2CJ6 ; 2.0 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco (pH 7.5) 2CJ7 ; 1.8 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco (pH 9.0) 2CJ8 ; 2.38 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco (pH 9.5) 2CJ4 ; 1.63 ; Crystal Structure of a Cell Wall Invertase Inhibitor from Tobacco at pH 4.6 2QQU ; 2.84 ; Crystal structure of a cell-wall invertase (D239A) from Arabidopsis thaliana in complex with sucrose 2QQW ; 2.8 ; Crystal structure of a cell-wall invertase (D23A) from Arabidopsis thaliana in complex with sucrose 2QQV ; 3.01 ; Crystal structure of a cell-wall invertase (E203A) from Arabidopsis thaliana in complex with sucrose 2OXB ; 2.6 ; Crystal structure of a cell-wall invertase (E203Q) from Arabidopsis thaliana in complex with sucrose 2AC1 ; 2.15 ; Crystal structure of a cell-wall invertase from Arabidopsis thaliana 5UFV ; 2.45 ; Crystal Structure of a Cellulose-active Polysaccharide Monooxygenase from M. thermophila (MtPMO3*) 7V0J ; 2.4 ; Crystal structure of a CelR catalytic domain active site mutant with bound cellobiose product 7V0I ; 1.9 ; Crystal structure of a CelR catalytic domain active site mutant with bound cellohexaose substrate 4JON ; 2.15 ; Crystal structure of a centrosomal protein 170kDa, transcript variant beta (CEP170) from Homo sapiens at 2.15 A resolution (PSI Community Target, Sundstrom) 7P0I ; 2.3 ; Crystal structure of a CGRP receptor ectodomain heterodimer bound to macrocyclic inhibitor Compound 13 7P0F ; 1.85 ; Crystal structure of a CGRP receptor ectodomain heterodimer bound to macrocyclic inhibitor HTL0028125 8AX5 ; 2.75 ; Crystal structure of a CGRP receptor ectodomain heterodimer bound to macrocyclic inhibitor HTL0029881 8AX6 ; 1.9 ; Crystal structure of a CGRP receptor ectodomain heterodimer bound to macrocyclic inhibitor HTL0029882 8AX7 ; 1.65 ; Crystal structure of a CGRP receptor ectodomain heterodimer bound to macrocyclic inhibitor HTL0031448 6ZHO ; 1.6 ; Crystal structure of a CGRP receptor ectodomain heterodimer with bound high affinity inhibitor 6ZIS ; 1.73 ; Crystal structure of a CGRP receptor ectodomain heterodimer with bound high affinity inhibitor 6QV7 ; 1.72 ; Crystal structure of a CHAD domain from Chlorobium tepidum 6QVA ; 2.05 ; Crystal structure of a CHAD domain from Chlorobium tepidum in complex with inorganic polyphosphate 3RG6 ; 3.2 ; Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco 3LN2 ; 2.037 ; Crystal Structure of a Charge Engineered Human Lysozyme Variant 3QTA ; 2.0 ; Crystal structure of a CheC-like protein (rrnAC0528) from Haloarcula marismortui ATCC 43049 at 2.00 A resolution 2O40 ; 1.65 ; Crystal Structure of a Chemically Synthesized 203 Amino Acid 'Covalent Dimer' HIV-1 Protease Molecule 3HZC ; 1.45 ; Crystal structure of a chemically synthesized 203 amino acid 'covalent dimer' [Gly51;Aib51']HIV-1 protease molecule complexed with MVT-101 reduced isostere inhibitor 3IAW ; 1.61 ; Crystal structure of a chemically synthesized 203 amino acid 'covalent dimer' [Gly51;Aib51']HIV-1 protease molecule complexed with MVT-101 reduced isostere inhibitor at 1.6 A resolution 3FSM ; 1.6 ; CRYSTAL STRUCTURE OF A CHEMICALLY SYNTHESIZED 203 AMINO ACID 'COVALENT DIMER' [L-Ala51,D-Ala51'] HIV-1 PROTEASE MOLECULE 3GI0 ; 1.8 ; Crystal structure of a chemically synthesized 203 amino acid 'covalent dimer' [l-ala51,d-ala51'] hiv-1 protease molecule complexed with jg-365 inhibitor 3I2L ; 1.5 ; Crystal structure of a chemically synthesized [allo-Ile50/50']HIV-1 protease molecule complexed with MVT-101 reduced isostere inhibitor 3IA9 ; 1.3 ; Crystal structure of a chemically synthesized [D25N]HIV-1 protease molecule complexed with MVT-101 reduced isostere inhibitor 4Q6Y ; 3.0 ; Crystal structure of a chemoenzymatic glycoengineered disialylated Fc (di-sFc) 3H2D ; 1.86 ; Crystal structure of a chemotactic chec-like protein (so_3915) from shewanella oneidensis mr-1 at 1.86 A resolution 3HM4 ; 1.3 ; CRYSTAL STRUCTURE OF A CHEMOTAXIS PROTEIN CHEX (DDE_0281) FROM DESULFOVIBRIO DESULFURICANS SUBSP. AT 1.30 A RESOLUTION 4LDA ; 2.4 ; Crystal structure of a CheY-like protein (tadZ) from Pseudomonas aeruginosa PAO1 at 2.70 A resolution 3U9D ; 2.5 ; Crystal Structure of a chimera containing the N-terminal domain (residues 8-24) of drosophila Ciboulot and the C-terminal domain (residues 13-44) of bovine Thymosin-beta4, bound to G-actin-ATP 3U8X ; 2.0 ; Crystal Structure of a chimera containing the N-terminal domain (residues 8-29) of drosophila Ciboulot and the C-terminal domain (residues 18-44) of bovine Thymosin-beta4, bound to G-actin-ATP 3SJH ; 1.75 ; Crystal Structure of a chimera containing the N-terminal domain (residues 8-29) of drosophila Ciboulot and the C-terminal domain (residues 18-44) of bovine Thymosin-beta4, bound to G-actin-ATP-Latrunculin A 1DOW ; 1.8 ; CRYSTAL STRUCTURE OF A CHIMERA OF BETA-CATENIN AND ALPHA-CATENIN 5J5J ; 3.29 ; Crystal structure of a chimera of human Desmocollin-2 EC1 and human Desmoglein-2 EC2-EC5 2VFA ; 2.8 ; Crystal structure of a chimera of Plasmodium falciparum and human hypoxanthine-guanine phosphoribosyl transferases 5TVC ; 1.926 ; Crystal structure of a chimeric acetylcholine binding protein from Aplysia californica (Ac-AChBP) containing loop C from the human alpha 3 nicotinic acetylcholine receptor in complex with (E,2S)-N-methyl-5-(5-phenoxy-3-pyridyl)pent-4-en-2-amine (TI-5312) 4ZK4 ; 1.901 ; Crystal structure of a chimeric acetylcholine binding protein from Aplysia californica (Ac-AChBP) containing loop C from the human alpha 3 nicotinic acetylcholine receptor in complex with 7-(5-isopropoxy-pyridin-3-yl)-1-methyl-1,7-diaza-spiro[4.4]nonane 5SYO ; 2.0 ; Crystal structure of a chimeric acetylcholine binding protein from Aplysia californica (Ac-AChBP) containing loop C from the human alpha 3 nicotinic acetylcholine receptor in complex with Cytisine 5KE4 ; 2.554 ; Crystal structure of a chimeric acetylcholine binding protein from Aplysia californica (Ac-AChBP) containing loop C from the human alpha 6 nicotinic acetylcholine receptor in complex with 2-((5-(3,7-Diazabicyclo[3.3.1]nonan-3-yl)pyridin-3-yl)oxy)- N,N-dimethylethanamine (BPC) 4ZJS ; 2.2301 ; Crystal structure of a chimeric acetylcholine binding protein from Aplysia Californica (Ac-AChBP) containing the main immunogenic region (MIR) from the human alpha 1 subunit of the muscle nicotinic acetylcholine receptor in complex with anatoxin-A. 8CQG ; 1.74 ; Crystal Structure of a Chimeric Alpha-Amylase from Pseudoalteromonas Haloplanktis 8CQF ; 2.05 ; Crystal Structure of a Chimeric Alpha-Amylase from Pseudoalteromonas Haloplanktis Complexed with Rearranged Acarbose 1MHP ; 2.8 ; Crystal structure of a chimeric alpha1 integrin I-domain in complex with the Fab fragment of a humanized neutralizing antibody 7JO8 ; 1.399 ; Crystal structure of a Chimeric Antigen Receptor (CAR) scFv domain rearrangement forming a VL-VL dimer 4LE9 ; 1.344 ; Crystal structure of a chimeric c-Src-SH3 domain 5EC7 ; 1.65 ; Crystal structure of a chimeric c-Src-SH3 domain with the sequence of the RT-loop from the Abl-SH3 domain at pH 5.0 5ECA ; 1.16 ; Crystal structure of a chimeric c-Src-SH3 domain with the sequence of the RT-loop from the Abl-SH3 domain at pH 6.5 5U7N ; 2.3 ; CRYSTAL STRUCTURE OF A CHIMERIC CUA DOMAIN (SUBUNIT II) OF CYTOCHROME BA3 FROM THERMUS THERMOPHILUS WITH THE AMICYANIN LOOP 4GRS ; 3.0 ; Crystal structure of a chimeric DAH7PS 1BBJ ; 3.1 ; CRYSTAL STRUCTURE OF A CHIMERIC FAB' FRAGMENT OF AN ANTIBODY BINDING TUMOUR CELLS 4KK2 ; 2.2 ; Crystal structure of a chimeric FPP/GFPP synthase (TARGET EFI-502313c) from Artemisia spiciformiS (1-72:GI751454468,73-346:GI75233326), apo structure 4WB7 ; 1.9 ; Crystal structure of a chimeric fusion of human DnaJ (Hsp40) and cAMP-dependent protein kinase A (catalytic alpha subunit) 6CDU ; 3.45 ; Crystal structure of a chimeric human alpha1GABAA receptor in complex with alphaxalone 5J03 ; 2.0 ; Crystal Structure of a chimeric Kv7.2 - Kv7.3 proximal C-terminal Domain in Complex with Calmodulin 8A6X ; 2.45 ; Crystal structure of a chimeric LOV-Histidine kinase SB2F1 (asymmetrical variant, trigonal form with long c axis) 8A52 ; 2.461 ; Crystal structure of a chimeric LOV-Histidine kinase SB2F1 (asymmetrical variant, trigonal form with long c-axis) 8A3U ; 2.33 ; Crystal structure of a chimeric LOV-Histidine kinase SB2F1 (symmetrical variant, trigonal form with short c-axis) 8A7F ; 2.71 ; Crystal structure of a chimeric LOV-Histidine kinase SB2F1-I66R mutant (asymmetrical variant, trigonal form with long c axis) 8A7H ; 3.145 ; Crystal structure of a chimeric LOV-Histidine kinase SB2F1-I66R mutant (light state; asymmetrical variant, trigonal form with long c axis) 6V4R ; 3.48 ; Crystal structure of a chimeric MR78-like antibody chimera-1 Fab 4X2Y ; 2.417 ; Crystal structure of a chimeric Murine Norovirus NS6 protease (inactive C139A mutant) in which the P4-P4 prime residues of the cleavage junction in the extended C-terminus have been replaced by the corresponding residues from the NS2-3 junction. 6C6I ; 1.65 ; Crystal structure of a chimeric NDM-1 metallo-beta-lactamase harboring the IMP-1 L3 loop 7ZR2 ; 1.45 ; Crystal structure of a chimeric protein mimic of SARS-CoV-2 Spike HR1 in complex with HR2 4D7Q ; 2.0 ; Crystal structure of a chimeric protein with the Sec7 domain of Legionella pneumophila RalF and the capping domain of Rickettsia prowazekii RalF 4D7R ; 1.8 ; Crystal structure of a chimeric protein with the Sec7 domain of Rickettsia prowazekii RalF and the capping domain of Legionella pneumophila RalF 3D8M ; 3.35 ; Crystal structure of a chimeric receptor binding protein from lactococcal phages subspecies TP901-1 and p2 3I2X ; 2.85 ; Crystal structure of a chimeric trypsin inhibitor having reactive site loop of ETI on the scaffold of WCI 3I2A ; 2.3 ; Crystal structure of a chimeric trypsin inhibitor protein STI(L)-WCI(S) 6H1Y ; 2.99 ; CRYSTAL STRUCTURE OF A CHIMERIC VARIANT OF THIOREDOXIN FROM ESCHERICHIA COLI 3UAM ; 2.0 ; Crystal structure of a chitin binding domain from Burkholderia pseudomallei 6VJ0 ; 1.9 ; Crystal structure of a chitin-binding protein from Moringa oleifera seeds (Mo-CBP4) 3G6M ; 1.65 ; crystal structure of a chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with a potent inhibitor caffeine 3CO4 ; 1.92 ; Crystal structure of a chitinase from Bacteroides thetaiotaomicron 3FND ; 1.9 ; Crystal structure of a chitinase from Bacteroides thetaiotaomicron 3IAN ; 1.75 ; Crystal structure of a chitinase from Lactococcus lactis subsp. lactis 4DWS ; 1.8 ; Crystal Structure of a chitinase from the Yersinia entomophaga toxin complex 7TPU ; 2.194 ; Crystal structure of a chitinase-modifying protein from Fusarium vanettenii (Fvan-cmp) 4HSC ; 2.1 ; Crystal structure of a cholesterol dependent cytolysin 6FNY ; 2.79 ; CRYSTAL STRUCTURE OF A CHOLINE SULFATASE FROM SINORHIZOBIUM MELLILOTI 8WAB ; 2.2 ; Crystal structure of a chondroitin sulfate-binding carbohydrate binding module of a chondroitinase 3FBT ; 2.1 ; Crystal structure of a chorismate mutase/shikimate 5-dehydrogenase fusion protein from Clostridium acetobutylicum 4FMT ; 2.3 ; Crystal structure of a ChpT protein (CC_3470) from Caulobacter crescentus CB15 at 2.30 A resolution 3S2Y ; 2.244 ; Crystal structure of a chromate/uranium reductase from Gluconacetobacter hansenii 5UFL ; 3.0 ; Crystal structure of a CIP2A core domain 7M6U ; 2.59 ; Crystal structure of a circular permutation and computationally designed pro-enzyme of carboxypeptidase G2 5ZMU ; 1.5 ; Crystal structure of a cis-epoxysuccinate hydrolase producing D(-)-tartaric acids 5ZMY ; 1.87 ; Crystal structure of a cis-epoxysuccinate hydrolase producing D(-)-tartaric acids 3R4I ; 2.24 ; Crystal structure of a Citrate lyase (Bxe_B2899) from BURKHOLDERIA XENOVORANS LB400 at 2.24 A resolution 3FT2 ; 1.8 ; Crystal Structure of a citrulline peptide variant of the minor histocompatibility peptide HA-1 in complex with HLA-A2 8QNN ; 1.25 ; Crystal structure of a Class A beta-lactamase from Nocardia cyriacigeorgica 6LFL ; 3.2 ; Crystal structure of a class A GPCR 6K8X ; 1.59 ; Crystal structure of a class C beta lactamase 6KBY ; 1.097 ; Crystal structure of a class C beta lactamase in complex with AMP 5GSC ; 1.953 ; Crystal structure of a class C beta lactamase of Apo form 5K1D ; 1.94 ; Crystal structure of a class C beta lactamase/compound1 complex 5K1F ; 1.94 ; Crystal structure of a class C beta lactamase/compound2 complex 6K9T ; 1.459 ; Crystal structure of a class C beta-lactamase in complex with cefotaxime 6KA5 ; 1.59 ; Crystal structure of a class C beta-lactamase in complex with cefoxitin 7PEH ; 1.92 ; Crystal Structure of a Class D Carbapenemase 7O5N ; 1.6 ; Crystal Structure of a Class D carbapenemase complexed with Avibactam 7O9N ; 1.97 ; Crystal Structure of a Class D Carbapenemase Complexed with Bicarbonate 7O5T ; 1.81 ; Crystal Structure of a Class D Carbapenemase Complexed with Bromide 7PEP ; 1.7 ; Crystal Structure of a Class D Carbapenemase Complexed with Hydrolyzed Imipenem 8QNZ ; 1.53 ; Crystal Structure of a Class D Carbapenemase Complexed with Hydrolyzed Imipenem 7O5Q ; 1.85 ; Crystal Structure of a Class D Carbapenemase Complexed with Hydrolyzed Oxacillin 7PSF ; 2.1 ; Crystal Structure of a Class D Carbapenemase Complexed with Imipenem 7NRJ ; 1.67 ; Crystal Structure of a Class D carbapenemase complexed with iodide 7PEI ; 1.9 ; Crystal Structure of a Class D carbapenemase_E185A/R186A/R206A 7PFN ; 1.8 ; Crystal Structure of a Class D Carbapenemase_K73ALY Complexed with Imipenem 7Q14 ; 2.15 ; Crystal Structure of a Class D Carbapenemase_K73ALY Complexed with Imipenem 7PSE ; 2.32 ; Crystal Structure of a Class D Carbapenemase_K73ALY Complexed with Oxacillin 7PGO ; 1.85 ; Crystal Structure of a Class D Carbapenemase_R250A 7E9E ; 1.57 ; Crystal structure of a class I PreQ1 riboswitch aptamer (ab13-14) complexed with a cognate ligand-derived photoaffinity probe 7E9I ; 2.8 ; Crystal structure of a class I PreQ1 riboswitch aptamer (wild-type) complexed with a cognate ligand-derived photoaffinity probe 6E1S ; 1.8 ; Crystal structure of a class I PreQ1 riboswitch complexed with a synthetic compound 1: 2-[(dibenzo[b,d]furan-2-yl)oxy]ethan-1-amine 6E1T ; 1.8 ; Crystal structure of a class I PreQ1 riboswitch complexed with a synthetic compound 1: 2-[(dibenzo[b,d]furan-2-yl)oxy]ethan-1-amine 6E1U ; 1.94 ; Crystal structure of a class I PreQ1 riboswitch complexed with a synthetic compound 2: 2-[(dibenzo[b,d]furan-2-yl)oxy]-N,N-dimethylethan-1-amine 6E1V ; 2.56 ; Crystal structure of a class I PreQ1 riboswitch complexed with a synthetic compound 3: 2-[(9H-carbazol-3-yl)oxy]-N,N-dimethylethan-1-amine 6E1W ; 1.69 ; Crystal structure of a class I PreQ1 riboswitch complexed with PreQ1 3RLH ; 1.72 ; Crystal structure of a class II phospholipase D from Loxosceles intermedia venom 6R62 ; 1.55 ; Crystal structure of a class II pyruvate aldolase from Sphingomonas wittichii RW1 in complex with hydroxypyruvate 6YII ; 1.44 ; Crystal structure of a Class III adenylyl cyclase-like ATP-binding protein from Pseudomonas aeruginosa 3HMU ; 2.1 ; Crystal structure of a class III aminotransferase from Silicibacter pomeroyi 4HSR ; 2.13 ; Crystal Structure of a class III engineered cephalosporin acylase 3AQU ; 2.01 ; Crystal structure of a class V chitinase from Arabidopsis thaliana 3LVG ; 7.94 ; Crystal structure of a clathrin heavy chain and clathrin light chain complex 3LVH ; 9.0 ; Crystal structure of a clathrin heavy chain and clathrin light chain complex 6D0J ; 3.0 ; Crystal structure of a CLC-type fluoride/proton antiporter 6D0K ; 3.35 ; Crystal structure of a CLC-type fluoride/proton antiporter, E118Q mutant 6D0N ; 3.12 ; Crystal structure of a CLC-type fluoride/proton antiporter, V319G mutant 3DA0 ; 1.65 ; Crystal structure of a cleaved form of a chimeric receptor binding protein from Lactococcal phages subspecies TP901-1 and p2 4ZRS ; 2.0 ; Crystal structure of a cloned feruloyl esterase from a soil metagenomic library 1DO8 ; 2.2 ; CRYSTAL STRUCTURE OF A CLOSED FORM OF HUMAN MITOCHONDRIAL NAD(P)+-DEPENDENT MALIC ENZYME 6FZI ; 2.55 ; Crystal Structure of a Clostridial Dehydrogenase at 2.55 Angstroems Resolution 5L20 ; 1.45 ; Crystal Structure of a Clostripain (BT_0727) from Bacteroides thetaiotaomicron ATCC 29148 in Complex with Peptide Inhibitor BTN-VLTK-AOMK 3UWS ; 1.7 ; Crystal structure of a clostripain (PARMER_00083) from Parabacteroides merdae ATCC 43184 at 1.70 A resolution 4YEC ; 1.12 ; Crystal structure of a clostripain (PARMER_00083) from Parabacteroides merdae ATCC 43184 in complex with peptide inhibitor Ac-VLTK-AOMK 7DQV ; 2.15 ; Crystal structure of a CmABCB1 mutant 7SU2 ; 2.0 ; Crystal structure of a Co-bound RIDC1 variant 4G67 ; 1.8 ; Crystal structure of a COG1565 superfamily member and likely methyl transferase from Burkholderia thailandensis bound to S-adenosyl-homocysteine 4GXW ; 1.3 ; Crystal structure of a cog1816 amidohydrolase (target EFI-505188) from Burkhoderia ambifaria, with bound Zn 3O0Z ; 2.33 ; Crystal structure of a coiled-coil domain from human ROCK I 5AJS ; 2.3 ; Crystal structure of a coiled-coil domain from human THAP11 5XG2 ; 2.0 ; Crystal structure of a coiled-coil segment (residues 345-468 and 694-814) of Pyrococcus yayanosii Smc 2OVC ; 2.07 ; Crystal structure of a coiled-coil tetramerization domain from Kv7.4 channels 1O0Q ; 2.2 ; Crystal structure of a cold adapted alkaline protease from Pseudomonas TAC II 18, co-crystallized with 1 mM EDTA 1O0T ; 2.5 ; CRYSTAL STRUCTURE OF A COLD ADAPTED ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18, CO-CRYSTALLIZED WITH 5 mM EDTA (5 DAYS) 1OM6 ; 2.0 ; CRYSTAL STRUCTURE OF A COLD ADAPTED ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18, CO-CRYSTALLIZED WITH 5mM EDTA (2 MONTHS) 1OM8 ; 2.0 ; CRYSTAL STRUCTURE OF A COLD ADAPTED ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18, CO-CRYSTALLYZED WITH 10 mM EDTA 1OM7 ; 2.8 ; CRYSTAL STRUCTURE OF A COLD ADAPTED ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18, SOAKED IN 85 mM EDTA 1S2N ; 2.44 ; Crystal structure of a cold adapted subtilisin-like serine proteinase 1SH7 ; 1.84 ; Crystal structure of a cold adapted subtilisin-like serine proteinase 5YNL ; 2.349 ; Crystal structure of a cold-adapted arginase from psychrophilic yeast, Glaciozyma antarctica 5EUV ; 2.4 ; Crystal structure of a cold-adapted dimeric beta-D-galactosidase from Paracoccus sp. 32d strain 5LDR ; 3.15 ; Crystal structure of a cold-adapted dimeric beta-D-galactosidase from Paracoccus sp. 32d strain in complex with galactose 6HG7 ; 1.0 ; Crystal structure of a collagen II fragment containing the binding site of PEDF and COMP, (POG)4-LKG HRG FTG LQG-POG(4) 1O91 ; 1.9 ; Crystal Structure of a Collagen VIII NC1 Domain Trimer 2G66 ; 1.8 ; Crystal structure of a collagen-like peptide with 3(S)Hyp in the Xaa position 5Y45 ; 1.03 ; Crystal structure of a collagen-like peptide with interruption sequence 5Y46 ; 1.03 ; Crystal structure of a collagen-like peptide with interruption sequence 7S0R ; 2.5 ; Crystal Structure of a Complement Factor H-binding Fragment within the B75KN Region of the Group B Streptococcus Beta Antigen C Protein 2QF7 ; 2.0 ; Crystal structure of a complete multifunctional pyruvate carboxylase from Rhizobium etli 2ICW ; 2.41 ; Crystal structure of a complete ternary complex between TCR, superantigen, and peptide-MHC class II molecule 3T0E ; 4.0 ; Crystal structure of a complete ternary complex of T cell receptor, peptide-MHC and CD4 1LBZ ; 2.2 ; Crystal Structure of a complex (P32 crystal form) of dual activity FBPase/IMPase (AF2372) from Archaeoglobus fulgidus with 3 Calcium ions and Fructose-1,6 bisphosphate 1LBY ; 2.25 ; Crystal Structure of a complex (P32 crystal form) of dual activity FBPase/IMPase (AF2372) from Archaeoglobus fulgidus with 3 Manganese ions, Fructose-6-Phosphate, and Phosphate ion 4PD2 ; 1.65 ; Crystal structure of a complex between a C248GH LlFpg mutant and a THF containing DNA 2XDM ; 2.4 ; Crystal structure of a complex between Actinomadura R39 DD peptidase and a peptidoglycan mimetic boronate inhibitor 2XK1 ; 2.8 ; Crystal structure of a complex between Actinomadura R39 DD-peptidase and a boronate inhibitor 2XLN ; 2.4 ; Crystal structure of a complex between Actinomadura R39 DD-peptidase and a boronate inhibitor 4B4X ; 2.65 ; Crystal structure of a complex between Actinomadura R39 DD-peptidase and a sulfonamide boronate inhibitor 4B4Z ; 2.2 ; Crystal structure of a complex between Actinomadura R39 DD-peptidase and a sulfonamide boronate inhibitor 3ZCZ ; 2.6 ; Crystal structure of a complex between Actinomadura R39 DD-peptidase and a trifluoroketone inhibitor 4PDI ; 2.1 ; Crystal structure of a complex between an inhibited LlFpg and a N7-Benzyl-Fapy-dG containing DNA 4PDG ; 2.4 ; Crystal structure of a complex between an inhibited LlFpg and a THF containing DNA 4ZSO ; 2.5 ; Crystal structure of a complex between B7-H6, a tumor cell ligand for natural cytotoxicity receptor NKp30, and an inhibitory antibody 5GY2 ; 2.1 ; Crystal structure of a complex between Bacillus subtilis flagellin and zebrafish Toll-like receptor 5 1N8O ; 2.0 ; Crystal structure of a complex between bovine chymotrypsin and ecotin 7ZJM ; 2.59 ; Crystal structure of a complex between CspZ from Borrelia burgdorferi strain B408 and human FH SCR domains 6-7 3ML4 ; 2.6 ; Crystal structure of a complex between Dok7 PH-PTB and the MuSK juxtamembrane region 1G9S ; 2.8 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN E.COLI HPRT AND IMP 2PCB ; 2.8 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN ELECTRON TRANSFER PARTNERS, CYTOCHROME C PEROXIDASE AND CYTOCHROME C 2PCC ; 2.3 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN ELECTRON TRANSFER PARTNERS, CYTOCHROME C PEROXIDASE AND CYTOCHROME C 6B20 ; 2.34 ; Crystal structure of a complex between G protein beta gamma dimer and an inhibitory Nanobody regulator 6YJP ; 3.1 ; Crystal structure of a complex between glycosylated NKp30 and its deglycosylated tumour ligand B7-H6 1MW8 ; 1.9 ; Crystal Structure of a Complex between H365R mutant of 67 kDA N-terminal fragment of E. coli DNA Topoisomerase I and 5'-ACTTCGGGATG-3' 6M58 ; 2.95 ; Crystal structure of a complex between human serum albumin and the antibody Fab SL335 1FQ4 ; 2.7 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN HYDROXYETHYLENE INHIBITOR CP-108,420 AND YEAST ASPARTIC PROTEINASE A 3F7P ; 2.75 ; Crystal structure of a complex between integrin beta4 and plectin 3HVQ ; 2.2 ; Crystal structure of a complex between Protein Phosphatase 1 alpha (PP1) and the PP1 binding and PDZ domains of Neurabin 3EGG ; 1.85 ; Crystal structure of a complex between Protein Phosphatase 1 alpha (PP1) and the PP1 binding and PDZ domains of Spinophilin 3EGH ; 2.0 ; Crystal structure of a complex between Protein Phosphatase 1 alpha (PP1), the PP1 binding and PDZ domains of Spinophilin and the small natural molecular toxin Nodularin-R 6IXX ; 1.999 ; Crystal structure of a complex between psychrophilic marine protease MP and its inhibitor LupI 2B4S ; 2.3 ; Crystal structure of a complex between PTP1B and the insulin receptor tyrosine kinase 4PCZ ; 1.7 ; Crystal structure of a complex between R247G LlFPG mutant and a THF containing DNA 1SMP ; 2.3 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN SERRATIA MARCESCENS METALLO-PROTEASE AND AN INHIBITOR FROM ERWINIA CHRYSANTHEMI 7X9S ; 3.11 ; Crystal structure of a complex between the antirepressor GmaR and the transcriptional repressor MogR 3FHI ; 2.0 ; Crystal structure of a complex between the catalytic and regulatory (RI{alpha}) subunits of PKA 4G7X ; 1.44 ; Crystal structure of a complex between the CTXphi pIII N-terminal domain and the Vibrio cholerae TolA C-terminal domain 1F93 ; 2.6 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN THE DIMERIZATION DOMAIN OF HNF-1 ALPHA AND THE COACTIVATOR DCOH 6RZ3 ; 4.23 ; Crystal structure of a complex between the DNA-binding domain of p53 and the carboxyl-terminal conserved region of iASPP 8BTL ; 3.2 ; Crystal structure of a complex between the E2 conjugating enzyme UBE2A and the E3 ligase module from UBR4 4E5X ; 1.95 ; Crystal structure of a complex between the human adenovirus type 2 E3-19K protein and MHC class I molecule HLA-A2/Tax 5IRO ; 2.64 ; Crystal structure of a complex between the Human adenovirus type 4 E3-19K protein and MHC class molecule HLA-A2/TAX 6RNM ; 1.76 ; Crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 6RNO ; 2.25 ; Crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 4MNB ; 1.4 ; Crystal Structure of a complex between the marine anticancer drug Variolin B and DNA 5BV0 ; 3.1 ; Crystal Structure of a Complex Between the SNARE Nyv1 and the HOPS Vps33-Vps16 subcomplex from Chaetomium thermophilum 5BUZ ; 3.1 ; Crystal Structure of a Complex Between the SNARE Vam3 and the HOPS Vps33-Vps16 subcomplex from Chaetomium thermophilum 3C58 ; 1.9 ; Crystal structure of a complex between the wild-type lactococcus lactis Fpg (MutM) and a N7-Benzyl-Fapy-dG containing DNA 2XZF ; 1.799 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN THE WILD-TYPE LACTOCOCCUS LACTIS FPG (MUTM) AND AN OXIDIZED PYRIMIDINE CONTAINING DNA AT 293K 2XZU ; 1.82 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN THE WILD-TYPE LACTOCOCCUS LACTIS FPG (MUTM) AND AN OXIDIZED PYRIMIDINE CONTAINING DNA AT 310K 1F6M ; 2.95 ; CRYSTAL STRUCTURE OF A COMPLEX BETWEEN THIOREDOXIN REDUCTASE, THIOREDOXIN, AND THE NADP+ ANALOG, AADP+ 1Z5S ; 3.01 ; Crystal structure of a complex between UBC9, SUMO-1, RANGAP1 and NUP358/RANBP2 1T0J ; 2.0 ; Crystal structure of a complex between voltage-gated calcium channel beta2a subunit and a peptide of the alpha1c subunit 1U1Y ; 2.85 ; Crystal structure of a complex between WT bacteriophage MS2 coat protein and an F5 aptamer RNA stemloop with 2aminopurine substituted at the-10 position 4V83 ; 3.5 ; Crystal structure of a complex containing domain 3 from the PSIV IGR IRES RNA bound to the 70S ribosome. 4V84 ; 3.4 ; Crystal structure of a complex containing domain 3 of CrPV IGR IRES RNA bound to the 70S ribosome. 5A3I ; 2.89 ; Crystal Structure of a Complex formed between FLD194 Fab and Transmissible Mutant H5 Haemagglutinin 1TGM ; 1.86 ; Crystal structure of a complex formed between group II phospholipase A2 and aspirin at 1.86 A resolution 1PO8 ; 2.71 ; Crystal structure of a complex formed between krait venom phospholipase A2 and heptanoic acid at 2.7 A resolution. 5U79 ; 1.604 ; Crystal structure of a complex formed between MerB and Dimethyltin 5U7A ; 1.532 ; Crystal structure of a complex formed between MerB and Dimethyltin 1OXG ; 2.2 ; Crystal structure of a complex formed between organic solvent treated bovine alpha-chymotrypsin and its autocatalytically produced highly potent 14-residue peptide at 2.2 resolution 1SXK ; 1.21 ; Crystal Structure of a complex formed between phospholipase A2 and a non-specific anti-inflammatory amino salicylic acid at 1.2 A resolution 1JQ9 ; 1.8 ; Crystal structure of a complex formed between phospholipase A2 from Daboia russelli pulchella and a designed pentapeptide Phe-Leu-Ser-Tyr-Lys at 1.8 resolution 2GWA ; 1.75 ; Crystal Structure of a Complex Formed Between the DNA Holliday Junction and a Bis-Acridine Molecule. 1FYT ; 2.6 ; CRYSTAL STRUCTURE OF A COMPLEX OF A HUMAN ALPHA/BETA-T CELL RECEPTOR, INFLUENZA HA ANTIGEN PEPTIDE, AND MHC CLASS II MOLECULE, HLA-DR1 1J8H ; 2.4 ; Crystal Structure of a Complex of a Human alpha/beta-T cell Receptor, Influenza HA Antigen Peptide, and MHC Class II Molecule, HLA-DR4 3C84 ; 1.94 ; Crystal structure of a complex of AChBP from aplysia californica and the neonicotinoid thiacloprid 2NU5 ; 1.564 ; Crystal structure of a complex of griffithsin cocrystallized with N-acetylglucosamine 2HYQ ; 2.0 ; Crystal structure of a complex of griffithsin with 6alpha-mannobiose 2NUO ; 1.5 ; Crystal structure of a complex of griffithsin with glucose 2HYR ; 1.51 ; Crystal structure of a complex of griffithsin with maltose 2GUD ; 0.94 ; Crystal structure of a complex of griffithsin with mannose at 0.94 A resolution 2GUC ; 1.79 ; Crystal structure of a complex of griffithsin with mannose at 1.78 A resolution. 2GUE ; 2.02 ; Crystal structure of a complex of griffithsin with N-acetylglucosamine 1HIV ; 2.0 ; CRYSTAL STRUCTURE OF A COMPLEX OF HIV-1 PROTEASE WITH A DIHYDROETHYLENE-CONTAINING INHIBITOR: COMPARISONS WITH MOLECULAR MODELING 1G4C ; 1.65 ; CRYSTAL STRUCTURE OF A COMPLEX OF HPPK(R92A) FROM E.COLI WITH MG2+ AT 1.65 ANGSTROM RESOLUTION 1JOW ; 3.1 ; Crystal structure of a complex of human CDK6 and a viral cyclin 6P67 ; 2.9 ; Crystal Structure of a Complex of human IL-7Ralpha with an anti-IL-7Ralpha 2B8 Fab 6P50 ; 2.9 ; Crystal Structure of a Complex of human IL-7Ralpha with an anti-IL-7Ralpha Fab 4A10 1GG5 ; 2.5 ; CRYSTAL STRUCTURE OF A COMPLEX OF HUMAN NAD[P]H-QUINONE OXIDOREDUCTASE AND A CHEMOTHERAPEUTIC DRUG (E09) AT 2.5 A RESOLUTION 1QJM ; 3.4 ; Crystal Structure of a Complex of Lactoferrin with a Lanthanide Ion (SM3+) at 3.4 Angstrom Resolution 1ZLF ; 2.3 ; Crystal structure of a complex of mutant HIV-1 protease (A71V, V82T, I84V) with a hydroxyethylamine peptidomimetic inhibitor 1ZBG ; 1.995 ; Crystal structure of a complex of mutant hiv-1 protease (A71V, V82T, I84V) with a hydroxyethylamine peptidomimetic inhibitor BOC-PHE-PSI[R-CH(OH)CH2NH]-PHE-GLU-PHE-NH2 1ZJ7 ; 1.93 ; Crystal structure of a complex of mutant HIV-1 protease (A71V, V82T, I84V) with a hydroxyethylamine peptidomimetic inhibitor BOC-PHE-PSI[S-CH(OH)CH2NH]-PHE-GLU-PHE-NH2 4JQW ; 2.9 ; Crystal Structure of a Complex of NOD1 CARD and Ubiquitin 2G58 ; 0.98 ; Crystal structure of a complex of phospholipase A2 with a designed peptide inhibitor Dehydro-Ile-Ala-Arg-Ser at 0.98 A resolution 2QHW ; 2.21 ; Crystal structure of a complex of phospholipase A2 with a gramine derivative at 2.2 resolution 2O1N ; 2.8 ; Crystal structure of a complex of phospholipase A2 with a peptide Ala-Ile-Ala-Ser at 2.8 A resolution 2V6T ; 3.1 ; Crystal structure of a complex of pterin-4a-carbinolamine dehydratase from Toxoplasma gondii with 7,8-dihydrobiopterin 3D2F ; 2.3 ; Crystal structure of a complex of Sse1p and Hsp70 3D2E ; 2.35 ; Crystal structure of a complex of Sse1p and Hsp70, Selenomethionine-labeled crystals 3WY9 ; 2.3 ; Crystal structure of a complex of the archaeal ribosomal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1alpha 1JPZ ; 1.65 ; Crystal structure of a complex of the heme domain of P450BM-3 with N-Palmitoylglycine 4U2M ; 2.23 ; Crystal structure of a complex of the Miz1- and BCL6 POZ domains. 4U2N ; 2.3 ; Crystal structure of a complex of the Miz1- and Nac1 POZ domains. 3D3H ; 2.31 ; Crystal structure of a complex of the peptidoglycan glycosyltransferase domain from Aquifex aeolicus and neryl moenomycin A 1Z58 ; 3.8 ; Crystal structure of a complex of the ribosome large subunit with rapamycin 1IS0 ; 1.9 ; Crystal Structure of a Complex of the Src SH2 Domain with Conformationally Constrained Peptide Inhibitor 1C9S ; 1.9 ; CRYSTAL STRUCTURE OF A COMPLEX OF TRP RNA-BINDING ATTENUATION PROTEIN WITH A 53-BASE SINGLE STRANDED RNA CONTAINING ELEVEN GAG TRIPLETS SEPARATED BY AU DINUCLEOTIDES 1V5V ; 1.5 ; Crystal Structure of a Component of Glycine Cleavage System: T-protein from Pyrococcus horikoshii OT3 at 1.5 A Resolution 4NDJ ; 1.85 ; Crystal Structure of a computational designed engrailed homeodomain variant fused with YFP 4NDK ; 2.3 ; Crystal structure of a computational designed engrailed homeodomain variant fused with YFP 6ERE ; 2.25 ; Crystal structure of a computationally designed colicin endonuclease and immunity pair colEdes3/Imdes3 6ER6 ; 1.6 ; Crystal structure of a computationally designed colicin endonuclease and immunity pair colEdes7/Imdes7 8C3W ; 1.6 ; Crystal structure of a computationally designed heme binding protein, dnHEM1 6XXV ; 2.20116 ; Crystal Structure of a computationally designed Immunogen S2_1.2 in complex with its elicited antibody C57 4OYD ; 1.8 ; Crystal structure of a computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein 6IWB ; 2.5 ; Crystal structure of a computationally designed protein (LD3) in complex with BCL-2 4OU1 ; 1.25 ; Crystal structure of a computationally designed retro-aldolase covalently bound to folding probe 1 [(6-methoxynaphthalen-2-yl)(oxiran-2-yl)methanol] 4PEJ ; 1.85 ; Crystal structure of a computationally designed retro-aldolase, RA110.4 (Cys free) 4PEK ; 1.6 ; Crystal structure of a computationally designed retro-aldolase, RA114.3 4N9G ; 2.5 ; Crystal Structure of a Computationally Designed RSV-Presenting Epitope Scaffold And Its Elicited Antibody 17HD9 1ZSZ ; 2.0 ; Crystal structure of a computationally designed SspB heterodimer 6NTF ; 2.8 ; Crystal structure of a computationally optimized H5 influenza hemagglutinin 4YAQ ; 2.3 ; Crystal structure of a computationally optimized PG9 mutant 3TIJ ; 2.436 ; Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae 4HBC ; 1.54 ; Crystal structure of a conformation-dependent rabbit IgG Fab specific for amyloid prefibrillar oligomers 4LBA ; 1.7 ; Crystal structure of a conjugative transposon lipoprotein (BACEGG_03088) from Bacteroides eggerthii DSM 20697 at 1.70 A resolution 6NEK ; 1.63 ; Crystal structure of a consensus PDZ domain 1PVM ; 1.5 ; Crystal Structure of a Conserved CBS Domain Protein TA0289 of Unknown Function from Thermoplasma acidophilum 5D9R ; 2.052 ; Crystal structure of a conserved domain in the intermembrane space region of the plastid division protein ARC6 4IAJ ; 1.91 ; Crystal structure of a conserved domain protein (SP_1775) from Streptococcus pneumoniae TIGR4 at 1.91 A resolution 1LFP ; 1.72 ; Crystal Structure of a Conserved Hypothetical Protein Aq1575 from Aquifex Aeolicus 1T6S ; 1.95 ; Crystal structure of a conserved hypothetical protein from Chlorobium tepidum 4WKW ; 2.3 ; Crystal Structure of a Conserved Hypothetical Protein from Mycobacterium leprae Determined by Iodide SAD Phasing 2CW5 ; 1.94 ; Crystal structure of a conserved hypothetical protein from Thermus thermophilus HB8 2CVE ; 1.6 ; Crystal structure of a conserved hypothetical protein TT1547 from thermus thermophilus HB8 2IB0 ; 2.0 ; Crystal structure of a conserved hypothetical protein, rv2844, from Mycobacterium tuberculosis 3D19 ; 2.3 ; Crystal structure of a conserved metalloprotein from Bacillus cereus 3RCO ; 1.8 ; Crystal structure of a conserved motif in human TDRD7 3CBN ; 1.63 ; Crystal structure of a conserved protein (MTH639) from Methanobacterium thermoautotrophicum 3B4Q ; 1.55 ; Crystal structure of a conserved protein domain (unknown function) from Corynebacterium diphtheriae 3D3Y ; 1.95 ; Crystal structure of a conserved protein from Enterococcus faecalis V583 2P0O ; 2.15 ; Crystal structure of a conserved protein from locus EF_2437 in Enterococcus faecalis with an unknown function 4DPO ; 2.73 ; Crystal structure of a conserved protein MM_1583 from Methanosarcina mazei Go1 3CLQ ; 2.5 ; Crystal structure of a conserved protein of unknown function from Enterococcus faecalis V583 3BRC ; 1.6 ; Crystal structure of a conserved protein of unknown function from Methanobacterium thermoautotrophicum 3BZ6 ; 2.21 ; Crystal structure of a conserved protein of unknown function from Pseudomonas syringae pv. tomato str. DC3000 2FYW ; 2.4 ; Crystal Structure of a Conserved Protein of Unknown Function from Streptococcus pneumoniae 2I71 ; 1.7 ; Crystal structure of a Conserved Protein of Unknown Function from Sulfolobus solfataricus P2 2IAZ ; 2.4 ; Crystal structure of a Conserved Protein of Unknown Function SP1372 from Streptococcus pneumoniae 1HC8 ; 2.8 ; CRYSTAL STRUCTURE OF A CONSERVED RIBOSOMAL PROTEIN-RNA COMPLEX 1QA6 ; 2.8 ; CRYSTAL STRUCTURE OF A CONSERVED RIBOSOMAL PROTEIN-RNA COMPLEX 1KMQ ; 1.55 ; Crystal Structure of a Constitutively Activated RhoA Mutant (Q63L) 8GS5 ; 4.486 ; Crystal structure of a constitutively active mutant of human IDH3 holoenzyme in apo form 8GRB ; 2.848 ; Crystal structure of a constitutively active mutant of the alpha beta heterodimer of human IDH3 8GRD ; 2.699 ; Crystal structure of a constitutively active mutant of the alpha beta heterodimer of human IDH3 in complex with ADP and Mg 8GRU ; 2.847 ; Crystal structure of a constitutively active mutant of the alpha beta heterodimer of human IDH3 in complex with ICT, NAD and Ca 8GRG ; 2.699 ; Crystal structure of a constitutively active mutant of the alpha gamma heterodimer of human IDH3 8GRH ; 2.506 ; Crystal structure of a constitutively active mutant of the alpha gamma heterodimer of human IDH3 in complex with CIT 1P1Y ; 2.1 ; Crystal structure of a continuous three-dimensional DNA lattice from d(GGACAGATGGGAG) 1JT0 ; 2.9 ; Crystal structure of a cooperative QacR-DNA complex 3DXS ; 1.7 ; Crystal structure of a copper binding domain from HMA7, a P-type ATPase 1NPN ; 1.8 ; Crystal structure of a copper reconstituted H145A mutant of nitrite reductase from Alcaligenes faecalis 3LOY ; 2.0 ; Crystal structure of a Copper-containing benzylamine oxidase from Hansenula Polymorpha 1JES ; 1.5 ; Crystal Structure of a Copper-Mediated Base Pair in DNA 3RFU ; 3.2 ; Crystal structure of a copper-transporting PIB-type ATPase 2HN1 ; 2.9 ; Crystal structure of a CorA soluble domain from A. fulgidus in complex with Co2+ 2P4P ; 1.8 ; Crystal structure of a CorC_HlyC domain from Haemophilus ducreyi 3BK6 ; 3.2 ; Crystal structure of a core domain of stomatin from Pyrococcus horikoshii 3OKQ ; 2.044 ; Crystal structure of a core domain of yeast actin nucleation cofactor Bud6 4A2E ; 1.8 ; Crystal Structure of a Coriolopsis gallica Laccase at 1.7 A Resolution pH 5.5 4XVH ; 1.9449 ; Crystal structure of a Corynascus thermopiles (Myceliophthora fergusii) carbohydrate esterase family 2 (CE2) enzyme plus carbohydrate binding domain (CBD) 2C0U ; 2.2 ; Crystal Structure of a Covalent Complex of Nitroalkane Oxidase Trapped During Substrate Turnover 274D ; 2.3 ; CRYSTAL STRUCTURE OF A COVALENT DNA-DRUG ADDUCT: ANTHRAMYCIN BOUND TO C-C-A-A-C-G-T-T-G-G, AND A MOLECULAR EXPLANATION OF SPECIFICITY 1N2K ; 2.75 ; Crystal structure of a covalent intermediate of endogenous human arylsulfatase A 1N2L ; 3.2 ; Crystal structure of a covalent intermediate of endogenous human arylsulfatase A 3PR0 ; 2.2 ; Crystal Structure of a Covalently Bound alpha-Ketoheterocycle Inhibitor (Phenhexyl/Oxadiazole/Pyridine) to a Humanized Variant of Fatty Acid Amide Hydrolase 4J5P ; 2.3 ; Crystal Structure of a Covalently Bound alpha-Ketoheterocycle Inhibitor (Phenhexyl/Oxadiazole/Pyridine) to a Humanized Variant of Fatty Acid Amide Hydrolase 4FBK ; 2.379 ; Crystal structure of a covalently fused Nbs1-Mre11 complex with one manganese ion per active site 4FBQ ; 2.5 ; Crystal structure of a covalently fused Nbs1-Mre11 complex with two manganese ions per active site 7ZTL ; 1.9 ; Crystal structure of a covalently linked Aurora-A N-Myc complex 3NO4 ; 2.0 ; Crystal structure of a creatinine amidohydrolase (Npun_F1913) from Nostoc punctiforme PCC 73102 at 2.00 A resolution 1DH3 ; 3.0 ; CRYSTAL STRUCTURE OF A CREB BZIP-CRE COMPLEX REVEALS THE BASIS FOR CREB FAIMLY SELECTIVE DIMERIZATION AND DNA BINDING 5F8S ; 1.08 ; Crystal structure of a Crenomytilus grayanus lectin 5F8Y ; 1.7 ; Crystal structure of a Crenomytilus grayanus lectin in complex with galactosamine 5F8W ; 1.56 ; Crystal structure of a Crenomytilus grayanus lectin in complex with galactose 5F90 ; 1.64 ; Crystal structure of a Crenomytilus grayanus lectin in complex with Gb3 allyl 1WVR ; 2.4 ; Crystal Structure of a CRISP family Ca-channel blocker derived from snake venom 4EJ3 ; 2.52 ; Crystal structure of a CRISPR associated protein from Thermus thermophilus HB8 6OAW ; 2.2 ; Crystal structure of a CRISPR Cas-related protein 4MJK ; 1.953 ; Crystal structure of a CRISPR protein from Archaeoglobus fulgidus 4QYZ ; 3.0303 ; Crystal structure of a CRISPR RNA-guided surveillance complex, Cascade, bound to a ssDNA target 1WJ9 ; 1.9 ; Crystal structure of a CRISPR-associated protein from thermus thermophilus 5DIS ; 2.85 ; Crystal structure of a CRM1-RanGTP-SPN1 export complex bound to a 113 amino acid FG-repeat containing fragment of Nup214 2A5X ; 2.49 ; Crystal Structure of a Cross-linked Actin Dimer 5U89 ; 3.075 ; Crystal structure of a cross-module fragment from the dimodular NRPS DhbF 1FBI ; 3.0 ; CRYSTAL STRUCTURE OF A CROSS-REACTION COMPLEX BETWEEN FAB F9.13.7 AND GUINEA-FOWL LYSOZYME 2AJ3 ; 2.03 ; Crystal Structure of a Cross-Reactive HIV-1 Neutralizing CD4-Binding Site Antibody Fab m18 6FOF ; 2.2 ; Crystal structure of a crystallized variant of h-Gal3: Gal-3[NTS/VII-IX] 7TEP ; 2.7 ; Crystal structure of a Cu-bound cytochrome cb562 variant in the presence of reductant 1KYR ; 1.5 ; Crystal Structure of a Cu-bound Green Fluorescent Protein Zn Biosensor 1PZS ; 1.63 ; Crystal Structure of a Cu-Zn Superoxide Dismutase from Mycobacterium tuberculosis at 1.63 resolution 2IHW ; 2.7 ; Crystal structure of a cubic core of the dihydrolipoamide acyltransferase (E2b) component in the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC), apo form 2II4 ; 2.59 ; Crystal structure of a cubic core of the dihydrolipoamide acyltransferase (E2b) component in the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC), Coenzyme A-bound form 2II5 ; 2.5 ; Crystal structure of a cubic core of the dihydrolipoamide acyltransferase (E2b) component in the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC), Isobutyryl-Coenzyme A-bound form 2II3 ; 2.17 ; Crystal structure of a cubic core of the dihydrolipoamide acyltransferase (E2b) component in the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC), Oxidized Coenzyme A-bound form 3KGZ ; 1.85 ; Crystal structure of a cupin 2 conserved barrel domain protein from Rhodopseudomonas palustris 2FQP ; 1.8 ; Crystal structure of a cupin domain (bp2299) from bordetella pertussis tohama i at 1.80 A resolution 3CEW ; 2.31 ; Crystal structure of a cupin protein (BF4112) from Bacteroides fragilis. Northeast Structural Genomics Consortium target BfR205 5WSD ; 1.2 ; Crystal structure of a cupin protein (tm1459) in apo form 6L2D ; 1.198 ; Crystal structure of a cupin protein (tm1459) in copper (Cu) substituted form 5WSE ; 1.12 ; Crystal structure of a cupin protein (tm1459) in osmium (Os) substituted form I 5WSF ; 1.11 ; Crystal structure of a cupin protein (tm1459) in osmium (Os)-substituted form II 6L2E ; 1.201 ; Crystal structure of a cupin protein (tm1459, H52A mutant) in copper (Cu) substituted form 8HJX ; 1.15 ; Crystal structure of a cupin protein (tm1459, H52A/H58E mutant) in copper (Cu) substituted form 8HJY ; 1.18 ; Crystal structure of a cupin protein (tm1459, H52A/H58E/F104W mutant) in copper (Cu) substituted form 8HJZ ; 1.22 ; Crystal structure of a cupin protein (tm1459, H52A/H58Q mutant) in copper (Cu) substituted form 6L2F ; 1.23 ; Crystal structure of a cupin protein (tm1459, H54AH58A mutant) in copper (Cu) substituted form 2OZJ ; 1.6 ; CRYSTAL STRUCTURE OF A CUPIN SUPERFAMILY PROTEIN (DSY2733) FROM DESULFITOBACTERIUM HAFNIENSE DCB-2 AT 1.60 A RESOLUTION 3D82 ; 2.05 ; Crystal structure of a cupin-2 domain containing protein (sfri_3543) from shewanella frigidimarina ncimb 400 at 2.05 A resolution 2F4P ; 1.9 ; Crystal structure of a cupin-like protein (tm1010) from thermotoga maritima msb8 at 1.90 A resolution 6BBN ; 3.514 ; Crystal structure of a curved tubulin complex induced by the kinesin-13 Kif2A 7QJO ; 1.933 ; Crystal structure of a cutinase enzyme from Marinactinospora thermotolerans DSM45154 (606) 7QJP ; 1.561 ; Crystal structure of a cutinase enzyme from Saccharopolyspora flava (611) 7QJT ; 1.78 ; Crystal structure of a cutinase enzyme from Thermobifida cellulosilytica TB100 (711) 7QJQ ; 1.64 ; Crystal structure of a cutinase enzyme from Thermobifida fusca NTU22 (702) 7QJS ; 1.429 ; Crystal structure of a cutinase enzyme from Thermobifida fusca YX (705) 5YVK ; 1.292 ; Crystal structure of a cyclase Famc1 from Fischerella ambigua UTEX 1903 5ZFJ ; 1.86 ; Crystal structure of a cyclase Filc from Fischerella sp. in complex with 4-(1H-Indol-3-yl)butan-2-one 5Z53 ; 1.86 ; Crystal structure of a cyclase Filc from Fischerella sp. in complex with cyclo-L-Arg-D-Pro 6A92 ; 1.58 ; Crystal structure of a cyclase Filc1 from Fischerella sp. 6A98 ; 1.82 ; Crystal structure of a cyclase from Fischerella sp. TAU 6A9F ; 1.7 ; Crystal structure of a cyclase from Fischerella sp. TAU in complex with 4-(1H-Indol-3-yl)butan-2-one 5YVL ; 2.059 ; Crystal structure of a cyclase Hpiu5 from Fischerella sp. ATCC 43239 5Z54 ; 2.16 ; Crystal structure of a cyclase Hpiu5 from Fischerella sp. ATCC 43239 in complex with cyclo-L-Arg-D-Pro 6J03 ; 1.48 ; Crystal structure of a cyclase mutant in apo form 1VH7 ; 1.9 ; Crystal structure of a cyclase subunit of imidazolglycerolphosphate synthase 3GYD ; 1.79 ; Crystal structure of a cyclic nucleotide-binding domain (mfla_1926) from methylobacillus flagellatus kt at 1.79 A resolution 2QU1 ; 1.7 ; Crystal Structure of a Cyclized GFP Variant 2DFY ; 1.65 ; Crystal structure of a cyclized protein fusion of LMO4 LIM domains 1 and 2 with the LIM interacting domain of LDB1 1XS7 ; 2.8 ; Crystal Structure of a cycloamide-urethane-derived novel inhibitor bound to human brain memapsin 2 (beta-secretase). 6ZTU ; 1.69 ; Crystal structure of a cyclodipeptide synthase from Bacillus thermoamylovorans 6ZU3 ; 1.78 ; Crystal structure of a cyclodipeptide synthase from Bacillus thermoamylovorans 7AZU ; 1.801 ; Crystal structure of a cyclodipeptide synthase from Bacillus thermoamylovorans 7QAU ; 2.3 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, D58N mutant 7QAX ; 2.089 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, E171Q mutant 7QAQ ; 2.4 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, E174A mutant 7QAT ; 2.402 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, E174L 7QB8 ; 1.9 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, WT form 7QAW ; 2.285 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, Y189F mutant 7QAY ; 2.093 ; Crystal structure of a cyclodipeptide synthase from Parcubacteria bacterium RAAC4_OD1_1, Y55F mutant 7Y9O ; 1.84 ; Crystal structure of a CYP109B4 variant from Bacillus sonorensis 3GHD ; 1.81 ; Crystal structure of a cystathionine beta-synthase domain protein fused to a Zn-ribbon-like domain 2OWP ; 2.0 ; Crystal structure of a cystatin-like fold protein (bxe_b1374) from burkholderia xenovorans lb400 at 2.00 A resolution 4R4K ; 1.69 ; Crystal structure of a cystatin-like protein (BACCAC_01506) from Bacteroides caccae ATCC 43185 at 1.69 A resolution 4QAN ; 2.1 ; Crystal structure of a cystatin-like protein (RUMGNA_02398) from Ruminococcus gnavus ATCC 29149 at 2.10 A resolution 3EJV ; 1.4 ; Crystal structure of a cystatin-like protein (saro_2766) from novosphingobium aromaticivorans dsm at 1.40 A resolution 5B89 ; 1.5 ; Crystal structure of a Cysteine Desulfurase from Thermococcus onnurineus NA1 in complex with alanine at 1.5 Angstrom resolution 5B87 ; 2.28 ; Crystal structure of a Cysteine Desulfurase from Thermococcus onnurineus NA1 in complex with alanine at 2.3 Angstrom resolution 4W91 ; 2.45 ; Crystal structure of a cysteine desulfurase SufS from Brucella suis bound to PLP 6WCI ; 2.05 ; Crystal structure of a cysteine desulfurase SufS from Stenotrophomonas maltophilia K279a 3PW3 ; 2.23 ; Crystal structure of a cysteine protease (BDI_2249) from Parabacteroides distasonis ATCC 8503 at 2.23 A resolution 1CJL ; 2.2 ; CRYSTAL STRUCTURE OF A CYSTEINE PROTEASE PROFORM 5I7W ; 1.95 ; Crystal Structure of a Cysteine Synthase from Brucella suis 3VUD ; 3.5 ; Crystal structure of a cysteine-deficient mutant M1 in MAP kinase JNK1 3VUL ; 2.81 ; Crystal structure of a cysteine-deficient mutant M1 in MAP kinase JNK1 3VUG ; 3.24 ; Crystal structure of a cysteine-deficient mutant M2 in MAP kinase JNK1 3VUI ; 2.8 ; Crystal structure of a cysteine-deficient mutant M2 in MAP kinase JNK1 3VUH ; 2.7 ; Crystal structure of a cysteine-deficient mutant M3 in MAP kinase JNK1 3VUK ; 2.95 ; Crystal structure of a cysteine-deficient mutant M5 in MAP kinase JNK1 3VUM ; 2.69 ; Crystal structure of a cysteine-deficient mutant M7 in MAP kinase JNK1 6LH0 ; 2.812 ; Crystal structure of a cysteine-pair mutant (P10C-S291C) of a bacterial bile acid transporter in an inward-facing apo-state 6LGV ; 1.847 ; Crystal structure of a cysteine-pair mutant (P10C-S291C) of a bacterial bile acid transporter in an inward-facing state complexed with citrate 6LGY ; 2.247 ; Crystal structure of a cysteine-pair mutant (P10C-S291C) of a bacterial bile acid transporter in an inward-facing state complexed with glycine and sodium 6LGZ ; 2.428 ; Crystal structure of a cysteine-pair mutant (P10C-S291C) of a bacterial bile acid transporter in an inward-facing state complexed with sulfate 7CYG ; 3.198 ; Crystal structure of a cysteine-pair mutant (Y113C-P190C) of a bacterial bile acid transporter before disulfide bond formation 6LH1 ; 2.861 ; Crystal structure of a cysteine-pair mutant (Y113C-P190C) of a bacterial bile acid transporter trapped in an outward-facing conformation 4H0A ; 1.9 ; Crystal structure of a cysteine-rich secretory protein (SAV1118) from Staphylococcus aureus subsp. aureus Mu50 at 1.90 A resolution 4DIE ; 2.65 ; Crystal structure of a cytidylate kinase CmK from Mycobacterium abscessus bound to cytidine-5'-monophosphate 6N6Q ; 2.5 ; Crystal structure of a Cytochrome P450 (CYP102L1) 4RUI ; 2.61 ; Crystal structure of a cytochrome P450 2A6 in complex with a monoterpene - sabinene. 3IBD ; 2.0 ; Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole 2RFB ; 2.5 ; Crystal Structure of a Cytochrome P450 from the Thermoacidophilic Archaeon Picrophilus Torridus 1I1R ; 2.4 ; CRYSTAL STRUCTURE OF A CYTOKINE/RECEPTOR COMPLEX 4E6R ; 2.2 ; Crystal structure of a Cytoplasmic protein NCK2 (NCK2) from Homo sapiens at 2.20 A resolution 1ST6 ; 3.1 ; Crystal structure of a cytoskeletal protein 1UNO ; 1.4 ; Crystal structure of a d,l-alternating peptide 1KO0 ; 2.2 ; Crystal Structure of a D,L-lysine complex of diaminopimelate decarboxylase 4M0J ; 2.05 ; Crystal structure of a D-amino acid aminotransferase from Burkholderia thailandensis E264 1EI5 ; 1.9 ; CRYSTAL STRUCTURE OF A D-AMINOPEPTIDASE FROM OCHROBACTRUM ANTHROPI 5UNL ; 1.65 ; Crystal structure of a D-beta-hydroxybutyrate dehydrogenase from Burkholderia multivorans 3K85 ; 2.28 ; Crystal structure of a D-glycero-D-manno-heptose 1-phosphate kinase from Bacteriodes thetaiotaomicron 3QC3 ; 2.2 ; Crystal structure of a D-ribulose-5-phosphate-3-epimerase (NP_954699) from HOMO SAPIENS at 2.20 A resolution 2ZVR ; 2.2 ; Crystal structure of a D-tagatose 3-epimerase-related protein from Thermotoga maritima 2XO7 ; 2.85 ; Crystal structure of a dA:O-allylhydroxylamine-dC basepair in complex with fragment DNA polymerase I from Bacillus stearothermophilus 3BDE ; 1.79 ; Crystal structure of a dabb family protein with a ferredoxin-like fold (mll5499) from mesorhizobium loti maff303099 at 1.79 A resolution 2XUU ; 1.8 ; Crystal structure of a DAP-kinase 1 mutant 3HG0 ; 2.1 ; Crystal structure of a DARPin in complex with ORF49 from Lactococcal phage TP901-1 5B18 ; 1.8 ; Crystal Structure of a Darunavir Resistant HIV-1 Protease 2I5A ; 1.65 ; Crystal structure of a DB1055-D(CGCGAATTCGCG)2 complex 5I6I ; 8.4 ; Crystal structure of a dBCCP-variant of Chaetomium thermophilum acetyl-CoA carboxylase 4AG4 ; 2.8 ; Crystal structure of a DDR1-Fab complex 5EON ; 1.696 ; Crystal structure of a de novo antiparallel coiled-coil hexamer - ACC-Hex 6Q5S ; 1.89 ; Crystal structure of a de novo designed antiparallel four-helix coiled coil apCC-Tet 4R80 ; 2.445 ; Crystal Structure of a De Novo Designed Beta Sheet Protein, Cystatin Fold, Northeast Structural Genomics Consortium (NESG) Target OR486 4RJV ; 1.523 ; Crystal Structure of a De Novo Designed Ferredoxin Fold, Northeast Structural Genomics Consortium (NESG) Target OR461 6TJ1 ; 2.4 ; Crystal structure of a de novo designed hexameric helical-bundle protein 6TMS ; 2.7 ; Crystal structure of a de novo designed hexameric helical-bundle protein 6O35 ; 2.4 ; Crystal structure of a de novo designed octameric helical-bundle protein 7UEK ; 2.1 ; Crystal structure of a de novo designed ovoid TIM barrel OT3 6XXZ ; 1.7 ; Crystal structure of a de novo designed parallel four-helix coiled coil, 2-EK-4 6XY0 ; 1.11 ; Crystal structure of a de novo designed parallel four-helix coiled coil, 3-EK-4 6XY1 ; 1.5 ; Crystal structure of a de novo designed parallel four-helix coiled coil, 4-KE-4. 5TPH ; 2.47 ; Crystal structure of a de novo designed protein homodimer with curved beta-sheet 5L33 ; 2.0 ; Crystal structure of a de novo designed protein with curved beta-sheet 5TPJ ; 3.101 ; Crystal structure of a de novo designed protein with curved beta-sheet 5TRV ; 2.91 ; Crystal structure of a de novo designed protein with curved beta-sheet 5TS4 ; 3.005 ; Crystal structure of a de novo designed protein with curved beta-sheet 5U35 ; 1.8 ; Crystal structure of a de novo designed protein with curved beta-sheet 7CBC ; 1.99 ; Crystal structure of a de novo designed switch protein caging a hemagglutinin binder 5BVL ; 1.992 ; Crystal structure of a de novo designed TIM-barrel 1HQJ ; 1.2 ; CRYSTAL STRUCTURE OF A DE NOVO DESIGNED TRIMERIC COILED-COIL PEPTIDE 1KYC ; 1.45 ; CRYSTAL STRUCTURE OF A DE NOVO DESIGNED TRIMERIC COILED-COIL PEPTIDE STABLIZED BY IONIC INTERACTIONS 8H7D ; 2.2 ; Crystal structure of a de novo enzyme, ferric enterobactin esterase Syn-F4 (K4T) 8H7C ; 2.15 ; Crystal structure of a de novo enzyme, ferric enterobactin esterase Syn-F4 (K4T) - Pt derivative 8H7E ; 2.0 ; Crystal structure of a de novo enzyme, ferric enterobactin esterase Syn-F4 (K4T) at 2.0 angstrom resolution 4PA8 ; 1.2 ; Crystal structure of a de novo retro-aldolase catalyzing asymmetric Michael additions, with a covalently bound product analog 6EGL ; 1.4 ; Crystal Structure of a de Novo Three-stranded Coiled Coil Peptide Containing a D-Leu in the Second Coordination Sphere of a Non-metalated Tris-thiolate Binding Site 7N2Y ; 2.08 ; Crystal Structure of a de Novo Three-stranded Coiled Coil Peptide Containing a dual Tris-thiolate Binding Site for Heavy Metal Complexes 6EGO ; 1.93 ; Crystal Structure of a de Novo Three-stranded Coiled Coil Peptide Containing an Ala Residue in the Second Coordination Sphere of the Hg(II)S3 Binding Site 6EGM ; 1.84 ; Crystal Structure of a de novo Three-stranded Coiled Coil Peptide Containing D-Leu in a d-site Position of a Tris-thiolate Binding Site 7N2Z ; 1.29 ; Crystal Structure of a de Novo Three-stranded Coiled Coil Peptide Containing Trigonal Pyrmidal Pb(II) complexes in the dual Tris-thiolate Site 7N1K ; 3.01 ; Crystal structure of a de novo-designed mini-protein targeting FGFR 1NJ4 ; 1.9 ; Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 1.9 A resolution 1HD8 ; 2.3 ; Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3 A resolution 1SDN ; 2.5 ; CRYSTAL STRUCTURE OF A DEACYLATION-DEFECTIVE MUTANT OF PENICILLIN-BINDING PROTEIN 5 MODIFIED BY MERCURY 1HV8 ; 3.0 ; CRYSTAL STRUCTURE OF A DEAD BOX PROTEIN FROM THE HYPERTHERMOPHILE METHANOCOCCUS JANNASCHII 2YVI ; 1.92 ; Crystal structure of a death domain of human ankryn protein 2BJ6 ; 2.6 ; Crystal Structure of a decameric HNA-RNA hybrid 3MZV ; 1.9 ; Crystal structure of a decaprenyl diphosphate synthase from Rhodobacter capsulatus 8H41 ; 1.78 ; Crystal structure of a decarboxylase from Trichosporon moniliiforme in complex with o-nitrophenol 4W7J ; 1.79 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE 4W7L ; 1.05 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE. D168N MUTANT 4W7O ; 1.2 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE. G169L, Y147S AND W377S TRIPLE MUTANT 4W7M ; 1.15 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE. W377S MUTANT 4W7N ; 1.401 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE. Y147S AND W377S DOUBLE MUTANT 4W7K ; 1.05 ; CRYSTAL STRUCTURE OF A DECOLORIZING PEROXIDASE (DYP) FROM AURICULARIA AURICULA-JUDAE. Y147S MUTANT 2D3Q ; 2.8 ; Crystal Structure of a Decolorizing Peroxidase (DyP) That Catalyses the Biological Oxidation of Anthraquinone Derivatives 4QGR ; 1.75 ; Crystal structure of a DegT DnrJ EryC1 StrS aminotransferase from Brucella abortus 1VPV ; 2.45 ; Crystal structure of a degv lipid binding protein (tm1468) from thermotoga maritima at 2.45 A resolution 7R9X ; 2.14 ; Crystal structure of a dehydrating condensation domain, AmbE-CmodAA, involved in nonribosomal peptide synthesis 3V2G ; 2.3 ; Crystal structure of a dehydrogenase/reductase from Sinorhizobium meliloti 1021 5IYS ; 1.93 ; Crystal structure of a dehydrosqualene synthase in complex with ligand 4J5N ; 2.05 ; Crystal Structure of a Deinococcus radiodurans PTE-like lactonase (drPLL) mutant Y28L/D71N/E101G/E179D/V235L/L270M 3QQ0 ; 1.9 ; Crystal structure of a deletion mutant (N59) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4TS1 ; 2.5 ; CRYSTAL STRUCTURE OF A DELETION MUTANT OF A TYROSYL-T/RNA SYNTHETASE COMPLEXED WITH TYROSINE 4AD8 ; 3.998 ; Crystal structure of a deletion mutant of Deinococcus radiodurans RecN 3N00 ; 2.6 ; Crystal Structure of a deletion mutant of human Reverba ligand binding domain bound with an NCoR ID1 peptide determined to 2.60A 1CX4 ; 2.45 ; CRYSTAL STRUCTURE OF A DELETION MUTANT OF THE TYPE II BETA REGULATORY SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE 3Q4O ; 1.34 ; Crystal Structure of a deletion mutant(11-185) of hypothetical protein MJ0754 determined to 1.34A 3Q4Q ; 1.75 ; Crystal Structure of a deletion mutant(11-185) of hypothetical protein MJ0754 with Mn2+ 3Q4R ; 1.6 ; Crystal Structure of a deletion mutant(11-185) of hypothetical protein MJ0754 with Zn2+ 7T63 ; 2.0 ; Crystal structure of a delta 6 18:0-ACP desaturase from Thunbergia laurifolia 3F63 ; 1.8 ; Crystal structure of a Delta class GST (adGSTD4-4) from Anopheles dirus, in complex with S-hexyl glutathione 3G7I ; 2.05 ; Crystal structure of a Delta class GST (adGSTD4-4) from Anopheles dirus, with glutathione complexed in one subunit 4DHK ; 2.05 ; Crystal structure of a deoxycytidine triphosphate deaminase (dCTP deaminase) from Burkholderia thailandensis 3R12 ; 1.75 ; Crystal structure of a Deoxyribose-phosphate aldolase (TM_1559) from THERMOTOGA MARITIMA at 1.75 A resolution 3R13 ; 1.83 ; Crystal structure of a Deoxyribose-phosphate aldolase (TM_1559) from THERMOTOGA MARITIMA at 1.83 A resolution 4LHR ; 1.5 ; Crystal structure of a deoxyuridine 5'-triphosphate nucleotidohydrolase from Burkholderia thailandensis 4I1V ; 2.6 ; Crystal structure of a dephospho-CoA kinase from Burkholderia vietnamiensis bound to ADP 6ARI ; 2.0 ; Crystal structure of a dephospho-CoA kinase from Escherichia coli in complex with inhibitor CM078 8DV0 ; 1.4 ; Crystal Structure of a Dephospho-CoA kinase from Rickettsia felis 3HNU ; 1.56 ; Crystal structure of a designed Cyanovirin-N homolog lectin; LKAMG in P21 space group 3HNX ; 1.37 ; Crystal structure of a designed Cyanovirin-N homolog lectin; LKAMG in P212121 space group 3HP8 ; 2.0 ; Crystal structure of a designed Cyanovirin-N homolog lectin; LKAMG, bound to sucrose 2QYJ ; 2.05 ; Crystal structure of a designed full consensus ankyrin 2XGE ; 2.14 ; Crystal structure of a designed heterodimeric variant T-A(A)B of the tetracycline repressor 2XGC ; 2.15 ; Crystal structure of a designed heterodimeric variant T-A(I)B of the tetracycline repressor 2XGD ; 2.25 ; Crystal structure of a designed homodimeric variant T-A(L)A(L) of the tetracycline repressor 5C39 ; 1.751 ; Crystal structure of a designed Mn binding peptide 6IEV ; 2.25 ; Crystal structure of a designed protein 7BWN ; 2.396 ; Crystal Structure of a Designed Protein Heterocatenane 4JLR ; 2.71 ; Crystal structure of a designed Respiratory Syncytial Virus Immunogen in complex with Motavizumab 1SVX ; 2.24 ; Crystal structure of a designed selected Ankyrin Repeat protein in complex with the Maltose Binding Protein 3ZU7 ; 1.97 ; Crystal structure of a designed selected Ankyrin Repeat protein in complex with the MAP kinase ERK2 3ZUV ; 2.72 ; Crystal structure of a designed selected Ankyrin Repeat protein in complex with the phosphorylated MAP kinase ERK2 8GIE ; 1.85 ; Crystal structure of a designed single-component Plasmodium falciparum AMA1-RON2L insertion fusion immunogen 2 8GIF ; 2.1 ; Crystal structure of a designed single-component Plasmodium falciparum AMA1-RON2L insertion fusion immunogen 3 1MEY ; 2.2 ; CRYSTAL STRUCTURE OF A DESIGNED ZINC FINGER PROTEIN BOUND TO DNA 1BB1 ; 1.8 ; CRYSTAL STRUCTURE OF A DESIGNED, THERMOSTABLE HETEROTRIMERIC COILED COIL 6EEN ; 2.01 ; Crystal structure of a designer Pentatrico Peptide RNA binding protein, bound to a complex RNA target and featuring an infinite superhelix and microheterogeneity. 3OF5 ; 1.52 ; Crystal Structure of a Dethiobiotin Synthetase from Francisella tularensis subsp. tularensis SCHU S4 4Z8B ; 1.951 ; crystal structure of a DGL mutant - H51G H131N 4NZK ; 1.49 ; Crystal structure of a DHHW family protein (EUBSIR_00411) from Eubacterium siraeum DSM 15702 at 1.49 A resolution 5GO3 ; 2.2 ; Crystal structure of a di-nucleotide cyclase Vibrio mutant 2HXV ; 1.8 ; Crystal structure of a diaminohydroxyphosphoribosylaminopyrimidine deaminase/ 5-amino-6-(5-phosphoribosylamino)uracil reductase (tm1828) from thermotoga maritima at 1.80 A resolution 1Q4Q ; 2.1 ; Crystal structure of a DIAP1-Dronc complex 5ZFG ; 1.7 ; Crystal structure of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori 6UKL ; 2.02 ; Crystal Structure of a DiB2-split Protein 7W6V ; 2.47 ; Crystal structure of a dicobalt-substituted small laccase at 2.47 angstrom 3A5N ; 2.36 ; Crystal Structure of a Dictyostelium P109A Ca2+-Actin in Complex with Human Gelsolin Segment 1 3A5L ; 2.4 ; Crystal Structure of a Dictyostelium P109A Mg2+-Actin in Complex with Human Gelsolin Segment 1 3A5O ; 2.4 ; Crystal Structure of a Dictyostelium P109I Ca2+-Actin in Complex with Human Gelsolin Segment 1 3A5M ; 2.4 ; Crystal Structure of a Dictyostelium P109I Mg2+-Actin in Complex with Human Gelsolin Segment 1 1DEJ ; 2.4 ; CRYSTAL STRUCTURE OF A DICTYOSTELIUM/TETRAHYMENA CHIMERA ACTIN (MUTANT 646: Q228K/T229A/A230Y/A231K/S232E/E360H) IN COMPLEX WITH HUMAN GELSOLIN SEGMENT 1 1C1E ; 1.9 ; CRYSTAL STRUCTURE OF A DIELS-ALDERASE CATALYTIC ANTIBODY 1E9 IN COMPLEX WITH ITS HAPTEN 3FNI ; 2.3 ; Crystal structure of a diflavin flavoprotein A3 (all3895) from Nostoc sp., Northeast Structural Genomics Consortium Target NsR431A 7RZO ; 1.8 ; Crystal structure of a dihydrofolate reductase (folA) from Stenotrophomonas maltophilia 7TJ3 ; 1.55 ; Crystal structure of a dihydrofolate reductase folA from Stenotrophomonas maltophilia bound to NADP and p218 6CXM ; 2.65 ; Crystal structure of a dihydrofolate reductase from Mycobacterium smegmatis in complex with NADP and P218 3URH ; 1.9 ; Crystal structure of a dihydrolipoamide dehydrogenase from Sinorhizobium meliloti 1021 5U25 ; 2.3 ; Crystal structure of a dihydrolipoyl dehydrogenase from Neisseria gonorrhoeae bound to FAD 3L8K ; 2.5 ; Crystal structure of a dihydrolipoyl dehydrogenase from Sulfolobus solfataricus 2OGJ ; 2.62 ; Crystal structure of a dihydroorotase 4LFY ; 1.8 ; Crystal structure of a dihydroorotase from Burkholderia cenocepacia J2315 5HBM ; 3.043 ; Crystal Structure of a Dihydroxycoumarin RNase H Active-Site Inhibitor in Complex with HIV-1 Reverse Transcriptase 1M2Z ; 2.5 ; Crystal structure of a dimer complex of the human glucocorticoid receptor ligand-binding domain bound to dexamethasone and a TIF2 coactivator motif 2P5L ; 2.85 ; Crystal structure of a dimer of N-terminal domains of AhrC in complex with an 18bp DNA operator site 3NBN ; 3.45 ; Crystal structure of a dimer of Notch Transcription Complex trimers on HES1 DNA 1U73 ; 1.9 ; Crystal structure of a Dimeric Acidic Platelet Aggregation Inhibitor and Hypotensive Phospholipase A2 from Bothrops jararacussu 1RLV ; 3.0 ; Crystal structure of a dimeric Archaeal Splicing Endonuclease 7OVY ; 1.24 ; Crystal structure of a dimeric based inhibitor JG34 in complex with the MMP-12 catalytic domain 2AR9 ; 2.8 ; Crystal structure of a dimeric caspase-9 5YB9 ; 2.276 ; Crystal structure of a dimeric cyclophilin A from T.vaginalis 3DE8 ; 1.72 ; Crystal Structure of a Dimeric Cytochrome cb562 Assembly Induced by Copper Coordination 2QYC ; 1.9 ; Crystal structure of a dimeric ferredoxin-like protein (bb1511) from bordetella bronchiseptica rb50 at 1.90 A resolution 3BN7 ; 1.64 ; CRYSTAL STRUCTURE OF A DIMERIC FERREDOXIN-LIKE PROTEIN (CC_2267) FROM CAULOBACTER CRESCENTUS CB15 AT 1.64 A RESOLUTION 2OD4 ; 1.7 ; Crystal structure of a dimeric ferredoxin-like protein (jcvi_pep_1096665735785) from uncultured marine organism at 1.70 A resolution 2OP5 ; 2.2 ; CRYSTAL STRUCTURE OF A DIMERIC FERREDOXIN-LIKE PROTEIN (JCVI_PEP_1096672785533) FROM UNCULTURED MARINE ORGANISM AT 2.20 A RESOLUTION 2OD6 ; 1.85 ; Crystal structure of a dimeric ferredoxin-like protein (jcvi_pep_1096682647733) from uncultured marine organism at 1.85 A resolution 3BB5 ; 2.3 ; CRYSTAL STRUCTURE OF A DIMERIC FERREDOXIN-LIKE PROTEIN OF UNKNOWN FUNCTION (JANN_3925) FROM JANNASCHIA SP. CCS1 AT 2.30 A RESOLUTION 3BGU ; 1.5 ; Crystal structure of a dimeric ferredoxin-like protein of unknown function (tfu_0763) from thermobifida fusca yx at 1.50 A resolution 1CVS ; 2.8 ; CRYSTAL STRUCTURE OF A DIMERIC FGF2-FGFR1 COMPLEX 1UUP ; 2.6 ; Crystal Structure of A Dimeric Form of Streptococcal Pyrogenic Exotoxin A (SpeA1). 3IO5 ; 2.4 ; Crystal Structure of a dimeric form of the uvsX Recombinase core domain from Enterobacteria Phage T4 6LSO ; 1.76 ; Crystal structure of a dimeric inhibited of peptidyl tRNA hydrolase at 1.76A resolution 7X7G ; 2.19 ; Crystal structure of a dimeric interlocked parallel G-quadruplex 7XDH ; 1.83 ; Crystal structure of a dimeric interlocked parallel G-quadruplex 7XH9 ; 1.63 ; Crystal structure of a dimeric interlocked parallel G-quadruplex 7XHD ; 1.66 ; Crystal structure of a dimeric interlocked parallel G-quadruplex 7XIE ; 1.97 ; Crystal structure of a dimeric interlocked parallel G-quadruplex 3UX7 ; 2.97 ; Crystal structure of a dimeric myotoxic component of the Vipera ammodytes meridionalis venom reveals determinants of myotoxicity and membrane damaging activity 5YLA ; 1.68 ; Crystal structure of a dimeric peptidyl-tRNA hydrolase from Acinetobacter baumannii at 1.67 A resolution 6LSP ; 1.5 ; Crystal structure of a dimeric Piptidyl t-RNA hydrolase from Acinetobacter baumannii at 1.50 A resolution reveals an inhibited form. 4G2E ; 1.4 ; Crystal structure of a dimeric PrxQ from Sulfolobus tokodaii 4BK6 ; 1.63 ; Crystal Structure of a dimeric variant of Bet v 1 6LQW ; 2.6 ; Crystal structure of a dimeric yak lactoperoxidase at 2.59 A resolution. 2NXF ; 1.7 ; Crystal Structure of a dimetal phosphatase from Danio rerio LOC 393393 2H1R ; 1.89 ; Crystal structure of a dimethyladenosine transferase from Plasmodium falciparum 1K1Q ; 2.8 ; Crystal Structure of a DinB Family Error Prone DNA Polymerase from Sulfolobus solfataricus 2OQM ; 1.83 ; Crystal structure of a dinb family member protein (sden_0562) from shewanella denitrificans at 1.83 A resolution 1IM4 ; 2.3 ; Crystal Structure of a DinB Homolog (DBH) Lesion Bypass DNA Polymerase Catalytic Fragment from Sulfolobus solfataricus 3DI5 ; 2.009 ; Crystal structure of a dinb-like protein (bce_4655) from bacillus cereus atcc 10987 at 2.01 A resolution 3QTH ; 2.2 ; Crystal structure of a DinB-like protein (CPS_3021) from Colwellia psychrerythraea 34H at 2.20 A resolution 3DKA ; 2.3 ; Crystal structure of a dinb-like protein (yjoa, bsu12410) from bacillus subtilis at 2.30 A resolution 7C0R ; 1.77 ; Crystal structure of a dinucleotide-binding protein (F79A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C0S ; 1.85 ; Crystal structure of a dinucleotide-binding protein (F79A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C1B ; 2.3 ; Crystal structure of a dinucleotide-binding protein (F79A/Y224A/Y246A and deletion of residues 50-75) of ABC transporter (unbound form) 7C0T ; 1.77 ; Crystal structure of a dinucleotide-binding protein (N81A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine 7C14 ; 2.4 ; Crystal structure of a dinucleotide-binding protein (Q274A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C15 ; 1.8 ; Crystal structure of a dinucleotide-binding protein (Q274A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C0U ; 1.8 ; Crystal structure of a dinucleotide-binding protein (S127A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine 7C0X ; 1.77 ; Crystal structure of a dinucleotide-binding protein (T240A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine 7C0V ; 1.9 ; Crystal structure of a dinucleotide-binding protein (Y224A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C0W ; 2.1 ; Crystal structure of a dinucleotide-binding protein (Y224A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C16 ; 1.9 ; Crystal structure of a dinucleotide-binding protein (Y224A/Y246A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C19 ; 1.77 ; Crystal structure of a dinucleotide-binding protein (Y224A/Y246A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C0Y ; 1.7 ; Crystal structure of a dinucleotide-binding protein (Y246A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C0Z ; 2.2 ; Crystal structure of a dinucleotide-binding protein (Y246A) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C0O ; 2.0 ; Crystal structure of a dinucleotide-binding protein (Y56F) of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine 7C0F ; 2.15 ; Crystal structure of a dinucleotide-binding protein of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form I) 7C0K ; 1.8 ; Crystal structure of a dinucleotide-binding protein of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form II) 7C0L ; 1.85 ; Crystal structure of a dinucleotide-binding protein of ABC transporter endogenously bound to uridylyl-3'-5'-phospho-guanosine (Form III) 2NP9 ; 2.45 ; Crystal structure of a dioxygenase in the Crotonase superfamily 5KAG ; 2.456 ; Crystal structure of a dioxygenase in the Crotonase superfamily in P21 5KAJ ; 2.681 ; Crystal structure of a dioxygenase in the Crotonase superfamily in P21, A319C mutant 5KAH ; 2.779 ; Crystal structure of a dioxygenase in the Crotonase superfamily in P21, V425T mutant 2HNU ; 2.0 ; Crystal Structure of a Dipeptide Complex of Bovine Neurophysin-I 2HNV ; 2.5 ; Crystal Structure of a Dipeptide Complex of the Q58V Mutant of Bovine Neurophysin-I 6VRR ; 1.45 ; Crystal structure of a disease mutant of the Voltage-gated Sodium Channel Beta 2 subunit extracellular domain 6VSV ; 1.62 ; Crystal structure of a disease mutant of the Voltage-gated Sodium Channel Beta 4 subunit extracellular domain 4EOW ; 1.97 ; Crystal structure of a disease-associated anti-human GM-CSF autoantibody MB007 5YDF ; 1.399 ; Crystal structure of a disease-related gene, hCDC73(1-100) 5YDE ; 1.023 ; Crystal structure of a disease-related gene, hCDC73(1-111) 1TEJ ; 1.9 ; Crystal structure of a disintegrin heterodimer at 1.9 A resolution. 1FCS ; 1.6 ; CRYSTAL STRUCTURE OF A DISTAL SITE DOUBLE MUTANT OF SPERM WHALE MYOGLOBIN AT 1.6 ANGSTROMS RESOLUTION 4RDU ; 1.85 ; Crystal structure of a distal-less homeobox protein 5 (Dlx5) from Homo sapiens at 1.85 A resolution 2IPL ; 1.2 ; Crystal structure of a disulfide mutant glucose binding protein 2IPM ; 1.12 ; Crystal structure of a disulfide mutant glucose binding protein 2IPN ; 1.15 ; Crystal structure of a disulfide mutant glucose binding protein 5OQI ; 2.4 ; Crystal Structure of a disulfide trapped single chain trimer composed of the MHC I heavy chain H-2Kb Y84C E63A mutant, beta-2microglobulin, and ovalbumin-derived peptide 5OQH ; 2.05 ; Crystal Structure of a disulfide trapped single chain trimer composed of the MHC I heavy chain H-2Kb Y84C K66A mutant, beta-2microglobulin, and ovalbumin-derived peptide 2QRT ; 1.8 ; Crystal Structure of a disulfide trapped single chain trimer composed of the MHC I heavy chain H-2Kb Y84C, beta-2microglobulin, and ovalbumin-derived peptide. 2IUB ; 2.9 ; Crystal structure of a divalent metal ion transporter CorA at 2.9 A resolution. 4ZGG ; 1.23 ; Crystal structure of a DJ-1 (PARK7) from Homo sapiens at 1.23 A resolution 3BHN ; 1.76 ; Crystal structure of a dj-1/pfpi-like protein (shew_2856) from shewanella loihica pv-4 at 1.76 A resolution 5MH0 ; 1.24 ; Crystal structure of a DM9 domain containing protein from Crassostrea gigas 5MH1 ; 1.1 ; Crystal structure of a DM9 domain containing protein from Crassostrea gigas 5MH2 ; 1.3 ; Crystal structure of a DM9 domain containing protein from Crassostrea gigas with D22A mutation 5MH3 ; 1.6 ; Crystal structure of a DM9 domain containing protein from Crassostrea gigas with K43A mutation 4LHF ; 2.401 ; Crystal structure of a DNA binding protein from phage P2 1NH9 ; 2.0 ; Crystal Structure of a DNA Binding Protein Mja10b from the hyperthermophile Methanococcus jannaschii 3OT0 ; 1.7004 ; Crystal structure of a DNA containing the rigid nitroxide spin-labeled nucleotide C-spin 1N4E ; 2.5 ; Crystal Structure of a DNA Decamer Containing a Thymine-dimer 1SM5 ; 2.0 ; Crystal Structure of a DNA Decamer Containing a Thymine-dimer 1T4I ; 2.5 ; Crystal Structure of a DNA Decamer Containing a Thymine-dimer 237D ; 2.5 ; CRYSTAL STRUCTURE OF A DNA DECAMER SHOWING A NOVEL PSEUDO FOUR-WAY HELIX-HELIX JUNCTION 6QJS ; 1.8 ; Crystal structure of a DNA dodecamer containing a tetramethylpiperidinoxyl (nitroxide) spin label 6QJR ; 2.9 ; Crystal structure of a DNA dodecamer containing a tetramethylpyrrolinoxyl (nitroxide) spin label 3GJH ; 2.9 ; Crystal structure of a DNA duplex containing 7,8-dihydropyridol[2,3-d]pyrimidin-2-one 3GJJ ; 2.9 ; crystal structure of a DNA duplex containing 7,8-dihydropyridol[2,3-d]pyrimidin-2-one 3GJK ; 2.2 ; crystal structure of a DNA duplex containing 7,8-dihydropyridol[2,3-d]pyrimidin-2-one 3GJL ; 1.92 ; crystal structure of a DNA duplex containing 7,8-dihydropyridol[2,3-d]pyrimidin-2-one 178D ; 2.5 ; CRYSTAL STRUCTURE OF A DNA DUPLEX CONTAINING 8-HYDROXYDEOXYGUANINE.ADENINE BASE-PAIRS 6IYQ ; 2.01 ; Crystal structure of a DNA duplex cross-linked by 6-thioguanine-6-thioguanine disulfides 5UA3 ; 1.8802 ; Crystal Structure of a DNA G-Quadruplex with a Cytosine Bulge 4IEJ ; 1.45 ; Crystal structure of a DNA methyltransferase 1 associated protein 1 (DMAP1) from Homo sapiens at 1.45 A resolution 4GX8 ; 1.7 ; Crystal structure of a DNA polymerase III alpha-epsilon chimera 4GX9 ; 2.15 ; Crystal structure of a DNA polymerase III alpha-epsilon chimera 6DEG ; 2.45 ; Crystal structure of a DNA polymerase III subunit beta DnaN sliding clamp from Bartonella birtlesii LL-WM9 6D47 ; 2.45 ; Crystal structure of a DNA polymerase III subunit beta DnaN sliding clamp from Mycobacterium marinum 6D46 ; 2.0 ; Crystal structure of a DNA polymerase III subunit beta DnaN sliding clamp from Rickettsia typhi str. Wilmington 2GNO ; 2.0 ; Crystal structure of a dna polymerase iii, gamma subunit-related protein (tm0771) from thermotoga maritima msb8 at 2.00 A resolution 5VAZ ; 2.4 ; Crystal structure of a DNA primase domain from Pseudomonas aeruginosa 6YXQ ; 2.7 ; Crystal structure of a DNA repair complex ASCC3-ASCC2 6JDE ; 2.8 ; crystal structure of a DNA repair protein 5T4W ; 2.3 ; Crystal structure of a DNA sequence d (CGTGAATTCACG) with DAPI 5JU4 ; 2.0 ; Crystal structure of a DNA sequence d(CGTGAATTCACG) at 130K 1XRX ; 2.15 ; Crystal structure of a DNA-binding protein 5EBI ; 1.09 ; Crystal structure of a DNA-RNA chimera in complex with Ba2+ ions: a case of unusual multi-domain twinning 4U92 ; 1.5 ; Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad 5EAY ; 1.55 ; Crystal structure of a Dna2 peptide in complex with Rpa 70N 6PTR ; 1.75 ; Crystal structure of a DnaN sliding clamp (DNA polymerase III subunit beta) from Bartonella birtlesii bound to griselimycin 6PTH ; 3.05 ; Crystal structure of a DnaN sliding clamp (DNA polymerase III subunit beta) from Pseudomonas aeruginosa bound to griselimycin 6PTV ; 1.85 ; Crystal structure of a DnaN sliding clamp (DNA polymerase III subunit beta) from Rickettsia rickettsii bound to griselimycin 6MAN ; 2.35 ; Crystal structure of a DnaN sliding clamp DNA polymerase III subunit beta from Rickettsia bellii RML369-C 7RAB ; 1.92 ; Crystal structure of a dodecameric multicopper oxidase from M. hydrothermalis in a cubic lattice 7RAC ; 2.36 ; Crystal structure of a dodecameric multicopper oxidase from M. hydrothermalis in an orthorhombic lattice 4ODD ; 2.6 ; Crystal structure of a dog lipocalin allergen 3TEJ ; 1.9 ; Crystal structure of a domain fragment involved in peptide natural product biosynthesis 4DCZ ; 2.9 ; Crystal structure of a domain from a mycoplasma genitalium terminal organelle protein 3MVN ; 1.9 ; Crystal structure of a domain from a putative UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-medo-diaminopimelate ligase from Haemophilus ducreyi 35000HP 3KW6 ; 2.1 ; Crystal Structure of a domain of 26S proteasome regulatory subunit 8 from homo sapiens. Northeast Structural Genomics Consortium target id HR3102A 3ONX ; 2.904 ; Crystal structure of a domain of a protein involved in formation of actin cytoskeleton 3CNI ; 2.3 ; Crystal structure of a domain of a putative ABC type-2 transporter from Thermotoga maritima MSB8 3DM3 ; 2.4 ; Crystal structure of a domain of a Replication factor A protein, from Methanocaldococcus jannaschii. NorthEast Structural Genomics target MjR118E 3SWV ; 3.0 ; Crystal Structure of a domain of Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) from Homo sapiens (Human), Northeast Structural Genomics Consortium target id HR5562A 3L8N ; 2.86 ; Crystal Structure of a domain of Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BrefeldinA-inhibited GEP 2) from Homo sapiens (Human). Northeast Structural Genomics Consortium target id HR5562A 3IX7 ; 2.15 ; Crystal structure of a domain of functionally unknown protein from Thermus thermophilus HB8 3GX1 ; 2.3 ; Crystal structure of a domain of lin1832 from Listeria innocua 3CAN ; 1.8 ; Crystal structure of a domain of pyruvate-formate lyase-activating enzyme from Bacteroides vulgatus ATCC 8482 3E0E ; 1.6 ; Crystal structure of a domain of replication protein A from Methanococcus maripaludis. NorthEast Structural Genomics targe MrR110B 3LYV ; 2.7 ; Crystal structure of a domain of ribosome-associated factor Y from streptococcus pyogenes serotype M6. Northeast Structural Genomics Consortium target id DR64A 2R2C ; 1.8 ; Crystal structure of a domain of the outer membrane lipoprotein Omp28 from Porphyromonas gingivalis 2RK5 ; 1.5 ; Crystal structure of a domain of the putative hemolysin from Streptococcus mutans UA159 2R78 ; 1.6 ; Crystal structure of a domain of the sensory box sensor histidine kinase/response regulator from Geobacter sulfurreducens 3PAM ; 2.31 ; Crystal structure of a domain of transmembrane protein of ABC-type oligopeptide transport system from Bartonella henselae str. Houston-1 4XG0 ; 1.7 ; Crystal structure of a domain of unknown function (DUF1537) from Bordetella bronchiseptica (BB3215), Target EFI-511620, with bound citrate, domain swapped dimer, space group C2221 4XFR ; 2.0 ; Crystal structure of a domain of unknown function (DUF1537) from Bordetella bronchiseptica (BB3215), Target EFI-511620, with bound citrate, domain swapped dimer, space group P6522 4XGJ ; 1.9 ; Crystal structure of a domain of unknown function (DUF1537) from Pectobacterium atrosepticum (ECA3761), Target EFI-511609, APO structure, domain swapped dimer 4XFM ; 1.55 ; Crystal structure of a domain of unknown function (DUF1537) from Pectobacterium atrosepticum (ECA3761), Target EFI-511609, with bound D-threonate, domain swapped dimer 5DMH ; 1.8 ; Crystal structure of a domain of unknown function (DUF1537) from Ralstonia eutropha H16 (H16_A1561), Target EFI-511666, complex with ADP. 4M1A ; 1.9 ; Crystal structure of a Domain of unknown function (DUF1904) from Sebaldella termitidis ATCC 33386 3CU3 ; 2.0 ; Crystal structure of a domain of unknown function with a cystatin-like fold (npun_r1993) from nostoc punctiforme pcc 73102 at 2.00 A resolution 3DDE ; 2.3 ; Crystal structure of a domain of unknown function with a heme oxygenase-like fold (sden_3740) from shewanella denitrificans os217 at 2.30 A resolution 3U6G ; 1.35 ; Crystal structure of a domain of unknown function, DUF4425 (BVU_3708) from Bacteroides vulgatus ATCC 8482 at 1.35 A resolution 6AMZ ; 2.05 ; Crystal structure of a domain swapped 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase from Acinetobacter baumannii 1G6U ; 1.48 ; CRYSTAL STRUCTURE OF A DOMAIN SWAPPED DIMER 1L5T ; 3.0 ; Crystal Structure of a Domain-Opened Mutant (R121D) of the Human Lactoferrin N-lobe Refined From a Merohedrally-Twinned Crystal Form. 6H01 ; 2.776 ; Crystal structure of a domain-swapped dark-state sfGFP containing the unnatural amino acid ortho-nitrobenzyl-tyrosine (ONBY) at residue 66 5YQQ ; 1.9 ; Crystal structure of a domain-swapped dimer of the second StARkin domain of Lam2 5KKE ; 1.701 ; Crystal Structure of a Domain-swapped Dimer of Yeast Iso-1-cytochrome c with CYMAL5 5KLU ; 1.99 ; Crystal Structure of a Domain-swapped Dimer of Yeast Iso-1-cytochrome c with omega-undecylenyl-beta-D-maltopyranoside 6UKK ; 1.6 ; Crystal Structure of a Domain-swapped Fluorogen Activating Protein DiB3 Dimer 2ZNH ; 2.8 ; Crystal Structure of a Domain-Swapped Serpin Dimer 6MPZ ; 2.0 ; Crystal structure of a double glycine motif protease from AMS/PCAT transporter in complex with the leader peptide 6LH6 ; 1.4 ; Crystal structure of a double headed Bowman-birk protease inhibitor protein from chickpea. 2WKD ; 2.1 ; Crystal structure of a double Ile-to-Met mutant of protein ORF34 from lactococcus phage p2 7TE3 ; 2.2 ; Crystal Structure of a Double Loop Deletion Mutant in gC1qR/C1qBP/HABP-1 4BI5 ; 2.7 ; CRYSTAL STRUCTURE OF A DOUBLE MUTANT (C202A AND C222D) OF TRIOSEPHOSPHATE ISOMERASE FROM GIARDIA LAMBLIA. 2DP3 ; 2.1 ; Crystal structure of a double mutant (C202A/A198V) of Triosephosphate isomerase from giardia lamblia 8Q6U ; 1.516 ; Crystal structure of a double mutant acetyltransferase from Bacillus cereus species. 5D3C ; 1.314 ; Crystal structure of a double mutant catalytic domain of Human MMP12 in complex with an hydroxamate analogue of RXP470 4HST ; 1.571 ; Crystal structure of a double mutant of a class III engineered cephalosporin acylase 7OSB ; 1.45 ; Crystal Structure of a Double Mutant PETase (S238F/W159H) from Ideonella sakaiensis 4I5H ; 1.9 ; Crystal Structure of a Double Mutant Rat Erk2 Complexed With a Type II Quinazoline Inhibitor 3SO1 ; 1.85 ; Crystal structure of a double mutant T41S T82S of a betagamma-crystallin domain from Clostridium beijerinckii 3QQ1 ; 2.7 ; Crystal structure of a double mutant [A58P, DEL(N59)] of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 6N3I ; 3.69 ; Crystal structure of a double Trp XylE mutants (G58W/L315W) 1JYJ ; 2.0 ; Crystal Structure of a Double Variant (W67L/W91H) of Recombinant Human Serum Retinol-binding Protein at 2.0 A Resolution 7JNH ; 2.89 ; Crystal structure of a double-ENE RNA stability element in complex with a 28-mer poly(A) RNA 1AIO ; 2.6 ; CRYSTAL STRUCTURE OF A DOUBLE-STRANDED DNA CONTAINING THE MAJOR ADDUCT OF THE ANTICANCER DRUG CISPLATIN 1A2E ; 1.63 ; CRYSTAL STRUCTURE OF A DOUBLE-STRANDED DNA DECAMER CONTAINING A CISPLATIN INTERSTRAND CROSS-LINK ADDUCT 1N1Q ; 2.2 ; Crystal structure of a Dps protein from Bacillus brevis 3V8I ; 1.802 ; Crystal Structure of a Drosophila melanogaster Dopamine N-Acetyltransferase 2FNT ; 1.44 ; Crystal structure of a drug-resistant (V82A) inactive (D25N) HIV-1 protease complexed with AP2V variant of HIV-1 NC-p1 substrate. 1DI2 ; 1.9 ; CRYSTAL STRUCTURE OF A DSRNA-BINDING DOMAIN COMPLEXED WITH DSRNA: MOLECULAR BASIS OF DOUBLE-STRANDED RNA-PROTEIN INTERACTIONS 1VL0 ; 2.05 ; CRYSTAL STRUCTURE OF A DTDP-4-DEHYDRORHAMNOSE REDUCTASE, RFBD ORTHOLOG (CA_C2315) FROM CLOSTRIDIUM ACETOBUTYLICUM ATCC 824 AT 2.05 A RESOLUTION 6F32 ; 2.8 ; Crystal structure of a dual function amine oxidase/cyclase in complex with substrate analogues 6OAQ ; 2.54 ; Crystal structure of a dual sensor histidine kinase in BeF3- bound state 6OB8 ; 2.3 ; Crystal structure of a dual sensor histidine kinase in green light illuminated state 6OAP ; 1.97 ; Crystal structure of a dual sensor histidine kinase in the green-light absorbing Pg state 5A40 ; 3.6 ; Crystal structure of a dual topology fluoride ion channel. 5A43 ; 2.58 ; Crystal structure of a dual topology fluoride ion channel. 5NKQ ; 2.17 ; Crystal structure of a dual topology fluoride ion channel. 1U15 ; 2.5 ; Crystal structure of a duck-delta-crystallin-1 double loop mutant (DLM) 1U16 ; 2.2 ; Crystal structure of a duck-delta-crystallin-1 double loop mutant (DLM) in complex with sulfate 2O3L ; 2.05 ; Crystal structure of a duf1048 protein with a left-handed superhelix fold (bce_3448) from bacillus cereus atcc 10987 at 2.05 A resolution 2H1T ; 1.8 ; Crystal structure of a duf1089 family protein (pa1994) from pseudomonas aeruginosa at 1.80 A resolution 3BYQ ; 1.7 ; Crystal structure of a duf1185 family protein (bb2672) from bordetella bronchiseptica rb50 at 1.70 A resolution 2QTP ; 2.1 ; Crystal structure of a duf1185 family protein (spo0826) from silicibacter pomeroyi dss-3 at 2.10 A resolution 2RA9 ; 1.4 ; Crystal structure of a duf1285 family protein (sbal_2486) from shewanella baltica os155 at 1.40 A resolution 2RE3 ; 2.5 ; CRYSTAL STRUCTURE OF a DUF1285 family protein (SPO_0140) FROM SILICIBACTER POMEROYI DSS-3 AT 2.50 A RESOLUTION 3GI7 ; 1.85 ; Crystal structure of a duf1311 family protein (pp0307) from pseudomonas putida kt2440 at 1.85 A resolution 4OBI ; 1.734 ; Crystal structure of a DUF1312 family protein (EF3258) from Enterococcus faecalis V583 at 1.73 A resolution 4ESN ; 2.2 ; Crystal structure of a DUF1312 family protein (RUMGNA_02503) from Ruminococcus gnavus ATCC 29149 at 2.20 A resolution 4Z48 ; 1.75 ; Crystal structure of a DUF1329 family protein (DESPIG_00262) from Desulfovibrio piger ATCC 29098 at 1.75 A resolution 4K05 ; 1.65 ; Crystal structure of a DUF1343 family protein (BF0371) from Bacteroides fragilis NCTC 9343 at 1.65 A resolution 4JJA ; 1.3 ; Crystal structure of a DUF1343 family protein (BF0379) from Bacteroides fragilis NCTC 9343 at 1.30 A resolution 3H0N ; 1.45 ; Crystal structure of a duf1470 family protein (jann_2411) from jannaschia sp. ccs1 at 1.45 A resolution 4GOQ ; 1.87 ; Crystal structure of a DUF1491 family protein (CC_1065) from Caulobacter crescentus CB15 at 1.87 A resolution 1VJL ; 1.9 ; Crystal structure of a duf151 family protein (tm0160) from thermotoga maritima at 1.90 A resolution 1SJ5 ; 2.8 ; Crystal structure of a duf151 family protein (tm0160) from thermotoga maritima at 2.8 A resolution 4MDW ; 2.0 ; Crystal structure of a DUF1541 family protein (ydhK) from Bacillus subtilis subsp. subtilis str. 168 at 2.00 A resolution 2OBN ; 2.3 ; Crystal structure of a duf1611 family protein (ava_3511) from anabaena variabilis atcc 29413 at 2.30 A resolution 2G40 ; 1.7 ; Crystal structure of a duf162 family protein (dr_1909) from deinococcus radiodurans at 1.70 A resolution 4QPV ; 1.8 ; Crystal structure of a DUF1672 family protein (SAV1486) from Staphylococcus aureus subsp. aureus Mu50 at 1.80 A resolution 3DCX ; 2.0 ; Crystal structure of a duf1696 family protein with a pleckstrin-homology domain (shew_0819) from shewanella loihica pv-4 at 2.00 A resolution 2IAY ; 1.2 ; Crystal structure of a duf1831 family protein (lp2179) from lactobacillus plantarum at 1.20 A resolution 1VK9 ; 2.7 ; CRYSTAL STRUCTURE OF A DUF1893 family protein (TM1506) FROM THERMOTOGA MARITIMA AT 2.70 A RESOLUTION 3DI4 ; 1.6 ; Crystal structure of a duf1989 family protein (spo0365) from silicibacter pomeroyi dss-3 at 1.60 A resolution 3ORU ; 1.11 ; Crystal structure of a DUF1989 family protein (TM1040_0329) from SILICIBACTER SP. TM1040 at 1.11 A resolution 3SIY ; 1.35 ; Crystal structure of a DUF1989 family protein (TM1040_0329) from SILICIBACTER SP. TM1040 at 1.35 A resolution 2HUH ; 1.54 ; Crystal structure of a duf2027 family protein (bt_2179) from bacteroides thetaiotaomicron at 1.54 A resolution 3D4R ; 2.2 ; CRYSTAL STRUCTURE OF a DUF2118 family protein (MMP0046) FROM METHANOCOCCUS MARIPALUDIS AT 2.20 A RESOLUTION 3KE2 ; 2.5 ; CRYSTAL STRUCTURE OF a DUF2131 family protein (SAMA_2911) FROM SHEWANELLA AMAZONENSIS SB2B AT 2.50 A RESOLUTION 4F98 ; 1.26 ; Crystal structure of a DUF2790 family protein (PA3229) from Pseudomonas aeruginosa PAO1 at 1.26 A resolution 2PYQ ; 1.5 ; Crystal structure of a duf2853 member protein (jann_4075) from jannaschia sp. ccs1 at 1.500 A resolution 4IPB ; 1.62 ; Crystal structure of a DUF2874 family protein (BACOVA_02504) from Bacteroides ovatus ATCC 8483 at 1.62 A resolution 4K61 ; 1.7 ; Crystal structure of a DUF2874 family protein (BACUNI_01296) from Bacteroides uniformis ATCC 8492 at 1.70 A resolution 4KQ7 ; 1.62 ; Crystal structure of a DUF2961 family protein (BACUNI_00161) from Bacteroides uniformis ATCC 8492 at 1.62 A resolution 3CE8 ; 2.4 ; Crystal structure of a duf3240 family protein (sbal_0098) from shewanella baltica os155 at 2.40 A resolution 3D33 ; 1.7 ; Crystal structure of a duf3244 family protein with an immunoglobulin-like beta-sandwich fold (bvu_0276) from bacteroides vulgatus atcc 8482 at 1.70 A resolution 4E72 ; 2.15 ; Crystal structure of a DUF3298 family protein (PA4972) from Pseudomonas aeruginosa PAO1 at 2.15 A resolution 4HSP ; 2.45 ; Crystal structure of a DUF3299 family protein (PA4066) from Pseudomonas aeruginosa PAO1 at 2.45 A resolution 4L3U ; 1.95 ; Crystal structure of a DUF3571 family protein (ABAYE3784) from Acinetobacter baumannii AYE at 1.95 A resolution 4FXT ; 2.77 ; Crystal structure of a DUF3823 family protein (BACOVA_02663) from Bacteroides ovatus ATCC 8483 at 2.77 A resolution 4EIU ; 1.9 ; Crystal structure of a DUF3823 family protein (BACUNI_03093) from Bacteroides uniformis ATCC 8492 at 1.90 A resolution 4YOK ; 1.8 ; Crystal structure of a DUF3823 family protein (PARMER_04126) from Parabacteroides merdae ATCC 43184 at 1.80 A resolution 4YJW ; 1.8 ; Crystal structure of a DUF3829 family protein (BVU_3067) from Bacteroides vulgatus ATCC 8482 at 1.80 A resolution 4R03 ; 1.5 ; Crystal structure of a DUF3836 family protein (BDI_3222) from Parabacteroides distasonis ATCC 8503 at 1.50 A resolution 4R8O ; 2.5 ; Crystal structure of a DUF3836 family protein (BVU_1206) from Bacteroides vulgatus ATCC 8482 at 2.50 A resolution 4HYZ ; 2.25 ; Crystal structure of a DUF3887 family protein (RUMGNA_01855) from Ruminococcus gnavus ATCC 29149 at 2.25 A resolution 4F54 ; 1.6 ; Crystal structure of a DUF4136 family protein (BT2437) from Bacteroides thetaiotaomicron VPI-5482 at 1.60 A resolution 3F7C ; 2.0 ; Crystal structure of a duf416 family protein (maqu_0942) from marinobacter aquaeolei vt8 at 2.00 A resolution 2Q9R ; 1.91 ; CRYSTAL STRUCTURE OF a DUF416 family protein (SBAL_3149) FROM SHEWANELLA BALTICA OS155 AT 1.91 A RESOLUTION 4GDZ ; 1.95 ; Crystal structure of a DUF4251 family protein (BACEGG_02002) from Bacteroides eggerthii DSM 20697 at 1.95 A resolution 4YGT ; 2.13 ; Crystal structure of a DUF4309 family protein (YjgB) from Bacillus subtilis subsp. subtilis str. 168 at 2.13 A resolution 2GA1 ; 2.0 ; Crystal structure of a duf433 member protein (ava_0674) from anabaena variabilis atcc 29413 at 2.00 A resolution 4MJF ; 1.99 ; Crystal structure of a DUF4348 family protein (BVU_2238) from Bacteroides vulgatus ATCC 8482 at 1.99 A resolution 4FM3 ; 2.47 ; Crystal structure of a DUF4398 family protein (PA2901) from Pseudomonas aeruginosa PAO1 at 2.47 A resolution 4QEY ; 2.52 ; Crystal structure of a DUF4425 family protein (BACOVA_05332) from Bacteroides ovatus ATCC 8483 at 2.52 A resolution 3UC2 ; 2.09 ; Crystal structure of a DUF4426 family protein (PA0388) from Pseudomonas aeruginosa PAO1 at 2.09 A resolution 4E0E ; 2.9 ; Crystal structure of a DUF4450 family protein (BT_4147) from Bacteroides thetaiotaomicron VPI-5482 at 2.90 A resolution 4JQR ; 2.05 ; Crystal structure of a DUF4465 family protein (BACCAC_02373) from Bacteroides caccae ATCC 43185 at 2.05 A resolution 4E9K ; 2.31 ; Crystal structure of a DUF4465 family protein (BACOVA_04221) from Bacteroides ovatus ATCC 8483 at 2.31 A resolution 4EI0 ; 2.0 ; Crystal structure of a DUF4466 family protein (PARMER_03218) from Parabacteroides merdae ATCC 43184 at 2.00 A resolution 4EBG ; 1.2 ; Crystal structure of a DUF4467 family protein (SAV0303) from Staphylococcus aureus subsp. aureus Mu50 at 1.35 A resolution 4E6F ; 1.49 ; Crystal structure of a DUF4468 family protein (BACOVA_04320) from Bacteroides ovatus ATCC 8483 at 1.49 A resolution 4FTD ; 1.91 ; Crystal structure of a DUF4623 family protein (BACEGG_03550) from Bacteroides eggerthii DSM 20697 at 1.91 A resolution 4ID2 ; 2.15 ; Crystal structure of a DUF4738 family protein (BACOVA_05496) from Bacteroides ovatus ATCC 8483 at 2.15 A resolution 4ORL ; 1.4 ; Crystal structure of a DUF4783 family protein (BACOVA_04304) from Bacteroides ovatus ATCC 8483 at 1.40 A resolution 4Q53 ; 1.27 ; Crystal structure of a DUF4783 family protein (BACUNI_04292) from Bacteroides uniformis ATCC 8492 at 1.27 A resolution 4OUQ ; 1.55 ; Crystal structure of a DUF4783 family protein (BF1468) from Bacteroides fragilis YCH46 at 1.55 A resolution 4M8R ; 2.5 ; Crystal structure of a DUF4784 family protein (BACCAC_01631) from Bacteroides caccae ATCC 43185 at 2.50 A resolution 4KH9 ; 2.0 ; Crystal structure of a DUF4785 family protein (lpg0956) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 2.00 A resolution 4NW4 ; 1.85 ; Crystal structure of a DUF4822 family protein (EF0375) from Enterococcus faecalis V583 at 1.85 A resolution 4O2T ; 2.4 ; Crystal structure of a DUF4827 family protein (BDI_1692) from Parabacteroides distasonis ATCC 8503 at 2.40 A resolution 4L3R ; 2.23 ; Crystal structure of a DUF4847 family protein (BACEGG_01241) from Bacteroides eggerthii DSM 20697 at 2.23 A resolution 4ZGF ; 1.0 ; Crystal structure of a duf4847 family protein (BVU_2626) from Bacteroides vulgatus ATCC 8482 at 1.00 A resolution 4LB8 ; 2.49 ; Crystal structure of a DUF4848 family protein (BT3222) from Bacteroides thetaiotaomicron VPI-5482 at 2.49 A resolution 4MJG ; 2.65 ; Crystal structure of a DUF4853 family protein (ACTODO_00621) from Actinomyces odontolyticus ATCC 17982 at 2.65 A resolution 4LG3 ; 2.4 ; Crystal structure of a DUF487 family protein (DESPIG_00776) from Desulfovibrio piger ATCC 29098 at 2.49 A resolution 4Q1Z ; 2.5 ; Crystal structure of a DUF4876 family protein (BT_1938) from Bacteroides thetaiotaomicron VPI-5482 at 2.50 A resolution 4I8I ; 1.5 ; Crystal structure of a DUF4886 family protein (BACUNI_01406) from Bacteroides uniformis ATCC 8492 at 1.50 A resolution 4LQZ ; 1.92 ; Crystal structure of a DUF4909 family protein (SAV1798) from Staphylococcus aureus subsp. aureus Mu50 at 1.92 A resolution 4QVU ; 2.65 ; Crystal structure of a DUF4931 family protein (BCE0241) from Bacillus cereus ATCC 10987 at 2.65 A resolution 4GL6 ; 2.55 ; Crystal structure of a DUF5037 family protein (RUMGNA_01148) from Ruminococcus gnavus ATCC 29149 at 2.55 A resolution 4QE0 ; 1.85 ; Crystal structure of a DUF5043 family protein (BACUNI_01052) from Bacteroides uniformis ATCC 8492 at 1.85 A resolution 3GIW ; 1.45 ; CRYSTAL STRUCTURE OF a DUF574 family protein (SAV_2177) FROM STREPTOMYCES AVERMITILIS MA-4680 AT 1.45 A RESOLUTION 3GO4 ; 1.8 ; Crystal structure of a duf574 family protein (sav_2177) from streptomyces avermitilis ma-4680 at 1.80 A resolution 3BWW ; 2.2 ; Crystal structure of a duf692 family protein (hs_1138) from haemophilus somnus 129pt at 2.20 A resolution 1VPY ; 2.52 ; CRYSTAL STRUCTURE OF a DUF72 family protein (EF0366) FROM ENTEROCOCCUS FAECALIS V583 AT 2.52 A RESOLUTION 1ZTV ; 3.1 ; Crystal structure of a duf72 family protein (ef0366) from enterococcus faecalis v583 at 3.10 A resolution 1VPQ ; 2.2 ; CRYSTAL STRUCTURE OF a DUF72 family protein (TM1631) FROM THERMOTOGA MARITIMA MSB8 AT 2.20 A RESOLUTION 3E02 ; 1.9 ; Crystal structure of a duf849 family protein (bxe_c0271) from burkholderia xenovorans lb400 at 1.90 A resolution 3FA5 ; 1.9 ; CRYSTAL STRUCTURE OF a DUF849 family protein (PDEN_3495) FROM PARACOCCUS DENITRIFICANS PD1222 AT 1.90 A RESOLUTION 1O5U ; 1.83 ; Crystal structure of a duf861 family protein (tm1112) from thermotoga maritima at 1.83 A resolution 3BCW ; 1.6 ; Crystal structure of a duf861 family protein with a rmlc-like cupin fold (bb1179) from bordetella bronchiseptica rb50 at 1.60 A resolution 2FFJ ; 2.45 ; CRYSTAL STRUCTURE OF a DUF89 family protein (AF1104) FROM ARCHAEOGLOBUS FULGIDUS DSM 4304 AT 2.45 A RESOLUTION 2G8L ; 2.04 ; Crystal structure of a duf89 family protein (ph1575) from pyrococcus horikoshii at 2.04 A resolution 5TCS ; 2.8313 ; Crystal structure of a Dwarf Ndc80 Tetramer 7YZT ; 1.85 ; Crystal structure of a dye-decolorizing (Dyp) peroxidase from Acinetobacter radioresistens 2GVK ; 1.6 ; Crystal structure of a dye-decolorizing peroxidase (DyP) from Bacteroides thetaiotaomicron VPI-5482 at 1.6 A resolution 6FL2 ; 1.27 ; Crystal structure of a dye-decolorizing peroxidase D143A variant from Klebsiella pneumoniae (KpDyP) 6FIY ; 1.09 ; Crystal structure of a dye-decolorizing peroxidase D143AR232A variant from Klebsiella pneumoniae (KpDyP) 6FKS ; 1.6 ; Crystal structure of a dye-decolorizing peroxidase from Klebsiella pneumoniae (KpDyP) 6FKT ; 1.86003 ; Crystal structure of a dye-decolorizing peroxidase R232A variant from Klebsiella pneumoniae (KpDyP) 7QZA ; 2.698 ; Crystal structure of a DyP-type peroxidase 29E4 variant from Pseudomonas putida 7PL0 ; 2.1 ; Crystal structure of a DyP-type peroxidase 5G5 variant from Bacillus subtilis 7QYZ ; 2.452 ; Crystal structure of a DyP-type peroxidase 6E10 variant from Pseudomonas putida 7PKX ; 2.491 ; Crystal structure of a DyP-type peroxidase from Bacillus subtilis in P3121 space group 7QYQ ; 2.599 ; Crystal structure of a DyP-type peroxidase from Pseudomonas putida 2J4Q ; 2.6 ; Crystal structure of a E138A Escherichia coli dCTP deaminase mutant enzyme in complex with dTTP 3K92 ; 2.3 ; Crystal structure of a E93K mutant of the majour Bacillus subtilis glutamate dehydrogenase RocG 3PFM ; 2.908 ; Crystal structure of a EAL domain of GGDEF domain protein from Pseudomonas fluorescens Pf 2EXW ; 3.2 ; Crystal structure of a EcClC-Fab complex in the absence of bound ions 4LK5 ; 2.5 ; Crystal structure of a enoyl-CoA hydratase from Mycobacterium avium subsp. paratuberculosis K-10 4JFC ; 2.25 ; Crystal structure of a enoyl-CoA hydratase from Polaromonas sp. JS666 4KPK ; 2.09 ; Crystal structure of a enoyl-CoA hydratase from Shewanella pealeana ATCC 700345 4KD6 ; 2.25 ; Crystal structure of a Enoyl-CoA hydratase/isomerase from Burkholderia graminis C4D1M 7U0M ; 1.45 ; Crystal structure of a enoyl-[acyl-carrier-protein] reductase (InhA) from Mycobacterium abscessus bound to NAD and NITD-916 5ZZJ ; 2.6 ; Crystal structure of a enzyme from Santalum album 1KSI ; 2.2 ; CRYSTAL STRUCTURE OF A EUKARYOTIC (PEA SEEDLING) COPPER-CONTAINING AMINE OXIDASE AT 2.2A RESOLUTION 3ORG ; 3.5 ; Crystal Structure of a eukaryotic CLC transporter 4R0D ; 3.676 ; Crystal structure of a eukaryotic group II intron lariat 7SP5 ; 2.9 ; Crystal Structure of a Eukaryotic Phosphate Transporter 3G3Q ; 2.64 ; Crystal structure of a eukaryotic polyphosphate polymerase in complex with a phosphate polymer 3G3R ; 2.0 ; Crystal structure of a eukaryotic polyphosphate polymerase in complex with AppNHp-Mn2+ 3G3T ; 1.85 ; Crystal structure of a eukaryotic polyphosphate polymerase in complex with orthophosphate 3G3U ; 2.07 ; Crystal structure of a eukaryotic polyphosphate polymerase in complex with pyrophosphate 3CQO ; 2.32 ; Crystal structure of a f-lectin (fucolectin) from morone saxatilis (striped bass) serum 2YIF ; 3.298 ; Crystal structure of a F. nucleatum FMN riboswitch - Free state 2YIE ; 2.941 ; Crystal structure of a F. nucleatum FMN riboswitch bound to FMN 6BFB ; 2.82 ; Crystal structure of a F. nucleatum FMN riboswitch bound to WG-3 4NKI ; 2.41 ; Crystal structure of a Fab 5VEB ; 2.34 ; Crystal structure of a Fab binding to extracellular domain 5 of Cadherin-6 1OB1 ; 2.9 ; Crystal structure of a Fab complex whith Plasmodium falciparum MSP1-19 7MFR ; 2.848 ; Crystal Structure of a Fab fragment bound to peptide GGM 8B50 ; 1.67 ; Crystal structure of a Fab fragment in complex with L-hydroxycoumarylalanine 5GIR ; 1.93 ; Crystal structure of a Fab fragment with its ligand peptide 5GIS ; 1.93 ; Crystal structure of a Fab fragment with its ligand peptide 5AUM ; 2.05 ; Crystal structure of a Fab fragment with the ligand peptide 7UM3 ; 2.3983 ; Crystal structure of a Fab in complex with a peptide derived from the LAG-3 D1 domain loop insertion 6QCU ; 1.56 ; Crystal structure of a Fab portion of the anti EBOV 3T0331 antibody 7SGM ; 2.0 ; Crystal structure of a Fab variant containing a fluorescent noncanonical amino acid with blocked excited state proton transfer and in complex with its antigen, CD40L 7VSW ; 3.0 ; Crystal structure of a Fab-like fragment of anti-mesothelin antibody 2I0Z ; 1.84 ; Crystal structure of a FAD binding protein from Bacillus cereus, a putative NAD(FAD)-utilizing dehydrogenases 8FHJ ; 2.61 ; Crystal structure of a FAD monooxygenease from Methylocystis sp. Strain SB2 2HQ9 ; 1.95 ; Crystal structure of a fad-binding protein (mll6688) from mesorhizobium loti at 1.95 A resolution 3IWA ; 2.3 ; Crystal structure of a FAD-dependent pyridine nucleotide-disulphide oxidoreductase from Desulfovibrio vulgaris 6W3I ; 3.802 ; Crystal structure of a FAM46C mutant in complex with Plk4 1PZ3 ; 1.75 ; Crystal structure of a family 51 (GH51) alpha-L-arabinofuranosidase from Geobacillus stearothermophilus T6 1QW9 ; 1.2 ; Crystal structure of a family 51 alpha-L-arabinofuranosidase in complex with 4-nitrophenyl-Ara 1QW8 ; 1.8 ; Crystal structure of a family 51 alpha-L-arabinofuranosidase in complex with Ara-alpha(1,3)-Xyl 2V4V ; 1.5 ; Crystal Structure of a Family 6 Carbohydrate-Binding Module from Clostridium cellulolyticum in complex with xylose 6U4Z ; 1.4 ; Crystal Structure of a family 76 glycoside hydrolase from a bovine Bacteroides thetaiotaomicron strain 4D6G ; 1.24 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the blood group A-trisaccharide (L19 mutant) 4D6E ; 1.45 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the blood group A-trisaccharide (X01 mutant) 4D6D ; 1.52 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the blood group A-trisaccharide (X02 mutant) 4D6I ; 1.99 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 1 blood group A-tetrasaccharide (E558A L19 mutant) 4D6H ; 1.65 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 1 blood group A-tetrasaccharide (E558A X02 mutant) 4D6F ; 2.03 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 1 blood group A-tetrasaccharide (E558A, X01 mutant) 4D72 ; 2.11 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 2 blood group A-tetrasaccharide (E558A L19 mutant) 4D6J ; 1.98 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 2 blood group A-tetrasaccharide (E558A X01 mutant) 4D71 ; 1.77 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98) in complex with the type 2 blood group A-tetrasaccharide (E558A X02 mutant) 4D6C ; 1.59 ; Crystal structure of a family 98 glycoside hydrolase catalytic module (Sp3GH98)(L19 mutant) 4DWX ; 1.8 ; Crystal Structure of a Family GH-19 Chitinase from rye seeds 4DYG ; 1.7 ; Crystal Structure of a Family GH-19 Chitinase from rye seeds in complex with (GlcNAc)4 4TX8 ; 2.17 ; Crystal Structure of a Family GH18 Chitinase from Chromobacterium violaceum 4TXG ; 1.75 ; Crystal Structure of a Family GH18 Chitinase from Chromobacterium violaceum 4J0L ; 1.9 ; Crystal Structure of a Family GH19 Chitinase (W72A/E67Q mutant) from rye seeds in complex with two (GlcNAc)4 molecules 4IJ4 ; 1.58 ; Crystal Structure of a Family GH19 chitinase from Bryum coronatum in complex with (GlcNAc)4 3WH1 ; 1.0 ; Crystal Structure of a Family GH19 Chitinase from Bryum coronatum in complex with (GlcNAc)4 at 1.0 A resolution 2JJM ; 3.1 ; Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. 1G43 ; 2.2 ; CRYSTAL STRUCTURE OF A FAMILY IIIA CBD FROM CLOSTRIDIUM CELLULOLYTICUM 5GMX ; 2.0 ; Crystal structure of a family VIII carboxylesterase 4IVI ; 2.0 ; Crystal structure of a family VIII carboxylesterase. 4IVK ; 1.8 ; Crystal structure of a fammily VIII carboxylesterase in a complex with cephalothin. 4LIJ ; 1.8 ; Crystal structure of a far upstream element (FUSE) binding protein 1 (FUBP1) from Homo sapiens at 1.95 A resolution 6UV8 ; 2.701 ; Crystal structure of a far-red cyanobacteriochrome photoreceptor at room temperature 5ZOH ; 1.6 ; Crystal structure of a far-red light-absorbing form of AnPixJg2_BV4 in complex with biliverdin 4LLS ; 1.5 ; Crystal structure of a farnesyl diphosphate synthase from Roseobacter denitrificans OCh 114, target EFI-509393, with IPP, GSPP, and calcium bound in active site 4LLT ; 1.55 ; Crystal structure of a farnesyl diphosphate synthase from Roseobacter denitrificans OCh 114, target EFI-509393, with two IPP and calcium bound in active site 3FFA ; 2.3 ; Crystal Structure of a fast activating G protein mutant 1VI1 ; 2.95 ; Crystal structure of a fatty acid/phospholipid synthesis protein 6CHF ; 2.4 ; Crystal structure of a Fc fragment LALA mutant (L234A, L235A) of human IgG1 (crystal form 1) 6CJX ; 2.44 ; Crystal structure of a Fc fragment LALA mutant (L234A, L235A) of human IgG1 (crystal form 2) 6CJC ; 2.575 ; CRYSTAL STRUCTURE OF A FC FRAGMENT LALA MUTANT (L234A, L235A) OF HUMAN IGG1 (CRYSTAL FORM 3) 6D58 ; 2.39 ; Crystal structure of a Fc fragment of Human IgG3 6D4E ; 2.8 ; Crystal Structure of a Fc Fragment of Rhesus macaque (Macaca mulatta) IgG1. 6D4I ; 2.95 ; Crystal Structure of a Fc Fragment of Rhesus macaque (Macaca mulatta) IgG2 6D4M ; 3.47 ; Crystal Structure of a Fc Fragment of Rhesus macaque (Macaca mulatta) IgG3 6D4N ; 3.25 ; Crystal structure of a Fc fragment of Rhesus macaque (Macaca mulatta) IgG4 2OKF ; 1.6 ; CRYSTAL STRUCTURE OF A FDXN ELEMENT EXCISION CONTROLLING FACTOR PROTEIN (AVA_3312) FROM ANABAENA VARIABILIS AT 1.60 A RESOLUTION 7RWY ; 2.2 ; Crystal structure of a Fe-bound RIDC1 variant in the presence of reductant 8Q3U ; 1.1 ; Crystal structure of a fentanyl derivative in complex with human CA VII 1MIX ; 1.75 ; Crystal structure of a FERM domain of Talin 5TR9 ; 1.65 ; Crystal Structure of a ferredoxin NADP+ reductase from Neisseria gonorrhoeae with bound FAD 5UFA ; 2.5 ; Crystal Structure of a ferredoxin NADP+ reductase from Neisseria gonorrhoeae with bound FAD and NADP 5THX ; 1.55 ; Crystal Structure of a ferredoxin NADP+ reductase from Neisseria gonorrhoeae with bound NADP and FAD 6GNA ; 1.295 ; Crystal structure of a Ferredoxin-Flavin Thioredoxin Reductase from Clostridium acetobutylicum at 1.3 A resolution 6GNC ; 1.639 ; Crystal structure of a Ferredoxin-Flavin Thioredoxin Reductase from Clostridium acetobutylicum at 1.64 A resolution 6GNB ; 1.895 ; Crystal structure of a Ferredoxin-Flavin Thioredoxin Reductase from Clostridium acetobutylicum at 1.9 A resolution 3HL1 ; 1.95 ; CRYSTAL STRUCTURE OF A FERRITIN LIKE PROTEIN (CC_0557) FROM CAULOBACTER VIBRIOIDES AT 1.95 A RESOLUTION 2OC5 ; 1.68 ; Crystal structure of a ferritin-like protein (pmt1231) from prochlorococcus marinus str. mit 9313 at 1.68 A resolution 7EBO ; 2.5 ; Crystal structure of a feruloyl esterase LP_0796 from Lactobacillus plantarum 4H87 ; 1.55 ; Crystal structure of a FHA domain of kanadaptin (SLC4A1AP) from Homo sapiens at 1.55 A resolution 1FBN ; 1.6 ; CRYSTAL STRUCTURE OF A FIBRILLARIN HOMOLOGUE FROM METHANOCOCCUS JANNASCHII, A HYPERTHERMOPHILE, AT 1.6 A 3CUC ; 2.71 ; CRYSTAL STRUCTURE OF A FIC DOMAIN CONTAINING SIGNALING PROTEIN (BT_2513) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 2.71 A RESOLUTION 7XUX ; 2.78 ; Crystal structure of a FIC domain containnig protein 4RGL ; 2.7 ; Crystal structure of a Fic family protein (Dde_2494) from Desulfovibrio desulfuricans G20 at 2.70 A resolution 3EQX ; 1.6 ; CRYSTAL STRUCTURE OF A FIC FAMILY PROTEIN (SO_4266) FROM SHEWANELLA ONEIDENSIS AT 1.6 A RESOLUTION 4M63 ; 2.748 ; Crystal Structure of a Filament-Like Actin Trimer Bound to the Bacterial Effector VopL 3R4R ; 2.38 ; Crystal structure of a fimbrial assembly protein (BDI_3522) from Parabacteroides distasonis ATCC 8503 at 2.38 A resolution 3TDQ ; 2.1 ; Crystal structure of a fimbrial biogenesis protein PilY2 (PilY2_PA4555) from Pseudomonas aeruginosa PAO1 at 2.10 A resolution 4EPS ; 1.85 ; Crystal structure of a fimbrial protein (BACOVA_04982) from Bacteroides ovatus ATCC 8483 at 1.85 A resolution 4QB7 ; 2.55 ; Crystal structure of a fimbrial protein (BVU_2522) from Bacteroides vulgatus ATCC 8482 at 2.55 A resolution 3SY6 ; 1.9 ; Crystal structure of a fimbrial protein BF1861 [Bacteroides fragilis NCTC 9343] (BF1861) from Bacteroides fragilis NCTC 9343 at 1.90 A resolution 4Q98 ; 1.3 ; Crystal structure of a fimbrilin (fimA) from Porphyromonas gingivalis W83 at 1.30 A resolution (PSI Community Target, Nakayama) 4XOB ; 3.003 ; Crystal structure of a FimH*DsF complex from E.coli K12 with bound heptyl alpha-D-mannopyrannoside 4XOD ; 1.14 ; Crystal structure of a FimH*DsG complex from E.coli F18 6GTZ ; 1.719 ; Crystal structure of a FimH*DsG complex from E.coli F18 with bound dimannoside Man(alpha1-3)Man in space group P21 6GU0 ; 2.501 ; Crystal structure of a FimH*DsG complex from E.coli F18 with bound dimannoside Man(alpha1-3)Man in space group P213 4XOE ; 2.4 ; Crystal structure of a FimH*DsG complex from E.coli F18 with bound heptyl alpha-D-mannopyrannoside 6GTV ; 2.1 ; Crystal structure of a FimH*DsG complex from E.coli F18 with bound trimannose 4XO9 ; 1.14 ; Crystal structure of a FimH*DsG complex from E.coli K12 in space group C2 4XOA ; 2.541 ; Crystal structure of a FimH*DsG complex from E.coli K12 in space group P1 2Z21 ; 1.8 ; Crystal Structure of a five site mutated Cyanovirin-N 2PYS ; 1.8 ; Crystal Structure of a Five Site Mutated Cyanovirin-N with a Mannose Dimer Bound at 1.8 A Resolution 4ZMH ; 1.93 ; Crystal structure of a five-domain GH115 alpha-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T 1QX8 ; 2.02 ; Crystal structure of a five-residue deletion mutant of the Rop protein 1VH6 ; 2.5 ; Crystal structure of a flagellar protein 1MRZ ; 1.9 ; Crystal structure of a flavin binding protein from Thermotoga Maritima, TM379 7E8Q ; 2.3 ; Crystal structure of a Flavin-dependent Monooxygenase HadA F441V mutant complexed with reduced FAD and 4-nitrophenol 7E8P ; 2.3 ; Crystal structure of a Flavin-dependent Monooxygenase HadA wild type complexed with reduced FAD and 4-nitrophenol 2HTI ; 2.5 ; CRYSTAL STRUCTURE OF A FLAVIN-NUCLEOTIDE-BINDING PROTEIN (BH_0577) FROM BACILLUS HALODURANS AT 2.50 A RESOLUTION 7R2S ; 2.194 ; Crystal structure of a flavodiiron protein D52K mutant from Escherichia coli pressurized with krypton gas 7R0F ; 1.978 ; Crystal structure of a flavodiiron protein D52K mutant in the oxidized state from Escherichia coli 7R1H ; 1.96 ; Crystal structure of a flavodiiron protein D52K mutant in the reduced state from Escherichia coli 7R2P ; 2.538 ; Crystal structure of a flavodiiron protein D52K/S262Y mutant in the oxidized state from Escherichia coli 7R2R ; 2.198 ; Crystal structure of a flavodiiron protein D52K/S262Y mutant in the reduced state from Escherichia coli 7R2O ; 1.85 ; Crystal structure of a flavodiiron protein S262Y mutant in the oxidized state from Escherichia coli 7R1J ; 1.901 ; Crystal structure of a flavodiiron protein S262Y mutant in the reduced state from Escherichia coli 5WAN ; 1.798 ; Crystal Structure of a flavoenzyme RutA in the pyrimidine catabolic pathway 7CYW ; 1.8 ; Crystal structure of a flavonoid C-glucosyltrasferase from Fagopyrum esculentum (FeCGTa) complexed with BrUTP 6C80 ; 1.78 ; Crystal structure of a flax cytokinin oxidase 6G20 ; 2.16 ; Crystal structure of a fluorescence optimized bathy phytochrome PAiRFP2 derived from wild-type Agp2 in its functional Meta-F intermediate state. 6G1Z ; 2.03 ; Crystal structure of a fluorescence optimized bathy phytochrome PAiRFP2 derived from wild-type Agp2 in its Pfr state. 1RAR ; 1.9 ; CRYSTAL STRUCTURE OF A FLUORESCENT DERIVATIVE OF RNASE A 1RAS ; 1.7 ; CRYSTAL STRUCTURE OF A FLUORESCENT DERIVATIVE OF RNASE A 6WZN ; 2.5 ; Crystal Structure of a Fluorescent Single Chain Fv Chimera 3HMZ ; 1.5 ; CRYSTAL STRUCTURE OF A FMN-BINDING DOMAIN OF FLAVIN REDUCTASES-LIKE ENZYME (SBAL_0626) FROM SHEWANELLA BALTICA OS155 AT 1.50 A RESOLUTION 3IN6 ; 2.12 ; Crystal structure of a fmn-binding protein (swol_0183) from syntrophomonas wolfei subsp. wolfei at 2.12 A resolution 3OF4 ; 1.9 ; Crystal structure of a FMN/FAD- and NAD(P)H-dependent nitroreductase (nfnB, IL2077) from Idiomarina loihiensis L2TR at 1.90 A resolution 6M2Z ; 2.35 ; Crystal structure of a formolase, BFD variant M3 from Pseudomonas putida 6M2Y ; 2.1 ; Crystal structure of a formolase, BFD variant M6 from Pseudomonas putida 2GLZ ; 1.45 ; Crystal structure of a formylmethanofuran dehydrogenase subunit e-like protein (dhaf_2992) from desulfitobacterium hafniense dcb-2 at 1.45 A resolution 3OBI ; 1.95 ; Crystal structure of a formyltetrahydrofolate deformylase (NP_949368) from RHODOPSEUDOMONAS PALUSTRIS CGA009 at 1.95 A resolution 3N0V ; 2.25 ; Crystal structure of a formyltetrahydrofolate deformylase (PP_0327) from PSEUDOMONAS PUTIDA KT2440 at 2.25 A resolution 3O1L ; 2.2 ; Crystal structure of a formyltetrahydrofolate deformylase (PSPTO_4314) from Pseudomonas syringae pv. tomato str. DC3000 at 2.20 A resolution 3NRB ; 2.05 ; Crystal structure of a formyltetrahydrofolate deformylase (purU, PP_1943) from PSEUDOMONAS PUTIDA KT2440 at 2.05 A resolution 8HE6 ; 1.7 ; Crystal structure of a fosfomycin and bleomycin resistant protein (ALL3014) from Anabaena/Nostoc cyanobacterium at 1.70 A resolution 190D ; 1.8 ; Crystal structure of a four-stranded intercalated DNA: d(C4) 7JKU ; 1.97 ; Crystal structure of a four-tetrad, parallel, and K+ stabilized Tetrahymena thermophila telomeric G-quadruplex 7LL0 ; 2.0 ; Crystal structure of a four-tetrad, parallel, and K+ stabilized Tetrahymena thermophila telomeric G-quadruplex 8D79 ; 1.99 ; Crystal structure of a four-tetrad, parallel, and Na+ stabilized Tetrahymena thermophila telomeric G-quadruplex in complex with N-methyl mesoporphyrin IX 4KKM ; 1.9 ; Crystal structure of a FPP/GFPP synthase (Target EFI-501952) from Zymomonas mobilis, apo structure 5TV2 ; 1.6 ; Crystal structure of a fragment (1-405) of an elongation factor G from Vibrio vulnificus CMCP6 2IAF ; 2.05 ; Crystal structure of a fragment (residues 11 to 161) of L-serine dehydratase from Legionella pneumophila 3TZX ; 2.3 ; Crystal structure of a fragment containing the acyltransferase domain of Pks13 from Mycobacterium tuberculosis in tetragonal apo form at 2.3 A 3TZZ ; 2.49 ; Crystal structure of a fragment containing the acyltransferase domain of Pks13 from Mycobacterium tuberculosis in the carboxypalmitoylated form at 2.5 A 3TZW ; 2.6 ; Crystal structure of a fragment containing the acyltransferase domain of Pks13 from Mycobacterium tuberculosis in the orthorhombic apoform at 2.6 A 3TZY ; 2.2 ; Crystal structure of a fragment containing the acyltransferase domain of Pks13 from Mycobacterium tuberculosis in the palmitoylated form at 2.2 A 3EVY ; 1.95 ; Crystal structure of a fragment of a putative type I restriction enzyme R protein from Bacteroides fragilis 1SL6 ; 2.25 ; Crystal Structure of a fragment of DC-SIGNR (containg the carbohydrate recognition domain and two repeats of the neck) complexed with Lewis-x. 1XAR ; 2.25 ; Crystal Structure of a fragment of DC-SIGNR (containing the carbohydrate recognition domain and two repeats of the neck). 6UGI ; 1.75 ; Crystal structure of a fragment of E. coli tRNA(Asp) consisting of its acceptor stem/T stem-loop. Long unit cell. 6UGJ ; 1.6 ; Crystal structure of a fragment of E. coli tRNA(Asp) consisting of its acceptor stem/T stem-loop. Short unit cell. 3O5D ; 4.0 ; Crystal structure of a fragment of FKBP51 comprising the Fk1 and Fk2 domains 2J0J ; 2.8 ; Crystal structure of a fragment of focal adhesion kinase containing the FERM and kinase domains. 2J0K ; 3.0 ; Crystal structure of a fragment of focal adhesion kinase containing the FERM and kinase domains. 4JUS ; 2.5 ; Crystal structure of a fragment of Human HSPB6 3U21 ; 2.18 ; Crystal structure of a Fragment of Nuclear factor related to kappa-B-binding protein (residues 370-495) (NFRKB) from Homo sapiens at 2.18 A resolution 6PMP ; 2.73 ; Crystal structure of a fragment of rat phospholipase Cepsilon EF3-RA1 2ODU ; 2.3 ; Crystal structure of a fragment of the plakin domain of plectin 2ODV ; 2.05 ; Crystal structure of a fragment of the plakin domain of plectin, Cys to Ala mutant. 5EVF ; 1.762 ; Crystal structure of a Francisella virulence factor FvfA in the hexagonal form 5EVG ; 1.82 ; Crystal structure of a Francisella virulence factor FvfA in the orthorhombic form 1SGS ; 1.6 ; Crystal structure of a free kB DNA 6J9O ; 1.397 ; Crystal structure of a free scFv molecule from a group 2 influenza A viruses HA binding antibody AF4H1K1 6JL9 ; 2.0 ; Crystal structure of a frog ependymin related protein 5U4N ; 1.6 ; Crystal structure of a fructose-bisphosphate aldolase from Neisseria gonorrhoeae 5U7S ; 2.5 ; Crystal structure of a fructose-bisphosphate aldolase, class II, Calvin cycle subtype from Acinetobacter baumannii 3C8L ; 1.22 ; Crystal structure of a ftsz-like protein of unknown function (npun_r1471) from nostoc punctiforme pcc 73102 at 1.22 A resolution 5ZU5 ; 1.6 ; Crystal structure of a full length alginate lyase with CBM domain 6NOT ; 2.4 ; Crystal structure of a full length elongation factor G (EF-G) from Rickettsia prowazekii 2Z6G ; 3.4 ; Crystal Structure of a Full-Length Zebrafish Beta-Catenin 2XYB ; 1.75 ; CRYSTAL STRUCTURE OF A FULLY FUNCTIONAL LACCASE FROM THE LIGNINOLYTIC FUNGUS PYCNOPORUS CINNABARINUS 4HGV ; 2.09 ; Crystal structure of a fumarate hydratase 1J7X ; 1.8 ; CRYSTAL STRUCTURE OF A FUNCTIONAL UNIT OF INTERPHOTORECEPTOR RETINOID-BINDING PROTEIN (IRBP) 4QN1 ; 2.48 ; Crystal Structure of a Functionally Uncharacterized Domain of E3 Ubiquitin Ligase SHPRH 3KDQ ; 3.0 ; Crystal structure of a functionally unknown conserved protein from Corynebacterium diphtheriae. 3CQY ; 2.3 ; Crystal structure of a functionally unknown protein (SO_1313) from Shewanella oneidensis MR-1 3G74 ; 2.43 ; Crystal structure of a functionally unknown protein from Eubacterium ventriosum ATCC 27560 6RJR ; 1.895 ; Crystal structure of a Fungal Catalase at 1.9 Angstrom 6RJN ; 2.295 ; Crystal structure of a Fungal Catalase at 2.3 Angstroms 4I5R ; 1.5 ; Crystal structure of a fungal chimeric cellobiohydrolase Cel6A 4I5U ; 1.22 ; Crystal structure of a fungal chimeric cellobiohydrolase Cel6A 4AU9 ; 2.1 ; Crystal Structure of a Fungal DyP-Type Peroxidase from Auricularia auricula-judae 8GU0 ; 2.42 ; Crystal structure of a fungal halogenase RadH 5C3U ; 1.76 ; Crystal structure of a fungal L-serine ammonia-lyase from Rhizomucor miehei 6L7N ; 1.8 ; crystal structure of a FUNGAL LIPASES 3EUO ; 1.75 ; crystal structure of a fungal type III polyketide synthase, ORAS 3I5C ; 1.94 ; Crystal structure of a fusion protein containing the leucine zipper of GCN4 and the GGDEF domain of WspR from Pseudomonas aeruginosa 4J8F ; 2.7 ; Crystal structure of a fusion protein containing the NBD of Hsp70 and the middle domain of Hip 4YLQ ; 1.4 ; Crystal Structure of a FVIIa-Trypsin Chimera (FT) in Complex with Soluble Tissue Factor 4ZMA ; 2.3 ; Crystal Structure of a FVIIa-Trypsin Chimera (ST) in Complex with Soluble Tissue Factor 4Z6A ; 2.25 ; Crystal Structure of a FVIIa-Trypsin Chimera (YT) in Complex with Soluble Tissue Factor 1Y02 ; 1.8 ; Crystal Structure of a FYVE-type domain from caspase regulator CARP2 4QU6 ; 1.75 ; Crystal structure of a G-rich RNA sequence binding factor 1 (GRSF1) from Homo sapiens at 1.75 A resolution 4QU7 ; 2.5 ; Crystal structure of a G-rich RNA sequence binding factor 1 (GRSF1) from Homo sapiens at 2.50 A resolution 4NMM ; 1.89 ; Crystal Structure of a G12C Oncogenic Variant of Human KRas Bound to a Novel GDP Competitive Covalent Inhibitor 3E98 ; 2.43 ; CRYSTAL STRUCTURE OF a GAF domain containing protein that belongs to Pfam DUF484 family (PA5279) FROM PSEUDOMONAS AERUGINOSA AT 2.43 A RESOLUTION 2VK2 ; 1.2 ; Crystal structure of a galactofuranose binding protein 6TEQ ; 1.44 ; Crystal structure of a galactokinase from Bifidobacterium infantis in complex with 2-deoxy-2-fluoro-galactose 6TEP ; 1.45 ; Crystal structure of a galactokinase from Bifidobacterium infantis in complex with ADP 6TER ; 1.68 ; Crystal structure of a galactokinase from Bifidobacterium infantis in complex with Galactose 3OS7 ; 1.8 ; Crystal structure of a galactose mutarotase-like protein (CA_C0697) from CLOSTRIDIUM ACETOBUTYLICUM at 1.80 A resolution 3Q1N ; 1.61 ; Crystal structure of a galactose mutarotase-like protein (LSEI_2598) from Lactobacillus casei ATCC 334 at 1.61 A resolution 1TOQ ; 2.5 ; CRYSTAL STRUCTURE OF A GALACTOSE SPECIFIC LECTIN FROM ARTOCARPUS HIRSUTA IN COMPLEX WITH METHYL-a-D-GALACTOSE 1TP8 ; 3.0 ; CRYSTAL STRUCTURE OF A GALACTOSE SPECIFIC LECTIN FROM ARTOCARPUS HIRSUTA IN COMPLEX WITH METHYL-a-D-GALACTOSE 5VBK ; 1.788 ; Crystal structure of a galactose-binding Lectin from Mytilus californianus 1JZN ; 2.2 ; crystal structure of a galactose-specific C-type lectin 7ZW9 ; 2.1 ; Crystal structure of a gamma-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei 2IFU ; 2.6 ; Crystal Structure of a Gamma-SNAP from Danio rerio 3I1G ; 1.6 ; Crystal structure of a GCN4 leucine zipper mutant at 1.6 A resolution 3TCV ; 1.75 ; Crystal structure of a GCN5-related N-acetyltransferase from Brucella melitensis 1BO4 ; 2.3 ; CRYSTAL STRUCTURE OF A GCN5-RELATED N-ACETYLTRANSFERASE: SERRATIA MARESCENS AMINOGLYCOSIDE 3-N-ACETYLTRANSFERASE 7AB8 ; 2.2 ; Crystal structure of a GDNF-GFRalpha1 complex 2PK3 ; 1.82 ; Crystal Structure of a GDP-4-keto-6-deoxy-D-mannose reductase 7CXT ; 2.05 ; Crystal structure of a GDP-6-OMe-4-keto-L-xylo-heptose reductase from C.jejuni 4LDJ ; 1.15 ; Crystal Structure of a GDP-bound G12C Oncogenic Mutant of Human GTPase KRas 4QL3 ; 1.041 ; Crystal Structure of a GDP-bound G12R Oncogenic Mutant of Human GTPase KRas 4TQ9 ; 1.491 ; Crystal Structure of a GDP-bound G12V Oncogenic Mutant of Human GTPase KRas 4TQA ; 1.13 ; Crystal Structure of a GDP-bound G13D Oncogenic Mutant of Human GTPase KRas 4WA7 ; 1.986 ; Crystal Structure of a GDP-bound Q61L Oncogenic Mutant of Human GT- Pase KRas 6AQY ; 2.55 ; Crystal structure of a gdp-l-fucose synthetase from Naegleria fowleri 6AQZ ; 2.4 ; Crystal structure of a gdp-l-fucose synthetase from Naegleria fowleri bound to NADP 5UZH ; 2.25 ; Crystal structure of a GDP-mannose dehydratase from Naegleria fowleri 1VJG ; 2.01 ; Crystal structure of a gdsl-like lipase (alr1529) from nostoc sp. pcc 7120 at 2.01 A resolution 1Z8H ; 2.02 ; CRYSTAL STRUCTURE OF a GDSL-like lipase (ALR1529) FROM NOSTOC SP. PCC 7120 AT 2.02 A RESOLUTION 3P94 ; 1.93 ; Crystal structure of a GDSL-like Lipase (BDI_0976) from Parabacteroides distasonis ATCC 8503 at 1.93 A resolution 4HF7 ; 1.77 ; Crystal structure of a GDSL-like lipase (BT0569) from Bacteroides thetaiotaomicron VPI-5482 at 1.77 A resolution 2GJ7 ; 5.0 ; Crystal Structure of a gE-gI/Fc complex 6X1G ; 1.6 ; Crystal structure of a GEF domain from the Orientia tsutsugamushi protein OtDUB in complex with Rac1 4ERP ; 4.45 ; Crystal structure of a gemcitabine-diphosphate inhibited E. coli class Ia ribonucleotide reductase complex 5C0R ; 3.188 ; Crystal Structure of a Generation 3 Influenza Hemagglutinin Stabilized Stem Complexed with the Broadly Neutralizing Antibody C179 5C0S ; 4.3 ; Crystal structure of a generation 4 influenza hemagglutinin stabilized stem in complex with the broadly neutralizing antibody CR6261 7LQO ; 2.1 ; Crystal structure of a genetically encoded red fluorescent peroxynitrite biosensor, pnRFP 3F6D ; 1.7 ; Crystal Structure of a Genetically Modified Delta Class GST (adGSTD4-4) from Anopheles dirus, F123A, in Complex with S-Hexyl Glutathione 3G7J ; 2.2 ; Crystal Structure of a Genetically Modified Delta Class GST (adGSTD4-4) from Anopheles dirus, Y119E, in Complex with S-Hexyl Glutathione 5EQS ; 1.839 ; Crystal structure of a genotype 1a/3a chimeric HCV NS3/4A protease in complex with Asunaprevir 5EQR ; 1.96 ; Crystal structure of a genotype 1a/3a chimeric HCV NS3/4A protease in complex with danoprevir 5ESB ; 2.4 ; Crystal structure of a genotype 1a/3a chimeric HCV NS3/4A protease in complex with Vaniprevir 5J7I ; 4.0 ; Crystal structure of a Geobacillus thermoglucosidasius Acetylating Aldehyde Dehydrogenase in complex with ADP 3OZ2 ; 1.6 ; Crystal structure of a geranylgeranyl bacteriochlorophyll reductase-like (Ta0516) from Thermoplasma acidophilum at 1.60 A resolution 3IPI ; 1.9 ; Crystal Structure of a Geranyltranstransferase from the Methanosarcina mazei 1XEA ; 2.65 ; Crystal structure of a Gfo/Idh/MocA family oxidoreductase from Vibrio cholerae 6M4E ; 2.1 ; Crystal structure of a GH1 beta-glucosidase from Hamamotoa singularis 4MDO ; 2.6 ; Crystal structure of a GH1 beta-glucosidase from the fungus Humicola insolens 4MDP ; 2.05 ; Crystal structure of a GH1 beta-glucosidase from the fungus Humicola insolens in complex with glucose 5WKA ; 2.75 ; Crystal structure of a GH1 beta-glucosidase retrieved from microbial metagenome of Poraque Amazon lake 7S8K ; 2.55 ; Crystal structure of a GH12-2 family cellulase from Thermococcus sp. 2319x1 6UAT ; 1.9 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase (E102A mutant) from Amycolatopsis mediterranei (AmGH128_I) in complex with laminaripentaose 6UAU ; 1.9 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase (E102A mutant) from Amycolatopsis mediterranei (AmGH128_I) in complex with laminaritriose and laminaribiose 6UAS ; 1.91 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase (E199A mutant) from Amycolatopsis mediterranei (AmGH128_I) in complex with laminaripentaose 6UFZ ; 1.9 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase (E199Q mutant) from Amycolatopsis mediterranei (AmGH128_I) 6UFL ; 1.61 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase (E199Q mutant) from Amycolatopsis mediterranei (AmGH128_I) in the complex with laminarihexaose 6UAQ ; 1.15 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase from Amycolatopsis mediterranei (AmGH128_I) 6UAR ; 1.4 ; Crystal structure of a GH128 (subgroup I) endo-beta-1,3-glucanase from Amycolatopsis mediterranei (AmGH128_I) in complex with laminaritriose 6UAV ; 1.5 ; Crystal structure of a GH128 (subgroup II) endo-beta-1,3-glucanase from Pseudomonas viridiflava (PvGH128_II) 6UAW ; 1.5 ; Crystal structure of a GH128 (subgroup II) endo-beta-1,3-glucanase from Pseudomonas viridiflava (PvGH128_II) in complex with laminaritriose 6UAX ; 1.3 ; Crystal structure of a GH128 (subgroup II) endo-beta-1,3-glucanase from Sorangium cellulosum (ScGH128_II) 6UAY ; 1.8 ; Crystal structure of a GH128 (subgroup III) curdlan-specific exo-beta-1,3-glucanase from Blastomyces gilchristii (BgGH128_III) 6UAZ ; 1.85 ; Crystal structure of a GH128 (subgroup III) curdlan-specific exo-beta-1,3-glucanase from Blastomyces gilchristii (BgGH128_III) in complex with glucose 6UB0 ; 1.75 ; Crystal structure of a GH128 (subgroup III) curdlan-specific exo-beta-1,3-glucanase from Blastomyces gilchristii (BgGH128_III) in complex with laminaribiose at -2 and -1 subsites 6UB1 ; 1.6 ; Crystal structure of a GH128 (subgroup III) curdlan-specific exo-beta-1,3-glucanase from Blastomyces gilchristii (BgGH128_III) in complex with laminaribiose at -3 and -2 subsites 6UB2 ; 1.8 ; Crystal structure of a GH128 (subgroup IV) endo-beta-1,3-glucanase from Lentinula edodes (LeGH128_IV) 6UB6 ; 1.25 ; Crystal structure of a GH128 (subgroup IV) endo-beta-1,3-glucanase from Lentinula edodes (LeGH128_IV) in complex with laminaritetraose 6UB3 ; 1.85 ; Crystal structure of a GH128 (subgroup IV) endo-beta-1,3-glucanase from Lentinula edodes (LeGH128_IV) with laminaribiose at the surface-binding site 6UB7 ; 1.8 ; Crystal structure of a GH128 (subgroup V) exo-beta-1,3-glucanase from Cryptococcus neoformans (CnGH128_V) 6UB8 ; 1.9 ; Crystal structure of a GH128 (subgroup VI) exo-beta-1,3-glucanase from Aureobasidium namibiae (AnGH128_VI) 6UBA ; 2.4 ; Crystal structure of a GH128 (subgroup VI) exo-beta-1,3-glucanase from Aureobasidium namibiae (AnGH128_VI) in complex with laminaritriose 6UBB ; 2.35 ; Crystal structure of a GH128 (subgroup VI) exo-beta-1,3-glucanase from Aureobasidium namibiae (AnGH128_VI) with laminaribiose at the surface-binding site 6UBC ; 1.65 ; Crystal structure of a GH128 (subgroup VII) oligosaccharide-binding protein from Cryptococcus neoformans (CnGH128_VII) 6UBD ; 1.25 ; Crystal structure of a GH128 (subgroup VII) oligosaccharide-binding protein from Trichoderma gamsii (TgGH128_VII) 4LE3 ; 1.8 ; Crystal structure of a GH131 beta-glucanase catalytic domain from Podospora anserina 8T9W ; 2.2 ; Crystal structure of a GH140 apiosidase derived from a lignocellulolytic enriched mangrove metagenome. 6K7Z ; 1.799 ; Crystal structure of a GH18 chitinase from Pseudoalteromonas aurantia 6NCW ; 2.1 ; Crystal structure of a GH2 beta-galacturonidase from Eisenbergiella tayi bound to glycerol 6KVE ; 1.32 ; Crystal structure of a GH28 endo-polygalacturonase from Talaromyces leycettanus JCM 12802 4J27 ; 1.59 ; Crystal structure of a gh29 alpha-l-fucosidase gh29 from bacteroides thetaiotaomicron in a novel crystal form 4J28 ; 1.73 ; Crystal structure of a gh29 alpha-l-fucosidase gh29 from bacteroides thetaiotaomicron in complex with a 5-membered iminocyclitol inhibitor 7OFX ; 2.15 ; Crystal structure of a GH31 family sulfoquinovosidase mutant D455N from Agrobacterium tumefaciens in complex with sulfoquinovosyl glycerol (SQGro) 5M8E ; 2.0 ; Crystal structure of a GH43 arabonofuranosidase from Weissella sp. strain 142 7JVH ; 2.48 ; Crystal structure of a GH43_12 retrieved from capybara gut metagenome 4L0G ; 2.0 ; Crystal Structure of a GH48 cellobiohydrolase from Caldicellulosiruptor bescii 4L6X ; 1.7 ; Crystal Structure of a GH48 cellobiohydrolase from Caldicellulosiruptor bescii 4TXT ; 2.0 ; Crystal Structure of a GH48 cellobiohydrolase from Caldicellulosiruptor bescii 7LQX ; 1.3 ; Crystal structure of a GH5_18 from Bifidobacterium longum subsp. infantis 4XNN ; 1.9 ; Crystal Structure of a GH7 Family Cellobiohydrolase from Daphnia pulex 4GWA ; 1.6 ; Crystal Structure of a GH7 Family Cellobiohydrolase from Limnoria quadripunctata 4HAP ; 1.6 ; Crystal Structure of a GH7 family cellobiohydrolase from Limnoria quadripunctata in complex with cellobiose 4HAQ ; 1.9 ; Crystal Structure of a GH7 family cellobiohydrolase from Limnoria quadripunctata in complex with cellobiose and cellotriose 4IPM ; 1.14 ; Crystal structure of a GH7 family cellobiohydrolase from Limnoria quadripunctata in complex with thiocellobiose 6G0N ; 1.8 ; Crystal Structure of a GH8 catalytic mutant xylohexaose complex xylanase from Teredinibacter turnerae 6G00 ; 1.4 ; Crystal Structure of a GH8 xylanase from Teredinibacter turnerae 6G09 ; 1.4 ; Crystal Structure of a GH8 xylobiose complex from Teredinibacter turnerae 6G0B ; 1.8 ; Crystal Structure of a GH8 xylotriose complex from Teredinibacter Turnerae 6NIR ; 2.704 ; Crystal structure of a GII.4 norovirus HOV protease 4G8T ; 1.7 ; Crystal structure of a glucarate dehydratase related protein, from actinobacillus succinogenes, target EFI-502312, with sodium and sulfate bound, ordered loop 5U9P ; 1.65 ; Crystal structure of a gluconate 5-dehydrogenase from Burkholderia cenocepacia J2315 in complex with NADP and tartrate 3T61 ; 2.2 ; Crystal Structure of a gluconokinase from Sinorhizobium meliloti 1021 6N0U ; 2.1 ; Crystal structure of a glucose-1-phosphate thymidylyltransferase from Burkholderia phymatum bound to 2'-deoxy-thymidine-B-L-rhamnose 5IDS ; 2.3 ; Crystal Structure of a Glucose-1-phosphate Thymidylyltransferase from Burkholderia vietnamiensis 5IDT ; 2.35 ; Crystal Structure of a Glucose-1-phosphate Thymidylyltransferase from Burkholderia vietnamiensis with bound Thymidine 6OTU ; 2.25 ; Crystal structure of a glucose-6-phosphate isomerase from Chlamydia trachomatis D/UW-3/Cx 1WIW ; 2.0 ; Crystal structure of a glucose-6-phosphate isomerase like protein from thermus thermophilus HB8 7XDR ; 2.4 ; Crystal structure of a glucosylglycerol phosphorylase from Marinobacter adhaerens 7XDQ ; 2.83 ; Crystal structure of a glucosylglycerol phosphorylase mutant from Marinobacter adhaerens 3QLT ; 2.988 ; Crystal structure of a GluK2 (GluR6) glycan wedge homodimer assembly 4Q1T ; 2.15 ; Crystal structure of a glutamate 5-kinase from Burkholderia thailandensis 6BRL ; 2.0 ; Crystal structure of a glutamate tRNA ligase from Elizabethkingia meningosepticum CCUG26117 in complex with its amino acid 3K28 ; 1.95 ; Crystal Structure of a glutamate-1-semialdehyde aminotransferase from Bacillus anthracis with bound Pyridoxal 5'Phosphate 5YKT ; 1.57 ; Crystal structure of a glutamate-1-semialdehyde-aminomutase (K286A) from Pseudomonas aeruginosa PAO1 in complex with PMP 5YKR ; 1.44 ; Crystal structure of a glutamate-1-semialdehyde-aminomutase from Pseudomonas aeruginosa PAO1 1O1Y ; 1.7 ; Crystal structure of a glutamine amidotransferase (tm1158) from thermotoga maritima at 1.70 A resolution 4F4H ; 1.75 ; Crystal structure of a Glutamine dependent NAD+ synthetase from Burkholderia thailandensis 4F3P ; 2.4 ; Crystal structure of a Glutamine-binding periplasmic protein from Burkholderia pseudomallei in complex with glutamine 3ILV ; 1.79 ; Crystal structure of a glutamine-dependent NAD(+) synthetase from Cytophaga hutchinsonii 4MHN ; 1.15 ; Crystal structure of a glutaminyl cyclase from Ixodes scapularis 4MHY ; 1.38 ; Crystal structure of a glutaminyl cyclase from Ixodes scapularis in complex with PBD150 7CM0 ; 2.2 ; Crystal structure of a glutaminyl cyclase in complex with NHV-1009 4GRI ; 2.6 ; Crystal structure of a glutamyl-tRNA synthetase GluRS from Borrelia burgdorferi bound to glutamic acid and zinc 4G6Z ; 2.05 ; Crystal structure of a glutamyl-tRNA synthetase GluRS from Burkholderia thailandensis bound to L-glutamate 3SWO ; 1.45 ; Crystal structure of a glutaryl-coa dehydrogenase from mycobacterium smegmatis in complex with FADH2 2FNO ; 2.0 ; Crystal structure of a glutathione s-transferase (atu5508) from agrobacterium tumefaciens str. c58 at 2.00 A resolution 7MIQ ; 1.92 ; Crystal structure of a Glutathione S-transferase class Gtt2 of Vibrio parahaemolyticus (VpGSTT2) 4N0V ; 1.7 ; Crystal structure of a glutathione S-transferase domain-containing protein (Marinobacter aquaeolei VT8), Target EFI-507332 4IEL ; 1.6 ; Crystal structure of a glutathione s-transferase family protein from burkholderia ambifaria, target efi-507141, with bound glutathione 3QAV ; 2.1 ; Crystal structure of a glutathione S-transferase from Antarctic clam Laternula elliptica 4O92 ; 2.51 ; Crystal structure of a Glutathione S-transferase from Pichia kudriavzevii (Issatchenkia orientalis), target EFI-501747 4O7H ; 1.6 ; Crystal structure of a glutathione S-transferase from Rhodospirillum rubrum F11, Target EFI-507460 7DW3 ; 1.93 ; Crystal structure of a glutathione S-transferase mutant SbGSTU6(I55T) from Salix babylonica 7DW4 ; 1.57 ; Crystal structure of a glutathione S-transferase mutant SbGSTU6(I55T) from Salix babylonica in complex with glutathione 7DWF ; 2.21 ; Crystal structure of a glutathione S-transferase mutant SbGSTU7(T53I) from Salix babylonica 7DWG ; 1.67 ; Crystal structure of a glutathione S-transferase mutant SbGSTU7(T53I) from Salix babylonica in complex with glutathione 5HFK ; 1.551 ; CRYSTAL STRUCTURE OF A GLUTATHIONE S-TRANSFERASE PROTEIN FROM ESCHERICHIA COLI OCh 157:H7 STR. SAKAI (ECs3186, TARGET EFI-507414) WITH BOUND GLUTATHIONE 5J4U ; 1.249 ; Crystal structure of a glutathione S-transferase PtGSTU30 from Populus trichocarpa in complex with GSH 7DW2 ; 1.74 ; Crystal structure of a glutathione S-transferase SbGSTU6 from Salix babylonica 7DW1 ; 2.27 ; Crystal structure of a glutathione S-transferase SbGSTU6 from Salix babylonica in complex with glutathione 7DWD ; 1.58 ; Crystal structure of a glutathione S-transferase SbGSTU7 from Salix babylonica 7DWE ; 1.77 ; Crystal structure of a glutathione S-transferase SbGSTU7 from Salix babylonica in complex with glutathione 7Y55 ; 2.19113 ; Crystal structure of a glutathione S-transferase Tau1 from Pinus densata in complex with GSH 4MP4 ; 2.498 ; Crystal structure of a glutathione transferase family member from Acinetobacter baumannii, Target EFI-501785, apo structure 4KDX ; 1.35 ; Crystal structure of a glutathione transferase family member from burkholderia graminis, target efi-507264, bound gsh, ordered domains, space group p21, form(1) 4KE3 ; 1.9 ; Crystal structure of a glutathione transferase family member from Burkholderia graminis, target efi-507264, no gsh, disordered domains, space group P21, form(2) 4KDU ; 1.6 ; Crystal structure of a glutathione transferase family member from Burkholderia graminis, target efi-507264, no gsh, ordered domains, space group P21, form(1) 4MK3 ; 1.501 ; Crystal structure of a glutathione transferase family member from Cupriavidus metallidurans CH34, target EFI-507362, with bound glutathione sulfinic acid (gso2h) 4IKH ; 2.1 ; Crystal structure of a glutathione transferase family member from Pseudomonas fluorescens pf-5, target efi-900003, with two glutathione bound 4IBP ; 1.8 ; Crystal structure of a glutathione transferase family member from Pseudomonas fluorescens Pf-5, target EFI-900011, with bound glutathione 4ID0 ; 1.1 ; Crystal structure of a glutathione transferase family member from Pseudomonas fluorescens Pf-5, target EFI-900011, with bound glutathione sulfinic acid (gso2h) and acetate 4IJI ; 1.5 ; Crystal structure of a glutathione transferase family member from Psuedomonas fluorescens Pf-5, target EFI-900011, with bound S-(propanoic acid)-glutathione 4KF9 ; 2.3 ; Crystal structure of a glutathione transferase family member from ralstonia solanacearum, target efi-501780, with bound gsh coordinated to a zinc ion, ordered active site 4J2F ; 1.9 ; Crystal structure of a glutathione transferase family member from Ricinus communis, target EFI-501866 4KH7 ; 1.5 ; Crystal structure of a glutathione transferase family member from salmonella enterica ty2, target efi-507262, with bound glutathione 4KGI ; 1.6 ; Crystal structure of a glutathione transferase family member from Shigella flexneri, target EFI-507258, bound GSH, TEV-his-tag linker in active site 4L8E ; 1.7 ; Crystal structure of a glutathione transferase family member from xenorhabdus nematophila, target efi-507418, with two gsh per subunit 4PTS ; 2.83 ; Crystal structure of a glutathione transferase from Gordonia bronchialis DSM 43247, target EFI-507405 3QAW ; 2.2 ; Crystal structure of a glutathione-S-transferase from Antarctic clam Laternula elliptica in a complex with glutathione 1HNL ; 1.8 ; CRYSTAL STRUCTURE OF A GLUTATHIONYLATED HUMAN LYSOZYME: A FOLDING INTERMEDIATE MIMIC IN THE FORMATION OF A DISULFIDE BOND 4IEB ; 2.05 ; Crystal Structure of a Gly128Met mutant of the toxoplasma CDPK, TGME49_101440 5VMT ; 2.5 ; Crystal structure of a glyceraldehyde-3-phosphate dehydrogenase from Neisseria gonorrhoeae bound to NAD 1KQ3 ; 1.5 ; CRYSTAL STRUCTURE OF A GLYCEROL DEHYDROGENASE (TM0423) FROM THERMOTOGA MARITIMA AT 1.5 A RESOLUTION 1VKF ; 1.65 ; CRYSTAL STRUCTURE OF A GLYCEROL UPTAKE OPERON ANTITERMINATOR-RELATED PROTEIN (TM1436) FROM THERMOTOGA MARITIMA MSB8 AT 1.65 A RESOLUTION 3NO3 ; 1.89 ; Crystal structure of a glycerophosphodiester phosphodiesterase (BDI_0402) from Parabacteroides distasonis ATCC 8503 at 1.89 A resolution 2P76 ; 2.6 ; Crystal structure of a Glycerophosphodiester Phosphodiesterase from Staphylococcus aureus 3MZ2 ; 1.55 ; Crystal structure of a Glycerophosphoryl diester phosphodiesterase (BDI_3922) from Parabacteroides distasonis ATCC 8503 at 1.55 A resolution 3TZU ; 2.3 ; Crystal structure of a glycine cleavage system H protein (GCVH) from Mycobacterium marinum 5VMB ; 2.5 ; Crystal structure of a glycine hydroxymethyltransferase from Acinetobacter baumannii 3P49 ; 3.55 ; Crystal Structure of a Glycine Riboswitch from Fusobacterium nucleatum 3DGK ; 1.7 ; Crystal structure of a glycine-rich loop mutant of the death associated protein kinase catalytic domain 3DFC ; 1.9 ; Crystal structure of a glycine-rich loop mutant of the death associated protein kinase catalytic domain with AMPPNP 2I3F ; 1.38 ; Crystal Structure of a Glycolipid transfer-like protein from Galdieria sulphuraria 3W0K ; 1.6 ; Crystal Structure of a glycoside hydrolase 5K9H ; 2.029 ; Crystal structure of a glycoside hydrolase 29 family member from an unknown rumen bacterium 4XUV ; 2.0496 ; Crystal structure of a glycoside hydrolase family 105 (GH105) enzyme from Thielavia terrestris 2QZ2 ; 2.8 ; Crystal structure of a glycoside hydrolase family 11 xylanase from Aspergillus niger in complex with xylopentaose 2QZ3 ; 1.8 ; Crystal structure of a glycoside hydrolase family 11 xylanase from Bacillus subtilis in complex with xylotetraose 3ZYZ ; 2.1 ; Crystal structure of a glycoside hydrolase family 3 beta-glucosidase, Bgl1 from Hypocrea jecorina at 2.1A resolution. 3ZZ1 ; 2.1 ; Crystal structure of a glycoside hydrolase family 3 beta-glucosidase, Bgl1 from Hypocrea jecorina at 2.1A resolution. 4FJ6 ; 1.9 ; Crystal structure of a glycoside hydrolase family 33, candidate sialidase (BDI_2946) from Parabacteroides distasonis ATCC 8503 at 1.90 A resolution 3C7O ; 1.8 ; Crystal structure of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase from Bacillus subtilis in complex with cellotetraose. 3C7G ; 2.02 ; Crystal structure of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase from Bacillus subtilis in complex with xylotetraose. 3C7F ; 1.55 ; Crystal structure of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase from bacillus subtilis in complex with xylotriose. 3C7E ; 2.0 ; Crystal structure of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase from Bacillus subtilis. 3IK2 ; 2.2 ; Crystal Structure of a Glycoside Hydrolase Family 44 Endoglucanase produced by Clostridium acetobutylium ATCC 824 4QFU ; 1.9 ; Crystal structure of a glycoside hydrolase family 5 (BVU_2644) from Bacteroides vulgatus ATCC 8482 at 1.90 A resolution 4XDQ ; 1.35 ; Crystal structure of a Glycoside hydrolase family protein (Rv0315 ortholog) from Mycobacterium thermorestibile 5GLX ; 1.42 ; Crystal structure of a glycoside hydrolase from Thielavia terrestris NRRL 8126 5GM9 ; 1.36 ; Crystal structure of a glycoside hydrolase in complex with cellobiose 5GLY ; 1.58 ; Crystal structure of a glycoside hydrolase in complex with cellotetrose from Thielavia terrestris NRRL 8126 4LSM ; 1.65 ; Crystal structure of a glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi 3QC2 ; 2.3 ; Crystal structure of a glycosyl hydrolase (BACOVA_03624) from Bacteroides ovatus at 2.30 A resolution 3NQH ; 2.11 ; Crystal structure of a glycosyl hydrolase (BT_2959) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.11 A resolution 3DEC ; 2.8 ; Crystal structure of a glycosyl hydrolases family 2 protein from Bacteroides thetaiotaomicron 8FTT ; 2.08 ; Crystal structure of a glycosylase specific nanobody 4HPG ; 2.5364 ; Crystal structure of a glycosylated beta-1,3-glucanase (HEV B 2), an allergen from Hevea brasiliensis 4IIS ; 2.6676 ; Crystal structure of a glycosylated beta-1,3-glucanase (HEV B 2), An allergen from Hevea Brasiliensis (Space group P41) 4XX6 ; 1.95 ; Crystal structure of a glycosylated endo-beta-1,4-xylanase (glycoside hydrolase family 10/GH10) enzyme from Gloeophyllum trabeum 2AGJ ; 2.6 ; Crystal Structure of a glycosylated Fab from an IgM cryoglobulin with properties of a natural proteolytic antibody 3UYV ; 2.43 ; Crystal structure of a glycosylated ice-binding protein (LeIBP) from Arctic yeast 2P6W ; 1.6 ; Crystal structure of a glycosyltransferase involved in the glycosylation of the major capsid of PBCV-1 2P72 ; 2.0 ; crystal structure of a glycosyltransferase involved in the glycosylation of the major capsid of PBCV-1 2P73 ; 2.3 ; crystal structure of a glycosyltransferase involved in the glycosylation of the major capsid of PBCV-1 4NUZ ; 1.905 ; Crystal structure of a glycosynthase mutant (D233Q) of EndoS, an endo-beta-N-acetyl-glucosaminidase from Streptococcus pyogenes 2F3O ; 2.9 ; Crystal Structure of a glycyl radical enzyme from Archaeoglobus fulgidus 6OMK ; 2.1 ; Crystal structure of a glycylpeptide N-tetradecanoyltransferase (N-myristoyl transferase, NMT) from Leishmania major Friedlin bound to tetradecanoyl-CoA 2QH0 ; 2.45 ; Crystal structure of a glyoxalase from clostridium acetobutylicum 3BT3 ; 2.5 ; Crystal structure of a glyoxalase-related enzyme from Clostridium phytofermentans 4MYM ; 1.9 ; Crystal structure of a glyoxalase/ bleomycin resistance protein/ dioxygenase from Nocardioides 4QB5 ; 2.05 ; Crystal structure of a glyoxalase/bleomycin resistance protein from Albidiferax ferrireducens T118 2RBB ; 1.82 ; Crystal structure of a glyoxalase/bleomycin resistance protein/dioxygenase family enzyme from Burkholderia phytofirmans PsJN 3KOL ; 1.9 ; Crystal structure of a glyoxalase/dioxygenase from Nostoc punctiforme 3WNV ; 1.75 ; Crystal structure of a glyoxylate reductase from Paecilomyes thermophila 2H1S ; 2.45 ; Crystal Structure of a Glyoxylate/Hydroxypyruvate reductase from Homo sapiens 2BSW ; 1.63 ; Crystal structure of a glyphosate-N-acetyltransferase obtained by DNA shuffling. 5TW7 ; 2.35 ; Crystal structure of a GMP synthase (glutamine-hydrolyzing) from Neisseria gonorrhoeae 7SBC ; 1.95 ; Crystal structure of a GMP synthase from Acinetobacter baumannii AB5075-UW 4ZBG ; 1.25 ; Crystal Structure of a GNAT family Acetyltransferase from Brucella melitensis in complex with Acetyl-CoA 6AO7 ; 1.85 ; Crystal Structure of a GNAT family acetyltransferase from Elizabethkingia anophelis with acetyl-CoA bound 4KUA ; 1.5 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 4OAE ; 1.25 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 C29A/C117A/Y128A mutant in complex with chloramphenicol 4KLW ; 1.3 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with 2-(aminocarbonyl)benzoate 4KLV ; 1.3 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with 4-methylumbelliferyl phosphate 4KOR ; 1.25 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with 7-aminocephalosporanic acid 5VDB ; 1.4 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with bisubstrate analog 3 5VD6 ; 1.2 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with bisubstrate analog 6 4KOX ; 1.8 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefalotin 4KOU ; 1.6 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefixime 4KOS ; 1.55 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefmetazole 4KOT ; 1.55 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefotaxime 4KOW ; 1.45 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefoxitin 4KOV ; 1.6 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cefuroxime 4KOY ; 1.4 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with Cephalosporin C 4OAD ; 1.45 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with chloramphenicol 4KUB ; 1.57 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with CoA 4L89 ; 1.6 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with covalently bound CoA 4M3S ; 1.3 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in complex with HEPES 4L8A ; 1.2 ; Crystal structure of a GNAT superfamily acetyltransferase PA4794 in ternary complex with N-Phenylacetyl-Gly-AcLys and CoA 6EDD ; 1.55 ; Crystal structure of a GNAT Superfamily PA3944 acetyltransferase in complex with CoA (P1 space group) 4JXQ ; 1.15 ; Crystal structure of a GNAT superfamily phosphinothricin acetyltransferase (Pat) from Sinorhizobium meliloti 1021 4JXR ; 1.15 ; Crystal structure of a GNAT superfamily phosphinothricin acetyltransferase (Pat) from Sinorhizobium meliloti in complex with AcCoA 2DUG ; 1.4 ; crystal structure of a green fluorescent protein S65T/H148N at pH 5 2DUI ; 1.36 ; crystal structure of a green fluorescent protein variant H148D at pH 9 2DUE ; 1.24 ; crystal structure of a green fluorescent protein variant S65T/H148D at pH 10 2DUF ; 1.5 ; crystal structure of a green fluorescent protein variant S65T/H148D at pH 5.6 2DUH ; 1.2 ; crystal structure of a green fluorescent protein variant S65T/H148N at pH 9.5 4M46 ; 2.7 ; Crystal structure of a green-emitter native of Lampyris turkestanicus luciferase 4HQ9 ; 2.07 ; Crystal structure of a green-to-red photoconvertible DRONPA, pcDRONPA in the green-off-state 4HQ8 ; 1.95 ; Crystal structure of a green-to-red photoconvertible DRONPA, pcDRONPA in the green-on-state 4HQC ; 2.05 ; Crystal structure of a green-to-red photoconvertible DRONPA, pcDRONPA in the red-on-state 1DKD ; 2.1 ; CRYSTAL STRUCTURE OF A GROEL (APICAL DOMAIN) AND A DODECAMERIC PEPTIDE COMPLEX 4WGL ; 3.13 ; Crystal structure of a GroEL D83A/R197A double mutant 4KI8 ; 2.722 ; Crystal structure of a GroEL-ADP complex in the relaxed allosteric state 4WSC ; 3.04 ; Crystal structure of a GroELK105A mutant 5Y2L ; 2.902 ; Crystal structure of a group 2 HA binding antibody AF4H1K1 Fab in complex with the 1968 H3N2 pandemic (H3-AC/68) hemagglutinin 5Y2M ; 3.8 ; Crystal structure of a group 2 HA binding antibody AF4H1K1 Fab in complex with the H4N6 duck isolate (H4-CZ/56) hemagglutinin 1ZZN ; 3.37 ; Crystal structure of a group I intron/two exon complex that includes all catalytic metal ion ligands. 1GID ; 2.5 ; CRYSTAL STRUCTURE OF A GROUP I RIBOZYME DOMAIN: PRINCIPLES OF RNA PACKING 3KFB ; 3.2 ; Crystal structure of a group II chaperonin from Methanococcus maripaludis 4DS6 ; 3.644 ; Crystal structure of a group II intron in the pre-catalytic state 6CIH ; 3.676 ; Crystal structure of a group II intron lariat in the post-catalytic state 6CHR ; 3.7 ; Crystal structure of a group II intron lariat with an intact 3' splice site (pre-2s state) 6JY1 ; 1.72 ; Crystal Structure of a Group II pyridoxal dependent decarboxylase, LLP-bound form from Methanocaldococcus jannaschii at 1.72 A 6GHF ; 3.52 ; Crystal structure of a GST variant 6XRS ; 2.8 ; Crystal structure of a GTP-binding protein EngA (Der homolog) from Neisseria gonorrhoeae bound to GDP 2QTF ; 2.0 ; Crystal structure of a GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus 2QTH ; 2.0 ; Crystal structure of a GTP-binding protein from the hyperthermophilic archaeon Sulfolobus solfataricus in complex with GDP 1ZUN ; 2.7 ; Crystal Structure of a GTP-Regulated ATP Sulfurylase Heterodimer from Pseudomonas syringae 2XKA ; 3.0 ; Crystal structure of a GTPyS-form protofilament of Bacillus thuringiensis serovar israelensis TubZ 6X1H ; 2.91 ; Crystal structure of a guanine nucleotide exchange factor (GEF) domain from the Orientia tsutsugamushi protein OtDUB 6MFU ; 1.6 ; Crystal structure of a Guanylate kinase from Cryptococcus neoformans var. grubii serotype A in complex with GDP and ADP 6WCT ; 2.1 ; Crystal structure of a guanylate kinase from Stenotrophomonas maltophilia K279a bound to guanosine-5'-monophosphate 7S5E ; 2.4 ; Crystal structure of a guanylate kinase from Stenotrophomonas maltophilia K279a with heterogeneous ligand states of GMP/ADP, GMP/-, GDP/-, and GMP/ATPgS 2J4H ; 2.7 ; Crystal structure of a H121A Escherichia coli dCTP deaminase mutant enzyme 3KU6 ; 1.75 ; Crystal structure of a H2N2 influenza virus hemagglutinin, 226L/228G 3KU3 ; 1.6 ; Crystal structure of a H2N2 influenza virus hemagglutinin, avian like 3KU5 ; 1.73 ; Crystal structure of a H2N2 influenza virus hemagglutinin, human like 3MGO ; 2.297 ; Crystal structure of a H5-specific CTL epitope derived from H5N1 influenza virus in complex with HLA-A*0201 3MGT ; 2.197 ; Crystal structure of a H5-specific CTL epitope variant derived from H5N1 influenza virus in complex with HLA-A*0201 6PD3 ; 2.3 ; Crystal Structure of a H5N1 influenza virus hemagglutinin at pH 5.5 6PCX ; 2.11 ; Crystal Structure of a H5N1 influenza virus hemagglutinin at pH 6.0 6PD5 ; 2.39 ; Crystal Structure of a H5N1 influenza virus hemagglutinin at pH 6.5 6PD6 ; 2.87 ; Crystal Structure of a H5N1 influenza virus hemagglutinin at pH 7.0 4MHI ; 2.595 ; Crystal structure of a H5N1 influenza virus hemagglutinin from A/goose/Guangdong/1/96 6VMZ ; 2.2 ; Crystal Structure of a H5N1 influenza virus hemagglutinin with CBS1117 2FK0 ; 2.95 ; Crystal Structure of a H5N1 influenza virus hemagglutinin. 3M5G ; 2.6 ; Crystal structure of a H7 influenza virus hemagglutinin 3M5H ; 2.7 ; Crystal structure of a H7 influenza virus hemagglutinin complexed with 3SLN 3M5I ; 3.0 ; Crystal structure of a H7 influenza virus hemagglutinin complexed with 6SLN 3M5J ; 2.6 ; Crystal structure of a H7 influenza virus hemagglutinin complexed with LSTb 1YV9 ; 2.8 ; Crystal structure of a HAD-like phosphatase from Enterococcus faecalis V583 1YDF ; 2.6 ; Crystal structure of a HAD-like phosphatase from Streptococcus pneumoniae 3KZX ; 1.9 ; Crystal structure of a Had-superfamily hydrolase from Ehrlichia chaffeensis at 1.9A resolution 4RN3 ; 2.15 ; Crystal structure of a HAD-superfamily hydrolase, subfamily IA, variant 1 (GSU2069) from Geobacter sulfurreducens PCA at 2.15 A resolution 2V0S ; 1.8 ; crystal structure of a hairpin exchange variant (LR1) of the targeting LINE-1 retrotransposon endonuclease 2V0R ; 2.3 ; crystal structure of a hairpin exchange variant (LTx) of the targeting LINE-1 retrotransposon endonuclease 1M5K ; 2.4 ; Crystal structure of a hairpin ribozyme in the catalytically-active conformation 1X42 ; 2.0 ; Crystal structure of a haloacid dehalogenase family protein (PH0459) from Pyrococcus horikoshii OT3 3PGV ; 2.39 ; Crystal structure of a haloacid dehalogenase-like hydrolase (KPN_04322) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 2.39 A resolution 4DWO ; 1.5 ; Crystal structure of a haloacid dehalogenase-like hydrolase (Target EFI-900331) from Bacteroides thetaiotaomicron with bound Mg crystal form II 4DW8 ; 1.502 ; Crystal structure of a haloacid dehalogenase-like hydrolase (Target EFI-900331) from Bacteroides thetaiotaomicron with bound Na crystal form I 3NIW ; 1.9 ; Crystal structure of a haloacid dehalogenase-like hydrolase from Bacteroides thetaiotaomicron 6U2M ; 2.0 ; Crystal structure of a HaloTag-based calcium indicator, HaloCaMP V2, bound to JF635 3LEZ ; 1.25 ; Crystal structure of a halotolerant bacterial beta-lactamase 1Y7W ; 1.86 ; Crystal structure of a halotolerant carbonic anhydrase from Dunaliella salina 3MZO ; 1.98 ; Crystal structure of a HD-domain phosphohydrolase (lin2634) from LISTERIA INNOCUA at 1.98 A resolution 4MCW ; 2.03 ; Crystal structure of a HD-GYP domain (a cyclic-di-GMP phosphodiesterase) containing a tri-nuclear metal centre 4MDZ ; 2.68 ; Crystal structure of a HD-GYP domain (a cyclic-di-GMP phosphodiesterase) containing a tri-nuclear metal centre 4ME4 ; 2.55 ; Crystal structure of a HD-GYP domain (a cyclic-di-GMP phosphodiesterase) containing a tri-nuclear metal centre 3DJB ; 2.9 ; Crystal structure of a HD-superfamily hydrolase (BT9727_1981) from Bacillus thuringiensis, Northeast Structural Genomics Consortium Target BuR114 2VCG ; 1.9 ; Crystal structure of a HDAC-like protein HDAH from Bordetella sp. with the bound inhibitor ST-17 2GH6 ; 2.203 ; Crystal structure of a HDAC-like protein with 9,9,9-trifluoro-8-oxo-N-phenylnonan amide bound 1ZZ0 ; 1.6 ; Crystal structure of a HDAC-like protein with acetate bound 1ZZ3 ; 1.76 ; Crystal structure of a HDAC-like protein with CypX bound 1ZZ1 ; 1.57 ; Crystal structure of a HDAC-like protein with SAHA bound 7XUZ ; 3.591 ; Crystal structure of a HDAC4-MEF2A-DNA ternary complex 4FSV ; 1.8 ; Crystal structure of a heat shock 70kDa protein 2 (HSPA2) from Homo sapiens at 1.80 A resolution 3AKJ ; 2.0 ; Crystal structure of A Helicobacter pylori proinflammatory kinase CtkA 3AKK ; 2.5 ; Crystal structure of A Helicobacter pylori proinflammatory kinase CtkA 3AKL ; 2.9 ; Crystal structure of A Helicobacter pylori proinflammatory kinase CtkA 4GQM ; 1.25 ; Crystal structure of a helix-turn-helix containing hypothetical protein (CT009) from Chlamydia trachomatis in a sub-domain swap conformation 2IBL ; 1.32 ; Crystal structure of a helper molecule (HT-mf-thromb) based on mini-fibritin (mf) crystal structure (pdb:1OX3). 1QXM ; 1.7 ; Crystal structure of a hemagglutinin component (HA1) from type C Clostridium botulinum 8SPP ; 1.89 ; Crystal structure of a heme enzyme RufO in rufomycin biosynthesis 1IW0 ; 1.4 ; Crystal structure of a heme oxygenase (HmuO) from Corynebacterium diphtheriae complexed with heme in the ferric state 1IW1 ; 1.5 ; Crystal structure of a heme oxygenase (HmuO) from Corynebacterium diphtheriae complexed with heme in the ferrous state 1X3K ; 1.64 ; Crystal structure of a hemoglobin component (TA-V) from Tokunagayusurika akamusi 1X46 ; 1.5 ; Crystal structure of a hemoglobin component (TA-VII) from Tokunagayusurika akamusi 2ZWJ ; 1.81 ; Crystal structure of a hemoglobin component V from Propsilocerus akamusi (pH4.6 coordinates) 3A5A ; 1.83 ; Crystal structure of a hemoglobin component V from Propsilocerus akamusi (pH5.6 coordinates) 3A5B ; 1.81 ; Crystal structure of a hemoglobin component V from Propsilocerus akamusi (pH6.5 coordinates) 3A5G ; 1.81 ; Crystal structure of a hemoglobin component V from Propsilocerus akamusi (pH7.0 coordinates) 3A9M ; 1.8 ; Crystal structure of a hemoglobin component V from Propsilocerus akamusi (pH9.0 coordinates) 3P4L ; 1.8 ; Crystal structure of a hemojuvelin-binding fragment of neogenin 5EZD ; 2.1 ; Crystal structure of a Hepatocyte growth factor activator inhibitor-1 (HAI-1) fragment covering the PKD-like 'internal' domain and Kunitz domain 1 2HSB ; 1.95 ; Crystal structure of a hepn domain containing protein (af_0298) from archaeoglobus fulgidus at 1.95 A resolution 1I81 ; 2.0 ; CRYSTAL STRUCTURE OF A HEPTAMERIC LSM PROTEIN FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 1N9R ; 2.8 ; Crystal structure of a heptameric ring complex of yeast SmF in spacegroup P4122 1MGQ ; 1.7 ; CRYSTAL STRUCTURE OF A HEPTAMERIC SM-LIKE PROTEIN FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 5MY6 ; 2.246 ; Crystal structure of a HER2-Nb complex 3R48 ; 2.0011 ; Crystal structure of a hetero-hexamer coiled coil 7YH8 ; 2.2 ; Crystal structure of a heterochiral protein complex 2QBY ; 3.35 ; Crystal structure of a heterodimer of Cdc6/Orc1 initiators bound to origin DNA (from S. solfataricus) 3QF4 ; 2.9 ; Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation 1DKF ; 2.5 ; CRYSTAL STRUCTURE OF A HETERODIMERIC COMPLEX OF RAR AND RXR LIGAND-BINDING DOMAINS 3S7R ; 2.15 ; Crystal structure of a Heterogeneous nuclear ribonucleoprotein A/B (HNRPAB) from HOMO SAPIENS at 2.15 A resolution 3TYT ; 1.6 ; Crystal structure of a Heterogeneous nuclear ribonucleoprotein L (Hnrpl) from Mus musculus at 1.60 A resolution 3S01 ; 2.15 ; Crystal structure of a Heterogeneous nuclear ribonucleoprotein L (Hnrpl) from Mus musculus at 2.15 A resolution 4NH1 ; 3.3 ; Crystal structure of a heterotetrameric CK2 holoenzyme complex carrying the Andante-mutation in CK2beta and consistent with proposed models of autoinhibition and trans-autophosphorylation 4FID ; 2.62 ; Crystal structure of a heterotrimeric G-Protein subunit from entamoeba histolytica, EHG-ALPHA-1 1WKX ; 1.7 ; Crystal Structure of a Hev b 6.02 Isoallergen 3S5C ; 3.5 ; Crystal Structure of a Hexachlorocyclohexane dehydrochlorinase (LinA) Type2 4XCG ; 3.737 ; Crystal structure of a hexadecameric TF55 complex from S. solfataricus, crystal form I 4XCI ; 3.0023 ; Crystal structure of a hexadecameric TF55 complex from S. solfataricus, crystal form II 4YPL ; 3.45 ; Crystal structure of a hexameric LonA protease bound to three ADPs 481D ; 1.6 ; CRYSTAL STRUCTURE OF A HEXITOL NUCLEIC ACID (HNA) DUPLEX AT 1.6A RESOLUTION 1D7Z ; 2.21 ; CRYSTAL STRUCTURE OF A HEXITOL NUCLEIC ACID (HNA) DUPLEX AT 2.2 A RESOLUTION 4G81 ; 1.9 ; Crystal structure of a hexonate dehydrogenase ortholog (target efi-506402 from salmonella enterica, unliganded structure 3F1P ; 1.17 ; Crystal structure of a high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains 3F1N ; 1.479 ; Crystal structure of a high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains, with internally bound ethylene glycol. 4K71 ; 2.4 ; Crystal structure of a high affinity Human Serum Albumin variant bound to the Neonatal Fc Receptor 1TJB ; 2.0 ; Crystal Structure of a High Affinity Lanthanide-Binding Peptide (LBT) 6UUV ; 1.8 ; Crystal structure of a high molecular weight 3-oxoacyl-ACP reductase (FabG) from Acinetobacter baumannii crystal form 1 6UUT ; 1.65 ; Crystal structure of a high molecular weight 3-oxoacyl-ACP reductase (FabG) from Acinetobacter baumannii crystal form 2 3GUT ; 3.59 ; Crystal structure of a higher-order complex of p50:RelA bound to the HIV-1 LTR 5C9K ; 1.92 ; Crystal structure of a highly fibrillogenic Arg24Gly mutant of the Recombinant variable domain 6AJL2 8ILL ; 2.2 ; Crystal structure of a highly photostable and bright green fluorescent protein at pH5.6 8ILK ; 1.56 ; Crystal structure of a highly photostable and bright green fluorescent protein at pH8.5 8DCI ; 1.62 ; Crystal Structure of a highly resistant HIV-1 protease Clinical isolate PR10x (inhibitor-free) 8DCH ; 1.25 ; Crystal Structure of a highly resistant HIV-1 protease Clinical isolate PR10x with GRL-0519 (tris-tetrahydrofuran as P2 ligand) 5VBT ; 1.51 ; Crystal structure of a highly specific and potent USP7 ubiquitin variant inhibitor 1AQZ ; 1.7 ; CRYSTAL STRUCTURE OF A HIGHLY SPECIFIC ASPERGILLUS RIBOTOXIN, RESTRICTOCIN 4PXX ; 1.851 ; Crystal structure of a highly thermal stabilized variant of Human Carbonic Anhydrase II 4ZXZ ; 2.2 ; Crystal structure of a highly thermal stable but inactive levoglucosan kinase. 6IM0 ; 2.6 ; Crystal structure of a highly thermostable carbonic anhydrase from Persephonella marina EX-H1 6IM1 ; 2.0 ; Crystal structure of a highly thermostable carbonic anhydrase from Persephonella marina EX-H1 6IM3 ; 2.0 ; Crystal structure of a highly thermostable carbonic anhydrase from Persephonella marina EX-H1 1J1I ; 1.86 ; Crystal structure of a His-tagged Serine Hydrolase Involved in the Carbazole Degradation (CarC enzyme) 8Y4U ; 2.4 ; Crystal structure of a His1 from oryza sativa 7LTQ ; 2.15 ; Crystal Structure of a histidine kinase from Burkholderia ambifaria MC40-6 3H7M ; 2.4 ; Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins 2OIK ; 1.65 ; Crystal structure of a histidine triad (hit) protein (mfla_2506) from methylobacillus flagellatus kt at 1.65 A resolution 3NRD ; 2.06 ; Crystal structure of a histidine triad (HIT) protein (SMc02904) from SINORHIZOBIUM MELILOTI 1021 at 2.06 A resolution 3OMF ; 1.8 ; Crystal structure of a histidine triad family protein from Entamoeba histolytica, bound to AMP 3OXK ; 1.55 ; Crystal structure of a histidine triad family protein from Entamoeba histolytica, bound to GMP 3OJ7 ; 1.4 ; Crystal structure of a histidine triad family protein from entamoeba histolytica, bound to sulfate 3OHE ; 1.2 ; Crystal structure of a Histidine triad protein (Maqu_1709) from Marinobacter aquaeolei VT8 at 1.20 A resolution 3HDO ; 1.61 ; Crystal Structure of a Histidinol-phosphate aminotransferase from Geobacter metallireducens 5E3I ; 2.2 ; Crystal Structure of a Histidyl-tRNA synthetase from Acinetobacter baumannii with bound L-Histidine and ATP 4E51 ; 2.65 ; Crystal structure of a histidyl-tRNA synthetase HisRS from Burkholderia thailandensis bound to histidine 5JI5 ; 2.1 ; Crystal Structure of a Histone Deacetylase superfamily protein from Burkholderia phymatumphymatum 6N2L ; 1.85 ; Crystal structure of a histone family protein DNA-binding protein from Burkholderia ambifaria 3I24 ; 1.5 ; Crystal Structure of a HIT family hydrolase protein from Vibrio fischeri. Northeast Structural Genomics Consortium target id VfR176 4KSE ; 2.677 ; Crystal structure of a HIV p51 (219-230) deletion mutant 6CE0 ; 4.602 ; Crystal structure of a HIV-1 clade B tier-3 isolate H078.14 UFO-BG Env trimer in complex with broadly neutralizing Fabs PGT124 and 35O22 at 4.6 Angstrom 7KMD ; 3.39229 ; Crystal structure of a HIV-1 clade C isolate Du172.17 HR1.R4.664 Env trimer in complex with human Fabs PGT124 and 35O22 1U8G ; 2.201 ; Crystal structure of a HIV-1 Protease in complex with peptidomimetic inhibitor KI2-PHE-GLU-GLU-NH2 4DWF ; 1.8 ; Crystal structure of a HLA-B associated transcript 3 (BAT3) from Homo sapiens at 1.80 A resolution 4PRN ; 1.65 ; Crystal structure of a HLA-B*35:01-HPVG-A4 4PR5 ; 1.8 ; Crystal structure of a HLA-B*35:01-HPVG-D5 4PRA ; 1.85 ; Crystal structure of a HLA-B*35:01-HPVG-Q5 8EMF ; 1.80482 ; Crystal structure of a HLA-B*35:01-NP6 epitope from 1977 H1N1 influenza strain 8EMG ; 1.83001 ; Crystal structure of a HLA-B*35:01-NP7 epitope from 2002 H2N1 influenza strain 8EMI ; 1.57302 ; Crystal structure of a HLA-B*35:01-NP8 epitope from 2005 H1N1 influenza strain 4PRB ; 1.75 ; Crystal structure of a HLA-B*35:08-HPVG-A4 4PRD ; 1.75 ; Crystal structure of a HLA-B*35:08-HPVG-D5 4PRE ; 1.65 ; Crystal structure of a HLA-B*35:08-HPVG-Q5 4EUW ; 2.77 ; Crystal structure of a HMG domain of transcription factor SOX-9 bound to DNA (SOX-9/DNA) from Homo sapiens at 2.77 A resolution 2WP0 ; 2.67 ; Crystal structure of a HobA-DnaA (domain I-II) complex from Helicobacter pylori. 8HCI ; 3.399 ; Crystal structure of a holoenzyme Fe-free TglHI for Pseudomonas syringae Peptidyl (S) 2-mercaptoglycine biosynthesis 5TYQ ; 2.163 ; Crystal structure of a holoenzyme methyltransferase involved in the biosynthesis of gentamicin 8HI8 ; 3.49 ; Crystal structure of a holoenzyme TglHI with three Fe ions for Pseudomonas syringae Peptidyl (S) 2-mercaptoglycine biosynthesis 8HI7 ; 3.25 ; Crystal structure of a holoenzyme TglHI with two Fe irons for Pseudomonas syringae Peptidyl (S) 2-mercaptoglycine biosynthesis 5GKK ; 2.001 ; Crystal structure of a homing endonuclease, I-TnaI 8DW1 ; 1.849 ; Crystal structure of a host-guest complex with 5'-CTTAGTTATAACTAAG-3' 4MF4 ; 2.0 ; Crystal structure of a HpcH/Hpal aldolase/citrate lyase family protein from Burkholderia cenocepacia J2315 5KV8 ; 1.949 ; Crystal structure of a hPIV haemagglutinin-neuraminidase-inhibitor complex 5KV9 ; 2.0 ; Crystal structure of a hPIV haemagglutinin-neuraminidase-inhibitor complex 3AIK ; 1.95 ; Crystal structure of a HSL-like carboxylesterase from Sulfolobus tokodaii 3AIL ; 1.91 ; Crystal structure of a HSL-like carboxylesterase from Sulfolobus tokodaii complexed with paraoxon 4AU2 ; 2.3 ; Crystal Structure of a Hsp47-collagen complex 4AU3 ; 2.78 ; Crystal Structure of a Hsp47-collagen complex 7BDU ; 2.49 ; Crystal structure of a Hsp47-collagen peptide complex 7BEE ; 1.939 ; Crystal structure of a Hsp47-collagen peptide complex 2PPX ; 2.0 ; Crystal structure of a HTH XRE-family like protein from Agrobacterium tumefaciens 6VSZ ; 2.6 ; Crystal structure of a human afucosylated IgG1 Fc expressed in tobacco plants (Nicotiana benthamiana) 1N3L ; 1.18 ; Crystal structure of a human aminoacyl-tRNA synthetase cytokine 4CAY ; 1.48 ; Crystal structure of a human Anp32e-H2A.Z-H2B complex 6NIP ; 4.16 ; Crystal structure of a human anti-ZIKV-DENV neutralizing antibody MZ1 in complex with ZIKV E glycoprotein 6MTX ; 2.051 ; Crystal structure of a human anti-ZIKV-DENV neutralizing antibody MZ1 isolated following ZPIV vaccination 6NIS ; 2.113 ; Crystal structure of a human anti-ZIKV-DENV neutralizing antibody MZ24 isolated following ZPIV vaccination 6NIU ; 4.303 ; Crystal structure of a human anti-ZIKV-DENV neutralizing antibody MZ4 in complex with ZIKV E glycoprotein 6MTY ; 2.951 ; Crystal structure of a human anti-ZIKV-DENV neutralizing antibody MZ4 isolated following ZPIV vaccination 3O6F ; 2.8 ; Crystal structure of a human autoimmune TCR MS2-3C8 bound to MHC class II self-ligand MBP/HLA-DR4 7U0T ; 2.45 ; Crystal Structure of a human Calcineurin A - Calcineurin B fusion bound to FKBP12 and FK-520 4ORA ; 2.747 ; Crystal structure of a human calcineurin mutant 6NH9 ; 1.85 ; Crystal structure of a human calcium/calmodulin dependent serine protein kinase (CASK) PDZ domain 6NID ; 1.86 ; Crystal structure of a human calcium/calmodulin dependent serine protein kinase (CASK) PDZ domain in complex with Neurexin-1 peptide 6OWV ; 1.88 ; Crystal structure of a Human Cardiac Calsequestrin Filament 6OWW ; 3.84 ; Crystal structure of a Human Cardiac Calsequestrin Filament Complexed with Ytterbium 6NYO ; 1.502 ; Crystal structure of a human Cdc34-ubiquitin thioester mimetic 7VMZ ; 2.85 ; Crystal structure of a human Coronavirus 229E antibody C04 Fab 1XO2 ; 2.9 ; Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin 4RRT ; 2.2 ; Crystal structure of a human cytochrome P450 2B6 (Y226H/K262R) in complex with (+)-3-carene 4RQL ; 2.105 ; Crystal structure of a human cytochrome P450 2B6 (Y226H/K262R) in complex with a monoterpene - sabinene 3QU8 ; 2.8 ; Crystal structure of a human cytochrome P450 2B6 (Y226H/K262R) in complex with the inhibitor 4-(4-Nitrobenzyl)pyridine. 3QOA ; 2.1 ; Crystal structure of a human cytochrome P450 2B6 (Y226H/K262R) in complex with the inhibitor 4-Benzylpyridine. 4PHC ; 2.844 ; Crystal Structure of a human cytosolic histidyl-tRNA synthetase, histidine-bound 6JLD ; 2.0 ; Crystal structure of a human ependymin related protein 2CJI ; 2.1 ; Crystal structure of a Human Factor Xa inhibitor complex 2J2U ; 1.9 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 2J34 ; 2.01 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 2J38 ; 2.1 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 2J4I ; 1.8 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 2J94 ; 2.1 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 2J95 ; 2.01 ; CRYSTAL STRUCTURE OF A HUMAN FACTOR XA INHIBITOR COMPLEX 5L19 ; 2.0 ; Crystal Structure of a human FasL mutant 5L36 ; 3.1 ; Crystal Structure of a human FasL mutant in complex with human DcR3 3FJT ; 2.5 ; Crystal structure of a human Fc fragment engineered for extended serum half-life 3QS7 ; 4.3 ; Crystal structure of a human Flt3 ligand-receptor ternary complex 3QS9 ; 7.8 ; Crystal structure of a human Flt3 ligand-receptor ternary complex 6VSL ; 2.1 ; Crystal structure of a human fucosylated IgG1 Fc expressed in tobacco plants (Nicotiana benthamiana) 6OCP ; 2.35 ; Crystal structure of a human GABAB receptor peptide bound to KCTD16 T1 4COF ; 2.97 ; Crystal structure of a human gamma-aminobutyric acid receptor, the GABA(A)R-beta3 homopentamer 1SWX ; 1.65 ; Crystal structure of a human glycolipid transfer protein in apo-form 6HSK ; 2.096 ; Crystal structure of a human HDAC8 L6 loop mutant complexed with Quisinostat 3AGV ; 2.15 ; Crystal structure of a human IgG-aptamer complex 1H3Y ; 4.1 ; Crystal structure of a human IgG1 Fc-fragment,high salt condition 1ADQ ; 3.15 ; CRYSTAL STRUCTURE OF A HUMAN IGM RHEUMATOID FACTOR FAB IN COMPLEX WITH ITS AUTOANTIGEN IGG FC 1JK8 ; 2.4 ; Crystal structure of a human insulin peptide-HLA-DQ8 complex 4BPM ; 2.08 ; Crystal structure of a human integral membrane enzyme 5BO1 ; 2.56 ; Crystal structure of a human Jag1 fragment in complex with an anti-Jag1 Fab 4KGQ ; 2.27 ; Crystal structure of a human light loop mutant in complex with dcr3 5PNT ; 2.2 ; CRYSTAL STRUCTURE OF A HUMAN LOW MOLECULAR WEIGHT PHOSPHOTYROSYL PHOSPHATASE. IMPLICATIONS FOR SUBSTRATE SPECIFICITY 6V7N ; 2.62 ; Crystal Structure of a human Lysosome Resident Glycoprotein, Lysosomal Acid Lipase, and its Implications in Cholesteryl Ester Storage Disease (CESD) 4LCC ; 3.263 ; Crystal structure of a human MAIT TCR in complex with a bacterial antigen bound to humanized bovine MR1 4IIQ ; 2.86 ; Crystal structure of a human MAIT TCR in complex with bovine MR1 3AM8 ; 2.8 ; Crystal Structure of a Human Major Histocompatibilty complex 2AW5 ; 2.5 ; Crystal structure of a human malic enzyme 6W16 ; 3.1 ; Crystal structure of a human metapneumovirus monomeric fusion protein complexed with 458 Fab 7M0I ; 2.81 ; Crystal structure of a human metapneumovirus subtype B2 trimeric fusion protein 1R03 ; 1.7 ; crystal structure of a human mitochondrial ferritin 4NRI ; 2.3 ; Crystal Structure of a human Mms2/Ubc13 A122G mutant 4NRG ; 1.95 ; Crystal Structure of a human Mms2/Ubc13 D118G mutant 4NR3 ; 1.802 ; Crystal Structure of a human Mms2/Ubc13 L121G mutant 1PI1 ; 2.0 ; Crystal structure of a human Mob1 protein; toward understanding Mob-regulated cell cycle pathways. 4MZI ; 1.25 ; Crystal structure of a human mutant p53 5YAX ; 2.5 ; Crystal structure of a human neutralizing antibody bound to a HBV preS1 peptide 2HE0 ; 1.9 ; Crystal structure of a human Notch1 ankyrin domain mutant 1ONI ; 1.9 ; Crystal structure of a human p14.5, a translational inhibitor reveals different mode of ligand binding near the invariant residues of the Yjgf/UK114 protein family 1EW2 ; 1.82 ; CRYSTAL STRUCTURE OF A HUMAN PHOSPHATASE 3MZG ; 2.1 ; Crystal structure of a human prolactin receptor antagonist in complex with the extracellular domain of the human prolactin receptor 2AJP ; 2.5 ; Crystal structure of a human pyridoxal kinase 5NWL ; 3.93 ; Crystal structure of a human RAD51-ATP filament. 1K5M ; 2.7 ; Crystal Structure of a Human Rhinovirus Type 14:Human Immunodeficiency Virus Type 1 V3 Loop Chimeric Virus MN-III-2 4BLB ; 2.8 ; Crystal structure of a human Suppressor of fused (SUFU)-GLI1p complex 4BLD ; 2.802 ; Crystal structure of a human Suppressor of fused (SUFU)-GLI3p complex 1C9B ; 2.65 ; CRYSTAL STRUCTURE OF A HUMAN TBP CORE DOMAIN-HUMAN TFIIB CORE DOMAIN COMPLEX BOUND TO AN EXTENDED, MODIFIED ADENOVIRAL MAJOR LATE PROMOTER (ADMLP) 1JPW ; 2.5 ; Crystal Structure of a Human Tcf-4 / beta-Catenin Complex 2VUQ ; 1.18 ; Crystal structure of a human tRNAGly acceptor stem microhelix (derived from the gene sequence DG9990) at 1.18 Angstroem resolution 2V7R ; 1.2 ; Crystal structure of a human tRNAGly microhelix at 1.2 Angstrom resolution 1T89 ; 3.5 ; CRYSTAL STRUCTURE OF A HUMAN TYPE III FC GAMMA RECEPTOR IN COMPLEX WITH AN FC FRAGMENT OF IGG1 (HEXAGONAL) 1T83 ; 3.0 ; CRYSTAL STRUCTURE OF A HUMAN TYPE III FC GAMMA RECEPTOR IN COMPLEX WITH AN FC FRAGMENT OF IGG1 (ORTHORHOMBIC) 1MU7 ; 2.0 ; Crystal Structure of a Human Tyrosyl-DNA Phosphodiesterase (Tdp1)-Tungstate Complex 1MU9 ; 2.05 ; Crystal Structure of a Human Tyrosyl-DNA Phosphodiesterase (Tdp1)-Vanadate Complex 5THH ; 1.959 ; Crystal structure of a human tyrosyl-tRNA synthetase mutant 4EN3 ; 2.568 ; Crystal structure of a human Valpha24(-) NKT TCR in complex with CD1d/alpha-galactosylceramide 4L9L ; 3.4 ; Crystal structure of a human Valpha7.2/Vbeta13.2 MAIT TCR in complex with bovine MR1 4L8S ; 2.9 ; Crystal structure of a human Valpha7.2/Vbeta13.3 MAIT TCR in complex with bovine MR1 1HXM ; 3.12 ; Crystal Structure of a Human Vgamma9/Vdelta2 T Cell Receptor 1T2J ; 1.5 ; Crystal structure of a Human VH domain 5FUG ; 2.7 ; Crystal structure of a human YL1-H2A.Z-H2B complex 4JE6 ; 2.0 ; Crystal structure of a human-like mitochondrial peptide deformylase 4JE7 ; 2.1 ; Crystal structure of a human-like mitochondrial peptide deformylase in complex with actinonin 4JE8 ; 2.4 ; Crystal structure of a human-like mitochondrial peptide deformylase in complex with Met-Ala-Ser 4HIX ; 2.204 ; Crystal structure of a humanised 3D6 Fab bound to amyloid beta peptide 6Z10 ; 2.269 ; Crystal structure of a humanized (K18E, K269N) rat succinate receptor SUCNR1 (GPR91) in complex with a nanobody and antagonist 6RNK ; 1.94 ; Crystal structure of a humanized (K18E, K269N) rat succinate receptor SUCNR1 (GPR91) in complex with a nanobody and antagonist NF-56-EJ40. 1S3K ; 1.9 ; Crystal Structure of a Humanized Fab (hu3S193) in Complex with the Lewis Y Tetrasaccharide 1UJ3 ; 2.1 ; Crystal structure of a humanized Fab fragment of anti-tissue-factor antibody in complex with tissue factor 1B6V ; 2.0 ; CRYSTAL STRUCTURE OF A HYBRID BETWEEN RIBONUCLEASE A AND BOVINE SEMINAL RIBONUCLEASE 2BO1 ; 1.7 ; Crystal structure of a hybrid ribosomal protein L30e with surface residues from T. celer, and core residues from yeast 5TP4 ; 1.7 ; Crystal structure of a hydantoinase/carbamoylase family amidase from Burkholderia ambifaria 5XEO ; 2.03 ; Crystal structure of a hydrogen sulfide-producing enzyme (Fn1220) from Fusobacterium nucleatum 5XEM ; 1.84 ; Crystal structure of a hydrogen sulfide-producing enzyme (Fn1220) from Fusobacterium nucleatum in complex with L-lanthionine-PLP Schiff base 5XEN ; 1.94 ; Crystal structure of a hydrogen sulfide-producing enzyme (Fn1220) from Fusobacterium nucleatum in complex with L-serine-PLP Schiff base 6JQW ; 1.437 ; Crystal structure of a hydrogenase from Trichosporon moniliiforme 6JQX ; 1.672 ; Crystal structure of a hydrogenase from Trichosporon moniliiforme 1V8B ; 2.4 ; Crystal structure of a hydrolase 5X5M ; 1.211 ; Crystal structure of a hydrolase encoded by lin2189 from Listeria innocua 2GO7 ; 2.1 ; CRYSTAL STRUCTURE OF A HYDROLASE FROM HALOACID DEHALOGENASE-LIKE FAMILY (SP_2064) FROM STREPTOCOCCUS PNEUMONIAE TIGR4 AT 2.10 A RESOLUTION 5X5R ; 1.644 ; Crystal structure of a hydrolase from Listeria innocua 7VME ; 1.78 ; Crystal structure of a hydrolase in apo form 2 6KY5 ; 1.631 ; Crystal structure of a hydrolase mutant 6IUX ; 1.195 ; Crystal structure of a hydrolase protein 6NQ4 ; 1.45 ; Crystal structure of a Hydrolase, haloacid dehalogenase-like family from Brucella suis 1330 3F6A ; 2.02 ; Crystal structure of a hydrolase, NUDIX family from Clostridium perfringens 7VMD ; 1.69 ; Crystal structure of a hydrolases Ple628 from marine microbial consortium 8B4M ; 3.04 ; Crystal structure of a hydropyrene synthase (M75L variant) in its closed conformation 4XCT ; 1.3 ; Crystal structure of a hydroxamate based inhibitor ARP101 (EN73) in complex with the MMP-9 catalytic domain. 4WZV ; 1.65 ; Crystal structure of a hydroxamate based inhibitor EN140 in complex with the MMP-9 catalytic domain 1LQB ; 2.0 ; Crystal structure of a hydroxylated HIF-1 alpha peptide bound to the pVHL/elongin-C/elongin-B complex 4LB0 ; 1.7 ; Crystal structure of a hydroxyproline epimerase from agrobacterium vitis, target efi-506420, with bound trans-4-oh-l-proline 5J1E ; 2.9 ; Crystal Structure of a Hydroxypyridone Carboxylic Acid Active-Site RNase H Inhibitor in Complex with HIV Reverse Transcriptase 3EZW ; 2.0 ; Crystal Structure of a Hyperactive Escherichia coli Glycerol Kinase Mutant Gly230 --> Asp Obtained Using Microfluidic Crystallization Devices 4KFC ; 2.53 ; Crystal structure of a hyperactive mutant of response regulator KdpE complexed to its promoter DNA 2YJ7 ; 1.65 ; Crystal structure of a hyperstable protein from the Precambrian period 1U2X ; 2.0 ; Crystal Structure of a Hypothetical ADP-dependent Phosphofructokinase from Pyrococcus horikoshii OT3 5G3Q ; 1.613 ; Crystal structure of a hypothetical domain in WNK1 6JOV ; 1.941 ; Crystal structure of a hypothetical Fe Superoxide dismutase 4EFZ ; 1.6 ; Crystal Structure of a hypothetical metallo-beta-lactamase from Burkholderia pseudomallei 3UMA ; 2.2 ; Crystal structure of a hypothetical peroxiredoxin protein frm Sinorhizobium meliloti 1O6D ; 1.66 ; Crystal structure of a hypothetical protein 1VH0 ; 2.31 ; Crystal structure of a hypothetical protein 1VIV ; 2.6 ; Crystal structure of a hypothetical protein 1X94 ; 2.5 ; Crystal Structure of a Hypothetical protein 2E8C ; 2.1 ; Crystal structure of a hypothetical protein (Aq_1549) from Aquifex aeolicus VF5 2E8F ; 1.8 ; Crystal Structure of a hypothetical protein (Aq_1549) from Aquifex aeolicus VF5 (Oxidised form) 2E8E ; 1.7 ; Crystal Structure of a hypothetical protein (Aq_1549) from Aquifex aeolicus VF5 (Reduced form) 4RHO ; 2.25 ; Crystal structure of a hypothetical protein (BPSL2088) from Burkholderia pseudomallei K96243 at 2.25 A resolution 4R7F ; 2.3 ; Crystal structure of a hypothetical protein (PARMER_01801) from Parabacteroides merdae ATCC 43184 at 2.30 A resolution 1SUM ; 2.0 ; Crystal structure of a hypothetical protein at 2.0 A resolution 1STZ ; 2.2 ; Crystal structure of a hypothetical protein at 2.2 A resolution 1SU0 ; 2.3 ; Crystal structure of a hypothetical protein at 2.3 A resolution 4S1A ; 1.75 ; Crystal structure of a hypothetical protein Cthe_0052 from Ruminiclostridium thermocellum ATCC 27405 2IML ; 1.65 ; Crystal structure of a hypothetical protein from Archaeoglobus fulgidus binding riboflavin 5'-phosphate 2EBY ; 2.25 ; Crystal structure of a hypothetical protein from E. Coli 3KWL ; 1.94 ; Crystal structure of a hypothetical protein from Helicobacter pylori 6ANZ ; 1.6 ; Crystal structure of a hypothetical protein from Neisseria gonorrhoeae 5VOG ; 1.5 ; Crystal Structure of a Hypothetical Protein from Neisseria gonorrhoeae with bound ppGpp 2O4D ; 1.85 ; Crystal Structure of a hypothetical protein from Pseudomonas aeruginosa 3L20 ; 2.451 ; Crystal structure of a hypothetical protein from Staphylococcus aureus 3P8A ; 1.95 ; Crystal Structure of a hypothetical protein from Staphylococcus aureus 4QXZ ; 2.49 ; Crystal structure of a hypothetical protein from Staphylococcus aureus 4PEO ; 1.73 ; Crystal structure of a hypothetical protein from Staphylococcus aureus. 5H3K ; 1.702 ; Crystal structure of a hypothetical protein from Synechocystis 2EBG ; 1.8 ; Crystal structure of a hypothetical protein from thermus thermophilus 1WHZ ; 1.52 ; Crystal structure of a hypothetical protein from thermus thermophilus HB8 1WK2 ; 2.5 ; Crystal structure of a hypothetical protein from thermus thermophilus HB8 2CV9 ; 2.5 ; Crystal structure of a hypothetical protein from Thermus thermophilus HB8 2DBN ; 1.7 ; Crystal Structure of a Hypothetical Protein JW0805 at High pH from Escherichia coli 2DBI ; 2.05 ; Crystal Structure of a Hypothetical Protein JW0805 from Escherichia coli 2EA9 ; 2.1 ; Crystal structure of a hypothetical protein JW2626 from E.coli 6L7Q ; 1.16 ; Crystal structure of a hypothetical protein PYCH_01220 derived from Pyrococcus yayanosii 5YRX ; 1.9 ; Crystal structure of a hypothetical protein Rv3716c from Mycobacterium tuberculosis 4HUJ ; 1.77 ; Crystal structure of a hypothetical protein SMa0349 from Sinorhizobium meliloti 3U5R ; 2.05 ; Crystal structure of a hypothetical protein SMc02350 from Sinorhizobium meliloti 1021 3L7V ; 2.256 ; Crystal structure of a hypothetical protein smu.1377c from Streptococcus mutans UA159 1Z54 ; 2.1 ; Crystal structure of a hypothetical protein TT1821 from Thermus thermophilus 1ZPW ; 1.64 ; Crystal structure of a hypothetical protein TT1823 from Thermus thermophilus 2YSK ; 1.9 ; Crystal structure of a hypothetical protein TTHA1432 from Thermus thermophilus 2DBS ; 2.1 ; Crystal structure of a hypothetical protein TTHC002 from Thermus thermophilus HB8 1T35 ; 2.72 ; CRYSTAL STRUCTURE OF A HYPOTHETICAL PROTEIN YVDD- A PUTATIVE LYSINE DECARBOXYLASE 2EGI ; 2.3 ; Crystal Structure of a Hypothetical Protein(AQ1494) from Aquifex aeolicus 2EFV ; 1.9 ; Crystal Structure of a Hypothetical Protein(MJ0366) from Methanocaldococcus jannaschii 1J27 ; 1.7 ; Crystal structure of a hypothetical protein, TT1725, from Thermus thermophilus HB8 at 1.7A resolution 5AWE ; 2.45 ; Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-beta-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains 3TPC ; 2.34 ; Crystal structure of a hypothtical protein SMa1452 from Sinorhizobium meliloti 1021 4RQA ; 1.48 ; Crystal Structure of a Hypoxanthine Phosphoribosyltransferase (target ID NYSGRC-029686) from Staphylococcus aureus (orthorhombic space group) 4RQB ; 2.45 ; Crystal Structure of a Hypoxanthine Phosphoribosyltransferase (target ID NYSGRC-029686) from Staphylococcus aureus (tetragonal space group) 3VUN ; 3.0 ; Crystal structure of a influenza A virus (A/Aichi/2/1968 H3N2) hemagglutinin in C2 space group. 5WUP ; 2.3 ; Crystal structure of a insect group III chitinase (CAD1) from Ostrinia furnacalis 5WUS ; 2.201 ; Crystal structure of a insect group III chitinase (CAD2) from Ostrinia furnacalis 5WV9 ; 2.105 ; Crystal structure of a insect group III chitinase complex with (GlcNAc)6 (CAD1-(GlcNAc)6 ) from Ostrinia furnacalis 5M5E ; 2.3 ; Crystal structure of a interleukin-2 variant in complex with interleukin-2 receptor 4WK5 ; 1.7 ; Crystal structure of a Isoprenoid Synthase family member from Thermotoga neapolitana DSM 4359, target EFI-509458 3O65 ; 2.7 ; Crystal structure of a Josephin-ubiquitin complex: Evolutionary restraints on ataxin-3 deubiquitinating activity 4GAZ ; 2.81 ; Crystal Structure of a Jumonji Domain-containing Protein JMJD5 2NPY ; 2.65 ; Crystal Structure of a junctioned hairpin ribozyme incorporating 9atom linker and 2'-deoxy 2'-amino U at A-1 2OUE ; 2.05 ; Crystal structure of a junctionless all-RNA hairpin ribozyme at 2.05 angstroms resolution 8CTX ; 1.99 ; Crystal structure of a K+ selective NaK mutant (NaK2K) -K+,Tl+ complex 8CTW ; 2.0 ; Crystal structure of a K+ selective NaK mutant (NaK2K) -Na+,Tl+ complex 8CTV ; 2.1 ; Crystal structure of a K+ selective NaK mutant (NaK2K) -Tl+ complex 8CTT ; 2.05 ; Crystal structure of a K+ selective NaK mutant (NaK2K) at 100K 8CTU ; 1.65 ; Crystal structure of a K+ selective NaK mutant (NaK2K) at Room temperature 4PDR ; 1.85 ; Crystal Structure of a K+ selective NaK mutant in Barium and Sodium 3ZGD ; 1.98 ; crystal structure of a KEAP1 mutant 3LHX ; 1.87 ; Crystal structure of a Ketodeoxygluconokinase (kdgk) from Shigella flexneri 4J1Q ; 2.35 ; Crystal structure of a ketoreductase domain from the bacillaene assembly line 4J1S ; 3.01 ; Crystal structure of a ketoreductase domain from the bacillaene assembly line 3R1F ; 2.5 ; Crystal structure of a key regulator of virulence in Mycobacterium tuberculosis 3U29 ; 2.0 ; Crystal Structure of a KGD Collagen Mimetic Peptide at 2.0 A 3T4F ; 1.68 ; Crystal Structure of a KGE Collagen Mimetic Peptide at 1.68 A 2R0I ; 2.202 ; Crystal structure of a kinase MARK2/Par-1 mutant 7D8V ; 2.3 ; Crystal Structure of A Kinesin-3 KIF13B mutant-T192Y 2QKS ; 2.2 ; Crystal structure of a Kir3.1-prokaryotic Kir channel chimera 7X8C ; 2.73 ; Crystal structure of a KTSC family protein from Euryarchaeon Methanolobus vulcani 5XOZ ; 2.8 ; Crystal structure of a Kunitz type trypsin inhibitor from Cicer arietinumL 1TIE ; 2.5 ; CRYSTAL STRUCTURE OF A KUNITZ-TYPE TRYPSIN INHIBITOR FROM ERYTHRINA CAFFRA SEEDS 2ZO7 ; 1.58 ; Crystal Structure of a Kusabira-Cyan Mutant (KCY-R1), a Cyan/Green-Emitting GFP-Like Protein 5WIE ; 3.3 ; Crystal structure of a Kv1.2-2.1 chimera K+ channel V406W mutant in an inactivated state 7ESN ; 2.42 ; Crystal structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, H105F Rha-GlcA complex 7ESM ; 1.4 ; Crystal structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, L-Rha complex 7ESK ; 1.05 ; Crystal structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, Ligand free form 7ESL ; 1.4 ; Crystal structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, N247A N-glycan free form 4EGF ; 2.3 ; Crystal structure of a L-xylulose reductase from Mycobacterium smegmatis 4WB6 ; 2.1 ; Crystal structure of a L205R mutant of human cAMP-dependent protein kinase A (catalytic alpha subunit) 5LWW ; 2.65 ; Crystal structure of a laccase-like multicopper oxidase McoG from Aspergillus niger bound to zinc 5LM8 ; 1.7 ; Crystal structure of a laccase-like multicopper oxidase McoG from from Aspergillus niger 3KKE ; 2.2 ; Crystal structure of a LacI family transcriptional regulator from Mycobacterium smegmatis 3E3M ; 1.6 ; Crystal structure of a LacI family transcriptional regulator from Silicibacter pomeroyi 4WXE ; 1.5 ; CRYSTAL STRUCTURE OF A LACI REGULATOR FROM LACTOBACILLUS CASEI (LSEI_2103, TARGET EFI-512911) WITH BOUND TRIS 3GYB ; 1.6 ; Crystal structure of a LacI-family transcriptional regulatory protein from Corynebacterium glutamicum 5Z5J ; 2.15 ; Crystal structure of a lactonase double mutant 5Z7J ; 1.98 ; Crystal structure of a lactonase double mutant in complex with ligand l 5Z97 ; 2.32 ; Crystal structure of a lactonase double mutant in complex with ligand N 5IE5 ; 2.39 ; Crystal structure of a lactonase double mutant in complex with substrate a 5IE7 ; 2.5 ; Crystal structure of a lactonase double mutant in complex with substrate b 5XWZ ; 1.75 ; Crystal structure of a lactonase from Cladophialophora bantiana 5IE4 ; 2.8 ; Crystal structure of a lactonase mutant in complex with substrate a 5IE6 ; 2.67 ; Crystal structure of a lactonase mutant in complex with substrate b 5GXB ; 3.3 ; crystal structure of a LacY/Nanobody complex 1Z1B ; 3.8 ; Crystal structure of a lambda integrase dimer bound to a COC' core site 1Z1G ; 4.4 ; Crystal structure of a lambda integrase tetramer bound to a Holliday junction 1Z19 ; 2.8 ; Crystal structure of a lambda integrase(75-356) dimer bound to a COC' core site 7JVT ; 3.16 ; Crystal structure of a lambda-186 hybrid repressor 4ZOQ ; 2.35 ; Crystal Structure of a Lanthipeptide Protease 2X7R ; 2.0 ; Crystal structure of a late fusion intermediate of HIV-1 gp41 3G23 ; 1.89 ; Crystal structure of a ld-carboxypeptidase a (saro_1426) from novosphingobium aromaticivorans dsm at 1.89 A resolution 429D ; 2.7 ; CRYSTAL STRUCTURE OF A LEADZYME; METAL BINDING AND IMPLICATIONS FOR CATALYSIS 3U4X ; 2.16 ; Crystal structure of a lectin from Camptosema pedicellatum seeds in complex with 5-bromo-4-chloro-3-indolyl-alpha-D-mannose 3JU9 ; 2.1 ; Crystal structure of a lectin from Canavalia brasiliensis seed (ConBr) complexed with alpha-aminobutyric acid 6VB8 ; 2.2 ; Crystal structure of a lectin from Canavalia brasiliensis seed (ConBr) complexed with indole-3-acetic acid 2OVU ; 1.5 ; Crystal structure of a lectin from Canavalia gladiata (CGL) in complex with man1-2man-OMe 2P2K ; 1.98 ; Crystal structure of a lectin from Canavalia gladiata seeds (CGL) in complex with man1-4man-OMe 2D7F ; 2.31 ; Crystal structure of A lectin from canavalia gladiata seeds complexed with alpha-methyl-mannoside and alpha-aminobutyric acid 7UOD ; 1.6 ; Crystal structure of a lectin from Canavalia maritima seed (ConM) complexed with 2,4-dichloro-phenoxyacetic acid 7UN2 ; 1.8 ; Crystal structure of a lectin from Canavalia maritima seed (ConM) complexed with Indole-3-butyric acid 2P37 ; 2.1 ; Crystal structure of a lectin from Canavalia maritima seeds (CML) in complex with man1-3man-OMe 2P34 ; 2.1 ; Crystal structure of a lectin from Canavalia maritima seeds (CML) in complex with man1-4man-OMe 2OW4 ; 1.6 ; Crystal structure of a lectin from Canavalia maritima seeds (ConM) in complex with man1-2man-OMe 3SNM ; 2.15 ; Crystal structure of a lectin from Canavalia maritima seeds complexed with Indole-3-Acetic Acid 4FYE ; 2.413 ; Crystal structure of a Legionella phosphoinositide phosphatase, SidF 4JZA ; 2.584 ; Crystal structure of a Legionella phosphoinositide phosphatase: insights into lipid metabolism in pathogen host interaction 2ETD ; 2.28 ; Crystal structure of a lema protein (tm0961) from thermotoga maritima msb8 at 2.28 A resolution 2ERE ; 3.0 ; Crystal Structure of a Leu3 DNA-binding domain complexed with a 15mer DNA duplex 4FUU ; 1.3 ; Crystal structure of a leucine aminopeptidase precursor (BT_2548) from Bacteroides thetaiotaomicron VPI-5482 at 1.30 A resolution 3TD9 ; 1.9 ; Crystal structure of a Leucine binding protein LivK (TM1135) from Thermotoga maritima MSB8 at 1.90 A resolution 4GT6 ; 1.8 ; Crystal structure of a leucine rich cell surface protein (FAEPRAA2165_01021) from Faecalibacterium prausnitzii A2-165 at 1.80 A resolution 3EMU ; 2.3 ; Crystal structure of a leucine rich repeat and phosphatase domain containing protein from Entamoeba histolytica 4OJU ; 2.0 ; Crystal structure of a leucine-rich repeat protein (BACCAP_00569) from Bacteroides capillosus ATCC 29799 at 2.00 A resolution 4ECO ; 2.7 ; Crystal structure of a leucine-rich repeat protein (BACEGG_03329) from Bacteroides eggerthii DSM 20697 at 2.70 A resolution 4FS7 ; 1.19 ; Crystal structure of a leucine-rich repeat protein (BACOVA_04585) from Bacteroides ovatus ATCC 8483 at 1.19 A resolution 4ECN ; 2.8 ; Crystal structure of a leucine-rich repeat protein (BT_0210) from Bacteroides thetaiotaomicron VPI-5482 at 2.80 A resolution 3SB4 ; 1.99 ; Crystal structure of a leucine-rich repeat protein (BT_1240) from Bacteroides thetaiotaomicron VPI-5482 at 1.99 A resolution 4H09 ; 2.5 ; Crystal structure of a leucine-rich repeat protein (EUBVEN_01088) from Eubacterium ventriosum ATCC 27560 at 2.50 A resolution 6X5E ; 2.29 ; Crystal structure of a Lewis-binding Fab (ch88.2) 3K2Z ; 1.37 ; Crystal structure of a LexA protein from Thermotoga maritima 4LH6 ; 1.65 ; Crystal structure of a LigA inhibitor 4LH7 ; 1.9 ; Crystal structure of a LigA inhibitor 6C9W ; 3.0 ; Crystal Structure of a ligand bound LacY/Nanobody Complex 1XED ; 1.9 ; Crystal Structure of a Ligand-Binding Domain of the Human Polymeric Ig Receptor, pIgR 3H2K ; 2.1 ; Crystal structure of a ligand-bound form of the rice cell wall degrading esterase LipA from Xanthomonas oryzae 3TS5 ; 2.393 ; Crystal Structure of a Light Chain Domain of Scallop Smooth Muscle Myosin 7BMH ; 2.2 ; Crystal structure of a light-driven proton pump LR (Mac) from Leptosphaeria maculans 6A6Q ; 1.67 ; Crystal structure of a lignin peroxidase isozyme H8 variant that is stable at very acidic pH 3K17 ; 2.1 ; Crystal structure of a Lin0012 protein from Listeria innocua 3SOO ; 2.73 ; Crystal structure of a LINE-1 type transposase domain-containing protein 1 (L1TD1) from HOMO SAPIENS at 2.73 A resolution 3U30 ; 2.428 ; Crystal structure of a linear-specific Ubiquitin fab bound to linear ubiquitin 5LK6 ; 2.6 ; Crystal structure of a lipase carboxylesterase from Sulfolobus islandicus 3AUK ; 1.66 ; Crystal structure of a lipase from Geobacillus sp. SBS-4S 3V2Y ; 2.8 ; Crystal Structure of a Lipid G protein-Coupled Receptor at 2.80A 3V2W ; 3.35 ; Crystal Structure of a Lipid G protein-Coupled Receptor at 3.35A 6TZY ; 3.0 ; Crystal Structure of a lipin/Pah Phosphatidic Acid Phosphatase 2P0L ; 2.04 ; Crystal structure of a Lipoate-protein ligase A 4GZV ; 1.95 ; Crystal structure of a lipocalin family protein (BACOVA_00364) from Bacteroides ovatus ATCC 8483 at 1.95 A resolution 4I95 ; 1.81 ; Crystal structure of a Lipocalin-like protein (BACEGG_00036) from Bacteroides eggerthii DSM 20697 at 1.81 A resolution 4QRL ; 1.79 ; Crystal structure of a lipocalin-like protein (BACUNI_01346) from Bacteroides uniformis ATCC 8492 at 1.79 A resolution 3HTY ; 1.95 ; Crystal structure of a lipocalin-like protein (BT_0869) from Bacteroides thetaiotaomicron VPI-5482 at 1.95 A resolution 4KH8 ; 1.6 ; Crystal structure of a Lipocalin-like protein (EF0376) from Enterococcus faecalis V583 at 1.60 A resolution 5TKR ; 1.8 ; Crystal structure of a Lipomyces starkeyi levoglucosan kinase G359R mutant 4HWM ; 1.38 ; Crystal structure of a lipoprotein YedD (KPN_02420) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.38 A resolution 4NTL ; 1.799 ; Crystal structure of a lipoprotein, YaeC family (EF3198) from Enterococcus faecalis V583 at 1.80 A resolution 3K3Q ; 2.6 ; Crystal Structure of a Llama Antibody complexed with the C. Botulinum Neurotoxin Serotype A Catalytic Domain 6EZW ; 1.59843 ; Crystal structure of a llama VHH antibody BCD090-M2 against human ErbB3 in space group C2 6F0D ; 1.90001 ; Crystal structure of a llama VHH antibody BCD090-M2 against human ErbB3 in space group P1 with cadmium ions 4YPN ; 2.07 ; Crystal structure of a LonA fragment containing the 3-helix bundle and the AAA-alpha/beta domain 4YPM ; 1.85 ; Crystal structure of a LonA protease domain in complex with bortezomib 5MTZ ; 2.99 ; Crystal structure of a long form RNase Z from yeast 3G7S ; 2.15 ; Crystal structure of a long-chain-fatty-acid-CoA ligase (FadD1) from Archaeoglobus fulgidus 4HBQ ; 1.4 ; Crystal structure of a loop deleted mutant of Human MAdCAM-1 D1D2 4HC1 ; 2.871 ; Crystal structure of a loop deleted mutant of human MAdCAM-1 D1D2 complexed with Fab 10G3 5HFN ; 2.75 ; Crystal structure of a loop truncation variant of Thermotoga maritima Acetyl Esterase TM0077 (apo structure) at 2.75 Angstrom resolution 1PV8 ; 2.2 ; Crystal structure of a low activity F12L mutant of human porphobilinogen synthase 4LRQ ; 1.45 ; Crystal structure of a Low Molecular Weight Phosphotyrosine phosphatase from Vibrio choleraeO395 5KH9 ; 1.07 ; Crystal structure of a low occupancy fragment candidate (5-[(4-Isopropylphenyl)amino]-6-methyl-1,2,4-triazin-3(2H)-one) bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 5B8D ; 1.05 ; Crystal structure of a low occupancy fragment candidate (N-(4-Methyl-1,3-thiazol-2-yl)propanamide) bound adjacent to the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6NDQ ; 1.601 ; Crystal structure of a LPMO from Kitasatospora papulosa 4KIS ; 3.2 ; Crystal Structure of a LSR-DNA Complex 1VPR ; 1.8 ; Crystal structure of a luciferase domain from the dinoflagellate Lingulodinium polyedrum 2G0Y ; 2.3 ; Crystal Structure of a Lumenal Pentapeptide Repeat Protein from Cyanothece sp 51142 at 2.3 Angstrom Resolution. Tetragonal Crystal Form 2F3L ; 2.11 ; Crystal Structure of a Lumenal Rfr-domain protein (Contig83.1_1_243_746) from Cyanothece sp. 51142 at 2.1 Angstrom resolution. 2A43 ; 1.34 ; Crystal Structure of a Luteoviral RNA Pseudoknot and Model for a Minimal Ribosomal Frameshifting Motif 2QSJ ; 2.1 ; Crystal structure of a LuxR family DNA-binding response regulator from Silicibacter pomeroyi 5V2W ; 2.3 ; Crystal structure of a LuxS from salmonella typhi 3B4S ; 3.1 ; Crystal structure of a LuxT domain from Vibrio parahaemolyticus RIMD 2210633 6JQ9 ; 1.81 ; Crystal structure of a lyase from Alteromonas sp. 2NW0 ; 1.6 ; Crystal structure of a lysin 6O43 ; 2.08223 ; Crystal structure of a lysin protein from Staphylococcus phage P68 1UC8 ; 2.0 ; Crystal structure of a lysine biosynthesis enzyme, Lysx, from thermus thermophilus HB8 1UC9 ; 2.38 ; Crystal structure of a lysine biosynthesis enzyme, Lysx, from thermus thermophilus HB8 4DZA ; 1.74 ; Crystal structure of a lysine racemase within internal aldimine linkage 5VRE ; 3.299 ; Crystal structure of a lysosomal potassium-selective channel TMEM175 homolog from Chamaesiphon Minutus 8YA4 ; 2.1 ; Crystal structure of a lysozyme form hen egg white 8Y9W ; 1.9 ; CRYSTAL STRUCTURE OF A LYSOZYME FROM HEN EGG WHITE 6UKC ; 2.25 ; Crystal structure of a lysozyme from Litopenaeus vannamei 6UL3 ; 3.0 ; Crystal structure of a lysozyme from Litopenaeus vannamei 5WSZ ; 2.565 ; Crystal structure of a lytic polysaccharide monooxygenase,BtLPMO10A, from Bacillus thuringiensis 2H4Q ; 2.1 ; Crystal structure of a M-loop deletion variant of MENT in the cleaved conformation 2DUT ; 3.0 ; Crystal structure of a M-loop deletion variant of MENT in the native conformation 2PWY ; 1.7 ; Crystal Structure of a m1A58 tRNA methyltransferase 2POK ; 1.9 ; Crystal structure of a M20 family metallo peptidase from Streptococcus pneumoniae 3PFE ; 1.5 ; Crystal structure of a M20A metallo peptidase (dapE, lpg0809) from Legionella pneumophila subsp. pneumophila str. philadelphia 1 at 1.50 A resolution 7XYO ; 2.7 ; Crystal Structure of a M61 aminopeptidase family member from Myxococcus fulvus 4Q8D ; 1.746 ; Crystal structure of a macrocyclic beta-sheet peptide containing two beta-strands from amyloid beta residues 15-23 5HPP ; 2.082 ; Crystal structure of a macrocyclic beta-sheet peptide derived from transthyretin (106-121) - (ORN)TIA(MAA)LLS(ORN)S(PHI)STTAV 5F1T ; 1.971 ; Crystal structure of a macrocyclic peptide containing fragments from alpha-synuclein 36-55. 3N7T ; 2.1 ; Crystal structure of a macrophage binding protein from Coccidioides immitis 3O7Q ; 3.143 ; Crystal structure of a Major Facilitator Superfamily (MFS) transporter, FucP, in the outward conformation 8IGL ; 2.4 ; Crystal structure of a major fragment of the ASFV inner capsid protein p150 2F08 ; 2.2 ; Crystal structure of a major house dust mite allergen, Derf 2 1ZL9 ; 2.01 ; Crystal Structure of a major nematode C.elegans specific GST (CE01613) 3DZM ; 2.801 ; Crystal structure of a major outer membrane protein from Thermus thermophilus HB27 6AXE ; 1.6 ; Crystal structure of a malate synthase G from Mycobacterium marinum bound to acetyl CoA 6MPR ; 1.7 ; Crystal structure of a malonate decarboxylase, alpha subunit from Acinetobacter baumannii 1SMA ; 2.8 ; CRYSTAL STRUCTURE OF A MALTOGENIC AMYLASE 1QQ2 ; 2.6 ; CRYSTAL STRUCTURE OF A MAMMALIAN 2-CYS PEROXIREDOXIN, HBP23. 3HL4 ; 2.2 ; Crystal structure of a mammalian CTP:phosphocholine cytidylyltransferase with CDP-choline 4MVC ; 3.0 ; Crystal Structure of a Mammalian Cytidylyltransferase 4MVD ; 8.0 ; Crystal Structure of a Mammalian Cytidylyltransferase 2ZAT ; 1.5 ; Crystal structure of a mammalian reductase 2WML ; 1.9 ; Crystal Structure of a Mammalian Sialyltransferase 2WNB ; 1.55 ; Crystal Structure of a Mammalian Sialyltransferase in complex with disaccharide and CMP 2WNF ; 1.25 ; Crystal Structure of a Mammalian Sialyltransferase in complex with Gal-beta-1-3GalNAc-ortho-nitrophenol 3U4F ; 1.9 ; Crystal structure of a mandelate racemase (muconate lactonizing enzyme family protein) from Roseovarius nubinhibens 2PMQ ; 1.72 ; Crystal structure of a mandelate racemase/muconate lactonizing enzyme from Roseovarius sp. HTCC2601 3MQT ; 2.1 ; Crystal structure of a mandelate racemase/muconate lactonizing enzyme from Shewanella pealeana 3CYJ ; 2.3 ; Crystal structure of a mandelate racemase/muconate lactonizing enzyme-like protein from Rubrobacter xylanophilus 4J0N ; 2.25 ; Crystal structure of a manganese dependent isatin hydrolase 3DC5 ; 1.7 ; Crystal Structure of a manganese superoxide dismutases from Caenorhabditis elegans 3DC6 ; 1.8 ; Crystal Structure of a manganese superoxide dismutases from Caenorhabditis elegans 8AWP ; 1.595 ; Crystal structure of a manganese-containing cupin (tm1459) from Thermotoga maritima, variant 208 (V19I/R23H/M38I/I60F/C106Q) 8AWO ; 1.7 ; Crystal structure of a manganese-containing cupin (tm1459) from Thermotoga maritima, variant AIFQ (Y7A/M38I/Y83F/C106Q) 8AWN ; 1.45 ; Crystal structure of a manganese-containing cupin (tm1459) from Thermotoga maritima, variant C106Q 5I7I ; 1.3 ; Crystal structure of a marine metagenome TRAP solute binding protein specific for aromatic acid ligands (Sorcerer II Global Ocean Sampling Expedition, unidentified microbe, locus tag GOS_1523157) in complex with co-crystallized 3-hydroxybenzoate 5I5P ; 1.6 ; Crystal structure of a marine metagenome TRAP solute binding protein specific for aromatic acid ligands (Sorcerer II Global Ocean Sampling Expedition, unidentified microbe, locus tag GOS_1523157) in complex with co-purified 4-hydroxybenzoate 5IGA ; 1.45 ; Crystal structure of a marine metagenome TRAP solute binding protein specific for aromatic acid ligands (Sorcerer II Global Ocean Sampling Expedition, unidentified microbe, locus tag GOS_1523157, Triple Surface Mutant K158A_K223A_K313A) in complex with co-purified parahydroxybenzoate 5IZZ ; 1.6 ; Crystal structure of a marine metagenome TRAP solute binding protein specific for aromatic acid ligands (Sorcerer II Global Ocean Sampling Expedition, unidentified microbe, locus tag GOS_1523157, Triple Surface Mutant K158A_K223A_K313A) in complex with metahydroxyphenylacetate, thermal exchange of ligand 6WGM ; 1.4 ; Crystal structure of a marine metagenome TRAP solute binding protein specific for pyroglutamate (Sorcerer II Global Ocean Sampling Expedition, unidentified microbe, scf7180008839099) in complex with co-purified pyroglutamate 7DVN ; 1.6 ; Crystal structure of a MarR family protein in complex with a lipid-like effector molecule from the psychrophilic bacterium Paenisporosarcina sp. TG-14 3NQO ; 2.2 ; Crystal structure of a MarR family transcriptional regulator (CD1569) from Clostridium difficile 630 at 2.20 A resolution 2ETH ; 2.3 ; Crystal structure of a marr-like transcriptional regulator (tm0816) from thermotoga maritima at 2.50 A resolution 1APL ; 2.7 ; CRYSTAL STRUCTURE OF A MAT-ALPHA2 HOMEODOMAIN-OPERATOR COMPLEX SUGGESTS A GENERAL MODEL FOR HOMEODOMAIN-DNA INTERACTIONS 5XJJ ; 2.9 ; Crystal structure of a MATE family protein 5YCK ; 2.3 ; Crystal structure of a MATE family protein derived from Camelina sativa at 2.3 angstrom 6E1C ; 2.617 ; Crystal structure of a MauG-like protein associated with microbial copper homeostasis 3TK1 ; 2.4 ; Crystal structure of a MeaB and Rv1496 ortholog from Mycobacterium thermoresistible bound to GDP 4GT1 ; 2.0 ; Crystal structure of a MeaB- and MMAA-like GTPase from Mycobacterium tuberculosis bound to 2'-deoxyguanosine diphosphate 8IVI ; 2.29 ; crystal structure of a medium-long chain fatty acyl-CoA ligase 3S5T ; 2.3 ; Crystal structure of a member of duf3298 family (BF2082) from bacteroides fragilis nctc 9343 at 2.30 A resolution 3S9J ; 1.75 ; Crystal structure of a member of duf4221 family (BVU_1028) from Bacteroides vulgatus atcc 8482 at 1.75 A resolution 2POD ; 2.34 ; Crystal structure of a member of enolase superfamily from Burkholderia pseudomallei K96243 3BJS ; 2.7 ; Crystal structure of a member of enolase superfamily from Polaromonas sp. JS666 2QDD ; 2.3 ; Crystal structure of a member of enolase superfamily from Roseovarius nubinhibens ISM 3FVD ; 2.3 ; Crystal structure of a member of enolase superfamily from ROSEOVARIUS NUBINHIBENS ISM complexed with magnesium 1Y23 ; 2.3 ; Crystal structure of a member of HIT family of proteins from bacillus subtilis 2NQL ; 1.8 ; Crystal structure of a member of the enolase superfamily from Agrobacterium tumefaciens 2O56 ; 2.0 ; Crystal Structure of a Member of the Enolase Superfamily from Salmonella Typhimurium 4RW0 ; 2.0 ; Crystal structure of a member of the lipolytic protein G-D-S-L family from Veillonella parvula DSM 2008 3DBO ; 1.76 ; Crystal structure of a member of the VapBC family of toxin-antitoxin systems, VapBC-5, from Mycobacterium tuberculosis 1X25 ; 2.0 ; Crystal Structure of a Member of YjgF Family from Sulfolobus Tokodaii (ST0811) 6I8W ; 2.0 ; Crystal structure of a membrane phospholipase A, a novel bacterial virulence factor 3T9N ; 3.456 ; Crystal structure of a membrane protein 3UDC ; 3.355 ; Crystal structure of a membrane protein 5T0O ; 3.15 ; Crystal Structure of a membrane protein 7K7M ; 3.33 ; Crystal Structure of a membrane protein 5AZO ; 2.7 ; Crystal structure of a membrane protein from Pseudomonas aeruginosa 5AZP ; 1.69 ; Crystal structure of a membrane protein from Pseudomonas aeruginosa 5AZS ; 3.1 ; Crystal structure of a membrane protein from Pseudomonas aeruginosa 6IVK ; 2.65 ; Crystal structure of a membrane protein G175A 6IVJ ; 2.77 ; Crystal structure of a membrane protein G18A 6IVN ; 3.1 ; Crystal structure of a membrane protein G264A 6IVL ; 3.4 ; Crystal structure of a membrane protein L259A 6IVM ; 2.95 ; Crystal structure of a membrane protein P143A 6IVO ; 2.45 ; Crystal structure of a membrane protein P208A 6IVP ; 3.8 ; Crystal structure of a membrane protein P262A 6IVQ ; 2.65 ; Crystal structure of a membrane protein S19A 6IVR ; 2.8 ; Crystal structure of a membrane protein W16A 6BUG ; 3.27 ; Crystal structure of a membrane protein, crystal form I 6BUH ; 3.15 ; Crystal structure of a membrane protein, crystal form II 6BUI ; 3.27 ; Crystal structure of a membrane protein, crystal form III 4IU9 ; 3.005 ; Crystal structure of a membrane transporter 4IU8 ; 3.11 ; Crystal structure of a membrane transporter (selenomethionine derivative) 5U82 ; 1.851 ; Crystal structure of a MerB-triethyltin complex 5U88 ; 1.801 ; Crystal structure of a MerB-triimethyllead complex. 5U83 ; 1.609 ; Crystal structure of a MerB-trimethytin complex. 3B7M ; 2.1 ; Crystal structure of a meso-active thermo-stable cellulase (MT Cel12A) derived by making non-contiguous mutations in the active surface of the Cel12A cellulase of Rhodothermus marinus 1XXN ; 1.7 ; Crystal structure of a mesophilic xylanase A from Bacillus subtilis 1A1 2D0D ; 1.65 ; Crystal Structure of a Meta-cleavage Product Hydrolase (CumD) A129V Mutant 1UKA ; 1.7 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with (S)-2-methylbutyrate 1UKB ; 1.8 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with benzoate 1UK9 ; 1.8 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with isovalerate 1UK7 ; 1.7 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with n-butyrate 1UK8 ; 1.6 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with n-valerate 1UK6 ; 1.95 ; Crystal structure of a meta-cleavage product hydrolase (CumD) complexed with propionate 4XS3 ; 3.291 ; Crystal structure of a metabolic reductase with (E)-1-benzyl-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one 4XRX ; 3.2 ; Crystal structure of a metabolic reductase with (E)-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one 4I3K ; 3.3056 ; Crystal structure of a metabolic reductase with 1-hydroxy-6-(4-hydroxybenzyl)-4-methylpyridin-2(1H)-one 4I3L ; 3.292 ; Crystal structure of a metabolic reductase with 6-benzyl-1-hydroxy-4-methylpyridin-2(1H)-one 4HTY ; 2.0 ; Crystal Structure of a metagenome-derived cellulase Cel5A 4HU0 ; 2.38 ; Crystal Structure of a metagenome-derived cellulase Cel5A in complex with cellotetraose 8FC0 ; 2.1 ; Crystal structure of a metagenome-derived GH5 endo-beta-1,4-glucanase 3RKR ; 2.42 ; Crystal structure of a metagenomic short-chain oxidoreductase (SDR) in complex with NADP 3VFI ; 1.75 ; Crystal Structure of a Metagenomic Thioredoxin 3GW7 ; 3.3 ; Crystal structure of a metal-dependent phosphohydrolase with conserved HD domain (yedJ) from Escherichia coli in complex with nickel ions. Northeast Structural Genomics Consortium Target ER63 7RWV ; 2.2 ; Crystal structure of a metal-free RIDC1 variant 3I8W ; 1.7 ; Crystal structure of a metallacarborane inhibitor bound to HIV protease 8D2Z ; 1.85 ; Crystal Structure of a Metallo-beta-lactamase superfamily protein from Burkholderia cenocepacia 3P1V ; 1.93 ; Crystal structure of a metallo-endopeptidases (BACOVA_00663) from Bacteroides ovatus at 1.93 A resolution 2QIF ; 1.5 ; Crystal structure of a metallochaperone with a tetranuclear Cu(I) cluster 3I9Z ; 1.9 ; Crystal structure of a metallochaperone with a trinuclear Cu(I) cluster 1LOJ ; 1.9 ; Crystal structure of a Methanobacterial Sm-like archaeal protein (SmAP1) bound to uridine-5'-monophosphate (UMP) 6UNV ; 3.0 ; Crystal structure of a methanol tolerant lipase/esterase from the fungus Rasamsonia emersonii 3TAV ; 2.15 ; Crystal structure of a Methionine Aminopeptidase from Mycobacterium abscessus 6MRF ; 1.65 ; Crystal structure of a Methionine aminopeptidase MetAP from Acinetobacter baumannii 4H9W ; 2.5 ; crystal structure of a METHIONINE mutant of WCI 3EIG ; 1.7 ; Crystal structure of a methotrexate-resistant mutant of human dihydrofolate reductase 7V9E ; 2.3 ; Crystal structure of a methyl transferase ribozyme 3OOV ; 2.2 ; Crystal structure of a methyl-accepting chemotaxis protein, residues 122 to 287 3SQG ; 2.1 ; Crystal structure of a methyl-coenzyme M reductase purified from Black Sea mats 3KJ6 ; 3.4 ; Crystal structure of a Methylated beta2 Adrenergic Receptor-Fab complex 5HK8 ; 2.8 ; Crystal structure of a methylesterase protein MES16 from Arabidopsis 6DUB ; 1.2 ; Crystal structure of a methyltransferase 3C3P ; 1.9 ; Crystal structure of a methyltransferase (NP_951602.1) from Geobacter sulfurreducens at 1.90 A resolution 5U0N ; 2.115 ; Crystal structure of a methyltransferase in complex with the substrate involved in the biosynthesis of gentamicin 5U4T ; 2.086 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin 5U19 ; 1.902 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin in complex with (1R,2S,3S,4R,6R)-4,6-diamino-3-{[3-deoxy-4-C-methyl-3-(methylamino)-beta-L-arabinopyranosyl]oxy}-2-hydroxycyclohexyl 2-amino-2-deoxy-alpha-D-glucopyranoside 5U0T ; 2.109 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin in complex with (1R,2S,3S,4R,6S)-4,6-diamino-3-{[3-deoxy-3-(methylamino)-alpha-D-glucopyranosyl]oxy}-2-hydroxycyclohexyl 2,6-diamino-2,6-dideoxy-alpha-D-glucopyranoside 5U18 ; 2.195 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin in complex with the Geneticin 5U1E ; 2.213 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin in complex with the kanamycin B 5U1I ; 1.932 ; Crystal structure of a methyltransferase involved in the biosynthesis of gentamicin in complex with the methylated Kanamycin B 3CVO ; 1.8 ; Crystal structure of a methyltransferase-like protein (spo2022) from silicibacter pomeroyi dss-3 at 1.80 A resolution 3LTO ; 2.27 ; Crystal structure of a mevalonate diphosphate decarboxylase from Legionella pneumophila 6G9X ; 2.3 ; Crystal structure of a MFS transporter at 2.54 Angstroem resolution 6ZGR ; 2.46 ; Crystal structure of a MFS transporter with bound 1-hydroxynaphthalene-2-carboxylic acid at 2.67 Angstroem resolution 6ZGT ; 2.23 ; Crystal structure of a MFS transporter with bound 2-naphthoic acid at 2.39 Angstroem resolution 6ZGU ; 2.18 ; Crystal structure of a MFS transporter with bound 3-(2-methylphenyl)propanoic acid at 2.41 Angstroem resolution 6ZGS ; 2.151 ; Crystal structure of a MFS transporter with bound 3-phenylpropanoic acid at 2.39 Angstroem resolution 6HCL ; 2.5 ; Crystal structure of a MFS transporter with Ligand at 2.69 Angstroem resolution 1DPF ; 2.0 ; CRYSTAL STRUCTURE OF A MG-FREE FORM OF RHOA COMPLEXED WITH GDP 2XPG ; 2.6 ; Crystal structure of a MHC class I-peptide complex 7PV0 ; 2.15 ; Crystal structure of a Mic60-Mic19 fusion protein 3PB1 ; 2.3 ; Crystal Structure of a Michaelis Complex between Plasminogen Activator Inhibitor-1 and Urokinase-type Plasminogen Activator 2WVU ; 1.95 ; Crystal structure of a Michaelis complex of alpha-L-fucosidase GH29 from Bacteroides thetaiotaomicron with the synthetic substrate 4- nitrophenyl-alpha-L-fucose 3TBN ; 1.15 ; Crystal structure of a miner2 homolog: a type 6 CDGSH iron-sulfur protein. 6JK2 ; 1.06 ; Crystal structure of a mini fungal lectin, PhoSL 6JK3 ; 1.12 ; Crystal structure of a mini fungal lectin, PhoSL in complex with core-fucosylated chitobiose 3BM1 ; 2.0 ; Crystal structure of a minimal nitroreductase ydjA from Escherichia coli K12 with and without FMN cofactor 3BM2 ; 2.1 ; Crystal structure of a minimal nitroreductase ydjA from Escherichia coli K12 with and without FMN cofactor 2FGP ; 2.4 ; Crystal structure of a minimal, all RNA hairpin ribozyme with modifications (g8dap, u39c) at ph 8.6 2D2L ; 2.5 ; Crystal Structure of a minimal, all-RNA hairpin ribozyme with a propyl linker (C3) at position U39 2BCZ ; 2.4 ; Crystal Structure of a minimal, mutant all-RNA hairpin ribozyme (U39C, G8I, 2'deoxy A-1) 2BCY ; 2.7 ; Crystal Structure of a minimal, mutant all-RNA hairpin ribozyme (U39C, G8MTU) 3CR1 ; 2.25 ; crystal structure of a minimal, mutant, all-RNA hairpin ribozyme (A38C, A-1OMA) grown from MgCl2 2D2K ; 2.65 ; Crystal Structure of a minimal, native (U39) all-RNA hairpin ribozyme 3B5A ; 2.35 ; Crystal Structure of a Minimally Hinged Hairpin Ribozyme Incorporating A38G mutation with a 2'OMe modification at the active site 3B5F ; 2.7 ; Crystal Structure of a Minimally Hinged Hairpin Ribozyme Incorporating the Ade38Dap Mutation and a 2',5' Phosphodiester Linkage at the Active Site 153D ; 2.9 ; CRYSTAL STRUCTURE OF A MISPAIRED DODECAMER, D(CGAGAATTC(O6ME)GCG)2, CONTAINING A CARCINOGENIC O6-METHYLGUANINE 3SDS ; 2.8 ; Crystal structure of a mitochondrial ornithine carbamoyltransferase from Coccidioides immitis 3A9E ; 2.75 ; Crystal structure of a mixed agonist-bound RAR-alpha and antagonist-bound RXR-alpha heterodimer ligand binding domains 1DDX ; 3.0 ; CRYSTAL STRUCTURE OF A MIXTURE OF ARACHIDONIC ACID AND PROSTAGLANDIN BOUND TO THE CYCLOOXYGENASE ACTIVE SITE OF COX-2: PROSTAGLANDIN STRUCTURE 3UFB ; 1.8 ; Crystal structure of a modification subunit of a putative type I restriction enzyme from Vibrio vulnificus YJ016 4PWU ; 2.45 ; Crystal structure of a modulator protein MzrA (KPN_03524) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 2.45 A resolution 1M3W ; 2.8 ; Crystal Structure of a Molecular Maquette Scaffold 3TCR ; 2.3 ; Crystal structure of a molybdopterin biosynthesis protein from Mycobacterium abscessus 1DIR ; 2.6 ; CRYSTAL STRUCTURE OF A MONOCLINIC FORM OF DIHYDROPTERIDINE REDUCTASE FROM RAT LIVER 2UYL ; 2.5 ; Crystal structure of a monoclonal antibody directed against an antigenic determinant common to Ogawa and Inaba serotypes of Vibrio cholerae O1 1M71 ; 2.8 ; Crystal structure of a Monoclonal Fab Specific for Shigella Flexneri Y lipopolysaccharide 1M7I ; 2.5 ; CRYSTAL STRUCTURE OF A MONOCLONAL FAB SPECIFIC FOR SHIGELLA FLEXNERI Y LIPOPOLYSACCHARIDE COMPLEXED WITH A PENTASACCHARIDE 1M7D ; 2.3 ; Crystal structure of a Monoclonal Fab Specific for Shigella flexneri Y Lipopolysaccharide complexed with a trisaccharide 1E1E ; 2.5 ; Crystal structure of a Monocot (Maize ZMGlu1) beta-glucosidase 1E1F ; 2.6 ; Crystal structure of a Monocot (Maize ZMGlu1) beta-glucosidase in complex with p-Nitrophenyl-beta-D-thioglucoside 4EKJ ; 2.5 ; Crystal structure of a monomeric beta-xylosidase from Caulobacter crescentus CB15 2HQK ; 1.19 ; Crystal structure of a monomeric cyan fluorescent protein derived from Clavularia 2OTB ; 1.79 ; Crystal structure of a monomeric cyan fluorescent protein in the fluorescent state 2OTE ; 1.47 ; Crystal structure of a monomeric cyan fluorescent protein in the photobleached state 5E1V ; 1.874 ; Crystal structure of a monomeric dehydratase domain from a trans AT polyketide synthase split module 7NBI ; 1.65 ; Crystal structure of a monomeric FLT3 Ligand variant 1IFG ; 2.0 ; CRYSTAL STRUCTURE OF A MONOMERIC FORM OF GENERAL PROTEASE INHIBITOR, ECOTIN IN ABSENCE OF A PROTEASE 2QCY ; 1.75 ; Crystal Structure of a monomeric form of Severe Acute Respiratory Syndrome (SARS) 3C-like protease mutant 3ADF ; 2.2 ; Crystal structure of a monomeric green fluorescent protein, Azami-Green (mAG) 5W59 ; 2.498 ; Crystal structure of a monomeric human FGF9 in complex with the ectodomain of human FGFR1c 5CJS ; 4.3 ; Crystal structure of a monomeric influenza hemagglutinin stem in complex with an broadly neutralizing antibody CR9114 3S7Q ; 1.748 ; Crystal Structure of a Monomeric Infrared Fluorescent Deinococcus radiodurans Bacteriophytochrome chromophore binding domain 2PYC ; 1.5 ; Crystal structure of a monomeric phospholipase A2 from Russell's viper at 1.5A resolution 4EGV ; 2.71 ; Crystal structure of a monomeric SCP2-thiolase like protein type 1 (STLP1) from Mycobacterium smegmatis 4BX0 ; 1.75 ; Crystal Structure of a Monomeric Variant of murine Chronophin (Pyridoxal Phosphate phosphatase) 6AJD ; 2.223 ; Crystal structure of a monometallic dihydropyrimidinase from Pseudomonas aeruginosa PAO1 reveals no lysine carbamylation within the active site 1N5Q ; 1.74 ; Crystal structure of a Monooxygenase from the gene ActVA-Orf6 of Streptomyces coelicolor in complex with dehydrated Sancycline 1N5S ; 1.7 ; Crystal structure of a Monooxygenase from the gene ActVA-Orf6 of Streptomyces coelicolor in complex with the ligand Acetyl Dithranol 1N5V ; 2.24 ; Crystal structure of a Monooxygenase from the gene ActVA-Orf6 of Streptomyces coelicolor in complex with the ligand Nanaomycin D 1N5T ; 1.9 ; Crystal structure of a Monooxygenase from the gene ActVA-Orf6 of Streptomyces coelicolor in complex with the ligand Oxidized Acetyl Dithranol 1LQ9 ; 1.3 ; Crystal Structure of a Monooxygenase from the Gene ActVA-Orf6 of Streptomyces coelicolor Strain A3(2) 3FJ2 ; 1.85 ; CRYSTAL STRUCTURE OF A MONOOXYGENASE-LIKE PROTEIN (LIN2316) FROM LISTERIA INNOCUA AT 1.85 A RESOLUTION 7KGA ; 2.1 ; Crystal structure of a mosquito-borne flavivirus dumbbell RNA 3QWO ; 1.9 ; Crystal structure of a motavizumab epitope-scaffold bound to motavizumab Fab 6JLA ; 2.4 ; Crystal structure of a mouse ependymin related protein 1YN7 ; 2.2 ; Crystal structure of a mouse MHC class I protein, H2-Db, in complex with a mutated peptide (R7A) of the influenza A acid polymerase 1YN6 ; 2.2 ; Crystal structure of a mouse MHC class I protein, H2-Db, in complex with a peptide from the influenza A acid polymerase 3UTM ; 2.0 ; Crystal structure of a mouse Tankyrase-Axin complex 6V4Q ; 1.39 ; Crystal structure of a MR78-like antibody naive-1 Fab 1QXP ; 2.8 ; Crystal Structure of a mu-like calpain 8AXH ; 1.85 ; Crystal structure of a MUC1-like glycopeptide containing the unnatural L-4-hydroxynorvaline in complex with scFv-SM3 3MY9 ; 2.2 ; Crystal structure of a muconate cycloisomerase from Azorhizobium caulinodans 1MWI ; 2.35 ; Crystal structure of a MUG-DNA product complex 1MWJ ; 2.85 ; Crystal Structure of a MUG-DNA pseudo substrate complex 2IF4 ; 2.85 ; Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana 4NKK ; 1.8 ; Crystal structure of a multi-drug resistant clinical isolate-769 HIV-1 protease variant that is resistant to the dimerization inhibitory activity of TLF-PafF 8P4G ; 2.59 ; Crystal structure of a multicopper oxidase 3F3 variant from Pyrobaculum aerophilum 3TS8 ; 2.8 ; Crystal structure of a multidomain human p53 tetramer bound to the natural CDKN1A(p21) p53-response element 3SOT ; 2.8 ; Crystal structure of a Multidomain protein including DUF1735 (BACOVA_03322) from Bacteroides ovatus at 2.80 A resolution 3GO5 ; 1.4 ; Crystal structure of a multidomain protein with nucleic acid binding domains (sp_0946) from streptococcus pneumoniae tigr4 at 1.40 A resolution 2DHH ; 2.8 ; Crystal structure of a multidrug transporter reveal a functionally rotating mechanism 2DR6 ; 3.3 ; Crystal structure of a multidrug transporter reveal a functionally rotating mechanism 2DRD ; 3.1 ; Crystal structure of a multidrug transporter reveal a functionally rotating mechanism 4LCZ ; 2.6 ; Crystal structure of a multilayer-packed major light-harvesting complex 1SIF ; 2.18 ; Crystal structure of a multiple hydrophobic core mutant of ubiquitin 4FDT ; 1.93 ; Crystal Structure of a Multiple Inositol Polyphosphate Phosphatase 4FDU ; 2.293 ; Crystal Structure of a Multiple Inositol Polyphosphate Phosphatase 5CX4 ; 2.06 ; Crystal Structure of a Multiple Inositol Polyphosphate Phosphatase 8TE5 ; 1.502 ; Crystal structure of a multiple lysine-to-arginine substitution mutant of the human CRIg C3b-binding domain 8TE6 ; 1.251 ; Crystal structure of a multiple lysine-to-arginine substitution mutant of the human CRIg C3b-binding domain 1NZK ; 1.95 ; Crystal Structure of a Multiple Mutant (L44F, L73V, V109L, L111I, C117V) of Human Acidic Fibroblast Growth Factor 4PYT ; 1.853 ; Crystal structure of a MurB family EP-UDP-N-acetylglucosamine reductase 3HN7 ; 1.65 ; Crystal structure of a murein peptide ligase mpl (psyc_0032) from psychrobacter arcticus 273-4 at 1.65 A resolution 2Z4Q ; 2.3 ; Crystal structure of a murine antibody FAB 528 2GSI ; 2.81 ; Crystal Structure of a Murine Fab in Complex with an 11 Residue Peptide Derived from Staphylococcal Nuclease 2VE6 ; 2.65 ; Crystal structure of a Murine MHC class I H2-Db molecule in complex with a photocleavable peptide 3SMD ; 1.76 ; Crystal structure of a mut/nudix family protein from bacillus thuringiensis 5AG8 ; 1.9 ; CRYSTAL STRUCTURE OF A MUTANT (665I6H) OF THE C-TERMINAL DOMAIN OF RGPB 5AG9 ; 2.11 ; CRYSTAL STRUCTURE OF A MUTANT (665sXa) C-TERMINAL DOMAIN OF RGPB 1L8V ; 2.8 ; Crystal Structure of a Mutant (C109G,G212C) P4-P6 Domain of the Group I Intron from Tetrahymena Thermophilia 3PF3 ; 2.098 ; Crystal structure of a mutant (C202A) of Triosephosphate isomerase from Giardia lamblia derivatized with MMTS 4BI7 ; 1.6 ; CRYSTAL STRUCTURE OF A MUTANT (C202A) OF TRIOSEPHOSPHATE ISOMERASE FROM GIARDIA LAMBLIA. COMPLEXED WITH 2-PHOSPHOGLYCOLIC ACID 4XTQ ; 1.64 ; Crystal structure of a mutant (C20S) of a near-infrared fluorescent protein BphP1-FP 3GLG ; 3.25 ; Crystal Structure of a Mutant (gammaT157A) E. coli Clamp Loader Bound to Primer-Template DNA 3QPY ; 1.95 ; Crystal structure of a mutant (K57A) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 7QDT ; 3.0 ; Crystal structure of a mutant (P393GX) Thyroid Receptor Alpha ligand binding domain designed to model dominant negative human mutations. 3STE ; 2.05 ; Crystal structure of a mutant (Q202A) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 2E24 ; 2.15 ; crystal structure of a mutant (R612A) of xanthan lyase 3STF ; 1.9 ; Crystal structure of a mutant (S211A) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 6QTS ; 1.11 ; Crystal structure of a mutant Arabidopsis WD40 domain in complex with a photoreceptor 6QTR ; 1.37 ; Crystal structure of a mutant Arabidopsis WD40 domain in complex with a transcription factor 3AIS ; 2.2 ; Crystal structure of a mutant beta-glucosidase in wheat complexed with DIMBOA-Glc 2YME ; 2.4 ; Crystal structure of a mutant binding protein (5HTBP-AChBP) in complex with granisetron 5LXB ; 2.34 ; Crystal structure of a mutant binding protein (5HTBP-AChBP) in complex with palonosetron 2YMD ; 1.96 ; Crystal structure of a mutant binding protein (5HTBP-AChBP) in complex with serotonin (5-hydroxytryptamine) 1XRK ; 1.5 ; Crystal structure of a mutant bleomycin binding protein from Streptoalloteichus hindustanus displaying increased thermostability 1MK8 ; 1.65 ; Crystal Structure of a Mutant Cytochrome c Peroxidase showing a Novel Trp-Tyr Covalent Cross-link 1TI1 ; 2.6 ; crystal structure of a mutant DsbA 2BV3 ; 2.5 ; Crystal structure of a mutant elongation factor G trapped with a GTP analogue 2HEL ; 2.35 ; Crystal structure of a mutant EphA4 kinase domain (Y742A) 1THO ; 2.3 ; CRYSTAL STRUCTURE OF A MUTANT ESCHERICHIA COLI THIOREDOXIN WITH AN ARGININE INSERTION IN THE ACTIVE SITE 1YK9 ; 2.7 ; Crystal structure of a mutant form of the mycobacterial adenylyl cyclase Rv1625c 4JUT ; 2.196 ; Crystal structure of a mutant fragment of Human HSPB6 5V2I ; 1.83 ; Crystal structure of a mutant glycosylasparaginase (G172D) that causes the genetic disease Aspartylglucosaminuria 1LWF ; 2.8 ; CRYSTAL STRUCTURE OF A MUTANT HIV-1 REVERSE TRANSCRIPTASE (RTMQ+M184V: M41L/D67N/K70R/M184V/T215Y) IN COMPLEX WITH NEVIRAPINE 1I3R ; 2.4 ; CRYSTAL STRUCTURE OF A MUTANT IEK CLASS II MHC MOLECULE 1OUZ ; 2.41 ; Crystal structure of a mutant IHF (BetaE44A) complexed with a variant H' Site (T44A) 1OWF ; 1.95 ; Crystal structure of a mutant IHF (BetaE44A) complexed with the native H' Site 5WV8 ; 2.042 ; Crystal structure of a mutant insect group III chitinase (CAD1-E217L) from Ostrinia furnacalis 5WVF ; 2.399 ; Crystal structure of a mutant insect group III chitinase (CAD2-E647L) from Ostrinia furnacalis 5WVG ; 2.693 ; Crystal structure of a mutant insect group III chitinase complex with (GlcNAc)5 (CAD1-E647L-(GlcNAc)5 ) from Ostrinia furnacalis 5WVB ; 3.099 ; Crystal structure of a mutant insect group III chitinase complex with (GlcNAc)6 (CAD1-E217L-(GlcNAc)6 ) from Ostrinia furnacalis 5U36 ; 3.03 ; Crystal Structure Of A Mutant M. Jannashii Tyrosyl-tRNA Synthetase 1U7X ; 3.0 ; crystal structure of a mutant M. jannashii tyrosyl-tRNA synthetase specific for O-methyl-tyrosine 8GDU ; 2.01 ; Crystal structure of a mutant methyl transferase from Methanosarcina acetivorans, Northeast Structural Genomics Consortium (NESG) Target MvR53-11M 5UBX ; 2.7 ; Crystal structure of a mutant mIgG2b Fc heterodimer in complex with Protein A peptide analog Z34C 8HSO ; 2.1 ; CRYSTAL STRUCTURE OF A MUTANT MYLU-B-67 FOR 2.2 ANGSTROM, 52M 53Q 54Q 55P 56W DELETED 8HT1 ; 2.4 ; CRYSTAL STRUCTURE OF A MUTANT MYLU-B-67 FOR 2.4 ANGSTROM, 52M 53Q 54Q 55P 56W DELETED 1IW8 ; 2.5 ; Crystal Structure of a mutant of acid phosphatase from Escherichia blattae (G74D/I153T) 7F18 ; 3.3 ; Crystal Structure of a mutant of acid phosphatase from Pseudomonas aeruginosa (Q57H/W58P/D135R) 5AWL ; 1.11 ; CRYSTAL STRUCTURE OF A MUTANT OF CHIGNOLIN, CLN025 3HRC ; 1.91 ; Crystal structure of a mutant of human PDK1 Kinase domain in complex with ATP 3JUH ; 1.66 ; Crystal structure of a mutant of human protein kinase CK2alpha with altered cosubstrate specificity 1KQJ ; 1.7 ; Crystal Structure of a Mutant of MutY Catalytic Domain 5B2A ; 1.6 ; Crystal structure of a mutant of OspA 2H0K ; 2.76 ; Crystal Structure of a Mutant of Rat Annexin A5 2H0L ; 2.59 ; Crystal Structure of a Mutant of Rat Annexin A5 3JUZ ; 2.51 ; Crystal structure of a mutant of RelB dimerization domain(M5) 3JV0 ; 2.65 ; Crystal structure of a mutant of RelB dimerization domain(M6) 1ISE ; 2.2 ; Crystal structure of a mutant of ribosome recycling factor from Escherichia coli, Arg132Gly 3PY8 ; 1.74 ; Crystal structure of a mutant of the large fragment of DNA polymerase I from thermus aquaticus in a closed ternary complex with DNA and ddCTP 1Q93 ; 2.25 ; Crystal structure of a mutant of the sarcin/ricin domain from rat 28S rRNA 1Q96 ; 1.75 ; Crystal structure of a mutant of the sarcin/ricin domain from rat 28S rRNA 2ZQS ; 1.902 ; Crystal structure of a mutant PIN1 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 2ZQT ; 1.462 ; Crystal structure of a mutant PIN1 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 2ZQU ; 2.5 ; Crystal structure of a mutant PIN1 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 2ZQV ; 2.498 ; Crystal structure of a mutant PIN1 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 2ZR4 ; 2.0 ; Crystal structure of a mutant PIN1 peptidyl-prolyl cis-trans isomerase 2ZR5 ; 2.6 ; Crystal structure of a mutant PIN1 peptidyl-prolyl cis-trans isomerase 2ZR6 ; 3.2 ; Crystal structure of a mutant PIN1 peptidyl-prolyl cis-trans isomerase 3F1W ; 2.901 ; Crystal structure of a mutant proliferating cell nuclear antigen that blocks translesion synthesis 6ILE ; 2.9 ; CRYSTAL STRUCTURE OF A MUTANT PTAL-N*01:01 FOR 2.9 ANGSTROM, 52M 53D 54L DELETED 2EO8 ; 2.3 ; Crystal structure of a mutant pyrrolidone carboxyl peptidase (A199P) from P. furiosus 1C7H ; 2.5 ; CRYSTAL STRUCTURE OF A MUTANT R75A IN KETOSTEROID ISOMERASE FROM PSEDOMONAS PUTIDA BIOTYPE B 3JSS ; 2.6 ; Crystal structure of a mutant RelB dimerization domain 7WNK ; 1.4 ; Crystal structure of a mutant Staphylococcus equorum manganese superoxide dismutase K38R and A121E 7WNL ; 1.51 ; Crystal structure of a mutant Staphylococcus equorum manganese superoxide dismutase K38R and A121Y 7W6W ; 1.94 ; Crystal structure of a mutant Staphylococcus equorum manganese superoxide dismutase L169W 6M30 ; 1.74 ; Crystal structure of a mutant Staphylococcus equorum manganese superoxide dismutase N73F 7DDW ; 1.88 ; Crystal structure of a mutant Staphylococcus equorum manganese superoxide dismutase S126C 3SO0 ; 1.93 ; Crystal structure of a mutant T41S of a betagamma-crystallin domain from Clostridium beijerinckii 3SNY ; 1.85 ; Crystal structure of a mutant T82R of a betagamma-crystallin domain from Clostridium beijerinckii 1MKR ; 1.58 ; Crystal Structure of a Mutant Variant of Cytochrome c Peroxidase (Plate like crystals) 1ML2 ; 1.65 ; Crystal Structure of a Mutant Variant of Cytochrome c Peroxidase with Zn(II)-(20-oxo-Protoporphyrin IX) 3SNZ ; 2.0 ; Crystal structure of a mutant W39D of a betagamma-crystallin domain from Clostridium beijerinckii 1W6Y ; 2.1 ; crystal structure of a mutant W92A in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B 1FMZ ; 2.05 ; CRYSTAL STRUCTURE OF A MUTANT WINGED BEAN CHYMOTRYPSIN INHIBITOR PROTEIN, N14K. 4HHM ; 2.15 ; Crystal structure of a mutant, G219A, of Glucose Isomerase from Streptomyces sp. SK 5D2B ; 1.2 ; Crystal structure of a mutated catalytic domain of Human MMP12 in complex with an hydroxamate analogue of RXP470 5CZM ; 1.303 ; Crystal structure of a mutated catalytic domain of Human MMP12 in complex with RXP470 1K9E ; 1.85 ; Crystal structure of a mutated family-67 alpha-D-glucuronidase (E285N) from Bacillus stearothermophilus T-6, complexed with 4-O-methyl-glucuronic acid 1K9F ; 1.75 ; Crystal structure of a mutated family-67 alpha-D-glucuronidase (E285N) from Bacillus stearothermophilus T-6, complexed with aldotetraouronic acid 7PDT ; 3.3 ; Crystal structure of a mutated form of RXRalpha ligand binding domain in complex with BMS649 and a coactivator fragment 7PDQ ; 1.58 ; Crystal structure of a mutated form of RXRalpha ligand binding domain in complex with LG100268 and a coactivator fragment 6EYQ ; 1.5 ; Crystal structure of a mutated OpuBC in complex with choline 1EP8 ; 2.2 ; CRYSTAL STRUCTURE OF A MUTATED THIOREDOXIN, D30A, FROM CHLAMYDOMONAS REINHARDTII 3ID9 ; 2.55 ; Crystal structure of a MutT/NUDIX family protein from Bacillus thuringiensis 3I9X ; 2.2 ; Crystal structure of a mutT/nudix family protein from Listeria innocua 4V1G ; 1.55 ; Crystal structure of a mycobacterial ATP synthase rotor ring 4V1F ; 1.697 ; Crystal structure of a mycobacterial ATP synthase rotor ring in complex with Bedaquiline 4V1H ; 1.8 ; Crystal structure of a mycobacterial ATP synthase rotor ring in complex with Iodo-Bedaquiline 1N3N ; 3.0 ; Crystal structure of a mycobacterial hsp60 epitope with the murine class I MHC molecule H-2Db 4XU4 ; 1.901 ; Crystal structure of a mycobacterial Insig homolog MvINS from Mycobacterium vanbaalenii at 1.9A resolution 3CKJ ; 1.8 ; Crystal Structure of a Mycobacterial Protein 3CKN ; 2.2 ; Crystal Structure of a Mycobacterial Protein 3CKO ; 2.5 ; Crystal Structure of a Mycobacterial Protein 3CKQ ; 3.0 ; Crystal Structure of a Mycobacterial Protein 3CKV ; 2.0 ; Crystal Structure of a Mycobacterial Protein 4ZY7 ; 1.7 ; Crystal structure of a Mycobacterial protein 5D6J ; 2.25 ; Crystal structure of a mycobacterial protein 5D6N ; 2.401 ; Crystal structure of a mycobacterial protein 7R6R ; 3.13 ; Crystal Structure of a Mycobacteriophage Cluster A2 Immunity Repressor:DNA Complex 7TZ1 ; 2.79 ; Crystal Structure of a Mycobacteriophage Cluster A2 Immunity Repressor:DNA Complex 2WZM ; 1.64 ; Crystal structure of a mycobacterium aldo-keto reductase in its apo and liganded form 2WZT ; 1.9 ; Crystal structure of a mycobacterium aldo-keto reductase in its apo and liganded form 6VVS ; 3.112 ; Crystal structure of a Mycobacterium smegmatis RNA polymerase transcription initiation complex with antibiotic Sorangicin 6CCE ; 3.05 ; Crystal structure of a Mycobacterium smegmatis RNA polymerase transcription initiation complex with inhibitor Kanglemycin A 6CCV ; 3.05 ; Crystal structure of a Mycobacterium smegmatis RNA polymerase transcription initiation complex with inhibitor Rifampicin 5TW1 ; 2.76 ; Crystal structure of a Mycobacterium smegmatis transcription initiation complex with RbpA 6VVV ; 3.2 ; Crystal structure of a Mycobacterium smegmatis transcription initiation complex with Rifampicin-resistant RNA polymerase 6VVT ; 2.901 ; Crystal structure of a Mycobacterium smegmatis transcription initiation complex with Rifampicin-resistant RNA polymerase and antibiotic Sorangicin 6DCF ; 3.45 ; Crystal structure of a Mycobacterium smegmatis transcription initiation complex with Rifampicin-resistant RNA polymerase and bound to kanglemycin A 5MPV ; 1.49 ; Crystal structure of a Mycobacterium tuberculosis chorismate mutase optimized for high autonomous activity by directed evolution 3EUW ; 2.3 ; Crystal Structure of a Myo-inositol dehydrogenase from Corynebacterium glutamicum ATCC 13032 3CIN ; 1.7 ; CRYSTAL STRUCTURE OF A MYO-INOSITOL-1-PHOSPHATE SYNTHASE-RELATED PROTEIN (TM_1419) FROM THERMOTOGA MARITIMA MSB8 AT 1.70 A RESOLUTION 4Q68 ; 1.07 ; Crystal structure of a N-acetylmuramoyl-L-alanine amidase (BACUNI_02947) from Bacteroides uniformis ATCC 8492 at 1.07 A resolution 4H4J ; 1.15 ; Crystal structure of a N-acetylmuramoyl-L-alanine amidase (BACUNI_02947) from Bacteroides uniformis ATCC 8492 at 1.15 A resolution 4Q5K ; 1.3 ; Crystal structure of a N-acetylmuramoyl-L-alanine amidase (BACUNI_02947) from Bacteroides uniformis ATCC 8492 at 1.30 A resolution 2GFH ; 1.9 ; Crystal structure of a n-acetylneuraminic acid phosphatase (nanp) from mus musculus at 1.90 A resolution 6LYI ; 2.49 ; Crystal structure of a N-methyltransferase CkTbS from Camellia assamica var. kucha 2QMQ ; 1.7 ; Crystal structure of a n-myc downstream regulated 2 protein (ndrg2, syld, ndr2, ai182517, au040374) from mus musculus at 1.70 A resolution 3GI3 ; 2.4 ; Crystal structure of a N-Phenyl-N'-Naphthylurea analog in complex with p38 MAP kinase 4O87 ; 1.8 ; Crystal structure of a N-tagged Nuclease 1U5E ; 2.6 ; Crystal Structure of a N-terminal Fragment of SKAP-Hom Containing Both the Helical Dimerization Domain and the PH Domain 2OTX ; 2.6 ; Crystal Structure of A N-terminal Fragment of SKAP-HOM Containing both the Helical Dimerization Domain and the PH Domain 3WGV ; 2.8 ; Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state with oligomycin 3WGU ; 2.8 ; Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state without oligomycin 1Z0U ; 2.0 ; Crystal structure of a NAD kinase from Archaeoglobus fulgidus bound by NADP 1SUW ; 2.45 ; Crystal structure of a NAD kinase from Archaeoglobus fulgidus in complex with its substrate and product: Insights into the catalysis of NAD kinase 1Z0Z ; 2.85 ; Crystal structure of a NAD kinase from Archaeoglobus fulgidus in complex with NAD 1X77 ; 2.7 ; Crystal structure of a NAD(P)H-dependent FMN reductase complexed with FMN 5JRY ; 1.2 ; Crystal structure of a NAD-dependent Aldehyde dehydrogenase from Burkholderia multivorans in covalent complex with NAD 3R64 ; 2.57 ; Crystal structure of a NAD-dependent benzaldehyde dehydrogenase from Corynebacterium glutamicum 1GDH ; 2.4 ; CRYSTAL STRUCTURE OF A NAD-DEPENDENT D-GLYCERATE DEHYDROGENASE AT 2.4 ANGSTROMS RESOLUTION 7F3P ; 2.6 ; Crystal structure of a nadp-dependent alcohol dehydrogenase mutant in apo form 8SKJ ; 2.01 ; Crystal structure of a Nanobody bound to the V5 peptide. 4ZG1 ; 1.85 ; Crystal structure of a nanobody raised against KDM5B 5HDO ; 2.16 ; Crystal structure of a nanobody raised against urokinase-type plasminogen activator 6B73 ; 3.1 ; Crystal Structure of a nanobody-stabilized active state of the kappa-opioid receptor 4RBO ; 3.3 ; Crystal structure of a Nanog homeobox (NANOG) from Homo sapiens at 3.30 A resolution 1VJY ; 2.0 ; Crystal Structure of a Naphthyridine Inhibitor of Human TGF-beta Type I Receptor 6YBB ; 2.9 ; Crystal structure of a native BcsE (217-523) - BcsR-BcsQ (R156E mutant) complex with c-di-GMP and ATP bound 6YBU ; 2.49 ; Crystal structure of a native BcsE (349-523) RQ complex with c-di-GMP and ATP bound 6YB3 ; 1.59 ; Crystal structure of a native BcsRQ complex purified and crystallized in the absence of nucleotide 1WNO ; 2.1 ; Crystal structure of a native chitinase from Aspergillus fumigatus YJ-407 6CH9 ; 4.85 ; Crystal structure of a natively-glycosylated B41 SOSIP.664 HIV-1 Envelope Trimer in complex with the broadly-neutralizing antibodies BG18 and 35O22 6CH8 ; 4.1 ; Crystal structure of a natively-glycosylated BG505 SOSIP.664 HIV-1 Envelope Trimer in complex with the broadly-neutralizing antibodies BG18 and 35O22 6CHB ; 6.801 ; Crystal structure of a natively-glycosylated BG505 SOSIP.664 HIV-1 Envelope Trimer in complex with the broadly-neutralizing antibodies BG18 and IOMA 1MVE ; 1.7 ; Crystal structure of a natural circularly-permutated jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes 3GD3 ; 2.95 ; Crystal structure of a naturally folded murine apoptosis inducing factor 1FE6 ; 1.8 ; CRYSTAL STRUCTURE OF A NATURALLY OCCURING PARALLEL RIGHT-HANDED COILED-COIL TETRAMER 3F9V ; 4.35 ; Crystal Structure Of A Near Full-Length Archaeal MCM: Functional Insights For An AAA+ Hexameric Helicase 2E7D ; 2.2 ; Crystal structure of a NEAT domain from Staphylococcus aureus 4OLE ; 2.52 ; Crystal structure of a neighbor of BRCA1 gene 1 (NBR1) from Homo sapiens at 2.52 A resolution 6Y54 ; 2.67 ; Crystal structure of a Neisseria meningitidis serogroup A capsular oligosaccharide bound to a functional Fab 3LZU ; 1.76 ; Crystal Structure of a Nelfinavir Resistant HIV-1 CRF01_AE Protease variant (N88S) in Complex with the Protease Inhibitor Darunavir. 2X0L ; 3.0 ; Crystal structure of a neuro-specific splicing variant of human histone lysine demethylase LSD1. 4UBD ; 3.5 ; Crystal structure of a neutralizing human monoclonal antibody with 1968 H3 HA 7WQV ; 2.8 ; Crystal structure of a neutralizing monoclonal antibody (Ab08) in complex with SARS-CoV-2 receptor-binding domain (RBD) 1MPT ; 2.4 ; CRYSTAL STRUCTURE OF A NEW ALKALINE SERINE PROTEASE (M-PROTEASE) FROM BACILLUS SP. KSM-K16 6B9V ; 1.88 ; Crystal Structure of a New Diphosphatase from the PhnP Family 5YFB ; 2.2 ; Crystal structure of a new DPP III family member 5YFC ; 1.76 ; Crystal structure of a new DPP III family member 5YFD ; 1.76 ; Crystal structure of a new DPP III family member 4H3O ; 2.17 ; Crystal structure of a new form of lectin from Allium sativum at 2.17 A resolution 4HSD ; 2.45 ; Crystal structure of a new form of plant lectin from Cicer arietinum at 2.45 Angstrom resolution 6AIE ; 1.74 ; Crystal structure of a new form of RsmD-like RNA methyl transferase from Mycobacterium tuberculosis determined at 1.74 A resolution 3O9N ; 2.4 ; Crystal Structure of a new form of xylanase-A-amylase inhibitor protein(XAIP-III) at 2.4 A resolution 1LN8 ; 1.65 ; Crystal Structure of a New Isoform of Phospholipase A2 from Naja naja sagittifera at 1.6 A Resolution 2PVT ; 2.1 ; Crystal structure of a new isoform of phospholipase A2 from russells viper at 2.1 A resolution 1RDT ; 2.4 ; Crystal Structure of a new rexinoid bound to the RXRalpha ligand binding doamin in the RXRalpha/PPARgamma heterodimer 1RL0 ; 1.4 ; Crystal structure of a new ribosome-inactivating protein (RIP): dianthin 30 3BMB ; 1.91 ; Crystal structure of a new RNA polymerase interacting protein 4JQH ; 2.3 ; Crystal structure of a new sGC activator (analogue of BAY 58-2667) bound to nostoc H-NOX domain 1JS1 ; 2.0 ; Crystal Structure of a new transcarbamylase from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution 2ZCU ; 1.8 ; Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from escherichia coli 1LE5 ; 2.75 ; Crystal structure of a NF-kB heterodimer bound to an IFNb-kB 1LE9 ; 3.0 ; Crystal structure of a NF-kB heterodimer bound to the Ig/HIV-kB siti 4XFD ; 1.55 ; Crystal Structure of a NH(3)-dependent NAD(+) synthetase from Pseudomonas aeruginosa 8EEZ ; 2.25 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ100-C 8EE8 ; 2.803 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ100-C in complex with ZIKV E glycoprotein 8EF1 ; 1.87 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ103-A 8EF0 ; 2.55 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ104-D 8EEE ; 2.819 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ104-d in complex with ZIKV E glycoprotein 8EF2 ; 2.102 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ107-B 8EED ; 3.487 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ107-B in complex with ZIKV E glycoprotein 8EF3 ; 1.672 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ119-D 8EE5 ; 3.583 ; Crystal structure of a NHP anti-ZIKV neutralizing antibody rhMZ119-D in complex with ZIKV E glycoprotein 3L1M ; 2.3 ; Crystal Structure of a Ni-directed Dimer of Cytochrome cb562 with a Quinolate-Histidine Hybrid Coordination Motif 3NMJ ; 3.1 ; Crystal structure of a nickel mediated dimer for the phenanthroline-modified cytochrome cb562 variant, MBP-Phen2 1O4U ; 2.5 ; Crystal structure of a nicotinate nucleotide pyrophosphorylase (tm1645) from thermotoga maritima at 2.50 A resolution 1YBE ; 2.5 ; Crystal Structure of a Nicotinate phosphoribosyltransferase 1YIR ; 2.1 ; Crystal Structure of a Nicotinate Phosphoribosyltransferase 2I1O ; 2.4 ; Crystal Structure of a Nicotinate Phosphoribosyltransferase from Thermoplasma acidophilum 1YTK ; 2.65 ; Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum with nicotinate mononucleotide 1YTD ; 2.8 ; Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum, Native Structure 1YTE ; 2.75 ; Crystal structure of a nicotinate phosphoribosyltransferase from Thermoplasma acidophilum, phosphoribosylpyrophosphate bound structure 3WEA ; 1.8 ; Crystal structure of a Niemann-Pick type C2 protein from Japanese carpenter ant 3WEB ; 1.7 ; Crystal structure of a Niemann-Pick type C2 protein from Japanese carpenter ant in complex with oleic acid 3G7P ; 2.0 ; Crystal structure of a nifx-associated protein of unknown function (afe_1514) from acidithiobacillus ferrooxidans atcc at 2.00 A resolution 3QWN ; 2.42 ; Crystal structure of a NigD-like immunity protein (BACCAC_03262) from Bacteroides caccae ATCC 43185 at 2.42 A resolution 4PQX ; 2.39 ; Crystal structure of a NigD-like protein (BACCAC_02139) from Bacteroides caccae ATCC 43185 at 2.39 A resolution 4J8Q ; 2.5 ; Crystal structure of a NigD-like protein (BF0700) from Bacteroides fragilis NCTC 9343 at 2.50 A resolution 4ZA8 ; 1.06 ; Crystal structure of A niger Fdc1 in complex with penta-fluorocinnamic acid 2IG6 ; 1.8 ; Crystal structure of a nimc/nima family protein (ca_c2569) from clostridium acetobutylicum at 1.80 A resolution 5K9F ; 1.65 ; Crystal structure of a NIPSNAP domain protein from Burkholderia xenovorans 1VQY ; 2.4 ; CRYSTAL STRUCTURE OF a NIPSNAP FAMILY PROTEIN (ATU5224) FROM AGROBACTERIUM TUMEFACIENS STR. C58 AT 2.40 A RESOLUTION 1VQS ; 1.5 ; Crystal structure of a nipsnap family protein with unknown function (atu4242) from agrobacterium tumefaciens str. c58 at 1.50 A resolution 6JR4 ; 1.798 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster 6M2P ; 1.13 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (A10-deletion mutant) 7BSH ; 1.2 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (Abasic mutant) 7XLV ; 1.1 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (G7I mutant) 7XLW ; 1.89 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (G7I/G9I mutant) 7BSE ; 1.5 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (T5A mutant) 7BSF ; 1.1 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (T5C mutant) 7BSG ; 2.19 ; Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster (T5G mutant) 4OH3 ; 3.25 ; Crystal structure of a nitrate transporter 3NEK ; 2.5 ; Crystal structure of a nitrogen repressor-like protein MJ0159 from Methanococcus jannaschii 5UFT ; 2.35 ; Crystal Structure of a Nitrogen-fixing NifU-like protein (N-terminal) from Brucella abortus 3H4O ; 1.5 ; Crystal structure of a nitroreductase family protein (cd3355) from clostridium difficile 630 at 1.50 A resolution 3KOQ ; 1.58 ; Crystal structure of a nitroreductase family protein (cd3355) from clostridium difficile 630 at 1.58 A resolution 3K6H ; 3.05 ; Crystal structure of a nitroreductase family protein from Agrobacterium tumefaciens str. C58 1YWQ ; 2.3 ; Crystal structure of a nitroreductase family protein from Bacillus cereus ATCC 14579 3PXV ; 2.3 ; Crystal structure of a Nitroreductase with bound FMN (Dhaf_2018) from Desulfitobacterium hafniense DCB-2 at 2.30 A resolution 3GR3 ; 1.45 ; Crystal structure of a nitroreductase-like family protein (pnba, bh06130) from bartonella henselae str. houston-1 at 1.45 A resolution 3GAG ; 1.7 ; Crystal structure of a nitroreductase-like protein (smu.346) from streptococcus mutans at 1.70 A resolution 3H41 ; 1.79 ; CRYSTAL STRUCTURE OF A NLPC/P60 FAMILY PROTEIN (BCE_2878) FROM BACILLUS CEREUS ATCC 10987 AT 1.79 A RESOLUTION 1KCB ; 1.65 ; Crystal Structure of a NO-forming Nitrite Reductase Mutant: an Analog of a Transition State in Enzymatic Reaction 3LTA ; 2.7 ; Crystal structure of a non-biological ATP binding protein with a TYR-PHE mutation within the ligand binding domain 7D9N ; 3.7 ; Crystal structure of a non-canonic progeria mutation S143F at lamin A/C and its structural implication to the premature aging 6JMP ; 2.2 ; Crystal Structure of a Non-hemolytic Pneumolysin from Streptococcus pneumoniae strain ST306 1YP1 ; 1.9 ; Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase from venom of Agkistrodon acutus 4M2O ; 1.5 ; Crystal structure of a non-myristoylated C39A recoverin mutant with one calcium ion bound to EF-hand 3 4M2P ; 1.45 ; Crystal structure of a non-myristoylated C39D recoverin mutant with one calcium ion bound to EF-hand 3 1A0J ; 1.7 ; CRYSTAL STRUCTURE OF A NON-PSYCHROPHILIC TRYPSIN FROM A COLD-ADAPTED FISH SPECIES. 1LP7 ; 2.4 ; Crystal Structure of a Non-Self Complementary DNA Dodecamer Containing an A/T Tract: Analysis of the Effect of Crystal Environment on Local Helical Parameters 4GKL ; 2.4 ; Crystal structure of a noncanonic maltogenic alpha-amylase AmyB from Thermotoga neapolitana 5F3P ; 1.904 ; Crystal structure of a noncanonical Dicer protein from Entamoeba histolytica 5F3Q ; 2.1 ; Crystal structure of a noncanonical Dicer protein from Entamoeba histolytica 3PPM ; 1.78 ; Crystal Structure of a Noncovalently Bound alpha-Ketoheterocycle Inhibitor (Phenhexyl/Oxadiazole/Pyridine) to a Humanized Variant of Fatty Acid Amide Hydrolase 5T3E ; 2.297 ; Crystal structure of a nonribosomal peptide synthetase heterocyclization domain. 7DFS ; 1.49 ; Crystal structure of a novel 4-O-alpha-L-rhamnosyl-beta-D-glucuronidase from Fusarium oxysporum 12S - Rha-GlcA complex 7DFQ ; 1.51 ; Crystal Structure of a novel 4-O-alpha-L-rhamnosyl-beta-D-glucuronidase from Fusarium oxysporum 12S, ligand-free form 1GC5 ; 2.3 ; CRYSTAL STRUCTURE OF A NOVEL ADP-DEPENDENT GLUCOKINASE FROM THERMOCOCCUS LITORALIS 1JCD ; 1.3 ; Crystal Structure of a Novel Alanine-Zipper Trimer at 1.3 A Resolution, I6A,L9A,V13A,L16A,V20A,L23A,V27A,M30A,V34A,L48A,M51A mutations 1JCC ; 1.7 ; Crystal Structure of a Novel Alanine-Zipper Trimer at 1.7 A Resolution, V13A,L16A,V20A,L23A,V27A,M30A,V34A mutations 5DAN ; 2.0 ; Crystal structure of a novel aldo keto reductase Tm1743 from Thermotoga maritima in complex with NADP+ 4XPO ; 2.1 ; Crystal structure of a novel alpha-galactosidase from Pedobacter saltans 8GZD ; 1.1 ; CRYSTAL STRUCTURE OF A NOVEL ALPHA/BETA HYDROLASE FROM THERMOMONOSPORA CURVATA IN APO FORM 7YKP ; 1.18 ; Crystal structure of a novel alpha/beta hydrolase from thermomonospora curvata with glycerol 7CUV ; 1.45 ; Crystal structure of a novel alpha/beta hydrolase in apo form 7E30 ; 1.56 ; Crystal structure of a novel alpha/beta hydrolase in apo form in complex with citrate 7YKQ ; 2.36 ; Crystal structure of a novel alpha/beta hydrolase mutant from thermomonospora curvata in apo form 7YKO ; 1.15 ; Crystal structure of a novel alpha/beta hydrolase mutant from thermomonospora curvata in complex with pentane-1,5-diol 7E31 ; 1.38 ; Crystal structure of a novel alpha/beta hydrolase mutant in apo form 1P9G ; 0.84 ; Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Ecommia ulmoides Oliver at atomic resolution 2PH4 ; 2.05 ; Crystal structure of a novel Arg49 phospholipase A2 homologue from Zhaoermia mangshanensis venom 2Z5B ; 1.96 ; Crystal Structure of a Novel Chaperone Complex for Yeast 20S Proteasome Assembly 2Z5C ; 2.9 ; Crystal Structure of a Novel Chaperone Complex for Yeast 20S Proteasome Assembly 7CWQ ; 1.65 ; Crystal structure of a novel cutinase from Burkhoderiales bacterium RIFCSPLOWO2_02_FULL_57_36 5IBZ ; 1.611 ; Crystal structure of a novel cyclase (pfam04199). 3ANO ; 1.894 ; Crystal Structure of a Novel Diadenosine 5',5'''-P1,P4-Tetraphosphate Phosphorylase from Mycobacterium tuberculosis H37Rv 3FQM ; 1.9 ; Crystal structure of a novel dimeric form of HCV NS5A domain I protein 3FQQ ; 2.2 ; Crystal structure of a novel dimeric form of HCV NS5A domain I protein 1Z1X ; 3.2 ; Crystal Structure of a novel disintegrin from Saw-scaled viper at 3.2 A resolution 5CNW ; 1.65 ; Crystal structure of a novel disulfide oxidoreductase from Deinococcus radiodurans 5COH ; 1.801 ; Crystal structure of a novel disulfide oxidoreductase from Deinococcus radiodurans crystallized in presence of beta-mercaptoethanol 5CO3 ; 1.65 ; Crystal structure of a novel disulfide oxidoreductase from Deinococcus radiodurans crystallized in presence of DTT 1POS ; 2.6 ; CRYSTAL STRUCTURE OF A NOVEL DISULFIDE-LINKED ""TREFOIL"" MOTIF FOUND IN A LARGE FAMILY OF PUTATIVE GROWTH FACTORS 6A85 ; 1.45 ; Crystal structure of a novel DNA quadruplex 1M6U ; 2.3 ; Crystal Structure of a Novel DNA-binding domain from Ndt80, a Transcriptional Activator Required for Meiosis in Yeast 1M7U ; 2.8 ; Crystal structure of a novel DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast 3I1C ; 2.2 ; Crystal Structure of a Novel Engineered Diels-Alderase: DA_20_00_A74I 3HOJ ; 2.2 ; Crystal Structure of a Novel Engineered Retroaldolase: RA-22 3B5L ; 1.8 ; Crystal Structure of a Novel Engineered Retroaldolase: RA-61 6KMO ; 1.45 ; Crystal structure of a novel esterase CinB from Enterobacter asburiae 3P2M ; 2.8 ; Crystal Structure of a Novel Esterase Rv0045c from Mycobacterium tuberculosis 1VJ2 ; 1.65 ; Crystal structure of a novel family of manganese-containing cupin (tm1459) from thermotoga maritima at 1.65 A resolution 8D8P ; 2.75 ; Crystal structure of a novel fatty acid decarboxylase from Rothia nasimurium 6L2W ; 2.29 ; Crystal structure of a novel fold protein Gp72 from the freshwater cyanophage Mic1 1PC8 ; 3.8 ; Crystal Structure of a novel form of mistletoe lectin from Himalayan Viscum album L. at 3.8A resolution 2F48 ; 2.11 ; Crystal Structure of A Novel Fructose 1,6-Bisphosphate and AlF3 containing Pyrophosphate-dependent Phosphofructo-1-kinase Complex from Borrelia burgdorferi 1C8B ; 3.0 ; CRYSTAL STRUCTURE OF A NOVEL GERMINATION PROTEASE FROM SPORES OF BACILLUS MEGATERIUM: STRUCTURAL REARRANGEMENTS AND ZYMOGEN ACTIVATION 8D89 ; 1.6 ; Crystal structure of a novel GH5 enzyme retrieved from capybara gut metagenome 5CZL ; 2.391 ; Crystal structure of a novel GH8 endo-beta-1,4-glucanase from an Achatina fulica gut metagenomic library 2G6X ; 2.0 ; Crystal structure of a novel green fluorescent protein from marine copepod Pontellina plumata 5I2U ; 2.2 ; Crystal structure of a novel Halo-Tolerant Cellulase from Soil Metagenome 7VPB ; 1.68 ; Crystal structure of a novel hydrolase in apo form 1G2I ; 2.0 ; CRYSTAL STRUCTURE OF A NOVEL INTRACELLULAR PROTEASE FROM PYROCOCCUS HORIKOSHII AT 2 A RESOLUTION 3GUD ; 2.2 ; Crystal structure of a novel intramolecular chaperon 3QQY ; 2.401 ; Crystal structure of a novel LAGLIDADG homing endonuclease, I-OnuI (from Ophiostoma novo-ulmi subsp. americana) 5C54 ; 1.601 ; Crystal structure of a novel N-acetylneuraminic acid lyase from Corynebacterium glutamicum 3W20 ; 1.77 ; Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD 3W21 ; 1.98 ; Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase in complex with alpha-KG from Burkholderia ambifaria AMMD 2A7T ; 2.2 ; Crystal Structure of a novel neurotoxin from Buthus tamalus at 2.2A resolution. 3C0F ; 1.8 ; Crystal Structure of a novel non-Pfam protein AF1514 from Archeoglobus fulgidus DSM 4304 solved by S-SAD using a Cr X-ray source 8AG1 ; 3.303 ; Crystal structure of a novel OX40 antibody 3TJL ; 1.5 ; Crystal Structure of a Novel OYE from the Xylose-fermenting Fungus P. stipitis 5GKV ; 1.901 ; Crystal Structure of a Novel Penicillin-Binding Protein (PBP) Homolog from Caulobacter crescentus 5XG0 ; 1.58 ; Crystal structure of a novel PET hydrolase from Ideonella sakaiensis 201-F6 5XFZ ; 1.55 ; Crystal structure of a novel PET hydrolase R103G/S131A mutant from Ideonella sakaiensis 201-F6 5XH3 ; 1.3 ; Crystal structure of a novel PET hydrolase R103G/S131A mutant in complex with HEMT from Ideonella sakaiensis 201-F6 5XH2 ; 1.2 ; Crystal structure of a novel PET hydrolase R103G/S131A mutant in complex with pNP from Ideonella sakaiensis 201-F6 5XFY ; 1.4 ; Crystal structure of a novel PET hydrolase S131A mutant from Ideonella sakaiensis 201-F6 1T70 ; 2.3 ; Crystal structure of a novel phosphatase from Deinococcus radiodurans 1T71 ; 2.1 ; Crystal structure of a novel phosphatase Mycoplasma pneumoniaefrom 1YXL ; 1.477 ; Crystal structure of a novel phospholipase A2 from Naja naja sagittifera at 1.5 A resolution 1YXH ; 1.86 ; Crystal structure of a novel phospholipase A2 from Naja naja sagittifera with a strong anticoagulant activity 8XMZ ; 2.5 ; Crystal structure of a novel porphyran-binding carbohydrate binding module 7VPF ; 2.983 ; Crystal structure of a novel putative sugar isomerase from the psychrophilic bacterium Paenibacillus sp. R4 5Y57 ; 1.961 ; Crystal structure of a Novel Pyrethroid Hydrolase from Sphingobium faniae JZ-2 5Y5V ; 2.98 ; Crystal structure of a novel Pyrethroid Hydrolase PytH (S78A) 5Y5R ; 1.899 ; Crystal structure of a novel Pyrethroid Hydrolase PytH with BIF 3MVE ; 2.2 ; Crystal structure of a novel pyruvate decarboxylase 4PMU ; 2.857 ; Crystal structure of a novel reducing-end xylose-releasing exo-oligoxylanase (XynA) belonging to GH10 family (space group P1211) 4PMV ; 3.001 ; Crystal structure of a novel reducing-end xylose-releasing exo-oligoxylanase (XynA) belonging to GH10 family (space group P43212) 1LJY ; 2.9 ; Crystal Structure of a Novel Regulatory 40 kDa Mammary Gland Protein (MGP-40) secreted during Involution 5XWG ; 3.002 ; Crystal structure of a novel RNA motif that allows for precise positioning of a metal ion 1YKW ; 2.0 ; Crystal Structure of a Novel RuBisCO-Like Protein from the Green Sulfur Bacterium Chlorobium tepidum 1M5Q ; 2.0 ; Crystal structure of a novel Sm-like archaeal protein from Pyrobaculum aerophilum 4G8O ; 2.71 ; Crystal Structure of a novel small molecule inactivator bound to plasminogen activator inhibitor-1 4G8R ; 2.19 ; Crystal Structure of a novel small molecule inactivator bound to plasminogen activator inhibitor-1 3KMH ; 1.58 ; Crystal Structure of a Novel Sugar Isomerase from E. coli O157:H7 4WAF ; 2.39 ; Crystal Structure of a novel tetrahydropyrazolo[1,5-a]pyrazine in an engineered PI3K alpha 6IO1 ; 1.803 ; Crystal structure of a novel thermostable (S)-enantioselective omega-transaminase from Thermomicrobium roseum 4OB8 ; 1.801 ; Crystal structure of a novel thermostable esterase from Pseudomonas putida ECU1011 7D88 ; 2.34482 ; Crystal structure of a novel thermostable GH10 xylanase XynA 8UZ7 ; 1.7 ; Crystal structure of a novel triose phosphate isomerase identified on the shrimp transcriptome 3LX7 ; 1.78 ; Crystal structure of a Novel Tudor domain-containing protein SGF29 3PM2 ; 1.8 ; Crystal structure of a novel type of odorant binding protein from Anopheles gambiae belonging to the c+ class 7MRJ ; 2.12 ; Crystal structure of a novel ubiquitin-like TINCR 4CE7 ; 1.9 ; Crystal structure of a novel unsaturated beta-glucuronyl hydrolase enzyme, belonging to family GH105, involved in ulvan degradation 2GEF ; 2.2 ; Crystal structure of a Novel viral protease with a serine/lysine catalytic dyad mechanism 3KPZ ; 1.9 ; Crystal structure of a novel vitamin D3 analogue, ZK203278 showing dissociated profile 5XEV ; 1.4 ; Crystal Structure of a novel Xaa-Pro dipeptidase from Deinococcus radiodurans 5XO6 ; 2.38 ; Crystal structure of a novel ZEN lactonase mutant 5XO7 ; 1.88 ; Crystal structure of a novel ZEN lactonase mutant with ligand a 5XO8 ; 1.88 ; Crystal structure of a novel ZEN lactonase mutant with ligand Z 4IJ5 ; 1.5 ; Crystal Structure of a Novel-type Phosphoserine Phosphatase from Hydrogenobacter thermophilus TK-6 4IJ6 ; 1.8 ; Crystal Structure of a Novel-type Phosphoserine Phosphatase Mutant (H9A) from Hydrogenobacter thermophilus TK-6 in Complex with L-phosphoserine 3B7C ; 1.7 ; CRYSTAL STRUCTURE OF A NTF-2 LIKE PROTEIN OF UNKNOWN FUNCTION (SO_0125) FROM SHEWANELLA ONEIDENSIS MR-1 AT 1.70 A RESOLUTION 3FKA ; 1.69 ; CRYSTAL STRUCTURE OF A NTF-2 LIKE PROTEIN OF UNKNOWN FUNCTION (SPO1084) FROM SILICIBACTER POMEROYI DSS-3 AT 1.69 A RESOLUTION 3DMC ; 1.65 ; CRYSTAL STRUCTURE OF A NTF2-LIKE PROTEIN (AVA_2261) FROM ANABAENA VARIABILIS ATCC 29413 AT 1.65 A RESOLUTION 3SBU ; 2.15 ; Crystal structure of a ntf2-like protein (BF2862) from Bacteroides fragilis NCTC 9343 at 2.15 A resolution 3EC9 ; 1.6 ; CRYSTAL STRUCTURE OF A NTF2-like protein (BTH_I0051) FROM BURKHOLDERIA THAILANDENSIS E264 AT 1.60 A RESOLUTION 3FGY ; 1.59 ; CRYSTAL STRUCTURE OF A NTF2-LIKE PROTEIN (BXE_B1094) FROM BURKHOLDERIA XENOVORANS LB400 AT 1.59 A RESOLUTION 2R4I ; 1.6 ; CRYSTAL STRUCTURE OF A NTF2-LIKE PROTEIN (CHU_1428) FROM CYTOPHAGA HUTCHINSONII ATCC 33406 AT 1.60 A RESOLUTION 4R1K ; 2.56 ; Crystal structure of a NTF2-like protein (EUBSIR_01394) from Eubacterium siraeum DSM 15702 at 2.56 A resolution 3EBT ; 1.3 ; Crystal structure of a ntf2-like protein of unknown function (bpss0132) from burkholderia pseudomallei k96243 at 1.30 A resolution 3DUK ; 2.2 ; CRYSTAL STRUCTURE OF A NTF2-LIKE PROTEIN OF UNKNOWN FUNCTION (MFLA_0564) FROM METHYLOBACILLUS FLAGELLATUS KT AT 2.200 A RESOLUTION 3FH1 ; 1.6 ; Crystal structure of a ntf2-like protein of unknown function (mll8193) from mesorhizobium loti at 1.60 A resolution 3F7S ; 2.11 ; CRYSTAL STRUCTURE OF A NTF2-LIKE PROTEIN OF UNKNOWN FUNCTION (PP_4556) FROM PSEUDOMONAS PUTIDA KT2440 AT 2.11 A RESOLUTION 3BLZ ; 1.75 ; Crystal structure of a ntf2-like protein of unknown function (sbal_0622) from shewanella baltica os155 at 1.75 A resolution 6TAH ; 1.3 ; Crystal structure of a Nu-class Glutathione-S-Transferase from Pseudomonas aeruginosa PACS2 bound to glutathione 5I9E ; 2.8 ; Crystal structure of a nuclear actin ternary complex 4DJT ; 1.8 ; Crystal structure of a nuclear GTP-binding protein from Encephalitozoon cuniculi bound to GDP-Mg2+ 4ZEY ; 1.5 ; Crystal structure of a nuclear receptor binding factor 2 MIT domain (NRBF2) from Homo sapiens at 1.50 A resolution 7DOG ; 2.91 ; Crystal structure of a nuclease and capping domain of SbcD from Staphylococcus aureus 1EGK ; 3.1 ; CRYSTAL STRUCTURE OF A NUCLEIC ACID FOUR-WAY JUNCTION 4MHC ; 2.4 ; Crystal Structure of a Nucleoporin 4LIR ; 2.46 ; Crystal structure of a nucleoporin 35kDa (NUP35) from Homo sapiens at 2.46 A resolution 3PJ9 ; 2.1 ; Crystal structure of a Nucleoside Diphosphate Kinase from Campylobacter jejuni 5U2I ; 1.4 ; Crystal structure of a nucleoside diphosphate kinase from Naegleria fowleri 6AY1 ; 2.05 ; Crystal structure of a nucleoside diphosphate kinase NDK from Helicobacter pylori 5U7P ; 1.89 ; Crystal structure of a nucleoside triphosphate diphosphohydrolase (NTPDase) from the legume Trifolium repens 5U7W ; 1.76 ; Crystal structure of a nucleoside triphosphate diphosphohydrolase (NTPDase) from the legume Trifolium repens in complex with adenine and phosphate 5U7V ; 2.15 ; Crystal structure of a nucleoside triphosphate diphosphohydrolase (NTPDase) from the legume Trifolium repens in complex with AMP 5U7X ; 2.6 ; Crystal structure of a nucleoside triphosphate diphosphohydrolase (NTPDase) from the legume Vigna unguiculata subsp. cylindrica (Dolichos biflorus) in complex with phosphate and manganese 3E48 ; 1.6 ; Crystal structure of a nucleoside-diphosphate-sugar epimerase (SAV0421) from Staphylococcus aureus, Northeast Structural Genomics Consortium Target ZR319 6KXV ; 3.63 ; Crystal structure of a nucleosome containing Leishmania histone H3 5OGE ; 3.22 ; Crystal structure of a nucleotide sugar transporter 6QSK ; 3.394 ; Crystal structure of a nucleotide sugar transporter with bound nucleotide monophosphate. 5OGK ; 3.6 ; Crystal structure of a nucleotide sugar transporter with bound nucleotide sugar. 1GAJ ; 2.5 ; CRYSTAL STRUCTURE OF A NUCLEOTIDE-FREE ATP-BINDING CASSETTE FROM AN ABC TRANSPORTER 3EXQ ; 2.0 ; Crystal structure of a NUDIX family hydrolase from Lactobacillus brevis 8SXS ; 1.57 ; Crystal structure of a Nudix hydrolase effector from Magnaporthe oryzae 3FCM ; 2.2 ; Crystal structure of a NUDIX hydrolase from Clostridium perfringens 6UUF ; 2.1 ; Crystal structure of a Nudix Hydrolase from M. Smegmatis, RenU 1K2E ; 1.8 ; crystal structure of a nudix protein from Pyrobaculum aerophilum 1JRK ; 2.4 ; Crystal Structure of a Nudix Protein from Pyrobaculum aerophilum Reveals a Dimer with Intertwined Beta Sheets 1ZBX ; 2.5 ; Crystal structure of a Orc1p-Sir1p complex 7BU0 ; 2.43 ; Crystal structure of a OTU deubiquitinase in complex with Ub-PA 4E3Z ; 2.0 ; Crystal Structure of a oxidoreductase from Rhizobium etli CFN 42 2HGZ ; 2.5 ; Crystal structure of a p-benzoyl-L-phenylalanyl-tRNA synthetase 5O90 ; 2.49 ; Crystal structure of a P38alpha T185G mutant in complex with TAB1 peptide. 2GEQ ; 2.3 ; Crystal Structure of a p53 Core Dimer Bound to DNA 3EXJ ; 2.0 ; Crystal Structure of a p53 Core Tetramer Bound to DNA 3EXL ; 2.2 ; Crystal Structure of a p53 Core Tetramer Bound to DNA 5DYM ; 1.894 ; Crystal structure of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291 - CdPadR_0991 to 1.89 Angstrom resolution 1PDN ; 2.5 ; CRYSTAL STRUCTURE OF A PAIRED DOMAIN-DNA COMPLEX AT 2.5 ANGSTROMS RESOLUTION REVEALS STRUCTURAL BASIS FOR PAX DEVELOPMENTAL MUTATIONS 3EU7 ; 2.2 ; Crystal Structure of a PALB2 / BRCA2 complex 5KWV ; 2.25 ; Crystal Structure of a Pantoate-beta-alanine Ligase from Neisseria gonorrhoeae with bound AMPPNP 5UCR ; 2.25 ; Crystal Structure of a Pantoate-beta-alanine Ligase from Neisseria gonorrhoeae with bound AMPPNP and Alanine 2A7X ; 1.7 ; Crystal Structure of A Pantothenate synthetase complexed with AMP 2A86 ; 1.85 ; Crystal structure of A Pantothenate synthetase complexed with AMP and beta-alanine 2A84 ; 1.55 ; Crystal structure of A Pantothenate synthetase complexed with ATP 1MOP ; 1.6 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis 1N2H ; 2.0 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis in complex with a reaction intermediate, pantoyl adenylate 1N2G ; 1.8 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis in complex with AMPCPP 1N2E ; 1.6 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis in complex with AMPCPP and pantoate 1N2B ; 1.7 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis in complex with AMPCPP and pantoate, higher occupancy of pantoate and lower occupancy of AMPCPP in subunit A 1N2J ; 1.8 ; Crystal Structure of a Pantothenate Synthetase from M. tuberculosis in complex with pantoate 2A88 ; 1.7 ; Crystal structure of A Pantothenate synthetase, apo enzyme in C2 space group 2B1M ; 2.0 ; Crystal structure of a papain-fold protein without the catalytic cysteine from seeds of Pachyrhizus erosus 2B1N ; 2.4 ; Crystal structure of a papain-fold protein without the catalytic cysteine from seeds of Pachyrhizus erosus 3BCN ; 2.85 ; Crystal structure of a papain-like cysteine protease Ervatamin-A complexed with irreversible inhibitor E-64 3S8K ; 1.7 ; Crystal structure of a papaya latex serine protease inhibitor (PPI) at 1.7A resolution 3S8J ; 2.6 ; Crystal structure of a papaya latex serine protease inhibitor (PPI) at 2.6A resolution 5I7Z ; 1.801 ; Crystal structure of a Par-6 PDZ-Crumbs 3 C-terminal peptide complex 1RZX ; 2.1 ; Crystal Structure of a Par-6 PDZ-peptide Complex 4H7R ; 1.33 ; Crystal structure of a parallel 4-helix coiled coil CC-Hex-II 4H8F ; 1.88 ; Crystal structure of a parallel 4-helix coiled coil CC-Hex-II- 22 3R3K ; 2.2009 ; Crystal structure of a parallel 6-helix coiled coil 3R46 ; 1.751 ; Crystal structure of a parallel 6-helix coiled coil CC-hex-D24 4H8L ; 1.7501 ; Crystal structure of a parallel 6-helix coiled coil CC-Hex-D24-A5/7C 4H8M ; 1.4292 ; Crystal structure of a parallel 6-helix coiled coil CC-Hex-H24-A5/7C 4H8G ; 1.699 ; crystal structure of a parallel 6-helix coiled coil CC-Hex-IL- 22 4H8O ; 1.598 ; Crystal structure of a parallel 6-helix coiled coil CC-Hex-N24 3VMX ; 1.45 ; Crystal Structure of a parallel coiled-coil dimerization domain from the voltage-gated proton channel 3VN0 ; 1.37 ; Crystal Structure of a parallel coiled-coil dimerization domain from the voltage-gated proton channel (mutation/C245S) 3VMZ ; 1.55 ; Crystal Structure of a parallel coiled-coil dimerization domain from the voltage-gated proton channel (oxidation/H2O2) 3VMY ; 1.47 ; Crystal Structure of a parallel coiled-coil dimerization domain from the voltage-gated proton channel (REDUCTION/DTT) 6G67 ; 1.77 ; Crystal structure of a parallel eight-helix coiled coil CC-Type2-II 6G6F ; 1.7 ; Crystal structure of a parallel eight-helix coiled coil CC-Type2-LF 6YB2 ; 1.18 ; Crystal structure of a parallel hexameric coiled coil CC-Type2-(TaId)2 6YAZ ; 1.94 ; Crystal structure of a parallel hexameric coiled coil CC-Type2-(TaId)5 6YB0 ; 1.86 ; Crystal structure of a parallel hexameric coiled coil CC-Type2-(TaSd)2 6G6E ; 1.26 ; Crystal structure of a parallel seven-helix coiled coil CC-Type2-deLI 6G69 ; 2.2 ; Crystal structure of a parallel seven-helix coiled coil CC-Type2-IL-Sg-L17E 6G66 ; 1.6 ; Crystal structure of a parallel seven-helix coiled coil CC-Type2-IV 6G6G ; 1.7 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-FI 6G68 ; 1.95 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-IL-Sg 6G6A ; 2.701 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-LL 6G6C ; 1.55 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-LL-L17E 6G6B ; 2.3 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-LL-L17Q 6G6D ; 2.05 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-LL-Sg 6G65 ; 1.15 ; Crystal structure of a parallel six-helix coiled coil CC-Type2-VV 1KZQ ; 1.7 ; crystal structure of a parasite protein 4J76 ; 2.34 ; Crystal Structure of a parasite tRNA synthetase, ligand-free 4J75 ; 2.4 ; Crystal Structure of a parasite tRNA synthetase, product-bound 3SDE ; 1.9 ; Crystal structure of a paraspeckle-protein heterodimer, PSPC1/NONO 7O0N ; 1.89 ; Crystal structure of a ParB E93A mutant from Myxococcus xanthus bound to CDP and monothiophosphate 7BNR ; 1.7 ; Crystal structure of a ParB Q52A mutant from Myxococcus xanthus bound to CTPyS 4IKE ; 1.48 ; Crystal Structure of a partly open ATP-lid of liganded Adenylate kinase 1XJ9 ; 2.6 ; Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network 3PXP ; 2.3 ; Crystal structure of a PAS and DNA binding domain containing protein (Caur_2278) from CHLOROFLEXUS AURANTIACUS J-10-FL at 2.30 A resolution 3OLO ; 2.094 ; Crystal structure of a PAS domain from two-component sensor histidine kinase 8P8X ; 1.46 ; Crystal structure of a pathogenic mutant variant of human mitochodnrial PheRS 1ZEV ; 1.58 ; Crystal Structure of a Pathogenic RNA: CUG Repeats 4MJS ; 2.5 ; crystal structure of a PB1 complex 1WMH ; 1.5 ; Crystal structure of a PB1 domain complex of Protein kinase c iota and Par6 alpha 3KE4 ; 1.9 ; Crystal structure of a PduO-Type ATP:Cob(I)alamin adenosyltransferase from Bacillus cereus 3KE5 ; 2.0 ; Crystal structure of a PduO-Type ATP:Cob(I)alamin adenosyltransferase from Bacillus cereus in a complex with ATP 2ZHY ; 1.8 ; Crystal structure of a pduO-type ATP:cobalamin adenosyltransferase from Burkholderia thailandensis 2ZHZ ; 1.8 ; Crystal structure of a pduO-type ATP:cobalamin adenosyltransferase from Burkholderia thailandensis 4L8N ; 2.5 ; Crystal structure of a PDZ domain protein (BDI_1242) from Parabacteroides distasonis ATCC 8503 at 2.50 A resolution 4W4K ; 1.95 ; Crystal structure of a PE25-PPE41 heterodimer from a type VII secretion system of M. tuberculosis 1X8Z ; 2.86 ; Crystal structure of a pectin methylesterase inhibitor from Arabidopsis thaliana 5ZE8 ; 1.6 ; Crystal structure of a penta-heme cytochrome c552 from Thermochromatium tepidum 4RV3 ; 2.0 ; Crystal structure of a pentafluoro-Phe incorporated Phosphatidylinositol-specific phospholipase C (H258X)from Staphylococcus aureus 4DMI ; 1.5 ; Crystal Structure of a Pentameric Capsid Protein Isolated from Metagenomic Phage Sequences (CASP) 4E27 ; 2.4 ; Crystal Structure of a Pentameric Capsid Protein Isolated from Metagenomic Phage Sequences Solved by Iodide SAD Phasing 1D64 ; 2.1 ; CRYSTAL STRUCTURE OF A PENTAMIDINE-OLIGONUCLEOTIDE COMPLEX: IMPLICATIONS FOR DNA-BINDING PROPERTIES 2O6W ; 2.4 ; Crystal Structure of a Pentapeptide Repeat Protein (Rfr23) from the cyanobacterium Cyanothece 51142 6NQC ; 1.94 ; Crystal structure of a peptidase from an acI-B1 Actinobacterium 7SIQ ; 2.95 ; Crystal structure of a peptide chain release factor 3 (prfC) from Stenotrophomonas maltophilia bound to GDP 5HGW ; 1.6 ; Crystal structure of a peptide deformylase from Burkholderia ambifaria 5I2B ; 1.7 ; Crystal structure of a peptide deformylase from Burkholderia ambifaria with actinonin 5J46 ; 1.95 ; Crystal structure of a Peptide Deformylase from Burkholderia multivorans 5T8Z ; 1.85 ; Crystal structure of a peptide deformylase from Burkholderia multivorans in complex with actinonin 5KOB ; 1.6 ; Crystal structure of a peptide deformylase from Burkholderia xenovorans 5VCP ; 1.95 ; Crystal structure of a peptide deformylase from Burkholderia xenovorans in complex with actinonin 4WXK ; 2.05 ; Crystal structure of a peptide deformylase from Haemophilus influenzae 4WXL ; 2.33 ; Crystal structure of a peptide deformylase from Haemophilus influenzae complex with Actinonin 6CAZ ; 1.5 ; Crystal structure of a peptide deformylase from Legionella pneumophila 6CK7 ; 1.65 ; Crystal structure of a peptide deformylase from Legionella pneumophila bound to actinonin 4DR8 ; 1.55 ; Crystal structure of a peptide deformylase from Synechococcus elongatus 4DR9 ; 1.9 ; Crystal structure of a peptide deformylase from synechococcus elongatus in complex with actinonin 1PUP ; 1.7 ; CRYSTAL STRUCTURE OF A PEPTIDE NUCLEIC ACID (PNA) DUPLEX AT 1.7 ANGSTROMS RESOLUTION 1HZS ; 1.82 ; Crystal structure of a peptide nucleic acid duplex (BT-PNA) containing a bicyclic analogue of thymine 4W6V ; 3.01819 ; Crystal structure of a peptide transporter from Yersinia enterocolitica at 3 A resolution 3SPV ; 1.3 ; Crystal structure of a peptide-HLA complex 2OQO ; 2.1 ; Crystal structure of a peptidoglycan glycosyltransferase from a class A PBP: insight into bacterial cell wall synthesis 5UY7 ; 1.65 ; Crystal structure of a peptidoglycan glycosyltransferase from Burkholderia ambifaria 6U0O ; 2.6 ; Crystal structure of a peptidoglycan release complex, SagB-SpdC, in lipidic cubic phase 1XP4 ; 2.8 ; Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae 3UCH ; 2.5 ; Crystal structure of a peptidyl-prolyl cis-trans isomerase E (PPIE) from Homo sapiens at 2.50 A resolution 4DZ3 ; 2.0 ; Crystal structure of a Peptidyl-prolyl cis-trans isomerase with surface mutation M61H from Burkholderia pseudomallei complexed with FK506 4DZ2 ; 2.0 ; Crystal structure of a Peptidyl-prolyl cis-trans isomerase with surface mutation R92G from Burkholderia pseudomallei complexed with FK506 7KGC ; 1.95 ; Crystal structure of a perchloric acid-soluble protein (PSP) from Trichomonas vaginalis at 1.95 A 3I09 ; 1.8 ; CRYSTAL STRUCTURE OF A PERIPLASMIC BINDING PROTEIN (BMA2936) FROM BURKHOLDERIA MALLEI AT 1.80 A RESOLUTION 4G54 ; 1.55 ; Crystal structure of a periplasmic domain of the EpsAB fusion protein of the Vibrio vulnificus type II secretion system 2R79 ; 2.4 ; Crystal Structure of a Periplasmic Heme Binding Protein from Pseudomonas aeruginosa 2R7A ; 2.05 ; Crystal Structure of a Periplasmic Heme Binding Protein from Shigella dysenteriae 3I6V ; 2.0 ; Crystal structure of a periplasmic His/Glu/Gln/Arg/opine family-binding protein from Silicibacter pomeroyi in complex with lysine 3CVG ; 1.97 ; Crystal structure of a periplasmic putative metal binding protein 7CJR ; 2.28 ; Crystal structure of a periplasmic sensor domain of histidine kinase VbrK 4Z0N ; 1.26 ; Crystal Structure of a Periplasmic Solute binding protein (IPR025997) from Streptobacillus moniliformis DSM-12112 (Smon_0317, TARGET EFI-511281) with bound D-Galactose 2ZZV ; 1.4 ; Crystal Structure of a Periplasmic Substrate Binding Protein in Complex with Calcium and Lactate 2ZZX ; 1.75 ; Crystal Structure of a Periplasmic Substrate Binding Protein in Complex with Lactate 2ZZW ; 1.95 ; Crystal Structure of a Periplasmic Substrate Binding Protein in Complex with Zinc and Lactate 2QVC ; 2.4 ; Crystal structure of a periplasmic sugar ABC transporter from Thermotoga maritima 3H75 ; 1.6 ; Crystal Structure of a Periplasmic Sugar-binding protein from the Pseudomonas fluorescens 4GXZ ; 2.04 ; Crystal structure of a periplasmic thioredoxin-like protein from Salmonella enterica serovar Typhimurium 5NL9 ; 1.9 ; Crystal structure of a peroxide stress regulator from Leptospira interrogans 4ARJ ; 2.593 ; Crystal structure of a pesticin (translocation and receptor binding domain) from Y. pestis and T4-lysozyme chimera 7YM9 ; 1.34 ; Crystal structure of a PET hydrolase from Cryptosporangium aurantiacum 7YME ; 1.5 ; Crystal structure of a PET hydrolase M9 variant from Cryptosporangium aurantiacum 7SH6 ; 1.44 ; Crystal structure of a PET hydrolase mutant from Ideonella Sakaiensis 3NPP ; 2.15 ; Crystal structure of a Pfam DUF1093 family protein (BSU39620) from Bacillus subtilis at 2.15 A resolution 3O0L ; 1.81 ; Crystal structure of a Pfam DUF1425 family member (Shew_1734) from Shewanella sp. pv-4 at 1.81 a resolution 3NO5 ; 1.9 ; Crystal structure of a Pfam DUF849 domain containing protein (Reut_A1631) from Ralstonia eutropha JMP134 at 1.90 A resolution 3L3F ; 1.9 ; Crystal structure of a PFU-PUL domain pair of Saccharomyces cerevisiae Doa1/Ufd3 3B77 ; 2.42 ; Crystal structure of a ph domain containing bacterial protein (exig_2160) from exiguobacterium sibiricum 255-15 at 2.42 A resolution 3BJQ ; 2.05 ; CRYSTAL STRUCTURE OF A PHAGE-RELATED PROTEIN (BB3626) FROM BORDETELLA BRONCHISEPTICA RB50 AT 2.05 A RESOLUTION 5FB1 ; 2.1 ; Crystal Structure of a PHD finger bound to histone H3 K9me3 peptide 5FB0 ; 2.702 ; Crystal Structure of a PHD finger bound to histone H3 T3ph peptide 3FF0 ; 1.9 ; Crystal structure of a phenazine biosynthesis-related protein (phzb2) from pseudomonas aeruginosa at 1.90 A resolution 3EGR ; 2.65 ; CRYSTAL STRUCTURE OF A PHENYLACETATE-COA OXYGENASE SUBUNIT PAAB (REUT_A2307) FROM RALSTONIA EUTROPHA JMP134 AT 2.65 A RESOLUTION 3BFH ; 2.0 ; Crystal structure of a pheromone binding protein from Apis mellifera in complex with hexadecanoic acid 3BFB ; 2.15 ; Crystal structure of a pheromone binding protein from Apis mellifera in complex with the 9-keto-2(E)-decenoic acid 3BFA ; 2.25 ; Crystal structure of a pheromone binding protein from Apis mellifera in complex with the Queen mandibular pheromone 3CDN ; 2.0 ; Crystal structure of a pheromone binding protein from Apis mellifera soaked at pH 4.0 3CAB ; 1.95 ; Crystal structure of a pheromone binding protein from Apis mellifera soaked at pH 7.0 3FE6 ; 1.8 ; Crystal structure of a pheromone binding protein from Apis mellifera with a serendipitous ligand at pH 5.5 3FE8 ; 1.9 ; Crystal structure of a pheromone binding protein from Apis mellifera with a serendipitous ligand soaked at pH 4.0 3FE9 ; 1.75 ; Crystal structure of a pheromone binding protein from Apis mellifera with a serendipitous ligand soaked at pH 7.0 1OW4 ; 1.6 ; Crystal structure of a pheromone binding protein from the cockroach Leucophaea maderae in complex with the fluorescent reporter ANS (1-anilinonaphtalene-8-sulfonic acid), 3D73 ; 2.03 ; Crystal structure of a pheromone binding protein mutant D35A, from Apis mellifera, at pH 7.0 3D74 ; 2.1 ; Crystal structure of a pheromone binding protein mutant D35A, from Apis mellifera, soaked at pH 5.5 3D75 ; 2.3 ; Crystal structure of a pheromone binding protein mutant D35N, from Apis mellifera, at pH 5.5 3D77 ; 1.7 ; Crystal structure of a pheromone binding protein mutant D35N, from Apis mellifera, soaked at pH 4.0 3D76 ; 1.9 ; Crystal structure of a pheromone binding protein mutant D35N, from Apis mellifera, soaked at pH 7.0 4EF1 ; 1.9 ; Crystal structure of a pheromone cOB1 precursor/lipoprotein, YaeC family (EF2496) from Enterococcus faecalis V583 at 1.90 A resolution 4EF2 ; 2.1 ; Crystal structure of a pheromone cOB1 precursor/lipoprotein, YaeC family (EF2496) from Enterococcus faecalis V583 at 2.10 A resolution 6EKE ; 1.7 ; crystal structure of a Pholiota squarrosa lectin unliganded 1MH8 ; 1.86 ; Crystal Structure of a Phopholipase A2 Monomer with Isoleucine at Second Position 2ISN ; 1.9 ; Crystal structure of a phosphatase from a pathogenic strain Toxoplasma gondii 3D8K ; 2.71 ; Crystal structure of a phosphatase from a toxoplasma gondii 5YHT ; 2.87 ; Crystal structure of a phosphatase from Mycobacterium tuberculosis in complex with its substrate 1SRR ; 1.9 ; CRYSTAL STRUCTURE OF A PHOSPHATASE RESISTANT MUTANT OF SPORULATION RESPONSE REGULATOR SPO0F FROM BACILLUS SUBTILIS 4H1X ; 1.77 ; Crystal structure of a phosphate ABC transporter, phosphate-binding protein (SP_2084) from Streptococcus pneumoniae TIGR4 at 1.77 A resolution 4PQJ ; 1.86 ; Crystal structure of a phosphate binding protein 4Q8R ; 1.65 ; Crystal structure of a Phosphate Binding Protein (PBP-1) from Clostridium perfringens 3IHS ; 1.15 ; Crystal Structure of a Phosphocarrier Protein HPr from Bacillus anthracis str. Ames 3DRW ; 1.9 ; Crystal Structure of a Phosphofructokinase from Pyrococcus horikoshii OT3 with AMP 1MTO ; 3.2 ; Crystal structure of a Phosphofructokinase mutant from Bacillus stearothermophilus bound with fructose-6-phosphate 4EO9 ; 2.45 ; Crystal structure of a phosphoglycerate mutase gpm1 from Mycobacterium leprae 4EMB ; 2.3 ; Crystal structure of a phosphoglycerate mutase gpmA from Borrelia burgdorferi B31 4HY3 ; 2.8 ; Crystal structure of a phosphoglycerate oxidoreductase from rhizobium etli 1BYR ; 2.0 ; CRYSTAL STRUCTURE OF A PHOSPHOLIPASE D FAMILY MEMBER, NUC FROM SALMONELLA TYPHIMURIUM 4G32 ; 1.75 ; Crystal Structure of a Phospholipid-Lipoxygenase Complex from Pseudomonas aeruginosa at 1.75A (P21212) 4G33 ; 2.03 ; Crystal Structure of a Phospholipid-Lipoxygenase Complex from Pseudomonas aeruginosa at 2.0 A (C2221) 2VQR ; 1.42 ; Crystal structure of a phosphonate monoester hydrolase from rhizobium leguminosarum: a new member of the alkaline phosphatase superfamily 5TS2 ; 2.3 ; Crystal structure of a phosphopantetheine adenylyltransferase (CoaD, PPAT) from Pseudomonas aeruginosa bound to dephospho coenzyme A 5VK4 ; 2.65 ; Crystal structure of a phosphoribosylformylglycinamidine cyclo-ligase from Neisseria gonorrhoeae bound to AMPPNP and magnesium 1VCH ; 1.94 ; Crystal Structure of a Phosphoribosyltransferase-related protein from Thermus thermophilus 1QWO ; 1.5 ; Crystal structure of a phosphorylated phytase from Aspergillus fumigatus, revealing the structural basis for its heat resilience and catalytic pathway 3D5W ; 2.6 ; Crystal structure of a phosphorylated Polo-like kinase 1 (Plk1) catalytic domain in complex with ADP. 1KHX ; 1.8 ; Crystal structure of a phosphorylated Smad2 3FFR ; 1.75 ; CRYSTAL STRUCTURE OF A PHOSPHOSERINE AMINOTRANSFERASE SERC (CHU_0995) FROM CYTOPHAGA HUTCHINSONII ATCC 33406 AT 1.75 A RESOLUTION 3M1Y ; 2.4 ; Crystal Structure of a Phosphoserine phosphatase (SerB) from Helicobacter pylori 3KD3 ; 1.7 ; Crystal structure of a phosphoserine phosphohydrolase-like protein from Francisella tularensis subsp. tularensis SCHU S4 4XK1 ; 2.15 ; Crystal Structure of a Phosphoserine/phosphohydroxythreonine Aminotransferase (PSAT) from Pseudomonas aeruginosa with cofactor Pyridoxal Phosphate and bound Glutamate 1TD9 ; 2.75 ; Crystal Structure of a Phosphotransacetylase from Bacillus subtilis 1XCO ; 2.85 ; Crystal Structure of a Phosphotransacetylase from Bacillus subtilis in complex with acetylphosphate 1R5J ; 2.7 ; Crystal Structure of a Phosphotransacetylase from Streptococcus pyogenes 4WVX ; 1.9 ; Crystal structure of a phosphotriesterase-like lactonase Gkap in native form 3VK6 ; 1.9 ; Crystal structure of a phosphotyrosine binding domain 2I37 ; 4.15 ; Crystal structure of a photoactivated rhodopsin 6UBP ; 2.95 ; Crystal structure of a photochemical intermediate of human indoleamine 2,3-dioxygenase 1 in complex with carbon monoxide and tryptophan 2Z1O ; 1.75 ; Crystal structure of a photoswitchable GFP-like protein Dronpa in the bright-state 2Z6Y ; 2.0 ; Crystal structure of a photoswitchable GFP-like protein Dronpa in the bright-state 2Z6Z ; 1.8 ; Crystal structure of a photoswitchable GFP-like protein Dronpa in the bright-state 2OLT ; 2.0 ; Crystal structure of a phou-like protein (so_3770) from shewanella oneidensis mr-1 at 2.00 A resolution 1B8D ; 1.9 ; CRYSTAL STRUCTURE OF A PHYCOUROBILIN-CONTAINING PHYCOERYTHRIN 6UHM ; 2.1 ; Crystal Structure of a Physical Mixture of C148 mGFP and scDNA-1 8J45 ; 1.49 ; Crystal structure of a Pichia pastoris-expressed IsPETase variant 4N0P ; 1.75 ; Crystal structure of a pilus assembly protein CpaE (CC_2943) from Caulobacter crescentus CB15 at 1.75 A resolution (PSI Community Target, Shapiro) 2GJG ; 2.25 ; CRYSTAL STRUCTURE OF A PILZ-CONTAINING PROTEIN (PP4397) FROM PSEUDOMONAS PUTIDA KT2440 AT 2.25 A RESOLUTION 1O4W ; 1.9 ; CRYSTAL STRUCTURE OF a PIN (PILT N-TERMINUS) DOMAIN CONTAINING PROTEIN (AF0591) FROM ARCHAEOGLOBUS FULGIDUS AT 1.90 A RESOLUTION 4XYP ; 2.1 ; Crystal structure of a piscine viral fusion protein 5XQ3 ; 2.85 ; Crystal structure of a PL 26 exo-rhamnogalacturonan lyase from Penicillium chrysogenum 5XQO ; 3.2 ; Crystal structure of a PL 26 exo-rhamnogalacturonan lyase from Penicillium chrysogenum complexed with tetrameric substrate 5XQG ; 2.74 ; Crystal structure of a PL 26 exo-rhamnogalacturonan lyase from Penicillium chrysogenum complexed with unsaturated galacturonosyl rhamnose 5XQJ ; 2.75 ; Crystal structure of a PL 26 exo-rhamnogalacturonan lyase from Penicillium chrysogenum complexed with unsaturated galacturonosyl rhamnose substituted with galactose 3S18 ; 2.2 ; Crystal structure of a plant albumin from cicer arietinum showing hemagglutination 3V6N ; 2.2 ; Crystal structure of a plant albumin from Cicer Arietinum showing hemagglutination 3WIJ ; 1.3 ; Crystal structure of a plant class V chitinase mutant from Cycas revoluta in complex with (GlcNAc)3 5JFY ; 2.101 ; Crystal structure of a plant cytidine deaminase 5IE0 ; 2.0 ; Crystal structure of a plant enzyme 5IE2 ; 1.85 ; Crystal structure of a plant enzyme 5IE3 ; 1.9 ; Crystal structure of a plant enzyme 6W78 ; 2.311 ; crystal structure of a plant ice-binding protein 4J2K ; 1.75 ; Crystal structure of a plant trypsin inhibitor EcTI 4J2Y ; 2.0 ; Crystal structure of a plant trypsin inhibitor EcTI in complex with bovine trypsin. 5KSD ; 3.5 ; Crystal Structure of a Plasma Membrane Proton Pump 3K9H ; 2.25 ; Crystal structure of a plasmid partition protein from borrelia burgdorferi at 2.25A resolution 3K9G ; 2.25 ; CRYSTAL STRUCTURE OF A PLASMID PARTITION PROTEIN FROM BORRELIA BURGDORFERI AT 2.25A RESOLUTION, iodide soak 1V4L ; 2.8 ; Crystal structure of a platelet agglutination factor isolated from the venom of Taiwan habu (Trimeresurus mucrosquamatus) 2Z8Z ; 1.8 ; Crystal structure of a platinum-bound S445C mutant of Pseudomonas sp. MIS38 lipase 4EYA ; 3.2 ; Crystal Structure of a Plectonemic RNA Supercoil 4DXZ ; 1.25 ; crystal structure of a PliG-Ec mutant, a periplasmic lysozyme inhibitor of g-type lysozyme from Escherichia coli 3OP7 ; 1.7 ; Crystal structure of a PLP-dependent aminotransferase (ZP_03625122.1) from Streptococcus suis 89-1591 at 1.70 A resolution 3P6K ; 2.07 ; Crystal structure of a PLP-dependent aminotransferase (ZP_03625122.1) from Streptococcus suis 89-1591 at 2.07 A resolution 1O69 ; 1.84 ; Crystal structure of a PLP-dependent enzyme 1O61 ; 1.9 ; Crystal structure of a PLP-dependent enzyme with PLP 6MFQ ; 2.6 ; Crystal structure of a PMS2 variant 7RCB ; 2.0 ; Crystal Structure of a PMS2 VUS 7RCI ; 2.12 ; Crystal Structure of a PMS2 VUS with Substrate 3HV1 ; 1.9 ; Crystal structure of a polar amino acid ABC uptake transporter substrate binding protein from Streptococcus thermophilus 2P1J ; 2.5 ; Crystal structure of a polC-type DNA polymerase III exonuclease domain from Thermotoga maritima 5WLS ; 2.496 ; Crystal Structure of a Pollen Receptor Kinase 3 5ZQY ; 1.577 ; Crystal structure of a poly(ADP-ribose) glycohydrolase 4IVE ; 2.3 ; Crystal structure of a polyadenylate-binding protein 3 (PABPC3) from Homo sapiens at 2.30 A resolution 6EQD ; 1.7 ; Crystal structure of a polyethylene terephthalate degrading hydrolase from Ideonella sakaiensis collected at long wavelength 6EQH ; 1.58 ; Crystal structure of a polyethylene terephthalate degrading hydrolase from Ideonella sakaiensis in spacegroup C2221 6EQG ; 1.799 ; Crystal structure of a polyethylene terephthalate degrading hydrolase from Ideonella sakaiensis in spacegroup P21 6EQF ; 1.7 ; Crystal structure of a polyethylene terephthalate degrading hydrolase from Ideonella sakaiensis in spacegroup P212121 1FMO ; 2.2 ; CRYSTAL STRUCTURE OF A POLYHISTIDINE-TAGGED RECOMBINANT CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE COMPLEXED WITH THE PEPTIDE INHIBITOR PKI(5-24) AND ADENOSINE 8IS2 ; 1.32 ; Crystal structure of a polyketide aromatase/cyclase Abx(+)D from Actinomycetes sp. MA7150. 3PML ; 2.6 ; crystal structure of a polymerase lambda variant with a dGTP analog opposite a templating T 4UBY ; 1.0 ; Crystal structure of a polymorphic beta1 peptide 4MZR ; 2.9 ; Crystal structure of a polypeptide p53 mutant bound to DNA 3S6O ; 1.85 ; Crystal structure of a Polysaccharide deacetylase family protein from Burkholderia pseudomallei 6BE2 ; 1.7 ; Crystal structure of a polysaccharide-binding human Fab (F598) 6BE3 ; 1.6 ; Crystal structure of a polysaccharide-binding human Fab (F598) in complex with N-acetyl-D-glucosamine (GlcNAc) 6BE4 ; 1.9 ; Crystal structure of a polysaccharide-binding human Fab (F598) in complex with nona-N-acetyl-D-glucosamine (9NAc) 3D22 ; 1.6 ; Crystal structure of a poplar thioredoxin h mutant, PtTrxh4C61S 3D21 ; 2.15 ; Crystal structure of a poplar wild-type thioredoxin h, PtTrxh4 4GHB ; 2.32 ; Crystal structure of a porin-like protein (BACUNI_01323) from Bacteroides uniformis ATCC 8492 at 2.32 A resolution 3TZG ; 2.8 ; Crystal structure of a porin-like protein (BVU_2266) from Bacteroides vulgatus ATCC 8482 at 2.80 A resolution 3OBB ; 2.2 ; Crystal structure of a possible 3-hydroxyisobutyrate Dehydrogenase from pseudomonas aeruginosa pao1 3KHP ; 2.3 ; Crystal structure of a possible dehydrogenase from Mycobacterium tuberculosis at 2.3A resolution 5KOI ; 1.7 ; Crystal Structure of a Possible Enoyl-(acyl-carrier-protein) Reductase from Brucella melitensis 3M8N ; 2.04 ; Crystal structure of a possible gutathione S-tranferase from Rhodopseudomonas palustris 3BQY ; 1.95 ; Crystal structure of a possible TetR family transcriptional regulator from Streptomyces coelicolor A3(2). 3C8G ; 2.5 ; Crystal structure of a possible transciptional regulator YggD from Shigella flexneri 2a str. 2457T 3E8V ; 2.4 ; Crystal structure of a possible transglutaminase-family protein proteolytic fragment from Bacteroides fragilis 4E2P ; 2.36 ; Crystal Structure of a Post-tailoring Hydroxylase (HmtN) Involved in the Himastatin Biosynthesis 4APS ; 3.3 ; Crystal structure of a POT family peptide transporter in an inward open conformation. 6H7U ; 2.8 ; Crystal structure of a POT family transporter in complex with 5-aminolevulinic acid 6HZP ; 2.5 ; Crystal structure of a POT family transporter in complex with 5-aminolevulinic acid 6GZ9 ; 3.1 ; Crystal structure of a POT family transporter in complex with prodrug valacyclovir 6EXS ; 2.5 ; Crystal structure of a POT family transporter in complex with thioalcohol conjugated peptide. 5G00 ; 2.5 ; CRYSTAL STRUCTURE OF A POTATO STI-KUNITZ BIFUNCTIONAL INHIBITOR OF SERINE AND ASPARTIC PROTEASES IN SPACE GROUP P4322 AND PH 7.4 6TT0 ; 2.80003 ; Crystal structure of a potent and reversible dual binding site Acetylcholinesterase chiral inhibitor 4P6A ; 1.398 ; Crystal structure of a potent anti-HIV lectin actinohivin in complex with alpha-1,2-mannotriose 1VSN ; 2.0 ; Crystal structure of a potent small molecule inhibitor bound to cathepsin K 1GT0 ; 2.6 ; Crystal structure of a POU/HMG/DNA ternary complex 5JJA ; 2.35 ; Crystal structure of a PP2A B56gamma/BubR1 complex 6TOQ ; 3.164 ; Crystal structure of a PP2A B56y/HTLV-1 integrase complex 1PYI ; 3.2 ; CRYSTAL STRUCTURE OF A PPR1-DNA COMPLEX: DNA RECOGNITION BY PROTEINS CONTAINING A ZN2CYS6 BINUCLEAR CLUSTER 3NUF ; 1.38 ; Crystal structure of a PRD-containing transcription regulator (LSEI_2718) from Lactobacillus casei ATCC 334 at 1.38 A resolution 4U7B ; 3.09 ; Crystal structure of a pre-cleavage Mos1 transpososome 3PUZ ; 2.9 ; Crystal Structure of a pre-translocation state MBP-Maltose transporter complex bound to AMP-PNP 3PV0 ; 3.1 ; Crystal Structure of a pre-translocation state MBP-Maltose transporter complex without nucleotide 3DMY ; 2.07 ; Crystal Structure of a predicated acyl-CoA synthetase from E.coli 2P06 ; 2.1 ; Crystal structure of a predicted coding region AF_0060 from Archaeoglobus fulgidus DSM 4304 2QTQ ; 1.85 ; Crystal structure of a predicted dna-binding transcriptional regulator (saro_1072) from novosphingobium aromaticivorans dsm at 1.85 A resolution 2RHA ; 2.1 ; Crystal structure of a predicted dna-binding transcriptional regulator (saro_1072) from novosphingobium aromaticivorans dsm at 2.10 A resolution 6ALL ; 2.47 ; Crystal structure of a predicted ferric/iron (III) hydroxymate siderophore substrate binding protein from Bacillus anthracis 1VKD ; 2.1 ; Crystal structure of a predicted glycosidase (tm1225) from thermotoga maritima msb8 at 2.10 A resolution 2IL1 ; 2.1 ; Crystal structure of a predicted human GTPase in complex with GDP 2QM3 ; 2.05 ; Crystal structure of a predicted methyltransferase from Pyrococcus furiosus 3K0B ; 1.5 ; Crystal structure of a predicted N6-adenine-specific DNA methylase from Listeria monocytogenes str. 4b F2365 2OZV ; 1.7 ; Crystal structure of a predicted O-methyltransferase, protein Atu636 from Agrobacterium tumefaciens. 1O4T ; 1.95 ; Crystal structure of a predicted oxalate decarboxylase (tm1287) from thermotoga maritima at 1.95 A resolution 3MC1 ; 1.93 ; Crystal structure of a predicted phosphatase from Clostridium acetobutylicum 2HSZ ; 1.9 ; Crystal structure of a predicted phosphoglycolate phosphatase (hs_0176) from haemophilus somnus 129pt at 1.90 A resolution 1Z85 ; 2.12 ; Crystal structure of a predicted rna methyltransferase (tm1380) from thermotoga maritima msb8 at 2.12 A resolution 1WG8 ; 2.0 ; Crystal structure of a predicted S-adenosylmethionine-dependent methyltransferase TT1512 from Thermus thermophilus HB8. 3E11 ; 1.8 ; Crystal structure of a predicted zincin-like metalloprotease (acel_2062) from acidothermus cellulolyticus 11b at 1.80 A resolution 4RZD ; 2.75 ; Crystal Structure of a PreQ1 Riboswitch 5K83 ; 2.39 ; Crystal Structure of a Primate APOBEC3G N-Domain, in Complex with ssDNA 5K81 ; 2.006 ; Crystal Structure of a Primate APOBEC3G N-Terminal Domain 5K82 ; 2.913 ; Crystal Structure of a Primate APOBEC3G N-Terminal Domain 4UBZ ; 1.001 ; Crystal structure of a prion peptide 4W71 ; 1.0 ; Crystal structure of a prion peptide 4WBV ; 1.4 ; Crystal structure of a prion peptide 6EVM ; 2.0 ; Crystal structure of a Pro-9 complexed peptide-substrate-binding domain of human type II collagen prolyl 4-hydroxylase 3SH3 ; 2.3 ; Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii STANDL 4B4S ; 1.9 ; Crystal Structure of a pro-survival Bcl-2:Bim BH3 complex 3R6O ; 1.95 ; Crystal structure of a probable 2-hydroxyhepta-2,4-diene-1, 7-dioateisomerase from Mycobacterium abscessus 2EUI ; 2.8 ; Crystal structure of a probable acetyltransferase 3G8W ; 2.7 ; Crystal structure of a probable acetyltransferase from Staphylococcus epidermidis ATCC 12228 3PZJ ; 1.85 ; Crystal structure of a probable acetyltransferases (GNAT family) from Chromobacterium violaceum ATCC 12472 3R7K ; 2.5 ; Crystal structure of a probable acyl CoA dehydrogenase from Mycobacterium abscessus ATCC 19977 / DSM 44196 2X5D ; 2.25 ; Crystal Structure of a probable aminotransferase from Pseudomonas aeruginosa 1WJG ; 2.1 ; Crystal structure of a probable ATP binding protein from thermus themophilus HB8 6V45 ; 2.6 ; Crystal structure of a Probable carnitine operon oxidoreductase caia from Brucella melitensis 6OME ; 1.95 ; Crystal structure of a probable cytosol aminopeptidase (Leucine aminopeptidase, LAP) from Chlamydia trachomatis D/UW-3/Cx 4FGS ; 1.76 ; Crystal structure of a probable dehydrogenase protein 3OME ; 2.05 ; Crystal structure of a probable ENOYL-COA Hydratase from Mycobacterium Smegmatis 3QXZ ; 1.35 ; Crystal structure of a probable enoyl-CoA hydratase/isomerase from Mycobacterium abscessus 3SLL ; 2.35 ; Crystal structure of a probable enoyl-CoA hydratase/isomerase from Mycobacterium abscessus 3SWX ; 2.1 ; Crystal structure of a probable enoyl-CoA hydratase/isomerase from Mycobacterium abscessus 3TRR ; 2.09 ; Crystal structure of a probable enoyl-CoA hydratase/isomerase from Mycobacterium abscessus 3U0I ; 2.2 ; Crystal Structure of a probable FAD-binding, putative uncharacterized protein from Brucella melitensis 3U5W ; 2.05 ; Crystal Structure of a probable FAD-binding, putative uncharacterized protein from Brucella melitensis, apo form 1WGB ; 2.0 ; Crystal structure of a probable flavoprotein from Thermus thermophilus HB8 1YOA ; 1.9 ; Crystal structure of a probable flavoprotein from Thermus thermophilus HB8 1NNR ; 2.25 ; Crystal structure of a probable fosfomycin resistance protein (PA1129) from Pseudomonas aeruginosa with sulfate present in the active site 3UHJ ; 2.34 ; Crystal structure of a probable glycerol dehydrogenase from Sinorhizobium meliloti 1021 2CXX ; 1.7 ; Crystal structure of a probable GTP-binding protein engB 4DHE ; 2.2 ; Crystal structure of a probable GTP-binding protein engB from Burkholderia thailandensis 4F0J ; 1.5 ; Crystal structure of a probable hydrolytic enzyme (PA3053) from Pseudomonas aeruginosa PAO1 at 1.50 A resolution 3BIL ; 2.5 ; Crystal structure of a probable LacI family transcriptional regulator from Corynebacterium glutamicum 4Z04 ; 1.45 ; Crystal structure of a probable lactoylglutathione lyase from Brucella melitensis in complex with glutathione 3ESH ; 2.5 ; Crystal structure of a probable metal-dependent hydrolase from Staphylococcus aureus. Northeast Structural Genomics target ZR314 3HNR ; 2.8 ; Crystal Structure of a probable methyltransferase BT9727_4108 from Bacillus thuringiensis subsp. Northeast Structural Genomics Consortium target id BuR219 3F4K ; 2.3 ; Crystal structure of a probable methyltransferase from Bacteroides thetaiotaomicron. Northeast Structural Genomics target BtR309. 3FJY ; 2.15 ; Crystal structure of a probable MutT1 protein from Bifidobacterium adolescentis 3L5A ; 1.65 ; Crystal structure of a probable NADH-dependent flavin oxidoreductase from Staphylococcus aureus 1WTY ; 2.2 ; Crystal structure of a probable nucleotidyl transferase protein from thermus thermophilus HB8 4EYE ; 2.1 ; Crystal structure of a probable oxidoreductase from Mycobacterium abscessus solved by iodide ion SAD 3F4L ; 2.0 ; Crystal structure of a probable oxidoreductase yhhX in Triclinic form. Northeast Structural Genomics target ER647 4FB5 ; 2.61 ; Crystal structure of a probable oxidoreduxtase protein 3UWB ; 1.7 ; Crystal structure of a probable peptide deformylase from strucynechococcus phage S-SSM7 in complex with actinonin 3UWA ; 1.95 ; Crystal structure of a probable peptide deformylase from synechococcus phage S-SSM7 4J07 ; 1.95 ; Crystal structure of a PROBABLE RIBOFLAVIN SYNTHASE, BETA CHAIN RIBH (6,7-dimethyl-8-ribityllumazine synthase, DMRL synthase, Lumazine synthase) from Mycobacterium leprae 3GKU ; 2.95 ; Crystal structure of a probable RNA-binding protein from Clostridium symbiosum ATCC 14940 6UJK ; 1.2 ; Crystal Structure of a Probable short-chain type dehydrogenase/reductase (Rv1144) from Mycobacterium tuberculosis with bound NAD 4E6P ; 2.096 ; Crystal structure of a probable sorbitol dehydrogenase (Target PSI-012078) from Sinorhizobium meliloti 1021 3GJY ; 1.47 ; Crystal structure of a probable spermidine synthase from Corynebacterium glutamicum ATCC 13032 3TXV ; 2.8 ; Crystal structure of a probable tagatose 6 phosphate kinase from Sinorhizobium meliloti 1021 3L8M ; 2.4 ; Crystal Structure of a probable thiamine pyrophosphokinase from Staphylococcus saprophyticus subsp. saprophyticus. Northeast Structural Genomics Consortium target id SyR86 6UDG ; 2.65 ; Crystal structure of a Probable thiol peroxidase from Elizabethkingia anophelis NUHP1 3UGS ; 2.457 ; Crystal structure of a probable undecaprenyl diphosphate synthase (uppS) from Campylobacter jejuni 4E7A ; 3.0 ; Crystal structure of a product state assembly of HCV NS5B genotype 2a JFH-1 isolate with beta hairpin deletion bound to primer-template RNA with a 2',3'-ddC 4E78 ; 2.9 ; Crystal structure of a product state assembly of HCV NS5B genotype 2a JFH-1 isolate with beta hairpin loop deletion bound to primer-template RNA with 3'-dG 4DJA ; 1.45 ; Crystal structure of a prokaryotic (6-4) photolyase PhrB from Agrobacterium Tumefaciens with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore at 1.45A resolution 3I4I ; 1.89 ; Crystal structure of a prokaryotic beta-1,3-1,4-glucanase (lichenase) derived from a mouse hindgut metagenome 3CHV ; 1.45 ; CRYSTAL STRUCTURE OF a prokaryotic domain of unknown function (DUF849) member (SPOA0042) FROM SILICIBACTER POMEROYI DSS-3 AT 1.45 A RESOLUTION 3E49 ; 1.75 ; Crystal structure of a prokaryotic domain of unknown function (duf849) with a tim barrel fold (bxe_c0966) from burkholderia xenovorans lb400 at 1.75 A resolution 3RQU ; 3.089 ; Crystal structure of a prokaryotic pentameric ligand-gated ion channel, ELIC 5Y8E ; 1.804 ; Crystal Structure of a prokaryotic SEFIR domain 5Y8F ; 2.0 ; Crystal Structure of a prokaryotic SEFIR domain 5WTR ; 2.2 ; Crystal structure of a prokaryotic TRIC channel in 0.5 M KCl 3D48 ; 2.5 ; Crystal structure of a prolactin receptor antagonist bound to the extracellular domain of the prolactin receptor 3PN9 ; 2.0 ; Crystal structure of a proline dipeptidase from streptococcus pneumoniae tigr4 5HV4 ; 2.35 ; Crystal Structure of a Prolyl 4-Hydroxylase Complexed with Alpha-ketoglutarate from the Pathogenic Bacterium Bacillus anthracis in C2221 3ITQ ; 1.4 ; Crystal Structure of a Prolyl 4-Hydroxylase from Bacillus anthracis 6SYJ ; 0.81 ; Crystal structure of a ProM2 containing triple-helical collagen peptide. 3KHY ; 1.978 ; Crystal Structure of a propionate kinase from Francisella tularensis subsp. tularensis SCHU S4 4GGB ; 2.0 ; Crystal structure of a proposed galactarolactone cycloisomerase from agrobacterium tumefaciens, TARGET EFI-500704, WITH BOUND CA, DISORDERED LOOPS 4HPN ; 1.6 ; Crystal structure of a proposed galactarolactone cycloisomerase from Agrobacterium Tumefaciens, target EFI-500704, with bound Ca, ordered loops 3WOB ; 2.6 ; Crystal structure of a prostate-specific WGA16 glycoprotein lectin, form I 3WOC ; 2.4 ; Crystal structure of a prostate-specific WGA16 glycoprotein lectin, form II 2IAK ; 3.0 ; Crystal Structure of a protease resistant fragment of the plakin domain of Bullous Pemphigoid Antigen1 (BPAG1) 2OL5 ; 2.5 ; Crystal Structure of a protease synthase and sporulation negative regulatory protein PAI 2 from Bacillus stearothermophilus 5OW4 ; 3.1 ; Crystal structure of a protease-resistant fragment of the Trypanosoma cruzi gamete fusion protein HAP2 ectodomain 4FQZ ; 2.8 ; Crystal structure of a protease-resistant mutant form of human galectin-8 3WV6 ; 1.95 ; Crystal Structure of a protease-resistant mutant form of human galectin-9 8IYM ; 1.94 ; Crystal structure of a protein acetyltransferase, HP0935 8IYO ; 2.4 ; Crystal structure of a protein acetyltransferase, HP0935, acetyl-CoA bound form 2O3A ; 2.2 ; Crystal structure of a protein AF_0751 from Archaeoglobus fulgidus 2IJR ; 2.7 ; Crystal structure of a protein api92 from Yersinia pseudotuberculosis, Pfam DUF1281 6CU3 ; 2.5 ; Crystal structure of a protein arginine N-methyltransferase from Naegleria fowleri 6CU5 ; 2.7 ; Crystal structure of a protein arginine N-methyltransferase from Naegleria fowleri bound to SAH 3BE3 ; 2.04 ; Crystal structure of a protein belonging to pfam DUF1653 from Bordetella bronchiseptica 2PPV ; 2.0 ; CRYSTAL STRUCTURE OF a protein belonging to the UPF0052 (SE_0549) FROM STAPHYLOCOCCUS EPIDERMIDIS ATCC 12228 AT 2.00 A RESOLUTION 6IJ1 ; 1.521 ; Crystal structure of a protein from Actinoplanes 5ZZD ; 1.85 ; Crystal structure of a protein from Aspergillus flavus 2OC6 ; 1.75 ; Crystal structure of a protein from the duf1801 family (ydhg, bsu05750) from bacillus subtilis at 1.75 A resolution 4WNY ; 2.25 ; Crystal structure of a protein from the universal stress protein family from Burkholderia pseudomallei 2QSB ; 1.3 ; Crystal structure of a protein from uncharacterized family UPF0147 from Thermoplasma acidophilum 2QSD ; 2.5 ; Crystal structure of a protein Il1583 from Idiomarina loihiensis 1RI7 ; 2.7 ; crystal structure of a protein in the LRP/ASNC family from the hyperthermophilic archaeon Pyrococcus sp. OT3 2O2Z ; 2.6 ; Crystal structure of a protein member of the upf0052 family (bh3568) from bacillus halodurans at 2.60 A resolution 2O4T ; 1.95 ; CRYSTAL STRUCTURE OF a protein of the DUF1048 family with a left-handed superhelix fold (BH3976) FROM BACILLUS HALODURANS AT 1.95 A RESOLUTION 2HUJ ; 1.74 ; Crystal structure of a protein of uknown function (NP_471338.1) from Listeria innocua at 1.74 A resolution 3NO2 ; 1.35 ; Crystal structure of a protein of unknown function (BACCAC_01654) from Bacteroides caccae at 1.35 A resolution 3P02 ; 1.55 ; Crystal structure of a protein of unknown function (BACOVA_00267) from Bacteroides ovatus at 1.55 A resolution 3FYB ; 1.8 ; Crystal structure of a protein of unknown function (DUF1244) from Alcanivorax borkumensis 3CJL ; 2.2 ; Crystal structure of a protein of unknown function (eca1910) from pectobacterium atrosepticum scri1043 at 2.20 A resolution 2ICG ; 1.65 ; Crystal structure of a protein of unknown function (NP_472245.1) from Listeria innocua at 1.65 A resolution 2ARH ; 2.46 ; Crystal Structure of a Protein of Unknown Function AQ1966 from Aquifex aeolicus VF5 2GMY ; 1.6 ; Crystal Structure of a Protein of Unknown Function ATU0492 from Agrobacterium tumefaciens, Putative Antioxidant Defence Protein AhpD 5U8J ; 2.52 ; Crystal structure of a protein of unknown function ECL_02571 involved in membrane biogenesis from Enterobacter cloacae 1YLX ; 1.6 ; Crystal Structure of a Protein of Unknown Function from Bacillus stearothermophilus 3F5D ; 2.06 ; Crystal Structure of a protein of unknown function from Bacillus subtilis 2GPI ; 1.6 ; Crystal structure of a protein of unknown function from duf1488 family (shew_3726) from shewanella loihica pv-4 at 1.60 A resolution 3DJM ; 2.51 ; CRYSTAL STRUCTURE OF A PROTEIN OF UNKNOWN FUNCTION FROM DUF427 FAMILY (RSPH17029_0682) FROM RHODOBACTER SPHAEROIDES 2.4.1 AT 2.51 A RESOLUTION 2AZ4 ; 2.0 ; Crystal Structure of a Protein of Unknown Function from Enterococcus faecalis V583 3BQT ; 2.9 ; Crystal structure of a protein of unknown function from Listeria monocytogenes, tetragonal form 2PMR ; 1.32 ; Crystal structure of a protein of unknown function from Methanobacterium thermoautotrophicum 3GMI ; 1.91 ; Crystal structure of a protein of unknown function from Methanocaldococcus jannaschii 2GJV ; 2.39 ; Crystal Structure of a Protein of Unknown Function from Salmonella typhimurium 2I5E ; 2.1 ; Crystal Structure of a Protein of Unknown Function MM2497 from Methanosarcina mazei Go1, Probable Nucleotidyltransferase 2IKB ; 1.7 ; Crystal Structure of a Protein of Unknown Function NMB1012 from Neisseria meningitidis 2IG8 ; 1.9 ; Crystal structure of a Protein of Unknown Function PA3499 from Pseudomonas aeruginosa 1XV2 ; 2.0 ; Crystal Structure of a Protein of Unknown Function Similar to Alpha-acetolactate Decarboxylase from Staphylococcus aureus 1QW2 ; 1.5 ; Crystal Structure of a Protein of Unknown Function TA1206 from Thermoplasma acidophilum 1ZVP ; 2.2 ; Crystal Structure of a Protein of Unknown Function VC0802 from Vibrio cholerae, Possible Transport Protein 2QIP ; 1.48 ; Crystal structure of a protein of unknown function VPA0982 from Vibrio parahaemolyticus RIMD 2210633 3CJX ; 2.6 ; Crystal structure of a protein of unknown function with a cupin-like fold (reut_b4571) from ralstonia eutropha jmp134 at 2.60 A resolution 2RGQ ; 1.8 ; Crystal structure of a protein of unknown function with a cystatin-like fold (npun_r3134) from nostoc punctiforme pcc 73102 at 1.80 A resolution 3G0K ; 1.3 ; Crystal structure of a protein of unknown function with a cystatin-like fold (saro_2880) from novosphingobium aromaticivorans dsm at 1.30 A resolution 5VYV ; 2.48 ; Crystal structure of a protein of unknown function YceH/ECK1052 involved in membrane biogenesis from Escherichia coli 1TU9 ; 1.2 ; Crystal Structure of a Protein PA3967, a Structurally Highly Homologous to a Human Hemoglobin, from Pseudomonas aeruginosa PAO1 2IAE ; 3.5 ; Crystal structure of a protein phosphatase 2A (PP2A) holoenzyme. 1U32 ; 2.0 ; Crystal structure of a Protein Phosphatase-1: Calcineurin Hybrid Bound to Okadaic Acid 3BY7 ; 2.6 ; CRYSTAL STRUCTURE OF A PROTEIN STRUCTURALLY SIMILAR TO SM/LSM-LIKE RNA-BINDING PROTEINS (JCVI_PEP_1096686650277) FROM UNCULTURED MARINE ORGANISM AT 2.60 A RESOLUTION 2O8Q ; 1.55 ; CRYSTAL STRUCTURE OF A PROTEIN WITH A CUPIN-LIKE FOLD AND UNKNOWN FUNCTION (BXE_C0505) FROM BURKHOLDERIA XENOVORANS LB400 AT 1.55 A RESOLUTION 2NVN ; 2.5 ; Crystal structure of a protein with a cupin-like fold and unknown function (YP_400729.1) from Synechococcus SP. PCC 7942 (Elongatus) at 2.50 A resolution 4JM1 ; 1.4 ; Crystal structure of a protein with alpha-lytic protease prodomain-like fold (BDI_0842) from Parabacteroides distasonis ATCC 8503 at 1.40 A resolution 2IAB ; 2.0 ; Crystal structure of a protein with FMN-binding split barrel fold (NP_828636.1) from Streptomyces avermitilis at 2.00 A resolution 1VQW ; 2.4 ; Crystal structure of a protein with similarity to flavin-containing monooxygenases and to mammalian dimethylalanine monooxygenases 3BL4 ; 2.2 ; Crystal structure of a protein with unknown function (arth_0117) from arthrobacter sp. fb24 at 2.20 A resolution 3MSW ; 1.9 ; Crystal structure of a Protein with unknown function (BF3112) from Bacteroides fragilis NCTC 9343 at 1.90 A resolution 4PW1 ; 2.1 ; Crystal structure of a protein with unknown function (CLOLEP_02462) from Clostridium leptum DSM 753 at 2.10 A resolution 2OOK ; 1.8 ; Crystal structure of a protein with unknown function (YP_749275.1) from Shewanella Frigidimarina NCIMB 400 at 1.80 A resolution 3GBY ; 1.66 ; Crystal structure of a protein with unknown function CT1051 from Chlorobium tepidum 2IT9 ; 1.8 ; Crystal structure of a protein with unknown function from DUF155 family (YP_292156.1) from Prochlorococcus sp. NATL2A at 1.80 A resolution 3OAO ; 2.72 ; Crystal structure of a protein with unknown function from DUF2059 family (PA0856) from PSEUDOMONAS AERUGINOSA at 2.72 A resolution 3OHG ; 1.8 ; Crystal structure of a protein with unknown function from DUF2233 family (BACOVA_00430) from Bacteroides ovatus at 1.80 A resolution 2OOJ ; 1.84 ; CRYSTAL STRUCTURE OF A PROTEIN WITH UNKNOWN FUNCTION FROM DUF3224 FAMILY (SO_1590) FROM SHEWANELLA ONEIDENSIS MR-1 AT 1.84 A RESOLUTION 2RCD ; 2.32 ; CRYSTAL STRUCTURE OF A PROTEIN WITH UNKNOWN FUNCTION FROM DUF3225 FAMILY (ECA3500) FROM PECTOBACTERIUM ATROSEPTICUM SCRI1043 AT 2.32 A RESOLUTION 2O62 ; 1.75 ; CRYSTAL STRUCTURE OF A PROTEIN WITH UNKNOWN FUNCTION FROM DUF3598 FAMILY (NPUN_R4044) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.75 A RESOLUTION 3NPG ; 2.7 ; Crystal structure of a protein with unknown function from DUF364 family (PH1506) from PYROCOCCUS HORIKOSHII at 2.70 A resolution 2RLD ; 1.7 ; CRYSTAL STRUCTURE OF A PROTEIN WITH UNKNOWN FUNCTION FROM S23 RIBOSOMAL PROTEIN FAMILY (BT_0352) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 1.70 A RESOLUTION 3QKB ; 2.73 ; Crystal structure of a Protein with unknown function which belongs to Pfam DUF74 family (PEPE_0654) from Pediococcus pentosaceus ATCC 25745 at 2.73 A resolution 3NQN ; 1.88 ; Crystal structure of a Protein with unknown function. (DR_2006) from DEINOCOCCUS RADIODURANS at 1.88 A resolution 6XYN ; 2.3 ; Crystal structure of a proteolytic fragment of NarQ comprising sensor and TM domains 6V7M ; 2.0 ; Crystal structure of a proteolytically cleaved, amino terminal domain of apolipoprotein E3 4KA4 ; 2.6 ; Crystal structure of a proteolytically defined Zbeta domain of human DAI (ZBP1, DLM-1) 1NKX ; 1.9 ; CRYSTAL STRUCTURE OF A PROTEOLYTICALLY GENERATED FUNCTIONAL MONOFERRIC C-LOBE OF BOVINE LACTOFERRIN AT 1.9A RESOLUTION 1W52 ; 2.99 ; Crystal structure of a proteolyzed form of pancreatic lipase related protein 2 from horse 2XUT ; 3.62 ; Crystal structure of a proton dependent oligopeptide (POT) family transporter. 1JDR ; 1.5 ; Crystal Structure of a Proximal Domain Potassium Binding Variant of Cytochrome c Peroxidase 4W5L ; 1.0 ; Crystal structure of a prp peptide 3SBG ; 3.28 ; Crystal structure of a Prp8 C-terminal fragment 2H9F ; 1.95 ; CRYSTAL STRUCTURE OF a PrpF family methylaconitate isomerase (PA0793) FROM PSEUDOMONAS AERUGINOSA AT 1.95 A RESOLUTION 1I6J ; 2.0 ; CRYSTAL STRUCTURE OF A PSEUDO-16-MER DNA WITH STACKED GUANINES AND TWO G-A MISPAIRS COMPLEXED WITH THE N-TERMINAL FRAGMENT OF MOLONEY MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE 3DWO ; 2.2 ; Crystal structure of a Pseudomonas aeruginosa FadL homologue 5XQL ; 2.494 ; Crystal structure of a Pseudomonas aeruginosa transcriptional regulator 5YC9 ; 2.9 ; Crystal structure of a Pseudomonas aeruginosa transcriptional regulator 5VJ1 ; 2.995 ; Crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer in complex with coenzyme A 5VIT ; 2.203 ; Crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer in complex with malonate 4J25 ; 1.97 ; Crystal structure of a Pseudomonas putida prolyl-4-hydroxylase (P4H) 4IW3 ; 2.697 ; Crystal structure of a Pseudomonas putida prolyl-4-hydroxylase (P4H) in complex with elongation factor Tu (EF-Tu) 7E7H ; 2.2 ; Crystal Structure of a pseudooxynicotine amine oxidase Pnao from Pseudomonas putida S16 7W6O ; 2.2 ; Crystal structure of a PSH1 in complex with J1K 7W6C ; 2.3 ; Crystal structure of a PSH1 in complex with ligand J1K 7W6Q ; 2.2 ; Crystal structure of a PSH1 in complex with ligand J1K 7W69 ; 1.56 ; Crystal structure of a PSH1 mutant in complex with EDO 7W66 ; 1.96 ; Crystal structure of a PSH1 mutant in complex with ligand 3MYX ; 1.3 ; Crystal structure of a PSPTO_0244 (Protein with unknown function which belongs to Pfam DUF861 family) from Pseudomonas syringae pv. tomato str. DC3000 at 1.30 A resolution 1G9K ; 1.96 ; CRYSTAL STRUCTURE OF A PSYCHROPHILIC ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18 1OMJ ; 2.38 ; CRYSTAL STRUCTURE OF A PSYCHROPHILIC ALKALINE PROTEASE FROM PSEUDOMONAS TAC II 18 7OTR ; 2.25 ; Crystal structure of a psychrophilic CCA-adding enzyme determined by SAD phasing 7OQX ; 2.2 ; Crystal structure of a psychrophilic CCA-adding enzyme in complex with CMPcPP 6IY4 ; 1.59 ; Crystal structure of a psychrophilic marine protease MP inhibitor 2ZQB ; 2.49 ; Crystal structure of a psychrotrophic RNaseHI variant with sextuple thermostabilizing mutations 3P3V ; 1.65 ; Crystal structure of a PTS dependent N-acetyl-galactosamine-IIB component (agaV, SPy_0631) from Streptococcus pyogenes at 1.65 A resolution 2CX0 ; 1.8 ; Crystal structure of a PUA domain (APE0525) from the Aeropyrum pernix K1 (sulfate complex) 2CX1 ; 1.8 ; Crystal structure of a PUA domain (APE0525) from the Aeropyrum pernix K1 (tartrate complex) 1IB2 ; 1.9 ; CRYSTAL STRUCTURE OF A PUMILIO-HOMOLOGY DOMAIN 1M8Z ; 1.9 ; Crystal Structure Of A Pumilio-Homology Domain 4UC0 ; 2.4 ; Crystal Structure Of a purine nucleoside phosphorylase (PSI-NYSGRC-029736) from Agrobacterium vitis 3U40 ; 2.05 ; Crystal structure of a purine nucleoside phosphorylase from Entamoeba histolytica bound to adenosine 2O8P ; 1.82 ; Crystal structure of a putative 14-3-3 protein from Cryptosporidium parvum, cgd7_2470 2F1L ; 2.46 ; CRYSTAL STRUCTURE OF A PUTATIVE 16S RIBOSOMAL RNA PROCESSING PROTEIN RIMM (PA3744) FROM PSEUDOMONAS AERUGINOSA AT 2.46 A RESOLUTION 2RIJ ; 1.9 ; Crystal structure of a putative 2,3,4,5-tetrahydropyridine-2-carboxylate n-succinyltransferase (cj1605c, dapd) from campylobacter jejuni at 1.90 A resolution 2NWB ; 2.4 ; Crystal Structure of a Putative 2,3-dioxygenase (SO4414) from Shewanella oneidensis in complex with ferric heme. Northeast Structural Genomics Target SoR52. 3UP8 ; 1.96 ; Crystal structure of a putative 2,5-diketo-D-gluconic acid reductase B 3T69 ; 2.55 ; Crystal structure of a putative 2-dehydro-3-deoxygalactonokinase protein from Sinorhizobium meliloti 4HP8 ; 1.35 ; Crystal structure of a putative 2-deoxy-d-gluconate 3-dehydrogenase from Agrobacterium Tumefaciens (target EFI-506435) with bound NADP 3KTN ; 2.26 ; Crystal Structure of a putative 2-Keto-3-deoxygluconate Kinase from Enterococcus faecalis 3OOX ; 1.44 ; Crystal structure of a putative 2OG-Fe(II) oxygenase family protein (CC_0200) from CAULOBACTER CRESCENTUS at 1.44 A resolution 3C6C ; 1.72 ; Crystal structure of a putative 3-keto-5-aminohexanoate cleavage enzyme (reut_c6226) from ralstonia eutropha jmp134 at 1.72 A resolution 3SX2 ; 1.5 ; Crystal structure of a putative 3-ketoacyl-(acyl-carrier-protein) reductase from Mycobacterium paratuberculosis in complex with NAD 3ICC ; 1.87 ; Crystal structure of a putative 3-oxoacyl-(acyl carrier protein) reductase from Bacillus anthracis at 1.87 A resolution 3TFO ; 2.08 ; Crystal structure of a putative 3-oxoacyl-(acyl-carrier-protein) reductase from Sinorhizobium meliloti 6UDS ; 1.9 ; Crystal structure of a putative 3-oxoacyl-ACP reductase (FabG) from Acinetobacter baumannii 6WPR ; 1.85 ; Crystal structure of a putative 3-oxoacyl-ACP reductase (FabG) with NADP(H) from Acinetobacter baumannii 4IIU ; 2.1 ; Crystal structure of a putative 3-oxoacyl-[acyl-carrier protein]reductase from Escherichia coli strain CFT073 complexed with NADP+ at 2.1 A resolution 4IIV ; 2.5 ; Crystal structure of a putative 3-oxoacyl-[acyl-carrier protein]reductase from Escherichia coli strain CFT073 complexed with NADP+ at 2.5 A resolution 4IJK ; 2.54 ; Crystal structure of a putative 3-oxoacyl-[acyl-carrier protein]reductase from Helicobacter pylori 26695 4IIN ; 2.4 ; Crystal structure of a putative 3-oxoacyl-[acyl-carrier protein]reductase from Helicobacter pylori 26695 complexed with NAD+ 3CEB ; 2.4 ; Crystal structure of a putative 4-amino-4-deoxychorismate lyase (hs_0128) from haemophilus somnus 129pt at 2.40 A resolution 3N73 ; 2.07 ; Crystal structure of a putative 4-hydroxy-2-oxoglutarate aldolase from Bacillus cereus 4K8L ; 1.9 ; Crystal structure of a putative 4-hydroxyproline epimerase/3-hydroxyproline dehydratse from the soil bacterium ochrobacterium anthropi, target efi-506495, disordered loops 2IFX ; 2.0 ; Crystal structure of a putative 4-methylmuconolactone methylisomerase (YP_295714.1) from Ralstonia eutropha JMP134 at 2.00 A resolution 4LKB ; 2.16 ; Crystal structure of a putative 4-Oxalocrotonate Tautomerase from Nostoc sp. PCC 7120 4L0M ; 1.7 ; Crystal structure of a putative 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Borrelia burgdorferi B31 bound to Adenine (Target NYSGRC-029268 ) 4JOS ; 1.45 ; Crystal structure of a putative 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Francisella philomiragia ATCC 25017 (Target NYSGRC-029335) 4JWT ; 2.05 ; Crystal structure of a putative 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Sulfurimonas denitrificans DSM 1251 (Target NYSGRC-029304 ) 2QCV ; 1.9 ; CRYSTAL STRUCTURE OF a putative 5-dehydro-2-deoxygluconokinase (IOLC) FROM BACILLUS HALODURANS C-125 AT 1.90 A RESOLUTION 2FG9 ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE 5-NITROIMIDAZOLE ANTIBIOTIC RESISTANCE PROTEIN (BT_3078) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 2.20 A RESOLUTION 4QRJ ; 2.2 ; Crystal structure of a putative 6-phosphogluconolactonase (BACUNI_04672) from Bacteroides uniformis ATCC 8492 at 2.20 A resolution 3SCY ; 1.5 ; Crystal structure of a putative 6-phosphogluconolactonase (BF1038) from Bacteroides fragilis NCTC 9343 at 1.50 A resolution 3CTD ; 2.5 ; Crystal structure of a putative AAA family ATPase from Prochlorococcus marinus subsp. pastoris 2F4L ; 2.5 ; Crystal structure of a putative acetamidase (tm0119) from thermotoga maritima msb8 at 2.50 A resolution 2O16 ; 1.9 ; Crystal structure of a putative acetoin utilization protein (AcuB) from Vibrio cholerae 4WEO ; 1.85 ; Crystal Structure of a Putative acetoin(Diacetyl) Reductase Burkholderia cenocepacia 3NUZ ; 2.3 ; Crystal structure of a putative acetyl xylan esterase (BF1801) from Bacteroides fragilis NCTC 9343 at 2.30 A resolution 2O1Q ; 1.5 ; CRYSTAL STRUCTURE OF A PUTATIVE ACETYLACETONE DIOXYGENASE (MPE_A3659) FROM METHYLIBIUM PETROLEIPHILUM PM1 AT 1.50 A RESOLUTION 3PFO ; 1.9 ; Crystal structure of a putative acetylornithine deacetylase (RPA2325) from RHODOPSEUDOMONAS PALUSTRIS CGA009 at 1.90 A resolution 3S6F ; 1.19 ; Crystal structure of a putative acetyltransferase (DR_1678) from Deinococcus radiodurans R1 at 1.19 A resolution 3DDD ; 2.25 ; Crystal structure of A Putative Acetyltransferase (NP_142035.1) from PYROCOCCUS HORIKOSHII at 2.25 A resolution 3C26 ; 2.0 ; Crystal structure of a putative acetyltransferase (NP_394282.1) from Thermoplasma acidophilum at 2.00 A resolution 2OZH ; 1.4 ; Crystal structure of a putative acetyltransferase belonging to the gnat family (xcc2953) from xanthomonas campestris pv. campestris at 1.40 A resolution 6ERD ; 2.0 ; Crystal structure of a putative acetyltransferase from Bacillus cereus species. 3FNC ; 1.75 ; Crystal structure of a putative acetyltransferase from Listeria innocua 2GAN ; 2.1 ; Crystal Structure of a Putative Acetyltransferase from Pyrococcus horikoshii, Northeast Structural Genomics Target JR32. 2R7H ; 1.85 ; CRYSTAL STRUCTURE OF A putative acetyltransferase of the GNAT family (DDE_3044) FROM DESULFOVIBRIO DESULFURICANS SUBSP. AT 1.85 A RESOLUTION 5JSC ; 1.5 ; Crystal structure of a Putative acyl-CoA dehydrogenase from Burkholderia xenovorans 3P4T ; 1.7 ; Crystal structure of a putative acyl-CoA dehydrogenase from Mycobacterium smegmatis 3OIB ; 2.1 ; Crystal structure of a putative ACYL-COA Dehydrogenase from mycobacterium smegmatis, Iodide soak 4N5F ; 2.2 ; Crystal Structure of a Putative acyl-CoA dehydrogenase with bound FADH2 from Burkholderia cenocepacia J2315 4RVN ; 2.2 ; Crystal structure of a Putative Acyl-CoA ligase (BT_0428) from Bacteroides thetaiotaomicron VPI-5482 at 2.20 A resolution 4RVO ; 2.41 ; Crystal structure of a Putative Acyl-CoA ligase (BT_0428) from Bacteroides thetaiotaomicron VPI-5482 at 2.41 A resolution 4R1L ; 2.42 ; Crystal structure of a Putative Acyl-CoA ligase (BT_0428) from Bacteroides thetaiotaomicron VPI-5482 at 2.42 A resolution 4R1M ; 2.48 ; Crystal structure of a Putative Acyl-CoA ligase (BT_0428) from Bacteroides thetaiotaomicron VPI-5482 at 2.48 A resolution 5KL9 ; 2.22 ; Crystal structure of a putative acyl-CoA thioesterase EC709/ECK0725 from Escherichia coli in complex with CoA 5T07 ; 1.717 ; Crystal structure of a putative acyl-CoA thioesterase EC709/ECK0725 from Escherichia coli in complex with Decanoyl-CoA 5T06 ; 1.898 ; Crystal structure of a putative acyl-CoA thioesterase EC709/ECK0725 from Escherichia coli in complex with Hexanoyl-CoA 4IYJ ; 1.37 ; Crystal structure of a putative acylhydrolase (BACUNI_03406) from Bacteroides uniformis ATCC 8492 at 1.37 A resolution 4PPY ; 2.0 ; Crystal structure of a putative acylhydrolase (BF3764) from Bacteroides fragilis NCTC 9343 at 2.00 A resolution 2GFG ; 2.12 ; Crystal structure of a putative adenylate cyclase (bh2851) from bacillus halodurans at 2.12 A resolution 4YGU ; 2.2 ; Crystal structure of a putative adhesin (BACEGG_01763) from Bacteroides eggerthii DSM 20697 at 2.20 A resolution 5CAG ; 3.0 ; Crystal structure of a putative adhesin (BACOVA_02677) from Bacteroides ovatus ATCC 8483 at 3.00 A resolution (PSI Community Target, Nakayama) 3PAY ; 2.5 ; Crystal structure of a putative adhesin (BACOVA_04077) from Bacteroides ovatus at 2.50 A resolution 3PET ; 2.07 ; Crystal structure of a putative adhesin (BF0245) from Bacteroides fragilis NCTC 9343 at 2.07 A resolution 4QDG ; 2.2 ; Crystal structure of a putative adhesin (BT2657) from Bacteroides thetaiotaomicron VPI-5482 at 2.20 A resolution (PSI Community Target, Nakayama) 4OPW ; 1.75 ; Crystal structure of a putative adhesin (PARMER_02777) from Parabacteroides merdae ATCC 43184 at 1.75 A resolution 3LHL ; 2.3 ; Crystal structure of a putative agmatinase from Clostridium difficile 6DBB ; 2.1 ; Crystal structure of a Putative aldehyde dehydrogenase family protein Burkholderia cenocepacia J2315 in complex with partially reduced NADH 4O6R ; 1.9 ; Crystal Structure of a Putative Aldehyde Dehydrogenase from Burkholderia cenocepacia 4YWE ; 2.15 ; Crystal Structure of a Putative Aldehyde Dehydrogenase from Burkholderia cenocepacia 3NRE ; 1.59 ; Crystal structure of a Putative aldose 1-epimerase (b2544) from ESCHERICHIA COLI K12 at 1.59 A resolution 3TY1 ; 1.9 ; Crystal structure of a putative aldose 1-epimerase (KPN_04629) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.90 A resolution 4NZJ ; 1.57 ; Crystal structure of a putative alpha-galactosidase (BF1418) from Bacteroides fragilis NCTC 9343 at 1.57 A resolution 4OGZ ; 2.0 ; Crystal structure of a putative alpha-galactosidase/melibiase (BF4189) from Bacteroides fragilis NCTC 9343 at 2.00 A resolution 3U95 ; 1.998 ; Crystal structure of a putative alpha-glucosidase from Thermotoga neapolitana 5J92 ; 1.95 ; Crystal structure of a putative alpha-ketoglutarate dependent 2,4-D dioxygenase from Burkholderia xenovorans 5HSX ; 1.8 ; Crystal Structure of a Putative Alpha-ketoglutarate-dependent Taurine Dioxygenase from Burkholderia xenovorans 4ZRX ; 1.59 ; Crystal structure of a putative alpha-L-fucosidase (BACOVA_04357) from Bacteroides ovatus ATCC 8483 at 1.59 A resolution 4H41 ; 1.8 ; Crystal structure of a putative alpha-L-fucosidase (BT_0435) from Bacteroides thetaiotaomicron VPI-5482 at 1.80 A resolution 3CC1 ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE ALPHA-N-ACETYLGALACTOSAMINIDASE (BH1870) FROM BACILLUS HALODURANS C-125 AT 2.00 A RESOLUTION 3CIH ; 2.33 ; Crystal structure of a putative alpha-rhamnosidase from Bacteroides thetaiotaomicron 3NUR ; 1.75 ; Crystal structure of a putative amidohydrolase from Staphylococcus aureus 3QQM ; 2.3 ; Crystal structure of a Putative amino-acid aminotransferase (NP_104211.1) from Mesorhizobium loti at 2.30 A resolution 3DXP ; 2.32 ; Crystal structure of a putative aminoglycoside phosphotransferase (reut_a1007) from ralstonia eutropha jmp134 at 2.32 A resolution 3CSV ; 2.15 ; Crystal structure of a putative aminoglycoside phosphotransferase (YP_614837.1) from Silicibacter sp. TM1040 at 2.15 A resolution 1VLY ; 1.3 ; Crystal structure of a putative aminomethyltransferase (ygfz) from escherichia coli at 1.30 A resolution 3P1T ; 2.6 ; Crystal structure of a putative aminotransferase (BPSL1724) from Burkholderia pseudomallei K96243 at 2.60 A resolution 3GJU ; 1.55 ; Crystal structure of a putative aminotransferase (mll7127) from mesorhizobium loti maff303099 at 1.55 A resolution 3SNO ; 1.6 ; Crystal structure of a putative aminotransferase (NCgl2491) from Corynebacterium glutamicum ATCC 13032 at 1.60 A resolution 1VP4 ; 1.82 ; Crystal structure of a putative aminotransferase (tm1131) from thermotoga maritima msb8 at 1.82 A resolution 3H14 ; 1.9 ; Crystal structure of a putative aminotransferase from Silicibacter pomeroyi 4M0N ; 1.65 ; Crystal structure of a putative anti-sigma factor (BDI_1681) from Parabacteroides distasonis ATCC 8503 at 1.65 A resolution 4M0H ; 2.5 ; Crystal structure of a putative anti-sigma factor (BDI_1681) from Parabacteroides distasonis ATCC 8503 at 2.50 A resolution 3F43 ; 1.59 ; Crystal structure of a putative anti-sigma factor antagonist (tm1081) from thermotoga maritima at 1.59 A resolution 3BM7 ; 1.35 ; CRYSTAL STRUCTURE OF A PUTATIVE ANTIBIOTIC BIOSYNTHESIS MONOOXYGENASE (CC_2132) FROM CAULOBACTER CRESCENTUS CB15 AT 1.35 A RESOLUTION 3E8O ; 1.4 ; CRYSTAL STRUCTURE OF A PUTATIVE ANTIBIOTIC BIOSYNTHESIS MONOOXYGENASE (DR_2100) FROM DEINOCOCCUS RADIODURANS AT 1.40 A RESOLUTION 3FGV ; 1.3 ; CRYSTAL STRUCTURE OF A PUTATIVE ANTIBIOTIC BIOSYNTHESIS MONOOXYGENASE (SPO2313) FROM SILICIBACTER POMEROYI DSS-3 AT 1.30 A RESOLUTION 3CEC ; 1.6 ; Crystal structure of a putative antidote protein of plasmid maintenance system (npun_f2943) from nostoc punctiforme pcc 73102 at 1.60 A resolution 2RKH ; 2.0 ; Crystal structure of a putative AphA-like transcription factor (ZP_00208345.1) from Magnetospirillum magnetotacticum MS-1 at 2.00 A resolution 3FBG ; 1.6 ; Crystal structure of a putative arginate lyase from Staphylococcus haemolyticus 3B8L ; 1.75 ; CRYSTAL STRUCTURE OF A PUTATIVE AROMATIC RING HYDROXYLASE (SARO_3538) FROM NOVOSPHINGOBIUM AROMATICIVORANS DSM AT 1.75 A RESOLUTION 3N0Q ; 1.8 ; Crystal structure of a Putative aromatic-ring hydroxylating dioxygenase (TM1040_3219) from SILICIBACTER SP. TM1040 at 1.80 A resolution 3OJC ; 1.75 ; Crystal structure of a putative Asp/Glu Racemase from Yersinia pestis 4H51 ; 1.85 ; Crystal structure of a putative Aspartate Aminotransferase from Leishmania major Friedlin 7K46 ; 1.9 ; Crystal Structure of a putative aspartate carbamoyltransferase Leishmania major Friedlin 6OD8 ; 1.85 ; Crystal structure of a putative aspartyl-tRNA synthetase from Leishmania major Friedlin 3DF7 ; 1.87 ; Crystal structure of a putative ATP-grasp superfamily protein from Archaeoglobus fulgidus 2R44 ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE ATPASE (CHU_0153) FROM CYTOPHAGA HUTCHINSONII ATCC 33406 AT 2.00 A RESOLUTION 2ICH ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE ATTH (NE1406) FROM NITROSOMONAS EUROPAEA AT 2.00 A RESOLUTION 4FMR ; 2.25 ; Crystal structure of a Putative bacterial DNA binding protein (BVU_2165) from Bacteroides vulgatus ATCC 8482 at 2.25 A resolution 5HAL ; 2.1507 ; Crystal Structure of a putative beta-lactamase from Burkholderia vietnamiensis 3FJS ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE BIOSYNTHETIC PROTEIN WITH RMLC-LIKE CUPIN FOLD (REUT_B4087) FROM RALSTONIA EUTROPHA JMP134 AT 1.90 A RESOLUTION 3HUT ; 1.93 ; Crystal structure of a putative branched-chain amino acid ABC transporter from Rhodospirillum rubrum 3H5L ; 1.7 ; Crystal structure of a putative branched-chain amino acid ABC transporter from Silicibacter pomeroyi 3CSW ; 2.15 ; Crystal structure of a putative branched-chain amino acid aminotransferase (TM0831) from Thermotoga maritima at 2.15 A resolution 3T32 ; 2.0 ; Crystal structure of a putative C-S lyase from Bacillus anthracis 3KSP ; 2.59 ; Crystal structure of a putative ca/calmodulin-dependent kinase ii association domain (exig_1688) from exiguobacterium sibiricum 255-15 at 2.59 A resolution 3NTV ; 1.55 ; Crystal structure of a putative caffeoyl-CoA O-methyltransferase from Staphylococcus aureus 3DB7 ; 1.4 ; Crystal structure of a putative calcium-regulated periplasmic protein (bt0923) from bacteroides thetaiotaomicron at 1.40 A resolution 4DQA ; 1.5 ; Crystal structure of a putative carbohydrate binding protein (BACOVA_03559) from Bacteroides ovatus ATCC 8483 at 1.50 A resolution 4IYK ; 2.0 ; Crystal structure of a putative carbohydrate binding protein (BACUNI_04699) from Bacteroides uniformis ATCC 8492 at 2.00 A resolution 3QEC ; 2.61 ; Crystal structure of a putative carbohydrate binding protein (PA1324) from Pseudomonas aeruginosa at 2.61 A resolution 2AX3 ; 2.27 ; CRYSTAL STRUCTURE OF A PUTATIVE CARBOHYDRATE KINASE (TM0922) FROM THERMOTOGA MARITIMA MSB8 AT 2.25 A RESOLUTION 4JPQ ; 2.7 ; Crystal structure of a putative carbohydrate-binding protein (BACUNI_03838) from Bacteroides uniformis ATCC 8492 at 2.70 A resolution 1VPZ ; 2.05 ; Crystal structure of a putative carbon storage regulator protein (csra, pa0905) from pseudomonas aeruginosa at 2.05 A resolution 3P8K ; 1.7 ; Crystal Structure of a putative carbon-nitrogen family hydrolase from Staphylococcus aureus 3BJR ; 2.09 ; Crystal structure of a putative carboxylesterase (lp_1002) from lactobacillus plantarum wcfs1 at 2.09 A resolution 3BXP ; 1.7 ; CRYSTAL STRUCTURE OF A PUTATIVE CARBOXYLESTERASE (LP_2923) FROM LACTOBACILLUS PLANTARUM WCFS1 AT 1.70 A RESOLUTION 4RGB ; 1.95 ; Crystal structure of a putative carveol dehydrogenase from Mycobacterium avium bound to NAD 3PGX ; 1.85 ; Crystal structure of a putative carveol dehydrogenase from Mycobacterium paratuberculosis bound to nicotinamide adenine dinucleotide 4W8K ; 2.13 ; Crystal structure of a putative Cas1 enzyme from Vibrio phage ICP1 4MST ; 1.927 ; Crystal Structure of a putative catalytic domain of a chitinase-like protein (HbCLP1) from Hevea brasiliensis 4GPV ; 1.67 ; Crystal structure of a putative cell adhesion protein (BACEGG_00536) from Bacteroides eggerthii DSM 20697 at 1.67 A resolution 4JRF ; 1.98 ; Crystal structure of a putative cell adhesion protein (BACOVA_01548) from Bacteroides ovatus ATCC 8483 at 1.98 A resolution (PSI Community Target, Nakayama) 3UP6 ; 2.8 ; Crystal structure of a putative cell adhesion protein (BACOVA_04078) from Bacteroides ovatus ATCC 8483 at 2.80 A resolution 3UFI ; 2.18 ; Crystal structure of a putative cell adhesion protein (BACOVA_04980) from Bacteroides ovatus ATCC 8483 at 2.18 A resolution 4K4K ; 1.67 ; Crystal structure of a putative cell adhesion protein (BACUNI_00621) from Bacteroides uniformis ATCC 8492 at 1.67 A resolution 4JG5 ; 2.34 ; Crystal structure of a putative cell adhesion protein (BDI_3519) from Parabacteroides distasonis ATCC 8503 at 2.34 A resolution (PSI Community Target, Nakayama) 3T2L ; 2.33 ; Crystal structure of a Putative cell adhesion protein (BF1858) from Bacteroides fragilis NCTC 9343 at 2.33 A resolution 4H40 ; 2.57 ; Crystal structure of a putative cell adhesion protein (BF2867) from Bacteroides fragilis NCTC 9343 at 2.57 A resolution 4DGU ; 2.37 ; Crystal structure of a putative cell adhesion protein (BT0320) from Bacteroides thetaiotaomicron VPI-5482 at 2.37 A resolution 4QRK ; 1.95 ; Crystal structure of a putative cell adhesion protein (CLOSPO_03726) from Clostridium sporogenes ATCC 15579 at 1.95 A resolution 4EZG ; 1.5 ; Crystal structure of a putative cell adhesion protein (LMOf2365_1307) from Listeria monocytogenes str. 4b F2365 at 1.50 A resolution 4E6E ; 2.12 ; Crystal structure of a putative cell division protein FtsZ (Tfu_1113) from Thermobifida fusca YX-ER1 at 2.22 A resolution (PSI Community Target, van Wezel G.P.) 4FD0 ; 2.07 ; Crystal structure of a putative cell surface protein (BACCAC_03700) from Bacteroides caccae ATCC 43185 at 2.07 A resolution 4FDW ; 2.05 ; Crystal structure of a putative cell surface protein (BACOVA_01565) from Bacteroides ovatus ATCC 8483 at 2.05 A resolution 4HPE ; 2.38 ; Crystal structure of a putative cell wall hydrolase (CD630_03720) from Clostridium difficile 630 at 2.38 A resolution 2I5I ; 1.7 ; CRYSTAL STRUCTURE OF A PUTATIVE CELLOBIOSE-PHOSPHATE CLEAVAGE PROTEIN (EF3048) FROM ENTEROCOCCUS FAECALIS V583 AT 1.70 A RESOLUTION 4H6P ; 2.556 ; Crystal structure of a putative chromate reductase from Gluconacetobacter hansenii, Gh-ChrR, containing a R101A substitution. 4HS4 ; 2.1 ; Crystal structure of a putative chromate reductase from Gluconacetobacter hansenii, Gh-ChrR, containing a Y129N substitution. 6WGY ; 2.3 ; Crystal structure of a Putative citrate synthase 2 from Mycobacterium bovis in complex with citrate 2F8L ; 2.2 ; Crystal structure of a putative class i s-adenosylmethionine-dependent methyltransferase (lmo1582) from listeria monocytogenes at 2.20 A resolution 2AH6 ; 1.6 ; Crystal structure of a putative cobalamin adenosyltransferase (bh1595) from bacillus halodurans c-125 at 1.60 A resolution 3EEQ ; 2.3 ; Crystal structure of a putative cobalamin biosynthesis protein G homolog from Sulfolobus solfataricus 4L1N ; 2.7 ; Crystal structure of a putative conserved lipoprotein (NT01CX_1156) from Clostridium novyi NT at 2.70 A resolution 2AJ7 ; 1.67 ; Crystal structure of a putative contractile protein (bh3618) from bacillus halodurans at 1.67 A resolution 4MYR ; 2.72 ; Crystal structure of a putative CpaE2 pilus assembly protein (CpaE2) from Sinorhizobium meliloti 1021 at 2.72 A resolution (PSI Community Target, Shapiro) 3H3Z ; 2.35 ; Crystal structure of a putative cyclic nucleotide binding protein (spoa0323) from ruegeria pomeroyi dss-3 at 2.35 A resolution 3MDP ; 1.9 ; Crystal structure of a Putative Cyclic nucleotide-binding protein (Gmet_1532) from Geobacter metallireducens GS-15 at 1.90 A resolution 3JZL ; 1.91 ; CRYSTAL STRUCTURE OF A PUTATIVE CYSTATHIONINE BETA-LYASE INVOLVED IN ALUMINUM RESISTANCE (LMOF2365_1314) FROM LISTERIA MONOCYTOGENES STR. 4B F2365 AT 1.91 A RESOLUTION 4OFX ; 1.74 ; Crystal Structure of a Putative Cystathionine beta-Synthase from Coxiella burnetii 4QM9 ; 2.3 ; Crystal Structure of a Putative Cysteine Dioxygenase From Bacillus subtilis with Cys-bound 4QM8 ; 2.82 ; Crystal Structure of a Putative Cysteine Dioxygnase From Bacillus subtilis: A Alternative Modeling of 3EQE 4QMA ; 1.65 ; Crystal Structure of a Putative Cysteine Dioxygnase From Ralstonia eutropha: An Alternative Modeling of 2GM6 from JCSG Target 361076 4H7P ; 1.3 ; Crystal structure of a putative Cytosolic malate dehydrogenase from Leishmania major Friedlin 4I1I ; 1.5 ; Crystal structure of a putative Cytosolic malate dehydrogenase from Leishmania major Friedlin in complex with NAD 5TR7 ; 2.05 ; Crystal structure of a putative D-alanyl-D-alanine carboxypeptidase from Vibrio cholerae O1 biovar eltor str. N16961 8DT1 ; 1.8 ; Crystal Structure of a Putative D-beta-hydroxybutyrate dehydrogenase from Burkholderia cenocepacia J2315 in complex with NAD 5DT9 ; 2.663 ; Crystal structure of a putative D-Erythronate-4-Phosphate Dehydrogenase from Vibrio cholerae 4HN8 ; 2.2 ; Crystal structure of a putative D-glucarate dehydratase from Pseudomonas mendocina ymp 4WUV ; 1.551 ; Crystal Structure of a putative D-Mannonate oxidoreductase from Haemophilus influenza (Avi_5165, TARGET EFI-513796) with bound NAD 3GWQ ; 2.0 ; Crystal structure of a putative d-serine deaminase (bxe_a4060) from burkholderia xenovorans lb400 at 2.00 A resolution 5GW8 ; 2.0 ; Crystal structure of a putative DAG-like lipase (MgMDL2) from Malassezia globosa 2POZ ; 2.04 ; Crystal structure of a putative dehydratase from Mesorhizobium loti 3CNX ; 2.1 ; CRYSTAL STRUCTURE OF A PUTATIVE DEHYDRATASE FROM THE NTF2-LIKE FAMILY (SAV_4671) FROM STREPTOMYCES AVERMITILIS AT 2.10 A RESOLUTION 3PM9 ; 2.57 ; Crystal structure of a Putative dehydrogenase (RPA1076) from Rhodopseudomonas palustris CGA009 at 2.57 A resolution 4JIG ; 1.85 ; Crystal structure of a putative dehydrogenase from Burkholderia cenocepacia 5THK ; 1.4 ; Crystal Structure of a Putative Dehydrogenase from Burkholderia cenocepacia with bound NADP 4YQY ; 1.381 ; Crystal Structure of a putative Dehydrogenase from Sulfitobacter sp. (COG1028) (TARGET EFI-513936) in its APO form 3E03 ; 1.69 ; Crystal structure of a putative dehydrogenase from Xanthomonas campestris 3F8X ; 1.55 ; Crystal structure of a putative delta-5-3-ketosteroid isomerase (eca2236) from pectobacterium atrosepticum scri1043 at 1.55 A resolution 2PGS ; 2.35 ; Crystal structure of a putative deoxyguanosinetriphosphate triphosphohydrolase from Pseudomonas syringae pv. phaseolicola 1448A 7L9R ; 2.4 ; Crystal Structure of a putative deoxyhypusine synthase from Entamoeba histolytica 3OA3 ; 1.6 ; Crystal structure of a putative deoxyribose-phosphate aldolase from Coccidioides immitis 3NGJ ; 1.7 ; Crystal structure of a putative deoxyribose-phosphate aldolase from Entamoeba histolytica 3T5P ; 2.5 ; Crystal structure of a putative diacylglycerol kinase from Bacillus anthracis str. Sterne 2QJC ; 2.05 ; Crystal structure of a putative diadenosine tetraphosphatase 3NA8 ; 1.85 ; Crystal Structure of a putative dihydrodipicolinate synthetase from Pseudomonas aeruginosa 2GD9 ; 2.3 ; Crystal structure of a putative dihydrofolate reductase (bsu40760, yyap) from bacillus subtilis at 2.30 A resolution 2QTD ; 1.7 ; Crystal structure of a putative dinitrogenase (mj0327) from methanocaldococcus jannaschii dsm at 1.70 A resolution 1O13 ; 1.83 ; Crystal structure of a putative dinitrogenase iron-molybdenum cofactor (tm1816) from thermotoga maritima at 1.83 A resolution 2PEB ; 1.46 ; Crystal structure of a putative dioxygenase (npun_f1925) from nostoc punctiforme pcc 73102 at 1.46 A resolution 2QDR ; 2.6 ; Crystal structure of a putative dioxygenase (npun_f5605) from nostoc punctiforme pcc 73102 at 2.60 A resolution 4Q1V ; 2.48 ; Crystal structure of a putative dipeptidyl aminopeptidase IV (BACOVA_01349) from Bacteroides ovatus ATCC 8483 at 2.48 A resolution 3NPF ; 1.72 ; Crystal structure of a putative dipeptidyl-peptidase VI (BACOVA_00612) from Bacteroides ovatus at 1.72 A resolution 4R0K ; 1.75 ; Crystal structure of a putative dipeptidyl-peptidase VI (BT_1314) from Bacteroides thetaiotaomicron VPI-5482 at 1.75 A resolution 3PVQ ; 2.1 ; Crystal structure of a putative dipeptidyl-peptidase VI (BT_1314) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.10 A resolution 1XD7 ; 2.3 ; Crystal structure of a putative DNA binding protein 2PG4 ; 2.21 ; Crystal structure of a putative dna binding protein (ape_0880a) from aeropyrum pernix k1 at 2.21 A resolution 3HTN ; 1.5 ; Crystal structure of a putative dna binding protein (bt_1116) from bacteroides thetaiotaomicron vpi-5482 at 1.50 A resolution 2F22 ; 1.42 ; CRYSTAL STRUCTURE OF A PUTATIVE DNA DAMAGE-INDUCABLE (DINB) PROTEIN (BH3987) FROM BACILLUS HALODURANS AT 1.42 A RESOLUTION 2QNL ; 1.5 ; CRYSTAL STRUCTURE OF A PUTATIVE DNA DAMAGE-INDUCIBLE PROTEIN (CHU_0679) FROM CYTOPHAGA HUTCHINSONII ATCC 33406 AT 1.50 A RESOLUTION 3T0P ; 2.26 ; Crystal structure of a Putative DNA polymerase III beta subunit (EUBREC_0002; ERE_29750) from Eubacterium rectale ATCC 33656 at 2.26 A resolution 3BOS ; 1.75 ; Crystal structure of a putative dna replication regulator HDA (SAMA_1916) from Shewanella amazonensis sb2b at 1.75 A resolution 3SC3 ; 3.001 ; Crystal structure of a Putative DNA replication regulator Hda (Sama_1916) from SHEWANELLA AMAZONENSIS SB2B at 3.00 A resolution 1VJF ; 1.62 ; CRYSTAL STRUCTURE OF A PUTATIVE DNA-BINDING PROTEIN (CC_0111) FROM CAULOBACTER CRESCENTUS CB15 AT 1.62 A RESOLUTION 2OBP ; 1.7 ; Crystal structure of a putative dna-binding protein (reut_b4095) from ralstonia eutropha jmp134 at 1.70 A resolution 3BS3 ; 1.65 ; Crystal structure of a putative DNA-binding protein from Bacteroides fragilis 2HAG ; 2.75 ; Crystal structure of a putative dyp-type peroxidase protein (so_0740) from shewanella oneidensis at 2.75 A resolution 3FH3 ; 2.102 ; Crystal structure of a putative ECF-type sigma factor negative effector from Bacillus anthracis str. Sterne 4L8J ; 2.06 ; Crystal structure of a Putative efflux transporter (BACEGG_01895) from Bacteroides eggerthii DSM 20697 at 2.06 A resolution 3HRL ; 1.95 ; Crystal structure of a putative endonuclease-like protein (ngo0050) from neisseria gonorrhoeae 2HBW ; 1.05 ; Crystal structure of a putative endopeptidase (ava_3396) from anabaena variabilis atcc 29413 at 1.05 A resolution 2OTM ; 1.85 ; Crystal structure of a putative endoribonuclease (so_1960) from shewanella oneidensis mr-1 at 1.85 A resolution 2B33 ; 2.3 ; CRYSTAL STRUCTURE OF A PUTATIVE ENDORIBONUCLEASE (TM0215) FROM THERMOTOGA MARITIMA MSB8 AT 2.30 A RESOLUTION 3MQW ; 1.8 ; Crystal structure of a putative endoribonuclease L-PSP from Entamoeba histolytica with higher solvent content and an ordered N-terminal tag 3M4S ; 2.3 ; Crystal structure of a putative endoribonuclease L-PSP from Entamoeba histolytica, orthorhombic form 3M1X ; 1.2 ; Crystal structure of a putative endoribonuclease L-PSP from Entamoeba histolytica, rhomobohedral form 4KNP ; 1.898 ; Crystal Structure Of a Putative enoyl-coA hydratase (PSI-NYSGRC-019597) from Mycobacterium avium paratuberculosis K-10 4OG1 ; 2.05 ; Crystal Structure of a Putative Enoyl-CoA Hydratase from Novosphingobium aromaticivorans DSM 12444 3GKB ; 1.8 ; Crystal structure of a putative enoyl-CoA hydratase from Streptomyces avermitilis 3H0U ; 1.5 ; Crystal structure of a putative enoyl-CoA hydratase from Streptomyces avermitilis 4OLQ ; 2.7 ; Crystal Structure of a Putative enoyl-CoA hydratase/isomerase family protein from Hyphomonas neptunium 5C9G ; 2.1 ; Crystal Structure of a Putative enoyl-CoA hydratase/isomerase family protein from Hyphomonas neptunium 3FDU ; 2.0 ; Crystal structure of a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii 4WCZ ; 1.82 ; Crystal structure of a putative enoyl-CoA hydratase/isomerase from Novosphingobium aromaticivorans 2FKB ; 2.0 ; Crystal structure of a putative enzyme (possible Nudix hydrolase) from Escherichia Coli K12 4LW8 ; 2.1 ; Crystal structure of a putative epimerase from Burkholderia cenocepacia J2315 5BOV ; 1.6 ; Crystal structure of a putative epoxide hydrolase (KPN_01808) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.60 A resolution 4Q34 ; 1.6 ; Crystal structure of a putative esterase (BDI_1566) from Parabacteroides distasonis ATCC 8503 at 1.60 A resolution 3D7R ; 2.01 ; Crystal structure of a putative esterase from Staphylococcus aureus 2PYT ; 1.9 ; Crystal structure of a putative ethanolamine utilization protein q (eutq, stm2468) from salmonella typhimurium lt2 at 1.90 A resolution 4RAA ; 2.6 ; Crystal structure of a Putative exported protein (BF0058) from Bacteroides fragilis NCTC 9343 at 2.60 A resolution 3FZX ; 2.22 ; CRYSTAL STRUCTURE OF A PUTATIVE EXPORTED PROTEIN WITH YMCC-LIKE FOLD (BF2203) FROM BACTEROIDES FRAGILIS NCTC 9343 AT 2.22 A RESOLUTION 4NKP ; 1.24 ; Crystal structure of a putative extracellular heme-binding protein (DESPIG_02683) from Desulfovibrio piger ATCC 29098 at 1.24 A resolution 3DTT ; 1.7 ; Crystal structure of a putative f420 dependent nadp-reductase (arth_0613) from arthrobacter sp. fb24 at 1.70 A resolution 4HB9 ; 1.93 ; Crystal structure of a putative FAD containing monooxygenase from Photorhabdus luminescens subsp. laumondii TTO1 (Target PSI-012791) 4F62 ; 2.101 ; Crystal structure of a putative farnesyl-diphosphate synthase from Marinomonas sp. MED121 (Target EFI-501980) 2ETV ; 1.7 ; Crystal structure of a putative fe(iii) abc transporter (tm0189) from thermotoga maritima msb8 at 1.70 A resolution 2QGO ; 2.04 ; Crystal structure of a putative Fe-S biosynthesis protein from Lactobacillus acidophilus 2P2E ; 2.48 ; Crystal structure of a putative Fe-S biosynthesis protein from Lactobacillus salivarius with novel protein fold 1VJX ; 2.3 ; Crystal structure of a putative ferritin-like diiron-carboxylate protein (tm1526) from thermotoga maritima at 2.30 A resolution 2FUP ; 1.48 ; Crystal structure of a putative flagella synthesis protein flgn (pa3352) from pseudomonas aeruginosa at 1.48 A resolution 1VHN ; 1.59 ; Crystal structure of a putative flavin oxidoreductase with flavin 2R0X ; 1.06 ; Crystal structure of a putative flavin reductase (ycdh, hs_1225) from haemophilus somnus 129pt at 1.06 A resolution 4ICI ; 1.4 ; Crystal structure of a putative flavoprotein (BACEGG_01620) from Bacteroides eggerthii DSM 20697 at 1.40 A resolution 4J8P ; 1.5 ; Crystal structure of a Putative flavoprotein (BACUNI_04544) from Bacteroides uniformis ATCC 8492 at 1.50 A resolution 2FUR ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE FMN-BINDING PROTEIN (TA1372) FROM THERMOPLASMA ACIDOPHILUM AT 1.80 A RESOLUTION 2R01 ; 1.15 ; Crystal structure of a putative fmn-dependent nitroreductase (ct0345) from chlorobium tepidum tls at 1.15 A resolution 2PW9 ; 2.1 ; Crystal structure of a putative formate dehydrogenase accessory protein from Desulfotalea psychrophila 1QP8 ; 2.8 ; CRYSTAL STRUCTURE OF A PUTATIVE FORMATE DEHYDROGENASE FROM PYROBACULUM AEROPHILUM 2GVI ; 1.87 ; Crystal structure of a putative formylmethanofuran dehydrogenase subunit e (ta1109) from thermoplasma acidophilum at 1.87 A resolution 3PM6 ; 2.2 ; Crystal structure of a putative fructose-1,6-biphosphate aldolase from Coccidioides immitis solved by combined SAD MR 3S52 ; 2.012 ; Crystal structure of a putative fumarylacetoacetate hydrolase family protein from Yersinia pestis CO92 3V77 ; 2.1 ; Crystal structure of a putative fumarylacetoacetate isomerase/hydrolase from Oleispira antarctica 4MAQ ; 1.4 ; Crystal Structure of a putative fumarylpyruvate hydrolase from Burkholderia cenocepacia 5HL6 ; 1.8499 ; Crystal Structure of a Putative GAF sensor protein from Burkholderia vietnamiensis 3STP ; 1.88 ; Crystal structure of a putative galactonate dehydratase 3MWX ; 1.45 ; Crystal structure of a putative galactose mutarotase (BSU18360) from BACILLUS SUBTILIS at 1.45 A resolution 2Q0T ; 1.7 ; Crystal structure of a putative gamma-carboxymuconolactone decarboxylase subunit (bxe_b0980) from burkholderia xenovorans lb400 at 1.70 A resolution 3M1U ; 1.75 ; Crystal structure of a Putative gamma-D-glutamyl-L-diamino acid endopeptidase (DVU_0896) from DESULFOVIBRIO VULGARIS HILDENBOROUGH at 1.75 A resolution 2EVR ; 1.6 ; CRYSTAL STRUCTURE OF A PUTATIVE GAMMA-D-GLUTAMYL-L-DIAMINO ACID ENDOPEPTIDASE (NPUN_R0659) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.60 A RESOLUTION 2FG0 ; 1.79 ; Crystal structure of a putative gamma-d-glutamyl-l-diamino acid endopeptidase (npun_r0659) from nostoc punctiforme pcc 73102 at 1.79 A resolution 4LHS ; 1.4 ; Crystal structure of a putative GDSL-like lipase (BACOVA_00914) from Bacteroides ovatus ATCC 8483 at 1.40 A resolution 4NRD ; 2.1 ; Crystal structure of a putative GDSL-like lipase (BACOVA_04955) from Bacteroides ovatus ATCC 8483 at 2.10 A resolution 4M8K ; 1.9 ; Crystal structure of a putative GDSL-like lipase (BACUNI_00748) from Bacteroides uniformis ATCC 8492 at 1.90 A resolution 4Q9A ; 2.86 ; Crystal structure of a putative GDSL-like lipase (PARMER_00689) from Parabacteroides merdae ATCC 43184 at 2.86 A resolution 3DMB ; 2.3 ; Crystal structure of a putative general stress family protein (xcc2264) from xanthomonas campestris pv. campestris at 2.30 A resolution 2QEA ; 2.46 ; CRYSTAL STRUCTURE OF A PUTATIVE GENERAL STRESS PROTEIN 26 (JANN_0955) FROM JANNASCHIA SP. CCS1 AT 2.46 A RESOLUTION 3D5P ; 1.45 ; CRYSTAL STRUCTURE OF A PUTATIVE GLUCAN SYNTHESIS REGULATOR OF SMI1/KNR4 FAMILY (BF1740) FROM BACTEROIDES FRAGILIS NCTC 9343 AT 1.45 A RESOLUTION 4QT9 ; 2.05 ; Crystal structure of a putative glucoamylase (BACCAC_03554) from Bacteroides caccae ATCC 43185 at 2.05 A resolution 4GL3 ; 2.01 ; Crystal structure of a putative glucoamylase (BACUNI_03963) from Bacteroides uniformis ATCC 8492 at 2.01 A resolution 4IBO ; 2.1 ; Crystal structure of a putative gluconate dehydrogenase from agrobacterium tumefaciens (target EFI-506446) 2A3N ; 1.23 ; Crystal structure of a putative glucosamine-fructose-6-phosphate aminotransferase (stm4540.s) from salmonella typhimurium lt2 at 1.35 A resolution 4MOW ; 1.95 ; Crystal structure of a putative glucose 1-dehydrogenase from Burkholderia cenocepacia J2315 3CBU ; 2.05 ; Crystal structure of a putative glutathione s-transferase (reut_a1011) from ralstonia eutropha jmp134 at 2.05 A resolution 3N6X ; 2.35 ; Crystal structure of a Putative glutathionylspermidine synthase (Mfla_0391) from METHYLOBACILLUS FLAGELLATUS KT at 2.35 A resolution 2O55 ; 2.806 ; Crystal Structure of a putative glycerophosphodiester phosphodiesterase from Galdieria sulphuraria 3R67 ; 2.3 ; Crystal structure of a putative glycosidase (BT_4094) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.30 A resolution 2AAM ; 2.2 ; Crystal structure of a putative glycosidase (tm1410) from thermotoga maritima at 2.20 A resolution 4JRL ; 2.1 ; Crystal structure of a putative glycoside hydrolase (BACOVA_00087) from Bacteroides ovatus ATCC 8483 at 2.10 A resolution 4ONZ ; 1.85 ; Crystal structure of a putative glycoside hydrolase (BACOVA_02161) from Bacteroides ovatus ATCC 8483 at 1.85 A resolution 3TAW ; 1.7 ; Crystal structure of a putative glycoside hydrolase (BDI_3141) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution 4HET ; 2.1 ; Crystal structure of a putative glycoside hydrolase (BT3745) from Bacteroides thetaiotaomicron VPI-5482 at 2.10 A resolution 3HBZ ; 2.05 ; Crystal structure of a putative glycoside hydrolase (bt_2081) from bacteroides thetaiotaomicron vpi-5482 at 2.05 A resolution 3S30 ; 2.46 ; Crystal structure of a putative glycoside hydrolase (BVU_0247) from Bacteroides vulgatus ATCC 8482 at 2.46 A resolution 4N0R ; 1.8 ; Crystal structure of a putative glycoside hydrolase (BVU_0362) from Bacteroides vulgatus ATCC 8482 at 1.80 A resolution 2RDY ; 2.03 ; Crystal structure of a putative glycoside hydrolase family protein from Bacillus halodurans 3LM3 ; 1.44 ; Crystal structure of a putative glycoside hydrolase/deacetylase (bdi_3119) from parabacteroides distasonis at 1.44 A resolution 4HXC ; 2.15 ; Crystal structure of a putative glycosyl hydrolase (BACUNI_00951) from Bacteroides uniformis ATCC 8492 at 2.15 A resolution 3U1X ; 1.7 ; Crystal structure of a putative glycosyl hydrolase (BDI_1869) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution 3S5Q ; 1.85 ; Crystal structure of a putative glycosyl hydrolase (BDI_2473) from Parabacteroides distasonis ATCC 8503 at 1.85 A resolution 4QHZ ; 2.13 ; Crystal structure of a putative glycosyl hydrolase (BDI_3914) from Parabacteroides distasonis ATCC 8503 at 2.13 A resolution 3OSD ; 1.8 ; Crystal structure of a putative glycosyl hydrolase (BT2157) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.80 A resolution 4JQT ; 2.49 ; Crystal structure of a putative glycosyl hydrolase (BT3469) from Bacteroides thetaiotaomicron VPI-5482 at 2.49 A resolution 4MXN ; 1.95 ; Crystal structure of a putative glycosyl hydrolase (PARMER_00599) from Parabacteroides merdae ATCC 43184 at 1.95 A resolution 3B7F ; 2.2 ; Crystal structure of a putative glycosyl hydrolase with bnr repeats (reut_b4987) from ralstonia eutropha jmp134 at 2.20 A resolution 4MU9 ; 1.89 ; Crystal structure of a putative glycosylhydrolase (BT_3782) from Bacteroides thetaiotaomicron VPI-5482 at 1.89 A resolution 3BCV ; 2.35 ; Crystal structure of a putative glycosyltransferase from Bacteroides fragilis 3OY2 ; 2.31 ; Crystal structure of a putative glycosyltransferase from Paramecium bursaria Chlorella virus NY2A 3NYY ; 1.6 ; Crystal structure of a putative glycyl-glycine endopeptidase lytM (RUMGNA_02482) from Ruminococcus gnavus ATCC 29149 at 1.60 A resolution 3CT8 ; 2.1 ; Crystal structure of a putative glyoxalase (NP_243026.1) from Bacillus halodurans at 2.10 A resolution 3FCD ; 1.92 ; Crystal Structure of a putative glyoxalase from an environmental bacteria 3E5D ; 2.7 ; Crystal structure of a putative glyoxalase i (lmof2365_0426) from listeria monocytogenes str. 4b f2365 at 2.70 A resolution 3VCX ; 1.39 ; Crystal structure of a putative glyoxalase/bleomycin resistance protein from Rhodopseudomonas palustris CGA009 2A9V ; 2.24 ; Crystal structure of a putative gmp synthase subunit a protein (ta0944m) from thermoplasma acidophilum at 2.45 A resolution 2AJ6 ; 1.63 ; Crystal structure of a putative gnat family acetyltransferase (mw0638) from staphylococcus aureus subsp. aureus at 1.63 A resolution 3TAU ; 2.05 ; Crystal Structure of a Putative Guanylate Monophosphaste Kinase from Listeria monocytogenes EGD-e 2O2X ; 1.5 ; Crystal structure of a putative had-like phosphatase (mll2559) from mesorhizobium loti at 1.50 A resolution 2P11 ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE HALOACID DEHALOGENASE-LIKE HYDROLASE (BXE_B1342) FROM BURKHOLDERIA XENOVORANS LB400 AT 2.20 A RESOLUTION 2O08 ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE HD SUPERFAMILY HYDROLASE (BH1327) FROM BACILLUS HALODURANS AT 1.90 A RESOLUTION 1VL7 ; 1.5 ; Crystal structure of a putative heme oxygenase (alr5027) from nostoc sp. pcc 7120 at 1.50 A resolution 3FM2 ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE HEME-BINDING PROTEIN (AVA_4353) FROM ANABAENA VARIABILIS ATCC 29413 AT 1.80 A RESOLUTION 4GIC ; 2.052 ; Crystal Structure Of a Putative Histidinol dehydrogenase (Target PSI-014034) from Methylococcus capsulatus 3U22 ; 2.12 ; Crystal structure of a putative HmuY_like heme binding protein (BVU_2192) from Bacteroides vulgatus ATCC 8482 at 2.12 A resolution 6V77 ; 1.75 ; Crystal structure of a putative HpcE protein from Mycobacterium smegmatis 2HZT ; 2.0 ; Crystal Structure of a putative HTH-type transcriptional regulator ytcD 2QE8 ; 1.35 ; Crystal structure of a putative hydrolase (ava_4197) from anabaena variabilis atcc 29413 at 1.35 A resolution 4HBS ; 2.8 ; Crystal structure of a putative hydrolase (BACOVA_04882) from Bacteroides ovatus ATCC 8483 at 2.80 A resolution 4H08 ; 1.8 ; Crystal structure of a putative hydrolase (BT3161) from Bacteroides thetaiotaomicron VPI-5482 at 1.80 A resolution 3SGG ; 1.25 ; Crystal structure of a putative hydrolase (BT_2193) from Bacteroides thetaiotaomicron VPI-5482 at 1.25 A resolution 4QHB ; 2.44 ; Crystal structure of a putative hydrolase (BVU_2763) from Bacteroides vulgatus ATCC 8482 at 2.44 A resolution 3G8Y ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE HYDROLASE (BVU_4111) FROM BACTEROIDES VULGATUS ATCC 8482 AT 1.90 A RESOLUTION 4EZI ; 1.15 ; Crystal structure of a putative hydrolase (lpg1103) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 1.15 A resolution 4QKU ; 2.45 ; Crystal structure of a putative hydrolase from Burkholderia cenocepacia 2QJW ; 1.35 ; CRYSTAL STRUCTURE OF A PUTATIVE HYDROLASE OF THE ALPHA/BETA SUPERFAMILY (XCC1541) FROM XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS AT 1.35 A RESOLUTION 3CMN ; 2.25 ; Crystal structure of a putative hydrolase with a novel fold from Chloroflexus aurantiacus 4JUU ; 1.75 ; Crystal structure of a putative hydroxyproline epimerase from xanthomonas campestris (TARGET EFI-506516) with bound phosphate and unknown ligand 3R4K ; 2.46 ; Crystal structure of a putative ICLR transcriptional regulator (TM1040_3717) from SILICIBACTER SP. TM1040 at 2.46 A resolution 3E0Z ; 1.75 ; Crystal structure of a putative imidazole glycerol phosphate synthase homolog (eubrec_1070) from eubacterium rectale at 1.75 A resolution 3N6Z ; 1.3 ; Crystal structure of a putative immunoglobulin A1 protease (BACOVA_03286) from Bacteroides ovatus at 1.30 A resolution 3CNY ; 1.85 ; Crystal structure of a putative inositol catabolism protein iole (iole, lp_3607) from lactobacillus plantarum wcfs1 at 1.85 A resolution 4H3E ; 2.25 ; Crystal structure of a putative iron superoxide dismutase from Trypanosoma cruzi bound to iron 2RE2 ; 1.3 ; CRYSTAL STRUCTURE OF A PUTATIVE IRON-MOLYBDENUM COFACTOR (FEMO-CO) DINITROGENASE (TA1041M) FROM THERMOPLASMA ACIDOPHILUM DSM 1728 AT 1.30 A RESOLUTION 4ECG ; 2.3 ; Crystal structure of a putative iron-regulated protein A precursor (BDI_2603) from Parabacteroides distasonis ATCC 8503 at 2.30 A resolution 3OQP ; 1.22 ; Crystal structure of a putative isochorismatase (Bxe_A0706) from BURKHOLDERIA XENOVORANS LB400 at 1.22 A resolution 3KL2 ; 2.3 ; Crystal structure of a putative isochorismatase from Streptomyces avermitilis 3DXO ; 2.7 ; CRYSTAL STRUCTURE OF A PUTATIVE ISOMERASE OF THE SNOAL-LIKE FAMILY (ATU_0744) FROM AGROBACTERIUM TUMEFACIENS STR. C58 AT 2.70 A RESOLUTION 4KTO ; 2.137 ; Crystal Structure Of a Putative Isovaleryl-CoA dehydrogenase (PSI-NYSGRC-012251) from Sinorhizobium meliloti 1021 3VCR ; 1.84 ; Crystal structure of a putative Kdpg (2-keto-3-deoxy-6-phosphogluconate) aldolase from Oleispira antarctica 3V1T ; 1.88 ; Crystal structure of a putative ketoacyl reductase (FabG4) from Mycobacterium tuberculosis H37Rv at 1.9 Angstrom resolution 3GHY ; 2.0 ; Crystal structure of a putative ketopantoate reductase from Ralstonia solanacearum MolK2 3BB9 ; 1.8 ; Crystal structure of a putative ketosteroid isomerase (sfri_1973) from shewanella frigidimarina ncimb 400 at 1.80 A resolution 1VHC ; 1.89 ; Crystal structure of a putative KHG/KDPG aldolase 2RHM ; 1.7 ; Crystal structure of a putative kinase (caur_3907) from chloroflexus aurantiacus j-10-fl at 1.70 A resolution 3PJ0 ; 1.8 ; Crystal structure of a putative L-allo-threonine aldolase (lmo0305) from Listeria monocytogenes EGD-E at 1.80 A resolution 1Z9T ; 1.54 ; CRYSTAL STRUCTURE OF A PUTATIVE LACCASE (YFIH) FROM ESCHERICHIA COLI AT 1.54 A RESOLUTION 3GBV ; 2.2 ; Crystal structure of a putative LacI transcriptional regulator from Bacteroides fragilis 2P4O ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE LACTONASE OF THE SMP-30/GLUCONOLACTONASE/LRE-LIKE REGION FAMILY (NPUN_F0524) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.90 A RESOLUTION 3G12 ; 2.58 ; Crystal structure of a putative lactoylglutathione lyase from Bdellovibrio bacteriovorus 4OPM ; 1.7 ; Crystal structure of a putative lipase (lip1) from Acinetobacter baumannii AYE at 1.70 A resolution 2RAU ; 1.85 ; Crystal structure of a putative lipase (NP_343859.1) from Sulfolobus solfataricus at 1.85 A resolution 3BZW ; 1.87 ; Crystal structure of a putative lipase from Bacteroides thetaiotaomicron 3H3I ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE LIPID BINDING PROTEIN (BT_2261) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 2.20 A RESOLUTION 2RDC ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE LIPID BINDING PROTEIN (GSU0061) FROM GEOBACTER SULFURREDUCENS PCA AT 1.80 A RESOLUTION 1VQZ ; 1.99 ; Crystal structure of a putative lipoate-protein ligase a (sp_1160) from streptococcus pneumoniae tigr4 at 1.99 A resolution 3UP9 ; 2.35 ; Crystal structure of a putative lipoprotein (ACTODO_00931) from Actinomyces odontolyticus ATCC 17982 at 2.35 A resolution 3OQQ ; 2.08 ; Crystal structure of a Putative lipoprotein (BACOVA_00967) from Bacteroides ovatus at 2.08 A resolution 4FVS ; 2.7 ; Crystal structure of a putative lipoprotein (BDI_3050) from Parabacteroides distasonis ATCC 8503 at 2.70 A resolution 4GBS ; 2.48 ; Crystal structure of a putative lipoprotein (BF2707) from Bacteroides fragilis NCTC 9343 at 2.75 A resolution 3NQI ; 1.87 ; Crystal structure of a Putative lipoprotein (BF3042) from Bacteroides fragilis NCTC 9343 at 1.87 A resolution 4KWY ; 2.4 ; Crystal structure of a putative lipoprotein (CC_3750) from Caulobacter crescentus CB15 at 2.40 A resolution 4EXR ; 1.85 ; Crystal structure of a putative lipoprotein (CD1622) from Clostridium difficile 630 at 1.85 A resolution 4OTE ; 2.2 ; Crystal structure of a putative lipoprotein (CD630_1653) from Clostridium difficile 630 at 2.20 A resolution 4IB2 ; 1.76 ; Crystal structure of a putative lipoprotein (RUMGNA_00858) from Ruminococcus gnavus ATCC 29149 at 1.76 A resolution 4R4G ; 2.62 ; Crystal structure of a putative lipoprotein (ycdA) from Bacillus subtilis subsp. subtilis str. 168 at 2.62 A resolution 5CAI ; 2.3 ; Crystal structure of a putative lipoprotein from the DUF903 family (KPN_03160) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 2.30 A resolution 3QQW ; 2.44 ; Crystal structure of a putative lyase (Reut_B4148) from Ralstonia eutropha JMP134 at 2.44 A resolution 4LSB ; 1.8 ; Crystal structure of a putative lyase/mutase from Burkholderia cenocepacia J2315 4OMV ; 2.75 ; Crystal Structure of a Putative Macrophage Growth Locus, subunit A From Francisella tularensis SCHU S4 2A9F ; 2.5 ; Crystal structure of a putative malic enzyme ((S)-malate:NAD+ oxidoreductase (decarboxylating)) 2HAE ; 3.13 ; Crystal structure of a putative malic enzyme (malate oxidoreductase) 4E5T ; 2.9 ; Crystal structure of a putative Mandelate racemase/Muconate lactonizing enzyme (Target PSI-200750) from Labrenzia alexandrii DFL-11 4E4U ; 1.35 ; Crystal structure of a putative Mandelate racemase/Muconate lactonizing enzyme (Target PSI-200780) from Burkholderia SAR-1 3T9P ; 1.97 ; Crystal structure of a putative mandelate racemase/muconate lactonizing enzyme family protein from Roseovarius 4JHM ; 2.8 ; Crystal structure of a putative mandelate racemase/muconate lactonizing enzyme from Pseudovibrio sp. 3EEZ ; 2.8 ; Crystal structure of a putative mandelate racemase/muconate lactonizing enzyme from Silicibacter pomeroyi 3SQS ; 1.9 ; Crystal Structure of a putative mandelate racemase/muconate lactonizing protein from Dinoroseobacter shibae DFL 12 2OPK ; 2.1 ; CRYSTAL STRUCTURE OF A PUTATIVE MANNOSE-6-PHOSPHATE ISOMERASE (REUT_A1446) FROM RALSTONIA EUTROPHA JMP134 AT 2.10 A RESOLUTION 4G5A ; 1.69 ; Crystal structure of a putative member of duf 3244 protein family (BT_1867) from Bacteroides thetaiotaomicron VPI-5482 at 1.69 A resolution 3SD2 ; 1.4 ; Crystal structure of a putative member of duf3244 protein family (BT_3571) from Bacteroides thetaiotaomicron vpi-5482 at 1.40 A resolution 2HKV ; 1.7 ; CRYSTAL STRUCTURE OF A PUTATIVE MEMBER OF THE DINB FAMILY (EXIG_1237) FROM EXIGUOBACTERIUM SIBIRICUM 255-15 AT 1.70 A RESOLUTION 3C8I ; 1.95 ; Crystal structure of a putative membrane protein from Corynebacterium diphtheriae 3DZA ; 1.65 ; Crystal structure of a putative membrane protein of unknown function (yfdx) from klebsiella pneumoniae subsp. at 1.65 A resolution 3U7Z ; 1.3 ; Crystal structure of a putative metal binding protein RUMGNA_00854 (ZP_02040092.1) from Ruminococcus gnavus ATCC 29149 at 1.30 A resolution 2OGI ; 1.85 ; Crystal structure of a putative metal dependent phosphohydrolase (sag1661) from streptococcus agalactiae serogroup v at 1.85 A resolution 2P1A ; 2.1 ; Crystal structure of a putative metal-binding protein (bce_2162) from bacillus cereus atcc 10987 at 2.10 A resolution 2P97 ; 1.65 ; CRYSTAL STRUCTURE OF A PUTATIVE METAL-DEPENDENT HYDROLASE (AVA_3068) FROM ANABAENA VARIABILIS ATCC 29413 AT 1.65 A RESOLUTION 2QE9 ; 1.9 ; Crystal structure of a putative metal-dependent hydrolase (yiza, bsu10800) from bacillus subtilis at 1.90 A resolution 3KHI ; 1.95 ; Crystal structure of a Putative Metal-dependent Hydrolase (YP_001336084.1) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.95 A resolution 3DL1 ; 2.2 ; Crystal structure of a Putative Metal-dependent Hydrolase (YP_001336084.1) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 2.20 A resolution 3O0F ; 1.94 ; Crystal structure of a putative metal-dependent phosphoesterase (BAD_1165) from bifidobacterium adolescentis atcc 15703 at 1.94 A resolution 3E0F ; 2.4 ; Crystal structure of a putative metal-dependent phosphoesterase (bad_1165) from bifidobacterium adolescentis atcc 15703 at 2.40 A resolution 1ZTC ; 2.1 ; Crystal structure of a putative metallo-beta-lactamase (tm0894) from Thermotoga maritima at 2.10 A resolution 2OU6 ; 1.8 ; Crystal structure of a putative metalloenzyme of the duf664 family (dr_1065) from deinococcus radiodurans at 1.80 A resolution 2QVP ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE METALLOPEPTIDASE (SAMA_0725) FROM SHEWANELLA AMAZONENSIS SB2B AT 2.00 A RESOLUTION 3B2Y ; 1.74 ; CRYSTAL STRUCTURE OF a putative metallopeptidase (SDEN_2526) FROM SHEWANELLA DENITRIFICANS OS217 AT 1.74 A RESOLUTION 4GOT ; 1.95 ; Crystal structure of a putative methionine-binding lipoprotein (BSU32730) from Bacillus subtilis subsp. subtilis str. 168 at 1.95 A resolution 3GM5 ; 2.0 ; Crystal structure of a putative methylmalonyl-coenzyme A epimerase from Thermoanaerobacter tengcongensis at 2.0 A resolution 4KN5 ; 1.7 ; Crystal structure of a putative methylthioadenosine nucleosidase from Weissella paramesenteroides ATCC 33313 (Target NYSGRC-029342 ) 3CC8 ; 1.64 ; Crystal structure of a putative methyltransferase (bce_1332) from bacillus cereus atcc 10987 at 1.64 A resolution 1VL5 ; 1.95 ; CRYSTAL STRUCTURE OF A PUTATIVE METHYLTRANSFERASE (BH2331) FROM BACILLUS HALODURANS C-125 AT 1.95 A RESOLUTION 2I6G ; 1.9 ; Crystal structure of a putative methyltransferase (tehb, stm1608) from salmonella typhimurium lt2 at 1.90 A resolution 2QE6 ; 1.95 ; CRYSTAL STRUCTURE OF A PUTATIVE METHYLTRANSFERASE (TFU_2867) FROM THERMOBIFIDA FUSCA YX AT 1.95 A RESOLUTION 4IWN ; 1.73 ; Crystal structure of a putative methyltransferase CmoA in complex with a novel SAM derivative 4ISC ; 2.78 ; Crystal structure of a putative Methyltransferase from Pseudomonas syringae 1VL4 ; 1.95 ; CRYSTAL STRUCTURE OF A PUTATIVE MODULATOR OF A DNA GYRASE (TM0727) FROM THERMOTOGA MARITIMA MSB8 AT 1.95 A RESOLUTION 1VPB ; 1.75 ; CRYSTAL STRUCTURE OF A PUTATIVE MODULATOR OF DNA GYRASE (BT3649) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 1.75 A RESOLUTION 4Q51 ; 1.9 ; Crystal structure of a putative molybdenum cofactor biosynthesis protein F from Burkholderia cenocepacia J2315 2RIL ; 1.26 ; Crystal structure of a putative monooxygenase (YP_001095275.1) from Shewanella loihica PV-4 at 1.26 A resolution 4IAB ; 1.66 ; Crystal structure of a putative monosaccharide binding protein (BACUNI_03039) from Bacteroides uniformis ATCC 8492 at 1.70 A resolution 2PGW ; 1.95 ; Crystal structure of a putative muconate cycloisomerase from Sinorhizobium meliloti 1021 3BDD ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE MULTIPLE ANTIBIOTIC-RESISTANCE REPRESSOR (SSU05_1136) FROM STREPTOCOCCUS SUIS 89/1591 AT 2.20 A RESOLUTION 2HTB ; 2.5 ; Crystal Structure of a putative mutarotase (YeaD) from Salmonella typhimurium in monoclinic form 2HTA ; 1.9 ; Crystal Structure of a putative mutarotase (YeaD) from Salmonella typhimurium in orthorhombic form 4HKT ; 2.0 ; Crystal structure of a putative myo-inositol dehydrogenase from Sinorhizobium meliloti 1021 (Target PSI-012312) 3FIX ; 2.3 ; Crystal structure of a putative n-acetyltransferase (ta0374) from thermoplasma acidophilum 3UF0 ; 2.0 ; Crystal structure of a putative NAD(P) dependent gluconate 5-dehydrogenase from Beutenbergia cavernae(EFI target EFI-502044) with bound NADP (low occupancy) 3GE5 ; 1.7 ; Crystal structure of a putative nad(p)h:fmn oxidoreductase (pg0310) from porphyromonas gingivalis w83 at 1.70 A resolution 3GBH ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE NAD(P)H:FMN OXIDOREDUCTASE (SE1966) FROM STAPHYLOCOCCUS EPIDERMIDIS ATCC 12228 AT 2.00 A RESOLUTION 3DB2 ; 1.7 ; Crystal structure of a putative nadph-dependent oxidoreductase (dhaf_2064) from desulfitobacterium hafniense dcb-2 at 1.70 A resolution 3PI7 ; 1.71 ; Crystal structure of a putative NADPH:quinone reductase (mll3093) from Mesorhizobium loti at 1.71 A resolution 4Q6K ; 1.902 ; Crystal structure of a putative neuraminidase (BACCAC_01090) from Bacteroides caccae ATCC 43185 at 1.90 A resolution (PSI Community Target) 4IRT ; 1.74 ; Crystal structure of a putative neuraminidase (BACOVA_03493) from Bacteroides ovatus ATCC 8483 at 1.74 A resolution 3H6J ; 1.6 ; Crystal structure of a putative neuraminidase from Pseudomonas aeruginosa 1VLP ; 1.75 ; Crystal structure of a putative nicotinate phosphoribosyltransferase (yor209c, npt1) from saccharomyces cerevisiae at 1.75 A resolution 3L0Z ; 2.65 ; Crystal structure of a putative Nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase from Methanocaldococcus jannaschii DSM 2661 3MST ; 1.35 ; Crystal structure of a Putative nitrate transport protein (TVN0104) from THERMOPLASMA VOLCANIUM at 1.35 A resolution 3EO7 ; 1.8 ; Crystal structure of a putative nitroreductase (ava_2154) from anabaena variabilis atcc 29413 at 1.80 A resolution 3HJ9 ; 2.0 ; Crystal structure of a putative nitroreductase (reut_a1228) from ralstonia eutropha jmp134 at 2.00 A resolution 1VKW ; 2.0 ; Crystal structure of a putative nitroreductase (tm1586) from thermotoga maritima msb8 at 2.00 A resolution 4G8S ; 2.2 ; Crystal Structure Of a Putative Nitroreductase from Geobacter sulfurreducens PCA (Target PSI-013445) 3GFA ; 1.35 ; Crystal structure of a putative nitroreductase in complex with fmn (cd3205) from clostridium difficile 630 at 1.35 A resolution 3E39 ; 1.7 ; Crystal structure of a putative nitroreductase in complex with fmn (dde_0787) from desulfovibrio desulfuricans subsp. at 1.70 A resolution 3GE6 ; 1.85 ; CRYSTAL STRUCTURE OF A PUTATIVE NITROREDUCTASE IN COMPLEX WITH FMN (EXIG_2970) FROM EXIGUOBACTERIUM SIBIRICUM 255-15 AT 1.85 A RESOLUTION 3NL9 ; 1.78 ; Crystal structure of a putative NTP pyrophosphohydrolase (Exig_1061) from EXIGUOBACTERIUM SP. 255-15 at 1.78 A resolution 3OT2 ; 1.96 ; Crystal structure of a putative nuclease belonging to DUF820 (Ava_3926) from Anabaena variabilis ATCC 29413 at 1.96 A resolution 1ZUP ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE NUCLEASE WITH A RIBONUCLEASE H-LIKE MOTIF FOLD (TM1739) FROM THERMOTOGA MARITIMA AT 2.20 A RESOLUTION 7JTA ; 2.801 ; Crystal structure of a putative nuclease with anti-Cas9 activity from an uncultured Clostridia bacterium 2OD5 ; 1.79 ; CRYSTAL STRUCTURE OF A PUTATIVE NUCLEIC ACID BINDING PROTEIN (JCVI_PEP_1096688149193) FROM UNCULTURED MARINE ORGANISM AT 1.79 A RESOLUTION 2G42 ; 2.28 ; Crystal structure of a putative nucleic acid binding protein (tm0693) from thermotoga maritima at 2.28 A resolution 2FZT ; 2.05 ; CRYSTAL STRUCTURE OF a putative nucleic acid binding protein (TM0693) FROM THERMOTOGA MARITIMA MSB8 AT 2.05 A RESOLUTION 4MCJ ; 2.4 ; Crystal structure of a putative nucleoside deoxyribosyltransferase (BDI_0649) from Parabacteroides distasonis ATCC 8503 at 2.40 A resolution 2G0T ; 2.67 ; Crystal structure of a putative nucleotide binding protein (tm0796) from Thermotoga maritima at 2.67 A resolution 2RFF ; 1.4 ; Crystal structure of a putative nucleotidyltransferase (NP_343093.1) from Sulfolobus solfataricus at 1.40 A resolution 2FCL ; 1.2 ; Crystal structure of a putative nucleotidyltransferase (tm1012) from Thermotoga maritima at 1.35 A resolution 2EWR ; 1.6 ; Crystal structure of a putative nucleotidyltransferase (tm1012) from Thermotoga maritima at 1.60 A resolution 4HX0 ; 1.87 ; Crystal structure of a putative nucleotidyltransferase (TM1012) from Thermotoga maritima at 1.87 A resolution 4G2A ; 2.33 ; Crystal structure of a putative nutrient binding protein (lpg2210) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 2.33 A resolution 2R3S ; 2.15 ; CRYSTAL STRUCTURE OF A PUTATIVE O-METHYLTRANSFERASE (NPUN_R0239) FROM NOSTOC PUNCTIFORME PCC 73102 AT 2.15 A RESOLUTION 3TFW ; 1.88 ; Crystal structure of a putative O-methyltransferase from Klebsiella pneumoniae 1VKI ; 1.6 ; Crystal structure of a putative oligo-nucleotide binding protein (atu3699, agr_l_2275) from agrobacterium tumefaciens str. c58 at 1.60 A resolution 3SKS ; 2.05 ; Crystal structure of a putative oligoendopeptidase F from Bacillus anthracis str. Ames 6WPN ; 2.29 ; Crystal structure of a putative oligosaccharide periplasmic-binding protein from Synechococcus sp. MITs9220 6WPM ; 2.88 ; Crystal structure of a putative oligosaccharide periplasmic-binding protein from Synechococcus sp. MITs9220 in complex with zinc 3I07 ; 1.5 ; Crystal structure of a putative organic hydroperoxide resistance protein from Vibrio cholerae O1 biovar eltor str. N16961 3LUS ; 1.96 ; Crystal structure of a putative organic hydroperoxide resistance protein with molecule of captopril bound in one of the active sites from Vibrio cholerae O1 biovar eltor str. N16961 4NOG ; 1.2 ; Crystal structure of a putative ornithine aminotransferase from Toxoplasma gondii ME49 in complex with pyrodoxal-5'-phosphate 2PN2 ; 1.95 ; CRYSTAL STRUCTURE OF A PUTATIVE OSMOTIC STRESS INDUCED AND DETOXIFICATION RESPONSE PROTEIN (PSYC_0566) FROM PSYCHROBACTER ARCTICUS 273-4 AT 2.15 A RESOLUTION 2ONF ; 1.7 ; Crystal structure of a putative osmotically inducible protein c (ta0195) from thermoplasma acidophilum at 1.70 A resolution 4KQT ; 2.83 ; Crystal structure of a putative outer membrane chaperone (OmpH-like) (CC_1914) from Caulobacter crescentus CB15 at 2.83 A resolution (PSI Community Target, Shapiro) 3RWX ; 2.4 ; Crystal structure of a putative outer membrane protein (BF2706) from Bacteroides fragilis NCTC 9343 at 2.40 A resolution 4LER ; 1.42 ; Crystal structure of a putative outer membrane protein, probably involved in nutrient binding (BVU_1254) from Bacteroides vulgatus ATCC 8482 at 1.42 A resolution 2Q9K ; 1.59 ; Crystal structure of a putative oxidoreductase (exig_1997) from exiguobacterium sibiricum 255-15 at 1.59 A resolution 4OO3 ; 2.23 ; Crystal structure of a putative oxidoreductase (PARMER_00841) from Parabacteroides merdae ATCC 43184 at 2.23 A resolution 3RH7 ; 3.0 ; Crystal structure of a putative oxidoreductase (SMa0793) from Sinorhizobium meliloti 1021 at 3.00 A resolution 1TLT ; 2.7 ; Crystal Structure of a Putative Oxidoreductase (VIRULENCE FACTOR mviM HOMOLOG) 3C24 ; 1.62 ; Crystal structure of a putative oxidoreductase (YP_511008.1) from Jannaschia sp. CCS1 at 1.62 A resolution 3C1A ; 1.85 ; Crystal structure of a putative oxidoreductase (ZP_00056571.1) from Magnetospirillum magnetotacticum MS-1 at 1.85 A resolution 3FHL ; 1.93 ; Crystal structure of a putative oxidoreductase from bacteroides fragilis nctc 9343 3E82 ; 2.04 ; Crystal structure of a putative oxidoreductase from Klebsiella pneumoniae 3QHA ; 2.25 ; Crystal structure of a Putative oxidoreductase from Mycobacterium avium 104 3U3X ; 2.79 ; Crystal structure of a putative oxidoreductase from Sinorhizobium meliloti 1021 3VC7 ; 2.231 ; Crystal Structure of a putative oxidoreductase from Sinorhizobium meliloti 1021 4PMJ ; 2.2 ; Crystal structure of a putative oxidoreductase from Sinorhizobium meliloti 1021 in complex with NADP 4YQZ ; 1.807 ; Crystal Structure of a putative oxidoreductase from Thermus Thermophilus HB27 (TT_P0034, TARGET EFI-513932) in its APO form 2QS7 ; 2.09 ; CRYSTAL STRUCTURE OF a putative oxidoreductase of the DsrE/DsrF-like family (SSO1126) FROM SULFOLOBUS SOLFATARICUS P2 AT 2.09 A RESOLUTION 4ESO ; 1.906 ; Crystal structure of a putative oxidoreductase protein from Sinorhizobium meliloti 1021 in complex with NADP 6O15 ; 1.35 ; Crystal structure of a putative oxidoreductase YjhC from Escherichia coli in complex with NAD(H) 4Z0T ; 1.5 ; Crystal Structure of a putative oxoacyl-(acyl carrier protein) reductase from Brucella ovis 3ON7 ; 2.2 ; Crystal structure of a Putative oxygenase (SO_2589) from Shewanella oneidensis at 2.20 A resolution 2G2D ; 2.0 ; Crystal structure of a putative pduO-type ATP:cobalamin adenosyltransferase from Mycobacterium tuberculosis 4DF9 ; 2.17 ; Crystal structure of a putative peptidase (BF3526) from Bacteroides fragilis NCTC 9343 at 2.17 A resolution 4L8K ; 2.26 ; Crystal structure of a putative peptidase (PARMER_02772) from Parabacteroides merdae ATCC 43184 at 2.26 A resolution 1VIX ; 2.5 ; Crystal structure of a putative peptidase T 1VHO ; 1.86 ; Crystal structure of a putative peptidase/endoglucanase 3NOH ; 1.6 ; Crystal structure of a putative peptide binding protein (RUMGNA_00914) from Ruminococcus gnavus ATCC 29149 at 1.60 A resolution 6I3G ; 2.0 ; Crystal structure of a putative peptide binding protein AppA from Clostridium difficile 5K8G ; 2.0 ; Crystal structure of a putative peptide-binding domain of MpAFP 4OVD ; 2.0 ; Crystal structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum DSM 20469 2CMU ; 2.5 ; Crystal structure of a putative peptidyl-arginine deiminase 4POI ; 2.3 ; Crystal structure of a putative periplasmic protein (BACCAC_02096) from Bacteroides caccae ATCC 43185 at 2.30 A resolution 4DSD ; 1.75 ; Crystal structure of a putative periplasmic protein (BACOVA_05534) from Bacteroides ovatus ATCC 8483 at 1.75 A resolution 4QOA ; 2.75 ; Crystal structure of a putative periplasmic protein (BACUNI_04550) from Bacteroides uniformis ATCC 8492 at 2.75 A resolution 3DUE ; 1.85 ; CRYSTAL STRUCTURE OF A PUTATIVE PERIPLASMIC PROTEIN FROM DUF2874 FAMILY (BVU_2987) FROM BACTEROIDES VULGATUS ATCC 8482 AT 1.85 A RESOLUTION 3ELG ; 1.64 ; Crystal structure of a putative periplasmic protein of unknown function (bvu_2443) from bacteroides vulgatus atcc 8482 at 1.64 A resolution 4HBR ; 2.4 ; Crystal structure of a putative periplasmic proteins (BACEGG_01429) from Bacteroides eggerthii DSM 20697 at 2.40 A resolution 5BRA ; 2.971 ; Crystal Structure of a putative Periplasmic Solute binding protein (IPR025997) from Ochrobactrum Anthropi ATCC49188 (Oant_2843, TARGET EFI-511085) 2F46 ; 1.41 ; Crystal structure of a putative phosphatase (nma1982) from neisseria meningitidis z2491 at 1.41 A resolution 3DAO ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE PHOSPHATE (EUBREC_1417) FROM EUBACTERIUM RECTALE AT 1.80 A RESOLUTION 3N08 ; 1.25 ; Crystal Structure of a Putative PhosphatidylEthanolamine-Binding Protein (PEBP) Homolog CT736 from Chlamydia trachomatis D/UW-3/CX 2BL1 ; 2.0 ; Crystal structure of a putative phosphinothricin Acetyltransferase (PA4866) from Pseudomonas aeruginosa PAC1 1VHS ; 1.8 ; Crystal structure of a putative phosphinothricin N-acetyltransferase 2Q7X ; 2.0 ; Crystal structure of a putative phospho transferase (sp_1565) from streptococcus pneumoniae tigr4 at 2.00 A resolution 2QIW ; 1.8 ; Crystal structure of a putative phosphoenolpyruvate phosphonomutase (ncgl1015, cgl1060) from corynebacterium glutamicum atcc 13032 at 1.80 A resolution 3MTQ ; 1.7 ; Crystal structure of a putative phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) permease (KPN_04802) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.70 A resolution 1VHU ; 1.34 ; Crystal structure of a putative phosphoesterase 2JG5 ; 2.3 ; CRYSTAL STRUCTURE OF A PUTATIVE PHOSPHOFRUCTOKINASE FROM STAPHYLOCOCCUS AUREUS 3CVJ ; 2.0 ; Crystal structure of a putative phosphoheptose isomerase (bh3325) from bacillus halodurans c-125 at 2.00 A resolution 3MBH ; 2.0 ; Crystal structure of a putative phosphomethylpyrimidine kinase (BT_4458) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.00 A resolution (orthorhombic form with pyridoxal) 3MBJ ; 2.1 ; Crystal structure of a putative phosphomethylpyrimidine kinase (BT_4458) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.10 A resolution (rhombohedral form) 4MG4 ; 1.7 ; Crystal structure of a putative phosphonomutase from Burkholderia cenocepacia J2315 2P10 ; 2.15 ; CRYSTAL STRUCTURE OF A PUTATIVE PHOSPHONOPYRUVATE HYDROLASE (MLL9387) FROM MESORHIZOBIUM LOTI MAFF303099 AT 2.15 A RESOLUTION 3MDO ; 1.91 ; Crystal structure of a Putative phosphoribosylformylglycinamidine cyclo-ligase (BDI_2101) from Parabacteroides distasonis ATCC 8503 at 1.91 A resolution 3EUA ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE PHOSPHOSUGAR ISOMERASE (BSU32610) FROM BACILLUS SUBTILIS AT 1.90 A RESOLUTION 3G68 ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE PHOSPHOSUGAR ISOMERASE (CD3275) FROM CLOSTRIDIUM DIFFICILE 630 AT 1.80 A RESOLUTION 3HBA ; 2.0 ; Crystal structure of a putative phosphosugar isomerase (sden_2705) from shewanella denitrificans os217 at 2.00 A resolution 3FKJ ; 2.12 ; Crystal structure of a putative phosphosugar isomerase (stm_0572) from salmonella typhimurium lt2 at 2.12 A resolution 2IIU ; 2.28 ; Crystal structure of a putative PhoU-like phosphate regulatory protein (NP_719307.1) from Shewanella oneidensis MR-1 at 2.28 A resolution. 1O51 ; 2.5 ; Crystal structure of a putative PII-like signaling protein (TM0021) from Thermotoga maritima at 2.50 A resolution 2CZ4 ; 1.93 ; Crystal structure of a putative PII-like signaling protein (TTHA0516) from Thermus thermophilus HB8 3DFE ; 2.35 ; Crystal structure of a Putative Pii-Like Signaling Protein (YP_323533.1) from ANABAENA VARIABILIS ATCC 29413 at 2.35 A resolution 4DN6 ; 2.8 ; Crystal structure of a putative pilus assembly protein (cpaE) from Burkholderia thailandensis E264 at 2.80 A resolution 4DAD ; 2.5 ; Crystal structure of a Putative pilus assembly-related protein (BPSS2195) from Burkholderia pseudomallei K96243 at 2.50 A resolution (PSI Community Target, Shapiro L.) 3DZZ ; 1.61 ; CRYSTAL STRUCTURE OF A PUTATIVE PLP-DEPENDENT AMINOTRANSFERASE (LBUL_1103) FROM LACTOBACILLUS DELBRUECKII SUBSP. AT 1.61 A RESOLUTION 3FDB ; 1.99 ; Crystal structure of a putative plp-dependent beta-cystathionase (aecd, dip1736) from corynebacterium diphtheriae at 1.99 A resolution 3HP0 ; 2.32 ; Crystal structure of a Putative polyketide biosynthesis enoyl-CoA hydratase (pksH) from Bacillus subtilis 4LGQ ; 2.72 ; Crystal structure of a putative polyketide cyclase (CV_0247) from Chromobacterium violaceum ATCC 12472 at 2.72 A resolution 3F9S ; 1.76 ; Crystal structure of a putative polyketide cyclase (lferr_0659) from acidithiobacillus ferrooxidans atcc at 1.76 A resolution 3F7X ; 1.24 ; Crystal structure of a putative polyketide cyclase (pp0894) from pseudomonas putida kt2440 at 1.24 A resolution 3F8H ; 2.0 ; Crystal structure of a putative polyketide cyclase (tm1040_3560) from silicibacter sp. tm1040 at 2.00 A resolution 3I0Y ; 1.5 ; Crystal structure of a putative polyketide cyclase (xcc0381) from xanthomonas campestris pv. campestris at 1.50 A resolution 4DWE ; 2.01 ; Crystal structure of a putative polysaccharide deacetylase (BACOVA_03992) from Bacteroides ovatus ATCC 8483 at 2.01 A resolution 3HFT ; 1.9 ; Crystal structure of a putative polysaccharide deacetylase involved in o-antigen biosynthesis (wbms, bb0128) from bordetella bronchiseptica at 1.90 A resolution 3KTD ; 2.6 ; CRYSTAL STRUCTURE OF A PUTATIVE PREPHENATE DEHYDROGENASE (CGL0226) FROM CORYNEBACTERIUM GLUTAMICUM ATCC 13032 AT 2.60 A RESOLUTION 2QGZ ; 2.4 ; Crystal structure of a putative primosome component from Streptococcus pyogenes serotype M3. Northeast Structural Genomics target DR58 4GHN ; 1.5 ; Crystal structure of a putative protease (BACUNI_00178) from Bacteroides uniformis ATCC 8492 at 1.50 A resolution 3KD4 ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE PROTEASE (BDI_1141) FROM PARABACTEROIDES DISTASONIS ATCC 8503 AT 2.00 A RESOLUTION 4D1Y ; 2.6 ; Crystal structure of a putative protease from Bacteroides thetaiotaomicron. 2EHP ; 1.3 ; Crystal Structure of a Putative protein (AQ1627) from Aquifex aeolicus 2EIU ; 2.0 ; Crystal Structure of a Putative protein (AQ1627) from Aquifex aeolicus 3URZ ; 2.19 ; Crystal structure of a putative protein binding protein (BACOVA_03105) from Bacteroides ovatus ATCC 8483 at 2.19 A resolution 2IN3 ; 1.85 ; Crystal structure of a putative protein disulfide isomerase from Nitrosomonas europaea 3GN3 ; 2.5 ; Crystal structure of a putative protein-disulfide isomerase from Pseudomonas syringae to 2.5A resolution. 2PBF ; 2.0 ; Crystal structure of a putative protein-L-isoaspartate O-methyltransferase beta-aspartate methyltransferase (PCMT) from Plasmodium falciparum in complex with S-adenosyl-L-homocysteine 4LDN ; 1.48 ; Crystal structure of a putative purine nucleoside phosphorylase from Vibrio fischeri ES114 (Target NYSGRC-029521) 4TRR ; 1.9 ; Crystal structure of a putative Putative D-beta-hydroxybutyrate dehydrogenase from Burkholderia cenocepacia J2315 2HTD ; 1.6 ; CRYSTAL STRUCTURE OF A PUTATIVE PYRIDOXAMINE 5'-PHOSPHATE OXIDASE (LDB0262) FROM LACTOBACILLUS DELBRUECKII SUBSP. AT 1.60 A RESOLUTION 2A2J ; 2.5 ; Crystal structure of a putative pyridoxine 5'-phosphate oxidase (Rv2607) from Mycobacterium tuberculosis 3H5Q ; 1.94 ; Crystal structure of a putative pyrimidine-nucleoside phosphorylase from Staphylococcus aureus 4WR2 ; 1.7 ; Crystal structure of a putative pyrimidine-specific ribonucleoside hydrolase (RihA) Protein from Shewanella loihica PV-4 (SHEW_0697, Target PSI-029635) with divalent cation and PEG 400 bound at the active site 2H0V ; 2.6 ; Crystal structure of a putative quercetin 2,3-dioxygenase (yxag, bsu39980) from bacillus subtilis at 2.60 A resolution 4GI5 ; 1.75 ; Crystal Structure Of a Putative quinone reductase from Klebsiella pneumoniae (Target PSI-013613) 3MKC ; 1.77 ; Crystal structure of a putative racemase 3TCS ; 1.88 ; Crystal structure of a putative racemase from Roseobacter denitrificans 3NZG ; 2.0 ; Crystal structure of a putative racemase with Mg ion 2O9X ; 3.4 ; Crystal Structure Of A Putative Redox Enzyme Maturation Protein From Archaeoglobus Fulgidus 2QL8 ; 1.5 ; Crystal structure of a putative redox protein (lsei_0423) from lactobacillus casei atcc 334 at 1.50 A resolution 3DEE ; 2.1 ; CRYSTAL STRUCTURE OF A PUTATIVE REGULATORY PROTEIN INVOLVED IN TRANSCRIPTION (NGO1945) FROM NEISSERIA GONORRHOEAE FA 1090 AT 2.25 A RESOLUTION 3T6K ; 1.86 ; Crystal structure of a putative response regulator (Caur_3799) from Chloroflexus aurantiacus J-10-fl at 1.86 A resolution 3H49 ; 1.8 ; Crystal structure of a putative Ribokinase (Apo Form) from E.coli at 1.8A resolution 2RBC ; 1.9 ; Crystal structure of a putative ribokinase from Agrobacterium tumefaciens 3K9E ; 2.05 ; Crystal structure of a putative Ribokinase II (Apo Form) from E.coli 3IQ0 ; 1.79 ; Crystal structure of a putative Ribokinase II in complex with ATP and Mg+2 from E.coli 3IN1 ; 2.15 ; Crystal structure of a putative Ribokinase in complex with ADP from E.coli 3C5Y ; 1.81 ; Crystal structure of a putative ribose 5-phosphate isomerase (saro_3514) from novosphingobium aromaticivorans dsm at 1.81 A resolution 3EGC ; 2.35 ; Crystal structure of a putative ribose operon repressor from Burkholderia thailandensis 3QD5 ; 1.9 ; Crystal structure of a putative ribose-5-phosphate isomerase from Coccidioides immitis solved by combined iodide ion SAD and MR 1WY7 ; 2.2 ; crystal structure of a putative RNA methyltransferase PH1948 from Pyrococcus horikoshii 3DCZ ; 1.65 ; CRYSTAL STRUCTURE OF A PUTATIVE RNFG SUBUNIT OF ELECTRON TRANSPORT COMPLEX (TM0246) FROM THERMOTOGA MARITIMA AT 1.65 A RESOLUTION 3DFU ; 2.07 ; CRYSTAL STRUCTURE OF A PUTATIVE ROSSMANN-LIKE DEHYDROGENASE (CGL2689) FROM CORYNEBACTERIUM GLUTAMICUM AT 2.07 A RESOLUTION 3DLC ; 1.15 ; Crystal structure of a putative s-adenosyl-l-methionine-dependent methyltransferase (mmp1179) from methanococcus maripaludis at 1.15 A resolution 4ODJ ; 1.6 ; Crystal structure of a putative S-adenosylmethionine synthetase from Cryptosporidium hominis in complex with S-adenosyl-methionine 2O57 ; 1.946 ; Crystal Structure of a putative sarcosine dimethylglycine methyltransferase from Galdieria sulphuraria 4H3W ; 1.87 ; Crystal structure of a putative secreted protein (BDI_1231) from Parabacteroides distasonis ATCC 8503 at 2.00 A resolution 3OWR ; 1.81 ; Crystal structure of a putative secreted protein (BF4250) from Bacteroides fragilis NCTC 9343 at 1.81 A resolution 3P69 ; 2.05 ; Crystal structure of a putative secreted protein (BF4250) from Bacteroides fragilis NCTC 9343 at 2.05 A resolution 4LR4 ; 2.43 ; Crystal structure of a putative secreted protein (EUBREC_3654) from Eubacterium rectale at 2.43 A resolution 4JX2 ; 2.65 ; Crystal structure of a putative secreted protein (lpg1979) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 2.65 A resolution 3NPD ; 1.6 ; Crystal structure of a putative secreted protein (PA3611) from PSEUDOMONAS AERUGINOSA at 1.60 A resolution 3RJV ; 1.65 ; Crystal structure of a putative sel1 repeat protein (kpn_04481) from Klebsiella pneumoniae subsp. pneumoniae at 1.65 a resolution 3FN2 ; 1.9 ; Crystal structure of a putative sensor histidine kinase domain from Clostridium symbiosum ATCC 14940 3KSR ; 2.69 ; CRYSTAL STRUCTURE OF A PUTATIVE SERINE HYDROLASE (XCC3885) FROM XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS AT 2.69 A RESOLUTION 1VKH ; 1.85 ; CRYSTAL STRUCTURE OF A PUTATIVE SERINE HYDROLASE (YDR428C) FROM SACCHAROMYCES CEREVISIAE AT 1.85 A RESOLUTION 5JYD ; 1.65 ; Crystal Structure of a Putative Short Chain Dehydrogenase from Burkholderia cenocepacia 4LVU ; 1.25 ; Crystal Structure of a Putative Short Chain Dehydrogenase from Burkholderia thailandensis 4KZP ; 1.68 ; Crystal Structure of a Putative Short Chain Dehydrogenase from Mycobacterium smegmatis 3RIH ; 2.15 ; Crystal structure of a putative short chain dehydrogenase or reductase from Mycobacterium abscessus 5TT1 ; 1.8 ; Crystal Structure of a Putative short-chain alcohol dehydrogenase from Burkholderia multivorans 4J2H ; 2.1 ; Crystal structure of a putative short-chain alcohol dehydrogenase from Sinorhizobium meliloti 1021 (Target NYSGRC-011708) 3QIV ; 2.25 ; Crystal structure of a putative short-chain dehydrogenase or 3-oxoacyl-[acyl-carrier-protein] reductase from Mycobacterium paratuberculosis ATCC BAA-968 / K-10 5IZ4 ; 1.75 ; Crystal structure of a putative short-chain dehydrogenase/reductase from Burkholderia xenovorans 5JC8 ; 1.45 ; Crystal structure of a putative short-chain dehydrogenase/reductase from Burkholderia xenovorans 3E9N ; 2.4 ; Crystal structure of a putative short-chain dehydrogenase/reductase from Corynebacterium glutamicum 3S55 ; 2.1 ; Crystal structure of a putative short-chain dehydrogenase/reductase from Mycobacterium abscessus bound to NAD 3HYN ; 1.2 ; Crystal structure of a putative signal transduction protein (eubrec_0645) from eubacterium rectale atcc 33656 at 1.20 A resolution 3MEM ; 2.25 ; Crystal structure of a Putative signal transduction protein (Maqu_0641) from MARINOBACTER AQUAEOLEI VT8 at 2.25 A resolution 3HK4 ; 1.96 ; CRYSTAL STRUCTURE OF A PUTATIVE SNOAL-LIKE POLYKETIDE CYCLASE [CARBOHYDRATE PHOSPHATASE] (MLR7391) FROM MESORHIZOBIUM LOTI AT 1.96 A RESOLUTION 2RBD ; 1.54 ; CRYSTAL STRUCTURE OF A PUTATIVE SPORE COAT PROTEIN (BH2358) FROM BACILLUS HALODURANS C-125 AT 1.54 A RESOLUTION 4MAK ; 1.1 ; Crystal structure of a putative ssRNA endonuclease Cas2, CRISPR adaptation protein from E.coli 3BN8 ; 2.11 ; Crystal structure of a putative sterol carrier protein type 2 (af1534) from archaeoglobus fulgidus dsm 4304 at 2.11 A resolution 7TMV ; 2.3 ; Crystal structure of a Putative structural protein from Klebsiella pneumoniae 3ETF ; 1.85 ; Crystal structure of a putative succinate-semialdehyde dehydrogenase from salmonella typhimurium lt2 3EFV ; 1.9 ; Crystal Structure of a Putative Succinate-Semialdehyde Dehydrogenase from Salmonella typhimurium LT2 with bound NAD 3FMC ; 1.8 ; CRYSTAL STRUCTURE OF a putative succinylglutamate desuccinylase / aspartoacylase family protein (SAMA_0604) FROM SHEWANELLA AMAZONENSIS SB2B AT 1.80 A RESOLUTION 3SEE ; 1.25 ; Crystal structure of a putative sugar binding protein (BT_4411) from Bacteroides thetaiotaomicron VPI-5482 at 1.25 A resolution 3NMB ; 2.4 ; Crystal structure of a putative sugar hydrolase (BACOVA_03189) from Bacteroides ovatus at 2.40 A resolution 2G0W ; 1.7 ; CRYSTAL STRUCTURE OF A PUTATIVE SUGAR ISOMERASE (LMO2234) FROM LISTERIA MONOCYTOGENES AT 1.70 A RESOLUTION 3R8E ; 1.65 ; Crystal structure of a putative sugar kinase (CHU_1875) from Cytophaga hutchinsonii ATCC 33406 at 1.65 A resolution 3KZH ; 2.45 ; Crystal structure of a putative sugar kinase from Clostridium perfringens 2QW5 ; 1.78 ; CRYSTAL STRUCTURE OF A PUTATIVE SUGAR PHOSPHATE ISOMERASE/EPIMERASE (AVA4194) FROM ANABAENA VARIABILIS ATCC 29413 AT 1.78 A RESOLUTION 3FXA ; 1.6 ; Crystal structure of a putative sugar-phosphate isomerase (lmof2365_0531) from listeria monocytogenes str. 4b f2365 at 1.60 A resolution 3B5Q ; 2.4 ; Crystal structure of a putative sulfatase (NP_810509.1) from Bacteroides thetaiotaomicron VPI-5482 at 2.40 A resolution 3PNX ; 1.92 ; Crystal structure of a putative sulfurtransferase dsrE (Swol_2425) from Syntrophomonas wolfei str. Goettingen at 1.92 A resolution 3QZB ; 1.1 ; Crystal structure of a putative superoxide reductase (TM0658) from THERMOTOGA MARITIMA at 1.10 A resolution 2AMU ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE SUPEROXIDE REDUCTASE (TM0658) FROM THERMOTOGA MARITIMA AT 2.00 A RESOLUTION 5VJ4 ; 2.8 ; Crystal structure of a putative surface protein encoded by BTA121 3SNX ; 1.88 ; Crystal structure of a PUTATIVE SUSD-LIKE CARBOHYDRATE BINDING PROTEIN (BT_1439) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.88 A resolution 3ODP ; 2.35 ; Crystal structure of a putative tagatose-6-phosphate ketose/aldose isomerase (NT01CX_0292) from CLOSTRIDIUM NOVYI NT at 2.35 A resolution 4OJ5 ; 1.8 ; Crystal Structure of a Putative Tailspike Protein (TSP1, orf210) from Escherichia coli O157:H7 Bacteriohage CBA120 4OJ6 ; 1.8 ; Crystal Structure of a Putative Tailspike Protein (TSP1, orf210) from Escherichia coli O157:H7 Bacteriohage CBA120; Se-Met Protein 2QZC ; 1.5 ; Crystal structure of a putative tena-like thiaminase (tena-1, sso2206) from sulfolobus solfataricus p2 at 1.50 A resolution 3PPB ; 2.1 ; Crystal structure of a putative tetR family transcription regulator (Shew_3104) from SHEWANELLA SP. PV-4 at 2.10 A resolution 4ICH ; 1.95 ; Crystal structure of a putative TetR family transcriptional regulator from Saccharomonospora viridis DSM 43017 3BHQ ; 1.54 ; CRYSTAL STRUCTURE OF A PUTATIVE TETR-FAMILY TRANSCRIPTIONAL REGULATOR (MLR_4833) FROM MESORHIZOBIUM LOTI MAFF303099 AT 1.54 A RESOLUTION 3JSJ ; 2.1 ; Crystal structure of a putative tetr-transcriptional regulator (sav143) from streptomyces avermitilis ma-4680 at 2.10 A resolution 2RAS ; 1.8 ; Crystal structure of a putative tetr/acrr family transcriptional regulator (saro_0558) from novosphingobium aromaticivorans dsm at 1.80 A resolution 1VMJ ; 1.52 ; CRYSTAL STRUCTURE OF A PUTATIVE THIAMIN PHOSPHATE SYNTHASE (TM0723) FROM THERMOTOGA MARITIMA MSB8 AT 1.52 A RESOLUTION 3NO6 ; 1.65 ; Crystal structure of a putative thiaminase II (SE1693) from Staphylococcus epidermidis ATCC 12228 at 1.65 A resolution 1VK8 ; 1.8 ; CRYSTAL STRUCTURE OF A PUTATIVE THIAMINE BIOSYNTHESIS/SALVAGE PROTEIN (TM0486) FROM THERMOTOGA MARITIMA AT 1.80 A RESOLUTION 1VH5 ; 1.34 ; Crystal structure of a putative thioesterase 1VH9 ; 2.15 ; Crystal structure of a putative thioesterase 1VI8 ; 2.2 ; Crystal structure of a putative thioesterase 2HLJ ; 2.0 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE (KT2440) FROM PSEUDOMONAS PUTIDA KT2440 AT 2.00 A RESOLUTION 2HX5 ; 1.5 ; Crystal structure of a putative thioesterase (pmt_2055) from prochlorococcus marinus str. mit 9313 at 1.50 A resolution 3CK1 ; 1.74 ; CRYSTAL STRUCTURE OF a putative thioesterase (REUT_A2179) FROM RALSTONIA EUTROPHA JMP134 AT 1.74 A RESOLUTION 2GF6 ; 1.91 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE (SSO2295) FROM SULFOLOBUS SOLFATARICUS AT 1.91 A RESOLUTION 3HDU ; 2.5 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE (SYN_01977) FROM SYNTROPHUS ACIDITROPHICUS SB AT 2.50 A RESOLUTION 2QWZ ; 2.15 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE (TM1040_1390) FROM SILICIBACTER SP. TM1040 AT 2.15 A RESOLUTION 2PBL ; 1.79 ; Crystal structure of a putative thioesterase (tm1040_2492) from silicibacter sp. tm1040 at 1.79 A resolution 3BBJ ; 2.16 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE II (TFU_2367) FROM THERMOBIFIDA FUSCA YX AT 2.45 A RESOLUTION 2PIM ; 2.2 ; CRYSTAL STRUCTURE OF A PUTATIVE THIOESTERASE, PHENYLACETIC ACID DEGRADATION-RELATED PROTEIN (REUT_B4779) FROM RALSTONIA EUTROPHA JMP134 AT 2.20 A RESOLUTION 4KA0 ; 2.1 ; Crystal structure of a putative thiol-disulfide oxidoreductase from Bacteroides vulgatus (target NYSGRC-011676), space group P21221 4K9Z ; 1.8 ; Crystal structure of a putative thiol-disulfide oxidoreductase from Bacteroides vulgatus (target NYSGRC-011676), space group P6222 3GL3 ; 2.09 ; Crystal structure of a putative Thiol:disulfide interchange protein DsbE from Chlorobium tepidum 3P3A ; 2.1 ; Crystal structure of a putative thiosulfate sulfurtransferase from Mycobacterium thermoresistible 4PXY ; 1.5 ; Crystal structure of a Putative thua-like protein (BACUNI_01602) from Bacteroides uniformis ATCC 8492 at 1.50 A resolution 4JQS ; 2.3 ; Crystal structure of a Putative thua-like protein (BACUNI_01602) from Bacteroides uniformis ATCC 8492 at 2.30 A resolution 4E5V ; 1.75 ; Crystal structure of a Putative thua-like protein (PARMER_02418) from Parabacteroides merdae ATCC 43184 at 1.75 A resolution 4K3F ; 1.6 ; Crystal structure of a putative TonB-dependent receptor (PA5505) from Pseudomonas aeruginosa PAO1 at 1.60 A resolution 2CX5 ; 1.9 ; Crystal structure of a putative trans-editing enzyme for prolyl tRNA synthetase 2YFK ; 2.55 ; Crystal structure of a putative transcarbamoylase from Enterococcus faecalis 4OBM ; 2.15 ; Crystal structure of a putative transcription regulator (EUBSIR_01389) from Eubacterium siraeum DSM 15702 at 2.15 A resolution 3PJY ; 1.55 ; Crystal structure of a putative transcription regulator (R01717) from Sinorhizobium meliloti 1021 at 1.55 A resolution 2QU7 ; 2.3 ; Crystal structure of a putative transcription regulator from Staphylococcus saprophyticus subsp. saprophyticus 3K69 ; 1.95 ; CRYSTAL STRUCTURE OF A PUTATIVE TRANSCRIPTIONAL REGULATOR (LP_0360) FROM LACTOBACILLUS PLANTARUM AT 1.95 A RESOLUTION 2A6C ; 1.9 ; CRYSTAL STRUCTURE OF A PUTATIVE TRANSCRIPTIONAL REGULATOR (NE_1354) FROM NITROSOMONAS EUROPAEA AT 1.90 A RESOLUTION 3KNW ; 2.45 ; Crystal structure of a putative transcriptional regulator (TetR/AcrR family member) from putative transcriptional regulator (TetR/AcrR family) 3QI7 ; 1.86 ; Crystal structure of a Putative transcriptional regulator (YP_001089212.1) from Clostridium difficile 630 at 1.86 A resolution 4RYK ; 2.09 ; Crystal structure of a putative transcriptional regulator from Listeria monocytogenes EGD-e 4JNN ; 2.35 ; Crystal structure of a putative transcriptional regulator from Saccharomonospora viridis in complex with benzamidine 4KWA ; 1.8 ; Crystal structure of a putative transcriptional regulator from Saccharomonospora viridis in complex with choline 4NEL ; 2.05 ; Crystal structure of a putative transcriptional regulator from Saccharomonospora viridis in complex with N,N-dimethylmethanamine 3DV8 ; 2.55 ; Crystal structure of a putative transcriptional regulator of the crp/fnr family (eubrec_1222) from eubacterium rectale atcc 33656 at 2.55 A resolution 2A6B ; 1.7 ; Crystal structure of a putative transcriptional regulator of the tena family (spr0628) from streptococcus pneumoniae r6 at 1.70 A resolution 3S5R ; 2.6 ; Crystal structure of a putative transcriptional regulator of the TETR family (SYN_02108) from Syntrophus aciditrophicus at 2.60 A resolution 3ER6 ; 1.9 ; Crystal structure of a putative transcriptional regulator protein from Vibrio parahaemolyticus 3MIZ ; 1.91 ; Crystal structure of a putative transcriptional regulator protein, Lacl family from Rhizobium etli 3E61 ; 2.0 ; Crystal structure of a putative transcriptional repressor of ribose operon from Staphylococcus saprophyticus subsp. saprophyticus 3GTZ ; 2.5 ; Crystal structure of a putative translation initiation inhibitor from Salmonella typhimurium 2HAF ; 2.88 ; Crystal structure of a putative translation repressor from Vibrio cholerae 2G1U ; 1.5 ; CRYSTAL STRUCTURE OF A PUTATIVE TRANSPORT PROTEIN (TM1088A) FROM THERMOTOGA MARITIMA AT 1.50 A RESOLUTION 2FYX ; 1.9 ; Crystal structure of a putative transposase (dr_0177) from deinococcus radiodurans r1 at 1.90 A resolution 3S6D ; 2.2 ; Crystal structure of a putative triosephosphate isomerase from Coccidioides immitis 2ITB ; 2.05 ; CRYSTAL STRUCTURE OF A PUTATIVE TRNA-(MS(2)IO(6)A)-HYDROXYLASE (PP_2188) FROM PSEUDOMONAS PUTIDA KT2440 AT 2.05 A RESOLUTION 3KOR ; 1.6 ; Crystal structure of a putative Trp repressor from Staphylococcus aureus 4QHW ; 1.35 ; Crystal structure of a putative two-domain sugar hydrolase (BACCAC_02064) from Bacteroides caccae ATCC 43185 at 1.35 A resolution 4QHX ; 1.8 ; Crystal structure of a putative two-domain sugar hydrolase (BACCAC_02064) from Bacteroides caccae ATCC 43185 at 1.80 A resolution 3I9F ; 2.5 ; Crystal structure of a putative type 11 methyltransferase from Sulfolobus solfataricus 3MSQ ; 2.85 ; Crystal structure of a Putative ubiquinone biosynthesis protein (Npun02000094) from Nostoc punctiforme PCC 73102 at 2.85 A resolution 2PWQ ; 1.9 ; Crystal structure of a putative ubiquitin conjugating enzyme from Plasmodium yoelii 2AYV ; 2.001 ; Crystal structure of a putative ubiquitin-conjugating enzyme E2 from Toxoplasma gondii 5VBD ; 1.5 ; Crystal structure of a putative UBL domain of USP9X 2ICY ; 1.64 ; Crystal Structure of a Putative UDP-glucose Pyrophosphorylase from Arabidopsis Thaliana with Bound UDP-glucose 2ICX ; 1.85 ; Crystal Structure of a Putative UDP-glucose Pyrophosphorylase from Arabidopsis Thaliana with Bound UTP 4PZU ; 2.1 ; Crystal structure of a putative uncharacterize protein Rv3404c and likely sugar N-formyltransferase from Mycobacterium tuberculosis 4KW2 ; 2.32 ; Crystal structure of a Putative uncharacterized protein (BDI_1873) from Parabacteroides distasonis ATCC 8503 at 2.32 A resolution 3QUA ; 2.1 ; Crystal structure of a putative uncharacterized protein and possible Molybdenum cofactor protein from Mycobacterium smegmatis 6ANS ; 2.2 ; Crystal structure of a putative uncharacterized protein from Burkholderia cenocepacia 4TV4 ; 2.1 ; Crystal structure of a Putative uncharacterized protein from Burkholderia pseudomallei 6AR7 ; 2.1 ; Crystal structure of a putative uncharacterized protein from Burkholderia thailandensis 7S5N ; 1.85 ; Crystal Structure of a Putative uncharacterized protein from Mycobacterium marinum 3SBX ; 2.5 ; Crystal structure of a putative uncharacterized protein from Mycobacterium marinum bound to adenosine 5'-monophosphate AMP 3RD5 ; 1.5 ; Crystal structure of a putative uncharacterized protein from Mycobacterium Paratuberculosis 3OL3 ; 1.95 ; Crystal structure of a putative uncharacterized protein from Mycobacterium smegamtis, an ortholog of Rv0543c, iodide phased 3OL4 ; 2.0 ; Crystal structure of a putative uncharacterized protein from Mycobacterium smegmatis, an ortholog of Rv0543c 4HEC ; 1.8 ; Crystal structure of a putative uncharacterized protein from Mycobacterium tuberculosis 4Q6U ; 1.95 ; Crystal structure of a putative uncharacterized protein from Mycobacterium tuberculosis 4HVJ ; 2.1 ; Crystal structure of a putative uncharacterized protein from Mycobacterium tuberculosis in complex with AMP 4Q12 ; 2.85 ; Crystal structure of a putative uncharacterized protein Rv3404c and likely sugar N-formyltransferase from Mycobacterium tuberculosis bound to uridine diphosphate 4R31 ; 2.0 ; Crystal structure of a putative uridine phosphorylase from Actinobacillus succinogenes 130Z (Target NYSGRC-029667 ) 1Z9D ; 2.8 ; Crystal structure of a putative uridylate kinase (UMP-kinase) from Streptococcus pyogenes 4JPI ; 2.1 ; Crystal structure of a putative VRC01 germline precursor Fab 1VP2 ; 1.78 ; CRYSTAL STRUCTURE OF A PUTATIVE XANTHOSINE TRIPHOSPHATE PYROPHOSPHATASE/HAM1 PROTEIN HOMOLOG (TM0159) FROM THERMOTOGA MARITIMA AT 1.78 A RESOLUTION 2P1G ; 1.8 ; Crystal structure of a putative xylanase from Bacteroides fragilis 3QXB ; 1.9 ; Crystal structure of a Putative Xylose isomerase (YP_426450.1) from RHODOSPIRILLUM RUBRUM ATCC 11170 at 1.90 A resolution 3BDV ; 1.66 ; Crystal structure of a putative yden-like hydrolase (eca3091) from pectobacterium atrosepticum scri1043 at 1.66 A resolution 2RD9 ; 2.3 ; Crystal structure of a putative yfit-like metal-dependent hydrolase (bh0186) from bacillus halodurans c-125 at 2.30 A resolution 3CT9 ; 2.31 ; Crystal structure of a putative zinc peptidase (NP_812461.1) from Bacteroides thetaiotaomicron VPI-5482 at 2.31 A resolution 4OH1 ; 2.0 ; Crystal structure of a putative zinc-binding dehydrogenase (gutB) from Clostridium scindens ATCC 35704 at 2.00 A resolution 4EJ6 ; 1.89 ; Crystal structure of a putative zinc-binding dehydrogenase (Target PSI-012003) from Sinorhizobium meliloti 1021 4EJM ; 2.09 ; Crystal structure of a putative zinc-binding dehydrogenase (Target PSI-012003) from Sinorhizobium meliloti 1021 bound to NADP 4L7A ; 2.09 ; Crystal structure of a putative zinc-binding metallo-peptidase (BACCAC_01431) from Bacteroides caccae ATCC 43185 at 2.10 A resolution 4DVJ ; 1.99 ; Crystal structure of a putative zinc-dependent alcohol dehydrogenase protein from Rhizobium etli CFN 42 3GUX ; 1.8 ; Crystal structure of a putative zn-dependent exopeptidase (bvu_1317) from bacteroides vulgatus atcc 8482 at 1.80 A resolution 1VJN ; 2.0 ; Crystal structure of a putative zn-dependent hydrolase of the metallo-beta-lactamase superfamily (tm0207) from thermotoga maritima at 2.00 A resolution 4J9T ; 1.4 ; Crystal structure of a putative, de novo designed unnatural amino acid dependent metalloprotein, northeast structural genomics consortium target OR61 3SON ; 1.71 ; Crystal structure of a putativel NUDIX hydrolase (LMOf2365_2679) from Listeria monocytogenes str. 4b F2365 at 1.70 A resolution 2A2M ; 1.88 ; CRYSTAL STRUCTURE OF a putativeTenA family transcriptional regulator (BT_3146) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 1.88 A RESOLUTION 2A2O ; 2.16 ; CRYSTAL STRUCTURE OF a putativeTenA family transcriptional regulator (BT_3146) FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 AT 2.16 A RESOLUTION 3IBE ; 2.798 ; Crystal Structure of a Pyrazolopyrimidine Inhibitor Bound to PI3 Kinase Gamma 3A2C ; 2.9 ; Crystal structure of a pyrazolopyrimidine inhibitor complex bound to MAPKAP Kinase-2 (MK2) 3OC4 ; 2.6 ; Crystal Structure of a pyridine nucleotide-disulfide family oxidoreductase from the Enterococcus faecalis V583 5TQI ; 1.5 ; Crystal structure of a pyridoxal kinase from Burkholderia multivorans 2RE7 ; 2.5 ; Crystal structure of a pyridoxamine 5'-phosphate oxidase related protein (psyc_0186) from psychrobacter arcticus 273-4 at 2.50 A resolution 2I02 ; 1.8 ; CRYSTAL STRUCTURE OF a pyridoxamine 5'-phosphate oxidase-like family protein (NPUN_R6570) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.80 A RESOLUTION 2OU5 ; 1.6 ; Crystal structure of a pyridoxamine 5'-phosphate oxidase-related fmn-binding protein (jann_0254) from jannaschia sp. ccs1 at 1.60 A resolution 2HHZ ; 2.0 ; Crystal structure of a pyridoxamine 5'-phosphate oxidase-related protein (ssuidraft_2804) from streptococcus suis 89/1591 at 2.00 A resolution 2I51 ; 1.4 ; CRYSTAL STRUCTURE OF a pyridoxamine 5'-phosphate oxidase-related, FMN binding protein (NPUN_F5749) FROM NOSTOC PUNCTIFORME PCC 73102 AT 1.40 A RESOLUTION 3PZS ; 1.89 ; Crystal Structure of a pyridoxamine kinase from Yersinia pestis CO92 6W6A ; 2.45 ; Crystal structure of a pyridoxine 5'-phosphate synthease from Stenotrophomonas maltophilia K279a 2VHH ; 2.8 ; Crystal structure of a pyrimidine degrading enzyme from Drosophila melanogaster 2VHI ; 3.3 ; Crystal structure of a pyrimidine degrading enzyme from Drosophila melanogaster 1ENI ; 2.2 ; CRYSTAL STRUCTURE OF A PYRIMIDINE DIMER SPECIFIC EXCISION REPAIR ENZYME FROM BACTERIOPHAGE T4: REFINEMENT AT 1.45 ANGSTROMS AND X-RAY ANALYSIS OF THE THREE ACTIVE SITE MUTANTS 1ENJ ; 1.8 ; CRYSTAL STRUCTURE OF A PYRIMIDINE DIMER SPECIFIC EXCISION REPAIR ENZYME FROM BACTERIOPHAGE T4: REFINEMENT AT 1.45 ANGSTROMS AND X-RAY ANALYSIS OF THE THREE ACTIVE SITE MUTANTS 1ENK ; 2.0 ; CRYSTAL STRUCTURE OF A PYRIMIDINE DIMER SPECIFIC EXCISION REPAIR ENZYME FROM BACTERIOPHAGE T4: REFINEMENT AT 1.45 ANGSTROMS AND X-RAY ANALYSIS OF THE THREE ACTIVE SITE MUTANTS 2END ; 1.45 ; CRYSTAL STRUCTURE OF A PYRIMIDINE DIMER SPECIFIC EXCISION REPAIR ENZYME FROM BACTERIOPHAGE T4: REFINEMENT AT 1.45 ANGSTROMS AND X-RAY ANALYSIS OF THE THREE ACTIVE SITE MUTANTS 2P4G ; 2.3 ; CRYSTAL STRUCTURE OF A PYRIMIDINE REDUCTASE-LIKE PROTEIN (DIP1392) FROM CORYNEBACTERIUM DIPHTHERIAE NCTC AT 2.30 A RESOLUTION 1VDX ; 2.4 ; Crystal Structure of a Pyrococcus horikoshii protein with similarities to 2'5' RNA-ligase 4QGP ; 1.78 ; Crystal structure of a pyrophosphatase (AF1178) from Archaeoglobus fulgidus DSM 4304 at 1.80 A resolution 4GXH ; 2.7 ; Crystal Structure of a Pyrrolidone-carboxylate peptidase 1 (target ID NYSGRC-012831) from Xenorhabdus bovienii SS-2004 4HPS ; 1.55 ; Crystal Structure of a Pyrrolidone-carboxylate peptidase 1 (target ID NYSGRC-012831) from Xenorhabdus bovienii SS-2004 in space group P21 1YQG ; 1.9 ; Crystal structure of a pyrroline-5-carboxylate reductase from neisseria meningitides mc58 2P3G ; 3.8 ; Crystal structure of a pyrrolopyridine inhibitor bound to MAPKAP Kinase-2 2R6N ; 1.95 ; Crystal structure of a pyrrolopyrimidine inhibitor in complex with human Cathepsin K 2PG3 ; 2.4 ; Crystal structure of a Queuosine biosynthesis protein queC (ECA1155) from Erwinia carotovora subsp. atroseptica SCRI1043 at 2.40 A resolution 1OAC ; 2.0 ; CRYSTAL STRUCTURE OF A QUINOENZYME: COPPER AMINE OXIDASE OF ESCHERICHIA COLI AT 2 ANGSTROEMS RESOLUTION 1JMX ; 1.9 ; crystal structure of a quinohemoprotein amine dehydrogenase from pseudomonas putida 1JMZ ; 2.0 ; crystal structure of a quinohemoprotein amine dehydrogenase from pseudomonas putida with inhibitor 4DUP ; 2.45 ; Crystal Structure of a quinone oxidoreductase from Rhizobium etli CFN 42 4R5O ; 2.64 ; Crystal structure of a Quinonprotein alcohol dehydrogenase-like protein (BT1487) from Bacteroides thetaiotaomicron VPI-5482 at 2.64 A resolution 2NTF ; 3.18 ; Crystal Structure of a Quorum-Quenching Antibody in Complex with an N-Acyl-L-Homoserine Lactone Analog 2Y1J ; 2.15 ; CRYSTAL STRUCTURE OF A R-DIASTEREOMER ANALOGUE OF THE SPORE PHOTOPRODUCT IN COMPLEX WITH FRAGMENT DNA POLYMERASE I FROM BACILLUS STEAROTHERMOPHILUS 7BME ; 2.6 ; Crystal structure of a R18W mutant of the DNA-binding protein RemA from Geobacillus thermodenitrificans 7P1W ; 1.8 ; Crystal structure of a R51 R53 double mutant of the DNA-binding protein RemA from Geobacillus thermodenitrificans 3BV4 ; 1.7 ; Crystal structure of a rabbit muscle fructose-1,6-bisphosphate aldolase A dimer variant 1DS6 ; 2.35 ; CRYSTAL STRUCTURE OF A RAC-RHOGDI COMPLEX 2OVL ; 2.13 ; Crystal structure of a racemase from Streptomyces coelicolor A3(2) 3CK5 ; 2.3 ; Crystal structure of a racemase from Streptomyces coelicolor A3(2) with bound magnesium 1N0W ; 1.7 ; Crystal structure of a RAD51-BRCA2 BRC repeat complex 6FZ6 ; 1.42 ; Crystal Structure of a radical SAM methyltransferase from Sphaerobacter thermophilus 4FSS ; 2.25 ; Crystal structure of a RAS p21 protein activator (RASA1) from Homo sapiens at 2.25 A resolution 4KU4 ; 1.6 ; Crystal Structure of a Ras-like Protein from Cryphonectria parasitica in Complex with GDP 1WYG ; 2.6 ; Crystal Structure of a Rat Xanthine Dehydrogenase Triple Mutant (C535A, C992R and C1324S) 3QNC ; 1.6 ; Crystal Structure of a Rationally Designed OXA-10 Variant Showing Carbapenemase Activity, OXA-10loop48 4R61 ; 3.1 ; Crystal structure of a rationally designed single-chain protein mimicking a trimeric gp41 N-terminal heptad-repeat region 6DKL ; 3.034 ; Crystal Structure of a Rationally Designed Six-Fold Symmetric DNA Scaffold 3ZZY ; 1.4 ; Crystal structure of a Raver1 PRI3 peptide in complex with polypyrimidine tract binding protein RRM2 3ZZZ ; 1.55 ; Crystal structure of a Raver1 PRI4 peptide in complex with polypyrimidine tract binding protein RRM2 7F83 ; 2.94 ; Crystal Structure of a receptor in Complex with inverse agonist 7XDV ; 1.97 ; Crystal structure of a receptor like kinase from Arabidopsis 7XDW ; 1.926 ; Crystal structure of a receptor like kinase from Arabidopsis 7XDX ; 2.23 ; Crystal structure of a receptor like kinase from Arabidopsis 7XDY ; 2.28 ; Crystal structure of a receptor like kinase from Arabidopsis 8JUP ; 1.98 ; Crystal structure of a receptor like kinase from rice 8JUV ; 2.09 ; Crystal structure of a receptor like kinase with ADP 1OMY ; 2.0 ; Crystal Structure of a Recombinant alpha-insect Toxin BmKaIT1 from the scorpion Buthus martensii Karsch 1I8M ; 2.1 ; CRYSTAL STRUCTURE OF A RECOMBINANT ANTI-SINGLE-STRANDED DNA ANTIBODY FRAGMENT COMPLEXED WITH DT5 3QYD ; 2.97 ; Crystal structure of a recombinant chimeric trypsin inhibitor 4RR3 ; 3.103 ; Crystal structure of a recombinant EV71 virus particle 6BMT ; 2.403 ; Crystal Structure of a Recombinant form of Human Myeloperoxidase Bound to an Inhibitor from Staphylococcus delphini 1LBK ; 1.86 ; Crystal structure of a recombinant glutathione transferase, created by replacing the last seven residues of each subunit of the human class pi isoenzyme with the additional C-terminal helix of human class alpha isoenzyme 5X2J ; 1.4 ; Crystal structure of a recombinant hybrid manganese superoxide dismutase from Staphylococcus equorum and Staphylococcus saprophyticus 2R56 ; 2.8 ; Crystal Structure of a Recombinant IgE Fab Fragment in Complex with Bovine Beta-Lactoglobulin Allergen 4XXA ; 1.9 ; Crystal structure of a recombinant Vatairea macrocarpa seed lectin 4XTM ; 2.7 ; Crystal structure of a recombinant Vatairea macrocarpa seed lectin complexed with GalNAc 4WV8 ; 1.83 ; Crystal structure of a recombinant Vatairea macrocarpa seed lectin complexed with lactose 4XTP ; 1.97 ; Crystal structure of a recombinant Vatairea macrocarpa seed lectin complexed with Tn antigen 6NEE ; 1.9 ; Crystal structure of a reconstructed ancestor of Triosephosphate isomerase from eukaryotes 8THS ; 1.5 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, LEA A69T 8UB6 ; 1.7 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, LEA H62X, containing 3-methylhistidine at position 62 4DXQ ; 1.95 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, LEA Q38A 4DXO ; 2.5 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, LEA X(6) 4DXP ; 1.75 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, LEA X121 4DXN ; 1.85 ; Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, Least Evolved Ancestor (LEA) 5HIF ; 1.6 ; Crystal structure of a reconstructed lactonase ancestor, Anc1-MPH, of the bacterial methyl parathion hydrolase, MPH. 3QYA ; 2.13 ; Crystal structure of a red-emitter mutant of Lampyris turkestanicus luciferase 3FWV ; 2.2 ; Crystal Structure of a Redesigned TPR Protein, T-MOD(VMY), in Complex with MEEVF Peptide 2H8Q ; 2.0 ; Crystal Structure of a Redshifted Mutant (K83M) of the Red Fluorescent Protein dRFP583/dsRed 1CC1 ; 2.15 ; CRYSTAL STRUCTURE OF A REDUCED, ACTIVE FORM OF THE NI-FE-SE HYDROGENASE FROM DESULFOMICROBIUM BACULATUM 7JP4 ; 2.0 ; Crystal structure of a refolded head domain hemagglutinin HA from Influenza A virus A/Fort Monmouth/1/1947 3BBL ; 2.35 ; Crystal structure of a regulatory protein of LacI family from Chloroflexus aggregans 2IFD ; 2.0 ; Crystal structure of a remote binding site mutant, R492L, of CDC25B Phosphatase catalytic domain 2VLD ; 2.6 ; crystal structure of a repair endonuclease from Pyrococcus abyssi 5H7B ; 3.1 ; Crystal structure of a repeat protein with five Protein A repeat modules 5H7A ; 2.7 ; Crystal structure of a repeat protein with four Protein A repeat module 5H79 ; 2.7 ; Crystal structure of a repeat protein with three Protein A repeat module 5H7C ; 2.7 ; Crystal structure of a repeat protein with two Protein A-DHR14 repeat modules 1CLQ ; 2.7 ; CRYSTAL STRUCTURE OF A REPLICATION FORK DNA POLYMERASE EDITING COMPLEX AT 2.7 A RESOLUTION 3RMA ; 2.84 ; Crystal Structure of a replicative DNA polymerase bound to DNA containing Thymine Glycol 3RMB ; 2.65 ; Crystal Structure of a replicative DNA polymerase bound to DNA containing Thymine Glycol 3RMC ; 3.0 ; Crystal Structure of a replicative DNA polymerase bound to DNA containing Thymine Glycol 3RMD ; 2.98 ; Crystal Structure of a replicative DNA polymerase bound to DNA containing Thymine Glycol 3L8B ; 2.15 ; Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin 5TFQ ; 1.07 ; Crystal structure of a representative of class A beta-lactamase from Bacteroides cellulosilyticus DSM 14838 3K2G ; 1.8 ; Crystal structure of a Resiniferatoxin-binding protein from Rhodobacter sphaeroides 3GUV ; 2.2 ; Crystal structure of a resolvase family site-specific recombinase from Streptococcus pneumoniae 3SNK ; 2.02 ; Crystal structure of a Response regulator CheY-like protein (mll6475) from MESORHIZOBIUM LOTI at 2.02 A resolution 3EQZ ; 2.15 ; Crystal structure of a response regulator from Colwellia psychrerythraea 3NHM ; 2.19 ; Crystal structure of a response regulator from Myxococcus xanthus 2QXY ; 1.95 ; Crystal structure of a response regulator from Thermotoga maritima 3RQI ; 1.7 ; Crystal structure of a response regulator protein from Burkholderia pseudomallei with a phosphorylated aspartic acid, calcium ion and citrate 2B4A ; 2.42 ; Crystal structure of a response regulator receiver domain protein (bh3024) from bacillus halodurans c-125 at 2.42 A resolution 3N53 ; 2.2 ; Crystal structure of a response regulator receiver modulated diguanylate cyclase from Pelobacter carbinolicus 5TE9 ; 2.401 ; Crystal structure of a response regulator receiver protein from Burkholderia phymatum 4HYE ; 1.7 ; Crystal structure of a response regulator spr1814 from Streptococcus pneumoniae reveals unique interdomain contacts among NarL family proteins 3WAZ ; 3.0 ; Crystal structure of a restriction enzyme PabI in complex with DNA 8G9A ; 2.03 ; Crystal structure of a resurrected ancestor (AncRNase) of the pancreatic-type RNases 2 and 3 sub-families 5C9B ; 2.4 ; Crystal structure of a retropepsin-like aspartic protease from Rickettsia conorii 5C9D ; 2.59 ; Crystal structure of a retropepsin-like aspartic protease from Rickettsia conorii 5C9F ; 2.0 ; Crystal structure of a retropepsin-like aspartic protease from Rickettsia conorii 5EQZ ; 1.8 ; Crystal structure of a Rev protein from Borrelia burgdorferi at 1.80 A resolution 3IKV ; 2.4 ; Crystal structure of a Rex-family repressor R90D mutant from Thermus aquaticus 3IL2 ; 2.49 ; Crystal structure of a Rex-family repressor R90D mutant/DNA complex from Thermus aquaticus 3IKT ; 2.26 ; Crystal structure of a Rex-family repressor/DNA/NAD+ complex from Thermus aquaticus 3KET ; 2.4 ; Crystal structure of a Rex-family transcriptional regulatory protein from Streptococcus agalactiae bound to a palindromic operator 3KEO ; 1.5 ; Crystal Structure of a Rex-family transcriptional regulatory protein from Streptococcus agalactiae complexed with NAD+ 3KEQ ; 2.4 ; Crystal structure of a Rex-family transcriptional regulatory protein from Streptococcus agalactiae complexed with NAD+ 1ZLD ; 1.65 ; Crystal structure of a RGD-containing host-selective toxin: Pyrenophora tritici-repentis Ptr ToxA 1ZLE ; 1.9 ; Crystal structure of a RGD-containing host-selective toxin: Pyrenophora tritici-repentis Ptr ToxA 5H4S ; 1.8 ; Crystal structure of a rhamnose-binding lectin SUL-I from the toxopneustid sea urchin Toxopneustes pileolus 2J4Y ; 3.4 ; Crystal structure of a rhodopsin stabilizing mutant expressed in mammalian cells 3DZO ; 1.8 ; Crystal structure of a rhoptry kinase from toxoplasma gondii 2R3B ; 1.8 ; CRYSTAL STRUCTURE OF a ribokinase-like superfamily protein (EF1790) FROM ENTEROCOCCUS FAECALIS V583 AT 1.80 A RESOLUTION 2R3E ; 1.95 ; CRYSTAL STRUCTURE OF a ribokinase-like superfamily protein (EF1790) FROM ENTEROCOCCUS FAECALIS V583 AT 1.95 A RESOLUTION 6QMN ; 2.31 ; Crystal structure of a Ribonuclease A-Onconase chimera 4DJN ; 2.2 ; Crystal structure of a ribonucleotide reductase M2 B (RNRR2) from Homo sapiens at 2.20 A resolution 1O1X ; 1.9 ; Crystal structure of a ribose 5-phosphate isomerase rpib (tm1080) from thermotoga maritima at 1.90 A resolution 3SDW ; 1.8 ; Crystal structure of a ribose-5-phosphate isomerase B RpiB from Coccidioides immitis bound to phosphate 7LDA ; 1.45 ; Crystal structure of a ribose-5-phosphate isomerase from Stenotrophomonas maltophilia K279a 3C0K ; 2.0 ; Crystal Structure of a ribosomal RNA methyltranferase 2PLW ; 1.7 ; Crystal structure of a ribosomal RNA methyltransferase, putative, from Plasmodium falciparum (PF13_0052). 5VM8 ; 2.4 ; Crystal structure of a Ribosomal RNA small subunit methyltransferase E from Neisseria gonorrhoeae bound to S-adenosyl methionine 5UCV ; 1.8 ; Crystal Structure of a Ribosome Biogenesis GTP-binding protein (YsxC) from Neisseria gonorrhoeae with bound GDP 1TFM ; 2.8 ; CRYSTAL STRUCTURE OF A RIBOSOME INACTIVATING PROTEIN IN ITS NATURALLY INHIBITED FORM 6VUD ; 2.35 ; Crystal structure of a ribosome recycling factor from Ehrlichia chaffeensis 5UMF ; 1.4 ; Crystal Structure of a Ribulose-phosphate 3-epimerase from Neisseria gonorrhoeae with bound phosphate 5JNP ; 2.404 ; Crystal structure of a rice (Oryza Sativa) cellulose synthase plant conserved region (P-CR) 3H2G ; 1.86 ; Crystal structure of a rice cell wall degrading esterase LipA from Xanthomonas oryzae 7XMH ; 1.18 ; Crystal structure of a rice class IIIb chitinase, Oschib2 3GNO ; 1.83 ; Crystal Structure of a Rice Os3BGlu6 Beta-Glucosidase 3GNR ; 1.81 ; Crystal Structure of a Rice Os3BGlu6 Beta-Glucosidase with covalently bound 2-deoxy-2-fluoroglucoside to the catalytic nucleophile E396 3GNP ; 1.8 ; Crystal Structure of a Rice Os3BGlu6 Beta-Glucosidase with Octyl-Beta-D-Thio-Glucoside 7FHR ; 1.84 ; Crystal Structure of a Rieske Oxygenase from Cupriavidus metallidurans 3R6N ; 2.95 ; Crystal structure of a rigid four spectrin repeat fragment of the human desmoplakin plakin domain 4MUD ; 2.43 ; Crystal structure of a ring oxydation complex/ phenylacetic acid degradation-like protein (SSO1313) from Sulfolobus solfataricus P2 at 2.43 A resolution 2PFW ; 1.9 ; CRYSTAL STRUCTURE OF A RMLC-LIKE CUPIN (SFRI_3105) FROM SHEWANELLA FRIGIDIMARINA NCIMB 400 AT 1.90 A RESOLUTION 2B8M ; 1.7 ; Crystal structure of a rmlc-like cupin family protein with a double-stranded beta-helix fold (mj0764) from methanocaldococcus jannaschii at 1.70 A resolution 2Q30 ; 1.94 ; Crystal structure of a rmlc-like cupin protein (dde_2303) from desulfovibrio desulfuricans subsp. at 1.94 A resolution 4Z2X ; 2.15 ; Crystal structure of a RNA binding domain of a U2 small nuclear ribonucleoprotein auxiliary factor 2 (U2AF) from mouse at 2.15 A resolution 3V4M ; 1.8 ; Crystal structure of a RNA binding domain of a U2 small nuclear ribonucleoprotein auxiliary factor 2 (U2AF) from Mus musculus at 1.80 A resolution 3UE2 ; 1.23 ; Crystal structure of a RNA binding domain of poly-U binding splicing factor 60KDa (PUF60) from Homo sapiens at 1.23 A resolution 3UWT ; 2.5 ; Crystal structure of a RNA binding domain of poly-U binding splicing factor 60KDa (PUF60) from Homo sapiens at 2.50 A resolution 3UCG ; 1.95 ; Crystal structure of a RNA binding domain of polyadenylate-binding protein (PABPN1) from Homo sapiens at 1.95 A resolution 3ULH ; 2.54 ; Crystal structure of a RNA binding domain of THO complex subunit 4 protein (THOC4) from Homo sapiens at 2.54 A resolution 4YUD ; 1.28 ; Crystal structure of a RNA binding motif protein 39 (RBM39) from Homo sapiens at 1.28 A resolution 3S6E ; 0.95 ; Crystal structure of a RNA binding motif protein 39 (RBM39) from Mus musculuS at 0.95 A resolution 1KXK ; 3.0 ; Crystal Structure of a RNA Molecule Containing Domain 5 and 6 of the Yeast ai5g Group II Self-splicing Intron 3US5 ; 1.38 ; Crystal structure of a RNA-binding domain of a poly-U binding splicing factor 60KDa (PUF60) from Homo sapiens at 1.38 A resolution 4RU2 ; 2.2 ; Crystal structure of a RNA-binding protein 39 (RBM39) in complex with fragment of splicing factor (U2AF) from Mus musculus at 2.20 A resolution 5CXT ; 2.2 ; Crystal structure of a RNA-binding protein 39 (RBM39) in complex with fragment of splicing factor (U2AF) from Unknown at 2.20 A resolution 3O2C ; 1.5 ; Crystal structure of a rod form of c-phycocyanin from Themosynechococcus vulcanus at 1.5 angstroms 3VGK ; 3.25 ; Crystal structure of a ROK family glucokinase from Streptomyces griseus 3VGM ; 1.84 ; Crystal structure of a ROK family glucokinase from Streptomyces griseus in complex with glucose 3VGL ; 1.55 ; Crystal structure of a ROK family glucokinase from Streptomyces griseus in complex with glucose and AMPPNP 3NWR ; 1.498 ; Crystal structure of a rubisco-like protein from Burkholderia fungorum 1TEL ; 2.7 ; Crystal structure of a RubisCO-like protein from Chlorobium tepidum 2OEJ ; 2.55 ; Crystal structure of a rubisco-like protein from Geobacillus kaustophilus (tetramutant form), liganded with phosphate ions 2OEM ; 1.7 ; Crystal structure of a rubisco-like protein from Geobacillus kaustophilus liganded with Mg2+ and 2,3-diketohexane 1-phosphate 2OEL ; 1.8 ; Crystal structure of a rubisco-like protein from Geobacillus kaustophilus liganded with Mg2+ and HCO3- ions 2OEK ; 1.8 ; Crystal structure of a rubisco-like protein from Geobacillus kaustophilus liganded with Mg2+ ions 2QYG ; 3.3 ; Crystal Structure of a RuBisCO-like Protein rlp2 from Rhodopseudomonas palustris 6UEH ; 1.849 ; Crystal structure of a ruminal GH26 endo-beta-1,4-mannanase 3TJR ; 1.6 ; Crystal structure of a Rv0851c ortholog short chain dehydrogenase from Mycobacterium paratuberculosis 5T8T ; 2.1 ; Crystal Structure of a S-adenosylmethionine Synthase from Neisseria gonorrhoeae with bound AMP and Magnesium 5T8S ; 1.7 ; Crystal Structure of a S-adenosylmethionine Synthase from Neisseria gonorrhoeae with bound S-adenosylmethionine, AMP, Pyrophosphate, Phosphate, and Magnesium 1Y8C ; 2.5 ; Crystal structure of a S-adenosylmethionine-dependent methyltransferase from Clostridium acetobutylicum ATCC 824 2Y1I ; 2.78 ; Crystal structure of a S-diastereomer analogue of the spore photoproduct in complex with fragment DNA polymerase I from Bacillus stearothermophilus 6VBM ; 1.71 ; Crystal structure of a S310A mutant of PBP2 from Neisseria gonorrhoeae 3U81 ; 1.13 ; Crystal structure of a SAH-bound semi-holo form of rat Catechol-O-methyltransferase 4JZ6 ; 2.417 ; Crystal structure of a salicylaldehyde dehydrogenase from Pseudomonas putida G7 complexed with salicylaldehyde 2XY7 ; 3.05 ; Crystal structure of a salicylic aldehyde base in the pre-insertion site of fragment DNA polymerase I from Bacillus stearothermophilus 2XY6 ; 2.3 ; Crystal structure of a salicylic aldehyde basepair in complex with fragment DNA polymerase I from Bacillus stearothermophilus 4G2S ; 1.858 ; Crystal structure of a Salmonella type III secretion system protein 2P7I ; 1.74 ; CRYSTAL STRUCTURE OF a SAM dependent methyl-transferase type 12 family protein (ECA1738) FROM PECTOBACTERIUM ATROSEPTICUM SCRI1043 AT 1.74 A RESOLUTION 2P7H ; 1.85 ; Crystal structure of a sam dependent methyl-transferase type 12 family protein (eca1738) from pectobacterium atrosepticum scri1043 at 1.85 A resolution 3DH0 ; 2.72 ; Crystal structure of a SAM dependent methyltransferase from Aquifex aeolicus 3DLI ; 2.46 ; Crystal structure of a SAM dependent methyltransferase from Archaeoglobus fulgidus 6J1O ; 1.7 ; Crystal structure of a SAM-dependent methyltransferase LepI from Aspergillus flavus 6J24 ; 2.244 ; Crystal structure of a SAM-dependent methyltransferase LepI in complex with its substrate 3C9N ; 1.87 ; Crystal Structure of a SARS Corona Virus Derived Peptide Bound to the Human Major Histocompatibility Complex Class I molecule HLA-B*1501 7JMX ; 2.53 ; Crystal structure of a SARS-CoV-2 cross-neutralizing antibody COVA1-16 Fab 5LW6 ; 1.8 ; Crystal structure of a Se-Met substituted Dictyostelium discoideum ADP-ribose binding macrodomain (residues 342-563) of DDB_G0293866 2I9W ; 1.75 ; Crystal structure of a sec-c motif containing protein (psyc_2064) from psychrobacter arcticus at 1.75 A resolution 5L0Y ; 2.87 ; Crystal Structure of a Sec72-ssa1 c-terminal peptide fusion protein 7CYK ; 2.785 ; Crystal structure of a second cysteine-pair mutant (V110C-I197C) of a bacterial bile acid transporter before disulfide bond formation 7QBK ; 2.26 ; Crystal structure of a second homolog of R2-like ligand-binding oxidase in Sulfolobus acidocaldarius (SaR2loxII) 2HJD ; 2.1 ; Crystal structure of a second quorum sensing antiactivator TraM2 from A. tumefaciens strain A6 2GJ5 ; 2.4 ; Crystal structure of a secondary vitamin D3 binding site of milk beta-lactoglobulin 5XNA ; 1.802 ; Crystal structure of a secretary abundant heat soluble (SAHS) protein from Ramazzottius varieornatus (from dimer sample) 5XN9 ; 1.449 ; Crystal structure of a secretary abundant heat soluble (SAHS) protein from Ramazzottius varieornatus (from monomer sample) 3MAY ; 2.5 ; Crystal structure of a secreted Mycobacterium tuberculosis heme-binding protein 2NZO ; 2.0 ; Crystal structure of a secretion chaperone CsaA from Bacillus subtilis in the space group P 32 2 1 2NZH ; 1.9 ; Crystal structure of a secretion chaperone CsaA from Bacillus subtilis in the space group P 4 21 2 2DPE ; 2.07 ; Crystal structure of a secretory 40KDA glycoprotein from sheep at 2.0A resolution 7YGK ; 1.24 ; Crystal structure of a secretory phospholipase A2 from Sciscionella marina 3RA3 ; 2.31 ; Crystal structure of a section of a de novo design gigaDalton protein fibre 4U36 ; 1.4 ; Crystal structure of a seed lectin from Vatairea macrocarpa complexed with Tn-antigen 5CJ6 ; 2.07 ; Crystal Structure of a Selective Androgen Receptor Modulator Bound to the Ligand Binding Domain of the Human Androgen Receptor 6YAY ; 2.09 ; Crystal structure of a Selenium-derivatized complex of the bacterial cellulose secretion regulators BcsR and BcsQ, crystallized in the presence of ADP 6YAR ; 1.9 ; Crystal structure of a Selenium-derivatized complex of the bacterial cellulose secretion regulators BcsR and BcsQ, crystallized in the presence of AppCp 4P31 ; 2.05 ; Crystal structure of a selenomethionine derivative of E. coli LptB in complex with ADP-Magensium 7VXT ; 1.88 ; Crystal structure of a selenomethionine-labeled BPSL1038 from Burkholderia pseudomallei 8B4L ; 3.394 ; Crystal structure of a selenomethionine-labeled hydropyrene synthase (M75L variant) in its closed conformation 6RMQ ; 3.0 ; Crystal structure of a selenomethionine-substituted A70M I84M mutant of the essential repressor DdrO from radiation resistant-Deinococcus bacteria (Deinococcus deserti) 6ANR ; 2.098 ; Crystal structure of a self resistance protein ClbS from colibactin biosynthetic gene cluster 6XJQ ; 1.708 ; Crystal structure of a self-alkylating ribozyme - alkylated form with biotinylated epoxide substrate 6XJW ; 1.918 ; Crystal structure of a self-alkylating ribozyme - alkylated form without biotin moiety 6XJZ ; 2.488 ; Crystal structure of a self-alkylating ribozyme - apo form 6XJY ; 2.156 ; Crystal structure of a self-alkylating ribozyme - short time incubation with the epoxide substrate 6U40 ; 2.702 ; Crystal Structure of a Self-Assembling DNA Crystal Scaffold with Rhombohedral Symmetry 6WJK ; 4.514 ; Crystal Structure of a Self-Assembling DNA Crystal Scaffold with Rhombohedral Symmetry 6UEF ; 2.95 ; Crystal Structure of a Self-Assembling DNA Scaffold Containing Sequence Modifications to Attempt to Disrupt Crystal Contacts in a Rhombohedral Lattice. 6UDN ; 2.602 ; Crystal Structure of a Self-Assembling DNA Scaffold Containing TA Sticky Ends and Rhombohedral Symmetry 7C0N ; 1.552 ; Crystal structure of a self-assembling galactosylated peptide homodimer 6IA2 ; 2.27 ; Crystal structure of a self-complementary RNA duplex recognized by Com 3BWP ; 3.1 ; Crystal structure of a self-spliced group II intron 1U6B ; 3.1 ; CRYSTAL STRUCTURE OF A SELF-SPLICING GROUP I INTRON WITH BOTH EXONS 2BH7 ; 2.2 ; Crystal structure of a SeMet derivative of AmiD at 2.2 angstroms 1SD4 ; 2.0 ; Crystal Structure of a SeMet derivative of BlaI at 2.0 A 2BH0 ; 2.5 ; Crystal structure of a SeMet derivative of EXPA from Bacillus subtilis at 2.5 angstrom 1SD7 ; 2.65 ; Crystal Structure of a SeMet derivative of MecI at 2.65 A 8HTC ; 2.2 ; Crystal structure of a SeMet-labeled effector from Chromobacterium violaceum in complex with Ubiquitin 3V4C ; 1.91 ; Crystal structure of a semialdehyde dehydrogenase from Sinorhizobium meliloti 1021 5T57 ; 1.65 ; Crystal Structure of a Semialdehyde dehydrogenase NAD-binding Protein from Cupriavidus necator in Complex with Calcium and NAD 4QND ; 1.698 ; Crystal structure of a SemiSWEET 4QNC ; 2.388 ; Crystal structure of a SemiSWEET in an occluded state 3GRC ; 2.21 ; Crystal structure of a sensor protein from Polaromonas sp. JS666 4YME ; 1.4 ; Crystal structure of a sensory box/GGDEF family protein (CC_0091) from Caulobacter crescentus CB15 at 1.40 A resolution (PSI Community Target, Shapiro) 3Q3C ; 2.299 ; Crystal structure of a serine dehydrogenase from Pseudomonas aeruginosa pao1 in complex with NAD 5VC2 ; 1.9 ; Crystal structure of a serine hydroxymethyltransferase from Helicobacter pylori 7EDD ; 2.897 ; Crystal structure of a serine protease from Streptococcus pyogenes 5XXZ ; 3.085 ; Crystal structure of a serine protease from Streptococcus species 5XYA ; 3.0 ; Crystal structure of a serine protease from Streptococcus species 5XYR ; 2.8 ; Crystal structure of a serine protease from Streptococcus species 2R0Q ; 3.2 ; Crystal structure of a serine recombinase- DNA regulatory complex 1EZX ; 2.6 ; CRYSTAL STRUCTURE OF A SERPIN:PROTEASE COMPLEX 3US4 ; 1.5 ; Crystal structure of a SH2 domain of a megakaryocyte-associated tyrosine kinase (MATK) from Homo sapiens at 1.50 A resolution 3UF4 ; 1.98 ; Crystal structure of a SH3 and SH2 domains of FYN protein (Proto-concogene Tyrosine-protein kinase Fyn) from Mus musculus at 1.98 A resolution 4D8K ; 2.36 ; Crystal structure of a SH3-SH2 domains of a lymphocyte-specific protein tyrosine kinase (LCK) from Homo sapiens at 2.36 A resolution 4XIJ ; 1.45 ; Crystal Structure of a Shikimate 5-dehydrogenase from Mycobacterium fortuitum Determined by Iodide SAD Phasing 4PZ1 ; 1.73 ; Crystal structure of a sHIP (UniProt Id: Q99XU0) mutant from Streptococcus pyogenes 6DLG ; 1.499 ; Crystal structure of a SHIP1 surface entropy reduction mutant 4H15 ; 1.45 ; Crystal Structure of a short chain alcohol dehydrogenase-related dehydrogenase (target ID NYSGRC-011812) from Sinorhizobium meliloti 1021 in space group P21 4H16 ; 2.0 ; Crystal Structure of a short chain alcohol dehydrogenase-related dehydrogenase (target ID NYSGRC-011812) from Sinorhizobium meliloti 1021 in space group P6422 3SC4 ; 2.5 ; Crystal structure of a Short chain dehydrogenase (A0QTM2 homolog) Mycobacterium thermoresistibile 3EDM ; 2.3 ; Crystal structure of a short chain dehydrogenase from Agrobacterium tumefaciens 4NIM ; 1.8 ; Crystal Structure of a Short Chain Dehydrogenase from Brucella melitensis 4NI5 ; 1.7 ; Crystal Structure of a Short Chain Dehydrogenase from Brucella suis 5U8P ; 1.4 ; Crystal structure of a short chain dehydrogenase from Burkholderia cenocepacia J2315 in complex with NAD 5U2W ; 1.55 ; Crystal structure of a Short chain dehydrogenase from Burkholderia cenocepacia J2315 in complex with NADP 5U4S ; 1.4 ; Crystal structure of a Short chain dehydrogenase from Burkholderia cenocepacia J2315 in complex with NADP. 3QLJ ; 1.8 ; Crystal structure of a short chain dehydrogenase from Mycobacterium avium 7ULH ; 2.6 ; Crystal Structure of a Short chain dehydrogenase from Mycobacterium avium 104 3O38 ; 1.95 ; Crystal structure of a short chain dehydrogenase from Mycobacterium smegmatis 4WEC ; 1.55 ; Crystal structure of a Short chain dehydrogenase from Mycobacterium smegmatis 4DQX ; 2.0 ; Crystal structure of a short chain dehydrogenase from Rhizobium etli CFN 42 4GKB ; 1.5 ; Crystal structure of a short chain dehydrogenase homolog (target efi-505321) from burkholderia multivorans, unliganded structure 4GLO ; 1.8 ; Crystal structure of a short chain dehydrogenase homolog (target EFI-505321) from burkholderia multivorans, with bound NAD 4GVX ; 1.499 ; Crystal structure of a short chain dehydrogenase homolog (target EFI-505321) from burkholderia multivorans, with bound NADP and L-fucose 3TOX ; 1.93 ; Crystal structure of a short chain dehydrogenase in complex with NAD(P) from Sinorhizobium meliloti 1021 5IG2 ; 1.8 ; Crystal structure of a short chain dehydrogenase/reductase SDR from Burkholderia phymatum in complex with NAD 6D9Y ; 1.3 ; Crystal structure of a short chain dehydrogenase/reductase SDR from Burkholderia phymatum with partially occupied NAD 6Y4D ; 2.1 ; Crystal structure of a short-chain dehydrogenase/reductase (SDR) from Zephyranthes treatiae in complex with NADP+ 5IDQ ; 1.55 ; Crystal structure of a Short-chain dehydrogenase/reductase (SDR)from Burkholderia vietnamiensis at 1.55 A resolution 3GUY ; 1.9 ; Crystal structure of a short-chain dehydrogenase/reductase from Vibrio parahaemolyticus 5IF3 ; 1.65 ; Crystal structure of a Short-chain dehydrogenase/reductase SDR from Burkholderia vietnamiensis 4DYV ; 1.8 ; Crystal structure of a short-chain dehydrogenase/reductase SDR from Xanthobacter autotrophicus Py2 4ID9 ; 1.6 ; Crystal structure of a short-chain dehydrogenase/reductase superfamily protein from agrobacterium tumefaciens (TARGET EFI-506441) with bound nad, monoclinic form 1 4IDG ; 1.9 ; Crystal structure of a short-chain dehydrogenase/reductase superfamily protein from agrobacterium tumefaciens (TARGET EFI-506441) with bound NAD, monoclinic form 2 3R1I ; 1.95 ; Crystal structure of a short-chain type dehydrogenase/reductase from Mycobacterium marinum 3TZQ ; 2.5 ; Crystal structure of a short-chain type dehydrogenase/reductase from Mycobacterium marinum 7NRG ; 1.57 ; Crystal structure of a shortened IpgC variant in complex with (1R)-2-amino-1-(4-fluorophenyl)ethanol 7AYW ; 1.78 ; Crystal structure of a shortened IpgC variant in complex with 2H-isoindol-1-amine 7B1U ; 1.59 ; Crystal structure of a shortened IpgC variant in complex with 3-(3,4-difluorophenyl)-1H,4H,6H,7H-imidazo[2,1-c][1,2,4]triazine 7AXY ; 1.63 ; Crystal structure of a shortened IpgC variant in complex with 3-amino-5-(pyrrolidin-1-yl)-1H-pyrazole-4-carbonitrile 7NL8 ; 1.59 ; Crystal structure of a shortened IpgC variant in complex with 3-methylbenzohydrazide 7AZV ; 1.68 ; Crystal structure of a shortened IpgC variant in complex with 4-(trifluoromethyl)benzene-1-carboximidamide 7NHW ; 1.92 ; Crystal structure of a shortened IpgC variant in complex with chlorzoxazone 7O6S ; 1.58 ; Crystal structure of a shortened IpgC variant in complex with N-(2H-1,3-benzodioxol-5-ylmethyl)cyclopentanamine 7O04 ; 1.74 ; Crystal structure of a shortened IpgC variant in complex with [(2-chloro-5-nitrophenyl)methyl](methyl)amine 6SCB ; 1.58 ; Crystal structure of a shortened IpgC variant with two bound Magnesium and two bound Chlorine atoms each 4YHB ; 1.8892 ; Crystal structure of a siderophore utilization protein from T. fusca 2GPJ ; 2.2 ; CRYSTAL STRUCTURE OF A SIDEROPHORE-INTERACTING PROTEIN (SPUTCN32_0076) FROM SHEWANELLA PUTREFACIENS CN-32 AT 2.20 A RESOLUTION 1OJL ; 3.0 ; Crystal structure of a sigma54-activator suggests the mechanism for the conformational switch necessary for sigma54 binding 1SIG ; 2.6 ; CRYSTAL STRUCTURE OF A SIGMA70 SUBUNIT FRAGMENT FROM ESCHERICHIA COLI RNA POLYMERASE 4ME8 ; 2.27 ; Crystal structure of a signal peptidase I (EF3073) from Enterococcus faecalis V583 at 2.27 A resolution 3LUA ; 2.4 ; Crystal structure of a Signal receiver domain of Two component Signal Transduction (Histidine Kinase) from Clostridium thermocellum 4UYJ ; 3.35 ; Crystal structure of a Signal Recognition Particle Alu domain in the elongation arrest conformation 4UYK ; 3.22 ; Crystal structure of a Signal Recognition Particle Alu domain in the elongation arrest conformation 3NDB ; 3.0 ; Crystal structure of a signal sequence bound to the signal recognition particle 2QMS ; 2.1 ; Crystal structure of a signaling molecule 2OLH ; 2.78 ; Crystal structure of a signalling protein (SPG-40) complex with cellobiose at 2.78 A resolution 2O92 ; 3.0 ; Crystal structure of a signalling protein (SPG-40) complex with tetrasaccharide at 3.0A resolution 1Y3G ; 2.1 ; Crystal Structure of a Silanediol Protease Inhibitor Bound to Thermolysin 4FDY ; 2.23 ; Crystal structure of a similar to lipoprotein, NLP/P60 family (SAV0400) from Staphylococcus aureus subsp. aureus Mu50 at 2.23 A resolution 7C51 ; 2.46 ; Crystal structure of a Simpl-like protein from Campylobacter jejuni (native protein) 7C50 ; 1.93 ; Crystal structure of a Simpl-like protein from Campylobacter jejuni (selenomethionine-incorporated protein) 4CS1 ; 2.0 ; Crystal structure of a simple duplex kink turn, HmKt-7 with 2 Mg bound. 3CI7 ; 1.4 ; Crystal structure of a simplified BPTI containing 20 alanines 1D2O ; 2.0 ; CRYSTAL STRUCTURE OF A SINGLE B REPEAT UNIT (B1) OF COLLAGEN BINDING SURFACE PROTEIN (CNA) OF STAPHYLOCOCCUS AUREUS. 4JZG ; 2.321 ; Crystal structure of a single cambialistic SOD2 occupied by Manganese ion from Clostridium difficile 2GJJ ; 2.1 ; Crystal structure of a single chain antibody scA21 against Her2/ErbB2 3NWM ; 2.7 ; Crystal structure of a single chain construct composed of MHC class I H-2Kd, beta-2microglobulin and a peptide which is an autoantigen for type 1 diabetes 5O7K ; 2.05 ; Crystal structure of a single chain monellin mutant (Y65R) pH 2.0 5O7L ; 2.6 ; Crystal structure of a single chain monellin mutant (Y65R) pH 4.6 5O7Q ; 1.72 ; Crystal structure of a single chain monellin mutant (Y65R) pH 5.5 5O7R ; 2.06 ; Crystal structure of a single chain monellin mutant (Y65R) pH 6.5 5O7S ; 2.02 ; Crystal structure of a single chain monellin mutant (Y65R) pH 8.3 5LC7 ; 1.55 ; Crystal structure of a single chain monellin mutant: E23Q/Q28K/C41S/Y65R-MNEI 5LC6 ; 1.7 ; Crystal structure of a single chain monellin mutant: Q28K/C41S/Y65R-MNEI 5OQF ; 2.27 ; Crystal structure of a single chain trimer composed of the MHC 1 heavy chain H2-Kb WT, beta-2microglobulin, and ovalbumin derived peptide 5OQG ; 1.9 ; Crystal structure of a single chain trimer composed of the MHC I heavy chain H-2Kb W167A, beta-2microglobulin, and and ovalbumin-derived peptide. 2QRI ; 2.0 ; Crystal structure of a single chain trimer composed of the MHC I heavy chain H-2Kb WT, beta-2microglobulin, and ovalbumin-derived peptide. 2QRS ; 2.0 ; Crystal Structure of a single chain trimer composed of the MHC I heavy chain H-2Kb Y84A, beta-2microglobulin, and ovalbumin-derived peptide. 4UNL ; 1.5 ; Crystal structure of a single mutant (N71D) of triosephosphate isomerase from human 4EMQ ; 1.95 ; Crystal structure of a single mutant of Dronpa, the green-on-state PDM1-4 3PGZ ; 2.1 ; Crystal structure of a single strand binding protein (SSB) from bartonella henselae 6IWV ; 1.52 ; Crystal structure of a single strand DNA binding protein 1O7I ; 1.2 ; Crystal structure of a single stranded DNA binding protein 7MC4 ; 2.5 ; Crystal structure of a single-chain E/F type bilin lyase-isomerase MpeQ 7MCH ; 2.95 ; Crystal structure of a single-chain E/F type bilin lyase-isomerase MpeQ in space group C2221 8JZ0 ; 1.229 ; Crystal structure of a single-chain monellin mutant C41A 8JZ1 ; 1.239 ; Crystal structure of a single-chain monellin mutant C41V 6R2G ; 1.9 ; Crystal structure of a single-chain protein mimetic of the gp41 NHR trimer in complex with the synthetic CHR peptide C34 4DOU ; 2.0 ; Crystal Structure of a Single-chain Trimer of Human Adiponectin Globular Domain 6HMZ ; 1.98 ; Crystal Structure of a Single-Domain Cyclophilin from Brassica napus Phloem Sap 4TX4 ; 1.95 ; Crystal Structure of a Single-Domain Cysteine Protease Inhibitor from Cowpea (Vigna unguiculata) 2HJM ; 2.9 ; Crystal structure of a singleton protein PF1176 from P. furiosus 1ICI ; 2.1 ; CRYSTAL STRUCTURE OF A SIR2 HOMOLOG-NAD COMPLEX 1GDT ; 3.0 ; CRYSTAL STRUCTURE OF A SITE-SPECIFIC RECOMBINASE, GAMMA-DELTA RESOLVASE COMPLEXED WITH A 34 BP CLEAVAGE SITE 1MHD ; 2.8 ; CRYSTAL STRUCTURE OF A SMAD MH1 DOMAIN BOUND TO DNA 1MR1 ; 2.85 ; Crystal Structure of a Smad4-Ski Complex 3SJQ ; 1.9 ; Crystal structure of a small conductance potassium channel splice variant complexed with calcium-calmodulin 5J7N ; 2.9 ; Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high order structure 2HQL ; 2.0 ; Crystal structure of a small single-stranded DNA binding protein from Mycoplasma pneumoniae 3UCF ; 2.347 ; Crystal structure of a small-chain dehydrogenase 3UCE ; 1.798 ; Crystal structure of a small-chain dehydrogenase in complex with NADPH 4GGQ ; 1.95 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase from Burkholderia pseudomallei complexed with CJ40 3UF8 ; 1.5 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase with a G95A surface mutation from Burkholderia pseudomallei complexed with FK506 3UQA ; 1.55 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase with surface mutation A54E from Burkholderia pseudomallei complexed with FK506 4G50 ; 1.75 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase with surface mutation D44G from Burkholderia pseudomallei complexed with CJ168 4GIV ; 2.45 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase with surface mutation D44G from Burkholderia pseudomallei complexed with CJ183 4FN2 ; 1.95 ; Crystal structure of a SMT fusion Peptidyl-prolyl cis-trans isomerase with surface mutation D44G from Burkholderia pseudomallei complexed with CJ37 3UQB ; 1.9 ; Crystal structure of a SMT Fusion PEPTIDYL-PROLYL CIS-TRANS ISOMERASE with surface mutation D44G from Burkholderia pseudomallei complexed with FK506 3VAW ; 1.55 ; Crystal structure of a smt fusion peptidyl-prolyl cis-trans isomerase with surface mutation v3i from burkholderia pseudomallei complexed with fk506 3EHC ; 2.12 ; Crystal structure of a snoal-like polyketide cyclase (atu3018) from agrobacterium tumefaciens str. c58 at 2.12 A resolution 3H3H ; 1.6 ; Crystal structure of a snoal-like protein of unknown function (bth_ii0226) from burkholderia thailandensis e264 at 1.60 A resolution 1S4I ; 1.8 ; Crystal structure of a SOD-like protein from Bacillus subtilis 3G67 ; 2.17 ; Crystal Structure of a Soluble Chemoreceptor from Thermotoga maritima 3G6B ; 3.0 ; Crystal structure of a Soluble Chemoreceptor from Thermotoga maritima Asn217Ile mutant 3G9V ; 2.756 ; Crystal structure of a soluble decoy receptor IL-22BP bound to interleukin-22 1RK4 ; 1.792 ; Crystal Structure of a Soluble Dimeric Form of Oxidised CLIC1 1ST9 ; 1.5 ; Crystal Structure of a Soluble Domain of ResA in the Oxidised Form 1DR9 ; 3.0 ; CRYSTAL STRUCTURE OF A SOLUBLE FORM OF B7-1 (CD80) 1K0O ; 1.75 ; Crystal structure of a soluble form of CLIC1. An intracellular chloride ion channel 2AHE ; 1.8 ; Crystal structure of a soluble form of CLIC4. intercellular chloride ion channel 3PE6 ; 1.35 ; Crystal Structure of a soluble form of human MGLL in complex with an inhibitor 1CD8 ; 2.6 ; CRYSTAL STRUCTURE OF A SOLUBLE FORM OF THE HUMAN T CELL CO-RECEPTOR CD8 AT 2.6 ANGSTROMS RESOLUTION 5Z3Q ; 2.545 ; Crystal Structure of a Soluble Fragment of Poliovirus 2C ATPase (2.55 Angstrom) 1K0M ; 1.4 ; Crystal structure of a soluble monomeric form of CLIC1 at 1.4 angstroms 1HUV ; 2.15 ; CRYSTAL STRUCTURE OF A SOLUBLE MUTANT OF THE MEMBRANE-ASSOCIATED (S)-MANDELATE DEHYDROGENASE FROM PSEUDOMONAS PUTIDA AT 2.15A RESOLUTION 2X9C ; 2.45 ; Crystal structure of a soluble PrgI mutant from Salmonella Typhimurium 3D89 ; 2.071 ; Crystal Structure of a Soluble Rieske Ferredoxin from Mus musculus 6WMA ; 2.5 ; Crystal structure of a soluble variant of full-length human APOBEC3G (pH 7.6) 6WMB ; 3.02 ; Crystal structure of a soluble variant of full-length human APOBEC3G (pH 8.0) 6WMC ; 3.49 ; Crystal structure of a soluble variant of full-length human APOBEC3G (pH 9.0) 4ZXF ; 2.5 ; Crystal Structure of a Soluble Variant of Monoglyceride Lipase from Saccharomyces Cerevisiae in Complex with a Substrate Analog 4ZWN ; 2.491 ; Crystal Structure of a Soluble Variant of the Monoglyceride Lipase from Saccharomyces Cerevisiae 7UG8 ; 1.796 ; Crystal structure of a solute receptor from Synechococcus CC9311 in complex with alpha-ketovaleric and calcium 3POV ; 2.5 ; Crystal structure of a SOX-DNA complex 2V53 ; 3.2 ; Crystal structure of a SPARC-collagen complex 5GQT ; 3.022 ; Crystal structure of a specifier Protein from Arabidopsis thaliana 3OAK ; 2.15 ; Crystal structure of a Spn1 (Iws1)-Spt6 complex 2VWA ; 2.5 ; Crystal structure of a sporozoite protein essential for liver stage development of malaria parasite 2XPN ; 1.95 ; Crystal structure of a Spt6-Iws1(Spn1) complex from Encephalitozoon cuniculi, Form I 2XPO ; 2.1 ; Crystal structure of a Spt6-Iws1(Spn1) complex from Encephalitozoon cuniculi, Form II 2XPP ; 1.74 ; Crystal structure of a Spt6-Iws1(Spn1) complex from Encephalitozoon cuniculi, Form III 1GSZ ; 2.8 ; Crystal Structure of a Squalene Cyclase in Complex with the Potential Anticholesteremic Drug Ro48-8071 3FPM ; 3.3 ; Crystal Structure of a Squarate Inhibitor bound to MAPKAP Kinase-2 1SHG ; 1.8 ; CRYSTAL STRUCTURE OF A SRC-HOMOLOGY 3 (SH3) DOMAIN 5UTF ; 3.503 ; Crystal Structure of a Stabilized DS-SOSIP.6mut BG505 gp140 HIV-1 Env Trimer, Containing Mutations I201C-P433C (DS), L154M, Y177W, N300M, N302M, T320L, I420M in Complex with Human Antibodies PGT122 and 35O22 at 4.3 A 5UTY ; 3.412 ; Crystal Structure of a Stabilized DS-SOSIP.mut4 BG505 gp140 HIV-1 Env Trimer, Containing Mutations I201C-P433C (DS), L154M, N300M, N302M, T320L in Complex with Human Antibodies PGT122 and 35O22 at 4.1 Angstrom 6X5N ; 3.3 ; Crystal structure of a stabilized PAN ENE bimolecular triplex with a GC-clamped polyA tail, in complex with Fab-BL-3,6 6X5M ; 2.5 ; Crystal structure of a stabilized PAN ENE bimolecular triplex with a GC-clamped polyA tail, in complex with Fab-BL-3,6. 1VH4 ; 1.75 ; Crystal structure of a stabilizer of iron transporter 4QBF ; 1.8 ; Crystal structure of a stable adenylate kinase variant AKlse2 4QBG ; 1.37 ; Crystal structure of a stable adenylate kinase variant AKlse4 4QBH ; 1.67 ; Crystal structure of a stable adenylate kinase variant AKlse5 4QBI ; 1.67 ; Crystal structure of a stable adenylate kinase variant AKlse6 4MKH ; 1.5 ; Crystal structure of a stable adenylate kinase variant AKv18 4MKF ; 1.7 ; Crystal structure of a stable adenylate kinase variant AKv3 4MKG ; 1.45 ; Crystal structure of a stable adenylate kinase variant AKv8 7RG8 ; 1.3 ; Crystal Structure of a Stable Heparanase Mutant 6IH7 ; 2.25 ; Crystal structure of a standalone versatile EAL protein from Vibrio cholerae O395 - 3',3'-cGAMP bound form 6IJ2 ; 1.7 ; Crystal structure of a standalone versatile EAL protein from Vibrio cholerae O395 - 5'-pGpG bound form 6IFQ ; 1.95 ; Crystal structure of a standalone versatile EAL protein from Vibrio cholerae O395 - Apo form 6IH1 ; 1.95 ; Crystal structure of a standalone versatile EAL protein from Vibrio cholerae O395 - c-di-GMP bound form 6K6T ; 2.2 ; Crystal structure of a standalone versatile EAL protein from Vibrio cholerae O395 - c-di-IMP bound form 1QWX ; 1.5 ; Crystal Structure of a Staphylococcal Inhibitor/Chaperone 8ABO ; 1.97 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a fragment 8ADR ; 1.92 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a fragment 8AA7 ; 2.05 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a heme coordinated fragment 8A8L ; 1.88 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a heme-coordinated fragment 8A91 ; 1.85 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a heme-coordinated fragment 8AE8 ; 1.92 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with a heme-coordinated fragment 7OW9 ; 1.8 ; Crystal structure of a staphylococcal orthologue of CYP134A1 (CYPX) in complex with Cyclo-L-leucyl-L-leucine 2QEJ ; 3.2 ; Crystal structure of a Staphylococcus aureus protein (SSL7) in complex with Fc of human IgA1 1T02 ; 2.6 ; Crystal structure of a Statin bound to class II HMG-CoA reductase 1ZOI ; 1.6 ; Crystal Structure of a Stereoselective Esterase from Pseudomonas putida IFO12996 3MSO ; 2.57 ; Crystal structure of a STEROID DELTA-ISOMERASE (NP_250810.1) from PSEUDOMONAS AERUGINOSA at 2.57 A resolution 6A99 ; 2.29 ; Crystal structure of a Stig cyclases Fisc from Fischerella sp. TAU in complex with (3Z)-3-(1-methyl-2-pyrrolidinylidene)-3H-indole 8GID ; 1.8 ; Crystal structure of a strain-transcending single-component Plasmodium falciparum AMA1-RON2L structure-based design immunogen 1 (SBD1) 4N8P ; 2.299 ; Crystal structure of a strand swapped CTLA-4 from Duckbill Platypus [PSI-NYSGRC-012711] 4ETY ; 1.9 ; Crystal structure of a strand-swapped dimer of Mouse Leukocyte-associated immunoglobulin-like receptor 1 (NYSGRC-006047) Extra Cellular Domain 4ESK ; 1.762 ; Crystal structure of a strand-swapped dimer of Mouse Leukocyte-associated immunoglobulin-like receptor 1 (NYSGRC-006047)IG-like domain 4JGL ; 1.25 ; Crystal structure of a streptavidin-like protein (BACEGG_01519) from Bacteroides eggerthii DSM 20697 at 1.25 A resolution 6FZH ; 1.5 ; Crystal structure of a streptococcal dehydrogenase at 1.5 Angstroem resolution 2ZW0 ; 1.4 ; Crystal structure of a Streptococcal protein G B1 mutant 2ZW1 ; 1.6 ; Crystal structure of a Streptococcal protein G B1 mutant 6KMC ; 1.84 ; Crystal structure of a Streptococcal protein G B1 mutant 4V49 ; 8.7 ; Crystal Structure of a Streptomycin Dependent Ribosome from E. Coli 70S Ribosome. 3NQK ; 2.61 ; Crystal structure of a STRUCTURAL GENOMICS, UNKNOWN FUNCTION (BACOVA_03322) from Bacteroides ovatus at 2.61 A resolution 3N91 ; 2.4 ; Crystal structure of a STRUCTURAL GENOMICS, UNKNOWN FUNCTION (BACOVA_03430) from Bacteroides ovatus at 2.40 A resolution 4IX3 ; 1.35 ; Crystal structure of a Stt7 homolog from Micromonas algae 4IX4 ; 1.499 ; Crystal structure of a Stt7 homolog from Micromonas algae in complex with ADP 4IX5 ; 1.7 ; Crystal structure of a Stt7 homolog from Micromonas algae in complex with AMP-PNP 4IX6 ; 1.6 ; Crystal structure of a Stt7 homolog from Micromonas algae soaked with ATP 3RA0 ; 2.451 ; Crystal Structure of a StWhy2 K67A-dT32 complex 3N1K ; 2.702 ; Crystal Structure of a StWhy2-cERE32 complex 3N1J ; 2.65 ; Crystal structure of a StWhy2-dT32 complex 3N1I ; 2.2 ; Crystal Structure of a StWhy2-ERE32 complex 3N1L ; 2.35 ; Crystal Structure of a StWhy2-rcERE32 complex 3VNN ; 2.903 ; Crystal Structure of a sub-domain of the nucleotidyltransferase (adenylation) domain of human DNA ligase IV 6LU2 ; 1.75 ; Crystal structure of a substrate binding protein from Microbacterium hydrocarbonoxydans 6LU3 ; 2.2 ; Crystal structure of a substrate binding protein from Microbacterium hydrocarbonoxydans complexed with 4-hydroxybenzoate hydrazide 5Z6V ; 1.87 ; Crystal structure of a substrate-binding protein from Rhodothermus marinus 3HAY ; 4.99 ; Crystal structure of a substrate-bound full H/ACA RNP from Pyrococcus furiosus 3HAX ; 2.11 ; Crystal structure of a substrate-bound Gar1-minus H/ACA RNP from Pyrococcus furiosus 4KY0 ; 3.0 ; Crystal structure of a substrate-free glutamate transporter homologue from Thermococcus kodakarensis 5DWY ; 2.7 ; Crystal structure of a substrate-free glutamate transporter homologue GltTk 7L4I ; 2.58 ; Crystal structure of a substrate-trapping variant of PPM1H phosphatase 3LPA ; 2.0 ; Crystal structure of a subtilisin-like protease 3LPC ; 1.7 ; Crystal structure of a subtilisin-like protease 3LPD ; 2.1 ; Crystal structure of a subtilisin-like protease 4I78 ; 3.18 ; Crystal structure of a subtype H17 hemagglutinin homologue from A/little yellow-shouldered bat/Guatemala/060/2010 (H17N10) 4K3X ; 2.149 ; Crystal structure of a subtype H18 hemagglutinin homologue from A/flat-faced bat/Peru/033/2010 (H18N11) 4MC5 ; 2.238 ; Crystal structure of a subtype H18 hemagglutinin homologue from A/flat-faced bat/Peru/033/2010 (H18N11) 4K3Y ; 2.682 ; Crystal structure of a subtype N11 neuraminidase-like protein of A/flat-faced bat/Peru/033/2010 (H18N11) 4MC7 ; 2.99 ; Crystal structure of a subtype N11 neuraminidase-like protein of A/flat-faced bat/Peru/033/2010 (H18N11) 3TX8 ; 2.972 ; Crystal structure of a succinyl-diaminopimelate desuccinylase (ArgE) from Corynebacterium glutamicum ATCC 13032 at 2.97 A resolution 3NA6 ; 2.0 ; Crystal structure of a succinylglutamate desuccinylase (TM1040_2694) from SILICIBACTER SP. TM1040 at 2.00 A resolution 5BQ3 ; 2.6 ; Crystal structure of a sugar ABC transporter (ACTODO_00688) from Actinomyces odontolyticus ATCC 17982 at 2.60 A resolution 3HXK ; 3.2 ; Crystal Structure of a sugar hydrolase (YeeB) from Lactococcus lactis, Northeast Structural Genomics Consortium Target KR108 3QC0 ; 1.45 ; Crystal structure of a sugar isomerase (SMc04130) from SINORHIZOBIUM MELILOTI 1021 at 1.45 A resolution 4EUM ; 1.8 ; Crystal structure of a sugar kinase (Target EFI-502132) from Oceanicola granulosus with bound AMP, crystal form II 4E69 ; 1.6 ; Crystal structure of a sugar kinase (target EFI-502132) from Oceanicola granulosus, unliganded structure 4EUN ; 1.6 ; Crystal structure of a sugar kinase (Target EFI-502144 from Janibacter sp. HTCC2649), unliganded structure 4EBU ; 2.0 ; Crystal structure of a sugar kinase (Target EFI-502312) from Oceanicola granulosus, with bound AMP/ADP crystal form I 6NBP ; 1.7 ; Crystal Structure of a Sugar N-Formyltransferase from the Plant Pathogen Pantoea ananatis 3P6L ; 1.85 ; Crystal structure of a Sugar phosphate isomerase/epimerase (BDI_1903) from Parabacteroides distasonis ATCC 8503 at 1.85 A resolution 3OBE ; 1.7 ; Crystal structure of a sugar phosphate isomerase/epimerase (BDI_3400) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution 3ORJ ; 2.16 ; Crystal structure of a sugar-binding protein (BACOVA_04391) from Bacteroides ovatus at 2.16 A resolution 3DWG ; 1.53 ; Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis 1HQR ; 3.2 ; CRYSTAL STRUCTURE OF A SUPERANTIGEN BOUND TO THE HIGH-AFFINITY, ZINC-DEPENDENT SITE ON MHC CLASS II 3O13 ; 2.05 ; Crystal structure of a superantigen-like protein (SAV0433) from Staphylococcus aureus MU50 at 2.05 A resolution 7T1K ; 1.25 ; Crystal structure of a superbinder Fes SH2 domain (sFes1) in complex with a high affinity phosphopeptide 7T1L ; 1.35 ; Crystal structure of a superbinder Fes SH2 domain (sFesS) in complex with a high affinity phosphopeptide 7T1U ; 2.65 ; Crystal structure of a superbinder Src SH2 domain (sSrcF) in complex with a high affinity phosphopeptide 4W6B ; 1.9 ; Crystal Structure of a Superfolder GFP Mutant K26C Disulfide Dimer, P 21 21 21 Space Group 2B3P ; 1.4 ; Crystal structure of a superfolder green fluorescent protein 8BRQ ; 1.63 ; Crystal structure of a surface entropy reduction variant of penicillin G acylase from Bacillaceae i. s. sp. FJAT-27231 7MK8 ; 2.15 ; Crystal structure of a surface mutant of human fetal-specific CYP3A7 bound to dithiothreitol 5EFD ; 1.674 ; Crystal structure of a surface pocket creating mutant (W6A) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 2H3N ; 2.3 ; Crystal structure of a surrogate light chain (LAMBDA5 and VpreB) homodimer 2QFA ; 1.4 ; Crystal structure of a Survivin-Borealin-INCENP core complex 4F53 ; 2.25 ; Crystal structure of a susd homolog (BACOVA_04803) from Bacteroides ovatus ATCC 8483 at 2.25 A resolution 4PUC ; 2.0 ; Crystal structure of a SusD homolog (BACUNI_02643) from Bacteroides uniformis ATCC 8492 at 2.00 A resolution 3P1U ; 2.05 ; Crystal structure of a SusD homolog (BDI_0600) from Parabacteroides distasonis ATCC 8503 AT 2.05 A resolution 3MX3 ; 2.0 ; Crystal structure of a SusD homolog (BF0972) from Bacteroides fragilis NCTC 9343 at 2.00 A resolution 3EJN ; 1.5 ; CRYSTAL STRUCTURE OF A SUSD HOMOLOG (BF3025) FROM BACTEROIDES FRAGILIS NCTC 9343 AT 1.50 A RESOLUTION 4MRU ; 1.9 ; Crystal structure of a susD homolog (BT1281) from Bacteroides thetaiotaomicron VPI-5482 at 1.90 A resolution 4Q69 ; 2.5 ; Crystal structure of a SusD homolog (BT2259) from Bacteroides thetaiotaomicron VPI-5482 at 2.50 A resolution 3CGH ; 1.7 ; Crystal structure of a susd homolog (bt_3984) from bacteroides thetaiotaomicron vpi-5482 at 1.70 A resolution 4F7A ; 1.85 ; Crystal structure of a susd homolog (BVU_2203) from Bacteroides vulgatus ATCC 8482 at 1.85 A resolution 3OTN ; 1.95 ; Crystal structure of a SusD superfamily protein (BDI_3964) from Parabacteroides distasonis ATCC 8503 at 1.95 A resolution 3NQP ; 1.9 ; Crystal structure of a SusD superfamily protein (BF1802) from Bacteroides fragilis NCTC 9343 at 1.90 A resolution 3GZS ; 2.09 ; Crystal structure of a susd superfamily protein (bf3413) from bacteroides fragilis nctc 9343 at 2.10 A resolution 3L22 ; 2.05 ; CRYSTAL STRUCTURE OF A SUSD SUPERFAMILY PROTEIN (BF_0597) FROM BACTEROIDES FRAGILIS AT 2.05 A RESOLUTION 3MYV ; 1.8 ; Crystal structure of a SusD superfamily protein (BVU_0732) from Bacteroides vulgatus ATCC 8482 at 1.80 A resolution 3I4G ; 1.35 ; CRYSTAL STRUCTURE OF A SUSD-LIKE CARBOHYDRATE BINDING PROTEIN (BF0978) FROM BACTEROIDES FRAGILIS NCTC 9343 AT 1.35 A RESOLUTION 3QNK ; 2.7 ; Crystal structure of a SusD-like protein (BF3747) from Bacteroides fragilis NCTC 9343 at 2.70 A resolution 3SGH ; 1.7 ; Crystal structure of a SusD-like protein (BT_3752) from Bacteroides thetaiotaomicron VPI-5482 at 1.70 A resolution 3FDH ; 1.75 ; Crystal structure of a susd/ragb family protein (bt_2033) from bacteroides thetaiotaomicron vpi-5482 at 1.75 A resolution 5WAK ; 3.2 ; Crystal Structure of a Suz12-Rbbp4 Binary Complex 5WAI ; 2.9 ; Crystal Structure of a Suz12-Rbbp4-Jarid2-Aebp2 Heterotetrameric Complex 6NQ3 ; 2.89 ; Crystal Structure of a SUZ12-RBBP4-PHF19-JARID2 Heterotetrameric Complex 4F3Z ; 3.2 ; Crystal structure of a swine H1N2 influenza virus hemagglutinin 4H3Z ; 2.15 ; Crystal structure of a symmetric dimer of a tRNA (guanine-(N(1)-)-methyltransferase from Burkholderia phymatum bound to S-adenosyl homocystein in both half-sites 3B3Q ; 2.4 ; Crystal structure of a synaptic adhesion complex 6A1I ; 1.6 ; Crystal structure of a synthase 1 from Santalum album 6A1D ; 1.78 ; Crystal structure of a synthase 1 from Santalum album in complex with ligand 6A1E ; 1.89 ; Crystal structure of a synthase 1 from Santalum album in complex with ligand fps 6A3X ; 1.75 ; Crystal structure of a synthase 1 from Santalum album in complex with ligand s 6A2A ; 1.77 ; Crystal structure of a synthase 2 from santalum album 6A2C ; 1.94 ; Crystal structure of a synthase 2 from santalum album in complex with lig2 6A2D ; 1.96 ; Crystal structure of a synthase 2 from santalum album in complex with ligand1 5YGJ ; 2.648 ; Crystal structure of a synthase from Streptomyces sp. CL190 5YGK ; 2.047 ; Crystal structure of a synthase from Streptomyces sp. CL190 with dmaspp 1COS ; 2.1 ; CRYSTAL STRUCTURE OF A SYNTHETIC TRIPLE-STRANDED ALPHA-HELICAL BUNDLE 1VC9 ; 2.3 ; Crystal Structure of a T.thermophilus HB8 Ap6A hydrolase E50Q mutant-Mg2+-ATP complex 1VCD ; 1.7 ; Crystal Structure of a T.thermophilus HB8 Ap6A hydrolase Ndx1 1VC8 ; 2.0 ; Crystal Structure of a T.thermophilus HB8 Ap6A Hydrolase Ndx1-Ap6A Complex 5BZ4 ; 2.43 ; Crystal structure of a T1-like thiolase (CoA-complex) from Mycobacterium smegmatis 5CBQ ; 2.45 ; Crystal structure of a T1-like thiolase from Mycobacterium smegmatis 4Q5I ; 2.8 ; Crystal structure of a T151A mutant of the E. coli FeoB G-domain 3D68 ; 2.8 ; Crystal structure of a T325I/T329I/H333Y/H335Q mutant of Thrombin-Activatable Fibrinolysis Inhibitor (TAFI-IIYQ) 4I6T ; 2.0 ; Crystal Structure of a T36A mutant of the Restriction-Modification Controller Protein C.Esp1396I 3WXX ; 2.7 ; Crystal Structure of a T3SS complex from Aeromonas hydrophila 4Y5R ; 2.8 ; Crystal Structure of a T67A MauG/pre-Methylamine Dehydrogenase Complex 1CEZ ; 2.4 ; CRYSTAL STRUCTURE OF A T7 RNA POLYMERASE-T7 PROMOTER COMPLEX 4RGW ; 2.301 ; Crystal Structure of a TAF1-TAF7 Complex in Human Transcription Factor IID 6FB5 ; 2.2 ; Crystal Structure of a Tailored I-CreI Homing Endonuclease Protein (3115 variant) in complex with an altered version of its target DNA (Haemoglobin beta subunit gene) at 5NNN region in the presence of Magnesium 6FB6 ; 2.6 ; Crystal Structure of a Tailored I-CreI Homing Endonuclease Protein (3115 variant) in complex with an altered version of its target DNA (Haemoglobin beta subunit gene) at 5NNN region in the presence of Manganese 6FB0 ; 2.15 ; Crystal Structure of a Tailored I-CreI Homing Endonuclease Protein (3115 variant) in complex with its target DNA (Haemoglobin beta subunit gene) in the presence of Calcium 6FB1 ; 3.024 ; Crystal Structure of a Tailored I-CreI Homing Endonuclease Protein (3115 variant) in complex with its target DNA (Haemoglobin beta subunit gene) in the presence of Magnesium 6FB2 ; 2.95 ; Crystal Structure of a Tailored I-CreI Homing Endonuclease Protein (3115 variant) in complex with its target DNA (Haemoglobin beta subunit gene) in the presence of Manganese 8OPZ ; 1.5 ; Crystal structure of a tailspike depolymerase (APK16_gp47) from Acinetobacter phage APK16 6NW9 ; 1.85 ; CRYSTAL STRUCTURE OF A TAILSPIKE PROTEIN 3 (TSP3, ORF212) FROM ESCHERICHIA COLI O157:H7 BACTERIOPHAGE CBA120 6C72 ; 2.396 ; Crystal structure of a tailspike protein gp49 from Acinetobacter baumannii bacteriophage Fri1, a capsular polysaccharide depolymerase 1KUG ; 1.37 ; Crystal Structure of a Taiwan Habu Venom Metalloproteinase complexed with its endogenous inhibitor pENW 1KUK ; 1.45 ; Crystal Structure of a Taiwan Habu Venom Metalloproteinase complexed with pEKW. 1KUI ; 1.5 ; Crystal Structure of a Taiwan Habu Venom Metalloproteinase complexed with pEQW. 4HPZ ; 2.202 ; Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region 7L18 ; 2.542 ; Crystal structure of a tandem deletion mutant of rat NADPH-cytochrome P450 reductase 1QG3 ; 2.15 ; CRYSTAL STRUCTURE OF A TANDEM PAIR OF FIBRONECTIN TYPE III DOMAINS FROM THE CYTOPLASMIC TAIL OF INTEGRIN ALPHA6 BETA4 3GEC ; 4.0 ; Crystal structure of a tandem PAS domain fragment of Drosophila PERIOD 1FW6 ; 2.7 ; CRYSTAL STRUCTURE OF A TAQ MUTS-DNA-ADP TERNARY COMPLEX 4KEM ; 1.3 ; Crystal structure of a tartrate dehydratase from azospirillum, target efi-502395, with bound mg and a putative acrylate ion, ordered active site 2FMU ; 2.3 ; Crystal structure of a tat-interacting protein homologue (htatip2, aw111545, cc3, tip30) from mus musculus at 2.30 A resolution 4CHS ; 1.6 ; Crystal structure of a tau class glutathione transferase 10 from Glycine max 5AGY ; 1.75 ; CRYSTAL STRUCTURE OF A TAU CLASS GST MUTANT FROM GLYCINE 5KEU ; 1.85 ; Crystal Structure of a Taurine Dioxygenase from Burkholderia xenovorans 7YXV ; 1.7 ; Crystal structure of a tautomerase superfamily member form Acinetobacter baumanii 3NZ4 ; 2.38 ; Crystal Structure of a Taxus Phenylalanine Aminomutase 4JHY ; 1.9 ; Crystal structure of a TBP-like protein (BDI_3606) from Parabacteroides distasonis ATCC 8503 at 1.90 A resolution 5KKX ; 2.1 ; Crystal structure of a TbpB C-lobe mutant from Neisseria meningitidis M982 7OW6 ; 2.64 ; Crystal structure of a TCR in complex with HLA-A*11:01 bound to KRAS G12D peptide (VVVGADGVGK) 8I5C ; 3.34 ; Crystal structure of a TCR in complex with HLA-A*11:01 bound to KRAS peptide (VVGAVGVGK) 8I5D ; 3.3 ; Crystal structure of a TCR in complex with HLA-A*11:01 bound to KRAS peptide (VVGAVGVGK) 7OW5 ; 2.58 ; Crystal structure of a TCR in complex with HLA-A*11:01 bound to KRAS peptide (VVVGAGGVGK) 4X9T ; 1.24 ; Crystal structure of a TctC solute binding protein from Polaromonas (Bpro_3516, Target EFI-510338), no ligand 5JFI ; 2.749 ; Crystal structure of a TDIF-TDR complex 5JFK ; 2.647 ; Crystal structure of a TDR receptor 2OU3 ; 1.85 ; Crystal structure of a tellurite resistance protein of cog3793 (npun_f6341) from nostoc punctiforme pcc 73102 at 1.85 A resolution 2I0Q ; 1.91 ; Crystal structure of a telomere single-strand DNA-protein complex from O. nova with full-length alpha and beta telomere proteins 3MIJ ; 2.6 ; Crystal structure of a telomeric RNA G-quadruplex complexed with an acridine-based ligand. 3IBK ; 2.2 ; Crystal structure of a telomeric RNA quadruplex 3MVU ; 1.8 ; Crystal structure of a TenA family transcription regulator (TM1040_3656) from SILICIBACTER SP. TM1040 at 1.80 A resolution 3OQL ; 2.54 ; Crystal structure of a TenA homolog (PSPTO1738) from Pseudomonas syringae pv. tomato str. DC3000 at 2.54 A resolution 4LQX ; 2.34 ; Crystal structure of a TENA/THI-4 domain-containing protein (SSO2700) from Sulfolobus solfataricus P2 at 2.34 A resolution 4ATY ; 1.85 ; Crystal structure of a Terephthalate 1,2-cis-dihydrodioldehydrogenase from Burkholderia xenovorans LB400 2ZCK ; 3.1 ; Crystal structure of a ternary complex between PSA, a substrat-acyl intermediate and an activating antibody 1CQT ; 3.2 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX CONTAINING AN OCA-B PEPTIDE, THE OCT-1 POU DOMAIN, AND AN OCTAMER ELEMENT 1Q0N ; 1.25 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN PYROPHOSPHOKINASE FROM E. COLI WITH MGAMPCPP AND 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN AT 1.25 ANGSTROM RESOLUTION 3IHG ; 2.49 ; Crystal structure of a ternary complex of aklavinone-11 hydroxylase with FAD and aklavinone 2IPS ; 3.1 ; Crystal structure of a ternary complex of bovine lactoperoxidase with thiocyanate and iodide at 3.1 A resolution 2O86 ; 2.8 ; Crystal structure of a ternary complex of buffalo lactoperoxidase with nitrate and iodide at 2.8 A resolution 1LBX ; 2.4 ; Crystal Structure of a ternary complex of dual activity FBPase/IMPase (AF2372) from Archaeoglobus fulgidus with Calcium ions and D-myo-Inositol-1-Phosphate 1AJ0 ; 2.0 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E. COLI DIHYDROPTEROATE SYNTHASE 1RAO ; 1.56 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E. COLI HPPK WITH AMP AND 6-HYDROXYMETHYLPTERIN-DIPHOSPHATE AT 1.56 ANGSTROM RESOLUTION 1RU1 ; 1.4 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E. COLI HPPK(V83G/DEL84-89) WITH MGAMPCPP AND 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN AT 1.40 ANGSTROM RESOLUTION (MONOCLINIC FORM) 1NCE ; 2.4 ; Crystal structure of a ternary complex of E. coli thymidylate synthase D169C with dUMP and the antifolate CB3717 1HQ2 ; 1.25 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E.COLI HPPK(R82A) WITH MGAMPCPP AND 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN AT 1.25 ANGSTROM RESOLUTION 1RU2 ; 1.48 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E.COLI HPPK(V83G/DEL84-89) WITH MGAMPCPP AND 6-HYDROXYMETHYLPTERIN AT 1.48 ANGSTROM RESOLUTION (ORTHORHOMBIC FORM) 1EMD ; 1.9 ; CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF ESCHERICHIA COLI MALATE DEHYDROGENASE, CITRATE AND NAD AT 1.9 ANGSTROMS RESOLUTION 2AEI ; 2.52 ; Crystal structure of a ternary complex of factor VIIa/tissue factor and 2-[[6-[3-(aminoiminomethyl)phenoxy]-3,5-difluro-4-[(1-methyl-3-phenylpropyl)amino]-2-pyridinyl]oxy]-benzoic acid 1Z6J ; 2.0 ; Crystal Structure of a ternary complex of Factor VIIa/Tissue Factor/Pyrazinone Inhibitor 6PUN ; 2.099 ; Crystal structure of a ternary complex of FBF-2 with LST-1 (site B) and compact FBE RNA 2OJV ; 2.4 ; Crystal structure of a ternary complex of goat lactoperoxidase with cyanide and iodide ions at 2.4 A resolution 4H3K ; 2.0 ; Crystal structure of a ternary complex of human symplekin NTD, human Ssu72 and a RNA polymerase II CTD peptide phosphorylated at Ser-2, Ser-5 and Ser-7 4H3H ; 2.2 ; Crystal structure of a ternary complex of human symplekin NTD, human Ssu72 and a RNA poymerase II CTD peptide phosphorylated at SER-7 2OTH ; 2.9 ; Crystal structure of a ternary complex of phospholipase A2 with indomethacin and nimesulide at 2.9 A resolution 7OUD ; 2.3 ; Crystal structure of a ternary complex of the flavoprotein monooxygenase GrhO5 with FAD and collinone 2BQZ ; 1.5 ; Crystal structure of a ternary complex of the human histone methyltransferase Pr-SET7 (also known as SET8) 1O9S ; 1.75 ; Crystal structure of a ternary complex of the human histone methyltransferase SET7/9 1XQH ; 1.75 ; Crystal structure of a ternary complex of the methyltransferase SET9 (also known as SET7/9) with a P53 peptide and SAH 3BTS ; 2.7 ; Crystal structure of a ternary complex of the transcriptional repressor Gal80p (Gal80S0 [G301R]) and the acidic activation domain of Gal4p (aa 854-874) from Saccharomyces cerevisiae with NAD 2MTA ; 2.4 ; CRYSTAL STRUCTURE OF A TERNARY ELECTRON TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE, AMICYANIN AND A C-TYPE CYTOCHROME 1E0O ; 2.8 ; CRYSTAL STRUCTURE OF A TERNARY FGF1-FGFR2-HEPARIN COMPLEX 1FQ9 ; 3.0 ; CRYSTAL STRUCTURE OF A TERNARY FGF2-FGFR1-HEPARIN COMPLEX 2H62 ; 1.85 ; Crystal structure of a ternary ligand-receptor complex of BMP-2 2H64 ; 1.92 ; Crystal structure of a ternary ligand-receptor complex of BMP-2 6WC2 ; 2.1 ; Crystal Structure of a Ternary MEF2 Chimera/NKX2-5/myocardin enhancer DNA Complex 6WC5 ; 2.9 ; Crystal Structure of a Ternary MEF2B/NKX2-5/myocardin enhancer DNA Complex 1XD2 ; 2.7 ; Crystal Structure of a ternary Ras:SOS:Ras*GDP complex 1K6O ; 3.19 ; Crystal Structure of a Ternary SAP-1/SRF/c-fos SRE DNA Complex 4ZQ8 ; 2.0 ; Crystal structure of a terpene synthase from Streptomyces lydicus, target EFI-540129 1HVC ; 1.8 ; CRYSTAL STRUCTURE OF A TETHERED DIMER OF HIV-1 PROTEASE COMPLEXED WITH AN INHIBITOR 3NPI ; 2.96 ; Crystal structure of a TetR family regulatory protein (DIP1788) from CORYNEBACTERIUM DIPHTHERIAE at 2.96 A resolution 3PAS ; 1.9 ; Crystal structure of a TetR family transcription regulator (Maqu_1417) from MARINOBACTER AQUAEOLEI VT8 at 1.90 A resolution 3NRG ; 2.56 ; Crystal structure of a TetR family transcriptional regulator (Caur_2714) from CHLOROFLEXUS AURANTIACUS J-10-FL at 2.56 A resolution 2O7T ; 2.1 ; Crystal structure of a tetr family transcriptional regulator (ncgl1578, cgl1640) from corynebacterium glutamicum at 2.10 A resolution 3CDL ; 2.36 ; Crystal structure of a TetR family transcriptional regulator from Pseudomonas syringae pv. tomato str. DC3000 3C07 ; 2.7 ; Crystal structure of a TetR family transcriptional regulator from Streptomyces coelicolor A3(2) 3VPR ; 2.27 ; Crystal Structure of a TetR Family Transcriptional Regulator PfmR from Thermus thermophilus HB8 3CRJ ; 2.6 ; Crystal structure of a TetR transcription regulator from Haloarcula marismortui ATCC 43049 3QBM ; 1.8 ; Crystal structure of a TetR transcriptional regulator (Caur_2221) from CHLOROFLEXUS AURANTIACUS J-10-FL at 1.80 A resolution 3BJB ; 2.5 ; Crystal structure of a TetR transcriptional regulator from Rhodococcus sp. RHA1 3EGQ ; 2.55 ; Crystal structure of a tetr-family transcriptional regulator (af_1817) from archaeoglobus fulgidus at 2.55 A resolution 2HYT ; 1.64 ; CRYSTAL STRUCTURE OF A TETR-FAMILY TRANSCRIPTIONAL REGULATOR (ECA1819) FROM PECTOBACTERIUM ATROSEPTICUM AT 1.64 A RESOLUTION 3QKX ; 2.35 ; Crystal structure of a TetR-family transcriptional regulator (HI0893) from Haemophilus influenzae RD at 2.35 A resolution 3NNR ; 2.49 ; Crystal structure of a TetR-family transcriptional regulator (Maqu_3571) from MARINOBACTER AQUAEOLEI VT8 at 2.49 A resolution 3CCY ; 2.01 ; Crystal structure of a TetR-family transcriptional regulator from Bordetella parapertussis 12822 3RH2 ; 2.42 ; Crystal structure of a TetR-like transcriptional regulator (Sama_0099) from Shewanella amazonensis SB2B at 2.42 A resolution 2RAE ; 2.2 ; Crystal structure of a TetR/AcrR family transcriptional regulator from Rhodococcus sp. RHA1 3H50 ; 1.6 ; CRYSTAL STRUCTURE OF A TETRACENOMYCIN POLYKETIDE SYNTHESIS PROTEIN (TCMJ) FROM XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS AT 1.60 A RESOLUTION 4Z0I ; 1.45 ; Crystal structure of a tetramer of GluA2 ligand binding domains bound with glutamate at 1.45 Angstrom resolution 4YU0 ; 1.26 ; Crystal structure of a tetramer of GluA2 TR mutant ligand binding domains bound with glutamate at 1.26 Angstrom resolution 3ZZI ; 3.8 ; Crystal structure of a tetrameric acetylglutamate kinase from Saccharomyces cerevisiae 4AB7 ; 3.25 ; Crystal structure of a tetrameric acetylglutamate kinase from Saccharomyces cerevisiae complexed with its substrate N- acetylglutamate 6MC2 ; 1.05 ; Crystal structure of a tetrameric DNA fold-back quadruplex 6MC3 ; 1.57 ; Crystal structure of a tetrameric DNA fold-back quadruplex 6MC4 ; 2.25 ; Crystal structure of a tetrameric DNA fold-back quadruplex 6N4G ; 1.4 ; Crystal structure of a tetrameric DNA fold-back quadruplex 7O2S ; 2.28 ; Crystal structure of a tetrameric form of Carbonic anhydrase from Schistosoma mansoni 3IQ6 ; 2.35 ; Crystal structure of a tetrameric Zn-bound cytochrome cb562 complex with covalently and non-covalently stabilized interfaces 4XK0 ; 1.08 ; Crystal structure of a tetramolecular RNA G-quadruplex in potassium 4R7S ; 2.39 ; Crystal structure of a tetratricopeptide repeat protein (PARMER_03812) from Parabacteroides merdae ATCC 43184 at 2.39 A resolution 4XZ7 ; 2.101 ; Crystal structure of a TGase 4F2M ; 3.0 ; Crystal structure of a TGEV coronavirus Spike fragment in complex with the TGEV neutralizing monoclonal antibody 1AF10 3QB4 ; 2.28 ; Crystal structure of a TGF-beta ligand-receptor complex 2J0L ; 2.3 ; Crystal structure of a the active conformation of the kinase domain of focal adhesion kinase with a phosphorylated activation loop. 1YOE ; 1.78 ; Crystal structure of a the E. coli pyrimidine nucleoside hydrolase YbeK with bound ribose 5U7B ; 2.0 ; Crystal structure of a the tin-bound form of MerB formed from Diethyltin. 6KA3 ; 1.951 ; Crystal structure of a Thebaine synthase from Papaver somniferum 6KA2 ; 2.35 ; Crystal structure of a Thebaine synthase from Papaver somniferum in complex with TBN 5BMF ; 2.8 ; Crystal Structure of a Theophylline binding antibody Fab fragment 4LAS ; 2.33 ; Crystal structure of a therapeutic single chain antibody in complex with 4-hydroxymethamphetamine 4LAR ; 2.38 ; Crystal structure of a therapeutic single chain antibody in complex with amphetamine 4LAQ ; 2.8 ; Crystal structure of a therapeutic single chain antibody in the free form 1BXZ ; 2.99 ; CRYSTAL STRUCTURE OF A THERMOPHILIC ALCOHOL DEHYDROGENASE SUBSTRATE COMPLEX FROM THERMOANAEROBACTER BROCKII 8AES ; 2.8 ; Crystal structure of a thermophilic O6-alkylguanine-DNA alkyltransferase-derived self-labeling protein-tag 6GA0 ; 2.0 ; Crystal structure of a thermophilic O6-alkylguanine-DNA alkyltransferase-derived self-labeling protein-tag in covalent complex with SNAP-Vista Green 2PEF ; 1.6 ; Crystal Structure of a Thermophilic Serpin, Tengpin, in the Latent State 2PEE ; 2.7 ; Crystal Structure of a Thermophilic Serpin, Tengpin, in the Native State 5K9Y ; 2.2 ; Crystal structure of a thermophilic xylanase A from Bacillus subtilis 1A1 quadruple mutant Q7H/G13R/S22P/S179C 5NDZ ; 3.6 ; Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in complex with AZ3451 at 3.6 angstrom resolution 5NDD ; 2.801 ; Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in complex with AZ8838 at 2.8 angstrom resolution 5NJ6 ; 4.0 ; Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in ternary complex with Fab3949 and AZ7188 at 4.0 angstrom resolution 4Y2W ; 2.7 ; Crystal structure of a thermostable alanine racemase from Thermoanaerobacter tengcongensis MB4 6KIY ; 1.9 ; Crystal structure of a thermostable aldo-keto reductase Tm1743 in complex with inhibitor Epalrestat 6KIK ; 1.601 ; Crystal structure of a thermostable aldo-keto reductase Tm1743 in complex with inhibitor tolrestat 6KY6 ; 2.07 ; Crystal structure of a thermostable aldo-keto reductase Tm1743 in complexs with inhibitor epalrestat in space group P3221cc 3QGV ; 2.1 ; Crystal structure of a thermostable amylase variant 3DOH ; 2.6 ; Crystal Structure of a Thermostable Esterase 3DOI ; 3.0 ; Crystal Structure of a Thermostable Esterase complex with paraoxon 4QQS ; 1.1 ; Crystal structure of a thermostable family-43 glycoside hydrolase 5Z5D ; 1.7 ; Crystal structure of a thermostable glycoside hydrolase family 43 {beta}-1,4-xylosidase from Geobacillus thermoleovorans IT-08 5Z5H ; 1.9 ; Crystal structure of a thermostable glycoside hydrolase family 43 {beta}-1,4-xylosidase from Geobacillus thermoleovorans IT-08 in complex with D-xylose 5Z5F ; 2.1 ; Crystal structure of a thermostable glycoside hydrolase family 43 {beta}-1,4-xylosidase from Geobacillus thermoleovorans IT-08 in complex with L-arabinose 5Z5I ; 1.7 ; Crystal structure of a thermostable glycoside hydrolase family 43 {beta}-1,4-xylosidase from Geobacillus thermoleovorans IT-08 in complex with L-arabinose and D-xylose 6LZ2 ; 2.03 ; Crystal structure of a thermostable green fluorescent protein (TGP) with a synthetic nanobody (Sb44) 7CZ0 ; 2.77 ; Crystal structure of a thermostable green fluorescent protein (TGP) with a synthetic nanobody (Sb92) 5H6B ; 2.3 ; Crystal structure of a thermostable lipase from Marine Streptomyces 5H6G ; 2.34 ; Crystal structure of a thermostable lipase from Marine Streptomyces 5H9U ; 2.667 ; Crystal structure of a thermostable methionine adenosyltransferase 3W0P ; 2.0 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia (D198A), ternary complex with ADP and hygromycin B 3W0R ; 2.3 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia (N202A), ternary complex with AMP-PNP and hygromycin B 3W0Q ; 1.8 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia (N203A), ternary complex with AMP-PNP and hygromycin B 3W0M ; 1.9 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia, apo form 3W0O ; 1.5 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia, ternary complex with ADP and hygromycin B 3W0N ; 1.9 ; Crystal structure of a thermostable mutant of aminoglycoside phosphotransferase APH(4)-Ia, ternary complex with AMP-PNP and hygromycin B 2ORI ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (A193V/Q199R/) 2P3S ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (G214R/Q199R) 2OSB ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q16L/Q199R/) 2EU8 ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R) 2QAJ ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (Q199R/G213E) 2OO7 ; 1.8 ; Crystal structure of a thermostable mutant of Bacillus subtilis Adenylate Kinase (T179I/Q199R) 7V92 ; 1.607 ; Crystal Structure of a thermostable mutant of the Catalytic Domain of GH19 Chitinase from Gazyumaru, Ficus microcarpa 1DBI ; 1.8 ; CRYSTAL STRUCTURE OF A THERMOSTABLE SERINE PROTEASE 3CP7 ; 1.39 ; Crystal structure of a thermostable serine protease AL20 from extremophilic microoganism 4Y91 ; 2.656 ; Crystal Structure of a Thermotoga maritima Hfq homolog 2O18 ; 2.2 ; Crystal structure of a Thiamine biosynthesis lipoprotein apbE, NorthEast Strcutural Genomics target ER559 3EWN ; 1.65 ; Crystal structure of a THiJ/PfpI family protein from Pseudomonas syringae 3E1E ; 2.0 ; Crystal structure of a Thioesterase family protein from Silicibacter pomeroyi. NorthEast Structural Genomics target SiR180A 2HBO ; 1.85 ; Crystal structure of a thioesterase superfamily protein (cc_3309) from caulobacter vibrioides at 1.85 A resolution 4Q0Y ; 1.7 ; Crystal structure of a thioesterase-like protein (CLOSPO_01618) from Clostridium sporogenes ATCC 15579 at 1.70 A resolution 2Q78 ; 2.2 ; Crystal structure of a thioesterase-like protein (tm0581) from thermotoga maritima msb8 at 2.20 A resolution 3HD5 ; 2.35 ; Crystal structure of a thiol:disulfide interchange protein dsbA from Bordetella parapertussis 4FQF ; 2.281 ; Crystal structure of a thionitrate intermediate of human aldehyde dehydrogenase-2 6CKP ; 1.15 ; Crystal structure of a thioredoxin domain 2 from Brucella melitensis at 1.15 Angstrom resolution 6GN9 ; 1.75 ; Crystal structure of a thioredoxin from Clostridium acetobutylicum at 1.75 A resolution 4JNQ ; 1.8 ; Crystal structure of a thioredoxin reductase from Brucella melitensis 4POB ; 1.7 ; Crystal structure of a thioredoxin Rv1471 ortholog from Mycobacterium abscessus 4YOD ; 1.9 ; Crystal structure of a thioredoxin-like protein (BACCAC_02376) from Bacteroides caccae ATCC 43185 at 1.90 A resolution 4FO5 ; 2.02 ; Crystal structure of a thioredoxin-like protein (BDI_1100) from Parabacteroides distasonis ATCC 8503 at 2.02 A resolution 2CVB ; 1.8 ; Crystal structure of a thioredoxin-like protein from Thermus thermophilus HB8 4GCM ; 1.8 ; Crystal structure of a thioredoxine reductase (trxB) from Staphylococcus aureus subsp. aureus Mu50 at 1.80 A resolution 4RUD ; 1.95 ; Crystal structure of a three finger toxin 3VTS ; 2.426 ; Crystal structure of a three finger toxin from snake venom 5ZOL ; 2.172 ; Crystal structure of a three sites mutantion of FSAA complexed with HA and product 6EGN ; 1.84 ; Crystal Structure of a Three-stranded Coiled Coil Peptide Containing a Trigonal Planar Hg(II)S3 Site Modified by D-Leu in the Second Coordination Sphere 8EDP ; 2.01 ; Crystal structure of a three-tetrad, parallel, and K+ stabilized homopurine G-quadruplex from human chromosome 7 7KLP ; 1.35 ; Crystal structure of a three-tetrad, parallel, K+ stabilized human telomeric G-quadruplex 5O6C ; 1.75 ; Crystal Structure of a threonine-selective RCR E3 ligase 1KQ4 ; 2.25 ; CRYSTAL STRUCTURE OF A THY1-COMPLEMENTING PROTEIN (TM0449) FROM THERMOTOGA MARITIMA AT 2.25 A RESOLUTION 1EXD ; 2.7 ; CRYSTAL STRUCTURE OF A TIGHT-BINDING GLUTAMINE TRNA BOUND TO GLUTAMINE AMINOACYL TRNA SYNTHETASE 3ETV ; 1.94 ; Crystal structure of a Tip20p-Dsl1p fusion protein 2D5R ; 2.5 ; Crystal Structure of a Tob-hCaf1 Complex 2BF5 ; 1.71 ; Crystal structure of a toluene 4-monooxygenase catalytic effector protein variant missing four N-terminal residues (delta-N4 T4moD) 2BF3 ; 1.96 ; Crystal structure of a toluene 4-monooxygenase catalytic effector protein variant missing ten N-terminal residues (delta-N10 T4moD) 8DTE ; 2.2 ; Crystal Structure of a toluene tolerance periplasmic transport protein from Neisseria gonorrhoeae 4EM7 ; 1.9 ; Crystal structure of a topoisomerase ATP inhibitor 4EMV ; 1.7 ; Crystal structure of a topoisomerase ATP inhibitor 4LP0 ; 1.95 ; Crystal structure of a topoisomerase ATP inhibitor 3TTZ ; 1.63 ; Crystal structure of a topoisomerase ATPase inhibitor 4LPB ; 1.75 ; Crystal structure of a topoisomerase ATPase inhibitor 5BS8 ; 2.399 ; Crystal structure of a topoisomerase II complex 5BTA ; 2.55 ; Crystal structure of a topoisomerase II complex 5BTC ; 2.55 ; Crystal structure of a topoisomerase II complex 5BTD ; 2.497 ; Crystal structure of a topoisomerase II complex 5BTF ; 2.61 ; Crystal structure of a topoisomerase II complex 5BTG ; 2.5 ; Crystal structure of a topoisomerase II complex 5BTI ; 2.501 ; Crystal structure of a topoisomerase II complex 5BTL ; 2.5 ; Crystal structure of a topoisomerase II complex 5BTN ; 2.5 ; Crystal structure of a topoisomerase II complex 1SEG ; 1.3 ; Crystal structure of a toxin chimera between Lqh-alpha-IT from the scorpion Leiurus quinquestriatus hebraeus and AAH2 from Androctonus australis hector 4I17 ; 1.83 ; Crystal structure of a TPR repeats protein (BF2334) from Bacteroides fragilis NCTC 9343 at 1.50 A resolution 5CD6 ; 2.26 ; Crystal structure of a TPR-domain containing protein (BDI_1685) from Parabacteroides distasonis ATCC 8503 at 2.26 A resolution 2HR2 ; 2.54 ; Crystal structure of a tpr-like protein (ct2138) from chlorobium tepidum tls at 2.54 A resolution 6AQ3 ; 2.4 ; Crystal structure of a trafficking protein particle complex subunit 3 from Naegleria fowleri covalently bound to palmitic acid 5HQW ; 2.39 ; Crystal structure of a trans-AT PKS dehydratase domain of C0ZGQ6 from Brevibacillus brevis 5J6O ; 3.195 ; Crystal structure of a trans-AT PKS dehydratase domain of C0ZGQ7 from Brevibacillus brevis 5C3E ; 3.7 ; Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble 5C44 ; 3.95 ; Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble 5C4A ; 4.2 ; Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble 5C4J ; 4.0 ; Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble 5C4X ; 4.0 ; Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble 4EPZ ; 1.68 ; Crystal structure of a transcription anti-terminator antagonist UpxZ (BACUNI_04315) from Bacteroides uniformis ATCC 8492 at 1.68 A resolution 4HFX ; 2.54 ; Crystal structure of a transcription elongation factor B polypeptide 3 from Homo sapiens, Northeast Structural Genomics consortium target id HR4748B. 7EQE ; 2.399 ; Crystal Structure of a transcription factor 7EQF ; 2.91 ; Crystal Structure of a Transcription Factor in complex with Ligand 3CLK ; 2.08 ; Crystal structure of a transcription regulator from Lactobacillus plantarum 2HQB ; 2.7 ; Crystal Structure of a Transcriptional Activator of comK gene from Bacillus halodurans 1VI0 ; 1.65 ; Crystal structure of a transcriptional regulator 2IVM ; 2.5 ; Crystal structure of a transcriptional regulator 4NB5 ; 1.641 ; Crystal Structure of a transcriptional regulator 2NP5 ; 1.8 ; Crystal structure of a transcriptional regulator (RHA1_ro04179) from Rhodococcus sp. Rha1. 3WHC ; 2.2 ; Crystal structure of a transcriptional regulator FadR from Bacillus subtilis in complex with stearoyl-CoA 3BY6 ; 2.2 ; Crystal structure of a transcriptional regulator from Oenococcus oeni 3JTH ; 2.0 ; Crystal structure of a transcriptional regulator HlyU from Vibrio vulnificus CMCP6 3GZI ; 2.05 ; CRYSTAL STRUCTURE OF a transcriptional regulator of the tetR family (SHEW_3567) FROM SHEWANELLA LOIHICA PV-4 AT 2.05 A RESOLUTION 3H5T ; 2.53 ; Crystal structure of a transcriptional regulator, Lacl family protein from Corynebacterium glutamicum 3KJX ; 2.33 ; Crystal structure of a transcriptional regulator, Lacl family protein from Silicibacter pomeroyi 3HH0 ; 2.67 ; Crystal structure of a transcriptional regulator, MerR family from Bacillus cereus 3GPV ; 1.9 ; Crystal structure of a transcriptional regulator, MerR family from Bacillus thuringiensis 4ME9 ; 2.5 ; Crystal structure of a transcriptional regulator, TetR family (BCE_2991) from Bacillus cereus ATCC 10987 at 2.50 A resolution 1PZ2 ; 2.0 ; Crystal structure of a transient covalent reaction intermediate of a family 51 alpha-L-arabinofuranosidase 1L3R ; 2.0 ; Crystal Structure of a Transition State Mimic of the Catalytic Subunit of cAMP-dependent Protein Kinase 4NU1 ; 2.5 ; Crystal structure of a transition state mimic of the GSK-3/Axin complex bound to phosphorylated N-terminal auto-inhibitory pS9 peptide 5HT7 ; 1.862 ; Crystal structure of a transition-metal-ion-binding betagamma-crystallin from Methanosaeta thermophila 3UPT ; 2.4 ; Crystal structure of a transketolase from Burkholderia pseudomallei bound to TPP, calcium and ribose-5-phosphate 3UK1 ; 2.15 ; Crystal structure of a transketolase from Burkholderia thailandensis with an oxidized cysteinesulfonic acid in the active site 5VRB ; 1.85 ; Crystal structure of a transketolase from Neisseria gonorrhoeae 4XEU ; 1.95 ; Crystal structure of a transketolase from Pseudomonas aeruginosa 2VSO ; 2.6 ; Crystal Structure of a Translation Initiation Complex 2VSX ; 2.8 ; Crystal Structure of a Translation Initiation Complex 4V67 ; 3.0 ; Crystal structure of a translation termination complex formed with release factor RF2. 5DMB ; 2.301 ; Crystal structure of a translational regulator bound to a flagellar assembly factor 4HUQ ; 2.998 ; Crystal Structure of a transporter 4O8M ; 1.7 ; Crystal structure of a trap periplasmic solute binding protein actinobacillus succinogenes 130z, target EFI-510004, with bound L-galactonate 4N91 ; 1.7 ; Crystal structure of a trap periplasmic solute binding protein from anaerococcus prevotii dsm 20548 (Apre_1383), target EFI-510023, with bound alpha/beta d-glucuronate 4P56 ; 1.9 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM BORDETELLA BRONCHISEPTICA, TARGET EFI-510038 (BB2442), WITH BOUND (R)-MANDELATE and (S)-MANDELATE 4NQ8 ; 1.5 ; Crystal structure of a trap periplasmic solute binding protein from Bordetella bronchispeptica (bb3421), target EFI-510039, with density modeled as pantoate 4N8Y ; 1.5 ; Crystal structure of a trap periplasmic solute binding protein from bradyrhizobium sp. btai1 b (bbta_0128), target EFI-510056 (bbta_0128), complex with alpha/beta-d-galacturonate 4LN5 ; 2.1 ; Crystal structure of a trap periplasmic solute binding protein from burkholderia ambifaria (Bamb_6123), TARGET EFI-510059, with bound glycerol and chloride ion 4N17 ; 1.501 ; Crystal structure of a TRAP periplasmic solute binding protein from Burkholderia ambifaria (BAM_6123), Target EFI-510059, With bound beta-D-galacturonate 4N15 ; 1.651 ; Crystal structure of a TRAP periplasmic solute binding protein from Burkholderia ambifaria (BAM_6123), Target EFI-510059, with bound beta-D-glucuronate 4N8G ; 1.502 ; Crystal structure of a TRAP periplasmic solute binding protein from Chromohalobacter salexigens DSM 3043 (Csal_0660), Target EFI-501075, with bound D-alanine-D-alanine 4XF5 ; 1.45 ; Crystal structure of a TRAP periplasmic solute binding protein from Chromohalobacter salexigens DSM 3043 (Csal_0678), Target EFI-501078, with bound (S)-(+)-2-Amino-1-propanol. 4UAB ; 1.4 ; Crystal structure of a TRAP periplasmic solute binding protein from Chromohalobacter salexigens DSM 3043 (Csal_0678), Target EFI-501078, with bound ethanolamine 4P1L ; 1.7 ; Crystal structure of a trap periplasmic solute binding protein from chromohalobacter salexigens dsm 3043 (csal_2479), target EFI-510085, with bound d-glucuronate, spg i213 4P3L ; 1.8 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM CHROMOHALOBACTER SALEXIGENS DSM 3043 (Csal_2479), TARGET EFI-510085, WITH BOUND GLUCURONATE, SPG P6122 4NG7 ; 2.3 ; Crystal structure of a TRAP periplasmic solute binding protein from Citrobacter koseri (CKO_04899), Target EFI-510094, apo, open structure 4X04 ; 2.5 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM CITROBACTER KOSERI (CKO_04899, TARGET EFI-510094) WITH BOUND D-glucuronate 4PET ; 1.9 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM COLWELLIA PSYCHRERYTHRAEA (CPS_0129, TARGET EFI-510097) WITH BOUND CALCIUM AND PYRUVATE 4NAP ; 2.3 ; Crystal structure of a trap periplasmic solute binding protein from Desulfovibrio alaskensis G20 (DDE_0634), target EFI-510102, with bound d-tryptophan 4PGP ; 2.25 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM DESULFOVIBRIO ALASKENSIS G20 (Dde_0634, TARGET EFI-510120) WITH BOUND 3-INDOLE ACETIC ACID 4PGN ; 1.8 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM DESULFOVIBRIO ALASKENSIS G20 (Dde_0634, TARGET EFI-510120) WITH BOUND INDOLE PYRUVATE 4NGU ; 2.5 ; Crystal structure of a TRAP periplasmic solute binding protein from Desulfovibrio alaskensis G20 (Dde_1548), Target EFI-510103, with bound D-Ala-D-Ala 4NHB ; 1.902 ; Crystal structure of a TRAP periplasmic solute binding protein from Desulfovibrio desulfuricans (Ddes_1525), Target EFI-510107, with bound sn-glycerol-3-phosphate 4NN3 ; 1.4 ; Crystal structure of a TRAP periplasmic solute binding protein from Desulfovibrio salexigens (Desal_2161), Target EFI-510109, with bound orotic acid 4N6D ; 1.701 ; Crystal structure of a TRAP periplasmic solute binding protein from Desulfovibrio salexigens DSM2638 (Desal_3247), Target EFI-510112, phased with I3C, open complex, C-terminus of symmetry mate bound in ligand binding site 4N6K ; 1.2 ; Crystal structure of a TRAP periplasmic solute binding protein from Desulfovibrio salexigens DSM2638, Target EFI-510113 (Desal_0342), complex with diglycerolphosphate 4XEQ ; 1.7 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM DESULFOVIBRIO VULGARIS (Deval_0042, TARGET EFI-510114) BOUND TO COPURIFIED (R)-PANTOIC ACID 4P1E ; 1.9 ; Crystal structure of a trap periplasmic solute binding protein from escherichia fergusonii (efer_1530), target EFI-510119, apo open structure, phased with iodide 4PFB ; 2.7 ; Crystal structure of a TRAP periplasmic solute binding protein from Fusobacterium nucleatun (FN1258, TARGET EFI-510120) with bound SN-glycerol-3-phosphate 4PBQ ; 1.65 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE RdAW (HICG_00826, TARGET EFI-510123) WITH BOUND L-GULONATE 4PFI ; 2.3024 ; Crystal structure of a tRAP periplasmic solute binding protein from marinobacter aquaeolei VT8 (Maqu_2829, TARGET EFI-510133), apo open structure 4OVT ; 1.8 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM OCHROBACTERIUM ANTHROPI (Oant_3902), TARGET EFI-510153, WITH BOUND L-FUCONATE 4P47 ; 1.3 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM OCHROBACTRUM ANTHROPI (Oant_4429), TARGET EFI-510151, C-TERMIUS BOUND IN LIGAND BINDING POCKET 4PDD ; 1.7 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM POLAROMONAS SP JS666 (Bpro_0088, TARGET EFI-510167) BOUND TO D-ERYTHRONATE 4PDH ; 1.8 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM POLAROMONAS SP JS666 (Bpro_1871, TARGET EFI-510164) BOUND TO D-ERYTHRONATE 4MIJ ; 1.1 ; Crystal structure of a Trap periplasmic solute binding protein from Polaromonas sp. JS666 (Bpro_3107), target EFI-510173, with bound alpha/beta D-Galacturonate, space group P21 4MHF ; 1.46 ; Crystal structure of a TRAP periplasmic solute binding protein from Polaromonas sp. JS666 (Bpro_3107), target EFI-510173, with bound alpha/beta D-Glucuronate, space group P21 4MNC ; 1.05 ; Crystal structure of a TRAP periplasmic solute binding protein from Polaromonas sp. JS666 (Bpro_4736), Target EFI-510156, with bound benzoyl formate, space group P21 4MNI ; 1.9 ; Crystal structure of a TRAP periplasmic solute binding protein from Polaromonas sp. JS666 (Bpro_4736), Target EFI-510156, with bound benzoyl formate, space group P6522 5CM6 ; 1.83 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM PSEUDOALTEROMONAS ATLANTICA T6c(Patl_2292, TARGET EFI-510180) WITH BOUND SODIUM AND PYRUVATE 4NF0 ; 1.85 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM PSEUDOMONAS AERUGINOSA PAO1 (PA4616), TARGET EFI-510182, WITH BOUND L-Malate 4XFE ; 1.4 ; Crystal structure of a TRAP periplasmic solute binding protein from Pseudomonas putida F1 (Pput_1203), Target EFI-500184, with bound D-glucuronate 4P8B ; 1.3 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RALSTONIA EUTROPHA H16 (H16_A1328), TARGET EFI-510189, WITH BOUND (S)-2-hydroxy-2-methyl-3-oxobutanoate ((S)-2-Acetolactate) 4X8R ; 1.9 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM Rhodobacter sphaeroides (Rsph17029_2138, TARGET EFI-510205) WITH BOUND Glucuronate 4PFR ; 2.6 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RHODOBACTER SPHAEROIDES (Rsph17029_3541, TARGET EFI-510203), APO OPEN PARTIALLY DISORDERED 4PE3 ; 1.35 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RHODOBACTER SPHAEROIDES (Rsph17029_3620, TARGET EFI-510199), APO OPEN STRUCTURE 4MCO ; 1.6 ; Crystal structure of a TRAP periplasmic solute binding protein from Rhodoferax ferrireducens (Rfer_1840), target EFI-510211, with bound malonate 4MEV ; 1.8 ; Crystal structure of a TRAP periplasmic solute binding protein from Rhodoferax ferrireducens (Rfer_1840), Target EFI-510211, with bound malonate, space group I422 4OAN ; 1.35 ; Crystal structure of a TRAP periplasmic solute binding protein from rhodopseudomonas palustris HaA2 (RPB_2686), TARGET EFI-510221, with density modeled as (S)-2-hydroxy-2-methyl-3-oxobutanoate ((S)-2-Acetolactate) 4O94 ; 2.0 ; Crystal structure of a trap periplasmic solute binding protein from Rhodopseudomonas palustris HaA2 (RPB_3329), Target EFI-510223, with bound succinate 4PC9 ; 1.3 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM ROSENBACTER DENITRIFICANS OCh 114 (RD1_1052, TARGET EFI-510238) WITH BOUND D-MANNONATE 4PF6 ; 1.75 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM ROSEOBACTER DENITRIFICANS (RD1_0742, TARGET EFI-510239) WITH BOUND 3-DEOXY-D-MANNO-OCT-2-ULOSONIC ACID (KDO) 4PCD ; 1.7 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM ROSEOBACTER DENITRIFICANS OCh 114 (RD1_1052, TARGET EFI-510238) WITH BOUND L-GALACTONATE 4OVQ ; 1.501 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM ROSEOBACTER DENITRIFICANS, TARGET EFI-510230, WITH BOUND BETA-D-GLUCURONATE 4PAF ; 1.6 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RUEGERIA POMEROYI DSS-3 (SPO1773, TARGET EFI-510260) WITH BOUND 3,4-DIHYDROXYBENZOATE 4PAI ; 1.4 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RUEGERIA POMEROYI DSS-3 (SPO1773, TARGET EFI-510260) WITH BOUND 3-HYDROXYBENZOATE 4PBH ; 1.2 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM RUEGERIA POMEROYI DSS-3 (SPO1773, TARGET EFI-510260) WITH BOUND BENZOIC ACID 4OA4 ; 1.6 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM SHEWANELLA LOIHICA PV-4 (Shew_1446), TARGET EFI-510273, WITH BOUND SUCCINATE 4O7M ; 1.5 ; Crystal structure of a trap periplasmic solute binding protein from shewanella loihica PV-4, target EFI-510273, with bound L-malate 4MX6 ; 1.1 ; Crystal structure of a trap periplasmic solute binding protein from shewanella oneidensis (SO_3134), target EFI-510275, with bound succinate 4PF8 ; 1.5 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM SULFITOBACTER sp. NAS-14.1 (TARGET EFI-510299) WITH BOUND BETA-D-GALACTURONATE 4OVP ; 1.7 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM SULFITOBACTER sp. NAS-14.1, TARGET EFI-510292, WITH BOUND ALPHA-D-MANURONATE 4NX1 ; 1.6 ; Crystal structure of a trap periplasmic solute binding protein from Sulfitobacter sp. nas-14.1, target EFI-510292, with bound alpha-D-taluronate 4OVS ; 1.8 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM SULFUROSPIRILLUM DELEYIANUM DSM 6946 (Sdel_0447), TARGET EFI-510309, WITH BOUND SUCCINATE 4PAK ; 1.2 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM VERMINEPHROBACTER EISENIAE EF01-2 (Veis_3954, TARGET EFI-510324) A NEPHRIDIAL SYMBIONT OF THE EARTHWORM EISENIA FOETIDA, BOUND TO (R)-PANTOIC ACID 4P9K ; 1.4 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM VERMINEPHROBACTER EISENIAE EF01-2 (Veis_3954, TARGET EFI-510324) A NEPHRIDIAL SYMBIONT OF THE EARTHWORM EISENIA FOETIDA, BOUND TO D-ERYTHRONATE WITH RESIDUAL DENSITY SUGGESTIVE OF SUPERPOSITION WITH COPURIFIED ALTERNATIVE LIGAND. 4OVR ; 1.65 ; CRYSTAL STRUCTURE OF A TRAP PERIPLASMIC SOLUTE BINDING PROTEIN FROM XANTHOBACTER AUTOTROPHICUS PY2, TARGET EFI-510329, WITH BOUND BETA-D-GALACTURONATE 5IM2 ; 1.7 ; Crystal structure of a TRAP solute binding protein from Rhodoferax ferrireducens T118 (Rfer_2570, TARGET EFI-510210) in complex with copurified benzoate 4YZZ ; 1.3 ; Crystal structure of a TRAP transporter solute binding protein (IPR025997) from Bordetella bronchiseptica RB50 (BB0280, TARGET EFI-500035) mixed occupancy dimer, copurified calcium and picolinate bound active site versus apo site 4YIC ; 1.6 ; CRYSTAL STRUCTURE OF A TRAP TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM BORDETELLA BRONCHISEPTICA RB50 (BB0280, TARGET EFI-500035) WITH BOUND PICOLINIC ACID 3CUE ; 3.7 ; Crystal structure of a TRAPP subassembly activating the Rab Ypt1p 7P9Z ; 1.33 ; Crystal structure of a trapped Pab-AGOG/double-standed DNA covalent intermediate (DNA containing adenine opposite to lesion) 7OY7 ; 1.7 ; Crystal structure of a trapped Pab-AGOG/double-standed DNA covalent intermediate (DNA containing cytosine opposite to lesion) 7P0W ; 1.12 ; Crystal structure of a trapped Pab-AGOG/double-standed DNA covalent intermediate (DNA containing thymine opposite to lesion) 7OUE ; 2.04 ; Crystal structure of a trapped Pab-AGOG/single-standed DNA covalent intermediate 3BB0 ; 1.5 ; Crystal Structure of a Trapped Phosphate-Intermediate in Vanadium Apochloroperoxidase Catalyzing a Dephosphorylation Reaction 1K3X ; 1.25 ; Crystal structure of a trapped reaction intermediate of the DNA repair enzyme Endonuclease VIII with Brominated-DNA 1K3W ; 1.42 ; Crystal structure of a trapped reaction intermediate of the DNA Repair Enzyme Endonuclease VIII with DNA 4YZP ; 1.7 ; Crystal structure of a tri-modular GH5 (subfamily 4) endo-beta-1, 4-glucanase from Bacillus licheniformis 4YZT ; 1.665 ; Crystal structure of a tri-modular GH5 (subfamily 4) endo-beta-1, 4-glucanase from Bacillus licheniformis complexed with cellotetraose 3G7N ; 1.3 ; Crystal Structure of a Triacylglycerol Lipase from Penicillium Expansum at 1.3 4WG0 ; 1.82 ; Crystal structure of a tridecameric superhelix 6EGP ; 1.77 ; Crystal Structure of a Trigonal Pyramidal Pb(II)S3 Complex in a Three-stranded Coiled coil Peptide 4I61 ; 1.64 ; Crystal structure of a trimeric bacterial microcompartment shell protein PduB 4FAY ; 1.56 ; Crystal structure of a trimeric bacterial microcompartment shell protein PduB with glycerol metabolites 3VYI ; 2.305 ; Crystal Structure of a trimeric coiled-coil (I/I-type) assembly domain from the voltage-gated proton channel mutant 3DE9 ; 2.04 ; Crystal Structure of a Trimeric Cytochrome cb562 Assembly Induced by Nickel Coordination 4YOR ; 1.52 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 at 1.52A resolution. 4YOT ; 2.15 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 at 2.15A resolution 4YOU ; 2.2 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 at 2.20A resolution. 4YOV ; 2.05 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 in complex with poly-dA 4YOW ; 2.5 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 in complex with poly-dC 4YOX ; 2.05 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 in complex with poly-dT 4YOY ; 1.95 ; Crystal structure of a trimeric exonuclease PhoExo I from Pyrococcus horikoshii OT3 in complex with poly-dT and Mg2+ ion 5CJQ ; 3.6 ; Crystal structure of a trimeric influenza hemagglutinin stem in complex with an broadly neutralizing antibody CR9114 3FVC ; 3.2 ; Crystal structure of a trimeric variant of the Epstein-Barr virus glycoprotein B 8F09 ; 2.45 ; Crystal structure of a trimethoprim-resistant dihydrofolate reductase (DHFR) enzyme from an uncultured soil bacterium 6DFP ; 1.5 ; Crystal Structure of a Tripartite Toxin Component VCA0883 from Vibrio cholerae 3RZA ; 2.1 ; Crystal structure of a tripeptidase (SAV1512) from staphylococcus aureus subsp. aureus mu50 at 2.10 A resolution 4BI6 ; 1.45 ; CRYSTAL STRUCTURE OF A TRIPLE MUTANT (A198V, C202A AND C222N) OF TRIOSEPHOSPHATE ISOMERASE FROM GIARDIA LAMBLIA. COMPLEXED WITH 2- PHOSPHOGLYCOLIC ACID 3MVB ; 2.786 ; Crystal structure of a triple RFY mutant of human MTERF1 bound to the termination sequence 8HHI ; 1.4 ; Crystal structure of a triple-helix region of human collagen type III 8HHK ; 2.5 ; Crystal structure of a triple-helix region of human collagen type III 8XXB ; 2.4 ; Crystal Structure of a triple-mutant (A69F/M124P/R127G) of halohydrin dehalogenase HheD8 complexed with chloride 4DNE ; 1.88 ; Crystal structure of a triple-mutant of streptavidin in complex with desthiobiotin 5KB1 ; 2.09 ; Crystal Structure of a Tris-thiolate Hg(II) Complex in a de Novo Three Stranded Coiled Coil Peptide 5KB0 ; 2.13 ; Crystal Structure of a Tris-thiolate Pb(II) Complex in a de Novo Three-stranded Coiled Coil Peptide 5KB2 ; 1.89 ; Crystal Structure of a Tris-thiolate Zn(II)S3O Complex in a de Novo Three-stranded Coiled Coil Peptide 4KGN ; 2.15 ; Crystal structure of a tRNA (cytidine(34)-2'-O)-methyltransferase bound to S-adenosyl homocysteine 7MYQ ; 2.55 ; Crystal structure of a tRNA (guanine-N1)-methyltransferase from Acinetobacter baumannii 7MYS ; 2.4 ; Crystal structure of a tRNA (guanine-N1)-methyltransferase from Acinetobacter baumannii AB5075-UW bound to S-adenosyl homocysteine 4IG6 ; 2.4 ; Crystal structure of a tRNA (guanine-N1)-methyltransferase from Anaplasma phagocytophilum bound to S-adenosylhomocysteine 3BU2 ; 2.7 ; Crystal structure of a tRNA-binding protein from Staphylococcus saprophyticus subsp. saprophyticus. Northeast Structural Genomics Consortium target SyR77 3QUV ; 1.7 ; Crystal structure of a tRNA-guanine-N1-methyltransferase from Mycobacterium abscessus 3UG0 ; 2.093 ; Crystal structure of a Trp-less green fluorescent protein translated by the simplified genetic code 3UFZ ; 1.85 ; Crystal structure of a Trp-less green fluorescent protein translated by the universal genetic code 7AOV ; 2.00002 ; Crystal Structure of a TRPM2 Domain 7D51 ; 2.68 ; Crystal structure of a truly knotted protein: cyclized YibK from Haemophilus influenzae 3GIT ; 3.0 ; Crystal structure of a truncated acetyl-CoA synthase 4BDV ; 3.98 ; CRYSTAL STRUCTURE OF A TRUNCATED B-DOMAIN HUMAN FACTOR VIII 4OFS ; 4.1 ; Crystal structure of a truncated catalytic core of the 2-oxoacid dehydrogenase multienzyme complex from Thermoplasma acidophilum 1Q6H ; 1.97 ; Crystal structure of a truncated form of FkpA from Escherichia coli 1Q6I ; 2.25 ; Crystal structure of a truncated form of FkpA from Escherichia coli, in complex with immunosuppressant FK506 1HQP ; 2.3 ; CRYSTAL STRUCTURE OF A TRUNCATED FORM OF PORCINE ODORANT-BINDING PROTEIN 7AIE ; 3.287 ; Crystal structure of a truncated form of the KLC1-TPR domain ([A1-B5] fragment) - Monoclinic crystal form 5C8A ; 2.15 ; Crystal structure of a truncated form of Thermus thermophilus CarH bound to adenosylcobalamin (dark state) 1FYF ; 1.65 ; CRYSTAL STRUCTURE OF A TRUNCATED FORM OF THREONYL-TRNA SYNTHETASE COMPLEXED WITH A SERYL ADENYLATE ANALOG 1EVL ; 1.55 ; CRYSTAL STRUCTURE OF A TRUNCATED FORM OF THREONYL-TRNA SYNTHETASE WITH A THREONYL ADENYLATE ANALOG 1EVK ; 2.0 ; CRYSTAL STRUCTURE OF A TRUNCATED FORM OF THREONYL-TRNA SYNTHETASE WITH THE LIGAND THREONINE 1RJU ; 1.44 ; Crystal structure of a truncated form of yeast copper thionein 5GL7 ; 2.013 ; Crystal structure of a truncated human cytosolic methionyl-tRNA synthetase 3BDL ; 1.9 ; Crystal structure of a truncated human Tudor-SN 3SU8 ; 3.2 ; Crystal structure of a truncated intracellular domain of Plexin-B1 in complex with Rac1 6WC6 ; 3.1 ; Crystal structure of a truncated LSD1:CoREST in the presence of an LSD1-NT peptide 2A4V ; 1.8 ; Crystal Structure of a truncated mutant of yeast nuclear thiol peroxidase 4H1S ; 2.2 ; Crystal Structure of a Truncated Soluble form of Human CD73 with Ecto-5'-Nucleotidase activity 2ZY6 ; 1.75 ; Crystal structure of a truncated tRNA, TPHE39A 2C3Z ; 2.8 ; Crystal structure of a truncated variant of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus 3ZY0 ; 1.9 ; Crystal structure of a truncated variant of the human p63 tetramerization domain lacking the C-terminal helix 2WQJ ; 2.0 ; Crystal structure of a truncated variant of the human p73 tetramerization domain 1TCZ ; 1.85 ; Crystal structure of a truncated version of the phage lamda protein gpD 4JF8 ; 1.35 ; Crystal structure of a TrwG component of type IV secretion system protein from Bartonella birtlesii 3FSI ; 1.75 ; Crystal structure of a trypanocidal 4,4'-Bis(imidazolinylamino)diphenylamine bound to DNA 2JET ; 2.2 ; Crystal structure of a trypsin-like mutant (S189D , A226G) chymotrypsin. 5HY5 ; 2.68 ; Crystal Structure of a Tryptophan 6-halogenase (SttH) from Streptomyces toxytricini 3TZE ; 2.6 ; Crystal structure of a tryptophanyl-tRNA synthetase from Encephalitozoon cuniculi bound to tryptophan 5TEW ; 2.5 ; Crystal structure of a tryptophanyl-tRNA synthetase from Neisseria gonorrhoeae bound to tryptophan 5TEV ; 2.25 ; Crystal structure of a tryptophanyl-tRNA synthetase from Neisseria gonorrhoeae, apo 6Z9U ; 2.10002 ; Crystal structure of a TSEN15-34 heterodimer. 3UAF ; 2.01 ; Crystal Structure of a TTR-52 mutant of C. elegans 3D00 ; 1.9 ; Crystal structure of a tungsten formylmethanofuran dehydrogenase subunit e (fmde)-like protein (syn_00638) from syntrophus aciditrophicus at 1.90 A resolution 3CU5 ; 2.6 ; Crystal structure of a two component transcriptional regulator AraC from Clostridium phytofermentans ISDg 4JX0 ; 2.9 ; Crystal structure of a two domain protein with unknown function (BF3416) from Bacteroides fragilis NCTC 9343 at 2.90 A resolution 3KNY ; 2.6 ; Crystal structure of a two domain protein with unknown function (bt_3535) from bacteroides thetaiotaomicron vpi-5482 at 2.60 A resolution 2QZJ ; 2.89 ; Crystal structure of a two-component response regulator from Clostridium difficile 6HFZ ; 1.75 ; Crystal structure of a two-domain esterase (CEX) active on acetylated mannans 6HH9 ; 2.4 ; Crystal structure of a two-domain esterase (CEX) active on acetylated mannans co-crystallized with mannopentaose 1K6Y ; 2.4 ; Crystal Structure of a Two-Domain Fragment of HIV-1 Integrase 5CZ2 ; 2.72 ; Crystal structure of a two-domain fragment of MMTV integrase 2ISZ ; 2.403 ; Crystal structure of a two-domain IdeR-DNA complex crystal form I 2IT0 ; 2.6 ; Crystal structure of a two-domain IdeR-DNA complex crystal form II 3FSE ; 1.9 ; Crystal structure of a two-domain protein containing dj-1/thij/pfpi-like and ferritin-like domains (ava_4496) from anabaena variabilis atcc 29413 at 1.90 A resolution 3E38 ; 2.2 ; CRYSTAL STRUCTURE OF A TWO-DOMAIN PROTEIN CONTAINING PREDICTED PHP-LIKE METAL-DEPENDENT PHOSPHOESTERASE (BVU_3505) FROM BACTEROIDES VULGATUS ATCC 8482 AT 2.20 A RESOLUTION 6KFL ; 1.92 ; Crystal structure of a two-quartet DNA G-quadruplex complexed with the porphyrin TMPyP4 6JJF ; 1.47 ; Crystal structure of a two-quartet DNA mixed-parallel/antiparallel G-quadruplex 6JJG ; 1.969 ; Crystal structure of a two-quartet DNA mixed-parallel/antiparallel G-quadruplex 6JJE ; 1.378 ; Crystal structure of a two-quartet DNA mixed-parallel/antiparallel G-quadruplex (BrU) 6JJH ; 1.74 ; Crystal structure of a two-quartet RNA parallel G-quadruplex complexed with the porphyrin TMPyP4 6JJI ; 3.1 ; Crystal structure of a two-quartet RNA parallel G-quadruplex complexed with the porphyrin TMPyP4 (1:1) 6MEN ; 1.5 ; Crystal structure of a Tylonycteris bat coronavirus HKU4 macrodomain in complex with adenosine diphosphate glucose (ADP-glucose) 6MEA ; 1.35 ; Crystal structure of a Tylonycteris bat coronavirus HKU4 macrodomain in complex with adenosine diphosphate ribose (ADP-ribose) 3TBO ; 1.5 ; Crystal structure of a type 3 CDGSH iron-sulfur protein. 3TBM ; 1.797 ; Crystal structure of a type 4 CDGSH iron-sulfur protein. 5JJT ; 2.103 ; Crystal structure of a type 5 serine/threonine protein phosphatase from Arabidopsis thaliana 4L0K ; 2.328 ; Crystal structure of a type II restriction endonuclease 2VUP ; 2.1 ; Crystal structure of a type II tryparedoxin-dependant peroxidase from Trypanosoma brucei 2ZF9 ; 1.95 ; Crystal structure of a type III cohesin module from the cellulosomal ScaE cell-surface anchoring scaffoldin of Ruminococcus flavefaciens 2GTD ; 2.0 ; Crystal Structure of a Type III Pantothenate Kinase: Insight into the Catalysis of an Essential Coenzyme A Biosynthetic Enzyme Universally Distributed in Bacteria 1TED ; 2.25 ; Crystal structure of a type III polyketide synthase PKS18 from Mycobacterium tuberculosis 3E1H ; 2.58 ; Crystal structure of a type III polyketide synthase PKSIIINc from Neurospora crassa 1Y9T ; 1.87 ; Crystal structure of a type III secretion system protein complexed with the lipid, 1-monohexanoyl-2-hydroxy-sn-glycero-3-phosphate 5H3V ; 1.4 ; Crystal structure of a Type IV Secretion System Component CagX in Helicobacter pylori 2OVS ; 1.9 ; Crystal structure of a Type Three secretion System protein 3V4H ; 2.1 ; Crystal structure of a type VI secretion system effector from Yersinia pestis 7DQ9 ; 1.702 ; Crystal structure of a type-A feruloyl esterase from gut Alistipes shahii 8DHT ; 1.699 ; Crystal structure of a typeIII Rubisco 4DNK ; 2.2 ; Crystal structure of a tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide (YWHAB) from homo sapiens at 2.20 A resolution. 4E2E ; 2.25 ; Crystal structure of a tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide (YWHAG) from Homo sapiens at 2.25 A resolution 7CWX ; 2.15 ; Crystal structure of a tyrosine decarboxylase from Enterococcus faecalis 7CWY ; 2.59 ; Crystal structure of a tyrosine decarboxylase from Enterococcus faecalis in complex with the cofactor PLP 7CX0 ; 2.66 ; Crystal structure of a tyrosine decarboxylase from Enterococcus faecalis in complex with the cofactor PLP and inhibitor carbidopa 7CX1 ; 2.54 ; Crystal structure of a tyrosine decarboxylase from Enterococcus faecalis in complex with the cofactor PLP and inhibitor methyl-tyrosine 7CWZ ; 2.97 ; Crystal structure of a tyrosine decarboxylase from Enterococcus faecalis K392A mutant in complex with the cofactor PLP and L-dopa 6N0W ; 2.7 ; Crystal structure of a Tyrosine--tRNA ligase from Elizabethkingia anophelis 2QG3 ; 1.95 ; CRYSTAL STRUCTURE OF A TYW3 METHYLTRANSFERASE-LIKE PROTEIN (AF_2059) FROM ARCHAEOGLOBUS FULGIDUS DSM 4304 AT 1.95 A RESOLUTION 1MZW ; 2.0 ; Crystal structure of a U4/U6 snRNP complex between human spliceosomal cyclophilin H and a U4/U6-60K peptide 5ULF ; 1.8 ; Crystal Structure of a UbcH5b~Ub conjugate 5BNB ; 2.49 ; Crystal structure of a Ube2S-ubiquitin conjugate 2AVN ; 2.35 ; CRYSTAL STRUCTURE OF A UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHYLTRANSFERASE-RELATED PROTEIN (TM1389) FROM THERMOTOGA MARITIMA MSB8 AT 2.35 A RESOLUTION 1RCM ; 1.9 ; CRYSTAL STRUCTURE OF A UBIQUITIN-DEPENDENT DEGRADATION SUBSTRATE: A THREE-DISULFIDE FORM OF LYSOZYME 1NBF ; 2.3 ; Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde 4CYC ; 2.36 ; CRYSTAL STRUCTURE OF A UBX-EXD-DNA COMPLEX INCLUDING THE HEXAPEPTIDE AND UBDA MOTIFS 4UUS ; 2.55 ; CRYSTAL STRUCTURE OF A UBX-EXD-DNA COMPLEX INCLUDING THE UBDA MOTIF 5DLD ; 1.45 ; Crystal Structure of a UDP-N-acetylglucosamine 2-epimerase from Burkholderia vietnamiensis complexed with UDP-GlcNAc and UDP 7BV3 ; 1.85 ; Crystal structure of a ugt transferase from Siraitia grosvenorii in complex with UDP 4P5B ; 2.274 ; Crystal structure of a UMP/dUMP methylase PolB from Streptomyces cacaoi bound with 5-Br dUMP 4P5A ; 1.76 ; Crystal structure of a UMP/dUMP methylase PolB from Streptomyces cacaoi bound with 5-Br UMP 3FIJ ; 2.3 ; Crystal structure of a uncharacterized protein lin1909 2OXM ; 2.5 ; Crystal structure of a UNG2/modified DNA complex that represent a stabilized short-lived extrahelical state in ezymatic DNA base flipping 4QFV ; 1.999 ; Crystal structure of a unique ankyrin 4BKC ; 1.73 ; Crystal Structure of a unusually linked dimeric variant of Bet v 1 4R8X ; 1.401 ; Crystal structure of a uricase from Bacillus fastidious 4R99 ; 1.8 ; Crystal structure of a uricase from Bacillus fastidious 3V4R ; 3.25 ; Crystal structure of a UvrB dimer-DNA complex 6FY0 ; 2.57 ; Crystal structure of a V2-directed, RV144 vaccine-like antibody from HIV-1 infection, CAP228-16H, bound to a heterologous V2 peptide 6FY3 ; 2.6 ; Crystal structure of a V2-directed, RV144 vaccine-like antibody from HIV-1 infection, CAP228-3D, bound to a heterologous V2 peptide 6FY2 ; 2.301 ; Crystal structure of a V2p-reactive RV144 vaccine-like antibody, CAP228-16H, in complex with a heterologous CAP225 V1V2 6FY1 ; 3.132 ; Crystal structure of a V2p-reactive RV144 vaccine-like antibody, CAP228-16H, in complex with a scaffolded autologous V1V2 6U6M ; 2.683 ; Crystal structure of a vaccine-elicited anti-HIV-1 rhesus macaque antibody DH840.1 6U6O ; 2.806 ; Crystal structure of a vaccine-elicited anti-HIV-1 rhesus macaque antibody DH846 1AC6 ; 2.3 ; CRYSTAL STRUCTURE OF A VARIABLE DOMAIN MUTANT OF A T-CELL RECEPTOR ALPHA CHAIN 8GYR ; 1.87 ; Crystal structure of a variable region segment of Leptospira host-interacting outer surface protein, LigA 6H8K ; 3.79 ; Crystal structure of a variant (Q133C in PSST) of Yarrowia lipolytica complex I 5JJ4 ; 2.807 ; Crystal Structure of a Variant Human Activation-induced Deoxycytidine Deaminase as an MBP fusion protein 6EMI ; 2.476 ; Crystal structure of a variant of human butyrylcholinesterase expressed in bacteria. 8BRR ; 1.95 ; Crystal structure of a variant of penicillin G acylase from Bacillaceae i. s. sp. FJAT-27231 with reduced surface entropy and additionally engineered crystal contact 8BRT ; 1.31 ; Crystal structure of a variant of penicillin G acylase from Bacillaceae i. s. sp. FJAT-27231 with reduced surface entropy and additionally engineered crystal contact 8BRS ; 1.2 ; Crystal structure of a variant of penicillin G acylase from Bacillaceae i. s. sp. FJAT-27231 with reduced surface entropy and additionally engineered crystal contact. 4BK7 ; 1.14 ; Crystal Structure of a variant of the Major Birch Pollen Allergen Bet v 1 2QVJ ; 2.8 ; Crystal structure of a vesicular stomatitis virus nucleocapsid protein Ser290Trp mutant 3PTX ; 3.0 ; Crystal Structure of a vesicular stomatitis virus nucleocapsid-polyA complex 3PU0 ; 3.09 ; Crystal Structure of a vesicular stomatitis virus nucleocapsid-polyC complex 3PU1 ; 3.14 ; Crystal Structure of a vesicular stomatitis virus nucleocapsid-polyG complex 3PU4 ; 3.0 ; Crystal Structure of a vesicular stomatitis virus nucleocapsid-polyU complex 2GIC ; 2.92 ; Crystal Structure of a vesicular stomatitis virus nucleocapsid-RNA complex 3CL3 ; 3.2 ; Crystal Structure of a vFLIP-IKKgamma complex: Insights into viral activation of the IKK signalosome 5LDE ; 3.38 ; Crystal structure of a vFLIP-IKKgamma stapled peptide dimer 6OC8 ; 2.109 ; Crystal structure of a VHH against the capsid protein from BLV 3KLT ; 2.7 ; Crystal structure of a vimentin fragment 2OSO ; 1.9 ; Crystal structure of a vinyl-4-reductase family protein (mj_1460) from methanocaldococcus jannaschii dsm at 1.90 A resolution 2OSD ; 2.3 ; Crystal structure of a vinyl-4-reductase family protein (mj_1460) from methanocaldococcus jannaschii dsm at 2.40 A resolution 1ZXT ; 1.7 ; Crystal Structure of A Viral Chemokine 4MB7 ; 2.04 ; Crystal Structure of a viral DNA glycosylase 2F1S ; 1.4 ; Crystal Structure of a Viral FLIP MC159 2O5N ; 2.4 ; Crystal structure of a Viral Glycoprotein 4MEI ; 2.85 ; Crystal structure of a VirB8 Type IV secretion system machinery soluble domain from Bartonella tribocorum 4O3V ; 1.95 ; Crystal structure of a VirB8-like protein of type IV secretion system from Rickettsia typhi 7SH3 ; 3.0 ; Crystal Structure of a VirB8-like Protein of Type IV Secretion System from Rickettsia typhi in Complex with a Synthetic VirB8 Miniprotein Binder 1VQR ; 2.25 ; Crystal structure of a virulence factor (cj0248) from campylobacter jejuni subsp. jejuni at 2.25 A resolution 3OY7 ; 2.73 ; Crystal structure of a virus encoded glycosyltransferase in complex with GDP-mannose 4KT0 ; 2.8 ; Crystal structure of a virus like photosystem I from the cyanobacterium Synechocystis PCC 6803 4L6V ; 3.8 ; Crystal structure of a virus like photosystem I from the cyanobacterium Synechocystis PCC 6803 1ET4 ; 2.3 ; CRYSTAL STRUCTURE OF A VITAMIN B12 BINDING RNA APTAMER WITH LIGAND AT 2.3 A 5A4R ; 2.25 ; Crystal structure of a vitamin B12 trafficking protein 4H37 ; 3.35 ; Crystal structure of a voltage-gated K+ channel pore domain in a closed state in lipid membranes 4H33 ; 3.1 ; Crystal structure of a voltage-gated K+ channel pore module in a closed state in lipid membranes, tetragonal crystal form 5BV1 ; 2.902 ; Crystal Structure of a Vps33-Vps16 Complex from Chaetomium thermophilum 4S1Q ; 2.4 ; Crystal structure of a VRC01-lineage antibody, 45-VRC01.H03+06.D-001739, in complex with clade A/E HIV-1 gp120 core 4S1R ; 3.214 ; Crystal structure of a VRC01-lineage antibody, 45-VRC01.H08.F-117225, in complex with clade A/E HIV-1 gp120 core 4S1S ; 3.39 ; Crystal structure of a VRC01-lineage antibody, 45-VRC01.H5.F-185917, in complex with clade A/E HIV-1 gp120 core 4DMT ; 1.39 ; Crystal structure of a VWF binding collagen III derived triple helical peptide 1YOD ; 1.8 ; Crystal structure of a water soluble analog of phospholamban 2B3Q ; 2.3 ; Crystal structure of a well-folded variant of green fluorescent protein 1EGA ; 2.4 ; CRYSTAL STRUCTURE OF A WIDELY CONSERVED GTPASE ERA 6IST ; 1.75 ; Crystal structure of a wild type endolysin LysIME-EF1 1G50 ; 2.9 ; CRYSTAL STRUCTURE OF A WILD TYPE HER ALPHA LBD AT 2.9 ANGSTROM RESOLUTION 1Q3V ; 2.91 ; Crystal structure of a wild-type Cre recombinase-loxP synapse: phosphotyrosine covalent intermediate 1Q3U ; 2.9 ; Crystal structure of a wild-type Cre recombinase-loxP synapse: pre-cleavage complex 3D5U ; 2.8 ; Crystal structure of a wildtype Polo-like kinase 1 (Plk1) catalytic domain. 2QS8 ; 2.33 ; Crystal structure of a Xaa-Pro dipeptidase with bound methionine in the active site 3ON5 ; 2.8 ; Crystal structure of a xanthine dehydrogenase (BH1974) from Bacillus halodurans at 2.80 A resolution 2NLV ; 1.3 ; CRYSTAL STRUCTURE OF A XISI-LIKE PROTEIN (AVA_3825) FROM ANABAENA VARIABILIS ATCC 29413 AT 1.30 A RESOLUTION 3D7Q ; 2.3 ; Crystal structure of a xisi-like protein (npun_ar114) from nostoc punctiforme pcc 73102 at 2.30 A resolution 1IK9 ; 2.3 ; CRYSTAL STRUCTURE OF A XRCC4-DNA LIGASE IV COMPLEX 5NO7 ; 3.01 ; Crystal Structure of a Xylan-active Lytic Polysaccharide Monooxygenase from Pycnoporus coccineus. 5JRM ; 1.56 ; Crystal Structure of a Xylanase at 1.56 Angstroem resolution 5JRN ; 2.841 ; Crystal Structure of a Xylanase in Complex with a Monosaccharide at 2.84 Angstroem resolution 2Q02 ; 2.4 ; Crystal structure of a xylose isomerase domain containing protein (stm4435) from salmonella typhimurium lt2 at 2.40 A resolution 5TNV ; 1.04 ; Crystal Structure of a Xylose isomerase-like TIM barrel Protein from Mycobacterium smegmatis in Complex with Magnesium 5VM1 ; 2.75 ; Crystal structure of a xyloylose kinase from Brucella ovis 1JX4 ; 1.7 ; Crystal Structure of a Y-family DNA Polymerase in a Ternary Complex with DNA Substrates and an Incoming Nucleotide 1JXL ; 2.1 ; Crystal Structure of a Y-Family DNA Polymerase in a Ternary Complex with DNA Substrates and an Incoming Nucleotide 8PTI ; 1.8 ; CRYSTAL STRUCTURE OF A Y35G MUTANT OF BOVINE PANCREATIC TRYPSIN INHIBITOR 4IA8 ; 1.85 ; Crystal Structure of a Y37A mutant of the Restriction-Modification Controller Protein C.Esp1396I 4I6U ; 1.97 ; Crystal Structure of a Y37F mutant of the Restriction-Modification Controller Protein C.Esp1396I 3S6L ; 2.3 ; Crystal structure of a YadA-like head domain of the trimeric autotransporter adhesin BoaA from Burkholderia pseudomallei solved by iodide ion SAD phasing 4QDY ; 2.74 ; Crystal structure of a YbbR-like protein (SP_1560) from Streptococcus pneumoniae TIGR4 at 2.74 A resolution 1VMF ; 1.46 ; CRYSTAL STRUCTURE OF a YBJQ-LIKE FOLD PROTEIN OF UNKNOWN FUNCTION (BH3498) FROM BACILLUS HALODURANS AT 1.46 A RESOLUTION 1VPH ; 1.764 ; CRYSTAL STRUCTURE OF a YbjQ-like protein of unknown function (SSO2532) FROM SULFOLOBUS SOLFATARICUS P2 AT 1.76 A RESOLUTION 1NGM ; 2.95 ; Crystal structure of a yeast Brf1-TBP-DNA ternary complex 1B54 ; 2.1 ; CRYSTAL STRUCTURE OF A YEAST HYPOTHETICAL PROTEIN-A STRUCTURE FROM BNL'S HUMAN PROTEOME PROJECT 1D1P ; 2.2 ; CRYSTAL STRUCTURE OF A YEAST LOW MOLECULAR WEIGHT PROTEIN TYROSINE PHOSPHATASE (LTP1) 1D2A ; 1.9 ; CRYSTAL STRUCTURE OF A YEAST LOW MOLECULAR WEIGHT PROTEIN TYROSINE PHOSPHATASE (LTP1) COMPLEXED WITH THE ACTIVATOR ADENINE 1D1Q ; 1.7 ; CRYSTAL STRUCTURE OF A YEAST LOW MOLECULAR WEIGHT PROTEIN TYROSINE PHOSPHATASE (LTP1) COMPLEXED WITH THE SUBSTRATE PNPP 6CW2 ; 2.67 ; Crystal structure of a yeast SAGA transcriptional coactivator Ada2/Gcn5 HAT subcomplex, crystal form 1 6CW3 ; 1.98 ; Crystal structure of a yeast SAGA transcriptional coactivator Ada2/Gcn5 HAT subcomplex, crystal form 2 6TEO ; 3.1 ; Crystal structure of a yeast Snu114-Prp8 complex 1YTB ; 1.8 ; CRYSTAL STRUCTURE OF A YEAST TBP/TATA-BOX COMPLEX 1NH2 ; 1.9 ; Crystal structure of a yeast TFIIA/TBP/DNA complex 1MYW ; 2.2 ; CRYSTAL STRUCTURE OF A YELLOW FLUORESCENT PROTEIN WITH IMPROVED MATURATION AND REDUCED ENVIRONMENTAL SENSITIVITY 6EFW ; 1.9 ; Crystal structure of a YjeF family protein from Cryptococcus neoformans var. grubii serotype A 6EFX ; 2.0 ; Crystal structure of a YjeF family protein from Cryptococcus neoformans var. grubii serotype A in complex with AMPPNP 4QY7 ; 1.55 ; Crystal structure of a yobA protein (BSU18810) from Bacillus subtilis subsp. subtilis str. 168 at 1.55 A resolution 1VTY ; 1.3 ; Crystal structure of a Z-DNA fragment containing thymine/2-aminoadenine base pairs 5IMJ ; 3.1 ; Crystal structure of a Z-ring associated protein from Escherichia coli 5GNP ; 2.8 ; Crystal structure of a Z-ring associated protein from Salmonella typhimurium 3IRQ ; 2.8 ; Crystal structure of a Z-Z junction 3IRR ; 2.65 ; Crystal Structure of a Z-Z junction (with HEPES intercalating) 6H1N ; 2.0 ; Crystal Structure of a Zebra-fish pro-survival protein NRZ-apo 6FBX ; 1.639 ; Crystal Structure of a Zebra-fish pro-survival protein NRZ:Bad BH3 complex 1E6B ; 1.65 ; Crystal structure of a Zeta class glutathione S-transferase from Arabidopsis thaliana 1LLM ; 1.5 ; Crystal Structure of a Zif23-GCN4 Chimera Bound to DNA 1MH2 ; 2.7 ; Crystal Structure of a Zinc Containing Dimer of Phospholipase A2 from the Venom of Indian Cobra (Naja Naja Sagittifera) 2GU1 ; 1.9 ; Crystal structure of a zinc containing peptidase from vibrio cholerae 3NMK ; 2.8 ; Crystal structure of a zinc mediated dimer for the phenanthroline-modified cytochrome cb562 variant, MBP-Phen2 6NU9 ; 1.761 ; Crystal Structure of a Zinc-Binding Non-Structural Protein from the Hepatitis E Virus 3R6F ; 1.85 ; Crystal structure of a zinc-containing HIT family protein from Encephalitozoon cuniculi 6FI9 ; 2.8 ; Crystal Structure of a zinc-responsive MarR family member, Lactococcus lactis ZitR 4UMW ; 2.705 ; CRYSTAL STRUCTURE OF A ZINC-TRANSPORTING PIB-TYPE ATPASE IN E2.PI STATE 4UMV ; 3.2 ; CRYSTAL STRUCTURE OF A ZINC-TRANSPORTING PIB-TYPE ATPASE IN THE E2P STATE 1UUF ; 1.76 ; crystal structure of a zinc-type alcohol dehydrogenase-like protein yahK 1KYS ; 1.44 ; Crystal Structure of a Zn-bound Green Fluorescent Protein Biosensor 3O0M ; 1.9 ; Crystal structure of a ZN-bound histidine triad family protein from Mycobacterium smegmatis 7RWW ; 1.7 ; Crystal structure of a Zn-bound RIDC1 variant 7RWX ; 1.6 ; Crystal structure of a Zn-bound RIDC1 variant in the presence of reductant 3TC8 ; 1.06 ; Crystal structure of a Zn-dependent exopeptidase (BDI_3547) from Parabacteroides distasonis ATCC 8503 at 1.06 A resolution 5ZBY ; 1.591 ; Crystal structure of a [NiFe] hydrogenase maturation protease HycI from Thermococcus kodakarensis KOD1 2WZY ; 2.51 ; Crystal structure of A-AChBP in complex with 13-desmethyl spirolide C 2X00 ; 2.4 ; CRYSTAL STRUCTURE OF A-ACHBP IN COMPLEX WITH GYMNODIMINE A 4XHE ; 1.9 ; Crystal Structure of A-AChBP in complex with pinnatoxin A 4XK9 ; 2.2 ; Crystal structure of A-AChBP in complex with pinnatoxin G 3MV2 ; 2.9 ; Crystal Structure of a-COP in Complex with e-COP 3MV3 ; 3.25 ; Crystal Structure of a-COP in Complex with e-COP 1NZG ; 1.6 ; Crystal structure of A-DNA decamer GCGTA(3ME)ACGC, with a modified 5-methyluridine 3Q3G ; 2.7 ; Crystal Structure of A-domain in complex with antibody 3QA3 ; 3.0 ; Crystal Structure of A-domain in complex with antibody 1U2C ; 2.3 ; Crystal Structure of a-dystroglycan 6Q4S ; 1.83 ; Crystal structure of a-eudesmol synthase 1VDZ ; 2.55 ; Crystal structure of A-type ATPase catalytic subunit A from Pyrococcus horikoshii OT3 1YVU ; 2.9 ; Crystal structure of A. aeolicus Argonaute 3FTD ; 1.44 ; Crystal structure of A. aeolicus KsgA at 1.44-Angstrom resolution 3FTC ; 1.68 ; Crystal structure of A. aeolicus KsgA at 1.72-Angstrom resolution 3FTE ; 3.0 ; Crystal structure of A. aeolicus KsgA in complex with RNA 3FTF ; 2.8 ; Crystal structure of A. aeolicus KsgA in complex with RNA and SAH 4G3K ; 3.05 ; Crystal structure of a. aeolicus nlh1 gaf domain in an inactive state 4G3W ; 2.7 ; Crystal structure of a. aeolicus nlh1 gaf domain in an inactive state 4G3V ; 1.7 ; Crystal structure of A. Aeolicus nlh2 gaf domain in an inactive state 4L5E ; 1.34 ; Crystal structure of A. aeolicus NtrC1 DNA binding domain 1ZJR ; 1.85 ; Crystal Structure of A. aeolicus TrmH/SpoU tRNA modifying enzyme 3W3S ; 3.095 ; Crystal structure of A. aeolicus tRNASec in complex with M. kandleri SerRS 7ZG8 ; 2.65 ; Crystal structure of A. baumannii penicillin-binding protein 2 1RXV ; 2.5 ; Crystal Structure of A. Fulgidus FEN-1 bound to DNA 1RXW ; 2.0 ; Crystal structure of A. fulgidus FEN-1 bound to DNA 1Z0E ; 2.05 ; Crystal Structure of A. fulgidus Lon proteolytic domain 1Z0G ; 2.27 ; Crystal Structure of A. fulgidus Lon proteolytic domain 1Z0T ; 3.0 ; Crystal Structure of A. fulgidus Lon proteolytic domain 1Z0V ; 3.0 ; Crystal Structure of A. fulgidus Lon proteolytic domain 1Z0W ; 1.2 ; Crystal Structure of A. fulgidus Lon proteolytic domain at 1.2A resolution 1Z0C ; 1.55 ; Crystal Structure of A. fulgidus Lon proteolytic domain D508A mutant 1Z0B ; 1.55 ; Crystal Structure of A. fulgidus Lon proteolytic domain E506A mutant 2ONR ; 1.6 ; Crystal structure of A. fulgidus periplasmic binding protein ModA with bound molybdate 2ONS ; 1.55 ; Crystal structure of A. fulgidus periplasmic binding protein ModA with bound tungstate 3CIJ ; 1.07 ; Crystal structure of A. fulgidus periplasmic binding protein ModA/WtpA with bound tungstate 1TQI ; 2.0 ; Crystal Structure of A. Fulgidus Rio2 Serine Protein Kinase 1TQM ; 1.99 ; Crystal Structure of A. fulgidus Rio2 Serine Protein Kinase Bound to AMPPNP 1TQP ; 2.1 ; Crystal Structure of A. fulgidus Rio2 Serine Protein Kinase Bound to ATP 3LDK ; 2.2 ; Crystal Structure of A. japonicus CB05 4C5Y ; 3.0 ; Crystal structure of A. niger ochratoxinase 4C5Z ; 2.5 ; Crystal structure of A. niger ochratoxinase 4C60 ; 2.5 ; Crystal structure of A. niger ochratoxinase 4C65 ; 2.2 ; Crystal structure of A. niger ochratoxinase 6H7D ; 2.4 ; Crystal Structure of A. thaliana Sugar Transport Protein 10 in complex with glucose in the outward occluded state 1ZTF ; 1.99 ; Crystal Structure of A.fulgidus Rio1 serine protein kinase 1ZTH ; 1.89 ; Crystal Structure of A.fulgidus Rio1 serine protein kinase bound to ADP and Manganese ion 1ZAR ; 1.75 ; Crystal Structure of A.fulgidus Rio2 Kinase Complexed With ADP and Manganese Ions 1ZAO ; 1.84 ; Crystal Structure of A.fulgidus Rio2 Kinase Complexed With ATP and Manganese Ions 3AEV ; 2.8 ; Crystal structure of a/eIF2alpha-aDim2p-rRNA complex from Pyrococcus horikoshii OT3 5XRT ; 3.15 ; Crystal structure of A/Minnesota/11/2010 (H3N2) influenza virus hemagglutinin 5XRS ; 2.907 ; Crystal structure of A/Minnesota/11/2010 (H3N2) influenza virus hemagglutinin in complex with LSTc 4O5N ; 1.75 ; Crystal structure of A/Victoria/361/2011 (H3N2) influenza virus hemagglutinin 3VWW ; 1.93 ; Crystal structure of a0-domain of P5 from H. sapiens 4YLB ; 2.501 ; Crystal Structure of A102D mutant of hsp14.1 from Sulfolobus solfatataricus P2 4L8V ; 2.09 ; Crystal Structure of A12K/D35S mutant myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor NADP 5UA4 ; 2.6 ; Crystal structure of A179L:Bid BH3 complex 5UA5 ; 2.5 ; Crystal structure of A179L:Bid BH3 complex 4QA1 ; 1.92 ; Crystal structure of A188T HDAC8 in complex with M344 4QA5 ; 1.76 ; Crystal structure of A188T/Y306F HDAC8 in complex with a tetrapeptide substrate 5G58 ; 2.54 ; Crystal structure of A190T mutant of human hippocalcin AT 2.5 A resolution 2C0N ; 1.86 ; Crystal Structure of A197 from STIV 1OO8 ; 2.65 ; CRYSTAL STRUCTURE OF A1PI-PITTSBURGH IN THE NATIVE CONFORMATION 3VUY ; 1.981 ; Crystal structure of A20 ZF7 in complex with linear tetraubiquitin 3VUW ; 1.95 ; Crystal structure of A20 ZF7 in complex with linear ubiquitin, form I 3VUX ; 1.699 ; Crystal structure of A20 ZF7 in complex with linear ubiquitin, form II 3DKB ; 2.5 ; Crystal Structure of A20, 2.5 angstrom 7LZ4 ; 4.155 ; Crystal structure of A211D mutant of Protein Kinase A RIa subunit, a Carney Complex mutation 4IL7 ; 1.4 ; Crystal structure of A223 C-terminal domain, a structural protein from sulfolobus turreted icosahedral virus (STIV) 5N0A ; 3.9 ; Crystal structure of A259C covalently linked dengue 2 virus envelope glycoprotein dimer in complex with the Fab fragment of the broadly neutralizing human antibody EDE2 A11 6AQF ; 2.51 ; Crystal structure of A2AAR-BRIL in complex with the antagonist ZM241385 produced from Pichia pastoris 8CU7 ; 2.05 ; Crystal structure of A2AAR-StaR2-bRIL in complex with a novel A2a antagonist, LJ-4517 8DU3 ; 2.5 ; Crystal structure of A2AAR-StaR2-bRIL in complex with compound 21a 8CU6 ; 2.8 ; Crystal structure of A2AAR-StaR2-S277-bRIL in complex with a novel A2a antagonist, LJ-4517 8JWY ; 2.33 ; Crystal structure of A2AR-T4L in complex with 2-118 8JWZ ; 2.37 ; Crystal structure of A2AR-T4L in complex with AB928 3TNM ; 1.85 ; Crystal structure of A32 Fab, an ADCC mediating anti-HIV-1 antibody 1ZO4 ; 1.46 ; Crystal Structure Of A328S Mutant Of The Heme Domain Of P450BM-3 1ZOA ; 1.74 ; Crystal Structure Of A328V Mutant Of The Heme Domain Of P450Bm-3 With N-Palmitoylglycine 3IOX ; 1.8 ; Crystal Structure of A3VP1 of AgI/II of Streptococcus mutans 3IPK ; 2.04 ; Crystal Structure of A3VP1 of AgI/II of Streptococcus mutans 3V4P ; 3.15 ; crystal structure of a4b7 headpiece complexed with Fab ACT-1 3V4V ; 3.1 ; crystal structure of a4b7 headpiece complexed with Fab ACT-1 and RO0505376 4IRZ ; 2.84 ; Crystal structure of A4b7 headpiece complexed with Fab Natalizumab 6DUJ ; 1.82203 ; Crystal structure of A51V variant of Human Cytochrome c 7A5T ; 1.4 ; Crystal structure of A55E mutant of BlaC from Mycobacterium tuberculosis 3STG ; 2.2 ; Crystal structure of A58P, DEL(N59), and loop 7 truncated mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 3FJK ; 2.15 ; Crystal structure of A66C mutant of Human acidic fibroblast growth factor 7YOE ; 1.88 ; Crystal Structure of A68P single mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae at 1.88 A 7YOD ; 2.101 ; Crystal structure of A68P single mutant of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high-affinity inhibitory peptide from serine acetyltransferase of Salmonella typhimurium at 2.1 A 8I00 ; 1.8 ; Crystal structure of A97S transthyretin 2F8S ; 3.0 ; Crystal structure of Aa-Ago with externally-bound siRNA 2F8T ; 3.1 ; Crystal structure of Aa-Ago with externally-bound siRNA 1WT9 ; 2.01 ; crystal structure of Aa-X-bp-I, a snake venom protein with the activity of binding to coagulation factor X from Agkistrodon acutus 1Y17 ; 2.4 ; crystal structure of Aa-X-bp-II, a snake venom protein with the activity of binding to coagulation factor X from Agkistrodon acutus 6IF7 ; 2.2 ; Crystal Structure of AA10 Lytic Polysaccharide Monooxygenase from Tectaria macrodonta 1S3S ; 2.9 ; Crystal structure of AAA ATPase p97/VCP ND1 in complex with p47 C 5Z6Q ; 3.0 ; Crystal structure of AAA of Spastin 4QHT ; 2.559 ; Crystal structure of AAA+/ sigma 54 activator domain of the flagellar regulatory protein FlrC from Vibrio cholerae in ATP analog bound state 4QHS ; 2.3 ; Crystal structure of AAA+sigma 54 activator domain of the flagellar regulatory protein FlrC of Vibrio cholerae in nucleotide free state 4FQW ; 2.02 ; Crystal Structure of AAAA+UDP+Gal at pH 5.0 with MPD as the cryoprotectant 3SXE ; 1.49 ; Crystal structure of AAAA+UDP+Gal with Glycerol as the cryoprotectant 3SXG ; 1.86 ; Crystal structure of AAAA+UDP+Gal with MPD as the cryoprotectant 5C38 ; 1.45 ; Crystal structure of AABB + UDP-C-Gal + DI 5C4F ; 1.41 ; Crystal structure of AABB + UDP-Glc + DI 3SX3 ; 1.45 ; Crystal structure of AABB+UDP+Gal with glycerol as the cryoprotectant 3SX5 ; 1.43 ; Crystal structure of AABB+UDP+Gal with MPD as the cryoprotectant 6BVC ; 1.808 ; Crystal structure of AAC(3)-Ia in complex with coenzyme A 5U34 ; 3.255 ; Crystal structure of AacC2c1-sgRNA binary complex 5U31 ; 2.89 ; Crystal structure of AacC2c1-sgRNA-8mer substrate DNA ternary complex 5U33 ; 3.75 ; Crystal structure of AacC2c1-sgRNA-extended non-target DNA ternary complex 5U30 ; 2.92 ; Crystal structure of AacC2c1-sgRNA-extended target DNA ternary complex 5BKD ; 1.9 ; Crystal structure of AAD-1 in complex with (R)-cyhalofop, Mn(II), and 2-oxoglutarate 5BKB ; 1.582 ; Crystal structure of AAD-1 in complex with (R)-dichlorprop, Mn(II), and 2-oxoglutarate 5BKC ; 1.8 ; Crystal structure of AAD-1 in complex with (R)-diclofop, Mn(II), and 2-oxoglutarate 5BKE ; 2.15 ; Crystal structure of AAD-2 in complex with Mn(II) and N-oxalylglycine 4CS6 ; 2.502 ; Crystal structure of AadA - an aminoglycoside adenyltransferase 3HDB ; 2.31 ; Crystal structure of AaHIV, A metalloproteinase from venom of Agkistrodon Acutus 2ZGO ; 2.0 ; Crystal structure of AAL mutant H59Q complex with lactose 2ZGR ; 1.9 ; Crystal structure of AAL mutant L33A in C2 spacegroup 2ZGQ ; 1.9 ; Crystal structure of AAL mutant L33A in P1 spacegroup 8P0Q ; 2.8 ; Crystal structure of AaNGT complexed to UDP and a peptide 8P0P ; 2.73 ; Crystal structure of AaNGT complexed to UDP-2F-Glucose 8P0O ; 1.76 ; Crystal structure of AaNGT complexed to UDP-Gal 6JZY ; 2.1 ; Crystal structure of AAR with NADPH and stearyl in complex with ADO binding a long chain carbohydrate 3SBS ; 2.1 ; Crystal structure of Aar2 protein 4ILG ; 2.1 ; Crystal structure of Aar2p in complex with the Prp8p RNaseH and Jab1/MPN domains 5TOR ; 1.35 ; Crystal structure of AAT D222T mutant 5TON ; 1.4 ; Crystal structure of AAT H143L mutant 5TOT ; 1.4 ; Crystal structure of AAT H143L:H189L double mutant 6LCC ; 2.6 ; Crystal structure of AaTPS apo 6LCD ; 2.7 ; Crystal structure of AaTPS with PPi 4UZI ; 2.1 ; Crystal Structure of AauDyP Complexed with Imidazole 1RZ9 ; 3.1 ; Crystal Structure of AAV Rep complexed with the Rep-binding sequence 1OP0 ; 2.0 ; Crystal Structure of AaV-SP-I, a Glycosylated Snake Venom Serine Proteinase from Agkistrodon acutus 1OP2 ; 2.1 ; Crystal Structure of AaV-SP-II, a Glycosylated Snake Venom Serine Proteinase from Agkistrodon acutus 1U0J ; 2.1 ; Crystal Structure of AAV2 Rep40-ADP complex 3UQH ; 3.0 ; Crystal structure of aba receptor pyl10 (apo) 1U7T ; 2.0 ; Crystal Structure of ABAD/HSD10 with a Bound Inhibitor 5C1G ; 1.46 ; Crystal structure of ABBA + UDP + DI 5C3B ; 1.4 ; Crystal structure of ABBA + UDP-C-Gal (long soak) + DI 5C3A ; 1.33 ; Crystal structure of ABBA + UDP-C-Gal (short soak) + DI 5C8R ; 1.45 ; Crystal structure of ABBA + UDP-Glc + DI 4FRA ; 1.43 ; Crystal Structure of ABBA+UDP+Gal at pH 5.0 with MPD as the cryoprotectant 4FRB ; 1.54 ; Crystal Structure of ABBA+UDP+Gal at pH 8.0 with MPD as the cryoprotectant 4FRD ; 1.55 ; Crystal Structure of ABBA+UDP+Gal at pH 9.0 with MPD as the cryoprotectant 3SX7 ; 1.42 ; Crystal structure of ABBA+UDP+Gal with Glycerol as the cryoprotectant 3SX8 ; 1.47 ; Crystal structure of ABBA+UDP+Gal with MPD as the cryoprotectant 5C1H ; 1.55 ; Crystal structure of ABBB + UDP + DI 5C47 ; 1.39 ; Crystal structure of ABBB + UDP-C-Gal (long soak) + DI 5C3D ; 1.39 ; Crystal structure of ABBB + UDP-C-Gal (short soak) + DI 5C4C ; 1.43 ; Crystal structure of ABBB + UDP-Glc + DI 3SXA ; 1.5 ; Crystal structure of ABBB+UDP+Gal with Glycerol as the cryoprotectant 3SXB ; 1.49 ; Crystal structure of ABBB+UDP+Gal with MPD as the cryoprotectant 6PE7 ; 1.74 ; Crystal Structure of ABBV-323 FAB 3ROT ; 1.91 ; Crystal structure of ABC sugar transporter (periplasmic sugar binding protein) from Legionella pneumophila 3L49 ; 2.3 ; CRYSTAL STRUCTURE OF ABC SUGAR TRANSPORTER SUBUNIT FROM Rhodobacter sphaeroides 2.4.1 2PCJ ; 1.7 ; Crystal structure of ABC transporter (aq_297) From Aquifex Aeolicus VF5 6JAI ; 2.1 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein D118A in complex with maltose 6JAQ ; 1.95 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with glucose 6JAN ; 1.77 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with maltose 6JAO ; 1.77 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with palatinose 6JAP ; 1.77 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with sucrose 6JAM ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with trehalose 6JAL ; 1.56 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in ligand free form 6JAR ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R49A in complex with maltose 6JBE ; 1.75 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287A in complex with glucose 6JB4 ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287A in complex with maltose 6JBA ; 2.0 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287A in complex with palatinose 6JBB ; 1.95 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287A in complex with sucrose 6JB0 ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287A in complex with trehalose 6JAZ ; 1.85 ; Crystal structure of ABC transporter alpha-glycoside-binding mutant protein W287F in complex with trehalose 6JAH ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding protein in complex with glucose 6J9Y ; 1.63 ; Crystal structure of ABC transporter alpha-glycoside-binding protein in complex with maltose 6JAD ; 1.9 ; Crystal structure of ABC transporter alpha-glycoside-binding protein in complex with palatinose 6JAG ; 1.85 ; Crystal structure of ABC transporter alpha-glycoside-binding protein in complex with sucrose 6J9W ; 1.8 ; Crystal structure of ABC transporter alpha-glycoside-binding protein in complex with trehalose 1VPL ; 2.1 ; Crystal structure of ABC transporter ATP-binding protein (TM0544) from Thermotoga maritima at 2.10 A resolution 4EVQ ; 1.4 ; Crystal structure of ABC transporter from R. palustris - solute binding protein (RPA0668) in complex with 4-hydroxybenzoate 4EVR ; 1.84 ; Crystal structure of ABC transporter from R. palustris - solute binding protein (RPA0668) in complex with benzoate 4EVS ; 1.45 ; Crystal structure of ABC transporter from R. palustris - solute binding protein (RPA0985) in complex with 4-hydroxybenzoate 5IAI ; 1.6 ; Crystal structure of ABC transporter Solute Binding Protein Arad_9887 from Agrobacterium radiobacter K84, target EFI-510945 in complex with Ribitol 4RYA ; 1.5 ; Crystal structure of abc transporter solute binding protein AVI_3567 from AGROBACTERIUM VITIS S4, TARGET EFI-510645, with bound D-mannitol 5HQJ ; 1.55 ; Crystal structure of ABC transporter Solute Binding Protein B1G1H7 from Burkholderia graminis C4D1M, target EFI-511179, in complex with D-arabinose 4N4U ; 1.57 ; Crystal structure of ABC transporter solute binding protein BB0719 from Bordetella bronchiseptica RB50, TARGET EFI-510049 4PE6 ; 1.86 ; Crystal structure of ABC transporter solute binding protein from Thermobispora bispora DSM 43833 5HKO ; 1.2 ; Crystal structure of ABC transporter Solute Binding Protein MSMEG_3598 from Mycobacterium smegmatis str. MC2 155, target EFI-510969, in complex with L-sorbitol 4NE4 ; 1.73 ; Crystal structure of ABC transporter substrate binding protein ProX from Agrobacterium tumefaciens cocrystalized with BTB 4WED ; 2.35 ; Crystal structure of ABC transporter substrate-binding protein from Sinorhizobium meliloti 4Q6B ; 1.667 ; Crystal Structure of ABC Transporter Substrate-Binding Protein fromDesulfitobacterium hafniense complex with Leu 4R6K ; 1.94 ; Crystal structure of ABC transporter substrate-binding protein YesO from Bacillus subtilis, TARGET EFI-510761, an open conformation 5ER3 ; 2.105 ; Crystal structure of ABC transporter system solute-binding protein from Rhodopirellula baltica SH 1 4PEV ; 2.58 ; Crystal structure of ABC transporter system solute-binding proteins from Aeropyrum pernix K1 2PCL ; 1.7 ; Crystal structure of ABC transporter with complex (aq_297) from aquifex aeolicus VF5 3LVU ; 1.79 ; Crystal structure of ABC transporter, periplasmic substrate-binding protein SPO2066 from Silicibacter pomeroyi 3EAF ; 2.0 ; Crystal structure of ABC transporter, substrate binding protein Aeropyrum pernix 2FFA ; 1.7 ; Crystal structure of ABC-ATPase H662A of the ABC-transporter HlyB in complex with ADP 5CR9 ; 1.7 ; Crystal structure of ABC-type Fe3+-hydroxamate transport system from Saccharomonospora viridis DSM 43017 3L6U ; 1.9 ; Crystal structure of abc-type sugar transport system, Periplasmic component from exiguobacterium sibiricum 3KSM ; 1.9 ; Crystal structure of ABC-type sugar transport system, periplasmic component from Hahella chejuensis 2PWW ; 1.82 ; Crystal structure of ABC2387 from Bacillus clausii 3OZX ; 2.05 ; Crystal structure of ABCE1 of Sulfolubus solfataricus (-FeS domain) 8CUB ; 4.05 ; Crystal Structure of ABCG5/G8 in Complex with Cholesterol 4HBL ; 2.5 ; Crystal structure of AbfR of Staphylococcus epidermidis 7CGU ; 2.4 ; Crystal Structure of AbHAR 8H8Y ; 1.55 ; Crystal structure of AbHheG from Acidimicrobiia bacterium 8HQP ; 1.62 ; Crystal structure of AbHheG mutant from Acidimicrobiia bacterium 7ETA ; 1.9 ; Crystal structure of AbHpaI-Co-pyruvate complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETG ; 1.9 ; Crystal structure of AbHpaI-Co-pyruvate-succinic semialdehyde complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETE ; 1.9 ; Crystal structure of AbHpaI-Mg-(4R)-KDGal complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETB ; 1.85 ; Crystal structure of AbHpaI-Mn-pyruvate complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETF ; 2.0 ; Crystal structure of AbHpaI-Mn-pyruvate-succinic semialdehyde complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETC ; 1.95 ; Crystal structure of AbHpaI-Zn-(4R)-KDGal complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETD ; 1.9 ; Crystal structure of AbHpaI-Zn-(4S)-KDGlu complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ET9 ; 1.9 ; Crystal structure of AbHpaI-Zn-pyruvate complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETI ; 1.95 ; Crystal structure of AbHpaI-Zn-pyruvate-4-hydroxybenzaldehyde complex, Class II aldolase, HpaI from Acinetobacter baumannii 7ETH ; 2.2 ; Crystal structure of AbHpaI-Zn-pyruvate-propionaldehyde complex, Class II aldolase, HpaI from Acinetobacter baumannii 6N6S ; 3.0 ; Crystal structure of ABIN-1 UBAN 6N5M ; 3.01 ; Crystal structure of ABIN-1 UBAN in complex with one M1-linked di-ubiquitin 6N6R ; 1.95 ; Crystal structure of ABIN-1 UBAN in complex with two M1-linked di-ubiquitins 2QOH ; 1.95 ; Crystal Structure of Abl kinase bound with PPY-A 3OXZ ; 2.2 ; Crystal structure of ABL kinase domain bound with a DFG-out inhibitor AP24534 1FPU ; 2.4 ; CRYSTAL STRUCTURE OF ABL KINASE DOMAIN IN COMPLEX WITH A SMALL MOLECULE INHIBITOR 3OY3 ; 1.95 ; Crystal structure of ABL T315I mutant kinase domain bound with a DFG-out inhibitor AP24589 5HU9 ; 1.529 ; Crystal structure of ABL1 in complex with CHMFL-074 4XLI ; 2.5 ; Crystal structure of Abl2/Arg kinase in complex with dasatinib 6W6X ; 1.297 ; Crystal Structure of ABLE Apo-protein 5HO0 ; 2.35 ; Crystal structure of AbnA (closed conformation), a GH43 extracellular arabinanase from Geobacillus stearothermophilus 5HO2 ; 2.37 ; Crystal structure of AbnA (open conformation), a GH43 extracellular arabinanase from Geobacillus stearothermophilus 5HOF ; 2.96 ; Crystal structure of AbnA, a GH43 extracellular arabinanase from Geobacillus stearothermophilus, in complex with arabinopentaose 7DVI ; 2.0 ; Crystal Structure of AbnU: An exo-specific intermolecular Diels-Alderase 4NZF ; 2.19 ; Crystal structure of Abp-D197A (a GH27-b-L-arabinopyranosidase from Geobacillus stearothermophilus), in complex with arabinose 4NXK ; 2.3 ; Crystal structure of Abp-D197A, a catalytic mutant of a GH27-b-L-arabinopyranosidase from Geobacillus stearothermophilus 4NX0 ; 2.28 ; Crystal structure of Abp-WT, a GH27-b-L-arabinopyranosidase from Geobacillus stearothermophilus 5Z37 ; 1.3 ; Crystal Structure of Abrin A chain (Recombinant) at 1.3 Angstroms 5Z3I ; 1.65 ; Crystal Structure of Abrin A chain (Recombinant) in complex with Adenine at 1.65 Angstroms 5Z3J ; 1.7 ; Crystal Structure of Abrin A chain (Recombinant) in complex with Nicotinamide at 1.7 Angstroms 1ABR ; 2.14 ; CRYSTAL STRUCTURE OF ABRIN-A 3ZMD ; 1.95 ; Crystal structure of AbsC, a MarR family transcriptional regulator from Streptomyces coelicolor 3UJL ; 2.5 ; Crystal structure of abscisic acid bound PYL2 in complex with type 2C protein phosphatase ABI2 3KAY ; 2.4 ; Crystal structure of abscisic acid receptor PYL1 3KAZ ; 1.85 ; Crystal structure of abscisic acid receptor PYL2 3KL1 ; 1.55 ; Crystal structure of abscisic acid receptor PYL2 at 1.55 A 5JNN ; 2.3 ; Crystal structure of abscisic acid receptor PYL2 in complex with Phaseic acid. 5JO2 ; 2.42 ; Crystal structure of abscisic acid-bound abscisic acid receptor PYL3 in complex with type 2C protein phosphatase HAB1 3R6P ; 2.7 ; Crystal structure of abscisic acid-bound PYL10 3KB0 ; 1.95 ; Crystal structure of abscisic acid-bound PYL2 3KB3 ; 1.95 ; Crystal structure of abscisic acid-bound PYL2 in complex with HAB1 2JIX ; 3.2 ; Crystal structure of ABT-007 FAB fragment with the soluble domain of EPO receptor 5Z6D ; 1.6 ; Crystal structure of Abundant Perithecial Protein (APP) from Neurospora crassa 5CO5 ; 2.1 ; Crystal structure of Ac-AChBP in complex with conotoxin GIC 6SH0 ; 2.5 ; Crystal structure of AcAChBP in complex with anatoxin 6SGV ; 2.6 ; Crystal structure of AcAChBP in complex with hosieine 1F2K ; 2.3 ; CRYSTAL STRUCTURE OF ACANTHAMOEBA CASTELLANII PROFILIN II, CUBIC CRYSTAL FORM 2B8P ; 2.55 ; Crystal structure of Acanthamoeba polyphaga mimivirus NDK, the first viral nucleoside diphosphate kinase 3EE3 ; 2.4 ; Crystal structure of Acanthamoeba polyphaga mimivirus nucleoside diphosphate kinase complexed with CDP 3B6B ; 2.0 ; Crystal structure of Acanthamoeba polyphaga mimivirus nucleoside diphosphate kinase complexed with dGDP 5XC3 ; 1.497 ; Crystal structure of Acanthamoeba polyphaga mimivirus Rab GTPase in complex with GDP 5XC5 ; 1.398 ; Crystal structure of Acanthamoeba polyphaga mimivirus Rab GTPase in complex with GTP 3T9K ; 2.3 ; Crystal Structure of ACAP1 C-portion mutant S554D fused with integrin beta1 peptide 6BJ9 ; 1.53014 ; Crystal structure of Acat2 thiolase from Ascaris suum 6BJB ; 1.50001 ; Crystal structure of Acat2-C91S thiolase from Ascaris suum in complex with propionyl-CoA and nitrate 6BJA ; 1.60001 ; Crystal structure of Acat5 thiolase from Ascaris suum in complex with coenzyme A 2FDQ ; 3.5 ; crystal structure of ACBP from Armadillo Harderian Gland 3FP5 ; 1.61 ; Crystal structure of ACBP from Moniliophthora perniciosa 1RQX ; 2.5 ; Crystal structure of ACC Deaminase complexed with Inhibitor 1TZM ; 2.08 ; Crystal structure of ACC deaminase complexed with substrate analog b-chloro-D-alanine 1IAY ; 2.7 ; CRYSTAL STRUCTURE OF ACC SYNTHASE COMPLEXED WITH COFACTOR PLP AND INHIBITOR AVG 1IAX ; 2.8 ; CRYSTAL STRUCTURE OF ACC SYNTHASE COMPLEXED WITH PLP 2BZR ; 2.2 ; Crystal structure of accD5 (Rv3280), an acyl-CoA carboxylase beta- subunit from Mycobacterium tuberculosis 5VAF ; 2.771 ; Crystal structure of accessory secretion protein 1 5VAE ; 3.106 ; Crystal structure of accessory secretion protein 1 and 3 6LNW ; 2.9 ; Crystal structure of accessory secretory protein 1,2 and 3 in Streptococcus pneumoniae 2OKM ; 1.65 ; Crystal structure of ACE19, the collagen binding subdomain of Enterococcus faecalis surface protein ACE 6WBR ; 2.91 ; Crystal structure of AceCas9 bound with guide RNA and DNA with 5'-NNNCC-3' PAM 6WC0 ; 3.61 ; Crystal structure of AceCas9 bound with guide RNA and DNA with 5'-NNNTC-3' PAM 2II1 ; 1.95 ; Crystal structure of Acetamidase (10172637) from Bacillus Halodurans at 1.95 A resolution 3S1Z ; 2.0547 ; Crystal structure of acetamide bound Xanthomonas campestri OleA 1K6D ; 1.9 ; CRYSTAL STRUCTURE OF ACETATE COA-TRANSFERASE ALPHA SUBUNIT 4DQ8 ; 2.25 ; Crystal structure of acetate kinase AckA from Mycobacterium marinum 4H0P ; 1.894 ; Crystal Structure of Acetate Kinase from Cryptococcus neoformans 4H0O ; 2.4 ; Crystal Structure of Acetate Kinase from Entamoeba histolytica 3P4I ; 2.35 ; Crystal structure of acetate kinase from Mycobacterium avium 3S1J ; 1.8 ; Crystal structure of acetate-bound hell's gate globin I 6LP1 ; 2.01 ; Crystal structure of acetate:succinate CoA transferase (ASCT) from Trypanosoma brucei. 3C8W ; 1.6 ; Crystal structure of acetoacetate decarboxylase (ADC) (YP_094708.1) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 1.60 A resolution 3CMB ; 1.6 ; Crystal structure of acetoacetate decarboxylase (YP_001047042.1) from Methanoculleus marisnigri JR1 at 1.60 A resolution 3BH3 ; 2.1 ; Crystal structure of acetoacetate decarboxylase from Chromobacterium violaceum in complex with acetyl acetone Schiff base intermediate 3EZL ; 2.25 ; Crystal Structure of Acetoacetyl-CoA Reductase from Burkholderia Pseudomallei 1710b 3GK3 ; 2.1 ; Crystal structure of acetoacetyl-CoA reductase from Burkholderia pseudomallei 1710b 5VT6 ; 1.7 ; Crystal structure of Acetoacetyl-CoA Reductase from Burkholderia pseudomallei 1710b complexed with NADP 5VML ; 1.7 ; Crystal Structure of Acetoacetyl-CoA Reductase from Burkholderia Pseudomallei 1710b with bound NADP 4KMS ; 2.0 ; Crystal structure of Acetoacetyl-CoA reductase from Rickettsia felis 4E1L ; 2.0 ; Crystal structure of Acetoacetyl-CoA thiolase (thlA2) from Clostridium difficile 5AHK ; 1.55 ; Crystal structure of acetohydroxy acid synthase Pf5 from Pseudomonas protegens 6UX3 ; 2.198 ; Crystal structure of acetoin dehydrogenase from Enterobacter cloacae 6WON ; 2.13 ; Crystal structure of acetoin dehydrogenase YohF from Salmonella typhimurium 2Q04 ; 2.33 ; Crystal structure of acetoin utilization protein (ZP_00540088.1) from Exiguobacterium sibiricum 255-15 at 2.33 A resolution 6J3D ; 1.7 ; Crystal structure of acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii in space group P21212 6J92 ; 2.421 ; Crystal structure of acetolactate decarboxylase from Enterbacter aerogenes 5YHO ; 2.401 ; Crystal structure of acetolactate decarboxylase from Enterobacter cloacae 2FGC ; 2.3 ; Crystal structure of Acetolactate synthase- small subunit from Thermotoga maritima 6A6O ; 1.8 ; Crystal structure of acetyl ester-xyloside bifunctional hydrolase from Caldicellulosiruptor lactoaceticus 5B5L ; 1.4 ; Crystal structure of acetyl esterase mutant S10A with acetate ion 1VLQ ; 2.1 ; Crystal structure of Acetyl xylan esterase (TM0077) from Thermotoga maritima at 2.10 A resolution 3M83 ; 2.12 ; Crystal structure of Acetyl xylan esterase (TM0077) from THERMOTOGA MARITIMA at 2.12 A resolution (paraoxon inhibitor complex structure) 3M82 ; 2.4 ; Crystal structure of Acetyl xylan esterase (TM0077) from THERMOTOGA MARITIMA at 2.40 A resolution (PMSF inhibitor complex structure) 3M81 ; 2.5 ; Crystal structure of Acetyl xylan esterase (TM0077) from THERMOTOGA MARITIMA at 2.50 A resolution (native apo structure) 3FCY ; 2.1 ; Crystal Structure of Acetyl Xylan Esterase 1 from Thermoanaerobacterium sp. JW/SL YS485 3FYU ; 2.62 ; Crystal structure of acetyl xylan esterase from Bacillus pumilus obtained in presence of D-xylose and sodium acetate 3FVR ; 2.5 ; Crystal Structure of Acetyl Xylan Esterase from Bacillus pumilus, monoclinic crystal form I 3FVT ; 1.9 ; Crystal Structure of Acetyl Xylan Esterase from Bacillus pumilus, monoclinic crystal form II 6BN2 ; 1.65 ; Crystal structure of Acetyl-CoA acetyltransferase from Elizabethkingia anophelis NUHP1 3SVK ; 2.2 ; Crystal structure of Acetyl-CoA acetyltransferase from Mycobacterium avium 1YTL ; 1.8 ; Crystal Structure of Acetyl-CoA decarboxylase/synthase complex epsilon subunit 2 8W0M ; 3.1 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with a Acetyl Sulfamate AMP ester inhibitor 8W0C ; 2.35 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with a cyclopentyl ester AMP inhibitor 8W0B ; 2.3 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with a cyclopropyl AMP ester inhibitor 8W0J ; 2.85 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with a propyne AMP ester inhibitor 8W0L ; 2.75 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with a propyne AMP ester inhibitor and CoA 8W0D ; 2.7 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with an isopropyl AMP ester inhibitor 8W0H ; 2.95 ; Crystal structure of Acetyl-CoA synthetase 2 from Candida albicans in complex with an isopropyl AMP ester inhibitor (trigonal form) 8V4P ; 2.3 ; Crystal structure of Acetyl-CoA synthetase 2 in complex with Adenosine-5'-allylphosphate from Candida albicans 7KDS ; 2.9 ; Crystal structure of Acetyl-CoA synthetase 2 in complex with Adenosine-5'-propylphosphate from Candida albicans 8V4R ; 2.7 ; Crystal structure of Acetyl-CoA synthetase 2 in complex with AMP and CoA from Candida albicans 8V4O ; 2.7 ; Crystal structure of Acetyl-CoA synthetase 2 in complex with AMP from Candida albicans 8V5G ; 2.5 ; Crystal Structure of Acetyl-CoA synthetase from Cryptococcus neoformans H99 in complex with an ethylsulfamide AMP inhibitor 8G0R ; 2.6 ; Crystal Structure of Acetyl-CoA synthetase in complex with a cyclopentyl ester AMP inhibitor from Cryptococcus neoformans H99 8G0S ; 2.9 ; Crystal Structure of Acetyl-CoA synthetase in complex with a cyclopentyl ester AMP inhibitor from Cryptococcus neoformans H99 (tetragonal form) 8G0T ; 2.45 ; Crystal Structure of Acetyl-CoA synthetase in complex with a cyclopropyl ester AMP inhibitor from Cryptococcus neoformans H99 8G0V ; 1.9 ; Crystal Structure of Acetyl-CoA synthetase in complex with a propyne ester AMP inhibitor from Cryptococcus neoformans H99 7L4G ; 2.2 ; Crystal Structure of Acetyl-CoA synthetase in complex with acetyl adenylate from Cryptococcus neoformans H99 7KNP ; 2.25 ; Crystal structure of Acetyl-CoA synthetase in complex with adenosine-5'-butylphosphate from Cryptococcus neoformans var. grubii serotype A (H99) 7KVY ; 1.9 ; Crystal Structure of Acetyl-CoA synthetase in complex with adenosine-5'-ethylphosphate and Co-enzyme A from Coccidioides immitis RS 7L3P ; 2.1 ; Crystal Structure of Acetyl-CoA synthetase in complex with adenosine-5'-ethylphosphate and Co-enzyme A from Coccidioides immitis RS 7KQZ ; 2.15 ; Crystal Structure of Acetyl-CoA synthetase in complex with adenosine-5'-ethylphosphate from Coccidioides immitis RS 7KNO ; 1.8 ; Crystal structure of Acetyl-CoA synthetase in complex with adenosine-5'-ethylphosphate from Cryptococcus neoformans var. grubii serotype A (H99) 7L3Q ; 2.15 ; Crystal Structure of Acetyl-CoA synthetase in complex with adenosine-5'-methylphosphate and Co-enzyme A from Coccidioides immitis RS 5K85 ; 2.3 ; Crystal Structure of Acetyl-CoA Synthetase in Complex with Adenosine-5'-propylphosphate and Coenzyme A from Cryptococcus neoformans H99 7KDN ; 2.8 ; Crystal structure of Acetyl-CoA Synthetase in Complex with Adenosine-5'-propylphosphate from Aspergillus fumigatus 7KCP ; 2.15 ; Crystal structure of Acetyl-CoA Synthetase in Complex with Adenosine-5'-propylphosphate from Coccidioides posadasii C735 5IFI ; 1.95 ; CRYSTAL STRUCTURE OF ACETYL-COA SYNTHETASE IN COMPLEX WITH ADENOSINE-5'-PROPYLPHOSPHATE FROM CRYPTOCOCCUS NEOFORMANS H99 8EPS ; 2.65 ; Crystal Structure of Acetyl-CoA synthetase in complex with an allyl ester AMP inhibitor from Cryptococcus neoformans H99 8G0U ; 1.9 ; Crystal Structure of Acetyl-CoA synthetase in complex with an isopropyl ester AMP inhibitor from Cryptococcus neoformans H99 5K8F ; 2.45 ; Crystal structure of Acetyl-CoA Synthetase in complex with ATP and Acetyl-AMP from Cryptococcus neoformans H99 7KQ6 ; 1.8 ; Crystal Structure of Acetyl-coenzyme A synthetase from Coccidioides immitis in complex with PRX 7MMZ ; 2.4 ; Crystal Structure of Acetyl-coenzyme A synthetase from Legionella pneumophila Philadelphia 1 in complex with ethyl-AMP 8SF3 ; 1.7 ; Crystal Structure of Acetyl-coenzyme A synthetase from Leishmania infantum (AMP, Acetate and CoA bound) 8U2T ; 1.65 ; Crystal Structure of Acetyl-coenzyme A synthetase from Leishmania infantum (CoA and AMP bound) 8U2U ; 1.97 ; Crystal Structure of Acetyl-coenzyme A synthetase from Leishmania infantum (CoA, AMP and potassium bound) 8U2R ; 1.55 ; Crystal Structure of Acetyl-coenzyme A synthetase from Leishmania infantum (Ethyl AMP bound) 8U2S ; 2.52 ; Crystal Structure of Acetyl-coenzyme A synthetase from Leishmania infantum (Ethyl AMP bound, P21 form) 4EZ1 ; 2.49 ; Crystal structure of acetylcholine binding protein (AChBP) from Aplysia Californica in complex with alpha-conotoxin BuIA 2C9T ; 2.25 ; Crystal Structure Of Acetylcholine Binding Protein (AChBP) From Aplysia Californica In Complex With alpha-Conotoxin ImI 5JME ; 2.336 ; Crystal structure of acetylcholine binding protein (AChBP) from Aplysia Californica in complex with alpha-conotoxin PeIA 4WV9 ; 2.0 ; Crystal structure of acetylcholine binding protein (AChBP) from Aplysia Californica in complex with click chemistry compound (3-exo)-8,8-dimethyl-3-[4-(pyridin-4-yl)-1H-1,2,3-triazol-1-yl]-8-azoniabicyclo[3.2.1]octane 3PEO ; 2.1 ; Crystal structure of acetylcholine binding protein complexed with metocurine 3RQW ; 2.913 ; Crystal structure of acetylcholine bound to a prokaryotic pentameric ligand-gated ion channel, ELIC 3WIP ; 2.6 ; Crystal structure of acetylcholine bound to Ls-AChBP 2BR8 ; 2.4 ; Crystal Structure of Acetylcholine-binding Protein (AChBP) from Aplysia californica in complex with an alpha-conotoxin PnIA variant 2BR7 ; 3.0 ; Crystal Structure of Acetylcholine-binding Protein (AChBP) from Aplysia californica in complex with HEPES 5X61 ; 3.4 ; Crystal structure of Acetylcholinesterase Catalytic Subunit of the Malaria Vector Anopheles Gambiae, 3.4 A 5YDH ; 3.21 ; Crystal structure of acetylcholinesterase catalytic subunits of the malaria vector anopheles gambiae, 3.2 A 5YDI ; 3.45 ; Crystal structure of acetylcholinesterase catalytic subunits of the malaria vector anopheles gambiae, new crystal packing 5OV9 ; 2.4 ; Crystal structure of Acetylcholinesterase in complex with Crystal Violet 2WHR ; 2.545 ; Crystal structure of acetylcholinesterase in complex with K027 3ZLT ; 2.6 ; Crystal structure of acetylcholinesterase in complex with RVX 3M3D ; 2.34 ; Crystal structure of Acetylcholinesterase in complex with Xenon 2WHQ ; 2.15 ; Crystal structure of acetylcholinesterase, phosphonylated by sarin (aged) in complex with HI-6 2WHP ; 2.2 ; Crystal structure of acetylcholinesterase, phosphonylated by sarin and in complex with HI-6 2AP9 ; 2.8 ; Crystal structure of acetylglutamate kinase from Mycobacterium tuberculosis CDC1551 3NX3 ; 1.8 ; Crystal structure of acetylornithine aminotransferase (argD) from Campylobacter jejuni 2ORD ; 1.4 ; Crystal structure of Acetylornithine aminotransferase (EC 2.6.1.11) (ACOAT) (TM1785) from Thermotoga maritima at 1.40 A resolution 8HT4 ; 2.51 ; Crystal structure of Acetylornithine aminotransferase complex with PLP from Corynebacterium glutamicum 2EH6 ; 1.9 ; Crystal structure of acetylornithine aminotransferase from Aquifex aeolicus VF5 8HT2 ; 2.65 ; Crystal structure of Acetylornithine aminotransferase from Corynebacterium glutamicum 5VIU ; 1.65 ; Crystal Structure of Acetylornithine Aminotransferase from Elizabethkingia anophelis 2E54 ; 1.5 ; Crystal structure of acetylornithine aminotransferase from Thermotoga maritima 3KZK ; 1.9 ; Crystal structure of acetylornithine transcarbamylase complexed with acetylcitrulline 4ZUO ; 1.33 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a hydroxamate inhibitor 4ZUP ; 1.421 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a hydroxamate inhibitor 4ZUQ ; 1.22 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a hydroxamate inhibitor 4ZUR ; 1.13 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a hydroxamate inhibitor 4ZUN ; 1.4 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a thiol inhibitor 4ZUM ; 1.42 ; Crystal structure of acetylpolyamine amidohydrolase from Mycoplana ramosa in complex with a trifluoromethylketone inhibitor 3MEN ; 2.2 ; Crystal structure of acetylpolyamine aminohydrolase from Burkholderia pseudomallei, iodide soak 2I00 ; 2.3 ; Crystal structure of acetyltransferase (GNAT family) from Enterococcus faecalis 2Q7B ; 2.0 ; Crystal structure of acetyltransferase (NP_689019.1) from Streptococcus agalactiae 2603 at 2.00 A resolution 8F4U ; 1.91 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with azelastine 8F4A ; 2.41 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with chlorhexidine 8F4Z ; 2.1 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with chloroquine 8F57 ; 2.42 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with inhibitor SGT1615 8F58 ; 2.3 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with inhibitor SGT1616 8F51 ; 2.35 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with mefloquine 8F4T ; 1.93 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with proguanil 8F4W ; 2.1 ; Crystal structure of acetyltransferase Eis from M. tuberculosis in complex with venlafaxine 3R1K ; 1.95 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis H37Rv in complex with CoA and an acetamide moiety 8F55 ; 2.2 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis H37Rv in complex with inhibitor SGT1614 6B3T ; 2.4 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with a 1,2,4-triazino[5,6b]indole-3-thioether inhibitor analogue 39b 6B0U ; 2.8 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with a Lys-containing peptide 5TVJ ; 2.3 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with CoA and inhibitor 2k*: 1-(4-fluorophenyl)-2-[2-(4-methylphenyl)-2-oxoethyl]pyrrolo[1,2-a]pyrazin-2-ium 6X6G ; 2.15 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with droperidol 6X10 ; 2.03 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with haloperidol 5EBV ; 2.2 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor 11c and CoA 5EC4 ; 2.21 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor 13g and CoA 6X6Y ; 2.5 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT1264 8D1R ; 2.19 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT520 8D23 ; 2.14 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT529 8D25 ; 2.05 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT530 6X6I ; 1.904 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT543 6X7A ; 2.08 ; Crystal structure of acetyltransferase Eis from Mycobacterium tuberculosis in complex with inhibitor SGT572 3N7Z ; 2.75 ; Crystal structure of acetyltransferase from Bacillus anthracis 3EXN ; 1.8 ; Crystal structure of acetyltransferase from Thermus thermophilus HB8 2PC1 ; 1.28 ; Crystal structure of acetyltransferase GNAT family (NP_688560.1) from Streptococcus agalactiae 2603 at 1.28 A resolution 3BLN ; 1.31 ; Crystal structure of acetyltransferase GNAT family (NP_981174.1) from Bacillus cereus ATCC 10987 at 1.31 A resolution 2OH1 ; 1.46 ; Crystal structure of acetyltransferase GNAT family (YP_013287.1) from Listeria monocytogenes 4b F2365 at 1.46 A resolution 3D8P ; 2.2 ; Crystal structure of acetyltransferase of GNAT family (NP_373092.1) from STAPHYLOCOCCUS AUREUS MU50 at 2.20 A resolution 2AE6 ; 2.19 ; Crystal Structure of Acetyltransferase of GNAT family from Enterococcus faecalis V583 5TSF ; 2.286 ; Crystal structure of AChBP from Aplysia californica complex with 2-aminopyrimidine at pH 7.0 spacegroup P212121 5TVH ; 2.4 ; Crystal structure of AChBP from Aplysia californica complex with 2-aminopyrimidine at pH 8.0 spacegroup P21 2BYS ; 2.05 ; CRYSTAL STRUCTURE OF ACHBP FROM APLYSIA CALIFORNICA IN complex with lobeline 2BYR ; 2.45 ; CRYSTAL STRUCTURE OF ACHBP FROM APLYSIA CALIFORNICA in complex with methyllycaconitine 2BJ0 ; 2.0 ; Crystal Structure of AChBP from Bulinus truncatus revals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors 4MGU ; 3.5 ; Crystal structure of Acheta domesticus Densovirus 2Y1A ; 1.95 ; Crystal structure of Achromobacter cycloclastes Cu nitrite reductase with bound NO 2VYC ; 2.4 ; Crystal Structure of Acid Induced Arginine Decarboxylase from E. coli 7F17 ; 2.8 ; Crystal Structure of acid phosphatase 2P4U ; 1.9 ; Crystal structure of acid phosphatase 1 (Acp1) from Mus musculus 1D2T ; 1.9 ; CRYSTAL STRUCTURE OF ACID PHOSPHATASE FROM ESCHERICHIA BLATTAE 1EOI ; 2.4 ; CRYSTAL STRUCTURE OF ACID PHOSPHATASE FROM ESCHERICHIA BLATTAE COMPLEXED WITH THE TRANSITION STATE ANALOG MOLYBDATE 3GXP ; 2.2 ; Crystal structure of acid-alpha-galactosidase A complexed with galactose at pH 4.5 3GXM ; 2.2 ; Crystal structure of acid-beta-glucosidase at pH 4.5, phosphate crystallization condition 3GXI ; 1.84 ; Crystal structure of acid-beta-glucosidase at pH 5.5 3GXF ; 2.4 ; Crystal structure of acid-beta-glucosidase with isofagomine at neutral pH 4FZ1 ; 3.359 ; Crystal structure of acid-sensing ion channel in complex with psalmotoxin 1 at high pH 4FZ0 ; 2.8 ; Crystal structure of acid-sensing ion channel in complex with psalmotoxin 1 at low pH 5B43 ; 2.8 ; Crystal structure of Acidaminococcus sp. Cpf1 in complex with crRNA and target DNA 1IJL ; 2.6 ; Crystal structure of acidic phospholipase A2 from deinagkistrodon acutus 1SFP ; 1.9 ; CRYSTAL STRUCTURE OF ACIDIC SEMINAL FLUID PROTEIN (ASFP) AT 1.9 A RESOLUTION: A BOVINE POLYPEPTIDE FROM THE SPERMADHESIN FAMILY 7D18 ; 1.332 ; Crystal structure of Acidobacteriales bacterium glutaminyl cyclase 7BYU ; 2.206 ; Crystal structure of Acidovorax avenae L-fucose mutarotase (apo form) 7BYW ; 1.75 ; Crystal structure of Acidovorax avenae L-fucose mutarotase (L-fucose-bound form) 4MEB ; 2.0 ; Crystal structure of aCif-D158S 3UE3 ; 2.3 ; Crystal structure of Acinetobacter baumanni PBP3 4FUV ; 2.151 ; Crystal Structure of Acinetobacter baumannii CarO 4RL9 ; 2.7 ; Crystal structure of Acinetobacter baumannii CarO1 4RLB ; 2.7 ; Crystal structure of Acinetobacter baumannii CarO2 4P3Y ; 2.154 ; Crystal structure of Acinetobacter baumannii DsbA in complex with EF-Tu 6T60 ; 1.66 ; Crystal structure of Acinetobacter baumannii FabG at 1.66 A resolution 6T62 ; 1.8 ; Crystal structure of Acinetobacter baumannii FabG in complex with NADPH at 1.8 A resolution 7UMX ; 2.39 ; Crystal structure of Acinetobacter baumannii FabI in complex with NAD and (R,E)-3-(7-amino-8-oxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide 7UMY ; 2.74 ; Crystal structure of Acinetobacter baumannii FabI in complex with NAD and Fabimycin ((S,E)-3-(7-amino-8-oxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide) 8XKG ; 1.6 ; Crystal structure of Acinetobacter baumannii IspD 7W19 ; 1.9 ; Crystal Structure of Acinetobacter baumannii MPH-E 7D1I ; 3.487 ; Crystal structure of acinetobacter baumannii MurG 4B4U ; 1.45 ; Crystal structure of Acinetobacter baumannii N5, N10- methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) complexed with NADP cofactor 4B4W ; 2.0 ; Crystal structure of Acinetobacter baumannii N5, N10- methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) complexed with NADP cofactor and an inhibitor 4B4V ; 2.0 ; Crystal structure of Acinetobacter baumannii N5, N10- methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) complexed with NADP cofactor and inhibitor LY354899 5DL5 ; 2.05 ; Crystal structure of Acinetobacter baumannii OccAB1 5DL6 ; 2.9 ; Crystal structure of Acinetobacter baumannii OccAB2 5DL7 ; 1.75 ; Crystal structure of Acinetobacter baumannii OccAB3 5DL8 ; 2.2 ; Crystal structure of Acinetobacter baumannii OccAB4 3UE0 ; 2.6 ; Crystal structure of Acinetobacter baumannii PBP1a in complex with Aztreonam 3UDX ; 2.5 ; Crystal structure of Acinetobacter baumannii PBP1a in complex with Imipenem 3UDI ; 2.6 ; Crystal structure of Acinetobacter baumannii PBP1a in complex with penicillin G 4JY7 ; 1.9 ; Crystal structure of Acinetobacter baumannii Peptidyl-tRNA Hydrolase 5W5P ; 2.429 ; Crystal structure of Acinetobacter baumannii phage AM24 tailspike protein 7SHJ ; 2.13 ; Crystal structure of Acinetobacter baumannii ZnuA in the metal-free state 1EO2 ; 2.25 ; CRYSTAL STRUCTURE OF ACINETOBACTER SP. ADP1 PROTOCATECHUATE 3,4-DIOXYGENASE 1EO9 ; 2.0 ; CRYSTAL STRUCTURE OF ACINETOBACTER SP. ADP1 PROTOCATECHUATE 3,4-DIOXYGENASE AT PH < 7.0 1EOB ; 2.2 ; CRYSTAL STRUCTURE OF ACINETOBACTER SP. ADP1 PROTOCATECHUATE 3,4-DIOXYGENASE IN COMPLEX WITH 3,4-DIHYDROXYBENZOATE 1EOC ; 2.25 ; CRYSTAL STRUCTURE OF ACINETOBACTER SP. ADP1 PROTOCATECHUATE 3,4-DIOXYGENASE IN COMPLEX WITH 4-NITROCATECHOL 1EOA ; 2.15 ; CRYSTAL STRUCTURE OF ACINETOBACTER SP. ADP1 PROTOCATECHUATE 3,4-DIOXYGENASE IN COMPLEX WITH CYANIDE 4Q0P ; 1.93 ; Crystal structure of Acinetobacter sp. DL28 L-ribose isomerase in complex with L-ribose 4Q0Q ; 1.93 ; Crystal structure of Acinetobacter sp. DL28 L-ribose isomerase in complex with L-ribulose 4Q0S ; 1.93 ; Crystal structure of Acinetobacter sp. DL28 L-ribose isomerase in complex with ribitol 4Q0U ; 1.98 ; Crystal structure of Acinetobacter sp. DL28 L-ribose isomerase mutant E204Q in complex with L-ribose 4Q0V ; 1.98 ; Crystal structure of Acinetobacter sp. DL28 L-ribose isomerase mutant E204Q in complex with L-ribulose 1VR3 ; 2.06 ; Crystal structure of Acireductone dioxygenase (13543033) from Mus musculus at 2.06 A resolution 7D95 ; 1.67 ; Crystal structure of acivicin-bound GATase subunit of Methanocaldococcus jannaschii GMP synthetase 3FNM ; 1.7 ; Crystal structure of acivicin-inhibited gamma-glutamyltranspeptidase reveals critical roles for its C-terminus in autoprocessing and catalysis 4HZR ; 1.31 ; Crystal structure of Ack1 kinase domain 4HZS ; 3.23 ; Crystal structure of Ack1 kinase domain with C-terminal SH3 domain 8FE9 ; 3.2 ; Crystal structure of Ack1 kinase K161Q mutant in complex with the selective inhibitor (R)-9b 5ZXB ; 2.198 ; Crystal structure of ACK1 with compound 10d 3EQR ; 2.0 ; Crystal Structure of Ack1 with compound T74 3EQP ; 2.3 ; Crystal Structure of Ack1 with compound T95 3R9P ; 1.9 ; Crystal structure of AckA from Mycobacterium paratuberculosis ATCC BAA-968 / K-10 1Q0Z ; 1.95 ; Crystal structure of aclacinomycin methylesterase (RdmC) with bound product analogue, 10-decarboxymethylaclacinomycin A (DcmA) 1Q0R ; 1.45 ; Crystal structure of aclacinomycin methylesterase (RdmC) with bound product analogue, 10-decarboxymethylaclacinomycin T (DcmaT) 2IPI ; 1.65 ; Crystal Structure of Aclacinomycin Oxidoreductase 1R00 ; 2.5 ; Crystal structure of aclacinomycin-10-hydroxylase (RdmB) in complex with S-adenosyl-L-homocysteine (SAH) 1QZZ ; 2.1 ; Crystal structure of aclacinomycin-10-hydroxylase (RdmB) in complex with S-adenosyl-L-methionine (SAM) 1XDS ; 2.3 ; Crystal structure of Aclacinomycin-10-hydroxylase (RdmB) in complex with S-adenosyl-L-methionine (SAM) and 11-deoxy-beta-rhodomycin (DbrA) 1XDU ; 2.7 ; Crystal structure of Aclacinomycin-10-hydroxylase (RdmB) in complex with Sinefungin (SFG) 2GEY ; 1.8 ; Crystal Structure of AclR a putative hydroxylase from Streptomyces galilaeus 7BR0 ; 2.003 ; Crystal structure of AclR, a thioredoxin oxidoreductase fold protein carrying the CXXH catalytic motif 3JW6 ; 2.3 ; Crystal structure of AcMNPV baculovirus polyhedra 5DEZ ; 2.3 ; Crystal structure of AcMNPV Chitinase A 5DF0 ; 3.251 ; Crystal structure of AcMNPV Chitinase A in complex WITH CHITOTRIO-THIAZOLINE DITHIOAMIDE 1B0J ; 2.5 ; CRYSTAL STRUCTURE OF ACONITASE WITH ISOCITRATE 1NIS ; 2.05 ; CRYSTAL STRUCTURE OF ACONITASE WITH TRANS-ACONITATE AND NITROCITRATE BOUND 1NIT ; 2.05 ; CRYSTAL STRUCTURE OF ACONITASE WITH TRANS-ACONITATE AND NITROCITRATE BOUND 1ACO ; 2.05 ; CRYSTAL STRUCTURE OF ACONITASE WITH TRANSACONITATE BOUND 3C05 ; 1.7 ; Crystal structure of Acostatin from Agkistrodon Contortrix Contortrix 6YXM ; 2.85 ; Crystal structure of ACPA 1F2 in complex with CII-C-39-CIT 6YXK ; 2.0 ; Crystal structure of ACPA 3F3 in complex with cit-vimentin 59-74 5OD0 ; 1.8 ; Crystal structure of ACPA E4 5OCK ; 1.6 ; Crystal structure of ACPA E4 in complex with CEP1 5OCX ; 1.75 ; Crystal structure of ACPA E4 in complex with CII-C-13-CIT 5OCY ; 2.6 ; Crystal structure of ACPA E4 in complex with CII-C-48-CIT 6ZJG ; 2.45 ; Crystal structure of ACPA E4 in complex with CII-C-48-CIT 6YXL ; 2.1 ; Crystal structure of ACPA F3 4K7Q ; 3.5 ; Crystal Structure of AcrB Complexed with Linezolid at 3.5 Resolution 4ZJQ ; 3.592 ; Crystal structure of AcrB deletion mutant in complex with antibiotic in P21 space group 4ZIW ; 3.399 ; Crystal structure of AcrB deletion mutant in P21 space group 7O3L ; 3.526 ; Crystal Structure of AcrB Double Mutant 4ZJL ; 3.47 ; Crystal structure of AcrB in complex with antibiotic in P21 space group 4ZIT ; 3.296 ; Crystal structure of AcrB in P21 space group 7O3M ; 3.551 ; Crystal Structure of AcrB Single Mutant - 1 7O3N ; 3.561 ; Crystal Structure of AcrB Single Mutant - 2 4ZJO ; 3.6 ; Crystal structure of AcrB triple mutant in complex with antibiotic in P21 space group 4ZIV ; 3.16 ; Crystal structure of AcrB triple mutant in P21 space group 4C48 ; 3.3 ; Crystal structure of AcrB-AcrZ complex 4CDI ; 3.7 ; Crystal structure of AcrB-AcrZ complex 5NC5 ; 3.2 ; Crystal structure of AcrBZ in complex with antibiotic puromycin 6IFO ; 3.313 ; Crystal structure of AcrIIA2-SpyCas9-sgRNA ternary complex 6JDJ ; 2.6 ; Crystal structure of AcrIIC2 dimer in complex with partial Nme1Cas9 6JDX ; 2.28 ; Crystal structure of AcrIIC2 dimer in complex with partial Nme1Cas9 preprocessed with protease alpha-Chymotrypsin 7XVQ ; 1.8 ; Crystal structure of AcrIIC4 7CI1 ; 2.3 ; Crystal structure of AcrVA2 7CI2 ; 2.8 ; Crystal structure of AcrVA2 in complex with partial MbCpf1 5GXE ; 1.696 ; Crystal structure of Acryloyl-CoA reductase AcuI in complex with NADPH 3D3Z ; 1.7 ; Crystal structure of Actibind a T2 RNase 3AA7 ; 1.9 ; Crystal structure of Actin capping protein 3AAE ; 3.3 ; Crystal structure of Actin capping protein in complex with CARMIL fragment 3AA0 ; 1.7 ; Crystal structure of Actin Capping Protein in complex with the Cp-binding motif derived from CARMIL 3AA6 ; 1.9 ; Crystal structure of Actin capping protein in complex with the Cp-binding motif derived from CD2AP 3AA1 ; 1.9 ; Crystal structure of Actin capping protein in complex with the Cp-binding motif derived from CKIP-1 7DS2 ; 1.95 ; Crystal structure of actin capping protein in complex with twinflin-1 C-terminus tail 7DS4 ; 1.85 ; Crystal structure of actin capping protein in complex with twinflin-1 C-terminus tail F323K mutant 7DS8 ; 1.95 ; Crystal structure of actin capping protein in complex with twinflin-1/CD2AP CPI chimera peptide (CDN-TWC) 7DS6 ; 1.69 ; Crystal structure of actin capping protein in complex with twinflin-1/CD2AP CPI chimera peptide (TWN-CDC) 7DS3 ; 2.09 ; Crystal structure of actin capping protein in complex with twinflin-2 C-terminus tail 3AAA ; 2.2 ; Crystal Structure of Actin capping protein in complex with V-1 7DSA ; 2.8 ; Crystal structure of actin capping protein in complex with V-1 (space group P62) 7DSB ; 2.44 ; Crystal structure of actin capping protein in complex with V-1 and twinfilin C-terminal tail 1IZN ; 2.1 ; Crystal Structure of Actin Filament Capping Protein CapZ 3M6G ; 2.0 ; Crystal structure of actin in complex with lobophorolide 4K41 ; 1.4 ; Crystal structure of actin in complex with marine macrolide kabiramide C 1YXQ ; 2.01 ; Crystal structure of actin in complex with swinholide A 4K43 ; 2.9 ; Crystal structure of actin in complex with synthetic AplC tail analogue GC04 [N-{(1E,4R,5R,7E,9S,10S,11S)-4,10-dimethoxy-11-[(2S,4S,5S)-2-(4-methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]-5,9-dimethyl-6-oxododeca-1,7-dien-1-yl}-N-methylformamide] 4K42 ; 2.9 ; Crystal structure of actin in complex with synthetic AplC tail analogue SF01 [(3R,4S,5R,6S,10R,11R,12R)-11-(acetyloxy)-1-(benzyloxy)-14-[formyl(methyl)amino]-5-hydroxy-4,6,10,12-tetramethyl-9-oxotetradecan-3-yl propanoate] 1SH5 ; 2.0 ; Crystal structure of actin-binding domain of mouse plectin 1SH6 ; 2.0 ; Crystal structure of actin-binding domain of mouse plectin 5EC0 ; 2.2 ; Crystal Structure of Actin-like protein Alp7A 3QB0 ; 3.404 ; Crystal structure of Actin-related protein Arp4 from S. cerevisiae complexed with ATP 1AEC ; 1.86 ; CRYSTAL STRUCTURE OF ACTINIDIN-E-64 COMPLEX+ 3A07 ; 1.19 ; Crystal Structure of Actinohivin; Potent anti-HIV Protein 2VGJ ; 2.4 ; Crystal structure of Actinomadura R39 DD-peptidase complexed with a peptidoglycan-mimetic cephalosporin 2VGK ; 2.25 ; Crystal structure of Actinomadura R39 DD-peptidase complexed with a peptidoglycan-mimetic cephalosporin 3QDH ; 1.9 ; Crystal structure of Actinomyces fimbrial adhesin FimA 1A7Y ; 0.94 ; CRYSTAL STRUCTURE OF ACTINOMYCIN D 6J0H ; 1.52 ; Crystal structure of Actinomycin D- d(TTGGCGAA) complex 7DQ8 ; 2.4 ; Crystal structure of actinomycin D-echinomycin-d(ACGCGCT/AGCTCGT) complex 7DQ0 ; 2.0 ; Crystal structure of actinomycin D-echinomycin-d(ACGTGCT/AGCTCGT) complex 7X6R ; 1.89 ; Crystal structure of actinomycin D-echinomycin-d(AGCACGT/ACGGGCT) complex 7X97 ; 1.95 ; Crystal structure of actinomycin D-echinomycin-d(AGCCCGT/ACGGGCT) complex 7XDJ ; 2.435 ; Crystal structure of actinomycin D-echinomycin-d(AGCGCGT/ACGAGCT) complex 7X9F ; 2.96 ; Crystal structure of actinomycin D-echinomycin-d(AGCGCGT/ACGCGCT) complex 1A7Z ; 0.95 ; CRYSTAL STRUCTURE OF ACTINOMYCIN Z3 1WPV ; 1.7 ; Crystal Structure of Activated Binary complex of HutP, an RNA binding anti-termination protein 6ITV ; 1.881 ; Crystal structure of activated c-KIT in complex with compound 1FQW ; 2.37 ; CRYSTAL STRUCTURE OF ACTIVATED CHEY 1F4V ; 2.22 ; CRYSTAL STRUCTURE OF ACTIVATED CHEY BOUND TO THE N-TERMINUS OF FLIM 1ZDM ; 2.4 ; Crystal Structure of Activated CheY Bound to Xe 6EKH ; 2.654 ; Crystal structure of activated CheY from Methanoccocus maripaludis 7OD9 ; 2.3 ; Crystal structure of activated CheY fused to the C-terminal domain of CheF 4HNS ; 2.1 ; Crystal structure of activated CheY3 of Vibrio cholerae 3BII ; 2.5 ; Crystal Structure of Activated MPT Synthase 2F8X ; 3.25 ; Crystal structure of activated Notch, CSL and MAML on HES-1 promoter DNA sequence 1Z5R ; 1.4 ; Crystal Structure of Activated Porcine Pancreatic Carboxypeptidase B 2PJ1 ; 1.64 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B (3-Aminomethyl-phenyl)-[((R)-1-benzyloxycarbonylamino-2-methyl-propyl)-hydroxy-phosphinoyloxy]-acetic acid COMPLEX 2PJ3 ; 1.64 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B (3-Guanidino-phenyl)-{hydroxy-[(R)-2-methyl-1-(3-phenyl-propionylamino)-propyl]-phosphinoyloxy}-acetic acid COMPLEX 2PIY ; 1.43 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B (S)-2-(3-Aminomethyl-phenyl)-3-{hydroxy-[(R)-2-methyl-1-(3-phenyl-propane-1-sulfonylamino)-propyl]-phosphinoyl}-propionic acid {ZK 528} COMPLEX 2PJC ; 1.74 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B ({(R)-1-[(S)-2-Benzyloxycarbonylamino-3-(4-hydroxy-phenyl)-propionylamino]-2-methyl-propyl}-hydroxy-phosphinoyloxy)-(3-guanidino-phenyl)-acetic acid COMPLEX 2PJ7 ; 1.77 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-[((R)-1-benzenesulfonylamino-2-methyl-propyl)-hydroxy-phosphinoyl]-propionic acid COMPLEX 2PJ2 ; 1.95 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-[((R)-1-benzyloxycarbonylamino-2-methyl-propyl)-hydroxy-phosphinoyl]-propionic acid COMPLEX 2PJ6 ; 1.6 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-{hydroxy-[(R)-2-methyl-1-(2-phenyl-ethanesulfonylamino)-propyl]-phosphinoyl}-propionic acid COMPLEX 2PJ9 ; 1.56 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-{[(R)-1-(benzo[1,2,5]thiadiazole-4-sulfonylamino)-2-methyl-propyl]-hydroxy-phosphinoyl}-propionic acid COMPLEX 2PJ8 ; 1.7 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-{[(R)-1-(biphenyl-4-sulfonylamino)-2-methyl-propyl]-hydroxy-phosphinoyl}-propionic acid COMPLEX 2PJB ; 1.7 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Aminomethyl-phenyl)-3-{[1-((S)-2-benzyloxycarbonylamino-3-phenyl-propane-1-sulfonylamino)-2-methyl-propyl]-hydroxy-phosphinoyl}-propionic acid COMPLEX 2PIZ ; 1.6 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 2-(3-Guanidino-phenyl)-3-[hydroxy-(3-phenyl-propyl)-phosphinoyl]-propionic acid COMPLEX 2PJA ; 1.7 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B 3-{[(R)-1-((S)-2-Benzyloxycarbonylamino-3-phenyl-propionylamino)-2-methyl-propyl]-hydroxy-phosphinoyl}-2-(3-guanidino-phenyl)-propionic acid COMPLEX 2PJ0 ; 1.65 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B [((R)-1-Benzyloxycarbonylamino-2-methyl-propyl)-hydroxy-phosphinoyloxy]-(3-guanidino-phenyl)-acetic acid COMPLEX 2PJ5 ; 1.65 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B [((R)-1-Benzyloxycarbonylamino-hexyl)-hydroxy-phosphinoyloxy]-(3-guanidino-phenyl)-acetic acid COMPLEX 2PJ4 ; 2.0 ; CRYSTAL STRUCTURE OF ACTIVATED PORCINE PANCREATIC CARBOXYPEPTIDASE B [((R)-Benzyloxycarbonylamino-cyclohexyl-methyl)-hydroxy-phosphinoyloxy]-(3-guanidino-phenyl)-acetic acid COMPLEX 3GQI ; 2.5 ; Crystal Structure of activated receptor tyrosine kinase in complex with substrates 3GQL ; 2.8 ; Crystal Structure of activated receptor tyrosine kinase in complex with substrates 9RUB ; 2.6 ; CRYSTAL STRUCTURE OF ACTIVATED RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE COMPLEXED WITH ITS SUBSTRATE, RIBULOSE-1,5-BISPHOSPHATE 1IR2 ; 1.84 ; Crystal Structure of Activated Ribulose-1,5-bisphosphate Carboxylase/oxygenase (Rubisco) from Green alga, Chlamydomonas reinhardtii Complexed with 2-Carboxyarabinitol-1,5-bisphosphate (2-CABP) 1WDD ; 1.35 ; Crystal Structure of Activated Rice Rubisco Complexed with 2-Carboxyarabinitol-1,5-bisphosphate 3IUW ; 1.58 ; Crystal structure of Activating signal cointegrator (NP_814290.1) from ENTEROCOCCUS FAECALIS V583 at 1.58 A resolution 1J6R ; 2.3 ; Crystal structure of Activation (AdoMet binding) domain of Methionine synthase (TM0269) from Thermotoga maritima at 2.2 A resolution 3R5J ; 1.77 ; Crystal structure of active caspase-2 bound with Ac-ADVAD-CHO 3R6G ; 2.07 ; Crystal structure of active caspase-2 bound with Ac-VDVAD-CHO 3OD5 ; 1.6 ; Crystal structure of active caspase-6 bound with Ac-VEID-CHO 3S70 ; 1.625 ; Crystal structure of active caspase-6 bound with Ac-VEID-CHO solved by As-SAD 3P4U ; 1.9 ; Crystal structure of active caspase-6 in complex with Ac-VEID-CHO inhibitor 4J4Q ; 2.65 ; Crystal structure of active conformation of GPCR opsin stabilized by octylglucoside 1XJT ; 1.75 ; Crystal structure of active form of P1 phage endolysin Lyz 2ZGH ; 2.17 ; Crystal Structure of active granzyme M bound to its product 4F73 ; 1.9 ; Crystal Structure of active HIV-1 Protease in Complex with the N terminal product of CA-p2 cleavage site 4F74 ; 2.2 ; Crystal Structure of active HIV-1 Protease in Complex with the N terminal product of the substrate MA-CA. 4F75 ; 1.7 ; Crystal Structure of active HIV-1 Protease in Complex with the N terminal product of the substrate RH-IN 4GAW ; 3.0 ; Crystal structure of active human granzyme H 2ZGC ; 1.96 ; Crystal Structure of Active Human Granzyme M 7ACH ; 1.9 ; CRYSTAL STRUCTURE OF ACTIVE KRAS G12D (GPPCP) IN COMPLEX WITH THE SOAKED DIMERIC INHIBITOR BI-5747 4AWB ; 2.7 ; Crystal structure of active legumain in complex with AAN-CMK 4AW9 ; 2.2 ; Crystal structure of active legumain in complex with YVAD-CMK 4AWA ; 2.5 ; Crystal structure of active legumain in complex with YVAD-CMK at pH 5.0 5C1M ; 2.07 ; Crystal structure of active mu-opioid receptor bound to the agonist BU72 5EZ5 ; 2.4 ; Crystal structure of active Rab11A (S20V) in complex with GTP 2PQI ; 2.5 ; Crystal structure of active ribosome inactivating protein from maize (b-32) 2PQJ ; 2.8 ; Crystal structure of active ribosome inactivating protein from maize (b-32), complex with adenine 1XRM ; 2.7 ; Crystal structure of active site F1-mutant E213Q soaked with peptide Ala-Phe 1XRN ; 2.8 ; Crystal structure of active site F1-mutant E213Q soaked with peptide Phe-Ala 1XRO ; 1.8 ; Crystal structure of active site F1-mutant E213Q soaked with peptide Phe-Leu 1XRP ; 2.3 ; Crystal structure of active site F1-mutant E213Q soaked with peptide Pro-Leu-Gly-Gly 1XRQ ; 2.8 ; Crystal structure of active site F1-mutant E245Q soaked with peptide Phe-Leu 1XRR ; 2.4 ; Crystal structure of active site F1-mutant E245Q soaked with peptide Pro-Pro 1XRL ; 1.82 ; Crystal structure of active site F1-mutant Y205F complex with inhibitor PCK 2PUQ ; 2.05 ; Crystal structure of active site inhibited coagulation factor VIIA in complex with soluble tissue factor 3ELA ; 2.2 ; Crystal structure of active site inhibited coagulation factor VIIA mutant in complex with soluble tissue factor 4FGC ; 2.498 ; Crystal Structure of Active Site Mutant C55A of Nitrile Reductase QueF, Bound to Substrate PreQ0 7AG4 ; 2.13 ; Crystal structure of active site mutant of SQ Isomerase (YihS-H248A) from Salmonella enterica in complex with sulfofructose (SF) 1CVW ; 2.28 ; Crystal structure of active site-inhibited human coagulation factor VIIA (DES-GLA) 6O3C ; 2.8 ; Crystal structure of active Smoothened bound to SAG21k, cholesterol, and NbSmo8 4PWN ; 1.84 ; Crystal structure of Active WNK1 kinase 1NYU ; 3.1 ; Crystal Structure of Activin A Bound to the ECD of ActRIIB 1NYS ; 3.05 ; Crystal Structure of Activin A Bound to the ECD of ActRIIB P41 4MID ; 2.139 ; Crystal Structure of Activin A/BMP2 chimera 2QLU ; 2.0 ; Crystal structure of Activin receptor type II kinase domain from human 3SOC ; 1.95 ; Crystal structure of Activin receptor type-IIA (ACVR2A) kinase domain in complex with a quinazolin 4ASX ; 2.05 ; Crystal structure of Activin receptor type-IIA (ACVR2A) kinase domain in complex with dihydro-Bauerine C 3Q4T ; 1.96 ; Crystal structure of Activin receptor type-IIA (ACVR2A) kinase domain in complex with dorsomorphin 1QUA ; 2.2 ; CRYSTAL STRUCTURE OF ACUTOLYSIN-C, A HEMORRHAGIC TOXIN FROM THE SNAKE VENOM OF AGKISTRODON ACUTUS, AT 2.2 A RESOLUTION 1VKU ; 2.0 ; Crystal structure of Acyl carrier protein (TM0175) from Thermotoga maritima at 2.00 A resolution 2EHS ; 1.3 ; Crystal structure of acyl carrier protein from Aquifex aeolicus (form 1) 2EHT ; 1.4 ; Crystal structure of acyl carrier protein from Aquifex aeolicus (form 2) 1TIK ; 2.3 ; CRYSTAL STRUCTURE OF ACYL CARRIER PROTEIN PHOSPHODIESTERASE 2Z1Q ; 2.3 ; Crystal structure of acyl CoA dehydrogenase 4GAK ; 1.9 ; Crystal structure of acyl-ACP thioesterase from Spirosoma linguale 6U1V ; 1.75 ; Crystal structure of acyl-ACP/acyl-CoA dehydrogenase from allylmalonyl-CoA and FK506 biosynthesis, TcsD 7W58 ; 2.27 ; Crystal structure of acyl-carrier protein synthase from Mycobacterium smegmatis 3EZO ; 2.05 ; Crystal structure of acyl-carrier-protein s-malonyltransferase from burkholderia pseudomallei 1710b 3QAT ; 1.6 ; Crystal structure of acyl-carrier-protein-S-malonyltransferase from Bartonella henselae 2CX9 ; 2.0 ; Crystal structure of acyl-CoA dehydrogenase 8I4R ; 2.51 ; Crystal structure of Acyl-CoA dehydrogenase complexed with Acetyl-CoA from Thermobifida fusca 3OWA ; 1.97 ; Crystal Structure of Acyl-CoA Dehydrogenase complexed with FAD from Bacillus anthracis 6KPT ; 1.963 ; Crystal Structure of Acyl-CoA Dehydrogenase FadE5 from Mycobacteria smegmatis 6KRI ; 1.604 ; Crystal Structure of Acyl-CoA Dehydrogenase FadE5 from Mycobacteria smegmatis with product released 4M9A ; 2.2 ; Crystal structure of Acyl-coA dehydrogenase from Burkholderia thailandensis E264 2PG0 ; 1.8 ; Crystal structure of acyl-CoA dehydrogenase from Geobacillus kaustophilus 7SZV ; 2.4 ; Crystal Structure of Acyl-CoA dehydrogenase from Mycobacterium marinum in complex with FDA 3NF4 ; 2.35 ; Crystal structure of acyl-CoA dehydrogenase from Mycobacterium thermoresistibile bound to flavin adenine dinucleotide 8I4P ; 1.9 ; crystal structure of Acyl-CoA dehydrogenase from Thermobifida fusca 2GVH ; 2.5 ; Crystal structure of Acyl-CoA hydrolase (15159470) from AGROBACTERIUM TUMEFACIENS at 2.65 A resolution 1VPM ; 1.66 ; Crystal structure of Acyl-CoA hydrolase (NP_241664.1) from Bacillus halodurans at 1.66 A resolution 1Y7U ; 2.8 ; Crystal Structure of Acyl-Coa hydrolase from Bacillus cereus 4IEN ; 2.0 ; Crystal Structure of Acyl-CoA Hydrolase from Neisseria meningitidis FAM18 2DDH ; 2.07 ; Crystal Structure of Acyl-CoA oxidase complexed with 3-OH-dodecanoate 5K3I ; 2.683 ; Crystal structure of Acyl-CoA oxidase-1 in Caenorhabditis elegans complexed with FAD and ATP 5Y9D ; 2.5 ; Crystal structure of acyl-coA oxidase1 from Yarrowia lipolytica 5YS9 ; 2.5 ; Crystal structure of acyl-coA oxidase3 from Yarrowia lipolytica 8BIQ ; 2.8 ; Crystal structure of acyl-COA synthetase from Metallosphaera sedula in complex with acetyl-AMP 8BIT ; 3.1 ; Crystal structure of acyl-CoA synthetase from Metallosphaera sedula in complex with Coenzyme A and acetyl-AMP 3RD7 ; 1.95 ; Crystal structure of acyl-coa thioesterase from mycobacterium avium 4QFW ; 2.0 ; Crystal structure of acyl-CoA thioesterase tesB from Yersinia pestis 4R4U ; 2.2 ; Crystal structure of acyl-CoA thioesterase tesB from Yersinia pestis in complex with coenzyme A 2AHU ; 1.9 ; Crystal structure of Acyl-CoA transferase (YdiF) apoenzyme from Escherichia coli O157:H7. 2AHV ; 2.0 ; Crystal Structure of Acyl-CoA transferase from E. coli O157:H7 (YdiF)-thioester complex with CoA- 1 2AHW ; 2.15 ; Crystal Structure of Acyl-CoA transferase from E. coli O157:H7 (YdiF)-thioester complex with CoA- 2 4EQY ; 1.8 ; Crystal structure of Acyl-[acyl-carrier-protein]--UDP-N-acetylglucosamine O-acyltransferase from Burkholderia thailandensis 3FNB ; 2.1178 ; Crystal structure of acylaminoacyl peptidase SMU_737 from Streptococcus mutans UA159 3U19 ; 2.0 ; CRYSTAL STRUCTURE OF ACYLENZYME INTERMEDIATE OF DE NOVO DESIGNED CYSTEINE ESTERASE ECH13, Northeast Structural Genomics Consortium Target OR51 4HI1 ; 1.964 ; Crystal structure of acylphosphatase C20R mutant from Vibrio cholerae0395 3BR8 ; 1.33 ; Crystal structure of acylphosphatase from Bacillus subtilis 1V3Z ; 1.72 ; Crystal Structure of Acylphosphatase from Pyrococcus horikoshii 2I0D ; 1.95 ; Crystal structure of AD-81 complexed with wild type HIV-1 protease 3CNC ; 2.4 ; Crystal Structure of Ad16 fiber knob 3BQ4 ; 2.7 ; Crystal Structure of Ad35 fiber knob 3N0I ; 1.65 ; Crystal Structure of Ad37 fiber knob in complex with GD1a oligosaccharide 3QND ; 2.4 ; crystal structure of Ad37 fiber knob in complex with trivalent sialic acid inhibitor 4K6T ; 2.0 ; Crystal structure of Ad37 fiber knob in complex with trivalent sialic acid inhibitor ME0385 4K6U ; 1.9 ; Crystal structure of Ad37 fiber knob in complex with trivalent sialic acid inhibitor ME0386 4K6V ; 1.5 ; Crystal structure of Ad37 fiber knob in complex with trivalent sialic acid inhibitor ME0407 4K6W ; 1.5 ; Crystal structure of Ad37 fiber knob in complex with trivalent sialic acid inhibitor ME0408 4XQB ; 1.597 ; CRYSTAL STRUCTURE OF AD37 FIBER KNOB IN COMPLEX WITH TRIVALENT SIALIC ACID INHIBITOR ME0461 4XQA ; 1.4072 ; CRYSTAL STRUCTURE OF AD37 FIBER KNOB IN COMPLEX WITH TRIVALENT SIALIC ACID INHIBITOR ME0462 4NYL ; 2.8 ; Crystal structure of adalimumab FAB fragment 3B2Z ; 2.8 ; Crystal Structure of ADAMTS4 (apo form) 2RJP ; 2.8 ; Crystal structure of ADAMTS4 with inhibitor bound 2RJQ ; 2.6 ; Crystal structure of ADAMTS5 with inhibitor bound 7TQ1 ; 2.73 ; Crystal structure of adaptive laboratory evolved sulfonamide-resistant Dihydropteroate Synthase (DHPS) from Escherichia coli in complex with 6-hydroxymethylpterin 5TE0 ; 1.9 ; Crystal Structure of Adaptor Protein 2 Associated Kinase (AAK1) in complex with BIBF 1120 4WSQ ; 1.95 ; Crystal Structure of Adaptor Protein 2 Associated Kinase (AAK1) in complex with small molecule inhibitor 5L4Q ; 1.97 ; Crystal Structure of Adaptor Protein 2 Associated Kinase 1 (AAK1) in Complex with LKB1 (AAK1 Dual Inhibitor) 4IKN ; 1.851 ; Crystal structure of adaptor protein complex 3 (AP-3) mu3A subunit C-terminal domain, in complex with a sorting peptide from TGN38 4MDR ; 1.85 ; Crystal structure of adaptor protein complex 4 (AP-4) mu4 subunit C-terminal domain D190A mutant, in complex with a sorting peptide from the amyloid precursor protein (APP) 3L81 ; 1.6 ; Crystal structure of adaptor protein complex 4 (AP-4) mu4 subunit C-terminal domain, in complex with a sorting peptide from the amyloid precursor protein (APP) 7ZJ1 ; 1.65 ; Crystal structure of ADAR1-dsRBD3 dimer 7ZLQ ; 2.8 ; Crystal structure of ADAR1-dsRBD3 dimer in complex with dsRNA 4NET ; 1.2 ; Crystal structure of ADC-1 beta-lactamase 4U0T ; 1.73 ; Crystal structure of ADC-7 beta-lactamase 4RFE ; 1.91 ; Crystal structure of ADCC-potent ANTI-HIV-1 Rhesus macaque antibody JR4 Fab 4RFN ; 3.21 ; Crystal structure of ADCC-potent Rhesus macaque ANTIBODY JR4 in complex with HIV-1 CLADE A/E GP120 and M48 6IE4 ; 2.696 ; Crystal structure of ADCP1 tandem Agenet domain 1-2 in complex with H3K9me1 6IE7 ; 2.7 ; Crystal structure of ADCP1 tandem Agenet domain 1-2 in complex with H3K9me2 6IE5 ; 2.298 ; Crystal structure of ADCP1 tandem Agenet domain 3-4 6IE6 ; 1.7 ; Crystal structure of ADCP1 tandem Agenet domain 3-4 in complex with H3K9me2 7O45 ; 2.1 ; Crystal structure of ADD domain of the human DNMT3B methyltransferase 4CEH ; 3.24 ; Crystal structure of AddAB with a forked DNA substrate 3U44 ; 3.201 ; Crystal structure of AddAB-DNA complex 4CEJ ; 3.0 ; Crystal structure of AddAB-DNA-ADPNP complex at 3 Angstrom resolution 4XGQ ; 2.7 ; Crystal structure of addiction module from Mycobacterial species 4XGR ; 2.7 ; Crystal structure of addiction module from Mycobacterial species 3NQB ; 2.21 ; Crystal Structure of Adenine Deaminase from Agrobacterium tumefaciens (str. C 58) 3T8L ; 2.8 ; Crystal Structure of adenine deaminase with Mn/Fe 5VN4 ; 1.35 ; Crystal structure of adenine phosphoribosyl transferase from Trypanosoma brucei in complex with AMP, pyrophosphate, and ribose-5-phosphate 1G2P ; 1.75 ; CRYSTAL STRUCTURE OF ADENINE PHOSPHORIBOSYLTRANSFERASE 1G2Q ; 1.5 ; CRYSTAL STRUCTURE OF ADENINE PHOSPHORIBOSYLTRANSFERASE 1MZV ; 2.2 ; Crystal Structure of Adenine Phosphoribosyltransferase (APRT) From Leishmania tarentolae 5YW5 ; 1.9 ; Crystal structure of Adenine phosphoribosyltransferase from Francisella tularensis in complex with adenine 5YW2 ; 2.28 ; Crystal structure of Adenine phosphoribosyltransferase from Francisella tularensis. 4M0K ; 1.4 ; Crystal structure of adenine phosphoribosyltransferase from Rhodothermus marinus DSM 4252, NYSGRC Target 029775. 5VJN ; 1.78 ; Crystal Structure of Adenine Phosphoribosyltransferase from Saccharomyces cerevisiae Complexed with D-2,5-Dideoxy-2,5-Imino-Altritol 1,6-Bisphosphate (D-DIAB) and Adenine 5VJP ; 1.98 ; Crystal Structure of Adenine Phosphoribosyltransferase from Saccharomyces cerevisiae Complexed with L-2,5-Dideoxy-2,5-Imino-Altritol 1,6-Bisphosphate (L-DIAB) and Adenine 4LZA ; 1.84 ; Crystal structure of adenine phosphoribosyltransferase from Thermoanaerobacter pseudethanolicus ATCC 33223, NYSGRC Target 029700. 5Y07 ; 2.07 ; Crystal structure of adenine phosphoribosyltransferase from Yersinia pseudotuberculosis with PRPP. 4MB6 ; 1.81 ; Crystal structure of adenine phosphoribosyltransferase from Yersinia pseudotuberculosis. 7L04 ; 2.26 ; Crystal Structure of Adeno-Associated Virus Porcine Origin capsid protein in complex with Importin-alpha 2 3KIC ; 2.603 ; Crystal structure of adeno-associated virus serotype 3B 3KIE ; 3.0 ; Crystal structure of adeno-associated virus serotype 3B 1S9H ; 2.4 ; Crystal Structure of Adeno-associated virus Type 2 Rep40 1D6J ; 2.0 ; CRYSTAL STRUCTURE OF ADENOSINE 5'-PHOSPHOSULFATE (APS) KINASE FROM PENICILLIUM CHRYSOGENUM 3UIE ; 1.794 ; Crystal structure of adenosine 5'-phosphosulfate kinase from Arabidopsis Thaliana in Complex with AMPPNP and APS 4FXP ; 1.954 ; Crystal structure of adenosine 5'-phosphosulfate kinase from Arabidopsis thaliana in Complex with Sulfate and APS 7YQ0 ; 1.58 ; Crystal structure of adenosine 5'-phosphosulfate kinase from Archaeoglobus fulgidus in complex with ADP 7YQ1 ; 1.91 ; Crystal structure of adenosine 5'-phosphosulfate kinase from Archaeoglobus fulgidus in complex with AMP-PNP and APS 5UIG ; 3.5 ; Crystal structure of adenosine A2A receptor bound to a novel triazole-carboximidamide antagonist 1O5R ; 2.35 ; Crystal structure of adenosine deaminase complexed with a potent inhibitor 1UML ; 2.5 ; Crystal structure of adenosine deaminase complexed with a potent inhibitor FR233624 1NDV ; 2.3 ; Crystal Structure of Adenosine Deaminase complexed with FR117016 1NDW ; 2.0 ; Crystal Structure of Adenosine Deaminase Complexed with FR221647 1NDY ; 2.0 ; Crystal Structure of Adenosine Deaminase Complexed with FR230513 1QXL ; 2.25 ; Crystal structure of Adenosine deaminase complexed with FR235380 1NDZ ; 2.0 ; Crystal Structure of Adenosine Deaminase Complexed with FR235999 2E1W ; 2.5 ; Crystal structure of adenosine deaminase complexed with potent inhibitors 3EWC ; 2.11 ; Crystal Structure of adenosine deaminase from Plasmodial vivax in complex with MT-coformycin 2PGF ; 1.89 ; Crystal structure of adenosine deaminase from Plasmodium vivax in complex with adenosine 2QVN ; 2.19 ; Crystal structure of adenosine deaminase from Plasmodium vivax in complex with guanosine 2PGR ; 2.3 ; Crystal structure of adenosine deaminase from Plasmodium vivax in complex with pentostatin 4GBD ; 1.975 ; Crystal Structure Of Adenosine Deaminase From Pseudomonas Aeruginosa Pao1 with bound Zn and methylthio-coformycin 6N9M ; 1.449 ; Crystal Structure of Adenosine Deaminase from Salmonella typhimurium with Pentostatin (Deoxycoformycin) 6N91 ; 2.05 ; Crystal Structure of Adenosine Deaminase from Vibrio cholerae Complexed with Pentostatin (Deoxycoformycin) 1WXY ; 2.5 ; Crystal structure of adenosine deaminase ligated with a potent inhibitor 1WXZ ; 2.8 ; Crystal structure of adenosine deaminase ligated with a potent inhibitor 2Z7G ; 2.52 ; Crystal structure of adenosine deaminase ligated with EHNA 3EWD ; 1.9 ; Crystal structure of adenosine deaminase mutant (delta Asp172) from Plasmodium vivax in complex with MT-coformycin 1DGM ; 1.8 ; CRYSTAL STRUCTURE OF ADENOSINE KINASE FROM TOXOPLASMA GONDII 2ZE5 ; 2.31 ; Crystal Structure of adenosine phosphate-isopentenyltransferase 2ZE8 ; 2.8 ; Crystal Structure of adenosine phosphate-isopentenyltransferase complexed with diphosphate 2ZE6 ; 2.1 ; Crystal Structure of adenosine phosphate-isopentenyltransferase complexed with substrate analog, DMASPP 2ZE7 ; 2.1 ; Crystal Structure of adenosine phosphate-isopentenyltransferase complexed with zinc ion and substrate analog, DMASPP 3UAV ; 1.4 ; Crystal structure of adenosine phosphorylase from Bacillus cereus 3UAW ; 1.2 ; Crystal structure of adenosine phosphorylase from Bacillus cereus complexed with adenosine 3UAX ; 1.2 ; Crystal structure of adenosine phosphorylase from Bacillus cereus complexed with inosine 2AC7 ; 1.7 ; Crystal structure of Adenosine Phosphorylase from Bacillus cereus with adenosine bound in the active site 7WZY ; 2.975 ; Crystal structure of Adenosine triphosphate phosphoribosyltransferase (HisG) from Acinetobacter baumannii at 2.975 A resolution 7WGK ; 3.13 ; Crystal structure of Adenosine triphosphate phosphoribosyltransferase (HisG) from Acinetobacter baumannii at 3.13 A resolution 7WGM ; 3.15 ; Crystal structure of Adenosine triphosphate phosphoribosyltransferase (HisG) from Acinetobacter baumannii at 3.15 A resolution 8JUK ; 2.181 ; Crystal structure of Adenosine triphosphate phosphoribosyltransferase from Acinetobacter baumannii at 2.18 A resolution 5CB8 ; 1.88 ; Crystal structure of Adenosine-5'-phosphosulfate kinase in complex with APS and sulfate 7LHR ; 3.11 ; Crystal structure of adenosine-5'-phosphosulfate reductase from Mycobacterium tuberculosis 7LHU ; 3.09 ; Crystal structure of adenosine-5'-phosphosulfate reductase from Mycobacterium tuberculosis in a complex with product AMP 7LHS ; 3.11 ; Crystal structure of adenosine-5'-phosphosulfate reductase from Mycobacterium tuberculosis in a complex with substrate APS 6APH ; 1.65 ; Crystal structure of Adenosylhomocysteinase from Elizabethkingia anophelis NUHP1 in complex with NAD and Adenosine 7UG3 ; 1.9 ; Crystal structure of adenosylmethionie-8-amino-7-oxononanoate aminotransferase from Klebsiella pneumoniae 1DTY ; 2.14 ; CRYSTAL STRUCTURE OF ADENOSYLMETHIONINE-8-AMINO-7-OXONANOATE AMINOTRANSFERASE WITH PYRIDOXAL PHOSPHATE COFACTOR. 6ZHK ; 1.8 ; Crystal structure of adenosylmethionine-8-amino-7-oxononanoate aminotransferase from Methanocaldococcus jannaschii DSM 2661 4WX4 ; 1.03 ; Crystal structure of adenovirus 8 protease in complex with a nitrile inhibitor 4WX7 ; 2.4 ; Crystal structure of adenovirus 8 protease with a nitrile inhibitor 3TG7 ; 1.57 ; Crystal structure of Adenovirus serotype 5 hexon at 1.6A resolution 5X6K ; 1.99 ; Crystal structure of adenylate kinase 5XZ2 ; 1.75 ; Crystal structure of adenylate kinase 5G3Y ; 1.18 ; Crystal structure of adenylate kinase ancestor 1 with Zn and ADP bound 5G3Z ; 1.89 ; Crystal structure of adenylate kinase ancestor 3 with Zn, Mg and Ap5A bound 5G40 ; 1.69 ; Crystal structure of adenylate kinase ancestor 4 with Zn and AMP-ADP bound 5G41 ; 1.54 ; Crystal structure of adenylate kinase ancestor 4 with Zn, Mg and Ap5A bound 6LN3 ; 2.0 ; Crystal structure of adenylate kinase from an extremophilic archaeon Aeropyrum pernix with ATP and AMP 2RGX ; 1.9 ; Crystal Structure of Adenylate Kinase from Aquifex Aeolicus in complex with Ap5A 4CF7 ; 1.594 ; Crystal structure of adenylate kinase from Aquifex aeolicus with MgADP bound 1S3G ; 2.25 ; Crystal structure of adenylate kinase from Bacillus globisporus 3GMT ; 2.1 ; Crystal structure of adenylate kinase from burkholderia pseudomallei 3FB4 ; 2.0 ; Crystal structure of adenylate kinase from Marinibacillus marinus 3H86 ; 2.5 ; Crystal structure of adenylate kinase from Methanococcus maripaludis 4K46 ; 2.01 ; Crystal Structure of Adenylate Kinase from Photobacterium profundum 4NTZ ; 1.69 ; Crystal structure of Adenylate kinase from Streptococcus pneumoniae 4NU0 ; 1.485 ; Crystal structure of Adenylate kinase from Streptococcus pneumoniae with Ap5A 3CM0 ; 1.8 ; Crystal structure of adenylate kinase from Thermus thermophilus HB8 4NP6 ; 2.004 ; Crystal Structure of Adenylate Kinase from Vibrio cholerae O1 biovar eltor 4JZK ; 1.63 ; Crystal Structure of Adenylate kinase of E. Coli with ADP/AMP bound 3DKV ; 1.82 ; Crystal structure of adenylate kinase variant AKlse1 3DL0 ; 1.58 ; Crystal structure of adenylate kinase variant AKlse3 4JL6 ; 1.65 ; Crystal Structure of Adenylate kinase with 2 ADP's 4JLA ; 2.12 ; Crystal Structure of Adenylate kinase with 2 ADP's in the active site 3MR7 ; 2.6 ; Crystal Structure of Adenylate/Guanylate Cyclase/Hydrolase from Silicibacter pomeroyi 7T24 ; 1.45 ; Crystal Structure of Adenylosuccinate lyase (ASL) from Pseudomonas aeruginosa 7T29 ; 1.5 ; Crystal Structure of Adenylosuccinate lyase (ASL) from Pseudomonas aeruginosa complexed with AMP 2PFM ; 2.0 ; Crystal Structure of Adenylosuccinate Lyase (PurB) from Bacillus anthracis 5VKW ; 1.998 ; Crystal structure of adenylosuccinate lyase ADE13 from Candida albicans 4EEI ; 1.921 ; Crystal Structure of Adenylosuccinate Lyase from Francisella tularensis Complexed with AMP and Succinate 5HW2 ; 2.054 ; Crystal Structure of Adenylosuccinate Lyase from Francisella tularensis Complexed with fumaric acid 3BHG ; 1.9 ; Crystal structure of adenylosuccinate lyase from Legionella pneumophila 4MX2 ; 1.9 ; Crystal Structure of adenylosuccinate lyase from Leishmania donovani 2HVG ; 2.3 ; Crystal Structure of Adenylosuccinate Lyase from Plasmodium Vivax 5EYV ; 2.14 ; Crystal Structure of Adenylosuccinate lyase from Schistosoma mansoni in APO form. 5EYT ; 2.3649 ; Crystal Structure of Adenylosuccinate Lyase from Schistosoma mansoni in complex with AMP 8JBD ; 2.38 ; Crystal structure of Adenylosuccinate lyase from Thermus thermophilus HB8, TtPurB 4EFC ; 2.0 ; Crystal Structure of Adenylosuccinate Lyase from Trypanosoma Brucei, Tb427tmp.160.5560 3UE9 ; 1.95 ; Crystal structure of Adenylosuccinate synthetase (AMPSase) (purA) from Burkholderia thailandensis 3R7T ; 2.3 ; Crystal Structure of Adenylosuccinate Synthetase from Campylobacter jejuni 1GIM ; 2.5 ; CRYSTAL STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH GDP, IMP, HADACIDIN, NO3-, AND MG2+. DATA COLLECTED AT 100K (PH 6.5) 1GIN ; 2.8 ; CRYSTAL STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH GDP, IMP, HADACIDIN, NO3-, AND MG2+. DATA COLLECTED AT 298K (PH 6.5). 6BS7 ; 1.95 ; Crystal structure of Adenylosuccinate synthetase from Legionella pneumophila Philadelphia 1 6C25 ; 1.9 ; Crystal structure of Adenylosuccinate synthetase from Legionella pneumophila Philadelphia 1 in complex with GDP 3HID ; 1.6 ; Crystal structure of adenylosuccinate synthetase from Yersinia pestis CO92 6JRQ ; 2.1 ; Crystal structure of adenylosuccinate synthetase, PurA, from Thermus thermophilus 4WP3 ; 1.95 ; Crystal Structure of Adenylyl cyclase from Mycobacterium avium Ma1120 wild type 4WP9 ; 1.382 ; Crystal structure of Adenylyl cyclase MA1120 from Mycobacterium Avium bound to 2'5'-DD-3'-ATP, Calcium and Magnesium ion 4WPA ; 1.7 ; Crystal structure of Adenylyl cyclase Ma1120 from Mycobacterium Avium bound to Pyrophosphate and Calcium 4WP8 ; 1.65 ; Crystal structure of Adenylyl cyclase Ma1120 from Mycobacterium Avium in complex with 2'5'-DD-3'-ATP and Manganese ion 6B8V ; 2.55 ; Crystal structure of adenylyl-sulfate kinase from Cryptococcus neoformans 3GYX ; 3.2 ; Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas 1F7S ; 2.0 ; CRYSTAL STRUCTURE OF ADF1 FROM ARABIDOPSIS THALIANA 5JLU ; 2.2 ; Crystal Structure of Adhesin competence repressor (AdcR) from Streptococcus pyogenes 5JLS ; 2.7 ; Crystal Structure of Adhesin competence repressor (AdcR) from Streptococcus pyogenes (C-terminally His tagged) 6Z2S ; 3.2 ; Crystal structure of adhibin analogue-bound myosin-2 3JS1 ; 1.81 ; Crystal structure of adipocyte fatty acid binding protein covalently modified with 4-hydroxy-2-nonenal 3JSQ ; 2.3 ; Crystal structure of adipocyte fatty acid binding protein non-covalently modified with 4-hydroxy-2-nonenal 7LVZ ; 1.89 ; Crystal structure of ADO 5L0Z ; 2.9 ; Crystal Structure of AdoMet bound rRNA methyltransferase from Sinorhizobium meliloti 5C1P ; 2.4 ; Crystal structure of ADP and D-alanyl-D-alanine complexed D-alanine-D-alanine ligase(DDL) from Yersinia pestis 5BPL ; 1.93 ; Crystal structure of ADP and Pi bound human Hsp70 NBD mutant R272K. 5H70 ; 2.4 ; Crystal structure of ADP bound dTMP kinase (st1543) from Sulfolobus Tokodaii Strain7 5BN9 ; 1.689 ; Crystal structure of ADP bound human Hsp70 NBD mutant R272K. 1X3M ; 2.2 ; Crystal structure of ADP bound Propionate kinase (TdcD) from Salmonella typhimurium 1T6X ; 2.29 ; Crystal structure of ADP bound TM379 1NY3 ; 3.0 ; Crystal structure of ADP bound to MAP KAP kinase 2 3QFF ; 1.96 ; Crystal Structure of ADP complex of purK: N5-carboxyaminoimidazole ribonucleotide synthetase 5BPF ; 2.28 ; Crystal structure of ADP complexed D-alanine-D-alanine ligase(DDL) from Yersinia pestis 1VHG ; 2.7 ; Crystal structure of ADP compounds hydrolase 1VHZ ; 2.32 ; Crystal structure of ADP compounds hydrolase 6VXS ; 2.03 ; Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 6W6Y ; 1.451 ; Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 in complex with AMP 6W02 ; 1.5 ; Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 in the complex with ADP ribose 6WCF ; 1.065 ; Crystal Structure of ADP ribose phosphatase of NSP3 from SARS-CoV-2 in complex with MES 6WEN ; 1.35 ; Crystal Structure of ADP ribose phosphatase of NSP3 from SARS-CoV-2 in the apo form 3I9J ; 2.18 ; Crystal structure of ADP ribosyl cyclase complexed with a substrate analog and a product nicotinamide 3ZWP ; 2.11 ; Crystal structure of ADP ribosyl cyclase complexed with ara-2'F-ADP- ribose at 2.1 angstrom 3I9L ; 1.75 ; Crystal structure of ADP ribosyl cyclase complexed with N1-cIDPR 3ZWO ; 2.0 ; Crystal structure of ADP ribosyl cyclase complexed with reaction intermediate 3I9O ; 3.0 ; Crystal structure of ADP ribosyl cyclase complexed with ribo-2'F-ADP ribose 3I9K ; 1.83 ; Crystal structure of ADP ribosyl cyclase complexed with substrate NAD 3ZWM ; 2.5 ; Crystal structure of ADP ribosyl cyclase complexed with substrate NAD and product cADPR 6VS4 ; 2.4 ; Crystal structure of ADP RIBOSYLATION FACTOR-LIKE GTP BINDING PROTEIN /Small COPII coat GTPase SAR1 from Encephalitozoon cuniculi in complex with GDP 1T6Y ; 2.8 ; Crystal structure of ADP, AMP, and FMN bound TM379 3R5H ; 2.2 ; Crystal Structure of ADP-AIR complex of purK: N5-carboxyaminoimidazole ribonucleotide synthetase 3V4S ; 2.02 ; Crystal Structure of ADP-ATP complex of purK: N5-carboxyaminoimidazole ribonucleotide synthetase 6BS3 ; 2.3 ; Crystal structure of ADP-bound bacterial Get3-like A and B in Mycobacterium tuberculosis 7RCL ; 2.4 ; Crystal Structure of ADP-bound Galactokinase 7RCM ; 2.1 ; Crystal Structure of ADP-bound Galactokinase 4IFC ; 2.13 ; Crystal Structure of ADP-bound Human PRPF4B kinase domain 5WC2 ; 2.5 ; Crystal Structure of ADP-bound human TRIP13 1L2L ; 2.0 ; Crystal structure of ADP-dependent glucokinase from a Pyrococcus Horikoshii 5OD2 ; 1.98 ; Crystal structure of ADP-dependent glucokinase from Methanocaldococcus jannaschii 3BRK ; 2.1 ; Crystal Structure of ADP-Glucose Pyrophosphorylase from Agrobacterium tumefaciens 4EJ0 ; 2.609 ; Crystal structure of ADP-L-glycero-D-manno-heptose-6-epimerase from Burkholderia thailandensis 9B22 ; 1.3 ; Crystal structure of ADP-ribose diphosphatase from Klebsiella pneumoniae (ADP Ribose and AMP bound) 9B21 ; 1.6 ; Crystal structure of ADP-ribose diphosphatase from Klebsiella pneumoniae (ADP Ribose bound, Orthorhombic P form) 9B20 ; 1.55 ; Crystal structure of ADP-ribose diphosphatase from Klebsiella pneumoniae (AMP bound) 9B1Z ; 1.25 ; Crystal structure of ADP-ribose diphosphatase from Klebsiella pneumoniae (Apo) 4KYX ; 1.8 ; Crystal structure of ADP-ribose pyrophosphatase MutT from Rickettsia felis 3ZWX ; 2.6 ; Crystal structure of ADP-ribosyl cyclase complexed with 8-bromo-ADP- ribose 3ZWY ; 2.4 ; Crystal structure of ADP-ribosyl cyclase complexed with 8-bromo-ADP- ribose and cyclic 8-bromo-cyclic-ADP-ribose 3ZWV ; 2.3 ; Crystal structure of ADP-ribosyl cyclase complexed with ara-2'F-ADP- ribose at 2.3 angstrom 3ZWW ; 2.3 ; Crystal structure of ADP-ribosyl cyclase complexed with ara-2'F-ADP- ribose at 2.3 angstrom 1R0S ; 2.0 ; Crystal structure of ADP-ribosyl cyclase Glu179Ala mutant 1U2R ; 2.6 ; Crystal Structure of ADP-ribosylated Ribosomal Translocase from Saccharomyces cerevisiae 1NA8 ; 2.3 ; Crystal structure of ADP-ribosylation factor binding protein GGA1 2CWC ; 1.65 ; Crystal structure of ADP-ribosylglycohydrolase-related protein from Thermus thermophilus HB8 3U0J ; 2.7 ; Crystal structure of ADP-ribosyltransferase HopU1 of Pseudomonas syringae pv. Tomato DC3000 4XZK ; 1.8 ; Crystal structure of ADP-ribosyltransferase Vis in complex with agmatine 4YC0 ; 1.5 ; Crystal structure of ADP-ribosyltransferase Vis in complex with M6 Inhibitor 4XZJ ; 1.8 ; Crystal structure of ADP-ribosyltransferase Vis in complex with NAD 7WR6 ; 1.96 ; Crystal structure of ADP-riboxanated caspase-4 in complex with Af1521 3RQ5 ; 1.7 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis co-crystallized with ATP/Mg2+ and soaked with CoA 3RQ2 ; 1.8 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis co-crystallized with ATP/Mg2+ and soaked with NADH 3RPZ ; 1.51 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis co-crystallized with ATP/Mg2+ and soaked with NADPH 3RPH ; 1.75 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis co-crystallized with ATP/Mg2+. 3RQQ ; 1.6 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis in complex with P1,P3-Di(adenosine-5') triphosphate 3RQX ; 1.6 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis in complex with P1,P4-Di(adenosine-5') tetraphosphate 3RQH ; 1.75 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis in complex with P1,P6-Di(adenosine-5') hexaphosphate 3RQ6 ; 1.65 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis soaked with ADP-ribose 3RQ8 ; 1.9 ; Crystal Structure of ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Bacillus subtilis soaked with P1,P5-Di(adenosine-5') pentaphosphate 4CEI ; 2.8 ; Crystal structure of ADPNP-bound AddAB with a forked DNA substrate 4IYE ; 1.951 ; Crystal structure of AdTx1 (rho-Da1a) from eastern green mamba (Dendroaspis angusticeps) 2EA7 ; 1.8 ; Crystal Structure of Adzuki Bean 7S Globulin-1 2EAA ; 2.25 ; Crystal Structure of Adzuki Bean 7S Globulin-3 3DXL ; 1.3 ; Crystal structure of AeD7 from Aedes Aegypti 3DY9 ; 1.7 ; Crystal structure of AeD7 potassium bromide soak 3DYE ; 1.75 ; Crystal structure of AED7-norepineprhine complex 2HUF ; 1.75 ; Crystal structure of Aedes aegypti alanine glyoxylate aminotransferase 2HUU ; 2.1 ; Crystal structure of Aedes aegypti alanine glyoxylate aminotransferase in complex with alanine 2HUI ; 1.75 ; Crystal structure of Aedes aegypti alanine glyoxylate aminotransferase in complex with glyoxylic acid 7JW2 ; 1.5 ; Crystal structure of Aedes aegypti Nibbler EXO domain 7JW3 ; 3.05 ; Crystal structure of Aedes aegypti Nibbler NTD domain 7EBU ; 1.95 ; Crystal structure of Aedes aegypti Noppera-bo, glutathione S-transferase epsilon 8, in Daidzein- and glutathione-bound form 7EBW ; 1.94 ; Crystal structure of Aedes aegypti Noppera-bo, glutathione S-transferase epsilon 8, in desmethylglycitein and glutathione-bound form 7EBT ; 1.51 ; Crystal structure of Aedes aegypti Noppera-bo, glutathione S-transferase epsilon 8, in glutathione-bound form 7EBV ; 1.5 ; Crystal structure of Aedes aegypti Noppera-bo, glutathione S-transferase epsilon 8, in luteolin- and glutathione-bound form 1EJ3 ; 2.3 ; CRYSTAL STRUCTURE OF AEQUORIN 5ZBE ; 1.6 ; Crystal structure of AerE from Microcystis aeruginosa 6JH7 ; 1.38 ; Crystal structure of AerF from Microcystis aeruginosa 5XLF ; 1.71 ; Crystal structure of aerobically purified and aerobically crystallized D. vulgaris Miyazaki F [NiFe]-hydrogenase 5XLH ; 1.93 ; Crystal structure of aerobically purified and aerobically crystallized for 12weeks D. vulgaris Miyazaki F [NiFe]-hydrogenase 5Y4N ; 1.69 ; Crystal structure of aerobically purified and anaerobically crystallized D. vulgaris Miyazaki F [NiFe]-hydrogenase 6Z5H ; 2.3 ; Crystal structure of Aeromonas exotoxin A 4DZG ; 2.02 ; Crystal structure of Aeromonas hydrophila PliG, a periplasmic lysozyme inhibitor of g-type lysozyme 4PJ2 ; 1.24 ; Crystal structure of Aeromonas hydrophila PliI in complex with Meretrix lusoria lysozyme 3WGB ; 2.6 ; Crystal structure of aeromonas jandaei L-allo-threonine aldolase 3VH9 ; 1.29 ; Crystal structure of Aeromonas proteolytica aminopeptidase complexed with 8-quinolinol 1XRY ; 2.1 ; Crystal structure of Aeromonas proteolytica aminopeptidase in complex with bestatin 1AMP ; 1.8 ; CRYSTAL STRUCTURE OF AEROMONAS PROTEOLYTICA AMINOPEPTIDASE: A PROTOTYPICAL MEMBER OF THE CO-CATALYTIC ZINC ENZYME FAMILY 3WQB ; 1.41 ; Crystal structure of aeromonas sobria serine protease (ASP) and the chaperone (ORF2) complex 4DF3 ; 1.73 ; Crystal Structure of Aeropyrum pernix fibrillarin in complex with natively bound S-adenosyl-L-methionine at 1.7A 4GQC ; 2.0 ; Crystal Structure of Aeropyrum pernix Peroxiredoxin Q Enzyme in Fully-Folded and Locally-Unfolded Conformations 4N5Z ; 2.9537 ; Crystal structure of aerosol transmissible influenza H5 hemagglutinin mutant (N158D, N224K, Q226L and T318I) from the influenza virus A/Viet Nam/1203/2004 (H5N1) 7TE2 ; 2.25 ; Crystal Structure of AerR from Rhodobacter capsulatus at 2.25 A. 8JI2 ; 1.75 ; Crystal structure of AetD in complex with 5,7-dibromo-L-tryptophan 8JI3 ; 1.78 ; Crystal structure of AetD in complex with 5,7-dibromo-L-tryptophan and two Fe2+ 8JI4 ; 1.67 ; Crystal structure of AetD in complex with 5-bromo-L-tryptophan 8JI5 ; 2.01 ; Crystal structure of AetD in complex with 5-bromo-L-tryptophan and two Fe2+ 8JI6 ; 1.9 ; Crystal structure of AetD in complex with L-tryptophan 8JI7 ; 1.61 ; Crystal structure of AetD in complex with L-tryptophan and two Fe2+ 8JZ2 ; 1.85 ; Crystal structure of AetF in complex with FAD 8JZ4 ; 2.08 ; Crystal structure of AetF in complex with FAD and 5-bromo-L-tryptophan 8JZ3 ; 2.2 ; Crystal structure of AetF in complex with FAD and L-tryptophan 8JZ5 ; 1.86 ; Crystal structure of AetF in complex with FAD and NADP+ at 1.86 angstrom 2Q07 ; 2.04 ; Crystal structure of AF0587, a protein of unknown function 7EDP ; 2.2 ; Crystal structure of AF10-DOT1L complex 7EKN ; 2.14 ; Crystal structure of AF10-ipep complex 2QVO ; 1.85 ; Crystal structure of AF1382 from Archaeoglobus fulgidus 3O3K ; 2.3 ; Crystal structure of AF1382 from Archaeoglobus fulgidus 3OV8 ; 1.8501 ; Crystal structure of AF1382 from Archaeoglobus fulgidus, High resolution 1HJZ ; 1.7 ; Crystal structure of AF1521 protein containing a macroH2A domain 2I5H ; 1.74 ; Crystal structure of Af1531 from Archaeoglobus fulgidus, Pfam DUF655 4L6U ; 2.5 ; Crystal structure of AF1868: Cmr1 subunit of the Cmr RNA silencing complex 2PH7 ; 2.4 ; Crystal structure of AF2093 from Archaeoglobus fulgidus 1OI0 ; 1.5 ; CRYSTAL STRUCTURE OF AF2198, A JAB1/MPN DOMAIN PROTEIN FROM ARCHAEOGLOBUS FULGIDUS 4TMP ; 2.3 ; Crystal structure of AF9 YEATS bound to H3K9ac peptide 5YYF ; 1.903 ; Crystal structure of AF9 YEATS domain in complex with a peptide inhibitor ""PHQ-H3(Q5-K9)"" modified at K9 with 2-furancarboyl group 7VKG ; 1.83 ; Crystal structure of AF9 YEATS domain in complex with Compound 10 7EIC ; 1.95 ; Crystal structure of AF9 YEATS domain in complex with H4K5acK8ac peptide 7EID ; 2.0 ; Crystal structure of AF9 YEATS domain in complex with H4K8acK12ac peptide 6MIL ; 1.93 ; Crystal structure of AF9 YEATS domain in complex with histone H3K9bu 7VKH ; 2.25 ; Crystal structure of AF9 YEATS domain in complex with hit 2 6MIM ; 2.525 ; Crystal structure of AF9 YEATS domain Y78W mutant in complex with histone H3K9cr 3AXA ; 2.78 ; Crystal structure of afadin PDZ domain in complex with the C-terminal peptide from nectin-3 3ZC1 ; 3.269 ; Crystal structure of AfC3PO 6L1Q ; 2.2 ; Crystal structure of AfCbbQ2, a MoxR AAA+-ATPase and CbbQO-type Rubisco activase from Acidithiobacillus ferrooxidans 3WZG ; 2.95 ; Crystal structure of AfCsx3 3WZH ; 3.31 ; Crystal structure of AfCsx3 3WZI ; 2.9 ; Crystal structure of AfCsx3 in complex with ssRNA 6KN5 ; 2.2 ; Crystal structure of AFF4 C-terminal domain 7RPV ; 3.54 ; Crystal structure of affinity-enhancing and catalytically inactive ACE2 in complex with SARS-CoV-2 RBD 7WGI ; 2.5 ; Crystal structure of AflSQS from Aspergillus flavus 7WGH ; 2.36 ; Crystal structure of AflSQS from Aspergillus flavus in complex with FSPP 5J5L ; 1.7 ; CRYSTAL STRUCTURE OF AFMP4P IN COMPLEX WITH ARACHIDONIC ACID 5J5K ; 1.95 ; CRYSTAL STRUCTURE OF AFMP4P IN COMPLEX WITH PALMITIC ACID 6TZC ; 2.41 ; Crystal Structure of African Swine Fever Virus A179L with the Autophagy Regulator Beclin 8HW5 ; 2.3 ; Crystal structure of African swine fever virus CP312R 4LMG ; 2.2 ; Crystal structure of AFT2 in complex with DNA 6P2K ; 2.15 ; Crystal structure of AFV00434, an ancestral GH74 enzyme 2WB6 ; 1.95 ; Crystal structure of AFV1-102, a protein from the Acidianus Filamentous Virus 1 2J6B ; 1.3 ; crystal structure of AFV3-109, a highly conserved protein from crenarchaeal viruses 2J6C ; 1.3 ; crystal structure of AFV3-109, a highly conserved protein from crenarchaeal viruses 2VB3 ; 2.33 ; Crystal structure of Ag(I)CusF 8GY1 ; 1.9 ; Crystal structure of Ag+ binding to Dendrorhynchus zhejiangensis ferritin 6LBW ; 1.501 ; Crystal structure of Ag-mediated base pairs in uncanonical DNA duplex 5OCJ ; 1.8 ; Crystal structure of Ag85C bound to cyclophostin 8beta inhibitor 4QDO ; 1.899 ; Crystal structure of Ag85C co-crystallized with p-chloromercuribenzoic acid 3PJI ; 1.704 ; Crystal structure of AgamOBP22a at 1.7 angstrom in the open status for ligand binding. 7YT9 ; 2.6 ; crystal structure of AGD1-4 of Arabidopsis AGDP3 6NWZ ; 2.6 ; Crystal structure of Agd3 a novel carbohydrate deacetylase 7P4D ; 1.85 ; Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with covalent Cyclophellitol Sulfamidate probe KK130 5I24 ; 1.85 ; Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF021 5I23 ; 1.95 ; Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF022 7P4C ; 1.86 ; Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with noncovalent Cyclophellitol Sulfamidate probe KK131 4BA0 ; 1.85 ; Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF 4B9Z ; 2.0 ; Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose 7N3B ; 2.09 ; Crystal structure of aged 9-site deamidated variant of human gamma(S)-crystallin 5MEI ; 3.5 ; Crystal structure of Agelastatin A bound to the 80S ribosome 4PH8 ; 1.55 ; Crystal structure of AggA, the major subunit of aggregative adherence fimbriae type I (AAF/I) from the Escherichia coli O4H104 4PHX ; 2.4 ; Crystal structure of AggB, the minor subunit of aggregative adherence fimbriae type I from the Escherichia coli O4H104 3BWE ; 2.4 ; Crystal structure of aggregated form of DJ1 3UBU ; 1.91 ; Crystal structure of agkisacucetin, a GpIb-binding snaclec (snake C-type lectin) that inhibits platelet 5ZRU ; 1.833 ; Crystal structure of Agl-KA catalytic domain 1WOG ; 1.8 ; Crystal Structure of Agmatinase Reveals Structural Conservation and Inhibition Mechanism of the Ureohydrolase Superfamily 1WOH ; 1.75 ; Crystal Structure of Agmatinase Reveals Structural Conservation and Inhibition Mechanism of the Ureohydrolase Superfamily 1WOI ; 1.85 ; Crystal Structure of Agmatinase Reveals Structural Conservation and Inhibition Mechanism of the Ureohydrolase Superfamily 7DTP ; 2.3 ; Crystal structure of agmatine coumaroyltransferase from Triticum aestivum 7CIU ; 1.825 ; Crystal Structure of Agmatine N-Acetyltransferase mutant S171A apo form 7CIW ; 1.6 ; Crystal Structure of Agmatine N-Acetyltransferase mutant S171A in complex with Ac-Agm and CoA 7CIV ; 1.848 ; Crystal Structure of Agmatine N-Acetyltransferase mutant S171A in complex with Ac-CoA 7CIX ; 1.748 ; Crystal Structure of Agmatine N-Acetyltransferase mutant S171A in complex with CoA 6AGG ; 2.706 ; Crystal structure of agmatine-AMPPCP-Mg complexed TiaS (tRNAIle2 agmatidine synthetase) 7C6B ; 1.7 ; Crystal structure of Ago2 MID domain in complex with 6-(3-(2-carboxyethyl)phenyl)purine riboside monophosphate 7D7U ; 2.0 ; Crystal structure of Ago2 MID domain in complex with 8-Br-adenosin-5'-monophosphate 3MQ0 ; 1.793 ; Crystal Structure of Agobacterium tumefaciens repressor BlcR 7YXU ; 2.31 ; Crystal structure of agonistic antibody 1618 fab domain bound to human 4-1BB. 4YZW ; 2.6 ; Crystal structure of AgPPO8 4XQJ ; 1.9 ; Crystal structure of AgrA LytTR domain in complex with promoters 4XQN ; 2.3 ; Crystal structure of AgrA LytTR domain in complex with promoters 4XQQ ; 3.05 ; Crystal structure of AgrA LytTR domain in complex with promoters 3V64 ; 2.85 ; Crystal Structure of agrin and LRP4 3V65 ; 3.3 ; Crystal structure of agrin and LRP4 complex 7CNP ; 1.6 ; Crystal structure of Agrobacterium tumefaciens aconitase X (apo-form) 7CNQ ; 2.0 ; Crystal structure of Agrobacterium tumefaciens aconitase X (holo-form) 7D2R ; 2.005 ; Crystal structure of Agrobacterium tumefaciens aconitase X mutant - S449C/C510V 4MUP ; 1.6 ; Crystal structure of Agrobacterium tumefaciens ATU3138 (EFI target 505157), apo structure 5L9O ; 1.84 ; Crystal structure of Agrobacterium tumefaciens C58 strain PBP SocA in complex with glucopine 1Z2I ; 2.2 ; CRYSTAL STRUCTURE OF Agrobacterium tumefaciens MALATE DEHYDROGENASE, NEW YORK STRUCTURAL GENOMICS CONSORTIUM 7Q92 ; 2.18 ; Crystal Structure of Agrobacterium tumefaciens NADQ, ATP complex. 7Q94 ; 4.3 ; Crystal Structure of Agrobacterium tumefaciens NADQ, DNA complex. 7Q93 ; 2.19 ; Crystal Structure of Agrobacterium tumefaciens NADQ, NAD complex. 7Q91 ; 2.31 ; Crystal Structure of Agrobacterium tumefaciens NADQ, native form. 3BTP ; 2.3 ; Crystal structure of Agrobacterium tumefaciens VirE2 in complex with its chaperone VirE1: a novel fold and implications for DNA binding 3M3Q ; 2.2 ; Crystal Structure of Agrocybe aegerita lectin AAL complexed with Ganglosides GM1 pentasaccharide 3M3C ; 2.0 ; Crystal Structure of Agrocybe aegerita lectin AAL complexed with p-Nitrophenyl TF disaccharide 3AFK ; 1.95 ; Crystal Structure of Agrocybe aegerita lectin AAL complexed with Thomsen-Friedenreich antigen 3M3E ; 2.1 ; Crystal Structure of Agrocybe aegerita lectin AAL mutant E66A complexed with p-Nitrophenyl Thomsen-Friedenreich disaccharide 2ZGT ; 2.8 ; Crystal structure of Agrocybe aegerita lectin AAL mutant F93G 2ZGP ; 2.7 ; Crystal structure of Agrocybe aegerita lectin AAL mutant I25G 2ZGS ; 1.9 ; Crystal structure of Agrocybe aegerita lectin AAL mutant L47A 3M3O ; 2.1 ; Crystal Structure of Agrocybe aegerita lectin AAL mutant R85A complexed with p-Nitrophenyl TF disaccharide 3WG2 ; 2.2 ; Crystal structure of Agrocybe cylindracea galectin mutant (N46A) 3WG4 ; 1.6 ; Crystal structure of Agrocybe cylindracea galectin mutant (N46A) with blood type A antigen tetraose 3WG3 ; 1.35 ; Crystal structure of Agrocybe cylindracea galectin with blood type A antigen tetraose 3WG1 ; 1.9 ; Crystal structure of Agrocybe cylindracea galectin with lactose 3N72 ; 1.77 ; Crystal Structure of Aha-1 from plasmodium falciparum, PFC0270w 6LPI ; 2.849 ; Crystal Structure of AHAS holo-enzyme 6YN7 ; 1.98 ; Crystal Structure of AHE enzyme from Alicyclobacillus herbarius 4H86 ; 2.004 ; Crystal structure of Ahp1 from Saccharomyces cerevisiae in reduced form 4OWY ; 2.2 ; Crystal Structure of Ahp1 from Saccharomyces cerevisiae. Investigating the electron transfers. 1N8J ; 2.17 ; Crystal Structure of AhpC with Active Site Cysteine mutated to Serine (C46S) 1XVW ; 1.9 ; Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin 1XXU ; 1.9 ; Crystal Structure of AhpE from Mycrobacterium tuberculosis, a 1-Cys peroxiredoxin 3PSS ; 2.0 ; Crystal Structure of AhQnr, the Qnr protein from Aeromonas hydrophila (P21 crystal form) 3PSZ ; 2.2 ; Crystal Structure of AhQnr, the Qnr protein from Aeromonas hydrophila (P21212 crystal form) 1F9N ; 2.7 ; CRYSTAL STRUCTURE OF AHRC, THE ARGININE REPRESSOR/ACTIVATOR PROTEIN FROM BACILLUS SUBTILIS 5Y7Y ; 2.4 ; Crystal structure of AhRR/ARNT complex 1Y01 ; 2.8 ; Crystal structure of AHSP bound to Fe(II) alpha-hemoglobin 4HG9 ; 1.6 ; Crystal structure of AhV_bPA, a basic PLA2 from Agkistrodon halys pallas venom 4E7N ; 1.75 ; Crystal Structure of AhV_TL-I, a Glycosylated Snake-venom Thrombin-like Enzyme from Agkistrodon halys 5K1S ; 2.55 ; crystal structure of AibC 5K7Z ; 2.92 ; Crystal structure of AibR in complex with isovaleryl coenzyme A and operator DNA 5K7H ; 2.35 ; Crystal structure of AibR in complex with the effector molecule isovaleryl coenzyme A 5UY8 ; 2.39 ; Crystal structure of AICARFT bound to an antifolate 5UZ0 ; 1.79 ; Crystal structure of AICARFT bound to an antifolate 7ZV6 ; 2.83 ; Crystal Structure of Aichivirus A 2A protein 7ZV1 ; 1.74 ; Crystal Structure of Aichivirus A 2A protein L64M, L109M mutant 4MO0 ; 2.1 ; Crystal structure of aIF1 from Methanocaldococcus jannaschii 4MNO ; 1.35 ; Crystal structure of aIF1A from Pyrococcus abyssi 6R8S ; 2.18 ; Crystal structure of aIF2gamma subunit I181K from archaeon Sulfolobus solfataricus complexed with GDPCP 6R8T ; 2.1 ; Crystal structure of aIF2gamma subunit I181T from archaeon Sulfolobus solfataricus complexed with GDPCP 8C3A ; 3.0 ; Crystal structure of ailanthone bound to the Candida albicans 80S ribosome 3CW3 ; 1.88 ; Crystal structure of AIM1g1 6JG5 ; 2.221 ; Crystal structure of AimR 5XYB ; 2.198 ; Crystal structure of AimR from Bacillus phage SPbeta 5Y24 ; 1.922 ; Crystal structure of AimR from Bacillus phage SPbeta in complex with its signalling peptide 6JG9 ; 1.998 ; Crystal structure of AimR in complex with arbitrium peptide 6JG8 ; 2.097 ; Crystal structure of AimR in complex with DNA 6VX1 ; 2.78 ; Crystal structure of air-exposed C45G/T50C D. vulgaris carbon monoxide dehydrogenase (2 day air exposure) 6VX0 ; 2.21 ; Crystal structure of air-exposed C45G/T50C D. vulgaris carbon monoxide dehydrogenase (2 hour air exposure) 6VWZ ; 2.488 ; Crystal structure of air-exposed C45G/T50C D. vulgaris carbon monoxide dehydrogenase (20 minute air exposure) 6WUQ ; 2.003 ; Crystal structure of AjiA1 in apo form 5NIN ; 1.7 ; Crystal Structure of AKAP79 calmodulin binding domain peptide in complex with Ca2+/Calmodulin 4GQG ; 1.92 ; Crystal structure of AKR1B10 complexed with NADP+ 4GQ0 ; 2.1 ; Crystal structure of AKR1B10 complexed with NADP+ and Caffeic acid phenethyl ester 4JIH ; 2.3 ; Crystal Structure Of AKR1B10 Complexed With NADP+ And Epalrestat 4I5X ; 2.1 ; Crystal Structure Of AKR1B10 Complexed With NADP+ And Flufenamic acid 1ZUA ; 1.25 ; Crystal Structure Of AKR1B10 Complexed With NADP+ And Tolrestat 4JII ; 2.2 ; Crystal Structure Of AKR1B10 Complexed With NADP+ And Zopolrestat 5Y7N ; 2.5 ; Crystal structure of AKR1B10 in complex with NADP+ and Androst-4-ene-3-beta-6-alpha-diol 3O3R ; 1.86 ; Crystal Structure of AKR1B14 in complex with NADP 4YVP ; 2.6 ; Crystal Structure of AKR1C1 complexed with glibenclamide 6IJX ; 2.2 ; Crystal Structure of AKR1C1 complexed with meclofenamic acid 3C3U ; 1.8 ; Crystal structure of AKR1C1 in complex with NADP and 3,5-dichlorosalicylic acid 3NTY ; 1.87 ; Crystal structure of AKR1C1 in complex with NADP and 5-Phenyl,3-chlorosalicylic acid 3GUG ; 1.9 ; Crystal structure of AKR1C1 L308V mutant in complex with NADP and 3,5-dichlorosalicylic acid 5HNT ; 2.0 ; Crystal Structure of AKR1C3 complexed with CAPE 4YVV ; 2.3 ; Crystal structure of AKR1C3 complexed with glibenclamide 4ZFC ; 2.0 ; Crystal structure of AKR1C3 complexed with glicazide 4YVX ; 2.3 ; Crystal structure of AKR1C3 complexed with glimepiride 5HNU ; 2.0 ; Crystal Structure of AKR1C3 complexed with octyl gallate 7W1X ; 1.9 ; Crystal structure of AKR4C16 bound with NADPH 7F7K ; 2.36 ; Crystal structure of AKR4C17 bound with NADP+ 7F7L ; 2.25 ; Crystal structure of AKR4C17 bound with NADPH 8XR2 ; 2.39 ; Crystal structure of AKRtyl-apo1 8XR3 ; 2.31 ; Crystal structure of AKRtyl-apo2 8XR4 ; 1.94 ; Crystal structure of AKRtyl-NADP(H) complex 8JWM ; 1.93 ; Crystal structure of AKRtyl-NADP-tylosin complex 8JWN ; 2.25 ; Crystal structure of AKRtyl-NADPH complex 8JWO ; 2.25 ; Crystal structure of AKRtyl-tylosin complex 3CQU ; 2.2 ; Crystal Structure of Akt-1 complexed with substrate peptide and inhibitor 3CQW ; 2.0 ; Crystal Structure of Akt-1 complexed with substrate peptide and inhibitor 3MV5 ; 2.47 ; Crystal structure of Akt-1-inhibitor complexes 3MVH ; 2.01 ; Crystal structure of Akt-1-inhibitor complexes 6NPZ ; 2.12 ; Crystal structure of Akt1 (aa 123-480) kinase with a bisubstrate 6BUU ; 2.4 ; Crystal structure of AKT1 (aa 144-480) with a bisubstrate 6CCY ; 2.18 ; Crystal structure of Akt1 in complex with a selective inhibitor 6S9X ; 2.6 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 15c 6S9W ; 2.3 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 16a 6HHJ ; 2.3 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 24b 6HHG ; 2.3 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 27 6HHI ; 2.7 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 30b 6HHH ; 2.7 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor 31 6HHF ; 2.9 ; Crystal Structure of AKT1 in Complex with Covalent-Allosteric AKT Inhibitor Borussertib 4IT7 ; 2.1 ; Crystal structure of Al-CPI 5Y20 ; 2.409 ; Crystal structure of AL1 PHD finger bound to H3K4me3 5XVL ; 1.629 ; Crystal structure of AL2 PAL domain 5Y53 ; 1.598 ; Crystal structure of AL2 PAL domain in complex with AtBMI1b binding site 5XVW ; 1.849 ; Crystal structure of AL2 PAL domain in complex with AtRing1a distal site 5Y21 ; 1.769 ; Crystal structure of AL2 PAL domain in complex with AtRing1a proximal site 5YC3 ; 2.601 ; Crystal structure of AL3 PHD finger bound to H3K4me2 5YC4 ; 2.697 ; Crystal structure of AL3 PHD finger bound to H3K4me3 5XVJ ; 1.4 ; Crystal structure of AL7 PAL domain 1AMT ; 1.5 ; Crystal structure of alamethicin at 1.5 angstrom resolution 3TCM ; 2.71 ; Crystal Structure of Alanine Aminotransferase from Hordeum vulgare 1VLL ; 2.8 ; Crystal structure of alanine dehydrogenase (AF1665) from Archaeoglobus fulgidus at 2.80 A resolution 2EEZ ; 2.71 ; Crystal structure of alanine dehydrogenase from themus thermophilus 3P2Y ; 1.82 ; Crystal structure of alanine dehydrogenase/pyridine nucleotide transhydrogenase from Mycobacterium smegmatis 5YYC ; 1.801 ; Crystal structure of alanine racemase from Bacillus pseudofirmus (OF4) 3KW3 ; 2.04 ; Crystal structure of alanine racemase from Bartonella henselae with covalently bound pyridoxal phosphate 2DY3 ; 2.1 ; Crystal Structure of alanine racemase from Corynebacterium glutamicum 1VFH ; 2.0 ; Crystal structure of alanine racemase from D-cycloserine producing Streptomyces lavendulae 3E5P ; 2.5 ; Crystal structure of alanine racemase from E.faecalis 3E6E ; 2.5 ; Crystal structure of Alanine racemase from E.faecalis complex with cycloserine 3CO8 ; 1.7 ; Crystal structure of alanine racemase from Oenococcus oeni 3HUR ; 2.5 ; Crystal structure of alanine racemase from Oenococcus oeni 1FTX ; 2.2 ; Crystal structure of alanine racemase in complex with D-alanine phosphonate 1VJO ; 1.7 ; Crystal structure of Alanine--glyoxylate aminotransferase (ALR1004) from Nostoc sp. at 1.70 A resolution 2YRI ; 2.05 ; Crystal structure of alanine-pyruvate aminotransferase with 2-methylserine 1V4P ; 1.45 ; Crystal structure of Alanyl-tRNA Synthetase from Pyrococcus horikoshii OT3 2ZZG ; 3.1 ; Crystal structure of alanyl-tRNA synthetase in complex with 5''-O-(N-(L-alanyl)-sulfamyoxyl) adenine without oligomerization domain 1YFR ; 2.15 ; crystal structure of alanyl-tRNA synthetase in complex with ATP and magnesium 2ZZF ; 2.7 ; Crystal structure of alanyl-tRNA synthetase without oligomerization domain 2ZZE ; 2.16 ; Crystal structure of alanyl-tRNA synthetase without oligomerization domain in lysine-methylated form 8OI2 ; 3.3 ; Crystal structure of Alb1 megabody in complex with human serum albumin 6ET8 ; 1.7 ; Crystal structure of AlbA in complex with albicidin 7DL8 ; 2.459 ; Crystal structure of ALBA1 from Trypanosoma brucei 3U6Y ; 2.0 ; Crystal structure of ALBA2-DNA complex 7Y8U ; 2.1 ; Crystal structure of AlbEF homolog from Quasibacillus thermotolerans 7Y8X ; 2.25 ; Crystal structure of AlbEF homolog from Quasibacillus thermotolerans in complex with Ni(II) 7Y8V ; 2.3 ; Crystal structure of AlbEF homolog mutant (AlbF-H54A/H58A) from Quasibacillus thermotolerans 7RI3 ; 2.69 ; Crystal structure of Albireti Toxin, a diphtheria toxin homolog, from Streptomyces albireticuli 2HJ4 ; 1.8 ; Crystal structure of Alcaligenes faecalis AADH complex with p-nitrobenzylamine 2Q7Q ; 1.6 ; Crystal structure of Alcaligenes faecalis AADH in complex with p-chlorobenzylamine. 2HJB ; 1.85 ; Crystal structure of Alcaligenes faecalis AADH in complex with p-methoxybenzylamine 3VDQ ; 2.2 ; Crystal structure of alcaligenes faecalis D-3-hydroxybutyrate dehydrogenase in complex with NAD(+) and acetate 1VJ0 ; 2.0 ; Crystal structure of Alcohol dehydrogenase (TM0436) from Thermotoga maritima at 2.00 A resolution 7CYI ; 2.95 ; Crystal structure of Alcohol dehydrogenase 1 from Artemisia annua 6LJH ; 1.8 ; Crystal structure of Alcohol dehydrogenase 1 from Artemisia annua in complex with NAD+ 6C49 ; 1.85 ; Crystal Structure of Alcohol Dehydrogenase from Acinetobacter baumannii 8CON ; 1.7 ; Crystal structure of alcohol dehydrogenase from Arabidopsis thaliana in complex with NADH 3MEQ ; 2.0 ; Crystal structure of alcohol dehydrogenase from Brucella melitensis 8IJ7 ; 2.54 ; Crystal structure of alcohol dehydrogenase from Burkholderia gladioli 8IJ6 ; 2.28 ; Crystal structure of alcohol dehydrogenase from Burkholderia gladioli with NADP 8H2A ; 2.5 ; Crystal structure of alcohol dehydrogenase from Formosa agariphila 6IQD ; 2.84 ; Crystal structure of Alcohol dehydrogenase from Geobacillus stearothermophilus 8H2B ; 2.1 ; Crystal structure of alcohol dehydrogenase from Zobellia galactanivorans 8IJ8 ; 2.38 ; Crystal structure of alcohol dehydrogenase M4 mutant from Burkholderia gladioli 8IJG ; 2.27 ; Crystal structure of alcohol dehydrogenase M5 from Burkholderia gladioli with NADP 3GOH ; 1.55 ; Crystal structure of alcohol dehydrogenase superfamily protein (NP_718042.1) from Shewanella oneidensis at 1.55 A resolution 5TNX ; 1.7 ; Crystal structure of Alcohol dehydrogenase zinc-binding domain protein from Burkholderia ambifaria 1O2D ; 1.3 ; Crystal structure of Alcohol dehydrogenase, iron-containing (TM0920) from Thermotoga maritima at 1.30 A resolution 8IL4 ; 3.355 ; Crystal structure of alcohol oxidase ParAOX(M59V/Q60P/R61N/F101S/N602H)(Polyporus arcularius) 8IL5 ; 2.50006 ; Crystal structure of alcohol oxidase PcAOX(M59V/Q60P/R61N)(Phanerochaete chrysosporium) 4FL0 ; 2.3 ; Crystal structure of ALD1 from Arabidopsis thaliana 7KQV ; 3.18 ; Crystal Structure of aldehyde dehydrogenase (ChALDH) from Cladosporium herbarum 8IXI ; 2.28 ; Crystal structure of aldehyde dehydrogenase (EC 1.2.1.3) Klebsiella pneumoniae 7YOB ; 2.89 ; Crystal structure of Aldehyde dehydrogenase 1A1 from mouse 5N5S ; 2.3 ; Crystal structure of aldehyde dehydrogenase 21 (ALDH21) from Physcomitrella patens in complex with NADP+ 5MZ8 ; 2.2 ; Crystal structure of aldehyde dehydrogenase 21 (ALDH21) from Physcomitrella patens in complex with the reaction product succinate 5MZ5 ; 2.15 ; Crystal structure of aldehyde dehydrogenase 21 (ALDH21) from Physcomitrella patens in its apoform 6X9L ; 2.52 ; Crystal Structure of Aldehyde Dehydrogenase C (AldC) mutant (C291A) from Pseudomonas syringae in complexed with NAD+ and Octanal 3TY7 ; 2.4 ; Crystal Structure of Aldehyde Dehydrogenase family Protein from Staphylococcus aureus 3I44 ; 2.0 ; Crystal structure of aldehyde dehydrogenase from bartonella henselae at 2.0A resolution 3EK1 ; 2.1 ; Crystal structure of aldehyde dehydrogenase from brucella melitensis biovar abortus 2308 5J6B ; 1.95 ; Crystal structure of Aldehyde dehydrogenase from Burkholderia thailandensis in covelent complex with NADPH 2VRO ; 1.6 ; Crystal structure of aldehyde dehydrogenase from Burkholderia xenovorans LB400 1UJM ; 2.0 ; Crystal structure of aldehyde reductase 2 from Sporobolomyces salmonicolor AKU4429 5L2O ; 2.05 ; Crystal Structure of ALDH1A1 in complex with BUC22 5AZ1 ; 2.3 ; Crystal structure of aldo-keto reductase (AKR2E5) complexed with NADPH 5AZ0 ; 2.2 ; Crystal structure of aldo-keto reductase (AKR2E5) of the silkworm, Bombyx mori 6GXK ; 1.7 ; Crystal structure of Aldo-Keto Reductase 1C3 (AKR1C3) complexed with inhibitor. 7WQM ; 2.13 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound 24 7WQS ; 2.07 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound 25 7WQR ; 2.124 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound 28 8I0C ; 2.33 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound S0703 7X3L ; 1.86 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound S07044 7X3M ; 2.694 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound S07045 7X3O ; 2.001 ; Crystal structure of Aldo-keto reductase 1C3 complexed with compound S07054 7BC0 ; 1.83 ; Crystal structure of aldo-keto reductase from Agrobacterium tumefaciens in a binary complex with NADPH 7BC1 ; 1.5 ; Crystal structure of aldo-keto reductase from Agrobacterium tumefaciens in a ternary complex with NADPH and glucose 6CIA ; 2.3 ; Crystal structure of aldo-keto reductase from Klebsiella pneumoniae in complex with NADPH. 4XK2 ; 1.9 ; Crystal structure of aldo-keto reductase from Polaromonas sp. JS666 4XAP ; 2.21 ; Crystal structure of aldo-keto reductase from Sinorhizobium meliloti 1021 5C7H ; 1.3 ; Crystal structure of aldo-keto reductase from Sinorhizobium meliloti 1021 in complex with NADPH 7BBY ; 1.83 ; Crystal structure of aldo-keto reductase with C-terminal His tag from Agrobacterium tumefaciens 3O0K ; 1.8 ; Crystal structure of ALDO/KETO reductase from brucella melitensis 4WGH ; 1.8 ; Crystal structure of aldo/keto reductase from Klebsiella pneumoniae in complex with NADP and acetate at 1.8 A resolution 3FO9 ; 1.9 ; Crystal structure of aldolase antibody 33F12 Fab' in complex with hapten 1,3-diketone 3OCR ; 1.95 ; Crystal structure of aldolase II superfamily protein from Pseudomonas syringae 8FH5 ; 1.62 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And AT-001 8FH7 ; 1.45 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And AT-003 8FH8 ; 1.6 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And AT-003 Soaked In Hydrogen Peroxide 8FH9 ; 1.7 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And AT-007 4JIR ; 2.0 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And Epalrestat 8FH6 ; 1.952 ; Crystal Structure Of Aldose Reductase (AKR1B1) Complexed With NADP+ And Two AT-001 3AFN ; 1.63 ; Crystal structure of aldose reductase A1-R complexed with NADP 3AFM ; 1.65 ; Crystal structure of aldose reductase A1-R responsible for alginate metabolism 2INZ ; 1.95 ; Crystal Structure of Aldose Reductase complexed with 2-Hydroxyphenylacetic Acid 1X97 ; 1.4 ; Crystal structure of Aldose Reductase complexed with 2R4S (Stereoisomer of Fidarestat, 2S4S) 1X98 ; 1.3 ; Crystal structure of Aldose Reductase complexed with 2S4R (Stereoisomer of Fidarestat, 2S4S) 3BCJ ; 0.78 ; Crystal structure of Aldose Reductase complexed with 2S4R (Stereoisomer of Fidarestat, 2S4S) at 0.78 A 2IS7 ; 1.7 ; Crystal Structure of Aldose Reductase complexed with Dichlorophenylacetic acid 2IQ0 ; 1.95 ; Crystal Structure of Aldose Reductase complexed with Hexanoic Acid 2IQD ; 2.0 ; Crystal Structure of Aldose Reductase complexed with Lipoic Acid 2INE ; 1.9 ; Crystal Structure of Aldose Reductase complexed with Phenylacetic Acid 1X96 ; 1.4 ; Crystal structure of Aldose Reductase with citrates bound in the active site 7S5I ; 1.61 ; Crystal structure of Aldose-6-phosphate reductase (Ald6PRase) from peach (Prunus persica) leaves 5A04 ; 1.698 ; Crystal structure of aldose-aldose oxidoreductase from Caulobacter crescentus complexed with glucose 5A02 ; 2.0 ; Crystal structure of aldose-aldose oxidoreductase from Caulobacter crescentus complexed with glycerol 5A05 ; 1.897 ; Crystal structure of aldose-aldose oxidoreductase from Caulobacter crescentus complexed with maltotriose 5A06 ; 1.841 ; Crystal structure of aldose-aldose oxidoreductase from Caulobacter crescentus complexed with sorbitol 5A03 ; 1.848 ; Crystal structure of aldose-aldose oxidoreductase from Caulobacter crescentus complexed with xylose 3W08 ; 1.8 ; Crystal structure of aldoxime dehydratase 3A17 ; 2.5 ; Crystal Structure of Aldoxime Dehydratase (OxdRE) in Complex with Butyraldoxime (Co-crystal) 3A18 ; 1.8 ; Crystal Structure of Aldoxime Dehydratase (OxdRE) in Complex with Butyraldoxime (soaked crystal) 3A16 ; 1.6 ; Crystal Structure of Aldoxime Dehydratase (OxdRE) in Complex with Propionaldoxime 3L7Q ; 2.5 ; Crystal structure of AldR from streptococcus mutans 7OA1 ; 2.0 ; Crystal structure of alfa carbonic anhydrase from Schistosoma mansoni with 4-(2-(3-(4-iodophenyl)ureido)ethyl)benzenesulfonamide 1SUS ; 2.7 ; Crystal structure of alfalfa feruoyl coenzyme A 3-O-methyltransferase 1XOK ; 3.0 ; crystal structure of alfalfa mosaic virus RNA 3'UTR in complex with coat protein N terminal peptide 4OK4 ; 1.7 ; Crystal Structure of Alg17c Mutant H202L 4OK2 ; 2.45 ; Crystal Structure of Alg17c Mutant Y258A 4OJZ ; 1.9 ; Crystal Structure of Alg17c Mutant Y258A Complexed with Alginate Trisaccharide 2ZA9 ; 2.1 ; Crystal Structure of Alginate lyase A1-II' N141C/N199C 1HV6 ; 2.0 ; CRYSTAL STRUCTURE OF ALGINATE LYASE A1-III COMPLEXED WITH TRISACCHARIDE PRODUCT. 1QAZ ; 1.78 ; CRYSTAL STRUCTURE OF ALGINATE LYASE A1-III FROM SPHINGOMONAS SPECIES A1 AT 1.78A RESOLUTION 3A0O ; 2.11 ; Crystal structure of alginate lyase from Agrobacterium tumefaciens C58 5Y33 ; 1.54 ; Crystal structure of alginate lyase from Flavobacterium sp. UMI-01 reveals polymannuronate specificity 6KFN ; 0.89 ; Crystal structure of alginate lyase from Paenibacillus sp. str. FPU-7 1VAV ; 2.0 ; Crystal structure of alginate lyase PA1167 from Pseudomonas aeruginosa at 2.0 A resolution 3GNE ; 1.2 ; Crystal structure of alginate lyase vAL-1 from Chlorella virus 3WSC ; 1.992 ; Crystal structure of alginate-binding protein Algp7 6JHX ; 2.2 ; Crystal structure of alginate-binding protein AlgQ2 without calcium ion 3E4B ; 2.5 ; Crystal structure of AlgK from Pseudomonas fluorescens WCS374r 6IN7 ; 1.96 ; Crystal structure of AlgU in complex with MucA(cyto) 3TP9 ; 2.7 ; Crystal structure of Alicyclobacillus acidocaldarius protein with beta-lactamase and rhodanese domains 5WQE ; 3.126 ; Crystal structure of Alicyclobacillus acidoterrestris C2c1 in complex with single-guide RNA at 3.1 Angstrom resolution 8CS0 ; 1.65 ; Crystal structure of alien DNA CTSZZPBSBSZPPBAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase 8CRZ ; 1.2 ; Crystal structure of alien DNA CTSZZPBSBSZPPBAG in a tetragonal lattice 8CRY ; 1.2 ; Crystal structure of alien DNA CTSZZPBSBSZPPBAG in an orthorhombic lattice 7C2A ; 1.18 ; Crystal structure of AlinE4, a SGNH-hydrolase family esterase 7C82 ; 1.18 ; Crystal structure of AlinE4, a SGNH-hydrolase family esterase 4Y59 ; 1.22 ; Crystal structure of ALiS1-Streptavidin complex 4Y5D ; 1.2 ; CRYSTAL STRUCTURE OF ALiS2-STREPTAVIDIN COMPLEX 5B5F ; 1.2 ; Crystal structure of ALiS3-Streptavidin complex 5B5G ; 1.5 ; Crystal structure of ALiS4-Streptavidin complex 2XS8 ; 2.498 ; Crystal Structure of ALIX in complex with the SIVagmTan-1 AYDPARKLL Late Domain 2XS1 ; 2.296 ; Crystal Structure of ALIX in complex with the SIVmac239 PYKEVTEDL Late Domain 2OJQ ; 2.87 ; Crystal structure of Alix V domain 2OEV ; 3.3 ; Crystal structure of ALIX/AIP1 2R05 ; 2.55 ; Crystal Structure of ALIX/AIP1 in complex with the HIV-1 YPLASL Late Domain 2R02 ; 2.6 ; Crystal Structure of ALIX/AIP1 in complex with the HIV-1 YPLTSL Late Domain 2R03 ; 2.59 ; Crystal Structure of ALIX/AIP1 in complex with the YPDL Late Domain 7NX3 ; 2.81 ; Crystal structure of ALK in complex with Fab324 7EXQ ; 2.2 ; Crystal structure of alkaline alpha-galactosidase D383A mutant from Arabidopsis thaliana complexed with product-galactose and sucrose. 7EXR ; 2.0 ; Crystal structure of alkaline alpha-galactosidase D383A mutant from Arabidopsis thaliana complexed with Stachyose. 7EXJ ; 2.47 ; Crystal structure of alkaline alpha-galctosidase D383A mutant from Arabidopsis thaliana complexed with Raffinose 5GOR ; 2.673 ; Crystal structure of alkaline invertase InvA from Anabaena sp. PCC 7120 5GOO ; 2.11 ; Crystal structure of alkaline invertase InvA from Anabaena sp. PCC 7120 complexed with fructose 5GOQ ; 2.75 ; Crystal structure of alkaline invertase InvA from Anabaena sp. PCC 7120 complexed with glucose 5GOP ; 2.35 ; Crystal structure of alkaline invertase InvA from Anabaena sp. PCC 7120 complexed with sucrose 1WKY ; 1.65 ; Crystal structure of alkaline mannanase from Bacillus sp. strain JAMB-602: catalytic domain and its Carbohydrate Binding Module 5TOO ; 2.031 ; Crystal structure of alkaline phosphatase PafA T79S, N100A, K162A, R164A mutant 1WMD ; 1.3 ; Crystal Structure of alkaline serine protease KP-43 from Bacillus sp. KSM-KP43 (1.30 angstrom, 100 K) 1WME ; 1.5 ; Crystal Structure of alkaline serine protease KP-43 from Bacillus sp. KSM-KP43 (1.50 angstrom, 293 K) 1WMF ; 1.73 ; Crystal Structure of alkaline serine protease KP-43 from Bacillus sp. KSM-KP43 (oxidized form, 1.73 angstrom) 2NQY ; 2.4 ; Crystal structure of alkaline thermophlic xylanase from Bacillus sp. (NCL 86-6-10) with complex xylotriose: Xylotriose cleaved to xylobiose and xylose 5Z73 ; 1.93 ; Crystal structure of alkaline/neutral invertase InvB from Anabaena sp. PCC 7120 5Z74 ; 1.95 ; Crystal structure of alkaline/neutral invertase InvB from Anabaena sp. PCC 7120 complexed with sucrose 1DED ; 2.0 ; CRYSTAL STRUCTURE OF ALKALOPHILIC ASPARAGINE 233-REPLACED CYCLODEXTRIN GLUCANOTRANSFERASE COMPLEXED WITH AN INHIBITOR, ACARBOSE, AT 2.0 A RESOLUTION 7JV3 ; 2.8 ; Crystal structure of alkanesulfonate monooxygenase MsuD from Pseudomonas fluorescens 4NII ; 1.622 ; Crystal structure of AlkB D135I mutant protein with cofactors bound to dsDNA containing m6A/A 4NIG ; 1.52 ; Crystal structure of AlkB D135I/E136H mutant protein with cofactors bound to dsDNA containing m6A/A 4NIH ; 1.374 ; Crystal structure of AlkB E136L mutant protein with cofactors bound to dsDNA containing m6A/A 4JHT ; 1.18 ; Crystal Structure of AlkB in complex with 5-carboxy-8-hydroxyquinoline (IOX1) 2FDF ; 2.1 ; Crystal Structure of AlkB in complex with Co(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T 2FDJ ; 2.1 ; Crystal Structure of AlkB in complex with Fe(II) and succinate 3I2O ; 1.7 ; Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate and methylated trinucleotide T-meA-T 3I49 ; 1.6 ; Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate and methylated trinucleotide T-meC-T 2FD8 ; 2.3 ; Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T 2FDI ; 1.8 ; Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T (air 3 hours) 2FDK ; 2.3 ; Crystal Structure of AlkB in complex with Fe(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T (air 9 days) 2FDG ; 2.2 ; Crystal Structure of AlkB in complex with Fe(II), succinate, and methylated trinucleotide T-meA-T 3T3Y ; 2.001 ; Crystal structure of AlkB in complex with Fe(III) and 2-(3-hydroxypicolinomido)acetic acid 3T4V ; 1.732 ; Crystal Structure of AlkB in complex with Fe(III) and N-Oxalyl-S-(2-napthalenemethyl)-L-cysteine 3T4H ; 1.65 ; Crystal Structure of AlkB in complex with Fe(III) and N-Oxalyl-S-(3-nitrobenzyl)-L-cysteine 7NRO ; 1.25 ; Crystal structure of AlkB in complex with manganese and N-(4-((6-((carboxymethyl)carbamoyl)-5-hydroxypyridin-2-yl)amino)phenyl)-N-oxohydroxylammonium 3I3Q ; 1.4 ; Crystal Structure of AlkB in complex with Mn(II) and 2-oxoglutarate 3I3M ; 1.5 ; Crystal Structure of AlkB in complex with Mn(II), 2-oxoglutarate and methylated trinucleotide T-meC-T 2FDH ; 2.1 ; Crystal Structure of AlkB in complex with Mn(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T 4NID ; 1.58 ; Crystal structure of AlkB protein with cofactors bound to dsDNA containing m6A 4ZHN ; 1.333 ; Crystal Structure of AlkB T208A mutant protein in complex with Co(II), 2-oxoglutarate, and methylated trinucleotide T-meA-T 6KSF ; 2.4 ; Crystal Structure of ALKBH1 bound to 21-mer DNA bulge 6IMC ; 2.51 ; Crystal Structure of ALKBH1 in complex with Mn(II) and N-Oxalylglycine 6IMA ; 2.593 ; Crystal Structure of ALKBH1 without alpha-1 (N37-C369) 6E8L ; 2.3 ; Crystal Structure of Alkyl hydroperoxidase D (AhpD) from Streptococcus pneumoniae (Strain D39/ NCTC 7466) 6K40 ; 2.27 ; Crystal structure of alkyl hydroperoxide reductase from D. radiodurans R1 1ZOF ; 2.95 ; Crystal structure of alkyl hydroperoxide-reductase (AhpC) from Helicobacter Pylori 3DJL ; 1.7 ; Crystal structure of alkylation response protein E. coli AidB 2OUW ; 1.95 ; Crystal structure of Alkylhydroperoxidase AhpD core (YP_425393.1) from Rhodospirillum rubrum ATCC 11170 at 1.95 A resolution 2PRR ; 2.15 ; Crystal structure of alkylhydroperoxidase AhpD core: uncharacterized peroxidase-related protein (YP_296737.1) from Ralstonia eutropha JMP134 at 2.15 A resolution 4XVG ; 2.2 ; Crystal structure of Alkylhydroperoxide Reductase Subunit AhpF from Escherichia coli 4O5R ; 3.33 ; Crystal structure of Alkylhydroperoxide Reductase subunit C from E. coli 4O5U ; 2.65 ; Crystal structure of Alkylhydroperoxide Reductase subunit F from E. coli at 2.65 Ang resolution 2Q33 ; 1.8 ; Crystal structure of all-D monellin at 1.8 A resolution 4LW5 ; 2.55 ; Crystal structure of all-trans green fluorescent protein 6MQW ; 2.09 ; Crystal Structure of All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E Human Cellular Retinoic Acid Binding Protein II Irradiated with 400 nm laser (30 seconds) and subsequently dark adapted (10 minutes) at 2.1 Angstrom Resolution 6MQX ; 2.01 ; Crystal Structure of All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E Human Cellular Retinoic Acid Binding Protein II Irradiated with 400 nm Laser (30 seconds) and Subsequently Dark Adapted (25 minutes) at 2.0 Angstrom Resolution 2IMO ; 2.8 ; Crystal structure of allantoate amidohydrolase from Escherichia coli at pH 4.6 1Z2L ; 2.25 ; Crystal structure of Allantoate-amidohydrolase from E.coli K12 in complex with substrate Allantoate 1O59 ; 2.4 ; Crystal structure of Allantoicase (yir029w) from Saccharomyces cerevisiae at 2.40 A resolution 5LFD ; 2.15 ; Crystal structure of allantoin racemase from Pseudomonas fluorescens AllR 5LG5 ; 2.1 ; Crystal structure of allantoin racemase from Pseudomonas fluorescens AllR 3HM7 ; 2.6 ; Crystal structure of allantoinase from Bacillus halodurans C-125 8HFD ; 2.07 ; Crystal structure of allantoinase from E. coli BL21 3DAM ; 2.4 ; Crystal Structure of Allene oxide synthase 3DAN ; 1.8 ; Crystal Structure of Allene oxide synthase 3DBM ; 2.6 ; Crystal Structure of Allene oxide synthase 4N42 ; 2.2 ; Crystal structure of allergen protein scam1 from Scadoxus multiflorus 7VUT ; 1.7 ; Crystal structure of AlleyCat10 7VUU ; 1.95 ; Crystal structure of AlleyCat10 with inhibitor 7VUS ; 1.7 ; Crystal structure of AlleyCat9 with 5-nitro-benzotriazole 7VUR ; 1.7 ; Crystal structure of AlleyCat9 with calcium but no inhibitor 2HOR ; 1.6 ; Crystal structure of alliinase from garlic- apo form 1Q4V ; 2.0 ; CRYSTAL STRUCTURE OF ALLO-ILEA2-INSULIN, AN INACTIVE CHIRAL ANALOGUE: IMPLICATIONS FOR THE MECHANISM OF RECEPTOR 1KN1 ; 2.2 ; Crystal structure of allophycocyanin 4PO5 ; 1.751 ; Crystal structure of allophycocyanin B from Synechocystis PCC 6803 4RMP ; 2.506 ; Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM 3C1N ; 2.72 ; Crystal Structure of Allosteric Inhibition Threonine-sensitive Aspartokinase from Methanococcus jannaschii with L-threonine 5KCV ; 2.7 ; Crystal structure of allosteric inhibitor, ARQ 092, in complex with autoinhibited form of AKT1 3FZ3 ; 2.4 ; Crystal Structure of almond Pru1 protein 5YCZ ; 2.502 ; Crystal structure of Alocasin, protease inhibitor from Giant Taro (Arum macrorrhizon) 8GY4 ; 2.5 ; Crystal structure of Alongshan virus methyltransferase 8GYB ; 2.101 ; Crystal structure of Alongshan virus methyltransferase bound to S-adenosyl-L-homocysteine 8GY9 ; 2.3 ; Crystal structure of Alongshan virus methyltransferase bound to S-adenosyl-L-methionine 8GYA ; 2.005 ; Crystal structure of Alongshan virus methyltransferase bound to Sinefungin 6RIV ; 1.33 ; Crystal structure of Alopecurus myosuroides GSTF 7CLZ ; 2.10001 ; Crystal structure of Alp1U W187F/Y247F in complex with fluostatin C 3IKQ ; 2.25 ; Crystal structure of alpha 1-2 mannobiose bound trimeric human lung surfactant protein D 3IKR ; 1.65 ; Crystal structure of alpha 1-4 mannobiose bound trimeric human lung surfactant protein D 7NG1 ; 1.67 ; Crystal structure of alpha Carbonic anhydrase from Schistoso ma mansoni bound to 1-(4-iodophenyl)-3-[2-(4-sulfamoylphenyl)ethyl]selenourea 7NEX ; 1.81 ; Crystal structure of alpha Carbonic anhydrase from Schistosoma mansoni bound to 1-(4-fluorophenyl)-3-(4-sulfamoylph enyl)thiourea 7BM4 ; 1.6 ; Crystal structure of alpha Carbonic anhydrase from Schistosoma mansoni bound to 1-(4-fluorophenyl)-3-(4-sulphamoylphenyl)selenourea 7NWY ; 1.807 ; Crystal structure of alpha carbonic anhydrase from schistosoma mansoni with 4-(3-(4-fluorophenyl)ureido)benzenesulfonamide 3JU3 ; 1.9 ; Crystal structure of alpha chain of probable 2-oxoacid ferredoxin oxidoreductase from Thermoplasma acidophilum 2NUZ ; 1.85 ; crystal structure of alpha spectrin SH3 domain measured at room temperature 4GIT ; 2.882 ; Crystal structure of alpha sub-domain of Lon protease from Brevibacillus thermoruber 4UM8 ; 2.852 ; Crystal structure of alpha V beta 6 4UM9 ; 2.5 ; Crystal structure of alpha V beta 6 with peptide 5UOF ; 1.7 ; Crystal structure of alpha,alpha-trehalose 6-phosphate sythase from Burkholderia multivorans 5MEH ; 0.95 ; Crystal structure of alpha-1,2-mannosidase from Caulobacter K31 strain in complex with 1-deoxymannojirimycin 2WGZ ; 2.12 ; Crystal structure of alpha-1,3 galactosyltransferase (alpha3GT) in a complex with p-nitrophenyl-beta-galactoside (pNP-beta-Gal) 2JCJ ; 2.02 ; Crystal structure of alpha-1,3 Galactosyltransferase (C-terminus truncated mutant-C3) in complex with UDP and Tris 2JCK ; 1.8 ; Crystal structure of alpha-1,3 Galactosyltransferase (R365K) in complex with UDP and 2 manganese ion 2VFZ ; 2.4 ; CRYSTAL STRUCTURE OF ALPHA-1,3 GALACTOSYLTRANSFERASE (R365K) IN COMPLEX WITH UDP-2F-GALACTOSE 2JCL ; 3.29 ; Crystal structure of alpha-1,3 Galactosyltransferase (R365K) in the absence of ligands 7XJV ; 2.8 ; Crystal Structure of Alpha-1,3-mannosyltransferase MNT2 from Saccharomyces cerevisiae, Mn/GDP-mannose form 3UES ; 1.6 ; Crystal structure of alpha-1,3/4-fucosidase from Bifidobacterium longum subsp. infantis complexed with deoxyfuconojirimycin 3UET ; 2.1 ; Crystal structure of alpha-1,3/4-fucosidase from Bifidobacterium longum subsp. infantis D172A/E217A mutant complexed with lacto-N-fucopentaose II 7TM7 ; 1.91 ; Crystal structure of Alpha-1,4 glucan phosphorylase from Klebsiella pneumoniae 6DWO ; 2.15 ; Crystal structure of alpha-1-2-mannosidase from Enterococcus faecalis V583 3CWM ; 2.51 ; Crystal structure of alpha-1-antitrypsin complexed with citrate 2QUG ; 2.0 ; Crystal structure of alpha-1-antitrypsin, crystal form A 3CWL ; 2.44 ; Crystal structure of alpha-1-antitrypsin, crystal form B 3QKG ; 2.3 ; Crystal structure of alpha-1-microglobulin at 2.3 A resolution 2II2 ; 1.1 ; Crystal Structure of Alpha-11 Giardin 3CHJ ; 1.6 ; Crystal Structure of Alpha-14 Giardin 3CHL ; 1.9 ; Crystal Structure of Alpha-14 Giardin with magnesium bound 2P56 ; 2.2 ; Crystal structure of alpha-2,3-sialyltransferase from Campylobacter jejuni in apo form 6MGT ; 2.77 ; Crystal structure of alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde Decarboxylase Mutant H110A 2HBV ; 1.65 ; Crystal Structure of alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde-Decarboxylase (ACMSD) 2HBX ; 2.5 ; Crystal Structure of alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde-Decarboxylase (ACMSD) 6MGS ; 3.131 ; Crystal structure of alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde-Decarboxylase with Space Group of C2221 3WN6 ; 2.16 ; Crystal structure of alpha-amylase AmyI-1 from Oryza sativa 3VX0 ; 1.5 ; Crystal Structure of alpha-amylase from Aspergillus oryzae 3VX1 ; 2.2 ; Crystal Structure of alpha-Amylase from Aspergillus oryzae 7P4W ; 2.28 ; Crystal structure of alpha-amylase from Aspergillus oryzae in space group I222 4E2O ; 2.103 ; Crystal structure of alpha-amylase from Geobacillus thermoleovorans, GTA, complexed with acarbose 1WZA ; 1.6 ; Crystal structure of alpha-amylase from H.orenii 1G1Y ; 3.0 ; CRYSTAL STRUCTURE OF ALPHA-AMYLASE II (TVAII) FROM THERMOACTINOMYCES VULGARIS R-47 AND BETA-CYCLODEXTRIN COMPLEX 3OLD ; 2.0 ; Crystal structure of alpha-amylase in complex with acarviostatin I03 4BFH ; 1.25 ; Crystal structure of alpha-amylase inhibitor wrightide R1 (wR1) peptide from Wrightia religiosa 4A1W ; 2.497 ; Crystal structure of alpha-beta foldamer 4c in complex with Bcl-xL 6II2 ; 3.5 ; Crystal structure of alpha-beta hydrolase (ABH) and Makes Caterpillars Floppy (MCF)-Like effectors of Vibrio vulnificus MO6-24/O 6IMP ; 2.62 ; Crystal structure of alpha-beta hydrolase (ABH) from Vibrio vulnificus 4A1U ; 1.54 ; Crystal structure of alpha-beta-foldamer 2c in complex with Bcl-xL 4JCL ; 1.7 ; Crystal structure of Alpha-CGT from Paenibacillus macerans at 1.7 Angstrom resolution 1HJE ; 0.75 ; Crystal structure of alpha-conotoxin SI 4J87 ; 1.67 ; Crystal structure of alpha-COP 7S22 ; 1.75 ; Crystal structure of alpha-COP-WD40 domain 7S16 ; 1.24 ; Crystal structure of alpha-COP-WD40 domain R57A mutant 7S23 ; 1.49 ; Crystal structure of alpha-COP-WD40 domain, Y139A mutant 4J8G ; 1.895 ; Crystal structure of alpha-COP/E19 complex 4J8B ; 1.878 ; Crystal structure of alpha-COP/Emp47p complex 8EVL ; 1.9 ; Crystal structure of alpha-COPI N-terminal WD40 domain 8EO0 ; 1.8 ; Crystal structure of alpha-COPI WD40 domain R300A mutant. 8ENZ ; 1.65 ; Crystal structure of alpha-COPI-WD40 domain K15A mutant. 8ENY ; 1.9 ; Crystal structure of alpha-COPI-WD40 domain R13A mutant. 1DTX ; 2.2 ; CRYSTAL STRUCTURE OF ALPHA-DENDROTOXIN FROM THE GREEN MAMBA VENOM AND ITS COMPARISON WITH THE STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR 1ZY9 ; 2.34 ; Crystal structure of Alpha-galactosidase (EC 3.2.1.22) (Melibiase) (tm1192) from Thermotoga maritima at 2.34 A resolution 3GXT ; 2.7 ; Crystal structure of alpha-galactosidase A at pH 4.5 complexed with 1-deoxygalactonijirimycin 3A5V ; 2.0 ; Crystal structure of alpha-galactosidase I from Mortierella vinacea 3WY1 ; 2.15 ; Crystal structure of alpha-glucosidase 5ZCB ; 2.5 ; Crystal structure of Alpha-glucosidase 7D9B ; 1.58 ; Crystal structure of alpha-glucosidase 1VJT ; 2.5 ; Crystal structure of Alpha-glucosidase (TM0752) from Thermotoga maritima at 2.50 A resolution 8T7Z ; 2.7 ; Crystal structure of alpha-glucosidase (yicI) from Klebsiella aerogenes 7EHH ; 2.0 ; Crystal structure of alpha-glucosidase from Weissella cibaria BKK1 in complex with maltose 3WY2 ; 1.471 ; Crystal structure of alpha-glucosidase in complex with glucose 5ZCC ; 1.704 ; Crystal structure of Alpha-glucosidase in complex with maltose 5ZCE ; 1.555 ; Crystal structure of Alpha-glucosidase in complex with maltotetraose 5ZCD ; 1.707 ; Crystal structure of Alpha-glucosidase in complex with maltotriose 3WY3 ; 3.0 ; Crystal structure of alpha-glucosidase mutant D202N in complex with glucose and glycerol 3WY4 ; 2.5 ; Crystal structure of alpha-glucosidase mutant E271Q in complex with maltose 6AAV ; 1.72 ; Crystal structure of alpha-glucosyl transfer enzyme, XgtA at 1.72 angstrom resolution 3ANZ ; 2.303 ; Crystal Structure of alpha-hemolysin 5X5T ; 2.25 ; Crystal structure of alpha-ketoglutarate semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense 3R1J ; 2.05 ; Crystal structure of Alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium avium, native form 5X5U ; 2.3 ; Crystal structure of alpha-ketoglutarate-semialdehyde dehydrogenase (KGSADH) complexed with NAD 5M8B ; 1.9 ; Crystal structure of alpha-L-arabinofuranosidase from Lactobacillus brevis 3UG4 ; 2.15 ; Crystal structure of alpha-L-arabinofuranosidase from Thermotoga maritima arabinose complex 3UG3 ; 1.8 ; Crystal structure of alpha-L-arabinofuranosidase from Thermotoga maritima ligand free form 3UG5 ; 2.3 ; Crystal structure of alpha-L-arabinofuranosidase from Thermotoga maritima xylose complex 4PSR ; 1.38 ; Crystal Structure of alpha-L-fucosidase from Fusarium graminearum in the open form in complex with L-fucose 7DB5 ; 1.9 ; Crystal structure of alpha-L-fucosidase from Vibrio sp. strain EJY3 3B0K ; 1.6 ; Crystal structure of alpha-lactalbumin 3B0O ; 1.61 ; Crystal structure of alpha-lactalbumin 3M7U ; 1.05 ; Crystal Structure of Alpha-Lytic Protease SB1+2 R64A/E182Q Mutant 3M7T ; 1.55 ; Crystal Structure of Alpha-Lytic Protease SB2+3 E8A/R105S Mutant 1F8Q ; 2.2 ; CRYSTAL STRUCTURE OF ALPHA-MOMORCHARIN IN ACETONITRILE-WATER MIXTURE 6LOZ ; 1.08 ; crystal structure of alpha-momorcharin in complex with adenine 6LOR ; 1.35 ; crystal structure of alpha-momorcharin in complex with ADP 6LP0 ; 1.519 ; crystal structure of alpha-momorcharin in complex with AMP 6LOQ ; 1.331 ; crystal structure of alpha-momorcharin in complex with cAMP 6LOY ; 1.35 ; crystal structure of alpha-momorcharin in complex with dAMP 6LOW ; 1.39 ; crystal structure of alpha-momorcharin in complex with GMP 6LOV ; 1.35 ; crystal structure of alpha-momorcharin in complex with xanthosine 3R4Y ; 2.0 ; Crystal structure of alpha-neoagarobiose hydrolase (ALPHA-NABH) from Saccharophagus degradans 2-40 3R4Z ; 1.55 ; Crystal structure of alpha-neoagarobiose hydrolase (ALPHA-NABH) in complex with alpha-d-galactopyranose from Saccharophagus degradans 2-40 3VWD ; 1.25 ; Crystal structure of alpha-tubulin acetyltransferase domain of human Mec-17 in complex with acetoacetyl-CoA (P21212 form) 3VWE ; 1.956 ; Crystal structure of alpha-tubulin acetyltransferase domain of human Mec-17 in complex with CoA (P21 form) 2XVG ; 2.6 ; crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus 2XVK ; 2.503 ; crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with 5-fluoro-alpha-D-xylopyranosyl fluoride 2XVL ; 2.3 ; crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with Pentaerythritol propoxylate (5 4 PO OH) 1WE5 ; 2.4 ; Crystal Structure of Alpha-Xylosidase from Escherichia coli 4PSU ; 2.2 ; Crystal structure of alpha/beta hydrolase from Rhodopseudomonas palustris CGA009 6LZH ; 1.9 ; Crystal structure of Alpha/beta hydrolase GrgF from Penicillium sp. sh18 3FSG ; 2.0 ; Crystal structure of alpha/beta superfamily hydrolase from Oenococcus oeni PSU-1 2ZWI ; 2.01 ; Crystal structure of alpha/beta-Galactoside alpha-2,3-Sialyltransferase from a Luminous Marine Bacterium, Photobacterium phosphoreum 2NZW ; 1.9 ; Crystal Structure of alpha1,3-Fucosyltransferase 5ZOI ; 3.19 ; Crystal Structure of alpha1,3-Fucosyltransferase 2NZX ; 1.9 ; Crystal Structure of alpha1,3-Fucosyltransferase with GDP 2NZY ; 2.05 ; Crystal Structure of alpha1,3-Fucosyltransferase with GDP-fucose 5OM5 ; 1.595 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-I-allo1: an allosterically triggered drug-binding serpin for doxycycline 5OM6 ; 1.849 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-I-allo2: a MMP9-cleavable drug-binding serpin for doxycycline 5OM2 ; 1.47 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-I1: a drug-binding serpin for doxycycline 5OM3 ; 2.0 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-I5: a MMP14-cleavable drug-binding serpin for doxycycline 6HGN ; 1.478 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-II-allo-L55V: an allosterically controlled doxorubicin-binding serpin with an unprecedentedly high ligand release efficacy 5OM7 ; 1.727 ; Crystal structure of Alpha1-antichymotrypsin variant DBS-II: a drug-binding serpin for doxorubicin 6HGD ; 1.9 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-0: a new binding globulin variant that is devoid of any cortisol-binding capabilities 6HGE ; 2.8 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-I in the uncleaved S-conformation 6HGF ; 1.651 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-II: a new binding globulin in complex with cortisol 6HGM ; 1.369 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III-allo: an allosterically controlled new binding globulin with an unprecedentedly high ligand release efficacy 6HGJ ; 1.825 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin in complex with aldosterone 6HGI ; 1.517 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin in complex with corticosterone 6HGG ; 1.787 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin in complex with cortisol 6HGK ; 1.855 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin in complex with progesterone 6HGL ; 1.92 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin in complex with testosterone 6HGH ; 1.9 ; Crystal structure of Alpha1-antichymotrypsin variant NewBG-III: a new binding globulin without any bound ligand 1AL1 ; 2.7 ; CRYSTAL STRUCTURE OF ALPHA1: IMPLICATIONS FOR PROTEIN DESIGN 3VI3 ; 2.9 ; Crystal structure of alpha5beta1 integrin headpiece (ligand-free form) 3VI4 ; 2.9 ; Crystal structure of alpha5beta1 integrin headpiece in complex with RGD peptide 7CEB ; 2.89 ; Crystal structure of alpha6beta1 integrin headpiece 6HY7 ; 2.26 ; Crystal structure of alpha9 nAChR extracellular domain in complex with alpha-conotoxin RgIA 1MQ8 ; 3.3 ; Crystal structure of alphaL I domain in complex with ICAM-1 1K8X ; 1.9 ; Crystal Structure Of AlphaT183V Mutant Of Tryptophan Synthase From Salmonella Typhimurium 1KFB ; 1.9 ; CRYSTAL STRUCTURE OF ALPHAT183V MUTANT OF TRYPTOPHAN SYNTHASE FROM SALMONELLA TYPHIMURIUM WITH Indole Glycerol Phosphate 1KFC ; 1.5 ; CRYSTAL STRUCTURE OF ALPHAT183V MUTANT OF TRYPTOPHAN SYNTHASE FROM SALMONELLA TYPHIMURIUM With Indole Propanol Phosphate 1KFE ; 1.75 ; CRYSTAL STRUCTURE OF ALPHAT183V MUTANT OF TRYPTOPHAN SYNTHASE FROM SALMONELLA TYPHIMURIUM WITH L-Ser Bound To The Beta Site 6J0Z ; 2.889 ; Crystal structure of AlpK 5Z2C ; 2.594 ; Crystal structure of ALPK-1 N-terminal domain in complex with ADP-heptose 7TPS ; 3.15 ; Crystal structure of ALPN-202 (engineered CD80 vIgD) in complex with PD-L1 3QYJ ; 1.778 ; Crystal structure of ALR0039, a putative alpha/beta hydrolase from Nostoc sp PCC 7120. 2BTW ; 2.0 ; Crystal structure of Alr0975 6UV7 ; 2.27 ; Crystal structure of alr1298, a pentapeptide repeat protein from Nostoc Pcc 7120, determined at 2.3 Angstrom resolution 6UVI ; 2.1 ; Crystal structure of alr1298, a pentapeptide repeat protein from Nostoc Pcc 7120, determined at 2.3 Angstrom resolution 6OMX ; 1.71 ; Crystal structure of alr5209, a pentapeptide repeat protein from Nostoc Pcc 7120, determined at 1.7 Angstrom resolution 3V0R ; 1.9 ; Crystal structure of Alternaria alternata allergen Alt a 1 4AUD ; 2.67 ; Crystal structure of alternaria alternata major allergen alt a 1 5W1Q ; 1.95 ; Crystal structure of alternate isoform of glutamate racemase from Helicobacter pylori bound to D-glutamate 5GN7 ; 3.2 ; Crystal structure of alternative oxidase from Trypanosoma brucei brucei complexed with cumarin derivative-17 5GN9 ; 3.2 ; Crystal structure of alternative oxidase from Trypanosoma brucei brucei complexed with cumarin derivative-17b 3K3S ; 2.15 ; Crystal structure of altronate hydrolase (fragment 1-84) from Shigella Flexneri. 2D3I ; 2.15 ; Crystal Structure of Aluminum-Bound Ovotransferrin at 2.15 Angstrom Resolution 3BRN ; 2.0 ; Crystal Structure of AM182 Serotonin Complex 4APM ; 2.3 ; Crystal Structure of AMA1 from Babesia divergens 4APL ; 2.9 ; Crystal Structure of AMA1 from Neospora caninum 4Z81 ; 2.05 ; Crystal structure of AMA4 DI-DII-EGF1 from Toxoplasma gondii 1JLY ; 2.2 ; CRYSTAL STRUCTURE OF AMARANTHUS CAUDATUS AGGLUTININ 5EVE ; 2.55 ; Crystal structure of Amb a 8 in complex with poly-Pro10 8XJ0 ; 3.3 ; Crystal structure of AmFab mutant - P40C/E165C (Light chain), G10C/P210C(Heavy chain) 2A48 ; 2.0 ; Crystal structure of amFP486 E150Q 2A47 ; 1.72 ; Crystal structure of amFP486 H199T 5I4L ; 3.1 ; Crystal structure of Amicoumacin A bound to the yeast 80S ribosome 1ID2 ; 2.15 ; CRYSTAL STRUCTURE OF AMICYANIN FROM PARACOCCUS VERSUTUS (THIOBACILLUS VERSUTUS) 1T5K ; 1.4 ; Crystal structure of amicyanin substituted with cobalt 2DC0 ; 2.0 ; Crystal structure of amidase 5THW ; 2.5 ; Crystal structure of Amidase, hydantoinase/carbamoylase family from Burkholderia multivorans 5I4M ; 1.8 ; Crystal structure of Amidase, hydantoinase/carbamoylase family from Burkholderia vietnamiensis 2IMR ; 1.78 ; Crystal structure of amidohydrolase DR_0824 from Deinococcus radiodurans 3MKV ; 2.4 ; Crystal structure of amidohydrolase eaj56179 3LNP ; 2.1 ; Crystal Structure of Amidohydrolase family Protein OLEI01672_1_465 from Oleispira antarctica 4F0L ; 2.05 ; Crystal structure of Amidohydrolase from Brucella melitensis 3OOQ ; 2.06 ; CRYSTAL STRUCTURE OF amidohydrolase from Thermotoga maritima MSB8 4DZI ; 1.6 ; Crystal structure of amidohydrolase map2389c (target EFI-500390) from Mycobacterium avium subsp. paratuberculosis K-10 4M51 ; 1.08 ; Crystal structure of amidohydrolase nis_0429 (ser145ala mutant) from nitratiruptor sp. sb155-2 3V7P ; 1.35 ; Crystal structure of amidohydrolase nis_0429 (target efi-500396) from Nitratiruptor sp. sb155-2 3RHG ; 1.53 ; Crystal structure of amidohydrolase pmi1525 (target efi-500319) from proteus mirabilis hi4320 4QSF ; 1.65 ; CRYSTAL STRUCTURE of AMIDOHYDROLASE PMI1525 (TARGET EFI-500319) FROM PROTEUS MIRABILIS HI4320, A COMPLEX WITH BUTYRIC ACID AND MANGANESE 4INF ; 1.48 ; Crystal structure of amidohydrolase saro_0799 (target efi-505250) from novosphingobium aromaticivorans dsm 12444 with bound calcium 2F6K ; 2.5 ; Crystal Structure of Amidohydrorolase II; Northeast Structural Genomics Target LpR24 4GUD ; 1.911 ; Crystal Structure of Amidotransferase HisH from Vibrio cholerae 1WMP ; 2.0 ; Crystal structure of amine oxidase complexed with cobalt ion 2GLF ; 2.8 ; Crystal structure of Aminipeptidase (M18 family) from Thermotoga Maritima 4IT6 ; 1.9 ; Crystal structure of amino acid residues 1-120 of CG17282 3K5P ; 2.15 ; Crystal structure of amino acid-binding ACT: D-isomer specific 2-hydroxyacid dehydrogenase catalytic domain from Brucella melitensis 6PF2 ; 2.17 ; Crystal Structure of Amino Acids 1220-1276 of Human Beta Cardiac Myosin Fused to Gp7 and Eb1 6PFP ; 2.2 ; Crystal Structure of Amino Acids 1473-1536 of Human Beta Cardiac Myosin Fused to Gp7 and Eb1 5CJ4 ; 3.102 ; Crystal Structure of Amino Acids 1562-1622 of MYH7 5CHX ; 2.3 ; Crystal Structure of amino acids 1590-1657 of MYH7 5CJ0 ; 2.3 ; Crystal Structure of Amino Acids 1631-1692 of MYH7 5WLQ ; 3.104 ; Crystal Structure of Amino Acids 1677-1755 of Human Beta Cardiac Myosin Fused to Gp7 and Eb1 5WLZ ; 3.5 ; Crystal Structure of Amino Acids 1677-1758 of Human Beta Cardiac Myosin Fused to Xrcc4 5WME ; 2.3 ; Crystal Structure of Amino Acids 1729-1786 of Human Beta Cardiac Myosin Fused to Gp7 as Anti-Parallel Four-Helix Bundle 5WJB ; 2.905 ; Crystal Structure of Amino Acids 1733-1797 of Human Beta Cardiac Myosin Fused to Gp7 5WJ7 ; 2.5 ; Crystal Structure of Amino Acids 1733-1797 of Human Beta Cardiac Myosin Fused to Xrcc4 3QEK ; 2.001 ; Crystal structure of amino terminal domain of the NMDA receptor subunit GluN1 3JPW ; 2.803 ; Crystal structure of amino terminal domain of the NMDA receptor subunit NR2B 5TQ2 ; 3.289 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2A in complex with zinc at GluN1 and GluN2A 5TPW ; 2.909 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2A in complex with zinc at the GluN2A 5TQ0 ; 2.7 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2A in the presence of EDTA 5TPZ ; 3.095 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in apo closed state 5EWM ; 2.76 ; CRYSTAL STRUCTURE OF AMINO TERMINAL DOMAINS OF THE NMDA RECEPTOR SUBUNIT GLUN1 AND GLUN2B IN COMPLEX WITH EVT-101 3QEL ; 2.6 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with ifenprodil 5EWJ ; 2.77 ; CRYSTAL STRUCTURE OF AMINO TERMINAL DOMAINS OF THE NMDA RECEPTOR SUBUNIT GLUN1 AND GLUN2B IN COMPLEX WITH IFENPRODIL 5EWL ; 2.98 ; CRYSTAL STRUCTURE OF AMINO TERMINAL DOMAINS OF THE NMDA RECEPTOR SUBUNIT GLUN1 AND GLUN2B IN COMPLEX WITH MK-22 3QEM ; 3.003 ; Crystal structure of amino terminal domains of the NMDA receptor subunit GluN1 and GluN2B in complex with Ro 25-6981 3ELE ; 2.1 ; Crystal structure of Amino Transferase (RER070207001803) from Eubacterium rectale at 2.10 A resolution 1PA7 ; 1.45 ; Crystal structure of amino-terminal microtubule binding domain of EB1 1UEG ; 2.4 ; Crystal structure of amino-terminal microtubule binding domain of EB1 3MRU ; 3.0 ; Crystal Structure of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus 3IWK ; 2.4 ; Crystal structure of aminoaldehyde dehydrogenase 1 from Pisum sativum (PsAMADH1) 4I8P ; 1.95 ; Crystal structure of aminoaldehyde dehydrogenase 1a from Zea mays (ZmAMADH1a) 3IWJ ; 2.15 ; Crystal structure of aminoaldehyde dehydrogenase 2 from Pisum sativum (PsAMADH2) 3IO1 ; 2.5 ; Crystal Structure of Aminobenzoyl-glutamate utilization protein from Klebsiella pneumoniae 5YSS ; 2.276 ; Crystal structure of aminocaproic acid cyclase in complex with NAD (+) 1ET0 ; 2.2 ; CRYSTAL STRUCTURE OF AMINODEOXYCHORISMATE LYASE FROM ESCHERICHIA COLI 4EBJ ; 1.6 ; Crystal structure of aminoglycoside 4'-O-adenylyltransferase ANT(4')-IIb, apo 4EBK ; 2.15 ; Crystal structure of aminoglycoside 4'-O-adenylyltransferase ANT(4')-IIb, tobramycin-bound 5E96 ; 2.1 ; Crystal structure of aminoglycoside 6'-acetyltransferase type Ii 1N71 ; 1.8 ; Crystal structure of aminoglycoside 6'-acetyltransferase type Ii in complex with coenzyme A 4QC6 ; 1.3 ; Crystal structure of aminoglycoside 6'-acetyltransferase-Ie 2A4N ; 2.2 ; Crystal structure of aminoglycoside 6'-N-acetyltransferase complexed with coenzyme A 6IY9 ; 2.4 ; Crystal structure of aminoglycoside 7""-phoshotransferase-Ia (APH(7"")-Ia/HYG) from Streptomyces hygroscopicus complexed with hygromycin B 5US1 ; 2.48 ; Crystal structure of aminoglycoside acetyltransferase AAC(2')-Ia in complex with N2'-acetylgentamicin C1A and coenzyme A 4YFJ ; 2.2 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-Ib 7LAO ; 1.92 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-IIb 6MN3 ; 2.4 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-IVa, apoenzyme 6MN4 ; 2.8 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-IVa, H154A mutant, in complex with apramycin 6MN5 ; 2.58 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-IVa, H154A mutant, in complex with gentamicin C1A 7LAP ; 2.04 ; Crystal structure of aminoglycoside acetyltransferase AAC(3)-Xa 2PRB ; 1.8 ; crystal structure of aminoglycoside acetyltransferase AAC(6')-Ib in complex whith coenzyme A 2QIR ; 2.4 ; Crystal structure of aminoglycoside acetyltransferase AAC(6')-Ib in complex whith coenzyme A and kanamycin 4EVY ; 1.768 ; Crystal structure of aminoglycoside antibiotic 6'-N-acetyltransferase AAC(6')-Ig from Acinetobacter haemolyticus in complex with tobramycin 4F0Y ; 2.56 ; Crystal structure of aminoglycoside antibiotic 6'-N-acetyltransferase AAC(6')-IG from Acinetobacter haemolyticus, apo 4E8O ; 2.138 ; Crystal structure of aminoglycoside antibiotic 6'-N-acetyltransferase AAC(6')-Ih from Acinetobacter baumannii 2PR8 ; 2.1 ; crystal structure of aminoglycoside N-acetyltransferase AAC(6')-Ib11 4WQK ; 1.482 ; Crystal structure of aminoglycoside nucleotidylyltransferase ANT(2"")-Ia, apo form 4WQL ; 1.73 ; Crystal structure of aminoglycoside nucleotidylyltransferase ANT(2"")-Ia, kanamycin-bound 4DBX ; 2.004 ; Crystal structure of aminoglycoside phosphotransferase APH(2"")-ID/APH(2"")-IVA 4DE4 ; 2.0 ; Crystal structure of aminoglycoside phosphotransferase APH(2"")-Id/APH(2"")-IVa in complex with HEPES 4DFB ; 1.95 ; Crystal structure of aminoglycoside phosphotransferase aph(2"")-id/aph(2"")-iva in complex with kanamycin 4DCA ; 1.8 ; Crystal structure of aminoglycoside phosphotransferase APH(2'')-Ib, ADP-bound 3UZR ; 1.95 ; Crystal structure of aminoglycoside phosphotransferase APH(2'')-Ib, apo form 4N57 ; 2.35 ; Crystal structure of aminoglycoside phosphotransferase APH(2'')-IVa ADP complex 2BKK ; 2.15 ; Crystal structure of Aminoglycoside Phosphotransferase APH(3')-IIIa in complex with the inhibitor AR_3a 3TYK ; 1.95 ; Crystal structure of aminoglycoside phosphotransferase APH(4)-Ia 3W0S ; 1.77 ; Crystal structure of aminoglycoside phosphotransferase APH(4)-Ia, ternary complex with AMP-PNP and hygromycin B 4PDY ; 1.35 ; Crystal structure of aminoglycoside phosphotransferase from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 7UUO ; 2.65 ; Crystal structure of aminoglycoside resistance enzyme ApmA H135A mutant, complex with tobramycin and coenzyme A 7JM0 ; 2.08 ; Crystal structure of aminoglycoside resistance enzyme ApmA, apoenzyme 7JM1 ; 2.31 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with acetyl-CoA 7JM2 ; 1.85 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with apramycin 7UUJ ; 1.78 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with gentamicin 7UUL ; 2.26 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with kanamycin B and coenzyme A 7UUN ; 2.83 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with neomycin 7UUM ; 2.74 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with paromomycin and coenzyme A 7UUK ; 2.82 ; Crystal structure of aminoglycoside resistance enzyme ApmA, complex with tobramycin 5NDW ; 3.7 ; Crystal structure of aminoglycoside TC007 bound to the yeast 80S ribosome 5NDK ; 2.95 ; Crystal structure of aminoglycoside TC007 co-crystallized with 70S ribosome from Thermus thermophilus, three tRNAs and mRNA 5NDJ ; 3.15 ; Crystal structure of aminoglycoside TC007 in complex with 70S ribosome from Thermus thermophilus, three tRNAs and mRNA (soaking) 4DT8 ; 2.15 ; Crystal Structure of Aminoglycoside-2''-Phosphotransferase Type IVa in Complex with Adenosine 4DT9 ; 2.1 ; Crystal Structure of Aminoglycoside-2''-Phosphotransferase Type IVa in Complex with Guanosine 3SG9 ; 2.15 ; Crystal Structure of Aminoglycoside-2''-Phosphotransferase Type IVa Kanamycin A Complex 3SG8 ; 1.8 ; Crystal Structure of Aminoglycoside-2''-Phosphotransferase Type IVa Tobramycin Complex 4H05 ; 2.15 ; Crystal structure of aminoglycoside-3'-phosphotransferase of type VIII 1ND4 ; 2.1 ; Crystal structure of aminoglycoside-3'-phosphotransferase-IIa 6PQB ; 3.14 ; Crystal structure of aminoglycoside-resistance methyltransferase RmtC bound to S-adenosylhomocysteine (SAH) 4R86 ; 3.001 ; Crystal Structure of Aminoglycoside/Multidrug Efflux System AcrD from Salmonella typhimurium 2RAG ; 2.0 ; Crystal structure of aminohydrolase from Caulobacter crescentus 1TZ3 ; 2.9 ; crystal structure of aminoimidazole riboside kinase complexed with aminoimidazole riboside 1TYY ; 2.6 ; Crystal structure of aminoimidazole riboside kinase from Salmonella enterica 1TZ6 ; 2.7 ; Crystal structure of aminoimidazole riboside kinase from Salmonella enterica complexed with aminoimidazole riboside and ATP analog 1VLO ; 1.7 ; Crystal structure of aminomethyltransferase (T protein; tetrahydrofolate-dependent) of glycine cleavage system (np417381) from Escherichia coli k12 at 1.70 A resolution 2IJZ ; 3.0 ; Crystal structure of aminopeptidase 8D1X ; 2.8 ; Crystal Structure of aminopeptidase A from Neisseria gonorrhoeae 5IB9 ; 1.4 ; Crystal structure of aminopeptidase equipped with PAD from Aneurinibacillus sp. AM-1 5AB0 ; 2.5 ; Crystal structure of aminopeptidase ERAP2 with ligand 5AB2 ; 2.729 ; Crystal structure of aminopeptidase ERAP2 with ligand 4PF1 ; 2.1 ; Crystal structure of aminopeptidase from marine sediment archaeon Thaumarchaeota archaeon 2GLJ ; 3.2 ; crystal structure of aminopeptidase I from Clostridium acetobutylicum 2DQM ; 1.6 ; Crystal Structure of Aminopeptidase N complexed with bestatin 2DQ6 ; 1.5 ; Crystal Structure of Aminopeptidase N from Escherichia coli 2GTQ ; 2.05 ; Crystal structure of aminopeptidase N from human pathogen Neisseria meningitidis 3KED ; 2.3 ; Crystal structure of Aminopeptidase N in complex with 2,4-diaminobutyric acid 4QPE ; 2.004 ; Crystal structure of Aminopeptidase N in complex with N-cyclohexyl-1,2-diaminoethylphosphonic acid 4PW4 ; 1.85 ; Crystal structure of Aminopeptidase N in complex with phosphonic acid analogue of homophenylalanine L-(R)-hPheP 4QIR ; 1.701 ; Crystal structure of Aminopeptidase N in complex with the phosphinic dipeptide analogue LL-(R,S)-2-(pyridin-3-yl)ethylGlyP[CH2]Phe 4QME ; 1.601 ; Crystal structure of Aminopeptidase N in complex with the phosphinic dipeptide analogue LL-(R,S)-hPheP[CH2]Phe 4QUO ; 1.65 ; Crystal structure of Aminopeptidase N in complex with the phosphinic dipeptide analogue LL-(R,S)-hPheP[CH2]Phe(3-CH2NH2) 4QHP ; 1.6 ; Crystal structure of Aminopeptidase N in complex with the phosphinic dipeptide analogue LL-(R,S)-hPheP[CH2]Phe(4-CH2NH2) 4PVB ; 2.1 ; Crystal structure of Aminopeptidase N in complex with the phosphonic acid analogue of leucine (D-(S)-LeuP) 4PU2 ; 2.095 ; Crystal structure of Aminopeptidase N in complex with the phosphonic acid analogue of leucine L-(R)-LeuP 3GB0 ; 2.04 ; Crystal structure of aminopeptidase PepT (NP_980509.1) from Bacillus cereus ATCC 10987 at 2.04 A resolution 8IHG ; 2.858 ; Crystal structure of aminophenol dioxygenase from Pseudomonas species AP-3 2OFV ; 2.0 ; crystal structure of aminoquinazoline 1 bound to Lck 2OG8 ; 2.3 ; crystal structure of aminoquinazoline 36 bound to Lck 3JTX ; 1.91 ; Crystal structure of Aminotransferase (NP_283882.1) from NEISSERIA MENINGITIDIS Z2491 at 1.91 A resolution 3F0H ; 1.7 ; Crystal structure of Aminotransferase (RER070207000802) from Eubacterium rectale at 1.70 A resolution 6HNB ; 1.96 ; Crystal structure of aminotransferase Aro8 from Candida albicans 6HNV ; 2.6 ; Crystal structure of aminotransferase Aro9 from C. Albicans with ligands 3EZS ; 2.19 ; Crystal structure of aminotransferase AspB (NP_207418.1) from HELICOBACTER PYLORI 26695 at 2.19 A resolution 4ZWV ; 1.503 ; Crystal Structure of Aminotransferase AtmS13 from Actinomadura melliaura 3RQ1 ; 2.2 ; Crystal Structure of Aminotransferase Class I and II from Veillonella parvula 6JCB ; 2.85 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in C2 space group 6JC7 ; 2.2 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with amino donor L-Ala 8JT3 ; 2.35 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with amino donor L-Arg 6JC9 ; 2.35 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with amino donor L-Gln 6JC8 ; 2.25 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with amino donor L-Glu 5DDS ; 2.6 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with PLP 5DDU ; 2.46 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with PMP 5DDW ; 2.3 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in complex with the PMP external aldimine adduct with Caerulomycin M 6JCA ; 2.1 ; Crystal structure of aminotransferase CrmG from Actinoalloteichus sp. WH1-2216-6 in I222 space group 4EMY ; 2.86 ; Crystal structure of aminotransferase from anaerococcus prevotii dsm 20548. 3I5T ; 2.0 ; CRYSTAL STRUCTURE OF AMINOTRANSFERASE PRK07036 FROM Rhodobacter sphaeroides KD131 3I4J ; 1.7 ; Crystal structure of Aminotransferase, class III from Deinococcus radiodurans 7Z79 ; 2.3 ; Crystal structure of aminotransferase-like protein from Variovorax paradoxus 3DIH ; 2.6 ; Crystal structure of ammodytin L 1U77 ; 2.0 ; Crystal Structure of Ammonia Channel AmtB from E. Coli 1U7G ; 1.4 ; Crystal Structure of Ammonia Channel AmtB from E. Coli 4AE3 ; 2.5 ; Crystal structure of ammosamide 272:myosin-2 motor domain complex 5BPH ; 1.7 ; Crystal structure of AMP complexed D-alanine-D-alanine ligase(DDL) from Yersinia pestis 4H46 ; 2.5 ; Crystal Structure of AMP complexes of NEM modified Porcine Liver Fructose-1,6-bisphosphatase 4GBV ; 2.9 ; Crystal Structure of AMP complexes of Porcine Liver Fructose-1,6-bisphosphatase Mutant A54L with 1,2-ethanediol as Cryo-protectant 4GBW ; 2.0 ; Crystal Structure of AMP complexes of Porcine Liver Fructose-1,6-bisphosphatase Mutant A54L with 1,2-propanediol as Cryo-protectant 4KXP ; 2.7 ; Crystal Structure of AMP complexes of Porcine Liver Fructose-1,6-bisphosphatase Mutant I10D in T-state 4GWY ; 3.0 ; Crystal Structure of AMP Complexes of Porcine Liver Fructose-1,6-bisphosphatase with Blocked Subunit Pair Rotation 4GWS ; 2.75 ; Crystal Structure of AMP complexes of Porcine Liver Fructose-1,6-bisphosphatase with Filled Central Cavity 4GWZ ; 2.6 ; Crystal Structure of AMP Complexes of Porcine Liver Fructose-1,6-bisphosphatase with Restrained Subunit Pair Rotation 1YBF ; 2.9 ; Crystal structure of AMP nucleosidase from Bacteroides thetaiotaomicron VPI-5482 2GUW ; 2.64 ; Crystal structure of AMP Nucleosidase from Salmonella typhimurium LT2 4GA6 ; 2.21 ; Crystal structure of AMP phosphorylase C-terminal deletion mutant in complex with substrates 4GA5 ; 3.25 ; Crystal structure of AMP phosphorylase C-terminal deletion mutant in the apo-form 4GA4 ; 3.51 ; Crystal structure of AMP phosphorylase N-terminal deletion mutant 7TGL ; 2.89 ; Crystal structure of AMP+PPi bound DesD, the desferrioxamine synthetase from the Streptomyces griseoflavus ferrimycin biosynthetic pathway 7N8T ; 1.69 ; Crystal Structure of AMP-bound Human JNK2 2QRK ; 1.75 ; Crystal Structure of AMP-bound Saccharopine Dehydrogenase (L-Lys Forming) from Saccharomyces cerevisiae 3VR3 ; 3.4 ; Crystal structure of AMP-PNP bound A3B3 complex from Enterococcus hirae V-ATPase [bA3B3] 3VR6 ; 2.68 ; Crystal structure of AMP-PNP bound Enterococcus hirae V1-ATPase [bV1] 5ZE9 ; 2.102 ; Crystal structure of AMP-PNP bound mutant A3B3 complex from Enterococcus hirae V-ATPase 5C1O ; 2.5 ; Crystal structure of AMP-PNP complexed D-alanine-D-alanine ligase(DDL) from Yersinia pestis 6BS5 ; 3.1 ; Crystal structure of AMP-PNP-bound bacterial Get3-like A and B in Mycobacterium tuberculosis 5GZW ; 1.489 ; Crystal structure of AmpC BER adenylylated by acetyl-AMP 5F1G ; 1.76 ; Crystal structure of AmpC BER adenylylated in the cytoplasm 1GA9 ; 2.1 ; CRYSTAL STRUCTURE OF AMPC BETA-LACTAMASE FROM E. COLI COMPLEXED WITH NON-BETA-LACTAMASE INHIBITOR (2, 3-(4-BENZENESULFONYL-THIOPHENE-2-SULFONYLAMINO)-PHENYLBORONIC ACID) 1IEM ; 2.3 ; Crystal Structure of AmpC beta-lactamase from E. coli in Complex with a Boronic Acid Inhibitor (1, CefB4) 1LL9 ; 1.87 ; Crystal Structure Of AmpC beta-Lactamase From E. Coli In Complex With Amoxicillin 1LLB ; 1.72 ; Crystal Structure Of AmpC beta-Lactamase From E. Coli In Complex With ATMO-penicillin 4KG2 ; 1.89 ; Crystal Structure of AmpC beta-lactamase from E. coli in Complex with Cefotaxime 1IEL ; 2.0 ; Crystal Structure of AmpC beta-lactamase from E. coli in Complex with Ceftazidime 4JXG ; 1.65 ; Crystal Structure of AmpC beta-lactamase from E. coli in Complex with Oxacillin 4E3M ; 1.44 ; Crystal structure of AmpC beta-lactamase in complex with a 2-chloro-4-tetrazolyl benzene sulfonamide boronic acid inhibitor 4E3N ; 1.49 ; Crystal structure of AmpC beta-lactamase in complex with a 2-trifluoromethyl-4-tetrazolyl benzene sulfonamide boronic acid inhibitor 4E3L ; 1.43 ; Crystal structure of AmpC beta-lactamase in complex with a 3-chloro-4-tetrazolyl benzene sulfonamide boronic acid inhibitor 4E3I ; 1.6 ; Crystal structure of AmpC beta-lactamase in complex with a designed 3-carboxyl benzyl sulfonamide boronic acid inhibitor 4E3J ; 1.7999 ; Crystal structure of AmpC beta-lactamase in complex with a designed 4-tetrazolyl benzene sulfonamide boronic acid inhibitor 4E3K ; 1.4299 ; Crystal structure of AmpC beta-lactamase in complex with a designed 4-tetrazolyl pyridine sulfonamide boronic acid inhibitor 4E3O ; 1.6 ; Crystal structure of AmpC beta-lactamase in complex with a small chloromethyl sulfonamide boronic acid inhibitor 3O86 ; 1.6 ; Crystal structure of AmpC beta-lactamase in complex with a sulfonamide boronic acid inhibitor 3O87 ; 1.78 ; Crystal structure of AmpC beta-lactamase in complex with a sulfonamide boronic acid inhibitor 3O88 ; 1.64 ; Crystal structure of AmpC beta-lactamase in complex with a sulfonamide boronic acid inhibitor 4OLG ; 1.71 ; Crystal structure of AmpC beta-lactamase in complex with covalently bound N-formyl 7-aminocephalosporanic acid 4KZ6 ; 1.68 ; Crystal structure of AmpC beta-lactamase in complex with fragment 13 ((2R,6R)-6-methyl-1-(3-sulfanylpropanoyl)piperidine-2-carboxylic acid) 4KZ7 ; 1.43 ; Crystal structure of AmpC beta-lactamase in complex with fragment 16 ((1R,4S)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylic acid) 4KZ8 ; 2.282 ; Crystal structure of AmpC beta-lactamase in complex with fragment 20 (1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione) 4KZ9 ; 1.72 ; Crystal structure of AmpC beta-lactamase in complex with fragment 41 ((4R,4aS,8aS)-4-phenyldecahydroquinolin-4-ol) 4KZ3 ; 1.67 ; Crystal structure of AmpC beta-lactamase in complex with fragment 44 (5-chloro-3-sulfamoylthiophene-2-carboxylic acid) 4KZA ; 1.6 ; Crystal structure of AmpC beta-lactamase in complex with fragment 48 (3-(cyclopropylsulfamoyl)thiophene-2-carboxylic acid) 4KZ5 ; 1.35 ; Crystal structure of AmpC beta-lactamase in complex with fragment 5 (N-{[3-(2-chlorophenyl)-5-methyl-1,2-oxazol-4-yl]carbonyl}glycine) 4KZB ; 1.37 ; Crystal structure of AmpC beta-lactamase in complex with fragment 50 (N-(methylsulfonyl)-N-phenyl-alanine) 4KZ4 ; 1.42 ; Crystal structure of AmpC beta-lactamase in complex with fragment 60 (2-[(propylsulfonyl)amino]benzoic acid) 4OLD ; 1.48 ; Crystal structure of AmpC beta-lactamase in complex with the product form of (6R,7R)-7-amino-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid 4OKP ; 1.37 ; Crystal structure of AmpC beta-lactamase in complex with the product form of 7-amino-desacetoxycephalosporanic acid 4KG6 ; 1.75 ; Crystal Structure of AmpC beta-lactamase N152G Mutant from E. coli 4KG5 ; 2.11 ; Crystal Structure of AmpC beta-lactamase N152G Mutant in Complex with Cefotaxime 4KEN ; 1.89 ; Crystal Structure of AmpC beta-lactamase N152G Mutant in Complex with Cefoxitin 6LC8 ; 1.6 ; Crystal structure of AmpC Ent385 complex form with avibactam 6LC9 ; 1.65 ; Crystal structure of AmpC Ent385 complex form with ceftazidime 6LC7 ; 1.4 ; Crystal structure of AmpC Ent385 free form 6YEO ; 2.037 ; Crystal structure of AmpC from E. coli with cyclic boronate 2 6YPD ; 1.6 ; Crystal structure of AmpC from E. coli with Cyclic Boronate 3 (CB3 / APC308) 6YEN ; 1.418 ; Crystal structure of AmpC from E. coli with Taniborbactam (VNRX-5133) 6T3D ; 1.5 ; Crystal structure of AmpC from E.coli 6TBW ; 1.51 ; Crystal structure of AmpC from E.coli with Avibactam 6T35 ; 1.75 ; Crystal structure of AmpC from E.coli with Enmetazobactam (AAI-101) 6T7L ; 1.47 ; Crystal structure of AmpC from E.coli with Nacubactam (OP0595) 6TPM ; 1.72 ; Crystal structure of AmpC from E.coli with Relebactam (MK-7655) 6T5Y ; 1.3 ; Crystal structure of AmpC from E.coli with Zidebactam (WCK 5107) 6S1S ; 1.78 ; Crystal structure of AmpC from Pseudomonas aeruginosa in complex with [3-(2-carboxyvinyl)phenyl]boronic acid] inhibitor 2Y2C ; 1.802 ; crystal structure of AmpD Apoenzyme 2Y2E ; 2.0 ; crystal structure of AmpD grown at pH 5.5 2Y2D ; 2.0 ; crystal structure of AmpD holoenzyme 2Y2B ; 1.9 ; crystal structure of AmpD in complex with reaction products 4NO3 ; 1.703 ; Crystal structure of AMPD2 phosphopeptide bound to HLA-A2 4BPA ; 2.7 ; Crystal structure of AmpDh2 from Pseudomonas aeruginosa in complex with NAG-NAM-NAG-NAM tetrasaccharide 4BOL ; 1.7 ; Crystal structure of AmpDh2 from Pseudomonas aeruginosa in complex with pentapeptide 4BXJ ; 2.35 ; CRYSTAL STRUCTURE OF AMPDH3 FROM PSEUDOMONAS AERUGINOSA 4BXE ; 2.95 ; CRYSTAL STRUCTURE OF AMPDH3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH ANHYDROMURAMIC PENTAPEPTIDE 4BXD ; 3.1 ; CRYSTAL STRUCTURE OF AMPDH3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH TETRASACCHARIDE PENTAPEPTIDE 4DKM ; 1.95 ; Crystal Structure of Amphioxus GFPc1a 4DKN ; 1.35 ; Crystal structure of amphioxus green fluorescent protein, GFPA1 6K74 ; 2.28 ; Crystal structure of AMPPNP bound Ck1a alpha from C. neoformans 6K77 ; 2.4 ; Crystal structure of AMPPNP bound Ck1a alpha from C. neoformans 6ISE ; 2.8 ; Crystal structure of AMPPNP bound CK2 alpha from C. neoformans 6KO6 ; 2.4 ; Crystal structure of AMPPNP bound Cka1 from C. neoformans 1X3N ; 2.3 ; Crystal structure of AMPPNP bound Propionate kinase (TdcD) from Salmonella typhimurium 4IIR ; 2.0 ; Crystal Structure of AMPPNP-bound Human PRPF4B kinase domain 3EM3 ; 2.2 ; Crystal structure of amprenavir (APV) in complex with a drug resistant HIV-1 protease variant (I50L/A71V). 5O4P ; 1.86 ; Crystal structure of AMPylated GRP78 6EOF ; 1.59 ; Crystal structure of AMPylated GRP78 in ADP state 6EOB ; 2.0 ; Crystal structure of AMPylated GRP78 in apo form (Crystal form 1) 6EOC ; 1.67 ; Crystal structure of AMPylated GRP78 in apo form (Crystal form 2) 6EOE ; 1.71 ; Crystal structure of AMPylated GRP78 with nucleotide 4NH2 ; 2.3 ; Crystal structure of AmtB from E. coli bound to phosphatidylglycerol 6B21 ; 2.45 ; Crystal structure of AmtB from E. coli bound to TopFluor cardiolipin 1U7C ; 1.85 ; Crystal Structure of AmtB from E.Coli with Methyl Ammonium. 6LAD ; 2.7 ; Crystal structure of Amuc_1100 from Akkermansia muciniphila 7DSZ ; 1.75 ; Crystal structure of Amuc_1102 from Akkermansia muciniphila 5OMS ; 1.95 ; Crystal structure of Amycolatopsis cytochrome P450 GcoA in complex with guaethol. 5NCB ; 1.44 ; Crystal structure of Amycolatopsis cytochrome P450 GcoA in complex with guaiacol. 5OMU ; 1.95 ; Crystal structure of Amycolatopsis cytochrome P450 GcoA in complex with syringol 5OMR ; 1.68 ; Crystal structure of Amycolatopsis cytochrome P450 GcoA in complex with vanillin. 5OGX ; 1.72 ; Crystal structure of Amycolatopsis cytochrome P450 reductase GcoB. 7ZGF ; 2.05 ; Crystal Structure of Amycolatopsis jejuensis Multiple Inositol Polyphosphate Phosphatase, apo-protein 7ZGH ; 1.41 ; Crystal Structure of Amycolatopsis jejuensis Multiple Inositol Polyphosphate Phosphatase, complex with myo-inositol hexakissulfate 7ZGG ; 1.66 ; Crystal Structure of Amycolatopsis jejuensis Multiple Inositol Polyphosphate Phosphatase, phosphate-bound 4N6F ; 2.25 ; Crystal structure of Amycolatopsis orientalis BexX complexed with G6P 4N6E ; 2.6 ; Crystal structure of Amycolatopsis orientalis BexX/CysO complex 2VZO ; 2.24 ; Crystal structure of Amycolatopsis orientalis exo-chitosanase CsxA 1UD3 ; 2.15 ; Crystal structure of AmyK38 N289H mutant 1UD8 ; 2.88 ; Crystal structure of AmyK38 with lithium ion 1UD6 ; 2.5 ; Crystal structure of AmyK38 with potassium ion 1UD5 ; 2.7 ; Crystal structure of AmyK38 with rubidium ion 5JJH ; 1.8 ; Crystal structure of amylomaltase from Corynebacterium glutamicum 1CWY ; 2.0 ; CRYSTAL STRUCTURE OF AMYLOMALTASE FROM THERMUS AQUATICUS, A GLYCOSYLTRANSFERASE CATALYSING THE PRODUCTION OF LARGE CYCLIC GLUCANS 4FLO ; 2.2 ; Crystal structure of Amylosucrase double mutant A289P-F290C from Neisseria polysaccharea 4FLQ ; 2.5 ; Crystal structure of Amylosucrase double mutant A289P-F290I from Neisseria polysaccharea. 4FLR ; 2.4 ; Crystal structure of Amylosucrase double mutant A289P-F290L from Neisseria polysaccharea 7ESH ; 2.29 ; Crystal structure of amylosucrase from Calidithermus timidus 3UCQ ; 1.97 ; Crystal structure of amylosucrase from Deinococcus geothermalis 3UER ; 2.1 ; Crystal structure of amylosucrase from Deinococcus geothermalis in complex with turanose 1JG9 ; 1.66 ; Crystal Structure of Amylosucrase from Neisseria polysaccharea in Complex with D-glucose 3UEQ ; 1.85 ; Crystal structure of amylosucrase from Neisseria polysaccharea in complex with turanose 4FLS ; 2.3 ; Crystal structure of Amylosucrase inactive double mutant F290K-E328Q from Neisseria polysaccharea in complex with sucrose. 5H05 ; 2.55 ; Crystal structure of AmyP E221Q in complex with MALTOTRIOSE 5H06 ; 1.95 ; Crystal structure of AmyP in complex with maltose 2X2Q ; 1.9 ; Crystal structure of an 'all locked' LNA duplex at 1.9 angstrom resolution 6FTE ; 1.52 ; Crystal structure of an (R)-selective amine transaminase from Exophiala xenobiotica 7XG6 ; 1.32 ; Crystal structure of an (R)-selective omega-transaminase mutant from Aspergillus terreus with covalently bound PLP 7XG5 ; 1.76 ; Crystal structure of an (R)-selective omega-transaminase mutant from Aspergillus terreus with PLP 4IFD ; 2.805 ; Crystal structure of an 11-subunit eukaryotic exosome complex bound to RNA 1QCU ; 1.2 ; CRYSTAL STRUCTURE OF AN 18 BASE PAIR COPY CONTROL RELATED RNA DUPLEX 2AVP ; 2.04 ; Crystal structure of an 8 repeat consensus TPR superhelix 2HYZ ; 2.3 ; Crystal structure of an 8 repeat consensus TPR superhelix (orthorombic crystal form) 2FO7 ; 2.3 ; Crystal structure of an 8 repeat consensus TPR superhelix (trigonal crystal form) 8BU0 ; 1.4 ; Crystal structure of an 8 repeat consensus TPR superhelix with calcium 5VNX ; 1.65 ; Crystal structure of an 8-amino-7-oxononanoate synthase from Burkholderia multivorans with a potential glycine-PLP-Lys242 cyclized intermediate or byproduct 5JAY ; 1.75 ; Crystal Structure of an 8-amino-7-oxononanoate Synthase from Burkholderia xenovorans 8CIG ; 1.4 ; Crystal structure of an 8-repeat consensus TPR superhelix in tris Buffer with Calcium. 8CQP ; 1.7 ; Crystal structure of an 8-repeat consensus TPR superhelix with Calcium (low concentration) 8CQQ ; 2.6 ; Crystal structure of an 8-repeat consensus TPR superhelix with Copper 8CH0 ; 1.75 ; Crystal structure of an 8-repeat consensus TPR superhelix with Gadolinium. 8CKR ; 1.3 ; Crystal structure of an 8-repeat consensus TPR superhelix with in Hepes with Ca 8CP8 ; 1.68 ; Crystal structure of an 8-repeat consensus TPR superhelix with Lead 8CMQ ; 1.782 ; Crystal structure of an 8-repeat consensus TPR superhelix with Tb 8CHY ; 2.0 ; Crystal structure of an 8-repeat consensus TPR superhelix with Zinc. 1BR3 ; 3.0 ; CRYSTAL STRUCTURE OF AN 82-NUCLEOTIDE RNA-DNA COMPLEX FORMED BY THE 10-23 DNA ENZYME 3MCW ; 1.06 ; Crystal structure of an a putative hydrolase of the isochorismatase family (CV_1320) from Chromobacterium violaceum ATCC 12472 at 1.06 A resolution 5MVL ; 1.405 ; Crystal structure of an A-DNA dodecamer containing 5-bromouracil 5MVU ; 2.3 ; Crystal structure of an A-DNA dodecamer containing 5-formylcytosine in 3 consecutive CpG steps 5MVP ; 1.606 ; Crystal structure of an A-DNA dodecamer containing the GGGCCC motif 5MVT ; 1.896 ; Crystal structure of an A-DNA dodecamer featuring an alternating pyrimidine-purine sequence 5CH0 ; 1.4 ; Crystal structure of an A-form DNA duplex containing 5-hydroxylmethylcytidine 4JRT ; 2.6 ; Crystal structure of an A-form RNA duplex containing three GU base pairs 4OUE ; 2.35 ; Crystal structure of an a-L-Fucosidase GH29 from Bacteroides thetaiotaomicron (BT2192) in complex with IPTG 4OZO ; 2.6 ; Crystal structure of an a-L-fucosidase GH29 from Bacteroides thetaiotaomicron (BT2192) in complex with oNPTG 1DC0 ; 1.3 ; CRYSTAL STRUCTURE OF AN A/B-DNA INTERMEDIATE CATGGGCCCATG 6T5Z ; 1.6 ; Crystal structure of an AA10 LPMO from Photorhabdus luminescens 7OVA ; 1.75 ; Crystal structure of an AA9 LPMO 8B7P ; 2.11 ; Crystal structure of an AA9 LPMO from Aspergillus nidulans, AnLPMOC 4ILH ; 1.85 ; Crystal structure of an Aar2p C-terminal deletion mutant in conplex with Prp8p RNaseH 4ILI ; 3.2046 ; Crystal structure of an Aar2p S253E phosphomimetic mutant protein 5IBQ ; 1.2 ; Crystal structure of an ABC solute binding protein from Rhizobium etli CFN 42 (RHE_PF00037,TARGET EFI-511357) in complex with alpha-D-apiose 3HN0 ; 1.75 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER (BDI_1369) FROM PARABACTEROIDES DISTASONIS AT 1.75 A RESOLUTION 4YER ; 2.35 ; Crystal structure of an ABC transporter ATP-binding protein (TM_1403) from Thermotoga maritima MSB8 at 2.35 A resolution 5DTE ; 2.7 ; Crystal Structure of an ABC transporter periplasmic solute binding protein (IPR025997) from Actinobacillus succinogenes 130z(Asuc_0081, TARGET EFI-511065) with bound D-allose 4WBS ; 2.0 ; Crystal structure of an ABC transporter related protein from Burkholderia phymatum 6HS3 ; 2.4 ; Crystal structure of an ABC transporter related protein from Burkholderia pseudomallei 4YWH ; 2.35 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM ACTINOBACILLUS SUCCINOGENES 130Z (Asuc_0499, TARGET EFI-511068) WITH BOUND D-XYLOSE 4WUT ; 1.5 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM AGROBACTERIUM VITIS (Avi_5133, TARGET EFI-511220) WITH BOUND D-FUCOSE 4WT7 ; 2.0 ; Crystal structure of an ABC transporter solute binding protein (IPR025997) from Agrobacterium vitis (Avi_5165, Target EFI-511223) with bound allitol 5BR1 ; 1.85 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM AGROBACTERIUM VITIS S4 (Avi_5305, TARGET EFI-511224) WITH BOUND ALPHA-D-GALACTOSAMINE 4Y9T ; 1.801 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM AGROBACTERIUM VITIS S4 (Avi_5305, TARGET EFI-511224) WITH BOUND ALPHA-D-GLUCOSAMINE 4YO7 ; 1.7 ; Crystal Structure of an ABC transporter solute binding protein (IPR025997) from Bacillus halodurans C-125 (BH2323, TARGET EFI-511484) with bound myo-inositol 4YHS ; 1.8 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM BRADYRHIZOBIUM sp. BTAi1 (BBta_2440, TARGET EFI-511490) WITH BOUND BIS-TRIS 4YS6 ; 1.698 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM CLOSTRIDIUM PHYTOFERMENTANS (Cphy_1585, TARGET EFI-511156) WITH BOUND BETA-D-GLUCOSE 4WZZ ; 1.7 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM CLOSTRIDIUM PHYTOFERMENTAS (Cphy_0583, TARGET EFI-511148) WITH BOUND L-RHAMNOSE 4WWH ; 1.2 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM MYCOBACTERIUM SMEGMATIS (MSMEG_1704, TARGET EFI-510967) WITH BOUND D-GALACTOSE 4YV7 ; 2.3 ; CRYSTAL STRUCTURE OF AN ABC TRANSPORTER SOLUTE BINDING PROTEIN (IPR025997) FROM MYCOBACTERIUM SMEGMATIS (MSMEI_3018, TARGET EFI-511327) WITH BOUND GLYCEROL 5DKV ; 1.68 ; Crystal Structure of an ABC transporter Solute Binding Protein from Agrobacterium vitis(Avis_5339, TARGET EFI-511225) bound with alpha-D-Tagatopyranose 5HSG ; 1.3 ; Crystal structure of an ABC transporter Solute Binding Protein from Klebsiella pneumoniae (KPN_01730, target EFI-511059), APO open structure 5CI5 ; 1.61 ; Crystal Structure of an ABC transporter Solute Binding Protein from Thermotoga Lettingae TMO (Tlet_1705, TARGET EFI-510544) bound with alpha-D-Tagatose 5JOQ ; 1.99 ; Crystal Structure of an ABC Transporter Substrate-Binding Protein from Listeria monocytogenes EGD-e 4N0Q ; 2.3 ; Crystal Structure of an ABC transporter, substrate-binding protein from Brucella melitensis 16M in complex with L-Leucine using a crystal grown in a Crystal Former (Microlytic) 4YLE ; 1.7 ; Crystal structure of an ABC transpoter solute binding protein (IPR025997) from Burkholderia multivorans (Bmul_1631, Target EFI-511115) with an unknown ligand modelled as alpha-D-erythrofuranose 4OHN ; 1.37 ; Crystal structure of an ABC uptake transporter substrate binding protein from Streptococcus pneumoniae with Bound Histidine 3N0X ; 1.5 ; Crystal structure of an ABC-type branched-chain amino acid transporter (RPA4397) from Rhodopseudomonas palustris CGA009 at 1.50 A resolution 1TWY ; 1.65 ; Crystal structure of an ABC-type phosphate transport receptor from Vibrio cholerae 4ECF ; 1.55 ; Crystal structure of an ABC-type phosphate transport system, periplasmic component (LVIS_0633) from Lactobacillus brevis ATCC 367 at 1.55 A resolution 3NP5 ; 1.8 ; Crystal structure of an abridged form of the mature ectodomain of the human receptor-type protein tyrosine phosphatase ICA512/IA-2 AT pH 4.5 3N01 ; 1.3 ; Crystal structure of an abridged form of the mature ectodomain of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512/IA-2 at pH 8.5 3N4W ; 1.45 ; Crystal structure of an abridged SER to ALA mutant of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase ICA512/IA-2 at pH 7.5 3NG8 ; 1.35 ; Crystal structure of an abridged SER TO ALA MUTANT OF THE MATURE ECTODOMAIN of the human receptor-type protein-tyrosine phosphatase ICA512/IA-2 at PH 8.5 6BWW ; 2.1 ; Crystal structure of an acetate and Cymal-5 bound cytochrome P450 2B4 F429H mutant 4IZ9 ; 1.98 ; Crystal structure of an acetate kinase from Mycobacterium avium bound to an unknown acid-ApCpp conjugate and manganese 4IJN ; 1.7 ; Crystal structure of an acetate kinase from Mycobacterium smegmatis bound to AMP and sulfate 6INB ; 1.8 ; Crystal structure of an acetolactate decarboxylase from Klebsiella pneumoniae 6INC ; 1.604 ; Crystal structure of an acetolactate decarboxylase from Klebsiella pneumoniae 7DDY ; 2.505 ; Crystal structure of an acetyl xylan esterase AlAXEase 6FKX ; 2.03 ; Crystal structure of an acetyl xylan esterase from a desert metagenome 3BAL ; 1.95 ; Crystal Structure of an Acetylacetone Dioxygenase from Acinetobacter johnsonii 5J78 ; 2.1 ; Crystal structure of an Acetylating Aldehyde Dehydrogenase from Geobacillus thermoglucosidasius 5KZU ; 2.3 ; Crystal structure of an acetylcholine binding protein from Aplysia californica (Ac-AChBP) in complex with click chemistry compound 9-[[1-[8-methyl-8-(2-phenylethyl)-8-azoniabicyclo[3.2.1]octan-3-yl]triazol-4-yl]methyl]carbazole 1TIQ ; 1.9 ; Crystal Structure of an Acetyltransferase (PaiA) in complex with CoA and DTT from Bacillus subtilis, Northeast Structural Genomics Target SR64. 4XVV ; 1.7 ; Crystal structure of an Acid stress chaperone HdeB (KPN_03484) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.70 A resolution 7SU0 ; 2.41 ; Crystal structure of an acidic pH-selective Ipilimumab variant Ipi.105 in complex with CTLA-4 7SU1 ; 2.53 ; Crystal structure of an acidic pH-selective Ipilimumab variant Ipi.106 in complex with CTLA-4 1Z76 ; 1.85 ; Crystal structure of an acidic phospholipase A2 (BthA-I) from Bothrops jararacussu venom complexed with p-bromophenacyl bromide 1SZ8 ; 1.5 ; Crystal Structure of an Acidic Phospholipase A2 from Naja Naja Sagittifera at 1.5 A resolution 1UMV ; 1.79 ; Crystal structure of an acidic, non-myotoxic phospholipase A2 from the venom of Bothrops jararacussu 6C7K ; 2.5 ; Crystal structure of an ACO/RPE65 chimera 5JR7 ; 3.56 ; Crystal structure of an ACRDYS heterodimer [RIa(92-365):C] of PKA 3Q2B ; 1.6 ; Crystal Structure of an Actin Depolymerizing Factor 4JHD ; 2.91 ; Crystal Structure of an Actin Dimer in Complex with the Actin Nucleator Cordon-Bleu 6JH8 ; 2.149 ; Crystal structure of an actin monomer in complex with a chimeric peptide of Cordon-Bleu WH2 mutant and MIM. 6JH9 ; 1.739 ; Crystal structure of an actin monomer in complex with a chimeric peptide of Cordon-Bleu WH2 mutant and MIM. Lys18Arg 6JCU ; 2.297 ; Crystal structure of an actin monomer in complex with a nucleator Cordon-Bleu WH2-motif peptide mutant. T22V, H11R 5YPU ; 2.0 ; Crystal structure of an actin monomer in complex with the nucleator Cordon-Bleu MET72NLE WH2-motif peptide 6JBK ; 2.45 ; Crystal structure of an actin monomer in complex with the nucleator Cordon-Bleu WH2-motif peptide mutant. T22V 3DB8 ; 3.15 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 041 3DBD ; 3.05 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 094 3DBC ; 3.35 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 257 3DBE ; 3.32 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 557 3DBF ; 3.2 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 562 3DB6 ; 2.85 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with Compound 902 3D5X ; 2.8 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain in complex with wortmannin. 3D5V ; 2.4 ; Crystal structure of an activated (Thr->Asp) Polo-like kinase 1 (Plk1) catalytic domain. 1O6L ; 1.6 ; Crystal structure of an activated Akt/protein kinase B (PKB-PIF chimera) ternary complex with AMP-PNP and GSK3 peptide 4ELD ; 2.701 ; Crystal Structure of an Activated Variant of Small Heat Shock Protein Hsp16.5 1TZS ; 2.35 ; Crystal Structure of an activation intermediate of Cathepsin E 1R6U ; 2.0 ; Crystal structure of an active fragment of human tryptophanyl-tRNA synthetase with cytokine activity 1Q11 ; 1.6 ; Crystal structure of an active fragment of human tyrosyl-tRNA synthetase with tyrosinol 1Y0Q ; 3.6 ; Crystal structure of an active group I ribozyme-product complex 7ACA ; 1.57 ; CRYSTAL STRUCTURE OF AN ACTIVE KRAS G12D (GPPCP) DIMER IN COMPLEX WITH BI-5747 4R7Y ; 2.7 ; Crystal structure of an active MCM hexamer 5KJI ; 2.71 ; Crystal structure of an active polycomb repressive complex 2 in the basal state 5KJH ; 2.27 ; Crystal structure of an active polycomb repressive complex 2 in the stimulated state 2APQ ; 1.8 ; Crystal Structure of an Active Site Mutant of Bovine Pancreatic Ribonuclease A (H119A-RNase A) with a 10-Glutamine expansion in the C-terminal hinge-loop. 1HYB ; 2.0 ; CRYSTAL STRUCTURE OF AN ACTIVE SITE MUTANT OF METHANOBACTERIUM THERMOAUTOTROPHICUM NICOTINAMIDE MONONUCLEOTIDE ADENYLYLTRANSFERASE 2IFV ; 1.6 ; Crystal structure of an active site mutant, C473D, of CDC25B phosphatase catalytic domain 2A2K ; 1.52 ; Crystal Structure of an active site mutant, C473S, of Cdc25B Phosphatase Catalytic Domain 3KTQ ; 2.3 ; CRYSTAL STRUCTURE OF AN ACTIVE TERNARY COMPLEX OF THE LARGE FRAGMENT OF DNA POLYMERASE I FROM THERMUS AQUATICUS 1SC1 ; 2.6 ; Crystal structure of an active-site ligand-free form of the human caspase-1 C285A mutant 4DW7 ; 3.08 ; Crystal structure of an active-site mutant of the glycoprotein Erns from the pestivirus BVDV-1 in complex with a CpU dinucleotide 4DWA ; 3.01 ; Crystal structure of an active-site mutant of the glycoprotein Erns from the pestivirus BVDV-1 in complex with a CpUpC trinucleotide 4WVP ; 1.63 ; Crystal structure of an activity-based probe HNE complex 4XVX ; 2.3 ; Crystal structure of an acyl-ACP dehydrogenase 2ESS ; 1.9 ; Crystal structure of an acyl-ACP thioesterase (NP_810988.1) from Bacteroides thetaiotaomicron VPI-5482 at 1.90 A resolution 5IJM ; 1.46 ; Crystal Structure of an Acyl-CoA Binding Protein (LmjF.17.0620) of Leishmania major 5IDU ; 1.95 ; Crystal structure of an acyl-CoA dehydrogenase domain protein from Burkholderia phymatum bound to FAD 4W9U ; 2.4 ; Crystal Structure of an Acyl-CoA dehydrogenase from Brucella melitensis 3PFD ; 2.1 ; Crystal structure of an Acyl-CoA dehydrogenase from Mycobacterium thermoresistibile bound to reduced flavin adenine dinucleotide solved by combined iodide ion SAD MR 1XEB ; 2.35 ; Crystal Structure of an Acyl-CoA N-acyltransferase from Pseudomonas aeruginosa 3U0A ; 2.5 ; Crystal structure of an Acyl-CoA thioesterase II TesB2 from Mycobacterium marinum 1VE6 ; 2.1 ; Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1 1VE7 ; 2.7 ; Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1 in complex with p-nitrophenyl phosphate 4HI2 ; 3.1 ; Crystal structure of an Acylphosphatase protein cage 1EFO ; 2.3 ; CRYSTAL STRUCTURE OF AN ADENINE BULGE IN THE RNA CHAIN OF A DNA/RNA HYBRID, D(CTCCTCTTC)/R(GAAGAGAGAG) 2ICS ; 2.3 ; Crystal structure of an adenine deaminase 4DYK ; 2.0 ; Crystal structure of an adenosine deaminase from pseudomonas aeruginosa pao1 (target nysgrc-200449) with bound zn 4DZH ; 1.552 ; Crystal structure of an adenosine deaminase from xanthomonas campestris (target nysgrc-200456) with bound zn 4F0R ; 1.8 ; Crystal structure of an adenosine deaminase homolog from Chromobacterium violaceum (target NYSGRC-019589) bound Zn and 5'-Methylthioadenosine (unproductive complex) 4F0S ; 1.851 ; Crystal structure of an adenosine deaminase homolog from Chromobacterium violaceum (target NYSGRC-019589) with bound inosine. 6OL3 ; 2.74 ; Crystal structure of an adenovirus virus-associated RNA 4TYP ; 2.9 ; Crystal structure of an adenylate kinase mutant--AKm1 4TYQ ; 1.65 ; Crystal structure of an adenylate kinase mutant--AKm2 3H0K ; 3.25 ; Crystal structure of an adenylated kinase related protein from sulfolobus solfataricus to 3.25a 5WMM ; 2.9 ; Crystal structure of an adenylation domain interrupted by a methylation domain (AMA4) from nonribosomal peptide synthetase TioS 5D15 ; 1.5 ; Crystal structure of an adenylyl cyclase Ma1120 from Mycobacterium avium in complex with ATP and calcium ion 5D0E ; 1.48 ; Crystal Structure of an adenylyl cyclase Ma1120-Cat in complex with GTP and calcium from Mycobacterium avium 1I9G ; 1.98 ; CRYSTAL STRUCTURE OF AN ADOMET DEPENDENT METHYLTRANSFERASE 1UA4 ; 1.9 ; Crystal Structure of an ADP-dependent Glucokinase from Pyrococcus furiosus 2H39 ; 2.23 ; Crystal Structure of an ADP-Glucose Phosphorylase from Arabidopsis thaliana with bound ADP-Glucose 3O8S ; 2.27 ; Crystal structure of an ADP-ribose pyrophosphatase (SSU98_1448) from STREPTOCOCCUS SUIS 89-1591 at 2.27 A resolution 5H03 ; 1.89 ; Crystal structure of an ADP-ribosylating toxin BECa from C. perfringens 5H04 ; 1.825 ; Crystal structure of an ADP-ribosylating toxin BECa of a novel binary enterotoxin of C. perfringens with NADH 7EQX ; 2.08 ; Crystal structure of an Aedes aegypti procarboxypeptidase B1 3PWZ ; 1.705 ; Crystal structure of an Ael1 enzyme from Pseudomonas putida 6CKN ; 2.49 ; Crystal structure of an AF10 fragment 6CKO ; 2.0 ; Crystal structure of an AF10 fragment 6KPC ; 3.2 ; Crystal structure of an agonist bound GPCR 7MCD ; 1.9 ; Crystal structure of an AI-designed TIM-barrel F15C 7MCC ; 1.46 ; Crystal structure of an AI-designed TIM-barrel F2C 1VKB ; 1.9 ; Crystal structure of an aig2-like protein (a2ld1, ggact, mgc7867) from mus musculus at 1.90 A resolution 3LLX ; 1.5 ; Crystal structure of an ala racemase-like protein (il1761) from idiomarina loihiensis at 1.50 A resolution 6N7L ; 2.1 ; Crystal structure of an alcohol dehydrogenase from Elizabethkingia anophelis NUHP1 3GAZ ; 1.96 ; Crystal structure of an alcohol dehydrogenase superfamily protein from Novosphingobium aromaticivorans 5KF0 ; 1.7 ; Crystal structure of an Aldedhyde dehydrogenase from Burkholderia vietnamiensis 5Y6Q ; 2.5 ; Crystal structure of an aldehyde oxidase from Methylobacillus sp. KY4400 3NNB ; 1.6 ; Crystal structure of an alginate lyase (BACOVA_01668) from Bacteroides ovatus at 1.60 A resolution 3NFV ; 1.95 ; Crystal structure of an alginate lyase (BACOVA_01668) from Bacteroides ovatus at 1.95 A resolution 3CWU ; 2.8 ; Crystal Structure of an AlkA Host/Guest Complex 2'-fluoro-2'-deoxy-1,N6-ethenoadenine:Thymine Base Pair 3CWT ; 2.3 ; Crystal Structure of an AlkA Host/Guest Complex 2'-fluoro-2'-deoxyinosine:Adenine Base Pair 3CWS ; 2.3 ; Crystal Structure of an AlkA Host/Guest Complex 2'-fluoro-2'-deoxyinosine:Thymine Base Pair 3CVS ; 2.4 ; Crystal Structure of an AlkA Host/Guest Complex 8oxoGuanine:Adenine Base Pair 3CVT ; 2.5 ; Crystal Structure of an AlkA Host/Guest Complex 8oxoGuanine:Cytosine Base Pair 3CW7 ; 2.3 ; Crystal Structure of an AlkA Host/Guest Complex 8oxoGuanine:Cytosine Base Pair 3CWA ; 2.4 ; Crystal Structure of an AlkA Host/Guest Complex 8oxoGuanine:Cytosine Base Pair 3D4V ; 2.9 ; Crystal Structure of an AlkA Host/Guest Complex N7MethylGuanine:Cytosine Base Pair 3SYY ; 1.9 ; Crystal Structure of an alkaline exonuclease (LHK-Exo) from Laribacter hongkongensis 1WCZ ; 2.0 ; Crystal structure of an alkaline form of v8 protease from Staphylococcus aureus 7XKS ; 1.78 ; Crystal structure of an alkaline pectate lyase from Bacillus clausii 5ENU ; 1.35 ; Crystal structure of an alkyl hyroperoxide reductase from Burkholderia ambifaria 4KVV ; 1.9 ; Crystal structure of an alkylated Cys mutant of CC-Hex 3IEE ; 1.7 ; Crystal structure of an alpha helical protein (BF3319) from Bacteroides fragilis NCTC 9343 at 1.70 A resolution 3NAV ; 2.1 ; Crystal structure of an alpha subunit of tryptophan synthase from Vibrio cholerae O1 biovar El Tor str. N16961 5TVG ; 2.3 ; Crystal structure of an alpha,alpha-trehalose-phosphate synthase (UDP-forming) from Burkholderia vietnamiensis 5V0T ; 1.95 ; Crystal structure of an alpha,alpha-trehalose-phosphate synthase (UDP-forming) from Burkholderia xenovorans in complex with glucose-6-phosphate 3T1P ; 3.9 ; Crystal structure of an alpha-1-antitrypsin trimer 3DHU ; 2.0 ; Crystal structure of an alpha-amylase from Lactobacillus plantarum 4FJQ ; 2.0001 ; Crystal Structure of an alpha-Bisabolol synthase 4GAX ; 1.9948 ; Crystal Structure of an alpha-Bisabolol synthase mutant 3FCN ; 1.45 ; Crystal structure of an alpha-helical protein of unknown function (rru_a3208) from rhodospirillum rubrum atcc 11170 at 1.45 A resolution 4J5I ; 2.6 ; Crystal structure of an alpha-ketoglutarate-dependent taurine dioxygenase from Mycobacterium smegmatis 2WVV ; 1.73 ; Crystal structure of an alpha-L-fucosidase GH29 from Bacteroides thetaiotaomicron 2WVT ; 1.8 ; Crystal structure of an alpha-L-fucosidase GH29 from Bacteroides thetaiotaomicron in complex with a novel iminosugar fucosidase inhibitor 2XII ; 1.8 ; CRYSTAL STRUCTURE OF AN ALPHA-L-FUCOSIDASE GH29 FROM BACTEROIDES THETAIOTAOMICRON IN COMPLEX WITH AN EXTENDED 9-FLUORENONE IMINOSUGAR INHIBITOR 2XIB ; 2.2 ; CRYSTAL STRUCTURE OF AN ALPHA-L-FUCOSIDASE GH29 FROM BACTEROIDES THETAIOTAOMICRON IN COMPLEX WITH DEOXYFUCONOJIRIMYCIN 2WVS ; 2.19 ; Crystal structure of an alpha-L-fucosidase GH29 trapped covalent intermediate from Bacteroides thetaiotaomicron in complex with 2- fluoro-fucosyl fluoride using an E288Q mutant 1QQ4 ; 1.2 ; CRYSTAL STRUCTURE OF AN ALPHA-LYTIC PROTEASE MUTANT WITH ACCELERATED FOLDING KINETICS, R102H/G134S 1QRW ; 1.2 ; CRYSTAL STRUCTURE OF AN ALPHA-LYTIC PROTEASE MUTANT WITH ACCELERATED FOLDING KINETICS, R102H/G134S, PH 8 4HLB ; 1.8 ; Crystal structure of an alpha-lytic protease prodomain-like protein (DESPIG_01740) from Desulfovibrio piger ATCC 29098 at 1.80 A resolution 1VP8 ; 1.3 ; CRYSTAL STRUCTURE OF an alpha/beta domain of a putative pyruvate kinase (AF0103) FROM ARCHAEOGLOBUS FULGIDUS DSM 4304 AT 1.30 A RESOLUTION 3BWX ; 1.5 ; Crystal structure of an alpha/beta hydrolase (YP_496220.1) from Novosphingobium aromaticivorans DSM 12444 at 1.50 A resolution 5W15 ; 1.75 ; Crystal structure of an alpha/beta hydrolase fold protein from Burkholderia ambifaria. 2QRU ; 1.65 ; Crystal structure of an alpha/beta hydrolase superfamily protein from Enterococcus faecalis 7QJN ; 1.885 ; Crystal structure of an alpha/beta-hydrolase enzyme from Candidatus Kryptobacter tengchongensis (306) 7QJM ; 2.19 ; Crystal structure of an alpha/beta-hydrolase enzyme from Chloroflexus sp. MS-G (202) 1GQU ; 2.5 ; Crystal structure of an alternating A-T oligonucleotide fragment with Hoogsteen base pairing 3C1P ; 1.0 ; Crystal Structure of an alternating D-Alanyl, L-Homoalanyl PNA 315D ; 1.38 ; CRYSTAL STRUCTURE OF AN ALTERNATING OCTAMER R(GUAUGUA)D(C) WITH ADJACENT G-U WOBBLE PAIRS 6C0D ; 1.8 ; Crystal structure of an Amidase (hydantoinase/carbamoylase family) from Burkholderia phymatum 2PHN ; 1.35 ; Crystal structure of an amide bond forming F420-gamma glutamyl ligase from Archaeoglobus fulgidus 4DNM ; 2.15 ; Crystal structure of an amidohydrolase (cog3618) from burkholderia multivorans (target efi-500235) with bound hepes, space group p3221 4DO7 ; 1.7 ; Crystal structure of an amidohydrolase (cog3618) from burkholderia multivorans (target efi-500235) with bound zn, space group c2 4DLM ; 1.925 ; Crystal structure of an amidohydrolase (COG3618) from burkholderia multivorans (TARGET EFI-500235) with bound ZN, space group P212121 4DLF ; 1.925 ; Crystal structure of an amidohydrolase (COG3618) from burkholderia multivorans (TARGET EFI-500235) with bound ZN, space group P3221 2PAJ ; 2.7 ; Crystal structure of an amidohydrolase from an environmental sample of Sargasso sea 3HPA ; 2.2 ; Crystal structure of an amidohydrolase gi:44264246 from an evironmental sample of sargasso sea 4YMS ; 2.8 ; Crystal structure of an amino acid ABC transporter 4YMT ; 2.599 ; Crystal structure of an amino acid ABC transporter complex with arginines 4YMU ; 2.503 ; Crystal structure of an amino acid ABC transporter complex with arginines and ATPs 4H5F ; 1.9 ; Crystal structure of an amino acid ABC transporter substrate-binding protein from Streptococcus pneumoniae Canada MDR_19A bound to L-arginine, form 1 4H5G ; 1.78 ; Crystal structure of an amino acid ABC transporter substrate-binding protein from Streptococcus pneumoniae Canada MDR_19A bound to L-arginine, form 2 4YMV ; 3.003 ; Crystal structure of an amino acid ABC transporter with ATPs 4YMW ; 2.804 ; Crystal structure of an amino acid ABC transporter with histidines 1B87 ; 2.7 ; CRYSTAL STRUCTURE OF AN AMINOGLYCOSIDE 6'-N-ACETYLTRANSFERASE 2PBE ; 2.65 ; Crystal structure of an aminoglycoside 6-adenyltransferase from Bacillus subtilis 5HMN ; 2.018 ; Crystal structure of an aminoglycoside acetyltransferase HMB0005 from an uncultured soil metagenomic sample, unknown active site density modeled as polyethylene glycol 5F48 ; 1.95 ; Crystal structure of an aminoglycoside acetyltransferase meta-AAC0020 from an uncultured soil metagenomic sample in complex with coenzyme A 5F49 ; 2.15 ; Crystal structure of an aminoglycoside acetyltransferase meta-AAC0020 from an uncultured soil metagenomic sample in complex with malonyl-coenzyme A 5U08 ; 1.52 ; Crystal structure of an aminoglycoside acetyltransferase meta-AAC0020 from an uncultured soil metagenomic sample in complex with sisomicin 5F47 ; 1.497 ; Crystal structure of an aminoglycoside acetyltransferase meta-AAC0020 from an uncultured soil metagenomic sample in complex with trehalose 5F46 ; 1.85 ; Crystal structure of an aminoglycoside acetyltransferase meta-AAC0020 from an uncultured soil metagenomic sample, apoenzyme form 4CVQ ; 2.11 ; CRYSTAL STRUCTURE OF AN AMINOTRANSFERASE FROM ESCHERICHIA COLI AT 2. 11 ANGSTROEM RESOLUTION 5YHV ; 2.7 ; Crystal structure of an aminotransferase from Mycobacterium tuberculosis 5Z8K ; 1.759 ; Crystal structure of an aminotransferase in complex with product-1 1I3G ; 2.44 ; CRYSTAL STRUCTURE OF AN AMPICILLIN SINGLE CHAIN FV, FORM 1, FREE 4B41 ; 1.191 ; Crystal structure of an amyloid-beta binding single chain antibody G7 4B5E ; 1.936 ; Crystal Structure of an amyloid-beta binding single chain antibody PS2-8 5MTL ; 2.45 ; Crystal structure of an amyloidogenic light chain 5MUD ; 2.34 ; Crystal structure of an amyloidogenic light chain dimer H6 5MUH ; 2.65 ; Crystal structure of an amyloidogenic light chain dimer H7 6AT9 ; 2.9503 ; Crystal structure of an anaplastic lymphoma kinase-derived neuroblastoma tumor antigen bound to the Human Major Histocompatibility Complex Class I molecule HLA-A*0101 5TXS ; 1.697 ; Crystal structure of an anaplastic lymphoma kinase-derived neuroblastoma tumor antigen bound to the Human Major Histocompatibility Complex Class I molecule HLA-B*1501 5VZ5 ; 2.5901 ; Crystal structure of an anaplastic lymphoma kinase-derived neuroblastoma tumor antigen bound to the Human Major Histocompatibility Complex Class I molecule HLA-B*1501 4DXI ; 1.6 ; Crystal Structure of an Ancestor of All Faviina Proteins 5JOS ; 2.1 ; Crystal structure of an ancestral cyclohexadienyl dehydratase, AncCDT-3(P188L). 6WUP ; 1.49 ; Crystal structure of an ancestral cyclohexadienyl dehydratase, AncCDT-5 4DXM ; 1.4 ; Crystal Structure of an ancestral GFP-like protein 6I8R ; 2.0 ; Crystal structure of an ancient sequence-reconstructed Elongation factor Tu (node 170) 6HTW ; 1.8 ; Crystal structure of an ancient sequence-reconstructed Elongation factor Tu (node 184) 6GFU ; 2.0 ; Crystal structure of an ancient sequence-reconstructed Elongation Factor Tu (node 262) 7BBN ; 1.68 ; Crystal structure of an ancient sequence-reconstructed Elongation Factor Tu (node 317) 3QBI ; 2.1 ; Crystal structure of an anion-free yellow form of pharaonis halorhodopsin 5D66 ; 1.0 ; Crystal structure of an ankyrin repeat domain (ABAYE2397) from Acinetobacter baumannii AYE at 1.00 A resolution 3L4A ; 1.5 ; Crystal Structure of an Anopheles gambiae Odorant-binding Protein 22a 3L4L ; 1.9 ; Crystal Structure of an Anopheles gambiae Odorant-binding Protein AgamOBP22a with Bound Odorant Benzaldehyde 3QME ; 2.002 ; Crystal Structure of an Anopheles gambiae Odorant-binding Protein AgamOBP22a with Bound Odorant Cyclohexanone 4HKM ; 1.953 ; Crystal Structure of an Anthranilate Phosphoribosyltransferase (target ID NYSGRC-016600) from Xanthomonas campestris 2Q0O ; 2.0 ; Crystal structure of an anti-activation complex in bacterial quorum sensing 6HGU ; 1.5 ; Crystal Structure of an anti-APP-tag Fab 1F4W ; 2.3 ; CRYSTAL STRUCTURE OF AN ANTI-CARBOHYDRATE ANTIBODY DIRECTED AGAINST VIBRIO CHOLERAE O1 IN COMPLEX WITH ANTIGEN 1F4X ; 2.3 ; CRYSTAL STRUCTURE OF AN ANTI-CARBOHYDRATE ANTIBODY DIRECTED AGAINST VIBRIO CHOLERAE O1 IN COMPLEX WITH ANTIGEN 1F4Y ; 2.8 ; CRYSTAL STRUCTURE OF AN ANTI-CARBOHYDRATE ANTIBODY DIRECTED AGAINST VIBRIO CHOLERAE O1 IN COMPLEX WITH ANTIGEN 5WYM ; 2.65 ; Crystal structure of an anti-connexin26 scFv 6KYF ; 3.07 ; Crystal structure of an anti-CRISPR protein 7X4B ; 1.61 ; Crystal Structure of An Anti-CRISPR Protein 8HNS ; 2.54 ; Crystal structure of an anti-CRISPR protein AcrIIC4 in apo form 3O14 ; 1.7 ; Crystal structure of an anti-ECFsigma factor, ChrR (Maqu_0586) from MARINOBACTER AQUAEOLEI VT8 at 1.70 A resolution 3V6F ; 2.52 ; Crystal Structure of an anti-HBV e-antigen monoclonal Fab fragment (e6), unbound 1SBS ; 2.0 ; CRYSTAL STRUCTURE OF AN ANTI-HCG FAB 3A0C ; 2.0 ; Crystal Structure of an anti-HIV mannose-binding lectin from Polygonatum cyrtonema Hua 5WK4 ; 1.498 ; Crystal structure of an anti-idiotype VLR 7RTH ; 3.19 ; Crystal structure of an anti-lysozyme nanobody in complex with an anti-nanobody Fab ""NabFab"" 7AQL ; 1.8 ; Crystal Structure of an Anti-Plasminogen Activator Inhibitor-1 (PAI-1) scFv antibody fragment (scFv-33H1F7) 7N3E ; 2.06 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment C032 7N3F ; 1.9 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment C080 7N3G ; 1.42 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment C098 7N3H ; 1.26 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment C099 7K8O ; 1.95 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C002 7K8N ; 1.65 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C102 6XCA ; 1.8 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C105 7K8P ; 1.8 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C110 7K8Q ; 2.0 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C121 7K8R ; 2.0 ; Crystal structure of an anti-SARS-CoV-2 human neutralizing antibody Fab fragment, C135 4QTP ; 1.9 ; Crystal Structure of an Anti-sigma Factor Antagonist from Mycobacterium paratuberculosis 1P7K ; 1.75 ; Crystal structure of an anti-ssDNA antigen-binding fragment (Fab) bound to 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) 5HT0 ; 2.752 ; Crystal structure of an Antibiotic_NAT family aminoglycoside acetyltransferase HMB0038 from an uncultured soil metagenomic sample in complex with coenzyme A 8KAD ; 2.0 ; Crystal structure of an antibody light chain tetramer with 3D domain swapping 7OO2 ; 2.16 ; Crystal structure of an antibody targeting the capsular polysaccharide of serogroup X Neisseria meningitidis (MenX) 6Z6Z ; 1.78 ; Crystal structure of an Anticalin directed towards colchicine without ligand 5NKN ; 2.2 ; Crystal structure of an Anticalin-colchicine complex 1TET ; 2.3 ; CRYSTAL STRUCTURE OF AN ANTICHOLERA TOXIN PEPTIDE COMPLEX AT 2.3 ANGSTROMS 3A0K ; 1.8 ; Crystal structure of an antiflamatory legume lectin from Cymbosema roseum seeds 1IT9 ; 2.8 ; CRYSTAL STRUCTURE OF AN ANTIGEN-BINDING FRAGMENT FROM A HUMANIZED VERSION OF THE ANTI-HUMAN FAS ANTIBODY HFE7A 5CP7 ; 3.01 ; Crystal Structure of an Antigen-Binding Fragment of Monoclonal Antibody against Sulfonamides 5CP3 ; 1.99 ; Crystal Structure of an Antigen-Binding Fragment of Monoclonal Antibody against Sulfonamides in Complex with Sulfathiazole 5UVD ; 1.86 ; Crystal structure of an antigenic nucleotidyltransferase-like protein from Paracoccidioides brasiliensis 5BUN ; 2.98 ; Crystal structure of an antigenic outer membrane protein ST50 from Salmonella Typhi 3C1L ; 2.0 ; Crystal structure of an antioxidant defense protein (mlr4105) from mesorhizobium loti maff303099 at 2.00 A resolution 3E7K ; 2.01 ; Crystal Structure of an antiparallel coiled-coil tetramerization domain from TRPM7 channels 6G6H ; 1.7 ; Crystal structure of an antiparallel five-helix coiled coil 5H2L_2.1-I9L 5EOJ ; 2.115 ; Crystal structure of an antiparallel hexamer coiled-coil - ACC-Hex-PheI 6YB1 ; 2.15 ; Crystal structure of an antiparallel octameric transmembrane coiled coil K2-CCTM-VbIc 3K6Q ; 1.8 ; CRYSTAL STRUCTURE OF An antitoxin part of a putative toxin/antitoxin system (SWOL_0700) FROM SYNTROPHOMONAS WOLFEI SUBSP. WOLFEI AT 1.80 A RESOLUTION 3NRF ; 1.5 ; Crystal structure of an apag protein (PA1934) from pseudomonas aeruginosa pao1 at 1.50 A resolution 3SB3 ; 1.83 ; Crystal structure of an apag protein (PA1934) from pseudomonas aeruginosa pao1 at 1.83 A resolution 6D1S ; 3.2 ; Crystal structure of an apo chimeric human alpha1GABAA receptor 5YVP ; 2.051 ; Crystal structure of an apo form cyclase Filc1 from Fischerella sp. TAU 2FZV ; 1.7 ; Crystal Structure of an apo form of a Flavin-binding Protein from Shigella flexneri 6J3E ; 2.455 ; Crystal structure of an apo form of the glutathione S-transferase, CsGST63524, of Ceriporiopsis subvermispora 6J3G ; 1.95 ; Crystal structure of an apo form of the glutathione S-transferase, CsGST83044, of Ceriporiopsis subvermispora 1KYP ; 1.35 ; Crystal Structure of an Apo Green Fluorescent Protein Zn Biosensor 6OKE ; 2.55 ; Crystal structure of an apo Transferrin-Receptor-Binding cystine-dense peptide 5K92 ; 1.42 ; Crystal Structure of an apo Tris-thiolate Binding Site in a de novo Three Stranded Coiled Coil Peptide 4LII ; 1.88 ; Crystal structure of an apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1) from Homo sapiens at 1.88 A resolution 5B6H ; 1.9 ; Crystal structure of an APRT from Yersinia pseudotuberculosis in complex with AMP. 1Q44 ; 1.9 ; Crystal Structure of an Arabidopsis Thaliana Putative Steroid Sulfotransferase 6QTW ; 1.39 ; Crystal structure of an Arabidopsis WD40 domain in complex with a blue light photoreceptor 6QTX ; 1.95 ; Crystal structure of an Arabidopsis WD40 domain in complex with a flowering transcription factor homolog 6QTO ; 1.27 ; Crystal structure of an Arabidopsis WD40 domain in complex with a transcription factor 6QTT ; 1.51 ; Crystal structure of an Arabidopsis WD40 domain in complex with a transcription factor homolog 6QTV ; 1.31 ; Crystal structure of an Arabidopsis WD40 domain in complex with an atypical bHLH transcription factor 6QTQ ; 1.3 ; Crystal structure of an Arabidopsis WD40 domain in complex with photoreceptor 2WRZ ; 2.2 ; Crystal structure of an arabinose binding protein with designed serotonin binding site in open, ligand-free state 2FNA ; 2.0 ; Crystal structure of an archaeal aaa+ atpase (sso1545) from sulfolobus solfataricus p2 at 2.00 A resolution 2ZC0 ; 2.3 ; Crystal structure of an archaeal alanine:glyoxylate aminotransferase 1XFO ; 1.96 ; Crystal Structure of an archaeal aminopeptidase 6EKG ; 1.15 ; Crystal structure of an archaeal CheY from Methanoccocus maripaludis 5XSV ; 3.723 ; Crystal structure of an archaeal chitinase in the ligand-free form 5XSX ; 2.642 ; Crystal structure of an archaeal chitinase in the substrate-complex form (P212121) 5XSW ; 1.95 ; Crystal structure of an archaeal chitinase in the substrate-complex form (P63) 7MSU ; 2.07 ; Crystal structure of an archaeal CNNM, MtCorB, CBS-pair domain in complex with Mg2+-ATP 7M1U ; 3.8 ; Crystal structure of an archaeal CNNM, MtCorB, R235L mutant with C-terminal deletion 7M1T ; 3.26 ; Crystal structure of an archaeal CNNM, MtCorB, with C-terminal deletion in complex with Mg2+-ATP 3ZFV ; 2.8 ; Crystal structure of an archaeal CRISPR-associated Cas6 nuclease 1MOJ ; 1.9 ; Crystal structure of an archaeal dps-homologue from Halobacterium salinarum 1OJX ; 1.9 ; Crystal structure of an Archaeal fructose 1,6-bisphosphate aldolase 1DQ3 ; 2.1 ; CRYSTAL STRUCTURE OF AN ARCHAEAL INTEIN-ENCODED HOMING ENDONUCLEASE PI-PFUI 4FDG ; 4.1 ; Crystal Structure of an Archaeal MCM Filament 2B98 ; 2.3 ; Crystal Structure of an archaeal pentameric riboflavin synthase 2B99 ; 2.22 ; Crystal Structure of an archaeal pentameric riboflavin synthase Complex with a Substrate analog inhibitor 2CV4 ; 2.3 ; Crystal Structure of an Archaeal Peroxiredoxin from the Aerobic Hyperthermophilic Crenarchaeon Aeropyrum pernix K1 1TH7 ; 1.68 ; Crystal Structure of an Archaeal Sm Protein from Sulfolobus solfataricus 1QQC ; 2.6 ; CRYSTAL STRUCTURE OF AN ARCHAEBACTERIAL DNA POLYMERASE D.TOK 1D5A ; 2.4 ; CRYSTAL STRUCTURE OF AN ARCHAEBACTERIAL DNA POLYMERASE D.TOK. DEPOSITION OF SECOND NATIVE STRUCTURE AT 2.4 ANGSTROM 1J5U ; 2.0 ; CRYSTAL STRUCTURE OF AN ARCHEASE, POSSIBLE CHAPERONE (TM1083) FROM THERMOTOGA MARITIMA AT 2.0 A RESOLUTION 4B4L ; 1.75 ; CRYSTAL STRUCTURE OF AN ARD DAP-KINASE 1 MUTANT 3KZG ; 2.06 ; Crystal structure of an arginine 3rd transport system periplasmic binding protein from Legionella pneumophila 4WD2 ; 1.95 ; Crystal structure of an aromatic amino acid aminotransferase from Burkholderia cenocepacia J2315 5EFF ; 2.23 ; Crystal structure of an aromatic mutant (F4A) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 5XC0 ; 2.32 ; Crystal structure of an aromatic mutant (W6A) of an alkali thermostable GH10 Xylanase from Bacillus sp. NG-27 5YNT ; 1.79 ; Crystal structure of an aromatic prenyltransferase FAMD1 from Fischerella ambigua UTEX 1903 5YNV ; 1.7 ; Crystal structure of an aromatic prenyltransferase FAMD1 from Fischerella ambigua UTEX 1903 in complex with DMASPP 5YNW ; 1.95 ; Crystal structure of an aromatic prenyltransferase FAMD1 from Fischerella ambigua UTEX 1903 in complex with DMASPP and INN 5YNU ; 1.7 ; Crystal structure of an aromatic prenyltransferase FAMD1 from Fischerella ambigua UTEX 1903 in complex with INN 2W6R ; 2.1 ; Crystal structure of an artificial (ba)8-barrel protein designed from identical half barrels 4F01 ; 1.4 ; Crystal structure of an artificial dimeric DnaK complex 2Z68 ; 1.58 ; Crystal Structure Of An Artificial Metalloprotein: Cr[N-salicylidene-4-amino-3-hydroxyhydrocinnamic acid]/Wild Type Heme oxygenase 1WZD ; 1.35 ; Crystal Structure Of An Artificial Metalloprotein: Fe(10-CH2CH2COOH-Salophen)/Wild Type Heme oxygenase 1WZF ; 1.85 ; Crystal Structure Of An Artificial Metalloprotein: Fe(10-COOH-Salophen)/Wild Type Heme oxygenase 1WZG ; 1.75 ; Crystal Structure Of An Artificial Metalloprotein: Fe(Salophen)/Wild Type Heme oxygenase 1J3F ; 1.45 ; Crystal Structure of an Artificial Metalloprotein:Cr(III)(3,3'-Me2-salophen)/apo-A71G Myoglobin 1UFJ ; 1.6 ; Crystal Structure of an Artificial Metalloprotein:Fe(III)(3,3'-Me2-salophen)/apo-A71G Myoglobin 1UFP ; 2.1 ; Crystal Structure of an Artificial Metalloprotein:Fe(III)(3,3'-Me2-salophen)/apo-wild type Myoglobin 1V9Q ; 1.45 ; Crystal Structure of an Artificial Metalloprotein:Mn(III)(3,3'-Me2-salophen)/apo-A71G Myoglobin 2EF2 ; 1.8 ; Crystal Structure of an Artificial Metalloprotein:Rh(Phebox-Ph)/apo-A71G Myoglobin 6FHT ; 2.35 ; Crystal structure of an artificial phytochrome regulated adenylate/guanylate cyclase in its dark adapted Pr form 2XY5 ; 2.22 ; Crystal structure of an artificial salen-copper basepair in complex with fragment DNA polymerase I from Bacillus stearothermophilus 3OG3 ; 2.08 ; Crystal structure of an artificial thermostable (BA)8-barrel protein from identical half barrels 1W39 ; 3.75 ; Crystal structure of an artificial top component of turnip yellow mosaic virus 1E2S ; 2.35 ; Crystal structure of an Arylsulfatase A mutant C69A 1E1Z ; 2.4 ; Crystal structure of an Arylsulfatase A mutant C69S 1E3C ; 2.65 ; Crystal structure of an Arylsulfatase A mutant C69S soaked in synthetic substrate 1E33 ; 2.5 ; Crystal structure of an Arylsulfatase A mutant P426L 5H8D ; 1.89 ; Crystal structure of an ASC binding nanobody 5H8O ; 4.206 ; Crystal structure of an ASC-binding nanobody in complex with the CARD domain of ASC 3PPS ; 2.5 ; Crystal structure of an ascomycete fungal laccase from Thielavia arenaria 2ET2 ; 2.1 ; Crystal structure of an Asn to Ala mutant of Winged Bean Chymotrypsin Inhibitor protein 3NRA ; 2.15 ; Crystal structure of an aspartate aminotransferase (YP_354942.1) from Rhodobacter sphaeroides 2.4.1 at 2.15 A resolution 5TI8 ; 2.07 ; Crystal Structure of an aspartate aminotransferase from Pseudomonas 6WNG ; 1.55 ; Crystal structure of an aspartate ammonia-lyase from Elizabethkingia anophelis NUHP1 3PPL ; 1.25 ; Crystal structure of an aspartate transaminase (NCgl0237, Cgl0240) from CORYNEBACTERIUM GLUTAMICUM ATCC 13032 KITASATO at 1.25 A resolution 3UW3 ; 1.55 ; Crystal Structure of an Aspartate-Semialdehyde Dehydrogenase from Burkholderia Thailandensis 5HQT ; 1.598 ; Crystal structure of an aspartate/glutamate racemase from Escherichia coli O157 5HRA ; 1.597 ; Crystal structure of an aspartate/glutamate racemase in complex with D-aspartate 5HRC ; 1.765 ; Crystal structure of an aspartate/glutamate racemase in complex with L-aspartate 2QJ8 ; 2.0 ; Crystal structure of an aspartoacylase family protein (mlr6093) from mesorhizobium loti maff303099 at 2.00 A resolution 2I3C ; 2.8 ; Crystal Structure of an Aspartoacylase from Homo Sapiens 2GU2 ; 1.805 ; Crystal Structure of an Aspartoacylase from Rattus norvegicus 4H3Y ; 2.5 ; Crystal structure of an asymmetric dimer of a tRNA (guanine-(N(1)-)-methyltransferase from Burkholderia phymatum bound to S-adenosyl homocystein in one half-site 6PNX ; 2.199 ; Crystal Structure of an Asymmetric Dimer of FGF Receptor 3 Kinases Trapped in A-loop Tyrosine Transphosphorylation Reaction 5H69 ; 2.2004 ; Crystal structure of an asymmetric dimer of the Geobacillus stearothermophilus SMC hinge domain 6R9D ; 2.1 ; Crystal structure of an asymmetric dimer of the N-terminal domain of Euprosthenops australis Major Ampullate Spidroin 1 (dragline silk) 5LP8 ; 2.7 ; Crystal structure of an asymmetric dimer of the ubiquitin ligase HUWE1 3V8G ; 4.66 ; Crystal structure of an asymmetric trimer of a glutamate transporter homologue (GltPh) 4LJX ; 2.21 ; Crystal structure of an AT-rich interactive domain-containing protein 3A (ARID3A) from Homo sapiens at 2.21 A resolution 4GSK ; 2.9 ; Crystal structure of an Atg7-Atg10 crosslinked complex 4GSL ; 2.703 ; Crystal structure of an Atg7-Atg3 crosslinked complex 4Q5T ; 1.907 ; Crystal structure of an atmB (putative membrane lipoprotein) from Streptococcus mutans UA159 at 1.91 A resolution 1DTS ; 1.65 ; CRYSTAL STRUCTURE OF AN ATP DEPENDENT CARBOXYLASE, DETHIOBIOTIN SYNTHASE, AT 1.65 ANGSTROMS RESOLUTION 1O63 ; 2.0 ; Crystal structure of an ATP phosphoribosyltransferase 1O64 ; 2.1 ; Crystal structure of an ATP phosphoribosyltransferase 4Q4L ; 2.2 ; Crystal structure of an ATP synthase subunit beta 1 (F1-B1) from Burkholderia thailandensis 4PWX ; 5.4 ; Crystal structure of an ATP-bound Get3-Get4-Get5 complex from S.cerevisiae 1ZX8 ; 1.9 ; CRYSTAL STRUCTURE OF an atypical cyclophilin (peptidylprolyl cis-trans isomerase) (TM1367) FROM THERMOTOGA MARITIMA AT 1.90 A RESOLUTION 6OM1 ; 2.66 ; Crystal structure of an atypical integrin 7QCE ; 2.1 ; Crystal structure of an atypical PHD finger of VIN3 5NYL ; 1.5 ; Crystal structure of an atypical poplar thioredoxin-like2.1 active site mutant 5NYO ; 2.25 ; Crystal structure of an atypical poplar thioredoxin-like2.1 variant in dimeric form 3P7X ; 1.96 ; Crystal structure of an atypical two-cysteine peroxiredoxin (SAOUHSC_01822) from Staphylococcus aureus NCTC8325 4XI2 ; 2.6 ; Crystal Structure of an auto-inhibited form of Bruton's Tryrosine Kinase 2J6E ; 3.0 ; Crystal Structure of an Autoimmune Complex between a Human IgM Rheumatoid Factor and IgG1 Fc reveals a Novel Fc Epitope and Evidence for Affinity Maturation 3B9V ; 1.8 ; Crystal Structure of an Autonomous VH Domain 4HW6 ; 1.7 ; Crystal structure of an auxiliary nutrient binding protein (BACOVA_00264) from Bacteroides ovatus ATCC 8483 at 1.70 A resolution 4QNI ; 2.3 ; Crystal structure of an auxiliary nutrient binding protein (BT3507) from Bacteroides thetaiotaomicron VPI-5482 at 2.30 A resolution 3TC9 ; 2.23 ; Crystal structure of an auxiliary nutrient binding protein (BT_3476) from Bacteroides thetaiotaomicron VPI-5482 at 2.23 A resolution 3EBJ ; 2.2 ; Crystal structure of an avian influenza virus protein 4BCS ; 1.8 ; Crystal structure of an avidin mutant 4U46 ; 1.95 ; Crystal structure of an avidin mutant 4P65 ; 1.5 ; Crystal structure of an cyclohexylalanine substituted insulin analog. 6N39 ; 2.15 ; Crystal structure of an dephospho-CoA kinase CoaE from Mycobacterium paratuberculosis 2HOO ; 3.0 ; Crystal structure of an E. coli thi-box riboswitch bound to benfotiamine 2HOP ; 3.3 ; Crystal structure of an E. coli thi-box riboswitch bound to pyrithiamine 2HOM ; 2.89 ; Crystal structure of an E. coli thi-box riboswitch bound to thiamine monophosphate 2HOL ; 2.9 ; Crystal structure of an E. coli thi-box riboswitch bound to thiamine pyrophosphate, barium ions 2HOK ; 3.2 ; Crystal structure of an E. coli thi-box riboswitch bound to thiamine pyrophosphate, calcium ions 2HOJ ; 2.5 ; Crystal structure of an E. coli thi-box riboswitch bound to thiamine pyrophosphate, manganese ions 7TD7 ; 2.95 ; Crystal structure of an E. coli thiM riboswitch bound to thiamine, manganese ions 1KMI ; 2.9 ; CRYSTAL STRUCTURE OF AN E.COLI CHEMOTAXIS PROTEIN, CHEZ 3BQA ; 2.0 ; Crystal Structure of an E.coli PhoQ Sensor Domain Mutant 5D67 ; 2.0 ; Crystal structure of an EF-Hand calcium binding domain of CAP-Binding Protein Complex-Interacting Protein 1 (EFCAB6) from Homo sapiens at 2.00 A resolution 8HTD ; 1.848 ; Crystal structure of an effector from Chromobacterium violaceum in complex with ubiquitin 8HTF ; 2.151 ; Crystal structure of an effector in complex with ubiquitin 8HTE ; 2.307 ; Crystal structure of an effector mutant in complex with ubiquitin 3G6N ; 2.5 ; Crystal structure of an EfPDF complex with Met-Ala-Ser 4RIW ; 3.1 ; Crystal structure of an EGFR/HER3 kinase domain heterodimer 4RIY ; 2.981 ; Crystal structure of an EGFR/HER3 kinase domain heterodimer containing the cancer-associated HER3-E909G mutation 4RIX ; 3.1 ; Crystal structure of an EGFR/HER3 kinase domain heterodimer containing the cancer-associated HER3-Q790R mutation 2QPT ; 3.1 ; Crystal structure of an EHD ATPase involved in membrane remodelling 2I2O ; 1.92 ; Crystal Structure of an eIF4G-like Protein from Danio rerio 4FXV ; 1.9 ; Crystal structure of an ELAV-like protein 1 (ELAVL1) from Homo sapiens at 1.90 A resolution 2H3X ; 2.5 ; Crystal Structure of an Electron Transfer Complex Between Aromatic Amine Dehydrogenase and Azurin from Alcaligenes Faecalis (Form 3) 2H47 ; 2.6 ; Crystal Structure of an Electron Transfer Complex Between Aromatic Amine Dephydrogenase and Azurin from Alcaligenes Faecalis (Form 1) 2IAA ; 1.95 ; Crystal Structure of an Electron Transfer Complex Between Aromatic Amine Dephydrogenase and Azurin from Alcaligenes Faecalis (Form 2) 5OW0 ; 1.7 ; Crystal structure of an electron transfer flavoprotein from Geobacter metallireducens 1MDA ; 2.5 ; CRYSTAL STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN 4LA9 ; 1.3 ; Crystal structure of an empty substrate binding domain 1 (SBD1) OF ABC TRANSPORTER GLNPQ from lactococcus lactis 3PTO ; 3.008 ; Crystal Structure of an empty Vesicular Stomatitis Virus Nucleocapsid Protein Complex 3FM3 ; 2.18 ; Crystal structure of an Encephalitozoon cuniculi methionine aminopeptidase type 2 3FMQ ; 2.5 ; Crystal structure of an Encephalitozoon cuniculi methionine aminopeptidase type 2 with angiogenesis inhibitor fumagillin bound 3FMR ; 2.89 ; Crystal structure of an Encephalitozoon cuniculi methionine aminopeptidase type 2 with angiogenesis inhibitor TNP470 bound 3QZ4 ; 1.74 ; Crystal structure of an Endo-1,4-beta-xylanase D (BT_3675) from Bacteroides thetaiotaomicron VPI-5482 at 1.74 A resolution 4XUY ; 2.0027 ; Crystal structure of an endo-beta-1,4-xylanase (glycoside hydrolase family 10/GH10) enzyme from Aspergillus niger 4XV0 ; 1.9697 ; Crystal structure of an endo-beta-1,4-xylanase (glycoside hydrolase family 10/GH10) enzyme from Trichoderma reesei 3POH ; 1.55 ; Crystal structure of an endo-beta-N-acetylglucosaminidase (BT_3987) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.55 A resolution 6FCG ; 2.6 ; Crystal structure of an endo-laminarinase from Formosa Hel1_33_131 3GVJ ; 1.48 ; Crystal structure of an endo-neuraminidaseNF mutant 6T9G ; 2.29621 ; CRYSTAL STRUCTURE OF AN ENDOGLUCANASE D213A FROM PENICILLIUM VERRUCULOSUM 5I6S ; 2.1 ; Crystal structure of an endoglucanase from Penicillium verruculosum 5L9C ; 1.85 ; Crystal structure of an endoglucanase from Penicillium verruculosum in complex with cellobiose 5X6A ; 1.7 ; Crystal structure of an endoglucanase PMO-5 5WTJ ; 3.503 ; Crystal structure of an endonuclease 1GL2 ; 1.9 ; Crystal structure of an endosomal SNARE core complex 5H68 ; 1.975 ; Crystal structure of an engaged dimer of the Geobacillus stearothermophilus SMC head domain 3ZUS ; 2.95 ; Crystal structure of an engineered botulinum neurotoxin type A- SNARE23 derivative, LC-A-SNAP23-Hn-A 3ZUR ; 2.71 ; Crystal structure of an engineered botulinum neurotoxin type A- SNARE23 derivative, LC0-A-SNAP25-Hn-A 3ZUQ ; 2.7 ; Crystal structure of an engineered botulinum neurotoxin type B - derivative, LC-B-GS-Hn-B 6G5F ; 2.5 ; Crystal structure of an engineered Botulinum Neurotoxin type B mutant E1191M/S1199Y in complex with human synaptotagmin 1 6G5G ; 2.0 ; Crystal structure of an engineered Botulinum Neurotoxin type B mutant E1191M/S1199Y in complex with human synaptotagmin 2 6D08 ; 2.1 ; Crystal structure of an engineered bump-hole complex of mutant human chromobox homolog 1 (CBX1) with H3K9bn peptide 5C46 ; 2.65 ; Crystal structure of an engineered construct of phosphatidylinositol 4 kinase III beta in complex with GTP gamma S loaded Rab11 5EUQ ; 3.2 ; Crystal structure of an engineered construct of phosphatidylinositol 4 kinase III beta with a potent and selective inhibitor in complex with GDP loaded Rab11 5C4G ; 3.2 ; Crystal structure of an engineered construct of phosphatidylinositol 4 kinase III beta with the inhibitor BQR695 in complex with GDP loaded Rab11 3ORC ; 3.0 ; CRYSTAL STRUCTURE OF AN ENGINEERED CRO MONOMER BOUND NONSPECIFICALLY TO DNA 3TOL ; 2.0 ; Crystal structure of an engineered cytochrome cb562 that forms 1D, Zn-mediated coordination polymers 3TOM ; 2.3 ; Crystal structure of an engineered cytochrome cb562 that forms 2D, Zn-mediated sheets 2XNC ; 2.9 ; Crystal structure of an engineered Ferredoxin NADP reductase (FNR) from Pisum sativum 2XNJ ; 1.9 ; Crystal structure of an engineered Ferredoxin(flavodoxin) NADP(H) Reductase (FPR) from Escherichia coli 3DLK ; 1.85 ; Crystal Structure of an engineered form of the HIV-1 Reverse Transcriptase, RT69A 7AUC ; 1.53 ; Crystal structure of an engineered helicase domain construct for human Bloom syndrome protein (BLM) 3P9W ; 2.41 ; Crystal structure of an engineered human autonomous VH Domain in complex with VEGF 1SM9 ; 2.2 ; Crystal Structure Of An Engineered K274RN276D Double Mutant of Xylose Reductase From Candida Tenuis Optimized To Utilize NAD 4MVL ; 2.3 ; Crystal structure of an engineered lipocalin (Anticalin H1GA) in complex with the Alzheimer amyloid peptide Abeta1-40 4MVI ; 1.7 ; Crystal structure of an engineered lipocalin (Anticalin US7) in complex with the Alzheimer amyloid peptide Abeta(1-40) 4MVK ; 1.5 ; Crystal structure of an engineered lipocalin (Anticalin US7) in complex with the Alzheimer amyloid peptide fragment VFFAED 4QAE ; 2.1 ; Crystal structure of an engineered lipocalin (Anticalin) in complex with human hepcidin 4QAF ; 1.8 ; Crystal structure of an engineered lipocalin (Anticalin) in complex with VEGF(8-109) 4JE9 ; 2.12 ; Crystal structure of an engineered metal-free RIDC1 construct with four interfacial disulfide bonds 5L31 ; 2.4 ; Crystal structure of an engineered metal-free RIDC1 variant containing five disulfide bonds. 3IQ5 ; 2.05 ; Crystal structure of an engineered metal-free tetrameric cytochrome cb562 complex templated by Zn-coordination 3NMO ; 3.1 ; Crystal structure of an engineered monomeric CLC-ec1 Cl-/H+ transporter 3QNB ; 1.95 ; Crystal Structure of an Engineered OXA-10 Variant with Carbapenemase Activity, OXA-10loop24 5BU7 ; 2.46 ; Crystal structure of an engineered protein that forms nanotubes with tunable diameters 4NEZ ; 2.395 ; Crystal Structure of an engineered protein with ferredoxin fold, Northeast Structural Genomics Consortium (NESG) Target OR276 4NEY ; 2.323 ; Crystal Structure of an engineered protein with ferredoxin fold, Northeast Structural Genomics Consortium (NESG) Target OR277 4JEB ; 2.3 ; Crystal structure of an engineered RIDC1 tetramer with four interfacial disulfide bonds and four three-coordinate Zn(II) sites 3WWJ ; 2.2 ; Crystal structure of an engineered sitagliptin-producing transaminase, ATA-117-Rd11 2TLD ; 2.6 ; CRYSTAL STRUCTURE OF AN ENGINEERED SUBTILISIN INHIBITOR COMPLEXED WITH BOVINE TRYPSIN 6WY1 ; 3.42 ; Crystal structure of an engineered thermostable dengue virus 2 envelope protein dimer 5N82 ; 1.708 ; Crystal structure of an engineered TycA variant in complex with an beta-Phe-AMP analog 5N81 ; 1.6 ; Crystal structure of an engineered TycA variant in complex with an O-propargyl-beta-Tyr-AMP analog 7YWJ ; 1.749 ; Crystal structure of an engineered TycA variant, TycA pPLA (L313P) 7YWK ; 1.39 ; Crystal structure of an engineered TycA variant, TycApPLA, in complex with AMP 6U8C ; 2.61 ; Crystal structure of an engineered ultra-high affinity Fab-Protein G complex 2B45 ; 2.0 ; Crystal structure of an engineered uninhibited Bacillus subtilis xylanase in free state 2B46 ; 2.215 ; Crystal structure of an engineered uninhibited Bacillus subtilis xylanase in substrate bound state 2V7G ; 2.0 ; Crystal Structure of an Engineered Urocanase Tetramer 7REP ; 2.192 ; Crystal structure of an engineered variant of single-chain Penicillin G Acylase from Kluyvera cryocrescens (A1-Ac Rd3CHis) 7REO ; 1.812 ; Crystal structure of an engineered variant of single-chain Penicillin G Acylase from Kluyvera cryocrescens (global hydrolysis Rd3CHis) 3PPV ; 1.9 ; Crystal structure of an engineered VWF A2 domain (N1493C and C1670S) 4JEA ; 1.22 ; Crystal structure of an engineered Zn-RIDC1 construct with four interfacial disulfide bonds 1HDD ; 2.8 ; CRYSTAL STRUCTURE OF AN ENGRAILED HOMEODOMAIN-DNA COMPLEX AT 2.8 ANGSTROMS RESOLUTION: A FRAMEWORK FOR UNDERSTANDING HOMEODOMAIN-DNA INTERACTIONS 4H2H ; 1.7 ; Crystal structure of an enolase (mandalate racemase subgroup, target EFI-502101) from Pelagibaca bermudensis htcc2601, with bound mg and l-4-hydroxyproline betaine (betonicine) 4DN1 ; 2.05 ; Crystal structure of an ENOLASE (mandelate racemase subgroup member) from Agrobacterium tumefaciens (target EFI-502088) with bound mg and formate 4MGG ; 2.2 ; Crystal structure of an enolase (mandelate racemase subgroup) from labrenzia aggregata iam 12614 (target nysgrc-012903) with bound mg, space group p212121 4IZG ; 1.7 ; Crystal structure of an enolase (mandelate racemase subgroup) from paracococus denitrificans pd1222 (target nysgrc-012907) with bound cis-4oh-d-proline betaine (product) 4J1O ; 1.6 ; Crystal structure of an enolase (mandelate racemase subgroup) from paracococus denitrificans pd1222 (target nysgrc-012907) with bound l-proline betaine (substrate) 4E8G ; 2.0 ; Crystal structure of an enolase (mandelate racemase subgroup) from paracococus denitrificans pd1222 (target nysgrc-012907) with bound mg 4DX3 ; 1.65 ; Crystal structure of an enolase (mandelate racemase subgroup, target EFI-502086) from Agrobacterium tumefaciens, with a succinimide residue 4DXK ; 1.25 ; Crystal structure of an enolase (mandelate racemase subgroup, target EFI-502086) from Agrobacterium tumefaciens, with a succinimide residue, na and phosphate 4H19 ; 1.8 ; Crystal structure of an enolase (mandelate racemase subgroup, target EFI-502087) from agrobacterium tumefaciens, with bound Mg and d-ribonohydroxamate, ordered loop 4JN7 ; 1.15 ; CRYSTAL STRUCTURE OF AN ENOLASE (PUTATIVE GALACTARATE DEHYDRATASE, TARGET EFI-500740) FROM AGROBACTERIUM RADIOBACTER, BOUND NA and L-MALATE, ORDERED ACTIVE SITE 4JN8 ; 1.4 ; Crystal structure of an enolase (putative galactarate dehydratase, target efi-500740) from agrobacterium radiobacter, bound sulfate, no metal ion, ordered active site 4DYE ; 1.6 ; Crystal structure of an enolase (putative sugar isomerase, target efi-502095) from streptomyces coelicolor, no mg, ordered loop 4GIR ; 2.0 ; Crystal structure of an enolase family member from vibrio harveyi (efi-target 501692) with homology to mannonate dehydratase, with mg, ethylene glycol and sulfate bound (ordered loops, space group P41212) 4GIS ; 1.8 ; crystal structure of an enolase family member from vibrio harveyi (efi-target 501692) with homology to mannonate dehydratase, with mg, glycerol and dicarboxylates bound (mixed loops, space group I4122) 4GGH ; 1.9 ; Crystal structure of an enolase family member from vibrio harveyi (efi-target 501692) with homology to mannonate dehydratase, with mg, hepes, and ethylene glycol bound (ordered loops, space group c2221) 3TJ4 ; 1.5 ; Crystal structure of an enolase from agrobacterium tumefaciens (efi target efi-502087) no mg 3UGV ; 2.3 ; Crystal structure of an enolase from alpha pretobacterium bal199 (EFI TARGET EFI-501650) with bound MG 3UJ2 ; 2.0 ; CRYSTAL STRUCTURE OF AN ENOLASE FROM ANAEROSTIPES CACCAE (EFI TARGET EFI-502054) WITH BOUND MG AND SULFATE 3TJI ; 1.8 ; CRYSTAL STRUCTURE OF AN ENOLASE FROM ENTEROBACTER sp. 638 (EFI TARGET EFI-501662) with BOUND MG 3T6C ; 1.598 ; Crystal structure of an enolase from pantoea ananatis (efi target efi-501676) with bound d-gluconate and mg 3THU ; 1.8 ; Crystal structure of an enolase from sphingomonas sp. ska58 (efi target efi-501683) with bound mg 2QGY ; 1.8 ; Crystal structure of an enolase from the environmental genome shotgun sequencing of the Sargasso Sea 3V3W ; 1.4 ; Crystal structure of an enolase from the soil bacterium Cellvibrio japonicus (TARGET EFI-502161) with bound MG and glycerol 3V4B ; 1.4 ; Crystal structure of an enolase from the soil bacterium Cellvibrio japonicus (TARGET EFI-502161) with bound MG and L-tartrate 3DIP ; 2.5 ; Crystal structure of an enolase protein from the environmental genome shotgun sequencing of the Sargasso Sea 4EIT ; 2.4 ; Crystal structure of an enoyl-(acyl carrier protein) reductase from Bartonella henselae 3R6H ; 1.75 ; Crystal structure of an enoyl-CoA hydratase (ECHA3) from Mycobacterium marinum 3QRE ; 2.4 ; Crystal structure of an enoyl-coA hydratase EchA12_1 from Mycobacterium marinum 3OC7 ; 1.5 ; Crystal structure of an enoyl-CoA hydratase from Mycobacterium avium 4QFE ; 1.95 ; Crystal Structure of an Enoyl-CoA hydratase from Mycobacterium smegmatis 4J2U ; 2.0 ; Crystal structure of an enoyl-CoA hydratase from Rhodobacter sphaeroides 2.4.1 4K2N ; 2.0 ; Crystal structure of an enoyl-CoA hydratase/ carnithine racemase from Magnetospirillum magneticum 4MOU ; 2.25 ; Crystal Structure of an Enoyl-CoA Hydratase/Isomerase Family Member, NYSGRC target 028282 3OT6 ; 2.5 ; Crystal Structure of an enoyl-CoA hydratase/isomerase family protein from Psudomonas syringae 4K3W ; 2.31 ; Crystal structure of an enoyl-CoA hydratase/isomerase from Marinobacter aquaeolei 3P5M ; 2.05 ; Crystal structure of an enoyl-CoA hydratase/isomerase from Mycobacterium avium 3RRV ; 2.45 ; Crystal structure of an enoyl-CoA hydratase/isomerase from Mycobacterium paratuberculosis 3TLF ; 2.15 ; Crystal structure of an enoyl-CoA hydratase/isomerase from Mycobacterium paratuberculosis 4K29 ; 1.66 ; Crystal structure of an enoyl-CoA hydratase/isomerase from Xanthobacter autotrophicus Py2 3L3S ; 2.32 ; Crystal structure of an enoyl-CoA hydrotase/isomerase family protein from Silicibacter pomeroyi 7U0O ; 2.05 ; Crystal structure of an enoyl-[acyl-carrier-protein] reductase InhA from Mycobacterium fortuitum bound to NAD and NITD-916 1ZAT ; 2.4 ; Crystal Structure of an Enterococcus faecium peptidoglycan binding protein at 2.4 A resolution 4YVW ; 3.8 ; crystal structure of an enterovirus 71/coxsackievirus A16 chimeric virus-like particle 4HNK ; 2.9 ; Crystal structure of an Enzyme 1CU1 ; 2.5 ; CRYSTAL STRUCTURE OF AN ENZYME COMPLEX FROM HEPATITIS C VIRUS 1JP4 ; 1.69 ; Crystal Structure of an Enzyme Displaying both Inositol-Polyphosphate 1-Phosphatase and 3'-Phosphoadenosine-5'-Phosphate Phosphatase Activities 6JJT ; 1.33 ; Crystal structure of an enzyme from Penicillium herquei in condition1 6JJS ; 1.62 ; Crystal structure of an enzyme from Penicillium herquei in condition2 6ADU ; 1.96 ; Crystal structure of an enzyme in complex with ligand C 3U0S ; 2.6 ; Crystal Structure of an Enzyme Redesigned Through Multiplayer Online Gaming: CE6 6N3K ; 2.2 ; Crystal structure of an epoxide hydrolase from Trichoderma reesei in complex with inhibitor 1 6N5G ; 2.6 ; Crystal structure of an epoxide hydrolase from Trichoderma reesei in complex with inhibitor 2 6N5F ; 1.93 ; Crystal structure of an epoxide hydrolase from Trichoderma reesei in complex with inhibitor 3 6N3Z ; 2.238 ; Crystal structure of an epoxide hydrolase from Trichoderma reesei in complex with inhibitor 4 6N5H ; 1.717 ; Crystal structure of an epoxide hydrolase from Trichoderma reesei in complex with inhibitor 5 8XIZ ; 2.175 ; Crystal structure of an epoxide hydrolase mutant A250IC/L344V from Aspergillus usamii E001 at 2.17 Angstroms resolution 6N5A ; 3.3 ; Crystal structure of an equine H7 hemagglutinin from A/equine/NY/49/73 (H7N7) 7T1V ; 2.05 ; Crystal structure of an equine H7 hemagglutinin from A/equine/NY/49/73 (H7N7) in complex with 3'-GcLN 2VAL ; 2.0 ; Crystal structure of an Escherichia coli tRNAGly microhelix at 2.0 Angstrom resolution 2HWV ; 1.9 ; Crystal structure of an essential response regulator DNA binding domain, VicRc in Enterococcus faecalis, a member of the YycF subfamily. 7KLD ; 2.25 ; Crystal Structure of an Essential Ribosomal Processing Protease Prp from S. aureus in complex with a covalently linked product Peptide 7JVS ; 2.3 ; Crystal Structure of an Essential Ribosomal Processing Protease Prp from S. aureus in complex with a Substrate Peptide 4MSX ; 1.87 ; Crystal structure of an essential yeast splicing factor 4Q05 ; 2.05 ; Crystal structure of an esterase E25 6G21 ; 2.1 ; Crystal structure of an esterase from Aspergillus oryzae 4XVC ; 2.0 ; Crystal structure of an esterase from the bacterial hormone-sensitive lipase (HSL) family 4RNC ; 1.95 ; Crystal structure of an esterase RhEst1 from Rhodococcus sp. ECU1013 6TL3 ; 2.455 ; Crystal structure of an Estrogen Receptor alpha 8-mer phosphopeptide in complex with 14-3-3sigma stabilized by a Pyrrolidone1 derivative 6TJM ; 1.85 ; Crystal structure of an Estrogen Receptor alpha 8-mer phosphopeptide in complex with 14-3-3sigma stabilized by Pyrrolidone1 3BF4 ; 2.1 ; Crystal structure of an ethd-like protein (reut_b5694) from ralstonia eutropha jmp134 at 2.10 A resolution 2FTR ; 1.4 ; Crystal structure of an ethyl tert-butyl ether d (ethd) family protein (bh0200) from bacillus halodurans c-125 at 1.40 A resolution 4P0M ; 2.0 ; Crystal structure of an evolved putative penicillin-binding protein homolog, Rv2911, from Mycobacterium tuberculosis 4AHC ; 2.4 ; Crystal Structure of an Evolved Replicating DNA Polymerase 4AIL ; 2.9 ; Crystal Structure of an Evolved Replicating DNA Polymerase 3P2C ; 1.6 ; Crystal structure of an exo-alpha-1,6-mannosidase (bacova_03347) from bacteroides ovatus at 1.60 a resolution 3ON6 ; 1.7 ; Crystal structure of an exo-alpha-1,6-mannosidase (bacova_03626) from bacteroides ovatus at 1.70 a resolution 5TPY ; 2.805 ; Crystal structure of an exonuclease resistant RNA from Zika virus 3MDQ ; 1.5 ; Crystal structure of an Exopolyphosphatase (CHU_0316) from Cytophaga hutchinsonii ATCC 33406 at 1.50 A resolution 4PY9 ; 2.25 ; Crystal structure of an exopolyphosphatase-related protein from Bacteroides Fragilis. Northeast Structural Genomics target BFR192 6D3P ; 2.9 ; Crystal structure of an exoribonuclease-resistant RNA from Sweet clover necrotic mosaic virus (SCNMV) 4ZYS ; 2.25 ; Crystal structure of an exotoxin 6 (SAV0422) from Staphylococcus aureus subsp. aureus Mu50 at 2.25 A resolution 4J50 ; 1.65 ; Crystal Structure of an Expanded RNA CAG Repeat 6BXF ; 3.2 ; Crystal structure of an extended b3 integrin L33 6BXB ; 2.39 ; Crystal structure of an extended b3 integrin P33 6CKB ; 2.8 ; Crystal structure of an extended beta3 integrin P33 5TD8 ; 7.531 ; Crystal structure of an Extended Dwarf Ndc80 Complex 2UXD ; 3.2 ; Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA CGGG in the context of the Thermus thermophilus 30S subunit. 2UXB ; 3.1 ; Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA GGGU in the context of the Thermus thermophilus 30S subunit. 2UXC ; 2.9 ; Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA UCGU in the context of the Thermus thermophilus 30S subunit. 3PWY ; 3.5 ; Crystal structure of an extender (SPD28345)-modified human PDK1 complex 2 1KD7 ; 2.8 ; Crystal structure of an extracellular domain fragment of human BAFF 3BYW ; 2.35 ; Crystal structure of an extracellular domain of arabinofuranosyltransferase from Corynebacterium diphtheriae 3FT7 ; 2.0 ; Crystal structure of an extremely stable dimeric protein from sulfolobus islandicus 3V3D ; 1.95 ; Crystal Structure of an eYFP single mutant 6U4Y ; 2.91 ; Crystal Structure of an EZH2-EED Complex in an Oligomeric State 5B4M ; 2.4 ; Crystal structure of an Fab against human influenza A 6F7T ; 2.6 ; Crystal Structure of an Fab fragment in complex with a peptide from Bacillus subtilis RNase Y 1EJE ; 2.2 ; CRYSTAL STRUCTURE OF AN FMN-BINDING PROTEIN 3TF8 ; 2.1302 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120 3TF9 ; 2.5901 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120 under 1 atm of xenon 3TFA ; 2.2711 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120 under 6 atm of xenon 3TFD ; 1.96 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120, L66W mutant 3TFE ; 1.991 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120, L66W mutant under 6 atm of xenon 3TFG ; 1.9003 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120, L66W/L67W double mutant 3TFF ; 1.9401 ; Crystal structure of an H-NOX protein from Nostoc sp. PCC 7120, L67W mutant 4U99 ; 2.0 ; Crystal structure of an H-NOX protein from S. oneidensis in the Fe(II) ligation state, Q154A/Q155A/K156A mutant 4U9G ; 2.25 ; Crystal structure of an H-NOX protein from S. oneidensis in the Fe(II)CO ligation state, Q154A/Q155A/K156A mutant 4U9B ; 1.65 ; Crystal structure of an H-NOX protein from S. oneidensis in the Fe(II)NO ligation state 4U9J ; 2.1 ; Crystal structure of an H-NOX protein from S. oneidensis in the Mn(II) ligation state, Q154A/Q155A/K156A mutant 4U9K ; 2.45 ; Crystal structure of an H-NOX protein from S. oneidensis in the Mn(II)NO ligation state, Q154A/Q155A/K156A mutant 3TF0 ; 1.743 ; Crystal structure of an H-NOX protein from T. tengcongensis 3TF1 ; 2.0369 ; Crystal structure of an H-NOX protein from T. tengcongensis under 6 atm of xenon 2HVY ; 2.3 ; Crystal structure of an H/ACA box RNP from Pyrococcus furiosus 4IL8 ; 1.8 ; Crystal structure of an H329A mutant of p. aeruginosa PMM/PGM 4BSG ; 2.1 ; Crystal Structure of an H7N3 Avian Influenza Virus Haemagglutinin 1C3S ; 2.5 ; CRYSTAL STRUCTURE OF AN HDAC HOMOLOG COMPLEXED WITH SAHA 1C3R ; 2.0 ; CRYSTAL STRUCTURE OF AN HDAC HOMOLOG COMPLEXED WITH TRICHOSTATIN A 1C3P ; 1.8 ; CRYSTAL STRUCTURE OF AN HDAC HOMOLOG FROM AQUIFEX AEOLICUS 1O3U ; 1.75 ; Crystal structure of an hepn domain protein (tm0613) from thermotoga maritima at 1.75 A resolution 8PFE ; 1.35 ; Crystal Structure of an Hexavariant of the b1 Domain of Human Neuropilin-1 in Complex with the KDKPPR Peptide 3HFN ; 2.31 ; Crystal Structure of an Hfq protein from Anabaena sp. 3HFO ; 1.3 ; Crystal Structure of an Hfq protein from Synechocystis sp. 2QTX ; 2.5 ; Crystal structure of an Hfq-like protein from Methanococcus jannaschii 1KQ2 ; 2.71 ; Crystal Structure of an Hfq-RNA Complex 3P0T ; 1.9 ; Crystal structure of an HIT-like protein from mycobacterium paratuberculosis 5KZC ; 3.25 ; Crystal structure of an HIV-1 gp120 engineered outer domain with a Man9 glycan at position N276, in complex with broadly neutralizing antibody VRC01 1GGI ; 2.8 ; CRYSTAL STRUCTURE OF AN HIV-1 NEUTRALIZING ANTIBODY 50.1 IN COMPLEX WITH ITS V3 LOOP PEPTIDE ANTIGEN 1HU0 ; 2.35 ; CRYSTAL STRUCTURE OF AN HOGG1-DNA BOROHYDRIDE TRAPPED INTERMEDIATE COMPLEX 2CG9 ; 3.1 ; Crystal structure of an Hsp90-Sba1 closed chaperone complex 2CGE ; 3.0 ; Crystal structure of an Hsp90-Sba1 closed chaperone complex 8OZ8 ; 1.85 ; Crystal Structure of an Hydroxynitrile lyase variant (H96A) from Granulicella tundricola 1O65 ; 2.33 ; Crystal structure of an hypothetical protein 1O67 ; 2.54 ; Crystal structure of an hypothetical protein 1VHK ; 2.6 ; Crystal structure of an hypothetical protein 1VHM ; 2.1 ; Crystal structure of an hypothetical protein 1VI3 ; 1.76 ; Crystal structure of an hypothetical protein 1VI7 ; 2.8 ; Crystal structure of an hypothetical protein 1VIM ; 1.36 ; Crystal structure of an hypothetical protein 1VIZ ; 1.85 ; Crystal structure of an hypothetical protein 8CXF ; 1.77 ; Crystal structure of an i-motif from the HRAS promoter region 8DHC ; 2.02 ; Crystal structure of an i-motif from the HRAS promoter region 3KTL ; 1.75 ; Crystal Structure of an I71A human GSTA1-1 mutant in complex with S-hexylglutathione 2R6K ; 2.51 ; Crystal structure of an I71V hGSTA1-1 mutant in complex with S-hexylglutathione 6EIO ; 0.84 ; Crystal structure of an ice binding protein from an Antarctic Biological Consortium 4NU2 ; 2.1 ; Crystal structure of an ice-binding protein (FfIBP) from the Antarctic bacterium, Flavobacterium frigoris PS1 3ULT ; 1.4 ; Crystal structure of an ice-binding protein from the perennial ryegrass, Lolium perenne 7DQB ; 2.101 ; Crystal structure of an IclR homolog complexed with 4-hydroxybenzoate from Microbacterium hydrocarbonoxydans in P212121 form 5H1A ; 2.1 ; Crystal structure of an IclR homolog from Microbacterium sp. strain HM58-2 5CNL ; 2.65 ; Crystal structure of an IcmL-like type IV secretion system protein (lpg0120) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 at 2.65 A resolution 1U8R ; 2.75 ; Crystal Structure of an IdeR-DNA Complex Reveals a Conformational Change in Activated IdeR for Base-specific Interactions 2WAH ; 2.51 ; Crystal Structure of an IgG1 Fc Glycoform (Man9GlcNAc2) 5XMH ; 2.8 ; Crystal structure of an IgM rheumatoid factor YES8c in complex with IgG1 Fc 1OY3 ; 2.05 ; CRYSTAL STRUCTURE OF AN IKBBETA/NF-KB P65 HOMODIMER COMPLEX 3N8U ; 1.44 ; Crystal structure of an imelysin peptidase (BACOVA_03801) from Bacteroides ovatus at 1.44 A resolution 3OYV ; 1.25 ; Crystal structure of an imelysin peptidase (BACOVA_03801) from Bacteroides ovatus ATCC 8483 at 1.25 A resolution 3PF0 ; 2.15 ; Crystal structure of an Imelysin-like protein (Psyc_1802) from PSYCHROBACTER ARCTICUM 273-4 at 2.15 A resolution 5CD5 ; 3.396 ; Crystal structure of an immature VRC01-class antibody DRVIA7 from a Chinese donor bound to clade A/E HIV-1 gp120 core 4MAY ; 2.2 ; Crystal structure of an immune complex 4GBX ; 3.0 ; Crystal structure of an immune complex at pH 6.5 3UN9 ; 2.65 ; Crystal structure of an immune receptor 2ZRR ; 1.8 ; Crystal structure of an immunity protein that contributes to the self-protection of bacteriocin-producing Enterococcus mundtii 15-1A 2V7H ; 2.8 ; Crystal structure of an immunogen specific anti-mannopyranoside monoclonal antibody Fab fragment 4DDD ; 1.9 ; Crystal structure of an immunogenic protein from ehrlichia chaffeensis 3SO5 ; 1.7 ; Crystal structure of an Immunoglobulin I-set domain of Lrig3 protein (Lrig3) from MUS MUSCULUS at 1.70 A resolution 2XQH ; 1.99 ; Crystal structure of an immunoglobulin-binding fragment of the trimeric autotransporter adhesin EibD 3N6Y ; 1.5 ; Crystal structure of an immunoglobulin-like protein (PA1606) from PSEUDOMONAS AERUGINOSA at 1.50 A resolution 4RDB ; 1.45 ; Crystal structure of an immunoreactive 32 kDa antigen PG49 (PG_0181) from Porphyromonas gingivalis W83 at 1.45 A resolution (PSI Community Target, Nakayama) 2PBZ ; 2.5 ; Crystal structure of an IMP biosynthesis protein PurP from Thermococcus kodakaraensis 3EGZ ; 2.2 ; Crystal structure of an in vitro evolved tetracycline aptamer and artificial riboswitch 1FB7 ; 2.6 ; CRYSTAL STRUCTURE OF AN IN VIVO HIV-1 PROTEASE MUTANT IN COMPLEX WITH SAQUINAVIR: INSIGHTS INTO THE MECHANISMS OF DRUG RESISTANCE 6D7R ; 2.1 ; Crystal structure of an inactivate variant of the quorum-sensing master regulator HapR from protease-deficient non-O1, non-O139 Vibrio cholerae strain V2 7D89 ; 2.89384 ; Crystal structure of an inactivated double mutant (E182AE280A) of a novel thermostable GH10 xylanase XynA 5OL6 ; 2.0 ; Crystal structure of an inactivated Npu SICLOPPS intein with CAFHPQ extein 5OL7 ; 1.6 ; Crystal structure of an inactivated Npu SICLOPPS intein with CFAHPQ extein 5OL1 ; 1.751 ; Crystal structure of an inactivated Ssp SICLOPPS intein with a CAFHPQ extein 5OL5 ; 2.329 ; Crystal structure of an inactivated Ssp SICLOPPS intein with CFAHPQ extein 3ITD ; 1.89 ; Crystal structure of an inactive 17beta-Hydroxysteroid dehydrogenase (Y167F mutated form) from fungus Cochliobolus lunatus 1MRV ; 2.8 ; crystal structure of an inactive Akt2 kinase domain 1MRY ; 2.8 ; crystal structure of an inactive akt2 kinase domain 3O2L ; 2.0 ; Crystal Structure of an Inactive Kemp Elimination Design HG-1 4JIJ ; 1.698 ; Crystal structure of an inactive mutant of MMP-9 catalytic domain in complex with a fluorogenic synthetic peptidic substrate 4JQG ; 1.849 ; Crystal structure of an inactive mutant of MMP-9 catalytic domain in complex with a fluorogenic synthetic peptidic substrate with a fluorine atom. 6V6M ; 1.39 ; Crystal structure of an inactive state of GMPPNP-bound RhoA 1VKM ; 1.9 ; Crystal structure of an indigoidine synthase a (idga)-like protein (tm1464) from thermotoga maritima msb8 at 1.90 A resolution 4B2G ; 2.4 ; Crystal Structure of an Indole-3-Acetic Acid Amido Synthase from Vitis vinifera Involved in Auxin Homeostasis 6DLB ; 2.2 ; Crystal Structure of an influenza A hemagglutinin antibody Fab CH65:1203d4 chimera 6DL8 ; 3.805 ; Crystal Structure of an influenza A hemagglutinin antibody Fab variant CH67:1203d4 chimera 1MD0 ; 2.0 ; CRYSTAL STRUCTURE OF AN INHIBITED FRAGMENT OF Ets-1 4PS6 ; 1.25 ; Crystal structure of an inhibitor of vertebrate lysozyme (PA3902) from Pseudomonas aeruginosa PAO1 at 1.25 A resolution 4XG3 ; 2.3 ; Crystal structure of an inhibitor-bound Syk 4XG4 ; 2.3 ; Crystal structure of an inhibitor-bound Syk 4XG6 ; 2.4 ; Crystal structure of an inhibitor-bound Syk 4XG7 ; 1.76 ; Crystal structure of an inhibitor-bound Syk 4XG8 ; 2.4 ; Crystal structure of an inhibitor-bound Syk 4XG9 ; 2.91 ; Crystal structure of an inhibitor-bound Syk 5GHV ; 2.8 ; Crystal structure of an inhibitor-bound Syk 3TZV ; 3.056 ; Crystal structure of an iNKT TCR in complex with CD1d-lysophosphatidylcholine 6WE5 ; 2.25 ; Crystal structure of an inorganic pyrophosphatase from Chlamydia trachomatis D/UW-3/Cx 5TEA ; 1.85 ; Crystal structure of an inorganic pyrophosphatase from Neisseria gonorrhoeae 1HOZ ; 1.6 ; CRYSTAL STRUCTURE OF AN INOSINE-ADENOSINE-GUANOSINE-PREFERRING NUCLEOSIDE HYDROLASE FROM TRYPANOSOMA VIVAX 1HP0 ; 2.1 ; CRYSTAL STRUCTURE OF AN INOSINE-ADENOSINE-GUANOSINE-PREFERRING NUCLEOSIDE HYDROLASE FROM TRYPANOSOMA VIVAX IN COMPLEX WITH THE SUBSTRATE ANALOGUE 3-DEAZA-ADENOSINE 1XNR ; 3.1 ; Crystal Structure of an Inosine-Cytosine Wobble Base Pair in the Context of the Decoding Center 4O4C ; 2.2 ; Crystal Structure of an Inositol hexakisphosphate kinase apo-EhIP6KA 4O4B ; 1.8 ; Crystal Structure of an Inositol hexakisphosphate kinase EhIP6KA as a fusion protein with maltose binding protein 4O4E ; 1.9 ; Crystal Structure of an Inositol hexakisphosphate kinase EhIP6KA in complexed with ATP and Ins(1,3,4,5,6)P5 4O4D ; 2.1 ; Crystal Structure of an Inositol hexakisphosphate kinase EhIP6KA in complexed with ATP and Ins(1,4,5)P3 4O4F ; 1.7 ; Crystal Structure of an Inositol hexakisphosphate kinase EhIP6KA in complexed with ATP and InsP6 3W4R ; 1.7 ; Crystal structure of an insect chitinase from the Asian corn borer, Ostrinia furnacalis 1PN9 ; 2.0 ; Crystal structure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae 5WVH ; 2.801 ; Crystal structure of an insect group III chitinase complex with (GlcNAc)6 (CAD2-(GlcNAc)6 ) from Ostrinia furnacalis 2VU8 ; 1.8 ; Crystal structure of an insect inhibitor with a fungal trypsin 6ARY ; 2.257 ; Crystal structure of an insecticide-resistant acetylcholinesterase mutant from the malaria vector Anopheles gambiae in complex with a difluoromethyl ketone inhibitor 6ARX ; 2.302 ; Crystal structure of an insecticide-resistant acetylcholinesterase mutant from the malaria vector Anopheles gambiae in the ligand-free state 2ZBK ; 3.56 ; Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms 6KBH ; 2.6 ; Crystal structure of an intact type IV self-sufficient cytochrome P450 monooxygenase 4D2E ; 2.28 ; Crystal structure of an integral membrane kinase - v2.3 7C83 ; 2.0 ; Crystal structure of an integral membrane steroid 5-alpha-reductase PbSRD5A 1MIZ ; 1.9 ; Crystal structure of an integrin beta3-talin chimera 1MK7 ; 2.2 ; CRYSTAL STRUCTURE OF AN INTEGRIN BETA3-TALIN CHIMERA 1MK9 ; 2.8 ; CRYSTAL STRUCTURE OF AN INTEGRIN BETA3-TALIN CHIMERA 1VCA ; 1.8 ; CRYSTAL STRUCTURE OF AN INTEGRIN-BINDING FRAGMENT OF VASCULAR CELL ADHESION MOLECULE-1 AT 1.8 ANGSTROMS RESOLUTION 7OEC ; 1.48 ; Crystal structure of an intein from a hyperthermophile 3O4O ; 3.3 ; Crystal structure of an Interleukin-1 receptor complex 3JVF ; 3.3 ; Crystal structure of an Interleukin-17 receptor complex 3E2E ; 3.0 ; Crystal Structure of an Intermediate Complex of T7 RNAP and 7nt of RNA 3E3J ; 6.7 ; Crystal Structure of an Intermediate Complex of T7 RNAP and 8nt of RNA 4N68 ; 1.8 ; Crystal structure of an internal FN3 domain from human Contactin-5 [PSI-NYSGRC-005804] 4FMZ ; 1.91 ; Crystal structure of an internalin (inlF) from Listeria monocytogenes str. 4b F2365 at 1.91 A resolution 4FHO ; 1.9 ; Crystal structure of an internalin C2 (inlC2) from Listeria monocytogenes str. 4b F2365 at 1.90 A resolution 3ISY ; 2.61 ; Crystal structure of an intracellular proteinase inhibitor (ipi, bsu11130) from bacillus subtilis at 2.61 A resolution 4Q2G ; 3.4 ; CRYSTAL STRUCTURE OF AN INTRAMEMBRANE CDP-DAG SYNTHETASE CENTRAL FOR PHOSPHOLIPID BIOSYNTHESIS (S200C/S223C, inactive mutant) 4Q2E ; 3.4 ; CRYSTAL STRUCTURE OF AN INTRAMEMBRANE CDP-DAG SYNTHETASE CENTRAL FOR PHOSPHOLIPID BIOSYNTHESIS (S200C/S258C, active mutant) 4DAQ ; 2.754 ; Crystal structure of an intramolecular human telomeric DNA G-quadruplex 21-mer bound by the naphthalene diimide compound BMSG-SH-3 4DA3 ; 2.4 ; Crystal structure of an intramolecular human telomeric DNA G-quadruplex 21-mer bound by the naphthalene diimide compound MM41. 3SC8 ; 2.302 ; Crystal structure of an intramolecular human telomeric DNA G-quadruplex bound by the naphthalene diimide BMSG-SH-3 3T5E ; 2.1 ; Crystal structure of an intramolecular human telomeric DNA G-quadruplex bound by the naphthalene diimide BMSG-SH-4 3UYH ; 1.95 ; Crystal structure of an intramolecular human telomeric DNA G-quadruplex bound by the naphthalene diimide compound, MM41 8AYG ; 2.25 ; Crystal structure of an intramolecular i-motif at the insulin-linked polymorphic region (ILPR) 7XKG ; 2.5 ; Crystal structure of an intramolecular mesacyl-CoA transferase from the 3-hydroxypropionic acid cycle of Roseiflexus castenholzii 5F1C ; 2.9 ; Crystal structure of an invertebrate P2X receptor from the Gulf Coast tick in the presence of ATP and Zn2+ ion at 2.9 Angstroms 6RZD ; 2.0 ; Crystal structure of an inverting family GH156 exosialidase from uncultured bacterium pG7 6S0F ; 2.0 ; Crystal structure of an inverting family GH156 exosialidase from uncultured bacterium pG7 in complex with 3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid 6S0E ; 1.9 ; Crystal structure of an inverting family GH156 exosialidase from uncultured bacterium pG7 in complex with N-Acetyl-2,3-dehydro-2-deoxyneuraminic acid 6S00 ; 2.0 ; Crystal structure of an inverting family GH156 exosialidase from uncultured bacterium pG7 in complex with N-acetylneuraminic acid 6S04 ; 2.0 ; Crystal structure of an inverting family GH156 exosialidase from uncultured bacterium pG7 in complex with N-glycolylneuraminic acid 1P7B ; 3.65 ; Crystal structure of an inward rectifier potassium channel 3WME ; 2.751 ; Crystal structure of an inward-facing eukaryotic ABC multidrug transporter 3WMG ; 2.4 ; Crystal structure of an inward-facing eukaryotic ABC multidrug transporter G277V/A278V/A279V mutant in complex with an cyclic peptide inhibitor, aCAP 3WMF ; 2.6 ; Crystal structure of an inward-facing eukaryotic ABC multitrug transporter G277V/A278V/A279V mutant 6A6N ; 3.02 ; Crystal structure of an inward-open apo state of the eukaryotic ABC multidrug transporter CmABCB1 5EMS ; 2.3 ; Crystal Structure of an iodinated insulin analog 2QJV ; 1.9 ; Crystal structure of an iolb-like protein (stm4420) from salmonella typhimurium lt2 at 1.90 A resolution 2IRF ; 2.2 ; CRYSTAL STRUCTURE OF AN IRF-2/DNA COMPLEX. 6N63 ; 1.72 ; Crystal structure of an Iron binding protein 1VHD ; 1.6 ; Crystal structure of an iron containing alcohol dehydrogenase 6J55 ; 2.33 ; Crystal structure of an iron superoxide dismutate (FeSOD) from a pathogenic Acanthamoeba castellanii 3RF7 ; 2.12 ; Crystal structure of an Iron-containing alcohol dehydrogenase (Sden_2133) from Shewanella denitrificans OS-217 at 2.12 A resolution 4M8D ; 1.9 ; Crystal structure of an isatin hydrolase bound to product analogue thioisatinate 4H17 ; 1.6 ; Crystal structure of an isochorismatase (PP1826) from Pseudomonas putida KT2440 at 1.60 A resolution 3US8 ; 2.25 ; Crystal Structure of an isocitrate dehydrogenase from Sinorhizobium meliloti 1021 2QLT ; 1.6 ; Crystal structure of an isoform of DL-glycerol-3-phosphatase, Rhr2p, from Saccharomyces cerevisiae 1DK7 ; 2.02 ; CRYSTAL STRUCTURE OF AN ISOLATED APICAL DOMAIN OF GROEL 3DJ9 ; 1.75 ; Crystal Structure of an isolated, unglycosylated antibody CH2 domain 2OQH ; 1.98 ; Crystal structure of an isomerase from Streptomyces coelicolor A3(2) 1VGM ; 2.0 ; Crystal Structure of an Isozyme of Citrate Synthase from Sulfolbus tokodaii strain7 1VGP ; 2.7 ; Crystal Structure of an Isozyme of Citrate Synthase from Sulfolbus tokodaii strain7 4NT9 ; 1.705 ; Crystal structure of an L,D-carboxypeptidase DacB from Streptococcus pneumonia 4WD3 ; 2.8 ; Crystal structure of an L-amino acid ligase RizA 3REW ; 1.9 ; Crystal structure of an lmp2a-derived peptide bound to human class i mhc hla-a2 4HQ1 ; 1.55 ; Crystal structure of an LRR protein with two solenoids 4EFD ; 2.45 ; Crystal Structure of an M17 aminopeptidase from Trypanosoma Brucei, Tb427tmp.02.4440 3H4Z ; 2.35 ; Crystal Structure of an MBP-Der p 7 fusion protein 4HG7 ; 1.6 ; Crystal Structure of an MDM2/Nutlin-3a complex 4HFZ ; 2.694 ; Crystal Structure of an MDM2/P53 Peptide Complex 4H3X ; 1.764 ; Crystal structure of an MMP broad spectrum hydroxamate based inhibitor CC27 in complex with the MMP-9 catalytic domain 4HMA ; 1.94 ; Crystal structure of an MMP twin carboxylate based inhibitor LC20 in complex with the MMP-9 catalytic domain 4H2E ; 2.902 ; Crystal structure of an MMP twin inhibitor complexing two MMP-9 catalytic domains 7YD4 ; 1.896 ; Crystal structure of an N terminal truncated secreted protein, Rv0398c from Mycobacterium tuberculosis 6N1A ; 1.6 ; Crystal structure of an N-acetylgalactosamine deacetylase from F. plautii 6N1B ; 1.3 ; Crystal structure of an N-acetylgalactosamine deacetylase from F. plautii in complex with blood group B trisaccharide 3GT5 ; 1.7 ; Crystal structure of an N-acetylglucosamine 2-epimerase family protein from Xylella fastidiosa 7S42 ; 1.35 ; Crystal structure of an N-acetyltransferase from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-acetamido-3,6-dideoxy-D-galactose 7S41 ; 1.4 ; Crystal structure of an N-acetyltransferase from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-acetamido-3,6-dideoxy-D-glucose 7S3W ; 1.25 ; Crystal structure of an N-acetyltransferase from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-amino-3,6-dideoxy-D-galactose 7S3U ; 1.45 ; Crystal structure of an N-acetyltransferase from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-amino-3,6-dideoxy-D-glucose 7S45 ; 1.2 ; Crystal structure of an N-acetyltransferase, C80T mutant, from Helicobacter pullorum in the presence of Acetyl Coenzyme A and dTDP 7S44 ; 1.4 ; Crystal structure of an N-acetyltransferase, C80T mutant, from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-amino-3,6-dideoxy-D-galactose 7S43 ; 1.7 ; Crystal structure of an N-acetyltransferase, C80T mutant, from Helicobacter pullorum in the presence of Coenzyme A and dTDP-3-amino-3,6-dideoxy-D-glucose 6AOC ; 1.8 ; Crystal Structure of an N-Hydroxythienopyrimidine-2,4-dione RNase H Active Site Inhibitor with Multiple Binding Modes to HIV Reverse Transcriptase 4KNA ; 1.95 ; Crystal structure of an N-succinylglutamate 5-semialdehyde dehydrogenase from Burkholderia thailandensis 1BKN ; 2.9 ; CRYSTAL STRUCTURE OF AN N-TERMINAL 40KD FRAGMENT OF E. COLI DNA MISMATCH REPAIR PROTEIN MUTL 3M7D ; 1.815 ; Crystal structure of an N-terminal 44 kDA fragment of topoisomerase V in the presence of dioxane 3M6Z ; 1.4 ; Crystal structure of an N-terminal 44 kDa fragment of topoisomerase V in the presence of guanidium hydrochloride 5KKU ; 2.22 ; Crystal structure of an N-terminal dehydratase from difficidin assembly line 2DGK ; 1.9 ; Crystal structure of an N-terminal deletion mutant of Escherichia coli GadB in an autoinhibited state (aldamine) 8Q0P ; 2.01 ; Crystal Structure of an N-terminal Domain of Variant Surface Glycoprotein 21 (VSG21) of Trypanosome brucei brucei Lister 427 6OTN ; 2.4 ; Crystal Structure of an N-terminal Fragment of Cancer Associated Tropomyosin 3.1 (Tpm3.1) 8BVP ; 2.1 ; Crystal structure of an N-terminal fragment of the effector protein Lpg2504 (SidI) from Legionella pneumophila 4PAY ; 2.77 ; Crystal structure of an N-terminal fragment of the Legionella pneumophila effector protein SidC. 2CXI ; 1.94 ; Crystal Structure Of An N-terminal Fragment Of The Phenylalanyl-tRNA Synthetase Beta-Subunit From Pyrococcus Horikoshii 6CBC ; 3.0 ; Crystal structure of an N-terminal fragment of Vps13. 4QQG ; 2.8 ; Crystal structure of an N-terminal HTATIP fragment 5D2E ; 1.72 ; crystal structure of an N-terminal ketoreductase from macrolactin assembly line 3L6T ; 1.93 ; Crystal Structure of an N-terminal Mutant of the Plasmid pCU1 TraI Relaxase Domain 4NWW ; 3.75 ; Crystal structure of an N-terminally truncated capsid protein mutant of Orsay virus 3ODX ; 3.2 ; Crystal Structure of an N-terminally Truncated Linker-DH/PH Domains of p115-RhoGEF 2ZAU ; 2.0 ; Crystal structure of an N-terminally truncated selenophosphate synthetase from Aquifex aeolicus 1Z0S ; 1.7 ; Crystal structure of an NAD kinase from Archaeoglobus fulgidus in complex with ATP 5HA5 ; 1.95 ; Crystal structure of an NAD-bound oxidoreductase from Brucella ovis 6XWF ; 1.6 ; Crystal structure of an NCoR1BBD2-BCL6BTB chimera 6Y17 ; 1.56 ; Crystal structure of an NCoR1BBD2-BCL6BTB chimera in complex with nebulinSH3-NCoR1BBD1 6ZBU ; 2.46 ; Crystal structure of an NCoR1BBD2-BCL6BTB chimera in complex with the NcoR1 BBD1 corepressor peptide 6XXS ; 3.25 ; Crystal structure of an NCoR1BBD2-BCL6BTB chimera in complex with the NcoR1 BBD1 corepressor peptide. 2QJU ; 2.9 ; Crystal Structure of an NSS Homolog with Bound Antidepressant 3ECF ; 1.9 ; Crystal structure of an ntf2-like protein (ava_4193) from anabaena variabilis atcc 29413 at 1.90 A resolution 2RFR ; 1.16 ; Crystal structure of an ntf2-like protein with a cystatin-like fold (saro_3722) from novosphingobium aromaticivorans dsm at 1.16 A resolution 3I53 ; 2.08 ; Crystal structure of an O-methyltransferase (NcsB1) from neocarzinostatin biosynthesis in complex with S-adenosyl-L-homocysteine (SAH) 3I64 ; 3.0 ; Crystal structure of an O-methyltransferase (NcsB1) from neocarzinostatin biosynthesis in complex with S-adenosyl-L-homocysteine (SAH) and 1,4-dihydroxy-2-naphthoic acid (DHN) 3I58 ; 2.69 ; Crystal structure of an O-methyltransferase (NcsB1) from neocarzinostatin biosynthesis in complex with S-adenosyl-L-homocysteine (SAH) and 2-hydroxy-7-methoxy-5-methyl naphthoic acid (NA) 3I5U ; 2.6 ; Crystal structure of an O-methyltransferase (NcsB1) from neocarzinostatin biosynthesis in complex with S-adenosylmethionine (SAM) and 2-hydroxy-5-methyl naphthoic acid (MNA) 5MDJ ; 1.48 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in a its as-isolated high-pressurized form 5MDK ; 1.5 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its as-isolated form (oxidized state - state 3) 4IUB ; 1.61 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its as-isolated form - oxidized state 1 4IUC ; 1.45 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its as-isolated form - oxidized state 2 4TTT ; 1.72 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its as-isolated form - oxidized state 3 4IUD ; 1.45 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its as-isolated form with ascorbate - partly reduced state 5MDL ; 1.41 ; Crystal structure of an O2-tolerant [NiFe]-hydrogenase from Ralstonia eutropha in its O2-derivatized form by a ""soak-and-freeze"" derivatization method 2F4I ; 2.25 ; Crystal structure of an ob-fold protein (tm0957) from thermotoga maritima msb8 at 1.90 A resolution 4XCD ; 3.79 ; Crystal structure of an octadecameric TF55 complex from S. solfataricus 3JXO ; 1.55 ; Crystal Structure of an Octomeric Two-Subunit TrkA K+ Channel Ring Gating Assembly, TM1088A:TM1088B, from Thermotoga maritima 3L4B ; 3.45 ; Crystal Structure of an Octomeric Two-Subunit TrkA K+ Channel Ring Gating Assembly, TM1088A:TM1088B, from Thermotoga maritima 3OGN ; 1.3 ; Crystal Structure of an Odorant-binding Protein from the Southern House Mosquito Complexed with an Oviposition Pheromone 1OFX ; 2.0 ; CRYSTAL STRUCTURE OF AN OKAZAKI FRAGMENT AT 2 ANGSTROMS RESOLUTION 3OP6 ; 2.0 ; Crystal structure of an oligo-nucleotide binding protein (lpg1207) from Legionella pneumophila subsp. pneumophila str. philadelphia 1 at 2.00 A resolution 4QKK ; 1.4 ; Crystal structure of an oligonucleotide containing 5-formylcytosine 1D80 ; 2.2 ; CRYSTAL STRUCTURE OF AN OLIGONUCLEOTIDE DUPLEX CONTAINING G.G BASE-PAIRS: THE INFLUENCE OF MISPAIRING ON DNA BACKBONE CONFORMATION 5CY4 ; 2.25 ; Crystal structure of an oligoribonuclease from Acinetobacter baumannii 6K8H ; 1.9 ; Crystal structure of an omega-transaminase from Sphaerobacter thermophilus 8X1F ; 2.3 ; Crystal structure of an omega-transaminase mutant from Aspergillus terreus with in complex with PLP 8XIY ; 2.09 ; Crystal structure of an omega-transaminase mutant I77L/Q97E/H210N/N245D from Aspergillus terreus in complex with PLP 6HE2 ; 2.3 ; Crystal structure of an open conformation of 2-Hydroxyisobutyryl-CoA Ligase (HCL) in complex with 2-HIB-AMP and CoA 3NS8 ; 1.707 ; Crystal structure of an open conformation of Lys48-linked diubiquitin at pH 7.5 4O3B ; 1.906 ; Crystal structure of an open/closed glua2 ligand-binding domain dimer at 1.91 A resolution 3FYJ ; 3.8 ; Crystal structure of an optimzied benzothiophene inhibitor bound to MAPKAP Kinase-2 (MK-2) 4NOZ ; 2.22 ; Crystal Structure of an Organic Hydroperoxide Resistance Protein from Burkholderia cenocepacia 6D9N ; 1.2 ; Crystal structure of an organic hydroperoxide resistance protein from Elizabethkingia anophelis with crystallant-derived thiocyanate bound 6MJN ; 1.75 ; Crystal structure of an organic hydroperoxide resistance protein OsmC, predicted redox protein, regulator of sulfide bond formation from Legionella pneumophila 2F84 ; 2.1 ; Crystal Structure of an orotidine-5'-monophosphate decarboxylase homolog from P.falciparum 7FHM ; 1.8 ; Crystal structure of an orphan heme uptake protein (MhuP) of ABC transporter from Mycobacterium tuberculosis (Form I) 7FHP ; 2.01 ; Crystal structure of an orphan heme uptake protein (MhuP) of ABC transporter from Mycobacterium tuberculosis (Form II) 1O22 ; 2.0 ; Crystal structure of an orphan protein (TM0875) from Thermotoga maritima at 2.00 A resolution 3CJE ; 1.7 ; Crystal structure of an osmc-like hydroperoxide resistance protein (jann_2040) from jannaschia sp. ccs1 at 1.70 A resolution 2OPL ; 1.5 ; Crystal structure of an osmc-like protein (gsu2788) from geobacter sulfurreducens at 1.50 A resolution 5YS7 ; 2.1 ; Crystal structure of an OspA mutant 5Z1O ; 2.0 ; Crystal structure of an OspA mutant 6KT1 ; 1.43 ; Crystal structure of an OspA mutant 6W9S ; 2.1 ; Crystal structure of an OTU deubiquitinase from Escherichia albertii bound to ubiquitin 6W9O ; 1.47 ; Crystal structure of an OTU deubiquitinase from Wolbachia pipientis wMel 6W9R ; 1.82 ; Crystal structure of an OTU deubiquitinase from Wolbachia pipientis wMel bound to ubiquitin 3LDT ; 2.3 ; Crystal structure of an Outer membrane protein(OmpA)from Legionella pneumophila 3G6I ; 1.93 ; Crystal structure of an outer membrane protein, part of a putative carbohydrate binding complex (bt_1022) from bacteroides thetaiotaomicron vpi-5482 at 1.93 A resolution 2Y8P ; 1.995 ; Crystal Structure of an Outer Membrane-Anchored Endolytic Peptidoglycan Lytic Transglycosylase (MltE) from Escherichia coli 2YN7 ; 2.25 ; Crystal structure of an outer surface protein BBA66 from Borrelia burgdorferi 4MXT ; 1.4 ; Crystal structure of an Outer-membrane lipoprotein carrier protein (BACUNI_04723) from Bacteroides uniformis ATCC 8492 at 1.40 A resolution 3PUW ; 2.3 ; Crystal Structure of an outward-facing MBP-Maltose transporter complex bound to ADP-AlF4 3PUX ; 2.3 ; Crystal Structure of an outward-facing MBP-Maltose transporter complex bound to ADP-BeF3 3PUV ; 2.4 ; Crystal Structure of an outward-facing MBP-Maltose transporter complex bound to ADP-VO4 3PUY ; 3.1 ; Crystal Structure of an outward-facing MBP-Maltose transporter complex bound to AMP-PNP after crystal soaking of the pretranslocation state 6A6M ; 1.9 ; Crystal structure of an outward-open nucleotide-bound state of the eukaryotic ABC multidrug transporter CmABCB1 6I5D ; 1.75 ; Crystal structure of an OXA-48 beta-lactamase synthetic mutant 4MU8 ; 1.45 ; Crystal structure of an oxidized form of yeast iso-1-cytochrome c at pH 8.8 6LGJ ; 2.4 ; Crystal structure of an oxido-reductase 6LGK ; 2.0 ; Crystal structure of an oxido-reductase with mutation 6LGM ; 2.4 ; Crystal structure of an oxido-reductase with mutation and inhibitor 3I23 ; 2.3 ; Crystal Structure of an Oxidoreductase (Gfo/Idh/MocA family) from Enterococcus faecalis. Northeast Structural Genomics Consortium target id EfR167 5EL0 ; 1.85 ; Crystal structure of an Oxidoreductase (short chain dehydrogenase/reductase family) from Brucella ovis in complex with a partially ordered NAD 5TT0 ; 1.7 ; Crystal Structure of an Oxidoreductase (short chain dehydrogenase/reductase family) from Burkholderia thailandensis 4X54 ; 1.45 ; Crystal structure of an oxidoreductase (short chain dehydrogenase/reductase) from Brucella ovis 5UHW ; 2.24 ; Crystal Structure of an Oxidoreductase from Agrobacterium radiobacter in Complex with NAD+ and Magnesium 5UI9 ; 1.92 ; Crystal Structure of an Oxidoreductase from Agrobacterium radiobacter in Complex with NAD+, 2 -hydroxy-2-hydroxymethyl propanoic acid and Magnesium 5UHZ ; 2.2 ; Crystal Structure of an Oxidoreductase from Agrobacterium radiobacter in Complex with NAD+, D-Apionate and Magnesium 5UIB ; 2.65 ; Crystal Structure of an Oxidoreductase from Agrobacterium radiobacter in Complex with NAD+, L-tartaric acid and Magnesium 5UIA ; 2.18 ; Crystal Structure of an Oxidoreductase from Agrobacterium radiobacter in Complex with NAD+, R-2,3-dihydroxyisovalerate and Magnesium 3HNP ; 2.6 ; Crystal Structure of an Oxidoreductase from Bacillus cereus. Northeast Structural Genomics Consortium target id BcR251 5ER6 ; 1.55 ; Crystal structure of an oxidoreductase from Brucella ovis 5IDX ; 1.95 ; Crystal structure of an oxidoreductase from Burkholderia vietnamiensis 5IDW ; 2.0 ; Crystal structure of an oxidoreductase from Burkholderia vietnamiensis in complex with NADP 5IDY ; 1.85 ; Crystal structure of an oxidoreductase from Burkholderia vietnamiensis in complex with NADP 3E9M ; 2.7 ; Crystal Structure of an oxidoreductase from Enterococcus faecalis 3FD8 ; 2.45 ; Crystal Structure of an oxidoreductase from Enterococcus faecalis 3KA7 ; 1.8 ; Crystal Structure of an oxidoreductase from Methanosarcina mazei. Northeast Structural Genomics Consortium target id MaR208 3U0B ; 1.7 ; Crystal structure of an oxidoreductase from Mycobacterium smegmatis 3DTY ; 2.04 ; Crystal structure of an Oxidoreductase from Pseudomonas syringae 3UN1 ; 2.45 ; Crystal structure of an oxidoreductase from Sinorhizobium meliloti 1021 4NPC ; 1.75 ; Crystal Structure of an Oxidoreductase, Short-Chain Dehydrogenase/Reductase Family Protein from Brucella suis 5SW6 ; 1.9 ; Crystal structure of an oxoferryl species of catalase-peroxidase KatG at pH5.6 5SX0 ; 2.0 ; Crystal structure of an oxoferryl species of catalase-peroxidase KatG at pH7.5 1U4H ; 2.07 ; Crystal structure of an oxygen binding H-NOX domain related to soluble guanylate cyclases (oxygen complex) 1U55 ; 1.77 ; Crystal structure of an oxygen binding H-NOX domain related to soluble guanylate cyclases (oxygen complex) 1U56 ; 1.9 ; Crystal structure of an oxygen binding H-NOX domain related to soluble guanylate cyclases (Water-ligated, ferric form) 4ILJ ; 2.0001 ; Crystal structure of an Prp8p RNaseH W1911A mutant protein 3ERV ; 2.1 ; Crystal structure of an putative C39-like peptidase from Bacillus anthracis 7Y3W ; 1.9 ; Crystal structure of an questin oxidase (BTG13) from Cercospora sp. JNU001 6XWB ; 2.2 ; Crystal structure of an R-selective transaminase from Thermomyces stellatus. 2R3X ; 1.8 ; Crystal structure of an R15L hGSTA1-1 mutant complexed with S-hexyl-glutathione 3FYA ; 3.0 ; Crystal Structure of an R35A mutant of the Restriction-Modification Controller Protein C.Esp1396I 4F8D ; 1.5 ; Crystal Structure of an R46A mutant of the Restriction-Modification Controller Protein C.Esp1396I (Monoclinic Form) 4FBI ; 1.5 ; Crystal Structure of an R46A mutant of the Restriction-Modification Controller Protein C.Esp1396I (Trigonal Form) 3N5U ; 3.2 ; Crystal structure of an Rb C-terminal peptide bound to the catalytic subunit of PP1 5TTE ; 3.501 ; Crystal Structure of an RBR E3 ubiquitin ligase in complex with an E2-Ub thioester intermediate mimic 4GOU ; 2.3 ; Crystal structure of an RGS-RhoGEF from Entamoeba histolytica 3EBR ; 2.6 ; Crystal structure of an rmlc-like cupin protein (reut_a0381) from ralstonia eutropha jmp134 at 2.60 A resolution 4Q9Q ; 2.45 ; Crystal structure of an RNA aptamer bound to bromo-ligand analog in complex with Fab 3DD2 ; 1.9 ; Crystal structure of an RNA aptamer bound to human thrombin 4Q9R ; 3.12 ; Crystal structure of an RNA aptamer bound to trifluoroethyl-ligand analog in complex with Fab 4KZE ; 2.404 ; Crystal structure of an RNA aptamer in complex with Fab 4KZD ; 2.186 ; Crystal structure of an RNA aptamer in complex with fluorophore and Fab 1SDR ; 2.6 ; CRYSTAL STRUCTURE OF AN RNA DODECAMER CONTAINING THE ESCHERICHIA COLI SHINE-DALGARNO SEQUENCE 2NOK ; 3.0 ; Crystal Structure of an RNA domain from Hepatitis C virus. 255D ; 2.0 ; CRYSTAL STRUCTURE OF AN RNA DOUBLE HELIX INCORPORATING A TRACK OF NON-WATSON-CRICK BASE PAIRS 1YY0 ; 3.2 ; Crystal structure of an RNA duplex containing a 2'-amine substitution and a 2'-amide product produced by in-crystal acylation at a C-A mismatch 1YZD ; 2.35 ; Crystal structure of an RNA duplex containing a site specific 2'-amine substitution at a C-G Watson-Crick base pair 1Z79 ; 2.55 ; Crystal structure of an RNA duplex containing site specific 2'-amine substitution at a C-A mismatch (at pH 5) 1YRM ; 2.5 ; Crystal Structure of an RNA duplex containing site specific 2'-amine substitutions at a C-A mismatch 2AO5 ; 2.1 ; Crystal structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G-U base pairs 1J9H ; 1.4 ; Crystal Structure of an RNA Duplex with Uridine Bulges 1KFO ; 1.6 ; CRYSTAL STRUCTURE OF AN RNA HELIX RECOGNIZED BY A ZINC-FINGER PROTEIN: AN 18 BASE PAIR DUPLEX AT 1.6 RESOLUTION 2JLT ; 2.9 ; Crystal structure of an RNA kissing complex 3K7A ; 3.8 ; Crystal Structure of an RNA polymerase II-TFIIB complex 437D ; 1.6 ; CRYSTAL STRUCTURE OF AN RNA PSEUDOKNOT FROM BEET WESTERN YELLOW VIRUS INVOLVED IN RIBOSOMAL FRAMESHIFTING 2GRB ; 1.4 ; Crystal Structure of an RNA Quadruplex Containing Inosine-tetrad 409D ; 2.5 ; CRYSTAL STRUCTURE OF AN RNA R(CCCIUGGG) WITH THREE INDEPENDENT DUPLEXES INCORPORATING TANDEM I.U WOBBLES 2G32 ; 1.3 ; Crystal structure of an RNA racemate 2GPM ; 1.4 ; Crystal structure of an RNA racemate 2GQ4 ; 1.35 ; Crystal structure of an RNA racemate 2GQ5 ; 1.4 ; Crystal structure of an RNA racemate 2GQ6 ; 1.3 ; Crystal structure of an RNA racemate 2GQ7 ; 1.6 ; Crystal structure of an RNA racemate 1KH6 ; 2.9 ; Crystal Structure of an RNA Tertiary Domain Essential to HCV IRES-mediated Translation Initiation. 1J6S ; 1.4 ; Crystal Structure of an RNA Tetraplex (UGAGGU)4 with A-tetrads, G-tetrads, U-tetrads and G-U octads 7THB ; 1.64 ; Crystal structure of an RNA-5'/DNA-3' strand exchange junction 8WO8 ; 2.78 ; Crystal Structure of an RNA-binding protein, FAU-1, from Pyrococcus furiosus 4LDM ; 1.85 ; Crystal Structure of an RNA-free VP40 Octameric Ring 1PJO ; 1.1 ; Crystal Structure of an RNA/DNA hybrid of HIV-1 PPT 1F0V ; 1.7 ; Crystal structure of an Rnase A dimer displaying a new type of 3D domain swapping 5EDL ; 1.95 ; Crystal structure of an S-component of ECF transporter 3LS2 ; 2.2 ; Crystal structure of an S-formylglutathione hydrolase from Pseudoalteromonas haloplanktis TAC125 3B1X ; 2.61 ; Crystal structure of an S. thermophilus NFeoB E66A mutant bound to GMPPNP 3B1W ; 2.5 ; Crystal structure of an S. thermophilus NFeoB E67A mutant bound to GDP 3B1V ; 1.85 ; Crystal structure of an S. thermophilus NFeoB E67A mutant bound to mGMPPNP 3TAH ; 1.85 ; Crystal structure of an S. thermophilus NFeoB N11A mutant bound to mGDP 3B1Y ; 2.5 ; Crystal structure of an S. thermophilus NFeoB T35A mutant bound to GDP 3B1Z ; 2.65 ; Crystal structure of an S. thermophilus NFeoB T35S mutant without nucleotide 4Q00 ; 2.1 ; Crystal structure of an S150A mutant of the E. coli FeoB G-domain 4FN3 ; 1.79 ; Crystal Structure of an S52A mutant of the Restriction-Modification Controller Protein C.Esp1396I 5VPS ; 1.45 ; Crystal structure of an SDR from Burkholderia ambifaria in complex with NADPH with a TCEP adduct 4XEY ; 2.891 ; Crystal structure of an SH2-kinase domain construct of c-Abl tyrosine kinase 1I4K ; 2.5 ; CRYSTAL STRUCTURE OF AN SM-LIKE PROTEIN (AF-SM1) FROM ARCHAEOGLOBUS FULGIDUS AT 2.5A RESOLUTION 1I5L ; 2.75 ; CRYSTAL STRUCTURE OF AN SM-LIKE PROTEIN (AF-SM1) FROM ARCHAEOGLOBUS FULGIDUS COMPLEXED WITH SHORT POLY-U RNA 1LJO ; 1.95 ; CRYSTAL STRUCTURE OF AN SM-LIKE PROTEIN (AF-SM2) FROM ARCHAEOGLOBUS FULGIDUS AT 1.95A RESOLUTION 4M58 ; 3.21 ; Crystal Structure of an transition metal transporter 4M5B ; 1.833 ; Crystal Structure of an Truncated Transition Metal Transporter 4M5C ; 2.5 ; Crystal Structure of an Truncated Transition metal Transporter 5HXA ; 2.0 ; Crystal structure of an UDP-forming alpha, alpha-terhalose-phosphate synthase from Burkholderia xenovorans 3INU ; 2.5 ; Crystal structure of an unbound KZ52 neutralizing anti-Ebolavirus antibody. 3CJP ; 1.85 ; Crystal structure of an uncharacterized amidohydrolase CAC3332 from Clostridium acetobutylicum 3E2V ; 1.5 ; Crystal structure of an uncharacterized amidohydrolase from Saccharomyces cerevisiae 1X7F ; 2.3 ; Crystal structure of an uncharacterized B. cereus protein 5BXG ; 1.9 ; Crystal structure of an uncharacterized beta-sandwich protein (CD630_09570) from Clostridium difficile 630 at 1.90 A resolution 3B49 ; 1.6 ; Crystal structure of an uncharacterized conserved protein from Listeria innocua 2QYA ; 2.17 ; Crystal structure of an uncharacterized conserved protein from Methanopyrus kandleri 3GMG ; 1.5 ; Crystal structure of an uncharacterized conserved protein from Mycobacterium tuberculosis 2I8D ; 1.69 ; Crystal structure of an uncharacterized conserved protein of COG5646 (ZP_00384875.1) from Lactobacillus casei ATCC 334 at 1.69 A resolution 1VMH ; 1.31 ; Crystal structure of an uncharacterized conserved protein yjbq/upf0047 family, ortholog yugu b.subtilis (ca_c0907) from clostridium acetobutylicum at 1.31 A resolution 3FF2 ; 1.9 ; Crystal structure of an uncharacterized cystatin fold protein (saro_2299) from novosphingobium aromaticivorans dsm at 1.90 A resolution 3RH3 ; 2.1 ; Crystal structure of an Uncharacterized DUF3829-like protein (BT_1908) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.10 A resolution 3IJ6 ; 2.0 ; CRYSTAL STRUCTURE OF AN UNCHARACTERIZED METAL-DEPENDENT HYDROLASE FROM Lactobacillus acidophilus 3ICJ ; 1.95 ; Crystal structure of an uncharacterized metal-dependent hydrolase from pyrococcus furiosus 3IGH ; 1.95 ; Crystal structure of an uncharacterized metal-dependent hydrolase from pyrococcus horikoshii ot3 3GG7 ; 1.5 ; Crystal structure of an uncharacterized metalloprotein from Deinococcus radiodurans 5IXU ; 2.5 ; Crystal structure of an uncharacterized NIPSNAP domain protein from Burkholderia xenovorans 5KAK ; 1.65 ; Crystal structure of an uncharacterized NIPSNAP-like domain protein from Burkholderia xenovorans 6III ; 2.113 ; Crystal structure of an uncharacterized protein 6INY ; 1.997 ; Crystal structure of an uncharacterized protein 5BYP ; 2.6 ; Crystal structure of an uncharacterized protein (BACEGG_01585) from Bacteroides eggerthii DSM 20697 at 2.60 A resolution 2QML ; 1.55 ; Crystal structure of an uncharacterized protein (bh2621) from bacillus halodurans at 1.55 A resolution 5COZ ; 1.45 ; Crystal structure of an uncharacterized protein (EUBREC_2869) from Eubacterium rectale ATCC 33656 at 1.45 A resolution 3R6A ; 1.76 ; Crystal structure of an uncharacterized protein (hypothetical protein MM_3218) from Methanosarcina mazei. 3BPD ; 2.8 ; Crystal structure of an uncharacterized protein (O28723_ARCFU) from Archaeoglobus fulgidus 5BMT ; 1.5 ; Crystal structure of an uncharacterized protein (PARMER_03598) from Parabacteroides merdae ATCC 43184 at 1.50 A resolution 4XXP ; 1.6 ; Crystal Structure of an Uncharacterized Protein (Rv0315 ortholog) from Mycobacterium paratuberculosis 4HFS ; 1.55 ; Crystal structure of an uncharacterized protein (yncM) from Bacillus subtilis subsp. subtilis str. 168 at 1.55 A resolution 2PRV ; 1.3 ; Crystal structure of an uncharacterized protein (yobk, bsu18990) from bacillus subtilis at 1.30 A resolution 3K12 ; 1.49 ; Crystal structure of an uncharacterized protein A6V7T0 from Pseudomonas aeruginosa 3C4R ; 2.3 ; Crystal structure of an uncharacterized protein encoded by cryptic prophage 3C3K ; 1.99 ; Crystal structure of an uncharacterized protein from Actinobacillus succinogenes 3E0S ; 2.09 ; Crystal structure of an uncharacterized protein from Chlorobium tepidum 3E0H ; 1.81 ; Crystal structure of an uncharacterized protein from Chlorobium tepidum. NorthEast Structural Genomics target CtR107. 2G6T ; 3.0 ; Crystal structure of an uncharacterized protein from Clostridium acetobutylicum 3KQ5 ; 2.0 ; Crystal structure of an uncharacterized protein from Coxiella burnetii 2PV4 ; 1.95 ; CRYSTAL STRUCTURE OF AN UNCHARACTERIZED PROTEIN FROM DUF3069 FAMILY (SAMA_2622) FROM SHEWANELLA AMAZONENSIS SB2B AT 1.95 A RESOLUTION 2Q3L ; 2.25 ; CRYSTAL STRUCTURE OF AN UNCHARACTERIZED PROTEIN FROM DUF3478 FAMILY WITH A SPOIIAA-LIKE FOLD (SHEW_3102) FROM SHEWANELLA LOIHICA PV-4 AT 2.25 A RESOLUTION 3ESI ; 2.5 ; Crystal structure of an uncharacterized protein from Erwinia carotovora subsp. atroseptica. Northeast Structural Genomics target EwR179 3CYG ; 2.61 ; Crystal structure of an uncharacterized protein from Fervidobacterium nodosum Rt17-B1 6MTZ ; 2.15 ; Crystal structure of an uncharacterized protein from Helicobacter pylori G27 3IB6 ; 2.2 ; Crystal structure of an uncharacterized protein from Listeria monocytogenes serotype 4b 3MAB ; 1.42 ; CRYSTAL STRUCTURE OF AN UNCHARACTERIZED PROTEIN FROM LISTERIA MONOCYTOGENES, Triclinic FORM 3BHW ; 1.5 ; Crystal structure of an uncharacterized protein from Magnetospirillum magneticum 3KG4 ; 1.95 ; Crystal structure of an uncharacterized protein from Mannheimia succiniciproducens 3CXJ ; 2.8 ; Crystal structure of an uncharacterized protein from Methanothermobacter thermautotrophicus 5V77 ; 1.85 ; Crystal structure of an uncharacterized protein from Neisseria gonorrhoeae 3ESM ; 1.65 ; Crystal structure of an uncharacterized protein from Nocardia farcinica reveals an immunoglobulin-like fold 4O5P ; 2.001 ; Crystal structure of an uncharacterized protein from Pseudomonas aeruginosa 2PK8 ; 1.85 ; Crystal structure of an uncharacterized protein PF0899 from Pyrococcus furiosus 2RJN ; 2.1 ; Crystal structure of an uncharacterized protein Q2BKU2 from Neptuniibacter caesariensis 3GZR ; 1.4 ; CRYSTAL STRUCTURE OF AN UNCHARACTERIZED PROTEIN WITH A CYSTATIN-LIKE FOLD (CC_2572) FROM CAULOBACTER VIBRIOIDES AT 1.40 A RESOLUTION 5BR9 ; 2.35 ; Crystal structure of an uncharacterized protein with similarity to peptidase YEAZ from Pseudomonas aeruginosa 3EWM ; 1.9 ; Crystal structure of an uncharacterized sugar kinase PH1459 from pyrococcus horikoshii 3IH0 ; 1.9 ; Crystal structure of an uncharacterized sugar kinase PH1459 from Pyrococcus horikoshii in complex with AMP-PNP 3GBU ; 2.2 ; Crystal structure of an uncharacterized sugar kinase PH1459 from Pyrococcus horikoshii in complex with ATP 3R79 ; 1.9 ; Crystal structure of an uncharactertized protein from Agrobacterium tumefaciens 4RS5 ; 3.805 ; Crystal structure of an uncoating intermediate of a EV71 recombinant virus 4EYZ ; 1.383 ; Crystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidases 4FBW ; 2.2 ; Crystal structure of an unfused Mre11-Nbs1 complex with two manganese ions per active site 2GM3 ; 2.461 ; Crystal Structure of an Universal Stress Protein Family Protein from Arabidopsis Thaliana At3g01520 with AMP Bound 2OY9 ; 1.6 ; Crystal structure of an unknown conserved protein- Pfam: UPF0223 3CPG ; 1.71 ; Crystal structure of an unknown protein from Bifidobacterium adolescentis 2NYI ; 1.8 ; Crystal Structure of an Unknown Protein from Galdieria sulphuraria 1DQL ; 2.6 ; CRYSTAL STRUCTURE OF AN UNLIGANDED (NATIVE) FV FROM A HUMAN IGM ANTI-PEPTIDE ANTIBODY 6EVL ; 1.87 ; Crystal structure of an unlignaded peptide-substrate-binding domain of human type II collagen prolyl 4-hydroxylase 5MVK ; 1.531 ; Crystal structure of an unmodified A-DNA dodecamer containing 3 consecutive CpG steps 5MVQ ; 1.604 ; Crystal structure of an unmodified, self-complementary dodecamer. 1J73 ; 2.0 ; Crystal structure of an unstable insulin analog with native activity. 8ES6 ; 1.9 ; Crystal structure of an unusual amidase ClbL from colibactin gene cluster 1R8O ; 1.83 ; Crystal structure of an unusual Kunitz-type trypsin inhibitor from Copaifera langsdorffii seeds 4BKD ; 1.17 ; Crystal Structure of an unusually linked dimeric variant of Bet v 1 (b) 2PNK ; 2.0 ; CRYSTAL STRUCTURE OF AN URONATE ISOMERASE (BH0493) FROM BACILLUS HALODURANS C-125 AT 2.00 A RESOLUTION 3MW8 ; 1.65 ; Crystal structure of an UROPORPHYRINOGEN-III SYNTHASE (Sama_3255) from SHEWANELLA AMAZONENSIS SB2B at 1.65 A resolution 2INB ; 1.6 ; Crystal structure of an XisH family protein (ZP_00107633.1) from Nostoc punctiforme PCC 73102 at 1.60 A resolution 4A15 ; 2.2 ; Crystal structure of an XPD DNA complex 5WOQ ; 1.95 ; Crystal structure of an XRE family protein transcriptional regulator from Mycobacterium smegmatis 4PQV ; 2.463 ; Crystal structure of an Xrn1-resistant RNA from the 3' untranslated region of a flavivirus (Murray Valley Encephalitis virus) 3OVK ; 2.0 ; Crystal structure of an XXA-pro aminopeptidase from Streptococcus pyogenes 4XSP ; 2.15 ; Crystal structure of Anabaena Alr3699/HepE in complex with UDP 4XSU ; 2.48 ; Crystal structure of Anabaena Alr3699/HepE in complex with UDP and glucose 4XSR ; 2.39 ; Crystal structure of Anabaena Alr3699/HepE in complex with UDP-glucose 2GZ6 ; 2.0 ; Crystal Structure Of Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase At 2.0 A 5C2I ; 1.89 ; Crystal structure of Anabaena sp. DyP-type peroxidese (AnaPX) 4YRV ; 2.8 ; Crystal structure of Anabaena transcription factor HetR complexed with 21-bp DNA from hetP promoter 4EP1 ; 3.25 ; Crystal structure of anabolic ornithine carbamoyltransferase from Bacillus anthracis 4NF2 ; 1.74 ; Crystal structure of anabolic ornithine carbamoyltransferase from Bacillus anthracis in complex with carbamoyl phosphate and L-norvaline 3TPF ; 2.7 ; Crystal structure of anabolic ornithine carbamoyltransferase from Campylobacter jejuni subsp. jejuni NCTC 11168 4JFR ; 2.17 ; Crystal structure of anabolic ornithine carbamoyltransferase from Vibrio vulnificus in complex with carbamoyl phosphate 4H31 ; 1.7 ; Crystal structure of anabolic ornithine carbamoyltransferase from Vibrio vulnificus in complex with carbamoyl phosphate and L-norvaline 4JHX ; 1.85 ; Crystal structure of anabolic ornithine carbamoyltransferase from Vibrio vulnificus in complex with carbamoylphosphate and arginine 4JQO ; 2.082 ; Crystal structure of anabolic ornithine carbamoyltransferase from Vibrio vulnificus in complex with citrulline and inorganic phosphate 6H9A ; 2.831 ; Crystal structure of anaerobic ergothioneine biosynthesis enzyme from Chlorobium limicola in complex with natural substrate trimethyl histidine. 6H99 ; 1.6 ; Crystal structure of anaerobic ergothioneine biosynthesis enzyme from Chlorobium limicola in persulfide form. 2PP7 ; 1.65 ; Crystal structure of anaerobically manipulated wild type oxidized AfNiR (acetate bound) 5XLG ; 1.64 ; Crystal structure of anaerobically purified and aerobically crystallized D. vulgaris Miyazaki F [NiFe]-hydrogenase 5XLE ; 1.69 ; Crystal structure of anaerobically purified and anaerobically crystallized D. vulgaris Miyazaki F [NiFe]-hydrogenase 2FJS ; 1.85 ; Crystal Structure of Anaerobically Reduced Wild Type Nitrite Reductase from A. faecalis 1YVY ; 2.35 ; Crystal structure of Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase 6N0X ; 1.44 ; Crystal structure of Anaerolinea thermophila mevalonate 5-phosphate decarboxylase complexed with (R)-MVAP 6N0Y ; 2.2 ; Crystal structure of Anaerolinea thermophila mevalonate 5-phosphate decarboxylase complexed with (R)-MVAPP 6N0Z ; 1.95 ; Crystal structure of Anaerolinea thermophila mevalonate 5-phosphate decarboxylase N20K H194M mutant complexed with (R)-MVAPP 6MX8 ; 1.96 ; Crystal structure of anaplastic lymphoma kinase (ALK) bound by Brigatinib 5IUG ; 1.93 ; Crystal Structure of Anaplastic Lymphoma Kinase (ALK) in complex with 5a 4MKC ; 2.01 ; Crystal Structure of Anaplastic Lymphoma Kinase Complexed with LDK378 5IUI ; 1.88 ; Crystal Structure of Anaplastic Lyphoma Kinase (ALK) in complex with 4 4LD7 ; 2.83 ; Crystal structure of AnaPT from Neosartorya fischeri 2X8Y ; 1.9 ; Crystal structure of AnCE 3ZQZ ; 2.35 ; CRYSTAL STRUCTURE OF ANCE IN COMPLEX WITH A SELENIUM ANALOGUE OF CAPTOPRIL 4AA1 ; 1.99 ; Crystal structure of ANCE in complex with Angiotensin-II 4ASQ ; 1.99 ; Crystal structure of ANCE in complex with Bradykinin 4AA2 ; 1.99 ; Crystal structure of ANCE in complex with bradykinin potentiating peptide b 4ASR ; 1.9 ; Crystal structure of ANCE in complex with Thr6-Bradykinin 2X8Z ; 1.98 ; Crystal structure of AnCE-captopril complex 2X90 ; 1.98 ; Crystal structure of AnCE-enalaprilat complex 2XHM ; 1.96 ; Crystal structure of AnCE-K26 complex 2X91 ; 1.98 ; Crystal structure of AnCE-lisinopril complex 2X95 ; 1.96 ; Crystal structure of AnCE-lisinopril-tryptophan analogue, lisW-S complex 2X94 ; 1.88 ; Crystal structure of AnCE-perindoprilat complex 2X92 ; 2.11 ; Crystal structure of AnCE-ramiprilat complex 2X97 ; 1.85 ; Crystal structure of AnCE-RXP407 complex 2X96 ; 1.85 ; Crystal structure of AnCE-RXPA380 complex 2X93 ; 1.98 ; Crystal structure of AnCE-trandolaprilat complex 7SCM ; 2.272 ; Crystal Structure of Ancestral Amniote Cadherin-23 EC1-2 6VDH ; 1.85 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase in alternate dimer configuration with sulfate. 4PLF ; 1.35 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase with lactate. 4PLC ; 1.5 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase with malate. 4PLG ; 1.192 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase with oxamate. 6VDJ ; 2.0 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase with sulfate and NADH4. 6VDI ; 2.1 ; Crystal structure of ancestral apicomplexan lactate dehydrogenase with sulfate. 4PLV ; 1.85 ; Crystal structure of ancestral apicomplexan malate dehydrogenase with lactate. 4PLW ; 1.85 ; Crystal structure of ancestral apicomplexan malate dehydrogenase with lactate. 4PLY ; 1.9 ; Crystal structure of ancestral apicomplexan malate dehydrogenase with malate. 4PLH ; 1.9 ; Crystal structure of ancestral apicomplexan malate dehydrogenase with oxamate. 4PLT ; 1.6 ; Crystal structure of ancestral apicomplexan malate dehydrogenase with oxamate. 3AJY ; 2.01 ; Crystal Structure of Ancestral Congerin Con-anc 3AJZ ; 1.5 ; Crystal Structure of Ancestral Congerin Con-anc 3AK0 ; 1.59 ; Crystal Structure of Ancestral Congerin Con-anc'-N28K 6SEM ; 2.8 ; Crystal Structure of Ancestral Flavin-containing monooxygenase (FMO) 2 6SF0 ; 3.01 ; Crystal Structure of Ancestral Flavin-containing monooxygenase (FMO) 2 in the presence of NADP+ 6SE3 ; 2.8 ; Crystal Structure of Ancestral Flavin-containing monooxygenase (FMO) 3-6 6SEK ; 2.7 ; Crystal Structure of Ancestral Flavin-containing monooxygenase (FMO) 5 7PW1 ; 1.5 ; Crystal structure of ancestral haloalkane dehalogenase AncLinB-DmbA 7SB6 ; 2.588 ; Crystal Structure of Ancestral Mammalian Cadherin-23 EC1-2 5K27 ; 2.58 ; Crystal structure of ancestral protein ancMT of ADP-dependent sugar kinases family. 2YPM ; 2.199 ; Crystal Structure of Ancestral Thioredoxin Relative to Last Animal and Fungi Common Ancestor (LAFCA) from the Precambrian Period 2YNX ; 1.749 ; Crystal Structure of Ancestral Thioredoxin Relative to Last Archaea Common Ancestor (LACA) from the Precambrian Period 3ZIV ; 2.65 ; Crystal Structure of Ancestral Thioredoxin Relative to last Archaea- Eukaryotes Common Ancestor (AECA) from the Precambrian Period 4BA7 ; 2.45 ; Crystal Structure of Ancestral Thioredoxin Relative to Last Bacteria Common Ancestor (LBCA) from the Precambrian Period 2YOI ; 1.3 ; Crystal Structure of Ancestral Thioredoxin Relative to Last Eukaryotes Common Ancestor (LECA) from the Precambrian Period 2YN1 ; 1.3 ; Crystal Structure of Ancestral Thioredoxin Relative to Last Gamma- Proteobacteria Common Ancestor (LGPCA) from the Precambrian Period 4ULX ; 2.35 ; Crystal structure of ancestral thioredoxin, relative to the last common ancestor of the Cyanobacterial, Deinococcus and Thermus groups, LPBCA-L89K mutant. 3QVV ; 2.35 ; Crystal structure of Ancestral variant b9 of SULT 1A1 in complex with PAP and 3-CyC 3QVU ; 2.5 ; Crystal structure of Ancestral variant b9 of SULT 1A1 in complex with PAP and p-nitrophenol 3NSW ; 1.75 ; Crystal Structure of Ancylostoma ceylanicum Excretory-Secretory Protein 2 5E04 ; 2.25 ; Crystal structure of Andes virus nucleoprotein 1R4I ; 3.1 ; Crystal Structure of Androgen Receptor DNA-Binding Domain Bound to a Direct Repeat Response Element 4QL8 ; 2.1 ; Crystal structure of Androgen Receptor in complex with the ligand 5CFP ; 2.066 ; Crystal structure of anemone STING (Nematostella vectensis) 'humanized' F276K in complex with 3', 3' c-di-GMP, c[G(3', 5')pG(3', 5')p]' 5CFO ; 2.102 ; Crystal structure of anemone STING (Nematostella vectensis) in apo 'rotated' open conformation 5CFR ; 2.85 ; Crystal structure of anemone STING (Nematostella vectensis) in apo 'unrotated' closed conformation 5CFQ ; 2.099 ; Crystal structure of anemone STING (Nematostella vectensis) in complex with 2',3' cGAMP, c[G(2',5')pA(3',5')p] 5CFL ; 1.836 ; Crystal structure of anemone STING (Nematostella vectensis) in complex with 3', 3' c-di-GMP, c[G(3', 5')pG(3', 5')p] 5CFM ; 1.994 ; Crystal structure of anemone STING (Nematostella vectensis) in complex with 3', 3' cGAMP, c[G(3', 5')pA(3', 5')p] 5CFN ; 2.95 ; Crystal structure of anemone STING (Nematostella vectensis) in complex with 3',3' c-di-AMP, c[A(3',5')pA(3',5')p] 6RW0 ; 1.45 ; Crystal structure of ANGEL2, a 2',3'-cyclic phosphatase 6RVZ ; 2.1 ; Crystal structure of ANGEL2, a 2',3'-cyclic phosphatase, in complex with adenosine-2',3'-vanadate 7Q27 ; 1.5 ; Crystal structure of Angiotensin-1 converting enzyme C-domain in complex with dual ACE/NEP inhibitor AD011 7Q28 ; 1.65 ; Crystal structure of Angiotensin-1 converting enzyme C-domain in complex with dual ACE/NEP inhibitor AD012 7Q29 ; 1.6 ; Crystal structure of Angiotensin-1 converting enzyme C-domain in complex with dual ACE/NEP inhibitor AD013 7Z70 ; 1.85 ; Crystal structure of Angiotensin-1 converting enzyme C-domain in complex with fosinoprilat 6ZPU ; 2.0 ; Crystal structure of Angiotensin-1 converting enzyme C-domain with inserted symmetry molecule C-terminus. 7Q24 ; 2.0 ; Crystal structure of Angiotensin-1 converting enzyme N-domain in complex with dual ACE/NEP inhibitor AD011 7Q25 ; 1.6 ; Crystal structure of Angiotensin-1 converting enzyme N-domain in complex with dual ACE/NEP inhibitor AD012 7Q26 ; 1.7 ; Crystal structure of Angiotensin-1 converting enzyme N-domain in complex with dual ACE/NEP inhibitor AD013 7Z6Z ; 1.75 ; Crystal structure of Angiotensin-1 converting enzyme N-domain in complex with fosinoprilat 5XAQ ; 1.86 ; Crystal structure of Animalia-specific tRNA deacylase from Mus musculus 2ZPQ ; 1.9 ; Crystal structure of anionic trypsin isoform 1 from chum salmon 2ZPR ; 1.75 ; Crystal structure of anionic trypsin isoform 2 from chum salmon 2ZPS ; 1.55 ; Crystal structure of anionic trypsin isoform 3 from chum salmon 4U3M ; 3.0 ; Crystal structure of Anisomycin bound to the yeast 80S ribosome 4RLV ; 3.4945 ; Crystal Structure of AnkB 24 Ankyrin Repeats in Complex with AnkR Autoinhibition Segment 4RLY ; 2.5032 ; Crystal Structure of AnkB Ankyrin Repeats (R1-R9) in Complex with Nav1.2 Ankyrin Binding Domain 5Y4D ; 3.3 ; Crystal Structure of AnkB Ankyrin Repeats in Complex with AnkR/AnkB Chimeric Autoinhibition Segment 5Y4F ; 1.953 ; Crystal Structure of AnkB Ankyrin Repeats R13-24 in complex with autoinhibition segment AI-c 5Y4E ; 2.341 ; Crystal Structure of AnkB Ankyrin Repeats R8-14 in complex with autoinhibition segment AI-b 5YIR ; 2.75 ; Crystal Structure of AnkB LIR/GABARAP complex 5YIS ; 2.201 ; Crystal Structure of AnkB LIR/LC3B complex 6M3Q ; 3.436 ; Crystal structure of AnkB/beta4-spectrin complex 5YIP ; 1.85 ; Crystal Structure of AnkG LIR/GABARAPL1 complex 5YIQ ; 2.6 ; Crystal structure of AnkG LIR/LC3B complex 6M3P ; 3.312 ; Crystal structure of AnkG/beta2-spectrin complex 6M3R ; 4.313 ; Crystal structure of AnkG/beta4-spectrin complex 6A9X ; 2.202 ; Crystal Structure of AnkG/GABARAP Complex 3SO8 ; 1.9 ; Crystal Structure of ANKRA 4LG6 ; 1.8 ; Crystal structure of ANKRA2-CCDC8 complex 4QQI ; 2.03 ; Crystal structure of ANKRA2-RFX7 complex 6KZJ ; 1.5 ; Crystal structure of Ankyrin B/NdeL1 complex 7XCE ; 2.5 ; Crystal structure of Ankyrin G in complex with neurofascin 3ZKJ ; 2.58 ; Crystal Structure of Ankyrin Repeat and Socs Box-Containing Protein 9 (Asb9) in Complex with Elonginb and Elonginc 4TUM ; 2.3 ; Crystal structure of Ankyrin Repeat Domain of AKR2 4MO4 ; 1.67 ; Crystal structure of AnmK bound to AMPPCP 4MO5 ; 1.75 ; Crystal structure of AnmK bound to AMPPCP and anhMurNAc 1DK5 ; 2.8 ; CRYSTAL STRUCTURE OF ANNEXIN 24(CA32) FROM CAPSICUM ANNUUM 5LPU ; 2.1 ; Crystal structure of Annexin A2 complexed with S100A4 1N41 ; 2.1 ; Crystal Structure of Annexin V K27E Mutant 1N42 ; 2.1 ; Crystal Structure of Annexin V R149E Mutant 1N44 ; 3.0 ; Crystal Structure of Annexin V R23E Mutant 7CPO ; 2.5 ; Crystal Structure of Anolis carolinensis MHC I complex 5YDJ ; 3.04 ; Crystal structure of anopheles gambiae acetylcholinesterase in complex with PMSF 3LOO ; 2.0 ; Crystal structure of Anopheles gambiae adenosine kinase in complex with P1,P4-di(adenosine-5) tetraphosphate 6S1Z ; 2.5 ; Crystal structure of Anopheles gambiae AnoACE2 in complex with fosinoprilat 6S1Y ; 2.2 ; Crystal structure of Anopheles gambiae AnoACE2 in complex with gamma-Polyglutamic Acid. 2QEV ; 1.998 ; Crystal Structure of Anopheles gambiae D7r4 2QEB ; 2.003 ; Crystal Structure of Anopheles Gambiae D7R4-Histamine Complex 2QEO ; 2.315 ; Crystal Structure of Anopheles gambiae D7R4-norepinephrine complex 2QEH ; 2.102 ; Crystal Structure of Anopheles gambiae D7r4-serotonin complex 2PQL ; 2.2 ; Crystal Structure of Anopheles gambiae D7R4-tryptamine complex 3Q8I ; 2.0 ; Crystal structure of Anopheles Gambiae odorant binding protein 4 in complex with indole 2I0O ; 1.7 ; Crystal structure of Anopheles gambiae Ser/Thr phosphatase complexed with Zn2+ 4OKV ; 1.802 ; Crystal structure of anopheline anti-platelet protein with Fab antibody 3VB1 ; 2.0 ; Crystal Structure of Anopholes gambiae odorant binding protein 20 in open state 5A2A ; 1.9 ; Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass 5A2B ; 1.85 ; Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass 5A2C ; 1.9 ; Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass 3NGV ; 1.76 ; Crystal structure of AnSt-D7L1 4XJE ; 1.88 ; CRYSTAL STRUCTURE OF ANT(2"") IN COMPLEX WITH AMP AND TOBRAMYCIN 5CFU ; 1.82 ; Crystal Structure of ANT(2"")-Ia in complex with adenylyl-2""-tobramycin 5CFT ; 1.5 ; Crystal Structure of ANT(2"")-Ia in complex with AMPCPP and gentamicin C1 5CFS ; 1.7 ; Crystal Structure of ANT(2"")-Ia in complex with AMPCPP and tobramycin 2QXS ; 1.7 ; Crystal Structure of Antagonizing Mutant 536S of the Estrogen Receptor Alpha Ligand Binding Domain Complexed to Raloxifene 8SPK ; 1.6 ; Crystal structure of Antarctic PET-degrading enzyme 3VBJ ; 1.8 ; Crystal Structure of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP and 3-hydroxybutyryl-CoA 3VBI ; 1.8 ; Crystal Structure of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP-4-amino-4,6-dideoxyglucose and Coenzyme A 5A9C ; 1.71 ; Crystal structure of Antheraea mylitta CPV4 polyhedra base domain deleted mutant 5A8S ; 1.724 ; Crystal structure of Antheraea mylitta CPV4 polyhedra type 1 5A8T ; 2.003 ; Crystal structure of Antheraea mylitta CPV4 polyhedra type 2 3GWJ ; 2.43 ; Crystal structure of Antheraea pernyi arylphorin 8AGQ ; 1.093 ; Crystal structure of anthocyanin-related GSTF8 from Populus trichocarpa in complex with (-)-catechin and glutathione 3O51 ; 3.2 ; Crystal structure of anthranilamide 10 bound to AuroraA 1V8G ; 2.1 ; Crystal structure of anthranilate phosphoribosyltransferase (TrpD) from Thermus thermophilus HB8 1VQU ; 1.85 ; Crystal structure of Anthranilate phosphoribosyltransferase 2 (17130499) from Nostoc sp. at 1.85 A resolution 5KCK ; 2.2 ; Crystal structure of anthranilate synthase component I from Streptococcus pneumoniae TIGR4 1XFY ; 3.3 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin 1XFV ; 3.35 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin and 3' deoxy-ATP 1XFW ; 3.4 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin and 3'5' cyclic AMP (cAMP) 1Y0V ; 3.6 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin and pyrophosphate 1XFZ ; 3.25 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin in the presence of 1 millimolar exogenously added calcium chloride 1XFX ; 3.2 ; Crystal structure of anthrax edema factor (EF) in complex with calmodulin in the presence of 10 millimolar exogenously added calcium chloride 1XFU ; 3.35 ; Crystal structure of anthrax edema factor (EF) truncation mutant, EF-delta 64 in complex with calmodulin 1PWW ; 2.8 ; Crystal structure of Anthrax Lethal Factor active site mutant protein complexed with an optimised peptide substrate in the presence of zinc. 1PWU ; 2.7 ; Crystal Structure of Anthrax Lethal Factor complexed with (3-(N-hydroxycarboxamido)-2-isobutylpropanoyl-Trp-methylamide), a known small molecule inhibitor of matrix metalloproteases. 1PWQ ; 3.52 ; Crystal structure of Anthrax Lethal Factor complexed with Thioacetyl-Tyr-Pro-Met-Amide, a metal-chelating peptidyl small molecule inhibitor 1PWV ; 2.85 ; Crystal structure of Anthrax Lethal Factor wild-type protein complexed with an optimised peptide substrate. 3TEY ; 2.12 ; Crystal Structure of Anthrax Protective Antigen (Membrane Insertion Loop Deleted) Mutant S337C N664C to 2.06-A resolution 3TEW ; 1.45 ; Crystal Structure of Anthrax Protective Antigen (Membrane Insertion Loop Deleted) to 1.45-A resolution 3TEX ; 1.7 ; Crystal Structure of Anthrax Protective Antigen (Membrane Insertion Loop Deleted) to 1.7-A resolution 4EE2 ; 1.91 ; Crystal Structure of Anthrax Protective Antigen K446M Mutant to 1.91-A Resolution 3TEZ ; 1.83 ; Crystal Structure of Anthrax Protective Antigen Mutant S337C N664C and dithiolacetone modified to 1.8-A resolution 3ESU ; 1.3 ; Crystal structure of anthrax-neutralizing single-chain antibody 14b7 7YB1 ; 3.3 ; Crystal Structure of anthrol reductase (CbAR) in complex with NADP+ 7YB2 ; 1.85 ; Crystal Structure of anthrol reductase (CbAR) in complex with NADP+ and emodin 3CQF ; 3.1 ; Crystal structure of anthrolysin O (ALO) 7F2S ; 2.62 ; Crystal structure of anti S-gatifloxacin antibody Fab fragment apo form 7F35 ; 2.6 ; Crystal structure of anti S-gatifloxacin antibody Fab fragment in complex with S-gatifloxacin 6NB5 ; 3.0 ; Crystal structure of anti- MERS-CoV human neutralizing LCA60 antibody Fab fragment 6NB8 ; 1.5 ; Crystal structure of anti- SARS-CoV human neutralizing S230 antibody Fab fragment 4PTT ; 1.8 ; Crystal Structure of anti-23F strep Fab C05 4PTU ; 1.511 ; Crystal Structure of anti-23F strep Fab C05 with rhamnose 8GKV ; 2.351 ; Crystal structure of anti-adaptor IraP that regulates RpoS proteolysis 5OPY ; 2.26 ; Crystal structure of anti-alphaVbeta3 integrin Fab LM609 3BKC ; 1.9 ; Crystal structure of anti-amyloid beta FAB WO2 (P21, FormB) 5UXW ; 2.3 ; Crystal Structure of Anti-anti-sigma factor PhyR from Bartonella quintana 5UXV ; 2.6 ; Crystal Structure of Anti-anti-sigma factor PhyR I40V/S51C mutant from Bartonella quintana 2WH6 ; 1.5 ; Crystal structure of anti-apoptotic BHRF1 in complex with the Bim BH3 domain 7D9Z ; 1.123 ; Crystal structure of anti-basigin Fab fragment 3MCK ; 2.3 ; Crystal structure of anti-beta-amyloid antibody C705 5WK2 ; 1.5 ; CRYSTAL STRUCTURE OF ANTI-CCL17 ANTIBODY M116 6AL4 ; 2.45 ; CRYSTAL STRUCTURE OF ANTI-CD19 ANTIBODY B43 FAB 2DM6 ; 2.0 ; Crystal structure of anti-configuration of indomethacin and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complex 8CBX ; 2.0 ; Crystal Structure of Anti-Cortisol Fab fragment 8CBZ ; 1.86 ; Crystal Structure of Anti-cortisol Fab in Complex with Corticosterone 8CBY ; 2.27 ; Crystal Structure of Anti-cortisol Fab in Complex with Cortisol 8CC0 ; 1.85 ; Crystal Structure of Anti-cortisol Fab in Complex with Cortisone 8CC1 ; 2.0 ; Crystal Structure of Anti-cortisol Fab in Complex with Prednisolone 8HEK ; 1.23 ; Crystal Structure of Anti-CRISPR AcrIE2 6ANV ; 2.265 ; Crystal structure of anti-CRISPR protein AcrF1 6ANW ; 2.486 ; Crystal structure of anti-CRISPR protein AcrF10 5GNF ; 1.5 ; Crystal structure of anti-CRISPR protein AcrF3 7BB5 ; 2.3 ; Crystal structure of anti-CRISPR protein AcrIF9 8JFO ; 2.3 ; Crystal structure of anti-CRISPR protein AcrIIA15 7VLM ; 1.38 ; crystal structure of anti-CRISPR protein AcrIIA18 6JD7 ; 2.45 ; Crystal structure of anti-CRISPR protein AcrIIC2 dimer 8HNT ; 3.06 ; Crystal structure of anti-CRISPR protein AcrIIC4 bound to HpaCas9-sgRNA surveillance complex 6IUF ; 2.052 ; Crystal structure of Anti-CRISPR protein AcrVA5 7XMW ; 2.59 ; Crystal structure of anti-CRISPR protein AcrVIA2 7VJN ; 1.799 ; Crystal structure of anti-CRISPR-associated protein Aca1 in Pseudomonas phage JBD30 8HIT ; 3.2 ; Crystal structure of anti-CTLA-4 humanized IgG1 MAb--JS007 in complex with human CTLA-4 7DV4 ; 2.38 ; Crystal structure of anti-CTLA-4 VH domain in complex with human CTLA-4 4KUZ ; 2.7 ; Crystal structure of anti-emmprin antibody 4A5 Fab in trigonal form 3NZH ; 2.0 ; Crystal structure of anti-emmprin antibody 5F6 FAB 7D85 ; 2.5 ; Crystal structure of anti-ErbB3 Fab ISU104 in complex with human ErbB3 extracellular domain 3 7U64 ; 1.75 ; Crystal Structure of Anti-Fentanyl Antibody HY6-F9.6 Fab Complexed with Fentanyl 8GUZ ; 1.79 ; Crystal structure of anti-FIXa IgG fab with FAST-Ig mutations 8GV0 ; 3.192 ; Crystal structure of anti-FIXa IgG fab without FAST-Ig mutations 8RMO ; 1.163 ; Crystal structure of anti-FLAG M2 Fab fragment bound to FLAG-tag peptide epitope 4UV4 ; 3.08 ; Crystal structure of anti-FPR Fpro0165 Fab fragment 8GV1 ; 1.186 ; Crystal structure of anti-FX IgG fab with FAST-Ig mutations 8GV2 ; 1.274 ; Crystal structure of anti-FX IgG fab without FAST-Ig mutations 6OBD ; 2.2 ; Crystal structure of anti-GLD52 Fab complex with human GLD52 peptide mimetic 5IHZ ; 1.64 ; Crystal structure of anti-gliadin 1002-1E01 Fab fragment 5IFJ ; 2.35 ; Crystal structure of anti-gliadin 1002-1E01 Fab fragment in complex of peptide PLQPEQPFP 5IG7 ; 1.97 ; Crystal structure of anti-gliadin 1002-1E01 Fab fragment in complex of peptide PLQPQQPFP 5IK3 ; 1.65 ; Crystal structure of anti-gliadin 1002-1E03 Fab fragment 5IJK ; 2.5 ; Crystal structure of anti-gliadin 1002-1E03 Fab fragment in complex of peptide PLQPEQPFP 5JOP ; 1.75 ; Crystal structure of anti-glycan antibody Fab14.22 in complex with Streptococcus pneumoniae serotype 14 tetrasaccharide at 1.75 A 3OZ9 ; 1.6 ; Crystal Structure of anti-gp41 Fab NC-1 5ESA ; 2.6 ; Crystal structure of anti-HCV E2 antibody HC84-26 1NLB ; 1.6 ; crystal structure of anti-HCV monoclonal antibody 19D9D6 8JYR ; 1.69 ; Crystal structure of anti-HER2 antibody H2Mab-119 in complex with HER2 domain I 4LEO ; 2.64 ; Crystal structure of anti-HER3 Fab RG7116 in complex with the extracellular domains of human Her3 (ERBB3) 7U62 ; 1.82 ; Crystal structure of Anti-Heroin Antibody HY4-1F9 Fab Complexed with Morphine 4MA3 ; 2.0 ; Crystal structure of anti-hinge rabbit antibody C2095 4END ; 1.9 ; Crystal structure of anti-HIV actinohivin in complex with alpha-1,2-mannobiose (P 2 21 21 form) 4G1R ; 1.57 ; Crystal structure of anti-HIV actinohivin in complex with alphs-1,2-mannobiose (Form II) 6B3D ; 2.271 ; Crystal structure of anti-HIV antibody PGT128 in complex with a bacterially derived synthetic mimetic of Man9. 3R0M ; 1.5 ; Crystal structure of anti-HIV llama VHH antibody A12 3RJQ ; 2.601 ; Crystal structure of anti-HIV llama VHH antibody A12 in complex with C186 gp120 7RI2 ; 2.8 ; Crystal structure of anti-HIV llama VHH antibody A12 in complex with HIV-1 C1086 gp120 7RI1 ; 2.55 ; Crystal structure of anti-HIV llama VHH antibody J3 in complex with HIV-1 C1086 gp120 6VBO ; 1.683 ; Crystal structure of anti-HIV-1 antibody DH813 bound to gp120 V2 peptide 6VBP ; 2.298 ; Crystal structure of anti-HIV-1 antibody DH815 bound to gp120 V2 peptide 6VBQ ; 2.116 ; Crystal structure of anti-HIV-1 antibody DH822 bound to gp120 V2 peptide 5DRZ ; 2.54 ; Crystal structure of anti-HIV-1 antibody F240 Fab in complex with gp41 peptide 3GO1 ; 1.89 ; Crystal structure of anti-HIV-1 Fab 268-D in complex with V3 peptide MN 4M1D ; 1.8 ; Crystal structure of anti-HIV-1 Fab 447-52D in complex with V3 cyclic peptide MN 3GHB ; 2.25 ; Crystal structure of anti-HIV-1 Fab 447-52D in complex with V3 peptide W2RW020 3GHE ; 2.4 ; Crystal structure of anti-HIV-1 Fab 537-10D in complex with V3 peptide MN 3MLW ; 2.7 ; Crystal structure of anti-HIV-1 V3 Fab 1006-15D in complex with an MN V3 peptide 6DB7 ; 2.213 ; Crystal structure of anti-HIV-1 V3 Fab 1334 in complex with a HIV-1 gp120 V3 peptide from MN strain 3MLR ; 1.8 ; Crystal structure of anti-HIV-1 V3 Fab 2557 in complex with a NY5 V3 peptide 3MLT ; 2.49 ; Crystal structure of anti-HIV-1 V3 Fab 2557 in complex with a UG1033 V3 peptide 3MLU ; 2.77 ; Crystal structure of anti-HIV-1 V3 Fab 2557 in complex with a ZAM18 V3 peptide 3MLV ; 2.48 ; Crystal structure of anti-HIV-1 V3 Fab 2557 in complex with an NOF V3 peptide 3UJI ; 1.6 ; Crystal structure of anti-HIV-1 V3 Fab 2558 in complex with MN peptide 3MLY ; 1.7 ; Crystal structure of anti-HIV-1 V3 Fab 3074 in complex with a UR29 V3 peptide 3MLZ ; 2.99 ; Crystal structure of anti-HIV-1 V3 Fab 3074 in complex with a VI191 V3 peptide 3MLX ; 1.9 ; Crystal structure of anti-HIV-1 V3 Fab 3074 in complex with an MN V3 peptide 6DB6 ; 1.978 ; Crystal structure of anti-HIV-1 V3 Fab 311-11D in complex with a HIV-1 gp120 V3 peptide from MN strain 3UJJ ; 2.0 ; Crystal structure of anti-HIV-1 V3 Fab 4025 in complex with Con A peptide 6DB5 ; 2.599 ; Crystal structure of anti-HIV-1 V3 Fab TA6 in complex with a HIV-1 gp120 V3 peptide from NY5 strain 3MLS ; 2.5 ; Crystal structure of anti-HIV-1 V3 mAb 2557 Fab in complex with a HIV-1 gp120 V3 mimotope 8W9H ; 2.0 ; Crystal structure of anti-human CLEC12A antibody 50C1 3EYO ; 2.5 ; Crystal structure of anti-human cytomegalovirus antibody 8F9 3EYF ; 2.3 ; Crystal structure of anti-human cytomegalovirus antibody 8f9 plus gB peptide 3L7E ; 2.5 ; Crystal structure of ANTI-IL-13 antibody C836 3G6A ; 2.1 ; Crystal structure of anti-IL-13 antibody CNTO607 5KNG ; 1.35 ; CRYSTAL STRUCTURE OF ANTI-IL-13 DARPIN 6G9 2XQB ; 2.6 ; Crystal Structure of anti-IL-15 Antibody in Complex with human IL-15 4KQ3 ; 1.92 ; Crystal structure of Anti-IL-17A antibody CNTO3186 4KQ4 ; 2.45 ; Crystal structure of Anti-IL-17A antibody CNTO7357 4M6N ; 2.0 ; Crystal structure of anti-IL-23 antibody CNTO1959 at pH 6.5 4M6M ; 2.0 ; Crystal structure of anti-IL-23 antibody CNTO1959 at pH 9.5 3I2C ; 2.8 ; Crystal structure of anti-IL-23 antibody CNTO4088 6P4Y ; 1.799 ; Crystal Structure of anti-IL-7Ralpha 4A10 Fab 4YDW ; 1.9 ; CRYSTAL STRUCTURE OF ANTI-IL4 DARPIN 44C12V5 6CK8 ; 2.05 ; Crystal structure of anti-influenza single-domain llama antibody SD38 4GXV ; 1.449 ; Crystal structure of anti-influenza virus antibody 1F1 1DQM ; 2.1 ; CRYSTAL STRUCTURE OF ANTI-LYSOZYME ANTIBODY 1DQQ ; 1.8 ; CRYSTAL STRUCTURE OF ANTI-LYSOZYME ANTIBODY HYHEL-63 4DN3 ; 2.6 ; Crystal structure of anti-mcp-1 antibody cnto888 6WVZ ; 3.1 ; Crystal structure of anti-MET Fab arm of amivantamab in complex with human MET 1XGY ; 2.71 ; Crystal Structure of Anti-Meta I Rhodopsin Fab Fragment K42-41L 3R06 ; 2.5 ; Crystal structure of anti-mouse CD3epsilon antibody 2C11 Fab fragment 7X3N ; 2.24 ; Crystal structure of anti-mPEG h15-2b Fab 7Y0G ; 2.08 ; Crystal structure of anti-mPEG h15-2b Fab 7YIZ ; 2.42 ; Crystal structure of anti-mPEG h15-2b Fab W104Y mutant 5TBD ; 2.2 ; Crystal Structure of anti-MSP2 Fv fragment (mAb4D11) in complex with 3D7-MSP2 215-222 4QY8 ; 1.353 ; Crystal Structure of anti-MSP2 Fv fragment (mAb6D8) in complex with 3D7-MSP2 14-30 4QXT ; 1.58 ; Crystal Structure of anti-MSP2 Fv fragment (mAb6D8)in complex with FC27-MSP2 14-30 4R3S ; 1.7 ; Crystal Structure of anti-MSP2 Fv fragment (mAb6D8)in complex with MSP2 11-23 4QYO ; 1.208 ; Crystal Structure of anti-MSP2 Fv fragment (mAb6D8)in complex with MSP2 14-22 6FP9 ; 2.1 ; Crystal structure of anti-mTFP1 DARPin 1238_E11 6FPB ; 1.617 ; Crystal structure of anti-mTFP1 DARPin 1238_G01 in space group I4 6FPA ; 1.58 ; Crystal structure of anti-mTFP1 DARPin 1238_G01 in space group P212121 7V3Q ; 2.98 ; Crystal structure of anti-MUC1 antibody 16A 6WYR ; 1.8 ; Crystal structure of anti-Muscle Specific Kinase (MuSK) Fab, MuSK1A 6WYT ; 1.75 ; Crystal structure of anti-Muscle Specific Kinase (MuSK) Fab, MuSK1B 1ZAN ; 1.7 ; Crystal structure of anti-NGF AD11 Fab 4M6O ; 2.8 ; Crystal structure of anti-NGF antibody CNTO7309 7U61 ; 2.1 ; Crystal Structure of Anti-Nicotine Antibody NIC311 Fab Complexed with Nicotine 6U1T ; 1.483 ; Crystal structure of anti-Nipah virus (NiV) F 5B3 antibody Fab fragment 3CXD ; 2.8 ; Crystal structure of anti-osteopontin antibody 23C3 in complex with its epitope peptide 3DSF ; 2.8 ; Crystal structure of anti-osteopontin antibody 23C3 in complex with W43A mutated epitope peptide 8IQS ; 2.16 ; Crystal structure of Anti-PEG antibody M11 Fv-clasp fragment with PEG (co-crystallization with PEG3350) 8IQQ ; 2.02 ; Crystal structure of Anti-PEG antibody M9 Fv-clasp fragment with PEG (co-crystallization with PEG2000MME) 8IQP ; 1.76 ; Crystal structure of Anti-PEG antibody M9 Fv-clasp fragment with PEG (co-crystallization with PEG3350) 8IQR ; 2.35 ; Crystal structure of Anti-PEG antibody M9 Fv-clasp fragment with PEG (co-crystallization with PEG550DME) 3WBD ; 1.8 ; Crystal structure of anti-polysialic acid antibody single chain Fv fragment (mAb735) complexed with octasialic acid 3WE6 ; 2.02 ; Crystal structure of anti-Prostaglandin E2 Fab fragment 3WIF ; 1.7 ; Crystal structure of anti-prostaglandin E2 Fab fragment 9Cl-PGF2beta complex 3WHX ; 1.7 ; Crystal structure of anti-prostaglandin E2 Fab fragment PGE1 complex 3WFH ; 1.9 ; Crystal structure of anti-Prostaglandin E2 Fab fragment PGE2 complex 8JBJ ; 1.61 ; Crystal structure of anti-PVRIG Fab 4M43 ; 1.85 ; Crystal structure of anti-rabies glycoprotein Fab 523-11 2G75 ; 2.28 ; Crystal Structure of anti-SARS m396 Antibody 7ZOR ; 3.933 ; Crystal structure of anti-Siglec-15 Fab 4MAU ; 1.9 ; Crystal structure of anti-ST2L antibody C2244 5MHE ; 1.9 ; Crystal structure of anti-T4 Fab fragment with T4 5MHG ; 2.801 ; Crystal structure of anti-T4 Fab fragment with tetraiodoBPA 7TUH ; 2.3 ; Crystal structure of anti-tapasin PaSta2-Fab 3O6K ; 2.0 ; Crystal structure of anti-Tat HIV Fab'11H6H1 5E2T ; 2.1 ; Crystal structure of anti-TAU antibody AT8 FAB 6GK7 ; 2.95 ; Crystal structure of anti-tau antibody dmCBTAU-27.1, double mutant (S31Y, T100I) of CBTAU-27.1, in complex with Tau peptide A8119B (residues 299-318) 6GK8 ; 2.85 ; Crystal structure of anti-tau antibody dmCBTAU-28.1, double mutant (S32R, E35K) of CBTAU-28.1, in complex with Tau peptide A7731 (residues 52-71) 6XLI ; 2.0 ; CRYSTAL STRUCTURE OF ANTI-TAU ANTIBODY PT3 Fab+pT212/pT217-TAU PEPTIDE 3LS4 ; 2.0 ; Crystal Structure of Anti-tetrahydrocannabinol Fab Fragment in Complex with THC 4M7K ; 1.9 ; Crystal structure of anti-tissue factor antibody 10H10 3QPQ ; 1.9 ; Crystal structure of ANTI-TLR3 antibody C1068 FAB 4QTH ; 2.17 ; Crystal structure of anti-uPAR Fab 8B12 5VIC ; 3.0 ; Crystal structure of anti-Zika antibody Z004 bound to DENV-1 Envelope protein DIII 5VIG ; 3.0 ; Crystal structure of anti-Zika antibody Z006 bound to Zika virus envelope protein DIII 6DFJ ; 2.07 ; Crystal structure of anti-Zika antibody Z021 bound to DENV-1 envelope protein DIII 6DFI ; 2.48 ; Crystal structure of anti-Zika antibody Z021 bound to Zika virus envelope protein DIII 4HL9 ; 1.93 ; Crystal structure of antibiotic biosynthesis monooxygenase 4V9R ; 3.0 ; Crystal structure of antibiotic DITYROMYCIN bound to 70S ribosome 4V9S ; 3.1 ; Crystal structure of antibiotic GE82832 bound to 70S ribosome 3LCU ; 2.1 ; Crystal Structure of Antibiotic related Methyltransferase 3LCV ; 2.0 ; Crystal Structure of Antibiotic related Methyltransferase 4RX1 ; 2.472 ; Crystal Structure of antibiotic-resistance methyltransferase Kmr 7WN8 ; 2.8 ; Crystal structure of antibody (BC31M5) binds to CD47 7MFB ; 1.74 ; Crystal structure of antibody 10E8v4 Fab - light chain H31F variant 7MF9 ; 3.7 ; Crystal structure of antibody 10E8v4-P100fA Fab in space group C2 7MF8 ; 2.2 ; Crystal structure of antibody 10E8v4-P100fA Fab in space group P6422 7MFA ; 2.4 ; Crystal structure of antibody 10E8v4-P100fA+P100gA Fab 7MF7 ; 2.0 ; Crystal structure of antibody 10E8v4-P100gA Fab 7VAZ ; 2.73 ; Crystal structure of antibody 14A in complex with MUC1 glycopeptide(GlycoS) 7VAC ; 3.5 ; Crystal structure of antibody 14A in complex with MUC1 glycopeptide(GlycoST) 7V8Q ; 3.2 ; Crystal structure of antibody 14A in complex with MUC1 Glycopeptide(GlycoT) 7V7K ; 2.2 ; Crystal structure of Antibody 16A in complex with MUC1 Glycopeptide(GlycoST) 7V64 ; 1.56 ; Crystal structure of Antibody 16A in complex with MUC1 Glycopeptide(GlycoT) 7V4W ; 2.1 ; Crystal structure of Antibody 16A in complex with MUC1 peptide 1UB5 ; 2.0 ; Crystal structure of Antibody 19G2 with hapten at 100K 1UB6 ; 2.12 ; Crystal structure of Antibody 19G2 with sera ligand 4GXU ; 3.294 ; Crystal structure of antibody 1F1 bound to the 1918 influenza hemagglutinin 5YSL ; 2.5 ; Crystal structure of antibody 1H1 Fab 5WKO ; 3.492 ; Crystal structure of antibody 27F3 recognizing the HA from A/California/04/2009 (H1N1) influenza virus 6V6W ; 6.5 ; Crystal structure of antibody 438-B11 DSS mutant (Cys98A-100aA) in complex with an uncleaved prefusion optimized (UFO) soluble BG505 trimer and Fab 35O22 6UUM ; 2.1 ; Crystal structure of antibody 438-B11 DSS mutant (Cys98A-Cys100aA) 6UUD ; 1.85 ; Crystal structure of antibody 5D5 in complex with PfCSP N-terminal peptide 4J1U ; 2.58 ; Crystal structure of antibody 93F3 unstable variant 7U8E ; 2.29 ; Crystal structure of antibody Ab246 in complex with SARS-CoV-2 receptor binding domain 6EV1 ; 3.043 ; Crystal structure of antibody against schizophyllan 6EV2 ; 2.403 ; Crystal structure of antibody against schizophyllan in complex with laminarihexaose 7PS3 ; 1.7 ; Crystal structure of antibody Beta-32 Fab 5N88 ; 1.7 ; Crystal structure of antibody bound to viral protein 1K6Q ; 2.4 ; Crystal structure of antibody Fab fragment D3 7XY8 ; 2.3 ; Crystal structure of antibody Fab fragment in complex with CD147(EMMPIRIN) 8BJZ ; 1.89 ; crystal structure of antibody Fab with SiaLac-amidine-Lys 8BSO ; 1.92 ; crystal structure of antibody Fab with SiaLac-amidine-Lys 6P8N ; 3.202 ; Crystal Structure of Antibody P-p1f1 in Complex with eOD-GT8 6P8M ; 3.594 ; Crystal Structure of Antibody P-p3b3 A60C Heavy Chain in Complex with 426c HIV-1 gp120 core G459C 1KCV ; 1.8 ; Crystal structure of antibody pc282 1KCS ; 2.5 ; CRYSTAL STRUCTURE OF ANTIBODY PC282 IN COMPLEX WITH PS1 PEPTIDE 1KCR ; 2.9 ; CRYSTAL STRUCTURE OF ANTIBODY PC283 IN COMPLEX WITH PS1 PEPTIDE 1KCU ; 2.2 ; CRYSTAL STRUCTURE OF ANTIBODY PC287 1KC5 ; 2.5 ; CRYSTAL STRUCTURE OF ANTIBODY PC287 IN COMPLEX WITH PS1 PEPTIDE 8H3B ; 2.75 ; Crystal structure of antibody scFv against M2e Influenza peptide 8H73 ; 1.91 ; Crystal structure of antibody scFv against M2e Influenza peptide 4JB9 ; 2.6 ; Crystal structure of antibody VRC06 in complex with HIV-1 gp120 core 4OLU ; 2.202 ; Crystal structure of antibody VRC07 in complex with clade A/E 93TH057 HIV-1 gp120 core 4OLV ; 2.5 ; Crystal structure of antibody VRC07-G54F in complex with clade A/E 93TH057 HIV-1 gp120 core 4OLW ; 2.709 ; Crystal structure of antibody VRC07-G54H in complex with clade A/E 93TH057 HIV-1 gp120 core 4OLX ; 2.2 ; Crystal structure of antibody VRC07-G54L in complex with clade A/E 93TH057 HIV-1 gp120 core 4OLY ; 2.351 ; Crystal structure of antibody VRC07-G54R in complex with clade A/E 93TH057 HIV-1 gp120 core 4OLZ ; 2.1 ; Crystal structure of antibody VRC07-G54W in complex with clade A/E 93TH057 HIV-1 gp120 core 4OM0 ; 2.289 ; Crystal structure of antibody VRC07-G54Y in complex with clade A/E 93TH057 HIV-1 gp120 core 4OM1 ; 2.131 ; Crystal structure of antibody VRC07-I30Q, G54W, S58N in complex with clade A/E 93TH057 HIV-1 gp120 core 8SMI ; 3.5 ; Crystal structure of antibody WRAIR-2123 in complex with SARS-CoV-2 receptor binding domain 8F2J ; 3.16 ; Crystal structure of antibody WRAIR-2134 in complex with SARS-CoV-2 receptor binding domain 8SMT ; 3.16 ; Crystal structure of antibody WRAIR-2134 in complex with SARS-CoV-2 receptor binding domain 4GH7 ; 2.6 ; Crystal structure of Anticalin N7A in complex with oncofetal fibronectin fragment Fn7B8 3WP9 ; 1.6 ; Crystal structure of antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. 1EZG ; 1.4 ; CRYSTAL STRUCTURE OF ANTIFREEZE PROTEIN FROM THE BEETLE, TENEBRIO MOLITOR 7KOH ; 2.98 ; Crystal structure of antigen 43 from Escherichia coli EDL933 7KO9 ; 2.43 ; Crystal structure of antigen 43 from uropathogenic Escherichia coli UTI89 7KOB ; 2.08 ; Crystal structure of antigen 43b from Escherichia coli CFT073 3HRH ; 2.3 ; Crystal Structure of Antigen 85C and Glycerol 4QDU ; 1.4 ; Crystal structure of Antigen 85C co-crystallized with ebselen 4QDT ; 1.498 ; Crystal structure of Antigen 85C co-crystallized with iodoacetamide 1DQZ ; 1.5 ; CRYSTAL STRUCTURE OF ANTIGEN 85C FROM MYCOBACTERIUM TUBERCULOSIS 1DQY ; 1.83 ; CRYSTAL STRUCTURE OF ANTIGEN 85C FROM MYCOBACTERIUM TUBERCULOSIS WITH DIETHYL PHOSPHATE INHIBITOR 4MQM ; 1.346 ; Crystal structure of Antigen 85C in presence of Ebselen 4QDX ; 1.503 ; Crystal structure of Antigen 85C-C209G mutant 4MQL ; 1.3 ; Crystal structure of Antigen 85C-C209S mutant 4QDZ ; 1.885 ; Crystal structure of Antigen 85C-E228Q mutant 4QE3 ; 1.351 ; Crystal structure of Antigen 85C-H260Q mutant 4QEK ; 1.299 ; Crystal structure of Antigen 85C-S124A mutant 2FJC ; 2.5 ; Crystal structure of antigen TpF1 from Treponema pallidum 5J5E ; 2.8 ; crystal structure of antigen-ERAP1 domain complex 5HAU ; 3.0 ; Crystal structure of antimicrobial peptide Bac7(1-19) bound to the Thermus thermophilus 70S ribosome 5HCP ; 2.894 ; Crystal structure of antimicrobial peptide Metalnikowin bound to the Thermus thermophilus 70S ribosome 5HCR ; 2.8 ; Crystal structure of antimicrobial peptide Oncocin 10wt bound to the Thermus thermophilus 70S ribosome 5HCQ ; 2.801 ; Crystal structure of antimicrobial peptide Oncocin d15-19 bound to the Thermus thermophilus 70S ribosome 5HD1 ; 2.7 ; Crystal structure of antimicrobial peptide Pyrrhocoricin bound to the Thermus thermophilus 70S ribosome 6I89 ; 2.0 ; Crystal structure of Antirestriction ArdC protein from R388 plasmid. Metal-free structure. 6SNA ; 2.7 ; Crystal structure of Antirestriction ArdC protein from R388 plasmid. Mn(II)-bound structure. 3QRG ; 1.699 ; Crystal structure of antiRSVF Fab B21m 3OIZ ; 1.65 ; Crystal structure of antisigma-factor antagonist, STAS domain from Rhodobacter sphaeroides 3R2C ; 1.902 ; Crystal Structure of Antitermination Factors NusB and NusE in complex with BoxA RNA 3R2D ; 2.199 ; Crystal Structure of Antitermination Factors NusB and NusE in complex with dsRNA 4MO1 ; 2.099 ; Crystal structure of antitermination protein Q from bacteriophage lambda. Northeast Structural Genomics Consortium target OR18A. 1NQ9 ; 2.6 ; Crystal Structure of Antithrombin in the Pentasaccharide-Bound Intermediate State 2BEH ; 2.7 ; Crystal structure of antithrombin variant S137A/V317C/T401C with plasma latent antithrombin 2B4X ; 2.8 ; Crystal Structure of Antithrombin-III 8U12 ; 1.6 ; Crystal Structure of Antitoxin Protein Rv0298 of Type II Toxin-antitoxin Systems from Mycobacterium tuberculosis 3BTN ; 2.05 ; Crystal structure of antizyme inhibitor, an ornithine decarboxylase homologous protein 6QLG ; 2.15 ; Crystal structure of AnUbiX (PadA1) in complex with FMN and dimethylallyl pyrophosphate 5Y96 ; 1.8 ; Crystal structure of ANXUR1 extracellular domain from Arabidopsis thaliana 5Y92 ; 2.004 ; Crystal structure of ANXUR2 extracellular domain from Arabidopsis thaliana 8ASA ; 2.2 ; Crystal structure of AO75L 7C37 ; 1.451 ; Crystal structure of AofleA from Arthrobotrys oligospora 7C3D ; 1.596 ; Crystal structure of AofleA from Arthrobotrys oligospora in complex with D-arabinose 7C3C ; 1.301 ; Crystal structure of AofleA from Arthrobotrys oligospora in complex with D-manose 7C38 ; 1.2 ; Crystal structure of AofleA from Arthrobotrys oligospora in complex with L-fucose 7C39 ; 1.85 ; Crystal structure of AofleA from Arthrobotrys oligospora in complex with methylated L-fucose 5EO7 ; 2.3 ; Crystal structure of AOL 5H47 ; 2.3 ; Crystal structure of AOL complexed with 2-MeSe-Fuc 5EO8 ; 1.6 ; Crystal structure of AOL(868) 8HMM ; 2.7 ; Crystal structure of AoRhaA 6LA0 ; 1.75 ; Crystal structure of AoRut 6LPM ; 1.5 ; Crystal structure of AP endonuclease from Deinococcus radioduran 2J63 ; 2.48 ; Crystal structure of AP endonuclease LMAP from Leishmania major 3NGF ; 1.8 ; Crystal structure of AP endonuclease, family 2 from Brucella melitensis 4NEE ; 2.8841 ; crystal structure of AP-2 alpha/simga2 complex bound to HIV-1 Nef 2HNX ; 1.5 ; Crystal Structure of aP2 8GMD ; 2.2 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 COMPLEXED WITH (5P)-3-({(8R)-5-[(4-aminopiperidin-1-yl)methyl]pyrrolo[2,1-f][1,2,4]triazin-4-yl}amino)-5-[2-(propan-2-yl)-2H-tetrazol-5-yl]phenol 8GMC ; 2.5 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 COMPLEXED WITH 5-[(4-aminopiperidin-1-yl)methyl]-N-{3-[5-(propan-2-yl)-1,3,4-thiadiazol-2-yl]phenyl}pyrrolo[2,1-f][1,2,4]triazin-4-amine 7RJ6 ; 2.132 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 ISOFORM 1 COMPLEXED WITH LIGAND (2R)-2-AMINO-N-[3-(DIFLUOROM ETHOXY)-4-(1,3-OXAZOL-5-YL)PHENYL]-4-METHYLPENTANAMIDE 7RJ8 ; 2.59 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 ISOFORM 1 COMPLEXED WITH LIGAND (2R)-2-AMINO-N-[3-(DIFLUOROM ETHOXY)-4-(1,3-OXAZOL-5-YL)PHENYL]-4-METHYLPENTANAMIDE 7LVI ; 2.2 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 ISOFORM 1 COMPLEXED WITH LIGAND (2R)-2-AMINO-N-[3-METHOXY-4- (1,3-OXAZOL-5-YL)PHENYL]-4-METHYLPENTANAMIDE 7RJ7 ; 2.124 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 ISOFORM 1 COMPLEXED WITH LIGAND 2-(1-AMINO-3-METHYLBUTYL)-6- (PYRIDIN-4-YL)QUINOLINE-4-CARBONITRILE 7LVH ; 2.65 ; CRYSTAL STRUCTURE OF AP2 ASSOCIATED KINASE 1 ISOFORM 1 COMPLEXED WITH LIGAND N-[3-METHOXY-4-(1,3-OXAZOL-5-YL)PHENYL]-3-(PROPAN-2-YL)PIPERIDINE-2-CARBOXAMIDE 7OHO ; 2.88 ; Crystal structure of AP2 FCHO2 chimera 6BNT ; 3.2 ; Crystal structure of AP2 mu1 adaptin C-terminal domain with IRS-1 peptide 7OI5 ; 2.61 ; Crystal structure of AP2 Mu2 - FCHO2 chimera (GST cleaved) 7OHZ ; 2.27 ; Crystal structure of AP2 Mu2 - FCHO2 chimera (His6-tagged) 7OIQ ; 1.85 ; Crystal structure of AP2 Mu2 in complex with FCHO2 WxxPhi motif (C2 crystal form) 7OIT ; 1.65 ; Crystal structure of AP2 Mu2 in complex with FCHO2 WxxPhi motif (P3221 crystal form) 1TSQ ; 2.0 ; CRYSTAL STRUCTURE OF AP2V SUBSTRATE VARIANT OF NC-P1 DECAMER PEPTIDE IN COMPLEX WITH V82A/D25N HIV-1 PROTEASE MUTANT 3I7U ; 1.8 ; Crystal structure of AP4A hydrolase (aq_158) from Aquifex aeolicus VF5 3I7V ; 1.95 ; Crystal structure of AP4A hydrolase complexed with AP4A (ATP) (aq_158) from Aquifex aeolicus Vf5 4RHW ; 2.1 ; Crystal structure of Apaf-1 CARD and caspase-9 CARD complex 1XVS ; 2.01 ; Crystal structure of apaG Protein from Vibrio cholerae 3Q9F ; 2.35 ; Crystal Structure of APAH complexed with CAPS 3Q9B ; 2.25 ; Crystal Structure of APAH complexed with M344 7F6M ; 2.4 ; Crystal structure of APC complexed with a peptide inhibitor MAI-516 3NMX ; 2.3 ; Crystal structure of APC complexed with Asef 3NMZ ; 3.01 ; Crystal structure of APC complexed with Asef 4YJE ; 1.9 ; Crystal structure of APC-ARM in complexed with Amer1-A1 4YJL ; 2.1 ; Crystal structure of APC-ARM in complexed with Amer1-A2 4YK6 ; 1.7 ; Crystal structure of APC-ARM in complexed with Amer1-A4 2XPI ; 2.6 ; Crystal structure of APC/C hetero-tetramer Cut9-Hcn1 4R2Y ; 1.755 ; Crystal structure of APC11 RING domain 3FHK ; 2.3 ; Crystal structure of APC1446, B.subtilis YphP disulfide isomerase 1ORU ; 1.8 ; Crystal Structure of APC1665, YUAD protein from Bacillus subtilis 4RG7 ; 4.25 ; Crystal structure of APC3 4RG6 ; 3.3 ; Crystal structure of APC3-APC16 complex 4RG9 ; 3.25 ; Crystal structure of APC3-APC16 complex (Selenomethionine Derivative) 1U84 ; 1.6 ; Crystal Structure of APC36109 from Bacillus stearothermophilus 2QMM ; 1.85 ; Crystal structure of APC86534.1 (C-terminal domain of NCBI AAB90184.1; Pfam BIG 123.1) 3GI8 ; 2.59 ; Crystal Structure of ApcT K158A Transporter Bound to 7F11 Monoclonal Fab Fragment 3GIA ; 2.32 ; Crystal Structure of ApcT Transporter 3GI9 ; 2.48 ; Crystal Structure of ApcT Transporter Bound to 7F11 Monoclonal Fab Fragment 1WFX ; 2.8 ; Crystal Structure of APE0204 from Aeropyrum pernix 2Z1N ; 1.8 ; Crystal structure of APE0912 from Aeropyrum pernix K1 2ISI ; 2.76 ; Crystal structure of Ape1 from Homo sapiens in a new crystal form complexed with a ligand 2YVU ; 2.1 ; Crystal structure of APE1195 2CWJ ; 3.6 ; crystal structure of APE1501, a putative endonuclease from Aeropyrum pernix 4NWU ; 1.602 ; Crystal structure of APE1551, an anti-human NGF Fab with a nine amino acid insertion in CDR H1 2CY1 ; 2.3 ; Crystal structure of APE1850 7SUS ; 2.7 ; Crystal structure of Apelin receptor in complex with small molecule 4PSN ; 2.05 ; Crystal structure of apeThermo-DBP-RP2 4PSO ; 2.9 ; Crystal structure of apeThermo-DBP-RP2 bound to ssDNA dT10 6CD7 ; 1.53 ; Crystal structure of APH(2"")-IVa in complex with plazomicin 1RMT ; 1.4 ; Crystal structure of AphA class B acid phosphatase/phosphotransferase complexed with adenosine. 2B8J ; 2.033 ; Crystal structure of AphA class B acid phosphatase/phosphotransferase ternary complex with adenosine and phosphate at 2 A resolution 2B82 ; 1.25 ; Crystal structure of AphA class B acid phosphatase/phosphotransferase ternary complex with adenosine and phosphate bound to the catalytic metal at 1.2 A resolution 1RMY ; 1.75 ; Crystal structure of AphA class B acid phosphatase/phosphotransferase ternary complex with deoxycytosine and phosphate bound to the catalytic metal 1RMQ ; 2.0 ; Crystal structure of AphA class B acid phosphatase/phosphotransferase with osmiate mimicking the catalytic intermediate 7Q2A ; 1.6 ; Crystal structure of AphC in complex with 4-ethylcatechol 1E5P ; 1.63 ; Crystal structure of aphrodisin, a sex pheromone from female hamster 6L4O ; 2.6 ; Crystal structure of API5-FGF2 complex 3OSX ; 1.55 ; Crystal Structure of Apical Domain of Insecticidal GroEL from Xenorhapdus nematophila 4UV6 ; 2.45 ; Crystal structure of apical membrane antigen 1 from Plasmodium knowlesi 4UAO ; 3.1 ; Crystal structure of Apical Membrane Antigen 1 from Plasmodium Knowlesi in complex with an invasion inhibitory antibody 1W81 ; 2.01 ; Crystal structure of apical membrane antigen 1 from Plasmodium vivax 1W8K ; 1.8 ; Crystal structure of apical membrane antigen 1 from Plasmodium vivax 8GZI ; 2.1221 ; Crystal Structure of ApiI in complex with SAH 8Q89 ; 2.05 ; Crystal structure of Apis mellifera glutathione transferase delta 1 in a covalent dimeric state 8Q8B ; 1.5 ; Crystal structure of Apis mellifera glutathione transferase delta 1, mutant C127S 8Q8A ; 1.75 ; Crystal structure of Apis mellifera glutathione transferase delta 1, mutant M126L 7ZS6 ; 1.31 ; Crystal structure of Apis mellifera RidA 6W70 ; 1.296 ; Crystal Structure of apixaban-bound ABLE 3O6N ; 1.85 ; Crystal Structure of APL1 leucine-rich repeat domain 2WN9 ; 1.75 ; Crystal structure of Aplysia ACHBP in complex with 4-0H-DMXBA 2WNL ; 2.7 ; CRYSTAL STRUCTURE OF APLYSIA ACHBP IN COMPLEX WITH ANABASEINE 2WNJ ; 1.8 ; CRYSTAL STRUCTURE OF APLYSIA ACHBP IN COMPLEX WITH DMXBA 2WNC ; 2.2 ; Crystal structure of Aplysia ACHBP in complex with tropisetron 2BYP ; 2.07 ; Crystal structure of Aplysia californica AChBP in complex with alpha- conotoxin ImI 2XYT ; 2.05 ; Crystal structure of Aplysia californica AChBP in complex with d- tubocurarine 2BYQ ; 3.4 ; Crystal structure of Aplysia californica AChBP in complex with epibatidine 2XYS ; 1.909 ; Crystal structure of Aplysia californica AChBP in complex with strychnine 3C79 ; 2.48 ; Crystal structure of Aplysia californica AChBP in complex with the neonicotinoid imidacloprid 3ZWN ; 1.8 ; Crystal structure of Aplysia cyclase complexed with substrate NGD and product cGDPR 8J30 ; 2.89 ; Crystal structure of ApNGT with Q469A and M218A mutations in complex with UDP-GLC 3IIA ; 2.7 ; Crystal structure of apo (91-244) RIa subunit of cAMP-dependent protein kinase 7DVS ; 2.6 ; Crystal structure of Apo (heme-free) PefR 1OTJ ; 1.9 ; Crystal structure of APO (iron-free) TauD 6QO5 ; 1.511 ; Crystal structure of apo (metal-free) ribonucleotide reductase NrdF from Bacillus anthracis 6TQX ; 2.05002 ; Crystal structure of apo (metal-free) ribonucleotide reductase NrdF L61G variant from Bacillus anthracis 5ICG ; 2.6 ; Crystal structure of apo (S)-norcoclaurine 6-O-methyltransferase 1P1F ; 2.6 ; Crystal structure of apo 1L-myo-inositol 1-phosphate synthase 4ND7 ; 2.0 ; Crystal structure of apo 3-nitro-tyrosine tRNA synthetase (5B) in the closed form 4ND6 ; 2.0 ; Crystal structure of apo 3-nitro-tyrosine tRNA synthetase (5B) in the open form 7TM4 ; 1.7 ; Crystal structure of apo 3-phosphoshikimate 1-carboxyvinyltransferase from Klebsiella pneumoniae 4L9R ; 1.95 ; Crystal Structure of apo A12K/D35S mutant myo-inositol dehydrogenase from Bacillus subtilis 2BYN ; 2.02 ; Crystal structure of apo AChBP from Aplysia californica 3GXD ; 2.5 ; Crystal structure of Apo acid-beta-glucosidase pH 4.5 2OPT ; 2.05 ; Crystal Structure of Apo ActR from Streptomyces coelicolor. 1T8K ; 1.1 ; Crystal Structure of apo acyl carrier protein from E. coli 6LVU ; 2.294 ; Crystal structure of apo acyl carrier protein from Thermotoga maritima 4FB8 ; 3.0 ; Crystal Structure of apo Acyl-CoA Carboxylase 4NLE ; 2.16 ; Crystal structure of apo Adenylosuccinate Lyase from Mycobacterium smegmatis 4B9Y ; 1.9 ; Crystal Structure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 5K7F ; 1.7 ; Crystal structure of apo AibR 7BBZ ; 1.77 ; Crystal structure of apo aldo-keto reductase from Agrobacterium tumefaciens 4EVF ; 1.9 ; Crystal structure of apo alpha-1 giardin 3GXN ; 3.01 ; Crystal structure of apo alpha-galactosidase A at pH 4.5 2Y8R ; 2.45 ; Crystal structure of apo AMA1 mutant (Tyr230Ala) from Toxoplasma gondii 3SGC ; 2.05 ; Crystal Structure of Apo Aminoglycoside-2''-Phosphotransferase Type IVa 5B68 ; 1.7 ; Crystal structure of apo amylomaltase from Corynebacterium glutamicum 4KKG ; 2.4 ; Crystal structure of apo and AMP-bound JNK3 6O8K ; 2.12 ; Crystal Structure of apo and reduced Sulfide-responsive transcriptional repressor (SqrR) from Rhodobacter capsulatus. 4M9B ; 1.6 ; Crystal structure of Apo Ara h 8 4TU6 ; 2.27 ; Crystal structure of apo ATAD2A bromodomain with N1064 alternate conformation 6AJM ; 2.604 ; Crystal structure of apo AtaTR 6UVQ ; 1.84 ; Crystal structure of Apo AtmM 6UWD ; 2.04 ; Crystal structure of Apo AtmM 2OF9 ; 1.35 ; Crystal structure of apo AVR4 (D39A/C122S) 2OFA ; 1.5 ; Crystal structure of apo AVR4 (R112L,C122S) 3ULZ ; 2.6 ; Crystal structure of apo BAK1 7TWA ; 1.7 ; Crystal structure of apo BesC from Streptomyces cattleya 5WQS ; 1.9 ; Crystal structure of Apo Beta-Amylase from Sweet potato 1NR7 ; 3.3 ; Crystal structure of apo bovine glutamate dehydrogenase 5Y0O ; 2.3 ; Crystal structure of apo BsTmcAL 3SVZ ; 2.9 ; Crystal structure of apo BT_2972, a methyltransferase from Bacteroides thetaiotaomicron 3T7R ; 2.9 ; Crystal structure of apo BVU_3255, a methyltransferase from Bacteroides vulgatus ATCC 8482 5DRH ; 2.27 ; Crystal structure of apo C-As lyase 5HKW ; 2.25 ; Crystal Structure of Apo c-Cbl TKBD Refined to 2.25 A Resolution 2V0Y ; 2.0 ; Crystal structure of apo C298S tryptophanase from E.coli 6C1Z ; 1.3 ; Crystal structure of Apo Caenorhabditis elegans lipid binding protein 8 (LBP-8) 8PHB ; 1.7 ; Crystal structure of apo Cami1 8Q3Y ; 2.52 ; Crystal structure of apo Can2 from Thermoanaerobacter brockii 4OFF ; 1.888 ; Crystal structure of apo carboxy cGMP binding domain of Plasmodium falciparum PKG 6WXW ; 2.32 ; crystal structure of apo Card1 3R7S ; 2.252 ; Crystal Structure of Apo Caspase2 4EK3 ; 1.34 ; Crystal structure of apo CDK2 4WCK ; 1.4 ; Crystal Structure of apo Cell Shape Determinant protein Csd4 from Helicobacter pylori 4WUK ; 1.7 ; Crystal structure of apo CH65 Fab 1TVQ ; 2.0 ; Crystal Structure of Apo Chicken Liver Basic Fatty Acid Binding Protein (or Bile Acid Binding Protein) 4HOK ; 2.77 ; crystal structure of apo ck1e 7CT8 ; 2.1 ; Crystal structure of apo CmoB from Vibrio Vulnificus 2Y3U ; 2.55 ; Crystal structure of apo collagenase G from Clostridium histolyticum at 2.55 Angstrom resolution 3DSP ; 2.2 ; Crystal structure of apo copper resistance protein CopK 6UV0 ; 2.601 ; Crystal structure of apo core domain of RNA helicase DDX17 5VPV ; 2.6 ; Crystal structure of Apo Cryptococcus neoformans H99 Acetyl-CoA Synthetase with an Acetylated Active Site Lysine 6O73 ; 3.0 ; Crystal structure of apo Csm1-Csm4 cassette 6O6S ; 2.65 ; Crystal structure of Apo Csm6 3F7M ; 1.6 ; Crystal structure of apo Cuticle-Degrading Protease (ver112) from Verticillium psalliotae 4ZQI ; 2.3 ; Crystal structure of Apo D-alanine-D-alanine ligase(DDL) from Yersinia pestis 3LWB ; 2.1 ; Crystal Structure of apo D-alanine:D-alanine Ligase (Ddl) from Mycobacterium tuberculosis 3R0Z ; 2.4 ; Crystal structure of apo D-serine deaminase from Salmonella typhimurium 6IN4 ; 1.8 ; Crystal structure of apo DAPK1 in the presence of 18-crown-6 3E4Q ; 2.75 ; Crystal structure of apo DctB 6VSH ; 3.0 ; Crystal structure of apo Dicamba Monooxygenase 4RYJ ; 4.1 ; Crystal structure of apo dimer of BcTSPO 3DFY ; 2.1 ; Crystal structure of apo dipeptide epimerase from Thermotoga maritima 6ON7 ; 1.981 ; Crystal Structure of Apo Domain-Swapped Dimer Q108K:T51D:A28C:L36C Mutant of Human Cellular Retinol Binding Protein II 7A3F ; 2.9 ; Crystal structure of apo DPP9 8FFA ; 2.15 ; Crystal structure of Apo Dps protein (PA0962) from Pseudomonas aeruginosa (cubic form) 8FF9 ; 1.7 ; Crystal structure of Apo Dps protein (PA0962) from Pseudomonas aeruginosa (orthorhombic form) 3HHQ ; 2.0 ; Crystal structure of apo dUT1p from Saccharomyces cerevisiae 2BZ1 ; 1.54 ; CRYSTAL STRUCTURE OF APO E. COLI GTP CYCLOHYDROLASE II 4FE4 ; 3.45 ; Crystal structure of apo E. coli XylR 7SI1 ; 1.6 ; Crystal structure of apo EGFR kinase domain 7E7A ; 2.64 ; Crystal structure of apo ENL YEATS domain T3 mutant 8JTP ; 2.9 ; Crystal structure of apo Enoyl-Acyl Carrier Protein Reductase (FabI) from Klebsiella pneumoniae 7TY1 ; 1.8 ; Crystal structure of apo eosinophil cationic protein (ribonuclease 3) from Macaca fascicularis (MfECP) 6PTM ; 2.0 ; Crystal structure of apo exo-carrageenase GH42 from Bacteroides ovatus 2RKT ; 1.99 ; Crystal Structure of apo F. graminearum TRI101 6EUO ; 2.3 ; Crystal structure of APO Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO5 4AUU ; 1.6 ; Crystal structure of apo FimH lectin domain at 1.5 A resolution 6ASK ; 1.69 ; Crystal Structure of apo Flavin monooxygenase CmoJ (earlier YtnJ) 5XGQ ; 1.899 ; Crystal structure of apo form (free-state) Mycobacterium tuberculosis methionyl-tRNA synthetase 3DEB ; 1.95 ; Crystal Structure of apo form (Zinc removed) of the Botulinum Neurotoxin Type C Light Chain 8FWF ; 1.94 ; Crystal structure of Apo form Fab235 5ZX9 ; 1.55 ; Crystal structure of apo form fibronectin-binding protein Apa from Mycobacterium tuberculosis 5XK3 ; 1.996 ; Crystal structure of apo form Isosesquilavandulyl Diphosphate Synthase from Streptomyces sp. strain CNH-189 7P82 ; 2.042 ; Crystal structure of apo form L147A/I351A variant of S-adenosylmethionine synthetase from Methanocaldococcus jannaschii 3SLC ; 2.7 ; Crystal structure of apo form of acetate kinase (AckA) from Salmonella typhimurium 7CTD ; 2.15 ; Crystal structure of apo form of alpha-glucuronidase (TM0752) from Thermotoga maritima 2I49 ; 1.35 ; Crystal structure of apo form of Bicarbonate Transport Protein CmpA from Synechocystis sp. PCC 6803 5GUK ; 2.0 ; Crystal structure of apo form of cyclolavandulyl diphosphate synthase (CLDS) from Streptomyces sp. CL190 3L8E ; 1.64 ; Crystal Structure of apo form of D,D-heptose 1.7-bisphosphate phosphatase from E. Coli 3C4Y ; 7.509 ; Crystal Structure of Apo form of G protein coupled receptor kinase 1 at 7.51A 6F43 ; 1.35 ; Crystal structure of apo form of Glutathione transferase Omega 3S from Trametes versicolor 6LTW ; 1.65 ; Crystal structure of Apo form of I122A/I330A variant of S-adenosylmethionine synthetase from Cryptosporidium hominis 4Y0T ; 2.3 ; Crystal structure of apo form of OXA-58, a Carbapenem hydrolyzing Class D beta-lactamase from Acinetobacter baumanii (P21, 4mol/ASU) 5BMN ; 1.27 ; Crystal Structure of APO form of Phosphoglucomutase from Xanthomonas citri 5O06 ; 1.547 ; Crystal structure of APO form of Phosphopantetheine adenylyltransferase from Mycobacterium abcessus 2ZLB ; 2.2 ; Crystal structure of APO form of rat catechol-O-methyltransferase 7P83 ; 2.218 ; Crystal structure of Apo form of S-adenosylmethionine synthetase from Methanocaldococcus jannaschii 5ZCI ; 2.0 ; Crystal structure of apo form of Xylose reductase from Debaryomyces nepalensis 2OV1 ; 2.5 ; Crystal structure of apo form of ZnuA with flexible loop deletion 7E1L ; 2.4 ; Crystal structure of apo form PhlH 6AYY ; 2.601 ; Crystal structure of Apo fructose-1,6-bisphosphatase from Mycobacterium tuberculosis 1YFE ; 2.19 ; Crystal structure of apo fumarase C from Escherichia coli 3NO9 ; 2.48 ; Crystal Structure of apo fumarate hydratase from Mycobacterium tuberculosis 6J6X ; 2.962 ; Crystal structure of apo GGTaseIII 3FZ7 ; 2.5 ; Crystal structure of apo glutamate decarboxylase beta from Escherichia coli 2UU7 ; 3.0 ; Crystal structure of apo glutamine synthetase from dog (Canis familiaris) 3LC7 ; 2.5 ; Crystal Structure of apo Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1) from methicllin resistant Staphylococcus aureus (MRSA252) 1F4Q ; 1.9 ; CRYSTAL STRUCTURE OF APO GRANCALCIN 1XCK ; 2.92 ; Crystal structure of apo GroEL 1IRM ; 2.55 ; Crystal structure of apo heme oxygenase-1 4YOB ; 1.504 ; Crystal Structure of Apo HIV-1 Protease MDR769 L33F 7UAJ ; 3.25 ; Crystal structure of apo HPV16 E6 5J80 ; 1.17 ; Crystal Structure of Apo Hsp90-alpha N-domain L107A mutant 4QHD ; 1.65 ; Crystal structure of apo human APE1 7Z3T ; 1.6 ; Crystal structure of apo human Cathepsin L 3UYS ; 2.3 ; Crystal structure of apo human ck1d 7FTF ; 1.508 ; Crystal Structure of apo human cyclic GMP-AMP synthase 7FTJ ; 1.461 ; Crystal Structure of apo human cyclic GMP-AMP synthase 7FTK ; 2.125 ; Crystal Structure of apo human cyclic GMP-AMP synthase 7FTX ; 2.831 ; Crystal Structure of apo human cyclic GMP-AMP synthase - hexagonal form 4LKP ; 1.67 ; Crystal Structure of Apo Human Epidermal Fatty Acid Binding Protein (FABP5) 7G1X ; 1.65 ; Crystal Structure of apo human FABP1 - monoclinic form I 7FYA ; 1.88 ; Crystal Structure of apo human FABP1 - orthorhombic form 7FXO ; 1.3 ; Crystal Structure of apo human FABP1 monoclinic form III 7G0W ; 1.64 ; Crystal Structure of apo human FABP1i monoclinic form II, twinned with beta=90deg 7FZA ; 2.601 ; Crystal Structure of apo human FABP4, cubic form 7FX3 ; 1.12 ; Crystal Structure of apo human FABP4, tetragonal form 7FY1 ; 2.01 ; Crystal Structure of apo human FABP9 1SNZ ; 2.2 ; Crystal structure of apo human galactose mutarotase 3ZSL ; 1.08 ; Crystal structure of Apo Human Galectin-3 CRD at 1.08 angstrom resolution, at cryogenic temperature 3ZSM ; 1.25 ; Crystal structure of Apo Human Galectin-3 CRD at 1.25 angstrom resolution, at room temperature 1EYB ; 1.9 ; CRYSTAL STRUCTURE OF APO HUMAN HOMOGENTISATE DIOXYGENASE 5HGI ; 2.584 ; Crystal structure of apo human IRE1 alpha 1ILG ; 2.52 ; Crystal Structure of Apo Human Pregnane X Receptor Ligand Binding Domain 5LA4 ; 1.9 ; Crystal structure of apo human proheparanase 4IAN ; 2.44 ; Crystal Structure of apo Human PRPF4B kinase domain 1I57 ; 2.1 ; CRYSTAL STRUCTURE OF APO HUMAN PTP1B (C215S) MUTANT 5V2N ; 2.0 ; Crystal Structure of APO Human SETD8 5WU1 ; 2.8 ; Crystal structure of apo human Tut1, form I 5WU5 ; 3.404 ; Crystal structure of apo human Tut1, form III 5WU6 ; 3.209 ; Crystal structure of apo human Tut1, form IV 5LAD ; 3.0 ; Crystal Structure of apo HydF from thermotoga maritima 4XC9 ; 2.4 ; Crystal Structure of apo HygX from Streptomyces hygroscopicus 5ESW ; 2.4 ; Crystal structure of Apo hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila 4Z6J ; 2.4 ; Crystal structure of apo intact hoefavidin 1SNX ; 3.2 ; CRYSTAL STRUCTURE OF APO INTERLEUKIN-2 TYROSINE KINASE CATALYTIC DOMAIN 4HF0 ; 1.9 ; Crystal Structure of Apo IscR 5O3M ; 2.23 ; Crystal structure of apo Klebsiella pneumoniae 3,4-dihydroxybenzoic acid decarboxylase (AroY) 4QDF ; 2.43 ; Crystal structure of apo KshA5 and KshA1 in complex with 1,4-30Q-CoA from R. rhodochrous 2VHY ; 2.3 ; Crystal structure of apo L-alanine dehydrogenase from Mycobacterium tuberculosis 2I5Q ; 2.1 ; Crystal structure of Apo L-rhamnonate dehydratase from Escherichia Coli 7Y1S ; 2.748 ; Crystal structure of apo leucyl aminopeptidase from Bacillus amyloliquefaciens 3ULJ ; 1.06 ; Crystal structure of apo Lin28B cold shock domain 2D4M ; 1.85 ; Crystal Structure of apo M-PMV dUTPase 1U7D ; 2.65 ; crystal structure of apo M. jannashii tyrosyl-tRNA synthetase 3MVT ; 2.2 ; Crystal structure of apo mADA at 2.2A resolution 4NNP ; 2.69 ; Crystal Structure of Apo Manganese ABC transporter MntC from Staphylococcus aureus bound to an antagonistic fab fragment 4FUQ ; 1.702 ; Crystal structure of apo MatB from Rhodopseudomonas palustris 4WLN ; 2.28 ; Crystal structure of apo MDH2 5ERX ; 1.729 ; Crystal Structure of APO MenD from M. tuberculosis - I222 5ERY ; 2.25 ; Crystal Structure of APO MenD from M. tuberculosis - P212121 1XMG ; 2.1 ; Crystal structure of apo methane monooxygenase hydroxylase from M. capsulatus (Bath) 3PVC ; 2.31 ; Crystal structure of apo MnmC from Yersinia Pestis 7LI0 ; 1.85 ; Crystal structure of apo Moraxella catarrhalis ferric binding protein A in an open conformation 7FWT ; 1.54 ; Crystal Structure of apo mouse FABP4 7FZG ; 1.49 ; Crystal Structure of apo mouse FABP4, C-centered orthorhombic form 7FYW ; 1.81 ; Crystal Structure of apo mouse FABP5, twinned in P21 with beta=90deg 6AGV ; 1.62 ; Crystal structure of apo mouse MsrA 4ISB ; 2.2 ; Crystal Structure of Apo Mtb FadD10 4RRW ; 2.569 ; Crystal Structure of Apo Murine Cyclooxygenase-2 4RRY ; 2.429 ; Crystal Structure of Apo Murine H90W Cyclooxygenase-2 4RRZ ; 2.569 ; Crystal Structure of Apo Murine H90W Cyclooxygenase-2 Complexed with Lumiracoxib 4G3C ; 2.15 ; Crystal structure of apo murine Nf-kappaB inducing kinase (NIK) 4RRX ; 2.78 ; Crystal Structure of Apo Murine V89W Cyclooxygenase-2 Complexed with Lumiracoxib 1ZHQ ; 1.9 ; Crystal structure of apo MVL 3MZ0 ; 1.539 ; Crystal structure of apo myo-inositol dehydrogenase from Bacillus subtilis 4MIE ; 2.0 ; Crystal Structure of apo myo-inositol dehydrogenase from Lactobacillus casei 4XJ8 ; 2.749 ; Crystal structure of apo NanB sialidase from streptococcus pneumoniae at pH 5.0 in 50mM sodium Acetate with DMSO 4XJZ ; 1.56 ; Crystal structure of apo NanB sialidase from streptococcus pneumoniae at pH 7.4 in PBS with DMSO 4XIO ; 1.8 ; Crystal structure of apo NanB sialidase from streptococcus pneumoniae at pH 8.0 with MPD as the cryoprotectant 7EUM ; 2.15 ; Crystal structure of apo Nmar_1308 protein at cryogenic temperature 3BVQ ; 2.8 ; Crystal Structure of Apo NotI Restriction Endonuclease 7OJ4 ; 1.828 ; Crystal structure of apo NS3 helicase from tick-borne encephalitis virus 4QJN ; 2.613 ; Crystal structure of apo nucleoid associated protein, SAV1473 3UDF ; 1.7 ; Crystal structure of Apo PBP1a from Acinetobacter baumannii 3PBN ; 2.0 ; Crystal Structure of Apo PBP3 from Pseudomonas aeruginosa 1S2T ; 2.0 ; Crystal Structure Of Apo Phosphoenolpyruvate Mutase 5JBN ; 1.45 ; Crystal Structure of Apo Phosphopantetheine Adenylyltransferase (PPAT/CoaD) from E. coli 4U28 ; 1.33 ; Crystal structure of apo Phosphoribosyl isomerase A from Streptomyces sviceus ATCC 29083 6R2H ; 2.46 ; Crystal structure of Apo PinO from Porphyromonas gingivitis 6R51 ; 1.94 ; Crystal structure of apo PPEP-1(E143A/Y178F) in complex with fibrinogen-derived substrate peptide Ac-SLRPAPP-CONH2 6R4W ; 1.391 ; Crystal structure of apo PPEP-1(E143A/Y178F) in complex with substrate peptide Ac-EVNAPVP-CONH2 7VGB ; 2.227 ; Crystal structure of apo prolyl oligopeptidase from Microbulbifer arenaceous 8DUR ; 1.97 ; Crystal structure of apo protein arginine N-methyltransferase 1 (PRMT1) from Naegleria fowleri 7CNW ; 1.9 ; Crystal structure of Apo PSD from E. coli (1.90 A) 7CNX ; 2.63 ; Crystal structure of Apo PSD from E. coli (2.63 A) 3JS6 ; 1.95 ; Crystal structure of apo psk41 parM protein 6PRM ; 2.5 ; Crystal structure of apo PsS1_19B 6PT4 ; 1.45 ; Crystal structure of apo PsS1_NC 6OMP ; 1.7 ; Crystal structure of apo PtmU3 8EXI ; 1.599 ; Crystal structure of apo PTP1B D181A/Q262A phosphatase domain 5YN2 ; 2.301 ; Crystal structure of apo Pullulanase from Klebsiella pneumoniae in space group P43212 6JHF ; 1.71 ; Crystal structure of apo Pullulanase from Paenibacillus barengoltzii 6JHG ; 1.891 ; Crystal structure of apo Pullulanase from Paenibacillus barengoltzii in space group P212121 5GS5 ; 1.84 ; Crystal structure of apo rat STING 8CO4 ; 1.9 ; Crystal structure of apo S-nitrosoglutathione reductase from Arabidopsis thalina 1QE0 ; 2.7 ; CRYSTAL STRUCTURE OF APO S. AUREUS HISTIDYL-TRNA SYNTHETASE 4X7P ; 3.4 ; Crystal structure of apo S. aureus TarM 1KSO ; 1.7 ; CRYSTAL STRUCTURE OF APO S100A3 2Q5I ; 2.8 ; Crystal structure of apo S581L Glycyl-tRNA synthetase mutant 8IGO ; 2.0 ; Crystal structure of apo SARS-CoV-2 main protease 4MKX ; 1.6 ; Crystal Structure of apo scyllo-inositol dehydrogenase from Lactobacillus casei 4MKZ ; 1.6 ; Crystal Structure of apo scyllo-inositol dehydrogenase from Lactobacillus casei at 77K 6HDS ; 1.74 ; Crystal Structure of apo short afifavidin 4Z27 ; 1.34 ; Crystal structure of apo short hoefavidin 3SZH ; 1.07 ; Crystal structure of apo shwanavidin (P1 form) 7QE1 ; 1.95 ; Crystal structure of apo SN243 3I1A ; 1.7 ; Crystal Structure of apo Spectinomycin Phosphotransferase, APH(9)-Ia 6EEK ; 2.2 ; Crystal structure of apo Staphylcoccal nuclease variant Delta+PHS T62E/V66K, pH 7 at cryogenic temperature 7EK8 ; 1.7 ; Crystal structure of apo streptavidin at ambient temperature 7EK9 ; 1.1 ; Crystal structure of apo streptavidin at cryogenic temperature 6CWZ ; 3.1 ; Crystal structure of apo SUMO E1 4DYS ; 2.8 ; Crystal Structure of Apo Swine Flu Influenza Nucleoprotein 1XBA ; 2.0 ; Crystal structure of apo syk tyrosine kinase domain 6XCV ; 1.77 ; Crystal structure of apo SznF from Streptomyces achromogenes var. streptozoticus NRRL 2697 5XP3 ; 2.3 ; Crystal structure of apo T2R-TTL 3PR1 ; 2.3 ; Crystal structure of apo Thermotoga maritima ribosome biogenesis GTP-binding protein EngB 5Y0S ; 2.103 ; Crystal structure of apo Thermotoga maritima TmcAL(Form II) 5XOB ; 2.48 ; Crystal structure of apo TiaS (tRNAIle2 agmatidine synthetase) 8G5S ; 1.5 ; Crystal structure of apo TnmJ 8E18 ; 1.14 ; Crystal structure of apo TnmK1 8G5T ; 1.846 ; Crystal structure of apo TnmK2 6P7T ; 2.5 ; Crystal structure of apo ToxT K231A from Vibrio cholerae strain SCE256 5ND6 ; 1.58 ; Crystal structure of apo transketolase from Chlamydomonas reinhardtii 3KOM ; 1.6 ; Crystal structure of apo transketolase from Francisella tularensis 4F0I ; 2.302 ; Crystal structure of apo TrkA 4ASZ ; 1.7 ; Crystal structure of apo TrkB kinase domain 7WM5 ; 2.15 ; Crystal structure of apo TrmM from Mycoplasma capricolum 6LIU ; 2.8 ; Crystal structure of apo Tyrosine decarboxylase 4HK4 ; 2.298 ; Crystal structure of apo Tyrosine-tRNA ligase mutant protein 8VW1 ; 1.7 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (ADP bound) 8VW0 ; 1.7 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (AMP bound) 8VW2 ; 1.95 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (ATP bound) 8V8Y ; 1.65 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (Orthorhombic P form) 8V8X ; 2.3 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (Orthorhombic P form2) 8V8W ; 1.65 ; Crystal Structure of Apo UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from E. coli (Tetragonal P form) 6OGM ; 1.865 ; Crystal structure of apo unFused 4-OT 2Z2O ; 1.9 ; Crystal Structure of apo virginiamycin B lyase from Staphylococcus aureus 5WKW ; 1.79 ; Crystal structure of apo wild type peptidylglycine alpha-hydroxylating monooxygenase (PHM) 5WM0 ; 2.4 ; Crystal structure of apo wild type peptidylglycine alpha-hydroxylating monooxygenase (PHM) soaked with peptide (peptide not observed) 7DH7 ; 2.2 ; Crystal structure of apo XcZur 5NHM ; 1.67 ; Crystal structure of apo xylose isomerase from Piromyces E2 3ELX ; 1.6 ; Crystal structure of apo Zebrafish Ileal Bile Acid-Binding Protein 4DQG ; 2.79 ; Crystal Structure of apo(G16C/L38C) HIV-1 Protease 1HW6 ; 1.9 ; CRYSTAL STRUCTURE OF APO-2,5-DIKETO-D-GLUCONATE REDUCTASE 5ZWS ; 2.0 ; Crystal structure of apo-acyl carrier protein from Leishmania major 7L9E ; 2.29 ; Crystal structure of apo-alpha glucosidase 4MDU ; 2.2 ; Crystal structure of apo-Annexin (Sm)1 2O53 ; 2.7 ; Crystal structure of apo-Aspartoacylase from human brain 1F6R ; 2.2 ; CRYSTAL STRUCTURE OF APO-BOVINE ALPHA-LACTALBUMIN 4LYI ; 1.3 ; Crystal Structure of apo-BRD4(1) 1J48 ; 1.8 ; Crystal Structure of Apo-C1027 3P45 ; 2.53 ; Crystal structure of apo-caspase-6 at physiological pH 5GT8 ; 2.8 ; Crystal Structure of apo-CASTOR1 4UAR ; 1.9 ; Crystal structure of apo-CbbY from Rhodobacter sphaeroides 2FS6 ; 1.35 ; Crystal Structure of Apo-Cellular Retinoic Acid Binding Protein Type II At 1.35 Angstroms Resolution 2FS7 ; 1.55 ; Crystal Structure of Apo-Cellular Retinoic Acid Binding Protein Type II At 1.55 Angstroms Resolution 4JJO ; 1.75 ; crystal structure of apo-clavibacter Michiganensis expansin 4QNX ; 2.619 ; Crystal structure of apo-CmoB 1KQX ; 1.7 ; Crystal structure of apo-CRBP from zebrafish 6N3S ; 1.193 ; Crystal structure of apo-cruzain 3X0X ; 2.11 ; Crystal structure of apo-DszC from Rhodococcus erythropolis D-1 1KBZ ; 2.2 ; Crystal Structure of apo-dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) from Salmonella enterica serovar Typhimurium 8H8M ; 1.5 ; Crystal structure of apo-E53F/E57F/E60F/E64F-rHLFr 7CZC ; 2.0 ; Crystal structure of apo-FabG from Vibrio harveyi 3E6R ; 2.4 ; Crystal structure of apo-ferritin from Pseudo-nitzschia multiseries 3C8N ; 1.9 ; Crystal structure of apo-FGD1 from Mycobacterium tuberculosis 5JVF ; 1.66 ; Crystal Structure of Apo-FleN 1LBV ; 1.8 ; Crystal Structure of apo-form (P21) of dual activity FBPase/IMPase (AF2372) from Archaeoglobus fulgidus 1LBW ; 2.0 ; Crystal Structure of apo-form (P32) of dual activity FBPase/IMPase (AF2372) from Archaeoglobus fulgidus 3K7T ; 2.85 ; Crystal structure of apo-form 6-hydroxy-L-nicotine oxidase, crystal form P3121 4XSO ; 2.01 ; Crystal structure of apo-form Alr3699/HepE from Anabaena sp. strain PCC 7120 5B3T ; 2.099 ; Crystal structure of apo-form biliverdin reductase from Synechocystis sp. PCC 6803 3E9T ; 1.6 ; Crystal structure of Apo-form Calx CBD1 domain 2WTO ; 1.85 ; Crystal Structure of Apo-form Czce from C. metallidurans CH34 3S1L ; 1.9 ; Crystal Structure of Apo-form FurX 4MHZ ; 1.95 ; Crystal structure of apo-form glutaminyl cyclase from Ixodes scapularis in complex with PBD150 3QAH ; 2.1 ; Crystal structure of apo-form human MOF catalytic domain 5KQP ; 2.052 ; Crystal structure of Apo-form LMW-PTP 4Z5S ; 1.582 ; Crystal structure of apo-form of aldehyde deformylating oxygenase from Synechocystis sp.PCC 6803 4NT1 ; 1.8 ; Crystal structure of apo-form of Arabidopsis ACD11 (accelerated-cell-death 11) at 1.8 Angstrom resolution 8IDR ; 1.8 ; Crystal structure of apo-form of dehydroquinate dehydratase from Corynebacterium glutamicum 6NA3 ; 1.8 ; Crystal Structure of Apo-form of ECR 4MHP ; 1.1 ; Crystal structure of apo-form of glutaminyl cyclase from Ixodes scapularis 3RWV ; 1.5 ; Crystal Structure of apo-form of Human Glycolipid Transfer Protein at 1.5 A resolution 8I6Z ; 1.95 ; Crystal structure of apo-form of malonyl-CoA reductase C-domain from Chloroflexus aurantiacus 2DUU ; 2.9 ; Crystal Structure of apo-form of NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase from Synechococcus Sp. 1JAM ; 2.18 ; Crystal structure of apo-form of Z. Mays CK2 protein kinase alpha subunit 4YSK ; 2.466 ; Crystal structure of apo-form SdoA from Pseudomonas putida 4FD3 ; 2.6 ; Crystal structure of apo-formed ymtOAR1 3DK5 ; 2.23 ; Crystal Structure of Apo-GlmU from Mycobacterium tuberculosis 1VSU ; 2.2 ; Crystal Structure of Apo-glyceraldehyde 3-phosphate dehydrogenase from Cryptosporidium parvum 1CRW ; 2.0 ; CRYSTAL STRUCTURE OF APO-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PALINURUS VERSICOLOR AT 2.0A RESOLUTION 1BHJ ; 2.5 ; CRYSTAL STRUCTURE OF APO-GLYCINE N-METHYLTRANSFERASE (GNMT) 1OZT ; 2.5 ; Crystal Structure of apo-H46R Familial ALS Mutant human Cu,Zn Superoxide Dismutase (CuZnSOD) to 2.5A resolution 1X2W ; 2.29 ; Crystal Structure of Apo-Habu IX-bp at pH 4.6 5Y2X ; 2.02 ; Crystal structure of apo-HaloTag (M175C) 3SPS ; 2.9 ; Crystal Structure of Apo-Hexameric Acyl-CoA Thioesterase 6ATP ; 1.7 ; Crystal structure of apo-hGSTA1-1 exhibiting a new conformation of C-terminal helix 6ATQ ; 2.0 ; Crystal structure of apo-hGSTA1-1 exhibiting a new conformation of C-terminal helix 7EL2 ; 2.2 ; Crystal structure of apo-HpaR from Acinetobacter baumannii 2EB4 ; 1.6 ; Crystal structure of apo-HpcG 1ZZ6 ; 2.0 ; Crystal Structure of Apo-HppE 4GY2 ; 2.71 ; Crystal structure of apo-Ia-actin complex 4MJ2 ; 2.1 ; Crystal structure of apo-iduronidase in the R3 form 1X8F ; 2.4 ; Crystal Structure Of apo-Kdo8P Synthase 6JEE ; 1.3 ; Crystal structure of apo-L161C/L165C-Fr 3BRI ; 1.7 ; Crystal Structure of apo-LC8 3EI7 ; 1.99 ; Crystal structure of apo-LL-diaminopimelate aminotransferase from Arabidopsis thaliana (no PLP) 3ASA ; 2.05 ; Crystal structure of apo-LL-diaminopimelate aminotransferase from Chlamydia trachomatis 5DIK ; 1.9 ; Crystal structure of apo-lpg0406, a carboxymuconolactone decarboxylase family protein from Legionella pneumophila 8H1S ; 3.28 ; Crystal structure of apo-LptDE complex 1R7O ; 1.85 ; Crystal Structure of apo-mannanase 26A from Psudomonas cellulosa 6LI5 ; 1.82 ; Crystal structure of apo-MCR-1-S 3SBZ ; 2.0 ; Crystal Structure of Apo-MMACHC (1-244), a human B12 processing enzyme 4US5 ; 1.8 ; Crystal Structure of apo-MsnO8 2OZQ ; 1.8 ; Crystal Structure of apo-MUP 5JR9 ; 2.4 ; Crystal structure of apo-NeC3PO 1NOA ; 1.5 ; CRYSTAL STRUCTURE OF APO-NEOCARZINOSTATIN AT 0.15 NM RESOLUTION 7V37 ; 2.403 ; Crystal structure of apo-NP exonuclease 7V3A ; 2.1 ; Crystal structure of apo-NP exonuclease C409A 5HWT ; 1.7 ; Crystal structure of apo-PAS1 4WIE ; 2.18 ; Crystal structure of apo-PEPCK from Mycobacterium tuberculosis with glycerol 3BFP ; 1.75 ; Crystal Structure of apo-PglD from Campylobacter jejuni 4MGF ; 2.0 ; Crystal structure of apo-PhuS, a heme-binding protein from Pseudomonas aeruginosa 3UIU ; 2.903 ; Crystal structure of Apo-PKR kinase domain 3RT2 ; 1.5 ; Crystal structure of apo-PYL10 6JEF ; 1.58 ; Crystal structure of apo-R168C/L169C-Fr 8H8L ; 1.5 ; Crystal structure of apo-R52F/E56F/R59F/E63F-rHLFr 8H8O ; 1.5 ; Crystal structure of apo-R52W/E56W/R59W/E63W-rHLFr 8H8N ; 1.5 ; Crystal structure of apo-R52Y/E56Y/R59Y/E63Y-rHLFr 8GB2 ; 3.07 ; Crystal structure of Apo-SAMHD1 3TTK ; 2.97 ; Crystal structure of apo-SpuD 3TTL ; 2.3 ; Crystal structure of apo-SpuE 6Z66 ; 3.192 ; Crystal structure of apo-state neurotensin receptor 1 7O5I ; 1.35 ; Crystal structure of apo-SwHKA (Hydroxy ketone aldolase) from Sphingomonas wittichii RW1 4U02 ; 2.399 ; Crystal structure of apo-TTHA1159 3W35 ; 2.4 ; Crystal structure of apo-type bacterial Vanadium-dependent chloroperoxidase 3R5S ; 1.791 ; Crystal structure of apo-ViuP 2Q5H ; 3.0 ; Crystal structure of apo-wildtype Glycyl-tRNA synthetase 7MHK ; 1.9601 ; Crystal Structure of Apo/Unliganded SARS-CoV-2 Main Protease (Mpro) at 310 K 1DG6 ; 1.3 ; CRYSTAL STRUCTURE OF APO2L/TRAIL 5KEG ; 2.2 ; Crystal structure of APOBEC3A in complex with a single-stranded DNA 7UXD ; 1.5 ; Crystal structure of APOBEC3G Catalytic domain complex with ssDNA containing 2'-deoxy Zebularine. 6BUX ; 1.856 ; CRYSTAL STRUCTURE OF APOBEC3G CATALYTIC DOMAIN COMPLEX WITH SUBSTRATE SSDNA 7UU3 ; 3.099 ; Crystal structure of APOBEC3G complex with 3'overhangs RNA-Complex 7UU5 ; 2.9 ; Crystal structure of APOBEC3G complex with 5'-Overhang dsRNA 7UU4 ; 2.1 ; Crystal structure of APOBEC3G complex with ssRNA 5W45 ; 2.486 ; Crystal structure of APOBEC3H 1QX5 ; 2.54 ; Crystal structure of apoCalmodulin 1QX7 ; 3.09 ; Crystal structure of apoCaM bound to the gating domain of small conductance Ca2+-activated potassium channel 2BIX ; 2.68 ; Crystal structure of apocarotenoid cleavage oxygenase from Synechocystis, Fe-free apoenzyme 2BIW ; 2.39 ; Crystal structure of apocarotenoid cleavage oxygenase from Synechocystis, native enzyme 4OU8 ; 2.8 ; Crystal structure of apocarotenoid oxygenase in the presence of C8E6 4OU9 ; 2.0 ; Crystal structure of apocarotenoid oxygenase in the presence of Triton X-100 5E4H ; 2.9 ; Crystal Structure of Apoenzyme Alpha-kinase Domain of Myosin-II Heavy Chain Kinase A 1J3H ; 2.9 ; Crystal structure of apoenzyme cAMP-dependent protein kinase catalytic subunit 1UGQ ; 2.0 ; Crystal structure of apoenzyme of Co-type nitrile hydratase 3LE1 ; 1.513 ; Crystal structure of apoHPr monomer from Thermoanaerobacter tengcongensis 3LE3 ; 1.861 ; Crystal structure of apoHPr monomer from Thermoanaerobacter tengcongensis 2XUW ; 1.703 ; Crystal Structure of Apolaccase from Thermus thermophilus HB27 1M6I ; 1.8 ; Crystal Structure of Apoptosis Inducing Factor (AIF) 4UZ0 ; 2.399 ; Crystal Structure of apoptosis repressor with CARD (ARC) 4YN0 ; 2.2 ; Crystal structure of APP E2 domain in complex with DR6 CRD domain 3SV1 ; 3.3 ; Crystal structure of APP peptide bound rat Mint2 PARM 4HEH ; 2.05 ; Crystal structure of AppA SCHIC domain from Rb. sphaeroides 2EJ8 ; 1.84 ; Crystal structure of APPL1 PTB domain at 1.8A 2Z0N ; 1.95 ; Crystal structure of APPL1-BAR domain 2Z0O ; 2.58 ; Crystal structure of APPL1-BAR-PH domain 1M7Y ; 1.6 ; Crystal structure of apple ACC synthase in complex with L-aminoethoxyvinylglycine 1YNU ; 2.25 ; Crystal structure of apple ACC synthase in complex with L-vinylglycine 1M4N ; 2.01 ; CRYSTAL STRUCTURE OF APPLE ACC SYNTHASE IN COMPLEX WITH [2-(AMINO-OXY)ETHYL](5'-DEOXYADENOSIN-5'-YL)(METHYL)SULFONIUM 1YRJ ; 2.7 ; Crystal Structure of Apramycin bound to a Ribosomal RNA A site oligonucleotide 4K31 ; 1.415 ; Crystal structure of apramycin bound to the leishmanial rRNA A-site 3SP4 ; 1.8 ; Crystal structure of aprataxin ortholog Hnt3 from Schizosaccharomyces pombe 3SPD ; 1.912 ; Crystal structure of aprataxin ortholog Hnt3 in complex with DNA 3SPL ; 2.101 ; Crystal structure of aprataxin ortholog Hnt3 in complex with DNA and AMP 3K48 ; 2.8 ; Crystal structure of APRIL bound to a peptide 3LDI ; 2.2 ; Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding 3LDJ ; 1.7 ; Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding 3LDM ; 2.6 ; Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding 6FSP ; 2.7 ; Crystal structure of APRT from Thermus thermophilus 5ZMI ; 2.05 ; Crystal structure of APRT from Y. pseudotuberculosis in complex with adenine. 5ZOC ; 1.98 ; Crystal structure of APRT from Y. pseudotuberculosis with bound adenine (C2 space group). 5ZNQ ; 1.75 ; Crystal structure of APRT from Y. pseudotuberculosis with bound adenine (P21 space group). 5ZC7 ; 2.0 ; Crystal structure of APRT from Y. pseudotuberculosis with bound adenine (P63 space group). 5ZGO ; 2.6 ; Crystal structure of APRT2 from Thermus thermophilus HB8 1L1Q ; 1.85 ; Crystal Structure of APRTase from Giardia lamblia Complexed with 9-deazaadenine 1L1R ; 1.95 ; Crystal Structure of APRTase from Giardia lamblia Complexed with 9-deazaadenine, Mg2+ and PRPP 1M7H ; 2.0 ; Crystal Structure of APS kinase from Penicillium Chrysogenum: Structure with APS soaked out of one dimer 1M7G ; 1.43 ; Crystal structure of APS kinase from Penicillium Chrysogenum: Ternary structure with ADP and APS 8I1N ; 2.8 ; Crystal structure of APSK2 domain from human PAPSS2 in complex with endogenous APS and ADP 8I1O ; 2.4 ; Crystal structure of APSK2 domain from human PAPSS2 in complex with exogenous APS and ADP 6QGN ; 2.099 ; Crystal structure of APT1 bound to 2-Bromopalmitate 6QGS ; 2.755 ; Crystal structure of APT1 bound to palmitic acid. 6QGQ ; 2.601 ; Crystal structure of APT1 C2S mutant bound to palmitic acid. 6QGO ; 2.599 ; Crystal structure of APT1 S119A mutant bound to palmitic acid. 2P3E ; 1.99 ; Crystal structure of AQ1208 from Aquifex aeolicus 2P9J ; 2.4 ; Crystal structure of AQ2171 from Aquifex aeolicus 3NKC ; 3.1 ; Crystal structure of AqpZ F43W,H174G,T183F 3NKA ; 2.5 ; Crystal structure of AqpZ H174G,T183F 3NK5 ; 2.4 ; Crystal structure of AqpZ mutant F43W 2O9F ; 2.55 ; Crystal Structure of AqpZ mutant L170C 2O9G ; 1.9 ; Crystal Structure of AqpZ mutant L170C complexed with mercury. 2O9E ; 2.2 ; Crystal Structure of AqpZ mutant T183C complexed with mercury 2O9D ; 2.3 ; Crystal Structure of AqpZ mutant T183C. 5AZR ; 1.2 ; Crystal structure of aqua-cobalt(III) tetradehydrocorrin in the heme pocket of horse heart myoglobin 6N1G ; 3.995 ; Crystal structure of Aquaglyceroporin AQP7 8H7O ; 1.55 ; Crystal structure of aqualigase 8H7P ; 1.82 ; Crystal structure of aqualigase bound with Suc-AAPF 2EVU ; 2.3 ; Crystal structure of aquaporin AqpM at 2.3A resolution 2ABM ; 3.2 ; Crystal Structure of Aquaporin Z Tetramer Reveals both Open and Closed Water-conducting Channels 1IH5 ; 3.7 ; CRYSTAL STRUCTURE OF AQUAPORIN-1 4JLO ; 1.73 ; Crystal structure of Aquifex adenylate kinase R150K mutant 7C1O ; 2.18 ; Crystal structure of Aquifex aeolicus Era Y63A bound to GDP.AlF4- 5SZD ; 1.494 ; Crystal structure of Aquifex aeolicus Hfq at 1.5A 5SZE ; 1.5 ; Crystal structure of Aquifex aeolicus Hfq-RNA complex at 1.5A 2Z7E ; 2.3 ; Crystal structure of Aquifex aeolicus IscU with bound [2Fe-2S] cluster 2GO3 ; 2.0 ; Crystal structure of Aquifex aeolicus LpxC complexed with imidazole. 2IES ; 3.1 ; Crystal Structure of Aquifex aeolicus LpxC Complexed with Pyrophosphate 2GO4 ; 2.7 ; Crystal structure of Aquifex aeolicus LpxC complexed with TU-514 2IER ; 2.7 ; Crystal Structure of Aquifex aeolicus LpxC Complexed with Uridine 5'-Diphosphate 1P42 ; 2.0 ; Crystal structure of Aquifex aeolicus LpxC Deacetylase (Zinc-Inhibited Form) 1YHC ; 2.1 ; Crystal structure of Aquifex aeolicus LpxC deacetylase complexed with cacodylate 1YH8 ; 2.7 ; Crystal structure of Aquifex aeolicus LpxC deacetylase complexed with palmitate 6EBU ; 2.372 ; Crystal structure of Aquifex aeolicus LpxE 2CSX ; 2.7 ; Crystal structure of Aquifex aeolicus methionyl-tRNA synthetase complexed with tRNA(Met) 2CT8 ; 2.7 ; Crystal structure of Aquifex aeolicus methionyl-tRNA synthetase complexed with tRNA(Met) and methionyl-adenylate anologue 1M1H ; 1.95 ; Crystal structure of Aquifex aeolicus N-utilization substance G (NusG), Space group I222 1M1G ; 2.0 ; Crystal Structure of Aquifex aeolicus N-utilization substance G (NusG), Space Group P2(1) 6Q9C ; 1.78 ; Crystal structure of Aquifex aeolicus NADH-quinone oxidoreductase subunits NuoE and NuoF bound to NADH under anaerobic conditions 1NPR ; 2.21 ; CRYSTAL STRUCTURE OF AQUIFEX AEOLICUS NUSG IN C222(1) 1NPP ; 2.0 ; CRYSTAL STRUCTURE OF AQUIFEX AEOLICUS NUSG IN P2(1) 3NB7 ; 2.65 ; Crystal structure of Aquifex Aeolicus Peptidoglycan Glycosyltransferase in complex with Decarboxylated Neryl Moenomycin 3NB6 ; 2.7 ; Crystal structure of Aquifex aeolicus peptidoglycan glycosyltransferase in complex with Methylphosphoryl Neryl Moenomycin 3VN5 ; 1.98 ; Crystal structure of Aquifex aeolicus RNase H3 2EZ6 ; 2.05 ; Crystal structure of Aquifex aeolicus RNase III (D44N) complexed with product of double-stranded RNA processing 5UI5 ; 3.4 ; Crystal structure of Aquifex aeolicus sigmaN bound to promoter DNA 2E89 ; 2.5 ; Crystal structure of Aquifex aeolicus TilS in a complex with ATP, Magnesium ion, and L-lysine 1PYB ; 2.5 ; Crystal Structure of Aquifex aeolicus Trbp111: a Structure-Specific tRNA Binding Protein 3D6N ; 2.3 ; Crystal Structure of Aquifex Dihydroorotase Activated by Aspartate Transcarbamoylase 1FHJ ; 1.8 ; CRYSTAL STRUCTURE OF AQUOMET HEMOGLOBIN-I OF THE MANED WOLF (CHRYSOCYON BRACHYURUS) AT 2.0 RESOLUTION. 2EH3 ; 1.55 ; Crystal structure of aq_1058, a transcriptional regulator (TerR/AcrR family) from Aquifex aeolicus VF5 1OZ9 ; 1.894 ; Crystal structure of AQ_1354, a hypothetical protein from Aquifex aeolicus 2P68 ; 1.84 ; Crystal Structure of aq_1716 from Aquifex Aeolicus VF5 2YVT ; 1.6 ; Crystal structure of aq_1956 2DQ3 ; 3.0 ; Crystal structure of aq_298 2Z4J ; 2.6 ; Crystal structure of AR LBD with SHP peptide NR Box 2 4OEA ; 2.12 ; Crystal structure of AR-LBD 4OED ; 2.79 ; Crystal structure of AR-LBD bound with co-regulator peptide 4OEY ; 1.83 ; Crystal structure of AR-LBD bound with co-regulator peptide 4OEZ ; 1.8 ; Crystal structure of AR-LBD bound with co-regulator peptide 4OFR ; 2.26 ; Crystal structure of AR-LBD bound with co-regulator peptide 4OFU ; 2.12 ; Crystal structure of AR-LBD bound with co-regulator peptide 3S7E ; 2.71 ; Crystal structure of Ara h 1 3S7I ; 2.35 ; Crystal structure of Ara h 1 4MAP ; 1.9 ; Crystal structure of Ara h 8 purified with heating 4MA6 ; 2.0 ; Crystal structure of Ara h 8 with Epicatechin bound 4M9W ; 1.95 ; Crystal Structure of Ara h 8 with MES bound 6V8H ; 2.31 ; Crystal structure of Ara h 8.0201 6V8J ; 1.95 ; Crystal structure of Ara h 8.0201 6V8L ; 1.95 ; Crystal structure of Ara h 8.0201 6V8M ; 1.75 ; Crystal structure of Ara h 8.0201 6V8S ; 2.1 ; Crystal structure of Ara h 8.0201 3SD8 ; 1.67 ; Crystal structure of Ara-FHNA decamer DNA 4QK0 ; 2.258 ; Crystal structure of Ara127N-Se, a GH127 beta-L-arabinofuranosidase from Geobacillus Stearothermophilus T6 4NT2 ; 2.403 ; Crystal structure of Arabidopsis ACD11 (accelerated-cell-death 11) complexed with lyso-sphingomyelin (d18:1) at 2.4 Angstrom resolution 7DLW ; 2.19 ; Crystal structure of Arabidopsis ACS7 in complex with PPG 7DLY ; 2.94 ; Crystal structure of Arabidopsis ACS7 mutant in complex with PPG 6J23 ; 1.9 ; Crystal structure of arabidopsis ADAL complexed with GMP 6J4T ; 1.82 ; Crystal structure of arabidopsis ADAL complexed with IMP 4G0Y ; 1.65 ; Crystal structure of Arabidopsis AGO1 in complex with AMP 7CCE ; 2.404 ; crystal structure of Arabidopsis AIPP3 BAH domain in complex with an H3K27me3 peptide 6LQF ; 1.5 ; Crystal structure of Arabidopsis ARID5 ARID-PHD cassette in complex with H3K4me3 peptide and DNA 6LQE ; 1.9 ; Crystal structure of Arabidopsis ARID5 PHD finger in complex with H3K4me3 peptide 7CK1 ; 2.35 ; Crystal structure of arabidopsis CESA3 catalytic domain 7CK3 ; 2.9 ; Crystal structure of Arabidopsis CESA3 catalytic domain 7CK2 ; 2.05 ; Crystal structure of Arabidopsis CESA3 catalytic domain with UDP-Glucose 2Z51 ; 1.35 ; Crystal structure of Arabidopsis CnfU involved in iron-sulfur cluster biosynthesis 7CVQ ; 3.3 ; crystal structure of Arabidopsis CO CCT domain in complex with NF-YB2/YC3 and FT CORE1 DNA 7CVO ; 2.6 ; crystal structure of Arabidopsis CO CCT domain in complex with NF-YB3/YC4 and FT CORE2 DNA 6L08 ; 2.999 ; Crystal structure of Arabidopsis cytidine deaminase 3VPY ; 1.7 ; Crystal structure of Arabidopsis DDL FHA domain 6BMB ; 2.077 ; Crystal structure of Arabidopsis Dehydroquinate dehydratase-shikimate dehydrogenase (T381G mutant) in complex with tartrate and shikimate 6BMQ ; 2.077 ; Crystal structure of Arabidopsis Dehydroquinate dehydratase-shikimate dehydrogenase (T381G mutant) in complex with tartrate and shikimate 2GPT ; 1.95 ; Crystal structure of Arabidopsis Dehydroquinate dehydratase-shikimate dehydrogenase in complex with tartrate and shikimate 4IH4 ; 3.5 ; Crystal structure of Arabidopsis DWARF14 orthologue, AtD14 3T33 ; 2.25 ; Crystal Structure of Arabidopsis GCR2 4EPM ; 2.099 ; Crystal Structure of Arabidopsis GH3.12 (PBS3) in Complex with AMP 4N7R ; 2.802 ; Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its binding protein 5CHE ; 3.203 ; Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its regulatory proteins 5YJL ; 2.7 ; Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with NADPH and GBP 7EQH ; 2.2 ; Crystal structure of Arabidopsis GUN2/HO1 in complex with heme 4E8U ; 2.701 ; Crystal structure of Arabidopsis IDN2 XS domain along with a small segment of adjacent coiled-coil region 4TNM ; 2.9 ; Crystal structure of Arabidopsis importin-alpha3 armadillo repeat domain 3IPZ ; 2.4 ; Crystal structure of Arabidopsis monothiol glutaredoxin AtGRXcp 6IV5 ; 1.749 ; Crystal structure of arabidopsis N6-mAMP deaminase MAPDA 7L7W ; 2.55 ; Crystal structure of Arabidopsis NRG1.1 CC-R domain K94E/K96E mutant 7L7V ; 2.95 ; Crystal structure of Arabidopsis NRG1.1 CC-R domain K94E/K96E/R99E/K100E/R103E/K106E/K110E mutant 5HH7 ; 1.901 ; crystal structure of Arabidopsis ORC1b BAH-PHD cassette in complex with unmodified H3 peptide 7DE9 ; 1.711 ; crystal structure of Arabidopsis RDM15 tudor domain in complex with an H3K4me1 peptide 5H3C ; 2.596 ; Crystal structure of Arabidopsis SNC1 TIR domain 7ET4 ; 2.7 ; Crystal structure of Arabidopsis TEM1 AP2 domain 7ET5 ; 1.052 ; Crystal structure of Arabidopsis TEM1 AP2 domain 7ET6 ; 2.7 ; Crystal structure of Arabidopsis TEM1 B3-DNA complex 8QT5 ; 2.69 ; Crystal structure of Arabidopsis thaliana 14-3-3 isoform lambda in complex with a phosphopeptide from the transcription factor BZR1. 8QTC ; 3.5 ; Crystal structure of Arabidopsis thaliana 14-3-3 omega in complex with a phosphopeptide from the transcription factor BZR1. 5XGK ; 2.8 ; Crystal structure of Arabidopsis thaliana 4-hydroxyphenylpyruvate dioxygenase (AtHPPD) complexed with its substrate 4-hydroxyphenylpyruvate acid (HPPA) 2QTG ; 1.84 ; Crystal Structure of Arabidopsis thaliana 5'-Methylthioadenosine nucleosidase in complex with 5'-methylthiotubercidin 2QTT ; 1.93 ; Crystal Structure of Arabidopsis thaliana 5'-Methylthioadenosine nucleosidase in complex with Formycin A 7PXY ; 1.4 ; Crystal structure of Arabidopsis thaliana 5-enol-pyruvyl-shikimate-3-phosphate synthase (EPSPS) in open conformation 5K6Q ; 2.952 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase catalytic subunit 5K3S ; 2.873 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase in complex with a pyrimidinyl-benzoate herbicide, bispyribac-sodium 5K2O ; 2.873 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase in complex with a pyrimidinyl-benzoate herbicide, pyrithiobac 5K6T ; 2.763 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase in complex with a sulfonylamino-carbonyl-triazolinone herbicide, propoxycarbazone-sodium 5K6R ; 2.734 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase in complex with a sulfonylamino-carbonyl-triazolinone herbicide, thiencarbazone-methyl 1YBH ; 2.5 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With A Sulfonylurea Herbicide Chlorimuron Ethyl 1YHZ ; 2.7 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With A Sulfonylurea Herbicide, Chlorsulfuron 1YHY ; 2.7 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With A Sulfonylurea Herbicide, Metsulfuron methyl 1YI0 ; 2.7 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With A Sulfonylurea Herbicide, Sulfometuron methyl 1YI1 ; 2.9 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With A Sulfonylurea Herbicide, Tribenuron methyl 5WJ1 ; 2.522 ; Crystal structure of Arabidopsis thaliana acetohydroxyacid synthase in complex with a triazolopyrimidine herbicide, penoxsulam 1Z8N ; 2.8 ; Crystal structure of Arabidopsis thaliana Acetohydroxyacid synthase In Complex With An Imidazolinone Herbicide, Imazaquin 7TZZ ; 2.59 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase P197T mutant in complex with bispyribac-sodium 7U1D ; 3.11 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase P197T mutant in complex with chlorimuron-ethyl 8ET5 ; 2.94 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase S653T mutant in complex with amidosulfuron 7U1U ; 3.22 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase W574L mutant 7U25 ; 3.19 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase W574L mutant in complex with bispyribac-sodium 7STQ ; 3.3 ; Crystal structure of arabidopsis thaliana acetohydroxyacid synthase W574L mutant in complex with chlorimuron-ethyl 5GJA ; 2.1 ; Crystal structure of Arabidopsis thaliana ACO2 in complex with 2-PA 5GJ9 ; 2.1 ; Crystal structure of Arabidopsis thaliana ACO2 in complex with POA 5ZWZ ; 2.0 ; Crystal structure of Arabidopsis thaliana AGDP1 AGD34 3H7K ; 1.84 ; Crystal Structure of Arabidopsis thaliana Agmatine Deiminase Complexed with a Covalently Bound Reaction Intermediate 3H7C ; 1.5 ; Crystal Structure of Arabidopsis thaliana Agmatine Deiminase from Cell Free Expression 4G0X ; 1.35 ; Crystal Structure of Arabidopsis thaliana AGO1 MID domain 4G0Q ; 1.8 ; Crystal structure of Arabidopsis thaliana AGO1 MID domain in complex with CMP 4G0Z ; 1.75 ; Crystal structure of Arabidopsis thaliana AGO1 MID domain in complex with GMP 4G0P ; 1.8 ; Crystal Structure of Arabidopsis thaliana AGO1 MID domain in complex with UMP 4G0M ; 2.306 ; Crystal structure of Arabidopsis thaliana AGO2 MID domain 4G0O ; 2.186 ; Crystal structure of Arabidopsis thaliana AGO5 MID domain 3CLI ; 1.8 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase (AOS, cytochrome P450 74A, CYP74A) at 1.80 A Resolution 2RCL ; 2.41 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase (AOS, cytochrome P450 74A, CYP74A) Complexed with 12R,13S-Vernolic Acid at 2.4 A resolution 2RCH ; 1.85 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase (AOS, cytochrome P450 74A, CYP74A) Complexed with 13(S)-HOD at 1.85 A Resolution 3DSI ; 1.6 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase (AOS, cytochrome P450 74A, CYP74A) Complexed with 13(S)-HOT at 1.60 A resolution 2RCM ; 1.73 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase variant (F137L) (At-AOS(F137L), cytochrome P450 74A) at 1.73 A Resolution 3DSK ; 1.55 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase variant (F137L) (At-AOS(F137L), Cytochrome P450 74A, CYP74A) Complexed with 12R,13S-Vernolic Acid at 1.55 A Resolution 3DSJ ; 1.6 ; Crystal Structure of Arabidopsis thaliana Allene Oxide Synthase Variant (F137L) (At-AOS(F137L), cytochrome P450 74A, CYP74A) Complexed with 13(S)-HOD at 1.60 A Resolution 2CDQ ; 2.85 ; Crystal structure of Arabidopsis thaliana aspartate kinase complexed with lysine and S- adenosylmethionine 3VX8 ; 3.11 ; Crystal structure of Arabidopsis thaliana Atg7NTD-Atg3 complex 6K8K ; 2.5 ; Crystal structure of Arabidopsis thaliana BIC2-CRY2 complex 5L25 ; 4.11 ; Crystal Structure of Arabidopsis thaliana Bor1 5A2H ; 2.27 ; Crystal Structure of Arabidopsis thaliana Calmodulin-7 4DOI ; 1.55 ; Crystal structure of Arabidopsis thaliana chalcone isomerase At3g55120 (AtCHI) 4DOK ; 1.7 ; Crystal structure of Arabidopsis thaliana chalcone-isomerase like protein At5g05270 (AtCHIL) 6Z1C ; 1.75 ; Crystal structure of Arabidopsis thaliana CK2-alpha-1 in complex with TTP-22 8DQO ; 1.9 ; Crystal structure of Arabidopsis thaliana COSY 8DQP ; 2.48 ; Crystal structure of Arabidopsis thaliana COSY in complex with scopoletin 8DQQ ; 2.33 ; Crystal structure of Arabidopsis thaliana COSY in complex with scopoletin 8DQR ; 2.26 ; Crystal structure of Arabidopsis thaliana COSY in complex with scopoletin 6K8I ; 2.697 ; Crystal structure of Arabidopsis thaliana CRY2 3RFY ; 2.39 ; Crystal structure of arabidopsis thaliana cyclophilin 38 (ATCYP38) 4OBT ; 1.6 ; Crystal structure of Arabidopsis thaliana cytosolic triose phosphate isomerase 6NXQ ; 1.96 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C13A mutant 6NXR ; 1.3 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C13D mutant 6NXY ; 1.05 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C218D mutant 6NXX ; 1.64 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C218K mutant 6NXW ; 1.95 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C218S mutant 6NXS ; 1.52 ; Crystal structure of Arabidopsis thaliana cytosolic triosephosphate isomerase C218Y mutant 6DKN ; 1.8 ; CRYSTAL STRUCTURE OF ARABIDOPSIS THALIANA DECAPPING NUCLEASE DXO1 3UK7 ; 2.05 ; Crystal Structure of Arabidopsis thaliana DJ-1D 4OFW ; 2.3 ; Crystal Structure of Arabidopsis thaliana DJ-1d 4OGG ; 1.6 ; Crystal Structure of Arabidopsis thaliana DJ-1d with glyoxylate as substrate analog 7TVW ; 1.48 ; Crystal structure of Arabidopsis thaliana DLK2 2J3H ; 2.5 ; Crystal structure of Arabidopsis thaliana Double Bond Reductase (AT5G16970)-Apo form 2J3I ; 2.8 ; Crystal structure of Arabidopsis thaliana Double Bond Reductase (AT5G16970)-Binary Complex 2J3J ; 2.8 ; Crystal structure of Arabidopsis thaliana Double Bond Reductase (AT5G16970)-Ternary Complex I 2J3K ; 2.8 ; Crystal structure of Arabidopsis thaliana Double Bond Reductase (AT5G16970)-Ternary Complex II 3W06 ; 1.15 ; Crystal structure of Arabidopsis thaliana DWARF14 Like (AtD14L) 5Z8N ; 3.1 ; Crystal structure of Arabidopsis thaliana EBS C-terminal deletion construct in complex with an H3K4me2 peptide 5Z8L ; 2.005 ; crystal structure of Arabidopsis thaliana EBS in complex with an H3K27me3 peptide 4DOL ; 1.7 ; Crystal structure of Arabidopsis thaliana fatty-acid binding protein At1g53520 (AtFAP3) 4DOO ; 1.9 ; Crystal structure of Arabidopsis thaliana fatty-acid binding protein At3g63170 (AtFAP1) 7WIM ; 2.29 ; Crystal structure of Arabidopsis thaliana FKBP43 N-terminal domain 3TWK ; 2.3 ; Crystal structure of arabidopsis thaliana FPG 3TWL ; 1.7 ; Crystal structure of Arabidopsis thaliana FPG 3TWM ; 2.8 ; Crystal structure of Arabidopsis thaliana FPG 4EPL ; 2.007 ; Crystal Structure of Arabidopsis thaliana GH3.11 (JAR1) in Complex with JA-Ile 5HDM ; 1.25 ; Crystal structure of Arabidopsis thaliana glutamate-1-semialdehyde-2,1-aminomutase 5KJS ; 2.203 ; Crystal Structure of Arabidopsis thaliana HCT 5KJT ; 2.5 ; Crystal structure of Arabidopsis thaliana HCT in complex with p-coumaroyl-CoA 5KJU ; 2.44 ; Crystal structure of Arabidopsis thaliana HCT in complex with p-coumaroylshikimate 7VRR ; 2.95 ; Crystal structure of Arabidopsis thaliana HDT1 7VMF ; 1.32 ; Crystal structure of Arabidopsis thaliana HDT2 7VMI ; 1.8 ; Crystal structure of Arabidopsis thaliana HDT3 7VMH ; 1.85 ; Crystal structure of Arabidopsis thaliana HDT4 7E0X ; 1.887 ; Crystal structure of Arabidopsis thaliana HPPD complexed with 4-hydroxyphenylacetic acid 5YY7 ; 3.298 ; Crystal structure of Arabidopsis thaliana HPPD complexed with Benquitrione 5YWK ; 2.804 ; Crystal structure of Arabidopsis thaliana HPPD complexed with Benquitrione-Methyl 5YWG ; 2.603 ; Crystal structure of Arabidopsis thaliana HPPD complexed with Mesotrione 6J63 ; 2.624 ; Crystal structure of Arabidopsis thaliana HPPD complexed with NTBC 6ISD ; 2.4 ; Crystal structure of Arabidopsis thaliana HPPD complexed with sulcotrione 5YWH ; 2.72 ; Crystal structure of Arabidopsis thaliana HPPD complexed with Y13508 5YY6 ; 2.401 ; Crystal structure of Arabidopsis thaliana HPPD truncated mutant complexed with Benquitrione 5YWI ; 2.58 ; Crystal structure of Arabidopsis thaliana HPPD Truncated mutant complexed with NTBC 6WAO ; 1.76 ; Crystal structure of Arabidopsis thaliana isochorismoyl-glutamate A pyruvoyl-glutamate lyase in complex with (2-(3-carboxyphenoxy)acetyl)-L-glutamic acid 6WCS ; 1.87 ; Crystal structure of Arabidopsis thaliana isochorismoyl-glutamate A pyruvoyl-glutamate lyase in complex with tartrate 6IP0 ; 2.4 ; Crystal structure of Arabidopsis thaliana JMJ13 catalytic domain in complex with AKG 6IP4 ; 2.6 ; Crystal structure of Arabidopsis thaliana JMJ13 catalytic domain in complex with NOG and an H3K27me3 peptide 5YKN ; 2.3 ; crystal structure of Arabidopsis thaliana JMJ14 catalytic domain 5YKO ; 2.9 ; Crystal structure of Arabidopsis thaliana JMJ14 catalytic domain in complex with NOG and H3K4me3 peptide 6YSA ; 2.01 ; Crystal structure of Arabidopsis thaliana legumain isoform beta in zymogen state 5NIJ ; 2.75 ; Crystal structure of arabidopsis thaliana legumain isoform gamma in two-chain activation state 8I6Y ; 3.26 ; Crystal structure of Arabidopsis thaliana LOX1 6N10 ; 2.3 ; Crystal structure of Arabidopsis thaliana mevalonate 5-diphosphate decarboxylase 1 complexed with (R)-MVAPP 5CI6 ; 3.0 ; Crystal structure of Arabidopsis thaliana MPK6 6TGX ; 1.77 ; Crystal structure of Arabidopsis thaliana NAA60 in complex with a bisubstrate analogue 6TH0 ; 1.75 ; Crystal structure of Arabidopsis thaliana NAA60 in complex with acetyl-CoA 7OVU ; 1.45 ; Crystal structure of Arabidopsis thaliana NAT9 in complex with AcCoA 6JQV ; 3.42 ; Crystal structure of Arabidopsis thaliana NRP2 1U8W ; 2.4 ; Crystal structure of Arabidopsis thaliana nucleoside diphosphate kinase 1 8P26 ; 3.6 ; Crystal structure of Arabidopsis thaliana PAXX 5LNU ; 1.73 ; Crystal structure of Arabidopsis thaliana Pdx1-I320 complex 5LNV ; 2.24 ; Crystal structure of Arabidopsis thaliana Pdx1-I320 complex from multiple crystals 5LNW ; 1.9 ; Crystal structure of Arabidopsis thaliana Pdx1-I320-G3P complex 5LNR ; 1.61 ; Crystal structure of Arabidopsis thaliana Pdx1-PLP complex 5LNS ; 1.91 ; Crystal structure of Arabidopsis thaliana Pdx1-R5P complex 7NHF ; 2.35 ; Crystal structure of Arabidopsis thaliana Pdx1K166R 7NHE ; 2.23 ; Crystal structure of Arabidopsis thaliana Pdx1K166R-I333 complex 5LNT ; 2.32 ; Crystal structure of Arabidopsis thaliana Pdx1K166R-preI320 complex 3M6O ; 2.0 ; Crystal structure of Arabidopsis thaliana peptide deformylase 1B (AtPDF1B) 3M6R ; 2.4 ; Crystal structure of Arabidopsis thaliana peptide deformylase 1B (AtPDF1B) G41M mutant in complex with actinonin 3M6Q ; 2.4 ; Crystal structure of Arabidopsis thaliana peptide deformylase 1B (AtPDF1B) G41Q mutant in complex with actinonin 3M6P ; 2.0 ; Crystal structure of Arabidopsis thaliana peptide deformylase 1B (AtPDF1B) in complex with actinonin 3O3J ; 3.0 ; Crystal structure of Arabidopsis thaliana peptide deformylase 1B (AtPDF1B) in complex with inhibitor 6b 3PN2 ; 2.0 ; Crystal structure of Arabidopsis thaliana petide deformylase 1B (AtPDF1B) (crystallized in PEG-550-MME) 3PN6 ; 2.1 ; Crystal structure of Arabidopsis thaliana petide deformylase 1B (AtPDF1B) G41M mutant 3PN5 ; 2.3 ; Crystal structure of Arabidopsis thaliana petide deformylase 1B (AtPDF1B) G41Q mutant 3PN4 ; 1.9 ; Crystal structure of Arabidopsis thaliana petide deformylase 1B (AtPDF1B) in complex with actinonin (crystallized in PEG-550-MME) 3PN3 ; 1.3 ; Crystal structure of Arabidopsis thaliana petide deformylase 1B (AtPDF1B) in complex with inhibitor 21 6EEI ; 1.99001 ; Crystal structure of Arabidopsis thaliana phenylacetaldehyde synthase in complex with L-phenylalanine 6CZX ; 1.57 ; Crystal structure of Arabidopsis thaliana phosphoserine aminotransferase isoform 1 (AtPSAT1) in complex with PLP internal aldimine 6CZZ ; 1.7 ; Crystal structure of Arabidopsis thaliana phosphoserine aminotransferase isoform 1 (AtPSAT1) in complex with PLP-phosphoserine geminal diamine intermediate 6CZY ; 1.75 ; Crystal structure of Arabidopsis thaliana phosphoserine aminotransferase isoform 1 (AtPSAT1) in complex with Pyridoxamine-5'-phosphate (PMP) 4OUR ; 3.4 ; Crystal structure of Arabidopsis thaliana phytochrome B photosensory module 2O66 ; 1.9 ; Crystal Structure of Arabidopsis thaliana PII bound to citrate 2O67 ; 2.5 ; Crystal structure of Arabidopsis thaliana PII bound to malonate 7MOH ; 1.9 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in complex with 5-diphosphoinositol 1,3,4,6-tetrakisphosphate (5PP-InsP4) and phosphate in conformation B (Pi(B)) 7MOG ; 1.8 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in complex with 5-PCF2 Am-InsP5, an analogue of 5-InsP7 7MOF ; 1.95 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in complex with 6-diphosphoinositol 1,2,3,4,5-pentakisphosphate 6-InsP7 7MOJ ; 1.9 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in complex with a metaphosphate intermediate 7MOI ; 1.8 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in complex with Phenyl Phosphate 7MOD ; 1.65 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) Cys150Ser in Complex with Phosphate in Conformation A (Pi(A)) 7MOM ; 1.7 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) in complex with a metaphosphate intermediate 7MOK ; 1.85 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) in Complex with Phosphate in Conformation A (Pi(A)) 7MOL ; 1.9 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1 ) in complex with phosphate in conformation B (Pi(B)) 7MOE ; 1.7 ; Crystal Structure of Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1(AtPFA-DSP1)Cys150Ser in complex with 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) 6IQI ; 2.4 ; crystal structure of Arabidopsis thaliana Profilin 2 6IQJ ; 1.922 ; crystal structure of Arabidopsis thaliana Profilin 2 complex with formin1 6IQF ; 1.457 ; crystal structure of Arabidopsis thaliana Profilin 3 6IQK ; 3.6 ; crystal structure of Arabidopsis thaliana Profilin 3 5MPW ; 1.499 ; Crystal structure of Arabidopsis thaliana RNA editing factor MORF1 5MPX ; 1.938 ; Crystal structure of Arabidopsis thaliana RNA editing factor MORF1, space group P2(1) 5MPY ; 2.247 ; Crystal structure of Arabidopsis thaliana RNA editing factor MORF9 6VCX ; 1.1 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 1 (AtMAT1) 6VCY ; 1.82 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 1 (AtMAT1) in complex with 5'-methylthioadenosine 6VCZ ; 1.52 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 2 (AtMAT2) 6VD0 ; 2.0 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 2 (AtMAT2) in complex with free Methionine and AMPCPP 6VD2 ; 1.97 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 2 (AtMAT2) in complex with S-adenosylmethionine 6VD1 ; 1.32 ; Crystal structure of Arabidopsis thaliana S-adenosylmethionine Synthase 2 (AtMAT2) in complex with S-adenosylmethionine and PPNP 6N5U ; 2.66 ; Crystal structure of Arabidopsis thaliana ScoI with copper bound 6AVV ; 1.51003 ; Crystal structure of Arabidopsis thaliana SOBER1 6AVX ; 1.271 ; Crystal structure of Arabidopsis thaliana SOBER1 F65L 6AVW ; 2.14449 ; Crystal structure of Arabidopsis thaliana SOBER1 L63A 7CTV ; 2.88561 ; Crystal structure of Arabidopsis thaliana SOBIR1 kinase domain D489A mutant in complex with AMP-PNP and magnesium 7CTX ; 2.907 ; Crystal structure of Arabidopsis thaliana SOBIR1 kinase domain(residues 388-401 deleted) in complex with AMP-PNP and magnesium 6O63 ; 1.8 ; Crystal Structure of Arabidopsis thaliana Spermidine Synthase isoform 1 (AtSPDS1) 6O65 ; 1.8 ; Crystal Structure of Arabidopsis thaliana Spermidine Synthase isoform 1 (AtSPDS1) in complex with decarboxylated S-adenosylmethionine and cyclohexylamine 6O64 ; 2.0 ; Crystal Structure of Arabidopsis thaliana Spermidine Synthase isoform 2 (AtSPDS2) 8BB6 ; 2.68 ; Crystal structure of Arabidopsis thaliana sucrose transporter SUC1 8K9Y ; 1.82 ; Crystal structure of Arabidopsis thaliana sulfotransferase SOT16 involved in glucosinolate biosynthesis 6A5N ; 2.4 ; Crystal structure of Arabidopsis thaliana SUVH6 in complex with methylated DNA 6A5K ; 1.9 ; Crystal structure of Arabidopsis thaliana SUVH6 in complex with SAM, form 1 6A5M ; 2.301 ; Crystal structure of Arabidopsis thaliana SUVH6 in complex with SAM, form 2 4S27 ; 1.27 ; Crystal structure of Arabidopsis thaliana ThiC with bound aminoimidazole ribonucleotide, 5'-deoxyadenosine, L-methionine, Fe4S4 cluster and Fe 4S28 ; 1.25 ; Crystal structure of Arabidopsis thaliana ThiC with bound aminoimidazole ribonucleotide, S-adenosylhomocysteine, Fe4S4 cluster and Fe 4S29 ; 1.382 ; Crystal structure of Arabidopsis thaliana ThiC with bound imidazole ribonucleotide and Fe 4S26 ; 1.85 ; Crystal structure of Arabidopsis thaliana ThiC with bound imidazole ribonucleotide, S-adenosylhomocysteine, Fe4S4 cluster and Zn (monoclinic crystal form) 4S25 ; 1.45 ; Crystal structure of Arabidopsis thaliana ThiC with bound imidazole ribonucleotide, S-adenosylhomocysteine, Fe4S4 cluster and Zn (trigonal crystal form) 6J9C ; 3.102 ; Crystal structure of Arabidopsis thaliana transcription factor LEC2-DNA complex 6IJ7 ; 2.701 ; Crystal Structure of Arabidopsis thaliana UGT89C1 6IJD ; 3.206 ; Crystal Structure of Arabidopsis thaliana UGT89C1 complexed with quercetin 6IJ9 ; 3.0 ; Crystal Structure of Arabidopsis thaliana UGT89C1 complexed with UDP 6IJA ; 3.214 ; Crystal Structure of Arabidopsis thaliana UGT89C1 complexed with UDP-L-rhamnose 4D9S ; 1.701 ; Crystal structure of Arabidopsis thaliana UVR8 (UV Resistance locus 8) 6J9A ; 2.915 ; Crystal structure of Arabidopsis thaliana VAL1 in complex with FLC DNA fragment 7WQ5 ; 2.35 ; Crystal structure of Arabidopsis transcriptional factor WRINKLED1 with dsDNA 6QTU ; 1.3 ; Crystal structure of Arabidopsis WD40 domain in complex with a BBX transcription factor 1WD3 ; 1.75 ; Crystal structure of arabinofuranosidase 2D44 ; 2.3 ; Crystal structure of arabinofuranosidase complexed with arabinofuranosyl-alpha-1,2-xylobiose 1WD4 ; 2.07 ; Crystal structure of arabinofuranosidase complexed with arabinose 2D43 ; 2.8 ; Crystal structure of arabinofuranosidase complexed with arabinotriose 4IJC ; 2.1 ; Crystal structure of arabinose dehydrogenase Ara1 from Saccharomyces cerevisiae 8K1I ; 1.95 ; Crystal structure of arabinose dehydrogenase from Candida auris 7CXO ; 3.2 ; Crystal structure of Arabinose isomerase from hybrid AI10 7CX7 ; 2.49 ; Crystal structure of Arabinose isomerase from hybrid AI8 7CYY ; 2.6 ; Crystal structure of Arabinose isomerase from hybrid AI8 with Adonitol 7CH3 ; 3.61 ; Crystal structure of Arabinose isomerase from hyper thermophilic bacterium Thermotoga maritima (TMAI) triple mutant (K264A, E265A, K266A) 7CWV ; 3.53 ; Crystal structure of Arabinose isomerase from hyper thermophilic bacterium Thermotoga maritima (TMAI) wt 7BVH ; 3.3 ; Crystal structure of arabinosyltransferase EmbC2-AcpM2 complex from Mycobacterium smegmatis complexed with di-arabinose 3GRA ; 2.3 ; Crystal structure of AraC family transcriptional regulator from Pseudomonas putida 1DIY ; 3.0 ; CRYSTAL STRUCTURE OF ARACHIDONIC ACID BOUND IN THE CYCLOOXYGENASE ACTIVE SITE OF PGHS-1 1U67 ; 3.1 ; Crystal Structure of Arachidonic Acid Bound to a Mutant of Prostagladin H Synthase-1 that Forms Predominantly 11-HPETE. 1CVU ; 2.4 ; CRYSTAL STRUCTURE OF ARACHIDONIC ACID BOUND TO THE CYCLOOXYGENASE ACTIVE SITE OF COX-2 6OFY ; 2.2 ; Crystal Structure of Arachidonic Acid bound to V349I murine COX-2 5JD0 ; 2.3 ; crystal structure of ARAP3 RhoGAP domain 4EGY ; 2.301 ; Crystal Structure of AraR(DBD) in complex with operator ORA1 5D4R ; 2.07 ; Crystal Structure of AraR(DBD) in complex with operator ORE1 4EGZ ; 2.3 ; Crystal Structure of AraR(DBD) in complex with operator ORR3 5D4S ; 1.972 ; Crystal Structure of AraR(DBD) in complex with operator ORX1 4X3H ; 2.401 ; CRYSTAL STRUCTURE OF ARC N-LOBE COMPLEXED WITH STARGAZIN PEPTIDE 4R1J ; 1.4 ; Crystal structure of Arc1p-C 3TWQ ; 2.151 ; Crystal structure of ARC4 from human Tankyrase 2 (apo form) 3TWR ; 1.55 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human 3BP2 3TWX ; 1.8 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human FNBP1 (chimeric peptide) 3TWW ; 2.0 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human LNPEP (chimeric peptide) 3TWU ; 1.8 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human MCL1 3TWT ; 1.85 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human MCL1 (chimeric peptide) 3TWV ; 2.301 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human NUMA1 (chimeric peptide) 3TWS ; 1.7 ; Crystal structure of ARC4 from human Tankyrase 2 in complex with peptide from human TERF1 (chimeric peptide) 3JRM ; 2.9 ; Crystal structure of archaeal 20S proteasome in complex with mutated P26 activator 3JSE ; 2.9 ; Crystal structure of archaeal 20S proteasome in complex with mutated P26 activator 3JTL ; 3.2 ; Crystal structure of archaeal 20S proteasome in complex with mutated P26 activator 3IPM ; 4.0 ; Crystal Structure of Archaeal 20S Proteasome in Complex with the C-terminus of PAN 4BQL ; 3.34 ; Crystal structure of archaeal actin 6CMV ; 2.45 ; Crystal structure of Archaeal Biofilm Regulator (AbfR2) from Sulfolobus acidocaldarius 1WN7 ; 2.75 ; Crystal structure of archaeal family B DNA polymerase mutant 5YA6 ; 1.5 ; Crystal structure of archaeal flagellin FlaB1 from Methanocaldococcus jannaschii 2DCH ; 2.06 ; Crystal structure of archaeal intron-encoded homing endonuclease I-Tsp061I 5AYV ; 1.647 ; Crystal structure of archaeal ketopantoate reductase complexed with coenzyme A and 2-oxopantoate 7OZQ ; 1.91 ; Crystal structure of archaeal L7Ae bound to eukaryotic kink-loop 1TR8 ; 2.27 ; Crystal Structure of archaeal Nascent Polypeptide-associated Complex (aeNAC) 3A4L ; 1.8 ; Crystal structure of archaeal O-phosphoseryl-tRNA(Sec) kinase 3A4M ; 1.792 ; Crystal structure of archaeal O-phosphoseryl-tRNA(Sec) kinase 3A4N ; 2.5 ; Crystal structure of archaeal O-phosphoseryl-tRNA(Sec) kinase 2Z67 ; 2.5 ; Crystal structure of archaeal O-phosphoseryl-tRNA(Sec) selenium transferase (SepSecS) 3WXM ; 2.3 ; Crystal structure of archaeal Pelota and GTP-bound EF1 alpha complex 2E2G ; 2.4 ; Crystal structure of archaeal peroxiredoxin, thioredoxin peroxidase from Aeropyrum pernix K1 (pre-oxidation form) 2E2M ; 2.6 ; Crystal structure of archaeal peroxiredoxin, thioredoxin peroxidase from Aeropyrum pernix K1 (sulfinic acid form) 2NVL ; 2.36 ; Crystal structure of archaeal peroxiredoxin, thioredoxin peroxidase from Aeropyrum pernix K1 (sulfonic acid form) 2E0I ; 2.8 ; Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: Implication of a novel light-harvesting cofactor 1FXK ; 2.3 ; CRYSTAL STRUCTURE OF ARCHAEAL PREFOLDIN (GIMC). 1WMI ; 2.3 ; Crystal structure of archaeal RelE-RelB complex from Pyrococcus horikoshii OT3 1V76 ; 2.0 ; Crystal Structure of Archaeal Ribonuclease P Protein Ph1771p from Pyrococcus horikoshii OT3 6JI2 ; 3.0 ; Crystal structure of archaeal ribosomal protein aP1, aPelota, and GTP-bound aEF1A complex 1GEH ; 2.8 ; CRYSTAL STRUCTURE OF ARCHAEAL RUBISCO (RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE) 3QQC ; 3.3 ; Crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain 2CXC ; 2.0 ; Crystal structure of archaeal transcription termination factor NusA 5ZCY ; 1.5 ; Crystal structure of archaeal translation initiation factor 1 at 1.5 Angstroms resolution 3AGK ; 2.1 ; Crystal structure of archaeal translation termination factor, aRF1 2YY8 ; 2.48 ; Crystal structure of archaeal tRNA-methylase for position 56 (aTrm56) from Pyrococcus horikoshii, complexed with S-adenosyl-L-methionine 1J1U ; 1.95 ; Crystal structure of archaeal tyrosyl-tRNA synthetase complexed with tRNA(Tyr) and L-tyrosine 2Z2U ; 2.4 ; Crystal structure of archaeal TYW1 1X2I ; 1.45 ; Crystal Structure Of Archaeal Xpf/Mus81 Homolog, Hef From Pyrococcus Furiosus, Helix-hairpin-helix Domain 1J23 ; 1.78 ; Crystal structure of archaeal XPF/Mus81 homolog, Hef from Pyrococcus furiosus, nuclease domain 1J24 ; 1.78 ; Crystal structure of archaeal XPF/Mus81 homolog, Hef from Pyrococcus furiosus, nuclease domain, Ca cocrystal 1J25 ; 1.78 ; Crystal structure of archaeal XPF/Mus81 homolog, Hef from Pyrococcus furiosus, nuclease domain, Mn cocrystal 1J22 ; 1.8 ; Crystal structure of archaeal XPF/Mus81 homolog, Hef from Pyrococcus furiosus, nuclease domain, selenomet derivative 4AXQ ; 1.4 ; CRYSTAL STRUCTURE OF ARCHAEMETZINCIN (AMZA) FROM ARCHAEOGLOBUS FULGIDUS AT 1.4 A RESOLUTION 3ZVS ; 1.396 ; Crystal structure of Archaemetzincin (AmzA) from Archaeoglobus fulgidus at 1.4 A resolution complexed with malonate 4A3W ; 2.16 ; Crystal structure of Archaemetzincin (AmzA) from Archaeoglobus fulgidus at 2.16 A resolution complexed with citrate 2X7M ; 1.5 ; Crystal structure of Archaemetzincin (amzA) from Methanopyrus kandleri at 1.5 A resolution 5A1Q ; 1.6 ; Crystal structure of Archaeoglobus fulgidus Af1502 8OLD ; 1.85 ; Crystal structure of Archaeoglobus fulgidus AfAgo-N protein representing N-L1-L2 domains 8OLJ ; 1.4 ; Crystal structure of Archaeoglobus fulgidus AfAgo-N protein representing N-L1-L2 domains 2ZVF ; 3.2 ; Crystal structure of Archaeoglobus fulgidus alanyl-tRNA synthetase C-terminal dimerization domain 3WQZ ; 3.489 ; Crystal structure of Archaeoglobus fulgidus alanyl-tRNA synthetase in complex with a tRNA(Ala) variant having A3.U70 3WQY ; 3.3 ; Crystal structure of Archaeoglobus fulgidus alanyl-tRNA synthetase in complex with wild-type tRNA(Ala) having G3.U70 2ZTG ; 2.2 ; Crystal structure of Archaeoglobus fulgidus alanyl-tRNA synthetase lacking the C-terminal dimerization domain in complex with Ala-SA 6TUO ; 1.8 ; Crystal structure of Archaeoglobus fulgidus Argonaute protein with cognate DNA oligoduplex 5'-pATTGTACGTACAAT 6T5T ; 1.7003 ; Crystal structure of Archaeoglobus fulgidus Argonaute protein with cognate DNA oligoduplex 5'-pATTGTGGCCACAAT 4MND ; 2.66 ; Crystal structure of Archaeoglobus fulgidus IPCT-DIPPS bifunctional membrane protein 3O7B ; 1.45 ; Crystal structure of Archaeoglobus Fulgidus Nep1 bound to S-adenosylhomocysteine 2DU4 ; 2.8 ; Crystal structure of Archaeoglobus fulgidus O-phosphoseryl-tRNA synthetase complexed with tRNACys 2DU3 ; 2.6 ; Crystal structure of Archaeoglobus fulgidus O-phosphoseryl-tRNA synthetase complexed with tRNACys and O-phosphoserine 2DU6 ; 3.3 ; Crystal structure of Archaeoglobus fulgidus O-phosphoseryl-tRNA synthetase E418N/E420N mutant complexed with tRNAAmber and O-phosphoserine (""amber complex"") 2DU5 ; 3.2 ; Crystal structure of Archaeoglobus fulgidus O-phosphoseryl-tRNA synthetase E418N/E420N mutant complexed with tRNAOpal and O-phosphoserine (""opal complex"") 3OBY ; 2.9 ; Crystal structure of Archaeoglobus fulgidus Pelota reveals inter-domain structural plasticity 3RE4 ; 1.997 ; Crystal Structure of Archaeoglobus Fulgidus Rio1 Kinase bound to Toyocamycin. 1IT7 ; 2.3 ; Crystal structure of archaeosine tRNA-guanine transglycosylase complexed with guanine 1J2B ; 3.3 ; Crystal Structure Of Archaeosine tRNA-Guanine Transglycosylase Complexed With lambda-form tRNA(Val) 1IQ8 ; 2.2 ; Crystal Structure of archaeosine tRNA-guanine transglycosylase from Pyrococcus horikoshii 1IT8 ; 2.5 ; Crystal structure of archaeosine tRNA-guanine transglycosylase from Pyrococcus horikoshii complexed with archaeosine precursor, preQ0 1UAZ ; 3.4 ; Crystal structure of archaerhodopsin-1 1VGO ; 2.5 ; Crystal Structure of Archaerhodopsin-2 3WQJ ; 1.8 ; Crystal structure of archaerhodopsin-2 at 1.8 angstrom resolution 2CZV ; 2.0 ; Crystal structure of archeal RNase P protein ph1481p in complex with ph1877p 6HCT ; 3.091 ; Crystal structure of Archeoglobus fulgidus L7Ae bound to its cognate UTR k-turn 6AG5 ; 2.32 ; Crystal structure of Ard1 N-terminal acetyltransferase E88H/H127E mutant from Sulfolobus solfataricus 4R3K ; 2.133 ; Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus bound to CoA 4R3L ; 1.839 ; Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus bound to substrate peptide fragment and CoA 5C88 ; 2.49 ; Crystal structure of Ard1 N-terminal acetyltransferase from Sulfolobus solfataricus in monoclinic form 6AG4 ; 2.256 ; Crystal structure of Ard1 N-terminal acetyltransferase H88A/E127A mutant from Sulfolobus solfataricus 3TJZ ; 2.9 ; Crystal Structure of Arf1 Bound to the gamma/zeta-COP Core Complex 7RLL ; 1.9 ; Crystal structure of ARF3 from Candida albicans in complex with guanosine-3'-monophosphate-5'-diphosphate 3N5C ; 1.82 ; Crystal Structure of Arf6DELTA13 complexed with GDP 3JUE ; 2.3 ; Crystal Structure of ArfGAP and ANK repeat domain of ACAP1 3O47 ; 2.8 ; Crystal structure of ARFGAP1-ARF1 fusion protein 2X45 ; 1.4 ; Crystal Structure of Arg r 1 in complex with histamine 4EIH ; 1.2 ; Crystal structure of Arg SH2 domain 5GT7 ; 2.048 ; Crystal Structure of Arg-bound CASTOR1 4OLJ ; 1.49 ; Crystal structure of Arg119Gln mutant of Peptidyl-tRNA Hydrolase from Acinetobacter Baumannii at 1.49 A resolution 2E17 ; 1.9 ; Crystal structure of Arg173 to Ala mutant of Diphthine synthase 2E15 ; 1.8 ; Crystal structure of Arg173 to Asn mutant of Diphthine synthase 6H2P ; 1.479 ; Crystal Structure of Arg184Gln mutant of Human Prolidase with Mn ions and Cacodylate ligand 5MBY ; 1.55 ; Crystal Structure of Arg184Gln mutant of Human Prolidase with Mn ions and GlyPro ligand 6H2Q ; 1.78 ; Crystal Structure of Arg184Gln mutant of Human Prolidase with Mn ions and LeuPro ligand 3QAL ; 1.7 ; Crystal Structure of Arg280Ala mutant of Catalytic subunit of cAMP-dependent Protein Kinase 1ZKW ; 2.17 ; Crystal structure of Arg347Ala mutant of botulinum neurotoxin E catalytic domain 1JRX ; 2.0 ; Crystal structure of Arg402Ala mutant flavocytochrome c3 from Shewanella frigidimarina 1JRY ; 2.0 ; Crystal structure of Arg402Lys mutant flavocytochrome c3 from Shewanella frigidimarina 1JRZ ; 2.0 ; Crystal structure of Arg402Tyr mutant flavocytochrome c3 from Shewanella frigidimarina 6QSB ; 1.99 ; Crystal Structure of Arg470His mutant of Human Prolidase with Mn ions 6QSC ; 1.569 ; Crystal Structure of Arg470His mutant of Human Prolidase with Mn ions and GlyPro ligand 6NBK ; 1.91 ; Crystal structure of Arginase from Bacillus cereus 6DKT ; 2.08 ; Crystal structure of Arginase from Bacillus subtilis 6KSY ; 1.649 ; Crystal structure of arginase from Zymomonas mobilis ZM4 1VRA ; 2.0 ; Crystal structure of Arginine biosynthesis bifunctional protein argJ (10175521) from Bacillus halodurans at 2.00 A resolution 5XX1 ; 3.1 ; Crystal structure of Arginine decarboxylase (AdiA) from Salmonella typhimurium 1S9R ; 1.6 ; CRYSTAL STRUCTURE OF ARGININE DEIMINASE COVALENTLY LINKED WITH A REACTION INTERMEDIATE 1LXY ; 2.0 ; Crystal Structure of Arginine Deiminase covalently linked with L-citrulline 4BOF ; 2.48 ; Crystal structure of arginine deiminase from group A streptococcus 4E4J ; 2.3 ; Crystal structure of arginine deiminase from Mycoplasma penetrans 4LT4 ; 1.69 ; Crystal structure of arginine inhibited Ribosome inactivating protein from Momordica balsamina at 1.69 A resolution 7EWS ; 2.0 ; Crystal structure of arginine kinase (AK3) from the ciliate Paramecium tetraurelia 5U92 ; 2.0 ; Crystal Structure of arginine kinase from the spider Polybetes pythagoricus in complex with arginine 4GVZ ; 2.96 ; Crystal structure of arginine kinase in complex with D-arginine, MgADP, and nitrate. 4GW0 ; 2.448 ; Crystal structure of arginine kinase in complex with imino-L-ornithine, MgADP, and nitrate. 4GVY ; 2.091 ; Crystal structure of arginine kinase in complex with L-citrulline and MgADP 4GW2 ; 2.157 ; Crystal structure of arginine kinase in complex with L-ornithine, MgADP, and nitrate. 6KY2 ; 1.87 ; Crystal Structure of Arginine Kinase wild type from Daphnia magna 6WJP ; 1.701 ; Crystal structure of Arginine Repressor P115Q mutant from the pathogenic bacterium Corynebacterium pseudotuberculosis bound to arginine 5GV2 ; 2.06 ; Crystal structure of Arginine-bound CASTOR1 from Homo sapiens 3MD0 ; 2.45 ; Crystal structure of arginine/ornithine transport system ATPase from Mycobacterium tuberculosis bound to GDP (a RAS-like GTPase superfamily protein) 6IG5 ; 2.078 ; Crystal structure of argininosuccinate lyase from Mycobacterium tuberculosis 6IGA ; 2.776 ; Crystal structure of argininosuccinate lyase from Mycobacterium tuberculosis 1VL2 ; 1.65 ; Crystal structure of Argininosuccinate synthase (TM1780) from Thermotoga maritima at 1.65 A resolution 6XNQ ; 1.95 ; Crystal Structure of Argininosuccinate synthase from Legionella pneumophila Philadelphia 1 7K5Z ; 1.85 ; Crystal Structure of Argininosuccinate synthase from Legionella pneumophila Philadelphia 1 in complex with ANPPNP and a substrate analogue Arginine 4U7J ; 1.75 ; Crystal structure of Argininosuccinate synthase from Mycobacterium thermoresistibile 4XFJ ; 1.55 ; Crystal structure of Argininosuccinate synthase from Mycobacterium thermoresistibile in complex with AMPPNP and Arginine 4Q2Y ; 2.799 ; Crystal structure of Arginyl-tRNA synthetase 4Q2T ; 2.4 ; Crystal structure of Arginyl-tRNA synthetase complexed with L-arginine 4Q2X ; 2.798 ; Crystal structure of Arginyl-tRNA synthetase complexed with L-canavanine 3GDZ ; 2.2 ; Crystal structure of arginyl-tRNA synthetase from Klebsiella pneumoniae subsp. pneumoniae 5JLD ; 2.2 ; Crystal Structure of Arginyl-tRNA Synthetase from Plasmodium falciparum (PfRRS) 6AO8 ; 1.7 ; Crystal structure of arginyl-tRNA_synthetase from Neisseria gonorrhoeae in complex with arginine 3ISP ; 2.7 ; Crystal structure of ArgP from Mycobacterium tuberculosis 6JUY ; 2.97 ; Crystal Structure of ArgZ, apo structure, an Arginine Dihydrolase from the Ornithine-Ammonia Cycle in Cyanobacteria 6K96 ; 2.5 ; Crystal structure of Ari2 3A01 ; 2.7 ; Crystal structure of Aristaless and Clawless homeodomains bound to DNA 3A02 ; 1.0 ; Crystal structure of Aristaless homeodomain 3BNY ; 1.89 ; Crystal structure of aristolochene synthase complexed with 2-fluorofarnesyl diphosphate (2F-FPP) 3BNX ; 2.1 ; Crystal structure of Aristolochene synthase complexed with farnesyl diphosphate 1DI1 ; 2.5 ; CRYSTAL STRUCTURE OF ARISTOLOCHENE SYNTHASE FROM PENICILLIUM ROQUEFORTI 3CKE ; 2.4 ; Crystal structure of aristolochene synthase in complex with 12,13-difluorofarnesyl diphosphate 5J5C ; 3.4 ; Crystal structure of ARL1-GTP and DCB domain of BIG1 complex 5DI3 ; 2.5 ; Crystal structure of Arl13B in complex with Arl3 of Chlamydomonas reinhardtii 5CYA ; 2.0 ; Crystal structure of Arl2 GTPase-activating protein tubulin cofactor C (TBCC) 3AU3 ; 2.1 ; Crystal structure of armadillo repeat domain of APC 3NMW ; 1.6 ; Crystal structure of armadillo repeats domain of APC 1Z75 ; 2.4 ; Crystal Structure of ArnA dehydrogenase (decarboxylase) domain, R619M mutant 1MDZ ; 2.07 ; Crystal structure of ArnB aminotransferase with cycloserine and pyridoxal 5' phosphate 1MDO ; 1.7 ; Crystal structure of ArnB aminotransferase with pyridomine 5' phosphate 8SNJ ; 1.75 ; Crystal Structure of ArnB Transferase from Klebsiella aerogenes (Lattice Translocation Disorder, P1 form) 8SU6 ; 1.5 ; Crystal Structure of ArnB Transferase from Klebsiella aerogenes (Lattice Translocation Disorder, P1 form2) 8SNG ; 1.55 ; Crystal Structure of ArnB Transferase from Klebsiella aerogenes (Lattice Translocation Disorder, P21 form) 1MDX ; 1.96 ; Crystal structure of ArnB transferase with pyridoxal 5' phosphate 4Z21 ; 2.05 ; Crystal structure of ARNO Sec7 5F15 ; 3.2 ; Crystal Structure of ArnT from Cupriavidus metallidurans bound to Undecaprenyl phosphate 5EZM ; 2.7 ; Crystal Structure of ArnT from Cupriavidus metallidurans in the apo state 2B02 ; 1.5 ; Crystal Structure of ARNT PAS-B Domain 7RCA ; 2.26 ; Crystal structure of Aro2p chorismate synthase from Candida lusitaniae 7REU ; 2.79 ; Crystal structure of Aro4p, 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase from Candida auris, L-Tyr complex 7RJ1 ; 2.16 ; Crystal structure of Aro7p chorismate mutase from Candida albicans, complex with L-Trp 2AH1 ; 1.2 ; Crystal structure of aromatic amine dehydrogenase (AADH) from Alcaligenes faecalis 2I0R ; 1.4 ; Crystal structure of aromatic amine dehydrogenase TTQ-formamide adduct 2OK6 ; 1.45 ; Crystal structure of aromatic amine dehydrogenase TTQ-formamide adduct oxidized with ferricyanide. 2I0S ; 1.4 ; Crystal structure of aromatic amine dehydrogenase TTQ-phenylacetaldehyde adduct 2OK4 ; 1.45 ; Crystal structure of aromatic amine dehydrogenase TTQ-phenylacetaldehyde adduct oxidized with ferricyanide 1DJU ; 2.1 ; CRYSTAL STRUCTURE OF AROMATIC AMINOTRANSFERASE FROM PYROCOCCUS HORIKOSHII OT3 5EB8 ; 2.22 ; Crystal structure of aromatic mutant (F4W) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 5EBA ; 2.3 ; Crystal structure of aromatic mutant (Y343A) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 4EFF ; 1.85 ; Crystal structure of aromatic-amino-acid aminotransferase from Burkholderia pseudomallei 4F4E ; 1.8 ; Crystal structure of Aromatic-amino-acid aminotransferase from Burkholderia pseudomallei covalently bound to pyridoxal phosphate 1K8K ; 2.0 ; Crystal Structure of Arp2/3 Complex 1U2V ; 2.55 ; Crystal structure of Arp2/3 complex with bound ADP and calcium 1TYQ ; 2.55 ; Crystal structure of Arp2/3 complex with bound ATP and calcium 6E4F ; 1.15 ; Crystal structure of ARQ 531 in complex with the kinase domain of BTK 3P2D ; 3.0 ; Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes 3GC3 ; 2.2 ; Crystal Structure of Arrestin2S and Clathrin 4HDR ; 1.45 ; Crystal Structure of ArsAB in Complex with 5,6-dimethylbenzimidazole 4HDM ; 1.95 ; Crystal Structure of ArsAB in Complex with p-cresol 4HDS ; 2.4 ; Crystal Structure of ArsAB in Complex with Phenol. 4HDK ; 1.5 ; Crystal Structure of ArsAB in Complex with Phloroglucinol 4HDN ; 2.24 ; Crystal Structure of ArsAB in the Substrate-Free State. 3KGK ; 1.4 ; Crystal structure of ArsD 1Y1L ; 2.8 ; Crystal structure of arsenate reductase from Archaeoglobus fulgidus DSM 4304, structural genomics 3KTB ; 2.1 ; Crystal Structure of Arsenical Resistance Operon Trans-acting Repressor from Bacteroides vulgatus ATCC 8482 8CGS ; 1.84 ; Crystal structure of arsenite oxidase from Alcaligenes faecalis (Af Aio) bound to antimony oxyanion 8CH9 ; 1.43 ; Crystal structure of arsenite oxidase from Alcaligenes faecalis (Af Aio) bound to arsenic oxyanion 8CFF ; 1.57 ; Crystal structure of arsenite oxidase from Alcaligenes faecalis (Af Aio) bound to arsenite 8CCQ ; 1.89 ; Crystal structure of arsenite oxidase from Pseudorhizobium banfieldiae str. NT-26 (NT-26 Aio) bound to antimony trioxide 8C63 ; 1.52 ; Crystal structure of arsenoplatin-1/B-DNA adduct obtained upon 4 h of soaking 8C64 ; 2.51 ; Crystal structure of arsenoplatin-1/B-DNA adduct obtained upon 48 h of soaking 2Q62 ; 1.8 ; Crystal Structure of ArsH from Sinorhizobium meliloti 5C4P ; 1.97 ; Crystal structure of ArsI C-As lyase solved by Ni-SAD phasing 5JTF ; 2.156 ; Crystal structure of ArsN N-acetyltransferase from Pseudomonas putida KT2440 5WPH ; 2.19 ; Crystal structure of ArsN, N-acetyltransferase with substrate AST from Pseudomonas putida KT2440 6M7G ; 2.657 ; Crystal structure of ArsN, N-acetyltransferase with substrate phosphinothricin from Pseudomonas putida KT2440 3F6O ; 1.9 ; Crystal structure of ArsR family transcriptional regulator, RHA00566 5WHV ; 2.303 ; Crystal structure of ArtB 4N0N ; 2.0 ; Crystal structure of Arterivirus nonstructural protein 10 (helicase) 1RWA ; 1.3 ; Crystal structure of Arthrobacter aurescens chondroitin AC lyase 1RWC ; 1.9 ; Crystal structure of Arthrobacter aurescens chondroitin AC lyase 1RWF ; 1.45 ; Crystal structure of Arthrobacter aurescens chondroitin AC lyase in complex with chondroitin tetrasaccharide 1RWG ; 1.5 ; Crystal structure of Arthrobacter aurescens chondroitin AC lyase in complex with chondroitin tetrasaccharide 1RWH ; 1.25 ; Crystal structure of Arthrobacter aurescens chondroitin AC lyase in complex with chondroitin tetrasaccharide 5ZFS ; 1.96 ; Crystal structure of Arthrobacter globiformis M30 sugar epimerase which can produce D-allulose from D-fructose 1Q4S ; 1.95 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase complexed with CoA and 4-hydroxybenzoic acid 3TEA ; 1.8 ; Crystal structure of Arthrobacter sp. strain su 4-hydroxybenzoyl CoA thioesterase double mutant Q58E/E73A complexed with 4-hydroxyphenacyl CoA 3R32 ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant E73A complexed with 4-hydroxyphenacyl CoA 3R35 ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant E73D complexed with 4-hydroxyphenacyl CoA 3R34 ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant E73D complexed with CoA 3R36 ; 1.95 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant E73Q complexed with 4-hydroxybenzoic acid 3R37 ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant E73Q complexed with 4-hydroxyphenacyl CoA 3R3C ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant H64A complexed with 4-hydroxyphenacyl CoA 3R3A ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant Q58A complexed with 4-hydroxybenzoic acid and CoA 3R3B ; 1.8 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant Q58A complexed with 4-hydroxyphenacyl CoA 3R3F ; 1.75 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant T77A complexed with 4-hydroxyphenacyl CoA 3R3D ; 1.75 ; Crystal structure of Arthrobacter sp. strain SU 4-hydroxybenzoyl CoA thioesterase mutant T77S complexed with 4-hydroxyphenacyl CoA 4HLL ; 2.2 ; Crystal structure of Artificial ankyrin repeat protein_Ank(GAG)1D4 4ZFH ; 1.89 ; Crystal structure of Artificial ankyrin repeat protein_Ank(GAG)1D4 mutant -Y56A 4WVZ ; 2.09 ; Crystal structure of artificial crosslinked thiol dioxygenase G95C variant from Pseudomonas aeruginosa 1VBP ; 3.5 ; Crystal structure of artocarpin-mannopentose complex 1VBO ; 2.35 ; Crystal structure of artocarpin-mannotriose complex 6E8O ; 1.7 ; Crystal structure of aryl acid adenylating enzyme FscC from Fuscachelin NRPS in complex with AMP 5OC1 ; 2.3 ; Crystal structure of aryl-alcohol oxidase from Pleurotus eryngii in complex with p-anisic acid 3FIM ; 2.55 ; Crystal structure of aryl-alcohol-oxidase from Pleurotus eryingii 4FD5 ; 1.64 ; Crystal structure of arylalkylamine N-Acetyltransferase 2 from Aedes aegypti 3DTV ; 2.1 ; Crystal structure of arylmalonate decarboxylase 3EIS ; 2.1 ; Crystal Structure of Arylmalonate Decarboxylase 3IP8 ; 1.498 ; Crystal structure of arylmalonate decarboxylase (AMDase) from Bordatella bronchiseptic in complex with benzylphosphonate 6QPU ; 2.25 ; Crystal structure of as isolated synthetic core domain of nitrite reductase from Ralstonia pickettii (residues 1-331) 6TFO ; 2.05 ; Crystal structure of as isolated three-domain copper-containing nitrite reductase from Hyphomicrobium denitrificans strain 1NES1 6QPV ; 1.6 ; Crystal structure of as isolated Y323A mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 6QPZ ; 1.65 ; Crystal structure of as isolated Y323E mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 6QQ1 ; 1.75 ; Crystal structure of as isolated Y323F mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 7R2U ; 1.5 ; CRYSTAL STRUCTURE OF AS-ISOLATED Q262N MUTANT OF THREE-DOMAIN HEME-CU NITRITE REDUCTASE FROM RALSTONIA PICKETTII 7QQ2 ; 2.1 ; CRYSTAL STRUCTURE OF AS-ISOLATED S321M MUTANT OF THREE-DOMAIN HEME-CU NITRITE REDUCTASE FROM RALSTONIA PICKETTII 7SJZ ; 1.85 ; Crystal structure of aS162A mutant of Co-type nitrile hydratase from Pseudonocardia thermophila 8HLO ; 1.168 ; Crystal structure of ASAP1-SH3 and MICAL1-PRM complex 8OYG ; 2.3 ; Crystal structure of ASBTNM in complex with pantoate 8OYF ; 2.1 ; Crystal structure of ASBTNM in lipidic cubic phase without substrate bound 7E5B ; 2.29 ; Crystal structure of ASC PYD Domain and Rb-B7 1F32 ; 1.75 ; CRYSTAL STRUCTURE OF ASCARIS PEPSIN INHIBITOR-3 1F34 ; 2.45 ; CRYSTAL STRUCTURE OF ASCARIS PEPSIN INHIBITOR-3 BOUND TO PORCINE PEPSIN 1O0S ; 2.0 ; Crystal Structure of Ascaris suum Malic Enzyme Complexed with NADH 5GUS ; 1.951 ; Crystal structure of ASCH domain from Zymomonas mobilis 5GUQ ; 1.697 ; Crystal structure of ASCH from Zymomonas mobilis 7S10 ; 1.40001 ; Crystal Structure of ascorbate peroxidase triple mutant: S160M, L203M, Q204M 4O79 ; 2.003 ; Crystal Structure of Ascorbate-bound Cytochrome b561, crystal soaked in 1 M L-ascorbate for 10 minutes 4O7G ; 2.211 ; Crystal Structure of Ascorbate-bound Cytochrome b561, crystal soaked in 1 M L-ascorbate for 40 minutes 8I40 ; 2.79 ; Crystal structure of ASCT from Trypanosoma brucei in complex with CoA. 8I3Y ; 2.4 ; Crystal structure of ASCT from Trypanosoma brucei in complex with Succinyl-CoA. 6A6Y ; 2.491 ; Crystal Structure of Asf1 from Plasmodium falciparum 6AYZ ; 2.096 ; Crystal structure of Asf1-Fab 12E complex 6AZ2 ; 2.477 ; Crystal structure of Asf1-Fab 12E complex 6KY8 ; 2.301 ; Crystal structure of ASFV dUTPase 6KZ6 ; 2.187 ; Crystal structure of ASFV dUTPase 6KY9 ; 1.7 ; Crystal structure of ASFV dUTPase and UMP complex 7BQ9 ; 2.612 ; Crystal structure of ASFV p15 7BQA ; 2.102 ; Crystal structure of ASFV p35 3GWL ; 2.1 ; Crystal structure of ASFV pB119L, a viral sulfhydryl oxidase 6LJB ; 2.487 ; Crystal Structure of ASFV pS273R protease 8HDL ; 3.198 ; Crystal structure of ASFV trans geranylgeranyl diphosphate synthase B318L 7YPF ; 2.5 ; Crystal structure of AsfvPCNA in space group of P1 7YPE ; 2.2 ; Crystal structure of AsfvPCNA in space group of P63 8E9A ; 2.69 ; Crystal structure of AsfvPolX in complex with 10-23 DNAzyme and Mg 5XM8 ; 2.55 ; Crystal structure of AsfvPolX in complex with DNA enzyme and Pb. 5XMA ; 3.8 ; Crystal structure of AsfvPolX in complex with DNA enzyme at P43212 space group 5XM9 ; 3.053 ; Crystal structure of AsfvPolX in complex with DNA enzyme. 8IQB ; 2.58 ; Crystal structure of AsfvPrimPol N-terminal Prim/Pol domain 8IQC ; 2.0 ; Crystal structure of AsfvPrimPol N-terminal Prim/Pol domain in complex with Mn2+ 8IQD ; 2.39 ; Crystal structure of AsfvPrimPol N-terminal Prim/Pol domain in complex with Mn2+ and dCTP 6YAU ; 1.397 ; CRYSTAL STRUCTURE OF ASGPR 1 IN COMPLEX WITH GN-A. 3S32 ; 2.45 ; Crystal structure of Ash2L N-terminal domain 4X8N ; 2.1 ; Crystal structure of Ash2L SPRY domain in complex with phosphorylated RbBP5 4X8P ; 2.2 ; Crystal structure of Ash2L SPRY domain in complex with RbBP5 5BTB ; 1.8 ; Crystal Structure of Ashbya gossypii Rai1 5BTE ; 2.4 ; Crystal structure of Ashbya gossypii Rai1 in complex with pU(S)6-Mn2+ 1EMY ; 1.78 ; CRYSTAL STRUCTURE OF ASIAN ELEPHANT (ELEPHAS MAXIMUS) CYANO-MET MYOGLOBIN AT 1.78 ANGSTROMS RESOLUTION. PHE 29 (B10) ACCOUNTS FOR ITS UNUSUAL LIGAND BINDING PROPERTIES 5VIO ; 2.84 ; Crystal structure of ASK1 kinase domain with a potent inhibitor (analog 13) 5VIL ; 2.64 ; Crystal structure of ASK1 kinase domain with a potent inhibitor (analog 6) 6BRO ; 2.5 ; Crystal structure of ASK1-D3 ubiquitin ligase form1 4TUC ; 3.6 ; Crystal structure of ASL-SufJ bound to Codon ACC-A on the Ribosome 4TUD ; 3.6 ; Crystal structure of ASL-SufJ bound to Codon ACC-C on the Ribosome 4TUE ; 3.5 ; Crystal structure of ASL-SufJ bound to Codon ACC-U on the Ribosome 4TUA ; 3.6 ; Crystal structure of ASL-Thr bound to Codon ACC-A on the Ribosome 2ESU ; 1.94 ; Crystal structure of Asn to Gln mutant of Winged Bean Chymotrypsin Inhibitor protein 2BEA ; 2.35 ; Crystal structure of Asn14 to Gly mutant of WCI 2DXX ; 1.75 ; Crystal structure of Asn142 to Glu mutant of Diphthine synthase 7A6S ; 1.75 ; Crystal Structure of Asn173Ser variant of Human Deoxyhypusine Synthase 7A6T ; 1.66 ; Crystal Structure of Asn173Ser variant of Human Deoxyhypusine Synthase in complex with NAD and spermidine 2EHC ; 1.8 ; Crystal structure of Asn69 to Lys mutant of Diphthine synthase 3I4P ; 2.3 ; Crystal structure of AsnC family transcriptional regulator from Agrobacterium tumefaciens 5DYP ; 2.4 ; Crystal structure of Asp251Gly/Gln307His mutant of cytochrome P450 BM3 5DYZ ; 1.967 ; Crystal structure of Asp251Gly/Gln307His mutant of cytochrome P450 BM3 in complex with N-palmitoylglycine 5MC1 ; 1.43 ; Crystal Structure of Asp276Asn mutant of Human Prolidase with Mn ions and GlyPro ligand 5OC2 ; 2.85 ; Crystal structure of Asp295Cys/Lys303Cys Amadoriase I mutant from Aspergillus Fumigatus 2E07 ; 1.9 ; Crystal structure of Asp79 to Glu mutant of Diphthine synthase 1D7F ; 1.9 ; CRYSTAL STRUCTURE OF ASPARAGINE 233-REPLACED CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP. 1011 DETERMINED AT 1.9 A RESOLUTION 2OG5 ; 1.45 ; Crystal structure of asparagine oxygenase (AsnO) 2OG6 ; 1.916 ; Crystal structure of asparagine oxygenase in complex with Fe(II) 4LNS ; 2.2 ; Crystal structure of Asparagine synthetase A (AsnA) from Trypanosoma brucei 1CT9 ; 2.0 ; CRYSTAL STRUCTURE OF ASPARAGINE SYNTHETASE B FROM ESCHERICHIA COLI 6PQH ; 2.0 ; Crystal structure of Asparagine-tRNA ligase from Elizabethkingia sp. CCUG 26117 4NOM ; 2.006 ; Crystal structure of asparaginyl endopeptidase (AEP)/Legumain activated at pH 4.5 5ZBI ; 2.09 ; Crystal structure of asparaginyl endopeptidases from Viola Canadensis 1X56 ; 1.98 ; Crystal structure of asparaginyl-tRNA synthetase from Pyrococcus horikoshii 1X54 ; 1.45 ; Crystal structure of asparaginyl-tRNA synthetase from Pyrococcus horikoshii complexed with asparaginyl-adenylate 1X55 ; 1.8 ; Crystal structure of asparaginyl-tRNA synthetase from Pyrococcus horikoshii complexed with asparaginyl-adenylate analogue 4GBC ; 1.778 ; Crystal structure of aspart insulin at pH 6.5 4GBI ; 2.502 ; Crystal structure of aspart insulin at pH 6.5 4GBN ; 1.872 ; Crystal structure of aspart insulin at pH 6.5 4GBK ; 2.4 ; Crystal structure of aspart insulin at pH 8.5 4GBL ; 2.5 ; Crystal structure of aspart insulin at pH 8.5 1J3U ; 2.5 ; Crystal structure of aspartase from Bacillus sp. YM55-1 3R6V ; 2.6 ; Crystal structure of aspartase from Bacillus sp. YM55-1 with bound L-aspartate 5IWQ ; 2.0 ; Crystal structure of aspartate aminotransferase (AspAT) from Corynebacterium glutamicum ATCC 13032 3F6T ; 2.15 ; Crystal structure of aspartate aminotransferase (E.C. 2.6.1.1) (YP_194538.1) from Lactobacillus acidophilus NCFM at 2.15 A resolution 1O4S ; 1.9 ; Crystal structure of Aspartate aminotransferase (TM1255) from Thermotoga maritima at 1.90 A resolution 2GB3 ; 2.5 ; Crystal structure of Aspartate aminotransferase (tm1698) from Thermotoga maritima at 2.50 A resolution 6EZL ; 2.07 ; Crystal structure of aspartate aminotransferase from Trypanosoma cruzi at 2.07 Angstrom resolution 3PWK ; 1.5 ; Crystal Structure of Aspartate beta-Semialdehide Dehydrogenase from Streptococcus pneumoniae with 2',5'-Adenosine diphosphate and D-2-aminoadipate 3PWS ; 2.0 ; Crystal Structure of Aspartate beta-Semialdehide Dehydrogenase from Streptococcus pneumoniae with 2',5'-Adenosine diphosphate and D-2-aminoadipate 3PYL ; 2.2 ; Crystal structure of aspartate beta-semialdehide dehydrogenase from Streptococcus pneumoniae with D-2,3-diaminopropionate 6A4R ; 1.828 ; Crystal structure of aspartate bound peptidase E from Salmonella enterica 2YWW ; 2.0 ; Crystal structure of aspartate carbamoyltransferase regulatory chain from Methanocaldococcus jannaschii 1UHE ; 1.55 ; Crystal structure of aspartate decarboxylase, isoaspargine complex 1UHD ; 2.0 ; Crystal structure of aspartate decarboxylase, pyruvoly group bound form 1J5P ; 1.9 ; Crystal structure of aspartate dehydrogenase (TM1643) from Thermotoga maritima at 1.9 A resolution 3AAW ; 2.5 ; Crystal structure of aspartate kinase from Corynebacterium glutamicum in complex with lysine and threonine 3AB2 ; 2.59 ; Crystal structure of aspartate kinase from Corynebacterium glutamicum in complex with threonine 3L76 ; 2.54 ; Crystal Structure of Aspartate Kinase from Synechocystis 3VOS ; 2.18 ; Crystal structure of Aspartate semialdehyde dehydrogenase Complexed With glycerol and sulfate From Mycobacterium tuberculosis H37Rv 3TZ6 ; 1.95 ; Crystal structure of Aspartate semialdehyde dehydrogenase Complexed With inhibitor SMCS (CYS) And Phosphate From Mycobacterium tuberculosis H37Rv 6C85 ; 2.4 ; Crystal structure of aspartate semialdehyde dehydrogenase from Blastomyces dermatitidis with p-benzoquinone 1NWH ; 2.0 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae as a Tetrahedral Hemithioacetal Reaction Intermediate at 2.0 A 1NX6 ; 2.15 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae as a Tetrahedral Hemithiocetal Reaction intermediate with Phosphate at 2.15 A 2YV3 ; 2.7 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase from Thermus thermophilus HB8 4ZHS ; 2.603 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase from Trichophyton rubrum 1MB4 ; 1.84 ; Crystal structure of aspartate semialdehyde dehydrogenase from vibrio cholerae with NADP and S-methyl-l-cysteine sulfoxide 2R00 ; 2.03 ; crystal structure of aspartate semialdehyde dehydrogenase II complexed with ASA from vibrio cholerae 2QZ9 ; 2.2 ; crystal structure of aspartate semialdehyde dehydrogenase II from vibrio cholerae 6C8W ; 2.6 ; Crystal structure of Aspartate Semialdehyde Dehydrogenase with NADP from Blastomyces dermatitidis 3HSK ; 2.2 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase with NADP from Candida albicans 4ZIC ; 2.553 ; Crystal Structure of Aspartate Semialdehyde Dehydrogenase with NADP from Trichophyton rubrum 5ILN ; 2.21 ; Crystal structure of Aspartate Transcarbamoylase from Plasmodium falciparum (PfATC) with bound citrate 6JKQ ; 2.81 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi (Ligand-free form) 6JL5 ; 2.05 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with aspartate (Asp) and phosphate (Pi). 6JL4 ; 2.4 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with carbamoyl aspartate (CA) and phosphate (Pi) 6JKR ; 1.6 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with carbamoyl phosphate (CP) 6JKS ; 2.1 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with carbamoyl phosphate (CP) and aspartate (Asp) 6JKT ; 2.3 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with N-(PHOSPHONACETYL)-L-ASPARTIC ACID (PALA). 6JL6 ; 2.0 ; Crystal structure of aspartate transcarbamoylase from Trypanosoma cruzi in complex with phosphate (Pi). 7SKB ; 1.8 ; Crystal Structure of aspartate-semialdehyde dehydrogenase from Acinetobacter baumannii 7TCM ; 1.95 ; Crystal Structure of aspartate-semialdehyde dehydrogenase from Acinetobacter baumannii in complex with NADP 1NWC ; 2.04 ; Crystal Structure of Aspartate-Semialdehyde Dehydrogenase from Haemophilus influenzae 1TA4 ; 2.28 ; Crystal Structure Of Aspartate-Semialdehyde Dehydrogenase From Haemophilus Influenzae with a Bound Arsenate 1TB4 ; 2.15 ; Crystal Structure of Aspartate-Semialdehyde Dehydrogenase From Haemophilus influenzae with a Bound Periodate 6BAC ; 2.1 ; Crystal Structure of Aspartate-Semialdehyde Dehydrogenase from Neisseria gonorrhoeae 1MC4 ; 2.77 ; Crystal Structure of Aspartate-Semialdehyde dehydrogenase from Vibrio Cholerae El Tor 1WKR ; 1.3 ; Crystal structure of aspartic proteinase from Irpex lacteus 2RE1 ; 2.75 ; Crystal structure of aspartokinase alpha and beta subunits 4I9C ; 3.1 ; Crystal structure of aspartyl phosphate phosphatase F from B.subtilis in complex with its inhibitory peptide 4I9E ; 2.4 ; Crystal structure of Aspartyl phosphate phosphatase F from Bacillus subtilis 6WOM ; 2.15 ; Crystal structure of Aspartyl-tRNA ligase from Elizabethkingia sp. 4O2D ; 2.6 ; Crystal structure of aspartyl-tRNA synthetase from Mycobacterium smegmatis with bound aspartic acid 5W25 ; 2.65 ; Crystal structure of Aspartyl-tRNA synthetase from Mycobacterium tuberculosis complexed with L-Aspartic Acid 1WYD ; 2.3 ; Crystal Structure of Aspartyl-tRNA synthetase from Sulfolobus tokodaii 1EFW ; 3.0 ; Crystal structure of aspartyl-tRNA synthetase from Thermus thermophilus complexed to tRNAasp from Escherichia coli 5HXX ; 2.0 ; Crystal structure of AspAT from Corynebacterium glutamicum 7S3J ; 1.94 ; Crystal Structure of AspB P450 in complex with brevianamide F substrates 1Y43 ; 1.4 ; crystal structure of aspergilloglutamic peptidase from Aspergillus niger 5C5G ; 1.248 ; Crystal Structure of Aspergillus clavatus Sph3 5D6T ; 1.93 ; Crystal Structure of Aspergillus clavatus Sph3 in complex with GalNAc 4YNT ; 1.78 ; Crystal structure of Aspergillus flavus FAD glucose dehydrogenase 4YNU ; 1.57 ; Crystal structure of Aspergillus flavus FADGDH in complex with D-glucono-1,5-lactone 6TZ7 ; 2.5 ; Crystal Structure of Aspergillus fumigatus Calcineurin A, Calcineurin B, FKBP12 and FK506 (Tacrolimus) 2A3E ; 1.95 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with allosamidin 2IUZ ; 1.95 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with C2-dicaffeine 2A3B ; 1.9 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with caffeine 3CH9 ; 2.2 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with dimethylguanylurea 3CHD ; 2.0 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with dipeptide 3CHC ; 1.9 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with monopeptide 2A3C ; 2.07 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with pentoxifylline 3CHF ; 1.95 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with tetrapeptide 2A3A ; 2.1 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with theophylline 3CHE ; 2.05 ; Crystal structure of Aspergillus fumigatus chitinase B1 in complex with tripeptide 6OJ1 ; 1.76 ; Crystal Structure of Aspergillus fumigatus Ega3 6OJB ; 2.093 ; Crystal Structure of Aspergillus fumigatus Ega3 complex with galactosamine 3IBG ; 3.2 ; Crystal structure of Aspergillus fumigatus Get3 with bound ADP 6TDH ; 1.58 ; Crystal structure of Aspergillus fumigatus Glucosamine-6-phosphate N-acetyltransferase 1 in complex with compound 1 6TDG ; 1.74 ; Crystal structure of Aspergillus fumigatus Glucosamine-6-phosphate N-acetyltransferase 1 in complex with compound 2 6TDF ; 2.01 ; Crystal structure of Aspergillus fumigatus Glucosamine-6-phosphate N-acetyltransferase 1 in complex with compound 3 6IDY ; 2.15 ; Crystal structure of Aspergillus fumigatus lipase B 6L2G ; 2.41 ; Crystal structure of Aspergillus fumigatus mitochondrial acetyl-CoA acetyltransferase 6L2C ; 2.44 ; Crystal structure of Aspergillus fumigatus mitochondrial acetyl-CoA acetyltransferase in complex with CoA 1KKC ; 2.0 ; Crystal structure of Aspergillus fumigatus MnSOD 5OAW ; 2.34 ; Crystal structure of Aspergillus fumigatus N-acetylphosphoglucosamine mutase in complex with GlcNAc-6P and magnesium 5O9X ; 1.9 ; Crystal structure of Aspergillus fumigatus N-acetylphosphoglucosamine mutate S69A in complex with glucose1,6bisphosphate 4CAV ; 1.89 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a benzofuran ligand R0-09-4879 4UWJ ; 1.7 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a capped pyrazole sulphonamide ligand 5T6E ; 2.3 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a dichloro-dimethylpyridyl-methoxy-phenyl-pyridyl-piperazine ligand 5T6C ; 1.9 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a dichloro-methylpyridinyl-methoxy-phenyl-pyridine piperazine ligand 5T6H ; 1.8 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a dimethylpyridyl-dipihenyl-pyridine ligand 5T5U ; 1.8 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a methylpyridyl-dipihenyl-pyridine ligand 4CAW ; 2.5 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a pyrazole sulphonamide ligand 4UWI ; 1.8 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a pyrazole sulphonamide ligand 4CAX ; 1.85 ; Crystal structure of Aspergillus fumigatus N-myristoyl transferase in complex with myristoyl CoA and a pyrazole sulphonamide ligand (DDD85646) 7P5O ; 2.48 ; Crystal structure of Aspergillus fumigatus phosphoglucomutase in complex with the reaction intermediate 6I5X ; 2.2 ; Crystal structure of Aspergillus fumigatus phosphomannomutase 4MBG ; 1.74 ; Crystal structure of Aspergillus fumigatus protein farnesyltransferase binary complex with farnesyldiphosphate 4L9P ; 1.45 ; Crystal structure of Aspergillus fumigatus protein farnesyltransferase complexed with the FII analog, FPT-II, and the KCVVM peptide 2XCY ; 1.84 ; Crystal structure of Aspergillus fumigatus sialidase 8EXD ; 3.8 ; Crystal structure of Aspergillus fumigatus sterylglucosidase A 7YTV ; 3.866 ; Crystal structure of Aspergillus fumigatus Thioredoxin reductase in complex with auranofin 3UTH ; 2.25 ; Crystal structure of Aspergillus fumigatus UDP galactopyranose mutase complexed with substrate UDP-Galp in reduced state 3UTG ; 2.25 ; Crystal structure of Aspergillus fumigatus UDP galactopyranose mutase complexed with UDP in reduced state 3UTF ; 2.25 ; Crystal structure of Aspergillus fumigatus UDP galactopyranose mutase in reduced state 3UTE ; 2.35 ; Crystal structure of Aspergillus fumigatus UDP galactopyranose mutase sulfate complex 5HHF ; 2.3 ; Crystal structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant H63A with covalent FAD-Galactopyranose and bound UDP 6TN3 ; 2.282 ; Crystal Structure of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase in complex with GlcNAc-1P 6G9W ; 2.4 ; Crystal Structure of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase in complex with UTP 6G9V ; 1.75 ; Crystal structure of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase(AfUAP1) in complex with UDPGlcNAc, pyrophosphate and Mg2+ 1SG6 ; 1.7 ; Crystal structure of Aspergillus nidulans 3-dehydroquinate synthase (AnDHQS) in complex with Zn2+ and NAD+, at 1.7D 3PGB ; 2.45 ; Crystal structure of Aspergillus nidulans amine oxidase 5XVI ; 2.8 ; Crystal Structure of Aspergillus niger Apo- Glutamate Dehydrogenase 6IGY ; 1.948 ; Crystal structure of Aspergillus niger chitinase B 1UKC ; 2.1 ; Crystal Structure of Aspergillus niger EstA 6QE8 ; 1.79 ; Crystal structure of Aspergillus niger GH11 endoxylanase XynA in complex with xylobiose epoxide activity based probe 5XWC ; 1.75 ; Crystal Structure of Aspergillus niger Glutamate Dehydrogenase Complexed With Alpha-iminoglutarate, 2-amino-2-hydroxyglutarate and NADP 5XVX ; 1.8 ; Crystal Structure of Aspergillus niger Glutamate Dehydrogenase Complexed With Alpha-ketoglutarate and NADPH 5XW0 ; 1.9 ; Crystal Structure of Aspergillus niger Glutamate Dehydrogenase Complexed With Isophthalate and NADPH 1IZD ; 1.9 ; Crystal structure of Aspergillus oryzae Aspartic Proteinase 1IZE ; 1.9 ; Crystal structure of Aspergillus oryzae Aspartic proteinase complexed with pepstatin 6GSG ; 2.192 ; Crystal structure of Aspergillus oryzae catechol oxidase complexed with resorcinol 5OR4 ; 2.445 ; Crystal structure of Aspergillus oryzae catechol oxidase in deoxy-form 5OR3 ; 1.795 ; Crystal structure of Aspergillus oryzae catechol oxidase in met/deoxy-form 3GBS ; 1.75 ; Crystal structure of Aspergillus oryzae cutinase 7DRY ; 1.44 ; Crystal structure of Aspergillus oryzae Rib2 deaminase 7DRZ ; 1.7 ; Crystal structure of Aspergillus oryzae Rib2 deaminase (C-terminal deletion mutant) at pH 4.6 7DS0 ; 1.69 ; Crystal structure of Aspergillus oryzae Rib2 deaminase (C-terminal deletion mutant) at pH 6.5 7DS1 ; 1.58 ; Crystal structure of Aspergillus oryzae Rib2 deaminase in complex with DARIPP (C-terminal deletion mutant at pH 6.5) 4KWD ; 1.857 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with (1R,8R,9aS)-1,9a-dimethyl-8-(prop-1-en-2-yl)decahydroquinolizin-5-ium 4KVY ; 1.95 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with (1S,8S,9aR)-1,9a-dimethyl-8-(prop-1-en-2-yl)decahydroquinolizin-5-ium 4KVW ; 2.102 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with (3R,6R,9aR)-6,9a-dimethyl-3-(prop-1-en-2-yl)decahydroquinolizin-5-ium 4KVD ; 2.4 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with (4aS,7S)-1,4a-dimethyl-7-(prop-1-en-2-yl)decahydroquinolin-1-ium 4KVI ; 2.15 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with (4aS,7S)-4a-methyl-7-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydroquinolin-1-ium 4KUX ; 1.9 ; Crystal structure of Aspergillus terreus aristolochene synthase complexed with farnesyl thiolodiphosphate (FSPP) 5IVG ; 1.95 ; Crystal structure of Aspergillus terreus aristolochene synthase N299A complexed with farnesyl thiolodiphosphate 7ECS ; 1.74 ; Crystal Structure of Aspergillus terreus Glutamate Dehydrogenase (AtGDH) Complexed With Malonate and NADPH 7ECR ; 1.73 ; Crystal Structure of Aspergillus terreus Glutamate Dehydrogenase (AtGDH) Complexed With Succinate and ADP-ribose 7ECT ; 2.9 ; Crystal Structure of Aspergillus terreus Glutamate Dehydrogenase (AtGDH) Complexed With Tartrate and NADPH 3B70 ; 1.89 ; Crystal structure of Aspergillus terreus trans-acting lovastatin polyketide enoyl reductase (LovC) with bound NADP 5YY3 ; 2.305 ; Crystal structure of AsqI 5YY2 ; 2.91 ; Crystal structure of AsqI with Zn 5TQB ; 2.4 ; Crystal structure of assembly chaperone of ribosomal protein L4 (Acl4) in complex with ribosomal protein L4 (RpL4) 2GOY ; 2.7 ; Crystal structure of assimilatory adenosine 5'-phosphosulfate reductase with bound APS 3Q8J ; 0.87 ; Crystal Structure of Asteropsin A from Marine Sponge Asteropus sp. 8C16 ; 4.2 ; Crystal structure of asymmetric ferredoxin/flavodoxin NADP+ oxidoreductase 2 (FNR2) H326V mutant from Bacillus cereus 7AEJ ; 3.8 ; Crystal structure of asymmetric HIV-1 gp41 containing all membrane anchors 4U97 ; 2.65 ; Crystal Structure of Asymmetric IRAK4 Dimer 3WN5 ; 2.78 ; Crystal structure of asymmetrically engineered Fc variant in complex with FcgRIIIa 1UGR ; 1.8 ; Crystal structure of aT109S mutant of Co-type nitrile hydratase 6RLM ; 2.5 ; Crystal structure of AT1412dm Fab fragment 6RLO ; 2.2 ; Crystal structure of AT1412dm Fab fragment in complex with CD9 large extracellular loop 2IL4 ; 2.054 ; Crystal structure of At1g77540-Coenzyme A Complex 7C6A ; 3.4 ; Crystal structure of AT2R-BRIL and SRP2070_Fab complex 7ZNT ; 3.0 ; CRYSTAL STRUCTURE OF AT7 IN COMPLEX WITH THE SECOND BROMODOMAIN OF HUMAN BRD4 AND PVHL:ELONGINC:ELONGINB 4TU4 ; 1.73 ; Crystal structure of ATAD2A bromodomain complexed with 3-(3,5-dimethyl-1,2-oxazol-4-yl)-5-[(phenylsulfonyl)amino]benzoicacid 4TT4 ; 2.7 ; Crystal structure of ATAD2A bromodomain complexed with H3(1-21)K14Ac peptide 4TT2 ; 2.5 ; Crystal structure of ATAD2A bromodomain complexed with H4(1-20)K5Ac peptide 4TTE ; 1.8 ; Crystal structure of ATAD2A bromodomain complexed with methyl 3-amino-5-(3,5-dimethyl-1,2-oxazol-4-yl)benzoate 4TT6 ; 2.0 ; Crystal structure of ATAD2A bromodomain double mutant N1063A-Y1064A in apo form 8XAT ; 2.205 ; Crystal structure of AtARR1(RD-DBD) 8XAS ; 2.346 ; Crystal structure of AtARR1-DBD in complex with a DNA fragment 7F37 ; 2.896 ; Crystal structure of AtaT2-AtaR2 complex 6AJN ; 3.302 ; Crystal structure of AtaTR bound with AcCoA 3EL9 ; 1.6 ; Crystal structure of atazanavir (ATV) in complex with a multidrug HIV-1 protease (V82T/I84V) 3EM4 ; 2.1 ; Crystal structure of atazanavir (ATV) in complex with I50L/A71V drug-resistant HIV-1 protease 4HWI ; 2.273 ; Crystal structure of ATBAG1 in complex with HSP70 4HWD ; 2.312 ; Crystal structure of ATBAG2 4HWF ; 2.0 ; Crystal structure of ATBAG3 4HWH ; 1.895 ; Crystal structure of ATBAG4 4PPV ; 2.45 ; Crystal Structure of AtCM1 with Phenylalanine Bound in Allosteric Site 4PPU ; 2.3 ; Crystal Structure of AtCM1 with Tyrosine Bound in Allosteric Site 5ZUU ; 1.95 ; Crystal structure of AtCPSF30 YTH domain in complex with 10mer m6A-modified RNA 7T34 ; 2.89 ; Crystal structure of AtDHDPR1 from Arabidopsis thaliana 7MDS ; 2.295 ; Crystal structure of AtDHDPS1 in complex with MBDTA-2 4K02 ; 1.9 ; Crystal structure of AtDHNAT1, a 1,4-dihydroxy-2-naphthoyl-CoA thioesterase from Arabidopsis thaliana 5WX9 ; 1.76 ; Crystal Structure of AtERF96 with GCC-box 2I9B ; 2.8 ; Crystal structure of ATF-urokinase receptor complex 1U79 ; 1.85 ; Crystal structure of AtFKBP13 6J2M ; 1.13 ; Crystal structure of AtFKBP53 C-terminal domain 7F2J ; 1.6 ; Crystal structure of AtFKBP53 FKBD in complex with rapamycin 4P1N ; 2.2 ; Crystal structure of Atg1-Atg13 complex 5XUY ; 2.2 ; Crystal structure of ATG101-ATG13HORMA 5XV1 ; 2.508 ; Crystal structure of ATG101-ATG13HORMA 5XV3 ; 2.57 ; Crystal structure of ATG101-ATG13HORMA 5XV4 ; 2.95 ; Crystal structure of ATG101-ATG13HORMA 5XV6 ; 2.455 ; Crystal structure of ATG101-ATG13HORMA 6VZF ; 2.03 ; Crystal Structure of Atg11 Coiled-Coil 3 3WAN ; 1.77 ; Crystal structure of Atg13 LIR-fused human LC3A_2-121 3WAO ; 2.6 ; Crystal structure of Atg13 LIR-fused human LC3B_2-119 3WAP ; 3.1 ; Crystal structure of Atg13 LIR-fused human LC3C_8-125 5JHF ; 3.21 ; Crystal structure of Atg13(17BR)-Atg13(17LR)-Atg17-Atg29-Atg31 complex 4P1W ; 3.2 ; Crystal structure of Atg13(17BR)-Atg17-Atg29-Atg31 complex 6ZAY ; 2.4 ; Crystal structure of Atg16L in complex with GDP-bound Rab33B 6Y09 ; 2.4 ; Crystal structure of Atg16L in complex with GTP-bound Rab33B (Q92L) 6KYB ; 2.8 ; Crystal structure of Atg18 from Saccharomyces cerevisiae 5JGE ; 1.91 ; Crystal structure of Atg19 coiled-coil complexed with Ape1 propeptide 7BRN ; 2.231 ; Crystal structure of Atg40 AIM fused to Atg8 7YDO ; 1.58 ; Crystal structure of Atg44 4GSJ ; 1.695 ; Crystal structure of Atg7 NTD K14A F16A D18A mutant 3RUI ; 1.906 ; Crystal structure of Atg7C-Atg8 complex 3VH3 ; 2.0 ; Crystal structure of Atg7CTD-Atg8 complex 3VH4 ; 2.65 ; Crystal structure of Atg7CTD-Atg8-MgATP complex 5YEC ; 2.147 ; Crystal structure of Atg7CTD-Atg8-MgATP complex in form II 6QUN ; 3.0 ; Crystal structure of AtGapC1 with the catalytic Cys149 irreversibly oxidized by H2O2 treatment 8H6B ; 1.897 ; Crystal structure of AtHPPD complexed with YH20702 8H6A ; 1.601 ; Crystal structure of AtHPPD complexed with YH21477 7X8H ; 1.986 ; Crystal structure of AtHPPD-(+)-Usnic acid complex 8IOK ; 1.991 ; Crystal structure of AtHPPD-CLJ507 complex 7X5U ; 1.6 ; Crystal structure of AtHPPD-diketonitrile complex 7X5R ; 1.644 ; Crystal structure of AtHPPD-Lancotrione complex 7X8D ; 1.695 ; Crystal structure of AtHPPD-phenylpyruvate complex 8HZ6 ; 1.605 ; Crystal structure of AtHPPD-QRY2089 complex 7X8I ; 2.096 ; Crystal structure of AtHPPD-Shikonin complex 8HZU ; 1.796 ; Crystal structure of AtHPPD-XHD complex 7X5Z ; 1.688 ; Crystal structure of AtHPPD-Y13162 complex 7XVH ; 1.83 ; Crystal structure of AtHPPD-Y13287 complex 8HXG ; 1.702 ; Crystal structure of AtHPPD-Y14116 complex 7X5S ; 1.706 ; Crystal structure of AtHPPD-Y14157 complex 7X5Y ; 1.498 ; Crystal structure of AtHPPD-Y14240 complex 7X5W ; 1.598 ; Crystal structure of AtHPPD-Y18022 complex 8HXH ; 1.992 ; Crystal structure of AtHPPD-Y18024 complex 7X64 ; 2.288 ; Crystal structure of AtHPPD-Y18027 complex 8HYM ; 1.794 ; Crystal structure of AtHPPD-Y18030 complex 8HYO ; 2.0 ; Crystal structure of AtHPPD-Y18031 complex 8HZ7 ; 1.802 ; Crystal structure of AtHPPD-Y181135 complex 8HZ9 ; 2.011 ; Crystal structure of AtHPPD-Y181136 complex 8HXF ; 1.697 ; Crystal structure of AtHPPD-Y181188 complex 8HYP ; 1.749 ; Crystal structure of AtHPPD-Y18400 complex 8HX2 ; 1.996 ; Crystal structure of AtHPPD-Y18405 complex 7X67 ; 1.996 ; Crystal structure of AtHPPD-Y18406 complex 8HX4 ; 1.896 ; Crystal structure of AtHPPD-Y18549 complex 8GWD ; 1.889 ; Crystal structure of AtHPPD-Y18734 complex 8I2S ; 1.592 ; Crystal structure of AtHPPD-Y18979 complex 8I36 ; 1.887 ; Crystal structure of AtHPPD-Y18980 complex 8I2P ; 1.797 ; Crystal structure of AtHPPD-Y19060 complex 7X62 ; 2.004 ; Crystal structure of AtHPPD-Y191051 complex 8HOW ; 1.79 ; Crystal structure of AtHPPD-Y191052 complex 7X69 ; 1.797 ; Crystal structure of AtHPPD-Y191053 complex 7X6M ; 1.815 ; Crystal structure of AtHPPD-Y191058 complex 8HWR ; 2.18 ; Crystal structure of AtHPPD-Y191193 complex 7X6N ; 1.691 ; Crystal structure of AtHPPD-Y191710 complex 8I0Y ; 1.792 ; Crystal structure of AtHPPD-Y191713 complex 8I0G ; 1.992 ; Crystal structure of AtHPPD-Y19543 complex 8HYS ; 1.7 ; Crystal structure of AtHPPD-Y19802 complex 8I2U ; 1.989 ; Crystal structure of AtHPPD-YH20282 complex 8HZA ; 1.69 ; Crystal structure of AtHPPD-YH20326 complex 8I15 ; 2.19 ; Crystal structure of AtHPPD-YH20335 complex 7X5X ; 2.196 ; Crystal structure of AtHPPD-YH20533 complex 7QFU ; 1.45 ; Crystal Structure of AtlA catalytic domain from Enterococcus feacalis 2EEK ; 1.85 ; Crystal structure of Atlantic cod trypsin complexed with benzamidine 3X1D ; 2.87 ; Crystal Structure of Atlastin from Drosophila melanogaster 7FEO ; 2.2 ; Crystal structure of AtMBD5 MBD domain 7FEF ; 2.39 ; Crystal structure of AtMBD6 with DNA 8A53 ; 1.95 ; Crystal structure of AtMCA-IIf C147A (metacaspase 9) from Arabidopsis thaliana 7W5M ; 2.15 ; Crystal structure of AtNASP in complex of H3 alpha3 helix peptide 5WWD ; 1.386 ; Crystal structure of AtNUDX1 5WY6 ; 1.779 ; Crystal structure of AtNUDX1 (E56A) 5DBN ; 2.549 ; Crystal structure of AtoDA complex 4BXI ; 2.2 ; Crystal structure of ATP binding domain of AgrC from Staphylococcus aureus 1YSR ; 1.78 ; Crystal Structure of ATP binding domain of PrrB from Mycobacterium Tuberculosis 7TGK ; 2.3 ; Crystal structure of ATP bound DesD, the desferrioxamine synthetase from the Streptomyces griseoflavus ferrimycin biosynthetic pathway 4FUT ; 2.0 ; Crystal structure of ATP bound MatB from Rhodopseudomonas palustris 4GXQ ; 2.0 ; Crystal Structure of ATP bound RpMatB-BxBclM chimera B1 5X8A ; 2.51 ; Crystal structure of ATP bound thymidylate kinase from thermus thermophilus HB8 1I2D ; 2.81 ; CRYSTAL STRUCTURE OF ATP SULFURYLASE FROM PENICILLIUM CHRYSOGENUM 1V47 ; 2.49 ; Crystal structure of ATP sulfurylase from Thermus thermophillus HB8 in complex with APS 1JED ; 2.95 ; Crystal Structure of ATP Sulfurylase in complex with ADP 1JEE ; 2.8 ; Crystal Structure of ATP Sulfurylase in complex with chlorate 1JEC ; 2.5 ; Crystal Structure of ATP Sulfurylase in complex with thiosulfate 6PI4 ; 2.1 ; Crystal structure of ATP synthase epsion chain ATP synthase epsilon chain (ATP synthase F1 sector epsilon subunit) (F-ATPase epsilon subunit) from Mycobacterium smegmatis 2R9V ; 2.1 ; Crystal structure of ATP synthase subunit alpha (TM1612) from Thermotoga maritima at 2.10 A resolution 5ZXD ; 2.288 ; Crystal structure of ATP-bound human ABCF1 3F5M ; 2.7 ; Crystal Structure of ATP-Bound Phosphofructokinase from Trypanosoma brucei 4DLK ; 2.02 ; Crystal Structure of ATP-Ca++ complex of purK: N5-carboxyaminoimidazole ribonucleotide synthetase 6YRA ; 4.0 ; Crystal structure of ATP-dependent caprolactamase from Pseudomonas jessenii 3P2L ; 2.295 ; Crystal Structure of ATP-dependent Clp protease subunit P from Francisella tularensis 8DVH ; 1.9 ; Crystal structure of ATP-dependent Lon protease from Bacillus subtillis (BsLonBA) 1J3B ; 2.0 ; Crystal structure of ATP-dependent phosphoenolpyruvate carboxykinase from Thermus thermophilus HB8 1XKV ; 2.2 ; Crystal Structure Of ATP-Dependent Phosphoenolpyruvate Carboxykinase From Thermus thermophilus HB8 2PC9 ; 2.4 ; Crystal Structure Of ATP-Dependent Phosphoenolpyruvate Carboxykinase From Thermus thermophilus HB8 7MHB ; 2.6 ; Crystal structure of ATP-dependent protease ATPase subunit HslU in complex with Adenosine 5'-diphosphate 8DPE ; 1.531 ; Crystal structure of ATP-dependent RNA helicase DDX42 1F2T ; 1.6 ; Crystal Structure of ATP-Free RAD50 ABC-ATPase 2QJF ; 2.2 ; Crystal structure of ATP-sulfurylase domain of human PAPS synthetase 1 5X8B ; 1.39 ; Crystal structure of ATP-TMP and ADP bound thymidylate kinase from Thermus thermophilus HB8 2P4F ; 1.4 ; Crystal Structure of Atp11 functional domain from Candida Glabrata 6LKN ; 3.9 ; Crystal structure of ATP11C-CDC50A in PtdSer-bound E2P state 2P4X ; 1.9 ; Crystal Structure of Atp12 from Paracoccus Denitrificans 2R31 ; 1.0 ; Crystal structure of atp12p from paracoccus denitrificans 7X0Q ; 2.9 ; Crystal structure of ATPase Clo1313_2554 from Clostridium thermocellum 6N6L ; 2.15 ; Crystal Structure of ATPase delta 1-79 Spa47 R189A R191A mutant 6N6Z ; 2.642 ; Crystal Structure of ATPase delta 1-79 Spa47 R189E 5SWJ ; 2.401 ; Crystal Structure of ATPase delta1-79 Spa47 5SWL ; 2.7 ; Crystal Structure of ATPase delta1-79 Spa47 E188A 6N72 ; 2.735 ; Crystal Structure of ATPase delta1-79 Spa47 E267R 6N75 ; 2.991 ; Crystal Structure of ATPase delta1-79 Spa47 E287A 6N76 ; 2.892 ; Crystal Structure of ATPase delta1-79 Spa47 E287R 5SYP ; 2.15 ; Crystal Structure of ATPase delta1-79 Spa47 K165A 6N6M ; 2.788 ; Crystal Structure of ATPase delta1-79 Spa47 R189A 6N70 ; 2.738 ; Crystal Structure of ATPase delta1-79 Spa47 R191A 6N71 ; 2.45 ; Crystal Structure of ATPase delta1-79 Spa47 R191E 6N73 ; 2.398 ; Crystal Structure of ATPase delta1-79 Spa47 R271A 6N74 ; 1.852 ; Crystal Structure of ATPase delta1-79 Spa47 R271E 5SYR ; 1.8 ; Crystal Structure of ATPase delta1-79 Spa47 R350A 6CZ1 ; 1.68 ; Crystal structure of ATPase domain of Human GRP78 bound to Ver155008 5UMB ; 2.3 ; Crystal structure of ATPase domain of Malaria GRP78 with ADP bound 3GL1 ; 1.92 ; Crystal structure of ATPase domain of Ssb1 chaperone, a member of the HSP70 family, from Saccharomyces cerevisiae 6MW7 ; 2.194 ; Crystal structure of ATPase module of SMCHD1 bound to ATP 1V43 ; 2.2 ; Crystal Structure of ATPase subunit of ABC Sugar Transporter 5AUQ ; 2.525 ; Crystal structure of ATPase-type HypB in the nucleotide free state 6BS4 ; 2.5 ; Crystal structure of ATPgammaS-bound bacterial Get3-like A and B in Mycobacterium tuberculosis 4I81 ; 3.8182 ; Crystal Structure of ATPgS bound ClpX Hexamer 6KRW ; 1.4 ; Crystal Structure of AtPTP1 at 1.4 angstrom 6KRX ; 1.7 ; Crystal Structure of AtPTP1 at 1.7 angstrom 1ONJ ; 1.555 ; Crystal structure of Atratoxin-b from Chinese cobra venom of Naja atra 3LS9 ; 1.4 ; Crystal structure of atrazine chlorohydrolase TrzN from Arthrobacter aurescens TC1 complexed with zinc 4GR6 ; 2.0 ; Crystal structure of AtRbcX2 from Arabidopsis thaliana 3AJD ; 1.27 ; Crystal structure of ATRM4 3A4T ; 2.3 ; Crystal structure of aTrm4 from M.jannaschii with sinefungin 3QLN ; 1.901 ; Crystal structure of ATRX ADD domain in free state 4XAU ; 3.0012 ; Crystal structure of AtS13 from Actinomadura melliaura 7Y10 ; 2.1 ; Crystal structure of AtSFH5-Sec14 in complex with DPPA 7Y11 ; 1.95 ; Crystal structure of AtSFH5-Sec14 in complex with egg PA 5A5Y ; 1.92 ; Crystal structure of AtTTM3 in complex with tripolyphosphate and magnesium ion (form A) 5A66 ; 2.05 ; Crystal structure of AtTTM3 in complex with tripolyphosphate and manganese ion (form A) 5A67 ; 1.3 ; Crystal structure of AtTTM3 in complex with tripolyphosphate and manganese ion (form B) 2R6I ; 2.59 ; Crystal structure of Atu1473 protein, a putative chaperone from Agrobacterium tumefaciens 2PJS ; 1.85 ; Crystal structure of Atu1953, protein of unknown function 1ZP6 ; 3.2 ; Crystal Structure of Atu3015, a Putative Cytidylate Kinase from Agrobacterium tumefaciens, Northeast Structural Genomics Target AtR62 6ITW ; 2.4 ; Crystal structure of Atu4351 from Agrobacterium tumefaciens 4RJZ ; 1.17 ; Crystal structure of ATU4361 sugar transporter from Agrobacterium fabrum C58, target EFI-510558, an open conformation 4QSE ; 1.37 ; Crystal structure of ATU4361 sugar transporter from Agrobacterium Fabrum c58, target efi-510558, with bound glycerol 4QSC ; 1.3 ; Crystal structure of ATU4361 sugar transporter from Agrobacterium Fabrum C58, target efi-510558, with bound maltose 4QSD ; 1.34 ; Crystal structure of atu4361 sugar transporter from Agrobacterium Fabrum C58, target efi-510558, with bound sucrose 7Z0U ; 2.85 ; Crystal structure of AtWRKY18 DNA-binding domain in complex with W-box DNA 5VBC ; 2.1 ; Crystal structure of ATXR5 in complex with histone H3.1 4O30 ; 2.1 ; Crystal structure of ATXR5 in complex with histone H3.1 and AdoHcy 5VA6 ; 2.4 ; CRYSTAL STRUCTURE OF ATXR5 IN COMPLEX WITH HISTONE H3.1 MONO-METHYLATED ON R26 5VAB ; 1.702 ; Crystal structure of ATXR5 PHD domain in complex with histone H3 5VAH ; 2.4 ; Crystal structure of ATXR5 SET domain in complex with histone H3 di-methylated on R26 5VAC ; 1.949 ; Crystal Structure of ATXR5 SET domain in complex with K36me3 histone H3 peptide 2D2E ; 1.7 ; Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8 2D2F ; 1.9 ; Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8 6OM2 ; 2.77 ; Crystal structure of atypical integrin alphaV beta8 with proTGF-beta1 ligand peptide 7BJG ; 2.45 ; Crystal structure of atypical Tm1 (Tm1-I/C), residues 262-363 7BJN ; 2.3 ; Crystal structure of atypical Tm1 (Tm1-I/C), residues 270-334 7VIR ; 1.9 ; Crystal structure of Au(100EQ)-apo-R168H/L169C-rHLFr 7VIP ; 1.9 ; Crystal structure of Au(10EQ)-apo-R168H/L169C-rHLFr 7VIU ; 1.5 ; Crystal structure of Au(200EQ)-apo-R168C/L169C-rHLFr 7VIS ; 1.85 ; Crystal structure of Au(200EQ)-apo-R168H/L169C-rHLFr 7VIT ; 1.9 ; Crystal structure of Au(400EQ)-apo-R168H/L169C-rHLFr 7VIQ ; 1.9 ; Crystal structure of Au(50EQ)-apo-R168H/L169C-rHLFr 5GU3 ; 2.03 ; Crystal structure of Au(E).CL-apo-E45C/R52C-rHLFr 5GU1 ; 2.05 ; Crystal structure of Au(L).CL-apo-E45C/R52C-rHLFr 5GU2 ; 2.12 ; Crystal structure of Au(M).CL-apo-E45C/R52C-rHLFr 5GU0 ; 1.95 ; Crystal structure of Au.CL-apo-E45C/R52C-rHLFr 3C6V ; 1.9 ; Crystal structure of AU4130/APC7354, a probable enzyme from the thermophilic fungus Aspergillus fumigatus 8AMK ; 2.85 ; Crystal structure of AUGUGGCAU duplex crystallized in the presence of calcium ions 8AMG ; 2.26 ; Crystal structure of AUGUGGCAU duplex with barium ions (model 1) 8AMI ; 1.79 ; Crystal structure of AUGUGGCAU duplex with barium ions (model 2) 8AML ; 2.75 ; Crystal structure of AUGUGGCAU duplex with cadmium ions 8AMM ; 2.86 ; Crystal structure of AUGUGGCAU duplex with cesium ions 8AMN ; 2.46 ; Crystal structure of AUGUGGCAU duplex with strontium ions 2ZQR ; 2.5 ; Crystal structure of AUH without RNA 5G4B ; 2.24 ; Crystal structure of Aura virus capsid protein in complex with piperazine. 6KOL ; 2.211 ; Crystal structure of auracyanin from photosynthetic bacterium Roseiflexus castenholzii 7FGP ; 1.47 ; Crystal structure of Aureimonas altamirenisis flavin-containing opine dehydrogenase (FAD-bound form) 4F6C ; 2.812 ; Crystal structure of Aureusimine biosynthetic cluster reductase domain 4F6L ; 3.856 ; Crystal structure of Aureusimine biosynthetic cluster reductase domain 6Z4Y ; 2.25 ; Crystal structure of Aurora A (STK6) in complex with macrocycle ODS2003208 4CEG ; 2.1 ; Crystal structure of Aurora A 122-403 C290A, C393A bound to ADP 8OF5 ; 1.97 ; Crystal structure of Aurora A 122-403 C290A, N332A, Q335A, C393A bound to ADP 3DAJ ; 2.0 ; Crystal structure of Aurora A complexed with an inhibitor discovered through site-directed dynamic tethering 7AYI ; 2.86 ; Crystal structure of Aurora A in complex with 7-(2-Anilinopyrimidin-4-yl)-1-benzazepin-2-one derivative (compound 2a) 7AYH ; 2.8 ; Crystal structure of Aurora A in complex with 7-(2-Anilinopyrimidin-4-yl)-1-benzazepin-2-one derivative (compound 2c) 3HA6 ; 2.36 ; Crystal structure of aurora A in complex with TPX2 and compound 10 3E5A ; 2.3 ; Crystal structure of Aurora A in complex with VX-680 and TPX2 3M11 ; 2.75 ; Crystal Structure of Aurora A Kinase complexed with inhibitor 5EW9 ; 2.181 ; Crystal Structure of Aurora A Kinase Domain Bound to MK-5108 4C2W ; 1.7 ; Crystal structure of Aurora B in complex with AMP-PNP 5EYK ; 1.93 ; CRYSTAL STRUCTURE OF AURORA B IN COMPLEX WITH BI 847325 2VGP ; 1.7 ; Crystal structure of Aurora B kinase in complex with a aminothiazole inhibitor 2VGO ; 1.7 ; Crystal structure of Aurora B kinase in complex with Reversine inhibitor 4JAJ ; 2.7 ; Crystal Structure of Aurora Kinase A in complex with BENZO[C][1,8]NAPHTHYRIDIN-6(5H)-ONE 4JAI ; 3.2 ; Crystal Structure of Aurora Kinase A in complex with N-{4-[(6-oxo-5,6-dihydrobenzo[c][1,8]naphthyridin-1-yl)amino]phenyl}benzamide 1MUO ; 2.9 ; CRYSTAL STRUCTURE OF AURORA-2, AN ONCOGENIC SERINE-THREONINE KINASE 5LXM ; 2.08 ; Crystal structure of Aurora-A bound to a hydrocarbon-stapled proteomimetic of TPX2 5ZAN ; 2.85 ; Crystal Structure of Aurora-A in complex with a new Quinazoline inhibitor 3COH ; 2.7 ; Crystal structure of Aurora-A in complex with a pentacyclic inhibitor 5ONE ; 2.6 ; Crystal structure of Aurora-A in complex with FMF-03-145-1 (compound 2) 5ORL ; 1.69 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORN ; 2.19 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORO ; 2.12 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORP ; 2.19 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORR ; 2.09 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORS ; 1.98 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORT ; 2.56 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORV ; 1.88 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORW ; 2.0 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORX ; 1.88 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORY ; 1.99 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5ORZ ; 1.92 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS0 ; 1.74 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS1 ; 1.9 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS2 ; 1.92 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS3 ; 1.81 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS4 ; 1.88 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS5 ; 1.74 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OS6 ; 2.2 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OSD ; 1.99 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OSE ; 1.9 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5OSF ; 1.89 ; Crystal structure of Aurora-A kinase in complex with an allosterically binding fragment 5G1X ; 1.72 ; Crystal structure of Aurora-A kinase in complex with N-Myc 6HJK ; 2.4 ; Crystal Structure of Aurora-A L210C catalytic domain in complex with ASDO2 6HJJ ; 2.13 ; Crystal structure of Aurora-A L210C catalytic domain in complex with ASDO6 ligand 1MQ4 ; 1.9 ; Crystal Structure of Aurora-A Protein Kinase 3LAU ; 2.1 ; Crystal Structure of Aurora2 kinase in complex with a GSK3beta inhibitor 5K3Y ; 1.6 ; Crystal structure of AuroraB/INCENP in complex with BI 811283 8FWL ; 2.19 ; Crystal structure of Australian bat lyssavirus nucleoprotein in complex with phosphoprotein chaperone 2QQP ; 3.8 ; Crystal Structure of Authentic Providence Virus 6EI3 ; 2.1 ; Crystal structure of auto inhibited POT family peptide transporter 2PZ1 ; 2.25 ; Crystal Structure of Auto-inhibited Asef 6A20 ; 2.4 ; Crystal Structure of auto-inhibited Kinesin-3 KIF13B 1JOE ; 2.4 ; Crystal Structure of Autoinducer-2 Production Protein (LuxS) from Heamophilus influenzae 3SIQ ; 2.4 ; Crystal Structure of autoinhibited dIAP1-BIR1 domain 4EJN ; 2.19 ; Crystal structure of autoinhibited form of AKT1 in complex with N-(4-(5-(3-acetamidophenyl)-2-(2-aminopyridin-3-yl)-3H-imidazo[4,5-b]pyridin-3-yl)benzyl)-3-fluorobenzamide 2R09 ; 1.9 ; Crystal Structure of Autoinhibited Form of Grp1 Arf GTPase Exchange Factor 2R0D ; 2.04 ; Crystal Structure of Autoinhibited Form of Grp1 Arf GTPase Exchange Factor 1UEC ; 1.82 ; Crystal structure of autoinhibited form of tandem SH3 domain of p47phox 4EPC ; 2.9 ; Crystal structure of Autolysin repeat domains from Staphylococcus epidermidis 4EBR ; 2.701 ; Crystal structure of Autophagic E2, Atg10 4WY4 ; 1.4 ; Crystal structure of autophagic SNARE complex 3M95 ; 2.4 ; Crystal structure of autophagy-related protein Atg8 from the silkworm Bombyx mori 2Z2Y ; 1.89 ; Crystal structure of autoprocessed form of Tk-subtilisin 3SDA ; 2.8 ; Crystal structure of autoreactive-Valpha14-Vbeta6 NKT TCR in complex with CD1d-beta-galactosylceramide 3SDD ; 3.0 ; Crystal structure of autoreactive-Valpha14-Vbeta6 NKT TCR in complex with CD1d-beta-lactosylceramide 3SDC ; 3.1 ; Crystal structure of autoreactive-Valpha14-Vbeta6 NKT TCR in complex with CD1d-globotrihexosylceramide 3SCM ; 2.5 ; Crystal structure of autoreactive-Valpha14-Vbeta6 NKT TCR in complex with CD1d-isoglobotrihexosylceramide 4APQ ; 3.0 ; Crystal structure of autoreactive-Valpha14-Vbeta6 NKT TCR in complex with CD1d-sulfatide 2XR9 ; 2.05 ; Crystal structure of Autotaxin (ENPP2) 2XRG ; 3.2 ; Crystal structure of Autotaxin (ENPP2) in complex with the HA155 boronic acid inhibitor 5IJQ ; 2.05 ; Crystal structure of autotaxin (ENPP2) re-refined 7P0K ; 2.2 ; Crystal structure of Autotaxin (ENPP2) with 18F-labeled positron emission tomography ligand 5DLT ; 1.6 ; Crystal structure of Autotaxin (ENPP2) with 7-alpha-hydroxycholesterol 5DLV ; 2.0 ; Crystal structure of Autotaxin (ENPP2) with tauroursodeoxycholic acid (TUDCA) 5DLW ; 1.8 ; Crystal structure of Autotaxin (ENPP2) with tauroursodeoxycholic acid (TUDCA) and lysophosphatidic acid (LPA) 7P4O ; 1.69 ; Crystal structure of Autotaxin and 9(R)-delta6a,10a-THC 5L0B ; 2.41 ; Crystal Structure of Autotaxin and Compound 1 5L0E ; 3.06 ; Crystal Structure of Autotaxin and Compound 1 5L0K ; 2.73 ; Crystal Structure of Autotaxin and Compound PF-8380 7P4J ; 1.79 ; Crystal structure of Autotaxin and tetrahydrocannabinol 8C3O ; 2.47 ; Crystal structure of autotaxin gamma and compound MEY-003 8C3P ; 2.38 ; Crystal structure of autotaxin gamma in complex with LPA 18:1 3WAW ; 1.954 ; Crystal Structure of Autotaxin in Complex with 2BoA 3WAX ; 1.899 ; Crystal Structure of Autotaxin in Complex with 3BoA 3WAY ; 1.746 ; Crystal Structure of Autotaxin in Complex with 4BoA 6LEH ; 2.0 ; Crystal structure of Autotaxin in complex with an inhibitor 5OHI ; 1.66 ; Crystal structure of autotaxin in complex with BI-2545 3WAV ; 1.797 ; Crystal Structure of Autotaxin in Complex with Compound 10 5OLB ; 1.82 ; crystal structure of autotaxin in complex with PF-8380 5IJS ; 2.2 ; Crystal structure of autotaxin with orthovanadate bound as a trigonal bipyramidal intermediate analog 5INH ; 1.84 ; Crystal structure of Autotaxin/ENPP2 with a covalent fragment 5BTM ; 2.778 ; Crystal structure of AUUCU repeating RNA that causes spinocerebellar ataxia type 10 (SCA10) 7F60 ; 2.85 ; Crystal structure of auxiliary protein in complex with human nuclear protein 7YC2 ; 2.9 ; Crystal structure of auxiliary protein in complex with human protein 3N0A ; 2.2 ; Crystal structure of auxilin (40-400) 1NZ6 ; 2.5 ; Crystal Structure of Auxilin J-Domain 1LR5 ; 1.9 ; Crystal structure of auxin binding protein 1LRH ; 1.9 ; Crystal structure of auxin-binding protein 1 in complex with 1-naphthalene acetic acid 1THZ ; 1.8 ; Crystal Structure of Avian AICAR Transformylase in Complex with a Novel Inhibitor Identified by Virtual Ligand Screening 1G8M ; 1.75 ; CRYSTAL STRUCTURE OF AVIAN ATIC, A BIFUNCTIONAL TRANSFORMYLASE AND CYCLOHYDROLASE ENZYME IN PURINE BIOSYNTHESIS AT 1.75 ANG. RESOLUTION 4CYE ; 3.2 ; Crystal structure of avian FAK FERM domain FAK31-405 at 3.2A 3HW4 ; 1.9 ; Crystal structure of avian influenza A virus in complex with TMP 4E5E ; 2.048 ; Crystal structure of avian influenza virus PAn Apo 4E5F ; 2.392 ; Crystal structure of avian influenza virus PAn bound to compound 1 4E5G ; 2.647 ; Crystal structure of avian influenza virus PAn bound to compound 2 4E5H ; 2.158 ; Crystal structure of avian influenza virus PAn bound to compound 3 4E5I ; 2.944 ; Crystal structure of avian influenza virus PAn bound to compound 4 4E5J ; 2.35 ; Crystal structure of avian influenza virus PAn bound to compound 5 4E5L ; 2.469 ; Crystal structure of avian influenza virus PAn bound to compound 6 3HW5 ; 1.81 ; crystal structure of avian influenza virus PA_N in complex with AMP 3HW6 ; 2.5 ; Crystal structure of avian influenza virus PA_N in complex with Mn 1VYO ; 1.48 ; Crystal structure of avidin 3FDC ; 3.1 ; Crystal Structure of Avidin 4JHQ ; 1.99 ; Crystal structure of avidin - 6-(6-biotinamidohexanamido)hexanoylferrocene complex 4I60 ; 2.5 ; Crystal structure of avidin - biotinylruthenocene complex 5CHK ; 2.2 ; Crystal structure of avidin - HABA complex (hexagonal crystal form) 5HLM ; 2.5 ; Crystal structure of avidin complex with a ferrocene biotin derivative 7P4Z ; 2.2 ; Crystal structure of avidin from hen egg white in space group C2 5IRU ; 2.0 ; Crystal structure of avidin in complex with 1-biotinylpyrene 5IRW ; 2.1 ; Crystal structure of avidin in complex with 1-desthiobiotinylpyrene 5MYQ ; 1.89 ; Crystal structure of avidin in complex with ferrocene homobiotin derivative 2IUY ; 2.1 ; Crystal structure of AviGT4, a glycosyltransferase involved in Avilamycin A biosynthesis 2IV3 ; 2.3 ; Crystal structure of AviGT4, a glycosyltransferase involved in Avilamycin A biosynthesis 4XAA ; 2.3 ; Crystal Structure of AviO1 from Streptomyces viridochromogenes Tue57 7T6A ; 1.65 ; Crystal structure of Avr1 (SIX4) from Fusarium oxysporum f. sp. lycopersici 7T69 ; 1.68 ; Crystal structure of Avr3 (SIX1) from Fusarium oxysporum f. sp. lycopersici 2OF8 ; 1.05 ; Crystal structure of AVR4 (D39A/C122S)-BNA complex 2OFB ; 1.16 ; Crystal structure of AVR4 (R112L/C122S)-BNA complex 5Z1V ; 1.661 ; Crystal structure of AvrPib 1S28 ; 3.0 ; Crystal Structure of AvrPphF ORF1, the Chaperone for the Type III Effector AvrPphF ORF2 from P. syringae 1S21 ; 2.0 ; Crystal Structure of AvrPphF ORF2, A Type III Effector from P. syringae 2FD4 ; 1.8 ; Crystal Structure of AvrPtoB (436-553) 4Z8V ; 2.3 ; CRYSTAL STRUCTURE OF AVRRXO1-ORF1:-ORF2 COMPLEX, NATIVE. 4Z8U ; 1.65 ; CRYSTAL STRUCTURE OF AvrRxo1-ORF1:-ORF2 WITH ATP 4Z8Q ; 1.89 ; CRYSTAL STRUCTURE OF AvrRxo1-ORF1:AvrRxo1-ORF2 COMPLEX, SELENOMETHIONINE SUBSTITUTED. 4Z8T ; 1.64 ; CRYSTAL STRUCTURE OF AvrRxo1-ORF1:AvrRxo1-ORF2 WITH SULPHATE IONS 3VYH ; 1.63 ; Crystal structure of aW116R mutant of nitrile hydratase from Pseudonocardia thermophilla 3W7V ; 1.85 ; Crystal Structure of Axe2, an Acetylxylan Esterase from Geobacillus stearothermophilus 4J2J ; 2.5 ; Crystal structure of AXH domain complex with Capicua 4J2L ; 3.15 ; Crystal Structure of AXH domain complexed with Capicua 1WSP ; 2.9 ; Crystal structure of axin dix domain 2FT9 ; 2.5 ; Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic acid 2FTB ; 2.0 ; Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to oleic acid 1UGS ; 2.0 ; Crystal structure of aY114T mutant of Co-type nitrile hydratase 7OMD ; 1.601 ; Crystal structure of azacoelenterazine-bound Renilla reniformis luciferase variant RLuc8-D162A 1YHQ ; 2.4 ; Crystal Structure Of Azithromycin Bound To The G2099A Mutant 50S Ribosomal Subunit Of Haloarcula Marismortui 8GS1 ; 2.7 ; Crystal structure of AziU2-U3 complex from Streptomyces sahachiroi NRRL2485 7WUX ; 1.8 ; Crystal structure of AziU3/U2 complexed with (5S,6S)-O7-sulfo DADH from Streptomyces sahachiroi 7WUW ; 1.75 ; Crystal structure of AziU3/U2 from Streptomyces sahachiroi 8H4J ; 2.0 ; Crystal Structure of AzoR-FMN-Lyb24 complex 3W77 ; 1.66 ; Crystal Structure of azoreductase AzrA 3W7A ; 2.1 ; Crystal Structure of azoreductase AzrC fin complex with sulfone-modified azo dye Acid Red 88 3W78 ; 2.62 ; Crystal Structure of azoreductase AzrC in complex with NAD(P)-inhibitor Cibacron Blue 3W79 ; 2.4 ; Crystal Structure of azoreductase AzrC in complex with sulfone-modified azo dye Orange I 3P0R ; 1.799 ; Crystal structure of azoreductase from Bacillus anthracis str. Sterne 7C0E ; 2.204 ; Crystal structure of Azospirillum brasilense L-2-keto-3-deoxyarabonate dehydratase (2-oxobutyrate-bound form) 7C0C ; 1.9 ; Crystal structure of Azospirillum brasilense L-2-keto-3-deoxyarabonate dehydratase (apo form) 7C0D ; 1.6 ; Crystal structure of Azospirillum brasilense L-2-keto-3-deoxyarabonate dehydratase (Hydroxypyruvate-bound form) 6JNJ ; 1.5 ; Crystal structure of Azospirillum brasilense L-arabinose 1-dehydrogenase (apo-form) 6JNK ; 2.2 ; Crystal structure of Azospirillum brasilense L-arabinose 1-dehydrogenase (NADP-bound form) 7CGR ; 2.093 ; Crystal structure of Azospirillum brasilense L-arabinose 1-dehydrogenase E147A mutant (NADP and glycerol bound form) 7CGQ ; 2.208 ; Crystal structure of Azospirillum brasilense L-arabinose 1-dehydrogenase E147A mutant (NADP and L-arabinose bound form) 1CC5 ; 2.5 ; CRYSTAL STRUCTURE OF AZOTOBACTER CYTOCHROME C5 AT 2.5 ANGSTROMS RESOLUTION 6XB9 ; 2.25 ; Crystal structure of Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase in complex with 3-hydroxypropionic acid 7KOV ; 2.95 ; Crystal structure of Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase in complex with thiocyanate 7B81 ; 2.092 ; Crystal structure of Azotobacter vinelandii L-rhamnose 1-dehydrogenase (NAD bound-form) 7DO5 ; 1.836 ; Crystal structure of Azotobacter vinelandii L-rhamnose 1-dehydrogenase(apo-form) 7DO7 ; 1.57 ; Crystal structure of Azotobacter vinelandii L-rhamnose 1-dehydrogenase(NAD and L-rhamnose bound-form) 7DO6 ; 2.37 ; Crystal structure of Azotobacter vinelandii L-rhamnose 1-dehydrogenase(NADP bound-form) 3KLE ; 3.2 ; Crystal structure of AZT-resistant HIV-1 Reverse Transcriptase crosslinked to a DSDNA with a bound excision product, AZTPPPPA 3KLH ; 2.9 ; Crystal structure of AZT-Resistant HIV-1 Reverse Transcriptase crosslinked to post-translocation AZTMP-Terminated DNA (COMPLEX P) 3KLG ; 3.65 ; Crystal structure of AZT-resistant HIV-1 Reverse Transcriptase crosslinked to pre-translocation AZTMP-Terminated DNA (COMPLEX N) 2CCW ; 1.13 ; Crystal structure of Azurin II at atomic resolution (1.13 angstrom) 2GHZ ; 1.6 ; Crystal structure of Azurin Phe114Pro mutant 1RKR ; 2.45 ; CRYSTAL STRUCTURE OF AZURIN-I FROM ALCALIGENES XYLOSOXIDANS NCIMB 11015 8SZX ; 2.0 ; Crystal structure of b'-WD40 Lys17Ala mutant 5DEF ; 1.6 ; Crystal structure of B*27:04 complex bound to the pVIPR peptide 5DEG ; 1.83 ; Crystal structure of B*27:06 bound to the pVIPR peptide 3DX6 ; 1.701 ; Crystal Structure of B*4402 presenting a 10mer EBV epitope 3DX8 ; 2.1 ; Crystal Structure of B*4405 presenting a 10mer EBV epitope 4UDJ ; 1.94 ; Crystal structure of b-1,4-mannopyranosyl-chitobiose phosphorylase at 1.60 Angstrom in complex with beta-D-mannopyranose and inorganic phosphate 4UDG ; 1.6 ; Crystal structure of b-1,4-mannopyranosyl-chitobiose phosphorylase at 1.60 Angstrom in complex with N-acetylglucosamine and inorganic phosphate 4UDK ; 1.76 ; Crystal structure of b-1,4-mannopyranosyl-chitobiose phosphorylase at 1.76 Angstrom from unknown human gut bacteria (Uhgb_MP) in complex with N-acetyl-D-glucosamine, beta-D-mannopyranose and inorganic phosphate 4UDI ; 1.8 ; Crystal structure of b-1,4-mannopyranosyl-chitobiose phosphorylase at 1.85 Angstrom from unknown human gut bacteria (Uhgb_MP) 1L1L ; 1.75 ; CRYSTAL STRUCTURE OF B-12 DEPENDENT (CLASS II) RIBONUCLEOTIDE REDUCTASE 388D ; 1.55 ; CRYSTAL STRUCTURE OF B-DNA WITH INCORPORATED 2'-DEOXY-2'-FLUORO-ARABINO-FURANOSYL THYMINES: IMPLICATIONS OF CONFORMATIONAL PREORGANIZATION FOR DUPLEX STABILITY 389D ; 1.55 ; CRYSTAL STRUCTURE OF B-DNA WITH INCORPORATED 2'-DEOXY-2'-FLUORO-ARABINO-FURANOSYL THYMINES: IMPLICATIONS OF CONFORMATIONAL PREORGANIZATION FOR DUPLEX STABILITY 7UYN ; 1.65 ; Crystal structure of B-form alien DNA 5'-CTTBPPBBSSZZSAAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase 7UYO ; 1.65 ; Crystal structure of B-form alien DNA 5'-CTTSSPBZPSZBBAAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase 7UYP ; 1.5 ; Crystal structure of B-form alien DNA 5'-CTTZZPBSBSZPPAAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase 2FJY ; 2.3 ; Crystal Structure of B-form Bombyx mori Pheromone Binding Protein 6C48 ; 2.32 ; Crystal structure of B-Myb-LIN9-LIN52 complex 5CSX ; 2.51 ; CRYSTAL STRUCTURE OF B-RAF IN COMPLEX WITH BI 882370 4E4X ; 3.6 ; Crystal Structure of B-Raf Kinase Domain in Complex with a Dihydropyrido[2,3-d]pyrimidinone-based Inhibitor 3CWV ; 1.95 ; Crystal structure of B-subunit of the DNA gyrase from Myxococcus xanthus 4NL1 ; 2.3 ; Crystal structure of B. anthracis DHPS with compound 11: (E)-N-[4-(trifluoromethyl)benzyl]-1-[4-(trifluoromethyl)phenyl]methanimine 4D9P ; 2.26 ; Crystal structure of B. anthracis DHPS with compound 17 4DAF ; 2.501 ; Crystal structure of B. anthracis DHPS with compound 19 4D8A ; 2.183 ; Crystal structure of B. anthracis DHPS with compound 21 4DAI ; 2.5 ; Crystal structure of B. anthracis DHPS with compound 23 4D8Z ; 2.198 ; Crystal structure of B. anthracis DHPS with compound 24 4DB7 ; 2.5 ; Crystal structure of B. anthracis DHPS with compound 25 4NIL ; 2.18 ; Crystal structure of B. anthracis DHPS with compound 5: 4-[(trifluoromethyl)sulfanyl]benzamide 4NIR ; 1.772 ; Crystal structure of B. anthracis DHPS with compound 6: 3-[6-(trifluoromethyl)-1H-benzimidazol-2-yl]propan-1-ol 4NHV ; 1.992 ; Crystal structure of B. anthracis DHPS with interfacial compound 4: 5-(trifluoromethyl)-1,2-benzoxazol-3-amine 3FL8 ; 2.2881 ; Crystal structure of B. anthracis dihydrofolate reductase (DHFR) with RAB1, a TMP-dihydrophthalazine derivative 3FL9 ; 2.4 ; Crystal structure of B. anthracis dihydrofolate reductase (DHFR) with trimethoprim 1T6B ; 2.5 ; Crystal structure of B. anthracis Protective Antigen complexed with human Anthrax toxin receptor 5FUS ; 1.87 ; Crystal structure of B. cenocepacia DfsA 1UOK ; 2.0 ; CRYSTAL STRUCTURE OF B. CEREUS OLIGO-1,6-GLUCOSIDASE 2G7M ; 2.9 ; Crystal structure of B. fragilis N-succinylornithine transcarbamylase P90E mutant complexed with carbamoyl phosphate and N-acetylnorvaline 5X6J ; 2.1 ; Crystal structure of B. globisporus adenylate kinase variant 6KTA ; 2.3 ; Crystal structure of B. halodurans MntR in apo form 6KTB ; 2.5 ; Crystal structure of B. halodurans MntR in apo form 7CV0 ; 1.998 ; Crystal structure of B. halodurans NiaR in apo form 7CV2 ; 1.802 ; Crystal structure of B. halodurans NiaR in niacin-bound form 1ZBF ; 1.5 ; Crystal structure of B. halodurans RNase H catalytic domain mutant D132N 3OQH ; 1.901 ; Crystal structure of B. licheniformis CDPS yvmC-BLIC 3OQJ ; 2.399 ; Crystal structure of B. licheniformis CDPS yvmC-BLIC in complex with CAPSO 3OQI ; 1.701 ; Crystal structure of B. licheniformis CDPS yvmC-BLIC in complex with CHES 3OM2 ; 1.9 ; Crystal structure of B. megaterium levansucrase mutant D257A 3OM4 ; 1.75 ; Crystal structure of B. megaterium levansucrase mutant K373A 3OM5 ; 1.95 ; Crystal structure of B. megaterium levansucrase mutant N252A 3OM6 ; 1.96 ; Crystal structure of B. megaterium levansucrase mutant Y247A 3OM7 ; 1.86 ; Crystal structure of B. megaterium levansucrase mutant Y247W 5I7E ; 1.65 ; Crystal structure of B. pseudomallei FabI in apo form 5I7S ; 1.595 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT01 5I7V ; 2.6 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT02 5I8Z ; 1.623 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT12 5I8W ; 1.629 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT401 5I9L ; 1.8 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT404 5I7F ; 2.7 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT405 5I9M ; 2.25 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT408 5I9N ; 2.512 ; Crystal structure of B. pseudomallei FabI in complex with NAD and PT412 5IFL ; 2.6 ; Crystal structure of B. pseudomallei FabI in complex with NAD and triclosan 5SYK ; 1.8 ; Crystal structure of B. pseudomallei KatG treated with hydrogen peroxide 5SXQ ; 2.1 ; Crystal structure of B. pseudomallei KatG with isonicotinic acid hydrazide bound 5SXR ; 1.69 ; Crystal structure of B. pseudomallei KatG with NAD bound 2OV4 ; 2.5 ; Crystal structure of B. stearothermophilus tryptophanyl tRNA synthetase in complex with adenosine tetraphosphate 1LD3 ; 2.6 ; Crystal Structure of B. subilis ferrochelatase with Zn(2+) bound at the active site. 5T91 ; 1.53 ; Crystal structure of B. subtilis 168 GlpQ in complex with bicine 5T9C ; 1.48 ; Crystal structure of B. subtilis 168 GlpQ in complex with glycerol-3-phosphate (1 hour soak) 5T9B ; 1.62 ; Crystal structure of B. subtilis 168 GlpQ in complex with glycerol-3-phosphate (5 minute soak) 5X6I ; 2.0 ; Crystal structure of B. subtilis adenylate kinase variant 1JL3 ; 1.6 ; Crystal Structure of B. subtilis ArsC 4DCU ; 2.0 ; Crystal Structure of B. subtilis EngA in complex with GDP 4DCV ; 2.6 ; Crystal Structure of B. subtilis EngA in complex with GMPPCP 4DCT ; 2.3 ; Crystal Structure of B. subtilis EngA in complex with half-occupacy GDP 4DCS ; 2.25 ; Crystal Structure of B. subtilis EngA in complex with sulfate ion and GDP 3M4Z ; 1.94 ; Crystal Structure of B. subtilis ferrochelatase with Cobalt bound at the active site 2HK6 ; 1.71 ; Crystal Structure of B. subtilis ferrochelatase with Iron bound at the active site 7B1R ; 2.8 ; Crystal structure of B. subtilis glucose-1-phosphate uridylyltransferase YngB 3BYK ; 2.1 ; Crystal structure of B. subtilis levansucrase mutant D247A 3BYJ ; 2.1 ; Crystal structure of B. subtilis levansucrase mutant D86A 3BYL ; 2.1 ; Crystal structure of B. subtilis levansucrase mutant E342A 3BYN ; 2.1 ; Crystal structure of B. subtilis levansucrase mutant E342A bound to raffinose 2FQO ; 1.87 ; Crystal structure of B. subtilis LuxS in complex with (2S)-2-Amino-4-[(2R,3R)-2,3-dihydroxy-3-N- hydroxycarbamoyl-propylmercapto]butyric acid 1YCL ; 1.8 ; Crystal Structure of B. subtilis LuxS in Complex with a Catalytic 2-Ketone Intermediate 1EXC ; 2.7 ; CRYSTAL STRUCTURE OF B. SUBTILIS MAF PROTEIN COMPLEXED WITH D-(UTP) 1NY1 ; 1.8 ; CRYSTAL STRUCTURE OF B. SUBTILIS POLYSACCHARIDE DEACETYLASE NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET SR127. 7RMW ; 2.45 ; Crystal structure of B. subtilis PurR bound to ppGpp 1TWJ ; 2.5 ; Crystal Structure of B. subtilis PurS P21 Crystal Form 3JV2 ; 2.5 ; Crystal Structure of B. subtilis SecA with bound peptide 2W1T ; 2.6 ; Crystal Structure of B. subtilis SpoVT 6UF5 ; 2.8 ; Crystal structure of B. subtilis TagT 6UF6 ; 2.2 ; Crystal structure of B. subtilis TagU 6UF3 ; 1.6 ; Crystal structure of B. subtilis TagV 7O2N ; 2.8 ; Crystal structure of B. subtilis UGPase YngB 3V7Q ; 1.55 ; Crystal structure of B. subtilis YlxQ at 1.55 A resolution 8SBG ; 1.94 ; Crystal structure of B. theta tryptophanase in holo form 4J5F ; 1.72 ; Crystal Structure of B. thuringiensis AiiA mutant F107W 4J5H ; 1.45 ; Crystal Structure of B. thuringiensis AiiA mutant F107W with N-decanoyl-L-homoserine bound at the active site 3LD0 ; 2.2 ; Crystal structure of B.licheniformis Anti-TRAP protein, an antagonist of TRAP-RNA interactions 2BX9 ; 2.8 ; Crystal structure of B.subtilis Anti-TRAP protein, an antagonist of TRAP-RNA interactions 1ZUW ; 1.75 ; Crystal structure of B.subtilis glutamate racemase (RacE) with D-Glu 2FQT ; 1.79 ; Crystal structure of B.subtilis LuxS in complex with (2S)-2-Amino-4-[(2R,3S)-2,3-dihydroxy-3-N-hydroxycarbamoyl-propylmercapto]butyric acid 3K36 ; 2.2 ; Crystal Structure of B/Perth Neuraminidase 3K38 ; 2.19 ; Crystal Structure of B/Perth Neuraminidase D197E mutant 3K3A ; 2.59 ; Crystal Structure of B/Perth Neuraminidase D197E mutant in complex with Oseltamivir 3K39 ; 2.54 ; Crystal Structure of B/Perth Neuraminidase D197E mutant in complex with Peramivir 3K37 ; 2.0 ; Crystal Structure of B/Perth Neuraminidase in complex with Peramivir 6NL7 ; 1.4 ; Crystal structure of B1 immunoglobulin-binding domain of Streptococcal Protein G (T16F, T18A, V21H, T25H, K28Y, V29I, K31R, Q32A, Y33L, N35K, D36A, N37Q) 8HYB ; 2.193 ; Crystal structure of B1 IMP-1 MBL in complex with 2-amino-5-phenethylthiazole-4-carboxylic acid 8JAO ; 2.194 ; Crystal structure of B1 IMP-1 MBL in complex with 2-amino-5-phenethylthiazole-4-carboxylic acid 8HY6 ; 1.4 ; Crystal structure of B1 NDM-1 MBL in complex with 2-amino-5-phenethylthiazole-4-carboxylic acid 8HYD ; 1.71 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-(2-(thiophen-2-yl)ethyl)thiazole-4-carboxylic acid 8HX5 ; 2.6 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-(4-methoxybenzyl)thiazole-4-carboxylic acid 8HXP ; 1.94 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-(but-3-en-1-yl)thiazole-4-carboxylic acid 8HY1 ; 1.937 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-(thiophen-2-ylmethyl)thiazole-4-carboxylic acid 8HXW ; 2.39 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-heptylthiazole-4-carboxylic acid 8HXV ; 2.603 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-hexylthiazole-4-carboxylic acid 8HXO ; 1.902 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-isobutylthiazole-4-carboxylic acid 8HXU ; 1.945 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-pentylthiazole-4-carboxylic acid 8HY2 ; 2.0 ; Crystal structure of B1 VIM-2 MBL in complex with 2-amino-5-phenethylthiazole-4-carboxylic acid 7JWJ ; 3.251 ; Crystal Structure of B17-C1 TCR-H2Db 7JWI ; 3.02 ; Crystal structure of B17.R2 TCR in complex with H2D-b-NP366 8HXN ; 1.35 ; Crystal structure of B2 Sfh-I MBL in complex with 2-amino-5-(4-(but-3-en-1-yloxy)benzyl)thiazole-4-carboxylic acid 8HXI ; 1.81 ; Crystal structure of B3 L1 MBL in complex with 2-amino-5-(4-isopropylbenzyl)thiazole-4-carboxylic acid 8HXE ; 2.382 ; Crystal structure of B3 L1 MBL in complex with 2-amino-5-(4-propylbenzyl)thiazole-4-carboxylic acid 5HH5 ; 1.8 ; Crystal structure of B3 metallo-beta-lactamase L1 complexed with a phosphonate-based inhibitor 5HH6 ; 1.8 ; Crystal structure of B3 metallo-beta-lactamase L1 in complex with a phosphonate-based inhibitor 7QRY ; 2.07 ; Crystal structure of B30.2 PRYSPRY domain of MID1 7QRZ ; 1.57 ; Crystal structure of B30.2 PRYSPRY domain of MID2 7QS0 ; 2.3 ; Crystal structure of B30.2 PRYSPRY domain of TRIM10 7QS1 ; 1.93 ; Crystal structure of B30.2 PRYSPRY domain of TRIM11 7QS2 ; 1.7 ; Crystal structure of B30.2 PRYSPRY domain of TRIM15 7QS3 ; 1.75 ; Crystal structure of B30.2 PRYSPRY domain of TRIM16 7QS4 ; 2.25 ; Crystal structure of B30.2 PRYSPRY domain of TRIM36 7QS5 ; 1.65 ; Crystal structure of B30.2 PRYSPRY domain of TRIM67 5IW1 ; 3.001 ; Crystal Structure of B4.2.3 T-Cell Receptor 5IVX ; 2.1 ; Crystal Structure of B4.2.3 T-Cell Receptor and H2-Dd P18-I10 Complex 5YO5 ; 2.2 ; Crystal Structure of B562RIL with engineered disulfide bond A20C-Q25C 5YO4 ; 1.37 ; Crystal Structure of B562RIL with engineered disulfide bond K27C-A79C 5YO6 ; 1.204 ; Crystal Structure of B562RIL with engineered disulfide bond T9C-A36C 5YO3 ; 1.7 ; Crystal Structure of B562RIL with engineered disulfide bond V16C-A29C 5YM7 ; 1.56225 ; Crystal Structure of B562RIL without disulfide bond 1M6T ; 1.81 ; CRYSTAL STRUCTURE OF B562RIL, A REDESIGNED FOUR HELIX BUNDLE 3SLB ; 2.0 ; Crystal structure of BA2930 in complex with AcCoA and cytosine 3SLF ; 2.05 ; Crystal structure of BA2930 in complex with AcCoA and uracil 3IJW ; 1.9 ; Crystal structure of BA2930 in complex with CoA 3N0S ; 2.15 ; Crystal structure of BA2930 mutant (H183A) in complex with AcCoA 3KZL ; 2.1 ; Crystal structure of BA2930 mutant (H183G) in complex with AcCoA 3N0M ; 2.4 ; Crystal structure of BA2930 mutant (H183G) in complex with AcCoA 3E4F ; 2.0 ; Crystal structure of BA2930- a putative aminoglycoside N3-acetyltransferase from Bacillus anthracis 5F1Y ; 2.04 ; Crystal structure of Ba3275, the member of S66 family of serine peptidases 3H7J ; 1.87 ; Crystal structure of BacB, an enzyme involved in Bacilysin synthesis, in monoclinic form 3H7Y ; 2.22 ; Crystal structure of BacB, an enzyme involved in Bacilysin synthesis, in tetragonal form 3H9A ; 2.04 ; Crystal structure of BacB, an enzyme involved in Bacilysin synthesis, in triclinic form 3VMM ; 2.5 ; Crystal structure of BacD, an L-amino acid dipeptide ligase from Bacillus subtilis 5QCT ; 2.05 ; Crystal structure of BACE complex with BMC001 5QDB ; 2.1 ; Crystal structure of BACE complex with BMC002 5QD8 ; 2.45 ; Crystal structure of BACE complex with BMC003 5QD6 ; 2.51 ; Crystal structure of BACE complex with BMC004 5QD9 ; 2.602 ; Crystal structure of BACE complex with BMC005 5QCX ; 2.2 ; Crystal structure of BACE complex with BMC007 5QCY ; 2.15 ; Crystal structure of BACE complex with BMC008 5QD5 ; 2.3 ; Crystal structure of BACE complex with BMC009 5QD3 ; 2.46 ; Crystal structure of BACE complex with BMC010 5QD1 ; 2.4 ; Crystal structure of BACE complex with BMC011 5QDA ; 2.1 ; Crystal structure of BACE complex with BMC013 5QD7 ; 2.12 ; Crystal structure of BACE complex with BMC014 5QCZ ; 2.3 ; Crystal structure of BACE complex with BMC015 5QCO ; 2.7 ; Crystal structure of BACE complex with BMC016 5QD2 ; 2.5 ; Crystal structure of BACE complex with BMC017 5QCP ; 2.45 ; Crystal structure of BACE complex with BMC018 5QDC ; 2.1 ; Crystal structure of BACE complex with BMC019 hydrolyzed 5QDD ; 2.0 ; Crystal structure of BACE complex with BMC020 hydrolyzed 5QCW ; 2.1 ; Crystal structure of BACE complex with BMC021 5QCU ; 1.951 ; Crystal structure of BACE complex with BMC022 5QCV ; 2.25 ; Crystal structure of BACE complex with BMC023 5QD4 ; 2.112 ; Crystal structure of BACE complex with BMC023 5QCS ; 2.31 ; Crystal structure of BACE complex with BMC024 5QCQ ; 1.97 ; Crystal structure of BACE complex with BMC025 5QCR ; 2.2 ; Crystal structure of BACE complex with BMC026 5QD0 ; 2.6 ; Crystal structure of BACE complex withBMC006 4YBI ; 1.84 ; Crystal structure of BACE with amino thiazine inhibitor LY2811376 4X7I ; 1.77 ; Crystal Structure of BACE with amino thiazine inhibitor LY2886721 3UDH ; 1.7 ; Crystal Structure of BACE with Compound 1 3UDY ; 2.0 ; Crystal Structure of BACE with Compound 11 3UDP ; 1.95 ; Crystal Structure of BACE with Compound 12 4FM8 ; 1.9 ; Crystal Structure of BACE with Compound 12a 3UDQ ; 2.73 ; Crystal Structure of BACE with Compound 13 3UDR ; 1.95 ; Crystal Structure of BACE with Compound 14 4FM7 ; 1.56 ; Crystal Structure of BACE with Compound 14g 3UDJ ; 1.8 ; Crystal Structure of BACE with Compound 5 3UDK ; 2.51 ; Crystal Structure of BACE with Compound 6 3UDM ; 1.94 ; Crystal Structure of BACE with Compound 8 3UDN ; 2.193 ; Crystal Structure of BACE with Compound 9 5F01 ; 1.52 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH (1SR,2SR)-2-((R)-2-amino-5,5-difluoro-4-methyl-5,6-dihydro-4H-1,3-oxazin-4-yl)-N-(3-chloroquinolin-8-yl)cyclopropanecarboxamide 5EZZ ; 2.1 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH (4S)-4-[3-(5-chloro-3-pyridyl)phenyl]-4-[4-(difluoromethoxy)-3-methyl-phenyl]-5H-oxazol-2-amine 4J0V ; 1.94 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4R,5R)-2-amino-5-fluoro-4-methyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1I ; 2.05 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4R,5R,6R)-2-amino-5-fluoro-4-methyl-6-trifluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1K ; 2.18 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4R,5R,6S)-2-amino-5-fluoro-4-methyl-6-trifluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J0Y ; 1.77 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4R,5S)-2-amino-5-fluoro-4-methyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J0Z ; 2.13 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4S,5R)-2-amino-5-fluoro-4-fluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1H ; 2.2 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4S,6R)-2-amino-4-methyl-6-trifluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1E ; 1.78 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4S,6S)-2-amino-4-fluoromethyl-6-trifluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1F ; 2.25 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((4S,6S)-2-amino-4-methyl-6-trifluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J17 ; 1.81 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((S)-2-amino-4-difluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J0P ; 1.97 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((S)-2-amino-4-methyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J1C ; 2.01 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Cyano-pyridine-2-carboxylic acid [3-((S)-2-amino-5,5-difluoro-4-fluoromethyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 4J0T ; 2.05 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-Ethoxy-pyridine-2-carboxylic acid [3-((R)-2-amino-5,5-difluoro-4-methyl-5,6-dihydro-4H-[1,3]oxazin-4-yl)-4-fluoro-phenyl]-amide 5F00 ; 1.95 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH 5-[3-[(3-chloro-8-quinolyl)amino]phenyl]-5-methyl-2,6-dihydro-1,4-oxazin-3-amine 5MCQ ; 1.82 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH ACTIVE SITE AND EXOSITE BINDING PEPTIDE INHIBITOR 5MCO ; 2.49 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH ACTIVE SITE INHIBITOR GRL-8234 AND EXOSITE PEPTIDE 3K5D ; 2.9 ; Crystal Structure of BACE-1 in complex with AHM178 3ZMG ; 1.74 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH CHEMICAL LIGAND 3ZOV ; 2.1 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH CHEMICAL LIGAND 4BEK ; 2.39 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH CHEMICAL LIGAND 4BFD ; 2.3 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH CHEMICAL LIGAND 3CKP ; 2.3 ; Crystal structure of BACE-1 in complex with inhibitor 3CKR ; 2.7 ; Crystal structure of BACE-1 in complex with inhibitor 5MBW ; 2.95 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH Pep#3 5EZX ; 1.9 ; CRYSTAL STRUCTURE OF BACE-1 IN COMPLEX WITH {(1R,2R)-2-[(R)-2-Amino-4-(4-difluoromethoxy-phenyl)-4,5-dihydro-oxazol-4-yl]-cyclopropyl}-(5-chloro-pyridin-3-yl)-methanone 2ZHS ; 2.7 ; Crystal structure of BACE1 at pH 4.0 2ZHT ; 2.35 ; Crystal structure of BACE1 at pH 4.5 2ZHU ; 2.4 ; Crystal structure of BACE1 at pH 5.0 2ZHV ; 1.85 ; Crystal structure of BACE1 at pH 7.0 3EXO ; 2.1 ; Crystal structure of BACE1 bound to inhibitor 3TPP ; 1.6 ; Crystal structure of BACE1 complexed with an inhibitor 3TPR ; 2.55 ; Crystal structure of BACE1 complexed with an inhibitor 5YGY ; 2.3 ; Crystal Structure of BACE1 in complex with (S)-N-(3-(2-amino-6-(fluoromethyl)-4 -methyl-4H-1,3-oxazin-4-yl)-4-fluorophenyl)-5-cyanopicolinamide 6WNY ; 1.86 ; Crystal structure of BACE1 in complex with (Z)-fluoro-olefin containing compound 15 4WTU ; 1.85 ; Crystal structure of BACE1 in complex with 2-aminooxazoline 3-aza-4-fluoro-xanthene inhibitor 22 4XKX ; 1.8 ; Crystal structure of BACE1 in complex with 2-aminooxazoline 3-azaxanthene inhibitor 28 4RCF ; 1.78 ; Crystal structure of BACE1 in complex with 2-aminooxazoline 4-fluoroxanthene inhibitor 49 5UYU ; 1.9 ; Crystal structure of BACE1 in complex with 2-aminooxazoline-3-azaxanthene compound 12 5I3W ; 2.15 ; Crystal structure of BACE1 in complex with 2-aminooxazoline-3-azaxanthene inhibitor 2 5IE1 ; 2.298 ; Crystal structure of BACE1 in complex with 3-(2-amino-6-(o-tolyl)quinolin-3-yl)-N-(3,3-dimethylbutyl)propanamide 4RCD ; 1.9 ; Crystal structure of BACE1 in complex with a 2-aminooxazoline 4-azaxanthene inhibitor 4FRK ; 2.1 ; Crystal structure of BACE1 in complex with aminooxazoline xanthene 11a 4FRJ ; 1.95 ; Crystal structure of BACE1 in complex with aminooxazoline xanthene 9l 4RCE ; 2.4 ; Crystal structure of BACE1 in complex with aminooxazoline xanthene inhibitor 2 5I3V ; 1.62 ; Crystal structure of BACE1 in complex with aminoquinoline compound 1 5I3X ; 1.85 ; Crystal structure of BACE1 in complex with aminoquinoline inhibitor 6 5I3Y ; 2.15 ; Crystal structure of BACE1 in complex with aminoquinoline inhibitor 9 4FRI ; 2.3 ; Crystal structure of BACE1 in complex with biarylspiro aminooxazoline 6 4DI2 ; 2.0 ; Crystal structure of BACE1 in complex with hydroxyethylamine inhibitor 37 4KE0 ; 2.3 ; Crystal structure of BACE1 in complex with hydroxyethylamine-macrocyclic inhibitor 13 4KE1 ; 1.91 ; Crystal structure of BACE1 in complex with hydroxyethylamine-macrocyclic inhibitor 19 6JSE ; 2.0 ; Crystal Structure of BACE1 in complex with N-(3-((4S,5R)-2-amino-4-methyl-5-phenyl-5,6-dihydro-4H-1,3-thiazin-4-yl)-4-fluorophenyl)-5-(fluoromethoxy)pyrazine-2-carboxamide 6JSF ; 2.3 ; Crystal Structure of BACE1 in complex with N-(3-((4S,5S)-2-amino-4-methyl-5-phenyl-5,6-dihydro-4H-1,3-thiazin-4-yl)-4-fluorophenyl)-5-(fluoromethoxy)pyrazine-2-carboxamide 7D36 ; 2.3 ; Crystal Structure of BACE1 in complex with N-{3-[(3S)-1-amino-5-fluoro-3-methyl-3,4-dihydro-2,6-naphthyridin-3-yl]-4-fluorophenyl}-5-cyano-3-methylpyridine-2-carboxamide 7D2X ; 2.45 ; Crystal Structure of BACE1 in complex with N-{3-[(4R)-2-amino-4-(prop-1-yn-1-yl)-5,6-dihydro-4H-1,3-oxazin-4-yl]-4-fluorophenyl}-5-cyanopyridine-2-carboxamide 7F1D ; 2.05 ; Crystal Structure of BACE1 in complex with N-{3-[(4R,5R,6R)-2-amino-5-fluoro-4,6-dimethyl-5,6-dihydro-4H-1,3-thiazin-4-yl]-4-fluorophenyl}-2H,3H-[1,4]dioxino[2,3-c]pyridine-7-carboxamide 6JT3 ; 2.4 ; Crystal Structure of BACE1 in complex with N-{3-[(4R,5R,6R)-2-amino-5-fluoro-4,6-dimethyl-5,6-dihydro-4H-1,3-thiazin-4-yl]-4-fluorophenyl}-5-(fluoromethoxy)pyrazine-2-carboxamide 7DCZ ; 2.3 ; Crystal Structure of BACE1 in complex with N-{3-[(4S)-2-amino-4-methyl-4H-1,3-thiazin-4-yl]-4- fluorophenyl}-5-cyanopyridine-2-carboxamide 6JSG ; 2.3 ; Crystal Structure of BACE1 in complex with N-{3-[(4S)-2-amino-4-methyl-5,6-dihydro-4H-1,3-thiazin-4-yl]-4-fluorophenyl}-5-chloropyridine-2-carboxamide 6JT4 ; 2.2 ; Crystal Structure of BACE1 in complex with N-{3-[(4S,6S)-2-amino-4-methyl-6-(trifluoromethyl)-5,6-dihydro-4H-1,3-thiazin-4-yl]-4-fluorophenyl}-5-(fluoromethoxy)pyrazine-2-carboxamide 7D2V ; 2.1 ; Crystal Structure of BACE1 in complex with N-{3-[(5R)-3-amino-2,5-dimethyl-1,1-dioxo-5,6-dihydro-2H-1lambda6,2,4-thiadiazin-5-yl]-4-fluorophenyl}-5-fluoropyridine-2-carboxamide 6JSN ; 2.6 ; Crystal Structure of BACE1 in complex with N-{3-[(5R)-3-amino-5-methyl-9,9-dioxo-2,9lambda6-dithia-4-azaspiro[5.5]undec-3-en-5-yl]-4-fluorophenyl}-5-(fluoromethoxy)pyrazine-2-carboxamide 7D5A ; 2.2 ; Crystal Structure of BACE1 in complex with N-{3-[(9S)-7-amino-2,2-difluoro-9-(prop-1-yn-1-yl)-6-oxa-8-azaspiro[3.5]non-7-en-9-yl]-4-fluorophenyl}-5-cyanopyridine-2-carboxamide 2ZHR ; 2.5 ; Crystal structure of BACE1 in complex with OM99-2 at pH 5.0 4XXS ; 1.86 ; Crystal structure of BACE1 with a pyrazole-substituted tetrahydropyran thioamidine 3UQP ; 1.77 ; Crystal structure of Bace1 with its inhibitor 3UQR ; 3.056 ; Crystal structure of BACE1 with its inhibitor 3UQU ; 1.7 ; Crystal structure of BACE1 with its inhibitor 3UQW ; 2.2 ; Crystal structure of BACE1 with its inhibitor 3UQX ; 1.7 ; Crystal structure of BACE1 with its inhibitor 4DV9 ; 2.076 ; Crystal structure of BACE1 with its inhibitor 4DVF ; 1.803 ; Crystal structure of BACE1 with its inhibitor 4FCO ; 1.76 ; Crystal structure of bace1 with its inhibitor 4IVS ; 2.636 ; Crystal structure of BACE1 with its inhibitor 4IVT ; 1.6 ; Crystal structure of BACE1 with its inhibitor 4FGX ; 1.59 ; Crystal structure of bace1 with novel inhibitor 3RNZ ; 2.01 ; Crystal structure of Bacillus Amyloliquefaciens Pyroglutamyl Peptidase I 3RO0 ; 1.5 ; Crystal structure of Bacillus amyloliquefaciens pyroglutamyl peptidase I and terpyridine platinum(II) 3JW3 ; 2.57 ; Crystal structure of Bacillus anthracis (F96I) dihydrofolate reductase complexed with NADPH and Trimethoprim 3JWF ; 2.57 ; Crystal structure of Bacillus anthracis (Y102F) dihydrofolate reductase complexed with NADPH and (R)-2,4-diamino-5-(3-hydroxy-3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-methylpyrimidine (UCP113A) 3JWK ; 2.08 ; Crystal structure of Bacillus anthracis (Y102F) dihydrofolate reductase complexed with NADPH and (S)-2,4-diamino-5-(3-methoxy-3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-methylpyrimidine (UCP114A) 3JWC ; 2.57 ; Crystal structure of Bacillus anthracis (Y102F) dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-(3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120A) 3JW5 ; 2.89 ; Crystal structure of Bacillus anthracis (Y102F) dihydrofolate reductase complexed with NADPH and Trimethoprim 8D02 ; 1.4 ; Crystal Structure of Bacillus anthracis BxpB 8SSX ; 1.65 ; Crystal structure of Bacillus anthracis dihydrofolate reductase at 1.65-A resolution 3JWM ; 2.57 ; Crystal structure of Bacillus anthracis dihydrofolate reductase complexed with NADPH and (S)-2,4-diamino-5-(3-methoxy-3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-methylpyrimidine (UCP114A) 3JVX ; 2.25 ; Crystal structure of Bacillus anthracis dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-(3-(3,4,5-trimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120A) 8SU7 ; 2.4 ; Crystal structure of Bacillus anthracis dihydroneopterin aldolase 8SV5 ; 2.16 ; Crystal structure of Bacillus anthracis dihydroneopterin aldolase in complex with 6-hydroxymethyl-7,8-dihydropterin 3L44 ; 2.05 ; Crystal structure of Bacillus anthracis HemL-1, glutamate semialdehyde aminotransferase 4YU6 ; 2.6 ; Crystal structure of Bacillus anthracis immune inhibitor A2 peptidase zymogen 3USB ; 2.38 ; Crystal Structure of Bacillus anthracis Inosine Monophosphate Dehydrogenase in the complex with IMP 4AY3 ; 1.76 ; Crystal structure of Bacillus anthracis PurE 4AY4 ; 2.0 ; crystal structure of Bacillus anthracis PurE 4B4K ; 2.5 ; Crystal structure of Bacillus anthracis PurE 3LAC ; 2.0 ; Crystal structure of Bacillus anthracis pyrrolidone-carboxylate peptidase, pcP 4PDB ; 2.6 ; CRYSTAL STRUCTURE OF BACILLUS ANTHRACIS RIBOSOMAL PROTEIN S8 IN COMPLEX WITH AN RNA APTAMER 3TL2 ; 1.7 ; Crystal structure of Bacillus anthracis str. Ames malate dehydrogenase in closed conformation. 2C5S ; 2.5 ; Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain 3G9K ; 1.79 ; Crystal structure of Bacillus anthracis transpeptidase enzyme CapD 3GA9 ; 2.3 ; Crystal structure of Bacillus anthracis transpeptidase enzyme CapD, crystal form II 2HAX ; 1.29 ; Crystal structure of Bacillus caldolyticus cold shock protein in complex with hexathymidine 1I5E ; 3.0 ; CRYSTAL STRUCTURE OF BACILLUS CALDOLYTICUS URACIL PHOSPHORIBOSYLTRANSFERASE WITH BOUND UMP 3UAY ; 1.4 ; Crystal structure of Bacillus cereus adenosine phosphorylase D204N mutant complexed with adenosine 3UAZ ; 1.4 ; Crystal structure of Bacillus cereus adenosine phosphorylase D204N mutant complexed with inosine 3BVS ; 2.1 ; Crystal Structure of Bacillus cereus Alkylpurine DNA Glycosylase AlkD 3FCE ; 1.9 ; Crystal Structure of Bacillus cereus D-alanyl Carrier Protein Ligase DltA in Complex with ATP: Implications for Adenylation Mechanism 5Z7Q ; 1.85 ; Crystal structure of Bacillus cereus flagellin 5ZIY ; 2.2 ; Crystal structure of Bacillus cereus FlgL 1ZSW ; 1.65 ; Crystal Structure of Bacillus cereus Metallo Protein from Glyoxalase family 5FQA ; 1.1 ; Crystal Structure of Bacillus cereus Metallo-Beta-Lactamase II 5FQB ; 1.899 ; Crystal Structure of Bacillus cereus Metallo-Beta-Lactamase with 2C 4BMO ; 1.81 ; Crystal Structure of Bacillus cereus Ribonucleotide Reductase di- iron NrdF in Complex with NrdI (1.8 A resolution) 4BMP ; 2.1 ; Crystal Structure of Bacillus cereus Ribonucleotide Reductase di- iron NrdF in Complex with NrdI (2.1 A resolution) 2UYR ; 2.4 ; Crystal structure of Bacillus cereus sphingomyelinase mutant :N57A 4EI8 ; 2.1 ; Crystal structure of Bacillus cereus TubZ, apo-form 4EI7 ; 1.9 ; Crystal structure of Bacillus cereus TubZ, GDP-form 4EI9 ; 3.3 ; Crystal structure of Bacillus cereus TubZ, GTP-form 3WNK ; 2.3 ; Crystal Structure of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase 4BOK ; 2.047 ; Crystal structure of Bacillus circulans TN-31 Aman6 4BOJ ; 1.379 ; Crystal structure of Bacillus circulans TN-31 Aman6 in complex with mannobiose 7PQ9 ; 2.8 ; Crystal structure of Bacillus clausii pdxR at 2.8 Angstroms resolution 4BDP ; 1.8 ; CRYSTAL STRUCTURE OF BACILLUS DNA POLYMERASE I FRAGMENT COMPLEXED TO 11 BASE PAIRS OF DUPLEX DNA AFTER ADDITION OF TWO DATP RESIDUES 2BDP ; 1.8 ; CRYSTAL STRUCTURE OF BACILLUS DNA POLYMERASE I FRAGMENT COMPLEXED TO 9 BASE PAIRS OF DUPLEX DNA 1L3S ; 1.7 ; Crystal Structure of Bacillus DNA Polymerase I Fragment complexed to 9 base pairs of duplex DNA. 1L3T ; 1.7 ; Crystal Structure of Bacillus DNA Polymerase I Fragment product complex with 10 base pairs of duplex DNA following addition of a single dTTP residue 1L3U ; 1.8 ; Crystal Structure of Bacillus DNA Polymerase I Fragment product complex with 11 base pairs of duplex DNA following addition of a dTTP and a dATP residue. 1L5U ; 1.95 ; Crystal Structure of Bacillus DNA Polymerase I Fragment product complex with 12 base pairs of duplex DNA following addition of a dTTP, a dATP, and a dCTP residue. 1L3V ; 1.71 ; Crystal Structure of Bacillus DNA Polymerase I Fragment product complex with 15 base pairs of duplex DNA following addition of dTTP, dATP, dCTP, and dGTP residues. 3PX0 ; 1.73 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and dCTP-dA Mismatch (tautomer) in Closed Conformation 3THV ; 1.611 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and ddATP-dT in Closed Conformation 3PX6 ; 1.59 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and ddCTP-dA Mismatch (tautomer) in Closed Conformation 3PX4 ; 1.582 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and ddCTP-dA Mismatch (wobble) in Ajar Conformation 3TI0 ; 1.62 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and ddGTP-dC in Closed Conformation 3PV8 ; 1.52 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to DNA and ddTTP-dA in Closed Conformation 3TAN ; 1.53 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to Duplex DNA with Cytosine-Adenine Mismatch at (n-1) Position 3TAP ; 1.655 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to Duplex DNA with Cytosine-Adenine Mismatch at (n-3) Position 3TAQ ; 1.65 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to Duplex DNA with Cytosine-Adenine Mismatch at (n-4) Position 3TAR ; 1.6 ; Crystal Structure of Bacillus DNA Polymerase I Large Fragment Bound to Duplex DNA with Cytosine-Adenine Mismatch at (n-6) Position 3AGF ; 2.6 ; Crystal structure of Bacillus glutaminase in the presence of 4.3M NaCl 3HDI ; 2.7 ; Crystal structure of Bacillus halodurans metallo peptidase 7K9C ; 1.0 ; Crystal structure of Bacillus halodurans OapB (iodine-derivative) at 1.0 A 7K9B ; 1.202 ; Crystal structure of Bacillus halodurans OapB (native) at 1.2 A 7K9D ; 2.098 ; Crystal structure of Bacillus halodurans OapB in complex with its OLE RNA target (crystal form I) 7K9E ; 2.1 ; Crystal structure of Bacillus halodurans OapB in complex with its OLE RNA target (crystal form II) 7KKV ; 2.0 ; Crystal structure of Bacillus halodurans OapB in complex with its OLE RNA target (native, crystal form I) 6DPN ; 1.493 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 E188A in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 200 s at 21 C 6DPO ; 1.45 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 E188A in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 360 s at 21 C 6DPH ; 1.339 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 E188A in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mn2+ and 200 mM K+ for 120 s at 21 C 6DPG ; 1.38 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 E188A in Complex with an RNA/DNA Hybrid: Reaction in 4 mM Mn2+ and 200 mM K+ for 240 s at 21 C 6DOI ; 1.948 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid (1.54 Angstrom wavelength): Soak in 0.5 mM EGTA and 200 mM K+ at 21 C 6DOZ ; 1.573 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 1 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DP3 ; 1.461 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 10 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DPC ; 1.34 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 12 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DPD ; 1.46 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 16 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DON ; 1.422 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 100 mM K+ for 120 s at 21 C (dataset 1) 6DOO ; 1.44 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 100 mM K+ for 120 s at 21 C (dataset 2) 6DO9 ; 1.36 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 120 s at 21 C 6DOP ; 1.25 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 120 s at 21 C (dataset 1) 6DOQ ; 1.422 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 120 s at 21 C (dataset 2) 6DOB ; 1.343 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 200 s at 21 C 6DOC ; 1.496 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 240 s at 21 C 6DOD ; 1.535 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 360 s at 21 C 6DOE ; 1.451 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 420 s at 21 C 6DOA ; 1.474 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 480 s at 21 C 6DOF ; 1.433 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 540 s at 21 C 6DOG ; 1.285 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 600 s at 21 C 6DO8 ; 1.414 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM K+ for 80 s at 21 C 6DOY ; 1.45 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 200 mM Li+ for 120 s at 21 C 6DOK ; 1.38 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 25 mM K+ for 120 s at 21 C (dataset 1) 6DOL ; 1.433 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 25 mM K+ for 120 s at 21 C (dataset 2) 6DOR ; 1.5 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 300 mM K+ for 120 s at 21 C (dataset 1) 6DOS ; 1.318 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 300 mM K+ for 120 s at 21 C (dataset 2) 6DOJ ; 1.403 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 5 mM K+ for 120 s at 21 C 6DOM ; 1.425 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mg2+ and 50 mM K+ for 120 s at 21 C 6DP9 ; 1.4 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DP0 ; 1.451 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 2.5 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DP4 ; 1.374 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 20 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DPE ; 1.56 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 20 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DPA ; 1.489 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 4 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DP5 ; 1.432 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 40 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DPF ; 1.56 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 40 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DP8 ; 1.323 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Li+ for 240 s at 21 C 6DOU ; 1.487 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 120 s at 21 C 6DOW ; 1.495 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 160 s at 21 C 6DPP ; 1.45 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 240 s at 21 C 6DOX ; 1.45 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 360 s at 21 C 6DOT ; 1.423 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 40 s at 21 C 6DOV ; 1.521 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 200 mM Rb+ for 80 s at 21 C 6DP1 ; 1.42 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 5 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DP7 ; 1.381 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 500 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DP2 ; 1.662 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 7.5 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DPB ; 1.324 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 8 mM Mn2+ and 200 mM K+ for 40 s at 21 C 6DP6 ; 1.403 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Reaction in 80 mM Mg2+ and 75 mM K+ for 40 s at 21 C 6DOH ; 1.363 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Soak in 0.5 mM EGTA and 200 mM K+ at 21 C 6DMV ; 1.52 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Soaked for 40 s in 2 mM Mg2+ and 200 mM K+ at 21 C 6DMN ; 1.27 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 in Complex with an RNA/DNA Hybrid: Soaked in 2 mM Ca2+ and 200 mM K+ at 21 C 6DPM ; 1.677 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 K196A in Complex with an RNA/DNA Hybrid: Reaction in 10 mM Mg2+ and 200 mM Rb+ for 1800 s at 21 C 6DPI ; 1.347 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 K196A in Complex with an RNA/DNA Hybrid: Reaction in 10 mM Mg2+ and 200 mM Rb+ for 40 s at 21 C 6DPL ; 1.45 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 K196A in Complex with an RNA/DNA Hybrid: Reaction in 10 mM Mg2+ and 200 mM Rb+ for 720 s at 21 C 6DPK ; 1.391 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 K196A in Complex with an RNA/DNA Hybrid: Reaction in 4 mM Mn2+ and 200 mM K+ for 240 s at 21 C 6DPJ ; 1.55 ; Crystal Structure of Bacillus Halodurans Ribonuclease H1 K196A in Complex with an RNA/DNA Hybrid: Reaction in 4 mM Mn2+ and 200 mM K+ for 80 s at 21 C 5Y8X ; 1.97 ; Crystal structure of Bacillus licheniformis Gamma glutamyl transpeptidase with Azaserine 5Y9B ; 2.15 ; Crystal structure of Bacillus licheniformis Gamma glutamyl transpeptidase with DON 6DZD ; 2.66 ; Crystal structure of Bacillus licheniformis hypothetical protein YfiH 6WPY ; 3.6 ; Crystal structure of Bacillus licheniformis lipase BlEst2 in mature form 6WPX ; 2.0 ; Crystal structure of Bacillus licheniformis lipase BlEst2 in propetide form 5BRQ ; 2.003 ; Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA) 5BRP ; 2.05 ; Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA), mutant R201Q, in complex with PNG 3KX5 ; 1.686 ; Crystal structure of Bacillus megaterium BM3 heme domain mutant F261E 3KX4 ; 1.95 ; Crystal structure of Bacillus megaterium BM3 heme domain mutant I401E 3KX3 ; 1.803 ; Crystal structure of Bacillus megaterium BM3 heme domain mutant L86E 4O08 ; 1.95 ; Crystal structure of bacillus megaterium epoxide hydrolase in complex with an inhibitor 3AY6 ; 2.1 ; Crystal structure of Bacillus megaterium glucose dehydrogenase 4 A258F mutant in complex with NADH and D-glucose 3AY7 ; 1.9 ; Crystal structure of Bacillus megaterium glucose dehydrogenase 4 G259A mutant 3AUU ; 2.0 ; Crystal structure of Bacillus megaterium glucose dehydrogenase 4 in complex with D-glucose 3AUT ; 2.0 ; Crystal structure of Bacillus megaterium glucose dehydrogenase 4 in complex with NADH 3AUS ; 2.0 ; Crystal structure of Bacillus megaterium glucose dehydrogenase 4 in ligand-free form 4MLQ ; 1.6 ; Crystal structure of Bacillus megaterium porphobilinogen deaminase 4MLV ; 1.455 ; Crystal Structure of Bacillus megaterium porphobilinogen deaminase 6TOZ ; 1.94 ; Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with acarbose 6TP2 ; 1.94 ; Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with beta-cyclodextrin 6TP0 ; 2.04 ; Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltose 6TP1 ; 1.94 ; Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltotetraose 6TOY ; 1.95 ; Crystal structure of Bacillus paralicheniformis wild-type alpha-amylase 1EAR ; 1.7 ; Crystal structure of Bacillus pasteurii UreE at 1.7 A. Type II crystal form. 1EB0 ; 1.85 ; Crystal structure of Bacillus pasteurii UreE at 1.85 A, phased by SIRAS. Type I crystal form. 3ZO6 ; 4.104 ; Crystal structure of Bacillus pseudofirmus OF4 mutant ATP synthase c12 ring. 3FYT ; 2.58 ; Crystal structure of Bacillus pumilus acetyl xylan esterase S181A mutant in complex with beta-D-xylopyranose 8IBK ; 1.69 ; Crystal structure of Bacillus sp. AHU2216 GH13_31 Alpha-glucosidase E256Q/N258G in complex with maltotriose 8IDS ; 1.5 ; Crystal structure of Bacillus sp. AHU2216 GH13_31 Alpha-glucosidase E256Q/N258P in complex with maltotriose 1J0M ; 2.3 ; Crystal Structure of Bacillus sp. GL1 Xanthan Lyase that Acts on Side Chains of Xanthan 1J0N ; 2.4 ; Crystal Structure of Bacillus sp. GL1 Xanthan Lyase that Acts on Side Chains of Xanthan 7CMN ; 1.42 ; Crystal Structure of Bacillus sp. TB-90 Urate Oxidase Improved by Humidity Control at 88% RH. 7CMQ ; 1.65 ; Crystal Structure of Bacillus sp. TB-90 Urate Oxidase Improved by Humidity Control at 88% RH. 5Y2P ; 1.5 ; Crystal Structure of Bacillus sp. TB-90 Urate Oxidase Improved by Humidity Control at 89% RH 5YJ2 ; 1.71 ; Crystal structure of Bacillus sp. TB-90 urate oxidase without dehydration 1MIV ; 3.5 ; Crystal structure of Bacillus stearothermophilus CCA-adding enzyme 1MIW ; 3.0 ; Crystal structure of Bacillus stearothermophilus CCA-adding enzyme in complex with ATP 1MIY ; 3.52 ; Crystal structure of Bacillus stearothermophilus CCA-adding enzyme in complex with CTP 5AYP ; 2.31 ; Crystal structure of Bacillus stearothermophilus Farnesyl pyrophosphate synthase 1JPU ; 1.8 ; Crystal Structure of Bacillus Stearothermophilus Glycerol Dehydrogenase 1J0H ; 1.9 ; Crystal structure of Bacillus stearothermophilus neopullulanase 1LQY ; 1.9 ; Crystal Structure of Bacillus stearothermophilus Peptide Deformylase Complexed with Antibiotic Actinonin 4I4I ; 2.4948 ; Crystal Structure of Bacillus stearothermophilus Phosphofructokinase mutant T156A bound to PEP 2FCO ; 1.4 ; Crystal Structure of Bacillus stearothermophilus PrfA-Holliday Junction Resolvase 2R6F ; 3.2 ; Crystal Structure of Bacillus stearothermophilus UvrA 3C65 ; 1.9 ; Crystal Structure of Bacillus stearothermophilus UvrC 5' endonuclease domain 5ITW ; 1.19 ; Crystal structure of Bacillus subtilis BacC Dihydroanticapsin 7-dehydrogenase 5ITV ; 2.26 ; Crystal structure of Bacillus subtilis BacC Dihydroanticapsin 7-dehydrogenase in complex with NADH 4LS8 ; 2.1 ; Crystal structure of Bacillus subtilis beta-ketoacyl-ACP synthase II (FabF) in a covalent complex with cerulenin 4LS7 ; 1.674 ; Crystal structure of Bacillus subtilis beta-ketoacyl-ACP synthase II (FabF) in a non-covalent complex with cerulenin 2Z3A ; 3.0 ; Crystal Structure of Bacillus Subtilis CodW, a non-canonical HslV-like peptidase with an impaired catalytic apparatus 2Z3B ; 2.5 ; Crystal Structure of Bacillus Subtilis CodW, a non-canonical HslV-like peptidase with an impaired catalytic apparatus 2I5M ; 2.3 ; Crystal structure of Bacillus subtilis cold shock protein CspB variant A46K S48R 2I5L ; 2.55 ; Crystal structure of Bacillus subtilis Cold Shock Protein variant Bs-CspB M1R/E3K/K65I 1OF0 ; 2.45 ; CRYSTAL STRUCTURE OF BACILLUS SUBTILIS COTA AFTER 1H SOAKING WITH ABTS 4W90 ; 3.118 ; Crystal structure of Bacillus subtilis cyclic-di-AMP riboswitch ydaO 4W92 ; 3.209 ; Crystal structure of Bacillus subtilis cyclic-di-AMP riboswitch ydaO 4DR0 ; 1.9 ; Crystal structure of Bacillus subtilis dimanganese(II) NrdF 4BPG ; 2.2 ; Crystal structure of Bacillus subtilis DltC 5M7H ; 3.15 ; Crystal structure of Bacillus subtilis EngA in complex with phosphate ion and GMPPNP 5MBS ; 3.2 ; Crystal structure of Bacillus subtilis EngA in space group P21 4FER ; 2.099 ; Crystal structure of Bacillus Subtilis expansin (EXLX1) in complex with cellohexaose 4FG2 ; 2.099 ; Crystal structure of Bacillus Subtilis expansin (EXLX1) in complex with cellotetraose 4FG4 ; 2.701 ; Crystal structure of Bacillus Subtilis expansin (EXLX1) in complex with hemithiocellodextrin 4FFT ; 2.1 ; Crystal structure of Bacillus Subtilis expansin (EXLX1) in complex with mixed-linkage glucan 8VD9 ; 1.85 ; Crystal structure of Bacillus subtilis FabHA, beta-ketoacyl carrier protein synthase III 8VDA ; 2.02 ; Crystal structure of Bacillus subtilis FabHA-coenzyme A complex 8VDB ; 2.4 ; Crystal structure of Bacillus subtilis FabHB, beta-ketoacyl carrier protein synthase III 2DCY ; 1.4 ; Crystal structure of Bacillus subtilis family-11 xylanase 2Q2N ; 1.8 ; Crystal structure of Bacillus subtilis ferrochelatase in complex with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride 1C1H ; 1.9 ; CRYSTAL STRUCTURE OF BACILLUS SUBTILIS FERROCHELATASE IN COMPLEX WITH N-METHYL MESOPORPHYRIN 4TV7 ; 2.05 ; Crystal structure of Bacillus subtilis GabR at 2.05 Angstroms resolution 4N0B ; 2.705 ; Crystal structure of Bacillus subtilis GabR, an autorepressor and transcriptional activator of GabT 3WHS ; 1.8 ; Crystal structure of Bacillus subtilis gamma-glutamyltranspeptidase in complex with acivicin 1WKQ ; 1.17 ; Crystal Structure of Bacillus subtilis Guanine Deaminase. The first domain-swapped structure in the cytidine deaminase superfamily 1OYG ; 1.5 ; Crystal structure of Bacillus subtilis levansucrase 6VHQ ; 2.047 ; Crystal structure of Bacillus subtilis levansucrase (D86A/E342A) in complex with oligosaccharides 3QZU ; 1.85 ; Crystal structure of Bacillus subtilis Lipase A 7-fold mutant; the outcome of directed evolution towards thermostability 1ISP ; 1.3 ; Crystal structure of Bacillus subtilis lipase at 1.3A resolution 3M6A ; 3.4 ; Crystal structure of Bacillus subtilis Lon C-terminal domain 3M65 ; 2.6 ; Crystal structure of Bacillus subtilis Lon N-terminal domain 8I2D ; 1.31 ; Crystal structure of Bacillus subtilis LytE 8I2F ; 2.03 ; Crystal structure of Bacillus subtilis LytE catalytic domain in complex with IseA 8I2E ; 3.2 ; Crystal structure of Bacillus subtilis LytE in complex with IseA 1EX2 ; 1.85 ; CRYSTAL STRUCTURE OF BACILLUS SUBTILIS MAF PROTEIN 4MDX ; 1.5 ; Crystal structure of Bacillus subtilis MazF in complex with RNA 6YIR ; 1.68 ; Crystal structure of Bacillus subtilis MsmX ATPase 5X12 ; 1.7 ; Crystal structure of Bacillus subtilis PadR 5X14 ; 1.68 ; Crystal structure of Bacillus subtilis PadR in complex with ferulic acid 5X11 ; 2.65 ; Crystal structure of Bacillus subtilis PadR in complex with operator DNA 5X13 ; 1.7 ; Crystal structure of Bacillus subtilis PadR in complex with p-coumaric acid 5Y8T ; 2.0 ; Crystal structure of Bacillus subtilis PadR in complex with p-coumaric acid 7BN9 ; 2.65 ; Crystal Structure of Bacillus subtilis Penicillin Binding Protein 3 1MKI ; 2.0 ; Crystal Structure of Bacillus Subtilis Probable Glutaminase, APC1040 1TT7 ; 2.7 ; Crystal structure of Bacillus subtilis protein yhfP 1Y9E ; 2.8 ; Crystal structure of Bacillus subtilis protein yhfP with NAD bound 6JHK ; 3.101 ; Crystal Structure of Bacillus subtilis RsbS 3RST ; 2.37 ; Crystal structure of Bacillus subtilis signal peptide peptidase A 6JHE ; 3.101 ; Crystal Structure of Bacillus subtilis SigW domain 4 in complexed with -35 element DNA 2XF5 ; 2.0 ; Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone. 2XF6 ; 2.12 ; Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone. 2XF7 ; 1.61 ; Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone. High-resolution structure. 3GFK ; 2.3 ; Crystal structure of Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complex 5Z6C ; 1.97 ; Crystal structure of Bacillus subtilis sugar-binding protein YesO involved in import of rhamnogalacturonan 2QCX ; 2.2 ; Crystal structure of Bacillus subtilis TenA Y112F mutant complexed with formyl aminomethyl pyrimidine 3O15 ; 1.95 ; Crystal Structure of Bacillus subtilis Thiamin Phosphate Synthase Complexed with a Carboxylated Thiazole Phosphate 3O16 ; 2.1 ; Crystal Structure of Bacillus subtilis Thiamin Phosphate Synthase K159A 5Y0P ; 2.3 ; Crystal structure of Bacillus subtilis TmcAL bound with alpha-thio ATP 5Y0N ; 2.302 ; Crystal structure of Bacillus subtilis TmcAL bound with ATP (SeMet derivative) 4ME7 ; 2.918 ; Crystal structure of Bacillus subtilis toxin MazF in complex with cognate antitoxin MazE 4FKZ ; 1.69 ; Crystal structure of Bacillus subtilis UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP 7JLI ; 1.8 ; Crystal structure of Bacillus subtilis UppS 7JLJ ; 3.1 ; Crystal structure of Bacillus subtilis UppS in complex with clomiphene 7JLR ; 2.2 ; Crystal structure of Bacillus subtilis UppS in complex with JPD447 7JLM ; 2.3 ; Crystal structure of Bacillus subtilis UppS in complex with MAC-0547630 5NP9 ; 2.0 ; Crystal structure of Bacillus subtilis YdiB in complex with ADP 1SF9 ; 1.71 ; Crystal Structure of Bacillus subtilis YfhH Protein : Putative Transcriptional Regulator 7W42 ; 2.619 ; Crystal structure of Bacillus subtilis YjoB 7W43 ; 3.0 ; Crystal structure of Bacillus subtilis YjoB N-terminal domain 7W46 ; 2.7 ; Crystal structure of Bacillus subtilis YjoB with ADP 4B2O ; 1.64 ; Crystal structure of Bacillus subtilis YmdB, a global regulator of late adaptive responses. 1NJH ; 1.7 ; Crystal Structure of Bacillus subtilis YojF protein 2NN4 ; 2.1 ; Crystal structure of Bacillus subtilis yqgQ, Pfam DUF910 7W9Y ; 1.93 ; Crystal structure of Bacillus subtilis YugJ in complex with NADP and nickel 7W9Z ; 1.65 ; Crystal structure of Bacillus subtilis YugJ in complex with NADP and nitrate 7W9X ; 2.151 ; Crystal structure of Bacillus subtilis YugJ in complex with nickel 1RTY ; 2.4 ; Crystal Structure of Bacillus subtilis YvqK, a putative ATP-binding Cobalamin Adenosyltransferase, The North East Structural Genomics Target SR128 5MKD ; 2.51 ; Crystal structure of Bacillus subtilis Ywea 3WO0 ; 2.0 ; Crystal structure of Bacillus subtilis YwfE, an L-amino acid ligase, with bound ADP-Mg-Ala 3WNZ ; 1.9 ; Crystal structure of Bacillus subtilis YwfE, an L-amino acid ligase, with bound ADP-Mg-Pi 1YSJ ; 2.4 ; Crystal Structure of Bacillus Subtilis YXEP Protein (APC1829), a Dinuclear Metal Binding Peptidase from M20 Family 5MVR ; 1.762 ; Crystal structure of Bacillus subtilus YdiB 1WTF ; 1.6 ; Crystal structure of Bacillus thermoproteolyticus Ferredoxin Variants Containing Unexpected [3Fe-4S] Cluster that is linked to Coenzyme A at 1.6 A Resolution 6DJ4 ; 3.01 ; Crystal Structure of Bacillus thuringiensis Cry1A.105 Tryptic Core 6WPC ; 2.99 ; Crystal structure of Bacillus thuringiensis Cry1A.2 tryptic core variant 4PKM ; 1.65 ; Crystal Structure of Bacillus thuringiensis Cry51Aa1 Protoxin at 1.65 Angstroms Resolution 4D8M ; 2.3 ; Crystal structure of Bacillus thuringiensis Cry5B nematocidal toxin 5GHE ; 1.901 ; Crystal Structure of Bacillus thuringiensis Cry6Aa2 Protoxin 5ZI1 ; 2.3 ; Crystal structure of Bacillus thuringiensis insecticidal crystal protein Cry7Ca1 (wild type) 2QFC ; 2.6 ; Crystal Structure of Bacillus thuringiensis PlcR complexed with PapR 3U3W ; 2.4 ; Crystal Structure of Bacillus thuringiensis PlcR in complex with the peptide PapR7 and DNA 4FSC ; 3.65 ; Crystal Structure of Bacillus thuringiensis PlcR in its apo form 1QPY ; 2.2 ; CRYSTAL STRUCTURE OF BACKBONE MODIFIED PNA HEXAMER 5E7G ; 2.37 ; Crystal structure of Bacova_02650 with xylogluco-oligosaccharide 5E75 ; 1.36 ; Crystal structure of Bacova_02651 5E76 ; 2.3 ; Crystal structure of Bacova_02651 with xylogluco-oligosaccharide 6DD6 ; 2.3 ; Crystal structure of bacterial (6-4) photolyase PhrB from in situ serial Laue diffraction 3ETW ; 2.0 ; Crystal Structure of bacterial adhesin FadA 3ETX ; 3.0 ; Crystal structure of bacterial adhesin FadA L14A mutant 3ETY ; 2.9 ; Crystal structure of bacterial adhesin FadA L14A mutant 3ETZ ; 2.0 ; Crystal structure of bacterial adhesin FadA L76A mutant 5DCQ ; 1.83 ; Crystal structure of bacterial adhesin, FNE from Streptococcus equi spp. equi. 4XIG ; 3.402 ; Crystal structure of bacterial alginate ABC transporter determined through humid air and glue-coating method 4XTC ; 3.6 ; Crystal structure of bacterial alginate ABC transporter in complex with alginate pentasaccharide-bound periplasmic protein 7TM9 ; 1.95 ; Crystal structure of Bacterial alkaline phosphatase from Klebsiella pneumoniae 1JHD ; 1.7 ; Crystal Structure of Bacterial ATP Sulfurylase from the Riftia pachyptila Symbiont 2VH1 ; 2.7 ; Crystal structure of bacterial cell division protein FtsQ from E.coli 3AT7 ; 2.1 ; Crystal structure of bacterial cell-surface alginate-binding protein Algp7 7VET ; 2.25 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in a closed conformation 7VER ; 1.699 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in a full open conformation 7VEQ ; 1.696 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in an open conformation 7VEU ; 1.736 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in complex with galacturonic acid 7VEV ; 1.498 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in complex with MES 7VEW ; 1.92 ; Crystal structure of bacterial chemotaxis-dependent pectin-binding protein SPH1118 in complex with unsaturated trigalacturonic acid 4R29 ; 2.31 ; Crystal structure of bacterial cysteine methyltransferase effector NleE 8IUD ; 2.0 ; Crystal Structure of bacterial defense protein GajB 1Y53 ; 1.2 ; Crystal structure of bacterial expressed avidin related protein 4 (AVR4) C122S 2XVH ; 2.54 ; Crystal structure of bacterial flavin containing monooxygenase in complex with NADP 8B2D ; 1.62 ; CRYSTAL STRUCTURE OF BACTERIAL FLAVIN CONTAINING MONOOXYGENASE THERMORESISTANT MUTANT, IN COMPLEX WITH NADP+ 2XVE ; 1.99 ; Crystal structure of bacterial flavin-containing monooxygenase 2XVF ; 2.4 ; Crystal structure of bacterial flavin-containing monooxygenase 2WCV ; 1.9 ; Crystal structure of bacterial FucU 1LF6 ; 2.1 ; CRYSTAL STRUCTURE OF BACTERIAL GLUCOAMYLASE 1LF9 ; 2.2 ; CRYSTAL STRUCTURE OF BACTERIAL GLUCOAMYLASE COMPLEXED WITH ACARBOSE 7LU4 ; 2.5 ; Crystal structure of bacterial glycyl tRNA synthetase in complex with glycine 6UH3 ; 2.7 ; Crystal structure of bacterial heliorhodopsin 48C12 4RAP ; 2.881 ; Crystal structure of bacterial iron-containing dodecameric glycosyltransferase TibC from enterotoxigenic E.coli H10407 1CVL ; 1.6 ; CRYSTAL STRUCTURE OF BACTERIAL LIPASE FROM CHROMOBACTERIUM VISCOSUM ATCC 6918 1IWG ; 3.5 ; Crystal structure of Bacterial Multidrug Efflux transporter AcrB 6E66 ; 2.1 ; Crystal structure of bacterial N-acetylglucosamine transferase NleB 6SDK ; 1.81 ; Crystal structure of bacterial ParB dimer bound to CDP 8TNE ; 2.3 ; Crystal structure of bacterial pectin methylesterase Pme8A from rumen Butyrivibrio 8TMS ; 2.3 ; Crystal structure of bacterial pectin methylesterase PmeC2 from rumen Butyrivibrio 7V6S ; 1.883 ; Crystal structure of bacterial peptidase 7V6T ; 1.495 ; Crystal structure of bacterial peptidase 7V6U ; 2.144 ; Crystal structure of bacterial peptidase 6UTS ; 3.09 ; Crystal Structure of bacterial pirin YhhW in complex with nickel(II) from Escherichia coli 4DRF ; 2.6 ; Crystal Structure of Bacterial Pnkp-C/Hen1-N Heterodimer 4E6N ; 2.39 ; Crystal structure of bacterial Pnkp-C/Hen1-N heterodimer 7Q6P ; 1.82 ; Crystal Structure of bacterial Prolyl Peptidyl Isomerase with 5,5'-difluoroleucines 6A8J ; 2.711 ; Crystal structure of bacterial protein toxins 7CAW ; 1.876 ; Crystal structure of bacterial reductase 7CAX ; 1.846 ; Crystal structure of bacterial reductase 7CAZ ; 1.79 ; Crystal structure of bacterial reductase 2P19 ; 2.1 ; Crystal structure of bacterial regulatory protein of gntR family from Corynebacterium glutamicum 2A64 ; 3.3 ; Crystal Structure of Bacterial Ribonuclease P RNA 4ZU9 ; 3.191 ; Crystal structure of bacterial selenocysteine-specific elongation factor EF-Sec 6IHL ; 1.573 ; Crystal structure of bacterial serine phosphatase 6IHU ; 1.84 ; Crystal structure of bacterial serine phosphatase bearing R161A mutation 6IHV ; 1.9 ; Crystal structure of bacterial serine phosphatase bearing R161E mutation 6IHW ; 1.55 ; Crystal structure of bacterial serine phosphatase bearing R161K mutation 6IHT ; 1.569 ; Crystal structure of bacterial serine phosphatase bound with phosphorylated peptide 6IHR ; 1.348 ; Crystal structure of bacterial serine phosphatase with His tag 6IHS ; 1.4 ; Crystal structure of bacterial serine phosphatase with His-tag mutation 7BYY ; 2.799 ; Crystal structure of bacterial toxin 1O83 ; 1.64 ; Crystal Structure of Bacteriocin AS-48 at pH 7.5, phosphate bound. Crystal form I 1O84 ; 2.8 ; Crystal Structure of Bacteriocin AS-48. N-decyl-beta-D-maltoside Bound. 5XX9 ; 2.6 ; Crystal structure of Bacterioferritin 8SQQ ; 2.25 ; Crystal Structure of Bacterioferritin (Bfr) from Brucella abortus (Apo Cubic Form 2, F16L mutant) 8SQP ; 2.05 ; Crystal Structure of Bacterioferritin (Bfr) from Brucella abortus (Apo, F16L mutant) 8SQT ; 2.2 ; Crystal Structure of Bacterioferritin (Bfr) from Brucella abortus (iron bound, cubic form 2, F16L mutant) 8SQR ; 1.65 ; Crystal Structure of Bacterioferritin (Bfr) from Brucella abortus (iron bound, F16L mutant) 8SQO ; 1.55 ; Crystal Structure of Bacterioferritin (Bfr) from Brucella abortus (magnesium bound, F16L mutant) 3GVY ; 2.8 ; Crystal structure of bacterioferritin from R.sphaeroides 2FJR ; 1.95 ; Crystal Structure of Bacteriophage 186 6JNY ; 1.451 ; Crystal structure of bacteriophage 21 Q protein 5W6P ; 2.335 ; Crystal structure of Bacteriophage CBA120 tailspike protein 2 enzymatically active domain (TSP2dN, orf211) 5W6S ; 2.263 ; Crystal structure of Bacteriophage CBA120 tailspike protein 2 enzymatically active domain (TSP2dN, orf211) complex with Escherichia Coli O157-antigen 5W6F ; 2.18 ; Crystal structure of Bacteriophage CBA120 tailspike protein 3 (TSP3, orf212) 5W6H ; 2.289 ; Crystal structure of Bacteriophage CBA120 tailspike protein 4 enzymatically active domain (TSP4dN, orf213) 1FRS ; 3.5 ; CRYSTAL STRUCTURE OF BACTERIOPHAGE FR CAPSIDS AT 3.5 ANGSTROMS RESOLUTION 3JVO ; 2.1 ; Crystal structure of bacteriophage HK97 gp6 2VTU ; 3.5 ; crystal structure of bacteriophage MS2 covalent coat protein dimer 2ANX ; 1.04 ; crystal structure of bacteriophage P22 lysozyme mutant L87M 2VF9 ; 3.5 ; Crystal structure of bacteriophage PRR1 6XC0 ; 1.78 ; Crystal structure of bacteriophage T4 spackle and lysozyme in monoclinic form 6XC1 ; 1.92 ; Crystal structure of bacteriophage T4 spackle and lysozyme in orthorhombic form 1FZR ; 2.1 ; CRYSTAL STRUCTURE OF BACTERIOPHAGE T7 ENDONUCLEASE I 1M0I ; 2.55 ; Crystal Structure of Bacteriophage T7 Endonuclease I with a Wild-Type Active Site 1M0D ; 1.9 ; Crystal Structure of Bacteriophage T7 Endonuclease I with a Wild-Type Active Site and Bound Manganese Ions 2O9B ; 2.15 ; Crystal Structure of Bacteriophytochrome chromophore binding domain 2O9C ; 1.45 ; Crystal Structure of Bacteriophytochrome chromophore binding domain at 1.45 angstrom resolution 4R6L ; 3.395 ; Crystal structure of bacteriophytochrome RpBphP2 from photosynthetic bacterium R. palustris 4R70 ; 2.85 ; Crystal structure of bacteriophytochrome RpBphP3 from photosynthetic bacterium R. palustris 5ZIM ; 1.25 ; Crystal structure of bacteriorhodopsin at 1.25 A resolution 5ZIN ; 1.27 ; Crystal structure of bacteriorhodopsin at 1.27 A resolution 5ZIL ; 1.29 ; Crystal structure of bacteriorhodopsin at 1.29 A resolution 1X0K ; 2.6 ; Crystal Structure of Bacteriorhodopsin at pH 10 1KME ; 2.0 ; CRYSTAL STRUCTURE OF BACTERIORHODOPSIN CRYSTALLIZED FROM BICELLES 2BRD ; 3.5 ; CRYSTAL STRUCTURE OF BACTERIORHODOPSIN IN PURPLE MEMBRANE 7XJC ; 1.33 ; Crystal structure of bacteriorhodopsin in the ground and K states after green laser irradiation 7XJD ; 1.33 ; Crystal structure of bacteriorhodopsin in the ground state by red laser irradiation 7XJE ; 1.33 ; Crystal structure of bacteriorhodopsin in the K state refined against the extrapolated dataset 1BM1 ; 3.5 ; CRYSTAL STRUCTURE OF BACTERIORHODOPSIN IN THE LIGHT-ADAPTED STATE 3T45 ; 3.01 ; Crystal structure of bacteriorhodopsin mutant A215T, a phototaxis signaling mutant at 3.0 A resolution 3HAQ ; 2.3 ; Crystal structure of bacteriorhodopsin mutant I148A crystallized from bicelles 3HAR ; 1.7 ; Crystal structure of bacteriorhodopsin mutant I148V crystallized from bicelles 3HAP ; 1.6 ; Crystal structure of bacteriorhodopsin mutant L111A crystallized from bicelles 3HAS ; 1.9 ; Crystal structure of bacteriorhodopsin mutant L152A crystallized from bicelles 3HAO ; 2.49 ; Crystal structure of bacteriorhodopsin mutant L94A crystallized from bicelles 1Q5I ; 2.3 ; Crystal structure of bacteriorhodopsin mutant P186A crystallized from bicelles 3UTY ; 2.37 ; Crystal structure of bacteriorhodopsin mutant P50A/T46A 3UTW ; 2.4 ; Crystal structure of bacteriorhodopsin mutant P50A/Y57F 1Q5J ; 2.1 ; Crystal structure of bacteriorhodopsin mutant P91A crystallized from bicelles 3UTX ; 2.47 ; Crystal structure of bacteriorhodopsin mutant T46A 3HAN ; 2.75 ; Crystal structure of bacteriorhodopsin mutant V49A crystallized from bicelles 3UTV ; 2.06 ; Crystal structure of bacteriorhodopsin mutant Y57F 2ZFE ; 2.5 ; Crystal structure of bacteriorhodopsin-xenon complex 3HXS ; 1.996 ; Crystal Structure of Bacteroides fragilis TrxP 3HYP ; 2.899 ; Crystal structure of Bacteroides fragilis TrxP_S105G mutant 8BDD ; 1.61 ; Crystal structure of Bacteroides ovatus CP926 PL17 alginate lyase 8BDQ ; 2.11 ; Crystal structure of Bacteroides ovatus CP926 PL38 alginate lyase 5FHE ; 2.9 ; Crystal structure of Bacteroides Pif1 bound to ssDNA 8J53 ; 3.5 ; Crystal structure of Bacteroides salyersiae GH31 alpha-galactosidase 5FHF ; 2.15 ; Crystal structure of Bacteroides sp Pif1 in complex with ADP-AlF4 7NWF ; 2.0 ; Crystal structure of Bacteroides thetaiotamicron EndoBT-3987 in complex with hybrid-type glycan (GalGlcNAcMan5GlcNAc) product 6T8K ; 2.0 ; Crystal structure of Bacteroides thetaiotamicron EndoBT-3987 in complex with Man9GlcNAc product in P1 6TCV ; 1.311 ; Crystal structure of Bacteroides thetaiotamicron EndoBT-3987 in complex with Man9GlcNAc2Asn substrate 6TCW ; 1.599 ; Crystal structure of Bacteroides thetaiotamicron EndoBT-3987 with Man5GlcNAc product 6T8L ; 1.7 ; Crystal structure of Bacteroides thetaiotamicron EndoBT-3987 with Man9GlcNAc product in P212121 3HRG ; 1.85 ; Crystal structure of Bacteroides thetaiotaomicron BT_3980, protein with actin-like ATPase fold and unknown function (NP_812891.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.85 A resolution 7X4R ; 2.6 ; Crystal structure of Bacteroides thetaiotaomicron glutamate decarboxylase 7X52 ; 1.9 ; Crystal structure of Bacteroides thetaiotaomicron glutamate decarboxylase BTGAD-PLP complex 7X4Y ; 1.9 ; Crystal structure of Bacteroides thetaiotaomicron glutamate decarboxylase BTGAD-PLP-GABA complex 7X51 ; 2.0 ; Crystal structure of Bacteroides thetaiotaomicron glutamate decarboxylase BTGAD-PLP-GUA complex 7X4L ; 2.59 ; Crystal structure of Bacteroides thetaiotaomicron glutamate decarboxylase mutant Y303F-PLP complex 7D1D ; 1.75 ; Crystal structure of Bacteroides thetaiotaomicron glutaminyl cyclase bound to 1-benzylimidazole 7D1E ; 1.85 ; Crystal structure of Bacteroides thetaiotaomicron glutaminyl cyclase bound to N-acetylhistamine 5UJ6 ; 1.9 ; Crystal Structure of Bacteroides Uniformis beta-glucuronidase 4WT8 ; 3.4 ; Crystal Structure of bactobolin A bound to 70S ribosome-tRNA complex 5XKI ; 2.46 ; Crystal structure of baculoviral sulfhydryl oxidase AcP33 (wide type) 5XTN ; 2.54 ; Crystal structure of baculoviral sulfhydryl oxidase P33 (C155A, C158A mutant) 5XTO ; 2.56 ; Crystal structure of baculoviral sulfhydryl oxidase P33 (H114A mutant) 5XTP ; 2.4 ; Crystal structure of baculoviral sulfhydryl oxidase P33 (H227A mutant) 5XTQ ; 2.04 ; Crystal structure of baculoviral sulfhydryl oxidase P33 (H227D mutant) 5XTR ; 2.25 ; Crystal structure of baculoviral sulfhydryl oxidase P33 (R127A, E183A mutant) 7YNY ; 3.51 ; Crystal structure of baculovirus LEF-3 from Helicoverpa armigera nucleopolyhedrovirus 1P35 ; 2.2 ; CRYSTAL STRUCTURE OF BACULOVIRUS P35 1YN9 ; 1.5 ; Crystal structure of baculovirus RNA 5'-phosphatase complexed with phosphate 6MHP ; 1.73 ; Crystal structure of BaeC acyltransferase from bacillaene polyketide synthase in Bacillus amyloliquefaciens 5WVM ; 2.9 ; Crystal structure of baeS cocrystallized with 2 mM indole 6JDK ; 2.495 ; Crystal structure of Baeyer-Villiger monooxygenase from Parvibaculum lavamentivorans 5GJK ; 2.052 ; Crystal Structure of BAF47 and BAF155 Complex 4X86 ; 1.85 ; Crystal structure of BAG6-Ubl4a complex 4WWR ; 2.0 ; Crystal Structure of Bag6-Ubl4A Dimerization Domain 6IDX ; 1.699 ; Crystal Structure of BAI1/ELMO2 complex 8IGC ; 1.697 ; Crystal structure of Bak bound to Bnip5 BH3 6UXO ; 1.799 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with DDM 6UXM ; 2.49 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with E. coli lipid 6UXR ; 1.8 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with LysoPC 6UXP ; 2.492 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with phosphatidylglycerol 6UXN ; 2.49 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with phosphatidylserine 6UXQ ; 1.696 ; Crystal structure of BAK core domain BH3-groove-dimer in complex with POPC and C8E4 8UKY ; 2.398 ; Crystal structure of BAK in complex with inhibiting antibody 14G6 7LK4 ; 3.1 ; Crystal structure of BAK L100A in complex with activating antibody fragments 8SRY ; 2.4 ; Crystal structure of BAK-BAX heterodimer with C12E8 8SRX ; 2.09 ; Crystal structure of BAK-BAX heterodimer with lysoPC 4MPH ; 2.0301 ; Crystal structure of BaLdcB / VanY-like L,D-carboxypeptidase Zinc(II)-bound 4JID ; 2.3 ; Crystal structure of BaLdcB / VanY-like L,D-carboxypeptidase Zinc(II)-free 3OG5 ; 2.69 ; Crystal Structure of BamA POTRA45 tandem 4XGA ; 2.15 ; Crystal structure of BamB and BamA P3-5 complex from E.coli 4HDJ ; 1.85 ; Crystal Structure of BamB from Pseudomonas aeruginosa 4PIK ; 1.7 ; Crystal Structure of Banana Lectin bound to dimannose 4PIT ; 1.55 ; Crystal Structure of Banana Lectin H84T bound to dimannose 4PIU ; 1.6 ; CRYSTAL STRUCTURE OF BANANA LECTIN H84T MUTANT 8HYF ; 2.95 ; Crystal Structure of Banana Lectin In-complex with Fucose at 2.95 A Resolution 8HTX ; 2.8 ; Crystal structure of BANP in complex with methylated DNA 4JZP ; 2.1 ; Crystal structure of BAP31 vDED at acidic pH 4JZL ; 2.2 ; Crystal structure of BAP31 vDED at alkaline pH 2Q12 ; 1.79 ; Crystal Structure of BAR domain of APPL1 2Z0V ; 2.49 ; Crystal structure of BAR domain of Endophilin-III 2Q13 ; 2.05 ; Crystal structure of BAR-PH domain of APPL1 7CYS ; 1.81 ; Crystal structure of barley agmatine coumaroyltransferase (HvACT), an N-acyltransferase in BAHD superfamily 1RPK ; 2.0 ; Crystal structure of barley alpha-amylase isozyme 1 (amy1) in complex with acarbose 1P6W ; 2.0 ; Crystal structure of barley alpha-amylase isozyme 1 (AMY1) in complex with the substrate analogue, methyl 4I,4II,4III-tri-thiomaltotetraoside (thio-DP4) 1RP9 ; 2.0 ; Crystal structure of barley alpha-amylase isozyme 1 (amy1) inactive mutant d180a in complex with acarbose 1RP8 ; 2.0 ; Crystal structure of barley alpha-amylase isozyme 1 (amy1) inactive mutant d180a in complex with maltoheptaose 1C2A ; 1.9 ; CRYSTAL STRUCTURE OF BARLEY BBI 2XFR ; 0.97 ; Crystal structure of barley beta-amylase at atomic resolution 2XGB ; 1.2 ; Crystal structure of Barley Beta-Amylase complexed with 2,3- epoxypropyl-alpha-D-glucopyranoside 2XGI ; 1.3 ; Crystal structure of Barley Beta-Amylase complexed with 3,4- epoxybutyl alpha-D-glucopyranoside 6F9L ; 1.77 ; Crystal structure of Barley Beta-Amylase complexed with 3-Deoxy-3-fluoro-maltose 2XG9 ; 1.8 ; Crystal structure of Barley Beta-Amylase complexed with 4-O-alpha-D- glucopyranosylmoranoline 6F9J ; 1.67 ; Crystal structure of Barley Beta-Amylase complexed with 4-O-alpha-D-mannopyranosyl-(1-deoxynojirimycin) 6F9H ; 1.9 ; Crystal structure of Barley Beta-Amylase complexed with 4-S-alpha-D-glucopyranosyl-(1,4-dideoxy-4-thio-nojirimycin) 2XFF ; 1.309 ; Crystal structure of Barley Beta-Amylase complexed with acarbose 2XFY ; 1.207 ; Crystal structure of Barley Beta-Amylase complexed with alpha- cyclodextrin 1IEQ ; 2.7 ; CRYSTAL STRUCTURE OF BARLEY BETA-D-GLUCAN GLUCOHYDROLASE ISOENZYME EXO1 1IEW ; 2.55 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme Exo1 in complex with 2-deoxy-2-fluoro-alpha-D-glucoside 3WLJ ; 1.67 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme EXO1 in complex with 3-deoxy-glucose 1J8V ; 2.4 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme Exo1 in complex with 4'-nitrophenyl 3I-thiolaminaritrioside 3WLK ; 1.8 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme EXO1 in complex with 4-deoxy-glucose 1IEX ; 2.2 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme Exo1 in complex with 4I,4III,4V-S-trithiocellohexaose 1IEV ; 2.8 ; CRYSTAL STRUCTURE OF BARLEY BETA-D-GLUCAN GLUCOHYDROLASE ISOENZYME EXO1 IN COMPLEX WITH CYCLOHEXITOL 1LQ2 ; 2.7 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme Exo1 in complex with gluco-phenylimidazole 1X38 ; 1.698 ; crystal structure of barley beta-D-glucan glucohydrolase isoenzyme exo1 in complex with gluco-phenylimidazole 1X39 ; 1.8 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme exo1 in complex with gluco-phenylimidazole 3WLM ; 1.9 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme exo1 in complex with octyl-O-glucoside 3WLN ; 2.0 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme EXO1 in complex with octyl-S-glucoside 3WLL ; 1.8 ; Crystal structure of barley beta-D-glucan glucohydrolase isoenzyme EXO1 in complex with PEG400 6JG6 ; 1.55 ; Crystal structure of barley exohydrolaseI W286A mutant in complex with methyl 6-thio-beta-gentiobioside 6JGA ; 1.47 ; Crystal structure of barley exohydrolaseI W286F in complex with 4'-nitrophenyl thiolaminaribioside 6JG7 ; 2.16 ; Crystal structure of barley exohydrolaseI W286F in complex with methyl 2-thio-beta-sophoroside 6JGB ; 1.47 ; Crystal structure of barley exohydrolaseI W286F mutant in complex with methyl 6-thio-beta-gentiobioside 6JGC ; 2.36 ; Crystal structure of barley exohydrolaseI W286Y mutant in complex with glucose. 6JGD ; 2.13 ; Crystal structure of barley exohydrolaseI W286Y mutant in complex with methyl 6-thio-beta-gentiobioside 6L1J ; 1.8 ; Crystal structure of barley exohydrolaseI W434A mutant in complex with 4'-nitrophenyl thiolaminaritrioside 6LBB ; 1.8 ; Crystal structure of barley exohydrolaseI W434A mutant in complex with 4I,4III,4V-S-trithiocellohexaose 6KUF ; 1.9 ; Crystal structure of barley exohydrolaseI W434A mutant in complex with glucose. 6JGE ; 1.92 ; Crystal structure of barley exohydrolaseI W434A mutant in complex with methyl 2-thio-beta-sophoroside. 6K6V ; 1.98 ; Crystal structure of barley exohydrolaseI W434A mutant in complex with methyl 6-thio-beta-gentiobioside 6LC5 ; 1.76 ; Crystal structure of barley exohydrolaseI W434F in complex with 4'-nitrophenyl thiolaminaribioside 6JGK ; 1.66 ; Crystal structure of barley exohydrolaseI W434F mutant in complex with 4I,4III,4V-S-trithiocellohexaose 6JGG ; 1.9 ; Crystal structure of barley exohydrolaseI W434F mutant in complex with methyl 2-thio-beta-sophoroside. 6LBV ; 1.89 ; Crystal structure of barley exohydrolaseI W434F mutant in complex with methyl 6-thio-beta-gentiobioside 6JGN ; 1.98 ; Crystal structure of barley exohydrolaseI W434H in complex with 4'-nitrophenyl thiolaminaribioside 6JGO ; 1.95 ; Crystal structure of barley exohydrolaseI W434H mutant in complex with 4I,4III,4V-S-trithiocellohexaose 6JGL ; 1.92 ; Crystal structure of barley exohydrolaseI W434H mutant in complex with methyl 2-thio-beta-sophoroside 6JGP ; 1.99 ; Crystal structure of barley exohydrolaseI W434H mutant in complex with methyl 6-thio-beta-gentiobioside. 6JGR ; 2.25 ; Crystal structure of barley exohydrolaseI W434Y in complex with 4'-nitrophenyl thiolaminaribioside 6JGS ; 2.03 ; Crystal structure of barley exohydrolaseI W434Y mutant in complex with 4I,4III,4V-S-trithiocellohexaose. 6JGQ ; 2.01 ; Crystal structure of barley exohydrolaseI W434Y mutant in complex with methyl 2-thio-beta-sophoroside. 6JGT ; 1.82 ; Crystal structure of barley exohydrolaseI W434Y mutant in complex with methyl 6-thio-beta-gentiobioside. 6JG2 ; 2.0 ; Crystal structure of barley exohydrolaseI wildtype in complex with 4'-nitrophenyl thiolaminaribioside 6JG1 ; 1.78 ; Crystal structure of barley exohydrolaseI wildtype in complex with 4I,4III,4V-S-trithiocellohexaose 1BGP ; 1.9 ; CRYSTAL STRUCTURE OF BARLEY GRAIN PEROXIDASE 1 4J3X ; 1.75 ; Crystal structure of barley limit dextrinase (E510A mutant) in complex with a branched maltoheptasaccharide 4J3W ; 1.67 ; Crystal structure of barley limit dextrinase (E510A mutant) in complex with a branched maltohexasaccharide 4J3T ; 1.6 ; Crystal structure of barley Limit dextrinase co-crystallized with 25mM maltotetraose 4J3V ; 1.45 ; Crystal structure of barley limit dextrinase in complex with a branched thio-linked hexasaccharide 4J3U ; 1.7 ; Crystal structure of barley limit dextrinase in complex with maltosyl-S-betacyclodextrin 4J3S ; 1.75 ; Crystal structure of barley limit dextrinase soaked with 300mM maltotetraose 2VM1 ; 1.7 ; Crystal structure of barley thioredoxin h isoform 1 crystallized using ammonium sulfate as precipitant 2VM2 ; 1.8 ; Crystal structure of barley thioredoxin h isoform 1 crystallized using PEG as precipitant 2VLU ; 1.7 ; Crystal structure of barley thioredoxin h isoform 2 in partially radiation-reduced state 2VLV ; 1.7 ; Crystal structure of barley thioredoxin h isoform 2 in partially radiation-reduced state 2VLT ; 2.0 ; Crystal structure of barley thioredoxin h isoform 2 in the oxidized state 3C5P ; 2.9 ; Crystal structure of BAS0735, a protein of unknown function from Bacillus anthracis str. Sterne 3AUP ; 1.91 ; Crystal structure of Basic 7S globulin from soybean 1BFG ; 1.6 ; CRYSTAL STRUCTURE OF BASIC FIBROBLAST GROWTH FACTOR AT 1.6 ANGSTROMS RESOLUTION 2BFH ; 2.5 ; CRYSTAL STRUCTURE OF BASIC FIBROBLAST GROWTH FACTOR AT 1.6 ANGSTROMS RESOLUTION 3ZDT ; 3.15 ; Crystal structure of basic patch mutant FAK FERM domain FAK31- 405 K216A, K218A, R221A, K222A 2DTY ; 2.65 ; Crystal structure of basic winged bean lectin complexed with N-acetyl-D-galactosamine 2DTW ; 2.4 ; Crystal Structure of basic winged bean lectin in complex with 2Me-O-D-Galactose 2E51 ; 2.5 ; Crystal structure of basic winged bean lectin in complex with A blood group disaccharide 2E7T ; 2.65 ; Crystal structure of basic winged bean lectin in complex with a blood group trisaccharide 2DU0 ; 2.7 ; Crystal structure of basic winged bean lectin in complex with Alpha-D-galactose 2E53 ; 2.4 ; Crystal structure of basic winged bean lectin in complex with B blood group disaccharide 2E7Q ; 2.75 ; Crystal structure of basic winged bean lectin in complex with b blood group trisaccharide 2ZML ; 2.65 ; Crystal structure of basic winged bean lectin in complex with Gal-ALPHA 1,4 Gal 2ZMN ; 2.9 ; Crystal Structure of basic winged bean lectin in complex with Gal-alpha- 1,6 Glc 2DU1 ; 2.6 ; Crystal Structure of basic winged bean lectin in complex with Methyl-alpha-N-acetyl-D galactosamine 2D3S ; 2.35 ; Crystal Structure of basic winged bean lectin with Tn-antigen 7DAA ; 2.51 ; Crystal structure of basigin complexed with anti-basigin Fab fragment 2IW4 ; 2.15 ; CRYSTAL STRUCTURE OF BASILLUS SUBTILIS FAMILY II INORGANIC PYROPHOSPHATASE MUTANT, H98Q, IN COMPLEX WITH PNP 6J2E ; 2.1 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with Ebola virus-derived peptide EBOV-NP1 6J2G ; 2.41 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with Ebola virus-derived peptide EBOV-NP2 6J2I ; 2.3 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with H17N10 influenza-like virus-derivrd peptide H17N10-NP 6J2D ; 2.313 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with Hendra virus-derived peptide HeV1 6K7T ; 1.6 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with Hendra virus-derived peptide HeV1--human beta-2 microglobulin 6J2F ; 1.9 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with Hendra virus-derived peptide HeV2 6J2J ; 2.5 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 in complex with MERS-CoV-derived peptide MERS-CoV-S3 6J2H ; 2.3 ; Crystal structure of bat (Pteropus Alecto) MHC class I Ptal-N*01:01 mutant (Met52 Asp53 Leu54 deleted) in complex with Hendra virus-derived peptide HeV1 7F8L ; 1.762 ; Crystal structure of Bat coronavirus RaTG13 ORF8 accessory protein 6EVK ; 2.9 ; Crystal structure of bat influenza A/H17N10 polymerase with viral RNA promoter and cap analogue m7GTP 6EVJ ; 3.9 ; Crystal structure of bat influenza A/H17N10 polymerase with viral RNA promoter and capped RNA primer 6FHI ; 2.8 ; Crystal structure of bat influenza A/H17N10 polymerase with viral RNA promoter bound to a 19-mer serine 5 phosphorylated Pol II CTD peptide with a truncated linker. 6FHH ; 2.7 ; Crystal structure of bat influenza A/H17N10 polymerase with viral RNA promoter bound to a 22-mer modified Pol II CTD peptide with serine 5 thiophosphorylated. 8HSM ; 2.2 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I MYLU-B-67 8HSW ; 2.03 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I MYLU-B-67 FOR 2.1 ANGSTROM 8HT9 ; 2.2 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I MYLU-B-67 FOR 2.2 ANGSTROM 6ILC ; 2.2 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I PTAL-N*01:01 FOR 2.2 ANGSTROM 6ILG ; 2.6 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I PTAL-N*01:01 FOR 2.6 ANGSTROM 6ILF ; 2.7 ; CRYSTAL STRUCTURE OF BAT MHC CLASS I PTAL-N*01:01 FOR 2.7 ANGSTROM 3EUF ; 1.9 ; Crystal structure of BAU-bound human uridine phosphorylase 1 6H7V ; 2.54 ; Crystal structure of BauA, the Ferric preacinetobactin receptor from Acinetobacter baumannii 6HCP ; 1.83 ; Crystal structure of BauA, the Ferric preacinetobactin receptor from Acinetobacter baumannii 6H7F ; 2.26 ; Crystal structure of BauA, the Ferric preacinetobactin receptor from Acinetobacter baumannii in complex with Fe3+-Preacinetobactin-acinetobactin 8SPF ; 2.2 ; Crystal structure of Bax core domain BH3-groove dimer - hexameric fraction with 2-stearoyl lysoPC 8SPZ ; 2.4 ; Crystal structure of Bax core domain BH3-groove dimer - hexameric fraction with dioctanoyl phosphatidylserine 8G1T ; 2.092 ; Crystal structure of Bax core domain BH3-groove dimer - tetrameric fraction P21 8SPE ; 2.3 ; Crystal structure of Bax core domain BH3-groove dimer - tetrameric fraction P31 8SVK ; 2.25 ; Crystal structure of Bax D71N core domain BH3-groove dimer 6EB6 ; 2.023 ; Crystal structure of BAX W139A monomer 5W5X ; 2.502 ; Crystal structure of BAXP168G in complex with an activating antibody 5W5Z ; 1.997 ; Crystal structure of BAXP168G in complex with an activating antibody at high resolution 5W61 ; 2.3 ; Crystal structure of BAXP168G monomer co-crystallized with glycerol 5W60 ; 1.803 ; Crystal structure of BAXP168G monomer cryo-protected with ethylene glycol 5IEV ; 2.03 ; Crystal structure of BAY 1000394 (Roniciclib) bound to CDK2 4IAH ; 2.8 ; Crystal Structure of BAY 60-2770 bound C139A H-NOX domain with S-nitrosylated conserved C122 4IAE ; 2.05 ; Crystal structure of BAY 60-2770 bound to nostoc H-NOX domain 6YM5 ; 2.5 ; Crystal structure of BAY-091 with PIP4K2A 6YM4 ; 1.95 ; Crystal structure of BAY-297 with PIP4K2A 5OR8 ; 2.4 ; Crystal Structure of BAZ2A bromodomain in complex with 1,3-dimethyl-benzimidazolone compound 1 5MGJ ; 2.1 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridine derivative 1 6FG6 ; 2.401 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridinone compound 1 6FGF ; 2.801 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridinone compound 2 6FGV ; 2.5 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridinone compound 3 6FGW ; 2.725 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridinone compound 4 6FGG ; 1.1 ; Crystal Structure of BAZ2A bromodomain in complex with 1-methylpyridinone compound 5 6FGH ; 2.1 ; Crystal Structure of BAZ2A bromodomain in complex with 3-amino-2-methylpyridine derivative 1 6FGI ; 2.551 ; Crystal Structure of BAZ2A bromodomain in complex with 3-amino-2-methylpyridine derivative 2 5MGL ; 2.651 ; Crystal Structure of BAZ2A bromodomain in complex with 4-chloropyridine derivative 3 5MGK ; 2.301 ; Crystal Structure of BAZ2A bromodomain in complex with 4-propionyl-pyrrole derivative 2 5MGM ; 2.8 ; Crystal Structure of BAZ2A bromodomain in complex with acetophenone derivative 4 6FGL ; 2.1 ; Crystal Structure of BAZ2A bromodomain in complex with acetylindole compound UZH47 6FI0 ; 1.9 ; Crystal structure of BAZ2A PHD zinc finger in complex with Fr 19 6FKP ; 2.0 ; Crystal structure of BAZ2A PHD zinc finger in complex with H3 10-mer AA mutant peptide 6FHU ; 2.0 ; Crystal structure of BAZ2A PHD zinc finger in complex with H3 3-mer peptide 7FHJ ; 2.28 ; Crystal structure of BAZ2A with DNA 7MWH ; 2.28 ; Crystal structure of BAZ2A with DNA 5OR9 ; 2.0 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methyl-cyclopentapyrazole compound 13 5ORB ; 2.103 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methyl-cyclopentapyrazole compound 30 5MGE ; 1.95 ; Crystal structure of BAZ2B bromodomain in complex with 1-methylpyridine derivative 1 6FH6 ; 2.082 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methylpyridinone compound 1 6FH7 ; 2.1 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methylpyridinone compound 2 6FGT ; 2.0 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methylpyridinone compound 3 6FGU ; 2.05 ; Crystal Structure of BAZ2B bromodomain in complex with 1-methylpyridinone compound 4 5L96 ; 2.15 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 1 5L8T ; 1.85 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 2 5L97 ; 2.05 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 3 5L98 ; 2.263 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 4 5L8U ; 1.85 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 5 5L99 ; 2.0 ; Crystal Structure of BAZ2B bromodomain in complex with 3-amino-2-methylpyridine derivative 6 5MGG ; 2.1 ; Crystal Structure of BAZ2B bromodomain in complex with 4-chloropyridine derivative 3 5MGF ; 1.9 ; Crystal Structure of BAZ2B bromodomain in complex with 4-propionyl-pyrrole derivative 2 5E73 ; 1.71 ; Crystal Structure of BAZ2B bromodomain in complex with acetylindole compound UZH47 5E74 ; 1.783 ; Crystal Structure of BAZ2B bromodomain in complex with acetylindole compound UZH50 5E9L ; 1.9 ; Crystal Structure of BAZ2B bromodomain in complex with fragment F103 5E9K ; 2.067 ; Crystal Structure of BAZ2B bromodomain in complex with fragment F275 5DYU ; 1.65 ; Crystal Structure of BAZ2B bromodomain in complex with fragment F39 5DYX ; 1.85 ; Crystal Structure of BAZ2B bromodomain in complex with fragment F59 5E9I ; 1.96 ; Crystal Structure of BAZ2B bromodomain in complex with fragment F60 5E9Y ; 1.65 ; Crystal Structure of BAZ2B bromodomain in complex with MPD 5E9M ; 1.778 ; Crystal Structure of BAZ2B bromodomain in complex with N-methyltrimethylacetamide 7WIN ; 1.95 ; Crystal structure of BAZ2B TAM domain 5A2U ; 3.3 ; Crystal structure of BBA68 or BbCRASP-1 from Borrelia burgdorferi strain B31 4KXO ; 2.0 ; Crystal Structure of BBBB at pH 10.0 with MPD as the cryoprotectant 4GBP ; 2.15 ; Crystal Structure of BBBB+UDP+Gal at pH 10 with MPD as the cryoprotectant 4FRE ; 1.85 ; Crystal Structure of BBBB+UDP+Gal at pH 6.5 with MPD as the cryoprotectant 4FRM ; 1.9 ; Crystal Structure of BBBB+UDP+Gal at pH 7.0 with MPD as the cryoprotectant 4FRH ; 1.8 ; Crystal Structure of BBBB+UDP+Gal at pH 7.5 with MPD as the cryoprotectant 4FRL ; 1.9 ; Crystal Structure of BBBB+UDP+Gal at pH 8.0 with MPD as the cryoprotectant 4FRP ; 2.0 ; Crystal Structure of BBBB+UDP+Gal at pH 8.5 with MPD as the cryoprotectant 4FRO ; 1.75 ; Crystal Structure of BBBB+UDP+Gal at pH 9.0 with MPD as the cryoprotectant 4FRQ ; 2.35 ; Crystal Structure of BBBB+UDP+Gal at pH 9.5 with MPD as the cryoprotectant 3SXC ; 1.9 ; Crystal structure of BBBB+UDP+Gal with Glycerol as the cryoprotectant 3SXD ; 1.55 ; Crystal structure of BBBB+UDP+Gal with MPD as the cryoprotectant 3E1I ; 2.3 ; Crystal Structure of BbetaD432A Variant Fibrinogen Fragment D with the Peptide Ligand Gly-His-Arg-Pro-amide 7JOE ; 2.6 ; Crystal structure of BbKI complexed with Human Kallikrein 4 7JOS ; 2.1 ; Crystal structure of BbKI complexed with Human Kallikrein 4 7JOW ; 1.91 ; Crystal structure of BbKI complexed with Human Kallikrein 4 4ZOT ; 1.4 ; Crystal structure of BbKI, a disulfide-free plasma kallikrein inhibitor at 1.4 A resolution 2GO2 ; 1.87 ; Crystal structure of BbKI, a Kunitz-type kallikrein inhibitor 4V0M ; 3.45 ; Crystal structure of BBS1N in complex with ARL6DN 4V0O ; 3.351 ; Crystal structure of BBS1N in complex with ARL6DN, soaked with lead 4V0N ; 3.131 ; Crystal structure of BBS1N in complex with ARL6DN, soaked with mercury 4K09 ; 2.107 ; Crystal structure of BbTX-II from Bothrops brazili venom 4HD5 ; 1.9 ; Crystal Structure of BC0361, a polysaccharide deacetylase from Bacillus cereus 4AOC ; 2.7 ; crystal structure of BC2L-A Lectin from Burkolderia cenocepacia in complex with methyl-heptoside 6CUG ; 2.4 ; Crystal structure of BC8B TCR-CD1b-PC complex 4O2H ; 2.3 ; Crystal structure of BCAM1869 protein (RsaM homolog) from Burkholderia cenocepacia 7E0W ; 2.8 ; Crystal Structure of BCH domain from S. pombe 1G8P ; 2.1 ; CRYSTAL STRUCTURE OF BCHI SUBUNIT OF MAGNESIUM CHELATASE 1X1B ; 2.6 ; Crystal structure of BchU complexed with S-adenosyl-L-homocysteine 1X1D ; 2.7 ; Crystal structure of BchU complexed with S-adenosyl-L-homocysteine and Zn-bacteriopheophorbide d 1X1C ; 2.85 ; Crystal structure of BchU complexed with S-adenosyl-L-homocysteine and Zn2+ 1X1A ; 2.6 ; Crystal structure of BchU complexed with S-adenosyl-L-methionine 1X19 ; 2.27 ; Crystal structure of BchU involved in bacteriochlorophyll c biosynthesis 5JMX ; 1.44 ; Crystal Structure of BcII metallo-beta-lactamase in complex with DZ-305 6EUM ; 1.18 ; CRYSTAL STRUCTURE OF BCII METALLO-BETA-LACTAMASE IN COMPLEX WITH DZ-307 6EWE ; 1.46 ; Crystal structure of BCII Metallo-beta-lactamase in complex with DZ-308 6F2N ; 1.149 ; Crystal structure of BCII Metallo-beta-lactamase in complex with KDU197 4TYT ; 1.799 ; Crystal Structure of BcII metallo-beta-lactamase in complex with ML302F 8HOI ; 2.25 ; Crystal structure of Bcl-2 D103Y in complex with sonrotoclax 6O0M ; 1.75 ; crystal structure of BCL-2 F104L mutation with venetoclax 6O0P ; 1.8 ; crystal structure of BCL-2 G101A mutation with venetoclax 8HOH ; 1.9 ; Crystal structure of Bcl-2 G101V in complex with sonrotoclax 6O0O ; 1.998 ; crystal structure of BCL-2 G101V mutation with S55746 6O0L ; 2.2 ; crystal structure of BCL-2 G101V mutation with venetoclax 2XA0 ; 2.7 ; Crystal structure of BCL-2 in complex with a BAX BH3 peptide 5FCG ; 2.1 ; Crystal structure of Bcl-2 in complex with HBx-BH3 motif 7LHB ; 2.068 ; Crystal structure of Bcl-2 in complex with prodrug ABBV-167 8HOG ; 1.8 ; Crystal structure of Bcl-2 in complex with sonrotoclax 6GL8 ; 1.4 ; Crystal structure of Bcl-2 in complex with the novel orally active inhibitor S55746 6O0K ; 1.62 ; crystal structure of BCL-2 with venetoclax 5WHI ; 1.69 ; Crystal Structure of Bcl-2-related protein A1 5WHH ; 2.38 ; Crystal Structure of Bcl-2-related protein A1 in complex with stapled peptide (AQ7)T(0EH)LRRFGD(MK8)INFRQ(NH2) 5MW2 ; 2.35 ; CRYSTAL STRUCTURE OF BCL-6 BTB-domain with BI-3802 5C3G ; 2.45 ; Crystal structure of Bcl-xl bound to BIM-MM 3SPF ; 1.7 ; Crystal Structure of Bcl-xL bound to BM501 3SP7 ; 1.4 ; Crystal Structure of Bcl-xL bound to BM903 6UVF ; 2.24 ; Crystal structure of BCL-XL bound to compound 12: (R)-2-(3-([1,1'-Biphenyl]-4-carbonyl)-3-(4-methylbenzyl)ureido)-3-((cyclohexylmethyl)sulfonyl)propanoic acid 6UVG ; 2.1 ; Crystal structure of BCL-XL bound to compound 13: (R)-2-(3-([1,1'-Biphenyl]-4-carbonyl)-3-(4-methylbenzyl)ureido)-3-(((3R,5R,7R)-adamantan-1-ylmethyl)sulfonyl)propanoic acid 6UVH ; 2.19 ; Crystal structure of BCL-XL bound to compound 15: (R)-2-(3-(2-((4'-Chloro-[1,1'-biphenyl]-2-yl)methyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl)-3-(4-methylbenzyl)ureido)-3-((cyclohexylmethyl)sulfonyl)propanoic acid 6UVD ; 2.15 ; Crystal structure of BCL-XL bound to compound 2: (2R)-3-(Benzylsulfanyl)-2-({[(4-methylphenyl)methyl] [(4 phenylphenyl)carbonyl] carbamoyl}amino) propanoic acid 6UVE ; 2.87 ; Crystal structure of BCL-XL bound to compound 7: (R)-3-(Benzylthio)-2-(3-(4-chloro-[1,1':2',1'':3'',1'''-quaterphenyl]-4'''-carbonyl)-3-(4-methylbenzyl)ureido)propanoic acid 6UVC ; 1.9 ; Crystal structure of BCL-XL bound to compound 8: (R)-3-(Benzylthio)-2-(3-(2-((4'-chloro-[1,1'-biphenyl]-2-yl)methyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl)-3-(4-methylbenzyl)ureido)propanoic acid 7WJH ; 1.698 ; Crystal structure of Bcl-xL bound to the BH3 domain of human Pxt1 4EHR ; 2.09 ; Crystal structure of Bcl-Xl complex with 4-(5-butyl-3-(hydroxymethyl)-1-phenyl-1h-pyrazol-4-yl)-3-(3,4-dihydro-2(1h)-isoquinolinylcarbonyl)-n-((2-(trimethylsilyl)ethyl)sulfonyl)benzamide 4PPI ; 2.851 ; Crystal structure of Bcl-xL hexamer 7LH7 ; 1.409 ; Crystal structure of BCL-XL in complex with a benzothiazole-based inhibitor 3QKD ; 2.02 ; Crystal structure of Bcl-xL in complex with a Quinazoline sulfonamide inhibitor 2YXJ ; 2.2 ; Crystal structure of Bcl-xL in complex with ABT-737 4C52 ; 2.049 ; Crystal structure of Bcl-xL in complex with benzoylurea compound (39b) 4C5D ; 2.3 ; Crystal structure of Bcl-xL in complex with benzoylurea compound (42) 4QVE ; 2.05 ; Crystal structure of Bcl-xL in complex with BID BH3 domain 4QVF ; 1.531 ; Crystal structure of Bcl-xL in complex with BIM BH3 domain 3WIZ ; 2.45 ; Crystal structure of Bcl-xL in complex with compound 10 7JGW ; 1.3 ; Crystal structure of BCL-XL in complex with COMPOUND 1620116, CRYSTAL FORM 1 7JGV ; 2.05 ; CRYSTAL STRUCTURE OF BCL-XL IN COMPLEX WITH COMPOUND 1620116, CRYSTAL FORM 2 7XGF ; 1.9 ; Crystal structure of BCL-xL in complex with computationally designed inhibitor protein 7XGG ; 1.9 ; Crystal structure of BCL-xL in complex with computationally designed inhibitor protein 5B1Z ; 2.15 ; Crystal structure of Bcl-xL in complex with HBx-BH3 motif 3ZK6 ; 2.48 ; Crystal structure of Bcl-xL in complex with inhibitor (Compound 2). 3ZLN ; 2.288 ; Crystal structure of BCL-XL in complex with inhibitor (Compound 3) 3ZLO ; 2.601 ; Crystal structure of BCL-XL in complex with inhibitor (Compound 6) 3ZLR ; 2.026 ; Crystal structure of BCL-XL in complex with inhibitor (WEHI-539) 6VWC ; 1.604 ; Crystal structure of Bcl-xL in complex with tetrahydroisoquinoline-pyridine based inhibitors 3PL7 ; 2.613 ; Crystal structure of Bcl-xL in complex with the BaxBH3 domain 4YJ4 ; 2.1 ; Crystal structure of Bcl-xL in complex with the BIM BH3 domain containing Ile155-to-Arg and Glu158-to-phosphoserine mutations 3INQ ; 2.0 ; Crystal structure of BCL-XL in complex with W1191542 1PQ1 ; 1.65 ; Crystal structure of Bcl-xl/Bim 6KI6 ; 2.5 ; Crystal structure of BCL11A in complex with gamma-globin -115 HPFH region 6C3N ; 2.53171 ; Crystal structure of BCL6 BTB domain in complex with compound 7CC5 6C3L ; 1.46092 ; Crystal structure of BCL6 BTB domain with compound 15f 2VNV ; 1.7 ; Crystal structure of BclA lectin from burkholderia cenocepacia in complex with alpha-methyl-mannoside at 1.7 Angstrom resolution 2R6Q ; 1.43 ; Crystal Structure of BclA-island Construct 6BVG ; 3.2 ; Crystal structure of bcMalT T280C-E54C crosslinked by divalent mercury 8HCU ; 2.2 ; Crystal structure of BCOR/PCGF1/KDM2B complex 7C4H ; 1.83 ; Crystal structure of BCP1 from Saccharomyces Cerevisiae 3RKP ; 2.243 ; Crystal structure of BcpA*(D312A), the major pilin subunit of Bacillus cereus 3KPT ; 2.102 ; Crystal structure of BcpA, the major pilin subunit of Bacillus cereus 8BTN ; 3.1 ; Crystal structure of BcThsB 4RYM ; 2.8 ; Crystal structure of BcTSPO Iodo Type1 monomer 4RYO ; 1.6 ; Crystal structure of BcTSPO type II high resolution monomer 4RYQ ; 1.7 ; Crystal structure of BcTSPO, type 2 at 1.7 Angstrom 4RYR ; 1.704 ; Crystal structure of BcTSPO, type 2 at 1.7 Angstrom with DMSO 4RYN ; 2.01 ; Crystal structure of BcTSPO, type1 monomer 4RYI ; 3.49 ; Crystal structure of BcTSPO/PK11195 complex 7N7X ; 2.097 ; Crystal structure of BCX7353(ORLADEYO) in complex with human plasma kallikrein serine protease domain at 2.1 angstrom resolution 3OF1 ; 2.21 ; Crystal Structure of Bcy1, the Yeast Regulatory Subunit of PKA 7Y0C ; 2.94 ; Crystal structure of BD55-1403 and SARS-CoV-2 Omicron RBD 3EU4 ; 2.3 ; Crystal Structure of BdbD from Bacillus subtilis (oxidised) 3EU3 ; 1.5 ; Crystal Structure of BdbD from Bacillus subtilis (reduced) 5Z2L ; 1.7 ; Crystal structure of BdcA in complex with NADPH 8OML ; 2.56 ; Crystal structure of Bdellovibrio bacteriovorus Bd1334 C-terminal domains 8OKH ; 2.17 ; Crystal structure of Bdellovibrio bacteriovorus Bd1399 8ONF ; 1.53 ; Crystal structure of Bdellovibrio bacteriovorus Bd2439 fibre C-terminal domains with ethylene glycol 8OKW ; 1.84 ; Crystal structure of Bdellovibrio bacteriovorus Bd2734 C-terminal domain 8OKS ; 2.09 ; Crystal structure of Bdellovibrio bacteriovorus Bd2740 C-terminal domain 5TLC ; 2.8 ; Crystal structure of BdsA from Bacillus subtilis WU-S2B 4DDP ; 1.547 ; crystal structure of Beclin 1 evolutionarily conserved domain(ECD) 1FCV ; 2.65 ; CRYSTAL STRUCTURE OF BEE VENOM HYALURONIDASE IN COMPLEX WITH HYALURONIC ACID TETRAMER 1POC ; 2.0 ; CRYSTAL STRUCTURE OF BEE-VENOM PHOSPHOLIPASE A2 IN A COMPLEX WITH A TRANSITION-STATE ANALOGUE 8E7N ; 1.65 ; Crystal structure of beluga whale Gammacoronavirus SW1 Mpro with GC-376 captured in two conformational states 7W27 ; 1.49 ; Crystal structure of BEND3-BEN4-DNA complex 3M1E ; 1.8 ; Crystal Structure of BenM_DBD 4IHT ; 3.0 ; Crystal Structure of BenM_DBD/benA site 1 DNA Complex 4IHS ; 3.1 ; Crystal Structure of BenM_DBD/catB site 1 DNA Complex 2AG0 ; 2.58 ; Crystal structure of Benzaldehyde lyase (BAL)- native 2AG1 ; 2.58 ; Crystal structure of Benzaldehyde lyase (BAL)- SeMet 3D7K ; 2.49 ; Crystal structure of benzaldehyde lyase in complex with the inhibitor MBP 3O50 ; 2.0 ; Crystal structure of benzamide 9 bound to AuroraA 3MNR ; 1.9 ; Crystal Structure of Benzamide SNX-1321 bound to Hsp90 3D0B ; 1.74 ; Crystal Structure of Benzamide Tetrahydro-4H-carbazol-4-one bound to Hsp90 1J8A ; 1.21 ; CRYSTAL STRUCTURE OF BENZAMIDINE INHIBITED BOVINE PANCREATIC TRYPSIN AT 105K TO 1.21A RESOLUTION FROM LABORATORY SOURCE WITH HIGH NUMBER OF WATERS MODELLED 2AER ; 1.87 ; Crystal Structure of Benzamidine-Factor VIIa/Soluble Tissue Factor complex. 2AIQ ; 1.54 ; Crystal structure of benzamidine-inhibited protein C activator from the venom of copperhead snake Agkistrodon contortrix contortrix 7CBF ; 2.301 ; Crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals basis for substrate specificity and catalysis 3FSJ ; 1.37 ; Crystal structure of benzoylformate decarboxylase in complex with the inhibitor MBP 3F6E ; 1.34 ; Crystal structure of benzoylformate decarboxylase in complex with the pyridyl inhibitor 3-PKB 3F6B ; 1.34 ; Crystal structure of benzoylformate decarboxylase in complex with the pyridyl inhibitor PAA 4MQ5 ; 1.502 ; Crystal Structure of Benzoylformate Decarboxylase Mutant A306F 4MPP ; 1.501 ; Crystal Structure of Benzoylformate Decarboxylase Mutant H281Y/T377P/F397T/A460I 4QEL ; 1.432 ; Crystal Structure of Benzoylformate Decarboxylase Mutant H70A 4JD5 ; 1.33 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403E 4GP9 ; 1.07 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403F 4GM4 ; 1.28 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403I 4GPE ; 1.39 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403M 4GM0 ; 1.07 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403N 4GM1 ; 1.26 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403S 4GG1 ; 1.069 ; Crystal Structure of Benzoylformate Decarboxylase Mutant L403T 4MZX ; 1.558 ; Crystal Structure of Benzoylformate Decarboxylase Mutant T377L/A460Y 1F8F ; 2.2 ; CRYSTAL STRUCTURE OF BENZYL ALCOHOL DEHYDROGENASE FROM ACINETOBACTER CALCOACETICUS 3L00 ; 1.7 ; Crystal structure of benzylated SNAP-tag 4NPS ; 1.9 ; Crystal Structure of Bep1 protein (VirB-translocated Bartonella effector protein) from Bartonella clarridgeiae 4WGJ ; 1.7 ; Crystal Structure of BepC protein (VirB-translocated Bartonella effector protein) with bound AMPPNP from Bartonella tribocorum 5XOH ; 2.2 ; Crystal structure of bergaptol o-methyltransferase complex 4DNS ; 2.15 ; Crystal structure of Bermuda grass isoallergen BG60 provides insight into the various cross-allergenicity of the pollen group 4 allergens 2QM0 ; 1.84 ; Crystal structure of BES protein from Bacillus cereus 4KKS ; 2.6 ; Crystal Structure of BesA (C2 form) 4KKT ; 2.53 ; Crystal Structure of BesA (P21 form) 2PWN ; 2.04 ; Crystal structure of BET3 homolog (13277653) from Mus musculus at 2.04 A resolution 3LOZ ; 1.8 ; Crystal structure of Beta 2 Microglobulin amyloidogenic segment LSFSKD 3LOW ; 2.3 ; Crystal structure of Beta 2 Microglobulin domain-swapped dimer 6YL7 ; 3.17 ; Crystal structure of beta carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei 6YJN ; 2.7 ; Crystal structure of beta carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. 5CXK ; 1.9 ; Crystal structure of beta carbonic anhydrase from Vibrio cholerae 4S3I ; 1.946 ; Crystal structure of beta clamp from Helicobacter pylori 1WUW ; 1.9 ; Crystal Structure of beta hordothionin 4GKU ; 1.915 ; Crystal structure of beta lactamase in PET-15B 1BTG ; 2.5 ; CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND 3WB5 ; 2.501 ; Crystal Structure of beta secetase in complex with (6S)-2-amino-3,6-dimethyl-6-[(1R,2R)-2-phenylcyclopropyl]-3,4,5,6-tetrahydropyrimidin-4-one 3WB4 ; 2.25 ; Crystal Structure of beta secetase in complex with 2-amino-3,6-dimethyl-6-(2-phenylethyl)-3,4,5,6-tetrahydropyrimidin-4-one 3VV6 ; 2.05 ; Crystal Structure of beta secetase in complex with 2-amino-3-methyl-6-((1S, 2R)-2-phenylcyclopropyl)pyrimidin-4(3H)-one 3VV8 ; 2.5 ; Crystal structure of beta secetase in complex with 2-amino-3-methyl-6-((1S,2R)-2-(3'-methylbiphenyl-4-yl)cyclopropyl)pyrimidin-4(3H)-one 3VV7 ; 2.1 ; Crystal Structure of beta secetase in complex with 2-amino-6-((1S,2R)-2-(3'-methoxybiphenyl-3-yl)cyclopropyl)-3-methylpyrimidin-4(3H)-one 6WMK ; 2.2 ; Crystal structure of beta sheet heterodimer LHD29 4Q0G ; 2.31 ; Crystal structure of beta subunit of acyl-CoA carboxylase AccD1 from Mycobacterium tuberculosis 3I5V ; 2.8 ; Crystal structure of beta toxin 275-280 from Staphylococcus aureus 3I41 ; 1.75 ; Crystal structure of beta toxin from Staphylococcus aureus F277A, P278A mutant 3I46 ; 2.6 ; Crystal structure of beta toxin from Staphylococcus aureus F277A, P278A mutant with bound calcium ions 3I48 ; 1.8 ; Crystal structure of beta toxin from Staphylococcus aureus F277A, P278A mutant with bound magnesium ions 4J78 ; 1.478 ; Crystal structure of beta'-COP/Emp47p complex 4J77 ; 1.756 ; Crystal structure of beta'-COP/hWbp1 complex 4J81 ; 1.745 ; Crystal structure of beta'-COP/Insig-1 complex 4J82 ; 1.461 ; Crystal structure of beta'-COP/Insig-2 complex 4J73 ; 1.439 ; Crystal structure of beta'-COP/p25 complex 4J79 ; 1.559 ; Crystal structure of beta'-COP/PEDVspike complex 4J84 ; 1.473 ; Crystal structure of beta'-COP/Scyl1 complex 4J86 ; 1.48 ; Crystal structure of beta'-COP/yWbp1 complex 8ENW ; 1.45 ; Crystal structure of beta'-COPI-WD40 domain in complex with SARS-CoV-2 clientized spike tail heptapeptide. 8ENS ; 1.45 ; Crystal structure of beta'-COPI-WD40 domain in complex with SARS-CoV-2 spike tail hepta-peptide 8ENX ; 1.8 ; Crystal structure of beta'-COPI-WD40 domain Y33A mutant in complex with SARS-CoV-2 clientized spike tail heptapeptide. 5UH7 ; 2.199 ; Crystal structure of beta'MtbSI of Mycobacterium tuberculosis RNA polymerase 5Z06 ; 2.1 ; Crystal structure of beta-1,2-glucanase from Parabacteroides distasonis 5YSF ; 1.9 ; Crystal structure of beta-1,2-glucooligosaccharide binding protein in complex with sophoropentaose 5YSE ; 1.6 ; Crystal structure of beta-1,2-glucooligosaccharide binding protein in complex with sophorotetraose 5YSD ; 2.1 ; Crystal structure of beta-1,2-glucooligosaccharide binding protein in complex with sophorotriose 5YSB ; 2.2 ; Crystal structure of beta-1,2-glucooligosaccharide binding protein in ligand-free form 7WWC ; 2.20216 ; Crystal structure of beta-1,3(4)-glucanase with Laminaritriose 3EQN ; 1.7 ; Crystal structure of beta-1,3-glucanase from Phanerochaete chrysosporium (Lam55A) 3EQO ; 2.25 ; Crystal structure of beta-1,3-glucanase from Phanerochaete chrysosporium (Lam55A) gluconolactone complex 2DDX ; 0.86 ; Crystal structure of beta-1,3-xylanase from Vibrio sp. AX-4 4OOU ; 2.36 ; Crystal structure of beta-1,4-D-mannanase from Cryptopygus antarcticus 4OOZ ; 2.6 ; Crystal structure of beta-1,4-D-mannanase from Cryptopygus antarcticus in complex with mannopentaose 1FOB ; 1.8 ; CRYSTAL STRUCTURE OF BETA-1,4-GALACTANASE FROM ASPERGILLUS ACULEATUS AT 100K 1FHL ; 2.3 ; CRYSTAL STRUCTURE OF BETA-1,4-GALACTANASE FROM ASPERGILLUS ACULEATUS AT 293K 1YIF ; 1.8 ; CRYSTAL STRUCTURE OF beta-1,4-xylosidase FROM BACILLUS SUBTILIS, NEW YORK STRUCTURAL GENOMICS CONSORTIUM 6V06 ; 2.4 ; Crystal structure of Beta-2 glycoprotein I purified from plasma (pB2GPI) 6K7U ; 1.601 ; Crystal structure of beta-2 microglobulin (beta2m) of Bat (Pteropus Alecto) 7NMO ; 1.2 ; Crystal structure of beta-2-microglobulin D76A mutant 7NMC ; 1.2 ; Crystal structure of beta-2-microglobulin D76E mutant 7NMT ; 1.2 ; Crystal structure of beta-2-microglobulin D76G mutant 7NN5 ; 1.242 ; Crystal structure of beta-2-microglobulin D76K mutant 7NMV ; 1.51 ; Crystal structure of beta-2-microglobulin D76Q mutant 7NMR ; 1.15 ; Crystal structure of beta-2-microglobulin D76S mutant 7NMY ; 1.25 ; Crystal structure of beta-2-microglobulin D76Y mutant 1R3N ; 2.7 ; Crystal structure of beta-alanine synthase from Saccharomyces kluyveri 1R43 ; 2.8 ; Crystal structure of beta-alanine synthase from Saccharomyces kluyveri (selenomethionine substituted protein) 2VL1 ; 2.15 ; Crystal structure of beta-alanine synthase from Saccharomyces kluyveri in complex with a gly-gly peptide 2V8G ; 2.5 ; Crystal structure of beta-alanine synthase from Saccharomyces kluyveri in complex with the product beta-alanine 1FA2 ; 2.3 ; CRYSTAL STRUCTURE OF BETA-AMYLASE FROM SWEET POTATO 5XFM ; 2.3 ; Crystal structure of beta-arabinopyranosidase 6K3F ; 2.3 ; Crystal Structure of beta-Arrestin 2 in Complex with CXCR7 Phosphopeptide 7CF6 ; 2.75 ; Crystal structure of Beta-aspartyl dipeptidase from thermophilic keratin degrading Fervidobacterium islandicum AW-1 in complex with beta-Asp-Leu dipeptide 6NTR ; 2.101 ; Crystal Structure of Beta-barrel-like Protein of Domain of Unknown Function DUF1849 from Brucella abortus 5UC0 ; 1.73 ; Crystal Structure of Beta-barrel-like, Uncharacterized Protein of COG5400 from Brucella abortus 5YO8 ; 1.64 ; Crystal structure of beta-C25/C30/C35-prene synthase 6Y04 ; 2.48 ; Crystal structure of beta-carbonic anhydrase isoform I (TvaCA1) from the Trichomonas vaginalis protozoan. 1Q5N ; 2.3 ; Crystal Structure of beta-carboxy-cis,cis-muconate cycloisomerase (CMLE) from Acinetobacter calcoaceticus sp. ADP1 3PLC ; 2.41 ; Crystal structure of Beta-Cardiotoxin, a novel three-finger cardiotoxin from the venom of Ophiophagus hannah 1JDH ; 1.9 ; CRYSTAL STRUCTURE OF BETA-CATENIN AND HTCF-4 8EIB ; 3.76 ; Crystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H329, a Helicon Polypeptide 8EIC ; 2.62 ; Crystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H330, a Helicon Polypeptide 8EI9 ; 3.9 ; Crystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H332, a Helicon Polypeptide 8EIA ; 3.6 ; Crystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H333, a Helicon Polypeptide 2Z6H ; 2.2 ; Crystal Structure of Beta-Catenin Armadillo Repeat Region and Its C-Terminal domain 7ZRB ; 3.434 ; Crystal structure of Beta-catenin Armadillo repeats domain in complex with the inhibitor RS6452 7AR4 ; 2.6 ; Crystal structure of beta-catenin in complex with cyclic peptide inhibitor 1T08 ; 2.1 ; Crystal structure of beta-catenin/ICAT helical domain/unphosphorylated APC R3 1LJP ; 1.8 ; Crystal Structure of beta-Cinnamomin Elicitin 8OFD ; 2.81 ; Crystal structure of beta-conglutin from Lupinus albus refined to 2.81 A 3VBE ; 2.5 ; Crystal structure of beta-cyanoalanine synthase in soybean 3VC3 ; 1.766 ; Crystal structure of beta-cyanoalanine synthase K95A mutant in soybean 4I8D ; 2.48 ; Crystal Structure of Beta-D-glucoside glucohydrolase from Trichoderma reesei 5N6U ; 3.08 ; Crystal structure of Beta-D-Mannosidase from Dictyoglomus thermophilum. 6YYI ; 2.67 ; Crystal structure of beta-D-xylosidase from Dictyoglomus thermophilum bound to beta-D-xylopyranose 6YYH ; 2.72 ; Crystal structure of beta-D-xylosidase from Dictyoglomus thermophilum in ligand-free form 1PX8 ; 2.4 ; Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase 1UHV ; 2.1 ; Crystal structure of beta-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase 5HN3 ; 1.7 ; Crystal structure of beta-decarboxylating dehydrogenase (TK0280) from Thermococcus kodakarensis (apo form) 5HN6 ; 2.5 ; Crystal structure of beta-decarboxylating dehydrogenase (TK0280) from Thermococcus kodakarensis complexed with Mn and 3-isopropylmalate 5HN4 ; 2.64 ; Crystal structure of beta-decarboxylating dehydrogenase (TK0280) from Thermococcus kodakarensis complexed with Mn and homoisocitrate 5HN5 ; 2.55 ; Crystal structure of beta-decarboxylating dehydrogenase (TK0280) from Thermococcus kodakarensis complexed with Mn and isocitrate 4XT0 ; 2.07 ; Crystal Structure of Beta-etherase LigF from Sphingobium sp. strain SYK-6 4MAD ; 1.8 ; Crystal structure of beta-galactosidase C (BgaC) from Bacillus circulans ATCC 31382 4IUG ; 2.6 ; Crystal structure of beta-galactosidase from Aspergillus oryzae in complex with galactose 3TTS ; 2.401 ; Crystal structure of beta-galactosidase from Bacillus circulans sp. alkalophilus 3TTY ; 2.25 ; Crystal structure of beta-galactosidase from Bacillus circulans sp. alkalophilus in complex with galactose 7SF2 ; 2.75 ; Crystal Structure of Beta-Galactosidase from Bacteroides cellulosilyticus 3BGA ; 2.1 ; Crystal structure of beta-galactosidase from Bacteroides thetaiotaomicron VPI-5482 5VYM ; 2.456 ; Crystal structure of beta-galactosidase from Bifidobacterium adolescentis 6Y2K ; 1.9 ; Crystal structure of beta-galactosidase from the psychrophilic Marinomonas ef1 7CWI ; 1.95 ; Crystal structure of beta-galactosidase II from Bacillus circulans 7CWD ; 2.0 ; Crystal structure of beta-galactosidase II from Bacillus circulans in complex with beta-D-galactopyranosyl disaccharide 5A8O ; 2.3 ; Crystal structure of beta-glucanase SdGluc5_26A from Saccharophagus degradans in complex with cellotetraose 5A94 ; 1.99 ; Crystal structure of beta-Glucanase SdGluc5_26A from Saccharophagus degradans in complex with tetrasaccharide A, form 1 5A95 ; 1.35 ; Crystal structure of beta-glucanase SdGluc5_26A from Saccharophagus degradans in complex with tetrasaccharide A, form 2 4IIB ; 1.8 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus 4IID ; 2.3 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with 1-deoxynojirimycin 4IIE ; 2.0 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with calystegine B(2) 4IIF ; 2.45 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with castanospermine 4IIG ; 2.3 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with D-glucose 4IIC ; 1.9 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with isofagomine 4IIH ; 2.0 ; Crystal structure of beta-glucosidase 1 from Aspergillus aculeatus in complex with thiocellobiose 3AHY ; 1.63 ; Crystal structure of beta-glucosidase 2 from fungus Trichoderma reesei in complex with Tris 3AHX ; 1.9 ; Crystal structure of beta-glucosidase A from bacterium Clostridium cellulovorans 5NS6 ; 1.5 ; Crystal structure of beta-glucosidase BglM-G1 from marine metagenome 5NS7 ; 1.54 ; Crystal structure of beta-glucosidase BglM-G1 mutant H75R from marine metagenome 5NS8 ; 1.55 ; Crystal structure of beta-glucosidase BglM-G1 mutant H75R from marine metagenome in complex with inhibitor 1-Deoxynojirimycin 3AC0 ; 2.54 ; Crystal structure of Beta-glucosidase from Kluyveromyces marxianus in complex with glucose 4ZOE ; 1.8 ; Crystal Structure of beta-glucosidase from Listeria innocua 4ZOB ; 2.4 ; Crystal Structure of beta-glucosidase from Listeria innocua in complex with gluconolactone 4ZOD ; 2.1 ; Crystal Structure of beta-glucosidase from Listeria innocua in complex with glucose 4ZOA ; 2.17 ; Crystal Structure of beta-glucosidase from Listeria innocua in complex with isofagomine 3VIG ; 0.99 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with 1-deoxynojirimycin 3VIM ; 1.03 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with a new glucopyranosidic product 3VIN ; 1.13 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with a new glucopyranosidic product 3VIO ; 1.12 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with a new glucopyranosidic product 3VIP ; 1.28 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with a new glucopyranosidic product 3VII ; 0.97 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with Bis-Tris 3VIK ; 1.1 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with cellobiose 3VIF ; 1.0 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with gluconolactone 3VIJ ; 1.03 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with glucose 3VIH ; 1.03 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with glycerol 3AI0 ; 1.4 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with para-nitrophenyl-beta-D-glucopyranoside 3VIL ; 1.15 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with salicin 3AHZ ; 1.34 ; Crystal structure of beta-glucosidase from termite Neotermes koshunensis in complex with Tris 7E5J ; 1.71 ; Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum 8WFT ; 1.9 ; Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum (Data 1) 8WFU ; 2.1 ; Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum (Data 2) 8WFV ; 1.5 ; Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum (Data 3) 8WFW ; 1.61 ; Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum (Data 4) 3AIU ; 2.2 ; Crystal structure of beta-glucosidase in rye 3AIW ; 2.4 ; Crystal structure of beta-glucosidase in rye complexed with 2-deoxy-2-fluoroglucoside and dinitrophenol 3AIV ; 2.5 ; Crystal structure of beta-glucosidase in rye complexed with an aglycone DIMBOA 3AIR ; 2.0 ; Crystal structure of beta-glucosidase in wheat complexed with 2-deoxy-2-fluoroglucoside and dinitrophenol 3AIQ ; 1.9 ; Crystal structure of beta-glucosidase in wheat complexed with an aglycone DIMBOA 3VNY ; 1.5 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum 7PSH ; 1.24 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum at 1.24 Angstrom resolution 3VO0 ; 1.9 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum covalent-bonded with 2-deoxy-2-fluoro-D-glucuronic acid 8OHT ; 1.05 ; Crystal structure of Beta-glucuronidase from Acidobacterium capsulatum in complex with competitive inhibitor derrived from siastatin B 7PSK ; 1.09 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor GR109 7PSI ; 1.25 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor ME727 8B0D ; 1.62 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor VB151 8B0E ; 1.55 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor VB158 7PSJ ; 1.55 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor VL166 3VNZ ; 1.8 ; Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with D-glucuronic acid 8OHV ; 1.5 ; Crystal structure of Beta-glucuronidase from Acidobacterium capsulatum in complex with glucuronic acid configured 3-geminal diol iminosugar inhibitor 8OHU ; 1.25 ; Crystal structure of Beta-glucuronidase from Acidobacterium capsulatum in complex with glucuronic acid configured isofagamine 8OHX ; 1.95 ; Crystal structure of Beta-glucuronidase from Escherichia coli in complex with siastatin B derived inhibitor 4R27 ; 2.03 ; Crystal structure of beta-glycosidase BGL167 7C71 ; 2.1 ; Crystal structure of beta-glycosides-binding protein (E117A) of ABC transporter in an open state 7C6J ; 2.1 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellobiose 7C6R ; 1.96 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellopentaose 7C6M ; 1.9 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellotetraose (Form I) 7C6N ; 2.05 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellotetraose (Form II) 7C6K ; 1.77 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellotriose (Form I) 7C6L ; 2.4 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to cellotriose (Form II) 7C6W ; 1.88 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to laminaritetraose 7C6T ; 2.3 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to laminaritriose (Form I) 7C6V ; 2.8 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in a closed state bound to laminaritriose (Form II) 7C6F ; 1.7 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in an open state 7C6G ; 1.9 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in an open-liganded state bound to gentiobiose 7C6H ; 1.85 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in an open-liganded state bound to laminaribiose 7C6I ; 1.7 ; Crystal structure of beta-glycosides-binding protein (W177X) of ABC transporter in an open-liganded state bound to sophorose 7C6X ; 2.65 ; Crystal structure of beta-glycosides-binding protein (W41A) of ABC transporter in an open state (Form I) 7C6Y ; 1.7 ; Crystal structure of beta-glycosides-binding protein (W41A) of ABC transporter in an open state (Form II) 7C6Z ; 1.63 ; Crystal structure of beta-glycosides-binding protein (W67A) of ABC transporter in an open state 7C70 ; 1.63 ; Crystal structure of beta-glycosides-binding protein (W67A) of ABC transporter in an open-liganded state bound to gentiobiose 7C66 ; 2.3 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in a closed state bound to cellobiose 7C68 ; 2.05 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in a closed state bound to cellotetraose 7C67 ; 2.0 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in a closed state bound to cellotriose 7C69 ; 2.35 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in a closed state bound to sophorose 7C63 ; 1.63 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in an open state (Form I) 7C64 ; 1.63 ; Crystal structure of beta-glycosides-binding protein of ABC transporter in an open state (Form II) 4G6C ; 1.38 ; Crystal structure of beta-hexosaminidase 1 from Burkholderia cenocepacia J2315 4GNV ; 1.5 ; Crystal structure of beta-hexosaminidase 1 from Burkholderia cenocepacia J2315 with bound N-Acetyl-D-Glucosamine 3GH4 ; 1.8 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 3SUS ; 1.8 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with Gal-NAG-thiazoline 3SUU ; 1.6 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with Gal-PUGNAc 3GH7 ; 1.9 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with GalNAc 3GH5 ; 1.6 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with GlcNAc 3SUR ; 1.9 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with NAG-thiazoline. 3SUW ; 1.9 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with NHAc-CAS 3SUV ; 1.6 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with NHAc-DNJ 3SUT ; 1.9 ; Crystal structure of beta-hexosaminidase from Paenibacillus sp. TS12 in complex with PUGNAc 1Y65 ; 1.85 ; Crystal structure of beta-hexosaminidase from Vibrio cholerae in complex with N-acetyl-D-glucosamine to a resolution of 1.85 7L74 ; 2.25 ; Crystal structure of Beta-hexosyl transferase from Hamamotoa (Sporobolomyces) singularis bound to TRIS 4ZW0 ; 2.9 ; Crystal structure of beta-Hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Candidatus asiaticum 5BUY ; 2.55 ; Crystal Structure of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Francisella tularensis 1ZHG ; 2.4 ; Crystal structure of Beta-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Plasmodium falciparum 5BUW ; 1.8 ; Crystal Structure of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Yersinia Pestis 3LRF ; 1.6 ; Crystal structure of beta-ketoacyl synthase from brucella melitensis 3U0E ; 1.6 ; Crystal structure of beta-ketoacyl synthase from Brucella melitensis in complex with fragment 9320 4JV3 ; 1.7 ; Crystal structure of beta-ketoacyl synthase from Brucella melitensis in complex with platencin 3MQD ; 1.25 ; Crystal structure of beta-ketoacyl synthase from brucella melitensis with FOL 0758, (1-methyl-1h-indazol-3-yl) methanol 4W61 ; 2.01 ; Crystal structure of beta-ketoacyl thiolase B (BktB) from Ralstonia eutropha 1I01 ; 2.6 ; CRYSTAL STRUCTURE OF BETA-KETOACYL [ACYL CARRIER PROTEIN] REDUCTASE FROM E. COLI. 4WZU ; 1.88 ; Crystal structure of beta-ketoacyl-(acyl carrier protein) synthase III-2 (FabH2) from Vibrio cholerae 4LS5 ; 1.803 ; Crystal structure of beta-ketoacyl-ACP synthase II (FabF) from Bacillus subtilis 4JRM ; 1.75 ; Crystal structure of beta-ketoacyl-ACP synthase II (FabF) from Vibrio Cholerae (space group P212121) at 1.75 Angstrom 4JRH ; 2.2 ; Crystal structure of beta-ketoacyl-ACP synthase II (FabF) from Vibrio Cholerae (space group P43) at 2.2 Angstrom 4R8E ; 2.7 ; Crystal structure of beta-ketoacyl-ACP synthase II (FabF) from Yersinia pestis 4LS6 ; 1.56 ; Crystal structure of beta-ketoacyl-ACP synthase II (FabF) I108F mutant from Bacillus subtilis 1HN9 ; 2.0 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III 4RYB ; 2.45 ; Crystal structure of beta-ketoacyl-ACP synthase III (FabH) from Neisseria meningitidis 4NHD ; 1.78 ; Crystal structure of beta-ketoacyl-ACP synthase III (FabH) from Vibrio Cholerae in complex with Coenzyme A 4YLT ; 2.2 ; Crystal structure of beta-ketoacyl-ACP synthase III (FabH) from Yersinia pestis 4Z19 ; 1.8 ; Crystal structure of beta-ketoacyl-ACP synthase III (FabH) from Yersinia pestis with acetylated active site cysteine 1HNH ; 1.9 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III + DEGRADED FORM OF ACETYL-COA 1HNJ ; 1.46 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III + MALONYL-COA 1MZS ; 2.1 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III WITH BOUND dichlorobenzyloxy-indole-carboxylic acid inhibitor 1HNK ; 1.9 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III, APO TETRAGONAL FORM 5V0P ; 2.16 ; Crystal Structure of Beta-ketoacyl-ACP synthase III-2 (FabH2) (C113A) from Vibrio Cholerae co-crystallized with octanoyl-CoA 1HND ; 1.6 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-ACP SYNTHASE III-COA COMPLEX 4I08 ; 2.063 ; Crystal structure of beta-ketoacyl-acyl carrier protein reductase (FabG) from Vibrio cholerae in complex with NADPH 4WJZ ; 2.4 ; Crystal structure of beta-ketoacyl-acyl carrier protein reductase (FabG)(G141A) from Vibrio cholerae 5END ; 2.55 ; Crystal structure of beta-ketoacyl-acyl carrier protein reductase (FabG)(Q152A) from Vibrio cholerae 1DD8 ; 2.3 ; CRYSTAL STRUCTURE OF BETA-KETOACYL-[ACYL CARRIER PROTEIN] SYNTHASE I FROM ESCHERICHIA COLI 6PCA ; 1.81 ; Crystal structure of beta-ketoadipyl-CoA thiolase 6PCD ; 1.37 ; Crystal structure of beta-ketoadipyl-CoA thiolase mutant (C90S-H356A) in complex Octanoyl coenzyme A 6PCC ; 1.96 ; Crystal structure of beta-ketoadipyl-CoA thiolase mutant (H356A) in complex hexanoyl coenzyme A 6PCB ; 1.61 ; Crystal structure of beta-ketoadipyl-CoA thiolase mutant (H356A) in complex with COA 4O99 ; 1.96 ; Crystal structure of Beta-ketothiolase (PhaA) from Ralstonia eutropha H16 4O9A ; 1.52 ; Crystal structure of Beta-ketothiolase (PhaA) from Ralstonia eutropha H16 4O9C ; 2.0 ; Crystal structure of Beta-ketothiolase (PhaA) from Ralstonia eutropha H16 4NZS ; 2.29 ; Crystal structure of beta-ketothiolase BktB B from Ralstonia eutropha H16 5VAN ; 2.202 ; Crystal Structure of Beta-Klotho 5VAQ ; 2.606 ; Crystal Structure of Beta-Klotho in Complex with FGF21CT 5VAK ; 1.7 ; Crystal Structure of Beta-Klotho, Domain 1 6LCF ; 1.92 ; Crystal Structure of beta-L-arabinobiose binding protein - native 6LCE ; 1.78 ; Crystal Structure of beta-L-arabinobiose binding protein - selenomethionine derivative 3A23 ; 1.9 ; Crystal Structure of beta-L-Arabinopyranosidase complexed with D-galactose 3A22 ; 1.9 ; Crystal Structure of beta-L-Arabinopyranosidase complexed with L-arabinose 1JGT ; 1.95 ; CRYSTAL STRUCTURE OF BETA-LACTAM SYNTHETASE 5E2F ; 1.3 ; Crystal Structure of Beta-lactamase class D from Bacillus subtilis 5U8O ; 2.4 ; Crystal Structure of Beta-lactamase domain protein, from Burkholderia multivorans 5VPQ ; 1.4 ; Crystal structure of beta-lactamase from Burkholderia phymatum 5HX9 ; 1.8 ; Crystal structure of Beta-lactamase from Burkholderia vietnamiensis 3P09 ; 1.898 ; Crystal Structure of Beta-Lactamase from Francisella tularensis 4Q8I ; 1.901 ; Crystal Structure of beta-lactamase from M.tuberculosis covalently complexed with Tebipenem 4QB8 ; 1.758 ; Crystal Structure of beta-lactamase from M.tuberculosis forming Michaelis Menten with Tebipenem 6NJK ; 1.55 ; Crystal structure of beta-lactamase from Sulfitobacter sp. EE-36 1JTD ; 2.3 ; Crystal structure of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase 3BYD ; 1.93 ; Crystal structure of beta-lactamase OXY-1-1 from Klebsiella oxytoca 5ZFL ; 1.5 ; Crystal structure of beta-lactamase PenP mutant E166Y 5GHX ; 1.24 ; Crystal structure of beta-lactamase PenP mutant-E166H 5GHY ; 2.1 ; Crystal structure of beta-lactamase PenP mutant-E166H in complex with cephaloridine as ""post-acylation"" intermediate 5GHZ ; 1.93 ; Crystal structure of beta-lactamase PenP mutant-E166H in complex with cephaloridine as ""pre-deacylation"" intermediate 5ZG6 ; 2.0 ; Crystal structure of beta-lactamase PenP mutant-E166Y in complex with cephaloridine as ""post-acylation"" intermediate 5ZFT ; 1.93 ; Crystal structure of beta-lactamase PenP mutant-E166Y in complex with cephaloridine as ""pre-deacylation"" intermediate 5E2E ; 1.9 ; Crystal Structure of Beta-lactamase Precursor BlaA from Yersinia enterocolitica 5E43 ; 1.7095 ; Crystal Structure of Beta-lactamase Sros_5706 from Streptosporangium roseum 5EVL ; 1.52 ; Crystal Structure of Beta-Lactamase/D-Alanine Carboxypeptidase from Chromobacterium violaceum 5EVI ; 1.8 ; Crystal Structure of Beta-Lactamase/D-Alanine Carboxypeptidase from Pseudomonas syringae 3OZH ; 1.907 ; Crystal Structure of Beta-Lactamase/D-alanine Carboxypeptidase from Yersinia pestis 3RJU ; 1.5 ; Crystal Structure of Beta-lactamase/D-alanine Carboxypeptidase from Yersinia pestis complexed with citrate 3GMU ; 1.98 ; Crystal Structure of Beta-Lactamse Inhibitory Protein (BLIP) in Apo Form 3GMV ; 1.8 ; Crystal Structure of Beta-Lactamse Inhibitory Protein-I (BLIP-I) in Apo Form 3GMW ; 2.1 ; Crystal Structure of Beta-Lactamse Inhibitory Protein-I (BLIP-I) in Complex with TEM-1 Beta-Lactamase 3GMX ; 1.05 ; Crystal Structure of Beta-Lactamse Inhibitory Protein-Like Protein (BLP) at 1.05 Angstrom Resolution 3GMY ; 1.7 ; Crystal Structure of Beta-Lactamse Inhibitory Protein-Like Protein (BLP), Selenomethionine Derivative 4N92 ; 1.93 ; Crystal structure of beta-lactamse PenP_E166S 4N9K ; 1.93 ; crystal structure of beta-lactamse PenP_E166S in complex with cephaloridine 4N9L ; 2.3 ; crystal structure of beta-lactamse PenP_E166S in complex with meropenem 7ER3 ; 2.598 ; Crystal structure of beta-lactoglobulin complexed with chloroquine 1NIO ; 2.0 ; Crystal structure of beta-luffin, a ribosome inactivating protein at 2.0A resolution 3WDQ ; 1.3 ; Crystal structure of beta-mannanase from a symbiotic protist of the termite Reticulitermes speratus 3WDR ; 1.4 ; Crystal structure of beta-mannanase from a symbiotic protist of the termite Reticulitermes speratus complexed with gluco-manno-oligosaccharide 3WSU ; 1.6 ; Crystal structure of beta-mannanase from Streptomyces thermolilacinus 4Y7E ; 1.5 ; Crystal structure of beta-mannanase from Streptomyces thermolilacinus with mannohexaose 1KD0 ; 1.9 ; Crystal Structure of beta-methylaspartase from Clostridium tetanomorphum. Apo-structure. 1KCZ ; 1.9 ; Crystal Structure of beta-methylaspartase from Clostridium tetanomorphum. Mg-complex. 5IOB ; 2.252 ; Crystal structure of beta-N-acetylglucosaminidase-like protein from Corynebacterium glutamicum 7CBN ; 1.7 ; Crystal structure of beta-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila 7CBO ; 1.5 ; Crystal structure of beta-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila in complex with GlcNAc 3RCN ; 2.514 ; Crystal Structure of Beta-N-Acetylhexosaminidase from Arthrobacter aurescens 5BU9 ; 2.255 ; Crystal structure of Beta-N-acetylhexosaminidase from Beutenbergia cavernae DSM 12333 3MW2 ; 2.69 ; Crystal structure of beta-neurexin 1 with the splice insert 4 3MW3 ; 2.33 ; Crystal structure of beta-neurexin 2 with the splice insert 4 3MW4 ; 2.0 ; Crystal structure of beta-neurexin 3 without the splice insert 4 4EDL ; 2.1 ; Crystal structure of beta-parvin CH2 domain 4EDM ; 2.0 ; Crystal structure of beta-parvin CH2 domain 4EDN ; 2.9 ; Crystal structure of beta-parvin CH2 domain in complex with paxillin LD1 motif 4G9B ; 1.7 ; Crystal structure of beta-phosphoglucomutase homolog from escherichia coli, target efi-501172, with bound mg, open lid 3WQ4 ; 1.9 ; Crystal structure of beta-primeverosidase 3IXJ ; 2.2 ; Crystal structure of beta-secretase 1 in complex with selective beta-secretase 1 inhibitor 2P4J ; 2.5 ; Crystal structure of beta-secretase bond to an inhibitor with Isophthalamide Derivatives at P2-P3 1XN3 ; 2.0 ; Crystal structure of Beta-secretase bound to a long inhibitor with additional upstream residues. 2G94 ; 1.86 ; Crystal structure of beta-secretase bound to a potent and highly selective inhibitor. 2FDP ; 2.5 ; Crystal structure of beta-secretase complexed with an amino-ethylene inhibitor 1M4H ; 2.1 ; Crystal Structure of Beta-secretase complexed with Inhibitor OM00-3 7EAD ; 1.74 ; Crystal structure of beta-sheet cytochrome c prime from Thermus thermophilus. 4FSL ; 2.5 ; Crystal structure of beta-site app-cleaving enzyme 1 (BACE-DB-MUT) complex with N-(N-(4- acetamido-3-chloro-5-methylbenzyl)carbamimidoyl)-3-(4- methoxyphenyl)-5-methyl-4-isothiazolecarboxamide 3SKG ; 2.88 ; Crystal structure of beta-site app-cleaving enzyme 1 (BACE-WT) complex with (2S)-2-((3R)-3-acetamido-3-isobutyl-2-oxo-1-pyrrolidinyl)-N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-2-(1,2,3,4-tetrahydro-3-isoquinolinyl)ethyl)-4-phenylbutanamide 3SKF ; 3.0 ; Crystal structure of beta-site app-cleaving enzyme 1 (BACE-WT) complex with (2S)-2-((3S)-3-(acetylamino)-3-(butan-2-yl)-2-oxopyrrolidin-1-yl)-N-((2S,3R)-3-hydroxy-4-((3-methoxybenzyl)amino)-1-phenylbutan-2-yl)-4-phenylbutanamide 3OHF ; 2.1 ; Crystal structure of beta-site app-cleaving enzyme 1 (BACE-WT) complex with bms-655295 aka n~3~-((1s,2r)-1- benzyl-2-hydroxy-3-((3-methoxybenzyl)amino)propyl)-n~1~, n~1~-dibutyl-1h-indole-1,3-dicarboxamide 3OHH ; 2.01 ; Crystal structure of beta-site app-cleaving enzyme 1 (bace-wt) complex with bms-681889 aka n~1~-butyl-5-cyano- n~3~-((1s,2r)-1-(3,5-difluorobenzyl)-2-hydroxy-3-((3- methoxybenzyl)amino)propyl)-n~1~-methyl-1h-indole-1,3- dicarboxamide 3R2F ; 2.53 ; Crystal structure of beta-site app-cleaving enzyme 1 (BACE-WT) complex with BMS-693391 AKA (2S)-2-((3R)-3-acetamido-3-isobutyl-2-oxo-1-pyrrolidinyl)-N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-2-((2R,4R)-4-propoxy-2-pyrrolidinyl)ethyl)-4-phenylbutanamide 4FSE ; 2.65 ; crystal structure of beta-site app-cleaving enzyme 1 (bace-wt) complex with N-(N-(4-amino-3,5- dichlorobenzyl)carbamimidoyl)-3-(4-methoxyphenyl)-5- methyl-4-isothiazolecarboxamide 5TOL ; 2.51 ; CRYSTAL STRUCTURE OF BETA-SITE APP-CLEAVING ENZYME 1 COMPLEXED WITH N-(3-((4AS,7AS)-2-AMINO-4,4A,5,6-TETRAHYDRO-7AH-FURO[2,3-D][1,3]THIAZIN-7A-YL)-4-FLUOROPHENYL)-5-BROMO-2-PYRIDINECARBOXAMIDE 1BTY ; 1.5 ; Crystal structure of beta-trypsin in complex with benzamidine 1G9I ; 2.2 ; CRYSTAL STRUCTURE OF BETA-TRYSIN COMPLEX IN CYCLOHEXANE 2BFG ; 2.4 ; crystal structure of beta-xylosidase (fam GH39) in complex with dinitrophenyl-beta-xyloside and covalently bound xyloside 5ZQJ ; 1.73 ; Crystal structure of beta-xylosidase from Bacillus pumilus 7ZDY ; 1.46 ; Crystal structure of beta-xylosidase from Thermotoga maritima in complex with methyl-beta-D-xylopyranoside 7ZGZ ; 1.85 ; Crystal structure of beta-xylosidase from Thermotoga maritima in complex with methyl-beta-D-xylopyranoside hydrolysed to xylose 7ZB3 ; 1.51 ; Crystal structure of beta-xylosidase from Thermotoga maritima in complex with xylohexaose hydrolysed to xylobiose 8C7F ; 1.52 ; Crystal structure of beta-xylosidase mutant (D281N, E517Q) from Thermotoga maritima in complex with xylopentaose 5ZQX ; 2.0 ; Crystal structure of beta-xylosidase mutant (E186Q) from Bacillus pumilus 5ZQS ; 1.782 ; Crystal structure of beta-xylosidase mutant (E186Q/F503Y) from Bacillus pumilus 1KWS ; 2.1 ; CRYSTAL STRUCTURE OF BETA1,3-GLUCURONYLTRANSFERASE I IN COMPLEX WITH THE ACTIVE UDP-GLCUA DONOR 1YRO ; 1.9 ; Crystal structure of beta14,-galactosyltransferase mutant ARG228Lys in complex with alpha-lactalbumin in the presence of UDP-galactose and Mn 1FUY ; 2.25 ; CRYSTAL STRUCTURE OF BETAA169L/BETAC170W DOUBLE MUTANT OF TRYPTOPHAN SYNTHASE COMPLEXED WITH 5-FLUORO-INDOLE-PROPANOL PHOSPHATE 7CDH ; 2.6 ; Crystal structure of Betaaspartyl dipeptidase from thermophilic keratin degrading Fervidobacterium islandicum-AW-1 3B1E ; 1.78 ; Crystal structure of betaC-S lyase from Streptococcus anginosus in complex with L-serine: alpha-Aminoacrylate form 3B1D ; 1.66 ; Crystal structure of betaC-S lyase from Streptococcus anginosus in complex with L-serine: External aldimine form 3B1C ; 1.93 ; Crystal structure of betaC-S lyase from Streptococcus anginosus: Internal aldimine form 3QW9 ; 2.0 ; Crystal structure of betaglycan ZP-C domain 8UZO ; 2.1 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (ADP bound) 8UZN ; 2.15 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (AMP bound) 8U9B ; 1.9 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (Apo, P21 Form) 8UZI ; 2.05 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (betaine bound) 8VQZ ; 2.05 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (CMP bound) 8VQW ; 2.2 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (CoA bound) 8VR1 ; 2.05 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (CTP bound) 8VJ3 ; 1.9 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (FAD bound) 8VR0 ; 2.25 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (GMP bound) 8SKF ; 1.8 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (Lattice Translocation Disorder) 8UZK ; 1.9 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (NADP+ bound) 8UZM ; 2.2 ; Crystal Structure of Betaine aldehyde dehydrogenase (BetB) from Klebsiella aerogenes (NADPH bound) 3R31 ; 2.148 ; Crystal structure of betaine aldehyde dehydrogenase from Agrobacterium tumefaciens 4CAZ ; 2.55 ; CRYSTAL STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE FROM Pseudomonas aeruginosa IN COMPLEX WITH NADH 6BPG ; 3.086 ; Crystal structure of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with bound rubidium ions 4A0M ; 2.3 ; CRYSTAL STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE FROM SPINACH IN COMPLEX WITH NAD 4V37 ; 2.1 ; Crystal structure of betaine aldehyde dehydrogenase from spinach showing a thiohemiacetal with 3-aminopropionaldehyde 4V3F ; 1.998 ; Crystal structure of betaine aldehyde dehydrogenase from spinach showing a thiohemiacetal with betaine aldehyde 5A2D ; 1.98 ; CRYSTAL STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE FROM SPINACH SHOWING A THIOHEMIACETAL WITH BETAINE ALDEHYDE 3K2W ; 1.9 ; CRYSTAL STRUCTURE OF betaine-aldehyde dehydrogenase FROM Pseudoalteromonas atlantica T6c 3L4F ; 2.8 ; Crystal Structure of betaPIX Coiled-Coil Domain and Shank PDZ Complex 4DOJ ; 3.25 ; Crystal structure of BetP in outward-facing conformation 4AIN ; 3.1 ; Crystal structure of BetP with asymmetric protomers. 3P03 ; 3.35 ; Crystal structure of BetP-G153D with choline bound 6UEU ; 1.8 ; Crystal structure of BF DNA polymerase F710Y mutant bound to tetrahydrofuran and dATP 3HN5 ; 1.7 ; Crystal structure of BF0290 (YP_210027.1) from Bacteroides fragilis NCTC 9343 at 1.70 A resolution 5YVF ; 2.804 ; Crystal structure of BFA1 2WTL ; 2.59 ; Crystal structure of BfrA from M. tuberculosis 8B6A ; 1.77 ; Crystal structure of BfrB protein from Bacteroides fragilis NCTC 9343 8B61 ; 1.81 ; Crystal structure of BfrC protein from Bacteroides fragilis NCTC 9343 7UGM ; 1.4 ; Crystal Structure of BG24-iGL CDR3mat Fab 8E1P ; 3.82 ; Crystal structure of BG505 SOSIP.v4.1-GT1.2 trimer in complex with gl-PGV20 and PGT124 Fabs 5W6D ; 3.202 ; Crystal structure of BG505-SOSIP.v4.1-GT1-N137A in complex with Fabs 35022 and 9H/109L 4HZ6 ; 1.4 ; crystal structure of BglB 4HZ7 ; 2.0 ; Crystal structure of BglB with glucose 4HZ8 ; 1.14 ; Crystal structure of BglB with natural substrate 7KF0 ; 2.32 ; Crystal structure of bH1 Fab variant (CDR H3 loop design 13_0346) in complex with VEGF 7KF1 ; 2.45 ; Crystal structure of bH1 Fab variant (CDR H3 loop design 14_0130) in complex with VEGF 7KEZ ; 2.31 ; Crystal structure of bH1 Fab variant (CDR H3 loop design 16_0325) in complex with VEGF 6D33 ; 2.502 ; Crystal structure of BH1352 2-deoxyribose-5-phosphate from Bacillus halodurans 6MSW ; 2.169 ; Crystal structure of BH1352 2-deoxyribose-5-phosphate from Bacillus halodurans, K184L mutant 3O3W ; 2.91 ; Crystal Structure of BH2092 protein (residues 14-131) from Bacillus halodurans, Northeast Structural Genomics Consortium Target BhR228A 3NHV ; 2.5 ; Crystal Structure of BH2092 protein from Bacillus halodurans, Northeast Structural Genomics Consortium Target BhR228F 3NWZ ; 2.566 ; Crystal Structure of BH2602 protein from Bacillus halodurans with CoA, Northeast Structural Genomics Consortium Target BhR199 2OA2 ; 1.41 ; Crystal structure of BH2720 (10175341) from Bacillus halodurans at 1.41 A resolution 6Q7N ; 2.02 ; Crystal structure of BH32 alkylated with the mechanistic inhibitor 2-bromoacetophenone 2HH6 ; 2.04 ; Crystal structure of BH3980 (10176605) from BACILLUS HALODURANS at 2.04 A resolution 5T4G ; 1.8 ; Crystal structure of BhGH81 in complex with laminarin 5V1W ; 2.15 ; Crystal structure of BhGH81 in complex with laminaro-biose 5T4A ; 2.1 ; Crystal structure of BhGH81 in complex with laminaro-hexaose 5UPI ; 1.65 ; Crystal structure of BhGH81 mutant in complex with laminaro-biose 5T4C ; 1.8 ; Crystal structure of BhGH81 mutant in complex with laminaro-hexaose 5UPO ; 1.7 ; Crystal structure of BhGH81 mutant in complex with laminaro-pentaose 5UPN ; 1.8 ; Crystal structure of BhGH81 mutant in complex with laminaro-tetraose 5UPM ; 1.7 ; Crystal structure of BhGH81 mutant in complex with laminaro-triose 8BP1 ; 1.72 ; Crystal structure of BHMeHis1.0, an engineered enzyme for the Morita-Baylis-Hillman reaction 8BP0 ; 2.621 ; Crystal structure of BHMeHis1.8, an engineered enzyme for the Morita-Baylis-Hillman reaction 8SM5 ; 2.61003 ; Crystal Structure of BHRF1 from Epstein Barr Virus in complex with BID BH3 peptide 2XPX ; 2.05 ; Crystal structure of BHRF1:Bak BH3 complex 6J22 ; 2.2 ; Crystal structure of Bi-functional enzyme 6J2L ; 2.17 ; Crystal structure of Bi-functional enzyme 2I4B ; 1.35 ; Crystal structure of Bicarbonate Transport Protein CmpA from Synechocystis sp. PCC 6803 in complex with bicarbonate and calcium 2I4C ; 1.7 ; Crystal structure of Bicarbonate Transport Protein CmpA from Synechocystis sp. PCC 6803 in complex with bicarbonate and calcium 2I48 ; 1.6 ; Crystal structure of Bicarbonate Transport Protein CmpA from Synechocystis sp. PCC 6803 in complex with carbonic acid 4MNV ; 1.8 ; Crystal structure of bicyclic peptide UK729 bound as an acyl-enzyme intermediate to urokinase-type plasminogen activator (uPA) 5WAB ; 2.45 ; Crystal Structure of Bifidobacterium adolescentis GH3 beta-glucosidase 4UZS ; 1.74 ; Crystal structure of Bifidobacterium bifidum beta-galactosidase 4UCF ; 1.94 ; Crystal structure of Bifidobacterium bifidum beta-galactosidase in complex with alpha-galactose 6RXD ; 1.65 ; Crystal Structure of Bifidobacterium longum Multiple Inositol Polyphosphate Phosphatase Apo Form 6RXE ; 1.84 ; Crystal Structure of Bifidobacterium longum Multiple Inositol Polyphosphate Phosphatase Complex with Inositol Hexasulfate 6RXG ; 1.71 ; Crystal Structure of Bifidobacterium longum Multiple Inositol Polyphosphate Phosphatase Complex with Phosphate 6RXF ; 2.397 ; Crystal Structure of Bifidobacterium longum Multiple Inositol Polyphosphate Phosphatase Phosphohistidine Intermediate 3AI7 ; 2.2 ; Crystal Structure of Bifidobacterium Longum Phosphoketolase 3NGL ; 2.4 ; Crystal structure of bifunctional 5,10-methylenetetrahydrofolate dehydrogenase / cyclohydrolase from Thermoplasma acidophilum 3NGX ; 2.3 ; Crystal structure of bifunctional 5,10-methylenetetrahydrofolate dehydrogenase / cyclohydrolase from Thermoplasma acidophilum 7TM8 ; 1.65 ; Crystal structure of Bifunctional adenosylcobalamin biosynthesis protein from Klebsiella pneumoniae 1MJG ; 2.2 ; CRYSTAL STRUCTURE OF BIFUNCTIONAL CARBON MONOXIDE DEHYDROGENASE/ACETYL-COA SYNTHASE(CODH/ACS) FROM MOORELLA THERMOACETICA (F. CLOSTRIDIUM THERMOACETICUM) 2F6R ; 1.7 ; Crystal structure of Bifunctional coenzyme A synthase (CoA synthase): (18044849) from MUS MUSCULUS at 1.70 A resolution 5O15 ; 1.174 ; Crystal structure of bifunctional dehydratase-cyclase domain in ambruticin biosynthesis 5O16 ; 2.745 ; Crystal structure of bifunctional dehydratase-cyclase domain in ambruticin biosynthesis 6DE8 ; 2.104 ; Crystal Structure of Bifunctional Enzyme FolD-Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase from Campylobacter jejuni 6DEB ; 1.7 ; Crystal Structure of Bifunctional Enzyme FolD-Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase in the Complex with Methotrexate from Campylobacter jejuni 3PYZ ; 2.1 ; Crystal structure of bifunctional folylpolyglutamate synthase/dihydrofolate synthase complexed with AMPPNP and Mn ion from Yersinia pestis c092 3N2A ; 1.9 ; Crystal structure of bifunctional folylpolyglutamate synthase/dihydrofolate synthase from Yersinia pestis CO92 3QCZ ; 2.0 ; Crystal structure of bifunctional folylpolyglutamate synthase/dihydrofolate synthase with Mn, AMPPNP and L-Glutamate bound 7ETX ; 2.1 ; Crystal structure of bifunctional indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase (TrpC) from corynebacterium glutamicum 7ETY ; 2.21 ; Crystal structure of bifunctional indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase (trpC) from Corynebacterium glutamicum in complex with reduced 1-(O-carboxyphenylamino)-1-deoxyribulose 5-phosphate (rCdRP) 5WVX ; 3.003 ; Crystal Structure of bifunctional Kunitz type Trypsin /amylase inhibitor (AMTIN) from the tubers of Alocasia macrorrhiza 3V97 ; 2.2 ; Crystal structure of bifunctional methyltransferase YcbY (RlmLK) from Escherichia coli, SAH binding 3V8V ; 2.6 ; Crystal structure of bifunctional methyltransferase YcbY (RlmLK) from Escherichia coli, SAM binding 7Y47 ; 2.5 ; Crystal structure of bifunctional miltiradiene synthase from selaginella moellendorffii that complexed with GGPP 3HAZ ; 2.1 ; Crystal structure of bifunctional proline utilization A (PutA) protein 6APE ; 1.45 ; Crystal Structure of Bifunctional protein FolD from Helicobacter pylori 8CU9 ; 2.65 ; Crystal Structure of Bifunctional protein GlmU from Klebsiella pneumoniae subsp. pneumoniae 5B3V ; 2.594 ; Crystal structure of biliverdin reductase in complex with biliverdin and NADP+ from Synechocystis sp. PCC 6803 5B3U ; 2.698 ; Crystal structure of biliverdin reductase in complex with NADP+ from Synechocystis sp. PCC 6803 8PFD ; 2.17 ; Crystal structure of binary complex between Aster yellows witches'-broom phytoplasma effector SAP05 and the von Willebrand Factor Type A domain of the proteasomal ubiquitin receptor Rpn10 from Arabidopsis thaliana 8PFC ; 2.2 ; Crystal structure of binary complex between Aster yellows witches'-broom phytoplasma effector SAP05 and the zinc finger domain of SPL5 from Arabidopsis thaliana 4WWA ; 2.953 ; Crystal structure of binary complex Bud32-Cgi121 4WW9 ; 1.951 ; Crystal structure of binary complex Bud32-Cgi121 in complex with ADP 4WW7 ; 1.669 ; Crystal structure of binary complex Bud32-Cgi121 in complex with AMP 4WW5 ; 1.997 ; Crystal structure of binary complex Bud32-Cgi121 in complex with AMPP 4WX8 ; 2.99 ; Crystal structure of binary complex Gon7-Pcc1 4WXA ; 2.44 ; Crystal structure of binary complex Gon7-Pcc1 1EQM ; 1.5 ; CRYSTAL STRUCTURE OF BINARY COMPLEX OF 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN PYROPHOSPHOKINASE WITH ADENOSINE-5'-DIPHOSPHATE 1LRM ; 2.1 ; Crystal structure of binary complex of the catalytic domain of human phenylalanine hydroxylase with dihydrobiopterin (BH2) 3WA1 ; 1.75 ; Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus 7MFH ; 2.3 ; Crystal structure of BIO-32546 bound mouse Autotaxin 5UC7 ; 1.835 ; Crystal structure of BioA / 7,8-diaminopelargonic acid aminotransferase / DAPA synthase from Citrobacter rodentium, PLP complex 5GNG ; 1.26 ; Crystal Structure of BioG from Haemophilus influenzae at 1.26 Angstroms resolution 4GET ; 2.24 ; Crystal structure of biogenic amine binding protein from Rhodnius prolixus 1M33 ; 1.7 ; Crystal Structure of BioH at 1.7 A 6K5E ; 2.257 ; Crystal structure of BioH from Klebsiella pneumonia 7WWF ; 2.27 ; Crystal structure of BioH3 from Mycolicibacterium smegmatis 5YEK ; 2.191 ; Crystal structure of BioQ 5YEJ ; 2.698 ; Crystal structure of BioQ with its naturel double-stranded DNA operator 2RJG ; 2.4 ; Crystal structure of biosynthetic alaine racemase from Escherichia coli 2RJH ; 2.4 ; Crystal structure of biosynthetic alaine racemase in D-cycloserine-bound form from Escherichia coli 6A2F ; 2.5 ; Crystal structure of biosynthetic alanine racemase from Pseudomonas aeruginosa 3NZQ ; 3.1 ; Crystal Structure of Biosynthetic arginine decarboxylase ADC (SpeA) from Escherichia coli, Northeast Structural Genomics Consortium Target ER600 1M1O ; 1.95 ; Crystal structure of biosynthetic thiolase, C89A mutant, complexed with acetoacetyl-CoA 6CK0 ; 2.25 ; Crystal Structure of Biotin Acetyl Coenzyme A Carboxylase Synthetase from Helicobacter pylori with bound Biotinylated ATP 4HR7 ; 2.495 ; Crystal Structure of Biotin Carboxyl Carrier Protein-Biotin Carboxylase Complex from E.coli 1W93 ; 2.5 ; Crystal Structure of Biotin Carboxylase Domain of Acetyl-Coenzyme A Carboxylase from Saccharomyces cerevisiae 1W96 ; 1.8 ; Crystal Structure of Biotin Carboxylase Domain of Acetyl-coenzyme A Carboxylase from Saccharomyces cerevisiae in Complex with Soraphen A 4MV7 ; 1.73 ; Crystal Structure of Biotin Carboxylase form Haemophilus influenzae in Complex with Phosphonoformate 2W6O ; 2.5 ; Crystal structure of Biotin carboxylase from E. coli in complex with 4-Amino-7,7-dimethyl-7,8-dihydro-quinazolinone fragment 2W6P ; 1.85 ; Crystal structure of Biotin carboxylase from E. coli in complex with 5-Methyl-6-phenyl-quinazoline-2,4-diamine 2W6M ; 2.0 ; Crystal structure of Biotin carboxylase from E. coli in complex with amino-oxazole fragment series 2W6N ; 1.87 ; Crystal structure of Biotin carboxylase from E. coli in complex with amino-oxazole fragment series 2J9G ; 2.05 ; Crystal structure of Biotin carboxylase from E. coli in complex with AMPPNP and ADP 2VR1 ; 2.6 ; Crystal structure of Biotin carboxylase from E. coli in complex with ATP analog, ADPCF2P. 3JZI ; 2.31 ; Crystal structure of biotin carboxylase from E. Coli in complex with benzimidazole series 3JZF ; 2.13 ; Crystal structure of biotin carboxylase from E. Coli in complex with benzimidazoles series 2W6Z ; 1.9 ; Crystal structure of Biotin carboxylase from E. coli in complex with the 3-(3-Methyl-but-2-enyl)-3H-purin-6-ylamine fragment 2W70 ; 1.77 ; Crystal structure of Biotin carboxylase from E. coli in complex with the amino-thiazole-pyrimidine fragment 2W71 ; 1.99 ; Crystal structure of Biotin carboxylase from E. coli in complex with the imidazole-pyrimidine inhibitor 2W6Q ; 2.05 ; Crystal structure of Biotin carboxylase from E. coli in complex with the triazine-2,4-diamine fragment 2V58 ; 2.1 ; CRYSTAL STRUCTURE OF BIOTIN CARBOXYLASE FROM E.COLI IN COMPLEX WITH POTENT INHIBITOR 1 2V59 ; 2.4 ; CRYSTAL STRUCTURE OF BIOTIN CARBOXYLASE FROM E.COLI IN COMPLEX WITH POTENT INHIBITOR 2 2V5A ; 2.31 ; CRYSTAL STRUCTURE OF BIOTIN CARBOXYLASE FROM E.COLI IN COMPLEX WITH POTENT INHIBITOR 3 4MV1 ; 1.91 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with ADP and Phosphate 4MV3 ; 1.69 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with AMPPCP and Bicarbonate 4MV4 ; 1.61 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with AMPPCP and Mg2 4MV8 ; 2.06 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with AMPPCP and Phosphate 4MV9 ; 1.98 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with Bicarbonate 4MV6 ; 1.77 ; Crystal Structure of Biotin Carboxylase from Haemophilus influenzae in Complex with Phosphonoacetamide 2VQD ; 2.41 ; Crystal Structure of Biotin Carboxylase from Pseudomonas aeruginosa complexed with AMPCP 2C00 ; 2.5 ; Crystal Structure of Biotin Carboxylase from Pseudomonas aeruginosa in apo form 2VPQ ; 2.1 ; Crystal structure of biotin carboxylase from S. aureus complexed with AMPPNP 3G8C ; 2.0 ; Crystal Structure of Biotin Carboxylase in Complex with Biotin, Bicarbonate, ADP and Mg Ion 3OUZ ; 1.902 ; Crystal Structure of Biotin Carboxylase-ADP complex from Campylobacter jejuni 3OUU ; 2.252 ; Crystal Structure of Biotin Carboxylase-beta-gamma-ATP Complex from Campylobacter jejuni 2CGH ; 1.8 ; crystal structure of biotin ligase from Mycobacterium tuberculosis 4OP0 ; 1.7 ; Crystal structure of biotin protein ligase (RV3279C) of Mycobacterium tuberculosis, complexed with biotinyl-5'-AMP 2EAY ; 1.95 ; Crystal Structure Of Biotin Protein Ligase From Aquifex Aeolicus 7DBS ; 2.33 ; Crystal Structure Of Biotin Protein Ligase From Leishmania Major in complex with Biotin 6JHU ; 1.97 ; Crystal Structure Of Biotin Protein Ligase From Leishmania Major in complex with Biotinyl-5-AMP 2EJ9 ; 2.0 ; Crystal Structure Of Biotin Protein Ligase From Methanococcus jannaschii 2ZGW ; 1.5 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Complexed with Adenosine and Biotin, Mutations R48A and K111A 2DXT ; 1.6 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Complexed with ATP and Biotin, Mutation D104A 2DZ9 ; 1.84 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Complexed with biotinyl-5'-AMP, Mutation D104A 2DXU ; 1.28 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Complexed with Biotinyl-5'-AMP, Mutation R48A 2E41 ; 1.75 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Complexed with the Reaction Product Analog Biotinol-5'-AMP, Mutations R48A and K111A 2DTO ; 1.5 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 Complexed with ATP and Biotin 2FYK ; 1.6 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in complex with ADP and Biotin 1X01 ; 2.0 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Ot3 in complex with ATP 2DJZ ; 1.85 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in complex with Biotinyl-5'-AMP, K111A mutation 2DEQ ; 1.85 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in complex with Biotinyl-5'-AMP, K111G mutation 2DVE ; 1.6 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in Complex with Biotinyl-5'-AMP, Mutation Arg51Ala 2DKG ; 2.0 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in Complex with Biotinyl-5'-AMP, Pyrophosphate and Mg(2+) 2DTI ; 2.2 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in Complex with Biotinyl-5'-AMP, Pyrophosphate and Mn(2+) 1WQW ; 1.45 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii Ot3 in complex with Biotinyl-5-AMP 2HNI ; 1.9 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3, K111A mutation 2E1H ; 1.4 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3, K111G mutation 2E65 ; 1.65 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii OT3, Mutation D104A 2DZC ; 1.45 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii, Mutation R48A 2E10 ; 1.35 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii, Mutation R51A 2E64 ; 1.5 ; Crystal Structure Of Biotin Protein Ligase From Pyrococcus Horikoshii, Mutations R48A and K111A 1WQ7 ; 1.6 ; Crystal Structure Of Biotin-(Acetyl-CoA-Carboxylase) ligase From Pyrococcus Horikoshii Ot3 1WNL ; 1.6 ; Crystal Structure Of Biotin-(Acetyl-CoA-Carboxylase) ligase From Pyrococcus Horikoshii Ot3 in complex with ADP 1WPY ; 1.6 ; Crystal Structure Of Biotin-(Acetyl-CoA-Carboxylase) ligase From Pyrococcus Horikoshii Ot3 in complex with biotin 3RUX ; 1.7 ; Crystal structure of biotin-protein ligase BirA from Mycobacterium tuberculosis in complex with an acylsulfamide bisubstrate inhibitor 6K38 ; 1.78 ; Crystal structure of BioU (H233A) from Synechocystis sp.PCC6803 conjugated with DAPA 6K37 ; 2.5 ; Crystal structure of BioU (K124A) from Synechocystis sp.PCC6803 in complex with NAD+ and the analog of reaction intermediate, 3-(1-aminoethyl)-nonanedioic acid 6ITD ; 2.0 ; Crystal structure of BioU (K124A) from Synechocystis sp.PCC6803 in complex with the analog of reaction intermediate, 3-(1-aminoethyl)-nonanedioic acid 6IR4 ; 2.0 ; Crystal structure of BioU from Synechocystis sp.PCC6803 (apo form) 6K36 ; 2.3 ; Crystal structure of BioU from Synechocystis sp.PCC6803 conjugated with DAPA 6HAB ; 2.08 ; Crystal structure of BiP V461F (apo) 2GBW ; 1.7 ; Crystal Structure of Biphenyl 2,3-Dioxygenase from Sphingomonas yanoikuyae B1 2GBX ; 2.8 ; Crystal Structure of Biphenyl 2,3-Dioxygenase from Sphingomonas yanoikuyae B1 Bound to Biphenyl 2XR8 ; 2.49 ; Crystal structure of biphenyl dioxygenase from Burkholderia xenovorans LB400 2XRX ; 2.42 ; CRYSTAL STRUCTURE OF BIPHENYL DIOXYGENASE IN COMPLEX WITH BIPHENYL FROM BURKHOLDERIA XENOVORANS LB400 2YFI ; 2.15 ; Crystal Structure of Biphenyl dioxygenase variant RR41 (BPDO-RR41) 2YFL ; 2.6 ; Crystal Structure of Biphenyl dioxygenase variant RR41 with 2-chloro dibenzofuran 2YFJ ; 2.15 ; Crystal structure of Biphenyl dioxygenase variant RR41 with dibenzofuran 5WC4 ; 1.2 ; Crystal structure of biphenyl synthase from Malus domestic complexed with benzoyl-CoA 5W8Q ; 1.173 ; Crystal structure of biphenyl synthase from Malus domestica 6ORU ; 2.392 ; Crystal structure of Bira from S. aureus in complex with a acylsulfamide analogue of biotinyl-5'-AMP 4A8V ; 1.23 ; Crystal Structure of Birch Pollen Allergen Bet v 1 isoform j in complex with 8-Anilinonaphthalene-1-sulfonate (ANS) 4Z3L ; 2.5 ; CRYSTAL STRUCTURE OF BIRCH POLLEN ALLERGEN BET V 1 MUTANT G26L, D69I, P90L, K97I 8DWN ; 2.15 ; Crystal structure of bis-phosphorylated insulin receptor kinase domain 6JH1 ; 3.0 ; Crystal structure of bISG15/NS1B complex 5XP9 ; 1.55 ; Crystal structure of Bismuth bound NDM-1 2F90 ; 2.0 ; Crystal structure of bisphosphoglycerate mutase in complex with 3-phosphoglycerate and AlF4- 3LVP ; 3.0 ; Crystal structure of bisphosphorylated IGF1-R Kinase domain (2P) in complex with a bis-azaindole inhibitor 8AFD ; 1.633 ; CRYSTAL STRUCTURE OF BIT-BLOCKED KRAS-G12V-S39C IN COMPLEX WITH COMPOUND 20a 1Q7S ; 2.0 ; Crystal structure of bit1 1JWI ; 2.0 ; Crystal Structure of Bitiscetin, a von Willeband Factor-dependent Platelet Aggregation Inducer. 1VBW ; 0.93 ; Crystal Structure of Bitter Gourd Trypsin Inhibitor 8FWH ; 2.833 ; Crystal structure of bivalent antibody Fab fragment of Anti-human LAG3 (22D2) 4XLX ; 2.0 ; Crystal structure of BjKS from Bradyrhizobium japonicum 5NJW ; 1.25 ; Crystal Structure of BJP-1 metallo beta-lactamase in complex with boric acid 2GMN ; 1.4 ; Crystal structure of BJP-1, a subclass B3 metallo-beta-lactamase of Bradyrhizobium japonicum 3LIZ ; 1.8 ; crystal structure of bla g 2 complexed with Fab 4C3 8IWV ; 2.4 ; Crystal structure of BlaA-1 APO 2WUQ ; 1.8 ; Crystal structure of BlaB protein from Streptomyces cacaoi 3IQA ; 2.2 ; Crystal Structure of BlaC covalently bound with Doripenem 5OYO ; 2.1 ; Crystal structure of BlaC from Mycobacterium tuberculosis 5NJ2 ; 1.19 ; Crystal structure of BlaC from Mycobacterium tuberculosis bound to phosphate 3N6I ; 2.0 ; Crystal Structure of BlaC-E166A covalently bound with 6-aminopenicillian 3N7W ; 1.7 ; Crystal Structure of BlaC-E166A covalently bound with Amoxicillin 3N8L ; 1.4 ; Crystal Structure of BlaC-E166A covalently bound with Ampicillin 3N8R ; 1.41 ; Crystal Structure of BlaC-E166A covalently bound with Carbenicillin 3N8S ; 2.0 ; Crystal Structure of BlaC-E166A covalently bound with Cefamandole 3NBL ; 2.0 ; Crystal Structure of BlaC-E166A covalently bound with Cefuroxime 3NDE ; 1.7 ; Crystal Structure of BlaC-E166A covalently bound with Cephalotin 3NC8 ; 1.5 ; Crystal Structure of BlaC-E166A covalently bound with Mecillinam 3NDG ; 1.9 ; Crystal Structure of BlaC-E166A covalently bound with Methicillin 3NCK ; 2.8 ; Crystal Structure of BlaC-E166A covalently bound with Nafcillin 3NY4 ; 1.22 ; Crystal Structure of BlaC-K73A bound with Cefamandole 1GBS ; 1.5 ; CRYSTAL STRUCTURE OF BLACK SWAN GOOSE-TYPE LYSOZYME AT 1.8 ANGSTROMS RESOLUTION 4U56 ; 3.45 ; Crystal structure of Blasticidin S bound to the yeast 80S ribosome 4V9Q ; 3.4 ; Crystal Structure of Blasticidin S Bound to Thermus Thermophilus 70S Ribosome. 2Z3G ; 1.5 ; Crystal structure of blasticidin S deaminase (BSD) 1WN5 ; 1.8 ; Crystal Structure of Blasticidin S Deaminase (BSD) Complexed with Cacodylic Acid 2Z3H ; 1.5 ; Crystal structure of blasticidin S deaminase (BSD) complexed with deaminohydroxy blasticidin S 1WN6 ; 1.8 ; Crystal Structure of Blasticidin S Deaminase (BSD) Complexed with Tetrahedral Intermediate of Blasticidin S 2Z3I ; 1.8 ; Crystal structure of blasticidin S deaminase (BSD) mutant E56Q complexed with substrate 2Z3J ; 1.6 ; Crystal structure of blasticidin S deaminase (BSD) R90K mutant 3OJ6 ; 1.7 ; Crystal structure of Blasticidin S Deaminase from Coccidioides Immitis 3G7F ; 2.5 ; Crystal structure of Blastochloris viridis heterodimer mutant reaction center 8BOU ; 2.32 ; Crystal structure of Blautia producta GH94 8U4F ; 2.01 ; Crystal Structure of BlCel9A from Glycoside Hydrolase Family 9 in Complex with Cellohexaose 8U4A ; 1.97 ; Crystal Structure of BlCel9A from Glycoside Hydrolase Family 9 in Complex with Cellotriose 7EV5 ; 1.44 ; Crystal structure of BLEG-1 B3 metallo-beta-lactamase 2ZW7 ; 2.8 ; Crystal structure of bleomycin N-acetyltransferase complexed with bleomycin A2 and coenzyme A 2ZW4 ; 2.7 ; Crystal structure of bleomycin N-acetyltransferase complexed with coenzyme A in the orthorhombic crystal 2ZW5 ; 2.4 ; Crystal structure of bleomycin N-acetyltransferase complexed with coenzyme A in the trigonal crystal 2ZW6 ; 2.5 ; Crystal structure of bleomycin N-acetyltransferase from bleomycin-producing Streptomyces verticillus ATCC15003 1EWJ ; 2.5 ; CRYSTAL STRUCTURE OF BLEOMYCIN-BINDING PROTEIN COMPLEXED WITH BLEOMYCIN 1JIF ; 1.6 ; Crystal structure of bleomycin-binding protein from bleomycin-producing Streptomyces verticillus complexed with copper(II)-bleomycin 1JIE ; 1.8 ; Crystal structure of bleomycin-binding protein from bleomycin-producing Streptomyces verticillus complexed with metal-free bleomycin 2ZHP ; 1.6 ; Crystal structure of bleomycin-binding protein from Streptoalloteichus hindustanus complexed with bleomycin derivative 6MPA ; 1.9 ; Crystal structure of BlMan5B in complex with GlcNAc (soaking) 6MP2 ; 1.98 ; Crystal structure of BlMan5B solved by SIRAS 1P0S ; 2.8 ; Crystal Structure of Blood Coagulation Factor Xa in Complex with Ecotin M84R 3EO8 ; 1.74 ; Crystal structure of BluB-like flavoprotein (YP_001089088.1) from CLOSTRIDIUM DIFFICILE 630 at 1.74 A resolution 4ZB1 ; 2.25 ; Crystal Structure of Blue Chromoprotein sgBP from Stichodactyla Gigantea 3G5W ; 1.9 ; Crystal structure of Blue Copper Oxidase from Nitrosomonas europaea 6J7H ; 2.309 ; Crystal structure of blue fluorescent protein from metagenomic library 6J7U ; 2.302 ; Crystal structure of blue fluorescent protein from metagenomic library in complex with NADPH 2HRH ; 2.6 ; Crystal Structure of Blue Laccase from Trametes trogii 2HRG ; 1.58 ; Crystal Structure of Blue Laccase from Trametes trogii complexed with p-methylbenzoate 4JQ6 ; 2.31 ; Crystal structure of blue light-absorbing proteorhodopsin from Med12 at 2.3 Angstrom 6GPV ; 2.0 ; Crystal structure of blue-light irradiated miniSOG 4YZI ; 2.5 ; Crystal structure of blue-shifted channelrhodopsin mutant (T198G/G202A) 1V4U ; 2.0 ; Crystal structure of bluefin tuna carbonmonoxy-hemoglobin 1V4X ; 1.6 ; Crystal structure of bluefin tuna hemoglobin deoxy form at pH5.0 1V4W ; 1.7 ; Crystal structure of bluefin tuna hemoglobin deoxy form at pH7.5 2OL3 ; 2.9 ; crystal structure of BM3.3 ScFV TCR in complex with PBM8-H-2KBM8 MHC class I molecule 3VRL ; 3.2 ; Crystal structure of BMJ4 p24 capsid protein in complex with A10F9 Fab 3GBO ; 1.77 ; Crystal structure of BmooMPalpha-I, a non-hemorrhagic metalloproteinase isolated from Bothrops moojeni snake venom 5I3O ; 2.4 ; Crystal Structure of BMP-2-inducible kinase in complex with an Indazole inhibitor 5I3R ; 2.4 ; Crystal Structure of BMP-2-inducible kinase in complex with an Indazole inhibitor 5IKW ; 2.41 ; Crystal Structure of BMP-2-inducible kinase in complex with an Indazole inhibitor 4W9X ; 2.14 ; Crystal Structure of BMP-2-inducible kinase in complex with baricitinib 4W9W ; 1.72 ; Crystal Structure of BMP-2-inducible kinase in complex with small molecule AZD-7762 1ZKZ ; 2.33 ; Crystal Structure of BMP9 4MPL ; 1.9 ; Crystal structure of BMP9 at 1.90 Angstrom 6R72 ; 3.95 ; Crystal structure of BmrA-E504A in an outward-facing conformation 3Q5S ; 3.1 ; Crystal structure of BmrR bound to Acetylcholine 1R8E ; 2.4 ; Crystal Structure of BmrR Bound to DNA at 2.4A Resolution 3Q2Y ; 2.95 ; Crystal Structure of BmrR bound to ethidium 3Q5R ; 3.05 ; Crystal structure of BmrR bound to Kanamycin 3Q3D ; 2.79 ; Crystal structure of BmrR bound to puromycin 3Q5P ; 2.942 ; Crystal structure of BmrR bound to Tetracycline 3Q1M ; 3.2 ; Crystal Structure of BmrR Dimer bound to DNA and the ligand 4-amino-quinaldine 3SXR ; 2.4 ; Crystal structure of BMX non-receptor tyrosine kinase complex with dasatinib 3SXS ; 1.89 ; Crystal structure of BMX non-receptor tyrosine kinase complexed with PP2 3MLM ; 2.21 ; Crystal structure of Bn IV in complex with myristic acid: A Lys49 myotoxic phospholipase A2 from Bothrops neuwiedi venom 3B46 ; 2.0 ; Crystal Structure of Bna3p, a Putative Kynurenine Aminotransferase from Saccharomyces cerevisiae 1PC9 ; 2.5 ; Crystal Structure of BnSP-6, a Lys49-Phospholipase A2 5VFH ; 1.592 ; Crystal structure of BnSP-7 from Bothrops pauloensis complexed to sulfates 5VFJ ; 2.084 ; Crystal structure of BnSP-7 from bothrops pauloensis complexed with caffeic acid 5VFN ; 2.389 ; Crystal structure of BnSP-7 from Bothrops pauloensis complexed with cinnamic acid 5VFM ; 2.058 ; Crystal structure of BnSP-7 from Bothrops pauloensis complexed with p-coumaric acid 1PA0 ; 2.2 ; CRYSTAL STRUCTURE OF BNSP-7, A LYS49-PHOSPHOLIPASE A2 3WCZ ; 1.3 ; Crystal structure of Bombyx mori aldo-keto reductase (AKR2E4) in complex with NADP 3AQX ; 2.05 ; Crystal structure of Bombyx mori beta-GRP/GNBP3 N-terminal domain with laminarihexaoses 5A9B ; 1.883 ; Crystal structure of Bombyx mori CPV1 polyhedra base domain deleted mutant 3P0S ; 3.1 ; Crystal structure of Bombyx mori densovirus 1 capsid 3WD6 ; 2.5 ; Crystal structure of Bombyx mori omega-class glutathione transferase in complex with GSH 3VPT ; 1.9 ; Crystal structure of Bombyx mori sigma-class glutathione transferase in apo form 3VPQ ; 1.702 ; Crystal structure of Bombyx mori sigma-class glutathione transferase in complex with glutathione 3VUR ; 1.365 ; Crystal structure of Bombyx mori sigma-class glutathione transferase in complex with glutathionesulfonic acid 3WJM ; 2.8 ; Crystal structure of Bombyx mori Sp2/Sp3 heterohexamer 7E04 ; 1.25 ; Crystal structure of Bomgl, a monoacylglycerol lipase from marine Bacillus sp. 3EDG ; 1.27 ; Crystal structure of bone morphogenetic protein 1 protease domain 3EDH ; 1.25 ; Crystal structure of bone morphogenetic protein 1 protease domain in complex with partially bound DMSO 2QCQ ; 2.21 ; Crystal structure of Bone Morphogenetic Protein-3 (BMP-3) 2QCW ; 2.49 ; Crystal Structure of Bone Morphogenetic Protein-6 (BMP-6) 1M4U ; 2.42 ; Crystal structure of Bone Morphogenetic Protein-7 (BMP-7) in complex with the secreted antagonist Noggin 3QIY ; 2.3 ; Crystal Structure of BoNT/A LC complexed with Hydroxamate-based Inhibitor PT-1 3QIZ ; 2.0 ; Crystal Structure of BoNT/A LC complexed with Hydroxamate-based Inhibitor PT-2 3QJ0 ; 2.301 ; Crystal Structure of BoNT/A LC complexed with Hydroxamate-based Inhibitor PT-3 3NF3 ; 2.4 ; Crystal structure of BoNT/A LC with JTH-NB-7239 peptide 3QIX ; 2.413 ; Crystal Structure of BoNT/A LC with Zinc bound 5L21 ; 1.68 ; Crystal structure of BoNT/A receptor binding domain in complex with VHH C2 7L6V ; 2.01 ; Crystal structure of BoNT/A-LC-JPU-A5-JPU-C1-JPU-H7-JPU-D12-ciA-F12 6UI1 ; 2.20001 ; Crystal structure of BoNT/A-LCHn domain in complex with VHH ciA-D12, ciA-B5, and ciA-H7 6UL6 ; 2.02 ; Crystal Structure of BoNT/A-LCHn domain in complex with VNA ciA-D12/11/ciA-B5 and VHH ciA-H7 6UHT ; 2.20001 ; Crystal structure of BoNT/B receptor-binding domain in complex with VHH JLI-G10 6UC6 ; 2.32006 ; Crystal structure of BoNT/B receptor-binding domain in complex with VHH JLI-H11 6UFT ; 2.90008 ; Crystal structure of BoNT/B receptor-binding domain in complex with VHH JLK-G12 6UL4 ; 3.18424 ; Crystal structure of BoNT/B receptor-binding domain in complex with VHH JLO-G11 7NA9 ; 1.76 ; Crystal structure of BoNT/B-LC-JSG-C1 7K84 ; 2.5 ; Crystal structure of BoNT/E LC-HN domain in complex with VHH JLE-E5 7K7Y ; 3.6 ; Crystal structure of BoNT/E LC-HN domain in complex with VHH JLE-E9 7UIA ; 2.59 ; Crystal structure of BoNT/E receptor binding domain in complex with SV2 and VHH 7UIB ; 2.77 ; Crystal structure of BoNT/E receptor binding domain in complex with SV2, VHH, and sialic acid 6LBE ; 2.6 ; Crystal structure of bony fish MHC class I binding beta2M-2 for 2.6 angstrom 5H5Z ; 1.74 ; Crystal structure of bony fish MHC class I, peptide and B2m II 3MPK ; 2.04 ; Crystal Structure of Bordetella pertussis BvgS periplasmic VFT2 domain 3MPL ; 2.1 ; Crystal Structure of Bordetella pertussis BvgS VFT2 domain (Double Mutant F375E/Q461E) 2OWS ; 1.49 ; Crystal structure of Bordetella pertussis holo ferric binding protein bound with two synergistic oxalate anions 2OWT ; 2.4 ; Crystal structure of Bordetella pertussis holo ferric binding protein with bound synergistic carbonate anion 2RAX ; 3.3 ; Crystal structure of Borealin (20-78) bound to Survivin (1-120) 5CHO ; 2.37 ; Crystal Structure of BorF, the Flavin Reductase Component of a Bacterial Two-Component Tryptophan Halogenase 6QO1 ; 2.25 ; Crystal structure of Borrelia (Borreliella) burgdorferi outer surface protein BBA69 8Q4K ; 2.4 ; Crystal structure of Borrelia burgdorferi BB0158 4ONR ; 1.6 ; Crystal structure of Borrelia burgdorferi decorin-binding protein DbpA 6ROC ; 2.9 ; Crystal structure of Borrelia burgdorferi outer surface protein BBA69, mutant Leu214Met (Se-Met data) 8CQN ; 2.7 ; Crystal structure of Borrelia burgdorferi paralogous family 12 outer surface protein BBK01 8CQO ; 3.3 ; Crystal structure of Borrelia burgdorferi paralogous family 12 outer surface protein BBK01 (Se-Met data) 6R1G ; 1.55 ; Crystal structure of Borrelia burgdorferi periplasmic protein BB0365 (IPLA7, p22) 3N8B ; 1.9 ; Crystal Structure of Borrelia burgdorferi Pur-alpha 3NM7 ; 2.2 ; Crystal Structure of Borrelia burgdorferi Pur-alpha 6HPN ; 2.6 ; Crystal structure of Borrelia spielmanii WP_012665240 (BSA64) - an orthologous protein to B. burgdorferi BBA64 6DEC ; 4.6 ; Crystal structure of Bos taurus Arp2/3 complex binding with C-terminus of Homo sapiens SPIN90 4JD2 ; 3.08 ; Crystal structure of Bos taurus Arp2/3 complex binding with Mus musculus GMF 3UKR ; 2.48 ; Crystal structure of Bos taurus Arp2/3 complex with bound inhibitor CK-666 1XB2 ; 2.2 ; Crystal Structure of Bos taurus mitochondrial Elongation Factor Tu/Ts Complex 6ORT ; 2.3 ; Crystal Structure of Bos taurus Mxra8 Ectodomain 5TE3 ; 2.7 ; Crystal structure of Bos taurus opsin at 2.7 Angstrom 5TE5 ; 4.01 ; Crystal structure of Bos taurus opsin regenerated with 6-carbon ring retinal chromophore 1Y4L ; 1.7 ; Crystal structure of Bothrops asper myotoxin II complexed with the anti-trypanosomal drug suramin 8DND ; 2.018 ; Crystal structure of Bothrops pirajai Piratoxin-I (PrTX-I) and synthetic inhibitor Varespladib (LY315920) 6DIK ; 1.93 ; Crystal structure of Bothropstoxin I (BthTX-I) complexed to Chicoric acid 3HZD ; 1.91 ; Crystal structure of bothropstoxin-I (BthTX-I), a PLA2 homologue from Bothrops jararacussu venom 3HZW ; 2.28 ; Crystal structure of bothropstoxin-I chemically modified by p-bromophenacyl bromide (BPB) 3I03 ; 1.48 ; Crystal structure of bothropstoxin-I chemically modified by p-bromophenacyl bromide (BPB) - monomeric form at a high resolution 3IQ3 ; 1.55 ; Crystal Structure of Bothropstoxin-I complexed with polietilene glicol 4000 - crystallized at 283 K 3I3I ; 1.82 ; Crystal Structure of Bothropstoxin-I crystallized at 283 K 3I3H ; 2.17 ; Crystal structure of Bothropstoxin-I crystallized at 291K 1FVU ; 1.8 ; CRYSTAL STRUCTURE OF BOTROCETIN 7Z5T ; 1.63 ; Crystal Structure of botulinum neurotoxin A2 cell binding domain 7Z5S ; 2.1 ; Crystal Structure of botulinum neurotoxin A2 cell binding domain in complex with GD1a 3BTA ; 3.2 ; CRYSTAL STRUCTURE OF BOTULINUM NEUROTOXIN SEROTYPE A 2VU9 ; 1.6 ; CRYSTAL STRUCTURE OF BOTULINUM NEUROTOXIN SEROTYPE A BINDING DOMAIN IN COMPLEX WITH GT1B 3N7K ; 2.5 ; Crystal structure of botulinum neurotoxin serotype C1 binding domain 3N7J ; 2.0 ; Crystal structure of botulinum neurotoxin serotype D binding domain 3OBR ; 1.72 ; Crystal structure of Botulinum neurotoxin serotype D binding domain 3OBT ; 2.0 ; Crystal structure of Botulinum neurotoxin serotype D ligand binding domain in complex with N-Acetylneuraminic acid 3N7L ; 2.0 ; Crystal structure of botulinum neurotoxin serotype D/C VPI 5993 binding domain 3D3X ; 2.25 ; Crystal structure of botulinum neurotoxin serotype E catalytic domain in complex with SNAP-25 substrate peptide 2NZ9 ; 3.79 ; Crystal structure of botulinum neurotoxin type A complexed with monoclonal antibody AR2 2NYY ; 2.61 ; Crystal structure of botulinum neurotoxin type A complexed with monoclonal antibody CR1 1S0G ; 2.6 ; Crystal structure of botulinum neurotoxin type B apo form 1S0B ; 2.0 ; Crystal structure of botulinum neurotoxin type B at pH 4.0 1S0C ; 2.2 ; Crystal structure of botulinum neurotoxin type B at pH 5.0 1S0D ; 2.2 ; Crystal structure of botulinum neurotoxin type B at pH 5.5 1S0E ; 1.9 ; Crystal structure of botulinum neurotoxin type B at pH 6.0 1S0F ; 2.3 ; Crystal structure of botulinum neurotoxin type B at pH 7.0 2FPQ ; 1.65 ; Crystal Structure of Botulinum Neurotoxin Type D Light Chain 1ZB7 ; 2.35 ; Crystal Structure of Botulinum Neurotoxin Type G Light Chain 5ZL2 ; 2.703 ; Crystal structure of Bourbon virus envelope glycoprotein at pH8.0 3DT6 ; 2.1 ; Crystal Structure of Bovin Brain Platelet Activating Factor Acetylhydrolase Covalently Inhibited by Paraoxon 3DT8 ; 1.85 ; Crystal Structure of Bovin Brain Platelet Activating Factor Acetylhydrolase Covalently Inhibited by Sarin 3DT9 ; 1.85 ; Crystal Structure of Bovin Brain Platelet Activating Factor Acetylhydrolase Covalently Inhibited by Soman 4MZZ ; 1.88 ; Crystal structure of Bovine 3 Glu-Osteocalcin. 6Q68 ; 3.161 ; Crystal structure of bovine ACBD3 GOLD domain in complex with 3A protein of enterovirus-F2 (fusion protein) 1KRM ; 2.5 ; Crystal structure of bovine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine riboside 1FG5 ; 2.8 ; CRYSTAL STRUCTURE OF BOVINE ALPHA-1,3-GALACTOSYLTRANSFERASE CATALYTIC DOMAIN. 6DI8 ; 1.859 ; Crystal structure of bovine alpha-chymotrypsin in space group P65 1F6S ; 2.2 ; CRYSTAL STRUCTURE OF BOVINE ALPHA-LACTALBUMIN 1AGI ; 1.5 ; CRYSTAL STRUCTURE OF BOVINE ANGIOGENIN AT 1.5 ANGSTROMS RESOLUTION 4X9P ; 2.01 ; Crystal structure of bovine Annexin A2 4K3D ; 1.85 ; Crystal structure of bovine antibody BLV1H12 with ultralong CDR H3 4K3E ; 2.2 ; Crystal structure of bovine antibody BLV5B8 with ultralong CDR H3 2P9L ; 2.65 ; Crystal Structure of bovine Arp2/3 complex 2P9N ; 2.85 ; Crystal Structure of bovine Arp2/3 complex co-crystallized with ADP 2P9P ; 2.9 ; Crystal Structure of bovine Arp2/3 complex co-crystallized with ADP 2P9I ; 2.46 ; Crystal Structure of bovine Arp2/3 Complex co-crystallized with ADP and crosslinked with gluteraldehyde 2P9U ; 2.75 ; Crystal structure of bovine Arp2/3 complex co-crystallized with AMP-PNP and calcium 2P9K ; 2.59 ; Crystal structure of bovine Arp2/3 complex co-crystallized with ATP and crosslinked with glutaraldehyde 1JSY ; 2.9 ; Crystal structure of bovine arrestin-2 1ZSH ; 2.9 ; Crystal structure of bovine arrestin-2 in complex with inositol hexakisphosphate (IP6) 1G4M ; 1.9 ; CRYSTAL STRUCTURE OF BOVINE BETA-ARRESTIN 1 1G4R ; 2.2 ; CRYSTAL STRUCTURE OF BOVINE BETA-ARRESTIN 1 1TLD ; 1.5 ; CRYSTAL STRUCTURE OF BOVINE BETA-TRYPSIN AT 1.5 ANGSTROMS RESOLUTION IN A CRYSTAL FORM WITH LOW MOLECULAR PACKING DENSITY. ACTIVE SITE GEOMETRY, ION PAIRS AND SOLVENT STRUCTURE 1BMG ; 2.5 ; CRYSTAL STRUCTURE OF BOVINE BETA2-MICROGLOBULIN 1AQL ; 2.8 ; CRYSTAL STRUCTURE OF BOVINE BILE-SALT ACTIVATED LIPASE COMPLEXED WITH TAUROCHOLATE 1PRW ; 1.7 ; Crystal structure of bovine brain Ca++ calmodulin in a compact form 4HH8 ; 2.3 ; Crystal structure of bovine butyrophilin 2O51 ; 3.0 ; Crystal structure of bovine C-lobe with fructose at 3.0 A resolution 6SKT ; 1.9 ; Crystal structure of bovine carbonic anhydrase II in complex with a benzenesulfonamide-based ligand (SH0) 6SKS ; 1.75 ; Crystal structure of bovine carbonic anhydrase II in complex with a benzenesulfonamide-based ligand (SH1) 6SKV ; 1.75 ; Crystal structure of bovine carbonic anhydrase II in complex with a benzenesulfonamide-based ligand (SH2) 3L9R ; 2.3 ; Crystal structure of bovine CD1b3 with endogenously bound ligands 4F7C ; 2.864 ; Crystal structure of bovine CD1d with bound C12-di-sulfatide 4F7E ; 2.4 ; Crystal structure of bovine CD1d with bound C16:0-alpha-galactosyl ceramide 5EBG ; 1.8 ; Crystal structure of bovine CD8aa homodimer 1EX3 ; 3.0 ; CRYSTAL STRUCTURE OF BOVINE CHYMOTRYPSINOGEN A (TETRAGONAL) 3CL4 ; 2.1 ; Crystal structure of bovine coronavirus hemagglutinin-esterase 4H14 ; 1.55 ; Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain 3E2J ; 2.9 ; Crystal structure of bovine coupling factor B 3DZE ; 1.15 ; Crystal structure of bovine coupling Factor B bound with cadmium 3E3Z ; 1.7 ; Crystal structure of bovine coupling Factor B bound with phenylarsine oxide 3E4G ; 0.96 ; Crystal structure of bovine coupling Factor B, G28E mutant 4KKN ; 2.253 ; Crystal structure of bovine CTLA-4, PSI-NYSGRC-012704 1E9Q ; 1.75 ; Crystal structure of bovine Cu Zn SOD - (1 of 3) 1E9P ; 1.7 ; Crystal structure of bovine Cu, Zn SOD to 1.7 Angstrom (3 of 3) 6HAW ; 3.45 ; Crystal structure of bovine cytochrome bc1 in complex with 2-pyrazolyl quinolone inhibitor WDH2G7 7R3V ; 3.2 ; Crystal structure of bovine Cytochrome bc1 in complex with inhibitor CK-2-67. 5OKD ; 3.1 ; Crystal structure of bovine Cytochrome bc1 in complex with inhibitor SCR0911. 6ZFT ; 3.3 ; Crystal structure of bovine cytochrome bc1 in complex with quinolone inhibitor CK-2-68 6ZFU ; 3.5 ; Crystal structure of bovine cytochrome bc1 in complex with quinolone inhibitor RKA066 6ZFS ; 3.5 ; Crystal structure of bovine cytochrome bc1 in complex with quinolone inhibitor WDH-1U-4 6XVF ; 3.5 ; Crystal structure of bovine cytochrome bc1 in complex with tetrahydro-quinolone inhibitor JAG021 7LMM ; 2.798 ; Crystal structure of bovine DNMT1 BAH1 domain in complex with H4K20me2 7LMK ; 2.647 ; Crystal structure of bovine DNMT1 BAH1 domain in complex with H4K20me3 6PZV ; 3.01 ; Crystal Structure of Bovine DNMT1 RFTS domain in complex with H3K9me3 and Ubiquitin 5OSN ; 2.3 ; Crystal Structure of Bovine Enterovirus 2 determined with Serial Femtosecond X-ray Crystallography 2XND ; 3.5 ; Crystal structure of bovine F1-c8 sub-complex of ATP Synthase 5ILT ; 2.0 ; Crystal structure of bovine Fab A01 5IHU ; 2.06 ; Crystal structure of bovine Fab B11 5IJV ; 2.2 ; Crystal structure of bovine Fab E03 6OO0 ; 2.1 ; Crystal structure of bovine Fab NC-Cow1 6OPA ; 4.084 ; Crystal structure of bovine Fab NC-Cow1 in complex with HIV-1 BG505 SOSIP.664, and human Fabs 35022 and PGT128 1SDD ; 2.8 ; Crystal Structure of Bovine Factor Vai 4WNK ; 2.42 ; Crystal Structure of Bovine G Protein Coupled-Receptor Kinase 5 in Complex with CCG215022 1AB9 ; 1.6 ; CRYSTAL STRUCTURE OF BOVINE GAMMA-CHYMOTRYPSIN 1AFQ ; 1.8 ; CRYSTAL STRUCTURE OF BOVINE GAMMA-CHYMOTRYPSIN COMPLEXED WITH A SYNTHETIC INHIBITOR 1M8U ; 1.65 ; Crystal Structure of Bovine gamma-E at 1.65 Ang Resolution 3ETE ; 3.0 ; Crystal structure of bovine glutamate dehydrogenase complexed with hexachlorophene 1NQT ; 3.5 ; Crystal structure of bovine Glutamate dehydrogenase-ADP complex 1TFJ ; 1.61 ; Crystal structure of Bovine Glycolipid transfer protein in complex with a fatty acid 7XMA ; 2.2 ; Crystal structure of Bovine heart cytochrome c oxidase, apo structure with DMSO 7XMB ; 2.2 ; Crystal structure of Bovine heart cytochrome c oxidase, the structure complexed with an allosteric inhibitor T113 2FYU ; 2.26 ; Crystal structure of bovine heart mitochondrial bc1 with jg144 inhibitor 1PNT ; 2.2 ; CRYSTAL STRUCTURE OF BOVINE HEART PHOSPHOTYROSYL PHOSPHATASE AT 2.2 ANGSTROMS RESOLUTION 6LS9 ; 2.503 ; Crystal structure of bovine herpesvirus 1 glycoprotein D 1KT3 ; 1.4 ; Crystal structure of bovine holo-RBP at pH 2.0 1KT4 ; 1.461 ; Crystal structure of bovine holo-RBP at pH 3.0 1KT5 ; 1.46 ; Crystal structure of bovine holo-RBP at pH 4.0 1KT7 ; 1.274 ; Crystal structure of bovine holo-RBP at pH 7.0 1KT6 ; 1.1 ; Crystal structure of bovine holo-RBP at pH 9.0 2QWL ; 1.75 ; Crystal structure of bovine hsc70 (1-394aa)in the ADP state 2QWM ; 1.86 ; Crystal structure of bovine hsc70 (1-394aa)in the ADP*Vi state 2QW9 ; 1.85 ; Crystal structure of bovine hsc70 (1-394aa)in the apo state 4FL9 ; 1.901 ; Crystal Structure of bovine hsc70(aa1-554)E213A/D214A at 1.9A Resolution 7O6R ; 2.0 ; Crystal structure of bovine Hsc70(aa1-554)E213A/D214A in complex with 1H-Indazole 6H54 ; 2.02 ; CRYSTAL STRUCTURE OF BOVINE HSC70(AA1-554)E213A/D214A IN COMPLEX WITH INHIBITOR VER155008 7ODI ; 1.83 ; Crystal structure of bovine Hsc70(aa1-554)E213A/D214A in complex with methanesulfonamide 7ODB ; 1.662 ; Crystal structure of bovine Hsc70(aa1-554)E213A/D214A in complex with triazine-derivative 7ODD ; 1.984 ; Crystal structure of bovine Hsc70(aa1-554)E213A/D214A in complex with tricine 1YUW ; 2.6 ; crystal structure of bovine hsc70(aa1-554)E213A/D214A mutant 2ZP6 ; 2.56 ; Crystal structure of Bovine Insulin (Hexameric form) 2HCA ; 2.8 ; Crystal structure of bovine lactoferrin C-lobe liganded with Glucose at 2.8 A resolution 3GC1 ; 2.5 ; Crystal structure of bovine lactoperoxidase 2PT3 ; 2.34 ; Crystal structure of bovine lactoperoxidase at 2.34 A resolution reveals multiple anion binding sites 2PUM ; 2.7 ; Crystal structure of bovine lactoperoxidase complex with catechol and iodide at 2.7 A resolution 4KSZ ; 1.98 ; Crystal structure of bovine lactoperoxidase complexed with cystiene at 1.98A resolution 3R4X ; 2.01 ; Crystal structure of bovine lactoperoxidase complexed with pyrazine-2-carboxamide at 2 A resolution 3PY4 ; 2.42 ; Crystal structure of bovine lactoperoxidase in complex with paracetamol at 2.4A resolution 5B72 ; 1.98 ; Crystal structure of bovine lactoperoxidase with a broken covalent bond between Glu258 and heme moiety at 1.98 A resolution. 5WV3 ; 2.07 ; Crystal structure of bovine lactoperoxidase with a partial Glu258-heme linkage at 2.07 A resolution. 7DN6 ; 1.696 ; Crystal structure of bovine lactoperoxidase with hydrogen peroxide trapped between heme iron and his109 at 1.69 A resolution 2NQX ; 2.95 ; Crystal Structure of bovine lactoperoxidase with iodide ions at 2.9A resolution 6A4Y ; 1.92 ; Crystal structure of bovine lactoperoxidase with partial occupancies of iodide and SCN- ions at the substrate binding site on the distal heme side at 1.92 A resolution 6LCO ; 1.995 ; Crystal structure of bovine lactoperoxidase with substrates thiocynate and iodide bound at the distal heme side at 1.99 A resolution. 2E5A ; 2.1 ; Crystal Structure of Bovine Lipoyltransferase in Complex with Lipoyl-AMP 5JNV ; 1.6 ; Crystal structure of bovine low molecular weight protein tyrosine phosphatase (LMPTP) mutant (W49Y N50E) complexed with HEPES 5JNW ; 1.86 ; Crystal structure of bovine low molecular weight protein tyrosine phosphatase (LMPTP) mutant (W49Y N50E) complexed with vanadate and uncompetitive inhibitor 1DG9 ; 1.9 ; CRYSTAL STRUCTURE OF BOVINE LOW MOLECULAR WEIGHT PTPASE COMPLEXED WITH HEPES 1Z13 ; 2.2 ; Crystal Structure of Bovine Low Molecular Weight PTPase Complexed with Molybdate 1Z12 ; 2.2 ; Crystal Structure of Bovine Low Molecular Weight PTPase Complexed with Vanadate 1FVA ; 1.7 ; CRYSTAL STRUCTURE OF BOVINE METHIONINE SULFOXIDE REDUCTASE 4O8Q ; 2.15 ; Crystal structure of bovine MHD domain of the COPI delta subunit at 2.15 A resolution 1V97 ; 1.94 ; Crystal Structure of Bovine Milk Xanthine Dehydrogenase FYX-051 bound form 3UNC ; 1.65 ; Crystal Structure of Bovine Milk Xanthine Dehydrogenase to 1.65A Resolution 3BDJ ; 2.0 ; Crystal Structure of Bovine Milk Xanthine Dehydrogenase with a Covalently Bound Oxipurinol Inhibitor 3UNA ; 1.9 ; Crystal Structure of Bovine Milk Xanthine Dehydrogenase with NAD Bound 3UNI ; 2.2 ; Crystal Structure of Bovine Milk Xanthine Dehydrogenase with NADH Bound 1QCR ; 2.7 ; CRYSTAL STRUCTURE OF BOVINE MITOCHONDRIAL CYTOCHROME BC1 COMPLEX, ALPHA CARBON ATOMS ONLY 4MH2 ; 2.2 ; Crystal structure of Bovine Mitochondrial Peroxiredoxin III 4MH3 ; 2.4 ; Crystal structure of Bovine Mitochondrial Peroxiredoxin III 2R16 ; 1.04 ; Crystal Structure of bovine neurexin 1 alpha LNS/LG domain 4 (with no splice insert) 2BN2 ; 2.8 ; CRYSTAL STRUCTURE OF BOVINE NEUROPHYSIN II COMPLEXED WITH THE VASOPRESSIN ANALOGUE PHE-TYR AMIDE 7WBT ; 2.75 ; Crystal structure of bovine NLRP9 5E6T ; 2.27 ; Crystal structure of bovine norovirus P domain 2HKA ; 1.81 ; Crystal structure of bovine NPC2 and cholesterol sulfate complex 1HN2 ; 1.8 ; CRYSTAL STRUCTURE OF BOVINE OBP COMPLEXED WITH AMINOANTHRACENE 1G85 ; 1.8 ; CRYSTAL STRUCTURE OF BOVINE ODORANT BINDING PROTEIN COMPLEXED WITH IS NATURAL LIGAND 6NWE ; 2.705 ; Crystal structure of bovine opsin with beta octyl glucoside bound 6PEL ; 3.186 ; Crystal structure of bovine opsin with citronellol bound 6PGS ; 2.905 ; Crystal structure of bovine opsin with geraniol bound 6PH7 ; 2.902 ; Crystal structure of bovine opsin with nerol bound 1HDU ; 1.75 ; Crystal structure of bovine pancreatic carboxypeptidase A complexed with aminocarbonylphenylalanine at 1.75 A 1HDQ ; 2.3 ; Crystal structure of bovine pancreatic carboxypeptidase A complexed with D-N-hydroxyaminocarbonyl phenylalanine at 2.3 A 1HEE ; 1.75 ; Crystal structure of bovine pancreatic carboxypeptidase A complexed with L-N-hydroxyaminocarbonyl phenylalanine at 2.3 A 3DH5 ; 1.6 ; Crystal structure of bovine pancreatic ribonuclease A (wild-type) 8R5V ; 1.8 ; Crystal structure of bovine pancreatic ribonuclease A in complex with [Sp-PS]-mU-dT dinucleotide 3DIB ; 1.4 ; Crystal structure of bovine pancreatic ribonuclease A variant (I106A) 3DI9 ; 2.0 ; Crystal structure of bovine pancreatic ribonuclease A variant (I81A) 3DIC ; 1.6 ; Crystal structure of bovine pancreatic ribonuclease A variant (V108A) 3DH6 ; 1.6 ; Crystal structure of bovine pancreatic ribonuclease A variant (V47A) 3DI7 ; 1.6 ; Crystal structure of bovine pancreatic ribonuclease A variant (V54A) 3DI8 ; 1.6 ; Crystal structure of bovine pancreatic ribonuclease A variant (V57A) 3JW1 ; 1.6 ; Crystal Structure of Bovine Pancreatic Ribonuclease Complexed with Uridine-5'-monophosphate at 1.60 A Resolution 7WB6 ; 1.48 ; Crystal structure of Bovine Pancreatic Trypsin in complex with 4-Bromobenzamidine at Room Temperature 7WA2 ; 1.52 ; Crystal structure of Bovine Pancreatic Trypsin in complex with 4-Methoxybenzamidine at Room Temperature 7WB9 ; 1.56 ; Crystal structure of Bovine Pancreatic Trypsin in complex with 5-Chlorotryptamine at Room Temperature 7WB8 ; 1.38 ; Crystal structure of Bovine Pancreatic Trypsin in complex with 5-Methoxytryptamine at Room Temperature 7WA0 ; 1.77 ; Crystal structure of Bovine Pancreatic Trypsin in complex with Benzamidine at Room Temperature 7WB7 ; 1.45 ; Crystal structure of Bovine Pancreatic Trypsin in complex with Serotonin at Room Temperature 7WBA ; 1.45 ; Crystal structure of Bovine Pancreatic Trypsin in complex with Tryptamine at Room Temperature 1FVG ; 1.6 ; CRYSTAL STRUCTURE OF BOVINE PEPTIDE METHIONINE SULFOXIDE REDUCTASE 1TU5 ; 2.37 ; Crystal structure of bovine plasma copper-containing amine oxidase 2PNC ; 2.4 ; Crystal Structure of Bovine Plasma Copper-Containing Amine Oxidase in Complex with Clonidine 4YX2 ; 2.194 ; Crystal structure of Bovine prion protein complexed with POM1 FAB 1FON ; 1.7 ; CRYSTAL STRUCTURE OF BOVINE PROCARBOXYPEPTIDASE A-S6 SUBUNIT III, A HIGHLY STRUCTURED TRUNCATED ZYMOGEN E 1G0W ; 2.3 ; CRYSTAL STRUCTURE OF BOVINE RETINAL CREATINE KINASE 1F88 ; 2.8 ; CRYSTAL STRUCTURE OF BOVINE RHODOPSIN 1HZX ; 2.8 ; CRYSTAL STRUCTURE OF BOVINE RHODOPSIN 1U19 ; 2.2 ; Crystal Structure of Bovine Rhodopsin at 2.2 Angstroms Resolution 1L9H ; 2.6 ; Crystal structure of bovine rhodopsin at 2.6 angstroms RESOLUTION 3OAX ; 2.6 ; Crystal structure of bovine rhodopsin with beta-ionone 8FD0 ; 3.71 ; Crystal structure of bovine rod opsin in complex with a nanobody 3KVC ; 1.9 ; Crystal structure of bovine RPE65 at 1.9 angstrom resolution 7K89 ; 2.15 ; Crystal structure of bovine RPE65 in complex with 4-fluoro-emixustat and palmitate 7K8G ; 1.95 ; Crystal structure of bovine RPE65 in complex with 4-fluoro-MB-004 and palmitate 7L0E ; 1.9 ; Crystal structure of bovine RPE65 in complex with gem-difluoro emixustat and palmitate 7K88 ; 2.1 ; Crystal structure of bovine RPE65 in complex with hexaethylene glycol monooctyl ether 3V03 ; 2.7 ; Crystal structure of Bovine Serum Albumin 4F5S ; 2.47 ; Crystal Structure of Bovine Serum Albumin 4JK4 ; 2.653 ; Crystal Structure of Bovine Serum Albumin in complex with 3,5-diiodosalicylic acid 4OR0 ; 2.58 ; Crystal Structure of Bovine Serum Albumin in complex with naproxen 1E9O ; 1.85 ; Crystal structure of bovine SOD - 1 of 3 3QZ1 ; 3.0 ; Crystal Structure of Bovine Steroid of 21-hydroxylase (P450c21) 1CBJ ; 1.65 ; CRYSTAL STRUCTURE OF BOVINE SUPEROXIDE DISMUTASE CRYSTAL. 8Q5Z ; 1.5 ; Crystal structure of bovine Thiosulfate sulfurtransferase 1ID5 ; 2.5 ; CRYSTAL STRUCTURE OF BOVINE THROMBIN COMPLEX WITH PROTEASE INHIBITOR ECOTIN 3WPE ; 2.38 ; Crystal structure of bovine TLR9 in complex with agonistic DNA1668_12mer 5Y3M ; 2.5 ; Crystal structure of bovine TLR9 in complex with two DNAs (CpG DNA and TCGTTT DNA) 6XYK ; 1.5 ; Crystal structure of bovine trypsin at room temperature. 4HGC ; 1.29 ; Crystal structure of bovine trypsin complexed with sfti-1 analog containing a peptoid residue at position p1 1TGB ; 1.8 ; CRYSTAL STRUCTURE OF BOVINE TRYPSINOGEN AT 1.8 ANGSTROMS RESOLUTION. II. CRYSTALLOGRAPHIC REFINEMENT, REFINED CRYSTAL STRUCTURE AND COMPARISON WITH BOVINE TRYPSIN 3NS1 ; 2.6 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with 6-Mercaptopurine 3NVV ; 1.82 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with Arsenite 3NVW ; 1.6 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with Guanine 3NRZ ; 1.8 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with Hypoxanthine 3NVZ ; 1.6 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with Indole-3-Aldehyde 3NVY ; 2.0 ; Crystal Structure of Bovine Xanthine Oxidase in Complex with Quercetin 5GIO ; 3.604 ; Crystal structure of box C/D RNP with 12 nt guide regions and 13 nt substrates 5GIN ; 3.308 ; Crystal structure of box C/D RNP with 12 nt guide regions and 9 nt substrates 5GIP ; 3.129 ; Crystal structure of box C/D RNP with 13 nt guide regions and 11 nt substrates 3Q1G ; 2.5 ; Crystal Structure of BoxB crystallized with PEG 3PM5 ; 2.3 ; Crystal Structure of BoxB in mixed valent state with bound benzoyl-CoA 3PF7 ; 1.903 ; Crystal structure of BoxB with malonate bound to the diiron center 3PER ; 2.1 ; Crystal Structure of BoxB with phosphate bound to the diiron center 6GXR ; 1.7 ; Crystal structure of BP39L lectin from Burkholderia pseudomallei at 1.7 A resolution 4AK7 ; 1.8 ; Crystal structure of BpGH117_E303Q in complex with neoagarobiose 5T3B ; 1.4 ; Crystal structure of BpGH50 2E4P ; 2.0 ; Crystal structure of BphA3 (oxidized form) 2E4Q ; 1.8 ; Crystal structure of BphA3 (reduced form) 6L3W ; 2.6 ; Crystal structure of BphC, a halotolerant catechol dioxygenase 1KW8 ; 2.0 ; Crystal structure of BphC-2,3-dihydroxybiphenyl-NO complex 2OG1 ; 1.6 ; Crystal Structure of BphD, a C-C hydrolase from Burkholderia xenovorans LB400 1BP1 ; 2.4 ; CRYSTAL STRUCTURE OF BPI, THE HUMAN BACTERICIDAL PERMEABILITY-INCREASING PROTEIN 4IQG ; 1.85 ; Crystal structure of BPRO0239 oxidoreductase from Polaromonas sp. JS666 in NADP bound form 1I9X ; 2.18 ; CRYSTAL STRUCTURE OF BPS-U2 SNRNA DUPLEX 7VXR ; 1.55 ; Crystal structure of BPSL1038 from Burkholderia pseudomallei 5A4O ; 1.76 ; Crystal structure of BPSL1147, a PC4 homolog from Burkholderia pseudomallei K96243 (orthorhombic crystal form) 5A4N ; 1.96 ; Crystal structure of BPSL1147, a PC4 homolog from Burkholderia pseudomallei K96243 (tetragonal crystal form) 2Y78 ; 0.91 ; Crystal structure of BPSS1823, a Mip-like chaperone from Burkholderia pseudomallei 3QZS ; 1.8 ; Crystal Structure of BPTF bromo in complex with histone H4K16ac - Form I 3QZT ; 1.5 ; Crystal Structure of BPTF bromo in complex with histone H4K16ac - Form II 7RWQ ; 1.9 ; Crystal Structure of BPTF bromodomain in complex with 4-chloro-2-methyl-5-[(1,2,3,4-tetrahydroisoquinolin-6-yl)amino]pyridazin-3(2H)-one 7RWO ; 1.58 ; Crystal Structure of BPTF bromodomain in complex with 4-chloro-2-methyl-5-[(1,2,3,4-tetrahydroisoquinolin-7-yl)amino]pyridazin-3(2H)-one 7RWN ; 1.39 ; Crystal Structure of BPTF bromodomain in complex with 4-chloro-5-{4-[(dimethylamino)methyl]anilino}-2-methylpyridazin-3(2H)-one 7RWP ; 1.73 ; Crystal Structure of BPTF bromodomain in complex with 5-[4-(aminomethyl)anilino]-4-chloro-2-methylpyridazin-3(2H)-one 7M2E ; 1.75 ; Crystal structure of BPTF bromodomain in complex with CB02-092 7LRO ; 1.45 ; Crystal structure of BPTF bromodomain in complex with inhibitor HZ-01-105 7LPK ; 1.39 ; Crystal structure of BPTF bromodomain in complex with inhibitor HZ-03-112 7LP0 ; 1.66 ; Crystal structure of BPTF bromodomain in complex with inhibitor Pdy-3-077 7LRK ; 1.44 ; Crystal structure of BPTF bromodomain in complex with inhibitor Pdy-3-093 7JT4 ; 2.06 ; Crystal Structure of BPTF bromodomain labelled with 5-fluoro-tryptophan 3QZV ; 1.999 ; Crystal Structure of BPTF PHD-linker-bromo in complex with histone H4K12ac peptide 7F5D ; 1.57151 ; Crystal structure of BPTF-BRD with ligand DC-BPi-03 bound 7F5C ; 1.65004 ; Crystal structure of BPTF-BRD with ligand DC-BPi-07 bound 7F5E ; 2.20017 ; Crystal structure of BPTF-BRD with ligand DC-BPi-11 bound 6LU5 ; 1.86528 ; Crystal structure of BPTF-BRD with ligand DCBPin5 bound 6LU6 ; 1.97006 ; Crystal structure of BPTF-BRD with ligand DCBPin5-2 bound 7VD4 ; 1.85659 ; Crystal structure of BPTF-BRD with ligand TP248 bound 5T7A ; 1.6 ; Crystal structure of Br derivative BhCBM56 1UHJ ; 1.8 ; Crystal structure of br-aequorin 3A0B ; 3.7 ; Crystal structure of Br-substituted Photosystem II complex 2Y32 ; 1.78 ; Crystal structure of bradavidin 4H2S ; 2.15 ; Crystal structure of Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with cognate carrier protein and AMP 4H2T ; 2.44 ; Crystal structure of Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with cognate carrier protein and an analogue of glycyl adenylate 4H2U ; 2.1 ; Crystal structure of Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with cognate carrier protein and ATP 4H2V ; 2.0 ; Crystal structure of Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with glycylated carrier protein 4Q73 ; 2.3 ; Crystal Structure of Bradyrhizobium japonicum Proline Utilization A (PutA) Mutant D778Y 4Q71 ; 2.2 ; Crystal Structure of Bradyrhizobium japonicum Proline Utilization A (PutA) Mutant D779W 4Q72 ; 2.3 ; Crystal Structure of Bradyrhizobium japonicum Proline Utilization A (PutA) Mutant D779Y 4WBJ ; 1.3 ; Crystal structure of Bradyrhizobium japonicum ScoI in the oxidized state 4RZW ; 3.493 ; Crystal structure of BRAF (R509H) kinase domain bound to AZ628 8C7X ; 1.65 ; Crystal structure of BRAF in complex with a hybrid compound 6 6XLO ; 2.493 ; Crystal structure of bRaf in complex with inhibitor 7K0V ; 1.93 ; Crystal structure of bRaf in complex with inhibitor GNE-0749 5ITA ; 1.95 ; Crystal Structure of BRAF Kinase Domain Bound to AZ-VEM 6XFP ; 2.0 ; Crystal Structure of BRAF kinase domain bound to Belvarafenib 7SHV ; 2.88 ; Crystal structure of BRAF kinase domain bound to GDC0879 6NSQ ; 3.05 ; Crystal structure of BRAF kinase domain bound to the inhibitor 2l 6UUO ; 3.288 ; Crystal structure of BRAF kinase domain bound to the PROTAC P4B 8C7Y ; 1.65 ; Crystal structure of BRAF V600E in complex with a hybrid compound 6 6V34 ; 3.15 ; Crystal structure of BRAF V600E oncogenic mutant in complex with TAK-580 5C9C ; 2.7 ; CRYSTAL STRUCTURE OF BRAF(V600E) IN COMPLEX WITH LY3009120 COMPND 4MNF ; 2.802 ; Crystal structure of BRAF-V600E bound to GDC0879 6PP9 ; 2.59 ; Crystal structure of BRAF:MEK1 complex 6NST ; 2.136 ; Crystal structure of branched chain amino acid aminotransferase from Pseudomonas aeruginosa 6OQ1 ; 2.2 ; Crystal Structure of Branched K11/K48-Linked Tri-Ubiquitin 3L60 ; 2.0 ; Crystal structure of branched-chain alpha-keto acid dehydrogenase subunit e2 from mycobacterium tuberculosis 4H7Q ; 2.1 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase in complex with alpha-ketoisocaproic acid and ADP 4H81 ; 2.05 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/(R)-2-chloro-3-phenylpropanoic acid complex with ADP 4H85 ; 2.1 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/(R)-alpha-chloroisocaproate complex with ADP 4DZY ; 2.101 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/(S)-2-chloro-3-phenylpropanoic acid complex with ADP 4E02 ; 2.1547 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/(S)-2-chloro-3-phenylpropanoic acid complex with AMPPNP 4E00 ; 2.15 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/3,6-dichlorobenzo[b]thiophene-2-carboxylic acid complex with ADP 4E01 ; 1.97 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/3,6-dichlorobenzo[b]thiophene-2-carboxylic acid complex with AMPPNP 3TZ2 ; 2.85 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/phenylbutyrate complex 3TZ5 ; 2.4 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/phenylbutyrate complex with ADP 3TZ0 ; 2.5 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/S-alpha-chloroisocaproate complex 3TZ4 ; 2.25 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase kinase/S-alpha-chloroisocaproate complex with ADP 4DA1 ; 2.383 ; Crystal structure of branched-chain alpha-ketoacid dehydrogenase phosphatase with Mg (II) ions at the active site 3U0G ; 1.9 ; Crystal structure of branched-chain amino acid aminotransferase from burkholderia pseudomallei 7LV7 ; 2.1 ; Crystal Structure of Branched-chain amino acid aminotransferase from Giardia lamblia ATCC 50803 7NEA ; 2.0 ; Crystal structure of branched-chain amino acid aminotransferase from Thermobaculum terrenum (M3 mutant). 7NEB ; 2.2 ; Crystal structure of branched-chain amino acid aminotransferase from Thermobaculum terrenum (M4 mutant) 6GKR ; 2.19 ; Crystal structure of branched-chain amino acid aminotransferase from Thermobaculum terrenum in PLP-form (holo-form) 6Q8E ; 1.5 ; Crystal structure of branched-chain amino acid aminotransferase from Thermobaculum terrenum in PMP-form 5CM0 ; 1.9 ; Crystal structure of branched-chain aminotransferase from thermophilic archaea Geoglobus acetivorans 5E25 ; 2.2 ; Crystal structure of branched-chain aminotransferase from thermophilic archaea Geoglobus acetivorans complexed with alpha-ketoglutarate 5CE8 ; 2.0 ; Crystal structure of branched-chain aminotransferase from thermophilic archaea Thermoproteus uzoniensis 6THQ ; 2.15 ; Crystal structure of branched-chain aminotransferase from thermophilic archaea Thermoproteus uzoniensis with norvaline 6KLF ; 2.5 ; Crystal structure of branching enzyme D434A mutant from Cyanothece sp. ATCC 51142 5GR0 ; 1.95 ; Crystal structure of branching enzyme D501A mutant from Cyanothece sp. ATCC 51142 5GQU ; 1.85 ; Crystal structure of branching enzyme from Cyanothece sp. ATCC 51142 5GQY ; 2.0 ; Crystal structure of branching enzyme from Cyanothece sp. ATCC 51142 in complex with maltoheptaose 5GQV ; 3.0 ; Crystal structure of branching enzyme from Cyanothece sp. ATCC 51142 in complex with maltohexaose 5GR2 ; 1.95 ; Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 5GR4 ; 2.0 ; Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose 5GR3 ; 2.6 ; Crystal structure of branching enzyme L541A/W655A mutant from Cyanothece sp. ATCC 51142 5GR5 ; 2.4 ; Crystal structure of branching enzyme W610A mutant from Cyanothece sp. ATCC 51142 5GQW ; 1.8 ; Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 5GQX ; 2.3 ; Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose 5GQZ ; 1.85 ; Crystal structure of branching enzyme Y500A mutant from Cyanothece sp. ATCC 51142 5GR6 ; 2.0 ; Crystal structure of branching enzyme Y500A/D501A double mutant from Cyanothece sp. ATCC 51142 5GR1 ; 2.5 ; Crystal structure of branching enzyme Y500A/D501A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose 4Z8I ; 2.701 ; Crystal structure of Branchiostoma belcheri tsingtauense peptidoglycan recognition protein 3 2Z37 ; 1.53 ; Crystal structure of Brassica juncea chitinase catalytic module (Bjchi3) 2Z39 ; 1.7 ; Crystal structure of Brassica juncea chitinase catalytic module Glu234Ala mutant (Bjchi3-E234A) 7CQT ; 2.8 ; Crystal structure of Brassica juncea HMG-CoA synthase 1 mutant - S359A in complex with acetyl-CoA 1D7O ; 1.9 ; CRYSTAL STRUCTURE OF BRASSICA NAPUS ENOYL ACYL CARRIER PROTEIN REDUCTASE COMPLEXED WITH NAD AND TRICLOSAN 5EX7 ; 2.6 ; Crystal structure of Brat NHL domain in complex with an 8-nt hunchback mRNA 6B4S ; 2.035 ; Crystal Structure of Brazil nut (Bertholletia excelsa) allergen Ber e 2 4HE7 ; 1.8 ; Crystal Structure of Brazzein 3K16 ; 3.0 ; Crystal Structure of BRCA1 BRCT D1840T in complex with a minimal recognition tetrapeptide with a free carboxy C-terminus 3K15 ; 2.8 ; Crystal Structure of BRCA1 BRCT D1840T in complex with a minimal recognition tetrapeptide with an amidated C-terminus 3K0K ; 2.7 ; Crystal Structure of BRCA1 BRCT in complex with a minimal recognition tetrapeptide with a free carboxy C-terminus. 4JLU ; 3.5 ; Crystal structure of BRCA1 BRCT with doubly phosphorylated Abraxas 7CMZ ; 1.695 ; Crystal Structure of BRCT7/8 in Complex with the APS Motif of PHF8 6IN2 ; 1.75 ; Crystal structure of BRD1 in complex with 18-Crown-6 4Z02 ; 1.87 ; Crystal structure of BRD1 in complex with Isoquinoline-3-carboxylic acid 5BT5 ; 1.4 ; Crystal structure of BRD2 second bromodomain in complex with SGC-CBP30 chemical probe 6K05 ; 1.935 ; Crystal structure of BRD2(BD1)with ligand BY27 bound 7DPN ; 1.79999 ; Crystal structure of BRD2(BD1)with ligand ZB-BD-224 bound 4QEU ; 1.5 ; Crystal structure of BRD2(BD2) mutant in free form 5DFB ; 1.4 ; Crystal structure of BRD2(BD2) mutant W370F in the free form 4QEW ; 1.7 ; Crystal structure of BRD2(BD2) mutant with ligand ET bound (METHYL (2R)- 2-[(4S)-6-(4-CHLOROPHENYL)-8-METHOXY-1-METHYL-4H-[1,2,4]TRIAZOLO[4,3-A][1, 4]BENZODIAZEPIN-4-YL]BUTANOATE) 4QEV ; 1.8 ; Crystal structure of BRD2(BD2) mutant with ligand ME bound (METHYL (2R)- 2-[(4S)-6-(4-CHLOROPHENYL)-8-METHOXY-1-METHYL-4H-[1,2,4]TRIAZOLO[4,3-A][1, 4]BENZODIAZEPIN-4-YL]PROPANOATE) 5DFD ; 1.5 ; Crystal structure of BRD2(BD2) W370F mutant with ligand 28 bound 5DFC ; 1.5 ; Crystal structure of BRD2(BD2) W370F mutant with ligand I-BET 762 bound 6K04 ; 1.251 ; Crystal structure of BRD2(BD2)with ligand BY27 bound 7DPO ; 2.29994 ; Crystal Structure of BRD2(BD2)with Ligand ZB-BD-224 bound 7VRH ; 2.2 ; crystal structure of BRD2-BD1 in complex with guanosine analog 7VRK ; 2.48 ; crystal structure of BRD2-BD1 in complex with purine derivative 7VRO ; 2.35 ; crystal structure of BRD2-BD1 in complex with purine derivative 7VRZ ; 2.05 ; crystal structure of BRD2-BD1 in complex with purine derivative 7VSF ; 2.5 ; crystal structure of BRD2-BD1 in complex with purine derivative 7VRI ; 1.5 ; crystal structure of BRD2-BD2 in complex with guanosine analog 7VRM ; 1.1 ; crystal structure of BRD2-BD2 in complex with purine derivative 7VRQ ; 1.15 ; crystal structure of BRD2-BD2 in complex with purine derivative 7VS0 ; 1.25 ; crystal structure of BRD2-BD2 in complex with purine derivative 7VS1 ; 1.25 ; crystal structure of BRD2-BD2 in complex with purine derivative 6KEI ; 1.451 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 16-methoxy-11-methyl-6-[(pyridin-2-yl)methoxy]-2-oxa-11-azatetracyclo[8.6.1.03,8.013,17]heptadeca-1(16),3,5,7,9,13(17),14-heptaen-12-one 7YMG ; 1.4 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 2-({3-ethyl-[1,2,4]triazolo[4,3-b]pyridazin-6-yl}amino)-3-(1H-indol-3-yl)propan-1-ol 6KEC ; 1.35 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 4-ethoxy-5,16-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.6.1.03,8.013,17]heptadeca-1(17),3,5,7,9,13,15-heptaen-12-one 6KEH ; 1.553 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 6,16-dimethoxy-11-methyl-2-oxa-11-azatetracyclo[8.6.1.03,8.013,17]heptadeca-1(17),3,5,7,9,13,15-heptaen-12-one 6KEK ; 1.553 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 6-hydroxy-16-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.6.1.03,8.013,17]heptadeca-1(16),3,5,7,9,13(17),14-heptaen-12-one 6KEJ ; 1.85 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with 6-[2-(diethylamino)ethoxy]-16-methoxy-11-methyl-2-oxa-11-azatetracyclo[8.6.1.03,8.013,17]heptadeca-1(17),3,5,7,9,13,15-heptaen-12-one 8GPZ ; 1.528 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with C239-0012 7YQ9 ; 1.5 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with N-[2-(1H-indol-3-yl)ethyl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazin-6-amine 7W3D ; 1.98 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with N2-(1,2,3-benzotriazol-5-yl)-N3-(dimethylsulfamoyl)-N6-[(2S)-1-methoxypropan-2-yl]pyridine-2,3,6-triamine 8GQ0 ; 1.44 ; Crystal structure of BRD4 bromodomain 1 (BD1) in complex with STL233497 4KV1 ; 1.5 ; Crystal Structure of Brd4 Bromodomain 1 in Complex with Acetylated Rel Peptide 7TV0 ; 2.6 ; Crystal structure of BRD4 bromodomain 1 in complex with dual-acetylated SARS-CoV-2 E 5M39 ; 1.38 ; Crystal structure of BRD4 BROMODOMAIN 1 IN COMPLEX WITH LIGAND 1 5M3A ; 1.65 ; Crystal structure of BRD4 BROMODOMAIN 1 IN COMPLEX WITH LIGAND 2 7TUQ ; 2.68 ; Crystal structure of BRD4 bromodomain 1 in complex with monoacetylated SARS-CoV-2 E 3MUL ; 1.65 ; Crystal structure of Brd4 bromodomain 1 with butyrylated histone H3-K(buty)14 6PRT ; 1.3 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 10 (methyl [(3R)-1-methyl-5-oxopyrrolidin-3-yl]acetate) 6VUJ ; 1.48 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 15c (N,N-diethyl-3',4'-dimethoxy-6-(1-methyl-5-oxopyrrolidin-3-yl)-[1,1'-biphenyl]-3-sulfonamide) 6PS9 ; 1.21 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 17 (5-{2-[(3R)-1-methyl-5-oxopyrrolidin-3-yl]ethyl}-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-1-one) 6PSB ; 1.59 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 18 (5-{[(3R)-1-methyl-5-oxopyrrolidin-3-yl]methyl}-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indol-1-one) 6VUB ; 1.5 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 5 (1-methyl-4-phenylpyrrolidin-2-one) 6VUC ; 1.55 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 7b (1-methyl-4-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-one) 6VUF ; 1.59 ; Crystal structure of BRD4 bromodomain 1 with N-methylpyrrolidin-2-one (NMP) derivative 7h (4-(1-methyl-5-oxopyrrolidin-3-yl)-N-propylbenzenesulfonamide) 3MUK ; 1.75 ; Crystal structure of Brd4 bromodomain 1 with propionylated histone H3-K(prop)23 6KEE ; 2.12155 ; Crystal structure of BRD4 Bromodomain1 with an inhibitor 6HOV ; 1.85 ; Crystal Structure of BRD4 first bromodomain in complex with ferulic acid 5BT4 ; 1.5 ; Crystal structure of BRD4 first bromodomain in complex with SGC-CBP30 chemical probe 6AJY ; 1.6 ; Crystal structure of BRD4 in complex with 2',4'-dihydroxy-2-methoxychalcone 6AJW ; 1.401 ; Crystal structure of BRD4 in complex with DMSO (Cocktail No. 4) 6AJV ; 1.45 ; Crystal structure of BRD4 in complex with isoliquiritigenin and DMSO (Cocktail No. 3) 6AJX ; 1.887 ; Crystal structure of BRD4 in complex with isoliquiritigenin in the absence of DMSO 6CKR ; 1.62 ; Crystal Structure of BRD4 with QC4956 6CKS ; 1.72 ; Crystal Structure of BRD4 with QC4956 4LYS ; 1.83 ; Crystal Structure of BRD4(1) bound to Colchiceine 4LZR ; 1.85 ; Crystal Structure of BRD4(1) bound to Colchicine 6RWJ ; 1.4 ; Crystal Structure of BRD4(1) bound to inhibitor BUG0 (6) 6S4B ; 1.6 ; Crystal Structure of BRD4(1) bound to inhibitor BUX1 (8) 6SB8 ; 1.5 ; Crystal Structure of BRD4(1) bound to inhibitor BUX14 (7) 6S6K ; 1.4 ; Crystal Structure of BRD4(1) bound to inhibitor BUX2 (9) 6SA2 ; 1.5 ; Crystal Structure of BRD4(1) bound to inhibitor BUX3 (10) 6SA3 ; 1.8 ; Crystal Structure of BRD4(1) bound to inhibitor BUX4 (13) 6SAH ; 1.5 ; Crystal Structure of BRD4(1) bound to inhibitor BUX5 (11) 6SAJ ; 1.5 ; Crystal Structure of BRD4(1) bound to inhibitor BUX6 (12) 4LYW ; 1.95 ; Crystal Structure of BRD4(1) bound to inhibitor XD14 4LZS ; 2.2 ; Crystal Structure of BRD4(1) bound to inhibitor XD46 7AXR ; 1.5 ; Crystal structure of BRD4(1) bound to the dual BET-HDAC inhibitor LSH24 7R5B ; 1.77 ; Crystal structure of BRD4(1) in complex with the inhibitor MPM2 7B1T ; 1.92 ; Crystal structure of BRD4(1) in complex with the inhibitor MPM6 7RXR ; 1.41 ; Crystal Structure of BRD4(D1) with 4-[4-(4-bromophenyl)-1-(piperidin-4-yl)-1H-imidazol-5-yl]-N-(3,5-dimethylphenyl)pyrimidin-2-amine 5YOV ; 1.451 ; Crystal structure of BRD4-BD1 bound with hjp126 5YOU ; 1.503 ; Crystal structure of BRD4-BD1 bound with hjp64 6ZCI ; 1.976 ; Crystal structure of BRD4-BD1 in complex with NVS-BET-1 8PIQ ; 1.117 ; Crystal Structure of BRD4-BD1 with BI894999 6XVC ; 1.098 ; CRYSTAL STRUCTURE OF BRD4-BD1 WITH COMPOUND 1 6XV7 ; 1.668 ; CRYSTAL STRUCTURE OF BRD4-BD1 WITH COMPOUND 2 6XV3 ; 1.47 ; CRYSTAL STRUCTURE OF BRD4-BD1 WITH COMPOUND 3 6XUZ ; 1.07 ; CRYSTAL STRUCTURE OF BRD4-BD1 WITH COMPOUND 4 6KO2 ; 1.5 ; Crystal Structure of BRD4-Brmo2 in complex with H2A.ZK4acK7ac peptide 5TWX ; 2.55 ; Crystal Structure of BRD9 bromodomain 4YY6 ; 1.45 ; Crystal structure of BRD9 Bromodomain bound to a butyryllysine peptide 4YYG ; 2.1 ; Crystal structure of BRD9 Bromodomain bound to a butyryllysine peptide 4YYJ ; 1.85 ; Crystal structure of BRD9 Bromodomain bound to a butyryllysine peptide 4YYD ; 1.52 ; Crystal structure of BRD9 Bromodomain bound to a crotonyllysine peptide 4YYH ; 1.74 ; Crystal structure of BRD9 Bromodomain bound to a crotonyllysine peptide 4YYK ; 1.79 ; Crystal structure of BRD9 Bromodomain bound to a crotonyllysine peptide 4YYI ; 1.5 ; Crystal structure of BRD9 Bromodomain bound to an acetylated peptide 4YY4 ; 1.47 ; Crystal structure of BRD9 Bromodomain bound to DMSO 4Z6I ; 1.95 ; Crystal structure of BRD9 bromodomain in complex with a substituted valerolactam quinolone ligand 4Z6H ; 1.8 ; Crystal structure of BRD9 bromodomain in complex with a valerolactam quinolone ligand 5E9V ; 1.8 ; Crystal structure of BRD9 bromodomain in complex with an indolizine ligand 8A7I ; 1.76 ; Crystal structure of BRD9 bromodomain in complex with compound EA-89 5EU1 ; 1.6 ; CRYSTAL STRUCTURE OF BRD9 IN COMPLEX WITH BI-7273 7L9A ; 2.27 ; Crystal structure of BRDT bromodomain 2 in complex with CDD-1102 7L99 ; 1.9 ; Crystal structure of BRDT bromodomain 2 in complex with CDD-1302 3O2K ; 2.4 ; Crystal Structure of Brevianamide F Prenyltransferase Complexed with Brevianamide F and Dimethylallyl S-thiolodiphosphate 4ZST ; 2.011 ; Crystal structure of Brevundimonas diminuta phosphotriesterase mutant L7eP-3a 4ZSU ; 2.011 ; Crystal structure of Brevundimonas diminuta phosphotriesterase mutant L7eP-3aG 4OH4 ; 2.25 ; Crystal structure of BRI1 in complex with BKI1 4LSA ; 2.5 ; Crystal structure of BRI1 sud1 (Gly643Glu) bound to brassinolide 7XRZ ; 2.1 ; Crystal structure of BRIL and SRP2070_Fab complex 6CBV ; 1.872 ; Crystal structure of BRIL bound to an affinity matured synthetic antibody. 8J7E ; 2.8 ; Crystal structure of BRIL in complex with 1b3 Fab 4J0M ; 2.5 ; Crystal structure of BRL1 (LRR) in complex with brassinolide 6JOZ ; 1.35 ; Crystal structure of BRLF peptide from EBV in complex with HLA-A1101. 6UUH ; 2.7 ; Crystal structure of broad and potent HIV-1 neutralizing antibody 438-B11 6UUL ; 2.06 ; Crystal structure of broad and potent HIV-1 neutralizing antibody 438-D5 3TWC ; 1.65 ; Crystal structure of broad and potent HIV-1 neutralizing antibody PGT127 in complex with Man9 3TYG ; 3.25 ; Crystal structure of broad and potent HIV-1 neutralizing antibody PGT128 in complex with a glycosylated engineered gp120 outer domain with miniV3 (eODmV3) 3TV3 ; 1.29 ; Crystal structure of broad and potent HIV-1 neutralizing antibody PGT128 in complex with Man9 4YDI ; 3.452 ; Crystal structure of broad and potently neutralizing VRC01-class antibody Z258-VRC27.01, isolated from human donor Z258, in complex with HIV-1 gp120 from clade A strain Q23.17 5GHW ; 2.4 ; Crystal structure of broad neutralizing antibody 10E8 with long epitope bound 4JPW ; 2.904 ; Crystal structure of broadly and potently neutralizing antibody 12a21 in complex with hiv-1 strain 93th057 gp120 mutant 4LSV ; 3.0 ; Crystal structure of broadly and potently neutralizing antibody 3BNC117 in complex with HIV-1 clade C C1086 gp120 4JPV ; 2.827 ; Crystal structure of broadly and potently neutralizing antibody 3bnc117 in complex with hiv-1 gp120 4YDJ ; 2.308 ; Crystal structure of broadly and potently neutralizing antibody 44-VRC13.01 in complex with HIV-1 clade AE strain 93TH057 gp120 4YDK ; 2.051 ; Crystal structure of broadly and potently neutralizing antibody C38-VRC16.01 in complex with HIV-1 clade AE strain 93TH057 gp120 4YDL ; 1.8 ; Crystal structure of broadly and potently neutralizing antibody C38-VRC18.02 in complex with HIV-1 clade AE strain 93TH057gp120 4LSP ; 2.15 ; Crystal structure of broadly and potently neutralizing antibody VRC-CH31 in complex with HIV-1 clade A/E gp120 93TH057 4LSQ ; 2.25 ; Crystal structure of broadly and potently neutralizing antibody VRC-CH31 in complex with HIV-1 clade A/E gp120 93TH057 with LOOP D and Loop V5 from clade A strain 3415_v1_c1 4LSR ; 2.28 ; Crystal structure of broadly and potently neutralizing antibody VRC-CH31 in complex with HIV-1 clade A/E stran 93TH057 gp120 with LOOP D and Loop V5 from clade A strain KER_2018_11 3SE9 ; 2.0 ; Crystal structure of broadly and potently neutralizing antibody VRC-PG04 in complex with HIV-1 gp120 4LSU ; 2.3 ; Crystal structure of broadly and potently neutralizing antibody VRC-PG20 in complex with HIV-1 clade A/E 93TH057 gp120 4LSS ; 2.59 ; Crystal structure of broadly and potently neutralizing antibody VRC01 in complex with HIV-1 clade A strain KER_2018_11 gp120 4LST ; 2.55 ; Crystal structure of broadly and potently neutralizing antibody VRC01 in complex with HIV-1 clade C strain ZM176.66 gp120 3NGB ; 2.68 ; Crystal structure of broadly and potently neutralizing antibody VRC01 in complex with HIV-1 gp120 3SE8 ; 1.895 ; Crystal structure of broadly and potently neutralizing antibody VRC03 in complex with HIV-1 gp120 4XNZ ; 3.389 ; Crystal structure of broadly and potently neutralizing antibody VRC06B in complex with HIV-1 clade A/E strain 93TH057 gp120 4XMP ; 1.7831 ; Crystal structure of broadly and potently neutralizing antibody VRC08 in complex with HIV-1 clade A strain Q842.d12 gp120 4XNY ; 2.3 ; Crystal structure of broadly and potently neutralizing antibody VRC08C in complex with HIV-1 clade A strain Q842.d12 gp120 4J6R ; 1.64 ; Crystal structure of broadly and potently neutralizing antibody VRC23 in complex with HIV-1 gp120 7L77 ; 1.543 ; Crystal structure of broadly HIV-1-neutralizing antibody VRC33.01 7L79 ; 2.826 ; Crystal structure of broadly HIV-1-neutralizing antibody VRC40.01 4RNR ; 2.758 ; Crystal structure of broadly neutralizing anti-HIV antibody PGT130 5X08 ; 1.49 ; Crystal structure of broadly neutralizing anti-HIV-1 antibody 4E10, mutant Npro, with peptide bound 4JAM ; 1.65 ; Crystal structure of broadly neutralizing anti-hiv-1 antibody ch103 6A0X ; 2.3 ; Crystal structure of broadly neutralizing antibody 13D4 6A0Z ; 2.329 ; Crystal structure of broadly neutralizing antibody 13D4 bound to H5N1 influenza hemagglutinin, HA head region 6WF1 ; 4.19 ; Crystal Structure of Broadly Neutralizing Antibody 3I14 Bound to the Influenza A H10 Hemagglutinin 6WF0 ; 3.46 ; Crystal Structure of Broadly Neutralizing Antibody 3I14 Bound to the Influenza A H3 Hemagglutinin 6WEZ ; 3.21 ; Crystal Structure of Broadly Neutralizing Antibody 3I14-D93N Mutant Bound to the Influenza A H3 Hemagglutinin 6WEX ; 3.49 ; Crystal Structure of Broadly Neutralizing Antibody 3I14-D93N Mutant Bound to the Influenza A H6 Hemagglutinin 4M5Z ; 2.25 ; Crystal structure of broadly neutralizing antibody 5J8 bound to 2009 pandemic influenza hemagglutinin, HA1 subunit 6MEF ; 2.9 ; Crystal structure of broadly neutralizing antibody AR3C 6URH ; 2.2 ; Crystal structure of broadly neutralizing antibody AR3X in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 4FNL ; 2.297 ; Crystal structure of broadly neutralizing antibody C05 4FQR ; 4.1 ; Crystal structure of broadly neutralizing antibody C05 bound to H3 influenza hemagglutinin 4FP8 ; 2.947 ; Crystal structure of broadly neutralizing antibody C05 bound to H3 influenza hemagglutinin, HA1 subunit 5ESV ; 3.105 ; Crystal Structure of Broadly Neutralizing Antibody CH03, Isolated from Donor CH0219, in Complex with Scaffolded Trimeric HIV-1 Env V1V2 Domain from the Clade C Superinfecting Strain of Donor CAP256. 5ESZ ; 4.191 ; Crystal Structure of Broadly Neutralizing Antibody CH04, Isolated from Donor CH0219, in Complex with Scaffolded Trimeric HIV-1 Env V1V2 Domain from the Clade AE Strain A244 4JAN ; 3.15 ; crystal structure of broadly neutralizing antibody CH103 in complex with HIV-1 gp120 3SDY ; 2.85 ; Crystal Structure of Broadly Neutralizing Antibody CR8020 Bound to the Influenza A H3 Hemagglutinin 4NM4 ; 2.65 ; Crystal structure of broadly neutralizing antibody CR8043 4NM8 ; 4.0041 ; Crystal structure of broadly neutralizing antibody CR8043 bound to H3 influenza hemagglutinin 4FQY ; 5.253 ; Crystal structure of broadly neutralizing antibody CR9114 bound to H3 influenza hemagglutinin 4FQV ; 5.75 ; Crystal structure of broadly neutralizing antibody CR9114 bound to H7 influenza hemagglutinin 4O5L ; 1.5045 ; Crystal structure of broadly neutralizing antibody F045-092 4O58 ; 2.7501 ; Crystal structure of broadly neutralizing antibody F045-092 in complex with A/Victoria/3/1975 (H3N2) influenza hemagglutinin 4O5I ; 6.501 ; Crystal structure of broadly neutralizing antibody F045-092 in complex with A/Victoria/361/2011 (H3N2) influenza hemagglutinin 8W0Y ; 3.31 ; Crystal structure of broadly neutralizing antibody hcab17 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 8W0X ; 3.12 ; Crystal structure of broadly neutralizing antibody hcab40 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 8W0V ; 2.59 ; Crystal structure of broadly neutralizing antibody hcab55 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 8W0W ; 2.13 ; Crystal structure of broadly neutralizing antibody hcab64 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 6MED ; 2.04 ; Crystal structure of broadly neutralizing antibody HEPC3 6MEI ; 2.9 ; Crystal structure of broadly neutralizing antibody HEPC3 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 7U0B ; 2.79 ; Crystal structure of broadly neutralizing antibody HEPC3.1 7U0C ; 3.3 ; Crystal structure of broadly neutralizing antibody HEPC3.4 6MEE ; 1.36 ; Crystal structure of broadly neutralizing antibody HEPC74 6MEH ; 1.99 ; Crystal structure of broadly neutralizing antibody HEPC74 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 7RFB ; 2.7 ; Crystal structure of broadly neutralizing antibody mAb1198 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 7RFC ; 3.24 ; Crystal structure of broadly neutralizing antibody mAb1382 in complex with Hepatitis C virus envelope glycoprotein E2 ectodomain 6OZ4 ; 4.05 ; Crystal structure of broadly neutralizing antibody N49P6 Fab in complex with HIV-1 BG505 SOSIP.664 Env trimer ectodomain. 6BCK ; 2.7 ; Crystal Structure of Broadly Neutralizing Antibody N49P7 in Complex with HIV-1 Clade AE strain 93TH057 gp120 core. 6OZ3 ; 3.15 ; Crystal structure of broadly neutralizing antibody N49P9.1 Fab in complex with HIV-1 Clade A/E strain 93TH057 gp120 core 7SX6 ; 3.4 ; Crystal structure of broadly neutralizing antibody N49P9.3 Fab in complex with HIV-1 Clade A/E strain 93TH057 gp120 core 7SX7 ; 2.15 ; Crystal structure of broadly neutralizing antibody N49P9.3-FR3-3 Fab in complex with HIV-1 Clade A/E strain 93TH057 gp120 core 4M5Y ; 1.55 ; Crystal structure of broadly neutralizing Fab 5J8 5I8E ; 2.655 ; Crystal Structure of Broadly Neutralizing HIV-1 Fusion Peptide-Targeting Antibody VRC34.01 Fab 5KAQ ; 3.514 ; Crystal structure of broadly neutralizing Influenza A antibody 31.a.83 in complex with Hemagglutinin Hong Kong 1968. 6NZ7 ; 2.95 ; Crystal structure of broadly neutralizing Influenza A antibody 429 B01 in complex with Hemagglutinin Hong Kong 1968 5F9W ; 2.8911 ; Crystal structure of broadly neutralizing VH1-46 germline-derived CD4-binding site-directed antibody CH235 in complex with HIV-1 clade A/E 93TH057 gp120 5F9O ; 1.86 ; Crystal structure of broadly neutralizing VH1-46 germline-derived CD4-binding site-directed antibody CH235.09 in complex with HIV-1 clade A/E 93TH057 gp120 5F96 ; 2.2407 ; Crystal structure of broadly neutralizing VH1-46 germline-derived CD4-binding site-directed antibody CH235.12 in complex with HIV-1 clade A/E 93TH057 gp120 5TE6 ; 2.4 ; Crystal Structure of Broadly Neutralizing VRC01-class Antibody N6 in Complex with HIV-1 Clade AE Strain 93TH057 gp120 Core 5TE7 ; 2.15 ; Crystal Structure of Broadly Neutralizing VRC01-class Antibody N6 in Complex with HIV-1 Clade C Strain DU172.17 gp120 Core 5TE4 ; 2.75 ; Crystal Structure of Broadly Neutralizing VRC01-class Antibody N6 in Complex with HIV-1 Clade G Strain X2088 gp120 Core 7JZ1 ; 3.37 ; Crystal structure of broadly Plasmodium RIFIN reactive LAIR1-inserted antibody MGC34 7JZ4 ; 2.747 ; Crystal structure of broadly Plasmodium RIFIN reactive LAIR1-inserted antibody MGD21 1D2V ; 1.75 ; CRYSTAL STRUCTURE OF BROMIDE-BOUND HUMAN MYELOPEROXIDASE ISOFORM C AT PH 5.5 3JVK ; 1.8 ; Crystal structure of bromodomain 1 of mouse Brd4 in complex with histone H3-K(ac)14 3JVL ; 1.2 ; Crystal structure of bromodomain 2 of mouse Brd4 3JVM ; 1.2 ; Crystal structure of bromodomain 2 of mouse Brd4 4QNS ; 1.497 ; Crystal structure of bromodomain from Plasmodium faciparum GCN5, PF3D7_0823300 4PY6 ; 2.5 ; Crystal Structure of bromodomain of PFA0510w from Plasmodium Falciparum 2DWW ; 1.8 ; Crystal structure of Bromodomain-containing protein 4 3FOB ; 1.74 ; Crystal structure of bromoperoxidase from Bacillus anthracis 3ULY ; 2.6 ; Crystal Structure of BROX Bro1 Domain in Complex with the C-Terminal Tails of CHMP5 5XEP ; 2.6 ; Crystal structure of BRP39, a chitinase-like protein, at 2.6 Angstorm resolution 7LH9 ; 2.6 ; Crystal structure of BRPF2 PWWP domain in complex with DNA 4BGD ; 3.1 ; Crystal structure of Brr2 in complex with the Jab1/MPN domain of Prp8 4HVZ ; 3.5 ; Crystal structure of brucella abortus immunogenic BP26 protein 7DSG ; 1.9 ; Crystal structure of Brucella abortus PhiA 4ML7 ; 1.8 ; Crystal structure of Brucella abortus PliC in complex with human lysozyme 5U2A ; 2.5 ; Crystal structure of Brucella canis Acyl-CoA Synthetase 4PR3 ; 2.606 ; Crystal structure of Brucella melitensis 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 6W3Z ; 2.3 ; Crystal Structure of Brugia malayi Deoxyhypusine synthase (DHPS) 5T18 ; 1.5 ; Crystal structure of Bruton agammabulinemia tyrosine kinase complexed with BMS-986142 aka (2s)-6-fluoro-5-[3-(8-fluoro-1-methyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-3-yl)-2-methylphenyl]-2-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1h-carbazole-8-carboxamide 5JRS ; 1.97 ; CRYSTAL STRUCTURE OF BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE COMPLEXED WITH 4-[2-FLUORO-3-(4-OXO -3,4-DIHYDROQUINAZOLIN-3-YL)PHENYL]-7-(2-HYDROXYPROPAN-2-Y L)-9H-CARBAZOLE-1-CARBOXAMIDE 4NWM ; 2.03 ; Crystal structure of Bruton agammaglobulinemia tyrosine kinase complexed with BMS-809959 aka 4-tert-butyl-n-[2-me thyl-3-(6-{[4-(morpholine-4-carbonyl)phenyl]amino}-9h- purin-2-yl)phenyl]benzamide 5BPY ; 2.31 ; Crystal structure of bruton agammaglobulinemia tyrosine kinase complexed with BMS-824171 AKA 6-[(3R)-3-(4-tert-bu tylbenzamido)piperidin-1-yl]-2-{[4-(morpholine-4-carbonyl) phenyl]amino}pyridine-3-carboxamide 5BQ0 ; 1.57 ; Crystal structure of bruton agammaglobulinemia tyrosine kinase complexed with BMS-824171 AKA 6-[(3R)-3-(4-tert-bu tylbenzamido)piperidin-1-yl]-2-{[4-(morpholine-4-carbonyl) phenyl]amino}pyridine-3-carboxamide 4ZLY ; 1.65 ; Crystal Structure of Bruton's Tyrosine Kinase bound to a Cinnoline Fragment 1K2P ; 2.1 ; Crystal structure of Bruton's tyrosine kinase domain 4ZLZ ; 2.0 ; Crystal Structure of Bruton's Tyrosine Kinase in complex with a substituted Cinnoline 5ZZ4 ; 2.9 ; Crystal structure of bruton's tyrosine kinase in complex with inhibitor 2e 3OCS ; 1.8 ; Crystal structure of bruton's tyrosine kinase in complex with inhibitor CGI1746 6AUA ; 1.66 ; CRYSTAL STRUCTURE OF BRUTON'S TYROSINE KINASE IN COMPLEX WITH INHIBITOR CGI2625 6AUB ; 1.65 ; CRYSTAL STRUCTURE OF BRUTON'S TYROSINE KINASE IN COMPLEX WITH INHIBITOR CGI2815 3OCT ; 1.95 ; Crystal structure of bruton's tyrosine kinase mutant V555R in complex with dasatinib 3PF4 ; 1.38 ; Crystal structure of Bs-CspB in complex with r(GUCUUUA) 3PF5 ; 1.68 ; Crystal structure of Bs-CspB in complex with rU6 4KN8 ; 1.502 ; Crystal structure of Bs-TpNPPase 6FZZ ; 2.05 ; Crystal structure of BSE31 (BSPA14S_RS05060 gene product) from Lyme disease agent Borrelia (Borreliella) spielmanii 5D01 ; 2.02 ; Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate 5D00 ; 2.15 ; Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP 4BHU ; 1.91 ; Crystal structure of BslA - A bacterial hydrophobin 2D0A ; 2.3 ; Crystal structure of Bst-RNase HIII 2D0B ; 2.1 ; Crystal structure of Bst-RNase HIII in complex with Mg2+ 2D0C ; 2.6 ; Crystal structure of Bst-RNase HIII in complex with Mn2+ 2XG7 ; 3.45 ; Crystal Structure of BST2-Tetherin Ectodomain expressed in HEK293T cells 3NWH ; 2.6 ; Crystal structure of BST2/Tetherin 5Y0Q ; 2.1 ; Crystal structure of BsTmcAL bound with AMPCPP 5I87 ; 3.7 ; Crystal structure of BT-CD domains of human acetyl-CoA carboxylase 5LX8 ; 1.76 ; Crystal structure of BT1762 5T3R ; 3.1 ; Crystal structure of BT1762-1763 5T4Y ; 3.1 ; Crystal structure of BT1762-1763 3A24 ; 2.3 ; Crystal structure of BT1871 retaining glycosidase 2P0V ; 2.1 ; Crystal structure of BT3781 protein from Bacteroides thetaiotaomicron, Northeast Structural Genomics Target BtR58 8UWV ; 1.08 ; Crystal structure of BT3984 SusD-like from Bacteroides thetaiotaomicron VPI-5482 at 1.1 A resolution (Space group P21) 3GGM ; 2.0 ; Crystal Structure of BT9727_2919 from Bacillus thuringiensis subsp. Northeast Structural Genomics Target BuR228B 2VKP ; 1.9 ; Crystal structure of BTB domain from BTBD6 2YY9 ; 2.6 ; Crystal structure of BTB domain from mouse HKR3 6I0Q ; 2.3 ; Crystal structure of BTB domain of KCTD16 hexamer 6ER1 ; 1.4 ; Crystal structure of BTB-domain of CP190 from D.melanogaster at high resolution 7Y3X ; 2.14 ; Crystal structure of BTG13 mutant (H58F) 7Y3Y ; 1.92 ; Crystal structure of BTG13 mutant (T299V) 2OQD ; 2.19 ; Crystal Structure of BthTX-II 3JR8 ; 2.1 ; Crystal Structure of BthTX-II (Asp49-PLA2 from Bothrops jararacussu snake venom) with calcium ions 8FLN ; 1.334 ; Crystal structure of BTK C481S kinase domain in complex with pirtobrutinib 6DI1 ; 1.1 ; CRYSTAL STRUCTURE OF BTK IN COMPLEX WITH COVALENT FRAGMENT LIGAND 6DI5 ; 1.42 ; CRYSTAL STRUCTURE OF BTK IN COMPLEX WITH COVALENT INHIBITOR 6DI9 ; 1.25 ; CRYSTAL STRUCTURE OF BTK IN COMPLEX WITH COVALENT INHIBITOR 6DI0 ; 1.3 ; CRYSTAL STRUCTURE OF BTK IN COMPLEX WITH FRAGMENT LIGAND 6DI3 ; 2.0 ; CRYSTAL STRUCTURE OF BTK IN COMPLEX WITH FRAGMENT LIGAND 3PIZ ; 2.21 ; Crystal structure of BTK kinase domain complexed with (5-Amino-1-o-tolyl-1H-pyrazol-4-yl)-[3-(1-methanesulfonyl-piperidin-4-yl)-phenyl]-methanone 4OTQ ; 1.55 ; Crystal structure of BTK kinase domain complexed with 1-[5-[3-(7-tert-butyl-4-oxo-quinazolin-3-yl)-2-methyl-phenyl]-1-methyl-2-oxo-3-pyridyl]-3-methyl-urea 6HRT ; 1.36 ; CRYSTAL STRUCTURE OF BTK KINASE DOMAIN COMPLEXED WITH 12-(6-tert-butyl-8-fluoro-1-oxo-phthalazin-2-yl)-9-hydroxy-6-methyl-4-[[5-(morpholine-4-carbonyl)-2-pyridyl]amino]-6-azatricyclo[9.4.0.02,7]pentadeca-1(15),2(7),3,11,13-pentaen-5-one 3PIX ; 1.85 ; Crystal structure of BTK kinase domain complexed with 2-Isopropyl-7-(4-methyl-piperazin-1-yl)-4-(5-methyl-2H-pyrazol-3-ylamino)-2H-phthalazin-1-one 3PJ3 ; 1.85 ; Crystal structure of BTK kinase domain complexed with 2-Methyl-5-[(E)-(3-phenyl-acryloyl)amino]-N-(2-phenyl-3H-imidazo[4,5-b]pyridin-6-yl)-benzamide 3PJ2 ; 1.75 ; Crystal structure of BTK kinase domain complexed with 2-[4-(2-Diethylamino-ethoxy)-phenylamino]-6-(4-fluoro-phenoxy)-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one 4RG0 ; 2.5 ; Crystal structure of BTK kinase domain complexed with 2-[8-fluoro-2-[2-(hydroxymethyl)-3-[1-methyl-5-[[5-(4-methylpiperazin-1-yl)-2-pyridyl]amino]-6-oxo-3-pyridyl]phenyl]-1-oxo-3,4-dihydroisoquinolin-6-yl]-2-methyl-propanenitrile 3PJ1 ; 2.0 ; Crystal structure of BTK kinase domain complexed with 3-(2,6-Dichloro-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-1-methyl-3,4-dihydro-1H-pyrimido[4,5-d]pyrimidin-2-one 4OT6 ; 2.05 ; Crystal structure of BTK kinase domain complexed with 4-Methanesulfonyl-N-(3-{8-[4-(morpholine-4-carbonyl)-phenylamino]-imidazo[1,2-a]pyrazin-6-yl}-phenyl)-benzamide 4OT5 ; 1.55 ; Crystal structure of BTK kinase domain complexed with 4-tert-Butyl-N-(3-{8-[4-(4-methyl-piperazine-1-carbonyl)-phenylamino]-imidazo[1,2-a]pyrazin-6-yl}-phenyl)-benzamide 4RFY ; 1.7 ; Crystal structure of BTK kinase domain complexed with 6-(dimethylamino)-2-[2-(hydroxymethyl)-3-[1-methyl-5-[[5-(morpholine-4-carbonyl)-2-pyridyl]amino]-6-oxo-3-pyridyl]phenyl]-3,4-dihydroisoquinolin-1-one 6HRP ; 1.12 ; CRYSTAL STRUCTURE OF BTK KINASE DOMAIN COMPLEXED WITH 6-(dimethylamino)-2-[2-(hydroxymethyl)-3-[1-methyl-5-[[5-(morpholine-4-carbonyl)-2-pyridyl]amino]-6-oxo-3-pyridyl]phenyl]-3,4-dihydroisoquinolin-1-one 4RFZ ; 1.17 ; Crystal structure of BTK kinase domain complexed with 6-(dimethylamino)-8-fluoro-2-[2-(hydroxymethyl)-3-[1-methyl-5-[[5-(morpholine-4-carbonyl)-2-pyridyl]amino]-6-oxo-3-pyridyl]phenyl]isoquinolin-1-one 4OTR ; 1.95 ; Crystal structure of BTK kinase domain complexed with 6-cyclopropyl-2-[3-[5-[[5-(4-ethylpiperazin-1-yl)-2-pyridyl]amino]-1-methyl-6-oxo-3-pyridyl]-2-(hydroxymethyl)phenyl]-8-fluoro-isoquinolin-1-one 6EP9 ; 2.01 ; Crystal structure of BTK kinase domain complexed with N-[2-methyl-3-[4-methyl-6-[4-(4-methylpiperazine-1-carbonyl)anilino]-5-oxo-pyrazin-2-yl]phenyl]-4-(1-piperidyl)benzamide 3PIY ; 2.55 ; Crystal structure of BTK kinase domain complexed with R406 8FLL ; 1.498 ; Crystal structure of BTK kinase domain in complex with pirtobrutinib 3T9T ; 1.65 ; Crystal structure of BTK mutant (F435T,K596R) complexed with Imidazo[1,5-a]quinoxaline 5P9K ; 1.28 ; CRYSTAL STRUCTURE OF BTK with CNX 774 7RU7 ; 1.4 ; Crystal structure of BtrK, a decarboxylase involved in butirosin biosynthesis 4M7T ; 1.56 ; Crystal structure of BtrN in complex with AdoMet and 2-DOIA 5O01 ; 2.5 ; Crystal structure of BtubC (BKLC) from P. vanneervenii 4JB3 ; 1.5 ; Crystal structure of BT_0970, a had family phosphatase from bacteroides thetaiotaomicron VPI-5482, TARGET EFI-501083, with bound sodium and glycerol, closed lid, ordered loop 3HLZ ; 1.5 ; Crystal structure of BT_1490 (NP_810393.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.50 A resolution 6JKK ; 1.85 ; Crystal structure of BubR1 kinase domain 6JKM ; 1.95 ; Crystal structure of BubR1 kinase domain 5KQA ; 2.05 ; Crystal structure of buckwheat glutaredoxin-glutathione complex 3RDY ; 1.84 ; Crystal Structure of buckwheat trypsin inhibitor rBTI at 1.84 angstrom resolution 6AAG ; 2.445 ; Crystal structure of budding yeast Atg8 complexed with the helical AIM of Hfl1. 5XW5 ; 1.85 ; Crystal structure of budding yeast Cdc14p (C283S) bound to a Swi6p phosphopeptide 5XW4 ; 1.85 ; Crystal structure of budding yeast Cdc14p (wild type) in the apo state 6MF5 ; 2.7 ; Crystal structure of budding yeast Cdc5 polo-box domain in complex with Spc72 phosphopeptide. 6MF6 ; 3.4 ; Crystal structure of budding yeast Cdc5 polo-box domain in complex with the Dbf4 polo-interacting region. 4J4W ; 2.661 ; Crystal structure of BueVN 2GJM ; 2.75 ; Crystal structure of Buffalo lactoperoxidase at 2.75A resolution 4Y55 ; 2.1 ; Crystal structure of Buffalo lactoperoxidase with Rhodanide at 2.09 Angstrom resolution 5TA7 ; 2.35 ; Crystal structure of BuGH117Bwt 5TA9 ; 2.4 ; Crystal structure of BuGH117Bwt in complex with neoagarobiose 5T9X ; 2.5 ; Crystal structure of BuGH16Bwt 5T98 ; 2.6 ; Crystal structure of BuGH2Awt 5T99 ; 2.4 ; Crystal structure of BuGH2Awt in complex with Galactoisofagomine 5T9A ; 2.5 ; Crystal structure of BuGH2Cwt 5T9G ; 2.4 ; Crystal structure of BuGH2Cwt in complex with Galactoisofagomine 5TA0 ; 1.4 ; Crystal structure of BuGH86E322Q in complex with neoagarooctaose 5TA1 ; 2.3 ; Crystal structure of BuGH86wt 5TA5 ; 1.65 ; Crystal structure of BuGH86wt in complex with neoagarooctaose 4DAS ; 2.56 ; Crystal structure of Bullfrog M ferritin 5SYW ; 1.85 ; Crystal structure of Burkhoderia pseudomallei KatG variant Q233E 5NM7 ; 1.72 ; Crystal structure of Burkholderia AP3 phage endolysin 5IXH ; 1.4 ; Crystal Structure of Burkholderia cenocepacia BcnA 5IXG ; 1.6 ; Crystal Structure of Burkholderia cenocepacia BcnB 2Y5S ; 1.95 ; Crystal structure of Burkholderia cenocepacia dihydropteroate synthase complexed with 7,8-dihydropteroate. 2Y5J ; 2.33 ; Crystal structure of Burkholderia cenocepacia dihydropteroate synthase. 4MSS ; 1.8 ; Crystal structure of Burkholderia cenocepacia family 3 glycoside hydrolase (NagZ) bound to (3S,4R,5R,6S)-3-acetamido-4,5,6-trihydroxyazepane 5UTR ; 2.15 ; Crystal structure of Burkholderia cenocepacia family 3 glycoside hydrolase (NagZ) bound to (3S,4R,5R,6S)-3-butyryl-4,5,6-trihydroxyazepane 5UTP ; 2.2 ; Crystal structure of Burkholderia cenocepacia family 3 glycoside hydrolase (NagZ) bound to N-ethylbutyryl-PUGNAc 5UTQ ; 2.2 ; Crystal structure of Burkholderia cenocepacia family 3 glycoside hydrolase (NagZ) bound to PUGNAc 4E84 ; 2.6 ; Crystal Structure of Burkholderia cenocepacia HldA 4E8W ; 2.8654 ; Crystal Structure of Burkholderia cenocepacia HldA in Complex with an ATP-competitive Inhibitor 4E8Y ; 2.6 ; Crystal Structure of Burkholderia cenocepacia HldA in Complex with an ATP-competitive Inhibitor 4E8Z ; 3.05 ; Crystal Structure of Burkholderia cenocepacia HldA in Complex with an ATP-competitive Inhibitor 2WR9 ; 1.75 ; CRYSTAL STRUCTURE OF BURKHOLDERIA CENOCEPACIA LECTIN (BCLA) COMPLEXED WITH AMAN1-3MAN DISACCHARIDE 5JE6 ; 1.571 ; Crystal structure of Burkholderia glumae ToxA 5JDZ ; 1.6 ; Crystal structure of Burkholderia glumae ToxA with bound S-adenosylhomocysteine (SAH) 5JE0 ; 1.552 ; Crystal structure of Burkholderia glumae ToxA with bound S-adenosylhomocysteine (SAH) and 1,6-didemethyltoxoflavin 5JE5 ; 1.564 ; Crystal structure of Burkholderia glumae ToxA with bound S-adenosylhomocysteine (SAH) and 1-demethyltoxoflavin 5JE1 ; 1.95 ; Crystal structure of Burkholderia glumae ToxA with bound S-adenosylhomocysteine (SAH) and toxoflavin 5JE3 ; 1.792 ; Crystal structure of Burkholderia glumae ToxA Y7A mutant with bound S-adenosylhomocysteine (SAH) 5JE4 ; 1.932 ; Crystal structure of Burkholderia glumae ToxA Y7A mutant with bound S-adenosylhomocysteine (SAH) 5JE2 ; 1.519 ; Crystal structure of Burkholderia glumae ToxA Y7F mutant with bound S-adenosylhomocysteine (SAH) 5JDY ; 1.77 ; Crystal structure of Burkholderia glumae ToxA Y7F mutant with bound S-adenosylhomocysteine (SAH) and toxoflavin 7SPQ ; 1.8 ; Crystal structure of Burkholderia glumae toxoflavin biosynthesis protein ToxD 4GU8 ; 2.4 ; Crystal Structure of Burkholderia oklahomensis agglutinin (BOA) 4GK9 ; 1.9 ; Crystal structure of Burkholderia oklahomensis agglutinin (BOA) bound to 3a,6a-mannopentaose 5NRH ; 1.3 ; Crystal structure of Burkholderia pseudomallei D-alanine-D-alanine ligase in complex with AMP 5NRI ; 1.5 ; Crystal structure of Burkholderia pseudomallei D-alanine-D-alanine ligase in complex with AMP and D-Ala-D-Ala 4K2D ; 1.9 ; Crystal structure of Burkholderia Pseudomallei DsbA 4HCP ; 2.52 ; crystal structure of Burkholderia pseudomallei effector protein chbp in complex with nedd8 4HCN ; 2.6 ; Crystal structure of Burkholderia pseudomallei effector protein CHBP in complex with ubiquitin 7PRB ; 1.31 ; Crystal structure of Burkholderia pseudomallei heparanase in complex with covalent inhibitor GR109 7PR9 ; 1.34 ; Crystal structure of Burkholderia pseudomallei heparanase in complex with covalent inhibitor VL166 5SYU ; 1.8 ; Crystal structure of Burkholderia pseudomallei KatG E242Q variant 5SYV ; 1.75 ; Crystal structure of Burkholderia pseudomallei KatG N240D variant 5SYX ; 1.77 ; Crystal structure of Burkholderia pseudomallei KatG variant W139F 5UFM ; 1.77 ; Crystal structure of Burkholderia thailandensis 1,6-didemethyltoxoflavin-N1-methyltransferase with bound 1,6-didemethyltoxoflavin and S-adenosylhomocysteine 5UFN ; 1.39 ; Crystal structure of Burkholderia thailandensis 1,6-didemethyltoxoflavin-N1-methyltransferase with bound S-adenosylhomocysteine 4MWG ; 2.2 ; Crystal structure of Burkholderia xenovorans DmrB apo form: A Cubic Protein Cage for Redox Transfer 3WIS ; 1.901 ; Crystal structure of Burkholderia xenovorans DmrB in complex with FMN: A Cubic Protein Cage for Redox Transfer 8I29 ; 2.72 ; Crystal structure of butanol dehydrogenase A (YqdH) in complex with NADH from Fusobacterium nucleatum 7FJG ; 2.72 ; Crystal structure of butanol dehydrogenase A (YqdH) in complex with partial NADH from Fusobacterium nucleatum 5Z3S ; 1.65 ; Crystal structure of butanol modified signaling protein from buffalo (SPB-40) at 1.65 A resolution 3USU ; 2.46 ; Crystal structure of Butea monosperma seed lectin 1L0H ; 2.0 ; CRYSTAL STRUCTURE OF BUTYRYL-ACP FROM E.COLI 1L0I ; 1.2 ; Crystal structure of butyryl-ACP I62M mutant 5WSO ; 2.82 ; crystal structure of BVDV NS3 helicase 5GVU ; 2.82 ; crystal structure of BVDV NS3 helicase domain 5L7R ; 1.85 ; Crystal structure of BvGH123 5L7V ; 2.3 ; Crystal Structure of BvGH123 with bond transition state analog Galthiazoline. 5L7U ; 2.1 ; Crystal structure of BvGH123 with bound GalNAc 6U9I ; 1.777 ; Crystal structure of BvnE pinacolase from Penicillium brevicompactum 3VXB ; 1.85 ; Crystal Structure of BxlE from Streptomyces thermoviolaceus OPC-520 7XT1 ; 1.98 ; Crystal structure of Bypass-of-forespore protein C from Bacillus Subtilis 5ZU1 ; 3.009 ; Crystal Structure of BZ junction in diverse sequence 5ZUO ; 2.902 ; Crystal Structure of BZ junction in diverse sequence 5ZUP ; 2.9 ; Crystal Structure of BZ junction in diverse sequence 1GD2 ; 2.0 ; CRYSTAL STRUCTURE OF BZIP TRANSCRIPTION FACTOR PAP1 BOUND TO DNA 7C7E ; 2.047 ; Crystal structure of C terminal domain of Escherichia coli DgoR 2QUO ; 1.75 ; Crystal Structure of C terminal fragment of Clostridium perfringens enterotoxin 5Z1N ; 1.949 ; Crystal structure of C terminal region of G-protein interacting protein 1 (Gip1) from Dictyostelium discoideum 5Z39 ; 2.74 ; Crystal structure of C terminal region of G-protein interacting protein 1 (Gip1) from Dictyostelium discoideum form II 5ZY8 ; 2.899 ; Crystal structure of C terminal truncated HadBC (3R-Hydroxyacyl-ACP Dehydratase) complex from Mycobacterium tuberculosis 2ERZ ; 2.2 ; Crystal Structure of c-AMP Dependent Kinase (PKA) bound to hydroxyfasudil 5C68 ; 1.4618 ; Crystal structure of C-As lyase at 1.46 Angstroms resolution 5C6X ; 1.5 ; Crystal structure of C-As lyase with Co(II) 5D4F ; 1.72 ; Crystal structure of C-As lyase with Fe(III) 5CB9 ; 1.95 ; Crystal structure of C-As lyase with mercaptoethonal 5V0F ; 2.23 ; Crystal structure of C-As lyase with mutation K105A and substrate Roxarsone 6XCK ; 1.62 ; Crystal structure of C-As lyase with mutation K105E 6XA0 ; 2.15 ; Crystal structure of C-As lyase with mutation K105R with Ni(II) 5DFG ; 1.9711 ; Crystal structure of C-As lyase with mutations Y100H and V102F 5HCW ; 2.785 ; Crystal structure of C-As lyase with mutations Y100H and V102F (monoclinic form) 3OB2 ; 2.1 ; Crystal structure of c-Cbl TKB domain in complex with double phosphorylated EGFR peptide 3OB1 ; 2.2 ; Crystal structure of c-Cbl TKB domain in complex with double phosphorylated Spry2 peptide 5HKY ; 1.8 ; Crystal structure of c-Cbl TKBD domain in complex with SPRY2 peptide (36-60, pY55) Refined to 1.8A Resolution (P6 form) 5HKZ ; 1.8 ; Crystal Structure of c-Cbl TKBD in complex with SPRY2 peptide (36-60, pY55) Refined to 1.8 A Resolution (P21 form) 5HL0 ; 2.2 ; Crystal Structure of c-Cbl TKBD in complex with SPRY2 peptide (54-60, pY55) Refined to 2.2A Resolution 5HKX ; 1.85 ; Crystal Structure of c-Cbl TKBD-RING domains (Y371E mutant) Refined to 1.85 A Resolution 3BUX ; 1.35 ; Crystal structure of c-Cbl-TKB domain complexed with its binding motif in c-Met 3BUO ; 2.6 ; Crystal structure of c-Cbl-TKB domain complexed with its binding motif in EGF receptor' 3BUM ; 2.0 ; Crystal structure of c-Cbl-TKB domain complexed with its binding motif in Sprouty2 3BUN ; 2.0 ; Crystal structure of c-Cbl-TKB domain complexed with its binding motif in Sprouty4 3BUW ; 1.45 ; Crystal structure of c-Cbl-TKB domain complexed with its binding motif in Syk 6K8S ; 1.8 ; Crystal structure of C-domain of baterial malonyl-CoA reductase 6K8T ; 1.9 ; Crystal structure of C-domain with CoA of baterial malonyl-CoA reductase 6K8U ; 2.0 ; Crystal structure of C-domain with NADP of baterial malonyl-CoA reductase 5WSQ ; 1.05 ; Crystal structure of C-Hg-T pair containing DNA duplex 3UK4 ; 1.98 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with 1,2,5-Pentanetriol at 1.98 A Resolution 3TOD ; 1.38 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with 1-Butyl-1H-Pyrazole-5-carboxylic acid at 1.38 A Resolution 4DXU ; 1.46 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with aminocaproic acid at 1.46 A Resolution 4FIM ; 1.8 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with celecoxib acid at 1.80 A Resolution 3UGW ; 1.87 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Deoxycytidine at 1.87 A Resolution 3VDF ; 1.46 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with diaminopimelic acid at 1.46 A Resolution 4NED ; 2.1 ; Crystal STRUCTURE OF C-LOBE OF BOVINE LACTOFERRIN COMPLEXED WITH FENOPROFEN AT 2.1 ANGSTROM RESOLUTION 4FOR ; 1.58 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Flurbiprofen at 1.58 A Resolution 3V5A ; 1.44 ; Crystal Structure of C-lobe of Bovine Lactoferrin Complexed with Gamma Amino Butyric Acid at 1.44 A Resolution 3USD ; 2.4 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Imidazol (1,2 a) pyridine3-yl-acitic acid at 2.4 A Resolution 3U72 ; 2.2 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Isoniazid at 2.2 A Resolution 4GRK ; 1.68 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with ketorolac at 1.68 A Resolution 4G8H ; 1.88 ; Crystal structure of C-lobe of bovine lactoferrin complexed with licofelone at 1.88 A resolution 3TTR ; 2.27 ; Crystal structure of C-lobe of bovine lactoferrin complexed with Lidocaine at 2.27 A resolution 3RGY ; 2.0 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Lipopolysaccharide at 2.0 A Resolution 3SDF ; 2.1 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Lipoteichoic acid at 2.1 A Resolution 4N6P ; 1.4 ; Crystal Structure of C-lobe of Bovine lactoferrin complexed with meclofenamic acid at 1.4 A resolution 4G2Z ; 1.9 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Mefenamic acid at 1.90 A Resolution 3TUS ; 2.5 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Meta-hydroxy benzoic acid at 2.5 A Resolution 4DIG ; 1.8 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with N-acetylmuramyl l-alanyl d-isoglutamine at 1.8 A Resolution 3TAJ ; 1.7 ; Crystal structure of C-lobe of bovine lactoferrin complexed with Nabumetone at 1.7A resolution 4FJP ; 1.68 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Naproxen at 1.68 A Resolution 3U8Q ; 1.97 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with Phenyl-Propanolamine at 1.97 A Resolution 4G77 ; 1.98 ; Crystal Structure of C-lobe of Bovine lactoferrin Complexed with tolfenamic acid at 1.98 A Resolution 7B3Q ; 1.75 ; Crystal structure of c-MET bound by compound 1 7B3T ; 2.23 ; Crystal structure of c-MET bound by compound 2 7B3V ; 1.93 ; Crystal structure of c-MET bound by compound 3 7B3W ; 2.02 ; Crystal structure of c-MET bound by compound 4 7B3Z ; 1.8 ; Crystal structure of c-MET bound by compound 5 7B40 ; 1.76 ; Crystal structure of c-MET bound by compound 6 7B41 ; 1.97 ; Crystal structure of c-MET bound by compound 7 7B42 ; 1.8 ; Crystal structure of c-MET bound by compound 8 7B43 ; 1.87 ; Crystal structure of c-MET bound by compound 9 7B44 ; 1.76 ; Crystal structure of c-MET bound by compound S1 4XMO ; 1.75 ; Crystal structure of c-Met in complex with (R)-5-(8-fluoro-3-(1-fluoro-1-(3-methoxyquinolin-6-yl)ethyl)-[1,2,4]triazolo[4,3-a]pyridin-6-yl)-3-methylisoxazole 4XYF ; 1.85 ; Crystal structure of c-Met in complex with (S)-5-(8-fluoro-3-(1-(3-(2-methoxyethoxy)quinolin-6-yl)ethyl)-[1,2,4]triazolo[4,3-a]pyridin-6-yl)-3-methylisoxazole 5EYD ; 1.85 ; Crystal structure of c-Met in complex with AMG 337 4EEV ; 1.8 ; Crystal structure of c-Met in complex with LY2801653 5EYC ; 1.8 ; Crystal structure of c-Met in complex with naphthyridinone inhibitor 5 5YA5 ; 1.89 ; CRYSTAL STRUCTURE OF c-MET IN COMPLEX WITH NOVEL INHIBITOR 3U6H ; 2.0 ; Crystal structure of c-Met in complex with pyrazolone inhibitor 26 3U6I ; 2.1 ; Crystal structure of c-Met in complex with pyrazolone inhibitor 58a 4DEG ; 2.0 ; Crystal structure of c-Met in complex with triazolopyridazine inhibitor 2 4DEI ; 2.05 ; Crystal structure of c-Met in complex with triazolopyridinone inhibitor 24 4DEH ; 2.0 ; Crystal structure of c-Met in complex with triazolopyridinone inhibitor 3 4AP7 ; 1.8 ; Crystal structure of C-MET kinase domain in complex with 4-((6-(4- fluorophenyl)-(1,2,4)triazolo(4,3-b)(1,2,4)triazin-3-yl)methyl)phenol 4AOI ; 1.9 ; Crystal structure of C-MET kinase domain in complex with 4-(3-((1H- pyrrolo(2,3-b)pyridin-3-yl)methyl)-(1,2,4)triazolo(4,3-b)(1,2,4) triazin-6-yl)benzonitrile 5HTI ; 1.66 ; Crystal structure of c-Met kinase domain in complex with LXM108 3ZZE ; 1.87 ; Crystal structure of C-MET kinase domain in complex with N'-((3Z)-4- chloro-7-methyl-2-oxo-1,2-dihydro-3H-indol-3-ylidene)-2-(4- hydroxyphenyl)propanohydrazide 5HOA ; 2.14 ; Crystal structure of c-Met L1195V in complex with SAR125844 5HLW ; 1.97 ; Crystal structure of c-Met mutant Y1230H in complex with compound 14 3I5N ; 2.0 ; Crystal structure of c-Met with triazolopyridazine inhibitor 13 5HOR ; 2.2 ; Crystal structure of c-Met-M1250T in complex with SAR125844. 1GUU ; 1.6 ; CRYSTAL STRUCTURE OF C-MYB R1 1GV5 ; 1.58 ; CRYSTAL STRUCTURE OF C-MYB R2 1GVD ; 1.45 ; CRYSTAL STRUCTURE OF C-MYB R2 V103L MUTANT 1GV2 ; 1.68 ; CRYSTAL STRUCTURE OF C-MYB R2R3 3BRP ; 1.85 ; Crystal Structure of C-Phycocyanin from Galdieria sulphuraria 4L1E ; 2.61 ; Crystal structure of C-Phycocyanin from Leptolyngbya sp. N62DM 2UUL ; 3.1 ; Crystal structure of C-phycocyanin from Phormidium, Lyngbya spp. (Marine) and Spirulina sp. (Fresh water) shows two different ways of energy transfer between two hexamers. 2UUM ; 3.0 ; Crystal structure of C-phycocyanin from Phormidium, Lyngbya spp. (Marine) and Spirulina sp. (Fresh water) shows two different ways of energy transfer between two hexamers. 2UUN ; 3.0 ; Crystal structure of C-phycocyanin from Phormidium, Lyngbya spp. (Marine) and Spirulina sp. (Fresh water) shows two different ways of energy transfer between two hexamers. 1GH0 ; 2.2 ; CRYSTAL STRUCTURE OF C-PHYCOCYANIN FROM SPIRULINA PLATENSIS 3O18 ; 1.35 ; Crystal structure of c-phycocyanin from Themosynechococcus vulcanus at 1.35 angstroms resolution 1KTP ; 1.6 ; Crystal structure of c-phycocyanin of synechococcus vulcanus at 1.6 angstroms 1I7Y ; 2.5 ; CRYSTAL STRUCTURE OF C-PHYCOCYANIN OF SYNECHOCOCCUS VULCANUS AT 2.5 ANGSTROMS. 3OMV ; 4.0 ; Crystal structure of c-raf (raf-1) 1GJI ; 2.85 ; Crystal structure of c-Rel bound to DNA 5K9I ; 2.5 ; Crystal structure of c-SRC in complex with a covalent lysine probe 3EL7 ; 2.8 ; Crystal structure of c-Src in complex with pyrazolopyrimidine 3 3EL8 ; 2.3 ; Crystal structure of c-Src in complex with pyrazolopyrimidine 5 6XVN ; 1.7 ; Crystal structure of c-Src SH3 domain without ATCUN motif: monomer 1 6XVM ; 0.9 ; Crystal structure of c-Src SH3 domain without ATCUN motif: monomer 2 196D ; 1.7 ; CRYSTAL STRUCTURE OF C-T-C-T-C-G-A-G-A-G: IMPLICATIONS FOR THE STRUCTURE OF THE HOLLIDAY JUNCTION 3E0K ; 2.52 ; Crystal structure of C-termianl domain of N-acetylglutamate synthase from Vibrio parahaemolyticus 1F00 ; 1.9 ; CRYSTAL STRUCTURE OF C-TERMINAL 282-RESIDUE FRAGMENT OF ENTEROPATHOGENIC E. COLI INTIMIN 1F02 ; 2.9 ; CRYSTAL STRUCTURE OF C-TERMINAL 282-RESIDUE FRAGMENT OF INTIMIN IN COMPLEX WITH TRANSLOCATED INTIMIN RECEPTOR (TIR) INTIMIN-BINDING DOMAIN 1KO6 ; 3.0 ; Crystal Structure of C-terminal Autoproteolytic Domain of Nucleoporin Nup98 2YW7 ; 3.3 ; Crystal structure of C-terminal deletion mutant of Mycobacterium smegmatis Dps 4KC6 ; 2.4 ; Crystal structure of C-terminal deletion mutant of ribosome recycling factor from Mycobacterium tuberculosis 1RZQ ; 2.2 ; Crystal Structure of C-Terminal Despentapeptide Nitrite Reductase from Achromobacter Cycloclastes at pH5.0 1RZP ; 1.9 ; Crystal Structure of C-Terminal Despentapeptide Nitrite Reductase from Achromobacter Cycloclastes at pH6.2 2AVF ; 2.6 ; Crystal Structure of C-terminal Desundecapeptide Nitrite Reductase from Achromobacter cycloclastes 6ZCO ; 1.361 ; Crystal Structure of C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein from SARS-CoV-2, crystal form II 6LXL ; 3.56 ; Crystal structure of C-terminal DNA-binding domain of Escherichia coli OmpR 6LXM ; 2.412 ; Crystal structure of C-terminal DNA-binding domain of Escherichia coli OmpR as a domain-swapped dimer 6LXN ; 2.93 ; Crystal structure of C-terminal DNA-binding domain of Escherichia coli OmpR in complex with F1-DNA 5JUH ; 1.35 ; Crystal structure of C-terminal domain (RV) of MpAFP 2QSW ; 1.5 ; Crystal structure of C-terminal domain of ABC transporter / ATP-binding protein from Enterococcus faecalis 5HFS ; 1.97 ; CRYSTAL STRUCTURE OF C-TERMINAL DOMAIN OF CARGO PROTEINS OF TYPE IX SECRETION SYSTEM 8U5E ; 1.4 ; Crystal Structure of C-terminal domain of Clostridium perfringens Enterotoxin in Space Group P 21 21 21 8U5D ; 1.6 ; Crystal Structure of C-terminal domain of Clostridium perfringens Enterotoxin in Space Group P 41 21 2 5VKD ; 1.749 ; Crystal structure of C-terminal domain of Ebola (Bundibugyo) nucleoprotein in complex with Fab fragment 5W2B ; 2.25 ; Crystal structure of C-terminal domain of Ebola (Reston) nucleoprotein in complex with Fab fragment 4A1F ; 2.5 ; Crystal structure of C-terminal domain of Helicobacter pylori DnaB Helicase 2QQ2 ; 2.8 ; Crystal structure of C-terminal domain of Human acyl-CoA thioesterase 7 3OJB ; 3.01 ; Crystal structure of C-terminal domain of human galectin-8 5BQK ; 2.0 ; CRYSTAL STRUCTURE OF C-TERMINAL DOMAIN OF ICP27 PROTEIN FROM HSV-1 5DMR ; 2.8 ; Crystal Structure of C-terminal domain of mouse eRF1 in complex with RNase H domain of RT of Moloney Murine Leukemia Virus 7UP4 ; 3.0 ; Crystal structure of C-terminal Domain of MSK1 in complex with covalently bound pyrrolopyrimidine compound 20 (co-crystal) 7UP5 ; 2.8 ; Crystal structure of C-terminal Domain of MSK1 in complex with covalently bound pyrrolopyrimidine compound 23 (co-crystal) 7UP8 ; 2.9 ; Crystal structure of C-terminal Domain of MSK1 in complex with covalently bound pyrrolopyrimidine compound 27 (co-crystal) 7UP7 ; 2.8 ; Crystal structure of C-terminal Domain of MSK1 in complex with covalently bound with literature RSK2 inhibitor indazole cyanoacrylamide compound 26 (soak) 7UP6 ; 2.6 ; Crystal structure of C-terminal domain of MSK1 in complex with in covalently bound literature RSK2 inhibitor pyrrolopyrimidine cyanoacrylamide compound 25 (co-crystal) 3KUI ; 2.3 ; Crystal structure of C-terminal domain of PABPC1 in complex with binding region of eRF3a 3KUJ ; 1.4 ; Crystal structure of C-terminal domain of PABPC1 in complex with binding region of eRF3a 7BN3 ; 1.93 ; Crystal structure of C-terminal domain of PABPC1 in complex with Nucleoprotein from Human Coronavirus 229E 4WHI ; 1.7 ; Crystal structure of C-terminal domain of penicillin binding protein Rv0907 3MSE ; 2.1 ; Crystal structure of C-terminal domain of PF110239. 2PB9 ; 2.7 ; Crystal structure of C-terminal domain of phosphomethylpyrimidine kinase 5ZKG ; 3.3 ; Crystal Structure of C-terminal Domain of Plasmodium vivax p43 3NJR ; 2.7 ; Crystal structure of C-terminal domain of precorrin-6Y C5,15-methyltransferase from Rhodobacter capsulatus 8B0V ; 1.7 ; Crystal structure of C-terminal domain of Pseudomonas aeruginosa LexA G91D mutant 4WIW ; 2.637 ; Crystal structure of C-terminal domain of putative chitinase from Desulfitobacterium hafniense DCB-2 3F9U ; 2.2 ; Crystal structure of C-terminal domain of putative exported cytochrome C biogenesis-related protein from Bacteroides fragilis 4EVU ; 1.45 ; Crystal structure of C-terminal domain of putative periplasmic protein ydgH from S. enterica 3BJN ; 1.65 ; Crystal structure of C-terminal domain of putative transcriptional regulator from Vibrio cholerae, targeted domain 79-240 5YDD ; 1.5 ; Crystal structure of C-terminal domain of Rv1828 from Mycobacterium tuberculosis 2IPQ ; 2.2 ; Crystal structure of C-terminal domain of Salmonella Enterica protein STY4665, PFAM DUF1528 5FGS ; 2.0 ; Crystal structure of C-terminal domain of shaft pilin spaA from Lactobacillus rhamnosus GG - P21212 space group 5FGR ; 2.79 ; Crystal structure of C-terminal domain of shaft pilin spaA from Lactobacillus rhamnosus GG - P21212 space group with Yb Heavy atom 5FAA ; 1.6 ; Crystal structure of C-terminal domain of shaft pilin spaA from Lactobacillus rhamnosus GG, - I422 space group 2QKP ; 1.75 ; Crystal structure of C-terminal domain of SMU_1151c from Streptococcus mutans 5F0Q ; 2.21 ; Crystal structure of C-terminal domain of the human DNA primase large subunit with bound DNA template/RNA primer 5F0S ; 3.0 ; Crystal structure of C-terminal domain of the human DNA primase large subunit with bound DNA template/RNA primer and manganese ion 2QSR ; 3.1 ; Crystal structure of C-terminal domain of transcription-repair coupling factor 4ZCK ; 2.48 ; Crystal Structure of C-terminal Fragment of Escherichia coli BipA/TypA 6M7C ; 3.18 ; Crystal structure of C-terminal fragment of pilus adhesin SpaC from Lactobacillus rhamnosus GG 7BVX ; 3.36 ; Crystal structure of C-terminal fragment of pilus adhesin SpaC from Lactobacillus rhamnosus GG-Iodide soaked 5YXG ; 1.48 ; Crystal structure of C-terminal fragment of SpaD from Lactobacillus rhamnosus GG generated by limited proteolysis 4DQZ ; 2.301 ; Crystal Structure of C-terminal Half of Bacterial Hen1 7EVQ ; 2.6 ; Crystal structure of C-terminal half of lactoferrin obtained by limited proteolysis using pepsin at 2.6 A resolution 4Y32 ; 1.7 ; Crystal structure of C-terminal modified Tau peptide-hybrid 109B with 14-3-3sigma 4Y5I ; 1.4 ; Crystal structure of C-terminal modified Tau peptide-hybrid 126B with 14-3-3sigma 4Y3B ; 1.8 ; Crystal structure of C-terminal modified Tau peptide-hybrid 201D with 14-3-3sigma 5HF3 ; 1.8 ; Crystal structure of C-terminal modified Tau peptide-hybrid 201D with 14-3-3sigma 6FI5 ; 1.7 ; Crystal structure of C-terminal modified Tau peptide-hybrid 3.2d with 14-3-3sigma 6FI4 ; 2.0 ; Crystal structure of C-terminal modified Tau peptide-hybrid 3.2e with 14-3-3sigma 6FBY ; 1.5 ; Crystal structure of C-terminal modified Tau peptide-hybrid 4.2b with 14-3-3sigma 6FAW ; 1.4 ; Crystal structure of C-terminal modified Tau peptide-hybrid 4.2c-I with 14-3-3sigma 6FAU ; 1.25 ; Crystal structure of C-terminal modified Tau peptide-hybrid 4.2e-I with 14-3-3sigma 6FAV ; 1.4 ; Crystal structure of C-terminal modified Tau peptide-hybrid 4.2f-I with 14-3-3sigma 6FBW ; 1.45 ; Crystal structure of C-terminal modified Tau peptide-hybrid 4.2f-II with 14-3-3sigma 2QZQ ; 1.9 ; Crystal structure of C-terminal of Aida 5H1D ; 1.494 ; Crystal structure of C-terminal of RhoGDI2 5YRY ; 2.698 ; Crystal structure of C-terminal redox domain of APR1 from Arabidopsis thaliana 4TLQ ; 2.503 ; Crystal structure of C-terminal RNA recognition motif of human ELAV type RNA binding protein-3 at 2.5 Angstrom resolution 4LJM ; 3.0 ; Crystal structure of C-terminal RNA recognition motif of human ETR3 2YV4 ; 2.0 ; Crystal Structure of C-terminal Sua5 Domain from Pyrococcus horikoshii Hypothetical Sua5 Protein PH0435 4UON ; 1.81 ; Crystal structure of C-terminal truncated (110-265) Aura virus capsid protease. 5DBT ; 2.811 ; Crystal structure of C-terminal truncated 2-deoxyribose-5-phosphate aldolase (1-201) from Streptococcus suis 3DJ3 ; 2.4 ; Crystal Structure of C-terminal Truncated TIP-1 (6-113) 3R3I ; 3.57 ; Crystal Structure of C-terminal truncation of UDP-glucose Pyrophosphorylase of Homo sapiens 5DMA ; 1.53 ; Crystal structure of C-terminal tudor domain in PcrA/UvrD helicase 5I6F ; 3.6 ; Crystal structure of C-terminal variant 1 of Chaetomium thermophilum acetyl-CoA carboxylase 5I6G ; 4.5 ; Crystal structure of C-terminal variant 2 of Chaetomium thermophilum acetyl-CoA carboxylase 6D12 ; 2.205 ; Crystal structure of C-terminal xRRM domain of human Larp7 bound to 7SK stem-loop 4 RNA 5M1B ; 3.15 ; Crystal structure of C-terminally tagged apo-UbiD from E. coli 4M9Q ; 2.5 ; Crystal structure of C-terminally truncated Arl13B from Chlamydomonas rheinhardtii bound to GppNHp 4J2Q ; 3.0 ; Crystal structure of C-terminally truncated arrestin reveals mechanism of arrestin activation 7OL9 ; 2.9 ; Crystal structure of C-terminally truncated Bacillus subtilis nucleoid occlusion protein (Noc) complexed to the Noc-binding site (NBS) 7NFU ; 2.5 ; Crystal structure of C-terminally truncated Geobacillus thermoleovorans nucleoid occlusion protein Noc 4BWE ; 2.46 ; Crystal structure of C-terminally truncated glypican-1 after controlled dehydration to 86 percent relative humidity 4OV2 ; 2.6 ; Crystal structure of C-terminally truncated Neuronal Calcium Sensor (NCS-1) from Rattus norvegicus 4YRU ; 2.8 ; Crystal structure of C-terminally truncated Neuronal Calcium Sensor (NCS-1) from Rattus norvegicus 7FAC ; 2.71 ; Crystal Structure of C-terminus of the non-structural protein 2 from SARS coronavirus 4QL7 ; 3.75 ; Crystal structure of C-terminus truncated Alkylhydroperoxide Reductase subunit C (AhpC1-172) from E. coli 4QL9 ; 3.4 ; Crystal structure of C-terminus truncated Alkylhydroperoxide Reductase subunit C (AhpC1-182) from E. coli 6ONQ ; 2.71 ; Crystal structure of c-type cytochrome XoxG from Methylobacterium extorquens AM1 1WMZ ; 1.7 ; Crystal Structure of C-type Lectin CEL-I complexed with N-acetyl-D-galactosamine 1WMY ; 2.0 ; Crystal Structure of C-type Lectin CEL-I from Cucumaria echinata 3VYJ ; 2.15 ; Crystal structure of C-type lectin domain of murine dendritic cell inhibitory receptor 2 (apo form) 3VYK ; 1.5 ; Crystal structure of C-type lectin domain of murine dendritic cell inhibitory receptor 2 in complex with N-glycan 4ESX ; 2.2 ; Crystal structure of C. albicans Thi5 complexed with PLP 4ESW ; 1.6 ; Crystal structure of C. albicans Thi5 H66G mutant 3WC1 ; 4.18 ; Crystal structure of C. albicans tRNA(His) guanylyltransferase (Thg1) with a G-1 deleted tRNA(His) 3WC2 ; 3.641 ; Crystal structure of C. albicans tRNA(His) guanylyltransferase (Thg1) with a tRNA(Phe)(GUG) 3WBZ ; 2.392 ; Crystal structure of C. albicans tRNA(His) guanylyltransferase (Thg1) with ATP 3WC0 ; 3.03 ; Crystal structure of C. albicans tRNA(His) guanylyltransferase (Thg1) with GTP 6JIR ; 1.95 ; Crystal structure of C. crescentus beta sliding clamp with PEG bound to putative beta-motif tethering region 6JYK ; 2.0 ; Crystal Structure of C. crescentus free GapR 4AM3 ; 3.0 ; Crystal structure of C. crescentus PNPase bound to RNA 4AID ; 2.6 ; Crystal structure of C. crescentus PNPase bound to RNase E recognition peptide 4AIM ; 3.3 ; Crystal structure of C. crescentus PNPase bound to RNase E recognition peptide 7L00 ; 1.72 ; Crystal Structure of C. difficile Enoyl-Acyl Carrier Protein Reductase (FabK) in Complex with an Inhibitor 7RCX ; 2.85 ; Crystal structure of C. difficile penicillin-binding protein 2 in apo form 7RCW ; 3.0 ; Crystal structure of C. difficile penicillin-binding protein 2 in complex with ampicillin 7RCY ; 3.0 ; Crystal structure of C. difficile penicillin-binding protein 2 in complex with ceftobiprole 7RD0 ; 2.4 ; Crystal structure of C. difficile penicillin-binding protein 3 in apo form 7RCZ ; 2.2 ; Crystal structure of C. difficile SpoVD in complex with ampicillin 1KT9 ; 1.98 ; Crystal Structure of C. elegans Ap4A Hydrolase 3KRN ; 3.918 ; Crystal Structure of C. elegans cell-death-related nuclease 5(CRN-5) 7O6L ; 1.5 ; Crystal structure of C. elegans ERH-2 7O6N ; 2.17 ; Crystal structure of C. elegans ERH-2 PID-3 complex 1SZH ; 1.5 ; Crystal Structure of C. elegans HER-1 7X4N ; 2.88 ; Crystal Structure of C. elegans kinesin-4 KLP-12 complexed with tubulin and DARPin 5WNO ; 2.386 ; Crystal structure of C. elegans LET-23 kinase domain complexed with AMP-PNP 5E6N ; 2.102 ; Crystal structure of C. elegans LGG-2 5E6O ; 1.8 ; Crystal structure of C. elegans LGG-2 bound to an AIM/LIR motif 8GCI ; 2.42 ; Crystal structure of C. elegans LIN-42 PAS-B domain 6NOD ; 2.547 ; Crystal structure of C. elegans PUF-8 in complex with RNA 5FIR ; 2.836 ; Crystal structure of C. elegans XRN2 in complex with the XRN2-binding domain of PAXT-1 6GY3 ; 2.68 ; Crystal Structure of C. glutamicum AmtR bound to glnA operator DNA 3AAG ; 2.8 ; Crystal structure of C. jejuni pglb C-terminal domain 5T2Y ; 1.94 ; Crystal Structure of C. jejuni PglD in complex with 5-methyl-4-(methylamino)-2-phenethylthieno[2,3-d]pyrimidine-6-carboxylic acid 6YUG ; 1.95 ; Crystal structure of C. parvum GNA1 in complex with acetyl-CoA and glucose 6P. 5GTT ; 2.011 ; Crystal structure of C. perfringens iota-like enterotoxin CPILE-a 5WTZ ; 1.803 ; Crystal structure of C. perfringens iota-like enterotoxin CPILE-a with NAD+ 5WU0 ; 2.251 ; Crystal structure of C. perfringens iota-like enterotoxin CPILE-a with NADH 3LPZ ; 1.98 ; Crystal structure of C. therm. Get4 3TY9 ; 3.12 ; Crystal Structure of C. Thermocellum PNKP Ligase Domain AMP-Adenylate 3TY8 ; 2.6 ; Crystal Structure of C. Thermocellum PNKP Ligase Domain Apo Form 3TY5 ; 2.4 ; Crystal Structure of C. thermocellum PNKP Ligase domain in complex with ATP 7OPK ; 3.0 ; Crystal structure of C. thermophilum Xrn2 3KF8 ; 2.4 ; Crystal structure of C. tropicalis Stn1-ten1 complex 4Q3Y ; 1.4 ; Crystal structure of C. violaceum phenylalanine hydroxylase D139A mutation 4Q3W ; 1.4 ; Crystal structure of C. violaceum phenylalanine hydroxylase D139E mutation 4Q3Z ; 1.35 ; Crystal structure of C. violaceum phenylalanine hydroxylase D139K mutation 4Q3X ; 1.35 ; Crystal structure of C. violaceum phenylalanine hydroxylase D139N mutation 6X6R ; 2.02 ; Crystal structure of C.difficile ribosyltransferase CDTa in complex with pCl-phenylthioDADMeImmA 2EF8 ; 1.95 ; Crystal structure of C.EcoT38IS 3X0D ; 2.15 ; Crystal structure of C.elegans PRMT7 in complex with SAH (P43212) 3WST ; 2.39 ; Crystal structure of C.elegans PRMT7 in complex with SAH(P31) 4PSG ; 2.8 ; Crystal Structure of C.elegans Thymidylate Synthase in complex with an inhibitor N(4)OHdCMP 4IRR ; 2.48 ; Crystal Structure of C.elegans Thymidylate Synthase in Complex with dUMP 5NOO ; 2.9 ; Crystal Structure of C.elegans Thymidylate Synthase in Complex with dUMP and Tomudex 8K8C ; 2.06 ; Crystal structure of C/EBPalpha BZIP domain bound to a high affinity DNA 1NWQ ; 2.8 ; CRYSTAL STRUCTURE OF C/EBPALPHA-DNA COMPLEX 8K8D ; 2.2 ; Crystal structure of C/EBPbeta BZIP domain bound to a high affinity DNA 1GU5 ; 2.1 ; Crystal structure of C/EBPBETA BZIP homodimer bound to a DNA fragment from the MIM-1 promoter 1GTW ; 1.85 ; crystal structure of C/EBPbeta bZip homodimer bound to a DNA fragment from the tom-1A promoter 1GU4 ; 1.8 ; Crystal structure of C/EBPBETA BZIP homodimer bound to a high affinity DNA fragment 2E43 ; 2.1 ; Crystal structure of C/EBPbeta Bzip homodimer K269A mutant bound to A High Affinity DNA fragment 2E42 ; 1.8 ; Crystal structure of C/EBPbeta Bzip homodimer V285A mutant bound to A High Affinity DNA fragment 6D0U ; 3.25 ; Crystal structure of C05 V110P/A117E mutant bound to H3 influenza hemagglutinin, HA1 subunit 5UMN ; 1.97 ; Crystal structure of C05 VPGSGW mutant bound to H3 influenza hemagglutinin, HA1 subunit 3NOO ; 1.03 ; Crystal Structure of C101A Isocyanide Hydratase from Pseudomonas fluorescens 3NOQ ; 1.0 ; Crystal Structure of C101S Isocyanide Hydratase from Pseudomonas fluorescens 4K2H ; 2.2 ; Crystal structure of C103A mutant of DJ-1 superfamily protein STM1931 from Salmonella typhimurium 3ROR ; 2.0 ; Crystal structure of C105S mutant of Mycobacterium tuberculosis methionine aminopeptidase 7EHK ; 2.0 ; Crystal structure of C107S mutant of FfIBP 4FZ8 ; 2.66 ; Crystal structure of C11 Fab, an ADCC mediating anti-HIV-1 antibody. 4MKK ; 1.45 ; Crystal structure of C115A mutant L-methionine gamma-lyase from Citrobacter freundii modified by allicine 4QAL ; 1.5 ; Crystal structure of C117A mutant of human acidic fibroblast growth factor 3FJ8 ; 2.0 ; Crystal structure of C117I mutant of Human acidic fibroblast growth factor 4QC4 ; 1.491 ; Crystal structure of C117S mutant of human acidic fibroblast growth factor 4QBV ; 1.497 ; Crystal structure of C117T mutant of human acidic fibroblast growth factor in sodium citrate buffer 4QBC ; 1.519 ; Crystal structure of C117T mutant of human acidic fibroblast growth factor in sodium formate buffer 2NWR ; 1.5 ; Crystal structure of C11N mutant of KDO8P Synthase in complex with PEP 4G8G ; 2.4 ; Crystal Structure of C12C TCR-HA B2705-KK10 4G9F ; 1.9 ; Crystal Structure of C12C TCR-HLAB2705-KK10-L6M 5IXR ; 2.5 ; Crystal Structure of C139A nostoc H-NOX domain with imidazole 7U09 ; 2.1 ; Crystal Structure of C13B8 Fab in complex with SARS-CoV-2 S fusion peptide 7U0E ; 2.1 ; Crystal Structure of C13C9 Fab in complex with SARS-CoV-2 S fusion peptide 4KTI ; 1.839 ; Crystal Structure of C143A Xathomonas campestris OleA 4KTM ; 2.36 ; Crystal Structure of C143S Xanthomonas campestris OleA 4KU3 ; 1.97 ; Crystal Structure of C143S Xanthomonas Campestris OleA bound with myristic acid and myrisotoyl-CoA 6UHN ; 1.92 ; Crystal Structure of C148 mGFP-cDNA-1 6UHO ; 1.95 ; Crystal Structure of C148 mGFP-cDNA-2 6UHQ ; 2.85 ; Crystal Structure of C148 mGFP-cDNA-3 6UHP ; 2.9 ; Crystal Structure of C148 mGFP-ncDNA-1 6UHL ; 1.91 ; Crystal Structure of C148 mGFP-scDNA-1 6UHR ; 3.0 ; Crystal Structure of C148 mGFP-scDNA-2 5EIN ; 1.7 ; Crystal structure of C148A mutant of LysY from Thermus thermophilus in complex with NADP+ and LysW-gamma-aminoadipic acid 1GZL ; 1.8 ; Crystal structure of C14linkmid/IQN17: a cross-linked inhibitor of HIV-1 entry bound to the gp41 hydrophobic pocket 7C5J ; 1.98 ; Crystal Structure of C150A mutant of Glyceraldehyde-3-phosphate dehydrogenase1 from Escherichia coli at 1.98 Angstrom resolution 7C5I ; 2.48 ; Crystal Structure of C150A mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with PO4 at 2.49 Angstrom resolution 7C5N ; 1.99 ; Crystal Structure of C150A+H177A mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli at 2.0 Angstrom resolution 7C5M ; 1.8 ; Crystal Structure of C150A+H177A mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with G3P at 1.8 Angstrom resolution 7C5R ; 2.31 ; Crystal Structure of C150S mutant Glyceraldehyde-3-phosphate dehydrogenase1 from Escherichia coli complexed with BPG at 2.31 Angstrom resolution 7C5L ; 2.09 ; Crystal Structure of C150S mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli at 2.1 Angstrom resolution 7C5K ; 2.68 ; Crystal Structure of C150S mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with G3P at 2.69 Angstrom resolution 7C5G ; 1.98 ; Crystal Structure of C150S mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with PO4 at 1.98 Angstrom resolution 3L4S ; 2.2 ; Crystal structure of C151G mutant of Glyceraldehyde 3-phosphate dehydrogenase 1 (GAPDH1) from methicillin resistant Staphylococcus aureus MRSA252 complexed with NAD and G3P 3K9Q ; 2.5 ; Crystal structure of C151G mutant of Glyceraldehyde 3-phosphate dehydrogenase 1 from Methicillin resistant Staphylococcus aureus (MRSA252) at 2.5 angstrom resolution 3KV3 ; 2.5 ; Crystal structure of C151S mutant of Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH 1)from methicillin resistant Staphylococcus aureus MRSA252 complexed with NAD and G3P 3HQ4 ; 2.2 ; Crystal Structure of C151S mutant of Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1) complexed with NAD from Staphylococcus aureus MRSA252 at 2.2 angstrom resolution 3KSD ; 2.2 ; Crystal Structure of C151S+H178N mutant of Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1) from Staphylococcus aureus MRSA252 complexed with NAD at 2.2 angstrom resolution 3KSZ ; 2.6 ; Crystal Structure of C151S+H178N mutant of Glyceraldehyde-3-phosphate-dehydrogenase 1 (GAPDH 1) from Staphylococcus aureus MRSA252 complexed with NAD and G3P 4QA0 ; 2.242 ; Crystal structure of C153F HDAC8 in complex with SAHA 3CIF ; 2.0 ; Crystal Structure of C153S mutant glyceraldehyde 3-phosphate dehydrogenase from Cryptosporidium parvum 5GW9 ; 1.65 ; Crystal structure of C163, a backbone circularized G-CSF 5ZO6 ; 1.7 ; Crystal structure of C166, a backbone circularized G-CSF 4Q91 ; 1.799 ; Crystal structure of C16A/K12V/C117V/P134V mutant of human acidic fibroblast growth factor 4QO3 ; 2.047 ; Crystal structure of C16S/N18S/K12V/C117V/P134V mutant of human acidic fibroblast growth factor 4Q9P ; 1.8 ; Crystal structure of C16T/K12V/C117V/P134V mutant of human acidic fibroblast growth factor 8HPC ; 2.52 ; Crystal structure of C171A Mutant of N-carbamyl-D-amino acid amidohydrolase complexed with N-carbamyl-D-Hydroxyphenylglycine 1UF4 ; 2.15 ; Crystal structure of C171A/V236A Mutant of N-carbamyl-D-amino acid amidohydrolase 1UF5 ; 1.6 ; Crystal structure of C171A/V236A Mutant of N-carbamyl-D-amino acid amidohydrolase complexed with N-carbamyl-D-methionine 1UF8 ; 1.8 ; Crystal structure of C171A/V236A Mutant of N-carbamyl-D-amino acid amidohydrolase complexed with N-carbamyl-D-Phenylalanine 1UF7 ; 1.9 ; Crystal structure of C171A/V236A Mutant of N-carbamyl-D-amino acid amidohydrolase complexed with N-carbamyl-D-valine 6ZL7 ; 1.5 ; CRYSTAL STRUCTURE OF C173S MUTATION IN THE PMGL2 ESTERASE FROM PERMAFROST METAGENOMIC LIBRARY 6UHK ; 1.9 ; Crystal Structure of C176 mGFP 3SZG ; 2.25 ; Crystal structure of C176A glutamine-dependent NAD+ synthetase from M. tuberculosis bound to AMP/PPi and NaAD+ 3SDB ; 2.0017 ; Crystal structure of C176A mutant of glutamine-dependent NAD+ synthetase from M. tuberculosis in apo form 3SEQ ; 2.7342 ; Crystal structure of C176A mutant of glutamine-dependent NAD+ synthetase from M. tuberculosis in complex with AMPCPP and NaAD+ 3SEZ ; 2.6529 ; Crystal structure of C176A mutant of glutamine-dependent NAD+ synthetase from M. tuberculosis in complex with ATP and NaAD+ 2ABZ ; 2.16 ; Crystal structure of C19A/C43A mutant of leech carboxypeptidase inhibitor in complex with bovine carboxypeptidase A 5ZLQ ; 2.0 ; Crystal Structure of C1orf123 4QQ2 ; 1.801 ; Crystal structure of C1QL1 4QPY ; 2.384 ; Crystal structure of C1QL2 4QQL ; 2.39 ; Crystal structure of C1QL3 in P1 space group 4QQH ; 1.2 ; Crystal structure of C1QL3 in space group H32 4QQO ; 2.031 ; Crystal structure of C1QL3 mutant D205A 4QQP ; 1.464 ; Crystal structure of C1QL3 mutant D207A 2Z0U ; 2.2 ; Crystal structure of C2 domain of KIBRA protein 4RYU ; 2.04 ; Crystal Structure of C2 form of E112A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 4XER ; 1.97 ; Crystal Structure of C2 form of E112A/H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 1TEE ; 2.9 ; Crystal structure of C205F mutant of PKS18 from Mycobacterium tuberculosis 3UGK ; 2.01 ; Crystal Structure of C205S mutant and Saccharopine Dehydrogenase from Saccharomyces cerevisiae. 4YJK ; 1.68 ; Crystal structure of C212S mutant of Shewanella oneidensis MR-1 uridine phosphorylase 6H1D ; 1.94 ; Crystal structure of C21orf127-TRMT112 in complex with SAH 6H1E ; 1.9 ; Crystal structure of C21orf127-TRMT112 in complex with SAH and H4 peptide 5CP1 ; 1.801 ; Crystal structure of C239S mutant of a novel disulfide oxidoreductase from Deinococcus radiodurans 4ATN ; 1.95 ; Crystal structure of C2498 2'-O-ribose methyltransferase RlmM from Escherichia coli 4AUK ; 1.9 ; Crystal structure of C2498 2'-O-ribose methyltransferase RlmM from Escherichia coli 4B17 ; 2.6 ; Crystal structure of C2498 2'-O-ribose methyltransferase RlmM from Escherichia coli in complex with S-adenosylmethionine 5D2N ; 2.099 ; Crystal structure of C25-NLV-HLA-A2 complex 2Y5D ; 1.4 ; Crystal structure of C296A mutant of the box pathway encoded ALDH from Burkholderia xenovorans LB400 2IPW ; 2.0 ; Crystal Structure of C298A W219Y Aldose Reductase complexed with Dichlorophenylacetic acid 2ISF ; 2.0 ; Crystal Structure of C298A W219Y Aldose Reductase complexed with Phenylacetic Acid 6CFE ; 1.994 ; Crystal structure of C2S5: A computationally designed immunogen to target Carbohydrate-Occluded Epitopes on the HIV envelope 7R80 ; 2.9 ; Crystal structure of C3 TCR complex with QW9-bound HLA-B*5301 6Q6U ; 1.81 ; Crystal structure of C39S mutant of thioredoxin h1 from Chlamydomonas reinhardtii 1JQO ; 3.0 ; Crystal structure of C4-form phosphoenolpyruvate carboxylase from maize 1CM5 ; 2.3 ; CRYSTAL STRUCTURE OF C418A,C419A MUTANT OF PFL FROM E.COLI 4R4M ; 1.922 ; Crystal structure of C42L cGMP dependent protein kinase I alpha (PKGI alpha) leucine zipper 6VWY ; 1.83 ; Crystal structure of C45G/T50C D. vulgaris carbon monoxide dehydrogenase (anaerobic) 6CBU ; 1.2 ; Crystal structure of C4S3: A computationally designed immunogen to target Carbohydrate-Occluded Epitopes on the HIV envelope 4BWR ; 1.74 ; Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold 7XI6 ; 2.3 ; Crystal structure of C56 from pSSVi 6PDX ; 3.993 ; Crystal structure of C585 Fab in complex with influenza virus hemagglutinin from A/Switzerland/9715293/2013 (H3N2) 4E0S ; 4.21 ; Crystal Structure of C5b-6 4A5W ; 3.5 ; Crystal structure of C5b6 3UBT ; 2.502 ; Crystal Structure of C71S Mutant of DNA Cytosine-5 Methyltransferase M.HaeIII Bound to DNA 2HSH ; 1.35 ; Crystal structure of C73S mutant of human thioredoxin-1 oxidized with H2O2 1OQR ; 1.65 ; Crystal structure of C73S mutant of putidaredoxin, a [2Fe-2S] ferredoxin from Pseudomonas putida, at 1.65A resolution 1OQQ ; 1.47 ; Crystal structure of C73S/C85S mutant of putidaredoxin, a [2Fe-2S] ferredoxin from Pseudomonas putida, at 1.47A resolution 7U0A ; 1.7 ; Crystal Structure of C77G12 Fab in complex with SARS-CoV-2 S fusion peptide 1JS2 ; 1.9 ; Crystal structure of C77S HiPIP: a serine ligated [4Fe-4S] cluster 7RL8 ; 1.95 ; Crystal Structure of C79A Mutant of Class D beta-lactamase from Clostridium difficile 630 5Y38 ; 2.8 ; Crystal structure of C7orf59-HBXIP complex 3FJH ; 1.9 ; Crystal structure of C83A mutant of Human acidic fibroblast growth factor 3FJE ; 2.1 ; Crystal structure of C83S mutant of Human acidic fibroblast growth factor 3FJF ; 1.9 ; Crystal structure of C83T mutant of Human acidic fibroblast growth factor 3FJJ ; 1.9 ; Crystal structure of C83V mutant of Human acidic fibroblast growth factor 7EUL ; 1.45 ; Crystal structure of C86H-H196S mutant of N(omega)-hydroxy-L-arginine hydrolase 7EUQ ; 1.8 ; Crystal structure of C86H-Y124N-G126H-H196S mutant of N(omega)-hydroxy-L-arginine hydrolase 5EW7 ; 1.75 ; Crystal structure of C9ORF72 Antisense CCCCGG repeat RNA associated with Lou Gehrig's disease and frontotemporal dementia, crystallized with Ba2+ 5EW4 ; 1.47 ; Crystal structure of C9ORF72 Antisense CCCCGG repeat RNA associated with Lou Gehrig's disease and frontotemporal dementia, crystallized with Sr2+ 6O8L ; 1.36 ; Crystal Structure of C9S apo and reduced Sulfide-responsive transcriptional repressor (SqrR) from Rhodobacter capsulatus. 6O8M ; 1.46 ; Crystal Structure of C9S apo Sulfide-responsive transcriptional repressor (SqrR) from Rhodobacter capsulated bound to diamide (tetramethylazodicarboxamide). 6O8O ; 2.5 ; Crystal Structure of C9S disulfide state of Sulfide-responsive transcriptional repressor (SqrR) from Rhodobacter capsulatus. 6O8N ; 1.95 ; Crystal Structure of C9S tetrasulfide state of Sulfide-responsive transcriptional repressor (SqrR) from Rhodobacter capsulatus. 3RYD ; 2.37 ; Crystal structure of Ca bound IMPase family protein from Staphylococcus aureus 4N1G ; 1.5 ; Crystal Structure of Ca(2+)- discharged F88Y obelin mutant from Obelia longissima at 1.50 Angstrom resolution 4MRY ; 1.299 ; Crystal Structure of Ca(2+)- discharged Y138F obelin mutant from Obelia longissima at 1.30 Angstrom resolution 4NQG ; 1.301 ; Crystal Structure of Ca(2+)-regulated photoprotein mitrocomin from Jellyfish Mitrocoma cellularia at 1.3 Angstrom resolution 1J35 ; 1.8 ; Crystal Structure of Ca(II)-bound Gla Domain of Factor IX Complexed with Binding Protein 6K22 ; 2.747 ; Crystal structure of Ca-bound human Annexin A5 in low salt condition 6K25 ; 2.401 ; Crystal structure of Ca-unbound human Annexin A5 in low salt condition 2ZWO ; 2.07 ; Crystal structure of Ca2 site mutant of Pro-S324A 4O03 ; 3.38 ; Crystal structure of Ca2+ bound prothrombin deletion mutant residues 146-167 2ZN9 ; 2.4 ; Crystal structure of Ca2+-bound form of des3-20ALG-2 2ZRS ; 3.1 ; Crystal structure of Ca2+-bound form of des3-23ALG-2 3AAJ ; 2.4 ; Crystal structure of Ca2+-bound form of des3-23ALG-2deltaGF122 3SUI ; 1.95 ; Crystal structure of ca2+-calmodulin in complex with a trpv1 c-terminal peptide 8A9S ; 2.1 ; Crystal structure of Ca2+-discharged obelin in complex with coelenteramine-v 2ZND ; 1.7 ; Crystal structure of Ca2+-free form of des3-20ALG-2 4NZQ ; 2.807 ; Crystal structure of Ca2+-free prothrombin deletion mutant residues 146-167 2RGI ; 1.6 ; Crystal structure of Ca2+-free S100A2 at 1.6 A resolution 2HQW ; 1.9 ; Crystal Structure of Ca2+/Calmodulin bound to NMDA Receptor NR1C1 peptide 1L7Z ; 2.3 ; Crystal structure of Ca2+/Calmodulin complexed with myristoylated CAP-23/NAP-22 peptide 3OXQ ; 2.55 ; Crystal Structure of Ca2+/CaM-CaV1.2 pre-IQ/IQ domain complex 3DVM ; 2.6 ; Crystal Structure of Ca2+/CaM-CaV2.1 IQ domain complex 3DVJ ; 2.8 ; Crystal Structure of Ca2+/CaM-CaV2.2 IQ domain (without cloning artifact, HM to TV) complex 3DVE ; 2.35 ; Crystal Structure of Ca2+/CaM-CaV2.2 IQ domain complex 3DVK ; 2.3 ; Crystal Structure of Ca2+/CaM-CaV2.3 IQ domain complex 4GOW ; 2.6 ; Crystal Structure of Ca2+/CaM:Kv7.4 (KCNQ4) B helix complex 2ZWP ; 2.4 ; Crystal structure of Ca3 site mutant of Pro-S324A 8Q40 ; 2.21 ; Crystal structure of cA4 activated Can2 in complex with a cleaved DNA substrate 6WXX ; 3.0 ; crystal structure of cA4-activated Card1 6XL1 ; 1.95 ; crystal structure of cA4-activated Card1(D294N) 8Q42 ; 1.97 ; Crystal structure of cA4-bound Can2 (E341A) in complex with oligo-A DNA 8Q43 ; 2.28 ; Crystal structure of cA4-bound Can2 (E341A) in complex with oligo-C DNA 8Q44 ; 2.3 ; Crystal structure of cA4-bound Can2 (E364R) in complex with oligo-T DNA 8Q3Z ; 3.15 ; Crystal structure of cA4-bound Can2 from Thermoanaerobacter brockii 4JRX ; 2.3 ; Crystal Structure of CA5 TCR-HLA B*3505-LPEP complex 6WXY ; 2.1 ; crystal structure of cA6-bound Card1 6UJ5 ; 1.8 ; Crystal structure of CAB1 Pantothenate Kinase from Saccharomyces cerevisiae 7T1H ; 1.9 ; Crystal structure of CAB1 Pantothenate Kinase from Saccharomyces cerevisiae in complex with compound YU281445 7T1G ; 2.0 ; Crystal structure of CAB1 Pantothenate Kinase from Saccharomyces cerevisiae in complex with compound YU385595 7T1I ; 2.4 ; Crystal structure of CAB1 Pantothenate Kinase from Saccharomyces cerevisiae in complex with compound YU385597 2QA2 ; 2.7 ; Crystal structure of CabE, an aromatic hydroxylase from angucycline biosynthesis, determined to 2.7 A resolution 3O4Y ; 2.2 ; Crystal structure of CAD domain of the Plasmodium Vivax CDPK, PVX_11610 3LND ; 2.82 ; Crystal structure of cadherin-6 EC12 W4A 1ZXK ; 2.0 ; Crystal Structure of Cadherin8 EC1 domain 7QC0 ; 3.11 ; Crystal structure of Cadmium translocating P-type ATPase 1FE0 ; 1.75 ; CRYSTAL STRUCTURE OF CADMIUM-HAH1 6KGE ; 2.0 ; Crystal structure of CaDoc0917(R16D)-CaCohA2 complex at pH 5.5 6KGF ; 2.3 ; Crystal structure of CaDoc0917(R16D)-CaCohA2 complex at pH 8.2 6KGC ; 1.6 ; Crystal structure of CaDoc0917(R49D)-CaCohA2 complex at pH 5.4 6KGD ; 1.65 ; Crystal structure of CaDoc0917(R49D)-CaCohA2 complex at pH 8.0 4Y9L ; 2.27 ; Crystal Structure of Caenorhabditis elegans ACDH-11 4Y9J ; 1.8 ; Crystal Structure of Caenorhabditis elegans ACDH-11 in complex with C11-CoA 6M6S ; 1.6 ; Crystal structure of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) C-terminal domain with 5'-ppp 12-mer dsRNA 6M6R ; 1.89 ; Crystal structure of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) C-terminal domain with 5'-ppp 8-mer ssRNA 6M6Q ; 2.8 ; Crystal structure of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) N-terminal domain 3VV1 ; 1.5 ; Crystal Structure of Caenorhabditis elegans galectin LEC-6 8GU3 ; 3.01 ; Crystal structure of Caenorhabditis elegans METT-10 methyltransferase domain 1D4X ; 1.75 ; Crystal Structure of Caenorhabditis Elegans Mg-ATP Actin Complexed with Human Gelsolin Segment 1 at 1.75 A resolution. 6N2G ; 3.003 ; Crystal structure of Caenorhabditis elegans NAP1 8HAZ ; 2.66 ; Crystal structure of Caenorhabditis elegans NMAD-1 in complex with ligand I 8HB2 ; 3.06 ; Crystal structure of Caenorhabditis elegans NMAD-1 in complex with ligand II 8HBB ; 3.09 ; Crystal structure of Caenorhabditis elegans NMAD-1 in complex with ligand III 8H68 ; 2.2 ; Crystal structure of Caenorhabditis elegans NMAD-1 in complex with NOG and Mg(II) 6QIR ; 1.531 ; Crystal structure of CAG repeats with synthetic CMBL3a compound (model I) 6QIS ; 1.99 ; Crystal structure of CAG repeats with synthetic CMBL3a compound (model II) 6QIT ; 1.501 ; Crystal structure of CAG repeats with synthetic CMBL3b compound 2PT7 ; 2.4 ; Crystal structure of Cag VirB11 (HP0525) and an inhibitory protein (HP1451) 1S2X ; 1.9 ; Crystal structure of Cag-Z from Helicobacter pylori 3CWX ; 2.3 ; Crystal structure of cagd from helicobacter pylori pathogenicity island 2G3V ; 2.3 ; Crystal structure of CagS (HP0534, Cag13) from Helicobacter pylori 6IQT ; 1.922 ; Crystal Structure of CagV, a VirB8 homolog of T4SS from Helicobacter pylori Strain 26695 5WM5 ; 1.797 ; Crystal Structure of CahJ in Complex with 5-Methylsalicyl Adenylate 5WM4 ; 1.781 ; Crystal Structure of CahJ in Complex with 6-Methylsalicyl Adenylate 5WM7 ; 1.777 ; Crystal Structure of CahJ in Complex with AMP 5WM6 ; 2.0 ; Crystal Structure of CahJ in Complex with Benzoyl Adenylate 5WM3 ; 1.679 ; Crystal Structure of CahJ in Complex with Salicyl Adenylate 5WM2 ; 1.548 ; Crystal Structure of CahJ in Complex with Salicylic Acid and AMP 1XVV ; 2.4 ; Crystal Structure of CaiB mutant D169A in complex with carnitinyl-CoA 1XVU ; 2.4 ; Crystal Structure of CaiB mutant D169A in complex with Coenzyme A 1XA3 ; 1.85 ; Crystal structure of CaiB, a type III CoA transferase in carnitine metabolism 1XA4 ; 1.9 ; Crystal structure of CaiB, a type III CoA transferase in carnitine metabolism 4M8J ; 3.294 ; Crystal structure of CaiT R262E bound to gamma-butyrobetaine 5X9A ; 1.85 ; Crystal structure of calaxin with calcium 5YPX ; 2.64 ; Crystal structure of calaxin with magnesium 4K6G ; 1.5 ; Crystal structure of CALB from Candida antarctica 4K6K ; 1.6 ; Crystal structure of CALB mutant D223G from Candida antarctica 4K5Q ; 1.49 ; Crystal structure of CALB mutant DGLM from Candida antarctica 4K6H ; 1.6 ; Crystal structure of CALB mutant L278M from Candida antarctica 5B8I ; 1.85 ; Crystal structure of Calcineurin A and Calcineurin B in complex with FKBP12 and FK506 from Coccidioides immitis RS 3LL8 ; 2.0 ; Crystal Structure of Calcineurin in Complex with AKAP79 Peptide 4F0Z ; 1.7 ; Crystal Structure of Calcineurin in Complex with the Calcineurin-Inhibiting Domain of the African Swine Fever Virus Protein A238L 1M63 ; 2.8 ; Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes 3GVE ; 1.25 ; Crystal structure of calcineurin-like phosphoesterase YfkN from Bacillus subtilis 1Y1A ; 2.3 ; CRYSTAL STRUCTURE OF CALCIUM AND INTEGRIN BINDING PROTEIN 5HLO ; 2.1 ; Crystal structure of calcium and zinc-bound human S100A8 in space group C2221 5HLV ; 2.2 ; Crystal structure of calcium and zinc-bound human S100A8 in space group P212121 2OA0 ; 3.4 ; Crystal structure of Calcium ATPase with bound ADP and cyclopiazonic acid 2O9J ; 2.65 ; Crystal structure of calcium atpase with bound magnesium fluoride and cyclopiazonic acid 1SU4 ; 2.4 ; Crystal structure of calcium ATPase with two bound calcium ions 3RB5 ; 2.35 ; Crystal structure of calcium binding domain CBD12 of CALX1.1 3L19 ; 2.14 ; Crystal structure of calcium binding domain of CpCDPK3, cgd5_820 2NXQ ; 2.4 ; Crystal structure of calcium binding protein 1 from Entamoeba histolytica: a novel arrangement of EF hand motifs 4OCI ; 2.009 ; Crystal Structure of Calcium Binding Protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes 3EVU ; 1.75 ; Crystal structure of Calcium bound dimeric GCAMP2 3EVV ; 2.6 ; Crystal Structure of Calcium bound dimeric GCAMP2 (#2) 1K96 ; 1.44 ; CRYSTAL STRUCTURE OF CALCIUM BOUND HUMAN S100A6 1K9K ; 1.76 ; CRYSTAL STRUCTURE OF CALCIUM BOUND HUMAN S100A6 3EVR ; 2.0 ; Crystal structure of Calcium bound monomeric GCAMP2 1K9P ; 1.9 ; CRYSTAL STRUCTURE OF CALCIUM FREE (OR APO) HUMAN S100A6 1UD4 ; 2.15 ; Crystal structure of calcium free alpha amylase from Bacillus sp. strain KSM-K38 (AmyK38, in calcium containing solution) 6JCO ; 2.88 ; Crystal structure of calcium free human gelsolin amyloid mutant D187N 6JEH ; 2.95 ; Crystal structure of calcium free human gelsolin amyloid mutant D187Y 6JEG ; 2.975 ; Crystal structure of calcium free human gelsolin amyloid mutant G167R 3ULG ; 3.2 ; Crystal structure of Calcium-Binding Protein-1 from Entamoeba histolytica in complex with barium 4EVH ; 2.6 ; Crystal structure of calcium-bound alpha-1 giardin 4MDV ; 2.5 ; Crystal structure of calcium-bound annexin (Sm)1 3BRX ; 2.5 ; Crystal Structure of calcium-bound cotton annexin Gh1 3ESQ ; 1.7 ; Crystal Structure of Calcium-bound D,D-heptose 1.7-bisphosphate phosphatase from E. Coli 3L1U ; 1.95 ; Crystal structure of Calcium-bound GmhB from E. coli. 5A1M ; 1.81 ; Crystal structure of calcium-bound human adseverin domain A3 1KXR ; 2.07 ; Crystal Structure of Calcium-Bound Protease Core of Calpain I 1MDW ; 1.95 ; Crystal Structure of Calcium-Bound Protease Core of Calpain II Reveals the Basis for Intrinsic Inactivation 1LJ7 ; 3.15 ; Crystal structure of calcium-depleted human C-reactive protein from perfectly twinned data 1K8U ; 1.15 ; CRYSTAL STRUCTURE OF CALCIUM-FREE (OR APO) HUMAN S100A6; CYS3MET MUTANT (SELENOMETHIONINE DERIVATIVE) 1UD2 ; 2.13 ; Crystal structure of calcium-free alpha-amylase from Bacillus sp. strain KSM-K38 (AmyK38) 5A1K ; 2.9 ; Crystal structure of calcium-free human adseverin domains A1-A3 3FFN ; 3.0 ; Crystal structure of calcium-free human gelsolin 5HYD ; 2.3 ; Crystal structure of calcium-free human S100Z 1JUO ; 2.2 ; Crystal Structure of Calcium-free Human Sorcin: A Member of the Penta-EF-Hand Protein Family 2PKC ; 1.5 ; CRYSTAL STRUCTURE OF CALCIUM-FREE PROTEINASE K AT 1.5 ANGSTROMS RESOLUTION 1SL7 ; 2.2 ; Crystal structure of calcium-loaded apo-obelin from Obelia longissima 5K8Q ; 1.739 ; Crystal Structure of Calcium-loaded Calmodulin in complex with STRA6 CaMBP2-site peptide. 5DKR ; 1.742 ; Crystal Structure of Calcium-loaded S100B bound to SBi29 4PDZ ; 1.73 ; Crystal Structure of Calcium-loaded S100B bound to SBi4172 4FQO ; 1.65 ; Crystal Structure of Calcium-Loaded S100B Bound to SBi4211 5DKQ ; 1.591 ; Crystal Structure of Calcium-loaded S100B bound to SBi4214 5DKN ; 1.528 ; Crystal Structure of Calcium-loaded S100B bound to SBi4225 4PE0 ; 1.08 ; Crystal Structure of Calcium-loaded S100B bound to SBi4434 5ER4 ; 1.813 ; Crystal Structure of Calcium-loaded S100B bound to SC0025 4PE1 ; 1.576 ; Crystal Structure of Calcium-loaded S100B bound to SC124 4PE4 ; 2.178 ; Crystal Structure of Calcium-loaded S100B bound to SC1475 4PE7 ; 1.652 ; Crystal Structure of Calcium-loaded S100B bound to SC1982 5ER5 ; 1.26 ; Crystal Structure of Calcium-loaded S100B bound to SC1990 1DTL ; 2.15 ; CRYSTAL STRUCTURE OF CALCIUM-SATURATED (3CA2+) CARDIAC TROPONIN C COMPLEXED WITH THE CALCIUM SENSITIZER BEPRIDIL AT 2.15 A RESOLUTION 3B32 ; 1.6 ; Crystal Structure of Calcium-Saturated Calmodulin N-Terminal Domain Fragment, Residues 1-75 3IFK ; 2.03 ; Crystal Structure Of Calcium-Saturated Calmodulin N-terminal Domain Fragment, Residues 1-90 1TCF ; 1.9 ; CRYSTAL STRUCTURE OF CALCIUM-SATURATED RABBIT SKELETAL TROPONIN C 8J8T ; 1.81 ; Crystal structure of calcium-saturated SRCR domain 11 of DMBT1 1HKX ; 2.65 ; Crystal structure of calcium/calmodulin-dependent protein kinase 4G9A ; 2.001 ; Crystal structure of calcium2+-bound wild-type CD23 lectin domain 4G96 ; 2.25 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain 4J6J ; 1.9 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form A) 4J6K ; 2.3 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form B) 4J6L ; 3.15 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form C) 4J6M ; 2.48 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form D) 4J6N ; 2.85 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form E) 4J6P ; 1.9 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form F) 4J6Q ; 2.539 ; Crystal structure of calcium2+-free wild-type CD23 lectin domain (crystal form G) 1PMJ ; 1.55 ; Crystal structure of Caldicellulosiruptor saccharolyticus CBM27-1 1PMH ; 1.06 ; Crystal structure of Caldicellulosiruptor saccharolyticus CBM27-1 in complex with mannohexaose 2QPL ; 2.1 ; Crystal structure of calf spleen purine nucleoside phosphorylase complexed to a novel purine analogue 1LV8 ; 2.3 ; Crystal structure of calf spleen purine nucleoside phosphorylase in a new space group with full trimer in the asymmetric unit 1LVU ; 2.05 ; Crystal structure of calf spleen purine nucleoside phosphorylase in a new space group with full trimer in the asymmetric unit 3OTH ; 2.301 ; Crystal Structure of CalG1, Calicheamicin Glycostyltransferase, TDP and calicheamicin alpha3I bound form 3OTG ; 2.08 ; Crystal Structure of CalG1, Calicheamicin Glycostyltransferase, TDP bound form 3RSC ; 2.19 ; Crystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP and calicheamicin T0 bound form 3IAA ; 2.505 ; Crystal Structure of CalG2, Calicheamicin Glycosyltransferase, TDP bound form 3D0Q ; 2.79 ; Crystal structure of calG3 from Micromonospora echinospora determined in space group I222 3D0R ; 1.9 ; Crystal structure of calG3 from Micromonospora echinospora determined in space group P2(1) 3OTI ; 1.597 ; Crystal Structure of CalG3, Calicheamicin Glycostyltransferase, TDP and calicheamicin T0 bound form 3IA7 ; 1.91 ; Crystal Structure of CalG4, the Calicheamicin Glycosyltransferase 8DJ8 ; 2.0 ; Crystal Structure of Calgreen 1 protein 4GF5 ; 2.2 ; Crystal Structure of Calicheamicin Methyltransferase, CalS11 4EHQ ; 1.9005 ; Crystal Structure of Calmodulin Binding Domain of Orai1 in Complex with Ca2+/Calmodulin Displays a Unique Binding Mode 3EWT ; 2.4 ; Crystal Structure of calmodulin complexed with a peptide 3EWV ; 2.6 ; Crystal Structure of calmodulin complexed with a peptide 2BCX ; 2.0 ; Crystal structure of calmodulin in complex with a ryanodine receptor peptide 4AQR ; 1.95 ; Crystal structure of calmodulin in complex with the regulatory domain of a plasma-membrane Ca2+-ATPase 5X2E ; 1.299 ; Crystal structure of Calmodulin like domain of CsTAL3 (1-81aa) 3LST ; 2.4 ; Crystal Structure of CalO1, Methyltransferase in Calicheamicin Biosynthesis, SAH bound form 3BUJ ; 2.47 ; Crystal Structure of CalO2 4OKH ; 2.45 ; Crystal structure of calpain-3 penta-EF-hand domain 7QDA ; 2.1 ; Crystal structure of CalpL 3TOS ; 1.55 ; Crystal Structure of CalS11, Calicheamicin Methyltransferase 4XRR ; 2.55 ; Crystal structure of cals8 from micromonospora echinospora (P294S mutant) 4XR9 ; 1.95 ; Crystal structure of CalS8 from Micromonospora echinospora cocrystallized with NAD and TDP-glucose 5XFI ; 1.653 ; Crystal structure of Calsepa lectin in complex with biantennary N-glycan 5AV7 ; 1.85 ; Crystal structure of Calsepa lectin in complex with bisected glycan 1A8Y ; 2.4 ; CRYSTAL STRUCTURE OF CALSEQUESTRIN FROM RABBIT SKELETAL MUSCLE SARCOPLASMIC RETICULUM AT 2.4 A RESOLUTION 6VAN ; 1.33 ; Crystal structure of caltubin from the great pond snail 4FPW ; 2.5 ; Crystal Structure of CalU16 from Micromonospora echinospora. Northeast Structural Genomics Consortium Target MiR12. 3E9U ; 2.5 ; Crystal structure of Calx CBD2 domain 3EAD ; 2.25 ; Crystal structure of CALX-CBD1 1OUW ; 1.37 ; Crystal structure of Calystegia sepium agglutinin 7PSZ ; 1.898 ; Crystal structure of CaM in complex with CDZ (form 1) 7PU9 ; 2.279 ; Crystal structure of CaM in complex with CDZ (form 2) 6HCS ; 2.0 ; Crystal structure of CaM-peptide complex containing AzF at position 108 3QJ1 ; 3.2 ; Crystal structure of camel peptidoglycan recognition protein, PGRP-S with a trapped diethylene glycol in the ligand diffusion channel at 3.2 A resolution 2R90 ; 2.8 ; Crystal structure of cameline peptidoglycan recognition protein at 2.8A resolution 2Z9N ; 3.2 ; Crystal structure of cameline peptidoglycan recognition protein at 3.2 A resolution 7B57 ; 1.95 ; Crystal structure of CaMKII-actinin complex bound to ADP 7B56 ; 1.45 ; Crystal structure of CaMKII-actinin complex bound to AMPPNP 7B55 ; 1.6 ; Crystal structure of CaMKII-actinin complex bound to MES 3PNA ; 1.503 ; Crystal Structure of cAMP bound (91-244)RIa Subunit of cAMP-dependent Protein Kinase 3OCP ; 2.49 ; Crystal structure of cAMP bound cGMP-dependent protein kinase(92-227) 3MZH ; 2.9 ; Crystal structure of cAMP receptor protein from mycobacterium tuberculosis in complex with cAMP and its DNA binding element 6YQK ; 1.67 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with a methylisoquinoline Fasudil-derivative (soaked) 6YNA ; 1.47 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with Fasudil (M77, soaked) 6YQI ; 1.42 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with long-chain Fasudil-derivative N-[2-(propylamino)ethyl]isoquinoline-5-sulfonamide (soaked) 6YQJ ; 1.58 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with open-chain Fasudil-derivative 2-[isoquinolin-5-ylsulfonyl(propyl)amino]ethylazanium (soaked) 6YNB ; 1.72 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with short-chain Fasudil-derivative N-(2-aminoethyl)isoquinoline-5-sulfonamide (soaked) 6YNC ; 1.4 ; Crystal structure of cAMP-dependent Protein Kinase (PKA) in complex with the methylated Fasudil-derived fragment N-methylisoquinoline-5-sulfonamide (soaked) 6SPU ; 1.39 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 3-aminobenzoic acid 6SPS ; 1.65 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 4-(trifluoromethyl)benzamide 6SPM ; 1.37 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 4-(trifluoromethyl)benzoic acid 6SOX ; 1.38 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 4-carbamoylbenzoic acid 6Z08 ; 1.49 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 4-Nitrophenol 6SPY ; 1.6 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with 6-(morpholin-4-yl)pyridine-3-carboxamide 6SQ1 ; 1.49 ; Crystal structure of cAMP-dependent Protein Kinase A (CHO PKA) in complex with Aminofasudil 6SNX ; 1.4 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with benzamide 6SNN ; 1.817 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with benzoic acid 6ZN0 ; 1.59 ; Crystal structure of cAMP-dependent protein kinase A (CHO PKA) in complex with isonicotinamidine 4WIH ; 1.139 ; Crystal structure of cAMP-dependent Protein Kinase A from Cricetulus griseus 3IM4 ; 2.285 ; Crystal structure of cAMP-dependent Protein Kinase A Regulatory Subunit I alpha in complex with dual-specific A-Kinase Anchoring Protein 2 6C0U ; 2.65 ; Crystal structure of cAMP-dependent protein kinase Calpha subunit bound with N46 3FJQ ; 1.6 ; Crystal structure of cAMP-dependent protein kinase catalytic subunit alpha in complex with peptide inhibitor PKI alpha (6-25) 1REJ ; 2.2 ; Crystal structure of cAMP-dependent protein kinase complexed with balanol analog 1 1RE8 ; 2.1 ; Crystal structure of cAMP-dependent protein kinase complexed with balanol analog 2 1REK ; 2.3 ; Crystal structure of cAMP-dependent protein kinase complexed with balanol analog 8 1RL3 ; 2.7 ; Crystal structure of cAMP-free R1a subunit of PKA 2ZWU ; 1.3 ; Crystal Structure of Camphor Soaked Ferric Cytochrome P450cam 3LXI ; 2.2 ; Crystal Structure of Camphor-Bound CYP101D1 3NV6 ; 2.2 ; Crystal Structure of Camphor-Bound CYP101D2 3L63 ; 1.5 ; Crystal structure of camphor-bound P450cam at low [K+] 2ZUH ; 1.55 ; Crystal Structure of Camphor-soaked Ferric Cytochrome P450cam Mutant (D297A) 2ZUI ; 1.5 ; Crystal Structure of Camphor-soaked Ferric Cytochrome P450cam Mutant (D297N) 2ZUJ ; 1.6 ; Crystal Structure of Camphor-soaked Ferric Cytochrome P450cam Mutant(D297L) 6AYM ; 1.25 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) 6AYO ; 1.67 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with 5'-deoxy-5'-Propyl-DADMe-Immucillin-A 6AYR ; 1.95 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with butylthio-DADMe-Immucillin-A 6AYS ; 1.7 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with hexylthio-DADMe-Immucillin-A 6AYQ ; 1.42 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with methylthio-DADMe-Immucillin-A 6AYT ; 1.85 ; Crystal structure of Campylobacter jejuni 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with pyrazinylthio-DADMe-Immucillin-A 5X2H ; 2.3 ; Crystal structure of Campylobacter jejuni Cas9 in complex with sgRNA and target DNA (AGAAACA PAM) 5X2G ; 2.4 ; Crystal structure of Campylobacter jejuni Cas9 in complex with sgRNA and target DNA (AGAAACC PAM) 3SWJ ; 2.409 ; Crystal structure of Campylobacter jejuni ChuZ 4GIO ; 1.9 ; Crystal structure of Campylobacter jejuni cj0090 7LAM ; 2.31 ; Crystal structure of Campylobacter jejuni Cj0843c lytic transglycosylase in complex with N,N',N''-triacetylchitotriose 7LAQ ; 2.58 ; Crystal structure of Campylobacter jejuni Cj0843c lytic transglycosylase in complex with N,N'-diacetylchitobiose 7PQ7 ; 1.55 ; Crystal structure of Campylobacter jejuni DsbA1 7PQ8 ; 1.329 ; Crystal structure of Campylobacter jejuni DsbA1 7PQF ; 1.82 ; Crystal structure of Campylobacter jejuni DsbA2 3D6X ; 2.59 ; Crystal structure of Campylobacter jejuni FabZ 4ETS ; 2.1 ; Crystal structure of Campylobacter jejuni ferric uptake regulator 7RDU ; 2.502 ; Crystal structure of Campylobacter jejuni keto said reductoisomerase in complex with magnesium and oxidixized and reduced NADPH 6DK4 ; 2.71 ; Crystal structure of Campylobacter jejuni peroxide stress regulator 5W17 ; 2.58 ; Crystal structure of Campylobacter jejuni YCEI protein that crystallizes with large solvent channels for nanotechnology applications 2FGS ; 2.9 ; Crystal structure of Campylobacter jejuni YCEI protein, structural genomics 8Q41 ; 2.38 ; Crystal structure of Can2 (E341A) bound to cA4 and TTTAAA ssDNA 4K20 ; 3.4 ; Crystal structure of Canavalia boliviana lectin 4K1Y ; 2.5 ; Crystal structure of Canavalia boliviana lectin in complex with Man1-3Man-OMe 4K1Z ; 2.3 ; Crystal structure of Canavalia boliviana lectin in complex with Man1-4Man-OMe 4K21 ; 1.6 ; Crystal structure of Canavalia boliviana lectin in complex with Xman 4P14 ; 2.0 ; Crystal structure of Canavalia brasiliensis (ConBr) complexed with adenine 4PCR ; 2.15 ; Crystal structure of Canavalia brasiliensis seed lectin (ConBr) complexed with Gamma-Aminobutyric Acid (GABA) 4H55 ; 2.15 ; Crystal structure of Canavalia brasiliensis seed lectin (ConBr) in complex with beta-d-ribofuranose 4L8Q ; 2.3 ; Crystal structure of Canavalia grandiflora seed lectin complexed with X-Man. 4TYS ; 3.25 ; Crystal structure of Canavalia maritima lectin (ConM) complexed with a dinucleotide 4TZD ; 3.2 ; Crystal structure of Canavalia maritima lectin (ConM) complexed with interleukin - 1 beta primer 4I30 ; 1.89 ; Crystal structure of Canavalia maritima seeds lectin (ConM) co-crystalized with gamma-aminobutyric acid (GABA) and soaked with adenine 5F5Q ; 2.52 ; Crystal structure of Canavalia virosa lectin in complex with alpha-methyl-mannoside 1D6R ; 2.3 ; CRYSTAL STRUCTURE OF CANCER CHEMOPREVENTIVE BOWMAN-BIRK INHIBITOR IN TERNARY COMPLEX WITH BOVINE TRYPSIN AT 2.3 A RESOLUTION. STRUCTURAL BASIS OF JANUS-FACED SERINE PROTEASE INHIBITOR SPECIFICITY 6XLX ; 1.7 ; Crystal structure of cancer-associated G301D mutant of U2AF65 bound to AdML splice site 8JYQ ; 1.75 ; Crystal structure of cancer-specific anti-HER2 antibody H2Mab-214 in complex with epitope peptide 6DEK ; 2.971 ; Crystal structure of Candida albicans acetohydroxyacid synthase catalytic subunit 6DEM ; 2.038 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide bensulfuron methyl 6DEL ; 2.119 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide chlorimuron ethyl 6DEN ; 1.806 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide iodomuron ethyl 6DEO ; 1.971 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide iodomuron methyl 6DER ; 2.126 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide metosulam 6DEQ ; 2.127 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide penoxsulam 6DES ; 2.402 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide propoxycarbazone 6DEP ; 2.149 ; Crystal structure of Candida albicans acetohydroxyacid synthase in complex with the herbicide sulfometuron methyl 6TZ6 ; 2.55 ; Crystal Structure of Candida Albicans Calcineurin A, Calcineurin B, FKBP12 and FK506 (Tacrolimus) 7YVA ; 2.93 ; Crystal structure of Candida albicans Fructose-1,6-bisphosphate aldolase complexed with lipoic acid 5AEZ ; 1.47 ; Crystal structure of Candida albicans Mep2 5AF1 ; 1.639 ; Crystal structure of Candida albicans Mep2 1IYK ; 2.3 ; Crystal structure of candida albicans N-myristoyltransferase with myristoyl-COA and peptidic inhibitor 1IYL ; 3.2 ; Crystal Structure of Candida albicans N-myristoyltransferase with Non-peptidic Inhibitor 5NW7 ; 1.85 ; Crystal structure of candida albicans phosphomannose isomerase in complex with inhibitor 4YDE ; 2.701 ; CRYSTAL STRUCTURE OF CANDIDA ALBICANS PROTEIN FARNESYLTRANSFERASE BINARY COMPLEX WITH THE ISOPRENOID FARNESYLDIPHOSPHATE 4YDO ; 3.0 ; CRYSTAL STRUCTURE OF CANDIDA ALBICANS PROTEIN FARNESYLTRANSFERASE IN APO FORM 5BTH ; 2.2 ; Crystal structure of Candida albicans Rai1 5BUD ; 1.99 ; Crystal structure of Candida albicans Rai1 in complex with pU5-Mn2+ 6J1R ; 1.601 ; Crystal structure of Candida Antarctica Lipase B mutant - RR 6J1Q ; 1.6 ; Crystal structure of Candida Antarctica Lipase B mutant - RS 6J1P ; 1.759 ; Crystal structure of Candida Antarctica Lipase B mutant - SR 6J1S ; 1.83 ; Crystal structure of Candida Antarctica Lipase B mutant - SS 6J1T ; 1.783 ; Crystal structure of Candida Antarctica Lipase B mutant SR with product analogue 5GV5 ; 2.89 ; Crystal structure of Candida antarctica Lipase B with active Ser105 modified with a phosphonate inhibitor 3W9B ; 2.9 ; Crystal structure of Candida antarctica lipase B with anion-tag 7ZZX ; 2.4 ; Crystal structure of Candida auris DHFR in apo form 8A0N ; 1.4 ; Crystal structure of Candida auris dihydrofolate reductase complexed with NADPH 8CRH ; 1.3 ; Crystal structure of Candida auris dihydrofolate reductase complexed with NADPH and cycloguanil 8A0Z ; 1.7 ; Crystal structure of Candida auris dihydrofolate reductase complexed with NADPH and pyrimethamine 5DNA ; 1.75 ; Crystal structure of Candida boidinii formate dehydrogenase 5DN9 ; 1.5 ; Crystal structure of Candida boidinii formate dehydrogenase complexed with NAD+ and azide 6D4B ; 1.45 ; Crystal structure of Candida boidinii formate dehydrogenase V123A mutant complexed with NAD+ and azide 6D4C ; 1.45 ; Crystal structure of Candida boidinii formate dehydrogenase V123G mutant complexed with NAD+ and azide 3FWK ; 1.2 ; Crystal Structure of Candida glabrata FMN Adenylyltransferase 4KKV ; 1.74 ; Crystal structure of candida glabrata FMN adenylyltransferase D181A Mutant 3G59 ; 1.87 ; Crystal Structure of Candida glabrata FMN Adenylyltransferase in complex with ATP 3G6K ; 1.35 ; Crystal Structure of Candida glabrata FMN Adenylyltransferase in complex with FAD and Inorganic Pyrophosphate 3G5A ; 1.95 ; Crystal Structure of Candida glabrata FMN Adenylyltransferase in complex with FMN and ATP analog AMPCPP 7MJF ; 2.2 ; Crystal structure of Candidatus Liberibacter solanacearum dihydrodipicolinate synthase with pyruvate and succinic semi-aldehyde bound in active site 6BXO ; 1.655 ; Crystal structure of Candidatus Methanoperedens nitroreducens Dph2 with 4Fe-4S cluster and SAH 6BXN ; 2.079 ; Crystal structure of Candidatus Methanoperedens nitroreducens Dph2 with 4Fe-4S cluster and SAM 6BXM ; 2.252 ; Crystal structure of Candidatus Methanoperedens nitroreducens Dph2 with 4Fe-4S cluster and SAM/cleaved SAM 1BGC ; 1.7 ; CRYSTAL STRUCTURE OF CANINE AND BOVINE GRANULOCYTE-COLONY STIMULATING FACTOR (G-CSF) 1BGD ; 2.3 ; CRYSTAL STRUCTURE OF CANINE AND BOVINE GRANULOCYTE-COLONY STIMULATING FACTOR (G-CSF) 1BGE ; 2.2 ; CRYSTAL STRUCTURE OF CANINE AND BOVINE GRANULOCYTE-COLONY STIMULATING FACTOR (G-CSF) 7XJW ; 2.75 ; Crystal structure of canine coronavirus main protease in complex with GC376 8IAY ; 3.027 ; Crystal structure of canine distemper virus hemagglutinin 2Z2E ; 2.01 ; Crystal Structure of Canine Milk Lysozyme Stabilized against Non-enzymatic Deamidation 6E07 ; 2.6 ; Crystal structure of Canton G6PD in complex with structural NADP 4YRD ; 2.44 ; Crystal structure of CapF with inhibitor 3-isopropenyl-tropolone 7F0A ; 1.95 ; Crystal structure of capreomycin phosphotransferase 7F0B ; 2.14 ; Crystal structure of capreomycin phosphotransferase in complex with ATP 7F0C ; 2.07 ; Crystal structure of capreomycin phosphotransferase in complex with CMN IIA 7F0F ; 2.1 ; Crystal structure of capreomycin phosphotransferase in complex with CMN IIB 7EQS ; 2.1 ; Crystal structure of capsid P domain of norovirus GI.3 DSV 7EQT ; 2.05 ; Crystal structure of capsid P domain of norovirus GI.3 DSV complexed with Gala1-3Galb1-4Glc 7EQW ; 2.15 ; Crystal structure of capsid P domain of norovirus GI.3 DSV complexed with NA2 N-glycan 7ER0 ; 2.183 ; Crystal structure of capsid P domain of norovirus GI.3 VA115 7ER1 ; 2.2 ; Crystal structure of capsid P domain of norovirus GI.3 VA115 complexed with Gala1-3Galb1-4Glc 4AGK ; 1.81 ; Crystal structure of capsid protein (110-267) from Aura virus 2ZKL ; 2.61 ; Crystal Structure of capsular polysaccharide assembling protein CapF from staphylococcus aureus 3ST7 ; 2.45 ; Crystal Structure of capsular polysaccharide assembling protein CapF from staphylococcus aureus 3VHR ; 2.7 ; Crystal Structure of capsular polysaccharide assembling protein CapF from Staphylococcus aureus in space group C2221 7YA2 ; 3.2 ; Crystal structure of capsular polysaccharide synthesis enzyme CapG from Staphylococcus aureus 3VVC ; 2.2 ; Crystal Structure of Capsular Polysaccharide Synthesizing Enzyme CapE , K126E, in apo form 3VVB ; 2.8 ; Crystal Structure of Capsular Polysaccharide Synthesizing Enzyme CapE from Staphylococcus aureus in apo form 4G5H ; 1.88 ; Crystal structure of capsular polysaccharide synthesizing enzyme CapE from Staphylococcus aureus in complex with by-product 3W1V ; 2.1 ; Crystal Structure of Capsular Polysaccharide Synthesizing Enzyme CapE from Staphylococcus aureus in complex with inihibitor 3LK3 ; 2.68 ; Crystal structure of CapZ bound to the CPI and CSI uncapping motifs from CARMIL 3LK2 ; 2.2 ; Crystal structure of CapZ bound to the uncapping motif from CARMIL 3LK4 ; 1.99 ; Crystal structure of CapZ bound to the uncapping motif from CD2AP 1XVP ; 2.6 ; crystal structure of CAR/RXR heterodimer bound with SRC1 peptide, fatty acid and CITCO 1XV9 ; 2.7 ; crystal structure of CAR/RXR heterodimer bound with SRC1 peptide, fatty acid, and 5b-pregnane-3,20-dione. 1CS0 ; 2.0 ; Crystal structure of carbamoyl phosphate synthetase complexed at CYS269 in the small subunit with the tetrahedral mimic l-glutamate gamma-semialdehyde 1C30 ; 2.0 ; CRYSTAL STRUCTURE OF CARBAMOYL PHOSPHATE SYNTHETASE: SMALL SUBUNIT MUTATION C269S 2PN1 ; 2.0 ; Crystal structure of carbamoylphosphate synthase large subunit (split gene in MJ) (ZP_00538348.1) from Exiguobacterium sp. 255-15 at 2.00 A resolution 4OJ8 ; 2.1 ; Crystal structure of carbapenem synthase in complex with (3S,5S)-carbapenam 7TOJ ; 1.3 ; Crystal structure of carbohydrate esterase CspAcXE, apoenzyme 7XMJ ; 2.41067 ; Crystal structure of carbohydrate esterase family 7 acetyl xylan esterase 7TOG ; 1.35 ; Crystal structure of carbohydrate esterase PbeAcXE, apoenzyme 7TOI ; 1.13 ; Crystal structure of carbohydrate esterase PbeAcXE, in complex with acetate 7TOH ; 1.26 ; Crystal structure of carbohydrate esterase PbeAcXE, in complex with MeGlcpA-Xylp 3RJ8 ; 2.4 ; Crystal structure of carbohydrate oxidase from Microdochium nivale 3RJA ; 2.1 ; Crystal structure of carbohydrate oxidase from Microdochium nivale in complex with substrate analogue 3WBP ; 1.8 ; Crystal structure of carbohydrate recognition domain of Blood Dendritic Cell Antigen-2 (BDCA2) lectin (crystal form-1) 3WBQ ; 2.3 ; Crystal structure of carbohydrate recognition domain of Blood Dendritic Cell Antigen-2 (BDCA2) lectin (crystal form-2) 3WBR ; 2.2 ; Crystal structure of carbohydrate recognition domain of Blood Dendritic Cell Antigen-2 (BDCA2) lectin (crystal form-3) 4RS3 ; 1.4 ; Crystal structure of carbohydrate transporter A0QYB3 from Mycobacterium smegmatis str. MC2 155, target EFI-510969, in complex with xylitol 4RU1 ; 1.5 ; Crystal structure of carbohydrate transporter ACEI_1806 from Acidothermus cellulolyticus 11B, TARGET EFI-510965, in complex with myo-inositol 4RSM ; 1.6 ; Crystal structure of carbohydrate transporter msmeg_3599 from mycobacterium smegmatis str. mc2 155, target efi-510970, in complex with d-threitol 4RXT ; 1.35 ; Crystal structure of carbohydrate transporter solute binding protein Arad_9553 from Agrobacterium Radiobacter, Target EFI-511541, in complex with D-arabinose 4RXU ; 1.4 ; Crystal structure of carbohydrate transporter solute binding protein CAUR_1924 from Chloroflexus aurantiacus, Target EFI-511158, in complex with D-glucose 4RY9 ; 1.4 ; Crystal structure of carbohydrate transporter solute binding protein VEIS_2079 from Verminephrobacter eiseniae EF01-2, TARGET EFI-511009, a complex with D-TALITOL 4C8X ; 1.998 ; Crystal structure of carbohydrate-binding module CBM3b mutant (Y56S) from the cellulosomal cellobiohydrolase 9A from Clostridium thermocellum 3ACF ; 1.6 ; Crystal Structure of Carbohydrate-Binding Module Family 28 from Clostridium josui Cel5A in a ligand-free form 3ACG ; 1.5 ; Crystal Structure of Carbohydrate-Binding Module Family 28 from Clostridium josui Cel5A in complex with cellobiose 3ACI ; 1.6 ; Crystal Structure of Carbohydrate-Binding Module Family 28 from Clostridium josui Cel5A in complex with cellopentaose 3ACH ; 1.4 ; Crystal Structure of Carbohydrate-Binding Module Family 28 from Clostridium josui Cel5A in complex with cellotetraose 6A6C ; 2.05 ; Crystal structure of carbohydrate-binding module family 56 beta-1,3-glucan binding domain 4O35 ; 1.8 ; Crystal structure of carbomonoxy murine neuroglobin mutant F106W 4O2G ; 2.7 ; Crystal structure of carbomonoxy murine neuroglobin mutant V140W 1JQK ; 2.8 ; Crystal structure of carbon monoxide dehydrogenase from Rhodospirillum rubrum 7UD8 ; 1.8 ; Crystal structure of carbon monoxy Hemoglobin in complex with 5HMF at 1.8 Angstrom 5V12 ; 2.451 ; Crystal structure of Carbon Sulfoxide lyase, Egt2 Y134F with sulfenic acid intermediate 6MG6 ; 2.1 ; Crystal structure of carbon-nitrogen hydrolase from Helicobacter pylori G27 7QUG ; 2.6 ; Crystal structure of carbon-sulfur lyase FnaPatB1 from Fusobacterium nucleatum subspecies animalis in complex with allyl-cysteine 3I16 ; 2.0 ; Crystal structure of carbon-sulfur lyase involved in aluminum resistance (YP_878183.1) from Clostridium novyi NT at 2.00 A resolution 3GWP ; 2.9 ; Crystal structure of carbon-sulfur lyase involved in aluminum resistance (YP_878183.1) from CLOSTRIDIUM NOVYI NT at 2.90 A resolution 8BZZ ; 1.07 ; Crystal structure of carbonic anhydrase 2 4-(dimethylamino)-N-nitrobenzenesulfonamide 6SYB ; 1.6 ; Crystal structure of carbonic anhydrase 2 with (3aR,4S,9bS)-4-(2-chloro-4-hydroxyphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide 6SX9 ; 1.43 ; Crystal structure of carbonic anhydrase 2 with 4-(2-chlorophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide 8DPC ; 2.41 ; Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae 7O48 ; 2.0 ; Crystal structure of carbonic anhydrase from schistosoma mansoni with 4-(2-(3-(4-iodophenyl)thioureido)ethyl)benzenesulfonamide 3LAS ; 1.4 ; Crystal structure of carbonic anhydrase from streptococcus mutans to 1.4 angstrom resolution 3NJ9 ; 2.0 ; Crystal structure of carbonic anhydrase II in complex with a Nir inhibitor 3EYX ; 2.04 ; Crystal structure of Carbonic Anhydrase Nce103 from Saccharomyces cerevisiae 1YM3 ; 1.75 ; Crystal Structure of carbonic anhydrase RV3588c from Mycobacterium tuberculosis 7PUV ; 1.4 ; Crystal structure of carbonic anhydrase XII with methyl 2-(benzenesulfonyl)-4-chloro-5-sulfamoylbenzoate 7PUW ; 1.42 ; Crystal structure of carbonic anhydrase XII with methyl 2-chloro-4-[(2-phenylethyl)sulfanyl]-5-sulfamoylbenzoate 7PUU ; 1.51 ; Crystal structure of carbonic anhydrase XII with methyl 4-chloro-2-cyclohexylsulfanyl-5-sulfamoylbenzoate 1T1N ; 2.2 ; CRYSTAL STRUCTURE OF CARBONMONOXY HEMOGLOBIN 2Z6N ; 1.86 ; Crystal Structure of Carbonmonoxy Hemoglobin D from the Aldabra Giant Tortoise, Geochelone gigantea 5U3I ; 1.95 ; CRYSTAL STRUCTURE OF CARBONMONOXY HEMOGLOBIN S (LIGANDED SICKLE CELL HEMOGLOBIN) COMPLEXED WITH GBT compound 31 5UFJ ; 2.05 ; Crystal Structure of Carbonmonoxy Hemoglobin S (Liganded Sickle Cell Hemoglobin) Complexed with GBT Compound 6 7UVB ; 2.05 ; CRYSTAL STRUCTURE OF CARBONMONOXY HEMOGLOBIN S (LIGANDED SICKLE CELL HEMOGLOBIN) COMPLEXED WITH GBT021601 5E83 ; 1.8 ; CRYSTAL STRUCTURE OF CARBONMONOXY HEMOGLOBIN S (LIGANDED SICKLE CELL HEMOGLOBIN) COMPLEXED WITH GBT440, CO-CRYSTALLIZATION EXPERIMENT 2D5X ; 1.45 ; Crystal structure of carbonmonoxy horse hemoglobin complexed with L35 3AG0 ; 2.6 ; Crystal structure of carbonmonoxy human cytoglobin 5E6E ; 1.76 ; Crystal Structure of Carbonmonoxy Sickle Hemoglobin in R-State Conformation 8JQJ ; 1.4 ; Crystal structure of carbonyl reductase SSCR mutant 1 from Sporobolomyces Salmonicolor 3K21 ; 1.15 ; Crystal Structure of carboxy-terminus of PFC0420w. 3K5H ; 2.1 ; Crystal structure of carboxyaminoimidazole ribonucleotide synthase from asperigillus clavatus complexed with ATP 6BWU ; 2.0 ; Crystal structure of carboxyhemoglobin in complex with beta Cys93 modifying agent, TD3 5MIF ; 2.141 ; Crystal structure of carboxyl esterase 2 (TmelEST2) from mycorrhizal fungus Tuber melanosporum 5MII ; 2.372 ; Crystal structure of carboxyl esterase 2 (TmelEST2) from mycorrhizal fungus Tuber melanosporum 7RQH ; 3.2 ; Crystal Structure of carboxyl-terminal processing protease A mutant S302A, CtpA_S302A, of Pseudomonas aeruginosa 7RPQ ; 3.3 ; Crystal Structure of carboxyl-terminal processing protease A, CtpA, of Pseudomonas aeruginosa 3B5E ; 1.75 ; Crystal structure of carboxylesterase (NP_108484.1) from Mesorhizobium loti at 1.75 A resolution 4NMW ; 1.496 ; Crystal Structure of Carboxylesterase BioH from Salmonella enterica 4CCY ; 2.04 ; Crystal structure of carboxylesterase CesB (YbfK) from Bacillus subtilis 7W1K ; 1.39 ; Crystal structure of carboxylesterase from Thermobifida fusca 7W1J ; 1.92 ; Crystal structure of carboxylesterase from Thermobifida fusca with J1K 4C89 ; 2.05 ; Crystal structure of carboxylesterase LpEst1 from Lactobacillus plantarum: high resolution model 7W1L ; 2.44 ; Crystal structure of carboxylesterase mutant from Thermobifida fusca with C8X 7W1I ; 1.67 ; Crystal structure of carboxylesterase mutant from Thermobifida fusca with C8X and C9C 4F21 ; 2.5 ; Crystal structure of carboxylesterase/phospholipase family protein from Francisella tularensis 1VKE ; 1.56 ; Crystal structure of carboxymuconolactone decarboxylase family protein possibly involved in antioxidative response (TM1620) from Thermotoga maritima at 1.56 A resolution 3D7I ; 1.75 ; Crystal structure of carboxymuconolactone decarboxylase family protein possibly involved in oxygen detoxification (1591455) from METHANOCOCCUS JANNASCHII at 1.75 A resolution 3LVY ; 2.1 ; Crystal Structure of Carboxymuconolactone Decarboxylase Family Protein SMU.961 from Streptococcus mutans 3N29 ; 1.9 ; Crystal structure of carboxynorspermidine decarboxylase complexed with Norspermidine from Campylobacter jejuni 7EQZ ; 2.2 ; Crystal structure of Carboxypeptidase B complexed with Potato Carboxypeptidase Inhibitor 5WVU ; 2.6 ; Crystal structure of carboxypeptidase from Thermus thermophilus 1WPX ; 2.7 ; Crystal structure of carboxypeptidase Y inhibitor complexed with the cognate proteinase 3H8Y ; 2.51 ; Crystal structure of carboxysome small shell protein CsoS1C from Halothiobacillus neapolitanus 8H50 ; 2.9 ; Crystal structure of carboxyspermidine dehydrogenase from Helicobacter pylori in space group C2221 8H4Z ; 2.2 ; Crystal structure of carboxyspermidine dehydrogenase from Helicobacter pylori in space group P21212 4IQD ; 2.0 ; Crystal Structure of Carboxyvinyl-Carboxyphosphonate Phosphorylmutase from Bacillus anthracis 4IQE ; 2.501 ; Crystal Structure of Carboxyvinyl-Carboxyphosphonate Phosphorylmutase from Bacillus anthracis str. Ames Ancestor 3PIS ; 2.0 ; Crystal Structure of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 6J52 ; 2.504 ; Crystal structure of CARD-only protein in frog virus 3 3N71 ; 2.3 ; Crystal structure of cardiac specific histone methyltransferase SmyD1 3MA7 ; 2.29 ; Crystal structure of Cardiolipin bound to mouse CD1D 5M76 ; 2.5 ; Crystal structure of cardiotoxic Bence-Jones light chain dimer H10 5M6A ; 1.64 ; Crystal structure of cardiotoxic Bence-Jones light chain dimer H9 1UG4 ; 1.6 ; Crystal Structure of Cardiotoxin VI from Taiwan Cobra (Naja atra) Venom 5AOH ; 1.8 ; Crystal Structure of CarF 4O7J ; 1.8 ; Crystal structure of CarG 5DXJ ; 1.95 ; Crystal structure of CARM1 and sinefungin 6S7A ; 1.86 ; Crystal structure of CARM1 in complex with inhibitor AA175 6S79 ; 2.1 ; Crystal structure of CARM1 in complex with inhibitor AA183 6S7C ; 2.3 ; Crystal structure of CARM1 in complex with inhibitor UM079 6S7B ; 2.659 ; Crystal structure of CARM1 in complex with inhibitor UM249 6S70 ; 2.3 ; Crystal structure of CARM1 in complex with inhibitor UM251 6S74 ; 2.1 ; Crystal structure of CARM1 in complex with inhibitor UM305 6S71 ; 2.062 ; Crystal structure of CARM1 in complex with inhibitor WH5C 6S77 ; 2.12 ; Crystal structure of CARM1 N265Y mutant in complex with inhibitor AA183 6ARV ; 2.0 ; Crystal structure of CARM1 with Compound 2 and SAH 6ARJ ; 1.92 ; Crystal structure of CARM1 with EPZ022302 and SAH 5DX0 ; 2.05 ; Crystal structure of CARM1, sinefungin, and H3 peptide (R17) 5DWQ ; 2.36 ; Crystal structure of CARM1, sinefungin, and methylated H3 peptide (R17) 5DX8 ; 1.94 ; Crystal structure of CARM1, sinefungin, and methylated PABP1 peptide (R455) 5DXA ; 2.07 ; Crystal structure of CARM1, sinefungin, and methylated PABP1 peptide (R460) 5DX1 ; 1.93 ; Crystal structure of CARM1, sinefungin, and PABP1 peptide (R455) 4I16 ; 1.751 ; Crystal structure of CARMA1 CARD 1TW2 ; 2.5 ; Crystal structure of Carminomycin-4-O-methyltransferase (DnrK) in complex with S-adenosyl-L-homocystein (SAH) and 4-methoxy-e-rhodomycin T (M-ET) 1TW3 ; 2.35 ; Crystal structure of Carminomycin-4-O-methyltransferase (DnrK) in complex with S-adenosyl-L-homocystein (SAH) and 4-methoxy-e-rhodomycin T (M-ET) 5EEH ; 1.82 ; Crystal structure of carminomycin-4-O-methyltransferase DnrK in complex with SAH and 2-chloro-4-nitrophenol 5JR3 ; 1.84 ; Crystal structure of carminomycin-4-O-methyltransferase DnrK in complex with SAH and 4-methylumbelliferone 5EEG ; 2.255 ; Crystal structure of carminomycin-4-O-methyltransferase DnrK in complex with tetrazole-SAH 1NDB ; 1.8 ; Crystal structure of Carnitine Acetyltransferase 3HFX ; 3.15 ; Crystal structure of carnitine transporter 2WSX ; 3.5 ; Crystal Structure of Carnitine Transporter from Escherichia coli 2WSW ; 2.294 ; Crystal Structure of Carnitine Transporter from Proteus mirabilis 3R0O ; 2.1 ; Crystal structure of carnitinyl-CoA hydratase from Mycobacterium avium 5YF2 ; 2.802 ; Crystal structure of CARNMT1 bound to anserine and SAH 5YF1 ; 2.399 ; Crystal structure of CARNMT1 bound to carnosine and SFG 5YF0 ; 2.25 ; Crystal structure of CARNMT1 bound to SAM 3UVE ; 1.55 ; Crystal structure of Carveol dehydrogenase ((+)-trans-carveol dehydrogenase) from Mycobacterium avium 3T7C ; 1.95 ; Crystal structure of carveol dehydrogenase from Mycobacterium avium bound to NAD 3PXX ; 2.0 ; Crystal structure of carveol dehydrogenase from Mycobacterium avium bound to nicotinamide adenine dinucleotide 5EJ2 ; 2.15 ; Crystal structure of Carveol dehydrogenase from Mycobacterium avium in complex with NAD 3OEC ; 1.95 ; Crystal structure of carveol dehydrogenase from Mycobacterium thermoresistibile 7ENH ; 2.097 ; Crystal structure of cas and anti-cas protein complex 7ENI ; 2.632 ; Crystal structure of cas and anti-cas protein complex 7ENR ; 4.205 ; Crystal structure of cas and anti-cas protein complex 4N77 ; 1.999 ; Crystal structure of Cas protein 5DQU ; 4.5 ; Crystal Structure of Cas-DNA-10 complex 5DQT ; 3.1 ; Crystal Structure of Cas-DNA-22 complex 5DLJ ; 2.6 ; Crystal Structure of Cas-DNA-N1 complex 5DQZ ; 2.7 ; Crystal Structure of Cas-DNA-PAM complex 4N06 ; 2.4 ; Crystal structure of Cas1 from Archaeoglobus fulgidus and its nucleolytic activity 5FCL ; 2.7 ; Crystal structure of Cas1 from Pectobacterium atrosepticum 8H9D ; 3.1 ; Crystal structure of Cas12a protein 6LTP ; 3.4 ; Crystal structure of Cas12i2 binary complex 6LU0 ; 3.22 ; Crystal structure of Cas12i2 ternary complex with 12 nt spacer 6LTU ; 2.57 ; Crystal structure of Cas12i2 ternary complex with double Mg2+ bound in catalytic pocket 6LTR ; 2.51 ; Crystal structure of Cas12i2 ternary complex with single Mg2+ bound in catalytic pocket 6JHZ ; 1.999 ; Crystal structure of cas2 6K2E ; 2.8 ; Crystal structure of cas2 8IA4 ; 2.0 ; Crystal structure of Cas2 in complex with AcrVA5-peptide 3I4H ; 2.25 ; Crystal structure of Cas6 in Pyrococcus furiosus 3PKM ; 3.103 ; Crystal structure of Cas6 with its substrate RNA 4Z7L ; 3.503 ; Crystal structure of Cas6b 4UN3 ; 2.593 ; Crystal structure of Cas9 bound to PAM-containing DNA target 4UN5 ; 2.4 ; Crystal structure of Cas9 bound to PAM-containing DNA target containing mismatches at positions 1-3 4UN4 ; 2.371 ; Crystal structure of Cas9 bound to PAM-containing DNA target with mismatches at positions 1-2 5FQ5 ; 2.136 ; Crystal structure of Cas9-sgRNA-DNA complex solved by native SAD phasing 4H79 ; 1.9 ; Crystal structure of CasB from Thermobifida fusca 4H7A ; 2.6 ; Crystal structure of CasB from Thermus thermophilus 6RCG ; 1.4 ; Crystal structure of Casein kinase 1 delta (CK1 delta) complexed with SR3029 inhibitor 6RU7 ; 2.08 ; Crystal structure of Casein Kinase I delta (CK1d) in complex with double phosphorylated p63 PAD2P peptide 6RU6 ; 2.05 ; Crystal structure of Casein Kinase I delta (CK1d) in complex with monophosphorylated p63 PAD1P peptide 6RU8 ; 1.92 ; Crystal structure of Casein Kinase I delta (CK1d) in complex with triple phosphorylated p63 PAD3P peptide 7P7H ; 2.4 ; Crystal structure of Casein Kinase I delta (CK1d) with alphaG-in conformation 5X18 ; 1.8 ; Crystal structure of Casein kinase I homolog 1 6RCH ; 1.45 ; Crystal structure of Casein kinase I isoform delta (CK1 delta) complexed with SR4133 inhibitor 3SV0 ; 2.0 ; Crystal structure of casein kinase-1 like protein in plant 6LNM ; 2.4 ; Crystal structure of CASK-CaMK in complex with Mint1-CID 3SEI ; 2.4 ; Crystal Structure of Caskin1 Tandem SAMs 2NSN ; 2.0 ; Crystal structure of Caspace Activation and Recruitment Domain (CARD) of NOD1 6BDV ; 1.938 ; Crystal structure of Caspase 3 S150A 4DCJ ; 1.7 ; Crystal structure of caspase 3, L168D mutant 4DCP ; 1.7 ; Crystal Structure of caspase 3, L168F mutant 4DCO ; 1.7 ; Crystal Structure of caspase 3, L168Y mutant 1M72 ; 2.3 ; Crystal Structure of Caspase-1 from Spodoptera frugiperda 6PZP ; 1.94 ; Crystal structure of caspase-1 in complex with VX-765 6KXG ; 2.805 ; Crystal structure of caspase-11-CARD 5IC4 ; 2.65 ; Crystal structure of caspase-3 DEVE peptide complex 1RE1 ; 2.5 ; CRYSTAL STRUCTURE OF CASPASE-3 WITH A NICOTINIC ACID ALDEHYDE INHIBITOR 2H5I ; 1.69 ; Crystal structure of caspase-3 with inhibitor Ac-DEVD-Cho 7RNG ; 2.55 ; Crystal structure of caspase-3 with inhibitor Ac-ITAKD-CHO 7RNA ; 1.9 ; Crystal structure of caspase-3 with inhibitor Ac-ITV(Dab)D-CHO 3EDQ ; 1.61 ; Crystal structure of Caspase-3 with inhibitor AC-LDESD-CHO 7RN7 ; 2.4 ; Crystal structure of caspase-3 with inhibitor Ac-VD(Aly)VD-CHO 7RN8 ; 1.88 ; Crystal structure of caspase-3 with inhibitor Ac-VD(Orn)VD-CHO 7RN9 ; 1.67 ; Crystal structure of caspase-3 with inhibitor Ac-VDFVD-CHO 7RNF ; 2.11 ; Crystal structure of caspase-3 with inhibitor Ac-VDKVD-CHO 7RND ; 2.15 ; Crystal structure of caspase-3 with inhibitor Ac-VDPVD-CHO 7RNB ; 1.75 ; Crystal structure of caspase-3 with inhibitor Ac-VDRVD-CHO 7RNC ; 1.93 ; Crystal structure of caspase-3 with inhibitor Ac-VDVVD-CHO 7RNE ; 2.73 ; Crystal structure of caspase-3 with inhibitor Ac-YKPVD-CHO 7SEO ; 3.25 ; Crystal Structure of Caspase-3 with Peptide Inhibitor Ac-VDV(DAB)D-CHO 7USQ ; 2.71 ; Crystal Structure of Caspase-3 with Peptide Inhibitor AcDVPD-CHO 7USP ; 2.85 ; Crystal Structure of Caspase-3 with Peptide Inhibitor AcITV(Orn)D-CHO 7USO ; 2.3 ; Crystal Structure of Caspase-3 with Peptide Inhibitor AcITVKD-CHO 3V6L ; 2.2 ; Crystal Structure of caspase-6 inactivation mutation 3NR2 ; 2.9 ; Crystal structure of Caspase-6 zymogen 1K86 ; 2.6 ; Crystal structure of caspase-7 4FDL ; 2.801 ; Crystal structure of Caspase-7 1I51 ; 2.45 ; CRYSTAL STRUCTURE OF CASPASE-7 COMPLEXED WITH XIAP 5IC6 ; 2.7 ; Crystal structure of caspase-7 DEVE peptide complex 1F1J ; 2.35 ; CRYSTAL STRUCTURE OF CASPASE-7 IN COMPLEX WITH ACETYL-ASP-GLU-VAL-ASP-CHO 4FEA ; 3.79 ; Crystal structure of CASPASE-7 in Complex with allosteric inhibitor 3IBC ; 2.75 ; Crystal Structure of Caspase-7 incomplex with Acetyl-YVAD-CHO 2QL5 ; 2.34 ; Crystal Structure of caspase-7 with inhibitor AC-DMQD-CHO 2QLF ; 2.8 ; Crystal Structure of Caspase-7 with inhibitor AC-DNLD-CHO 2QL9 ; 2.14 ; Crystal Structure of Caspase-7 with inhibitor AC-DQMD-CHO 2QLB ; 2.25 ; Crystal Structure of caspase-7 with inhibitor AC-ESMD-CHO 2QL7 ; 2.4 ; Crystal Structure of Caspase-7 with inhibitor AC-IEPD-CHO 2QLJ ; 2.6 ; Crystal Structure of Caspase-7 with Inhibitor AC-WEHD-CHO 2C2Z ; 1.95 ; Crystal structure of caspase-8 in complex with aza-peptide Michael acceptor inhibitor 1V0D ; 2.6 ; Crystal Structure of Caspase-activated DNase (CAD) 5JQE ; 3.157 ; Crystal structure of caspase8 tDED 5GS9 ; 2.5 ; Crystal structure of CASTOR1-arginine 8AMC ; 2.95 ; Crystal Structure of cat allergen Fel d 4 6SQR ; 2.18 ; Crystal structure of Cat MDM2-S429E RING domain bound to UbcH5B-Ub 6SQP ; 1.21 ; Crystal structure of Cat MDM2-S429E RING domain homodimer 1PYK ; 2.6 ; CRYSTAL STRUCTURE OF CAT MUSCLE PYRUVATE KINASE AT A RESOLUTION OF 2.6 ANGSTROMS 6SQS ; 1.83 ; Crystal structure of cat phospho-Ser429 MDM2 RING domain bound to UbcH5B-Ub 4JG3 ; 1.8 ; Crystal structure of catabolite repression control protein (crc) from Pseudomonas aeruginosa 7DOA ; 2.7 ; Crystal structure of Catabolite repressor acivator from E. coli in complex with HEPES 7DOB ; 2.4 ; Crystal structure of Catabolite repressor activator (Apo) 6BY0 ; 2.93 ; Crystal structure of catalase HPII from E. coli in space group P1 6ZTV ; 1.78 ; Crystal Structure of catalase HPII from Escherichia coli (serendipitously crystallized) 6ZTW ; 1.84 ; Crystal Structure of catalase HPII from Escherichia coli (serendipitously crystallized) 6ZTX ; 1.3 ; Crystal Structure of catalase HPII from Escherichia coli (serendipitously crystallized) 1GGJ ; 1.92 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, ASN201ALA VARIANT. 1GGK ; 2.26 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, ASN201HIS VARIANT. 1GGH ; 2.15 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, HIS128ALA VARIANT. 1GG9 ; 1.89 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, HIS128ASN VARIANT. 1GGE ; 1.89 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, NATIVE STRUCTURE AT 1.9 A RESOLUTION. 1GGF ; 2.28 ; CRYSTAL STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI, VARIANT HIS128ASN, COMPLEX WITH HYDROGEN PEROXIDE. 4PAE ; 3.206 ; Crystal structure of catalase-peroxidase (KatG) W78F mutant from Synechococcus elongatus PCC7942 1ITK ; 2.0 ; Crystal structure of catalase-peroxidase from Haloarcula marismortui 1UB2 ; 2.4 ; Crystal structure of catalase-peroxidase from Synechococcus PCC 7942 5SX7 ; 1.95 ; Crystal structure of catalase-peroxidase KatG of B. pseudomallei at pH 8.5 5L05 ; 1.7 ; Crystal structure of catalase-peroxidase KATG of burkholderia pseudomallei treated with INH 5SXS ; 1.887 ; Crystal structure of catalase-peroxidase KatG with isonicotinic acid hydrazide and AMP bound 3KKR ; 2.453 ; Crystal structure of catalytic core domain of BIV integrase in crystal form I 3KKS ; 2.2 ; Crystal structure of catalytic core domain of BIV integrase in crystal form II 4PA1 ; 1.84 ; Crystal Structure of Catalytic Core domain of FIV Integrase 2GP5 ; 2.28 ; Crystal structure of catalytic core domain of jmjd2A complexed with alpha-Ketoglutarate 2XKJ ; 2.2 ; CRYSTAL STRUCTURE OF CATALYTIC CORE OF A. BAUMANNII TOPO IV (PARE- PARC FUSION TRUNCATE) 6SMK ; 2.997 ; Crystal structure of catalytic domain A109H mutant of prophage-encoded M23 protein EnpA from Enterococcus faecalis. 7PJ4 ; 1.25 ; Crystal structure of catalytic domain in closed conformation of LytB (E585Q)from Streptococcus pneumoniae 7PL3 ; 1.8 ; Crystal structure of catalytic domain in closed conformation of LytB from Streptococcus pneumoniae 7PJ3 ; 1.43 ; Crystal structure of catalytic domain in open conformation of LytB from Streptococcus pneumoniae 5XYH ; 1.864 ; Crystal Structure of catalytic domain of 1,4-beta-Cellobiosidase (CbsA) from Xanthomonas oryzae pv. oryzae 7DBT ; 2.3 ; Crystal structure of catalytic domain of Anhydrobiosis-related Mn-dependent Peroxidase (AMNP) from Ramazzottius varieornatus (Mn2+-bound form) 7DBU ; 1.6 ; Crystal structure of catalytic domain of Anhydrobiosis-related Mn-dependent Peroxidase (AMNP) from Ramazzottius varieornatus (Zn2+-bound form) 4KRV ; 2.4 ; Crystal structure of catalytic domain of bovine beta1,4-galactosyltransferase mutant M344H-GalT1 complex with 6-sulfo-GlcNAc 3W6B ; 1.9 ; Crystal structure of catalytic domain of chitinase from Ralstonia sp. A-471 3W6D ; 2.15 ; Crystal structure of catalytic domain of chitinase from Ralstonia sp. A-471 (E141Q) in complex with tetrasaccharide 3W6E ; 2.15 ; Crystal structure of catalytic domain of chitinase from Ralstonia sp. A-471 (E162Q) 3W6F ; 2.1 ; Crystal structure of catalytic domain of chitinase from Ralstonia sp. A-471 (E162Q) in complex with disaccharide 3W6C ; 2.0 ; Crystal structure of catalytic domain of chitinase from Ralstonia sp. A-471 in complex with disaccharide 2A97 ; 1.8 ; Crystal structure of catalytic domain of Clostridium botulinum neurotoxin serotype F 4LW6 ; 2.4 ; Crystal structure of catalytic domain of Drosophila beta1,4galactosyltransferase 7 complex with xylobiose 2E0T ; 1.67 ; Crystal structure of catalytic domain of dual specificity phosphatase 26, MS0830 from Homo sapiens 2GML ; 2.6 ; Crystal Structure of Catalytic Domain of E.coli RluF 5V9I ; 1.74 ; Crystal structure of catalytic domain of G9a with MS0105 5TTF ; 1.72 ; Crystal structure of catalytic domain of G9a with MS012 5V9J ; 1.74 ; Crystal structure of catalytic domain of GLP with MS0105 5TTG ; 1.66 ; Crystal structure of catalytic domain of GLP with MS012 6KTQ ; 1.98 ; Crystal structure of catalytic domain of homocitrate synthase from Sulfolobus acidocaldarius (SaHCS(dRAM)) in complex with alpha-ketoglutarate/Zn2+/CoA 4IRP ; 2.1 ; Crystal structure of catalytic domain of human beta1,4-galactosyltransferase-7 in open conformation with manganses and UDP 4IRQ ; 2.3 ; Crystal structure of catalytic domain of human beta1,4galactosyltransferase 7 in closed conformation in complex with manganese and UDP 4KP5 ; 1.45 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with 2-Chloro-4-[(pyrimidin-2-ylsulfanyl)acetyl]benzenesulfonamide 4KP8 ; 1.8 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with 3-[(Pyrimidin-2-ylsulfanyl)acetyl]benzenesulfonamide 4Q0L ; 2.0 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with inhibitor 4QJ0 ; 1.55 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with inhibitor 4QJO ; 1.8 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with inhibitor 4QJW ; 1.55 ; Crystal structure of catalytic domain of human carbonic anhydrase isozyme XII with inhibitor 2RFI ; 1.59 ; Crystal structure of catalytic domain of human euchromatic histone methyltransferase 1 in complex with SAH and dimethylated H3K9 peptide 3HNA ; 1.5 ; Crystal structure of catalytic domain of human euchromatic histone methyltransferase 1 in complex with SAH and mono-Methylated H3K9 Peptide 3C0Y ; 2.1 ; Crystal structure of catalytic domain of human histone deacetylase HDAC7 3C0Z ; 2.1 ; Crystal structure of catalytic domain of human histone deacetylase HDAC7 in complex with SAHA 3C10 ; 2.0 ; Crystal structure of catalytic domain of human histone deacetylase HDAC7 in complex with Trichostatin A (TSA) 1ZZW ; 1.6 ; Crystal Structure of catalytic domain of Human MAP Kinase Phosphatase 5 6U8Z ; 1.799 ; Crystal Structure of Catalytic Domain of Human Phospholipase D1 1WOK ; 3.0 ; Crystal structure of catalytic domain of human poly(ADP-ribose) polymerase complexed with a quinoxaline-type inhibitor 1UK0 ; 3.0 ; Crystal structure of catalytic domain of human poly(ADP-ribose) polymerase with a novel inhibitor 2DSK ; 1.5 ; Crystal structure of catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus 2Z83 ; 1.8 ; Crystal Structure of Catalytic Domain of Japanese Encephalitis Virus NS3 Helicase/Nucleoside Triphosphatase at a Resolution 1.8 7POD ; 1.5 ; Crystal structure of catalytic domain of LytB (E585Q) from Streptococcus pneumoniae in complex with NAG-NAM-NAG-NAM tetrasaccharide 7PJ6 ; 1.3 ; Crystal structure of catalytic domain of LytB (E585Q) from Streptococcus pneumoniae in complex with NAG-NAM-NAG-NAM-NAG peptidolycan analogue 7PJ5 ; 1.55 ; Crystal structure of catalytic domain of LytB from Streptococcus pneumoniae in complex with NAG-NAG-NAG-NAG tetrasaccharide 4L67 ; 2.8 ; Crystal Structure of Catalytic Domain of PAK4 5GZ9 ; 2.4 ; Crystal structure of catalytic domain of Protein O-mannosyl Kinase in complexes with AMP-PNP, Magnesium ions and glycopeptide 5GZ8 ; 2.5 ; Crystal structure of catalytic domain of Protein O-mannosyl Kinase in ligand-free form 1V9F ; 1.7 ; Crystal structure of catalytic domain of pseudouridine synthase RluD from Escherichia coli 4IKC ; 1.56 ; Crystal Structure of catalytic domain of PTPRQ 2II0 ; 2.02 ; Crystal Structure of catalytic domain of Son of sevenless (Rem-Cdc25) in the absence of Ras 3O64 ; 1.88 ; Crystal structure of catalytic domain of TACE with 2-(2-Aminothiazol-4-yl)pyrrolidine-Based Tartrate Diamides 3LGP ; 1.9 ; Crystal structure of catalytic domain of tace with benzimidazolyl-thienyl-tartrate based inhibitor 3EWJ ; 1.8 ; Crystal structure of catalytic domain of TACE with carboxylate inhibitor 3L0T ; 1.92 ; Crystal structure of catalytic domain of TACE with hydantoin inhibitor 3E8R ; 1.9 ; Crystal structure of catalytic domain of TACE with hydroxamate inhibitor 3EDZ ; 1.9 ; Crystal structure of catalytic domain of TACE with hydroxamate inhibitor 2I47 ; 1.9 ; Crystal structure of catalytic domain of TACE with inhibitor 3KME ; 1.85 ; Crystal structure of catalytic domain of TACE with phenyl-pyrrolidinyl-tartrate inhibitor 3KMC ; 1.8 ; Crystal structure of catalytic domain of TACE with tartrate-based inhibitor 3L0V ; 1.75 ; Crystal structure of catalytic domain of TACE with the first hydantoin inhibitor occupying the S1' pocket 2A8H ; 2.3 ; Crystal structure of catalytic domain of TACE with Thiomorpholine Sulfonamide Hydroxamate inhibitor 3BRB ; 1.9 ; Crystal structure of catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with ADP 3BPR ; 2.8 ; Crystal structure of catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor C52 1ZXC ; 2.28 ; Crystal structure of catalytic domain of TNF-alpha converting enzyme (TACE) with inhibitor 5Y7F ; 1.35 ; Crystal structure of catalytic domain of UGGT (UDP-bound form) from Thermomyces dupontii 5H18 ; 1.4 ; Crystal structure of catalytic domain of UGGT (UDP-glucose-bound form) from Thermomyces dupontii 3CFJ ; 2.6 ; Crystal structure of catalytic elimination antibody 34E4, orthorhombic crystal form 3CFK ; 2.6 ; Crystal structure of catalytic elimination antibody 34E4, triclinic crystal form 3HXZ ; 1.99 ; Crystal Structure of catalytic fragment of E. coli AlaRS G237A in complex with AlaSA 3HY0 ; 1.9 ; Crystal Structure of catalytic fragment of E. coli AlaRS G237A in complex with GlySA 3HY1 ; 2.79 ; Crystal Structure of catalytic fragment of E. coli AlaRS G237A in complex with SerSA 3HXU ; 2.1 ; Crystal Structure of catalytic fragment of E. coli AlaRS in complex with AlaSA 3HXX ; 2.11 ; Crystal Structure of catalytic fragment of E. coli AlaRS in complex with AMPPCP 3HXY ; 2.27 ; Crystal Structure of catalytic fragment of E. coli AlaRS in complex with AMPPCP, Ala-AMP and PCP 3HXV ; 1.93 ; Crystal Structure of catalytic fragment of E. coli AlaRS in complex with GlySA 3HXW ; 1.93 ; Crystal Structure of catalytic fragment of E. coli AlaRS in complex with SerSA 5V59 ; 2.03 ; Crystal structure of catalytic fragment of human AlaRS in complex with Aze-SA 6LCT ; 2.55 ; Crystal structure of catalytic inactive chloroplast resolvase NtMOC1 in complex with Holliday junction 6Z2P ; 2.16 ; Crystal structure of catalytic inactive OgpA from Akkermansia muciniphila in complex with an O-glycopeptide (glycodrosocin) substrate 7ZO0 ; 1.95 ; Crystal structure of catalytic inactive unliganded form of FucOB, a GH95 family alpha-1,2-fucosidase from Akkermansia muciniphila 2AU6 ; 1.2 ; Crystal structure of catalytic intermediate of inorganic pyrophosphatase 4PI8 ; 1.39 ; Crystal structure of catalytic mutant E138A of S. Aureus Autolysin E in complex with disaccharide NAG-NAM 6V0T ; 2.1 ; Crystal Structure of Catalytic Subunit of Bovine Pyruvate Dehydrogenase Phosphatase 1 - Catalytic Domain 3E3B ; 3.2 ; Crystal structure of catalytic subunit of human protein kinase CK2alpha prime with a potent indazole-derivative inhibitor 2R7I ; 3.003 ; Crystal structure of catalytic subunit of protein kinase CK2 2D1Z ; 1.6 ; Crystal structure of catalytic-site mutant xylanase from Streptomyces olivaceoviridis E-86 5GTJ ; 2.0 ; CRYSTAL STRUCTURE OF CATALYTICALLY ACTIVE FORM OF HUMAN DUSP26 3IH7 ; 3.1 ; Crystal structure of catalytically active human 8-oxoguanine glycosylase distally crosslinked to guanine-containing DNA 5NFV ; 2.501 ; Crystal structure of catalytically inactive FnCas12 mutant bound to an R-loop structure containing a pre-crRNA mimic and full-length DNA target 6I1K ; 2.65 ; Crystal structure of catalytically inactive FnCas12a in complex with a crRNA guide and a dsDNA target 2Z2P ; 2.8 ; Crystal Structure of catalytically inactive H270A virginiamycin B lyase from Staphylococcus aureus with Quinupristin 4WME ; 1.55 ; Crystal structure of catalytically inactive MERS-CoV 3CL Protease (C148A) in spacegroup C2 4WMD ; 2.585 ; Crystal structure of catalytically inactive MERS-CoV 3CL protease (C148A) in spacegroup C2221 4WMF ; 1.97 ; Crystal structure of catalytically inactive MERS-CoV 3CL protease (C148A) in spacegroup P212121 1ZLB ; 0.97 ; Crystal structure of catalytically-active phospholipase A2 in the absence of calcium 1ZL7 ; 1.6 ; Crystal structure of catalytically-active phospholipase A2 with bound calcium 4ZT0 ; 2.9 ; Crystal structure of catalytically-active Streptococcus pyogenes Cas9 in complex with single-guide RNA at 2.9 Angstrom resolution 5F9R ; 3.4 ; Crystal structure of catalytically-active Streptococcus pyogenes CRISPR-Cas9 in complex with single-guided RNA and double-stranded DNA primed for target DNA cleavage 8J40 ; 1.57 ; Crystal Structure of CATB8 in complex with chloramphenicol 5VXT ; 1.75 ; Crystal structure of catechol 1,2-dioxygenase from Burkholderia ambifaria 5TD3 ; 1.75 ; Crystal structure of Catechol 1,2-dioxygenase from Burkholderia vietnamiensis 2AZQ ; 2.65 ; Crystal Structure of Catechol 1,2-Dioxygenase from Pseudomonas arvilla C-1 3HJQ ; 2.0 ; Crystal structure of catechol 1,2-dioxygenase from Rhodococcus opacus 1CP in complex with 3-methylcatechol 3HJS ; 1.8 ; Crystal structure of catechol 1,2-dioxygenase from Rhodococcus opacus 1CP in complex with 4-methylcatechol 3HGI ; 1.94 ; Crystal structure of Catechol 1,2-Dioxygenase from the gram-positive Rhodococcus opacus 1CP 5UMH ; 1.35 ; Crystal Structure of Catechol 1,2-dioxygenase protein from Burkholderia multivorans 2WL3 ; 2.2 ; crystal structure of catechol 2,3-dioxygenase 2WL9 ; 1.9 ; Crystal structure of catechol 2,3-dioxygenase 7CVU ; 1.75 ; Crystal structure of Catechol o-methyl transferase (COMT) from Niastella koreensis 7CVV ; 2.52 ; Crystal structure of Catechol o-methyl transferase (COMT) from Niastella koreensis 7CVW ; 1.54 ; Crystal structure of Catechol o-methyl transferase (COMT) from Niastella koreensis 7CVX ; 1.7 ; Crystal structure of Catechol o-methyl transferase (COMT) from Niastella koreensis 4J3R ; 2.2 ; Crystal structure of catechol oxidase from Aspergillus oryzae, soaked in 4-tert-butylcatechol 126D ; 2.0 ; CRYSTAL STRUCTURE OF CATGGCCATG AND ITS IMPLICATIONS FOR A-TRACT BENDING MODELS 6EEW ; 2.05002 ; Crystal structure of Catharanthus roseus tryptophan decarboxylase in complex with L-tryptophan 4CI9 ; 1.58 ; Crystal structure of cathepsin A, apo-structure 4AZ3 ; 2.04 ; crystal structure of cathepsin a, complexed with 15a 4AZ0 ; 2.17 ; crystal structure of cathepsin a, complexed with 8a. 4CIA ; 1.98 ; Crystal structure of cathepsin A, complexed with compound 1 4CIB ; 1.89 ; crystal structure of cathepsin a, complexed with compound 2 3HHI ; 1.6 ; Crystal Structure of Cathepsin B from T. brucei in complex with CA074 3MOR ; 2.55 ; Crystal structure of Cathepsin B from Trypanosoma Brucei 1CSB ; 2.0 ; Crystal structure of cathepsin b inhibited with CA030 at 2.1 angstroms resolution: A basis for the design of specific epoxysuccinyl inhibitors 4OEL ; 1.4 ; Crystal structure of Cathepsin C in complex with dipeptide substrates 4OEM ; 1.52 ; Crystal structure of Cathepsin C in complex with dipeptide substrates 5N7N ; 2.3 ; CRYSTAL STRUCTURE OF CATHEPSIN D ZYMOGEN FROM THE TICK IXODES RICINUS (IRCD1) 8D4S ; 1.95 ; Crystal Structure of Cathepsin G Inhibited by Eap1 from S. aureus 8D4V ; 1.85 ; Crystal Structure of Cathepsin G Inhibited by Eap2 from S. aureus 4YV8 ; 2.0 ; Crystal structure of cathepsin K bound to the covalent inhibitor lichostatinal 2FTD ; 2.55 ; Crystal structure of Cathepsin K complexed with 7-Methyl-Substituted Azepan-3-one compound 1MEM ; 1.8 ; Crystal structure of Cathepsin K complexed with a potent vinyl sulfone inhibitor 5TDI ; 1.4 ; Crystal structure of Cathepsin K with a covalently-linked inhibitor at 1.4 Angstrom resolution. 6HGY ; 2.2 ; CRYSTAL STRUCTURE OF CATHEPSIN K WITH N-DESMETHYL THALASSOSPIRAMIDE C 3HHA ; 1.27 ; Crystal structure of cathepsin L in complex with AZ12878478 2HXZ ; 1.9 ; Crystal Structure of Cathepsin S in complex with a Nonpeptidic Inhibitor (Hexagonal spacegroup) 2H7J ; 1.5 ; Crystal Structure of Cathepsin S in complex with a Nonpeptidic Inhibitor. 2HH5 ; 1.8 ; Crystal Structure of Cathepsin S in complex with a Zinc mediated non-covalent arylaminoethyl amide 8G24 ; 1.82 ; Crystal Structure of Cathepsin-G and Neutrophil Elastase Inhibited by S. aureus EapH2 at pH 5.5 8G25 ; 1.8 ; Crystal Structure of Cathepsin-G and Neutrophil Elastase Inhibited by S. aureus EapH2 at pH 7.5 8G26 ; 1.85 ; Crystal Structure of Cathepsin-G and Neutrophil Elastase Inhibited by S. aureus EapH2 at pH 8.5 5VXB ; 1.69 ; Crystal structure of Caulobacter crescentus ProXp-ala at 1.69 Angstrom 2QAS ; 2.55 ; Crystal structure of Caulobacter crescentus SspB ortholog 3EPM ; 2.793 ; Crystal structure of Caulobacter crescentus ThiC 3EPO ; 2.1 ; Crystal structure of Caulobacter crescentus ThiC complexed with HMP-P 3EPN ; 2.11 ; Crystal structure of Caulobacter crescentus ThiC complexed with imidazole ribonucleotide 4S2A ; 2.93 ; Crystal structure of Caulobacter crescentus ThiC with Fe4S4 cluster at remote site (holo form) 4IRX ; 1.451 ; Crystal structure of Caulobacter myo-inositol binding protein bound to myo-inositol 8G4J ; 2.35 ; Crystal structure of Cavia porcellus (guinea pig) importin-alpha 1 in cargo-free state 7BXB ; 1.72 ; Crystal structure of Ca_00311 7BXC ; 2.25 ; Crystal structure of Ca_00311 form II 7BXD ; 1.18 ; Crystal structure of Ca_00815 2HFF ; 1.95 ; Crystal structure of CB2 Fab 8HFJ ; 2.75 ; Crystal Structure of CbAR mutant (H162F) in complex with NADP+ and a bulky 1,3-cyclodiketone 8HFK ; 2.9 ; Crystal Structure of CbAR mutant (H162F) in complex with NADP+ and halogenated aryl ketone 4NSC ; 3.2 ; Crystal Structure of CBARA1 in the Apo-form 4NSD ; 2.7 ; Crystal Structure of CBARA1 in the Ca2+ Binding Form 4UAV ; 1.3 ; Crystal structure of CbbY (AT3G48420) from Arabidobsis thaliana 4UAT ; 1.3 ; Crystal structure of CbbY (mutant D10N) from Rhodobacter sphaeroides in complex with Xylulose-(1,5)bisphosphate, crystal form I 4UAU ; 1.45 ; Crystal structure of CbbY (mutant D10N) from Rhodobacter sphaeroides in complex with Xylulose-(1,5)bisphosphate, crystal form II 4UAS ; 1.2 ; Crystal structure of CbbY from Rhodobacter sphaeroides in complex with phosphate 3RB7 ; 2.9 ; Crystal structure of CBD12 from CALX1.2 8P2B ; 2.6 ; Crystal structure of CbFMN4 domain 1 2E0N ; 2.0 ; Crystal structure of CbiL in complex with S-adenosylhomocysteine, a methyltransferase involved in anaerobic vitamin B12 biosynthesis 2E0K ; 2.1 ; Crystal structure of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis 8QTJ ; 1.523 ; Crystal structure of Cbl-b in complex with an allosteric inhibitor (compound 30) 8QTK ; 1.873 ; Crystal structure of CBL-b in complex with an allosteric inhibitor (compound 31) 8QTH ; 2.198 ; Crystal structure of CBL-b in complex with an allosteric inhibitor (compound 8) 8QTG ; 1.419 ; Crystal structure of CBL-b in complex with an allosteric inhibitor (compound 9) 5AXI ; 2.5 ; Crystal structure of Cbl-b TKB domain in complex with Cblin 3PFV ; 2.27 ; Crystal structure of Cbl-b TKB domain in complex with EGFR pY1069 peptide 3OP0 ; 2.52 ; Crystal structure of Cbl-c (Cbl-3) TKB domain in complex with EGFR pY1069 peptide 5UOS ; 2.51 ; Crystal Structure of CblC (MMACHC) (1-238), a human B12 processing enzyme, complexed with an Antivitamin B12 5H48 ; 2.2 ; Crystal structure of Cbln1 5H49 ; 2.8 ; Crystal structure of Cbln1 5KC6 ; 2.801 ; Crystal structure of Cbln1 (Val55-Gly58 deletion mutant) 5KC7 ; 7.035 ; Crystal structure of Cbln1 (Val55-Gly58 deletion mutant) 5H4B ; 2.8 ; Crystal structure of Cbln4 5H4C ; 2.3 ; Crystal structure of Cbln4 7VT5 ; 1.46 ; Crystal structure of CBM deleted MtGlu5 from Meiothermus taiwanensis WR-220 7VT6 ; 1.53 ; Crystal structure of CBM deleted MtGlu5 in complex with BGC. 7VT7 ; 1.53 ; Crystal structure of CBM deleted MtGlu5 in complex with CBI 2Z0B ; 2.0 ; Crystal structure of CBM20 domain of human putative glycerophosphodiester phosphodiesterase 5 (KIAA1434) 2COV ; 1.25 ; Crystal structure of CBM31 from beta-1,3-xylanase 4TXW ; 1.4 ; Crystal structure of CBM32-4 from the Clostridium perfringens NagH 3KMV ; 1.8 ; Crystal structure of CBM42A from Clostridium thermocellum 6B15 ; 2.1 ; Crystal structure of CBMbc (family CBM26) from Eubacterium rectale Amy13K 6B3P ; 2.01 ; Crystal structure of CBMbc (family CBM26) from Eubacterium rectale Amy13K in Complex with Maltoheptaose 6AZ5 ; 2.2 ; Crystal structure of CBMd (family CBM41) from Eubacterium rectale Amy13K 1IXC ; 2.2 ; Crystal structure of CbnR, a LysR family transcriptional regulator 1IZ1 ; 2.5 ; CRYSTAL STRUCTURE OF CBNR, A LYSR FAMILY TRANSCRIPTIONAL REGULATOR 5XXP ; 2.55 ; Crystal structure of CbnR_DBD-DNA complex 4OUF ; 1.4 ; Crystal Structure of CBP bromodomain 7EVJ ; 2.57 ; Crystal structure of CBP bromodomain liganded with 9c 7XH6 ; 1.75 ; Crystal structure of CBP bromodomain liganded with CCS1477 7XI0 ; 1.62 ; Crystal structure of CBP bromodomain liganded with CCS150 7XHE ; 1.59 ; Crystal structure of CBP bromodomain liganded with CCS151 7KPY ; 1.7 ; Crystal structure of CBP bromodomain liganded with UMB298 (compound 23) 7XNG ; 2.35 ; Crystal structure of CBP bromodomain liganded with Y08092(31g) 7XIJ ; 1.82 ; Crystal structure of CBP bromodomain liganded with Y08175 7XNE ; 2.17 ; Crystal structure of CBP bromodomain liganded with Y08284 5GH9 ; 1.451 ; Crystal structure of CBP Bromodomain with H3K56ac peptide 5GT1 ; 1.85 ; crystal structure of cbpa from L. salivarius REN 6ZZ9 ; 2.644 ; Crystal structure of CbpB from Streptococcus agalactiae 6ZZA ; 2.491 ; Crystal structure of CbpB in complex with c-di-AMP 6XNU ; 1.62 ; CRYSTAL STRUCTURE OF CBPB PROTEIN (LMO1009) FROM LISTERIA MONOCYTOGENES 7BAY ; 2.65 ; Crystal structure of CbpF from Streptococcus pneumoniae complexed with a Ytterbium derivative 2X8P ; 2.27 ; Crystal Structure of CbpF in Complex with Atropine by Co- Crystallization 2X8O ; 2.03 ; Crystal Structure of CbpF in complex with Atropine by soaking 2X8M ; 1.85 ; Crystal Structure of CbpF in complex with ipratropium by soaking 4XSX ; 3.708 ; Crystal structure of CBR 703 bound to Escherichia coli RNA polymerase holoenzyme 4XSY ; 4.007 ; Crystal structure of CBR 9379 bound to Escherichia coli RNA polymerase holoenzyme 4XSZ ; 3.683 ; Crystal structure of CBR 9393 bound to Escherichia coli RNA polymerase holoenzyme 3LV9 ; 2.4 ; Crystal structure of CBS domain of a putative transporter from Clostridium difficile 630 7LZG ; 2.81 ; CRYSTAL STRUCTURE OF CBS DOMAIN PROTEIN FROM STREPTOCOCCUS PNEUMONIAE TIGR4 2RC3 ; 1.6 ; Crystal structure of CBS domain, NE2398 3LQN ; 1.8 ; Crystal Structure of CBS Domain-containing Protein of Unknown Function from Bacillus anthracis str. Ames Ancestor 1YAV ; 2.1 ; Crystal structure of CBS domain-containing protein ykuL from Bacillus subtilis 4GQW ; 2.201 ; Crystal structure of CBS-pair protein, CBSX1 (loop deletion) from Arabidopsis thaliana 4GQV ; 2.392 ; Crystal structure of CBS-pair protein, CBSX1 from Arabidopsis thaliana 3SL7 ; 1.905 ; Crystal structure of CBS-pair protein, CBSX2 from Arabidopsis thaliana 5BZA ; 2.002 ; Crystal structure of CbsA from Thermotoga neapolitana 4GQY ; 2.193 ; Crystal structure of CBSX2 in complex with AMP 4PMD ; 1.7 ; Crystal structure of CbXyn10B from Caldicellulosiruptor bescii and its mutant(E139A) in complex with hydrolyzed xylotetraose 5OFL ; 1.871 ; Crystal structure of CbXyn10C variant E140Q/E248Q complexed with cellohexaose 5OFK ; 1.16 ; Crystal structure of CbXyn10C variant E140Q/E248Q complexed with xyloheptaose 5COY ; 1.443 ; Crystal structure of CC chemokine 5 (CCL5) 5DNF ; 2.549 ; Crystal structure of CC chemokine 5 (CCL5) oligomer in complex with heparin 5UIW ; 2.204 ; Crystal Structure of CC Chemokine Receptor 5 (CCR5) in complex with high potency HIV entry inhibitor 5P7-CCL5 4MHE ; 2.1 ; Crystal structure of CC-chemokine 18 1Q82 ; 2.98 ; Crystal Structure of CC-Puromycin bound to the A-site of the 50S ribosomal subunit 5ED9 ; 2.009 ; Crystal structure of CC1 of mouse SUN2 5ED8 ; 2.5 ; Crystal structure of CC2-SUN of mouse SUN2 4U3N ; 3.2 ; Crystal structure of CCA trinucleotide bound to the yeast 80S ribosome 1Q86 ; 3.0 ; Crystal structure of CCA-Phe-cap-biotin bound simultaneously at half occupancy to both the A-site and P-site of the the 50S ribosomal Subunit. 7YN3 ; 2.1 ; Crystal structure of CcbD complex with CcbZ carrier protein domain 7YN2 ; 2.3 ; Crystal structure of CcbD with methylthiolincosamide 3A64 ; 1.6 ; Crystal structure of CcCel6C, a glycoside hydrolase family 6 enzyme, from Coprinopsis cinerea 3PZ7 ; 2.441 ; Crystal structure of Ccd1-DIX domain 1Q7Y ; 3.2 ; Crystal Structure of CCdAP-Puromycin bound at the Peptidyl transferase center of the 50S ribosomal subunit 7EOE ; 2.9 ; Crystal structure of CCDC25 homodimer 3NJ2 ; 1.59 ; Crystal structure of cce_0566 from the cyanobacterium Cyanothece 51142, a protein associated with nitrogen fixation from the DUF269 family 4PZQ ; 2.24 ; Crystal Structure of CCG DNA repeats 5ZT2 ; 1.66002 ; Crystal structure of CCG DNA repeats at 1.66 angstrom resolution 3W8I ; 2.4 ; Crystal structure of CCM3 in complex with the C-terminal regulatory domain of MST4 3W8H ; 2.426 ; Crystal structure of CCM3 in complex with the C-terminal regulatory domain of STK25 3L8I ; 2.5 ; Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity 3L8J ; 3.05 ; Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity 1KNG ; 1.14 ; Crystal structure of CcmG reducing oxidoreductase at 1.14 A 7D6C ; 2.89 ; Crystal structure of CcmM N-terminal domain in complex with CcmN 8EFZ ; 2.38 ; Crystal structure of CcNikZ-II, apoprotein 5GPL ; 2.1 ; Crystal structure of Ccp1 5GPK ; 2.103 ; Crystal structure of Ccp1 mutant 5Z72 ; 2.4 ; Crystal structure of CcpC regulatory domain in complex with citrate from Bacillus amyloliquefaciens 7DMW ; 2.29 ; Crystal structure of CcpC regulatory domain in complex with citrate from Bacillus amyloliquefaciens 5Z7H ; 2.5 ; Crystal structure of CcpE regulatory domain in citrate-bound form from Staphyloccocus aureus 5ZZO ; 2.5 ; Crystal structure of CcpE regulatory domain in complex with citrate from Staphyloccocus aureus 6GPS ; 3.3 ; CRYSTAL STRUCTURE OF CCR2A IN COMPLEX WITH MK-0812 6GPX ; 2.7 ; CRYSTAL STRUCTURE OF CCR2A IN COMPLEX WITH MK-0812 1FA7 ; 1.9 ; CRYSTAL STRUCTURE OF CD(II)-BOUND GLYOXALASE I OF ESCHERICHIA COLI 5I6H ; 7.2 ; Crystal structure of CD-CT domains of Chaetomium thermophilum acetyl-CoA carboxylase 6Y8K ; 2.011 ; Crystal structure of CD137 in complex with the cyclic peptide BCY10916 1WWL ; 2.5 ; Crystal structure of CD14 5X0T ; 2.5 ; Crystal structure of CD147 C2 domain in complex with Fab of its monoclonal antibody 6H8 1ONQ ; 2.15 ; Crystal Structure of CD1a in Complex with a Sulfatide 1XZ0 ; 2.8 ; Crystal structure of CD1a in complex with a synthetic mycobactin lipopeptide 2PO6 ; 3.2 ; Crystal structure of CD1d-lipid-antigen complexed with Beta-2-Microglobulin, NKT15 Alpha-Chain and NKT15 Beta-Chain 8GZJ ; 2.093 ; Crystal structure of Cd2+-bound DNA aptamer 8GZL ; 3.0 ; Crystal structure of Cd2+-bound DNA aptamer 8GZK ; 2.94 ; Crystal structure of Cd2+-bound DNA aptamer T10A mutant 8GZM ; 2.55 ; Crystal structure of Cd2+-bound DNA aptamer T22C mutant 4GJX ; 2.8 ; Crystal structure of CD23 lectin domain mutant D258A 4GK1 ; 2.236 ; Crystal structure of CD23 lectin domain mutant D270A 4GI0 ; 2.27 ; Crystal structure of CD23 lectin domain mutant E249A 4GJ0 ; 1.953 ; Crystal structure of CD23 lectin domain mutant S252A 6YAX ; 2.8 ; Crystal structure of CD32b (Fc Gamma Receptor IIb) in complex with Human IgG1 Fab fragment (5C05) 5OCC ; 2.5 ; Crystal structure of CD32b (Fc Gamma Receptor IIb) in complex with Human IgG1 Fab fragment (6G08) 7DHA ; 2.55 ; crystal structure of CD38 in complex with daratumumab 4CMH ; 1.53 ; Crystal structure of CD38 with a novel CD38-targeting antibody SAR650984 1SY6 ; 2.1 ; Crystal Structure of CD3gammaepsilon Heterodimer in Complex with OKT3 Fab Fragment 5WB9 ; 2.4 ; Crystal structure of CD4 binding site antibody N60P23 in complex with HIV-1 clade A/E strain 93TH057 gp120 core 3S4S ; 2.4 ; Crystal structure of CD4 mutant bound to HLA-DR1 3S5L ; 2.1 ; Crystal structure of CD4 mutant bound to HLA-DR1 4JZZ ; 1.49 ; Crystal structure of CD4-mimetic miniprotein M48U1 in complex with HIV-1 YU2 gp120 in C2221 space group 4JZW ; 1.784 ; Crystal structure of CD4-mimetic miniprotein M48U1 in complex with HIV-1 YU2 gp120 in P212121 space group 4KA2 ; 1.79 ; Crystal structure of CD4-mimetic miniprotein M48U12 in complex with HIV-1 YU2 gp120 4K0A ; 2.13 ; Crystal structure of CD4-mimetic miniprotein M48U7 in complex with HIV-1 YU2 gp120 6PE9 ; 3.13 ; Crystal Structure of CD40 complexed to FAB516 6PE8 ; 2.84 ; Crystal structure of CD40/ABBV-323 FAB complex 1YYL ; 2.75 ; crystal structure of CD4M33, a scorpion-toxin mimic of CD4, in complex with HIV-1 YU2 gp120 envelope glycoprotein and anti-HIV-1 antibody 17b 2I5Y ; 2.2 ; Crystal structure of CD4M47, a scorpion-toxin mimic of CD4, in complex with HIV-1 YU2 GP120 envelope glycoprotein and anti-HIV-1 antibody 17B 2JA4 ; 2.21 ; Crystal structure of CD5 domain III reveals the fold of a group B scavenger cysteine-rich receptor 2OTT ; 2.5 ; Crystal structure of CD5_DIII 7PBY ; 1.13 ; Crystal structure of CD73 in complex with 4-nitrocatechol in the open form 7PCP ; 1.377 ; Crystal structure of CD73 in complex with 5-iodouracil in the open form 7P9N ; 1.55 ; Crystal structure of CD73 in complex with AMP in the open form 7PBB ; 1.47 ; Crystal structure of CD73 in complex with caffeine in the open form 7PA4 ; 1.45 ; Crystal structure of CD73 in complex with CMP in the open form 7P9T ; 1.79 ; Crystal structure of CD73 in complex with dCMP in the open form 7P9R ; 1.41 ; Crystal structure of CD73 in complex with GMP in the open form 7PBA ; 1.42 ; Crystal structure of CD73 in complex with IMP in the open form 7PD9 ; 1.39 ; Crystal structure of CD73 in complex with riboflavin in the open form 7PB5 ; 1.28 ; Crystal structure of CD73 in complex with UMP in the open form 2PKD ; 2.043 ; Crystal structure of CD84: Insite into SLAM family function 3B9K ; 2.7 ; Crystal structure of CD8alpha-beta in complex with YTS 156.7 FAB 6RLR ; 2.0 ; Crystal structure of CD9 large extracellular loop 6ARQ ; 2.88 ; Crystal structure of CD96 (D1) bound to CD155/necl-5 (D1-3) 7DO4 ; 3.2 ; Crystal structure of CD97-CD55 complex 6HUW ; 2.8 ; Crystal structure of CdaA from Bacillus subtilis 8OGM ; 1.1 ; Crystal structure of CdaA from Bacillus subtilis 8OGK ; 1.18 ; Crystal structure of CdaA from Bacillus subtilis co-crystallized with DMSO 4LUY ; 2.6 ; Crystal structure of CdALR mutant K 271 T 8FWP ; 2.22 ; Crystal Structure of CDC10 - CDC3 heterocomplex from Saccharomyces cerevisiae 5AR1 ; 2.85 ; Crystal structure of Cdc11 from Saccharomyces cerevisiae 6XJ1 ; 3.52 ; Crystal Structure of CDC15 F-BAR Domain from Schizosaccharomyces pombe 4N14 ; 2.1 ; Crystal structure of Cdc20 and apcin complex 8SGD ; 2.66 ; Crystal Structure of CDC3(G) - CDC10(Delta 1-10) heterocomplex from Saccharomyces cerevisiae 4AW2 ; 1.7 ; Crystal structure of CDC42 binding protein kinase alpha (MRCK alpha) 6CC2 ; 1.66 ; Crystal Structure of CDC45 from Entamoeba histolytica 1FNN ; 2.0 ; CRYSTAL STRUCTURE OF CDC6P FROM PYROBACULUM AEROPHILUM 5UWR ; 2.24 ; Crystal Structure of CDC7 NES Peptide (extended) in complex with CRM1-Ran-RanBP1 5UWQ ; 2.278 ; Crystal Structure of CDC7 NES Peptide in complex with CRM1-Ran-RanBP1 5AXS ; 1.67 ; Crystal structure of CdCat-Fn 5T87 ; 2.4 ; Crystal structure of CDI complex from Cupriavidus taiwanensis LMG 19424 5T86 ; 2.0 ; Crystal structure of CDI complex from E. coli A0 34/86 5HKQ ; 2.0 ; Crystal structure of CDI complex from Escherichia coli STEC_O31 5E3E ; 1.7 ; Crystal structure of CdiA-CT/CdiI complex from Y. kristensenii 33638 5FFP ; 2.5 ; Crystal structure of CdiI from Burkholderia dolosa AUO158 8U2O ; 2.15 ; Crystal Structure of Cdk-related protein kinase 6 (PK6) from Plasmodium falciparum in complex with inhibitor TCMDC-123995 5ANK ; 1.9 ; Crystal structure of CDK2 in complex with 2,4,6-trioxo-1-phenyl- hexahydropyrimidine-5-carboxamide processed with the CrystalDirect automated mounting and cryo-cooling technology 5AND ; 2.3 ; Crystal structure of CDK2 in complex with 2-imidazol-1-yl-1H- benzimidazole processed with the CrystalDirect automated mounting and cryo-cooling technology 5ANI ; 1.9 ; Crystal structure of CDK2 in complex with 6-chloro-7H-purine processed with the CrystalDirect automated mounting and cryo-cooling technology 5ANE ; 1.7 ; Crystal structure of CDK2 in complex with 6-methoxy-7H-purine processed with the CrystalDirect automated mounting and cryo-cooling technology 5ANG ; 1.9 ; Crystal structure of CDK2 in complex with 7-hydroxy-4-(morpholinomethyl)chromen-2-one processed with the CrystalDirect automated mounting and cryo-cooling technology 5K4J ; 1.6 ; Crystal Structure of CDK2 in complex with compound 22 8CUR ; 2.2 ; Crystal structure of Cdk2 in complex with Cyclin A inhibitor 6-[(E)-2-(4-chlorophenyl)ethenyl]-2-{[(2R)-3-(4-hydroxyphenyl)-1-methoxy-1-oxopropan-2-yl]carbamoyl}quinoline-4-carboxylic acid 3NS9 ; 1.78 ; Crystal structure of CDK2 in complex with inhibitor BS-194 6INL ; 1.75 ; Crystal structure of CDK2 IN complex with Inhibitor CVT-313 5JQ5 ; 1.94 ; Crystal structure of CDK2 in complex with inhibitor ICEC0942 5JQ8 ; 1.94 ; Crystal structure of CDK2 in complex with inhibitor ICEC0943 6JGM ; 2.3 ; Crystal structure of CDK2 IN complex with Inhibitor NU-6140 2J9M ; 2.5 ; Crystal Structure of CDK2 in complex with Macrocyclic Aminopyrimidine 5ANJ ; 1.6 ; Crystal structure of CDK2 in complex with N-(9H-purin-6-yl)thiophene- 2-carboxamide processed with the CrystalDirect automated mounting and cryo-cooling technology 4BGH ; 1.95 ; Crystal Structure of CDK2 in complex with pan-CDK Inhibitor 3WBL ; 2.0 ; Crystal structure of CDK2 in complex with pyrazolopyrimidine inhibitor 7RWF ; 1.5 ; Crystal structure of CDK2 in complex with TW8672 7S4T ; 1.91 ; Crystal structure of CDK2 liganded with compound EF2252 7S7A ; 1.7 ; Crystal structure of CDK2 liganded with compound EF3019 7SA0 ; 1.59 ; Crystal structure of CDK2 liganded with compound EF4195 7RWE ; 1.59 ; Crystal structure of CDK2 liganded with compound GPHR787 7S84 ; 2.0 ; Crystal structure of CDK2 liganded with compound TW8972 7S85 ; 1.98 ; Crystal structure of CDK2 liganded with compound WN316 7RXO ; 1.38 ; Crystal structure of CDK2 liganded with compound WN333 7S9X ; 1.69 ; Crystal structure of CDK2 liganded with compound WN378 5ANO ; 1.7 ; Crystal structure of CDK2 processed with the CrystalDirect automated mounting and cryo-cooling technology 3S2P ; 2.3 ; Crystal structure of CDK2 with a 2-aminopyrimidine compound 1YKR ; 1.8 ; Crystal structure of cdk2 with an aminoimidazo pyridine inhibitor 1PYE ; 2.0 ; Crystal structure of CDK2 with inhibitor 3LFS ; 2.4 ; Crystal structure of CDK2 with SAR37, an aminoindazole type inhibitor 3LFN ; 2.28 ; Crystal structure of CDK2 with SAR57, an aminoindazole type inhibitor 3LFQ ; 2.03 ; Crystal structure of CDK2 with SAR60, an aminoindazole type inhibitor 7KJS ; 2.187 ; Crystal structure of CDK2/cyclin E in complex with PF-06873600 2W96 ; 2.3 ; Crystal Structure of CDK4 in complex with a D-type cyclin 2W99 ; 2.8 ; Crystal Structure of CDK4 in complex with a D-type cyclin 2W9F ; 2.85 ; Crystal Structure of CDK4 in complex with a D-type cyclin 2W9Z ; 2.45 ; Crystal Structure of CDK4 in complex with a D-type cyclin 6P8H ; 3.19 ; Crystal structure of CDK4 in complex with CyclinD1 and P21 6P8E ; 2.3 ; Crystal structure of CDK4 in complex with CyclinD1 and P27 6P8F ; 2.89 ; Crystal structure of CDK4 in complex with CyclinD1 and P27 6P8G ; 2.8 ; Crystal structure of CDK4 in complex with CyclinD1 and P27 3G33 ; 3.0 ; Crystal structure of CDK4/cyclin D3 3O0G ; 1.95 ; Crystal Structure of Cdk5:p25 in complex with an ATP analogue 6Y0A ; 2.19 ; CRYSTAL STRUCTURE OF CDK8-CycC IN COMPLEX WITH BI00690300 6R3S ; 2.19 ; CRYSTAL STRUCTURE OF CDK8-CycC IN COMPLEX WITH COMPOUND 1 5CEI ; 2.24 ; Crystal structure of CDK8:Cyclin C complex with compound 22 7NWK ; 2.81 ; Crystal structure of CDK9-Cyclin T1 bound by compound 6 2OYN ; 1.85 ; Crystal structure of CDP-bound protein MJ0056 from Methanococcus jannaschii, Pfam DUF120 3Q1P ; 1.8 ; Crystal structure of CDP-Chase 3Q4I ; 2.5 ; Crystal structure of CDP-Chase in complex with Gd3+ 6NCH ; 2.0 ; Crystal structure of CDP-Chase: Raster data collection 6NCI ; 2.08 ; Crystal structure of CDP-Chase: Vector data collection 2POF ; 1.4 ; Crystal structure of CDP-diacylglycerol pyrophosphatase 1ORR ; 1.5 ; Crystal Structure of CDP-Tyvelose 2-Epimerase complexed with NAD and CDP 3IS5 ; 2.55 ; Crystal structure of CDPK kinase domain from toxoplasma Gondii, TGME49_018720 3HX4 ; 1.95 ; Crystal structure of CDPK1 of Toxoplasma gondii, TGME49_101440, in presence of calcium 4QOX ; 2.748 ; Crystal Structure of CDPK4 from Plasmodium Falciparum, PF3D7_0717500 7Y3V ; 2.43 ; Crystal structure of CdpNPT in complex with harmane 7XVJ ; 2.4 ; Crystal structure of CdpNPT in complex with harmol 4E0U ; 2.6 ; Crystal structure of CdpNPT in complex with thiolodiphosphate and (S)-benzodiazependione 4E0T ; 2.25 ; Crystal structure of CdpNPT in its unbound state 3A4C ; 1.889 ; Crystal structure of cdt1 C terminal domain 2ZXX ; 2.8 ; Crystal structure of Cdt1/geminin complex 6V41 ; 1.603 ; crystal structure of CDY1 chromodomain bound to H3K9me3 6V3N ; 2.7 ; Crystal structure of CDYL2 in complex with H3K27me3 6V2H ; 2.6 ; Crystal structure of CDYL2 in complex with H3tK27me3 6AW1 ; 2.1 ; Crystal structure of CEACAM3 6AW0 ; 2.43 ; Crystal structure of CEACAM3 L44Q 6LDU ; 1.701 ; Crystal structure of CeCht1, a nematode I family chitinase from C. elegans 4M9R ; 2.656 ; Crystal structure of CED-3 3S5B ; 1.796 ; Crystal Structure of CED-3 Protease Suppressor-6 (CPS-6) from Caenorhabditis elegans 4M9S ; 3.207 ; crystal structure of CED-4 bound CED-3 fragment 4M9X ; 3.344 ; Crystal structure of CED-4 bound CED-3 fragment 4M9Y ; 4.2 ; Crystal structure of CED-4 bound CED-3 fragment 4M9Z ; 3.405 ; Crystal structure of CED-4 bound CED-3 fragment 3ZG0 ; 2.6 ; Crystal structure of ceftaroline acyl-PBP2a from MRSA with non- covalently bound ceftaroline and muramic acid at allosteric site obtained by cocrystallization 3ZFZ ; 2.25 ; Crystal structure of ceftaroline acyl-PBP2a from MRSA with non- covalently bound ceftaroline and muramic acid at allosteric site obtained by soaking 6K03 ; 2.857 ; Crystal structure of ceH2A-H2B 3ALS ; 3.0 ; Crystal structure of CEL-IV 3ALT ; 2.5 ; Crystal structure of CEL-IV complexed with Melibiose 3ALU ; 1.65 ; Crystal structure of CEL-IV complexed with Raffinose 2E4T ; 0.96 ; Crystal structure of Cel44A, GH family 44 endoglucanase from Clostridium thermocellum 2EEX ; 2.0 ; Crystal structure of Cel44A, GH family 44 endoglucanase from Clostridium thermocellum 2EJ1 ; 1.8 ; Crystal structure of Cel44A, GH family 44 endoglucanase from Clostridium thermocellum 2EO7 ; 1.75 ; Crystal structure of Cel44A, GH family 44 endoglucanase from Clostridium thermocellum 2EQD ; 2.8 ; Crystal structure of Cel44A, GH family 44 endoglucanase from Clostridium thermocellum 1LF1 ; 1.7 ; Crystal Structure of Cel5 from Alkalophilic Bacillus sp. 3QR3 ; 2.05 ; Crystal Structure of Cel5A (EG2) from Hypocrea jecorina (Trichoderma reesei) 3PFJ ; 1.3611 ; Crystal structure of Cel7A from Talaromyces emersonii 3PFX ; 1.2616 ; Crystal structure of Cel7A from Talaromyces emersonii in complex with cellobiose 3PL3 ; 1.1804 ; Crystal structure of Cel7A from Talaromyces emersonii in complex with cellopentaose 3PFZ ; 1.0993 ; Crystal structure of Cel7A from Talaromyces emersonii in complex with cellotetraose 8GHX ; 2.46 ; Crystal Structure of CelD Cellulase from the Anaerobic Fungus Piromyces finnis 4CJ0 ; 1.1 ; Crystal structure of CelD in complex with affitin E12 4CJ1 ; 1.63 ; Crystal structure of CelD in complex with affitin H3 5JW1 ; 2.822 ; Crystal structure of Celecoxib bound to S121P murine COX-2 mutant 4DFI ; 1.8 ; Crystal structure of cell adhesion molecule nectin-2/CD112 mutant FAMP 4DFH ; 1.85 ; Crystal structure of cell adhesion molecule nectin-2/CD112 variable domain 5EZ1 ; 2.4 ; Crystal Structure of Cell Binding Factor 2 from Helicobacter pylori in complex with I2CA 4IKG ; 1.9318 ; Crystal structure of cell death-inducing DFFA-like effector c 3OP3 ; 2.63 ; Crystal Structure of Cell Division Cycle 25C Protein Isoform A from Homo sapiens 5DGO ; 2.1 ; Crystal structure of cell division cycle protein 45 (Cdc45) 1VMA ; 1.6 ; Crystal structure of Cell division protein ftsY (TM0570) from Thermotoga maritima at 1.60 A resolution 5V68 ; 3.46 ; Crystal structure of cell division protein FtsZ from Mycobacterium tuberculosis bounded via the T9 loop 2Q1X ; 2.35 ; Crystal Structure of cell division protein FtsZ from Mycobacterium tuberculosis in complex with citrate. 2Q1Y ; 2.3 ; Crystal Structure of cell division protein FtsZ from Mycobacterium tuberculosis in complex with GTP-gamma-S 2VH2 ; 3.4 ; Crystal structure of cell divison protein FtsQ from Yersinia enterecolitica 3GQM ; 2.1 ; Crystal structure of Cell Inhibiting Factor (Cif) from Burkholderia pseudomallei (CifBp) 3GQJ ; 1.85 ; Crystal structure of Cell Inhibiting Factor (Cif) from Photorhabdus luminescens 4WCM ; 1.75 ; Crystal Structure of Cell Shape Determinant protein Csd4 Gln46His variant from Helicobacter pylori 7EFT ; 2.1 ; Crystal structure of cell shape-determining protein MreC 6IQV ; 2.13 ; Crystal Structure of Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase Complexed with Hg2+ from Lactobacillus plantarum 6IQM ; 1.85 ; Crystal Structure of Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase Complexed with NAD+ from Lactobacillus plantarum 3CG7 ; 2.5 ; Crystal structure of cell-death related nuclease 4 (CRN-4) 3CM6 ; 2.6 ; Crystal structure of cell-death related nuclease 4 (CRN-4) bound with Er 3CM5 ; 2.81 ; Crystal structure of Cell-Death Related Nuclease 4 (CRN-4) bound with Mn 2RFW ; 1.6 ; Crystal Structure of Cellobiohydrolase from Melanocarpus albomyces 2RFY ; 1.7 ; Crystal structure of cellobiohydrolase from Melanocarpus albomyces complexed with cellobiose 2RG0 ; 2.1 ; Crystal structure of cellobiohydrolase from Melanocarpus albomyces complexed with cellotetraose 2RFZ ; 1.8 ; Crystal structure of cellobiohydrolase from Melanocarpus albomyces complexed with cellotriose 3WKF ; 1.743 ; Crystal structure of cellobiose 2-epimerase 4Z4J ; 1.542 ; Crystal Structure of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus DSM 8903 4Z4L ; 1.671 ; Crystal Structure of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus DSM 8903 3WKI ; 2.191 ; Crystal structure of cellobiose 2-epimerase in complex with cellobiitol 3WKH ; 1.644 ; Crystal structure of cellobiose 2-epimerase in complex with epilactose 3WKG ; 1.47 ; Crystal structure of cellobiose 2-epimerase in complex with glucosylmannose 5HZQ ; 1.75 ; Crystal structure of cellular retinoic acid binding protein 2 (CRABP2)-aryl fluorosulfate covalent conjugate 2FR3 ; 1.48 ; Crystal Structure of Cellular Retinoic Acid Binding Protein Type II in Complex with All-Trans-Retinoic Acid at 1.48 Angstroms Resolution 1CBQ ; 2.2 ; CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID AND A SYNTHETIC RETINOID 1CBR ; 2.9 ; CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID AND A SYNTHETIC RETINOID 1CBS ; 1.8 ; CRYSTAL STRUCTURE OF CELLULAR RETINOIC-ACID-BINDING PROTEINS I AND II IN COMPLEX WITH ALL-TRANS-RETINOIC ACID AND A SYNTHETIC RETINOID 3AMH ; 2.09 ; crystal structure of cellulase 12A from Thermotoga maritima 5H4U ; 2.6 ; Crystal structure of cellulase from Antarctic springtail, Cryptopygus antarcticus 2EA3 ; 1.78 ; Crystal Structure Of Cellulomonas Bogoriensis Chymotrypsin 8X39 ; 1.7 ; Crystal structure of cellulosomal double-dockerin module of Clo1313_0689 from Clostridium thermocellum 3QG0 ; 2.7 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Complexed with Phosphate and 1-Deoxynojirimycin 3QFZ ; 2.39 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Complexed with Sulfate and 1-Deoxynojirimycin 3QFY ; 2.3 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Complexed with Sulfate and Isofagomine 2CQS ; 2.0 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Crystallized from Ammonium Sulfate 2CQT ; 2.1 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Crystallized from Sodium/Potassium Phosphate 3ACT ; 1.85 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase Histidine mutant 3AFJ ; 1.9 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase triple mutant 3ACS ; 2.51 ; Crystal Structure of Cellvibrio gilvus Cellobiose Phosphorylase W488F mutant 3FW6 ; 2.3 ; Crystal structure of CelM2, a bifunctional glucanase-xylanase protein from a metagenome library 6K02 ; 2.162 ; Crystal structure of ceNAP1 core 6K0C ; 2.281 ; Crystal structure of ceNAP1-H2A.Z-H2B complex 1HLV ; 2.5 ; CRYSTAL STRUCTURE OF CENP-B(1-129) COMPLEXED WITH THE CENP-B BOX DNA 4X23 ; 3.5 ; CRYSTAL STRUCTURE OF CENP-C IN COMPLEX WITH THE NUCLEOSOME CORE PARTICLE 4WAU ; 2.2 ; Crystal structure of CENP-M solved by native-SAD phasing 4OXM ; 1.9 ; CRYSTAL STRUCTURE OF Central Coiled-Coil from Influenza Hemagglutinin HA2 without Heptad Repeat Stutter 4P67 ; 1.9 ; CRYSTAL STRUCTURE OF Central Coiled-Coil from Influenza Hemagglutinin HA2 without Heptad Repeat Stutter, spacegroup P3(1) 3CTV ; 2.46 ; Crystal structure of central domain of 3-hydroxyacyl-CoA dehydrogenase from Archaeoglobus fulgidus 6J7E ; 2.4 ; Crystal Structure of Central domain of FleQ in complex with ATPgS and Mg 5Z07 ; 2.298 ; Crystal structure of centromere protein Cenp-I 6FLJ ; 1.751 ; Crystal structure of Cep120 C2A_K76A mutant 6FLK ; 1.6 ; Crystal structure of Cep120 C2C domain 6OQA ; 2.2 ; Crystal structure of CEP250 bound to FKBP12 in the presence of FK506-like novel natural product 4ZJ3 ; 1.7 ; Crystal structure of cephalexin bound acyl-enzyme intermediate of Val216AcrF mutant TEM1 beta-lactamase from Escherichia coli: E166N and V216AcrF mutant. 2NLZ ; 2.7 ; Crystal structure of cephalosporin acylase from Bacillus halodurans 4HHV ; 1.75 ; Crystal structure of ceramide transfer protein pleckstrin homology domain 3SUJ ; 1.34 ; Crystal structure of cerato-platanin 1 from M. perniciosa (MpCP1) 3SUK ; 1.34 ; Crystal structure of cerato-platanin 2 from M. perniciosa (MpCP2) 3SUL ; 1.63 ; Crystal structure of cerato-platanin 3 from M. perniciosa (MpCP3) 3SUM ; 1.87 ; Crystal structure of cerato-platanin 5 from M. perniciosa (MpCP5) 4YKC ; 2.7 ; Crystal structure of cerebral cavernous malformation 2 C-terminal adaptor domain 3S3L ; 2.0 ; Crystal Structure of CerJ from Streptomyces tendae 3T5Y ; 2.12 ; Crystal structure of CerJ from Streptomyces tendae - malonic acid covalently linked to the catalytic Cystein C116 3T6S ; 2.0 ; Crystal structure of CerJ from Streptomyces tendae in Complex with CoA 3T8E ; 2.1 ; Crystal structure of CerJ from Streptomyces tendae soaked with CerviK 2E3M ; 2.2 ; Crystal structure of CERT START domain 2E3S ; 1.94 ; Crystal structure of CERT START domain co-crystallized with C24-ceramide (P21) 2Z9Y ; 1.8 ; Crystal structure of CERT START domain in complex with C10-diacylglycerol 2E3P ; 1.4 ; Crystal structure of CERT START domain in complex with C16-cearmide (P1) 2E3O ; 1.55 ; Crystal structure of CERT START domain in complex with C16-ceramide (P212121) 2E3R ; 1.65 ; Crystal structure of CERT START domain in complex with C18-ceramide (P1) 2E3Q ; 2.08 ; Crystal structure of CERT START domain in complex with C18-ceramide (P212121) 2E3N ; 1.4 ; Crystal structure of CERT START domain in complex with C6-ceramide (P212121) 6IEZ ; 1.9 ; Crystal structure of CERT START domain in complex with compound B16 5ZYG ; 1.8 ; Crystal structure of CERT START domain in complex with compound B5 6IF0 ; 1.8 ; Crystal structure of CERT START domain in complex with compound D16 6J81 ; 1.8 ; Crystal structure of CERT START domain in complex with compound E14 5ZYI ; 1.9 ; Crystal structure of CERT START domain in complex with compound E16 5ZYJ ; 1.9 ; Crystal structure of CERT START domain in complex with compound E16A 5ZYK ; 1.55 ; Crystal structure of CERT START domain in complex with compound E25 5ZYL ; 1.8 ; Crystal structure of CERT START domain in complex with compound E25A 5ZYM ; 1.9 ; Crystal structure of CERT START domain in complex with compound E25B 5ZYH ; 1.95 ; Crystal structure of CERT START domain in complex with compound E5 6J0O ; 1.8 ; Crystal structure of CERT START domain in complex with compound SC1 2Z9Z ; 1.74 ; Crystal structure of CERT START domain(N504A mutant), in complex with C10-diacylglycerol 4GF1 ; 2.25 ; Crystal Structure of Certhrax 4FK7 ; 1.78 ; Crystal structure of Certhrax catalytic domain 5WUV ; 1.952 ; Crystal structure of Certolizumab Fab 3S21 ; 1.7001 ; Crystal structure of cerulenin bound Xanthomonas campestri OleA (co-crystal) 3S23 ; 1.9484 ; Crystal structure of cerulenin bound Xanthomonas campestri oleA (co-crystal) Xe Derivative 3S20 ; 1.8796 ; Crystal structure of cerulenin bound Xanthomonas campestri OleA (soak) 6L7Y ; 2.51 ; Crystal structure of Cet1 from Trypanosoma cruzi in complex with #466 ligand. 6L7X ; 2.39 ; Crystal structure of Cet1 from Trypanosoma cruzi in complex with #951 ligand 6L7W ; 2.6 ; Crystal structure of Cet1 from Trypanosoma cruzi in complex with manganese ion. 6L7V ; 2.2 ; Crystal structure of Cet1 from Trypanosoma cruzi in complex with tripolyphosphate, manganese and iodide ions. 3VWA ; 2.2 ; Crystal structure of Cex1p 8T9O ; 2.7 ; Crystal structure of CF, a heterohexamer of the 4-oxalocrotonate tautomerase (4-OT) family 5ZAB ; 2.147 ; Crystal structure of cf3-aequorin 3FFC ; 2.8 ; Crystal Structure of CF34 TCR in complex with HLA-B8/FLR 2HB0 ; 2.3 ; Crystal Structure of CfaE, the Adhesive Subunit of CFA/I Fimbria of Enterotoxigenic Escherichia coli 6B02 ; 2.82 ; Crystal structure of CfFPPS2 (apo form), a lepidopteran type-II farnesyl diphosphate synthase 6B06 ; 2.6 ; Crystal structure of CfFPPS2, a lepidopteran type-II farnesyl diphosphate synthase, complexed with IPP and [2-(1-methylpyridin-2-yl)-1-phosphono-ethyl]phosphonic acid (inhibitor 1b) 6B07 ; 1.98 ; Crystal structure of CfFPPS2, a lepidopteran type-II farnesyl diphosphate synthase, complexed with [1-phosphono-2-(1-propylpyridin-2-yl)ethyl]phosphonic acid (inhibitor 1d) 6B04 ; 1.83 ; Crystal structure of CfFPPS2, a lepidopteran type-II farnesyl diphosphate synthase, complexed with [2-(1-methylpyridin-2-yl)-1-phosphono-ethyl]phosphonic acid (inhibitor 1b) 3Q2S ; 2.9 ; Crystal Structure of CFIm68 RRM/CFIm25 complex 3Q2T ; 3.061 ; Crystal Structure of CFIm68 RRM/CFIm25/RNA complex 7JQX ; 2.2 ; Crystal structure of Cfl1 wild-type from Burkholderia cenocepacia 7JQY ; 2.15 ; Crystal structure of Cfl1-D123S from Burkholderia cenocepacia 7JQZ ; 2.2 ; Crystal structure of Cfl2 wild-type from Burkholderia cenocepacia 4E34 ; 1.395 ; Crystal structure of CFTR Associated Ligand (CAL) PDZ domain bound to iCAL36 (ANSRWPTSII) peptide 4E35 ; 1.4 ; Crystal structure of CFTR Associated Ligand (CAL) PDZ domain bound to iCAL36-L (ANSRWPTSIL) peptide 3N4H ; 2.02 ; Crystal structure of Cg10062 inactivated by (S)-oxirane-2-carboxylate 3N4D ; 2.54 ; Crystal structure of Cg10062 inactivated by(R)-oxirane-2-carboxylate 4DBH ; 1.94 ; Crystal structure of Cg1458 with inhibitor 3MA8 ; 2.64 ; Crystal structure of CGD1_2040, a pyruvate kinase from cryptosporidium Parvum 6MF9 ; 2.037 ; Crystal structure of CGD4-650 with compound BI2536 3EB0 ; 2.65 ; Crystal Structure of cgd4_240 from cryptosporidium Parvum in complex with indirubin E804 6KAW ; 2.01 ; Crystal structure of CghA 6KBC ; 1.99 ; Crystal structure of CghA with Sch210972 3ENH ; 3.6 ; Crystal structure of Cgi121/Bud32/Kae1 complex 3FOK ; 2.5 ; Crystal Structure of Cgl0159 From Corynebacterium glutamicum (Brevibacterium flavum). Northeast Structural Genomics Target CgR115 5ID8 ; 1.1 ; Crystal structure of CGL1 from Crassostrea gigas, ligand free form (CGL1/FREE) 8JE9 ; 1.0 ; Crystal structure of CGL1 from Crassostrea gigas, mannobiose-bound form (CGL1/Man(alpha)1-2Man) 5IDA ; 1.1 ; Crystal structure of CGL1 from Crassostrea gigas, mannose-bound form (CGL1/MAN) 5IDB ; 1.0 ; Crystal structure of CGL1 from Crassostrea gigas, mannose-bound form (CGL1/MAN2) 8JEB ; 1.3 ; Crystal structure of CGL1 from Crassostrea gigas, mannotetraose-bound form (CGL1/Man(alpha)1-2Man(alpha)1-2Man(alpha)1-6Man) 8JEA ; 0.97 ; Crystal structure of CGL1 from Crassostrea gigas, mannotriose-bound form (CGL1/Man(alpha)1-2Man(alpha)1-2Man) 3OD0 ; 2.9 ; Crystal structure of cGMP bound cGMP-dependent protein kinase(92-227) 7MBJ ; 1.26 ; Crystal structure of cGMP dependent protein kinase I alpha (PKG I alpha)CNB-A domain with R177Q mutation 7T4T ; 2.08 ; Crystal Structure of cGMP-dependent Protein Kinase 7T4U ; 1.99 ; Crystal Structure of cGMP-dependent Protein Kinase 7T4V ; 2.28 ; Crystal Structure of cGMP-dependent Protein Kinase 7T4W ; 2.23 ; Crystal Structure of cGMP-dependent Protein Kinase 6C0T ; 1.98 ; Crystal structure of cGMP-dependent protein kinase Ialpha (PKG Ialpha) catalytic domain bound with N46 6BG2 ; 1.83 ; Crystal structure of cGMP-dependent protein kinase Ialpha (PKG Ialpha) catalytic domain in AMP-PNP bound state 6BDL ; 1.96 ; Crystal structure of cGMP-dependent protein kinase Ialpha (PKG Ialpha) catalytic domain in apo state 3SHR ; 2.5 ; Crystal Structure of cGMP-dependent Protein Kinase Reveals Novel Site of Interchain Communication 7XLF ; 1.85 ; Crystal structure of CH3-THF complex of methylenetetrahydrofolate reductase from Sphingobium sp. SYK-6 6L7R ; 1.84813 ; Crystal structure of Chaetomium GCP3 N-terminus and Mozart1 6L82 ; 2.24104 ; Crystal structure of Chaetomium GCP5 N-terminus and Mozart1 7T6W ; 2.6 ; Crystal structure of Chaetomium Glucosidase I (apo) 7Q5N ; 2.5 ; Crystal structure of Chaetomium thermophilum Ahp1-Urm1 complex 5M59 ; 3.2 ; Crystal structure of Chaetomium thermophilum Brr2 helicase core in complex with Prp8 Jab1 domain 7Q6A ; 1.1 ; Crystal structure of Chaetomium thermophilum C30S Ahp1 in post-reaction state 7Q69 ; 1.85 ; Crystal structure of Chaetomium thermophilum C30S Ahp1 in the pre-reaction state 6B4G ; 2.648 ; Crystal structure of Chaetomium thermophilum Gle1 CTD-Nup42 GBM complex 6B4H ; 2.17 ; Crystal structure of Chaetomium thermophilum Gle1 CTD-Nup42 GBM-IP6 complex 6ZQ6 ; 2.3 ; Crystal structure of Chaetomium thermophilum Glycerol Kinase in complex with glycerol in P21212 space group 6ZQ4 ; 2.02 ; Crystal structure of Chaetomium thermophilum Glycerol Kinase in complex with substrate in P1 space group 6ZQ7 ; 2.421 ; Crystal structure of Chaetomium thermophilum Glycerol Kinase in I222 space group 6ZQ5 ; 2.14 ; Crystal structure of Chaetomium thermophilum Glycerol Kinase in P2221 space group 6ZQ8 ; 2.38 ; Crystal structure of Chaetomium thermophilum Glycerol Kinase in P3221 space group 6QP0 ; 2.409 ; Crystal structure of Chaetomium thermophilum Kti12 in complex with ADP-AlF3 4BR6 ; 2.0 ; Crystal structure of Chaetomium thermophilum MnSOD 6G7E ; 3.2129 ; Crystal structure of Chaetomium thermophilum Mot1 (E1434Q, 1837-1886 deletion mutant) 6ZMP ; 1.57 ; Crystal structure of Chaetomium thermophilum Naa20 in complex with a bisubstrate analogue 5HB2 ; 3.3 ; Crystal Structure of Chaetomium thermophilum Nic96 SOL 5HB3 ; 2.65 ; Crystal structure of Chaetomium thermophilum Nic96 SOL-Nup53 complex 5HB5 ; 1.5 ; Crystal structure of Chaetomium thermophilum Nup145N APD 5HB6 ; 1.3 ; Crystal structure of Chaetomium thermophilum Nup145N APD T994A mutant fused to Nup145C N 5HAY ; 2.8 ; Crystal structure of Chaetomium thermophilum Nup170 CTD Y905M L1007M L1183M V1292M mutant 5HB0 ; 3.5 ; Crystal structure of Chaetomium thermophilum Nup170 CTD-Nup145N complex 5HAX ; 2.1 ; Crystal structure of Chaetomium thermophilum Nup170 NTD-Nup53 complex 5HB1 ; 4.007 ; Crystal structure of Chaetomium thermophilum Nup170 SOL 7MVW ; 2.76 ; Crystal structure of Chaetomium thermophilum Nup188 NTD (residues 1-1134) 5CWU ; 3.35 ; Crystal structure of Chaetomium thermophilum Nup188 TAIL domain 5HB4 ; 3.2 ; Crystal structure of Chaetomium thermophilum Nup192 5CWV ; 3.155 ; Crystal structure of Chaetomium thermophilum Nup192 TAIL domain 5HB7 ; 0.819 ; Crystal structure of Chaetomium thermophilum Nup53 RRM 5HB8 ; 1.7 ; Crystal structure of Chaetomium thermophilum Nup53 RRM (space group P3121) 5CWT ; 2.5 ; Crystal structure of Chaetomium thermophilum Nup57 5EF5 ; 4.3 ; Crystal structure of Chaetomium thermophilum Raptor 6ZPN ; 3.5 ; Crystal structure of Chaetomium thermophilum Raptor 5D5W ; 2.35 ; Crystal structure of Chaetomium thermophilum Skn7 with HSE DNA 5D5X ; 2.4 ; Crystal structure of Chaetomium thermophilum Skn7 with SSRE DNA 5WY3 ; 3.2 ; Crystal structure of Chaetomium thermophilum Utp10 middle domain 5WY4 ; 2.499 ; Crystal structure of Chaetomium thermophilum Utp10 N-terminal domain 5WYL ; 2.638 ; Crystal structure of Chaetomium thermophilum Utp10 N-terminal domain in complex with Utp17 C-terminal helices 6L3Q ; 2.702 ; Crystal structure of Chaetomium thermophilum Utp15 C terminal domain 5W8M ; 1.52 ; Crystal structure of Chaetomium thermophilum Vps29 6XS8 ; 1.9501 ; Crystal structure of Chaetomium thermophilum Vps29 complexed with RaPID-derived cyclic peptide RT-D3 7Q68 ; 1.75 ; Crystal structure of Chaetomium thermophilum wild-type Ahp1 2NNR ; 1.7 ; Crystal structure of chagasin, cysteine protease inhibitor from Trypanosoma cruzi 2H7W ; 1.7 ; Crystal structure of Chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi 5WL7 ; 1.9 ; Crystal structure of chalcone isomerase engineered from ancestral inference (ancCHI*) 5WL3 ; 2.4 ; Crystal structure of chalcone isomerase engineered from ancestral inference (ancR2) 5WL4 ; 2.0 ; Crystal structure of chalcone isomerase engineered from ancestral inference (ancR3) 5WL5 ; 1.513 ; Crystal structure of chalcone isomerase engineered from ancestral inference (ancR5) 5WL6 ; 1.6 ; Crystal structure of chalcone isomerase engineered from ancestral inference (AncR7) 5WL8 ; 1.58 ; Crystal structure of chalcone isomerase engineered from ancestral inference (epR4) 5WKR ; 1.4 ; Crystal structure of chalcone isomerase engineered from ancestral inference complexed with naringenin (ancCC) 5WKS ; 1.5 ; Crystal structure of chalcone isomerase engineered from ancestral inference complexed with naringenin (ancR1) 6CJO ; 2.4 ; Crystal Structure of Chalcone Isomerase from Medicago Sativa with the G95S mutation. 6CJN ; 2.4 ; Crystal Structure of Chalcone Isomerase from Medicago Sativa with the G95T mutation 6MS8 ; 1.9 ; Crystal Structure of Chalcone Isomerase from Medicago Truncatula Complexed with (2S) Naringenin 6DXB ; 1.549 ; Crystal structure of chalcone synthase from Arabidopsis thaliana 6DXD ; 1.59 ; Crystal structure of chalcone synthase from Arabidopsis thaliana - C347S mutant 6DXE ; 1.608 ; Crystal structure of chalcone synthase from Arabidopsis thaliana - M64I F170S G173A S213G Q217A T270V C347S mutant 6DX9 ; 1.5 ; Crystal structure of chalcone synthase from Equisetum arvense 6DX7 ; 2.61 ; Crystal structure of chalcone synthase from Physcomitrella patens 6DXA ; 2.01 ; Crystal structure of chalcone synthase from Pinus sylvestris 6DX8 ; 1.7 ; Crystal structure of chalcone synthase from Selaginella moellendorffii 6DXF ; 1.55 ; Crystal structure of chalcone synthase from Selaginella moellendorffii - hydrogen peroxide treated 6DXC ; 1.54 ; Crystal structure of chalcone synthase from Selaginella moellendorffii - S340C mutant 8DLD ; 1.85 ; Crystal structure of chalcone-isomerase like protein from Physcomitrella patens (PpCHIL-A) 8DLC ; 1.9 ; Crystal structure of chalcone-isomerase like protein from Vitis vinifera (VvCHIL) 5W63 ; 2.436 ; Crystal structure of channel catfish BAX 3G48 ; 1.5 ; Crystal structure of chaperone CsaA form Bacillus anthracis str. Ames 5DLB ; 1.77 ; Crystal structure of chaperone EspG3 of ESX-3 type VII secretion system from Mycobacterium marinum M 1N57 ; 1.6 ; Crystal Structure of Chaperone Hsp31 3DPA ; 2.5 ; CRYSTAL STRUCTURE OF CHAPERONE PROTEIN PAPD REVEALS AN IMMUNOGLOBULIN FOLD 5DA8 ; 3.0 ; Crystal structure of chaperonin GroEL from 1IOK ; 3.2 ; CRYSTAL STRUCTURE OF CHAPERONIN-60 FROM PARACOCCUS DENITRIFICANS 5DHD ; 1.27 ; Crystal structure of ChBD2 from Thermococcus kodakarensis KOD1 5DHE ; 1.6 ; Crystal structure of ChBD3 from Thermococcus kodakarensis KOD1 7VI8 ; 1.83 ; Crystal structure of ChbG 3EIR ; 2.101 ; Crystal structure of CHBP, a Cif Homologue from Burkholderia pseudomallei 1B3Q ; 2.6 ; CRYSTAL STRUCTURE OF CHEA-289, A SIGNAL TRANSDUCING HISTIDINE KINASE 3IIC ; 2.13 ; Crystal structure of CheC-like superfamily protein (YP_001095400.1) from Shewanella SP. PV-4 at 2.13 A resolution 2WMQ ; 2.48 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMR ; 2.43 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMS ; 2.7 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMT ; 2.55 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMU ; 2.6 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMV ; 2.009 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMW ; 2.43 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2WMX ; 2.45 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2XEY ; 2.7 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2XEZ ; 2.25 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2XF0 ; 2.4 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM3 ; 2.007 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM4 ; 2.35 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM5 ; 2.03 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM6 ; 2.01 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM7 ; 1.81 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YM8 ; 2.07 ; Crystal structure of checkpoint kinase 1 (Chk1) in complex with inhibitors 2YCQ ; 2.05 ; Crystal structure of checkpoint kinase 2 in complex with inhibitor PV1115 2YCF ; 1.77 ; Crystal Structure of Checkpoint Kinase 2 in complex with Inhibitor PV1531 2YCR ; 2.2 ; Crystal structure of checkpoint kinase 2 in complex with inhibitor PV976 2YCS ; 2.35 ; Crystal structure of checkpoint kinase 2 in complex with PV788 2HXL ; 1.8 ; crystal structure of Chek1 in complex with inhibitor 1 2QHN ; 1.7 ; Crystal Structure of Chek1 in Complex with Inhibitor 1a 2HXQ ; 2.0 ; crystal structure of Chek1 in complex with inhibitor 2 2HOG ; 1.9 ; crystal structure of Chek1 in complex with inhibitor 20 2HY0 ; 1.7 ; crystal structure of chek1 in complex with inhibitor 22 2QHM ; 2.0 ; crystal structure of Chek1 in complex with inhibitor 2a 2R0U ; 1.9 ; Crystal Structure of Chek1 in Complex with Inhibitor 54 8H98 ; 2.5 ; Crystal structure of chemically modified E. coli ThrS catalytic domain 1 8H9A ; 1.9 ; Crystal structure of chemically modified E. coli ThrS catalytic domain 2 8H9B ; 2.23 ; Crystal structure of chemically modified E. coli ThrS catalytic domain 3 8H9C ; 2.15 ; Crystal structure of chemically modified E. coli ThrS catalytic domain 4 3HLO ; 1.6 ; Crystal structure of chemically synthesized 'covalent dimer' [Gly51/D-Ala51']HIV-1 protease 3KA2 ; 1.4 ; Crystal structure of chemically synthesized 203 amino acid 'covalent dimer' [L-Ala;Gly51']HIV-1 protease molecule complexed with MVT-101 reduced isostere inhibitor at 1.4 A resolution 4GLS ; 1.6 ; Crystal Structure of Chemically Synthesized Heterochiral {D-Protein Antagonist plus VEGF-A} Protein Complex in space group P21 4GLN ; 1.6 ; Crystal Structure of Chemically Synthesized Heterochiral {D-Protein Antagonist plus VEGF-A} Protein Complex in space group P21/n 5HHD ; 2.1 ; Crystal Structure of Chemically Synthesized Heterochiral {RFX037 plus VEGF-A} Protein Complex in space group P21 5HHC ; 2.1 ; Crystal Structure of Chemically Synthesized Heterochiral {RFX037 plus VEGF-A} Protein Complex in space group P21/n 3HAU ; 1.3 ; Crystal structure of chemically synthesized HIV-1 protease with reduced isostere MVT-101 inhibitor 4I6O ; 2.14 ; Crystal structure of chemically synthesized human anaphylatoxin C3a 4HHF ; 1.8 ; Crystal Structure of chemically synthesized scorpion alpha-toxin OD1 3HDK ; 1.8 ; Crystal structure of chemically synthesized [Aib51/51']HIV-1 protease 3HBO ; 1.71 ; Crystal structure of chemically synthesized [D-Ala51/51']HIV-1 protease 2P0B ; 1.74 ; Crystal structure of chemically-reduced E.coli nrfB 1F2L ; 2.0 ; CRYSTAL STRUCTURE OF CHEMOKINE DOMAIN OF FRACTALKINE 8F7N ; 2.7 ; Crystal structure of chemoreceptor McpZ ligand sensing domain 5XLY ; 1.763 ; Crystal structure of CheR1 in complex with c-di-GMP-bound MapZ 1U8T ; 1.5 ; Crystal structure of CheY D13K Y106W alone and in complex with a FliM peptide 3FFT ; 2.21 ; Crystal Structure of CheY double mutant F14E, E89R complexed with BeF3- and Mn2+ 2FMF ; 1.998 ; Crystal structure of CheY in complex with CheZ 200-214 solved from a F432 crystal grown in Hepes (pH 7.5) 2FMI ; 2.302 ; Crystal structure of CheY in complex with CheZ 200-214 solved from a F432 crystal grown in Tris (pH 8.4) 2FLK ; 2.1 ; Crystal structure of CheY in complex with CheZ(200-214) solved from a F432 crystal grown in CAPS (pH 10.5) 3H1F ; 2.2 ; Crystal structure of CheY mutant D53A of Helicobacter pylori 3H1G ; 1.7 ; Crystal structure of Chey mutant T84A of helicobacter pylori 3GWG ; 1.8 ; Crystal structure of CheY of Helicobacter pylori 3F7N ; 2.0 ; Crystal Structure of CheY triple mutant F14E, N59M, E89L complexed with BeF3- and Mn2+ 3FGZ ; 2.0 ; Crystal Structure of CheY triple mutant F14E, N59M, E89R complexed with BeF3- and Mn2+ 3FFX ; 2.01 ; Crystal Structure of CheY triple mutant F14E, N59R, E89H complexed with BeF3- and Mn2+ 3FFW ; 2.0 ; Crystal Structure of CheY triple mutant F14Q, N59K, E89Y complexed with BeF3- and Mn2+ 1D4Z ; 1.9 ; CRYSTAL STRUCTURE OF CHEY-95IV, A HYPERACTIVE CHEY MUTANT 2PMC ; 2.688 ; Crystal Structure of CheY-Mg(2+) in Complex with CheZ(C15) Peptide solved from a P1 Crystal 2PL9 ; 2.6 ; Crystal Structure of CheY-Mg(2+)-BeF(3)(-) in Complex with CheZ(C19) Peptide solved from a P2(1)2(1)2 Crystal 1EM8 ; 2.1 ; Crystal structure of chi and psi subunit heterodimer from DNA POL III 1ZVN ; 2.16 ; Crystal structure of chick MN-cadherin EC1 6LHH ; 2.71 ; Crystal structure of chicken 8mer-BF2*1501 1U06 ; 1.49 ; crystal structure of chicken alpha-spectrin SH3 domain 6RWC ; 2.143 ; crystal structure of chicken beta-microseminoprotein-like 3 (MSMB3) 5WDD ; 1.799 ; Crystal structure of chicken BOK 1QH4 ; 1.41 ; CRYSTAL STRUCTURE OF CHICKEN BRAIN-TYPE CREATINE KINASE AT 1.41 ANGSTROM RESOLUTION 2OIQ ; 2.07 ; Crystal Structure of chicken c-Src kinase domain in complex with the cancer drug imatinib. 4JZ4 ; 1.56 ; Crystal structure of chicken c-Src-SH3 domain: monomeric form 6LHG ; 2.8 ; Crystal structure of chicken cCD8aa/pBF2*04:01 6LHF ; 2.7 ; Crystal structure of chicken cCD8aa/pBF2*15:01 3JVG ; 2.2 ; Crystal Structure of chicken CD1-1 5EB9 ; 2.006 ; Crystal Structure Of Chicken CD8aa Homodimer 7X85 ; 2.639 ; Crystal structure of chicken CENP-C Cupin domain 5E53 ; 2.497 ; Crystal structure of chicken CNTN1 FN1-FN3 domains 2WRY ; 1.58 ; Crystal structure of chicken cytokine interleukin 1 beta 7Y6A ; 1.5 ; Crystal structure of Chicken Egg Lysozyme 8H3W ; 2.39 ; Crystal structure of chicken egg lysozyme at ambient temperature 4TUN ; 1.925 ; Crystal structure of Chicken egg white lysozyme adduct with Organophosphorus pesticide Monochrotophos 2YMZ ; 1.75 ; Crystal structure of chicken Galectin 2 5VH1 ; 2.3 ; Crystal Structure of Chicken Gamma S Crystallin 3NJ5 ; 1.67 ; Crystal structure of chicken IL-1 hydrophobic cavity mutant 157 5JBJ ; 3.58 ; Crystal structure of chicken LGP2 with 5'p 12-mer dsRNA at 3.6 A resolution 5JB2 ; 2.2 ; Crystal structure of chicken LGP2 with 5'ppp 10-mer dsRNA and ADP-AlF4-Mg2+ at 2.2 A resolution. 5JBG ; 2.0 ; Crystal structure of chicken LGP2 with 5'ppp 26-mer hairpin RNA with 3' GG overhang and ADP-AlF4-Mg2+ at 2.0 A resolution. 1TW4 ; 2.0 ; Crystal Structure of Chicken Liver Basic Fatty Acid Binding Protein (Bile Acid Binding Protein) Complexed With Cholic Acid 3MTX ; 2.0 ; Crystal structure of chicken MD-1 3MU3 ; 2.4 ; Crystal structure of chicken MD-1 complexed with lipid IVa 5JC3 ; 2.6 ; Crystal structure of chicken MDA5 with 5'p 10-mer dsRNA and ADP-Mg2+ at 2.6 A resolution (monoclinic form, twinned). 5JCF ; 2.6 ; Crystal structure of chicken MDA5 with 5'p 10-mer dsRNA and ADP-Mg2+ at 2.6 A resolution (orthorhombic form). 5JCH ; 2.95 ; Crystal structure of chicken MDA5 with 5'p 10-mer dsRNA and ADP-Mg2+ at 2.95 A resolution (untwinned). 5JC7 ; 2.75 ; Crystal structure of chicken MDA5 with 5'p 24-mer dsRNA and ADP-Mg2+ at 2.75 A resolution. 6KVM ; 1.897 ; Crystal structure of Chicken MHC Class II for 1.9 angstrom 4PLM ; 2.801 ; Crystal Structure of Chicken Netrin-1 (LN-LE3) 4PLN ; 3.2 ; Crystal Structure of Chicken Netrin-1 (LN-LE3) complexed with mouse Neogenin (FN4-5) 4PLO ; 2.901 ; Crystal Structure of chicken Netrin-1 (LN-LE3) in complex with mouse DCC (FN4-5) 1PXU ; 2.2 ; Crystal structure of chicken NtA from a eukaryotic source at 2.2A resolution 7QR2 ; 1.64 ; Crystal structure of chicken Ovalbumin-related protein X 4PBV ; 2.5 ; Crystal structure of chicken receptor protein tyrosine phosphatase sigma in complex with TrkC 4PBW ; 3.05 ; Crystal structure of chicken receptor protein tyrosine phosphatase sigma in complex with TrkC 6HCE ; 2.5 ; Crystal structure of chicken riboflavin binding protein in ""Apo"" form at 2.5 A resolution 3HC2 ; 2.5 ; Crystal Structure of chicken sulfite oxidase mutant Tyr 322 Phe 3K6I ; 1.13 ; Crystal structure of chicken T-cadherin EC1 3K5S ; 2.9 ; Crystal structure of chicken T-cadherin EC1 EC2 6LIR ; 2.091 ; crystal structure of chicken TCR for 2.0 3PPE ; 2.1 ; Crystal structure of chicken VE-cadherin EC1-2 5H23 ; 2.2 ; Crystal structure of Chikungunya virus capsid protein 4TU0 ; 2.3 ; CRYSTAL STRUCTURE OF CHIKUNGUNYA VIRUS NSP3 MACRO DOMAIN IN COMPLEX WITH A 2'-5' OLIGOADENYLATE TRIMER 5BQ7 ; 2.738 ; Crystal structure of chikungunya virus-human Fab 5F-10 fragment 6VUQ ; 1.64 ; Crystal structure of CHIKV nsP3 macrodomain soaked with ADP-ribose 7OA3 ; 2.8 ; Crystal structure of Chili RNA aptamer in complex with DMHBO+ (Iridium hexammine co-crystallized form) 7OAV ; 2.99 ; Crystal structure of Chili RNA aptamer in complex with DMHBO+ (Iridium III hexammine soaking crystal form) 2W3L ; 2.1 ; Crystal Structure of Chimaeric Bcl2-xL and Phenyl Tetrahydroisoquinoline Amide Complex 7XL1 ; 1.65 ; Crystal structure of chimeric 7D12-Vob nanobody at 1.65 Angstrom 3BKY ; 2.61 ; Crystal Structure of Chimeric Antibody C2H7 Fab in complex with a CD20 Peptide 3MBX ; 1.6 ; Crystal structure of chimeric antibody X836 3MM0 ; 2.7 ; Crystal structure of chimeric avidin 4ID4 ; 1.05 ; Crystal structure of chimeric beta-lactamase cTEM-17m 4R4S ; 1.1 ; Crystal structure of chimeric beta-lactamase cTEM-19m at 1.1 angstrom resolution 4R4R ; 1.2 ; Crystal structure of chimeric beta-lactamase cTEM-19m at 1.2 angstrom resolution 5OGO ; 0.99 ; Crystal structure of chimeric carbonic anhydrase I with 3-(Benzylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 4Q06 ; 1.15 ; Crystal structure of chimeric carbonic anhydrase IX with inhibitor 4Q07 ; 1.15 ; Crystal structure of chimeric carbonic anhydrase IX with inhibitor 7NZS ; 1.5 ; Crystal structure of chimeric carbonic anhydrase VA with 2,3,5,6-tetrafluoro-4-(propylsulfanyl)benzenesulfonamide 7NZX ; 1.33 ; Crystal structure of chimeric carbonic anhydrase VA with 2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 7NZR ; 1.284 ; Crystal structure of chimeric carbonic anhydrase VA with 2-(cyclooctylamino)-3,5,6-trifluoro-4-[(2-hydroxyethyl)sulfanyl]benzenesulfonamide 7NZU ; 1.24 ; Crystal structure of chimeric carbonic anhydrase VA with 3-(benzylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 7NZT ; 1.35 ; Crystal structure of chimeric carbonic anhydrase VA with 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 7NZW ; 1.45 ; Crystal structure of chimeric carbonic anhydrase VA with 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide 6QL3 ; 1.35 ; Crystal structure of chimeric carbonic anhydrase VI with 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6QL1 ; 1.42 ; Crystal structure of chimeric carbonic anhydrase VI with 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide 6QL2 ; 1.3 ; Crystal structure of chimeric carbonic anhydrase VI with ethoxzolamide. 6YH4 ; 1.3 ; Crystal structure of chimeric carbonic anhydrase XII with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide 6YHA ; 1.25 ; Crystal structure of chimeric carbonic anhydrase XII with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide 6YH9 ; 1.55 ; Crystal structure of chimeric carbonic anhydrase XII with 2,3,6-trifluoro-5-{[(1R,2S)-2-hydroxy-1,2-diphenylethyl]amino}-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6YH6 ; 1.4 ; Crystal structure of chimeric carbonic anhydrase XII with 2-(Cyclooctylamino)-3,5,6-trifluorobenzenesulfonamide 6YH5 ; 1.2 ; Crystal structure of chimeric carbonic anhydrase XII with 2-Chloro-4-[(pyrimidin-2-ylsulfanyl)acetyl]benzenesulfonamide 6YH8 ; 1.2 ; Crystal structure of chimeric carbonic anhydrase XII with 2-[(1S)-1,2,3,4-Tetrahydronapthalen-1-ylamino)-3,5,6-trifluorobenzenesulfonamide 6YHC ; 1.28 ; Crystal structure of chimeric carbonic anhydrase XII with 3-(benzylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6YH7 ; 1.12 ; Crystal structure of chimeric carbonic anhydrase XII with 3-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6YHB ; 1.65 ; Crystal structure of chimeric carbonic anhydrase XII with 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide 4Q08 ; 1.07 ; Crystal structure of chimeric carbonic anhydrase XII with inhibitor 4Q09 ; 1.2 ; Crystal structure of chimeric carbonic anhydrase XII with inhibitor 6IFW ; 2.95 ; crystal structure of chimeric construct of KsgA with loop 1 from erm 3WYE ; 1.58 ; Crystal Structure of chimeric engineered (2S,3S)-butanediol dehydrogenase complexed with NAD+ 4JDT ; 3.26 ; Crystal structure of chimeric germ-line precursor of NIH45-46 Fab in complex with gp120 of 93TH057 HIV-1 6D0X ; 1.849 ; Crystal structure of chimeric H.2140 / K.1210 Fab in complex with circumsporozoite protein NANP3 7U8M ; 5.39 ; Crystal structure of chimeric hemagglutinin cH15/3 in complex with broad protective antibodies 31.a.83 and FluA-20 7U8L ; 4.56 ; Crystal structure of chimeric hemagglutinin cH15/3 in complex with broad protective antibody 31.a.83 7U8J ; 4.9 ; Crystal structure of chimeric hemagglutinin cH4/3 in complex with broad protective antibody 31.a.83 6IFX ; 3.8 ; Crystal structure of chimeric KsgA with loop 12 from Erm 7C0I ; 2.4 ; Crystal structure of chimeric mutant of E3L in complex with Z-DNA 7C0J ; 2.75 ; Crystal structure of chimeric mutant of GH5 in complex with Z-DNA 7U0N ; 2.61 ; Crystal structure of chimeric omicron RBD (strain BA.1) complexed with human ACE2 7UFL ; 2.84 ; Crystal structure of chimeric omicron RBD (strain BA.2) complexed with chimeric mouse ACE2 7UFK ; 2.38 ; Crystal structure of chimeric omicron RBD (strain BA.2) complexed with human ACE2 8SPH ; 2.71 ; Crystal structure of chimeric omicron RBD (strain XBB.1) complexed with human ACE2 8SPI ; 3.06 ; Crystal structure of chimeric omicron RBD (strain XBB.1.5) complexed with human ACE2 3JWR ; 2.994 ; Crystal structure of chimeric PDE5/PDE6 catalytic domain complexed with 3-isobutyl-1-methylxanthine (IBMX) and PDE6 gamma-subunit inhibitory peptide 70-87. 3JWQ ; 2.87 ; Crystal structure of chimeric PDE5/PDE6 catalytic domain complexed with sildenafil 1V6Y ; 2.2 ; Crystal Structure Of chimeric Xylanase between Streptomyces Olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex 2OBE ; 2.1 ; Crystal Structure of Chimpanzee Adenovirus (Type 68/Simian 25) Major Coat Protein Hexon 2VSD ; 1.82 ; crystal structure of CHIR-AB1 3PA0 ; 1.6 ; Crystal Structure of Chiral Gamma-PNA with Complementary DNA Strand: Insight Into the Stability and Specificity of Recognition an Conformational Preorganization 2CWR ; 1.7 ; Crystal structure of chitin biding domain of chitinase from Pyrococcus furiosus 8I5K ; 1.219 ; Crystal structure of chitin oligosaccharide binding protein from Vibrio cholera in complex with chitotriose. 8I5J ; 1.602 ; Crystal structure of chitin oligosaccharide binding protein from Vibrio cholera. 4TX7 ; 1.55 ; Crystal structure of chitinase (GH19) from Vigna unguiculata 7FBT ; 1.9 ; Crystal structure of chitinase (RmChi1) from Rhizomucor miehei (sp p32 2 1, MR) 5XWF ; 2.581 ; Crystal structure of chitinase (RmChi1) from Rhizomucor miehei (SP3221/SAD) 4W5U ; 2.771 ; Crystal structure of chitinase 40 from thermophilic bacteria Streptomyces thermoviolaceus. 1FFQ ; 1.9 ; CRYSTAL STRUCTURE OF CHITINASE A COMPLEXED WITH ALLOSAMIDIN 1EDQ ; 1.55 ; CRYSTAL STRUCTURE OF CHITINASE A FROM S. MARCESCENS AT 1.55 ANGSTROMS 1EIB ; 1.8 ; CRYSTAL STRUCTURE OF CHITINASE A MUTANT D313A COMPLEXED WITH OCTA-N-ACETYLCHITOOCTAOSE (NAG)8. 1EHN ; 1.9 ; CRYSTAL STRUCTURE OF CHITINASE A MUTANT E315Q COMPLEXED WITH OCTA-N-ACETYLCHITOOCTAOSE (NAG)8. 1FFR ; 1.8 ; CRYSTAL STRUCTURE OF CHITINASE A MUTANT Y390F COMPLEXED WITH HEXA-N-ACETYLCHITOHEXAOSE (NAG)6 1CNS ; 1.91 ; CRYSTAL STRUCTURE OF CHITINASE AT 1.91A RESOLUTION 1WVU ; 2.45 ; Crystal structure of chitinase C from Streptomyces griseus HUT6037 2DBT ; 3.14 ; Crystal structure of chitinase C from Streptomyces griseus HUT6037 1WVV ; 2.0 ; Crystal structure of chitinase C mutant E147Q 5GZT ; 2.1 ; Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery 5GZU ; 2.03 ; Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery 5GZV ; 2.61 ; Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery 4NZC ; 1.45 ; Crystal structure of Chitinase D from Serratia proteamaculans at 1.45 Angstrom resolution 4Q22 ; 1.93 ; Crystal structure of Chitinase D from Serratia proteamaculans in complex with N-acetyl glucosamine at 1.93 Angstrom resolution 4PTM ; 1.7 ; Crystal Structure of Chitinase D from Serratia proteamaculans in complex with N-acetyl glucosamine, a hydrolyzed product of hexasaccharide at 1.7 Angstrom resolution 5JH8 ; 1.018 ; Crystal structure of chitinase from Chromobacterium violaceum ATCC 12472 5GQB ; 2.7 ; Crystal structure of chitinase-h from O. furnacalis in complex with chitohepatose 7VRG ; 2.4 ; Crystal structure of chitinase-h from O. furnacalis in complex with Lynamicin B 5GPR ; 3.23 ; Crystal structure of chitinase-h from Ostrinia furnacalis 4URI ; 1.85 ; Crystal structure of chitinase-like agglutinin RobpsCRA from Robinia pseudoacacia 7XGQ ; 1.5 ; Crystal structure of chitosanase crystallized by ammonium sulfate with glycan 7BKN ; 2.74 ; Crystal structure of CHK1 complex with adenine 7BKO ; 2.3 ; Crystal structure of CHK1 complex with compound 9 1ZLT ; 1.74 ; Crystal Structure of Chk1 Complexed with a Hymenaldisine Analog 3TKH ; 1.79 ; Crystal structure of Chk1 in complex with inhibitor S01 3TKI ; 1.6 ; Crystal structure of Chk1 in complex with inhibitor S25 7AKO ; 1.8 ; Crystal structure of CHK1 kinase domain in complex with a CLASPIN phosphopeptide 7AKM ; 1.93 ; Crystal structure of CHK1 kinase domain in complex with ATPyS 3F9N ; 1.9 ; Crystal structure of chk1 kinase in complex with inhibitor 38 2YWP ; 2.9 ; Crystal Structure of CHK1 with a Urea Inhibitor 2AYP ; 2.9 ; Crystal Structure of CHK1 with an Indol Inhibitor 7BJE ; 1.8 ; Crystal structure of CHK1-10pt-mutant complex with adenine 7BJM ; 2.3 ; Crystal structure of CHK1-10pt-mutant complex with compound 10 7BJO ; 2.3 ; Crystal structure of CHK1-10pt-mutant complex with compound 13 7BJR ; 1.9 ; Crystal structure of CHK1-10pt-mutant complex with compound 18 7BJX ; 2.4 ; Crystal structure of CHK1-10pt-mutant complex with compound 26 7BJD ; 2.0 ; Crystal structure of CHK1-10pt-mutant complex with compound 3 7BK1 ; 2.0 ; Crystal structure of CHK1-10pt-mutant complex with compound 32 7BK2 ; 2.0 ; Crystal structure of CHK1-10pt-mutant complex with compound 44 7BK3 ; 2.0 ; Crystal structure of CHK1-10pt-mutant complex with compound 45 7BJH ; 1.8 ; Crystal structure of CHK1-10pt-mutant complex with compound 8 7BJJ ; 1.8 ; Crystal structure of CHK1-10pt-mutant complex with compound 9 2WTC ; 3.0 ; CRYSTAL STRUCTURE OF CHK2 IN COMPLEX WITH AN INHIBITOR 2WTD ; 2.75 ; Crystal structure of Chk2 in complex with an inhibitor 2WTI ; 2.5 ; CRYSTAL STRUCTURE OF CHK2 IN COMPLEX WITH AN INHIBITOR 2WTJ ; 2.1 ; CRYSTAL STRUCTURE OF CHK2 IN COMPLEX WITH AN INHIBITOR 2XBJ ; 2.3 ; Crystal Structure of Chk2 in complex with an inhibitor 2W0J ; 2.05 ; Crystal structure of Chk2 in complex with NSC 109555, a specific inhibitor 6MRN ; 2.29 ; Crystal Structure of ChlaDUB2 DUB domain 6OAM ; 2.503 ; Crystal Structure of ChlaDUB2 DUB domain 5KBC ; 2.706 ; Crystal structure of Chlamydia trachomatis DsbA 4Q9N ; 1.795 ; Crystal structure of Chlamydia trachomatis enoyl-ACP reductase (FabI) in complex with NADH and AFN-1252 6WYC ; 1.5 ; Crystal Structure of Chlamydia trachomatis Glyceraldehyde 3-phosphate dehydrogenase 6X2E ; 1.8 ; Crystal Structure of Chlamydia trachomatis mixed (apo/holo) Glyceraldehyde 3-phosphate dehydrogenase 5N4A ; 1.79 ; Crystal structure of Chlamydomonas IFT80 5YXM ; 1.545 ; Crystal structure of Chlamydomonas Outer Arm Dynein Light Chain 1 6A8D ; 2.34 ; Crystal Structure of Chlamydomonas reinhardtii ARF 7B2N ; 2.36 ; Crystal structure of Chlamydomonas reinhardtii chloroplastic Fructose bisphosphate aldolase 7ZY7 ; 1.98 ; Crystal structure of Chlamydomonas reinhardtii chloroplastic phosphoglycerate kinase 7B2O ; 3.09 ; Crystal structure of Chlamydomonas reinhardtii chloroplastic sedoheptulose-1,7-bisphosphatase 7ZUV ; 3.11 ; Crystal structure of Chlamydomonas reinhardtii chloroplastic sedoheptulose-1,7-bisphosphatase in reducing conditions 5XFT ; 2.46 ; Crystal structure of Chlamydomonas reinhardtii dehydroascorbate reductase 6E18 ; 2.6 ; Crystal structure of Chlamydomonas reinhardtii HAP2 ectodomain provides structural insights of functional loops in green algae. 4J7R ; 2.3 ; Crystal Structure of Chlamydomonas reinhardtii Isoamylase 1 (ISA1) 4OKD ; 2.4 ; Crystal Structure of Chlamydomonas reinhardtii Isoamylase 1 (ISA1) in complex with maltoheptaose 7P9D ; 1.99 ; Crystal structure of Chlamydomonas reinhardtii NADPH Dependent Thioredoxin Reductase 1 domain 2JIG ; 1.85 ; Crystal structure of Chlamydomonas reinhardtii prolyl-4 hydroxylase type I complexed with zinc and pyridine-2,4-dicarboxylate 2VDH ; 2.3 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with a large- subunit C172S mutation 2VDI ; 2.65 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with a large- subunit C192S mutation 2V69 ; 2.8 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with a large- subunit mutation D473E 2V67 ; 2.0 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with a large- subunit supressor mutation T342I 2V6A ; 1.5 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with large- subunit mutations V331A, G344S 2V68 ; 2.3 ; Crystal structure of Chlamydomonas reinhardtii Rubisco with large- subunit mutations V331A, T342I 6CII ; 1.7 ; Crystal structure of Chlamydomonas reinhardtii THB1 in the cyanomet state 6BME ; 1.899 ; Crystal structure of Chlamydomonas reinhardtii THB4 6I1C ; 2.01 ; Crystal structure of Chlamydomonas reinhardtii thioredoxin f2 6I19 ; 1.378 ; Crystal structure of Chlamydomonas reinhardtii thioredoxin h1 6MFK ; 1.65 ; Crystal Structure of Chloramphenicol Acetyltransferase from Elizabethkingia anophelis 1Q23 ; 2.18 ; Crystal structure of Chloramphenicol acetyltransferase I complexed with Fusidic acid at 2.18 A resolution 3EEV ; 2.61 ; Crystal Structure of Chloramphenicol Acetyltransferase VCA0300 from Vibrio cholerae O1 biovar eltor 6AAE ; 1.641 ; Crystal structure of Chloramphenicol-Metabolizaing Enzyme EstDL136 6IEY ; 2.097 ; Crystal structure of Chloramphenicol-Metabolizaing Enzyme EstDL136-Chloramphenicol complex 1FVI ; 2.0 ; CRYSTAL STRUCTURE OF CHLORELLA VIRUS DNA LIGASE-ADENYLATE 3IM0 ; 1.66 ; Crystal structure of Chlorella virus vAL-1 soaked in 200mM D-glucuronic acid, 10% PEG-3350, and 200mM glycine-NaOH (pH 10.0) 2Z38 ; 1.8 ; Crystal structure of chloride bound Brassica juncea chitinase catalytic module (Bjchi3) 2QRB ; 2.5 ; Crystal structure of chloride saturated bovine lactoperoxidase at 2.5 A resolution shows multiple halide binding sites 3Q08 ; 3.05 ; Crystal Structure of Chlorite Dismutase from D. Aromatica at pH 6.5 3Q09 ; 3.0 ; Crystal Structure of Chlorite Dismutase from D. Aromatica at pH 9.0 5A12 ; 1.4 ; Crystal structure of Chlorite Dismutase from Magnetospirillum sp. in complex with azide 5A13 ; 1.75 ; Crystal structure of Chlorite Dismutase from Magnetospirillum sp. in complex with thiocyanate 3TH1 ; 3.4 ; Crystal structure of chlorocatechol 1,2-dioxygenase from Pseudomonas putida 7O0T ; 2.4 ; Crystal structure of Chloroflexus aggregans ene-reductase CaOYE holoenzyme 4L7Z ; 2.502 ; Crystal Structure of Chloroflexus aurantiacus malyl-CoA lyase 4L80 ; 2.008 ; Crystal Structure of Chloroflexus aurantiacus malyl-CoA lyase in complex with magnesium, oxalate, and propionyl-CoA 5TBW ; 3.0 ; Crystal structure of chlorolissoclimide bound to the yeast 80S ribosome 3HWC ; 2.5 ; Crystal Structure of Chlorophenol 4-Monooxygenase (TftD) of Burkholderia cepacia AC1100 3V3C ; 3.402 ; Crystal Structure of Chloroplast ATP synthase c-ring from Pisum sativum 1CTM ; 2.3 ; CRYSTAL STRUCTURE OF CHLOROPLAST CYTOCHROME F REVEALS A NOVEL CYTOCHROME FOLD AND UNEXPECTED HEME LIGATION 2OG2 ; 2.0 ; Crystal structure of chloroplast FtsY from Arabidopsis thaliana 6KVN ; 2.02 ; Crystal structure of chloroplast resolvase 6KVO ; 2.5 ; Crystal structure of chloroplast resolvase in complex with Holliday junction 6LCM ; 2.5 ; Crystal structure of chloroplast resolvase ZmMOC1 with the magic triangle I3C 4OHQ ; 2.15 ; Crystal structure of chloroplast triose phosphate isomerase from Arabidopsis thaliana 7SKJ ; 1.9 ; Crystal structure of chloroplast triosephosphate isomerase from Cuscuta australis 1IYN ; 1.6 ; Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights for its instability 7ASW ; 2.444 ; Crystal structure of chloroplastic thioredoxin z defines a novel type-specific target recognition 4MKN ; 1.1 ; Crystal structure of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii at 1.1 A of resolution 7X43 ; 1.04 ; Crystal structure of chlorotoxin mutant - M1R 7X44 ; 1.04 ; Crystal structure of chlorotoxin mutant - Q11N 7X4D ; 1.55 ; Crystal structure of chlorotoxin mutant - Y29K 7X41 ; 1.15 ; Crystal structure of chlorotoxin, a glioma specific scorpion toxin 4HN0 ; 2.2 ; Crystal Structure of ChmJ, a 3'-monoepimerase apoenzyme from Streptomyces bikiniensis 4HMZ ; 2.0 ; Crystal Structure of ChmJ, a 3'-monoepimerase from Streptomyces bikiniensis in complex with dTDP-quinovose 4ABM ; 1.8 ; Crystal Structure of CHMP4B hairpin 6X1P ; 1.702 ; Crystal Structure of Choanoflagellate (Monosiga brevicollis) Dlg1 PDZ2 (mbDLG-2) in spacegroup I2 6X1R ; 1.3 ; Crystal Structure of Choanoflagellate (Monosiga brevicollis) Dlg1 PDZ2 (mbDLG-2) in spacegroup P212121 6X1N ; 1.4 ; Crystal Structure of Choanoflagellate (Monosiga brevicollis) Dlg1 PDZ3 (mbDLG-3) 6UR0 ; 1.8 ; Crystal structure of ChoE D285N mutant acyl-enzyme 6UQZ ; 1.43 ; Crystal structure of ChoE D285N mutant in complex with acetate and thiocholine 6UQY ; 1.57 ; Crystal structure of ChoE H288N mutant in complex with acetylthiocholine 8D91 ; 1.49 ; Crystal structure of ChoE in complex with acetate and tetraethylammonium (TEA) 6UQW ; 1.65 ; Crystal structure of ChoE in complex with acetate and thiocholine 8D8X ; 1.36 ; Crystal structure of ChoE in complex with acetate and thiocholine (crystal form 2) 6UQX ; 1.85 ; Crystal structure of ChoE in complex with propionylthiocholine 8D8Y ; 1.54 ; Crystal structure of ChoE N147A mutant in complex with acetylthiocholine 8D90 ; 1.82 ; Crystal structure of ChoE N147A mutant in complex with bromide ions 8D8Z ; 1.38 ; Crystal structure of ChoE N147A mutant in complex with thiocholine and chloride 6UR1 ; 1.42 ; Crystal structure of ChoE S38A mutant in complex with acetate and acetylthiocholine 8D8W ; 1.4 ; Crystal structure of ChoE with Ser38 adopting alternative conformations 6UQV ; 1.35 ; Crystal structure of ChoE, a bacterial acetylcholinesterase from Pseudomonas aeruginosa 1COY ; 1.8 ; CRYSTAL STRUCTURE OF CHOLESTEROL OXIDASE COMPLEXED WITH A STEROID SUBSTRATE. IMPLICATIONS FOR FAD DEPENDENT ALCOHOL OXIDASES 3COX ; 1.8 ; CRYSTAL STRUCTURE OF CHOLESTEROL OXIDASE COMPLEXED WITH A STEROID SUBSTRATE. IMPLICATIONS FOR FAD DEPENDENT ALCOHOL OXIDASES 1I19 ; 1.7 ; CRYSTAL STRUCTURE OF CHOLESTEROL OXIDASE FROM B.STEROLICUM 2OBD ; 2.1 ; Crystal Structure of Cholesteryl Ester Transfer Protein 4EWS ; 2.59 ; Crystal structure of cholesteryl ester transfer protein in complex with inhibitors 4F2A ; 3.11 ; Crystal structure of cholestryl esters transfer protein in complex with inhibitors 2V04 ; 2.1 ; CRYSTAL STRUCTURE OF CHOLINE BINDING PROTEIN F FROM STREPTOCOCCUS PNEUMONIAE 2VYU ; 2.45 ; CRYSTAL STRUCTURE OF CHOLINE BINDING PROTEIN F FROM STREPTOCOCCUS PNEUMONIAE IN THE PRESENCE OF A PEPTIDOGLYCAN ANALOGUE (TETRASACCHARIDE-PENTAPEPTIDE) 2V05 ; 1.67 ; CRYSTAL STRUCTURE OF CHOLINE BINDING PROTEIN F FROM STREPTOCOCCUS PNEUMONIAE. CRYSTAL FORM II. 3R6U ; 1.61 ; Crystal structure of choline binding protein OpuBC from Bacillus subtilis 1NW1 ; 2.02 ; Crystal Structure of Choline Kinase 5EQY ; 2.5 ; Crystal structure of choline kinase alpha-1 bound by 5-[(4-methyl-1,4-diazepan-1-yl)methyl]-2-[4-[(4-methyl-1,4-diazepan-1-yl)methyl]phenyl]benzenecarbonitrile (compound 65) 5EQP ; 2.35 ; Crystal structure of choline kinase alpha-1 bound by 6-[(4-methyl-1,4-diazepan-1-yl)methyl]quinoline (compound 37) 5EQE ; 2.4 ; Crystal structure of choline kinase alpha-1 bound by [4-[(4-methyl-1,4-diazepan-1-yl)methyl]phenyl]methanamine (compound 11) 3MES ; 2.35 ; Crystal structure of choline kinase from Cryptosporidium parvum Iowa II, cgd3_2030 3FI8 ; 2.3 ; Crystal structure of choline kinase from Plasmodium Falciparum, PF14_0020 4R77 ; 1.94 ; Crystal structure of choline kinase LicA from Streptococcus pneumoniae 4MJW ; 1.95 ; Crystal Structure of Choline Oxidase in Complex with the Reaction Product Glycine Betaine 2JBV ; 1.86 ; Crystal structure of choline oxidase reveals insights into the catalytic mechanism 3NNE ; 2.47 ; Crystal structure of choline oxidase S101A mutant 3LJP ; 2.2 ; Crystal structure of choline oxidase V464A mutant 7PL5 ; 1.99 ; Crystal structure of choline-binding module (R1-R9) of LytB from Streptococcus pneumoniae 7PL2 ; 2.98 ; Crystal structure of choline-binding module of LytB from Streptococcus pneumoniae 3DXQ ; 2.55 ; Crystal structure of choline/ethanolamine kinase family protein (NP_106042.1) from MESORHIZOBIUM LOTI at 2.55 A resolution 3HBC ; 2.269 ; Crystal Structure of Choloylglycine Hydrolase from Bacteroides thetaiotaomicron VPI 1HN0 ; 1.9 ; CRYSTAL STRUCTURE OF CHONDROITIN ABC LYASE I FROM PROTEUS VULGARIS AT 1.9 ANGSTROMS RESOLUTION 7EIS ; 2.5 ; Crystal structure of chondroitin ABC lyase I in complex with chondroitin disaccharide 0S 7YKE ; 1.88 ; Crystal structure of chondroitin ABC lyase I in complex with chondroitin disaccharide 4,6-sulfate 7EIQ ; 1.8 ; Crystal structure of chondroitin ABC lyase I in complex with chondroitin disaccharide 4S 7EIR ; 1.92 ; Crystal structure of chondroitin ABC lyase I in complex with chondroitin disaccharide 6S 2Z87 ; 3.0 ; Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP 2Z86 ; 2.4 ; Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP 2Q1F ; 2.85 ; Crystal structure of chondroitin sulfate lyase abc from bacteroides thetaiotaomicron wal2926 1DBG ; 1.7 ; CRYSTAL STRUCTURE OF CHONDROITINASE B 1DBO ; 1.7 ; CRYSTAL STRUCTURE OF CHONDROITINASE B 1OFM ; 1.8 ; CRYSTAL STRUCTURE OF CHONDROITINASE B COMPLEXED TO CHONDROITIN 4-SULFATE TETRASACCHARIDE 1OFL ; 1.7 ; CRYSTAL STRUCTURE OF CHONDROITINASE B COMPLEXED TO DERMATAN SULFATE HEXASACCHARIDE 4BPS ; 1.081 ; Crystal structure of Chorismatase at 1.08 Angstrom resolution. 2PV7 ; 2.0 ; Crystal structure of chorismate mutase / prephenate dehydrogenase (tyrA) (1574749) from Haemophilus influenzae RD at 2.00 A resolution 3RMI ; 2.4 ; Crystal structure of Chorismate mutase from Bartonella henselae str. Houston-1 in complex with malate 5TS9 ; 1.95 ; Crystal structure of Chorismate mutase from Burkholderia phymatum 6CNZ ; 2.15 ; Crystal Structure of Chorismate Mutase from Burkholderia thailandensis 6AL9 ; 2.3 ; Crystal structure of chorismate mutase from Helicobacter pylori in complex with prephenate 5GMU ; 1.8 ; Crystal structure of chorismate mutase like domain of bifunctional DAHP synthase of Bacillus subtilis in complex with Chlorogenic acid 5GO2 ; 1.907 ; Crystal structure of chorismate mutase like domain of bifunctional DAHP synthase of Bacillus subtilis in complex with Citrate 1Q1L ; 2.05 ; Crystal Structure of Chorismate Synthase 1UMF ; 2.25 ; crystal structure of chorismate synthase 1UM0 ; 1.95 ; Crystal structure of chorismate synthase complexed with FMN 1QXO ; 2.0 ; Crystal structure of Chorismate synthase complexed with oxidized FMN and EPSP 4OB9 ; 2.5 ; Crystal structure of chorismate synthase from Acinetobacter baumannii at 2.50A resolution 5WUY ; 2.5 ; Crystal structure of chorismate synthase from Acinetobacter baumannii at 2.50A resolution 4O90 ; 2.61 ; Crystal structure of chorismate synthase from Acinetobacter baumannii at 2.6A resolution 4LJ2 ; 3.15 ; Crystal structure of chorismate synthase from Acinetobacter baumannii at 3.15A resolution 1ZTB ; 2.65 ; Crystal Structure of Chorismate Synthase from Mycobacterium tuberculosis 2G85 ; 2.22 ; Crystal structure of chorismate synthase from Mycobacterium tuberculosis at 2.22 angstrons of resolution 5Z9A ; 2.79 ; Crystal structure of chorismate synthase from Pseudomonas aeruginosa 2RF1 ; 2.0 ; Crystal structure of ChoX in an unliganded closed conformation 2BEC ; 2.7 ; Crystal structure of CHP2 in complex with its binding region in NHE1 and insights into the mechanism of pH regulation 6MJL ; 2.5 ; Crystal structure of ChREBP NLS peptide bound to importin alpha. 5F74 ; 2.35 ; Crystal structure of ChREBP:14-3-3 complex bound with AMP 2Z7C ; 2.8 ; Crystal structure of chromatin protein alba from hyperthermophilic archaeon pyrococcus horikoshii 4QLC ; 3.503 ; Crystal structure of chromatosome at 3.5 angstrom resolution 7Q9X ; 1.6 ; Crystal structure of Chromobacterium violaceum aminotransferase in complex with PLP-pyruvate adduct 7Q9Z ; 1.95 ; Crystal structure of Chromobacterium violaceum aminotransferase in complex with PLP-pyruvate adduct 7WZS ; 3.6 ; Crystal structure of Chromobacterium violaceum effector CopC in complex with host calmodulin and caspase-7 1LTZ ; 1.4 ; CRYSTAL STRUCTURE OF CHROMOBACTERIUM VIOLACEUM PHENYLALANINE HYDROXYLASE, STRUCTURE HAS BOUND IRON (III) AND OXIDIZED COFACTOR 7,8-DIHYDROBIOPTERIN 1LTV ; 2.0 ; CRYSTAL STRUCTURE OF CHROMOBACTERIUM VIOLACEUM PHENYLALANINE HYDROXYLASE, STRUCTURE WITH BOUND OXIDIZED Fe(III) 1LTU ; 1.74 ; CRYSTAL STRUCTURE OF CHROMOBACTERIUM VIOLACEUM, APO (NO IRON BOUND) STRUCTURE 4X3K ; 1.45 ; Crystal structure of chromobox homolog 7 (CBX7) chromodomain with H3K27me3 peptide 5EJW ; 2.6 ; Crystal structure of chromobox homolog 7 (CBX7) chromodomain with MS351 4X3T ; 2.14 ; Crystal structure of chromobox homolog 7 (CBX7) chromodomain with MS37452 4X3U ; 1.63 ; Crystal structure of chromobox homolog 7 (CBX7) chromodomain with Suramin 4X3S ; 1.6 ; Crystal structure of chromobox homology 7 (CBX7) with SETDB1-1170me3 Peptide 7VZ2 ; 1.7 ; Crystal structure of chromodomain of Arabidopsis LHP1 5EPK ; 1.8 ; Crystal Structure of chromodomain of CBX2 in complex with inhibitor UNC3866 5EPL ; 1.81 ; Crystal Structure of chromodomain of CBX4 in complex with inhibitor UNC3866 5EPJ ; 1.6 ; Crystal Structure of chromodomain of CBX7 in complex with inhibitor UNC3866 6V2R ; 1.6 ; Crystal Structure of chromodomain of CBX7 mutant V13A in complex with inhibitor UNC3866 5EQ0 ; 1.18 ; Crystal Structure of chromodomain of CBX8 in complex with inhibitor UNC3866 7N27 ; 1.85 ; Crystal Structure of chromodomain of CDYL in complex with inhibitor UNC6261 6V2D ; 2.1 ; Crystal Structure of chromodomain of CDYL2 in complex with inhibitor UNC3866 6V2S ; 1.6 ; Crystal Structure of chromodomain of MPP8 in complex with inhibitor UNC3866 4QUC ; 1.502 ; Crystal structure of chromodomain of Rhino 4QUF ; 2.501 ; crystal structure of chromodomain of Rhino with H3K9me3 2Z3U ; 2.4 ; Crystal Structure of Chromopyrrolic Acid Bound Cytochrome P450 StaP (CYP245A1) 3CWQ ; 2.47 ; Crystal structure of chromosome partitioning protein (ParA) in complex with ADP from Synechocystis sp. Northeast Structural Genomics Consortium Target SgR89 6U9J ; 1.5 ; Crystal structure of ChuX 3FAN ; 1.9 ; Crystal structure of chymotrypsin-like protease/proteinase (3CLSP/Nsp4) of porcine reproductive and respiratory syndrome virus (PRRSV) 3R6Y ; 3.0 ; Crystal structure of chymotrypsin-treated aspartase from Bacillus sp. YM55-1 1EYG ; 2.8 ; Crystal structure of chymotryptic fragment of E. coli ssb bound to two 35-mer single strand DNAS 7AON ; 1.3 ; Crystal structure of CI2 double mutant L49I,I57V 7AOK ; 1.87 ; Crystal structure of CI2 mutant L49I 8SWD ; 2.45 ; Crystal Structure of CiaD from Campylobacter jejuni (C-terminal fragment) 8UZ8 ; 2.45 ; Crystal Structure of CiaD from Campylobacter jejuni (C-terminal fragment, Orthorhombic P form) 6TBN ; 2.0 ; Crystal structure of CIAO1-CIAO2B CIA core complex 3UW4 ; 1.79 ; Crystal structure of cIAP1 BIR3 bound to GDC0152 4HY4 ; 1.249 ; Crystal structure of cIAP1 BIR3 bound to T3170284 4HY5 ; 1.752 ; Crystal structure of cIAP1 BIR3 bound to T3256336 4MTI ; 2.15 ; Crystal structure of cIAP1 BIR3 bound to T3258042 4MU7 ; 1.79 ; Crystal structure of cIAP1 BIR3 bound to T3450325 6HPR ; 1.7 ; Crystal structure of cIAP1 RING domain bound to UbcH5B-Ub and a non-covalent Ub 6EXW ; 2.2 ; Crystal structure of cIAP1-BIR3 in complex with a covalently bound SM 1XO5 ; 1.99 ; Crystal structure of CIB1, an EF-hand, integrin and kinase-binding protein 1SQK ; 2.5 ; CRYSTAL STRUCTURE OF CIBOULOT IN COMPLEX WITH SKELETAL ACTIN 6JRP ; 3.0 ; Crystal structure of CIC-HMG-ETV5-DNA complex 4MAC ; 2.0 ; Crystal structure of CIDE-N domain of FSP27 1NTF ; 1.8 ; Crystal Structure of Cimex Nitrophorin 4L1Y ; 1.55 ; Crystal structure of Cimex nitrophorin A21V mutant 4L20 ; 1.68 ; Crystal structure of Cimex nitrophorin A21V mutant ferrous NO complex 1SI6 ; 1.45 ; Crystal structure of cimex nitrophorin complex with CO 4L1Z ; 1.65 ; Crystal structure of Cimex nitrophorin F64V mutant 4L21 ; 1.65 ; Crystal structure of Cimex nitrophorin F64V mutant ferrous NO complex 1YJH ; 1.65 ; Crystal Structure of Cimex Nitrophorin Ferrous NO Complex 1Y21 ; 1.75 ; Crystal Structure of Cimex Nitrophorin NO Complex 4OXX ; 1.21 ; Crystal Structure of Cindoxin, Surface Entropy reduction Mutant 4QTZ ; 2.0 ; Crystal Structure of Cinnamyl-Alcohol Dehydrogenase 2 4QUK ; 1.9 ; Crystal Structure of Cinnamyl-Alcohol Dehydrogenase 2 Mutant K169A 6OZI ; 2.302 ; Crystal structure of Ciona intestinalis (Ci) Endonuclease V (D234N) in complex with a 23mer DNA containing an inosine followed by a ribo-adenosine 6OZH ; 3.026 ; Crystal structure of Ciona intestinalis (Ci) Endonuclease V in complex with a 24mer DNA containing an inosine followed by a ribo-adenosine 3V0D ; 1.1 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 241-576(C363S) 3V0H ; 1.85 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 241-576(C363S), complexed with D-MYO-inositol-1,4,5-triphosphate 3V0J ; 1.72 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 241-576(C363S), Deletion of 401-405 3V0F ; 1.3 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 241-576(C363S), form II 3V0G ; 1.6 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 241-576(C363S), form III 3V0E ; 1.65 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 256-576(C363S) 3V0I ; 1.95 ; Crystal structure of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), residues 256-576, E411F 7XHS ; 2.11 ; Crystal structure of CipA crystal produced by cell-free protein synthesis 1R8J ; 2.03 ; Crystal Structure of Circadian Clock Protein KaiA from Synechococcus elongatus 4KSO ; 2.622 ; Crystal Structure of Circadian clock protein KaiB from S.Elongatus 1TF7 ; 2.8 ; Crystal Structure of Circadian Clock Protein KaiC 4IJM ; 3.352 ; Crystal structure of circadian clock protein KaiC A422V mutant 4DUG ; 3.292 ; Crystal Structure of Circadian Clock Protein KaiC E318A Mutant 1U9I ; 2.8 ; Crystal Structure of Circadian Clock Protein KaiC with Phosphorylation Sites 3RWT ; 3.0 ; Crystal structure of circular permutated Red Fluorescent Protein mKate(cp 154-153) 4EIB ; 1.86 ; Crystal Structure of Circular Permuted CBM21 (CP90) Gives Insight into the Altered Selectivity on Carbohydrate Binding. 3EVP ; 1.453 ; crystal structure of circular-permutated EGFP 3RWA ; 1.67 ; Crystal structure of circular-permutated mKate 6AHW ; 1.56 ; Crystal structure of circular-permutated YibK methyltransferase from Haemophilus influenzae 5YT7 ; 1.66 ; crystal structure of circularly permutated Azurin 3 1UN2 ; 2.4 ; Crystal structure of circularly permuted CPDSBA_Q100T99: Preserved Global Fold and Local Structural Adjustments 4ET0 ; 3.3 ; Crystal structure of circularly permuted human asparaginase-like protein 1 4ZM9 ; 2.51 ; Crystal structure of circularly permuted human asparaginase-like protein 1 6UGK ; 2.15 ; CRYSTAL STRUCTURE OF CIRCULARLY PERMUTED HUMAN TASPASE-1 6B0S ; 1.95 ; Crystal structure of circumsporozoite protein aTSR domain in complex with 1710 antibody 3VDL ; 2.04 ; Crystal structure of circumsporozoite protein aTSR domain, P43212 form 3VDJ ; 1.698 ; Crystal structure of circumsporozoite protein aTSR domain, R32 native form 3VDK ; 1.847 ; Crystal structure of circumsporozoite protein aTSR domain, R32 platinum-bound form 1RPU ; 2.5 ; Crystal Structure of CIRV p19 bound to siRNA 7E5N ; 3.2 ; crystal structure of cis assembled TROP-2 7WZD ; 2.8 ; Crystal Structure of cis-4,5-dihydrodiol phthalate dehydrogenase from Comamonas testosteroni KF1 7X1X ; 2.77 ; Crystal Structure of cis-4,5-dihydrodiol phthalate dehydrogenase in complex with NAD+ 7X2Y ; 2.48 ; Crystal Structure of cis-4,5-dihydrodiol phthalate dehydrogenase in complex with NAD+ and 3-Hydroxybenzoate 3ZV5 ; 2.4 ; CRYSTAL STRUCTURE OF CIS-BIPHENYL-2,3-DIHYDRODIOL-2,3-DEHYDROGENASE (BPHB) FROM PANDORAEA PNOMENUSA STRAIN B-356 COMPLEX WITH CO-ENZYME NAD AND PRODUCT 2,3-DIHYDROXYBIPHENYL 3ZV6 ; 2.14 ; CRYSTAL STRUCTURE OF CIS-BIPHENYL-2,3-DIHYDRODIOL-2,3-DEHYDROGENASE (BPHB) FROM PANDORAEA PNOMENUSA STRAIN B-356 COMPLEX WITH CO-ENZYME NAD AND PRODUCT ANALOG 4,4'-DIHYDROXYBIPHENYL 3ZV4 ; 1.8 ; CRYSTAL STRUCTURE OF CIS-BIPHENYL-2,3-DIHYDRODIOL-2,3-DEHYDROGENASE (BPHB) FROM PANDORAEA PNOMENUSA STRAIN B-356 IN APO FORM AT 1.8 ANGSTROM 2Y99 ; 2.5 ; Crystal Structure of cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB)from Pandoraea pnomenusa strain B-356 complex with co-enzyme NAD 3ZV3 ; 2.9 ; CRYSTAL STRUCTURE OF CIS-BIPHENYL-2,3-DIHYDRODIOL-2,3-DEHYDROGENASE (BPHB)FROM PANDORAEA PNOMENUSA STRAIN B-356 IN INTERMEDIATE STATE OF SUBSTRATE BINDING LOOP 2Y93 ; 2.22 ; Crystal Structure of cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase (BphB)from Pandoraea pnomenusa strain B-356. 8WBR ; 2.02 ; Crystal structure of cis-Epoxysuccinate Hydrolases KlCESH[L] 8WBT ; 2.05 ; Crystal structure of cis-Epoxysuccinate Hydrolases KlCESH[L] mutant D48N complexed with L-TA 8WBS ; 2.03 ; Crystal structure of cis-Epoxysuccinate Hydrolases KlCESH[L]-D48N complexed with sulfate ions 8WBK ; 2.15 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] 8WBL ; 1.941 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] complexed with sulfate ions 8WBO ; 1.58 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] mutant D18N complexed with sulfate ions 8WBM ; 2.06 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] mutant D193A complexed with sulfate ions 8WBN ; 2.5 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] mutant D193N 8WBP ; 1.87 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] mutant E212Q 8WBQ ; 2.2 ; Crystal structure of cis-Epoxysuccinate Hydrolases RhCESH[L] mutant E212Q complexed with L-TA. 6JH0 ; 2.403 ; Crystal structure of cISG15/NS1B complex 1XTE ; 1.6 ; crystal structure of CISK-PX domain 1XTN ; 2.2 ; crystal structure of CISK-PX domain with sulfates 3IWX ; 2.14 ; Crystal structure of cisplatin bound to a human copper chaperone (dimer) 4YEA ; 2.14 ; Crystal structure of cisplatin bound to a human copper chaperone (dimer) - new refinement 3IWL ; 1.6 ; Crystal structure of cisplatin bound to a human copper chaperone (monomer) 4YDX ; 1.602 ; Crystal structure of cisplatin bound to a human copper chaperone (monomer) - new refinement 4N0Z ; 1.7 ; Crystal structure of cisplatin bound to a plasmodium falciparum glutaredoxin 1 (PfGrx1) 8C62 ; 2.31 ; Crystal structure of cisplatin/B-DNA adduct 2AEO ; 1.8 ; Crystal structure of cisplatinated bovine Cu,Zn superoxide dismutase 6LNP ; 2.993 ; Crystal structure of citrate Biosensor 4WLE ; 1.9 ; Crystal structure of citrate bound MDH2 6KCX ; 1.933 ; Crystal structure of citrate complex of alpha-glucuronidase (TM0752)from Thermotoga maritima 1SGJ ; 1.84 ; Crystal structure of citrate lyase beta subunit 6ZU0 ; 3.397 ; Crystal structure of citrate synthase (GltA) from Pseudomonas aeruginosa 6ABV ; 1.8 ; Crystal structure of citrate synthase (Msed_0281) from Metallosphaera sedula 6ABW ; 1.72 ; Crystal structure of citrate synthase (Msed_0281) from Metallosphaera sedula in complex with acetyl-CoA 6ABX ; 1.7 ; Crystal structure of citrate synthase (Msed_1522) from Metallosphaera sedula in complex with citrate 6ABY ; 2.0 ; Crystal structure of citrate synthase (Msed_1522) from Metallosphaera sedula in complex with oxaloacetate 3MSU ; 1.843 ; Crystal Structure of Citrate Synthase from Francisella tularensis 5UZQ ; 2.16 ; Crystal structure of citrate synthase from homo sapiens 5UZR ; 2.3 ; Crystal structure of citrate synthase from homo sapiens 2IBP ; 1.6 ; Crystal Structure of Citrate Synthase from Pyrobaculum aerophilum 5UQS ; 1.6 ; Crystal structure of Citrate synthase from Sus scrofa 2P2W ; 1.9 ; Crystal structure of citrate synthase from Thermotoga maritima MSB8 1IOM ; 1.5 ; CRYSTAL STRUCTURE OF CITRATE SYNTHASE FROM THERMUS THERMOPHILUS HB8 1IXE ; 2.3 ; Crystal structure of citrate synthase from Thermus thermophilus HB8 5UZP ; 2.29 ; Crystal structure of citrate synthase mutant A348G from homo sapiens 4TV5 ; 1.85 ; Crystal Structure of Citrate Synthase SbnG 4TV6 ; 2.6 ; Crystal Structure of Citrate Synthase Variant SbnG E151Q 1HUY ; 2.2 ; CRYSTAL STRUCTURE OF CITRINE, AN IMPROVED YELLOW VARIANT OF GREEN FLUORESCENT PROTEIN 1KKO ; 1.33 ; CRYSTAL STRUCTURE OF CITROBACTER AMALONATICUS METHYLASPARTATE AMMONIA LYASE 1KKR ; 2.1 ; CRYSTAL STRUCTURE OF CITROBACTER AMALONATICUS METHYLASPARTATE AMMONIA LYASE CONTAINING (2S,3S)-3-METHYLASPARTIC ACID 1Y4I ; 1.9 ; Crystal structure of Citrobacter Freundii L-methionine-lyase 5M3Z ; 1.45 ; Crystal structure of Citrobacter freundii methionine gamma-lyase with C115H replacement in the complex with L-norleucine 6EGR ; 1.45 ; Crystal structure of Citrobacter freundii methionine gamma-lyase with V358Y replacement 1CFR ; 2.15 ; CRYSTAL STRUCTURE OF CITROBACTER FREUNDII RESTRICTION ENDONUCLEASE CFR10I AT 2.15 ANGSTROMS RESOLUTION. 6CMK ; 1.732 ; Crystal structure of Citrobacter koseri AztD 8JD8 ; 1.86 ; Crystal structure of Citrus limon Cu-Zn superoxide dismutase 5U50 ; 2.902 ; Crystal structure of citrus MAF1 in space group C 2 2 21 5U4Z ; 2.85 ; Crystal structure of citrus MAF1 in space group P 31 2 1 7DCM ; 2.495 ; Crystal structure of CITX 6DRR ; 1.599 ; Crystal structure of Cj0485 dehydrogenase 6DS1 ; 2.119 ; Crystal structure of Cj0485 dehydrogenase in complex with NADP+ 6CF8 ; 1.87 ; Crystal structure of Cj0843 lytic transglycosylase of Campylobacter jejuni at 1.87A resolution 3D6L ; 2.59 ; Crystal structure of Cj0915, a hexameric hotdog fold thioesterase of Campylobacter jejuni 3BNV ; 2.6 ; Crystal structure of Cj0977, a sigma28-regulated virulence protein from Campylobacter jejuni. 7RXU ; 2.4 ; Crystal structure of Cj1090c 6VO6 ; 1.5 ; Crystal Structure of Cj1427, an Essential NAD-dependent Dehydrogenase from Campylobacter jejuni, in the Presence of NADH and GDP 7M13 ; 1.5 ; Crystal structure of CJ1428, a GDP-D-GLYCERO-L-GLUCO-HEPTOSE SYNTHASE from campylobacter jejuni in the presence of NADPH 7M15 ; 1.85 ; crystal structure of cj1430 in the presence of GDP-D-glycero-L-gluco-heptose, a GDP-D-glycero-4-keto-D-lyxo-heptose-3,5-epimerase from campylobacter jejuni 5NPB ; 1.9 ; Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Cyclosulfate probe ME647 5NPE ; 1.95 ; Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with beta Cyclophellitol Aziridine probe KY358 7QRB ; 2.6 ; Crystal structure of CK1 delta in complex with PK-09-129 7QR9 ; 2.3 ; Crystal structure of CK1 delta in complex with PK-09-82 7QRA ; 2.4 ; Crystal structure of CK1 delta in complex with VN725 4HNF ; 2.07 ; Crystal structure of ck1d in complex with pf4800567 4HGT ; 1.8 ; Crystal structure of ck1d with compound 13 3UYT ; 2.0 ; crystal structure of ck1d with PF670462 from P1 crystal form 3UZP ; 1.94 ; crystal structure of ck1d with PF670462 from P21 crystal form 4HNI ; 2.74 ; crystal structure of ck1e in complex with PF4800567 4G17 ; 2.1 ; Crystal structure of ck1g3 with 2-[(4-TERT-BUTYLPHENYL)AMINO]-1H-BENZIMIDAZOLE-6-CARBONITRILE 4G16 ; 2.3 ; Crystal structure of ck1g3 with 2-[(4-{[3-(TRIFLUOROMETHYL)PYRIDIN2-YL]OXY}PHENYL)AMINO]-1H-BENZIMIDAZOLE-6-CARBONITRILE 4HGL ; 2.4 ; Crystal structure of ck1g3 with compound 1 4HGS ; 2.4 ; Crystal structure of ck1gs with compound 13 5KU8 ; 2.22 ; Crystal structure of CK2 5KWH ; 2.12 ; Crystal structure of CK2 5T1H ; 2.11 ; Crystal structure of CK2 7AY9 ; 2.25 ; Crystal structure of CK2 bound by compound 7 7AYA ; 2.45 ; Crystal structure of CK2 bound by compound 9 5H8B ; 2.55 ; Crystal structure of CK2 with compound 2 5H8G ; 2.0 ; Crystal structure of CK2 with compound 7b 5H8E ; 2.15 ; Crystal structure of CK2 with compound 7h 7X4H ; 1.77 ; Crystal structure of CK2a1 complexed with AG1112 7BU4 ; 1.70227 ; Crystal structure of CK2a1 complexed with KY49 6L22 ; 2.12318 ; Crystal structure of CK2a1 H115Y with hematein 6L24 ; 2.40009 ; Crystal structure of CK2a1 H115Y/V116I with hematein 6L21 ; 2.05452 ; Crystal structure of CK2a1 H160A with hematein 6L23 ; 1.97449 ; Crystal structure of CK2a1 V116I with hematein 6JWA ; 1.781 ; Crystal structure of CK2a1 with 5-iodotubercidin 6L1Z ; 1.90821 ; Crystal structure of CK2a1 with hematein 7XYH ; 2.04 ; Crystal structure of CK2a2 complexed with AG1112 5Y9M ; 2.006 ; Crystal structure of CK2a2 form 3 5YWM ; 1.939 ; Crystal structure of CK2a2 form-1 5YF9 ; 1.89 ; Crystal structure of CK2a2 form-2 6L20 ; 3.08735 ; Crystal structure of CK2a2 with hematein 3AT2 ; 1.6 ; Crystal structure of CK2alpha 5CU6 ; 1.36 ; Crystal Structure of CK2alpha 5CVH ; 1.848 ; Crystal Structure of CK2alpha 5CU3 ; 1.787 ; Crystal structure of CK2alpha bound to CAM4066 5CU4 ; 1.56 ; Crystal structure of CK2alpha bound to CAM4066 5CX9 ; 1.732 ; Crystal structure of CK2alpha with (methyl 4-((3-(3-chloro-4-(phenyl)benzylamino)propyl)amino)-4-oxobutanoate bound 6YPN ; 1.58 ; Crystal Structure of CK2alpha with 2 molecules of ADP bound 5CU2 ; 1.705 ; Crystal structure of CK2alpha with 2-hydroxy-5-methylbenzoic acid and (methyl 4-((3-(3-chloro-4-(phenyl)benzylamino)propyl)amino)-4-oxobutanoat bound 5CU0 ; 2.18 ; Crystal structure of CK2alpha with 2-hydroxy-5-methylbenzoic acid and N-(3-(3-chloro-4-(phenyl)benzylamino)propyl)acetamide bound 5CLP ; 1.684 ; Crystal Structure of CK2alpha with 3,4-dichlorophenethylamine bound 5CT0 ; 2.008 ; Crystal structure of CK2alpha with 3-(3-chloro-4-(phenyl)benzylamino)propan-1-ol bound 5CVG ; 1.25 ; Crystal Structure of CK2alpha with a novel closed conformation of the aD loop 6GIH ; 1.96 ; Crystal Structure of CK2alpha with CAM187 bound 6YPJ ; 1.64 ; Crystal Structure of CK2alpha with Compound 1 bound 6YPH ; 1.67 ; Crystal Structure of CK2alpha with Compound 2 bound 6YPG ; 1.51 ; Crystal Structure of CK2alpha with Compound 2 bound to second crystal form 5CS6 ; 1.88 ; Crystal Structure of CK2alpha with Compound 3 bound 5CSH ; 1.59 ; Crystal Structure of CK2alpha with Compound 4 bound 5CSP ; 1.5 ; Crystal Structure of CK2alpha with Compound 5 bound 5CVF ; 1.63 ; Crystal Structure of CK2alpha with Compound 5 bound 5CSV ; 1.375 ; Crystal Structure of CK2alpha with Compound 6 bound 5MMF ; 1.99 ; Crystal Structure of CK2alpha with Compound 7 bound 6YPK ; 1.79 ; Crystal Structure of CK2alpha with GTP bound 5MMR ; 2.0 ; Crystal Structure of CK2alpha with N-((2-chloro-[1,1'-biphenyl]-4-yl)methyl)butane-1,4-diamine bound 5MO5 ; 2.04 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5MO6 ; 1.825 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5MO7 ; 2.15 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5MO8 ; 1.82 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5MOD ; 2.08 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5MOE ; 1.89 ; Crystal Structure of CK2alpha with N-(3-(((2-chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propyl)methanesulfonamide bound 5CTP ; 2.033 ; Crystal structure of CK2alpha with N-(3-(3-chloro-4-(phenyl)benzylamino)propyl)acetamide bound 3AT3 ; 2.6 ; Crystal structure of CK2alpha with pyradine derivative 3AT4 ; 2.2 ; Crystal structure of CK2alpha with pyradine derivertive 5MOW ; 1.86 ; Crystal Structure of CK2alpha with ZT0432 bound 5MP8 ; 1.92 ; Crystal Structure of CK2alpha with ZT0432 bound 5MOH ; 1.38 ; Crystal structure of CK2alpha with ZT0583 bound. 5MOT ; 2.09 ; Crystal structure of CK2alpha with ZT0627 bound 5MOV ; 2.2 ; Crystal structure of Ck2alpha with ZT0633 bound 6O6Q ; 2.7 ; Crystal structure of Cka1p, a casein kinase 2 alpha ortholog from Candida albicans 6M84 ; 2.81 ; Crystal structure of cKir2.2 force open mutant in complex with PI(4,5)P2 4QLX ; 1.95 ; Crystal structure of CLA-ER with product binding 4QLY ; 2.005 ; Crystal structure of CLA-ER, a novel enone reductase catalyzing a key step of a gut-bacterial fatty acid saturation metabolism, biohydrogenation 2B9W ; 1.95 ; Crystal Structure of CLA-producing fatty acid isomerase from P. acnes 2B9X ; 2.22 ; Crystal Structure of CLA-producing fatty acid isomerase from P. acnes 2B9Y ; 2.21 ; Crystal structure of CLA-producing fatty acid isomerase from P. acnes 2BA9 ; 1.95 ; Crystal structure of CLA-producing fatty acid isomerase from P. acnes 2BAB ; 2.0 ; Crystal structure of CLA-producing fatty acid isomerase from P. acnes 2BAC ; 2.3 ; Crystal structure of CLA-producing fatty acid isomerase from P. acnes 7CCG ; 1.85 ; Crystal structure of ClA1, a kind of a chlorinase from soil bacteria 4DVV ; 1.94 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with AS-I-261 4DVT ; 2.4 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with AS-II-37 4DKR ; 1.8 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with AWS-I-169 4DKP ; 1.7978 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with AWS-I-50 4DKQ ; 1.888 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with DMJ-I-228 4DVW ; 2.2 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with MAE-II-167 4DVX ; 2.4 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with MAE-II-188 4DKU ; 2.4902 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with NBD-09027 4DKV ; 2.1847 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with NBD-10007 8F9Z ; 1.94 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with NBD-14204, an HIV-1 gp120 antagonist 8FA0 ; 2.09 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with NBD-14208, an HIV-1 gp120 antagonist 4DVS ; 2.1 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with NBD-557 4DKO ; 1.981 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 core in complex with TS-II-224 4I54 ; 2.5 ; Crystal structure of clade A/E 93TH057 HIV-1 gp120 H375S core in complex with DMJ-II-121 5U6E ; 2.095 ; Crystal structure of clade A/E HIV-1 gp120 core in complex with NBD-14010 3LQA ; 3.4 ; Crystal structure of clade C gp120 in complex with sCD4 and 21c Fab 4I53 ; 2.5002 ; Crystal structure of clade C1086 HIV-1 gp120 core in complex with DMJ-II-121 4YCU ; 2.1 ; Crystal structure of cladosporin in complex with human lysyl-tRNA synthetase 4YCW ; 2.9 ; Crystal structure of cladosporin in complex with plasmodium like human lysyl-tRNA synthetase mutant 4YCV ; 3.406 ; Crystal structure of cladosporin in complex with plasmodium lysyl-tRNA synthetase 7XSF ; 2.006 ; Crystal structure of ClAgl29A 7XSG ; 1.609 ; Crystal structure of ClAgl29B 7XSH ; 1.708 ; Crystal structure of ClAgl29B bound with L-glucose 4LGU ; 2.0 ; Crystal structure of clAP1 BIR3 bound to T3226692 4LGE ; 1.55 ; Crystal structure of clAP1 BIR3 bound to T3261256 6MQ7 ; 1.78 ; Crystal structure of CLASP1 TOG2 domain at 1.78A resolution 3WOY ; 2.1 ; Crystal structure of CLASP2 TOG domain (TOG2) 3WOZ ; 2.2 ; Crystal structure of CLASP2 TOG domain (TOG3) 5NR4 ; 1.198 ; Crystal structure of Clasp2 TOG1 domain 4XXL ; 1.47 ; Crystal structure of Class 1 cytochrome MtoD from Sideroxydans lithotrophicus ES-1 4NCD ; 2.037 ; Crystal Structure of Class 5 Fimbriae Chaperone CfaA 6AFO ; 1.399 ; Crystal structure of class A b-lactamase, PenL, variant Asn136Asp, from Burkholderia thailandensis 6AFP ; 1.398 ; Crystal structure of class A b-lactamase, PenL, variant Asn136Asp, from Burkholderia thailandensis, in complex with ceftazidime-like boronic acid 6AFM ; 1.3 ; Crystal structure of class A b-lactamase, PenL, variant Cys69Tyr, from Burkholderia thailandensis 6AFN ; 1.4 ; Crystal structure of class A b-lactamase, PenL, variant Cys69Tyr, from Burkholderia thailandensis, in complex with ceftazidime-like boronic acid 8IXX ; 1.7 ; Crystal structure of Class A beta-lactamase BlaA WT - complex with Ertapenem 8IY4 ; 2.0 ; Crystal structure of Class A beta-lactamase BlaA WT - complex with Meropenem 8IX8 ; 1.5 ; Crystal structure of Class A beta-lactamase BlaA WT - complex with Tebipenem 6W34 ; 1.45 ; Crystal Structure of Class A Beta-lactamase from Bacillus cereus 6W33 ; 1.85 ; Crystal Structure of Class A Beta-lactamase from Bacillus cereus in the Complex with the Beta-lactamase Inhibitor Clavulanate 2Y91 ; 2.0 ; Crystal structure of class A beta-lactamase from Bacillus licheniformis BS3 with clavulanic acid 4A5R ; 2.1 ; Crystal structure of class A beta-lactamase from Bacillus licheniformis BS3 with tazobactam 6NJ1 ; 1.399 ; Crystal structure of class A beta-lactamase from Clostridium kluyveri DSM 555 3B3X ; 2.5 ; Crystal structure of class A beta-lactamase of Bacillus licheniformis BS3 with aminocitrate 1IYS ; 1.65 ; Crystal Structure of Class A beta-Lactamase Toho-1 1WE4 ; 1.7 ; Crystal Structure of Class A beta-Lactamase Toho-1 G238C mutant 7MQN ; 2.21 ; Crystal structure of class C beta lactamase from Rhodobacter sphaeroides 5GGW ; 1.762 ; Crystal structure of Class C beta-lactamase 2ZC7 ; 2.4 ; Crystal Structure of Class C beta-Lactamase ACT-1 8TTP ; 1.43 ; Crystal structure of class C beta-lactamase from Escherichia coli in complex with avibactam 3W8K ; 1.5 ; Crystal structure of class C beta-lactamase Mox-1 4WBG ; 1.9 ; Crystal structure of class C beta-lactamase Mox-1 covalently complexed with aztorenam 6XJ3 ; 1.85 ; Crystal structure of Class D beta-lactamase from Klebsiella quasipneumoniae in complex with avibactam 6N1N ; 1.601 ; Crystal structure of class D beta-lactamase from Sebaldella termitidis ATCC 33386 6ZRJ ; 1.94 ; Crystal structure of class D Beta-lactamase OXA-48 in complex with ertapenem 6ZRP ; 1.74 ; Crystal structure of class D Beta-lactamase OXA-48 in complex with meropenem 6PQI ; 2.05 ; Crystal Structure of Class D Beta-lactamase OXA-48 with Cefotaxime 6PT5 ; 2.304 ; Crystal Structure of Class D Beta-lactamase OXA-48 with Cefoxitin 6PSG ; 2.13 ; Crystal Structure of Class D Beta-lactamase OXA-48 with Faropenem 6PTU ; 2.004 ; Crystal Structure of Class D Beta-lactamase OXA-48 with Imipenem 6PT1 ; 2.0 ; Crystal Structure of Class D Beta-lactamase OXA-48 with Meropenem 1NP3 ; 2.0 ; Crystal structure of class I acetohydroxy acid isomeroreductase from Pseudomonas aeruginosa 1DL2 ; 1.54 ; CRYSTAL STRUCTURE OF CLASS I ALPHA-1,2-MANNOSIDASE FROM SACCHAROMYCES CEREVISIAE AT 1.54 ANGSTROM RESOLUTION 2DKV ; 2.0 ; Crystal structure of class I chitinase from Oryza sativa L. japonica 3IWR ; 2.57 ; Crystal structure of class I chitinase from Oryza sativa L. japonica 3HHN ; 2.987 ; Crystal structure of class I ligase ribozyme self-ligation product, in complex with U1A RBD 1IRX ; 2.6 ; Crystal structure of class I lysyl-tRNA synthetase 1I7T ; 2.8 ; CRYSTAL STRUCTURE OF CLASS I MHC A2 IN COMPLEX WITH PEPTIDE P1049-5V 1I7U ; 1.8 ; CRYSTAL STRUCTURE OF CLASS I MHC A2 IN COMPLEX WITH PEPTIDE P1049-6V 1I7R ; 2.2 ; CRYSTAL STRUCTURE OF CLASS I MHC A2 IN COMPLEX WITH PEPTIDE P1058 1ZT7 ; 3.0 ; crystal structure of class I MHC H-2Kk in complex with a nonapeptide 1ZT1 ; 2.5 ; crystal structure of class I MHC H-2Kk in complex with an octapeptide 7V40 ; 1.43 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 7V42 ; 1.69 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with benzyl-alcohol. 7V44 ; 1.42 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with meta-chlorotoluene. 7V46 ; 1.8 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with ortho-chlorotoluene. 7V45 ; 1.45 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with para-bromotoluene. 7V43 ; 1.4 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with para-chlorotoluene. 7V41 ; 1.45 ; Crystal structure of Class I P450 monooxygenase (P450tol) from Rhodococcus coprophilus TC-2 in complex with toluene. 6K3C ; 3.074 ; Crystal structure of class I PHA synthase (PhaC) mutant from Chromobacterium sp. USM2 bound to Coenzyme A. 7NE2 ; 1.5 ; Crystal structure of class I SFP aldolase YihT from Salmonella enterica with SFP/ DHAP (Schiff base complex with active site Lys193) 5HJL ; 3.0 ; Crystal structure of class I tagatose 1,6-bisphosphate aldolase LacD from Streptococcus porcinus 6LOO ; 1.99 ; Crystal Structure of Class IB terpene synthase bound with geranylcitronellyl diphosphate 6LOP ; 1.91 ; Crystal Structure of Class IB terpene synthase bound with geranylgeraniol 3MF2 ; 2.15 ; Crystal structure of class II aaRS homologue (Bll0957) complexed with AMP 3MF1 ; 2.2 ; Crystal structure of class II aaRS homologue (Bll0957) complexed with an analogue of glycyl adenylate 3MEY ; 2.5 ; Crystal structure of class II aaRS homologue (Bll0957) complexed with ATP 3PZC ; 2.2 ; Crystal structure of class II aaRS homologue (Bll0957) complexed with Coenzyme A 1RVG ; 2.0 ; crystal structure of class II fructose-bisphosphate aldolase from Thermus aquaticus in complex with Y 5DZT ; 2.2 ; Crystal structure of class II lanthipeptide synthetase CylM in complex with AMP 1LNU ; 2.5 ; CRYSTAL STRUCTURE OF CLASS II MHC MOLECULE IAb BOUND TO EALPHA3K PEPTIDE 1KT2 ; 2.8 ; CRYSTAL STRUCTURE OF CLASS II MHC MOLECULE IEK BOUND TO MOTH CYTOCHROME C PEPTIDE 1KTD ; 2.4 ; CRYSTAL STRUCTURE OF CLASS II MHC MOLECULE IEK BOUND TO PIGEON CYTOCHROME C PEPTIDE 7V8T ; 2.48 ; Crystal structure of class II pyruvate aldolase from Pseudomonas aeruginosa. 1EKE ; 2.0 ; CRYSTAL STRUCTURE OF CLASS II RIBONUCLEASE H (RNASE HII) WITH MES LIGAND 8Q57 ; 1.7 ; Crystal structure of class II SFP aldolase from Yersinia aldovae (YaSqiA-Zn-SO4) with bound sulfate ions 4TOQ ; 1.6 ; Crystal structure of class III chitinase from pomegranate provides the insight into its metal storage capacity 8SAM ; 2.15 ; Crystal structure of class III lanthipeptide synthetase LP-GS-ThurKC in complex with ATP 8SAP ; 2.52 ; Crystal structure of class III lanthipeptide synthetase ThurKC 8SAO ; 2.502 ; Crystal structure of class III lanthipeptide synthetase ThurKC in complex with ThurA1 leader peptide 3ALG ; 1.8 ; Crystal Structure of Class V Chitinase (E115Q mutant) from Nicotiana tobaccum in complex with NAG4 3ALF ; 1.2 ; Crystal Structure of Class V Chitinase from Nicotiana tobaccum 1DS0 ; 1.63 ; CRYSTAL STRUCTURE OF CLAVAMINATE SYNTHASE 1DS1 ; 1.08 ; CRYSTAL STRUCTURE OF CLAVAMINATE SYNTHASE IN COMPLEX WITH FE(II) AND 2-OXOGLUTARATE 1DRY ; 1.4 ; CRYSTAL STRUCTURE OF CLAVAMINATE SYNTHASE IN COMPLEX WITH FE(II), 2-OXOGLUTARATE AND N-ALPHA-L-ACETYL ARGININE 1DRT ; 2.1 ; CRYSTAL STRUCTURE OF CLAVAMINATE SYNTHASE IN COMPLEX WITH FE(II), 2-OXOGLUTARATE AND PROCLAVAMINIC ACID 1GVG ; 1.54 ; Crystal Structure of Clavaminate Synthase with Nitric Oxide 4JCW ; 1.75 ; Crystal structure of Clavibacter michiganensis expansin in complex with cellopentaose 2A49 ; 1.43 ; Crystal structure of clavulanic acid bound to E166A variant of SHV-1 beta-lactamase 3O3V ; 2.4 ; Crystal structure of ClbP peptidase domain 5UGZ ; 1.983 ; Crystal structure of ClbQ from the colibactin NRPS/PKS pathway 2H2P ; 3.1 ; Crystal structure of CLC-ec1 in complex with Fab fragment in SeCN- 6V2J ; 2.62 ; Crystal structure of ClC-ec1 triple mutant (E113Q, E148Q, E203Q) 3ZNU ; 1.65 ; Crystal structure of ClcF in crystal form 2 3ZO7 ; 2.224 ; Crystal structure of ClcFE27A with substrate 6WNI ; 1.66 ; Crystal structure of CldA, the first cyclomaltodextrin glucanotransferase with a three-domain ABC distribution 4H9K ; 1.599 ; Crystal structure of cleavage site mutant of Npro of classical swine fever virus. 1D5S ; 3.0 ; CRYSTAL STRUCTURE OF CLEAVED ANTITRYPSIN POLYMER 1ATT ; 3.2 ; CRYSTAL STRUCTURE OF CLEAVED BOVINE ANTITHROMBIN III AT 3.2 ANGSTROMS RESOLUTION 4BB2 ; 2.48 ; Crystal structure of cleaved corticosteroid-binding globulin in complex with progesterone 1HLE ; 1.95 ; CRYSTAL STRUCTURE OF CLEAVED EQUINE LEUCOCYTE ELASTASE INHIBITOR DETERMINED AT 1.95 ANGSTROMS RESOLUTION 4O48 ; 2.29 ; Crystal structure of cleaved guinea pig L-asparaginase type III in complex with L-aspartate 2ACH ; 2.7 ; CRYSTAL STRUCTURE OF CLEAVED HUMAN ALPHA1-ANTICHYMOTRYPSIN AT 2.7 ANGSTROMS RESOLUTION AND ITS COMPARISON WITH OTHER SERPINS 7ZAS ; 2.0 ; Crystal structure of cleaved Iripin-4 serpin from tick Ixodes ricinus 6F4V ; 1.8 ; Crystal structure of cleaved Kallistatin complexed with heparin at 1.8 Angstrom resolution 3OUG ; 1.55 ; Crystal structure of cleaved L-aspartate-alpha-decarboxylase from Francisella tularensis 3DY0 ; 1.55 ; Crystal Structure of Cleaved PCI Bound to Heparin 1LQ8 ; 2.4 ; Crystal structure of cleaved protein C inhibitor 3WSR ; 1.91 ; Crystal structure of CLEC-2 in complex with O-glycosylated podoplanin 3WWK ; 2.98 ; Crystal structure of CLEC-2 in complex with rhodocytin 5JQ6 ; 2.4 ; Crystal structure of ClfA in complex with the Fab fragment of Tefibazumab 1YJN ; 3.0 ; Crystal Structure Of Clindamycin Bound To The G2099A Mutant 50S Ribosomal Subunit Of Haloarcula Marismortui 6G33 ; 2.05 ; Crystal structure of CLK1 in complex with 5-iodotubercidin 7OPG ; 1.93 ; Crystal structure of CLK1 in complex with compound 2 (CC513) 6KHD ; 2.7 ; Crystal structure of CLK1 in complex with CX-4945 6I5H ; 1.49 ; Crystal structure of CLK1 in complex with furanopyrimidin VN412 6FT9 ; 1.87 ; Crystal structure of CLK1 in complex with inhibitor 16 6FT8 ; 1.45 ; Crystal structure of CLK1 in complex with inhibitor 8g 6Z50 ; 1.6 ; Crystal structure of CLK1 in complex with macrocycle ODS2003208 6Z4Z ; 2.07 ; Crystal structure of CLK1 in complex with macrocycle ODS2004070 6I5I ; 1.6 ; Crystal structure of CLK1 in complexed with furo[3,2-b]pyridine compound 12h 6I5L ; 2.55 ; Crystal structure of CLK1 in complexed with furo[3,2-b]pyridine compound VN316 (derivative of compound 12h) 6I5K ; 2.3 ; Crystal structure of CLK1 in complexed with furo[3,2-b]pyridine compound VN345 (derivative of compound 12h) 6KHE ; 2.8 ; Crystal structure of CLK2 in complex with CX-4945 2EU9 ; 1.53 ; Crystal Structure of CLK3 6FT7 ; 2.02 ; Crystal structure of CLK3 in complex with compound 8a 6KHF ; 2.598 ; Crystal structure of CLK3 in complex with CX-4945 6Z51 ; 1.92 ; Crystal structure of CLK3 in complex with macrocycle ODS2002941 6Z53 ; 1.65 ; Crystal structure of CLK3 in complex with macrocycle ODS2003128 6Z52 ; 2.12 ; Crystal structure of CLK3 in complex with macrocycle ODS2003136 6Z54 ; 1.73 ; Crystal structure of CLK3 in complex with macrocycle ODS2003178 6Z55 ; 1.7 ; Crystal structure of CLK3 in complex with macrocycle ODS2004070 6RCT ; 2.32 ; Crystal structure of CLK3 in complex with T3-CLK 4G8E ; 2.2 ; Crystal Structure of clone18 TCR 4G8F ; 2.1 ; Crystal Structure of clone42 TCR 2YX2 ; 2.8 ; Crystal structure of cloned trimeric hyluranidase from streptococcus pyogenes at 2.8 A resolution 3WPT ; 2.629 ; Crystal structure of closed dimer of human importin-alpha1 (Rch1) 4LHE ; 1.962 ; Crystal structure of closed form of Monoacylglycerol Lipase 4MT6 ; 5.501 ; Crystal structure of closed inactive collybistin 8DCN ; 2.6 ; Crystal structure of Clostridioides difficile binary toxin CDTb D4 fragment in complex with BINTOXB/9 Fab 8DCM ; 2.5 ; Crystal structure of Clostridioides difficile binary toxin proCDTb lacking D4 in complex with BINTOXB/22 Fab 8DHJ ; 1.483 ; Crystal structure of Clostridioides difficile Protein Tyrosine Phosphatase at pH 7.5 8DHI ; 1.588 ; Crystal Structure of Clostridioides difficile Protein Tyrosine Phosphatase at pH 8.5 4EUH ; 2.1 ; Crystal structure of Clostridium acetobutulicum trans-2-enoyl-CoA reductase apo form 4EUF ; 2.7 ; Crystal structure of Clostridium acetobutulicum trans-2-enoyl-CoA reductase in complex with NAD 4EUE ; 2.0 ; Crystal structure of Clostridium acetobutulicum trans-2-enoyl-CoA reductase in complex with NADH 3F10 ; 2.3 ; Crystal structure of Clostridium Acetobutylicum 8-oxoguanine DNA glycosylase in complex with 8-oxoguanosine 3I0X ; 1.8 ; Crystal structure of Clostridium acetobutylicum 8-oxoguanine glycosylase/lyase in complex with dsDNA containing adenine opposite to 8-oxoG 3I0W ; 1.73 ; Crystal structure of Clostridium acetobutylicum 8-oxoguanine glycosylase/lyase in complex with dsDNA containing cytosine opposite to 8-oxoG 3F0Z ; 2.2 ; Crystal structure of Clostridium acetobutylicum 8-oxoguanine glycosylase/lyase in its apo-form 3TVI ; 3.0 ; Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAK): An important allosteric enzyme for industrial amino acids production 1F31 ; 2.6 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH A TRISACCHARIDE 1G9B ; 2.0 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH AN INHIBITOR (EXPERIMENT 1) 1G9D ; 2.2 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH AN INHIBITOR (EXPERIMENT 2) 1G9A ; 2.1 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH AN INHIBITOR (EXPERIMENT 3) 1G9C ; 2.35 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH AN INHIBITOR (EXPERIMENT 4) 1I1E ; 2.5 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN B COMPLEXED WITH DOXORUBICIN 3FIE ; 2.1 ; Crystal structure of Clostridium botulinum neurotoxin serotype F catalytic domain with an inhibitor (inh1) 3FII ; 2.17 ; Crystal structure of Clostridium botulinum neurotoxin serotype F catalytic domain with an inhibitor (inh2) 2A8A ; 2.0 ; Crystal structure of Clostridium botulinum neurotoxin serotype F light chain 1T3A ; 2.16 ; Crystal structure of Clostridium botulinum neurotoxin type E catalytic domain 3V3T ; 2.302 ; Crystal structure of Clostridium botulinum phage c-st TubZ 4NBX ; 1.75 ; Crystal Structure of Clostridium difficile Toxin A fragment TcdA-A1 Bound to A20.1 VHH 7LOU ; 1.82 ; Crystal structure of Clostridium difficile Toxin B (TcdB) glucosyltransferase in complex with UDP and isofagomine 7LOV ; 2.5 ; Crystal structure of Clostridium difficile Toxin B (TcdB) glucosyltransferase in complex with UDP and noeuromycin 1NQJ ; 1.0 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM HISTOLYTICUM COLG COLLAGENASE COLLAGEN-BINDING DOMAIN 3B AT 1.0 ANGSTROM RESOLUTION IN ABSENCE OF CALCIUM 2O8O ; 1.35 ; Crystal structure of Clostridium histolyticum colg collagenase collagen-binding domain 3B at 1.35 Angstrom resolution in presence of calcium 4HPK ; 1.35 ; Crystal structure of Clostridium histolyticum colg collagenase collagen-binding domain 3B at 1.35 Angstrom resolution in presence of calcium nitrate 1NQD ; 1.65 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM HISTOLYTICUM COLG COLLAGENASE COLLAGEN-BINDING DOMAIN 3B AT 1.65 ANGSTROM RESOLUTION IN PRESENCE OF CALCIUM 4JRW ; 1.6 ; Crystal structure of Clostridium histolyticum colg collagenase PKD domain 2 at 1.6 Angstrom resolution 4TN9 ; 1.4 ; Crystal structure of Clostridium histolyticum ColG collagenase polycystic kidney disease-like domain at 1.4 Angstrom resolution 3JQX ; 2.2 ; Crystal structure of Clostridium histolyticum colH collagenase collagen binding domain 3 at 2.2 Angstrom resolution in the presence of calcium and cadmium 3JQW ; 2.0 ; Crystal structure of Clostridium histolyticum colH collagenase collagen-binding domain 3 at 2 Angstrom resolution in presence of calcium 4JGU ; 1.42 ; Crystal structure of Clostridium histolyticum ColH collagenase polycystic kidney-disease-like domain 2b at 1.4 Angstrom resolution in the presence of calcium 1EPW ; 1.9 ; CRYSTAL STRUCTURE OF CLOSTRIDIUM NEUROTOXIN TYPE B 4JKM ; 2.263 ; Crystal Structure of Clostridium perfringens beta-glucuronidase 6CXS ; 2.8 ; Crystal Structure of Clostridium perfringens beta-glucuronidase bound with a novel, potent inhibitor 4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine 7SJY ; 2.0 ; Crystal structure of Clostridium thermocellum RsgI9 S1C-NTF2 bi-domain 5HT8 ; 2.01 ; Crystal structure of clostrillin double mutant (S17H,S19H) in complex with nickel 1K6K ; 1.8 ; Crystal Structure of ClpA, an AAA+ Chaperone-like Regulator of ClpAP protease implication to the functional difference of two ATPase domains 1KSF ; 2.6 ; Crystal Structure of ClpA, an HSP100 chaperone and regulator of ClpAP protease: Structural basis of differences in Function of the Two AAA+ ATPase domains 4HSE ; 2.2 ; Crystal structure of ClpB NBD1 in complex with guanidinium chloride and ADP 2Y1Q ; 1.5 ; Crystal Structure of ClpC N-terminal Domain 8AD9 ; 1.43 ; Crystal structure of ClpC2 C-terminal domain 8ADA ; 1.996 ; Crystal structure of ClpC2 N-terminal domain 3HLN ; 3.2 ; Crystal structure of ClpP A153C mutant with inter-heptamer disulfide bonds 7P81 ; 2.79 ; Crystal structure of ClpP from Bacillus subtilis in complex with ADEP2 (compact state) 7P80 ; 2.98 ; Crystal structure of ClpP from Bacillus subtilis in complex with ADEP2 (compressed state) 3QWD ; 2.1 ; Crystal structure of ClpP from Staphylococcus aureus 3V5E ; 2.3 ; Crystal structure of ClpP from Staphylococcus aureus in the active, extended conformation 8QYF ; 2.33 ; Crystal structure of ClpP from Staphylococcus epidermidis in complex with ixazomib 8CJ4 ; 1.9 ; Crystal structure of ClpP from Staphylococcus epidermidis, tetradecamer 3ST9 ; 2.43 ; Crystal structure of ClpP in heptameric form from Staphylococcus aureus 3STA ; 2.28 ; Crystal structure of ClpP in tetradecameric form from Staphylococcus aureus 6MX2 ; 2.5 ; Crystal Structure of ClpP1 from Clostridium difficile 630. 5ZNX ; 2.114 ; Crystal structure of CM14-treated HlyU from Vibrio vulnificus 7FC9 ; 2.2 ; Crystal structure of CmABCB1 in lipidic mesophase revealed by LCP-SFX 7VR5 ; 3.0 ; Crystal structure of CmABCB1 W114Y/W161Y/W363Y/W364Y/M391W (4WY/M391W) mutant 7CY4 ; 2.2 ; Crystal Structure of CMD1 in apo form 7CY6 ; 2.1 ; Crystal Structure of CMD1 in complex with 5mC-DNA 7CY8 ; 2.4 ; Crystal Structure of CMD1 in complex with 5mC-DNA and vitamin C 7CY7 ; 2.15 ; Crystal Structure of CMD1 in complex with DNA 7CY5 ; 2.2 ; Crystal Structure of CMD1 in complex with vitamin C 3HGG ; 2.57 ; Crystal Structure of CmeR Bound to Cholic Acid 3HGY ; 2.416 ; Crystal Structure of CmeR Bound to Taurocholic Acid 7V3R ; 1.7 ; Crystal structure of CMET in complex with a novel inhibitor 7V3S ; 1.9 ; Crystal structure of CMET in complex with a novel inhibitor 5HO6 ; 1.97 ; CRYSTAL STRUCTURE OF CMET IN COMPLEX WITH CMPD. 4GG5 ; 2.423 ; Crystal structure of CMET in complex with novel inhibitor 4GG7 ; 2.27 ; Crystal structure of cMET in complex with novel inhibitor 4MXC ; 1.632 ; Crystal structure of CMET in complex with novel inhibitor 5EOB ; 1.75 ; Crystal structure of CMET in complex with novel inhibitor 7Y4T ; 2.16 ; Crystal structure of cMET kinase domain bound by compound 9I 7Y4U ; 2.26 ; Crystal structure of cMET kinase domain bound by compound 9Y 8GVJ ; 2.71 ; Crystal structure of cMET kinase domain bound by D6808 5HNI ; 1.71 ; CRYSTAL STRUCTURE OF CMET WT with compound 3 9AV7 ; 2.1 ; Crystal structure of CMGC family protein kinase from Trichomonas vaginalis (AMP-PNP) 9AV6 ; 2.0 ; Crystal structure of CMGC family protein kinase from Trichomonas vaginalis (Apo) 6J38 ; 2.3 ; Crystal structure of CmiS2 6J39 ; 2.45 ; Crystal structure of CmiS2 with inhibitor 5JJP ; 2.3 ; Crystal structure of CmiS6 4JO0 ; 2.17 ; Crystal Structure of CmlA, a diiron beta-hydroxylase from Streptomyces venezuelae 3I3L ; 2.2 ; Crystal structure of CmlS, a flavin-dependent halogenase 8IF7 ; 2.2 ; Crystal structure of CmnB 7VGL ; 1.67 ; Crystal structure of CmnC 7VGN ; 1.83 ; Crystal structure of CmnC 7Y5P ; 1.7 ; Crystal structure of CmnC in complex with L-arginine and alpha-KG 7Y5F ; 1.52 ; Crystal structure of CmnC in complex with L-homoarginine 7Y5I ; 1.49 ; Crystal structure of CmnC in complex with L-homoarginine 7CXV ; 2.35 ; Crystal structure of CmnK 7CXU ; 2.19 ; Crystal structure of CmnK in complex with NAD+ 7CXS ; 1.83 ; Crystal structure of CmnK, a L-Dap formation enzyme in capreomycin biosynthesis 4QNU ; 2.6 ; Crystal structure of CmoB bound with Cx-SAM in P21212 8JOZ ; 2.22 ; Crystal structure of CmoM from E. coli complexed with sinefungin and cellularly expressed tRNA Ser 6I1R ; 2.8 ; Crystal structure of CMP bound CST in an outward facing conformation 3W90 ; 1.65 ; Crystal structure of CMP kinase from Thermus thermophilus HB8 3AKC ; 1.65 ; Crystal structure of CMP kinase in complex with CDP and ADP from Thermus thermophilus HB8 3AKD ; 1.6 ; Crystal structure of CMP kinase in complex with CDP from Thermus thermophilus HB8 7CKJ ; 1.5 ; Crystal structure of CMP kinase in complex with CMP from Thermus thermophilus HB8 1VH1 ; 2.6 ; Crystal structure of CMP-KDO synthetase 1VH3 ; 2.7 ; Crystal structure of CMP-KDO synthetase 1VIC ; 1.8 ; Crystal structure of CMP-KDO synthetase 6IFD ; 2.3 ; Crystal Structure of CMP-N-acetylneuraminate Synthetase from Vibrio cholerae in complex with CDP and Mg2+. 4W8Z ; 2.7 ; Crystal structure of Cmr1 from Pyrococcus furiosus (apo form) 4W8X ; 3.0 ; Crystal Structure of Cmr1 from Pyrococcus furiosus bound to a nucleotide 4RDP ; 2.85 ; Crystal structure of Cmr4 4W8V ; 2.15 ; Crystal structure of Cmr6 from Pyrococcus furiosus 5F1F ; 1.548 ; Crystal structure of CMY-10 adenylylated by acetyl-AMP 6G9T ; 1.6 ; CRYSTAL STRUCTURE OF CMY-136 class C BETA-LACTAMASE 8JB7 ; 1.35 ; Crystal structure of CMY-185 8JB8 ; 2.4 ; Crystal structure of CMY-185 complex with ceftazidime 1JL7 ; 1.4 ; Crystal Structure Of CN-Ligated Component III Glycera Dibranchiata Monomeric Hemoglobin 1JL6 ; 1.4 ; Crystal Structure of CN-Ligated Component IV Glycera Dibranchiata Monomeric Hemoglobin 8BDW ; 1.86 ; Crystal structure of CnaB2 domain from Lactobacillus plantarum 6YHL ; 3.277 ; Crystal structure of CNFy from Yersinia pseudotuberculosis - N-terminal fragment comprising residues 1-704 3K03 ; 1.62 ; Crystal Structure of CNG mimicking NaK mutant, NaK-DTPP, K+ complex 3K04 ; 1.58 ; Crystal Structure of CNG mimicking NaK mutant, NaK-DTPP, Na+ complex 4R6Z ; 2.3 ; Crystal Structure of CNG mimicking NaK mutant, NaK-ETPP, Cs+ complex 3K0D ; 1.95 ; Crystal Structure of CNG mimicking NaK mutant, NaK-ETPP, K+ complex 3K0G ; 1.95 ; Crystal Structure of CNG mimicking NaK mutant, NaK-ETPP, Na+ complex 3K06 ; 1.58 ; Crystal Structure of CNG mimicking NaK mutant, NaK-NTPP, K+ complex 3K08 ; 1.62 ; Crystal Structure of CNG mimicking NaK mutant, NaK-NTPP, Na+ complex 6FIZ ; 2.63 ; Crystal Structure of CNG mimicking NaK-EAPP mutant (T67A) cocrystallized with K+ 4R7C ; 2.3 ; Crystal Structure of CNG mimicking NaK-ETPP mutant cocrystallized with DiMethylammonium 4R50 ; 2.85 ; Crystal Structure of CNG mimicking NaK-ETPP mutant cocrystallized with Li+ 4RO2 ; 2.7 ; Crystal Structure of CNG mimicking NaK-ETPP mutant cocrystallized with Methylammonium 4RAI ; 2.31 ; Crystal Structure of CNG mimicking NaK-ETPP mutant in complex with Na+ 4R8C ; 2.5 ; Crystal Structure of CNG mimicking NaK-ETPP mutant in complex with Rb+ 6DJ3 ; 2.6 ; Crystal structure of CNNM2 cyclic nucleotide-binding homology domain 6DFD ; 1.901 ; Crystal structure of CNNM3 cyclic nucleotide-binding homology domain 7EZN ; 1.8 ; Crystal structure of CnYvh1 complex with vanadate 4JZ2 ; 1.95 ; Crystal structure of Co ion substituted SOD2 from Clostridium difficile 5W97 ; 2.3 ; Crystal Structure of CO-bound Cytochrome c Oxidase determined by Serial Femtosecond X-Ray Crystallography at Room Temperature 5WAU ; 1.95 ; Crystal Structure of CO-bound Cytochrome c Oxidase determined by Synchrotron X-Ray Crystallography at 100 K 5U8Y ; 2.5 ; Crystal structure of Co-CAO1 5U97 ; 1.85 ; Crystal structure of Co-CAO1 in complex with piceatannol 5U90 ; 1.9 ; Crystal structure of Co-CAO1 in complex with resveratrol 2RB7 ; 1.6 ; Crystal structure of co-catalytic metallopeptidase (YP_387682.1) from Desulfovibrio desulfuricans G20 at 1.60 A resolution 3NX6 ; 1.97 ; Crystal Structure of co-chaperonin, GroES (Xoo4289) from Xanthomonas oryzae pv. oryzae KACC10331 8PN6 ; 1.61 ; Crystal Structure of co-expressed NS2B-NS3 Protease from Zika Virus 1NWI ; 2.5 ; Crystal structure of CO-HbI transformed to an unligated state 3QZ5 ; 2.5 ; Crystal Structure of Co-type Nitrile Hydratase alpha-E168Q from Pseudomonas putida. 3QYG ; 2.3 ; Crystal Structure of Co-type Nitrile Hydratase beta-E56Q from Pseudomonas putida. 3QYH ; 2.0 ; Crystal Structure of Co-type Nitrile Hydratase beta-H71L from Pseudomonas putida. 3QZ9 ; 2.4 ; Crystal structure of Co-type nitrile hydratase beta-Y215F from Pseudomonas putida. 1UGP ; 1.63 ; Crystal structure of Co-type nitrile hydratase complexed with n-butyric acid 3QXE ; 2.104 ; Crystal Structure of Co-type Nitrile Hydratase from Pseudomonas putida. 1IRE ; 1.8 ; Crystal Structure of Co-type nitrile hydratase from Pseudonocardia thermophila 7W8M ; 2.6 ; Crystal structure of Co-type nitrile hydratase mutant from Pseudomonas thermophila - A129R 8I6N ; 2.2 ; Crystal structure of Co-type nitrile hydratase mutant from Pseudomonas thermophila - L6T 7W8L ; 2.301 ; Crystal Structure of Co-type nitrile hydratase mutant from Pseudonocardia thermophila - M46R 3AZ4 ; 1.62 ; Crystal structure of Co/O-HEWL 3AZ6 ; 1.5 ; Crystal structure of Co/T-HEWL 3MZ3 ; 3.2 ; Crystal structure of Co2+ HDAC8 complexed with M344 3THE ; 1.97 ; Crystal structure of Co2+2-HAI (pH 8.5) 2Y1W ; 2.1 ; CRYSTAL STRUCTURE OF COACTIVATOR ASSOCIATED ARGININE METHYLTRANSFERASE 1 (CARM1) IN COMPLEX WITH SINEFUNGIN AND INDOLE INHIBITOR 2Y1X ; 2.4 ; CRYSTAL STRUCTURE OF COACTIVATOR ASSOCIATED ARGININE METHYLTRANSFERASE 1 (CARM1) IN COMPLEX WITH SINEFUNGIN AND INDOLE INHIBITOR 2V74 ; 2.7 ; Crystal structure of coactivator-associated arginine methyltransferase 1 (CARM1), in complex with S-adenosyl-homocysteine 2V7E ; 2.7 ; Crystal structure of coactivator-associated arginine methyltransferase 1 (CARM1), unliganded 4IKP ; 2.0 ; Crystal structure of coactivator-associated arginine methyltransferase 1 with methylenesinefungin 4LIZ ; 1.499 ; Crystal structure of coactosin from Entamoeba histolytica 1BJ3 ; 2.6 ; CRYSTAL STRUCTURE OF COAGULATION FACTOR IX-BINDING PROTEIN (IX-BP) FROM VENOM OF HABU SNAKE WITH A HETERODIMER OF C-TYPE LECTIN DOMAINS 1IXX ; 2.5 ; CRYSTAL STRUCTURE OF COAGULATION FACTORS IX/X-BINDING PROTEIN (IX/X-BP) FROM VENOM OF HABU SNAKE WITH A HETERODIMER OF C-TYPE LECTIN DOMAINS 2YXD ; 2.3 ; Crystal Structure of Cobalamin biosynthesis precorrin 8W decarboxylase (cbiT) 2BB3 ; 2.27 ; Crystal Structure of Cobalamin Biosynthesis Precorrin-6Y Methylase (cbiE) from Archaeoglobus fulgidus 3BY5 ; 2.52 ; Crystal structure of cobalamin biosynthesis protein chiG from Agrobacterium tumefaciens str. C58 1T7L ; 2.0 ; Crystal Structure of Cobalamin-Independent Methionine Synthase from T. maritima 3KON ; 1.5 ; Crystal structure of cobalt (II) human carbonic anhydrase II at pH 11.0 3KOK ; 1.5 ; Crystal structure of cobalt (II) human carbonic anhydrase II at pH 8.5 3KOI ; 1.64 ; Crystal structure of cobalt (III) human carbonic anhydrase II at pH 6.0 1P24 ; 3.02 ; Crystal structure of cobalt(II)-d(GGCGCC)2 1LFM ; 1.5 ; CRYSTAL STRUCTURE OF COBALT(III)-SUBSTITUTED CYTOCHROME C (TUNA) 6XM6 ; 1.45 ; Crystal structure of cobalt-bound LSD4 from Sphingobium sp. strain SYK-6 4NUI ; 1.7 ; Crystal structure of cobalt-bound Na-ASP-2 1IQX ; 2.0 ; CRYSTAL STRUCTURE OF COBALT-SUBSTITUTED AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS 6BIG ; 2.21 ; Crystal structure of cobalt-substituted Synechocystis ACO 6RXO ; 1.95 ; Crystal structure of CobB Ac2 (A76G, I131C, V162A) in complex with H4K16-Buturyl peptide 6RXM ; 1.92 ; Crystal structure of CobB Ac2 (A76G, I131C, V162G) in complex with H4K16-Acetyl peptide 6RXR ; 1.7 ; Crystal structure of CobB Ac2 (A76G, I131C, V162G) in complex with H4K16Cr-2'OH-ADPr peptide intermediate after co-crystallisation 6RXP ; 1.8 ; Crystal structure of CobB Ac2 (A76G,I131C,V162A) in complex with H4K16-Crotonyl peptide 6RXQ ; 1.7 ; Crystal structure of CobB Ac2 (A76G,I131C,V162A) in complex with H4K16Cr-2'OH-ADPr peptide intermediate after soaking 6RXS ; 1.599 ; Crystal structure of CobB Ac3(A76G,Y92A, I131L, V187Y) in complex with H4K16-Acetyl peptide 6RXJ ; 1.6 ; Crystal structure of CobB wt in complex with H4K16-Acetyl peptide 6RXK ; 1.35 ; Crystal structure of CobB wt in complex with H4K16-Butyryl peptide 6RXL ; 2.3 ; Crystal structure of CobB wt in complex with H4K16-Crotonyl peptide 4AU1 ; 1.45 ; Crystal Structure of CobH (precorrin-8x methyl mutase) complexed with C5 desmethyl-HBA 5N0G ; 1.57 ; Crystal Structure of CobH T85A (precorrin-8x methyl mutase) complexed with C5 allyl-HBA 8D9Z ; 1.8 ; Crystal structure of Cobra alpha-neurotoxin in complex with Centi-3FTX-D09 antibody 3FRP ; 2.61 ; Crystal Structure of Cobra Venom Factor, a Co-factor for C3- and C5 convertase CVFBb 1POB ; 2.0 ; CRYSTAL STRUCTURE OF COBRA-VENOM PHOSPHOLIPASE A2 IN A COMPLEX WITH A TRANSITION-STATE ANALOGUE 1V6P ; 0.87 ; Crystal structure of Cobrotoxin 1L4L ; 2.0 ; Crystal Structure of CobT complexed with 2,5-dimethylaniline and nicotinate mononucleotide 1L4M ; 2.0 ; Crystal Structure of CobT complexed with 2-amino-p-cresol and nicotinate mononucleotide 1L4N ; 2.0 ; Crystal Structure of CobT complexed with 2-aminophenol 1L4K ; 2.2 ; Crystal Structure of CobT complexed with 3,4-dimethylaniline and nicotinate mononucleotide 1L5O ; 1.6 ; Crystal Structure of CobT complexed with 3,4-dimethylphenol and nicotinate mononucleotide 1L4G ; 2.1 ; Crystal Structure of CobT complexed with 4-methylcatechol and nicotinate mononucleotide 1L5F ; 1.9 ; Crystal Structure of CobT complexed with benzimidazole 1L5N ; 1.9 ; Crystal Structure of CobT complexed with imidazole 1L4H ; 2.1 ; Crystal Structure of CobT complexed with indole and nicotinate mononucleotide 1L5K ; 2.0 ; Crystal Structure of CobT complexed with N1-(5'-phosphoribosyl)-benzimidazole and nicotinate 1L5M ; 2.0 ; Crystal Structure of CobT complexed with N7-(5'-phosphoribosyl)-2-aminopurine and nicotinate 1L5L ; 2.0 ; Crystal Structure of CobT complexed with N7-(5'-phosphoribosyl)purine and nicotinate 4KQF ; 1.9 ; Crystal structure of CobT E174A complexed with adenine 4KQG ; 1.9 ; Crystal structure of CobT E174A complexed with DMB 4KQH ; 1.9 ; Crystal structure of CobT E317A 4KQI ; 1.4 ; Crystal structure of CobT E317A complexed with its reaction products 6PTF ; 2.203 ; Crystal Structure of CobT from Methanocaldococcus jannaschii in Apo State 6PT8 ; 1.4 ; Crystal Structure of CobT from Methanocaldococcus jannaschii in complex with Adenine Alpha-Ribotide and Nicotinic Acid 1J33 ; 2.0 ; Crystal structure of CobT from Thermus thermophilus HB8 1L4B ; 1.7 ; Crystal Structure of CobT in apo state 4KQK ; 1.47 ; Crystal structure of CobT S80Y/Q88M/L175M complexed with p-cresol 4KQJ ; 1.95 ; Crystal structure of CobT S80Y/Q88M/L175M complexed with p-cresol and NaMN 4PFS ; 2.3 ; Crystal Structure of Cobyrinic Acid a,c-diamide synthase from Mycobacterium smegmatis 5IHP ; 1.85 ; Crystal Structure of Cobyrinic Acid a,c-diamide synthase from Mycobacterium smegmatis with bound ADP and Magnesium 5IF9 ; 1.8 ; Crystal Structure of Cobyrinic Acid a,c-diamide synthase from Mycobacterium smegmatis with bound ATP analog and Magnesium 2PGZ ; 1.76 ; Crystal structure of Cocaine bound to an ACh-Binding Protein 2AK1 ; 1.85 ; Crystal Structure of Cocaine catalytic Antibody 7A1 Fab' in Complex with benzoic acid 2AJV ; 1.5 ; Crystal Structure of Cocaine catalytic Antibody 7A1 Fab' in Complex with Cocaine 2AJZ ; 2.3 ; Crystal Structure of Cocaine catalytic Antibody 7A1 Fab' in Complex with ecgonine methyl ester 2AJY ; 2.1 ; Crystal Structure of Cocaine catalytic Antibody 7A1 Fab' in Complex with ecgonine methyl ester and benzoic acid 2AJS ; 1.7 ; Crystal structure of cocaine catalytic antibody 7A1 Fab' in complex with heptaethylene glycol 2AJX ; 1.85 ; Crystal Structure of Cocaine catalytic Antibody 7A1 Fab' in Complex with Transition State Analog 7ZNX ; 1.6 ; Crystal structure of cocaprin 1, inhibitor of cysteine and aspartic proteases from Coprinopsis cinerea 6GKV ; 2.35 ; Crystal structure of Coclaurine N-Methyltransferase (CNMT) bound to N-methylheliamine and SAH 6GKY ; 2.847 ; Crystal structure of Coclaurine N-Methyltransferase (CNMT) bound to N-methylheliamine and SAH 6GKZ ; 2.43 ; Crystal structure of Coclaurine N-Methyltransferase (CNMT) bound to N-methylheliamine and SAH 5WPW ; 1.847 ; Crystal structure of coconut allergen cocosin 3WX7 ; 1.349 ; Crystal structure of COD 2VUV ; 1.3 ; Crystal structure of Codakine at 1.3A resolution 2VUZ ; 1.7 ; Crystal structure of Codakine in complex with biantennary nonasaccharide at 1.7A resolution 6X5K ; 2.47 ; Crystal structure of CODH/ACS with carbon monoxide bound to the A-cluster 5FHX ; 2.55 ; CRYSTAL STRUCTURE OF CODV IN COMPLEX WITH IL4 AT 2.55 Ang. RESOLUTION. 5EY2 ; 3.0 ; Crystal structure of CodY from Bacillus cereus 5EY0 ; 1.6 ; Crystal structure of CodY from Staphylococcus aureus with GTP and Ile 5EY1 ; 2.0 ; Crystal structure of CodY from Staphylococcus aureus with GTP and Ile 7OMR ; 1.5 ; Crystal structure of coelenteramide-bound Renilla reniformis luciferase RLuc8-D162A variant 7OMO ; 1.451 ; Crystal structure of coelenteramine-bound Renilla reniformis luciferase RLuc8-D120A variant 2HPS ; 1.72 ; Crystal structure of coelenterazine-binding protein from Renilla Muelleri 2HQ8 ; 1.8 ; Crystal structure of coelenterazine-binding protein from renilla muelleri in the ca loaded apo form 2G39 ; 2.1 ; Crystal structure of coenzyme A transferase from Pseudomonas aeruginosa 6FRM ; 2.2 ; Crystal Structure of coenzyme F420H2 oxidase (FprA) co-crystallized with 10 mM Tb-Xo4 2OHH ; 1.7 ; Crystal Structure of coenzyme F420H2 oxidase (FprA), a diiron flavoprotein, active oxidized state 2OHJ ; 2.26 ; Crystal Structure of coenzyme F420H2 oxidase (FprA), a diiron flavoprotein, inactive oxidized state 2OHI ; 2.3 ; Crystal Structure of coenzyme F420H2 oxidase (FprA), a diiron flavoprotein, reduced state 4NJO ; 2.22 ; crystal structure of cofactor(NAD+) bound 3-phosphoglycerate dehydrogenase in Entamoeba histolytica 6JCL ; 1.644 ; Crystal structure of cofactor-bound Rv0187 from MTB 4CW0 ; 1.5 ; Crystal structure of cofactor-free urate oxidase anaerobically complexed with 9-methyl uric acid 4D12 ; 1.4 ; Crystal Structure of Cofactor-free Urate Oxidase Anaerobically Complexed with Uric Acid 4D19 ; 1.35 ; Crystal structure of cofactor-free urate oxidase in complex with its 5-peroxoisourate intermediate (X-ray dose, 1.75 MGy) 4D17 ; 1.3 ; Crystal structure of cofactor-free urate oxidase in complex with its 5-peroxoisourate intermediate (X-ray dose, 106 kGy) 4D13 ; 1.3 ; Crystal structure of cofactor-free urate oxidase in complex with its 5-peroxoisourate intermediate (X-ray dose, 2.2 kGy) 4CW2 ; 1.32 ; Crystal structure of cofactor-free urate oxidase in complex with the 5-peroxo derivative of 9-metyl uric acid (X-ray dose, 2.5 kGy) 4CW3 ; 1.34 ; Crystal structure of cofactor-free urate oxidase in complex with the 5-peroxo derivative of 9-metyl uric acid (X-ray dose, 665 kGy) 4CW6 ; 1.28 ; Crystal structure of cofactor-free urate oxidase in complex with the 5-peroxo derivative of 9-metyl uric acid (X-ray dose, 92 kGy) 4QS4 ; 2.0 ; Crystal Structure of CofB from Enterotoxigenic Escherichia coli 4KED ; 1.901 ; Crystal Structure of Cofilin Mutant (cof1-157p) 4KEE ; 1.448 ; Crystal Structure of Cofilin Mutant (cof1-158p) 2OH3 ; 2.0 ; Crystal structure of COG1633: Uncharacterized conserved protein (ZP_00055496.1) from Magnetospirillum magnetotacticum MS-1 at 2.00 A resolution 3UL4 ; 1.95 ; Crystal structure of Coh-OlpA(Cthe_3080)-Doc918(Cthe_0918) complex: A novel type I Cohesin-Dockerin complex from Clostridium thermocellum ATTC 27405 4DH2 ; 1.75 ; Crystal structure of Coh-OlpC(Cthe_0452)-Doc435(Cthe_0435) complex: A novel type I Cohesin-Dockerin complex from Clostridium thermocellum ATTC 27405 4U3S ; 1.64 ; Crystal structure of Coh3ScaB-XDoc_M1ScaA complex: A N-terminal interface mutant of type II Cohesin-X-Dockerin complex from Acetivibrio cellulolyticus 4WI0 ; 1.93 ; Crystal structure of Coh3ScaB-XDoc_M2ScaA complex: A C-terminal interface mutant of type II Cohesin-X-Dockerin complex from Acetivibrio cellulolyticus 1ZZB ; 2.3 ; Crystal Structure of CoII HppE in Complex with Substrate 1ZZC ; 1.8 ; Crystal Structure of CoII HppE in Complex with Tris Buffer 2X6P ; 2.15 ; Crystal Structure of Coil Ser L19C 5FIY ; 3.0 ; crystal structure of coiled coil domain of PAWR 6WBE ; 2.1 ; Crystal structure of coiled coil region of human septin 1 6WB3 ; 1.35 ; Crystal structure of coiled coil region of human septin 4 6WCU ; 1.8 ; Crystal structure of coiled coil region of human septin 5 6WBP ; 1.8 ; Crystal structure of coiled coil region of human septin 6 6WSM ; 2.451 ; Crystal structure of coiled coil region of human septin 8 7WJT ; 2.3 ; Crystal structure of coiled-coil region of mouse TMEM266 3GR9 ; 2.2 ; Crystal structure of ColD H188K S187N 3A0J ; 1.65 ; Crystal structure of cold shock protein 1 from Thermus thermophilus HB8 6T00 ; 2.1 ; Crystal structure of Cold Shock Protein B (CSP-B) containing 4-F-Phe modified residues 6SZZ ; 2.05 ; Crystal structure of Cold Shock Protein B (CspB) containing the modified residue 4-F-Trp 3A52 ; 2.2 ; Crystal structure of cold-active alkailne phosphatase from psychrophile Shewanella sp. 4NS4 ; 2.15 ; Crystal structure of cold-active estarase from Psychrobacter cryohalolentis K5T 7B1X ; 2.3 ; Crystal structure of cold-active esterase PMGL3 from permafrost metagenomic library 1V73 ; 1.82 ; Crystal Structure of Cold-Active Protein-Tyrosine Phosphatase of a Psychrophile Shewanella SP. 4HMC ; 2.1 ; Crystal structure of cold-adapted chitinase from Moritella marina 4HMD ; 2.26 ; Crystal structure of cold-adapted chitinase from Moritella marina with a reaction intermediate - oxazolinium ion (NGO) 4HME ; 2.07 ; Crystal structure of cold-adapted chitinase from Moritella marina with a reaction product - NAG2 6F9O ; 1.05 ; Crystal structure of cold-adapted haloalkane dehalogenase DpcA from Psychrobacter cryohalolentis K5 3CIA ; 2.7 ; Crystal structure of cold-aminopeptidase from Colwellia psychrerythraea 2AXC ; 1.7 ; Crystal structure of ColE7 translocation domain 5KJV ; 1.75 ; Crystal structure of Coleus blumei HCT 5KJW ; 1.9 ; Crystal structure of Coleus blumei HCT in complex with 3-hydroxyacetophenone 6MK2 ; 3.35 ; Crystal structure of Coleus blumei rosmarinic acid synthase (RAS) in complex with 4-coumaroyl-(R)-3-(4-hydroxyphenyl)lactate 7MTL ; 2.446 ; Crystal structure of colibactin self-resistance protein ClbS in complex with a dsDNA 7MTT ; 1.85 ; Crystal structure of colibactin self-resistance protein ClbS in complex with two molecules of CHES 3EIP ; 1.8 ; CRYSTAL STRUCTURE OF COLICIN E3 IMMUNITY PROTEIN: AN INHIBITOR TO A RIBOSOME-INACTIVATING RNASE 1JCH ; 3.02 ; Crystal Structure of Colicin E3 in Complex with its Immunity Protein 2B5U ; 2.3 ; Crystal Structure Of Colicin E3 V206C Mutant In Complex With Its Immunity Protein 1EMV ; 1.7 ; CRYSTAL STRUCTURE OF COLICIN E9 DNASE DOMAIN WITH ITS COGNATE IMMUNITY PROTEIN IM9 (1.7 ANGSTROMS) 5EW5 ; 3.2 ; Crystal Structure of Colicin E9 In Complex with Its Immunity Protein Im9 3DA3 ; 2.5 ; Crystal Structure of Colicin M, A Novel Phosphatase Specifically Imported by Escherichia Coli 3DA4 ; 1.7 ; Crystal Structure of Colicin M, a Novel Phosphatase Specifically Imported by Escherichia Coli 5NIR ; 1.74 ; Crystal structure of collagen 2A vWC domain 2F68 ; 1.95 ; Crystal structure of collagen adhesin (CNA) from S. aureus 8GZO ; 1.23 ; Crystal structure of collagen heterotrimer with K, D, E, R residuesC 8H0E ; 1.76 ; Crystal structure of collagen heterotrimer with KD, ER and KE axial pairs 8H0F ; 1.87 ; Crystal structure of collagen heterotrimer with KD,ER and KE axial pairs 1T61 ; 1.5 ; crystal structure of collagen IV NC1 domain from placenta basement membrane 4Z1R ; 1.27 ; Crystal structure of collagen-like peptide at 1.27 Angstrom resolution 3WN8 ; 1.45 ; Crystal Structure of Collagen-Model Peptide, (POG)3-PRG-(POG)4 2Y50 ; 2.8 ; Crystal Structure of Collagenase G from Clostridium histolyticum at 2. 80 Angstrom Resolution 2Y6I ; 3.25 ; Crystal Structure of Collagenase G from Clostridium histolyticum in complex with Isoamylphosphonyl-Gly-Pro-Ala at 3.25 Angstrom Resolution 456C ; 2.4 ; CRYSTAL STRUCTURE OF COLLAGENASE-3 (MMP-13) COMPLEXED TO A DIPHENYL-ETHER SULPHONE BASED HYDROXAMIC ACID 4MT7 ; 3.5 ; Crystal structure of collybistin I 5I36 ; 5.123 ; Crystal structure of color device state A 5I6Q ; 4.912 ; Crystal structure of color device state B 5I6T ; 5.283 ; Crystal structure of color device state C 3LVA ; 1.5 ; Crystal structure of colorless GFP-like protein from Aequorea coerulescens 4O1W ; 2.0 ; Crystal Structure of Colwellia psychrerythraea cytochrome c 5XGX ; 2.33 ; Crystal structure of colwellia psychrerythraea strain 34H isoaspartyl dipeptidase E80Q mutant complexed with beta-isoaspartyl lysine 4MQD ; 2.16 ; Crystal structure of ComJ, inhibitor of the DNA degrading activity of NucA, from Bacillus subtilis 8ESD ; 3.33 ; Crystal structure of COMMD7-COMMD9-COMMD5-COMMD10 tetramer 6BP6 ; 2.17 ; Crystal structure of Commd9 COMM domain 2DUY ; 1.75 ; Crystal structure of competence protein ComEA-related protein from Thermus thermophilus HB8 6QVI ; 2.72 ; Crystal structure of competence-associated pilin ComZ from Thermus thermophilus 2XWJ ; 4.0 ; Crystal Structure of Complement C3b in Complex with Factor B 2XWB ; 3.49 ; Crystal Structure of Complement C3b in complex with Factors B and D 5JTW ; 3.5 ; Crystal structure of complement C4b re-refined using iMDFF 7OP0 ; 2.57 ; Crystal structure of complement C5 in complex with chemically synthesized K92 knob domain. 5B71 ; 2.11 ; Crystal structure of complement C5 in complex with SKY59 3RPX ; 2.65 ; Crystal structure of complement component 1, q subcomponent binding protein, C1QBP 2XWA ; 2.8 ; Crystal Structure of Complement Factor D Mutant R202A 4CBN ; 1.8 ; Crystal structure of Complement Factor D mutant R202A after conventional refinement 4CBO ; 1.8 ; Crystal structure of Complement Factor D mutant R202A after ensemble refinement 2XW9 ; 1.2 ; Crystal Structure of Complement Factor D mutant S183A 4BG0 ; 2.1 ; Crystal structure of complement factors H and FHL-1 binding protein BBH06 or CRASP-2 from Borrelia burgdorferi 4CBE ; 1.83 ; Crystal structure of complement factors H and FHL-1 binding protein BBH06 or CRASP-2 from Borrelia burgdorferi (Native) 2QOS ; 1.81 ; Crystal structure of complement protein C8 in complex with a peptide containing the C8 binding site on C8 5ZCJ ; 2.004 ; Crystal structure of complex 2DYA ; 1.77 ; Crystal structure of complex between Adenine nucleotide and nucleoside diphosphate kinase 3O4X ; 3.2 ; Crystal structure of complex between amino and carboxy terminal fragments of mDia1 1D9K ; 3.2 ; CRYSTAL STRUCTURE OF COMPLEX BETWEEN D10 TCR AND PMHC I-AK/CA 5GTC ; 2.7 ; Crystal structure of complex between DMAP-SH conjugated with a Kaposi's sarcoma herpesvirus LANA peptide (5-15) and nucleosome core particle 3A3P ; 1.9 ; Crystal structure of complex between E201A/SA-subtilisin and Tk-propeptide 3OUR ; 2.2 ; Crystal structure of complex between EIIA and a novel pyruvate decarboxylase 6ZH1 ; 2.2 ; Crystal structure of complex between FH19-20 and FhbA protein from Borrelia hermsii 5N1T ; 2.6 ; Crystal structure of complex between flavocytochrome c and copper chaperone CopC from T. paradoxus 6SQC ; 2.28 ; Crystal structure of complex between nuclear coactivator binding domain of CBP and [1040-1086]ACTR containing alpha-methylated Leu1055 and Leu1076 1Z3G ; 3.3 ; Crystal structure of complex between Pvs25 and Fab fragment of malaria transmission blocking antibody 2A8 6OY4 ; 2.45 ; Crystal structure of complex between recombinant Der p 2.0103 and Fab fragment of 7A1 3A3O ; 1.9 ; Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the five C-terminal residues 3A3N ; 2.2 ; Crystal structure of complex between SA-subtilisin and Tk-propeptide with deletion of the two C-terminal residues 2H5K ; 3.25 ; Crystal Structure of Complex Between the Domain-Swapped Dimeric Grb2 SH2 Domain and Shc-Derived Ligand, Ac-NH-pTyr-Val-Asn-NH2 2Z30 ; 1.65 ; Crystal structure of complex form between mat-Tk-subtilisin and Tk-propeptide 3VV2 ; 1.83 ; Crystal structure of complex form between S324A-subtilisin and mutant Tkpro 4QMC ; 1.09 ; Crystal structure of complex formed between phospholipase A2 and Biotin-sulfoxide at 1.09 A Resolution 3RWB ; 1.699 ; Crystal structure of complex of 4PAL (4-Pyridoxolactone) and PLDH (tetrameric pyridoxal 4-dehydrogenase) from Mesorhizobium loti 1ZSF ; 1.98 ; Crystal Structure of Complex of a Hydroxyethylamine Inhibitor with HIV-1 Protease at 2.0A Resolution 6DWH ; 2.0 ; Crystal structure of complex of BBKI and Bovine Trypsin 6DWU ; 3.96 ; Crystal structure of complex of BBKI and Bovine Trypsin 6DWF ; 1.94 ; Crystal structure of complex of BBKI mutant, L55R with Bovine Trypsin 3T0I ; 2.4 ; Crystal structure of complex of BT_2972 and AdoHcy, a methyltransferase from Bacteroides thetaiotaomicron 3SXJ ; 2.5 ; Crystal structure of complex of BT_2972 and AdoMet, a methyltransferase from Bacteroides thetaiotaomicron 7UT3 ; 3.0 ; Crystal structure of complex of Fab, G10C with GalNAc-pNP 2GVZ ; 3.27 ; Crystal Structure of Complex of Gs- with The Catalytic Domains of Mammalian Adenylyl Cyclase: Complex with MANT-ATP and Mn 2RGU ; 2.6 ; Crystal structure of complex of human DPP4 and inhibitor 5EIV ; 2.414 ; Crystal structure of complex of osteoclast-associated immunoglobulin-like receptor (OSCAR) and a synthetic collagen consensus peptide 3FVI ; 2.7 ; Crystal Structure of Complex of Phospholipase A2 with Octyl Sulfates 3T7T ; 2.5 ; Crystal structure of complex of SAH and BVU_3255, a methyltransferase from Bacteroides vulgatus ATCC 8482 3T7S ; 2.2 ; Crystal structure of complex of SAM and BVU_3255, a methyltransferase from Bacteroides vulgatus ATCC 8482 3AB0 ; 3.09 ; Crystal structure of complex of the Bacillus anthracis major spore surface protein BclA with ScFv antibody fragment 3M61 ; 1.68 ; Crystal structure of complex of urokinase and a upain-1 variant(W3A) in pH4.6 condition 6XVD ; 1.4 ; Crystal structure of complex of urokinase and a upain-1 variant(W3F) in pH7.4 condition 4R4J ; 1.51 ; Crystal structure of complex sp_ASADH with 3-carboxypropyl-phthalic acid and Nicotinamide Adenine dinucleotide phosphate 1VBR ; 1.8 ; Crystal structure of complex xylanase 10B from Thermotoga maritima with xylobiose 3W5P ; 1.9 ; Crystal structure of complexes of vitamin D receptor ligand binding domain with lithocholic acid derivatives 3W5Q ; 1.9 ; Crystal structure of complexes of vitamin D receptor ligand binding domain with lithocholic acid derivatives 3W5R ; 2.2 ; Crystal structure of complexes of vitamin D receptor ligand binding domain with lithocholic acid derivatives 3W5T ; 2.29 ; Crystal structure of complexes of vitamin D receptor ligand binding domain with lithocholic acid derivatives 1JF3 ; 1.4 ; Crystal Structure Of Component III Glycera Dibranchiata Monomeric Hemoglobin 1JF4 ; 1.4 ; Crystal Structure Of Component IV Glycera Dibranchiata Monomeric Hemoglobin 8T4V ; 1.47 ; Crystal structure of compound 1 bound to K-Ras(G12D) 6HKM ; 2.47 ; Crystal structure of Compound 1 with ERK5 6YM3 ; 2.05 ; Crystal structure of Compound 1 with PIP4K2A 6ARK ; 1.75 ; Crystal Structure of compound 10 covalently bound to K-Ras G12C 4YDG ; 3.25 ; Crystal structure of compound 10 in complex with HTLV-1 Protease 7Z76 ; 1.32 ; Crystal structure of compound 10 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB 4QOC ; 1.7 ; crystal structure of compound 16 bound to MDM2(17-111), {(3R,5R,6S)-5-(3-CHLOROPHENYL)-6-(4-CHLOROPHENYL)-1-[(1S)-1-CYCLOPROPYL-2-(PYRROLIDIN-1-YLSULFONYL)ETHYL]-3-METHYL-2-OXOPIPERIDIN-3-YL}ACETIC ACID 6UYA ; 1.74 ; Crystal structure of Compound 19 bound to IRAK4 7ZY5 ; 1.82 ; Crystal structure of compound 2 bound to CK2alpha 7ZY8 ; 1.85 ; Crystal structure of compound 2 bound to CK2alpha 8QW6 ; 2.2 ; Crystal Structure of compound 3 in complex with KRAS G12V C118S GDP and pVHL:ElonginC:ElonginB 8SKN ; 2.41 ; Crystal structure of compound 3-bound human Dynamin-1-like protein GTPase-BSE fusion 6HKN ; 2.33 ; Crystal structure of Compound 35 with ERK5 8QW7 ; 2.36 ; Crystal Structure of compound 4 in complex with KRAS G12V C118S GDP and pVHL:ElonginC:ElonginB 7Z78 ; 1.32 ; Crystal structure of compound 4 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB 4AU8 ; 1.9 ; Crystal structure of compound 4a in complex with cdk5, showing an unusual binding mode to the hinge region via a water molecule 4IO9 ; 3.2 ; Crystal structure of compound 4d bound to large ribosomal subunit (50S) from Deinococcus radiodurans 4IOA ; 3.2 ; Crystal structure of compound 4e bound to large ribosomal subunit (50S) from Deinococcus radiodurans 4IOC ; 3.6 ; Crystal structure of compound 4f bound to large ribosomal subunit (50S) from Deinococcus radiodurans 7E47 ; 1.38 ; Crystal structure of compound 6 bound to MIF 7Z77 ; 1.97 ; Crystal structure of compound 6 in complex with the bromodomain of human SMARCA2 and pVHL:ElonginC:ElonginB 7ZY0 ; 1.44 ; Crystal structure of compound 7 bound to CK2alpha 7ZY2 ; 1.51 ; Crystal structure of compound 7 bound to CK2alpha 7E45 ; 1.433 ; Crystal structure of compound 7 bound to MIF 2YIY ; 2.49 ; Crystal structure of compound 8 bound to TAK1-TAB 4YDF ; 2.804 ; Crystal structure of compound 9 in complex with HTLV-1 Protease 6HHQ ; 3.1 ; Crystal structure of compound C45 bound to the yeast 80S ribosome 4R6J ; 2.9 ; Crystal structure of computaional designed Lucine rich repeats DLRR_H in space group P212121 4R58 ; 2.4 ; Crystal structure of computational designed leucine rich repeats DLRR_A in space group P21 4R5C ; 1.93 ; Crystal structure of computational designed leucine rich repeats DLRR_E in space group of P212121 4R5D ; 2.53 ; Crystal structure of computational designed leucine rich repeats DLRR_G3 in space group F222 4R6G ; 2.8 ; Crystal structure of computational designed leucine rich repeats DLRR_K in space group P22121 4R6F ; 1.73 ; Crystal structure of computational designed protein DLRR_I 4D49 ; 2.09 ; Crystal structure of computationally designed armadillo repeat proteins for modular peptide recognition. 4D4E ; 2.0 ; Crystal structure of computationally designed armadillo repeat proteins for modular peptide recognition. 6WRX ; 3.07 ; Crystal structure of computationally designed protein 2DS25.1 in complex with the human Transferrin receptor ectodomain 6WRW ; 2.84 ; Crystal structure of computationally designed protein 2DS25.5 in complex with the human Transferrin receptor ectodomain 6WRV ; 2.47 ; Crystal structure of computationally designed protein 3DS18 in complex with the human Transferrin receptor ectodomain 6NX2 ; 2.3 ; Crystal structure of computationally designed protein AAA 4DAC ; 2.1 ; Crystal Structure of Computationally Designed Protein P6d 6NZ3 ; 2.3 ; Crystal structure of computationally designed protein XAA_GGHN 6NXM ; 2.2 ; Crystal structure of computationally designed protein XAA_GVDQ 6NY8 ; 2.3 ; Crystal structure of computationally designed protein XAA_GVDQ with calcium 6NYE ; 1.9 ; Crystal structure of computationally designed protein XAX 6NYK ; 2.8 ; Crystal structure of computationally designed protein XAX_GGDQ 6NYI ; 2.3 ; Crystal structure of computationally designed protein XXA 6NZ1 ; 1.9 ; Crystal structure of computationally designed protein XXA_GVDQ 3U3B ; 1.854 ; Crystal Structure of Computationally Redesigned Four-Helix Bundle 3ZY7 ; 1.09 ; Crystal structure of computationally redesigned gamma-adaptin appendage domain forming a symmetric homodimer 5JUB ; 2.57 ; Crystal structure of ComR from S.thermophilus in complex with DNA and its signalling peptide ComS. 5FD4 ; 2.9 ; Crystal Structure of ComR from Streptococcus suis 5K0B ; 2.36 ; Crystal Structure of COMT in complex with 2,4-dimethyl-5-[3-(1-phenylethyl)-1H-pyrazol-5-yl]-1,3-thiazole 5K0C ; 1.95 ; Crystal Structure of COMT in complex with 2,4-dimethyl-5-[3-(2-phenylpropan-2-yl)-1H-pyrazol-5-yl]-1,3-thiazole 5K0E ; 2.3 ; Crystal Structure of COMT in complex with 2,4-dimethyl-5-[3-(2-phenylpropan-2-yl)-1H-pyrazol-5-yl]-1,3-thiazole 5K03 ; 1.81 ; Crystal Structure of COMT in complex with 2,6-dimethyl-3-(1H-pyrazol-3-yl)imidazo[1,2-a]pyridine 5K01 ; 1.383 ; Crystal Structure of COMT in complex with 2,7-dimethyl-3-(1H-pyrazol-3-yl)imidazo[1,2-a]pyridine 5LQN ; 1.72 ; Crystal Structure of COMT in complex with 2-[(3-chlorophenoxy)methyl]-4-methyl-5-(1H-pyrazol-5-yl)-1,3-thiazole 5LQJ ; 2.41 ; Crystal Structure of COMT in complex with 3-cyclopropyl-5-methyl-4-phenyl-1,2,4-triazole 5K05 ; 2.14 ; Crystal Structure of COMT in complex with 4-methyl-2-(4-methylphenyl)-5-(1H-pyrazol-5-yl)-1,3-thiazole 5K0N ; 1.99 ; Crystal Structure of COMT in complex with 4-[5-[1-(4-methoxyphenyl)cyclopropyl]-1H-pyrazol-3-yl]-1,3-dimethylpyrazole 5K0G ; 1.89 ; Crystal Structure of COMT in complex with 4-[5-[1-(4-methoxyphenyl)ethyl]-1H-pyrazol-3-yl]-1,3-dimethylpyrazole 5K0J ; 1.94 ; Crystal Structure of COMT in complex with 5-[5-[1-(4-methoxyphenyl)cyclopropyl]-1H-pyrazol-3-yl]-2,4-dimethyl-1,3-thiazole 5K0L ; 2.02 ; Crystal Structure of COMT in complex with 5-[5-[1-(4-methoxyphenyl)cyclopropyl]-1H-pyrazol-3-yl]-2,4-dimethyl-1,3-thiazole 5K0F ; 1.81 ; Crystal Structure of COMT in complex with 5-[5-[1-(4-methoxyphenyl)ethyl]-1H-pyrazol-3-yl]-2,4-dimethyl-1,3-thiazole 5K09 ; 2.7 ; Crystal Structure of COMT in complex with a thiazole ligand 5LQC ; 1.903 ; Crystal Structure of COMT in complex with N-[(E)-3-[(2R,3S,4R,5R)-3,4-dihydroxy-5-[6-(methylamino)purin-9-yl]oxolan-2-yl]prop-2-enyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide 5LQK ; 2.24 ; Crystal Structure of COMT in complex with N-[(E)-3-[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]prop-2-enyl]-2,3-dihydroxy-5-[(4-methylphenyl)methyl]benzamide 5LQR ; 1.5 ; Crystal Structure of COMT in complex with N-[(E)-3-[(2R,3S,4R,5R)-5-(6-ethylpurin-9-yl)-3,4-dihydroxyoxolan-2-yl]prop-2-enyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide 5LQU ; 1.8 ; Crystal Structure of COMT in complex with N-[(E)-3-[(2R,3S,4R,5R)-5-[6-(ethylamino)purin-9-yl]-3,4-dihydroxyoxolan-2-yl]prop-2-enyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide 5LR6 ; 2.3 ; Crystal Structure of COMT in complex with [3-(2,4-dimethyl-1,3-thiazol-5-yl)-1H-pyrazol-5-yl]-(4-phenylpiperazin-1-yl)methanone 5P8W ; 2.03 ; Crystal Structure of COMT in complex with [5-(2,4-dimethyl-1,3-thiazol-5-yl)-1H-pyrazol-3-yl]methanamine 4U5G ; 2.1997 ; Crystal structure of con-ikot-ikot toxin 4U5H ; 1.58 ; crystal structure of con-ikot-ikot toxin 5Z5N ; 2.04 ; Crystal structure of ConA-R1M 5ZAC ; 2.59 ; Crystal structure of ConA-R2M 5Z5P ; 1.4 ; Crystal structure of ConA-R3M 5Z5Y ; 1.89 ; Crystal structure of ConA-R4M 5Z5L ; 2.3 ; Crystal structure of ConA-R5M 3QLQ ; 1.7 ; Crystal structure of Concanavalin A bound to an octa-alpha-mannosyl-octasilsesquioxane cluster 4PF5 ; 2.04 ; Crystal structure of Concanavalin A complexed with a synthetic derivative of high-mannose chain 1CNV ; 1.65 ; CRYSTAL STRUCTURE OF CONCANAVALIN B AT 1.65 A RESOLUTION 4PPH ; 2.009 ; Crystal structure of conglutin gamma, a unique basic 7S globulin from lupine seeds 5B74 ; 2.039 ; Crystal structure of conjoined Pyrococcus furiosus L-asparaginase with peptide 5CBP ; 2.358 ; Crystal Structure of Conjoint Pyrococcus furiosus L-asparaginase at 37 degree C 4RA9 ; 2.049 ; Crystal Structure of Conjoint Pyrococcus Furiosus L-asparaginase with Citrate 2BJF ; 1.67 ; Crystal Structure of Conjugated Bile Acid Hydrolase from Clostridium perfringens in Complex with Reaction Products Taurine and Deoxycholate 2BJG ; 2.1 ; Crystal Structure of Conjugated Bile Acid Hydrolase from Clostridium perfringens in Complex with Reaction Products Taurine and Deoxycholate 3WG6 ; 2.2 ; Crystal structure of conjugated polyketone reductase C1 from Candida parapsilosis complexed with NADPH 3VXG ; 1.7 ; Crystal structure of conjugated polyketone reductase C2 from Candida Parapsilosis 4H8N ; 1.8 ; Crystal structure of conjugated polyketone reductase C2 from candida parapsilosis complexed with NADPH 4DPN ; 2.55 ; Crystal Structure of ConM Complexed with Resveratrol 2CY6 ; 2.0 ; Crystal structure of ConM in complex with trehalose and maltose 1F9P ; 1.93 ; CRYSTAL STRUCTURE OF CONNECTIVE TISSUE ACTIVATING PEPTIDE-III(CTAP-III) COMPLEXED WITH POLYVINYLSULFONIC ACID 5CDX ; 2.4 ; Crystal structure of conserpin 5CDZ ; 1.449 ; Crystal structure of conserpin in the latent state 5CE0 ; 2.3 ; Crystal structure of conserpin with Z-mutation 3LKV ; 2.2 ; Crystal structure of conserved domain protein from vibrio cholerae o1 biovar eltor str. n16961 3CLW ; 2.199 ; Crystal structure of conserved exported protein from Bacteroides fragilis 3DME ; 1.7 ; Crystal structure of conserved exported protein from Bordetella pertussis. NorthEast Structural Genomics target BeR141 2FDR ; 2.0 ; Crystal Structure of Conserved Haloacid Dehalogenase-like Protein of Unknown Function ATU0790 from Agrobacterium tumefaciens str. C58 3IBS ; 2.1 ; Crystal structure of conserved hypothetical protein BatB from Bacteroides thetaiotaomicron 2P9M ; 2.59 ; Crystal structure of conserved hypothetical protein MJ0922 from Methanocaldococcus jannaschii DSM 2661 2CYJ ; 1.5 ; Crystal structure of conserved hypothetical protein PH1505 from Pyrococcus horikoshii OT3 1RFE ; 2.0 ; Crystal structure of conserved hypothetical protein Rv2991 from Mycobacterium tuberculosis 6IY0 ; 2.5 ; Crystal structure of conserved hypothetical protein SAV0927 from Staphylococcus aureus subsp. aureus Mu50 1WWM ; 2.61 ; Crystal Structure of Conserved Hypothetical Protein TT2028 from an Extremely Thermophilic Bacterium Thermus thermophilus HB8 2DP9 ; 1.9 ; Crystal Structure of Conserved Hypothetical Protein TTHA0113 from Thermus thermophilus HB8 2CWY ; 1.85 ; Crystal structure of conserved hypothetical protein, TTHA0068 from Thermus thermophilus HB8 2CXD ; 2.0 ; Crystal structure of conserved hypothetical protein, TTHA0068 from Thermus thermophilus HB8 2DX6 ; 1.78 ; Crystal structure of conserved hypothetical protein, TTHA0132 from Thermus thermophilus HB8 3S93 ; 2.28 ; Crystal structure of conserved motif in TDRD5 1NOG ; 1.55 ; Crystal Structure of Conserved Protein 0546 from Thermoplasma Acidophilum 3EWL ; 2.0 ; Crystal Structure of Conserved protein BF1870 of Unknown Function from Bacteroides fragilis 3MQZ ; 1.3 ; Crystal Structure of Conserved Protein DUF1054 from Pink Subaerial Biofilm Microbial Leptospirillum sp. Group II UBA. 7M5H ; 2.15 ; Crystal structure of conserved protein from Enterococcus faecalis V583 2PCS ; 2.4 ; Crystal structure of conserved protein from Geobacillus kaustophilus 2NRK ; 1.65 ; Crystal structure of conserved protein GrpB from Enterococcus faecalis 1YQE ; 1.83 ; Crystal Structure of Conserved Protein of Unknown Function AF0625 3D0J ; 1.53 ; Crystal structure of conserved protein of unknown function CA_C3497 from Clostridium acetobutylicum ATCC 824 3CP3 ; 2.0 ; Crystal structure of conserved protein of unknown function DIP1874 from Corynebacterium diphtheriae 3NAT ; 2.925 ; Crystal Structure of Conserved Protein of Unknown Function EF_1977 from Enterococcus faecalis 2HQY ; 1.8 ; Crystal Structure of Conserved Protein of Unknown Function from Bacteroides thetaiotaomicron VPI-5482 2FB0 ; 2.1 ; Crystal Structure of Conserved Protein of Unknown Function from Bacteroides thetaiotaomicron VPI-5482 at 2.10 A Resolution, Possible Oxidoreductase 2HV2 ; 2.4 ; Crystal Structure of Conserved Protein of Unknown Function from Enterococcus faecalis V583 at 2.4 A Resolution, Probable N-Acyltransferase 2IDL ; 1.7 ; Crystal Structure of Conserved Protein of Unknown Function from Streptococcus pneumoniae 1T07 ; 1.8 ; Crystal Structure of Conserved Protein of Unknown Function PA5148 from Pseudomonas aeruginosa 1TLJ ; 2.8 ; Crystal Structure of Conserved Protein of Unknown Function SSO0622 from Sulfolobus solfataricus 2ESH ; 2.3 ; Crystal Structure of Conserved Protein of Unknown Function TM0937- a Potential Transcriptional Factor 3RQB ; 2.8 ; Crystal Structure of Conserved Protein of Unknown Function with Hot dog Fold from Alicyclobacillus acidocaldarius 2CWQ ; 1.9 ; Crystal structure of conserved protein TTHA0727 from Thermus thermophilus HB8 2NRH ; 2.3 ; Crystal structure of conserved putative Baf family transcriptional activator from Campylobacter jejuni 3C2Q ; 2.0 ; Crystal structure of conserved putative LOR/SDH protein from Methanococcus maripaludis S2 1YHF ; 2.0 ; Crystal Structure of Conserved SPY1581 Protein of Unknown Function from Streptococcus pyogenes 3CK2 ; 2.3 ; Crystal structure of conserved uncharacterized protein (predicted phosphoesterase COG0622) from Streptococcus pneumoniae TIGR4 3B5M ; 1.21 ; Crystal structure of conserved uncharacterized protein from Rhodopirellula baltica 2PHC ; 2.29 ; Crystal structure of conserved uncharacterized protein PH0987 from Pyrococcus horikoshii 3SJR ; 2.94 ; Crystal structure of conserved unkown function protein CV_1783 from Chromobacterium violaceum ATCC 12472 7SMU ; 1.95 ; Crystal Structure of Consomatin-Ro1 p by soaking A4>p into Csm6 6O6V ; 2.35 ; Crystal structure of Csm6 in complex with cA4 by soaking cA4 into Csm6 6O71 ; 2.55 ; Crystal structure of Csm6 in complex with cdA4 by soaking cdA4 into Csm6 6O6Y ; 1.96 ; Crystal structure of Csm6 in complex with cyclic-tetraadenylates (cA4) by cocrystallization of Csm6 and cA4 6O6X ; 2.11 ; Crystal structure of Csm6 W14A/E337A mutant in complex with cA4 by cocrystallization 7XH0 ; 1.68 ; crystal structure of Csn-PD from Paenibacillus dendritiformis 4F7O ; 2.6 ; Crystal structure of CSN5 5JOH ; 1.99 ; CRYSTAL STRUCTURE OF CSN5(2-257) IN COMPLEX WITH CNS5i-1b 5JOG ; 2.46 ; CRYSTAL STRUCTURE OF CSN5(2-257) IN COMPLEX WITH CNS5i-3 1MJC ; 2.0 ; CRYSTAL STRUCTURE OF CSPA, THE MAJOR COLD SHOCK PROTEIN OF ESCHERICHIA COLI 5Z38 ; 2.292 ; Crystal structure of CsrA bound to CesT 2XZ2 ; 1.4 ; Crystal structure of CstF-50 homodimerization domain 6B3X ; 2.3 ; Crystal structure of CstF-50 in complex with CstF-77 2UY1 ; 2.0 ; CRYSTAL STRUCTURE OF CSTF-77 5D6H ; 2.4 ; Crystal structure of CsuC-CsuA/B chaperone-major subunit pre-assembly complex from Csu biofilm-mediating pili of Acinetobacter baumannii 6FJY ; 2.31 ; Crystal structure of CsuC-CsuE chaperone-tip adhesion subunit pre-assembly complex from archaic chaperone-usher Csu pili of Acinetobacter baumannii 6QZQ ; 3.6 ; Crystal structure of Csx1 from Sulfolobus islandicus monoclinic form 6QZT ; 2.93 ; Crystal structure of Csx1 from Sulfolobus islandicus orthorhombic form 6R7B ; 3.12 ; Crystal structure of Csx1 in complex with cyclic oligoadenylate cOA4 conformation 1 6R9R ; 2.7 ; Crystal structure of Csx1 in complex with cyclic oligoadenylate cOA4 conformation 2 4EOG ; 2.3 ; Crystal structure of Csx1 of Pyrococcus furiosus 3WXY ; 1.706 ; Crystal structure of CsyB complexed with CoA-SH 3GN6 ; 1.8 ; Crystal structure of CT0912, ORFan protein from Chlorobium tepidum with a ferredoxin-like domain repeat (NP_661805.1) from CHLOROBIUM TEPIDUM TLS at 1.80 A resolution 3VSZ ; 2.893 ; Crystal structure of Ct1,3Gal43A in complex with galactan 3VT1 ; 3.187 ; Crystal structure of Ct1,3Gal43A in complex with galactose 3VT2 ; 3.002 ; Crystal structure of Ct1,3Gal43A in complex with isopropy-beta-D-thiogalactoside 3VT0 ; 2.913 ; Crystal structure of Ct1,3Gal43A in complex with lactose 1RCW ; 2.5 ; Crystal structure of CT610 from Chlamydia trachomatis 7ZHE ; 2.0 ; Crystal structure of CtaZ from Ruminiclostridium cellulolyticum 7ZHD ; 1.65 ; Crystal structure of CtaZ in complex with Closthioamide 1MX3 ; 1.95 ; Crystal structure of CtBP dehydrogenase core holo form 4U3A ; 2.42 ; Crystal structure of CtCel5E 5YEF ; 2.807 ; Crystal structure of CTCF ZFs2-8-Hs5-1aE 5YEH ; 2.328 ; Crystal structure of CTCF ZFs4-8-eCBS 5YEG ; 2.0 ; Crystal structure of CTCF ZFs4-8-Hs5-1a complex 5YEL ; 2.96 ; Crystal structure of CTCF ZFs6-11-gb7CSE 5UND ; 2.549 ; Crystal Structure of CTCF(ZnF 4-10) With 28-mer DNA 7KPQ ; 2.1 ; Crystal structure of CtdE in complex with FAD 7KPT ; 1.91 ; Crystal structure of CtdE in complex with FAD and substrate 4 5MU3 ; 2.1 ; Crystal structure of Ctf19-Mcm21 kinetochore assembly bound with Ctf19-Mcm21 binding motif of central kinetochore subunit Okp1 7YP0 ; 2.3 ; Crystal structure of CtGST 8K2P ; 2.2 ; Crystal structure of CtGST-F76A 6XY2 ; 3.05 ; Crystal structure of CTLA-4 complexed with the Fab of HL32 antibody 6JLI ; 1.778 ; Crystal structure of CTLD7 domain of human PLA2R 1RAA ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAB ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAC ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAD ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAE ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAF ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAG ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAH ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 1RAI ; 2.5 ; CRYSTAL STRUCTURE OF CTP-LIGATED T STATE ASPARTATE TRANSCARBAMOYLASE AT 2.5 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ATCASE MUTANTS AND THE MECHANISM OF NEGATIVE COOPERATIVITY 2B7L ; 3.0 ; Crystal Structure of CTP:Glycerol-3-Phosphate Cytidylyltransferase from Staphylococcus aureus 4C2G ; 1.9 ; Crystal structure of CtpB(S309A) in complex with a peptide having a Val-Pro-Ala C-terminus 8IAN ; 2.08 ; Crystal structure of CtPL-H210S/F214I mutant 2WQH ; 2.2 ; Crystal structure of CTPR3Y3 3PPZ ; 2.99 ; Crystal structure of CTR1 kinase domain in complex with staurosporine 3P86 ; 2.496 ; Crystal structure of CTR1 kinase domain mutant D676N in complex with staurosporine 8HEN ; 1.95 ; Crystal structure of CTSB in complex with 212-148 8HEI ; 1.55 ; Crystal structure of CTSB in complex with E64d 8HE9 ; 1.55 ; Crystal structure of CTSB in complex with K777 8HET ; 2.0 ; Crystal structure of CTSL in complex with E64d 8HFV ; 2.1 ; Crystal structure of CTSL in complex with K777 5FBY ; 1.898 ; Crystal structure of ctSPD 3H0D ; 2.4 ; Crystal structure of CtsR in complex with a 26bp DNA duplex 4OM4 ; 2.74 ; Crystal structure of CTX A2 from Taiwan Cobra (Naja naja atra) 4OM5 ; 2.55 ; Crystal structure of CTX A4 from Taiwan Cobra (Naja naja atra) 7Q0Z ; 1.0 ; Crystal structure of CTX-M-14 6V6P ; 1.55 ; Crystal structure of CTX-M-14 E166A/D240G beta-lactamase 6V7T ; 1.34 ; Crystal structure of CTX-M-14 E166A/D240G beta-lactamase in complex with ceftazidime 7K2X ; 1.8 ; Crystal structure of CTX-M-14 E166A/K234R Beta-lactamase 7K2Y ; 1.62 ; Crystal structure of CTX-M-14 E166A/K234R Beta-lactamase in complex with hydrolyzed ampicillin 7K2W ; 1.4 ; Crystal structure of CTX-M-14 E166A/K234R Beta-lactamase in complex with hydrolyzed cefotaxime 6V6G ; 1.5 ; Crystal structure of CTX-M-14 E166A/P167S/D240G beta-lactamase 6V83 ; 1.8 ; Crystal structure of CTX-M-14 E166A/P167S/D240G beta-lactamase in complex with ceftazidime-1 6V8V ; 1.8 ; Crystal structure of CTX-M-14 E166A/P167S/D240G beta-lactamase in complex with ceftazidime-2 6VHS ; 1.28 ; Crystal structure of CTX-M-14 in complex with beta-lactamase inhibitor ETX1317 7Q0Y ; 1.3 ; Crystal structure of CTX-M-14 in complex with Bortezomib 7Q11 ; 1.14 ; Crystal structure of CTX-M-14 in complex with Ixazomib 6UNB ; 1.3 ; Crystal structure of CTX-M-14 in complex with temocillin 8DOE ; 1.5 ; Crystal Structure of CTX-M-14 N106A 6V5E ; 2.3 ; Crystal structure of CTX-M-14 P167S/D240G beta-lactamase 4PM6 ; 1.56 ; Crystal structure of CTX-M-14 S70G beta-lactamase at 1.56 Angstroms resolution 4PM5 ; 1.261 ; Crystal structure of CTX-M-14 S70G beta-lactamase in complex with cefotaxime at 1.26 Angstroms resolution 6CYQ ; 1.698 ; Crystal structure of CTX-M-14 S70G/N106S beta-lactamase in complex with hydrolyzed cefotaxime 6CYU ; 1.82 ; Crystal structure of CTX-M-14 S70G/N106S/D240G beta-lactamase in complex with hydrolyzed cefotaxime 4PM8 ; 1.169 ; Crystal structure of CTX-M-14 S70G:S237A beta-lactamase at 1.17 Angstroms resolution 4PM7 ; 1.29 ; Crystal structure of CTX-M-14 S70G:S237A in complex with cefotaxime at 1.29 Angstroms resolution 4PMA ; 1.399 ; Crystal structure of CTX-M-14 S70G:S237A:R276A beta-lactamase at 1.39 Angstroms resolution 4PM9 ; 1.454 ; Crystal structure of CTX-M-14 S70G:S237A:R276A beta-lactamase in complex with cefotaxime at 1.45 Angstroms resolution 7U70 ; 1.36 ; Crystal Structure of CTX-M-14 with compound 2 6MD8 ; 1.4 ; Crystal structure of CTX-M-14 with compound 3 6MIA ; 1.399 ; Crystal structure of CTX-M-14 with compound 6 6QW8 ; 1.1 ; Crystal structure of CTX-M-15 complexed with relebactam (16 hour soak) 6Z7I ; 0.98 ; Crystal structure of CTX-M-15 E166Q mutant apoenzyme 4HBU ; 1.1 ; Crystal structure of CTX-M-15 extended-spectrum beta-lactamase in complex with avibactam (NXL104) 7R3R ; 1.17 ; Crystal structure of CTX-M-15 G238C mutant apoenzyme 7R3Q ; 1.46 ; Crystal structure of CTX-M-15 G238C/A240 insert mutant apoenzyme 6Z7K ; 1.1 ; Crystal structure of CTX-M-15 in complex with the imine form of hydrolysed tazobactam 5T66 ; 1.951 ; Crystal Structure of CTX-M-15 with 1C 6J2O ; 1.9 ; Crystal structure of CTX-M-64 clavulanic acid complex 2HXA ; 2.21 ; Crystal structure of Cu(I) Azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CSPHQGAGM"", at pH3.5 2HX9 ; 1.7 ; Crystal structure of Cu(I) Azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CSPHQGAGM"", at pH4 2HX8 ; 1.6 ; Crystal structure of Cu(I) Azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CSPHQGAGM"", at pH5 3DSO ; 1.55 ; Crystal structure of Cu(I) bound copper resistance protein CopK 2HH7 ; 2.55 ; Crystal Structure of Cu(I) bound CsoR from Mycobacterium tuberculosis. 2GI0 ; 1.7 ; Crystal structure of Cu(I) Phe114Pro Azurin mutant 5VDE ; 1.65 ; Crystal Structure of Cu(I)-loaded yeast Atx1: Crystal Form I 5VDF ; 1.93 ; Crystal Structure of Cu(I)-loaded yeast Atx1: Crystal Form II 3K0I ; 4.116 ; Crystal structure of Cu(I)CusA 2VB2 ; 1.7 ; Crystal structure of Cu(I)CusF 2HX7 ; 1.55 ; Crystal structure of Cu(II) Azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CSPHQGAGM"" 2EB9 ; 1.8 ; Crystal Structure of Cu(II)(Sal-Leu)/apo-Myoglobin 2EB8 ; 1.65 ; Crystal Structure of Cu(II)(Sal-Phe)/apo-Myoglobin 2WTP ; 1.5 ; Crystal Structure of Cu-form Czce from C. metallidurans CH34 8IMD ; 1.45 ; Crystal structure of Cu/Zn Superoxide dismutase from Paenibacillus lautus 4OH2 ; 2.384 ; Crystal Structure of Cu/Zn Superoxide Dismutase I149T 8HCT ; 2.26 ; Crystal structure of Cu2+ binding to Dendrorhynchus zhejiangensis ferritin 3N30 ; 3.0 ; Crystal Structure of cubic Zn3-hUb (human ubiquitin) adduct 4LLF ; 2.8891 ; Crystal structure of Cucumber Necrosis Virus 4YN3 ; 1.95 ; Crystal structure of Cucumisin complex with pro-peptide 3VTA ; 2.75 ; Crystal Structure of cucumisin, a subtilisin-like endoprotease from Cucumis melo L 1KV7 ; 1.4 ; Crystal Structure of CueO, a multi-copper oxidase from E. coli involved in copper homeostasis 7Y2P ; 1.58 ; Crystal structure of CUG repeat RNA duplex containing A-U base pair and U-U mismatches 7Y2B ; 1.88 ; Crystal structure of CUG repeat RNA duplex containing U-U mismatches 3NMR ; 1.85 ; Crystal Structure of CUGBP1 RRM1/2-RNA Complex 3NNA ; 1.899 ; Crystal Structure of CUGBP1 RRM1/2-RNA Complex 3NNC ; 2.2005 ; Crystal Structure of CUGBP1 RRM1/2-RNA Complex 5J7M ; 2.07 ; Crystal structure of Cupin 2 conserved barrel domain protein from Kribbella flavida DSM 17836 3IBM ; 2.0 ; CRYSTAL STRUCTURE OF cupin 2 domain-containing protein Hhal_0468 FROM Halorhodospira halophila 1SEF ; 2.05 ; Crystal structure of cupin domain protein EF2996 from Enterococcus faecalis 4E2G ; 1.86 ; Crystal structure of Cupin fold protein Sthe2323 from Sphaerobacter thermophilus 5ZXN ; 1.855 ; Crystal structure of CurA from Vibrio vulnificus 5ZXU ; 2.2 ; Crystal structure of CurA in complex with NADPH from Vibrio vulnificus 2DPF ; 1.5 ; Crystal Structure of curculin1 homodimer 3OIT ; 2.0 ; Crystal structure of curcuminoid synthase CUS from Oryza sativa 5THZ ; 2.1 ; Crystal structure of CurJ carbon methyltransferase 5TZ6 ; 2.4 ; Crystal Structure of CurJ Dehydratase H978F Inactive Mutant In Complex with Compound 21 5TZ7 ; 1.648 ; Crystal Structure of CurK Dehydratase D1169N Inactive Mutant 5TZ5 ; 1.428 ; Crystal Structure of CurK Dehydratase H996F Inactive Mutant 5DP1 ; 1.85 ; Crystal structure of CurK enoyl reductase 3K07 ; 3.521 ; Crystal structure of CusA 7ZP0 ; 1.398 ; Crystal structure of CusS histidine kinase catalytic core from Escherichia coli 5KU5 ; 2.15 ; Crystal Structure of CusS Sensor Domain with Silver Bound 2NUH ; 1.39 ; Crystal structure of CutA from the phytopathgen bacterium Xylella fastidiosa 1NAQ ; 1.7 ; Crystal structure of CUTA1 from E.coli at 1.7 A resolution 2ZOM ; 3.02 ; Crystal structure of CutA1 from Oryza sativa 1J2V ; 2.0 ; Crystal Structure of CutA1 from Pyrococcus Horikoshii 2E66 ; 2.0 ; Crystal Structure Of CutA1 From Pyrococcus Horikoshii OT3, Mutation D60A 6GVB ; 1.8 ; Crystal structure of Cutibacterium acnes exo-beta-1,4-mannosidase 3F7O ; 2.2 ; Crystal structure of Cuticle-Degrading Protease from Paecilomyces lilacinus (PL646) 7QJR ; 1.51 ; Crystal structure of cutinase 1 from Thermobifida fusca DSM44342 (703) 8C65 ; 1.491 ; Crystal structure of cutinase AdCut from Acidovorax delafieldii (PBS depolymerase) 3VIS ; 1.76 ; Crystal structure of cutinase Est119 from Thermobifida alba AHK119 8AIT ; 1.24 ; Crystal structure of cutinase PbauzCut from Pseudomonas bauzanensis 8AIS ; 1.56 ; Crystal structure of cutinase PsCut from Pseudomonas saudimassiliensis 8AIR ; 1.08 ; Crystal structure of cutinase RgCutII from Rhizobacter gummiphilus 7RAQ ; 1.74 ; Crystal structure of CV3-25 Fab bound to SARS-CoV-2 spike stem helix peptide 6GXS ; 1.8 ; Crystal structure of CV39L lectin from Chromobacterium violaceum at 1.8 A resolution 3SJI ; 1.798 ; crystal structure of CVA16 3C in complex with Rupintrivir (AG7088) 2ZU1 ; 1.38 ; crystal structure of CVB3 3C protease mutant C147A 3QP6 ; 2.0 ; Crystal structure of CviR (Chromobacterium violaceum 12472) bound to C6-HSL 3QP8 ; 1.6 ; Crystal structure of CviR (Chromobacterium violaceum 12472) ligand-binding domain bound to C10-HSL 3QP5 ; 3.249 ; Crystal structure of CviR bound to antagonist chlorolactone (CL) 3QP4 ; 1.55 ; Crystal structure of CviR ligand-binding domain bound to C10-HSL 3QP2 ; 1.638 ; Crystal structure of CviR ligand-binding domain bound to C8-HSL 3QP1 ; 1.55 ; Crystal structure of CviR ligand-binding domain bound to the native ligand C6-HSL 7XN2 ; 1.6 ; Crystal structure of CvkR, a novel MerR-type transcriptional regulator 6ISJ ; 2.3 ; Crystal structure of CX-4945 bound CK2 alpha from C. neoformans 6K3L ; 2.09 ; Crystal structure of CX-4945 bound Cka1 from C. neoformans 4QNV ; 2.64 ; Crystal structure of Cx-SAM bound CmoB from E. coli in P6122 7CTA ; 2.9 ; Crystal structure of Cx-SAM bound CmoB from Vibrio vulnificus 3HP3 ; 2.2 ; Crystal structure of CXCL12 4UAI ; 1.9 ; Crystal structure of CXCL12 in complex with inhibitor 7JNY ; 1.88 ; Crystal structure of CXCL13 4HSV ; 2.083 ; Crystal Structure of CXCL4L1 4RWS ; 3.1 ; Crystal structure of CXCR4 and viral chemokine antagonist vMIP-II complex (PSI Community Target) 5UK3 ; 2.8 ; Crystal structure of cyanase from T. urticae 6XGT ; 2.2 ; Crystal structure of cyanase from the thermophilic fungus Thermomyces lanuginosus 2D0U ; 3.4 ; Crystal structure of cyanide bound form of human indoleamine 2,3-dioxygenase 1N2N ; 2.4 ; Crystal structure of cyanide complex of the oxygenase domain of inducible nitric oxide synthase. 1D5L ; 1.9 ; CRYSTAL STRUCTURE OF CYANIDE-BOUND HUMAN MYELOPEROXIDASE ISOFORM C AT PH 5.5 3VV9 ; 2.85 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei 3VVA ; 2.59 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei with ascofuranone derivative 5ZDR ; 2.59 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei with ascofuranone derivative 3W54 ; 2.3 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei with colletochlorin B 5ZDQ ; 2.3 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei with COLLETOCHLORIN B 5ZDP ; 2.71 ; Crystal structure of cyanide-insensitive alternative oxidase from Trypanosoma brucei with ferulenol 5AZQ ; 1.4 ; Crystal structure of cyano-cobalt(III) tetradehydrocorrin in the heme pocket of horse heart myoglobin 4RC5 ; 2.3 ; Crystal structure of cyanobacterial aldehyde-deformylating oxygenase 4RC6 ; 2.9 ; Crystal structure of cyanobacterial aldehyde-deformylating oxygenase 122F mutant 4RC8 ; 1.71 ; Crystal structure of cyanobacterial aldehyde-deformylating oxygenase bound with fatty acid 4RC7 ; 2.2 ; Crystal structure of cyanobacterial aldehyde-deformylating oxygenase F86YF87Y mutant 7DXQ ; 2.8 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DY1 ; 2.2 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DY2 ; 3.04 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DYE ; 2.6 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DYI ; 2.64 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DYJ ; 2.4 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7DYK ; 2.99 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7V3X ; 3.1 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 7WDC ; 2.84 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 8WV8 ; 2.93 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 8WVE ; 2.729 ; Crystal Structure of Cyanobacterial Circadian Clock Protein KaiC 4V62 ; 2.9 ; Crystal Structure of cyanobacterial Photosystem II 4V82 ; 3.2 ; Crystal structure of cyanobacterial Photosystem II in complex with terbutryn 3LS0 ; 1.8 ; Crystal Structure of Cyanobacterial PsbQ from Synechocystis sp. PCC 6803 3LS1 ; 1.85 ; Crystal Structure of Cyanobacterial PsbQ from Synechocystis sp. PCC 6803 complexed with Zn2+ 7BW2 ; 6.5 ; Crystal Structure of Cyanobacterial PSI Monomer from T.elongatus at 6.5 A Resolution 7CKV ; 1.63 ; Crystal structure of Cyanobacteriochrome GAF domain in Pr state 3VV4 ; 2.0 ; Crystal structure of cyanobacteriochrome TePixJ GAF domain 8EIP ; 2.24 ; Crystal structure of cyanophycin dipeptide hydrolase CphZ E251A from Acinetobacter baylyi DSM587 in complex with beta-Asp-Arg 7TA5 ; 3.0 ; Crystal structure of cyanophycin synthetase 2 from Gloeothece citriformis 3GXY ; 2.4 ; Crystal structure of cyanovirin-n complexed to a synthetic hexamannoside 3GXZ ; 2.5 ; Crystal structure of cyanovirin-n complexed to oligomannose-9 (man-9) 3CZZ ; 1.36 ; Crystal structure of Cyanovirin-N domain B mutant 3LHC ; 1.34 ; Crystal structure of cyanovirin-n swapping domain b mutant 4NQ3 ; 2.702 ; Crystal structure of cyanuic acid hydrolase from A. caulinodans 4LK8 ; 1.494 ; Crystal structure of CyaY protein from Psychromonas ingrahamii in complex with Co(II) 4LP1 ; 1.803 ; Crystal structure of CyaY protein from Psychromonas ingrahamii in complex with Eu(III) 2B0R ; 2.6 ; Crystal Structure of Cyclase-Associated Protein from Cryptosporidium parvum 7BVT ; 1.47 ; Crystal structure of cyclic alpha-maltosyl-1,6-maltose binding protein from Arthrobacter globiformis 8GUF ; 1.99 ; Crystal structure of cyclic B subunit of type II heat labile enterotoxin 1K6U ; 1.0 ; Crystal Structure of Cyclic Bovine Pancreatic Trypsin Inhibitor 5Z7C ; 2.76 ; crystal structure of cyclic GMP-AMP specifc phosphodiesterases in V.cholerae (V-cGAP3) 1FSI ; 2.5 ; CRYSTAL STRUCTURE OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASE OF APPR>P FROM ARABIDOPSIS THALIANA 4RFA ; 2.21 ; Crystal structure of cyclic nucleotide-binding domain containing protein from Listeria monocytogenes EGD-e 2I53 ; 1.5 ; Crystal structure of Cyclin K 4LYN ; 2.0 ; Crystal structure of cyclin-dependent kinase 2 (cdk2-wt) complex with (2s)-n-(5-(((5-tert-butyl-1,3-oxazol-2-yl)methyl)sulfanyl)-1,3-thiazol-2-yl)-2-phenylpropanamide 5D1J ; 1.8 ; CRYSTAL STRUCTURE OF CYCLIN-DEPENDENT KINASE 2 (CDK2-WT) COMPLEX WITH N-[5-[[[5-(1,1-DIMETHYLETHYL)-2-OXAZOLYL] METHYL]THIO]-2-THIAZOLYL]-4-PIPERIDINECARBOXAMIDE (BMS-387032) 2R3F ; 1.5 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3G ; 1.55 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3H ; 1.5 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3I ; 1.28 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3J ; 1.65 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3K ; 1.7 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3L ; 1.65 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3M ; 1.7 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3N ; 1.63 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3O ; 1.8 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3P ; 1.66 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3Q ; 1.35 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 2R3R ; 1.47 ; Crystal Structure of Cyclin-Dependent Kinase 2 with inhibitor 7QHL ; 1.7 ; Crystal structure of Cyclin-dependent kinase 2/cyclin A in complex with 3,5,7-Substituted pyrazolo[4,3-d]pyrimidine inhibitor 24 4Y8D ; 2.1 ; Crystal structure of Cyclin-G associated kinase (GAK) complexed with selective 12i inhibitor 5ERM ; 2.303 ; Crystal structure of cyclization domain of Phomopsis amygdali fusicoccadiene synthase complexed with magnesium ions and pamidronate 5ER8 ; 2.5 ; Crystal structure of cyclization domain of Phomopsis amygdali fusicoccadiene synthase complexed with manganese ions and neridronate 4Q24 ; 2.9 ; Crystal structure of Cyclo(L-leucyl-L-phenylalanyl) synthase 6VXV ; 1.6 ; Crystal structure of cyclo-L-Trp-L-Pro-bound cytochrome P450 NasF5053 from Streptomyces sp. NRRL F-5053 2ZYM ; 1.8 ; Crystal structure of cyclo/maltodextrin-binding protein complexed with alpha-cyclodextrin 2ZYN ; 1.7 ; Crystal structure of cyclo/maltodextrin-binding protein complexed with beta-cyclodextrin 2ZYK ; 2.5 ; Crystal structure of cyclo/maltodextrin-binding protein complexed with gamma-cyclodextrin 2ZYO ; 1.55 ; Crystal structure of cyclo/maltodextrin-binding protein complexed with maltotetraose 1C58 ; 0.99 ; CRYSTAL STRUCTURE OF CYCLOAMYLOSE 26 1UKQ ; 2.0 ; Crystal structure of cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose 1I75 ; 2.0 ; CRYSTAL STRUCTURE OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP.#1011 COMPLEXED WITH 1-DEOXYNOJIRIMYCIN 5HPQ ; 2.05 ; Crystal structure of cyclohexadienyl dehydratase from Pseudomonas aeruginosa bound to acetate 4WJI ; 1.4 ; Crystal structure of cyclohexadienyl dehydrogenase from Sinorhizobium meliloti in complex with NADP and tyrosine 6ER9 ; 2.37 ; Crystal structure of cyclohexanone monooxygenase from Rhodococcus sp. Phi1 bound to NADP+ 7V8R ; 1.764 ; Crystal structure of cyclohexanone monooxygenase from T. municipale mutant L437T complexed with NADP+ and FAD in space group of C2221 7V8S ; 2.08 ; Crystal structure of cyclohexanone monooxygenase from T. municipale mutant L437T complexed with NADP+ and FAD in space group of P1211 7V8O ; 2.72 ; Crystal structure of cyclohexanone monooxygenase from T. municipale mutant L437T complexed with NADP+ and FAD in space group of P21221 5M10 ; 1.22 ; Crystal structure of cyclohexanone monooxygenase from Thermocrispum municipale in the oxidised state with a bound nicotinamide. 6ERA ; 2.49 ; Crystal structure of cyclohexanone monooxygenase mutant (F249A, F280A and F435A) from Rhodococcus sp. Phi1 bound to NADP+ 4U3U ; 2.9 ; Crystal structure of Cycloheximide bound to the yeast 80S ribosome 6LQC ; 1.88 ; Crystal structure of Cyclohexylamine Oxidase from Erythrobacteraceae bacterium 3KK6 ; 2.75 ; Crystal Structure of Cyclooxygenase-1 in complex with celecoxib 3N8Z ; 2.9 ; Crystal Structure of Cyclooxygenase-1 in Complex with Flurbiprofen 3N8X ; 2.75 ; Crystal Structure of Cyclooxygenase-1 in Complex with Nimesulide 2HAQ ; 1.97 ; Crystal Structure of Cyclophilin A from Leishmania Donovani 3O7T ; 1.85 ; Crystal Structure of Cyclophilin A from Moniliophthora perniciosa 3PMP ; 1.47 ; Crystal Structure of Cyclophilin A from Moniliophthora perniciosa in complex with Cyclosporin A 3ODI ; 2.2 ; Crystal structure of cyclophilin A in complex with Voclosporin E-ISA247 3ODL ; 2.31 ; Crystal structure of cyclophilin A in complex with Voclosporin Z-ISA247 4EYV ; 1.97 ; Crystal structure of Cyclophilin A like protein from Piriformospora indica 2R99 ; 1.61 ; Crystal structure of cyclophilin ABH-like domain of human peptidylprolyl isomerase E isoform 1 5EX2 ; 1.294 ; Crystal structure of cyclophilin AquaCyp293 from Hirschia baltica 5EX1 ; 2.053 ; Crystal structure of cyclophilin AquaCyp300 from Hirschia baltica 3ICH ; 1.2 ; Crystal structure of cyclophilin B at 1.2 A resolution 3ICI ; 1.7 ; Crystal structure of cyclophilin B in complex with calmegin fragment 5A0E ; 1.25 ; Crystal structure of cyclophilin D in complex with CsA analogue, JW47. 3EOV ; 2.6 ; Crystal structure of cyclophilin from Leishmania donovani ligated with cyclosporin A 1Z81 ; 2.8 ; Crystal Structure of cyclophilin from Plasmodium yoelii. 1XO7 ; 1.61 ; Crystal structure of cyclophilin from Trypanosoma cruzi 6L2B ; 2.65 ; Crystal structure of cyclophilin mutant I164M from Leishmania donovani at 2.65 angstrom resolution 4S1E ; 2.22 ; Crystal structure of cyclophilin mutant L120A from Leishmania donovani at 2.22 angstrom. 4S1J ; 2.3 ; Crystal structure of cyclophilin mutant V33A from Leishmania donovani at 2.3 angstrom. 8B58 ; 1.1 ; Crystal Structure of Cyclophilin TgCyp23 from Toxoplasma gondii in complex with Cyclosporin A 3BKX ; 1.85 ; Crystal structure of cyclopropane-fatty-acyl-phospholipid synthase-like protein (YP_807781.1) from Lactobacillus casei ATCC 334 at 1.85 A resolution 7VEY ; 1.9 ; Crystal structure of Cyclosorus parasiticus chalcone synthase 1 (CpCHS1) 7VEZ ; 2.397 ; Crystal structure of Cyclosorus parasiticus chalcone synthase 1 (CpCHS1) complex with naringenin 7VF0 ; 2.399 ; Crystal structure of Cyclosorus parasiticus chalcone synthase 1 (CpCHS1) complex with naringenin and CoA 7RMQ ; 1.17 ; Crystal structure of cycloviolacin O2 6I28 ; 1.65 ; Crystal Structure of Cydia Pomonella PTP-2 phosphatase 3WXG ; 3.1 ; Crystal structure of CYLD USP domain (C596A) in complex with Lys63-linked diubiquitin 3WXF ; 2.3 ; Crystal structure of CYLD USP domain (C596S E674Q) in complex with Met1-linked diubiquitin 3WXE ; 2.5 ; Crystal structure of CYLD USP domain (C596S) in complex with Met1-linked diubiquitin 4D51 ; 2.3 ; Crystal structure of CymA from Klebsiella oxytoca 4D5B ; 1.702 ; Crystal structure of CymA from Klebsiella oxytoca 4D5D ; 1.902 ; Crystal structure of CymA from Klebsiella oxytoca 4V3G ; 2.513 ; Crystal structure of CymA from Klebsiella oxytoca 4V3H ; 1.83 ; Crystal structure of CymA from Klebsiella oxytoca 6OS5 ; 1.66 ; Crystal structure of CymD prenyltransferase complexed with L-tryptophan 6OS6 ; 1.33 ; Crystal structure of CymD prenyltransferase complexed with L-tryptophan and DMSPP 5KYO ; 1.8 ; Crystal Structure of CYP101J2 4OQS ; 2.04 ; Crystal structure of CYP105AS1 3ABB ; 2.3 ; Crystal structure of CYP105D6 3TYW ; 2.9 ; Crystal Structure of CYP105N1 from Streptomyces coelicolor A3(2) 4FXB ; 2.9 ; Crystal structure of CYP105N1 from Streptomyces coelicolor: a cytochrome P450 oxidase in the coelibactin siderophore biosynthetic pathway 3E5L ; 2.4 ; Crystal structure of CYP105P1 H72A mutant 3ABA ; 1.8 ; Crystal structure of CYP105P1 in complex with filipin I 3E5K ; 2.6 ; Crystal structure of CYP105P1 wild-type 4-phenylimidazole complex 3E5J ; 1.95 ; Crystal structure of CYP105P1 wild-type ligand-free form 7ZZL ; 1.7 ; Crystal structure of CYP106A1 3TKT ; 2.2 ; Crystal structure of CYP108D1 from Novosphingobium aromaticivorans DSM12444 8ABR ; 2.1 ; Crystal structure of CYP109A2 from Bacillus megaterium bound with putative ligands hexanoic acid and octanoic acid 8ABS ; 1.75 ; Crystal structure of CYP109A2 from Bacillus megaterium bound with testosterone and putative ligand 4,6-dimethyloctanoic acid 7Y97 ; 2.36 ; Crystal structure of CYP109B4 from Bacillus Sonorensis 7Y98 ; 2.27 ; Crystal structure of CYP109B4 from Bacillus Sonorensis in complex with Testosterone 6LDL ; 1.38 ; Crystal structure of CYP116B46-N(20-445) from Tepidiphilus thermophilus in complex with HEME 4WQJ ; 2.7 ; Crystal Structure of CYP119 from Sulfolobus acidocaldarius, Collected at 298K and Complexed with 4-(4-bromophenyl)-1H imidazole 4TT5 ; 2.18 ; Crystal Structure of CYP119 from Sulfolobus acidocaldarius, complexed with 4-(4-bromophenyl)-1H imidazole 6T0H ; 1.18 ; Crystal structure of CYP124 in complex with 1-alpha-hydroxy-vitamin D3 6T0F ; 1.65 ; Crystal structure of CYP124 in complex with cholest-4-en-3-one 6T0K ; 1.18 ; Crystal structure of CYP124 in complex with inhibitor carbethoxyhexyl imidazole 7ZB9 ; 1.15 ; Crystal structure of CYP124 in complex with inhibitor carbethoxyhexyl imidazole in the absence of glycerol (NoCryo) 6T0L ; 1.8 ; Crystal structure of CYP124 in complex with inhibitor compound 5' 6T0J ; 1.25 ; Crystal structure of CYP124 in complex with SQ109 6T0G ; 1.3 ; Crystal structure of CYP124 in complex with vitamin D3 7QWN ; 1.93 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7R1I ; 2.24 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7R3U ; 1.86 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7YXF ; 1.85 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZGL ; 2.5 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZIC ; 1.9 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZLT ; 1.9 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZLZ ; 1.89 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZQR ; 1.79 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZSU ; 2.2 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZT0 ; 1.99 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7ZXD ; 2.09 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with an inhibitor 7QKE ; 2.3 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with inhibitor (surface entropy reduction mutant) 7QNN ; 2.47 ; Crystal structure of CYP125 from Mycobacterium tuberculosis in complex with inhibitor (surface entropy reduction mutant) 2UUQ ; 1.46 ; Crystal structure of CYP130 from Mycobacterium tuberculosis in the ligand-free form 8A9P ; 1.63 ; Crystal structure of CYP142 from Mycobacterium tuberculosis in complex with a fragment 7QJL ; 1.38 ; Crystal structure of CYP142 from Mycobacterium tuberculosis in complex with an inhibitor 7QQ7 ; 1.6 ; Crystal structure of CYP142 from Mycobacterium tuberculosis in complex with an inhibitor at partial occupancy with PEG 8A6W ; 2.09 ; Crystal structure of CYP142 from Mycobacterium tuberculosis in complex with cholestenone 7SH5 ; 1.83 ; Crystal structure of CYP142A3 from Mycobacterium ulcerans bound to Cholest-4-en-3-one 6L69 ; 1.5 ; Crystal structure of CYP154C2 from Streptomyces avermitilis 6TO2 ; 2.0 ; Crystal structure of CYP154C5 from Nocardia farcinica in complex with 5alpha-Androstan-3-one 1N97 ; 1.8 ; Crystal Structure of CYP175A1 from Thermus thermophillus strain HB27 6IQ5 ; 3.7 ; Crystal Structure of CYP1B1 and Inhibitor Having Azide Group 5UDA ; 1.93 ; Crystal structure of CYP2B6 (Y226H/K262R) in complex with a monoterpene bornane 5UAP ; 2.03 ; Crystal Structure of CYP2B6 (Y226H/K262R) in complex with Bornyl Bromide 5UEC ; 2.27 ; Crystal Structure of CYP2B6 (Y226H/K262R) in complex with myrtenyl bromide. 5UFG ; 1.76 ; Crystal Structure of CYP2B6 (Y226H/K262R/I114V) in complex with myrtenyl bromide 5X23 ; 2.0 ; Crystal structure of CYP2C9 genetic variant A477T (*30) in complex with multiple losartan molecules 5X24 ; 2.48 ; Crystal structure of CYP2C9 genetic variant I359L (*3) in complex with multiple losartan molecules 4NZ2 ; 2.45 ; Crystal structure of CYP2C9 in complex with an inhibitor 5XXI ; 2.3 ; Crystal structure of CYP2C9 in complex with multiple losartan molecules 3DL9 ; 2.721 ; Crystal structure of CYP2R1 in complex with 1-alpha-hydroxy-vitamin D2 3CZH ; 2.3 ; Crystal structure of CYP2R1 in complex with vitamin D2 3C6G ; 2.8 ; Crystal structure of CYP2R1 in complex with vitamin D3 8EWD ; 2.2 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWE ; 2.3 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWL ; 2.35 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWM ; 2.3 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWN ; 2.1 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWP ; 2.4 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWQ ; 2.25 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWR ; 2.2 ; Crystal structure of CYP3A4 bound to an inhibitor 8EWS ; 2.15 ; Crystal structure of CYP3A4 bound to an inhibitor 8EXB ; 2.05 ; Crystal structure of CYP3A4 bound to an inhibitor 4NY4 ; 2.95 ; Crystal structure of CYP3A4 in complex with an inhibitor 4I4G ; 2.718 ; Crystal structure of CYP3A4 ligated to oxazole-substituted desoxyritonavir 4I4H ; 2.9 ; Crystal structure of CYP3A4 ligated to pyridine-substituted desoxyritonavir 6A18 ; 2.48 ; Crystal structure of CYP90B1 in complex with 1,6-hexandiol 6A17 ; 2.301 ; Crystal structure of CYP90B1 in complex with brassinazole 6A16 ; 1.998 ; Crystal structure of CYP90B1 in complex with uniconazole 6J94 ; 2.401 ; Crystal structure of CYP97A3 6J95 ; 2.002 ; Crystal structure of CYP97A3 in complex with retinal 6L8I ; 1.7 ; Crystal structure of CYP97A3 mutant S290D/W300L/S304V 6L8J ; 2.399 ; Crystal structure of CYP97A3 mutant S290D/W300L/S304V in complex with retinal 6L8H ; 2.0 ; Crystal structure of CYP97C1 7WYR ; 1.75 ; Crystal structure of Cypovirus Polyhedra mutant fused with CLN025 5GQI ; 1.3 ; Crystal structure of Cypovirus Polyhedra mutant with deletion of Ala194 6LEE ; 1.95 ; Crystal structure of Cypovirus Polyhedra mutant with deletion of Ala67-Ala104 5GQK ; 1.5 ; Crystal structure of Cypovirus Polyhedra mutant with deletion of Gly192-Ala194 5GQJ ; 1.5 ; Crystal structure of Cypovirus Polyhedra mutant with deletion of Ser193 and Ala194 5AXU ; 1.6 ; Crystal Structure of Cypovirus Polyhedra R13A Mutant 5YR9 ; 1.7 ; Crystal Structure of Cypovirus Polyhedra R13A/E73C/Y83C Mutant 5YR1 ; 1.72 ; Crystal Structure of Cypovirus Polyhedra R13A/E73C/Y83C/S193C/A194C Mutant 5YRA ; 1.79 ; Crystal Structure of Cypovirus Polyhedra R13A/S193C/A194C Mutant 5AXV ; 2.04 ; Crystal Structure of Cypovirus Polyhedra R13K Mutant 2H4E ; 1.45 ; Crystal structure of Cys10 sulfonated transthyretin 1GLO ; 2.2 ; Crystal Structure of Cys25Ser mutant of human cathepsin S 2HGX ; 1.8 ; Crystal structure of Cys315Ala mutant of human mitochondrial branched chain aminotransferase 2HG8 ; 1.8 ; Crystal Structure of Cys315Ala mutant of human mitochondrial branched chain aminotransferase complexed with its substrate mimic, N-methyl leucine. 2HDK ; 2.4 ; Crystal Structure of Cys315Ala-Cys318Ala Mutant of Human Mitochondrial Branched Chain Aminotransferase 2HGW ; 1.98 ; Crystal structure of Cys318Ala mutant of human mitochondrial branched chain aminotransferase 3B8B ; 1.7 ; Crystal structure of CysQ from Bacteroides thetaiotaomicron, a bacterial member of the inositol monophosphatase family 1C7N ; 1.9 ; CRYSTAL STRUCTURE OF CYSTALYSIN FROM TREPONEMA DENTICOLA CONTAINS A PYRIDOXAL 5'-PHOSPHATE COFACTOR 1C7O ; 2.5 ; CRYSTAL STRUCTURE OF CYSTALYSIN FROM TREPONEMA DENTICOLA CONTAINS A PYRIDOXAL 5'-PHOSPHATE-L-AMINOETHOXYVINYLGLYCINE COMPLEX 8SA7 ; 1.4 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes (C2 form) 8SAC ; 1.8 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes (P21212 form) 8U98 ; 1.4 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes (PLP-Glycine adduct) 8U99 ; 1.8 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes (PLP-Serine adduct) 8SA8 ; 1.3 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, Covalently bound and free PLP (I2 form) 8SAB ; 1.6 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, PLP adduct with Alanine (C2 form) 8SAE ; 1.5 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, PLP and Hepes bound (C2 form) 8SAA ; 1.45 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, PLP and phosphate bound (C2 form) 8SA9 ; 1.1 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, PLP-Oxamate Adduct (C2 form) 8SAD ; 1.4 ; Crystal Structure of Cystathionine beta lyase from Klebsiella aerogenes, PLP/Malonate complex (C2 form) 6VJU ; 1.3 ; Crystal Structure of Cystathionine beta synthase from Legionella pneumophila with LLP, PLP, and homocysteine 1IBJ ; 2.3 ; Crystal structure of cystathionine beta-lyase from Arabidopsis thaliana 8DUY ; 1.9 ; Crystal structure of Cystathionine beta-lyase from Klebsiella pneumoniae 6CJB ; 1.75 ; Crystal structure of Cystathionine beta-lyase from Legionella pneumophila Philadelphia 1 covalently bound to Pyridoxal phosphate 6CJA ; 1.7 ; Crystal structure of Cystathionine beta-lyase from Legionella pneumophila Philadelphia 1 in complex with Alanyl-PLP and Serine 5XW3 ; 2.17 ; Crystal structure of cystathionine beta-synthase from Bacillus anthracis 5B1H ; 2.4 ; Crystal structure of cystathionine beta-synthase from Lactobacillus plantarum 4IY7 ; 1.7 ; crystal structure of cystathionine gamma lyase (XometC) from Xanthomonas oryzae pv. oryzae in complex with E-site serine, A-site external aldimine structure with serine and A-site external aldimine structure with aminoacrylate intermediates 4IYO ; 1.8 ; Crystal structure of cystathionine gamma lyase from Xanthomonas oryzae pv. oryzae (XometC) in complex with E-site serine, A-site serine, A-site external aldimine structure with aminoacrylate and A-site iminopropionate intermediates 6LD8 ; 2.31 ; Crystal structure of cystathionine gamma synthase from Xanthomonas oryzae pv. oryzae in complex with aminoacrylate and cysteine 6LD9 ; 2.5 ; Crystal structure of cystathionine gamma synthase from Xanthomonas oryzae pv. oryzae in complex with cystathionine 6LGO ; 2.39 ; Crystal structure of cystathionine gamma synthase from Xanthomonas oryzae pv. oryzae in complex with homolanthionine 7D7O ; 1.98 ; Crystal structure of cystathionine gamma-lyase from Bacillus cereus ATCC 14579 6LE4 ; 3.1 ; Crystal structure of cystathionine gamma-lyase from Lactobacillus plantarum complexed with cystathionine 6LDO ; 2.75 ; Crystal structure of cystathionine gamma-lyase from Lactobacillus plantarum complexed with L-serine 7NL1 ; 2.331 ; Crystal structure of cystathionine gamma-lyase from Toxoplasma gondii 8BIS ; 2.266 ; Crystal structure of cystathionine gamma-lyase from Toxoplasma gondii in complex with DL-propargylglycine 1N8P ; 2.6 ; Crystal Structure of cystathionine gamma-lyase from yeast 8J6N ; 1.9 ; Crystal structure of Cystathionine gamma-lyase in complex with compound 1 3QI6 ; 1.91 ; Crystal Structure of Cystathionine gamma-synthase MetB (Cgs) from Mycobacterium ulcerans Agy99 3QHX ; 1.65 ; Crystal Structure of Cystathionine gamma-synthase MetB (Cgs) from Mycobacterium ulcerans Agy99 bound to HEPES 7YEO ; 1.7 ; Crystal Structure of cystathionine gamma-synthase-like protein C23A1.14c 5VPR ; 2.05 ; Crystal Structure of Cysteine desulfurase from Elizabethkingia anophelis with covalently bound pyridoxal phosphate 6C9E ; 1.55 ; Crystal structure of Cysteine desulfurase from Legionella pneumophila Philadelphia 1 7MHV ; 1.75 ; Crystal Structure of Cysteine desulfurase NifS from Legionella pneumophila Philadelphia 1 in complex with pyridoxal 5'-phosphate 7E6A ; 1.96 ; Crystal structure of cysteine desulfurase SufS C361A from Bacillus subtilis 7CEQ ; 2.0 ; Crystal structure of cysteine desulfurase SufS H121A from Bacillus subtilis 7E6D ; 2.67 ; Crystal structure of cysteine desulfurase SufS R376A from Bacillus subtilis 3G0M ; 1.76 ; Crystal structure of cysteine desulfuration protein SufE from Salmonella typhimurium LT2 3USS ; 2.7 ; Crystal structure of Cysteine dioxygenase from Pseudomonas aeruginosa 3IRV ; 1.6 ; CRYSTAL STRUCTURE OF CYSTEINE HYDROLASE PSPPH_2384 FROM Pseudomonas syringae pv. phaseolicola 1448A 3KW0 ; 2.5 ; Crystal structure of Cysteine peptidase (NP_982244.1) from BACILLUS CEREUS ATCC 10987 at 2.50 A resolution 3U8E ; 1.31 ; Crystal Structure of Cysteine Protease from Bulbs of Crocus sativus at 1.3 A Resolution 1AYW ; 2.4 ; CRYSTAL STRUCTURE OF CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT BENZYLOXYBENZOYLCARBOHYDRAZIDE INHIBITOR 1BGO ; 2.3 ; CRYSTAL STRUCTURE OF CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT PEPTIDOMIMETIC INHIBITOR 1AYU ; 2.2 ; CRYSTAL STRUCTURE OF CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT SYMMETRIC BISCARBOHYDRAZIDE INHIBITOR 1AYV ; 2.3 ; CRYSTAL STRUCTURE OF CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT THIAZOLHYDRAZIDE INHIBITOR 2NQD ; 1.75 ; Crystal structure of cysteine protease inhibitor, chagasin, in complex with human cathepsin L 4R9I ; 1.65 ; Crystal structure of cysteine proteinase inhibitor Serpin18 from Bombyx mori 2PQM ; 1.86 ; Crystal structure of Cysteine Synthase (OASS) from Entamoeba histolytica at 1.86 A resolution 2BHS ; 2.67 ; Crystal Structure of Cysteine Synthase B 6N43 ; 2.289 ; Crystal structure of cysteine, nitric oxide-bound ferrous form of the crosslinked human cysteine dioxygenase in the anaerobic condition 6BPR ; 1.96 ; Crystal structure of cysteine, nitric oxide-bound ferrous form of the uncrosslinked F2-Tyr157 human cysteine dioxygenase 1XT8 ; 2.0 ; Crystal Structure of Cysteine-Binding Protein from Campylobacter jejuni at 2.0 A Resolution 6CDN ; 2.055 ; Crystal structure of cysteine-bound ferrous form of the crosslinked Cl-Tyr157 human cysteine dioxygenase 6BGF ; 2.251 ; Crystal structure of cysteine-bound ferrous form of the crosslinked human cysteine dioxygenase 6N42 ; 2.199 ; Crystal structure of cysteine-bound ferrous form of the crosslinked human cysteine dioxygenase in the anaerobic condition 6BPX ; 2.15 ; Crystal structure of cysteine-bound ferrous form of the matured Cl2-Tyr157 human cysteine dioxygenase 6BPV ; 1.95 ; Crystal structure of cysteine-bound ferrous form of the matured F2-Tyr157 human cysteine dioxygenase 6BPS ; 2.1 ; Crystal structure of cysteine-bound ferrous form of the uncrosslinked F2-Tyr157 human cysteine dioxygenase 6UJD ; 2.6 ; Crystal structure of Cysteine-tRNA ligase from Elizabethkingia sp. 6RZ4 ; 2.7 ; Crystal structure of cysteinyl leukotriene receptor 1 in complex with pranlukast 1LI5 ; 2.3 ; Crystal Structure of Cysteinyl-tRNA Synthetase 3SP1 ; 2.55 ; Crystal structure of cysteinyl-tRNA synthetase (cysS) from Borrelia burgdorferi 1U0B ; 2.3 ; Crystal structure of cysteinyl-tRNA synthetase binary complex with tRNACys 1LI7 ; 2.6 ; Crystal Structure of Cysteinyl-tRNA Synthetase with Cysteine Substrate Bound 1DBX ; 1.8 ; Crystal structure of cysteinyl-tRNA(Pro) deacylase from H. influenzae (HI1434) 1DBU ; 1.8 ; Crystal structure of cysteinyl-tRNA(Pro) deacylase protein from H. influenzae (HI1434) 4FF9 ; 2.5003 ; Crystal Structure of cysteinylated WT SOD1. 7ZK1 ; 2.65 ; Crystal structure of cystinosin from Arabidopsis thaliana bound to sybody and nanobody 7ZKZ ; 2.329 ; Crystal structure of cystinosin from Arabidopsis thaliana bound to two nanobodies 7ZKW ; 3.372 ; Crystal structure of cystinosin from Arabidopsis thaliana in complex with Cystine and sybody 4F3W ; 1.8 ; Crystal structure of cytidine deaminase Cdd from Mycobacterium marinum 2D30 ; 2.4 ; Crystal Structure of Cytidine Deaminase Cdd-2 (BA4525) from Bacillus Anthracis at 2.40A Resolution 1ALN ; 2.3 ; CRYSTAL STRUCTURE OF CYTIDINE DEAMINASE COMPLEXED WITH 3-DEAZACYTIDINE 1AF2 ; 2.3 ; CRYSTAL STRUCTURE OF CYTIDINE DEAMINASE COMPLEXED WITH URIDINE 1JTK ; 2.04 ; Crystal structure of cytidine deaminase from Bacillus subtilis in complex with the inhibitor tetrahydrodeoxyuridine 3R2N ; 2.3 ; Crystal structure of cytidine deaminase from Mycobacterium leprae 3MPZ ; 1.7 ; Crystal structure of CYTIDINE DEAMINASE from Mycobacterium smegmatis 3IJF ; 1.99 ; Crystal structure of cytidine deaminase from Mycobacterium tuberculosis 6KW6 ; 1.895 ; Crystal Structure of cytidine deaminase from Streptomyces noursei 5JNH ; 2.202 ; Crystal Structure of cytidine monophosphate hydroxymethylase MilA 5B6D ; 1.65 ; Crystal Structure of cytidine monophosphate hydroxymethylase MilA with CMP 5JP9 ; 2.101 ; Crystal Structure of cytidine monophosphate hydroxymethylase MilA with dCMP 5B6E ; 1.8 ; Crystal Structure of cytidine monophosphate hydroxymethylase MilA with hmCMP 3R8C ; 2.2 ; Crystal structure of cytidylate kinase (Cmk) from Mycobacterium abscessus 7L4A ; 1.5 ; Crystal Structure of Cytidylate kinase from Encephalitozoon cuniculi GB-M1 in complex with two CDP molecules 3R20 ; 2.0 ; Crystal structure of cytidylate kinase from Mycobacterium smegmatis 3OAM ; 1.75 ; Crystal structure of cytidylyltransferase from Vibrio cholerae 7DUC ; 2.56 ; Crystal Structure of cyto WalK 3ME6 ; 3.1 ; Crystal structure of cytochrome 2B4 in complex with the anti-platelet drug clopidogrel 3KW4 ; 2.67 ; Crystal structure of cytochrome 2B4 in complex with the anti-platelet drug ticlopidine 6JT6 ; 2.0 ; Crystal structure of cytochrome b domain of Pyranose Dehydrogenase from Coprinopsis cinerea 1X3X ; 1.8 ; Crystal Structure of Cytochrome b5 from Ascaris suum 4O6Y ; 1.7 ; Crystal Structure of Cytochrome b561 4ER9 ; 1.897 ; Crystal structure of cytochrome b562 from Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 1VF5 ; 3.0 ; Crystal Structure of Cytochrome b6f Complex from M.laminosus 2D2C ; 3.8 ; Crystal Structure Of Cytochrome B6F Complex with DBMIB From M. Laminosus 4I7Z ; 2.803 ; Crystal structure of cytochrome b6f in DOPG, with disordered Rieske Iron-Sulfur Protein soluble domain 5LFT ; 1.249 ; Crystal structure of cytochrome c - Bromo-trisulfonatocalix[4]arene complexes 3TYI ; 1.399 ; Crystal Structure of Cytochrome c - p-Sulfonatocalix[4]arene Complexes 5KPF ; 1.698 ; Crystal structure of cytochrome c - Phenyl-trisulfonatocalix[4]arene complex 2B4Z ; 1.5 ; Crystal structure of cytochrome C from bovine heart at 1.5 A resolution. 7TLX ; 1.9 ; Crystal Structure of cytochrome c from Pseudomonas putida S16 6S8Y ; 2.09 ; Crystal structure of cytochrome c in complex with a sulfonated quinoline-derived foldamer 6EGZ ; 2.17 ; Crystal structure of cytochrome c in complex with di-PEGylated sulfonatocalix[4]arene 6EGY ; 2.7 ; Crystal structure of cytochrome c in complex with mono-PEGylated sulfonatocalix[4]arene 5NCV ; 1.5 ; Crystal Structure of Cytochrome c in complex with p-Methylphosphonatocalix[4]arene 6V0A ; 2.55 ; Crystal structure of cytochrome c nitrite reductase from the bacterium Geobacter lovleyi with bound sulfate 2VR0 ; 2.8 ; Crystal structure of cytochrome c nitrite reductase NrfHA complex bound to the HQNO inhibitor 2J7A ; 2.3 ; Crystal structure of cytochrome c nitrite reductase NrfHA complex from Desulfovibrio vulgaris 4JMT ; 1.6 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 1H-pyrrolo[3,2-b]pyridin-6-ylmethanol 4JN0 ; 1.864 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 1H-pyrrolo[3,2-b]pyridine-6-carbaldehyde 4JM6 ; 1.45 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 2,4-diaminopyrimidine 4JM8 ; 1.3 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 2,6-diaminopyridine 4JQK ; 1.36 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 2-(2-aminopyridin-1-ium-1-yl)ethanol 4JM5 ; 1.26 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 2-Amino-5-methylthiazole 4JM9 ; 1.41 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 3-amino-1-methylpyridinium 4JMA ; 1.6 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 3-Fluorocatechol 4JQM ; 1.41 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 4-Aminoquinazoline 4JQJ ; 1.6 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 4-Aminoquinoline 4JPL ; 1.41 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 4-Azaindole 4JQN ; 1.36 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 4-Hydroxybenzaldehyde 4JMB ; 1.3 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with 5,6,7,8-tetrahydrothieno[2,3-b]quinolin-4-amine 4JPU ; 1.41 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with Benzamidine 4JMS ; 1.75 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with imidazo[1,2-a]pyridin-5-amine 4JMV ; 1.82 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with imidazo[1,2-a]pyridin-6-amine 4JMZ ; 1.82 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with N-methyl-1H-benzimidazol-2-amine 4JMW ; 1.19 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with Phenol 4JPT ; 1.41 ; Crystal structure of Cytochrome C Peroxidase W191G-Gateless in complex with quinazoline-2,4-diamine 3EXB ; 1.6 ; Crystal structure of Cytochrome C Peroxidase with a Proposed Electron Pathway Excised in a Complex with a Peptide Wire 1KXM ; 1.74 ; Crystal structure of Cytochrome c Peroxidase with a Proposed Electron Transfer Pathway Excised to Form a Ligand Binding Channel. 1KXN ; 1.8 ; Crystal Structure of Cytochrome c Peroxidase with a Proposed Electron Transfer Pathway Excised to Form a Ligand Binding Channel. 3E2O ; 1.06 ; Crystal structure of cytochrome c peroxidase, N184R mutant 7S5O ; 1.8 ; Crystal structure of Cytochrome c' beta from Nitrosomonas europaea ATCC 19718 4WGY ; 1.48 ; Crystal Structure of Cytochrome c' from Alcaligenes xylosoxidans NCIMB 11015 at pH 10.4 4WGZ ; 1.11 ; Crystal Structure of Cytochrome c' from Alcaligenes xylosoxidans NCIMB 11015 at pH 6.0 1JAF ; 2.5 ; CRYSTAL STRUCTURE OF CYTOCHROME C' FROM RHODOCYCLUS GELATINOSUS AT 2.5 ANGSTOMS RESOLUTION 6A3K ; 1.71 ; Crystal structure of cytochrome c' from Shewanella benthica DB6705 6A3L ; 2.14 ; Crystal structure of cytochrome c' from Shewanella violacea DSS12 3VRC ; 1.0 ; Crystal structure of cytochrome c' from Thermochromatium tepidum 1VYD ; 2.3 ; Crystal structure of cytochrome C2 mutant G95E 2CY3 ; 1.7 ; CRYSTAL STRUCTURE OF CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS NORWAY AT 1.7 ANGSTROMS RESOLUTION 1ETP ; 2.2 ; CRYSTAL STRUCTURE OF CYTOCHROME C4 FROM PSEUDOMONAS STUTZERI 1F1C ; 2.3 ; CRYSTAL STRUCTURE OF CYTOCHROME C549 1MZ4 ; 1.8 ; Crystal Structure of Cytochrome c550 from Thermosynechococcus elongatus 6KQ1 ; 1.57 ; Crystal structure of cytochrome c551 from Pseudomonas sp. strain MT-1. 3VNW ; 1.97 ; Crystal structure of cytochrome c552 from Thermus thermophilus at pH 5.44 2ZZS ; 1.8 ; Crystal structure of cytochrome c554 from Vibrio parahaemolyticus strain RIMD2210633 2ZXY ; 1.15 ; Crystal Structure of Cytochrome c555 from Aquifex aeolicus 1CTJ ; 1.1 ; CRYSTAL STRUCTURE OF CYTOCHROME C6 1F1F ; 2.7 ; CRYSTAL STRUCTURE OF CYTOCHROME C6 FROM ARTHROSPIRA MAXIMA 1GDV ; 1.57 ; CRYSTAL STRUCTURE OF CYTOCHROME C6 FROM RED ALGA PORPHYRA YEZOENSIS AT 1.57 A RESOLUTION 4EID ; 1.13 ; Crystal structure of cytochrome c6 Q57V mutant from Synechococcus sp. PCC 7002 4KMG ; 1.4 ; Crystal structure of cytochrome c6B from Synechococcus sp. WH8102 4EIE ; 1.03 ; Crystal structure of cytochrome c6C from Synechococcus sp. PCC 7002 4EIF ; 1.04 ; Crystal structure of cytochrome c6C L50Q mutant from Synechococcus sp. PCC 7002 2D0W ; 1.98 ; Crystal structure of cytochrome cL from Hyphomicrobium denitrificans 7C90 ; 2.13 ; Crystal structure of Cytochrome CL from the marine methylotrophic bacterium Methylophaga aminisulfidivorans MPT (Ma-CytcL) 8GTL ; 3.2 ; Crystal Structure of Cytochrome P450 (CYP101D5) 3DBG ; 2.6 ; Crystal structure of Cytochrome P450 170A1 (CYP170A1) from Streptomyces coelicolor 7WZL ; 2.27 ; Crystal structure of Cytochrome P450 184A1 from streptomyces avermitilis 7WZM ; 1.68 ; Crystal structure of Cytochrome P450 184A1 from streptomyces avermitilis in complex with Oleic acid 5E58 ; 2.4 ; Crystal Structure Of Cytochrome P450 2B35 from Desert Woodrat Neotoma Lepida in complex with 4-(4-chlorophenyl)imidazole 5E0E ; 3.4 ; Crystal Structure of Cytochrome P450 2B37 from Desert Woodrat in complex with 4-(4-chlorophenyl)imidazole 4MGJ ; 2.41 ; Crystal structure of cytochrome P450 2B4 F429H in complex with 4-CPI 3MVR ; 1.76 ; Crystal Structure of cytochrome P450 2B4-H226Y in a closed conformation 4I91 ; 2.0 ; Crystal Structure of Cytochrome P450 2B6 (Y226H/K262R) in complex with alpha-Pinene. 5A1R ; 2.45 ; Crystal structure of cytochrome P450 3A4 bound to progesterone 5A1P ; 2.5 ; Crystal structure of cytochrome P450 3A4 bound to progesterone and citrate 7SHI ; 2.00003 ; Crystal Structure of Cytochrome P450 AmphL from Streptomyces nodosus and the Structural Basis for Substrate Selectivity in Macrolide Metabolizing P450s 8TWU ; 1.84 ; Crystal structure of Cytochrome P450 AspB bound to N1-methylated cyclo-L-Trp-L-Pro 4KPA ; 2.0 ; Crystal structure of cytochrome P450 BM-3 in complex with N-palmitoylglycine (NPG) 4KPB ; 2.1 ; Crystal structure of cytochrome P450 BM-3 R47E mutant 5JQU ; 2.162 ; Crystal structure of Cytochrome P450 BM3 heme domain G265F/T269V/L272W/L322I/F405M/A406S (WIVS-FM) variant with iron(III) deuteroporphyrin IX bound 5JQV ; 2.34 ; Crystal structure of Cytochrome P450 BM3 heme domain T269V/L272W/L322I/A406S (WIVS) variant with iron(III) deuteroporphyrin IX bound 8JNQ ; 2.0 ; Crystal structure of cytochrome P450 CftA from Streptomyces torulosus NRRL B-3889, in complex with a substrate compound c 8JNP ; 2.0 ; Crystal structure of cytochrome P450 CftA from Streptomyces torulosus NRRL B-3889, in complex with the substrate ikarugamycin 3OFT ; 1.9 ; Crystal Structure of Cytochrome P450 CYP101C1 3OFU ; 2.8 ; Crystal Structure of Cytochrome P450 CYP101C1 3LXH ; 2.2 ; Crystal Structure of Cytochrome P450 CYP101D1 3NV5 ; 2.41 ; Crystal Structure of Cytochrome P450 CYP101D2 4WPZ ; 2.1 ; Crystal structure of cytochrome P450 CYP107W1 from Streptomyces avermitilis 4WQ0 ; 2.7 ; Crystal structure of cytochrome P450 CYP107W1 from Streptomyces avermitilis in complex with Oligomycin A 3MZS ; 2.5 ; Crystal Structure of Cytochrome P450 CYP11A1 in complex with 22-hydroxy-cholesterol 3CXX ; 1.9 ; Crystal structure of cytochrome P450 CYP121 F338H from M. tuberculosis 3CXZ ; 1.08 ; Crystal structure of cytochrome P450 CYP121 R386L mutant from M. tuberculosis 3CY0 ; 1.9 ; Crystal structure of cytochrome P450 CYP121 S237A mutant from Mycobacterium tuberculosis 2IJ5 ; 1.6 ; Crystal structure of cytochrome P450 CYP121, P212121 space group 2FR7 ; 2.01 ; Crystal Structure of Cytochrome P450 CYP199A2 6F8A ; 1.35 ; Crystal structure of cytochrome P450 CYP260A1 (S276I) bound with histidine 6F8C ; 1.9 ; Crystal structure of cytochrome P450 CYP260A1 (S276I) bound with progesterone 6F85 ; 2.05 ; Crystal structure of cytochrome P450 CYP260A1 (S276N) bound with histidine 6F88 ; 1.75 ; Crystal structure of cytochrome P450 CYP260A1 (S276N) bound with progesterone 6GK5 ; 1.6 ; Crystal structure of cytochrome P450 CYP267B1 from Sorangium cellulosum So ce56 7UOR ; 3.16 ; Crystal structure of cytochrome P450 enzyme CYP119 in complex with methyliridium(III) mesoporphyrin. 8JNO ; 2.0 ; Crystal structure of cytochrome P450 IkaD from Streptomyces sp. ZJ306, in complex with the substrate 10-epi-deOH-HSAF 8JNC ; 2.0 ; Crystal structure of cytochrome P450 IkaD from Streptomyces sp. ZJ306, in complex with the substrate 10-epi-maltophilin 8JOO ; 2.25 ; Crystal structure of cytochrome P450 IkaD from Streptomyces sp. ZJ306, in complex with the substrate ikarugamycin 2Z36 ; 2.8 ; Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105) 8HNY ; 2.1 ; Crystal structure of cytochrome P450 NasF5053 mutant E73S complexed with 5FCWP 8HNZ ; 1.5 ; Crystal structure of cytochrome P450 NasF5053 mutant E73S complexed with 6FCWP 8HO0 ; 1.71 ; Crystal structure of cytochrome P450 NasF5053 mutant E73S complexed with 8FCWP 8HO1 ; 2.0 ; Crystal structure of cytochrome P450 NasF5053 mutant F387G 6VZA ; 1.47 ; Crystal structure of cytochrome P450 NasF5053 Q65I-A86G mutant variant from Streptomyces sp. NRRL F-5053 in the cyclo-L-Trp-L-Pro-bound state 6VZB ; 1.68 ; Crystal structure of cytochrome P450 NasF5053 S284A-V288A mutant variant from Streptomyces sp. NRRL F-5053 in the cyclo-L-Trp-L-Pro-bound state 5M0P ; 1.95 ; Crystal structure of cytochrome P450 OleT F79A in complex with arachidonic acid 5M0O ; 1.8 ; Crystal structure of cytochrome P450 OleT H85Q in complex with arachidonic acid 5M0N ; 1.44 ; Crystal structure of cytochrome P450 OleT in complex with formate 7XBM ; 2.4 ; Crystal Structure of cytochrome P450 PikC with the unnatural amino acid p-Acetyl-L-Phenylalanine incorporated at position 238 7OQ6 ; 2.0 ; Crystal structure of cytochrome P450 Sas16 from Streptomyces asterosporus 1RF9 ; 1.8 ; Crystal structure of cytochrome P450-cam with a fluorescent probe D-4-AD (Adamantane-1-carboxylic acid-5-dimethylamino-naphthalene-1-sulfonylamino-butyl-amide) 1LWL ; 2.2 ; Crystal Structure of Cytochrome P450-cam with a Fluorescent Probe D-8-Ad (Adamantane-1-carboxylic acid-5-dimethylamino-naphthalene-1-sulfonylamino-octyl-amide) 1RE9 ; 1.45 ; CRYSTAL STRUCTURE OF CYTOCHROME P450-CAM WITH A FLUORESCENT PROBE D-8-AD (ADAMANTANE-1-CARBOXYLIC ACID-5-DIMETHYLAMINO-NAPHTHALENE-1-SULFONYLAMINO-OCTYL-AMIDE) 3P6V ; 2.0 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog 3Et-AdaC1-Etg-Boc 3P6R ; 2.1 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog 3OH-AdaC1-Etg-Boc 3P6P ; 1.9 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC1-C6-Bio 3P6M ; 2.0 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC1-C8-Dans 3P6N ; 1.7 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC1-C8-Dans 3OIA ; 1.65 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC1-C8GluEtg-Bio 3P6O ; 2.0 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC1-Etg-Dans 3P6S ; 2.0 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC2-C8-Dans 3P6T ; 1.9 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC2-C8-Dans 3P6Q ; 1.95 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC2-Etg-Boc 3P6U ; 1.7 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC3-C6-Dans 3P6X ; 1.65 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC3-C8-Dans 3P6W ; 2.1 ; Crystal Structure of Cytochrome P450cam crystallized in the presence of a tethered substrate analog AdaC3-Etg-Boc 3OL5 ; 1.75 ; Crystal Structure of Cytochrome P450cam crystallized with a tethered substrate analog 3OH-AdaC1-C8-Dans 1P2Y ; 2.3 ; CRYSTAL STRUCTURE OF CYTOCHROME P450CAM IN COMPLEX WITH (S)-(-)-NICOTINE 1C8J ; 2.1 ; CRYSTAL STRUCTURE OF CYTOCHROME P450CAM MUTANT (F87W/Y96F) 2GR6 ; 2.3 ; Crystal structure of cytochrome p450cam mutant (f87w/y96f/l244a/v247l/c334a) 2GQX ; 2.1 ; Crystal structure of cytochrome p450cam mutant (f87w/y96f/l244a/v247l/c334a) with pentachlorobenzene 2FRZ ; 2.1 ; Crystal Structure of Cytochrome P450cam mutant (F87W/Y96F/V247L/C334A) 1J51 ; 2.2 ; CRYSTAL STRUCTURE OF CYTOCHROME P450CAM MUTANT (F87W/Y96F/V247L/C334A) WITH 1,3,5-TRICHLOROBENZENE 4JWS ; 2.15 ; Crystal structure of Cytochrome P450cam-putidaredoxin complex 4JWU ; 2.2 ; Crystal structure of Cytochrome P450cam-putidaredoxin complex 1T2B ; 1.7 ; Crystal Structure of cytochrome P450cin complexed with its substrate 1,8-cineole 7F3H ; 2.5 ; Crystal structure of cytochrome P450DA heme domain 7F3W ; 2.86 ; Crystal structure of cytochrome P450DA mutant (N190F/V356L/A486E) heme domain 6KZS ; 1.601 ; Crystal structure of cytochrome P450mel 107F1 in complex with heme and imidazole 6KZT ; 3.5 ; Crystal structure of cytochrome P450mel 107F1 with biaryl coupling reactivity 3WVS ; 1.4 ; Crystal Structure of Cytochrome P450revI 1URV ; 2.0 ; Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination 1UT0 ; 2.1 ; CRYSTAL STRUCTURE OF CYTOGLOBIN: THE FOURTH GLOBIN TYPE DISCOVERED IN MAN DISPLAYS HEME HEXA-COORDINATION 2FLH ; 1.2 ; Crystal structure of cytokinin-specific binding protein from mung bean in complex with cytokinin 3C0V ; 1.8 ; Crystal structure of cytokinin-specific binding protein in complex with cytokinin and Ta6Br12 2F2F ; 2.4 ; Crystal structure of cytolethal distending toxin (CDT) from Actinobacillus actinomycetemcomitans 1LAY ; 2.5 ; CRYSTAL STRUCTURE OF CYTOMEGALOVIRUS PROTEASE 1YYP ; 2.5 ; Crystal structure of cytomegalovirus UL44 bound to C-terminal peptide from CMV UL54 3B0Z ; 2.45 ; Crystal structure of cytoplasmic domain of FlhB from Salmonella typhimurium 1U4E ; 2.09 ; Crystal Structure of Cytoplasmic Domains of GIRK1 channel 1U4F ; 2.41 ; Crystal Structure of Cytoplasmic Domains of IRK1 (Kir2.1) channel 4IMH ; 1.976 ; Crystal Structure of Cytoplasmic Heme Binding Protein, PhuS, from Pseudomonas aeruginosa 3L8P ; 2.4 ; Crystal structure of cytoplasmic kinase domain of Tie2 complexed with inhibitor CEP11207 6IU8 ; 2.7 ; Crystal structure of cytoplasmic metal binding domain with cobalt ions 6IU9 ; 3.0 ; Crystal structure of cytoplasmic metal binding domain with iron ions 6IU6 ; 2.9 ; Crystal structure of cytoplasmic metal binding domain with nickel ions 6IU5 ; 2.25 ; Crystal structure of cytoplasmic metal binding domain with zinc ions 6BLJ ; 2.1 ; Crystal structure of cytoplasmic Serine-tRNA ligase from Naegleria fowleri in complex with AMP 7V03 ; 1.78 ; Crystal structure of cytoplasmic triosephosphate isomerase from Cuscuta australis 1FBK ; 3.2 ; CRYSTAL STRUCTURE OF CYTOPLASMICALLY OPEN CONFORMATION OF BACTERIORHODOPSIN 3R0D ; 1.501 ; Crystal structure of Cytosine Deaminase from Escherichia Coli complexed with two zinc atoms in the active site 3RN6 ; 2.255 ; Crystal structure of Cytosine Deaminase from Escherichia Coli complexed with zinc and isoguanine 3O7U ; 1.708 ; Crystal structure of Cytosine Deaminase from Escherichia Coli complexed with zinc and phosphono-cytosine 3PEI ; 2.7 ; Crystal Structure of Cytosol Aminopeptidase from Francisella tularensis 3KZW ; 2.7 ; Crystal structure of cytosol aminopeptidase from Staphylococcus aureus COL 4NV0 ; 1.65 ; Crystal structure of cytosolic 5'-nucleotidase IIIB (cN-IIIB) bound to 7-methylguanosine 4NWI ; 2.05 ; Crystal structure of cytosolic 5'-nucleotidase IIIB (cN-IIIB) bound to cytidine 6UNZ ; 3.195 ; Crystal structure of cytosolic fumarate hydratase from Leishmania major 6MSN ; 1.591 ; Crystal structure of cytosolic fumarate hydratase from Leishmania major in a complex with inhibitor thiomalate 6UOI ; 1.953 ; Crystal structure of cytosolic fumarate hydratase from Leishmania major in a complex with malonate 6UO0 ; 1.85 ; Crystal structure of cytosolic fumarate hydratase from Leishmania major in a complex with S-malate 6UOJ ; 2.35 ; Crystal structure of cytosolic fumarate hydratase from Leishmania major in a complex with succinate 7MPY ; 2.3 ; Crystal structure of cytosolic HPPK-DHPS from A.thaliana 4G63 ; 2.7 ; Crystal structure of cytosolic IMP-GMP specific 5'-nucleotidase (lpg0095) in complex with phosphate ions from Legionella pneumophila, Northeast Structural Genomics Consortium Target LgR1 3QVN ; 2.6 ; Crystal Structure of cytosolic MnSOD3 from Candida albicans 4OHF ; 2.53 ; Crystal structure of cytosolic nucleotidase II (LPG0095) in complex with GMP from Legionella pneumophila, NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET LGR1 7QHI ; 2.302 ; Crystal structure of cytotoxin 13 from Naja naja, hexagonal form 7QFC ; 2.6 ; Crystal structure of cytotoxin 13 from Naja naja, orthorhombic form 3HVN ; 2.852 ; Crystal structure of cytotoxin protein suilysin from Streptococcus suis 2A2T ; 3.1 ; crystal structure of d(AAATATTT) 1BQJ ; 2.2 ; CRYSTAL STRUCTURE OF D(ACCCT) 1CN0 ; 2.2 ; CRYSTAL STRUCTURE OF D(ACCCT) 3G2R ; 2.15 ; Crystal structure of d(CACGCG).d(CGCGTG) cocrystallized with MnCl2 3G2A ; 2.0 ; Crystal structure of d(CACGCG).d(CGCGTG) grown in presence of 1mM MnCl2 3FQ5 ; 2.8 ; Crystal Structure of d(CACGCG).d(CGCGTG) with 10mM MnCl2 2F8W ; 1.2 ; Crystal structure of d(CACGTG)2 4OKL ; 1.65 ; Crystal Structure of d(CCCCGGTACCGGGG)2 at 1.65 Angstrom 4EZ2 ; 1.6 ; Crystal Structure of d(CCGGGACCGG)4 as a four-way junction at 1.6 angstrom resolution 8ASH ; 1.837 ; Crystal structure of d(CCGGGGTACCCCGG) with XRB 5WV7 ; 1.406 ; Crystal structure of d(CCGGGGTACCCCGG)2 at 1.4A resolution 3IXN ; 2.87 ; Crystal structure of d(CCGGTACCGG) as B-DNA duplex 3R86 ; 2.8 ; Crystal structure of d(CCGGTACCGG)2 as B-DNA duplex grown with 5 mM CoCl2 1PRP ; 2.1 ; CRYSTAL STRUCTURE OF D(CGCGAATTCGCG) COMPLEXED WITH PROPAMIDINE, A SHORT-CHAIN HOMOLOGUE OF THE DRUG PENTAMIDIN 4U8B ; 1.31 ; Crystal structure of D(CGCGAATTCGCG)2 complexed with BPH-1358 4U8C ; 1.24 ; Crystal structure of D(CGCGAATTCGCG)2 complexed with BPH-1409 4U8A ; 1.48 ; Crystal structure of D(CGCGAATTCGCG)2 complexed with BPH-1503 2DP7 ; 1.55 ; Crystal Structure of D(CGCGAATXCGCG) Where X is 5-(N-aminohexyl)carbamoyl-2'-deoxyuridine 2DPB ; 1.5 ; Crystal Structure of d(CGCGAATXCGCG) Where X is 5-(N-aminohexyl)carbamoyl-2'-deoxyuridine 2DPC ; 1.55 ; Crystal Structure of d(CGCGAATXCGCG) Where X is 5-(N-aminohexyl)carbamoyl-2'-O-methyluridine 3AJJ ; 3.02 ; Crystal Structure of d(CGCGGATf5UCGCG): 5-Formyluridine/Guanosine Base-pair in B-DNA 3AJL ; 2.7 ; Crystal structure of d(CGCGGATf5UCGCG): 5-Formyluridine:guanosine Base-pair in B-DNA with DAPI 3AJK ; 1.95 ; Crystal structure of d(CGCGGATf5UCGCG): 5-Formyluridine:Guanosine Base-pair in B-DNA with Hoechst33258 3QK4 ; 2.6 ; Crystal structure of d(CGCGGGTACCCGCG)2 as A-DNA duplex 3T8P ; 2.35 ; Crystal structure of d(CGGGTACCCG)4 as a four-way Holliday junction 2DQO ; 2.3 ; Crystal Structure of d(CXCTXCTTC):r(gaagaagag) Where X is 5-(N-aminohexyl)carbamoyl-2'-O-methyluridine 2DQQ ; 2.0 ; Crystal Structure of d(CXCTXCTTC):r(gaagaagag) Where X is 5-(N-aminohexyl)carbamoyl-2'-O-methyluridine 7ECF ; 1.6 ; Crystal Structure of d(G4C2)2-Ba in C2221 space group 7ECG ; 1.97 ; Crystal Structure of d(G4C2)2-Ba in F222 space group 7ECH ; 2.38 ; Crystal Structure of d(G4C2)2-K in F222 space group 2GWQ ; 2.0 ; Crystal structure of D(G4T4G4) with four quadruplexes in the asymmetric unit. 2GWE ; 2.2 ; Crystal structure of D(G4T4G4) with six quadruplexes in the asymmetric unit. 1UE2 ; 1.4 ; Crystal structure of d(GC38GAAAGCT) 8ASK ; 2.955 ; Crystal structure of d(GCCCACCACGGC) 1UE4 ; 1.65 ; Crystal structure of d(GCGAAAGC) 1UE3 ; 2.15 ; Crystal structure of d(GCGAAAGC) containing hexaamminecobalt 1IXJ ; 2.5 ; Crystal Structure of d(GCGAAAGCT) Containing Parallel-stranded Duplex with Homo Base Pairs and Anti-Parallel Duplex with Watson-Crick Base pairs 2GOT ; 2.602 ; Crystal structure of d(GCGAACGC): two types of bulge-containing duplexes 1UB8 ; 1.6 ; Crystal structure of d(GCGAAGC), bending duplex with a bulge-in residue 1UHX ; 2.0 ; Crystal structure of d(GCGAGAGC): the base-intercalated duplex 1V3P ; 2.3 ; Crystal structure of d(GCGAGAGC): the DNA octaplex structure with I-motif of G-quartet 1V3N ; 1.8 ; Crystal structure of d(GCGAGAGC): the DNA quadruplex structure split from the octaplex 1V3O ; 1.7 ; Crystal structure of d(GCGAGAGC): the DNA quadruplex structure split from the octaplex 1UHY ; 1.7 ; Crystal structure of d(GCGATAGC): the base-intercalated duplex 331D ; 1.65 ; CRYSTAL STRUCTURE OF D(GCGCGCG) WITH 5'-OVERHANG G'S 2FZA ; 3.6 ; Crystal structure of d(GCGGGAGC): the base-intercalated duplex 1VT8 ; 1.9 ; Crystal structure of D(GGGCGCCC)-hexagonal form 5GUN ; 2.588 ; Crystal structure of d(GTGGAATGGAAC) 6L75 ; 1.578 ; Crystal structure of d(GTGGGCCGAC)2 DNA duplex 4PNH ; 2.66 ; Crystal structure of D,D-heptose 1,7-bisphosphate phosphatase from Burkholderia Thailandensis 3L8H ; 1.68 ; Crystal Structure of D,D-heptose 1.7-bisphosphate phosphatase from B. bronchiseptica complexed with magnesium and phosphate 3L8G ; 2.18 ; Crystal Structure of D,D-heptose 1.7-bisphosphate phosphatase from E. Coli complexed with D-glycero-D-manno-heptose 1 ,7-bisphosphate 3L8F ; 1.79 ; Crystal Structure of D,D-heptose 1.7-bisphosphate phosphatase from E. Coli complexed with magnesium and phosphate 2GMW ; 1.5 ; Crystal Structure of D,D-heptose 1.7-bisphosphate phosphatase from E. Coli. 3ESR ; 1.95 ; Crystal Structure of D,D-heptose1.7-bisphosphate phosphatase from E. coli in complex with calcium and phosphate 4MNR ; 1.653 ; Crystal Structure of D,D-Transpeptidase Domain of Peptidoglycan Glycosyltransferase from Eggerthella lenta 3W8E ; 1.24 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and a substrate D-3-hydroxybutyrate 5B4T ; 1.19 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and a substrate D-3-hydroxybutyrate 3W8F ; 1.45 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and an inhibitor malonate 5B4U ; 1.45 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and an inhibitor malonate 3W8D ; 1.37 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and an inhibitor methylmalonate 5B4V ; 1.5 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis complexed with NAD+ and an inhibitor methylmalonate 1X1T ; 1.52 ; Crystal Structure of D-3-Hydroxybutyrate Dehydrogenase from Pseudomonas fragi Complexed with NAD+ 3VDR ; 3.0 ; Crystal structure of D-3-hydroxybutyrate dehydrogenase, prepared in the presence of the substrate D-3-hydroxybutyrate and NAD(+) 1YGY ; 2.3 ; Crystal Structure of D-3-Phosphoglycerate dehydrogenase From Mycobacterium tuberculosis 1SKV ; 2.6 ; Crystal Structure of D-63 from Sulfolobus Spindle Virus 1 2YZG ; 2.3 ; Crystal structure of D-ALA:D-ALA Ligase from Thermus thermophilus HB8 5E2G ; 1.651 ; Crystal Structure of D-alanine Carboxypeptidase AmpC from Burkholderia cenocepacia 5E2H ; 1.8 ; Crystal Structure of D-alanine Carboxypeptidase AmpC from Mycobacterium smegmatis 3R23 ; 2.5 ; Crystal Structure of D-alanine--D-Alanine Ligase from Bacillus anthracis 3R5X ; 2.0 ; Crystal Structure of D-alanine--D-Alanine Ligase from Bacillus anthracis complexed with ATP 4EG0 ; 1.65 ; Crystal Structure of D-alanine--D-alanine ligase from Burkholderia ambifaria 7U56 ; 1.85 ; Crystal Structure of D-alanine--D-alanine ligase from Klebsiella pneumoniae subsp. pneumoniae in complex with AMP 3RFC ; 2.1 ; Crystal structure of D-alanine-D-alanine ligase A from Xanthomonas oryzae pathovar oryzae with ADP 4ME6 ; 2.1 ; Crystal structure of D-alanine-D-alanine ligase A from Xanthomonas oryzae pathovar oryzae with ADP 4EGQ ; 2.2 ; Crystal structure of D-alanine-D-alanine ligase B from Burkholderia pseudomallei 5D8D ; 2.19 ; Crystal structure of D-alanine-D-alanine ligase from Acinetobacter baumannii 5DMX ; 2.81 ; Crystal structure of D-alanine-D-alanine ligase from Acinetobacter baumannii, space group p212121 6LL9 ; 2.7 ; Crystal structure of D-alanine-D-alanine ligase from Aeromonas hydrophila 4EGJ ; 2.3 ; Crystal structure of D-alanine-D-alanine ligase from Burkholderia xenovorans 2PVP ; 2.4 ; Crystal structure of D-Alanine-D-Alanine Ligase from Helicobacter pylori 3E5N ; 2.0 ; Crystal structure of D-alanine-D-alanine ligase from Xanthomonas oryzae pv. oryzae KACC10331 4L1K ; 2.3 ; Crystal structure of D-alanine-D-alnine ligase from Xanthomonas oryzae pv. oryzae with AMPPNP 3R5F ; 2.07 ; Crystal structure of D-alanine-D-alnine ligase from Xanthomonas oryzae pv. oryzae with ATP 2ZDH ; 1.9 ; Crystal structure of D-Alanine:D-Alanine Ligase with ADP and D-Alanine from Thermus thermophius HB8 2ZDG ; 2.2 ; Crystal structure of D-Alanine:D-Alanine Ligase with ADP from Thermus thermophius HB8 2YZN ; 2.6 ; Crystal structure of D-alanine:D-Alanine Ligase with AMPPNP from Thermus thermophilus HB8. 2ZDQ ; 2.3 ; Crystal structure of D-Alanine:D-Alanine Ligase with ATP and D-Alanine:D-Alanine from Thermus thermophius HB8 3BMA ; 2.24 ; Crystal structure of D-alanyl-lipoteichoic acid synthetase from Streptococcus pneumoniae R6 1RPJ ; 1.8 ; CRYSTAL STRUCTURE OF D-ALLOSE BINDING PROTEIN FROM ESCHERICHIA COLI 3HTV ; 1.95 ; Crystal structure of D-allose kinase (NP_418508.1) from ESCHERICHIA COLI K12 at 1.95 A resolution 7ERM ; 2.32 ; Crystal structure of D-allulose 3-epimerase from Agrobacterium sp. SUL3 7ERO ; 2.12 ; Crystal structure of D-allulose 3-epimerase with D-allulose from Agrobacterium sp. SUL3 7ERN ; 2.05 ; Crystal structure of D-allulose 3-epimerase with D-fructose from Agrobacterium sp. SUL3 3CT7 ; 2.5 ; Crystal structure of D-allulose 6-phosphate 3-epimerase from Escherichia Coli K-12 3CTL ; 2.2 ; Crystal structure of D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K12 complexed with D-glucitol 6-phosphate and magnesium 8AYJ ; 1.75 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiens complexed with 3-aminooxypropionic acid 8AIE ; 1.9 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense complexed with D-cycloserine 8AHR ; 1.9 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense in holo form with PLP 8ONL ; 1.9 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense point mutant E113A 8ONN ; 2.1 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense point mutant E113A complexed with 3-aminooxypropionic acid 8ONM ; 1.85 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense point mutant E113A complexed with D-glutamate 8ONJ ; 1.8 ; Crystal structure of D-amino acid aminotransferase from Aminobacterium colombiense point mutant R88L 8PNY ; 1.8 ; Crystal structure of D-amino acid aminotransferase from Blastococcus saxobsidens complexed with phenylhydrazine and in its apo form 8PNW ; 1.7 ; Crystal structure of D-amino acid aminotransferase from Blastococcus saxobsidens in holo form with PLP 8AYK ; 1.9 ; Crystal structure of D-amino acid aminotrensferase from Aminobacterium colombiense complexed with D-glutamate 8AHU ; 1.41 ; Crystal structure of D-amino acid aminotrensferase from Haliscomenobacter hydrossis complexed with D-cycloserine 7CT4 ; 2.0 ; Crystal structure of D-amino acid oxidase from Rasamsonia emersonii strain YA 1C0I ; 1.9 ; CRYSTAL STRUCTURE OF D-AMINO ACID OXIDASE IN COMPLEX WITH TWO ANTHRANYLATE MOLECULES 3WGT ; 1.88 ; Crystal structure of D-amino acid oxidase mutant 7P7X ; 2.0 ; Crystal structure of D-amino acid transaminase from Haliscomenobacter hydrossis (holo form). 8RAF ; 2.0 ; Crystal structure of D-amino acid transaminase from Haliscomenobacter hydrossis point mutant R90I (holo form) 8RAI ; 2.0 ; Crystal structure of D-amino acid transaminase from Haliscomenobacter hydrossis point mutant R90I complexed with phenylhydrazine 7P8O ; 1.95 ; Crystal structure of D-aminoacid transaminase from Haliscomenobacter hydrossis in its intermediate form 1M7J ; 1.5 ; Crystal structure of D-aminoacylase defines a novel subset of amidohydrolases 1RJP ; 1.8 ; Crystal structure of D-aminoacylase in complex with 100mM CuCl2 6JIL ; 2.32 ; Crystal structure of D-cycloserine synthetase DcsG 1VFS ; 1.9 ; Crystal structure of D-cycloserine-bound form of alanine racemase from D-cycloserine-producing Streptomyces lavendulae 7CET ; 2.64 ; Crystal structure of D-cycloserine-bound form of cysteine desulfurase NifS from Helicobacter pylori 7CER ; 2.3 ; Crystal structure of D-cycloserine-bound form of cysteine desulfurase SufS H121A from Bacillus subtilis 7YSK ; 1.8 ; Crystal structure of D-Cysteine desulfhydrase from Pectobacterium atrosepticum 4D8T ; 2.28 ; Crystal structure of D-Cysteine desulfhydrase from Salmonella typhimurium at 2.2 A resolution 4D8U ; 3.3 ; Crystal structure of D-Cysteine desulfhydrase from Salmonella typhimurium at 3.3 A in monoclinic space group with 8 subunits in the asymmetric unit 7YSL ; 2.02 ; Crystal structure of D-Cysteine desulfhydrase with a trapped PLP-pyruvate geminal diamine 2Z4E ; 2.7 ; Crystal Structure of D-Dimer from Human Fibrin Complexed with Gly-His-Arg-Pro-Tyr-amide 3H32 ; 3.6 ; Crystal structure of D-dimer from human fibrin complexed with Gly-His-Arg-Pro-Tyr-amide 2Q9I ; 2.8 ; Crystal Structure of D-Dimer from Human Fibrin Complexed with Met-His-Arg-Pro-Tyr-amide. 3GO0 ; 1.56 ; Crystal structure of D-enantiomer of human alpha-defensin 1 (D-HNP1) 2O4C ; 2.3 ; Crystal Structure of D-Erythronate-4-phosphate Dehydrogenase Complexed with NAD 4K3Z ; 1.95 ; Crystal structure of D-erythrulose 4-phosphate dehydrogenase from Brucella melitensis, solved by iodide SAD 4EW6 ; 2.3 ; Crystal structure of D-galactose-1-dehydrogenase protein from Rhizobium etli 4LFK ; 1.96 ; Crystal Structure of D-galactose-6-phosphate isomerase in a substrate-free form 4LFM ; 1.65 ; Crystal Structure of D-galactose-6-phosphate isomerase in complex with D-psicose 4LFN ; 1.65 ; Crystal Structure of D-galactose-6-phosphate isomerase in complex with D-ribulose 4LFL ; 1.65 ; Crystal Structure of D-galactose-6-phosphate isomerase in complex with D-tagatose-6-phosphate 3VCC ; 1.64 ; CRYSTAL STRUCTURE OF D-Galacturonate Dehydratase from GEOBACILLUS SP. complexed with Mg 4HCD ; 1.7 ; Crystal structure of D-glucarate dehydratase from agrobacterium tumefaciens complexed with magnesium 4HCL ; 1.8 ; CRYSTAL STRUCTURE OF D-GLUCARATE DEHYDRATASE FROM AGROBACTERIUM TUMEFACIENS complexed with magnesium and L-Lyxarohydroxamate 4HCH ; 1.699 ; CRYSTAL STRUCTURE OF D-GLUCARATE DEHYDRATASE FROM AGROBACTERIUM TUMEFACIENS complexed with magnesium and L-tartrate 4MMW ; 1.647 ; Crystal structure of D-glucarate dehydratase from Agrobacterium tumefaciens complexed with magnesium, L-Xylarohydroxamate and L-Lyxarohydroxamate 3P0W ; 1.71 ; Crystal structure of D-Glucarate dehydratase from Ralstonia solanacearum complexed with Mg and D-glucarate 3PFR ; 1.899 ; Crystal structure of D-Glucarate dehydratase related protein from Actinobacillus Succinogenes complexed with D-Glucarate 7QE2 ; 2.15 ; Crystal structure of D-glucuronic acid bound to SN243 3A0N ; 1.45 ; Crystal structure of D-glucuronic acid-bound alginate lyase vAL-1 from Chlorella virus 4PW2 ; 1.9 ; Crystal structure of D-glucuronyl C5 epimerase 4PXQ ; 2.2 ; Crystal structure of D-glucuronyl C5-epimerase in complex with heparin hexasaccharide 1K1D ; 3.01 ; Crystal structure of D-hydantoinase 4KIR ; 2.8 ; Crystal Structure of D-Hydantoinase from Bacillus sp. AR9 in C2221 space group 3HG7 ; 1.8 ; CRYSTAL STRUCTURE OF D-isomer specific 2-hydroxyacid dehydrogenase family protein from Aeromonas salmonicida subsp. salmonicida A449 4N18 ; 1.97 ; Crystal structure of D-isomer specific 2-hydroxyacid dehydrogenase family protein from Klebsiella pneumoniae 342 5TX7 ; 2.51 ; Crystal structure of D-isomer specific 2-hydroxyacid dehydrogenase from Desulfovibrio vulgaris 2YQ4 ; 3.45 ; Crystal Structure of D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus 2YQ5 ; 2.75 ; Crystal Structure of D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus: NAD complexed form 4XA8 ; 1.9 ; Crystal structure of D-isomer specific 2-hydroxyacid dehydrogenase from Xanthobacter autotrophicus Py2 5VG6 ; 2.2 ; Crystal structure of D-isomer specific 2-hydroxyacid dehydrogenase from Xanthobacter autotrophicus Py2 in complex with NADPH and MES. 4PRK ; 2.13 ; Crystal structure of D-lactate dehydrogenase (D-LDH) from Lactobacillus jensenii 3KB6 ; 2.12 ; Crystal structure of D-Lactate dehydrogenase from aquifex aeolicus complexed with NAD and Lactic acid 4PRL ; 2.6 ; Crystal structure of D-lactate dehydrogenase with NAD+ from Lactobacillus jensenii 1F0X ; 1.9 ; CRYSTAL STRUCTURE OF D-LACTATE DEHYDROGENASE, A PERIPHERAL MEMBRANE RESPIRATORY ENZYME. 4IL2 ; 1.95 ; Crystal structure of D-mannonate dehydratase (rspA) from E. coli CFT073 (EFI TARGET EFI-501585) 3BSM ; 2.2 ; Crystal structure of D-mannonate dehydratase from Chromohalobacter salexigens 3RGT ; 1.9 ; Crystal structure of d-mannonate dehydratase from Chromohalobacter salexigens complexed with D-Arabinohydroxamate 3OW1 ; 1.798 ; Crystal structure of D-mannonate dehydratase from Chromohalobacter salexigens complexed with MG 3QKE ; 1.55 ; Crystal structure of D-mannonate dehydratase from Chromohalobacter Salexigens complexed with Mg and D-Gluconate 4KT2 ; 1.798 ; Crystal structure of d-mannonate dehydratase from chromohalobacter salexigens complexed with mg and glycerol 4KWS ; 1.642 ; Crystal structure of d-mannonate dehydratase from chromohalobacter salexigens complexed with Mg and glycerol 3P93 ; 1.8 ; Crystal structure of D-mannonate dehydratase from Chromohalobacter Salexigens complexed with MG,D-Mannonate and 2-keto-3-deoxy-D-Gluconate 4KPL ; 2.0 ; Crystal structure of d-mannonate dehydratase from chromohalobacter salexigens complexed with Mg,d-mannonate and 2-keto-3-deoxy-d-gluconate 3PK7 ; 1.642 ; Crystal structure of D-mannonate dehydratase from Chromohalobacter salexigens with MG and Glycerol bound in the active site 2QJJ ; 1.8 ; Crystal structure of D-Mannonate dehydratase from Novosphingobium aromaticivorans 2QJN ; 2.0 ; Crystal structure of D-mannonate dehydratase from Novosphingobium aromaticivorans complexed with Mg and 2-keto-3-deoxy-D-gluconate 4K8G ; 1.25 ; Crystal structure of D-Mannonate dehydratase from Novosphingobium aromaticivorans mutant (V161A, R163A, K165G, L166A, Y167G, Y168A, E169G) 4F4R ; 1.8 ; Crystal structure of D-mannonate dehydratase homolog from Chromohalobacter salexigens (Target EFI-502114), with bound NA, ordered loop 5X32 ; 2.586 ; Crystal structure of D-mannose isomerase 2CY8 ; 2.3 ; Crystal structure of D-phenylglycine aminotransferase (D-PhgAT) from Pseudomonas strutzeri ST-201 6G1F ; 2.248 ; Crystal structure of D-phenylglycine aninotransferase (D-PhgAT) from Pseudomonas stutzeri with PLP internal aldimine 8OKY ; 1.17 ; Crystal structure of D-ProB26-DTriA analogue of human insulin 2HK0 ; 2.0 ; Crystal structure of D-psicose 3-epimerase (DPEase) in the absence of substrate 2HK1 ; 2.3 ; Crystal structure of D-psicose 3-epimerase (DPEase) in the presence of D-fructose 3E7N ; 2.45 ; Crystal structure of d-ribose high-affinity transport system from salmonella typhimurium lt2 3P12 ; 2.35 ; Crystal Structure of D-ribose Pyranase Sa240 1LKZ ; 2.5 ; Crystal structure of D-ribose-5-phosphate isomerase (RpiA) from Escherichia coli. 1TQJ ; 1.6 ; Crystal structure of D-ribulose 5-phosphate 3-epimerase from Synechocystis to 1.6 angstrom resolution 3ANU ; 1.9 ; Crystal structure of D-serine dehydratase from chicken kidney 3ANV ; 2.09 ; Crystal structure of D-serine dehydratase from chicken kidney (2,3-DAP complex) 3AWN ; 2.8 ; Crystal structure of D-serine dehydratase from chicken kidney (EDTA treated) 3AWO ; 2.65 ; Crystal structure of D-serine dehydratase in complex with D-serine from chicken kidney (EDTA-treated) 5ITG ; 1.95 ; Crystal structure of D-sorbitol dehydrogenase in substrate-free form 3WWX ; 1.49 ; Crystal structure of D-stereospecific amidohydrolase from Streptomyces sp. 82F2 7EBY ; 2.0 ; Crystal structure of D-Succinylase (DSA) from Cupriavidus sp. P4-10-C 4YTS ; 2.14 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with 1-deoxy 3-keto D-galactitol 4YTQ ; 1.9 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with 1-deoxy D-tagatose 4YTR ; 1.9 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with 1-deoxy L-tagatose 5J8L ; 1.73 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with 1-deoxy L-tagatose, using a crystal grown in microgravity 4YTT ; 1.8 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with 6-deoxy L-psicose 4XSM ; 2.3 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with D-talitol 4YTU ; 2.2 ; Crystal structure of D-tagatose 3-epimerase C66S from Pseudomonas cichorii in complex with L-erythrulose 2OU4 ; 2.5 ; Crystal structure of D-tagatose 3-epimerase from Pseudomonas cichorii 2QUL ; 1.79 ; Crystal structure of D-tagatose 3-epimerase from Pseudomonas cichorii at 1.79 A resolution 2QUN ; 2.06 ; Crystal Structure of D-tagatose 3-epimerase from Pseudomonas cichorii in Complex with D-fructose 2QUM ; 2.28 ; Crystal structure of D-tagatose 3-epimerase from Pseudomonas cichorii with D-tagatose 3WQO ; 2.64 ; Crystal structure of D-tagatose 3-epimerase-like protein 2DW7 ; 2.5 ; Crystal structure of D-tartrate dehydratase from Bradyrhizobium japonicum complexed with Mg++ and meso-tartrate 4V15 ; 1.5 ; Crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans 7YQA ; 1.85 ; Crystal structure of D-threonine aldolase from Chlamydomonas reinhardtii 7DIB ; 2.2 ; Crystal structure of D-threonine aldolase from Filomicrobium marinum 2DBO ; 2.76 ; Crystal structure of D-Tyr-tRNA(Tyr) deacylase from Aquifex aeolicus 3KNF ; 3.0 ; Crystal structure of D-Tyr-tRNA(Tyr) deacylase from Plasmodium falciparum 3KO4 ; 2.7 ; Crystal structure of D-Tyr-tRNA(Tyr) deacylase from Plasmodium falciparum in complex with ADP 5OYN ; 2.7 ; Crystal structure of D-xylonate dehydratase in holo-form 3N4A ; 1.94 ; Crystal structure of D-Xylose Isomerase in complex with S-1,2-Propandiol 5Z6U ; 1.95 ; Crystal structure of D-xylose reductase from Scheffersomyces stipitis 5Z6T ; 2.0 ; Crystal structure of D-xylose reductase from Scheffersomyces stipitis in complex with NADPH 4QIQ ; 3.51 ; Crystal structure of D-xylose-proton symporter 1NM1 ; 1.8 ; Crystal Structure of D. Dicsoideum Actin Complexed With Gelsolin Segment 1 and Mg ATP at 1.8 A Resolution 1NMD ; 1.9 ; Crystal Structure of D. Discoideum Actin-Gelsolin Segment 1 Complex Crystallized In Presence Of Lithium ATP 1ZM7 ; 2.2 ; Crystal structure of D. melanogaster deoxyribonucleoside kinase mutant N64D in complex with dTTP 1ZMX ; 3.1 ; Crystal structure of D. melanogaster deoxyribonucleoside kinase N64D mutant in complex with thymidine 5FGP ; 2.0 ; Crystal structure of D. melanogaster Pur-alpha repeat I-II in complex with DNA. 5FGO ; 2.6 ; Crystal structure of D. melanogaster Pur-alpha repeat III. 2Y8E ; 1.39 ; Crystal structure of D. melanogaster Rab6 GTPase bound to GMPPNP 7VKR ; 2.1 ; Crystal structure of D. melanogaster SAMTOR in complex with SAM 7VKQ ; 2.094 ; Crystal structure of D. melanogaster SAMTOR in the SAH bound form 7VKK ; 3.55 ; Crystal structure of D. melanogaster SAMTOR V66W/E67P mutant 4YGX ; 2.95 ; Crystal Structure of D. melanogaster Ssu72+Symplekin bound to cis peptidomimetic CTD phospho-Ser5 peptide 4O0P ; 3.8 ; Crystal Structure of D. radiodurans Bacteriophytochrome Photosensory Core Module in its Dark Form 4O01 ; 3.24 ; Crystal Structure of D. radiodurans Bacteriophytochrome Photosensory Core Module in its Illuminated Form 1J6V ; 2.1 ; CRYSTAL STRUCTURE OF D. RADIODURANS LUXS, C2 1INN ; 1.8 ; CRYSTAL STRUCTURE OF D. RADIODURANS LUXS, P21 4FPV ; 1.73 ; Crystal structure of D. rerio TDP2 complexed with single strand DNA product 2NLK ; 2.4 ; Crystal structure of D1 and D2 catalytic domains of human Protein Tyrosine Phosphatase Gamma (D1+D2 PTPRG) 3MZ7 ; 1.9 ; Crystal structure of D101L Co2+ HDAC8 complexed with M344 3MZ6 ; 2.0 ; Crystal structure of D101L Fe2+ HDAC8 complexed with M344 3MZ4 ; 1.845 ; Crystal structure of D101L Mn2+ HDAC8 complexed with M344 7N96 ; 2.38 ; Crystal structure of D103A human Galectin-7 mutant 7RDG ; 3.0 ; Crystal structure of D103A human Galectin-7 mutant in presence of lactose 1CQS ; 1.9 ; CRYSTAL STRUCTURE OF D103E MUTANT WITH EQUILENINEOF KSI IN PSEUDOMONAS PUTIDA 5LNN ; 1.6 ; Crystal structure of D1050A mutant of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana 5LNM ; 1.95 ; Crystal structure of D1050E mutant of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana 4U5R ; 1.55 ; Crystal structure of D106A mutant of RhCC (YP_702633.1) from Rhodococcus jostii RHA1 at 1.55 Angstrom 7D96 ; 2.29 ; Crystal structure of D110G mutant of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 7YC6 ; 2.4 ; Crystal structure of D110P mutant of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 8GR1 ; 2.5 ; Crystal structure of D110V/K151L mutant of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 6KEQ ; 1.84 ; Crystal structure of D113A mutant of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in apo-form 6KER ; 1.84 ; Crystal structure of D113A mutant of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in glutathione-bound form 3COC ; 2.31 ; Crystal Structure of D115A mutant of Bacteriorhodopsin 7DC7 ; 1.77 ; Crystal structure of D12 Fab-ATP complex 8ANS ; 2.01 ; Crystal structure of D1228V c-MET bound by compound 1. 8OV7 ; 1.95 ; Crystal structure of D1228V c-MET bound by compound 10 8OUV ; 1.783 ; Crystal structure of D1228V c-MET bound by compound 15 8OVZ ; 2.206 ; Crystal structure of D1228V c-MET bound by compound 16 8OWG ; 2.631 ; Crystal structure of D1228V c-MET bound by compound 2 8OUU ; 1.77 ; Crystal structure of D1228V c-MET bound by compound 29 6SDD ; 1.93 ; Crystal structure of D1228V cMET bound by BMS-777607 6SDC ; 1.67 ; Crystal structure of D1228V cMET bound by foretinib 2JAO ; 2.0 ; Crystal structure of D12N variant of mouse cytosolic 5'(3')- deoxyribonucleotidase (cdN) in complex with deoxyguanosine 5'- monophosphate 2JAR ; 1.94 ; Crystal structure of D12N variant of mouse cytosolic 5'(3')- deoxyribonucleotidase (cdN) in complex with deoxyuridine 5'- monophosphate 3KCC ; 1.66 ; Crystal structure of D138L mutant of Catabolite Gene Activator Protein 2DSO ; 2.1 ; Crystal structure of D138N mutant of Drp35, a 35kDa drug responsive protein from Staphylococcus aureus 5SX1 ; 1.8 ; Crystal structure of D141E variant of B. pseudomallei KatG 4YPR ; 2.59 ; Crystal Structure of D144N MutY bound to its anti-substrate 3PNI ; 2.8 ; Crystal structure of D14C [3Fe-4S] Pyrococcus furiosus ferredoxin 2ZJ7 ; 2.21 ; Crystal structure of D157A mutant of Pseudomonas sp. MIS38 lipase 6KXM ; 1.95 ; Crystal structure of D157N mutant of Chitiniphilus shinanonensis chitinase ChiL (CsChiL) complexed with N,N'-diacetylchitobiose 5YIY ; 2.504 ; Crystal structure of D175A mutant of Rv3272 from Mycobacterium tuberculosis 5DC7 ; 2.3 ; Crystal structure of D176A-Y306F HDAC8 in complex with a tetrapeptide substrate 5DC5 ; 1.94 ; Crystal structure of D176N HDAC8 in complex with M344 5DC6 ; 1.553 ; Crystal structure of D176N-Y306F HDAC8 in complex with a tetrapeptide substrate 7TB7 ; 0.99 ; Crystal structure of D179N KPC-2 beta-lactamase 7TC1 ; 1.16 ; Crystal structure of D179N KPC-2 beta-lactamase in complex with vaborbactam 7TBX ; 3.16 ; Crystal structure of D179Y KPC-2 beta-lactamase 3NOV ; 1.05 ; Crystal Structure of D17E Isocyanide Hydratase from Pseudomonas fluorescens 5ZOE ; 1.95 ; Crystal Structure of D181A hFen1 in complex with DNA 5ZOF ; 2.249 ; Crystal Structure of D181A/R192F hFen1 in complex with DNA 3TPO ; 2.1 ; Crystal structure of D192A/E396A mutant of mouse importin alpha2 4KEA ; 1.7 ; Crystal structure of D196N mutant of Monoglyceride lipase from Bacillus sp. H257 in space group P212121 2EU7 ; 1.2 ; Crystal structure of D1A mutant of nitrophorin 2 complexed with ammonia 2ASN ; 1.7 ; Crystal structure of D1A mutant of nitrophorin 2 complexed with imidazole 3DAR ; 2.2 ; Crystal structure of D2 domain from human FGFR2 7UNY ; 4.13 ; Crystal structure of D2 nanobody in complex with PfCSS 4GAD ; 2.35 ; Crystal Structure of D230A/H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 5D1C ; 1.422 ; Crystal structure of D233G-Y306F HDAC8 in complex with a tetrapeptide substrate 3FHX ; 2.5 ; Crystal structure of D235A mutant of human pyridoxal kinase 3FHY ; 2.3 ; Crystal structure of D235N mutant of human pyridoxal kinase 3U3R ; 2.36 ; Crystal structure of D249G mutated Human SULT1A1 bound to PAP and P-NITROPHENOL 1X08 ; 1.9 ; Crystal structure of D26A mutant UPPs in complex with Mg, IPP and FsPP 3BA5 ; 1.75 ; Crystal structure of D28A mutant of Human acidic fibroblast growth factor 2YX9 ; 1.68 ; Crystal structure of D298K copper amine oxidase from Arthrobacter globiformis 3UMJ ; 2.1 ; Crystal Structure of D311E Lipase 2ZJ6 ; 2.25 ; Crystal structure of D337A mutant of Pseudomonas sp. MIS38 lipase 7EXH ; 2.63 ; Crystal structure of D383A mutant from Arabidopsis thaliana complexed with Galactinol. 7EXG ; 2.05 ; Crystal structure of D383A mutant from Arabidopsis thaliana complexed with Galactose. 2B5W ; 1.6 ; Crystal structure of D38C glucose dehydrogenase mutant from Haloferax mediterranei 4LL9 ; 2.686 ; Crystal structure of D3D4 domain of the LILRB1 molecule 4LLA ; 2.502 ; Crystal structure of D3D4 domain of the LILRB2 molecule 5NPD ; 1.95 ; Crystal Structure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Aziridine probe CF021 5NPC ; 1.96 ; Crystal Structure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with unreacted alpha Cyclophellitol Cyclosulfate probe ME647 2JAU ; 1.8 ; Crystal structure of D41N variant of human mitochondrial 5'(3')- deoxyribonucleotidase (mdN) in complex with 3'-azidothymidine 5'- monophosphate 2JAW ; 1.95 ; Crystal structure of D41N variant of human mitochondrial 5'(3')- deoxyribonucleotidase (mdN) in complex with 5-bromovinyldeoxyuridine 5'-monophosphate 6JTA ; 1.75 ; Crystal Structure of D464A L465A mutant of FGAM Synthetase 6JT9 ; 2.1 ; Crystal Structure of D464A mutant of FGAM Synthetase 6C7P ; 2.6 ; Crystal structure of D477G ACO/RPE65 chimera, monoclinic crystal form 6C7O ; 3.15 ; Crystal structure of D477G ACO/RPE65 chimera, trigonal crystal form 4GXD ; 2.1 ; Crystal structure of D48V mutant of human GLTP bound with 12:0 disulfatide 4GVT ; 2.9 ; Crystal structure of D48V mutant of human GLTP bound with 12:0 disulfatide (hexagonal form) 4GH0 ; 1.35 ; Crystal structure of D48V mutant of human GLTP bound with 12:0 monosulfatide 2EVT ; 1.99 ; Crystal structure of D48V mutant of human Glycolipid Transfer Protein 3S0I ; 1.5 ; Crystal Structure of D48V mutant of Human Glycolipid Transfer Protein complexed with 3-O-sulfo galactosylceramide containing nervonoyl acyl chain 4GHP ; 1.9 ; Crystal Structure of D48V||A47D mutant of Human GLTP bound with 12:0 monosulfatide 3RIC ; 2.1 ; Crystal Structure of D48V||A47D mutant of Human Glycolipid Transfer Protein complexed with 3-O-sulfo-galactosylceramide containing nervonoyl acyl chain (24:1) 5OPM ; 1.68 ; Crystal structure of D52N/R238W cN-II mutant bound to dATP and free phosphate 5OPK ; 1.74 ; Crystal structure of D52N/R367Q cN-II mutant bound to dATP and free phosphate 3GSI ; 2.0 ; Crystal structure of D552A dimethylglycine oxidase mutant of Arthrobacter globiformis in complex with tetrahydrofolate 4NTG ; 2.5505 ; Crystal structure of D60A mutant of Arabidopsis ACD11 (accelerated-cell-death 11) complexed with C12 ceramide-1-phosphate (d18:1/12:0) at 2.55 Angstrom resolution 4NTO ; 2.152 ; Crystal structure of D60A mutant of Arabidopsis ACD11 (accelerated-cell-death 11) complexed with C2 ceramide-1-phosphate (d18:1/2:0) at 2.15 Angstrom resolution 4NTI ; 2.899 ; Crystal structure of D60N mutant of Arabidopsis ACD11 (accelerated-cell-death 11) complexed with C12 ceramide-1-phosphate (d18:1/12:0) at 2.9 Angstrom resolution 5L6Z ; 1.501 ; Crystal structure of D62A mutant of Thermotoga maritima TmPEP1050 aminopeptidase 6LYM ; 2.46 ; Crystal structure of D657A mutant of formylglycinamidine synthetase 6UBZ ; 1.83 ; Crystal structure of D678A GoxA bound to glycine at pH 5.5 6UBR ; 1.96 ; Crystal structure of D678A GoxA bound to glycine at pH 7.5 6UC1 ; 2.19 ; Crystal structure of D678A GoxA soaked in glycine at pH 7.5 6UBN ; 2.15 ; Crystal structure of D678E GoxA bound to glycine 6UFQ ; 2.51 ; Crystal structure of D678N GoxA bound to glycine 7EWO ; 2.4 ; Crystal Structure of D67A, E68P double mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae 3BAD ; 2.0 ; Crystal structure of D70A/H93G mutant of Human acidic fibroblast growth factor 4JS7 ; 2.101 ; Crystal structure of D78N mutant apo form of clavibacter michiganensis expansin 4L48 ; 2.1 ; Crystal structure of d78n mutant clavibacter michiganensis expansin in complex with cellohexaose 2ZGJ ; 2.3 ; Crystal Structure of D86N-GzmM Complexed with Its Optimal Synthesized Substrate 7TKY ; 2.53 ; Crystal structure of D94A human Galectin-7 mutant 7TKZ ; 1.83 ; Crystal structure of D94A human Galectin-7 mutant in presence of lactose 5XRF ; 2.2 ; Crystal structure of Da-36, a thrombin-like enzyme from Deinagkistrodon acutus 4YJD ; 2.3 ; Crystal structure of DAAO(Y228L/R283G) variant (apo form) 4YJH ; 2.7 ; Crystal structure of DAAO(Y228L/R283G) variant (R-2-phenylpyrrolidine binding form) 4YJG ; 2.5 ; Crystal structure of DAAO(Y228L/R283G) variant (R-3-amino 1-phenylbutane binding form) 4YJF ; 2.2 ; Crystal structure of DAAO(Y228L/R283G) variant (S-methylbenzylamine binding form) 6GYW ; 1.7 ; Crystal structure of DacA from Staphylococcus aureus 6GYX ; 2.6 ; Crystal structure of DacA from Staphylococcus aureus in complex with ApCpp 6GYY ; 2.77 ; Crystal structure of DacA from Staphylococcus aureus, N166C/T172C double mutant 4D0Y ; 2.0 ; Crystal structure of DacB from Streptococcus pneumoniae D39 5LLV ; 1.7 ; Crystal structure of DACM F87M/L110M Transthyretin mutant 5LLL ; 1.42 ; Crystal structure of DACM wild type Transthyretin 4DNP ; 2.15 ; Crystal Structure of DAD2 6O5J ; 1.63 ; Crystal Structure of DAD2 bound to quinazolinone derivative 6UH9 ; 1.52 ; Crystal structure of DAD2 D166A mutant 6AP7 ; 1.51 ; Crystal Structure of DAD2 in complex with 2-(2-methyl-3-nitroanilino)benzoic acid 6AP6 ; 1.65 ; Crystal Structure of DAD2 in complex with tolfenamic acid 6UH8 ; 1.58 ; Crystal structure of DAD2 N242I mutant 4DNQ ; 2.8 ; Crystal Structure of DAD2 S96A mutant 4HSN ; 2.0 ; Crystal structure of DAH7PS from Neisseria meningitidis 5J6F ; 2.75 ; Crystal structure of DAH7PS-CM complex from Geobacillus sp. with prephenate 4DZ1 ; 1.9 ; Crystal structure of DalS, an ATP binding cassette transporter for D-alanine from Salmonella enterica 5G0I ; 1.99 ; Crystal structure of Danio rerio HDAC6 CD1 and CD2 (linker cleaved) in complex with Nexturastat A 5G0J ; 2.88 ; Crystal structure of Danio rerio HDAC6 CD1 and CD2 (linker intact) in complex with Nexturastat A 5G0G ; 1.499 ; Crystal structure of Danio rerio HDAC6 CD1 in complex with trichostatin A 5G0H ; 1.6 ; Crystal structure of Danio rerio HDAC6 CD2 in complex with (S)- trichostatin A 8A8Z ; 1.6 ; Crystal structure of Danio rerio HDAC6 CD2 in complex with in situ enzymatically hydrolyzed DFMO-based ITF5924 5G0F ; 1.9 ; Crystal structure of Danio rerio HDAC6 ZnF-UBP domain 7KUT ; 2.05 ; Crystal Structure of Danio rerio Histone Deacetylase 10 H137A Mutant in Complex with N-Acetylputrescine (Tetrahedral Intermediate) 7KUS ; 2.0 ; Crystal Structure of Danio rerio Histone Deacetylase 10 H137A Mutant in Complex with N8-Acetylspermidine (Tetrahedral Intermediate) 7U6A ; 2.25 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 3-thienylmethyl Benzhydroxamic Acid Inhibitor 6UII ; 2.65 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 5-[(3-aminopropyl)amino]pentane-1-thiol 6UHU ; 2.8 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 5-[(3-aminopropyl)amino]pentylboronic acid 6UHV ; 2.53 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 6-[(3-aminopropyl)amino]-N-hydroxyhexanamide 6UIL ; 2.85 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 7-[(3-aminopropyl)amino]-1,1,1-trifluoroheptan-2-one 6UFO ; 2.68 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 7-[(3-aminopropyl)amino]-1-methoxyheptan-2-one 6UFN ; 2.7 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 7-[(3-aminopropyl)amino]heptan-2-one 6UIM ; 2.75 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with 7-{[(3-aminopropyl)amino]-2-oxoheptyl} thioacetate 7KUV ; 2.15 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Acetate 6VNQ ; 2.05 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Bishydroxamic Acid Based Inhibitor 6WDW ; 2.2 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Dimethylaminoethylindole Phenylhydroxamate Inhibitor 6WDV ; 2.4 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Dimethylaminomethylindole Phenylhydroxamate Inhibitor 7SGJ ; 2.15 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with DKFZ-711 7SGK ; 2.2 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with DKFZ-728 6WDX ; 2.65 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Hydroxyethylindole Phenylhydroxamate Inhibitor 6WDY ; 2.65 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Indole Phenylhydroxamate Inhibitor 7U6B ; 2.6 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Indolethyl Piperidine-4-acrylhydroxamic Acid Inhibitor 7SGI ; 2.15 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Inhibitor 14 7U3M ; 2.1 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with N-methylpiperazine Benzhydroxamic Acid 7U69 ; 2.5 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Phenethyl Piperidine-4-acrylhydroxamic Acid Inhibitor 7U59 ; 2.18 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Piperidine-4-hydroxamic acid Inhibitor 6UIJ ; 2.9 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with S-{5-[(3-aminopropyl)amino]pentyl} thioacetate 7SGG ; 2.1 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with SAHA 6WBQ ; 2.0 ; Crystal Structure of Danio rerio Histone Deacetylase 10 in Complex with Tubastatin A 7KUR ; 2.1 ; Crystal Structure of Danio rerio Histone Deacetylase 10 Y307F Mutant in Complex with N-Acetylputrescine 7KUQ ; 2.1 ; Crystal Structure of Danio rerio Histone Deacetylase 10 Y307F Mutant in Complex with N8-Acetylspermidine 6UO3 ; 1.09 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) complexed with AR-42 6UO2 ; 1.65002 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) complexed with Trichostatin A 6WYO ; 2.3 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) H82F F202Y double mutant complexed with Trichostatin A 6WYQ ; 1.90001 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) K330L mutant complexed with 4-iodo-SAHA 6UO7 ; 1.39501 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) K330L mutant complexed with AR-42 6UOC ; 1.40001 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) K330L mutant complexed with Givinostat 6UOB ; 1.58001 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) K330L mutant complexed with Resminostat 6WYP ; 2.40006 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) K330L mutant complexed with SAHA-BPyne 6UO5 ; 1.43934 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) Y363F mutant complexed with AR-42 6UO4 ; 1.26831 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 (CD1) Y363F mutant complexed with Trichostatin A 5EEF ; 2.151 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 1 in complex with trichostatin A 5EEM ; 2.0 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 6VNR ; 1.94301 ; Crystal Structure of Danio rerio Histone Deacetylase 6 Catalytic Domain 2 (CD2) Complexed with Bishydroxamic Acid Inhibitor 7U8Z ; 1.85 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 (CD2) complexed with fluorinated peptoid inhibitor 6V79 ; 2.03952 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 (CD2) complexed with NF2376 6V7A ; 2.08742 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 (CD2) complexed with NF2657 5EFN ; 1.804 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 (H574A) in complex with histone H4 Lys6 tripeptide substrate 5EFK ; 1.82 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 (Y745F mutant) in complex with alpha tubulin K40 tripeptide substrate 8TQ0 ; 2.4 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with (R)-Lipoic Acid 6PZU ; 1.74 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with AP-1-62-A 8EQI ; 2.0 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with cyclopeptide des4.2.0 6WSJ ; 1.7 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with cyclopeptide des4.3.1 8GD4 ; 2.0 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with DMFO Inhibitor 6 8D9C ; 1.82 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with fluorinated inhibitor 10 8D98 ; 1.66 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with fluorinated inhibitor 5 8D99 ; 1.79 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with fluorinated inhibitor 7 8D9A ; 1.75 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with fluorinated inhibitor 8 8D9B ; 1.63 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with fluorinated inhibitor 9 8G1Z ; 1.87 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with inhibitor Mz317 8G20 ; 1.766 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with inhibitor Mz327 6PZS ; 1.79 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with JR005 6Q0Z ; 1.75 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with JS28 6CGP ; 2.5 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with MAIP-032 7UK2 ; 1.6 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with NN-390 6PYE ; 1.48 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with NR160 6PZR ; 2.3 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with Resminostat 6CW8 ; 1.9 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with RTS-V5 7JOM ; 1.84 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with TO-317 6PZO ; 1.5 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 complexed with YX-153 6MR5 ; 1.85 ; Crystal Structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with a mercaptoacetamide-based inhibitor 5EFG ; 2.25 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with acetate 5WGM ; 1.75 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with ACY-1083 6DVO ; 1.98 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with Bavarostat 5EEN ; 1.861 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with belinostat 6CSP ; 1.237 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with cyclohexenylhydroxamate 6CSQ ; 2.031 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with cyclohexylhydroxamate 6CSS ; 1.7 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with cyclopentenylhydroxamate 6DVL ; 2.1 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with DDK-115 6DVM ; 1.47 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with DDK-122 6DVN ; 2.2 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with DDK-137 5EFJ ; 1.73 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with HC toxin 5WGK ; 1.822 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with HPB 5EF7 ; 1.9 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with HPOB 7O2P ; 1.9 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with ITF3756 7O2R ; 2.3 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with ITF3985 5W5K ; 2.7 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with KV70 5EFB ; 2.543 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with oxamflatin 5EF8 ; 2.6 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with panobinostat 6CSR ; 1.619 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with phenylhydroxamate 5WGL ; 1.7 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with ricolinostat (ACY-1215) 5EEI ; 1.32 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with SAHA 5EEK ; 1.59 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with trichostatin A 5EFH ; 2.162 ; Crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with trifluoroketone transition state analogue 6FPT ; 2.6 ; Crystal structure of Danio rerio Lin41 filamin-NHL domains 6FQ3 ; 1.901 ; Crystal structure of Danio rerio Lin41 filamin-NHL domains in complex with lin-29A 5'UTR 13mer RNA 6FQL ; 2.349 ; Crystal structure of Danio rerio Lin41 filamin-NHL domains in complex with mab-10 3'UTR 13mer RNA 4HKF ; 1.7 ; Crystal structure of Danio rerio MEC-17 catalytic domain in complex with acetyl-CoA 4JHJ ; 3.25 ; Crystal structure of Danio rerio Slip1 in complex with Dbp5 4JHK ; 2.507 ; Crystal structure of Danio rerio SLIP1 in complex with SLBP 3QZE ; 1.59 ; Crystal Structure of DapA (PA1010) at 1.6 A resolution 5EER ; 2.5 ; Crystal structure of DapB from Corynebacterium glutamicum 5EES ; 2.15 ; Crystal structure of DapB in complex with NADP+ from Corynebacterium glutamicum 5E3P ; 2.01 ; Crystal structure of DapD from Corynebacterium glutamicum 5E3R ; 1.85 ; Crystal structure of DapD in complex with 2-aminopimelate from Corynebacterium glutamicum 5E3Q ; 1.8 ; Crystal structure of DapD in complex with succinyl-CoA from Corynebacterium glutamicum 5VO3 ; 1.954 ; Crystal structure of DapE in complex with the products (succinic acid and diaminopimelic acid) 5M47 ; 2.59 ; Crystal structure of DapF from Corynebacterium glutamicum in complex with D,L-diaminopimelate 4YPD ; 1.4 ; Crystal Structure of DAPK1 catalytic domain in complex with the hinge binding fragment 4-methylpyridazine 4YO4 ; 1.6 ; Crystal Structure of DAPK1 catalytic domain in complex with the hinge binding fragment phthalazine 5AV0 ; 1.85 ; Crystal structure of DAPK1 in complex with 7,3',4'-trihydroxyisoflavone. 5AUT ; 1.7 ; Crystal structure of DAPK1 in complex with ANS. 5AUV ; 1.5 ; Crystal structure of DAPK1 in complex with apigenin. 5AUZ ; 1.6 ; Crystal structure of DAPK1 in complex with genistein. 8IE8 ; 1.75 ; Crystal structure of DAPK1 in complex with isorhapontigenin 5AUX ; 1.5 ; Crystal structure of DAPK1 in complex with kaempferol. 5AUU ; 1.7 ; Crystal structure of DAPK1 in complex with luteolin. 5AUY ; 2.0 ; Crystal structure of DAPK1 in complex with morin. 8IE5 ; 1.803 ; Crystal structure of DAPK1 in complex with oxyresveratrol 8IE6 ; 1.701 ; Crystal structure of DAPK1 in complex with pinostilbene 8IE7 ; 1.849 ; Crystal structure of DAPK1 in complex with pterostilbene 6AAR ; 1.95 ; Crystal structure of DAPK1 in complex with purpurin 5AUW ; 1.5 ; Crystal structure of DAPK1 in complex with quercetin. 5AV1 ; 1.5 ; Crystal structure of DAPK1 in the presence of bromide ions. 4TXC ; 1.951 ; Crystal Structure of DAPK1 kinase domain in complex with a small molecule inhibitor 5AV4 ; 1.4 ; Crystal structure of DAPK1-genistein complex in the presence of bromide ions. 5AV2 ; 1.502 ; Crystal structure of DAPK1-kaempferol complex in the presence of bromide ions. 5AV3 ; 1.9 ; Crystal structure of DAPK1-kaempferol complex in the presence of iodide ions. 6PAW ; 2.953 ; Crystal structure of DAPK2 S308A Calcium/Calmodulin complex 3GUB ; 1.71 ; Crystal structure of DAPKL93G complexed with N6-(2-Phenylethyl)adenosine 3GU8 ; 1.6 ; Crystal structure of DAPKL93G with N6-cyclopentyladenosine 3GU6 ; 1.49 ; Crystal structure of DAPKQ23V-ADP 3GU7 ; 1.9 ; Crystal structure of DAPKQ23V-ADP-Mg2+ 3GU4 ; 1.35 ; Crystal structure of DAPKQ23V-AMPPNP 3GU5 ; 1.65 ; Crystal structure of DAPKQ23V-AMPPNP-Mg2+ 7DUO ; 2.81 ; Crystal structure of daratumumab fab and CD38 complex 7BTG ; 2.188 ; Crystal structure of DARP, drosophila arginine phosphatase 4YDY ; 2.0 ; CRYSTAL STRUCTURE OF DARPIN 44C12V5 IN COMPLEX WITH HUMAN IL-4 5LW2 ; 1.75 ; Crystal structure of DARPin 5m3_D12 5KNH ; 1.6 ; CRYSTAL STRUCTURE OF DARPIN 6G9 IN COMPLEX WITH CYNO IL-13 5LEB ; 2.3 ; Crystal structure of DARPin-DARPin rigid fusion, variant DDD_D12_06_D12_06_D12 5LEC ; 2.506 ; Crystal structure of DARPin-DARPin rigid fusion, variant DDD_D12_12_D12_12_D12 5LED ; 2.6 ; Crystal structure of DARPin-DARPin rigid fusion, variant DDD_D12_12_D12_12_D12 5LEE ; 2.401 ; Crystal structure of DARPin-DARPin rigid fusion, variant DDD_D12_12_D12_12_D12 5LE2 ; 2.4 ; Crystal structure of DARPin-DARPin rigid fusion, variant DDD_D12_15_D12_15_D12 5LW1 ; 3.2 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_232_11_D12 in complex JNK1a1 and JIP1 peptide 5LE3 ; 3.5 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_09_D12 5LE6 ; 1.8 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_09_D12 6F5E ; 2.7 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_10_47 in complex JNK1a1 and JIP1 peptide 5LE4 ; 2.35 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_11_D12 5LE7 ; 2.104 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_13_D12 5LE8 ; 1.78 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_D12_15_D12 5LE9 ; 1.85 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_Off7_09_3G124 5LEL ; 3.1 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_Off7_10_3G124 in complex with Maltose-binding Protein and Green Fluorescent Protein 5LEM ; 2.98 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_Off7_11_3G124 in complex with Maltose-binding Protein and Green Fluorescent Protein 5LEA ; 2.4 ; Crystal structure of DARPin-DARPin rigid fusion, variant DD_Off7_12_3G124 7YK3 ; 2.2 ; Crystal structure of DarTG toxin-antitoxin complex from Mycobacterium tuberculosis 6POP ; 2.147 ; Crystal structure of DauA in complex with NADP+ 7XKC ; 2.56 ; Crystal structure of Daucus Carrot hypoglycemic peptide (DCHP) 3USF ; 2.463 ; Crystal structure of DAVA-4 5Y18 ; 2.202 ; Crystal structure of DAXX helical bundle domain in complex with ATRX 5Y6O ; 3.1 ; Crystal structure of DAXX N-terminal four-helix bundle domain (4HB) in complex with ATRX 3U05 ; 1.27 ; Crystal structure of DB1804-D(CGCGAATTCGCG)2 complex 3U08 ; 1.25 ; Crystal structure of DB1963-D(CGCGAATTCGCG)2 complex at 1.25 A resolution 2B3E ; 1.36 ; Crystal structure of DB819-D(CGCGAATTCGCG)2 complex. 2GYX ; 1.86 ; Crystal structure of DB884- D(CGCGAATTCGCG)2 complex at 1.86 A resolution. 8GN1 ; 2.1 ; Crystal structure of DBBQ-bound photosystem II complex 7C4P ; 1.995 ; Crystal structure of DBD plasma treated zebrafish TRF2 myb-domain complexed with DNA 7C4Q ; 2.5 ; Crystal structure of DBD plasma treated zebrafish TRF2 myb-domain complexed with DNA 3AFI ; 1.75 ; Crystal structure of DBJA (HIS-DBJA) 3A2L ; 1.78 ; Crystal structure of DBJA (mutant dbja delta) 3A2M ; 1.84 ; CRYSTAL STRUCTURE OF DBJA (WILD TYPE Type I) 3A2N ; 1.89 ; Crystal structure of DBJA (Wild Type Type II P21) 5F3J ; 4.001 ; Crystal structure of DBP in complex with inhibitory monoclonal antibody 2D10 5DXX ; 1.45 ; Crystal structure of Dbr2 5DXY ; 1.77 ; Crystal structure of Dbr2 5DY3 ; 1.82 ; Crystal structure of Dbr2 5DY2 ; 1.57 ; Crystal structure of Dbr2 with mutation M27L 1SL5 ; 1.8 ; Crystal Structure of DC-SIGN carbohydrate recognition domain complexed with LNFP III (Dextra L504). 1SL4 ; 1.55 ; Crystal Structure of DC-SIGN carbohydrate recognition domain complexed with Man4 7NL6 ; 2.2 ; Crystal Structure of DC-SIGN in complex with a triazole-based glycomimetic ligand 7NL7 ; 2.1 ; Crystal Structure of DC-SIGN in complex with a triazole-based glycomimetic ligand 5MUQ ; 2.62 ; Crystal structure of DC8E8 Fab at pH 7.0 containing a Zn atom 5MP5 ; 2.31 ; Crystal structure of DC8E8 Fab in the complex with a 14-mer tau peptide at pH 6.5 5MP1 ; 3.1 ; Crystal structure of DC8E8 Fab in the complex with a 14-mer tau peptide at pH 7.5 5MO3 ; 1.69 ; Crystal structure of DC8E8 Fab in the complex with a 14-mer tau peptide at pH 8.5 5MP3 ; 2.75 ; Crystal structure of DC8E8 Fab in the complex with a 30-mer tau peptide at pH 6.5 6XM7 ; 1.45 ; Crystal structure of DCA-S bound to Co-LSD4 from Sphingobium sp. strain SYK-6 4Z8L ; 2.6 ; Crystal structure of DCAF1/SIV-MND VPX/MND SAMHD1 NTD ternary complex 6K57 ; 2.98 ; Crystal structure of dCas9 in complex with sgRNA and DNA (CGA PAM) 6K3Z ; 3.2 ; Crystal structure of dCas9 in complex with sgRNA and DNA (TGA PAM) 8GN0 ; 2.15 ; Crystal structure of DCBQ-bound photosystem II complex 4RI3 ; 2.7 ; Crystal structure of DCCD-modified PsbS from spinach 8OOJ ; 2.1 ; Crystal structure of dCK C4S-S74E mutant in complex with EdC and UDP 7ZI1 ; 1.85 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the dCKi1 inhibitor 7ZI2 ; 2.18 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the dCKi2 inhibitor 7ZI5 ; 2.0 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0274 inhibitor 7ZI6 ; 2.1 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0325 inhibitor 7ZI7 ; 1.8 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0345 inhibitor 7ZI8 ; 1.99 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0602 inhibitor 7ZI9 ; 1.8 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0624 inhibitor 7ZIA ; 1.7 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0634 inhibitor 7ZIB ; 1.95 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0635 inhibitor 7ZI3 ; 1.9 ; Crystal structure of dCK C4S-S74E mutant in complex with UDP and the OR0642 inhibitor 5MQJ ; 3.7 ; Crystal structure of dCK mutant C3S 5MQT ; 3.2 ; Crystal structure of dCK mutant C3S in complex with imatinib and UDP 5MQL ; 3.25 ; Crystal structure of dCK mutant C3S in complex with masitinib and UDP 6KYQ ; 2.141 ; Crystal structure of DCLK1 Autoinhibited Kinase Domain 7F3G ; 2.1 ; Crystal structure of DCLK1 kinase domain in complex with ruxolitinib 6KYR ; 2.206 ; Crystal structure of DCLK1 mutant (P675L) Autoinhibited Kinase Domain 7KX8 ; 3.1 ; Crystal structure of DCLK1-Cter in complex with FMF-03-055-1 5JZJ ; 1.71 ; Crystal structure of DCLK1-KD in complex with AMPPN 7KXW ; 3.002 ; Crystal structure of DCLK1-KD in complex with DCLK1-IN-1 5JZN ; 2.85 ; Crystal structure of DCLK1-KD in complex with NVP-TAE684 7KX6 ; 2.5 ; Crystal structure of DCLK1-KD in complex with XMD8-85 6TT5 ; 1.5 ; Crystal structure of DCLRE1C/Artemis 2HVV ; 3.0 ; Crystal structure of dCMP deaminase from Streptococcus mutans 2HVW ; 1.67 ; Crystal structure of dCMP deaminase from Streptococcus mutans 4P9E ; 2.6 ; Crystal structure of dCMP deaminase from the cyanophage S-TIM5 in apo form 4P9C ; 2.6 ; Crystal structure of dCMP deaminase from the cyanophage S-TIM5 in complex with dCMP and dUMP 4P9D ; 2.9 ; Crystal structure of dCMP deaminase from the cyanophage S-TIM5 in complex with dTMP and dTTP. 1DCH ; 3.0 ; CRYSTAL STRUCTURE OF DCOH, A BIFUNCTIONAL, PROTEIN-BINDING TRANSCRIPTION COACTIVATOR 3HXA ; 1.8 ; Crystal Structure of DCoH1Thr51Ser 4WIL ; 1.36 ; Crystal structure of DCoH2 S51T 1RU0 ; 1.6 ; Crystal structure of DCoH2, a paralog of DCoH, the Dimerization Cofactor of HNF-1 1Q67 ; 2.3 ; Crystal structure of Dcp1p 5QPC ; 1.66 ; Crystal Structure of DCP2 (NUDT20) after initial refinement with no ligand modelled (structure $n) 3MHD ; 2.901 ; Crystal structure of DCR3 3K51 ; 2.45 ; Crystal Structure of DcR3-TL1A complex 6E8A ; 1.92 ; Crystal structure of DcrB from Salmonella enterica at 1.92 Angstroms resolution 2IT6 ; 1.95 ; Crystal Structure of DCSIGN-CRD with man2 2IT5 ; 2.4 ; Crystal Structure of DCSIGN-CRD with man6 2GRL ; 3.0 ; Crystal structure of dCT/iCF10 complex 2YZJ ; 1.66 ; Crystal structure of dCTP deaminase from Sulfolobus tokodaii 2PFZ ; 1.8 ; Crystal structure of DctP6, a Bordetella pertussis extracytoplasmic solute receptor binding pyroglutamic acid 2PFY ; 1.95 ; Crystal structure of DctP7, a Bordetella pertussis extracytoplasmic solute receptor binding pyroglutamic acid 4NX2 ; 2.0 ; Crystal structure of DCYRS complexed with DCY 2B5M ; 2.92 ; Crystal Structure of DDB1 6DSZ ; 3.093 ; Crystal structure of DDB1 in complex with DET1- and DDB1-associated protein 1 (DDA1) 2B5L ; 2.85 ; Crystal Structure of DDB1 In Complex with Simian Virus 5 V Protein 3I7L ; 2.8 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of DDB2 3I7H ; 2.9 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of HBX 3I7O ; 2.8 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of IQWD1 7UKN ; 2.9 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of pUL145 3I8C ; 2.8 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WDR21A 3I89 ; 3.0 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WDR22 3I7P ; 3.0 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WDR40A 3I8E ; 3.4 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WDR42A 3I7N ; 2.8 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WDTC1 3I7K ; 2.8 ; Crystal Structure of DDB1 in Complex with the H-Box Motif of WHX 7LPS ; 3.78 ; Crystal structure of DDB1-CRBN-ALV1 complex bound to Helios (IKZF2 ZF2) 6BN7 ; 3.501 ; Crystal structure of DDB1-CRBN-BRD4(BD1) complex bound to dBET23 PROTAC. 6BN8 ; 3.99004 ; Crystal structure of DDB1-CRBN-BRD4(BD1) complex bound to dBET55 PROTAC. 6BNB ; 6.343 ; Crystal structure of DDB1-CRBN-BRD4(BD1) complex bound to dBET57 PROTAC 6BOY ; 3.33 ; Crystal structure of DDB1-CRBN-BRD4(BD1) complex bound to dBET6 PROTAC. 6BN9 ; 4.382 ; Crystal structure of DDB1-CRBN-BRD4(BD1) complex bound to dBET70 PROTAC 6A53 ; 2.0 ; Crystal structure of DddK 6A55 ; 1.6 ; Crystal structure of DddK mutant Y122A 6A54 ; 2.3 ; Crystal structure of DddK mutant Y64A 8HLF ; 1.62 ; Crystal structure of DddK-DMSOP complex 5Y4K ; 2.0 ; Crystal structure of DddY mutant Y260A 5XKY ; 2.303 ; Crystal structure of DddY Se derivative 4NOE ; 2.2 ; Crystal structure of DdrB bound to 30b ssDNA 4HQB ; 2.301 ; Crystal structure of DdrB from Deinococcus radiodurans bound to ssDNA 6JQ1 ; 2.3 ; Crystal Structure of DdrO from Deinococcus geothermalis 8DBB ; 1.3 ; Crystal structure of DDT with the selective inhibitor 2,5-Pyridinedicarboxylic Acid 7YMF ; 2.3 ; Crystal Structure of DDX3X449_450ET>DP 3IUY ; 2.4 ; Crystal structure of DDX53 DEAD-box domain 8KCA ; 1.97 ; Crystal structure of DDX53 helicase domain 3VJF ; 2.2 ; Crystal structure of de novo 4-helix bundle protein WA20 3U13 ; 1.6 ; Crystal Structure of de Novo design of cystein esterase ECH13 at the resolution 1.6A, Northeast Structural Genomics Consortium Target OR51 4GVV ; 2.895 ; Crystal Structure of de novo design serine hydrolase OSH55.27, Northeast Structural Genomics Consortium (NESG) Target OR246 4E88 ; 2.0 ; CRYSTAL STRUCTURE OF DE NOVO DESIGNED CYSTEINE ESTERASE ECH13, Northeast Structural Genomics Consortium Target OR51 3UAK ; 3.232 ; Crystal Structure of De Novo designed cysteine esterase ECH14, Northeast Structural Genomics Consortium Target OR54 5CW9 ; 3.108 ; Crystal structure of De novo designed ferredoxin-ferredoxin domain insertion protein 5HKR ; 2.35 ; Crystal structure of de novo designed fullerene organising protein complex with fullerene 5ET3 ; 1.671 ; Crystal Structure of De novo Designed Fullerene organizing peptide 3S0R ; 2.453 ; Crystal Structure of De novo Designed helical assembly protein 5CWG ; 1.2 ; Crystal structure of de novo designed helical repeat protein DHR10 5CWH ; 1.3 ; Crystal structure of de novo designed helical repeat protein DHR14 5CWI ; 1.75 ; Crystal structure of de novo designed helical repeat protein DHR18 5CWB ; 1.55 ; Crystal structure of de novo designed helical repeat protein DHR4 5CWJ ; 1.7 ; Crystal structure of de novo designed helical repeat protein DHR49 5CWC ; 1.25 ; Crystal structure of de novo designed helical repeat protein DHR5 5CWK ; 1.9 ; Crystal structure of de novo designed helical repeat protein DHR53 5CWL ; 1.5 ; Crystal structure of de novo designed helical repeat protein DHR54 5CWM ; 2.9 ; Crystal structure of de novo designed helical repeat protein DHR64 5CWD ; 2.61 ; Crystal structure of de novo designed helical repeat protein DHR7 5CWN ; 1.7 ; Crystal structure of de novo designed helical repeat protein DHR71 5CWO ; 3.35 ; Crystal structure of de novo designed helical repeat protein DHR76 5CWP ; 1.9 ; Crystal structure of de novo designed helical repeat protein DHR79 5CWF ; 1.8 ; Crystal structure of de novo designed helical repeat protein DHR8 5CWQ ; 2.05 ; Crystal structure of de novo designed helical repeat protein DHR81 6NLA ; 1.34 ; Crystal structure of de novo designed metal-controlled dimer of B1 immunoglobulin-binding domain of Streptococcal Protein G (L12H, E15V, T16L, T18I, V29H, Y33H, N37L)-zinc 6NLB ; 2.3 ; Crystal structure of de novo designed metal-controlled dimer of mutant B1 immunoglobulin-binding domain of Streptococcal Protein G (L12H, E15V, T16L, T18I, V29H, Y33H, N37L)-apo 6NL9 ; 1.7 ; Crystal structure of de novo designed metal-controlled dimer of mutant B1 immunoglobulin-binding domain of Streptococcal Protein G (L12H, T16L, V29H, Y33H, N37L)-apo 6NL8 ; 1.5 ; Crystal structure of de novo designed metal-controlled dimer of mutant B1 immunoglobulin-binding domain of Streptococcal Protein G (L12H, T16L, V29H, Y33H, N37L)-zinc 3V1A ; 0.98 ; Crystal structure of de novo designed MID1-apo1 3V1B ; 1.28 ; Crystal structure of de novo designed MID1-apo2 3V1D ; 1.239 ; Crystal structure of de novo designed MID1-cobalt 3V1C ; 1.129 ; Crystal structure of de novo designed MID1-zinc 3V1E ; 1.073 ; Crystal structure of de novo designed MID1-zinc H12E mutant 3V1F ; 1.151 ; Crystal structure of de novo designed MID1-zinc H35E mutant 5E6G ; 2.09 ; Crystal Structure of De Novo Designed Protein CA01 7TJL ; 1.87 ; Crystal structure of de novo designed protein, SEWN0.1 4N3P ; 2.501 ; Crystal Structure of De Novo designed Serine Hydrolase OSH18, Northeast Structural Genomics Consortium (NESG) Target OR396 3V45 ; 2.6 ; Crystal Structure of de novo designed serine hydrolase OSH55, Northeast Structural Genomics Consortium Target OR130 4KYB ; 2.909 ; Crystal Structure of de novo designed serine hydrolase OSH55.14_E3, Northeast Structural Genomics Consortium Target OR342 4F2V ; 2.493 ; Crystal Structure of de novo designed serine hydrolase, Northeast Structural Genomics Consortium (NESG) Target OR165 6IIY ; 1.29 ; Crystal structure of deacetylase triple mutant (Orf2*T) that involving in teicoplanin biosynthetic pathway 2X9L ; 1.732 ; Crystal structure of deacetylase-bog complex in biosynthesis pathway of teicoplanin. 2XAD ; 1.7 ; Crystal structure of deacetylase-teicoplanin complex in biosynthesis pathway of teicoplanin 2VAX ; 2.6 ; Crystal structure of deacetylcephalosporin C acetyltransferase (Cephalosporin C-soak) 2VAV ; 2.5 ; Crystal structure of deacetylcephalosporin C acetyltransferase (DAC-Soak) 2VAT ; 2.2 ; Crystal structure of deacetylcephalosporin C acetyltransferase in complex with coenzyme A 6Z21 ; 1.3 ; Crystal structure of deacylation mutant KPC-2 (E166Q) 6Z22 ; 1.4 ; Crystal structure of deacylation mutant KPC-4 (E166Q) 8ARK ; 3.22 ; Crystal structure of DEAD-box protein Dbp2 in apo form 8ARP ; 3.05 ; Crystal structure of DEAD-box protein Dbp2 in complex with ADP 6O5F ; 2.504 ; Crystal structure of DEAD-box RNA helicase DDX3X at pre-unwound state 5UWW ; 2.152 ; Crystal Structure of DEAF1 Peptide in complex with CRM1 K579A mutant-Ran-RanBP1 4AQA ; 1.96 ; CRYSTAL STRUCTURE OF DEAFNESS ASSOCIATED MUTANT MOUSE CADHERIN-23 EC1- 2D124G AND PROTOCADHERIN-15 EC1-2 FORM I 4AQE ; 2.27 ; CRYSTAL STRUCTURE OF DEAFNESS ASSOCIATED MUTANT MOUSE CADHERIN-23 EC1- 2S70P AND PROTOCADHERIN-15 EC1-2 FORM I 6I3O ; 3.25 ; Crystal structure of DEAH-box ATPase Prp22 6I3P ; 2.75 ; Crystal structure of DEAH-box ATPase Prp22 with bound ssRNA 6QIC ; 2.7 ; Crystal structure of DEAH-box ATPase Prp22-S837A with bound ssRNA 6QID ; 2.204 ; Crystal structure of DEAH-box ATPase Prp43-S387A 6QIE ; 2.7 ; Crystal structure of DEAH-box ATPase Prp43-S387G 6IZH ; 1.754 ; Crystal structure of deaminase AmnE from Pseudomonas sp. AP-3 6H9V ; 1.52 ; Crystal structure of deaminated P domain from norovirus strain Saga GII-4 in complex with Fuc 3EH9 ; 1.7 ; Crystal structure of death associated protein kinase complexed with ADP 3EHA ; 1.6 ; Crystal structure of death associated protein kinase complexed with AMPPNP 3F5G ; 1.85 ; Crystal structure of death associated protein kinase in complex with ADP and Mg2+ 4ZBW ; 2.2 ; Crystal structure of death effector domain of Caspase8 in Homo Sapiens 5CIR ; 3.0 ; Crystal structure of death receptor 4 (DR4; TNFFRSF10A) bound to TRAIL (TNFSF10) 1D0G ; 2.4 ; CRYSTAL STRUCTURE OF DEATH RECEPTOR 5 (DR5) BOUND TO APO2L/TRAIL 7CCV ; 1.753 ; Crystal structure of death-associated protein kinase 1 in complex with piceatannol 7CCU ; 1.649 ; Crystal structure of death-associated protein kinase 1 in complex with resveratrol 7CCW ; 1.4 ; Crystal structure of death-associated protein kinase 1 in complex with resveratrol and MES 4TL0 ; 2.7 ; Crystal structure of death-associated protein kinase 1 with a crucial phosphomimicking mutation 2GRE ; 2.65 ; Crystal structure of Deblocking aminopeptidase from Bacillus cereus 2WCS ; 2.8 ; Crystal Structure of Debranching enzyme from Nostoc punctiforme (NPDE) 1TSU ; 2.1 ; CRYSTAL STRUCTURE OF DECAMER NCP1 SUBSTRATE PEPTIDE IN COMPLEX WITH WILD-TYPE D25N HIV-1 PROTEASE VARIANT 5J09 ; 2.0 ; Crystal structure of decameric BFDV Capsid Protein 3ZTL ; 3.0 ; Crystal structure of decameric form of Peroxiredoxin I from Schistosoma mansoni 5MAC ; 2.6 ; Crystal structure of decameric Methanococcoides burtonii Rubisco complexed with 2-carboxyarabinitol bisphosphate 1HHC ; 1.13 ; Crystal structure of Decaplanin - space group P21, second form 8IH6 ; 2.519 ; Crystal structure of decarboxylase-hydratase complex from Pseudomonas species AP-3 8I75 ; 1.33 ; Crystal structure of decarboxylated osteocalcin at pH 2.0 8I76 ; 1.381 ; Crystal structure of decarboxylated osteocalcin at pH 2.0 without glycerol 8I74 ; 1.36 ; Crystal structure of decarboxylated osteocalcin at pH 8.5 8X38 ; 2.0 ; Crystal Structure of Decarboxylative Vanillate 1-Hydroxylase from Phanerochaete chrysosporium 7K3H ; 3.0 ; Crystal structure of deep network hallucinated protein 0217 7M0Q ; 2.4 ; Crystal structure of deep network hallucinated protein 0738_mod 5H12 ; 2.502 ; Crystal structure of Deep Vent DNA Polymerase 5H0O ; 1.53 ; Crystal structure of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease with manganese ion 5H0M ; 1.52 ; Crystal structure of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease with zinc ion 4YXH ; 2.7 ; Crystal structure of Deer prion protein complexed with POM1 FAB 1DFN ; 1.9 ; CRYSTAL STRUCTURE OF DEFENSIN HNP-3, AN AMPHIPHILIC DIMER: MECHANISMS OF MEMBRANE PERMEABILIZATION 4IC5 ; 2.607 ; Crystal structure of Deg5 4IC6 ; 2.0 ; Crystal structure of Deg8 5IL9 ; 2.2 ; Crystal structure of Deg9 5Y09 ; 2.449 ; Crystal structure of Deg9 at 295 K 6E7O ; 3.0 ; Crystal structure of deglycosylated human EPDR1 4D2N ; 2.7 ; Crystal structure of deglycosylated serum-derived human IgG4 Fc 1KY9 ; 2.8 ; Crystal Structure of DegP (HtrA) 3CS0 ; 3.0 ; Crystal structure of DegP24 1VCW ; 3.05 ; Crystal structure of DegS after backsoaking the activating peptide 3GDV ; 2.489 ; Crystal structure of DegS H198P/D320A mutant modified by DFP and in complex with YQF peptide 3GDU ; 3.0 ; Crystal structure of DegS H198P/D320A mutant modified by DFP and in complex with YRF peptide 3GCO ; 2.798 ; Crystal structure of DegS H198P/D320A mutant modified by DFP in complex with DNRDGNVYQF OMP peptide 3GDS ; 2.85 ; Crystal structure of DegS H198P/D320A mutant modified by DFP in complex with DNRDGNVYYF peptide 3GCN ; 3.002 ; Crystal structure of DegS H198P/D320A mutant modified by DFP in complex with OMP peptide (YQF) 1SOZ ; 2.4 ; Crystal Structure of DegS protease in complex with an activating peptide 6EW9 ; 2.2 ; CRYSTAL STRUCTURE OF DEGS STRESS SENSOR PROTEASE IN COMPLEX WITH ACTIVATING DNRLGLVYQF PEPTIDE 3EGL ; 2.41 ; Crystal Structure of DegV Family Protein Cg2579 from Corynebacterium glutamicum 3FYS ; 2.5 ; Crystal Structure of DegV, a fatty acid binding protein from Bacillus subtilis 4W7H ; 3.11 ; Crystal Structure of DEH Reductase A1-R Mutant 4W7I ; 1.98 ; Crystal structure of DEH reductase A1-R' mutant 4KYV ; 1.796 ; Crystal Structure of dehalogenase HaloTag2 with HALTS at the resolution 1.8A. Northeast Structural Genomics Consortium (NESG) Target OR150 3IXF ; 1.58 ; Crystal Structure of Dehaloperoxidase B at 1.58 and Structural Characterization of the AB Dimer from Amphitrite ornata 7T9E ; 1.57 ; Crystal structure of dehaloperoxidase B in complex with +(-)-limonene oxide 7T9D ; 1.66 ; Crystal structure of dehaloperoxidase B in complex with -(-) limonene oxide 7M1J ; 1.554 ; Crystal structure of dehaloperoxidase B in complex with 2,6-dibromophenol 7M1I ; 1.66 ; Crystal structure of dehaloperoxidase B in complex with 2,6-dichlorophenol 7M1K ; 1.795 ; Crystal structure of dehaloperoxidase B in complex with 2,6-difluorophenol 7SJB ; 1.718 ; Crystal structure of dehaloperoxidase B in complex with alpha-terpinene 6VDS ; 1.97 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Deuteroporphyrin IX and Substrate 4-bromo-ortho-cresol 6VDR ; 1.87 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Deuteroporphyrin IX and Substrate 4-bromophenol 6VDT ; 1.978 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Deuteroporphyrin IX and Substrate 4-nitrophenol 6VDU ; 1.98 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Deuteroporphyrin IX and Substrate Trichlorophenol 6VD4 ; 1.954 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Mesoporphyrin IX and Substrate 4-bromo-ortho-cresol 6VD3 ; 1.67 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Mesoporphyrin IX and Substrate 4-bromophenol 6VD6 ; 1.563 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Mesoporphyrin IX and Substrate 4-nitrophenol 6VD5 ; 1.64 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Iron(III) Mesoporphyrin IX and Substrate Trichlorophenol 6VDW ; 1.5 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Manganese(III) Porphyrin and Substrate 4-nitrophenol 6VDV ; 1.88 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Manganese(III)- Porphyrin and Substrate 4-bromophenol 6VDX ; 1.53 ; Crystal Structure of Dehaloperoxidase B in Complex with cofactor Manganese(III)- Porphyrin and Substrate Trichlorophenol 7SJC ; 1.7 ; Crystal structure of dehaloperoxidase B in complex with gamma-terpinene 7SJE ; 1.72 ; Crystal structure of dehaloperoxidase B in complex with p-cymene 7SJI ; 1.76 ; Crystal structure of dehaloperoxidase B in complex with R-(+)-limonene 7SJH ; 1.87 ; Crystal structure of dehaloperoxidase B in complex with S-(-)-limonene 7SJD ; 1.703 ; Crystal structure of dehaloperoxidase B in complex with terpinolene 7T9C ; 1.73 ; Crystal structure of dehaloperoxidase B in complex with thymol 6VDY ; 1.7 ; Crystal Structure of Dehaloperoxidase B wild type in Complex with Substrate Trichlorophenol 8E5W ; 2.15 ; Crystal structure of dehydroalanine Hip1 5D9T ; 1.9 ; Crystal structure of dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica 5O0X ; 2.2 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) 8CAO ; 2.3 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) in complex with CA24 8CAP ; 3.0 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) in complex with CB28 8CAL ; 2.41 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) in complex with M34 8CAK ; 2.67 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) in complex with M41 8CB0 ; 2.5 ; Crystal structure of dehydrogenase domain of Cylindrospermum stagnale NADPH-Oxidase 5 (NOX5) in complex with M41 and NADP+ 5F1P ; 2.099 ; Crystal Structure of Dehydrogenase from Streptomyces platensis 7E1Q ; 1.7 ; Crystal structure of dehydrogenase/isomerase FabX from Helicobacter pylori 7E1R ; 2.795 ; Crystal structure of Dehydrogenase/isomerase FabX from Helicobacter pylori in complex with holo-ACP 7E1S ; 2.31 ; Crystal structure of dehydrogenase/isomerase FabX from Helicobacter pylori in complex with octanoyl-ACP 5X47 ; 2.54 ; Crystal structure of dehydroquinate dehydratase from Acinetobacter baumannii at 2.5 Angstrom resolution 5YHM ; 1.91 ; Crystal structure of dehydroquinate dehydratase with tris induced oligomerisation at 1.907 Angstrom resolution 1DQS ; 1.8 ; CRYSTAL STRUCTURE OF DEHYDROQUINATE SYNTHASE (DHQS) COMPLEXED WITH CARBAPHOSPHONATE, NAD+ AND ZN2+ 1UJN ; 1.8 ; Crystal structure of dehydroquinate synthase from Thermus thermophilus HB8 4EA2 ; 2.05 ; Crystal structure of dehydrosqualene synthase (Crtm) aureus complexed with SQ-109 4E9U ; 2.1 ; Crystal structure of dehydrosqualene synthase (Crtm) from S. aureus complexed with a thiocyanate inhibitor 4F6V ; 2.3 ; Crystal structure of dehydrosqualene synthase (crtm) from s. aureus complexed with bph-1034, mg2+ and fmp. 4F6X ; 1.98 ; Crystal structure of dehydrosqualene synthase (crtm) from s. aureus complexed with bph-1112 3TFV ; 3.0 ; Crystal structure of dehydrosqualene synthase (crtm) from s. aureus complexed with bph-1154 3TFP ; 2.0 ; Crystal Structure of Dehydrosqualene Synthase (CrtM) from S. aureus Complexed with BPH-1162 3TFN ; 2.07 ; Crystal structure of dehydrosqualene synthase (crtm) from s. aureus complexed with bph-1183 4EA0 ; 2.12 ; Crystal structure of dehydrosqualene synthase (Crtm) from S. aureus complexed with diphosphate and quinuclidine BPH-651 4E9Z ; 2.06 ; Crystal structure of dehydrosqualene synthase (Crtm) from S. aureus complexed with quinuclidine BPH-651 in the S1 site 3LGZ ; 2.41 ; Crystal structure of dehydrosqualene synthase Y129A from S. aureus complexed with presqualene pyrophosphate 8SLM ; 2.81 ; Crystal structure of Deinococcus geothermalis PprI 8SLN ; 2.2 ; Crystal structure of Deinococcus geothermalis PprI complexed with ssDNA 4UNF ; 2.15 ; Crystal structure of Deinococcus radiodurans Endonuclease III-1 8A5F ; 1.38 ; Crystal structure of Deinococcus radiodurans Endonuclease III-1 R61Q variant 8A5C ; 1.951 ; Crystal structure of Deinococcus radiodurans Endonuclease III-1 Y100L variant 4UOB ; 1.31 ; Crystal structure of Deinococcus radiodurans Endonuclease III-3 8A5G ; 1.89 ; Crystal structure of Deinococcus radiodurans Endonuclease III-3 double mutant 2BHU ; 1.1 ; Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase 2BHZ ; 1.2 ; Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase in complex with maltose 2BHY ; 1.5 ; Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase in complex with trehalose 5KTE ; 3.941 ; Crystal structure of Deinococcus radiodurans MntH, an Nramp-family transition metal transporter 6D9W ; 3.941 ; Crystal structure of Deinococcus radiodurans MntH, an Nramp-family transition metal transporter, in the inward-open apo state 2A1V ; 2.15 ; Crystal structure of Deinococcus radiodurans protein DR2400, Pfam domain DUF419 8IOO ; 2.0 ; Crystal structure of Deinococcus radiodurans RecJ-like protein in complex with Mg2+ 4ABX ; 2.041 ; Crystal structure of Deinococcus radiodurans RecN coiled-coil domain 4ABY ; 3.0 ; Crystal structure of Deinococcus radiodurans RecN head domain 2NVO ; 1.89 ; Crystal structure of Deinococcus radiodurans RO (RSR) protein 2Q7V ; 1.9 ; Crystal Structure of Deinococcus Radiodurans Thioredoxin Reductase 2F4Q ; 1.75 ; Crystal Structure of Deinococcus radiodurans topoisomerase IB 4C2U ; 2.55 ; Crystal structure of Deinococcus radiodurans UvrD in complex with DNA, Form 1 4C30 ; 3.0 ; Crystal structure of Deinococcus radiodurans UvrD in complex with DNA, form 2 4D90 ; 2.601 ; Crystal Structure of Del-1 EGF domains 4YLC ; 3.1 ; Crystal Structure of Del-C4 mutant of hsp14.1 from Sulfolobus solfatataricus P2 2IHF ; 1.9 ; Crystal structure of deletion mutant delta 228-252 R190A of the single-stranded DNA binding protein from Thermus aquaticus 2PEY ; 1.88 ; Crystal structure of deletion mutant of APS-kinase domain of human PAPS-synthetase 1 5MC5 ; 1.9 ; Crystal Structure of delGlu452 mutant of Human Prolidase with Mn ions and GlyPro ligand 7G0N ; 1.12 ; Crystal Structure of delipidated apo human FABP4 5YD2 ; 2.35 ; Crystal Structure of Delta 4 mutant of EhPSAT (Phosphoserine aminotransferase of Entamoeba histolytica) 5Z3R ; 2.42 ; Crystal Structure of Delta 5-3-Ketosteroid Isomerase from Mycobacterium sp. 7TCE ; 3.85 ; Crystal structure of delta sub IV Rhodobacter Sphaeroides bc1 with the antimalarial drug atovaquone. 3BV7 ; 1.79 ; Crystal structure of Delta(4)-3-ketosteroid 5-beta-reductase in complex with NADP and glycerol. Resolution: 1.79 A. 3BUR ; 1.62 ; Crystal structure of Delta(4)-3-ketosteroid 5-beta-reductase in complex with NADP and TESTOSTERONE. RESOLUTION: 1.62 A. 3OBK ; 2.5 ; Crystal structure of delta-aminolevulinic acid dehydratase (porphobilinogen synthase) from toxoplasma gondii ME49 in complex with the reaction product porphobilinogen 3VK9 ; 2.001 ; Crystal structure of delta-class glutathione transferase from silkmoth 4L27 ; 3.391 ; Crystal structure of delta1-39 and delta516-525 human cystathionine beta-synthase D444N mutant containing C-terminal 6xHis tag 2CWF ; 1.8 ; Crystal Structure of delta1-piperideine-2-carboxylate reductase from Pseudomonas syringae complexed with NADPH 2CWH ; 1.7 ; Crystal Structure of delta1-piperideine-2-carboxylate reductase from Pseudomonas syringae complexed with NADPH and pyrrole-2-carboxylate 1WTJ ; 1.55 ; Crystal Structure of delta1-piperideine-2-carboxylate reductase from Pseudomonas syringae pvar.tomato 3FG4 ; 2.31 ; Crystal structure of Delta413-417:GS I805A LOX 3FG3 ; 1.9 ; Crystal structure of Delta413-417:GS I805W LOX 3FG1 ; 1.85 ; Crystal structure of Delta413-417:GS LOX 6Y21 ; 3.6 ; Crystal structure of delta466-491 cystathionine beta-synthase from Toxoplasma gondii with L-Cystathionine 6ZS7 ; 3.5 ; Crystal structure of delta466-491 cystathionine beta-synthase from Toxoplasma gondii with L-cysteine 6XYL ; 3.151 ; Crystal structure of delta466-491 cystathionine beta-synthase from Toxoplasma gondii with L-serine 6Z3S ; 3.048 ; Crystal structure of delta466-491 cystathionine beta-synthase from Toxoplasma gondii with O-Acetylserine 4K1U ; 2.0 ; Crystal structure of delta5-3-ketosteroid isomerase containing Y16F and Y32F mutations 4K1V ; 1.8 ; Crystal structure of delta5-3-ketosteroid isomerase containing Y16F and Y57F mutations 8CHO ; 2.3 ; CRYSTAL STRUCTURE OF DELTA5-3-KETOSTEROID ISOMERASE FROM PSEUDOMONAS TESTOSTERONI 1QJG ; 2.3 ; Crystal structure of delta5-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin 4PCU ; 3.578 ; Crystal structure of delta516-525 E201S human cystathionine beta-synthase with AdoMet 4L3V ; 3.628 ; Crystal structure of delta516-525 human cystathionine beta-synthase 4L0D ; 2.97 ; Crystal structure of delta516-525 human cystathionine beta-synthase containing C-terminal 6xHis-tag 4L28 ; 2.626 ; Crystal structure of delta516-525 human cystathionine beta-synthase D444N mutant containing C-terminal 6xHis tag 4FBZ ; 2.7 ; Crystal structure of deltarhodopsin from Haloterrigena thermotolerans 5MC0 ; 1.56 ; Crystal Structure of delTyr231 mutant of Human Prolidase with Mn ions and GlyPro ligand 1CN1 ; 3.2 ; CRYSTAL STRUCTURE OF DEMETALLIZED CONCANAVALIN A. THE METAL-BINDING REGION 1XT9 ; 2.2 ; Crystal Structure of Den1 in complex with Nedd8 4X42 ; 2.78 ; Crystal structure of DEN4 ED3 mutant with epitope two residues substituted from DEN3 ED3 5B1C ; 2.003 ; Crystal structure of DEN4 ED3 mutant with L387I 2E1U ; 2.2 ; Crystal structure of Dendranthema morifolium DmAT 2E1T ; 2.1 ; Crystal structure of Dendranthema morifolium DmAT complexed with malonyl-CoA 2E1V ; 1.8 ; Crystal structure of Dendranthema morifolium DmAT, seleno-methionine derivative 5DU1 ; 1.8 ; Crystal structure of Dendroaspis polylepis mambalgin-1 wild-type in P21 space group. 5DZ5 ; 1.95 ; Crystal structure of Dendroaspis polylepis mambalgin-1 wild-type in P41212 space group 5DO6 ; 1.697 ; Crystal structure of Dendroaspis polylepis venom mambalgin-1 T23A mutant 7A3R ; 3.6 ; Crystal structure of dengue 1 virus envelope glycoprotein 7A3O ; 2.8 ; Crystal structure of dengue 1 virus envelope glycoprotein in complex with the scFv fragment of the broadly neutralizing human antibody EDE1 C10 4UTC ; 3.08 ; Crystal structure of dengue 2 virus envelope glycoprotein 4UT9 ; 3.2 ; Crystal structure of dengue 2 virus envelope glycoprotein dimer in complex with the ScFv fragment of the broadly neutralizing human antibody EDE1 C10 4UTA ; 3.0 ; Crystal structure of dengue 2 virus envelope glycoprotein in complex with the Fab fragment of the broadly neutralizing human antibody EDE1 C8 4UTB ; 3.85 ; Crystal structure of dengue 2 virus envelope glycoprotein in complex with the Fab fragment of the broadly neutralizing human antibody EDE2 A11 4UT6 ; 3.2 ; Crystal structure of dengue 2 virus envelope glycoprotein in complex with the Fab fragment of the broadly neutralizing human antibody EDE2 B7 7A3S ; 2.8 ; Crystal structure of dengue 3 virus envelope glycoprotein 7A3T ; 2.65 ; Crystal structure of dengue 3 virus envelope glycoprotein in complex with the Fab fragment of the broadly neutralizing human antibody EDE1 C8 7A3P ; 3.19 ; Crystal structure of dengue 3 virus envelope glycoprotein in complex with the scFv fragment of the broadly neutralizing human antibody EDE1 C10 3WE1 ; 2.278 ; Crystal structure of Dengue 4 Envelope protein domain III (ED3) 7A3Q ; 2.7 ; Crystal structure of dengue 4 virus envelope glycoprotein in complex with the scFv fragment of the broadly neutralizing human antibody EDE1 C10 2P3O ; 2.756 ; Crystal Structure of Dengue Methyltransferase in Complex with 7MeGpppA and S-Adenosyl-L-homocysteine 2P40 ; 2.701 ; Crystal Structure of Dengue Methyltransferase in Complex with 7MeGpppG 2P41 ; 1.801 ; Crystal Structure of Dengue Methyltransferase in Complex with 7MeGpppG2'OMe and S-Adenosyl-L-homocysteine 2P3L ; 2.2 ; Crystal Structure of Dengue Methyltransferase in Complex with GpppA and S-Adenosyl-L-Homocysteine 2P3Q ; 2.75 ; Crystal Structure of Dengue Methyltransferase in Complex with GpppG and S-Adenosyl-L-homocysteine 2P1D ; 2.9 ; Crystal structure of dengue methyltransferase in complex with GTP and S-Adenosyl-L-homocysteine 7VMV ; 3.351 ; Crystal structure of Dengue NS2B-NS3 Protease after secondary cleavage 3L6P ; 2.2 ; Crystal Structure of Dengue Virus 1 NS2B/NS3 protease 3LKW ; 2.0 ; Crystal Structure of Dengue Virus 1 NS2B/NS3 protease active site mutant 6KR2 ; 3.06 ; Crystal structure of Dengue virus nonstructural protein NS5 (form 1) 6KR3 ; 2.931 ; Crystal structure of Dengue virus nonstructural protein NS5 (form 2) 7XD9 ; 2.58 ; Crystal Structure of Dengue Virus serotype 2 (DENV2) Polymerase Elongation Complex (CTP Form) 7XD8 ; 2.85 ; Crystal Structure of Dengue Virus Serotype 2 (DENV2) Polymerase Elongation Complex (Native Form) 5IQ6 ; 3.0 ; Crystal structure of Dengue virus serotype 3 RNA dependent RNA polymerase bound to HeE1-2Tyr, a new pyridobenzothizole inhibitor 3G7T ; 3.5 ; Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation 3EVG ; 2.2 ; Crystal structure of Dengue-2 virus methyltransferase complexed with S-adenosyl-L-homocysteine 6YQX ; 1.638 ; Crystal structure of DeNovoTIM13, a de novo designed TIM barrel 6Z2I ; 2.901 ; Crystal structure of DeNovoTIM6, a de novo designed TIM barrel 4L5F ; 2.45 ; Crystal Structure of DENV1-E106 Fab bound to DENV-1 Envelope protein DIII 4FFZ ; 3.8 ; Crystal Structure of DENV1-E111 fab fragment bound to DENV-1 DIII (Western Pacific-74 strain). 4FFY ; 2.5 ; Crystal structure of DENV1-E111 single chain variable fragment bound to DENV-1 DIII, strain 16007. 4LKR ; 2.4 ; Crystal structure of deoD-3 gene product from Shewanella oneidensis MR-1, NYSGRC target 029437 1J7S ; 2.2 ; Crystal Structure of deoxy HbalphaYQ, a mutant of HbA 1J7W ; 2.0 ; Crystal structure of deoxy HbbetaYQ, a site directed mutant of HbA 2H8F ; 1.3 ; Crystal structure of deoxy hemoglobin from Trematomus bernacchii at pH 6.2 2H8D ; 1.78 ; Crystal structure of deoxy hemoglobin from Trematomus bernacchii at pH 8.4 6BWP ; 1.7 ; Crystal structure of Deoxy Hemoglobin in complex with beta Cys93 modifying agent, TD3 2D60 ; 1.7 ; Crystal structure of deoxy human hemoglobin complexed with two L35 molecules 1F63 ; 1.8 ; CRYSTAL STRUCTURE OF DEOXY SPERM WHALE MYOGLOBIN MUTANT Y(B10)Q(E7)R(E10) 1R1Y ; 1.8 ; Crystal structure of deoxy-human hemoglobin Bassett at 1.8 angstrom 6HBW ; 2.0 ; Crystal structure of deoxy-human hemoglobin beta6 glu->trp 7UD7 ; 1.8 ; Crystal structure of deoxygenated hemoglobin in complex with 5HMF-NO at 1.8 Angstrom 5E29 ; 1.85 ; Crystal Structure of Deoxygenated Hemoglobin in Complex with an Allosteric Effector and Nitric Oxide 5KSJ ; 2.4 ; Crystal structure of deoxygenated hemoglobin in complex with Sphingosine phosphate 5KSI ; 1.8 ; Crystal structure of deoxygenated hemoglobin in complex with sphingosine phosphate and 2,3-Bisphosphoglycerate 1LLA ; 2.18 ; CRYSTAL STRUCTURE OF DEOXYGENATED LIMULUS POLYPHEMUS SUBUNIT II HEMOCYANIN AT 2.18 ANGSTROMS RESOLUTION: CLUES FOR A MECHANISM FOR ALLOSTERIC REGULATION 3BG2 ; 1.95 ; Crystal structure of deoxyguanosinetriphosphate triphosphohydrolase from Flavobacterium sp. MED217 7CMC ; 2.2 ; CRYSTAL STRUCTURE OF DEOXYHYPUSINE SYNTHASE FROM PYROCOCCUS HORIKOSHII 4U53 ; 3.3 ; Crystal structure of Deoxynivalenol bound to the yeast 80S ribosome 7E37 ; 2.09 ; Crystal structure of deoxypodophyllotoxin synthase from Sinopodophyllum hexandrum in complex with 2-oxoglutarate 7E38 ; 2.05 ; Crystal structure of deoxypodophyllotoxin synthase from Sinopodophyllum hexandrum in complex with yatein and succinate 3BWV ; 1.55 ; Crystal structure of deoxyribonucleotidase-like protein (NP_764060.1) from Staphylococcus epidermidis ATCC 12228 at 1.55 A resolution 3NG3 ; 2.15 ; Crystal structure of deoxyribose phosphate aldolase from mycobacterium avium 104 in a schiff base with an unknown aldehyde 3NDO ; 1.25 ; Crystal structure of deoxyribose phosphate aldolase from mycobacterium smegmatis 6BTG ; 1.698 ; Crystal structure of deoxyribose-phosphate aldolase bound with DHAP from Bacillus Thuringiensis 6BTD ; 1.551 ; Crystal structure of deoxyribose-phosphate aldolase from Bacillus Thuringiensis involved in dispatching the ubiquitous radical SAM enzyme byproduct 5-deoxyribose 5C5Y ; 2.1 ; Crystal structure of deoxyribose-phosphate aldolase from Colwellia psychrerythraea (hexagonal form) 5C2X ; 2.11 ; Crystal structure of deoxyribose-phosphate aldolase from Colwellia psychrerythraea (tetragonal form) 5EKY ; 1.1 ; Crystal structure of deoxyribose-phosphate aldolase from Escherichia coli (K58E-Y96W mutant) 5EL1 ; 1.25 ; Crystal structure of deoxyribose-phosphate aldolase from Escherichia coli (K58E-Y96W mutant) after acetaldehyde treatment 5EMU ; 1.5 ; Crystal structure of deoxyribose-phosphate aldolase from Escherichia coli (K58E-Y96W mutant) after acetaldehyde treatment and heating 5C6M ; 1.76 ; Crystal structure of deoxyribose-phosphate aldolase from Shewanella halifaxensis 6MAI ; 1.8 ; Crystal structure of Deoxyuridine 5'-triphosphate nucleotidohydrolase from Legionella pneumophila Philadelphia 1 6MAO ; 1.95 ; Crystal structure of Deoxyuridine 5'-triphosphate nucleotidohydrolase from Legionella pneumophila Philadelphia 1 in complex with dUMP (Deoxyuridine 5'-monophosphate) 7N56 ; 2.15 ; Crystal Structure of deoxyuridine 5'-triphosphate nucleotidohydrolase from Rickettsia prowazekii str. Madrid E 7N6S ; 1.75 ; Crystal Structure of deoxyuridine 5'-triphosphate nucleotidohydrolase from Rickettsia prowazekii str. Madrid E in complex with 2'-deoxyuridine 5'-monophoephate (dUMP) 3MBQ ; 2.1 ; Crystal structure of deoxyuridine 5-triphosphate nucleotidohydrolase from Brucella melitensis, orthorhombic crystal form 3MDX ; 1.45 ; Crystal structure of deoxyuridine 5-triphosphate nucleotidohydrolase from Brucella melitensis, rhombohedral crystal form 3LQW ; 1.3 ; Crystal structure of deoxyuridine 5-triphosphate nucleotidohydrolase from Entamoeba histolytica 4NTE ; 1.9 ; Crystal structure of DepH 1VIY ; 1.89 ; Crystal structure of dephospho-CoA kinase 2GRJ ; 2.6 ; Crystal structure of Dephospho-CoA kinase (EC 2.7.1.24) (Dephosphocoenzyme A kinase) (tm1387) from THERMOTOGA MARITIMA at 2.60 A resolution 8U94 ; 1.4 ; Crystal Structure of Dephospho-CoA kinase from Klebsiella aerogenes (ADP Bound) 8U97 ; 1.5 ; Crystal Structure of Dephospho-CoA kinase from Klebsiella aerogenes (AMP-PNP bound) 8U96 ; 1.5 ; Crystal Structure of Dephospho-CoA kinase from Klebsiella aerogenes (ATP bound) 8SBN ; 1.15 ; Crystal Structure of Dephospho-CoA kinase from Klebsiella aerogenes (P21 Form 1) 8SBO ; 1.4 ; Crystal Structure of Dephospho-CoA kinase from Klebsiella aerogenes (P21 Form 2) 1VHL ; 1.65 ; Crystal structure of dephospho-CoA kinase with adenosine-5'-diphosphate 1VHT ; 1.59 ; Crystal structure of dephospho-coA kinase with bis(adenosine)-5'-triphosphate 1N3B ; 1.8 ; Crystal Structure of Dephosphocoenzyme A kinase from Escherichia coli 1CQJ ; 2.9 ; CRYSTAL STRUCTURE OF DEPHOSPHORYLATED E. COLI SUCCINYL-COA SYNTHETASE 1EUC ; 2.1 ; CRYSTAL STRUCTURE OF DEPHOSPHORYLATED PIG HEART, GTP-SPECIFIC SUCCINYL-COA SYNTHETASE 7OY3 ; 1.78 ; Crystal structure of depupylase Dop in complex with phosphorylated Pup and ADP 7OYH ; 1.75 ; Crystal structure of depupylase Dop in complex with Pup and ADP/tetrafluoromagnesate 7OYF ; 1.88 ; Crystal structure of depupylase Dop in complex with Pup and ADP/trifluoromagnesate 7OXY ; 1.65 ; Crystal structure of depupylase Dop in complex with Pup and AMP-PCP 7OXV ; 1.394 ; Crystal structure of depupylase Dop in the Dop-loop-inserted state 5VPL ; 1.9 ; CRYSTAL STRUCTURE OF DER F 1 COMPLEXED WITH FAB 4C1 5VPG ; 1.95 ; CRYSTAL STRUCTURE OF DER P 1 COMPLEXED WITH FAB 4C1 5VPH ; 2.5 ; CRYSTAL STRUCTURE OF DER P 1 COMPLEXED WITH FAB 4C1 1K94 ; 1.7 ; Crystal structure of des(1-52)grancalcin with bound calcium 1K95 ; 1.9 ; Crystal structure of des(1-52)grancalcin with bound calcium 3WR8 ; 2.25 ; Crystal structure of DesB from Sphingobium sp. strain SYK-6 7NHU ; 1.4 ; Crystal structure of desB30 insulin produced by cell free protein synthesis 2OQ5 ; 1.61 ; Crystal structure of DESC1, a new member of the type II transmembrane serine proteinases family 7TGJ ; 2.85 ; Crystal structure of DesD, the desferrioxamine synthetase from the Streptomyces griseoflavus ferrimycin biosynthetic pathway 7TGN ; 2.3 ; Crystal structure of DesD, the desferrioxamine synthetase from the Streptomyces violaceus salmycin biosynthetic pathway 2X4L ; 1.5 ; Crystal structure of DesE, a ferric-siderophore receptor protein from Streptomyces coelicolor 3VV3 ; 1.76 ; Crystal structure of deseasin MCP-01 from Pseudoalteromonas sp. SM9913 5IWB ; 1.764 ; Crystal structure of design pentatricopeptide repeat complex with MORF protein 4PJS ; 2.6 ; Crystal structure of designed (SeMet)-cPPR-NRE protein 3PG0 ; 1.62 ; Crystal structure of designed 3-fold symmetric protein, ThreeFoil 4PJR ; 2.0 ; Crystal structure of designed cPPR-NRE protein 4WN4 ; 3.85 ; Crystal structure of designed cPPR-polyA protein 4WSL ; 3.7 ; Crystal structure of designed cPPR-polyC protein 4PJQ ; 3.353 ; Crystal structure of designed cPPR-polyG protein 5ORM ; 2.08 ; Crystal structure of designed cPPR-Telo1 5ORQ ; 1.95 ; Crystal structure of designed cPPR-Telo1 in complex with ssDNA 7UDO ; 2.5 ; Crystal structure of designed helical repeat protein RPB_LRP2_R4 (proteolysis fragment?), forming pseudopolymeric filaments 7UDK ; 3.18 ; Crystal structure of designed helical repeat protein RPB_LRP2_R4 bound to LRPx4 peptide 7UDJ ; 2.7 ; Crystal structure of designed helical repeat protein RPB_PEW3_R4 bound to PAWx4 peptide 7UDL ; 2.15 ; Crystal structure of designed helical repeat protein RPB_PLP1_R6 bound to PLPx6 peptide 7UDM ; 2.65 ; Crystal structure of designed helical repeat protein RPB_PLP1_R6 in alternative conformation 1 (with peptide) 7UDN ; 2.45 ; Crystal structure of designed helical repeat protein RPB_PLP1_R6 in alternative conformation 2 7UE2 ; 2.68 ; Crystal structure of designed helical repeat protein RPB_PLP3_R6 bound to PLPx6 peptide 7UPO ; 2.1 ; Crystal structure of designed heterotrimeric assembly DHT03 7UPQ ; 3.35 ; Crystal structure of designed heterotrimeric assembly DHT03_1arm_A21/B/C 7UPP ; 3.35 ; Crystal structure of designed heterotrimeric assembly DHT03_2arm_A21/B21/C long 5I9F ; 2.194 ; Crystal structure of designed pentatricopeptide repeat protein dPPR-U10 in complex with its target RNA U10 5I9D ; 2.596 ; Crystal structure of designed pentatricopeptide repeat protein dPPR-U8A2 in complex with its target RNA U8A2 5I9G ; 2.288 ; Crystal structure of designed pentatricopeptide repeat protein dPPR-U8C2 in complex with its target RNA U8C2 5I9H ; 2.504 ; Crystal structure of designed pentatricopeptide repeat protein dPPR-U8G2 in complex with its target RNA U8G2 7ZP5 ; 1.54 ; Crystal structure of designed photoenzyme EnT1.0 5IM6 ; 5.588 ; Crystal structure of designed two-component self-assembling icosahedral cage I32-28 5IM4 ; 3.5 ; Crystal structure of designed two-component self-assembling icosahedral cage I52-32 5IM5 ; 3.699 ; Crystal structure of designed two-component self-assembling icosahedral cage I53-40 1R66 ; 1.44 ; Crystal Structure of DesIV (dTDP-glucose 4,6-dehydratase) from Streptomyces venezuelae with NAD and TYD bound 1R6D ; 1.35 ; Crystal Structure of DesIV double mutant (dTDP-glucose 4,6-dehydratase) from Streptomyces venezuelae with NAD and DAU bound 3EHF ; 3.1 ; Crystal structure of DesKC in complex with AMP-PCP 3EHH ; 2.1 ; Crystal structure of DesKC-H188V in complex with ADP 3EHJ ; 2.5 ; Crystal structure of DesKC-H188V in complex with AMP-PCP 3GIF ; 2.7 ; Crystal structure of DesKC_H188E in complex with ADP 3GIE ; 2.65 ; Crystal structure of DesKC_H188E in complex with AMP-PCP 4I3G ; 1.4 ; Crystal Structure of DesR, a beta-glucosidase from Streptomyces venezuelae in complex with D-glucose. 3LSP ; 2.66 ; Crystal Structure of DesT bound to desCB promoter and oleoyl-CoA 3LSR ; 2.55 ; Crystal structure of DesT in complex with duplex DNA 3LSJ ; 2.3 ; Crystal structure of DesT in complex with palmitoyl-CoA 1HTV ; 1.9 ; CRYSTAL STRUCTURE OF DESTRIPEPTIDE (B28-B30) INSULIN 3EUB ; 2.6 ; Crystal Structure of Desulfo-Xanthine Oxidase with Xanthine 1DXG ; 1.8 ; CRYSTAL STRUCTURE OF DESULFOREDOXIN FROM DESULFOVIBRIO GIGAS AT 1.8 A RESOLUTION 6DC2 ; 1.992 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase C301S variant 6ONC ; 1.5 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase produced without CooC, as-isolated 6OND ; 1.723 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase produced without CooC, reduced 6ONS ; 2.485 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase with the D-cluster ligating cysteines mutated to alanines, coexpressed with CooC, as-isolated 6B6V ; 2.5 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase, as-isolated (protein batch 1), canonical C-cluster 6B6W ; 1.72 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase, as-isolated (protein batch 2), oxidized C-cluster 6B6X ; 1.84 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase, dithionite-reduced (protein batch 2), canonical C-cluster 6B6Y ; 2.6 ; Crystal structure of Desulfovibrio vulgaris carbon monoxide dehydrogenase, dithionite-reduced then oxygen-exposed (protein batch 2), oxidized C-cluster 1LKO ; 1.63 ; Crystal structure of Desulfovibrio vulgaris rubrerythrin all-iron(II) form 1LKP ; 1.64 ; Crystal structure of Desulfovibrio vulgaris rubrerythrin all-iron(II) form, azide adduct 1LKM ; 1.69 ; Crystal structure of Desulfovibrio vulgaris rubrerythrin all-iron(III) form 2DE2 ; 1.8 ; Crystal structure of desulfurization enzyme DSZB 2WP7 ; 1.9 ; Crystal structure of deSUMOylase(DUF862) 2QMO ; 1.47 ; Crystal structure of dethiobiotin synthetase (bioD) from Helicobacter pylori 3MLE ; 2.8 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori cocrystallized with ATP 3QXH ; 1.36 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with ADP and 8-aminocaprylic acid 3QXS ; 1.35 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with ANP 3QXC ; 1.34 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with ATP 3QY0 ; 1.6 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with GDP 3QXX ; 1.36 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with GDP and 8-aminocaprylic acid 3QXJ ; 1.38 ; Crystal structure of dethiobiotin synthetase (BioD) from Helicobacter pylori complexed with GTP 6NKB ; 2.0 ; Crystal structure of Dethiobiotin Synthetase from Mycobacterium tuberculosis in complex with 2'-deoxycytidine diphosphate 3FGN ; 1.85 ; Crystal structure of dethiobiotin synthetase in Mycobacterium tuberculosis 6F7D ; 1.634 ; Crystal structure of Dettilon tailspike protein (gp208) 6F7K ; 2.1 ; Crystal structure of Dettilon tailspike protein (gp208) 5JKN ; 3.0 ; Crystal structure of deubiquitinase MINDY-1 5JQS ; 2.65 ; Crystal structure of deubiquitinase MINDY-1 in complex with Ubiquitin 6Z49 ; 2.0 ; Crystal structure of deubiquitinase Mindy2 5R47 ; 1.1 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 5.6, cryo temperature 5R46 ; 1.05 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 5.6, room temperature 5R43 ; 1.0 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 7.5, cryo temperature 5R42 ; 1.05 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 7.5, room temperature 5R4B ; 1.05 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 9, cryo temperature 5R4A ; 1.2 ; Crystal Structure of deuterated gamma-Chymotrypsin at pH 9, room temperature 1Y89 ; 2.0 ; Crystal Structure of devB protein 2ZID ; 2.2 ; Crystal structure of dextran glucosidase E236Q complex with isomaltotriose 3VMN ; 1.6 ; Crystal structure of dextranase from Streptococcus mutans 3VMP ; 1.88 ; Crystal structure of dextranase from Streptococcus mutans in complex with 4,5-epoxypentyl alpha-D-glucopyranoside 3VMO ; 1.9 ; Crystal structure of dextranase from Streptococcus mutans in complex with isomaltotriose 8HSN ; 1.69 ; Crystal structure of DFA I-forming Inulin Lyase from Streptomyces peucetius subsp. caesius ATCC 27952 8HUI ; 1.44 ; Crystal structure of DFA I-forming Inulin Lyase from Streptomyces peucetius subsp. caesius ATCC 27952 in complex with GF4, DFA I, and fructose 5ZKS ; 2.0 ; Crystal structure of DFA-IIIase from Arthrobacter chlorophenolicus A6 5ZKU ; 2.32 ; Crystal structure of DFA-IIIase from Arthrobacter chlorophenolicus A6 in complex with DFA-III 5ZKW ; 1.86 ; Crystal structure of DFA-IIIase from Arthrobacter chlorophenolicus A6 in complex with GF2 5ZL4 ; 3.0 ; Crystal structure of DFA-IIIase from Arthrobacter chlorophenolicus A6 wihout its lid in complex with GF2 5ZKY ; 2.1 ; Crystal structure of DFA-IIIase from Arthrobacter chlorophenolicus A6 without its lid 5ZL5 ; 1.65 ; Crystal structure of DFA-IIIase mutant C387A from Arthrobacter chlorophenolicus A6 2ZE3 ; 1.65 ; Crystal Structure of DFA0005 Complexed with alpha-Ketoglutarate: A Novel Member of the ICL/PEPM Superfamily from Alkali-tolerant Deinococcus ficus 6RY0 ; 1.05 ; Crystal structure of Dfg5 from Chaetomium thermophilum 6RY2 ; 1.3 ; Crystal structure of Dfg5 from Chaetomium thermophilum in complex with alpha-1,2-mannobiose 6RY5 ; 1.3 ; Crystal structure of Dfg5 from Chaetomium thermophilum in complex with alpha-1,6-mannobiose 6RY6 ; 1.3 ; Crystal structure of Dfg5 from Chaetomium thermophilum in complex with glucosamine 6RY7 ; 1.3 ; Crystal structure of Dfg5 from Chaetomium thermophilum in complex with laminaribiose 6RY1 ; 1.3 ; Crystal structure of Dfg5 from Chaetomium thermophilum in complex with mannose 5DTJ ; 2.71 ; Crystal Structure of dfp-inhibited mouse acetylcholinesterase in complex with the reactivator SP-134 1E1A ; 1.8 ; Crystal structure of DFPase from Loligo vulgaris 2FIR ; 2.0 ; Crystal structure of DFPR-VIIa/sTF 7MYL ; 2.15 ; Crystal structure of DfrA1 dihydrofolate reductase in complex with TRIMETHOPRIM 7R6G ; 2.61 ; Crystal structure of DfrA5 dihydrofolate reductase in complex with TRIMETHOPRIM and NADPH 7XRE ; 2.76 ; Crystal structure of DgpA 7XR9 ; 2.42 ; Crystal structure of DgpA with glucose 2Z0Q ; 1.79 ; Crystal structure of DH-PH domain of RhoGEF3(Xpln) 8GDO ; 1.95 ; Crystal structure of DH1010 Fab 5U0U ; 3.428 ; Crystal Structure of DH270.1 (unliganded, single-chain Fv) from the DH270 Broadly Neutralizing N332-glycan Dependent Lineage 5TPL ; 2.5 ; Crystal Structure of DH270.3 (unliganded) from the DH270 Broadly Neutralizing N332-glycan Dependent Lineage 6CBJ ; 2.85 ; Crystal Structure of DH270.3 Fab in complex with Man9 5TPP ; 1.85 ; Crystal Structure of DH270.5 (unliganded) from the DH270 Broadly Neutralizing N332-glycan Dependent Lineage 5TQA ; 2.723 ; Crystal Structure of DH270.6 (unliganded) from the DH270 Broadly Neutralizing N332-Glycan Dependent Lineage 5U0R ; 3.295 ; Crystal Structure of DH270.UCA1 (unliganded) from the DH270 Broadly Neutralizing N332-glycan Dependent Lineage 5U15 ; 2.26 ; Crystal Structure of DH270.UCA3 (unliganded) from the DH270 Broadly Neutralizing N332-glycan Dependent Lineage 8D3A ; 2.9 ; Crystal Structure of DH475 Fab in complex with Man9 5U3J ; 2.74 ; Crystal Structure of DH511.1 Fab in Complex with HIV-1 gp41 MPER Peptide 5U3M ; 2.418 ; Crystal Structure of DH511.11P Fab in Complex with HIV-1 gp41 MPER Peptide 5U3N ; 2.0 ; Crystal Structure of DH511.12P Fab in Complex with HIV-1 gp41 MPER Peptide 5U3K ; 2.637 ; Crystal Structure of DH511.2 Fab in Complex with HIV-1 gp41 MPER 662-683 Peptide 5U3L ; 2.165 ; Crystal Structure of DH511.2 Fab in Complex with HIV-1 gp41 MPER 670-683 Peptide 5U3O ; 1.761 ; Crystal Structure of DH511.2_K3 Fab in Complex with HIV-1 gp41 MPER Peptide 5U3P ; 1.5 ; Crystal Structure of DH511.4 Fab 6XCJ ; 2.8 ; Crystal Structure of DH650 Fab from a Rhesus Macaque in Complex with HIV-1 gp120 Core 5Y5C ; 2.61 ; Crystal structure of dha bind to bovine beta-lactoglobulin 2BTD ; 2.6 ; Crystal structure of DhaL from E. coli 3CT6 ; 1.1 ; Crystal structure of DhaM of L. lactis 5GRQ ; 1.584 ; Crystal Structure of DHB domain of Daxx in complex with an ATRX peptide 1MDF ; 2.5 ; CRYSTAL STRUCTURE OF DhbE IN ABSENCE OF SUBSTRATE 1MD9 ; 2.8 ; CRYSTAL STRUCTURE OF DhbE IN COMPLEX WITH DHB AND AMP 1MDB ; 2.15 ; CRYSTAL STRUCTURE OF DhbE IN COMPLEX WITH DHB-ADENYLATE 3MGZ ; 2.07 ; Crystal structure of DHBPS domain of bi-functional DHBPS/GTP cyclohydrolase II from Mycobacterium tuberculosis at pH 4.0 2FWT ; 1.85 ; Crystal structure of DHC purified from Rhodobacter sphaeroides 5UI3 ; 2.0 ; Crystal structure of DHDPS from chlamydomonas reinhardtii 5UD6 ; 2.4 ; Crystal structure of DHDPS from Cyanidioschyzon merolae with lysine bound 5EAJ ; 1.701 ; Crystal structure of DHFR in 0% Isopropanol 5E8Q ; 1.8 ; Crystal structure of DHFR in 20% Isopropanol 5UJX ; 1.8 ; Crystal structure of DHFR in 20% Isopropanol 1QZF ; 2.8 ; Crystal structure of DHFR-TS from Cryptosporidium hominis 3N1G ; 1.9 ; Crystal structure of DhhN bound to BOCFn3 3N1Q ; 2.89 ; Crystal Structure of DhhN bound to CDOFn3 6AJE ; 3.65 ; Crystal structure of DHODH in complex with ferulenol from Eimeria tenella 6SFE ; 1.08 ; CRYSTAL STRUCTURE OF DHQ1 FROM SALMONELLA TYPHI COVALENTLY MODIFIED BY COMPOUND 7 6SFG ; 1.23 ; CRYSTAL STRUCTURE OF DHQ1 FROM SALMONELLA TYPHI COVALENTLY MODIFIED BY COMPOUND 9 6H5C ; 1.14 ; Crystal structure of DHQ1 from Salmonella typhi covalently modified by ligand 1 6H5D ; 1.25 ; Crystal structure of DHQ1 from Salmonella typhi covalently modified by ligand 2 6H5G ; 1.04 ; Crystal structure of DHQ1 from Salmonella typhi covalently modified by ligand 3 6H5J ; 1.4 ; Crystal structure of DHQ1 from Salmonella typhi covalently modified by ligand 4 6SFH ; 1.73 ; CRYSTAL STRUCTURE OF DHQ1 FROM Staphylococcus aureus COVALENTLY MODIFIED BY LIGAND 7 3L3X ; 1.55 ; Crystal structure of DHT-bound androgen receptor in complex with the first motif of steroid receptor coactivator 3 3L3Z ; 2.0 ; Crystal structure of DHT-bound androgen receptor in complex with the third motif of steroid receptor coactivator 3 6HYU ; 3.22 ; Crystal structure of DHX8 helicase bound to single stranded poly-adenine RNA 6HYT ; 2.33 ; Crystal structure of DHX8 helicase domain bound to ADP at 2.3 Angstrom 6HYS ; 2.6 ; Crystal structure of DHX8 helicase domain bound to ADP at 2.6 angstrom 3PUD ; 2.8 ; Crystal structure of Dhydrodipicolinate synthase from Acinetobacter baumannii at 2.8A resolution 7AE6 ; 1.65 ; Crystal structure of di-AMPylated HEPN(R102A) toxin 1IQC ; 1.8 ; Crystal structure of Di-Heme Peroxidase from Nitrosomonas europaea 3CHH ; 2.0 ; Crystal Structure of Di-iron AurF 3CHU ; 2.2 ; Crystal Structure of Di-iron Aurf 3CHI ; 2.1 ; Crystal Structure of Di-iron AurF (Monoclinic form) 3CHT ; 2.0 ; Crystal Structure of Di-iron AurF with partially bound Ligand 7FFP ; 1.8 ; Crystal structure of di-peptidase-E from Xenopus laevis 6R8J ; 1.75 ; Crystal structure of di-phosphorylated human CLK1 in complex with 4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine 7O9Y ; 1.66 ; Crystal structure of di-phosphorylated human CLK1 in complex with 4-(1H-indol-3-yl)pyrimidin-2-amine 6R3D ; 1.85 ; Crystal structure of di-phosphorylated human CLK1 in complex with 4-(6,7-dichloro-1H-indol-3-yl)pyrimidin-2-amine 6R6X ; 2.05 ; Crystal structure of di-phosphorylated human CLK1 in complex with 5-(1-methyl-1H-indol-3-yl)pyrimidin-4-amine 6R6E ; 2.25 ; Crystal structure of di-phosphorylated human CLK1 in complex with 5-(6,7-dichloro-1-methyl-1H-indol-3-yl)pyrimidin-4-amine 7OA0 ; 1.81 ; Crystal structure of di-phosphorylated human CLK1 in complex with 5-(6,7-dichloro-1H-indol-3-yl)pyrimidin-4-amine 2VAG ; 1.8 ; Crystal structure of di-phosphorylated human CLK1 in complex with a novel substituted indole inhibitor 5N5G ; 1.292 ; Crystal structure of di-zinc metallo-beta-lactamase VIM-1 5GS3 ; 1.698 ; Crystal structure of diabody 5GS2 ; 3.592 ; Crystal structure of diabody complex with repebody and MBP 3WE7 ; 1.55 ; Crystal Structure of Diacetylchitobiose Deacetylase from Pyrococcus horikoshii 2QVL ; 2.4 ; Crystal Structure of Diacylglycerol Kinase 4WER ; 2.05 ; Crystal structure of diacylglycerol kinase catalytic domain protein from Enterococcus faecalis V583 2QV7 ; 2.3 ; Crystal Structure of Diacylglycerol Kinase DgkB in complex with ADP and Mg 1ZOD ; 1.8 ; Crystal structure of dialkylglycine decarboxylase bound with cesium ion 1ZOB ; 2.75 ; Crystal structure of dialkylglycine decarboxylases bound with calcium ion 6ERK ; 1.6 ; Crystal structure of diaminopelargonic acid aminotransferase from Psychrobacter cryohalolentis 1KNW ; 2.1 ; Crystal structure of diaminopimelate decarboxylase 3C5Q ; 2.4 ; Crystal structure of diaminopimelate decarboxylase (I148L mutant) from Helicobacter pylori complexed with L-lysine 3VAB ; 2.1 ; Crystal structure of Diaminopimelate decarboxylase from Brucella melitensis bound to PLP 2QGH ; 2.3 ; Crystal structure of diaminopimelate decarboxylase from Helicobacter pylori complexed with L-lysine 1TUF ; 2.4 ; Crystal structure of Diaminopimelate Decarboxylase from m. jannaschi 1TWI ; 2.0 ; Crystal structure of Diaminopimelate Decarboxylase from m. jannaschii in co-complex with L-lysine 3EKM ; 2.3 ; Crystal structure of diaminopimelate epimerase form arabidopsis thaliana in complex with irreversible inhibitor DL-AziDAP 3EJX ; 1.95 ; Crystal structure of diaminopimelate epimerase from Arabidopsis thaliana in complex with LL-AziDAP 4IJZ ; 2.0 ; Crystal structure of diaminopimelate epimerase from Escherichia coli 2GKJ ; 1.7 ; Crystal structure of diaminopimelate epimerase in complex with an irreversible inhibitor DL-AZIDAP 2GKE ; 1.35 ; Crystal structure of diaminopimelate epimerase in complex with an irreversible inhibitor LL-AziDAP 3FVE ; 2.6 ; Crystal structure of diaminopimelate epimerase Mycobacterium tuberculosis DapF 4IK0 ; 2.05 ; Crystal structure of diaminopimelate epimerase Y268A mutant from Escherichia coli 4D9M ; 2.5 ; Crystal structure of Diaminopropionate ammonia lyase from Escherichia coli in complex with aminoacrylate-PLP azomethine reaction intermediate 4D9N ; 2.5 ; Crystal structure of Diaminopropionate ammonia lyase from Escherichia coli in complex with D-serine 5Y9V ; 2.841 ; Crystal structure of diamondback moth ryanodine receptor N-terminal domain 6J6O ; 1.848 ; Crystal structure of diamondback moth ryanodine receptor phosphorylation domain(2836-3050) 6J6P ; 1.53 ; Crystal structure of diamondback moth ryanodine receptor phosphorylation domain(2836-3050) mutant S2946D 6KIM ; 2.057 ; Crystal structure of diamondback moth ryanodine receptor SPRY2 domain 1SE0 ; 1.75 ; Crystal structure of DIAP1 BIR1 bound to a Grim peptide 1SDZ ; 1.78 ; Crystal structure of DIAP1 BIR1 bound to a Reaper peptide 1JD4 ; 2.7 ; Crystal Structure of DIAP1-BIR2 1JD5 ; 1.9 ; Crystal Structure of DIAP1-BIR2/GRIM 1JD6 ; 2.7 ; Crystal Structure of DIAP1-BIR2/Hid Complex 4DOY ; 1.789 ; Crystal structure of Dibenzothiophene desulfurization enzyme C 5XB8 ; 1.795 ; Crystal structure of dibenzothiophene monooxygenase (TdsC) from Paenibacillus sp. A11-2 5XKC ; 2.209 ; Crystal structure of dibenzothiophene sulfone monooxygenase BdsA at 2.2 angstrome 5XKD ; 2.393 ; Crystal structure of dibenzothiophene sulfone monooxygenase BdsA in complex with FMN at 2.4 angstrom 3GKE ; 1.75 ; Crystal Structure of Dicamba Monooxygenase 3GL0 ; 1.75 ; Crystal structure of dicamba monooxygenase bound to 3,6 dichlorosalicylic acid (DCSA) 3GL2 ; 2.1 ; Crystal structure of dicamba monooxygenase bound to dicamba 3GOB ; 2.05 ; Crystal Structure of Dicamba Monooxygenase with Non-heme Cobalt and DCSA 3GB4 ; 2.05 ; Crystal Structure of Dicamba Monooxygenase with Non-heme Cobalt and Dicamba 3GTE ; 1.95 ; Crystal Structure of Dicamba Monooxygenase with Non-heme Iron 3GTS ; 2.2 ; Crystal Structure of Dicamba Monooxygenase with Non-heme Iron and Dicamba 2FFL ; 3.33 ; Crystal Structure of Dicer from Giardia intestinalis 4PWM ; 1.95 ; Crystal structure of Dickerson Drew Dodecamer with 5-carboxycytosine 1PXX ; 2.9 ; CRYSTAL STRUCTURE OF DICLOFENAC BOUND TO THE CYCLOOXYGENASE ACTIVE SITE OF COX-2 1C0F ; 2.4 ; CRYSTAL STRUCTURE OF DICTYOSTELIUM CAATP-ACTIN IN COMPLEX WITH GELSOLIN SEGMENT 1 1NLV ; 1.8 ; Crystal Structure Of Dictyostelium Discoideum Actin Complexed With Ca ATP And Human Gelsolin Segment 1 1YKQ ; 3.5 ; Crystal structure of Diels-Alder ribozyme 8GX4 ; 1.97008 ; Crystal structure of Diels-Alderase ApiI in complex with SAM 7Y3H ; 1.97 ; Crystal Structure of Diels-Alderase ApiI in complex with SAM and product 4O5S ; 1.8 ; Crystal structure of Diels-Alderase CE11 4O5T ; 2.9 ; Crystal structure of Diels-Alderase CE20 in complex with a product analog 7YAV ; 2.1 ; Crystal structure of Diels-Alderase MaDA1 7X2N ; 1.72 ; Crystal structure of Diels-Alderase PycR1 5BU3 ; 1.897 ; Crystal Structure of Diels-Alderase PyrI4 in complex with its product 4U2B ; 1.7 ; Crystal structure of dienelactone hydrolase (C123S) at 1.70 A resolution 2O2G ; 1.92 ; Crystal structure of Dienelactone hydrolase (YP_324580.1) from Anabaena variabilis ATCC 29413 at 1.92 A resolution 4U2C ; 1.95 ; Crystal structure of dienelactone hydrolase A-6 variant (S7T, A24V, Q35H, F38L, Q110L, C123S, Y145C, E199G and S208G) at 1.95 A resolution 4U2F ; 1.8 ; Crystal structure of dienelactone hydrolase B-1 variant (Q35H, F38L, Y64H, Q110L, C123S, Y137C, Y145C, N154D, E199G, S208G and G211D) at 1.80 A resolution 4U2G ; 1.8 ; Crystal structure of dienelactone hydrolase B-4 variant (Q35H, F38L, Y64H, Q76L, Q110L, C123S, Y137C, A141V, Y145C, N154D, E199G, S208G, G211D, S233G and 237Q) at 1.80 A resolution 4P92 ; 1.65 ; Crystal structure of dienelactone hydrolase C123S mutant at 1.65 A resolution 4U2D ; 1.67 ; Crystal structure of dienelactone hydrolase S-2 variant (Q35H, F38L, Q110L, C123S, Y137C, Y145C, N154D, E199G, S208G and G211D) at 1.67 A resolution 4U2E ; 1.7 ; Crystal structure of dienelactone hydrolase S-3 variant (Q35H, F38L, Q110L, C123S, Y137C, Y145C, N154D, E199G, S208G, G211D and K234N) at 1.70 A resolution 4ZI5 ; 1.702 ; Crystal Structure of Dienelactone Hydrolase-like Promiscuous Phospotriesterase P91 from Metagenomic Libraries 3PXS ; 2.22 ; Crystal Structure of Diferrous MauG in Complex with Pre-Methylamine Dehydrogenase: 3OGF ; 2.864 ; Crystal structure of Difoil-4P homo-trimer: de novo designed dimeric trefoil-fold sub-domain which forms homo-trimer assembly 7E6G ; 2.65 ; Crystal structure of diguanylate cyclase SiaD in complex with its activator SiaC from Pseudomonas aeruginosa 1FE2 ; 3.0 ; CRYSTAL STRUCTURE OF DIHOMO-GAMMA-LINOLEIC ACID BOUND IN THE CYCLOOXYGENASE CHANNEL OF PROSTAGLANDIN ENDOPEROXIDE H SYNTHASE-1. 1VM6 ; 2.27 ; Crystal structure of Dihydrodipicolinate reductase (TM1520) from Thermotoga maritima at 2.27 A resolution 5WOL ; 1.7 ; Crystal structure of dihydrodipicolinate reductase DapB from Coxiella burnetii 8D57 ; 2.65 ; Crystal Structure of dihydrodipicolinate reductase from Acinetobacter baumannii 3IJP ; 2.3 ; Crystal structure of dihydrodipicolinate reductase from bartonella henselae at 2.0A resolution 1XXX ; 2.28 ; Crystal structure of Dihydrodipicolinate Synthase (DapA, Rv2753c) from Mycobacterium tuberculosis 6XGS ; 2.2 ; Crystal Structure of Dihydrodipicolinate synthase (DHDPS) from Brucella suis 1330 1O5K ; 1.8 ; Crystal structure of Dihydrodipicolinate synthase (TM1521) from Thermotoga maritima at 1.80 A resolution 1XKY ; 1.94 ; Crystal Structure of Dihydrodipicolinate Synthase DapA-2 (BA3935) from Bacillus Anthracis at 1.94A Resolution. 1XL9 ; 2.23 ; Crystal Structure of Dihydrodipicolinate Synthase DapA-2 (BA3935) from Bacillus Anthracis. 4DXV ; 1.8 ; Crystal structure of Dihydrodipicolinate synthase from Acinetobacter baumannii complexed with Mg and Cl ions at 1.80 A resolution 3UQN ; 1.94 ; Crystal structure of dihydrodipicolinate synthase from Acinetobacter baumannii complexed with Oxamic acid at 1.9 Angstrom resolution 3B4U ; 1.2 ; Crystal structure of dihydrodipicolinate synthase from Agrobacterium tumefaciens str. C58 2EHH ; 1.9 ; Crystal structure of dihydrodipicolinate synthase from aquifex aeolicus 3HIJ ; 2.15 ; Crystal structure of dihydrodipicolinate synthase from Bacillus anthracis in complex with its substrate, pyruvate 3E96 ; 1.8 ; Crystal structure of dihydrodipicolinate synthase from bacillus clausii 3SI9 ; 2.1 ; Crystal structure of Dihydrodipicolinate Synthase from Bartonella Henselae 3M5V ; 1.8 ; Crystal Structure of Dihydrodipicolinate Synthase from Campylobacter jejuni 3LER ; 1.84 ; Crystal Structure of Dihydrodipicolinate Synthase from Campylobacter jejuni subsp. jejuni NCTC 11168 2RFG ; 1.5 ; Crystal structure of dihydrodipicolinate synthase from Hahella chejuensis at 1.5A resolution 6UE0 ; 1.892 ; Crystal structure of dihydrodipicolinate synthase from Klebsiella pneumoniae bound to pyruvate 3DAQ ; 1.45 ; Crystal structure of dihydrodipicolinate synthase from methicillin-resistant Staphylococcus aureus 5J5D ; 2.4 ; Crystal structure of Dihydrodipicolinate Synthase from Mycobacterium tuberculosis in complex with alpha-ketopimelic acid 3D0C ; 1.9 ; Crystal structure of dihydrodipicolinate synthase from Oceanobacillus iheyensis at 1.9 A resolution 3NOE ; 2.95 ; Crystal Structure of Dihydrodipicolinate synthase from Pseudomonas aeruginosa 3PUO ; 2.65 ; Crystal structure of dihydrodipicolinate synthase from Pseudomonas aeruginosa(PsDHDPS)complexed with L-lysine at 2.65A resolution 3DZ1 ; 1.87 ; Crystal structure of Dihydrodipicolinate Synthase from Rhodopseudomonas palustris at 1.87A resolution 3EB2 ; 2.04 ; Crystal structure of Dihydrodipicolinate Synthase from Rhodopseudomonas palustris at 2.0A resolution 3DI0 ; 2.38 ; Crystal Structure of Dihydrodipicolinate synthase from Staphylococcus aureus 3FLU ; 2.0 ; Crystal structure of dihydrodipicolinate synthase from the pathogen Neisseria meningitidis 7K6C ; 2.0 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium abscessus ATCC 19977 / DSM 44196 with NADP and inhibitor P218 8F80 ; 1.1 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM738 8F81 ; 1.3 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM777 8F84 ; 1.1 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM787 8F82 ; 1.2 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM845 8F83 ; 1.32 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM846 8F85 ; 1.15 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor MAM851 7K68 ; 1.45 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001565 7K69 ; 1.6 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001574 7K6A ; 1.6 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001575 7KI8 ; 1.25 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001580 7KI9 ; 1.25 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001912 7KM9 ; 1.95 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001913, tetragonal crystal from 7KM8 ; 1.55 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001914, orthorhombic crystal from 7KM7 ; 1.8 ; Crystal Structure of Dihydrofolate reductase (DHFR) from Mycobacterium ulcerans Agy99 in complex with NADP and inhibitor SDDC-0001914, tetragonal crystal from 8E4F ; 2.47 ; Crystal structure of dihydrofolate reductase (DHFR) from the filarial nematode W. bancrofti in complex with NADPH and folate 5SD9 ; 2.1 ; Crystal Structure of Dihydrofolate Reductase from Homo sapiens bound to NADP and SDDC Inhibitor SDDC-1096 5SD8 ; 2.05 ; Crystal Structure of Dihydrofolate Reductase from Homo sapiens bound to NADP and SDDC Inhibitor SDDC-1190 (racemic mixture) 5SD7 ; 1.8 ; Crystal Structure of Dihydrofolate Reductase from Homo sapiens bound to NADP and SDDC Inhibitor SDDC-735 5SDA ; 2.45 ; Crystal Structure of Dihydrofolate Reductase from Homo sapiens bound to NADP and SDDC Inhibitor SDDC-774 5SD6 ; 2.15 ; Crystal Structure of Dihydrofolate Reductase from Homo sapiens bound to NADP and SDDC Inhibitor SDDC-892 7K62 ; 2.05 ; Crystal Structure of Dihydrofolate reductase from Mycobacterium kansasii in complex with NADP and inhibitor P218 5SD3 ; 1.3 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1088 5SCX ; 1.3 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1190 (racemic mixture) 5SCY ; 1.4 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1198 5SD4 ; 1.25 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1218 5SCZ ; 1.75 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1224 5SD0 ; 1.75 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1225 5SD5 ; 1.2 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1230 5SD1 ; 2.0 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1235 (enantiomer) 5SD2 ; 2.0 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-1236 (enantiomer) 5SCM ; 1.65 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-22 5SCP ; 1.8 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-23 5SCN ; 1.45 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-25 5SCQ ; 1.65 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-614 5SCR ; 1.95 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-735 5SCS ; 1.55 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-781 5SCT ; 1.55 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-783 5SCU ; 1.65 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-888 5SCV ; 1.55 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-889 5SCW ; 1.75 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-916 5SCO ; 1.3 ; Crystal Structure of Dihydrofolate Reductase from Mycobacterium tuberculosis bound to NADP and SDDC Inhibitor SDDC-M7 4KM2 ; 1.4 ; Crystal structure of Dihydrofolate reductase from Mycobacterium tuberculosis in an open conformation in complex with trimethoprim 4KLX ; 1.23 ; Crystal structure of dihydrofolate reductase from Mycobacterium tuberculosis in an open conformation. 4KNE ; 2.0 ; Crystal structure of dihydrofolate reductase from Mycobacterium tuberculosis in complex with cycloguanil 6NNE ; 1.595 ; Crystal structure of Dihydrofolate reductase from Mycobacterium tuberculosis in complex with diaverdine 4KM0 ; 1.3 ; Crystal structure of dihydrofolate reductase from Mycobacterium tuberculosis in complex with pyrimethamine 4KL9 ; 1.39 ; Crystal structure of dihydrofolate reductase from Mycobacterium tuberculosis in the space group C2 6UWW ; 0.92 ; Crystal structure of dihydrofolate reductase from Mycobacterium ulcerans with P218 inhibitor 6UWQ ; 1.5 ; Crystal structure of dihydrofolate reductase from Mycobacterium ulcerans with SDDC-0001565 inhibitor 7L9T ; 1.8 ; Crystal Structure of Dihydrofolate reductase from Mycolicibacterium smegmatis in complex with SDDC-0001565 inhibitor 6E4E ; 1.9 ; Crystal structure of dihydrofolate reductase from Staphylococcus aureus MW2 bound to NADP and p218 3Q1H ; 1.804 ; Crystal Structure of Dihydrofolate Reductase from Yersinia pestis 4QI9 ; 2.297 ; Crystal structure of dihydrofolate reductase from Yersinia pestis complexed with methotrexate 1SEJ ; 2.87 ; Crystal Structure of Dihydrofolate Reductase-Thymidylate Synthase from Cryptosporidium hominis Bound to 1843U89/NADPH/dUMP 3KJR ; 1.95 ; Crystal structure of dihydrofolate reductase/thymidylate synthase from Babesia bovis determined using SlipChip based microfluidics 6UZI ; 2.8 ; Crystal structure of Dihydrolipoyl dehydrogenase from Elizabethkingia anophelis NUHP1 3V9O ; 1.451 ; Crystal structure of Dihydroneopterin aldolase (BTH_I0291) from Burkholderia thailendensis bound to guanine. 5FAR ; 2.0 ; Crystal structure of dihydroneopterin aldolase from Bacillus anthracis complex with 9-METHYLGUANINE 5F3M ; 1.498 ; Crystal structure of dihydroneopterin aldolase from Bacillus anthracis complexed with L-neopterin at 1.5 Angstroms resolution . 2NM2 ; 1.7 ; Crystal structure of dihydroneopterin aldolase from S. aureus in complex with (1S,2R)-neopterin at 1.50 Angstrom resolution 2NM3 ; 1.68 ; Crystal structure of dihydroneopterin aldolase from S. aureus in complex with (1S,2S)-monapterin at 1.68 angstrom resolution 2Z00 ; 2.42 ; Crystal structure of dihydroorotase from Thermus thermophilus 6L0F ; 3.26 ; Crystal structure of dihydroorotase in complex with 5-Aminouracil from Saccharomyces cerevisiae 7CA0 ; 2.5 ; Crystal structure of dihydroorotase in complex with 5-fluoroorotic acid from Saccharomyces cerevisiae 6L0B ; 2.7 ; Crystal structure of dihydroorotase in complex with fluorouracil from Saccharomyces cerevisiae 6L0G ; 2.053 ; Crystal structure of dihydroorotase in complex with malate at pH6 from Saccharomyces cerevisiae 6L0I ; 2.2 ; Crystal structure of dihydroorotase in complex with malate at pH6.5 from Saccharomyces cerevisiae 6L0A ; 1.79 ; Crystal structure of dihydroorotase in complex with malate at pH7 from Saccharomyces cerevisiae 6L0H ; 2.054 ; Crystal structure of dihydroorotase in complex with malate at pH7 from Saccharomyces cerevisiae 6L0J ; 1.933 ; Crystal structure of Dihydroorotase in complex with malate at pH7.5 from Saccharomyces cerevisiae 6L0K ; 3.3 ; Crystal structure of dihydroorotase in complex with malate at pH9 from Saccharomyces cerevisiae 7CA1 ; 3.6 ; Crystal structure of dihydroorotase in complex with plumbagin from Saccharomyces cerevisiae 5VGM ; 1.95 ; Crystal structure of dihydroorotase pyrC from Vibrio cholerae in complex with zinc at 1.95 A resolution. 6CTY ; 2.41 ; Crystal structure of dihydroorotase pyrC from Yersinia pestis in complex with zinc and malate at 2.4 A resolution 6B8S ; 2.25 ; Crystal Structure of Dihydroorotate Dehydrogenase from Helicobacter pylori with bound FMN 3C61 ; 1.8 ; Crystal structure of dihydroorotate dehydrogenase from Leishmania donovani 4EF9 ; 1.6 ; Crystal structure of dihydroorotate dehydrogenase from Leishmania major in complex with 4-Nitrophenyl isothiocyanate 3MJY ; 1.96 ; Crystal structure of dihydroorotate dehydrogenase from Leishmania major in complex with 5-Aminoorotic acid 3MHU ; 1.85 ; Crystal structure of dihydroorotate dehydrogenase from Leishmania major in complex with 5-Nitroorotic acid 4EF8 ; 1.56 ; Crystal structure of dihydroorotate dehydrogenase from Leishmania major in complex with Phenyl isothiocyanate 7S87 ; 2.75 ; Crystal Structure of Dihydroorotate dehydrogenase from Plasmodium falciparum in complex with Orotate, FMN, and inhibitor NCGC00600348-01 6UY4 ; 2.796 ; Crystal structure of dihydroorotate dehydrogenase from Schistosoma mansoni 3C3N ; 2.2 ; Crystal structure of dihydroorotate dehydrogenase from Trypanosoma cruzi strain Y 4XQ6 ; 2.0 ; CRYSTAL STRUCTURE OF DIHYDROOROTATE DEHYDROGENSE from MYCOBACTERIUM TUBERCULOSIS 3ORF ; 2.16 ; Crystal Structure of Dihydropteridine Reductase from Dictyostelium discoideum 8DOR ; 1.35 ; Crystal structure of Dihydropteridine reductase/oxygen-insensitive NAD(P)H nitroreductase from Klebsiella pneumoniae 2DQW ; 1.65 ; Crystal Structure of Dihydropteroate Synthase (FolP) from Thermus thermophilus HB8 8D5H ; 1.72 ; Crystal structure of dihydropteroate synthase (folP-SMZ_B27) from soil uncultured bacterium in complex with 6-hydroxymethyl-7,8-dihydropterin 8D5G ; 2.78 ; Crystal structure of dihydropteroate synthase (folP-SMZ_B27) from soil uncultured bacterium in complex with 6-hydroxymethyl-7,8-dihydropterin pyrophosphate 6UCZ ; 2.0 ; Crystal structure of dihydropteroate synthase from Anaplasma phagocytophilum with bound 6-hydroxymethylpterin-monophosphate 5UMG ; 2.601 ; Crystal structure of dihydropteroate synthase from Klebsiella pneumoniae subsp. 6OMZ ; 1.85 ; Crystal Structure of Dihydropteroate synthase from Mycobacterium smegmatis with bound 6-hydroxymethylpterin-monophosphate 7L6P ; 2.35 ; Crystal structure of dihydropteroate synthase from Stenotrophomonas maltophilia with active site-bound imidazole 2DZA ; 1.9 ; Crystal Structure of Dihydropteroate Synthase from Thermus thermophilus HB8 in Complex with 4-aminobenzoate 2DZB ; 1.9 ; Crystal Structure of Dihydropteroate Synthase from Thermus thermophilus HB8 in complex with 6HMPPP 8D5I ; 1.82 ; Crystal structure of dihydropteroate synthase H182G mutant (folP-SMZ_B27) from soil uncultured bacterium in complex with pteroic acid and pyrophosphate 3TYU ; 2.7 ; Crystal Structure of Dihydropteroate synthetase with Product1 8WQ9 ; 1.97 ; Crystal structure of dihydropyrimidinase complexed with gamma-aminobutyric acid 3SFW ; 1.73 ; Crystal structure of dihydropyrimidinase from Brevibacillus agri NCHU1002 4TQT ; 2.15 ; Crystal structure of Dihydropyrimidinase from Brucella suis 2FTW ; 2.05 ; Crystal structure of dihydropyrimidinase from dictyostelium discoideum 5E5C ; 2.1 ; Crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1 5YKD ; 2.17 ; Crystal structure of dihydropyrimidinase from Pseudomonas aeruginosa PAO1 at 2.17 angstrom resolution 2FTY ; 2.4 ; Crystal structure of dihydropyrimidinase from Saccharomyces kluyveri 2FVM ; 2.45 ; Crystal structure of dihydropyrimidinase from Saccharomyces kluyveri in complex with the reaction product N-carbamyl-beta-alanine 2FVK ; 2.4 ; Crystal structure of dihydropyrimidinase from Saccharomyces kluyveri in complex with the substrate dihydrouracil 3DC8 ; 1.85 ; Crystal structure of dihydropyrimidinase from Sinorhizobium meliloti 7WJR ; 2.0 ; Crystal structure of dihydroxybenzoate decarboxylase mutant A63S from Aspergillus oryzae in complex with catechol 7WKL ; 1.88 ; Crystal structure of dihydroxybenzoate decarboxylase mutant F296Y from Aspergillus oryzae in complex with catechol 4QRO ; 1.65 ; CRYSTAL STRUCTURE of DIHYDROXYBENZOIC ACID DECARBBOXYLASE BPRO_2061 (TARGET EFI-500288) FROM POLAROMONAS SP. JS666 WITH BOUND MANGANESE AND AN INHIBITOR, 2-NITRORESORCINOL 2IEX ; 2.2 ; Crystal structure of dihydroxynapthoic acid synthetase (GK2873) from Geobacillus kaustophilus HTA426 2YXG ; 2.2 ; Crystal structure of Dihyrodipicolinate Synthase (dapA) 3T81 ; 2.63 ; Crystal Structure of diiron adenine deaminase 2GVU ; 2.0 ; Crystal structure of diisopropyl fluorophosphatase (DFPase), mutant D229N / N120D 2WFV ; 1.85 ; Crystal structure of DILP5 variant C4 2WFU ; 1.85 ; Crystal structure of DILP5 variant DB 4WD6 ; 2.2 ; Crystal Structure of DIM-1 metallo-beta-lactamase 4ZEJ ; 1.79 ; Crystal Structure of DIM-1 Metallo-beta-Lactamase exposed to Ceftazidime 3FYC ; 2.15 ; Crystal Structure of Dim1 from the thermophilic archeon, Methanocaldococcus jannaschi 3FYD ; 1.75 ; Crystal Structure of Dim1 from the thermophilic archeon, Methanocaldococcus jannaschi 3VHH ; 2.26 ; Crystal structure of DiMe-biotin-avidin complex 3W6K ; 2.374 ; Crystal structure of dimer of ScpB N-terminal domain complexed with ScpA peptide 3K3K ; 1.7 ; Crystal structure of dimeric abscisic acid (ABA) receptor pyrabactin resistance 1 (PYR1) with ABA-bound closed-lid and ABA-free open-lid subunits 3JU5 ; 1.75 ; Crystal Structure of Dimeric Arginine Kinase at 1.75-A Resolution 3JU6 ; 2.45 ; Crystal Structure of Dimeric Arginine Kinase in Complex with AMPPNP and Arginine 2GN0 ; 1.7 ; Crystal structure of dimeric biodegradative threonine deaminase (TdcB) from Salmonella typhimurium at 1.7 A resolution (Triclinic form with one complete subunit built in alternate conformation) 2GN1 ; 2.2 ; Crystal structure of dimeric biodegradative threonine deaminase (TdcB) from Salmonella typhimurium at 2.2A resolution (Triclinic form with one dimer of TdcB in the asymmetric unit) 5MAU ; 1.3 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 (pH 6.5) 5K8Z ; 1.55 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 (pH 8.5) 5NKV ; 2.0 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 at pH 9.0 and 293 K. 5K91 ; 1.18 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 in complex with fluoride 5K90 ; 1.28 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 in complex with isothiocyanate 7OU5 ; 1.9 ; Crystal structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 in complex with nitrite 7ASB ; 1.4 ; Crystal structure of dimeric chlorite dismutase variant Q74E (CCld Q74E) from Cyanothece sp. PCC7425 7OU9 ; 2.42 ; Crystal structure of dimeric chlorite dismutase variant Q74E (CCld Q74E) from Cyanothece sp. PCC7425 in complex with nitrite 7ATI ; 1.51 ; Crystal structure of dimeric chlorite dismutase variant Q74V (CCld Q74V) from Cyanothece sp. PCC7425 7OU7 ; 1.63 ; Crystal structure of dimeric chlorite dismutase variant Q74V (CCld Q74V) from Cyanothece sp. PCC7425 in complex with nitrite 7OWI ; 1.7 ; Crystal structure of dimeric chlorite dismutase variant R127A (CCld R127A) from Cyanothece sp. PCC7425 7OUY ; 1.5 ; Crystal structure of dimeric chlorite dismutase variant R127A (CCld R127A) from Cyanothece sp. PCC7425 in complex with nitrite 7OUA ; 2.09 ; Crystal structure of dimeric chlorite dismutase variant R127K (CCld R127K) from Cyanothece sp. PCC7425 3QPI ; 2.1 ; Crystal Structure of Dimeric Chlorite Dismutases from Nitrobacter winogradskyi 3NBS ; 2.2 ; Crystal structure of dimeric cytochrome c from horse heart 6I7I ; 2.33 ; Crystal structure of dimeric FICD mutant K256A complexed with MgATP 6I7H ; 2.25 ; Crystal structure of dimeric FICD mutant K256S 5W2J ; 2.5 ; Crystal structure of dimeric form of mouse Glutaminase C 4KL6 ; 2.2 ; Crystal structure of dimeric form of NpuDnaE intein 2OKI ; 2.7 ; Crystal structure of dimeric form of PfFabZ in crystal form2 2OKH ; 3.0 ; Crystal structure of dimeric form of PfFabZ in crystal form3 3SG6 ; 1.7 ; Crystal Structure of Dimeric GCaMP2-LIA(linker 1) 3SG5 ; 1.9 ; Crystal Structure of Dimeric GCaMP3-D380Y, QP(linker 1), LP(linker 2) 3WLC ; 2.49 ; Crystal structure of dimeric GCaMP6m 2CH9 ; 2.1 ; Crystal structure of dimeric human cystatin F 3DSH ; 2.0 ; Crystal structure of dimeric interferon regulatory factor 5 (IRF-5) transactivation domain 6XNK ; 2.08 ; Crystal structure of dimeric K72A human cytochrome c alkaline conformer 6A1Z ; 2.58 ; Crystal Structure of dimeric Kinesin-3 KIF13B 3O08 ; 2.0 ; Crystal structure of dimeric KlHxk1 in crystal form I 3O1B ; 2.8 ; CRYSTAL STRUCTURE OF DIMERIC KLHXK1 IN CRYSTAL FORM II 3O1W ; 1.66 ; Crystal structure of dimeric KlHxk1 in crystal form III 3O4W ; 1.61 ; Crystal structure of dimeric KlHxk1 in crystal form IV 3O5B ; 1.97 ; Crystal structure of dimeric KlHxk1 in crystal form VII with glucose bound (open state) 4JAX ; 2.26 ; Crystal structure of dimeric KlHxk1 in crystal form X 6ZA2 ; 3.35 ; Crystal structure of dimeric latent PorU from Porphyromonas gingivalis 6S1U ; 1.9 ; Crystal structure of dimeric M-PMV protease C7A/D26N/C106A mutant in complex with inhibitor 6S1W ; 1.98 ; Crystal structure of dimeric M-PMV protease D26N mutant 6S1V ; 1.64 ; Crystal structure of dimeric M-PMV protease D26N mutant in complex with inhibitor 7C02 ; 2.91 ; Crystal structure of dimeric MERS-CoV receptor binding domain 8W6P ; 1.91 ; Crystal structure of dimeric murine SMPDL3A 5YN4 ; 1.47 ; Crystal structure of dimeric peptidyl tRNA hydrolase from Acinetobacter baumannii with occluded substrate binding site at 1.47 A resolution 7PV7 ; 2.41 ; Crystal structure of dimeric Porphyromonas gingivalis PorX, a type 9 secretion system response regulator. 3FMB ; 1.85 ; Crystal structure of dimeric protein of unknown function and ferredoxin-like fold (YP_212648.1) from Bacteroides fragilis NCTC 9343 at 1.85 A resolution 4HI3 ; 2.09 ; Crystal structure of dimeric R298A mutant of SARS coronavirus main protease 6LB5 ; 2.4 ; Crystal structure of dimeric RXR-LBD complexed with full agonist NEt-3IB and TIF2 co-activator 6LB4 ; 1.5 ; Crystal structure of dimeric RXR-LBD complexed with NEt-3ME and TIF2 co-activator 6LB6 ; 2.4 ; Crystal structure of dimeric RXR-LBD complexed with partial agonist NEt-4IB and TIF2 co-activator 6L6K ; 1.8 ; Crystal structure of dimeric RXRalpha-LBD complexed with partial agonist CBt-PMN and SRC1 4RAH ; 1.4 ; Crystal structure of dimeric S33C beta-2 microglobulin mutant at 1.4 Angstrom resolution 4R9H ; 1.9 ; Crystal structure of dimeric S33C beta-2 microglobulin mutant at 1.9 Angstrom resolution 4RA3 ; 2.8 ; Crystal structure of dimeric S33C beta-2 microglobulin mutant in complex with Thioflavin (ThT) at 2.8 Angstrom resolution 4LD8 ; 1.83 ; Crystal Structure of Dimeric Sudan Virus VP40 5NE6 ; 2.0 ; Crystal structure of dimeric TmPep1050 aminopeptidase 6I7G ; 2.7 ; Crystal structure of dimeric wild type FICD complexed with ATP 1K8C ; 2.1 ; Crystal structure of dimeric xylose reductase in complex with NADP(H) 5T7H ; 2.003 ; Crystal structure of dimeric yeast iso-1-cytochrome C with CYMAL6 1JB6 ; 1.7 ; Crystal Structure of Dimerization Domain (1-33) of HNF-1alpha 2Q2G ; 1.9 ; Crystal structure of dimerization domain of HSP40 from Cryptosporidium parvum, cgd2_1800 3NFG ; 2.51 ; Crystal structure of Dimerization module of RNA polymerase I subcomplex A49/A34.5 4L1C ; 2.28 ; Crystal structure of Dimerized N-terminal Domain of MinC 2CI3 ; 1.7 ; Crystal Structure of Dimethylarginine dimethylaminohydrolase crystal form I 2CI6 ; 2.0 ; Crystal Structure of Dimethylarginine dimethylaminohydrolase I bound with Zinc low pH 2CI4 ; 1.7 ; Crystal Structure of Dimethylarginine dimethylaminohydrolase I crystal form II 2C6Z ; 1.2 ; crystal structure of dimethylarginine dimethylaminohydrolase I in complex with citrulline 2CI5 ; 1.79 ; Crystal structure of Dimethylarginine Dimethylaminohydrolase I in complex with L-homocysteine 2CI1 ; 1.08 ; Crystal Structure of dimethylarginine dimethylaminohydrolase I in complex with S-nitroso-Lhomocysteine 2CI7 ; 1.6 ; Crystal structure of Dimethylarginine Dimethylaminohydrolase I in complex with Zinc, high pH 3I4A ; 1.898 ; Crystal structure of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) in complex with N5-(1-iminopropyl)-L-ornithine 6F7W ; 1.28 ; Crystal structure of dimethylated RSL - cucurbit[7]uril complex, C2221 Form 6F7X ; 2.42 ; Crystal structure of dimethylated RSL - cucurbit[7]uril complex, F432 form 6GL5 ; 1.6 ; Crystal Structure of dimethylated RSL - sulfonatocalix[4]arene complex 6ZUL ; 1.62 ; Crystal structure of dimethylated RSL in complex with cucurbit[7]uril and zinc 6F7Y ; 1.6 ; Crystal structure of dimethylated RSL, cucurbituril-free form 6ZUM ; 1.589 ; Crystal structure of dimethylated RSL-N23H (RSL-B3) in complex with cucurbit[7]uril and zinc 6ZUK ; 2.03 ; Crystal structure of dimethylated RSL-N23H/G68H (RSL-B6) in complex with cucurbit[7]uril and zinc 6STZ ; 1.14 ; Crystal structure of dimethylated RSLex - cucurbituril free form 6SU0 ; 1.98 ; Crystal structure of dimethylated RSLex in complex with cucurbit[7]uril 1PJ5 ; 1.61 ; Crystal structure of dimethylglycine oxidase of Arthrobacter globiformis in complex with acetate 1PJ6 ; 1.65 ; Crystal structure of dimethylglycine oxidase of Arthrobacter globiformis in complex with folic acid 4N0J ; 1.9 ; Crystal structure of dimethyllysine hen egg-white lysozyme in complex with sclx4 at 1.9 A resolution 4PRU ; 2.2 ; Crystal structure of dimethyllysine hen egg-white lysozyme in complex with sclx4 at 2.2 A resolution 4LA2 ; 1.6 ; Crystal structure of dimethylsulphoniopropionate (DMSP) lyase DddQ 4LA3 ; 2.701 ; Crystal structure of dimethylsulphoniopropionate (DMSP) lyase DddQ Y131A in complex with DMSP 6MFZ ; 6.0 ; Crystal structure of dimodular LgrA in a condensation state 1K1S ; 2.8 ; Crystal Structure of DinB from Sulfolobus solfataricus 6IZ2 ; 2.069 ; Crystal structure of DinB/YfiT protein DR0053 from D. radiodurans R1 3W9W ; 1.35 ; Crystal structure of DING protein 1H9P ; 2.0 ; Crystal Structure of Dioclea guianensis Seed Lectin 5UUY ; 1.88 ; Crystal structure of Dioclea lasiocarpa lectin (DLL) complexed with X-MAN 5TG3 ; 1.765 ; Crystal Structure of Dioclea reflexa seed lectin (DrfL) in complex with X-Man 2ZBJ ; 2.05 ; Crystal structure of Dioclea rostrata lectin 4NOT ; 2.35 ; Crystal structure of Dioclea sclerocarpa lectin complexed with X-man 2GDF ; 2.4 ; Crystal structure of Dioclea violacea seed lectin 1IWB ; 1.85 ; Crystal structure of diol dehydratase 1EGM ; 1.85 ; CRYSTAL STRUCTURE OF DIOL DEHYDRATASE-CYANOCOBALAMIN COMPLEX AT 100K. 5A24 ; 1.5 ; Crystal structure of Dionain-1, the major endopeptidase in the Venus flytrap digestive juice 4TWL ; 2.11 ; Crystal structure of dioscorin complexed with ascorbate 4TWM ; 2.11 ; Crystal structure of dioscorin from Dioscorea japonica 6KUN ; 2.002 ; Crystal structure of dioxygenase for auxin oxidation (DAO) in rice 6BDJ ; 2.15 ; Crystal structure of dioxygenase Tetur07g02040 6EFY ; 2.9 ; Crystal Structure of DIP-Alpha Ig1-3 6NRX ; 1.9 ; Crystal structure of DIP-eta IG1 homodimer 6NS1 ; 1.85 ; Crystal structure of DIP-gamma IG1+IG2 6EFZ ; 3.499 ; Crystal Structure of DIP-Theta Ig1-3 1WN1 ; 2.25 ; Crystal Structure of Dipeptiase from Pyrococcus Horikoshii OT3 3K5X ; 1.4 ; Crystal structure of dipeptidase from Streptomics coelicolor complexed with phosphinate pseudodipeptide L-Ala-D-Asp at 1.4A resolution. 3S2J ; 1.297 ; Crystal structure of dipeptidase from Streptomyces coelicolor complexed with phosphinate pseudodipeptide L-Leu-D-Ala 3S2L ; 1.399 ; Crystal structure of dipeptidase from Streptomyces coelicolor complexed with phosphinate pseudodipeptide L-Leu-D-Glu 3S2M ; 1.399 ; Crystal structure of dipeptidase from Streptomyces coelicolor complexed with phosphinate pseudodipeptide L-Phe-D-Asp 3S2N ; 1.4 ; Crystal structure of dipeptidase from Streptomyces coelicolor complexed with phosphinate pseudodipeptide L-Tyr-D-Asp 4EGE ; 2.2 ; Crystal Structure of Dipeptidase PepE from Mycobacterium ulcerans 7C9B ; 1.4 ; Crystal structure of dipeptidase-E from Xenopus laevis 4QFK ; 2.288 ; Crystal structure of dipeptide binding protein from pseudoalteromonas sp. SM9913 4QFL ; 1.749 ; Crystal structure of dipeptide binding protein from pseudoalteromonas sp. SM9913 in complex with Ala-Phe 4QFN ; 2.297 ; Crystal structure of dipeptide binding protein from pseudoalteromonas sp. SM9913 in complex with Gly-Glu 4QFO ; 2.304 ; Crystal structure of dipeptide binding protein from pseudoalteromonas sp. SM9913 in complex with Met-Leu 4QFP ; 1.903 ; Crystal structure of dipeptide binding protein from pseudoalteromonas sp. SM9913 in complex with Val-Thr 3Q4D ; 3.0 ; Crystal structure of dipeptide epimerase from Cytophaga hutchinsonii complexed with Mg and dipeptide D-Ala-L-Ala 3Q45 ; 3.0 ; Crystal structure of Dipeptide Epimerase from Cytophaga hutchinsonii complexed with Mg and dipeptide D-Ala-L-Val 3JVA ; 1.7 ; Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 3KUM ; 1.9 ; Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Arg-L-Tyr 3JW7 ; 1.8 ; Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Ile-L-Tyr 3JZU ; 2.0 ; Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Leu-L-Tyr 3K1G ; 2.0 ; Crystal structure of Dipeptide Epimerase from Enterococcus faecalis V583 complexed with Mg and dipeptide L-Ser-L-Tyr 3RIT ; 2.701 ; Crystal structure of Dipeptide Epimerase from Methylococcus capsulatus complexed with Mg and dipeptide L-Arg-D-Lys 3RO6 ; 2.2 ; Crystal structure of Dipeptide Epimerase from Methylococcus capsulatus complexed with Mg ion 3DEQ ; 2.1 ; Crystal structure of dipeptide epimerase from Thermotoga maritima complexed with L-Ala-L-Leu dipeptide 3DER ; 1.9 ; Crystal structure of dipeptide epimerase from Thermotoga maritima complexed with L-Ala-L-Lys dipeptide 3DES ; 2.3 ; Crystal structure of dipeptide epimerase from Thermotoga maritima complexed with L-Ala-L-Phe dipeptide 2ECF ; 2.8 ; Crystal Structure of Dipeptidyl Aminopeptidase IV from Stenotrophomonas maltophilia 4XZY ; 2.7 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) from Porphyromonas gingivalis 4Y01 ; 2.46 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) from Porphyromonas gingivalis 4Y02 ; 1.96 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) from Porphyromonas gingivalis (Ground) 4Y04 ; 1.66 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) from Porphyromonas gingivalis (Space) 6JTB ; 1.5 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) with citrate from Porphyromonas gingivalis (Space) 6JTC ; 2.39 ; Crystal structure of dipeptidyl peptidase 11 (DPP11) with SH-5 from Porphyromonas gingivalis (Space) 5YP1 ; 2.47 ; Crystal structure of dipeptidyl peptidase IV (DPP IV) from Pseudoxanthomonas mexicana WO24 5YP2 ; 2.13 ; Crystal structure of dipeptidyl peptidase IV (DPP IV) with DPP4 inhibitor from Pseudoxanthomonas mexicana WO24 5YP3 ; 2.44 ; Crystal structure of dipeptidyl peptidase IV (DPP IV) with Ile-Pro from Pseudoxanthomonas mexicana 5YP4 ; 1.9 ; Crystal structure of dipeptidyl peptidase IV (DPP IV) with Lys-Pro from Pseudoxanthomonas mexicana WO24 4FFV ; 2.4 ; Crystal Structure of Dipeptidyl Peptidase IV (DPP4, DPP-IV, CD26) in Complex with 11A19 Fab 4FFW ; 2.9 ; Crystal Structure of Dipeptidyl Peptidase IV (DPP4, DPP-IV, CD26) in Complex with Fab + sitagliptin 1W1I ; 3.03 ; Crystal structure of dipeptidyl peptidase IV (DPPIV or CD26) in complex with adenosine deaminase 3G0C ; 2.69 ; Crystal structure of dipeptidyl peptidase IV in complex with a pyrimidinedione inhibitor 1 3G0D ; 2.39 ; Crystal structure of dipeptidyl peptidase IV in complex with a pyrimidinedione inhibitor 2 3G0G ; 2.45 ; Crystal structure of dipeptidyl peptidase IV in complex with a pyrimidinone inhibitor 3 3F8S ; 2.43 ; Crystal structure of dipeptidyl peptidase IV in complex with inhibitor 3QBJ ; 2.21 ; Crystal structure of dipeptidyl peptidase IV in complex with inhibitor 5KBY ; 2.24 ; Crystal structure of dipeptidyl peptidase IV in complex with SYR-472 3G0B ; 2.25 ; Crystal structure of dipeptidyl peptidase IV in complex with TAK-322 4JH0 ; 2.35 ; Crystal structure of dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) (DPP-IV-WT) complex with bms-767778 AKA 2-(3-(aminomethyl)-4-(2,4- dichlorophenyl)-2-methyl-5-oxo-5,7-dihydro-6h-pyrrolo[3,4- b]pyridin-6-yl)-n,n-dimethylacetamide 6XR5 ; 1.7 ; Crystal Structure of Diphosphomevalonate decarboxylase (MVD1) Cryptococcus neoformans var. grubii serotype A 6NFZ ; 2.966 ; Crystal structure of diphosphorylated HPK1 kinase domain in complex with sunitinib in the active state. 4OW6 ; 2.8 ; Crystal structure of Diphtheria Toxin at acidic pH 7K7B ; 2.05 ; Crystal structure of diphtheria toxin from crystals obtained at pH 5.0 7K7C ; 2.05 ; Crystal structure of diphtheria toxin from crystals obtained at pH 5.5 7K7D ; 2.1 ; Crystal structure of diphtheria toxin from crystals obtained at pH 6.0 7K7E ; 2.3 ; Crystal structure of diphtheria toxin from crystals obtained at pH 7.0 8G0G ; 2.1 ; Crystal structure of diphtheria toxin H223Q/H257Q double mutant (pH 4.5) 8G0F ; 2.25 ; Crystal structure of diphtheria toxin H223Q/H257Q double mutant (pH 5.5) 4AE0 ; 1.996 ; Crystal structure of diphtheria toxin mutant CRM197 4AE1 ; 2.078 ; Crystal structure of diphtheria toxin mutant CRM197 in complex with nicotinamide 7O4W ; 2.03002 ; Crystal structure of diphtheria toxin mutant CRM197 with a disulphide bond replaced by a Cys-Acetone-Cys bridge 2H09 ; 2.1 ; Crystal structure of diphtheria toxin repressor like protein from E. coli 1VHV ; 1.75 ; Crystal structure of diphthine synthase 3D4O ; 2.1 ; Crystal structure of dipicolinate synthase subunit A (NP_243269.1) from BACILLUS HALODURANS at 2.10 A resolution 3LQK ; 2.1 ; Crystal structure of dipicolinate synthase subunit B from Bacillus halodurans C 2RIR ; 2.79 ; Crystal structure of dipicolinate synthase, A chain, from Bacillus subtilis 6NAZ ; 3.081 ; Crystal structure of DIRAS 2/3 chimera in complex with GDP 2ERX ; 1.65 ; Crystal Structure of DiRas2 in Complex With GDP and Inorganic Phosphate 2WN3 ; 1.59 ; Crystal structure of Discoidin I from Dictyostelium discoideum in complex with the disaccharide GalNAc beta 1-3 galactose, at 1.6 A resolution. 3OR1 ; 1.76 ; Crystal structure of dissimilatory sulfite reductase I (DsrI) 3OR2 ; 2.05 ; Crystal structure of dissimilatory sulfite reductase II (DsrII) 3HSM ; 2.5 ; Crystal structure of distal N-terminal beta-trefoil domain of Ryanodine Receptor type 1 4JRR ; 1.88 ; Crystal structure of disulfide bond oxidoreductase DsbA1 from Legionella pneumophila 5HD8 ; 3.15 ; Crystal structure of disulfide cross-linked D417C ClC-ec1 1Y6P ; 2.25 ; Crystal structure of disulfide engineered porcine pancratic phospholipase a2 to group-x isozyme 1Y6O ; 2.0 ; Crystal structure of disulfide engineered porcine pancreatic phospholipase A2 to group-X isozyme in complex with inhibitor MJ33 and phosphate ions 3GV1 ; 2.0 ; Crystal structure of disulfide interchange protein from Neisseria gonorrhoeae 4MCU ; 1.99 ; Crystal structure of disulfide oxidoreductase from Klebsiella pneumoniae in reduced state 4K6X ; 1.972 ; Crystal structure of disulfide oxidoreductase from Mycobacterium tuberculosis 2QWN ; 2.4 ; Crystal structure of disulfide-bond-crosslinked complex of bovine hsc70 (1-386aa)R171C and bovine Auxilin (810-910aa)D876C in the ADP*Pi state 2QWO ; 1.7 ; Crystal structure of disulfide-bond-crosslinked complex of bovine hsc70 (1-394aa)R171C and bovine Auxilin (810-910aa)D876C in the ADP*Pi form #1 2QWP ; 1.75 ; Crystal structure of disulfide-bond-crosslinked complex of bovine hsc70 (1-394aa)R171C and bovine Auxilin (810-910aa)D876C in the ADP*Pi form #2 2QWQ ; 2.21 ; Crystal structure of disulfide-bond-crosslinked complex of bovine hsc70 (1-394aa)R171C and bovine Auxilin (810-910aa)D876C in the AMPPNP hydrolyzed form 2QWR ; 2.21 ; Crystal structure of disulfide-bond-crosslinked complex of bovine hsc70 (1-394aa)R171C and bovine Auxilin (810-910aa)D876C in the AMPPNP intact form 5GRX ; 2.002 ; Crystal structure of disulfide-bonded diabody 5GRY ; 1.639 ; Crystal structure of disulfide-bonded diabody 5GRZ ; 2.7 ; Crystal structure of disulfide-bonded diabody 2D31 ; 3.2 ; Crystal structure of disulfide-linked HLA-G dimer 6RMT ; 2.0 ; Crystal structure of disulphide-linked human C3d dimer 6RMU ; 2.4 ; Crystal structure of disulphide-linked human C3d dimer in complex with Staphylococcus aureus complement subversion protein Sbi-IV 7Y9H ; 2.03 ; Crystal structure of diterpene synthase VenA from Streptomyces venezuelae ATCC 15439 7Y9G ; 2.18 ; Crystal structure of diterpene synthase VenA from Streptomyces venezuelae ATCC 15439 in complex with pyrophosphate 2VNZ ; 1.3 ; Crystal structure of dithinonite reduced soybean ascorbate peroxidase mutant W41A. 2IUP ; 1.8 ; CRYSTAL STRUCTURE OF DITHIONITE-REDUCED AROMATIC AMINE DEHYDROGENASE (AADH) FROM ALCALIGENES FAECALIS 2IUQ ; 1.5 ; CRYSTAL STRUCTURE OF DITHIONITE-REDUCED AROMATIC AMINE DEHYDROGENASE (AADH) FROM ALCALIGENES FAECALIS IN COMPLEX WITH TRYPTAMINE 5X3N ; 1.649 ; Crystal structure of DiUb-K6 4IYQ ; 2.55 ; Crystal structure of divalent ion tolerance protein CutA1 from Ehrlichia chaffeensis 3OPK ; 1.9 ; Crystal structure of divalent-cation tolerance protein CutA from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 3FYY ; 1.8 ; Crystal structure of divergent enolase from Oceanobacillus iheyensis complexed with Mg 3ES7 ; 1.9 ; Crystal structure of divergent enolase from Oceanobacillus Iheyensis complexed with Mg and L-malate. 3ES8 ; 2.2 ; Crystal structure of divergent enolase from Oceanobacillus Iheyensis complexed with Mg and L-malate. 3GD6 ; 1.6 ; Crystal structure of divergent enolase from Oceanobacillus iheyensis complexed with phosphate 4RKW ; 1.5 ; Crystal structure of DJ-1 4P34 ; 1.55 ; Crystal structure of DJ-1 in sulfenic acid form (fresh crystal) 4P2G ; 1.35 ; Crystal structure of DJ-1 in sulfinic acid form (aged crystal) 4RKY ; 1.5 ; Crystal structure of DJ-1 isoform X1 4P35 ; 1.75 ; Crystal structure of DJ-1 with Zinc(II) bound (crystal I) 4P36 ; 1.182 ; Crystal structure of DJ-1 With Zn(II) bound (crystal 2) 1Q2U ; 1.6 ; Crystal structure of DJ-1/RS and implication on familial Parkinson's disease 5H7O ; 2.8 ; Crystal structure of DJ-101 in complex with tubulin protein 1WLZ ; 1.6 ; Crystal structure of DJBP fragment which was obtained by limited proteolysis 8YDO ; 2.0 ; Crystal structure of dKeima570 4N2X ; 1.7 ; Crystal Structure of DL-2-haloacid dehalogenase 3WJ8 ; 2.7 ; Crystal Structure of DL-2-haloacid dehalogenase mutant with 2-bromo-2-methylpropionate 5X2D ; 2.6 ; Crystal structure of DLC like domain of CsTAL3 (83-177aa) 7Y8W ; 2.4 ; Crystal structure of DLC-1/SAO-1 complex 7CNU ; 2.0 ; Crystal structure of DLC2 in complex with BMF peptide 7K3L ; 1.79 ; Crystal structure of dLC8 in complex with Panoramix TQ peptide 7K3K ; 1.415 ; Crystal structure of dLC8 in complex with Panoramix TQT peptide 7K3J ; 2.5 ; Crystal structure of dLC8 in complex with Panoramix TQT+TQ peptide 3WP0 ; 2.039 ; Crystal structure of Dlg GK in complex with a phosphor-Lgl2 peptide 5CEN ; 1.7 ; Crystal structure of DLK (kinase domain) 8OUR ; 1.95 ; CRYSTAL STRUCTURE OF DLK IN COMPLEX WITH COMPOUND 16 8OUS ; 2.2 ; CRYSTAL STRUCTURE OF DLK IN COMPLEX WITH COMPOUND 19 8OUT ; 1.935 ; CRYSTAL STRUCTURE OF DLK IN COMPLEX WITH COMPOUND 22 8DEG ; 2.79 ; Crystal structure of DLK in complex with inhibitor DN0011197 5DI0 ; 1.7 ; Crystal structure of Dln1 4ZNQ ; 1.9 ; Crystal structure of Dln1 complexed with Man(alpha1-2)Man 4ZNR ; 2.1 ; Crystal structure of Dln1 complexed with Man(alpha1-3)Man 4ZNO ; 1.86 ; Crystal structure of Dln1 complexed with sucrose 3FCC ; 2.32 ; CRYSTAL STRUCTURE OF DLTA PROTEIN IN COMPLEX WITH ATP and MAGNESIUM 3DHV ; 2.0 ; Crystal structure of DltA protein in complex with D-alanine adenylate 3E7W ; 2.28 ; Crystal structure of DLTA: Implications for the reaction mechanism of non-ribosomal peptide synthetase (NRPS) adenylation domains 3E7X ; 2.6 ; Crystal structure of DLTA: implications for the reaction mechanism of non-ribosomal peptide synthetase (NRPS) adenylation domains 7DXM ; 2.96 ; Crystal structure of DltD 8AKH ; 1.4 ; Crystal structure of DltE from L. plantarum soaked with LTA 8AGR ; 1.86 ; Crystal structure of DltE from L. plantarum, apo form 8AIK ; 1.95 ; Crystal structure of DltE from L. plantarum, tartare bound form 8AJI ; 1.94 ; Crystal structure of DltE from L. plantarum, TCEP form 5VNY ; 1.101 ; Crystal structure of DM14-3 domain of Lgd 8DB0 ; 2.26 ; Crystal structure of DMATS1 prenyltransferase in complex with L-Trp and DMSPP 8DAZ ; 2.49 ; Crystal structure of DMATS1 prenyltransferase in complex with L-Trp and GSPP 8DAY ; 2.55 ; Crystal Structure of DMATS1 prenyltransferase in complex with L-Tyr and DMSPP 7Q4I ; 2.4 ; Crystal structure of DmC1GalT1 in complex with UDP-Mn2+ and the APD-TGalNAc-RP 5I8J ; 1.75 ; Crystal structure of Dmd from phage RB69 4IZD ; 1.8 ; Crystal structure of DmdD E121A in complex with MMPA-CoA 4IZC ; 1.8 ; Crystal structure of DmdD E121A in complex with MTA-CoA 4IZB ; 1.504 ; Crystal structure of DmdD, a crotonase superfamily enzyme that catalyzes the hydration and hydrolysis of methylthioacryloyl-CoA 6AMU ; 2.151 ; Crystal structure of DMF5 TCR bound to HLA-A2 presenting synthetic peptide MMWDRGLGMM 6AM5 ; 2.394 ; Crystal structure of DMF5 TCR bound to HLA-A2 presenting synthetic peptide SMLGIGIVPV 6MRK ; 2.8 ; Crystal structure of dmNxf2 NTF2-like domain in complex with Nxt1/p15 6OPF ; 2.0 ; Crystal structure of dmNxf2 UBA domain fused with Panoramix helix 6AK1 ; 2.284 ; Crystal structure of DmoA from Hyphomicrobium sulfonivorans 3M20 ; 2.37 ; Crystal structure of DmpI from Archaeoglobus fulgidus determined to 2.37 Angstroms resolution 3M21 ; 1.9 ; Crystal structure of DmpI from Helicobacter pylori Determined to 1.9 Angstroms resolution 5CU1 ; 2.3 ; Crystal structure of DMSP lyase DddQ from Ruegeria pomeroyi DSS-3 4B28 ; 2.15 ; Crystal structure of DMSP lyase RdDddP from Roseobacter denitrificans 6I0V ; 1.851 ; Crystal structure of DmTailor in complex with CACAGU RNA 6I0T ; 2.0 ; Crystal structure of DmTailor in complex with GpU 6I0U ; 2.001 ; Crystal structure of DmTailor in complex with U6 RNA 6I0S ; 1.9 ; Crystal structure of DmTailor in complex with UMPNPP 4ONH ; 3.008 ; Crystal Structure of DN6 TCR 4P55 ; 2.504 ; Crystal structure of DNA binding domain of K11 from KSHV 3IHU ; 1.92 ; Crystal structure of DNA binding protein (YP_298823.1) from Ralstonia eutropha JMP134 at 1.92 A resolution 6IFM ; 2.804 ; Crystal structure of DNA bound VapBC from Salmonella typhimurium 5NZY ; 1.551 ; Crystal structure of DNA cross-link repair protein 1A in complex with Cefotaxime 5NZW ; 2.7 ; Crystal structure of DNA cross-link repair protein 1A in complex with ceftriaxone 5NZX ; 1.47 ; Crystal structure of DNA cross-link repair protein 1A in complex with Ceftriaxone (alternative site) 3E0C ; 2.41 ; Crystal Structure of DNA Damage-Binding protein 1(DDB1) 8HIS ; 2.01 ; Crystal structure of DNA decamer containing GuNA[Me,tBu] 6CQ3 ; 1.3 ; Crystal structure of DNA dodecamer D(CGCGAATTCGCG) 5XUV ; 1.9 ; Crystal structure of DNA duplex containing 4-thiothymine-2Ag(I)-4-thiothymine base pairs 4L25 ; 1.1 ; Crystal structure of DNA duplex containing consecutive T-T mispairs 4L26 ; 1.4 ; Crystal structure of DNA duplex containing consecutive T-T mispairs (Br-derivative) 4R6M ; 2.357 ; Crystal Structure of DNA Duplex Containing Two Consecutive Mercury-mediated Base Pairs 5LJ4 ; 2.17 ; Crystal structure of DNA duplex containing ZP base pair 2ZJT ; 2.8 ; Crystal structure of dna gyrase B' domain sheds lights on the mechanism for T-segment navigation 1NLF ; 1.95 ; Crystal Structure of DNA Helicase RepA in complex with sulfate at 1.95 A resolution 4EFB ; 2.2 ; Crystal structure of DNA ligase 4EFE ; 2.0 ; crystal structure of DNA ligase 3SGI ; 3.5 ; Crystal structure of DNA ligase A BRCT domain deleted mutant of Mycobacterium tuberculosis 8I50 ; 0.95 ; Crystal structure of DNA octamer containing GuNA[Me,Me] 8HU5 ; 0.93 ; Crystal structure of DNA octamer containing GuNA[Me,tBu] 1IQR ; 2.1 ; Crystal structure of DNA photolyase from Thermus thermophilus 7N2M ; 2.9 ; Crystal structure of DNA polymerase alpha catalytic core in complex with dCTP and template/primer having T-C mismatch at the post-insertion site 1HUO ; 2.6 ; CRYSTAL STRUCTURE OF DNA POLYMERASE BETA COMPLEXED WITH DNA AND CR-TMPPCP 7S9K ; 1.97 ; Crystal Structure of DNA Polymerase Beta with Fapy-dG base-paired with a dA 7S9J ; 1.91 ; Crystal Structure of DNA Polymerase Beta with Fapy-dG base-paired with a dC 7S9M ; 2.31 ; Crystal Structure of DNA Polymerase Beta with Ring open intermediate Fapy-dG base-paired with a dA 7S9L ; 2.05 ; Crystal Structure of DNA Polymerase Beta with Ring open intermediate Fapy-dG base-paired with a dC 1HUZ ; 2.6 ; CRYSTAL STRUCTURE OF DNA POLYMERASE COMPLEXED WITH DNA AND CR-PCP 2XHB ; 2.72 ; Crystal structure of DNA polymerase from Thermococcus gorgonarius in complex with hypoxanthine-containing DNA 8DT6 ; 2.35 ; Crystal Structure of DNA Polymerase III beta subunit from Elizabethkingia anophelis 3P16 ; 2.89 ; Crystal structure of DNA polymerase III sliding clamp 6DLY ; 2.1 ; Crystal structure of DNA polymerase III subunit beta from Mycobacterium marinum in complex with a natural product 5W7Z ; 1.7 ; Crystal structure of DNA polymerase III subunit beta from Rickettsia conorii 6DLK ; 2.0 ; Crystal structure of DNA polymerase III subunit beta from Rickettsia rickettsii 2AWA ; 2.5 ; Crystal structure of DNA polymerase III, beta chain (EC 2.7.7.7) (np_344555.1) from STREPTOCOCCUS PNEUMONIAE TIGR4 at 2.50 A resolution 1VPK ; 2.0 ; Crystal structure of DNA polymerase III, beta subunit (TM0262) from Thermotoga maritima at 2.00 A resolution 1RZT ; 2.1 ; Crystal structure of DNA polymerase lambda complexed with a two nucleotide gap DNA molecule 4TR6 ; 1.5 ; Crystal structure of DNA polymerase sliding clamp from Bacillus subtilis 6IZO ; 1.94 ; Crystal structure of DNA polymerase sliding clamp from Caulobacter crescentus 4TR7 ; 2.29 ; Crystal structure of DNA polymerase sliding clamp from Mycobaterium tuberculosis 4TR8 ; 1.8 ; Crystal structure of DNA polymerase sliding clamp from Pseudomonas aeruginosa 4TSZ ; 2.0 ; Crystal structure of DNA polymerase sliding clamp from Pseudomonas aeruginosa with ligand 1V33 ; 1.8 ; Crystal structure of DNA primase from Pyrococcus horikoshii 1L8Q ; 2.7 ; CRYSTAL STRUCTURE OF DNA REPLICATION INITIATION FACTOR 1EV7 ; 2.38 ; CRYSTAL STRUCTURE OF DNA RESTRICTION ENDONUCLEASE NAEI 1D8X ; 1.2 ; CRYSTAL STRUCTURE OF DNA SHEARED TANDEM G A BASE PAIRS 1D9R ; 1.5 ; CRYSTAL STRUCTURE OF DNA SHEARED TANDEM G-A BASE PAIRS 1DCR ; 1.6 ; CRYSTAL STRUCTURE OF DNA SHEARED TANDEM G-A BASE PAIRS 3W2X ; 1.6 ; Crystal structure of DNA uridine endonuclease Mth212 3W2Y ; 1.9 ; Crystal structure of DNA uridine endonuclease Mth212 mutant W205S 3U2N ; 1.25 ; Crystal structure of DNA(CGCGAATTCGCG)2 at 1.25 angstroms 2H56 ; 2.55 ; Crystal structure of DNA-3-methyladenine glycosidase (10174367) from Bacillus halodurans at 2.55 A resolution 7XKM ; 2.79 ; Crystal structure of DNA-Ag(I) rod comprising a one-dimensional array of 11 silver ions 2D1V ; 2.4 ; Crystal structure of DNA-binding domain of Bacillus subtilis YycF 6ZWT ; 2.2 ; Crystal structure of DNA-binding domain of OmpR of two-component system of Acinetobacter baumannii 5WFY ; 1.4 ; Crystal structure of DNA-binding domain of the bacteriophage T4 ligase 3B2N ; 2.04 ; Crystal structure of DNA-binding response regulator, LuxR family, from Staphylococcus aureus 3MKL ; 2.15 ; Crystal structure of DNA-binding transcriptional dual regulator from Escherichia coli K-12 7C9O ; 2.55 ; Crystal structure of DNA-bound CCT/NF-YB/YC complex (HD1CCT/GHD8/OsNF-YC2) 5Z2T ; 2.623 ; Crystal structure of DNA-bound DUX4-HD2 4QJU ; 2.16 ; Crystal structure of DNA-bound nucleoid associated protein, SAV1473 2JGU ; 2.6 ; crystal structure of DNA-directed DNA polymerase 6I5F ; 2.6 ; Crystal structure of DNA-free E.coli MutS P839E dimer mutant 3VK7 ; 2.1 ; Crystal structure of DNA-glycosylase bound to DNA containing 5-Hydroxyuracil 3VK8 ; 2.0 ; Crystal structure of DNA-glycosylase bound to DNA containing Thymine glycol 4U6K ; 1.5 ; Crystal structure of DNA/RNA duplex containing 2'-4'-BNA-NC 4U6M ; 1.9 ; Crystal structure of DNA/RNA duplex obtained in the presence of Spermine 4U6L ; 1.9 ; Crystal structure of DNA/RNA duplex obtained in the presence of [Co(NH3)6]Cl3 and SrCl2 5EAN ; 2.36 ; Crystal structure of Dna2 in complex with a 5' overhang DNA 5EAX ; 3.05 ; Crystal structure of Dna2 in complex with an ssDNA 5EAW ; 3.0 ; Crystal structure of Dna2 nuclease-helicase 5WSP ; 1.502 ; Crystal structure of DNA3 duplex 1J1V ; 2.1 ; Crystal structure of DnaA domainIV complexed with DnaAbox DNA 2I5U ; 1.5 ; Crystal structure of DnaD domain protein from Enterococcus faecalis. Structural genomics target APC85179 2ZC2 ; 2.1 ; Crystal structure of DnaD-like replication protein from Streptococcus mutans UA159, gi 24377835, residues 127-199 3NZM ; 1.55 ; Crystal structure of DNAE intein with N-extein in redox trap 7CIZ ; 1.8 ; Crystal structure of DNAJC9 HBD helix2 in complex with H3.3-H4 dimer and MCM2 HBD 7CJ0 ; 2.5 ; Crystal structure of DNAJC9 HBD in complex with H3.3-H4 dimer and MCM2 HBD 7RZM ; 2.15 ; Crystal Structure of dnaN DNA polymerase III beta subunit from Stenotrophomonas maltophilia K279a 8H2F ; 1.448 ; Crystal structure of DnaQ domain in complex witn TMP of Streptococcus thermophilus strain DGCC 7710 8H18 ; 1.499 ; Crystal structure of DnaQ domain of Streptococcus thermophilus strain DGCC 7710 6X2D ; 1.85 ; Crystal Structure of DNase I Domain of Ribonuclease E from Vibrio cholerae 4OU6 ; 1.96 ; Crystal structure of DnaT84-153-dT10 ssDNA complex form 1 4OU7 ; 2.83 ; Crystal structure of DnaT84-153-dT10 ssDNA complex reveals a novel single-stranded DNA binding mode 3VAX ; 2.4 ; Crystal structure of DndA from streptomyces lividans 4LRV ; 2.5 ; Crystal structure of DndE from Escherichia coli B7A involved in DNA phosphorothioation modification 5WTU ; 2.9 ; Crystal structure of DndE G21/24K mutant involved in DNA phosphorothioation 4Z96 ; 2.85 ; Crystal structure of DNMT1 in complex with USP7 5WVO ; 1.997 ; Crystal structure of DNMT1 RFTS domain in complex with K18/K23 mono-ubiquitylated histone H3 6BRR ; 2.97 ; Crystal structure of DNMT3A (R836A)-DNMT3L in complex with DNA containing two CpG sites 4QBQ ; 2.406 ; Crystal structure of DNMT3a ADD domain bound to H3 peptide 4QBS ; 1.8 ; Crystal structure of DNMT3a ADD domain E545R mutant bound to H3T3ph peptide 4QBR ; 1.902 ; Crystal structure of DNMT3a ADD domain G550D mutant bound to H3 peptide 4U7P ; 3.821 ; Crystal structure of DNMT3A-DNMT3L complex 5YX2 ; 2.653 ; Crystal structure of DNMT3A-DNMT3L in complex with DNA containing two CpG sites 4U7T ; 2.9 ; Crystal structure of DNMT3A-DNMT3L in complex with histone H3 6F57 ; 3.098 ; Crystal structure of DNMT3A-DNMT3L in complex with single CpG-containing DNA 6U8W ; 2.94892 ; Crystal structure of DNMT3B(K777A)-DNMT3L in complex with CpGpT DNA 6U90 ; 3.00082 ; Crystal structure of DNMT3B(N779A)-DNMT3L in complex with CpGpT DNA 6U91 ; 2.99999 ; Crystal structure of DNMT3B(Q772R)-DNMT3L in complex with CpGpT DNA 6U8X ; 2.95064 ; Crystal structure of DNMT3B-DNMT3L in complex with CpApG DNA 6U8P ; 3.05 ; Crystal structure of DNMT3B-DNMT3L in complex with CpGpA DNA 6U8V ; 3.0 ; Crystal structure of DNMT3B-DNMT3L in complex with CpGpT DNA 3VAT ; 2.1 ; Crystal structure of DNPEP, ZnMg form 3VAR ; 2.25 ; Crystal structure of DNPEP, ZnZn form 4KXL ; 1.69 ; Crystal structure of DNPH1 (RCL) with 6-CYCLOPENTYL-AMP 4KXN ; 1.9 ; Crystal structure of DNPH1 (RCL) with kinetine riboside monophosphate 4KXM ; 2.24 ; Crystal structure of DNPH1 (RCL) WITH N6-ISOPENTENYL-AMP 3DKW ; 3.6 ; Crystal Structure of DNR from Pseudomonas aeruginosa. 2DQB ; 2.2 ; Crystal structure of dNTP triphosphohydrolase from Thermus thermophilus HB8, which is homologous to dGTP triphosphohydrolase 8HYL ; 2.0 ; Crystal structure of DO1 Fv-clasp fragment 4LCV ; 2.0 ; Crystal Structure of DOC2B C2A domain 4LDC ; 1.264 ; Crystal Structure of DOC2B C2B domain 7XIN ; 2.0 ; Crystal structure of DODC from Pseudomonas 3W80 ; 1.4 ; Crystal structure of dodecamer human insulin with double C-axis length of the hexamer 2 Zn insulin cell 5YL5 ; 1.9 ; Crystal structure of dodecameric Dehydroquinate dehydratase from Acinetobacter baumannii at 1.9A resolution 1SBZ ; 2.0 ; Crystal Structure of dodecameric FMN-dependent Ubix-like Decarboxylase from Escherichia coli O157:H7 4RB4 ; 3.88 ; Crystal structure of dodecameric iron-containing heptosyltransferase TibC in complex with ADP-D-beta-D-heptose at 3.9 angstrom resolution 8DBA ; 3.5 ; Crystal structure of dodecameric KaiC 5WRF ; 2.51 ; Crystal structure of dodecameric type II dehydroquinate dehydratase from Acinetobacter baumannii with unexplained connecting electron density between free cysteine residues of molecular pairs 7CPM ; 2.6 ; CRYSTAL STRUCTURE OF DODECAPRENYL DIPHOSPHATE SYNTHASE FROM THERMOBIFIDA FUSCA 7CPN ; 2.28 ; CRYSTAL STRUCTURE OF DODECAPRENYL DIPHOSPHATE SYNTHASE FROM THERMOBIFIDA FUSCA 4CLV ; 3.12 ; Crystal Structure of dodecylphosphocholine-solubilized NccX from Cupriavidus metallidurans 31A 3GOU ; 3.0 ; Crystal structure of dog (Canis familiaris) hemoglobin 1K8Q ; 2.7 ; CRYSTAL STRUCTURE OF DOG GASTRIC LIPASE IN COMPLEX WITH A PHOSPHONATE INHIBITOR 5MZF ; 2.0 ; Crystal structure of dog MTH1 protein 1P5T ; 2.35 ; Crystal Structure of Dok1 PTB Domain 1UEF ; 2.5 ; Crystal Structure of Dok1 PTB Domain Complex 6GPM ; 1.73 ; Crystal structure of domain 2 from TmArgBP 1EJ8 ; 1.55 ; CRYSTAL STRUCTURE OF DOMAIN 2 OF THE YEAST COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE (LYS7) AT 1.55 A RESOLUTION 2XHA ; 1.906 ; Crystal Structure of Domain 2 of Thermotoga maritima N-utilization Substance G (NusG) 1WVN ; 2.1 ; Crystal Structure of domain 3 of human alpha polyC binding protein 7VZO ; 1.75 ; crystal structure of Domain 5-6 of filamin C from Scylla paramamosain 6XKS ; 2.4 ; Crystal structure of domain A from the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) of Salmonella typhimurium 353D ; 2.4 ; CRYSTAL STRUCTURE OF DOMAIN A OF THERMUS FLAVUS 5S RRNA AND THE CONTRIBUTION OF WATER MOLECULES TO ITS STRUCTURE 361D ; 3.0 ; CRYSTAL STRUCTURE OF DOMAIN E OF THERMUS FLAVUS 5S RRNA: A HELICAL RNA-STRUCTURE INCLUDING A TETRALOOP 3UC0 ; 2.71 ; Crystal structure of domain I of the envelope glycoprotein ectodomain from dengue virus serotype 4 in complex with the fab fragment of the chimpanzee monoclonal antibody 5H2 4QEG ; 2.0 ; Crystal structure of domain I10 from titin (space group P41) 5JDJ ; 1.738 ; Crystal structure of domain I10 from titin in space group P212121 2Z4R ; 3.05 ; Crystal structure of domain III from the Thermotoga maritima replication initiation protein DnaA 2Z4S ; 3.0 ; Crystal structure of domain III from the Thermotoga maritima replication initiation protein DnaA 3B31 ; 2.4 ; Crystal structure of domain III of the Cricket Paralysis Virus IRES RNA 3LNO ; 2.1 ; Crystal Structure of Domain of Unknown Function DUF59 from Bacillus anthracis 8GDW ; 2.35 ; Crystal structure of Domain Related to Iron (DRI) from cyanobacteria 8GF4 ; 3.0 ; Crystal structure of Domain Related to Iron (DRI) in complex with heme 5QU3 ; 1.02 ; Crystal Structure of domain swapped human Nck SH3.1, 1.01A, monoclinic 1MI7 ; 2.5 ; Crystal Structure of Domain Swapped trp Aporepressor in 30%(v/v) Isopropanol 6ST6 ; 2.05 ; Crystal Structure of Domain Swapped Trp Repressor V58I Variant 6ST7 ; 2.45 ; Crystal Structure of Domain Swapped Trp Repressor V58I Variant with bound L-trp 7OS9 ; 2.45 ; Crystal Structure of Domain Swapped Trp Repressor V58I Variant with purification tag 3TBD ; 1.8 ; Crystal Structure of domain VI and LE1 of human Netrin-G2 5E4R ; 1.94 ; Crystal structure of domain-duplicated synthetic class II ketol-acid reductoisomerase 2Ia_KARI-DD 6FNZ ; 2.23 ; Crystal Structure of domain-swapped C-terminal domain of human doublecortin 5ZYO ; 1.75 ; Crystal Structure of domain-swapped Circular-Permuted YbeA (CP74) from Escherichia coli 7DNS ; 2.327 ; Crystal structure of domain-swapped dimer of H5_Fold-0 Elsa; de novo designed protein with an asymmetric all-alpha topology 3UX2 ; 1.8 ; Crystal Structure of Domain-Swapped Fam96a Major dimer 3UX3 ; 1.8 ; Crystal Structure of Domain-Swapped Fam96a minor dimer 3DAK ; 2.25 ; Crystal Structure of Domain-Swapped OSR1 kinase domain 4DG6 ; 2.9 ; Crystal structure of domains 1 and 2 of LRP6 1CID ; 2.8 ; CRYSTAL STRUCTURE OF DOMAINS 3 & 4 OF RAT CD4 AND THEIR RELATIONSHIP TO THE NH2-TERMINAL DOMAINS 6YHN ; 1.8 ; Crystal structure of domains 4-5 of CNFy from Yersinia pseudotuberculosis 2NZI ; 2.9 ; Crystal structure of domains A168-A170 from titin 5CS0 ; 2.5 ; Crystal structure of domains AC1-AC2 of yeast acetyl-CoA carboxylase 5CS4 ; 3.19 ; Crystal structure of domains AC3-AC5 of yeast acetyl-CoA carboxylase 5CSA ; 3.0 ; Crystal structure of domains BT-BCCP-AC1-AC5 of yeast acetyl-CoA carboxylase 5E7H ; 1.57 ; Crystal structure of domains CD (residues 230-489) of Bacova_02650 4HSQ ; 1.87 ; Crystal Structure of Domains D2 and D3 of the Major Pilin SpaD from Corynebacterium diphtheriae 1JS6 ; 2.6 ; Crystal Structure of DOPA decarboxylase 1JS3 ; 2.25 ; Crystal structure of dopa decarboxylase in complex with the inhibitor carbidopa 7JOZ ; 3.8 ; Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist 3TE4 ; 1.46 ; Crystal structure of dopamine N Acetyltransferase in complex with acetyl-COA from Drosophila Melanogaster 6IQL ; 3.5 ; Crystal structure of dopamine receptor D4 bound to the subtype-selective ligand, L745870 6IN3 ; 2.3 ; Crystal structure of DOT1L in complex with 18-Crown-6 3UWP ; 2.05 ; Crystal structure of Dot1l in complex with 5-iodotubercidin 3SX0 ; 2.28 ; Crystal structure of Dot1l in complex with a brominated SAH analog 5MVS ; 2.18 ; Crystal structure of Dot1L in complex with adenosine and inhibitor CPD1 [N6-(2,6-dichlorophenyl)-N6-(pent-2-yn-1-yl)quinoline-4,6-diamine] 6TEL ; 2.19 ; Crystal structure of Dot1L in complex with an inhibitor (compound 10). 6TEN ; 2.21 ; Crystal structure of Dot1L in complex with an inhibitor (compound 11). 6TE6 ; 1.98 ; Crystal structure of Dot1L in complex with an inhibitor (compound 3). 4HRA ; 3.15 ; Crystal Structure of DOT1L in Complex with EPZ-5676 4EK9 ; 2.5 ; Crystal structure of DOT1L in complex with EPZ000004 4EKG ; 2.8 ; Crystal Structure of DOT1L in Complex with EPZ003696 4EKI ; 2.85 ; Crystal Structure of DOT1L in complex with EPZ004777 5DTM ; 2.2 ; Crystal structure of Dot1L in complex with inhibitor CPD1 [4-(2,6-dichlorobenzoyl)-N-methyl-1H-pyrrole-2-carboxamide] 5MW3 ; 2.09 ; Crystal structure of Dot1L in complex with inhibitor CPD1 [N6-(2,6-dichlorophenyl)-N6-(pent-2-yn-1-yl)quinoline-4,6-diamine] and inhibitor CPD2 [(R)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-3-amine] 5DSX ; 2.41 ; Crystal structure of Dot1L in complex with inhibitor CPD10 [6'-chloro-1,4-dimethyl-5'-(2-methyl-6-((4-(methylamino)pyrimidin-2-yl)amino)-1H-indol-1-yl)-[3,3'-bipyridin]-2(1H)-one] 5DT2 ; 2.3 ; Crystal structure of Dot1L in complex with inhibitor CPD11 [N4-methyl-N2-(2-methyl-1-(2-phenoxyphenyl)-1H-indol-6-yl)pyrimidine-2,4-diamine] 5DRT ; 2.69 ; Crystal structure of Dot1L in complex with inhibitor CPD2 [2-(2-(5-((2-chlorophenoxy)methyl)-1H-tetrazol-1-yl)acetyl)-N-(4-chlorophenyl)hydrazinecarboxamide] 5DTQ ; 2.61 ; Crystal structure of Dot1L in complex with inhibitor CPD3 [(2,6-dichlorophenyl)(quinolin-6-yl)methanone] 5DRY ; 2.41 ; Crystal structure of Dot1L in complex with inhibitor CPD3 [N-(1-(2-chlorophenyl)-1H-indol-6-yl)-2-(2-(5-(2-chlorophenyl)-1H-tetrazol-1-yl)acetyl)hydrazinecarboxamide] 5DTR ; 2.34 ; Crystal structure of Dot1L in complex with inhibitor CPD5 [N-(2,6-dichlorophenyl)-4-methoxy-N-methylquinolin-6-amine] 5MW4 ; 2.19 ; Crystal structure of Dot1L in complex with inhibitor CPD7 [N-(3-(((R)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-3-yl)(methyl)amino)propyl)-2-(3-(2-chloro-3-(2-methylpyridin-3-yl)benzo[b]thiophen-5-yl)ureido)acetamide] 3ADY ; 2.0 ; Crystal structure of DotD from Legionella 6EXD ; 2.14 ; Crystal structure of DotM cytoplasmic domain (residues 153-380) SeMet derivative 6EXA ; 1.79 ; Crystal structure of DotM cytoplasmic domain (residues 153-380), double mutant R196E/R197E 6EXB ; 1.84 ; Crystal structure of DotM cytoplasmic domain (residues 153-380), native form 6EXE ; 2.0 ; Crystal structure of DotM cytoplasmic domain (residues 153-380),R217E 6EXC ; 2.16 ; Crystal structure of DotM cytoplasmic domain (residues 153-380),R314E/R315E 4KGO ; 3.194 ; Crystal Structure of double Leucine to Methionine mutant human splunc1 lacking the secretion signal sequence 4P0K ; 1.7 ; Crystal Structure of Double Loop-Swapped Interleukin-36Ra 4P0L ; 1.55 ; Crystal Structure of Double Loop-Swapped Interleukin-36Ra With Additional Point Mutations 5JJC ; 2.01 ; Crystal Structure of double mutant (Q96A-Y125A) O-Acetyl Serine Sulfhydralase from Brucella abortus 4TTA ; 2.0 ; Crystal structure of double mutant E. Coli purine nucleoside phosphorylase with 2 FMC molecules 4TTI ; 1.89 ; Crystal structure of double mutant E. Coli purine nucleoside phosphorylase with 4 FMC molecules 4TTJ ; 1.874 ; Crystal structure of double mutant E. Coli purine nucleoside phosphorylase with 6 FMC molecules 6O69 ; 2.081 ; Crystal Structure of Double Mutant L380R/F535K of Human Acetylcholinesterase 1KEB ; 1.8 ; Crystal Structure of Double Mutant M37L,P40S E.coli Thioredoxin 5DSU ; 1.93 ; Crystal structure of double mutant of N-domain of human calmodulin 3CZO ; 2.2 ; Crystal Structure of Double Mutant Phenylalanine Ammonia-Lyase From Anabaena Variabilis 5F7Z ; 1.8 ; Crystal structure of Double Mutant S12T and N87T of Adenosine/Methylthioadenosine Phosphorylase from Schistosoma mansoni in APO Form 5FAK ; 1.87 ; Crystal structure of Double Mutant S12T and N87T of Adenosine/Methylthioadenosine Phosphorylase from Schistosoma mansoni in complex with Adenine 4IFT ; 1.995 ; Crystal structure of double mutant thermostable NPPase from Geobacillus stearothermophilus 4YU9 ; 2.1 ; Crystal Structure of double mutant Y115E Y117E human Glutaminyl Cyclase 4YWY ; 1.95 ; Crystal Structure of double mutant Y115E Y117E human Glutaminyl Cyclase in complex with inhibitor PBD-150 7CP0 ; 1.7 ; Crystal Structure of double mutant Y115E Y117E human Secretory Glutaminyl Cyclase 7D8E ; 2.0 ; Crystal Structure of double mutant Y115E Y117E human Secretory Glutaminyl Cyclase in complex with LSB-09 7COZ ; 1.85 ; Crystal Structure of double mutant Y115E Y117E human Secretory Glutaminyl Cyclase in complex with LSB-41 1TDW ; 2.1 ; Crystal structure of double truncated human phenylalanine hydroxylase BH4-responsive PKU mutant A313T. 1DMW ; 2.0 ; CRYSTAL STRUCTURE OF DOUBLE TRUNCATED HUMAN PHENYLALANINE HYDROXYLASE WITH BOUND 7,8-DIHYDRO-L-BIOPTERIN 5D6W ; 1.992 ; Crystal structure of double tudor domain of human lysine demethylase KDM4A 5D6X ; 2.153 ; Crystal structure of double tudor domain of human lysine demethylase KDM4A 5D6Y ; 2.287 ; Crystal structure of double tudor domain of human lysine demethylase KDM4A complexed with histone H3K23me3 4RF6 ; 1.95 ; Crystal structure of double-domain arginine kinase from Anthopleura japonicas 4RF8 ; 2.17 ; Crystal structure of double-domain arginine kinase from Anthopleura japonicas in complex with ADP 4RF9 ; 2.35 ; Crystal structure of double-domain arginine kinase from Anthopleura japonicas in complex with L-arginine and ATPgS 4RF7 ; 2.1 ; Crystal structure of double-domain arginine kinase from Anthopleura japonicas in complex with substrate L-arginine 4KQ0 ; 2.1 ; Crystal structure of double-helical CGG-repetitive RNA 19mer complexed with RSS p19 4KTG ; 1.92 ; Crystal structure of double-helical GGC-repetitive RNA 19mer complexed with RSS p19 6ZQS ; 1.95 ; Crystal structure of double-phosphorylated p38alpha with ATF2(83-102) 6DY5 ; 1.26 ; Crystal structure of double-stranded DNA AGGGATCCCT in complex with Zn2+ 8E5E ; 2.62 ; Crystal structure of double-stranded DNA deaminase toxin DddA in complex with DNA with the target cytosine flipped into the active site 8E5D ; 2.39 ; Crystal structure of double-stranded DNA deaminase toxin DddA in complex with DNA with the target cytosine parked in the major groove 6DWT ; 1.6 ; Crystal structure of double-stranded DNA GAGGCCTC, crystals grown in Mg2+ 6DXJ ; 1.65 ; Crystal structure of double-stranded DNA GAGGCCTC; crystals grown in Zn2+ 6DY9 ; 2.3 ; Crystal structure of double-stranded DNA GGGATCCC; crystals grown in Zn2+ 4PCO ; 1.32 ; Crystal structure of double-stranded RNA with four terminal GU wobble base pairs 8CI4 ; 2.01 ; Crystal structure of doubly S-methanethiolated rabbit M-type creatine kinase 5LTC ; 2.101 ; Crystal structure of doubly spin labelled VcSiaP R125 3DMK ; 4.19 ; Crystal structure of Down Syndrome Cell Adhesion Molecule (DSCAM) isoform 1.30.30, N-terminal eight Ig domains 4ZQF ; 2.2 ; Crystal structure of DOX-P Reductoisomerase fosmidomycin and magnesium 4ZQE ; 1.98 ; Crystal structure of DOX-P Reductoisomerase in complex with magnesium 4ZQH ; 2.4 ; Crystal structure of DOX-P Reductoisomerase in complex with NADPH, fosmidomycin and magnesium 7CK9 ; 1.602 ; Crystal structure of Doxorubicin loaded human ferritin heavy chain 8IKR ; 2.9 ; Crystal structure of DpaA 6LSB ; 2.0 ; Crystal Structure of DPF domain of MOZ in complex with H3K14bz peptide 5B79 ; 2.601 ; Crystal structure of DPF2 double PHD finger 4YLH ; 2.58 ; Crystal structure of DpgC with bound substrate analog and Xe on oxygen diffusion pathway 3LZC ; 2.261 ; Crystal structure of Dph2 from Pyrococcus horikoshii 3LZD ; 2.1 ; Crystal structure of Dph2 from Pyrococcus horikoshii with 4Fe-4S cluster 6K34 ; 2.5 ; Crystal Structure of DphMB1 6VKP ; 2.54 ; Crystal structure of DPO4 extension past 8-oxoadenine (oxoA) and dG 6VNP ; 2.42 ; Crystal structure of DPO4 extension past 8-oxoadenine (oxoA) and dT 3M9M ; 2.9 ; Crystal Structure of Dpo4 in complex with DNA containing the major cisplatin lesion 3M9N ; 1.93 ; Crystal Structure of Dpo4 in complex with DNA containing the major cisplatin lesion 3M9O ; 2.0 ; Crystal Structure of Dpo4 in complex with DNA containing the major cisplatin lesion 4G3I ; 2.5 ; Crystal structure of Dpo4 in complex with DNA duplex 4GC6 ; 2.895 ; Crystal structure of Dpo4 in complex with N-MC-dAMP opposite dT 4GC7 ; 2.89 ; Crystal structure of Dpo4 in complex with S-MC-dADP opposite dT 4QWB ; 1.8 ; CRYSTAL STRUCTURE of DPO4 LINKER REGION P236A MUTANT WITH AN INCOMING D-dCDP 6VG6 ; 3.08 ; Crystal structure of DPO4 with 8-oxoadenine (oxoA) and dGTP* 6VGM ; 2.84 ; Crystal structure of DPO4 with 8-oxoadenine (oxoA) and dTTP* 2OGZ ; 2.1 ; Crystal structure of DPP-IV complexed with Lilly aryl ketone inhibitor 4DSA ; 3.25 ; Crystal Structure of DPP-IV with Compound C1 4DSZ ; 3.2 ; Crystal Structure of DPP-IV with Compound C2 4J3J ; 3.2 ; Crystal Structure of DPP-IV with Compound C3 4DTC ; 3.0 ; Crystal Structure of DPP-IV with Compound C5 6TRX ; 3.2 ; Crystal structure of DPP8 in complex with 1G244 7A3G ; 2.8 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, 91 7A3L ; 2.8 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, A241 7A3J ; 3.0 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, A272 7AYQ ; 2.45 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, B114 7AYR ; 2.69 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, B115 7OR4 ; 2.44 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, B142 7OZ7 ; 2.6 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, L84 7A3I ; 2.8 ; Crystal structure of DPP8 in complex with a 4-oxo-b-lactam based inhibitor, LMC375 7A3K ; 2.65 ; Crystal structure of DPP8 in complex with a b-lactam based inhibitor, A296.1 6TRW ; 3.0 ; Crystal structure of DPP8 in complex with the EIL peptide (SLRFLFEGQRIADNH) 6HP8 ; 2.5 ; Crystal structure of DPP8 in complex with Val-BoroPro 7ZXS ; 1.81 ; Crystal structure of DPP9 in complex with a 4-oxo-b-lactam based inhibitor, A295 6NRW ; 2.4 ; Crystal structure of Dpr1 IG1 bound to DIP-eta IG1 6NRQ ; 1.8 ; Crystal structure of Dpr10 IG1 bound to DIP-alpha IG1 6NRR ; 2.5 ; Crystal structure of Dpr11 IG1 bound to DIP-gamma IG+IG2 6EG1 ; 2.95 ; Crystal structure of Dpr2 Ig1-Ig2 in complex with DIP-Theta Ig1-Ig3 6EG0 ; 2.9 ; Crystal structure of Dpr4 Ig1-Ig2 in complex with DIP-Eta Ig1-Ig3 2D5K ; 1.85 ; Crystal structure of Dps from Staphylococcus aureus 3IQ1 ; 1.67 ; Crystal structure of DPS protein from Vibrio cholerae O1, a member of a broad superfamily of ferritin-like diiron-carboxylate proteins 1UMN ; 1.95 ; Crystal structure of Dps-like peroxide resistance protein (Dpr) from Streptococcus suis 6LKP ; 2.9 ; Crystal structure of Dps1 from the thermophilic non-heterocystous filamentous cyanobacterium Thermoleptolyngbya sp. O-77 4RIQ ; 2.231 ; Crystal structure of DPY-30 dimerization/docking domain in complex with Ash2L Sdc1-DPY-30 Interacting region (SDI) 4RT4 ; 1.997 ; Crystal structure of Dpy30 complexed with Bre2 6DIG ; 2.0 ; Crystal structure of DQA1*01:02/DQB1*06:02 in complex with a hypocretin peptide 2O5F ; 1.9 ; Crystal Structure of DR0079 from Deinococcus radiodurans at 1.9 Angstrom Resolution 6CQJ ; 2.75 ; Crystal structure of DR1 presenting the RQ13 peptide 6CPL ; 2.45 ; Crystal structure of DR11 presenting the gag293 epitope 6CPN ; 2.0 ; Crystal structure of DR11 presenting the RQ13 peptide 6CPO ; 2.4 ; Crystal structure of DR15 presenting the RQ13 peptide 5HVA ; 2.1 ; Crystal structure of DR2231 in complex with dUMPNPP and magnesium. 2YF4 ; 1.7 ; Crystal structure of DR2231, the MazG-like protein from Deinococcus radiodurans, Apo structure 2YF3 ; 2.0 ; Crystal structure of DR2231, the MazG-like protein from Deinococcus radiodurans, complex with manganese 5HX1 ; 1.799 ; Crystal structure of DR2231_E46A mutant in complex with dUMP and magnesium 5HWU ; 2.1 ; Crystal Structure of DR2231_E46A mutant in complex with dUMPNPP and Manganese 5I0J ; 1.8 ; Crystal structure of DR2231_E47A mutant in complex with dUMP 5HZZ ; 1.801 ; Crystal structure of DR2231_E47A mutant in complex with dUMP and manganese 5HYL ; 1.8 ; Crystal structure of DR2231_E47A mutant in complex with dUMPNPP and magnesium 5I0M ; 2.15 ; Crystal structure of DR2231_E79A mutant in complex with dUMP 3P1X ; 1.9 ; Crystal structure of DRBM 2 domain of Interleukin enhancer-binding factor 3 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4527E 4D2K ; 2.302 ; Crystal structure of DREP2 CIDE domain 5XPC ; 1.902 ; Crystal Structure of Drep4 CIDE domain 3SIR ; 2.68 ; Crystal Structure of drICE 3SIP ; 3.496 ; Crystal structure of drICE and dIAP1-BIR1 complex 5HZS ; 2.17 ; Crystal structure of Dronpa-Co2+ 5HZT ; 2.84 ; Crystal structure of Dronpa-Cu2+ 5HZU ; 1.89 ; Crystal structure of Dronpa-Ni2+ 3MJ0 ; 2.306 ; Crystal Structure of Drosophia Ago-PAZ domain in complex with 3'-end 2'-O-methylated RNA 3K40 ; 1.75 ; Crystal structure of Drosophila 3,4-dihydroxyphenylalanine decarboxylase 6JRL ; 2.2 ; Crystal structure of Drosophila alpha methyldopa-resistant protein/3,4-dihydroxyphenylacetaldehyde synthase 1J36 ; 2.4 ; Crystal Structure of Drosophila AnCE 1J37 ; 2.4 ; Crystal Structure of Drosophila AnCE 1J38 ; 2.6 ; Crystal Structure of Drosophila AnCE 3LW6 ; 1.81 ; Crystal Structure of Drosophila beta1,4-galactosyltransferase-7 6XWS ; 4.36 ; Crystal Structure of Drosophila CAL1 1-160 bound to CENP-A/H4 4K03 ; 3.2 ; Crystal structure of Drosophila Cryprochrome 4ZBM ; 1.9 ; Crystal structure of Drosophila cyclic nucleotide gated channel pore mimicking NaK mutant 1J90 ; 2.56 ; Crystal Structure of Drosophila Deoxyribonucleoside Kinase 1OE0 ; 2.4 ; CRYSTAL STRUCTURE OF DROSOPHILA DEOXYRIBONUCLEOSIDE KINASE IN COMPLEX WITH DTTP 1OT3 ; 2.5 ; Crystal structure of Drosophila deoxyribonucleotide kinase complexed with the substrate deoxythymidine 5N96 ; 2.716 ; Crystal Structure of Drosophila DHX36 helicase in complex with AGGGTTTTTT 5N8Z ; 3.477 ; Crystal Structure of Drosophila DHX36 helicase in complex with CTCTCCCTT 5N8U ; 2.62 ; Crystal Structure of Drosophila DHX36 helicase in complex with CTCTCCT 5N9D ; 2.71 ; Crystal Structure of Drosophila DHX36 helicase in complex with GGGTTAGGGT 5N9A ; 3.036 ; Crystal Structure of Drosophila DHX36 helicase in complex with GTTAGGGTT 5N8S ; 2.88 ; Crystal Structure of Drosophila DHX36 helicase in complex with polyT 5N94 ; 2.428 ; Crystal Structure of Drosophila DHX36 helicase in complex with polyU 5N9F ; 2.969 ; Crystal Structure of Drosophila DHX36 helicase in complex with ssDNA CpG_A 5N98 ; 2.756 ; Crystal Structure of Drosophila DHX36 helicase in complex with TAGGGTTTT 5N9E ; 3.007 ; Crystal Structure of Drosophila DHX36 helicase in complex with TGGGGATTT 5N90 ; 3.069 ; Crystal Structure of Drosophila DHX36 helicase in complex with TTGTGGTGT 5WRO ; 2.015 ; Crystal structure of Drosophila enolase 4BY4 ; 2.3 ; Crystal structure of Drosophila Frq2 4BY5 ; 2.22 ; Crystal structure of Drosophila Frq2 2XXL ; 1.8 ; Crystal structure of drosophila Grass clip serine protease of Toll pathway 3RIU ; 3.4 ; Crystal structure of Drosophila hexameric C3PO formed by truncated Translin and Trax 1MG5 ; 1.63 ; Crystal structure of Drosophila melanogaster alcohol dehydrogenase complexed with NADH and acetate at 1.6 A 8OR6 ; 2.5 ; Crystal structure of Drosophila melanogaster alpha-amylase 8ORP ; 2.0 ; Crystal structure of Drosophila melanogaster alpha-amylase in complex with the inhibitor acarbose 6XWV ; 2.27 ; Crystal structure of drosophila melanogaster CENP-C bound to CAL1 6XWU ; 1.82 ; Crystal structure of drosophila melanogaster CENP-C cumin domain 4E08 ; 2.0 ; Crystal structure of Drosophila melanogaster DJ-1beta 5GI5 ; 1.45 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase Bound to CoA 5GI6 ; 1.65 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase Bound to CoA and Phenylethylamine 6K80 ; 1.28 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase in Complex with CoA and Tryptophol 5GI8 ; 1.3 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-dopamine 5GI7 ; 1.201 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-phenylethylamine 5GI9 ; 1.4 ; Crystal Structure of Drosophila melanogaster Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-Tryptamine 5GIF ; 1.3 ; Crystal Structure of Drosophila melanogaster E47D Dopamine N-Acetyltransferase in Binary Complex with Acetyl-CoA 5GIG ; 1.3 ; Crystal Structure of Drosophila melanogaster E47D Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-dopamine 5GIH ; 1.392 ; Crystal Structure of Drosophila melanogaster E47D Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-phenylethylamine 5GII ; 1.294 ; Crystal Structure of Drosophila melanogaster E47N Dopamine N-Acetyltransferase in Ternary Complex with CoA and Acetyl-phenylethylamine 6T2T ; 1.3 ; Crystal structure of Drosophila melanogaster glutathione S-transferase epsilon 14 in complex with glutathione and 2-methyl-2,4-pentanediol 2Y5W ; 2.7 ; Crystal structure of Drosophila melanogaster kinesin-1 motor domain dimer 2Y65 ; 2.2 ; Crystal structure of Drosophila melanogaster kinesin-1 motor domain dimer-tail complex 6KEP ; 1.55 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in 17beta-estradiol- and glutathione-bound form 6KEO ; 1.7 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in 17beta-estradiol-bound form 6KEL ; 1.4 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in apo-form 6KEM ; 1.5 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in apo-form 2 7DB1 ; 1.83 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in dimedone- and glutathione-bound form 7DB0 ; 1.66 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in dimedone-bound form 6KEN ; 1.75 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in glutathione-bound form 7DB2 ; 1.4 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in GS-dimedone-bound form 7DB3 ; 1.7 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in TDP011-bound form 7DB4 ; 1.54 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in TDP012- and glutathione-bound form 7DAY ; 1.48 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in TDP013-, and GSH-bound form 7DAX ; 1.70001 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in TDP013-bound form 7DAZ ; 1.64 ; Crystal structure of Drosophila melanogaster Noppera-bo, glutathione S-transferase epsilon 14 (DmGSTE14), in TDP015- and GSH-bound form 5YGC ; 2.0 ; Crystal structure of Drosophila melanogaster Papi extended Tudor domain 5YGF ; 1.698 ; Crystal structure of Drosophila melanogaster Papi extended Tudor domain (D287A) in complex with Piwi N-terminal R10-unme peptide 5YGD ; 1.551 ; Crystal structure of Drosophila melanogaster Papi extended Tudor domain (D287A) in complex with Piwi N-terminal R10me2s peptide 5YGB ; 1.4 ; Crystal structure of drosophila melanogaster Papi extended Tudor domain mutant - D287A 8CT8 ; 2.5 ; Crystal structure of Drosophila melanogaster PRL/CBS-pair domain complex 3K44 ; 2.1 ; Crystal Structure of Drosophila melanogaster Pur-alpha 5XYV ; 2.1 ; Crystal structure of drosophila melanogaster Rhino chromoshadow domain in complex with Deadlock N-terminal domain 5WOU ; 1.55 ; Crystal Structure of drosophila melanogaster Scribble PDZ1 domain in complex with Guk-Holder 6F4I ; 1.49 ; Crystal structure of Drosophila melanogaster SNF 6F4J ; 1.42 ; Crystal structure of Drosophila melanogaster SNF/U2A' complex 2QRX ; 3.6 ; Crystal structure of Drosophila melanogaster Translin protein 2QVA ; 3.4 ; Crystal structure of Drosophila melanogaster Translin protein 4HKA ; 2.7 ; Crystal structure of Drosophila melanogaster tryptophan 2,3-dioxygenase in complex with HEME 4C0K ; 2.801 ; Crystal structure of Drosophila Miro EF hand and cGTPase domains bound to one calcium ion (Ca-MiroS) 4C0L ; 3.0 ; Crystal structure of Drosophila Miro EF hand and cGTPase domains bound to one magnesium ion and Mg:GDP (MgGDP-MiroS) 4C0J ; 2.82 ; Crystal structure of Drosophila Miro EF hand and cGTPase domains in the apo state (Apo-MiroS) 3UBF ; 2.5 ; Crystal structure of Drosophila N-cadherin EC1-3, I 3UBG ; 2.502 ; Crystal structure of Drosophila N-cadherin EC1-3, II 3UBH ; 2.7 ; Crystal structure of Drosophila N-cadherin EC1-4 5G08 ; 1.52 ; Crystal structure of Drosophila NCS-1 bound to chlorpromazine 5FYX ; 1.8 ; Crystal structure of Drosophila NCS-1 bound to penothiazine FD16 5AAN ; 1.6 ; Crystal structure of Drosophila NCS-1 bound to penothiazine FD44 6FF3 ; 2.57 ; Crystal structure of Drosophila neural ectodermal development factor Imp-L1 with Human IGF-I 6FEY ; 3.48 ; Crystal structure of Drosophila neural ectodermal development factor Imp-L2 with Drosophila DILP5 insulin 7JW6 ; 1.5 ; Crystal structure of Drosophila Nibbler EXO domain 5YI7 ; 1.7 ; Crystal structure of drosophila Numb PTB domain and Pon peptide complex 5YI8 ; 2.001 ; Crystal structure of drosophila Numb PTB domain and Pon peptide complex 6IHJ ; 2.7 ; Crystal structure of Drosophila Nxf1 NTF2 domain in complex with Nxt1/p15 7MKK ; 2.5 ; Crystal structure of Drosophila Panoramix in complex with Sov NTD 2RKQ ; 1.5 ; Crystal structure of drosophila peptidoglycan recognition protein SD (PGRP-SD) 6KR6 ; 2.9 ; Crystal structure of Drosophila Piwi 5F84 ; 2.5 ; Crystal structure of Drosophila Poglut1 (Rumi) complexed with its glycoprotein product (glucosylated EGF repeat) and UDP 5F86 ; 1.9 ; Crystal structure of Drosophila Poglut1 (Rumi) complexed with its substrate protein (EGF repeat) 5F85 ; 2.15 ; Crystal structure of Drosophila Poglut1 (Rumi) complexed with its substrate protein (EGF repeat) and UDP 5F87 ; 3.2 ; Crystal structure of Drosophila Poglut1 (Rumi) complexed with UDP 3ZPV ; 2.68 ; Crystal structure of Drosophila Pygo PHD finger in complex with Legless HD1 domain 5XYW ; 2.705 ; Crystal structure of drosophila simulans Rhino chromoshadow domain in complex with N-terminal domain 4XHV ; 1.23 ; Crystal structure of Drosophila Spinophilin-PDZ and a C-terminal peptide of Neurexin 4KMA ; 2.68 ; Crystal structure of Drosophila Suppressor of Fused 3DGH ; 1.745 ; Crystal Structure of Drosophila Thioredoxin Reductase, C-terminal 8-residue truncation 3DH9 ; 2.25 ; Crystal Structure of Drosophila Thioredoxin Reductase, wild-type 4KRR ; 2.124 ; Crystal structure of Drosophila WntD N-terminal domain-linker (residues 31-240) 5N8R ; 2.2 ; Crystal Structure of Drosophilia DHX36 helicase in complex with GAGCACTGC 2DG0 ; 2.4 ; Crystal structure of Drp35, a 35kDa drug responsive protein from Staphylococcus aureus 2DG1 ; 1.72 ; Crystal structure of Drp35, a 35kDa drug responsive protein from Staphylococcus aureus, complexed with Ca2+ 2QI8 ; 2.32 ; Crystal structure of drug resistant SRC kinase domain 2QQ7 ; 2.38 ; Crystal structure of drug resistant SRC kinase domain with irreversible inhibitor 4QLH ; 2.45 ; Crystal structure of drug resistant V82S/V1082S HIV-1 Protease 6KKL ; 2.654 ; Crystal structure of Drug:Proton Antiporter-1 (DHA1) Family SotB, in the inward conformation (H115N mutant) 6KKJ ; 3.385 ; Crystal structure of Drug:Proton Antiporter-1 (DHA1) Family SotB, in the inward open conformation 6KKK ; 3.5 ; Crystal structure of Drug:Proton Antiporter-1 (DHA1) Family SotB, in the inward open conformation (H115A mutant) 6KKI ; 3.064 ; Crystal structure of Drug:Proton Antiporter-1 (DHA1) Family SotB, in the inward-occluded conformation 3C4N ; 2.4 ; Crystal structure of DR_0571 protein from Deinococcus radiodurans in complex with ADP. Northeast Structural Genomics Consortium Target DrR125 4H5B ; 2.0 ; Crystal Structure of DR_1245 from Deinococcus radiodurans 3GGN ; 2.0 ; Crystal structure of DR_A0006 from Deinococcus radiodurans. Northeast Structural Genomics Consortium Target DrR147D 4JR6 ; 1.902 ; Crystal structure of DsbA from Mycobacterium tuberculosis (reduced) 4PWO ; 1.52 ; Crystal structure of DsbA from the Gram positive bacterium Corynebacterium diphtheriae 4PWP ; 1.803 ; Crystal structure of DsbA from the Gram positive bacterium Corynebacterium diphtheriae 2HI7 ; 3.7 ; Crystal structure of DsbA-DsbB-ubiquinone complex 7DKA ; 1.56 ; Crystal structure of DsbA-like protein DR2335 from Deinococcus radiodurans R1, C24S mutant protein 7DK9 ; 1.72 ; Crystal structure of DsbA-like protein DR2335 from Deinococcus radiodurans R1, native protein 3FEU ; 1.758 ; Crystal Structure of DsbA-like thioredoxin domain VF_A0457 from Vibrio fischeri 2ZUQ ; 3.3 ; Crystal structure of DsbB-Fab complex 4ILF ; 1.999 ; Crystal structure of DsbC R125A from Salmonella enterica serovar Typhimurium 1JPE ; 1.9 ; Crystal structure of DsbD-alpha; the N-terminal domain of DsbD 1UC7 ; 1.9 ; Crystal structure of DsbDgamma 2H0H ; 1.8 ; Crystal Structure of DsbG K113E mutant 2H0G ; 2.3 ; Crystal Structure of DsbG T200M mutant 2H0I ; 2.4 ; Crystal Structure of DsbG V216M mutant 4WVR ; 1.948 ; Crystal structure of Dscam1 Ig7 domain, isoform 5 4X5L ; 2.374 ; Crystal structure of Dscam1 Ig7 domain, isoform 9 4X8X ; 2.5 ; Crystal structure of Dscam1 isoform 1.9, N-terminal four Ig domains 4XB7 ; 4.004 ; Crystal structure of Dscam1 isoform 4.4, N-terminal four Ig domains 4X9B ; 2.2 ; Crystal structure of Dscam1 isoform 4.44, N-terminal four Ig domains 4X9G ; 3.403 ; Crystal structure of Dscam1 isoform 6.44, N-terminal four Ig domains 4X9F ; 2.35 ; Crystal structure of Dscam1 isoform 6.9, N-terminal four Ig domains 4X83 ; 1.902 ; Crystal structure of Dscam1 isoform 7.44, N-terminal four Ig domains 4X9H ; 2.95 ; Crystal structure of Dscam1 isoform 8.4, N-terminal four Ig domains 4X9I ; 2.904 ; Crystal structure of Dscam1 isoform 9.44, N-terminal four Ig domains 4XB8 ; 3.202 ; Crystal structure of Dscam1 isoform 9.44, N-terminal four Ig domains (with zinc) 1I8K ; 1.8 ; CRYSTAL STRUCTURE OF DSFV MR1 IN COMPLEX WITH THE PEPTIDE ANTIGEN OF THE MUTANT EPIDERMAL GROWTH FACTOR RECEPTOR, EGFRVIII, AT LIQUID NITROGEN TEMPERATURE 1I8I ; 2.4 ; CRYSTAL STRUCTURE OF DSFV MR1 IN COMPLEX WITH THE PEPTIDE ANTIGEN OF THE MUTANT EPIDERMAL GROWTH FACTOR RECEPTOR, EGFRVIII, AT ROOM TEMPERATURE 3MC3 ; 1.49 ; Crystal structure of DsrE/DsrF-like family protein (NP_342589.1) from SULFOLOBUS SOLFATARICUS at 1.49 A resolution 1G7K ; 2.0 ; CRYSTAL STRUCTURE OF DSRED, A RED FLUORESCENT PROTEIN FROM DISCOSOMA SP. RED 8WGP ; 2.9 ; Crystal structure of DsRed-Monomer 2HY5 ; 1.72 ; Crystal structure of DsrEFH 6F3H ; 2.703 ; Crystal structure of Dss1 exoribonuclease active site mutant D477N from Candida glabrata 6CCA ; 1.75 ; Crystal structure of DszA carbon methyltransferase 2DE3 ; 1.6 ; Crystal structure of DSZB C27S mutant in complex with 2'-hydroxybiphenyl-2-sulfinic acid 2DE4 ; 1.8 ; Crystal structure of DSZB C27S mutant in complex with biphenyl-2-sulfinic acid 3KNP ; 3.3 ; Crystal structure of DTD from Plasmodium falciparum 3LMT ; 2.75 ; Crystal structure of DTD from Plasmodium falciparum 3LMU ; 3.3 ; Crystal structure of DTD from Plasmodium falciparum 3EJK ; 1.95 ; Crystal structure of dTDP Sugar Isomerase (YP_390184.1) from DESULFOVIBRIO DESULFURICANS G20 at 1.95 A resolution 6C46 ; 1.95 ; Crystal structure of dTDP-4-dehydrorhamnose 3,5-epimerase from Elizabethkingia anophelis NUHP1 2B9U ; 2.07 ; Crystal structure of dTDP-4-dehydrorhamnose 3,5-epimerase from sulfolobus tokodaii 1WLT ; 1.9 ; Crystal Structure of dTDP-4-dehydrorhamnose 3,5-epimerase homologue from Sulfolobus tokodaii 8CTR ; 1.65 ; Crystal Structure of dTDP-4-dehydrorhamnose reductase from Klebsiella pneumoniae with bound NADP 6NDR ; 1.6 ; Crystal structure of dTDP-6-deoxy-D-glucose-3,5-epimerase RmlC from Legionella pneumophila Philadelphia 1 in complex with dTDP-4-KETO-L-RHAMNOSE 1EPZ ; 1.75 ; CRYSTAL STRUCTURE OF DTDP-6-DEOXY-D-XYLO-4-HEXULOASE 3,5-EPIMERASE FROM METHANOBACTERIUM THERMOAUTOTROPHICUM WITH BOUND LIGAND. 1N2S ; 2.0 ; CRYSTAL STRUCTURE OF DTDP-6-DEOXY-L-LYXO-4-HEXULOSE REDUCTASE (RMLD) IN COMPLEX WITH NADH 1KC1 ; 2.6 ; Crystal structure of dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) in complex with NADPH 1KC3 ; 2.7 ; Crystal structure of dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) in complex with NADPH and dTDP-L-rhamnose 7W74 ; 2.84 ; Crystal structure of DTG rhodopsin from Pseudomonas putida 2PLR ; 1.6 ; Crystal structure of dTMP kinase (st1543) from Sulfolobus Tokodaii Strain7 5CFD ; 2.5 ; Crystal Structure of DTT treated Human Cardiovirus SAFV-3 2QQ9 ; 1.71 ; Crystal Structure of DtxR(D6A C102D) Complexed with Nickel(II) 2QQA ; 2.1 ; Crystal Structure of DtxR(E9A C102D) Complexed with Nickel(II) 2QQB ; 1.92 ; Crystal Structure of DtxR(M10A C102D) Complexed with Nickel(II) 4UA1 ; 2.56 ; Crystal structure of dual function transcriptional regulator MerR form Bacillus megaterium MB1 in complex with mercury (II) ion 4UA2 ; 2.61 ; Crystal structure of dual function transcriptional regulator MerR from Bacillus megaterium MB1 5GRG ; 1.94 ; Crystal structure of dual peptide from EBV in complex with HLA-A*11:01 5F24 ; 2.5 ; Crystal structure of dual specific IMPase/NADP phosphatase bound with D-inositol-1-phosphate 6EMS ; 1.996 ; Crystal Structure of dual specific Trm10 construct from Thermococcus kodakaraensis. 6EMT ; 1.794 ; Crystal Structure of dual specific Trm10 construct from Thermococcus kodakaraensis. 6EMU ; 2.29745 ; Crystal Structure of dual specific Trm10 construct from Thermococcus kodakaraensis. 6EMV ; 2.90001 ; Crystal Structure of dual specific Trm10 construct from Thermococcus kodakaraensis. 2PQ5 ; 2.3 ; Crystal structure of Dual specificity protein phosphatase 13 (DUSP13) 2IMG ; 1.93 ; Crystal structure of dual specificity protein phosphatase 23 from Homo sapiens in complex with ligand malate ion 3TMH ; 3.8 ; Crystal structure of dual-specific A-kinase anchoring protein 2 in complex with cAMP-dependent protein kinase A type II alpha and PDZK1 3K2L ; 2.36 ; Crystal Structure of dual-specificity tyrosine phosphorylation regulated kinase 2 (DYRK2) 3KVW ; 2.28 ; Crystal Structure of dual-specificity tyrosine phosphorylation regulated kinase 2 (DYRK2) in complex with an indirubin ligand 5GJY ; 1.71 ; Crystal structure of DUCK MHC CLASS I for 1.71 angstrom 5GJX ; 2.06 ; Crystal structure of DUCK MHC I for 2.06 angstrom 4OFI ; 2.3 ; Crystal Structure of Duf (Kirre) D1 8ITS ; 1.94 ; Crystal structure of DUF-3268 k-junction 3LM7 ; 1.9 ; Crystal Structure of DUF1341 representative, from Yersinia enterocolitica subsp. enterocolitica 8081 6ZNS ; 3.32 ; Crystal Structure of DUF1998 helicase MrfA 6ZNP ; 3.16 ; Crystal Structure of DUF1998 helicase MrfA bound to DNA 6ZNQ ; 3.34 ; Crystal Structure of DUF1998 helicase MrfA bound to DNA and AMPPNP 3BT5 ; 1.35 ; Crystal structure of DUF305 fragment from Deinococcus radiodurans 3AI9 ; 1.55 ; Crystal structure of DUF358 protein reveals a putative SPOUT-class rRNA methyltransferase 3AIA ; 1.4 ; Crystal structure of DUF358 reveals a putative SPOUT-class methltransferase 7Y7N ; 1.764 ; Crystal structure of DUF371 domain-containing protein from Methanobrevibacter ruminantium 3D7A ; 1.9 ; Crystal structure of DUF54 family protein PH1010 from hyperthermophilic archaea Pyrococcus horikoshii OT3 5GSK ; 1.05 ; Crystal structure of duplex DNA3 in complex with Hg(II) and Sr(II) 3W9Z ; 2.1 ; Crystal structure of DusC 7Y4C ; 1.87 ; Crystal structure of DUSP10 7Y4B ; 1.86 ; Crystal structure of DUSP10 mutant_D59A 7Y4E ; 1.93 ; Crystal structure of DUSP10 mutant_N130A 7Y4D ; 2.18 ; Crystal structure of DUSP10 mutant_S95A 1YZ4 ; 2.4 ; Crystal structure of DUSP15 6L1S ; 1.3611 ; Crystal structure of DUSP22 mutant_C88S 6LMY ; 1.5 ; Crystal structure of DUSP22 mutant_C88S/S93A 6LOU ; 1.5301 ; Crystal structure of DUSP22 mutant_C88S/S93N 7C8S ; 1.31 ; Crystal structure of DUSP22 mutant_N128A 6LOT ; 1.69 ; Crystal structure of DUSP22 mutant_N128D 6LVQ ; 1.38 ; Crystal structure of DUSP22_VO4 3MQ1 ; 2.8 ; Crystal Structure of Dust Mite Allergen Der p 5 3F4F ; 2.0 ; Crystal structure of dUT1p, a dUTPase from Saccharomyces cerevisiae 5VJY ; 2.0 ; Crystal Structure of dUTP pyrophosphatase protein, from Naegleria fowleri 6MJK ; 1.45 ; Crystal Structure of dUTP pyrophosphatase protein, from Naegleria fowleri in complex with deoxyuridine 1RN8 ; 1.93 ; Crystal structure of dUTPase complexed with substrate analogue imido-dUTP 2HRM ; 1.7 ; Crystal structure of dUTPase complexed with substrate analogue methylene-dUTP 1MQ7 ; 1.95 ; CRYSTAL STRUCTURE OF DUTPASE FROM MYCOBACTERIUM TUBERCULOSIS (RV2697C) 3H6X ; 1.7 ; Crystal structure of dUTPase from Streptococcus mutans 2ZDC ; 2.0 ; Crystal structure of dUTPase from Sulfolobus tokodaii 3HZA ; 1.2 ; Crystal structure of dUTPase H145W mutant 2HR6 ; 1.84 ; Crystal structure of dUTPase in complex with substrate analogue dUDP and manganese 7C21 ; 1.95 ; Crystal structure of Duvenhage virus phosphoprotein C-terminal domain 7DW5 ; 2.83 ; Crystal structure of DUX4 HD1-HD2 domain complexed with ERG sites 6A8R ; 1.6 ; Crystal structure of DUX4 HD2 domain associated with ERG DNA binding site 5Z2S ; 1.5 ; Crystal structure of DUX4-HD2 domain 3PZ8 ; 2.873 ; Crystal structure of Dvl1-DIX(Y17D) mutant 4LXG ; 2.22 ; Crystal structure of DxnB2, a carbon - carbon bond hydrolase from Sphingomonas wittichii RW1 6AIY ; 1.902 ; Crystal structure of DXO (E234A mutant) in complex with adenosine 3', 5' bisphosphate and two magnesium ions 6AIX ; 1.8 ; Crystal structure of DXO in complex with adenosine 3', 5' bisphosphate and two magnesium ions 3A06 ; 2.0 ; Crystal structure of DXR from Thermooga maritia, in complex with fosmidomycin and NADPH 3A14 ; 2.0 ; Crystal structure of DXR from Thermotoga maritima, in complex with NADPH 1Q0L ; 2.65 ; Crystal structure of DXR in complex with fosmidomycin 1Q0Q ; 1.9 ; Crystal structure of DXR in complex with the substrate 1-deoxy-D-xylulose-5-phosphate 6KMN ; 2.44 ; Crystal Structure of Dye Decolorizing peroxidase from Bacillus subtilis 7E5Q ; 1.9 ; Crystal Structure of Dye Decolorizing peroxidase from Bacillus subtilis at acidic pH 3ZVR ; 3.1 ; Crystal structure of Dynamin 3RJS ; 1.5 ; Crystal structure of Dynein Light Chain 8a (DLC8) from Toxoplasma gondii at 1.5 A resolution 2P2T ; 3.0 ; Crystal structure of dynein light chain LC8 bound to residues 123-138 of intermediate chain IC74 3E2B ; 2.0 ; Crystal structure of Dynein Light chain LC8 in complex with a peptide derived from Swallow 5WI4 ; 2.0 ; CRYSTAL STRUCTURE OF DYNLT1/TCTEX-1 IN COMPLEX WITH ARHGEF2 7D8M ; 2.0 ; Crystal structure of DyP 4GRC ; 2.0 ; Crystal structure of DyP-type peroxidase (SCO2276) from Streptomyces coelicolor 4GT2 ; 1.8 ; Crystal structure of DyP-type peroxidase (SCO3963) from Streptomyces coelicolor 4GU7 ; 3.1 ; Crystal structure of DyP-type peroxidase (SCO7193) from Streptomyces coelicolor 6QZO ; 2.4 ; Crystal structure of DyP-type peroxidase from Cellulomonas bogoriensis 7O9J ; 1.7 ; Crystal structure of DyP-type peroxidase from Dictyostelium discoideum in complex with an activated form of oxygen 4GS1 ; 1.7 ; Crystal structure of DyP-type peroxidase from Thermobifida cellulosilytica 6QU2 ; 2.9 ; Crystal structure of DYRK1A complexed with FC162 inhibitor 6T6A ; 2.8 ; Crystal structure of DYRK1A complexed with KuFal319 (compound 11) 4YLK ; 1.4 ; Crystal structure of DYRK1A in complex with 10-Chloro-substituted 11H-indolo[3,2-c]quinolone-6-carboxylic acid inhibitor 5s 4YLJ ; 2.58 ; Crystal structure of DYRK1A in complex with 10-Iodo-substituted 11H-indolo[3,2-c]quinoline-6-carboxylic acid inhibitor 5j 8C3G ; 2.08 ; Crystal structure of DYRK1A in complex with AZ191 7Z5N ; 2.77 ; Crystal structure of DYRK1A in complex with CX-4945 8C3R ; 2.06 ; Crystal structure of DYRK1A in complex with gossypin 7FHS ; 2.42 ; Crystal structure of DYRK1A in complex with RD0392 7FHT ; 2.68 ; Crystal structure of DYRK1A in complex with RD0448 8C3Q ; 2.32 ; Crystal structure of DYRK1A in complex with rutin 4YU2 ; 2.9 ; Crystal structure of DYRK1A with harmine-derivatized AnnH-75 inhibitor 6S11 ; 2.445 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S14 ; 1.05 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S17 ; 1.1 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S1B ; 1.3 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S1H ; 1.05 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S1I ; 2.38 ; Crystal Structure of DYRK1A with small molecule inhibitor 6S1J ; 1.408 ; Crystal Structure of DYRK1A with small molecule inhibitor 4YLL ; 1.4 ; Crystal structure of DYRK1AA in complex with 10-Bromo-substituted 11H-indolo[3,2-c]quinolone-6-carboxylic acid inhibitor 5t 8C2Z ; 1.91 ; Crystal structure of DYRK1B in complex with AZ191 5LXD ; 2.58 ; Crystal structure of DYRK2 in complex with EHT 1610 (compound 2) 5LXC ; 2.15 ; Crystal structure of DYRK2 in complex with EHT 5372 (Compound 1) 7SEV ; 2.3 ; Crystal structure of E coli contaminant protein YadF co-purified with a plant protein 7SEU ; 2.5 ; Crystal structure of E coli contaminant protein YncE co-purified with a plant protein 4JXX ; 2.3 ; Crystal structure of E coli E. coli glutaminyl-tRNA synthetase bound to tRNA(Gln)(CUG) and ATP from novel cryostabilization conditions 1C14 ; 2.0 ; CRYSTAL STRUCTURE OF E COLI ENOYL REDUCTASE-NAD+-TRICLOSAN COMPLEX 2GMU ; 1.9 ; Crystal structure of E coli GDP-4-keto-6-deoxy-D-mannose-3-dehydratase complexed with PLP-glutamate ketimine intermediate 4RCB ; 1.63 ; Crystal structure of E Coli Hfq 4RCC ; 1.981 ; Crystal structure of E Coli Hfq 4HT8 ; 1.9 ; Crystal structure of E coli Hfq bound to poly(A) A7 4HT9 ; 1.8 ; Crystal structure of E coli Hfq bound to two RNAs 3RES ; 2.0 ; Crystal structure of E coli Hfq in complex with ADP 4QR8 ; 1.999 ; Crystal Structure of E coli pepQ 3KXP ; 2.26 ; Crystal Structure of E-2-(Acetamidomethylene)succinate Hydrolase 6JW9 ; 3.5 ; Crystal structure of E-64 inhibited falcipain 2 from Plasmodium falciparum, strain 3D7 3QRB ; 1.8 ; crystal structure of E-cadherin EC1-2 P5A P6A 3LNG ; 2.7 ; Crystal structure of E-cadherin EC12 AA extension 3LNI ; 2.3 ; Crystal structure of E-cadherin EC12 E89A 3LNE ; 2.0 ; Crystal structure of E-cadherin EC12 K14E 3LNF ; 2.5 ; Crystal structure of E-cadherin EC12 K14EW2A 3LNH ; 2.6 ; Crystal structure of E-cadherin EC12 W2A 4I63 ; 5.709 ; Crystal Structure of E-R ClpX Hexamer 1G1T ; 1.5 ; CRYSTAL STRUCTURE OF E-SELECTIN LECTIN/EGF DOMAINS COMPLEXED WITH SLEX 5O3N ; 2.05 ; Crystal structure of E. cloacae 3,4-dihydroxybenzoic acid decarboxylase (AroY) reconstituted with prFMN 1KZN ; 2.3 ; Crystal Structure of E. coli 24kDa Domain in Complex with Clorobiocin 1DIZ ; 2.5 ; CRYSTAL STRUCTURE OF E. COLI 3-METHYLADENINE DNA GLYCOSYLASE (ALKA) COMPLEXED WITH DNA 2BH2 ; 2.15 ; Crystal Structure of E. coli 5-methyluridine methyltransferase RumA in complex with ribosomal RNA substrate and S-adenosylhomocysteine. 1L5J ; 2.4 ; CRYSTAL STRUCTURE OF E. COLI ACONITASE B. 5EJE ; 1.9 ; Crystal structure of E. coli Adenylate kinase G56C/T163C double mutant in complex with Ap5a 4X8H ; 2.5 ; Crystal structure of E. coli Adenylate kinase P177A mutant 4X8L ; 1.7 ; Crystal structure of E. coli Adenylate kinase P177A mutant in complex with inhibitor Ap5a 6RZE ; 1.69 ; Crystal structure of E. coli Adenylate kinase R119A mutant 6S36 ; 1.6 ; Crystal structure of E. coli Adenylate kinase R119K mutant 4X8M ; 2.6 ; Crystal structure of E. coli Adenylate kinase Y171W mutant 4X8O ; 2.1 ; Crystal structure of E. coli Adenylate kinase Y171W mutant in complex with inhibitor Ap5a 5L6V ; 2.667 ; Crystal structure of E. coli ADP-glucose pyrophosphorylase (AGPase) in complex with a negative allosteric regulator adenosine monophosphate (AMP) - AGPase*AMP 5L6S ; 3.04 ; Crystal structure of E. coli ADP-glucose pyrophosphorylase (AGPase) in complex with a positive allosteric regulator beta-fructose-1,6-diphosphate (FBP) - AGPase*FBP 4YR1 ; 2.24 ; Crystal Structure of E. Coli Alkaline Phosphatase D101A/D153A in complex with inorganic phosphate 3E74 ; 2.1 ; Crystal structure of E. coli allantoinase with iron ions at the metal center 1D6U ; 2.4 ; CRYSTAL STRUCTURE OF E. COLI AMINE OXIDASE ANAEROBICALLY REDUCED WITH BETA-PHENYLETHYLAMINE 1LVN ; 2.4 ; CRYSTAL STRUCTURE OF E. COLI AMINE OXIDASE COMPLEXED WITH TRANYLCYPROMINE 3B2P ; 2.0 ; Crystal structure of E. coli Aminopeptidase N in complex with arginine 4XN9 ; 2.8 ; Crystal Structure of E. coli Aminopeptidase N in complex with Beta Alanine 4XN7 ; 2.22 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-2,3-Diaminopropionic acid 4XN8 ; 1.89 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Alanine 4XNA ; 2.4 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Beta Homolysine 4XNB ; 1.95 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Beta Homophenylalanine 4XND ; 1.93 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Beta Homotryptophan 4XO5 ; 1.98 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Glutamate 4XO3 ; 2.0 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Leucine 4XO4 ; 2.18 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Methionine 3QJX ; 1.45 ; Crystal Structure of E. coli Aminopeptidase N in complex with L-Serine 3B2X ; 1.5 ; Crystal Structure of E. coli Aminopeptidase N in complex with Lysine 3B34 ; 1.3 ; Crystal structure of E. coli Aminopeptidase N in complex with Phenylalanine 3B3B ; 1.85 ; Crystal structure of E. coli Aminopeptidase N in complex with tryptophan 3B37 ; 1.7 ; Crystal structure of E. coli Aminopeptidase N in complex with Tyrosine 1T8R ; 2.7 ; Crystal Structure of E. coli AMP Nucleosidase 1T8W ; 2.8 ; Crystal Structure of E. coli AMP Nucleosidase 2DH6 ; 3.0 ; Crystal structure of E. coli Apo-TrpB 3A7L ; 1.3 ; Crystal structure of E. coli apoH-protein 1K97 ; 2.0 ; Crystal Structure of E. coli Argininosuccinate Synthetase in complex with Aspartate and Citrulline 1KP2 ; 2.0 ; Crystal Structure of E. coli Argininosuccinate Synthetase in Complex with ATP 1KP3 ; 2.0 ; Crystal Structure of E. coli Argininosuccinate Synthetase in Complex with ATP and Citrulline 1U9J ; 2.4 ; Crystal Structure of E. coli ArnA (PmrI) Decarboxylase Domain 1Z73 ; 2.5 ; Crystal Structure of E. coli ArnA dehydrogenase (decarboxylase) domain, S433A mutant 8E9D ; 1.37 ; Crystal structure of E. coli aspartate aminotransferase mutant AIFS bound to maleic acid at 100 K 8E9C ; 2.18 ; Crystal structure of E. coli aspartate aminotransferase mutant AIFS in the ligand-free form at 100 K 8E9Q ; 1.8 ; Crystal structure of E. coli aspartate aminotransferase mutant HEX bound to maleic acid at 278 K 8E9J ; 2.09 ; Crystal structure of E. coli aspartate aminotransferase mutant HEX in the ligand-free form at 278 K 8E9U ; 1.94 ; Crystal structure of E. coli aspartate aminotransferase mutant HEX in the ligand-free form at 303 K 8E9S ; 2.0 ; Crystal structure of E. coli aspartate aminotransferase mutant VFCS bound to maleic acid at 278 K 8E9R ; 1.9 ; Crystal structure of E. coli aspartate aminotransferase mutant VFCS in the ligand-free form at 278 K 8E9M ; 1.76 ; Crystal structure of E. coli aspartate aminotransferase mutant VFIT bound to maleic acid at 278 K 8E9L ; 2.31 ; Crystal structure of E. coli aspartate aminotransferase mutant VFIT in the ligand-free form at 278 K 8E9V ; 2.01 ; Crystal structure of E. coli aspartate aminotransferase mutant VFIT in the ligand-free form at 303 K 8E9O ; 1.96 ; Crystal structure of E. coli aspartate aminotransferase mutant VFIY bound to maleic acid at 278 K 8E9N ; 1.88 ; Crystal structure of E. coli aspartate aminotransferase mutant VFIY in the ligand-free form at 278 K 4E2F ; 2.8 ; Crystal Structure of E. coli Aspartate Transcarbamoylase K164E/E239K Mutant in an intermediate state 1F1B ; 2.3 ; CRYSTAL STRUCTURE OF E. COLI ASPARTATE TRANSCARBAMOYLASE P268A MUTANT IN THE R-STATE IN THE PRESENCE OF N-PHOSPHONACETYL-L-ASPARTATE 1EZZ ; 2.7 ; CRYSTAL STRUCTURE OF E. COLI ASPARTATE TRANSCARBAMOYLASE P268A MUTANT IN THE T-STATE 2J0W ; 2.5 ; Crystal structure of E. coli aspartokinase III in complex with aspartate and ADP (R-state) 2J0X ; 2.8 ; CRYSTAL STRUCTURE OF E. COLI ASPARTOKINASE III IN COMPLEX WITH LYSINE AND ASPARTATE (T-STATE) 3E1N ; 2.8 ; Crystal structure of E. coli Bacterioferritin (BFR) after a 65 minute (aerobic) exposure to FE(II) revealing a possible MU-OXO bridge/MU-Hydroxy bridged DIIRON intermediate at the ferroxidase centre. (FE(III)-O-FE(III)-BFR). 3E1P ; 2.4 ; Crystal structure of E. coli Bacterioferritin (BFR) in which the Ferroxidase centre is inhibited with ZN(II) and high occupancy iron is bound within the cavity. 3E1M ; 2.7 ; Crystal structure of E. coli Bacterioferritin (BFR) obtained after soaking APO-BFR crystals for 2.5 minutes in FE2+ (2.5M FE(II)-BFR) 3E1L ; 2.5 ; Crystal structure of E. coli Bacterioferritin (BFR) soaked in phosphate with an alternative conformation of the unoccupied Ferroxidase centre (APO-BFR II). 3E1J ; 2.7 ; Crystal structure of E. coli Bacterioferritin (BFR) with an unoccupied ferroxidase centre (APO-BFR). 3E1O ; 2.95 ; Crystal structure of E. coli Bacterioferritin (BFR) with two ZN(II) ION sites at the Ferroxidase centre (ZN-BFR). 6AIT ; 2.598 ; Crystal structure of E. coli BepA 1I6O ; 2.2 ; CRYSTAL STRUCTURE OF E. COLI BETA CARBONIC ANHYDRASE (ECCA) 1I6P ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI BETA CARBONIC ANHYDRASE (ECCA) 7PR6 ; 1.99 ; Crystal structure of E. coli beta-glucuronidase in complex with covalent inhibitor ME727 3K4D ; 2.393 ; Crystal structure of E. coli beta-glucuronidase with the glucaro-d-lactam inhibitor bound 6OI9 ; 2.06 ; Crystal Structure of E. coli Biotin Carboxylase Complexed with 7-[3-(aminomethyl)pyrrolidin-1-yl]-6-(2,6-dichlorophenyl)pyrido[2,3-d]pyrimidin-2-amine 1HXD ; 2.4 ; CRYSTAL STRUCTURE OF E. COLI BIOTIN REPRESSOR WITH BOUND BIOTIN 1T36 ; 2.1 ; Crystal structure of E. coli carbamoyl phosphate synthetase small subunit mutant C248D complexed with uridine 5'-monophosphate 5H9E ; 3.21 ; Crystal structure of E. coli Cascade bound to a PAM-containing dsDNA target (32-nt spacer) at 3.20 angstrom resolution. 5H9F ; 2.45 ; Crystal structure of E. coli Cascade bound to a PAM-containing dsDNA target at 2.45 angstrom resolution. 3K8N ; 2.3 ; Crystal structure of E. Coli CCMG 2B1K ; 1.9 ; Crystal structure of E. coli CcmG protein 4CIU ; 3.5 ; Crystal structure of E. coli ClpB 2FZS ; 1.9 ; Crystal structure of E. coli ClpP with a Peptide Chloromethyl Ketone Covalently Bound at the Active Site 1D6Y ; 2.4 ; CRYSTAL STRUCTURE OF E. COLI COPPER-CONTAINING AMINE OXIDASE ANAEROBICALLY REDUCED WITH BETA-PHENYLETHYLAMINE AND COMPLEXED WITH NITRIC OXIDE. 5EEP ; 2.4 ; Crystal structure of E. coli CsdE 1S1M ; 2.3 ; Crystal Structure of E. Coli CTP Synthetase 2BC5 ; 2.25 ; Crystal structure of E. coli cytochrome b562 with engineered c-type heme linkages 2YJT ; 2.9 ; Crystal structure of E. coli DEAD-box protein SrmB bound to regulator of ribonuclease activity A (RraA) 2FAE ; 1.55 ; Crystal structure of E. coli decanoyl-ACP 6EUD ; 2.4 ; Crystal structure of E. coli DExH-box NTPase HrpB 4EOU ; 2.3 ; Crystal structure of E. coli dihydrodipicolinate synthase with pyruvate and succinic semi-aldehyde bound in active site 4BFA ; 1.65 ; Crystal structure of E. coli dihydrouridine synthase C (DusC) 4BF9 ; 2.6 ; Crystal structure of E. coli dihydrouridine synthase C (DusC) (selenomethionine derivative) 4GOM ; 2.45 ; Crystal Structure of E. coli DNA Adenine Methyltransferase in Complex with Aza-SAM 4GOO ; 2.7 ; Crystal Structure of E. coli DNA Adenine Methyltransferase in Complex with Benzothiophene Aza-SAM 4GON ; 2.72 ; Crystal Structure of E. coli DNA Adenine Methyltransferase in Complex with Indole Aza-SAM 4GOL ; 2.57 ; Crystal Structure of E. coli DNA Adenine Methyltransferase in Complex with Methylated Aza-SAM 4GBE ; 2.66 ; Crystal Structure of E. coli DNA Adenine Methyltransferase in Complex with SAH 1WBB ; 2.5 ; Crystal structure of E. coli DNA mismatch repair enzyme MutS, E38A mutant, in complex with a G.T mismatch 1WBD ; 2.4 ; Crystal structure of E. coli DNA mismatch repair enzyme MutS, E38Q mutant, in complex with a G.T mismatch 1WB9 ; 2.1 ; Crystal Structure of E. coli DNA Mismatch Repair enzyme MutS, E38T mutant, in complex with a G.T mismatch 1D6M ; 3.0 ; CRYSTAL STRUCTURE OF E. COLI DNA TOPOISOMERASE III 7AQS ; 2.8 ; Crystal structure of E. coli DPS in space group P1 1SEH ; 1.47 ; Crystal structure of E. coli dUTPase complexed with the product dUMP 3H8A ; 1.9 ; Crystal structure of E. coli enolase bound to its cognate RNase E recognition domain 2FYM ; 1.6 ; Crystal structure of E. coli enolase complexed with the minimal binding segment of RNase E. 1QG6 ; 1.9 ; CRYSTAL STRUCTURE OF E. COLI ENOYL ACYL CARRIER PROTEIN REDUCTASE IN COMPLEX WITH NAD AND TRICLOSAN 1LXC ; 2.4 ; Crystal Structure of E. Coli Enoyl Reductase-NAD+ with a Bound Acrylamide Inhibitor 1LX6 ; 2.4 ; Crystal Structure of E. Coli Enoyl Reductase-NAD+ with a Bound Benzamide Inhibitor 2FWM ; 2.0 ; Crystal Structure of E. coli EntA, a 2,3-dihydrodihydroxy benzoate dehydrogenase 4JRQ ; 3.0 ; Crystal structure of E. coli Exonuclease I in complex with a 5cy-dA13 oligonucleotide 4JS4 ; 3.1 ; Crystal structure of E. coli Exonuclease I in complex with a dA16 oligonucleotide 4JS5 ; 3.5 ; Crystal structure of E. coli Exonuclease I in complex with a dT13 oligonucleotide 3I8P ; 1.9 ; Crystal structure of E. coli FabF(C163A) in complex with Platensimycin A1 5CG1 ; 2.07 ; Crystal structure of E. coli FabI bound to the carbamoylated benzodiazaborine inhibitor 14b. 5CG2 ; 2.11 ; Crystal structure of E. coli FabI bound to the thiocarbamoylated benzodiazaborine inhibitor 35b. 5CFZ ; 1.97 ; Crystal structure of E. coli FabI in apo form 7UM8 ; 1.7 ; Crystal structure of E. Coli FabI in complex with NAD and (R,E)-3-(7-amino-8-oxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide 4D46 ; 2.0 ; Crystal structure of E. coli FabI in complex with NAD and 5-bromo-2-(4-chloro-2-hydroxyphenoxy)benzonitrile 7UMW ; 1.54 ; Crystal structure of E. Coli FabI in complex with NAD and Fabimycin ((S,E)-3-(7-amino-8-oxo-6,7,8,9-tetrahydro-5H-pyrido[2,3-b]azepin-3-yl)-N-methyl-N-((3-methylbenzofuran-2-yl)methyl)acrylamide) 4CV2 ; 1.8 ; Crystal structure of E. coli FabI in complex with NADH and CG400549 4CV3 ; 1.95 ; Crystal structure of E. coli FabI in complex with NADH and PT166 7QP5 ; 1.92 ; Crystal Structure of E. coli FhuF 1FW4 ; 1.7 ; CRYSTAL STRUCTURE OF E. COLI FRAGMENT TR2C FROM CALMODULIN TO 1.7 A RESOLUTION 6NZ9 ; 1.528 ; Crystal structure of E. coli fumarase C bound to citrate at 1.53 angstrom resolution 6NZA ; 1.406 ; Crystal structure of E. coli fumarase C K324A variant with closed SS Loop at 1.41 angstrom resolution 6NZC ; 1.403 ; Crystal structure of E. coli fumarase C N326A variant with closed SS Loop at 1.40 angstrom resolution 6NZB ; 1.37 ; Crystal structure of E. coli fumarase C S318A variant with closed SS Loop at 1.37 angstrom resolution 5O0V ; 2.4 ; crystal structure of E. coli GAP-DH by fortuitous crystallization as an impurity from a solution of human liver FBPase 1SZ2 ; 2.2 ; Crystal structure of E. coli glucokinase in complex with glucose 2E3D ; 1.95 ; Crystal structure of E. coli glucose-1-phosphate uridylyltransferase 4JYZ ; 2.5 ; Crystal structure of E. coli glutaminyl-tRNA synthetase bound to ATP and native tRNA(Gln) containing the cmnm5s2U34 anticodon wobble base 2PAN ; 2.7 ; Crystal structure of E. coli glyoxylate carboligase 8BEO ; 1.96 ; Crystal structure of E. coli glyoxylate carboligase mutant I393A with MAP 7DKP ; 1.45 ; Crystal structure of E. coli Grx2 in complex with GSH at 1.45 A resolution 7D9L ; 1.61 ; Crystal structure of E. coli Grx2: Enzyme inhibited state in complex with Zinc and glutathione sulfinic acid 2BZ0 ; 2.6 ; Crystal Structure of E. coli GTP cyclohydrolase II in complex with GTP analogue, GMPcPP, and Zinc 6VWO ; 1.78 ; Crystal structure of E. coli guanosine kinase 6VWP ; 3.45 ; Crystal structure of E. coli guanosine kinase in complex with ppGpp 3G7E ; 2.2 ; Crystal structure of E. coli Gyrase B co-complexed with PROP-2-YN-1-YL {[5-(4-PIPERIDIN-1-YL-2-PYRIDIN-3-YL-1,3-THIAZOL-5-YL)-1H-PYRAZOL-3-YL]METHYL}CARBAMATE inhibitor 6F86 ; 1.9 ; Crystal Structure of E. coli GyraseB 24kDa in complex with 4-(4-bromo-1H-pyrazol-1-yl)-6-[(ethylcarbamoyl)amino]-N-(pyridin-3-yl)pyridine-3-carboxamide 6F8J ; 1.95 ; Crystal Structure of E. coli GyraseB 24kDa in complex with 6-[(ethylcarbamoyl)amino]-4-(1H-pyrazol-1-yl)-N-(pyridin-3-yl)pyridine-3-carboxamide 6F94 ; 2.35 ; Crystal Structure of E. coli GyraseB 24kDa in complex with 6-[(ethylcarbamoyl)amino]-4-[(3-methyphenyl)amino]-N-(3-methyphenyl)pyridine-3-carboxamide 6F96 ; 2.5 ; Crystal Structure of E. coli GyraseB 24kDa in complex with 6-[(ethylcarbamoyl)amino]-4-[(4-methoxyphenyl)amino]-N-(pyridin-3-yl)pyridine-3-carboxamide 2FAD ; 1.6 ; Crystal structure of E. coli heptanoyl-ACP 7YSE ; 2.907 ; Crystal structure of E. coli heterotetrameric GlyRS in complex with tRNA 2FAC ; 1.76 ; Crystal structure of E. coli hexanoyl-ACP 3RER ; 1.7 ; Crystal structure of E. coli Hfq in complex with AU6A RNA and ADP 2DH5 ; 2.9 ; Crystal structure of E. coli Holo-TrpB 5BV2 ; 1.53 ; Crystal structure of E. coli HPII catalase variant 3UD5 ; 2.0 ; Crystal structure of E. coli HPPK in complex with bisubstrate analogue inhibitor J1A 3UDE ; 1.881 ; Crystal structure of E. coli HPPK in complex with bisubstrate analogue inhibitor J1B 3UDV ; 1.88 ; Crystal structure of E. coli HPPK in complex with bisubstrate analogue inhibitor J1C 4F7V ; 1.73 ; Crystal structure of E. coli HPPK in complex with bisubstrate analogue inhibitor J1D (HP26) 3IP0 ; 0.89 ; Crystal structure of E. coli HPPK in complex with MgAMPCPP and 6-hydroxymethylpterin/6-carboxypterin 3ILI ; 1.45 ; Crystal structure of E. coli HPPK(D95A) 3ILJ ; 1.65 ; Crystal structure of E. coli HPPK(D95A) in complex with MgAMPCPP 3ILL ; 1.73 ; Crystal structure of E. coli HPPK(D97A) 3ILO ; 1.1 ; Crystal structure of E. coli HPPK(D97A) in complex with MgAMPCPP and 6-hydroxymethyl-7,8-dihydropterin 3KUE ; 1.538 ; Crystal structure of E. coli HPPK(E77A) 3HSZ ; 1.4 ; Crystal structure of E. coli HPPK(F123A) 3HT0 ; 1.4 ; Crystal structure of E. coli HPPK(F123A) in complex with MgAMPCPP 3KUG ; 1.996 ; Crystal structure of E. coli HPPK(H115A) 3KUH ; 1.35 ; Crystal structure of E. coli HPPK(H115A) in complex with AMPCPP and HP 3HCX ; 1.75 ; Crystal structure of E. coli HPPK(N10A) 3HD1 ; 1.3 ; Crystal structure of E. coli HPPK(N10A) in complex with MgAMPCPP 3HSJ ; 1.18 ; Crystal structure of E. coli HPPK(N55A) 3HD2 ; 1.1 ; Crystal structure of E. coli HPPK(Q50A) in complex with MgAMPCPP and pterin 3HSD ; 1.652 ; Crystal structure of E. coli HPPK(Y53A) 3HSG ; 1.14 ; Crystal structure of E. coli HPPK(Y53A) in complex with MgAMPCPP 7ACL ; 2.049 ; Crystal structure of E. coli HTH-type transcriptional regulator RcdA at 2.05 A resolution 7ACM ; 1.763 ; Crystal structure of E. coli HTH-type transcriptional regulator RcdA in complex with TMAO at 1.76 A resolution 7ACO ; 1.798 ; Crystal structure of E. coli HTH-type transcriptional regulator RcdA in complex with Tris at 1.80 A resolution 2O97 ; 2.45 ; Crystal Structure of E. coli HU heterodimer 3USC ; 2.0 ; Crystal Structure of E. coli hydrogenase-1 in a ferricyanide-oxidized form 3USE ; 1.67 ; Crystal Structure of E. coli hydrogenase-1 in its as-isolated form 2I6R ; 2.51 ; Crystal structure of E. coli HypE, a hydrogenase maturation protein 3TSP ; 2.05 ; Crystal structure of E. coli HypF 3TTC ; 1.86 ; Crystal structure of E. coli HypF with ADP and carbamoyl phosphate 3TTF ; 1.92 ; Crystal structure of E. coli HypF with AMP and carbamoyl phosphate 3TTD ; 2.2 ; Crystal structure of E. coli HypF with AMP-CPP and carbamoyl phosphate 3TSU ; 1.92 ; Crystal structure of E. coli HypF with AMP-PNP and carbamoyl phosphate 3TSQ ; 2.4 ; Crystal structure of E. coli HypF with ATP and Carbamoyl phosphate 1NXU ; 1.8 ; CRYSTAL STRUCTURE OF E. COLI HYPOTHETICAL OXIDOREDUCTASE YIAK NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ER82. 5KNT ; 2.55 ; Crystal structure of E. coli hypoxanthine phosphoribosyltransferase in complexed with 2-((2,3-Dihydroxypropyl)(2-(hypoxanthin-9-yl)ethyl)amino)ethylphosphonic acid 5KNU ; 2.808 ; Crystal structure of E. coli hypoxanthine phosphoribosyltransferase in complexed with 9-[N,N-(Bis-3-phosphonopropyl)aminomethyl]-9-deazahypoxanthine 5KNX ; 2.4 ; Crystal structure of E. coli hypoxanthine phosphoribosyltransferase in complexed with {[(2-[(Hypoxanthin-9H-yl)methyl]propane-1,3-diyl)bis(oxy)]bis- (methylene)}diphosphonic Acid 2ZAL ; 1.9 ; Crystal structure of E. coli isoaspartyl aminopeptidase/L-asparaginase in complex with L-aspartate 2AQO ; 1.95 ; Crystal structure of E. coli Isoaspartyl Dipeptidase Mutant E77Q 2AQV ; 1.95 ; Crystal Structure of E. coli Isoaspartyl Dipeptidase mutant Y137F 1W8G ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI K-12 YGGS 1O89 ; 2.25 ; Crystal structure of E. COLI K-12 yhdH 1O8C ; 2.6 ; CRYSTAL STRUCTURE OF E. COLI K-12 YHDH WITH BOUND NADPH 6EOK ; 2.5 ; Crystal structure of E. coli L-asparaginase II 4RJY ; 2.1 ; Crystal structure of E. coli L-Threonine Aldolase in complex with a non-covalently uncleaved bound L-serine substrate 4OAA ; 3.5 ; Crystal structure of E. coli lactose permease G46W,G262W bound to sugar 4ZYR ; 3.312 ; Crystal structure of E. coli Lactose permease G46W/G262W bound to p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) 2GQQ ; 3.2 ; Crystal Structure of E. coli Leucine-responsive regulatory protein (Lrp) 3A7R ; 2.05 ; Crystal structure of E. coli lipoate-protein ligase A in complex with lipoyl-AMP. 3A7A ; 3.1 ; Crystal structure of E. coli lipoate-protein ligase A in complex with octyl-amp and apoH-protein 3K8E ; 2.51 ; Crystal structure of E. coli lipopolysaccharide specific CMP-KDO synthetase 3K8D ; 1.9 ; Crystal structure of E. coli lipopolysaccharide specific CMP-KDO synthetase in complex with CTP and 2-deoxy-Kdo 6DR3 ; 2.101 ; Crystal structure of E. coli LpoA amino terminal domain 8GAK ; 1.9 ; Crystal Structure of E. coli LptA in complex with Chinavia Ubica Thanatin 8GAJ ; 2.43 ; Crystal Structure of E. coli LptA in complex with Podisus maculiventris Thanatin 4P32 ; 1.55 ; Crystal structure of E. coli LptB in complex with ADP-magnesium 4P33 ; 1.65 ; Crystal structure of E. coli LptB-E163Q in complex with ATP-sodium 3GKF ; 2.9 ; Crystal Structure of E. coli LsrF 3GLC ; 2.5 ; Crystal Structure of E. coli LsrF in complex with Ribose-5-phosphate 3GND ; 2.9 ; Crystal Structure of E. coli LsrF in complex with Ribulose-5-phosphate 3QMQ ; 1.8 ; Crystal Structure of E. coli LsrG 1JRL ; 1.95 ; Crystal structure of E. coli Lysophospholiase L1/Acyl-CoA Thioesterase I/Protease I L109P mutant 1Q1B ; 2.8 ; Crystal structure of E. coli MalK in the nucleotide-free form 4JBW ; 3.913 ; Crystal structure of E. coli maltose transporter MalFGK2 in complex with its regulatory protein EIIAglc 3H5A ; 2.8 ; Crystal structure of E. coli MccB 3H9J ; 2.3 ; Crystal structure of E. coli MccB + AMPCPP + SeMeT MccA 3H5N ; 1.9 ; Crystal structure of E. coli MccB + ATP 3H9G ; 2.2 ; Crystal structure of E. coli MccB + MccA-N7isoASN 3H9Q ; 2.63 ; Crystal structure of E. coli MccB + SeMet MccA 3H5R ; 2.1 ; Crystal structure of E. coli MccB + Succinimide 6J0A ; 14.2 ; Crystal structure of E. coli methionine aminopeptidase enzyme and chaperone trigger factor fitted into the cryo-EM density map of the complex 6XGY ; 2.9 ; Crystal structure of E. coli MlaFB ABC transport subunits in the dimeric state 6XGZ ; 2.6 ; Crystal structure of E. coli MlaFB ABC transport subunits in the monomeric state 2PI8 ; 2.25 ; Crystal structure of E. coli MltA with bound chitohexaose 4HJV ; 2.3 ; Crystal structure of E. coli MltE with bound bulgecin and murodipeptide 1D5N ; 1.55 ; CRYSTAL STRUCTURE OF E. COLI MNSOD AT 100K 1JYS ; 1.9 ; Crystal Structure of E. coli MTA/AdoHcy Nucleosidase 1NC1 ; 2.0 ; Crystal structure of E. coli MTA/AdoHcy nucleosidase complexed with 5'-methylthiotubercidin (MTH) 1NC3 ; 2.2 ; Crystal structure of E. coli MTA/AdoHcy nucleosidase complexed with formycin A (FMA) 3O4V ; 1.75 ; Crystal structure of E. coli MTA/SAH nucleosidase in complex with (4-Chlorophenyl)thio-DADMe-ImmA 3DF9 ; 1.95 ; Crystal structure of E. coli MTA/SAH nucleosidase in complex with BnT-DADMeImmA 4ZOW ; 2.45 ; Crystal structure of E. coli multidrug transporter MdfA in complex with chloramphenicol 4ZP0 ; 2.0 ; Crystal structure of E. coli multidrug transporter MdfA in complex with deoxycholate 4ZP2 ; 2.2 ; Crystal structure of E. coli multidrug transporter MdfA in complex with n-dodecyl-N,N-dimethylamine-N-oxide 2Q85 ; 2.51 ; Crystal Structure of E. Coli Mur B bound to a Naphthyl Tetronic Acid inihibitor 3JZ4 ; 2.3 ; Crystal structure of E. coli NADP dependent enzyme 7X32 ; 1.829 ; Crystal structure of E. coli NfsB in complex with berberine 1K4K ; 2.0 ; Crystal structure of E. coli Nicotinic acid mononucleotide adenylyltransferase 5IW4 ; 2.6 ; Crystal structure of E. coli NudC in complex with NAD 5IW5 ; 2.7 ; Crystal structure of E. coli NudC in complex with NMN 3SQV ; 3.3 ; Crystal Structure of E. coli O157:H7 E3 ubiquitin ligase, NleL, with a human E2, UbcH7 3NAW ; 2.5 ; Crystal structure of E. coli O157:H7 effector protein NleL 3NB2 ; 2.1 ; Crystal structure of E. coli O157:H7 effector protein NleL 2IGI ; 1.7 ; Crystal Structure of E. coli Oligoribonuclease 4GCP ; 1.98 ; Crystal Structure of E. coli OmpF porin in complex with Ampicillin 4GCQ ; 2.2 ; Crystal Structure of E. coli OmpF porin in complex with Carbenicillin 4GCS ; 1.87 ; Crystal Structure of E. coli OmpF porin in complex with Ertapenem 3TCF ; 2.0 ; Crystal structure of E. coli OppA complexed with endogenous ligands 3TCG ; 2.0 ; Crystal structure of E. coli OppA complexed with the tripeptide KGE 3TCH ; 1.98 ; Crystal structure of E. coli OppA in an open conformation 1DUV ; 1.7 ; CRYSTAL STRUCTURE OF E. COLI ORNITHINE TRANSCARBAMOYLASE COMPLEXED WITH NDELTA-L-ORNITHINE-DIAMINOPHOSPHINYL-N-SULPHONIC ACID (PSORN) 1QWI ; 1.8 ; Crystal Structure of E. coli OsmC 1SQ5 ; 2.2 ; Crystal Structure of E. coli Pantothenate kinase 5J8X ; 2.53 ; CRYSTAL STRUCTURE OF E. COLI PBP5 WITH 2C 6NTZ ; 2.2 ; Crystal structure of E. coli PBP5-meropenem 4BJP ; 2.5 ; Crystal structure of E. coli penicillin binding protein 3 4BJQ ; 2.1 ; Crystal structure of E. coli penicillin binding protein 3, domain V88- S165 3BEC ; 1.6 ; Crystal structure of E. coli penicillin-binding protein 5 in complex with a peptide-mimetic cephalosporin 3BEB ; 2.0 ; Crystal structure of E. coli penicillin-binding protein 5 in complex with a peptide-mimetic penicillin 2HPT ; 2.3 ; Crystal Structure of E. coli PepN (Aminopeptidase N)in complex with Bestatin 6IZI ; 11.8 ; Crystal structure of E. coli peptide deformylase and methionine aminopeptidase fitted into the cryo-EM density map of the complex 6J45 ; 12.2 ; Crystal structure of E. coli peptide deformylase enzyme and chaperone trigger factor fitted into the cryo-EM density map of the complex 1DJ8 ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI PERIPLASMIC PROTEIN HDEA 4WHE ; 1.8 ; Crystal structure of E. coli phage shock protein A (PspA 1-144) 3PCO ; 3.02 ; crystal structure of E. coli phenylalanine-tRNA synthetase complexed with phenylalanine and AMP 3HYC ; 3.06 ; Crystal structure of E. coli phosphatase YrbI, with Mg, tetragonal form 2PY7 ; 2.2 ; Crystal structure of E. coli phosphoenolpyruvate carboxykinase mutant Lys213Ser complexed with ATP-Mg2+-Mn2+ 6V2N ; 1.65 ; Crystal structure of E. coli phosphoenolpyruvate carboxykinase mutant Lys254Ser 4HN7 ; 2.352 ; Crystal structure of E. coli PmrD 3UT6 ; 1.895 ; Crystal structure of E. Coli PNP complexed with PO4 and formycin A 3CDI ; 2.6 ; Crystal structure of E. coli PNPase 3GCM ; 2.5 ; Crystal Structure of E. coli polynucleotide phosphorylase bound to RNA and RNase E 2CCZ ; 2.7 ; Crystal structure of E. coli primosomol protein PriB bound to ssDNA 2AB0 ; 1.1 ; Crystal Structure of E. coli protein YajL (ThiJ) 1QYA ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI PROTEIN YDDE 2OLW ; 1.6 ; Crystal Structure of E. coli pseudouridine synthase RluE 2OML ; 1.2 ; crystal structure of E. coli pseudouridine synthase RluE 1QCZ ; 1.5 ; CRYSTAL STRUCTURE OF E. COLI PURE, AN UNUSUAL MUTASE THAT CATALYZES THE CONVERSION OF N5-CARBOXYAMINOIMIDAZOLE RIBONUCLEOTIDE (N5-CAIR) TO 4-CARBOXYAMINOIMIDAZOLE RIBONUCLEOTIDE (CAIR) IN THE PURINE BIOSYNTHETIC PATHWAY 1D7A ; 2.5 ; CRYSTAL STRUCTURE OF E. COLI PURE-MONONUCLEOTIDE COMPLEX. 3OPV ; 2.4 ; Crystal structure of E. Coli purine nucleoside phosphorylase Arg24Ala mutant 1PKE ; 2.3 ; Crystal Structure of E. coli purine nucleoside phosphorylase complexed with 2-fluoro-2'-deoxyadenosine and sulfate/phosphate 1PK9 ; 1.9 ; Crystal Structure of E. coli purine nucleoside phosphorylase complexed with 2-fluoroadenosine and sulfate/phosphate 1PW7 ; 2.0 ; Crystal Structure of E. coli purine nucleoside phosphorylase complexed with 9-beta-D-arabinofuranosyladenine and sulfate/phosphate 1PK7 ; 2.5 ; Crystal Structure of E. coli purine nucleoside phosphorylase complexed with adenosine and sulfate/phosphate 6XZ2 ; 1.65 ; Crystal structure of E. Coli purine nucleoside phosphorylase mutant Y160W with SO4 and Formycin A 3OOE ; 2.0 ; Crystal structure of E. Coli purine nucleoside phosphorylase with PO4 3OOH ; 2.9 ; Crystal structure of E. Coli purine nucleoside phosphorylase with PO4 3ONV ; 1.893 ; Crystal structure of E. Coli purine nucleoside phosphorylase with SO4 3ETH ; 1.6 ; Crystal structure of E. coli Purk in complex with MgATP 1TJ0 ; 2.1 ; Crystal structure of E. coli PutA proline dehydrogenase domain (residues 86-669) co-crystallized with L-lactate 1TJ2 ; 2.05 ; Crystal structure of E. coli PutA proline dehydrogenase domain (residues 86-669) complexed with acetate 1TJ1 ; 2.0 ; Crystal structure of E. coli PutA proline dehydrogenase domain (residues 86-669) complexed with L-lactate 1TIW ; 2.0 ; Crystal structure of E. coli PutA proline dehydrogenase domain (residues 86-669) complexed with L-Tetrahydro-2-furoic acid 3NBX ; 2.91 ; Crystal structure of E. coli RavA (Regulatory ATPase variant A) in complex with ADP 2OWL ; 2.4 ; Crystal structure of E. coli RdgC 1U94 ; 1.9 ; Crystal Structure of E. Coli RecA in a Compressed Helical Filament Form 2 1U98 ; 2.0 ; Crystal Structure of E. coli RecA in a Compressed Helical Filament Form3 3H4R ; 2.8 ; Crystal structure of E. coli RecE exonuclease 2YJV ; 2.8 ; Crystal structure of E. coli regulator of ribonuclease activity A (RraA) bound to fragment of DEAD-box protein RhlB 3KGD ; 1.68 ; Crystal structure of E. coli RNA 3' cyclase 6ZWX ; 2.7 ; Crystal structure of E. coli RNA helicase HrpA 6ZWW ; 3.16 ; Crystal structure of E. coli RNA helicase HrpA in complex with RNA 7AKP ; 2.59 ; Crystal structure of E. coli RNA helicase HrpA-D305A 3K4G ; 2.05 ; Crystal structure of E. coli RNA polymerase alpha subunit C-terminal domain 4JKR ; 4.2 ; Crystal Structure of E. coli RNA Polymerase in complex with ppGpp 2VMK ; 3.3 ; Crystal Structure of E. coli RNase E Apoprotein - Catalytic Domain 2VRT ; 3.5 ; Crystal Structure of E. coli RNase E possessing M1 RNA fragments - Catalytic Domain 6D1Q ; 2.15 ; Crystal structure of E. coli RppH-DapF complex, monomer 6D1V ; 1.81 ; Crystal structure of E. coli RppH-DapF complex, monomer bound to RNA 7W6X ; 3.2 ; Crystal structure of E. coli RseP in complex with batimastat 1QY9 ; 2.05 ; Crystal structure of E. coli Se-MET protein YDDE 1LRR ; 2.65 ; CRYSTAL STRUCTURE OF E. COLI SEQA COMPLEXED WITH HEMIMETHYLATED DNA 6R1O ; 2.6 ; Crystal structure of E. coli seryl-tRNA synthetase complexed to a seryl sulfamoyl adenosine derivative 6R1M ; 1.5 ; Crystal structure of E. coli seryl-tRNA synthetase complexed to seryl sulfamoyl adenosine 7AGK ; 2.97 ; Crystal structure of E. coli SF kinase (YihV) in complex with product sulfofructose phosphate (SFP) 7AG1 ; 2.0 ; Crystal structure of E. coli SFP aldolase (YihT) from sulfo-EMP pathway 3D1E ; 1.9 ; Crystal structure of E. coli sliding clamp (beta) bound to a polymerase II peptide 3D1F ; 2.0 ; Crystal structure of E. coli sliding clamp (beta) bound to a polymerase III peptide 2UYN ; 1.6 ; Crystal structure of E. coli TdcF with bound 2-ketobutyrate 2UYJ ; 2.35 ; Crystal structure of E. coli TdcF with bound ethylene glycol 2UYP ; 2.44 ; Crystal structure of E. coli TdcF with bound propionate 2UYK ; 1.6 ; Crystal structure of E. coli TdcF with bound serine 3DYR ; 2.0 ; Crystal structure of E. coli thioredoxin mutant I76T in its oxidized form 8OU8 ; 2.05 ; Crystal structure of E. coli threonyl tRNA synthetase in complex with a TM84 analogue 4HWO ; 1.907 ; Crystal structure of E. coli Threonyl-tRNA synthetase bound to a novel inhibitor 4HWP ; 1.807 ; Crystal structure of E. coli Threonyl-tRNA synthetase bound to a novel inhibitor 4HWR ; 1.9 ; Crystal structure of E. coli Threonyl-tRNA synthetase bound to a novel inhibitor 4HWS ; 1.7 ; Crystal structure of E. coli Threonyl-tRNA synthetase bound to a novel inhibitor 1KOG ; 3.5 ; Crystal structure of E. coli threonyl-tRNA synthetase interacting with the essential domain of its mRNA operator 8H99 ; 1.94 ; Crystal structure of E. coli ThrS catalytic domain mutant 1F4D ; 2.15 ; CRYSTAL STRUCTURE OF E. COLI THYMIDYLATE SYNTHASE C146S, L143C COVALENTLY MODIFIED AT C143 WITH N-[TOSYL-D-PROLINYL]AMINO-ETHANETHIOL 1F4F ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH SP-722 1F4G ; 1.75 ; CRYSTAL STRUCTURE OF E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH SP-876 1F4E ; 1.9 ; CRYSTAL STRUCTURE OF E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH TOSYL-D-PROLINE 1F4C ; 2.0 ; CRYSTAL STRUCTURE OF E. COLI THYMIDYLATE SYNTHASE COVALENTLY MODIFIED AT C146 WITH N-[TOSYL-D-PROLINYL]AMINO-ETHANETHIOL 3FV5 ; 1.8 ; Crystal Structure of E. coli Topoisomerase IV co-complexed with inhibitor 1S16 ; 2.1 ; Crystal Structure of E. coli Topoisomerase IV ParE 43kDa subunit complexed with ADPNP 7D8O ; 2.097 ; Crystal structure of E. coli ToxIN type III toxin-antitoxin complex 1X13 ; 1.9 ; Crystal structure of E. coli transhydrogenase domain I 1X14 ; 1.94 ; Crystal structure of E. coli transhydrogenase domain I with bound NAD 1X15 ; 2.04 ; Crystal structure of E. coli transhydrogenase domain I with bound NADH 5HHT ; 1.5 ; Crystal structure of E. coli transketolase triple variant Ser385Tyr/Asp469Thr/Arg520Gln 3ERS ; 1.87 ; Crystal Structure of E. coli Trbp111 4RDH ; 2.1 ; Crystal structure of E. coli tRNA N6-threonylcarbamoyladenosine dehydratase, TcdA 4RDI ; 1.95 ; Crystal structure of E. coli tRNA N6-threonylcarbamoyladenosine dehydratase, TcdA 4D7A ; 1.801 ; Crystal structure of E. coli tRNA N6-threonylcarbamoyladenosine dehydratase, TcdA, in complex with AMP at 1.801 Angstroem resolution 4D79 ; 1.768 ; Crystal structure of E. coli tRNA N6-threonylcarbamoyladenosine dehydratase, TcdA, in complex with ATP at 1.768 Angstroem resolution 1SZW ; 2.0 ; Crystal structure of E. coli tRNA pseudouridine synthase TruD 6EI9 ; 2.55 ; Crystal structure of E. coli tRNA-dihydrouridine synthase B (DusB) 2C44 ; 2.8 ; Crystal Structure of E. coli Tryptophanase 7AP3 ; 2.0 ; Crystal structure of E. coli tyrosyl-tRNA synthetase in complex with TyrS7HMDDA 6I5Y ; 1.9 ; Crystal structure of E. coli tyrRS in complex with 5'-O-(N-L-tyrosyl)sulfamoyl-adenosine 6HB5 ; 1.88 ; Crystal structure of E. coli tyrRS in complex with 5'-O-(N-L-tyrosyl)sulfamoyl-cytidine 6HB7 ; 1.9 ; Crystal structure of E. coli tyrRS in complex with 5'-O-(N-L-tyrosyl)sulfamoyl-N3-methyluridine 6HB6 ; 1.92 ; Crystal structure of E. coli tyrRS in complex with 5'-O-(N-L-tyrosyl)sulfamoyl-uridine 1LRJ ; 1.9 ; Crystal Structure of E. coli UDP-Galactose 4-Epimerase Complexed with UDP-N-Acetylglucosamine 5CQB ; 2.2 ; Crystal structure of E. coli undecaprenyl pyrophosphate synthase 3SH0 ; 1.84 ; Crystal Structure of E. coli undecaprenyl pyrophosphate synthase in complex with BPH-1065 3SGX ; 2.45 ; Crystal Structure of E. coli undecaprenyl pyrophosphate synthase in complex with BPH-1100 3SGV ; 1.61 ; Crystal Structure of E. coli undecaprenyl pyrophosphate synthase in complex with BPH-1290 3SGT ; 1.85 ; Crystal Structure of E. coli undecaprenyl pyrophosphate synthase in complex with BPH-1299 5CQJ ; 2.15 ; Crystal structure of E. coli undecaprenyl pyrophosphate synthase in complex with clomiphene 3LFU ; 1.8 ; Crystal Structure of E. coli UvrD 7EQJ ; 2.043 ; crystal structure of E. coli Valine tRNA 3GHQ ; 2.7 ; Crystal Structure of E. coli W35F BFR mutant 2RG1 ; 1.85 ; Crystal structure of E. coli WrbA apoprotein 4YQE ; 1.33 ; Crystal structure of E. coli WrbA in complex with benzoquinone 2R96 ; 2.6 ; Crystal structure of E. coli WrbA in complex with FMN 2R97 ; 2.0 ; Crystal structure of E. coli WrbA in complex with FMN 4JLS ; 2.2 ; Crystal Structure of E. coli XGPRT in complex with (3R,4S)-4-(Guanin-9-yl)-3-hydroxypyrrolidin-1-N-ylacetylphosphonic acid 4JIT ; 2.8 ; Crystal Structure of E. coli XGPRT in complex with (S)-3-(Guanin-9-yl)pyrrolidin-N-ylacetylphosphonic acid 5CAJ ; 1.65 ; Crystal structure of E. coli YaaA, a member of the DUF328/UPF0246 family 3QOU ; 1.8 ; Crystal Structure of E. coli YbbN 5DUD ; 2.8 ; Crystal structure of E. coli YbgJK 6NTW ; 2.76 ; Crystal structure of E. coli YcbB 1KK9 ; 2.1 ; CRYSTAL STRUCTURE OF E. COLI YCIO 2IGL ; 1.8 ; Crystal Structure of E. coli YEDX, a transthyretin related protein 4LR3 ; 2.5 ; Crystal structure of E. coli YfbU at 2.5 A resolution 4PDN ; 1.448 ; Crystal structure of E. coli YfcM 3WTR ; 1.96 ; Crystal structure of E. coli YfcM bound to Co(II) 4YDU ; 2.33 ; Crystal structure of E. coli YgjD-YeaZ heterodimer in complex with ADP 3W7X ; 2.7 ; Crystal structure of E. coli YgjK D324N complexed with melibiose 3W7W ; 2.0 ; Crystal structure of E. coli YgjK E727A complexed with 2-O-alpha-D-glucopyranosyl-alpha-D-galactopyranose 1LN4 ; 1.5 ; CRYSTAL STRUCTURE OF E. COLI YHBY 6AL2 ; 2.8 ; Crystal structure of E. coli YidC at 2.8 A resolution 1X8D ; 1.8 ; Crystal structure of E. coli YiiL protein containing L-rhamnose 3VGZ ; 1.7 ; Crystal structure of E. coli YncE 3VH0 ; 2.9 ; Crystal structure of E. coli YncE complexed with DNA 2EVC ; 1.6 ; Crystal structure of E. Coli. methionine amino peptidase in complex with 5-(2-(trifluoromethyl)phenyl)furan-2-carboxylic acid 1SI8 ; 2.3 ; Crystal structure of E. faecalis catalase 4WUH ; 2.294 ; Crystal structure of E. faecalis DNA binding domain LiaR wild type complexed with 22bp DNA 4WU4 ; 2.3 ; Crystal structure of E. faecalis DNA binding domain LiaRD191N complexed with 22bp DNA 4WUL ; 2.4 ; Crystal structure of E. faecalis DNA binding domain LiaRD191N complexed with 26bp DNA 4EEQ ; 2.1 ; Crystal structure of E. faecalis DNA ligase with inhibitor 7X5N ; 1.9 ; Crystal structure of E. faecium SHMT in complex with (+)-SHIN-1 and PLP-Ser 7X5O ; 2.62 ; Crystal structure of E. faecium SHMT in complex with Me-THF and PLP-Gly 4DVG ; 2.604 ; Crystal structure of E. histolytica Formin1 bound to EhRho1-GTPgammaS 4MIT ; 2.35 ; Crystal structure of E. histolytica RacC bound to the EhPAK4 PBD 7R0P ; 1.6 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT F254I COMPLEXED WITH FE, NAD+, AND ETHYLENE GLYCOL 7QNJ ; 1.66 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT F254I COMPLEXED WITH FE, NAD+, AND GLYCEROL 7R5T ; 1.85 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT F254I COMPLEXED WITH FE, NADH, AND GLYCEROL 7QNI ; 1.73 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT L259V 7QLG ; 2.0 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT L259V COMPLEXED WITH FE, NADH, AND GLYCEROL 7QNF ; 2.14 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT N151G, L259V COMPLEXED WITH FE, NAD+, AND ETHYLENE GLYCOL 7QLQ ; 2.6 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT N151G, L259V COMPLEXED WITH FE, NAD, AND DIMETHOXYPHENYL ACETAMIDE 7QLS ; 2.4 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT N151G, L259V COMPLEXED WITH FE, NADH, AND DIMETHOXYPHENYL ACETAMIDE 7QNH ; 2.2 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT N151G, L259V COMPLEXED WITH FE, NADH, AND GLYCEROL 7R3D ; 1.4 ; CRYSTAL STRUCTURE OF E.coli ALCOHOL DEHYDROGENASE - FucO MUTANT N151G, L259V COMPLEXED WITH FE, NADH, AND GLYCEROL (Absence of Nicotinamide ring) 4Q4E ; 1.9 ; Crystal structure of E.coli aminopeptidase N in complex with actinonin 4Q4I ; 2.31 ; Crystal structure of E.coli aminopeptidase N in complex with amastatin 5YQ1 ; 1.58 ; Crystal structure of E.coli aminopeptidase N in complex with O-Methyl-L-tyrosine 5YQB ; 1.56 ; Crystal structure of E.coli aminopeptidase N in complex with Puromycin 5YQ2 ; 1.6 ; Crystal structure of E.coli aminopeptidase N in complex with Puromycin aminonucleoside 1T8S ; 2.6 ; Crystal Structure of E.coli AMP Nucleosidase complexed with formicin 5'-monophosphate 1T8Y ; 3.0 ; Crystal Structure of E.coli AMP Nucleosidase complexed with phosphate 1RTZ ; 1.33 ; CRYSTAL STRUCTURE OF E.COLI APO-HPPK(V83G/DEL84-89) AT 1.33 ANGSTROM RESOLUTION 1TMJ ; 1.45 ; Crystal structure of E.coli apo-HPPK(W89A) at 1.45 Angstrom resolution 4OBY ; 2.574 ; Crystal Structure of E.coli Arginyl-tRNA Synthetase and Ligand Binding Studies Revealed Key Residues in Arginine Recognition 1Z7B ; 2.31 ; Crystal structure of E.coli ArnA dehydrogenase (decarboxylase) domain, R619E mutant 1Z74 ; 2.7 ; Crystal Structure of E.coli ArnA dehydrogenase (decarboxylase) domain, R619Y mutant 1YRW ; 1.7 ; Crystal Structure of E.coli ArnA Transformylase Domain 1X29 ; 2.2 ; Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-2-methyl-L-glutamic acid 1X2A ; 2.2 ; Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-D-glutamic acid 1X28 ; 2.4 ; Crystal Structure of e.coli AspAT complexed with N-phosphopyridoxyl-L-glutamic acid 7NRE ; 2.3 ; Crystal structure of E.coli BamA beta-barrel in complex with darobactin (crystal form 1) 7NRF ; 2.2 ; Crystal structure of E.coli BamA beta-barrel in complex with darobactin (crystal form 2) 7P1C ; 2.5 ; Crystal structure of E.coli BamA beta-barrel in complex with darobactin B 7R1V ; 2.5 ; Crystal structure of E.coli BamA beta-barrel in complex with dynobactin A 6QGY ; 2.509 ; Crystal structure of E.coli BamA beta-barrel in complex with nanobody B12 6QGW ; 1.938 ; Crystal structure of E.coli BamA beta-barrel in complex with nanobody E6 6QGX ; 2.2 ; Crystal structure of E.coli BamA beta-barrel in complex with nanobody F7 6FSU ; 2.6 ; Crystal structure of E.coli BamA beta-barrel with a C-terminal extension 2XHY ; 2.3 ; Crystal Structure of E.coli BglA 3RV3 ; 1.91 ; Crystal structure of E.coli biotin carboxylase in complex with two ADP and one Mg ion 3RUP ; 1.99 ; Crystal structure of E.coli biotin carboxylase in complex with two ADP and two Ca ions 3RV4 ; 1.98 ; Crystal structure of E.coli biotin carboxylase R16E mutant in complex with Mg-ADP and bicarbonate 5E6Y ; 2.6 ; Crystal structure of E.Coli branching enzyme in complex with alpha cyclodextrin 8SDB ; 3.0 ; Crystal Structure of E.Coli Branching Enzyme in complex with malto-octose 4LPC ; 2.39 ; Crystal Structure of E.Coli Branching Enzyme in complex with maltoheptaose 4LQ1 ; 2.55 ; Crystal Structure of E.Coli Branching Enzyme in complex with maltohexaose 4QDL ; 2.7 ; Crystal structure of E.coli Cas1-Cas2 complex 7EPG ; 1.631 ; Crystal structure of E.coli CcdB mutant S12G 7EPI ; 1.931 ; Crystal structure of E.coli CcdB mutant S60E 7EPJ ; 1.354 ; Crystal structure of E.coli CcdB mutant V46L 1PD5 ; 2.5 ; Crystal structure of E.coli chloramphenicol acetyltransferase type I at 2.5 Angstrom resolution 4Y65 ; 1.7 ; Crystal structure of E.coli CutA1 C16A/C39A/C79A mutation 4Y6I ; 1.7 ; Crystal structure of E.coli CutA1 E61V/C16A/C39A/C79A mutation 8K6G ; 1.5 ; Crystal structure of E.coli Cyanase 8K6S ; 1.6 ; Crystal structure of E.coli Cyanase complex with bicarbonate 8K6H ; 1.5 ; Crystal structure of e.coli cyanase complex with cyanate 8K6X ; 1.8 ; Crystal structure of E.coli Cyanase complex with cyanate and bicarbonate 3PNK ; 2.21 ; Crystal Structure of E.coli Dha kinase DhaK 3PNM ; 2.55 ; Crystal Structure of E.coli Dha kinase DhaK (H56A) 3PNO ; 1.97 ; Crystal Structure of E.coli Dha kinase DhaK (H56N) 3PNQ ; 2.2 ; Crystal Structure of E.coli Dha kinase DhaK (H56N) complex with Dha 3PNL ; 2.2 ; Crystal Structure of E.coli Dha kinase DhaK-DhaL complex 2ANQ ; 2.13 ; Crystal Structure of E.coli DHFR in complex with NADPH and the inhibitor compound 10a. 2ANO ; 2.68 ; Crystal structure of E.coli dihydrofolate reductase in complex with NADPH and the inhibitor MS-SH08-17 4ML0 ; 2.1 ; Crystal structure of E.coli DinJ-YafQ complex 6KZV ; 2.4 ; Crystal structure of E.coli DNA gyrase B in complex with 2-oxo-1,2-dihydroquinoline derivative 6KZX ; 2.1 ; Crystal structure of E.coli DNA gyrase B in complex with 2-oxo-1,2-dihydroquinoline derivative 6KZZ ; 2.0 ; Crystal structure of E.coli DNA gyrase B in complex with 2-oxo-1,2-dihydroquinoline derivative 6L01 ; 2.6 ; Crystal structure of E.coli DNA gyrase B in complex with 2-oxo-1,2-dihydroquinoline derivative 7C7N ; 2.3 ; Crystal structure of E.coli DNA gyrase B in complex with 6-fluoro-8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative 7C7O ; 1.8 ; Crystal structure of E.coli DNA gyrase B in complex with 6-fluoro-8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative 3K0S ; 2.2 ; Crystal structure of E.coli DNA mismatch repair protein MutS, D693N mutant, in complex with GT mismatched DNA 4WF4 ; 1.7 ; Crystal structure of E.Coli DsbA co-crystallised in complex with compound 4 6XSP ; 2.3 ; Crystal structure of E.coli DsbA in complex with 2-(2,6-bis(3-methoxyphenyl)benzofuran-3-yl)acetic acid 4ZIJ ; 1.78 ; Crystal structure of E.Coli DsbA in complex with 2-(4-iodophenylsulfonamido) benzoic acid 6XSQ ; 2.3 ; Crystal structure of E.coli DsbA in complex with 2-(6-(3-methoxyphenyl)-2-(4-methoxyphenyl)benzofuran-3-yl)acetic acid 6XT3 ; 1.99 ; Crystal structure of E.coli DsbA in complex with 3-(3-(carboxymethyl)-6-(3-methoxyphenyl)benzofuran-2-yl)benzoic acid 7LSM ; 1.786 ; Crystal structure of E.coli DsbA in complex with bile salt taurocholate 4WET ; 1.63 ; Crystal structure of E.Coli DsbA in complex with compound 16 4WEY ; 1.55 ; Crystal structure of E.Coli DsbA in complex with compound 17 7S1D ; 1.59 ; Crystal structure of E.coli DsbA in complex with compound MIPS-0001877 (compound 39) 7S1F ; 1.76 ; Crystal structure of E.coli DsbA in complex with compound MIPS-0001886 (compound 38) 7S1L ; 1.623 ; Crystal structure of E.coli DsbA in complex with compound MIPS-0001896 (compound 72) 7S1C ; 1.949 ; Crystal structure of E.coli DsbA in complex with compound MIPS-0001897 (compound 1) 6WHD ; 1.99 ; Crystal structure of E.coli DsbA in complex with diaryl ether analogue 2 8EQR ; 2.29 ; Crystal structure of E.coli DsbA mutant E24A 8EQP ; 2.3 ; Crystal structure of E.coli DsbA mutant E24A/E37A/K58A 8EOC ; 1.47 ; Crystal structure of E.coli DsbA mutant E24A/K58A 8EQQ ; 2.13 ; Crystal structure of E.coli DsbA mutant E37A 8EQO ; 1.62 ; Crystal structure of E.coli DsbA mutant K58A 4WF5 ; 1.45 ; Crystal structure of E.Coli DsbA soaked with compound 4 4JX8 ; 3.2 ; Crystal Structure of E.coli Enoyl Reductase in Complex with NAD and AEA16 4JQC ; 2.8 ; Crystal Structure of E.coli Enoyl Reductase in Complex with NAD and AFN-1252 3M8J ; 1.4 ; Crystal structure of E.coli FocB at 1.4 A resolution 1K82 ; 2.1 ; Crystal structure of E.coli formamidopyrimidine-DNA glycosylase (Fpg) covalently trapped with DNA 4NJN ; 2.4 ; Crystal Structure of E.coli GlpG at pH 4.5 1Q18 ; 2.36 ; Crystal structure of E.coli glucokinase (Glk) 3D1J ; 3.0 ; Crystal Structure of E.coli GS mutant dmGS(C7S;C408S) 3COP ; 2.3 ; Crystal Structure of E.coli GS mutant E377A in complex with ADP and acceptor analogue HEPPSO 3CX4 ; 2.29 ; Crystal Structure of E.coli GS mutant E377A in complex with ADP and oligosaccharides 2F3R ; 2.5 ; Crystal Structure Of E.coli Guanylate Kinase In Complex With Ap5G 2F3T ; 3.16 ; Crystal Structure Of E.coli Guanylate Kinase In Complex With Ganciclovir monophosphate 2EL9 ; 2.7 ; Crystal structure of E.coli Histidyl-tRNA synthetase complexed with a histidyl-adenylate analogue 1G9T ; 2.8 ; CRYSTAL STRUCTURE OF E.COLI HPRT-GMP COMPLEX 2RB9 ; 2.0 ; Crystal structure of E.coli HypE 2NYB ; 1.1 ; Crystal structure of E.Coli Iron Superoxide Dismutase Q69E at 1.1 Angstrom resolution 3LVM ; 2.05 ; Crystal Structure of E.coli IscS 3LVL ; 3.0 ; Crystal Structure of E.coli IscS-IscU complex 3LVJ ; 2.435 ; Crystal Structure of E.coli IscS-TusA complex (form 1) 3LVK ; 2.442 ; Crystal Structure of E.coli IscS-TusA complex (form 2) 1HX3 ; 2.1 ; CRYSTAL STRUCTURE OF E.COLI ISOPENTENYL DIPHOSPHATE:DIMETHYLALLYL DIPHOSPHATE ISOMERASE 7ZRA ; 2.8 ; Crystal structure of E.coli LexA in complex with nanobody NbSOS1(Nb14497) 7OCJ ; 2.7 ; Crystal structure of E.coli LexA in complex with nanobody NbSOS2(Nb14509) 7B5G ; 2.4 ; Crystal structure of E.coli LexA in complex with nanobody NbSOS3(Nb14527) 5LDM ; 2.46 ; Crystal structure of E.coli LigT complexed with 2'-AMP 5LDO ; 2.752 ; Crystal structure of E.coli LigT complexed with 3'-AMP 5LDK ; 2.099 ; Crystal structure of E.coli LigT complexed with ATP 5LDP ; 1.8 ; Crystal structure of E.coli LigT complexed with ATP 5LDQ ; 1.7 ; Crystal structure of E.coli LigT complexed with NADP+ 5LDJ ; 2.802 ; Crystal structure of E.coli LigT complexed with phosphate 5LDI ; 2.1 ; Crystal structure of E.coli LigT in apo form 1RRE ; 1.75 ; Crystal structure of E.coli Lon proteolytic domain 5YZX ; 3.2 ; Crystal structure of E.coli LysU T146D mutant 3FPP ; 2.99 ; Crystal structure of E.coli MacA 3NFC ; 2.0 ; Crystal structure of E.coli MazF Toxin 2JLC ; 2.5 ; Crystal structure of E.coli MenD, 2-succinyl-5-enolpyruvyl-6-hydroxy- 3-cyclohexadiene-1-carboxylate synthase - native protein 2JLA ; 2.81 ; Crystal structure of E.coli MenD, 2-succinyl-5-enolpyruvyl-6-hydroxy- 3-cyclohexadiene-1-carboxylate synthase - SeMet protein 4GDM ; 2.75 ; Crystal Structure of E.coli MenH 4GEC ; 2.5 ; Crystal Structure of E.coli MenH R124A Mutant 4GEG ; 2.49 ; Crystal Structure of E.coli MenH Y85F Mutant 3CES ; 2.412 ; Crystal Structure of E.coli MnmG (GidA), a Highly-Conserved tRNA Modifying Enzyme 6GV1 ; 3.4 ; Crystal structure of E.coli Multidrug/H+ antiporter MdfA in outward open conformation with bound Fab fragment 7B6P ; 1.68 ; Crystal structure of E.coli MurE - C269S C340S C450S in complex with Ellman's reagent 7B6O ; 1.86 ; Crystal structure of E.coli MurE mutant - C269S C340S C450S 4YZE ; 2.2 ; Crystal structure of E.coli NemR reduced form 1K4M ; 1.9 ; Crystal structure of E.coli nicotinic acid mononucleotide adenylyltransferase complexed to deamido-NAD 2OZY ; 1.74 ; Crystal structure of E.coli nrfB 3POU ; 2.8 ; Crystal structure of E.coli OmpF porin in lipidic cubic phase: space group H32, large unit cell 3POQ ; 1.9 ; Crystal structure of E.coli OmpF porin in lipidic cubic phase: space group H32, small unit cell 3POX ; 2.0 ; Crystal Structure of E.coli OmpF porin in lipidic cubic phase: space group P1 1PS6 ; 2.25 ; Crystal structure of E.coli PdxA 1PS7 ; 2.47 ; Crystal structure of E.coli PdxA 1PTM ; 1.96 ; Crystal structure of E.coli PdxA 1LRU ; 2.1 ; Crystal Structure of E.coli Peptide Deformylase Complexed with Antibiotic Actinonin 1JQN ; 2.35 ; Crystal structure of E.coli phosphoenolpyruvate carboxylase in complex with Mn2+ and DCDP 6CCN ; 1.87 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with (R)-2,4-dihydroxy-N-(2-(4-hydroxy-1H-benzo[d]imidazol-2-yl)ethyl)-3,3-dimethylbutanamide 6B7F ; 2.562 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with (R)-3,3-dimethyl-4-(5-vinyl-1H-imidazol-1-yl)isochroman-1-one 6CCK ; 1.61 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with (R)-3-(3-chlorophenyl)-3-((5-methyl-7-oxo-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)amino)propanenitrile 6B7E ; 2.104 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with (R)-4-(5-(difluoromethyl)-1H-imidazol-1-yl)-3,3-dimethylisochroman-1-one 6CCL ; 1.77 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 1-benzyl-1H-imidazo[4,5-b]pyridine 6CCM ; 1.79 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 2-((3-bromobenzyl)amino)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one 6CCQ ; 1.92 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 2-(3-chlorophenethyl)-1H-benzo[d]imidazol-4-ol 6CCS ; 2.06 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 2-(trifluoromethyl)-1H-benzo[d]imidazol-4-ol 6B7A ; 1.991 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 2-methyl-1H-benzo[d]imidazol-4-ol 6CCO ; 1.82 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 3-((1S,2S)-2-(4-hydroxy-1H-benzo[d]imidazol-2-yl)cyclopentyl)benzoic acid 6B7D ; 1.8 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 3-(4-chlorophenyl)-6-methoxy-4,5-dimethylpyridazine 6B7B ; 1.981 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with 5-methoxy-2-methyl-1H-indole 6B7C ; 1.564 ; Crystal structure of E.coli Phosphopantetheine Adenylyltransferase (PPAT/CoaD) in complex with N-((1,3-dimethyl-1H-pyrazol-5-yl)methyl)-5-methyl-1H-imidazo[4,5-b]pyridin-2-amine 3K5O ; 2.2 ; Crystal structure of E.coli Pol II 3K5N ; 3.15 ; Crystal structure of E.coli Pol II-abasic DNA binary complex 3K5L ; 2.7 ; Crystal structure of E.coli Pol II-abasic DNA-dATP Lt(0, 3) ternary complex 3K5M ; 2.04 ; Crystal structure of E.coli Pol II-abasic DNA-ddGTP Lt(-2, 2) ternary complex 3K57 ; 2.08 ; Crystal structure of E.coli Pol II-normal DNA-dATP ternary complex 3K59 ; 1.92 ; Crystal structure of E.coli Pol II-normal DNA-dCTP ternary complex 3MAQ ; 2.4 ; Crystal structure of E.coli Pol II-normal DNA-dGTP ternary complex 3K58 ; 2.05 ; Crystal structure of E.coli Pol II-normal DNA-dTTP ternary complex 1G27 ; 2.1 ; CRYSTAL STRUCTURE OF E.COLI POLYPEPTIDE DEFORMYLASE COMPLEXED WITH THE INHIBITOR BB-3497 2H5E ; 2.8 ; Crystal structure of E.coli polypeptide release factor RF3 7VKP ; 2.3 ; Crystal structure of E.coli pseudouridine kinase PsuK 7W93 ; 1.9 ; Crystal structure of E.coli pseudouridine kinase PsuK complexed with N1-methyl-pseudouridine 7VSK ; 2.31 ; Crystal structure of E.coli pseudouridine kinase PsuK complexed with pseudouridine. 4RJ2 ; 0.99 ; Crystal structure of E.coli purine nucleoside phosphorylase at 0.99 A resolution 5IU6 ; 2.51 ; Crystal structure of E.coli purine nucleoside phosphorylase with 7-deazahypoxanthine 5I3C ; 2.32 ; Crystal structure of E.coli purine nucleoside phosphorylase with acycloguanosine 2XOV ; 1.65 ; Crystal Structure of E.coli rhomboid protease GlpG, native enzyme 1DFU ; 1.8 ; CRYSTAL STRUCTURE OF E.COLI RIBOSOMAL PROTEIN L25 COMPLEXED WITH A 5S RRNA FRAGMENT AT 1.8 A RESOLUTION 4TOI ; 2.3 ; Crystal structure of E.coli ribosomal protein S2 in complex with N-terminal domain of S1 1WSH ; 1.9 ; Crystal structure of E.coli RNase HI active site mutant (E48A/K87A) 1WSI ; 2.0 ; Crystal structure of E.coli RNase HI active site mutant (E48A/K87A/D134N) 1WSJ ; 2.0 ; Crystal structure of E.coli RNase HI active site mutant (K87A/H124A) 2Z1G ; 2.1 ; Crystal structure of E.coli RNase HI surface charged mutant(Q4R/T40E/Q72H/Q76K/Q80E/T92K/Q105K) 2Z1I ; 2.0 ; Crystal structure of E.coli RNase HI surface charged mutant(Q4R/T40E/Q72H/Q76K/Q80E/T92K/Q105K/Q113R/Q115K) 2Z1J ; 2.38 ; Crystal structure of E.coli RNase HI surface charged mutant(Q4R/T40E/Q72H/Q76K/Q80E/T92K/Q105K/Q113R/Q115K/N143K/T145K) 2Z1H ; 2.6 ; Crystal structure of E.coli RNase HI surface charged mutant(Q4R/T92K/Q105K/Q113R/Q115K/N143K/T145K) 6VCR ; 1.6 ; Crystal structure of E.coli RppH in complex with CTP 6VCQ ; 1.6 ; Crystal structure of E.coli RppH in complex with GTP 6VCO ; 1.7 ; Crystal structure of E.coli RppH in complex with ppcpA 6VCN ; 1.9 ; Crystal structure of E.coli RppH in complex with ppcpG 6VCP ; 1.7 ; Crystal structure of E.coli RppH in complex with UTP 6D13 ; 3.06 ; Crystal structure of E.coli RppH-DapF complex 6VCK ; 2.69 ; Crystal structure of E.coli RppH-DapF in complex with GDP, Mg2+ and F- 6VCM ; 2.35 ; Crystal structure of E.coli RppH-DapF in complex with GTP, Mg2+ and F- 6VCL ; 2.06 ; Crystal structure of E.coli RppH-DapF in complex with pppGpp, Mg2+ and F- 2P4B ; 2.4 ; Crystal structure of E.coli RseB 4LTY ; 1.8 ; Crystal Structure of E.coli SbcD at 1.8 A Resolution 4LU9 ; 2.5 ; Crystal structure of E.coli SbcD at 2.5 angstrom resolution 4M0V ; 1.83 ; Crystal structure of E.coli SbcD with Mn2+ 4ISK ; 1.752 ; Crystal structure of E.coli thymidylate synthase with dUMP and the BGC 945 inhibitor 1XNF ; 1.98 ; Crystal structure of E.coli TPR-protein NlpI 2G2N ; 1.65 ; Crystal Structure of E.coli transthyretin-related protein with bound Zn 2G2P ; 2.1 ; Crystal Structure of E.coli transthyretin-related protein with bound Zn and Br 4CND ; 1.5 ; Crystal structure of E.coli TrmJ 4CNE ; 1.9 ; Crystal structure of E.coli TrmJ in complex with S-adenosyl-L- homocysteine 1T0U ; 2.2 ; Crystal structure of E.coli uridine phosphorylase at 2.2 A resolution (Type-A Native) 1QOJ ; 3.0 ; Crystal Structure of E.coli UvrB C-terminal domain, and a model for UvrB-UvrC interaction. 3C0U ; 2.7 ; Crystal structure of E.coli yaeQ protein 1FUX ; 1.81 ; CRYSTAL STRUCTURE OF E.COLI YBCL, A NEW MEMBER OF THE MAMMALIAN PEBP FAMILY 1FJJ ; 1.66 ; CRYSTAL STRUCTURE OF E.COLI YBHB PROTEIN, A NEW MEMBER OF THE MAMMALIAN PEBP FAMILY 1KON ; 2.2 ; CRYSTAL STRUCTURE OF E.COLI YEBC 4XJ7 ; 1.6 ; Crystal Structure of E112A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium soaked with AMP 4XH8 ; 3.56 ; Crystal Structure of E112A/D230A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 4XGP ; 1.9 ; Crystal Structure of E112A/H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium co-crystallized and soaked with AMP. 4XGB ; 2.23 ; Crystal Structure of E112A/H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium co-crystallized with AMP 1SO5 ; 1.8 ; Crystal structure of E112Q mutant of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate 1SO6 ; 1.902 ; Crystal structure of E112Q/H136A double mutant of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate 7MS9 ; 2.2 ; Crystal structure of E114D mutant of Cg10062 with a covalent intermediate of the hydration of acetylenecarboxylic acid 1L7G ; 1.85 ; Crystal structure of E119G mutant influenza virus neuraminidase in complex with BCX-1812 2P7Q ; 2.4 ; Crystal structure of E126Q mutant of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes complexed with MN(II) and 1S,2S-dihydroxypropylphosphonic acid 5ZT5 ; 1.9 ; Crystal structure of E134A mutant of phosphomannose isomerase from Salmonella typhimurium 5ZUY ; 2.0 ; Crystal structure of E134H mutant of phosphomannose isomerase from Salmonella typhimurium 6KQC ; 1.7 ; Crystal structure of E136F mutant of Xanthine-guanine phosphoribosyltransferase from Yersinia pestis 2HNY ; 2.5 ; Crystal Structure of E138K Mutant HIV-1 Reverse Transcriptase in Complex with Nevirapine 2HNZ ; 3.0 ; Crystal Structure of E138K Mutant HIV-1 Reverse Transcriptase in Complex with PETT-2 6BNZ ; 1.45 ; Crystal structure of E144Q-glyoxalase I mutant from Zea mays in space group P4(1)2(1)2 2H2S ; 3.1 ; Crystal Structure of E148A mutant of CLC-ec1 in SeCN- 4MB4 ; 1.481 ; Crystal structure of E153Q mutant of cold-adapted chitinase from Moritella complex with Nag4 4MB5 ; 1.639 ; Crystal structure of E153Q mutant of cold-adapted chitinase from Moritella complex with Nag5 4MB3 ; 1.55 ; Crystal structure of E153Q mutant of cold-adapted chitinase from Moritella marina 4DBL ; 3.493 ; Crystal structure of E159Q mutant of BtuCDF 1RCJ ; 1.63 ; Crystal structure of E166A mutant of SHV-1 beta-lactamase with the trans-enamine intermediate of tazobactam 2Y51 ; 1.6 ; Crystal structure of E167A mutant of the box pathway encoded ALDH from Burkholderia xenovorans LB400 3NH5 ; 2.094 ; Crystal structure of E177A-mutant murine aminoacylase 3 3HCE ; 2.85 ; Crystal Structure of E185D hPNMT in Complex With Octopamine and AdoHcy 3HCA ; 2.4 ; Crystal Structure of E185Q hPNMT in Complex With Octopamine and AdoHcy 4OQ4 ; 1.49 ; Crystal Structure of E18A Human DJ-1 3CZA ; 1.2 ; Crystal Structure of E18D DJ-1 3F71 ; 1.2 ; Crystal structure of E18D DJ-1 with oxidized C106 3CZ9 ; 1.15 ; Crystal Structure of E18L DJ-1 3CYF ; 1.6 ; Crystal Structure of E18N DJ-1 3CY6 ; 1.35 ; Crystal Structure of E18Q DJ-1 3EZG ; 1.15 ; Crystal structure of E18Q DJ-1 with oxidized C106 7C6D ; 1.451 ; Crystal structure of E19A mutant chitosanase from Bacillus subtilis MY002 complexed with 6 GlcN. 3PMR ; 2.11 ; Crystal Structure of E2 domain of Human Amyloid Precursor-Like Protein 1 3Q7G ; 2.3 ; Crystal Structure of E2 domain of Human Amyloid Precursor-Like Protein 1 in complex with SOS (sucrose octasulfate) 1SYK ; 2.8 ; Crystal structure of E230Q mutant of cAMP-dependent protein kinase reveals unexpected apoenzyme conformation 1N8F ; 1.75 ; Crystal structure of E24Q mutant of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHP synthase) from Escherichia Coli in complex with Mn2+ and PEP 3D70 ; 2.8 ; Crystal structure of E253A mutant of BMRR bound to 22-bp oligonucleotide 3D71 ; 2.8 ; Crystal structure of E253Q BMRR bound to 22 base pair promoter site 6MPC ; 1.8 ; Crystal structure of E257A mutant of BlMan5B 2Y53 ; 1.4 ; Crystal structure of E257Q mutant of the box pathway encoded ALDH from Burkholderia xenovorans LB400 5ZV0 ; 2.1 ; Crystal structure of E264A mutant of phosphomannose isomerase from Salmonella typhimurium 6EV5 ; 1.28 ; Crystal structure of E282Q A. niger Fdc1 with prFMN in the hydroxylated form 6XKC ; 2.03 ; Crystal structure of E3 ligase 7JYA ; 2.46 ; Crystal structure of E3 ligase in complex with peptide 5C7M ; 3.03 ; CRYSTAL STRUCTURE OF E3 LIGASE ITCH WITH A UB VARIANT 6DAU ; 2.26 ; Crystal structure of E33Q and E41Q mutant forms of the spermidine/spermine N-acetyltransferase SpeG from Vibrio cholerae 2JKC ; 2.3 ; Crystal Structure of E346D of Tryptophan 7-Halogenase (PrnA) 5JX4 ; 1.8 ; Crystal structure of E36-G37del mutant of the Bacillus caldolyticus cold shock protein. 2E6H ; 2.1 ; Crystal structure of E37A mutant of the stationary phase survival protein SurE from Thermus thermophilus HB8 cocrystallized with manganese and AMP 4AI4 ; 1.73 ; crystal structure of E38Q mutant of 3-methyladenine DNA glycosylase I from Staphylococcus aureus 2BKG ; 1.9 ; Crystal structure of E3_19 a designed ankyrin repeat protein 4HF2 ; 2.99 ; Crystal Structure of E43A IscR mutant bound to its promoter 6KS9 ; 2.001 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis 6LQ2 ; 1.9 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C10CoA 6LQ3 ; 2.5 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C12CoA 6LQ4 ; 2.4 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C14CoA 6LQ5 ; 1.9 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C16CoA 6LQ7 ; 1.9 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C17CoA 6KSA ; 1.768 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C18CoA 6LQ6 ; 2.0 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C20CoA 6LQ8 ; 1.85 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C22CoA 6LPY ; 1.9 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C4CoA 6LQ0 ; 2.2 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C6CoA 6LQ1 ; 2.8 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C8CoA 6KSE ; 1.998 ; Crystal Structure of E447A Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria tuberculosisin complex with C18CoA 6KSB ; 1.973 ; Crystal Structure of E447A M130G Acyl-CoA Dehydrogenase FadE5 mutant from Mycobacteria smegmatis in complex with C16CoA 1M2M ; 1.8 ; Crystal structure of E44A/E48A/E56A/D60A mutant of cytochrome b5 1M2I ; 1.8 ; Crystal structure of E44A/E56A mutant of cytochrome b5 3GIN ; 2.4 ; Crystal structure of E454K-CBD1 4WIG ; 1.758 ; Crystal structure of E47D mutant cytidine deaminase from Mycobacterium tuberculosis (MtCDA E47D) 4WIF ; 1.8 ; Crystal structure of E47Q mutant cytidine deaminase from Mycobacterium tuberculosis (MtCDA E47Q) 2Y52 ; 1.65 ; Crystal structure of E496A mutant of the box pathway encoded ALDH from Burkholderia xenovorans LB400 1PY0 ; 2.0 ; Crystal structure of E51C/E54C Psaz from A.faecalis with CLaNP probe 2VGS ; 2.0 ; Crystal structure of E53QbsSHMT internal aldimine 2VGW ; 1.86 ; Crystal structure of E53QbsSHMT obtained in the presence of glycine and 5-fomyl tetrahydrofolate 2VGV ; 2.3 ; Crystal structure of E53QbsSHMT obtained in the presence of L-allo- Threonine 2VGT ; 1.86 ; Crystal structure of E53QbsSHMT with glycine 2VGU ; 1.8 ; Crystal structure of E53QbsSHMT with L-serine 3FLL ; 1.5 ; Crystal structure of E55Q mutant of nitrophorin 4 4HGQ ; 2.28 ; Crystal structure of E56A mutant of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphohydrolase from Bacteroides thetaiotaomicron 4HGR ; 2.05 ; Crystal structure of E56A/K67A mutant of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphohydrolase from Bacteroides thetaiotaomicron 2PPO ; 1.29 ; Crystal structure of E60A mutant of FKBP12 2PPP ; 0.94 ; Crystal structure of E60Q mutant of FKBP12 6KGB ; 1.3 ; Crystal structure of E61K mutated transthyretin 5JTH ; 1.84 ; Crystal structure of E67A calmodulin - CaM:RM20 analog complex 4ETK ; 2.7 ; Crystal Structure of E6A/L130D/A155H variant of de novo designed serine hydrolase, Northeast Structural Genomics Consortium (NESG) Target OR186 4ESS ; 1.9971 ; Crystal Structure of E6D/L155R variant of de novo designed serine hydrolase OSH55, Northeast Structural Genomics Consortium (NESG) Target OR187 4ETJ ; 2.203 ; Crystal Structure of E6H variant of de novo designed serine hydrolase OSH55, Northeast Structural Genomics Consortium (NESG) Target OR185 5KKG ; 2.608 ; Crystal structure of E72A mutant of ancestral protein ancMT of ADP-dependent sugar kinases family 5DPQ ; 1.775 ; Crystal Structure of E72A mutant of domain swapped dimer Human Cellular Retinol Binding Protein 3I95 ; 1.4 ; Crystal structure of E76Q mutant PcyA-biliverdin complex 3FPG ; 2.0 ; Crystal Structure of E81Q mutant of MtNAS 3FPH ; 1.8 ; Crystal Structure of E81Q mutant of MtNAS in complex with L-Glutamate 3FPJ ; 1.8 ; Crystal Structure of E81Q mutant of MtNAS in complex with S-ADENOSYLMETHIONINE 4WPU ; 2.26 ; Crystal Structure of E83A mutant of Mtb PEPCK in complex with PEP and GDP 4WPV ; 1.672 ; Crystal Structure of E83A mutant of Mtb PEPCK in complex with Zn2+ and phosphate ion 7C9K ; 2.75 ; Crystal Structure of E84Q mutant of CntL in complex with SAM 7XTJ ; 2.5 ; Crystal structure of E88A mutant of GH3 beta-xylosidase from Aspergillus niger (AnBX) 1TR1 ; 2.2 ; CRYSTAL STRUCTURE OF E96K MUTATED BETA-GLUCOSIDASE A FROM BACILLUS POLYMYXA, AN ENZYME WITH INCREASED THERMORESISTANCE 6XNO ; 1.9 ; Crystal structure of E99A mutant of human CEACAM1 8I3G ; 2.4 ; Crystal structure of Eaf3-Eaf7 complex 4HU4 ; 2.4 ; Crystal structure of EAL domain of the E. coli DosP - dimeric form 4HU3 ; 3.301 ; Crystal structure of EAL domain of the E. coli DosP - monomeric form 4Q6J ; 1.369 ; Crystal Structure of EAL domain Protein from Listeria monocytogenes EGD-e 3TLQ ; 1.91 ; Crystal structure of EAL-like domain protein YdiV 1M9U ; 2.3 ; Crystal Structure of Earthworm Fibrinolytic Enzyme Component A from Eisenia fetida 1YM0 ; 2.06 ; Crystal Structure of Earthworm Fibrinolytic Enzyme Component B: a Novel, Glycosylated Two-chained Trypsin 4QNW ; 1.8 ; Crystal structure of EasA, an old yellow enzyme from Aspergillus fumigatus 4NAO ; 1.649 ; Crystal structure of EasH 1ZRL ; 2.3 ; Crystal structure of EBA-175 Region II (RII) 1ZRO ; 2.25 ; Crystal structure of EBA-175 Region II (RII) crystallized in the presence of (alpha)2,3-sialyllactose 2DGJ ; 2.35 ; Crystal structure of EbhA (756-1003 domain) from Staphylococcus aureus 4GAI ; 1.49 ; Crystal structure of EBI-005, a chimera of human IL-1beta and IL-1Ra 4GAF ; 2.15 ; Crystal structure of EBI-005, a chimera of human IL-1beta and IL-1Ra, bound to human Interleukin-1 receptor type 1 7EWY ; 2.01 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (D79A mutant) 7EWZ ; 2.05 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (D92A mutant) 7EWV ; 2.61 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (H34A mutant) 7EX0 ; 2.07 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (K108A mutant) 7EWW ; 2.34 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (N52A mutant) 7EWX ; 1.95 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (P78A mutant) 7EWU ; 2.11 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (WT) 7EX1 ; 2.3 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease (Y109A mutant) 7EX6 ; 2.18 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 11 7EX7 ; 2.3 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 16 7EX8 ; 1.97 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 27 7EX9 ; 1.75 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 28 7EX3 ; 2.25 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 3 7EX4 ; 2.0 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with inhibitor 5 7EX2 ; 3.1 ; Crystal structure of Ebinur Lake virus cap snatching endonuclease in complex with L-742,001 (methyl ester form) 5JQ3 ; 2.23 ; Crystal structure of Ebola glycoprotein 5JQB ; 2.68 ; Crystal structure of Ebola glycoprotein in complex with ibuprofen 5JQ7 ; 2.69 ; Crystal structure of Ebola glycoprotein in complex with toremifene 4Z9P ; 1.792 ; Crystal structure of Ebola virus nucleoprotein core domain at 1.8A resolution 6E5X ; 1.5 ; Crystal structure of Ebola virus VP30 C-terminus/RBBP6 peptide complex 4LDB ; 3.1 ; Crystal Structure of Ebola Virus VP40 Dimer 4LDD ; 3.498 ; Crystal Structure of Ebola virus VP40 Hexamer 7M2D ; 2.7 ; Crystal Structure of Ebola zaire Envelope glycoprotein GP in complex with compound ARN0074953 7SSR ; 2.5 ; Crystal Structure of Ebola zaire Envelope glycoprotein GP in complex with compound ARN0075093 7LYD ; 2.35 ; Crystal Structure of Ebola zaire Envelope glycoprotein GP in complex with compound ARN0075146 7LYY ; 2.75 ; Crystal Structure of Ebola zaire Envelope glycoprotein GP in complex with compound ARN0075164 7SSQ ; 2.25 ; Crystal Structure of Ebola zaire Envelope glycoprotein GP in complex with compound ARN0075231 8F87 ; 2.6 ; Crystal structure of Ebola Zaire envelope glycoprotein GP in complex with compound ARN75092 6NAE ; 2.75 ; Crystal Structure of Ebola zaire GP protein with bound ARN0074898 6F6S ; 2.29 ; CRYSTAL STRUCTURE OF EBOLAVIRUS GLYCOPROTEIN IN COMPLEX WITH benztropine 6F5U ; 2.07 ; CRYSTAL STRUCTURE OF EBOLAVIRUS GLYCOPROTEIN IN COMPLEX WITH BEPRIDIL 6G9I ; 2.19 ; Crystal structure of Ebolavirus glycoprotein in complex with clomipramine 6G9B ; 2.26 ; Crystal structure of Ebolavirus glycoprotein in complex with imipramine 6HS4 ; 2.05 ; Crystal structure of Ebolavirus glycoprotein in complex with inhibitor 118 6HRO ; 2.3 ; Crystal structure of Ebolavirus glycoprotein in complex with inhibitor 118a 6F6I ; 2.4 ; CRYSTAL STRUCTURE OF EBOLAVIRUS GLYCOPROTEIN IN COMPLEX WITH PAROXETINE 6F6N ; 2.15 ; CRYSTAL STRUCTURE OF EBOLAVIRUS GLYCOPROTEIN IN COMPLEX WITH SERTRALINE 6G95 ; 2.31 ; Crystal structure of Ebolavirus glycoprotein in complex with thioridazine 7JPH ; 3.195 ; Crystal structure of EBOV glycoprotein with modified HR1c and HR2 stalk at 3.2 A resolution 7JPI ; 2.28 ; Crystal structure of EBOV glycoprotein with modified HR2 stalk at 2.3A resolution 7BFB ; 2.05 ; Crystal structure of ebselen covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 7D5Z ; 4.2 ; Crystal structure of EBV gH/gL bound with neutralizing antibody 1D8 5W0K ; 3.1 ; Crystal structure of EBV gHgL/CL40/gp42 N-domain 5T1D ; 3.1 ; Crystal structure of EBV gHgL/gp42/E1D1 complex 5KDM ; 3.5 ; Crystal structure of EBV tegument protein BNRF1 in complex with histone chaperone DAXX and histones H3.3-H4 2Z0L ; 2.9 ; Crystal structure of EBV-DNA polymerase accessory protein BMRF1 1K77 ; 1.63 ; Crystal Structure of EC1530, a Putative Oxygenase from Escherichia coli 3MEP ; 2.3 ; Crystal Structure of ECA2234 protein from Erwinia carotovora, Northeast Structural Genomics Consortium Target EwR44 2QHD ; 1.95 ; Crystal structure of ecarpholin S (ser49-PLA2) complexed with fatty acid 3BJW ; 2.3 ; Crystal Structure of ecarpholin S complexed with suramin 3X3N ; 2.0 ; Crystal structure of EccB1 of Mycobacterium tuberculosis in spacegroup P21 5EBC ; 3.0 ; Crystal structure of EccB1 of Mycobacterium tuberculosis in spacegroup P21 (state III) 5EBD ; 2.6 ; Crystal structure of EccB1 of Mycobacterium tuberculosis in spacegroup P21 (state IV) 3X3M ; 1.9 ; Crystal structure of EccB1 of Mycobacterium tuberculosis in spacegroup P212121 8D10 ; 1.6 ; Crystal Structure of EcDsbA in a complex with (1-methyl-1H-pyrazol-5-yl)methanamine 8D12 ; 1.6 ; Crystal Structure of EcDsbA in a complex with 1-methyl-1H-pyrazol-4-amine 8D11 ; 1.85 ; Crystal Structure of EcDsbA in a complex with 1-methyl-1H-pyrazol-5-amine 8CXE ; 1.47 ; Crystal Structure of EcDsbA in a complex with 1H-imidazole 8CZN ; 1.7 ; Crystal Structure of EcDsbA in a complex with 1H-pyrrole-3-carboxylic acid 7L7C ; 1.8 ; Crystal Structure of EcDsbA in a complex with 2-(6-(3-Methoxyphenyl)benzofuran-3-yl)acetic acid 7L76 ; 1.83 ; Crystal Structure of EcDsbA in a complex with 2-(6-Phenylbenzofuran-3-yl)acetic acid 8CZM ; 1.8 ; Crystal Structure of EcDsbA in a complex with 4-bromo-1H-pyrazole 8DG1 ; 1.95 ; Crystal Structure of EcDsbA in a complex with DMSO 8DG2 ; 1.95 ; Crystal Structure of EcDsbA in a complex with DMSO 7LHP ; 1.9 ; Crystal Structure of EcDsbA in a complex with methyl 2-(6-bromo-2-phenylbenzofuran-3-yl)acetate 8CXD ; 1.8 ; Crystal Structure of EcDsbA in a complex with phenylmethanol 6PC9 ; 2.3 ; Crystal Structure of EcDsbA in a complex with purified methylpiperazinone 6 6PBI ; 1.9 ; Crystal Structure of EcDsbA in a complex with purified morpholine 8 6PD7 ; 1.92 ; Crystal Structure of EcDsbA in a complex with purified morpholine carboxylic acid 7 6PLI ; 1.93 ; Crystal Structure of EcDsbA in a complex with purified oxadiazole 11 6PDH ; 1.96 ; Crystal Structure of EcDsbA in a complex with purified pyrazole 9 6PGJ ; 1.9 ; Crystal Structure of EcDsbA in a complex with unpurified reaction product A5 (Morpholine carboxylic acid 7) 6PG1 ; 2.01 ; Crystal Structure of EcDsbA in a complex with unpurified reaction product F1 (methylpiperazinone 6) 6PIQ ; 2.1 ; Crystal Structure of EcDsbA in a complex with unpurified reaction product G6 (pyrazole 9) 6PG2 ; 1.91 ; Crystal Structure of EcDsbA in a complex with unpurified reaction product H5 (morpholine 8) 8DG0 ; 2.5 ; Crystal Structure of EcDsbA in a complex with Urea 6POH ; 1.67 ; Crystal Structure of EcDsbA in complex alkyl ether 21 6PML ; 2.0 ; Crystal Structure of EcDsbA in complex benzyl ether 23 6POI ; 1.77 ; Crystal Structure of EcDsbA in complex phenyl ether 25 6PMF ; 1.95 ; Crystal Structure of EcDsbA in complex with aniline 15 6POQ ; 1.8 ; Crystal Structure of EcDsbA in complex with anisidine 16 6FNP ; 3.4 ; Crystal structure of ECF-CbrT, a cobalamin transporter 4ZIR ; 3.0 ; Crystal structure of EcfAA' heterodimer bound to AMPPNP 4PPL ; 2.2 ; Crystal structure of eCGP123 H193Q variant at pH 7.5 4PPK ; 2.0 ; Crystal structure of eCGP123 T69V variant at pH 7.5 4TZG ; 2.1 ; Crystal structure of eCGP123, an extremely thermostable green fluorescent protein 6WYI ; 1.915 ; Crystal structure of EchA19, enoyl-CoA hydratase from Mycobacterium tuberculosis 1OZ7 ; 2.4 ; Crystal structure of Echicetin from the venom of Indian saw-scaled viper (Echis carinatus) at 2.4 resolution 2ADW ; 1.6 ; Crystal structure of Echinomycin-(ACGTACGT)2 solved by SAD 5YTY ; 1.58 ; Crystal structure of echinomycin-d(ACGACGT/ACGTCGT) complex 5YTZ ; 1.55 ; Crystal structure of echinomycin-d(ACGTCGT)2 complex 6LSQ ; 1.8 ; Crystal structure of Echistatin, an RGD-containing short disintegrin 5VM2 ; 1.983 ; Crystal structure of ECK1772, an oxidoreductase/dehydrogenase of unknown specificity involved in membrane biogenesis from Escherichia coli 7V09 ; 2.0 ; Crystal structure of ECL_RS08780, putative sugar transport system periplasmic sugar-binding protein 6WL5 ; 1.4 ; Crystal structure of EcmrR C-terminal domain 5E6Z ; 1.878 ; Crystal structure of Ecoli Branching Enzyme with beta cyclodextrin 5E70 ; 2.33 ; Crystal structure of Ecoli Branching Enzyme with gamma cyclodextrin 7YQN ; 1.6 ; Crystal structure of Ecoli malate synthase G 2UVN ; 3.0 ; Crystal structure of econazole-bound CYP130 from Mycobacterium tuberculosis 1EZS ; 2.3 ; CRYSTAL STRUCTURE OF ECOTIN MUTANT M84R, W67A, G68A, Y69A, D70A BOUND TO RAT ANIONIC TRYPSIN II 8W7D ; 2.81 ; Crystal structure of EcPPAT-FR901483 complex 6NA5 ; 1.75 ; Crystal Structure of ECR in complex with NADP+ 4MHR ; 2.1 ; Crystal structure of EctD from S. alaskensis in its apoform 4Q5O ; 2.64 ; Crystal structure of EctD from S. alaskensis with 2-oxoglutarate and 5-hydroxyectoine 4MHU ; 2.56 ; Crystal structure of EctD from S. alaskensis with bound Fe 4HWB ; 2.61 ; Crystal structure of ectodomain 3 of the IL-13 receptor alpha 1 in complex with a human neutralizing monoclonal antibody fragment 4HWE ; 2.43 ; Crystal structure of ectodomain 3 of the IL-13 receptor alpha1 in complex with a human neutralizing monoclonal antibody fragment 3MQ7 ; 2.28 ; Crystal Structure of Ectodomain Mutant of BST-2/Tetherin/CD317 3MQ9 ; 2.8 ; Crystal Structure of Ectodomain Mutant of BST-2/Tetherin/CD317 Fused to MBP 3MQB ; 3.2 ; Crystal Structure of Ectodomain of BST-2/Tetherin/CD317 (C2) 3MQC ; 2.8 ; Crystal Structure of Ectodomain of BST-2/Tetherin/CD317 (P21) 5ONM ; 1.52 ; Crystal Structure of Ectoine Synthase from P. lautus 5ONN ; 1.4 ; Crystal Structure of Ectoine Synthase from P. lautus 5ONO ; 2.5 ; Crystal Structure of Ectoine Synthase from P. lautus 6F2T ; 2.4 ; Crystal structure of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) 6F2V ; 2.5 ; Crystal structure of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) in complex with AMP 6F33 ; 3.0 ; Crystal structure of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) in complex with AMPNPP 6F2Y ; 2.4 ; Crystal structure of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) in complex with Ap4A 6F30 ; 2.3 ; Crystal structure of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) in complex with UDPGlcNAc 3DXX ; 2.05 ; Crystal structure of EcTrmB 3DXZ ; 1.58 ; Crystal structure of EcTrmB in complex with SAH 3DXY ; 1.5 ; Crystal structure of EcTrmB in complex with SAM 2GRK ; 2.6 ; Crystal structure of ectromelia virus EVM1 chemokine binding protein 1KZJ ; 2.6 ; Crystal Structure of EcTS W80G/dUMP/CB3717 Complex 1KZI ; 1.75 ; Crystal Structure of EcTS/dUMP/THF Complex 3HB1 ; 2.51 ; Crystal structure of ed-eya2 complexed with Alf3 1RJ7 ; 2.3 ; Crystal structure of EDA-A1 6G3E ; 1.9 ; Crystal structure of EDDS lyase in complex with formate 6G3F ; 2.222 ; Crystal structure of EDDS lyase in complex with fumarate 6G3I ; 2.41 ; Crystal structure of EDDS lyase in complex with N-(2-aminoethyl)aspartic acid (AEAA) 6G3H ; 2.269 ; Crystal structure of EDDS lyase in complex with SS-EDDS 6G3G ; 2.606 ; Crystal structure of EDDS lyase in complex with succinate 4U4N ; 3.1 ; Crystal structure of Edeine bound to the yeast 80S ribosome 3GEB ; 2.4 ; Crystal Structure of edeya2 3VLA ; 0.95 ; Crystal structure of edgp 3GH9 ; 1.69 ; Crystal structure of EDTA-treated BdbD (Oxidised) 5U5K ; 2.33 ; Crystal structure of EED in complex with 3-(3-methoxybenzyl)piperidine hydrochloride 5U5H ; 1.8 ; Crystal structure of EED in complex with 6-(2-fluoro-5-methoxybenzyl)-1-isopropyl-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-3-amine 6-(2-fluoro-5-methoxybenzyl)-1-isopropyl-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-3-amine 3IIY ; 2.65 ; Crystal structure of Eed in complex with a trimethylated histone H1K26 peptide 3IIW ; 1.8 ; Crystal structure of Eed in complex with a trimethylated histone H3K27 peptide 3IJ0 ; 2.45 ; Crystal structure of Eed in complex with a trimethylated histone H3K9 peptide 3IJ1 ; 2.1 ; Crystal structure of Eed in complex with a trimethylated histone H4K20 peptide 4X3E ; 2.3 ; Crystal structure of EED in complex with a trimethylated Jarid2 peptide 5WP3 ; 2.55 ; Crystal Structure of EED in complex with EB22 6LO2 ; 2.21 ; Crystal structure of EED in complex with EZH2 peptide and compound 11# 5U5T ; 1.6 ; Crystal structure of EED in complex with H3K27Me3 peptide and 3-(benzo[d][1,3]dioxol-4-ylmethyl)piperidine-1-carboximidamide 5U62 ; 1.9 ; Crystal structure of EED in complex with H3K27Me3 peptide and 6-(benzo[d][1,3]dioxol-4-ylmethyl)-5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-3-amine 3IJC ; 1.95 ; Crystal structure of Eed in complex with NDSB-195 6V3Y ; 1.63 ; Crystal structure of EED in complex with PALI1-K1219me3 peptide 6V3X ; 1.7 ; Crystal structure of EED in complex with PALI1-K1241me3 peptide 5TTW ; 1.74 ; Crystal Structure of EED in Complex with UNC4859 7SI5 ; 1.75 ; CRYSTAL STRUCTURE OF EED WITH MRTX-1919 7SI4 ; 1.9 ; CRYSTAL STRUCTURE OF EED WITH MRTX-2219 5WUK ; 2.03 ; Crystal structure of EED [G255D] in complex with EZH2 peptide and EED226 compound 2DY1 ; 1.6 ; Crystal structure of EF-G-2 from Thermus thermophilus 5H0P ; 1.862 ; Crystal structure of EF-hand protein mutant 3WND ; 1.55 ; Crystal structure of EF-Pyl 3WNC ; 1.9 ; Crystal structure of EF-Pyl in complex with GDP 3WNB ; 1.7 ; Crystal structure of EF-Pyl in complex with GMPPNP 6MIJ ; 1.955 ; Crystal structure of EF-Tu from Acinetobacter baumannii in complex with Mg2+ and GDP 7VMC ; 3.413 ; Crystal structure of EF-Tu/CdiA/CdiI 3HRA ; 1.693 ; Crystal Structure of EF0377 an Ankyrin Repeat Protein 3D5R ; 2.1 ; Crystal Structure of Efb-C (N138A) / C3d Complex 3D5S ; 2.3 ; Crystal Structure of Efb-C (R131A) / C3d Complex 2GOX ; 2.2 ; Crystal structure of Efb-C / C3d Complex 2GOM ; 1.25 ; Crystal structure of Efb-C from Staphylococcus aureus 3I2W ; 2.67 ; Crystal structure of EFC/F-BAR domain of Drosophila Syndapin/PACSIN 3O72 ; 1.95 ; Crystal structure of EfeB in complex with heme 6JBO ; 1.88 ; Crystal structure of EfeO-like protein Algp7 containing samarium ion 5Y4C ; 2.701 ; Crystal structure of EfeO-like protein Algp7 in complex with a metal ion 3HGK ; 3.3 ; crystal structure of effect protein AvrptoB complexed with kinase Pto 3BXE ; 1.8 ; Crystal structure of effector binding domain of central glycolytic gene regulator (CggR) from Bacillus subtilis in complex with dihydroxyacetone phosphate 3BXF ; 1.7 ; Crystal structure of effector binding domain of central glycolytic gene regulator (CggR) from Bacillus subtilis in complex with effector fructose-1,6-bisphosphate 3BXH ; 1.85 ; Crystal structure of effector binding domain of central glycolytic gene regulator (CggR) from Bacillus subtilis in complex with fructose-6-phosphate 3BXG ; 1.8 ; Crystal structure of effector binding domain of central glycolytic gene regulator (CggR) from Bacillus subtilis in complex with glucose-6-phosphate 6BWS ; 1.65 ; Crystal structure of Efga from Methylobacterium extorquens 6C0Z ; 1.83 ; Crystal structure of Efga from Methylobacterium extorquens in complex with formaldehyde 6AGH ; 2.742 ; Crystal structure of EFHA1 in Apo-State 6AGJ ; 2.999 ; Crystal Structure of EFHA2 in Apo State 6AGI ; 2.799 ; Crystal Structure of EFHA2 in Ca-binding State 3RCM ; 2.05 ; crystal structure of EFI target 500140:TatD family hydrolase from Pseudomonas putida 4GFI ; 1.9 ; Crystal structure of EFI-502318, an enolase family member from Agrobacterium tumefaciens with homology to dipeptide epimerases (bound sodium, L-Ala-L-Glu with ordered loop) 4N5A ; 3.204 ; Crystal structure of Efr3 3PM7 ; 2.001 ; Crystal Structure of EF_3132 protein from Enterococcus faecalis at the resolution 2A, Northeast Structural Genomics Consortium Target EfR184 4L1I ; 1.2 ; Crystal structure of EGFP-based Calcium Sensor CatchER complexed with Ca 4L12 ; 1.78 ; Crystal structure of EGFP-based Calcium Sensor CatchER complexed with Gd 5ZWJ ; 2.9 ; Crystal structure of EGFR 675-1022 T790M/C797S/V948R in complex with EAI045 6JWL ; 2.551 ; Crystal structure of EGFR 696-1022 L858R in complex with AZD9291 5XDL ; 2.7 ; Crystal structure of EGFR 696-1022 L858R in complex with CO-1686 4R5S ; 3.001 ; Crystal structure of EGFR 696-1022 L858R in complex with FIIN-3 5X26 ; 2.951 ; Crystal structure of EGFR 696-1022 L858R in complex with SKLB(3) 5X27 ; 2.952 ; Crystal structure of EGFR 696-1022 L858R in complex with SKLB(5) 5X28 ; 2.952 ; Crystal structure of EGFR 696-1022 L858R in complex with SKLB(6) 6JX0 ; 2.53 ; Crystal structure of EGFR 696-1022 T790M in complex with AZD9291 prepared by co-crystallization 6JX4 ; 2.531 ; Crystal structure of EGFR 696-1022 T790M in complex with AZD9291 prepared by soaking 5XDK ; 2.346 ; Crystal structure of EGFR 696-1022 T790M in complex with CO-1686 5XGM ; 2.952 ; Crystal structure of EGFR 696-1022 T790M in complex with Go6976 5YU9 ; 1.95 ; Crystal structure of EGFR 696-1022 T790M in complex with Ibrutinib 5GTZ ; 2.999 ; Crystal structure of EGFR 696-1022 T790M in complex with JTS-1-39 5GTY ; 3.14 ; Crystal structure of EGFR 696-1022 T790M in complex with LXX-6-26 4WD5 ; 3.3 ; Crystal structure of EGFR 696-1022 T790M in complex with QL-X138 5X2K ; 3.201 ; Crystal structure of EGFR 696-1022 T790M in complex with WZ4003 5GMP ; 2.797 ; Crystal structure of EGFR 696-1022 T790M in complex with XTF-262 3IKA ; 2.9 ; Crystal Structure of EGFR 696-1022 T790M Mutant Covalently Binding to WZ4002 5ZTO ; 2.649 ; Crystal structure of EGFR 696-1022 T790M/C797S in complex with D3003 5XGN ; 3.0 ; Crystal structure of EGFR 696-1022 T790M/C797S in complex with Go6976 7ER2 ; 2.662 ; Crystal structure of EGFR 696-1022 T790M/C797S in complex with LS_2_40 5X2A ; 1.85 ; Crystal structure of EGFR 696-1022 T790M/V948R in complex with SKLB(3) 5X2C ; 2.05 ; Crystal structure of EGFR 696-1022 T790M/V948R in complex with SKLB(5) 5X2F ; 2.2 ; Crystal structure of EGFR 696-1022 T790M/V948R in complex with SKLB(6) 4ZSE ; 1.97 ; Crystal structure of EGFR 696-1022 T790M/V948R, crystal form II 6JXT ; 2.307 ; Crystal structure of EGFR 696-1022 WT in complex with AZD9291 prepared by cocrystallization 5GNK ; 1.796 ; Crystal structure of EGFR 696-988 T790M in complex with LXX-6-34 7OXB ; 2.56 ; Crystal structure of EGFR double mutant (T790M/L858R) in complex with compound 6. 6P1L ; 2.8 ; Crystal structure of EGFR in complex with EAI045 5UWD ; 3.06 ; Crystal structure of EGFR kinase domain (L858R, T790M, V948R) in complex with the covalent inhibitor CO-1686 2ITP ; 2.74 ; Crystal structure of EGFR kinase domain G719S mutation in complex with AEE788 2ITQ ; 2.68 ; Crystal structure of EGFR kinase domain G719S mutation in complex with AFN941 2ITN ; 2.47 ; Crystal structure of EGFR kinase domain G719S mutation in complex with AMP-PNP 2ITO ; 3.25 ; Crystal structure of EGFR kinase domain G719S mutation in complex with Iressa 5U8L ; 1.6 ; Crystal structure of EGFR kinase domain in complex with a sulfonyl fluoride probe XO44 2J6M ; 3.1 ; Crystal structure of EGFR kinase domain in complex with AEE788 2ITW ; 2.88 ; Crystal structure of EGFR kinase domain in complex with AFN941 2ITX ; 2.98 ; Crystal structure of EGFR kinase domain in complex with AMP-PNP 2J5E ; 3.1 ; Crystal structure of EGFR kinase domain in complex with an irreversible inhibitor 13-jab 2J5F ; 3.0 ; Crystal structure of EGFR kinase domain in complex with an irreversible inhibitor 34-jab 4JQ7 ; 2.73 ; Crystal structure of EGFR kinase domain in complex with compound 2a 4JR3 ; 2.7 ; Crystal structure of EGFR kinase domain in complex with compound 3g 4JQ8 ; 2.83 ; Crystal structure of EGFR kinase domain in complex with compound 4b 4JRV ; 2.8 ; Crystal structure of EGFR kinase domain in complex with compound 4c 6JZ0 ; 2.86 ; Crystal structure of EGFR kinase domain in complex with compound 78 2ITY ; 3.42 ; Crystal structure of EGFR kinase domain in complex with Iressa 4ZJV ; 2.7 ; crystal structure of EGFR kinase domain in complex with Mitogen-inducible gene 6 protein 2ITT ; 2.73 ; Crystal structure of EGFR kinase domain L858R mutation in complex with AEE788 2ITU ; 2.8 ; Crystal structure of EGFR kinase domain L858R mutation in complex with AFN941 2ITV ; 2.47 ; Crystal structure of EGFR kinase domain L858R mutation in complex with AMP-PNP 2ITZ ; 2.8 ; Crystal structure of EGFR kinase domain L858R mutation in complex with Iressa 2JIT ; 3.1 ; Crystal structure of EGFR kinase domain T790M mutation 2JIV ; 3.5 ; Crystal structure of EGFR kinase domain T790M mutation in compex with HKI-272 2JIU ; 3.05 ; Crystal structure of EGFR kinase domain T790M mutation in complex with AEE788 8DSW ; 2.39 ; Crystal structure of EGFR kinase domain, Exon20 Insertion FQEA mutant 4G5J ; 2.8 ; Crystal structure of EGFR kinase in complex with BIBW2992 4G5P ; 3.17 ; Crystal structure of EGFR kinase T790M in complex with BIBW2992 8D76 ; 2.4 ; Crystal Structure of EGFR LRTM with compound 24 8D73 ; 2.17 ; Crystal Structure of EGFR LRTM with compound 7 5Y9T ; 3.25 ; Crystal Structure of EGFR T790M mutant in complex with naquotinib 8H7X ; 3.404 ; Crystal structure of EGFR T790M/C797S mutant in complex with brigatinib 6TFU ; 2.0 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 14d 6TFV ; 1.5 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 18b 6TFY ; 1.7 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 18c 6TFW ; 2.0 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 18d 6TFZ ; 1.8 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 19 6TG0 ; 1.5 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 21a 6TG1 ; 1.6 ; Crystal Structure of EGFR T790M/V948R in Complex with Covalent Pyrrolopyrimidine 21b 5JEB ; 3.298 ; Crystal structure of EGFR tyrosine kinase domain with novel inhibitor of active state of HER2 6P1D ; 2.4 ; Crystal structure of EGFR with mutant-selective dihydrodibenzodiazepinone allosteric inhibitor 6LUB ; 2.315 ; Crystal Structure of EGFR(L858R/T790M/C797S) in complex with CH7233163 6LUD ; 2.05 ; Crystal Structure of EGFR(L858R/T790M/C797S) in complex with Osimertinib 6WA2 ; 2.4 ; Crystal structure of EGFR(T790M/V948R) in complex with LN3753 7ZYM ; 2.5 ; Crystal Structure of EGFR-T790M/C797S in Complex with Brigatinib 6S89 ; 2.701 ; Crystal Structure of EGFR-T790M/C797S in Complex with Covalent Pyrrolopyrimidine 19g 6S8A ; 2.6 ; Crystal Structure of EGFR-T790M/C797S in Complex with Covalent Pyrrolopyrimidine 19h 7ZYP ; 2.8 ; Crystal Structure of EGFR-T790M/C797S in Complex with Reversible Aminopyrimidine 9 7ZYN ; 2.3 ; Crystal Structure of EGFR-T790M/C797S in Complex with WZ4002 7A6I ; 2.4 ; Crystal Structure of EGFR-T790M/V948R in Complex with LDC8201 6Z4D ; 2.0 ; Crystal Structure of EGFR-T790M/V948R in Complex with Mavelertinib and EAI001 6Z4B ; 2.5 ; Crystal Structure of EGFR-T790M/V948R in Complex with Osimertinib and EAI045 7A6J ; 2.0 ; Crystal Structure of EGFR-T790M/V948R in Complex with Poziotinib 7ZYQ ; 2.1 ; Crystal Structure of EGFR-T790M/V948R in Complex with Reversible Aminopyrimidine 13 7A2A ; 1.9 ; Crystal Structure of EGFR-T790M/V948R in Complex with Spebrutinib and EAI001 7A6K ; 2.0 ; Crystal Structure of EGFR-T790M/V948R in Complex with TAK-788 7B85 ; 2.5 ; Crystal Structure of EGFR-WT in Complex with TAK-788 7T4J ; 2.2 ; Crystal Structure of EGFR_D770_N771insNPG/V948R in complex with TAK-788 8HV5 ; 2.2 ; Crystal structure of EGFR_DMX in complex with compound 7 8HV1 ; 2.4 ; Crystal structure of EGFR_DMX in complex with covalently bound fragment 1 8HV3 ; 2.4 ; Crystal structure of EGFR_DMX in complex with covalently bound fragment 4 8HVA ; 2.77 ; Crystal structure of EGFR_TMX in complex with covalently bound compound 14 8HV8 ; 2.4 ; Crystal structure of EGFR_TMX in complex with covalently bound fragment 10 8HV9 ; 2.5 ; Crystal structure of EGFR_TMX in complex with covalently bound fragment 12 8HV4 ; 2.2 ; Crystal structure of EGFR_TMX in complex with covalently bound fragment 4 8HV6 ; 2.2 ; Crystal structure of EGFR_TMX in complex with covalently bound fragment 8 8HV7 ; 2.69 ; Crystal structure of EGFR_TMX in complex with covalently bound fragment 9 8HV2 ; 2.8 ; Crystal structure of EGFR_wt in complex with covalently bound fragment 4 4XPM ; 2.4 ; Crystal structure of EGO-TC 4FTX ; 2.1 ; Crystal structure of Ego3 homodimer 4FUW ; 2.6 ; Crystal structure of Ego3 mutant 6JWP ; 3.2 ; crystal structure of EGOC 6RFK ; 1.6 ; Crystal structure of EGRCK-inhibited Gla-domainless fIXa (K148Q, R150Q variant) 7TXK ; 1.78 ; Crystal structure of EgtU solute binding domain from Streptococcus pneumoniae D39 in complex with L-ergothioneine 7TXL ; 2.44 ; Crystal structure of EgtU solute binding domain from Streptococcus pneumoniae D39 in complex with L-ergothioneine 1QU1 ; 1.9 ; CRYSTAL STRUCTURE OF EHA2 (23-185) 3NCW ; 2.8 ; Crystal structure of EHEC O157:H7 intimin 3NCX ; 2.6 ; Crystal structure of EHEC O157:H7 intimin mutant 6BY9 ; 2.3 ; Crystal structure of EHMT1 7DCF ; 1.8 ; Crystal structure of EHMT2 SET domain in complex with compound 10 7BUC ; 2.6 ; Crystal structure of EHMT2 SET domain in complex with compound 13 7BTV ; 2.0 ; Crystal structure of EHMT2 SET domain in complex with compound 5. 2NOJ ; 2.7 ; Crystal structure of Ehp / C3d complex 3REG ; 1.801 ; Crystal structure of EhRho1 bound to a GTP analog and Magnesium 3REF ; 1.95 ; Crystal structure of EhRho1 bound to GDP and Magnesium 5F3O ; 2.05 ; Crystal structure of EhRNaseIII229 from Entamoeba histolytica complexed with Mn2+ 2Q88 ; 1.9 ; Crystal structure of EhuB in complex with ectoine 2Q89 ; 2.3 ; Crystal structure of EhuB in complex with hydroxyectoine 4GPR ; 1.6 ; Crystal structure of EhUbc5, a ubiquitin conjugating enzyme from Entamoeba histolytica 1P72 ; 2.1 ; Crystal structure of EHV4-TK complexed with Thy and ADP 1P6X ; 2.0 ; Crystal structure of EHV4-TK complexed with Thy and SO4 1P73 ; 2.7 ; Crystal structure of EHV4-TK complexed with TP4A 1P75 ; 3.02 ; Crystal structure of EHV4-TK complexed with TP5A 3WMJ ; 1.998 ; Crystal structure of EIAV vaccine gp45 3WMI ; 1.9 ; Crystal structure of EIAV wild type gp45 1IGX ; 3.1 ; Crystal Structure of Eicosapentanoic Acid Bound in the Cyclooxygenase Channel of Prostaglandin Endoperoxide H Synthase-1. 1ZXE ; 2.6 ; Crystal Structure of eIF2alpha Protein Kinase GCN2: D835N Inactivating Mutant in Apo Form 1ZY5 ; 2.0 ; Crystal Structure of eIF2alpha Protein Kinase GCN2: R794G Hyperactivating Mutant Complexed with AMPPNP. 1ZY4 ; 1.95 ; Crystal Structure of eIF2alpha Protein Kinase GCN2: R794G Hyperactivating Mutant in Apo Form. 1ZYD ; 2.75 ; Crystal Structure of eIF2alpha Protein Kinase GCN2: Wild-Type Complexed with ATP. 1ZYC ; 3.0 ; Crystal Structure of eIF2alpha Protein Kinase GCN2: Wild-Type in Apo Form. 4ZEM ; 2.55 ; Crystal structure of eIF2B beta from Chaetomium thermophilum 4ZEO ; 2.55 ; Crystal structure of eIF2B delta from Chaetomium thermophilum 7KMA ; 2.7 ; Crystal structure of eif2Balpha with a ligand. 6XKI ; 2.87 ; Crystal structure of eIF4A-I in complex with RNA bound to des-MePateA, a pateamine A analog 4C9B ; 2.0 ; Crystal structure of eIF4AIII-CWC22 complex 2W97 ; 2.29 ; Crystal Structure of eIF4E Bound to Glycerol and eIF4G1 peptide 5ME7 ; 2.2 ; Crystal Structure of eiF4E from C. melo 5ME6 ; 2.9 ; Crystal Structure of eiF4E from C. melo bound to a CAP analog 5ME5 ; 1.9 ; Crystal Structure of eiF4E from C. melo bound to a eIF4G peptide 4BEA ; 2.57 ; Crystal Structure of eIF4E in Complex with a Stapled Peptide Derivative 8SX4 ; 1.986 ; Crystal Structure of eIF4e in complex with Compound 7n 2IU1 ; 1.8 ; Crystal structure of eIF5 C-terminal domain 4GQX ; 3.0 ; Crystal structure of EIIA(NTR) from Burkholderia pseudomallei 3BP3 ; 1.65 ; Crystal structure of EIIB 5VLM ; 3.403 ; Crystal structure of EilR in complex with crystal violet 5VL9 ; 2.16 ; Crystal structure of EilR in complex with eilO DNA element 5VLG ; 2.932 ; Crystal structure of EilR in complex with malachite green 2PTG ; 2.6 ; Crystal structure of Eimeria tenella enoyl reductase 5XIP ; 3.1 ; Crystal Structure of Eimeria tenella Prolyl-tRNA Synthetase (EtPRS) in complex with Halofuginone 3UY5 ; 2.5 ; crystal structure of Eis from Mycobacterium tuberculosis 6VUU ; 2.6 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT1347 6VV2 ; 2.95 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT1348 6VV0 ; 3.0 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT1354 6VV3 ; 2.4 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT1358 6P3U ; 2.55 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT335 6VUZ ; 2.65 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT353 6VUY ; 2.7 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT358 6VUR ; 2.2 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT366 6VUW ; 2.87 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT368 6VUS ; 2.28 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT379 6VV1 ; 2.45 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT384 6VUX ; 1.97 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT388 6VUT ; 2.73 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT392 6P3V ; 2.5 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT416 6P3T ; 2.5 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with inhibitor SGT449 5IV0 ; 2.1 ; Crystal structure of Eis from Mycobacterium tuberculosis in complex with sulfonamide inhibitor 39 and coenzyme A 6YCA ; 2.9 ; Crystal structure of Eis1 from Mycobacterium abscessus 6RFY ; 2.2 ; Crystal structure of Eis2 form Mycobacterium abscessus 6RFX ; 1.9 ; Crystal structure of Eis2 from Mycobacterium abscessus 6RFT ; 2.3 ; Crystal structure of Eis2 from Mycobacterium abscessus bound to Acetyl-CoA 7E9Y ; 2.25 ; Crystal structure of eLACCO1 1FLE ; 1.9 ; CRYSTAL STRUCTURE OF ELAFIN COMPLEXED WITH PORCINE PANCREATIC ELASTASE 7YP4 ; 3.1 ; Crystal structure of elaiophylin glycosyltransferase in apo-form 7YP3 ; 2.1 ; Crystal structure of elaiophylin glycosyltransferase in complex with elaiophylin 7YP5 ; 2.33 ; Crystal structure of elaiophylin glycosyltransferase in complex with TDP 7YP6 ; 2.6 ; Crystal structure of elaiophylin glycosyltransferase in complex with UDP 2ZON ; 1.7 ; Crystal structure of electron transfer complex of nitrite reductase with cytochrome c 3IH5 ; 2.6 ; Crystal Structure of Electron Transfer Flavoprotein alpha-subunit from Bacteroides thetaiotaomicron 4EK1 ; 1.97 ; Crystal Structure of Electron-Spin Labeled Cytochrome P450cam 4YXK ; 2.805 ; Crystal structure of Elk prion protein complexed with POM1 FAB 8I3E ; 2.7 ; Crystal structure of ELKS1 in complex with Piccolo 6IE1 ; 2.48 ; Crystal Structure of ELMO2(Engulfment and cell motility protein 2) 8VLB ; 2.9 ; Crystal structure of EloBC-VHL-CDO1 complex bound to compound 4 molecular glue 8VL9 ; 2.5 ; Crystal structure of EloBC-VHL-CDO1 complex bound to compound 8 molecular glue 4X67 ; 4.1 ; Crystal structure of elongating yeast RNA polymerase II stalled at oxidative Cyclopurine DNA lesions. 5ERN ; 2.434 ; Crystal structure of elongation domain of Phomopsis amygdali fusicoccadiene synthase 5ERO ; 2.55 ; Crystal structure of elongation domain of Phomopsis amygdali fusicoccadiene synthase complexed with cobalt ions and pamidronate 1N0V ; 2.85 ; Crystal structure of elongation factor 2 5H7J ; 2.3 ; Crystal structure of Elongation factor 2 5H7K ; 1.599 ; Crystal structure of Elongation factor 2 GDP-form 5J8B ; 2.6 ; Crystal structure of Elongation Factor 4 (EF-4/LepA) in complex with GDPCP bound to the Thermus thermophilus 70S ribosome 4W2E ; 2.9 ; Crystal structure of Elongation Factor 4 (EF4/LepA) bound to the Thermus thermophilus 70S ribosome 4M1K ; 2.952 ; Crystal structure of elongation factor G (EFG) 4MYT ; 3.505 ; Crystal structure of elongation factor G (EFG) 1KTV ; 3.8 ; Crystal Structure of Elongation Factor G Dimer Without Nucleotide 4MYU ; 3.004 ; Crystal structure of elongation factor G mutant(EFG) 1D8T ; 2.35 ; CRYSTAL STRUCTURE OF ELONGATION FACTOR, TU (EF-TU-MGGDP) COMPLEXED WITH GE2270A, A THIAZOLYL PEPTIDE ANTIBIOTIC 5M2N ; 2.812 ; Crystal Structure of Elongator subunit Elp2 4XFV ; 3.2 ; Crystal Structure of Elp2 5L7J ; 2.15 ; Crystal Structure of Elp3 from Dehalococcoides mccartyi 5L7L ; 2.593 ; Crystal Structure of Elp3 from Dehalococcoides mccartyi (390-407 GSGSG) 2NW2 ; 1.4 ; Crystal structure of ELS4 TCR at 1.4A 2NX5 ; 2.7 ; Crystal structure of ELS4 TCR bound to HLA-B*3501 presenting EBV peptide EPLPQGQLTAY at 1.7A 6MTM ; 3.0 ; Crystal Structure of EM2 TCR in complex with HLA-B*37:01-NP338 2A6W ; 1.75 ; Crystal structure of Emp46p carbohydrate recognition domain (CRD), metal-free form 2A6V ; 1.52 ; Crystal structure of Emp46p carbohydrate recognition domain (CRD), potassium-bound form 2A6X ; 1.55 ; Crystal structure of Emp46p carbohydrate recognition domain (CRD), Y131F mutant 2A6Z ; 1.0 ; Crystal structure of Emp47p carbohydrate recognition domain (CRD), monoclinic crystal form 1 2A70 ; 1.1 ; Crystal structure of Emp47p carbohydrate recognition domain (CRD), monoclinic crystal form 2 2A71 ; 2.7 ; Crystal structure of Emp47p carbohydrate recognition domain (CRD), orthorhombic crystal form 2A6Y ; 1.42 ; Crystal structure of Emp47p carbohydrate recognition domain (CRD), tetragonal crystal form 5C9A ; 2.7 ; Crystal structure of empty coxsackievirus A16 particle 4QPG ; 3.5 ; Crystal structure of empty hepatitis A virus 3VBU ; 4.0 ; Crystal structure of empty human Enterovirus 71 particle 2GXG ; 1.45 ; Crystal structure of EmrR homolog from hyperthermophilic archaea Sulfolobus tokodaii strain7 1UKM ; 1.9 ; Crystal structure of EMS16, an Antagonist of collagen receptor integrin alpha2beta1 (GPIa/IIa) 2FMM ; 1.8 ; Crystal Structure of EMSY-HP1 complex 3WTG ; 2.3 ; Crystal structure of Emu (dromaius novaehollandiae) hemoglobin at 2.3 angstrom resolution 6T9F ; 2.24847 ; CRYSTAL STRUCTURE OF EN ENDOGLUCANASE S308P FROM PENICILLIUM VERRUCULOSUM 7JJU ; 2.604 ; Crystal structure of en exoribonuclease-resistant RNA (xrRNA) from Potato leafroll virus (PLRV) 5N5E ; 2.026 ; Crystal structure of encapsulated ferritin domain from Pyrococcus furiosus PFC_05175 6I9G ; 2.5 ; Crystal structure of encapsulin from Mycolicibacterium hassiacum 2J4B ; 2.5 ; Crystal structure of Encephalitozoon cuniculi TAF5 N-terminal domain 4XLO ; 1.67 ; Crystal Structure of EncM (crystallized with 4 mM NADPH) 3WC3 ; 1.5 ; Crystal structure of endo-1,4-beta-glucanase from Eisenia fetida 5Y6T ; 1.7 ; Crystal structure of endo-1,4-beta-mannanase from Eisenia fetida 3KST ; 1.7 ; Crystal structure of Endo-1,4-beta-xylanase (NP_811807.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.70 A resolution 5Y3X ; 2.1 ; Crystal structure of endo-1,4-beta-xylanase from Caldicellulosiruptor owensensis 5M0K ; 2.59 ; CRYSTAL STRUCTURE of endo-1,4-beta-xylanase from Cellulomonas flavigena 5MRJ ; 2.7 ; Crystal structure of Endo-1,4-beta-xylanase-like protein from Acremonium chrysogenum 4KCA ; 1.9 ; Crystal Structure of Endo-1,5-alpha-L-arabinanase from a Bovine Ruminal Metagenomic Library 4KC7 ; 1.75 ; Crystal Structure of Endo-1,5-alpha-L-arabinanase from Thermotoga petrophila RKU-1 4KC8 ; 1.76 ; Crystal Structure of Endo-1,5-alpha-L-arabinanase from Thermotoga petrophila RKU-1 in complex with TRIS 2ZXQ ; 2.0 ; Crystal structure of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum (EngBF) 6A8I ; 1.9 ; Crystal structure of endo-arabinanase ABN-TS D147N mutant in complex with arabinohexaose 6A8H ; 1.65 ; Crystal structure of endo-arabinanase ABN-TS D27A mutant in complex with arabinotriose 2ZZJ ; 1.8 ; Crystal structure of endo-beta-1,4-glucuronan lyase from fungus Trichoderma reesei 3JUG ; 1.6 ; Crystal structure of endo-beta-1,4-mannanase from the alkaliphilic Bacillus sp. N16-5 4IXL ; 1.49 ; Crystal structure of endo-beta-1,4-xylanase from the alkaliphilic Bacillus sp. SN5 2EBN ; 2.0 ; CRYSTAL STRUCTURE OF ENDO-BETA-N-ACETYLGLUCOSAMINIDASE F1, AN ALPHA(SLASH)BETA-BARREL ENZYME ADAPTED FOR A COMPLEX SUBSTRATE 1EOK ; 1.8 ; CRYSTAL STRUCTURE OF ENDO-BETA-N-ACETYLGLUCOSAMINIDASE F3 6KPN ; 2.1 ; Crystal Structure of endo-beta-N-acetylglucosaminidase from Cordyceps militaris D154N/E156Q mutant in complex with fucosyl-N-acetylglucosamine 6KPO ; 2.36 ; Crystal Structure of endo-beta-N-acetylglucosaminidase from Cordyceps militaris D154N/E156Q mutant in complex with fucosyl-N-acetylglucosamine-Asn 6KPL ; 1.75 ; Crystal Structure of endo-beta-N-acetylglucosaminidase from Cordyceps militaris in apo form 6KPM ; 1.8 ; Crystal Structure of endo-beta-N-acetylglucosaminidase from Cordyceps militaris in complex with L-fucose 1EDT ; 1.9 ; CRYSTAL STRUCTURE OF ENDO-BETA-N-ACETYLGLUCOSAMINIDASE H AT 1.9 ANGSTROMS RESOLUTION: ACTIVE SITE GEOMETRY AND SUBSTRATE RECOGNITION 6VE1 ; 2.1 ; Crystal structure of endo-beta-N-acetylglucosaminidase H at high pH 6JBY ; 1.6 ; Crystal structure of endo-deglycosylated hydroxynitrile lyase isozyme 5 of Prunus communis 3GVK ; 1.84 ; Crystal structure of endo-neuraminidase NF mutant 3GVL ; 1.41 ; Crystal Structure of endo-neuraminidaseNF 4C2L ; 1.75 ; Crystal structure of endo-xylogalacturonan hydrolase from Aspergillus tubingensis 6JYZ ; 1.35 ; Crystal structure of endogalactoceramidase 2FVG ; 2.01 ; Crystal structure of Endoglucanase (tm1049) from THERMOTOGA MARITIMA at 2.01 A resolution 3ISX ; 1.4 ; Crystal structure of Endoglucanase (TM1050) from THERMOTOGA MARITIMA at 1.40 A resolution 1VJZ ; 2.05 ; Crystal structure of Endoglucanase (TM1752) from Thermotoga maritima at 2.05 A resolution 3MMU ; 2.201 ; Crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima 3MMW ; 1.85 ; Crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima 3EZ8 ; 2.302 ; Crystal Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius 5GXZ ; 2.05 ; Crystal structure of endoglucanase CelQ from Clostridium thermocellum complexed with cellobiose and cellotriose 5GXY ; 1.7 ; Crystal structure of endoglucanase CelQ from Clostridium thermocellum complexed with cellobiose and Tris 5GY0 ; 1.74 ; Crystal structure of endoglucanase CelQ from Clostridium thermocellum complexed with cellotetraose 5GY1 ; 1.99 ; Crystal structure of endoglucanase CelQ from Clostridium thermocellum complexed with cellotriose 5GXX ; 1.5 ; Crystal structure of endoglucanase CelQ from Clostridium thermocellum complexed with Tris 4ZG8 ; 1.39 ; Crystal structure of Endoglucanase from Perinereis brevicirris 4ZH5 ; 1.35 ; Crystal structure of Endoglucanase from Perinereis brevicirris with Cellobiose 6TPC ; 1.52219 ; Crystal structure of Endoglucanase N194A from Penicillium verruculosum 6YON ; 2.6 ; Crystal structure of Endoglucanase S127C/A165C from Penicillium verruculosum 3H7L ; 2.3 ; CRYSTAL STRUCTURE OF ENDOGLUCANASE-RELATED PROTEIN FROM Vibrio parahaemolyticus 5CCU ; 2.11 ; Crystal structure of endoglycoceramidase I from Rhodococ-cus equi 5J7Z ; 2.15 ; Crystal structure of endoglycoceramidase I from Rhodococ-cus equi in complex with GM1 5J14 ; 1.915 ; Crystal structure of endoglycoceramidase I from Rhodococ-cus equi in complex with GM3 7PUJ ; 1.752 ; Crystal structure of Endoglycosidase E GH18 domain from Enterococcus faecalis 7PUK ; 2.69 ; Crystal structure of Endoglycosidase E GH18 domain from Enterococcus faecalis in complex with Man5 product 7PUL ; 1.4 ; Crystal structure of Endoglycosidase E GH20 domain from Enterococcus faecalis 1XP3 ; 2.57 ; Crystal Structure of Endonuclease IV (BA4508) from Bacillus anthracis at 2.57A Resolution. 3AAL ; 1.6 ; Crystal Structure of endonuclease IV from Geobacillus kaustophilus 3AAM ; 1.58 ; Crystal structure of endonuclease IV from Thermus thermophilus HB8 7K32 ; 3.11 ; Crystal structure of Endonuclease Q complex with 27-mer duplex substrate with an abasic lesion at the active site 7K33 ; 3.11 ; Crystal structure of Endonuclease Q complex with 27-mer duplex substrate with an abasic lesion at the active site 7K31 ; 2.88 ; Crystal structure of Endonuclease Q complex with 27-mer duplex substrate with dI at the active site 7K30 ; 2.34 ; Crystal structure of Endonuclease Q complex with 27-mer duplex substrate with dU at the active site 3MPR ; 1.899 ; Crystal Structure of endonuclease/exonuclease/phosphatase family protein from Bacteroides thetaiotaomicron, Northeast Structural Genomics Consortium Target BtR318A 6TAV ; 4.2 ; Crystal structure of endopeptidase-induced alpha2-macroglobulin 1X03 ; 3.1 ; Crystal structure of endophilin BAR domain 1X04 ; 2.9 ; Crystal structure of endophilin BAR domain (mutant) 1ZWW ; 2.3 ; Crystal structure of endophilin-A1 BAR domain 7SH0 ; 3.2 ; CRYSTAL STRUCTURE OF ENDOPLASMIC RETICULUM AMINOPEPTIDASE 2 (ERAP2) COMPLEX WITH A HIGHLY SELECTIVE AND POTENT SMALL MOLECULE 5K1V ; 2.897 ; Crystal structure of Endoplasmic Reticulum aminopeptidase 2 (ERAP2) in complex with a diaminobenzoic acid derivative ligand. 5J6S ; 2.8 ; Crystal structure of Endoplasmic Reticulum Aminopeptidase 2 (ERAP2) in complex with a hydroxamic derivative ligand 3TLM ; 2.95 ; Crystal Structure of Endoplasmic Reticulum Ca2+-ATPase (SERCA) From Bovine Muscle 4NUY ; 2.609 ; Crystal structure of EndoS, an endo-beta-N-acetyl-glucosaminidase from Streptococcus pyogenes 1NIW ; 2.05 ; Crystal structure of endothelial nitric oxide synthase peptide bound to calmodulin 5QBQ ; 1.697 ; Crystal structure of Endothiapepsin 5QBR ; 1.418 ; Crystal structure of Endothiapepsin 5QB5 ; 1.2 ; Crystal structure of Endothiapepsin-FRG056 complex 5QB6 ; 1.538 ; Crystal structure of Endothiapepsin-FRG062 complex 5QB7 ; 1.5 ; Crystal structure of Endothiapepsin-FRG075 complex 5QB8 ; 1.24 ; Crystal structure of Endothiapepsin-FRG080 complex 5QB9 ; 1.478 ; Crystal structure of Endothiapepsin-FRG081 complex 5QBA ; 1.338 ; Crystal structure of Endothiapepsin-FRG134 complex 5QBB ; 1.759 ; Crystal structure of Endothiapepsin-FRG140 complex 5QBC ; 1.449 ; Crystal structure of Endothiapepsin-FRG164 complex 5QBD ; 1.419 ; Crystal structure of Endothiapepsin-FRG166 complex 5QBE ; 1.498 ; Crystal structure of Endothiapepsin-FRG175 complex 5QBF ; 1.268 ; Crystal structure of Endothiapepsin-FRG203 complex 5QBG ; 1.697 ; Crystal structure of Endothiapepsin-FRG245 complex 5QBH ; 1.469 ; Crystal structure of Endothiapepsin-FRG270 complex 5QBI ; 1.624 ; Crystal structure of Endothiapepsin-FRG274 complex 5QBJ ; 1.699 ; Crystal structure of Endothiapepsin-FRG283 complex 5QBN ; 1.403 ; Crystal structure of Endothiapepsin-NAT14-350193 complex 5QBS ; 1.528 ; Crystal structure of Endothiapepsin-NAT17-346976 complex 5QBT ; 1.299 ; Crystal structure of Endothiapepsin-NAT17-346985 complex 5QBK ; 1.279 ; Crystal structure of Endothiapepsin-NAT17-347144 complex 5QBL ; 1.619 ; Crystal structure of Endothiapepsin-NAT17-347147 complex 5QBM ; 1.569 ; Crystal structure of Endothiapepsin-NAT17-347151 complex 5QBO ; 1.123 ; Crystal structure of Endothiapepsin-NAT17-347283 complex 5QBP ; 1.297 ; Crystal structure of Endothiapepsin-NAT17-347290a complex 3LZY ; 1.8 ; Crystal structure of Endothiapesin in complex with Xenon 6S32 ; 1.35 ; Crystal structure of ene-reductase CtOYE from Chroococcidiopsis thermalis. 6S0G ; 1.45 ; Crystal structure of ene-reductase GsOYE from Galdieria sulphuraria 6S31 ; 1.63 ; Crystal structure of ene-reductase GsOYE from Galdieria sulphuraria in complex with 4-Hydroxybenzaldehyde 7BO0 ; 1.63 ; Crystal structure of ene-reductase GsOYE from Galdieria sulphuraria in complex with alpha-angelica lactone 6S23 ; 2.38 ; Crystal structure of ene-reductase GsOYE from Galleria sulphuraria in complex with 2-methyl-cyclopenten-1-one 7BN7 ; 2.45 ; Crystal structure of ene-reductase OYE2 from S. cerevisiae 7BLF ; 2.15 ; Crystal structure of ene-reductase OYE4 from Botryotinia fuckeliana (BfOYE4) 7WNS ; 1.799 ; Crystal structure of ENF peptide binding protein from Silkworm 4NKD ; 3.303 ; Crystal structure of engineered anti-EE scFv antibody fragment 4NKM ; 3.71 ; Crystal structure of engineered anti-EE scFv antibody fragment 4NKO ; 3.496 ; Crystal structure of engineered anti-EE scFv antibody fragment 3NN8 ; 3.1 ; Crystal structure of engineered antibody fragment based on 3D5 2C4I ; 1.95 ; Crystal structure of engineered avidin 3CMJ ; 1.6 ; Crystal Structure of engineered Beta-Glucosidase from Soil metagenome 4H2W ; 1.95 ; Crystal structure of engineered Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with carrier protein from Agrobacterium tumefaciens and AMP 4H2X ; 2.15 ; Crystal structure of engineered Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with carrier protein from Agrobacterium tumefaciens and an analogue of glycyl adenylate 4H2Y ; 2.1 ; Crystal structure of engineered Bradyrhizobium japonicum glycine:[carrier protein] ligase complexed with carrier protein from Agrobacterium tumefaciens and ATP 5UR7 ; 2.0004 ; Crystal structure of engineered CCL20 disulfide locked dimer 7T97 ; 2.144 ; Crystal structure of engineered CYS-CYS fab dimer CH1-207 (HC4) 7T99 ; 2.65 ; Crystal structure of engineered CYS-CYS fab dimer CL-205 (LC25) 7T98 ; 2.97 ; Crystal structure of engineered CYS-CYS fab dimer VL-108 (LC33) 4PFH ; 1.9 ; Crystal structure of engineered D-tagatose 3-epimerase PcDTE-IDF8 4PGL ; 2.1 ; Crystal structure of engineered D-tagatose 3-epimerase PcDTE-ILS6 8HP8 ; 2.397 ; Crystal Structure of Engineered Endolysin EC340 derived from Gram-Negative Bacteria targeted Bacteriophage 5UWO ; 2.347 ; Crystal Structure of Engineered FMRP-1b NES Peptide in complex with CRM1-Ran-RanBP1 4OSN ; 1.76 ; Crystal structure of engineered HCMV glycoprotein B Domain II 8JYJ ; 2.01 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with laccaic acid A 8JYH ; 2.21 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with laccaic acid C 8JYI ; 1.92 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with laccaic acid E 7XIS ; 1.88 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 7XIT ; 2.18 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 7XIU ; 2.09 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 7XJ4 ; 1.8 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 7XJ5 ; 1.75 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 7XJ7 ; 1.8 ; Crystal structure of engineered HIV-1 Reverse Transcriptase RNase H domain complexed with nitrofuran methoxy(methoxycarbonyl)phenyl ester 5MHH ; 2.0 ; Crystal structure of engineered human lipocalin 2 carrying p-boronophenylalanine at position 36 4NE7 ; 2.497 ; Crystal Structure of engineered Kumamolisin-As from Alicyclobacillus sendaiensis, Northeast Structural Genomics Consortium (NESG) Target OR367 3NDS ; 1.2 ; Crystal structure of engineered Naja Nigricollis toxin alpha 2O3E ; 2.2 ; Crystal structure of engineered neurolysin with thimet oligopeptidase specificity for neurotensin cleavage site. 8CTP ; 1.9 ; Crystal structure of engineered phospholipase D mutant superPLD 2-23 8CTQ ; 1.85 ; Crystal structure of engineered phospholipase D mutant superPLD 2-48 3TP4 ; 1.979 ; Crystal Structure of engineered protein at the resolution 1.98A, Northeast Structural Genomics Consortium Target OR128 3UW6 ; 2.3 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR120 4IJB ; 1.739 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR288 4LT9 ; 2.15 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR404 4LNY ; 1.929 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR422 3VB8 ; 2.9 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR43 4PQ8 ; 1.833 ; Crystal Structure of Engineered Protein, Northeast Structural Genomics Consortium Target OR465 4RZP ; 2.804 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium (NESG) Target OR366. 4PSJ ; 1.992 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium (NESG) Target OR464. 4RV1 ; 2.573 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium (NESG) Target OR497. 4ILS ; 2.5 ; Crystal structure of engineered protein. northeast structural genomics Consortium target or117 4J29 ; 2.1 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR258. 4GPM ; 2.002 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR264. 4HQD ; 2.433 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR265. 4GMR ; 2.377 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR266. 4HB5 ; 2.294 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR267. 4HHU ; 2.0 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR280. 4HXT ; 1.95 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR329 3U26 ; 1.59 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR48 4FFD ; 2.31 ; Crystal structure of engineered protein. northeast structural genomics consortium target or48 4PWW ; 1.471 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR494. 3TC7 ; 1.5 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR62. 3TC6 ; 1.6 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR63. 3SXW ; 1.801 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR69. 3SY1 ; 1.465 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR70 4DIU ; 2.0 ; Crystal Structure of Engineered Protein. Northeast Structural Genomics Consortium Target OR94 7QPJ ; 1.54 ; Crystal structure of engineered TCR (756) complexed to HLA-A*02:01 presenting MAGE-A10 9-mer peptide 7PBC ; 2.04 ; Crystal structure of engineered TCR (796) complexed to HLA-A*02:01 presenting MAGE-A10 9-mer peptide 4YIV ; 1.93 ; Crystal structure of engineered TgAMA1 lacking the DII loop 4YIZ ; 2.2 ; Crystal structure of engineered TgAMA1 lacking the DII loop in complex with an Eimeria tenella RON2D3 peptide 4Q7I ; 1.8 ; Crystal structure of engineered thermostable D-tagatose 3-epimerase PcDTE-Var8 2O36 ; 1.95 ; Crystal structure of engineered thimet oligopeptidase with neurolysin specificity in neurotensin cleavage site 5BYW ; 2.6 ; Crystal structure of engineered trifunctional CtCEL5E 4J4A ; 1.6499 ; Crystal Structure of Engineered Trimeric Cortexillin-1 Coiled-Coil Variant 5VOH ; 2.302 ; Crystal structure of engineered water-forming NADPH oxidase (TPNOX) bound to NADPH. The G159A, D177A, A178R, M179S, P184R mutant of LbNOX. 1P7I ; 2.1 ; CRYSTAL STRUCTURE OF ENGRAILED HOMEODOMAIN MUTANT K52A 1P7J ; 2.1 ; Crystal structure of engrailed homeodomain mutant K52E 1CV7 ; 2.5 ; Crystal structure of enhanced cyan-emission variant of GFP 4EUL ; 1.35 ; Crystal structure of enhanced Green Fluorescent Protein to 1.35A resolution reveals alternative conformations for Glu222 3RYO ; 2.8 ; Crystal Structure of Enhanced Intracellular Survival (Eis) Protein from Mycobacterium tuberculosis with Acetyl CoA 3OW2 ; 2.7 ; Crystal Structure of Enhanced Macrolide Bound to 50S Ribosomal Subunit 1WZ7 ; 2.1 ; Crystal structure of enhancer of rudimentary homologue (ERH) 1VHQ ; 1.65 ; Crystal structure of enhancing lycopene biosynthesis protein 2 6HPZ ; 2.3 ; Crystal structure of ENL (MLLT1) in complex with acetyllysine 6HPY ; 2.0 ; Crystal structure of ENL (MLLT1) in complex with compound 12 6HPX ; 2.3 ; Crystal structure of ENL (MLLT1) in complex with compound 19 6HPW ; 1.9 ; Crystal structure of ENL (MLLT1) in complex with compound 20 6HQ0 ; 1.81 ; Crystal structure of ENL (MLLT1), apo form 7X8B ; 2.3 ; Crystal structure of ENL T1 mutant YEATS domain in complex with histone H3 acetylation at K27 7X8G ; 1.91 ; Crystal structure of ENL T1(H116P) mutant YEATS domain in complex with histone H3 acetylation at K27 7X8F ; 2.44 ; Crystal structure of ENL T4 mutant YEATS domain in complex with histone H3 acetylation at K27 7E7C ; 1.84 ; Crystal structure of ENL YEATS domain T1 mutant in complex with histone H3 acetylation at K27 7X88 ; 2.25 ; Crystal structure of ENL YEATS domain T2 mutant in complex with histone H3 acetylation at K27 7E74 ; 2.9 ; Crystal structure of ENL YEATS domain T3 mutant in complex with histone H3 acetylation at K27 1RVK ; 1.7 ; Crystal structure of enolase AGR_L_2751 from Agrobacterium Tumefaciens 3TTE ; 2.0 ; Crystal structure of enolase brado_4202 (target EFI-501651) from Bradyrhizobium complexed with magnesium and mandelic acid 3TOY ; 1.8 ; CRYSTAL STRUCTURE OF ENOLASE BRADO_4202 (TARGET EFI-501651) FROM Bradyrhizobium sp. ORS278 WITH CALCIUM AND ACETATE BOUND 4HNL ; 1.48 ; Crystal structure of ENOLASE EGBG_01401 (TARGET EFI-502226) from Enterococcus gallinarum EG2 7UGH ; 1.95 ; Crystal Structure of enolase family protein from Naegleria fowleri with bound 2-phosphoglyceric acid 3VA8 ; 2.0 ; Crystal structure of enolase FG03645.1 (target EFI-502278) from Gibberella zeae PH-1 complexed with magnesium, formate and sulfate 4A3R ; 2.2 ; Crystal structure of Enolase from Bacillus subtilis. 6O4N ; 1.8 ; Crystal Structure of Enolase from Chlamydia trachomatis 8W21 ; 2.25 ; Crystal Structure of Enolase from Chlamydia trachomatis (P43212 Form) 6BFZ ; 2.21 ; Crystal structure of enolase from E. coli with a mixture of apo form, substrate, and product form 1IYX ; 2.8 ; Crystal structure of enolase from Enterococcus hirae 6BFY ; 1.81 ; Crystal structure of enolase from Escherichia coli with bound 2-phosphoglycerate substrate 4MKS ; 2.079 ; Crystal structure of enolase from Lactobacillus gasseri 6NB2 ; 1.85 ; CRYSTAL STRUCTURE OF ENOLASE FROM LEGIONELLA PNEUMOPHILA BOUND TO 2-PHOSPHOGLYCERIC ACID AND MAGNESIUM 6NBM ; 1.9 ; CRYSTAL STRUCTURE OF ENOLASE FROM LEGIONELLA PNEUMOPHILA BOUND TO PHOSPHATE AND MAGNESIUM 8UEL ; 2.49 ; Crystal structure of enolase from Litopenaeus vannamei 4ROP ; 2.05 ; Crystal structure of enolase from Synechococcus elongatus 5J04 ; 2.3 ; Crystal structure of Enolase from Synechococcus elongatus, complex with phosphoenolpyruvate 4G7F ; 2.4 ; Crystal Structure of Enolase from Trypanosoma Cruzi 3VDG ; 1.9 ; Crystal structure of enolase MSMEG_6132 (TARGET EFI-502282) from Mycobacterium smegmatis str. MC2 155 complexed with formate and acetate 3VFC ; 2.0 ; Crystal structure of enolase MSMEG_6132 (TARGET EFI-502282) from Mycobacterium smegmatis str. MC2 155 complexed with tartrate 4E4F ; 2.0 ; Crystal structure of enolase PC1_0802 (TARGET EFI-502240) from Pectobacterium carotovorum subsp. carotovorum PC1 4IT1 ; 2.2 ; Crystal structure of enolase pfl01_3283 (target efi-502286) from pseudomonas fluorescens pf0-1 with bound magnesium, potassium and tartrate 3RR1 ; 1.95 ; Crystal structure of enolase PRK14017 (target EFI-500653) from Ralstonia pickettii 12J 3RRA ; 2.3 ; Crystal structure of enolase PRK14017 (target EFI-500653) from Ralstonia pickettii 12J with magnesium bound 3SJN ; 1.9 ; Crystal structure of enolase Spea_3858 (target EFI-500646) from Shewanella pealeana with magnesium bound 3OZY ; 1.2994 ; Crystal structure of enolase superfamily member from Bordetella bronchiseptica complexed with Mg and m-Xylarate 3OZM ; 1.6 ; Crystal structure of enolase superfamily member from Bordetella bronchiseptica complexed with Mg, m-Xylarate and L-Lyxarate 3S47 ; 1.7 ; Crystal structure of enolase superfamily member from Clostridium beijerincki complexed with Mg 3R25 ; 1.603 ; Crystal structure of enolase superfamily member from Vibrionales bacterium complexed with Mg and Glycerol in the active site 3VC6 ; 1.64 ; Crystal structure of enolase Tbis_1083(TARGET EFI-502310) FROM Thermobispora bispora DSM 43833 complexed with magnesium and formate 3VC5 ; 1.5 ; Crystal structure of enolase Tbis_1083(TARGET EFI-502310) FROM Thermobispora bispora DSM 43833 complexed with phosphate 4DHG ; 1.9 ; Crystal structure of enolase TBIS_1083(TARGET EFI-502310) from Thermobispora bispora dsm 43833, an open loop conformation 2PSN ; 2.2 ; Crystal structure of enolase1 7V67 ; 2.0 ; Crystal Structure of Enolase1 from Candida albicans 7VRD ; 1.7 ; Crystal structure of Enolase1 from Candida albicans complexed with 2'-phosphoglyceric acid sodium 3ISS ; 2.5 ; Crystal structure of enolpyruvyl-UDP-GlcNAc synthase (MurA):UDP-N-acetylmuramic acid:phosphite from Escherichia coli 4RLH ; 2.26 ; Crystal structure of enoyl ACP reductase from Burkholderia pseudomallei in complex with AFN-1252 7MKU ; 2.648 ; Crystal Structure of ENOYL COA-HYDRATASE2 from Arabidopsis thaliana 4Z38 ; 2.8 ; Crystal structure of enoyl reductase domain of MlnA from the macrolactin biosynthesis cluster from Bacillus amyloliquefaciens 1QSG ; 1.75 ; CRYSTAL STRUCTURE OF ENOYL REDUCTASE INHIBITION BY TRICLOSAN 5TF4 ; 1.95 ; Crystal structure of enoyl-(acyl carrier protein) reductase from Bartonella henselae in complext with NAD 5TRT ; 1.85 ; Crystal Structure of enoyl-(acyl carrier protein) reductase from Burkholderia pseudomallei 1710b bound to NAD 3K2E ; 1.9 ; Crystal structure of enoyl-(acyl-carrier-protein) reductase from Anaplasma phagocytophilum at 1.9A resolution 8JFJ ; 1.8 ; Crystal structure of enoyl-ACP reductase FabI from Helicobacter pylori 8JFN ; 2.41 ; Crystal structure of enoyl-ACP reductase FabI in complex with NAD+ and crotonyl-ACP from Helicobacter pylori 8JFM ; 2.21 ; Crystal structure of enoyl-ACP reductase FabI in complex with NADH from Helicobacter pylori 6AHE ; 2.29 ; Crystal structure of enoyl-ACP reductase from Acinetobacter baumannii in complex with NAD and AFN-1252 6AH9 ; 1.74 ; Crystal structure of enoyl-ACP reductase from Acinetobacter baumannii in complex with NAD and Triclosan 1UH5 ; 2.2 ; Crystal Structure of Enoyl-ACP Reductase with Triclosan at 2.2angstroms 3OIG ; 1.25 ; Crystal Structure of Enoyl-ACP Reductases I (FabI) from B. subtilis (complex with NAD and INH) 3OIF ; 2.6 ; Crystal Structure of Enoyl-ACP Reductases I (FabI) from B. subtilis (complex with NAD and TCL) 3OIC ; 2.2 ; Crystal Structure of Enoyl-ACP Reductases III (FabL) from B. subtilis (apo form) 3OID ; 1.8 ; Crystal Structure of Enoyl-ACP Reductases III (FabL) from B. subtilis (complex with NADP and TCL) 4M86 ; 2.15 ; Crystal Structure of Enoyl-Acyl Carrier Protein Reductase (FabI) from Neisseria meningitidis 4M87 ; 2.25 ; Crystal Structure of Enoyl-Acyl Carrier Protein Reductase (FabI) from Neisseria meningitidis in complex with NAD+ 4M89 ; 1.9 ; Crystal Structure of Enoyl-Acyl Carrier Protein Reductase (FabI) from Neisseria meningitidis in complex with NAD+ and Triclosan 6IUM ; 2.0 ; Crystal structure of enoyl-CoA hydratase (ECH) from Ralstonia eutropha H16 6IUN ; 2.38 ; Crystal structure of enoyl-CoA hydratase (ECH) from Ralstonia eutropha H16 in complex with NAD 3QXI ; 2.2 ; Crystal structure of enoyl-CoA hydratase EchA1 from Mycobacterium marinum 3QK8 ; 1.6 ; Crystal structure of enoyl-coA hydratase EchA15 from Mycobacterium marinum in complex with an unknown ligand 7M3W ; 2.9 ; Crystal Structure of enoyl-CoA hydratase EchA15 protein from Mycolicibacterium paratuberculosis 3QYR ; 2.45 ; Crystal structure of enoyl-coA hydratase EchA16_2 Mycobacterium paratuberculosis ATCC BAA-968 / K-10 4DI1 ; 2.25 ; Crystal structure of enoyl-CoA hydratase EchA17 from Mycobacterium marinum 3QKA ; 2.15 ; Crystal structure of enoyl-CoA hydratase EchA5 from Mycobacterium marinum 3QMJ ; 2.2 ; Crystal structure of Enoyl-CoA hydratase EchA8_6 from Mycobacterium marinum 3PEA ; 1.817 ; Crystal structure of enoyl-CoA hydratase from Bacillus anthracis str. 'Ames Ancestor' 3LKE ; 1.7 ; Crystal structure of enoyl-CoA hydratase from Bacillus halodurans 3Q1T ; 2.35 ; Crystal structure of enoyl-coA hydratase from Mycobacterium avium 3NJD ; 1.75 ; Crystal structure of enoyl-coa hydratase from mycobacterium smegmatis 3PE8 ; 1.6 ; Crystal structure of Enoyl-CoA hydratase from Mycobacterium smegmatis 3NJB ; 2.2 ; Crystal structure of enoyl-coa hydratase from Mycobacterium smegmatis, iodide soak 3H81 ; 1.8 ; Crystal structure of enoyl-CoA hydratase from Mycobacterium tuberculosis 3HE2 ; 2.3 ; Crystal structure of enoyl-CoA hydratase from Mycobacterium tuberculosis 5KJP ; 1.8 ; Crystal structure of enoyl-CoA hydratase from Mycobacterium tuberculosis H37Rv 7MCM ; 2.05 ; Crystal Structure of Enoyl-CoA hydratase from Mycolicibacterium smegmatis 3LAO ; 2.4 ; Crystal Structure of Enoyl-CoA Hydratase from Pseudomonas aeruginosa PA01 4JYL ; 2.37 ; Crystal structure of enoyl-CoA hydratase from Thermoplasma volcanium GSS1 1UIY ; 2.85 ; Crystal Structure of Enoyl-CoA Hydratase from Thermus Thermophilus HB8 3MYB ; 1.55 ; Crystal structure of enoyl-coa hydratase mycobacterium smegmatis 6C7C ; 2.1 ; Crystal structure of Enoyl-CoA hydratase, EchA3, from Mycobacterium ulcerans Agy99 3JU1 ; 2.301 ; Crystal Structure of Enoyl-CoA Hydratase/Isomerase Family Protein 4JCS ; 1.77 ; Crystal structure of Enoyl-CoA hydratase/isomerase from Cupriavidus metallidurans CH34 5VE2 ; 2.3 ; Crystal structure of enoyl-CoA hydratase/isomerase from Pseudoalteromonas atlantica T6c at 2.3 A resolution. 2PPY ; 2.16 ; Crystal structure of Enoyl-CoA hydrates (gk_1992) from Geobacillus Kaustophilus HTA426 2PBP ; 1.8 ; Crystal structure of ENOYL-CoA hydrates subunit I (gk_2039) from geobacillus kaustophilus HTA426 2QQ3 ; 1.95 ; Crystal Structure Of Enoyl-CoA Hydrates Subunit I (gk_2039) Other Form From Geobacillus Kaustophilus HTA426 4JOT ; 1.94 ; Crystal structure of enoyl-CoA hydrotase from Deinococcus radiodurans R1 2P91 ; 2.0 ; Crystal structure of Enoyl-[acyl-carrier-protein] reductase (NADH) from Aquifex aeolicus VF5 6Q1Y ; 1.65 ; Crystal Structure of Enoyl-[acyl-carrier-protein] reductase from Mycobacterium avium with bound NAD 7L6C ; 1.85 ; Crystal Structure of Enoyl-[acyl-carrier-protein] reductase InhA from Mycobacterium abscessus in complex with NAD 7KLI ; 1.75 ; Crystal Structure of Enoyl-[acyl-carrier-protein] reductase [NADH] (InhA) from Mycobacterium abscessus 6UDF ; 1.95 ; Crystal structure of Enoyl-[acyl-carrier-protein] reductase [NADH] (InhA) from Mycobacterium kansasii 7KXA ; 1.8 ; Crystal structure of Enoyl-[acyl-carrier-protein] reductase [NADH] (InhA) from Mycobacterium kansasii in complex with NAD 5WWO ; 2.4 ; Crystal structure of Enp1 7F0G ; 2.67 ; Crystal Structure of EnPKS1 7F0E ; 2.62 ; Crystal Structure of EnPKS2 6AEL ; 1.9 ; Crystal structure of ENPP1 in complex with 3'3'-cGAMP 6AEK ; 1.8 ; Crystal structure of ENPP1 in complex with pApG 5ZX1 ; 2.31 ; Crystal structure of ENT domain from T. brucei 3PYA ; 2.25 ; Crystal structure of ent-copalyl diphosphate synthase from Arabidopsis thaliana in complex with (S)-15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate 4LIX ; 1.548 ; Crystal structure of ent-copalyl diphosphate synthase from Arabidopsis thaliana in complex with (S)-15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate at 1.55 A resolution 3PYB ; 2.759 ; Crystal structure of ent-copalyl diphosphate synthase from Arabidopsis thaliana in complex with 13-aza-13,14-dihydrocopalyl diphosphate 4W4R ; 1.92 ; Crystal structure of ent-kaurene synthase BJKS from bradyrhizobium japonicum 4W4S ; 2.0 ; Crystal structure of ent-kaurene synthase BJKS from bradyrhizobium japonicum in complex with BPH-629 5ZEF ; 2.01 ; Crystal structure of Entamoeba histolytica Arginase in complex with L- Norvaline at 2.01 A 5ZEH ; 2.36 ; Crystal structure of Entamoeba histolytica Arginase in complex with L- Ornithine at 2.35 A 5ZEE ; 1.74 ; Crystal structure of Entamoeba histolytica Arginase in complex with N(omega)-hydroxy-L-arginine (NOHA) at 1.74 A 4UP8 ; 2.896 ; Crystal structure of Entamoeba histolytica lysyl-tRNA synthetase apo form 4UPA ; 2.901 ; Crystal structure of Entamoeba histolytica lysyl-tRNA synthetase in complex with AMPPNP 4UP9 ; 3.047 ; Crystal structure of Entamoeba histolytica lysyl-tRNA synthetase in complex with ATP 4UP7 ; 2.789 ; Crystal structure of Entamoeba histolytica lysyl-tRNA synthetase in complex with lysyl-adenylate 3NV9 ; 2.25 ; Crystal structure of Entamoeba histolytica Malic Enzyme 3ACZ ; 1.97 ; Crystal structure of Entamoeba histolytica methionine gamma-lyase 1 3P47 ; 1.78 ; Crystal structure of Entamoeba histolytica Serine acetyltransferase 1 in complex with L-cysteine 3Q1X ; 1.59 ; Crystal structure of Entamoeba histolytica serine acetyltransferase 1 in complex with L-serine 7VLJ ; 1.83 ; Crystal structure of Entamoeba histolytica serine protease inhibitor, Histopin, in the cleaved conformation 3NX1 ; 2.4 ; Crystal structure of Enterobacter sp. Px6-4 Ferulic Acid Decarboxylase 1Q9Y ; 2.8 ; CRYSTAL STRUCTURE OF ENTEROBACTERIA PHAGE RB69 GP43 DNA POLYMERASE COMPLEXED WITH 8-OXOGUANOSINE CONTAINING DNA 1Q9X ; 2.69 ; Crystal structure of Enterobacteria phage RB69 gp43 DNA polymerase complexed with tetrahydrofuran containing DNA 3UWL ; 2.07 ; Crystal structure of Enteroccocus faecalis thymidylate synthase (EfTS) in complex with 5-formyl tetrahydrofolate 6QYA ; 1.76 ; Crystal structure of Enteroccocus faecalis thymidylate synthase (EfTS) in complex with dUMP 6QXS ; 2.88 ; Crystal structure of Enteroccocus faecalis thymidylate synthase (EfTS) in complex with FdUMP 2B20 ; 2.95 ; Crystal Structure of Enterochelin Esterase from Shigella flexneri Enterochelin Esterase 5Y63 ; 2.87 ; Crystal structure of Enterococcus faecalis AhpC 2JFO ; 2.5 ; Crystal structure of Enterococcus faecalis glutamate racemase in complex with D- and L-Glutamate 2JFP ; 1.98 ; Crystal structure of Enterococcus faecalis glutamate racemase in complex with D- Glutamate 5IJ6 ; 2.0 ; Crystal structure of Enterococcus faecalis lipoate-protein ligase A (lplA-1) in complex with lipoic acid 5IDH ; 1.55 ; Crystal structure of Enterococcus faecalis lipoate-protein ligase A (lplA-2) in complex with 8-bromooctanoic acid 5ICH ; 1.85 ; Crystal structure of Enterococcus faecalis lipoate-protein ligase A (lplA-2) in complex with 8BO-AMP 5IBY ; 1.85 ; Crystal structure of Enterococcus faecalis lipoate-protein ligase A (lplA-2) in complex with lipoic acid 5ICL ; 1.8 ; Crystal structure of Enterococcus faecalis lipoate-protein ligase A (lplA-2) in complex with lipoyl-AMP 4MZY ; 1.95 ; Crystal structure of enterococcus faecalis nicotinate phosphoribosyltransferase with malonate and phosphate bound 2F7F ; 2.0 ; Crystal structure of Enterococcus faecalis putative nicotinate phosphoribosyltransferase, NEW YORK STRUCTURAL GENOMICS CONSORTIUM 6LOI ; 2.503 ; Crystal structure of Enterococcus faecalis Undecaprenyl pyrophosphate synthase(EfaUPPS) 6G0K ; 2.9 ; Crystal structure of Enterococcus faecium D63r Penicillin-Binding protein 5 (PBP5fm) 6G88 ; 3.3 ; Crystal structure of Enterococcus Faecium D63r Penicillin-Binding protein 5 (PBP5fm) 8U55 ; 1.9 ; Crystal structure of Enterococcus faecium EnGen25 Penicillin-binding protein 5 (PBP5) 2JFV ; 1.8 ; Crystal structure of Enterococcus faecium glutamate racemase in complex with citrate 2JFU ; 1.8 ; Crystal structure of Enterococcus faecium glutamate racemase in complex with phosphate 2JFW ; 2.0 ; Crystal structure of Enterococcus faecium glutamate racemase in complex with tartrate 2HKL ; 2.6 ; Crystal structure of Enterococcus faecium L,D-transpeptidase C442S mutant 8AIH ; 1.9 ; Crystal Structure of Enterococcus faecium Nicotinate Nucleotide Adenylyltransferase at 1.9 Angstroms Resolution 6M73 ; 1.7 ; Crystal structure of Enterococcus hirae L-lactate oxidase in complex with D-lactate form ligand 6M74 ; 1.52 ; Crystal structure of Enterococcus hirae L-lactate oxidase M207L in complex with D-lactate form ligand 3VR4 ; 2.172 ; Crystal structure of Enterococcus hirae V1-ATPase [eV1] 3UJZ ; 2.5 ; Crystal structure of enterohemorrhagic E. coli StcE 4DNY ; 1.61 ; Crystal structure of enterohemorrhagic E. coli StcE(132-251) 3QK1 ; 2.08 ; Crystal Structure of Enterokinase-like Trypsin Variant 1YJ7 ; 1.8 ; Crystal structure of enteropathogenic E.coli (EPEC) type III secretion system protein EscJ 8FL5 ; 1.8 ; Crystal Structure of Enterovirus 68 3C Protease inactive mutant C147A at 1.8 Angstroms. 6KWR ; 2.5 ; Crystal structure of enterovirus 71 polymerase elongation complex (ddCTP form) 6KWQ ; 1.76 ; Crystal structure of enterovirus 71 polymerase elongation complex (native form) 4GMP ; 3.9 ; Crystal structure of enterovirus 71 strain 1095 procapsid 6L4R ; 2.147 ; Crystal structure of Enterovirus D68 RdRp 7ROA ; 1.82 ; Crystal structure of EntV136 from Enterococcus faecalis 2EDM ; 2.2 ; Crystal Structure of Envelope Protein VP26 from White Spot Syndrome Virus (WSSV) 2ED6 ; 2.0 ; Crystal Structure of Envelope Protein VP28 from White Spot Syndrome Virus (WSSV) 2VGD ; 1.8 ; Crystal structure of environmental isolated GH11 in complex with xylobiose and feruloyl-arabino-xylotriose 5GY9 ; 1.94 ; Crystal structure of ENZbleach xylanase A74C+G84C mutant 5GYC ; 1.4 ; Crystal structure of ENZbleach xylanase K73R+K185R and T28C+T60C mutant 5GYE ; 1.9 ; Crystal structure of ENZbleach xylanase T28C+T60C and T77C+E249C mutant 5GY8 ; 1.8 ; Crystal structure of ENZbleach xylanase T28C+T60C mutant 5GYG ; 1.74 ; Crystal structure of ENZbleach xylanase T28C+T60C mutant with three N-teminal residue truncation 5GYF ; 1.94 ; Crystal structure of ENZbleach xylanase T28C+T60C+L59F mutant 5GYH ; 1.86 ; Crystal structure of ENZbleach xylanase T28C+T60C+T48F+L59F mutant 5GYI ; 1.97 ; Crystal structure of ENZbleach xylanase V176C+E220C mutant 5GYB ; 1.65 ; Crystal structure of ENZbleach xylanase V5N+V6N+K7R+K223R+K227R and T28C+T60C mutant 5GYA ; 1.93 ; Crystal structure of ENZbleach xylanase V5N+V6N+K7R+K223R+K227R mutant 5GV1 ; 1.5 ; Crystal structure of ENZbleach xylanase wild type 6X6X ; 1.71 ; Crystal structure of enzymatic binary toxin component from Clostridium difficile in complex with 2WQD ; 2.4 ; Crystal structure of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in the dephosphorylated state 5K7Y ; 1.79 ; Crystal structure of enzyme in purine metabolism 5L4Z ; 1.84 ; Crystal structure of enzyme in purine metabolism 5L50 ; 1.643 ; Crystal structure of enzyme in purine metabolism 3EK2 ; 1.9 ; Crystal structure of eonyl-(acyl carrier protein) reductase from burkholderia pseudomallei 1719b 3K31 ; 1.8 ; Crystal structure of eonyl-(acyl-carrier-protein) reductase from anaplasma phagocytophilum in complex with nad at 1.9a resolution 1H1H ; 2.0 ; Crystal Structure of Eosinophil Cationic Protein in Complex with 2',5'-ADP at 2.0 A resolution Reveals the Details of the Ribonucleolytic Active site 5E13 ; 1.34 ; Crystal structure of Eosinophil-derived neurotoxin in complex with the triazole double-headed ribonucleoside 11c 3KM3 ; 2.1 ; Crystal structure of eoxycytidine triphosphate deaminase from anaplasma phagocytophilum at 2.1A resolution 1V35 ; 2.5 ; Crystal Structure of Eoyl-ACP Reductase with NADH 2D23 ; 1.95 ; Crystal structure of EP complex of catalytic-site mutant xylanase from Streptomyces olivaceoviridis E-86 6M9T ; 2.5 ; Crystal structure of EP3 receptor bound to misoprostol-FA 5BT3 ; 1.05 ; Crystal structure of EP300 bromodomain in complex with SGC-CBP30 chemical probe 7VHY ; 2.3 ; Crystal structure of EP300 HAT domain in complex with compound (+)-3 8GZC ; 2.0 ; Crystal structure of EP300 HAT domain in complex with compound 10 7VI0 ; 2.1 ; Crystal structure of EP300 HAT domain in complex with compound 11 7VHZ ; 2.0 ; Crystal structure of EP300 HAT domain in complex with compound 7 6I07 ; 2.35 ; Crystal structure of EpCAM in complex with scFv 6ACI ; 1.87 ; Crystal structure of EPEC effector NleB in complex with FADD death domain 3CKH ; 2.8 ; Crystal structure of Eph A4 receptor 4ET7 ; 2.6 ; Crystal structure of Eph receptor 5 3GXU ; 2.5 ; Crystal structure of Eph receptor and ephrin complex 3MX0 ; 3.506 ; Crystal Structure of EphA2 ectodomain in complex with ephrin-A5 6B9L ; 3.2 ; Crystal structure of EphA2 with peptide 135E2 5ZRX ; 1.5 ; Crystal Structure of EphA2/SHIP2 Complex 6IN0 ; 1.501 ; Crystal structure of EphA3 in complex with 18-Crown-6 4M4P ; 2.081 ; Crystal structure of EPHA4 ectodomain 2Y6M ; 1.7 ; Crystal structure of EphA4 kinase domain 2Y6O ; 1.543 ; Crystal structure of EphA4 kinase domain in complex with Dasatinib. 2XYU ; 2.117 ; Crystal structure of EphA4 kinase domain in complex with VUF 12058 5ZRZ ; 1.89 ; Crystal Structure of EphA5/SAMD5 Complex 5ZRY ; 1.3 ; Crystal Structure of EphA6/Odin Complex 7EED ; 3.05 ; Crystal structure of EphA7 mutant D751H 7EEF ; 2.6 ; Crystal structure of EphA7 mutant G656E 7EEC ; 3.1 ; Crystal structure of EphA7 mutant G656R 8J1I ; 1.6 ; Crystal Structure of EphA8/SASH1 Complex 3ZFX ; 2.5 ; Crystal structure of EphB1 3ZFM ; 2.27 ; Crystal structure of EphB2 3ZFY ; 2.2 ; Crystal structure of EphB3 3ZEW ; 2.5 ; Crystal structure of EphB4 in complex with staurosporine 1MQB ; 2.3 ; Crystal Structure of Ephrin A2 (ephA2) Receptor Protein Kinase 5I9U ; 1.889 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase 6FNH ; 1.379 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with a pyrazolo[3,4-d]pyrimidine fragment of NVP-BHG712 5I9V ; 1.458 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with AGS 5IA0 ; 1.948 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with alisertib (MLN8237) 6FNG ; 1.038 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with an isomer of NVP-BHG712 5I9W ; 1.359 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with ANP 5I9X ; 1.427 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with bosutinib (SKI-606) 8BOK ; 2.02 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 11 8BOF ; 1.82 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 12 8BOM ; 1.12 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 14 8BOC ; 1.9 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 19 5NJZ ; 1.768 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 1g 5NK0 ; 1.597 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 1j 5NK1 ; 1.548 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 1k 5NK3 ; 1.586 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 1l 5NK5 ; 1.329 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 1m 8BOD ; 1.5 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 20 5NK7 ; 1.889 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2a 5NK2 ; 1.649 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2b 5NK4 ; 1.45 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2c 5NK6 ; 1.267 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2d 5NK9 ; 1.588 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2e 5NK8 ; 1.761 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2f 5NKA ; 1.377 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2g 5NKC ; 1.448 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2h 5NKD ; 1.408 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 2i 5NKE ; 1.39 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 3a 5NKF ; 1.099 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 3b 5NKG ; 1.1 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 3d 5NKH ; 1.29 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 3e 5NKB ; 1.5 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 4a 5NKI ; 1.675 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 4b 5IA2 ; 1.619 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with compound 66 8BOG ; 1.47 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 7 8BOH ; 1.42 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 8 8BOI ; 1.63 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 9 5I9Z ; 1.698 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with danusertib (PHA739358) 5I9Y ; 1.228 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with dasatinib 5IA4 ; 1.797 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with foretinib (XL880) 5IA5 ; 1.776 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with golvatinib (E7050) 5IA1 ; 2.036 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with MLN8054 6FNF ; 1.556 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with NVP-BHG712 5IA3 ; 1.788 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with PD173955 6HES ; 1.128 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative AT050 6HET ; 1.208 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative AT055 6HEU ; 1.719 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative AT058 6HEV ; 1.28 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative AT061 6HEW ; 1.268 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative AT069 6Q7B ; 1.009 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATDL09 6Q7C ; 1.049 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATDL11 6Q7D ; 0.978 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATDL13 6Q7E ; 1.059 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATDL14 6Q7F ; 1.204 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATDL18 6Q7G ; 1.047 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATHA01 6HEX ; 1.413 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATMM006 6HEY ; 1.367 ; Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with the NVP-BHG712 derivative ATNK002 6FNL ; 1.269 ; Crystal Structure of Ephrin B4 (EphB4) Receptor Protein Kinase 6FNK ; 1.049 ; Crystal Structure of Ephrin B4 (EphB4) Receptor Protein Kinase with a pyrazolo[3,4-d]pyrimidine fragment of NVP-BHG712 6FNJ ; 1.239 ; Crystal Structure of Ephrin B4 (EphB4) Receptor Protein Kinase with an isomer of NVP-BHG712 6FNM ; 1.157 ; Crystal Structure of Ephrin B4 (EphB4) Receptor Protein Kinase with Dasatinib 6FNI ; 1.468 ; Crystal Structure of Ephrin B4 (EphB4) Receptor Protein Kinase with NVP-BHG712 4LTV ; 2.403 ; Crystal structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2) 1QDA ; 1.6 ; Crystal structure of epidoxorubicin-formaldehyde virtual crosslink of DNA 7EKA ; 1.2 ; crystal structure of epigallocatechin binding with alpha-lactalbumin 7MP4 ; 2.43 ; Crystal structure of Epiphyas postvittana antennal carboxylesterase 24 6VQ5 ; 2.6 ; Crystal Structure of Epiphyas postvittana Pheromone Binding Protein 3 3E8T ; 1.3 ; Crystal Structure of Epiphyas postvittana Takeout 1 3E8W ; 2.5 ; Crystal Structure of Epiphyas postvittana Takeout 1 4G0S ; 2.191 ; Crystal Structure of Epiphyas postvittana Takeout 1 expressed in Sf9 cells 4AF9 ; 1.5 ; Crystal Structure of Epithelial Adhesin 1 A domain (Epa1A) from Candida glabrata in complex with Galb1-3Glc 4D3W ; 1.5 ; Crystal Structure of Epithelial Adhesin 1 A domain (Epa1A) from Candida glabrata in complex with the T-antigen (Galb1-3GalNAc) 4COV ; 1.5 ; Crystal Structure of Epithelial Adhesin 6 A domain (Epa6A) from Candida glabrata in complex with Gala1-3Gal 4COZ ; 2.3 ; Crystal Structure of Epithelial Adhesin 6 A domain (Epa6A) from Candida glabrata in complex with Galb1-3GlcNAc 4COY ; 1.8 ; Crystal Structure of Epithelial Adhesin 6 A domain (Epa6A) from Candida glabrata in complex with Galb1-4GlcNAc 4COU ; 1.48 ; Crystal Structure of Epithelial Adhesin 6 A domain (Epa6A) from Candida glabrata in complex with Lactose 4COW ; 2.15 ; Crystal Structure of Epithelial Adhesin 6 A domain (Epa6A) from Candida glabrata in complex with the T-antigen (Galb1-3GalNAc) 4CP1 ; 2.5 ; Crystal Structure of Epithelial Adhesin 9 A domain (Epa9A) from Candida glabrata in complex with Galb1-3GlcNAc 4CP2 ; 2.6 ; Crystal Structure of Epithelial Adhesin 9 A domain (Epa9A) from Candida glabrata in complex with Galb1-4GlcNAc 4CP0 ; 2.15 ; Crystal Structure of Epithelial Adhesin 9 A domain (Epa9A) from Candida glabrata in complex with Lactose 1PKF ; 2.1 ; Crystal Structure of Epothilone D-bound Cytochrome P450epoK 5CW2 ; 2.0 ; Crystal structure of Epoxide Hydrolase A from Mycobacterium thermoresistibile 3RGA ; 1.59 ; Crystal structure of epoxide hydrolase for polyether lasalocid A biosynthesis 4NZZ ; 1.75 ; Crystal structure of epoxide hydrolase from bacillus megaterium 3WMD ; 1.999 ; Crystal structure of epoxide hydrolase MonBI 5XMD ; 2.0 ; Crystal structure of epoxide hydrolase VrEH1 from Vigna radiata 1G65 ; 2.25 ; Crystal structure of epoxomicin:20s proteasome reveals a molecular basis for selectivity of alpha,beta-epoxyketone proteasome inhibitors 7LC5 ; 1.5 ; Crystal structure of epoxyqueuosine reductase QueH from Thermotoga maritima 7LC7 ; 1.58 ; Crystal structure of epoxyqueuosine reductase QueH in complex with GMP from Thermotoga maritima 5D0B ; 2.645 ; Crystal structure of epoxyqueuosine reductase with a tRNA-TYR epoxyqueuosine-modified tRNA stem loop 5D0A ; 2.1 ; Crystal structure of epoxyqueuosine reductase with cleaved RNA stem loop 7CZE ; 3.0 ; Crystal structure of Epstein-Barr virus (EBV) gHgL and in complex with the ligand binding domian (LBD) of EphA2 7S0J ; 2.15 ; Crystal structure of Epstein-Barr virus gH/gL targeting antibody 769B10 7S08 ; 2.42 ; Crystal structure of Epstein-Barr virus gH/gL targeting antibody 770F7 8TNT ; 3.15 ; Crystal structure of Epstein-Barr virus gH/gL/gp42 in complex with antibodies F-2-1 and 769C2 8TNN ; 3.36 ; Crystal structure of Epstein-Barr virus gH/gL/gp42 in complex with gp42 antibody A10 7S07 ; 3.29 ; Crystal structure of Epstein-Barr virus glycoprotein gH/gL/gp42-peptide in complex with human neutralizing antibodies 769B10 and 769C2 7S1B ; 3.03 ; Crystal structure of Epstein-Barr virus glycoproteins gH/gL/gp42-peptide in complex with human neutralizing antibodies 769C2 and 770F7 8TOO ; 2.6 ; Crystal structure of Epstein-Barr virus gp42 in complex with antibody 4C12 3FD4 ; 2.4 ; Crystal Structure of Epstein-Barr virus gp42 protein 1Y6M ; 2.8 ; Crystal structure of Epstein-Barr virus IL-10 complexed with the soluble IL-10R1 chain 1Y6N ; 2.7 ; Crystal structure of Epstein-Barr virus IL-10 mutant (A87I) complexed with the soluble IL-10R1 chain 6VH6 ; 1.3 ; Crystal structure of Epstein-Barr Virus Nuclear Antigen-1, EBNA1, bound to fragment 6NPI ; 1.501 ; Crystal structure of Epstein-Barr Virus Nuclear Antigen-1, EBNA1, bound to fragments 6NPM ; 1.603 ; Crystal structure of Epstein-Barr Virus Nuclear Antigen-1, EBNA1, bound to fragments 6NPP ; 1.35 ; Crystal structure of Epstein-Barr Virus Nuclear Antigen-1, EBNA1, bound to fragments 1HEK ; 2.8 ; Crystal structure of equine infectious anaemia virus matrix antigen (EIAV MA) 4ZUW ; 2.6 ; Crystal structure of Equine MHC I(Eqca-N*00601) in complexed with equine infectious anaemia virus (EIAV) derived peptide Gag-GW12 4ZUV ; 2.3 ; Crystal structure of Equine MHC I(Eqca-N*00602) in complexed with equine infectious anaemia virus (EIAV) derived peptide Env-RW12 4ZUU ; 2.2 ; Crystal structure of Equine MHC I(Eqca-N*00602) in complexed with equine infectious anaemia virus (EIAV) derived peptide Gag-CF9 4ZUT ; 2.6 ; Crystal structure of Equine MHC I(Eqca-N*00602) in complexed with equine infectious anaemia virus (EIAV) derived peptide Gag-GW12 4ZUS ; 2.6 ; Crystal structure of Equine MHC I(Eqca-N*00602) in complexed with equine infectious anaemia virus (EIAV) derived peptide REV-QW11 3V08 ; 2.45 ; Crystal structure of Equine Serum Albumin 4F5T ; 2.32 ; Crystal Structure of Equine Serum Albumin 5HOZ ; 2.15 ; Crystal structure of Equine Serum Albumin (ESA) at pH 9.0 4F5U ; 2.04 ; Crystal structure of Equine Serum Albumin at 2.04 resolution 6U5A ; 2.65 ; Crystal structure of Equine Serum Albumin complex with 6-MNA 5V0V ; 2.45 ; Crystal structure of Equine Serum Albumin complex with etodolac 6U4X ; 2.25 ; Crystal structure of Equine Serum Albumin complex with ibuprofen 6U4R ; 2.45 ; Crystal structure of Equine Serum Albumin complex with ketoprofen 4J2V ; 2.12 ; Crystal Structure of Equine Serum Albumin in complex with 3,5-diiodosalicylic acid 7Q4X ; 2.12 ; Crystal Structure of Equine Serum Albumin in Complex with Cefaclor 7MBL ; 2.7 ; Crystal structure of Equine Serum Albumin in complex with Cobalt (II) 4ZBQ ; 1.92 ; Crystal Structure of Equine Serum Albumin in complex with Diclofenac 4ZBR ; 2.19 ; Crystal Structure of Equine Serum Albumin in complex with Diclofenac and Naproxen 5DBY ; 2.35 ; Crystal Structure of Equine Serum Albumin in Complex with Diclofenac and Naproxen Obtained in Displacement Experiment 6OCI ; 2.54 ; Crystal Structure of Equine Serum Albumin in Complex with Ibuprofen 6CI6 ; 2.8 ; Crystal structure of equine serum albumin in complex with nabumetone 4OT2 ; 2.42 ; Crystal Structure of Equine Serum Albumin in complex with Naproxen 5ID9 ; 2.48 ; Crystal structure of equine serum albumin in complex with phosphorodithioate derivative of myristoyl cyclic phosphatidic acid (cPA) 6OCJ ; 2.5 ; Crystal Structure of Equine Serum Albumin in Complex with Suprofen 6MDQ ; 2.15 ; Crystal structure of equine serum albumin in complex with testosterone 5IIU ; 2.3 ; Crystal structure of Equine Serum Albumin in the presence of 10 mM zinc at pH 6.9 5IIX ; 2.2 ; Crystal structure of Equine Serum Albumin in the presence of 15 mM zinc at pH 6.5 5IIH ; 2.4 ; Crystal structure of Equine Serum Albumin in the presence of 2.5 mM zinc at pH 7.4 5IJE ; 2.4 ; Crystal structure of Equine Serum Albumin in the presence of 30 mM zinc at pH 7.4 5IJ5 ; 2.55 ; Crystal structure of Equine Serum Albumin in the presence of 50 mM zinc at pH 4.5 6ZJ9 ; 2.2 ; Crystal structure of Equus ferus caballus glutathione transferase A3-3 in complex with glutathione 6ZJC ; 2.2 ; Crystal structure of Equus ferus caballus glutathione transferase A3-3 in complex with glutathione and triethyltin 5TOA ; 2.5 ; Crystal Structure of ER beta bound to Estradiol 5JQP ; 2.2 ; Crystal structure of ER glucosidase II heterodimeric complex consisting of catalytic subunit and the binding domain of regulatory subunit 3IEU ; 2.8 ; Crystal Structure of ERA in Complex with GDP 3R9W ; 2.05 ; Crystal structure of Era in complex with MgGDPNP and nucleotides 1506-1542 of 16S ribosomal RNA 3R9X ; 2.8 ; Crystal structure of Era in complex with MgGDPNP, nucleotides 1506-1542 of 16S ribosomal RNA, and KsgA 3IEV ; 1.9 ; Crystal Structure of ERA in Complex with MgGNP and the 3' End of 16S rRNA 4DMA ; 2.3 ; Crystal structure of ERa LBD in complex with RU100132 3RJO ; 2.3 ; Crystal Structure of ERAP1 Peptide Binding Domain 7PFS ; 2.7 ; Crystal structure of ERAP2 aminopeptidase in complex with phosphinic pseudotripeptide ((1R)-1-Amino-3-phenylpropyl){2-([1,1:3,1-terphenyl]-5-ylmethyl)-3-[((2S)-1-amino-1-oxo-3-phenylpropan-2-yl)-amino]-3-oxopropyl}phosphinic acid 7P7P ; 3.0 ; Crystal structure of ERAP2 aminopeptidase in complex with phosphinic pseudotripeptide((1R)-1-Amino-3-phenylpropyl){(2S)-3-[((2S)-1-amino-1-oxo-3-phenylpropan-2-yl)amino]-2-{[3-(2-hydroxyphenyl)-isoxazol-5-yl]methyl}-3-oxopropyl}phosphinic acid 5CU5 ; 3.02 ; Crystal structure of ERAP2 without catalytic Zn(II) atom 2A91 ; 2.5 ; Crystal structure of ErbB2 domains 1-3 2V6C ; 2.5 ; Crystal structure of ErbB3 binding protein 1 (Ebp1) 6KBI ; 3.0 ; Crystal structure of ErbB3 N418Q mutant 2AHX ; 2.396 ; Crystal structure of ErbB4/HER4 extracellular domain 2H3L ; 1.0 ; Crystal Structure of ERBIN PDZ 5AYK ; 2.25 ; Crystal structure of ERdj5 form I 5AYL ; 2.4 ; Crystal structure of ERdj5 form II 5M87 ; 3.3 ; Crystal structure of Eremococcus coleocola manganese transporter 6TL2 ; 3.8 ; Crystal structure of Eremococcus coleocola manganese transporter in complex with an aromatic bis-isothiourea substituted compound 5M8A ; 3.9 ; Crystal structure of Eremococcus coleocola manganese transporter mutant E129A 5M8K ; 3.6 ; Crystal structure of Eremococcus coleocola manganese transporter mutant E129Q 5M8J ; 3.7 ; Crystal structure of Eremococcus coleocola manganese transporter mutant H236A 6UMG ; 2.7 ; Crystal structure of erenumab Fab bound to the extracellular domain of CGRP receptor 6UMH ; 2.15 ; Crystal structure of erenumab Fab-a 6UMI ; 2.4 ; Crystal structure of erenumab Fab-b 6UMJ ; 2.7 ; Crystal structure of erenumab Fab-c 3WHT ; 1.8 ; Crystal structure of ERGIC-53/MCFD2, Calcium-free form 3WHU ; 2.6 ; Crystal structure of ERGIC-53/MCFD2, Calcium/Man2-bound form 3WNX ; 2.75 ; Crystal structure of ERGIC-53/MCFD2, Calcium/Man3-bound form 4YGC ; 2.4 ; Crystal structure of ERGIC-53/MCFD2, monoclinic calcium-bound form 1 4YGD ; 2.51 ; Crystal structure of ERGIC-53/MCFD2, monoclinic calcium-bound form 2 4YGB ; 1.6 ; Crystal structure of ERGIC-53/MCFD2, monoclinic calcium-free form 4YGE ; 3.05 ; Crystal structure of ERGIC-53/MCFD2, trigonal calcium-bound form 2 6S7Q ; 2.7 ; Crystal structure of ergothioneine degrading enzyme Ergothionase from Treponema denticola in complex with desmethyl-ergothioneine sulfonic acid 7N8W ; 2.35 ; Crystal structure of ERI2 nuclease bound to rAMP 4F5E ; 2.601 ; Crystal structure of ERIS/STING 3C9W ; 2.5 ; Crystal Structure of ERK-2 with hypothemycin covalently bound 6GES ; 2.07 ; Crystal structure of ERK1 covalently bound to SM1-71 4S32 ; 1.34 ; Crystal structure of ERK2 AMP-PNP complex 3I60 ; 2.5 ; Crystal structure of ERK2 bound to (S)-4-(2-(2-chlorophenylamino)-5-methylpyrimidin-4-yl)-N-(2-hydroxy-1-phenylethyl)-1H-pyrrole-2-carboxamide 3I5Z ; 2.2 ; Crystal structure of ERK2 bound to (S)-N-(2-hydroxy-1-phenylethyl)-4-(5-methyl-2-(phenylamino)pyrimidin-4-yl)-1H-pyrrole-2-carboxamide 2FYS ; 2.5 ; Crystal structure of Erk2 complex with KIM peptide derived from MKP3 5AX3 ; 2.984 ; Crystal structure of ERK2 complexed with allosteric and ATP-competitive inhibitors. 6G54 ; 2.05 ; Crystal structure of ERK2 covalently bound to SM1-71 6D5Y ; 2.86 ; Crystal structure of ERK2 G169D mutant 4QP3 ; 2.599 ; Crystal Structure of ERK2 in complex with (S)-2-((9H-purin-6-yl)amino)-3-phenylpropan-1-ol 2OJJ ; 2.4 ; Crystal structure of ERK2 in complex with (S)-N-(1-(3-chloro-4-fluorophenyl)-2-hydroxyethyl)-4-(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide 4QP7 ; 2.249 ; Crystal Structure of ERK2 in complex with 2-(1H-pyrazol-4-yl)-5H-pyrrolo[2,3-b]pyrazine 4QP8 ; 2.446 ; Crystal Structure of ERK2 in complex with 2-(1H-pyrazol-4-yl)-7-(pyridin-3-yl)-5H-pyrrolo[2,3-b]pyrazine 4QP6 ; 3.1 ; Crystal Structure of ERK2 in complex with 5H-pyrrolo[2,3-b]pyrazine 4QPA ; 2.85 ; Crystal Structure of ERK2 in complex with 7-(1-benzyl-1H-pyrazol-4-yl)-2-(pyridin-4-yl)-5H-pyrrolo[2,3-b]pyrazine 4QP9 ; 2.001 ; Crystal Structure of ERK2 in complex with 7-(1-propyl-1H-pyrazol-4-yl)-2-(pyridin-4-yl)-5H-pyrrolo[2,3-b]pyrazine 6FI3 ; 1.52 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FI6 ; 1.65 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FJ0 ; 1.659 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FJB ; 1.85 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FJZ ; 1.864 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FLE ; 1.48 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FLV ; 1.91 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FMA ; 1.667 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FN5 ; 1.932 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FQ7 ; 1.6 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FR1 ; 1.561 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FRP ; 1.53 ; Crystal structure of ERK2 in complex with an adenosine derivative 6FXV ; 1.53 ; Crystal structure of ERK2 in complex with an adenosine derivative 3QYW ; 1.5 ; Crystal structure of ERK2 in complex with an inhibitor 3QYZ ; 1.46 ; Crystal structure of ERK2 in complex with an inhibitor 4XNE ; 1.8 ; Crystal structure of ERK2 in complex with an inhibitor 4XOY ; 2.1 ; Crystal structure of ERK2 in complex with an inhibitor 4XOZ ; 1.95 ; Crystal structure of ERK2 in complex with an inhibitor 4XP0 ; 1.46 ; Crystal structure of ERK2 in complex with an inhibitor 4XP2 ; 1.748 ; Crystal structure of ERK2 in complex with an inhibitor 4XP3 ; 1.782 ; Crystal structure of ERK2 in complex with an inhibitor 4XRJ ; 1.69 ; Crystal structure of ERK2 in complex with an inhibitor 4XJ0 ; 2.58 ; Crystal structure of ERK2 in complex with an inhibitor 14K 5K4I ; 1.76 ; Crystal Structure of ERK2 in complex with compound 22 2OJG ; 2.0 ; Crystal structure of ERK2 in complex with N,N-dimethyl-4-(4-phenyl-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide 2OJI ; 2.6 ; Crystal structure of ERK2 in complex with N-benzyl-4-(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide 4QP1 ; 2.7 ; Crystal structure of ERK2 in complex with N-cyclohexyl-9H-purin-6-amine 4QP4 ; 2.2 ; Crystal Structure of ERK2 in complex with N-cyclohexyl-9H-purin-6-amine 7W5O ; 2.35 ; Crystal structure of ERK2 with an allosteric inhibitor 7X4U ; 1.98 ; Crystal structure of ERK2 with an allosteric inhibitor 2 7XC1 ; 2.09 ; Crystal structure of ERK2 with an allosteric inhibitor 3 3O71 ; 1.95 ; Crystal structure of ERK2/DCC peptide complex 4QP2 ; 2.23 ; Crystal Structure of ERKs in complex with 5-chlorobenzo[d]oxazol-2-amine 2ERC ; 3.03 ; CRYSTAL STRUCTURE OF ERMC' A RRNA-METHYL TRANSFERASE 5V8Z ; 2.105 ; Crystal structure of ERp29 D-domain in complex with the P-domain of calmegin 5V90 ; 3.255 ; Crystal structure of ERp29 D-domain in complex with the P-domain of calreticulin 3WGD ; 2.5 ; Crystal structure of ERp46 Trx1 3WGE ; 0.95 ; Crystal structure of ERp46 Trx2 3WGX ; 0.92 ; Crystal structure of ERp46 Trx2 in a complex with Prx4 C-term 1JR8 ; 1.5 ; Crystal Structure of Erv2p 1JRA ; 2.0 ; Crystal Structure of Erv2p 3ZLC ; 1.999 ; Crystal Structure of Erv41p 7DUD ; 1.95 ; Crystal Structure of erWalK 1JSL ; 1.7 ; Crystal structure of Erwinia chrysanthemi L-asparaginase complexed with 6-HYDROXY-D-NORLEUCINE 1JSR ; 1.7 ; CRYSTAL STRUCTURE OF ERWINIA CHRYSANTHEMI L-ASPARAGINASE COMPLEXED WITH 6-HYDROXY-L-NORLEUCINE 8FIB ; 1.68 ; Crystal Structure of Erwinia tracheiphila CYP114 8FIC ; 1.7 ; Crystal Structure of Erwinia tracheiphila CYP114 in complex with ent-kaurenoic acid (Crystal Form 1) 8FID ; 1.83 ; Crystal Structure of Erwinia tracheiphila CYP114 in complex with ent-kaurenoic acid (Crystal Form 2) 8FIE ; 2.26 ; Crystal Structure of Erwinia tracheiphila CYP114 mutant - A261D 1FYU ; 2.6 ; Crystal structure of erythrina corallodendron lectin in hexagonal crystal form 1YI2 ; 2.65 ; Crystal Structure Of Erythromycin Bound To The G2099A Mutant 50S Ribosomal Subunit Of Haloarcula Marismortui 2D24 ; 1.85 ; Crystal structure of ES complex of catalytic-site mutant xylanase from Streptomyces olivaceoviridis E-86 8GUP ; 2.29872 ; Crystal structure of EsaG from Staphylococcus aureus 1IYD ; 2.15 ; CRYSTAL STRUCTURE OF ESCHELICHIA COLI BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE 1IYE ; 1.82 ; CRYSTAL STRUCTURE OF ESCHELICHIA COLI BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE 1I1K ; 2.1 ; CRYSTAL STRUCTURE OF ESCHELICHIA COLI BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE. 1I1L ; 2.4 ; CRYSTAL STRUCTURE OF ESCHELICHIA COLI BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE. 4PDX ; 1.75 ; Crystal structure of Escherchia coli uncharacterized protein YjcS 5YGU ; 2.298 ; Crystal structure of Escherichia coli (strain K12) mRNA Decapping Complex RppH-DapF 1NR9 ; 2.7 ; Crystal Structure of Escherichia coli 1262 (APC5008), Putative Isomerase 5HW4 ; 2.211 ; Crystal structure of Escherichia coli 16S rRNA methyltransferase RsmI in complex with AdoMet 4BLU ; 1.85 ; Crystal structure of Escherichia coli 23S rRNA (A2030-N6)- methyltransferase RlmJ 4BLW ; 1.95 ; Crystal structure of Escherichia coli 23S rRNA (A2030-N6)- methyltransferase RlmJ in complex with S-adenosylhomocysteine (AdoHcy) and Adenosine monophosphate (AMP) 4BLV ; 2.0 ; Crystal structure of Escherichia coli 23S rRNA (A2030-N6)- methyltransferase RlmJ in complex with S-adenosylmethionine (AdoMet) 4YML ; 1.75 ; Crystal structure of Escherichia coli 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (3S,4R)-methylthio-DADMe-Immucillin-A 4WKC ; 1.64 ; Crystal structure of Escherichia coli 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with butylthio-DADMe-Immucillin-A 7Y94 ; 1.5 ; Crystal structure of Escherichia coli Adenine Phosphoribosyltransferase (APRT) in complex with Adenine 8IZJ ; 1.6 ; Crystal structure of Escherichia coli Adenine Phosphoribosyltransferase (APRT) in complex with AMP 7XI2 ; 1.65 ; Crystal structure of Escherichia coli Adenine Phosphoribosyltransferase (APRT) in complex with phosphate 2PTR ; 1.85 ; Crystal structure of Escherichia coli adenylosuccinate lyase mutant H171A with bound adenylosuccinate substrate 2PTQ ; 2.0 ; Crystal structure of Escherichia coli adenylosuccinate lyase mutant H171N with bound AMP and fumarate 3B8U ; 3.0 ; Crystal structure of Escherichia coli alaine racemase mutant E221A 3B8V ; 2.6 ; Crystal structure of Escherichia coli alaine racemase mutant E221K 3B8W ; 2.7 ; Crystal structure of Escherichia coli alaine racemase mutant E221P 3B8T ; 3.0 ; Crystal structure of Escherichia coli alaine racemase mutant P219A 1M41 ; 2.3 ; Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD at 2.3 A resolution 3KHC ; 2.2 ; Crystal Structure of Escherichia coli AlkB in complex with ssDNA containing a 1-methylguanine lesion 3KHB ; 2.9 ; Crystal structure of Escherichia coli AlkB with Co(II) and 2-OG 6EZZ ; 1.8 ; Crystal structure of Escherichia coli amine oxidase mutant E573Q 6GRR ; 1.7 ; Crystal structure of Escherichia coli amine oxidase mutant I342F/E573Q 7U9H ; 2.0 ; Crystal Structure of Escherichia coli apo Pyridoxal 5'-phosphate homeostasis protein (YGGS) 1T4D ; 1.95 ; Crystal structure of Escherichia coli aspartate beta-semialdehyde dehydrogenase (EcASADH), at 1.95 Angstrom resolution 4U3G ; 2.0 ; Crystal structure of Escherichia coli bacterioferritin mutant D132F 3Q54 ; 2.004 ; Crystal structure of Escherichia coli BamB 3P1L ; 2.6 ; Crystal structure of Escherichia coli BamB, a lipoprotein component of the beta-barrel assembly machinery complex, native crystals. 3Q5M ; 2.604 ; Crystal structure of Escherichia coli BamD 1T75 ; 2.5 ; Crystal structure of Escherichia coli beta carbonic anhydrase 1I1M ; 2.4 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE. 4ZNZ ; 2.7 ; Crystal structure of Escherichia coli carbonic anhydrase (YadF) in complex with Zn - artifact of purification 3CHY ; 1.66 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI CHEY REFINED AT 1.7-ANGSTROM RESOLUTION 7MK5 ; 2.95 ; Crystal structure of Escherichia coli ClpP covalently inhibited by clipibicyclene 6NB1 ; 1.9 ; Crystal structure of Escherichia coli ClpP protease complexed with small molecule activator, ACP1-06 1EW4 ; 1.4 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI CYAY PROTEIN REVEALS A NOVEL FOLD FOR THE FRATAXIN FAMILY 6HEG ; 3.019 ; Crystal structure of Escherichia coli DEAH/RHA helicase HrpB 2YVA ; 1.85 ; Crystal structure of Escherichia coli DiaA 4U6N ; 1.91 ; Crystal structure of Escherichia coli DiaA 4D9K ; 2.19 ; Crystal structure of Escherichia coli Diaminopropionate ammonia lyase in apo form 6NVA ; 2.16 ; Crystal structure of Escherichia coli dihydrodipicolinate synthase and propionate covalently bound to K161. 7NAE ; 2.35 ; Crystal structure of Escherichia coli dihydrofolate reductase in complex with TRIMETHOPRIM 7MYM ; 3.04 ; Crystal structure of Escherichia coli dihydrofolate reductase in complex with TRIMETHOPRIM and NADPH 3U41 ; 2.5 ; Crystal structure of Escherichia coli DmsD in space group P212121 1Q8I ; 2.0 ; Crystal structure of ESCHERICHIA coli DNA Polymerase II 4XJ6 ; 2.31 ; Crystal structure of Escherichia coli DncV 3'-deoxy GTP bound form 6BQX ; 1.992 ; Crystal structure of Escherichia coli DsbA in complex with N-methyl-1-(4-phenoxyphenyl)methanamine 6BR4 ; 1.99 ; Crystal structure of Escherichia coli DsbA in complex with {N}-methyl-1-(3-thiophen-2-ylphenyl)methanamine 5Z6N ; 2.6 ; Crystal structure of Escherichia coli ElaA 2NQJ ; 2.45 ; Crystal structure of Escherichia coli endonuclease IV (Endo IV) E261Q mutant bound to damaged DNA 1QUM ; 1.55 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI ENDONUCLEASE IV IN COMPLEX WITH DAMAGED DNA 6D3Q ; 2.24 ; Crystal structure of Escherichia coli enolase complexed with a natural inhibitor SF2312. 3HWO ; 2.3 ; Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase EntC in complex with isochorismate 4XGV ; 1.883 ; Crystal structure of Escherichia coli Flavin trafficking protein, an FMN transferase 4XGW ; 1.747 ; Crystal structure of Escherichia coli Flavin trafficking protein, an FMN transferase, E169K mutant 4XGX ; 1.9 ; Crystal structure of Escherichia coli Flavin trafficking protein, an FMN transferase, Y60N mutant, ADP-inhibited 1PMM ; 2.0 ; Crystal structure of Escherichia coli GadB (low pH) 1PMO ; 2.3 ; Crystal structure of Escherichia coli GadB (neutral pH) 2DGL ; 3.15 ; Crystal structure of Escherichia coli GadB in complex with bromide 2DGM ; 1.95 ; Crystal structure of Escherichia coli GadB in complex with iodide 2Z8K ; 1.65 ; Crystal Structure of Escherichia coli gamma-Glutamyltranspeptidase in Complex with Acivicin 2Z8I ; 1.65 ; Crystal Structure of Escherichia coli Gamma-Glutamyltranspeptidase in Complex with Azaserine 2Z8J ; 2.05 ; Crystal Structure of Escherichia coli gamma-Glutamyltranspeptidase in Complex with Azaserine prepared in the dark 5B5T ; 1.7 ; Crystal Structure of Escherichia coli Gamma-Glutamyltranspeptidase in Complex with peptidyl phosphonate inhibitor 1b 1J2R ; 1.3 ; Crystal structure of Escherichia coli gene product Yecd at 1.3 A resolution 3A5Z ; 2.5 ; Crystal structure of Escherichia coli GenX in complex with elongation factor P 2JFN ; 1.9 ; Crystal structure of Escherichia coli glutamate racemase in complex with L- Glutamate and activator UDP-MurNAc-ala 4KX4 ; 1.6 ; Crystal structure of Escherichia coli glutaredoxin 2 complex with glutathione 4KSM ; 2.4 ; Crystal structure of Escherichia coli glutraredoxin 2 C9S/C12S mutant without glutathione 2R45 ; 2.3 ; Crystal structure of Escherichia coli Glycerol-3-phosphate Dehydrogenase in complex with 2-phospho-d-glyceric acid 2R46 ; 2.1 ; Crystal structure of Escherichia coli Glycerol-3-phosphate Dehydrogenase in complex with 2-phosphopyruvic acid. 2R4E ; 2.1 ; Crystal structure of Escherichia coli Glycerol-3-phosphate Dehydrogenase in complex with DHAP 6RZ0 ; 1.1 ; Crystal structure of Escherichia coli Glyoxalase II 6S0I ; 1.803 ; Crystal structure of Escherichia coli Glyoxalase II with L-Tartrate in the active site 8I01 ; 2.15 ; Crystal structure of Escherichia coli glyoxylate carboligase 8I05 ; 2.09 ; Crystal structure of Escherichia coli glyoxylate carboligase double mutant 8I07 ; 1.99 ; Crystal structure of Escherichia coli glyoxylate carboligase double mutant in complex with glycolaldehyde 8I08 ; 1.91 ; Crystal structure of Escherichia coli glyoxylate carboligase quadruple mutant 6PBZ ; 2.475 ; Crystal structure of Escherichia coli GppA 4ZCI ; 2.627 ; Crystal Structure of Escherichia coli GTPase BipA/TypA 4ZCL ; 3.06 ; Crystal Structure of Escherichia coli GTPase BipA/TypA Complexed with GDP 4ZCM ; 3.31 ; Crystal Structure of Escherichia coli GTPase BipA/TypA Complexed with ppGpp 1ONS ; 2.2 ; Crystal structure of Escherichia coli heat shock protein YedU 4JUV ; 2.19 ; Crystal Structure of Escherichia coli Hfq Distal Face 1 Mutant 4JRI ; 1.829 ; Crystal Structure of Escherichia coli Hfq Proximal Edge Mutant 4JLI ; 1.79 ; Crystal Structure of Escherichia coli Hfq Proximal Pore Mutant 4JRK ; 1.894 ; Crystal Structure of Escherichia coli Hfq Surface Mutant 3QO3 ; 2.15 ; Crystal structure of Escherichia coli Hfq, in complex with ATP 5XU7 ; 1.84 ; Crystal structure of Escherichia coli holo-[acyl-carrier-protein] synthase (AcpS) 5XUH ; 2.02 ; Crystal structure of Escherichia coli holo-[acyl-carrier-protein] synthase (AcpS) D9A mutant in complex with CoA 6AN4 ; 1.47 ; Crystal structure of Escherichia coli HPPK in complex with bisubstrate analogue inhibitor HP-39 (J1F) 6AN6 ; 2.3 ; Crystal structure of Escherichia coli HPPK in complex with bisubstrate analogue inhibitor HP-72 7KDO ; 1.6 ; Crystal structure of Escherichia coli HPPK in complex with bisubstrate inhibitor HP-73 7KDR ; 1.488 ; Crystal structure of Escherichia coli HPPK in complex with bisubstrate inhibitor HP-75 1YBQ ; 2.0 ; Crystal structure of Escherichia coli isoaspartyl dipeptidase mutant D285N complexed with beta-aspartylhistidine 2OFP ; 2.3 ; Crystal structure of Escherichia coli ketopantoate reductase in a ternary complex with NADP+ and pantoate 4F2D ; 2.3 ; Crystal Structure of Escherichia coli L-arabinose Isomerase (ECAI) complexed with Ribitol 3ECA ; 2.4 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI L-ASPARAGINASE, AN ENZYME USED IN CANCER THERAPY (ELSPAR) 5AZC ; 1.902 ; Crystal structure of Escherichia coli Lgt in complex with phosphatidylglycerol 5AZB ; 1.6 ; Crystal structure of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid 7OKC ; 1.84 ; Crystal structure of Escherichia coli LpxA in complex with compound 1 3CRA ; 2.1 ; Crystal Structure of Escherichia coli MazG, the Regulator of Nutritional Stress Response 3CRC ; 3.0 ; Crystal Structure of Escherichia coli MazG, the Regulator of Nutritional Stress Response 3T88 ; 1.998 ; Crystal structure of Escherichia coli MenB in complex with substrate analogue, OSB-NCoA 3T89 ; 1.949 ; Crystal structure of Escherichia coli MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase in vitamin K2 biosynthesis 3FSU ; 1.7 ; Crystal Structure of Escherichia coli Methylenetetrahydrofolate Reductase Double Mutant Phe223LeuGlu28Gln complexed with methyltetrahydrofolate 3FST ; 1.65 ; Crystal Structure of Escherichia coli Methylenetetrahydrofolate Reductase Mutant Phe223Leu at pH 7.4 1NP6 ; 1.9 ; Crystal structure of Escherichia coli MobB 1P9N ; 2.8 ; Crystal structure of Escherichia coli MobB. 1G8L ; 1.95 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI MOEA 4HWA ; 4.37 ; Crystal Structure of Escherichia coli MscS Wildtype (Open State) 6SYM ; 1.6302 ; Crystal structure of Escherichia coli MsrB (reduced form) 2WTU ; 3.4 ; Crystal structure of Escherichia coli MutS in complex with a 16 basepair oligo containing an A.A mismatch. 3X22 ; 2.001 ; Crystal structure of Escherichia coli nitroreductase NfsB mutant N71S/F123A/F124W 3X21 ; 3.002 ; Crystal structure of Escherichia coli nitroreductase NfsB mutant T41L/N71S/F124W 3TOR ; 2.0 ; Crystal structure of Escherichia coli NrfA with Europium bound 1TXK ; 2.5 ; Crystal structure of Escherichia coli OpgG 6TAJ ; 1.6 ; Crystal structure of Escherichia coli Orotate Phosphoribosyltransferase in complex with Orotic acid 1.60 Angstrom resolution 6TAK ; 1.25 ; Crystal structure of Escherichia coli Orotate Phosphoribosyltransferase in complex with Orotic acid and Sulfate at 1.25 Angstrom resolution 6TAI ; 1.551 ; Crystal structure of Escherichia coli Orotate Phosphoribosyltransferase with an empty active site at 1.55 Angstrom resolution 1NT4 ; 2.4 ; Crystal structure of Escherichia coli periplasmic glucose-1-phosphatase H18A mutant complexed with glucose-1-phosphate 6RMR ; 2.50005 ; Crystal structure of Escherichia coli periplasmic glucose-1-phosphatase H18D mutant 3QK6 ; 2.4 ; Crystal structure of Escherichia coli PhnD 3P7I ; 1.71 ; Crystal structure of Escherichia coli PhnD in complex with 2-aminoethyl phosphonate 6L06 ; 2.6 ; Crystal structure of Escherichia coli phosphatidylserine decarboxylase (apo-form) 6L07 ; 3.6 ; Crystal structure of Escherichia coli phosphatidylserine decarboxylase (PE-bound form) 2OLR ; 1.6 ; Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase complexed with carbon dioxide, Mg2+, ATP 2I2W ; 1.95 ; Crystal Structure of Escherichia Coli Phosphoheptose Isomerase 2I22 ; 2.8 ; Crystal structure of Escherichia coli phosphoheptose isomerase in complex with reaction substrate sedoheptulose 7-phosphate 1DKL ; 2.3 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI PHYTASE AT PH 4.5 (NO LIGAND BOUND) 1DKN ; 2.4 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI PHYTASE AT PH 5.0 WITH HG2+ CATION ACTING AS AN INTERMOLECULAR BRIDGE 1DKM ; 2.25 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI PHYTASE AT PH 6.6 WITH HG2+ CATION ACTING AS AN INTERMOLECULAR BRIDGE 4G9S ; 0.95 ; Crystal structure of Escherichia coli PliG in complex with Atlantic salmon g-type lysozyme 4DY3 ; 1.8 ; crystal structure of Escherichia coli PliG, a periplasmic lysozyme inhibitor of g-type lysozyme 1XDO ; 3.0 ; Crystal Structure of Escherichia coli Polyphosphate Kinase 7EYJ ; 1.38 ; Crystal structure of Escherichia coli ppnP 7EYK ; 1.38 ; Crystal structure of Escherichia coli ppnP-Selenomethionine derived 4TNN ; 1.951 ; Crystal structure of Escherichia coli protein YodA in complex with Ni - artifact of purification. 2AA4 ; 2.2 ; Crystal structure of Escherichia coli putative N-ACETYLMANNOSAMINE KINASE, New York Structural Genomics Consortium 6K0K ; 2.68 ; Crystal structure of Escherichia coli pyruvate kinase II 1QOR ; 2.2 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI QUINONE OXIDOREDUCTASE COMPLEXED WITH NADPH 4NUB ; 2.7 ; Crystal structure of Escherichia coli ribosomal oxygenase YcfD 5NWT ; 3.76 ; Crystal Structure of Escherichia coli RNA polymerase - Sigma54 Holoenzyme complex 4MEY ; 3.948 ; Crystal structure of Escherichia coli RNA polymerase holoenzyme 4ZH2 ; 4.204 ; Crystal structure of Escherichia coli RNA polymerase in complex with CBR703 4ZH3 ; 4.082 ; Crystal structure of Escherichia coli RNA polymerase in complex with CBRH16-Br 4ZH4 ; 3.993 ; Crystal structure of Escherichia coli RNA polymerase in complex with CBRP18 4MEX ; 3.902 ; Crystal structure of Escherichia coli RNA polymerase in complex with salinamide A 1YT3 ; 1.6 ; Crystal Structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing 1RDD ; 2.8 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI RNASE HI IN COMPLEX WITH MG2+ AT 2.8 ANGSTROMS RESOLUTION: PROOF FOR A SINGLE MG2+ SITE 2IS3 ; 3.1 ; Crystal Structure of Escherichia coli RNase T 4LFU ; 2.26 ; Crystal structure of Escherichia coli SdiA in the space group C2 4LGW ; 2.7 ; Crystal structure of Escherichia coli SdiA in the space group P6522 2R4J ; 1.96 ; Crystal structure of Escherichia coli SeMet substituted Glycerol-3-phosphate Dehydrogenase in complex with DHAP 2H27 ; 2.3 ; Crystal Structure of Escherichia coli SigmaE Region 4 Bound to its-35 Element DNA 1OR7 ; 2.0 ; Crystal Structure of Escherichia coli sigmaE with the Cytoplasmic Domain of its Anti-sigma RseA 3BF0 ; 2.55 ; Crystal structure of Escherichia coli Signal peptide peptidase (SppA), Native crystals 3BEZ ; 2.76 ; Crystal structure of Escherichia coli Signal peptide peptidase (SppA), SeMet crystals 2D2A ; 2.7 ; Crystal Structure of Escherichia coli SufA Involved in Biosynthesis of Iron-sulfur Clusters 2D3W ; 2.5 ; Crystal Structure of Escherichia coli SufC, an ATPase compenent of the SUF iron-sulfur cluster assembly machinery 1BTL ; 1.8 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TEM1 BETA-LACTAMASE AT 1.8 ANGSTROMS RESOLUTION 1QXH ; 2.2 ; Crystal Structure of Escherichia coli Thiol Peroxidase in the Oxidized State 1TDE ; 2.1 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI THIOREDOXIN REDUCTASE REFINED AT 2 ANGSTROM RESOLUTION: IMPLICATIONS FOR A LARGE CONFORMATIONAL CHANGE DURING CATALYSIS 1TDF ; 2.3 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI THIOREDOXIN REDUCTASE REFINED AT 2 ANGSTROM RESOLUTION: IMPLICATIONS FOR A LARGE CONFORMATIONAL CHANGE DURING CATALYSIS 1F4B ; 1.75 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI THYMIDYLATE SYNTHASE 1JG0 ; 2.0 ; Crystal structure of Escherichia coli thymidylate synthase complexed with 2'-deoxyuridine-5'-monophosphate and N,O-didansyl-L-tyrosine 1S14 ; 2.0 ; Crystal structure of Escherichia coli Topoisomerase IV ParE 24kDa subunit 5HY3 ; 3.1 ; Crystal structure of Escherichia coli toxin LsoA in complex with T4 phage antitoxin Dmd 1I2P ; 2.05 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TRANSALDOLASE B MUTANT D17A 1I2O ; 2.05 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TRANSALDOLASE B MUTANT E96A 1I2N ; 2.05 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TRANSALDOLASE B MUTANT N35A 1I2R ; 2.1 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TRANSALDOLASE B MUTANT S176A 1I2Q ; 2.05 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI TRANSALDOLASE B MUTANT T156A 2EYQ ; 3.2 ; Crystal structure of Escherichia coli transcription-repair coupling factor 4W1Y ; 3.2 ; Crystal structure of Escherichia coli Tryptophanase in 'semi-holo' form 4UP2 ; 2.78 ; Crystal structure of Escherichia coli tryptophanase purified from alkaline stressed bacterial culture. 1T7D ; 2.47 ; Crystal structure of Escherichia coli type I signal peptidase in complex with a lipopeptide inhibitor 3S04 ; 2.44 ; Crystal structure of Escherichia coli type I signal peptidase in complex with an Arylomycin Lipoglycopeptide Antibiotic 1LRK ; 1.75 ; Crystal Structure of Escherichia coli UDP-Galactose 4-Epimerase Mutant Y299C Complexed with UDP-N-acetylglucosamine 1GG4 ; 2.3 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI UDPMURNAC-TRIPEPTIDE D-ALANYL-D-ALANINE-ADDING ENZYME (MURF) AT 2.3 ANGSTROM RESOLUTION 6CB2 ; 2.0 ; Crystal structure of Escherichia coli UppP 1EUG ; 1.6 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI URACIL DNA GLYCOSYLASE AND ITS COMPLEXES WITH URACIL AND GLYCEROL: STRUCTURE AND GLYCOSYLASE MECHANISM REVISITED 2EUG ; 1.5 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI URACIL DNA GLYCOSYLASE AND ITS COMPLEXES WITH URACIL AND GLYCEROL: STRUCTURE AND GLYCOSYLASE MECHANISM REVISITED 3EUG ; 1.43 ; CRYSTAL STRUCTURE OF ESCHERICHIA COLI URACIL DNA GLYCOSYLASE AND ITS COMPLEXES WITH URACIL AND GLYCEROL: STRUCTURE AND GLYCOSYLASE MECHANISM REVISITED 3GRH ; 1.7 ; Crystal structure of escherichia coli ybhc 3CA8 ; 1.8 ; Crystal structure of Escherichia coli YdcF, an S-adenosyl-L-methionine utilizing enzyme 4XXJ ; 1.9 ; Crystal Structure of Escherichia coli-Expressed Halobacterium salinarum Bacteriorhodopsin in the Trimeric Form 3B5W ; 5.3 ; Crystal Structure of Eschericia coli MsbA 8URN ; 2.01 ; Crystal structure of EscI(51-87)-linker-EtgA(18-152) fusion protein 3BZS ; 1.48 ; Crystal structure of EscU C-terminal domain with N262D mutation, Space group P 21 21 21 3BZR ; 1.646 ; Crystal structure of EscU C-terminal domain with N262D mutation, Space group P 41 21 2 4WJ1 ; 2.415 ; Crystal structure of EspB from the ESX-1 type VII secretion system 4W4J ; 2.803 ; Crystal structure of EspG3 from the ESX-3 type VII secretion system of M. smegmatis 4W4I ; 2.85 ; Crystal structure of EspG3 from the ESX-3 type VII secretion system of M. tuberculosis 4W4L ; 2.45 ; Crystal structure of EspG5 in complex with PE25 and PPE41 from the ESX-5 type VII secretion system of M. tuberculosis 3QF3 ; 2.41 ; Crystal structure of EspR transcription factor from mycobacterium tuberculosis 3QWG ; 1.992 ; Crystal structure of EspRdelta10, C-terminal 10 amino acids deletion mutant of EspR transcription factor from Mycobacterium tuberculosis 4P85 ; 2.0 ; Crystal structure of Est-Y29, a novel penicillin-binding protein/beta-lactamase homolog from a metagenomic library 4P87 ; 1.999 ; Crystal structure of Est-Y29, a novel penicillin-binding protein/beta-lactamase homolog from a metagenomic library 4P6B ; 1.7 ; Crystal structure of Est-Y29,a novel penicillin-binding protein/beta-lactamase homolog from a metagenomic library 5Y5A ; 2.206 ; Crystal structure of Est1 and Cdc13 4J7A ; 1.492 ; Crystal Structure of Est25 - a Bacterial Homolog of Hormone-Sensitive Lipase from a Metagenomic Library 8ILT ; 2.42 ; Crystal structure of Est30 3L1I ; 2.2 ; Crystal structure of EstE5, was soaked by CuSO4 3H1A ; 2.5 ; Crystal structure of EstE5, was soaked by ethyl alcohol 3L1H ; 2.4 ; Crystal structure of EstE5, was soaked by FeCl3 3H1B ; 2.1 ; Crystal structure of EstE5, was soaked by isopropyl alcohol 3H19 ; 2.3 ; Crystal structure of EstE5, was soaked by methyl alcohol 3G9U ; 2.2 ; Crystal structure of EstE5, was soaked by p-nitrophenyl butyrate for 5min 3G9T ; 1.96 ; Crystal structure of EstE5, was soaked by p-nitrophenyl butyrate for 5sec 3G9Z ; 2.2 ; Crystal structure of EstE5, was soaked by p-nitrophenyl caprylate 3L1J ; 2.0 ; Crystal structure of EstE5, was soaked by ZnSO4 3H17 ; 2.5 ; Crystal structure of EstE5-PMSF (I) 3H18 ; 2.4 ; Crystal structure of EstE5-PMSF (II) 4ROT ; 1.8 ; Crystal structure of esterase A from Streptococcus pyogenes 4N5H ; 1.71 ; Crystal structure of ESTERASE B from Lactobacillus Rhamnosis (HN001) 5JKF ; 2.393 ; Crystal structure of esterase E22 5JKJ ; 1.55 ; Crystal structure of esterase E22 L374D mutant 3QH4 ; 1.75 ; Crystal structure of esterase LipW from Mycobacterium marinum 5IQ0 ; 1.799 ; Crystal structure of Esterase mutant - F72G 5IQ3 ; 1.75 ; Crystal structure of Esterase mutant - F72G/L255W 5IQ2 ; 1.78 ; Crystal structure of Esterase mutant - L255W 5DWD ; 1.66 ; Crystal structure of esterase PE8 4OU4 ; 2.4 ; Crystal structure of esterase rPPE mutant S159A complexed with (S)-Ac-CPA 4OU5 ; 1.99 ; Crystal structure of esterase rPPE mutant S159A/W187H 4OB7 ; 1.65 ; Crystal structure of esterase rPPE mutant W187H 3V9A ; 2.07 ; Crystal structure of Esterase/Lipase from uncultured bacterium 3WJ2 ; 1.61 ; Crystal structure of ESTFA (FE-lacking apo form) 7U1B ; 2.62 ; Crystal structure of EstG in complex with tantalum cluster 2YAT ; 2.602 ; Crystal structure of estradiol derived metal chelate and estrogen receptor-ligand binding domain complex 2Q6J ; 2.7 ; Crystal Structure of Estrogen Receptor alpha Complexed to a B-N Substituted Ligand 1X7R ; 2.0 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR ALPHA COMPLEXED WITH GENISTEIN 1X7E ; 2.8 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR ALPHA COMPLEXED WITH WAY-244 5GS4 ; 2.4 ; Crystal structure of estrogen receptor alpha in complex with a stabilized peptide antagonist 6DFN ; 2.1 ; Crystal structure of estrogen receptor alpha in complex with receptor degrader 16aa 6DF6 ; 2.5 ; Crystal structure of estrogen receptor alpha in complex with receptor degrader 16ab 6WOK ; 2.309 ; Crystal structure of estrogen receptor alpha in complex with receptor degrader 6 2QAB ; 1.89 ; Crystal Structure of Estrogen Receptor Alpha Ligand Binding Domain Mutant 537S Complexed with an Ethyl Indazole Compound 2QA6 ; 2.6 ; Crystal Structure of Estrogen Receptor Alpha mutant 537S Complexed with 4-(6-hydroxy-1H-indazol-3-yl)benzene-1,3-diol 2OUZ ; 2.0 ; Crystal Structure of Estrogen Receptor alpha-lasofoxifene complex 1YY4 ; 2.7 ; Crystal structure of estrogen receptor beta complexed with 1-chloro-6-(4-hydroxy-phenyl)-naphthalen-2-ol 1ZAF ; 2.2 ; Crystal structure of estrogen receptor beta complexed with 3-Bromo-6-hydroxy-2-(4-hydroxy-phenyl)-inden-1-one 1U3Q ; 2.4 ; Crystal Structure of Estrogen Receptor beta complexed with CL-272 1X7B ; 2.3 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR BETA COMPLEXED WITH ERB-041 1X7J ; 2.3 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR BETA COMPLEXED WITH GENISTEIN 1YYE ; 2.03 ; Crystal structure of estrogen receptor beta complexed with way-202196 1X78 ; 2.3 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR BETA COMPLEXED WITH WAY-244 1U3R ; 2.21 ; Crystal Structure of Estrogen Receptor beta complexed with WAY-338 1U9E ; 2.4 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR BETA COMPLEXED WITH WAY-397 2NV7 ; 2.1 ; Crystal Structure of Estrogen Receptor Beta Complexed with WAY-555 1X76 ; 2.2 ; CRYSTAL STRUCTURE OF ESTROGEN RECEPTOR BETA COMPLEXED WITH WAY-697 1U3S ; 2.5 ; Crystal Structure of Estrogen Receptor beta complexed with WAY-797 3OLS ; 2.2 ; Crystal structure of estrogen receptor beta ligand binding domain 2P7A ; 2.3 ; Crystal Structure of Estrogen Related Receptor g in complex with 3-methyl phenol 5YSO ; 2.501 ; Crystal structure of Estrogen Related Receptor-3 (ERR-gamma) ligand binding domain with DN200434 2EWP ; 2.3 ; Crystal structure of Estrogen Related Receptor-3 (ERR-gamma) ligand binding domaind with tamoxifen analog GSK5182 8IFO ; 2.2 ; Crystal structure of estrogen related receptor-gamma DNA binding domain complexed with Pla2g12b promoter 6KNR ; 2.804 ; Crystal structure of Estrogen-related receptor gamma ligand-binding domain with DN200699 6A6K ; 2.9 ; Crystal structure of Estrogen-related Receptor-3 (ERR-gamma) ligand binding domain with DN201000 3A8J ; 1.98 ; Crystal Structure of ET-EHred complex 3A8I ; 1.99 ; Crystal Structure of ET-EHred-5-CH3-THF complex 3A8K ; 1.95 ; Crystal Structure of ETD97N-EHred complex 3GHA ; 1.4 ; Crystal Structure of ETDA-treated BdbD (Reduced) 3ABS ; 2.25 ; Crystal structure of ethanolamine ammonia-lyase from Escherichia coli complexed with adeninylpentylcobalamin and ethanolamine 3ABR ; 2.1 ; Crystal structure of ethanolamine ammonia-lyase from Escherichia coli complexed with CN-Cbl (substrate-free form) 3ANY ; 2.1 ; Crystal structure of ethanolamine ammonia-lyase from escherichia coli complexed with CN-CBL and (R)-2-amino-1-propanol 3AO0 ; 2.25 ; Crystal structure of ethanolamine ammonia-lyase from Escherichia coli complexed with CN-CBL and (S)-2-amino-1-propanol 3ABQ ; 2.05 ; Crystal structure of ethanolamine ammonia-lyase from Escherichia coli complexed with CN-Cbl and 2-amino-1-propanol 3ABO ; 2.1 ; Crystal structure of ethanolamine ammonia-lyase from Escherichia coli complexed with CN-Cbl and ethanolamine 2QEZ ; 2.15 ; Crystal structure of ethanolamine ammonia-lyase heavy chain (YP_013784.1) from Listeria monocytogenes 4b F2365 at 2.15 A resolution 3H1Q ; 2.8 ; Crystal structure of ethanolamine utilization protein EutJ from Carboxydothermus hydrogenoformans 3U27 ; 1.852 ; Crystal structure of ethanolamine utilization protein EutL from Leptotrichia buccalis C-1013-b 4YSB ; 2.5015 ; Crystal structure of ETHE1 from Myxococcus xanthus 4GBG ; 2.9 ; Crystal structure of Ethyl acetoacetate treated lipase from Thermomyces lanuginosa at 2.9 A resolution 6H19 ; 1.89 ; Crystal structure of ethyl-paraoxon inhibited recombinant human bile salt activated lipase (aged form) 8CPK ; 1.76 ; Crystal structure of EtpA secretion domain from Enterotoxigenic Escherichia coli 3WTZ ; 2.61 ; Crystal structure of ETS-1 DNA binding and autoinhibitory domains (276-441) 4FIN ; 2.4 ; Crystal Structure of EttA (formerly YjjK) - an E. coli ABC-type ATPase 3IO0 ; 3.0 ; Crystal structure of EtuB from Clostridium kluyveri 4MHG ; 2.199 ; Crystal structure of ETV6 bound to a specific DNA sequence 5FXF ; 1.9 ; Crystal structure of eugenol oxidase in complex with benzoate 5FXE ; 1.9 ; Crystal structure of eugenol oxidase in complex with coniferyl alcohol 5FXD ; 1.7 ; Crystal structure of eugenol oxidase in complex with isoeugenol 5FXP ; 2.6 ; Crystal structure of eugenol oxidase in complex with vanillin 6DI6 ; 1.39 ; Crystal structure of eukaryotic DNA primase large subunit iron-sulfur cluster domain 6DTV ; 1.12 ; Crystal structure of eukaryotic DNA primase large subunit iron-sulfur cluster domain Y395F mutant 6DU0 ; 1.82 ; Crystal structure of eukaryotic DNA primase large subunit iron-sulfur cluster domain Y395L mutant 6DI2 ; 1.32 ; Crystal structure of eukaryotic DNA primase large subunit iron-sulfur cluster domain Y397L mutant 6DTZ ; 1.36 ; Crystal structure of eukaryotic DNA primase large subunit iron-sulfur cluster domain, Y397F mutant 6ZDT ; 1.71 ; Crystal structure of eukaryotic Fibrillarin with Nop56 N-terminal domain 4HNZ ; 2.393 ; Crystal structure of eukaryotic HslV from Trypanosoma brucei 4HO7 ; 2.601 ; Crystal structure of eukaryotic HslV from Trypanosoma brucei 5TKE ; 2.481 ; Crystal Structure of Eukaryotic Hydrolase 1IPB ; 2.0 ; CRYSTAL STRUCTURE OF EUKARYOTIC INITIATION FACTOR 4E COMPLEXED WITH 7-METHYL GPPPA 1IPC ; 2.0 ; CRYSTAL STRUCTURE OF EUKARYOTIC INITIATION FACTOR 4E COMPLEXED WITH 7-METHYL GTP 2WMC ; 2.2 ; Crystal structure of eukaryotic initiation factor 4E from Pisum sativum 5Y50 ; 2.6 ; Crystal structure of eukaryotic MATE transporter AtDTX14 4YKE ; 2.783 ; Crystal structure of eukaryotic Mre11 catalytic domain from Chaetomium thermophilum 6R45 ; 1.784 ; Crystal structure of eukaryotic O-GlcNAcase HAT-like domain 5CJH ; 1.6 ; Crystal Structure of Eukaryotic Oxoiron MagKatG2 at pH 8.5 4N7Q ; 1.6 ; Crystal structure of eukaryotic THIC from A. thaliana 3HKS ; 2.3 ; Crystal structure of eukaryotic translation initiation factor eIF-5A2 from Arabidopsis thaliana 4NCF ; 3.015 ; Crystal structure of eukaryotic translation initiation factor eIF5B (399-852) from Saccharomyces cerevisiae in complex with GDP 4N3S ; 1.832 ; Crystal structure of eukaryotic translation initiation factor eIF5B (399-852) from Saccharomyces cerevisiae, apo form 4N3N ; 2.752 ; Crystal structure of eukaryotic translation initiation factor eIF5B (517-1116) from Chaetomium thermophilum, apo form 4NCN ; 1.87 ; Crystal structure of eukaryotic translation initiation factor eIF5B (517-858) from Chaetomium thermophilum in complex with GTP 4NCL ; 2.115 ; Crystal structure of eukaryotic translation initiation factor eIF5B (517-970) from Chaetomium thermophilum in complex with GDP 4N3G ; 3.203 ; Crystal structure of eukaryotic translation initiation factor eIF5B (870-1116) from Chaetomium thermophilum, domains III and IV 4QIW ; 3.5 ; Crystal structure of euryarchaeal RNA polymerase from Thermococcus kodakarensis 4TM6 ; 1.9002 ; Crystal Structure of EutL from Clostridium Perfringens at 298K 4TME ; 1.7 ; Crystal Structure of EutL from Clostridium Perfringens bound to ethanolamine 3GFH ; 2.2 ; Crystal structure of EUTL shell protein of the bacterial ethanolamine micrompartment 6WW6 ; 3.8 ; Crystal structure of EutV bound to RNA 6WSH ; 2.12 ; Crystal structure of EutV from Enterococcus faecalis 7MG0 ; 3.5 ; Crystal structure of EV-D68 2A protease 7JRE ; 2.5 ; Crystal structure of EV-D68 2A protease C107A mutant 7LW2 ; 2.57 ; Crystal structure of EV-D68 2A protease N84T mutant 5XE0 ; 2.3 ; Crystal structure of EV-D68-3Dpol in complex with GTP 4FVB ; 1.9 ; Crystal structure of EV71 2A proteinase C110A mutant 4FVD ; 1.66 ; Crystal structure of EV71 2A proteinase C110A mutant in complex with substrate 5GSW ; 3.19 ; Crystal structure of EV71 3C in complex with N69S 1.8k 4GHQ ; 2.2 ; Crystal structure of EV71 3C proteinase 7DNC ; 1.17 ; Crystal structure of EV71 3C proteinase in complex with a novel inhibitor 4GHT ; 1.96 ; Crystal structure of EV71 3C proteinase in complex with AG7088 5C1Y ; 1.97 ; Crystal structure of EV71 3C Proteinase in complex with Compound 1 5C20 ; 2.75 ; Crystal structure of EV71 3C Proteinase in complex with Compound 2 5DP3 ; 2.05 ; Crystal Structure of EV71 3C Proteinase in complex with compound 2 5DP4 ; 2.21 ; Crystal Structure of EV71 3C Proteinase in complex with compound 3 5DP5 ; 2.03 ; Crystal Structure of EV71 3C Proteinase in complex with compound 4 5DP7 ; 2.08 ; Crystal Structure of EV71 3C Proteinase in complex with compound 5 5DPA ; 2.06 ; Crystal Structure of EV71 3C Proteinase in complex with compound 6 5DP6 ; 3.01 ; Crystal Structure of EV71 3C Proteinase in complex with compound 7 5DP8 ; 2.4 ; Crystal Structure of EV71 3C Proteinase in complex with compound 8 5DP9 ; 1.9 ; Crystal Structure of EV71 3C Proteinase in complex with compound 9 5C1X ; 1.86 ; Crystal structure of EV71 3C Proteinase in complex with Compound VIII 5C1U ; 1.49 ; Crystal structure of EV71 3C Proteinase in complex with Compound Xb 5BPE ; 2.7 ; Crystal structure of EV71 3Cpro in complex with a potent and selective Inhibitor 4IKA ; 2.7 ; Crystal structure of EV71 3Dpol-VPg 3N6N ; 2.9 ; crystal structure of EV71 RdRp in complex with Br-UTP 3N6M ; 2.5 ; Crystal structure of EV71 RdRp in complex with GTP 6LKA ; 2.033 ; Crystal Structure of EV71-3C protease with a Novel Macrocyclic Compounds 4J7H ; 1.69 ; Crystal structure of EvaA, a 2,3-dehydratase in complex with dTDP-benzene and dTDP-rhamnose 4J7G ; 1.7 ; Crystal structure of EvaA, a 2,3-dehydratase in complex with dTDP-fucose and dTDP-rhamnose 3FPR ; 1.63 ; Crystal Structure of Evasin-1 6EC3 ; 3.35 ; Crystal Structure of EvdMO1 4XBZ ; 2.3 ; Crystal Structure of EvdO1 from Micromonospora carbonacea var. aurantiaca 4XAB ; 1.75 ; Crystal Structure of EvdO2 from Micromonospora carbonacea var. aurantiaca 4XAC ; 1.87 ; Crystal Structure of EvdO2 from Micromonospora carbonacea var. aurantiaca complexed with 2-oxoglutarate 8SK0 ; 1.51 ; Crystal structure of EvdS6 decarboxylase in ligand bound state 8SHH ; 1.93 ; Crystal structure of EvdS6 decarboxylase in ligand free state 7ZP6 ; 1.9 ; Crystal structure of evolved photoenzyme EnT1.3 7ZP7 ; 1.7 ; Crystal structure of evolved photoenzyme EnT1.3 (truncated) with bound product 5VAO ; 2.56 ; Crystal structure of eVP30 C-terminus and eNP peptide 5VAP ; 1.85 ; Crystal structure of eVP30 C-terminus and eNP peptide 6K17 ; 1.602 ; Crystal structure of EXD2 exonuclease domain 6K19 ; 2.202 ; Crystal structure of EXD2 exonuclease domain soaked in Mg 6K1C ; 2.45 ; Crystal structure of EXD2 exonuclease domain soaked in Mg and dGMP 6K1E ; 2.9 ; Crystal structure of EXD2 exonuclease domain soaked in Mg and GMP 6K18 ; 2.303 ; Crystal structure of EXD2 exonuclease domain soaked in Mn 6K1B ; 2.605 ; Crystal structure of EXD2 exonuclease domain soaked in Mn and dGMP 6K1D ; 3.0 ; Crystal structure of EXD2 exonuclease domain soaked in Mn and GMP 6K1A ; 2.602 ; Crystal structure of EXD2 exonuclease domain soaked in Mn and Mg 1DUA ; 2.0 ; CRYSTAL STRUCTURE OF EXFOLIATIVE TOXIN A 1DUE ; 2.0 ; CRYSTAL STRUCTURE OF EXFOLIATIVE TOXIN A S195A MUTANT 1DT2 ; 2.8 ; CRYSTAL STRUCTURE OF EXFOLIATIVE TOXIN B 1QTF ; 2.4 ; CRYSTAL STRUCTURE OF EXFOLIATIVE TOXIN B 4HYJ ; 2.3 ; Crystal structure of Exiguobacterium sibiricum rhodopsin 1H4P ; 1.75 ; Crystal structure of exo-1,3-beta glucanse from Saccharomyces cerevisiae 3UT0 ; 2.3 ; Crystal structure of exo-1,3/1,4-beta-glucanase (EXOP) from Pseudoalteromonas sp. BB1 4KCB ; 2.9 ; Crystal Structure of Exo-1,5-alpha-L-arabinanase from Bovine Ruminal Metagenomic Library 3AKF ; 2.2 ; Crystal structure of exo-1,5-alpha-L-arabinofuranosidase 3AKG ; 1.8 ; Crystal structure of exo-1,5-alpha-L-arabinofuranosidase complexed with alpha-1,5-L-arabinofuranobiose 3AKH ; 1.7 ; Crystal structure of exo-1,5-alpha-L-arabinofuranosidase complexed with alpha-1,5-L-arabinofuranotriose 3AKI ; 2.0 ; Crystal structure of exo-1,5-alpha-L-arabinofuranosidase complexed with alpha-L-arabinofuranosyl azido 7BYS ; 1.4 ; Crystal structure of exo-beta-1,3-galactanase from Phanerochaete chrysosporium Pc1,3Gal43A apo form 7BYX ; 2.3 ; Crystal structure of exo-beta-1,3-galactanase from Phanerochaete chrysosporium Pc1,3Gal43A E208A with beta-1,3-galactotriose 7BYV ; 2.5 ; Crystal structure of exo-beta-1,3-galactanase from Phanerochaete chrysosporium Pc1,3Gal43A E208Q with beta-1,3-galactotriose 7BYT ; 1.5 ; Crystal structure of exo-beta-1,3-galactanase from Phanerochaete chrysosporium Pc1,3Gal43A with galactose 6GDT ; 3.17 ; Crystal structure of exo-glucosidase/glucosaminidase VC0615 from Vibrio Cholerae 1Y9G ; 1.87 ; Crystal structure of exo-inulinase from Aspergillus awamori complexed with fructose 1Y4W ; 1.55 ; Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P21 1Y9M ; 1.89 ; Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P212121 1KFQ ; 2.4 ; Crystal Structure of Exocytosis-Sensitive Phosphoprotein, pp63/parafusin (Phosphoglucomutse) from Paramecium. OPEN FORM 1VP7 ; 2.4 ; Crystal structure of Exodeoxyribonuclease VII small subunit (NP_881400.1) from Bordetella pertussis at 2.40 A resolution 7SPT ; 2.1 ; Crystal structure of exofacial state human glucose transporter GLUT3 6LJA ; 1.978 ; Crystal Structure of exoHep from Bacteroides intestinalis DSM 17393 complexed with disaccharide product 6LJL ; 1.73 ; Crystal Structure of exoHep-Y390A/H555A complexed with a tetrasaccharide substrate 5EWT ; 1.8 ; Crystal structure of ExoIII endonuclease from Sulfolobus islandicus 7R0T ; 2.194 ; Crystal structure of exonuclease ExnV1 3HL8 ; 1.55 ; Crystal structure of exonuclease I in complex with inhibitor BCBP 1IR6 ; 2.9 ; Crystal structure of exonuclease RecJ bound to manganese 2FLO ; 2.2 ; Crystal structure of exopolyphosphatase (PPX) from E. coli O157:H7 7EPQ ; 2.2 ; Crystal structure of exopolyphosphatase (PPX) from Porphyromonas gingivalis in complex with sulfate and magnesium ions 8GTY ; 1.8 ; Crystal structure of exopolyphosphatase (PPX) from Zymomonas mobilis in complex with magnesium ions 8GTZ ; 1.56 ; Crystal structure of exopolyphosphatase (PPX) mutant E137A from Zymomonas mobilis in complex with magnesium ions 3RF0 ; 1.8 ; Crystal Structure of Exopolyphosphatase from Yersinia pestis 4JMF ; 2.099 ; Crystal structure of ExoT (residues 28 -77)- SpcS complex from Pseudomonas aeruginosa at 2.1 angstrom 3AFL ; 2.99 ; Crystal structure of exotype alginate lyase Atu3025 H531A complexed with alginate trisaccharide 2ZUY ; 1.65 ; Crystal structure of exotype rhamnogalacturonan lyase YesX 5XNW ; 2.201 ; Crystal structure of ExoY, a unique nucleotidyl cyclase toxin from Pseudomonas aeruginosa 2HCZ ; 2.75 ; Crystal structure of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize 5YU7 ; 3.301 ; CRYSTAL STRUCTURE OF EXPORTIN-5 5YU6 ; 2.997 ; CRYSTAL STRUCTURE OF EXPORTIN-5:RANGTP COMPLEX 3A6P ; 2.92 ; Crystal structure of Exportin-5:RanGTP:pre-miRNA complex 7R1M ; 1.64 ; Crystal structure of ExsFA, a Bacillus cereus spore exosporium protein 3NFF ; 3.24 ; Crystal structure of extended Dimerization module of RNA polymerase I subcomplex A49/A34.5 5EOO ; 1.48 ; Crystal structure of extended-spectrum beta-lactamase BEL-1 (monoclinic form) 5EOE ; 1.6 ; Crystal structure of extended-spectrum beta-lactamase BEL-1 (orthorhombic form) 5EPH ; 1.79 ; Crystal structure of extended-spectrum beta-lactamase BEL-1 in complex with Imipenem 5EUA ; 1.85 ; Crystal structure of extended-spectrum beta-lactamase BEL-1 in complex with Moxalactam 4Q5Y ; 3.0 ; Crystal structure of extended-Tudor 10-11 of Drosophila melanogaster 4Q5W ; 1.801 ; Crystal structure of extended-Tudor 9 of Drosophila melanogaster 3F95 ; 1.8 ; Crystal Structure of Extra C-terminal Domain (X) of Exo-1,3/1,4-beta-glucanase (ExoP) from Pseudoalteromonas sp. BB1 5IN2 ; 1.55 ; Crystal structure of extra cellular Cu/Zn Superoxide Dismutase from Onchocerca volvulus at 1.5 Angstrom; Insight into novel binding site and new inhibitors 6HE6 ; 2.0 ; Crystal structure of Extracellular Domain 1 (ECD1) of FtsX from S. pneumonie in complex with dodecane-trimethylamine 6HFX ; 2.16 ; Crystal structure of Extracellular Domain 1 (ECD1) of FtsX from S. pneumonie in complex with n-decyl-B-D-maltoside 6HEE ; 2.3 ; Crystal structure of Extracellular Domain 1 (ECD1) of FtsX from S. pneumonie in complex with undecyl-maltoside 8GK6 ; 2.7 ; Crystal structure of extracellular domain of CNNM4 from Echinococcus granulosus 5KWG ; 4.3 ; Crystal structure of extracellular domain of HER2 in complex with Fcab H10-03-6 5K33 ; 3.3 ; Crystal structure of extracellular domain of HER2 in complex with Fcab STAB19 3U9U ; 3.42 ; Crystal Structure of Extracellular Domain of Human ErbB4/Her4 in complex with the Fab fragment of mAb1479 1N8Z ; 2.52 ; Crystal structure of extracellular domain of human HER2 complexed with Herceptin Fab 4WCO ; 2.46 ; Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A 3M9Z ; 1.7 ; Crystal Structure of extracellular domain of mouse NKR-P1A 3QBQ ; 2.5 ; Crystal structure of extracellular domains of mouse RANK-RANKL complex 3UKJ ; 1.6 ; Crystal structure of extracellular ligand-binding receptor from Rhodopseudomonas palustris HaA2 4M88 ; 1.762 ; Crystal structure of extracellular ligand-binding receptor from Verminephrobacter eiseniae ef01-2 2Z8X ; 1.48 ; Crystal structure of extracellular lipase from Pseudomonas sp. MIS38 2QUB ; 1.8 ; Crystal structure of extracellular lipase LipA from Serratia marcescens 4MZV ; 1.865 ; Crystal structure of extracellular part of human EpCAM 7PEE ; 2.81 ; Crystal structure of extracellular part of human Trop2 3U7U ; 3.03 ; Crystal structure of extracellular region of human epidermal growth factor receptor 4 in complex with neuregulin-1 beta 5IXP ; 1.73 ; Crystal structure of Extracellular solute-binding protein family 1 3OMB ; 2.1 ; Crystal structure of extracellular solute-binding protein from Bifidobacterium longum subsp. infantis 5MAL ; 1.708 ; Crystal structure of extracelular lipase from Streptomyces rimosus at 1.7A resolution 3LV0 ; 1.85 ; Crystal structure of extragenic suppressor protein suhB from Bartonella henselae, native 3LUZ ; 2.05 ; Crystal structure of extragenic suppressor protein suhB from Bartonella henselae, via combined iodide SAD molecular replacement 4K7B ; 1.55 ; Crystal structure of Extrinsic protein in photosystem II 6VIO ; 3.6 ; Crystal structure of eYFP His148Ser 8GRF ; 2.53 ; Crystal structure of F-box protein in the ternary complex with adaptor protein Skp1(DL) and its substrate 3B2S ; 1.92 ; Crystal Structure of F. graminearum TRI101 complexed with Coenzyme A and Deoxynivalenol 2RKV ; 1.6 ; Crystal Structure of F. graminearum TRI101 complexed with Coenzyme A and T-2 mycotoxin 3B30 ; 1.97 ; Crystal Structure of F. graminearum TRI101 complexed with Ethyl Coenzyme A 2ZBA ; 2.0 ; Crystal Structure of F. sporotrichioides TRI101 complexed with Coenzyme A and T-2 2QWU ; 1.65 ; Crystal structure of F. tularensis pathogenicity island protein C 8SIJ ; 2.6 ; Crystal structure of F. varium tryptophanase 1XQX ; 2.1 ; Crystal structure of F1-mutant S105A complex with PCK 1XQW ; 2.0 ; Crystal structure of F1-mutant S105A complex with PHE-LEU 1XQY ; 3.2 ; Crystal structure of F1-mutant S105A complex with PRO-LEU-GLY-GLY 4JTE ; 1.9 ; Crystal structure of F114A mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4JTF ; 1.8 ; Crystal structure of F114R mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4JTG ; 1.85 ; Crystal structure of F114R/R117A mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4JTH ; 2.0 ; Crystal structure of F114R/R117Q mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4JTI ; 1.75 ; Crystal structure of F114R/R117Q/F139G mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 1EIC ; 1.4 ; CRYSTAL STRUCTURE OF F120A MUTANT OF BOVINE PANCREATIC RIBONUCLEASE A 1EID ; 1.4 ; CRYSTAL STRUCTURE OF F120G MUTANT OF BOVINE PANCREATIC RIBONUCLEASE A 1EIE ; 1.4 ; CRYSTAL STRUCTURE OF F120W MUTANT OF BOVINE PANCREATIC RIBONUCLEASE A 4IO0 ; 2.9 ; Crystal structure of F128A mutant of an epoxide hydrolase from Bacillus megaterium complexed with its product (R)-3-[1]naphthyloxy-propane-1,2-diol 3FJA ; 1.95 ; Crystal structure of F132W mutant of Human acidic fibroblast growth factor 4JTL ; 2.1 ; Crystal structure of F139G mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 4D2J ; 1.75 ; Crystal structure of F16BP Aldolase from Toxoplasma gondii (TgALD1) 4X45 ; 1.75 ; Crystal Structure of F173G Mutant of Human APRT 2BS7 ; 2.1 ; Crystal structure of F17b-G in complex with chitobiose 2BS8 ; 2.25 ; Crystal structure of F17b-G in complex with N-acetyl-D-glucosamine 6QLL ; 1.56 ; Crystal structure of F181H UbiX in complex with FMN and dimethylallyl monophosphate 6QLK ; 1.78 ; Crystal structure of F181H UbiX in complex with prFMN 6QLJ ; 1.77 ; Crystal structure of F181Q UbiX in complex with an oxidised N5-C1' adduct derived from DMAP 6QLI ; 1.99 ; Crystal structure of F181Q UbiX in complex with FMN and dimethylallyl monophosphate 8G35 ; 2.0 ; Crystal structure of F182L-CYP199A4 in complex with (S)-4-(2-hydroxy-3-oxobutan-2-yl)benzoic acid 8G36 ; 2.1 ; Crystal structure of F182L-CYP199A4 in complex with terephthalic acid 1UKS ; 1.9 ; Crystal structure of F183L/F259L mutant cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose 4DC0 ; 2.813 ; Crystal Structure of F189W Actinorhodin Polyketide Ketoreductase with NADPH 7Z99 ; 1.92 ; Crystal structure of F191M variant of Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with methyl phenyl sulfoxide 7Z98 ; 1.73 ; Crystal structure of F191M variant Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with methyl phenyl sulfide 4RYT ; 2.09 ; Crystal Structure of F222 form of E112A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 4XEP ; 1.5 ; Crystal Structure of F222 form of E112A/H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 1YYM ; 2.2 ; crystal structure of F23, a scorpion-toxin mimic of CD4, in complex with HIV-1 YU2 gp120 envelope glycoprotein and anti-HIV-1 antibody 17b 6CQR ; 3.04 ; Crystal structure of F24 TCR -DR1-RQ13 peptide complex 6CQL ; 2.4 ; Crystal structure of F24 TCR -DR11-RQ13 peptide complex 6CQQ ; 2.8 ; Crystal structure of F24 TCR -DR15-RQ13 peptide complex 1F5C ; 1.75 ; CRYSTAL STRUCTURE OF F25H FERREDOXIN 1 MUTANT FROM AZOTOBACTER VINELANDII AT 1.75 ANGSTROM RESOLUTION 1V3J ; 2.0 ; Crystal structure of F283L mutant cyclodextrin glycosyltransferase 1V3L ; 2.1 ; Crystal structure of F283L mutant cyclodextrin glycosyltransferase complexed with a pseudo-tetraose derived from acarbose 1V3K ; 2.0 ; Crystal structure of F283Y mutant cyclodextrin glycosyltransferase 1V3M ; 2.0 ; Crystal structure of F283Y mutant cyclodextrin glycosyltransferase complexed with a pseudo-tetraose derived from acarbose 8OKK ; 1.63 ; Crystal structure of F2F-2020184-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 8OKL ; 1.5 ; Crystal structure of F2F-2020185-01X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 8OKM ; 1.66 ; Crystal structure of F2F-2020197-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 8OKN ; 1.35 ; Crystal structure of F2F-2020198-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 7Q5E ; 1.67 ; Crystal structure of F2F-2020209-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 7Q5F ; 1.72 ; Crystal structure of F2F-2020216-01X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 1F5B ; 1.62 ; CRYSTAL STRUCTURE OF F2H FERREDOXIN 1 MUTANT FROM AZOTOBACTER VINELANDII AT 1.75 ANGSTROM RESOLUTION 4HJR ; 2.5 ; Crystal structure of F2YRS 4HJX ; 2.91 ; Crystal structure of F2YRS complexed with F2Y 2QUR ; 2.5 ; Crystal Structure of F327A/K285P Mutant of cAMP-dependent Protein Kinase 2VMZ ; 1.7 ; Crystal structure of F351GbsSHMT in complex with Gly 2VMY ; 2.7 ; Crystal structure of F351GbsSHMT in complex with Gly and FTHF 2VMX ; 1.82 ; Crystal structure of F351GbsSHMT in complex with L-allo-Thr 2VMW ; 1.73 ; Crystal structure of F351GbsSHMT in complex with L-Ser 2VMV ; 1.7 ; Crystal structure of F351GbsSHMT internal aldimine 1M20 ; 1.8 ; Crystal Structure of F35Y Mutant of Trypsin-solubilized Fragment of Cytochrome b5 4HI5 ; 3.6 ; crystal structure of F37A mutant of borna disease virus matrix protein 4HNT ; 2.8 ; crystal structure of F403A mutant of S. aureus Pyruvate carboxylase 1IO1 ; 2.0 ; CRYSTAL STRUCTURE OF F41 FRAGMENT OF FLAGELLIN 2E2Y ; 1.6 ; Crystal Structure of F43W/H64D/V68I Myoglobin 4QAU ; 1.597 ; Crystal structure of F43Y mutant of sperm whale myoglobin 3IBX ; 2.4 ; Crystal structure of F47Y variant of TenA (HP1287) from Helicobacter pylori 6CQN ; 2.5 ; Crystal structure of F5 TCR -DR11-RQ13 peptide complex 7MGO ; 1.85 ; Crystal structure of F501H variant of 2-ketopropyl coenzyme M oxidoreductase/carboxylase (2-KPCC) from Xanthobacter autotrophicus 7MGN ; 1.8 ; Crystal structure of F501H/H506E variant of 2-ketopropyl coenzyme M oxidoreductase/carboxylase (2-KPCC) from Xanthobacter autotrophicus 1U9M ; 2.0 ; Crystal structure of F58W mutant of cytochrome b5 1U9U ; 1.86 ; Crystal structure of F58Y mutant of cytochrome b5 1KEQ ; 1.88 ; Crystal Structure of F65A/Y131C Carbonic Anhydrase V, covalently modified with 4-chloromethylimidazole 3FJ9 ; 1.9 ; Crystal structure of F85W mutant of Human acidic fibroblast growth factor 3DGI ; 1.95 ; Crystal structure of F87A/T268A mutant of CYP BM3 4N1F ; 2.087 ; Crystal Structure of F88Y obelin mutant from Obelia longissima at 2.09 Angstrom resolution 4DTA ; 2.35 ; Crystal Structure of F95M Aminoglycoside-2''-Phosphotransferase Type IVa in Complex with Adenosine 4DTB ; 2.1 ; Crystal Structure of F95Y Aminoglycoside-2''-Phosphotransferase Type IVa in Complex with Guanosine 2VFE ; 2.2 ; Crystal structure of F96S mutant of Plasmodium falciparum triosephosphate isomerase with 3- phosphoglycerate bound at the dimer interface 3WW0 ; 2.5 ; Crystal structure of F97A mutant, a new nuclear transport receptor of Hsp70 4HBP ; 2.91 ; Crystal Structure of FAAH in complex with inhibitor 3WWQ ; 1.9 ; Crystal structure of FAAP20 UBZ domain in complex with Lys63-linked diubiquitin 1RIH ; 2.5 ; Crystal Structure of Fab 14F7, a unique anti-tumor antibody specific for N-glycolyl GM3 2R69 ; 3.8 ; Crystal structure of Fab 1A1D-2 complexed with E-DIII of Dengue virus at 3.8 angstrom resolution 3LZF ; 2.8 ; Crystal Structure of Fab 2D1 in Complex with the 1918 Influenza Virus Hemagglutinin 4HG4 ; 3.2 ; Crystal structure of Fab 2G1 in complex with a H2N2 influenza virus hemagglutinin 4PY7 ; 2.7 ; Crystal Structure of Fab 3.1 4PY8 ; 2.91 ; Crystal structure of Fab 3.1 in complex with the 1918 influenza virus hemagglutinin 5CEX ; 2.105 ; Crystal Structure of Fab 32H+109L, a putative precursor of the PGT121 family of potent HIV-1 antibodies 4KVN ; 3.1 ; Crystal structure of Fab 39.29 in complex with Influenza Hemagglutinin A/Perth/16/2009 (H3N2) 6WIY ; 1.65 ; Crystal structure of Fab 54-1G05 6WIZ ; 4.2 ; Crystal structure of Fab 54-1G05 bound to H1 influenza hemagglutinin 6WJ0 ; 1.802 ; Crystal structure of Fab 54-4H03 6WJ1 ; 3.503 ; Crystal structure of Fab 54-4H03 bound to H1 influenza hemagglutinin 4NJA ; 2.204 ; Crystal structure of Fab 6C8 in complex with MPTS 4NJ9 ; 1.95 ; Crystal structure of Fab 8B10 in complex with MPTS 4HF5 ; 3.004 ; Crystal structure of Fab 8F8 in complex a H2N2 influenza virus hemagglutinin 4HFU ; 3.106 ; Crystal structure of Fab 8M2 in complex with a H2N2 influenza virus hemagglutinin 5CEY ; 2.387 ; Crystal Structure of Fab 9H+3L, a putative precursor of the PGT121 family of potent HIV-1 antibodies 7LUD ; 2.9 ; Crystal structure of Fab ADI-14442 4HLZ ; 2.9 ; Crystal Structure of Fab C179 in Complex with a H2N2 influenza virus hemagglutinin 5EOC ; 1.98 ; Crystal structure of Fab C2 in complex with a Cyclic variant of Hepatitis C Virus E2 epitope I 3QPX ; 2.0 ; Crystal structure of Fab C2507 7SEN ; 2.09 ; Crystal structure of Fab containing a fluorescent noncanonical amino acid with blocked excited state proton transfer 7T86 ; 1.9 ; Crystal Structure of Fab CR5133 / Phospho-SD Peptide Complex 4EVN ; 2.851 ; Crystal Structure of Fab CR6261 (somatic heavy chain with germline-reverted light chain) 3GBM ; 2.7 ; Crystal Structure of Fab CR6261 in Complex with a H5N1 influenza virus hemagglutinin. 3GBN ; 2.2 ; Crystal Structure of Fab CR6261 in Complex with the 1918 H1N1 influenza virus hemagglutinin 4FQH ; 2.05 ; Crystal Structure of Fab CR9114 4FQI ; 1.71 ; Crystal Structure of Fab CR9114 in Complex with a H5N1 influenza virus hemagglutinin 1JPT ; 1.85 ; Crystal Structure of Fab D3H44 3QHF ; 1.655 ; Crystal Structure of Fab del2D1, a deletion variant of anti-influenza antibody 2D1 4PUB ; 1.75 ; Crystal structure of Fab DX-2930 4OGY ; 2.1 ; Crystal structure of Fab DX-2930 in complex with human plasma kallikrein at 2.1 Angstrom resolution 4OGX ; 2.4 ; Crystal structure of Fab DX-2930 in complex with human plasma kallikrein at 2.4 Angstrom resolution 3GGW ; 1.7 ; Crystal Structure of FAB F22-4 in complex with a Carbohydrate-mimetic peptide 3BZ4 ; 1.8 ; Crystal structure of Fab F22-4 in complex with a Shigella flexneri 2a O-Ag decasaccharide 3C6S ; 1.8 ; Crystal structure of Fab F22-4 in complex with a Shigella flexneri 2a O-Ag pentadecasaccharide 6YHQ ; 1.89 ; Crystal Structure of Fab F5.18.6, anti-Plasmodium vivax AMA1 1KFA ; 2.8 ; Crystal structure of Fab fragment complexed with gibberellin A4 3HI5 ; 2.5 ; Crystal structure of Fab fragment of AL-57 4A6Y ; 2.9 ; CRYSTAL STRUCTURE OF FAB FRAGMENT OF ANTI-(4-HYDROXY-3-NITROPHENYL) -ACETYL MURINE GERMLINE ANTIBODY BBE6.12H3 5X4G ; 1.45 ; Crystal structure of Fab fragment of anti-CD147 monoclonal antibody 6H8 5VKK ; 2.014 ; Crystal structure of Fab fragment of anti-CD22 Epratuzumab 2Z93 ; 2.4 ; Crystal structure of Fab fragment of anti-ciguatoxin antibody 10C9 in complex with CTX3C-ABCD 5WHJ ; 2.15 ; Crystal structure of Fab fragment of anti-FcRn antibody DX-2507 6X9X ; 1.8 ; Crystal structure of Fab fragment of Anti-HCV E2 antibody (HC84.26) 3QQ9 ; 1.64 ; Crystal structure of FAB fragment of anti-human RSV (RESPIRATORY SYNCYTIAL VIRUS) F Protein MAB 101F 7VSU ; 3.1 ; Crystal structure of Fab fragment of anti-mesothelin antibody 3MXV ; 1.9 ; Crystal structure of fab fragment of anti-Shh 5E1 chimera 5VH4 ; 2.0 ; Crystal structure of Fab fragment of anti-TNFa antibody infliximab in an I-centered orthorhombic crystal form 5WHK ; 2.5 ; Crystal structure of Fab fragment of antibody DX-2507 bound to FcRn-B2M 1NDM ; 2.1 ; Crystal structure of Fab fragment of antibody HyHEL-26 complexed with lysozyme 1NDG ; 1.9 ; Crystal structure of Fab fragment of antibody HyHEL-8 complexed with its antigen lysozyme 7V5N ; 1.7 ; Crystal structure of Fab fragment of bevacizumab bound to DNA aptamer 7DUN ; 1.607 ; Crystal structure of Fab fragment of Daratumumab 4S2S ; 2.1 ; Crystal Structure of Fab fragment of monoclonal antibody RoAb13 5VH3 ; 2.0 ; Crystal structure of Fab fragment of the anti-TNFa antibody infliximab in a C-centered orthorhombic crystal form 3RPI ; 2.648 ; Crystal Structure of Fab from 3BNC60, Highly Potent anti-HIV Antibody 4MHJ ; 6.98 ; Crystal structure of Fab H5M9 in complex with influenza virus hemagglutinin from A/goose/Guangdong/1/96 (H5N1) 4MHH ; 3.564 ; Crystal structure of Fab H5M9 in complex with influenza virus hemagglutinin from A/Viet Nam/1203/2004 (H5N1) 5V2A ; 4.656 ; Crystal structure of Fab H7.167 in complex with influenza virus hemagglutinin from A/Shanghai/02/2013 (H7N9) 1DQD ; 2.1 ; CRYSTAL STRUCTURE OF FAB HGR-2 F6, A COMPETITIVE ANTAGONIST OF THE GLUCAGON RECEPTOR 7S7I ; 2.4 ; Crystal structure of Fab in complex with MICA alpha3 domain 7S13 ; 2.12 ; Crystal structure of Fab in complex with mouse CD96 dimer 7S11 ; 2.58 ; Crystal structure of Fab in complex with mouse CD96 monomer 6JJP ; 2.9 ; Crystal structure of Fab of a PD-1 monoclonal antibody MW11-h317 in complex with PD-1 4XML ; 2.68 ; Crystal structure of Fab of HIV-1 gp120 V3-specific human monoclonal antibody 2424 4XMK ; 3.179 ; Crystal structure of Fab of HIV-1 gp120 V3-specific human monoclonal antibody 2424 in complex with JR-FL V3 peptide 3Q6F ; 3.192 ; Crystal structure of Fab of human mAb 2909 specific for quaternary neutralizing epitope of HIV-1 gp120 6FG1 ; 2.03 ; CRYSTAL STRUCTURE OF FAB OF NATALIZUMAB IN COMPLEX WITH FAB OF NAA32. 6FG2 ; 2.788 ; CRYSTAL STRUCTURE OF FAB OF NATALIZUMAB IN COMPLEX WITH FAB OF NAA84. 5EZI ; 1.61 ; Crystal Structure of Fab of parasite invasion inhibitory antibody c1 - hexagonal form 5EZL ; 2.43 ; Crystal Structure of Fab of parasite invasion inhibitory antibody c1 - monoclinic form 5EZJ ; 1.95 ; Crystal Structure of Fab of parasite invasion inhibitory antibody c1 - orthorhombic form 3Q6G ; 1.902 ; Crystal structure of Fab of rhesus mAb 2.5B specific for quaternary neutralizing epitope of HIV-1 gp120 6CA9 ; 2.702 ; Crystal structure of Fab PCT64_LMCA (SAR), the least mutated common ancestor of the HIV-1 broadly neutralizing antibody lineage PCT64 7WC0 ; 2.705 ; Crystal structure of Fab region of TAU-2212 neutralizing SARS-CoV-2 6YIO ; 1.83 ; CRYSTAL STRUCTURE OF FAB RG6292 IN COMPLEX WITH CD25 ECD 6W5D ; 2.0 ; Crystal Structure of Fab RSB1 5XHV ; 3.35 ; Crystal Structure Of Fab S40 In Complex With Influenza Hemagglutinin, HA1 subunit. 3V0W ; 1.73 ; Crystal structure of Fab WN1 222-5 in complex with LPS 3BKJ ; 1.59 ; Crystal structure of Fab wo2 bound to the n terminal domain of amyloid beta peptide (1-16) 3BAE ; 1.593 ; Crystal structure of Fab WO2 bound to the N terminal domain of Amyloid beta peptide (1-28) 2F5A ; 2.05 ; CRYSTAL STRUCTURE OF FAB' FROM THE HIV-1 NEUTRALIZING ANTIBODY 2F5 2PR4 ; 2.05 ; Crystal Structure of Fab' from the HIV-1 Neutralizing Antibody 2F5 2F5B ; 2.0 ; CRYSTAL STRUCTURE OF FAB' FROM THE HIV-1 NEUTRALIZING ANTIBODY 2F5 IN COMPLEX WITH ITS GP41 EPITOPE 1JN6 ; 2.7 ; Crystal Structure of Fab-Estradiol Complexes 1JNH ; 2.85 ; Crystal Structure of Fab-Estradiol Complexes 1JNL ; 3.0 ; Crystal Structure of Fab-Estradiol Complexes 1JNN ; 3.2 ; Crystal Structure of Fab-Estradiol Complexes 8TUI ; 2.75 ; Crystal structure of Fab-Lirilumab bound to KIR2DL3 8TQA ; 2.6 ; Crystal structure of Fab.28.14.8 in complex with MHC-I (H2-Db) 8TQ7 ; 2.8 ; Crystal structure of Fab.34.2.12 in complex with MHC-I (H2-Dd) 8TQ8 ; 2.69 ; Crystal structure of Fab.34.5.8 in complex with MHC-I (H2-Dd) 8TQ9 ; 2.9 ; Crystal structure of Fab.S19.8 in complex with MHC-I (H2-Dd) 7BM5 ; 2.95 ; Crystal structure of Fab1, the Fab fragment of the anti-BamA monoclonal antibody MAB1 3ULS ; 2.495 ; Crystal structure of Fab12 1E6O ; 1.8 ; Crystal structure of Fab13B5 against HIV-1 capsid protein p24 3NA9 ; 1.7 ; Crystal structure of Fab15 3NAA ; 1.7 ; Crystal structure of Fab15 Mut5 3NAB ; 2.32 ; Crystal Structure of fab15 Mut6 3NAC ; 1.8 ; Crystal structure of Fab15 Mut7 3NCJ ; 1.6 ; Crystal structure of Fab15 Mut8 1FN4 ; 2.8 ; CRYSTAL STRUCTURE OF FAB198, AN EFFICIENT PROTECTOR OF ACETYLCHOLINE RECEPTOR AGAINST MYASTHENOGENIC ANTIBODIES 7TE4 ; 2.456 ; Crystal structure of Fab2 anti-GluN2B antibody 6WFY ; 1.226 ; Crystal structure of Fab224 in complex with NPNA4 peptide from circumsporozoite protein 8FYM ; 2.45 ; Crystal structure of Fab235 in complex with MPER peptide 6W00 ; 1.853 ; Crystal structure of Fab239 in complex with NPNA2 peptide from circumsporozoite protein 6WG2 ; 2.534 ; Crystal structure of Fab239 in complex with NPNA4 peptide from circumsporozoite protein 6AXK ; 2.103 ; Crystal structure of Fab311 complex 6AXL ; 2.4 ; Crystal structure of Fab317 complex 6W05 ; 2.516 ; Crystal structure of Fab356 in complex with NPNA2 peptide from circumsporozoite protein 6WFW ; 2.093 ; Crystal structure of Fab364 in complex with NPNA2 peptide from circumsporozoite protein 6WG0 ; 1.599 ; Crystal structure of Fab366 in complex with NPNA3 peptide from circumsporozoite protein 6WFX ; 2.59 ; Crystal structure of Fab395 in complex with NPNA2 peptide from circumsporozoite protein 6WFZ ; 1.84 ; Crystal structure of Fab399 in complex with NPNA3 peptide from circumsporozoite protein 6WG1 ; 2.086 ; Crystal structure of Fab399 in complex with NPNA6 peptide from circumsporozoite protein 5A16 ; 2.5 ; Crystal structure of Fab4201 raised against Human Erythrocyte Anion Exchanger 1 8FXJ ; 2.0 ; Crystal structure of Fab460 8FZ2 ; 3.5 ; Crystal structure of Fab460 in complex with MPER peptide 6PBW ; 2.058 ; Crystal structure of Fab667 complex 6PBV ; 1.566 ; Crystal structure of Fab668 complex 5YPV ; 1.67 ; Crystal structure of FabD from Acinetobacter baumannii 4NBT ; 1.48 ; Crystal structure of FabG from Acholeplasma laidlawii 4NBU ; 1.34 ; Crystal structure of FabG from Bacillus sp 4NBV ; 1.645 ; Crystal structure of FabG from Cupriavidus taiwanensis 4NBW ; 2.0 ; Crystal structure of FabG from Plesiocystis pacifica 4RZH ; 2.2 ; Crystal structure of FabG from Synechocystis sp. PCC 6803 3Q6I ; 2.59 ; Crystal structure of FabG4 and coenzyme binary complex 4FW8 ; 2.79 ; Crystal structure of FABG4 complexed with Coenzyme NADH 4EWP ; 2.198 ; Crystal structure of FabH from Micrococcus luteus 6VLX ; 1.72 ; Crystal structure of FabI from Alistipes finegoldii 4NK4 ; 1.7 ; Crystal structure of FabI from Candidatus Liberibacter asiaticus 4J4T ; 2.34 ; Crystal Structure of FabI from F. tularensis in complex with novel inhibitors based on the benzimidazole scaffold 4J3F ; 1.85 ; Crystal Structure of FabI from F. tularensis in complex with novel inhibitors based on the benzimidazole scaffold. 4NZ9 ; 2.3 ; Crystal Structure of FabI from S. aureus in complex with a novel benzimidazole inhibitor 3UIC ; 2.5 ; Crystal Structure of FabI, an Enoyl Reductase from F. tularensis, in complex with a Novel and Potent Inhibitor 4NK5 ; 2.7 ; Crystal structure of FabI-NAD complex from Candidatus Liberibacter asiaticus 6VLY ; 1.86 ; Crystal structure of FabI-NADH complex from Alistipes finegoldii 3DGG ; 2.3 ; Crystal structure of FabOX108 3DIF ; 2.4 ; Crystal structure of FabOX117 5D4A ; 1.7 ; Crystal Structure of FABP4 in complex with 3-(2-phenyl-1H-indol-1-yl)propanoic acid 5D45 ; 1.65 ; Crystal Structure of FABP4 in complex with 3-(5-cyclopropyl-2,3-diphenyl-1H-indol-1-yl)propanoic acid 5D47 ; 1.7 ; Crystal Structure of FABP4 in complex with 3-[5-cyclopropyl-3-(3-methoxypyridin-4-yl)-2-phenyl-1H-indol-1-yl] propanoic acid 5D48 ; 1.81 ; Crystal Structure of FABP4 in complex with 3-{5-cyclopropyl-3-(3,5-dimethyl-1H-pyrazol-4-yl)-2-[3-(propan-2-yloxy) phenyl]-1H-indol-1-yl}propanoic acid 4NNS ; 1.53 ; Crystal structure of FABP4 in complex with novel inhibitor 4NNT ; 1.53 ; Crystal structure of FABP4 in complex with novel inhibitor 6L9O ; 1.42 ; Crystal structure of FABP7 apo 5XI0 ; 2.087 ; Crystal structure of FabV, a new class of enyl-acyl carrier protein reductase from Vibrio fischeri 3OD4 ; 2.2 ; Crystal Structure of Factor Inhibiting HIF-1 Alpha Complexed with Inhibitor 5JB9 ; 1.3 ; Crystal structure of factor IXa K98T variant in complex with PPACK 5JB8 ; 1.45 ; Crystal structure of factor IXa variant K98T in complex with EGR-chloromethylketone 5JBA ; 1.4 ; Crystal structure of factor IXa variant V16I K98T Y177T I212V in complex with PPACK 5JBB ; 1.56 ; Crystal structure of factor IXa variant V16I K98T Y177T I213V in complex with EGR-chloromethylketone 5JBC ; 1.9 ; Crystal structure of factor IXa variant V16I K98T Y177T I213V in complex with PPACK 2C4F ; 1.72 ; crystal structure of factor VII.stf complexed with pd0297121 5PAG ; 1.36 ; Crystal Structure of Factor VIIa in complex with (2R)-2-hydroxy-N-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]-3-methylbutanamide;hydrobromide 5PAO ; 1.4 ; Crystal Structure of Factor VIIa in complex with (2S)-2,3-dihydroxy-N-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]propanamide;hydrobromide 5PAS ; 1.48 ; Crystal Structure of Factor VIIa in complex with (2S)-2-hydroxy-N-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]-3-phenylpropanamide 5PAE ; 1.45 ; Crystal Structure of Factor VIIa in complex with (2S)-2-hydroxy-N-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]propanamide 5PAJ ; 1.7 ; Crystal Structure of Factor VIIa in complex with 1-(1-aminoisoquinolin-6-yl)-3-benzylurea 5PAX ; 1.36 ; Crystal Structure of Factor VIIa in complex with 1-(2,6-difluorophenyl)-3-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]urea 5PAB ; 1.99 ; Crystal Structure of Factor VIIa in complex with 1-[[3-[2-hydroxy-3-(1H-pyrrolo[3,2-c]pyridin-2-yl)phenyl]phenyl]methyl]-3-phenylurea 5PB3 ; 1.9 ; Crystal Structure of Factor VIIa in complex with 1-[[3-[4-(5-amino-1H-pyrrolo[3,2-b]pyridin-2-yl)-5-hydroxypyrazol-1-yl]phenyl]methyl]-3-phenylurea 5PAY ; 1.66 ; Crystal Structure of Factor VIIa in complex with 1-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]-3-phenylurea 5PAR ; 2.1 ; Crystal Structure of Factor VIIa in complex with 1H-benzimidazol-2-amine 5PB0 ; 1.98 ; Crystal Structure of Factor VIIa in complex with 2-(4-ethoxy-3-methoxyphenyl)-2-(isoquinolin-6-ylamino)acetic acid 5PB2 ; 1.45 ; Crystal Structure of Factor VIIa in complex with 2-phenyl-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-3-ol 5PAQ ; 1.59 ; Crystal Structure of Factor VIIa in complex with 2-[(1-aminoisoquinolin-6-yl)amino]-2-(3-ethoxy-4-propan-2-yloxyphenyl)-1-(2-phenylpyrrolidin-1-yl)ethanone 5PAM ; 1.6 ; Crystal Structure of Factor VIIa in complex with 2-[(1-aminoisoquinolin-6-yl)amino]-2-(5-ethoxy-2-fluorophenyl)-1-(2-phenylpyrrolidin-1-yl)ethanone 5PAN ; 1.62 ; Crystal Structure of Factor VIIa in complex with 5-hydroxy-N-(3-oxo-1,2-dihydroisoindol-5-yl)-1-[3-[(phenylcarbamoylamino)methyl]phenyl]pyrazole-4-carboxamide 5PB1 ; 1.9 ; Crystal Structure of Factor VIIa in complex with benzenecarboximidamide 5PA8 ; 1.98 ; Crystal Structure of Factor VIIa in complex with cyclohexanamine 5PAA ; 1.98 ; Crystal Structure of Factor VIIa in complex with cyclohexylmethanamine 5PAW ; 2.2 ; Crystal Structure of Factor VIIa in complex with isoquinoline-1,6-diamine 5PAT ; 1.6 ; Crystal Structure of Factor VIIa in complex with N-(2-amino-1H-benzimidazol-5-yl)-2-(3-chlorophenyl)acetamide 5PAF ; 1.5 ; Crystal Structure of Factor VIIa in complex with N-(2-amino-1H-benzimidazol-5-yl)-2-[3-[(2-amino-2-oxoethyl)-methylsulfonylamino]-5-chlorophenyl]acetamide;2,2,2-trifluoroacetic acid 5PAU ; 1.55 ; Crystal Structure of Factor VIIa in complex with N-(2-amino-1H-benzimidazol-5-yl)-2-[3-[(2-amino-2-oxoethyl)-methylsulfonylamino]phenyl]acetamide;2,2,2-trifluoroacetic acid 5PAV ; 1.4 ; Crystal Structure of Factor VIIa in complex with N-(6-aminopyridin-3-yl)-5-hydroxy-1-phenylpyrazole-4-carboxamide 5PB6 ; 1.9 ; Crystal Structure of Factor VIIa in complex with N-[[3-[5-hydroxy-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]pentanamide 5PAK ; 1.56 ; Crystal Structure of Factor VIIa in complex with N-[[4-(aminomethyl)-2-(2-amino-2-oxoethoxy)phenyl]methyl]-2-(4-hydroxyphenyl)-2-methoxyacetamide;hydrochloride 5PA9 ; 1.55 ; Crystal Structure of Factor VIIa in complex with phenylmethanamine;hydrochloride 2BQ6 ; 3.0 ; Crystal structure of factor Xa in complex with 21 2BQ7 ; 2.2 ; Crystal structure of factor Xa in complex with 43 2BMG ; 2.7 ; Crystal structure of factor Xa in complex with 50 2BOH ; 2.2 ; Crystal structure of factor Xa in complex with compound ""1"" 2BQW ; 2.95 ; CRYSTAL STRUCTURE OF FACTOR XA IN COMPLEX WITH COMPOUND 45 3BG8 ; 1.6 ; Crystal structure of Factor XIa in complex with Clavatadine A 4E0H ; 2.0 ; Crystal structure of FAD binding domain of Erv1 from Saccharomyces cerevisiae 4QOG ; 1.4 ; Crystal structure of fad quinone reductase 2 in complex with melatonin at 1.4A 4QOH ; 1.6 ; Crystal structure of fad quinone reductase 2 in complex with resveratrol at 1.6A 8CT0 ; 2.45 ; Crystal structure of FAD reductase CtcQ from Kitasatospora aureofaciens in complex with FAD and NAD 6RR3 ; 1.69 ; CRYSTAL STRUCTURE OF FAD-CONTAINING FERREDOXIN-NADP REDUCTASE FROM BRUCELLA OVIS 4B4D ; 1.5 ; Crystal structure of FAD-containing ferredoxin-NADP reductase from Xanthomonas axonopodis pv. citri 7DVE ; 2.4 ; Crystal structure of FAD-dependent C-glycoside oxidase 6CXT ; 1.9 ; Crystal structure of FAD-dependent dehydrogenase 6CY8 ; 2.729 ; Crystal structure of FAD-dependent dehydrogenase 7XLY ; 2.9 ; Crystal structure of FadA2 (Rv0243) from the fatty acid metabolic pathway of Mycobacterium tuberculosis 3WHB ; 2.15 ; Crystal structure of FadR from Bacillus subtilis, a transcriptional regulator involved in the regulation of fatty acid degradation 3E21 ; 1.73 ; Crystal structure of FAF-1 UBA Domain 3QX1 ; 1.6 ; Crystal structure of FAF1 UBX domain 3QC8 ; 2.2 ; Crystal Structure of FAF1 UBX Domain In Complex with p97/VCP N Domain Reveals The Conserved FcisP Touch-Turn Motif of UBX Domain Suffering Conformational Change 3QCA ; 2.9 ; Crystal Structure of FAF1 UBX Domain In Complex with p97/VCP N Domain Reveals The Conserved FcisP Touch-Turn Motif of UBX Domain Suffering Conformational Change 3QWZ ; 2.0 ; Crystal structure of FAF1 UBX-p97N-domain complex 6LLG ; 2.1 ; Crystal Structure of Fagopyrum esculentum M UGT708C1 6LLW ; 2.256 ; Crystal Structure of Fagopyrum esculentum M UGT708C1 complexed with UDP 6LLZ ; 2.006 ; Crystal Structure of Fagopyrum esculentum M UGT708C1 complexed with UDP-glucose 2R7N ; 2.4 ; Crystal structure of FAICAR synthetase (PurP) from M. jannaschii complexed with ADP and FAICAR 2R7M ; 2.3 ; Crystal structure of FAICAR synthetase (PurP) from M. jannaschii complexed with AMP 2R7K ; 2.1 ; Crystal structure of FAICAR synthetase (PurP) from M. jannaschii complexed with AMPPCP and AICAR 2R7L ; 2.1 ; Crystal structure of FAICAR synthetase (PurP) from M. jannaschii complexed with ATP and AICAR 7EI0 ; 3.4 ; Crystal structure of falcipain 2 from 3D7 strain 2GHU ; 3.1 ; Crystal structure of falcipain-2 from Plasmodium falciparum 3BPF ; 2.9 ; Crystal Structure of Falcipain-2 with Its inhibitor, E64 3BWK ; 2.42 ; Crystal Structure of Falcipain-3 with Its inhibitor, K11017 3BPM ; 2.5 ; Crystal Structure of Falcipain-3 with Its inhibitor, Leupeptin 1P1V ; 1.4 ; Crystal Structure of FALS-associated human Copper-Zinc Superoxide Dismutase (CuZnSOD) Mutant D125H to 1.4A 7FB5 ; 2.84 ; Crystal structure of FAM134B/GABARAP complex 5WRR ; 2.506 ; Crystal structure of Fam20A 5WRS ; 2.75 ; Crystal Structure of Fam20A in complex with ATP 7ECQ ; 1.381 ; Crystal structure of FAM3A 6JYJ ; 2.6932 ; Crystal structure of FAM46B (TENT5B) 6W36 ; 2.854 ; Crystal structure of FAM46C 1OZU ; 1.3 ; Crystal Structure of Familial ALS Mutant S134N of human Cu,Zn Superoxide Dismutase (CuZnSOD) to 1.3A resolution 2UWF ; 2.1 ; Crystal structure of family 10 xylanase from Bacillus halodurans 6LPS ; 2.21357 ; Crystal structure of family 10 xylanase from Bacillus halodurans 1TE1 ; 2.5 ; Crystal structure of family 11 xylanase in complex with inhibitor (XIP-I) 1WMX ; 2.0 ; Crystal Structure of Family 30 Carbohydrate Binding Module 1WZX ; 3.52 ; Crystal Structure of Family 30 Carbohydrate Binding Module. 5F7C ; 2.6 ; Crystal structure of Family 31 alpha-glucosidase (BT_0339) from Bacteroides thetaiotaomicron 5DJW ; 2.7 ; Crystal structure of Family 31 alpha-glucosidase (BT_3299) from Bacteroides thetaiotaomicron 5NE5 ; 1.05 ; Crystal structure of family 47 alpha-1,2-mannosidase from Caulobacter K31 strain in complex with kifunensine 2Z42 ; 1.6 ; Crystal Structure of Family 7 Alginate Lyase A1-II' from Sphingomonas sp. A1 2ZAA ; 1.8 ; Crystal Structure of Family 7 Alginate Lyase A1-II' H191N/Y284F in Complex with Substrate (GGMG) 2ZAB ; 1.66 ; Crystal Structure of Family 7 Alginate Lyase A1-II' Y284F in Cmplex with Product (GGG) 2ZAC ; 1.5 ; Crystal Structure of Family 7 Alginate Lyase A1-II' Y284F in Complex with Product (MMG) 1WNS ; 3.0 ; Crystal structure of family B DNA polymerase from hyperthermophilic archaeon pyrococcus kodakaraensis KOD1 4R5E ; 1.5 ; Crystal Structure of Family GH18 Chitinase from Cycas revoluta a Complex with Allosamidin 4MCK ; 1.5 ; Crystal structure of Family GH19, Class IV chitinase from Zea mays 2HAW ; 1.75 ; Crystal structure of family II Inorganic pyrophosphatase in complex with PNP 3K1L ; 3.2 ; Crystal Structure of FANCL 6YRV ; 1.94 ; Crystal structure of FAP after illumination at 100K 6YRZ ; 1.824 ; Crystal structure of FAP et pH 8.5 after illumination at 150K 6YRU ; 1.78 ; Crystal structure of FAP in the dark at 100K 6YS2 ; 1.97 ; Crystal structure of FAP R451A in the dark at 100K 6YS1 ; 1.64 ; Crystal structure of FAP R451K mutant in the dark at 100K 2F3X ; 3.1 ; Crystal structure of FapR (in complex with effector)- a global regulator of fatty acid biosynthesis in B. subtilis 2F41 ; 2.5 ; Crystal structure of FapR- a global regulator of fatty acid biosynthesis in B. subtilis 4EDO ; 1.8 ; Crystal structure of far-red fluorescent protein eqFP650 4EDS ; 1.6 ; Crystal structure of far-red fluorescent protein eqFP670 3PJ5 ; 1.6 ; Crystal structure of far-red fluorescent protein Katushka crystallized at pH 5.0 3PJ7 ; 1.85 ; Crystal structure of far-red fluorescent protein Katushka crystallized at pH 8.5 6UVB ; 3.0 ; Crystal structure of far-red-light absorbing cyanobacteriochrome at 100K 6HL0 ; 1.66 ; Crystal Structure of Farnesoid X receptor (FXR) with bound NCoA-2 peptide 6HL1 ; 1.599 ; Crystal Structure of Farnesoid X receptor (FXR) with bound NCoA-2 peptide and CDCA 7TRB ; 2.15 ; CRYSTAL STRUCTURE OF FARNESOID X-ACTIVATED RECEPTOR COMPLEXED WITH COMPOUND-32 AKA (1S,3S)-N-({4-[5-(2-FLUOROPR OPAN-2-YL)-1,2,4-OXADIAZOL-3-YL]BICYCLO[2.2.2]OCTAN-1-YL}M ETHYL)-3-HYDROXY-N-[4'-(2-HYDROXYPROPAN-2-YL)-[1,1'-BIPHEN YL]-3-YL]-3-(TRIFLUOROMETHYL)CYCLOBUTANE-1-CARBOXAMIDE 7W61 ; 1.6 ; Crystal structure of farnesol dehydrogenase from Helicoverpa armigera 3TS7 ; 1.94 ; CRYSTAL STRUCTURE OF FARNESYL DIPHOSPHATE SYNTHASE (TARGET EFI-501951) FROM Methylococcus capsulatus 3LVS ; 2.15 ; Crystal structure of farnesyl diphosphate synthase from rhodobacter capsulatus sb1003 4KPJ ; 1.95 ; Crystal Structure of Farnesyl Pyrophosphate Synthase (Y204A) Mutant complexed with Mg, Pamidronate 4KQS ; 1.97 ; Crystal Structure of Farnesyl Pyrophosphate Synthase Mutant (Y204A) Complexed with Mg, Risedronate and Isopentenyl Pyrophosphate 4KQU ; 2.07 ; Crystal Structure of Farnesyl Synthase Mutant (Y204A) Complexed with Mg, Alendronate and Isopentenyl Pyrophosphate 5TAR ; 1.9 ; Crystal structure of farnesylated and methylated kras4b in complex with PDE-delta (crystal form II - with ordered hypervariable region) 6K1Z ; 2.307 ; Crystal structure of farnesylated hGBP1 3TJE ; 1.93 ; Crystal structure of Fas receptor extracellular domain in complex with Fab E09 3THM ; 2.1 ; Crystal structure of Fas receptor extracellular domain in complex with Fab EP6b_B01 5N86 ; 1.484 ; Crystal structure of FAS1 domain of hyaluronic acid receptor stabilin-2 1FSC ; 2.0 ; Crystal Structure of Fasciculin 2 from Green Mamba Snake Venom: Evidence for Unusual Loop Flexibility 6I18 ; 1.49 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH BDP-13176 6I0Z ; 1.77 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 1 6I15 ; 1.91 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 11 6I16 ; 2.0 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 15 6I10 ; 2.1 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 2 6I17 ; 1.56 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 24 6I11 ; 1.67 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 3 6I12 ; 1.65 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 5 6I13 ; 1.79 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 7 6I14 ; 1.73 ; CRYSTAL STRUCTURE OF FASCIN IN COMPLEX WITH COMPOUND 9 4MSV ; 2.5 ; Crystal structure of FASL and DcR3 complex 3LF3 ; 1.15 ; Crystal Structure of Fast Fluorescent Timer Fast-FT 7RRK ; 1.929 ; Crystal structure of fast switching M159E mutant of fluorescent protein Dronpa (Dronpa2) 7RRJ ; 2.2 ; Crystal structure of fast switching M159Q mutant of fluorescent protein Dronpa (Dronpa2) 6NQJ ; 2.0 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2) 6NQQ ; 2.6 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(2,3,5-F3Y) 6NQP ; 2.2 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(2,3-F2Y) 6NQN ; 2.1 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-BrY) 6NQV ; 2.7 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-CH3Y) 6NQL ; 2.147 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-ClY) 6NQK ; 2.0 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-FY) 6NQO ; 2.1 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2), Y63(3-IY) 6NQR ; 2.9 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2)- Y63(3-NO2Y) 6NQS ; 2.5 ; Crystal structure of fast switching M159T mutant of fluorescent protein Dronpa (Dronpa2)- Y63(3-OMeY) 7RRH ; 1.747 ; Crystal structure of fast switching R66M/M159T mutant of fluorescent protein Dronpa (Dronpa2) 7RRI ; 2.643 ; Crystal structure of fast switching S142A/M159T mutant of fluorescent protein Dronpa (Dronpa2) 5F28 ; 2.9 ; Crystal structure of FAT domain of Focal Adhesion Kinase (FAK) bound to the transcription factor MEF2C 4HHR ; 1.51 ; Crystal Structure of fatty acid alpha-dioxygenase (Arabidopsis thaliana) 4HHS ; 1.7 ; Crystal Structure of fatty acid alpha-dioxygenase (Arabidopsis thaliana) 1MT5 ; 2.8 ; CRYSTAL STRUCTURE OF FATTY ACID AMIDE HYDROLASE 3QJ8 ; 2.9 ; Crystal structure of fatty acid amide hydrolase 2VYA ; 2.75 ; Crystal Structure of fatty acid amide hydrolase conjugated with the drug-like inhibitor PF-750 3QKV ; 3.1 ; Crystal structure of fatty acid amide hydrolase with small molecule compound 3QJ9 ; 2.3 ; Crystal structure of fatty acid amide hydrolase with small molecule inhibitor 3QK5 ; 2.2 ; Crystal structure of fatty acid amide hydrolase with small molecule inhibitor 3LUP ; 2.65 ; Crystal structure of fatty acid binding DegV family protein SAG1342 from Streptococcus agalactiae 6ZH7 ; 2.0 ; Crystal structure of fatty acid photodecarboxylase in the dark state determined by serial femtosecond crystallography at room temperature 4V59 ; 3.1 ; Crystal structure of fatty acid synthase complexed with nadp+ from thermomyces lanuginosus at 3.1 angstrom resolution. 4V58 ; 3.1 ; Crystal structure of fatty acid synthase from thermomyces lanuginosus at 3.1 angstrom resolution. 5GKB ; 2.04 ; Crystal Structure of Fatty Acid-Binding Protein in Brain Tissue of Drosophila melanogaster without citrate inside 3BDR ; 2.8 ; Crystal structure of fatty acid-binding protein-like Ycf58 from Thermosynecoccus elongatus. Northeast Structural Genomics Consortium target TeR13. 2G04 ; 2.7 ; Crystal structure of fatty acid-CoA racemase from Mycobacterium tuberculosis H37Rv 8SJ7 ; 2.09 ; Crystal structure of FBF-2 (RBD+CT) in complex with compact FBE RNA 3V6Y ; 2.5 ; crystal structure of FBF-2 in complex with a mutant gld-1 FBEa13 RNA 3V74 ; 2.3 ; crystal structure of FBF-2 in complex with gld-1 FBEa13 RNA 7RZZ ; 2.39 ; Crystal structure of FBF-2 in complex with LST-1 site A peptide and compact FBE RNA 7S02 ; 2.34 ; Crystal structure of FBF-2 in complex with LST-1 site A peptide and FBE RNA 3QGB ; 2.4 ; Crystal structure of FBF-2 R288Y mutant in complex with gld-1 FBEa 3QGC ; 1.9 ; Crystal structure of FBF-2 R288Y mutant in complex with gld-1 FBEa A7U mutant 6NOC ; 2.849 ; Crystal structure of FBF-2 repeat 5 mutant (C363A, R364Y) in complex with 8-nt RNA 6NOF ; 2.251 ; Crystal structure of FBF-2 repeat 5 mutant (C363A, R364Y, Q367S) in complex with 8-nt RNA 6NOH ; 2.249 ; Crystal structure of FBF-2 repeat 5 mutant (C363S, R364Y, Q367S) in complex with 8-nt RNA 3K5Q ; 2.2 ; Crystal structure of FBF-2/FBE complex 3K64 ; 2.0 ; Crystal structure of FBF-2/fem-3 PME complex 3K61 ; 2.21 ; Crystal structure of FBF-2/fog-1 FBEa complex 3QG9 ; 2.25 ; crystal structure of FBF-2/gld-1 FBEa A7U mutant complex 3K5Y ; 2.3 ; Crystal structure of FBF-2/gld-1 FBEa complex 3K5Z ; 2.4 ; Crystal structure of FBF-2/gld-1 FBEa G4A mutant complex 3K62 ; 1.9 ; Crystal structure of FBF-2/gld-1 FBEb complex 5TK3 ; 1.83 ; Crystal structure of FBP aldolase from Toxoplasma gondii, burst-phase ternary complex 5TKL ; 1.751 ; Crystal structure of FBP aldolase from Toxoplasma gondii, condensation intermediate 5TKP ; 2.09 ; Crystal structure of FBP aldolase from Toxoplasma gondii, equilibrium Schiff base FBP complex 5TJS ; 1.78 ; Crystal structure of FBP aldolase from Toxoplasma gondii, native form 5TKN ; 1.92 ; Crystal structure of FBP aldolase from Toxoplasma gondii, Schiff base FBP complex 5TKC ; 1.779 ; Crystal structure of FBP aldolase from Toxoplasma gondii, ternary complex 5VH5 ; 1.75 ; Crystal Structure of Fc fragment of anti-TNFa antibody infliximab 6S5A ; 1.72 ; CRYSTAL STRUCTURE OF FC P329G LALA WITH ANTI FC P329G FAB 3RJD ; 2.65 ; Crystal structure of Fc RI and its implication to high affinity immunoglobulin G binding 4HAG ; 3.4 ; Crystal structure of fc-fragment of human IgG2 antibody (centered crystal form) 4HAF ; 2.04 ; Crystal structure of fc-fragment of human IgG2 antibody (primitive crystal form) 4L4J ; 1.92 ; Crystal structure of fc-fragment of human IgG2-Sigma antibody 7Q15 ; 3.301 ; Crystal structure of FcRn and beta-2-microglobulin in complex with IgG1-Fc-MST-HN (efgartigimod) 6C97 ; 2.0 ; Crystal structure of FcRn at pH3 6C99 ; 2.0 ; Crystal structure of FcRn bound to UCB-303 6C98 ; 1.85 ; Crystal structure of FcRn bound to UCB-84 7CYV ; 3.13 ; Crystal structure of FD20, a neutralizing single-chain variable fragment (scFv) in complex with SARS-CoV-2 Spike receptor-binding domain (RBD) 4PDE ; 2.8 ; Crystal structure of FdhD in complex with GDP 6TUK ; 1.9 ; Crystal structure of Fdr9 4MZU ; 2.2 ; Crystal structure of FdtD, a bifunctional ketoisomerase/N-acetyltransferase from Shewanella denitrificans 4KAR ; 2.03 ; Crystal structure of FDTS (TM0449) mutant (H53D) with FAD 4KAS ; 1.85 ; Crystal structure of FDTS from T. maritima mutant (H53D) with FAD and dUMP 4KAT ; 2.14 ; Crystal structure of FDTS from T. maritima mutant (R174K) with FAD and dUMP 2NVM ; 2.19 ; Crystal structure of fdxN element excision controlling factor XisI (YP_321976.1) from Anabaena Variabilis ATCC 29413 at 2.19 A resolution 5JRX ; 1.95 ; Crystal structure of Fe(II) CO-bound H-NOX protein from C. subterraneus 5JRV ; 1.953 ; Crystal structure of Fe(II) NO-bound H-NOX protein from C. subterraneus 5JRU ; 2.305 ; Crystal structure of Fe(II) unliganded H-NOX protein from C. subterraneus 6BDD ; 1.901 ; Crystal structure of Fe(II) unliganded H-NOX protein from K. algicida 6BDE ; 1.641 ; Crystal structure of Fe(II) unliganded H-NOX protein mutant A71G from K. algicida 4J1W ; 2.72 ; Crystal Structure of Fe(II)-HppE with alternative substrate (R)-1-HPP 4J1X ; 2.8 ; Crystal Structure of Fe(II)-HppE with alternative substrate (S)-1-HPP 6NSI ; 2.00006 ; Crystal structure of Fe(III)-bound YtgA from Chlamydia trachomatis 5U8X ; 2.17 ; Crystal structure of Fe-CAO1 4JJF ; 2.2 ; Crystal structure of FE-hydrogenase from methanothermobacter marburgensis in complex with 2-naphthylisocyanide 4JJG ; 2.5 ; Crystal structure of FE-hydrogenase from methanothermobacter marburgensis in complex with toluenesulfonylmethylisocyanide 8EJ0 ; 2.59 ; Crystal structure of Fe-S cluster-dependent dehydratase from Paralcaligenes ureilyticus in complex with Mg 8EPZ ; 2.6 ; Crystal structure of Fe-S cluster-dependent dehydratase from Paralcaligenes ureilyticus in complex with Mn 2QDY ; 1.3 ; Crystal Structure of Fe-type NHase from Rhodococcus erythropolis AJ270 5GGX ; 3.4 ; Crystal Structure of Fe3+ - Desferal bound siderophore binding protein FhuD from Vibrio cholerae 5CZU ; 1.6 ; Crystal structure of FeCat-Fn 3AB4 ; 2.47 ; Crystal structure of feedback inhibition resistant mutant of aspartate kinase from Corynebacterium glutamicum in complex with lysine and threonine 1ZZ9 ; 2.4 ; Crystal Structure of FeII HppE 1ZZ7 ; 2.1 ; Crystal Structure of FeII HppE in Complex with Substrate form 1 1ZZ8 ; 2.3 ; Crystal Structure of FeII HppE in Complex with Substrate Form 2 1PUO ; 1.85 ; Crystal structure of Fel d 1- the major cat allergen 2FIV ; 2.0 ; Crystal structure of feline immunodeficiency virus protease complexed with a substrate 3FIV ; 1.85 ; CRYSTAL STRUCTURE OF FELINE IMMUNODEFICIENCY VIRUS PROTEASE COMPLEXED WITH A SUBSTRATE 5XMF ; 2.1 ; Crystal structure of feline MHC class I for 2,1 angstrom 4QUZ ; 2.35 ; Crystal structure of Feline Norovirus P Domain 6LBF ; 3.252 ; Crystal structure of FEM1B 6SNR ; 1.62 ; Crystal structure of FemX 5UJV ; 2.7 ; Crystal structure of FePYR1 in complex with abscisic acid 8ITO ; 2.1 ; Crystal structure of FeRlp from Desulfovibrio vulgaris (Hildenborough) 4NY0 ; 2.8 ; Crystal structure of FERM domain of human focal adhesion kinase 4EKU ; 3.25 ; Crystal Structure of FERM Domain of Proline-rich Tyrosine Kinase 2 6VGU ; 2.78 ; Crystal structure of FERM-folded talin head domain bound to the NPLY motif of beta3-integrin 8DOS ; 1.872 ; Crystal structure of Ferredoxin (flavodoxin):NADP(+) oxidoreductase from Klebsiella pneumoniae 1D3W ; 1.7 ; Crystal structure of ferredoxin 1 d15e mutant from azotobacter vinelandii at 1.7 angstrom resolution. 1VCK ; 1.9 ; Crystal structure of ferredoxin component of carbazole 1,9a-dioxygenase of Pseudomonas resinovorans strain CA10 4LTU ; 2.31 ; Crystal Structure of Ferredoxin from Rhodopseudomonas palustris HaA2 5AUI ; 1.499 ; Crystal structure of Ferredoxin from Thermosynechococcus elongatus 1WRI ; 1.2 ; Crystal Structure of Ferredoxin isoform II from E. arvense 3AB1 ; 2.39 ; Crystal Structure of Ferredoxin NADP+ Oxidoreductase 5YGQ ; 2.4 ; Crystal Structure of Ferredoxin NADP+ Oxidoreductase from Rhodopseudomonas palustris 3LXD ; 2.5 ; Crystal Structure of Ferredoxin Reductase ArR from Novosphingobium aromaticivorans 2YVF ; 1.6 ; Crystal structure of ferredoxin reductase BPHA4 (hydroquinone) 3FG2 ; 2.2 ; Crystal Structure of Ferredoxin Reductase for the CYP199A2 System from Rhodopseudomonas palustris 2YVG ; 1.6 ; crystal structure of ferredoxin reductase, BPHA4 (blue-semiquinone) 2GR1 ; 1.8 ; Crystal structure of Ferredoxin reductase, BphA4 (hydroquinone) 2GQW ; 1.4 ; Crystal structure of Ferredoxin reductase, BphA4 (oxidized form) 2GR2 ; 1.85 ; Crystal structure of Ferredoxin reductase, BphA4 (oxidized form) 2GR3 ; 1.5 ; Crystal structure of Ferredoxin reductase, BphA4 (oxidized form) 2GR0 ; 1.7 ; Crystal structure of Ferredoxin reductase, BphA4 (oxidized form, NAD+ complex) 4H4X ; 1.5 ; Crystal Structure of Ferredoxin reductase, BphA4 E175A/T176R/Q177G mutant (oxidized form) 4H4Y ; 1.9 ; Crystal Structure of Ferredoxin reductase, BphA4 E175A/T176R/Q177G mutant (reduced form) 4H4R ; 1.4 ; Crystal Structure of Ferredoxin reductase, BphA4 E175C/Q177G mutant (oxidized form) 4H4S ; 1.65 ; Crystal Structure of Ferredoxin reductase, BphA4 E175C/Q177G mutant (reduced form) 4H4V ; 1.4 ; Crystal Structure of Ferredoxin reductase, BphA4 E175C/T176R/Q177G mutant (oxidized form) 4H4W ; 1.7 ; Crystal Structure of Ferredoxin reductase, BphA4 E175C/T176R/Q177G mutant (reduced form) 4H4Q ; 1.95 ; Crystal Structure of Ferredoxin reductase, BphA4 E175Q/Q177K (reduced form) 4H4P ; 1.502 ; Crystal Structure of Ferredoxin reductase, BphA4 E175Q/Q177K mutant (oxidized form) 4H4Z ; 1.95 ; Crystal Structure of Ferredoxin reductase, BphA4 E175Q/T176R/Q177G mutant (oxidized form) 4H50 ; 2.65 ; Crystal Structure of Ferredoxin reductase, BphA4 E175Q/T1776R/Q177G mutant (reduced form) 4H4T ; 1.5 ; Crystal Structure of Ferredoxin reductase, BphA4 T176R mutant (oxidized form) 4H4U ; 1.6 ; Crystal Structure of Ferredoxin reductase, BphA4 T176R mutant (reduced form) 1DJ7 ; 1.6 ; CRYSTAL STRUCTURE OF FERREDOXIN THIOREDOXIN REDUCTASE 4TPU ; 2.355 ; CRYSTAL STRUCTURE OF FERREDOXIN-DEPENDENT DISULFIDE REDUCTASE FROM METHANOSARCINA ACETIVORANS 4F7D ; 2.35 ; Crystal structure of ferredoxin-NADP reductase from burkholderia thailandensis E264 4FK8 ; 2.1 ; Crystal structure of FERREDOXIN-NADP REDUCTASE from burkholderia thailandensis E264 with bound FAD 3FPK ; 1.7 ; Crystal Structure of Ferredoxin-NADP Reductase from Salmonella typhimurium 3LZW ; 1.8 ; Crystal structure of ferredoxin-NADP+ oxidoreductase from bacillus subtilis (form I) 3LZX ; 1.9 ; Crystal structure of ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (FORM II) 8C3M ; 2.6 ; Crystal structure of ferredoxin/flavodoxin NADP+ oxidoreductase 1 (FNR1) V329H mutant from Bacillus cereus 7C2B ; 1.7949 ; Crystal structure of ferredoxin: thioredoxin reductase and thioredoxin f2 complex 7C3F ; 2.3986 ; Crystal structure of ferredoxin: thioredoxin reductase and thioredoxin m2 complex 7BZK ; 1.5935 ; Crystal structure of ferredoxin: thioredoxin reductase and thioredoxin y1 complex 4ZF7 ; 1.893 ; Crystal structure of ferret interleukin-2 1PO3 ; 3.4 ; Crystal structure of ferric citrate transporter FecA in complex with ferric citrate 1PO0 ; 2.15 ; Crystal structure of ferric citrate transporter FecA in complex with iron-free citrate 1PNZ ; 2.5 ; Crystal structure of ferric citrate transporter FecA in the unliganded form 1GDI ; 1.8 ; CRYSTAL STRUCTURE OF FERRIC COMPLEXES OF THE YELLOW LUPIN LEGHEMOGLOBIN WITH ISOQUINOLINE AT 1.8 ANGSTROMS RESOLUTION (RUSSIAN) 1GDJ ; 1.7 ; CRYSTAL STRUCTURE OF FERRIC COMPLEXES OF THE YELLOW LUPIN LEGHEMOGLOBIN WITH ISOQUINOLINE AT 1.8 ANGSTROMS RESOLUTION (RUSSIAN) 1GDK ; 1.8 ; CRYSTAL STRUCTURE OF FERRIC COMPLEXES OF THE YELLOW LUPIN LEGHEMOGLOBIN WITH ISOQUINOLINE AT 1.8 ANGSTROMS RESOLUTION (RUSSIAN) 1GDL ; 1.8 ; CRYSTAL STRUCTURE OF FERRIC COMPLEXES OF THE YELLOW LUPIN LEGHEMOGLOBIN WITH ISOQUINOLINE AT 1.8 ANGSTROMS RESOLUTION (RUSSIAN) 2ZAX ; 1.6 ; Crystal Structure of Ferric Cytochrome P450cam 2ZWT ; 1.35 ; Crystal Structure of Ferric Cytochrome P450cam 2ZAW ; 1.55 ; Crystal Structure of Ferric Cytochrome P450cam Reconstituted with 6-Methyl-6-depropionated Hemin 2Z97 ; 1.8 ; Crystal Structure of Ferric Cytochrome P450cam Reconstituted with 7-Methyl-7-depropionated Hemin 4HLT ; 1.7 ; Crystal structure of ferric E32V Pirin 2QBL ; 1.8 ; Crystal structure of ferric G248T cytochrome P450cam 2QBN ; 1.75 ; Crystal structure of ferric G248V cytochrome P450cam 7OHD ; 1.8 ; CRYSTAL STRUCTURE OF FERRIC MURINE NEUROGLOBIN CDLESS MUTANT 6HK2 ; 1.55 ; Crystal structure of ferric R-state human methemoglobin bound to maleimide-deferoxamine bifunctional chelator (DFO) 1I0R ; 1.5 ; CRYSTAL STRUCTURE OF FERRIC REDUCTASE FROM ARCHAEOGLOBUS FULGIDUS 1IO3 ; 1.9 ; CRYSTAL STRUCTURE OF FERRICYTOCHROME C2 FROM RHODOPSEUDOMONAS VIRIDIS 8B43 ; 2.49 ; Crystal structure of ferrioxamine transporter 3FVB ; 1.806 ; Crystal structure of ferritin (bacterioferritin) from Brucella melitensis 1VLG ; 2.0 ; Crystal structure of Ferritin (TM1128) from Thermotoga maritima at 2.00 A resolution 7USN ; 1.789 ; Crystal structure of ferritin 1 from Caenorhabditis elegans, FTN-1 7URH ; 1.468 ; Crystal structure of Ferritin 2 from Caenorhabditis elegans, FTN-2 5V5K ; 3.08 ; Crystal structure of ferritin E65R mutant from hyperthermophilic archaeon Archaeoglobus fulgidus 3VNX ; 2.4 ; Crystal structure of ferritin from multicellular green algae, Ulva pertusa. 4ISM ; 2.0 ; Crystal structure of ferritin from Pseudo-nitzschia multiseries soaked with zinc 7XZ4 ; 2.2 ; Crystal structure of ferritin from Setaria italica 7VP8 ; 2.002 ; Crystal structure of ferritin from Ureaplasma urealyticum 7RZN ; 1.97 ; Crystal Structure of Ferritin grown by microbatch method in presence of agarose and electric field 2.1KV 7RZX ; 2.44 ; Crystal Structure of Ferritin grown by microbatch method in presence of agarose and electric field 4.3KV 7RYW ; 2.09 ; Crystal structure of Ferritin grown by the microbatch method in the presence of Agarose 2QQY ; 2.0 ; Crystal structure of ferritin like, diiron-carboxylate proteins from Bacillus anthracis str. Ames 3E6S ; 1.95 ; Crystal structure of ferritin soaked with iron from Pseudo-nitzschia multiseries 3GE4 ; 1.7 ; Crystal structure of ferritin:DNA-binding protein DPS from Brucella Melitensis 1DOZ ; 1.8 ; CRYSTAL STRUCTURE OF FERROCHELATASE 1L8X ; 2.7 ; Crystal Structure of Ferrochelatase from the Yeast, Saccharomyces cerevisiae, with Cobalt(II) as the Substrate Ion 2C8J ; 2.1 ; CRYSTAL STRUCTURE OF ferrochelatase HemH-1 from Bacillus anthracis, str. Ames 1N0I ; 2.0 ; Crystal Structure of Ferrochelatase with Cadmium bound at active site 1SHR ; 1.88 ; Crystal structure of ferrocyanide bound human hemoglobin A2 at 1.88A resolution 1CO6 ; 1.6 ; CRYSTAL STRUCTURE OF FERROCYTOCHROME C2 FROM RHODOPSEUDOMONAS VIRIDIS 2IMQ ; 1.3 ; Crystal structure of ferrous cimex nitrophorin 3PXT ; 2.16 ; Crystal Structure of Ferrous CO Adduct of MauG in Complex with Pre-Methylamine Dehydrogenase 2V1K ; 1.25 ; Crystal structure of ferrous deoxymyoglobin at pH 6.8 2A1N ; 1.9 ; Crystal structure of ferrous dioxygen complex of D251N cytochrome P450cam 2A1O ; 1.55 ; Crystal structure of ferrous dioxygen complex of T252A cytochrome P450cam 2A1M ; 2.1 ; Crystal structure of ferrous dioxygen complex of wild-type cytochrome P450cam 6CDH ; 1.821 ; Crystal structure of ferrous form of the Cl-Tyr157 human cysteine dioxygenase with both uncrosslinked and crosslinked cofactor 6BPW ; 2.43 ; Crystal structure of ferrous form of the Cl2-Tyr157 human cysteine dioxygenase with both uncrosslinked and crosslinked cofactor 6BGM ; 2.206 ; Crystal structure of ferrous form of the crosslinked human cysteine dioxygenase 6E87 ; 1.952 ; Crystal structure of ferrous form of the crosslinked human cysteine dioxygenase in the anaerobic condition 6BPU ; 1.8 ; Crystal structure of ferrous form of the F2-Tyr157 human cysteine dioxygenase with both uncrosslinked and crosslinked cofactor 6BPT ; 2.402 ; Crystal structure of ferrous form of the uncrosslinked F2-Tyr157 human cysteine dioxygenase 3PXW ; 2.11 ; Crystal Structure of Ferrous NO Adduct of MauG in Complex with Pre-Methylamine Dehydrogenase 1R65 ; 1.95 ; Crystal structure of ferrous soaked Ribonucleotide Reductase R2 subunit (wildtype) at pH 5 from E. coli 1USW ; 2.5 ; Crystal Structure of Ferulic Acid Esterase from Aspergillus niger 3WMT ; 1.5 ; Crystal structure of feruloyl esterase B from Aspergillus oryzae 8BBP ; 1.07 ; Crystal structure of feruloyl esterase wtsFae1B 8BF3 ; 1.19 ; Crystal structure of feruloyl esterase wtsFae1B in complex with xylobiose 7XWT ; 1.76 ; Crystal structure of Feruoyl-CoA hydratase/lyase complexed with CoA from Sphingomonas paucimobilis 1R6V ; 1.7 ; Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin 1ZPU ; 2.8 ; Crystal Structure of Fet3p, a Multicopper Oxidase that Functions in Iron Import 2ZNZ ; 2.39 ; Crystal structure of FFRP 2E1A ; 2.5 ; crystal structure of FFRP-DM1 2Z4P ; 1.95 ; Crystal structure of FFRP-DM1 4LHO ; 2.224 ; Crystal Structure of FG41Malonate Semialdehyde Decarboxylase inhibited by 3-bromopropiolate 3MLC ; 2.224 ; Crystal structure of FG41MSAD inactivated by 3-chloropropiolate 4QQJ ; 1.682 ; Crystal Structure of FGF Receptor (FGFR) 4 Kinase Domain Harboring the V550L Gate-Keeper Mutation 4QQC ; 2.4 ; Crystal Structure of FGF Receptor (FGFR) 4 Kinase Domain in Complex with FIIN-2, an Irreversible Tyrosine Kinase Inhibitor Capable of Overcoming FGFR Kinase Gate-Keeper Mutations 4QQ5 ; 2.203 ; Crystal Structure of FGF Receptor (FGFR) 4 Kinase Harboring the V550L Gate-Keeper Mutation in Complex With FIIN-2, an Irreversible Tyrosine Kinase Inhibitor Capable of Overcoming FGFR Kinase Gate-Keeper Mutations 4R6V ; 2.353 ; Crystal Structure of FGF Receptor (FGFR) 4 Kinase Harboring the V550L Gate-Keeper Mutation in Complex with FIIN-3, an Irreversible Tyrosine Kinase Inhibitor Capable of Overcoming FGFR kinase Gate-Keeper Mutations 4QQT ; 1.501 ; Crystal Structure of FGF Receptor (FGFR) 4 Tyrosine Kinase Domain 4J98 ; 2.3067 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Gain-of-Function K659Q Mutation. 4J99 ; 1.8474 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Gain-of-Function K659T Mutation. 2Q0B ; 2.9 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic E565A Mutation Responsible for Pfeiffer Syndrome 2PY3 ; 2.3 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic E565G Mutation Responsible for Pfeiffer Syndrome 4J97 ; 2.5482 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic Gain-of-Function K659E Mutation Identified in Endometrial Cancer. 4J96 ; 2.2972 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic Gain-of-Function K659M Mutation Identified in Cervical Cancer. 2PZP ; 2.4 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic K526E Mutation Responsible for Crouzon Syndrome 2PZR ; 3.0 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic K641R Mutation Responsible for Pfeiffer Syndrome 4J95 ; 2.3767 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic K659N Mutation Responsible for an Unclassified Craniosynostosis Syndrome in Space Group C2. 2PVY ; 2.2 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic K659N Mutation Responsible for an Unclassified Craniosynostosis Syndrome. 2PWL ; 2.4 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic N549H Mutation Responsible for Crouzon Syndrome. 2PZ5 ; 2.4 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domain Harboring the Pathogenic N549T Mutation Responsible for Pfeiffer Syndrome 3CLY ; 2.0 ; Crystal Structure of FGF Receptor 2 (FGFR2) Kinase Domains Trapped in Trans-Phosphorylation Reaction 5UGL ; 1.861 ; Crystal Structure of FGF Receptor 2 Tyrosine Kinase Domain Harboring the D650V Activating Mutation 4K33 ; 2.3405 ; Crystal Structure of FGF Receptor 3 (FGFR3) Kinase Domain Harboring the K650E Mutation, a Gain-of-Function Mutation Responsible for Thanatophoric Dysplasia Type II and Spermatocytic Seminoma 2AQZ ; 1.85 ; Crystal structure of FGF-1, S17T/N18T/G19 deletion mutant 1Q04 ; 1.8 ; Crystal structure of FGF-1, S50E/V51N 1Q03 ; 2.05 ; Crystal structure of FGF-1, S50G/V51G mutant 1PZZ ; 2.0 ; Crystal structure of FGF-1, V51N mutant 3OJV ; 2.6 ; Crystal Structure of FGF1 complexed with the ectodomain of FGFR1c exhibiting an ordered ligand specificity-determining betaC'-betaE loop 3OJM ; 2.1 ; Crystal Structure of FGF1 complexed with the ectodomain of FGFR2b harboring P253R Apert mutation 3OJ2 ; 2.2 ; Crystal structure of FGF1 complexed with the ectodomain of FGFR2b harboring the A172F Pfeiffer syndrome mutation 1EVT ; 2.8 ; CRYSTAL STRUCTURE OF FGF1 IN COMPLEX WITH THE EXTRACELLULAR LIGAND BINDING DOMAIN OF FGF RECEPTOR 1 (FGFR1) 1EV2 ; 2.2 ; CRYSTAL STRUCTURE OF FGF2 IN COMPLEX WITH THE EXTRACELLULAR LIGAND BINDING DOMAIN OF FGF RECEPTOR 2 (FGFR2) 4L0R ; 2.49 ; Crystal structure of FGF2-interacting protein from Homo sapiens. Northeast Structural Genomics Consortium Target HR9027A. 8OM6 ; 1.31 ; Crystal structure of FGF2-STAB, a stable variant of human fibroblast growth factor 2 3F1R ; 2.5 ; Crystal structure of FGF20 dimer 6JPJ ; 2.638 ; Crystal structure of FGF401 in complex of FGFR4 4RWL ; 2.193 ; Crystal structure of FGFR1 (C488A, C584C) in complex with 6-(7-((1-aminocyclopropyl) methoxy)-6-methoxyquinolin-4-yloxy)-N-methyl-1-naphthamide (E3810) 4RWJ ; 2.489 ; Crystal Structure of FGFR1 (C488A, C584S) in complex with AZD4547 (N-{3-[2-(3,5-DIMETHOXYPHENYL)ETHYL]-1H-PYRAZOL-5-YL}-4-[(3R,5S)-3,5-DIMETHYLPIPERAZIN-1-YL]BENZAMIDE) 4ZSA ; 2.0 ; Crystal structure of FGFR1 kinase domain in complex with 7n 5Z0S ; 2.45 ; Crystal structure of FGFR1 kinase domain in complex with a novel inhibitor 6ITJ ; 1.994 ; Crystal structure of FGFR1 kinase domain in complex with compound 3 7WCL ; 2.495 ; Crystal structure of FGFR1 kinase domain with Pemigatinib 6P69 ; 2.2 ; Crystal structure of FGFR1-Y563C (FGFR4 surrogate) covalently bound to compound 11. 6P68 ; 2.9 ; Crystal structure of FGFR1-Y563C (FGFR4 surrogate) covalently bound to compound 22. 5VND ; 2.2 ; Crystal structure of FGFR1-Y563C (FGFR4 surrogate) covalently bound to H3B-6527 6LVK ; 2.29 ; Crystal structure of FGFR2 in complex with 1,3,5-triazine derivative 6LVL ; 2.98 ; Crystal structure of FGFR2 in complex with 1,3,5-triazine derivative 7KIA ; 2.22 ; Crystal structure of FGFR2 kinase domain gatekeeper mutant V564F in complex with covalent compound 19 7KIE ; 2.47 ; Crystal structure of FGFR2 kinase domain gatekeeper mutant V564F in complex with covalent compound 3 6LVM ; 2.53 ; Crystal structure of FGFR3 in complex with pyrimidine derivative 7DHL ; 2.57 ; Crystal structure of FGFR3 in complex with pyrimidine derivative 7N1J ; 2.99 ; Crystal structure of FGFR4 domain 3 in complex with a de novo-designed mini-binder 7TYD ; 2.86 ; Crystal structure of FGFR4 domain 3 in complex with a de novo-designed mini-binder in P21 space group 6IUO ; 2.3 ; Crystal structure of FGFR4 kinase domain in complex with a covalent inhibitor 6IUP ; 2.0 ; Crystal structure of FGFR4 kinase domain in complex with compound 5 6V9C ; 1.9 ; Crystal structure of FGFR4 kinase domain in complex with covalent inhibitor 7YC1 ; 2.535 ; Crystal structure of FGFR4 kinase domain with 10d 7YC3 ; 1.987 ; Crystal structure of FGFR4 kinase domain with 10t 7YBO ; 2.307 ; Crystal structure of FGFR4 kinase domain with 10z 7WCT ; 2.106 ; Crystal structure of FGFR4 kinase domain with 7v 6JPE ; 1.601 ; Crystal structure of FGFR4 kinase domain with irreversible inhibitor 1 7F3M ; 2.289 ; Crystal structure of FGFR4 kinase domain with PRN1371 7V29 ; 1.983 ; Crystal structure of FGFR4 with a dual-warhead covalent inhhibitor 4XCU ; 1.71 ; Crystal Structure of FGFR4 with an Irreversible Inhibitor 7YBP ; 2.243 ; Crystal structure of FGFR4(V550L) kinase domain with 10z 7WCW ; 2.317 ; Crystal structure of FGFR4(V550L) kinase domain with 7v 7YBX ; 2.233 ; Crystal structure of FGFR4(V550M) kinase domain with 10z 7WCX ; 2.175 ; Crystal structure of FGFR4(V550M) kinase domain with 7v 7RDW ; 3.55 ; Crystal Structure of FH1 Fab bound to HXb2 HIV-1 gp120 core 5W7W ; 1.348 ; Crystal Structure of FHA domain of human APLF 5W7X ; 2.005 ; Crystal Structure of FHA domain of human APLF in complex with XRCC1 bisphospho peptide 5W7Y ; 2.1 ; Crystal Structure of FHA domain of human APLF in complex with XRCC1 monophosphorylated mutated peptide 7YOC ; 2.41 ; Crystal structure of Fhb7 8K2O ; 2.01 ; Crystal structure of Fhb7-M10 7P8P ; 2.34 ; Crystal structure of Fhit covalently bound to a nucleotide 8A60 ; 3.37 ; Crystal structure of FhuA in complex with the superinfection exclusion lipoprotein Llp 5GM3 ; 1.59 ; Crystal structure of FI-CMCase from Aspergillus aculeatus F-50 5GM5 ; 1.73 ; Crystal structure of FI-CMCase from Aspergillus aculeatus F-50 in complex with cellobiose 5GM4 ; 1.92 ; Crystal structure of FI-CMCase from Aspergillus aculeatus F-50 in complex with cellotetrose 3TEU ; 1.002 ; Crystal structure of fibcon 1NT2 ; 2.9 ; CRYSTAL STRUCTURE OF FIBRILLARIN/NOP5P COMPLEX 2W86 ; 1.8 ; Crystal structure of fibrillin-1 domains cbEGF9hyb2cbEGF10, calcium saturated form 1FZA ; 2.9 ; CRYSTAL STRUCTURE OF FIBRINOGEN FRAGMENT D 966C ; 1.9 ; CRYSTAL STRUCTURE OF FIBROBLAST COLLAGENASE-1 COMPLEXED TO A DIPHENYL-ETHER SULPHONE BASED HYDROXAMIC ACID 2FDB ; 2.28 ; Crystal Structure of Fibroblast growth factor (FGF)8b in complex with FGF Receptor (FGFR) 2c 1PWA ; 1.3 ; Crystal structure of Fibroblast Growth Factor 19 6KTR ; 2.59776 ; Crystal structure of fibroblast growth factor 19 in complex with Fab 1IJT ; 1.8 ; Crystal Structure of Fibroblast Growth Factor 4 (FGF4) 1IHK ; 2.2 ; CRYSTAL STRUCTURE OF FIBROBLAST GROWTH FACTOR 9 (FGF9) 3KY2 ; 2.7 ; Crystal structure of Fibroblast Growth Factor Receptor 1 kinase domain 1SLM ; 1.9 ; CRYSTAL STRUCTURE OF FIBROBLAST STROMELYSIN-1: THE C-TRUNCATED HUMAN PROENZYME 7YPL ; 1.63 ; Crystal structure of fibronectin type III domain variant, a VEGFR2-specific antagonist 5ZXA ; 1.77 ; Crystal structure of fibronectin-binding protein Apa mutant from Mycobacterium tuberculosis 3LET ; 1.802 ; Crystal Structure of Fic domain containing AMPylator, VopS 8GYH ; 1.8 ; Crystal structure of Fic25 (apo form) from Streptomyces ficellus 8GYI ; 1.93 ; Crystal structure of Fic25 (holo form) from Streptomyces ficellus 8GYJ ; 1.82 ; Crystal structure of Fic25 complexed with PLP-(5S,6S)-N2-acetyl-DADH adduct from Streptomyces ficellus 8HK0 ; 2.29 ; Crystal structure of Fic32-33 complex from Streptomyces ficellus NRRL 8067 4L15 ; 2.6 ; Crystal structure of FIGL-1 AAA domain 4L16 ; 2.8 ; Crystal structure of FIGL-1 AAA domain in complex with ADP 1RWR ; 1.72 ; Crystal structure of filamentous hemagglutinin secretion domain 2BP3 ; 2.32 ; Crystal structure of Filamin A domain 17 and GPIb alpha cytoplasmic domain complex 3ISW ; 2.8 ; Crystal structure of filamin-A immunoglobulin-like repeat 21 bound to an N-terminal peptide of CFTR 7D1B ; 1.24 ; Crystal structure of Fimbriiglobus ruber glutaminyl cyclase 5JR4 ; 2.596 ; Crystal structure of FimH A27V/V163A from E. coli UTI89 bound to FimG N-terminal extension 5JQI ; 1.962 ; Crystal structure of FimH A62S from E. coli UTI89 bound to FimG N-terminal extension 4CST ; 1.1 ; Crystal structure of FimH in complex with 3'-Chloro-4'-(alpha-D-mannopyranosyloxy)-biphenyl-4-carbonitrile 4X5Q ; 1.12 ; Crystal structure of FimH in complex with 5-nitro-indolinylphenyl alpha-D-mannopyranoside 4X5P ; 0.997 ; Crystal structure of FimH in complex with a benzoyl-amidophenyl alpha-D-mannopyranoside 6G2S ; 2.2 ; Crystal structure of FimH in complex with a pentaflourinated biphenyl alpha D-mannoside 4X5R ; 1.65 ; Crystal structure of FimH in complex with a squaryl-phenyl alpha-D-mannopyranoside derivative 4CSS ; 1.069 ; Crystal structure of FimH in complex with a sulfonamide biphenyl alpha D-mannoside 6G2R ; 2.1 ; Crystal structure of FimH in complex with a tetraflourinated biphenyl alpha D-mannoside 4X50 ; 2.0 ; Crystal structure of FimH in complex with biphenyl alpha-D-mannopyranoside 5CGB ; 1.6 ; Crystal structure of FimH in complex with heptyl alpha-D-septanoside 4LOV ; 1.5 ; Crystal structure of FimH in complex with Heptylmannoside 3MCY ; 2.9 ; Crystal structure of FimH lectin domain bound to biphenyl mannoside meta-methyl ester. 5L4T ; 1.9 ; Crystal structure of FimH lectin domain in complex with 2-Deoxy-Heptylmannoside 5L4U ; 2.1 ; Crystal structure of FimH lectin domain in complex with 2-Fluoro-Heptylmannoside 5L4V ; 2.99 ; Crystal structure of FimH lectin domain in complex with 3-Deoxy-Heptylmannoside 5L4W ; 1.9 ; Crystal structure of FimH lectin domain in complex with 3-Fluoro-Heptylmannoside 5L4X ; 1.9 ; Crystal structure of FimH lectin domain in complex with 4-Deoxy-Heptylmannoside 5L4Y ; 1.9 ; Crystal structure of FimH lectin domain in complex with 4-Fluoro-Heptylmannoside 4CA4 ; 2.84 ; Crystal structure of FimH lectin domain with the Tyr48Ala mutation, in complex with heptyl alpha-D-mannopyrannoside 5MCA ; 1.604 ; Crystal structure of FimH-LD R60P variant in the apo state 4AG0 ; 2.304 ; Crystal structure of FimX EAL domain 3HV9 ; 2.298 ; Crystal structure of FimX EAL domain from Pseudomonas aeruginosa 3HV8 ; 1.445 ; Crystal structure of FimX EAL domain from Pseudomonas aeruginosa bound to c-di-GMP 3HVA ; 2.042 ; Crystal structure of FimX GGDEF domain from Pseudomonas aeruginosa 5ECH ; 2.14 ; Crystal Structure of FIN219-FIP1 complex with JA and ATP 5ECM ; 1.6 ; Crystal Structure of FIN219-FIP1 complex with JA and Leu 5ECI ; 1.56 ; Crystal Structure of FIN219-FIP1 complex with JA, ATP and Mg 5ECK ; 1.54 ; Crystal Structure of FIN219-FIP1 complex with JA, Ile and ATP 5ECL ; 1.85 ; Crystal Structure of FIN219-FIP1 complex with JA, Ile and Mg 5ECN ; 1.72 ; Crystal Structure of FIN219-FIP1 complex with JA, Leu and ATP 5ECO ; 1.8 ; Crystal Structure of FIN219-FIP1 complex with JA, Leu and Mg 5ECP ; 2.25002 ; Crystal Structure of FIN219-FIP1 complex with JA, MET and ATP 5ECQ ; 1.66 ; Crystal Structure of FIN219-FIP1 complex with JA, VAL and ATP 5ECR ; 1.72 ; Crystal Structure of FIN219-FIP1 complex with JA, VAL and Mg 5GZZ ; 2.386 ; Crystal Structure of FIN219-SjGST complex with JA 1OSY ; 1.7 ; Crystal structure of FIP-Fve fungal immunomodulatory protein 5ECS ; 1.65 ; Crystal Structure of FIP1 with GSH 7CZG ; 1.8 ; Crystal structure of FIP200 Claw domain apo form 7D0E ; 1.4 ; Crystal structure of FIP200 Claw/p-CCPG1 FIR2 7CZM ; 2.0 ; Crystal structure of FIP200 Claw/p-OPtineurin LIR complex 7Z3X ; 1.65 ; Crystal structure of FIR RRM1-2 Y115F mutant bound to FUSE ssDNA 1EQ9 ; 1.7 ; CRYSTAL STRUCTURE OF FIRE ANT CHYMOTRYPSIN COMPLEXED TO PMSF 2YGU ; 2.6 ; Crystal structure of fire ant venom allergen, Sol I 2 3UUL ; 1.95 ; Crystal Structure of first N-terminal utrophin spectrin repeat 3ILX ; 2.0 ; Crystal structure of First ORF in transposon ISC1904 from Sulfolobus solfataricus P2 2QFJ ; 2.1 ; Crystal Structure of First Two RRM Domains of FIR Bound to ssDNA from a Portion of FUSE 4IHX ; 2.8 ; Crystal structure of Fis bound to 27 bp 2-Aminopurine substituted DNA F28-2AP (AAATTTGTTTGA2T2TTGAGCAAATTT) 3JRB ; 3.1 ; Crystal structure of Fis bound to 27 bp DNA F24 containing T-tract at center 3JRD ; 3.1 ; Crystal structure of Fis bound to 27 bp DNA F25 containing T2A3 sequence at center 3JRE ; 3.17 ; Crystal structure of Fis bound to 27 bp DNA F26 containing A-tract at center 3JRF ; 3.05 ; Crystal structure of Fis bound to 27 bp DNA F27 containing a C/G at center 3JRC ; 3.08 ; Crystal structure of Fis bound to 27 bp DNA F29 containing 5 G/Cs at center 4IHW ; 2.7 ; Crystal structure of Fis bound to 27 bp Inosine substituted DNA F28-dI (AAATTTGTTTGAICITTGAGCAAATTT) 3JRG ; 3.11 ; Crystal structure of Fis bound to 27 bp non consensus sequence DNA F18 3JRH ; 2.88 ; Crystal structure of Fis bound to 27 bp non consensus sequence DNA F21 3JRI ; 3.11 ; Crystal structure of Fis bound to 27 bp non consensus sequence DNA F23 3IV5 ; 2.9 ; Crystal structure of Fis bound to 27 bp optimal binding sequence F1 3JR9 ; 2.9 ; Crystal structure of Fis bound to 27 bp optimal binding sequence F2 4IHV ; 2.716 ; Crystal structure of Fis bound to 27 bp sequence DNA F28 (AAATTTGTTTGAGCGTTGAGCAAATTT) 5DS9 ; 2.561 ; Crystal structure of Fis bound to 27bp DNA F1-8A (AAATTAGTTTGAATTTTGAGCTAATTT) 5DTD ; 2.642 ; Crystal structure of Fis bound to 27bp DNA F1-8C (AAATTCGTTTGAATTTTGAGCGAATTT) 5E3L ; 2.66 ; Crystal structure of Fis bound to 27bp DNA F1-8G (AAATTGGTTTGAATTTTGAGCCAATTT) 5E3N ; 2.66 ; Crystal structure of Fis bound to 27bp DNA F31 (AAATTTGTAGGAATTTTCTGCAAATTT) 5E3O ; 2.78 ; Crystal structure of Fis bound to 27bp DNA F32 (AAATTTGGAGGAATTTTCTCCAAATTT) 5E3M ; 2.886 ; Crystal structure of Fis bound to 27bp DNA F35 (AAATTAGTTTGAATCTCGAGCTAATTT) 4IHY ; 2.9 ; Crystal structure of Fis bound to 27bp Inosine substituted DNA F29-dI (AAATTTGTTTGIICICTGAGCAAATTT) 3JRA ; 3.11 ; Crystal structure of Fis bound to 27bp non consensus sequence DNA F6 7YKA ; 2.3 ; Crystal structure of Fis1 (Mitochondrial fission 1 protein) 4IZZ ; 2.502 ; Crystal Structure of Fischerella Transcription Factor HetR complexed with 21mer DNA target 4J00 ; 3.004 ; Crystal Structure of Fischerella Transcription Factor HetR complexed with 24mer DNA target 4J01 ; 3.246 ; Crystal Structure of Fischerella Transcription Factor HetR complexed with 29mer DNA target 5W4T ; 2.65 ; Crystal Structure of Fish Cadherin-23 EC1-3 3O48 ; 1.75 ; Crystal structure of fission protein Fis1 from Saccharomyces cerevisiae 3DWL ; 3.78 ; Crystal Structure of Fission Yeast Arp2/3 Complex Lacking the Arp2 Subunit 6AAF ; 2.197 ; Crystal structure of fission yeast Atg8 complexed with the helical AIM of Hfl1. 7CUJ ; 2.4 ; Crystal structure of fission yeast Ccq1 and Tpz1 7YO8 ; 1.805 ; Crystal structure of fission yeast Hfl1 LIR fused to human GABARAPL2 6A6W ; 2.601 ; Crystal structure of fission yeast inner membrane protein Bqt4 in complex with Sad1 7CUH ; 3.0 ; Crystal structure of fission yeast Pot1 and ssDNA 7CUI ; 2.6 ; Crystal structure of fission yeast Pot1 and Tpz1 2H1C ; 1.8 ; Crystal Structure of FitAcB from Neisseria gonorrhoeae 3BE5 ; 2.2 ; Crystal structure of FitE (crystal form 1), a group III periplasmic siderophore binding protein 3BE6 ; 1.82 ; Crystal structure of FitE (crystal form 2), a group III periplasmic siderophore binding protein 5DCK ; 2.29 ; Crystal Structure of FIV Capsid C-Terminal Domain 5OVN ; 2.942 ; Crystal Structure of FIV Reverse Transcriptase 4V4G ; 11.5 ; Crystal structure of five 70s ribosomes from Escherichia Coli in complex with protein Y. 2R39 ; 2.02 ; Crystal structure of FixG-related protein from Vibrio parahaemolyticus 1DBW ; 1.6 ; CRYSTAL STRUCTURE OF FIXJ-N 6RCY ; 2.3 ; CRYSTAL STRUCTURE OF FK1 DOMAIN OF FKBP52 IN COMPLEX WITH A BIO-INSPIRED HYBRID FLUORESCENT LIGAND 4J4N ; 2.75 ; Crystal structure of FK506 binding domain of plasmodium falciparum FKBP35 in complex with D44 4J4O ; 1.73 ; Crystal structure of FK506 binding domain of plasmodium VIVAX FKBP35 in complex with D44 4MGV ; 1.72 ; Crystal structure of FK506 binding domain of plasmodium VIVAX FKBP35 In complex with inhibitor D5 7U0S ; 1.7 ; Crystal Structure of FK506-binding protein 1A from Aspergillus fumigatus Bound to Ascomycin 3PA7 ; 2.61 ; Crystal structure of FKBP from plasmodium vivax in complex with tetrapeptide ALPF 6M4U ; 2.2 ; Crystal structure of FKBP-FRB T2098L mutant in complex with rapamycin 2PPN ; 0.92 ; Crystal structure of FKBP12 6VSI ; 1.87 ; Crystal structure of FKBP12 of Candida auris 5I7Q ; 1.9 ; Crystal structure of Fkbp12-IF(SlpA), a chimeric protein of human Fkbp12 and the insert in flap domain of Ecoli SlpA 5I7P ; 2.002 ; Crystal structure of Fkbp12-IF(SlyD), a chimeric protein of human Fkbp12 and the insert in flap domain of Ecoli SlyD 1C9H ; 2.0 ; CRYSTAL STRUCTURE OF FKBP12.6 IN COMPLEX WITH RAPAMYCIN 4JYS ; 1.9 ; Crystal structure of FKBP25 from Plasmodium Vivax 1P5Q ; 2.8 ; Crystal Structure of FKBP52 C-terminal Domain 1QZ2 ; 3.0 ; Crystal Structure of FKBP52 C-terminal Domain complex with the C-terminal peptide MEEVD of Hsp90 1Q6U ; 2.45 ; Crystal structure of FkpA from Escherichia coli 6KAJ ; 2.2249 ; Crystal structure of FKRP in complex with Ba ion 6KAN ; 2.251 ; Crystal structure of FKRP in complex with Ba ion 6L7U ; 2.24 ; Crystal structure of FKRP in complex with Ba ion, Ba-SAD data 6KAM ; 2.46 ; Crystal structure of FKRP in complex with Ba ion, CDP-ribtol, and sugar acceptor 6KAK ; 2.056 ; Crystal structure of FKRP in complex with Mg ion 6KAL ; 2.6 ; Crystal structure of FKRP in complex with Mg ion and CMP 6L7T ; 2.41 ; Crystal structure of FKRP in complex with Mg ion, Zinc low remote data 6L7S ; 2.41 ; Crystal structure of FKRP in complex with Mg ion, Zinc peak data 4WIA ; 2.2 ; Crystal structure of flagellar accessory protein FlaH from Methanocaldococcus jannaschii 5XEF ; 2.0 ; Crystal structure of flagellar chaperone from bacteria 5YTI ; 2.75 ; Crystal structure of flagellar hook associated protein-3 (HAP-3: Q5ZW61_LEGPH) from Legionella pneumophila 5XRW ; 2.5 ; Crystal structure of flagellar motor switch complex from H. pylori 3FRN ; 2.05 ; CRYSTAL STRUCTURE OF flagellar protein FlgA FROM Thermotoga maritima MSB8 3H3M ; 2.5 ; Crystal structure of flagellar protein FliT from Bordetella bronchiseptica 5GNA ; 2.3 ; Crystal Structure of flagellin assembly related protein 3ORY ; 2.0 ; Crystal structure of Flap endonuclease 1 from hyperthermophilic archaeon Desulfurococcus amylolyticus 1MC8 ; 3.1 ; Crystal Structure of Flap Endonuclease-1 R42E mutant from Pyrococcus horikoshii 8J50 ; 1.9 ; Crystal structure of Flavihumibacter petaseus GH31 alpha-galactosidase 8J51 ; 2.15 ; Crystal structure of Flavihumibacter petaseus GH31 alpha-galactosidase in complex with galactose 8J52 ; 1.9 ; Crystal structure of Flavihumibacter petaseus GH31 alpha-galactosidase mutant D304A in complex with alpha-1,4-galactobiose 1S4M ; 2.1 ; Crystal structure of flavin binding to FAD synthetase from Thermotoga maritina 3AH5 ; 2.5 ; Crystal Structure of flavin dependent thymidylate synthase ThyX from helicobacter pylori complexed with FAD and dUMP 6ASL ; 1.9 ; Crystal Structure of Flavin monooxygenase CmoJ (earlier YtnJ) bound with FMN 2ECU ; 1.3 ; Crystal structure of flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase 2QCK ; 1.9 ; Crystal structure of flavin reductase domain protein (YP_831077.1) from Arthrobacter sp. FB24 at 1.90 A resolution 2ED4 ; 1.85 ; Crystal structure of flavin reductase HpaC complexed with FAD and NAD 2GV8 ; 2.1 ; Crystal structure of flavin-containing monooxygenase (FMO) from S.pombe and NADPH cofactor complex 2GVC ; 2.22 ; Crystal structure of flavin-containing monooxygenase (FMO)from S.pombe and substrate (methimazole) complex 2RGJ ; 2.4 ; Crystal structure of flavin-containing monooxygenase PhzS 3D1C ; 2.4 ; Crystal structure of Flavin-containing Putative Monooxygenase (NP_373108.1) from STAPHYLOCOCCUS AUREUS MU50 at 2.40 A resolution 6JHM ; 2.3 ; Crystal structure of Flavin-dependent Monooxygenase HadA 3G4A ; 1.95 ; Crystal structure of flavine dependant thymidylate synthase S88A mutant from Thermotoga maritima at 1.95 angstrom resolution 5JXF ; 2.1 ; Crystal structure of Flavobacterium psychrophilum DPP11 in complex with dipeptide Arg-Asp 1C3A ; 2.5 ; CRYSTAL STRUCTURE OF FLAVOCETIN-A FROM THE HABU SNAKE VENOM, A NOVEL CYCLIC TETRAMER OF C-TYPE LECTIN-LIKE HETERODIMERS 3VRD ; 1.5 ; Crystal structure of flavocytochrome c from Thermochromatium tepidum 5YOE ; 1.35 ; Crystal Structure of flavodoxin with engineered disulfide bond A43C-L74C 5YOC ; 1.5 ; Crystal Structure of flavodoxin with engineered disulfide bond C102-R125C 5YOG ; 1.42 ; Crystal Structure of flavodoxin with engineered disulfide bond N14C-C93 5YOB ; 1.142 ; Crystal Structure of flavodoxin without engineered disulfide bond 6O0A ; 1.7 ; Crystal structure of flavohemoglobin from Malassezia yamatoensis with bound FAD and heme determined by iron SAD phasing 1VME ; 1.8 ; Crystal structure of Flavoprotein (TM0755) from Thermotoga maritima at 1.80 A resolution 2GQF ; 2.7 ; Crystal structure of flavoprotein HI0933 from Haemophilus influenzae Rd 3EDO ; 1.2 ; Crystal structure of Flavoprotein in Complex with FMN (YP_193882.1) from Lactobacillus acidophilus NCFM at 1.20 A resolution 2XOD ; 0.96 ; Crystal structure of flavoprotein NrdI from Bacillus anthracis in the oxidised form 2XOE ; 1.4 ; Crystal structure of flavoprotein NrdI from Bacillus anthracis in the semiquinone form 3NIX ; 2.6 ; Crystal structure of flavoprotein/dehydrogenase from Cytophaga hutchinsonii. Northeast Structural Genomics Consortium Target ChR43. 7EJW ; 1.98 ; Crystal structure of FleN in complex with FleQ AAA+ doamain 4MN8 ; 3.062 ; Crystal structure of flg22 in complex with the FLS2 and BAK1 ectodomains 3C12 ; 2.51 ; Crystal Structure of FlgD from Xanthomonas campestris: Insights into the Hook Capping Essential for Flagellar Assembly 1WLG ; 1.8 ; Crystal structure of FlgE31, a major fragment of the hook protein 3OPC ; 2.09 ; Crystal structure of FlgN chaperone from Bordetella pertussis 1G8E ; 1.8 ; CRYSTAL STRUCTURE OF FLHD FROM ESCHERICHIA COLI 4QXL ; 1.512 ; Crystal Structure of FLHE 2PX0 ; 3.0 ; Crystal structure of FlhF complexed with GMPPNP/Mg(2+) 2PX3 ; 3.2 ; Crystal structure of FlhF complexed with GTP/Mg(2+) 3SYN ; 3.063 ; Crystal structure of FlhF in complex with its activator 8ERM ; 1.475 ; Crystal structure of FliC D2/D3 domains from Pseudomonas aeruginosa PAO1 5FHY ; 2.201 ; Crystal structure of FliD (HAP2) from Pseudomonas aeruginosa PAO1 5WUJ ; 2.3 ; Crystal structure of FliF-FliG complex from H. pylori 3USY ; 2.706 ; Crystal structure of Flig (residue 116-343) from H. Pylori 3USW ; 2.601 ; Crystal structure of FliG (residues 86-343) from H. pylori 4FQ0 ; 2.82 ; Crystal structure of FliG-FliM complex from H. pylori 7DMA ; 1.44 ; Crystal structure of FliM middle domain (46-231) with R49P substitution from Vibro alginolyticus 7DM9 ; 1.71 ; Crystal structure of FliM middle domain (51-229) from Vibro alginolyticus 4GC8 ; 2.2 ; Crystal structure of FliM middle domain from H. pylori 5X0Z ; 2.7 ; Crystal structure of FliM-SpeE complex from H. pylori 3IQC ; 2.7 ; Crystal structure of FliS from H. pylori 3LOB ; 3.6 ; Crystal Structure of Flock House Virus calcium mutant 1RJB ; 2.1 ; Crystal Structure of FLT3 7ZV9 ; 4.507 ; Crystal structure of FLT3 in complex with a monomeric FLT3 Ligand variant 6JQR ; 2.2 ; Crystal structure of FLT3 in complex with gilteritinib 7QDP ; 3.691 ; Crystal structure of FLT3 T343I in complex with the canonical ligand FL 4RT7 ; 3.1 ; Crystal Structure of FLT3 with a small molecule inhibitor 4YVQ ; 2.401 ; Crystal Structure of FLU-TPR in Complex with the C-terminal Region of GluTR 6OBZ ; 1.73 ; Crystal structure of FluA-20 Fab 6OC3 ; 2.85 ; Crystal structure of FluA-20 Fab in complex with the head domain of H1 (A/Solomon Islands/3/2006) 6OCB ; 2.1 ; Crystal structure of FluA-20 Fab in complex with the head domain of H3 (A/Hong Kong/1/1968) 7QEA ; 2.28 ; Crystal structure of fluorescein-di-Beta-D-glucuronide bound to a mutant of SN243 (D415A) 3M2K ; 3.5 ; Crystal Structure of fluorescein-labeled Class A -beta lactamase PenP in complex with cefotaxime 3M2J ; 1.8 ; Crystal Structure of fluorescein-labeled Class A -lactamase PenP 8SXC ; 1.5 ; Crystal Structure of Fluorescent Protein Fusion Red 2 6U1A ; 1.09 ; Crystal Structure of Fluorescent Protein FusionRed 8GOS ; 1.01 ; Crystal structure of fluorescent protein RasM 4I3D ; 2.298 ; Crystal structure of fluorescent protein UnaG N57A mutant 4I3C ; 2.001 ; Crystal structure of fluorescent protein UnaG N57Q mutant 4I3B ; 1.199 ; Crystal structure of fluorescent protein UnaG wild type 3LF4 ; 1.808 ; Crystal Structure of Fluorescent Timer Precursor Blue102 6B2A ; 2.65 ; Crystal structure of fluoride channel Fluc Ec2 F80M Mutant 6B24 ; 2.75 ; Crystal structure of fluoride channel Fluc Ec2 F80Y Mutant 6B2B ; 2.6 ; Crystal structure of fluoride channel Fluc Ec2 F83M Mutant 6B2D ; 3.01 ; Crystal structure of fluoride channel Fluc Ec2 T114S Mutant 4ENC ; 2.272 ; Crystal structure of fluoride riboswitch 4ENB ; 2.302 ; Crystal structure of fluoride riboswitch, bound to Iridium 4ENA ; 2.85 ; Crystal structure of fluoride riboswitch, soaked in Cs+ 3VRS ; 2.603 ; Crystal structure of fluoride riboswitch, soaked in Mn2+ 4EN5 ; 2.957 ; Crystal structure of fluoride riboswitch, Tl-Acetate soaked 3IPN ; 1.21 ; Crystal Structure of fluorine and methyl modified collagen: (mepFlpgly)7 8SDC ; 1.86 ; Crystal structure of fluoroacetate dehalogenase Daro3835 apoenzyme 8SDD ; 2.0 ; Crystal structure of fluoroacetate dehalogenase Daro3835 H274N mutant with D107-glycolyl intermediate 5AAO ; 2.6 ; Crystal structure of fluorogen-activating designed ankyrin repeat protein (DARPin) dimer in complex with malachite green 3SH7 ; 2.5 ; Crystal structure of fluorophore-labeled beta-lactamase PenP 3SH9 ; 1.9 ; Crystal structure of fluorophore-labeled beta-lactamase PenP in complex with cefotaxime 3SH8 ; 2.0 ; Crystal structure of fluorophore-labeled beta-lactamase PenP in complex with cephaloridine 3LY4 ; 1.8 ; Crystal Structure of fluorophore-labeled Class A -lactamase PenP-E166Cb in complex with penicillin G 3LY3 ; 1.8 ; Crystal Structure of fluorophore-labeled Class A Beta-lactamase PenP 5JVZ ; 2.62 ; Crystal structure of flurbiprofen bound to S121P murine COX-2 mutant 5I76 ; 1.922 ; Crystal structure of FM318, a recombinant Fab adopted from cetuximab 5GZ0 ; 1.7 ; Crystal structure of FM329, a recombinant Fab adopted from cetuximab 7DP0 ; 2.10004 ; Crystal structure of FMN and NADPH-dependent nitroreductase NfnB from sphigopyxis sp. strain HMH 7DP1 ; 2.0035 ; Crystal structure of FMN and NADPH-dependent nitroreductase NfnB mutant Y88A derived from sphigopyxis sp. strain HMH 7DP2 ; 2.40009 ; Crystal structure of FMN and NADPH-dependent nitroreductase NfnB mutant Y88F derived from sphigopyxis sp. strain HMH 4QOF ; 1.55 ; Crystal structure of fmn quinone reductase 2 AT 1.55A 4QOI ; 1.55 ; Crystal structure of FMN quinone reductase 2 in complex with melatonin at 1.55A 4QOJ ; 1.85 ; CRYSTAL STRUCTURE OF FMN QUINONE REDUCTASE 2 IN COMPLEX WITH RESVERATROL AT 1.85A 6MVF ; 2.55 ; Crystal structure of FMN-binding beta-glucuronidase from Facaelibacterium prausnitzii L2-6 6MVH ; 2.4 ; Crystal structure of FMN-binding beta-glucuronidase from Roseburia hominis 6MVG ; 2.8 ; Crystal structure of FMN-binding beta-glucuronidase from Ruminococcus gnavus 2R6V ; 1.25 ; Crystal structure of FMN-binding protein (NP_142786.1) from Pyrococcus horikoshii at 1.35 A resolution 3ZOG ; 1.75 ; Crystal structure of FMN-binding protein (NP_142786.1) from Pyrococcus horikoshii with bound 1-Cyclohex-2-enone 3ZOD ; 1.68 ; Crystal structure of FMN-binding protein (NP_142786.1) from Pyrococcus horikoshii with bound benzene-1,4-diol 3ZOC ; 2.1 ; Crystal structure of FMN-binding protein (NP_142786.1) from Pyrococcus horikoshii with bound p-hydroxybenzaldehyde 3ZOH ; 1.65 ; Crystal structure of FMN-binding protein (YP_005476) from Thermus thermophilus with bound 1-Cyclohex-2-enone 3ZOF ; 2.15 ; Crystal structure of FMN-binding protein (YP_005476) from Thermus thermophilus with bound benzene-1,4-diol 3ZOE ; 1.85 ; Crystal structure of FMN-binding protein (YP_005476) from Thermus thermophilus with bound p-hydroxybenzaldehyde 3X0Y ; 2.3 ; Crystal structure of FMN-bound DszC from Rhodococcus erythropolis D-1 2NR4 ; 1.85 ; Crystal structure of FMN-bound protein MM1853 from Methanosarcina mazei, Pfam DUF447 5XDB ; 1.811 ; Crystal structure of FMN-bound TdsC from Paenibacillus sp. A11-2 2HPV ; 2.0 ; Crystal structure of FMN-Dependent azoreductase from Enterococcus faecalis 7CFU ; 2.15 ; Crystal Structure of FMN-dependent Cysteine Decarboxylases SpaF 6JLS ; 2.24 ; Crystal Structure of FMN-dependent Cysteine Decarboxylases TvaF from Thioviridamide Biosynthesis 7F76 ; 1.57 ; Crystal Structure of FMN-dependent NADPH-quinone reductase (azoR) from Bacillus cohnii 3HOI ; 1.55 ; Crystal structure of FMN-dependent nitroreductase BF3017 from Bacteroides fragilis NCTC 9343 (YP_212631.1) from Bacteroides fragilis NCTC 9343 at 1.55 A resolution 7OH2 ; 1.9 ; Crystal structure of FMNH2-dependent monooxygenase for oxidative desulfurization of sulfoquinovose 7OLF ; 3.4 ; Crystal structure of FMNH2-dependent monooxygenase from Agrobacterium tumefaciens for oxidative desulfurization of sulfoquinovose 8ACS ; 2.5 ; Crystal structure of FMO from Janthinobacterium svalbardensis 5UWJ ; 2.221 ; Crystal Structure of FMRP NES Peptide in complex with CRM1-Ran-RanBP1 4R7I ; 2.75 ; Crystal structure of FMS kinase domain with a small molecular inhibitor, GLEEVEC 4R7H ; 2.8001 ; Crystal structure of FMS KINASE domain with a small molecular inhibitor, PLX3397 6N33 ; 2.25 ; Crystal structure of fms kinase domain with a small molecular inhibitor, PLX5622 4HW7 ; 2.9001 ; Crystal structure of FMS kinase domain with a small molecular inhibitor, PLX647-OME 1Z6L ; 2.5 ; crystal structure of Fms1 in complex with its substrate 3CND ; 2.5 ; Crystal structure of fms1 in complex with N1-AcSpermine 3CNT ; 2.7 ; Crystal structure of fms1 in complex with R-Bz-MeSpermidine 3CNS ; 2.4 ; Crystal structure of fms1 in complex with S-Bz-MeSpermidine 3CNP ; 2.5 ; Crystal structure of fms1 in complex with S-N1-AcMeSpermidine 3CN8 ; 2.4 ; Crystal structure of fms1 in complex with spermidine 1XPQ ; 2.51 ; Crystal structure of fms1, a polyamine oxidase from yeast 1YY5 ; 2.3 ; Crystal structure of Fms1, a polyamine oxidase from Yeast 5ZH8 ; 2.6 ; Crystal Structure of FmtA from Staphylococcus aureus at 2.58 A 8AXF ; 2.54 ; Crystal structure of FMV N bound to 42-mer ssRNA 8AX4 ; 2.28 ; Crystal structure of FMV N in its RNA-free form 5KF4 ; 2.5 ; Crystal structure of FN3 domain (Residues P368-P466) of Human collagen XX 4U3H ; 1.98 ; Crystal structure of FN3con 7JGT ; 1.9 ; Crystal Structure of FN3tt 5NG6 ; 3.342 ; Crystal structure of FnCas12a bound to a crRNA 6I1L ; 2.98 ; Crystal structure of FnCas12a in complex with a crRNA guide and ssDNA target 3NCO ; 1.5 ; Crystal structure of FnCel5A from F. nodosum Rt17-B1 3L5I ; 1.9 ; Crystal structure of FnIII domains of human GP130 (Domains 4-6) 3L5J ; 3.042 ; Crystal structure of FnIII domains of human GP130 (Domains 4-6) 5CVR ; 2.6 ; Crystal structure of FNR of A. fischeri in a partially degraded form 1MP8 ; 1.6 ; Crystal structure of Focal Adhesion Kinase (FAK) 2ETM ; 2.3 ; Crystal Structure of Focal Adhesion Kinase Domain Complexed with 7H-Pyrrolo [2,3-d] pyrimidine Derivative 2IJM ; 2.187 ; Crystal Structure of Focal Adhesion Kinase Domain with 2 molecules in the Asymmetric Unit Complexed with ADP and ATP 4DJE ; 3.504 ; Crystal structure of folate-bound corrinoid iron-sulfur protein (CFeSP) in complex with its methyltransferase (MeTr), co-crystallized with folate 4DJF ; 3.03 ; Crystal structure of folate-bound corrinoid iron-sulfur protein (CFeSP) in complex with its methyltransferase (MeTr), co-crystallized with folate and Ti(III) citrate reductant 4DJD ; 2.38 ; Crystal structure of folate-free corrinoid iron-sulfur protein (CFeSP) in complex with its methyltransferase (MeTr) 3P2O ; 2.227 ; Crystal Structure of FolD Bifunctional Protein from Campylobacter jejuni 5TVL ; 2.55 ; Crystal structure of foldase protein PrsA from Streptococcus pneumoniae str. Canada MDR_19A 2GHJ ; 2.9 ; Crystal structure of folded and partially unfolded forms of Aquifex aeolicus ribosomal protein L20 5Y7O ; 3.1 ; Crystal structure of folding sensor region of UGGT from Thermomyces dupontii 5JWR ; 2.61 ; Crystal structure of foldswitch-stabilized KaiB in complex with the N-terminal CI domain of KaiC and a dimer of KaiA C-terminal domains from Thermosynechococcus elongatus 5JWO ; 1.8 ; Crystal structure of foldswitch-stabilized KaiB in complex with the N-terminal CI domain of KaiC from Thermosynechococcus elongatus 5BT9 ; 1.5 ; Crystal Structure of FolM Alternative dihydrofolate reductase 1 from Brucella canis complexed with NADP 5TGD ; 1.7 ; Crystal structure of FolM Alternative dihydrofolate reductase 1 from Brucella suis in complex with NADP 6PZ2 ; 2.0 ; Crystal Structure of FolP (dihydropteroate synthase) from Colstridium difficile in the presence of pteroic acid 4Z7F ; 3.194 ; Crystal structure of FolT bound with folic acid 4AEY ; 3.0 ; Crystal structure of FolX from Pseudomonas aeruginosa 1O5Z ; 2.1 ; Crystal structure of Folylpolyglutamate synthase (TM0166) from Thermotoga maritima at 2.10 A resolution 4GH4 ; 3.0 ; Crystal Structure of Foot and Mouth Disease Virus A22 Serotype 5NE4 ; 2.3 ; Crystal Structure of Foot and Mouth Disease Virus O PanAsia 2WV4 ; 2.5 ; Crystal structure of foot-and-mouth disease virus 3C protease in complex with a decameric peptide corresponding to the VP1-2A cleavage junction 2WV5 ; 2.7 ; Crystal structure of foot-and-mouth disease virus 3C protease in complex with a decameric peptide corresponding to the VP1-2A cleavage junction with a GLN to Glu substitution at P1 6NKO ; 2.403 ; Crystal structure of ForH 1WAV ; 2.5 ; CRYSTAL STRUCTURE OF FORM B MONOCLINIC CRYSTAL OF INSULIN 1KOL ; 1.65 ; Crystal structure of formaldehyde dehydrogenase 4JLW ; 2.7 ; Crystal structure of formaldehyde dehydrogenase from Pseudomonas aeruginosa 2DPH ; 2.27 ; Crystal Structure of Formaldehyde dismutase 3VBO ; 2.88 ; Crystal structure of formaldehyde treated empty human Enterovirus 71 particle (cryo at 100K) 3VBR ; 3.8 ; Crystal structure of formaldehyde treated empty human Enterovirus 71 particle (room temperature) 3VBF ; 2.6 ; Crystal structure of formaldehyde treated human Enterovirus 71 (space group I23) 3VBH ; 2.3 ; Crystal structure of formaldehyde treated human enterovirus 71 (space group R32) 6T9W ; 2.15 ; Crystal structure of formate dehydrogenase FDH2 D222A/Q223R enzyme from Granulicella mallensis MP5ACTX8 in complex with NADP and azide. 6T9X ; 2.2 ; Crystal structure of formate dehydrogenase FDH2 D222Q/Q223R mutant enzyme from Granulicella mallensis MP5ACTX8 in complex with NADP and Azide. 6TB6 ; 1.98 ; Crystal structure of formate dehydrogenase FDH2 D222S/Q223R enzyme from Granulicella mallensis MP5ACTX8 in complex with NADP and azide. 8BXX ; 1.97 ; Crystal structure of formate dehydrogenase FDH2 enzyme from Granulicella mallensis MP5ACTX8 in complex with NAD and azide. 6T8C ; 1.97 ; Crystal structure of formate dehydrogenase FDH2 enzyme from Granulicella mallensis MP5ACTX8 in the apo form. 8J83 ; 2.4 ; Crystal structure of formate dehydrogenase from Methylorubrum extorquens AM1 6JWG ; 2.081 ; Crystal structure of Formate dehydrogenase mutant C256I/E261P/S381I from Pseudomonas sp. 101 6JUK ; 2.293 ; Crystal structure of Formate dehydrogenase mutant C256I/E261P/S381I from Pseudomonas sp. 101 in complex with non-natural cofactor Nicotinamide Cytosine Dinucleotide 6JX1 ; 2.233 ; Crystal structure of Formate dehydrogenase mutant V198I/C256I/P260S/E261P/S381N/S383F from Pseudomonas sp. 101 6JUJ ; 2.183 ; Crystal structure of Formate dehydrogenase mutant V198I/C256I/P260S/E261P/S381N/S383F from Pseudomonas sp. 101in complex with non-natural cofactor Nicotinamide Cytosine Dinucleotide 1O5H ; 2.8 ; Crystal structure of formiminotetrahydrofolate cyclodeaminase (TM1560) from Thermotoga maritima at 2.80 A resolution 1P5H ; 2.2 ; Crystal structure of Formyl-CoA Transferase (apoenzyme) from Oxalobacter formigenes 1PQY ; 2.35 ; Crystal structure of formyl-coA transferase yfdW from E. coli 2ZW2 ; 1.55 ; Crystal Structure of Formylglycinamide Ribonucleotide Amidotransferase III from SULFOLOBUS TOKODAII (STPURS) 2FHJ ; 2.0 ; Crystal structure of formylmethanofuran: tetrahydromethanopterin formyltransferase in complex with its coenzymes 2FHK ; 2.0 ; Crystal structure of formylmethanofuran: tetrahydromethanopterin formyltransferase in complex with its coenzymes 3LOU ; 1.9 ; Crystal structure of Formyltetrahydrofolate deformylase (YP_105254.1) from BURKHOLDERIA MALLEI ATCC 23344 at 1.90 A resolution 3W7B ; 2.71 ; Crystal structure of formyltetrahydrofolate deformylase from Thermus thermophilus HB8 5XVV ; 2.25 ; Crystal Structure of Forward Inhibited Aspergillus niger Glutamate Dehydrogenase With Both Apo- and Alpha Ketoglutarate Bound Subunits 4JH5 ; 1.77 ; Crystal Structure of FosB from Bacillus cereus with Cobalt and Fosfomycin 4JH9 ; 1.77 ; Crystal Structure of FosB from Bacillus cereus with Maganese and Potential BSH-Fosfomycin Product 4JH6 ; 1.32 ; Crystal Structure of FosB from Bacillus cereus with Manganese and Fosfomycin 4JH7 ; 1.55 ; Crystal Structure of FosB from Bacillus cereus with Manganese and L-Cysteine-Fosfomycin Product 4JH4 ; 1.9 ; Crystal Structure of FosB from Bacillus cereus with Nickel and Fosfomycin 8G7G ; 2.23 ; Crystal Structure of FosB from Bacillus cereus with Zinc and (1-hydroxy-2-methylpropyl)phosphonic acid 8G7H ; 1.81 ; Crystal Structure of FosB from Bacillus cereus with Zinc and (1-hydroxypropan-2-yl)phosphonic acid 8G7F ; 2.04 ; Crystal Structure of FosB from Bacillus cereus with Zinc and 1-hydroxypropylphosphonic acid 8E7Q ; 1.9 ; Crystal Structure of FosB from Bacillus cereus with Zinc and 2-Phosphonopropionic acid 4JH3 ; 1.5 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Fosfomycin 4JH8 ; 1.41 ; Crystal Structure of FosB from Bacillus cereus with Zinc and L-Cysteine-Fosfomycin Ternary Complex 8E7R ; 1.975 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Phosphonoacetate 8DTD ; 1.95 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Phosphonoformate 8G7I ; 1.83 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Sulfate 4JH2 ; 1.27 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Sulfate at 1.27 A Resolution 4JH1 ; 1.55 ; Crystal Structure of FosB from Bacillus cereus with Zinc and Sulfate at 1.55 A Resolution -SAD Phasing 7N7G ; 2.0 ; Crystal Structure of FosB from Enterococcus faecium with Fosfomycin 4NB1 ; 1.8 ; Crystal Structure of FosB from Staphylococcus aureus at 1.80 Angstrom Resolution with L-Cysteine-Cys9 Disulfide 4NB2 ; 1.89 ; Crystal Structure of FosB from Staphylococcus aureus at 1.89 Angstrom Resolution - Apo structure 4NB0 ; 1.62 ; Crystal Structure of FosB from Staphylococcus aureus with BS-Cys9 disulfide at 1.62 Angstrom Resolution 4NAZ ; 1.15 ; Crystal Structure of FosB from Staphylococcus aureus with Zn and Sulfate at 1.15 Angstrom Resolution 4NAY ; 1.42 ; Crystal Structure of FosB from Staphylococcus aureus with Zn and Sulfate at 1.42 Angstrom Resolution - SAD Phasing 3QVH ; 1.85 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with ADP 3QUO ; 1.58 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with ATP and fosfomycin 3D40 ; 1.53 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with diphosphate 3QUR ; 1.57 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with MgADP and fosfomycin monophosphate 3QVF ; 1.85 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with MgADP and fosfomycin vanadate 3D41 ; 2.2 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with MgAMPPNP and fosfomycin 3QUN ; 1.87 ; Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis complexed with MgATP 5VB0 ; 2.689 ; Crystal structure of fosfomycin resistance protein FosA3 5WEP ; 3.502 ; Crystal structure of fosfomycin resistance protein FosA3 with inhibitor (ANY1) bound 1R9C ; 1.83 ; Crystal Structure of Fosfomycin Resistance Protein FosX from Mesorhizobium Loti 5V91 ; 1.3 ; Crystal structure of fosfomycin resistance protein from Klebsiella pneumoniae 5V3D ; 1.539 ; Crystal structure of fosfomycin resistance protein from Klebsiella pneumoniae with bound fosfomycin 215D ; 1.7 ; CRYSTAL STRUCTURE OF FOUR MORPHOLINO-DOXORUBICIN ANTICANCER DRUGS COMPLEXED WITH D(CGTACG) AND D(CGATCG): IMPLICATIONS IN DRUG-DNA CROSSLINK 234D ; 1.8 ; CRYSTAL STRUCTURE OF FOUR MORPHOLINO-DOXORUBICIN ANTICANCER DRUGS COMPLEXED WITH D(CGTACG) AND D(CGATCG): IMPLICATIONS IN DRUG-DNA CROSSLINK 235D ; 1.8 ; CRYSTAL STRUCTURE OF FOUR MORPHOLINO-DOXORUBICIN ANTICANCER DRUGS COMPLEXED WITH D(CGTACG) AND D(CGATCG): IMPLICATIONS IN DRUG-DNA CROSSLINK 236D ; 1.8 ; CRYSTAL STRUCTURE OF FOUR MORPHOLINO-DOXORUBICIN ANTICANCER DRUGS COMPLEXED WITH D(CGTACG) AND D(CGATCG): IMPLICATIONS IN DRUG-DNA CROSSLINK 1EC5 ; 2.5 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL 1JM0 ; 1.7 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL 1JMB ; 2.2 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL 1MFT ; 2.5 ; Crystal Structure Of Four-Helix Bundle Model 1OVU ; 3.1 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL di-Co(II)-DF1-L13A (form I) 1OVV ; 2.9 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL di-Co(II)-DF1-L13A (form II) 1OVR ; 2.99 ; CRYSTAL STRUCTURE OF FOUR-HELIX BUNDLE MODEL di-Mn(II)-DF1-L13 3Q5C ; 2.501 ; Crystal structure of four-way junction with sticky end 6Y24 ; 1.86 ; Crystal structure of fourth KH domain of FUBP1 6P7B ; 3.317 ; Crystal structure of Fowlpox virus resolvase and substrate Holliday junction DNA complex 5CGS ; 1.634 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase 5CHM ; 1.9 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase complexed with ceftazidime BATSI (LP06) 5CHJ ; 1.358 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase complexed with cephalothin BATSI (SM23) 5CHU ; 1.1 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase complexed with sulfate 5CGW ; 1.4 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase mutant Y150F 5CGX ; 1.21 ; CRYSTAL STRUCTURE OF Fox-4 cephamycinase mutant Y150F complexed with cefoxitin 5X07 ; 2.796 ; Crystal structure of FOXA2 DNA binding domain bound to a full consensus DNA site 6AKO ; 2.396 ; Crystal Structure of FOXC2 DBD Bound to DBE2 DNA 6LBM ; 2.841 ; Crystal Structure of FOXC2-DBD bound to a palindromic DNA sequence 3CO6 ; 2.1 ; Crystal Structure of FoxO1 DBD Bound to DBE1 DNA 3CO7 ; 2.91 ; Crystal Structure of FoxO1 DBD Bound to DBE2 DNA 3COA ; 2.2 ; Crystal Structure of FoxO1 DBD Bound to IRE DNA 6LBI ; 3.067 ; Crystal Structure of FOXO1-DBD homodimer bound to a palindromic DNA sequence 2A07 ; 1.9 ; Crystal Structure of Foxp2 bound Specifically to DNA. 6KDC ; 1.85 ; crystal structure of Fpglu1 from fervidobacterium pennivoraus 2F8C ; 2.2 ; Crystal structure of FPPS in complex with Zoledronate 5TZP ; 1.35 ; Crystal structure of FPV039:Bik BH3 complex 5TZQ ; 1.65 ; Crystal Structure of FPV039:Bmf BH3 complex 7CP6 ; 2.2 ; Crystal structure of FqzB 7CP7 ; 2.4 ; Crystal structure of FqzB, native proteins 4TSO ; 2.3 ; Crystal structure of FraC with DHPC bound (crystal form I) 4TSP ; 2.15 ; Crystal structure of FraC with DHPC bound (crystal form II) 4TSQ ; 1.6 ; Crystal structure of FraC with DHPC bound (crystal form III) 4TSY ; 3.14 ; Crystal structure of FraC with lipids 4TSL ; 1.6 ; Crystal structure of FraC with POC bound (crystal form I) 4TSN ; 1.57 ; Crystal structure of FraC with POC bound (crystal form II) 5KH3 ; 1.6 ; Crystal structure of fragment (3-(5-Chloro-1,3-benzothiazol-2-yl)propanoic acid) bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 5KH7 ; 1.7 ; Crystal structure of fragment (3-[6-Oxo-3-(3-pyridinyl)-1(6H)-pyridazinyl]propanoic acid) bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 3EQ5 ; 2.45 ; Crystal structure of fragment 137 to 238 of the human Ski-like protein 4TT0 ; 2.599 ; Crystal structure of fragment 1600-1733 of HSV1 UL36 in the presence of 1M potassium iodide 4TT1 ; 2.75 ; Crystal structure of fragment 1600-1733 of HSV1 UL36, native 6CE8 ; 1.55 ; Crystal structure of fragment 2-(Benzo[d]thiazol-2-yl)acetic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6CEF ; 1.8 ; Crystal structure of fragment 3-(1,3-Benzothiazol-2-yl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6CEE ; 1.55 ; Crystal structure of fragment 3-(1-Methyl-2-oxo-1,2-dihydroquinoxalin-3-yl)propionic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 5WPB ; 1.55 ; Crystal structure of fragment 3-(3-(pyridin-2-ylmethoxy)quinoxalin-2-yl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 5WBN ; 1.64 ; Crystal structure of fragment 3-(3-Benzyl-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6CEC ; 1.55 ; Crystal structure of fragment 3-(3-Methoxy-2-quinoxalinyl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6CED ; 1.7 ; Crystal structure of fragment 3-(3-Methyl-4-oxo-3,4-dihydroquinazolin-2-yl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 6CEA ; 1.6 ; Crystal structure of fragment 3-(quinolin-2-yl)propanoic acid bound in the ubiquitin binding pocket of the HDAC6 zinc-finger domain 5HQ5 ; 1.6 ; Crystal structure of fragment bound with Brd4 5HQ6 ; 1.95 ; Crystal structure of fragment bound with Brd4 5HQ7 ; 1.9 ; Crystal structure of fragment bound with Brd4 2HOD ; 2.9 ; Crystal Structure of Fragment D from Human Fibrinogen Complexed with Gly-hydroxyPro-Arg-Pro-amide 2HPC ; 2.9 ; Crystal structure of fragment D from Human Fibrinogen Complexed with Gly-Pro-Arg-Pro-amide. 1FZG ; 2.5 ; CRYSTAL STRUCTURE OF FRAGMENT D FROM HUMAN FIBRINOGEN WITH THE PEPTIDE LIGAND GLY-HIS-ARG-PRO-AMIDE 1LWU ; 2.8 ; Crystal structure of fragment D from lamprey fibrinogen complexed with the peptide Gly-His-Arg-Pro-amide 1RE4 ; 2.7 ; Crystal Structure of Fragment D of BbetaD398A Fibrinogen 1RE3 ; 2.45 ; Crystal Structure of Fragment D of BbetaD398A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-Amide 2OYH ; 2.4 ; Crystal Structure of Fragment D of gammaD298,301A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-Amide 2OYI ; 2.7 ; Crystal Structure of Fragment D of gammaD298,301A Fibrinogen with the Peptide Ligand Gly-Pro-Arg-Pro-Amide 1RF0 ; 2.81 ; Crystal Structure of Fragment D of gammaE132A Fibrinogen 1RF1 ; 2.53 ; Crystal Structure of Fragment D of gammaE132A Fibrinogen with the Peptide Ligand Gly-His-Arg-Pro-amide 2HLO ; 2.6 ; Crystal Structure of Fragment D-dimer from Human Fibrin Complexed with Gly-hydroxyPro-Arg-Pro-amide 3HP6 ; 1.81 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus F710Y mutant bound to G:T mismatch 3HT3 ; 1.7 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus V713P mutant bound to G:dCTP 4O0I ; 2.203 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with 2'-MeSe-arabino-guanosine derivatized DNA 4DSL ; 2.45 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with duplex DNA and Calcium 4DSJ ; 2.86 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with duplex DNA, dGTP and Calcium 4DSK ; 2.18 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with duplex DNA, PPi and Calcium 4DSI ; 2.05 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with duplex DNA, Se-dGTP and Calcium 4DWI ; 1.85 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus with self complementary DNA, Se-dGTP and Calcium 3HPO ; 1.75 ; Crystal structure of fragment DNA polymerase I from Bacillus stearothermophilus Y714S mutant bound to G:T mismatch 1FZE ; 3.0 ; CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN 1FZF ; 2.7 ; CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN WITH THE PEPTIDE LIGAND GLY-HIS-ARG-PRO-AMIDE 1FZC ; 2.3 ; CRYSTAL STRUCTURE OF FRAGMENT DOUBLE-D FROM HUMAN FIBRIN WITH TWO DIFFERENT BOUND LIGANDS 1Z7L ; 2.8 ; Crystal structure of fragment of mouse ubiquitin-activating enzyme 5D6G ; 3.3 ; CRYSTAL STRUCTURE OF FRAGMENT OF RIBOSOMAL PROTEIN P0 IN COMPLEX WITH 74NT 23S RNA FROM METHANOCOCCUS JANNASCHII 7YNE ; 2.7 ; Crystal structure of fragmin domain-1 (1-160) in complex with G-form actin 7W52 ; 2.001 ; Crystal structure of fragmin domain-1 (15-160) in complex with actin 7W51 ; 1.2 ; Crystal structure of fragmin domain-1 in complex with actin (ADP-form) 7W50 ; 1.15 ; Crystal structure of fragmin domain-1 in complex with actin (ADP-Pi-form) 7W4Z ; 1.15 ; Crystal structure of fragmin domain-1 in complex with actin (AMPPNP-form) 6LJC ; 1.85 ; Crystal structure of fragmin F2-F3 domains (calcium and magnesium condition) 6LJD ; 2.15 ; Crystal structure of fragmin F2-F3 domains (calcium condition) 6KWZ ; 1.551 ; Crystal structure of fragmin F3 domain with calcium ion 4L71 ; 3.9 ; Crystal Structure of Frameshift Suppressor tRNA SufA6 Bound to Codon CCC-A on the Ribosome 1VVJ ; 3.44 ; Crystal Structure of Frameshift Suppressor tRNA SufA6 bound to Codon CCC-G on the Ribosome 4LFZ ; 3.92 ; Crystal Structure of Frameshift Suppressor tRNA SufA6 Bound to Codon CCC-U in the Absence of Paromomycin 4L47 ; 3.22 ; Crystal Structure of Frameshift Suppressor tRNA SufA6 Bound to Codon CCC-U on the Ribosome 4LEL ; 3.9 ; Crystal Structure of Frameshift Suppressor tRNA SufA6 Bound to Codon CCG-G on the Ribosome 5B2P ; 1.7 ; Crystal structure of Francisella novicida Cas9 in complex with sgRNA and target DNA (TGA PAM) 5B2O ; 1.7 ; Crystal structure of Francisella novicida Cas9 in complex with sgRNA and target DNA (TGG PAM) 5B2Q ; 1.7 ; Crystal structure of Francisella novicida Cas9 RHA in complex with sgRNA and target DNA (TGG PAM) 4MYB ; 2.4 ; Crystal Structure of Francisella tularensis 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) 2JJY ; 2.9 ; Crystal structure of Francisella tularensis enoyl reductase (ftFabI) with bound NAD 4PZV ; 1.704 ; Crystal structure of Francisella tularensis HPPK-DHPS in complex with bisubstrate analog HPPK inhibitor J1D 4OKO ; 2.053 ; Crystal structure of Francisella tularensis REP34 (Rapid Encystment Phenotype Protein 34 KDa) 1EQR ; 2.7 ; CRYSTAL STRUCTURE OF FREE ASPARTYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI 1ES8 ; 2.3 ; Crystal structure of free BglII 4FGV ; 2.941 ; Crystal structure of free CRM1 (crystal form 1) 4HZK ; 3.1 ; Crystal structure of free CRM1 (crystal form 2) 7N8V ; 2.1 ; Crystal structure of free ERI2 nuclease 6MYF ; 1.6 ; Crystal structure of free human Scribble PDZ1 domain 3KZD ; 1.3 ; Crystal Structure of Free T-cell Lymphoma Invasion and Metastasis-1 PDZ Domain 4NXP ; 2.3 ; Crystal Structure of Free T-cell Lymphoma Invasion and Metastasis-1 PDZ Domain Quadruple Mutant (QM) 5K16 ; 2.599 ; Crystal structure of free Ubiquitin-specific protease 12 5HCG ; 2.68 ; CRYSTAL STRUCTURE OF FREE-CODV. 4HKG ; 1.3002 ; Crystal Structure of Free-Standing Peptidyl Carrier Protein from Uncharacterized Acinetobacter baumannii Secondary Metabolic Pathway 6BB8 ; 3.49 ; Crystal Structure of Frequency-Interacting RNA helicase (FRH) 7ROO ; 1.52 ; Crystal structure of Friedel-Crafts alkylating enzyme CylK from Cylindospermum licheniforme with bromide 5CH6 ; 3.26 ; Crystal Structure of FRIGIDA Flowering-time Regulator 5URZ ; 2.202 ; Crystal structure of Frizzled 5 CRD in complex with BOG 6O39 ; 1.8 ; Crystal structure of Frizzled 5 CRD in complex with F2.I Fab 5URY ; 2.098 ; Crystal structure of Frizzled 5 CRD in complex with PAM 5T44 ; 1.9944 ; Crystal structure of Frizzled 7 CRD 5URV ; 2.2 ; Crystal structure of Frizzled 7 CRD in complex with C24 fatty acid 6O3B ; 2.5 ; Crystal structure of Frizzled 7 CRD in complex with F6 Fab 6O3A ; 2.1 ; Crystal structure of Frizzled 7 CRD in complex with F7.B Fab 5WBS ; 2.88 ; Crystal structure of Frizzled-7 CRD with an inhibitor peptide Fz7-21 4E5R ; 1.9 ; Crystal Structure of Frog DGCR8 Dimerization Domain 4P18 ; 1.91 ; Crystal Structure of frog M ferritin mutant D80K 5XHI ; 1.26 ; Crystal structure of Frog M-ferritin D38A mutant 5XHM ; 1.7 ; Crystal structure of Frog M-ferritin D40A mutant 5XHO ; 1.73 ; Crystal structure of Frog M-ferritin E135K mutant 5XHN ; 1.63 ; Crystal structure of Frog M-ferritin K104E mutant 8A90 ; 2.574 ; Crystal structure of FrsH 4GWU ; 3.0 ; Crystal Structure of Fru 2,6-bisphosphate complexes of Porcine Liver Fructose-1,6-bisphosphatase with Filled Central Cavity 2AEZ ; 3.05 ; Crystal structure of fructan 1-exohydrolase IIa (E201Q) from Cichorium intybus in complex with 1-kestose 1ST8 ; 2.35 ; Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus 2AEY ; 3.27 ; Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with 2,5 dideoxy-2,5-immino-D-mannitol 2ADE ; 2.65 ; Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with fructose 2ADD ; 2.5 ; Crystal structure of fructan 1-exohydrolase IIa from Cichorium intybus in complex with sucrose 2QHP ; 1.8 ; Crystal structure of fructokinase (NP_810670.1) from Bacteroides thetaiotaomicron VPI-5482 at 1.80 A resolution 5YGG ; 1.671 ; Crystal structure of Fructokinase Double-Mutant (T261C-H108C) from Vibrio cholerae O395 in fructose, ADP and potassium ion bound form 3OHR ; 1.66 ; Crystal structure of fructokinase from bacillus subtilis complexed with ADP 4U7X ; 2.1 ; Crystal structure of Fructokinase from Brucella abortus 2308 4WJM ; 1.7 ; Crystal structure of Fructokinase from Brucella abortus 2308 with bound AMPPNP 5EY7 ; 2.461 ; Crystal structure of Fructokinase from Vibrio cholerae O395 in apo form 5F11 ; 2.3 ; Crystal structure of Fructokinase from Vibrio cholerae O395 in fructose bound form 5F0Z ; 1.75 ; Crystal structure of Fructokinase from Vibrio cholerae O395 in fructose, ADP and calcium ion bound form 5EYN ; 1.289 ; Crystal structure of Fructokinase from Vibrio cholerae O395 in fructose, ADP, Beryllium trifluoride and calcium ion bound form 3LJS ; 1.97 ; Crystal structure of Fructokinase from Xylella fastidiosa 3LM9 ; 2.45 ; Crystal structure of fructokinase with ADP and Fructose bound in the active site 3LKI ; 2.04 ; Crystal Structure of Fructokinase with bound ATP from Xylella fastidiosa 3MMT ; 2.35 ; Crystal structure of fructose bisphosphate aldolase from Bartonella henselae, bound to fructose bisphosphate 3MBF ; 2.37 ; Crystal structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi, bound to fructose 1,6-bisphosphate 3QRH ; 2.0 ; Crystal structure of fructose bisphosphate aldolase from Encephalitozoon Cuniculi, bound to glyceraldehyde 3-phosphate 3MBD ; 2.0 ; Crystal structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi, bound to phosphate 7X7H ; 2.0 ; Crystal structure of Fructose regulator/Histidine phosphocarrier protein complex from Vibrio cholerae 1UMG ; 1.8 ; Crystal structure of fructose-1,6-bisphosphatase 1FBP ; 2.5 ; CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE 6-PHOSPHATE, AMP, AND MAGNESIUM 1FRP ; 2.0 ; CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE-2,6-BISPHOSPHATE, AMP AND ZN2+ AT 2.0 ANGSTROMS RESOLUTION. ASPECTS OF SYNERGISM BETWEEN INHIBITORS 3BIH ; 2.1 ; Crystal structure of fructose-1,6-bisphosphatase from E.coli GlpX 6AYV ; 2.3 ; Crystal structure of fructose-1,6-bisphosphatase T84A from Mycobacterium tuberculosis 6AYU ; 2.2 ; Crystal structure of fructose-1,6-bisphosphatase T84S from Mycobacterium tuberculosis 7K74 ; 2.2 ; Crystal Structure of Fructose-1,6-bisphosphatase, type I, from Stenotrophomonas maltophilia K279a 3KX6 ; 2.1 ; Crystal structure of fructose-1,6-bisphosphate aldolase from Babesia bovis at 2.1A resolution 2FJK ; 2.2 ; Crystal structure of Fructose-1,6-Bisphosphate Aldolase in Thermus caldophilus 2ABQ ; 2.1 ; Crystal structure of fructose-1-phosphate kinase from Bacillus halodurans 7NCC ; 2.0 ; Crystal structure of fructose-bisphosphate aldolase FBAP from Bacillus methanolicus 2PC4 ; 2.4 ; Crystal structure of fructose-bisphosphate aldolase from Plasmodium falciparum in complex with TRAP-tail determined at 2.4 angstrom resolution 2EPH ; 2.7 ; Crystal structure of fructose-bisphosphate aldolase from Plasmodium falciparum in complex with TRAP-tail determined at 2.7 angstrom resolution 2IQT ; 2.46 ; Crystal Structure of Fructose-Bisphosphate Aldolase, Class I from Porphyromonas gingivalis 7NC7 ; 2.2 ; Crystal structure of fructose-bisphosphate aldolases FBAC from Bacillus methanolicus 6IWE ; 1.939 ; Crystal structure of fructosyl peptide oxidase thermally stable mutant 3LIG ; 1.8 ; Crystal structure of fructosyltransferase (D191A) from A. japonicus 3LDR ; 2.1 ; Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with 1-Kestose 3LEM ; 2.1 ; Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with Nystose 3LIH ; 2.2 ; Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with raffinose 3LF7 ; 2.0 ; Crystal structure of fructosyltransferase (wild-type) from A. japonicus 3LFI ; 2.0 ; Crystal structure of fructosyltransferase (wild-type) from A. japonicus in complex with glucose 4IM7 ; 1.9 ; Crystal structure of fructuronate reductase (ydfI) from E. coli CFT073 (EFI TARGET EFI-506389) complexed with NADH and D-mannonate 4WOG ; 1.813 ; Crystal Structure of Frutalin from Artocarpus incisa 5BN6 ; 1.6499 ; Crystal Structure of Frutalin from Artocarpus incisa in complex with galactose 2PE3 ; 2.0 ; Crystal structure of Frv operon protein FRVX (PH1821)from pyrococcus horikoshii OT3 1LR8 ; 2.1 ; Crystal structure of Fs1, the heparin-binding domain of follistatin, complexed with the heparin analogue D-myo-inositol hexasulphate (Ins6S) 1LR7 ; 1.5 ; Crystal structure of Fs1, the heparin-binding domain of follistatin, complexed with the heparin analogue sucrose octasulphate (SOS) 7E5T ; 2.16978 ; Crystal structure of Fsa2 6IGG ; 1.0 ; Crystal structure of FT condition 1 6IGI ; 1.33 ; Crystal structure of FT condition 2 6IGJ ; 1.501 ; Crystal structure of FT condition 4 6IGH ; 1.01 ; Crystal structure of FT condition3 3EU5 ; 2.8 ; Crystal structure of FTase(ALPHA-subunit; BETA-subunit DELTA C10) in complex with BiotinGPP 3PZ4 ; 2.1 ; Crystal structure of FTase(ALPHA-subunit; BETA-subunit DELTA C10) in complex with BMS3 and lipid substrate FPP 3EUV ; 2.75 ; Crystal structure of FTase(ALPHA-subunit; BETA-subunit DELTA C10, W102T, Y154T) in complex with BiotinGPP 5A4J ; 2.15 ; Crystal structure of FTHFS1 from T.acetoxydans Re1 5A5G ; 2.3 ; Crystal structure of FTHFS2 from T.acetoxydans Re1 7DE0 ; 2.4 ; Crystal structure of FtmOx1 Y224F mutation 4QKN ; 2.2 ; Crystal structure of FTO bound to a selective inhibitor 5ZMD ; 3.3 ; Crystal structure of FTO in complex with m6dA modified ssDNA 5DAB ; 2.1 ; Crystal structure of FTO-IN115 1ZU5 ; 2.4 ; Crystal structure of FtsY from Mycoplasma mycoides- space group H32 1ZU4 ; 1.95 ; Crystal structure of FtsY from Mycoplasma mycoides- space group P21212 4U39 ; 3.194 ; Crystal Structure of FtsZ:MciZ Complex from Bacillus subtilis 7KZW ; 1.34 ; Crystal structure of FTT_1639c from Francisella tularensis str. tularensis SCHU S4 8EQW ; 1.76 ; Crystal structure of Fub7 8ERJ ; 2.16 ; Crystal structure of Fub7 in complex with E-2-aminocrotonate 8ERB ; 1.98 ; Crystal structure of Fub7 in complex with vinylglycine ketimine 4UOU ; 2.4 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) - apo-form 4C1Y ; 2.23 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with b-methylfucoside 4AH4 ; 1.75 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with BGA Oligosaccharide. 4AGT ; 2.0 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with Fuc1-6GlcNAc. 4AHA ; 2.2 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with fucosylated monosaccharides (Fuc1-2Gal, Fuc1- 3GlcNAc, Fuc1-4GlcNAc and Fuc1-6GlcNAc) 4D52 ; 1.76 ; CRYSTAL STRUCTURE OF FUCOSE BINDING LECTIN FROM ASPERGILLUS FUMIGATUS (AFL) IN COMPLEX WITH L-GALACTOPYRANOSE. 4D4U ; 1.99 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with LewisY tetrasaccharide. 4AGI ; 1.6 ; Crystal Structure of Fucose binding lectin from Aspergillus Fumigatus (AFL) in complex with seleno fucoside. 7LL6 ; 2.25 ; Crystal structure of fucose synthetase family protein from Brucella suis ATCC 23445 5XJF ; 2.5 ; Crystal structure of fucosylated IgG Fc Y296W mutant complexed with bis-glycosylated soluble form of Fc gamma receptor IIIa 5XJE ; 2.4 ; Crystal structure of fucosylated IgG1 Fc complexed with bis-glycosylated soluble form of Fc gamma receptor IIIa 2HHC ; 1.54 ; Crystal structure of fucosyltransferase NodZ from Bradyrhizobium 2HLH ; 1.95 ; Crystal structure of fucosyltransferase NodZ from Bradyrhizobium 6A2W ; 1.8 ; Crystal structure of fucoxanthin chlorophyll a/c complex from Phaeodactylum tricornutum 6P3Z ; 2.844 ; Crystal Structure of Full Length APOBEC3G E/Q (pH 5.2) 6P3X ; 2.402 ; Crystal Structure of Full Length APOBEC3G E/Q (pH 7.0) 6P3Y ; 2.57 ; Crystal Structure of Full Length APOBEC3G E/Q (pH 7.4) 6P40 ; 2.452 ; Crystal Structure of Full Length APOBEC3G FKL 1U04 ; 2.25 ; Crystal structure of full length Argonaute from Pyrococcus furiosus 1Z7E ; 3.0 ; Crystal structure of full length ArnA 2ETF ; 2.29 ; Crystal structure of full length botulinum neurotoxin (Type B) light chain 3FEH ; 1.9 ; Crystal structure of full length centaurin alpha-1 3FM8 ; 2.3 ; Crystal structure of full length centaurin alpha-1 bound with the FHA domain of KIF13B (CAPRI target) 3LJU ; 1.702 ; Crystal structure of full length centaurin alpha-1 bound with the head group of PIP3 3DVL ; 2.8 ; Crystal Structure of Full Length Circadian Clock Protein KaiC with Correct Geometry at Phosphorylation Sites 2GBL ; 2.8 ; Crystal Structure of Full Length Circadian Clock Protein KaiC with Phosphorylation Sites 3LIJ ; 1.9 ; Crystal structure of full length CpCDPK3 (cgd5_820) in complex with Ca2+ and AMPPNP 5KUD ; 2.7 ; Crystal structure of full length Cry6Aa 4C2T ; 3.997 ; Crystal structure of full length Deinococcus radiodurans UvrD in complex with DNA 1SRU ; 3.3 ; Crystal structure of full length E. coli SSB protein 4XBO ; 2.6 ; Crystal structure of full length E.coli TrmJ in complex with SAH 6EN3 ; 2.903 ; Crystal structure of full length EndoS from Streptococcus pyogenes in complex with G2 oligosaccharide. 6LN2 ; 3.2 ; Crystal structure of full length human GLP1 receptor in complex with Fab fragment (Fab7F38) 5D3O ; 2.791 ; Crystal structure of full length human glutaminase C expressed in E.coli 6J04 ; 1.899 ; Crystal structure of full length human LC3B delta G120 mutant (2_125) 7UED ; 3.0 ; Crystal structure of full length mesothelin bound with MORAb-009 Fab 4ABN ; 2.05 ; Crystal structure of full length mouse Strap (TTC5) 5XAZ ; 2.3 ; Crystal structure of full length native tylp, a tetr regulator from streptomyces fradiae 5YVJ ; 2.508 ; Crystal structure of full length NS2B47-NS3 (gD4NS2BNS3) from Dengue virus 4 in open conformation 5YVW ; 3.1 ; Crystal structure of full length NS3 protein (eD4NS2BNS3) from DENV4 in closed conformation 5YW1 ; 2.6 ; Crystal structure of full length NS3 protein (eD4NS2BNS3) in complex with Bovine Pancreatic Trypsin Inhibitor 5YVV ; 3.097 ; Crystal structure of full length NS3 protein (gD4NS2BNS3) from DENV4 in closed conformation 4G56 ; 2.95 ; Crystal Structure of full length PRMT5/MEP50 complexes from Xenopus laevis 3IB7 ; 1.6 ; Crystal structure of full length Rv0805 3IB8 ; 1.8 ; Crystal structure of full length Rv0805 in complex with 5'-AMP 4GO1 ; 3.0 ; Crystal Structure of full length transcription repressor LsrR from E. coli. 5XAY ; 2.58 ; Crystal structure of full length tylp, a tetr regulator from streptomyces fradiae 4WWC ; 2.903 ; Crystal structure of full length YvoA in complex with palindromic operator DNA 1ZP9 ; 2.0 ; Crystal Structure of full-legnth A.fulgidus Rio1 Serine Kinase bound to ATP and Mn2+ ions. 5MZ4 ; 3.048 ; Crystal Structure of full-lengh CSFV NS3/4A 1ZBU ; 2.998 ; crystal structure of full-length 3'-exonuclease 7ZBR ; 3.0 ; Crystal Structure of full-length Bartonella Effector protein 1 3K1N ; 2.99 ; Crystal Structure of full-length BenM 3K1P ; 3.0 ; Crystal Structure of full-length BenM E226K mutant 3K1M ; 2.29 ; Crystal Structure of full-length BenM, R156H mutant 3PY7 ; 2.288 ; Crystal structure of full-length Bovine Papillomavirus oncoprotein E6 in complex with LD1 motif of paxillin at 2.3A resolution 4IYR ; 2.697 ; Crystal structure of full-length caspase-6 zymogen 4J3P ; 2.5 ; Crystal structure of full-length catechol oxidase from Aspergillus oryzae 7D98 ; 3.6 ; Crystal structure of full-length CbnR complexed with the target DNA complex 4EC9 ; 3.21 ; Crystal structure of full-length cdk9 in complex with cyclin t 6YHK ; 2.7 ; Crystal structure of full-length CNFy (C866S) from Yersinia pseudotuberculosis 6LAA ; 2.13 ; Crystal structure of full-length CYP116B46 from Tepidiphilus thermophilus 3HYI ; 2.34 ; Crystal structure of full-length DUF199/WhiA from Thermatoga maritima 3K46 ; 2.5 ; Crystal structure of full-length E. coli beta-glucuronidase 5A60 ; 1.82 ; Crystal structure of full-length E. coli ygiF in complex with tripolyphosphate and two magnesium ions 5A61 ; 1.5 ; Crystal structure of full-length E. coli ygiF in complex with tripolyphosphate and two manganese ions. 3ZLJ ; 3.1 ; CRYSTAL STRUCTURE OF FULL-LENGTH E.COLI DNA MISMATCH REPAIR PROTEIN MUTS D835R MUTANT IN COMPLEX WITH GT MISMATCHED DNA 4RUL ; 2.9 ; Crystal structure of full-length E.Coli topoisomerase I in complex with ssDNA 3HDE ; 1.95 ; Crystal structure of full-length endolysin R21 from phage 21 3APO ; 2.4 ; Crystal structure of full-length ERdj5 5TB5 ; 2.0 ; Crystal structure of full-length farnesylated and methylated KRAS4b in complex with PDE-delta (crystal form I - with partially disordered hypervariable region) 5XSO ; 1.778 ; Crystal structure of full-length FixJ from B. japonicum crystallized in space group C2221 4YWT ; 2.38 ; Crystal structure of full-length glypican-1 core protein after controlled crystal dehydration to 87% relative humidity 3QHS ; 2.85 ; Crystal structure of full-length Hfq from Escherichia coli 6SLM ; 2.8 ; Crystal structure of full-length HPV31 E6 oncoprotein in complex with LXXLL peptide of ubiquitin ligase E6AP 2IOQ ; 3.5 ; Crystal Structure of full-length HTPG, the Escherichia coli HSP90 2IOP ; 3.55 ; Crystal Structure of Full-length HtpG, the Escherichia coli Hsp90, Bound to ADP 4HM9 ; 3.1001 ; Crystal structure of full-length human catenin-beta-like 1 6UD7 ; 2.3 ; Crystal structure of full-length human DCAF15-DDB1(deltaBPB)-DDA1-RBM39 in complex with indisulam 6UE5 ; 2.61 ; Crystal structure of full-length human DCAF15-DDB1-deltaPBP-DDA1-RBM39 in complex with 4-(aminomethyl)-N-(3-cyano-4-methyl-1H-indol-7-yl)benzenesulfonamide 4HOQ ; 2.07 ; Crystal Structure of Full-Length Human IFIT5 4HOT ; 2.501 ; Crystal Structure of Full-Length Human IFIT5 with 5`-triphosphate Oligoadenine 4HOR ; 1.861 ; Crystal Structure of Full-Length Human IFIT5 with 5`-triphosphate Oligocytidine 4HOS ; 2.0 ; Crystal Structure of Full-Length Human IFIT5 with 5`-triphosphate Oligouridine 6FXK ; 2.7 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 8ONE ; 2.3 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Asp190Ser mutant - Cocrystal with Fe2+, Mn2+, UDP-Glucose 6TE3 ; 2.3 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP 6FXR ; 2.1 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Gal 6FXY ; 2.138 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Gal - Structure from long-wavelength S-SAD 6FXX ; 3.0 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Gal, Hg2+ Soak 6FXT ; 2.5 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Glc 6TES ; 2.2 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Glucuronic Acid 6TEC ; 2.4 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Fe2+, Mn2+, UDP-Xylose 6FXM ; 2.1 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Cocrystal with Mn2+ 6TEU ; 3.0 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Val80Lys mutant - Cocrystal with Fe2+, Mn2+ 6TEX ; 2.3 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Val80Lys mutant - Cocrystal with Fe2+, Mn2+, UDP-Glucose 6TEZ ; 2.7 ; Crystal Structure of full-length Human Lysyl Hydroxylase LH3 - Val80Lys mutant - Cocrystal with Fe2+, Mn2+, UDP-Glucuronic Acid 3BA0 ; 3.0 ; Crystal structure of full-length human MMP-12 4GIZ ; 2.55 ; Crystal structure of full-length human papillomavirus oncoprotein E6 in complex with LXXLL peptide of ubiquitin ligase E6AP at 2.55 A resolution 3TKP ; 2.49 ; Crystal structure of full-length human peroxiredoxin 4 in the reduced form 3TKS ; 2.4 ; Crystal structure of full-length human peroxiredoxin 4 in three different redox states 3TKQ ; 2.22 ; Crystal structure of full-length human peroxiredoxin 4 with mixed conformation 3TKR ; 2.1 ; Crystal structure of full-length human peroxiredoxin 4 with T118E mutation 5XQI ; 2.8 ; Crystal structure of full-length human Rogdi 2PQA ; 2.5 ; Crystal Structure of Full-length Human RPA 14/32 Heterodimer 2Z6K ; 3.0 ; Crystal structure of full-length human RPA14/32 heterodimer 4BL8 ; 3.04 ; Crystal structure of full-length human Suppressor of fused (SUFU) 4BL9 ; 2.8 ; Crystal structure of full-length human Suppressor of fused (SUFU) mutant lacking a regulatory subdomain (crystal form I) 4BLA ; 3.5 ; Crystal structure of full-length human Suppressor of fused (SUFU) mutant lacking a regulatory subdomain (crystal form II) 3VTH ; 2.0 ; Crystal structure of full-length HypF in the phosphate- and nucleotide-bound form 7WRG ; 3.16 ; Crystal structure of full-length kinesin-3 KLP-6 5VCH ; 2.35 ; Crystal structure of full-length Kluyveromyces lactis Kap123 5VE8 ; 2.7 ; Crystal structure of full-length Kluyveromyces lactis Kap123 with histone H3 1-28 5W0V ; 2.821 ; Crystal structure of full-length Kluyveromyces lactis Kap123 with histone H4 1-34 5KCN ; 1.965 ; Crystal Structure of full-length LpoA from Haemophilus influenzae at 1.97 angstrom resolution 5VBG ; 2.8 ; Crystal Structure of full-length LpoA, Monoclinic form 1, from Haemophilus influenzae 8CX3 ; 3.609 ; Crystal structure of full-length mesothelin 4K1N ; 6.5 ; Crystal structure of full-length mouse alphaE-catenin 3SFZ ; 3.0 ; Crystal structure of full-length murine Apaf-1 3TB8 ; 3.71 ; Crystal structure of full-length myristoylated HIV-1 Nef 4AD7 ; 2.945 ; Crystal structure of full-length N-glycosylated human glypican-1 5CCV ; 3.6 ; Crystal structure of full-length NS5 from dengue virus type 3 7WT6 ; 1.94 ; Crystal structure of full-length peptidyl-tRNA hydrolase from Mycobacterium tuberculosis 7V53 ; 2.1 ; Crystal structure of full-length phospholipase D from Pseudomonas aeruginosa PAO1 3NK4 ; 2.0 ; Crystal structure of full-length sperm receptor ZP3 at 2.0 A resolution 3NK3 ; 2.6 ; Crystal structure of full-length sperm receptor ZP3 at 2.6 A resolution 4W6R ; 3.471 ; Crystal Structure of Full-Length Split GFP Mutant D102C Disulfide Dimer, P 1 Space Group 4W6P ; 3.085 ; Crystal Structure of Full-Length Split GFP Mutant D102C Disulfide Dimer, P 21 21 21 Space Group 4W6N ; 3.375 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, C 1 2 1 Space Group 4W6L ; 2.45 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, I 41 2 2 Space Group 4W6J ; 1.702 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, P 31 2 1 Space Group 4W6K ; 2.877 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, P 41 21 2 Space Group 4W6M ; 2.794 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, P 63 Space Group 4W6O ; 2.6 ; Crystal Structure of Full-Length Split GFP Mutant D117C Disulfide Dimer, P 64 2 2 Space Group 4W6I ; 2.625 ; Crystal Structure of Full-Length Split GFP Mutant D190C Disulfide Dimer, P 21 21 21 Space Group 4W6G ; 3.024 ; Crystal Structure of Full-Length Split GFP Mutant D190C Disulfide Dimer, P 61 Space Group 4W6H ; 1.953 ; Crystal Structure of Full-Length Split GFP Mutant D190C Disulfide Dimer, P 65 Space Group 4W7C ; 2.5 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26C Disulfide and Metal-Mediated Dimer, C 2 Space Group 4W75 ; 3.473 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26C Disulfide and Metal-Mediated Dimer, P 21 21 21 Space Group, Form 1 4W76 ; 2.35 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26C Disulfide and Metal-Mediated Dimer, P 21 21 21 Space Group, Form 2 4W77 ; 3.1 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26C Disulfide and Metal-Mediated Dimer, P 21 21 21 Space Group, Form 3 4W7A ; 3.603 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26C Disulfide and Metal-Mediated Dimer, P 21 21 21 Space Group, Form 4 4W7D ; 1.8 ; Crystal Structure of Full-Length Split GFP Mutant D21H/K26H With Copper Mediated Crystal Contacts, P 21 21 21 Space Group 4W7X ; 2.8 ; Crystal Structure of Full-Length Split GFP Mutant E115C Disulfide Dimer, P 1 21 1 Space Group 4W73 ; 2.79 ; Crystal Structure of Full-Length Split GFP Mutant E115C/T118H Disulfide Dimer P 21 21 21 4W72 ; 2.0 ; Crystal Structure of Full-Length Split GFP Mutant E115C/T118H Disulfide Dimer With Copper Mediated Crystal Contacts, P 21 21 21, Form 1 4W74 ; 2.1 ; Crystal Structure of Full-Length Split GFP Mutant E115C/T118H With Metal Mediated Crystal Contacts, P 1 21 1 Space Group 4W6T ; 1.604 ; Crystal Structure of Full-Length Split GFP Mutant E115H/T118H With Copper Mediated Crystal Contacts, P 43 21 2 Space Group 4W6U ; 2.28 ; Crystal Structure of Full-Length Split GFP Mutant E115H/T118H With Nickel Mediated Crystal Contacts, P 21 21 21 Space Group 4W7R ; 1.8 ; Crystal Structure of Full-Length Split GFP Mutant E124H/K126H Copper Mediated Dimer, P 21 Space Group 4W7F ; 2.9 ; Crystal Structure of Full-Length Split GFP Mutant E124H/K126H With Copper Mediated Crystal Contacts, C 2 2 21 Space Group 4W7E ; 2.592 ; Crystal Structure of Full-Length Split GFP Mutant E124H/K126H With Copper Mediated Crystal Contacts, P 41 21 2 Space Group 4W6S ; 3.1 ; Crystal Structure of Full-Length Split GFP Mutant K126C Disulfide Dimer, P 43 21 2 Space Group 4W6C ; 2.4924 ; Crystal Structure of Full-Length Split GFP Mutant K26C Disulfide Dimer, P 21 21 21 Space Group 4W6D ; 3.45 ; Crystal Structure of Full-Length Split GFP Mutant K26C Disulfide Dimer, P 32 2 1 Space Group, Form 1 4W6F ; 2.7 ; Crystal Structure of Full-Length Split GFP Mutant K26C Disulfide Dimer, P 32 2 1 Space Group, Form 2 4W6A ; 2.991 ; Crystal Structure of Full-Length Split GFP Mutant Q157C Disulfide Dimer, P 32 2 1 Space Group 4W69 ; 3.975 ; Crystal Structure of Full-Length Split GFP Mutant Q157C Disulfide Dimer, P 43 21 2 Space Group 6X3M ; 3.581 ; Crystal structure of full-length Streptococcal bacteriophage hyaluronidase in complex with unsaturated hyaluronan octa-saccharides 4MD7 ; 3.1 ; Crystal Structure of full-length symmetric CK2 holoenzyme 4MD8 ; 3.3 ; Crystal Structure of full-length symmetric CK2 holoenzyme with mutated alpha subunit (F121E) 6W4Q ; 1.9 ; Crystal structure of full-length tailspike protein 2 (TSP2, ORF211) ) from Escherichia coli O157:H7 bacteriophage CAB120 5C8D ; 2.8 ; Crystal structure of full-length Thermus thermophilus CarH bound to adenosylcobalamin (dark state) 4HL0 ; 2.0 ; Crystal structure of full-length Toxascaris leonina galectin 3I5A ; 2.796 ; Crystal structure of full-length WpsR from Pseudomonas syringae 3ELV ; 2.4 ; Crystal Structure of Full-Length Yeast Pml1p 8P5R ; 4.562 ; Crystal structure of full-length, homohexameric 2-oxoglutarate dehydrogenase KGD from Mycobacterium smegmatis in complex with GarA 4RQS ; 4.493 ; Crystal structure of fully glycosylated HIV-1 gp120 core bound to CD4 and 17b Fab 4AQD ; 2.5 ; Crystal structure of fully glycosylated human butyrylcholinesterase 4X95 ; 3.08 ; Crystal structure of fully glycosylated Lysosomal Phospholipase A2 in complex with methyl arachidonyl fluorophosphonate (MAFP) 5X9S ; 2.5 ; Crystal structure of fully modified H-Ras-GppNHp 3W2G ; 1.68 ; Crystal structure of fully reduced form of NADH-cytochrome b5 reductase from pig liver 4PVS ; 1.84 ; Crystal structure of fully-cleaved human l-asparaginase protein in complex with l-aspartate 1VDK ; 1.8 ; Crystal structure of fumarase from thermus thermophilus HB8 3QBP ; 1.85 ; Crystal structure of fumarase Fum from Mycobacterium marinum 2ISB ; 1.66 ; Crystal structure of Fumarase of FUM-1 (NP_069927.1) from Archaeoglobus Fulgidus at 1.66 A resolution 7C1A ; 2.144 ; Crystal structure of FumaraseC (S319C) from Mannheimia succiniciproducens in complex with malate 7C1C ; 1.5 ; Crystal structure of FumaraseC from Mannheimia succiniciproducens 7C18 ; 2.12 ; Crystal structure of FumaraseC from Mannheimia succiniciproducens in complex with Fumarate 7MIW ; 1.25 ; Crystal Structure of Fumarate hydratase class II from Elizabethkingia anophelis NUHP1 6N1M ; 1.55 ; Crystal structure of Fumarate hydratase class II from Legionella pneumophila Philadelphia 1 7T93 ; 1.65 ; Crystal Structure of Fumarate hydratase class II from Mycobacterium ulcerans in complex with L-Malate 3RD8 ; 2.2 ; Crystal structure of fumarate hydratase class II Mycobacterium smegmatis 5L2R ; 2.054 ; Crystal structure of fumarate hydratase from Leishmania major 3RRP ; 2.3 ; Crystal structure of fumarate hydratase Fum from Mycobacterium abscessus with malate bound 3C8T ; 2.2 ; Crystal structure of fumarate lyase from Mesorhizobium sp. BNC1 3OCE ; 2.58 ; Crystal structure of fumarate lyase:delta crystallin from Brucella melitensis bound to cobalt 3OCF ; 2.1 ; Crystal structure of fumarate lyase:delta crystallin from Brucella melitensis in native form 6N56 ; 2.35 ; Crystal structure of fumarate reductase, flavo protein subunit, from Helicobacter pylori G27 1QCN ; 1.9 ; CRYSTAL STRUCTURE OF FUMARYLACETOACETATE HYDROLASE 1HYO ; 1.3 ; CRYSTAL STRUCTURE OF FUMARYLACETOACETATE HYDROLASE COMPLEXED WITH 4-(HYDROXYMETHYLPHOSPHINOYL)-3-OXO-BUTANOIC ACID 1QCO ; 1.9 ; CRYSTAL STRUCTURE OF FUMARYLACETOACETATE HYDROLASE COMPLEXED WITH FUMARATE AND ACETOACETATE 5TI1 ; 2.0 ; Crystal Structure of Fumarylacetoacetate hydrolase from Burkholderia xenovorans LB400 6J57 ; 2.01 ; Crystal structure of fumarylpyruvate hydrolase from Corynebacterium glutamicum 6J5X ; 1.79 ; Crystal structure of fumarylpyruvate hydrolase from Corynebacterium glutamicum in complex with Mn2+ and pyruvate 6J5Y ; 1.98 ; Crystal structure of fumarylpyruvate hydrolase from Pseudomonas aeruginosa in complex with Mn2+ and pyruvate 3IRP ; 1.5 ; Crystal structure of functional region of UafA from Staphylococcus saprophyticus at 1.50 angstrom resolution 3IS1 ; 2.45 ; Crystal structure of functional region of UafA from Staphylococcus saprophyticus in C2 form at 2.45 angstrom resolution 3IRZ ; 1.7 ; Crystal structure of functional region of UafA from Staphylococcus saprophyticus in P212121 form 3IS0 ; 1.75 ; Crystal structure of functional region of UafA from Staphylococcus saprophyticus in the presence of cholesterol 3KKL ; 2.03 ; Crystal structure of functionally unknown HSP33 from Saccharomyces cerevisiae 7DC5 ; 1.54 ; Crystal structure of fungal antifreeze protein with intermediate activity 7DDB ; 1.72 ; Crystal structure of fungal antifreeze protein with intermediate activity 7ZTN ; 1.45 ; Crystal structure of fungal CE16 acetyl xylan esterase 1OFZ ; 1.5 ; Crystal structure of fungal lectin : six-bladed beta-propeller fold and novel fucose recognition mode for aleuria aurantia lectin 4EA6 ; 2.3 ; Crystal structure of Fungal lipase from Thermomyces(Humicola) lanuginosa at 2.30 Angstrom resolution. 6NS4 ; 2.4 ; Crystal structure of fungal lipoxygenase from Fusarium graminearum. C2 crystal form. 6NS3 ; 2.84 ; Crystal structure of fungal lipoxygenase from Fusarium graminearum. I222 crystal form. 6NS6 ; 3.3 ; Crystal structure of fungal lipoxygenase from Fusarium graminearum. P21 crystal form. 6NS2 ; 2.79 ; Crystal structure of fungal lipoxygenase from Fusarium graminearum. P212121 crystal form. 6NS5 ; 2.79 ; Crystal structure of fungal lipoxygenase from Fusarium graminearum. Second C2 crystal form. 3UT2 ; 1.549 ; Crystal Structure of Fungal MagKatG2 5JHX ; 1.4 ; Crystal Structure of Fungal MagKatG2 at pH 3.0 5JHY ; 1.4 ; Crystal Structure of Fungal MagKatG2 at pH 5.5 5JHZ ; 1.7 ; Crystal Structure of Fungal MagKatG2 at pH 7.0 5U32 ; 2.191 ; Crystal Structure of Fungal RNA Kinase 6TZM ; 1.714 ; Crystal Structure of Fungal RNA Kinase 6TZO ; 1.69 ; Crystal Structure of Fungal RNA Kinase 6TZX ; 1.529 ; Crystal Structure of Fungal RNA Kinase 6U00 ; 1.981 ; Crystal Structure of Fungal RNA Kinase 6U03 ; 1.849 ; Crystal Structure of Fungal RNA Kinase 6U05 ; 1.948 ; Crystal Structure of Fungal RNA Kinase 5FNB ; 1.792 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE FROM PLEUROTUS ERYNGII SEPTUPLE MUTANT E37K, H39R, V160A, T184M, Q202L, D213A & G330R 5FNE ; 1.499 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE FROM PLEUROTUS ERYNGII TRIPLE MUTANT E37K, H39R & G330R 4BLK ; 1.049 ; Crystal Structure of Fungal Versatile Peroxidase I from Pleurotus ostreatus - Crystal Form I 4BLL ; 1.099 ; Crystal Structure of Fungal Versatile Peroxidase I from Pleurotus ostreatus - Crystal Form II 4BLN ; 1.149 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE I FROM PLEUROTUS OSTREATUS - CRYSTAL FORM III 4BLX ; 1.249 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE I FROM PLEUROTUS OSTREATUS - CRYSTAL FORM IV 4BLY ; 1.794 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE I FROM PLEUROTUS OSTREATUS - CRYSTAL FORM V 4BLZ ; 2.0 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE I FROM PLEUROTUS OSTREATUS - CRYSTAL FORM VI 4BM0 ; 2.199 ; CRYSTAL STRUCTURE OF FUNGAL VERSATILE PEROXIDASE I FROM PLEUROTUS OSTREATUS - CRYSTAL FORM VII 7RH8 ; 1.69 ; Crystal structure of Fur1p from Candida albicans, in complex with UTP 2OF4 ; 2.7 ; crystal structure of furanopyrimidine 1 bound to lck 2OF2 ; 2.0 ; crystal structure of furanopyrimidine 8 bound to lck 2O03 ; 2.699 ; Crystal structure of FurB from M. tuberculosis- a Zinc uptake regulator 3S2E ; 1.763 ; Crystal Structure of FurX NADH Complex 1 3S2G ; 2.3 ; Crystal Structure of FurX NADH+:Furfuryl alcohol I 3S2I ; 2.0 ; Crystal Structure of FurX NADH+:Furfuryl alcohol II 3S2F ; 2.0 ; Crystal Structure of FurX NADH:Furfural 5XRR ; 1.503 ; Crystal structure of FUS (54-59) SYSSYG 4IED ; 1.5 ; Crystal Structure of FUS-1 (OXA-85), a Class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum 2F49 ; 1.9 ; Crystal structure of Fus3 in complex with a Ste5 peptide 2F9G ; 2.1 ; Crystal structure of Fus3 phosphorylated on Tyr182 2B9J ; 2.3 ; Crystal structure of Fus3 with a docking motif from Far1 2B9I ; 2.5 ; Crystal structure of Fus3 with a docking motif from Msg5 2B9H ; 1.55 ; Crystal structure of Fus3 with a docking motif from Ste7 2FA2 ; 2.85 ; Crystal structure of Fus3 without a peptide from Ste5 5AJH ; 1.9 ; Crystal structure of Fusarium oxysporum cutinase 3F5H ; 1.75 ; Crystal structure of fused docking domains from PikAIII and PikAIV of the pikromycin polyketide synthase 8T9Q ; 2.29 ; Crystal structure of fused YR, an asymmetric 4-OT trimer 4XXT ; 1.77 ; Crystal structure of Fused Zn-dependent amidase/peptidase/peptodoglycan-binding domain-containing protein from Clostridium acetobutylicum ATCC 824 6K97 ; 2.5 ; Crystal structure of fusion DH domain 6EAG ; 3.302 ; CRYSTAL STRUCTURE OF FUSION INHIBITOR JNJ-2408068 IN COMPLEX WITH HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN ESCAPE VARIANT G143S STABILIZED IN THE PREFUSION STATE 6EAK ; 2.6 ; CRYSTAL STRUCTURE OF FUSION INHIBITOR JNJ-2408068 IN COMPLEX WITH HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN ESCAPE VARIANT T400A STABILIZED IN THE PREFUSION STATE 7YO9 ; 1.75 ; Crystal structure of fusion protein of human TP53INP2 LIR and human GABARAP 3E0M ; 2.4 ; Crystal structure of fusion protein of MsrA and MsrB 6OHL ; 1.85 ; Crystal structure of Fusobacterium nucleatum flavodoxin bound to flavin mononucleotide 6OHK ; 1.2 ; Crystal structure of Fusobacterium nucleatum flavodoxin mutant K13G bound to flavin mononucleotide 8AXG ; 2.04 ; Crystal structure of Fusobacterium nucleatum fusolisin protease 6YQ4 ; 2.399 ; Crystal structure of Fusobacterium nucleatum tannase 8OGG ; 1.76 ; Crystal structure of FutA after an accumulated dose of 5 kGy 8OEM ; 1.7 ; Crystal structure of FutA bound to Fe(II) 8RK1 ; 2.095 ; Crystal structure of FutA bound to Fe(III) solved by neutron diffraction 2E27 ; 1.7 ; Crystal structure of Fv fragment of anti-ciguatoxin antibody complexed with ABC-ring of ciguatoxin 2OTU ; 1.68 ; Crystal structure of Fv polyglutamine complex 2OTW ; 2.35 ; Crystal structure of Fv polyglutamine complex 4R1A ; 2.0 ; Crystal Structure of FVO strain Plasmodium falciparum AMA1 4Z0F ; 2.3 ; Crystal structure of FVO strain Plasmodium falciparum AMA1 in complex with the RON2hp [Phe2038(6CW)] peptide 4Z0E ; 1.9 ; Crystal structure of FVO strain Plasmodium falciparum AMA1 in complex with the RON2hp [Phe2038TRN] peptide 4Z0D ; 2.1 ; Crystal structure of FVO strain Plasmodium falciparum AMA1 in complex with the RON2hp [Phe2038Trp] peptide 4Z09 ; 2.0 ; Crystal structure of FVO strain Plasmodium falciparum AMA1 in complex with the RON2hp [Thr2040Ala] peptide 1LPK ; 2.2 ; CRYSTAL STRUCTURE OF FXA IN COMPLEX WITH 125. 2W3K ; 2.05 ; Crystal Structure of FXa in complex with 4,4-disubstituted pyrrolidine-1,2-dicarboxamide inhibitor 1 2W3I ; 1.9 ; Crystal Structure of FXa in complex with 4,4-disubstituted pyrrolidine-1,2-dicarboxamide inhibitor 2 1LPZ ; 2.4 ; CRYSTAL STRUCTURE OF FXA IN COMPLEX WITH 41. 1LQD ; 2.7 ; CRYSTAL STRUCTURE OF FXA IN COMPLEX WITH 45. 1LPG ; 2.0 ; CRYSTAL STRUCTURE OF FXA IN COMPLEX WITH 79. 2H9E ; 2.2 ; Crystal Structure of FXa/selectide/NAPC2 ternary complex 6ITM ; 2.5 ; Crystal structure of FXR in complex with agonist XJ034 5CX3 ; 2.3 ; Crystal structure of FYCO1 LIR in complex with LC3A 7BQI ; 1.3 ; Crystal structure of FYCO1 RUN domain 2DQ7 ; 2.8 ; Crystal Structure of Fyn kinase domain complexed with staurosporine 1G83 ; 2.6 ; CRYSTAL STRUCTURE OF FYN SH3-SH2 1ZCA ; 2.9 ; Crystal structure of G alpha 12 in complex with GDP, Mg2+ and AlF4- 1ZCB ; 2.0 ; Crystal structure of G alpha 13 in complex with GDP 3C4Z ; 1.84 ; Crystal structure of G protein coupled receptor kinase 1 bound to ADP and magnesium chloride at 1.84A 3C50 ; 2.6 ; Crystal Structure of G protein coupled receptor kinase 1 bound to ADP and magnesium chloride at 2.6A 3C51 ; 3.55 ; Crystal structure of G protein coupled receptor kinase 1 bound to ADP and magnesium chloride at 3.55A 3C4W ; 2.7 ; Crystal Structure of G protein coupled receptor kinase 1 bound to ATP and magnesium chloride at 2.7A 3C4X ; 2.9 ; Crystal Structure of G protein coupled receptor kinase 1 bound to ATP and magnesium chloride at 2.9A 2ACX ; 2.6 ; Crystal Structure of G protein coupled receptor kinase 6 bound to AMPPNP 4MK0 ; 2.4 ; Crystal structure of G protein-coupled receptor kinase 2 in complex with a a rationally designed paroxetine derivative 2BCJ ; 3.061 ; Crystal Structure of G Protein-Coupled Receptor Kinase 2 in Complex with Galpha-q and Gbetagamma Subunits 6PJX ; 1.96 ; Crystal Structure of G Protein-Coupled Receptor Kinase 5 (GRK5) in Complex with Calmodulin (CaM) 4TND ; 1.802 ; Crystal Structure of G Protein-Coupled Receptor Kinase 5 in Complex with AMP-PNP 4TNB ; 2.113 ; Crystal Structure of G Protein-Coupled Receptor Kinase 5 in Complex with Sangivamycin 3NYO ; 2.92 ; Crystal Structure of G Protein-Coupled Receptor Kinase 6 in Complex with AMP 3NYN ; 2.72 ; Crystal Structure of G Protein-Coupled Receptor Kinase 6 in Complex with Sangivamycin 5MWI ; 1.51 ; Crystal structure of G(CUG)8G duplex 6FRG ; 1.535 ; Crystal structure of G-1F mutant of Ssp DnaB Mini-Intein variant M86 6FRE ; 1.22 ; Crystal structure of G-1F/H73A mutant of Ssp DnaB Mini-Intein variant M86 6JKN ; 1.401 ; Crystal Structure of G-quadruplex Formed by Bromo-substituted Human Telomeric DNA 7BN6 ; 1.5 ; Crystal structure of G. sulphuraria ene-reductase GsOYE in complex with b-angelica lactone 6BG7 ; 2.54 ; Crystal structure of G107A mutant of human macrophage migration inhibitory factor 5D1B ; 2.9 ; Crystal structure of G117E HDAC8 in complex with TSA 2PWX ; 2.5 ; Crystal structure of G11A mutant of SARS-CoV 3C-like protease 6NTC ; 2.9 ; Crystal Structure of G12V HRas-GppNHp bound in complex with the engineered RBD variant 1 of CRAF Kinase protein 6NTD ; 3.15 ; Crystal Structure of G12V HRas-GppNHp bound in complex with the engineered RBD variant 12 of CRAF Kinase protein 6OB3 ; 2.1 ; Crystal structure of G13D-KRAS (GMPPNP-bound) in complex with GAP-related domain (GRD) of neurofibromin (NF1) 6VTP ; 2.3 ; Crystal structure of G16C human Galectin-7 mutant 6VTQ ; 1.95 ; Crystal structure of G16C human Galectin-7 mutant in complex with lactose 6VTR ; 2.3 ; Crystal structure of G16S human Galectin-7 mutant 6VTS ; 1.9 ; Crystal structure of G16S human Galectin-7 mutant in complex with lactose 4RFL ; 2.2 ; Crystal structure of G1PDH with NADPH from Methanocaldococcus jannaschii 3H2H ; 2.1 ; Crystal structure of G231F mutant of the rice cell wall degrading esterase LipA from Xanthomonas oryzae 1JWV ; 1.85 ; Crystal structure of G238A mutant of TEM-1 beta-lactamase in complex with a boronic acid inhibitor (sefb4) 1IL1 ; 2.2 ; Crystal structure of G3-519, an anti-HIV monoclonal antibody 5THS ; 1.9 ; Crystal Structure of G302A HDAC8 in complex with M344 5THT ; 2.407 ; Crystal Structure of G303A HDAC8 in complex with M344 5THU ; 1.95 ; Crystal Structure of G304A HDAC8 in complex with M344 5THV ; 1.868 ; Crystal Structure of G305A HDAC8 in complex with M344 2P9E ; 2.6 ; Crystal Structure of G336V mutant of E.coli phosphoglycerate dehydrogenase 2X9A ; 2.47 ; crystal structure of g3p from phage IF1 in complex with its coreceptor, the C-terminal domain of TolA 3N3I ; 2.501 ; Crystal Structure of G48V/C95F tethered HIV-1 Protease/Saquinavir complex 3VVM ; 1.7 ; Crystal structure of G52A-P55G mutant of L-serine-O-acetyltransferase found in D-cycloserine biosynthetic pathway 2Z57 ; 1.8 ; Crystal structure of G56E-propeptide:S324A-subtilisin complex 2Z56 ; 1.9 ; Crystal structure of G56S-propeptide:S324A-subtilisin complex 2Z58 ; 1.88 ; Crystal structure of G56W-propeptide:S324A-subtilisin complex 3FGS ; 1.8 ; Crystal structure of G65R/K206E double mutant of the N-lobe human transferrin 6E08 ; 1.9 ; Crystal structure of G6PD in complex with structural NADP 2VR6 ; 1.3 ; Crystal Structure of G85R ALS mutant of Human Cu,Zn Superoxide Dismutase (CuZnSOD) at 1.3 A resolution 2VR8 ; 1.36 ; Crystal Structure of G85R ALS mutant of Human Cu,Zn Superoxide Dismutase (CuZnSOD) at 1.36 A resolution 2VR7 ; 1.58 ; Crystal Structure of G85R ALS mutant of Human Cu,Zn Superoxide Dismutase (CuZnSOD) at 1.58 A resolution 2R6S ; 2.1 ; Crystal structure of Gab protein 1JR7 ; 2.0 ; CRYSTAL STRUCTURE OF GAB REVEALS OXIDOREDUCTASE FOLD 6B6G ; 1.95 ; Crystal Structure of GABA Aminotransferase bound to (S)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid, an Potent Inactivatorfor the Treatment of Addiction 7VEC ; 3.0 ; Crystal structure of GABARAP complexed with the TEX264 LIR phosphorylated at Ser271 and Ser272 7VED ; 2.02 ; Crystal structure of GABARAP fused to TEX264 LIR with S272D mutation 4XC2 ; 1.9 ; Crystal structure of GABARAP in complex with KBTBD6 LIR peptide 8T2N ; 1.88 ; Crystal structure of GABARAP in complex with the LIR of NSs3 8T2M ; 1.27 ; Crystal structure of GABARAP in complex with the LIR of NSs4 4I9O ; 2.0 ; Crystal Structure of GACKIX L664C Tethered to 1-10 7QZO ; 1.45 ; Crystal structure of GacS D1 domain 7QZ2 ; 1.87 ; Crystal structure of GacS D1 domain in complex with BeF3- 3HBX ; 2.672 ; Crystal structure of GAD1 from Arabidopsis thaliana 3CG6 ; 1.7 ; Crystal structure of Gadd45 gamma 5C6I ; 1.9 ; Crystal Structure of Gadolinium derivative of HEWL solved using Free-Electron Laser radiation 5C6J ; 2.1 ; Crystal Structure of Gadolinium derivative of HEWL solved using Free-Electron Laser radiation 5C6L ; 2.1 ; Crystal Structure of Gadolinium derivative of HEWL solved using intense Free-Electron Laser radiation 3MNM ; 1.73 ; Crystal structure of GAE domain of GGA2p from Saccharomyces cerevisiae 4QPR ; 1.55 ; CRYSTAL STRUCTURE OF GAF DOMAIN of POTASSIUM SENSOR HISTIDINE KINASE KDPD FROM ESCHERICHIA COLI 8DGD ; 1.9 ; Crystal Structure of GAF domain-containing protein, from Klebsiella pneumoniae 2VKS ; 2.1 ; Crystal structure of GAF-B domain of DevS from Mycobacterium smegmatis 2XSS ; 2.5 ; Crystal structure of GAFb from the human phosphodiesterase 5 1GA8 ; 2.0 ; CRYSTAL STRUCTURE OF GALACOSYLTRANSFERASE LGTC IN COMPLEX WITH DONOR AND ACCEPTOR SUGAR ANALOGS. 4A2C ; 1.87 ; Crystal structure of galactitol-1-phosphate dehydrogenase from Escherichia coli 2ZUS ; 2.11 ; Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase 3WFZ ; 2.6 ; Crystal structure of Galacto-N-Biose/Lacto-N-Biose I Phosphorylase C236Y Mutant 2ZUT ; 1.9 ; Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GalNAc 2ZUU ; 2.3 ; Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GlcNAc 2ZUW ; 2.11 ; Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GlcNAc and sulfate 2ZUV ; 1.85 ; Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GlcNAc, Ethylene glycol, and nitrate 2CZ9 ; 1.5 ; Crystal Structure of galactokinase from Pyrococcus horikoshi 7M3K ; 2.3 ; Crystal Structure of Galactonate dehydratase from Brucella melitensis biovar Abortus 2308 3IMH ; 1.76 ; CRYSTAL STRUCTURE OF GALACTOSE 1-EPIMERASE FROM Lactobacillus acidophilus NCFM 5KWS ; 1.316 ; Crystal Structure of Galactose Binding Protein from Yersinia pestis in the Complex with beta D Glucose 3IKN ; 1.6 ; Crystal structure of galactose bound trimeric human lung surfactant protein D 5DVJ ; 1.8 ; Crystal structure of galactose complexed periplasmic glucose binding protein (ppGBP) from P. putida CSV86 1MMX ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis complexed with D-fucose 1MMU ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis complexed with D-glucose 1MMY ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis complexed with D-quinovose 1MN0 ; 1.9 ; Crystal structure of galactose mutarotase from lactococcus lactis complexed with D-xylose 1MMZ ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis complexed with L-arabinose 1NSM ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant D243A complexed with galactose 1NSS ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant D243A complexed with glucose 1NS8 ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant D243N complexed with galactose 1NSR ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant D243N complexed with glucose 1NS2 ; 1.95 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant E304A complexed with galactose 1NS7 ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant E304A complexed with glucose 1NS0 ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant E304Q complexed with galactose 1NS4 ; 1.85 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant E304Q complexed with glucose 1NSX ; 1.75 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant H170N complexed with galactose 1NSZ ; 1.75 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant H170N complexed with glucose 1NSU ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant H96N complexed with galactose 1NSV ; 1.8 ; Crystal structure of galactose mutarotase from Lactococcus lactis mutant H96N complexed with glucose 4BZE ; 2.0 ; Crystal structure of galactose mutarotase GalM from Bacillus subtilis 4BZG ; 2.13 ; Crystal structure of galactose mutarotase GalM from Bacillus subtilis in complex with maltose 4BZH ; 2.6 ; Crystal structure of galactose mutarotase GalM from Bacillus subtilis in complex with maltose and trehalose 4BZF ; 1.9 ; Crystal structure of galactose mutarotase GalM from Bacillus subtilis with trehalose 2EIE ; 1.8 ; Crystal Structure of Galactose Oxidase complexed with Azide 2EIC ; 2.8 ; Crystal Structure of Galactose Oxidase mutant W290F 2EIB ; 2.1 ; Crystal Structure of Galactose Oxidase, W290H mutant 5U2K ; 1.38 ; Crystal structure of Galactoside O-acetyltransferase complex with CoA (H3 space group) 5V0Z ; 1.26 ; Crystal structure of Galactoside O-acetyltransferase complex with CoA (P32 space group). 1G9R ; 2.0 ; CRYSTAL STRUCTURE OF GALACTOSYLTRANSFERASE LGTC IN COMPLEX WITH MN AND UDP-2F-GALACTOSE 3QPE ; 1.796 ; Crystal structure of Galacturonate Dehydratase from GEOBACILLUS SP. complexed with D-Galacturonate and 5-keto-4-deoxy-D-Galacturonate 3P3B ; 1.651 ; CRYSTAL STRUCTURE OF Galacturonate DEHYDRATASE FROM GEOBACILLUS SP. COMPLEXED WITH D-TARTRATE 2DEJ ; 1.5 ; Crystal Structure of galaktokinase from Pyrococcus horikoshii with AMP-PN and galactose 2DEI ; 1.7 ; Crystal Structure of galaktokinase from Pyrococcus horikoshii with AMP-PNP and galactose 5CGZ ; 2.103 ; Crystal structure of GalB, the 4-carboxy-2-hydroxymuconate hydratase, from Pseuodomonas putida KT2440 4HAN ; 2.551 ; Crystal structure of Galectin 8 with NDP52 peptide 4Q26 ; 1.399 ; Crystal Structure of Galectin-1 in Complex with N-Acetyllactosamine 3W58 ; 1.58 ; Crystal structure of Galectin-1 in the lactose-unbound state(P21) 3W59 ; 2.1 ; Crystal structure of Galectin-1 in the lactose-unbound state(P212121) 4NO4 ; 1.399 ; Crystal Structure of Galectin-1 L11A mutant 3AYC ; 1.8 ; Crystal structure of galectin-3 CRD domian complexed with GM1 pentasaccharide 3AYE ; 2.0 ; Crystal structure of galectin-3 CRD domian complexed with lactose 3AYD ; 1.9 ; Crystal structure of galectin-3 CRD domian complexed with TFN 3AYA ; 2.0 ; Crystal structure of galectin-3 CRD domian complexed with Thomsen-Friedenreich antigen 6F6Y ; 1.41 ; Crystal structure of galectin-3 CRD in complex with galactopentaose 8HL9 ; 1.6 ; Crystal structure of Galectin-8 C-CRD with part of linker 5GZC ; 1.08 ; Crystal structure of Galectin-8 N-CRD with part of linker 5T7U ; 1.58 ; Crystal structure of galectin-8N in complex with Glycerol 5T7S ; 1.9 ; Crystal structure of galectin-8N in complex with Lactose 5T7I ; 2.0 ; Crystal structure of galectin-8N in complex with LNnT 4HGU ; 0.98 ; Crystal Structure of Galleria mellonella Silk Protease Inhibitor 2 6W54 ; 1.5 ; Crystal Structure of Gallic Acid Decarboxylase from Arxula adeninivorans 7KD9 ; 1.94 ; Crystal Structure of Gallic Acid Decarboxylase from Arxula adeninivorans 3FS7 ; 1.9539 ; Crystal structure of Gallus gallus beta-parvalbumin (avian thymic hormone) 5FV9 ; 2.07 ; Crystal structure of GalNAc-T2 in complex with compound 16d 5NQA ; 1.9 ; Crystal structure of GalNAc-T4 in complex with the monoglycopeptide 3 6IWQ ; 2.95 ; Crystal structure of GalNAc-T7 with Mn2+ 6IWR ; 2.604 ; Crystal structure of GalNAc-T7 with UDP, GalNAc and Mn2+ 4GNK ; 4.0 ; Crystal structure of Galphaq in complex with full-length human PLCbeta3 8D3T ; 2.37 ; Crystal structure of GalS1 from Populus trichocarpas 8D3Z ; 2.56 ; Crystal structure of GalS1 in complex with Manganese from Populus trichocarpas 5HWK ; 1.344 ; Crystal structure of gama glutamyl cyclotransferease specific to glutathione from yeast 1GGD ; 1.5 ; CRYSTAL STRUCTURE OF GAMMA CHYMOTRYPSIN WITH N-ACETYL-LEUCIL-PHENYLALANINE ALDEHYDE BOUND AT THE ACTIVE SITE 1GG6 ; 1.4 ; CRYSTAL STRUCTURE OF GAMMA CHYMOTRYPSIN WITH N-ACETYL-PHENYLALANINE TRIFLUOROMETHYL KETONE BOUND AT THE ACTIVE SITE 4L95 ; 2.34 ; Crystal structure of gamma glutamyl hydrolase (H218N) from zebrafish 4L8W ; 2.39 ; Crystal structure of gamma glutamyl hydrolase (H218N) from zebrafish complex with MTX polyglutamate 4L7Q ; 2.1 ; Crystal structure of gamma glutamyl hydrolase (wild-type) from zebrafish 6A2U ; 2.6 ; Crystal structure of gamma-alpha subunit complex from Burkholderia cepacia FAD glucose dehydrogenase 8GRJ ; 2.95 ; Crystal structure of gamma-alpha subunit complex from Burkholderia cepacia FAD glucose dehydrogenase in complex with gluconolactone 6WOP ; 1.85 ; Crystal structure of gamma-aminobutyrate aminotransferase PuuE from Acinetobacter baumannii 6WJ8 ; 2.59 ; Crystal structure of gamma-aminobutyrate aminotransferase PuuE from Klebsiella pneumoniae in complex with PLP 4W9B ; 1.279 ; Crystal structure of Gamma-B Crystallin expressed in E. coli based on mRNA variant 1 4W9A ; 1.38 ; Crystal structure of Gamma-B Crystallin expressed in E. coli based on mRNA variant 2 1UI5 ; 2.4 ; Crystal structure of gamma-butyrolactone receptor (ArpA like protein) 1UI6 ; 2.4 ; Crystal structure of gamma-butyrolactone receptor (ArpA-like protein) 3OTZ ; 1.6 ; Crystal structure of gamma-carbonic anhydrase W19A mutant from Metanosarcina thermophila 3OU9 ; 1.8 ; Crystal structure of gamma-carbonic anhydrase W19F mutant from Methanosarcina thermophila 4REP ; 1.97 ; Crystal Structure of gamma-carotenoid desaturase 4JCM ; 1.65 ; Crystal structure of Gamma-CGTASE from Alkalophilic bacillus clarkii at 1.65 Angstrom resolution 5R49 ; 1.05 ; Crystal Structure of gamma-Chymotrypsin at pH 5.6, cryo temperature 5R48 ; 1.05 ; Crystal Structure of gamma-Chymotrypsin at pH 5.6, room temperature 5R45 ; 1.05 ; Crystal Structure of gamma-Chymotrypsin at pH 7.5, cryo temperature 5R44 ; 1.05 ; Crystal Structure of gamma-Chymotrypsin at pH 7.5, room temperature 5R4D ; 1.05 ; Crystal Structure of gamma-Chymotrypsin at pH 9, cryo temperature 5R4C ; 1.15 ; Crystal Structure of gamma-Chymotrypsin at pH 9, room temperature 1K2I ; 1.8 ; Crystal Structure of Gamma-Chymotrypsin in Complex with 7-Hydroxycoumarin 4L8F ; 1.97 ; Crystal structure of gamma-glutamyl hydrolase (C108A) complex with MTX 4L8Y ; 1.97 ; Crystal structure of gamma-glutamyl hydrolase (C108A) from zebrafish 1O20 ; 2.0 ; Crystal structure of Gamma-glutamyl phosphate reductase (TM0293) from Thermotoga maritima at 2.00 A resolution 1VLU ; 2.29 ; Crystal structure of Gamma-glutamyl phosphate reductase (yor323c) from Saccharomyces cerevisiae at 2.40 A resolution 2V36 ; 1.85 ; Crystal structure of gamma-glutamyl transferase from Bacillus subtilis 2I3O ; 2.03 ; Crystal structure of gamma-glutamyl transferase related protein from Thermoplasma acidophilum 2DG5 ; 1.6 ; Crystal Structure of Gamma-glutamyl transpeptidase from Escherichia coli in complex with hydrolyzed Glutathione 2D33 ; 2.6 ; Crystal Structure of gamma-Glutamylcysteine Synthetase Complexed with Aluminum Fluoride 1V4G ; 2.5 ; Crystal Structure of gamma-Glutamylcysteine Synthetase from Escherichia coli B 1VA6 ; 2.1 ; Crystal structure of Gamma-glutamylcysteine synthetase from Escherichia Coli B complexed with Transition-state analogue 3WHQ ; 1.85 ; Crystal structure of gamma-glutamyltranspeptidase from Bacillus subtilis (crystal soaked for 0 min. in acivicin soln. ) 3WHR ; 1.58 ; Crystal structure of gamma-glutamyltranspeptidase from Bacillus subtilis (crystal soaked for 3min. in acivicin soln. ) 2DBU ; 1.95 ; Crystal Structure of Gamma-glutamyltranspeptidase from Escherichia coli 2E0X ; 1.95 ; Crystal Structure of Gamma-glutamyltranspeptidase from Escherichia coli (monoclinic form) 2DBW ; 1.8 ; Crystal Structure of Gamma-glutamyltranspeptidase from Escherichia coli Acyl-Enzyme Intermediate 2DBX ; 1.7 ; Crystal Structure of Gamma-glutamyltranspeptidase from Escherichia coli Complexed with L-Glutamate 3PEF ; 2.07 ; Crystal structure of gamma-hydroxybutyrate dehydrogenase from Geobacter metallireducens in complex with NADP+ 3PDU ; 1.89 ; Crystal structure of gamma-hydroxybutyrate dehydrogenase from Geobacter sulfurreducens in complex with NADP+ 5C05 ; 1.65 ; Crystal Structure of Gamma-terpinene Synthase from Thymus vulgaris 1Z5W ; 3.0 ; Crystal Structure of gamma-tubulin bound to GTP 5C3M ; 3.059 ; Crystal structure of Gan4C, a GH4 6-phospho-glucosidase from Geobacillus stearothermophilus 4UML ; 1.9 ; Crystal structure of ganglioside induced differentiation associated protein 2 (GDAP2) macro domain 3KCW ; 2.0 ; Crystal structure of Ganoderma fungal immunomodulatory protein, GMI 6GQ0 ; 1.94 ; Crystal structure of GanP, a glucose-galactose binding protein from Geobacillus stearothermophilus 6GT9 ; 1.894 ; Crystal structure of GanP, a glucose-galactose binding protein from Geobacillus stearothermophilus, in complex with galactose 6GUQ ; 2.385 ; Crystal structure of GanP, a glucose-galactose binding protein from Geobacillus stearothermophilus, in complex with glucose 5CSZ ; 1.8 ; CRYSTAL STRUCTURE OF GANTENERUMAB FAB FRAGMENT IN COMPLEX WITH ABETA 1-11 6IQ6 ; 2.29 ; Crystal structure of GAPDH 8HMN ; 2.16 ; Crystal structure of GAPDH complexed with arsenate from Lactiplantibacillus plantarum 6KEZ ; 3.5 ; Crystal structure of GAPDH/CP12/PRK complex from Arabidopsis thaliana 2YYA ; 2.4 ; Crystal structure of GAR synthetase from Aquifex aeolicus 2YW2 ; 1.8 ; Crystal structure of GAR synthetase from Aquifex aeolicus in complex with ATP 2YRW ; 2.2 ; Crystal structure of GAR synthetase from Geobacillus kaustophilus 2YRX ; 1.9 ; Crystal structure of GAR synthetase from Geobacillus kaustophilus 2YS6 ; 2.21 ; Crystal structure of GAR synthetase from Geobacillus kaustophilus 2YS7 ; 2.21 ; Crystal structure of GAR synthetase from Geobacillus kaustophilus 2YWR ; 1.77 ; Crystal structure of GAR transformylase from Aquifex aeolicus 2Y44 ; 1.65 ; Crystal structure of GARP from Trypanosoma congolense 4QSG ; 2.7 ; Crystal structure of gas vesicle protein GvpF from Microcystis aeruginosa 5O9P ; 1.75 ; Crystal structure of Gas2 in complex with compound 10 5Y8V ; 2.61 ; Crystal structure of GAS41 5XTZ ; 2.105 ; Crystal structure of GAS41 YEATS bound to H3K27ac peptide 7EIF ; 1.58 ; Crystal structure of GAS41 YEATS domain 8IJ0 ; 1.52 ; Crystal structure of GAS41 YEATS domain in complex with H3K9ac peptide 8I60 ; 2.3 ; Crystal structure of GAS41 YEATS domain in complex with histone H3K27cr 5D4Q ; 2.39 ; Crystal structure of GASDALIE IgG1 Fc 5D6D ; 3.13 ; Crystal structure of GASDALIE IgG1 Fc in complex with FcgRIIIa 8UFO ; 1.46 ; Crystal Structure of Gastrointestinal HAstV VA1 capsid spike domain at 1.46 A resolution 7D40 ; 1.67 ; Crystal structure of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 5N9M ; 1.85 ; Crystal structure of GatD - a glutamine amidotransferase from Staphylococcus aureus involved in peptidoglycan amidation 1EO6 ; 1.8 ; CRYSTAL STRUCTURE OF GATE-16 4M34 ; 2.05 ; Crystal structure of gated-pore mutant D138H of second DNA-Binding protein under starvation from Mycobacterium smegmatis 4M32 ; 1.86 ; Crystal structure of gated-pore mutant D138N of second DNA-Binding protein under starvation from Mycobacterium smegmatis 4M35 ; 2.05 ; Crystal structure of gated-pore mutant H126/141D of second DNA-Binding protein under starvation from Mycobacterium smegmatis 4M33 ; 2.22 ; Crystal structure of gated-pore mutant H141D of second DNA-Binding protein under starvation from Mycobacterium smegmatis 7YYG ; 1.95 ; Crystal structure of gatekeeper of type III secretion system in Bordetella BopN 5H6I ; 2.45 ; Crystal Structure of GBS CAMP Factor 5Y37 ; 1.36 ; Crystal structure of GBS GAPDH 3O9O ; 2.0 ; Crystal Structure of GBS1074, an Esat-6 homologue from Group B Streptococcus 3PHS ; 1.8 ; Crystal Structure of GBS52, the minor pilin in gram-positive pathogen Streptococcus agalactiae 3R1E ; 0.972 ; Crystal structure of GC(8BrG)GCGGC duplex 3R1D ; 1.45 ; Crystal structure of GC(8BrG)GCGGCGGC duplex 3SG2 ; 2.0 ; Crystal Structure of GCaMP2-T116V,D381Y 3SG3 ; 2.1 ; Crystal Structure of GCaMP3-D380Y 3SG4 ; 2.4 ; Crystal Structure of GCaMP3-D380Y, LP(linker 2) 3SG7 ; 1.9 ; Crystal Structure of GCaMP3-KF(linker 1) 4E58 ; 1.952 ; Crystal structure of GCC(LCG)CCGC duplex containing LNA residue 4E59 ; 1.54 ; Crystal structure of GCCGCCGC duplex 8IE4 ; 2.1 ; Crystal structure of GcCGT 3R1C ; 2.0531 ; Crystal structure of GCGGCGGC duplex 7CT6 ; 2.1 ; Crystal structure of GCL from Deinococcus metallilatus 1PIQ ; 1.8 ; CRYSTAL STRUCTURE OF GCN4-PIQ, A TRIMERIC COILED COIL WITH BURIED POLAR RESIDUES 7BY1 ; 1.8 ; Crystal structure of GCN5 PCAF N-terminal domain 2Q0Y ; 1.8 ; Crystal structure of GCN5-related N-acetyltransferase (YP_295895.1) from Ralstonia eutropha JMP134 at 1.80 A resolution 2OZG ; 2.0 ; Crystal structure of GCN5-related N-acetyltransferase (YP_325469.1) from Anabaena variabilis ATCC 29413 at 2.00 A resolution 8HEH ; 1.4 ; Crystal structure of GCN5-related N-acetyltransferase 05790 4MY0 ; 2.101 ; Crystal Structure of GCN5-related N-acetyltransferase from Kribbella flavida 4MY3 ; 2.57 ; Crystal Structure of GCN5-related N-acetyltransferase from Kribbella flavida 3TT2 ; 2.73 ; Crystal Structure of GCN5-related N-Acetyltransferase from Sphaerobacter thermophilus 3G3S ; 1.8 ; Crystal structure of GCN5-related N-acetyltransferase-like protein (ZP_00874857) (ZP_00874857.1) from Streptococcus suis 89/1591 at 1.80 A resolution 6HQK ; 1.57 ; Crystal structure of GcoA F169A bound to guaiacol 6YCN ; 1.83 ; Crystal structure of GcoA F169A bound to o-vanillin 6HQQ ; 1.66 ; Crystal structure of GcoA F169A bound to syringol 6YCT ; 2.39 ; Crystal structure of GcoA F169A_T296S bound to p-vanillin 6HQL ; 1.49 ; Crystal structure of GcoA F169H bound to guaiacol 6HQR ; 1.79 ; Crystal structure of GcoA F169H bound to syringol 6HQM ; 1.85 ; Crystal structure of GcoA F169I bound to guaiacol 6HQN ; 1.87 ; Crystal structure of GcoA F169L bound to guaiacol 6HQO ; 1.7 ; Crystal structure of GcoA F169S bound to guaiacol 6YCO ; 1.8 ; Crystal structure of GcoA F169S bound to o-vanillin 6HQS ; 2.17 ; Crystal structure of GcoA F169S bound to syringol 6HQP ; 1.62 ; Crystal structure of GcoA F169V bound to guaiacol 6YCP ; 1.8 ; Crystal structure of GcoA F169V bound to o-vanillin 6HQT ; 1.85 ; Crystal structure of GcoA F169V bound to syringol 6YCH ; 1.88 ; Crystal structure of GcoA T296A bound to guaiacol 6YCK ; 1.8 ; Crystal structure of GcoA T296A bound to p-vanillin 6YCI ; 1.8 ; Crystal structure of GcoA T296G bound to guaiacol 6YCL ; 1.7 ; Crystal structure of GcoA T296G bound to p-vanillin 6YCJ ; 1.64 ; Crystal structure of GcoA T296S bound to guaiacol 6YCM ; 1.6 ; Crystal structure of GcoA T296S bound to p-vanillin 7DOH ; 1.45 ; Crystal Structure of GD-26 Fab in Complex with TD Peptide from Haloarcula Marismortui Bacteriorhodopsin I 4RHS ; 1.9211 ; Crystal structure of GD2 bound PltB 6PFM ; 2.84 ; Crystal structure of GDC-0927 bound to estrogen receptor alpha 5JI1 ; 2.25 ; Crystal Structure of GDF8 3FUB ; 2.35 ; Crystal structure of GDNF-GFRalpha1 complex 8DQ9 ; 2.8 ; Crystal structure of GDP bound 3-dehydroquinate dehydratase I from Klebsiella oxytoca 6G0Z ; 2.15 ; Crystal structure of GDP bound RbgA from S. aureus 6KX2 ; 1.454 ; Crystal structure of GDP bound RhoA protein 1BWS ; 2.2 ; CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN THE BIOSYNTHESIS OF GDP-L-FUCOSE 3B8X ; 1.7 ; Crystal structure of GDP-4-keto-6-deoxymannose-3-dehydratase (ColD) H188N mutant with bound GDP-perosamine 2R0T ; 1.9 ; Crystal structure of GDP-4-keto-6-deoxymannose-3-dehydratase with a trapped PLP-glutamate geminal diamine 4NON ; 2.5 ; Crystal structure of GDP-bound A143S mutant of the S. thermophilus FeoB G-domain 5FG3 ; 1.9 ; Crystal structure of GDP-bound aIF5B from Aeropyrum pernix 3WYA ; 2.35 ; Crystal structure of GDP-bound EF1alpha from Pyrococcus horikoshii 7E5E ; 1.95 ; Crystal structure of GDP-bound GNAS in complex with the cyclic peptide inhibitor GD20 2XTM ; 1.7 ; Crystal structure of GDP-bound human GIMAP2, amino acid residues 1- 234 2XTO ; 2.8 ; Crystal structure of GDP-bound human GIMAP2, amino acid residues 21- 260 6Z3E ; 2.80039 ; Crystal structure of GDP-bound human GIMAP5, amino acid residues 1-276 6AU6 ; 1.7 ; Crystal structure of GDP-bound human GNAS R201C mutant 4OBE ; 1.24 ; Crystal Structure of GDP-bound Human KRas 6P0J ; 1.31 ; Crystal structure of GDP-bound human RalA 6P0O ; 1.54 ; Crystal structure of GDP-bound human RalA 6P0I ; 1.18 ; Crystal structure of GDP-bound human RalA in a covalent complex with aryl sulfonyl fluoride compounds. 6P0K ; 1.49 ; Crystal structure of GDP-bound human RalA in a covalent complex with aryl sulfonyl fluoride compounds. 6P0L ; 1.3 ; Crystal structure of GDP-bound human RalA in a covalent complex with aryl sulfonyl fluoride compounds. 6P0M ; 1.5 ; Crystal structure of GDP-bound human RalA in a covalent complex with aryl sulfonyl fluoride compounds. 6P0N ; 1.63 ; Crystal structure of GDP-bound human RalA in a covalent complex with aryl sulfonyl fluoride compounds. 6PQ3 ; 1.75 ; Crystal structure of GDP-bound KRAS with ten residues long internal tandem duplication in the switch II region 2YWH ; 2.24 ; Crystal structure of GDP-bound LepA from Aquifex aeolicus 3W5J ; 1.932 ; Crystal structure of GDP-bound NfeoB from Gallionella capsiferriformans 3LX8 ; 2.9 ; Crystal structure of GDP-bound NFeoB from S. thermophilus 6WGH ; 1.65 ; Crystal structure of GDP-bound NRAS with ten residues long internal tandem duplication in the switch II region 7EQ2 ; 1.5509 ; Crystal structure of GDP-bound Rab1a-T75D 4LI0 ; 3.3 ; Crystal structure of GDP-bound Rab8:GRAB 4LHY ; 3.1 ; Crystal structure of GDP-bound Rab8:Rabin8 7T1F ; 2.2 ; Crystal structure of GDP-bound T50I mutant of human KRAS4B 1RPN ; 2.15 ; Crystal Structure of GDP-D-mannose 4,6-dehydratase in complexes with GDP and NADPH 2Z1M ; 2.0 ; Crystal Structure of GDP-D-Mannose Dehydratase from Aquifex aeolicus VF5 2Z95 ; 2.6 ; Crystal Structure of GDP-D-Mannose Dehydratase from Aquifex aeolicus VF5 2XKB ; 3.0 ; Crystal structure of GDP-form protofilaments of Bacillus thuringiensis serovar israelensis TubZ 8SKB ; 2.58 ; Crystal Structure of GDP-mannose 3,5 epimerase de Myrciaria dubia in complex with NAD 5IN4 ; 1.6 ; Crystal Structure of GDP-mannose 4,6 dehydratase bound to a GDP-fucose based inhibitor 5IN5 ; 1.9 ; Crystal Structure of GDP-mannose 4,6 dehydratase in complex with natural inhibitor GDP-Fucose 7KF3 ; 2.35 ; Crystal structure of GDP-mannose 4,6-dehydratase from Brucella abortus (strain 2308) in complex with Guanosine-diphosphate-rhamnose 1N7H ; 1.8 ; Crystal Structure of GDP-mannose 4,6-dehydratase ternary complex with NADPH and GDP 8SG0 ; 1.25 ; Crystal Structure of GDP-manose 3,5 epimerase de Myrciaria dubia in complex with substrate, product and NAD 3BN1 ; 1.8 ; Crystal structure of GDP-perosamine synthase 7E16 ; 2.62 ; crystal structure of GDSL esterase from Geobacillus thermodenitrificans 5XTU ; 1.38 ; Crystal Structure of GDSL Esterase of Photobacterium sp. J15 6WK5 ; 3.5 ; Crystal structure of Gdx-Clo from Small Multidrug Resistance family of transporters 8TGY ; 2.18 ; Crystal structure of Gdx-Clo from Small Multidrug Resistance family of transporters in complex with guanylurea 6WK9 ; 2.32 ; Crystal structure of Gdx-Clo from Small Multidrug Resistance family of transporters in complex with octylguanidinium 6WK8 ; 2.53 ; Crystal structure of Gdx-Clo from Small Multidrug Resistance family of transporters in complex with phenylguanidinium 7SZT ; 2.32 ; Crystal structure of Gdx-Clo from Small Multidrug Resistance family of transporters in low pH (protonated state) 3NKG ; 2.0 ; Crystal Structure of GEBA250068378 from Sulfurospirillum deleyianum 6EKK ; 1.82 ; Crystal structure of GEF domain of DENND 1A in complex with Rab GTPase Rab35-GDP bound state. 1QIB ; 2.8 ; CRYSTAL STRUCTURE OF GELATINASE A CATALYTIC DOMAIN 2FF6 ; 2.05 ; Crystal structure of Gelsolin domain 1:ciboulot domain 2 hybrid in complex with actin 2FF3 ; 2.0 ; Crystal structure of Gelsolin domain 1:N-wasp V2 motif hybrid in complex with actin 1RGI ; 3.0 ; Crystal structure of gelsolin domains G1-G3 bound to actin 6LJE ; 1.4 ; Crystal structure of gelsolin G3 domain (calcium and magnesium condition) 6LJF ; 1.5 ; Crystal structure of gelsolin G3 domain (calcium condition) 5L2K ; 3.2 ; Crystal structure of GEM42 TCR-CD1b-GMM complex 5C9N ; 2.2 ; Crystal structure of GEMC1 coiled-coil domain 5TEE ; 1.65 ; Crystal structure of Gemin5 WD40 repeats in apo form 5TEF ; 1.95 ; Crystal structure of Gemin5 WD40 repeats in complex with m7GpppG 1UII ; 2.0 ; Crystal structure of Geminin coiled-coil domain 5Z8A ; 1.398 ; Crystal structure of GenB1 from Micromonospora echinospora in complex with JI-20A and PLP (external aldimine) 5Z83 ; 1.7 ; Crystal structure of GenB1 from Micromonospora echinospora in complex with PLP (internal aldimine) 7LM0 ; 2.09 ; Crystal structure of GenB3 in complex with PLP 7LLD ; 1.4 ; Crystal structure of GenB4 in complex with external aldimine of PLP-sisomicin 7LLE ; 1.704 ; Crystal structure of GenB4 in complex with PLP 6NOR ; 2.402 ; Crystal structure of GenD2 from gentamicin A biosynthesis in complex with NAD 3H2T ; 3.2 ; Crystal structure of gene product 6, baseplate protein of bacteriophage T4 3GAN ; 2.0 ; Crystal structure of gene product from Arabidopsis thaliana At3g22680 with bound suramin 1VJH ; 2.1 ; Crystal structure of gene product of At1g24000 from Arabidopsis thaliana 2R6U ; 1.5 ; Crystal structure of gene product RHA04853 from Rhodococcus sp. RHA1 2OX6 ; 1.7 ; Crystal structure of gene product SO3848 from Shewanella oneidensis MR-1 1PT5 ; 2.0 ; Crystal structure of gene yfdW of E. coli 2FHQ ; 1.87 ; Crystal Structure of General Stress Protein from Bacteroides thetaiotaomicron 6RO0 ; 2.13 ; CRYSTAL STRUCTURE OF GENETICALLY DETOXIFIED PERTUSSIS TOXIN GDPT. 5NDG ; 3.7 ; Crystal structure of geneticin (G418) bound to the yeast 80S ribosome 1MWL ; 2.4 ; Crystal structure of geneticin bound to the eubacterial 16S rRNA A site 4K32 ; 2.5 ; Crystal structure of geneticin bound to the leishmanial rRNA A-site 4U4O ; 3.6 ; Crystal structure of Geneticin bound to the yeast 80S ribosome 4XKB ; 1.501 ; Crystal Structure of GENOMES UNCOUPLED 4 (GUN4) in Complex with Deuteroporphyrin IX 4XKC ; 2.0 ; Crystal Structure of GENOMES UNCOUPLED 4 (GUN4) in Complex with Magnesium Deuteroporphyrin IX 2P7K ; 3.3 ; Crystal structure of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes (hexagonal form) 2P7O ; 1.44 ; Crystal structure of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes (tetragonal form) 2P7P ; 2.17 ; Crystal structure of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes complexed with MN(II) and sulfate ion 1T1J ; 1.7 ; Crystal structure of genomics APC5043 1YOC ; 1.7 ; Crystal Structure of genomics APC5556 1YNB ; 1.76 ; crystal structure of genomics APC5600 5OBM ; 3.4 ; Crystal structure of Gentamicin bound to the yeast 80S ribosome 4B52 ; 1.76 ; Crystal structure of Gentlyase, the neutral metalloprotease of Paenibacillus polymyxa 4GER ; 1.59 ; Crystal structure of Gentlyase, the neutral metalloprotease of Paenibacillus polymyxa 3A5Y ; 1.9 ; Crystal structure of GenX from Escherichia coli in complex with lysyladenylate analog 5YTL ; 1.401 ; Crystal structure of Geobacillus thermodenitrificans copper-containing nitrite reductase determined with an anaerobically manipulated crystal 2YNQ ; 2.4 ; Crystal Structure of Geobacillus thermodenitrificans EssB extracellular fragment 5H93 ; 2.176 ; Crystal structure of Geobacter metallireducens SMUG1 5H98 ; 2.04 ; Crystal structure of Geobacter metallireducens SMUG1 5H99 ; 2.5 ; Crystal structure of Geobacter metallireducens SMUG1 mutant N58D 5H9I ; 1.501 ; Crystal structure of Geobacter metallireducens SMUG1 with xanthine 3DP5 ; 1.86 ; Crystal structure of Geobacter sulfurreducens OmcF with N-terminal Strep-tag II 5AVP ; 2.9 ; Crystal structure of Geodermatophilus obscurus L-ribose isomerase 5TWA ; 1.85 ; Crystal structure of Geodia cydonium BHP2 in complex with Lubomirskia baicalensis Bak-2 3QWM ; 2.39 ; Crystal Structure of GEP100, the plextrin homology domain of IQ motif and SEC7 domain-containing protein 1 isoform a 6FGD ; 1.5 ; Crystal structure of Gephyrin E domain in complex with Artemether 6FGC ; 1.5 ; Crystal structure of Gephyrin E domain in complex with Artesunate 2FU3 ; 2.7 ; Crystal structure of gephyrin E-domain 5GP0 ; 1.702 ; Crystal structure of geraniol-NUDX1 complex 1WMW ; 1.55 ; Crystal structure of geranulgeranyl diphosphate synthase from Thermus thermophilus 3VC2 ; 2.046 ; Crystal structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor A3(2) in complex with Mg2+, geranyl diphosphate, and S-adenosyl-L-homocysteine 3VC1 ; 1.82 ; Crystal structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor A3(2) in complex with Mg2+, geranyl-S-thiolodiphosphate, and S-adenosyl-L-homocysteine 3QKC ; 2.2 ; CRYSTAL STRUCTURE OF geranyl diphosphate synthase small subunit from Antirrhinum majus 5E8H ; 2.3 ; Crystal structure of geranylfarnesyl pyrophosphate synthases 2 from Arabidopsis thaliana 4LFG ; 1.76 ; Crystal structure of geranylgeranyl diphosphate synthase sub1274 (target efi-509455) from streptococcus uberis 0140j with bound magnesium and isopentyl diphosphate, fully liganded complex; 4LFE ; 1.95 ; Crystal structure of geranylgeranyl diphosphate synthase sub1274 (target efi-509455) from streptococcus uberis 0140j with bound magnesium and isopentyl diphosphate, partially liganded complex; 6KD7 ; 2.0 ; Crystal structure of geranylgeranyl pyrophosphate synthase 5E8L ; 2.807 ; Crystal structure of geranylgeranyl pyrophosphate synthase 11 from Arabidopsis thaliana 3RMG ; 2.3 ; Crystal structure of geranylgeranyl pyrophosphate synthase from bacteroides thetaiotaomicron 3LMD ; 1.9 ; Crystal structure of geranylgeranyl pyrophosphate synthase from corynebacterium glutamicum atcc 13032 3Q2Q ; 1.9 ; Crystal structure of geranylgeranyl pyrophosphate synthase from Corynebacterium glutamicum complexed with calcium and isoprenyl diphosphate 3QQV ; 2.0 ; Crystal structure of geranylgeranyl pyrophosphate synthase from corynebacterium glutamicum complexed with isoprenyl diphosphate and magnesium 3M9U ; 1.77 ; Crystal structure of geranylgeranyl pyrophosphate synthase from lactobacillus brevis atcc 367 3N3D ; 2.4 ; Crystal structure of geranylgeranyl pyrophosphate synthase from lactobacillus brevis atcc 367 3PKO ; 1.98 ; Crystal structure of geranylgeranyl pyrophosphate synthase from lactobacillus brevis atcc 367 complexed with citrate 3PDE ; 1.75 ; Crystal structure of geranylgeranyl pyrophosphate synthase from Lactobacillus brevis atcc 367 complexed with isoprenyl diphosphate and magnesium 1WY0 ; 2.2 ; Crystal structure of geranylgeranyl pyrophosphate synthetase from Pyrococcus horikoshii Ot3 4F38 ; 2.8 ; Crystal structure of geranylgeranylated RhoA in complex with RhoGDI in its active GPPNHP-bound form 3LLW ; 2.3 ; Crystal structure of geranyltransferase from helicobacter pylori 26695 3Q1O ; 2.4 ; Crystal structure of geranyltransferase from helicobacter pylori complexed with magnesium and isoprenyl diphosphate 3LOM ; 2.3 ; CRYSTAL STRUCTURE OF GERANYLTRANSFERASE FROM Legionella pneumophila 2FTZ ; 1.9 ; Crystal structure of Geranyltranstransferase (EC 2.5.1.10) (tm0161) from THERMOTOGA MARITIMA at 1.90 A resolution 5F7E ; 1.9 ; Crystal structure of germ-line precursor of 3BNC60 Fab 4JDV ; 1.65 ; Crystal structure of germ-line precursor of NIH45-46 Fab 5I1U ; 1.5 ; Crystal structure of germacradien-4-ol synthase from Streptomyces citricolor 1FI2 ; 1.6 ; CRYSTAL STRUCTURE OF GERMIN (OXALATE OXIDASE) 7C4X ; 2.5 ; Crystal structure of germination protease from the spore-forming bacterium Paenisporosarcina sp. TG-20 in its inactive form 4BH8 ; 2.4 ; CRYSTAL STRUCTURE OF GERMLINE ANTIBODY 36-65 IN COMPLEX WITH PEPTIDE GDPRPSYISHLL 4BH7 ; 2.89 ; CRYSTAL STRUCTURE OF GERMLINE ANTIBODY 36-65 IN COMPLEX WITH PEPTIDE PPYPAWHAPGNI 4FQQ ; 2.42 ; Crystal Structure of Germline Antibody PGT121-GL Fab 4NPY ; 1.796 ; Crystal structure of germline Fab PGT121, a putative precursor of the broadly reactive and potent HIV-1 neutralizing antibody 3V3R ; 1.898 ; Crystal Structure of GES-11 3TSG ; 1.9 ; Crystal structure of GES-14 3V3S ; 1.9 ; Crystal structure of GES-18 6Q35 ; 1.4 ; Crystal structure of GES-5 beta-lactamase in complex with boronic inhibitor cpd 3 4GNU ; 1.09 ; Crystal structure of GES-5 carbapenemase 6TS9 ; 1.55 ; Crystal structure of GES-5 carbapenemase 3H84 ; 2.3 ; Crystal structure of GET3 3UG6 ; 3.3 ; Crystal Structure of Get3 from Methanocaldococcus jannaschii 3UG7 ; 2.901 ; Crystal Structure of Get3 from Methanocaldococcus jannaschii 4OGS ; 2.21 ; Crystal structure of GFP S205A/T203V at 2.2 A resolution 4GF6 ; 1.1 ; crystal structure of GFP with cuprum bound at the Incorporated metal Chelating Amino Acid PYZ151 6RUL ; 2.2 ; Crystal structure of GFP-LAMA-F98 - a GFP enhancer nanobody with cpDHFR insertion and TMP and NADPH 6RUM ; 1.6 ; Crystal structure of GFP-LAMA-G97 - a GFP enhancer nanobody with cpDHFR insertion and TMP and NADPH 3LVC ; 1.14 ; Crystal structure of GFP-like protein aceGFP_G222E (A. coerulescens). Colorless form. 3LVD ; 1.751 ; Crystal structure of GFP-like protein aceGFP_G222E (A. coerulescens). UV-photoconverted green form. 4Z4K ; 2.8 ; Crystal structure of GFP-TAX1BP1 UBZ1+2 domain fusion protein 4Z4M ; 2.15 ; Crystal structure of GFP-TAX1BP1 UBZ2 domain fusion protein 4GES ; 1.23 ; crystal structure of GFP-TYR151PYZ with an unnatural amino acid incorporation 3VHT ; 2.4 ; Crystal structure of GFP-Wrnip1 UBZ domain fusion protein in complex with ubiquitin 6LR7 ; 1.67 ; Crystal structure of GFPuv complexed with the nanobody LaG16 at 1.67 Angstron resolution 1J2J ; 1.6 ; Crystal structure of GGA1 GAT N-terminal region in complex with ARF1 GTP form 1P4U ; 2.2 ; CRYSTAL STRUCTURE OF GGA3 GAE DOMAIN IN COMPLEX WITH RABAPTIN-5 PEPTIDE 1WR6 ; 2.6 ; Crystal structure of GGA3 GAT domain in complex with ubiquitin 1IH2 ; 2.8 ; Crystal Structure of GGBr5CGBr5CC 6L7H ; 1.8 ; crystal structure of GgCGT in complex with UDP and Nothofagin 6L5Q ; 2.894 ; crystal structure of GgCGT in complex with UDP-Gal 6L5P ; 2.603 ; crystal structure of GgCGT in complex with UDP-Glu 6L5R ; 2.89 ; crystal structure of GgCGT in complex with UDP-Glu 6L5S ; 1.914 ; crystal structure of GgCGT in complex with UDP-Glu 4URQ ; 2.5 ; Crystal Structure of GGDEF domain (I site mutant) from T.maritima 4URS ; 2.27 ; Crystal Structure of GGDEF domain from T.maritima 4URG ; 1.9 ; Crystal Structure of GGDEF domain from T.maritima (active-like dimer) 4ZVE ; 1.2 ; Crystal structure of GGDEF domain of the E. coli DosC - form I (apo-form) 4ZVF ; 1.15 ; Crystal structure of GGDEF domain of the E. coli DosC - form II (GTP-alpha-S-bound) 4ZVG ; 2.2 ; Crystal structure of GGDEF domain of the E. coli DosC - form III 4ZVH ; 3.301 ; Crystal structure of GGDEF domain of the E. coli DosC - form IV 6O60 ; 2.503 ; Crystal structure of GGTase3-FBXL2-SKP1 complex 3CQL ; 1.5 ; Crystal Structure of GH family 19 chitinase from Carica papaya 7VTL ; 2.07038 ; Crystal structure of GH family 64 beta-1,3-glucanase complexed with Laminaritriose 5H9X ; 1.91 ; Crystal structure of GH family 64 laminaripentaose-producing beta-1,3-glucanase from Paenibacillus barengoltzii 5H9Y ; 1.969 ; Crystal structure of GH family 64 laminaripentaose-producing beta-1,3-glucanase from Paenibacillus barengoltzii complexed with laminarihexaose. 5XC2 ; 2.7 ; Crystal structure of GH family 81 beta-1,3-glucanase from Rhizomucr miehei complexed with laminarihexaose 5XBZ ; 2.7 ; Crystal structure of GH family 81 beta-1,3-glucanase from Rhizomucr miehei complexed with laminaripentaose 5U0H ; 1.7 ; Crystal structure of GH family 9 endoglucanase J30 3WH5 ; 1.6 ; Crystal structure of GH1 beta-glucosidase Td2F2 3WH6 ; 1.6 ; Crystal structure of GH1 beta-glucosidase Td2F2 glucose complex 3WH8 ; 1.9 ; Crystal structure of GH1 beta-glucosidase Td2F2 isofagomine complex 3WH7 ; 1.1 ; Crystal structure of GH1 beta-glucosidase Td2F2 L-fucose complex 5AYB ; 1.8 ; Crystal structure of GH1 Beta-Glucosidase TD2F2 N223G mutant 5AYI ; 1.85 ; Crystal structure of GH1 Beta-glucosidase TD2F2 N223Q mutant 4PMZ ; 1.401 ; Crystal structure of GH10 endo-b-1,4-xylanase (XynB) from Xanthomonas axonopodis pv citri complexed with xylobiose 4PMY ; 1.601 ; Crystal structure of GH10 endo-b-1,4-xylanase (XynB) from Xanthomonas axonopodis pv citri complexed with xylose 4PN2 ; 1.42 ; Crystal structure of GH10 endo-b-1,4-xylanase (XynB) from Xanthomonas axonopodis pv citri complexed with xylotriose 4PMX ; 1.304 ; Crystal structure of GH10 endo-b-1,4-xylanase (XynB) from Xanthomonas axonopodis pv citri in the native form 6JDT ; 1.68 ; Crystal structure of GH10 family xylanase XynAF1 from Aspergillus fumigatus Z5 5XZU ; 1.7 ; Crystal structure of GH10 xylanase from Bispora. sp MEY-1 with xylobiose 5XZO ; 1.5 ; Crystal structure of GH10 xylanase XYL10C from Bispora. sp MEY-1 8IH0 ; 1.5 ; Crystal structure of GH11 from Thermoanaerobacterium saccharolyticum 8X1D ; 1.95 ; Crystal structure of GH11 from Thermoanaerobacterium saccharolyticum (pH8.5) 6NPS ; 1.99 ; Crystal structure of GH115 enzyme AxyAgu115A from Amphibacillus xylanus 6M5A ; 1.85 ; Crystal structure of GH121 beta-L-arabinobiosidase HypBA2 from Bifidobacterium longum 6RQK ; 1.85 ; Crystal structure of GH125 1,6-alpha-mannosidase from Clostridium perfringens in complex with mannoimidazole 5M7I ; 2.1 ; Crystal structure of GH125 1,6-alpha-mannosidase mutant from Clostridium perfringens in complex with 1,6-alpha-mannobiose 5M7Y ; 1.55 ; Crystal structure of GH125 1,6-alpha-mannosidase mutant from Clostridium perfringens in complex with 1,6-alpha-mannotriose 3WKX ; 2.0 ; Crystal structure of GH127 beta-L-arabinofuranosidase HypBA1 from Bifidobacterium longum arabinose complex form 3WKW ; 2.2 ; Crystal structure of GH127 beta-L-arabinofuranosidase HypBA1 from Bifidobacterium longum ligand free form 6KQT ; 2.0 ; Crystal Structure of GH136 lacto-N-biosidase from Eubacterium ramulus - native protein 6KQS ; 1.4 ; Crystal Structure of GH136 lacto-N-biosidase from Eubacterium ramulus - selenomethionine derivative 8K7Y ; 1.7 ; Crystal structure of GH146 beta-L-arabinofuranosidase Bll3HypBA1 (amino acids 380-1051), ligand-free form 8K7X ; 1.75 ; Crystal structure of GH146 beta-L-arabinofuranosidase Bll3HypBA1 (amino acids 380-1223) in complex with Tris 4MNL ; 1.6 ; Crystal Structure of GH18 Chitinase (G77W/E119Q mutant) from Cycas revoluta in complex with (GlcNAc)4 4MNM ; 1.8 ; Crystal Structure of GH18 Chitinase (G77W/E119Q mutant) from Cycas revoluta in complex with (GlcNAc)4 4MNJ ; 1.58 ; Crystal Structure of GH18 Chitinase from Cycad, Cycas revoluta 4MNK ; 1.29 ; Crystal Structure of GH18 Chitinase from Cycas revoluta in complex with (GlcNAc)3 7F88 ; 1.6 ; Crystal structure of GH19 chitinase lacking the third loop structure 6NCX ; 2.25 ; Crystal structure of GH2 beta-galacturonidase from Eisenbergiella tayi bound to galacturonate 6EZT ; 2.6 ; Crystal structure of GH20 Exo beta-N-Acetylglucosaminidase D437A inactive mutant from Vibrio harveyi 6EZR ; 2.37 ; Crystal structure of GH20 Exo beta-N-Acetylglucosaminidase from Vibrio harveyi 6EZS ; 2.5 ; Crystal structure of GH20 Exo beta-N-Acetylglucosaminidase from Vibrio harveyi in complex with N-acetylglucosamine 6K35 ; 2.36 ; Crystal structure of GH20 exo beta-N-acetylglucosaminidase from Vibrio harveyi in complex with NAG-thiazoline 4NI3 ; 1.3993 ; Crystal Structure of GH29 family alpha-L-fucosidase from Fusarium graminearum in the closed form 4PSP ; 1.561 ; Crystal Structure of GH29 family alpha-L-fucosidase from Fusarium graminearum in the open form 5XXL ; 1.6 ; Crystal structure of GH3 beta-glucosidase from Bacteroides thetaiotaomicron 5XXM ; 1.7 ; Crystal structure of GH3 beta-glucosidase from Bacteroides thetaiotaomicron in complex with gluconolactone 7VI6 ; 2.0 ; Crystal structure of GH3 beta-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila 7VI7 ; 2.0 ; Crystal structure of GH3 beta-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila in complex with GlcNAc 4L39 ; 2.81 ; Crystal structure of GH3.12 from Arabidopsis thaliana in complex with AMPCPP and salicylate 4EQL ; 1.8 ; Crystal Structure of GH3.12 in complex with AMP and salicylate 4EWV ; 2.897 ; Crystal structure of GH3.12 in complex with AMPCPP 5KOD ; 2.202 ; Crystal Structure of GH3.5 Acyl Acid Amido Synthetase from Arabidopsis thaliana 7VKA ; 2.401 ; Crystal Structure of GH3.6 in complex with an inhibitor 7NCX ; 1.36 ; Crystal structure of GH30 (double mutant EE) from Thermothelomyces thermophila. 7O0E ; 1.85 ; Crystal structure of GH30 (mutant E188A) complexed with aldotriuronic acid from Thermothelomyces thermophila. 6IUJ ; 2.25 ; Crystal structure of GH30 xylanase B from Talaromyces cellulolyticus 6KRL ; 1.601 ; Crystal structure of GH30 xylanase B from Talaromyces cellulolyticus expressed by Pichia pastoris 6KRN ; 1.653 ; Crystal structure of GH30 xylanase B from Talaromyces cellulolyticus expressed by Pichia pastoris in complex with aldotriuronic acid 5ZN6 ; 1.8 ; Crystal structure of GH31 alpha-xylosidase from a soil metagenome 5ZN7 ; 2.1 ; Crystal structure of GH31 alpha-xylosidase from a soil metagenome complexed with xylose 4FNU ; 3.6 ; Crystal structure of GH36 alpha-galactosidase AgaA A355E D478A from Geobacillus stearothermophilus in complex with stachyose 4FNT ; 2.6 ; Crystal structure of GH36 alpha-galactosidase AgaA A355E D548N from Geobacillus stearothermophilus in complex with raffinose 4FNP ; 2.803 ; Crystal structure of GH36 alpha-galactosidase AgaA A355E from Geobacillus stearothermophilus 4FNS ; 2.6 ; Crystal structure of GH36 alpha-galactosidase AgaA A355E from Geobacillus stearothermophilus in complex with 1-deoxygalactonojirimycin 4FNR ; 3.2 ; Crystal structure of GH36 alpha-galactosidase AgaA from Geobacillus stearothermophilus 4FNQ ; 1.8 ; Crystal structure of GH36 alpha-galactosidase AgaB from Geobacillus stearothermophilus 8IBS ; 1.9 ; Crystal structure of GH42 beta-galactosidase BiBga42A from Bifidobacterium longum subspecies infantis E160A/E318A mutant in complex with galactose 8IBT ; 2.2 ; Crystal structure of GH42 beta-galactosidase BiBga42A from Bifidobacterium longum subspecies infantis E318S mutant in complex with lacto-N-tetraose 8IBR ; 1.7 ; Crystal structure of GH42 beta-galactosidase BiBga42A from Bifidobacterium longum subspecies infantis in complex with glycerol 6XN0 ; 1.709 ; Crystal structure of GH43_1 enzyme from Xanthomonas citri 5XC4 ; 1.42 ; Crystal structure of GH45 endoglucanase EG27II at pH4.0, in complex with cellobiose 5XC8 ; 1.45 ; Crystal structure of GH45 endoglucanase EG27II at pH5.5, in complex with cellobiose 5XC9 ; 1.28 ; Crystal structure of GH45 endoglucanase EG27II at pH8.0, in complex with cellobiose 5XCA ; 1.35 ; Crystal structure of GH45 endoglucanase EG27II D137A mutant in complex with cellobiose 5XBU ; 1.0 ; Crystal structure of GH45 endoglucanase EG27II in apo-form 5XBX ; 1.04 ; Crystal structure of GH45 endoglucanase EG27II in complex with cellobiose 8B5M ; 0.97 ; Crystal structure of GH47 alpha-1,2-mannosidase from Caulobacter K31 strain in complex with cyclosulfamidate inhibitor 5WU7 ; 2.31 ; Crystal structure of GH57-type branching enzyme from hyperthermophilic archaeon Pyrococcus horikoshii 7LR1 ; 1.8 ; Crystal structure of GH5_18 from Bifidobacterium longum subsp. longum ATCC 55813 7LR2 ; 2.4 ; Crystal structure of GH5_18 from Bifidobacterium longum subsp. longum ATCC 55813 in complex with GlcNAc 7LR7 ; 1.95 ; Crystal structure of GH5_18 from Streptomyces cattleya in complex with GlcNAc 7LR6 ; 2.3 ; Crystal structure of GH5_18-E140A from Bifidobacterium longum subsp. longum ATCC 55813 in complex with Manb1-4GlcNAc 7LR8 ; 1.6 ; Crystal structure of GH5_18-E153A from Streptomyces cattleya in complex with Manb1-4GlcNAc 4PVA ; 1.23 ; Crystal structure of GH62 hydrolase from thermophilic fungus Scytalidium thermophilum 4PVI ; 1.48 ; Crystal structure of GH62 hydrolase in complex with xylotriose 4WVB ; 1.77 ; Crystal structure of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8 in complex with glucose 4WVA ; 1.67 ; Crystal structure of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8 in complex with Tris 4WVC ; 2.1 ; Crystal structure of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8 in complex with Tris and D-glycerate 7FE3 ; 1.54 ; Crystal structure of GH65 alpha-1,2-glucosidase from Flavobacterium johnsoniae 7FE4 ; 1.4 ; Crystal structure of GH65 alpha-1,2-glucosidase from Flavobacterium johnsoniae in complex with glucose 8IUC ; 1.56 ; Crystal structure of GH65 alpha-1,2-glucosidase from Flavobacterium johnsoniae in complex with isomaltose 8IU8 ; 1.85 ; Crystal structure of GH66 endodextranase from Flavobacterium johnsoniae 8IU9 ; 1.8 ; Crystal structure of GH66 endodextranase from Flavobacterium johnsoniae in complex with glucose 8IUA ; 1.8 ; Crystal structure of GH66 endodextranase from Flavobacterium johnsoniae in complex with isomaltose 8IUB ; 1.18 ; Crystal structure of GH66 endodextranase from Flavobacterium johnsoniae in complex with isomaltotriose 2OKX ; 1.9 ; Crystal structure of GH78 family rhamnosidase of Bacillus SP. GL1 AT 1.9 A 5B4S ; 1.75 ; Crystal Structure of GH80 chitosanase from Mitsuaria chitosanitabida 5DGQ ; 1.9 ; Crystal structure of GH9 exo-beta-D-glucosaminidase PBPRA0520 5DGR ; 1.9 ; Crystal structure of GH9 exo-beta-D-glucosaminidase PBPRA0520, glucosamine complex 7FE1 ; 1.72 ; Crystal structure of GH92 alpha-1,2-mannosidase from Enterococcus faecalis ATCC 10100 in complex with methyl alpha-1,2-C-mannobioside 4ZQ0 ; 3.1 ; crystal structure of Giardia 14-3-3 in complex with the phosphopeptide A8Ap 1DQN ; 1.75 ; CRYSTAL STRUCTURE OF GIARDIA GUANINE PHOSPHORIBOSYLTRANSFERASE COMPLEXED WITH A TRANSITION STATE ANALOGUE 1DQP ; 1.75 ; CRYSTAL STRUCTURE OF GIARDIA GUANINE PHOSPHORIBOSYLTRANSFERASE COMPLEXED WITH IMMUCILLING 4Y66 ; 3.2 ; Crystal structure of Giardia lamblia Hop2-Mnd1 complex 6KU3 ; 2.15 ; Crystal structure of gibberellin 2-oxidase3 (GA2ox3)in rice 7EKD ; 1.899 ; Crystal structure of gibberellin 3-oxidase 2 (GA3ox2) in rice 7SLZ ; 1.97 ; CRYSTAL STRUCTURE OF GID4 IN COMPLEX WITH BPF023596 8V1P ; 2.21 ; CRYSTAL STRUCTURE OF GID4 IN COMPLEX WITH UBF9092 3CP8 ; 3.2 ; Crystal structure of GidA from Chlorobium tepidum 3CP2 ; 2.9 ; Crystal structure of GidA from E. coli 7WA4 ; 3.5 ; Crystal structure of GIGANTEA in complex with LKP2 4Z4S ; 1.8 ; Crystal structure of GII.10 P domain in complex with 150mM fucose 4Z4V ; 1.8 ; Crystal structure of GII.10 P domain in complex with 19mM fucose 5HZB ; 1.553 ; Crystal structure of GII.10 P domain in complex with 2-fucosyllactose (2'FL) 5HZA ; 1.35 ; Crystal structure of GII.10 P domain in complex with 3-fucosyllactose (3 FL) 4Z4R ; 1.801 ; Crystal structure of GII.10 P domain in complex with 300mM fucose 4Z4Z ; 1.801 ; Crystal structure of GII.10 P domain in complex with 30mM B antigen (trisaccharide) 4Z4U ; 1.89 ; Crystal structure of GII.10 P domain in complex with 37.5mM fucose 4Z4W ; 1.8 ; Crystal structure of GII.10 P domain in complex with 4.7mM fucose 4Z4Y ; 1.797 ; Crystal structure of GII.10 P domain in complex with 7.5mM B antigen (trisaccharide) 4Z4T ; 1.8 ; Crystal structure of GII.10 P domain in complex with 75mM fucose 5BSX ; 1.78 ; Crystal structure of GII.10 P domain in complex with disinfectant Puregreen24 5BSY ; 1.6 ; Crystal structure of GII.10 P domain in complex with lemon juice 6N81 ; 2.579 ; Crystal structure of GII.4 2002 norovirus P domain in complex with cross-reactive human antibody A1227 6N8D ; 3.1 ; Crystal structure of GII.4 2002 norovirus P domain in complex with neutralizing human antibody A1431 6EWB ; 2.78 ; Crystal structure of GII.4 UNSW 2012 P domain in complex with Fab 10E9 6N7O ; 1.7 ; Crystal structure of GIL01 gp7 3A2E ; 2.38 ; Crystal structure of ginkbilobin-2, the novel antifungal protein from Ginkgo biloba seeds 7VCM ; 1.85 ; crystal structure of GINKO1 4REH ; 1.5 ; Crystal structure of ginseng major latex-like protein 151 (GLP) from Panax ginseng. (crystal-1) 4REI ; 1.49 ; Crystal structure of ginseng major latex-like protein 151 (GLP) from Panax ginseng. (crystal-2) 4REJ ; 1.69 ; Crystal structure of ginseng major latex-like protein 151 (GLP) from Panax ginseng. (crystal-3) 5V6B ; 1.9 ; Crystal structure of GIPC1 6JMT ; 2.8 ; Crystal structure of GIT/PIX complex 6IUH ; 1.8 ; Crystal structure of GIT1 PBD domain in complex with Liprin-alpha2 6IUI ; 2.6 ; Crystal structure of GIT1 PBD domain in complex with Paxillin LD4 motif 6JMU ; 2.0 ; Crystal structure of GIT1/Paxillin complex 7LAW ; 2.752 ; crystal structure of GITR complex with GITR-L 4G4F ; 1.847 ; Crystal structure of GITRL from Bushbaby 2P17 ; 1.52 ; Crystal structure of GK1651 from Geobacillus kaustophilus 2EJ5 ; 2.0 ; Crystal structure of GK2038 protein (enoyl-CoA hydratase subunit II) from Geobacillus kaustophilus 3TN3 ; 1.6 ; Crystal structure of GkaP from Geobacillus kaustophilus HTA426 3TN4 ; 1.5 ; Crystal structure of GkaP mutant G209D from Geobacillus kaustophilus HTA426 3TNB ; 1.6 ; Crystal structure of GkaP mutant G209D/R230H from Geobacillus kaustophilus HTA426 3TN6 ; 1.6 ; Crystal structure of GkaP mutant R230H from Geobacillus kaustophilus HTA426 3TN5 ; 1.75 ; Crystal structure of GkaP mutant Y99L from Geobacillus kaustophilus HTA426 6VRQ ; 2.57 ; Crystal structure of gl12A21 Fab in complex with anti-idiotypic iv12 Fab 8X6V ; 1.797 ; Crystal structure of GlacPETase 7QWJ ; 1.65 ; Crystal structure of Glc7 phosphatase 8A8F ; 1.85 ; Crystal structure of Glc7 phosphatase in complex with the regulatory region of Ref2 6AKZ ; 1.69 ; Crystal structure of GlcNAc Inducible Gene 2, GIG2 (DUF1479) from Candida albicans 3RIO ; 1.99 ; Crystal structure of GlcT CAT-PRDI 1OXS ; 1.65 ; Crystal structure of GlcV, the ABC-ATPase of the glucose ABC transporter from Sulfolobus solfataricus 1OXT ; 2.1 ; Crystal structure of GlcV, the ABC-ATPase of the glucose ABC transporter from Sulfolobus solfataricus 1OXU ; 2.1 ; Crystal structure of GlcV, the ABC-ATPase of the glucose ABC transporter from Sulfolobus solfataricus 1OXV ; 1.95 ; Crystal structure of GlcV, the ABC-ATPase of the glucose ABC transporter from Sulfolobus solfataricus 1OXX ; 1.45 ; Crystal structure of GlcV, the ABC-ATPase of the glucose ABC transporter from Sulfolobus solfataricus 4FIX ; 2.45 ; Crystal Structure of GlfT2 4FIY ; 3.1 ; Crystal Structure of GlfT2 Complexed with UDP 1VKK ; 1.35 ; Crystal structure of Glia maturation factor-gamma (GMFG) from Mus musculus at 1.50 A resolution 5J0Z ; 3.25 ; Crystal structure of GLIC in complex with DHA 4IRE ; 3.19 ; Crystal structure of GLIC with mutations at the loop C region 4NTC ; 1.9 ; Crystal structure of GliT 6GYZ ; 3.0 ; Crystal structure of GlmM from Staphylococcus aureus 2W0V ; 1.99 ; Crystal structure of Glmu from Haemophilus influenzae in complex with quinazoline inhibitor 1 2W0W ; 2.59 ; Crystal structure of Glmu from Haemophilus influenzae in complex with quinazoline inhibitor 2 3SPT ; 2.33 ; Crystal structure of GlmU from Mycobacterium tuberculosis in complex with ACETYL COENZYME A and URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE 3ST8 ; 1.98 ; Crystal structure of GlmU from Mycobacterium tuberculosis in complex with COENZYME A, GLUCOSAMINE 1-PHOSPHATE and URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE 4HCQ ; 2.6 ; Crystal structure of GLMU from mycobacterium tuberculosis in complex with glucosamine-1-phosphate 3D8V ; 2.55 ; Crystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-N-acetylglucosamine 4G3S ; 2.04 ; Crystal structure of GlmU from Mycobacterium tuberculosis in complex with uridine-diphosphate-n-acetylglucosamine and pyrophosphate Snapshot 2 3DJ4 ; 2.38 ; Crystal Structure of GlmU from Mycobacterium tuberculosis in complex with URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE. 4G87 ; 2.03 ; Crystal structure of GLMU from Mycobacterium tuberculosis snapshot 1 4G3P ; 2.47 ; Crystal structure of GlmU from Mycobacterium tuberculosis Snapshot 3 4G3Q ; 1.9 ; Crystal structure of GlmU from Mycobacterium tuberculosis Snapshot 4 3D98 ; 2.5 ; Crystal structure of GlmU from Mycobacterium tuberculosis, ligand-free form 4K6R ; 1.98 ; Crystal structure of GlmU in complex with ATP 4ZVA ; 2.0 ; Crystal structure of globin domain of the E. coli DosC - form I (ferric) 4ZVB ; 2.4 ; Crystal structure of globin domain of the E. coli DosC - form II (ferrous) 1HST ; 2.6 ; CRYSTAL STRUCTURE OF GLOBULAR DOMAIN OF HISTONE H5 AND ITS IMPLICATIONS FOR NUCLEOSOME BINDING 5UZG ; 1.541 ; Crystal structure of Glorund qRRM1 domain 5UZM ; 1.552 ; Crystal structure of Glorund qRRM2 domain 5UZN ; 1.99 ; Crystal structure of Glorund qRRM3 domain 2IC8 ; 2.1 ; Crystal structure of GlpG 3B45 ; 1.9 ; Crystal structure of GlpG at 1.9A resolution 3TXT ; 2.3 ; Crystal structure of GlpG in complex with inhibitor DFP 6VJ9 ; 2.3 ; Crystal structure of GlpG in complex with peptide boronate inhibitor 6XRO ; 2.3 ; Crystal structure of GlpG in complex with peptide boronate inhibitor, Ac-KRFRSMQYSA-B(OH)2 6VJ8 ; 2.3 ; Crystal structure of GlpG in complex with peptide chloromethylketone inhibitor 6XRP ; 2.4 ; Crystal structure of GlpG in complex with peptide ketoamide inhibitor, Ac-RVWHA-ketoamide-phenylbutyl 3B44 ; 1.7 ; Crystal structure of GlpG W136A mutant 2NRF ; 2.6 ; Crystal Structure of GlpG, a Rhomboid family intramembrane protease 2IRV ; 2.3 ; Crystal structure of GlpG, a rhomboid intramembrane serine protease 2NR9 ; 2.2 ; Crystal structure of GlpG, Rhomboid Peptidase from Haemophilus influenzae 2BV7 ; 1.79 ; Crystal structure of GLTP with bound GM3 6CTF ; 4.05 ; Crystal structure of GltPh fast mutant - R276S/M395R 2NWL ; 2.96 ; Crystal structure of GltPh in complex with L-Asp 2NWX ; 3.29 ; Crystal structure of GltPh in complex with L-aspartate and sodium ions 2NWW ; 3.2 ; Crystal structure of GltPh in complex with TBOA 3KBC ; 3.51 ; Crystal structure of GltPh K55C-A364C mutant crosslinked with divalent mercury 4IZM ; 4.5 ; Crystal structure of GltPh L66C-S300C mutant crosslinked with divalent mercury 4OYE ; 4.0 ; Crystal structure of GltPh R397A in apo 5CFY ; 3.5 ; CRYSTAL STRUCTURE OF GLTPH R397A IN COMPLEX WITH NA+ AND L-ASP 4OYF ; 3.41 ; Crystal structure of GLTPH R397A IN Sodium-bound state 6BAU ; 3.8 ; Crystal Structure of GltPh R397C in complex with L-Cysteine 6BMI ; 3.9 ; Crystal Structure of GltPh R397C in complex with L-Serine 6BAV ; 3.7 ; Crystal Structure of GltPh R397C in complex with S-Benzyl-L-Cysteine 2B8O ; 2.8 ; Crystal Structure of Glu-Gly-Arg-Chloromethyl Ketone-Factor VIIa/Soluble Tissue Factor Complex 2D6F ; 3.15 ; Crystal structure of Glu-tRNA(Gln) amidotransferase in the complex with tRNA(Gln) 1UBZ ; 2.0 ; Crystal structure of Glu102-mutant human lysozyme doubly labeled with 2',3'-epoxypropyl beta-glycoside of N-acetyllactosamine 2W25 ; 2.15 ; Crystal structure of Glu104Ala mutant 3PUU ; 2.15 ; Crystal Structure of Glu121Gln mutant of E. coli Aminopeptidase N 2E16 ; 2.0 ; Crystal structure of Glu140 to Arg mutant of Diphthine synthase 2EGB ; 1.9 ; Crystal structure of Glu140 to Asn mutant of Diphthine synthase 2E08 ; 2.0 ; Crystal structure of Glu140 to Lys mutant of Diphthine synthase 1ZKX ; 2.52 ; Crystal structure of Glu158Ala/Thr159Ala/Asn160Ala- a triple mutant of Clostridium botulinum neurotoxin E catalytic domain 2DSI ; 2.2 ; Crystal structure of Glu171 to Arg mutant of Diphthine synthase 2EGL ; 1.8 ; Crystal structure of Glu171 to Lys mutant of Diphthine synthase 3QAM ; 1.92 ; Crystal Structure of Glu208Ala mutant of catalytic subunit of cAMP-dependent protein kinase 1ZN3 ; 2.6 ; Crystal structure of Glu335Ala mutant of Clostridium botulinum neurotoxin type E 1ZL5 ; 2.6 ; Crystal structure of Glu335Gln mutant of Clostridium botulinum neurotoxin E catalytic domain 5MC3 ; 1.52 ; Crystal Structure of Glu412Lys mutant of Human Prolidase with Mn ions and GlyPro ligand 2E7R ; 1.8 ; Crystal structure of Glu54 to Arg mutant of Diphthine synthase 2DXV ; 1.9 ; Crystal structure of Glu54 to His mutant of Diphthine synthase 2DXW ; 1.8 ; Crystal structure of Glu54 to Lys mutant of Diphthine synthase 1Z2V ; 1.9 ; Crystal Structure of Glu60 deletion Mutant of Human Acidic Fibroblast Growth Factor 4U5B ; 3.5037 ; Crystal structure of GluA2 A622T, con-ikot-ikot snail toxin, partial agonist KA and postitive modulator (R,R)-2b complex 6XSR ; 4.25 ; Crystal structure of GluA2 AMPA receptor in complex with trans-4-butylcyclohexane carboxylic acid (4-BCCA) inhibitor 4U5E ; 3.5073 ; Crystal structure of GluA2 T625G, con-ikot-ikot snail toxin, partial agonist KA and postitive modulator (R,R)-2b complex 4U5C ; 3.6883 ; Crystal structure of GluA2, con-ikot-ikot snail toxin, partial agonist FW and postitive modulator (R,R)-2b complex 4U5D ; 3.5757 ; Crystal structure of GluA2, con-ikot-ikot snail toxin, partial agonist KA and postitive modulator (R,R)-2b complex 4U5F ; 3.7 ; Crystal structure of GluA2, con-ikot-ikot snail toxin, partial agonist KA and postitive modulator (R,R)-2b complex, GluA2cryst2 construct 6PHN ; 1.33 ; Crystal structure of glucagon analog composed of D-amino acids with mono-stereoinversion at position 23 (L-Val23) in space group I41 at 1.33 A resolution 6PHM ; 1.1 ; Crystal structure of glucagon analog fully composed of D-amino acids in space group I41 at 1.1 A resolution 6PHQ ; 1.32 ; Crystal structure of glucagon analog fully composed of D-amino acids with 4-bromo-D-phenylalanine substitutions at position 6 and 22 in space group I41 at 1.1 A resolution 6PHP ; 1.65 ; Crystal structure of glucagon analog with 4-bromo-phenylalanine substitutions at position 6 and 22 in space group I41 at 1.65 A resolution 6PHK ; 1.18 ; Crystal structure of glucagon analog with mono-stereoinversion at position 21 (D-Asp21) in space group I41 at 1.18 A resolution 6PHL ; 1.443 ; Crystal structure of glucagon analog with mono-stereoinversion at position 23 (D-Val23) in space group I41 at 1.44 A resolution 6PHO ; 1.42 ; Crystal structure of glucagon analog with selenomethionine substitutions at position 1 and 27 in space group I41 at 1.42 A resolution 3IOL ; 2.1 ; Crystal structure of Glucagon-Like Peptide-1 in complex with the extracellular domain of the Glucagon-Like Peptide-1 Receptor 3AIB ; 3.09 ; Crystal Structure of Glucansucrase 3AIC ; 3.11 ; Crystal Structure of Glucansucrase from Streptococcus mutans 3AIE ; 2.1 ; Crystal Structure of glucansucrase from Streptococcus mutans 3NXL ; 1.885 ; Crystal structure of Glucarate dehydratase from Burkholderia cepacia complexed with magnesium 4IL0 ; 2.8 ; Crystal structure of GlucDRP from E. coli K-12 MG1655 (EFI target EFI-506058) 1AYX ; 1.7 ; CRYSTAL STRUCTURE OF GLUCOAMYLASE FROM SACCHAROMYCOPSIS FIBULIGERA AT 1.7 ANGSTROMS 6T13 ; 1.85 ; CRYSTAL STRUCTURE OF GLUCOCEREBROSIDASE IN COMPLEX WITH A PYRROLOPYRAZINE 8P3E ; 1.75 ; Crystal structure of glucocerebrosidase in complex with allosteric activator 8P41 ; 1.83 ; Crystal structure of glucocerebrosidase in complex with allosteric activator 5LVX ; 2.2 ; Crystal structure of glucocerebrosidase with an inhibitory quinazoline modulator 8VKZ ; 2.133 ; Crystal structure of Glucocorticoid Receptor in complex with an inhibitor 1ULV ; 2.42 ; Crystal Structure of Glucodextranase Complexed with Acarbose 1UG9 ; 2.5 ; Crystal Structure of Glucodextranase from Arthrobacter globiformis I42 3MCP ; 3.0 ; Crystal structure of Glucokinase (BDI_1628) from Parabacteroides distasonis ATCC 8503 at 3.00 A resolution 7T79 ; 2.4 ; CRYSTAL STRUCTURE OF GLUCOKINASE (HEXOKINASE 4) COMPLEXED WITH LIGAND AKA DIETHYL {[3-(3-{[5-(AZETIDINE-1-CARBON YL)PYRAZIN-2-YL]OXY}-5-(PROPAN-2-YLOXY)BENZAMIDO)-1H- PYRAZOL-1-YL]METHYL}PHOSPHONATE 7T78 ; 2.4 ; CRYSTAL STRUCTURE OF GLUCOKINASE (HEXOKINASE 4) COMPLEXED WITH LIGAND DIETHYL ({2-[3-(4-METHANESULFONYLPHENO XY)-5-{[(2S)-1-METHOXYPROPAN-2-YL]OXY}BENZAMIDO]-1,3-THIAZ OL-4-YL}METHYL)PHOSPHONATE 6DA0 ; 2.2 ; Crystal structure of glucokinase (NfHK) from Naegleria fowleri 3VPZ ; 1.69 ; Crystal structure of glucokinase from Antarctic psychrotroph at 1.69A 6VZZ ; 2.65 ; Crystal structure of glucokinase from Balamuthia mandrillaris in complex with glucose 2QM1 ; 2.02 ; Crystal structure of glucokinase from Enterococcus faecalis 6E0E ; 2.7 ; Crystal structure of Glucokinase in complex with compound 6 6E0I ; 1.9 ; Crystal structure of Glucokinase in complex with compound 72 4BB9 ; 1.47 ; Crystal structure of glucokinase regulatory protein complexed to fructose-1-phosphate 4BBA ; 1.92 ; Crystal structure of glucokinase regulatory protein complexed to phosphate 8DTC ; 2.25 ; Crystal Structure of Glucokinase with bound glucose from Acanthamoeba castellanii 4L3Q ; 2.7 ; Crystal structure of glucokinase-activator complex 3CXR ; 2.0 ; Crystal structure of gluconate 5-dehydrogase from streptococcus suis type 2 1VL8 ; 2.07 ; Crystal structure of Gluconate 5-dehydrogenase (TM0441) from Thermotoga maritima at 2.07 A resolution 6LE3 ; 2.1 ; Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum 3TW9 ; 1.7 ; Crystal structure of gluconate dehydratase (TARGET EFI-501679) from Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 3TWB ; 1.76 ; Crystal structure of gluconate dehydratase (TARGET EFI-501679) from Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 complexed with magnesium and gluconic acid 3TWA ; 1.8 ; Crystal structure of gluconate dehydratase (TARGET EFI-501679) from Salmonella enterica subsp. enterica serovar Enteritidis str. P125109 complexed with magnesium and glycerol 1KNQ ; 2.0 ; Crystal structure of gluconate kinase 1KO1 ; 2.09 ; Crystal structure of gluconate kinase 1KO4 ; 2.5 ; Crystal structure of gluconate kinase 1KO5 ; 2.28 ; Crystal structure of gluconate kinase 1KO8 ; 2.4 ; Crystal structure of gluconate kinase 1KOF ; 2.8 ; Crystal structure of gluconate kinase 3GBT ; 2.4 ; Crystal structure of gluconate kinase from Lactobacillus acidophilus 2AXR ; 1.98 ; Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD 2RI0 ; 1.6 ; Crystal Structure of glucosamine 6-phosphate deaminase (NagB) from S. mutans 2RI1 ; 2.03 ; Crystal Structure of glucosamine 6-phosphate deaminase (NagB) with GlcN6P from S. mutans 2CB0 ; 1.8 ; Crystal structure of glucosamine 6-phosphate deaminase from Pyrococcus furiosus 7K47 ; 2.9 ; Crystal Structure of Glucosamine-1-phosphate N-acetyltransferase from Stenotrophomonas maltophilia K279a 1J5X ; 1.8 ; Crystal structure of Glucosamine-6-phosphate deaminase (TM0813) from Thermotoga maritima at 1.8 A resolution 3HN6 ; 2.2 ; Crystal structure of glucosamine-6-phosphate deaminase from Borrelia burgdorferi 4R7T ; 2.1 ; Crystal structure of glucosamine-6-phosphate deaminase from Vibrio cholerae 7KQA ; 1.65 ; Crystal Structure of Glucosamine-6-phosphate deanimase from Strenotrophomonas maltophilia 3T90 ; 1.5 ; Crystal structure of glucosamine-6-phosphate N-acetyltransferase from Arabidopsis thaliana 4HO0 ; 1.9 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus 4HO5 ; 1.7 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with TDP-glucose 4HO2 ; 1.84 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with thymidine 4HO4 ; 1.64 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with thymidine and glucose-1-phosphate 4HO3 ; 1.8 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with thymidine triphosphate 4HO9 ; 1.8 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with UDP-galactose and UTP 4HO8 ; 2.6 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with UDP-glucose and thymidine 4HO6 ; 1.92 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with UDP-glucose and UTP 4HOC ; 2.2 ; Crystal structure of glucose 1-phosphate thymidylyltransferase from Aneurinibacillus thermoaerophilus complexed with UDP-N-acetylglucosamine 7CDY ; 1.329 ; Crystal structure of glucose dehydrogenase 1GCO ; 1.7 ; CRYSTAL STRUCTURE OF GLUCOSE DEHYDROGENASE COMPLEXED WITH NAD+ 2B5V ; 2.0 ; Crystal structure of glucose dehydrogenase from Haloferax mediterranei 1G6K ; 2.0 ; Crystal structure of glucose dehydrogenase mutant E96A complexed with NAD+ 1GEE ; 1.6 ; Crystal structure of glucose dehydrogenase mutant Q252L complexed with NAD+ 1SPX ; 2.1 ; Crystal Structure of Glucose Dehydrogenase of Caenorhabditis Elegans in the Apo-Form 4J4K ; 1.9 ; Crystal structure of glucose isomerase 8WDH ; 1.7 ; Crystal structure of glucose isomerase by fixed-target pink-beam serial synchrotron crystallography 6IRK ; 1.75 ; Crystal structure of glucose isomerase by fixed-target serial femtosecond crystallography 6LL2 ; 1.75 ; Crystal structure of glucose isomerase by fixed-target serial femtosecond crystallography 7CVK ; 1.7 ; Crystal structure of glucose isomerase by fixed-target serial synchrotron crystallography (100 ms) 7CVM ; 2.0 ; Crystal structure of glucose isomerase by fixed-target serial synchrotron crystallography (500 ms) 7DFJ ; 1.5 ; Crystal structure of glucose isomerase by serial millisecond crystallography 7BVN ; 2.0 ; Crystal structure of glucose isomerase delivered in alginate 7BVL ; 2.0 ; Crystal structure of glucose isomerase delivered in wheat starch 6OQZ ; 1.6 ; Crystal structure of Glucose Isomerase from Non-merohedrally twinned crystals 5VR0 ; 1.7 ; Crystal structure of glucose isomerase from Streptomyces rubiginosus 5Y4I ; 1.91 ; Crystal structure of glucose isomerase in complex with glycerol in one metal binding mode 5Y4J ; 1.4 ; Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode 5ZYD ; 1.4 ; Crystal Structure of Glucose Isomerase Soaked with Glucose 5ZYC ; 1.75 ; Crystal Structure of Glucose Isomerase Soaked with Mn2+ 5ZYE ; 1.4 ; Crystal Structure of Glucose Isomerase Soaked with Mn2+ and Glucose 3QVP ; 1.2 ; Crystal structure of glucose oxidase for space group C2221 at 1.2 A resolution 3QVR ; 1.3 ; Crystal structure of glucose oxidase for space group P3121 at 1.3 A resolution. 1GAL ; 2.3 ; CRYSTAL STRUCTURE OF GLUCOSE OXIDASE FROM ASPERGILLUS NIGER: REFINED AT 2.3 ANGSTROMS RESOLUTION 3NTL ; 1.88 ; Crystal Structure of Glucose-1-phosphatase (AgpE) from Enterobacter cloacae 5IN3 ; 1.73 ; Crystal structure of glucose-1-phosphate bound nucleotidylated human galactose-1-phosphate uridylyltransferase 5IFY ; 2.25 ; Crystal structure of Glucose-1-phosphate thymidylyltransferase from Burkholderia vietnamiensis in complex with 2 -Deoxyuridine-5'-monophosphate and 2'-Deoxy-Thymidine-B-L-Rhamnose 2GGO ; 1.8 ; Crystal Structure of glucose-1-phosphate thymidylyltransferase from Sulfolobus tokodaii 1LVW ; 1.7 ; Crystal structure of glucose-1-phosphate thymidylyltransferase, RmlA, complex with dTDP 4D48 ; 2.46 ; Crystal Structure of glucose-1-phosphate uridylyltransferase GalU from Erwinia amylovora. 8H1K ; 1.6 ; Crystal structure of glucose-2-epimerase from Runella slithyformis Runsl_4512 8H1L ; 2.33 ; Crystal structure of glucose-2-epimerase in complex with D-Glucitol from Runella slithyformis Runsl_4512 8H1M ; 1.6 ; Crystal structure of glucose-2-epimerase mutant_D254A from Runella slithyformis Runsl_4512 8H1N ; 2.67 ; Crystal structure of glucose-2-epimerase mutant_D254A in complex with D-Glucitol from Runella slithyformis Runsl_4512 6VA8 ; 3.95 ; Crystal structure of glucose-6-phosphate dehydrogenase F381L mutant in complex with catalytic NADP+ 6VA7 ; 3.07 ; Crystal structure of glucose-6-phosphate dehydrogenase P396L mutant in complex with catalytic NADP+ 6VA9 ; 3.95 ; Crystal structure of glucose-6-phosphate dehydrogenase R393H mutant in complex with catalytic NADP+ 6VAQ ; 2.95 ; Crystal structure of glucose-6-phosphate dehydrogenase V394L mutant in complex with catalytic NADP+ 6VA0 ; 3.1 ; Crystal structure of glucose-6-phosphate dehydrogenase W509A mutant in complex with catalytic NADP+ 2Q8N ; 1.82 ; Crystal structure of Glucose-6-phosphate isomerase (EC 5.3.1.9) (TM1385) from Thermotoga maritima at 1.82 A resolution 3QKI ; 1.92 ; Crystal structure of Glucose-6-Phosphate Isomerase (PF14_0341) from Plasmodium falciparum 3D7 6BZB ; 1.6 ; Crystal Structure of Glucose-6-phosphate Isomerase from Elizabethkingia anophelis 6BZC ; 2.05 ; Crystal Structure of Glucose-6-phosphate Isomerase from Elizabethkingia anophelis with bound Glucose-6-phosphate 1EVJ ; 2.7 ; CRYSTAL STRUCTURE OF GLUCOSE-FRUCTOSE OXIDOREDUCTASE (GFOR) DELTA1-22 S64D 1RYD ; 2.2 ; Crystal Structure of Glucose-Fructose Oxidoreductase from Zymomonas mobilis 5Z3K ; 1.802 ; Crystal structure of glucosidase from Croceicoccus marinus at 1.8 Angstrom resolution 5DKZ ; 2.4 ; Crystal structure of glucosidase II alpha subunit (alpha3-Glc2-bound from) 5DKY ; 1.6 ; Crystal structure of glucosidase II alpha subunit (DNJ-bound from) 5DL0 ; 2.3 ; Crystal structure of glucosidase II alpha subunit (Glc1Man2-bound from) 5DKX ; 1.4 ; Crystal structure of glucosidase II alpha subunit (Tris-bound from) 7VTM ; 2.05153 ; Crystal structure of Glucoside hydrolase family 64 beta-1,3-glucanase complexed with Laminaritetraose 4DDZ ; 2.6 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis 5JQQ ; 2.6 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis - apo form 4DE7 ; 3.0 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mg2+ and uridine-diphosphate (UDP) 5JSX ; 2.81 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+ and uridine-diphosphate-glucose (UDP-Glc) 5JT0 ; 2.8 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate (UDP) and glucosyl-3-phosphoglycerate (GPG) - GpgS*GPG*UDP*Mn2+ 5JUC ; 2.8 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate (UDP) and glucosyl-3-phosphoglycerate (GPG) - GpgS*GPG*UDP*Mn2+_2 4DEC ; 1.98 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate (UDP) and phosphoglyceric acid (PGA) 4Y7F ; 3.231 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate-glucose (UDP-Glc) and 3-(phosphonooxy)propanoic acid (PPA) - GpgS Mn2+ UDP-Glc PPA 4Y7G ; 2.59 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate-glucose (UDP-Glc) and glycerol 3-phosphate (G3P) - GpgS Mn2+ UDP-Glc G3P 4Y6N ; 2.348 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate-glucose (UDP-Glc) and phosphoglyceric acid (PGA) - GpgS Mn2+ UDP-Glc PGA-1 4Y9X ; 2.637 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with Mn2+, uridine-diphosphate-glucose (UDP-Glc) and phosphoglyceric acid (PGA) - GpgS Mn2+ UDP-Glc PGA-3 5JQX ; 2.82 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with phosphoglyceric acid (PGA) - GpgS*PGA 5JUD ; 2.59 ; Crystal structure of glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis in complex with uridine-diphosphate (UDP) - GpgS*UDP 2Q6E ; 2.4 ; Crystal structure of glucuronate isomerase from Bacillus halodurans complexed with Zn 2Q01 ; 2.34 ; Crystal structure of glucuronate isomerase from Caulobacter crescentus 3AY3 ; 2.1 ; Crystal structure of glucuronic acid dehydrogeanse from Chromohalobacter salexigens 6RU2 ; 1.96 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor 6RV8 ; 1.85 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor covalent complex with the aldouronic acid UXXR 6RTV ; 1.46 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor inactive S270A variant 6RU1 ; 1.39 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor inactive S270A variant in complex with the aldouronic acid Um4X 6RV7 ; 1.73 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor inactive S270A variant in complex with the aldouronic acid UXXR 6RV9 ; 1.64 ; Crystal Structure of Glucuronoyl Esterase from Cerrena unicolor inactive S270A variant in complex with the aldouronic acid XUXXR 4G4I ; 1.9 ; Crystal structure of glucuronoyl esterase S213A mutant from Sporotrichum thermophile determined at 1.9 A resolution 4G4J ; 2.35 ; Crystal structure of glucuronoyl esterase S213A mutant from Sporotrichum thermophile in complex with methyl 4-O-methyl-beta-D-glucopyranuronate determined at 2.35 A resolution 4NF4 ; 2.0 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with DCKA and glutamate 4NF5 ; 1.903 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with glycine and D-AP5 4NF8 ; 1.856 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with glycine and glutamate in PEG2000MME 6UZR ; 1.87 ; Crystal structure of GLUN1/GLUN2A ligand-binding domain in complex with glycine and homoquinolinic acid 5U8C ; 1.598 ; CRYSTAL STRUCTURE OF GLUN1/GLUN2A LIGAND-BINDING DOMAIN IN COMPLEX WITH GLYCINE AND NVP-AAM077 4NF6 ; 2.1 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with glycine and PPDA 6USV ; 2.304 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with glycine and SDZ 220-040 6UZW ; 2.13 ; Crystal structure of GLUN1/GLUN2A ligand-binding domain in complex with glycine and UBP791 6USU ; 2.092 ; Crystal structure of GluN1/GluN2A ligand-binding domain in complex with L689,560 and glutamate 6OVD ; 2.102 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, 3-ethylphenyl-ACEPC 5VII ; 1.951 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, 4-(3-fluoropropyl)phenyl-ACEPC 5VIJ ; 2.105 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, 4-bromophenyl-ACEPC 5VIH ; 2.4 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, 4-fluorophenyl-ACEPC 6OVE ; 2.0 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, 4-propylphenyl-ACEPC 5DEX ; 2.4 ; Crystal structure of GluN1/GluN2A NMDA receptor agonist binding domains with glycine and antagonist, phenyl-ACEPC 6UZ6 ; 1.66 ; Crystal structure of GLUN1/GLUN2A-4M mutant ligand-binding domain in complex with glycine and glutamate 6UZG ; 1.94 ; Crystal structure of GLUN1/GLUN2A-4M mutant ligand-binding domain in complex with glycine and homoquinolinic acid 6UZX ; 2.41 ; Crystal structure of GLUN1/GLUN2A-4M mutant ligand-binding domain in complex with glycine and UBP791 5UN1 ; 3.6 ; Crystal structure of GluN1/GluN2B delta-ATD NMDA receptor 4TLL ; 3.59 ; Crystal structure of GluN1/GluN2B NMDA receptor, structure 1 4TLM ; 3.77 ; Crystal structure of GluN1/GluN2B NMDA receptor, structure 2 4PE5 ; 3.96 ; Crystal Structure of GluN1a/GluN2B NMDA Receptor Ion Channel 7TE6 ; 4.55 ; Crystal structure of GluN1b-2B ATD complexed to Fab5 anti-GluN2B antibody 6ODL ; 2.3 ; Crystal structure of GluN2A agonist binding domain with 4-butyl-(S)-CCG-IV 3OEL ; 1.9 ; Crystal structure of GluN2D ligand-binding core in complex with D-glutamate 3OEK ; 1.9 ; Crystal structure of GluN2D ligand-binding core in complex with L-aspartate 3OEN ; 1.8 ; Crystal structure of GluN2D ligand-binding core in complex with L-glutamate 3OEM ; 1.9 ; Crystal structure of GluN2D ligand-binding core in complex with N-methyl-D-aspartate 1LBC ; 1.8 ; Crystal structure of GluR2 ligand binding core (S1S2J-N775S) in complex with cyclothiazide (CTZ) as well as glutamate at 1.8 A resolution 4X48 ; 1.89 ; Crystal structure of GluR2 ligand-binding core 3C36 ; 1.68 ; Crystal structure of GluR5 ligand-binding core in complex with ammonium ions at 1.68 Angstrom resolution 3C35 ; 1.97 ; Crystal structure of GluR5 ligand-binding core in complex with cesium at 1.97 Angstrom resolution 3C31 ; 1.49 ; Crystal structure of GluR5 ligand-binding core in complex with lithium at 1.49 Angstrom resolution 3C33 ; 1.72 ; Crystal structure of GluR5 ligand-binding core in complex with potassium at 1.78 Angstrom resolution 3C34 ; 1.82 ; Crystal structure of GluR5 ligand-binding core in complex with rubidium at 1.82 Angstrom resolution 3C32 ; 1.72 ; Crystal structure of GluR5 ligand-binding core in complex with sodium at 1.72 Angstrom resolution 1POI ; 2.5 ; CRYSTAL STRUCTURE OF GLUTACONATE COENZYME A-TRANSFERASE FROM ACIDAMINOCOCCUS FERMENTANS TO 2.55 ANGSTOMS RESOLUTION 4G9H ; 2.1 ; Crystal structure of glutahtione s-transferase homolog from yersinia pestis, target EFI-501894, with bound glutathione 4GCI ; 1.5 ; Crystal structure of glutahtione s-transferase homolog from yersinia pestis, target EFI-501894, with bound glutathione, monoclinic form 4GF0 ; 1.75 ; Crystal structure of glutahtione transferase homolog from sulfitobacter, TARGET EFI-501084, with bound glutathione 3BS8 ; 2.3 ; Crystal structure of Glutamate 1-Semialdehyde Aminotransferase complexed with pyridoxamine-5'-phosphate From Bacillus subtilis 2AKO ; 2.2 ; Crystal structure of Glutamate 5-kinase from Campylobacter jejuni 4NGM ; 1.84 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGN ; 1.64 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGP ; 1.63 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGQ ; 2.08 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGR ; 1.9 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGS ; 1.68 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 4NGT ; 2.31 ; Crystal Structure of Glutamate Carboxypeptidase II in a complex with urea-based inhibitor 3A75 ; 1.95 ; Crystal structure of glutamate complex of halotolerant γ-glutamyltranspeptidase from Bacillus subtilis 3FZ6 ; 2.82 ; Crystal structure of glutamate decarboxylase beta from Escherichia coli: complex with xenon 3FZ8 ; 3.0 ; Crystal structure of glutamate decarboxylase beta from Escherichia coli: reduced Schiff base with PLP 2QMA ; 1.81 ; Crystal structure of glutamate decarboxylase domain of diaminobutyrate-pyruvate transaminase and L-2,4-diaminobutyrate decarboxylase from Vibrio parahaemolyticus 3AOG ; 2.1 ; Crystal structure of glutamate dehydrogenase (GdhB) from Thermus thermophilus (Glu bound form) 8OWM ; 1.7 ; Crystal structure of glutamate dehydrogenase 2 from Arabidopsis thaliana binding Ca, NAD and 2,2-dihydroxyglutarate 7F77 ; 3.086 ; Crystal structure of glutamate dehydrogenase 3 from Candida albicans 7F79 ; 2.7 ; Crystal structure of glutamate dehydrogenase 3 from Candida albicans in complex with alpha-ketoglutarate and NADPH 4XGI ; 2.0 ; Crystal structure of Glutamate dehydrogenase from Burkholderia thailandensis 2YFQ ; 2.94 ; Crystal structure of Glutamate dehydrogenase from Peptoniphilus asaccharolyticus 5IJZ ; 2.29 ; Crystal structure of glutamate dehydrogenase(GDH) from Corynebacterium glutamicum 5FTW ; 1.8 ; Crystal structure of glutamate O-methyltransferase in complex with S- adenosyl-L-homocysteine (SAH) from Bacillus subtilis 3UHF ; 1.83 ; Crystal Structure of Glutamate Racemase from Campylobacter jejuni subsp. jejuni 3UHO ; 2.2 ; Crystal Structure of Glutamate Racemase from Campylobacter jejuni subsp. jejuni 3UHP ; 2.794 ; Crystal Structure of Glutamate Racemase from Campylobacter jejuni subsp. jejuni 3OUT ; 1.65 ; Crystal structure of glutamate racemase from Francisella tularensis subsp. tularensis SCHU S4 in complex with D-glutamate. 8EB3 ; 2.2 ; Crystal structure of glutamate racemase from Helicobacter pylori in complex with a fragment 7UJ5 ; 1.75 ; Crystal structure of glutamate racemase from Helicobacter pylori in complex with D-glutamate 3HFR ; 2.3 ; Crystal structure of glutamate racemase from Listeria monocytogenes 3ISV ; 1.85 ; Crystal structure of glutamate racemase from Listeria monocytogenes in complex with acetate ion 3IST ; 1.65 ; Crystal structure of glutamate racemase from Listeria monocytogenes in complex with succinic acid 6DLI ; 2.7 ; Crystal structure of glutamate racemase from Thermus thermophilus in complex with Beta-chloro-D-alanine 5W16 ; 1.909 ; Crystal structure of glutamate racemase from Thermus thermophilus in complex with D-glutamate 2DWU ; 1.6 ; Crystal Structure of Glutamate Racemase Isoform RacE1 from Bacillus anthracis 3SAJ ; 2.5 ; Crystal Structure of glutamate receptor GluA1 Amino Terminal Domain 1MY3 ; 1.75 ; crystal structure of glutamate receptor ligand-binding core in complex with bromo-willardiine in the Zn crystal form 1MY4 ; 1.9 ; crystal structure of glutamate receptor ligand-binding core in complex with iodo-willardiine in the Zn crystal form 5I92 ; 1.75 ; Crystal structure of Glutamate-1-semialdehyde 2,1- aminomutase (GSA) from Pseudomonas aeruginosa 2EPJ ; 1.7 ; Crystal structure of glutamate-1-semialdehyde 2,1-aminomutase from Aeropyrum pernix 2ZSL ; 1.7 ; Crystal structure of glutamate-1-semialdehyde 2,1-aminomutase from Aeropyrum pernix 2ZSM ; 2.3 ; Crystal structure of glutamate-1-semialdehyde 2,1-aminomutase from Aeropyrum pernix, hexagonal form 6W80 ; 1.4 ; Crystal structure of Glutamate-1-semialdehyde 2,1-aminomutase from Stenotrophomonas maltophilia K279a in complex with PLP 2E7U ; 1.9 ; Crystal structure of glutamate-1-semialdehyde 2,1-aminomutase from Thermus thermophilus HB8 4GSA ; 2.5 ; CRYSTAL STRUCTURE OF GLUTAMATE-1-SEMIALDEHYDE AMINOMUTASE (AMINOTRANSFERASE) REDUCED WITH CYANOBOROHYDRATE 2GSA ; 2.4 ; CRYSTAL STRUCTURE OF GLUTAMATE-1-SEMIALDEHYDE AMINOMUTASE (AMINOTRANSFERASE, WILD-TYPE FORM) 3GSB ; 3.0 ; CRYSTAL STRUCTURE OF GLUTAMATE-1-SEMIALDEHYDE AMINOMUTASE IN COMPLEX WITH GABACULINE 6B1Z ; 1.6 ; Crystal Structure of Glutamate-tRNA Synthetase from Elizabethkingia anophelis 6B1P ; 2.5 ; Crystal Structure of Glutamate-tRNA Synthetase from Helicobacter pylori 8JUE ; 2.39 ; Crystal structure of glutaminase C in complex with compound 11 8JUB ; 2.01 ; Crystal structure of glutaminase C in complex with compound 27 5WJ6 ; 2.445 ; Crystal structure of glutaminase C in complex with inhibitor 2-phenyl-N-{5-[4-({5-[(phenylacetyl)amino]-1,3,4-thiadiazol-2-yl}amino)piperidin-1-yl]-1,3,4-thiadiazol-2-yl}acetamide (UPGL-00004) 5HL1 ; 2.4 ; Crystal structure of glutaminase C in complex with inhibitor CB-839 3M3P ; 1.3 ; Crystal structure of glutamine amido transferase from Methylobacillus Flagellatus 2YWD ; 1.9 ; Crystal structure of glutamine amidotransferase 5DM3 ; 2.6 ; Crystal Structure of Glutamine Synthetase from Chromohalobacter salexigens DSM 3043(Csal_0679, TARGET EFI-550015) with bound ADP 5ZLI ; 2.8 ; Crystal structure of glutamine synthetase from helicobacter pylori 5ZLP ; 2.93 ; Crystal structure of glutamine synthetase from helicobacter pylori 1F52 ; 2.49 ; CRYSTAL STRUCTURE OF GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM CO-CRYSTALLIZED WITH ADP 1FPY ; 2.89 ; CRYSTAL STRUCTURE OF GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM WITH INHIBITOR PHOSPHINOTHRICIN 1F1H ; 2.67 ; CRYSTAL STRUCTURE OF GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM WITH THALLIUM IONS 4BAX ; 2.55 ; Crystal structure of glutamine synthetase from Streptomyces coelicolor 3NG0 ; 2.8 ; Crystal Structure of Glutamine Synthetase from Synechocystis sp. PCC 6803 4G4P ; 1.5 ; Crystal structure of glutamine-binding protein from Enterococcus faecalis at 1.5 A 3SYT ; 2.6511 ; Crystal structure of glutamine-dependent NAD+ synthetase from M. tuberculosis bound to AMP/PPi, NAD+, and glutamate 5BNZ ; 1.9 ; Crystal structure of Glutamine-tRNA ligase /Glutaminyl-tRNA synthetase (GlnRS) from Pseudomonas aeruginosa 4FWU ; 2.0 ; Crystal structure of glutaminyl cyclase from drosophila melanogaster in space group I4 1EUQ ; 3.1 ; CRYSTAL STRUCTURE OF GLUTAMINYL-TRNA SYNTHETASE COMPLEXED WITH A TRNA-GLN MUTANT AND AN ACTIVE-SITE INHIBITOR 3OJ0 ; 1.648 ; Crystal structure of glutamyl-tRNA reductase from Thermoplasma volcanium (nucleotide binding domain) 7K86 ; 2.05 ; Crystal Structure of Glutamyl-tRNA synthetase (gltX) from Stenotrophomonas maltophilia 2O5R ; 2.34 ; Crystal structure of Glutamyl-tRNA synthetase 1 (EC 6.1.1.17) (Glutamate-tRNA ligase 1) (GluRS 1) (TM1351) from Thermotoga maritima at 2.5 A resolution 8VC5 ; 2.3 ; Crystal structure of glutamyl-tRNA synthetase GluRS from Pseudomonas aeruginosa (Zinc bound) 2GI3 ; 1.8 ; Crystal structure of Glutamyl-tRNA(Gln) amidotransferase subunit A (tm1272) from THERMOTOGA MARITIMA at 1.80 A resolution 3LGC ; 2.77 ; Crystal Structure of Glutaredoxin 1 from Francisella tularensis 3MSZ ; 2.053 ; Crystal Structure of Glutaredoxin 1 from Francisella tularensis Complexed with Cacodylate 4HJM ; 1.5462 ; Crystal structure of Glutaredoxin 1 from Plasmodium falciparum (PfGrx1) solved by S-SAD 3H8Q ; 2.21 ; Crystal structure of glutaredoxin domain of human thioredoxin reductase 3 4F2I ; 1.67 ; Crystal structure of glutaredoxin-like NrdH from Mycobacterium tuberculosis 2YWM ; 2.3 ; Crystal structure of glutaredoxin-like protein from Aquifex aeolicus 1J08 ; 2.3 ; Crystal structure of glutaredoxin-like protein from Pyrococcus horikoshii 3II9 ; 1.74 ; Crystal structure of glutaryl-coa dehydrogenase from Burkholderia pseudomallei at 1.73 Angstrom 3GQT ; 1.99 ; Crystal structure of glutaryl-CoA dehydrogenase from Burkholderia pseudomallei with fragment (1,4-dimethyl-1,2,3,4-tetrahydroquinoxalin-6-yl)methylamine 3GNC ; 2.15 ; Crystal structure of Glutaryl-COA dehydrogenase from Burkholderia Pseudomallei with fragment 6421 3SF6 ; 1.7 ; Crystal structure of Glutaryl-CoA dehydrogenase from Mycobacterium smegmatis 3O0H ; 1.9 ; Crystal structure of glutathione reductase from Bartonella henselae 2HQM ; 2.4 ; Crystal Structure of Glutathione Reductase Glr1 from the Yeast Saccharomyces cerevisiae 3LXT ; 1.76 ; Crystal structure of Glutathione S Transferase from Pseudomonas fluorescens 3M0F ; 1.6 ; Crystal structure of Glutathione S Transferase in complex with glutathione from Pseudomonas fluorescens 1U3I ; 1.89 ; Crystal structure of glutathione S-tranferase from Schistosoma mansoni 3BBY ; 1.85 ; Crystal structure of glutathione S-transferase (NP_416804.1) from Escherichia coli K12 at 1.85 A resolution 4JBB ; 1.48 ; Crystal structure of Glutathione S-transferase A6TBY7(Target EFI-507184) from Klebsiella pneumoniae MGH 78578, GSH complex 4HZ4 ; 1.62 ; Crystal structure of glutathione s-transferase b4xh91 (target efi-501787) from actinobacillus pleuropneumoniae 4Q5R ; 2.249 ; Crystal Structure of Glutathione S-transferase Bla g 5 6JI6 ; 1.5 ; Crystal structure of glutathione S-transferase complexed and modified with glutathione 4W66 ; 2.36 ; Crystal structure of Glutathione S-transferase domain protein from Haliangium ochraceum DSM 14365 3LQ7 ; 2.3 ; Crystal structure of glutathione s-transferase from agrobacterium tumefaciens str. c58 1A0F ; 2.1 ; CRYSTAL STRUCTURE OF GLUTATHIONE S-TRANSFERASE FROM ESCHERICHIA COLI COMPLEXED WITH GLUTATHIONESULFONIC ACID 3M3M ; 1.75 ; Crystal structure of glutathione S-transferase from Pseudomonas fluorescens [Pf-5] 3LSZ ; 1.7 ; Crystal structure of glutathione s-transferase from Rhodobacter sphaeroides 7SO8 ; 2.2 ; Crystal structure of Glutathione S-Transferase from Shrimp Litopenaeus vannamei in complex with silver ions and a molecules of Glutathione binding in G-site and H-site 4MDC ; 1.78 ; Crystal structure of glutathione S-transferase from Sinorhizobium meliloti 1021, NYSGRC target 021389 4EXJ ; 1.64 ; Crystal structure of glutathione s-transferase like protein lelg_03239 (target efi-501752) from lodderomyces elongisporus 4GLT ; 2.2 ; Crystal structure of glutathione s-transferase MFLA_2116 (target EFI-507160) from methylobacillus flagellatus kt with gsh bound 4IW9 ; 1.76 ; Crystal structure of glutathione s-transferase mha_0454 (target efi-507015) from mannheimia haemolytica, gsh complex 4IQ1 ; 1.85 ; Crystal structure of glutathione s-transferase MHA_0454 (TARGET EFI-507015) FROM Mannheimia haemolytica, SUBSTRATE-FREE 4JED ; 1.1 ; Crystal structure of glutathione s-transferase mrad2831_1084 (target efi-507060) from methylobacterium radiotolerans jcm 2831, complex with glutathione sulfonate 3RBT ; 2.2 ; Crystal structure of glutathione S-transferase Omega 3 from the silkworm Bombyx mori 6TUM ; 1.48 ; Crystal structure of glutathione s-transferase PA1623 from Pseudomonas aeruginosa PACS2 complexed with tartrate 4ECI ; 1.8 ; Crystal structure of glutathione s-transferase prk13972 (target efi-501853) from pseudomonas aeruginosa pacs2 complexed with acetate 4ECJ ; 1.76 ; Crystal structure of glutathione s-transferase prk13972 (target efi-501853) from pseudomonas aeruginosa pacs2 complexed with glutathione 4HZ2 ; 1.5 ; Crystal structure of glutathione s-transferase xaut_3756 (target efi-507152) from xanthobacter autotrophicus py2 3TOT ; 1.76 ; Crystal structure of GLUTATHIONE TRANSFERASE (TARGET EFI-501058) from Ralstonia solanacearum GMI1000 3TOU ; 1.75 ; Crystal structure of GLUTATHIONE TRANSFERASE (TARGET EFI-501058) from Ralstonia solanacearum GMI1000 with GSH bound 3UBK ; 1.95 ; Crystal structure of glutathione transferase (TARGET EFI-501770) from leptospira interrogans 3UBL ; 2.0 ; Crystal structure of glutathione transferase (TARGET EFI-501770) from leptospira interrogans with gsh bound 3UAP ; 2.8 ; Crystal structure of glutathione transferase (TARGET EFI-501774) from methylococcus capsulatus str. bath 3UAR ; 2.6 ; Crystal structure of glutathione transferase (TARGET EFI-501774) from methylococcus capsulatus str. bath with gsh bound 4MF7 ; 1.8 ; Crystal structure of glutathione transferase BBTA-3750 from Bradyrhizobium sp., Target EFI-507290 4NHZ ; 1.901 ; Crystal structure of glutathione transferase BBTA-3750 from Bradyrhizobium sp., Target EFI-507290, with one glutathione bound 4MF5 ; 1.11 ; Crystal structure of glutathione transferase BgramDRAFT_1843 from Burkholderia graminis, Target EFI-507289, with traces of one GSH bound 4MF6 ; 1.2 ; Crystal structure of glutathione transferase BgramDRAFT_1843 from Burkholderia graminis, Target EFI-507289, with two glutathione molecules bound per one protein subunit 8AI8 ; 1.7 ; Crystal structure of glutathione transferase Chi 1 from Synechocystis sp. PCC 6803 in complex with glutathione 3MAK ; 1.8 ; Crystal structure of Glutathione transferase dmGSTD1 from Drosophila melanogaster, in complex with glutathione 3F6F ; 1.6 ; Crystal Structure of Glutathione Transferase dmGSTD10 from Drosophila melanogaster 3GH6 ; 1.65 ; Crystal Structure of Glutathione Transferase dmgstd10 from Drosophila melanogaster, in complex with glutathione 5EY6 ; 1.9 ; CRYSTAL STRUCTURE OF GLUTATHIONE TRANSFERASE F2 FROM POPULUS TRICHOCARPA 5F05 ; 1.7 ; Crystal structure of glutathione transferase F5 from Populus trichocarpa 5F06 ; 1.8 ; Crystal structure of glutathione transferase F7 from Populus trichocarpa 5F07 ; 1.5 ; Crystal structure of glutathione transferase F8 from Populus trichocarpa 4LMV ; 3.204 ; Crystal structure of glutathione transferase GSTFuA2 from Phanerochaete chrysosporium 4LMW ; 2.099 ; Crystal structure of glutathione transferase GSTFuA3 from Phanerochaete chrysosporium 4ISD ; 2.65 ; Crystal structure of GLUTATHIONE TRANSFERASE homolog from BURKHOLDERIA GL BGR1, TARGET EFI-501803, with bound glutathione 4HI7 ; 1.25 ; Crystal structure of glutathione transferase homolog from drosophilia mojavensis, TARGET EFI-501819, with bound glutathione 4IVF ; 2.2 ; Crystal structure of glutathione transferase homolog from Lodderomyces elongisporus, target EFI-501753, with two GSH per subunit 4HOJ ; 1.4 ; Crystal structure of glutathione transferase homolog from Neisseria Gonorrhoeae, target EFI-501841, with bound glutathione 4PQH ; 1.4 ; Crystal structure of glutathione transferase lambda1 from Populus trichocarpa 4PQI ; 1.95 ; Crystal structure of glutathione transferase lambda3 from Populus trichocarpa 6HJS ; 1.612 ; Crystal structure of glutathione transferase Omega 1C from Trametes versicolor 6SR8 ; 1.94 ; Crystal structure of glutathione transferase Omega 2C from Trametes versicolor 6SRA ; 2.206 ; Crystal structure of glutathione transferase Omega 2C from Trametes versicolor in complex with naringenin 6SR9 ; 1.845 ; Crystal structure of glutathione transferase Omega 2C from Trametes versicolor in complex with oxyresveratrol 6GIB ; 2.194 ; Crystal structure of glutathione transferase Omega 2S from Trametes versicolor 6HT6 ; 2.671 ; Crystal structure of glutathione transferase Omega 2S from Trametes versicolor in complex with 2,4-dihydroxybenzophenone 6GIC ; 2.304 ; Crystal structure of glutathione transferase Omega 2S from Trametes versicolor in complex with oxyresveratrol 6SRB ; 1.65 ; Crystal structure of glutathione transferase Omega 3C from Trametes versicolor 6F69 ; 1.803 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with 2,3,4-Trihydroxybenzophenone 6F66 ; 1.749 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with 2,4-Dihydroxybenzophenone 6F67 ; 2.398 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with 3,4-Dihydroxybenzophenone 6F6A ; 1.7 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with dihydrowogonin from wild-cherry extract 6F4B ; 1.55 ; Crystal structure of Glutathione Transferase Omega 3S from Trametes versicolor in complex with glutathione 6F51 ; 1.92 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with glutathionyl-phenylacetophenone 6F4F ; 1.75 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with glutathionyl-S-dinitrobenzene 6F4K ; 1.55 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with hexyl-glutathione 6HPE ; 1.45 ; Crystal structure of glutathione transferase Omega 3S from Trametes versicolor in complex with the glutathione adduct of phenethyl-isothiocyanate 6F70 ; 1.48 ; Crystal structure of glutathione transferase Omega 6S from Trametes versicolor 6F71 ; 2.301 ; Crystal structure of glutathione transferase Omega 6S from Trametes versicolor in complex with naringenin 2A2R ; 1.4 ; Crystal Structure of Glutathione Transferase Pi in complex with S-nitrosoglutathione 3CSH ; 1.55 ; Crystal Structure of Glutathione Transferase Pi in complex with the Chlorambucil-Glutathione Conjugate 3HKR ; 1.8 ; Crystal Structure of Glutathione Transferase Pi Y108V Mutant 3HJO ; 1.95 ; Crystal Structure of Glutathione Transferase Pi Y108V Mutant in Complex with the Glutathione Conjugate of Ethacrynic Acid 4NAX ; 1.301 ; Crystal structure of glutathione transferase PPUT_1760 from Pseudomonas putida, target EFI-507288, with one glutathione disulfide bound per one protein subunit 4NHW ; 2.0 ; Crystal structure of glutathione transferase SMc00097 from Sinorhizobium meliloti, target EFI-507275, with one glutathione bound per one protein subunit 4ZB6 ; 1.801 ; Crystal structure of glutathione transferase URE2P4 from Phanerochaete chrysosporium in complex with oxidized glutathione. 6GC9 ; 3.2 ; Crystal structure of glutathione transferase Xi 1 from Trametes versicolor 6GCA ; 2.282 ; Crystal structure of glutathione transferase Xi 3 from Trametes versicolor 6GCB ; 1.795 ; Crystal structure of glutathione transferase Xi 3 from Trametes versicolor in complex with glutathione 6HTA ; 1.85 ; Crystal structure of glutathione transferase Xi 3 mutant C56S from Trametes versicolor 6GCC ; 1.9 ; Crystal structure of glutathione transferase Xi 3 mutant C56S from Trametes versicolor in complex with dextran-sulfate 4PUA ; 1.708 ; Crystal Structure Of glutathione transferase YghU from Streptococcus pneumoniae ATCC 700669, complexed with glutathione, Target EFI-507284 2CZ2 ; 1.4 ; Crystal structure of glutathione transferase zeta 1-1 (maleylacetoacetate isomerase) from Mus musculus (form-1 crystal) 2CZ3 ; 2.3 ; Crystal structure of glutathione transferase zeta 1-1 (maleylacetoacetate isomerase) from Mus musculus (form-2 crystal) 4DEJ ; 2.9 ; Crystal structure of glutathione transferase-like protein IL0419 (Target EFI-501089) from Idiomarina loihiensis L2TR 3M8U ; 1.85 ; Crystal structure of glutathione-binding protein A (GbpA) from Haemophilus parasuis SH0165 in complex with glutathione disulfide (GSSG) 3CMI ; 2.02 ; Crystal structure of glutathione-dependent phospholipid peroxidase Hyr1 from the yeast Saccharomyces cerevisiae 1PA3 ; 2.7 ; Crystal Structure of Glutathione-S-transferase from Plasmodium falciparum 6QUQ ; 2.993 ; Crystal structure of glutathionylated glycolytic glyceraldehyde-3- phosphate dehydrogenase from Arabidopsis thaliana (AtGAPC1) 1U8X ; 2.05 ; CRYSTAL STRUCTURE OF GLVA FROM BACILLUS SUBTILIS, A METAL-REQUIRING, NAD-DEPENDENT 6-PHOSPHO-ALPHA-GLUCOSIDASE 7JLK ; 1.99 ; Crystal structure of glVRC01 Fab in complex with anti-idiotype iv1 scFv 7JLN ; 2.57 ; Crystal structure of glVRC01 Fab in complex with anti-idiotype iv9 Fab 6XOC ; 2.45 ; Crystal structure of glVRC01 Fab in complex with anti-idiotypic iv4 Fab 6OL7 ; 2.419 ; Crystal structure of glVRC01 scFv in complex with anti-idiotype iv8 scFv 3R6S ; 2.38 ; Crystal structure of GlxR transcription factor from Corynebacterium glutamicum with cAMP 3DRU ; 3.2 ; Crystal Structure of Gly117Phe Alpha1-Antitrypsin 1Z4S ; 2.6 ; Crystal Structure of Gly19 and Glu60 deletion mutant of Human Acidic Fibroblast Growth Factor 1YTO ; 2.1 ; Crystal Structure of Gly19 deletion Mutant of Human Acidic Fibroblast Growth Factor 5MC2 ; 1.7 ; Crystal Structure of Gly278Asp mutant of Human Prolidase with Mn ions and GlyPro ligand 5MC4 ; 1.8 ; Crystal Structure of Gly448Arg mutant of Human Prolidase with Mn ions and GlyPro ligand 7DC4 ; 0.95 ; Crystal structure of glycan-bound Pseudomonas taiwanensis lectin 7DC0 ; 1.88 ; Crystal structure of glycan-free Pseudomonas taiwanensis lectin 3B75 ; 2.3 ; Crystal Structure of Glycated Human Haemoglobin 8I7E ; 2.05 ; Crystal structure of Glyceraldehyde 3-phosphate dehydrogenase from Salmonella typhi at 2.05A 1VC2 ; 2.6 ; Crystal structure of Glyceraldehyde 3-Phosphate Dehydrogenase from Thermus thermophilus HB8 4ZOH ; 2.2 ; Crystal structure of glyceraldehyde oxidoreductase 2YYY ; 1.85 ; Crystal structure of Glyceraldehyde-3-phosphate dehydrogenase 6OK4 ; 2.4 ; Crystal Structure of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Chlamydia trachomatis with bound NAD 7JWK ; 2.2 ; Crystal Structure of Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) from Mycoplasma genitalium with bound NAD 4IQ8 ; 2.49 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase 3 from Saccharomyces cerevisiae 3B1K ; 3.302 ; Crystal structure of Glyceraldehyde-3-Phosphate Dehydrogenase complexed with CP12 in the absence of copper from Synechococcus elongatus 3B1J ; 2.2 ; Crystal structure of Glyceraldehyde-3-Phosphate Dehydrogenase complexed with CP12 in the presence of copper from Synechococcus elongatus 3B20 ; 2.398 ; Crystal structure of Glyceraldehyde-3-Phosphate Dehydrogenase complexed with NADfrom Synechococcus elongatus"" 3L0D ; 2.5 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Bartonella henselae with bound NAD 3HJA ; 2.2 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Borrelia burgdorferi 8HRQ ; 2.09 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 (L36S/T37K) in complex with NAD 8HRR ; 2.0 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 (L36S/T37K/F100V) in complex with NADP 8HRT ; 1.99 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 (L36S/T37K/F100V/P192S) in complex with NADP 8HRS ; 2.0 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 (L36S/T37K/P192S) in complex with NADP 8HRO ; 2.59 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 in complex with NAD 8HRP ; 1.99 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 in complex with NAD and G3P 8JB1 ; 2.44 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum ATCC13032 in complex with NADP 6NLX ; 1.8 ; Crystal Structure of Glyceraldehyde-3-phosphate Dehydrogenase from Naegleria fowleri with bound NAD 5DDI ; 2.4 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from pig muscle - holo enzyme - at 2.40 Angstrom resolution 5TSO ; 1.9 ; CRYSTAL STRUCTURE OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PIG MUSCLE COMPLEXED WITH ORTHOPHENANTHROLINE AT 1.90 ANGSTROM RESOLUTION 2B4R ; 2.25 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 Angstrom Resolution reveals intriguing extra electron density in the active site 2B4T ; 2.5 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 Angstrom resolution reveals intriguing extra electron density in the active site 2CZC ; 2.0 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Pyrococcus horikoshii OT3 4QX6 ; 2.46 ; CRYSTAL STRUCTURE OF GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM STREPTOCOCCUS AGALACTIAE NEM316 at 2.46 ANGSTROM RESOLUTION 3STH ; 2.25 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Toxoplasma gondii 7D1G ; 1.58 ; Crystal structure of Glyceraldehyde-3-Phosphate Dehydrogenase GAPDH from Clostridium beijerinckii 3PQA ; 1.5 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase GapN from Methanocaldococcus jannaschii DSM 2661 3RHD ; 2.2 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase GapN from Methanocaldococcus jannaschii DSM 2661 complexed with NADP 2I5P ; 2.3 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase isoform 1 from K. marxianus 3GNQ ; 2.4 ; Crystal structure of glyceraldehyde-3-phosphate dehydrogenase, type I from Burkholderia pseudomallei 7C5F ; 1.88 ; Crystal Structure of Glyceraldehyde-3-phosphate dehydrogenase1 from Escherichia coli at 1.88 Angstrom resolution 7C5H ; 2.09 ; Crystal Structure of Glyceraldehyde-3-phosphate dehydrogenase1 from Escherichia coli at 2.09 Angstrom resolution 3GVX ; 2.2 ; Crystal structure of Glycerate dehydrogenase related protein from Thermoplasma acidophilum 2B8N ; 2.53 ; Crystal structure of Glycerate kinase (EC 2.7.1.31) (tm1585) from THERMOTOGA MARITIMA at 2.70 A resolution 3CE9 ; 2.37 ; Crystal structure of glycerol dehydrogenase (NP_348253.1) from Clostridium acetobutylicum at 2.37 A resolution 1TA9 ; 1.9 ; Crystal structure of glycerol dehydrogenase from Schizosaccharomyces pombe 4MCA ; 1.9 ; Crystal Structure of Glycerol Dehydrogenase from Serratia to 1.9A 8GOA ; 2.9 ; Crystal Structure of Glycerol Dehydrogenase in the absence of NAD+ 8GOB ; 2.6 ; Crystal Structure of Glycerol Dehydrogenase in the presence of NAD+ 8X6M ; 2.0 ; Crystal Structure of Glycerol Dehydrogenase in the Presence of NAD+ and Glycerol 2D4W ; 2.3 ; Crystal structure of glycerol kinase from Cellulomonas sp. NT3060 6UDE ; 1.95 ; Crystal structure of Glycerol kinase from Elizabethkingia anophelis NUHP1 in complex with ADP and glycerol 5AZI ; 2.45 ; Crystal structure of glycerol kinase from Trypanosoma brucei gambiense complexed with 4NP 5AZJ ; 2.61 ; Crystal structure of glycerol kinase from Trypanosoma brucei gambiense complexed with 4NP (with disulfide bridge) 5GN5 ; 2.85 ; Crystal structure of glycerol kinase from Trypanosoma brucei gambiense complexed with cumarin derivative-17 5GN6 ; 2.5 ; Crystal structure of glycerol kinase from Trypanosoma brucei gambiense complexed with cumarin derivative-17b 4E1J ; 2.33 ; Crystal structure of glycerol kinase in complex with glycerol from Sinorhizobium meliloti 1021 4I9F ; 2.21 ; Crystal structure of glycerol phosphate phosphatase Rv1692 from Mycobacterium tuberculosis in complex with calcium 4I9G ; 3.25 ; Crystal structure of glycerol phosphate phosphatase Rv1692 from Mycobacterium tuberculosis in complex with magnesium 4JIQ ; 2.49 ; Crystal structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter in complex with 1-nitro-2-phenylpropene 4JIP ; 2.29 ; Crystal structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter in complex with 4-hydroxybenzaldehyde 5EPD ; 2.1 ; Crystal structure of Glycerol Trinitrate Reductase XdpB from Agrobacterium sp. R89-1 (Apo form) 3KTS ; 2.75 ; CRYSTAL STRUCTURE OF GLYCEROL UPTAKE OPERON ANTITERMINATOR REGULATORY PROTEIN FROM LISTERIA MONOCYTOGENES STR. 4b F2365 3RF6 ; 1.695 ; Crystal structure of glycerol-3 phosphate bound HAD-like phosphatase from Saccharomyces cerevisiae 1Z82 ; 2.0 ; Crystal structure of glycerol-3-phosphate dehydrogenase (TM0378) from THERMOTOGA MARITIMA at 2.00 A resolution 2QCU ; 1.75 ; Crystal structure of Glycerol-3-phosphate Dehydrogenase from Escherichia coli 1O1Z ; 1.6 ; Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) (TM1621) from Thermotoga maritima at 1.60 A resolution 2PZ0 ; 1.91 ; Crystal structure of Glycerophosphodiester Phosphodiesterase (GDPD) from T. tengcongensis 1ZCC ; 2.5 ; Crystal structure of glycerophosphodiester phosphodiesterase from Agrobacterium tumefaciens str.C58 4OEC ; 1.9 ; Crystal structure of glycerophosphodiester phosphodiesterase from Thermococcus kodakarensis KOD1 3CH0 ; 1.5 ; Crystal structure of glycerophosphoryl diester phosphodiesterase (YP_677622.1) from Cytophaga hutchinsonii ATCC 33406 at 1.50 A resolution 1VD6 ; 1.3 ; Crystal Structure of Glycerophosphoryl Diester Phosphodiesterase complexed with Glycerol 5VUG ; 1.5 ; Crystal Structure of Glycerophosphoryl Diester Phosphodiesterase Domain of Uncharacterized Protein Rv2277c from Mycobacterium tuberculosis 2OOG ; 2.2 ; Crystal structure of glycerophosphoryl diester phosphodiesterase from Staphylococcus aureus 1V8E ; 1.5 ; Crystal Structure of Glycerophosphoryl Diester Phosphodiesterase from Thermus thermophilus HB8 3DCJ ; 2.2 ; Crystal structure of glycinamide formyltransferase (PurN) from Mycobacterium tuberculosis in complex with 5-methyl-5,6,7,8-tetrahydrofolic acid derivative 2IP4 ; 2.8 ; Crystal Structure of Glycinamide Ribonucleotide Synthetase from Thermus thermophilus HB8 3AV3 ; 1.7 ; Crystal structure of glycinamide ribonucleotide transformylase 1 from Geobacillus kaustophilus 3AUF ; 2.07 ; Crystal structure of glycinamide ribonucleotide transformylase 1 from Symbiobacterium toebii 1GRC ; 3.0 ; CRYSTAL STRUCTURE OF GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE FROM ESCHERICHIA COLI AT 3.0 ANGSTROMS RESOLUTION: A TARGET ENZYME FOR CHEMOTHERAPY 1KJQ ; 1.05 ; Crystal structure of glycinamide ribonucleotide transformylase in complex with Mg-ADP 1KJI ; 1.6 ; Crystal structure of glycinamide ribonucleotide transformylase in complex with Mg-AMPPCP 3TMG ; 1.9 ; Crystal structure of Glycine betaine, L-proline ABC transporter, glycine/betaine/L-proline-binding protein (ProX) from Borrelia burgdorferi 3O66 ; 1.86 ; Crystal structure of glycine betaine/carnitine/choline ABC transporter 5OBH ; 2.4 ; Crystal structure of glycine binding protein in complex with bicuculline 5OBG ; 2.0 ; Crystal structure of glycine binding protein in complex with strychnine 5A35 ; 1.5 ; Crystal structure of Glycine Cleavage Protein H-Like (GcvH-L) from Streptococcus pyogenes 3GIR ; 1.6 ; Crystal structure of glycine cleavage system aminomethyltransferase T from Bartonella henselae 1ZKO ; 1.65 ; Crystal structure of Glycine cleavage system H protein (tm0212) from Thermotoga maritima at 1.65 A resolution 3MXU ; 1.8 ; Crystal structure of glycine cleavage system protein H from Bartonella henselae 3HGB ; 1.75 ; Crystal structure of glycine cleavage system protein H from Mycobacterium tuberculosis 3IFT ; 2.0 ; Crystal structure of glycine cleavage system protein H from Mycobacterium tuberculosis, using X-rays from the Compact Light Source. 1WYT ; 2.4 ; Crystal structure of glycine decarboxylase (P-protein) of the glycine cleavage system, in apo form 1WYU ; 2.1 ; Crystal structure of glycine decarboxylase (P-protein) of the glycine cleavage system, in holo form 1WYV ; 2.4 ; Crystal structure of glycine decarboxylase (P-protein) of the glycine cleavage system, in inhibitor-bound form 4LGL ; 2.0004 ; Crystal Structure of Glycine Decarboxylase P-protein from Synechocystis sp. PCC 6803, apo form 1KIA ; 2.8 ; Crystal structure of glycine N-methyltransferase complexed with S-adenosylmethionine and acetate 4YSH ; 2.2 ; Crystal structure of glycine oxidase from Geobacillus kaustophilus 3IF9 ; 2.6 ; Crystal structure of Glycine Oxidase G51S/A54R/H244A mutant in complex with inhibitor glycolate 3OXB ; 2.947 ; Crystal structure of glycine riboswitch with single mutation 3OXD ; 2.999 ; Crystal structure of glycine riboswitch with two mutations 3OXE ; 2.899 ; crystal structure of glycine riboswitch, Mn2+ soaked 3OXJ ; 3.2 ; crystal structure of glycine riboswitch, soaked in Ba2+ 3OWZ ; 2.949 ; Crystal structure of glycine riboswitch, soaked in Iridium 3OXM ; 2.95 ; crystal structure of glycine riboswitch, Tl-Acetate soaked 3OX0 ; 3.049 ; Crystal structure of glycine riboswitch, unbound state 5HII ; 1.9 ; Crystal structure of glycine sarcosine N-methyltransferase (GSMT) from Methanohalophilus portucalensis (apo form) 5HIJ ; 1.93 ; Crystal structure of glycine sarcosine N-methyltransferase from Methanohalophilus portucalensis in complex with betaine 5HIM ; 2.338 ; Crystal structure of glycine sarcosine N-methyltransferase from Methanohalophilus portucalensis in complex with S-adenosylhomocysteine and dimethylglycine 5HIL ; 2.471 ; Crystal structure of glycine sarcosine N-methyltransferase from Methanohalophilus portucalensis in complex with S-adenosylhomocysteine and sarcosine 5HIK ; 2.354 ; Crystal structure of glycine sarcosine N-methyltransferase from Methanohalophilus portucalensis in complex with S-adenosylmethionine 5GWX ; 2.205 ; Crystal structure of glycine sarcosine N-methyltransferase from Methanohalophilus portucalensis in complex with S-adenosylmethionine and sarcosine 8SLF ; 2.9 ; Crystal Structure of Glycine tRNA ligase from Mycobacterium thermoresistibile (AMP bound) 8SLH ; 3.05 ; Crystal Structure of Glycine tRNA ligase from Mycobacterium thermoresistibile (AMP bound, hexagonal form) 8SLD ; 2.85 ; Crystal Structure of Glycine tRNA ligase from Mycobacterium thermoresistibile (Apo) 8SLG ; 1.95 ; Crystal Structure of Glycine tRNA ligase from Mycobacterium thermoresistibile (glycyl adenylate bound) 8U2Q ; 2.45 ; Crystal Structure of Glycine--tRNA ligase active site chimera from Mycobacterium thermoresistibile/tuberculosis (G5A bound) 8T5N ; 1.65 ; Crystal Structure of Glycine--tRNA ligase from Mycobacterium tuberculosis (AMP-Mg bound) 8U2P ; 2.25 ; Crystal Structure of Glycine--tRNA ligase from Mycobacterium tuberculosis (G5A bound) 1OD5 ; 2.1 ; Crystal structure of glycinin A3B4 subunit homohexamer 1KJJ ; 1.75 ; Crystal structure of glycniamide ribonucleotide transformylase in complex with Mg-ATP-gamma-S 3K1D ; 2.33 ; Crystal structure of glycogen branching enzyme synonym: 1,4-alpha-D-glucan:1,4-alpha-D-GLUCAN 6-glucosyl-transferase from mycobacterium tuberculosis H37RV 2WSK ; 2.25 ; Crystal structure of Glycogen Debranching Enzyme GlgX from Escherichia coli K-12 2VNC ; 3.0 ; Crystal structure of Glycogen Debranching enzyme TreX from Sulfolobus solfataricus 2VUY ; 3.0 ; Crystal structure of Glycogen Debranching exzyme TreX from Sulfolobus solfatarius 3DD1 ; 2.57 ; Crystal structure of glycogen phophorylase complexed with an anthranilimide based inhibitor GSK254 1P2D ; 1.94 ; Crystal Structure of Glycogen Phosphorylase B in complex with Beta Cyclodextrin 1P4H ; 2.06 ; Crystal structure of glycogen phosphorylase b in complex with C-(1-acetamido-alpha-D-glucopyranosyl) formamide 1P4G ; 2.1 ; Crystal structure of glycogen phosphorylase b in complex with C-(1-azido-alpha-D-glucopyranosyl)formamide 1P4J ; 2.0 ; Crystal structure of glycogen phosphorylase b in complex with C-(1-hydroxy-beta-D-glucopyranosyl)formamide 1P2G ; 2.3 ; Crystal Structure of Glycogen Phosphorylase B in complex with Gamma Cyclodextrin 5LRD ; 1.8 ; Crystal structure of Glycogen Phosphorylase b in complex with KS242 5LRE ; 1.8 ; Crystal structure of Glycogen Phosphorylase b in complex with KS382 5LRF ; 1.75 ; Crystal structure of Glycogen Phosphorylase b in complex with KS389 1P2B ; 2.2 ; Crystal Structure of Glycogen Phosphorylase B in Complex with Maltoheptaose 1P29 ; 2.2 ; Crystal Structure of glycogen phosphorylase b in complex with maltopentaose 3CUT ; 2.3 ; Crystal structure of glycogen phosphorylase b in complex with N-(-D-glucopyranosyl)-N'-(2-naphthyl)oxamide 3CUU ; 2.3 ; Crystal structure of glycogen phosphorylase b in complex with N-(-D-glucopyranosyl)-N'-(2-naphthyl)oxamides 3CUW ; 2.0 ; Crystal structure of glycogen phosphorylase b in complex with N-(-D-glucopyranosyl)-N'-(2-naphthyl)oxamides 3DDW ; 1.9 ; Crystal structure of glycogen phosphorylase complexed with an anthranilimide based inhibitor GSK055 3DDS ; 1.8 ; Crystal structure of glycogen phosphorylase complexed with an anthranilimide based inhibitor GSK261 3L79 ; 1.86 ; Crystal Structure of Glycogen Phosphorylase DK1 complex 3L7A ; 1.9 ; Crystal Structure of Glycogen Phosphorylase DK2 complex 3L7B ; 2.0 ; Crystal Structure of Glycogen Phosphorylase DK3 complex 3L7C ; 1.93 ; Crystal Structure of Glycogen Phosphorylase DK4 complex 3L7D ; 2.0 ; Crystal Structure of Glycogen Phosphorylase DK5 complex 2PYI ; 1.88 ; Crystal structure of Glycogen Phosphorylase in complex with glucosyl triazoleacetamide 5LRC ; 2.0 ; Crystal structure of Glycogen Phosphorylase in complex with KS114 8DJC ; 2.463 ; CRYSTAL STRUCTURE OF GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH (4S)-N-{4-[(2S)-2-methylmorpholin-4-yl] pyridin-3-yl}-2-phenylimidazo[1,2-b]pyridazine-8-carboxamide 8FF8 ; 2.33 ; CRYSTAL STRUCTURE OF GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH 2-[(4-CYANOPHENYL)AMINO]-N-(4-PHENYLPYRIDIN-3-YL)PYRIMIDINE-4-CARBOXAMIDE 8DJD ; 2.205 ; CRYSTAL STRUCTURE OF GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH 3-[(CYCLOPROPYLMETHYL)AMINO] -N-(4-PHENYLPYRIDIN-3-YL)IMIDAZO[1,2-B]PYRIDAZINE-8-CARBOX AMIDE 8DJE ; 2.374 ; CRYSTAL STRUCTURE OF GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH 3-[(CYCLOPROPYLMETHYL)AMINO] -N-(4-PHENYLPYRIDIN-3-YL)IMIDAZO[1,2-B]PYRIDAZINE-8-CARBOX AMIDE 1Q5K ; 1.94 ; crystal structure of Glycogen synthase kinase 3 in complexed with inhibitor 6GN1 ; 2.6 ; Crystal Structure of Glycogen synthase kinase-3 beta (GSK3B) in Complex with PIK-75 6GJO ; 2.91 ; Crystal Structure of Glycogen Synthase Kinase-3 beta in Complex with BI-91BS 2YVS ; 2.0 ; Crystal structure of glycolate oxidase subunit GlcE from Thermus thermophilus HB8 5OWP ; 1.85 ; Crystal structure of glycopeptide ""GVTSAfPDT*RPAP"" in complex with scFv-SM3 5FXC ; 2.05 ; Crystal structure of glycopeptide 22 in complex with scFv-SM3 5AWV ; 1.93 ; Crystal structure of glycopeptide hexose oxidase DBV29 complexed with teicoplanin 5V2S ; 3.6 ; Crystal structure of glycoprotein B from Herpes Simplex Virus type I 6BM8 ; 4.1 ; Crystal structure of glycoprotein B from Herpes Simplex Virus type I 5J81 ; 1.8 ; Crystal structure of Glycoprotein C from Puumala virus in the post-fusion conformation (pH 6.0) 5J9H ; 2.5 ; Crystal structure of Glycoprotein C from Puumala virus in the post-fusion conformation (pH 8.0) 4HJ1 ; 1.9 ; Crystal structure of glycoprotein C from Rift Valley Fever Virus (glycosylated) 4HJC ; 4.15 ; Crystal structure of glycoprotein C from Rift Valley Fever Virus (non-glycosylated) 6SQJ ; 2.245 ; Crystal structure of glycoprotein D of Equine Herpesvirus Type 1 6TM8 ; 1.9 ; Crystal structure of glycoprotein D of Equine Herpesvirus Type 4 2A6A ; 2.5 ; Crystal structure of Glycoprotein endopeptidase (tm0874) from THERMOTOGA MARITIMA at 2.50 A resolution 3RFE ; 1.245 ; Crystal structure of glycoprotein GPIb ectodomain 5OU9 ; 2.5 ; Crystal structure of Glycoprotein VI in complex with collagen-peptide (GPO)3 5OU8 ; 2.5 ; Crystal structure of Glycoprotein VI in complex with collagen-peptide (GPO)5 7DFM ; 2.4 ; Crystal structure of glycoside hydrolase family 11 beta-xylanase from Streptomyces olivaceoviridis E-86 7DFO ; 2.0 ; Crystal structure of glycoside hydrolase family 11 beta-xylanase from Streptomyces olivaceoviridis E-86 in complex with 4-O-methyl-alpha-D-glucuronopyranosyl xylotetraose 7DFN ; 2.0 ; Crystal structure of glycoside hydrolase family 11 beta-xylanase from Streptomyces olivaceoviridis E-86 in complex with alpha-L-arabinofuranosyl xylotetraose 4WTP ; 1.3 ; Crystal structure of glycoside hydrolase family 17 beta-1,3-glucanosyltransferase from Rhizomucor miehei 3C7H ; 2.0 ; Crystal structure of glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase from Bacillus subtilis in complex with AXOS-4-0.5. 4NRS ; 2.57 ; Crystal Structure of Glycoside Hydrolase Family 5 Mannosidase (E202A mutant) from Rhizomucor miehei in complex with mannobiose 4NRR ; 2.4 ; Crystal Structure of Glycoside Hydrolase Family 5 Mannosidase (E202A mutant) from Rhizomucor miehei in complex with mannosyl-fructose 4LYP ; 1.28 ; Crystal Structure of Glycoside Hydrolase Family 5 Mannosidase from Rhizomucor miehei 4LYQ ; 2.0 ; Crystal Structure of Glycoside Hydrolase Family 5 Mannosidase from Rhizomucor miehei, E202A mutant 3SQL ; 2.25 ; Crystal Structure of Glycoside Hydrolase from Synechococcus 3SQM ; 2.703 ; Crystal Structure of Glycoside Hydrolase from Synechococcus Complexed with N-acetyl-D-glucosamine 7VTK ; 1.90697 ; Crystal structure of Glycoside Hydrolases family 64 beta-1,3-glucanase 8HKG ; 2.56 ; Crystal structure of glycosidic hydrolase family 10 (GH10) xylanase XynA contains an additional proline-rich sequence in the C-terminus 5TF0 ; 2.2021 ; Crystal Structure of Glycosil Hydrolase Family 3 N-Terminal Domain Protein from Bacteroides intestinalis 1GYQ ; 3.4 ; CRYSTAL STRUCTURE OF GLYCOSOMAL GLYCERALDEHYDE FROM LEISHMANIA MEXICANA IN COMPLEX WITH N6-BENZYL-NAD 1GYP ; 2.8 ; CRYSTAL STRUCTURE OF GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM LEISHMANIA MEXICANA: IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN AND A NEW POSITION FOR THE INORGANIC PHOSPHATE BINDING SITE 3KZS ; 2.1 ; Crystal structure of glycosyl hydrolase family 5 (NP_809925.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 2.10 A resolution 4W65 ; 1.38 ; Crystal Structure of Glycosyl hydrolase family protein from Mycobacterium fortuitum 7P6J ; 1.75 ; Crystal structure of glycosyl-enzyme intermediate of RBcel1 Y201F 2GL9 ; 2.0 ; Crystal Structure of Glycosylasparaginase-Substrate Complex 6MFT ; 2.315 ; Crystal structure of glycosylated 426c HIV-1 gp120 core G459C in complex with glVRC01 A60C heavy chain 6E8N ; 3.2 ; Crystal structure of glycosylated human EPDR1 3FIR ; 2.0 ; Crystal structure of Glycosylated K135E PEB3 4DYH ; 2.0 ; Crystal structure of glycosylated Lipase from Humicola lanuginosa at 2 Angstrom resolution 6NYQ ; 1.85 ; Crystal structure of glycosylated lysosomal membrane protein (GLMP) luminal domain bound to a Fab fragment 5LFR ; 2.12 ; Crystal structure of glycosylated Myelin-associated glycoprotein (MAG) Ig1-3 5LFV ; 2.3 ; Crystal structure of glycosylated Myelin-associated glycoprotein (MAG) Ig1-3 with soaked trisaccharide ligand 7MI0 ; 2.9 ; Crystal Structure of Glycosyltransferase from Rickettsia africae ESF-5 3WAG ; 2.1 ; Crystal structure of glycosyltransferase VinC in complex with DTDP 3WAD ; 2.0 ; Crystal structure of glycosyltransferase VinC involved in the biosynthesis of vicenistatin 3VGE ; 2.7 ; Crystal structure of glycosyltrehalose trehalohydrolase (D252S) 3VGF ; 2.3 ; Crystal structure of glycosyltrehalose trehalohydrolase (D252S) complexed with maltotriosyltrehalose 3VGG ; 2.66 ; Crystal structure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltoheptaose 3VGH ; 2.6 ; Crystal structure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltotriosyltrehalose 3VGB ; 2.65 ; Crystal structure of glycosyltrehalose trehalohydrolase (GTHase) from Sulfolobus solfataricus KM1 1EHA ; 3.0 ; CRYSTAL STRUCTURE OF GLYCOSYLTREHALOSE TREHALOHYDROLASE FROM SULFOLOBUS SOLFATARICUS 2Y8N ; 1.75 ; Crystal structure of glycyl radical enzyme 6XS4 ; 2.33 ; Crystal structure of glycyl radical enzyme ECL_02896 from Enterobacter cloacae subsp. cloacae 2YAJ ; 1.813 ; CRYSTAL STRUCTURE OF GLYCYL RADICAL ENZYME with bound substrate 1J5W ; 1.95 ; Crystal structure of Glycyl-tRNA synthetase alpha chain (TM0216) from Thermotoga maritima at 1.95 A resolution 1ATI ; 2.75 ; CRYSTAL STRUCTURE OF GLYCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS 8FI4 ; 1.8 ; Crystal Structure of Glycylpeptide N-tetradecanoyltransferase (N-myristoyl transferase) (NMT) from Leishmania major Friedlin bound to tetradecanoyl-CoA (Orthorhombic P Form 1) 8FI5 ; 2.25 ; Crystal Structure of Glycylpeptide N-tetradecanoyltransferase (N-myristoyl transferase) (NMT) from Leishmania major Friedlin bound to tetradecanoyl-CoA (Orthorhombic P Form 2) 8FI6 ; 1.8 ; Crystal Structure of Glycylpeptide N-tetradecanoyltransferase (N-myristoyl transferase) (NMT) from Leishmania major Friedlin bound to tetradecanoyl-CoA (Orthorhombic P Form 3) 6NXG ; 1.6 ; Crystal structure of glycylpeptide N-tetradecanoyltransferase from Plasmodium vivax in complex with inhibitor 303a 5V0W ; 1.8 ; Crystal structure of glycylpeptide N-tetradecanoyltransferase from Plasmodium vivax in complex with inhibitor IMP-0001088 5V0X ; 2.1 ; Crystal structure of glycylpeptide N-tetradecanoyltransferase from Plasmodium vivax in complex with inhibitor IMP-0001114 6B1L ; 2.3 ; Crystal structure of glycylpeptide N-tetradecanoyltransferase from Plasmodium vivax in complex with inhibitor IMP-0001173 7C2X ; 1.89 ; Crystal Structure of Glycyrrhiza uralensis UGT73P12 complexed with glycyrrhetinic acid 3-O-monoglucuronide 5D7Z ; 1.73 ; Crystal structure of glyoxalase I from Zea mays 4LRU ; 1.6 ; Crystal structure of glyoxalase III (Orf 19.251) from Candida albicans 4G6X ; 1.73 ; Crystal structure of glyoxalase/bleomycin resistance protein from Catenulispora acidiphila. 3RRI ; 1.5 ; Crystal structure of glyoxalase/bleomycin resistance protein/dioxygenase from Alicyclobacillus acidocaldarius 4GYM ; 1.56 ; Crystal structure of Glyoxalase/bleomycin resistance protein/dioxygenase from Conexibacter woesei DSM 14684 2RK0 ; 2.04 ; Crystal structure of glyoxylase/bleomycin resistance protein/dioxygenase domain from Frankia sp. EAN1pec 2DBQ ; 1.7 ; Crystal Structure of Glyoxylate Reductase (PH0597) from Pyrococcus horikoshii OT3, Complexed with NADP (I41) 2DBR ; 2.61 ; Crystal Structure of Glyoxylate Reductase (PH0597) from Pyrococcus horikoshii OT3, Complexed with NADP (P1) 2DBZ ; 2.45 ; Crystal Structure of Glyoxylate Reductase (PH0597) from Pyrococcus horikoshii OT3, Complexed with NADP (P61) 6WJL ; 3.3 ; Crystal structure of Glypican-2 core protein in complex with D3 Fab 5TGT ; 2.45 ; Crystal structure of glytamyl-tRNA synthetase GluRS from Pseudomonas aeruginosa 2X3Y ; 2.4 ; Crystal structure of GmhA from Burkholderia pseudomallei 2XBL ; 1.62 ; Crystal structure of GmhA from Burkholderia pseudomallei in complex with product 3L1V ; 1.954 ; Crystal structure of GmhB from E. coli in complex with calcium and phosphate. 6JL8 ; 2.804 ; Crystal structure of GMP reductase C318A from Trypanosoma brucei 6JIG ; 1.903 ; Crystal structure of GMP reductase C318A from Trypanosoma brucei in complex with guanosine 5'-monophosphate 7R50 ; 2.5 ; Crystal structure of GMP reductase from mycobacterium smegmatis in complex with GMP. 7OY9 ; 2.8 ; Crystal structure of GMP reductase from mycobacterium smegmatis. 6LK4 ; 2.503 ; Crystal structure of GMP reductase from Trypanosoma brucei in complex with guanosine 5'-triphosphate 2YWB ; 2.1 ; Crystal structure of GMP synthetase from Thermus thermophilus 2YWC ; 2.2 ; Crystal structure of GMP synthetase from Thermus thermophilus in complex with XMP 3A4I ; 1.79 ; Crystal structure of GMP synthetase PH1347 from Pyrococcus horikoshii OT3 6G12 ; 1.929 ; Crystal structure of GMPPNP bound RbgA from S. aureus 6CU6 ; 1.5 ; Crystal structure of GMPPNP-bound G12R mutant of human KRAS4b 3ZJC ; 3.15 ; Crystal structure of GMPPNP-bound human GIMAP7 L100Q variant 8EBZ ; 1.2 ; Crystal Structure of GMPPNP-bound KRAS-G13D mutant at 1.2 Ang resolution 2YWF ; 2.24 ; Crystal structure of GMPPNP-bound LepA from Aquifex aeolicus 6F8P ; 1.6 ; Crystal structure of Gn from Rift Valley fever virus 2JJA ; 1.3 ; Crystal structure of GNA with synthetic copper base pair 3GXA ; 2.25 ; Crystal structure of GNA1946 3T9Y ; 2.0 ; Crystal structure of GNAT family acetyltransferase Staphylococcus aureus subsp. aureus USA300_TCH1516 3OWC ; 1.9 ; Crystal structure of GNAT superfamily protein PA2578 from Pseudomonas aeruginosa 7RP3 ; 2.0 ; Crystal structure of GNE-1952 alkylated KRAS G12C in complex with 2H11 CLAMP 6FBM ; 2.5 ; Crystal structure of GNIP1Aa from Chromobacterium piscinae 4XRE ; 2.597 ; Crystal structure of Gnk2 complexed with mannose 3CNL ; 2.0 ; Crystal structure of GNP-bound YlqF from T. maritima 2HUZ ; 2.67 ; Crystal structure of GNPNAT1 2O28 ; 1.8 ; Crystal Structure of GNPNAT1 4XO2 ; 1.952 ; crystal structure of GnsA from E.coli 4OMW ; 2.3 ; Crystal structure of goat beta-lactoglobulin (orthorhombic form) 4OMX ; 2.3 ; Crystal structure of goat beta-lactoglobulin (trigonal form) 3RKE ; 2.3 ; Crystal Structure of goat Lactoperoxidase complexed with a tightly bound inhibitor, 4-aminophenyl-4H-imidazole-1-yl methanone at 2.3 A resolution 2EHA ; 3.3 ; Crystal structure of goat lactoperoxidase complexed with formate anion at 3.3 A resolution 4QJQ ; 2.1 ; Crystal structure of goat lactoperoxidase in complex with octopamine at 2.1 Angstrom resolution 5F0U ; 1.68 ; Crystal structure of Gold binding protein 6LHE ; 1.206 ; Crystal Structure of Gold-bound NDM-1 8HTG ; 2.91 ; Crystal structure of Golf in complex with GTP-gamma S and Mg 3BLB ; 1.3 ; Crystal structure of Golgi Mannosidase II in complex with swainsonine at 1.3 Angstrom resolution 3KN1 ; 2.9 ; Crystal Structure of Golgi Phosphoprotein 3 N-term Truncation Variant 1SMB ; 1.55 ; Crystal Structure of Golgi-Associated PR-1 protein 3WTB ; 2.2 ; Crystal structure of Gox0525 3WBX ; 2.4 ; Crystal structure of Gox0644 at apoform 3WBY ; 3.2 ; Crystal structure of Gox0644 D53A mutant in complex with NADPH 3WBW ; 1.85 ; Crystal structure of Gox0644 in complex with NADPH 3WTC ; 1.65 ; Crystal structure of Gox2036 3AWD ; 1.8 ; Crystal structure of gox2181 3WJ7 ; 2.6 ; Crystal structure of gox2253 4ZJF ; 2.595 ; Crystal structure of GP1 - the receptor binding domain of Lassa virus 6GH8 ; 2.44 ; Crystal structure of GP1 domain of Lujo virus in complex with the first CUB domain of neuropilin-2 5NFF ; 2.615 ; Crystal structure of GP1 receptor binding domain from Morogoro virus 7CNB ; 2.32 ; Crystal structure of Gp16 C-terminal domain from Bacillus virus phi29 5OMI ; 2.56 ; Crystal structure of GP2 from Lassa virus in a post fusion conformation 1JE5 ; 1.9 ; Crystal Structure of gp2.5, a Single-Stranded DNA Binding Protein Encoded by Bacteriophage T7 5FT0 ; 2.2 ; Crystal structure of gp37(Dip) from bacteriophage phiKZ 5FT1 ; 2.75 ; Crystal structure of gp37(Dip) from bacteriophage phiKZ bound to RNase E of Pseudomonas aeruginosa 3MA9 ; 2.05 ; Crystal structure of gp41 derived protein complexed with fab 8066 4KHX ; 2.921 ; Crystal structure of gp41 helix complexed with antibody 8062 6QAZ ; 1.02 ; Crystal structure of gp41-1 intein 6RIZ ; 1.85 ; Crystal structure of gp41-1 intein (C1A, F65W, D107C) 3O3X ; 1.45 ; Crystal structure of gp41-5, a single-chain 5-helix-bundle based on HIV gp41 3MAC ; 2.5 ; crystal structure of GP41-derived protein complexed with fab 8062 1WTH ; 2.8 ; Crystal structure of gp5-S351L mutant and gp27 complex 4YI3 ; 1.8 ; Crystal structure of Gpb in complex with 4a 4YI5 ; 1.8 ; Crystal structure of Gpb in complex with 4b 5JTT ; 1.85 ; Crystal structure of GPb in complex with 8a 5JTU ; 1.85 ; Crystal structure of GPb in complex with 8b 4EJ2 ; 2.65 ; Crystal structure of GPb in complex with DK10 4EKE ; 2.6 ; Crystal structure of GPb in complex with DK11 4EL5 ; 2.0 ; Crystal structure of GPb in complex with DK12 4EKY ; 2.45 ; Crystal structure of GPb in complex with DK15 4EL0 ; 2.4 ; Crystal structure of GPb in complex with DK16 4MRA ; 2.34 ; Crystal structure of Gpb in complex with QUERCETIN 4MHO ; 2.0 ; Crystal structure of Gpb in complex with S3, SUGAR (N-[(BIPHENYL-4-YLOXY)ACETYL]-BETA-D-GLUCOPYRANOSYLAMINE) 4MHS ; 2.0 ; Crystal structure of Gpb in complex with SUGAR (N-[(2E)-3-(BIPHENYL-4-YL)PROP-2-ENOYL]-BETA-D-GLUCOPYRANOSYLAMINE 4MI9 ; 1.85 ; Crystal structure of Gpb in complex with SUGAR (N-[(3R)-3-(4-ETHYLPHENYL)BUTANOYL]-BETA-D-GLUCOPYRANOSYLAMINE) (S20) 4MI6 ; 1.9 ; Crystal structure of Gpb in complex with SUGAR (N-[4-(5,6,7,8-TETRAHYDRONAPHTHALEN-2-YL)BUTANOYL]-BETA-D-GLUCOPYRANOSYLAMINE) 4MIC ; 2.45 ; Crystal structure of Gpb in complex with SUGAR (N-{(2E)-3-[4-(PROPAN-2-YL)PHENYL]PROP-2-ENOYL}-BETA-D-GLUCOPYRANOSYLAMINE) (S6) 4MI3 ; 2.15 ; Crystal structure of Gpb in complex with SUGAR (N-{(2R)-2-METHYL-3-[4-(PROPAN-2-YL)PHENYL]PROPANOYL}-BETA-D-GLUCOPYRANOSYLAMINE) (S21) 7BPH ; 1.57 ; Crystal structure of GppNHp-bound GNAS in complex with the cyclic peptide inhibitor GN13 3EVE ; 1.7 ; Crystal structure of GpppA complex of yellow fever virus methyltransferase and S-adenosyl-L-homocysteine 6LI0 ; 2.2 ; Crystal structure of GPR52 in complex with agonist c17 6LI1 ; 2.9 ; Crystal structure of GPR52 ligand free form with flavodoxin fusion 6LI2 ; 2.8 ; Crystal structure of GPR52 ligand free form with rubredoxin fusion 7FC2 ; 2.0 ; Crystal Structure of GPX6 6NAL ; 2.3 ; Crystal Structure of Gram Negative Toxin 1J77 ; 1.5 ; Crystal Structure of Gram-negative Bacterial Heme Oxygenase Complexed with Heme 1XDZ ; 1.6 ; Crystal Structure of Gram_Positive Bacillus subtilis Glucose inhibited Division protein B (gidB), Structural genomics, MCSG 1F4O ; 2.5 ; CRYSTAL STRUCTURE OF GRANCALCIN WITH BOUND CALCIUM 5H3J ; 1.33 ; Crystal structure of Grasp domain of Grasp55 complexed with the Golgin45 C-terminus 5GML ; 2.546 ; Crystal Structure of GRASP Domain of GRASP55 with N terminal extra residues 3RLE ; 1.649 ; Crystal Structure of GRASP55 GRASP domain (residues 7-208) 5GMJ ; 2.986 ; Crystal Structure of GRASP55 GRASP domain in complex with JAM-B C-terminus 5GMI ; 2.71 ; Crystal Structure of GRASP55 GRASP domain in complex with JAM-C C-terminus 7WQY ; 1.95 ; Crystal structure of grass carp ARF1-GDP complex 3GBL ; 2.1 ; Crystal structure of grass carp Beta2-microglobulin 5Z11 ; 2.35 ; Crystal Structure of Grass Carp CD8 alpha alpha Homodimers 4J4X ; 2.51 ; Crystal structure of GraVN 6KWS ; 2.8 ; Crystal structure of Gre2 from Candida albicans 6KWT ; 3.02 ; Crystal structure of Gre2 in complex with NADPH complex from Candida albicans 2F23 ; 1.6 ; Crystal structure of GreA factor homolog 1 (Gfh1) protein of Thermus thermophilus 1GAK ; 1.85 ; CRYSTAL STRUCTURE OF GREEN ABALONE SP18 4KW4 ; 1.746 ; Crystal Structure of Green Fluorescent Protein 4KW8 ; 2.459 ; Crystal Structure of Green Fluorescent Protein 4KW9 ; 1.8 ; Crystal Structure of Green Fluorescent Protein 6OG8 ; 1.599 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, H148D with globally incorporated 3-F1Y; circular permutant (50-51) 4ZF3 ; 1.9 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, H148D; circular permutant ( 50-51) 6OFN ; 1.649 ; Crystal structure of green fluorescent protein (GFP); S65T, T203(3-OMeY); ih circular permutant (50-51) 6UN5 ; 1.36 ; Crystal structure of green fluorescent protein (GFP); S65T, Y66(2,3,5-F3Y); ih circular permutant (50-51) 6OGC ; 1.178 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(2,3-F2Y), H148D; circular permutant (50-51) 6OG9 ; 1.798 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(3,5-F2Y), H148D; circular permutant (50-51) 6OGA ; 1.6 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(3-Br1Y), H148D; circular permutant (50-51) 6OFM ; 1.48 ; Crystal structure of green fluorescent protein (GFP); S65T, Y66(3-CH3Y); ih circular permutant (50-51) 6OFL ; 1.25 ; Crystal structure of green fluorescent protein (GFP); S65T, Y66(3-ClY); ih circular permutant (50-51) 6OGB ; 1.65 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(3-I1Y), H148D; circular permutant (50-51) 6UN6 ; 1.5 ; Crystal structure of green fluorescent protein (GFP); S65T, Y66(3-NO2Y); ih circular permutant (50-51) 6UN7 ; 1.5 ; Crystal structure of green fluorescent protein (GFP); S65T, Y66(3-OMeY); ih circular permutant (50-51) 4ZF4 ; 1.823 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(Cl1Y), H148D; circular permutant (50-51) 4ZF5 ; 1.7 ; Crystal structure of Green Fluorescent Protein (GFP); S65T, Y66(Cl2Y), H148D; circular permutant ( 50-51) 6OFK ; 1.15 ; Crystal structure of green fluorescent protein (GFP); S65T; ih circular permutant (50-51) 5WJ3 ; 1.351 ; Crystal structure of green fluorescent protein Clover mutant S147C/Q204C 2OJK ; 2.2 ; Crystal Structure of Green Fluorescent Protein from Zoanthus sp at 2.2 A Resolution 4HVF ; 1.7 ; Crystal structure of green fluorescent protein lanGFP(Branchiostoma Lanceolatum) 2ZPO ; 1.6 ; Crystal Structure of Green Turtle Egg White Ribonuclease 4GI3 ; 1.75 ; Crystal structure of Greglin in complex with subtilisin 2P3X ; 2.2 ; Crystal structure of Grenache (Vitis vinifera) Polyphenol Oxidase 2QT5 ; 2.3 ; Crystal Structure of GRIP1 PDZ12 in Complex with the Fras1 Peptide 2VKM ; 2.05 ; Crystal structure of GRL-8234 bound to BACE (Beta-secretase) 1PCQ ; 2.808 ; Crystal structure of groEL-groES 1SVT ; 2.808 ; Crystal structure of GroEL14-GroES7-(ADP-AlFx)7 8FCZ ; 3.7 ; Crystal structure of ground-state rhodopsin in complex with a nanobody 8WKH ; 2.0 ; Crystal structure of group 13 allergen from Blomia tropicalis 6S92 ; 1.93 ; Crystal structure of group A of Usutu virus envelope protein domain III 6ITE ; 1.739 ; Crystal structure of group A Streptococcal surface dehydrogenase (SDH) 5ESC ; 2.0 ; Crystal structure of Group A Streptococcus HupZ 2AU1 ; 2.4 ; Crystal Structure of group A Streptococcus MAC-1 orthorhombic form 7RSW ; 1.32 ; Crystal structure of group B human rotavirus VP8* 6S93 ; 1.67 ; Crystal structure of group B of Usutu virus envelope protein domain III 4UZG ; 1.06 ; Crystal structure of group B streptococcus pilus 2b backbone protein SAK_1440 5M63 ; 2.74 ; Crystal structure of group B Streptococcus type III DP2 oligosaccharide bound to Fab NVS-1-19-5 6S94 ; 1.79 ; Crystal structure of group D of Usutu virus envelope protein domain III 6S95 ; 1.19 ; Crystal structure of group I of Usutu virus envelope protein domain III 3Q4Y ; 2.3 ; Crystal structure of group I phospholipase A2 at 2.3 A resolution in 40% ethanol revealed the critical elements of hydrophobicity of the substrate-binding site 5X9V ; 3.003 ; Crystal structure of group III chaperonin in the Closed state 5X9U ; 4.001 ; Crystal structure of group III chaperonin in the open state 2IG3 ; 2.15 ; Crystal structure of group III truncated hemoglobin from Campylobacter jejuni 3MWS ; 1.09 ; Crystal Structure of Group N HIV-1 Protease 5VMN ; 1.65 ; Crystal structure of grouper iridovirus GIV66 5VMO ; 1.7 ; Crystal structure of grouper iridovirus GIV66:Bim complex 3KHS ; 2.38 ; Crystal structure of grouper iridovirus purine nucleoside phosphorylase 4WIZ ; 3.6 ; Crystal structure of Grouper nervous necrosis virus-like particle at 3.6A 5VT2 ; 2.3 ; Crystal structure of growth differentiation factor 6ZYH ; 1.88 ; Crystal structure of GRP78 (70kDa heat shock protein 5 / BiP) ATPase domain in complex with ADP and calcium 5TTZ ; 2.707 ; Crystal structure of Grp94 bound to isoform-selective inhibitor methyl 2-(2-(1-(4-bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 5IN9 ; 2.6 ; Crystal structure of Grp94 bound to methyl 3-chloro-2-(2-(1-((5-chlorofuran-2-yl)methyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate, an inhibitor based on the BnIm and Radamide scaffolds. 3A6M ; 3.23 ; Crystal structure of GrpE from Thermus thermophilus HB8 5Y4U ; 1.7 ; Crystal structure of Grx domain of Grx3 from Saccharomyces cerevisiae 4MZB ; 1.038 ; Crystal structure of Grx1 from Plasmodium falciparum 3C1S ; 2.5 ; Crystal structure of GRX1 in glutathionylated form 5B5R ; 1.902 ; Crystal structure of GSDMA3 7WJQ ; 2.7 ; Crystal structure of GSDMB in complex with Ipah7.8 4TR1 ; 1.582 ; Crystal structure of GSH-bound cGrx2/C15S 3GX0 ; 2.3 ; Crystal Structure of GSH-dependent Disulfide bond Oxidoreductase 3DU8 ; 2.2 ; Crystal structure of GSK-3 beta in complex with NMS-869553A 4NM3 ; 2.1 ; Crystal structure of GSK-3/Axin complex bound to phosphorylated N-terminal auto-inhibitory pS9 peptide 4NM5 ; 2.3 ; Crystal structure of GSK-3/Axin complex bound to phosphorylated Wnt receptor LRP6 c-motif 4NM7 ; 2.3 ; Crystal structure of GSK-3/Axin complex bound to phosphorylated Wnt receptor LRP6 e-motif 6HK4 ; 2.5 ; Crystal structure of GSK-3B in complex with pyrazine inhibitor C22 6HK3 ; 2.35 ; Crystal structure of GSK-3B in complex with pyrazine inhibitor C44 6HK7 ; 3.2 ; Crystal structure of GSK-3B in complex with pyrazine inhibitor C50 6Y9R ; 2.08 ; Crystal structure of GSK-3b in complex with the 1H-indazole-3-carboxamide inhibitor 2 6Y9S ; 2.03 ; Crystal structure of GSK-3b in complex with the imidazo[1,5-a]pyridine-3-carboxamide inhibitor 16 5K5N ; 2.2 ; Crystal structure of GSK-3beta complexed with PF-04802367, a highly selective brain-penetrant kinase inhibitor 8AV1 ; 2.15 ; Crystal structure of GSK3 beta (GSK3b) in complex with CD7. 8AUZ ; 2.66 ; Crystal structure of GSK3 beta (GSK3b) in complex with FL291. 3I4B ; 2.3 ; Crystal structure of GSK3b in complex with a pyrimidylpyrrole inhibitor 5F94 ; 2.51 ; Crystal structure of GSK3b in complex with Compound 15: 2-[(cyclopropylcarbonyl)amino]-N-(4-methoxypyridin-3-yl)pyridine-4-carboxamide 5F95 ; 2.525 ; Crystal structure of GSK3b in complex with Compound 18: 2-[(cyclopropylcarbonyl)amino]-N-(4-phenylpyridin-3-yl)pyridine-4-carboxamide 7Z1F ; 3.0 ; Crystal structure of GSK3b in complex with CX-4945 4J1R ; 2.702 ; Crystal Structure of GSK3b in complex with inhibitor 15R 4J71 ; 2.31 ; Crystal Structure of GSK3b in complex with inhibitor 1R 6AE3 ; 2.14 ; Crystal structure of GSK3beta complexed with Morin 2O5K ; 3.2 ; Crystal Structure of GSK3beta in complex with a benzoimidazol inhibitor 4DIT ; 2.6 ; Crystal Structure of GSK3beta in complex with a Imidazopyridine inhibitor 7OY5 ; 2.57 ; Crystal structure of GSK3Beta in complex with ARN25068 4M7I ; 2.34 ; Crystal Structure of GSK6157 Bound to PERK (R587-R1092, delete A660-T867) at 2.34A Resolution 4G31 ; 2.28 ; Crystal Structure of GSK6414 Bound to PERK (R587-R1092, delete A660-T867) at 2.28 A Resolution 4G34 ; 2.7 ; Crystal Structure of GSK6924 Bound to PERK (R587-R1092, delete A660-T867) at 2.70 A Resolution 4TR0 ; 1.951 ; Crystal structure of GSSG-bound cGrx2 4WR4 ; 1.6 ; Crystal Structure of GST Mutated with Halogenated Tyrosine (7bGST-1) 4WR5 ; 1.93 ; Crystal Structure of GST Mutated with Halogenated Tyrosine (7cGST-1) 4GSN ; 2.3 ; Crystal Structure of GSTe2 ZAN/U variant from Anopheles gambiae 8EML ; 2.21 ; Crystal Structure of Gsx2 Homeodomain in Complex with DNA 5TJL ; 1.89 ; Crystal structure of GTA + A trisaccharide (mercury derivative) 5TJK ; 1.45 ; Crystal structure of GTA + A trisaccharide (native) 5BXC ; 1.4 ; Crystal structure of GTA + UDP + DI 5C36 ; 1.55 ; Crystal structure of GTA + UDP-C-Gal + DI 5C4B ; 1.54 ; Crystal structure of GTA + UDP-Glc + DI 5TJO ; 1.57 ; Crystal structure of GTB + B trisaccharide (mercury derivative) 5TJN ; 1.47 ; Crystal structure of GTB + B trisaccharide (native) 5C48 ; 1.46 ; Crystal structure of GTB + UDP-C-Gal + DI 5C49 ; 1.49 ; Crystal structure of GTB + UDP-C-Gal + H-antigen 5C1L ; 1.4 ; Crystal structure of GTB + UDP-Gal + DI 5C4D ; 1.4 ; Crystal structure of GTB + UDP-Glc + DI 5C4E ; 1.55 ; Crystal structure of GTB + UDP-Glc + H-antigen acceptor 3I0G ; 1.4 ; Crystal structure of GTB C80S/C196S + DA + UDP-Gal 3I0E ; 1.81 ; Crystal structure of GTB C80S/C196S + H-antigen 3I0D ; 1.9 ; Crystal structure of GTB C80S/C196S + UDP 3I0F ; 1.56 ; Crystal structure of GTB C80S/C196S + UDP + H antigen 3I0C ; 1.55 ; Crystal structure of GTB C80S/C196S unliganded 3I0L ; 1.6 ; Crystal structure of GTB C80S/C196S/C209S + DA + UDP-Gal 3I0J ; 1.48 ; Crystal structure of GTB C80S/C196S/C209S + H antigen 3I0I ; 1.9 ; Crystal structure of GTB C80S/C196S/C209S + UDP 3I0K ; 2.2 ; Crystal structure of GTB C80S/C196S/C209S + UDP + H antigen 3I0H ; 2.0 ; Crystal structure of GTB C80S/C196S/C209S unliganded 5E9T ; 2.92 ; Crystal structure of GtfA/B complex 5E9U ; 3.84 ; Crystal structure of GtfA/B complex bound to UDP and GlcNAc 5JGJ ; 1.66 ; Crystal structure of GtmA 5JGL ; 2.28 ; Crystal structure of GtmA in complex with S-Adenosylmethionine 5JGK ; 1.33 ; Crystal structure of GtmA in complex with SAH 1WXQ ; 2.6 ; Crystal Structure of GTP binding protein from Pyrococcus horikoshii OT3 1VR8 ; 1.75 ; Crystal structure of GTP binding regulator (TM1622) from Thermotoga Maritima at 1.75 A resolution 3EVC ; 1.6 ; Crystal structure of GTP complex of yellow fever virus methyltransferase and S-adenosyl-L-homocysteine 3EVD ; 1.5 ; Crystal structure of GTP complex of yellow fever virus methyltransferase and S-adenosyl-L-homocysteine 4DU6 ; 2.106 ; Crystal structure of GTP cyclohydrolase I from Yersinia pestis complexed with GTP 4RL4 ; 2.199 ; Crystal structure of GTP cyclohydrolase II from Helicobacter pylori 26695 5K95 ; 2.77 ; Crystal Structure of GTP Cyclohydrolase-IB with 8-oxo-GTP 5K9G ; 1.9 ; Crystal Structure of GTP Cyclohydrolase-IB with Tris 1WF3 ; 1.88 ; Crystal structure of GTP-binding protein TT1341 from Thermus thermophilus HB8 7EB6 ; 3.014 ; Crystal structure of GTP-binding protein-like domain of AGAP1 1R4A ; 2.3 ; Crystal Structure of GTP-bound ADP-ribosylation Factor Like Protein 1 (Arl1) and GRIP Domain of Golgin245 COMPLEX 2XTN ; 1.9 ; Crystal structure of GTP-bound human GIMAP2, amino acid residues 1- 234 7VEX ; 1.51 ; Crystal Structure of GTP-bound Irgb6 8H4M ; 1.68 ; Crystal Structure of GTP-bound Irgb6_T95D mutant 2YWG ; 2.94 ; Crystal structure of GTP-bound LepA from Aquifex aeolicus 2HV8 ; 1.86 ; Crystal structure of GTP-bound Rab11 in complex with FIP3 4LHZ ; 3.2 ; Crystal structure of GTP-bound Rab8:Rabin8 6MQK ; 2.19 ; Crystal Structure of GTPase Domain of Human Septin 12 in complex with GDP 6MQ9 ; 1.86 ; Crystal Structure of GTPase Domain of Human Septin 12 in complex with GMPPNP 6MQB ; 2.12 ; Crystal Structure of GTPase Domain of Human Septin 12 in complex with GMPPNP in Space Group C2221 6MQL ; 2.17 ; Crystal Structure of GTPase Domain of Human Septin 12 Mutant T89M 6UPQ ; 1.86 ; Crystal Structure of GTPase Domain of Human Septin 2 / Septin 11 Heterocomplex 6UPR ; 2.299 ; Crystal Structure of GTPase Domain of Human Septin 2 / Septin 8 Heterocomplex 6UPA ; 2.51 ; Crystal Structure of GTPase Domain of Human Septin 2/Septin 6 Heterocomplex 6UQQ ; 2.75 ; Crystal Structure of GTPase Domain of Human Septin 7 / Septin 3 T282Y Heterocomplex 3R7W ; 2.773 ; Crystal Structure of Gtr1p-Gtr2p complex 3ERF ; 2.23 ; Crystal structure of Gtt2 from Saccharomyces cerevisiae 3ERG ; 2.2 ; Crystal structure of Gtt2 from Saccharomyces cerevisiae in complex with glutathione sulfnate 1YPF ; 1.8 ; Crystal Structure of GuaC (BA5705) from Bacillus anthracis at 1.8 A Resolution 2A1Y ; 2.27 ; Crystal Structure of GuaC-GMP complex from Bacillus anthracis at 2.26 A Resolution. 4C53 ; 4.14 ; Crystal Structure of Guanarito virus GP2 in the post-fusion conformation 8C0H ; 1.58 ; Crystal structure of guanidinase from Nitrospira inopinata 1KHH ; 2.5 ; Crystal Structure of Guanidinoacetate Methyltransferase from Rat Liver: A Template Structure of Protein Arginine Methyltransferase 2OOD ; 2.62 ; Crystal structure of guanine deaminase from Bradyrhizobium japonicum 2I9U ; 2.05 ; Crystal Structure of Guanine Deaminase from C. acetobutylicum with bound guanine in the active site 3G4M ; 2.4 ; Crystal structure of guanine riboswitch bound to 2-aminopurine 3FO6 ; 1.9 ; Crystal structure of guanine riboswitch bound to 6-O-methylguanine 3RKF ; 2.5 ; Crystal structure of guanine riboswitch C61U/G37A double mutant bound to thio-guanine 3FO4 ; 1.9 ; Crystal structure of guanine riboswitch C74U mutant bound to 6-chloroguanine 3RNT ; 1.8 ; CRYSTAL STRUCTURE OF GUANOSINE-FREE RIBONUCLEASE T1, COMPLEXED WITH VANADATE(V), SUGGESTS CONFORMATIONAL CHANGE UPON SUBSTRATE BINDING 3LNC ; 1.95 ; Crystal structure of guanylate kinase from Anaplasma phagocytophilum 7LUY ; 2.3 ; Crystal Structure of guanylate kinase from Bartonella henselae str. Houston-1 1S4Q ; 2.16 ; Crystal Structure of Guanylate Kinase from Mycobacterium tuberculosis (Rv1389) 1Z6G ; 2.18 ; Crystal structure of guanylate kinase from Plasmodium falciparum 7U5F ; 2.0 ; Crystal structure of guanylate kinase from Pseudomonas aeruginosa PAO1 in complex with GMP 8EGL ; 2.35 ; Crystal Structure of Guanylate kinase from Pseudomonas aeruginosa PAO1 in complex with GMP and ADP 3K8Z ; 2.4 ; Crystal Structure of Gudb1 a decryptified secondary glutamate dehydrogenase from B. subtilis 1XSE ; 2.5 ; Crystal Structure of Guinea Pig 11beta-Hydroxysteroid Dehydrogenase Type 1 2Q6V ; 2.28 ; Crystal Structure of GumK in complex with UDP 3CUY ; 2.3 ; Crystal Structure of GumK mutant D157A 3CV3 ; 2.25 ; Crystal Structure of GumK mutant D157A in complex with UDP 2HY7 ; 1.9 ; Crystal Structure of GumK, a beta-glucuronosyltransferase from Xanthomonas campestris 5OLL ; 1.45 ; Crystal structure of gurmarin, a sweet taste suppressing polypeptide 3WJS ; 3.3 ; Crystal structure of GYE (old yellow enzyme) 2G77 ; 2.26 ; Crystal Structure of Gyp1 TBC domain in complex with Rab33 GTPase bound to GDP and AlF3 3LPX ; 2.6 ; Crystal structure of GyrA 4TMA ; 3.3 ; Crystal structure of gyrase bound to its inhibitor YacG 5ZTJ ; 2.4 ; Crystal Structure of GyraseA C-Terminal Domain from Salmonella typhi at 2.4A Resolution 5ZXM ; 1.938 ; Crystal Structure of GyraseB N-terminal at 1.93A Resolution 6J90 ; 2.2 ; Crystal Structure of GyraseB N-Terminal Domain complex with ATP from Salmonella Typhi at 2.2A Resolution 3KZA ; 2.0 ; Crystal structure of Gyuba, a patched chimera of b-lactglobulin 1YM8 ; 1.55 ; crystal structure of GZZ shows up puckering of the proline ring in the Xaa position. 4KPP ; 2.3 ; Crystal Structure of H+/Ca2+ Exchanger CAX 3WS6 ; 1.98 ; Crystal Structure of H-2D in complex with a mimotopic peptide 3WS3 ; 2.335 ; Crystal Structure of H-2D in complex with an insulin derived peptide 3CPL ; 2.5 ; Crystal Structure of H-2Db in complex with a variant M6A of the NP366 peptide from influenza A virus 3CH1 ; 2.3 ; Crystal structure of H-2Db in complex with chimeric gp100 2ZOK ; 2.1 ; Crystal structure of H-2Db in complex with JHMV epitope S510 5JWD ; 2.5 ; Crystal structure of H-2Db in complex with the LCMV-derived GP392-401 peptide 5JWE ; 2.4 ; Crystal structure of H-2Db in complex with the LCMV-derived GP92-101 peptide 2ZOL ; 2.7 ; Crystal structure of H-2Db in complex with the W513S variant of JHMV epitope S510 5WLG ; 2.1 ; Crystal Structure of H-2Db with the GAP501 peptide (SQL) 5WLI ; 2.2 ; Crystal Structure of H-2Db with the GAP501 peptide (SQL) 4IHO ; 2.8 ; Crystal structure of H-2Db Y159F in complex with chimeric gp100 6NPR ; 2.37 ; Crystal structure of H-2Dd with C84-C139 disulfide in complex with gp120 derived peptide P18-I10 1LEG ; 1.75 ; Crystal Structure of H-2Kb bound to the dEV8 peptide 2ZSV ; 1.8 ; Crystal structure of H-2Kb in complex with JHMV epitope S598 2ZSW ; 2.8 ; Crystal structure of H-2Kb in complex with the Q600Y variant of JHMV epitope S598 4HS3 ; 2.1 ; Crystal structure of H-2Kb with a disulfide stabilized F pocket in complex with the LCMV derived peptide GP34 7WCY ; 2.36 ; Crystal Structure of H-2Kb with Cryptosporidium parvum gp40/15 epitope 1LEK ; 2.15 ; Crystal Structure of H-2Kbm3 bound to dEV8 6DXI ; 2.6 ; Crystal structure of H-NOX protein from Nostoc sp V52W/L67W double-mutant. 6MX5 ; 2.35 ; Crystal structure of H-NOX protein from Nostoc sp. 4L9S ; 1.606 ; Crystal Structure of H-Ras G12C, GDP-bound 4L9W ; 1.952 ; Crystal Structure of H-Ras G12C, GMPPNP-bound 4EFM ; 1.9 ; Crystal structure of H-Ras G12V in complex with GppNHp (state 1) 4EFN ; 2.3 ; Crystal structure of H-Ras Q61L in complex with GppNHp (state 1) 3KKM ; 1.7 ; Crystal structure of H-Ras T35S in complex with GppNHp 3KKN ; 2.09 ; Crystal structure of H-Ras T35S in complex with GppNHp 3I3S ; 1.36 ; Crystal Structure of H-Ras with Thr50 replaced by Isoleucine 4EFL ; 1.9 ; Crystal structure of H-Ras WT in complex with GppNHp (state 1) 2RGE ; 1.4 ; Crystal structure of H-Ras-GppNHp 2RGA ; 1.9 ; Crystal structure of H-RasQ61I-GppNHp 2RGG ; 1.45 ; Crystal structure of H-RasQ61I-GppNHp, trigonal crystal form 2RGB ; 1.35 ; Crystal structure of H-RasQ61K-GppNHp 2RGD ; 2.0 ; Crystal structure of H-RasQ61L-GppNHp 2RGC ; 1.6 ; Crystal structure of H-RasQ61V-GppNHp 3ODJ ; 2.84 ; Crystal structure of H. influenzae rhomboid GlpG with disordered loop 4, helix 5 and loop 5 1FX3 ; 2.5 ; CRYSTAL STRUCTURE OF H. INFLUENZAE SECB 4YVG ; 1.549 ; Crystal Structure of H. influenzae TrmD in complex with AdoMet 8APT ; 1.8 ; Crystal Structure of H. influenzae TrmD in complex with Compound 13 8APU ; 1.9 ; Crystal Structure of H. influenzae TrmD in complex with Compound 14 8APV ; 2.4 ; Crystal Structure of H. influenzae TrmD in complex with Compound 27 8APW ; 1.8 ; Crystal Structure of H. influenzae TrmD in complex with Compound 30 4YVH ; 1.6 ; Crystal Structure of H. influenzae TrmD in complex with sinefungin 4YVI ; 3.01 ; Crystal Structure of H. influenzae TrmD in complex with sinefungin and tRNA 4YVK ; 3.002 ; Crystal Structure of H. influenzae TrmD in complex with sinefungin and tRNA variant (G36C) 4YVJ ; 2.9 ; Crystal Structure of H. influenzae TrmD in complex with sinefungin and tRNA variant (G36U) 5NKZ ; 2.85 ; Crystal structure of H. polymorpha ubiquitin conjugating enzyme Pex4p in complex with soluble domain of Pex22p 5Y2D ; 3.7001 ; Crystal structure of H. pylori HtrA 5Y28 ; 3.08607 ; Crystal structure of H. pylori HtrA with PDZ2 deletion 8WNF ; 1.9 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in apo form 8WNG ; 1.92 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in complex with Ile 8WNJ ; 1.78 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in complex with Ile-AMP 8WO3 ; 2.2 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in complex with Mupirocin 8WNI ; 1.95 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in complex with Val 8WO2 ; 2.34 ; Crystal structure of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in complex with Val-AMP 6F5A ; 2.201 ; Crystal structure of H. pylori purine nucleoside phosphorylase 6F5I ; 2.298 ; Crystal structure of H. pylori purine nucleoside phosphorylase 5MX4 ; 2.31 ; Crystal structure of H. pylori purine nucleoside phosphorylase from clinical isolate HpPNP-1 5MX6 ; 2.41 ; Crystal structure of H. pylori purine nucleoside phosphorylase from clinical isolate HpPNP-2 5MX8 ; 2.4 ; Crystal structure of H. pylori purine nucleoside phosphorylase from clinical isolate HpPNP-3 6F4W ; 2.293 ; Crystal structure of H. pylori purine nucleoside phosphorylase in complex with formycin A 6F4X ; 1.694 ; Crystal structure of H. pylori purine nucleoside phosphorylase in complex with PO4 and formycin A 6F52 ; 2.0 ; Crystal structure of H. pylori purine nucleoside phosphorylase in complex with PO4 and formycin A 6G7X ; 1.762 ; Crystal structure of H. pylori purine nucleoside phosphorylase soaked in PO4 5LU0 ; 1.73 ; Crystal structure of H. pylori referent strain in complex with PO4 1MOG ; 1.7 ; Crystal structure of H. salinarum dodecin 4HRO ; 1.15 ; Crystal structure of H. volcanii small archaeal modifier protein 1 4HRS ; 2.3 ; Crystal structure of H. volcanii small archaeal modifier protein 2 4QI1 ; 1.85 ; Crystal structure of H. walsbyi bacteriorhodopsin 1PU6 ; 1.64 ; Crystal structure of H.pylori 3-methyladenine DNA glycosylase (MagIII) 1PU8 ; 2.13 ; Crystal structure of H.pylori 3-methyladenine DNA glycosylase (MagIII) bound to 1,N6-ethenoadenine 1PU7 ; 1.93 ; Crystal structure of H.pylori 3-methyladenine DNA glycosylase (MagIII) bound to 3,9-dimethyladenine 2ZL0 ; 2.6 ; Crystal structure of H.pylori ClpP 2ZL2 ; 2.5 ; Crystal structure of H.pylori ClpP in complex with the peptide NVLGFTQ 2ZL3 ; 2.81 ; Crystal structure of H.pylori ClpP S99A 2ZL4 ; 2.5 ; Crystal structure of H.pylori ClpP S99A in complex with the peptide AAAA 6MRJ ; 2.8 ; Crystal structure of H.pylori NikR in complex with DNA 3NV7 ; 1.75 ; Crystal structure of H.pylori phosphopantetheine adenylyltransferase mutant I4V/N76Y 5GJS ; 2.9 ; Crystal structure of H1 hemagglutinin from A/California/04/2009 in complex with a neutralizing antibody 3E1 5GJT ; 3.1 ; Crystal structure of H1 hemagglutinin from A/Washington/05/2011 in complex with a neutralizing antibody 3E1 5TGO ; 2.35 ; Crystal structure of H10 hemagglutinin mutant (K158aA-D193T-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus 5TGV ; 2.974 ; Crystal structure of H10 hemagglutinin mutant (K158aA-D193T-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 3'-SLN 5TGU ; 2.35 ; Crystal structure of H10 hemagglutinin mutant (K158aA-D193T-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 6'-SLNLN 5TH0 ; 2.25 ; Crystal structure of H10 hemagglutinin mutant (K158aA-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus 5TH1 ; 2.191 ; Crystal structure of H10 hemagglutinin mutant (K158aA-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 6'-SLNLN 5THB ; 2.41 ; Crystal structure of H10 hemagglutinin mutant (T193D-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus 5THC ; 2.792 ; Crystal structure of H10 hemagglutinin mutant (T193D-Q226L-G228S) from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 6'-SLNLN 6CNI ; 1.7 ; Crystal structure of H105A PGAM5 dimer 6CNL ; 2.6 ; Crystal Structure of H105A PGAM5 Dodecamer 5WJA ; 2.3 ; Crystal structure of H107A peptidylglycine alpha-hydroxylating monooxygenase (PHM) in complex with citrate 6ALV ; 3.5 ; Crystal structure of H107A-peptidylglycine alpha-hydroxylating monooxygenase (PHM) mutant (no CuH bound) 3T3A ; 2.3 ; Crystal structure of H107R mutant of extracellular domain of mouse receptor NKR-P1A 6AO6 ; 2.98 ; Crystal structure of H108A peptidylglycine alpha-hydroxylating monooxygenase (PHM) 6NCK ; 2.7 ; Crystal structure of H108A peptidylglycine alpha-hydroxylating monooxygenase (PHM) 6ALA ; 2.59 ; Crystal structure of H108A peptidylglycine alpha-hydroxylating monooxygenase (PHM) in complex with citrate 6AY0 ; 2.6 ; Crystal structure of H108A peptidylglycine alpha-hydroxylating monooxygenase (PHM) soaked with peptide 5B4D ; 1.75 ; Crystal structure of H10N mutant of LpxH 5B4C ; 1.96 ; Crystal structure of H10N mutant of LpxH with manganese 4HI6 ; 2.2 ; Crystal structure of H112W mutant of borna disease virus matrix protein 4HIT ; 2.4 ; Crystal structure of H112W mutant of borna disease virus matrix protein 1R38 ; 2.2 ; Crystal structure of H114A mutant of Candida tenuis xylose reductase 4R2K ; 1.97 ; Crystal structure of H119A mutant of YdaA (Universal Stress Protein E) from Salmonella typhimurium 7A9D ; 2.7 ; Crystal structure of H12 Haemagglutinin 1WAE ; 1.95 ; Crystal structure of H129V Mutant of Alcaligenes Xylosoxidans Nitrite Reductase 1SO3 ; 1.9 ; Crystal structure of H136A mutant of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate 7WVD ; 3.39 ; Crystal structure of H14 complexed with SIA28 5DC8 ; 1.3 ; Crystal structure of H142A-Y306F HDAC8 in complex with a tetrapeptide substrate 1NPJ ; 1.9 ; Crystal structure of H145A mutant of nitrite reductase from Alcaligenes faecalis 5TG8 ; 3.1 ; Crystal structure of H15 hemagglutinin from A/shearwater/WA/2576/1979 H15N9 influenza virus 5TG9 ; 2.749 ; Crystal structure of H15 hemagglutinin from A/shearwater/WA/2576/1979 H15N9 influenza virus in complex with 3'-SLN 3Q9E ; 2.5 ; Crystal structure of H159A APAH complexed with acetylspermine 3Q9C ; 2.3 ; Crystal Structure of H159A APAH complexed with N8-acetylspermidine 2ZE9 ; 2.3 ; Crystal structure of H168A mutant of phospholipase D from Streptomyces antibioticus, as a complex with phosphatidylcholine 6AMP ; 2.48 ; Crystal structure of H172A PHM (CuH absent, CuM present) 6AN3 ; 2.05 ; Crystal structure of H172A-peptidylglycine alpha-hydroxylating monooxygenase (PHM) mutant soaked with peptide (no CuH bound, no peptide bound) 2AZT ; 2.7 ; Crystal structure of H176N mutant of human Glycine N-Methyltransferase 7C5Q ; 2.13 ; Crystal Structure of H177A mutant Glyceraldehyde-3-phosphate dehydrogenase1 from Escherichia coli complexed with BPG at 2.13 Angstrom resolution 7C5O ; 1.981 ; Crystal Structure of H177A mutant of Glyceraldehyde-3-phosphate-dehydrogenase1 from Escherichia coli complexed with NAD at 1.98 Angstrom resolution. 3LC1 ; 2.0 ; Crystal Structure of H178N mutant of Glyceraldehyde-3-phosphate-dehydrogenase 1 (GAPDH 1) from Staphylococcus aureus MRSA252 complexed with NAD at 2.0 angstrom resolution. 7WVG ; 2.6 ; Crystal structure of H18 complexed with SIA28 2Q2O ; 2.1 ; Crystal structure of H183C Bacillus subtilis ferrochelatase in complex with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride 4J18 ; 2.35 ; Crystal structure of H191L mutant of UDP-glucose pyrophosphorylase from Leishmania major 3M6S ; 2.8 ; Crystal structure of H1N1pdm Hemagglutinin 7UNZ ; 2.03 ; Crystal structure of H2 nanobody in complex with PfCSS 5WEU ; 1.584 ; Crystal Structure of H2-Dd with disulfide-linked 10mer peptide 5WET ; 2.64 ; Crystal Structure of H2-Dd with disulfide-linked 6mer peptide 6JQ3 ; 2.5 ; Crystal Structure of H2-Kb in complex with a DPAGT1 mutant peptide 6JQ2 ; 2.4 ; Crystal Structure of H2-Kb in complex with a DPAGT1 self-peptide 3PAB ; 2.2 ; Crystal Structure of H2-Kb in complex with a mutant of the chicken ovalbumin epitope OVA-E1 3P9M ; 2.0 ; Crystal Structure of H2-Kb in complex with a mutant of the chicken ovalbumin epitope OVA-G4 7JI2 ; 1.95 ; Crystal Structure of H2-Kb in complex with a OVA mutant peptide 3P9L ; 2.0 ; Crystal Structure of H2-Kb in complex with the chicken ovalbumin epitope OVA 3P4O ; 2.3 ; Crystal Structure of H2-Kb in complex with the mutant NP205-LCMV-V3A epitope YTAKYPNL, an 8-mer modified peptide from the LCMV 3P4M ; 2.5 ; Crystal Structure of H2-Kb in complex with the NP205-LCMV epitope YTVKYPNL, an 8-mer peptide from the LCMV 3P4N ; 2.5 ; Crystal Structure of H2-Kb in complex with the NP205-PV epitope YTVKFPNM, an 8-mer peptide from PV 1WNI ; 2.2 ; Crystal Structure of H2-Proteinase 2R7P ; 2.8 ; Crystal Structure of H225A NSP2 and AMPPNP complex 2R8F ; 2.8 ; Crystal structure of H225A NSP2 and ATP-gS complex 4G9O ; 2.12 ; Crystal Structure of H234A Mutant of Stationary Phase Survival Protein (SurE) from Salmonella typhimurium 1GS7 ; 1.85 ; Crystal structure of H254F mutant of Alcaligenes xylosoxidans Nitrite Reductase 5ZT6 ; 2.5 ; Crystal structure of H255A mutant of phosphomannose isomerase from Salmonella typhimurium 7MS1 ; 2.95 ; Crystal structure of H28A mutant of Cg10062 with a covalent intermediate of the hydration of acetylenecarboxylic acid 6LYO ; 1.87 ; Crystal Structure of H296A mutant of Formylglycinamidine Synthetase 7DLX ; 2.395 ; crystal structure of H2AM4>Z-H2B 7N9J ; 1.74 ; Crystal structure of H2DB in complex with HSF2 melanoma neoantigen 3FTG ; 2.6 ; Crystal Structure of H2Db in complex with NP366-N3A variant peptide from influenza 4HUX ; 2.2 ; Crystal Structure of H2Db-H155A-NP 4HV8 ; 2.0 ; Crystal Structure of H2Db-H155A-NPM6I 4HUU ; 2.0 ; Crystal Structure of H2Db-NPM6I 4HUW ; 3.16 ; Crystal Structure of H2Db-NPM6T 4HUV ; 2.5 ; Crystal Structure of H2Db-NPM6W 4PV8 ; 2.31 ; Crystal Structure of H2Kb-Q600F complex 4PV9 ; 2.0 ; Crystal Structure of H2Kb-Q600V complex 2Z7U ; 2.1 ; Crystal Structure of H2O2 treated Cu,Zn-SOD 2Z7W ; 1.8 ; Crystal Structure of H2O2 treated Cu,Zn-SOD 2Z7Y ; 1.55 ; Crystal Structure of H2O2 treated Cu,Zn-SOD 2Z7Z ; 1.85 ; Crystal Structure of H2O2 treated Cu,Zn-SOD 2ZOW ; 1.45 ; Crystal Structure of H2O2 treated Cu,Zn-SOD 5THF ; 2.59 ; Crystal structure of H3 hemagglutinin with insertion of two amino acids in the 150-loop from the A/Hong Kong/1/1968 (H3N2) influenza virus 7D8A ; 2.0 ; Crystal Structure of H3(1-13)/PHF14-PZP fusion protein 5NE8 ; 1.75 ; Crystal structure of H307A mutant of Thermotoga maritima TmPEP1050 aminopeptidase 1WA1 ; 1.65 ; Crystal Structure Of H313Q Mutant Of Alcaligenes Xylosoxidans Nitrite Reductase 1WA2 ; 1.72 ; Crystal Structure Of H313Q Mutant Of Alcaligenes Xylosoxidans Nitrite Reductase with nitrite bound 6UPO ; 3.113 ; Crystal structure of H334A variant of cytosolic fumarate hydratase from Leishmania major in a complex with S-malate 4QA4 ; 1.98 ; Crystal structure of H334R HDAC8 in complex with M344 4QA7 ; 2.31 ; Crystal structure of H334R/Y306F HDAC8 in complex with a tetrapeptide substrate 1MW9 ; 1.67 ; Crystal Structure of H365R mutant of 67 kDA N-terminal fragment of E. coli DNA Topoisomerase I 2E01 ; 1.73 ; Crystal structure of H369A mutant of yeast bleomycin hydrolase 2E02 ; 2.2 ; Crystal structure of H369L mutant of yeast bleomycin hydrolase 3IE1 ; 2.85 ; Crystal structure of H380A mutant TTHA0252 from Thermus thermophilus HB8 complexed with RNA 6DZR ; 2.4 ; Crystal structure of h38C2 K99R mutation 2IPJ ; 1.8 ; Crystal structure of h3alpha-hydroxysteroid dehydrogenase type 3 mutant Y24A in complex with NADP+ and epi-testosterone 6D3N ; 2.7 ; Crystal structure of h4-1BB ligand 3IE2 ; 2.8 ; Crystal Structure of H400V mutant TTHA0252 from Thermus thermophilus HB8 8JDD ; 1.55 ; Crystal structure of H405A mLDHD in apo form 8JDR ; 1.64 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxy-3-methyl-valeric acid 8JDG ; 1.31 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxybutanoic acid 8JDO ; 1.72 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxyhexanoic acid 8JDQ ; 1.39 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxyisocaproic acid 8JDP ; 1.6 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxyisovaleric acid 8JDB ; 1.75 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxyoctanoic acid 8JDN ; 1.56 ; Crystal structure of H405A mLDHD in complex with D-2-hydroxyvaleric acid 8JDF ; 1.69 ; Crystal structure of H405A mLDHD in complex with D-lactate 6X8N ; 1.6 ; Crystal Structure of H49A ABLE mutant 4CQV ; 2.86 ; Crystal structure of H5 (tyTy) Del133/Ile155Thr Mutant Haemagglutinin 4BGZ ; 2.68 ; Crystal Structure of H5 (tyTy) Influenza Virus Haemagglutinin 4CR0 ; 2.65 ; Crystal Structure of H5 (VN1194) Asn186Lys/Gly143Arg Mutant Haemagglutinin 4CQZ ; 2.7 ; Crystal Structure of H5 (VN1194) Gln196Arg Mutant Haemagglutinin 4BGW ; 2.48 ; Crystal Structure of H5 (VN1194) Influenza Haemagglutinin 4CQP ; 2.65 ; Crystal Structure of H5 (VN1194) Ser227Asn/Gln196Arg Mutant Haemagglutinin 5YKC ; 2.823 ; crystal structure of H5 hemagglutinin from A/chicken/Taiwan/0502/2012 5YT9 ; 2.766 ; Crystal structure of H5 hemagglutinin G228S mutant from A/chicken/Taiwan/0502/2012 5Z88 ; 3.0 ; Crystal structure of H5 hemagglutinin G228S mutant with 3SLN from A/chicken/Taiwan/0502/2012 4N5Y ; 3.1615 ; Crystal structure of H5 hemagglutinin mutant (N158D, N224K and Q226L) from the influenza virus A/Viet Nam/1203/2004 (H5N1) 5E32 ; 2.7 ; Crystal structure of H5 hemagglutinin mutant (N224K, Q226L, N158D and L133a deletion) from the influenza virus A/chicken/Vietnam/NCVD-093/2008 (H5N1) 5E34 ; 2.7 ; Crystal structure of H5 hemagglutinin mutant (N224K, Q226L, N158D and L133a deletion) from the influenza virus A/chicken/Vietnam/NCVD-093/2008 (H5N1) with LSTa 5E35 ; 2.7 ; Crystal structure of H5 hemagglutinin mutant (N224K, Q226L, N158D and L133a deletion) from the influenza virus A/chicken/Vietnam/NCVD-093/2008 (H5N1) with LSTc 6E7G ; 3.094 ; Crystal structure of H5 hemagglutinin mutant Y161A from A/Viet Nam/1203/2004 H5N1 influenza virus 6E7H ; 3.3 ; Crystal structure of H5 hemagglutinin mutant Y161A from A/Viet Nam/1203/2004 H5N1 influenza virus in complex with 3'-GcLN 5E2Y ; 2.6 ; Crystal structure of H5 hemagglutinin Q226L mutant from the influenza virus A/duck/Egypt/10185SS/2010 (H5N1) 5E2Z ; 2.624 ; Crystal structure of H5 hemagglutinin Q226L mutant from the influenza virus A/duck/Egypt/10185SS/2010 (H5N1) with LSTa 5E30 ; 2.7 ; Crystal structure of H5 hemagglutinin Q226L mutant from the influenza virus A/duck/Egypt/10185SS/2010 (H5N1) with LSTc 5YT8 ; 2.765 ; Crystal structure of H5 hemagglutinin with G228S Q226L mutants from A/chicken/Taiwan/0502/2012 4JUK ; 2.7502 ; Crystal structure of H5N1 influenza virus hemagglutinin, clade 2.3.2.1 4JUL ; 2.7927 ; Crystal structure of H5N1 influenza virus hemagglutinin, clade 2.3.4 4JUM ; 1.997 ; Crystal structure of H5N1 influenza virus hemagglutinin, clade 4 4JUN ; 2.3398 ; Crystal structure of H5N1 influenza virus hemagglutinin, clade 5 3S11 ; 2.5 ; Crystal structure of H5N1 influenza virus hemagglutinin, strain 437-10 3S12 ; 3.1 ; Crystal structure of H5N1 influenza virus hemagglutinin, strain YU562 crystal form 1 3S13 ; 2.96 ; Crystal structure of H5N1 influenza virus hemagglutinin, strain YU562 crystal form 2 6KCJ ; 2.46 ; Crystal structure of H5N2 hemagglutinin Apo-Q226L mutant from A/chicken/Taiwan/0502/2012 6IIG ; 3.208 ; crystal structure of H5N2 hemagglutinin G228S mutant With 6SLN from A/chicken/Taiwan/0502/2012 6IN5 ; 2.916 ; Crystal structure of H5N2 hemagglutinin G228S Q226L mutant with 3SLN from A/chicken/Taiwan/0502/2012 6IJT ; 2.9 ; Crystal structure of H5N2 hemagglutinin G228S Q226L mutant with 6SLN from A/chicken/Taiwan/0502/2012 5T08 ; 2.1895 ; Crystal structure of H6 hemagglutinin G225D mutant from Taiwan (2013) H6N1 influenza virus 5T0D ; 2.864 ; Crystal structure of H6 hemagglutinin G225D mutant from Taiwan (2013) H6N1 influenza virus in complex with 3'-SLN 5T0B ; 2.001 ; Crystal structure of H6 hemagglutinin G225D mutant from Taiwan (2013) H6N1 influenza virus in complex with 6'-SLN 5T0E ; 2.089 ; Crystal structure of H6 hemagglutinin G225D mutant from Taiwan (2013) H6N1 influenza virus in complex with LSTa 5NE9 ; 2.374 ; Crystal structure of H60A H307A mutant of Thermotoga maritima TmPEP1050 aminopeptidase 5NE7 ; 1.84 ; Crystal structure of H60A mutant of Thermotoga maritima TmPEP1050 aminopeptidase 4HN1 ; 1.6 ; Crystal Structure of H60N/Y130F double mutant of ChmJ, a 3'-monoepimerase from Streptomyces bikiniensis in complex with dTDP 3A4Y ; 2.5 ; Crystal Structure of H61A mutant TTHA0252 from Thermus thermophilus HB8 5UMJ ; 1.61 ; Crystal structure of H62A mutant of human macrophage migration inhibitory factor 6OYG ; 1.55 ; Crystal structure of H62F mutant of human macrophage migration inhibitory factor 6OYB ; 1.53 ; Crystal structure of H62G mutant of human macrophage migration inhibitory factor 5UMK ; 1.73 ; Crystal structure of H62Y mutant of human macrophage migration inhibitory factor 8C6O ; 2.2 ; Crystal Structure of H64F obelin mutant from Obelia longissima at 2.2 Angstrom resolution 6II9 ; 3.5 ; Crystal structure of H7 hemagglutinin from A/Anhui/1/2013 in complex with a human neutralizing antibody L3A-44 6II4 ; 3.3 ; Crystal structure of H7 hemagglutinin from A/Anhui/1/2013 in complex with a human neutralizing antibody L4A-14 6II8 ; 3.32 ; Crystal structure of H7 hemagglutinin from A/Anhui/1/2013 in complex with a human neutralizing antibody L4B-18 4R8W ; 2.795 ; Crystal structure of H7 hemagglutinin from A/Anhui/1/2013 in complex with a neutralizing antibody CT149 5VJK ; 2.593 ; Crystal structure of H7 hemagglutinin mutant (V186K, K193T, G228S) from the influenza virus A/Shanghai/2/2013 (H7N9) 5VJM ; 2.909 ; Crystal structure of H7 hemagglutinin mutant (V186K, K193T, G228S) from the influenza virus A/Shanghai/2/2013 (H7N9) with LSTa 5VJL ; 2.597 ; Crystal structure of H7 hemagglutinin mutant (V186K, K193T, G228S) from the influenza virus A/Shanghai/2/2013 (H7N9) with LSTc 6ICX ; 2.399 ; Crystal structure of H7 hemagglutinin mutant AH-AGPL (V186G) from the influenza virus A/Anhui/1/2013 (H7N9) 6ICW ; 2.6 ; Crystal structure of H7 hemagglutinin mutant AH-SGTQ (A138S, V186G, P221T and L226Q) from the influenza virus A/Anhui/1/2013 (H7N9) 6ICY ; 2.403 ; Crystal structure of H7 hemagglutinin mutant H7-AGTL ( V186G, P221T) from the influenza virus A/Anhui/1/2013 (H7N9) 6ID2 ; 2.705 ; Crystal structure of H7 hemagglutinin mutant H7-AVTL (P221T) from the influenza virus A/Anhui/1/2013 (H7N9) 6ID3 ; 2.6 ; Crystal structure of H7 hemagglutinin mutant H7-SGPL ( A138S, V186G) from the influenza virus A/Anhui/1/2013 (H7N9) 6ID9 ; 2.7 ; Crystal structure of H7 hemagglutinin mutant H7-SGTL ( A138S, V186G, P221T) from the influenza virus A/Anhui/1/2013 (H7N9) 6ID5 ; 2.6 ; Crystal structure of H7 hemagglutinin mutant H7-SVPL ( A138S) from the influenza virus A/Anhui/1/2013 (H7N9) 6ID8 ; 2.902 ; Crystal structure of H7 hemagglutinin mutant H7-SVTL ( A138S, P221T) from the influenza virus A/Anhui/1/2013 (H7N9) 6IDA ; 3.104 ; Crystal structure of H7 hemagglutinin mutant H7-SVTQ ( A138S, P221T, L226Q) from the influenza virus A/Anhui/1/2013 (H7N9) 6IDZ ; 2.707 ; Crystal structure of H7 hemagglutinin mutant H7-SVTQ ( A138S, P221T, L226Q) with 3'SLN 6IDB ; 2.502 ; Crystal structure of H7 hemagglutinin mutant H7-SVTQ ( A138S, P221T, L226Q) with 6'SLN 6IDD ; 2.383 ; Crystal structure of H7 hemagglutinin mutant SH1-AVPL ( S138A, G186V, T221P, Q226L) from the influenza virus A/Shanghai/1/2013 (H7N9) 5VAG ; 1.9 ; Crystal structure of H7-specific antibody m826 in complex with the HA1 domain of hemagglutinin from H7N9 influenza virus 3PHT ; 2.04 ; Crystal structure of H74A mutant of Helicobacter Pylori NikR 4EOE ; 1.2 ; Crystal structure of H74A synechocystis sp. pcya 4EOD ; 1.3 ; Crystal structure of H74E synechocystis sp. pcya sp. PCYA 4EOC ; 1.49 ; Crystal structure of h74q Synechocystis sp. PCYA 6ZRK ; 2.0 ; Crystal structure of H8 haemagglutinin 5H0V ; 1.58 ; Crystal structure of H88A mutated human transthyretin 5H0W ; 1.904 ; Crystal structure of H88F mutated human transthyretin 5H0X ; 1.573 ; Crystal structure of H88S mutated human transthyretin 5H0Y ; 1.8 ; Crystal structure of H88Y mutated human transthyretin 1JSI ; 2.4 ; CRYSTAL STRUCTURE OF H9 HAEMAGGLUTININ BOUND TO LSTC RECEPTOR ANALOG 1JSH ; 2.4 ; CRYSTAL STRUCTURE OF H9 HAEMAGGLUTININ COMPLEXED WITH LSTA RECEPTOR ANALOG 5ZT4 ; 1.7 ; Crystal structure of H99A mutant of phosphomannose isomerase from Salmonella typhimurium 5ZUW ; 2.1 ; Crystal structure of H99Q mutant of phosphomannose isomerase from Salmonella typhimurium 3D25 ; 1.3 ; Crystal structure of HA-1 minor histocompatibility antigen bound to human class I MHC HLA-A2 5BP5 ; 2.18 ; Crystal structure of HA17-HA33-IPT 5BQU ; 2.38 ; Crystal structure of HA17-HA33-Lactulose 3QQO ; 2.9 ; Crystal structure of HA2 R106H mutant of H2 hemagglutinin, acidic pH form 3QQB ; 1.97 ; Crystal structure of HA2 R106H mutant of H2 hemagglutinin, neutral pH form 3QQE ; 2.1 ; Crystal structure of HA2 R106H mutant of H2 hemagglutinin, re-neutralized form 4S1X ; 1.9 ; Crystal structure of HA2-Del-L2seM, Central Coiled-Coil from Influenza Hemagglutinin HA2 without Heptad Repeat Stutter 5B2H ; 2.2 ; Crystal structure of HA33 from Clostridium botulinum serotype C strain Yoichi 1YBI ; 1.5 ; Crystal structure of HA33A, a neurotoxin-associated protein from Clostridium botulinum type A 4OUJ ; 1.46 ; Crystal structure of HA33B-Lac 4EN7 ; 2.68 ; Crystal structure of HA70 (HA3) subcomponent of Clostridium botulinum type C progenitor toxin in complex with alpha 2-3-sialyllactosamine 4EN6 ; 2.56 ; Crystal structure of HA70 (HA3) subcomponent of Clostridium botulinum type C progenitor toxin in complex with alpha 2-3-sialyllactose 4EN9 ; 2.64 ; Crystal structure of HA70 (HA3) subcomponent of Clostridium botulinum type C progenitor toxin in complex with alpha 2-6-sialyllactosamine 4EN8 ; 2.6 ; Crystal structure of HA70 (HA3) subcomponent of Clostridium botulinum type C progenitor toxin in complex with alpha 2-6-sialyllactose 1X2T ; 1.72 ; Crystal Structure of Habu IX-bp at pH 6.5 4F72 ; 2.4 ; Crystal structure of had family enzyme bt-2542 (target efi-501088) from Bacteroides thetaiotaomicron, asp12ala mutant, complex with magnesium and inorganic phosphate 4DFD ; 2.0 ; Crystal structure of had family enzyme bt-2542 (target efi-501088) from bacteroides thetaiotaomicron, magnesium complex 4F71 ; 2.27 ; Crystal structure of had family enzyme bt-2542 (target efi-501088) from Bacteroides thetaiotaomicron, wild-type protein, complex with magnesium and inorganic phosphate 4DCC ; 1.65 ; Crystal structure of had family enzyme bt-2542 from bacteroides thetaiotaomicron (target efi-501088) 4EEL ; 1.75 ; Crystal structure of HAD FAMILY HYDROLASE DR_1622 from Deinococcus radiodurans R1 (TARGET EFI-501256) with bound citrate and sodium 4EEN ; 1.65 ; crystal structure of HAD FAMILY HYDROLASE DR_1622 from Deinococcus radiodurans R1 (TARGET EFI-501256) with bound magnesium 4EEK ; 1.6 ; Crystal structure of HAD FAMILY HYDROLASE DR_1622 from Deinococcus radiodurans R1 (TARGET EFI-501256) With bound phosphate and sodium 4EZE ; 2.27 ; Crystal structure of had family hydrolase t0658 from Salmonella enterica subsp. enterica serovar Typhi (Target EFI-501419) 6W04 ; 1.95 ; Crystal structure of HAD hydrolase, family IA, variant 3 from Entamoeba histolytica HM-1:IMSS 4YGQ ; 2.0 ; Crystal structure of HAD phosphatase from Thermococcus onnurineus 4YGR ; 1.703 ; Crystal structure of HAD phosphatase from Thermococcus onnurineus 4YGS ; 1.7 ; Crystal structure of HAD phosphatase from Thermococcus onnurineus 1RKQ ; 1.4 ; Crystal structure of HAD-like phosphatase yidA from E. coli 7QXV ; 1.67 ; Crystal Structure of Haem-Binding Protein HemS Mutant F104A F199A, from Yersinia enterocolitica 6TJY ; 2.82 ; Crystal structure of haemagglutinin from (A/seal/Germany/1/2014) seal H10N7 influenza virus 5ON6 ; 3.1 ; Crystal structure of haemanthamine bound to the 80S ribosome 3D5H ; 2.0 ; Crystal structure of haementhin from Haemanthus multiflorus at 2.0A resolution: Formation of a novel loop on a TIM barrel fold and its functional significance 4E52 ; 1.7 ; Crystal structure of Haemophilus Eagan 4A polysaccharide bound human lung surfactant protein D 6XXY ; 2.09 ; Crystal structure of Haemophilus influenzae 3-isopropylmalate dehydrogenase in complex with O-isobutenyl oxalylhydroxamate. 6J09 ; 3.0 ; Crystal structure of Haemophilus Influenzae BamA POTRA1-4 6IZT ; 2.03 ; Crystal structure of Haemophilus Influenzae BamA POTRA3-5 6IZS ; 2.03 ; Crystal structure of Haemophilus influenzae BamA POTRA4 6OJH ; 2.05 ; Crystal Structure of Haemophilus Influenzae Biotin Carboxylase Complexed with (R)-7-(3-aminopyrrolidin-1-yl)-6-(naphthalen-1-yl)pyrido[2,3-d]pyrimidin-2-amine 6OI8 ; 2.5 ; Crystal Structure of Haemophilus Influenzae Biotin Carboxylase Complexed with 7-((1R,5S,6s)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl)-6-(2-chloro-6-(pyridin-3-yl)phenyl)pyrido[2,3-d]pyrimidin-2-amine 1QVS ; 2.1 ; Crystal Structure of Haemophilus influenzae H9A mutant Holo Ferric ion-Binding Protein A 3EMF ; 2.0 ; Crystal structure of Haemophilus influenzae HiaBD2 1J6W ; 2.1 ; CRYSTAL STRUCTURE OF HAEMOPHILUS INFLUENZAE LUXS 7L5S ; 2.089 ; Crystal Structure of Haemophilus influenzae MtsZ at pH 5.5 7L5I ; 1.733 ; Crystal Structure of Haemophilus influenzae MtsZ at pH 7.0 1QW0 ; 1.9 ; Crystal Structure of Haemophilus influenzae N175L mutant Holo Ferric ion-Binding Protein A 2O69 ; 2.0 ; Crystal Structure of Haemophilus influenzae N193L mutant FbpA 6DQQ ; 1.85 ; Crystal structure of Haemophilus influenzae OppA complex with endogenous peptide 6DQU ; 1.65 ; Crystal structure of Haemophilus influenzae OppA complex with GIINTL 6DTF ; 1.75 ; Crystal structure of Haemophilus influenzae OppA complex with KKK 6DQT ; 1.95 ; Crystal structure of Haemophilus influenzae OppA complex with LGG 6DQR ; 2.08 ; Crystal structure of Haemophilus influenzae OppA complex with MGG 6DTH ; 1.96 ; Crystal structure of Haemophilus influenzae OppA complex with RPPGFSPFR 6DTG ; 1.9 ; Crystal structure of Haemophilus influenzae OppA complex with YLGANGRGGGS 1VHY ; 1.9 ; Crystal structure of Haemophilus influenzae protein HI0303, Pfam DUF558 1YZY ; 2.1 ; Crystal structure of Haemophilus influenzae protein HI1011, Pfam DUF1537 2O68 ; 1.7 ; Crystal Structure of Haemophilus influenzae Q58L mutant FbpA 3AXZ ; 2.25 ; Crystal structure of Haemophilus influenzae TrmD in complex with adenosine 3KN7 ; 1.71 ; Crystal Structure of Haemophilus influenzae Y195A mutant Holo Ferric ion-Binding Protein A 3KN8 ; 1.89 ; Crystal Structure of Haemophilus influenzae Y196A mutant Holo Ferric ion-Binding Protein A 7RIL ; 1.8 ; Crystal structure of hairpin polyamide Py-Im 1 bound to 5' CCTGACCAGG 6EOA ; 2.18 ; Crystal Structure of HAL3 from Cryptococcus neoformans 5N5F ; 2.057 ; Crystal structure of Haliangium ochraceum encapsulated ferritin 5KO7 ; 2.248 ; Crystal structure of haliscomenobacter hydrossis iodotyrosine deiodinase (IYD) bound to FMN 5KRD ; 2.103 ; Crystal structure of haliscomenobacter hydrossis iodotyrosine deiodinase (IYD) bound to FMN and 2-iodophenol (2IP) 5KO8 ; 2.15 ; Crystal structure of haliscomenobacter hydrossis iodotyrosine deiodinase (IYD) bound to FMN and mono-iodotyrosine (I-Tyr) 8CYK ; 1.65 ; Crystal structure of hallucinated protein HALC1_878 4OVY ; 1.8 ; Crystal structure of Haloacid dehalogenase domain protein hydrolase from Planctomyces limnophilus DSM 3776 8HVQ ; 1.73 ; Crystal structure of haloacid dehalogenase-like hydrolase family enzyme from Staphylococcus lugdunensis 2PKE ; 1.81 ; Crystal structure of haloacid delahogenase-like family hydrolase (NP_639141.1) from Xanthomonas campestris at 1.81 A resolution 5ESR ; 1.476 ; Crystal structure of haloalkane dehalogenase (DccA) from Caulobacter crescentus 4K2A ; 2.2 ; Crystal structure of haloalkane dehalogenase DbeA from Bradyrhizobium elkani USDA94 6XY9 ; 2.2 ; Crystal structure of haloalkane dehalogenase DbeA-M1 loop variant from Bradyrhizobium elkanii 4KAF ; 1.496 ; Crystal Structure of Haloalkane dehalogenase HaloTag7 at the resolution 1.5A, Northeast Structural Genomics Consortium (NESG) Target OR151 4WDR ; 2.5 ; Crystal structure of haloalkane dehalogenase LinB 140A+143L+177W+211L mutant (LinB86) from Sphingobium japonicum UT26 5LKA ; 1.298 ; Crystal structure of haloalkane dehalogenase LinB 140A+143L+177W+211L mutant (LinB86) from Sphingobium japonicum UT26 at 1.3 A resolution 6S06 ; 1.15 ; Crystal structure of haloalkane dehalogenase LinB D147C+L177C mutant (LinB73) from Sphingobium japonicum UT26 4H77 ; 1.6 ; Crystal structure of haloalkane dehalogenase LinB from Sphingobium sp. MI1205 4H7J ; 1.8 ; Crystal structure of haloalkane dehalogenase LinB H247A mutant from Sphingobium sp. MI1205 4H7K ; 1.75 ; Crystal structure of haloalkane dehalogenase LinB I253M mutant from Sphingobium sp. MI1205 4H7I ; 1.8 ; Crystal structure of haloalkane dehalogenase LinB L138I mutant from Sphingobium sp. MI1205 4H7H ; 2.1 ; Crystal structure of haloalkane dehalogenase LinB T135A mutant from Sphingobium sp. MI1205 4H7D ; 1.95 ; Crystal structure of haloalkane dehalogenase LinB T81A mutant from Sphingobium sp. MI1205 4H7E ; 1.8 ; Crystal structure of haloalkane dehalogenase LinB V112A mutant from Sphingobium sp. MI1205 4H7F ; 1.8 ; Crystal structure of haloalkane dehalogenase LinB V134I mutant from Sphingobium sp. MI1205 4WDQ ; 1.58 ; Crystal structure of haloalkane dehalogenase LinB32 mutant (L177W) from Sphingobium japonicum UT26 7NFZ ; 1.551 ; Crystal structure of haloalkane dehalogenase LinB57 mutant (H272F) from Sphingobium japonicum UT26 2QVB ; 1.19 ; Crystal Structure of Haloalkane Dehalogenase Rv2579 from Mycobacterium tuberculosis 2O2H ; 1.6 ; Crystal structure of haloalkane dehalogenase Rv2579 from Mycobacterium tuberculosis complexed with 1,2-dichloroethane 2O2I ; 1.5 ; Crystal structure of haloalkane dehalogenase Rv2579 from Mycobacterium tuberculosis complexed with 1,3-propandiol 6TY7 ; 1.5 ; Crystal structure of haloalkane dehalogenase variant DhaA115 domain-swapped dimer type-1 6XT8 ; 1.7 ; Crystal structure of haloalkane dehalogenase variant DhaA115 domain-swapped dimer type-2 6XTC ; 2.543 ; Crystal structure of haloalkane dehalogenase variant DhaA177 domain-swapped dimer type-3 2HAD ; 1.9 ; CRYSTAL STRUCTURE OF HALOALKANE DEHALOGENASE: AN ENZYME TO DETOXIFY HALOGENATED ALKANES 4PXK ; 2.5 ; Crystal structure of Haloarcula marismortui bacteriorhodopsin I D94N mutant 7ESG ; 2.53 ; Crystal structure of Haloarcula marismortui CheB with Glutathione S-transferase expression tag 8AJP ; 1.8 ; Crystal structure of Halogen methyl transferase from Paraburkholderia xenovorans at 1.8 A in complex with SAH 7V0D ; 2.6 ; Crystal structure of halogenase CtcP from Kitasatospora aureofaciens 7V0B ; 2.15 ; Crystal structure of halogenase CtcP from Kitasatospora aureofaciens in complex with FAD 5DBJ ; 2.75 ; Crystal structure of halogenase PltA 6BZN ; 1.8 ; Crystal structure of halogenase PltM 6BZI ; 2.4 ; Crystal structure of halogenase PltM in complex with ethyl mercury and mercury 6BZQ ; 2.75 ; Crystal structure of halogenase PltM in complex with FAD 6BZZ ; 2.05 ; Crystal structure of halogenase PltM in complex with partially bound FAD 6BZA ; 2.6 ; Crystal structure of halogenase PltM in complex with phloroglucinol and FAD 6BZT ; 2.1 ; Crystal structure of halogenase PltM L111Y mutant in complex with FAD 7WKQ ; 2.89 ; Crystal Structure of halohydrin dehalogenase from Acidimicrobiia bacterium 4QID ; 2.57 ; Crystal structure of Haloquadratum walsbyi bacteriorhodopsin 4WAV ; 2.8 ; Crystal Structure of Haloquadratum walsbyi bacteriorhodopsin mutant D93N 3A7K ; 2.0 ; Crystal structure of halorhodopsin from Natronomonas pharaonis 5Y2Y ; 2.27 ; Crystal structure of HaloTag (M175C) complexed with dansyl-PEG2-HaloTag ligand 6U32 ; 1.8 ; Crystal structure of HaloTag bound to tetramethylrhodamine-HaloTag ligand 7WAN ; 2.284 ; Crystal structure of HaloTag complexed with UL2 7WAM ; 1.49 ; Crystal structure of HaloTag complexed with VL1 6ICE ; 1.8 ; Crystal structure of Hamster MIF 2OQE ; 1.6 ; Crystal Structure of Hansenula polymorpha amine oxidase in complex with Xe to 1.6 Angstroms 2OOV ; 1.7 ; Crystal Structure of Hansenula polymorpha amine oxidase to 1.7 Angstroms 4KFD ; 1.69 ; Crystal structure of Hansenula polymorpha copper amine oxidase-1 reduced by methylamine at pH 6.0 4KFE ; 2.1 ; Crystal structure of Hansenula polymorpha copper amine oxidase-1 reduced by methylamine at pH 7.0 4KFF ; 2.15 ; Crystal structure of Hansenula polymorpha copper amine oxidase-1 reduced by methylamine at pH 8.5 6W45 ; 1.7 ; Crystal structure of HAO1 in complex with biaryl acid inhibitor - compound 3 6W44 ; 1.64 ; Crystal structure of HAO1 in complex with indazole acid inhibitor - compound 4 6W4C ; 1.75 ; Crystal structure of HAO1 in complex with indazole acid inhibitor - compound 5 2JDJ ; 2.0 ; crystal structure of HapK from Hahella chejuensis 3FO1 ; 2.2 ; Crystal structure of hapten complex of catalytic elimination antibody 13G5 (Glu(L39)Ala mutant) 3FO2 ; 2.18 ; Crystal structure of hapten complex of catalytic elimination antibody 13G5 (Glu(L39)Gln mutant) 3FO0 ; 2.5 ; Crystal structure of hapten complex of catalytic elimination antibody 13G5 (wild-type) 4KKJ ; 3.0 ; Crystal Structure of Haptocorrin in Complex with Cbi 4KKI ; 2.35 ; Crystal Structure of Haptocorrin in Complex with CNCbl 5F3X ; 2.649 ; Crystal structure of Harmonin NPDZ1 in complex with ANKS4B SAM-PBM 7WU8 ; 1.599 ; Crystal structure of Harmonin-homology domain 2 (HHD2) of human RTEL1 4Y1Q ; 3.1 ; Crystal Structure of HasA mutant Y75A monomer from Yersinia pseudotuberculosis 7EMP ; 1.5 ; Crystal Structure of HasAp Capturing Chromium Tetraphenylporphyrin 7EMR ; 1.55 ; Crystal Structure of HasAp Capturing Cobalt Tetraphenylporphyrin 7VM1 ; 2.0 ; Crystal Structure of HasAp Capturing Iron Tetra(4-pyridyl)porphyrin 7EMO ; 1.5 ; Crystal Structure of HasAp Capturing Iron Tetraphenylporphyrin 7EMQ ; 1.5 ; Crystal Structure of HasAp Capturing Manganese Tetraphenylporphyrin 5XIE ; 2.05 ; Crystal Structure of HasAp with 5-ethynyl-10,20-diphenylporphyrin 7VF8 ; 1.35 ; Crystal Structure of HasAp with Co-5-octaethyloxaporphyrinium cation 6JLG ; 2.5 ; Crystal Structure of HasAp with Co-9,10,19,20-Tetraphenylporphycene 7VF7 ; 1.35 ; Crystal Structure of HasAp with Co-octaethylporphyrin 5XIC ; 1.45 ; Crystal Structure of HasAp with Fe-5,10,15-triphenylporphyrin 5XKB ; 1.9 ; Crystal Structure of HasAp with Fe-5,15-bisethynyl-10,20-diphenylporphyrin 5XA4 ; 1.3 ; Crystal Structure of HasAp with Fe-5,15-Diazaporphyrin 5XIB ; 2.3 ; Crystal Structure of HasAp with Fe-5,15-Diphenylporphyrin 5XHL ; 2.5 ; Crystal Structure of HasAp with Gallium Phthalocyanine 3WAH ; 1.54 ; Crystal Structure of HasAp with Iron MesoporphyrinIX 3W8O ; 1.85 ; Crystal Structure of HasAp with Iron Phthalocyanine 3W8M ; 1.46 ; Crystal Structure of HasAp with Iron Salophen 5HTB ; 1.7 ; Crystal structure of haspin (GSG2) in complex with bisubstrate inhibitor ARC-3353 5HTC ; 1.5 ; Crystal structure of haspin (GSG2) in complex with bisubstrate inhibitor ARC-3372 6Z5A ; 1.55 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2002941 6Z5B ; 1.9 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2003128 6Z56 ; 1.9 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2003208 6Z58 ; 1.8 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2003791 6Z59 ; 2.0 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2003816 6Z5C ; 1.75 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2004070 6Z57 ; 1.5 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2004078 6Z5D ; 1.75 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2004082 6Z5E ; 1.5 ; Crystal structure of haspin (GSG2) in complex with macrocycle ODS2004093 6G3A ; 1.43 ; Crystal structure of haspin F605T mutant in complex with 5-iodotubercidin 6G39 ; 1.45 ; Crystal structure of haspin F605Y mutant in complex with 5-iodotubercidin 6G35 ; 1.55 ; Crystal structure of haspin in complex with 5-bromotubercidin 6G36 ; 1.46 ; Crystal structure of haspin in complex with 5-chlorotubercidin 6G37 ; 1.48 ; Crystal structure of haspin in complex with 5-fluorotubercidin 6G34 ; 1.76 ; Crystal structure of haspin in complex with 5-iodotubercidin 7AVQ ; 1.65 ; Crystal structure of haspin in complex with disubstituted imidazo[1,2- b]pyridazine inhibitor (compound 12) 6G38 ; 1.47 ; Crystal structure of haspin in complex with tubercidin 7OPS ; 2.38 ; Crystal structure of haspin in complex with ZW282 (compound 2a) 2WB8 ; 2.15 ; Crystal structure of Haspin kinase 5JPZ ; 3.045 ; Crystal structure of HAT domain of human Squamous Cell Carcinoma Antigen Recognized By T Cells 3, SART3 (TIP110) 2OOE ; 3.0 ; Crystal structure of HAT domain of murine CstF-77 4E85 ; 3.0 ; crystal STRUCTURE OF HAT DOMAIN OF RNA14 7XAY ; 3.3 ; Crystal structure of Hat1-Hat2-Asf1-H3-H4 2F1Z ; 3.2 ; Crystal structure of HAUSP 3FPV ; 2.2 ; Crystal Structure of HbpS 3FPW ; 1.6 ; Crystal Structure of HbpS with bound iron 2HFG ; 2.61 ; Crystal structure of hBR3 bound to CB3s-Fab 4I1Q ; 2.53 ; Crystal Structure of hBRAP1 N-BAR domain 4ZW1 ; 1.75 ; Crystal structure of hBRD4 in complex with BL-BI06 reveals a novel synthesized inhibitor that induces Beclin1-independent/ATG5-dependent autophagic cell death in breast cancer 3KXS ; 2.25 ; Crystal structure of HBV capsid mutant dimer (oxy form), strain adyw 7K5M ; 2.65 ; CRYSTAL STRUCTURE OF HBV CAPSID Y132A MUTANT IN COMPLEX WITH N-(3-chloro-4-fluorophenyl)-3-phenyl-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxamide AT 2.65A RESOLUTION 6RVK ; 1.58 ; Crystal structure of hCA II in complex with Urea, N-(1,3-dihydro-1-hydroxy-2,1-benzoxaborol-6-yl)-N'-(phenylmethyl)- 6RW1 ; 1.7 ; Crystal structure of hCA II in complex with Urea, N-(1,3-dihydro-1-hydroxy-2,1-benzoxaborol-6-yl)-N'-(phenylmethyl)- 6RVF ; 2.07 ; Crystal structure of hCA II in complex with Urea, N-(1,3-dihydro-1-hydroxy-2,1-benzoxaborol-6-yl)-N'-phenyl 6RVL ; 1.72 ; Crystal structure of hCA II with Urea, N-(1,3-dihydro-1-hydroxy-2,1-benzoxaborol-6-yl)-?N'-phenyl- 7N67 ; 2.5 ; Crystal structure of HCAN_0198, a 3,4-ketoisomerase from Helicobacter canadensis 7UIE ; 3.23 ; Crystal structure of HcE-JLE-G6 4GO6 ; 2.7 ; Crystal structure of HCF-1 self-association sequence 1 1HJW ; 2.3 ; Crystal structure of hcgp-39 in complex with chitin octamer 1HJV ; 2.75 ; Crystal structure of hcgp-39 in complex with chitin tetramer 3VS7 ; 3.001 ; Crystal structure of HCK complexed with a pyrazolo-pyrimidine inhibitor 1-cyclopentyl-3-(1H-pyrrolo[2,3-b]pyridin-5-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine 3VS6 ; 2.373 ; Crystal structure of HCK complexed with a pyrazolo-pyrimidine inhibitor tert-butyl {4-[4-amino-1-(propan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl]-2-methoxyphenyl}carbamate 5H0E ; 2.1 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor (S)-2-(((1r,4S)-4-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)cyclohexyl)amino)-4-methylpentanamide 5H0B ; 1.651 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor (S)-2-(((1r,4S)-4-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)cyclohexyl)amino)-4-methylpentanoic acid 5H0G ; 1.8 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor (S)-2-(((1r,4S)-4-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)cyclohexyl)amino)-N,4-dimethylpentanamide 5H0H ; 1.72 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor (S)-2-(((1r,4S)-4-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)cyclohexyl)amino)-N,N,4-trimethylpentanamide 5H09 ; 1.945 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor (S)-ethyl2-(((1r,4S)-4-(4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)cyclohexyl)amino)-4-methylpentanoate 3VRZ ; 2.218 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 1-[4-(4-amino-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)phenyl]-3-benzylurea 3VS1 ; 2.464 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 1-[4-(4-amino-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)phenyl]-3-phenylurea 3VRY ; 2.481 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 4-Amino-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl-cyclopentane 3VS4 ; 2.747 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 5-(4-phenoxyphenyl)-7-(tetrahydro-2H-pyran-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 3VS5 ; 2.851 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 7-(1-methylpiperidin-4-yl)-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 3VS2 ; 2.609 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 7-[cis-4-(4-methylpiperazin-1-yl)cyclohexyl]-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 3VS3 ; 2.17 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor 7-[trans-4-(4-methylpiperazin-1-yl)cyclohexyl]-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 3VS0 ; 2.934 ; Crystal structure of HCK complexed with a pyrrolo-pyrimidine inhibitor N-[4-(4-amino-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)phenyl]benzamide 4LUE ; 3.04 ; Crystal Structure of HCK in complex with 7-[trans-4-(4-methylpiperazin-1-yl)cyclohexyl]-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (resulting from displacement of SKF86002) 1QCF ; 2.0 ; CRYSTAL STRUCTURE OF HCK IN COMPLEX WITH A SRC FAMILY-SELECTIVE TYROSINE KINASE INHIBITOR 4LUD ; 2.85 ; Crystal Structure of HCK in complex with the fluorescent compound SKF86002 5ZJ6 ; 1.696 ; Crystal structure of HCK kinase complexed with a pyrrolo-pyrimidine inhibitor 7-[trans-4-(4-methylpiperazin-1-yl)cyclohexyl]-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine 4OSU ; 1.87 ; Crystal structure of HCMV gB-neutralizing SM5-1 Fab fragment 5C6T ; 3.6 ; Crystal structure of HCMV glycoprotein B in complex with 1G2 Fab 5VOB ; 3.02 ; Crystal structure of HCMV Pentamer in complex with neutralizing antibody 8I21 5VOC ; 3.99 ; Crystal structure of HCMV Pentamer in complex with neutralizing antibody 8I21 - Low resolution dataset for initial phasing by SAD 5VOD ; 5.9 ; Crystal structure of HCMV Pentamer in complex with neutralizing antibody 9I6 3BS5 ; 2.0 ; Crystal Structure of hCNK2-SAM/dHYP-SAM Complex 8IM6 ; 2.01 ; Crystal structure of HCoV 229E main protease in complex with PF07304814 7YRZ ; 1.79 ; Crystal structure of HCoV 229E main protease in complex with PF07321332 3EJG ; 1.78 ; Crystal structure of HCoV-229E X-domain 8DGW ; 2.81 ; Crystal structure of HCoV-HKU1 spike stem helix peptide in complex with Fab of broadly neutralizing antibody CC95.108 isolated from a vaccinated COVID-19 convalescent 3TLO ; 1.6 ; Crystal structure of HCoV-NL63 3C-like protease 7EO7 ; 2.24917 ; Crystal structure of HCoV-NL63 3C-like protease in complex with an inhibitor Shikonin 7E6L ; 1.78037 ; Crystal structure of HCoV-NL63 3C-like protease,pH5.0 7E6N ; 1.8413 ; Crystal structure of HCoV-NL63 3C-like protease,pH5.2 7E6R ; 1.9 ; Crystal structure of HCoV-NL63 3C-like protease,pH5.6 7WQH ; 2.32 ; Crystal structure of HCoV-NL63 main protease with PF07304814 8HUU ; 1.71 ; Crystal structure of HCoV-NL63 main protease with S217622 4LI4 ; 1.71 ; Crystal structure of HCoV-OC43 N-NTD complexed with AMP 4LMC ; 1.742 ; Crystal structure of HCoV-OC43 N-NTD complexed with CMP 4LM9 ; 1.601 ; Crystal structure of HCoV-OC43 N-NTD complexed with GMP 4KXJ ; 2.65 ; Crystal structure of HCoV-OC43 N-NTD complexed with PJ34 4LM7 ; 1.72 ; Crystal structure of HCoV-OC43 N-NTD complexed with UMP 6A2V ; 2.588 ; Crystal structure of Hcp protein 5XHH ; 2.1 ; crystal structure of Hcp1 from Salmonella typhimurium 5XEU ; 3.0 ; crystal structure of Hcp2 from Salmonella typhimurium 3RMX ; 2.75 ; Crystal structure of HCR/D F1240A mutant 3RMY ; 2.3 ; Crystal structure of HCR/D W1238A mutant 4FVV ; 2.7 ; Crystal structure of HCR/D-Sa-GBL1/C 3HMY ; 2.0 ; Crystal structure of HCR/T complexed with GT2 3HN1 ; 2.1 ; Crystal structure of HCR/T complexed with GT2 and lactose 4IQP ; 2.3 ; Crystal Structure of HCRA-W1266A 1RTL ; 2.75 ; CRYSTAL STRUCTURE OF HCV NS3 PROTEASE DOMAIN: NS4A PEPTIDE COMPLEX WITH COVALENTLY BOUND PYRROLIDINE-5,5-TRANSLACTAM INHIBITOR 1N1L ; 2.6 ; CRYSTAL STRUCTURE OF HCV NS3 PROTEASE DOMAIN:NS4A PEPTIDE COMPLEX WITH COVALENTLY BOUND INHIBITOR (GW472467X) 2XCF ; 2.48 ; Crystal structure of HCV NS3 protease with a boronate inhibitor 2XCN ; 3.02 ; Crystal structure of HCV NS3 protease with a boronate inhibitor 2OIN ; 2.5 ; crystal structure of HCV NS3-4A R155K mutant 2QV1 ; 2.4 ; Crystal structure of HCV NS3-4A V36M mutant 7L7P ; 1.58 ; Crystal structure of HCV NS3/4A D168A protease in complex with CH-24 7MME ; 1.56 ; Crystal structure of HCV NS3/4A D168A protease in complex with JZ01-15 7MMD ; 1.89 ; Crystal structure of HCV NS3/4A D168A protease in complex with JZ01-19 7MMC ; 2.001 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR01-115 7MMB ; 1.99 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR01-127 7L7L ; 1.88 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR01-129 7MML ; 1.701 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR01-145 7MMK ; 1.89 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR01-149 7MMJ ; 1.992 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-08 7MMI ; 1.8 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-23 7MMH ; 1.75 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-49 7MMG ; 1.95 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-58 7L7N ; 1.59 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-59 7MMF ; 1.891 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR02-60 7L7O ; 1.72 ; Crystal structure of HCV NS3/4A D168A protease in complex with NR04-49 6DIW ; 1.8 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-1 (AJ-71) 6PIZ ; 1.89 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-1 (NR02-24) 6PIY ; 1.862 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-2 (NR02-61) 6PJ1 ; 1.89 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-4(AJ-74) 6PJ0 ; 2.05 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-5 (NR01-97) 6PIW ; 1.9 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-6 (NR03-67) 6PIV ; 2.14 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-7 (NR03-77) 6DIV ; 1.83 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-P5-2 (AJ-67) 6PJ2 ; 2.1 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-P5-4 (AJ-65) 6PIX ; 1.87 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-P5-5 (WK-25) 6PIU ; 2.28 ; Crystal structure of HCV NS3/4A D168A protease in complex with P4-P5-6 (NR03-68) 6UE3 ; 1.56 ; Crystal structure of HCV NS3/4A D168A protease in complex with PC (JZ01-15) 4I32 ; 2.3001 ; Crystal structure of HCV NS3/4A D168V protease complexed with compound 4 6C2N ; 1.802 ; Crystal structure of HCV NS3/4A double mutant variant Y56H/D168A in complex with danoprevir 5ETX ; 2.35 ; Crystal structure of HCV NS3/4A protease A156T variant in complex with 5172-Linear (MK-5172 linear analogue) 5EPY ; 2.3 ; Crystal structure of HCV NS3/4A protease A156T variant in complex with 5172-mcP1P3 (MK-5172 P1-P3 macrocyclic analogue) 4K8B ; 2.8 ; Crystal structure of HCV NS3/4A protease complexed with inhibitor 5EPN ; 2.3 ; Crystal structure of HCV NS3/4A protease in complex with 5172-mcP1P3 (MK-5172 P1-P3 macrocyclic analogue) 5VP9 ; 1.859 ; Crystal structure of HCV NS3/4A protease in complex with AM-07, an analogue of 5172-mcP1P3 4WH8 ; 2.703 ; Crystal Structure of HCV NS3/4A protease in complex with an Asunaprevir P1-P3 macrocyclic analog. 6NZV ; 1.55 ; Crystal structure of HCV NS3/4A protease in complex with compound 12 3M5L ; 1.25 ; Crystal structure of HCV NS3/4A protease in complex with ITMN-191 5VOJ ; 1.799 ; Crystal structure of HCV NS3/4A protease in complex with JZ01-15, an analogue of 5172-mcP1P3 3M5N ; 1.9 ; Crystal structure of HCV NS3/4A protease in complex with N-terminal product 4B5A 3M5O ; 1.6 ; Crystal structure of HCV NS3/4A protease in complex with N-terminal product 5A5B 7MM4 ; 1.89 ; Crystal structure of HCV NS3/4A protease in complex with NR01-115 7MM3 ; 1.78 ; Crystal structure of HCV NS3/4A protease in complex with NR01-127 7MMA ; 1.65 ; Crystal structure of HCV NS3/4A protease in complex with NR01-145 7MM9 ; 2.11 ; Crystal structure of HCV NS3/4A protease in complex with NR01-149 7MM8 ; 1.43 ; Crystal structure of HCV NS3/4A protease in complex with NR02-08 7MM7 ; 1.862 ; Crystal structure of HCV NS3/4A protease in complex with NR02-23 7MM6 ; 2.0 ; Crystal structure of HCV NS3/4A protease in complex with NR02-49 7MM5 ; 1.86 ; Crystal structure of HCV NS3/4A protease in complex with NR02-60 7MM2 ; 1.891 ; Crystal structure of HCV NS3/4A protease in complex with NR02-61 6DIS ; 1.921 ; Crystal structure of HCV NS3/4A protease in complex with P4-1 (AJ-71) 6DIT ; 1.789 ; Crystal structure of HCV NS3/4A protease in complex with P4-2 (JZ01-19) 6DIU ; 1.868 ; Crystal structure of HCV NS3/4A protease in complex with P4-3(AJ-74) 6DIQ ; 1.579 ; Crystal structure of HCV NS3/4A protease in complex with P4-P5-1 (WK-23) 6DIR ; 1.751 ; Crystal structure of HCV NS3/4A protease in complex with P4-P5-2 (AJ-67) 6NZT ; 1.4 ; Crystal structure of HCV NS3/4A protease in complex with voxilaprevir 4WH6 ; 1.99 ; Crystal structure of HCV NS3/4A protease variant R155K in complex with Asunaprevir 6C2O ; 1.179 ; Crystal structure of HCV NS3/4A protease variant Y56H in complex with danoprevir 6C2M ; 1.859 ; Crystal structure of HCV NS3/4A protease variant Y56H in complex with MK-5172 4I33 ; 1.9001 ; Crystal structure of HCV NS3/4A R155K protease complexed with compound 4 5EQQ ; 1.65 ; Crystal structure of HCV NS3/4A WT protease in complex with 5172-Linear (MK-5172 linear analogue) 6CVY ; 1.798 ; Crystal structure of HCV NS3/4A WT protease in complex with AJ-21 (MK-5172 linear analogue) 6CVX ; 1.779 ; Crystal structure of HCV NS3/4A WT protease in complex with AJ-50 (MK-5172 linear analogue) 6CVW ; 1.78 ; Crystal structure of HCV NS3/4A WT protease in complex with AJ-52 (MK-5172 linear analogue) 3P8N ; 1.9 ; Crystal structure of HCV NS3/NS4A protease complexed with BI 201335 4I31 ; 1.9301 ; Crystal structure of HCV NS3/NS4A protease complexed with compound 4 4JMY ; 1.95 ; Crystal structure of HCV NS3/NS4A protease complexed with DDIVPC peptide 3P8O ; 2.3 ; Crystal structure of HCV NS3/NS4A protease complexed with des-bromine analogue of BI 201335 3H98 ; 1.9 ; Crystal structure of HCV NS5b 1b with (1,1-dioxo-2H-[1,2,4]benzothiadiazin-3-yl) azolo[1,5-a]pyrimidine derivative 4WTD ; 2.7 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH ADP, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-AUAAAUUU 4WTC ; 2.75 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH CDP, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-AGAAAUUU 4WTE ; 2.9 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH GDP, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-ACAAAUUU 4WTF ; 2.65 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH GS-639475, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-CAAAAUUU 4WTG ; 2.9 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH SOFOSBUVIR DIPHOSPHATE GS-607596, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-CAAAAUUU 4WTA ; 2.8 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS AND DELTA8 BETA HAIRPIN LOOP DELETION IN COMPLEX WITH UDP, MN2+ AND SYMMETRICAL PRIMER TEMPLATE 5'-CAAAAUUU 5UJ2 ; 2.9 ; Crystal structure of HCV NS5B genotype 2A JFH-1 isolate with S15G E86Q E87Q C223H V321I mutations and Delta8 neta hairpoin loop deletion in complex with GS-639476 (diphsohate version of GS-9813), Mn2+ and symmetrical primer template 5'-AUAAAUUU 4WTI ; 2.8 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS IN COMPLEX WITH RNA TEMPLATE 5'-ACGG, RNA PRIMER 5'-PCC, MN2+, AND GDP 4WTK ; 2.5 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS IN COMPLEX WITH RNA TEMPLATE 5'-AGCC, RNA PRIMER 5'-PGG, MN2+, AND CDP 4WTJ ; 2.2 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS IN COMPLEX WITH RNA TEMPLATE 5'-AUCC, RNA PRIMER 5'-PGG, MN2+, AND ADP 4WTL ; 2.0 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS IN COMPLEX WITH RNA TEMPLATE 5'-UACC, RNA PRIMER 5'-PGG, MN2+, AND UDP 4WTM ; 2.15 ; CRYSTAL STRUCTURE OF HCV NS5B GENOTYPE 2A JFH-1 ISOLATE WITH S15G E86Q E87Q C223H V321I MUTATIONS IN COMPLEX WITH RNA TEMPLATE 5'-UAGG, RNA PRIMER 5'-PCC, MN2+, AND UDP 3MWV ; 2.2 ; Crystal structure of HCV NS5B polymerase 3MWW ; 2.8 ; Crystal structure of HCV NS5B polymerase 4IZ0 ; 2.22 ; Crystal structure of HCV NS5B polymerase in complex with 2,4,5-trichloro-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide 4J0A ; 2.4 ; Crystal structure of hcv ns5b polymerase in complex with 2-{[(4-METHYLPHENYL)SULFONYL]AMINO}-4-PHENOXYBENZOIC ACID 4J08 ; 2.1 ; Crystal structure of hcv ns5b polymerase in complex with 2-{[(4-METHYLPHENYL)SULFONYL]AMINO}-5-PHENOXYBENZOIC ACID 4J06 ; 2.0 ; Crystal structure of hcv ns5b polymerase in complex with 2-{[(5-BROMOTHIOPHEN-2-YL)SULFONYL]AMINO}-4-CHLOROBENZOIC ACID 4J04 ; 2.0 ; Crystal structure of hcv ns5b polymerase in complex with 4-CHLORO-2-{[(2,4,5-TRICHLOROPHENYL)SULFONYL]AMINO}BENZOIC ACID 3H2L ; 1.9 ; Crystal structure of HCV NS5B polymerase in complex with a novel bicyclic dihydro-pyridinone inhibitor 4GMC ; 2.7 ; Crystal structure of HCV NS5B polymerase in complex with a thumb inhibitor 4JU2 ; 2.7 ; Crystal structure of hcv ns5b polymerase in complex with compound 12 4JJS ; 2.2 ; Crystal structure of HCV NS5B polymerase in complex with COMPOUND 2 4JU4 ; 2.4 ; Crystal structure of hcv ns5b polymerase in complex with compound 22 4JU6 ; 2.2 ; Crystal structure of hcv ns5b polymerase in complex with compound 24 4JU7 ; 2.2 ; Crystal structure of hcv ns5b polymerase in complex with compound 24 4JJU ; 1.91 ; Crystal structure of HCV NS5B polymerase in complex with COMPOUND 29 4JY0 ; 2.2 ; Crystal structure of hcv ns5b polymerase in complex with compound 3 4JTZ ; 2.8 ; Crystal structure of hcv ns5b polymerase in complex with compound 4 4JY1 ; 2.6 ; CRYSTAL STRUCTURE OF HCV NS5B POLYMERASE IN COMPLEX WITH COMPOUND 5 4JU1 ; 2.9 ; Crystal structure of hcv ns5b polymerase in complex with compound 6 4JU3 ; 2.0 ; Crystal structure of hcv ns5b polymerase in complex with compound 8 4JVQ ; 2.4 ; Crystal structure of hcv ns5b polymerase in complex with compound 9 4JTW ; 3.0 ; Crystal structure of HCV NS5B polymerase in complex with coupound 1 4J02 ; 2.0 ; Crystal structure of hcv ns5b polymerase in complex with [(1R)-5,8-DICHLORO-1-PROPYL-1,3,4,9-TETRAHYDROPYRANO[3,4-B]INDOL-1-YL]ACETIC ACID 3D28 ; 2.3 ; Crystal structure of hcv ns5b polymerase with a novel benzisothiazole inhibitor 3IGV ; 2.6 ; Crystal structure of HCV NS5B polymerase with a novel monocyclic dihydro-pyridinone inhibitor 3GYN ; 2.15 ; Crystal structure of HCV NS5B polymerase with a novel monocyclic dihydropyridinone inhibitor 3BR9 ; 2.3 ; Crystal Structure of HCV NS5B Polymerase with a Novel Pyridazinone Inhibitor 3BSA ; 2.3 ; Crystal Structure of HCV NS5B Polymerase with a Novel Pyridazinone Inhibitor 3BSC ; 2.65 ; Crystal Structure of HCV NS5B Polymerase with a Novel Pyridazinone Inhibitor 3CDE ; 2.1 ; Crystal structure of HCV NS5B polymerase with a novel Pyridazinone inhibitor 3CO9 ; 2.1 ; Crystal structure of HCV NS5B polymerase with a novel pyridazinone inhibitor 3CVK ; 2.31 ; Crystal structure of HCV NS5B polymerase with a novel pyridazinone inhibitor 3CWJ ; 2.4 ; Crystal structure of hcv ns5b polymerase with a novel pyridazinone inhibitor 3D5M ; 2.2 ; Crystal structure of HCV NS5B polymerase with a novel pyridazinone inhibitor 3E51 ; 1.9 ; Crystal structure of HCV NS5B polymerase with a novel pyridazinone inhibitor 4JTY ; 2.6 ; Crystal structure of HCV NS5B polymerase with COMPOUND 2 1OS5 ; 2.2 ; Crystal structure of HCV NS5B RNA polymerase complexed with a novel non-competitive inhibitor. 2DXS ; 2.2 ; Crystal structure of HCV NS5B RNA polymerase complexed with a tetracyclic inhibitor 2HAI ; 1.58 ; Crystal structure of HCV NS5B RNA polymerase in complex with novel class of dihydropyrone-containing inhibitor. 3FRZ ; 1.86 ; Crystal Structure of HCV NS5B RNA polymerase in complex with PF868554 3VQS ; 1.9 ; Crystal structure of HCV NS5B RNA polymerase with a novel piperazine inhibitor 4OBC ; 2.5 ; Crystal structure of HCV polymerase NS5b genotype 2a JFH-1 isolate with the S15G, C223H, V321I resistance mutations against the guanosine analog GS-0938 (PSI-3529238) 5LM2 ; 2.54 ; Crystal Structure of HD-PTP phosphatase 5LM1 ; 2.55 ; Crystal Structure of HD-PTP phosphatase in complex with UBAP1 6J6T ; 2.36 ; Crystal Structure of HDA15 HD domain 5LI3 ; 2.4 ; Crystal structure of HDAC-like protein from P. aeruginosa in complex with a photo-switchable inhibitor. 5UWI ; 2.143 ; Crystal Structure of HDAC5 NES Peptide in complex with CRM1-Ran-RanBP1 6ODA ; 2.88 ; Crystal structure of HDAC8 in complex with compound 2 6ODB ; 2.7 ; Crystal structure of HDAC8 in complex with compound 3 6ODC ; 2.8 ; Crystal structure of HDAC8 in complex with compound 30 2V5X ; 2.25 ; Crystal structure of HDAC8-inhibitor complex 2V5W ; 2.0 ; Crystal structure of HDAC8-substrate complex 5XHW ; 2.0 ; Crystal structure of HddC from Yersinia pseudotuberculosis 6JQ8 ; 1.546 ; Crystal structure of HddC from Yersinia pseudotuberculosis complexed with GMP-PN 7KHM ; 2.88 ; Crystal structure of hDHHS20 bound to palmitoyl CoA 3RL7 ; 2.3 ; Crystal structure of hDLG1-PDZ1 complexed with APC 3RL8 ; 2.2 ; Crystal structure of hDLG1-PDZ2 complexed with APC 6HFA ; 1.79 ; Crystal structure of hDM2 in complex with a C-terminal triurea capped peptide chimera foldamer. 7QDQ ; 1.26 ; Crystal Structure of HDM2 in complex with Caylin-1 5C5A ; 1.146 ; Crystal Structure of HDM2 in complex with Nutlin-3a 3FEA ; 1.33 ; Crystal Structure of HdmX bound to the p53-peptidomimetic Ac-Phe-Met-Aib-Pmp-6-Cl-Trp-Glu-Ac3c-Leu-NH2 at 1.33A 3FE7 ; 1.35 ; Crystal Structure of HdmX bound to the p53-peptidomimetic Ac-Phe-Met-Aib-Pmp-Trp-Glu-Ac3c-Leu-NH2 at 1.35A 3HC1 ; 1.9 ; Crystal structure of HDOD domain protein with unknown function (NP_953345.1) from GEOBACTER SULFURREDUCENS at 1.90 A resolution 1NM3 ; 2.8 ; Crystal structure of Heamophilus influenza hybrid-Prx5 7WN7 ; 1.9 ; Crystal structure of HearNPV P26 3RSW ; 2.599 ; Crystal Structure of Heart Fatty Acid Binding Protein (FABP3) 1M5N ; 2.9 ; Crystal structure of HEAT repeats (1-11) of importin b bound to the non-classical NLS(67-94) of PTHrP 5HDG ; 1.7 ; crystal structure of heat shock factor 1-DBD 5HDK ; 1.32 ; Crystal structure of heat shock factor 2-DBD 6J6V ; 1.2 ; Crystal structure of heat shock factor 4-DBD 5HDN ; 1.68 ; Crystal structure of heat shock factor1-DBD complex with ds-DNA and TtT 3CQB ; 1.86 ; Crystal structure of heat shock protein HtpX domain from Vibrio parahaemolyticus RIMD 2210633 2P4W ; 2.6 ; Crystal structure of heat shock regulator from Pyrococcus furiosus 2IGP ; 1.8 ; Crystal Structure of Hec1 CH domain 2IBG ; 2.2 ; Crystal Structure of Hedgehog Bound to the FNIII Domains of Ihog 3HO3 ; 2.9 ; Crystal structure of Hedgehog-interacting protein (HHIP) 3HO4 ; 3.1 ; Crystal structure of Hedgehog-interacting protein (HHIP) 3HO5 ; 3.01 ; Crystal structure of Hedgehog-interacting protein (HHIP) and Sonic hedgehog (SHH) complex 2NML ; 1.55 ; Crystal structure of HEF2/ERH at 1.55 A resolution 1OHQ ; 2.0 ; Crystal structure of HEL4, a soluble human VH antibody domain resistant to aggregation 1C3K ; 2.0 ; CRYSTAL STRUCTURE OF HELIANTHUS TUBEROSUS LECTIN 1C3N ; 2.45 ; CRYSTAL STRUCTURE OF HELIANTHUS TUBEROSUS LECTIN COMPLEXED TO MAN(1-2)MAN 3WRX ; 2.5 ; Crystal structure of helicase complex 1 3WRY ; 2.3 ; Crystal structure of helicase complex 2 6S3E ; 3.787 ; Crystal structure of helicase Pif1 from Thermus oshimai in apo form 6S3P ; 1.926 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with (dT)18 6S3H ; 2.06 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with ADP-AlF4 and (dT)7ds11bp 7BIL ; 2.21 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with oligo GGTTTGGTTTGGTT 7OAR ; 2.58 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with parallel G-quadruplex 6S3O ; 1.974 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with ssDNA (dT)18 and ADP 6S3M ; 2.113 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with ssDNA (dT)18 and ADP-AlF4 6S3I ; 2.455 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with ssDNA (dT)18 and ADP-MgF4 6S3N ; 2.533 ; Crystal structure of helicase Pif1 from Thermus oshimai in complex with ssDNA (dT)18 and ADP-VO4 6XZT ; 3.341 ; Crystal structure of helicase Pif1 from Thermus oshimai mutant G110C-E410C 7ADA ; 3.34 ; Crystal structure of helicase Pif1 from Thermus oshimai mutant Q164C-E409C 5LBH ; 2.553 ; Crystal structure of Helicobacter cinaedi CAIP 4YO8 ; 2.1 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)(hexyl)amino)methanol 6DYW ; 1.45 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-(((3-(1-benzyl-1H-1,2,3-triazol-4-yl)propyl)thio)methyl)pyrrolidin-3-ol 6DYY ; 1.61 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-(((3-(1-butyl-1H-1,2,3-triazol-4-yl)propyl)thio)methyl)pyrrolidin-3-ol 6DYV ; 1.62 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-((pent-4-yn-1-ylthio)methyl)pyrrolidin-3-ol 6DYU ; 1.6 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-((prop-2-yn-1-ylthio)methyl)pyrrolidin-3-ol 4WKP ; 1.58 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with 2-(2-hydroxyethoxy)ethylthiomethyl-DADMe-Immucillin-A 4WKO ; 1.9 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with hydroxybutylthio-DADMe-Immucillin-A 4WKN ; 2.0 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with methylthio-DADMe-Immucillin-A 4YNB ; 2.0 ; Crystal structure of Helicobacter pylori 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with pyrazinylthio-DADMe-Immucillin-A 6GMM ; 2.06 ; Crystal structure of Helicobacter pylori adhesin LabA 3SXP ; 2.55 ; Crystal Structure of Helicobacter pylori ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD, HP0859) 7LKJ ; 2.79 ; Crystal structure of Helicobacter pylori aminofutalosine deaminase (AFLDA) 7LKK ; 1.89 ; Crystal structure of Helicobacter pylori aminofutalosine deaminase (AFLDA) in complex with Methylthio-coformycin 4G3H ; 2.2 ; Crystal structure of helicobacter pylori arginase 2R62 ; 3.3 ; Crystal structure of Helicobacter pylori ATP dependent protease, FtsH 2R65 ; 3.3 ; Crystal structure of Helicobacter pylori ATP dependent protease, FtsH ADP complex 5FRQ ; 2.9 ; Crystal Structure of Helicobacter pylori beta clamp bound to DNA ligase peptide 5FVE ; 2.07 ; Crystal Structure of Helicobacter pylori beta clamp in complex with 3, 4-Difluorobenzamide 5FXT ; 1.97 ; Crystal Structure of Helicobacter pylori beta clamp in complex with Carprofen 8H52 ; 3.1 ; Crystal structure of Helicobacter pylori carboxyspermidine dehydrogenase in complex with NADP 2IQF ; 1.86 ; Crystal structure of Helicobacter pylori catalase compound I 1UM8 ; 2.6 ; Crystal structure of helicobacter pylori ClpX 7P0H ; 2.499 ; Crystal structure of Helicobacter pylori ComF fused to an artificial alphaREP crystallization helper(named B2) 8EVK ; 1.49 ; Crystal structure of Helicobacter pylori dihydroneopterin aldolase (DHNA) 4EHS ; 1.78 ; Crystal structure of Helicobacter pylori DnaG Primase C terminal domain 8DP6 ; 1.3 ; Crystal structure of Helicobacter pylori EgtU 5NPY ; 2.292 ; Crystal structure of Helicobacter pylori flagellar hook protein FlgE2 6K8C ; 1.95175 ; Crystal structure of Helicobacter pylori folylpolyglutamate synthetase 2NQO ; 1.9 ; Crystal Structure of Helicobacter pylori gamma-Glutamyltranspeptidase 2QM6 ; 1.6 ; Crystal Structure of Helicobacter Pylori Gamma-Glutamyltranspeptidase in Complex with Glutamate 2QMC ; 1.55 ; Crystal Structure of Helicobacter Pylori Gamma-Glutamyltranspeptidase T380A Mutant 2JFX ; 2.3 ; Crystal structure of Helicobacter pylori glutamate racemase in complex with D-Glutamate 2JFY ; 1.9 ; Crystal structure of Helicobacter pylori glutamate racemase in complex with D-Glutamate 2JFZ ; 1.86 ; Crystal structure of Helicobacter pylori glutamate racemase in complex with D-Glutamate and an inhibitor 2W4I ; 1.87 ; Crystal structure of Helicobacter pylori glutamate racemase in complex with D-Glutamate and an inhibitor 3GAS ; 1.8 ; Crystal Structure of Helicobacter pylori Heme Oxygenase Hugz in Complex with Heme 5XUK ; 2.3 ; Crystal structure of Helicobacter pylori holo-[acyl-carrier-protein] synthase (AcpS) in complex with coenzyme A 4TSD ; 1.53 ; Crystal structure of Helicobacter pylori HP1029 7XFP ; 1.87 ; Crystal structure of Helicobacter pylori IceA2 8XHU ; 2.4 ; Crystal structure of Helicobacter pylori IspDF 8XKF ; 2.5 ; Crystal structure of Helicobacter pylori IspDF with substrate CTP 1J6X ; 2.38 ; CRYSTAL STRUCTURE OF HELICOBACTER PYLORI LUXS 3KU7 ; 2.8 ; Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor 3MCD ; 3.2 ; Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor 4HW9 ; 4.14 ; Crystal Structure of Helicobacter pylori MscS (Closed State) 2EW7 ; 2.2 ; Crystal Structure of Helicobacter Pylori peptide deformylase 6PC0 ; 1.7 ; Crystal structure of Helicobacter pylori PPX/GppA 6PC1 ; 2.76 ; Crystal structure of Helicobacter pylori PPX/GppA (E143A) in complex with ppGpp 6PC2 ; 2.9 ; Crystal structure of Helicobacter pylori PPX/GppA in complex with GNP 6PC3 ; 2.1 ; Crystal structure of Helicobacter pylori PPX/GppA in complex with GSP 2I9I ; 1.8 ; Crystal Structure of Helicobacter pylori protein HP0492 4RI1 ; 2.3 ; Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N -acetyltransferase PseH complex with acetyl-coA 3ZCI ; 2.201 ; Crystal structure of Helicobacter pylori T4SS protein CagL in a cubic crystal form with a distorted helical conformation of the RGD-motif 3ZCJ ; 3.25 ; Crystal structure of Helicobacter pylori T4SS protein CagL in a tetragonal crystal form with a helical RGD-motif (6 Mol per ASU) 3ISH ; 2.43 ; Crystal structure of Helicobacter pylori thioredoxin reductase 6DTM ; 2.5 ; Crystal Structure of Helicobacter pylori TlpA Chemoreceptor Ligand Binding Domain 6E09 ; 2.3 ; Crystal Structure of Helicobacter pylori TlpA Chemoreceptor Ligand Binding Domain 6E0A ; 2.43 ; Crystal Structure of Helicobacter pylori TlpA Chemoreceptor Ligand Binding Domain 2D2R ; 1.88 ; Crystal structure of Helicobacter pylori Undecaprenyl Pyrophosphate Synthase 2DTN ; 2.5 ; Crystal structure of Helicobacter pylori undecaprenyl pyrophosphate synthase complexed with pyrophosphate 1E9Z ; 3.0 ; Crystal structure of Helicobacter pylori urease 3SF5 ; 2.495 ; Crystal Structure of Helicobacter pylori Urease Accessory Protein UreF/H complex 4HI0 ; 2.35 ; Crystal Structure of Helicobacter pylori Urease Accessory Protein UreF/H/G complex 1E9Y ; 3.0 ; Crystal structure of Helicobacter pylori urease in complex with acetohydroxamic acid 3TJ8 ; 1.591 ; Crystal structure of Helicobacter pylori UreE bound to Ni2+ 3TJ9 ; 2.521 ; Crystal structure of Helicobacter pylori UreE bound to Zn2+ 3TJA ; 2.0 ; Crystal structure of Helicobacter pylori UreE in the apo form 3N2E ; 2.53 ; Crystal structure of Helicobactor pylori shikimate kinase in complex with NSC162535 2WGL ; 2.0 ; Crystal structure of Helicobactor pylori UreF 3S6P ; 2.5 ; Crystal Structure of Helicoverpa Armigera Stunt Virus 1DQF ; 2.2 ; CRYSTAL STRUCTURE OF HELIX II OF THE X. LAEVIS SOMATIC 5S RRNA WITH A CYTOSINE BULGE IN TWO CONFORMATIONS 1DQH ; 1.7 ; CRYSTAL STRUCTURE OF HELIX II OF THE X. LAEVIS SOMATIC 5S RRNA WITH A CYTOSINE BULGE IN TWO CONFORMATIONS 4NK2 ; 1.96 ; Crystal structure of Hell's gate globin IV 1C3M ; 2.0 ; CRYSTAL STRUCTURE OF HELTUBA COMPLEXED TO MAN(1-3)MAN 3A5P ; 1.82 ; Crystal structure of hemagglutinin 4N5J ; 2.702 ; Crystal structure of hemagglutinin from an H7N9 influenza virus 4N64 ; 2.7014 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with a biantennary glycan receptor 4N62 ; 2.5026 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with a sulfated receptor analog 4N63 ; 2.7522 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with an O-linked glycan receptor 4N5K ; 2.7053 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with LSTa 4N61 ; 2.6023 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with LSTa, extended soaking 4N60 ; 2.9032 ; Crystal structure of hemagglutinin from an H7N9 influenza virus in complex with LSTc 6ML8 ; 2.92 ; Crystal structure of hemagglutinin from H1N1 Influenza A virus A/Denver/57 bound to the C05 antibody 6N08 ; 1.916 ; Crystal structure of hemagglutinin from influenza virus A/Netherlands/209/1980 (H3N2) 6MZK ; 2.5 ; Crystal structure of hemagglutinin from influenza virus A/Pennsylvania/14/2010 (H3N2) 6MYM ; 2.45 ; Crystal structure of hemagglutinin from influenza virus A/Phillipines/2/1982 (H3N2) 6P6P ; 2.31 ; Crystal structure of hemagglutinin from influenza virus A/Sichuan/2/1987 (H3N2) 6MXU ; 1.85 ; Crystal structure of hemagglutinin from influenza virus A/Texas/1/1977 (H3N2) 4XQU ; 3.25 ; Crystal structure of hemagglutinin from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 3'-SLN 4XQO ; 2.85 ; Crystal structure of hemagglutinin from Jiangxi-Donghu (2013) H10N8 influenza virus in complex with 6'-SLN 4XKD ; 2.482 ; Crystal structure of hemagglutinin from Taiwan (2013) H6N1 influenza virus 4XKE ; 2.356 ; Crystal structure of hemagglutinin from Taiwan (2013) H6N1 influenza virus in complex with 3'-SLN 4XKG ; 2.25 ; Crystal structure of hemagglutinin from Taiwan (2013) H6N1 influenza virus in complex with 6'-SLN 4XKF ; 2.446 ; Crystal structure of hemagglutinin from Taiwan (2013) H6N1 influenza virus in complex with LSTa 5XKU ; 1.78 ; Crystal structure of hemagglutinin globular head from an H7N9 influenza virus in complex with a neutralizing antibody HNIgGA6 5BNY ; 2.66 ; Crystal structure of hemagglutinin of A/Chicken/Guangdong/S1311/2010 (H6N6) 5BQY ; 2.78 ; Crystal structure of hemagglutinin of A/Chicken/Guangdong/S1311/2010 (H6N6) in complex with avian-like receptor LSTa 5BQZ ; 2.89 ; Crystal structure of hemagglutinin of A/Chicken/Guangdong/S1311/2010 (H6N6) in complex with human-like receptor LSTc 5BR0 ; 2.39 ; Crystal structure of hemagglutinin of A/Taiwan/2/2013 (H6N1) 5BR3 ; 2.55 ; Crystal structure of hemagglutinin of A/Taiwan/2/2013 (H6N1) in complex with LSTa 5BR6 ; 2.43 ; Crystal structure of hemagglutinin of A/Taiwan/2/2013 (H6N1) in complex with LSTc 4M40 ; 3.54 ; Crystal structure of hemagglutinin of influenza virus B/Yamanashi/166/1998 4M44 ; 2.5 ; Crystal structure of hemagglutinin of influenza virus B/Yamanashi/166/1998 in complex with avian-like receptor LSTa 2E4M ; 1.85 ; Crystal structure of hemagglutinin subcomponent complex (HA-33/HA-17) from Clostridium botulinum serotype D strain 4947 1OR4 ; 2.15 ; Crystal Structure of HemAT sensor domain from B.subtilis in the cyano-liganded form 1OR6 ; 2.71 ; Crystal Structure of HemAT sensor domain from B.subtilis in the unliganded form 1IYH ; 1.7 ; Crystal structure of hematopoietic prostaglandin D synthase 1IYI ; 1.8 ; Crystal structure of hematopoietic prostaglandin D synthase 5YWE ; 1.68 ; Crystal structure of hematopoietic prostaglandin D synthase apo form 1PD2 ; 2.3 ; CRYSTAL STRUCTURE OF HEMATOPOIETIC PROSTAGLANDIN D SYNTHASE COMPLEX WITH GLUTATHIONE 5YWX ; 1.74 ; Crystal structure of hematopoietic prostaglandin D synthase in complex with F092 5YX1 ; 1.39 ; Crystal structure of hematopoietic prostaglandin D synthase in complex with U004 4ES6 ; 2.22 ; Crystal structure of HemD (PA5259) from Pseudomonas aeruginosa (PAO1) at 2.22 A resolution 6A2J ; 2.2 ; Crystal structure of heme A synthase from Bacillus subtilis 6IED ; 3.0 ; Crystal structure of heme A synthase from Bacillus subtilis 5AZ3 ; 1.423 ; Crystal structure of heme binding protein HmuT 5B4Z ; 1.3 ; Crystal structure of heme binding protein HmuT H141A mutant 5B51 ; 1.3 ; Crystal structure of heme binding protein HmuT R242A mutant 5B50 ; 1.65 ; Crystal structure of heme binding protein HmuT Y240A 6JSB ; 1.699 ; Crystal structure of Heme binding protein HtaB from Corynebacterium glutamicum 5EXV ; 2.901 ; Crystal structure of heme binding protein HutX from Vibrio cholerae 1WXR ; 2.2 ; Crystal structure of Heme Binding protein, an autotransporter hemoglobine protease from pathogenic Escherichia coli 1S66 ; 1.8 ; Crystal structure of heme domain of direct oxygen sensor from E. coli 1S67 ; 1.5 ; Crystal structure of heme domain of direct oxygen sensor from E. coli 6EWM ; 1.4 ; Crystal structure of heme free PORPHYROMONAS GINGIVALIS HEME-BINDING PROTEIN HMUY 4RAJ ; 1.84 ; Crystal structure of heme oxygenase 2 from Chlamydomonas reinhardtii without heme. 1WE1 ; 2.5 ; Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC6803 in complex with heme 1WOW ; 2.2 ; Crystal structure of heme oxygenase-2 from Synechocystis sp. PCC 6803 complexed with heme in ferrous form 1WOV ; 1.75 ; Crystal structure of heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme 1WOX ; 2.1 ; Crystal structure of heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme and NO 7DVR ; 1.7 ; Crystal structure of heme sensor protein PefR from Streptococcus agalactiae in complex with heme 7DVT ; 2.09 ; Crystal structure of heme sensor protein PefR in complex with heme and carbon monoxide 7DVU ; 2.1 ; Crystal structure of heme sensor protein PefR in complex with heme and cyanide 5VJ0 ; 1.93 ; Crystal Structure of heme-containing DyP Type Peroxidase from Enterobacter lignolyticus 5UQ4 ; 2.201 ; Crystal structure of Heme-Degrading Protein Rv3592 from Mycobacterium tuberculosis - heme free with cleaved protein 8VC8 ; 1.8 ; Crystal structure of heme-loaded design: HEM_3.C9 4XPY ; 1.13 ; Crystal structure of hemerythrin : L114Y mutant 6U3L ; 1.75 ; Crystal structure of Hemerythrin HHE cation binding domain-containing protein: Rv2633c homolog from Mycobacterium kansasii 4XQ1 ; 1.4 ; Crystal structure of hemerythrin: L114A mutant 4XPX ; 1.03 ; Crystal structure of hemerythrin:wild-type 6PED ; 2.3 ; Crystal structure of HEMK2-TRMT112 complex 6KHS ; 1.895 ; Crystal structure of HEMK2/TRMT112 in complex with SAH and MEQ 1V75 ; 2.02 ; Crystal structure of hemoglobin D from the Aldabra giant tortoise (Geochelone gigantea) at 2.0 A resolution 1WMU ; 1.65 ; Crystal Structure of Hemoglobin D from the Aldabra Giant Tortoise, Geochelone gigantea, at 1.65 A resolution 2QLS ; 3.5 ; crystal structure of hemoglobin from dog (Canis familiaris) at 3.5 Angstrom resolution 3HRW ; 2.8 ; Crystal structure of hemoglobin from mouse (Mus musculus)at 2.8 6ZMY ; 1.655 ; Crystal structure of hemoglobin from turkey (Meleagiris gallopova) crystallized in monoclinic form at 1.66 Angstrom resolution 6ZMX ; 1.389 ; Crystal structure of hemoglobin from turkey (Meleagiris gallopova) crystallized in orthorhombic form at 1.4 Angstrom resolution 1UC3 ; 2.3 ; Crystal Structure of hemoglobin I from river lamprey 3WKY ; 1.801 ; Crystal structure of hemolymph type prophenoloxidase (proPOb) from crustacean 4W8R ; 1.519 ; Crystal structure of hemolysin A Y134F from P. mirabilis at 1.5 Angstroms resolution 2NRJ ; 2.03 ; Crystal Structure of Hemolysin binding component from Bacillus cereus 1VCL ; 1.7 ; Crystal Structure of Hemolytic Lectin CEL-III 2Z48 ; 1.7 ; Crystal Structure of Hemolytic Lectin CEL-III Complexed with GalNac 2Z49 ; 1.95 ; Crystal Structure of Hemolytic Lectin CEL-III Complexed with methyl-alpha-D-galactopylanoside 4RM6 ; 1.6 ; Crystal structure of Hemopexin Binding Protein 3OYO ; 2.1 ; Crystal structure of hemopexin fold protein CP4 from cow pea 2HPD ; 2.0 ; CRYSTAL STRUCTURE OF HEMOPROTEIN DOMAIN OF P450BM-3, A PROTOTYPE FOR MICROSOMAL P450'S 3A8Z ; 1.4 ; Crystal structure of hen egg white lysozyme 7D0W ; 1.8 ; Crystal structure of Hen Egg White Lysozyme 7S27 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S28 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S29 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2A ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2B ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2C ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2D ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2E ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2F ; 1.58 ; Crystal structure of hen egg white lysozyme 7S2G ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2Q ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2U ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2V ; 1.6 ; Crystal structure of hen egg white lysozyme 7S2W ; 1.6 ; Crystal structure of hen egg white lysozyme 7S30 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S31 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S32 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S33 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S34 ; 1.6 ; Crystal structure of hen egg white lysozyme 7S35 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FP6 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FP7 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FP8 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPB ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPD ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPM ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPN ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPP ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPR ; 1.6 ; Crystal structure of hen egg white lysozyme 8FPU ; 1.6 ; Crystal structure of hen egg white lysozyme 8FRY ; 1.6 ; Crystal structure of hen egg white lysozyme 8FS0 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FS9 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSA ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSC ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSF ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSG ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSH ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSM ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSN ; 1.6 ; Crystal structure of hen egg white lysozyme 8FST ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSU ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSV ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSW ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSX ; 1.6 ; Crystal structure of hen egg white lysozyme 8FSY ; 1.6 ; Crystal structure of hen egg white lysozyme 8FT0 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FT1 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FT2 ; 1.6 ; Crystal structure of hen egg white lysozyme 8FT3 ; 1.6 ; Crystal structure of hen egg white lysozyme 1G7I ; 1.8 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME (HEL) COMPLEXED WITH THE MUTANT ANTI-HEL MONOCLONAL ANTIBODY D1.3 (VLW92F) 1G7J ; 1.75 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME (HEL) COMPLEXED WITH THE MUTANT ANTI-HEL MONOCLONAL ANTIBODY D1.3 (VLW92H) 1G7L ; 2.0 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME (HEL) COMPLEXED WITH THE MUTANT ANTI-HEL MONOCLONAL ANTIBODY D1.3 (VLW92S) 1G7M ; 1.9 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME (HEL) COMPLEXED WITH THE MUTANT ANTI-HEL MONOCLONAL ANTIBODY D1.3 (VLW92V) 1G7H ; 1.85 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME (HEL) COMPLEXED WITH THE MUTANT ANTI-HEL MONOCLONAL ANTIBODY D1.3(VLW92A) 8F2G ; 1.84 ; Crystal structure of Hen Egg White Lysozyme at 0.44 GPa 8D5S ; 1.5 ; Crystal structure of hen egg white lysozyme at 100 Kelvin 8D5T ; 1.5 ; Crystal structure of hen egg white lysozyme at 100 Kelvin (Duplicate) 8D5U ; 1.498 ; Crystal structure of hen egg white lysozyme at 100 Kelvin (Triplicate) 8D5W ; 1.499 ; Crystal structure of hen egg white lysozyme at 125 Kelvin 8D5X ; 1.5 ; Crystal structure of hen egg white lysozyme at 125 Kelvin (Duplicate) 8D5Z ; 1.5 ; Crystal structure of hen egg white lysozyme at 125 Kelvin (Triplicate) 8D60 ; 1.5 ; Crystal structure of hen egg white lysozyme at 150 Kelvin 8D61 ; 1.5 ; Crystal structure of hen egg white lysozyme at 150 Kelvin (Duplicate) 8D62 ; 1.5 ; Crystal structure of hen egg white lysozyme at 150 Kelvin (Triplicate) 8D69 ; 1.5 ; Crystal structure of hen egg white lysozyme at 175 Kelvin 8D6B ; 1.5 ; Crystal structure of hen egg white lysozyme at 175 Kelvin (Duplicate) 8D6I ; 1.5 ; Crystal structure of hen egg white lysozyme at 175 Kelvin (Triplicate) 8D75 ; 1.5 ; Crystal structure of hen egg white lysozyme at 200 Kelvin 8D77 ; 1.5 ; Crystal structure of hen egg white lysozyme at 200 Kelvin (Duplicate) 8D7A ; 1.5 ; Crystal structure of hen egg white lysozyme at 200 Kelvin (Triplicate) 8D7B ; 1.5 ; Crystal structure of hen egg white lysozyme at 225 Kelvin 8D7C ; 1.5 ; Crystal structure of hen egg white lysozyme at 225 Kelvin (Duplicate) 8D7D ; 1.5 ; Crystal structure of hen egg white lysozyme at 225 Kelvin (Triplicate) 8D7J ; 1.5 ; Crystal structure of hen egg white lysozyme at 250 Kelvin 8D7L ; 1.5 ; Crystal structure of hen egg white lysozyme at 250 Kelvin (Duplicate) 8D7Q ; 1.5 ; Crystal structure of hen egg white lysozyme at 250 Kelvin (Triplicate) 8D7S ; 1.5 ; Crystal structure of hen egg white lysozyme at 275 Kelvin 8D8A ; 1.5 ; Crystal structure of hen egg white lysozyme at 275 Kelvin (Duplicate) 8D8B ; 1.5 ; Crystal structure of hen egg white lysozyme at 275 Kelvin (Triplicate) 8D8C ; 1.5 ; Crystal structure of hen egg white lysozyme at 300 Kelvin 8D8D ; 1.5 ; Crystal structure of hen egg white lysozyme at 300 Kelvin (Duplicate) 8D8E ; 1.5 ; Crystal structure of hen egg white lysozyme at 300 Kelvin (Triplicate) 8D8F ; 1.5 ; Crystal structure of hen egg white lysozyme at 325 Kelvin 8D8G ; 1.5 ; Crystal structure of hen egg white lysozyme at 325 Kelvin (Duplicate) 8D8H ; 1.5 ; Crystal structure of hen egg white lysozyme at 325 Kelvin (Triplicate) 4HPI ; 1.19 ; Crystal Structure of Hen Egg White Lysozyme complex with GN2-M 4E3U ; 1.5 ; Crystal Structure of Hen Egg White Lysozyme Cryoprotected in Proline 6A10 ; 1.13 ; Crystal structure of hen egg white lysozyme crystallized by ammonium sulfate 4B0D ; 1.1 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME FROM AN AUTO HARVESTED CRYSTAL 4AXT ; 1.1 ; CRYSTAL STRUCTURE OF HEN EGG WHITE LYSOZYME FROM AN AUTO HARVESTED CRYSTAL, Control Experiment 4XAD ; 1.25 ; Crystal structure of hen egg white lysozyme in complex with Galf-GlcNAc 4HP0 ; 1.19 ; Crystal Structure of Hen Egg White Lysozyme in complex with GN3-M 6PBB ; 1.89151 ; Crystal structure of Hen Egg White Lysozyme in complex with I3C 7YNU ; 1.44 ; Crystal structure of Hen Egg white LYSOZYME introduced with O-(2-nitrobenzyl)-L-tyrosine 3WW6 ; 1.53 ; Crystal Structure of hen egg white lysozyme mutant N46D/D52S 3WW5 ; 1.53 ; Crystal Structure of hen egg white lysozyme mutant N46E/D52S 5AMY ; 1.8 ; Crystal Structure of Hen egg white lysozyme processed with the CrystalDirect automated mounting and cryo-cooling technology 3A94 ; 1.55 ; Crystal structure of hen egg white lysozyme soaked with 100mM RhCl3 3A96 ; 1.75 ; Crystal structure of hen egg white lysozyme soaked with 100mM RhCl3 at pH2.2 3A95 ; 1.5 ; Crystal structure of hen egg white lysozyme soaked with 100mM RhCl3 at pH3.8 3A92 ; 1.5 ; Crystal structure of hen egg white lysozyme soaked with 10mM RhCl3 3A90 ; 1.45 ; Crystal structure of hen egg white lysozyme soaked with 1mM RhCl3 3A93 ; 1.55 ; Crystal structure of hen egg white lysozyme soaked with 30mM RhCl3 3A91 ; 1.55 ; Crystal structure of hen egg white lysozyme soaked with 5mM RhCl3 7BHL ; 1.45 ; Crystal structure of hen egg white lysozyme using drop-on-drop SFX method - 0.2 s mixing with N-acetyl-D-glucosamine. 7BHM ; 1.45 ; Crystal structure of hen egg white lysozyme using drop-on-drop SFX method - 0.7 s mixing with N-acetyl-D-glucosamine. 7BHN ; 1.45 ; Crystal structure of hen egg white lysozyme using drop-on-drop SFX method - 2 s mixing with N-acetyl-D-glucosamine. 7BHK ; 1.45 ; Crystal structure of hen egg white lysozyme using drop-on-drop SFX method. 4Z98 ; 1.55 ; Crystal Structure of Hen Egg White Lysozyme using Serial X-ray Diffraction Data Collection 1AVE ; 2.8 ; CRYSTAL STRUCTURE OF HEN EGG-WHITE APO-AVIDIN IN RELATION TO ITS THERMAL STABILITY PROPERTIES 3WUL ; 2.0 ; Crystal structure of hen egg-white lysozyme 3WUM ; 2.0 ; Crystal structure of hen egg-white lysozyme 3WUN ; 2.4 ; Crystal structure of hen egg-white lysozyme 3WXT ; 2.0 ; Crystal structure of hen egg-white lysozyme 3WXU ; 2.0 ; Crystal structure of hen egg-white lysozyme 4YM8 ; 2.1 ; Crystal structure of hen egg-white lysozyme 4YOP ; 2.1 ; CRYSTAL STRUCTURE OF HEN EGG-WHITE LYSOZYME 5B1F ; 2.3 ; Crystal structure of hen egg-white lysozyme 5B1G ; 2.3 ; Crystal structure of hen egg-white lysozyme 5WR9 ; 1.8 ; Crystal structure of hen egg-white lysozyme 5WRA ; 1.45 ; Crystal structure of hen egg-white lysozyme 5WRB ; 2.013 ; Crystal structure of hen egg-white lysozyme 2LYM ; 2.0 ; CRYSTAL STRUCTURE OF HEN EGG-WHITE LYSOZYME AT A HYDROSTATIC PRESSURE OF 1000 ATMOSPHERES 3LYM ; 2.0 ; CRYSTAL STRUCTURE OF HEN EGG-WHITE LYSOZYME AT A HYDROSTATIC PRESSURE OF 1000 ATMOSPHERES 6F2I ; 1.2 ; Crystal structure of Hen Egg-White Lysozyme co-crystallized in presence of 100 mM Tb-Xo4 6FRO ; 1.42 ; Crystal structure of Hen Egg-White Lysozyme co-crystallized in presence of 100 mM Tb-Xo4 and 100 mM potassium iodide. 6F2K ; 1.5 ; Crystal structure of Hen Egg-White Lysozyme co-crystallized in presence of 100 mM Tb-Xo4 and 100 mM potassium phosphate monobasic. 6F2J ; 1.3 ; Crystal structure of Hen Egg-White Lysozyme co-crystallized in presence of 100 mM Tb-Xo4 and 100 mM sodium sulfate 4PRQ ; 1.72 ; CRYSTAL STRUCTURE OF HEN EGG-WHITE LYSOZYME IN COMPLEX WITH SCLX4 AT 1.72 A RESOLUTION 3WMK ; 1.46 ; Crystal structure of Hen egg-white lysozyme in pH 4.5 Sodium Acetatewith 1M NaCl at 277K 4NHI ; 1.34 ; Crystal structure of Hen egg-white lysozyme in Tris buffer at pH 7.5 with Magnesium formate 1RYX ; 3.5 ; Crystal structure of hen serum transferrin in apo- form 6VY6 ; 2.6 ; Crystal structure of Hendra receptor binding protein head domain in complex with human neutralizing antibody HENV-26 6VY4 ; 2.0 ; Crystal structure of Hendra receptor binding protein head domain in complex with human neutralizing antibody HENV-32 6PD4 ; 2.2 ; Crystal Structure of Hendra Virus Attachment G Glycoprotein 6PDL ; 2.7 ; Crystal Structure of Hendra Virus Attachment G Glycoprotein in Complex with Receptor Ephrin-B2 1WP8 ; 2.2 ; crystal structure of Hendra Virus fusion core 6BK6 ; 2.5 ; Crystal structure of Hendra virus matrix protein 5X3D ; 1.93 ; Crystal structure of HEP-CMP-bound form of cytidylyltransferase (CyTase) domain of Fom1 from Streptomyces wedmorensis 3F5F ; 2.65 ; Crystal structure of heparan sulfate 2-O-sulfotransferase from gallus gallus as a maltose binding protein fusion. 1VKJ ; 2.5 ; Crystal structure of heparan sulfate 3-O-sulfotransferase isoform 1 in the presence of PAP 5T03 ; 2.1 ; Crystal structure of heparan sulfate 6-O-sulfotransferase with bound PAP and glucuronic acid containing hexasaccharide substrate 5T0A ; 1.95 ; Crystal Structure of Heparan Sulfate 6-O-Sulfotransferase with bound PAP and heptasaccharide substrate 5T05 ; 1.952 ; Crystal structure of heparan sulfate 6-O-sulfotransferase with bound PAP and IdoA2S containing hexasaccharide substrate 4MMH ; 2.2 ; Crystal structure of heparan sulfate lyase HepC from Pedobacter heparinus 4MMI ; 2.4 ; Crystal structure of heparan sulfate lyase HepC mutant from Pedobacter heparinus 8OHW ; 1.27 ; Crystal structure of heparanase from Burkholderia pseudomallei in complex with siastatin B derived inhibitor 1FNH ; 2.8 ; CRYSTAL STRUCTURE OF HEPARIN AND INTEGRIN BINDING SEGMENT OF HUMAN FIBRONECTIN 3IN9 ; 2.0 ; Crystal structure of heparin lyase I complexed with disaccharide heparin 3IMN ; 1.81 ; Crystal structure of heparin lyase I from Bacteroides thetaiotaomicron 3INA ; 1.9 ; Crystal structure of heparin lyase I H151A mutant complexed with a dodecasaccharide heparin 2FUQ ; 2.15 ; Crystal Structure of Heparinase II 2FUT ; 2.3 ; Crystal Structure of Heparinase II Complexed with a Disaccharide Product 4FNV ; 1.6 ; Crystal Structure of Heparinase III 4NWK ; 1.62 ; Crystal structure of hepatis c virus protease (ns3) complexed with bms-605339 aka n-(tert-butoxycarbonyl)-3-me thyl-l-valyl-(4r)-n-((1r,2s)-1-((cyclopropylsulfonyl)carba moyl)-2-vinylcyclopropyl)-4-((6-methoxy-1-isoquinolinyl)ox y)-l-prolinamide 4NWL ; 2.2 ; Crystal structure of hepatis c virus protease (ns3) complexed with bms-650032 aka n-(tert-butoxycarbonyl)-3-me thyl-l-valyl-(4r)-4-((7-chloro-4-methoxy-1-isoquinolinyl)o xy)-n-((1r,2s)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylc yclopropyl)-l-prolinamide 6BQJ ; 1.69 ; CRYSTAL STRUCTURE OF HEPATIS C VIRUS PROTEASE (NS3) COMPLEXED WITH TRIPEPTIDIC ACYL SULFONAMIDE INHIBITOR (COMPOUND 16) 6BQK ; 1.97 ; CRYSTAL STRUCTURE OF HEPATIS C VIRUS PROTEASE (NS3) COMPLEXED WITH TRIPEPTIDIC ACYL SULFONAMIDE INHIBITOR (COMPOUND 18) 4QPI ; 3.01 ; Crystal structure of hepatitis A virus 6MWN ; 2.838 ; Crystal structure of hepatitis A virus IRES domain V in complex with Fab HAVx 3V6Z ; 3.34 ; Crystal Structure of Hepatitis B Virus e-antigen 5D7Y ; 3.894 ; Crystal structure of Hepatitis B virus T=4 capsid in complex with the allosteric modulator HAP18 3MS6 ; 2.085 ; Crystal structure of Hepatitis B X-Interacting Protein (HBXIP) 3MSH ; 1.51 ; Crystal structure of Hepatitis B X-Interacting Protein at high resolution 6MEK ; 3.1 ; Crystal structure of Hepatitis C virus envelope glycoprotein E2 core in complex with human antibodies HEPC3 and HEPC46 6MEJ ; 2.8 ; Crystal structure of Hepatitis C virus envelope glycoprotein E2 ectodomain in complex with human antibodies HEPC3 and HEPC46 6U8D ; 1.807 ; Crystal structure of hepatitis C virus IRES junction IIIabc in complex with Fab HCV2 6U8K ; 2.75 ; Crystal structure of hepatitis C virus IRES junction IIIabc in complex with Fab HCV3 2PN3 ; 2.9 ; Crystal Structure of Hepatitis C Virus IRES Subdomain IIa 2PN4 ; 2.32 ; Crystal Structure of Hepatitis C Virus IRES Subdomain IIa 4OK6 ; 2.4 ; Crystal Structure of Hepatitis C Virus NS3 Helicase Inhibitor Co-complex with Compound 13 [[1-(2-methoxy-5-nitrobenzyl)-1H-indol-3-yl]acetic acid] 4OKS ; 2.25 ; Crystal Structure of Hepatitis C Virus NS3 Helicase Inhibitor Co-complex with Compound 19 [[6-(3,5-diaminophenyl)-1-(2-methoxy-5-nitrobenzyl)-1H-indol-3-yl]acetic acid] 4OK3 ; 2.3 ; Crystal Structure of Hepatitis C Virus NS3 Helicase Inhibitor Co-complex with Compound 7 [[1-(3-chlorobenzyl)-1H-indol-3-yl]acetic acid] 4OK5 ; 2.15 ; Crystal Structure of Hepatitis C Virus NS3 Helicase Inhibitor Co-complex with Compound 9 [1-(3-ethynylbenzyl)-1H-indol-3-yl]acetic acid] 4OJQ ; 2.25 ; Crystal Structure of Hepatitis C Virus NS3 Helicase Inhibitor Co-complex with Fragment 1 [(5-bromo-1H-indol-3-yl)acetic acid] 2ZJO ; 2.5 ; Crystal structure of hepatitis C virus NS3 helicase with a novel inhibitor 2P59 ; 2.9 ; Crystal Structure of Hepatitis C Virus NS3.4A protease 2WHO ; 2.0 ; CRYSTAL STRUCTURE OF HEPATITIS C VIRUS NS5B POLYMERASE FROM 1B GENOTYPE IN COMPLEX WITH A NON-NUCLEOSIDE INHIBITOR 2WCX ; 2.0 ; Crystal Structure of Hepatitis C Virus NS5B Polymerase in Complex with Thienopyrrole-Based Finger-Loop Inhibitors 2BRK ; 2.3 ; Crystal structure of Hepatitis C virus polymerase in complex with an allosteric inhibitor (compound 1) 2BRL ; 2.4 ; Crystal structure of Hepatitis C virus polymerase in complex with an allosteric inhibitor (compound 2) 2JC0 ; 2.2 ; CRYSTAL STRUCTURE OF HEPATITIS C VIRUS POLYMERASE IN COMPLEX WITH INHIBITOR SB655264 2JC1 ; 2.0 ; CRYSTAL STRUCTURE OF HEPATITIS C VIRUS POLYMERASE IN COMPLEX WITH INHIBITOR SB698223 3CJ2 ; 1.75 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with optimized small molecule fragments 3CJ3 ; 1.87 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with optimized small molecule fragments 3CJ4 ; 2.07 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with optimized small molecule fragments 3CJ5 ; 1.92 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with optimized small molecule fragments 3CIZ ; 1.87 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with small molecule fragments 3CJ0 ; 1.9 ; Crystal structure of hepatitis c virus rna-dependent rna polymerase ns5b in complex with small molecule fragments 7XT3 ; 2.15 ; Crystal Structure of Hepatitis virus A 2C protein 128-335 aa 3CBB ; 2.0 ; Crystal Structure of Hepatocyte Nuclear Factor 4alpha in complex with DNA: Diabetes Gene Product 8EK7 ; 1.65 ; Crystal structure of Hepes and Mg bound 2,3-diketo-5-methylthiopentyl-1-phosphate enolase-phosphatase from Klebsiella aerogenes 6KMM ; 1.93 ; Crystal Structure of HEPES bound Dye Decolorizing peroxidase from Bacillus subtilis 7JHX ; 1.91 ; Crystal structure of hEPG5 LIR/GABARAPL1 complex 7KPM ; 1.608 ; Crystal structure of hEphB1 bound with ADP 6UMW ; 1.982 ; Crystal structure of hEphB1 bound with chlortetracycline 7KPL ; 2.705 ; Crystal structure of hEphB1 in apo form 4NQF ; 2.7 ; Crystal structure of HEPN domain protein 7AE2 ; 2.0 ; Crystal structure of HEPN(H107A-Y109F) toxin in complex with MNT antitoxin 7AE8 ; 2.0 ; Crystal structure of HEPN(R102A) toxin 5H9D ; 2.68 ; Crystal structure of Heptaprenyl Diphosphate Synthase from Staphylococcus aureus 3D44 ; 1.9 ; Crystal structure of HePTP in complex with a dually phosphorylated Erk2 peptide mimetic 3D42 ; 2.46 ; Crystal structure of HePTP in complex with a monophosphorylated Erk2 peptide 3O4S ; 1.9 ; Crystal Structure of HePTP with a Closed WPD Loop and an Ordered E-Loop 3O4U ; 2.25 ; Crystal Structure of HePTP with an Atypically Open WPD Loop 3O4T ; 2.6 ; Crystal Structure of HePTP with an Open WPD Loop and Partially Depleted Active Site 5JIK ; 1.82 ; Crystal structure of HER2 binding IgG1-Fc (Fcab H10-03-6) 5JIH ; 1.663 ; Crystal structure of HER2 binding IgG1-Fc (Fcab STAB19) 6LBX ; 2.03 ; Crystal structure of HER2 Domain IV and Rb-H2 3UUC ; 2.1 ; Crystal structure of hERa-LBD (wt) in complex with bisphenol-C 4MGA ; 1.8 ; Crystal structure of hERa-LBD (Y537S) in complex with 4-tert-octylphenol 4MG8 ; 1.85 ; Crystal structure of hERa-LBD (Y537S) in complex with alpha-zearalanol 4TUZ ; 1.9 ; Crystal structure of hERa-LBD (Y537S) in complex with alpha-zearalenol 4MGC ; 2.15 ; Crystal structure of hERa-LBD (Y537S) in complex with benzophenone-2 4MG6 ; 2.1 ; Crystal structure of hERa-LBD (Y537S) in complex with benzylbutylphtalate 5JMM ; 2.1 ; Crystal structure of hERa-LBD (Y537S) in complex with biochanin A 3UU7 ; 2.196 ; Crystal structure of hERa-LBD (Y537S) in complex with bisphenol-A 3UUA ; 2.05 ; Crystal structure of hERa-LBD (Y537S) in complex with bisphenol-AF 4MG9 ; 2.0 ; Crystal structure of hERa-LBD (Y537S) in complex with butylparaben 4MG5 ; 2.05 ; Crystal structure of hERa-LBD (Y537S) in complex with chlordecone 3UUD ; 1.6 ; Crystal structure of hERa-LBD (Y537S) in complex with estradiol 4MG7 ; 2.15 ; Crystal structure of hERa-LBD (Y537S) in complex with ferutinine 4MGD ; 1.9 ; Crystal structure of hERa-LBD (Y537S) in complex with HPTE 4TV1 ; 1.85 ; Crystal structure of hERa-LBD (Y537S) in complex with propylparaben 4MGB ; 1.85 ; Crystal structure of hERa-LBD (Y537S) in complex with TCBPA 7WWX ; 1.36 ; Crystal structure of Herbaspirillum huttiense L-arabinose 1-dehydrogenase (NAD bound form) 5JRJ ; 1.7 ; Crystal Structure of Herbaspirillum seropedicae RecA 7RGW ; 1.99 ; Crystal structure of HERC2 DOC domain 6WW4 ; 2.252 ; Crystal structure of HERC2 ZZ domain in complex with histone H3 tail 6WW3 ; 2.096 ; Crystal structure of HERC2 ZZ domain in complex with SUMO1 tail 1DML ; 2.7 ; CRYSTAL STRUCTURE OF HERPES SIMPLEX UL42 BOUND TO THE C-TERMINUS OF HSV POL 6T5A ; 1.83 ; Crystal structure of herpes simplex virus 1 pUL7:pUL51 complex 3KV0 ; 1.9 ; Crystal structure of HET-C2: A FUNGAL GLYCOLIPID TRANSFER PROTEIN (GLTP) 7X36 ; 1.92 ; Crystal Structure of hetero-Diels-Alderase EupfF 7X2X ; 1.58 ; Crystal Structure of hetero-Diels-Alderase PycR1 in complex with 10-hydroxy-8E-humulene 7X2S ; 1.92 ; Crystal Structure of hetero-Diels-Alderase PycR1 in complex with Neosetophomone B and tropolone o-quinone methide 3AOE ; 2.6 ; Crystal structure of hetero-hexameric glutamate dehydrogenase from Thermus thermophilus (Leu bound form) 5Y3T ; 2.4 ; Crystal structure of hetero-trimeric core of LUBAC: HOIP double-UBA complexed with HOIL-1L UBL and SHARPIN UBL 4JJN ; 3.09 ; Crystal structure of heterochromatin protein Sir3 in complex with a silenced yeast nucleosome 3QOD ; 3.38 ; Crystal Structure of Heterocyst Differentiation Protein, HetR from Fischerella mv11 3QOE ; 3.004 ; Crystal Structure of Heterocyst Differentiation Protein, HetR from Fischerella mv11 8QZO ; 2.29 ; Crystal structure of heterodimeric complex of CdpB1 and CdpB2 from A. fulgidus 1R0N ; 2.6 ; Crystal Structure of Heterodimeric Ecdsyone receptor DNA binding complex 2B9S ; 2.27 ; Crystal Structure of heterodimeric L. donovani topoisomerase I-vanadate-DNA complex 3MAS ; 3.2 ; Crystal structure of heterodimeric R132H mutant of human cytosolic NADP(+)-dependent isocitrate dehydrogenase in complex with NADP and isocitrate 7V6W ; 2.55 ; Crystal structure of heterohexameric Sa2YoeB-Sa2YefM complex bound to 26bp-DNA 2D1P ; 2.15 ; crystal structure of heterohexameric TusBCD proteins, which are crucial for the tRNA modification 6L8E ; 2.35 ; Crystal structure of heterohexameric YoeB-YefM complex bound to 26bp-DNA 4GMT ; 2.05 ; Crystal structure of heterosubtypic Fab S139/1 4GMS ; 2.95 ; Crystal structure of heterosubtypic Fab S139/1 in complex with influenza A H3 hemagglutinin 7V5Z ; 1.99 ; Crystal structure of heterotetrameric complex of Sa2YoeB-Sa2YefM toxin-antitoxin from Staphylococcus aureus 6L8F ; 2.4 ; Crystal structure of heterotetrameric complex of YoeB-YefM toxin-antitoxin from Staphylococcus aureus. 4CQL ; 2.85 ; Crystal structure of heterotetrameric human ketoacyl reductase complexed with NAD 4CQM ; 2.339 ; Crystal structure of heterotetrameric human ketoacyl reductase complexed with NAD and NADP 1X31 ; 2.15 ; Crystal Structure of Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 1VRQ ; 2.2 ; Crystal Structure of Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 in complex with Folinic Acid 8SZY ; 2.31 ; Crystal Structure of Heterotrimeric Anti-TIGIT Fabs in complex with human TIGIT 6NE6 ; 1.7 ; Crystal Structure of heterotrimeric G-protein alpha subunit Galpha7 from Naegleria fowleri 4HRI ; 2.954 ; Crystal structure of HetR in complex with a 21-bp palindromic DNA at the upstream of the hetP promoter from Anabaena 1QTK ; 2.03 ; CRYSTAL STRUCTURE OF HEW LYSOZYME UNDER PRESSURE OF KRYPTON (55 BAR) 1C10 ; 2.03 ; CRYSTAL STRUCTURE OF HEW LYSOZYME UNDER PRESSURE OF XENON (8 BAR) 6AC2 ; 1.23 ; Crystal Structure of HEWL at pH 2.2 6ABN ; 1.17 ; Crystal Structure of HEWL at pH 8.6 4CJ2 ; 1.5 ; Crystal structure of HEWL in complex with affitin H4 6AHL ; 1.8 ; Crystal Structure of HEWL in complex with Cinnamaldehyde (in the aroma form) after 5 hours under fibrillation conditions 6AHH ; 2.1 ; Crystal Structure of HEWL in complex with Phenylethyl alcohol (in the aroma form) after 5 hours under fibrillation conditions 6AD5 ; 1.75 ; Crystal Structure of HEWL in complex with TEMED (in the aroma form) after 24 hours under fibrillation conditions 6AEA ; 1.4 ; Crystal Structure of HEWL in complex with TEMED (in the aroma form) after 5 hours under fibrillation conditions 6ABZ ; 1.7 ; Crystal Structure of HEWL in deionized water 4PHI ; 1.811 ; Crystal structure of HEWL with hexatungstotellurate(VI) 1KHI ; 1.78 ; CRYSTAL STRUCTURE OF HEX1 8BYU ; 1.85 ; Crystal Structure of HexaBody-CD38 Fab in complex with CD38 5ZIQ ; 1.5 ; Crystal structure of hexacoordinated heme protein from anhydrobiotic tardigrade at pH 4 5ZM9 ; 2.7 ; Crystal structure of hexacoordinated heme protein from anhydrobiotic tardigrade at pH 7 4ZV7 ; 2.0 ; Crystal structure of hexagonal form of lipase B from Candida antarctica 2DGA ; 1.8 ; Crystal structure of hexameric beta-glucosidase in wheat 5NVD ; 2.5 ; Crystal structure of hexameric CBS-CP12 protein from bloom-forming cyanobacteria at 2.5 A resolution in P6322 crystal form 5NPL ; 2.79 ; Crystal structure of hexameric CBS-CP12 protein from bloom-forming cyanobacteria, Yb-derivative at 2.8 A resolution 7V5Y ; 2.25 ; Crystal structure of hexameric complex of Sa2YoeB-Sa2YefM toxin-antitoxin from Staphylococcus aureus 2HYB ; 2.5 ; Crystal Structure of Hexameric DsrEFH 1HC1 ; 3.2 ; CRYSTAL STRUCTURE OF HEXAMERIC HAEMOCYANIN FROM PANULIRUS INTERRUPTUS REFINED AT 3.2 ANGSTROMS RESOLUTION 1HCY ; 3.2 ; CRYSTAL STRUCTURE OF HEXAMERIC HAEMOCYANIN FROM PANULIRUS INTERRUPTUS REFINED AT 3.2 ANGSTROMS RESOLUTION 4BMG ; 3.0 ; Crystal structure of hexameric HBc149 Y132A 4QIV ; 2.3 ; Crystal structure of hexameric microcomparment shell protein from Aeromonas hydrophila 7EFW ; 1.65 ; Crystal structure of hexameric state of C-phycocyanin from Thermoleptolyngbya sp. O-77 3IXC ; 1.61 ; Crystal structure of hexapeptide transferase family protein from Anaplasma phagocytophilum 3NZ2 ; 2.35 ; Crystal Structure of Hexapeptide-Repeat containing-Acetyltransferase VCA0836 Complexed with Acetyl Co Enzyme A from Vibrio cholerae O1 biovar eltor 6KRJ ; 1.72 ; Crystal structure of Hexokinase 6KSR ; 1.37 ; Crystal structure of Hexokinase from Eimeria tenella 7AL0 ; 2.2 ; Crystal Structure of Heymonin, a Novel Frog-derived Peptide 5VYG ; 2.2 ; Crystal structure of hFA9 EGF repeat with O-glucose trisaccharide 5ZOD ; 1.9 ; Crystal Structure of hFen1 in apo form 3CAF ; 1.96 ; Crystal Structure of hFGFR2 D2 Domain 4J5Y ; 2.0953 ; Crystal structure of Hfq from Pseudomonas aeruginosa in complex with ATP 4J6W ; 1.8 ; Crystal structure of HFQ from Pseudomonas aeruginosa in complex with CTP 4J6X ; 2.222 ; Crystal structure of Hfq from Pseudomonas aeruginosa in complex with UTP 4V2S ; 3.48 ; Crystal structure of Hfq in complex with the sRNA RydC 2YHT ; 2.9 ; Crystal structure of Hfq riboregulator from E. coli (P1 space group) 2Y90 ; 2.252 ; Crystal structure of Hfq riboregulator from E. coli (P6 space group) 5AWG ; 4.278 ; Crystal structure of Hg-bound SufB-SufC-SufD complex from Escherichia coli 3K2U ; 2.35 ; Crystal structure of HGFA in complex with the allosteric inhibitory antibody Fab40 2WUB ; 2.9 ; Crystal structure of HGFA in complex with the allosteric non- inhibitory antibody Fab40.deltaTrp 2WUC ; 2.7 ; Crystal structure of HGFA in complex with the allosteric non- inhibitory antibody Fab40.deltaTrp and Ac-KQLR-chloromethylketone 3OHP ; 2.04 ; Crystal structure of HGPRT from Vibrio cholerae 1PZM ; 2.1 ; Crystal structure of HGPRT-ase from Leishmania tarentolae in complex with GMP 6ATO ; 1.55 ; Crystal structure of hGSTA1-1 complexed with GSH and MPD in each subunit 6ATR ; 1.29 ; Crystal structure of hGSTA1-1 complexed with two GSH analogues in each subunit 5JCU ; 1.93 ; Crystal Structure of hGSTA1-1 with Glutathione Adduct of Phenethyl Isothiocyanate and Cystein Adduct of Phenethyl Isothiocyanate 1TDI ; 2.4 ; Crystal Structure of hGSTA3-3 in Complex with Glutathione 5L6X ; 2.0 ; CRYSTAL STRUCTURE OF HGSTP1-1 COMPLEXED WITH FERROCENE-GLUTATHIONE CONJUGATE 5JCW ; 1.945 ; Crystal Structure of hGSTP1-1 with Glutathione Adduct of Phenethyl Isothiocyanate 6AP9 ; 1.55 ; Crystal Structure of hGSTP1-1 with S-nitrosation of Cys101 3PGT ; 2.14 ; CRYSTAL STRUCTURE OF HGSTP1-1[I104] COMPLEXED WITH THE GSH CONJUGATE OF (+)-ANTI-BPDE 4PGT ; 2.1 ; CRYSTAL STRUCTURE OF HGSTP1-1[V104] COMPLEXED WITH THE GSH CONJUGATE OF (+)-ANTI-BPDE 4EC0 ; 1.85 ; Crystal structure of hH-PGDS with water displacing inhibitor 4EDY ; 1.72 ; Crystal structure of hH-PGDS with water displacing inhibitor 4EDZ ; 2.0 ; Crystal structure of hH-PGDS with water displacing inhibitor 4EE0 ; 1.75 ; Crystal structure of hH-PGDS with water displacing inhibitor 5LOD ; 1.9 ; Crystal structure of HhaI DNA methyltransferase in APO form 3AY5 ; 2.5 ; Crystal structure of HHM (human homologue of murine maternal Id-like molecule) 5T7X ; 2.35 ; Crystal structure of HHV-4 EBNA1 DNA binding domain (patient-derived, nasopharyngeal carcinoma) bound to DNA 1YLI ; 1.95 ; Crystal structure of HI0827, a hexameric broad specificity acyl-coenzyme A thioesterase 3BJK ; 1.9 ; Crystal structure of HI0827, a hexameric broad specificity acyl-coenzyme A thioesterase: The Asp44Ala mutant enzyme 3EMI ; 1.8 ; Crystal structure of Hia 307-422 non-adhesive domain 1S7M ; 2.1 ; Crystal Structure of HiaBD1 7CUD ; 1.8 ; Crystal structure of HID in the unbound form 7CUE ; 2.75 ; Crystal structure of HID2 bound to human Hemoglobin 2HBT ; 1.6 ; Crystal structure of HIF prolyl hydroxylase EGLN-1 in complex with a biologically active inhibitor 2HBU ; 1.85 ; Crystal structure of HIF prolyl hydroxylase EGLN-1 in complex with a biologically active inhibitor 6BVB ; 2.002 ; Crystal structure of HIF-2alpha-pVHL-elongin B-elongin C 6D0C ; 1.5 ; Crystal structure of HIF2a-B*:ARNT-B* complex 6IRP ; 1.954 ; Crystal structure of HigA from Shigella flexneri 5IFG ; 2.702 ; Crystal structure of HigA-HigB complex from E. Coli 5YCL ; 3.101 ; Crystal structure of HigBA complex from Shigella flexneri 1MQA ; 2.5 ; Crystal structure of high affinity alphaL I domain in the absence of ligand or metal 1MQ9 ; 2.0 ; Crystal structure of high affinity alphaL I domain with ligand mimetic crystal contact 2AIF ; 1.895 ; Crystal Structure of High Mobility Like Protein, NHP2, putative from Cryptosporidium parvum 3ZVJ ; 3.0 ; Crystal structure of high molecular weight (HMW) form of Peroxiredoxin I from Schistosoma mansoni 4C29 ; 2.202 ; Crystal Structure of High-Affinity von Willebrand Factor A1 domain with Disulfide Mutation 4C2B ; 2.8 ; Crystal Structure of High-Affinity von Willebrand Factor A1 domain with Disulfide Mutation in Complex with High Affinity GPIb alpha 4C2A ; 2.081 ; Crystal Structure of High-Affinity von Willebrand Factor A1 domain with R1306Q and I1309V Mutations in Complex with High Affinity GPIb alpha 2CVC ; 2.0 ; Crystal structure of High-Molecular Weight Cytochrome c from Desulfovibrio vulgaris (Hildenborough) 2E84 ; 2.7 ; Crystal structure of High-Molecular Weight Cytochrome c from Desulfovibrio vulgaris (Miyazaki F) in the presence of zinc ion 1EYT ; 1.5 ; CRYSTAL STRUCTURE OF HIGH-POTENTIAL IRON-SULFUR PROTEIN FROM THERMOCHROMATIUM TEPIDUM 3A38 ; 0.7 ; Crystal structure of high-potential iron-sulfur protein from Thermochromatium tepidum at 0.7 angstrom resolution 3A39 ; 0.72 ; Crystal Structure of High-Potential Iron-Sulfur Protein from Thermochromatium tepidum at 0.72 angstrom resolution 5Y52 ; 1.63 ; Crystal Structure of Highly Active BTUO Mutant P287G Improved by Humidity Control at 83% RH 5Z2B ; 1.901 ; Crystal structure of highly active BTUO mutant P287G Improved by Humidity Control at 86% RH 5YJA ; 1.65 ; Crystal structure of highly active BTUO mutant P287G without dehydration 5Z27 ; 1.6 ; Crystal structure of highly active BTUO mutant P287G without dehydration 4XFP ; 1.66 ; Crystal Structure of Highly Active Mutant of Bacillus sp. TB-90 Urate Oxidase 6F5M ; 2.7 ; Crystal structure of highly glycosylated human leukocyte elastase in complex with a thiazolidinedione inhibitor 3HDL ; 1.85 ; Crystal Structure of Highly Glycosylated Peroxidase from Royal Palm Tree 2Q9X ; 1.7 ; Crystal structure of highly stable mutant Q40P/S47I/H93G of human fibroblast growth factor-1 2ZF5 ; 2.4 ; Crystal Structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon 3WVZ ; 1.88 ; Crystal structure of Hikeshi, a new nuclear transport receptor of Hsp70 5NNS ; 2.1 ; Crystal structure of HiLPMO9B 1YF8 ; 2.8 ; Crystal structure of Himalayan mistletoe RIP reveals the presence of a natural inhibitor and a new functionally active sugar-binding site 6J85 ; 2.2 ; Crystal structure of HinD apo 6J88 ; 2.35 ; Crystal structure of HinD with benzo[b]thiophen analog 6J86 ; 2.6 ; Crystal structure of HinD with NMFT 6J87 ; 2.3 ; Crystal structure of HinD with NMFT and NO 6M5F ; 2.75 ; Crystal structure of HinK, a LysR family transcriptional regulator from Pseudomonas aeruginosa 5E01 ; 2.3 ; Crystal structure of HiNmlR, a MerR family regulator lacking the sensor domain, bound to palyndromic promoter DNA 5D8C ; 2.25 ; Crystal structure of HiNmlR, a MerR family regulator lacking the sensor domain, bound to promoter DNA 5D90 ; 2.3 ; Crystal structure of HiNmlR, a MerR family regulator lacking the sensor domain, bound to promoter DNA 8JMQ ; 2.0 ; Crystal structure of hinokiresinol synthase 8JMR ; 2.2 ; Crystal structure of hinokiresinol synthase in complex with 1,7-bis(4-hydroxyphenyl)hepta-1,6-dien-3-one 5UGQ ; 2.609 ; Crystal Structure of Hip1 (Rv2224c) 5UNO ; 2.603 ; Crystal Structure of Hip1 (Rv2224c) 5BKM ; 2.703 ; Crystal Structure of Hip1 (Rv2224c) mutant - S228DHA (dehydroalanine) 7M7C ; 2.3 ; Crystal Structure of Hip1 (Rv2224c) mutant - T466A/S228DHA (dehydroalanine) 5UOH ; 2.609 ; Crystal Structure of Hip1 (Rv2224c) T466A mutant 8EZT ; 2.06 ; Crystal structure of HipB(Lp) from Legionella pneumophila 7NCF ; 2.72 ; Crystal structure of HIPK2 in complex with MU135 (compound 21e) 5YJE ; 2.45 ; Crystal structure of HIRA(644-1017) 6KCS ; 2.1 ; Crystal structure of HIRAN domain of HLTF in complex with duplex DNA 4XZG ; 2.4 ; Crystal structure of HIRAN domain of human HLTF 4XZF ; 1.38 ; Crystal structure of HIRAN domain of human HLTF in complex with DNA 6QXH ; 2.04 ; Crystal structure of His-tag human thymidylate synthase (HT-hTS) in complex with dUMP 6QXG ; 2.08 ; Crystal structure of His-tag human thymidylate synthase (HT-hTS) in complex with FdUMP 3KKW ; 1.41 ; Crystal structure of His-tagged form of PA4794 protein 6ZXO ; 2.6 ; Crystal structure of His-tagged human thymidylate synthase (HT-hTS) in complex with FdUMP and Raltitrexed (Tomudex) 4KPW ; 2.03 ; Crystal structure of His-tagged human thymidylate synthase R175A mutant 2G9G ; 2.0 ; Crystal structure of His-tagged mouse PNGase C-terminal domain 2CCG ; 2.3 ; Crystal structure of His-tagged S. aureus thymidylate kinase complexed with thymidine monophosphate (TMP) 2CAL ; 1.1 ; Crystal structure of His143Met rusticyanin 4JUF ; 2.148 ; Crystal Structure of His281Ala mutant of Benzoylformate Decarboxylase from Pseudomonas putida 1KSS ; 1.8 ; Crystal Structure of His505Ala Mutant Flavocytochrome c3 from Shewanella frigidimarina 1KSU ; 2.0 ; Crystal Structure of His505Tyr Mutant Flavocytochrome c3 from Shewanella frigidimarina 5Z02 ; 1.35 ; Crystal structure of HIS6-tagged Mdm2 with nutlin-3a 4WD0 ; 1.5 ; Crystal structure of HisAp form Arthrobacter aurescens 4W9T ; 1.57 ; Crystal structure of HisAP from Streptomyces sp. Mg1 4X9S ; 1.6 ; CRYSTAL STRUCTURE OF HISAP FROM STREPTOMYCES SP. MG1 4TX9 ; 1.6 ; Crystal structure of HisAp from Streptomyces sviceus with degraded ProFAR 4GQU ; 2.02 ; Crystal structure of HisB from Mycobacterium tuberculosis 6KHH ; 1.65 ; Crystal Structure of HisB from Mycobacterium tuberculosis 7TQR ; 2.1 ; Crystal Structure of histidine ammonia lyase from Thermoplasma acidophilum 6V6H ; 2.55 ; Crystal structure of histidine ammonia-lyase from Trypanosoma cruzi 4UY6 ; 2.04 ; Crystal structure of Histidine and SAH bound Histidine-specific methyltransferase EgtD from Mycobacterium smegmatis 4UY7 ; 2.306 ; Crystal structure of Histidine bound Histidine-specific methyltransferase EgtD from Mycobacterium smegmatis 6NB0 ; 1.9 ; Crystal structure of Histidine kinase from Burkholderia phymatum STM815 3A0R ; 3.8 ; Crystal structure of histidine kinase ThkA (TM1359) in complex with response regulator protein TrrA (TM1360) 2OOC ; 1.52 ; Crystal structure of Histidine Phosphotransferase ShpA (NP_419930.1) from Caulobacter crescentus at 1.52 A resolution 4EQG ; 1.52 ; Crystal structure of histidine triad nucleotide-binding protein 1 (HINT1) from human complexed with Ala-AMS 4EQE ; 1.52 ; Crystal structure of histidine triad nucleotide-binding protein 1 (HINT1) from human complexed with Lys-AMS 4EQH ; 1.668 ; Crystal structure of histidine triad nucleotide-binding protein 1 (HINT1) from human complexed with Trp-AMS 6IQ1 ; 2.485 ; Crystal structure of histidine triad nucleotide-binding protein from Candida albicans 3I4S ; 1.75 ; CRYSTAL STRUCTURE OF HISTIDINE TRIAD PROTEIN blr8122 FROM Bradyrhizobium japonicum 6NHI ; 2.1 ; Crystal structure of Histidine--tRNA ligase from Elizabethkingia sp. CCUG 26117 3RAC ; 2.301 ; Crystal Structure of Histidine--tRNA ligase subunit from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446. 4PAC ; 2.53 ; Crystal Structure of Histidine-containing Phosphotransfer Protein AHP2 from Arabidopsis thaliana 7C1I ; 1.58 ; Crystal structure of histidine-containing phosphotransfer protein B (HptB) from Pseudomonas aeruginosa PAO1 3US6 ; 1.446 ; Crystal Structure of Histidine-containing Phosphotransfer Protein MtHPt1 from Medicago truncatula 1WN0 ; 2.2 ; Crystal Structure of Histidine-containing Phosphotransfer Protein, ZmHP2, from maize 4CCV ; 1.93 ; Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: Implications for the regulation of angiogenesis 4UY5 ; 1.997 ; Crystal structure of Histidine-specific methyltransferase EgtD from Mycobacterium smegmatis 3N5G ; 2.27 ; Crystal Structure of histidine-tagged human thymidylate synthase 6AN0 ; 1.85 ; Crystal Structure of Histidinol Dehydrogenase from Elizabethkingia anophelis 4GK8 ; 1.933 ; Crystal structure of histidinol phosphate phosphatase (HISK) from Lactococcus lactis subsp. lactis Il1403 complexed with ZN and L-histidinol arsenate 4GYF ; 1.647 ; Crystal structure of histidinol phosphate phosphatase (HISK) from Lactococcus lactis subsp. lactis Il1403 complexed with ZN, L-histidinol and phosphate 2F8J ; 2.4 ; Crystal structure of Histidinol-phosphate aminotransferase (EC 2.6.1.9) (Imidazole acetol-phosphate transferase) (tm1040) from Thermotoga maritima at 2.40 A resolution 3EUC ; 2.05 ; Crystal structure of histidinol-phosphate aminotransferase (YP_297314.1) from RALSTONIA EUTROPHA JMP134 at 2.05 A resolution 1GEX ; 2.2 ; CRYSTAL STRUCTURE OF HISTIDINOL-PHOSPHATE AMINOTRANSFERASE COMPLEXED WITH HISTIDINOL-PHOSPHATE 1GEY ; 2.3 ; CRYSTAL STRUCTURE OF HISTIDINOL-PHOSPHATE AMINOTRANSFERASE COMPLEXED WITH N-(5'-PHOSPHOPYRIDOXYL)-L-GLUTAMATE 1GEW ; 2.0 ; CRYSTAL STRUCTURE OF HISTIDINOL-PHOSPHATE AMINOTRANSFERASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE 7SZP ; 1.8 ; Crystal Structure of Histidinol-phosphate aminotransferase from Klebsiella pneumoniae subsp. pneumoniae (strain HS11286) 4WBT ; 1.6 ; Crystal structure of histidinol-phosphate aminotransferase from Sinorhizobium meliloti in complex with pyridoxal-5'-phosphate 3NET ; 2.7 ; Crystal structure of histidyl-tRNA synthetase from Nostoc sp. PCC 7120 1WU7 ; 2.4 ; Crystal structure of histidyl-tRNA synthetase from Thermoplasma acidophilum 3FNS ; 2.5 ; Crystal structure of histo-aspartic protease (HAP) from Plasmodium Falciparum 3QVC ; 2.1 ; Crystal structure of histo-aspartic protease (HAP) zymogen from Plasmodium falciparum 4PSW ; 2.101 ; Crystal structure of histone acetyltransferase complex 4PSX ; 2.509 ; Crystal structure of histone acetyltransferase complex 2QEC ; 1.9 ; Crystal structure of histone acetyltransferase HPA2 and related acetyltransferase (NP_600742.1) from Corynebacterium glutamicum ATCC 13032 at 1.90 A resolution 6YN1 ; 2.35 ; Crystal structure of histone chaperone APLF acidic domain bound to the histone H2A-H2B-H3-H4 octamer 2DZE ; 1.8 ; Crystal structure of histone chaperone Asf1 in complex with a C-terminus of histone H3 2CU9 ; 1.8 ; Crystal structure of Histone chaperone cia1 5TD7 ; 2.85 ; Crystal structure of histone deacetylase 10 5ZOO ; 1.85 ; Crystal structure of histone deacetylase 4 (HDAC4) in complex with a SMRT corepressor SP1 fragment 5ZOP ; 2.698 ; Crystal structure of histone deacetylase 4 (HDAC4) in complex with a SMRT corepressor SP2 fragment 5VI6 ; 1.237 ; Crystal structure of histone deacetylase 8 in complex with trapoxin A 4QXH ; 2.2 ; Crystal structure of histone demethylase KDM2A-H3K36ME1 with NOG 4QX7 ; 2.34 ; Crystal structure of histone demethylase kdm2a-h3k36me2 with alpha-kg 4QXC ; 1.75 ; Crystal structure of histone demethylase KDM2A-H3K36ME2 with NOG 4QX8 ; 1.65 ; Crystal structure of histone demethylase kdm2a-h3k36me3 complex with alpha-kg 4QXB ; 1.6 ; crystal structure of histone demethylase KDM2A-H3K36ME3 with NOG 4E4H ; 2.28 ; Crystal structure of Histone Demethylase NO66 6A7U ; 2.6 ; Crystal structure of histone H2A.Bbd-H2B dimer 8HKR ; 2.4 ; Crystal Structure of Histone H3 Lysine 79 (H3K79) Methyltransferase Rv2067c from Mycobacterium tuberculosis 1U2Z ; 2.2 ; Crystal structure of histone K79 methyltransferase Dot1p from yeast 5FBM ; 1.9 ; Crystal Structure of Histone Like Protein (HLP) from Streptococcus mutans Refined to 1.9 A Resolution 7DYQ ; 1.998 ; Crystal structure of histone lysine demethylase 4D (KDM4D) in complex with the inhibitor 5-hydroxy-2-methylpyrazolo[1,5-a]pyrido[3,2-e]pyrimidine-3-carbonitrile 3RJW ; 2.56 ; Crystal structure of histone lysine methyltransferase g9a with an inhibitor 6N3G ; 2.43 ; Crystal structure of histone lysine methyltransferase SmyD2 in complex with polyethylene glycol 3QWV ; 2.03 ; Crystal structure of histone lysine methyltransferase SmyD2 in complex with the cofactor product AdoHcy 3QWW ; 1.8 ; Crystal structure of histone lysine methyltransferase SmyD2 in complex with the methyltransferase inhibitor sinefungin 3VUZ ; 2.5 ; Crystal structure of histone methyltransferase SET7/9 in complex with AAM-1 3VV0 ; 2.001 ; Crystal structure of histone methyltransferase SET7/9 in complex with DAAM-3 3GFC ; 2.3 ; Crystal Structure of Histone-binding protein RBBP4 6D6J ; 1.35 ; Crystal structure of HIT family hydrolase from Legionella pneumophila Philadelphia 1 3LB5 ; 1.9 ; Crystal structure of Hit-like protein involved in cell-cycle regulation from Bartonella henselae with unknown ligand 6IWF ; 1.70662 ; Crystal structure of HitA from Pseudomonas aeruginosa 7DQ6 ; 2.6 ; Crystal structure of HitB in complex with (S)-beta-3-Br-phenylalanine sulfamoyladenosine 7DQ5 ; 2.45 ; Crystal structure of HitB in complex with (S)-beta-phenylalanine sulfamoyladenosine 3H3P ; 2.7 ; Crystal structure of HIV epitope-scaffold 4E10 Fv complex 3LH2 ; 2.65 ; Crystal structure of HIV epitope-scaffold 4E10_1VI7A_S0_002_N 4E10 Fv complex 3LF6 ; 1.9 ; Crystal structure of HIV epitope-scaffold 4E10_1XIZA_S0_001_N 3T43 ; 1.95 ; Crystal Structure of HIV Epitope-Scaffold 4E10_1XIZA_S0_006_C 3LF9 ; 2.0 ; Crystal structure of HIV epitope-scaffold 4E10_D0_1IS1A_001_C 3LHP ; 2.7 ; Crystal structure of HIV epitope-scaffold 4E10_D0_1ISEA_004_N 4E10 Fv complex 3LG7 ; 2.5 ; Crystal structure of HIV epitope-scaffold 4E10_S0_1EZ3A_002_C 3LEF ; 2.3 ; Crystal structure of HIV epitope-scaffold 4E10_S0_1Z6NA_001 3K9A ; 2.1 ; Crystal Structure of HIV gp41 with MPER 4JMU ; 2.0 ; Crystal structure of HIV matrix residues 1-111 in complex with inhibitor 3TKG ; 1.36 ; crystal structure of HIV model protease precursor/saquinavir complex 4RBP ; 1.85 ; Crystal structure of HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomanose 6B36 ; 1.63 ; Crystal Structure of HIV Protease complexed with (S)-N-(3-fluoro-2-(2-(1-(phenylsulfonyl)piperazin-2-yl)ethyl)phenyl)-3,3-bis(4-fluorophenyl)propanamide 1T7K ; 2.1 ; Crystal Structure of HIV Protease complexed with Arylsulfonamide azacyclic urea 1NPW ; 2.0 ; Crystal structure of HIV protease complexed with LGZ479 5IVQ ; 1.57 ; Crystal Structure of HIV Protease complexed with methyl N-[(1S)-1-benzhydryl-2-(3-morpholin-4-ium-2-ylpropylamino)-2-oxo-ethyl]carbamate 5IVS ; 1.46 ; Crystal Structure of HIV Protease complexed with methyl N-[(1S)-1-benzhydryl-2-[2-[2-[(2R,5S)-5-(benzylcarbamoyloxymethyl)morpholin-2-yl]ethyl]anilino]-2-oxo-ethyl]carbamate 5IVR ; 1.5 ; Crystal Structure of HIV Protease complexed with methyl N-[(1S)-1-[[2-[(3S)-3-[(4-aminophenyl)methylamino]-4-hydroxy-butyl]phenyl]carbamoyl]-2,2-diphenyl-ethyl]carbamate 6B3H ; 1.62 ; Crystal Structure of HIV Protease complexed with N-(2-(2-((6R,9S)-2,2-dioxido-2-thia-1,7-diazabicyclo[4.3.1]decan-9-yl)ethyl)-3-fluorophenyl)-3,3-bis(4-fluorophenyl)propanamide 6B3F ; 1.46 ; Crystal Structure of HIV Protease complexed with N-(3-fluoro-2-(2-((2S,5S)-5-methyl-1-(phenylsulfonyl)piperazin-2-yl)ethyl)phenyl)-3,3-bis(4-fluorophenyl)propanamide 6B38 ; 1.48 ; Crystal Structure of HIV Protease complexed with N-(3-fluoro-2-(2-((2S,6R)-6-methyl-1-(phenylsulfonyl)piperazin-2-yl)ethyl)phenyl)-3,3-bis(4-fluorophenyl)propanamide 6B3C ; 1.6 ; Crystal Structure of HIV Protease complexed with N-(3-fluoro-2-(2-((2S,6R)-6-methyl-1-(phenylsulfonyl)piperazin-2-yl)ethyl)phenyl)-3,3-bis(4-fluorophenyl)propanamide 6B3G ; 1.5 ; Crystal Structure of HIV Protease complexed with N-(3-fluoro-2-(2-((2S,6S)-6-methyl-1-(phenylsulfonyl)piperazin-2-yl)ethyl)phenyl)-3,3-bis(4-fluorophenyl)propanamide 5IVT ; 1.15 ; Crystal Structure of HIV Protease complexed with [(1S)-1-[(S)-(4-chlorophenyl)-(3,5-difluorophenyl)methyl]-2-[[5-fluoro-4-[2-[(2R,5S)-5-(2,2,2-trifluoroethylcarbamoyloxymethyl)morpholin-4-ium-2-yl]ethyl]pyridin-1-ium-3-yl]amino]-2-oxo-ethyl]ammonium 2FDD ; 1.58 ; Crystal structure of HIV protease D545701 bound with GW0385 3TKW ; 1.55 ; Crystal structure of HIV protease model precursor/Darunavir complex 3TL9 ; 1.32 ; crystal structure of HIV protease model precursor/Saquinavir complex 1ZTZ ; 2.15 ; Crystal structure of HIV protease- metallacarborane complex 3C6T ; 2.7 ; Crystal Structure of HIV Reverse Transcriptase in complex with inhibitor 14 3C6U ; 2.7 ; Crystal Structure of HIV Reverse Transcriptase in complex with inhibitor 22 3I0R ; 2.98 ; crystal structure of HIV reverse transcriptase in complex with inhibitor 3 3I0S ; 2.7 ; crystal structure of HIV reverse transcriptase in complex with inhibitor 7 4KV8 ; 2.3 ; Crystal structure of HIV RT in complex with BILR0355BS 4XVT ; 1.69 ; Crystal structure of HIV-1 93TH057 coreE gp120 with antibody 45-VRC01.H01+07.O-863513/45-VRC01.L01+07.O-110653 (VRC07_1995) 6MUG ; 2.954 ; Crystal Structure of HIV-1 B41 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-386150 in Complex with Human Antibodies 3H109L and 35O22 at 3.8 Angstrom 6MUF ; 2.91 ; Crystal Structure of HIV-1 B41 SOSIP.664 Prefusion Env Trimer in Complex with Human Antibodies 3H109L and 35O22 at 3.4 Angstrom 6W03 ; 2.4 ; Crystal Structure of HIV-1 BG505 DS-SOSIP.3mut Prefusion Env Trimer in Complex with Human Antibodies 3H109L and 35O22 at 3.3 Angstrom 6NNJ ; 2.6 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to CH31 scFv in Complex with Crystallization Chaperones 3H109L Fab and 35O22 scFv at 3.1 Angstrom 6NM6 ; 2.739 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to N6 FR3-03 scFv in Complex with Crystallization Chaperones 3H109L Fab and 35O22 scFv at 3.2 Angstrom 6MTJ ; 2.336 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-378806 in Complex with Human Antibodies 3H109L and 35O22 at 2.9 Angstrom 5U7M ; 3.025 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-378806 in Complex with Human Antibodies PGT122 and 35O22 at 3.8 Angstrom 6MU8 ; 2.993 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-386150 in Complex with Human Antibodies 3H109L and 35O22 at 3.5 Angstrom 5U7O ; 3.031 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-626529 in Complex with Human Antibodies PGT122 and 35O22 at 3.8 Angstrom 6MU6 ; 2.551 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-814508 in Complex with Human Antibodies 3H109L and 35O22 at 3.2 Angstrom 6MU7 ; 2.501 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor BMS-818251 in Complex with Human Antibodies 3H109L and 35O22 at 3.1 Angstrom 6MTN ; 2.5 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to Small Molecule HIV-1 Entry Inhibitor Compound 484 in Complex with Human Antibodies 3H109L and 35O22 at 3.0 Angstrom 6NNF ; 2.762 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer Bound to VRC01 FR3-03 scFv in Complex with Crystallization Chaperones 3H109L Fab and 35O22 scFv at 3.5 Angstrom 5I8H ; 4.301 ; Crystal Structure of HIV-1 BG505 SOSIP.664 Prefusion Env Trimer in Complex with V3 Loop-targeting Antibody PGT122 Fab and Fusion Peptide-targeting Antibody VRC34.01 Fab 8D0Y ; 4.7 ; Crystal Structure of HIV-1 BG505 SOSIPv8 Trimer in Complex with CD4bs targeting antibody 21N13 and interface targeting antibody 35O22 at 4.7 Angstrom 6NCP ; 2.76 ; Crystal structure of HIV-1 broadly neutralizing antibody ACS202 4NUG ; 1.8617 ; Crystal structure of HIV-1 broadly neutralizing antibody PGT151 4NUJ ; 1.827 ; Crystal structure of HIV-1 broadly neutralizing antibody PGT152 2PWO ; 1.45 ; Crystal Structure of HIV-1 CA146 A92E Psuedo Cell 2PWM ; 1.9 ; Crystal Structure of HIV-1 CA146 A92E real cell 2PXR ; 1.5 ; Crystal Structure of HIV-1 CA146 in the Presence of CAP-1 6VZI ; 2.716 ; Crystal Structure of HIV-1 CAP256 RnS-3mut-2G-SOSIP.664 Prefusion Env Trimer in Complex with Human Antibodies 3H109L and 35O22 at 3.5 Angstrom 7ZUD ; 2.93 ; Crystal structure of HIV-1 capsid IP6-CPSF6 complex 4LQW ; 1.95 ; Crystal structure of HIV-1 capsid N-terminal domain in complex with NUP358 cyclophilin 1E6J ; 3.0 ; Crystal structure of HIV-1 capsid protein (p24) in complex with Fab13B5 5I8C ; 1.54 ; Crystal Structure of HIV-1 Clade A BG505 Fusion Peptide (residue 512-520) in Complex with Broadly Neutralizing Antibody VRC34.01 Fab 6BF4 ; 2.382 ; Crystal Structure of HIV-1 Clade AE Strain CNE55 gp120 Core in Complex with Neutralizing Antibody VRC-PG05 that Targets the Center of the Silent Face on the Outer Domain of gp120 3TGS ; 2.7 ; Crystal structure of HIV-1 clade C strain C1086 gp120 core in complex with NBD-556 6CK9 ; 2.714 ; Crystal Structure of HIV-1 ConC_Base0 Prefusion Env Trimer in Complex with Human Antibody Fragment 3H109L and 35O22 variants at 3.5 Angstrom 3D3T ; 2.8 ; Crystal Structure of HIV-1 CRF01_AE in complex with the substrate p1-p6 3LZS ; 1.95 ; Crystal Structure of HIV-1 CRF01_AE Protease in Complex with Darunavir 4XVS ; 1.9 ; Crystal structure of HIV-1 donor 45 d45-01dG5 coreE gp120 with antibody 45-VRC01.H01+07.O-863513/45-VRC01.L01+07.O-110653 (VRC07_1995) 6C0P ; 2.05 ; Crystal structure of HIV-1 E138K mutant reverse transcriptase in complex with non-nucleoside inhibitor 25a 6C0L ; 1.95 ; Crystal structure of HIV-1 E138K mutant reverse transcriptase in complex with non-nucleoside inhibitor K-5a2 6IEQ ; 3.9 ; Crystal Structure of HIV-1 Env ConM SOSIP.v7 in Complex with bNAb PGT124 and 35O22 5UM8 ; 3.935 ; Crystal structure of HIV-1 envelope trimer 16055 NFL TD CC (T569G) in complex with Fabs 35022 and PGT124 5H0N ; 2.8 ; Crystal structure of HIV-1 fusion inhibitor MT-WQ-IDL bound to gp41 NHR 5Z0W ; 1.896 ; Crystal structure of HIV-1 fusion inhibitor SC29EK complexed with gp41 NHR (N36) 6J5E ; 2.33 ; Crystal structure of HIV-1 fusion inhibitor SC29EK complexed with gp41 NHR (N44) 4RZ8 ; 1.9 ; Crystal structure of HIV-1 gp120 core in complex with NBD-11021, a small molecule CD4-antagonist 3OXV ; 1.75 ; Crystal Structure of HIV-1 I50V, A71 Protease in Complex with the protease inhibitor amprenavir. 3OXX ; 1.65 ; Crystal Structure of HIV-1 I50V, A71V Protease in Complex with the Protease Inhibitor Atazanavir 3OXW ; 1.95 ; Crystal Structure of HIV-1 I50V, A71V Protease in Complex with the Protease Inhibitor Darunavir 6L0C ; 2.101 ; Crystal structure of HIV-1 Integrase catalytic core domain (A128T/K173Q/F185K) 7WCE ; 1.85 ; Crystal structure of HIV-1 integrase catalytic core domain in complex with (2S)-2-(tert-Butoxy)-2-(10-fluoro-2-(2-hydroxy-4-methylphenyl)-1,4-dimethyl-5-(methylsulfonyl)-5,6-dihydrophenanthridin-3-yl)acetic acid 7D83 ; 2.43 ; Crystal structure of HIV-1 integrase catalytic core domain in complex with 2-(tert-butoxy)-2-(2-(3-cyclohexylureido)-3,6-dimethyl-5-(5-methylchroman-6-yl)pyridin-4-yl)acetic acid 6LMQ ; 2.1 ; Crystal structure of HIV-1 integrase catalytic core domain in complex with 2-(tert-butoxy)-2-[3-(3,4-dihydro-2H-1,4-benzoxazin-6-yl)-6-methanesulfonamido-2,3',4',5-tetramethyl-[1,1'-biphenyl]-4-yl]acetic acid 6LMI ; 2.5 ; Crystal structure of HIV-1 integrase catalytic core domain in complex with 2-(tert-butoxy)-2-[3-(3,4-dihydro-2H-1-benzopyran-6-yl)-6-methanesulfonamido-2,3',4',5-tetramethyl-[1,1'-biphenyl]-4-yl]acetic acid 6EX9 ; 2.014 ; Crystal Structure of HIV-1 Integrase Catalytic Core Domain with Inhibitor Peptide 5EU7 ; 2.64 ; Crystal structure of HIV-1 integrase catalytic core in complex with Fab 7UOQ ; 1.8867 ; CRYSTAL STRUCTURE OF HIV-1 INTEGRASE COMPLEXED WITH (2S)-2-(TERT-BUTOXY)-2-(5-{2-[(2-CHLORO-6-M ETHYLPHENYL)METHYL]-1,2,3,4-TETRAHYDROISOQUINOLIN-6-YL}-4- (4,4-DIMETHYLPIPERIDIN-1-YL)-2-METHYLPYRIDIN-3-YL)ACETIC ACID 7U2U ; 1.839 ; CRYSTAL STRUCTURE OF HIV-1 INTEGRASE COMPLEXED WITH Compound-2a AKA (2S)-2-(TERT-BUTOXY)-2-[7-(4,4-DIMETHYLPIPE RIDIN-1-YL)-8-{4-[2-(4-FLUOROPHENYL)ETHOXY]PHENYL}-2,5-DIM ETHYLIMIDAZO[1,2-A]PYRIDIN-6-YL]ACETIC ACID 4E1M ; 1.9 ; Crystal Structure of HIV-1 Integrase with a non-catayltic site inhibitor 4E1N ; 2.0 ; Crystal Structure of HIV-1 Integrase with a non-catayltic site inhibitor 2B4C ; 3.3 ; Crystal structure of HIV-1 JR-FL gp120 core protein containing the third variable region (V3) complexed with CD4 and the X5 antibody 3DM2 ; 3.1 ; Crystal structure of HIV-1 K103N mutant reverse transcriptase in complex with GW564511. 6C0O ; 1.901 ; Crystal structure of HIV-1 K103N mutant reverse transcriptase in complex with non-nucleoside inhibitor 25a 6C0K ; 1.958 ; Crystal structure of HIV-1 K103N mutant reverse transcriptase in complex with non-nucleoside inhibitor K-5a2 7SO6 ; 2.79 ; Crystal Structure of HIV-1 K103N, Y181C mutant Reverse Transcriptase in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-7-fluoro-2-naphthonitrile (JLJ635), a Non-nucleoside Inhibitor 6C0R ; 2.049 ; Crystal structure of HIV-1 K103N/Y181C mutant reverse transcriptase in complex with non-nucleoside inhibitor 25a 3OY4 ; 1.76 ; Crystal Structure of HIV-1 L76V Protease in Complex with the Protease Inhibitor Darunavir. 6USW ; 2.5 ; CRYSTAL STRUCTURE OF HIV-1 LM/HS CLADE A/E CRF01 GP120 CORE IN COMPLEX WITH (S)-MCG-IV-210 6UT1 ; 2.65 ; CRYSTAL STRUCTURE OF HIV-1 LM/HS CLADE A/E CRF01 GP120 CORE IN COMPLEX WITH BNM-III-170 6ONV ; 3.253 ; Crystal structure of HIV-1 LM/HT Clade A/E CRF01 gp120 core in complex with (S)-MCG-III-027-D05. 6ONE ; 2.2 ; Crystal structure of HIV-1 LM/HT Clade A/E CRF01 gp120 core in complex with (S)-MCG-III-188-A01. 6ONF ; 1.842 ; Crystal structure of HIV-1 LM/HT Clade A/E CRF01 gp120 core in complex with (S)-MCG-III-188-A02. 6ONH ; 2.244 ; Crystal structure of HIV-1 LM/HT Clade A/E CRF01 gp120 core in complex with (S)-MCG-IV-031-A05. 6P9N ; 2.65 ; CRYSTAL STRUCTURE OF HIV-1 LM/HT CLADE A/E CRF01 GP120 CORE IN COMPLEX WITH (S)-MCG-IV-210. 6OOO ; 2.4 ; Crystal structure of HIV-1 LM/HT Clade A/E CRF01 gp120 core in complex with (S)-MCG-IV-226. 8GD3 ; 2.19 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with DL-I-101 8GD5 ; 2.6 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with DL-I-102 8GD0 ; 2.4 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with TFH-I-070-A6 8GJT ; 3.5 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with TFH-I-116-D1 8GDJ ; 2.42 ; Crystal Structure of HIV-1 LM/HT CLADE A/E CRF01 GP120 Core in Complex with TFH-II-128 8GDK ; 2.65 ; Crystal Structure of HIV-1 LM/HT CLADE A/E CRF01 GP120 Core in Complex with TFH-II-151 8DCQ ; 3.2 ; CRYSTAL STRUCTURE OF HIV-1 LM/HT CLADE A/E CRF01 GP120 CORE IN COMPLEX WITH YIR-821 8GCZ ; 2.4 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with ZXC-I-090 8GD1 ; 2.85 ; Crystal Structure of HIV-1 LM/HT Clade A/E CRF01 GP120 Core in Complex with ZXC-I-092 6WIX ; 2.67 ; Crystal Structure of HIV-1 MI369 RnS-DS.SOSIP Prefusion Env Trimer in Complex with Human Antibodies 3H109L and 35O22 at 3.5 Angstrom 3CYX ; 1.2 ; Crystal structure of HIV-1 mutant I50V and inhibitor saquinavira 3D1Z ; 1.3 ; Crystal structure of HIV-1 mutant I54M and inhibitor DARUNAVIR 3D1X ; 1.05 ; Crystal structure of HIV-1 mutant I54M and inhibitor saquinavir 3D20 ; 1.05 ; Crystal structure of HIV-1 mutant I54V and inhibitor DARUNAVIA 3D1Y ; 1.05 ; Crystal structure of HIV-1 mutant I54V and inhibitor SAQUINA 4D8D ; 2.5201 ; Crystal structure of HIV-1 NEF Fyn-SH3 R96W variant 4U5W ; 1.86 ; Crystal Structure of HIV-1 Nef-SF2 Core Domain in Complex with the Src Family Kinase Hck SH3-SH2 Tandem Regulatory Domains 3TCL ; 1.906 ; Crystal Structure of HIV-1 Neutralizing Antibody CH04 4NRY ; 3.14 ; Crystal Structure of HIV-1 Neutralizing Antibody m66 4NRX ; 2.21 ; Crystal Structure of HIV-1 Neutralizing Antibody m66 in complex with gp41 MPER peptide 4NRZ ; 2.42 ; Crystal Structure of HIV-1 Neutralizing Antibody m66.6 1TZG ; 2.2 ; Crystal structure of HIV-1 neutralizing human Fab 4E10 in complex with a 13-residue peptide containing the 4E10 epitope on gp41 2FX7 ; 1.76 ; Crystal structure of hiv-1 neutralizing human fab 4e10 in complex with a 16-residue peptide encompassing the 4e10 epitope on gp41 2FX9 ; 2.1 ; Crystal structure of hiv-1 neutralizing human fab 4e10 in complex with a thioether-linked peptide encompassing the 4e10 epitope on gp41 2FX8 ; 2.2 ; Crystal structure of hiv-1 neutralizing human fab 4e10 in complex with an aib-induced peptide encompassing the 4e10 epitope on gp41 3FN0 ; 1.8 ; Crystal structure of HIV-1 neutralizing human Fab Z13e1 in complex with a 12-residue peptide containing the Z13e1 epitope on gp41 3O2D ; 2.19 ; Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody 2O4K ; 1.6 ; Crystal Structure of HIV-1 Protease (Q7K) in Complex with Atazanavir 2O4S ; 1.54 ; Crystal Structure of HIV-1 Protease (Q7K) in Complex with Lopinavir 2O4P ; 1.8 ; Crystal Structure of HIV-1 Protease (Q7K) in Complex with Tipranavir 2O4L ; 1.33 ; Crystal Structure of HIV-1 Protease (Q7K, I50V) in Complex with Tipranavir 2PK5 ; 1.9 ; Crystal Structure of HIV-1 Protease (Q7K, L33I, L63I ) in Complex with KNI-10075 3KDB ; 1.66 ; Crystal Structure of HIV-1 Protease (Q7K, L33I, L63I) in Complex with KNI-10006 2PK6 ; 1.45 ; Crystal Structure of HIV-1 Protease (Q7K, L33I, L63I) in Complex with KNI-10033 3KDC ; 2.2 ; Crystal Structure of HIV-1 Protease (Q7K, L33I, L63I) in Complex with KNI-10074 3KDD ; 1.8 ; Crystal Structure of HIV-1 Protease (Q7K, L33I, L63I) in Complex with KNI-10265 2O4N ; 2.0 ; Crystal Structure of HIV-1 Protease (TRM Mutant) in Complex with Tipranavir 1IIQ ; 1.83 ; CRYSTAL STRUCTURE OF HIV-1 PROTEASE COMPLEXED WITH A HYDROXYETHYLAMINE PEPTIDOMIMETIC INHIBITOR 1SP5 ; 1.8 ; Crystal structure of HIV-1 protease complexed with a product of autoproteolysis 3A2O ; 0.88 ; Crystal Structure of HIV-1 Protease Complexed with KNI-1689 1NPV ; 2.0 ; Crystal structure of HIV-1 protease complexed with LDC271 1MUI ; 2.8 ; Crystal structure of HIV-1 protease complexed with Lopinavir. 2QMP ; 1.8 ; Crystal Structure of HIV-1 protease complexed with PL-100 4FE6 ; 2.0 ; Crystal Structure of HIV-1 Protease in Complex with an enamino-oxindole inhibitor 1G35 ; 1.8 ; CRYSTAL STRUCTURE OF HIV-1 PROTEASE IN COMPLEX WITH INHIBITOR, AHA024 3NLS ; 1.7 ; Crystal Structure of HIV-1 Protease in Complex with KNI-10772 7WCQ ; 2.011 ; Crystal structure of HIV-1 protease in complex with lactam derivative 1 7WBS ; 1.85 ; Crystal structure of HIV-1 protease in complex with lactam derivative 2 7YF6 ; 2.01 ; Crystal structure of HIV-1 protease in complex with macrocyclic peptide 1HPV ; 1.9 ; CRYSTAL STRUCTURE OF HIV-1 PROTEASE IN COMPLEX WITH VX-478, A POTENT AND ORALLY BIOAVAILABLE INHIBITOR OF THE ENZYME 5DGW ; 1.62 ; Crystal Structure of HIV-1 Protease Inhibitor GRL-105-11A Containing Substituted fused-Tetrahydropyranyl Tetrahydrofuran as P2-Ligand 3MXD ; 1.95 ; Crystal structure of HIV-1 protease inhibitor KC53 in complex with wild-type protease 3MXE ; 1.85 ; Crystal structure of HIV-1 protease inhibitor, KC32 complexed with wild-type protease 5DGU ; 1.22 ; Crystal Structure of HIV-1 Protease Inhibitors Containing Substituted fused-Tetrahydropyranyl Tetrahydrofuran as P2-Ligand GRL-004-11A 4NPU ; 1.5 ; Crystal Structure of HIV-1 Protease Multiple Mutant P51 4NPT ; 1.66 ; Crystal Structure of HIV-1 Protease Multiple Mutant P51 Complexed with Darunavir 7N6X ; 1.47 ; Crystal structure of HIV-1 Protease multiple mutants PRS17 bound to inhibitor Amprenavir 7N6V ; 1.39 ; Crystal structure of HIV-1 Protease multiple mutants PRS17 with Revertant mutation V48G bound to inhibitor Amprenavir 3VF5 ; 1.25 ; Crystal Structure of HIV-1 Protease Mutant I47V with novel P1'-Ligands GRL-02031 3NU5 ; 1.29 ; Crystal Structure of HIV-1 Protease Mutant I50V with Antiviral Drug Amprenavir 3NU6 ; 1.16 ; Crystal Structure of HIV-1 Protease Mutant I54M with Antiviral Drug Amprenavir 3NUJ ; 1.5 ; Crystal Structure of HIV-1 Protease Mutant I54V with Antiviral Drug Amprenavir 3NU9 ; 1.85 ; Crystal Structure of HIV-1 Protease Mutant I84V with Antiviral Drug Amprenavir 3VF7 ; 1.3 ; Crystal Structure of HIV-1 Protease Mutant L76V with novel P1'-Ligands GRL-02031 3NUO ; 1.35 ; Crystal Structure of HIV-1 Protease Mutant L90M with Antiviral Drug Amprenavir 3VFB ; 1.55 ; Crystal Structure of HIV-1 Protease Mutant N88D with novel P1'-Ligands GRL-02031 3TH9 ; 1.34 ; Crystal Structure of HIV-1 Protease Mutant Q7K V32I L63I with a cyclic sulfonamide inhibitor 3NU4 ; 1.2 ; Crystal Structure of HIV-1 Protease Mutant V32I with Antiviral Drug Amprenavir 3VFA ; 1.43 ; Crystal Structure of HIV-1 Protease Mutant V82A with novel P1'-Ligands GRL-02031 4HDB ; 1.49 ; Crystal Structure of HIV-1 protease mutants D30N complexed with inhibitor GRL-0519 4HDP ; 1.22 ; Crystal Structure of HIV-1 protease mutants I50V complexed with inhibitor GRL-0519 4HE9 ; 1.06 ; Crystal Structure of HIV-1 protease mutants I54M complexed with inhibitor GRL-0519 4HEG ; 1.46 ; Crystal Structure of HIV-1 protease mutants R8Q complexed with inhibitor GRL-0519 4HDF ; 1.29 ; Crystal Structure of HIV-1 protease mutants V82A complexed with inhibitor GRL-0519 6DH6 ; 1.97 ; Crystal structure of HIV-1 Protease NL4-3 I50V Mutant in complex with darunavir 6DH7 ; 1.997 ; Crystal structure of HIV-1 Protease NL4-3 I50V Mutant in complex with UMass1 6DH8 ; 1.951 ; Crystal structure of HIV-1 Protease NL4-3 I50V Mutant in complex with UMass6 6DH0 ; 1.899 ; Crystal structure of HIV-1 Protease NL4-3 I84V Mutant in complex with darunavir 6DH1 ; 1.971 ; Crystal structure of HIV-1 Protease NL4-3 I84V Mutant in complex with UMass1 6DH2 ; 1.978 ; Crystal structure of HIV-1 Protease NL4-3 I84V Mutant in complex with UMass6 6OOU ; 2.127 ; Crystal structure of HIV-1 Protease NL4-3 L89V Mutant in complex with darunavir 6DH3 ; 1.908 ; Crystal structure of HIV-1 Protease NL4-3 V82I Mutant in complex with darunavir 6DH4 ; 1.943 ; Crystal structure of HIV-1 Protease NL4-3 V82I Mutant in complex with UMass1 6DH5 ; 2.008 ; Crystal structure of HIV-1 Protease NL4-3 V82I Mutant in complex with UMass6 6DGX ; 2.001 ; Crystal structure of HIV-1 Protease NL4-3 WT in complex with darunavir 6DGY ; 1.954 ; Crystal structure of HIV-1 Protease NL4-3 WT in complex with UMass1 6DGZ ; 1.994 ; Crystal structure of HIV-1 Protease NL4-3 WT in complex with UMass6 8VB1 ; 1.3 ; Crystal structure of HIV-1 protease with GS-9770 1NPA ; 2.0 ; crystal structure of HIV-1 protease-hup 7MYY ; 1.5 ; Crystal Structure of HIV-1 PRS17 with GRL-142 7MYP ; 1.65 ; Crystal Structure of HIV-1 PRS17 with GRL-44-10A 6CF2 ; 3.0 ; Crystal structure of HIV-1 Rev (residues 1-93)-RNA aptamer complex 5C42 ; 3.5 ; Crystal Structure of HIV-1 Reverse Transcriptase (K101P) Variant in Complex with 8-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)indolizine-2-carbonitrile (JLJ555), a non-nucleoside inhibitor 3T1A ; 2.4 ; Crystal Structure of HIV-1 Reverse Transcriptase (K103N mutant) in Complex with Inhibitor M05 3TAM ; 2.51 ; Crystal structure of HIV-1 reverse transcriptase (K103N mutant) in complex with inhibitor M06 4RW7 ; 3.014 ; Crystal Structure of HIV-1 Reverse Transcriptase (K103N, Y181C) variant in complex with (E)-3-(3-chloro-5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ532), a non-nucleoside inhibitor 5VQZ ; 2.23 ; Crystal Structure of HIV-1 Reverse Transcriptase (K103N, Y181C) Variant in Complex with 2-chloro-N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacetamide (JLJ686), a Non-nucleoside Inhibitor 5VQY ; 2.35 ; Crystal Structure of HIV-1 Reverse Transcriptase (K103N, Y181C) Variant in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacrylamide (JLJ684), a Non-nucleoside Inhibitor 4RW4 ; 2.674 ; Crystal Structure of HIV-1 Reverse Transcriptase (K103N,Y181C) variant in complex with (E)-3-(3-chloro-5-(4-chloro-2-(2-(2,4-dioxo-3,4- dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ494), a Non-nucleoside Inhibitor 3V6D ; 2.7048 ; Crystal structure of HIV-1 reverse transcriptase (RT) cross-linked with AZT-terminated DNA 4H4O ; 2.9 ; Crystal Structure of HIV-1 Reverse Transcriptase (RT) in Complex with (E)-3-(3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)- 4-fluorophenoxy)-5-fluorophenyl)acrylonitrile (JLJ506), A Non-nucleoside inhibitor 6UL5 ; 2.23 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with 4-[(4-{4-[(E)-2-cyanoethenyl]-2,6-dimethylphenoxy}thieno[3,2-d]pyrimidin-2-yl)amino]-2-fluorobenzonitrile (24b), a non-nucleoside RT inhibitor 2YKM ; 2.9 ; Crystal structure of HIV-1 Reverse Transcriptase (RT) in complex with a Difluoromethylbenzoxazole (DFMB) Pyrimidine Thioether derivative, a non-nucleoside RT inhibitor (NNRTI) 2YKN ; 2.12 ; Crystal structure of HIV-1 Reverse Transcriptase (RT) in complex with a Difluoromethylbenzoxazole (DFMB) Pyrimidine Thioether derivative, a non-nucleoside RT inhibitor (NNRTI) 6HAK ; 3.95 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with a double stranded RNA represents the RT transcription initiation complex prior to nucleotide incorporation 2RKI ; 2.3 ; Crystal Structure of HIV-1 Reverse Transcriptase (RT) in Complex with a triazole derived NNRTI 4KO0 ; 1.95 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH an anilinylpyrimidine derivative (JLJ-135) 2I5J ; 3.15 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with DHBNH, an RNASE H inhibitor 1S9G ; 2.8 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R120394. 1S9E ; 2.6 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R129385 1S6Q ; 3.0 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R147681 2BAN ; 2.95 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with JANSSEN-R157208 2B5J ; 2.9 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with JANSSEN-R165481 1SUQ ; 3.0 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R185545 2BE2 ; 2.43 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with R221239 4G1Q ; 1.51 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with Rilpivirine (TMC278, Edurant), a non-nucleoside rt-inhibiting drug 3IRX ; 2.8 ; Crystal Structure of HIV-1 reverse transcriptase (RT) in complex with the Non-nucleoside RT Inhibitor (E)-S-Methyl 5-(1-(3,7-Dimethyl-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)-5-(5-methyl-1,3,4-oxadiazol-2-yl)pent-1-enyl)-2-methoxy-3-methylbenzothioate. 2B6A ; 2.65 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with THR-50 2ZD1 ; 1.8 ; Crystal Structure of HIV-1 Reverse Transcriptase (RT) in Complex with TMC278 (Rilpivirine), A Non-nucleoside RT Inhibitor 3QO9 ; 2.6 ; Crystal structure of HIV-1 Reverse Transcriptase (RT) in complex with TSAO-T, a non-nucleoside RT inhibitor (NNRTI) 7TAZ ; 2.4 ; Crystal structure of HIV-1 reverse transcriptase (RT) in complex with VM-1500A, a non-nucleoside RT inhibitor 4R5P ; 2.894 ; Crystal structure of HIV-1 reverse transcriptase (RT) with DNA and a nucleoside triphosphate mimic alpha-carboxy nucleoside phosphonate inhibitor 3V4I ; 2.7983 ; Crystal structure of HIV-1 reverse transcriptase (RT) with DNA and AZTTP 3V81 ; 2.8503 ; Crystal structure of HIV-1 reverse transcriptase (RT) with DNA and the nonnucleoside inhibitor nevirapine 4DG1 ; 2.15 ; Crystal structure of HIV-1 reverse transcriptase (RT) with polymorphism mutation K172A and K173A 3T19 ; 2.6 ; Crystal structure of HIV-1 reverse transcriptase (wild type) in complex with inhibitor M05 4RW9 ; 2.986 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) variant in complex with (E)-3-(3-chloro-5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ532), a non-nucleoside inhibitor 4RW6 ; 2.631 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) variant in complex with (E)-3-(3-chloro-5-(4-chloro-2-(2-(2,4-dioxo-3,4- dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ494), a Non-nucleoside Inhibitor 5VQX ; 2.4 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with 2-chloro-N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacetamide (JLJ686), a Non-nucleoside Inhibitor 6X4A ; 2.537 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with 5-chloro-7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-8-methyl-2-naphthonitrile (JLJ651), a Non-nucleoside Inhibitor 6X49 ; 2.745 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with 7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ649), a Non-nucleoside Inhibitor 6X4F ; 2.72 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with methyl 2-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)acetate (JLJ681), a Non-nucleoside Inhibitor 5VQU ; 2.6 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-2-fluoro-N-methylacetamide (JLJ683), a Non-nucleoside Inhibitor 5VQV ; 2.58 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacrylamide (JLJ684), a Non-nucleoside Inhibitor 5VQW ; 2.5 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) Variant in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)acrylamide (JLJ685), a Non-nucleoside Inhibitor 8STR ; 2.77 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) varient in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-fluorophenoxy)-7-fluoro-2-naphthonitrile (JLJ636), a non-nucleoside inhibitor 8STQ ; 2.955 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) varient in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ600), a non-nucleoside inhibitor 8STP ; 3.09 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C) varient in Complex with 8-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)indolizine-2-carbonitrile (JLJ555), a non-nucleoside inhibitor 8STV ; 2.78 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C, V106A) variant in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ600), a non-nucleoside inhibitor 8STU ; 2.76 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C, V106A) variant in Complex with 8-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-fluorophenoxy)-6-fluoroindolizine-2-carbonitrile (JLJ578), a non-nucleoside inhibitor 8STS ; 3.02 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C, V106A) varient in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-fluorophenoxy)-7-fluoro-2-naphthonitrile (JLJ636), a non-nucleoside inhibitor 8STT ; 2.62 ; Crystal Structure of HIV-1 Reverse Transcriptase (Y181C, V106A) varient in Complex with 8-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)indolizine-2-carbonitrile (JLJ555), a non-nucleoside inhibitor 1RT1 ; 2.55 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH MKC-442 1RT2 ; 2.55 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH TNK-651 1R0A ; 2.8 ; Crystal structure of HIV-1 reverse transcriptase covalently tethered to DNA template-primer solved to 2.8 angstroms 4LSL ; 2.69 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-3-(3-(4-chloro-2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ476), a non-nucleoside inhibitor 4LSN ; 3.1 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-3-(3-bromo-5-(4-chloro-2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ518), a non-nucleoside inhibitor 7SNP ; 2.89 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-3-(3-chloro-5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-(2-morpholinoethoxy)phenoxy)phenyl)acrylonitrile (JLJ530) 4RW8 ; 2.878 ; Crystal Structure of HIV-1 Reverse Transcriptase in complex with (E)-3-(3-chloro-5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ532), a non-nucleoside inhibitor' 4H4M ; 2.85 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-3-(3-chloro-5-(4-chloro-2-(2-(2,4-dioxo-3,4- dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)phenyl)acrylonitrile (JLJ494), a Non-nucleoside Inhibitor 7SO1 ; 2.727 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-4-((4-((4-(2-cyanovinyl)-2,6-dimethylphenyl)amino)-6-(3-morpholinopropoxy)-1,3,5-triazin-2-yl)amino)benzonitrile (JLJ564) 7KRF ; 2.6 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-4-(3-(2-cyanovinyl)-5-fluorophenoxy)-3-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenyl sulfurofluoridate (JLJ710) 7KRC ; 2.65 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (E)-4-(3-chloro-5-(2-cyanovinyl)phenoxy)-3-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenyl sulfurofluoridate (JLJ709) 8U6A ; 2.37 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with (JLJ729), a non-nucleoside inhibitor 8U6C ; 2.7 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 2-chloro-N-(4-chloro-3-(3-chloro-5-cyanophenoxy)phenethyl)acetamide (JLJ732), a non-nucleoside inhibitor 5VQT ; 2.556 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 2-chloro-N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacetamide (JLJ686), a Non-nucleoside Inhibitor 8U6P ; 2.81 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-(2-((2-cyanoindolizin-8-yl)oxy)phenoxy)-N,N-dimethylpropanamide (JLJ754), a non-nucleoside inhibitor 8U6R ; 2.87 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-(2-((2-cyanoindolizin-8-yl)oxy)phenoxy)-N-(2,2-difluoroethyl)propanamide (JLJ756), a non-nucleoside inhibitor 8U6N ; 2.74 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-(2-((6-cyanonaphthalen-1-yl)oxy)phenoxy)-N,N-dimethylpropanamide (JLJ752), a non-nucleoside inhibitor 8U6G ; 2.77 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-(2-(2-(3-acryloyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)ethoxy)-4-chlorophenoxy)-5-chlorobenzonitrile (JLJ744), a non-nucleoside inhibitor 8U6H ; 2.99 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-(2-(2-(3-acryloyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)ethoxy)-4-chlorophenoxy)-5-chlorobenzonitrile (JLJ744), a non-nucleoside inhibitor 8U69 ; 2.45 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 3-chloro-5-(4-chloro-2-(2-(5-chloro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)benzonitrile (JLJ334), a non-nucleoside inhibitor 4O4G ; 2.712 ; Crystal Structure of HIV-1 Reverse Transcriptase in complex with 4-((4-(mesitylamino)-1,3,5-triazin-2-yl)amino)benzonitrile (JLJ527), a non-nucleoside inhibitor 4O44 ; 2.889 ; Crystal Structure of HIV-1 Reverse Transcriptase in complex with 4-((4-(mesitylamino)-6-(3-morpholinopropoxy)-1,3,5-triazin-2-yl)amino)benzonitrile (JLJ529), a non-nucleoside inhibitor 4KKO ; 2.89 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 4-((4-methoxy-6-(2-morpholinoethoxy)-1,3,5-triazin-2-yl)amino)-2-((3-methylbut-2-en-1-yl)oxy)benzonitrile (JLJ513), a non-nucleoside inhibitor 7KRE ; 2.728 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 4-((6-cyanonaphthalen-1-yl)oxy)-3-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenyl sulfurofluoridate (JLJ704) 7KRD ; 2.7 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 4-(3-chloro-5-cyanophenoxy)-3-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenyl sulfurofluoridate (JLJ702) 5TW3 ; 2.853 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-fluorophenoxy)-7-fluoro-2-naphthonitrile (JLJ636), a Non-nucleoside Inhibitor 4WE1 ; 2.491 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ600) 6OE3 ; 2.9 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-7-fluoro-2-naphthonitrile (JLJ635), a Non-nucleoside Inhibitor 8U6T ; 2.25 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-(2-(2-(3-acryloyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ758), a non-nucleoside inhibitor 6X4D ; 2.65 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-(cyclopropylmethyl)-7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-8-methyl-2-naphthonitrile (JLJ678), a Non-nucleoside Inhibitor 5TER ; 2.7 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 5-chloro-7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-8-methyl-2-naphthonitrile (JLJ651), a Non-nucleoside Inhibitor 7SNZ ; 2.368 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 6-((2-((4-cyanophenyl)amino)pyrimidin-4-yl)amino)-5,7-dimethylindolizine-2-carbonitrile (JLJ604) 5C25 ; 2.841 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 6-((4-((4-cyanophenyl)amino)-1,3,5-triazin-2-yl)amino)-5,7-dimethyl-2-naphthonitrile (JLJ639), a Non-nucleoside Inhibitor 5C24 ; 2.6 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 7-((4-((4-cyanophenyl)amino)-1,3,5-triazin-2-yl)amino)-6,8-dimethylindolizine-2-carbonitrile (JLJ605), a non-nucleoside inhibitor 6X4C ; 2.861 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)-4-fluorophenoxy)-5,8-dimethyl-2-naphthonitrile (JLJ658), a Non-nucleoside Inhibitor 6X47 ; 2.767 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-2-naphthonitrile (JLJ649), a Non-nucleoside Inhibitor 6X4B ; 2.5 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 7-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-5-fluoro-8-methyl-2-naphthonitrile (JLJ655), a Non-nucleoside Inhibitor 1JLQ ; 3.0 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH 739W94 4MFB ; 2.88 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 8-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)indolizine-2-carbonitrile (JLJ555), a non-nucleoside inhibitor 8U6S ; 2.99 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 8-(2-(3-morpholino-3-oxopropoxy)phenoxy)indolizine-2-carbonitrile (JLJ757), a non-nucleoside inhibitor 8U6Q ; 2.55 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with 8-(2-(3-oxo-3-(pyrrolidin-1-yl)propoxy)phenoxy)indolizine-2-carbonitrile (JLJ755), a non-nucleoside inhibitor 1HYS ; 3.0 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH A POLYPURINE TRACT RNA:DNA 1C0T ; 2.7 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH BM+21.1326 1C0U ; 2.52 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH BM+50.0934 4PWD ; 3.0 ; Crystal structure of HIV-1 reverse transcriptase in complex with bulge-RNA/DNA and Nevirapine 1FK9 ; 2.5 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH DMP-266(EFAVIRENZ) 4Q0B ; 3.3 ; Crystal structure of HIV-1 reverse transcriptase in complex with gap-RNA/DNA and Nevirapine 1C1B ; 2.5 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH GCA-186 3DLE ; 2.5 ; Crystal structure of hiv-1 reverse transcriptase in complex with GF128590. 2OPP ; 2.55 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with GW420867X. 1TKT ; 2.6 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH GW426318 1TKZ ; 2.81 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH GW429576 1TL3 ; 2.8 ; Crystal structure of hiv-1 reverse transcriptase in complex with gw450557 1TL1 ; 2.9 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH GW451211 1TKX ; 2.85 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH GW490745 3DLG ; 2.2 ; Crystal structure of hiv-1 reverse transcriptase in complex with GW564511. 7U5Z ; 2.3 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with JLJ353 6X4E ; 2.6 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with methyl 2-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)acetate (JLJ681), a Non-nucleoside Inhibitor 8U6I ; 2.46 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(2-((2-cyanoindolizin-8-yl)oxy)phenoxy)ethyl)-N-methylacrylamide (JLJ745), a non-nucleoside inhibitor 8U6M ; 2.62 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(2-((6-chloro-2-cyanoindolizin-8-yl)oxy)phenoxy)ethyl)-N-methylacrylamide (JLJ751), a non-nucleoside inhibitor 8U6K ; 2.72 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(2-((6-cyanonaphthalen-1-yl)oxy)phenoxy)ethyl)-N-methylacrylamide (JLJ747), a non-nucleoside inhibitor 8U6D ; 2.33 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(4-chloro-3-(3-chloro-5-cyanophenoxy)phenoxy)ethyl)-N-methylacrylamide (JLJ736), a non-nucleoside inhibitor 8U6J ; 2.64 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(5-chloro-2-((2-cyanoindolizin-8-yl)oxy)phenoxy)ethyl)-N-methylacrylamide (JLJ746), a non-nucleoside inhibitor 8U6L ; 2.486 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(5-chloro-2-((6-cyanonaphthalen-1-yl)oxy)phenoxy)ethyl)-N-methylacrylamide (JLJ748), a non-nucleoside inhibitor 8U6F ; 2.69 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(2-(5-chloro-2-(3-chloro-5-cyanophenoxy)phenoxy)ethyl)-N-methylacrylamide (JLJ742), a non-nucleoside inhibitor 8U6E ; 2.31 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(4-chloro-3-(3-chloro-5-cyanophenoxy)phenethyl)-N-methylacrylamide (JLJ738), a non-nucleoside inhibitor 8U6B ; 2.35 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(4-chloro-3-(3-chloro-5-cyanophenoxy)phenethyl)acrylamide (JLJ731), a non-nucleoside inhibitor 5VQQ ; 2.55 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-2-fluoro-N-methylacetamide (JLJ683), a Non-nucleoside Inhibitor 5VQR ; 2.55 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)-N-methylacrylamide (JLJ684), a Non-nucleoside Inhibitor 5VQS ; 2.504 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with N-(6-cyano-3-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-4-methylnaphthalen-1-yl)acrylamide (JLJ685), a Non-nucleoside Inhibitor 3LAN ; 2.55 ; Crystal structure of HIV-1 reverse transcriptase in complex with N1-butyl pyrimidinedione non-nucleoside inhibitor 3LAL ; 2.51 ; Crystal structure of HIV-1 reverse transcriptase in complex with N1-ethyl pyrimidinedione non-nucleoside inhibitor 3LAK ; 2.3 ; Crystal structure of HIV-1 reverse transcriptase in complex with N1-heterocycle pyrimidinedione non-nucleoside inhibitor 3LAM ; 2.76 ; Crystal structure of HIV-1 reverse transcriptase in complex with N1-propyl pyrimidinedione non-nucleoside inhibitor 8FFX ; 2.42 ; Crystal structure of HIV-1 reverse transcriptase in complex with non-nucleoside inhibitor 19980 6C0N ; 2.001 ; Crystal structure of HIV-1 reverse transcriptase in complex with non-nucleoside inhibitor 25a 6C0J ; 1.92 ; Crystal structure of HIV-1 reverse transcriptase in complex with non-nucleoside inhibitor K-5a2 1DTQ ; 2.8 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH PETT-1 (PETT131A94) 1DTT ; 3.0 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH PETT-2 (PETT130A94) 4I2P ; 2.2964 ; Crystal structure of HIV-1 reverse transcriptase in complex with rilpivirine (TMC278) based analogue 4PQU ; 2.508 ; Crystal structure of HIV-1 Reverse Transcriptase in complex with RNA/DNA and dATP 4PUO ; 2.901 ; Crystal structure of HIV-1 reverse transcriptase in complex with RNA/DNA and Nevirapine 1EP4 ; 2.5 ; Crystal structure of HIV-1 reverse transcriptase in complex with S-1153 1C1C ; 2.5 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH TNK-6123 8U6O ; 2.48 ; Crystal Structure of HIV-1 Reverse Transcriptase in Complex with5-(2-(3-oxo-3-(pyrrolidin-1-yl)propoxy)phenoxy)-2-naphthonitrile (JLJ753), a non-nucleoside inhibitor 6DUG ; 2.225 ; Crystal structure of HIV-1 reverse transcriptase K101P mutant in complex with non-nucleoside inhibitor 25a 7SO3 ; 2.767 ; Crystal Structure of HIV-1 Reverse Transcriptase K103N/Y181C Variant in Complex with (E)-4-((4-((4-(2-cyanovinyl)-2,6-dimethylphenyl)amino)-6-(3-morpholinopropoxy)-1,3,5-triazin-2-yl)amino)benzonitrile (JLJ564) 6DUF ; 1.963 ; Crystal structure of HIV-1 reverse transcriptase V106A/F227L mutant in complex with non-nucleoside inhibitor 25a 7OXQ ; 3.3 ; Crystal structure of HIV-1 reverse transcriptase with a double stranded DNA in complex with fragment 048 at the transient P-pocket. 7OZ5 ; 3.37 ; Crystal structure of HIV-1 reverse transcriptase with a double stranded DNA in complex with fragment 166 at the transient P-pocket. 7OZ2 ; 2.85 ; Crystal structure of HIV-1 reverse transcriptase with a double stranded DNA showing a transient P-pocket 7SO2 ; 3.089 ; Crystal Structure of HIV-1 Reverse Transcriptase Y181C Variant in Complex with (E)-4-((4-((4-(2-cyanovinyl)-2,6-dimethylphenyl)amino)-6-(3-morpholinopropoxy)-1,3,5-triazin-2-yl)amino)benzonitrile (JLJ564) 6DUH ; 2.003 ; Crystal structure of HIV-1 reverse transcriptase Y181I mutant in complex with non-nucleoside inhibitor 25a 1FIR ; 3.3 ; CRYSTAL STRUCTURE OF HIV-1 REVERSE TRANSCRIPTION PRIMER TRNA(LYS3) 3HYF ; 1.7 ; Crystal structure of HIV-1 RNase H p15 with engineered E. coli loop and active site inhibitor 3QIN ; 1.6967 ; Crystal Structure of HIV-1 RNase H p15 with engineered E. coli loop and pyrimidinol carboxylic acid inhibitor 3QIO ; 1.4011 ; Crystal Structure of HIV-1 RNase H with engineered E. coli loop and N-hydroxy quinazolinedione inhibitor 3ISN ; 2.5 ; Crystal structure of HIV-1 RT bound to A 6-vinylpyrimidine inhibitor 7KWU ; 2.02 ; Crystal Structure of HIV-1 RT in Complex with 16c (K07-15) 7LQU ; 2.6 ; Crystal Structure of HIV-1 RT in Complex with NBD-14075 7LPW ; 2.32 ; Crystal Structure of HIV-1 RT in Complex with NBD-14189 7LPX ; 2.45 ; Crystal Structure of HIV-1 RT in Complex with NBD-14270 8FE8 ; 2.5 ; Crystal Structure of HIV-1 RT in Complex with the non-nucleoside inhibitor 18b1 3C5D ; 1.8 ; Crystal structure of HIV-1 subtype F DIS extended duplex RNA bound to lividomycin 3C7R ; 1.7 ; Crystal Structure of HIV-1 subtype F DIS extended duplex RNA bound to neomycin 3C44 ; 2.0 ; Crystal structure of HIV-1 subtype F DIS extended duplex RNA bound to paromomycin 3C3Z ; 1.5 ; Crystal structure of HIV-1 subtype F DIS extended duplex RNA bound to ribostamycin 3DVV ; 2.0 ; Crystal structure of HIV-1 subtype F DIS extended duplex RNA bound to ribostamycin (U267OMe) 3MIA ; 3.0 ; Crystal structure of HIV-1 Tat complexed with ATP-bound human P-TEFb 3MI9 ; 2.1 ; Crystal structure of HIV-1 Tat complexed with human P-TEFb 4OR5 ; 2.9 ; Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4 2BGR ; 2.0 ; Crystal structure of HIV-1 Tat derived nonapeptides Tat(1-9) bound to the active site of Dipeptidyl peptidase IV (CD26) 3DMJ ; 2.6 ; CRYSTAL STRUCTURE OF HIV-1 V106A and Y181C MUTANT REVERSE TRANSCRIPTASE IN COMPLEX WITH GW564511. 5B56 ; 2.3 ; Crystal structure of HIV-1 VPR C-Terminal domain and DIBB-M-Importin-Alpha2 complex 7SO4 ; 2.95 ; Crystal Structure of HIV-1 Y181C mutant Reverse Transcriptase in Complex with 5-(2-(2-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)ethoxy)phenoxy)-7-fluoro-2-naphthonitrile (JLJ635), a Non-nucleoside Inhibitor 6CGF ; 1.94 ; Crystal structure of HIV-1 Y188L mutant reverse transcriptase in complex with non-nucleoside inhibitor K-5a2 4LAJ ; 2.14 ; Crystal structure of HIV-1 YU2 envelope gp120 glycoprotein in complex with CD4-mimetic miniprotein, M48U1, and llama single-domain, broadly neutralizing, co-receptor binding site antibody, JM4 6K6M ; 2.072 ; Crystal structure of HIV-2 Nef protein 1MU2 ; 2.35 ; CRYSTAL STRUCTURE OF HIV-2 REVERSE TRANSCRIPTASE 3IDX ; 2.5 ; Crystal structure of HIV-gp120 core in complex with CD4-binding site antibody b13, space group C222 3IDY ; 3.2 ; Crystal structure of HIV-gp120 core in complex with CD4-binding site antibody b13, space group C2221 2NPH ; 1.65 ; Crystal structure of HIV1 protease in situ product complex 2YU1 ; 2.7 ; Crystal structure of hJHDM1A complexed with a-ketoglutarate 2YU2 ; 2.7 ; Crystal structure of hJHDM1A without a-ketoglutarate 3E8K ; 3.65 ; Crystal structure of HK97 Prohead II 8OME ; 2.0 ; Crystal structure of hKHK-A in complex with compound-4 8OMF ; 2.14 ; Crystal structure of hKHK-C in complex with compound-4 6KR0 ; 2.3 ; Crystal structure of HL homo-diabody 3MJ8 ; 2.94 ; Crystal structure of HL4E10 Fab, a hamster Ab stimulatory for gammadelta T cells 4NQV ; 2.39 ; Crystal Structure of HLA A*0101 in complex with NP44, an 9-mer influenza epitope 4NQX ; 2.0 ; Crystal Structure of HLA A*0101 in complex with NP44-S7N, an 9-mer influenza epitope 3OX8 ; 2.16 ; Crystal Structure of HLA A*02:03 Bound to HBV Core 18-27 3OXR ; 1.7 ; Crystal Structure of HLA A*02:06 Bound to HBV Core 18-27 3OXS ; 1.75 ; Crystal Structure of HLA A*02:07 Bound to HBV Core 18-27 7UC5 ; 1.95 ; Crystal Structure of HLA A*0301 in complex with ILRGSVAHK, a 9-mer epitope from Influenza A 7S8Q ; 2.08 ; Crystal Structure of HLA A*1101 in complex with KTNGNAFIGK, an 10-mer epitope from Influenza B 7S8S ; 1.87 ; Crystal Structure of HLA A*1101 in complex with RVLVNGTFLK, an 10-mer epitope from Influenza B 7S8R ; 2.95 ; Crystal Structure of HLA A*1101 in complex with SALEWIKNK, an 9-mer epitope from Influenza B 7JYW ; 2.9 ; Crystal Structure of HLA A*2402 in complex with TYQWIIRNW, an 9-mer influenza epitope 7JYX ; 2.95 ; Crystal Structure of HLA A*2402 in complex with TYQWIIRNWET, an 11-mer epitope from Influenza 6XQA ; 2.16 ; Crystal Structure of HLA A*2402 in complex with TYQWVLKNL, an 9-mer epitope from Influenza B virus 7JYV ; 1.51 ; Crystal Structure of HLA A*2402 in complex with YFSPIRVTF, an 9-mer influenza epitope 6TRN ; 1.35 ; Crystal structure of HLA A2*01-AVYDGREHTV 4QRS ; 1.4 ; Crystal Structure of HLA B*0801 in complex with ELK_IYM, ELKRKMIYM 4QRT ; 1.4 ; Crystal Structure of HLA B*0801 in complex with ELN_YYM, ELNRKMIYM 4QRU ; 1.6 ; Crystal Structure of HLA B*0801 in complex with ELR_MYM, ELRRKMMYM 4QRQ ; 1.7 ; Crystal Structure of HLA B*0801 in complex with HSKKKCDEL 4QRP ; 2.9 ; Crystal Structure of HLA B*0801 in complex with HSKKKCDEL and DD31 TCR 3LKN ; 2.0 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 1918 strain 3LKO ; 1.8 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 1934 strain 3LKP ; 1.8 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 1972 strain 3LKQ ; 1.8 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 1977 strain 3LKS ; 1.9 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 1980 strain 3LKR ; 2.0 ; Crystal Structure of HLA B*3501 in complex with influenza NP418 epitope from 2009 H1N1 swine origin strain 7SIG ; 1.741 ; Crystal Structure of HLA B*3501 in complex with NPDIVIYQY, an 9-mer epitope from HIV-I 4QRR ; 3.0 ; Crystal Structure of HLA B*3501-IPS in complex with a Delta-Beta TCR, clone 12 TCR 7SIH ; 1.9 ; Crystal Structure of HLA B*3503 in complex with NPDIVIYQY, an 9-mer epitope from HIV-I 7SIF ; 1.73 ; Crystal Structure of HLA B*3505 in complex with NPDIVIYQY, an 9-mer epitope from HIV-I 3BW9 ; 1.75 ; Crystal Structure of HLA B*3508 in complex with a HCMV 12-mer peptide from the pp65 protein 3BWA ; 1.3 ; Crystal Structure of HLA B*3508 in complex with a HCMV 8-mer peptide from the pp65 protein 3VFW ; 2.3 ; crystal structure of HLA B*3508 LPEP-P10Ala, peptide mutant P10-ala 3VFU ; 1.65 ; crystal structure of HLA B*3508 LPEP-P7Ala, peptide mutant P7-ala 3VFV ; 1.55 ; crystal structure of HLA B*3508 LPEP-P9Ala, peptide mutant P9-ala 3VFM ; 1.9 ; crystal structure of HLA B*3508 LPEP155A, HLA mutant Ala155 3VFO ; 1.7 ; crystal structure of HLA B*3508 LPEP157A, HLA mutant Ala157 3VFP ; 1.85 ; crystal structure of HLA B*3508 LPEP158G, HLA mutant Gly158 3VFR ; 1.85 ; crystal structure of HLA B*3508LPEP-P4Ala, peptide mutant P4-ala 3VFS ; 1.85 ; crystal structure of HLA B*3508LPEP-P5Ala , peptide mutant P5-ala 3VFT ; 1.947 ; crystal structure of HLA B*3508LPEP-P6Ala, peptide mutant P6-ala 3VFN ; 1.5 ; crystal structure of HLA B*3508LPEP151A, HLA mutant Ala151 3KPM ; 1.6 ; Crystal Structure of HLA B*4402 in complex with EEYLKAWTF, a mimotope 3KPL ; 1.96 ; Crystal Structure of HLA B*4402 in complex with EEYLQAFTY a self peptide from the ABCD3 protein 1M6O ; 1.6 ; Crystal Structure of HLA B*4402 in complex with HLA DPA*0201 peptide 3KPO ; 2.3 ; Crystal Structure of HLA B*4403 in complex with EEYLKAWTF, a mimotope 3KPN ; 2.0 ; Crystal Structure of HLA B*4403 in complex with EEYLQAFTY a self peptide from the ABCD3 protein 3KPQ ; 1.84 ; Crystal Structure of HLA B*4405 in complex with EEYLKAWTF, a mimotope 3KPP ; 1.9 ; Crystal Structure of HLA B*4405 in complex with EEYLQAFTY a self peptide from the ABCD3 protein 4G9D ; 1.6 ; Crystal Structure of HLA B2705-KK10 4G8I ; 1.6 ; Crystal Structure of HLA B2705-KK10-L6M 5XS3 ; 2.5 ; Crystal structure of HLA Class I antigen 3C5J ; 1.8 ; Crystal structure of HLA DR52c 7DUU ; 2.51 ; Crystal structure of HLA molecule with an KIR receptor 1SYS ; 2.4 ; Crystal structure of HLA, B*4403, and peptide EEPTVIKKY 1B0R ; 2.9 ; CRYSTAL STRUCTURE OF HLA-A*0201 COMPLEXED WITH A PEPTIDE WITH THE CARBOXYL-TERMINAL GROUP SUBSTITUTED BY A METHYL GROUP 4U6X ; 1.68 ; Crystal Structure of HLA-A*0201 in complex with ALQDA, a 15 mer self-peptide 4U6Y ; 1.467 ; Crystal Structure of HLA-A*0201 in complex with FLNDK, a 15 mer self-peptide 5HHN ; 2.03 ; Crystal Structure of HLA-A*0201 in complex with M1-F5L 5HHP ; 1.9 ; Crystal Structure of HLA-A*0201 in complex with M1-G4E 5HHQ ; 2.1 ; Crystal Structure of HLA-A*0201 in complex with M1-L3W 5SWQ ; 2.0 ; Crystal Structure of HLA-A*0201 in complex with NA231, an influenza epitope 7KGS ; 1.58 ; Crystal Structure of HLA-A*0201 in complex with SARS-CoV-2 N138-146 7KGT ; 1.9 ; Crystal Structure of HLA-A*0201 in complex with SARS-CoV-2 N226-234 7KGP ; 1.396 ; Crystal Structure of HLA-A*0201 in complex with SARS-CoV-2 N316-324 1I4F ; 1.4 ; CRYSTAL STRUCTURE OF HLA-A*0201/MAGE-A4-PEPTIDE COMPLEX 1DUY ; 2.15 ; CRYSTAL STRUCTURE OF HLA-A*0201/OCTAMERIC TAX PEPTIDE COMPLEX 7KGR ; 1.55 ; Crystal Structure of HLA-A*0201in complex with SARS-CoV-2 N159-167 7KGQ ; 1.34 ; Crystal Structure of HLA-A*0201in complex with SARS-CoV-2 N222-230 7KGO ; 2.15 ; Crystal Structure of HLA-A*0201in complex with SARS-CoV-2 N351-359 7M8S ; 2.35 ; Crystal Structure of HLA-A*02:01 in complex with KLNDLCFTNV, an 10-mer epitope from SARS-CoV-2 Spike (S386-395) 7L1C ; 1.96 ; Crystal structure of HLA-A*03:01 in complex with a mutant PIK3CA peptide 7L1B ; 2.04 ; Crystal structure of HLA-A*03:01 in complex with a wild-type PIK3CA peptide 7MLE ; 2.2 ; Crystal Structure of HLA-A*03:01 in complex with VVRPSVASK, an 9-mer epitope from Influenza B virus 4MJ5 ; 2.401 ; Crystal Structure of HLA-A*1101 in complex with H1-22, an influenza A(H1N1) virus epitope 4MJ6 ; 2.57 ; Crystal Structure of HLA-A*1101 in complex with H7-22, an influenza A(H7N9) virus epitope 1X7Q ; 1.45 ; Crystal structure of HLA-A*1101 with sars nucleocapsid peptide 7OW4 ; 1.81 ; Crystal structure of HLA-A*11:01 in complex with KRAS G12D peptide (VVVGADGVGK) 8I5E ; 2.2 ; Crystal structure of HLA-A*11:01 in complex with KRAS peptide (VVGAGGVGK) 7OW3 ; 2.46 ; Crystal structure of HLA-A*11:01 in complex with KRAS peptide (VVVGAGGVGK) 7M8T ; 1.5 ; Crystal Structure of HLA-A*11:01 in complex with NSASFSTFK, an 9-mer epitope from SARS-CoV-2 spike (S370-378) 5WJL ; 3.15 ; Crystal Structure of HLA-A*11:01 with GTS1 peptide 5WJN ; 2.85 ; Crystal Structure of HLA-A*11:01-GTS3 7WT3 ; 1.88766 ; Crystal structure of HLA-A*2402 complexed with 4-mer lipopeptide 7WT4 ; 1.89459 ; Crystal structure of HLA-A*2402 complexed with 8-mer Influenza PB1 peptide 4F7M ; 2.4 ; Crystal Structure of HLA-A*2402 Complexed with a Newly Identified Peptide from 2009 H1N1 PA (649-658) 4F7T ; 1.7 ; Crystal Structure of HLA-A*2402 Complexed with a Newly Identified Peptide from 2009 H1N1 PB1 (498-505) 4F7P ; 1.9 ; Crystal Structure of HLA-A*2402 Complexed with a Newly Identified Peptide from 2009H1N1 PB1 (496-505) 2BCK ; 2.8 ; Crystal Structure of HLA-A*2402 Complexed with a telomerase peptide 5WWU ; 2.794 ; Crystal Structure of HLA-A*2402 in complex with 2009 pandemic influenza A(H1N1) virus and avian influenza A(H5N1) virus-derived peptide H1-25 5WWI ; 3.194 ; Crystal Structure of HLA-A*2402 in complex with avian influenza A(H7N9) virus-derived peptide H7-25 (data set 1) 5WWJ ; 2.29 ; Crystal Structure of HLA-A*2402 in complex with avian influenza A(H7N9) virus-derived peptide H7-25 (data set 1) 5WXD ; 3.295 ; Crystal Structure of HLA-A*2402 in complex with avian influenza A(H7N9) virus-derived peptide H7-25 (data set 1) 5WXC ; 2.295 ; Crystal Structure of HLA-A*2402 in complex with avian influenza A(H7N9) virus-derived peptide H7-25 (data set 2) 7JYU ; 2.75 ; Crystal Structure of HLA-A*2402 in complex with IYFSPIRVTF, an 10-mer epitope from Influenza B virus 7WT5 ; 2.09508 ; Crystal structure of HLA-A*2450 complexed with 8-mer model peptide 6PBH ; 1.89 ; Crystal Structure of HLA-A*68:01 in complex with NP145-156, a 12 mer influenza peptide 4UQ3 ; 2.1 ; Crystal structure of HLA-A0201 in complex with an azobenzene- containing peptide 4UQ2 ; 2.43 ; Crystal structure of HLA-A1101 in complex with an azobenzene- containing peptide 1W72 ; 2.15 ; Crystal structure of HLA-A1:MAGE-A1 in complex with Fab-Hyb3 1P7Q ; 3.4 ; Crystal Structure of HLA-A2 Bound to LIR-1, a Host and Viral MHC Receptor 6EWA ; 2.39 ; Crystal structure of HLA-A2 in complex with LILRB1 1JF1 ; 1.85 ; Crystal structure of HLA-A2*0201 in complex with a decameric altered peptide ligand from the MART-1/Melan-A 1JHT ; 2.15 ; Crystal structure of HLA-A2*0201 in complex with a nonameric altered peptide ligand (ALGIGILTV) from the MART-1/Melan-A. 7BBG ; 2.64 ; CRYSTAL STRUCTURE OF HLA-A2-WT1-RMF AND FAB 11D06 6O9C ; 2.45 ; Crystal structure of HLA-A3*01 in complex with a mutant beta-catenin peptide 6O9B ; 2.2 ; Crystal structure of HLA-A3*01 in complex with a wild-type beta-catenin peptide 6EI2 ; 1.61 ; Crystal Structure of HLA-A68 presenting a C-terminally extended peptide 6AT5 ; 1.5 ; Crystal structure of HLA-B*07:02 in complex with an NY-ESO-1 peptide 7RZD ; 1.82 ; CRYSTAL STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH MLL(747-755) PEPTIDE 7RZJ ; 1.8 ; CRYSTAL STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH MLL(747-755) PHOSPHOPEPTIDE 6UJ7 ; 1.9 ; Crystal structure of HLA-B*07:02 with R140Q mutant IDH2 peptide 6UJ9 ; 2.9 ; Crystal structure of HLA-B*07:02 with R140Q mutant IDH2 peptide in complex with Fab 6UJ8 ; 2.25 ; Crystal structure of HLA-B*07:02 with wild-type IDH2 peptide 3X13 ; 1.8 ; Crystal structure of HLA-B*0801.N80I 3X14 ; 2.0 ; Crystal structure of HLA-B*0801.N80I.R82L.G83R 7NUI ; 2.0 ; Crystal structure of HLA-B*08:01 in complex with ELRSRYWAI viral peptide 7YG3 ; 1.5 ; Crystal structure of HLA-B*13:01 8ELG ; 1.65 ; Crystal Structure of HLA-B*15:01 in complex with spike derived peptide NQKLIANAF from OC43 virus 8ELH ; 1.85 ; Crystal Structure of HLA-B*15:01 in complex with spike derived peptide NQKLIANQF from SARS-CoV-2 virus 6MT3 ; 1.21 ; Crystal Structure of HLA-B*18:01 in complex with NP338 influenza peptide 6PYL ; 1.52 ; Crystal Structure of HLA-B*2703 in complex with KK10, an HIV peptide 6PZ5 ; 1.53 ; Crystal Structure of HLA-B*2703 in complex with LRN, a self-peptide 6PYV ; 1.45 ; Crystal Structure of HLA-B*2703-P47G in complex with LRN, a self-peptide 3LV3 ; 1.94 ; Crystal structure of HLA-B*2705 complexed with a peptide derived from the human voltage-dependent calcium channel alpha1 subunit (residues 513-521) 3B6S ; 1.8 ; Crystal Structure of hla-b*2705 Complexed with the Citrullinated Vasoactive Intestinal Peptide Type 1 Receptor (vipr) Peptide (residues 400-408) 3DTX ; 2.1 ; Crystal structure of HLA-B*2705 complexed with the double citrullinated vasoactive intestinal peptide type 1 receptor (VIPR) peptide (residues 400-408) 2A83 ; 1.4 ; Crystal structure of hla-b*2705 complexed with the glucagon receptor (gr) peptide (residues 412-420) 1UXS ; 1.55 ; CRYSTAL STRUCTURE OF HLA-B*2705 COMPLEXED WITH THE LATENT MEMBRANE PROTEIN 2 PEPTIDE (LMP2)OF EPSTEIN-BARR VIRUS 1W0V ; 2.27 ; Crystal Structure Of HLA-B*2705 Complexed With the self-Peptide TIS from EGF-response factor 1 1OGT ; 1.47 ; CRYSTAL STRUCTURE OF HLA-B*2705 COMPLEXED WITH THE VASOACTIVE INTESTINAL PEPTIDE TYPE 1 RECEPTOR (VIPR) PEPTIDE (RESIDUES 400-408) 6PYJ ; 1.44 ; Crystal Structure of HLA-B*2705 in complex with LRN, a self-peptide 6PYW ; 1.38 ; Crystal Structure of HLA-B*2705-W60A in complex with LRN, a self-peptide 3D18 ; 1.74 ; Crystal structure of HLA-B*2709 complexed with a variant of the latent membrane protein 2 peptide (LMP2(L)) of epstein-barr virus 3HCV ; 1.95 ; Crystal structure of HLA-B*2709 complexed with the double citrullinated vasoactive intestinal peptide type 1 receptor (VIPR) peptide (residues 400-408) 3CZF ; 1.2 ; Crystal structure of HLA-B*2709 complexed with the glucagon receptor (GR) peptide (residues 412-420) 1UXW ; 1.71 ; CRYSTAL STRUCTURE OF HLA-B*2709 COMPLEXED WITH THE LATENT MEMBRANE PROTEIN 2 PEPTIDE (LMP2) OF EPSTEIN-BARR VIRUS 1W0W ; 2.11 ; Crystal Structure Of HLA-B*2709 Complexed With the self-Peptide TIS from EGF-response factor 1 1OF2 ; 2.2 ; Crystal structure of HLA-B*2709 complexed with the vasoactive intestinal peptide type 1 receptor (VIPR) peptide (residues 400-408) 5IB2 ; 1.44 ; Crystal structure of HLA-B*27:05 complexed with the self-peptide pVIPR 5IB3 ; 1.91 ; Crystal structure of HLA-B*27:05 complexed with the self-peptide pVIPR and Copper 5IB4 ; 1.95 ; Crystal structure of HLA-B*27:05 complexed with the self-peptide pVIPR and Nickel 5IB1 ; 1.91 ; Crystal structure of HLA-B*27:05 complexed with the self-peptide pVIPR measured at 295 K 5IB5 ; 2.49 ; Crystal structure of HLA-B*27:09 complexed with the self-peptide pVIPR and Copper 1ZHK ; 1.6 ; Crystal structure of HLA-B*3501 presenting 13-mer EBV antigen LPEPLPQGQLTAY 1ZSD ; 1.7 ; Crystal Structure Of HLA-B*3501 Presenting an 11-Mer EBV Antigen EPLPQGQLTAY 2H6P ; 1.9 ; Crystal structure of HLA-B*3501 presenting the human cytochrome P450 derived peptide, KPIVVLHGY 1ZHL ; 1.5 ; Crystal structure of HLA-B*3508 presenting 13-mer EBV antigen LPEPLPQGQLTAY 2NW3 ; 1.7 ; Crystal structure of HLA-B*3508 presenting EBV peptide EPLPQGQLTAY at 1.7A 7M8U ; 1.45 ; Crystal Structure of HLA-B*35:01 in complex with IPFAMQMAY, an 9-mer epitope from SARS-CoV-2 spike (S896-904) 8EMK ; 1.66523 ; Crystal structure of HLA-B*35:01-NP3 epitope from 1957 H2N2 influenza strain 8EMJ ; 1.75003 ; Crystal structure of HLA-B*35:01-NP9 epitope from 2006 H1N1 influenza strain 6MT6 ; 1.31 ; Crystal Structure of HLA-B*37:01 in complex with NP338 influenza peptide 6MT4 ; 1.55 ; Crystal Structure of HLA-B*37:01 in complex with NP338-L7S influenza peptide 6MT5 ; 1.55 ; Crystal Structure of HLA-B*37:01 in complex with NP338-V6L influenza peptide 6IEX ; 2.314 ; Crystal structure of HLA-B*4001 in complex with SARS-CoV derived peptide N216-225 GETALALLLL 3LN4 ; 1.296 ; Crystal structure of HLA-B*4103 in complex with a 16mer self-peptide derived from heterogeneous nuclear ribonucleoproteins C1/C2 3LN5 ; 1.9 ; Crystal structure of HLA-B*4104 in complex with a 11mer self-peptide derived from S-methyl-5-thioadenosine phosphorylase 3L3D ; 1.8 ; Crystal structure of HLA-B*4402 in complex with the F3A mutant of a self-peptide derived from DPA*0201 3L3J ; 2.4 ; Crystal structure of HLA-B*4402 in complex with the F3A/R5A double mutant of a self-peptide derived from DPA*0201 3L3I ; 1.7 ; Crystal structure of HLA-B*4402 in complex with the F7A mutant of a self-peptide derived from DPA*0201 3L3G ; 2.1 ; Crystal structure of HLA-B*4402 in complex with the R5A mutant of a self-peptide derived from DPA*0201 3L3K ; 2.6 ; Crystal structure of HLA-B*4402 in complex with the R5A/F7A double mutant of a self-peptide derived from DPA*0201 3DX7 ; 1.6 ; Crystal Structure of HLA-B*4403 presenting 10mer EBV antigen 7TUD ; 1.45 ; Crystal structure of HLA-B*44:05 (T73C) with 6mer EEFGRC and dipeptide GL 7TUC ; 1.25 ; Crystal structure of HLA-B*44:05 (T73C) with 9mer EEFGRAFSF 6MTL ; 1.35 ; Crystal Structure of HLA-B*44:05 in complex with NP338 influenza peptide 3W39 ; 3.1 ; Crystal structure of HLA-B*5201 in complexed with HIV immunodominant epitope (TAFTIPSI) 7R7V ; 1.6 ; Crystal structure of HLA-B*5301 complex with an HIV-1 Gag-derived epitope QW9 7R7W ; 1.17 ; Crystal structure of HLA-B*5301 complex with an HIV-1 Gag-derived epitope QW9 S3T variant 7R7X ; 2.099 ; Crystal structure of HLA-B*5701 complex with an HIV-1 Gag-derived epitope QW9 7R7Y ; 1.601 ; Crystal structure of HLA-B*5701 complex with an HIV-1 Gag-derived epitope QW9 S3T variant 5V5M ; 2.878 ; Crystal structure of HLA-B*5701 complex with HIV-1 gag derived peptide TW10 2RFX ; 2.5 ; Crystal Structure of HLA-B*5701, presenting the self peptide, LSSPVTKSF 6BXP ; 1.45 ; Crystal Structure of HLA-B*57:01 with a modified HIV peptide RKV-Kyn 6BXQ ; 1.58 ; Crystal Structure of HLA-B*57:01 with an HIV peptide RKV 3X12 ; 1.8 ; Crystal structure of HLA-B*57:01.I80N 3X11 ; 2.15 ; Crystal structure of HLA-B*57:01.I80N.L82R.R83G 5V5L ; 2.002 ; Crystal structure of HLA-B*5801 complex with HIV-1 gag derived peptide TW10 5EO0 ; 1.7 ; Crystal Structure of HLA-B0702-RFL9 5EO1 ; 1.85 ; Crystal Structure of HLA-B0702-RL9 6Y26 ; 1.2 ; Crystal structure of HLA-B2705 complexed with the nona-peptide mA 6Y28 ; 1.69 ; Crystal structure of HLA-B2705 complexed with the nona-peptide mE 6Y2A ; 1.25 ; Crystal structure of HLA-B2705 complexed with the nona-peptide mQ 6Y27 ; 1.38 ; Crystal structure of HLA-B2709 complexed with the nona-peptide mA 6Y29 ; 1.28 ; Crystal structure of HLA-B2709 complexed with the nona-peptide mE 6Y2B ; 1.37 ; Crystal structure of HLA-B2709 complexed with the nona-peptide mQ 5XOS ; 1.697 ; Crystal structure of HLA-B35 in complex with a pepetide antigen 4LCY ; 1.6 ; Crystal structure of HLA-b46 at 1.6 angstrom resolution 2HJK ; 1.85 ; Crystal Structure of HLA-B5703 and HIV-1 peptide 2HJL ; 1.5 ; Crystal Structure of HLA-B5703 and HIV-1 peptide 5IM7 ; 2.502 ; Crystal structure of HLA-B5801, a protective HLA allele for HIV-1 infection 5INC ; 2.881 ; Crystal structure of HLA-B5801, a protective HLA allele for HIV-1 infection 5IND ; 2.132 ; Crystal structure of HLA-B5801, a protective HLA allele for HIV-1 infection 5WMO ; 1.62 ; Crystal Structure of HLA-B7 in complex with RPP, an EBV peptide 5WMN ; 1.82 ; Crystal Structure of HLA-B7 in complex with SPI, an influenza peptide 5WMP ; 1.6 ; Crystal Structure of HLA-B7 in complex with TPR, a CMV peptide 3VCL ; 1.7 ; Crystal Structure of HLA-B7 with the HCMV pp65 peptide RPHERNGFTVL 5WMQ ; 1.4 ; Crystal Structure of HLA-B8 in complex with ELR, an Influenza A virus peptide 5WMR ; 1.58 ; Crystal Structure of HLA-B8 in complex with QIK, a CMV peptide 5VGD ; 2.32 ; Crystal Structure of HLA-C*0501 in complex with SAE 5VGE ; 2.6 ; Crystal structure of HLA-C*07:02 in complex with RYR peptide 7WJ3 ; 1.56344 ; Crystal structure of HLA-C*1402 complexed with 4-mer lipopeptide 7WJ2 ; 1.28 ; Crystal structure of HLA-C*1402 complexed with 8-mer HIV gag peptide 6JTO ; 1.7 ; Crystal structure of HLA-C05 in complex with a tumor mut10m peptide 6JTN ; 1.9 ; Crystal structure of HLA-C08 in complex with a tumor mut10m peptide 6JTP ; 1.9 ; Crystal structure of HLA-C08 in complex with a tumor mut9m peptide 1QQD ; 2.7 ; CRYSTAL STRUCTURE OF HLA-CW4, A LIGAND FOR THE KIR2D NATURAL KILLER CELL INHIBITORY RECEPTOR 2BC4 ; 2.27 ; Crystal structure of HLA-DM 4FQX ; 2.599 ; Crystal structure of HLA-DM bound to HLA-DR1 7ZAK ; 1.62 ; Crystal structure of HLA-DP (DPA1*02:01-DPB1*01:01) in complex with a peptide 7ZFR ; 2.9 ; Crystal structure of HLA-DP (DPA1*02:01-DPB1*01:01) in complex with a peptide bound in the reverse direction 7T6I ; 2.3 ; Crystal structure of HLA-DP1 in complex with pp65 peptide in reverse orientation 3LQZ ; 3.25 ; Crystal Structure of HLA-DP2 7T2A ; 3.04 ; Crystal structure of HLA-DP4 in complex with Ply 3WEX ; 2.4 ; Crystal structure of HLA-DP5 in complex with Cry j 1-derived peptide (residues 214-222) 1UVQ ; 1.8 ; Crystal structure of HLA-DQ0602 in complex with a hypocretin peptide 1S9V ; 2.22 ; Crystal structure of HLA-DQ2 complexed with deamidated gliadin peptide 5KSU ; 2.73 ; Crystal structure of HLA-DQ2.5-CLIP1 at 2.73 resolution 5KSV ; 2.195 ; Crystal structure of HLA-DQ2.5-CLIP2 3PDO ; 1.95 ; Crystal Structure of HLA-DR1 with CLIP102-120 3PGD ; 2.72 ; Crystal Structure of HLA-DR1 with CLIP106-120, canonical peptide orientation 3PGC ; 2.66 ; Crystal Structure of HLA-DR1 with CLIP106-120, flipped peptide orientation 1KLU ; 1.93 ; Crystal structure of HLA-DR1/TPI(23-37) complexed with staphylococcal enterotoxin C3 variant 3B2 (SEC3-3B2) 1KLG ; 2.4 ; Crystal structure of HLA-DR1/TPI(23-37, Thr28-->Ile mutant) complexed with staphylococcal enterotoxin C3 variant 3B2 (SEC3-3B2) 1BX2 ; 2.6 ; CRYSTAL STRUCTURE OF HLA-DR2 (DRA*0101,DRB1*1501) COMPLEXED WITH A PEPTIDE FROM HUMAN MYELIN BASIC PROTEIN 4IS6 ; 2.5 ; Crystal structure of HLA-DR4 bound to GP100 peptide 1D6E ; 2.45 ; CRYSTAL STRUCTURE OF HLA-DR4 COMPLEX WITH PEPTIDOMIMETIC AND SEB 7NZH ; 2.831 ; Crystal structure of HLA-DR4 in complex with a citrullinated cilp peptide 7O00 ; 2.24 ; Crystal structure of HLA-DR4 in complex with a HSP70 peptide 7NZE ; 2.05 ; Crystal structure of HLA-DR4 in complex with a human collagen type II peptide 7NZF ; 1.9 ; Crystal structure of HLA-DR4 in complex with a mutated human collagen type II peptide 8EUQ ; 3.09 ; Crystal structure of HLA-DRA*01:01/HLA-DRB1*04:01 in complex with c44H10 Fab 5JLZ ; 1.99 ; Crystal structure of HLA-DRB1*04:01 in complex with modified alpha-enolase peptide 26-40 with citrulline at the position 32 5NIG ; 1.35 ; Crystal structure of HLA-DRB1*04:01 with modified alpha-enolase peptide 326-340 (arginine 327 to citrulline) 5NI9 ; 1.33 ; Crystal structure of HLA-DRB1*04:01 with the alpha-enolase peptide 326-340 3KYN ; 2.4 ; Crystal structure of HLA-G presenting KGPPAALTL peptide 3KYO ; 1.7 ; Crystal structure of HLA-G presenting KLPAQFYIL peptide 5LAX ; 2.6 ; Crystal structure of HLA_DRB1*04:01 in complex with alpha-enolase peptide 26-40 5X9Q ; 2.4 ; Crystal structure of HldC from Burkholderia pseudomallei 4NTD ; 1.6 ; Crystal structure of HlmI 4S0N ; 1.501 ; Crystal Structure of HLTF HIRAN Domain bound to DNA 2FX0 ; 2.4 ; Crystal Structure of HlyIIR, a Hemolysin II transcriptional Regulator 3HA7 ; 2.35 ; Crystal structure of HMA (MMAA4) from mycobacterium tuberculosis complexed with S-adenosyl-N-decyl-aminoethyl (SADAE) 3HA3 ; 2.2 ; Crystal structure of HMA (MMAA4) from mycobacterium tuberculosis complexed with S-adenosylhomocysteine 2FK8 ; 2.0 ; Crystal structure of Hma (MmaA4) from Mycobacterium tuberculosis complexed with S-adenosylmethionine 3HA5 ; 2.3 ; Crystal structure of HMA (MMAA4) from mycobacterium tuberculosis complexed with sinefungin 2FK7 ; 2.1 ; Crystal structure of Hma (MmaA4) from Mycobacterium tuberculosis, apo-form 6P9V ; 2.051 ; Crystal Structure of hMAT Mutant K289L 6OE7 ; 2.2 ; Crystal structure of HMCES cross-linked to DNA abasic site 6OEB ; 2.1 ; Crystal structure of HMCES SRAP domain in complex with 3' overhang DNA 6OEA ; 2.1 ; Crystal structure of HMCES SRAP domain in complex with longer 3' overhang DNA 6OOV ; 2.2 ; Crystal structure of HMCES SRAP domain in complex with palindromic 3' overhang DNA 6DU4 ; 1.7 ; Crystal structure of hMettl16 catalytic domain in complex with MAT2A 3'UTR hairpin 1 6DU5 ; 3.006 ; Crystal structure of hMettl16 catalytic domain in complex with MAT2A 3'UTR hairpin 6 4S2Q ; 2.7 ; Crystal Structure of HMG domain of the chondrogenesis master regulator, Sox9 in complex with ChIP-Seq identified DNA element 4A3N ; 2.4 ; Crystal Structure of HMG-BOX of Human SOX17 1X9E ; 2.4 ; Crystal structure of HMG-CoA synthase from Enterococcus faecalis 1YSL ; 1.9 ; Crystal structure of HMG-CoA synthase from Enterococcus faecalis with AcetoAcetyl-CoA ligand. 1CKT ; 2.5 ; CRYSTAL STRUCTURE OF HMG1 DOMAIN A BOUND TO A CISPLATIN-MODIFIED DNA DUPLEX 3SQZ ; 1.2 ; Crystal structure of HMG_CoA synthase complexed with CoA 1J7D ; 1.85 ; Crystal Structure of hMms2-hUbc13 5WQ6 ; 1.648 ; Crystal Structure of hMNDA-PYD with MBP tag 4H67 ; 2.7 ; Crystal structure of HMP synthase Thi5 from S. cerevisiae 5H5M ; 2.4 ; Crystal structure of HMP-1 M domain 5XA5 ; 1.6 ; Crystal structure of HMP-1-HMP-2 complex 3RAM ; 2.7 ; Crystal structure of HmrA 6GLU ; 1.7 ; Crystal structure of hMTH1 D120N in complex with LW14 in the presence of acetate 6GLV ; 1.601 ; Crystal structure of hMTH1 D120N in complex with TH scaffold 1 in the absence of acetate 6GLT ; 1.596 ; Crystal structure of hMTH1 D120N in the presence of acetate 6GLH ; 1.201 ; Crystal structure of hMTH1 F27A in complex with LW14 in the absence of acetate 6GLG ; 1.313 ; Crystal structure of hMTH1 F27A in complex with LW14 in the presence of acetate 6GLJ ; 1.301 ; Crystal structure of hMTH1 F27A in complex with TH scaffold 1 in the absence of acetate 6GLI ; 1.6 ; Crystal structure of hMTH1 F27A in complex with TH scaffold 1 in the presence of acetate 6GLF ; 2.0 ; Crystal structure of hMTH1 F27A in the presence of acetate 6GLE ; 1.402 ; Crystal structure of hMTH1 in complex with TH scaffold 1 in the presence of acetate 6GLM ; 1.6 ; Crystal structure of hMTH1 N33A in complex with LW14 in the absence of acetate 6GLL ; 1.395 ; Crystal structure of hMTH1 N33A in complex with LW14 in the presence of acetate 6GLN ; 1.401 ; Crystal structure of hMTH1 N33A in complex with TH scaffold 1 in the absence of acetate 6GLK ; 1.5 ; Crystal structure of hMTH1 N33A in the presence of acetate 6GLQ ; 1.601 ; Crystal structure of hMTH1 N33G in complex with LW14 in the absence of acetate 6GLP ; 1.5 ; Crystal structure of hMTH1 N33G in complex with LW14 in the presence of acetate 6GLS ; 1.501 ; Crystal structure of hMTH1 N33G in complex with TH scaffold 1 in the absence of acetate 6GLR ; 1.601 ; Crystal structure of hMTH1 N33G in complex with TH scaffold 1 in the presence of acetate 6GLO ; 1.701 ; Crystal structure of hMTH1 N33G in the presence of acetate 4GGV ; 2.331 ; Crystal Structure of HmtT Involved in Himastatin Biosynthesis 4M91 ; 1.1 ; crystal structure of hN33/Tusc3-peptide 1 4M92 ; 1.6 ; Crystal structure of hN33/Tusc3-peptide 2 2D5V ; 2.0 ; Crystal structure of HNF-6alpha DNA-binding domain in complex with the TTR promoter 8C1L ; 2.0 ; Crystal structure of HNF4 alpha LBD in complexes with palmitic acid and GRIP-1 peptide 3FS1 ; 2.2 ; Crystal structure of HNF4a LBD in complex with the ligand and the coactivator PGC-1a fragment 1PZL ; 2.1 ; Crystal structure of HNF4a LBD in complex with the ligand and the coactivator SRC-1 peptide 7EVR ; 1.8 ; Crystal structure of hnRNP L RRM2 in complex with SETD2 7EVS ; 1.6 ; Crystal structure of hnRNP LL RRM2 in complex with SETD2 5HO4 ; 1.85 ; Crystal structure of hnRNPA2B1 in complex with 10-mer RNA 5WWG ; 2.03 ; Crystal structure of hnRNPA2B1 in complex with AAGGACUUGC 5EN1 ; 2.58 ; Crystal structure of hnRNPA2B1 in complex with RNA 5WWE ; 2.4 ; Crystal structure of hnRNPA2B1 in complex with RNA 5WWF ; 2.15 ; Crystal structure of hnRNPA2B1 in complex with RNA 2UVP ; 1.7 ; Crystal structure of HobA (HP1230)from Helicobacter pylori 4I66 ; 1.3 ; Crystal structure of Hoch_4089 protein from Haliangium ochraceum 4WPE ; 2.7 ; Crystal Structure of Hof1p F-BAR domain 1M3Q ; 1.9 ; Crystal Structure of hogg1 D268E Mutant with Base-Excised DNA and 8-aminoguanine 1M3H ; 2.05 ; Crystal Structure of Hogg1 D268E Mutant with Product Oligonucleotide 7YUI ; 2.599 ; Crystal structure of HOIL-1L(195-423) in complex with the linear tetra-ubiquitin 7YUJ ; 1.865 ; Crystal structure of HOIL-1L(365-510) 4DBG ; 2.71 ; Crystal structure of HOIL-1L-UBL complexed with a HOIP-UBA derivative 4P09 ; 1.7 ; Crystal structure of HOIP PUB domain 4P0B ; 2.7005 ; Crystal structure of HOIP PUB domain in complex with OTULIN PIM 4P0A ; 2.3001 ; Crystal structure of HOIP PUB domain in complex with p97 PIM 7V8G ; 2.75 ; Crystal structure of HOIP RING1 domain bound to IpaH1.4 LRR domain 2EO0 ; 2.4 ; Crystal Structure of Holliday Junction Resolvase ST1444 5DSB ; 1.4959 ; Crystal structure of Holliday junctions stabilized by 5-hydroxymethylcytosine in GCC junction core 5DSA ; 1.6896 ; Crystal structure of Holliday junctions stabilized by 5-methylcytosine in GCC junction core 3SS7 ; 1.55 ; Crystal structure of holo D-serine dehydratase from Escherichia coli at 1.55 A resolution 3SS9 ; 1.97 ; Crystal structure of holo D-serine dehydratase from Escherichia coli at 1.97 A resolution 4D9I ; 2.0 ; Crystal structure of holo Diaminopropionate ammonia lyase from Escherichia coli 3TLK ; 1.853 ; Crystal structure of holo FepB 2ZTH ; 2.6 ; Crystal structure of holo form of rat catechol-o-methyltransferase 3LVF ; 1.7 ; Crystal Structure of holo Glyceraldehyde-3-phosphate dehydrogenase 1 (GAPDH1) from methicillin resistant Staphylococcus aureus MRSA252 at 1.7 Angstrom resolution 5LJB ; 1.263 ; Crystal structure of holo human CRBP1 5LJC ; 1.433 ; Crystal structure of holo human CRBP1 5LJG ; 1.146 ; Crystal structure of holo human CRBP1 5LJD ; 1.61 ; Crystal structure of holo human CRBP1/K40L mutant 5LJE ; 1.4 ; Crystal structure of holo human CRBP1/K40L,Q108L mutant 2VHZ ; 2.04 ; Crystal structure of holo L-alanine dehydrogenase from Mycobacterium tuberculosis in the closed conformation 2VHW ; 2.0 ; Crystal structure of holo L-alanine dehydrogenase from Mycobacterium tuberculosis in the open and closed conformation 3MVI ; 1.6 ; Crystal structure of holo mADA at 1.6 A resolution 7LI1 ; 1.75 ; Crystal structure of holo Moraxella catarrhalis ferric binding protein A in an open conformation 5EA2 ; 2.01 ; Crystal Structure of Holo NAD(P)H dehydrogenase, quinone 1 3GZL ; 2.55 ; Crystal Structure of holo PfACP Disulfide-Linked Dimer 3GZM ; 1.8 ; Crystal Structure of holo PfACP Reduced Monomer 6R4Y ; 1.452 ; Crystal structure of holo PPEP-1(E143A/Y178F) in complex with product peptide Ac-EVNP-CO2 (substrate peptide: Ac-EVNPAVP-CONH2) 6R4Z ; 1.052 ; Crystal structure of holo PPEP-1(E143A/Y178F) in complex with product peptide Ac-EVNP-CO2 (substrate peptide: Ac-EVNPPVP-CONH2) 6R50 ; 1.807 ; Crystal structure of holo PPEP-1(E143A/Y178F) in complex with substrate peptide Ac-EVNAPVP-CONH2 6MCV ; 3.3 ; Crystal Structure of Holo Retinal-Bound Domain-Swapped Dimer of Wild Type Human Cellular Retinol Binding Protein II 6E5S ; 2.061 ; Crystal structure of holo retinal-bound domain-swapped dimer Q108K:T51D mutant of human Cellular Retinol Binding Protein II 7DH8 ; 1.85 ; Crystal structure of holo XcZur 5VCB ; 4.1 ; Crystal structure of holo-(acyl-carrier-protein) synthase:holo(acyl-carrier-protein) complex from Escherichia Coli. 4ZXI ; 2.9 ; Crystal Structure of holo-AB3403 a four domain nonribosomal peptide synthetase bound to AMP and Glycine 4ZXH ; 2.7 ; Crystal Structure of holo-AB3403 a four domain nonribosomal peptide synthetase from Acinetobacter Baumanii 2BDD ; 2.28 ; Crystal Structure of Holo-ACP-synthase from Plasmodium yoelii 1KQW ; 1.38 ; Crystal structure of holo-CRBP from zebrafish 5T3D ; 2.8 ; Crystal structure of holo-EntF a nonribosomal peptide synthetase in the thioester-forming conformation 7O87 ; 1.5 ; Crystal structure of holo-F210W mutant of Hydroxy ketone aldolase (SwHKA) from Sphingomonas wittichii RW1 in complex with hydroxypyruvate 7OBU ; 1.2 ; Crystal structure of holo-F210W mutant of Hydroxy ketone aldolase (SwHKA) from Sphingomonas wittichii RW1, with the active site in the resting and the active state 7O5W ; 1.2 ; Crystal structure of holo-F210W mutant of Hydroxy ketone aldolase (SwHKA)from Sphingomonas wittichii RW1 5E44 ; 2.65 ; Crystal structure of holo-FNR of A. fischeri 1VSV ; 2.0 ; Crystal Structure of holo-glyceraldehyde 3-phosphate dehydrogenase from Cryptosporidium parvum 7O9R ; 1.85 ; Crystal structure of holo-H44A mutant of Hydroxy ketone aldolase (SwHKA) from Sphingomonas wittichii RW1 7O5V ; 1.95 ; Crystal structure of holo-H44A mutant of Hydroxy ketone aldolase (SwHKA) from Sphingomonas wittichii RW1, in complex with Hydroxypyruvate 8QTO ; 2.4 ; CRYSTAL STRUCTURE OF HOLO-L28H-FNR OF A. FISCHERI 6N8E ; 3.0 ; Crystal structure of holo-ObiF1, a five domain nonribosomal peptide synthetase from Burkholderia diffusa 4MF9 ; 1.95 ; Crystal structure of holo-PhuS, a heme-binding protein from Pseudomonas aeruginosa 7NR1 ; 2.3 ; Crystal structure of holo-S116A mutant of Hydroxy ketone aldolase (SwHKA) from Sphingomonas wittichii RW1 7NUJ ; 1.9 ; Crystal structure of holo-SwHPA-Mg (hydroxy ketone aldolase) from Sphingomonas wittichii RW1 8ADQ ; 1.6 ; Crystal structure of holo-SwHPA-Mg (hydroxy ketone aldolase) from Sphingomonas wittichii RW1 in complex with hydroxypyruvate and D-Glyceraldehyde 7O5R ; 1.65 ; Crystal structure of holo-SwHPA-Mn (hydroxyketoacid aldolase) from Sphingomonas wittichii RW1 3W36 ; 1.97 ; Crystal structure of holo-type bacterial Vanadium-dependent chloroperoxidase 3R5T ; 1.45 ; Crystal structure of holo-ViuP 5VBX ; 2.05 ; Crystal structure of holo-[acyl-carrier-protein] synthase (AcpS) from Escherichia coli 5CMO ; 2.0 ; Crystal structure of holo-[acyl-carrier-protein] synthase (AcpS) from Neisseria meningitidis 5SUV ; 1.75 ; Crystal structure of holo-[acyl-carrier-protein] synthase (AcpS) from Neisseria meningitidis in complex with Coenzyme A 2X88 ; 1.8 ; Crystal Structure of HoloCotA 4ENL ; 1.9 ; CRYSTAL STRUCTURE OF HOLOENZYME REFINED AT 1.9 ANGSTROMS RESOLUTION: TRIGONAL-BIPYRAMIDAL GEOMETRY OF THE CATION BINDING SITE 5ZZ9 ; 2.3 ; Crystal structure of Homer2 EVH1/Drebrin PPXXF complex 7QST ; 2.49 ; Crystal structure of homing endonuclease-associated PhoVMA intein (C1A) 7QSS ; 1.56 ; Crystal structure of homing endonuclease-associated TliVMA intein (C1A) 7QSU ; 1.9 ; Crystal structure of homing endonuclease-associated TliVMA intein (C1A, d333-339) 7CJ4 ; 2.08 ; Crystal structure of homo dimeric D-allulose 3-epimerase from Methylomonas sp. 7CJ6 ; 1.8 ; Crystal structure of homo dimeric D-allulose 3-epimerase from Methylomonas sp. in complex with D-allulose 7CJ5 ; 1.8 ; Crystal structure of homo dimeric D-allulose 3-epimerase from Methylomonas sp. in complex with D-fructose 7CJ7 ; 1.695 ; Crystal structure of homo dimeric D-allulose 3-epimerase from Methylomonas sp. in complex with L-tagatose 6M33 ; 3.29435 ; Crystal structure of Homo Sapian GCP6 N-terminus and Mozart1 1X0V ; 2.3 ; Crystal Structure of Homo Sapien Glycerol-3-Phosphate Dehydrogenase 1 3FY7 ; 1.95 ; Crystal structure of homo sapiens CLIC3 3HR0 ; 1.9 ; Crystal structure of Homo sapiens Conserved Oligomeric Golgi subunit 4 3L4G ; 3.3 ; Crystal structure of Homo Sapiens cytoplasmic Phenylalanyl-tRNA synthetase 6L81 ; 2.19651 ; Crystal structure of Homo sapiens GCP5 N-terminus and Mozart1 4PVF ; 2.6 ; Crystal structure of Homo sapiens holo serine hydroxymethyltransferase 2 (mitochondrial) (SHMT2), isoform 3, transcript variant 5, 483 aa, at 2.6 ang. resolution 4TTB ; 2.447 ; Crystal structure of homo sapiens IODOTYROSINE DEIODINASE (IYD) bound to FMN 4TTC ; 2.65 ; Crystal structure of homo sapiens IODOTYROSINE DEIODINASE bound to FMN and mono-iodotyrosine (MIT) 2HZP ; 2.0 ; Crystal Structure of Homo Sapiens Kynureninase 3E9K ; 1.7 ; Crystal structure of Homo sapiens kynureninase-3-hydroxyhippuric acid inhibitor complex 7MW0 ; 2.0 ; Crystal structure of Homo sapiens NUP93 solenoid (residues 174-819) 5V7I ; 2.47 ; Crystal structure of homo sapiens serine hydroxymethyltransferase 2 (mitochondrial) (SHMT2), in complex with glycine, PLP and folate-competitive pyrazolopyran inhibitor: 6-amino-4-isopropyl-3-methyl-4-(3-(pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile 2H9S ; 1.75 ; Crystal Structure of Homo-DNA and Nature's Choice of Pentose over Hexose in the Genetic System 5GRV ; 2.3 ; Crystal structure of homo-specific diabody 5GRW ; 2.8 ; Crystal structure of homo-specific diabody 5GS1 ; 2.0 ; Crystal structure of homo-specific diabody 4KP2 ; 2.504 ; Crystal structure of homoaconitase large subunit from methanococcus jannaschii (MJ1003) 2ZTJ ; 1.8 ; Crystal structure of homocitrate synthase from Thermus thermophilus complexed with alpha-ketoglutarate 2ZTK ; 1.96 ; Crystal structure of homocitrate synthase from Thermus thermophilus complexed with homocitrate 3A9I ; 1.8 ; Crystal structure of homocitrate synthase from Thermus thermophilus complexed with Lys 2ZYF ; 2.15 ; Crystal structure of homocitrate synthase from Thermus thermophilus complexed with magnesuim ion and alpha-ketoglutarate 1PFF ; 2.5 ; Crystal Structure of Homocysteine alpha-, gamma-lyase at 1.8 Angstroms 5JJM ; 2.15 ; Crystal Structure of Homodimeric Androgen Receptor Ligand-Binding Domain bound to DHT and LxxLL peptide 3MAR ; 3.41 ; Crystal structure of homodimeric R132H mutant of human cytosolic NADP(+)-dependent isocitrate dehydrogenase in complex with NADP 3MAP ; 2.8 ; Crystal structure of homodimeric R132H mutant of human cytosolic NADP(+)-dependent isocitrate dehydrogenase in complex with NADP and isocitrate 4U4Q ; 3.0 ; Crystal structure of Homoharringtonine bound to the yeast 80S ribosome 3TY4 ; 1.55 ; Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe 3TY3 ; 1.85 ; Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe bound to glycyl-glycyl-glycine 4YB4 ; 2.5 ; Crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate, magnesium ion (II) and NADH 3ASJ ; 2.6 ; Crystal structure of homoisocitrate dehydrogenase in complex with a designed inhibitor 2G9I ; 2.5 ; Crystal structure of homolog of F420-0:gamma-Glutamyl Ligase from Archaeoglobus fulgidus Reveals a Novel Fold. 3BW1 ; 2.5 ; Crystal structure of homomeric yeast Lsm3 exhibiting novel octameric ring organisation 1F1U ; 1.5 ; CRYSTAL STRUCTURE OF HOMOPROTOCATECHUATE 2,3-DIOXYGENASE FROM ARTHROBACTER GLOBIFORMIS (NATIVE, LOW TEMPERATURE) 1F1R ; 1.8 ; CRYSTAL STRUCTURE OF HOMOPROTOCATECHUATE 2,3-DIOXYGENASE FROM ARTHROBACTER GLOBIFORMIS (NATIVE, NON-CRYO) 1F1X ; 1.6 ; CRYSTAL STRUCTURE OF HOMOPROTOCATECHUATE 2,3-DIOXYGENASE FROM BREVIBACTERIUM FUSCUM 1Q0O ; 2.3 ; CRYSTAL STRUCTURE OF HOMOPROTOCATECHUATE 2,3-DIOXYGENASE FROM BREVIBACTERIUM FUSCUM (FULL LENGTH PROTEIN) 3ING ; 1.95 ; Crystal structure of Homoserine dehydrogenase (NP_394635.1) from THERMOPLASMA ACIDOPHILUM at 1.95 A resolution 3C8M ; 1.9 ; Crystal structure of homoserine dehydrogenase from Thermoplasma volcanium 5X9D ; 2.1 ; Crystal structure of homoserine dehydrogenase in complex with L-cysteine and NAD 1FWL ; 2.25 ; CRYSTAL STRUCTURE OF HOMOSERINE KINASE 1FWK ; 2.1 ; CRYSTAL STRUCTURE OF HOMOSERINE KINASE COMPLEXED WITH ADP 1H72 ; 1.8 ; CRYSTAL STRUCTURE OF HOMOSERINE KINASE COMPLEXED WITH HSE 1H74 ; 1.9 ; CRYSTAL STRUCTURE OF HOMOSERINE KINASE COMPLEXED WITH ILE 1H73 ; 2.0 ; CRYSTAL STRUCTURE OF HOMOSERINE KINASE COMPLEXED WITH THREONINE 4P52 ; 2.6 ; Crystal structure of homoserine kinase from Cytophaga hutchinsonii ATCC 33406, NYSGRC Target 032717. 4RPF ; 2.3 ; Crystal structure of homoserine kinase from Yersinia pestis Nepal516, NYSGRC target 032715 2VDJ ; 2.0 ; Crystal Structure of Homoserine O-acetyltransferase (metA) from Bacillus Cereus with Homoserine 2PL5 ; 2.2 ; Crystal Structure of Homoserine O-acetyltransferase from Leptospira interrogans 6IOG ; 1.55 ; Crystal structure of Homoserine O-acetyltransferase from Mycobacterium smegmatis ATCC 19420 4QLO ; 2.45 ; Crystal Structure of homoserine o-acetyltransferase from Staphylococcus aureus 6IOI ; 1.6 ; Crystal structure of Homoserine O-acetyltransferase in complex with CoA from Mycobacterium smegmatis ATCC 19420 6IOH ; 2.0 ; Crystal structure of Homoserine O-acetyltransferase in complex with Homoserine from Mycobacterium smegmatis ATCC 19420 2H2W ; 2.52 ; Crystal structure of Homoserine O-succinyltransferase (EC 2.3.1.46) (Homoserine O-transsuccinylase) (HTS) (tm0881) from THERMOTOGA MARITIMA at 2.52 A resolution 2GHR ; 2.4 ; Crystal structure of homoserine o-succinyltransferase (NP_981826.1) from Bacillus cereus ATCC 10987 at 2.40 A resolution 7CBE ; 1.7 ; Crystal structure of Homoserine O-succinyltransferase from Escherichia coli K-12 2B61 ; 1.65 ; Crystal Structure of Homoserine Transacetylase 7RHP ; 1.54 ; Crystal Structure of Honeybee (Apis mellifera) glutathione S-transferase AmGSTD1 6LQK ; 2.499 ; Crystal structure of honeybee RyR NTD 4TPV ; 1.6 ; Crystal Structure of Hookworm Platelet Inhibitor 4JC8 ; 2.6 ; Crystal Structure of HOPS component Vps33 from Chaetomium thermophilum 5KLP ; 2.002 ; Crystal structure of HopZ1a in complex with IP6 5KLQ ; 3.4 ; Crystal structure of HopZ1a in complex with IP6 and CoA 8J69 ; 2.67 ; Crystal structure of HORMA domain-containing protein 1 (HORMAD1) from Homo sapiens 1JDN ; 2.9 ; Crystal Structure of Hormone Receptor 1JDP ; 2.0 ; Crystal Structure of Hormone/Receptor Complex 1IWH ; 1.55 ; Crystal Structure of Horse Carbonmonoxyhemoglobin-Bezafibrate Complex at 1.55A Resolution: A Novel Allosteric Binding Site in R-State Hemoglobin 4NS2 ; 1.18 ; Crystal structure of Horse heart ferric myoglobin; D44K/D60K/E85K mutant 3RJ6 ; 1.23 ; Crystal Structure of Horse heart ferric myoglobin; K45E/K63E/K96E mutant 3WFU ; 1.35 ; Crystal structure of horse heart myoglobin reconstituted with cobalt(I) tetradehydrocorrin 3WFT ; 1.3 ; Crystal structure of horse heart myoglobin reconstituted with cobalt(II) tetradehydrocorrin 3WI8 ; 2.2 ; Crystal structure of horse heart myoglobin reconstituted with manganese porphycene 5YL3 ; 1.5 ; Crystal structure of horse heart myoglobin reconstituted with manganese porphycene in resting state at pH 8.5 6TRZ ; 2.02 ; Crystal structure of horse L ferritin (HoLf) Fe(III)-loaded for 15 minutes 6TSX ; 2.021 ; Crystal structure of horse L ferritin (HoLf) Fe(III)-loaded for 30 minutes 6TSS ; 2.18 ; Crystal structure of horse L ferritin (HoLf) Fe(III)-loaded for 60 minutes 4O9L ; 1.944 ; crystal structure of horse MAVS card domain mutant E26R 4O9F ; 2.348 ; crystal structure of horse MAVS card domain mutant R64C 5ZZE ; 1.423 ; Crystal structure of horse myoglobin crystallized by ammonium sulfate 8I81 ; 1.5 ; Crystal structure of horse spleen L-ferritin A115G mutant at -180deg Celsius. 8J0U ; 1.5 ; Crystal structure of horse spleen L-ferritin A115T mutant at -180deg Celsius. 8I77 ; 1.5 ; Crystal structure of horse spleen L-ferritin A115V mutant at -180deg Celsius. 8J0V ; 1.6 ; Crystal structure of horse spleen L-ferritin at -100deg Celsius. 8J10 ; 1.6 ; Crystal structure of horse spleen L-ferritin at -180deg Celsius cooled from -20deg Celsius. 8J0Z ; 1.6 ; Crystal structure of horse spleen L-ferritin at -180deg Celsius cooled from -40deg Celsius. 8I6L ; 1.5 ; Crystal structure of horse spleen L-ferritin at -180deg Celsius. 8J0X ; 1.6 ; Crystal structure of horse spleen L-ferritin at -20deg Celsius. 8J0W ; 1.6 ; Crystal structure of horse spleen L-ferritin at -40deg Celsius. 8J16 ; 1.6 ; Crystal structure of horse spleen L-ferritin at -80deg Celsius. 8J11 ; 1.6 ; Crystal structure of horse spleen L-ferritin at 0deg Celsius. 8J0Y ; 1.6 ; Crystal structure of horse spleen L-ferritin at 20deg Celsius. 8I8Q ; 1.5 ; Crystal structure of horse spleen L-ferritin H114A mutant at -180deg Celsius. 8I8U ; 1.6 ; Crystal structure of horse spleen L-ferritin S118A mutant at -180deg Celsius. 3WPB ; 2.4 ; Crystal structure of horse TLR9 (unliganded form) 3WPC ; 1.6 ; Crystal structure of horse TLR9 in complex with agonistic DNA1668_12mer 3WPD ; 2.75 ; Crystal structure of horse TLR9 in complex with inhibitory DNA4084 5Y3L ; 2.6 ; Crystal structure of horse TLR9 in complex with two DNAs (CpG DNA and CCGCAC DNA) 5Y3K ; 2.7 ; Crystal structure of horse TLR9 in complex with two DNAs (CpG DNA and GCGCAC DNA) 5Y3J ; 1.81 ; Crystal structure of horse TLR9 in complex with two DNAs (CpG DNA and TCGCAC DNA) 4FRU ; 1.1 ; Crystal structure of horse wild-type cyclophilin B 8KH2 ; 2.0 ; Crystal structure of horse-spleen L-ferritin fused with amyloid beta peptide (1-42). 6MIG ; 1.7 ; Crystal structure of host-guest complex with PB hachimoji DNA 6MIH ; 1.6 ; Crystal structure of host-guest complex with PC hachimoji DNA 6MIK ; 1.7 ; Crystal structure of host-guest complex with PP hachimoji DNA 5HJ3 ; 3.3 ; Crystal structure of host-primed Ebola virus GP, GPcl. 3QOO ; 1.25 ; Crystal structure of hot-dog-like Taci_0573 protein from Thermanaerovibrio acidaminovorans 7F87 ; 1.69 ; Crystal structure of housekeeping sortase SrtA bound with self derived tripeptide from Lactobacillus rhamnosus GG 7CFJ ; 2.64 ; Crystal structure of housekeeping sortase SrtA from Lactobacillus rhamnosus GG 3A03 ; 1.54 ; Crystal structure of Hox11L1 homeodomain 1PUF ; 1.9 ; Crystal Structure of HoxA9 and Pbx1 homeodomains bound to DNA 4FZ4 ; 2.44 ; Crystal structure of HP0197-18kd 4FZQ ; 2.5 ; Crystal structure of HP0197-G5 2BO3 ; 2.27 ; Crystal Structure of HP0242, a Hypothetical Protein from Helicobacter pylori 3LWG ; 1.8 ; Crystal structure of HP0420-homologue C46A from helicobacter felis 3LW3 ; 1.6 ; Crystal structure of HP0420-homologue from Helicobacter felis 3K1H ; 1.74 ; Crystal structure of HP1076 from H.pylori 8IGI ; 1.84 ; Crystal structure of HP1526 (XthA)- a base excision DNA repair protein in Helicobacter pylori 5YB3 ; 2.043 ; Crystal structure of HP23L/N36 5YB4 ; 2.5 ; Crystal structure of HP23LN36KR 3MYC ; 1.7 ; Crystal Structure of HP67 H41F - P212121 3MYA ; 2.5 ; Crystal Structure of HP67 H41F - P61 3NKJ ; 1.6 ; Crystal Structure of HP67 L61G 3MYE ; 1.799 ; Crystal Structure of HP67 L61GL 8HNW ; 3.41 ; Crystal structure of HpaCas9-sgRNA surveillance complex bound to double-stranded DNA 7EL3 ; 1.7 ; Crystal structure of HpaR-DNA complex from Acinetobacter baumannii 1GTT ; 1.7 ; CRYSTAL STRUCTURE OF HPCE 1I7O ; 1.7 ; CRYSTAL STRUCTURE OF HPCE 2EB6 ; 1.69 ; Crystal structure of HpcG complexed with Mg ion 2EB5 ; 1.7 ; Crystal structure of HpcG complexed with oxalate 1U7B ; 1.88 ; Crystal structure of hPCNA bound to residues 331-350 of the flap endonuclease-1 (FEN1) 1U76 ; 2.6 ; Crystal structure of hPCNA bound to residues 452-466 of the DNA polymerase-delta-p66 subunit 4V8H ; 3.1 ; Crystal structure of HPF bound to the 70S ribosome. 6M3I ; 1.98 ; Crystal structure of HPF1/PARP1 complex 1XQZ ; 2.1 ; Crystal Structure of hPim-1 kinase at 2.1 A resolution 1XR1 ; 2.1 ; Crystal structure of hPim-1 kinase in complex with AMP-PNP at 2.1 A Resolution 5B3W ; 2.4 ; Crystal structure of hPin1 WW domain (5-15) fused with maltose-binding protein in C2221 form 5B3X ; 2.4 ; Crystal structure of hPin1 WW domain (5-15) fused with maltose-binding protein in P41212 form 5BMY ; 2.001 ; Crystal structure of hPin1 WW domain (5-21) fused with maltose-binding protein 5B3Y ; 1.901 ; Crystal structure of hPin1 WW domain (5-23) fused with maltose-binding protein 5B3Z ; 2.3 ; Crystal structure of hPin1 WW domain (5-39) fused with maltose-binding protein 4MZA ; 1.653 ; Crystal structure of hPIV3 hemagglutinin-neuraminidase 4MZE ; 1.8 ; Crystal structure of hPIV3 hemagglutinin-neuraminidase, H552Q/Q559R mutant 7SIU ; 1.786 ; Crystal structure of HPK1 (MAP4K1) complex with inhibitor A-745 7KAC ; 1.85 ; Crystal structure of HPK1 (MAP4K1) kinase in complex with 5-{[4-{[(1S)-2-HYDROXY-1-PHENYLETHYL]AMINO}-5-(1,3,4-OXADIAZOL-2-YL)PYRIMIDIN-2-YL]AMINO}-3,3-DIMETHYL-2-BENZOFURAN-1(3H)-ONE 8EEC ; 2.5 ; Crystal structure of HPK1 citron-homology domain 6CQF ; 2.246 ; Crystal structure of HPK1 in complex an inhibitor G1858 6CQD ; 2.12 ; Crystal structure of HPK1 in complex with ATP analogue (AMPPNP) 7R9P ; 2.27 ; Crystal structure of HPK1 in complex with compound 14 7R9T ; 2.0 ; Crystal structure of HPK1 in complex with compound 17 7R9L ; 2.332 ; Crystal structure of HPK1 in complex with compound 2 7R9N ; 1.5 ; Crystal structure of HPK1 in complex with GNE1858 6CQE ; 1.886 ; Crystal structure of HPK1 kinase domain S171A mutant 8FH4 ; 1.827 ; Crystal structure of HPK1 kinase domain T165E,S171E phosphomimetic mutant in complex with 3-[6-chloro-4-(9-methyl-1-oxa-4,9-diazaspiro[5.5]undec-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile 8FKO ; 2.104 ; Crystal structure of HPK1 kinase domain T165E,S171E phosphomimetic mutant in complex with 3-{4-[(2S,5R)-5-Amino-2-methylpiperidin-1-yl]-6-chloro-7H-pyrrolo[2,3-d]pyrimidin-5-yl}benzonitrile 8FJZ ; 1.897 ; Crystal structure of HPK1 kinase domain T165E,S171E phosphomimetic mutant in complex with 3-{4-[(3R,5S)-3-Amino-5-methylpiperidin-1-yl]-6-chloro-7H-pyrrolo[2,3-d]pyrimidin-5-yl}benzonitrile 8XN7 ; 2.65 ; Crystal structure of HPK1 kinase domain T165E,S171E phosphomimetic mutant in complex with compound 9f 6NG0 ; 2.05 ; Crystal structure of HPK1 kinase domain T165E,S171E phosphomimetic mutant in complex with sunitinib in the inactive state. 3KPW ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 1-Aminoisoquinoline 3KQT ; 2.399 ; Crystal Structure of hPNMT in Complex AdoHcy and 2-Amino-1-methylbenzimidazole 3KR0 ; 2.6 ; Crystal Structure of hPNMT in Complex AdoHcy and 2-amino-1H-benzo[d]imidazol-6-ol 3KQY ; 2.2 ; Crystal Structure of hPNMT in Complex AdoHcy and 2-amino-1H-benzo[d]imidazol-7-ol 3KQS ; 2.005 ; Crystal Structure of hPNMT in Complex AdoHcy and 2-Aminobenzimidazole 3KQQ ; 2.5 ; Crystal Structure of hPNMT in Complex AdoHcy and 2-Hydroxynicotinic acid 3KQM ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 4-Bromo-1H-imidazole 3KPU ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 4-quinolinol 3KR1 ; 2.3 ; Crystal Structure of hPNMT in Complex AdoHcy and 5-chloro-1H-benzo[d]imidazol-2-amine 3KQW ; 2.486 ; Crystal Structure of hPNMT in Complex AdoHcy and 5-Chlorobenzimidazole 3KR2 ; 2.3 ; Crystal Structure of hPNMT in Complex AdoHcy and 5-fluoro-1H-benzo[d]imidazol-2-amine 3KQP ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 6-Aminoquinoline 3KPY ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 6-Chlorooxindole 3KQO ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and 6-Chloropurine 3KPV ; 2.4 ; Crystal Structure of hPNMT in Complex AdoHcy and Adenine 3KPJ ; 2.5 ; Crystal Structure of hPNMT in Complex AdoHcy and Bound Phosphate 3KQV ; 2.3 ; Crystal Structure of hPNMT in Complex AdoHcy and Formanilide 3HCF ; 2.702 ; Crystal Structure of hPNMT in Complex With 3-trifluoromethyl phenylethanolamine and AdoHcy 3HCC ; 2.3 ; Crystal Structure of hPNMT in Complex With anti-9-amino-5-(trifluromethyl) benzonorbornene and AdoHcy 4MIK ; 1.9506 ; Crystal Structure of hPNMT in Complex with bisubstrate inhibitor (2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-(((2-(((7-nitro-1,2,3,4-tetrahydroisoquinolin-3-yl)methyl)amino)ethyl)thio)methyl)tetrahydrofuran-3,4-diol 4MQ4 ; 2.2042 ; Crystal Structure of hPNMT in Complex with bisubstrate inhibitor N-(3-((((2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)thio)propyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide 3HCD ; 2.392 ; Crystal Structure of hPNMT in Complex With Noradrenaline and AdoHcy 3HCB ; 2.4 ; Crystal Structure of hPNMT in Complex With Noradrenochrome and AdoHcy 3KJO ; 1.8 ; Crystal Structure of hPOT1V2-dTrUd(AGGGTTAG) 3KJP ; 1.8 ; Crystal Structure of hPOT1V2-GGTTAGGGTTAG 5AZV ; 2.7 ; Crystal structure of hPPARgamma ligand binding domain complexed with 17-oxoDHA 7EFQ ; 2.3 ; Crystal structure of hPPARgamma ligand binding domain complexed with rosiglitazone-based fluorescence probe 7V6X ; 1.8 ; Crystal structure of HPPD complexed with Y18556 3LE5 ; 2.0 ; Crystal structure of HPr dimer from Thermoanaerobacter tengcongensis 3LFG ; 1.58 ; Crystal structure of HPr-C-His from Thermoanaerobacter tengcongensis 6IGS ; 2.16 ; Crystal structure of HPRT from F. tularensis with Zinc 8E08 ; 1.93 ; Crystal structure of HPSE P6 in complex with tetraose pentosan inhibitor 8E07 ; 1.8 ; Crystal structure of HPSE P6 in complex with triose pentosan inhibitor 6LON ; 2.2 ; Crystal structure of HPSG 2B9D ; 1.6 ; Crystal Structure of HPV E7 CR3 domain 7MYT ; 2.1 ; Crystal Structure of HPV L1-directed B25.M05 Fab 7MU4 ; 1.83 ; Crystal Structure of HPV L1-directed D24.M01Fab 7MX8 ; 2.02 ; Crystal Structure of HPV L1-directed E7M03 Fab 5W1O ; 2.8 ; Crystal Structure of HPV16 L1 Pentamer Bound to Heparin Oligosaccharides 5Y9E ; 2.042 ; Crystal structure of HPV58 pentamer 5Y9C ; 3.443 ; Crystal structure of HPV58 pentamer in complex with the Fab fragment of antibody A12A3 6IGD ; 2.5 ; Crystal structure of HPV58/33 chimeric L1 pentamer 6IGC ; 3.5 ; Crystal structure of HPV58/33/52 chimeric L1 pentamer 5Y9F ; 3.35 ; Crystal structure of HPV59 pentamer in complex with the Fab fragment of antibody 28F10 7F8I ; 3.366 ; Crystal structure of HPV6 L1 pentamer 2AYB ; 3.2 ; Crystal structure of HPV6a E2 DNA Binding Domain bound to a 16 base pair DNA target 2AYG ; 3.1 ; Crystal structure of HPV6a E2 DNA binding domain bound to an 18 base pair DNA target 5WEE ; 1.99 ; Crystal structure of HpVAL4 6HJ2 ; 2.28 ; Crystal structure of hPXR in complex with dabrafenib 5HFT ; 2.646 ; Crystal structure of HpxW 5BNQ ; 2.8 ; Crystal structure of hRANKL-mRANK complex 6ZL3 ; 2.031 ; CRYSTAL STRUCTURE OF HRAS IN COMPLEX WITH COMPOUND 18 and GDP 7JHP ; 2.766 ; Crystal structure of HRas in complex with the Ras-binding and cysteine-rich domains of CRaf-kinase 2VH5 ; 2.7 ; CRYSTAL STRUCTURE OF HRAS(G12V) - ANTI-RAS FV (disulfide free mutant) COMPLEX 2UZI ; 2.0 ; Crystal structure of HRAS(G12V) - anti-RAS Fv complex 7VV9 ; 1.6 ; Crystal Structure of HRas(GMPPNP-bound) in complex with the Ras-binding domain(RBD) of SIN1 6ZJ0 ; 1.763 ; CRYSTAL STRUCTURE OF HRAS-G12D IN COMPLEX WITH GCP AND COMPOUND 18 7VVG ; 1.7 ; Crystal Structure of HRasG12V(GMPPNP-bound) in complex with the Ras-binding domain(RBD) of SIN1 4Q95 ; 2.2 ; Crystal structure of HRASLS3/LRAT chimeric protein 7VV8 ; 1.7 ; Crystal Structure of HRasQ61L(GMPPNP-bound) in complex with the Ras-binding domain(RBD) of SIN1 6JTZ ; 2.797 ; Crystal Structure of hRecQ1_D2-Zn-WH containing mutation on beta-hairpin 5DHF ; 2.285 ; Crystal Structure of hRio2 NES Peptide in complex with CRM1-Ran-RanBP1 5DI9 ; 2.28 ; Crystal Structure of hRio2 NES Reverse Mutant Peptide in complex with CRM1-Ran-RanBP1 3OVP ; 1.695 ; Crystal Structure of hRPE 3OVQ ; 1.999 ; Crystal Structure of hRPE and D-Ribulose-5-Phospate Complex 3OVR ; 1.948 ; Crystal Structure of hRPE and D-Xylulose 5-Phosphate Complex 8FTQ ; 2.1 ; Crystal structure of hRpn13 Pru domain in complex with Ubiquitin and XL44 7WOK ; 2.9 ; Crystal structure of HSA soaked with cisplatin for one week 7WOJ ; 2.89 ; Crystal structure of HSA-Myr complex soaked with cisplatin for one week 5JZ9 ; 2.68 ; Crystal structure of HsaD bound to 3,5-dichloro-4-hydroxybenzenesulphonic acid 5JZB ; 2.102 ; Crystal structure of HsaD bound to 3,5-dichlorobenzene sulphonamide 7ZJT ; 1.96 ; Crystal structure of HsaD from Mycobacterium tuberculosis at 1.96 A resolution 7ZM3 ; 1.81 ; Crystal structure of HsaD from Mycobacterium tuberculosis in complex with Cyclipostin-like inhibitor CyC17 7ZM4 ; 1.62 ; Crystal structure of HsaD from Mycobacterium tuberculosis in complex with Cyclipostin-like inhibitor CyC31 7ZM1 ; 2.15 ; Crystal structure of HsaD from Mycobacterium tuberculosis in complex with Cyclophostin-like inhibitor CyC7b 7ZM2 ; 2.2 ; Crystal structure of HsaD from Mycobacterium tuberculosis in complex with Cyclophostin-like inhibitor CyC8b 7EPU ; 3.5 ; Crystal structure of HsALC1 7KSP ; 2.8 ; Crystal structure of hSAMD9_DBD with DNA 3TDP ; 2.99 ; Crystal structure of HSC at pH 4.5 3TDR ; 3.2 ; Crystal structure of HSC at pH 7.5 3TDO ; 2.197 ; Crystal structure of HSC at pH 9.0 3TDS ; 1.975 ; Crystal structure of HSC F194I 3TE0 ; 2.09 ; Crystal structure of HSC K148E 3TE2 ; 2.3 ; Crystal structure of HSC K16S 3TDX ; 2.5 ; Crystal structure of HSC L82V 3TE1 ; 2.39 ; Crystal structure of HSC T84A 7TGM ; 2.5 ; Crystal structure of HSC-AMS bound DesD, the desferrioxamine synthetase from the Streptomyces griseoflavus ferrimycin biosynthetic pathway 6ZYJ ; 1.85 ; Crystal structure of Hsc70 ATPase domain in complex with ADP and calcium 3FZF ; 2.2 ; Crystal Structure of Hsc70/Bag1 in complex with ATP 3LDQ ; 1.9 ; Crystal structure of HSC70/BAG1 in complex with small molecule inhibitor 3M3Z ; 2.1 ; Crystal structure of HSC70/BAG1 in complex with small molecule inhibitor 2EXX ; 2.4 ; Crystal structure of HSCARG from Homo sapiens in complex with NADP 6VCJ ; 2.34 ; Crystal structure of hsDHFR in complex with NADP+, DAP, and R-naproxen 3OKG ; 1.95 ; Crystal structure of HsdS subunit from Thermoanaerobacter tengcongensis 1ZKK ; 1.45 ; Crystal structure of hSET8 in ternary complex with H4 peptide (16-24) and AdoHcy 5TEG ; 1.3 ; Crystal structure of hSETD8 in complex with histone H4K20 norleucine mutant peptide and S-Adenosylmethionine 5LNL ; 3.3 ; Crystal structure of Hsf 1608-1749 putative domain 1 7DCJ ; 2.004 ; Crystal structure of HSF1 DNA-binding domain in complex with 2-site HSE DNA in the head-to-head orientation 7DCS ; 2.4 ; Crystal structure of HSF1 DNA-binding domain in complex with 3-site HSE DNA (23 bp) 7DCT ; 2.36 ; Crystal structure of HSF1 DNA-binding domain in complex with 3-site HSE DNA (24 bp) 7DCI ; 1.7 ; Crystal structure of HSF2 DNA-binding domain in complex with 2-site HSE DNA in the head-to-head orientation 7DCU ; 1.75 ; Crystal structure of HSF2 DNA-binding domain in complex with 3-site HSE DNA (21 bp) 8A50 ; 1.484 ; Crystal structure of HSF2BP-ALPHA1 tetramer 8A51 ; 1.9 ; Crystal structure of HSF2BP-BRME1 complex 5H4D ; 3.21 ; Crystal structure of hSIRT3 in complex with a specific agonist Amiodarone hydrochloride 1G41 ; 2.3 ; CRYSTAL STRUCTURE OF HSLU HAEMOPHILUS INFLUENZAE 1NED ; 3.8 ; CRYSTAL STRUCTURE OF HSLV (CLPQ) AT 3.8 ANGSTROMS RESOLUTION 1M4Y ; 2.1 ; Crystal structure of HslV from Thermotoga maritima 6B09 ; 3.2 ; Crystal structure of HsNUDT16 in complex with diADPR (soaked) 5D4W ; 3.7 ; Crystal structure of Hsp104 5ZUI ; 2.701 ; Crystal Structure of HSP104 from Chaetomium thermophilum 6AMN ; 2.816 ; Crystal Structure of Hsp104 N Domain 6AZY ; 2.7 ; Crystal structure of Hsp104 R328M/R757M mutant from Calcarisporiella thermophila 1IZY ; 2.8 ; Crystal structure of Hsp31 1IZZ ; 2.31 ; Crystal structure of Hsp31 4AU4 ; 2.97 ; Crystal Structure of Hsp47 6ZYI ; 1.52 ; Crystal structure of HSP70 ATPase domain in complex with ADP and calcium 5LRL ; 1.33 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH A003492875 5LR1 ; 1.44 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH A003498614A. 5LRZ ; 2.0 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH A003643501 5T21 ; 2.1 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH SAR148019. 5LS1 ; 1.85 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH SAR166475 5LQ9 ; 1.9 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH SAR200323. 5LR7 ; 1.86 ; CRYSTAL STRUCTURE OF HSP90 IN COMPLEX WITH SAR567530 3HYY ; 1.9 ; Crystal structure of Hsp90 with fragment 37-D04 3HYZ ; 2.3 ; Crystal structure of Hsp90 with fragment 42-C03 3HZ5 ; 1.9 ; Crystal structure of Hsp90 with fragment Z064 3HZ1 ; 2.3 ; Crystal structure of Hsp90 with fragments 37-D04 and 42-C03 3OW6 ; 1.8 ; Crystal Structure of HSP90 with N-Aryl-benzimidazolone I 3OWD ; 1.63 ; Crystal Structure of HSP90 with N-Aryl-benzimidazolone II 3OWB ; 2.05 ; Crystal Structure of HSP90 with VER-49009 5J2V ; 1.59 ; Crystal Structure of Hsp90-alpha Apo N-domain 4U93 ; 1.55 ; Crystal Structure of Hsp90-alpha N-domain Bound to the Inhibitor NVP-HSP990 4W7T ; 1.8 ; Crystal Structure of Hsp90-alpha N-domain Bound to the Inhibitor NVP-HSP990 5J82 ; 2.17 ; Crystal Structure of Hsp90-alpha N-domain in complex 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-isopropyl-N-methyl-benzenesulfonamide 5J86 ; 1.87 ; Crystal Structure of Hsp90-alpha N-domain in complex with 2,4-Dihydroxy-N-methyl-5-(5-oxo-4-o-tolyl-4,5-dihydro-1H-[1,2,4]triazol-3-yl)-N-thiophen-2-ylmethyl-benzamide 5J64 ; 1.38 ; Crystal Structure of Hsp90-alpha N-domain in complex with 5-(2,4-Dihydroxy-phenyl)-4-(2-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazol-3-one 5J2X ; 1.22 ; Crystal Structure of Hsp90-alpha N-domain in complex with 5-(5-Bromo-2,4-dihydroxy-phenyl)-4-(2-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazol-3-one 5NYH ; 1.65 ; Crystal Structure of Hsp90-alpha N-Domain in complex with Indazole derivative 5ODX ; 1.82 ; Crystal Structure of Hsp90-alpha N-Domain in complex with Indazole derivative 5J6L ; 1.75 ; Crystal Structure of Hsp90-alpha N-domain in complex with N-Butyl-5-[4-(2-fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-methyl-benzamide 5NYI ; 1.44 ; Crystal Structure of Hsp90-alpha N-Domain in complex with Resorcinol derivative 5J6M ; 1.64 ; Crystal Structure of Hsp90-alpha N-domain L107 mutant in complex with 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide 5J8U ; 1.75 ; Crystal Structure of Hsp90-alpha N-domain L107A mutant in complex with 5-(2,4-Dihydroxy-phenyl)-4-(2-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazol-3-one 5J8M ; 1.9 ; Crystal Structure of Hsp90-alpha N-domain L107A mutant in complex with 5-(5-Bromo-2,4-dihydroxy-phenyl)-4-(2-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazol-3-one 5J6N ; 1.9 ; Crystal Structure of Hsp90-alpha N-domain L107A mutant in complex with 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-methyl-N-propyl-benzenesulfonamide 3WQ9 ; 1.8 ; Crystal structure of Hsp90-alpha N-terminal domain in complex with 2-(4-Hydroxy-cyclohexylamino)-4-[5-(4-phenyl-imidazol-1-yl)-isoquinolin-1-yl]-benzamide 5ZR3 ; 2.5 ; Crystal structure of Hsp90-alpha N-terminal domain in complex with 4-(3-isopropyl-4-(4-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-1-yl)-1H-pyrazolo[3,4-b]pyridin-1-yl)-3-methylbenzamide 7F51 ; 1.98 ; Crystal structure of Hst2 in complex with 2'-O-Benzoyl ADP Ribose 7F4E ; 1.78 ; Crystal structure of Hst2 in complex with H3K9bz peptide 7SHO ; 2.25 ; Crystal structure of hSTING in complex with c[2',3'-(ara-2'-G, ribo-3'-A)-MP] (RJ242) 7SHP ; 2.2 ; Crystal structure of hSTING in complex with c[2',3'-(ribo-2'-G, xylo-3'-A)-MP](RJ244) 7T9U ; 2.46 ; Crystal structure of hSTING with an agonist (SHR169224) 7T9V ; 2.68 ; Crystal structure of hSTING with the agonist, SHR171032 4QXP ; 2.51 ; Crystal structure of hSTING(G230I) in complex with DMXAA 4QXO ; 1.88 ; Crystal structure of hSTING(group2) in complex with DMXAA 4LOI ; 1.89 ; Crystal structure of hSTING(H232) in complex with c[G(2',5')pA(2',5')p] 4LOH ; 2.25 ; Crystal structure of hSTING(H232) in complex with c[G(2',5')pA(3',5')p] 4QXR ; 2.37 ; Crystal structure of hSTING(S162A/G230I/Q266I) in complex with DMXAA 4QXQ ; 2.42 ; Crystal structure of hSTING(S162A/Q266I) in complex with DMXAA 3U3J ; 2.7 ; Crystal structure of hSULT1A1 bound to PAP 3U3K ; 2.36 ; Crystal structure of hSULT1A1 bound to PAP and 2-Naphtol 5ED7 ; 2.72 ; Crystal Structure of HSV-1 UL21 C-terminal Domain 4U4H ; 2.05 ; Crystal Structure of HSV-1 UL21 N-terminal Domain 1P7C ; 2.1 ; Crystal Structure of HSV1-TK complexed with TP5A 5KCI ; 1.833 ; Crystal Structure of HTC1 6VBN ; 3.18 ; Crystal Structure of hTDO2 bound to inhibitor GNE1 3WEW ; 2.4 ; Crystal structure of HtdX (Rv0241c) of Mycobacterium tuberculosis at 2.4 A resolution 4OOB ; 2.3 ; Crystal structure of HtdX(Rv0241c) from Mycobacterium tuberculosis 5FOG ; 2.3 ; Crystal structure of hte Cryptosporidium muris cytosolic leucyl-tRNA synthetase editing domain complex with a post-transfer editing analogue of norvaline (Nv2AA) 3NS6 ; 1.25 ; Crystal structure of hte RNA recognition motif of yeast eIF3b residues 76-170 8E1O ; 2.25 ; Crystal structure of hTEAD2 bound to a methoxypyridine lipid pocket binder 6S60 ; 2.0 ; Crystal structure of hTEAD2 in complex with a trisubstituted pyrazole inhibitor 6S64 ; 2.22 ; Crystal structure of hTEAD2 in complex with a trisubstituted pyrazole inhibitor 6S66 ; 2.2 ; Crystal structure of hTEAD2 in complex with a trisubstituted pyrazole inhibitor 6S69 ; 2.15 ; Crystal structure of hTEAD2 in complex with a trisubstituted pyrazole inhibitor 6S6J ; 2.1 ; Crystal structure of hTEAD2 in complex with a trisubstituted pyrazole inhibitor 7OYJ ; 1.91 ; Crystal structure of hTEAD2 in complex with fragment at the interface 2 2GFN ; 1.9 ; Crystal structure of HTH-type transcriptional regulator pksA related protein from Rhodococcus sp. RHA1 7CLA ; 2.5 ; Crystal structure of HTH-type transcriptional regulator SkgA from Caulobacter crescentus 3F5O ; 1.7 ; Crystal Structure of hTHEM2(undecan-2-one-CoA) complex 1Y9Q ; 1.9 ; Crystal Structure of HTH_3 family Transcriptional Regulator from Vibrio cholerae 3LIY ; 1.86 ; crystal structure of HTLV protease complexed with Statine-containing peptide inhibitor 3LIV ; 2.59 ; crystal structure of HTLV protease complexed with the inhibitor KNI-10683 3LIX ; 2.7 ; crystal structure of htlv protease complexed with the inhibitor KNI-10729 3LIN ; 1.96 ; crystal structure of HTLV protease complexed with the inhibitor, KNI-10562 3LIQ ; 2.29 ; Crystal Structure of HTLV protease complexed with the inhibitor, KNI-10673 2AV1 ; 1.95 ; Crystal structure of HTLV-1 TAX peptide Bound to Human Class I MHC HLA-A2 with the E63Q and K66A mutations in the heavy chain. 2AV7 ; 2.05 ; Crystal structure of HTLV-1 TAX peptide Bound to Human Class I MHC HLA-A2 with the K66A mutation in the heavy chain. 5UGJ ; 2.7 ; Crystal structure of HTPA Reductase from neisseria meningitidis 6WGT ; 3.4 ; Crystal structure of HTR2A with hallucinogenic agonist 6WH4 ; 3.4 ; Crystal structure of HTR2A with inverse agonist 5ZVJ ; 2.7 ; Crystal structure of HtrA1 from Mycobacterium tuberculosis 4FEC ; 3.0 ; Crystal Structure of Htt36Q3H 4FED ; 2.807 ; Crystal Structure of Htt36Q3H 4FE8 ; 3.0 ; Crystal Structure of Htt36Q3H-EX1-X1-C1(Alpha) 4FEB ; 2.8 ; Crystal Structure of Htt36Q3H-EX1-X1-C2(Beta) 5NN0 ; 2.1 ; Crystal structure of huBChE with N-((1-(2,3-dihydro-1H-inden-2-yl)piperidin-3-yl)methyl)-N-(2-(dimethylamino)ethyl)-2-naphthamide. 1FXL ; 1.8 ; CRYSTAL STRUCTURE OF HUD AND AU-RICH ELEMENT OF THE C-FOS RNA 1G2E ; 2.3 ; CRYSTAL STRUCTURE OF HUD AND AU-RICH ELEMENT OF THE TUMOR NECROSIS FACTOR ALPHA RNA 7RRG ; 2.12 ; Crystal structure of human 0606T1-2 TCR bound to HLA-A*03:01 in complex with a mutant PIK3CA peptide 3V9G ; 2.5 ; Crystal structure of human 1-pyrroline-5-carboxylate dehydrogenase 3V9H ; 2.4 ; Crystal structure of human 1-pyrroline-5-carboxylate dehydrogenase mutant S352A 3V9I ; 2.85 ; Crystal structure of human 1-pyrroline-5-carboxylate dehydrogenase mutant S352L 3BWY ; 1.3 ; Crystal Structure of Human 108M Catechol O-methyltransferase bound with S-adenosylmethionine and inhibitor dinitrocatechol 3CZR ; 2.35 ; Crystal Structure of Human 11-beta-Hydroxysteroid Dehydrogenase (HSD1) in Complex with Arylsulfonylpiperazine Inhibitor 3D3E ; 2.6 ; Crystal Structure of Human 11-beta-Hydroxysteroid Dehydrogenase (HSD1) in Complex with Benzamide Inhibitor 3D4N ; 2.5 ; Crystal Structure of Human 11-beta-Hydroxysteroid Dehydrogenase (HSD1) in Complex with Sulfonamide Inhibitor 3PDJ ; 2.3 ; Crystal Structure of Human 11-beta-Hydroxysteroid Dehydrogenase 1 (11b-HSD1) in Complex with 4,4-Disubstituted Cyclohexylbenzamide Inhibitor 3BZU ; 2.25 ; Crystal structure of human 11-beta-hydroxysteroid dehydrogenase(HSD1) in complex with NADP and thiazolone inhibitor 3H6K ; 2.187 ; Crystal Structure of Human 11-beta-hydroxysteroid-dehydrogenase Bound to an Ortho-chlro-sulfonyl-piperazine Inhibitor 3HFG ; 2.3 ; Crystal Structure of Human 11-beta-hydroxysteroid-dehydrogenase Bound to an Sulfonyl-piperazine Inhibitor 6HEP ; 1.86 ; Crystal structure of human 14-3-3 beta in complex with CFTR R-domain peptide pS753-pS768 6Y6B ; 3.08 ; Crystal structure of human 14-3-3 gamma in complex with CaMKK2 14-3-3 binding motif Ser100 and 16-OMe-Fusicoccin H 6Y4K ; 3.0 ; Crystal structure of human 14-3-3 gamma in complex with CaMKK2 14-3-3 binding motif Ser100 and Fusicoccin A 5D3E ; 2.75 ; Crystal structure of human 14-3-3 gamma in complex with CFTR R-domain peptide pS768-pS795 7QI1 ; 1.76 ; Crystal structure of human 14-3-3 protein beta in complex with CFTR peptide pS753pS768 and PPI stabilizer CY007424 3P1P ; 1.95 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with TASK-3 peptide 3P1Q ; 1.7 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with TASK-3 Peptide and stabilizer fusicoccin A 3P1S ; 1.65 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with TASK-3 peptide and stabilizer fusicoccin A 3SML ; 1.9 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with TASK-3 peptide and stabilizer Fusicoccin A aglycone 3SMN ; 2.0 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with task-3 peptide and stabilizer Fusicoccin A-THF 3SMM ; 2.0 ; Crystal structure of human 14-3-3 sigma C38N/N166H in complex with task-3 peptide and stabilizer Fusicoccin J aglycone 3P1R ; 1.7 ; Crystal structure of human 14-3-3 sigma C38V/N166H in complex with TASK-3 peptide 3SMK ; 2.1 ; Crystal structure of human 14-3-3 sigma C38V/N166H in complex with TASK-3 peptide and stabilizer Cotylenin A 3SP5 ; 1.8 ; Crystal structure of human 14-3-3 sigma C38V/N166H in complex with TASK-3 peptide and stabilizer Cotylenol 3SPR ; 1.99 ; Crystal structure of human 14-3-3 sigma C38V/N166H in complex with TASK-3 peptide and stabilizer FC-THF 3SMO ; 1.8 ; Crystal structure of human 14-3-3 sigma C38V/N166H in complex with TASK-3 peptide and stabilizer Fusicoccin J aglycone 4FL5 ; 1.9 ; Crystal structure of human 14-3-3 sigma in complex with a Tau-protein peptide surrounding pS214 5BTV ; 1.7 ; Crystal structure of human 14-3-3 sigma in complex with a Tau-protein peptide surrounding pS324 5MYC ; 1.459 ; Crystal structure of human 14-3-3 sigma in complex with LRRK2 peptide pS910 5MY9 ; 1.327 ; Crystal structure of human 14-3-3 sigma in complex with LRRK2 peptide pS935 3IQJ ; 1.15 ; Crystal Structure of human 14-3-3 sigma in Complex with Raf1 peptide (10mer) 3IQU ; 1.05 ; Crystal Structure of human 14-3-3 sigma in Complex with Raf1 peptide (6mer) 3IQV ; 1.2 ; Crystal Structure of human 14-3-3 sigma in Complex with Raf1 peptide (6mer) and stabilisator Fusicoccin 3P1N ; 1.4 ; Crystal structure of human 14-3-3 sigma in complex with TASK-3 peptide 3P1O ; 1.9 ; Crystal structure of human 14-3-3 sigma in complex with TASK-3 peptide and stabilisator Fusicoccin A 4FR3 ; 1.9 ; Crystal structure of human 14-3-3 sigma in complex with TASK-3 peptide and stabilizer 16-O-Me-FC-H 3UX0 ; 1.75 ; Crystal structure of human 14-3-3 sigma in complex with TASK-3 peptide and stabilizer Fusicoccin H 8AH2 ; 2.9 ; Crystal structure of human 14-3-3 zeta fused to the NPM1 peptide including phosphoserine-48 5D2D ; 2.1 ; Crystal structure of human 14-3-3 zeta in complex with CFTR R-domain peptide pS753-pS768 5D3F ; 2.74 ; Crystal structure of human 14-3-3 zeta in complex with CFTR R-domain peptide pS753-pS768 and stabilizer fusicoccin-A 5NAS ; 2.08 ; Crystal structure of human 14-3-3 zeta in complex with PI4KIIIB peptide 2ZB4 ; 1.63 ; Crystal structure of human 15-ketoprostaglandin delta-13-reductase in complex with NADP and 15-keto-PGE2 2ZB8 ; 2.0 ; Crystal structure of human 15-ketoprostaglandin delta-13-reductase in complex with NADP and indomethacin 2ZB7 ; 1.8 ; Crystal structure of human 15-ketoprostaglandin delta-13-reductase in complex with NADPH and nicotinamide 1ZBQ ; 2.19 ; Crystal Structure Of Human 17-Beta-Hydroxysteroid Dehydrogenase Type 4 In Complex With NAD 1YB1 ; 1.95 ; Crystal structure of human 17-beta-hydroxysteroid dehydrogenase type XI 2FGB ; 1.35 ; Crystal structure of human 17bet a-hydroxysteroid dehydrogenase type 5 in complexes with PEG and NADP 6CGC ; 2.1 ; Crystal structure of human 17beta-HSD type 1 in ternary complex with 2-MeO-CC-156 and NADP+ 6CGE ; 2.2 ; Crystal structure of human 17beta-HSD type 1 in ternary complex with PBRM and NADP+ 6DTP ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN 17BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 1 COMPLEXED WITH EM139 6MNC ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN 17BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 1 COMPLEXED WITH ESTRONE 7X3Z ; 2.25 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 1 complexed with estrone and NAD 6MNE ; 1.86 ; CRYSTAL STRUCTURE OF HUMAN 17BETA-HYDROXYSTEROID DEHYDROGENASE TYPE 1 COMPLEXED WITH ESTRONE AND NADP+ 1XF0 ; 2.0 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3) complexed with delta4-androstene-3,17-dione and NADP 4DBW ; 1.802 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3) in complex with NADP+ and 2'-desmethyl-indomethacin 4DBS ; 1.852 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3) in complex with NADP+ and 3'-[(4-nitronaphthalen-1-yl)amino]benzoic acid 4DBU ; 2.528 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 (AKR1C3) in complex with NADP+ and 3-((4 -(trifluoromethyl)phenyl)amino)benzoic acid 4HMN ; 2.4 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 in complex with (4-(4-Chlorophenyl)piperazin-1-yl)(morpholino)methanone (24) 4FA3 ; 2.2 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 in complex with (R)-1-(naphthalen-2-ylsulfonyl)piperidine-3-carboxylic acid (86) 4H7C ; 1.97 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 in complex with 1-{4-[(2-methyl-1-piperidinyl)sulfonyl]phenyl}-2-pyrrolidinone 4FAL ; 2.0 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 in complex with 3-((3,4-dihydroisoquinolin-2(1H)-yl)sulfonyl)-N-methylbenzamide (80) 4FAM ; 2.0 ; Crystal structure of human 17beta-hydroxysteroid dehydrogenase type 5 in complex with 3-((3,4-dihydroisoquinolin-2(1H)-yl)sulfonyl)benzoic acid (17) 6Q20 ; 2.45 ; Crystal structure of human 1E01 Fab in complex with influenza virus neuraminidase from A/Japan/305/1957 (H2N2) 6Q23 ; 3.27 ; Crystal structure of human 1G01 Fab in complex with influenza virus neuraminidase from A/California/04/2009 (H1N1) 6Q1Z ; 3.446 ; Crystal structure of human 1G04 Fab in complex with influenza virus neuraminidase from A/Hunan/02650/2016 (H7N9) 1MRQ ; 1.59 ; Crystal structure of human 20alpha-HSD in ternary complex with NADP and 20alpha-hydroxy-progesterone 7L1D ; 3.11 ; Crystal structure of human 21LT2-2 TCR bound to HLA-A*03:01 in complex with a mutant PIK3CA peptide 3PIQ ; 3.325 ; Crystal structure of human 2909 Fab, a quaternary structure-specific antibody against HIV-1 4XO6 ; 1.2 ; Crystal structure of human 3-alpha hydroxysteroid dehydrogenase type 3 in complex with NADP+, 5alpha-androstan-3,17-dione and (3beta, 5alpha)-3-hydroxyandrostan-17-one 4XO7 ; 1.75 ; Crystal structure of human 3-alpha hydroxysteroid dehydrogenase type 3 in complex with NADP+, 5alpha-androstan-3,17-dione and (3beta, 5alpha)-3-hydroxyandrostan-17-one 2FVL ; 2.4 ; Crystal structure of human 3-alpha hydroxysteroid/dihydrodiol dehydrogenase (AKR1C4) complexed with NADP+ 2P8U ; 2.0 ; Crystal structure of human 3-hydroxy-3-methylglutaryl CoA synthase I 3IR3 ; 1.99 ; Crystal structure of human 3-hydroxyacyl-thioester dehydratase 2 (HTD2) 2QNK ; 1.6 ; Crystal structure of human 3-hydroxyanthranilate 3,4-dioxygenase 1T8T ; 1.85 ; Crystal Structure of human 3-O-Sulfotransferase-3 with bound PAP 1T8U ; 1.95 ; Crystal Structure of human 3-O-Sulfotransferase-3 with bound PAP and tetrasaccharide substrate 3DLX ; 2.2 ; Crystal structure of human 3-oxoacid CoA transferase 1 2G76 ; 1.7 ; Crystal structure of human 3-phosphoglycerate dehydrogenase 5NZO ; 1.29 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 1-methyl-3-phenyl-1H-pyrazol-5-amine 5NZQ ; 1.5 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 3-(1,3-oxazol-5-yl)aniline. 5OFW ; 1.5 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 3-Chloro-4-fluorobenzamide 5NZP ; 1.3 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 3-Hydroxybenzisoxazole 5OFM ; 1.5 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 5-amino-1-methyl-1H-indole 5OFV ; 1.5 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with 5-fluoro-2-methylbenzoic acid 7VA1 ; 1.74 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with GDD-04-35 5N53 ; 1.48 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with N-(3-chloro-4-methoxyphenyl) acetamide 5N6C ; 2.3 ; Crystal structure of human 3-phosphoglycerate dehydrogenase in complex with NAD and L-Tartrate 5TK5 ; 1.88 ; Crystal structure of human 3HAO with iron bound in the active site 5TKQ ; 1.75 ; Crystal structure of human 3HAO with zinc bound in the active site 3S5N ; 2.5 ; Crystal Structure of Human 4-hydroxy-2-oxoglutarate Aldolase 3S5O ; 1.97 ; Crystal Structure of Human 4-hydroxy-2-oxoglutarate Aldolase Bound to Pyruvate 3ISQ ; 1.75 ; Crystal structure of human 4-Hydroxyphenylpyruvate dioxygenase 4XCE ; 2.93 ; Crystal structure of human 4E10 Fab crystalized in the presence of Phosphatidylcholine (06:0 PC); C2 space group 4XCC ; 2.81 ; Crystal structure of human 4E10 Fab crystalized in the presence of Phosphatidylcholine (06:0 PC); I422 space group 4XBP ; 2.94 ; Crystal structure of human 4E10 Fab crystalized in the presence of Phosphatidylethanolamine (06:0 PE) 4XAW ; 1.47 ; Crystal structure of human 4E10 Fab in complex with its peptide epitope on HIV-1 gp41: Crystals cryoprotected with phosphatidic acid (08:0 PA) 4XC1 ; 1.63 ; Crystal structure of human 4E10 Fab in complex with its peptide epitope on HIV-1 GP41: crystals cryoprotected with sn-Glycerol 3-phosphate 4XBE ; 1.756 ; Crystal structure of human 4E10 Fab in complex with its peptide epitope on HIV-1 gp41: crystals cryoprotected with sphingomyelin (02:0 SM (d18:1/2:0)). 4XCF ; 1.43 ; Crystal structure of human 4E10 Fab in complex with its peptide epitope on HIV-1 gp41; crystals cryoprotected with phosphatidylcholine (03:0 PC) 4XC3 ; 1.63 ; Crystal structure of human 4E10 Fab in complex with its peptide epitope on HIV-1 gp41; crystals cryoprotected with rac-glycerol 1-phosphate 4XBG ; 2.73 ; Crystal structure of human 4E10 Fab in complex with phosphatidic acid (06:0 PA): 2.73 A resolution 4XCN ; 2.9 ; Crystal structure of human 4E10 Fab in complex with phosphatidic acid (06:0 PA); 2.9 A resolution 4XCY ; 3.96 ; Crystal structure of human 4E10 Fab in complex with phosphatidylglycerol (06:0 PG) 5AHO ; 2.16 ; Crystal structure of human 5' exonuclease Apollo 7B9B ; 2.8 ; Crystal structure of human 5' exonuclease Appollo APO form 7B2X ; 3.1 ; Crystal structure of human 5' exonuclease Appollo H61Y variant 7A1F ; 1.8 ; Crystal structure of human 5' exonuclease Appollo in complex with 5'dAMP 3OZE ; 2.0 ; Crystal Structure of human 5'-deoxy-5'-methyladenosine phosphorylase 3OZC ; 1.93 ; Crystal Structure of human 5'-deoxy-5'-methyladenosine phosphorylase in complex with pCl-phenylthioDADMeImmA 3OZD ; 2.1 ; Crystal Structure of human 5'-deoxy-5'-methyladenosine phosphorylase in complex with pCl-phenylthioDADMeImmA 6DZ2 ; 1.99 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-(((3-(1-benzyl-1H-1,2,3-triazol-4-yl)propyl)thio)methyl)pyrrolidin-3-ol 6DZ3 ; 1.91 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-(((3-(1-butyl-1H-1,2,3-triazol-4-yl)propyl)thio)methyl)pyrrolidin-3-ol 6DZ0 ; 1.62 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-((pent-4-yn-1-ylthio)methyl)pyrrolidin-3-ol 6DYZ ; 1.62 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with (3R,4S)-1-((4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl)-4-((prop-2-yn-1-ylthio)methyl)pyrrolidin-3-ol 5EUB ; 1.81 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with 2-amino-MTA and sulfate 5TC7 ; 1.75 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with 5'-methylthiotubercidin at 1.75 angstrom 5TC5 ; 1.96 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with butylthio-DADMe-Immucillin-A and chloride 5TC8 ; 1.8 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with methylthio-DADMe-Immucillin-A 5TC6 ; 1.48 ; Crystal structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase in complex with propylthio-immucillin-A 4CCZ ; 2.7 ; Crystal structure of human 5-methyltetrahydrofolate-homocysteine methyltransferase, the homocysteine and folate binding domains 4CNC ; 1.77 ; Crystal structure of human 5T4 (Wnt-activated inhibitory factor 1, Trophoblast glycoprotein) 4CNM ; 1.75 ; Crystal structure of human 5T4 (Wnt-activated inhibitory factor 1, Trophoblast glycoprotein) 3Q93 ; 1.8 ; Crystal Structure of Human 8-oxo-dGTPase (MTH1) 1QRN ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN A6 TCR COMPLEXED WITH HLA-A2 BOUND TO ALTERED HTLV-1 TAX PEPTIDE P6A 3BTY ; 2.35 ; Crystal structure of human ABH2 bound to dsDNA containing 1meA through cross-linking away from active site 3BTZ ; 3.0 ; Crystal structure of human ABH2 cross-linked to dsDNA 3BU0 ; 2.5 ; crystal structure of human ABH2 cross-linked to dsDNA with cofactors 2IUW ; 1.5 ; Crystal structure of human ABH3 in complex with iron ion and 2- oxoglutarate 4ASI ; 2.8 ; Crystal structure of human ACACA C-terminal domain 5LZ1 ; 2.0 ; Crystal structure of human ACBD3 GOLD domain 5LZ3 ; 3.0 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of Aichivirus A 5LZ6 ; 2.6 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of Aichivirus B 6HLW ; 2.728 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of enterovirus-A71 (fusion protein) 6HLN ; 2.1 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of enterovirus-D68 6HM8 ; 2.277 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of enterovirus-D68 (fusion protein) 6HMV ; 2.244 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of enterovirus-D68 (fusion protein, LVVY mutant) 6HLV ; 2.5 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of poliovirus-1 (L24A mutant) 6HLT ; 2.815 ; Crystal structure of human ACBD3 GOLD domain in complex with 3A protein of rhinovirus-14 (HRV14) 5KKN ; 2.6 ; Crystal structure of human ACC2 BC domain in complex with ND-646, the primary amide of ND-630 7VIB ; 3.2 ; Crystal structure of human ACE2 and GX/P2V RBD 7PKI ; 2.94234 ; Crystal structure of human ACE2 bound to the spike receptor-binding domain from a cave bat sarbecovirus closely related to SARS-CoV-2. 2YL2 ; 2.3 ; Crystal structure of human acetyl-CoA carboxylase 1, biotin carboxylase (BC) domain 3TDC ; 2.41 ; Crystal Structure of Human Acetyl-CoA carboxylase 2 4PQE ; 2.9 ; Crystal Structure of Human Acetylcholinesterase 7E3D ; 2.5 ; Crystal structure of human acetylcholinesterase 6ZWE ; 3.0 ; Crystal structure of human acetylcholinesterase in complex with ((6-((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamido)hexyl)triphenylphosphonium bromide) 7P1N ; 2.95 ; Crystal structure of human acetylcholinesterase in complex with (2R,3R,4S,5S,6R)-2-{4-[1-(4-{5-hydroxy-6-[(E)-(hydroxyimino)methyl]pyridin-2-yl}butyl)-1H-1,2,3-triazol-4-yl]butoxy}-6-(hydroxymethyl)oxane-3,4,5-triol oxime 7P1P ; 3.03 ; Crystal structure of human acetylcholinesterase in complex with (E)-3-hydroxy-6-(3-(4-(4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)butyl)-1H-1,2,3-triazol-1-yl)propyl)picolinaldehyde oxime 6F25 ; 3.052 ; Crystal structure of human acetylcholinesterase in complex with C35. 7E3H ; 2.45 ; Crystal structure of human acetylcholinesterase in complex with donepezil 5HF8 ; 2.8 ; Crystal structure of human acetylcholinesterase in complex with paraoxon (alternative acyl loop conformation) 5HFA ; 2.201 ; Crystal structure of human acetylcholinesterase in complex with paraoxon and 2-PAM 5HF9 ; 2.2 ; Crystal structure of human acetylcholinesterase in complex with paraoxon and HI6 5HF6 ; 2.3 ; Crystal structure of human acetylcholinesterase in complex with paraoxon in the aged state 5HF5 ; 2.152 ; Crystal structure of human acetylcholinesterase in complex with paraoxon in the unaged state (predominant acyl loop conformation) 7XN1 ; 2.85 ; Crystal structure of human acetylcholinesterase in complex with tacrine 2X8B ; 2.95 ; Crystal structure of human acetylcholinesterase inhibited by aged tabun and complexed with fasciculin-II 6MHM ; 2.743 ; Crystal structure of human acid ceramidase in covalent complex with carmofur 5JG8 ; 2.8 ; Crystal structure of human acid sphingomyelinase 2YBT ; 2.22 ; Crystal structure of human acidic chitinase in complex with bisdionin C 2YBU ; 2.25 ; Crystal structure of human acidic chitinase in complex with bisdionin F 6G6S ; 1.65 ; Crystal structure of human Acinus RNA recognition motif domain 3F6U ; 2.8 ; Crystal structure of human Activated Protein C (APC) complexed with PPACK 4C02 ; 2.17 ; Crystal structure of human ACVR1 (ALK2) in complex with FKBP12.6 and dorsomorphin 2WH5 ; 2.6 ; Crystal structure of human acyl-CoA binding domain 4 complexed with stearoyl-CoA 3EPY ; 2.005 ; Crystal Structure of human acyl-CoA binding domain 7 complexed with palmitoyl-Coa 2WBI ; 2.8 ; Crystal structure of human acyl-CoA dehydrogenase 11 3GPC ; 1.9 ; Crystal structure of human Acyl-CoA synthetase medium-chain family member 2A (L64P mutation) in a complex with CoA 3EQ6 ; 2.4 ; Crystal structure of human acyl-CoA synthetase medium-chain family member 2A (L64P mutation) in a ternary complex with products 2VZE ; 2.45 ; Crystal structure of human acyl-CoA synthetase medium-chain family member 2A (L64P mutation) in complex with AMP 3DAY ; 1.95 ; Crystal structure of human acyl-CoA synthetase medium-chain family member 2A (L64P mutation) in complex with AMP-CPP 3C5E ; 1.6 ; Crystal structure of human acyl-CoA synthetase medium-chain family member 2A (L64P mutation) in complex with ATP 2WD9 ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN ACYL-COA SYNTHETASE MEDIUM-CHAIN FAMILY MEMBER 2A (L64P MUTATION) IN COMPLEX WITH IBUPROFEN 3B7W ; 2.0 ; Crystal structure of human acyl-CoA synthetase medium-chain family member 2A, with L64P mutation 8HQ2 ; 2.93 ; Crystal structure of human ADAM22 in complex with human LGI1 mutant 2V4B ; 2.0 ; Crystal Structure of Human ADAMTS-1 catalytic Domain and Cysteine- Rich Domain (apo-form) 2JIH ; 2.1 ; Crystal Structure of Human ADAMTS-1 catalytic Domain and Cysteine- Rich Domain (complex-form) 4WK7 ; 1.24 ; Crystal structure of human ADAMTS-4 in complex with inhibitor (compound 1, 2-(4-chlorophenoxy)-N-{[(4R)-4-methyl-2,5-dioxoimidazolidin-4-yl]methyl} acetamide) 4WKE ; 1.62 ; Crystal structure of human ADAMTS-4 in complex with inhibitor 5-chloro-N-{[(4R)-2,5-dioxo-4-(1,3-thiazol-2-yl)imidazolidin-4-yl]methyl}-1-benzofuran-2-carboxamide (compound 10) 4WKI ; 1.6 ; Crystal structure of human ADAMTS-4 in complex with inhibitor 5-CHLORO-N-{[(4S)-4-(1-METHYL-1H-IMIDAZOL-2-YL)-2,5-DIOXOIMIDAZOLIDIN-4-YL]METHYL}-1-BENZOFURAN-2-CARBOXAMIDE (compound 11) 8GNE ; 2.3 ; Crystal structure of human adenosine A2A receptor in complex with an insurmountable inverse agonist, KW-6356. 8GNG ; 3.2 ; Crystal structure of human adenosine A2A receptor in complex with istradefylline. 3VG9 ; 2.7 ; Crystal structure of human adenosine A2A receptor with an allosteric inverse-agonist antibody at 2.7 A resolution 3VGA ; 3.1 ; Crystal structure of human adenosine A2A receptor with an allosteric inverse-agonist antibody at 3.1 A resolution 3LGD ; 2.0 ; Crystal structure of human adenosine deaminase growth factor, adenosine deaminase type 2 (ADA2) 3LGG ; 2.5 ; Crystal structure of human adenosine deaminase growth factor, adenosine deaminase type 2 (ADA2) complexed with transition state analogue, coformycin 4PIE ; 1.94 ; Crystal structure of human adenovirus 2 protease a substrate based nitrile inhibitor 4PID ; 1.59 ; Crystal structure of human adenovirus 2 protease with a weak pyrimidine nitrile inhibitor 1NLN ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN ADENOVIRUS 2 PROTEINASE WITH ITS 11 AMINO ACID COFACTOR AT 1.6 ANGSTROM RESOLUTION 4XL8 ; 1.65 ; Crystal Structure of Human Adenovirus 52 Short Fiber Knob in Complex with 2-O-Methyl-5-N-Acetylneuraminic Acid 6G47 ; 1.497 ; Crystal Structure of Human Adenovirus 52 Short Fiber Knob in Complex with alpha-(2,8)-Trisialic Acid (DP3) 7AJP ; 1.38202 ; Crystal Structure of Human Adenovirus 56 Fiber Knob 4PIS ; 2.1 ; Crystal structure of human adenovirus 8 protease in complex with a nitrile inhibitor 4PIQ ; 2.07 ; Crystal structure of human adenovirus 8 protease with a nitrile inhibitor 4WX6 ; 2.15 ; Crystal structure of human adenovirus 8 protease with an irreversible vinyl sulfone inhibitor 6ZJE ; 1.48 ; Crystal structure of human adenylate kinase 3, AK3, in complex with inhibitor Ap5A 6ZJD ; 1.75 ; Crystal structure of human adenylate kinase 3, AK3, in complex with inhibitor ATP 6ZJB ; 1.822 ; Crystal structure of human adenylate kinase 3, AK3, in complex with inhibitor Gp5A 2BBW ; 2.05 ; Crystal structure of human adenylate kinase 4 (AK4) in complex with diguanosine pentaphosphate 2AR7 ; 2.15 ; Crystal structure of human adenylate kinase 4, AK4 2J91 ; 1.8 ; Crystal structure of Human Adenylosuccinate Lyase in complex with AMP 3Q6L ; 1.4 ; Crystal Structure of Human Adipocyte Fatty Acid Binding Protein (FABP4) at 1.4 Ang. Resolution 2NNQ ; 1.8 ; Crystal structure of human adipocyte fatty acid binding protein in complex with ((2'-(5-ethyl-3,4-diphenyl-1H-pyrazol-1-yl)-3-biphenylyl)oxy)acetic acid 1TOW ; 2.0 ; Crystal structure of human adipocyte fatty acid binding protein in complex with a carboxylic acid ligand 1TOU ; 2.0 ; Crystal structure of human adipocyte fatty acid binding protein in complex with a non-covalent ligand 5LX9 ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN ADIPONECTIN RECEPTOR 2 IN COMPLEX WITH A C18 FREE FATTY ACID AT 2.4 ANGSTROM RESOLUTION 5LXA ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN ADIPONECTIN RECEPTOR 2 IN COMPLEX WITH A C18 FREE FATTY ACID AT 3.0 ANGSTROM RESOLUTION 2DSB ; 2.5 ; Crystal structure of human ADP-ribose pyrophosphatase NUDT5 2DSC ; 2.0 ; Crystal structure of human ADP-ribose pyrophosphatase NUDT5 in complex with magnesium and ADP-ribose 2DSD ; 2.6 ; Crystal structure of human ADP-ribose pyrophosphatase NUDT5 in complex with magnesium and AMP 3BM4 ; 2.0 ; Crystal Structure of Human ADP-ribose Pyrophosphatase NUDT5 In complex with magnesium and AMPcpr 1Q33 ; 1.81 ; Crystal structure of human ADP-ribose pyrophosphatase NUDT9 2H57 ; 2.0 ; Crystal structure of human ADP-ribosylation factor-like 6 3HFW ; 1.92 ; Crystal Structure of human ADP-ribosylhydrolase 1 (hARH1) 4FA0 ; 2.65 ; Crystal structure of human AdPLA to 2.65 A resolution 7MJU ; 2.1 ; Crystal structure of human AF10 PZP bound to histone H3 tail 6K7P ; 2.4 ; Crystal structure of human AFF4-THD domain 2CLP ; 3.0 ; Crystal structure of human aflatoxin B1 aldehyde reductase member 3 1JV3 ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN AGX1 COMPLEXED WITH UDPGALNAC 1JV1 ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN AGX1 COMPLEXED WITH UDPGLCNAC 6Z2F ; 1.7 ; Crystal structure of human AGX1 mutant complexed with UDPGLCNAC 1JVG ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN AGX2 COMPLEXED WITH UDPGALNAC 1JVD ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN AGX2 COMPLEXED WITH UDPGLCNAC 3VD8 ; 2.0685 ; Crystal structure of human AIM2 PYD domain with MBP fusion 1Z83 ; 1.9 ; Crystal structure of human AK1A in complex with AP5A 3NDP ; 2.3 ; Crystal structure of human AK4(L171P) 5OU0 ; 0.94 ; Crystal structure of human AKR1B1 complexed with NADP+ and compound 37 5OUJ ; 0.96 ; Crystal structure of human AKR1B1 complexed with NADP+ and compound 39 5OUK ; 0.959 ; Crystal structure of human AKR1B1 complexed with NADP+ and compound 41 4XZL ; 1.7 ; Crystal structure of human AKR1B10 complexed with NADP+ and JF0049 4ICC ; 1.752 ; Crystal structure of human AKR1B10 complexed with NADP+ and JF0064 4WEV ; 1.453 ; Crystal structure of human AKR1B10 complexed with NADP+ and sulindac 5LIU ; 1.75 ; Crystal structure of human AKR1B10 complexed with NADP+ and the inhibitor IDD388 5LIK ; 2.05 ; Crystal structure of human AKR1B10 complexed with NADP+ and the inhibitor MK181 5LIX ; 1.95 ; Crystal structure of human AKR1B10 complexed with NADP+ and the inhibitor MK184 5LIY ; 2.05 ; Crystal structure of human AKR1B10 complexed with NADP+ and the inhibitor MK204 5LIW ; 1.75 ; Crystal structure of human AKR1B10 complexed with NADP+ and the inhibitor MK319 5M2F ; 1.503 ; Crystal structure of human AKR1B10 complexed with NADP+ and the synthetic retinoid UVI2008 3O96 ; 2.7 ; Crystal Structure of Human AKT1 with an Allosteric Inhibitor 3D0E ; 2.0 ; Crystal structure of human Akt2 in complex with GSK690693 5F9S ; 1.7 ; Crystal structure of human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) at 1.7 Angstrom; internal aldimine with PLP in the active site 5OG0 ; 2.5 ; Crystal structure of human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) at 2.5 Angstrom; internal aldimine with PLP in the active site 4XEO ; 1.38 ; Crystal Structure of human AlaRS catalytic domain with R329H mutation 1U3T ; 2.49 ; Crystal Structure of Human Alcohol Dehydrogenase Alpha-Alpha Isoform Complexed with N-Cyclopentyl-N-Cyclobutylformamide Determined to 2.5 Angstrom Resolution 1U3U ; 1.6 ; Crystal Structure of Human Alcohol Dehydrogenase Beta-1-Beta-1 Isoform Complexed with N-Benzylformamide Determined to 1.6 Angstrom Resolution 1U3V ; 1.65 ; Crystal Structure of Human Alcohol Dehydrogenase Beta-1-Beta-1 Isoform Complexed with N-Heptylformamide Determined to 1.65 Angstrom Resolution 1U3W ; 1.45 ; Crystal Structure of Human Alcohol Dehydrogenase Gamma-2-Gamma-2 Isoform Complexed with N-1-Methylheptylformamide Determined to 1.45 Angstrom Resolution 6TGW ; 2.8 ; Crystal structure of human Aldehyde dehydrogenase 1A3 in complex with a selective inhibitor 6TE5 ; 3.25 ; Crystal structure of human Aldehyde dehydrogenase 1A3 in complex with LQ43 inhibitor compound 6TRY ; 2.9 ; Crystal structure of human Aldehyde dehydrogenase 1A3 in complex with MF13 inhibitor compound 7A6Q ; 2.95 ; Crystal structure of human aldehyde dehydrogenase 1A3 in complex with selective NR6 inhibitor compound 8BB8 ; 1.8 ; Crystal structure of human aldehyde dehydrogenase ALDH3A1 in complex with octanal 4X2Q ; 2.94 ; Crystal Structure of Human Aldehyde Dehydrogenase, ALDH1a2 4FR8 ; 2.2 ; Crystal structure of human aldehyde dehydrogenase-2 in complex with nitroglycerin 7JWS ; 1.6 ; Crystal structure of human ALDH1A1 bound to compound (R)-28 7JWT ; 1.8 ; Crystal structure of human ALDH1A1 bound to compound (R)-28 7JWU ; 1.9 ; Crystal structure of human ALDH1A1 bound to compound (R)-28 7JWV ; 1.6 ; Crystal structure of human ALDH1A1 bound to compound (R)-28 7JWW ; 1.6 ; Crystal structure of human ALDH1A1 bound to compound (R)-28 6S6W ; 3.25 ; Crystal Structure of human ALDH1A3 in complex with 2,6-diphenylimidazo[1,2-a]pyridine (compound GA11) and NAD+ 8DR9 ; 1.5 ; Crystal structure of human ALDH2 in complex with NAD+ and PEG MME 550 3SZ9 ; 2.1 ; Crystal structure of human ALDH2 modified with the beta-elimination product of Aldi-3; 1-(4-ethylbenzene)prop-2-en-1-one 3SZA ; 1.48 ; Crystal structure of human ALDH3A1 - apo form 3SZB ; 1.51 ; Crystal structure of human ALDH3A1 modified with the beta-elimination product of Aldi-1; 1-phenyl- 2-propen-1-one 4L1O ; 2.3 ; Crystal structure of human ALDH3A1 with inhibitor 1-{[4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl]methyl}-1H-indole-2,3-dione 4H80 ; 2.5 ; Crystal structure of human ALDH3A1 with its isozyme selective inhibitor - N-[4-(4-methylsulfonyl-2-nitroanilino)phenyl]acetamide 4L2O ; 1.937 ; Crystal structure of human ALDH3A1 with its selective inhibitor 1-(4-fluorophenyl)sulfonyl-2-methylbenzimidazole 1PWM ; 0.92 ; Crystal structure of human Aldose Reductase complexed with NADP and Fidarestat 1T41 ; 1.05 ; Crystal structure of human aldose reductase complexed with NADP and IDD552 1T40 ; 1.8 ; Crystal structure of human aldose reductase complexed with NADP and IDD552 at ph 5 1PWL ; 1.1 ; Crystal structure of human Aldose Reductase complexed with NADP and Minalrestat 4XZH ; 1.0 ; Crystal structure of human Aldose Reductase complexed with NADP+ and JF0048 4XZI ; 2.45 ; Crystal structure of human Aldose Reductase complexed with NADP+ and JF0049 4IGS ; 0.85 ; Crystal structure of human Aldose Reductase complexed with NADP+ and JF0064 3RX3 ; 1.9 ; Crystal Structure of Human Aldose Reductase Complexed with Sulindac 3RX4 ; 2.0 ; Crystal Structure of Human Aldose Reductase complexed with Sulindac Sulfide 3RX2 ; 1.9 ; Crystal Structure of Human Aldose Reductase Complexed with Sulindac Sulfone 1IEI ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN ALDOSE REDUCTASE COMPLEXED WITH THE INHIBITOR ZENARESTAT. 3S3G ; 1.8 ; Crystal Structure of Human Aldose Reductase Complexed with Tolmetin 2DUX ; 1.6 ; Crystal structure of human Aldose Reductase complexed with zopolrestat after 3 days soaking (3days_soaked_1) 4TT7 ; 2.1 ; Crystal structure of human ALK with a covalent modification 7C3G ; 1.802 ; Crystal structure of human ALK2 kinase domain with R206H mutation in complex with a bicyclic pyrazole inhibitor RK-73134 6ACR ; 2.01 ; Crystal structure of human ALK2 kinase domain with R206H mutation in complex with RK-59638 6JUX ; 1.75 ; Crystal structure of human ALK2 kinase domain with R206H mutation in complex with RK-71807 6G7O ; 2.7 ; Crystal structure of human alkaline ceramidase 3 (ACER3) at 2.7 Angstrom resolution 8JNR ; 3.66 ; Crystal structure of human ALKBH3 bound to 3mC containing ssDNA through distal crosslink 8JNK ; 2.69 ; Crystal structure of human ALKBH3 bound to ssDNA through active site crosslink 4NJ4 ; 2.02 ; Crystal Structure of Human ALKBH5 4OCT ; 2.28 ; Crystal structure of human ALKBH5 crystallized in the presence of Mn^{2+} and 2-oxoglutarate 7WKV ; 2.1 ; Crystal structure of human ALKBH5 in complex with 2-oxoglutarate (2OG) and m6A-containing ssRNA 4NRO ; 2.3 ; Crystal structure of human ALKBH5 in complex with alpha-ketoglutarate 4NRM ; 2.17 ; Crystal structure of human ALKBH5 in complex with citrate and acetate 7V4G ; 2.1 ; Crystal structure of human ALKBH5 in complex with m6A-containing ssRNA 4O7X ; 1.78 ; Crystal structure of human ALKBH5 in complex with Mn2+ 4NRP ; 1.8 ; Crystal structure of human ALKBH5 in complex with N-oxalylglycine 7WL0 ; 2.5 ; Crystal structure of human ALKBH5 in complex with N-oxalylglycine (NOG) and m6A-containing ssRNA 4NRQ ; 2.5 ; Crystal structure of human ALKBH5 in complex with pyridine-2,4-dicarboxylate 4QKD ; 1.35 ; Crystal structure of human ALKBH7 in complex with alpha-ketoglutarate and Mn(II) 4QKF ; 1.99 ; Crystal structure of human ALKBH7 in complex with N-oxalylglycine and Mn(II) 3UBY ; 2.0 ; Crystal structure of human alklyadenine DNA glycosylase in a lower and higher-affinity complex with DNA 3QI5 ; 2.2 ; Crystal structure of human alkyladenine DNA glycosylase in complex with 3,N4-ethenocystosine containing duplex DNA 3REV ; 2.2 ; Crystal structure of human alloreactive tcr nb20 2DE0 ; 2.61 ; Crystal structure of human alpha 1,6-fucosyltransferase, FUT8 6VLD ; 2.28 ; Crystal structure of human alpha 1,6-fucosyltransferase, FUT8 bound to GDP and A2SGP 6VLE ; 2.28 ; Crystal structure of human alpha 1,6-fucosyltransferase, FUT8 in its Apo-form 5UBB ; 2.0 ; Crystal structure of human alpha N-terminal protein methyltransferase 1B 1D4P ; 2.07 ; CRYSTAL STRUCTURE OF HUMAN ALPHA THROMBIN IN COMPLEX WITH 5-AMIDINOINDOLE-4-BENZYLPIPERIDINE INHIBITOR 4I7Y ; 2.4 ; Crystal Structure of Human Alpha Thrombin in Complex with a 27-mer Aptamer Bound to Exosite II 1D3D ; 2.04 ; CRYSTAL STRUCTURE OF HUMAN ALPHA THROMBIN IN COMPLEX WITH BENZOTHIOPHENE INHIBITOR 4 1D3T ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN ALPHA THROMBIN IN COMPLEX WITH BENZO[B]THIOPHENE INHIBITOR 1 1D3Q ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN ALPHA THROMBIN IN COMPLEX WITH BENZO[B]THIOPHENE INHIBITOR 2 4B5O ; 1.05 ; Crystal structure of human alpha tubulin acetyltransferase catalytic domain 4B5P ; 1.6 ; Crystal structure of human alpha tubulin acetyltransferase catalytic domain Q58A variant 3LOE ; 1.56 ; Crystal structure of human alpha-defensin 1 (F28A mutant) 3GNY ; 1.56 ; Crystal structure of human alpha-defensin 1 (HNP1) 4LBB ; 1.719 ; Crystal structure of human alpha-defensin 1 (HNP1) I20A mutant 4LBF ; 1.7 ; Crystal structure of HUMAN ALPHA-DEFENSIN 1 (HNP1) I20A/L25A mutant 4LB1 ; 2.0 ; Crystal structure of human alpha-defensin 1 (HNP1) Y16A/F28A mutant 4LB7 ; 1.902 ; Crystal structure of human alpha-defensin 1 (HNP1) Y16A/I20A/L25A/F28A mutant. 3LVX ; 1.63 ; Crystal structure of human alpha-defensin 1 (I6A mutant) 3H6C ; 1.63 ; Crystal structure of human alpha-defensin 1 (Mutant Gln22Ala) 3LO4 ; 1.75 ; Crystal structure of human alpha-defensin 1 (R24A mutant) 3LO6 ; 1.56 ; Crystal structure of human alpha-defensin 1 (W26Aba mutant) 3LO9 ; 1.56 ; Crystal structure of human alpha-defensin 1 (W26Ahp mutant) 3LO1 ; 1.6 ; Crystal structure of human alpha-defensin 1 (Y16A mutant) 3LO2 ; 1.56 ; Crystal structure of human alpha-defensin 1 (Y21A mutant) 4DU0 ; 1.9 ; Crystal structure of human alpha-defensin 1, HNP1 (G17A mutant) 3I5W ; 1.63 ; Crystal structure of human alpha-defensin 5 (mutant R13H) 4RBX ; 1.1 ; Crystal structure of human alpha-defensin 5, HD5 (Glu21Arg mutant) 4E86 ; 2.75 ; Crystal structure of human alpha-defensin 5, HD5 (Leu29Aba mutant) 4E83 ; 1.9 ; Crystal structure of human alpha-defensin 5, HD5 (Leu29NLe mutant) 4RBW ; 1.5 ; Crystal structure of human alpha-defensin 5, HD5 (Thr7Arg Glu21Arg mutant) 3QTE ; 1.949 ; Crystal structure of human alpha-defensin 6 (H27W mutant) 1ZMK ; 1.3 ; Crystal structure of human alpha-defensin-2 (variant Gly16-> D-ALA), P 42 21 2 space group 1ZMM ; 1.6 ; Crystal structure of human alpha-defensin-4 1ZMQ ; 2.1 ; Crystal structure of human alpha-defensin-6 5LLK ; 1.8 ; Crystal structure of human alpha-dystroglycan 4NXS ; 2.5493 ; Crystal structure of human alpha-galactosidase A in complex with 1-deoxygalactonojirimycin-pFPhT 6IBT ; 2.04 ; Crystal structure of human alpha-galactosidase A in complex with alpha-galactose configured cyclophellitol aziridine ME737 6IBR ; 2.02 ; Crystal structure of human alpha-galactosidase A in complex with alpha-galactose configured cyclophellitol epoxide LWA481 6IBK ; 1.99 ; Crystal structure of human alpha-galactosidase A in complex with alpha-galactose configured cyclosulfamidate ME763 6IBM ; 2.07 ; Crystal structure of human alpha-galactosidase A in complex with alpha-galactose configured cyclosulfate ME776 3OVU ; 2.83 ; Crystal Structure of Human Alpha-Haemoglobin Complexed with AHSP and the First NEAT Domain of IsdH from Staphylococcus aureus 4KH2 ; 2.36 ; Crystal structure of human alpha-L-iduronidase complex with 2-deoxy-2-fluoro-alpha-L-idopyranosyluronic acid fluoride 4KGJ ; 2.99 ; Crystal structure of human alpha-L-iduronidase complex with 5-fluoro-alpha-L-idopyranosyluronic acid fluoride 4OBR ; 2.46 ; Crystal structure of human alpha-L-iduronidase complex with alpha-L-iduronic acid 4KGL ; 2.701 ; Crystal structure of human alpha-L-iduronidase complex with [2R,3R,4R,5S]-2-carboxy-3,4,5-trihydroxy-piperidine 4OBS ; 2.26 ; Crystal structure of human alpha-L-iduronidase in the P212121 form 3H53 ; 2.01 ; Crystal Structure of human alpha-N-acetylgalactosaminidase 3H55 ; 1.91 ; Crystal Structure of human alpha-N-acetylgalactosaminidase, Complex with Galactose 3IGU ; 2.15 ; Crystal structure of human alpha-N-acetylgalactosaminidase, covalent intermediate 3H54 ; 2.2 ; Crystal Structure of human alpha-N-acetylgalactosaminidase,complex with GalNAc 3Q25 ; 1.9 ; Crystal structure of human alpha-synuclein (1-19) fused to maltose binding protein (MBP) 1G37 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN COMPLEXED WITH BCH-10556 AND EXOSITE-DIRECTED PEPTIDE 1AHT ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN COMPLEXED WITH HIRUGEN AND P-AMIDINOPHENYLPYRUVATE AT 1.6 ANGSTROMS RESOLUTION 2H9T ; 2.4 ; Crystal structure of human alpha-thrombin in complex with suramin 7KME ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN INHIBITED WITH SEL2711. 8KME ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN INHIBITED WITH SEL2770. 1DOJ ; 1.7 ; Crystal structure of human alpha-thrombin*RWJ-51438 complex at 1.7 A 1R5L ; 1.5 ; Crystal Structure of Human Alpha-Tocopherol Transfer Protein Bound to its Ligand 6U3V ; 2.96 ; Crystal structure of human alpha/epsilon-COP of the COPI vesicular coat bound to alpha-COP STM1 6TZT ; 3.065 ; Crystal structure of human alpha/epsilon-COP of the COPI vesicular coat bound to alpha-COP STM2 3KQ0 ; 1.8 ; Crystal structure of human alpha1-acid glycoprotein 6KUW ; 2.8 ; Crystal structure of human alpha2C adrenergic G protein-coupled receptor. 1ZMI ; 1.15 ; Crystal structure of human alpha_defensin-2 (variant GLY16->D-ALA), P 32 2 1 space group ) 3U2M ; 2.0 ; Crystal structure of human ALR mutant C142/145S 3U2L ; 1.95 ; Crystal structure of human ALR mutant C142S. 7NUU ; 1.836 ; Crystal structure of human AMDHD2 in complex with Zn 7NUT ; 1.898 ; Crystal structure of human AMDHD2 in complex with Zn and GlcN6P 8DDA ; 2.4 ; Crystal structure of human aminoadipate semialdehyde synthase (AASS), lysine ketoglutarate reductase (LKR) domain 5L76 ; 2.57 ; Crystal structure of human aminoadipate semialdehyde synthase, saccharopine dehydrogenase domain (in apo form) 5L78 ; 2.68 ; Crystal structure of human aminoadipate semialdehyde synthase, saccharopine dehydrogenase domain (in NAD+ bound form) 5O1N ; 2.28 ; Crystal structure of human aminoadipate semialdehyde synthase, saccharopine dehydrogenase domain with N-[(2S)-2-Pyrrolidinylmethyl]-trifluoromethanesulfonamide bound 5O1O ; 2.48 ; Crystal structure of human aminoadipate semialdehyde synthase, saccharopine dehydrogenase domain with proline bound. 5O1P ; 1.9 ; Crystal structure of human aminoadipate semialdehyde synthase, saccharopine dehydrogenase. 4KX7 ; 2.15 ; Crystal structure of human aminopeptidase A 4KX8 ; 2.4 ; Crystal structure of human aminopeptidase A complexed with amastatin 4KX9 ; 2.25 ; Crystal structure of human aminopeptidase A complexed with arginine 4KXA ; 2.4 ; Crystal structure of human aminopeptidase A complexed with aspartate and calcium 4KXB ; 2.4 ; Crystal structure of human aminopeptidase A complexed with bestatin 4KXC ; 2.4 ; Crystal structure of human aminopeptidase A complexed with glutamate 4KXD ; 2.15 ; Crystal structure of human aminopeptidase A complexed with glutamate and calcium 4RED ; 2.95 ; Crystal structure of human AMPK alpha1 KD-AID with K43A mutation 2ZNV ; 1.6 ; Crystal structure of human AMSH-LP DUB domain in complex with Lys63-linked ubiquitin dimer 4JOA ; 2.7 ; Crystal Structure of Human Anaplastic Lymphoma Kinase in complex with 7-azaindole based inhibitor 4DCE ; 2.03 ; Crystal structure of human anaplastic lymphoma kinase in complex with a piperidine-carboxamide inhibitor 4FOB ; 1.9 ; Crystal structure of human anaplastic lymphoma kinase in complex with acyliminobenzimidazole inhibitor 1 4FOC ; 1.7 ; Crystal structure of human anaplastic lymphoma kinase in complex with acyliminobenzimidazole inhibitor 2 4FOD ; 2.0 ; Crystal structure of human anaplastic lymphoma kinase in complex with acyliminobenzimidazole inhibitor 36 4FNZ ; 2.6 ; Crystal structure of human anaplastic lymphoma kinase in complex with piperidine-carboxamide inhibitor 2 5OGS ; 2.503 ; Crystal structure of human AND-1 SepB domain 2AMA ; 1.9 ; Crystal structure of human androgen receptor ligand binding domain in complex with dihydrotestosterone 2AM9 ; 1.64 ; Crystal structure of human androgen receptor ligand binding domain in complex with testosterone 2AMB ; 1.75 ; Crystal structure of human androgen receptor ligand binding domain in complex with tetrahydrogestrinone 2PNU ; 1.65 ; Crystal structure of human androgen receptor ligand-binding domain in complex with EM-5744 1ZQ5 ; 1.3 ; Crystal structure of human androgenic 17beta-hydroxysteroid dehydrogenase type 5 in complexed with a potent inhibitor EM1404 1B1I ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN 8AF0 ; 2.43 ; Crystal structure of human angiogenin and RNA duplex 5EOP ; 1.35 ; Crystal structure of human Angiogenin at 1.35 Angstroms resolution 1K5A ; 2.33 ; Crystal structure of human angiogenin double variant I119A/F120A 1H0D ; 2.0 ; Crystal structure of Human Angiogenin in complex with Fab fragment of its monoclonal antibody mAb 26-2F 2ANG ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN OF THE MET(-1) FORM 1ANG ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN REVEALS THE STRUCTURAL BASIS FOR ITS FUNCTIONAL DIVERGENCE FROM RIBONUCLEASE 1K58 ; 2.7 ; Crystal Structure of Human Angiogenin Variant D116H 1K5B ; 1.8 ; Crystal Structure of Human Angiogenin Variant des(121-123) 1B1J ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN VARIANT H13A. 1B1E ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN VARIANT K40Q 1K59 ; 1.8 ; Crystal Structure of Human Angiogenin Variant Q117G 1UN3 ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN VARIANT T44D 1UN4 ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN ANGIOGENIN VARIANT T80A 4B36 ; 1.76 ; Crystal Structure of Human Angiogenin with an Engineered Loop Exhibits Conformational Flexibility at the Functional Regions of the Molecule 1O8A ; 2.0 ; Crystal Structure of Human Angiotensin Converting Enzyme (Native). 1O86 ; 2.0 ; Crystal Structure of Human Angiotensin Converting Enzyme in complex with lisinopril. 5M3X ; 2.63 ; Crystal structure of human angiotensin I-deleted angiotensinogen 4ZUD ; 2.8 ; Crystal Structure of Human Angiotensin Receptor in Complex with Inverse Agonist Olmesartan at 2.8A resolution. 6H5W ; 1.37 ; Crystal structure of human Angiotensin-1 converting enzyme C-domain in complex with Omapatrilat. 6QS1 ; 1.8 ; Crystal structure of human Angiotensin-1 converting enzyme N-domain in complex with BPPb 6H5X ; 1.8 ; Crystal structure of human Angiotensin-1 converting enzyme N-domain in complex with Omapatrilat. 6F9R ; 1.85 ; Crystal structure of human Angiotensin-1 converting enzyme N-domain in complex with Sampatrilat-Asp. 6F9V ; 1.69 ; Crystal structure of human Angiotensin-1 converting enzyme N-domain in complex with Sampatrilat. 2WXW ; 3.3 ; Crystal structure of human angiotensinogen 2X0B ; 4.33 ; Crystal structure of human angiotensinogen complexed with renin 4O6X ; 2.103 ; Crystal structure of human Ankyrin G death domain 7ZVN ; 1.87 ; Crystal structure of human Annexin A2 in complex with full phosphorothioate 5-10 2'-methoxyethyl DNA gapmer antisense oligonucleotide solved at 1.87 A resolution 7ZVX ; 2.4 ; Crystal structure of human Annexin A2 in complex with full phosphorothioate 5-10 2'-methoxyethyl DNA gapmer antisense oligonucleotide solved at 2.4 A resolution 1AIN ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN ANNEXIN I AT 2.5 ANGSTROMS RESOLUTION 2D7T ; 1.7 ; Crystal structure of human anti polyhydroxybutyrate antibody Fv 6P9J ; 2.2 ; crystal structure of human anti staphylococcus aureus antibody STAU-229 Fab 6P9H ; 3.003 ; Crystal structure of human anti staphylococcus aureus antibody STAU-281 Fab in complex with IsdB NEAT2 domain 6P9I ; 2.4 ; crystal structure of human anti staphylococcus aureus antibody STAU-399 Fab 5AWN ; 1.887 ; Crystal structure of Human anti-HIV-1 broadly neutralizing antibody 3BC176 Fab 5CCK ; 1.95 ; Crystal structure of Human anti-HIV-1 broadly neutralizing antibody 3BC315 Fab 8GPK ; 3.34 ; Crystal structure of human anti-HIV-1 broadly neutralizing antibody F6 Fab 1RZG ; 2.0 ; Crystal structure of Human anti-HIV-1 GP120 reactive antibody 412d 1RZ8 ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN ANTI-HIV-1 GP120-REACTIVE ANTIBODY 17B 1RZI ; 2.9 ; Crystal structure of human anti-HIV-1 gp120-reactive antibody 47e fab 1RZ7 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN ANTI-HIV-1 GP120-REACTIVE ANTIBODY 48D 1RZF ; 1.7 ; Crystal structure of Human anti-HIV-1 GP120-reactive antibody E51 3QHZ ; 1.55 ; Crystal Structure of human anti-influenza Fab 2D1 8EQA ; 2.55 ; Crystal structure of human anti-N1 neuraminidase 2H08 Fab 8EQC ; 2.2 ; Crystal structure of human anti-N1 neuraminidase 3H03 Fab 3KDM ; 1.5 ; Crystal Structure of Human Anti-steroid Fab 5F2 in Complex with Testosterone 5ZIA ; 2.603 ; Crystal structure of human anti-tau antibody CBTAU-24.1 in complex with its phosphorylated tau peptide 6DCV ; 1.9 ; Crystal structure of human anti-tau antibody CBTAU-27.1 6DCW ; 2.0 ; Crystal structure of human anti-tau antibody CBTAU-27.1 Fab in complex with a human tau peptide 5ZV3 ; 2.093 ; Crystal structure of human anti-tau antibody CBTAU-28.1 in complex with its tau peptide 3U53 ; 2.705 ; Crystal structure of human Ap4A hydrolase 4ICK ; 2.1 ; Crystal structure of human AP4A hydrolase E58A mutant 4IJX ; 2.1 ; Crystal structure of human Ap4A hydrolase E58A mutant complexed with DPO 1DEW ; 2.65 ; CRYSTAL STRUCTURE OF HUMAN APE1 BOUND TO ABASIC DNA 1D3P ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN APLHA-THROMBIN IN COMPLEX WITH BENZO[B]THIOPHENE INHIBITOR 3 2RCQ ; 1.2 ; Crystal structure of human apo Cellular Retinol Binding Protein II (CRBP-II) 5LJK ; 1.7 ; Crystal structure of human apo CRBP1 5LJH ; 1.52 ; Crystal structure of human apo CRBP1/K40L mutant 3ECU ; 1.9 ; Crystal structure of human apo Cu,Zn Superoxide Dismutase (SOD1) 3RE0 ; 2.28 ; Crystal structure of human apo Cu,Zn superoxide dismutase (SOD1) complexed with cisplatin 1PFQ ; 1.9 ; crystal structure of human apo dipeptidyl peptidase IV / CD26 1TK3 ; 2.0 ; Crystal Structure Of Human Apo Dipeptidyl Peptidase IV/CD26 6JVF ; 1.73 ; Crystal structure of human apo MTH1 2HXY ; 3.3 ; Crystal structure of human apo-eIF4AIII 6BD4 ; 2.4 ; Crystal structure of human apo-Frizzled4 receptor 4KWV ; 2.797 ; Crystal Structure of human apo-QPRT 4XXO ; 2.843 ; Crystal Structure of Human APOBEC3A 5SWW ; 3.151 ; Crystal Structure of Human APOBEC3A complexed with ssDNA 5TKM ; 1.9 ; Crystal structure of human APOBEC3B N-terminal Domain 5TD5 ; 1.718 ; Crystal Structure of Human APOBEC3B variant complexed with ssDNA 6B0B ; 3.28006 ; Crystal structure of human APOBEC3H 6BBO ; 3.428 ; Crystal structure of human APOBEC3H/RNA complex 1AV1 ; 4.0 ; CRYSTAL STRUCTURE OF HUMAN APOLIPOPROTEIN A-I 2HZR ; 1.8 ; Crystal structure of human apolipoprotein D (ApoD) 2HZQ ; 1.8 ; Crystal structure of human apolipoprotein D (ApoD) in complex with progesterone 2WEX ; 2.0 ; Crystal structure of human apoM in complex with glycerol 1- myristic acid 2WEW ; 1.95 ; Crystal structure of human apoM in complex with myristic acid 3VW6 ; 2.4 ; Crystal structure of human apoptosis signal-regulating kinase 1 (ASK1) with imidazopyridine inhibitor 8D3J ; 2.4 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) complexed with 6-fluoro-2-methylquinolin-4-amine 8D3N ; 2.25 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) complexed with 7-chloroquinolin-4-amine 8D3K ; 2.3 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) complexed with 8-fluoro-2-methylquinolin-4-amine 8D3O ; 2.25 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) complexed with 8-methoxyquinolin-4-amine 8D3G ; 2.58 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) W196A mutant complexed with 6-chloroquinolin-4-amine 8D3E ; 2.38 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) W196A mutant complexed with 6-fluoroquinolin-4-amine 8D3H ; 2.51 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) W196A mutant complexed with 7-chloroquinolin-4-amine 8D3I ; 2.65 ; Crystal structure of human Apoptosis-Inducing Factor (AIF) W196A mutant complexed with quinolin-4-amine 5KVH ; 2.273 ; Crystal structure of human apoptosis-inducing factor with W196A mutation 5C5B ; 2.9 ; Crystal Structure of Human APPL BAR-PH Heterodimer 4H8S ; 3.5 ; Crystal structure of human APPL2BARPH domain 6FCI ; 1.94 ; Crystal Structure of Human APRT wild type in complex with Adenine, PRPP and Mg2+ 6FCL ; 1.5 ; Crystal Structure of Human APRT wild type in complex with AMP 6HGS ; 1.55 ; Crystal Structure of Human APRT wild type in complex with GMP 6HGQ ; 1.9 ; Crystal Structure of Human APRT wild type in complex with Hypoxanthine, PRPP and Mg2+ 6HGR ; 1.52 ; Crystal Structure of Human APRT wild type in complex with IMP 6HGP ; 1.7 ; Crystal Structure of Human APRT wild type in complex with Phosphate ion. 6FCH ; 1.45 ; Crystal Structure of Human APRT wild type in complex with PRPP and Mg2+ 6FD5 ; 1.55 ; Crystal Structure of Human APRT-Tyr105Phe variant in complex with Adenine, PRPP and Mg2+, 14 days post crystallization (with AMP and PPi products partially generated) 6FD4 ; 1.5 ; Crystal Structure of Human APRT-Tyr105Phe variant in complex with Adenine, PRPP and Mg2+, 14 hours post crystallization 6FD6 ; 1.8 ; Crystal Structure of Human APRT-Tyr105Phe variant in complex with Adenine, PRPP and Mg2+, 30 days post crystallization (with AMP and PPi products fully generated) 3U8U ; 2.15 ; Crystal structure of Human Apurinic/Apyridinimic Endonuclease, Ape1 in a new crystal form 4LND ; 1.92 ; Crystal structure of human apurinic/apyrimidinic endonuclease 1 with essential Mg2+ cofactor 6F7H ; 2.304 ; Crystal structure of human AQP10 8GHJ ; 3.9 ; Crystal structure of human AQP2 T125M mutant 8OEE ; 3.15 ; Crystal structure of human AQP2 T126M mutant 3GD8 ; 1.8 ; Crystal Structure of Human Aquaporin 4 at 1.8 and its Mechanism of Conductance 6QZI ; 1.9 ; Crystal structure of human Aquaporin 7 at 1.9 A resolution 6QZJ ; 2.2 ; Crystal structure of human Aquaporin 7 at 2.2 A resolution 6KXW ; 3.7 ; Crystal structure of human aquaporin AQP7 in bound to glycerol 4QXI ; 0.867 ; Crystal structure of human AR complexed with NADP+ and AK198 4LB4 ; 0.8 ; Crystal structure of human AR complexed with NADP+ and {2-[(4-bromo-2,3,5,6-tetrafluorobenzyl)carbamoyl]-5-chlorophenoxy}acetic acid 4LBS ; 0.76 ; Crystal structure of human AR complexed with NADP+ and {2-[(4-bromo-2,6-difluorobenzyl)carbamoyl]-5-chlorophenoxy}acetic acid 4LAU ; 0.843 ; Crystal structure of human AR complexed with NADP+ and {2-[(4-bromobenzyl)carbamoyl]-5-chlorophenoxy}acetic acid 4LBR ; 0.8 ; Crystal structure of human AR complexed with NADP+ and {5-chloro-2-[(2,6-difluoro-4-iodobenzyl)carbamoyl]phenoxy}acetic acid 4LB3 ; 0.8 ; Crystal structure of human AR complexed with NADP+ and {5-chloro-2-[(2-fluoro-4-iodobenzyl)carbamoyl]phenoxy}acetic acid 4LAZ ; 0.85 ; Crystal structure of human AR complexed with NADP+ and {5-chloro-2-[(4-iodobenzyl)carbamoyl]phenoxy}acetic acid 7R23 ; 2.77 ; Crystal structure of human Arc CTD in complex with two anti-Arc nanobodies 5YZ1 ; 1.97 ; Crystal structure of human Archease 5YZL ; 3.4 ; Crystal structure of human Archease D178A 5YZJ ; 2.79 ; Crystal structure of human Archease mutant D51A 2AEB ; 1.29 ; Crystal structure of human arginase I at 1.29 A resolution and exploration of inhibition in immune response. 2PHO ; 1.95 ; Crystal structure of human arginase I complexed with thiosemicarbazide at 1.95 resolution 1WVA ; 1.94 ; Crystal structure of human arginase I from twinned crystal 3MFV ; 1.9 ; Crystal structure of human arginase I in complex with 2-aminohomohistidine 3MJL ; 1.9 ; Crystal structure of human arginase I in complex with 2-aminoimidazole. Resolution 1.90 A. 3GN0 ; 1.7 ; Crystal structure of human arginase I in complex with difluoromethylornithine (DFMO) 3LP7 ; 2.04 ; Crystal structure of Human Arginase I in complex with inhibitor N(omega)-hydroxy-L-arginine (NOHA), 2.04A Resolution 3MFW ; 1.47 ; Crystal structure of human arginase I in complex with L-2-aminohistidine and sulphate 3LP4 ; 1.9 ; Crystal structure of human arginase I in complex with L-LYSINE, 1.90A Resolution. 3SKK ; 1.701 ; Crystal structure of human arginase I in complex with the inhibitor FABH, Resolution 1.70 A, twinned structure 3SJT ; 1.597 ; Crystal structure of human arginase I in complex with the inhibitor Me-ABH, Resolution 1.60 A, twinned structure 1WVB ; 2.3 ; Crystal structure of human arginase I: the mutant E256Q 6Q92 ; 1.5 ; Crystal structure of human Arginase-1 at pH 7.0 in complex with ABH 6Q9P ; 1.66 ; Crystal structure of human Arginase-1 at pH 9.0 in complex with ABH 6QAF ; 1.61 ; Crystal structure of human Arginase-1 at pH 9.0 in complex with CB-1158/INCB001158 4HXQ ; 1.45 ; Crystal structure of human Arginase-1 complexed with inhibitor 14 4IE1 ; 2.0006 ; Crystal structure of human Arginase-1 complexed with inhibitor 1h 4HWW ; 1.298 ; Crystal structure of human Arginase-1 complexed with inhibitor 9 4IE3 ; 2.3522 ; Crystal structure of human Arginase-2 complexed with inhbitor 1o 4IXU ; 1.9 ; Crystal structure of human Arginase-2 complexed with inhibitor 11d: {(5R)-5-amino-5-carboxy-5-[(3-endo)-8-(3,4-dichlorobenzyl)-8-azabicyclo[3.2.1]oct-3-yl]pentyl}(trihydroxy)borate(1-) 4I06 ; 1.8 ; Crystal structure of human Arginase-2 complexed with inhibitor 14 4IE2 ; 2.2082 ; Crystal structure of human Arginase-2 complexed with inhibitor 1h 4IXV ; 2.3 ; Crystal structure of human Arginase-2 complexed with inhibitor 2d: {(5R)-5-amino-5-carboxy-5-[1-(4-chlorobenzyl)piperidin-4-yl]pentyl}(trihydroxy)borate(1-) 4HZE ; 1.602 ; Crystal structure of human Arginase-2 complexed with inhibitor 9 2NZ2 ; 2.4 ; Crystal structure of human argininosuccinate synthase in complex with aspartate and citrulline 4OLA ; 2.3 ; Crystal Structure of Human Argonaute2 6CBD ; 2.203 ; Crystal Structure of Human Argonaute2 Bound to Three Tryptophans 4OLB ; 2.899 ; Crystal Structure of Human Argonaute2 Bound to Tryptophan 4R3Z ; 4.033 ; Crystal structure of human ArgRS-GlnRS-AIMP1 complex 7L9F ; 1.75 ; Crystal structure of human ARH3 bound to calcium and ADP-ribose 7L9I ; 1.8 ; Crystal structure of human ARH3-D314A bound to magnesium and ADP-ribose 7L9H ; 1.85 ; Crystal structure of human ARH3-D77A bound to magnesium and ADP-ribose 1ZJ6 ; 2.0 ; Crystal structure of human ARL5 3RBF ; 2.9 ; Crystal structure of Human aromatic L-amino acid decarboxylase (AADC) in the apo form 3RBL ; 3.24 ; Crystal structure of Human aromatic L-amino acid decarboxylase (AADC) in the apo form 3RCH ; 2.8 ; Crystal structure of Human aromatic L-amino acid decarboxylase (AADC) in the open conformation with LLP and PLP bound to Chain-A and Chain-B respectively 6F7P ; 3.7 ; Crystal structure of Human ARS2 residues 147-270 + 408-763 6F7S ; 3.37 ; Crystal structure of Human ARS2 residues 147-270 + 408-763 with deletion of loop B 6F7J ; 3.22 ; Crystal structure of Human ARS2 residues 171-270 + 408-763 6F8D ; 3.48 ; Crystal structure of Human ARS2 residues 171-270 + 408-763 (P65 form) 2GYR ; 2.6 ; Crystal structure of human artemin 2GYZ ; 1.76 ; Crystal structure of human artemin 4UUC ; 1.8 ; Crystal structure of human ASB11 ankyrin repeat domain 6KI0 ; 2.0 ; Crystal Structure of Human ASC-CARD 6INE ; 2.6 ; Crystal Structure of human ASH1L-MRG15 complex 6E2H ; 2.236 ; Crystal structure of human Ash2L (SPRY domain and SDI motif) in complex with full length DPY-30 3TKJ ; 2.3 ; Crystal Structure of Human Asparaginase-like Protein 1 Thr168Ala 5APA ; 2.05 ; Crystal structure of human aspartate beta-hydroxylase isoform a 4DYO ; 2.2 ; Crystal Structure of Human Aspartyl Aminopeptidase (DNPEP) in complex with Aspartic acid Hydroxamate 5IBV ; 2.15 ; Crystal Structure of Human Astrovirus capsid protein 5A5N ; 1.95 ; Crystal structure of human ATAD2 bromodomain in complex with (2S)-2,6- diacetamido-N-methylhexanamide 5A5O ; 2.04 ; Crystal structure of human ATAD2 bromodomain in complex with 3-methyl- 1,2-dihydroquinolin-2-one 5A5Q ; 1.97 ; Crystal structure of human ATAD2 bromodomain in complex with 3-methyl- 8-piperidin-4-ylamino-1,2-dihydro-1,7-naphthyridin-2-one hydrochloride 6HDN ; 1.9 ; Crystal structure of human ATAD2 bromodomain in complex with 3-methyl-8-((8-methyl-8-azabicyclooctan-3-yl)amino)-1,7-naphthyridin-2(1H)-one 5A83 ; 2.09 ; Crystal structure of human ATAD2 bromodomain in complex with 4-((3R, 4R)-4-3-methyl-5-(5-methylpyridin-3-yl)-2-oxo-1,2-dihydroquinolin-8- yl-aminopiperidin-3-yloxymethyl)-1-thiane-1,1-dione 5A82 ; 1.86 ; Crystal structure of human ATAD2 bromodomain in complex with 4-(3R,4R) -4-(3-methyl-2-oxo-1,2-dihydro-1,7-naphthyridin-8-yl)aminopiperidin-3- yloxymethyl)-1-thiane-1,1-dione 5A5R ; 2.01 ; Crystal structure of human ATAD2 bromodomain in complex with 5-5- methoxypyridin-3-yl-3-methyl-8-piperidin-4-ylamino-1,2-dihydro-1,7- naphthyridin-2-one 6HDO ; 2.61 ; Crystal structure of human ATAD2 bromodomain in complex with 8-(((1R,2R,3R,5S)-2-(2-(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)ethyl)-8-azabicyclo[3.2.1]octan-3-yl)amino)-3-methyl-5-(5-methylpyridin-3-yl)quinolin-2(1H)-one 5LJ0 ; 1.82 ; Crystal structure of human ATAD2 bromodomain in complex with 8-(((3R,4R,5S)-3-((4,4-difluorocyclohexyl)methoxy)-5-methoxypiperidin-4-yl)amino)-3-methyl-5-(5-methylpyridin-3-yl)-1,7-naphthyridin-2(1H)-one 5A81 ; 2.03 ; Crystal structure of human ATAD2 bromodomain in complex with 8-(3R,4R) -3-(cyclohexylmethoxy)piperidin-4-yl-amino-3-methyl-1,2-dihydro-1,7- naphthyridin-2-one 5A5P ; 2.03 ; Crystal structure of human ATAD2 bromodomain in complex with 8-2-(dimethylamino)ethylamino-3-methyl-1,2-dihydroquinolin-2-one 6S55 ; 2.09 ; Crystal structure of human ATAD2 bromodomain in complex with N-(4-bromo-3-((3-methylpiperidin-1-yl)sulfonyl)phenyl)-2-(2,5-dioxoimidazolidin-1-yl)acetamide 6YB4 ; 1.85 ; Crystal structure of human ATAD2 bromodomain in complex with N-(4-bromo-3-(3-methylpyrrolidin-1-yl)sulfonyl)phenyl)-2-(-4-cyclopropyl-4-methyl-2,5-dioxoimidazolidin-1-yl)acetamide 6S56 ; 2.01 ; Crystal structure of human ATAD2 bromodomain in complex with N-(4-chloro-3-(N,N-dimethylsulfamoyl)phenyl)-2-(2,5-dioxo-3',4'-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalen]-1-yl)acetamide 6S57 ; 1.82 ; Crystal structure of human ATAD2 bromodomain in complex withN-(3-(azepan-1-ylsulfonyl)-4-methylphenyl)-2-(4,4-dimethyl-2,5-dioxoimidazolidin-1-yl)acetamide 4GDK ; 2.7 ; Crystal Structure of Human Atg12~Atg5 Conjugate in Complex with an N-terminal Fragment of Atg16L1 4GDL ; 2.875 ; Crystal Structure of Human Atg12~Atg5 Conjugate in Complex with an N-terminal Fragment of Atg16L1 4NAW ; 2.195 ; Crystal Structure of Human ATG12~ATG5-ATG16N in complex with a fragment of ATG3 7W36 ; 3.0 ; Crystal structure of human Atg5 complexed with a stapled peptide 4TQ0 ; 2.697 ; Crystal structure of human ATG5-ATG16N69 4TQ1 ; 1.802 ; Crystal structure of human ATG5-TECAIR 1P4R ; 2.55 ; Crystal Structure of Human ATIC in complex with folate-based inhibitor BW1540U88UD 1PL0 ; 2.6 ; Crystal structure of human ATIC in complex with folate-based inhibitor, BW2315U89UC 1PKX ; 1.9 ; Crystal Structure of human ATIC in complex with XMP 3Q5D ; 2.699 ; crystal structure of human Atlastin-1 (residues 1-447) bound to GDP, crystal form 1 3Q5E ; 3.013 ; crystal structure of human Atlastin-1 (residues 1-447) bound to GDP, crystal form 2 6A71 ; 1.6 ; Crystal Structure of Human ATP7B and TM Complex 3MBG ; 1.85 ; Crystal Structure of Human Augmenter of Liver Regeneration (ALR) 2ZQQ ; 2.2 ; Crystal structure of human AUH (3-methylglutaconyl-coa hydratase) mixed with (AUUU)24A RNA 1HZD ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN AUH PROTEIN, AN RNA-BINDING HOMOLOGUE OF ENOYL-COA HYDRATASE 1JIQ ; 1.9 ; Crystal Structure of Human Autocrine Motility Factor 1IRI ; 2.4 ; Crystal structure of human autocrine motility factor complexed with an inhibitor 3SDX ; 3.12 ; Crystal structure of human autoreactive-Valpha24 NKT TCR in complex with CD1d-beta-galactosylceramide 1YFK ; 2.7 ; Crystal structure of human B type phosphoglycerate mutase 1YJX ; 2.8 ; Crystal structure of human B type phosphoglycerate mutase 4GPI ; 2.0817 ; Crystal structure of human B type phosphoglycerate mutase 4GPZ ; 1.65 ; Crystal structure of human B type phosphoglycerate mutase H11 phosphorylated form 3E9V ; 1.7 ; Crystal structure of human B-cell Translocation Gene 2 (BTG2) 1XWW ; 1.63 ; Crystal Structure of Human B-form Low Molecular Weight Phosphotyrosyl Phosphatase at 1.6 Angstrom Resolution 4KSQ ; 3.3 ; Crystal Structure of Human B-raf bound to a DFG-out Inhibitor 5B 4KSP ; 2.93 ; Crystal Structure of Human B-raf bound to a DFG-out Inhibitor TAK-632 3PRF ; 2.9 ; Crystal Structure of Human B-Raf Kinase Domain in Complex with a Non-Oxime Furopyridine Inhibitor 3PRI ; 3.5 ; Crystal Structure of Human B-Raf Kinase in Complex with a Non-Oxime Furopyridine Inhibitor 4GOS ; 1.59 ; Crystal structure of human B7-H4 IgV-like domain 4WY1 ; 1.98 ; Crystal structure of human BACE-1 bound to Compound 24B 4WY6 ; 2.1 ; Crystal structure of human BACE-1 bound to Compound 36 4X2L ; 2.55 ; Crystal structure of human BACE-1 bound to Compound 6 2NTR ; 1.8 ; Crystal structure of Human Bace-1 bound to inhibitor 6FGY ; 1.54 ; Crystal Structure of Human BACE-1 in Complex with amino-1,4-oxazine compound 4 6EQM ; 1.35 ; Crystal Structure of Human BACE-1 in Complex with CNP520 7B1P ; 1.77 ; Crystal Structure of Human BACE-1 in Complex with Compound 38a (NB-854) 7B1Q ; 1.94 ; Crystal Structure of Human BACE-1 in Complex with Compound NB-360 (compound 54) 2EWY ; 3.1 ; Crystal structure of human BACE2 in complex with a hydroxyethylenamine transition-state inhibitor 7CYU ; 2.55 ; Crystal structure of human BAF57 HMG domain 6FXN ; 2.9 ; Crystal structure of human BAFF in complex with Fab fragment of anti-BAFF antibody belimumab 7M5B ; 1.85 ; Crystal Structure of human BAK in complex with M3W5_BID 8GSV ; 2.2 ; Crystal structure of human BAK in complex with the Pxt1 BH3 domain 7M5A ; 1.5 ; Crystal Structure of human BAK in complex with W3W5_BID 7M5C ; 3.06 ; Crystal Structure of human BAK in complex with WT BAK BH3 peptide 7MWI ; 1.8 ; Crystal structure of human BAZ2A 4QBM ; 1.65 ; Crystal structure of human BAZ2A bromodomain in complex with a diacetylated histone 4 peptide (H4K16acK20ac) 6FAP ; 2.7 ; Crystal structure of human BAZ2A PHD zinc finger in complex with Fr23 5T8R ; 2.4 ; Crystal structure of human BAZ2A PHD zinc finger in complex with unmodified H3 10-mer 4Q6F ; 1.91 ; Crystal structure of human BAZ2A PHD zinc finger in complex with unmodified H3K4 histone peptide 4QF2 ; 1.7 ; Crystal structure of human BAZ2A PHD zinc finger in the free form 4QC3 ; 1.6 ; Crystal structure of human BAZ2B bromodomain in complex with a diacetylated histone 4 peptide (H4K8acK12ac) 4QC1 ; 1.99 ; Crystal structure of human BAZ2B bromodomain in complex with an acetylated histone 3 peptide (H3K14ac) 4CUP ; 1.88 ; Crystal structure of human BAZ2B in complex with fragment-1 N09421 4CUQ ; 2.11 ; Crystal structure of human BAZ2B in complex with fragment-2 N09594 4CUR ; 1.842 ; Crystal structure of human BAZ2B in complex with fragment-3 N09555 4CUS ; 1.783 ; Crystal structure of human BAZ2B in complex with fragment-4 N09496 4CUT ; 1.835 ; Crystal structure of human BAZ2B in complex with fragment-5 N09428 4CUU ; 1.801 ; Crystal structure of human BAZ2B in complex with fragment-6 N09645 6FHQ ; 1.95 ; Crystal structure of human BAZ2B PHD zinc finger in complex with Fr 21 6FI1 ; 2.7 ; Crystal structure of human BAZ2B PHD zinc finger in complex with Fr23 4QF3 ; 1.6 ; Crystal structure of human BAZ2B PHD zinc finger in the free form 7KYQ ; 3.06 ; Crystal structure of human BCCIP beta (Native1) 7KYS ; 2.2 ; Crystal structure of human BCCIP beta (Native2) 6L8U ; 2.925 ; Crystal structure of human BCDIN3D in complex with SAH 2YV6 ; 2.5 ; Crystal structure of human Bcl-2 family protein Bak 4IEH ; 2.1 ; Crystal Structure of human Bcl-2 in complex with a small molecule inhibitor targeting Bcl-2 BH3 domain interactions 6YLI ; 1.9 ; Crystal structure of human bcl-xL bound to trichoplax adhaerens trBak BH3 7ZWN ; 2.05 ; Crystal structure of human BCL6 BTB domain in complex with a WVIP peptide 6TOM ; 1.9 ; Crystal structure of human BCL6 BTB domain in complex with compound 1 7Q7R ; 1.7 ; Crystal structure of human BCL6 BTB domain in complex with compound 1 7ZWQ ; 1.65 ; Crystal structure of human BCL6 BTB domain in complex with compound 10 7ZWR ; 1.47 ; Crystal structure of human BCL6 BTB domain in complex with compound 11 6TOO ; 1.53 ; Crystal structure of human BCL6 BTB domain in complex with compound 11a 6TOI ; 1.58 ; Crystal structure of human BCL6 BTB domain in complex with compound 11f 7Q7V ; 1.81 ; Crystal structure of human BCL6 BTB domain in complex with compound 12a 7QK0 ; 1.96 ; Crystal structure of human BCL6 BTB domain in complex with compound 12a 7OKI ; 1.61 ; Crystal structure of human BCL6 BTB domain in complex with compound 12b 7OKJ ; 1.43 ; Crystal structure of human BCL6 BTB domain in complex with compound 12c and its enantiomer 12b 7OKK ; 2.05 ; Crystal structure of human BCL6 BTB domain in complex with compound 12e 7ZWS ; 1.53 ; Crystal structure of human BCL6 BTB domain in complex with compound 13 7OKL ; 1.2 ; Crystal structure of human BCL6 BTB domain in complex with compound 13e 7OKM ; 1.48 ; Crystal structure of human BCL6 BTB domain in complex with compound 13g 7ZWT ; 1.94 ; Crystal structure of human BCL6 BTB domain in complex with compound 14 7ZWU ; 1.56 ; Crystal structure of human BCL6 BTB domain in complex with compound 15 7ZWV ; 1.52 ; Crystal structure of human BCL6 BTB domain in complex with compound 17 6TOJ ; 1.85 ; Crystal structure of human BCL6 BTB domain in complex with compound 17a 7ZWW ; 1.67 ; Crystal structure of human BCL6 BTB domain in complex with compound 18 7ZWX ; 1.38 ; Crystal structure of human BCL6 BTB domain in complex with compound 19 7OKE ; 1.48 ; Crystal structure of human BCL6 BTB domain in complex with compound 2 7ZWO ; 1.39 ; Crystal structure of human BCL6 BTB domain in complex with compound 2 7ZWY ; 1.65 ; Crystal structure of human BCL6 BTB domain in complex with compound 21 7ZWZ ; 1.4 ; Crystal structure of human BCL6 BTB domain in complex with compound 22 6TOK ; 1.43 ; Crystal structure of human BCL6 BTB domain in complex with compound 23d 7OKD ; 1.94 ; Crystal structure of human BCL6 BTB domain in complex with compound 25 6TOL ; 1.64 ; Crystal structure of human BCL6 BTB domain in complex with compound 25a 6TON ; 2.36 ; Crystal structure of human BCL6 BTB domain in complex with compound 25b 6TOF ; 1.67 ; Crystal structure of human BCL6 BTB domain in complex with compound 4 7Q7S ; 1.44 ; Crystal structure of human BCL6 BTB domain in complex with compound 4 6TOG ; 1.69 ; Crystal structure of human BCL6 BTB domain in complex with compound 5 6TOH ; 1.58 ; Crystal structure of human BCL6 BTB domain in complex with compound 6 7Q7T ; 1.46 ; Crystal structure of human BCL6 BTB domain in complex with compound 7 7ZWP ; 1.85 ; Crystal structure of human BCL6 BTB domain in complex with compound 7 7OKF ; 1.6 ; Crystal structure of human BCL6 BTB domain in complex with compound 8c 7OKG ; 1.32 ; Crystal structure of human BCL6 BTB domain in complex with compound 8e 7OKH ; 1.52 ; Crystal structure of human BCL6 BTB domain in complex with compound 8f 7Q7U ; 1.78 ; Crystal structure of human BCL6 BTB domain in complex with compound 9a 8C78 ; 1.8 ; Crystal structure of human BCL6 BTB domain in complex with compound CCT374705 6J7W ; 2.6 ; Crystal Structure of Human BCMA in complex with UniAb(TM) VH 7YUL ; 1.82 ; Crystal structure of human BEND6 BEN domain in complex with DNA 7YUN ; 2.13 ; Crystal structure of human BEND6 BEN domain in complex with methylated DNA 1SZ7 ; 1.55 ; Crystal structure of Human Bet3 2XSX ; 1.7 ; Crystal structure of human beta enolase ENOB 2QZK ; 1.8 ; Crystal structure of human Beta Secretase complexed with I21 1TQF ; 1.8 ; Crystal structure of human Beta secretase complexed with inhibitor 2B8L ; 1.7 ; Crystal structure of human beta secretase complexed with inhibitor 2OAH ; 1.8 ; Crystal Structure of Human Beta Secretase Complexed with inhibitor 2P8H ; 1.8 ; Crystal structure of human beta secretase complexed with inhibitor 2PH6 ; 2.0 ; Crystal Structure of Human Beta Secretase Complexed with inhibitor 2PH8 ; 1.7 ; Crystal Structure of Human Beta Secretase Complexed with inhibitor 2QZL ; 1.8 ; Crystal Structure of human Beta Secretase complexed with IXS 1YM4 ; 2.25 ; Crystal structure of human beta secretase complexed with NVP-AMK640 1YM2 ; 2.05 ; Crystal structure of human beta secretase complexed with NVP-AUR200 3FKT ; 1.9 ; Crystal Structure of Human Beta Secretase Complexed with Spiropiperdine Iminohydantoin Inhibitor 3PI5 ; 2.4 ; Crystal Structure of Human Beta Secretase in Complex with BFG356 4LXA ; 1.95 ; Crystal Structure of Human Beta Secretase in Complex with Compound 11a 4LXK ; 2.05 ; Crystal Structure of Human Beta Secretase in Complex with compound 11d 4LXM ; 2.3 ; Crystal Structure of Human Beta Secretase in Complex with compound 12a 3VEU ; 1.52 ; Crystal Structure of Human Beta Secretase in Complex with NVP-AVI326 3VF3 ; 1.48 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BQQ711 4D83 ; 2.4 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BUR436, derived from a co-crystallization experiment 3VG1 ; 1.77 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BUR436, derived from a soaking experiment 4D85 ; 2.65 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BVI151 4D8C ; 2.07 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BXD552, derived from a co-crystallization experiment 4D89 ; 1.65 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BXD552, derived from a soaking experiment 4D88 ; 1.7 ; Crystal Structure of Human Beta Secretase in Complex with NVP-BXQ490 1C1Z ; 2.87 ; CRYSTAL STRUCTURE OF HUMAN BETA-2-GLYCOPROTEIN-I (APOLIPOPROTEIN-H) 8AS4 ; 2.3 ; Crystal structure of human beta-arrestin-1 3LWK ; 1.7 ; Crystal structure of human Beta-crystallin A4 (CRYBA4) 3QK3 ; 1.95 ; Crystal structure of human beta-crystallin B3 6CS9 ; 1.85 ; Crystal structure of human beta-defensin 2 in complex with PIP2 5KI9 ; 1.6 ; Crystal structure of human beta-defensin 4 (HBD4) 3THD ; 1.79 ; Crystal structure of human beta-galactosidase in complex with 1-deoxygalactonojirimycin 3WF0 ; 2.2 ; Crystal structure of human beta-galactosidase in complex with 6S-NBI-DGJ 3WF1 ; 2.0 ; Crystal structure of human beta-galactosidase in complex with 6S-NBI-GJ 3THC ; 1.8 ; Crystal structure of human beta-galactosidase in complex with galactose 3WF2 ; 2.3 ; Crystal structure of human beta-galactosidase in complex with NBT-DGJ 3WEZ ; 2.11 ; Crystal structure of human beta-galactosidase in complex with NOEV 3WF4 ; 2.3 ; Crystal structure of human beta-galactosidase mutant I51T in complex with 6S-NBI-DGJ 3WF3 ; 2.15 ; Crystal structure of human beta-galactosidase mutant I51T in complex with Galactose 4JS2 ; 2.3 ; Crystal structure of human Beta-galactoside alpha-2,6-sialyltransferase 1 in complex with CMP 4JS1 ; 2.09 ; crystal structure of human Beta-galactoside alpha-2,6-sialyltransferase 1 in complex with cytidine and phosphate 3BPT ; 1.5 ; Crystal structure of human beta-hydroxyisobutyryl-CoA hydrolase in complex with quercetin 2HIZ ; 2.5 ; Crystal Structure of human beta-secretase (BACE) in the presence of an inhibitor 2HM1 ; 2.2 ; Crystal Structure of human beta-secretase (BACE) in the presence of an inhibitor (2) 2IRZ ; 1.8 ; Crystal structure of human Beta-secretase complexed with inhibitor 2IS0 ; 2.2 ; Crystal structure of human Beta-secretase complexed with inhibitor 2B8V ; 1.8 ; Crystal structure of human Beta-secretase complexed with L-L000430,469 3DUY ; 1.97 ; Crystal structure of human beta-secretase in complex with NVP-AFJ144 3DV1 ; 2.1 ; Crystal structure of human beta-secretase in complex with NVP-ARV999 3DV5 ; 2.1 ; Crystal structure of human beta-secretase in complex with NVP-BAV544 3V7T ; 2.09 ; Crystal Structure of Human Beta-Tryptase Complexed with a Synthetic Inhibitor with a Tropanylamide Scaffold 6FTQ ; 2.08 ; Crystal structure of human beta-ureidopropionase (beta-alanine synthase) - mutant T299C 5N11 ; 2.45 ; Crystal structure of Human beta1-coronavirus OC43 NL/A/2005 Hemagglutinin-Esterase 6MXT ; 2.95934 ; Crystal structure of human beta2 adrenergic receptor bound to salmeterol and Nb71 7CCL ; 2.7 ; Crystal structure of human BFK 3I1H ; 2.2 ; Crystal structure of human BFL-1 in complex with BAK BH3 peptide 3MQP ; 2.24 ; Crystal Structure of human BFL-1 in complex with NOXA BH3 peptide, Northeast Structural Genomics Consortium Target HR2930 4ZEQ ; 1.8 ; Crystal Structure of human BFL-1 in complex with tBid BH3 peptide, Northeast Structural Genomics Consortium Target HX9247 4C4Y ; 2.41 ; Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with A4 4C4Z ; 2.06 ; Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with A8 4C4X ; 2.17 ; Crystal structure of human bifunctional epoxide hydroxylase 2 complexed with C9 3LTL ; 2.2 ; Crystal structure of human BIG1 Sec7 domain 7ER6 ; 1.6 ; Crystal structure of human Biliverdin IX-beta reductase B 7ERB ; 1.5 ; Crystal structure of human Biliverdin IX-beta reductase B with Ataluren (PTC) 7ERC ; 1.5 ; Crystal structure of human Biliverdin IX-beta reductase B with Deferasirox (ICL) 7ER9 ; 1.45 ; Crystal structure of human Biliverdin IX-beta reductase B with Febuxostat (TEI) 7ERD ; 2.0 ; Crystal structure of human Biliverdin IX-beta reductase B with Flunixin Meglumin (FMG) 7ERA ; 1.35 ; Crystal structure of human Biliverdin IX-beta reductase B with Olsalazine Sodium (OSS) 7ERE ; 1.6 ; Crystal structure of human Biliverdin IX-beta reductase B with Pyrantel Pamoate (PPA) 7ER8 ; 1.45 ; Crystal structure of human Biliverdin IX-beta reductase B with Sulfasalazine (SAS) 2H63 ; 2.7 ; Crystal Structure of Human Biliverdin Reductase A 4DWN ; 1.581 ; Crystal Structure of Human BinCARD CARD 4FH0 ; 1.4 ; Crystal Structure of Human BinCARD CARD, double mutant F16M/L66M SeMet form 7TRL ; 1.74 ; Crystal structure of human BIRC2 BIR3 domain in complex with histone H3 7TRM ; 2.4 ; Crystal structure of human BIRC2 BIR3 domain in complex with inhibitor LCL-161 2H52 ; 2.0 ; Crystal structure of human bisphosphoglycerate mutase complex with 3-phosphoglycerate (18 days) 4URJ ; 2.68 ; Crystal structure of human BJ-TSA-9 7V5L ; 1.74 ; Crystal structure of human bleomycin hydrolase 7V5S ; 3.02 ; Crystal structure of human bleomycin hydrolase C73A mutant 7V5T ; 3.25 ; Crystal structure of human bleomycin hydrolase C73S mutant 7XF9 ; 3.2 ; Crystal structure of human bleomycin hydrolase H372A mutant 5I05 ; 1.87 ; Crystal structure of human BMP9 at 1.87 A resolution 6F59 ; 2.151 ; Crystal structure of human Brachyury (T) G177D variant in complex with DNA 6F58 ; 2.253 ; Crystal structure of human Brachyury (T) in complex with DNA 8A7N ; 1.9 ; Crystal Structure of human Brachyury G177D variant in complex with (S)-N-(3-aminopropyl)-3-((1-(2-fluorophenyl)-2-oxopyrrolidin-3-yl)amino)-N-methylbenzamide (CF-2-125) 6ZU8 ; 1.95 ; Crystal structure of human Brachyury G177D variant in complex with Afatinib 7ZKF ; 1.49 ; Crystal Structure of human Brachyury G177D variant in complex with CF-5-86 7ZK2 ; 1.6 ; Crystal Structure of human Brachyury G177D variant in complex with CSC027898502 8A10 ; 1.88 ; Crystal Structure of human Brachyury G177D variant in complex with Molpolrt-020-049-143 7ZL2 ; 1.8 ; Crystal Structure of human Brachyury G177D variant in complex with Molpolrt-039-246-810 8FMU ; 2.03 ; Crystal structure of human Brachyury G177D variant in complex with SJF-4601 8CDN ; 2.55 ; Crystal structure of human Brachyury in complex with a single T box binding element DNA 1FDQ ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN BRAIN FATTY ACID BINDING PROTEIN 1FE3 ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN BRAIN FATTY ACID BINDING PROTEIN OLEIC ACID 5IKO ; 2.5 ; Crystal structure of human brain glycogen phosphorylase 5IKP ; 3.4 ; Crystal structure of human brain glycogen phosphorylase bound to AMP 3B6R ; 2.0 ; Crystal structure of Human Brain-type Creatine Kinase 3DRB ; 2.0 ; Crystal structure of Human Brain-type Creatine Kinase 3DRE ; 2.2 ; Crystal structure of Human Brain-type Creatine Kinase 1EKP ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE (MITOCHONDRIAL) COMPLEXED WITH PYRIDOXAL-5'-PHOSPHATE AT 2.5 ANGSTROMS (MONOCLINIC FORM). 2ABJ ; 2.2 ; Crystal structure of human branched chain amino acid transaminase in a complex with an inhibitor, C16H10N2O4F3SCl, and pyridoxal 5' phosphate. 4OFB ; 3.05 ; Crystal structure of human BRCA1 BRCT in complex with nonphosphopeptide inhibitor 5OVB ; 1.95 ; Crystal structure of human BRD4(1) bromodomain in complex with DR46 5O97 ; 1.3 ; Crystal structure of human BRD4(1) bromodomain in complex with JRMBR4106 5OWW ; 1.5 ; Crystal structure of human BRD4(1) bromodomain in complex with UT22B 5OWM ; 1.5 ; Crystal structure of human BRD4(1) bromodomain in complex with UT48 4YH3 ; 1.6 ; Crystal structure of human BRD4(1) in complex with 4-[(2E)-3-(4-methoxyphenyl)-2-phenylprop-2-enoyl]-3,4-dihydroquinoxalin-2(1H)-one (compound 19a) 4YH4 ; 1.33 ; Crystal structure of human BRD4(1) in complex with 4-[(5-phenylpyridin-3-yl)carbonyl]-3,4-dihydroquinoxalin-2(1H)-one (compound 19d) 6MAU ; 2.11 ; Crystal structure of human BRD4(1) in complex with CN210 (compound 19) 6E4A ; 1.26 ; Crystal structure of human BRD4(1) in complex with CN750 6HM0 ; 2.4 ; Crystal structure of human BRD9 bromodomain in complex with a PROTAC 5IGN ; 1.7 ; Crystal structure of human BRD9 bromodomain in complex with LP99 chemical probe 6EG3 ; 2.84 ; Crystal structure of human BRM in complex with compound 15 6EG2 ; 2.98 ; Crystal structure of human BRM in complex with compound 16 3G0L ; 2.03 ; Crystal Structure of Human Bromodomain Adjacent to Zinc finger domain 2B (BAZ2B) 3HME ; 2.23 ; Crystal structure of human bromodomain containing 9 isoform 1 (BRD9) 2NXB ; 1.4 ; Crystal structure of human Bromodomain containing protein 3 (BRD3) 6QJU ; 1.202 ; Crystal structure of human Bromodomain containing protein 3 (BRD3) in complex with 3-bromo-1H-indazol-5-amine 7RJN ; 1.95 ; Crystal structure of human bromodomain containing protein 3 (BRD3) in complex with BCLTF1 7RJK ; 1.85 ; Crystal structure of human Bromodomain containing protein 3 (BRD3) in complex with hnRNPK 7RJM ; 2.1 ; Crystal structure of human Bromodomain containing protein 3 (BRD3) in complex with ILF3 7RJL ; 1.5 ; Crystal structure of human Bromodomain containing protein 3 (BRD3) in complex with SHMT 7RJR ; 1.45 ; Crystal structure of human Bromodomain containing protein 4 (BRD4) in complex with BCLTF1 7RJO ; 1.38 ; Crystal structure of human Bromodomain containing protein 4 (BRD4) in complex with hnRNPK 7RJQ ; 1.72 ; Crystal structure of human Bromodomain containing protein 4 (BRD4) in complex with ILF3 7RJP ; 1.25 ; Crystal structure of human Bromodomain containing protein 4 (BRD4) in complex with SHMT 2YYN ; 2.5 ; Crystal structure of human bromodomain protein 6DJC ; 1.46 ; Crystal structure of human Bromodomain-containing protein 4 (BRD4) bromodomain with MS645 6DNE ; 2.958 ; Crystal structure of human Bromodomain-containing protein 4 (BRD4) bromodomain with MS660 6U04 ; 2.2 ; Crystal structure of human BRPF1 PZP bound to histone H3 tail 5URM ; 2.8 ; Crystal structure of human BRR2 in complex with T-1206548 5URJ ; 2.75 ; Crystal structure of human BRR2 in complex with T-3905516 5URK ; 2.95 ; Crystal structure of human BRR2 in complex with T-3935799 4KIT ; 3.598 ; Crystal structure of human Brr2 in complex with the Prp8 Jab1/MPN domain 4NS5 ; 1.9 ; Crystal structure of human BS69 Bromo-Zinc finger-PWWP 3DJU ; 2.26 ; Crystal structure of human BTG2 6HTF ; 2.102 ; Crystal structure of human Btk SH2 domain bound to rF10 repebody 8DFY ; 3.552 ; Crystal structure of Human BTN2A1 Ectodomain 8DFW ; 2.1 ; Crystal Structure of Human BTN2A1 in Complex With Vgamma9-Vdelta2 T Cell Receptor 8DFX ; 5.55 ; Crystal structure of Human BTN2A1-BTN3A1 Ectodomain Complex 1P0I ; 2.0 ; Crystal structure of human butyryl cholinesterase 1P0M ; 2.38 ; Crystal structure of human butyryl cholinesterase in complex with a choline molecule 7AWG ; 2.0 ; Crystal structure of human butyrylcholinesterase in complex with (2-((1-(benzenesulfonyl)-1H-indol-4-yl)oxy)ethyl)(benzyl)amine 7AIY ; 2.937 ; Crystal structure of human butyrylcholinesterase in complex with 2-{1-[4-(12-Amino-3-chloro-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolin-9-yl)butyl]-1H-1,2,3-triazol-4-yl}-N-[4-hydroxy-3-methoxybenzyl]acetamide 5DYW ; 2.5 ; Crystal structure of human butyrylcholinesterase in complex with N-((1-benzylpiperidin-3-yl)methyl)-N-(2-methoxyethyl)naphthalene-2-sulfonamide 5DYT ; 2.55 ; Crystal structure of human butyrylcholinesterase in complex with N-((1-benzylpiperidin-3-yl)methyl)-N-methylnaphthalene-2-sulfonamide 5DYY ; 2.65 ; Crystal structure of human butyrylcholinesterase in complex with N-((1-benzylpiperidin-3-yl)methyl)naphthalene-2-sulfonamide 7AMZ ; 2.25 ; Crystal structure of human Butyrylcholinesterase in complex with N-((2S,3R)-4-((2,2-dimethylpropyl)amino)-3-hydroxy-1-phenylbutan-2-yl)-2,2-diphenylacetamide 7Q1N ; 2.35 ; Crystal structure of human butyrylcholinesterase in complex with N-[(2R)-3-[(cyclohexylmethyl)amino]-2-hydroxypropyl]-2,2-diphenylacetamide 7Q1P ; 2.35 ; Crystal structure of human butyrylcholinesterase in complex with N-[(2R)-3-[(cyclohexylmethyl)amino]-2-hydroxypropyl]-3,3-diphenylpropanamide 7Q1M ; 2.79 ; Crystal structure of human butyrylcholinesterase in complex with N-[(2S)-3-[(cyclohexylmethyl)amino]-2-hydroxypropyl]-2,2-diphenylacetamide 7Q1O ; 2.65 ; Crystal structure of human butyrylcholinesterase in complex with N-[(2S)-3-[(cyclohexylmethyl)amino]-2-hydroxypropyl]-3,3-diphenylpropanamide 7AWH ; 2.3 ; Crystal structure of human butyrylcholinesterase in complex with tert-butyl 3-(((2-((1-(benzenesulfonyl)-1H-indol-4-yl)oxy)ethyl)amino)methyl)piperidine-1-carboxylate 7AWI ; 2.3 ; Crystal structure of human butyrylcholinesterase in complex with tert-butyl 3-(((2-((1-benzyl-1H-indol-4-yl)oxy)ethyl)amino)methyl]piperidine-1-carboxylate 6GQM ; 2.0 ; Crystal structure of human c-KIT kinase domain in complex with a small molecule inhibitor, AZD3229 6GQJ ; 2.33 ; Crystal structure of human c-KIT kinase domain in complex with AZD3229-analogue (compound 18) 6GQK ; 2.31 ; Crystal structure of human c-KIT kinase domain in complex with AZD3229-analogue (compound 23) 6GQL ; 2.01 ; Crystal structure of human c-KIT kinase domain in complex with AZD3229-analogue (compound 35) 6KLA ; 2.109 ; Crystal structure of human c-KIT kinase domain in complex with compound 15a 3VW8 ; 2.1 ; Crystal structure of human c-Met kinase domain with its inhibitor 4H7W ; 1.1 ; Crystal Structure of Human C16orf57 5ZRT ; 1.9 ; Crystal structure of human C1ORF123 protein 8GMN ; 2.6 ; Crystal structure of human C1s in complex with inhibitor 5UBM ; 2.5 ; Crystal structure of human C1s in complex with inhibitor gigastasin 3PJA ; 3.0 ; Crystal structure of human C3PO complex 6IOM ; 2.594 ; Crystal structure of human C4.4A 4MTC ; 1.47 ; Crystal structure of human C53A DJ-1 4N0M ; 1.95 ; Crystal structure of human C53A DJ-1 in complex with Cu 6C1R ; 2.2 ; Crystal structure of human C5a receptor in complex with an orthosteric antagonist PMX53 and an allosteric antagonist avacopan 6C1Q ; 2.9 ; Crystal structure of human C5a receptor in complex with an orthosteric antagonist PMX53 and an allosteric antagonist NDT9513727 6YQU ; 1.478 ; CRYSTAL STRUCTURE OF HUMAN CA II IN COMPLEX WITH 2-MERCAPTOBENZOXAZOLE 6YQT ; 1.5 ; CRYSTAL STRUCTURE OF HUMAN CA II IN COMPLEX WITH A SULFONAMIDE DERIVATIVE OF 2-MERCAPTOBENZOXAZOLE 8AHS ; 2.48 ; Crystal structure of human Ca2+/Calmodulin in complex with melittin 3MHC ; 1.698 ; Crystal structure of human cabonic anhydrase II in adduct with an adamantyl analogue of acetazolamide in a novel hydrophobic binding pocket 6ULM ; 2.15 ; Crystal structure of human cadherin 17 EC1-2 5WJ8 ; 1.86 ; Crystal Structure of Human Cadherin-23 EC13-14 5TFM ; 2.92 ; Crystal Structure of Human Cadherin-23 EC6-8 7Y5L ; 3.42 ; Crystal structure of human CAF-1 core complex in spacegroup C2 7Y5K ; 3.48 ; Crystal structure of human CAF-1 core complex in spacegroup C2221 7Y5O ; 3.57 ; Crystal structure of human CAF-1 core complex in spacegroup P21 4OR9 ; 2.23 ; Crystal structure of human calcineurin 1MF8 ; 3.1 ; Crystal Structure of human calcineurin complexed with cyclosporin A and human cyclophilin 2P6B ; 2.3 ; Crystal Structure of Human Calcineurin in Complex with PVIVIT Peptide 2VN9 ; 2.3 ; Crystal Structure of Human Calcium Calmodulin dependent Protein Kinase II delta isoform 1, CAMKD 5K89 ; 2.249 ; Crystal Structure of Human Calcium-Bound S100A1 2V7O ; 2.25 ; Crystal structure of human calcium-calmodulin-dependent protein kinase II gamma 4FG7 ; 2.7 ; Crystal structure of human calcium/calmodulin-dependent protein kinase I 1-293 in complex with ATP 4FG8 ; 2.2 ; Crystal structure of human calcium/calmodulin-dependent protein kinase I 1-315 in complex with ATP 4FG9 ; 2.4 ; Crystal structure of human calcium/calmodulin-dependent protein kinase I 1-320 in complex with ATP 4FGB ; 2.6 ; Crystal structure of human calcium/calmodulin-dependent protein kinase I apo form 3BHH ; 2.4 ; Crystal structure of human calcium/calmodulin-dependent protein kinase IIB isoform 1 (CAMK2B) 2ZV2 ; 2.4 ; Crystal structure of human calcium/calmodulin-dependent protein kinase kinase 2, beta, CaMKK2 kinase domain in complex with STO-609 2Y4V ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN CALMODULIN IN COMPLEX WITH A DAP KINASE-1 MUTANT (W305Y) PEPTIDE 2JC6 ; 2.3 ; Crystal structure of human calmodulin-dependent protein kinase 1D 6T29 ; 1.484 ; Crystal structure of human calmodulin-dependent protein kinase 1D (CAMK1D) bound to compound 18 (CS587) 6T28 ; 1.55 ; Crystal structure of human calmodulin-dependent protein kinase 1D (CAMK1D) bound to compound 19 (CS640) 6T6F ; 1.97 ; Crystal structure of human calmodulin-dependent protein kinase 1D (CAMK1D) bound to compound 8 (CS275) 8BFS ; 1.95 ; Crystal structure of human calmodulin-dependent protein kinase 1D (CAMK1D) in complex with FZ326 8BFM ; 1.7 ; Crystal structure of human calmodulin-dependent protein kinase 1D (CAMK1D) in complex with FZ331 2JAM ; 1.7 ; Crystal structure of human calmodulin-dependent protein kinase I G 6BJD ; 2.8 ; Crystal Structure of Human Calpain-3 Protease Core in Complex with E-64 6BKJ ; 3.2 ; Crystal Structure of Human Calpain-3 Protease Core in Complex with Leupeptin 6BGP ; 2.75 ; Crystal Structure of Human Calpain-3 Protease Core Mutant-C129A 6BDT ; 2.3 ; Crystal Structure of Human Calpain-3 Protease Core Mutant-C129S 7QUV ; 1.85 ; Crystal structure of human Calprotectin (S100A8/S100A9) in complex with Peptide 3 1XK4 ; 1.8 ; Crystal structure of human calprotectin(S100A8/S100A9) 2W4O ; 2.17 ; Crystal structure of Human CAMK4 in complex with 4-Amino(sulfamoyl- phenylamino)-triazole-carbothioic acid (2,6-difluoro-phenyl)-amide) 6VZK ; 2.55 ; Crystal structure of human CaMKII-alpha (CAMK2A)kinase domain 4WB5 ; 1.641 ; Crystal structure of human cAMP-dependent protein kinase A (catalytic alpha subunit) 4WB8 ; 1.55 ; Crystal structure of human cAMP-dependent protein kinase A (catalytic alpha subunit), exon 1 deletion 4F9K ; 2.8 ; Crystal Structure of human cAMP-dependent protein kinase type I-beta regulatory subunit (fragment 11-73), Northeast Structural Genomics Consortium (NESG) Target HR8613A 6IGX ; 2.995 ; Crystal structure of human CAP-G in complex with CAP-H 4OZ0 ; 2.2 ; Crystal structure of human CAPERalpha U2AF homology motif (apo-state) 4OZ1 ; 1.74 ; Crystal structure of human CAPERalpha UHM bound to SF3b155 ULM5 4OUL ; 1.949 ; Crystal structure of human Caprin-2 C1q domain 4OUM ; 1.491 ; Crystal structure of human Caprin-2 C1q domain 5DOT ; 2.4 ; Crystal Structure of Human Carbamoyl phosphate synthetase I (CPS1), apo form 5DOU ; 2.6 ; Crystal Structure of Human Carbamoyl phosphate synthetase I (CPS1), ligand-bound form 6XZE ; 1.54 ; crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((2-fluorobenzyl)amino)ethyl)ureido) benzenesulfonamide 6XZX ; 1.55 ; crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((2-fluorobenzyl)amino)ethyl)ureido) benzenesulfonamide 6XZY ; 1.66 ; crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((2-fluorobenzyl)amino)ethyl)ureido) benzenesulfonamide 6Y00 ; 1.37 ; crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((2-fluorobenzyl)amino)ethyl)ureido) benzenesulfonamide 6XZO ; 1.44 ; Crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((4-bromo-2-hydroxybenzyl)amino)ethyl)ureido) benzenesulfonamide 6XZS ; 1.53 ; Crystal structure of human carbonic anhydrase I in complex with 4-(3-(2-((4-fluorobenzyl)amino)ethyl)ureido) benzenesulfonamide 5GMM ; 2.003 ; Crystal structure of human Carbonic anhydrase I in complex with polmacoxib 6FAG ; 1.79 ; Crystal structure of human carbonic anhydrase I in complex with the 1-(2-hydroxy-5-sulfamoylphenyl)-3-(2-methoxyphenyl)urea inhibitor 6F3B ; 1.4 ; Crystal structure of human carbonic anhydrase I in complex with the 1-(2-hydroxy-5-sulfamoylphenyl)-3-[(4-methylphenyl)methyl]urea inhibitor 6I0L ; 1.4 ; Crystal structure of human carbonic anhydrase I in complex with the 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-[2-(4-sulfamoylphenyl)ethyl]urea inhibitor 6FAF ; 1.99 ; Crystal structure of human carbonic anhydrase I in complex with the 3-(2,5-dimethylphenyl)-1-(2-hydroxy-5-sulfamoylphenyl)urea inhibitor 6EVR ; 1.5 ; Crystal structure of human carbonic anhydrase I in complex with the 4-(4 acetyl-3-benzylpiperazine-1 carbonyl)benzene-1-sulfonamide inhibitor 6I0J ; 1.35 ; Crystal structure of human carbonic anhydrase I in complex with the 4-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)phenyl sulfamate inhibitor 6EX1 ; 1.6 ; Crystal structure of human carbonic anhydrase I in complex with the 4-[(3S)-3 benzyl-4-(4-sulfamoylbenzoyl)piperazine -1-carbonyl]benzene-1-sulfonamide inhibitor 6G3V ; 1.69 ; Crystal structure of human carbonic anhydrase I in complex with the inhibitor famotidine 1XEG ; 1.81 ; Crystal structure of human carbonic anhydrase II complexed with an acetate ion 1EOU ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH AN ANTICONVULSANT SUGAR SULFAMATE 5ZXW ; 1.316 ; Crystal structure of human carbonic anhydrase II crystallized by ammonium sulfate 1XEV ; 2.2 ; Crystal structure of human carbonic anhydrase II in a new crystal form 6RG4 ; 1.25 ; Crystal structure of human Carbonic anhydrase II in complex with (R)-4-(2-benzyl-4-methylpiperazin-1-yl)benzenesulfonamide 6RG3 ; 1.32 ; Crystal structure of human Carbonic anhydrase II in complex with (R)-4-(2-benzylpiperazin-1-yl)benzenesulfonamide 8BJX ; 1.283 ; Crystal structure of human Carbonic anhydrase II in complex with (R)-4-(3-(1-(6-nitropyridin-2-yl)pyrrolidin-3-yl)thioureido)benzenesulfonamide 5N0D ; 1.7 ; Crystal structure of human carbonic anhydrase II in complex with (R)-4-(6,7-dihydroxy-1-phenyl-3,4-tetrahydroisoquinoline-1H-2-carbonyl)benzenesulfonamide. 5N0E ; 1.75 ; Crystal structure of human carbonic anhydrase II in complex with (S)-4-(6,7-dihydroxy-1-phenyl-3,4-tetrahydroisoquinoline-1H-2-carbonyl)benzenesulfonamide. 4RH2 ; 1.3 ; Crystal structure of human carbonic anhydrase II in complex with 2-(6-hydroxy-3-Oxo-3H-xanthen-9-yl)-5-{3-1-(4-sulfamoyl-phenyl)-1h-[1,2,3]triazol-4-ylmethyl-thioureido}-benzoic acid 7ORP ; 1.43 ; crystal structure of human carbonic anhydrase II in complex with 4-((2-hydroxy-3-((3,4,5-trimethoxyphenyl)tellanyl)propyl)selanyl)benzenesulfonamide 7ORQ ; 1.43 ; crystal structure of human carbonic anhydrase II in complex with 4-((3-(butylselanyl)-2-hydroxypropyl)selanyl)benzenesulfonamide 4RUX ; 1.14 ; Crystal structure of human Carbonic Anhydrase II in complex with 4-(allyloxy)benzenesulfonamide 4RUZ ; 1.63 ; Crystal structure of human Carbonic Anhydrase II in complex with 4-ethoxybenzenesulfonamide 4RUY ; 1.14 ; Crystal structure of human Carbonic Anhydrase II in complex with 4-propoxybenzenesulfonamide 3MMF ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with a 1,3,5-triazine-substituted benzenesulfonamide inhibitor 3N0N ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with a benzenesulfonamide inhibitor 3N2P ; 1.648 ; Crystal structure of human carbonic anhydrase II in complex with a benzenesulfonamide inhibitor 3N3J ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with a benzenesulfonamide inhibitor 3N4B ; 1.6 ; Crystal structure of human carbonic anhydrase II in complex with a benzenesulfonamide inhibitor 8C0Q ; 1.67 ; Crystal structure of human carbonic anhydrase II in complex with a coumarin derivative. 8C0R ; 1.56 ; Crystal structure of human carbonic anhydrase II in complex with a coumarin derivative. 6B4D ; 1.196 ; Crystal structure of human carbonic anhydrase II in complex with a heteroaryl-pyrazole carboxylic acid derivative. 4LP6 ; 2.15 ; Crystal Structure of Human Carbonic Anhydrase II in complex with a quinoline oligoamide foldamer 5L3O ; 1.98 ; Crystal Structure of Human Carbonic Anhydrase II in Complex with a Quinoline Oligoamide Foldamer 5L6K ; 1.7 ; Crystal Structure of Human Carbonic Anhydrase II in Complex with a Quinoline Oligoamide Foldamer 5L6T ; 2.65 ; CRYSTAL STRUCTURE OF HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH A QUINOLINE OLIGOAMIDE FOLDAMER 5L70 ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH A QUINOLINE OLIGOAMIDE FOLDAMER 5L9E ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH A QUINOLINE OLIGOAMIDE FOLDAMER 8CR0 ; 1.22 ; Crystal structure of human carbonic anhydrase II in complex with a triazolyl benzoxaborole inhibitor 5JQT ; 1.36 ; Crystal structure of human carbonic anhydrase II in complex with Benzoxaborole at pH 7.4 5JQ0 ; 1.4 ; Crystal structure of human carbonic anhydrase II in complex with Benzoxaborole at pH=8.7 4YVY ; 1.45 ; Crystal structure of human carbonic anhydrase II in complex with hydroxylamine-O-sulfonamide, a molecule incorporating two zinc-binding groups. 5GMN ; 1.8 ; Crystal structure of human carbonic anhydrase II in complex with polmacoxib 3C7P ; 1.7 ; Crystal structure of human carbonic anhydrase II in complex with STX237 5LJT ; 1.0 ; Crystal structure of human carbonic anhydrase II in complex with the 4-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)benzenesulfonamide inhibitor 5E2S ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with the 4-(2-iso-propylphenyl)benzenesulfonamide inhibitor 5E2K ; 1.4 ; Crystal structure of human carbonic anhydrase II in complex with the 4-(3-aminophenyl)benzenesulfonamide inhibitor 5LJQ ; 1.05 ; Crystal structure of human carbonic anhydrase II in complex with the 4-(4-(phenoxymethyl)-1H-1,2,3-triazol-1-yl)benzenesulfonamide inhibitor 5E28 ; 1.3 ; Crystal structure of human carbonic anhydrase II in complex with the 4-(4-aminophenyl)benzenesulfonamide inhibitor 6H3Q ; 1.31 ; Crystal structure of human carbonic anhydrase II in complex with the 4-(5-(chloromethyl)-1,3-selenazol-2-yl)benzenesulfonamide 3V5G ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with the 4-sulfamido-benzenesulfonamide inhibitor 4KUV ; 1.35 ; Crystal structure of human carbonic anhydrase II in complex with the 5-(3-(4-chlorophenylsulfonyl)ureido)pyridine-2-sulfonamide inhibitor 4KUW ; 1.55 ; Crystal structure of human carbonic anhydrase II in complex with the 5-(3-(4-fluorophenylsulfonyl)ureido)pyridine-2-sulfonamide inhibitor 4KUY ; 1.65 ; Crystal structure of human carbonic anhydrase II in complex with the 5-(3-(o-tolylsulfonyl)ureido)pyridine-2-sulfonamide inhibitor 4KV0 ; 1.55 ; Crystal structure of human carbonic anhydrase II in complex with the 5-(3-tosylureido)pyridine-2-sulfonamide inhibitor 4WL4 ; 1.1 ; Crystal structure of human carbonic anhydrase II in complex with the 6-hydroxy-chromene-2-thione inhibitor 5FDC ; 1.75 ; Crystal structure of Human Carbonic Anhydrase II in complex with the anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog. 5N1R ; 1.3 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 4'-Pyrazol-1-ylmethyl-biphenyl-4-sulfonamide 5N1S ; 1.3 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 4-(1H-Indol-2-yl)-benzenesulfonamide 5NEA ; 1.3 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 4-(2-methyl-1,3-oxazol-5-yl)benzene-1-sulfonammide 6GOT ; 1.56 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 4-(phenethylthio)benzenesulfonamide 5N25 ; 1.4 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 4-Pyridin-3-yl-benzenesulfonamide 5NEE ; 1.7 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor 5-[2-(morpholine-4-carbonyl)1,3-oxazol-5-yl)]thiophene-2-sulfonammide 5N24 ; 1.5 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor b4'-Cyano-biphenyl-4-sulfonic acid amide 6G3Q ; 1.01 ; Crystal structure of human carbonic anhydrase II in complex with the inhibitor famotidine 8IGF ; 2.6 ; Crystal Structure of Human Carbonic Anhydrase II In-complex with 4-Acetylphenylboronic acid at 2.6 A Resolution 7NH6 ; 1.28 ; Crystal structure of human carbonic anhydrase II with 3-(3-((1-(2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)ureido)benzenesulfonamide 7OK8 ; 1.43 ; Crystal structure of human carbonic anhydrase II with 4-((2-hydroxy-3-(phenylselanyl)propyl)thio)benzenesulfonamide 3PO6 ; 1.47 ; Crystal structure of human carbonic anhydrase II with 6,7-Dimethoxy-1-methyl-3,4-dihydroisoquinoline-2(1H)-sulfonamide 7NH8 ; 1.369 ; Crystal structure of human carbonic anhydrase II with N-((1-(6-((3aR,7R,7aS)-7-hydroxy-2,2-dimethyltetrahydro-[1,3]dioxolo[4,5-c]pyridin-5(4H)-yl)hexyl)-1H-1,2,3-triazol-4-yl)methyl)-4-sulfamoylbenzamide 5FDI ; 1.85 ; Crystal structure of Human Carbonic Anhydrase II with the anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog. 4WR7 ; 1.5 ; Crystal structure of human carbonic anhydrase isozyme I with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide. 4WUQ ; 1.75 ; Crystal structure of human carbonic anhydrase isozyme I with 2,3,5,6-Tetrafluoro-4-piperidin-1-ylbenzenesulfonamide 5E2M ; 1.41 ; Crystal structure of human carbonic anhydrase isozyme I with 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 4WUP ; 1.75 ; Crystal structure of human carbonic anhydrase isozyme I with 4-[(2-Hydroxyethyl)thio]benzenesulfonamide 4WW6 ; 1.06 ; Crystal structure of human carbonic anhydrase isozyme II with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide 4PZH ; 1.06 ; Crystal structure of human carbonic anhydrase isozyme II with 2,3,5,6-tetrafluoro-4[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6R6J ; 1.55 ; Crystal structure of human carbonic anhydrase isozyme II with 2-(benzenesulfonyl)-4-chloro-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 5DOG ; 1.7 ; Crystal structure of human carbonic anhydrase isozyme II with 2-(Benzylamino)-3,5,6-trifluoro-4-[(2-phenylethyl)thio]benzene- sulfonamide 4KNJ ; 2.0 ; Crystal structure of human carbonic anhydrase isozyme II with 2-Chloro-4-[(pyrimidin-2-ylsulfanyl)acetyl]benzenesulfonamide 4KNI ; 1.8 ; Crystal structure of human carbonic anhydrase isozyme II with 2-Chloro-4-{[(4,6-dimethylpyrimidin-2-yl)sulfanyl]acetyl}benzenesulfonamide 4QSA ; 1.501 ; Crystal structure of human carbonic anhydrase isozyme II with 2-chloro-4-{[(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]acetyl}benzenesulfonamide 3MYQ ; 1.35 ; Crystal structure of human carbonic anhydrase isozyme II with 2-chloro-5-[(1H-imidazo[4,5-c]quinolin-2-ylsulfanyl)acetyl]benzenesulfonamide 3M67 ; 1.8 ; Crystal structure of human carbonic anhydrase isozyme II with 2-chloro-5-[(6,7-dihydro-1H-[1,4]dioxino[2,3-f]benzimidazol-2-ylsulfanyl)acetyl]benzenesulfonamide 3S9T ; 1.3 ; Crystal structure of human carbonic anhydrase isozyme II with 2-chloro-5-{[(4,6-dimethyl-2-pyrimidinyl)sulfanyl]acetyl}benzenesulfonamide 3SAX ; 1.1 ; Crystal structure of human carbonic anhydrase isozyme II with 2-chloro-5-{[(5-ethyl-2-pyrimidinyl)sulfanyl]acetyl}benzenesulfonamide 5DOH ; 1.05 ; Crystal structure of human carbonic anhydrase isozyme II with 2-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-3,5,6-trifluoro-4-[(2-hydroxyethyl)thio]benzenesulfonamide 5EHE ; 1.5 ; Crystal structure of human carbonic anhydrase isozyme II with 3-(benzylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 5LLC ; 1.1 ; Crystal structure of human carbonic anhydrase isozyme II with 3-(Methylamino)-2,5,6-trifluoro-4-[(2-phenylethyl)sulfonyl]benzenesulfonamide 3HLJ ; 1.44 ; Crystal structure of human carbonic anhydrase isozyme II with 3-methylthiobenzimidazo[1,2-c][1,2,3]thiadiazol-7-sulfonamide 4QSB ; 1.4 ; Crystal structure of human carbonic anhydrase isozyme II with 3-{[(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]acetyl}benzenesulfonamide 5LLH ; 1.9 ; Crystal structure of human carbonic anhydrase isozyme II with 4-(1,3-Benzothiazol-2-ylthio)-2,3,5,6-tetrafluorobenzenesulfonamide 5LLE ; 1.9 ; Crystal structure of human carbonic anhydrase isozyme II with 4-(1-Adamantylamino)-2,3,5,6-tetrafluorobenzenesulfonamide 5LL4 ; 1.12 ; Crystal structure of human carbonic anhydrase isozyme II with 4-(1H-benzimidazol-1-ylacetyl)benzenesulfonamide 6RHJ ; 1.44 ; Crystal structure of human carbonic anhydrase isozyme II with 4-(4-benzyl-1,4-diazepane-1-carbonyl)benzenesulfonamide 6R6F ; 1.2 ; Crystal structure of human carbonic anhydrase isozyme II with 4-chloro-2-cyclohexylsulfanyl-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 5LLG ; 1.12 ; Crystal structure of human carbonic anhydrase isozyme II with 4-Propylthiobenzenesulfonamide 3SBI ; 1.4 ; Crystal structure of human carbonic anhydrase isozyme II with 4-[(2-pyrimidinylsulfanyl)acetyl]benzenesulfonamide 4Q6D ; 1.12 ; Crystal structure of human carbonic anhydrase isozyme II with 4-[(Z)-azepan-1-yldiazenyl]benzenesulfonamide 3MHO ; 1.15 ; Crystal structure of human carbonic anhydrase isozyme II with 4-[N-(6-chloro-5-formyl-2-methylthiopyrimidin-4-yl)amino]benzenesulfonamide 3M40 ; 1.6 ; Crystal structure of human carbonic anhydrase isozyme II with 4-[N-(6-chloro-5-nitropyrimidin-4-yl)amino]benzenesulfonamide 3M2N ; 1.65 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{2-[N-(6-chloro-5-nitropyrimidin-4-yl)amino]ethyl}benzenesulfonamide 3M3X ; 1.68 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{2-[N-(6-methoxy-5-nitropyrimidin-4-yl)amino]ethyl}benzenesulfonamide 3SBH ; 1.65 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[(4,6-dimethyl-2-pyrimidinyl)sulfanyl]acetyl}benzenesulfonamide 3S8X ; 1.3 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[(4-methyl-6-oxo-1,6-dihydro-2-pyrimidinyl)sulfanyl]acetyl}benzenesulfonamide 3SAP ; 1.75 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[(5-butyl-2-pyrimidinyl)sulfanyl]acetyl}benzenesulfonamide 3MHI ; 1.7 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[(5-nitro-6-oxo-1,6-dihydro-4-pyrimidinyl)amino]methyl}benzenesulfonamide 4Q6E ; 1.12 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[3-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-oxopropyl]amino}benzene-1-sulfonamide 3MHM ; 1.5 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[N-(6-benzylamino-5-nitropyrimidin-4-yl)amino]methyl}benzenesulfonamide 3M5E ; 1.7 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[N-(6-chloro-5-formyl-2-methylthiopyrimidin-4-yl)amino]methyl}benzenesulfonamide 3MHL ; 1.9 ; Crystal structure of human carbonic anhydrase isozyme II with 4-{[N-(6-methoxy-5-nitropyrimidin-4-yl)amino]methyl}benzenesulfonamide 3M98 ; 1.5 ; Crystal structure of human carbonic anhydrase isozyme II with 5-(1H-benzimidazol-1-ylacetyl)-2-chlorobenzenesulfonamide 4LHI ; 1.6 ; Crystal structure of human carbonic anhydrase isozyme II with 5-(phenylsulfonyl)thiophene-2-sulfonamide 4QSI ; 1.95 ; Crystal structure of human carbonic anhydrase isozyme II with 5-{[(4-tert-buthyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]acetyl}-2-chlorobenzenesulfonamide 3M96 ; 1.4 ; Crystal structure of human carbonic anhydrase isozyme II with 5-{[(5-bromo-1H-benzimidazol-2-yl)sulfanyl]acetyl}-2-chlorobenzenesulfonamide 4PYX ; 1.8 ; Crystal structure of human carbonic anhydrase isozyme II with inhibitor 4PYY ; 1.75 ; Crystal structure of human carbonic anhydrase isozyme II with inhibitor 4QIY ; 1.3 ; Crystal structure of human carbonic anhydrase isozyme II with inhibitor 4QJM ; 1.75 ; Crystal structure of human carbonic anhydrase isozyme II with inhibitor 4QTL ; 1.8 ; Crystal structure of human carbonic anhydrase isozyme II with inhibitor 6G6T ; 1.12 ; Crystal structure of human carbonic anhydrase isozyme II with N-butyl-2,4-dichloro-5-sulfamoyl-benzamide 4HT0 ; 1.6 ; Crystal structure of human carbonic anhydrase isozyme II with the inhibitor. 5IPZ ; 2.1 ; Crystal structure of human carbonic anhydrase isozyme IV with 5-(2-amino-1,3-thiazol-4-yl)-2-chlorobenzenesulfonamide 6G7A ; 1.42 ; Crystal structure of human carbonic anhydrase isozyme XII 2-(benzylamino)-4-chloro-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 5MSA ; 1.2 ; Crystal structure of human carbonic anhydrase isozyme XII with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide 5MSB ; 1.3 ; Crystal structure of human carbonic anhydrase isozyme XII with 2,3,5,6-tetrafluoro-4[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6R71 ; 2.0 ; Crystal structure of human carbonic anhydrase isozyme XII with 2-(benzenesulfonyl)-4-chloro-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 5LLP ; 1.48 ; Crystal structure of human carbonic anhydrase isozyme XII with 3-[(1S)-1,2,3,4-Tetrahydronapthalen-1-ylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 5LLO ; 1.6 ; Crystal structure of human carbonic anhydrase isozyme XII with 3-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-2,5,6-trifluoro-4-[(2-hy-droxyethyl)sulfonyl]benzenesulfonamide 5LL9 ; 1.45 ; Crystal structure of human carbonic anhydrase isozyme XII with 4-(1H-benzimidazol-1-ylacetyl)-2-chlorobenzenesulfonamide 5LL5 ; 1.42 ; Crystal structure of human carbonic anhydrase isozyme XII with 4-(1H-benzimidazol-1-ylacetyl)benzenesulfonamide 6G5L ; 1.21 ; Crystal structure of human carbonic anhydrase isozyme XII with 4-chloro-2-(cyclohexylamino)-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 6R6Y ; 1.38 ; Crystal structure of human carbonic anhydrase isozyme XII with 4-chloro-2-cyclohexylsulfanyl-N-(2-hydroxyethyl)-5-sulfamoyl-benzamide 4WW8 ; 1.42 ; Crystal structure of human carbonic anhydrase isozyme XII with 4-Propylthiobenzenesulfonamide 4HT2 ; 1.45 ; Crystal structure of human carbonic anhydrase isozyme XII with the inhibitor. 5LLN ; 1.6 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide 5OGJ ; 1.06 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2-(Cyclooctylamino)-3,5,6-trifluoro-4-[(2-hydroxyethyl)thio]benzenesulfonamide 4KNN ; 1.404 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2-Chloro-4-[(pyrimidin-2-ylsulfanyl)acetyl]benzenesulfonamide 4KNM ; 1.9 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2-Chloro-4-{[(4,6-dimethylpyrimidin-2-yl)sulfanyl]acetyl}benzenesulfonamide 4QSJ ; 1.7 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2-chloro-4-{[(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)thio]acetyl}benzenesulfonamide 5OHH ; 1.42 ; Crystal structure of human carbonic anhydrase isozyme XIII with 2-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-3,5,6-trifluoro-4-[(2-hydroxyethyl)thio]benzenesulfonamide 5E2N ; 1.53 ; Crystal structure of human carbonic anhydrase isozyme XIII with 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 5LLA ; 1.5 ; Crystal structure of human carbonic anhydrase isozyme XIII with 4-(1H-benzimidazol-1-ylacetyl)-2-chlorobenzenesulfonamide 4QIZ ; 1.55 ; Crystal structure of human carbonic anhydrase isozyme XIII with inhibitor 4QJP ; 1.62 ; Crystal structure of human carbonic anhydrase isozyme XIII with inhibitor 4QJX ; 1.95 ; Crystal structure of human carbonic anhydrase isozyme XIII with inhibitor 6G5U ; 1.7 ; Crystal structure of human carbonic anhydrase isozyme XIII with N-butyl-2,4-dichloro-5-sulfamoyl-benzamide 4HU1 ; 1.95 ; Crystal structure of human carbonic anhydrase isozyme XIII with the inhibitor. 3FE4 ; 1.9 ; Crystal Structure of Human Carbonic Anhydrase vi 7NC4 ; 1.6 ; Crystal structure of human carbonic anhydrase VII (hCA VII) in complex with a 4-(4-aroylpiperazine-1-carbonyl)benzenesulfonamide derivative. 3MDZ ; 2.32 ; Crystal Structure of Human Carbonic Anhydrase VII [isoform 1], CA7 7NTB ; 1.7 ; Crystal structure of human carbonic anhydrase with a benzophenone-derivative 3D0N ; 1.55 ; Crystal structure of human carbonic anhydrase XIII 5DRS ; 1.1 ; Crystal structure of human carbonic anhydraseisozyme II with 3-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 1LJW ; 2.16 ; Crystal Structure of Human Carbonmonoxy Hemoglobin at 2.16 A: A Snapshot of the Allosteric Transition 1IRD ; 1.25 ; Crystal Structure of Human Carbonmonoxy-Haemoglobin at 1.25 A Resolution 3BHJ ; 1.77 ; Crystal structure of human Carbonyl Reductase 1 in complex with glutathione 3BHI ; 2.27 ; Crystal structure of human Carbonyl Reductase 1 in complex with NADP 3BHM ; 1.8 ; Crystal structure of human Carbonyl Reductase 1 in complex with S-hydroxymethylglutathione 2HRB ; 1.9 ; Crystal Structure of human Carbonyl Reductase 3, complexed with NADP+ 2Q5E ; 2.51 ; Crystal structure of human carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 2DQY ; 3.0 ; Crystal structure of human carboxylesterase in complex with cholate and palmitate 2H7C ; 2.0 ; Crystal structure of human carboxylesterase in complex with Coenzyme A 2DQZ ; 2.8 ; Crystal structure of human carboxylesterase in complex with homatropine, coenzyme A, and palmitate 2DR0 ; 3.2 ; Crystal structure of human carboxylesterase in complex with taurocholate 2V77 ; 1.603 ; Crystal Structure of Human Carboxypeptidase A1 1UWY ; 3.0 ; Crystal structure of human carboxypeptidase M 5MRV ; 1.854 ; Crystal structure of human carboxypeptidase O in complex with NvCI 8GSU ; 1.5 ; Crystal structure of human cardiac alpha actin (WT_ADP-Pi) in complex with fragmin F1 domain 8GT1 ; 1.35 ; Crystal structure of human cardiac alpha actin A108G mutant (ADP-Pi state) in complex with fragmin F1 domain 8GSW ; 1.4 ; Crystal structure of human cardiac alpha actin A108G mutant (AMPPNP state) in complex with fragmin F1 domain 8GT3 ; 1.5 ; Crystal structure of human cardiac alpha actin P109A mutant (ADP-Pi state) in complex with fragmin F1 domain 8GT2 ; 1.5 ; Crystal structure of human cardiac alpha actin P109A mutant (AMPPNP state) in complex with fragmin F1 domain 8GT5 ; 1.4 ; Crystal structure of human cardiac alpha actin Q137A mutant (ADP-Pi state) in complex with fragmin F1 domain 8GT4 ; 1.55 ; Crystal structure of human cardiac alpha actin Q137A mutant (AMPPNP state) in complex with fragmin F1 domain 2VAF ; 3.8 ; Crystal structure of Human Cardiac Calsequestrin 7F05 ; 2.298 ; Crystal structure of human cardiac calsequestrin bound with calcium 3RV5 ; 2.2 ; Crystal structure of human cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid 5CFC ; 2.5 ; Crystal Structure of Human Cardiovirus SAFV-3 6DVR ; 1.54 ; Crystal structure of human CARM1 with (R)-SKI-72 6D2L ; 2.0 ; Crystal structure of human CARM1 with (S)-SKI-72 4RUH ; 2.25 ; Crystal structure of Human Carnosinase-2 (CN2) in complex with inhibitor, Bestatin at 2.25 A 3DLJ ; 2.26 ; Crystal structure of human carnosine dipeptidase 1 1NWR ; 2.7 ; Crystal structure of human cartilage gp39 (HC-gp39) 1NWS ; 2.7 ; Crystal structure of human cartilage gp39 (HC-gp39) in complex with chitobiose 1NWT ; 2.5 ; Crystal structure of human cartilage gp39 (HC-gp39) in complex with chitopentaose 1NWU ; 2.2 ; Crystal structure of human cartilage gp39 (HC-gp39) in complex with chitotetraose 5MQV ; 2.154 ; Crystal structure of human Casein Kinase I delta in complex with 4-(2,5-Dimethoxyphenyl)-N-(4-(5-(4-fluorphenyl)-2-(methylthio)-1H-imidazol-4-yl)-pyridin-2-yl)-1-methyl-1H-pyrrole-2-carboxamide 6HMP ; 2.039 ; Crystal structure of human Casein Kinase I delta in complex with a photoswitchable 2-Azoimidazole-based Inhibitor (compound 3) 6HMR ; 1.782 ; Crystal structure of human Casein Kinase I delta in complex with a photoswitchable 2-Azothiazole-based inhibitor (compound 2) 7NZY ; 1.85 ; Crystal structure of human Casein Kinase I delta in complex with CGS-15943 6F1W ; 1.864 ; Crystal structure of human Casein Kinase I delta in complex with compound 31a 6F26 ; 1.83 ; Crystal structure of human Casein Kinase I delta in complex with compound 31b 5OKT ; 2.13 ; Crystal structure of human Casein Kinase I delta in complex with IWP-2 8QWY ; 2.6 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with 4-(6-((5-isopropoxy-2-methoxyphenyl)amino)pyrazin-2-yl)benzoic acid 8QWZ ; 2.6 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with 4-(6-(6-isopropoxy-1H-indol-1-yl)pyrazin-2-yl)benzoic acid 8P06 ; 2.4 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with 5-((2-(4H-1,2,4-triazol-4-yl)pyridin-4-yl)amino)-7-(cyclopropylamino)pyrazolo[1,5-a]pyrimidine-3-carbonitrile 8P07 ; 2.4 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with 5-((3-(4H-1,2,4-triazol-4-yl)phenyl)amino)-7-(cyclopropylamino)pyrazolo[1,5-a]pyrimidine-3-carbonitrile 8PVO ; 2.25 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with allosteric compound FG5 8PVP ; 2.6 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with allosteric compound FGJG18 8BGC ; 2.8 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with compound 2 (AA-CS-9-003) 8P05 ; 2.45 ; Crystal structure of human Casein Kinase II subunit alpha (CK2a1) in complex with Leucettinib-92 2HBR ; 2.2 ; Crystal structure of human caspase-1 (Arg286->Ala) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2HBZ ; 1.9 ; Crystal structure of human caspase-1 (Arg286->Ala, Glu390->Ala) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2H4Y ; 1.9 ; Crystal structure of human caspase-1 (Arg286->Lys) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2FQQ ; 3.3 ; Crystal structure of human caspase-1 (Cys285->Ala, Cys362->Ala, Cys364->Ala, Cys397->Ala) in complex with 1-methyl-3-trifluoromethyl-1H-thieno[2,3-c]pyrazole-5-carboxylic acid (2-mercapto-ethyl)-amide 2H48 ; 2.2 ; Crystal structure of human caspase-1 (Cys362->Ala, Cys364->Ala, Cys397->Ala) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2HBY ; 2.1 ; Crystal structure of human caspase-1 (Glu390->Ala) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2H51 ; 2.1 ; Crystal structure of human caspase-1 (Glu390->Asp and Arg286->Lys) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2H4W ; 2.0 ; Crystal structure of human caspase-1 (Glu390->Asp) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2H54 ; 1.8 ; Crystal structure of human caspase-1 (Thr388->Ala) in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 1RWK ; 2.3 ; Crystal structure of human caspase-1 in complex with 3-(2-mercapto-acetylamino)-4-oxo-pentanoic acid 1RWN ; 2.0 ; Crystal structure of human caspase-1 in complex with 3-{2-ethyl-6-[4-(quinoxalin-2-ylamino)-benzoylamino]-hexanoylamino}-4-oxo-butyric acid 1RWP ; 2.2 ; Crystal structure of human caspase-1 in complex with 3-{6-[(8-hydroxy-quinoline-2-carbonyl)-amino]-2-thiophen-2-yl-hexanoylamino}-4-oxo-butyric acid 1RWW ; 2.8 ; Crystal structure of human caspase-1 in complex with 4-oxo-3-[(6-{[4-(quinoxalin-2-ylamino)-benzoylamino]-methyl}-pyridine-3-carbonyl)-amino]-butyric acid 1RWM ; 2.7 ; Crystal structure of human caspase-1 in complex with 4-oxo-3-[2-(5-{[4-(quinoxalin-2-ylamino)-benzoylamino]-methyl}-thiophen-2-yl)-acetylamino]-pentanoic acid 1RWO ; 2.1 ; Crystal structure of human caspase-1 in complex with 4-oxo-3-{6-[4-(quinoxalin-2-ylamino)-benzoylamino]-2-thiophen-2-yl-hexanoylamino}-pentanoic acid 1RWX ; 1.85 ; Crystal structure of human caspase-1 in complex with 4-oxo-3-{6-[4-(quinoxalin-2-yloxy)-benzoylamino]-2-thiophen-2-yl-hexanoylamino}-butyric acid 1RWV ; 2.1 ; Crystal structure of human caspase-1 in complex with 5-[5-(1-carboxymethyl-2-oxo-propylcarbamoyl)-5-phenyl-pentylsulfamoyl]-2-hydroxy-benzoic acid 6BZ9 ; 1.796 ; Crystal structure of human caspase-1 in complex with Ac-FLTD-CMK 5MTK ; 2.53 ; Crystal structure of human Caspase-1 with (3S,6S,10aS)-N-((2S,3S)-2-hydroxy-5-oxotetrahydrofuran-3-yl)-6-(isoquinoline-1-carboxamido)-5-oxodecahydropyrrolo[1,2-a]azocine-3-carboxamide (PGE-3935199) 5MMV ; 2.15 ; Crystal structure of human Caspase-1 with 2-((2-naphthoyl)-L-valyl)-4-hydroxy-N-((3S)-2-hydroxy-5-oxotetrahydrofuran-3-yl)-2-azabicyclo[2.2.2]octane-3-carboxamide (Compound 1) 3D6F ; 1.9 ; Crystal structure of human caspase-1 with a naturally-occurring Arg240->Gln substitution in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 3D6H ; 2.0 ; Crystal structure of human caspase-1 with a naturally-occurring Asn263->Ser substitution in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 3D6M ; 1.8 ; Crystal structure of human caspase-1 with a naturally-occurring Lys319->Arg substitution in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 6F6R ; 1.8 ; Crystal structure of human Caspase-1 with N-{3-[1-((S)-2-Hydroxy-5-oxo-tetrahydro-furan-3-ylcarbamoyl)-ethyl]-1-methyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl}-4-(quinoxalin-2-ylamino)-benzamide 1PYO ; 1.65 ; Crystal Structure of Human Caspase-2 in Complex with Acetyl-Leu-Asp-Glu-Ser-Asp-cho 6NRY ; 2.184 ; Crystal structure of human caspase-4 5V6U ; 2.8 ; Crystal structure of human caspase-7 soaked with allosteric inhibitor 2-[(2-acetylphenyl)sulfanyl]benzoic acid 5V6Z ; 2.6 ; Crystal structure of human caspase-7 soaked with allosteric inhibitor 2-{[2-(4-chlorophenyl)-2-oxoethyl]sulfanyl}benzoic acid 3BWM ; 1.98 ; Crystal Structure of Human Catechol O-Methyltransferase with bound SAM and DNC 2AVD ; 1.7 ; Crystal Structure of Human Catechol-O-methyltransferase domain containing 1 4HNM ; 2.9001 ; Crystal structure of human catenin-beta-like 1 56 kDa fragment 6QBG ; 1.8 ; Crystal structure of human cathepsin D in complex with macrocyclic inhibitor 14 6QBH ; 1.85 ; Crystal structure of human cathepsin D in complex with macrocyclic inhibitor 33 6QCB ; 1.55 ; Crystal structure of human cathepsin D in complex with macrocyclic inhibitor 9 1M6D ; 1.7 ; Crystal structure of human cathepsin F 2ATO ; 2.0 ; Crystal structure of Human Cathepsin K in complex with myocrisin 6ASH ; 1.423 ; Crystal structure of human Cathepsin K with a non-active site inhibitor at 1.42 Angstrom resolution 7QKC ; 1.69 ; Crystal structure of human Cathepsin L after incubation with Sulfo-Calpeptin 8PRX ; 1.8 ; Crystal structure of human cathepsin L after reaction with the bound ketoamide inhibitor 13b 8B4F ; 1.9 ; Crystal structure of human cathepsin L forming a thiohemiacetal with N-Boc-2-aminoacetaldehyde 8AHV ; 1.7 ; Crystal structure of human cathepsin L in complex with calpain inhibitor XII 7Z58 ; 1.35 ; Crystal structure of human Cathepsin L in complex with covalently bound Calpeptin 7ZVF ; 1.6 ; Crystal structure of human cathepsin L in complex with covalently bound CLIK148 7QKB ; 1.8 ; Crystal structure of human Cathepsin L in complex with covalently bound GC376 8A5B ; 1.8 ; Crystal structure of human cathepsin L in complex with covalently bound MG-101 7QKD ; 1.5 ; Crystal structure of human Cathepsin L in complex with covalently bound MG132 8QKB ; 1.6 ; Crystal structure of human cathepsin L in complex with the vinyl sulfone inhibitor K777 8OFA ; 1.9 ; Crystal structure of human cathepsin L interacting with tosyl phenylalanyl chloromethyl ketone (TPCK) 8A4U ; 1.9 ; Crystal structure of human cathepsin L with CAA0225 7ZXA ; 1.6 ; Crystal structure of human cathepsin L with covalently bound aloxistatin (E-64D) 8A4X ; 1.8 ; Crystal structure of human Cathepsin L with covalently bound Calpain inhibitor III 7ZS7 ; 1.6 ; Crystal structure of human cathepsin L with covalently bound calpain inhibitor VI 8A4W ; 1.4 ; Crystal structure of human cathepsin L with covalently bound Cathepsin L inhibitor IV 8A4V ; 1.65 ; Crystal structure of human cathepsin L with covalently bound E-64 4P6E ; 1.8 ; Crystal Structure of Human Cathepsin S Bound to a Non-covalent Inhibitor 4P6G ; 1.58 ; Crystal Structure of Human Cathepsin S Bound to a Non-covalent Inhibitor. 1FH0 ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN CATHEPSIN V COMPLEXED WITH AN IRREVERSIBLE VINYL SULFONE INHIBITOR 1EF7 ; 2.67 ; CRYSTAL STRUCTURE OF HUMAN CATHEPSIN X 5QBU ; 2.78 ; Crystal structure of human Cathepsin-S with bound ligand 5QBV ; 1.796 ; Crystal structure of human Cathepsin-S with bound ligand 5QBW ; 3.01 ; Crystal structure of human Cathepsin-S with bound ligand 5QBX ; 2.1 ; Crystal structure of human Cathepsin-S with bound ligand 5QBY ; 2.25 ; Crystal structure of human Cathepsin-S with bound ligand 5QBZ ; 2.8 ; Crystal structure of human Cathepsin-S with bound ligand 5QC0 ; 1.9 ; Crystal structure of human Cathepsin-S with bound ligand 5QC1 ; 2.082 ; Crystal structure of human Cathepsin-S with bound ligand 5QC2 ; 2.26 ; Crystal structure of human Cathepsin-S with bound ligand 5QC3 ; 1.998 ; Crystal structure of human Cathepsin-S with bound ligand 5QC4 ; 2.0 ; Crystal structure of human Cathepsin-S with bound ligand 5QC5 ; 2.4 ; Crystal structure of human Cathepsin-S with bound ligand 5QC6 ; 2.1 ; Crystal structure of human Cathepsin-S with bound ligand 5QC7 ; 1.9 ; Crystal structure of human Cathepsin-S with bound ligand 5QC8 ; 1.74 ; Crystal structure of human Cathepsin-S with bound ligand 5QC9 ; 2.0 ; Crystal structure of human Cathepsin-S with bound ligand 5QCA ; 2.29 ; Crystal structure of human Cathepsin-S with bound ligand 5QCB ; 2.2 ; Crystal structure of human Cathepsin-S with bound ligand 5QCC ; 1.8 ; Crystal structure of human Cathepsin-S with bound ligand 5QCD ; 1.95 ; Crystal structure of human Cathepsin-S with bound ligand 5QCE ; 2.78 ; Crystal structure of human Cathepsin-S with bound ligand 5QCF ; 2.1 ; Crystal structure of human Cathepsin-S with bound ligand 5QCG ; 2.7 ; Crystal structure of human Cathepsin-S with bound ligand 5QCH ; 2.2 ; Crystal structure of human Cathepsin-S with bound ligand 5QCI ; 2.179 ; Crystal structure of human Cathepsin-S with bound ligand 5QCJ ; 2.0 ; Crystal structure of human Cathepsin-S with bound ligand 2PFG ; 1.54 ; Crystal structure of human CBR1 in complex with BiGF2. 1WMA ; 1.24 ; Crystal structure of human CBR1 in complex with Hydroxy-PP 1OU5 ; 3.4 ; Crystal structure of human CCA-adding enzyme 6AEZ ; 1.63 ; Crystal structure of human CCL5 trimer 6LOG ; 2.55 ; Crystal structure of human CCL5-12AAA14 mutant 8CE9 ; 2.11 ; Crystal structure of human Cd11b I domain in C121 space group 8CE6 ; 1.582 ; Crystal structure of human Cd11b I domain in P212121 space group 6RHW ; 2.75 ; Crystal structure of human CD11b I-domain (CD11b-I) in complex with Staphylococcus aureus octameric bi-component leukocidin LukGH 6NG9 ; 1.954 ; Crystal structure of human CD160 6NG3 ; 2.88 ; Crystal structure of human CD160 and HVEM complex 6NGG ; 1.95 ; Crystal structure of human CD160 V58M mutant 5L2J ; 1.65 ; Crystal Structure of human CD1b in complex with C36-GMM 8GLH ; 1.83 ; Crystal Structure of Human CD1b in Complex with Endogenous PC C40:5 8GLE ; 1.85 ; Crystal Structure of Human CD1b in Complex with Lysosulfatide 8GLI ; 2.1 ; Crystal Structure of Human CD1b in Complex with Mycobacterial C85-GMM 5WKG ; 2.06 ; Crystal Structure of Human CD1b in Complex with PA 5WL1 ; 1.38 ; Crystal Structure of Human CD1b in Complex with PG 8GLG ; 1.6 ; Crystal Structure of Human CD1b in Complex with Phosphatidylethanolamine C34:1 6D64 ; 1.7 ; Crystal Structure of Human CD1b in Complex with POPC 5WKE ; 1.69 ; Crystal Structure of Human CD1b in Complex with PS 8GLF ; 2.0 ; Crystal Structure of Human CD1b in Complex with Sphingomyelin C34:2 3T8X ; 1.9 ; Crystal structure of human CD1b in complex with synthetic antigenic diacylsulfoglycolipid SGL12 and endogenous spacer 8DV3 ; 1.9 ; Crystal structure of human CD1b presenting Phosphatidylinositol C34:1 6V80 ; 3.53 ; Crystal structure of human CD1d presenting alpha-Galactosylceramide in complex with NKT12 TCR and VHH nanobody 1D12 3HUJ ; 2.5 ; Crystal structure of human CD1d-alpha-Galactosylceramide in complex with semi-invariant NKT cell receptor 3U0P ; 2.8 ; Crystal structure of human CD1d-lysophosphatidylcholine 5VKJ ; 2.12 ; Crystal structure of human CD22 Ig domains 1-3 5VKM ; 2.2 ; Crystal structure of human CD22 Ig domains 1-3 in complex with alpha 2-6 sialyllactose 6ISB ; 2.5 ; crystal structure of human CD226 6Y0M ; 1.5 ; Crystal structure of human CD23 lectin domain N225D, K229E, S252N, T251N mutant 6Y0L ; 1.65 ; Crystal structure of human CD23 lectin domain N225D, K229E, S252N, T251N, R253G, S254G mutant 1YJD ; 2.7 ; Crystal structure of human CD28 in complex with the Fab fragment of a mitogenic antibody (5.11A1) 1XIW ; 1.9 ; Crystal structure of human CD3-e/d dimer in complex with a UCHT1 single-chain antibody fragment 3I9M ; 1.75 ; Crystal structure of human CD38 complexed with an analog ara-2'F-ADPR 3I9N ; 2.01 ; Crystal structure of human CD38 complexed with an analog ribo-2'F-ADP ribose 4F45 ; 2.1 ; Crystal structure of human CD38 E226Q mutant in complex with NAADP 7VKE ; 1.9 ; Crystal structure of human CD38 ECD in complex with UniDab(TM) F11A 1YH3 ; 1.91 ; Crystal structure of human CD38 extracellular domain 3DZF ; 2.01 ; Crystal structure of human CD38 extracellular domain complexed with a covalent intermediate, ara-F-ribose-5'-phosphate 3DZJ ; 1.9 ; Crystal structure of human CD38 extracellular domain E226Q mutant, NMN complex 3DZG ; 1.65 ; Crystal structure of human CD38 extracellular domain, ara-F-ribose-5'-phosphate/nicotinamide complex 3DZH ; 1.6 ; Crystal structure of human CD38 extracellular domain, GTP complex 3DZK ; 1.81 ; Crystal structure of human CD38 extracellular domain, NMN complex 3DZI ; 1.73 ; Crystal structure of human CD38 extracellular domain, ribose-5'-phosphate intermediate/GTP complex 6EDR ; 2.4 ; Crystal Structure of Human CD38 in Complex with 4'-Thioribose NAD+ 3ROK ; 1.65 ; Crystal structure of human CD38 in complex with compound CZ-27 3ROQ ; 2.1 ; Crystal structure of human CD38 in complex with compound CZ-46 3ROM ; 2.04 ; Crystal structure of human CD38 in complex with compound CZ-48 3ROP ; 1.94 ; Crystal structure of human CD38 in complex with compound CZ-50b 4TMF ; 2.05 ; Crystal structure of human CD38 in complex with hydrolysed compound JMS713 3RAJ ; 3.044 ; Crystal structure of human CD38 in complex with the Fab fragment of antibody HB7 1ZVM ; 2.2 ; Crystal structure of human CD38: cyclic-ADP-ribosyl synthetase/NAD+ glycohydrolase 1ALY ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN CD40 LIGAND 7P3I ; 2.29 ; Crystal structure of human CD40/TNFRSF5 in complex with the anti-CD40 DARPin protein 5FN7 ; 2.3 ; Crystal structure of human CD45 extracellular region, domains d1-d2 5FN6 ; 3.3 ; Crystal structure of human CD45 extracellular region, domains d1-d3 5FMV ; 2.9 ; Crystal structure of human CD45 extracellular region, domains d1-d4 5TZU ; 2.1 ; Crystal structure of human CD47 ECD bound to Fab of B6H12.2 5TZT ; 2.89 ; Crystal structure of human CD47 ECD bound to Fab of C47B161 5TZ2 ; 2.302 ; Crystal structure of human CD47 ECD bound to Fab of C47B222 7YGG ; 2.76 ; Crystal structure of human CD47 in complex with engineered SIRPa.D1(N80A) 2OFS ; 2.12 ; Crystal structure of human CD59 1FM5 ; 2.27 ; CRYSTAL STRUCTURE OF HUMAN CD69 1G8Q ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN CD81 EXTRACELLULAR DOMAIN, A RECEPTOR FOR HEPATITIS C VIRUS 6U9S ; 2.4 ; Crystal structure of human CD81 large extracellular loop in complex with 5A6 Fab 5DFV ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN CD81 LARGE EXTRACELLULAR LOOP IN COMPLEX WITH MURINE FAB FRAGMENT K04 6EK2 ; 2.65 ; CRYSTAL STRUCTURE OF HUMAN CD81 LARGE EXTRACELLULAR LOOP IN COMPLEX WITH SINGLE CHAIN FV FRAGMENT 10 6EJG ; 2.82 ; CRYSTAL STRUCTURE OF HUMAN CD81 LARGE EXTRACELLULAR LOOP IN COMPLEX WITH SINGLE CHAIN FV FRAGMENT 4 6EJM ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN CD81 LARGE EXTRACELLULAR LOOP IN COMPLEX WITH SINGLE CHAIN FV FRAGMENT 5 5DFW ; 2.33 ; CRYSTAL STRUCTURE OF HUMAN CD81 LARGE EXTRACELLULAR LOOP IN COMPLEX WITH SINGLE CHAIN FV FRAGMENT K13 7UMG ; 2.4 ; Crystal structure of human CD8aa-MR1-Ac-6-FP complex 7DF1 ; 2.806 ; Crystal structure of human CD98 heavy chain extracellular domain in complex with S1-F4 scFv 3RAW ; 2.09 ; Crystal Structure of human CDC-like kinase 3 isoform in complex with leucettine L41 5VVM ; 3.54 ; Crystal structure of human CDH23 EC21-23 4NST ; 2.2 ; Crystal structure of human Cdk12/Cyclin K in complex with ADP-aluminum fluoride 8P81 ; 2.68 ; Crystal structure of human Cdk12/Cyclin K in complex with inhibitor SR-4835 7NXK ; 3.0 ; Crystal structure of human Cdk12/Cyclin K in complex with the inhibitor BSJ-01-175 6B3E ; 3.06 ; Crystal structure of human CDK12/CyclinK in complex with an inhibitor 5EFQ ; 2.0 ; Crystal structure of human Cdk13/Cyclin K in complex with ADP-aluminum fluoride 7NXJ ; 2.36 ; Crystal structure of human Cdk13/Cyclin K in complex with the inhibitor THZ531 1JVP ; 1.53 ; Crystal structure of human CDK2 (unphosphorylated) in complex with PKF049-365 1Y8Y ; 1.996 ; Crystal structure of human CDK2 complexed with a pyrazolo[1,5-a]pyrimidine inhibitor 1Y91 ; 2.15 ; Crystal structure of human CDK2 complexed with a pyrazolo[1,5-a]pyrimidine inhibitor 2UZB ; 2.7 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2UZD ; 2.72 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2UZE ; 2.4 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2UZL ; 2.4 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2UZN ; 2.3 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2UZO ; 2.3 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 2V0D ; 2.2 ; Crystal structure of human CDK2 complexed with a thiazolidinone inhibitor 1W0X ; 2.2 ; Crystal structure of human CDK2 in complex with the inhibitor olomoucine. 5UQ1 ; 3.201 ; Crystal structure of human Cdk2-Spy1 complex 5UQ2 ; 2.7 ; Crystal structure of human Cdk2-Spy1 complex 5UQ3 ; 3.6 ; Crystal structure of human Cdk2-Spy1-P27 ternary complex 1UA2 ; 3.02 ; Crystal Structure of Human CDK7 4CRL ; 2.4 ; Crystal structure of human CDK8-Cyclin C in complex with cortistatin A 3RGF ; 2.2 ; Crystal Structure of human CDK8/CycC 6QTJ ; 2.48 ; Crystal structure of human CDK8/CYCC in complex with BI 919811 6QTG ; 2.7 ; Crystal structure of human CDK8/CYCC in complex with BI-1347 4F6W ; 2.39 ; Crystal structure of human CDK8/CYCC in complex with compound 1 (N-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-4-[2-({[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]carbamoyl}amino)ethyl]piperazine-1-carboxamide) 4F7N ; 2.65 ; Crystal structure of human CDK8/CYCC in complex with compound 11 (1-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-3-(5-hydroxypentyl)urea) 4F7L ; 2.9 ; Crystal structure of human CDK8/CYCC in complex with compound 2 (tert-butyl [3-({[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]carbamoyl}amino)propyl]carbamate) 4F7J ; 2.6 ; Crystal structure of human CDK8/CYCC in complex with compound 3 (1-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-3-(2-hydroxyethyl)urea) 4F70 ; 3.0 ; Crystal structure of human CDK8/CYCC in complex with compound 4 (1-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-3-[2-(morpholin-4-yl)ethyl]urea) 4F6U ; 2.1 ; Crystal structure of human CDK8/CYCC in complex with compound 5 (1-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-3-[3-(morpholin-4-yl)propyl]urea) 4F6S ; 2.6 ; Crystal structure of human CDK8/CYCC in complex with compound 7 (1-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]urea) 4F7S ; 2.2 ; Crystal structure of human CDK8/CYCC in the DMG-in conformation 4G6L ; 2.7 ; Crystal structure of human CDK8/CYCC in the DMG-in conformation 3BLH ; 2.48 ; Crystal Structure of Human CDK9/cyclinT1 3BLQ ; 2.9 ; Crystal Structure of Human CDK9/cyclinT1 in Complex with ATP 3BLR ; 2.8 ; Crystal Structure of Human CDK9/cyclinT1 in complex with Flavopiridol 6W9E ; 3.1 ; Crystal Structure of Human CDK9/cyclinT1 in complex with MC180295 6GZH ; 3.17 ; Crystal Structure of Human CDK9/cyclinT1 with A86 7RPP ; 2.2 ; Crystal structure of human CEACAM1 with GFCC' and ABED face 8GEV ; 1.85 ; Crystal structure of human cellular retinol binding protein 1 in complex with 1-{[3-(diphenylmethyl)-1,2,4-oxadiazol-5-yl]methyl}-4-(methoxymethyl)piperidine 8GEY ; 1.3 ; Crystal structure of human cellular retinol binding protein 1 in complex with 4-(hydroxymethyl)-1-[(4-methoxy-5,6,7,8-tetrahydronaphthalen-1-yl)sulfonyl]piperidin-4-ol 6E5L ; 1.17 ; Crystal structure of human cellular retinol binding protein 1 in complex with abnormal-cannabidiol (abn-CBD) 6E5T ; 1.55 ; Crystal structure of human cellular retinol binding protein 1 in complex with abnormal-cannabidiorcin (Abn-CBDO) 5H8T ; 1.21 ; Crystal structure of human cellular retinol binding protein 1 in complex with all-trans-retinol 5HBS ; 0.89 ; Crystal structure of human cellular retinol binding protein 1 in complex with all-trans-retinol at 0.89 angstrom. 8GEU ; 1.47 ; Crystal structure of human cellular retinol binding protein 1 in complex with methyl({3-[1-(4-methylphenyl)cyclopentyl]-1,2,4-oxadiazol-5-yl}methyl)[(1-methylpyrazol-4-yl)methyl]amine 8GEM ; 1.55 ; Crystal structure of human cellular retinol binding protein 1 in complex with N-ethyl-N-({3-[1-(4-methylphenyl)cyclopentyl]-1,2,4-oxadiazol-5-yl}methyl)-2-(1H-pyrazol-1-yl)ethanamine 8GD2 ; 1.13 ; Crystal structure of human cellular retinol binding protein 1 in complex with N-methyl-1-{3-[1-(4-methylphenyl)cyclopentyl]-1,2,4-oxadiazol-5-yl}-N-(2-thienylmethyl)methanamine 5HA1 ; 1.35 ; Crystal structure of human cellular retinol binding protein 1 in complex with retinylamine 8GDM ; 1.8 ; Crystal structure of human cellular retinol binding protein 1 in complex with {[3-(diphenylmethyl)-1,2,4-oxadiazol-5-yl]methyl}(methyl)[1-(thiophen-2-yl)ethyl]amine 6BTH ; 1.35 ; Crystal structure of human cellular retinol binding protein 2 (CRBP2) in complex with 2-arachidonoylglycerol (2-AG) 6BTI ; 1.45 ; Crystal structure of human cellular retinol binding protein 2 (CRBP2) in complex with N-arachidonoylethanolamine (AEA) 6E5W ; 2.5 ; Crystal structure of human cellular retinol binding protein 3 in complex with abnormal-cannabidiol (abn-CBD) 6E6M ; 1.55 ; Crystal structure of human cellular retinol-binding protein 1 in complex with cannabidiorcin (CBDO) 6E6K ; 1.3 ; Crystal structure of human cellular retinol-binding protein 4 in complex with abnormal-cannabidiol (abn-CBD) 8D40 ; 3.554 ; Crystal structure of human CELSR1 EC1-4 7SZ8 ; 2.337 ; Crystal structure of human CELSR1 EC4-7 4P0T ; 1.493 ; Crystal structure of human centromere protein M 4K85 ; 1.901 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 12:0 Ceramide-1-Phosphate (12:0-C1P) 4KBS ; 1.898 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 12:0 phosphatidic acid (12:0 PA) 4K84 ; 1.897 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 16:0 ceramide-1-phosphate (16:0-C1P) 4K8N ; 3.102 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 18:1 Ceramide-1-Phosphate (18:1-C1P) 4K80 ; 2.051 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 2:0 ceramide-1-phosphate (2:0-C1P) 4KF6 ; 3.195 ; Crystal structure of human ceramide-1-phosphate transfer protein (CPTP) in complex with 8:0 Ceramide-1-Phosphate (8:0-C1P) 4TZ4 ; 3.01 ; Crystal Structure of Human Cereblon in Complex with DDB1 and Lenalidomide 4MKP ; 1.953 ; Crystal structure of human cGAS apo form 3ENP ; 2.48 ; Crystal structure of human cgi121 7S5A ; 1.37 ; Crystal structure of human chemokine CCL8 3CXL ; 2.6 ; Crystal structure of human chimerin 1 (CHN1) 1HKI ; 2.55 ; Crystal structure of human chitinase in complex with glucoallosamidin B 1HKJ ; 2.6 ; Crystal structure of human chitinase in complex with methylallosamidin 1LQ0 ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN CHITOTRIOSIDASE AT 2.2 ANGSTROM RESOLUTION 1LG1 ; 2.78 ; CRYSTAL STRUCTURE OF HUMAN CHITOTRIOSIDASE IN COMPLEX WITH CHITOBIOSE 1LG2 ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN CHITOTRIOSIDASE IN COMPLEX WITH ETHYLENE GLYCOL 6JK6 ; 1.571 ; Crystal structure of human chitotriosidase-1 (hCHIT) catalytic domain in complex with compound 2-8-s2 5NR8 ; 1.349 ; Crystal structure of human chitotriosidase-1 (hCHIT) catalytic domain in complex with compound 7a 5NRA ; 1.267 ; Crystal structure of human chitotriosidase-1 (hCHIT) catalytic domain in complex with compound 7g 5NRF ; 1.447 ; Crystal structure of human chitotriosidase-1 (hCHIT) catalytic domain in complex with compound 7i 6ZE8 ; 1.5 ; Crystal structure of human chitotriosidase-1 (hCHIT) catalytic domain in complex with compound OATD-01 6JJR ; 1.834 ; Crystal structure of human chitotriosidase-1 (hChit1) catalytic domain in complex with compound 2-8-14 4WKA ; 0.95 ; Crystal structure of human chitotriosidase-1 catalytic domain at 0.95 A resolution 4WJX ; 1.0 ; Crystal structure of human chitotriosidase-1 catalytic domain at 1.0 A resolution 4WK9 ; 1.102 ; Crystal structure of human chitotriosidase-1 catalytic domain in complex with chitobiose (0.3mM) at 1.10 A resolution 4WKH ; 1.05 ; Crystal structure of human chitotriosidase-1 catalytic domain in complex with chitobiose (1mM) at 1.05 A resolution 4WKF ; 1.101 ; Crystal structure of human chitotriosidase-1 catalytic domain in complex with chitobiose (2.5mM) at 1.10 A resolution 2CN5 ; 2.25 ; Crystal structure of human Chk2 in complex with ADP 4A9R ; 2.85 ; CRYSTAL STRUCTURE OF HUMAN CHK2 IN COMPLEX WITH BENZIMIDAZOLE CARBOXAMIDE INHIBITOR 4A9S ; 2.66 ; CRYSTAL STRUCTURE OF HUMAN CHK2 IN COMPLEX WITH BENZIMIDAZOLE CARBOXAMIDE INHIBITOR 4A9T ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN CHK2 IN COMPLEX WITH BENZIMIDAZOLE CARBOXAMIDE INHIBITOR 4A9U ; 2.48 ; CRYSTAL STRUCTURE OF HUMAN CHK2 IN COMPLEX WITH BENZIMIDAZOLE CARBOXAMIDE INHIBITOR 2CN8 ; 2.7 ; Crystal structure of human Chk2 in complex with debromohymenialdisine 2PER ; 2.0 ; Crystal Structure of Human Chloride Intracellular Channel protein 2 1Q22 ; 2.5 ; Crystal structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of DHEA and PAP 1Q1Z ; 2.4 ; Crystal structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of PAP 1Q20 ; 2.3 ; Crystal Structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of PAP and pregnenolone 7NB1 ; 2.3 ; Crystal structure of human choline alpha in complex with an inhibitor 7NB2 ; 2.4 ; Crystal structure of human choline alpha in complex with an inhibitor 7NB3 ; 2.0 ; Crystal structure of human choline alpha in complex with an inhibitor 2I7Q ; 1.9 ; Crystal structure of Human Choline Kinase A 8BI6 ; 2.4 ; Crystal structure of human Choline Kinase A in complex with UNC0638 8BI5 ; 2.5 ; Crystal structure of human Choline Kinase A in complex with UNC0737 2CKO ; 2.15 ; Crystal structure of Human Choline Kinase alpha 2 2CKQ ; 2.4 ; Crystal structure of Human Choline Kinase alpha 2 in complex with Phosphocholine 3F2R ; 2.35 ; Crystal structure of human choline kinase alpha in complex with hemicholinium-3 3G15 ; 1.7 ; Crystal structure of human choline kinase alpha in complex with hemicholinium-3 and ADP 2CKP ; 3.1 ; Crystal structure of Human Choline Kinase alpha-2 in complex with ADP 2IG7 ; 1.8 ; Crystal structure of Human Choline Kinase B 3FEG ; 1.302 ; Crystal structure of human choline kinase beta in complex with phosphorylated hemicholinium-3 and adenosine nucleotide 3LQ3 ; 1.42 ; Crystal structure of human choline kinase beta in complex with phosphorylated hemicholinium-3 and adenosine nucleotide 5LFN ; 2.1 ; Crystal structure of human chondroadherin 5MX1 ; 2.17 ; Crystal structure of human chondroadherin 1HRP ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN CHORIONIC GONADOTROPIN 3F2U ; 1.8 ; Crystal structure of human chromobox homolog 1 (CBX1) 3I8Z ; 1.51 ; Crystal structure of human chromobox homolog 4 (CBX4) 3I90 ; 2.0 ; Crystal structure of human chromobox homolog 6 (CBX6) with H3K27 peptide 3GV6 ; 1.76 ; Crystal Structure of human chromobox homolog 6 (CBX6) with H3K9 peptide 3I91 ; 1.55 ; Crystal structure of human chromobox homolog 8 (CBX8) with H3K9 peptide 4K60 ; 1.5 ; Crystal Structure of Human Chymase in Complex with Fragment 6-bromo-1,3-dihydro-2H-indol-2-one 4K2Y ; 2.3 ; Crystal Structure of Human Chymase in Complex with Fragment Inhibitor 6-chloro-1,3-dihydro-2H-indol-2-one 4K5Z ; 1.8 ; Crystal Structure of Human Chymase in Complex with Fragment Inhibitor 6-chloro-2,3-dihydro-1H-isoindol-1-one 4K69 ; 1.5 ; Crystal Structure of Human Chymase in Complex with Fragment Linked Benzimidazolone Inhibitor: (3S)-3-{3-[(6-bromo-2-oxo-2,3-dihydro-1H-indol-4-yl)methyl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl}hexanoic acid 3S0N ; 1.95 ; Crystal Structure of Human Chymase with Benzimidazolone Inhibitor 4H4F ; 1.9 ; Crystal structure of human chymotrypsin C (CTRC) bound to inhibitor eglin c from Hirudo medicinalis 6R6U ; 1.705 ; Crystal structure of human cis-aconitate decarboxylase 3AMY ; 2.3 ; Crystal structure of human CK2 alpha complexed with apigenin 2ZJW ; 2.4 ; Crystal structure of human CK2 alpha complexed with Ellagic acid 3Q9X ; 2.2 ; Crystal structure of human CK2 alpha in complex with emodin at pH 6.5 3Q9W ; 1.7 ; Crystal structure of human CK2 alpha in complex with emodin at pH 8.5 3Q9Z ; 2.2 ; Crystal structure of human CK2 alpha in complex with Quinalizarin at pH 6.5 3Q9Y ; 1.8 ; Crystal structure of human CK2 alpha in complex with Quinalizarin at pH 8.5 3W8L ; 2.4 ; Crystal structure of human CK2 in complex with inositol hexakisphosphate 4KWP ; 1.25 ; Crystal Structure of Human CK2-alpha in complex with a benzimidazole inhibitor (K164) at 1.25 A resolution 3WAR ; 1.04 ; Crystal structure of human CK2a 3WOW ; 2.5 ; Crystal structure of human CK2a with AMPPNP 3AXW ; 2.5 ; Crystal structure of human CK2alpha complexed with a potent inhibitor 4RLL ; 1.85 ; Crystal structure of human CK2alpha in complex with the ATP-competitive inhibitor 4-[(E)-(fluoren-9-ylidenehydrazinylidene)-methyl] benzoate 6GZM ; 1.59 ; Crystal Structure of Human CKIdelta with A86 1X9D ; 1.41 ; Crystal Structure Of Human Class I alpha-1,2-Mannosidase In Complex With Thio-Disaccharide Substrate Analogue 1FMI ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE 1FO2 ; 2.38 ; CRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE IN COMPLEX WITH 1-DEOXYMANNOJIRIMYCIN 1FO3 ; 1.75 ; CRYSTAL STRUCTURE OF HUMAN CLASS I ALPHA1,2-MANNOSIDASE IN COMPLEX WITH KIFUNENSINE 1I1F ; 2.8 ; Crystal structure of human class i mhc (hla-a2.1) complexed with beta 2-microglobulin and hiv-rt variant peptide i1y 1I1Y ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN CLASS I MHC (HLA-A2.1) COMPLEXED WITH BETA 2-MICROGLOBULIN AND HIV-RT VARIANT PEPTIDE I1Y 3COS ; 2.1 ; Crystal structure of human class II alcohol dehydrogenase (ADH4) in complex with NAD and Zn 1HNA ; 1.85 ; CRYSTAL STRUCTURE OF HUMAN CLASS MU GLUTATHIONE TRANSFERASE GSTM2-2: EFFECTS OF LATTICE PACKING ON CONFORMATIONAL HETEROGENEITY 1HNB ; 3.5 ; CRYSTAL STRUCTURE OF HUMAN CLASS MU GLUTATHIONE TRANSFERASE GSTM2-2: EFFECTS OF LATTICE PACKING ON CONFORMATIONAL HETEROGENEITY 1HNC ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN CLASS MU GLUTATHIONE TRANSFERASE GSTM2-2: EFFECTS OF LATTICE PACKING ON CONFORMATIONAL HETEROGENEITY 5B2G ; 3.5 ; Crystal structure of human claudin-4 in complex with C-terminal fragment of Clostridium perfringens enterotoxin 7KP4 ; 3.37 ; Crystal structure of human claudin-4 in complex with Clostridium perfringens enterotoxin C-terminal domain 6OV2 ; 3.2 ; Crystal structure of human claudin-9 in complex with Clostridium perfringens entertoxin C-terminal domain in closed form 6OV3 ; 3.25 ; Crystal structure of human claudin-9 in complex with Clostridium perfringens entertoxin C-terminal domain in open form 2CL3 ; 1.9 ; Crystal structure of human Cleavage and Polyadenylation Specificity Factor 5 (CPSF5) 2J8Q ; 2.3 ; Crystal structure of human cleavage and polyadenylation specificity factor 5 (CPSF5) in complex with a sulphate ion. 2C6U ; 1.6 ; Crystal structure of human CLEC-2 (CLEC1B) 8JAH ; 2.58 ; Crystal structure of human CLEC12A C-type lectin domain 8W8T ; 2.3 ; Crystal structure of human CLEC12A CRD 8W9J ; 3.5 ; Crystal structure of human CLEC12A ectodomain complexed with 50C1 Fab 4K0N ; 1.25 ; Crystal structure of human CLIC1 C24A mutant 4JZQ ; 1.35 ; Crystal structure of human CLIC1 C24D mutant 4K0G ; 1.4 ; Crystal structure of human CLIC1 C24S mutant 1Z57 ; 1.7 ; Crystal structure of human CLK1 in complex with 10Z-Hymenialdisine 5X8I ; 1.902 ; Crystal structure of human CLK1 in complex with compound 25 8P08 ; 2.4 ; Crystal structure of human CLK1 in complex with Leucettinib-21 8P04 ; 2.6 ; Crystal structure of human CLK1 in complex with Leucettinib-92 5J1V ; 2.52 ; Crystal structure of human CLK1 in complex with pyrido[3,4-g]quinazoline derivative ZW29 (compound 13) 5J1W ; 2.42 ; Crystal structure of human CLK1 in complex with pyrido[3,4-g]quinazoline derivative ZW31 (compound 14) 6R99 ; 2.7 ; Crystal Structure of Human CLN protein 5 (Ceroid Lipofuscinosis Neuronal Protein 5) 7VP9 ; 2.552 ; Crystal structure of human ClpP in complex with ZG111 7WH5 ; 2.13 ; Crystal structure of human ClpP in complex with ZG180 8I7X ; 1.99 ; Crystal structure of human ClpP in complex with ZG36 8HGK ; 1.9 ; Crystal structure of human ClpP in complex with ZK53 7UVU ; 3.24 ; Crystal structure of human ClpP protease in complex with TR-107 7UW0 ; 2.8 ; Crystal structure of human ClpP protease in complex with TR-133 7UVM ; 2.19 ; Crystal structure of human ClpP protease in complex with TR-27 7UVN ; 3.11 ; Crystal structure of human ClpP protease in complex with TR-57 7UVR ; 2.86 ; Crystal structure of human ClpP protease in complex with TR-65 7ZET ; 2.8 ; Crystal structure of human Clusterin, crystal form I 7ZEU ; 3.5 ; Crystal structure of human Clusterin, crystal form II 4J8S ; 1.55 ; Crystal structure of human CNOT1 MIF4G domain in complex with a TTP peptide 5DV2 ; 2.07 ; Crystal structure of human CNOT6L in complex with cytidine-5'-monophosphate 5DV4 ; 1.8 ; Crystal structure of human CNOT6L in complex with neomycin 5E52 ; 2.685 ; Crystal structure of human CNTN5 FN1-FN3 domains 3BVO ; 3.0 ; Crystal structure of human co-chaperone protein HscB 6MV4 ; 1.37 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR IXa 1KSN ; 2.1 ; Crystal Structure of Human Coagulation Factor XA Complexed with FXV673 1EZQ ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR128515 1NFU ; 2.05 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR132747 1NFY ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR200095 1F0S ; 2.1 ; Crystal Structure of Human Coagulation Factor XA Complexed with RPR208707 1F0R ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR208815 1NFX ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR208944 1NFW ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN COAGULATION FACTOR XA COMPLEXED WITH RPR209685 3HON ; 3.0 ; Crystal Structure of Human Collagen XVIII Trimerization Domain (cubic form) 3HSH ; 1.8 ; Crystal structure of human collagen XVIII trimerization domain (Tetragonal crystal form) 2VH7 ; 1.45 ; Crystal structure of human common-type acylphosphatase 5FO7 ; 2.8 ; Crystal Structure of Human Complement C3b at 2.8 Angstrom resolution 5FO9 ; 3.3 ; Crystal Structure of Human Complement C3b in Complex with CR1 (CCP15- 17) 5FOA ; 4.188 ; Crystal Structure of Human Complement C3b in complex with DAF (CCP2-4) 5FO8 ; 2.4 ; Crystal Structure of Human Complement C3b in Complex with MCP (CCP1-4) 5FOB ; 2.6 ; Crystal Structure of Human Complement C3b in complex with Smallpox Inhibitor of Complement (SPICE) 7AD7 ; 2.3 ; Crystal structure of human complement C5 in complex with the K8 bovine knob domain peptide. 7AD6 ; 2.75 ; Crystal structure of human complement C5 in complex with the K92 bovine knob domain peptide. 3T5O ; 2.869 ; Crystal Structure of human Complement Component C6 3OJY ; 2.51 ; Crystal Structure of Human Complement Component C8 6VMJ ; 2.95 ; Crystal structure of human Complement Factor D with anti-Factor D Fab 20D12 6VMK ; 3.01 ; Crystal structure of human Complement Factor D with anti-Factor D Fab 20D12 2UWN ; 2.35 ; Crystal structure of Human Complement Factor H, SCR domains 6-8 (H402 risk variant), in complex with ligand. 2V8E ; 2.5 ; Crystal structure of Human Complement Factor H, SCR domains 6-8 (H402 risk variant), in complex with ligand. 1LF7 ; 1.2 ; Crystal Structure of Human Complement Protein C8gamma at 1.2 A Resolution 2OVD ; 1.8 ; Crystal Structure of Human Complement Protein C8gamma with Laurate 3A7E ; 2.8 ; Crystal structure of human COMT complexed with SAM and 3,5-dinitrocatechol 7ZC3 ; 1.9 ; Crystal structure of human copper chaperone Atox1 bound to zinc ion by CxxC motif 4QOT ; 2.2 ; Crystal structure of human copper chaperone bound to the platinum ion 3IWP ; 2.5 ; Crystal structure of human copper homeostasis protein CutC 5F0W ; 2.7 ; Crystal structure of human copper homeostatic proteins atox1 7DC1 ; 1.75 ; Crystal structure of human copper homeostatic proteins atox1 6AWL ; 2.0 ; Crystal structure of human Coq9 4RHP ; 2.393 ; Crystal structure of human COQ9 in complex with a phospholipid, Northeast Structural Genomics Consortium Target HR5043 7STY ; 2.0 ; Crystal structure of human CORO1C 7KYX ; 1.63 ; Crystal structure of human CORO6 7VN9 ; 4.49 ; Crystal structure of human coronavirus 229E spike protein receptor-binding domain in complex with C04 Fab 7VNG ; 3.8 ; Crystal structure of human coronavirus 229E spike protein receptor-binding domain in complex with S11 Fab 7E6M ; 1.83445 ; Crystal structure of Human coronavirus NL63 3C-like protease 4K5Y ; 2.977 ; Crystal structure of human corticotropin-releasing factor receptor 1 (CRF1R) in complex with the antagonist CP-376395 4Z9G ; 3.183 ; Crystal structure of human corticotropin-releasing factor receptor 1 (CRF1R) in complex with the antagonist CP-376395 in a hexagonal setting with translational non-crystallographic symmetry 4JGZ ; 3.0 ; Crystal structure of human coxsackievirus A16 uncoating intermediate (space group I222) 4JGY ; 3.0 ; Crystal structure of human coxsackievirus A16 uncoating intermediate (space group P4232) 7OJ7 ; 1.78 ; Crystal structure of human coxsackievirus A24v in complex with a pentavalent N-acetylneuraminic acid conjugate 6TSD ; 1.81 ; Crystal structure of human coxsackievirus A24v in complex with pentavalent inhibitor ME0752 7K95 ; 1.9 ; Crystal structure of human CPSF30 in complex with hFip1 7ZYH ; 2.2 ; Crystal structure of human CPSF30 in complex with hFip1 8T1Q ; 1.7 ; Crystal structure of human CPSF73 catalytic segment in complex with compound 1 8T1R ; 2.2 ; Crystal structure of human CPSF73 catalytic segment in complex with compound 2 8OJH ; 2.72 ; Crystal structure of human CRBN-DDB1 in complex with compound 4 8OIZ ; 2.5 ; Crystal structure of human CRBN-DDB1 in complex with Pomalidomide 3N96 ; 2.75 ; Crystal structure of human CRFR2 alpha extracellular domain in complex with Urocortin 1 3N95 ; 2.72 ; Crystal structure of human CRFR2 alpha extracellular domain in complex with Urocortin 2 3N93 ; 2.5 ; Crystal structure of human CRFR2 alpha extracellular domain in complex with Urocortin 3 3AQQ ; 2.798 ; Crystal structure of human CRHSP-24 7B51 ; 2.58 ; Crystal structure of human CRM1 covalently modified by 2-mercaptoethanol at Cys528 5X1A ; 1.821 ; Crystal Structure of Human CRMP-2 5YZA ; 2.3 ; Crystal Structure of Human CRMP-2 with S522D mutation 5YZB ; 2.8 ; Crystal Structure of Human CRMP-2 with S522D-T509D-T514D-S518D mutations crystallized with GSK3b 5YZ5 ; 1.8 ; Crystal Structure of Human CRMP-2 with T509D-T514D-S518D-S522D mutations 5X1C ; 2.101 ; Crystal Structure of Human CRMP-2 without C-terminal Tail 6JVB ; 2.0 ; Crystal Structure of Human CRMP2 1-532, AGE-modified 6JV9 ; 2.26 ; Crystal Structure of Human CRMP2 1-532, unmodified 4D0P ; 1.6 ; Crystal structure of human CSN4 4R14 ; 2.601 ; Crystal structure of human CSN6 MPN domain 6GZD ; 2.28 ; Crystal structure of Human CSNK1A1 with A86 7ZY4 ; 2.55 ; Crystal structure of human CstF77 in complex with hFip1 2OME ; 2.8 ; Crystal structure of human CTBP2 dehydrogenase complexed with NAD(H) 3OSK ; 1.8 ; Crystal structure of human CTLA-4 apo homodimer 4MFV ; 2.92 ; Crystal structure of human CTNNBL1(residues 33~563) 4MFU ; 2.744 ; Crystal structure of human CTNNBL1(residues 77~563) 7FB9 ; 2.7 ; Crystal Structure of Human Cu, Zn Superoxide Dismutase (SOD1) 2ZKX ; 2.72 ; Crystal structure of human Cu-Zn superoxide dismutase mutant G85R in space group I212121 2ZKW ; 1.9 ; Crystal structure of human Cu-Zn superoxide dismutase mutant G85R in space group P21 2ZKY ; 2.4 ; Crystal structure of human Cu-Zn superoxide dismutase mutant G93A 3KH3 ; 3.5 ; Crystal structure of human Cu/Zn superoxide dismutase recombinantly produced in Leishmania tarantolae; P212121 crystal form containing 12 chains in the asymmetric unit 3KH4 ; 3.5 ; Crystal structure of human Cu/Zn superoxide dismutase recombinantly produced in Leishmania tarantolae; P6522 crystal form containing 6 chains in the asymmetric unit 5NLB ; 3.45 ; Crystal structure of human CUL3 N-terminal domain bound to KEAP1 BTB and 3-box 7W3O ; 2.46 ; Crystal structure of human CYB5R3 7FU5 ; 2.18 ; Crystal Structure of human cyclic GMP-AMP synthase 7FU7 ; 2.24 ; Crystal Structure of human cyclic GMP-AMP synthase 7FUI ; 1.74 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with (Z)-2-cyano-N-[4-(3-fluorophenyl)-5-methylsulfonylpyrimidin-2-yl]-3-hydroxy-3-(5-methyl-1,2-oxazol-4-yl)prop-2-enamide 7FUJ ; 1.79 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with (Z)-2-cyano-N-[4-(3-fluorophenyl)-5-methylsulfonylpyrimidin-2-yl]-3-hydroxy-3-(5-methyl-1,2-oxazol-4-yl)prop-2-enamide 7FTR ; 1.64 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with (Z)-N-(4-acetylphenyl)-2-cyano-3-hydroxy-3-(5-methyl-1,2-oxazol-4-yl)prop-2-enamide 7FTU ; 1.65 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with (Z)-N-[4-(4-chlorophenyl)sulfonylphenyl]-2-cyano-3-hydroxy-3-(5-methyl-1,2-oxazol-4-yl)prop-2-enamide 7FUR ; 1.7 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 1-[9-(6-aminopyridin-3-yl)-6,7-dichloro-1,3,4,5-tetrahydropyrido[4,3-b]indol-2-yl]-2-hydroxyethanone 7FU6 ; 2.37 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-benzyl-6-(2-chloro-4-methylphenyl)indazole-4-carboxylic acid 7FU8 ; 1.718 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(2-chloro-5-pyridin-4-ylphenyl)methylamino]-5-propyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FU9 ; 1.668 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(2-chloro-5-pyridin-4-ylphenyl)methylamino]-5-propyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FUO ; 1.81 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(2-chlorophenyl)methylamino]-5-[(2-fluoroanilino)methyl]-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FU4 ; 1.926 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(2-fluoro-4-phenylphenyl)methylamino]-5-propyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FUM ; 2.06 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(4-benzylpiperazin-1-yl)methyl]-6-(2-chloro-4-methylphenyl)-1H-benzimidazole-4-carboxylic acid 7FUN ; 2.07 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(4-benzylpiperazin-1-yl)methyl]-6-(2-chloro-4-methylphenyl)-1H-benzimidazole-4-carboxylic acid 7FU0 ; 1.969 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(4-phenylphenyl)methylamino]-5-(trifluoromethyl)-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FTY ; 2.3 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[(4-phenylphenyl)methylamino]-5-propyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one:2,2,2-trifluoroacetic acid 7FTM ; 1.698 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[2-(4-fluoroanilino)-1,3-thiazol-4-yl]acetic acid 7FTZ ; 2.5 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[2-[3-[[(5-bromo-2-hydroxybenzoyl)amino]methyl]anilino]-1,3-thiazol-4-yl]acetic acid 7FUE ; 2.169 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 2-[[2-chloro-5-(1-methylpyrazol-3-yl)phenyl]methylamino]-5-(2-phenylethyl)-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FTI ; 2.0 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-(4-fluorophenyl)-2-methylpyrazole-3-carboxylic acid 7FUD ; 2.026 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-benzyl-2-[[2-chloro-5-(1-methylpyrazol-3-yl)phenyl]methylamino]-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FUF ; 1.919 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-benzyl-2-[[2-chloro-5-(1-methylpyrazol-3-yl)phenyl]methylamino]-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FUG ; 2.106 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-benzyl-2-[[2-chloro-5-(1-methylpyrazol-3-yl)phenyl]methylamino]-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FTV ; 1.875 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-bromo-2-hydroxy-N-(quinolin-6-ylmethyl)benzamide 7FTW ; 2.208 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-bromo-2-hydroxy-N-[[3-(1-methylpyrazol-4-yl)phenyl]methyl]benzamide 7FTS ; 2.215 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-bromo-N-[[2-fluoro-5-(1-methylpyrazol-4-yl)phenyl]methyl]-2-hydroxybenzamide 7FTT ; 2.235 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-bromo-N-[[2-fluoro-5-(1-methylpyrazol-4-yl)phenyl]methyl]-2-hydroxybenzamide 7FU1 ; 2.074 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 5-[3-[[(5-bromo-2-hydroxybenzoyl)amino]methyl]phenyl]-2-methylpyrazole-3-carboxylic acid 7FUC ; 2.52 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-4-methylphenyl)-2-(morpholin-4-ylmethyl)-1H-benzimidazole-4-carboxylic acid 7FUK ; 1.606 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-4-methylphenyl)-3-(2-phenylethyl)benzimidazole-4-carboxylic acid 7FUB ; 1.981 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-4-methylphenyl)-3-(pyridin-4-ylmethyl)benzimidazole-4-carboxylic acid 7FUQ ; 1.757 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-4-methylphenyl)-3-phenylbenzimidazole-4-carboxylic acid 7FUL ; 2.296 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-4-methylphenyl)-3-[3-(methanesulfonamido)propyl]benzimidazole-4-carboxylic acid 7FTO ; 2.4 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-5-fluoro-4-methylphenyl)-1H-benzimidazole-4-carboxylic acid 7FTQ ; 2.08 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-5-fluoro-4-methylphenyl)-1H-benzimidazole-4-carboxylic acid 7FU2 ; 2.3 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(2-chloro-5-fluoro-4-methylphenyl)-1H-benzimidazole-4-carboxylic acid 7FTP ; 2.48 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 6-(4-chlorophenyl)-10,11-dimethoxy-7-methyl-2,4,6-triazatricyclo[7.3.1.05,13]trideca-1(12),2,4,7,9(13),10-hexaene 7FTL ; 2.2 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 8-chloro-2-(2-hydroxyphenyl)quinoline-4-carboxylic acid 7FU3 ; 1.822 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with 8-chloro-2-(2-hydroxyphenyl)quinoline-4-carboxylic acid 7FTG ; 1.73 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with cGAMP 7FTH ; 2.55 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with cGAMP 7FUP ; 2.411 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with methyl 1-benzoyl-3-methyl-5-(1,2-oxazol-5-yl)pyrazole-4-carboxylate 7FUA ; 1.444 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with phosphate 7FUH ; 1.944 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with phosphate 7FTN ; 2.001 ; Crystal Structure of human cyclic GMP-AMP synthase in complex with propanedioic acid 2B9R ; 2.9 ; Crystal Structure of Human Cyclin B1 1G5S ; 2.61 ; CRYSTAL STRUCTURE OF HUMAN CYCLIN DEPENDENT KINASE 2 (CDK2) IN COMPLEX WITH THE INHIBITOR H717 2IVX ; 1.8 ; Crystal structure of human cyclin T2 at 1.8 A resolution 1PF8 ; 2.51 ; Crystal Structure of Human Cyclin-Dependent Kinase 2 Complexed with a Nucleoside Inhibitor 8EJX ; 1.65 ; Crystal structure of human cyclophilin D (CypD) with in complex with the covalently bound Ebselen inhibitor 3QYU ; 1.54 ; Crystal structure of human cyclophilin D at 1.54 A resolution at room temperature 2BIT ; 1.71 ; Crystal structure of human cyclophilin D at 1.7 A resolution 2BIU ; 1.71 ; Crystal structure of human cyclophilin D at 1.7 A resolution, DMSO complex 2Z6W ; 0.96 ; Crystal structure of human cyclophilin D in complex with cyclosporin A 3NA0 ; 2.5 ; Crystal structure of human CYP11A1 in complex with 20,22-dihydroxycholesterol 3NA1 ; 2.25 ; Crystal structure of human CYP11A1 in complex with 20-hydroxycholesterol 3N9Z ; 2.17 ; Crystal structure of human CYP11A1 in complex with 22-hydroxycholesterol 3N9Y ; 2.1 ; Crystal structure of human CYP11A1 in complex with cholesterol 6BCZ ; 2.23 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BD5 ; 2.5 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BD6 ; 2.5 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BD7 ; 2.42 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BD8 ; 2.38 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BDH ; 2.25 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BDI ; 2.57 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BDK ; 2.67 ; Crystal structure of human CYP3A4 bound to an inhibitor 6BDM ; 2.6 ; Crystal structure of human CYP3A4 bound to an inhibitor 5VCC ; 1.7 ; Crystal structure of human CYP3A4 bound to glycerol 5G5J ; 2.6 ; Crystal structure of human CYP3A4 bound to metformin 5VC0 ; 2.7 ; Crystal structure of human CYP3A4 bound to ritonavir 7LXL ; 2.75 ; Crystal structure of human CYP3A4 bound to the testosterone dimer 4I3Q ; 2.602 ; Crystal structure of human CYP3A4 coordinated to a water molecule 7KS8 ; 2.5 ; Crystal structure of human CYP3A4 with the caged inhibitor 7KSA ; 2.5 ; Crystal structure of human CYP3A4 with the caged inhibitor 7UAY ; 2.78 ; Crystal structure of human CYP3A4 with the caged inhibitor 7UAZ ; 2.65 ; Crystal structure of human CYP3A4 with the caged inhibitor 4FIA ; 2.1 ; Crystal Structure of Human CYP46A1 P450 with bicalutamide Bound 3DAX ; 2.15 ; Crystal structure of human CYP7A1 3V8D ; 1.9 ; Crystal structure of human CYP7A1 in complex with 7-ketocholesterol 3SN5 ; 2.75 ; Crystal structure of human CYP7A1 in complex with cholest-4-en-3-one 7LYX ; 2.6 ; Crystal structure of human CYP8B1 in complex with (S)-tioconazole 2ALF ; 1.9 ; crystal structure of human CypA mutant K131A 3COG ; 2.0 ; Crystal structure of human cystathionase (Cystathionine gamma lyase) in complex with DL-propargylglycine 4COO ; 2.0 ; Crystal structure of human cystathionine beta-synthase (delta516-525) at 2.0 angstrom resolution 7QGT ; 2.691 ; Crystal structure of human cystathionine beta-synthase (delta516-525) in complex with AOAA. 2NMP ; 2.6 ; Crystal structure of human Cystathionine gamma lyase 6NBA ; 2.495 ; Crystal structure of Human Cystathionine gamma lyase with S-3-Carboxpropyl-L-Cysteine 4N6L ; 1.952 ; Crystal structure of human cystatin E/M 4N6M ; 2.9 ; Crystal structure of human cystatin E/M produced in LEXSY 2IC1 ; 2.7 ; Crystal Structure of Human Cysteine Dioxygenase in Complex with Substrate Cysteine 8DYP ; 3.4 ; Crystal structure of human cystine transporter cystinosin 1MQ0 ; 2.4 ; Crystal Structure of Human Cytidine Deaminase 5VBU ; 3.31 ; Crystal Structure of Human Cytochrome P450 21A2 Hydroxyprogesterone Complex 4Y8W ; 2.64 ; Crystal Structure of Human Cytochrome P450 21A2 Progesterone Complex 5WBG ; 2.99 ; Crystal Structure of human Cytochrome P450 2B6 (Y226H/K262R) in complex with an analog of a drug Efavirenz 2F9Q ; 3.002 ; Crystal Structure of Human Cytochrome P450 2D6 1W0E ; 2.8 ; Crystal structure of human cytochrome P450 3A4 1W0F ; 2.65 ; Crystal structure of human cytochrome P450 3A4 1W0G ; 2.73 ; Crystal structure of human cytochrome P450 3A4 2Q9G ; 2.4 ; Crystal structure of human cytochrome P450 46A1 2Q9F ; 1.9 ; Crystal structure of human cytochrome P450 46A1 in complex with cholesterol-3-sulphate 8EOH ; 2.65 ; crystal structure of human Cytochrome P450 8B1 in complex with a C12-Pyridine Containing Steroid 4ENH ; 2.5 ; Crystal Structure of Human Cytochrome P450 CYP46A1 with Fluvoxamine Bound 4J14 ; 2.5 ; Crystal Structure of Human Cytochrome P450 CYP46A1 with Posaconazole Bound 3NXU ; 2.0 ; Crystal structure of human cytochrome P4503A4 bound to an inhibitor ritonavir 1V5H ; 2.4 ; Crystal Structure of Human Cytoglobin (Ferric Form) 2DC3 ; 1.68 ; Crystal structure of human cytoglobin at 1.68 angstroms resolution 4B3W ; 2.8 ; Crystal structure of human cytoglobin H(E7)Q mutant 4I9X ; 2.1 ; Crystal structure of human cytomegalovirus glycoprotein UL141 targeting the death receptor TRAIL-R2 1LQS ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN CYTOMEGALOVIRUS IL-10 BOUND TO SOLUBLE HUMAN IL-10R1 3WZF ; 2.991 ; Crystal structure of human cytoplasmic aspartate aminotransferase 4RH7 ; 3.41 ; Crystal structure of human cytoplasmic dynein 2 motor domain in complex with ADP.Vi 6G2N ; 1.4 ; Crystal structure of human cytosolic 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PAU 4YIH ; 1.82 ; Crystal structure of human cytosolic 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PVU 4YIK ; 1.483 ; Crystal structure of human cytosolic 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PVU 2J2C ; 2.2 ; Crystal structure of Human Cytosolic 5'-Nucleotidase II (NT5C2, cN-II) 2JC9 ; 1.5 ; Crystal structure of Human Cytosolic 5'-Nucleotidase II in complex with adenosine 2JCM ; 2.15 ; Crystal structure of Human Cytosolic 5'-Nucleotidase II in complex with beryllium trifluoride 2VKQ ; 2.5 ; Crystal structure of human cytosolic 5'-nucleotidase III (cN-III, NT5C3) in complex with beryllium trifluoride 2CN1 ; 2.67 ; Crystal structure of Human Cytosolic 5'-Nucleotidase III (NT5C3) 2JGA ; 3.01 ; Crystal structure of human cytosolic 5'-nucleotidase III in complex with phosphate and magnesium 6IY6 ; 3.6 ; Crystal structure of human cytosolic aspartyl-tRNA synthetase (DRS) in complex with glutathion-S transferase (GST) domains from Aminoacyl tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) and glutamyl-prolyl-tRNA synthetase (EPRS) 4J15 ; 2.24 ; Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex 7YH4 ; 2.03 ; Crystal structure of human cytosolic beta-alanyl lysine dipeptidase (PM20D2) 7NWA ; 1.59 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND COMPOUND A 7NWB ; 2.64 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND INHIBITOR COMPOUND 1 7NWE ; 2.54 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND INHIBITOR COMPOUND 10 7NWM ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND INHIBITOR COMPOUND 12 7NWC ; 2.38 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND INHIBITOR COMPOUND 2 7NYA ; 1.85 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SMALL MOLECULE INHIBITOR BAY-069 (COMPOUND 36) 7NXN ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SMALL MOLECULE INHIBITOR COMPOUND 21(5-F) 7NXO ; 1.71 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SMALL MOLECULE INHIBITOR COMPOUND 24(5-F) 7NY2 ; 2.31 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SMALL MOLECULE INHIBITOR COMPOUND 35 7NY9 ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SMALL MOLECULE INHIBITOR COMPOUND 38 7NTR ; 2.23 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC BRANCHED-CHAIN AMINOTRANSFERASE (BCAT1) IN COMPLEX WITH PLP AND SUBSTRATE MIMIC 3-PHENYLPROPIONATE 6VEI ; 2.1 ; Crystal Structure of Human Cytosolic Isocitrate Dehydrogenase (IDH1) R132H Mutant in Complex with NADPH and AG-881 (Vorasidenib) Inhibitor 6VG0 ; 2.66 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC ISOCITRATE DEHYDROGENASE (IDH1) R132H MUTANT IN COMPLEX WITH NADPH and AGI-15056 1T09 ; 2.7 ; Crystal structure of human cytosolic NADP(+)-dependent isocitrate dehydrogenase in complex NADP 1T0L ; 2.41 ; Crystal structure of human cytosolic NADP(+)-dependent isocitrate dehydrogenase in complex with NADP, isocitrate, and calcium(2+) 3INM ; 2.1 ; Crystal structure of human cytosolic NADP(+)-dependent isocitrate dehydrogenase R132H mutant in complex with NADPH, ALPHA-KETOGLUTARATE and CALCIUM(2+) 2E9M ; 1.8 ; Crystal Structure of human Cytosolic Neutral beta-Glycosylceramidase (Klotho-related Prote:KLrP) complex with Galactose and fatty acids 2E9L ; 1.6 ; Crystal Structure of human Cytosolic Neutral beta-Glycosylceramidase (Klotho-related Prote:KLrP) complex with Glucose and fatty acids 1NUR ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE 1NUP ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE COMPLEX WITH NMN 1NUT ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE COMPLEXED WITH ATP ANALOG 1NUS ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE COMPLEXED WITH ATP ANALOG AND NMN 1NUQ ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE COMPLEXED WITH NaAD 1NUU ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN CYTOSOLIC NMN/NaMN ADENYLYLTRANSFERASE COMPLEXED WITH NAD 3CKL ; 2.0 ; Crystal structure of human cytosolic sulfotransferase SULT1B1 in complex with PAP and resveratrol 3F3Y ; 2.2 ; Crystal structure of human cytosolic sulfotransferase SULT2A1 in complex with PAP and lithocholic acid 6LPN ; 2.206 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in apo form 6LPX ; 2.8 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in complex with 2-oxoglutarate (2-OG) 6LPP ; 2.65 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in complex with D-2-hydroxyglutarate (D-2-HG) 6LPT ; 2.621 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in complex with D-lactate (D-LAC) 6LPQ ; 2.8 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in complex with D-malate (D-MAL) 6LPU ; 2.923 ; Crystal structure of human D-2-hydroxyglutarate dehydrogenase in complex with L-2-hydroxyglutarate (L-2-HG) 2DU8 ; 2.5 ; Crystal structure of human D-amino acid oxidase 2E82 ; 2.7 ; Crystal structure of human D-amino acid oxidase complexed with imino-DOPA 3G3E ; 2.2 ; Crystal structure of human D-amino acid oxidase in complex with hydroxyquinolin-2(1H) 2E49 ; 3.2 ; Crystal Structure of Human D-Amino Acid Oxidase in Complex with Imino-Serine 7U9S ; 2.1 ; Crystal structure of human D-amino acid oxidase in complex with inhibitor 7U9U ; 1.66 ; Crystal structure of human D-amino acid oxidase in complex with inhibitor 2E4A ; 2.6 ; Crystal Structure of Human D-Amino Acid Oxidase in complex with o-aminobenzoate 6KBP ; 2.25 ; Crystal structure of human D-amino acid oxidase mutant (P219L) complexed with benzoate 3CUK ; 2.49 ; Crystal structure of human D-amino acid oxidase: bound to an inhibitor 2E48 ; 2.9 ; Crystal Structure of Human D-Amino Acid Oxidase: Substrate-Free Holoenzyme 1N86 ; 3.2 ; Crystal structure of human D-dimer from cross-linked fibrin complexed with GPR and GHRPLDK peptide ligands. 4BC3 ; 1.68 ; Crystal structure of human D-xylulokinase 4BC4 ; 1.79 ; Crystal structure of human D-xylulokinase in complex with D-xylulose 4BC2 ; 1.97 ; Crystal structure of human D-xylulokinase in complex with D-xylulose and adenosine diphosphate 4BC5 ; 1.98 ; Crystal structure of human D-xylulokinase in complex with inhibitor 5- deoxy-5-fluoro-D-xylulose 2Z6E ; 2.8 ; Crystal Structure of Human DAAM1 FH2 3W4J ; 2.74 ; Crystal Structure of human DAAO in complex with coumpound 12 3W4K ; 2.86 ; Crystal Structure of human DAAO in complex with coumpound 13 3W4I ; 2.5 ; Crystal Structure of human DAAO in complex with coumpound 8 3FHT ; 2.2 ; Crystal structure of human Dbp5 in complex with AMPPNP and RNA 3FHC ; 2.8 ; Crystal structure of human Dbp5 in complex with Nup214 4PXW ; 1.72 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) 8OG5 ; 2.2 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 1 8OG6 ; 2.245 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 1 8OGC ; 2.09 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 11 8OO5 ; 2.25 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 13 8OOD ; 1.497 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 15 8OG7 ; 2.64 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 2 8OG8 ; 2.11 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 3 8OG9 ; 2.945 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 4 8OGA ; 2.2 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 6 8OGB ; 2.27 ; Crystal structure of human DCAF1 WD40 repeats (Q1250L) in complex with compound 8 2A7Q ; 2.55 ; Crystal structure of human dCK complexed with clofarabine and ADP 3HP1 ; 2.31 ; Crystal structure of human dCK R104M/D133A in complex with L-dT and ADP 6SZQ ; 2.412 ; Crystal structure of human DDAH-1 6ZUE ; 3.094 ; Crystal structure of human DDB1 bound to human DCAF1 (amino acid residues 1046-1396) 7FEH ; 1.61 ; Crystal structure of human DDR1 in complex with CH5541127 6FER ; 2.87 ; Crystal Structure of human DDR2 kinase in complex with 2-[4,5-difluoro-2-oxo-1'-(1H-pyrazolo[3,4-b]pyridine-5-carbonyl)spiro[indole-3,4'-piperidine]-1-yl]-N-(2,2,2-trifluoroethyl)acetamide 8TBX ; 2.71 ; Crystal structure of human DDX1 helicase in complex with ADP 6B4K ; 2.2 ; Crystal structure of human DDX19B(AMPPNP) 6L5L ; 3.1 ; Crystal structure of human DEAD-box RNA helicase DDX21 at apo state 6L5O ; 1.8 ; Crystal structure of human DEAD-box RNA helicase DDX21 at post-hydrolysis state 6L5N ; 2.242 ; Crystal structure of human DEAD-box RNA helicase DDX21 at post-unwound state 6L5M ; 2.7 ; Crystal structure of human DEAD-box RNA helicase DDX21 in complex with AMP 2I4I ; 2.2 ; Crystal Structure of human DEAD-box RNA helicase DDX3X 8EJM ; 1.8 ; Crystal structure of human DEAH-box helicase DHX15 in complex with SUGP1 G-patch 5XDR ; 2.0 ; Crystal structure of human DEAH-box RNA helicase DHX15 in complex with ADP 3BHY ; 1.24 ; Crystal structure of human death associated protein kinase 3 (DAPK3) in complex with a beta-carboline ligand 3BQR ; 1.75 ; Crystal structure of human death associated protein kinase 3 (DAPK3) in complex with an imidazo-pyridazine ligand 5A6N ; 1.7 ; Crystal structure of human death associated protein kinase 3 (DAPK3) in complex with compound 2 3B6E ; 1.6 ; Crystal structure of human DECH-box RNA Helicase MDA5 (Melanoma differentiation-associated protein 5), DECH-domain 1ZMP ; 1.65 ; Crystal structure of human defensin-5 5CUI ; 2.403 ; Crystal structure of Human Defensin-5 R28A mutant. 5CUM ; 1.752 ; Crystal structure of Human Defensin-5 Y27A mutant crystal form 1. 5CUJ ; 2.08 ; Crystal structure of Human Defensin-5 Y27A mutant crystal form 2. 6W2L ; 2.306 ; Crystal structure of human dehydrodolichyl diphosphate synthase (NgBR/DHDDS) in complex with Mg and IPP 1J99 ; 1.99 ; CRYSTAL STRUCTURE OF HUMAN DEHYDROEPIANDROSTERONE SULFOTRANSFERASE IN COMPLEX WITH SUBSTRATE 3O4R ; 1.7 ; Crystal Structure of Human Dehydrogenase/Reductase (SDR family) member 4 (DHRS4) 6VFW ; 3.6 ; Crystal structure of human delta protocadherin 10 EC1-EC4 6VFT ; 3.71 ; Crystal structure of human delta protocadherin 17 EC1-EC4 3BUV ; 1.35 ; Crystal structure of human Delta(4)-3-ketosteroid 5-beta-reductase in complex with NADP and HEPES. Resolution: 1.35 A. 1XMJ ; 2.3 ; Crystal structure of human deltaF508 human NBD1 domain with ATP 5B1X ; 2.902 ; Crystal structure of human dendritic cell inhibitory receptor (DCIR) C-type lectin domain in complex with biantennary glycan 5B1W ; 3.05 ; Crystal structure of human dendritic cell inhibitory receptor (DCIR) C-type lectin domain in ligand-free form 2A30 ; 3.02 ; Crystal structure of human deoxycytidine kinase in complex with deoxycytidine 2A2Z ; 3.02 ; Crystal Structure of human deoxycytidine kinase in complex with deoxycytidine and uridine diphosphate 2OCP ; 2.8 ; Crystal Structure of Human Deoxyguanosine Kinase 1KD2 ; 1.87 ; Crystal Structure of Human Deoxyhemoglobin in Absence of Any Anions 6XXH ; 1.52 ; Crystal Structure of Human Deoxyhypusine Synthase in apo form 6XXI ; 1.679 ; Crystal Structure of Human Deoxyhypusine Synthase in complex with NAD 6XXM ; 1.67 ; Crystal Structure of Human Deoxyhypusine Synthase in complex with putrescine 6XXK ; 1.65 ; Crystal Structure of Human Deoxyhypusine Synthase in complex with spermidine 6XXJ ; 1.41 ; Crystal Structure of Human Deoxyhypusine Synthase in complex with spermidine and NAD 6XXL ; 1.69 ; Crystal Structure of Human Deoxyhypusine Synthase in complex with spermine 8A0F ; 1.64 ; Crystal structure of human deoxyhypusine synthase variant K329A in complex with NAD and SPD 3VJM ; 2.1 ; Crystal structure of human depiptidyl peptidase IV (DPP-4) in complex with a prolylthiazolidine inhibitor #1 3VJL ; 2.393 ; Crystal structure of human depiptidyl peptidase IV (DPP-4) in complex with a prolylthiazolidine inhibitor #2 3VJK ; 2.49 ; Crystal structure of human depiptidyl peptidase IV (DPP-4) in complex with MP-513 3W2T ; 2.36 ; Crystal structure of human depiptidyl peptidase IV (DPP-4) in complex with vildagliptin 6HZN ; 2.41 ; Crystal structure of human dermatan sulfate epimerase 1 3HQA ; 2.586 ; Crystal structure of human desarg-C5A 3HQB ; 3.299 ; Crystal structure of human desarg-C5A 5IRY ; 3.095 ; Crystal structure of human Desmocollin-1 ectodomain 5ERP ; 2.7 ; Crystal structure of human Desmocollin-2 ectodomain fragment EC2-5 5ERD ; 2.9 ; Crystal structure of human Desmoglein-2 ectodomain 5EQX ; 3.05 ; Crystal structure of human Desmoglein-3 ectodomain 2YT4 ; 2.6 ; Crystal structure of human DGCR8 core 1OV4 ; 2.7 ; Crystal structure of human DHEA-ST complexed with androsterone 5SDB ; 1.55 ; Crystal Structure of Human DHFR complexed with NADP and N10-formyl-tetrahydrofolate 6DAV ; 1.55 ; Crystal Structure of Human DHFR complexed with NADP and N10formyltetrahydrofolate 6QU7 ; 1.52 ; Crystal structure of human DHODH in complex with BAY 2402234 6IDJ ; 1.9 ; Crystal structure of human DHODH in complex with ferulenol 6LP7 ; 1.802 ; Crystal structure of human DHODH in complex with inhibitor 0944 6JME ; 1.8 ; Crystal structure of human DHODH in complex with inhibitor 0946 6LP6 ; 1.795 ; Crystal structure of human DHODH in complex with inhibitor 1214 6JMD ; 1.781 ; Crystal structure of human DHODH in complex with inhibitor 1223 6LP8 ; 1.79 ; Crystal structure of human DHODH in complex with inhibitor 1243 6J3B ; 1.6 ; Crystal structure of human DHODH in complex with inhibitor 1289 6J3C ; 1.851 ; Crystal structure of human DHODH in complex with inhibitor 1291 5H73 ; 1.58 ; Crystal structure of human DHODH with 18F 6OC0 ; 1.4 ; Crystal structure of human DHODH with OSU-03012 6OC1 ; 2.7 ; Crystal structure of human DHODH with TAK-632 2AG5 ; 1.84 ; Crystal Structure of Human DHRS6 6IIE ; 2.142 ; Crystal structure of human diacylglycerol kinase alpha EF-hand domains bound to Ca2+ 3HI7 ; 1.799 ; Crystal structure of human diamine oxidase 3HIG ; 2.09 ; Crystal structure of human diamine oxidase in complex with the inhibitor berenil 3HII ; 2.149 ; Crystal structure of human diamine oxidase in complex with the inhibitor pentamidine 3K5T ; 2.11 ; Crystal structure of human diamine oxidase in space group C2221 4M6L ; 1.7 ; Crystal structure of human dihydrofolate reductase (DHFR) bound to NADP+ and 5,10-dideazatetrahydrofolic acid 4M6K ; 1.396 ; Crystal structure of human dihydrofolate reductase (DHFR) bound to NADP+ and folate 4M6J ; 1.201 ; Crystal structure of human dihydrofolate reductase (DHFR) bound to NADPH 4QHV ; 1.61 ; Crystal structure of human dihydrofolate reductase as complex with pyridopyrimidine 22 (N~6~-METHYL-N~6~-[4-(PROPAN-2-YL)PHENYL]PYRIDO[2,3-D]PYRIMIDINE-2,4,6-TRIAMINE) 1DRF ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE 4KAK ; 1.8 ; Crystal structure of human dihydrofolate reductase complexed with NADPH and 6-ethyl-5-[(3S)-3-[3-methoxy-5-(pyridine-4-yl)phenyl]but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP1006) 2F5Z ; 2.18 ; Crystal Structure of Human Dihydrolipoamide Dehydrogenase (E3) Complexed to the E3-Binding Domain of Human E3-Binding Protein 1ZMC ; 2.53 ; Crystal Structure of Human dihydrolipoamide dehydrogenase complexed to NAD+ 1ZMD ; 2.08 ; Crystal Structure of Human dihydrolipoamide dehydrogenase complexed to NADH 4JS3 ; 2.0 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with 057 4JTT ; 2.1 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with 066 4JTS ; 2.206 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with 072 5HIN ; 1.6 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with 18L compound 4ZL1 ; 1.86 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with 18X at 1.86 A resolution 5H2Z ; 1.58 ; Crystal structure of Human Dihydroorotate Dehydrogenase (DHODH) with 7GF 3KVJ ; 1.94 ; Crystal Structure of Human Dihydroorotate Dehydrogenase (DHODH) with Amino-Benzoic Acid Inhibitor 105 at 1.94A Resolution 3KVK ; 2.05 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with amino-benzoic acid inhibitor 641 at 2.05A resolution 3KVL ; 1.85 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with amino-benzoic acid inhibitor 715 at 1.85A resolution 3KVM ; 2.0 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with amino-benzoic acid inhibitor 951 at 2.00A resolution 4JTU ; 1.9 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with brequinar analogue 5HQE ; 1.62 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with compound 18T 4LS0 ; 2.07 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH01B0033 4JGD ; 2.05 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A016 4RLI ; 2.5 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A048 4LS1 ; 2.2 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A312 4LS2 ; 2.27 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A313 4ZMG ; 1.9 ; Crystal structure of Human Dihydroorotate Dehydrogenase (DHODH) with DH03A338 4RKA ; 2.71 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A347 4RK8 ; 2.22 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A356 4RR4 ; 2.38 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with DH03A367 4YLW ; 1.79 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with No.33 compound 6LZL ; 1.98 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with Piperine 6M2B ; 1.76 ; Crystal structure of human dihydroorotate dehydrogenase (DHODH) with S416 5K9D ; 1.7 ; Crystal structure of human dihydroorotate dehydrogenase at 1.7 A resolution 7Z6C ; 1.85 ; Crystal structure of human Dihydroorotate Dehydrogenase in complex with the inhibitor 2-Hydroxy-N-(2-ispropyl-5-methyl-4-phenoxyphenyl)pyrazolo[1,5-a]pyridine-3-carboxamide. 5K9C ; 1.66 ; Crystal structure of human dihydroorotate dehydrogenase with ML390 2GSE ; 2.4 ; Crystal Structure of Human Dihydropyrimidinease-like 2 5MLE ; 2.48 ; Crystal Structure of Human Dihydropyrimidinease-like 2 (DPYSL2A)/Collapsin Response Mediator Protein (CRMP2 13-516) Mutant Y479E/Y499E 5MKV ; 1.8 ; Crystal Structure of Human Dihydropyrimidinease-like 2 (DPYSL2A)/Collapsin Response Mediator Protein (CRMP2) residues 13-516 1XBS ; 2.5 ; Crystal structure of human dim2: a dim1-like protein 1ZQ9 ; 1.9 ; Crystal structure of human Dimethyladenosine transferase 3P8E ; 2.4946 ; Crystal structure of human DIMETHYLARGININE DIMETHYLAMINOHYDROLASE-1 (DDAH-1) covalently bound with N5-(1-iminopentyl)-L-ornithine 3P8P ; 2.5 ; Crystal Structure of Human Dimethylarginine Dimethylaminohydrolase-1 (DDAH-1) variant C274S bound with N5-(1-iminopentyl)-L-ornithine 3I2E ; 2.03 ; Crystal structure of human dimethylarginine dymethylaminohydrolase-1 (DDAH-1) 5L46 ; 3.09 ; Crystal structure of human dimethylglycine-dehydrogenase 6VGO ; 1.82 ; Crystal Structure of Human Dipeptidase 3 6VGR ; 2.84 ; Crystal Structure of Human Dipeptidase 3 in Complex with Fab of SC-003 2I03 ; 2.4 ; Crystal structure of human dipeptidyl peptidase 4 (DPP IV) with potent alkynyl cyanopyrrolidine (ABT-279) 2DJF ; 2.0 ; Crystal Structure of human dipeptidyl peptidase I (Cathepsin C) in complex with the inhibitor Gly-Phe-CHN2 1K3B ; 2.15 ; Crystal Structure of Human Dipeptidyl Peptidase I (Cathepsin C): Exclusion Domain Added to an Endopeptidase Framework Creates the Machine for Activation of Granular Serine Proteases 3FVY ; 1.9 ; Crystal structure of human Dipeptidyl Peptidase III 1J2E ; 2.6 ; Crystal structure of Human Dipeptidyl peptidase IV 2BUB ; 2.66 ; Crystal Structure Of Human Dipeptidyl Peptidase IV (CD26) in Complex with a Reversed Amide Inhibitor 3H0C ; 2.66 ; Crystal Structure of Human Dipeptidyl Peptidase IV (CD26) in Complex with a Reversed Amide Inhibitor 2I78 ; 2.5 ; Crystal structure of human dipeptidyl peptidase IV (DPP IV) complexed with ABT-341, a cyclohexene-constrained phenethylamine inhibitor 1NU6 ; 2.1 ; Crystal structure of human Dipeptidyl Peptidase IV (DPP-IV) 1NU8 ; 2.5 ; Crystal structure of human dipeptidyl peptidase IV (DPP-IV) in complex with Diprotin A (IPI) 2OLE ; 2.4 ; Crystal Structure Of Human Dipeptidyl Peptidase IV (DPPIV) Complex With Cyclic Hydrazine Derivatives 1WCY ; 2.2 ; Crystal Structure Of Human Dipeptidyl Peptidase IV (DPPIV) Complex With Diprotin A 2G5P ; 2.4 ; Crystal structure of human dipeptidyl peptidase IV (DPPIV) complexed with cyanopyrrolidine (C5-pro-pro) inhibitor 21ac 2G5T ; 2.3 ; Crystal structure of human dipeptidyl peptidase IV (DPPIV) complexed with cyanopyrrolidine (C5-pro-pro) inhibitor 21ag 2G63 ; 2.0 ; Crystal structure of human dipeptidyl peptidase IV (DPPIV) complexed with cyanopyrrolidine (C5-pro-pro) inhibitor 24b 2OAG ; 2.3 ; Crystal structure of human dipeptidyl peptidase IV (DPPIV) with pyrrolidine-constrained phenethylamine 29g 1R9M ; 2.1 ; Crystal Structure of Human Dipeptidyl Peptidase IV at 2.1 Ang. Resolution. 1R9N ; 2.3 ; Crystal Structure of human dipeptidyl peptidase IV in complex with a decapeptide (tNPY) at 2.3 Ang. Resolution 4G1F ; 2.9 ; Crystal Structure of human Dipeptidyl Peptidase IV in complex with a pyridopyrimidinedione analogue 6PCK ; 1.2 ; Crystal structure of human diphosphoinositol polyphosphate phosphohydrolase 1 in complex with 1-IP7 6PCL ; 1.3 ; Crystal structure of human diphosphoinositol polyphosphate phosphohydrolase 1 in complex with 5-IP7 3MCF ; 2.0 ; Crystal structure of human diphosphoinositol polyphosphate phosphohydrolase 3-alpha 6LCA ; 2.4 ; Crystal structure of human Dishevelled1 PDZ domain homotrimer 6LCB ; 1.4 ; Crystal structure of human Dishevelled1 PDZ domain with its inhibitor NPL3009 4BKG ; 2.11 ; crystal structure of human diSUMO-2 1J42 ; 2.5 ; Crystal Structure of Human DJ-1 1P5F ; 1.1 ; Crystal Structure of Human DJ-1 4MNT ; 1.584 ; Crystal structure of human DJ-1 in complex with Cu 6E5Z ; 1.35 ; Crystal structure of human DJ-1 with a natural modification on Cys-106 4OGF ; 1.6 ; Crystal Structure of Human DJ-1 with glyoxylate as substrate analog 6M8Z ; 1.83 ; Crystal structure of human DJ-1 without a modification on Cys-106 1PDW ; 2.2 ; Crystal structure of human DJ-1, P 1 21 1 space group 1PDV ; 1.8 ; Crystal structure of human DJ-1, P 31 2 1 space group 3W6P ; 1.7 ; Crystal structure of human Dlp1 in complex with GDP.AlF4 3W6O ; 1.9 ; Crystal structure of human Dlp1 in complex with GMP-PCP 3W6N ; 2.0 ; Crystal structure of human Dlp1 in complex with GMP-PN.Pi 6R3P ; 2.05 ; Crystal structure of human DMC1 ATPase domain 4B87 ; 2.16 ; Crystal structure of human DNA cross-link repair 1A 8CG9 ; 1.68 ; Crystal structure of human DNA cross-link repair 1A in complex with a cyclic N-hydroxyurea inhibitor 8C8S ; 1.8 ; Crystal structure of human DNA cross-link repair 1A in complex with hydroxamic acid inhibitor (compound 21). 8C8D ; 1.46 ; Crystal structure of human DNA cross-link repair 1A in complex with hydroxamic acid inhibitor (compound 44). 8C8B ; 1.46 ; Crystal structure of human DNA cross-link repair 1A in complex with hydroxamic acid inhibitor (compound 48). 8CEW ; 1.53 ; Crystal structure of human DNA cross-link repair 1A in complex with N-hydroxyimide inhibitor H1 8CF0 ; 1.76 ; Crystal structure of human DNA cross-link repair 1A in complex with quinoxalinedione inhibitor H2 5AHR ; 2.19 ; Crystal structure of human DNA cross-link repair 1A, crystal form B 1X9N ; 3.0 ; Crystal Structure of Human DNA Ligase I bound to 5'-adenylated, nicked DNA 3W5O ; 2.84 ; Crystal Structure of Human DNA ligase IV 3W1B ; 2.4 ; Crystal Structure of Human DNA ligase IV-Artemis Complex (Mercury Derivative) 3W1G ; 2.55 ; Crystal Structure of Human DNA ligase IV-Artemis Complex (Native) 5VBN ; 2.35 ; Crystal Structure of human DNA polymerase epsilon B-subunit in complex with C-terminal domain of catalytic subunit 6V5K ; 2.69 ; Crystal structure of human DNA polymerase eta complexed with N7-nitrogen half-mustard guanine (NHMG) and dCTP* 5DGB ; 1.79 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA EXTENDING AN 1,N6-ETHENODEOXYADENOSINE : dA PAIR BY INSERTING dTMPNPP OPPOSITE TEMPLATE dA 5DGA ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA EXTENDING AN 1,N6-ETHENODEOXYADENOSINE : dT PAIR BY INSERTING dTMPNPP OPPOSITE TEMPLATE dA 5DQI ; 2.3 ; Crystal Structure of Human DNA Polymerase Eta Extending an O4-Ethylthymidine : dA Pair By Inserting dCTP Opposite dG 4EEY ; 2.32 ; Crystal structure of human DNA polymerase eta in ternary complex with a cisplatin DNA adduct 4O3N ; 1.579 ; Crystal structure of human dna polymerase eta in ternary complex with native dna and incoming nucleotide (dcp) 8GKR ; 2.784 ; Crystal structure of human DNA polymerase eta incorporating 5F-dUTP across dA 8GML ; 2.567 ; Crystal structure of human DNA polymerase eta incorporating 5F-dUTP across dG 8SKI ; 2.163 ; Crystal structure of human DNA polymerase eta incorporating 5F-dUTP across HX 8FN3 ; 2.17 ; Crystal structure of human DNA polymerase eta incorporating dITP across dC 8FOG ; 2.29 ; Crystal structure of human DNA polymerase eta incorporating dITP across dT 8G8H ; 1.64 ; Crystal structure of human DNA polymerase eta incorporating ITP across dC 8G8J ; 1.74 ; Crystal structure of human DNA polymerase eta incorporating ITP across dT 8GBF ; 2.11 ; Crystal structure of human DNA polymerase eta incorporating syn-ITP across dT 5F9L ; 2.592 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA INSERTING dAMPNPP ACROSS A DNA TEMPLATE CONTAINING 1,N2-ETHENODEOXYGUANOSINE LESION 5DG8 ; 2.12 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA INSERTING dAMPNPP ACROSS A DNA TEMPLATE CONTAINING 1,N6-ETHENODEOXYADENOSINE LESION 5DQG ; 2.29 ; Crystal Structure of Human DNA Polymerase Eta Inserting dAMPNPP Opposite O4-Ethylthymidine 5DLF ; 1.97 ; Crystal Structure of Human DNA Polymerase Eta Inserting dATP Opposite O4-Methylhymidine 5F9N ; 2.23 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA INSERTING dCMPNPP ACROSS A DNA TEMPLATE CONTAINING 1,N2-ETHENODEOXYGUANOSINE LESION 4RU9 ; 2.65 ; Crystal structure of human DNA polymerase eta inserting dCMPNPP opposite a MeFapy-dG adducted DNA template 5JUM ; 2.6 ; Crystal Structure of Human DNA Polymerase Eta Inserting dCTP Opposite N-(2'-deoxyguanosin-8- yl)-3-aminobenzanthrone (C8-dG-ABA) 5L1I ; 2.78 ; Crystal Structure of Human DNA Polymerase Eta Inserting dCTP Opposite O6-Methyl-2'-deoxyguanosine 5DG9 ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA INSERTING dGMPNPP ACROSS A DNA TEMPLATE CONTAINING 1,N6-ETHENODEOXYADENOSINE LESION 5DQH ; 1.99 ; Crystal Structure of Human DNA Polymerase Eta Inserting dGMPNPP Opposite O4-Ethylthymidine 5DLG ; 2.351 ; Crystal Structure of Human DNA Polymerase Eta Inserting dGMPNPP Opposite O4-Methylhymidine 5L1J ; 1.94 ; Crystal Structure of Human DNA Polymerase Eta Inserting dTMPNPP Opposite O6-Methyl-2'-deoxyguanosine 5DG7 ; 2.26 ; CRYSTAL STRUCTURE OF HUMAN DNA POLYMERASE ETA INSERTING dTTP ACROSS A DNA TEMPLATE CONTAINING 1,N6-ETHENODEOXYADENOSINE LESION 2G4C ; 3.15 ; Crystal Structure of human DNA polymerase gamma accessory subunit 6BRX ; 2.8 ; Crystal Structure of Human DNA polymerase kappa in complex with DNA containing the major cisplatin lesion 6BS1 ; 3.15 ; Crystal Structure of Human DNA polymerase kappa in complex with DNA containing the major cisplatin lesion 1XSL ; 2.3 ; Crystal Structure of human DNA polymerase lambda in complex with a one nucleotide DNA gap 1XSN ; 1.95 ; Crystal Structure of human DNA polymerase lambda in complex with a one nucleotide DNA gap and ddTTP 1XSP ; 2.2 ; Crystal Structure of human DNA polymerase lambda in complex with nicked DNA and pyrophosphate 5CWR ; 2.5 ; Crystal Structure of human DNA polymerase lambda L431A mutant in complex with a one nucleotide DNA gap and dCTP 2GWS ; 2.4 ; Crystal Structure of human DNA Polymerase lambda with a G/G mismatch in the primer terminus 3KGV ; 6.6 ; Crystal Structure of Human DNA-dependent Protein Kinase Catalytic Subunit (DNA-PKcs) 5LUQ ; 4.3 ; Crystal Structure of Human DNA-dependent Protein Kinase Catalytic Subunit (DNA-PKcs) 4YOC ; 2.916 ; Crystal Structure of human DNMT1 and USP7/HAUSP complex 3PTA ; 3.6 ; Crystal structure of human DNMT1(646-1600) in complex with DNA 6KDT ; 2.87 ; Crystal structure of human DNMT3B (Q772R)-DNMT3L complex 6KDL ; 3.274 ; Crystal structure of human DNMT3B-DNMT3L complex (I) 6KDP ; 2.93 ; Crystal structure of human DNMT3B-DNMT3L complex (II) 6KDA ; 2.909 ; Crystal structure of human DNMT3B-DNMT3L in complex with DNA containing CpGpG site 6KDB ; 2.862 ; Crystal structure of human DNMT3B-DNMT3L in complex with DNA containing CpGpT site 4P5E ; 1.35 ; CRYSTAL STRUCTURE OF HUMAN DNPH1 (RCL) WITH 6-NAPHTHYL-PURINE-RIBOSIDE-MONOPHOSPHATE 8QHQ ; 1.78 ; Crystal structure of human DNPH1 bound to hmdUMP 4ER5 ; 2.57 ; Crystal structure of human DOT1L in complex with 2 molecules of EPZ004777 3SR4 ; 2.5 ; Crystal Structure of Human DOT1L in Complex with a Selective Inhibitor 4ER3 ; 2.4 ; Crystal Structure of Human DOT1L in complex with inhibitor EPZ004777 4ER0 ; 2.5 ; Crystal Structure of human DOT1L in complex with inhibitor FED1 4EQZ ; 2.15 ; Crystal structure of human DOT1L in complex with inhibitor FED2 4ER6 ; 2.3 ; Crystal structure of human DOT1L in complex with inhibitor SGC0946 4ER7 ; 2.2 ; Crystal Structure of human DOT1L in complex with inhibitor SGC0947 4M8V ; 1.951 ; Crystal structure of Human double mutant beta2-microglobulin Q8H-L65T 2ONC ; 2.55 ; Crystal structure of human DPP-4 3BJM ; 2.35 ; Crystal structure of human DPP-IV in complex with (1S,3S, 5S)-2-[(2S)-2-AMINO-2-(3-HYDROXYTRICYCLO[3.3.1.13,7]DEC-1- YL)ACETYL]-2-AZABICYCLO[3.1.0]HEXANE-3-CARBONITRILE (CAS), (1S,3S,5S)-2-((2S)-2-AMINO-2-(3-HYDROXYADAMANTAN-1- YL)ACETYL)-2-AZABICYCLO[3.1.0]HEXANE-3-CARBONITRILE (IUPAC), OR BMS-477118 3WQH ; 2.85 ; Crystal Structure of human DPP-IV in complex with Anagliptin 4LKO ; 2.43 ; Crystal structure of human DPP-IV in complex with BMS-744891 5J3J ; 2.75 ; Crystal Structure of human DPP-IV in complex with HL1 5ZID ; 3.0 ; Crystal Structure of human DPP-IV in complex with HL2 3NOX ; 2.338 ; Crystal structure of human DPP-IV in complex with Sa-(+)-(6-(aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidin-2-yl)(morpholino)methanone 3SWW ; 2.0 ; Crystal structure of human dpp-iv in complex with sa-(+)-3-(aminomethyl)-4-(2,4-dichlorophenyl)-6-(2-methoxyphenyl)- 2-methyl-5h-pyrrolo[3,4-b]pyridin-7(6h)-one 3SX4 ; 2.6 ; Crystal structure of human dpp-iv in complex with sa-(+)-3-(aminomethyl)-4-(2,4-dichlorophenyl)-6-(2-methoxyphenyl)- 2-methyl-5h-pyrrolo[3,4-b]pyridin-7(6h)-one 3Q0T ; 2.401 ; Crystal structure of human dpp-iv in complex withsa-(+)- methyl2-(3-(aminomethyl)-4-(2,4-dichlorophenyl)-2-methyl- 7-oxo-5h-pyrrolo[3,4-b]pyridin-6(7h)-yl)acetate 3O95 ; 2.85 ; Crystal Structure of Human DPP4 Bound to TAK-100 3OPM ; 2.72 ; Crystal Structure of Human DPP4 Bound to TAK-294 3O9V ; 2.75 ; Crystal Structure of Human DPP4 Bound to TAK-986 3CCB ; 2.49 ; Crystal Structure of Human DPP4 in complex with a benzimidazole derivative 3CCC ; 2.71 ; Crystal Structure of Human DPP4 in complex with a benzimidazole derivative 4A5S ; 1.62 ; CRYSTAL STRUCTURE OF HUMAN DPP4 IN COMPLEX WITH A NOVAL HETEROCYCLIC DPP4 INHIBITOR 5Y7K ; 2.512 ; Crystal structure of human DPP4 in complex with inhibitor1 5Y7J ; 2.521 ; Crystal structure of human DPP4 in complex with inhibitor2 5Y7H ; 3.0 ; Crystal structure of human DPP4 in complex with inhibitor3 1PQ2 ; 2.7 ; Crystal Structure of Human Drug Metabolizing Cytochrome P450 2C8 1QBG ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN DT-DIAPHORASE (NAD(P)H OXIDOREDUCTASE) 6APX ; 2.491 ; Crystal structure of human dual specificity phosphatase 1 catalytic domain (C258S) as a maltose binding protein fusion in complex with the monobody YSX1 2WGP ; 1.88 ; Crystal structure of human dual specificity phosphatase 14 3CEK ; 2.3 ; Crystal structure of human dual specificity protein kinase (TTK) 3H9F ; 2.6 ; Crystal Structure of Human Dual Specificity Protein Kinase (TTK) in complex with a pyrimido-diazepin ligand 3GFW ; 2.74 ; Crystal Structure of Human Dual Specificity Protein Kinase (TTK) in complex with a pyrolo-pyridin ligand 2ESB ; 2.0 ; Crystal structure of human DUSP18 5Y15 ; 2.1 ; Crystal structure of human DUSP28 5Y16 ; 2.399 ; Crystal structure of human DUSP28(Y102H) 2G6Z ; 2.7 ; Crystal structure of human DUSP5 5H4J ; 1.8 ; Crystal structure of Human dUTPase in complex with N-[(1R)-1-[3-(Cyclopentyloxy)-phenyl]-ethyl]-3-[(3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinyl)methoxy]-1-propanesulfonamide 5ZFW ; 2.103 ; Crystal structure of human DUX4 homeodomains bound to A11G DNA mutant 5ZFY ; 2.3 ; Crystal structure of human DUX4 homeodomains bound to A12C DNA mutant 5ZFZ ; 1.9 ; Crystal structure of human DUX4 homeodomains bound to A12T DNA mutant 5Z6Z ; 2.301 ; Crystal structure of human DUX4 homeodomains bound to DNA 2HZ5 ; 2.1 ; Crystal structure of human dynein light chain Dnlc2A 7OY6 ; 2.38 ; Crystal structure of human DYRK1A in complex with ARN25068 6A1F ; 1.5 ; Crystal structure of human DYRK1A in complex with compound 14 6A1G ; 2.15 ; Crystal structure of human DYRK1A in complex with compound 32 4ZTE ; 2.13 ; Crystal structure of human E-Cadherin (residues 3-213) in complex with a peptidomimetic inhibitor 4ZT1 ; 1.92 ; Crystal structure of human E-Cadherin (residues 3-213) in x-dimer conformation 6VEL ; 2.65 ; Crystal Structure of Human E-cadherin bound by mouse monoclonal antibody 66E8Fab 6CXY ; 2.2 ; Crystal Structure of Human E-cadherin bound by mouse monoclonal antibody Fab mAb-1_19A11 7STZ ; 2.95 ; Crystal Structure of Human E-cadherin EC1-5 bound by mouse monoclonal antibody Fab mAb-1_19A11 4N12 ; 1.478 ; Crystal structure of human E18D DJ-1 in complex with Cu 3GJO ; 2.5 ; Crystal structure of human EB1 in complex with microtubule Tip localization signal peptide of MACF 2DH2 ; 2.1 ; Crystal Structure of human ED-4F2hc 2DH3 ; 2.8 ; Crystal Structure of human ED-4F2hc 7X9G ; 2.8 ; Crystal structure of human EDA and EDAR 3D3J ; 2.8 ; Crystal structure of human Edc3p 3D3K ; 2.2 ; Crystal structure of human Edc3p 7KXT ; 2.15 ; Crystal structure of human EED 8QZZ ; 3.35 ; Crystal structure of human eIF2 alpha-gamma complexed with PPP1R15A_420-452 3ECS ; 2.65 ; Crystal structure of human eIF2B alpha 1RZ4 ; 2.1 ; Crystal Structure of Human eIF3k 7Y4A ; 1.6 ; Crystal structure of human ELMO1 RBD-RhoG complex 6Y7F ; 2.052 ; Crystal structure of human ELOVL fatty acid elongase 7 (ELOVL7) 1Y4M ; 1.6 ; Crystal structure of human endogenous retrovirus HERV-FRD envelope protein (syncitin-2) 1TDH ; 2.1 ; Crystal structure of human endonuclease VIII-like 1 (NEIL1) 5Y7D ; 1.71 ; Crystal structure of human Endothelial-overexpressed LPS associated factor 1 6LRY ; 3.0 ; Crystal structure of human endothelin ETB receptor in complex with sarafotoxin S6b 4NSP ; 2.3 ; Crystal structure of human ENDOV 3B97 ; 2.2 ; Crystal Structure of human Enolase 1 1ZS9 ; 1.7 ; Crystal structure of human enolase-phosphatase E1 1YNS ; 1.7 ; Crystal Structure Of Human Enolase-phosphatase E1 and its complex with a substrate analog 2VX2 ; 2.3 ; Crystal structure of human enoyl Coenzyme A hydratase domain- containing protein 3 (ECHDC3) 4LR2 ; 1.5 ; Crystal Structure of Human ENPP4 (apo) 4LQY ; 1.54 ; Crystal Structure of Human ENPP4 with AMP 3VBS ; 3.0 ; Crystal structure of human Enterovirus 71 4AED ; 3.8 ; Crystal structure of Human enterovirus 71 4CEW ; 2.75 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor ALD 4CDX ; 2.8 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor GPP12 4CDQ ; 2.65 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor GPP2 4CDU ; 2.8 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor GPP3 4CDW ; 2.8 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor GPP4 4CEY ; 2.75 ; Crystal structure of human Enterovirus 71 in complex with the uncoating inhibitor NLD 4WM8 ; 2.0 ; Crystal Structure of Human Enterovirus D68 5BNP ; 2.15 ; Crystal structure of human enterovirus D68 in complex with 3'SLN 5BNN ; 2.32 ; Crystal structure of human enterovirus D68 in complex with 6'SL 5BNO ; 2.15 ; Crystal structure of human enterovirus D68 in complex with 6'SLN 4WM7 ; 2.32 ; Crystal Structure of Human Enterovirus D68 in Complex with Pleconaril 5ZIT ; 3.196 ; Crystal structure of human Enterovirus D68 RdRp in complex with NADPH 5ZIU ; 2.147 ; Crystal structure of human Entervirus D68 RdRp 4QMD ; 1.601 ; Crystal structure of human envoplakin plakin repeat domain 8F5X ; 1.7 ; Crystal structure of human eosinophil-derived neurotoxin (EDN, ribonuclease 2) in complex with 5'-adenosine monophosphate (AMP) 8QQY ; 1.8 ; Crystal structure of human Ephrin type-A receptor 2 (EPHA2) Kinase domain in complex with JG165 8BK0 ; 1.7 ; Crystal structure of human Ephrin type-A receptor 2 (EPHA2) Kinase domain in complex with LDN-211904 8BIN ; 1.5 ; Crystal structure of human Ephrin type-A receptor 2 (EPHA2) Kinase domain in complex with MR21 8BIO ; 1.6 ; Crystal structure of human Ephrin type-A receptor 2 (EPHA2) Kinase domain in complex with MRAL5 4LKT ; 2.57 ; Crystal Structure of Human Epidermal Fatty Acid Binding Protein (FABP5) in Complex with Linoleic Acid 1JL9 ; 3.0 ; Crystal Structure of Human Epidermal Growth Factor 1MOX ; 2.5 ; Crystal Structure of Human Epidermal Growth Factor Receptor (residues 1-501) in complex with TGF-alpha 4B4O ; 2.7 ; Crystal Structure of human epimerase family protein SDR39U1 (isoform2) with NADPH 5E8D ; 2.5 ; Crystal structure of human epiregulin in complex with the Fab fragment of murine monoclonal antibody 9E5 4N40 ; 3.106 ; Crystal structure of human Epithelial cell-transforming sequence 2 protein 2QY7 ; 2.0 ; Crystal structure of human epsinR ENTH domain 6Y4L ; 2.2 ; Crystal structure of human ER membrane protein complex subunits EMC2 and EMC9 3E1Y ; 3.8 ; Crystal structure of human eRF1/eRF3 complex 2XRI ; 2.15 ; Crystal structure of human ERI1 exoribonuclease 3 2Y9Q ; 1.55 ; Crystal structure of human ERK2 complexed with a MAPK docking peptide 3TEI ; 2.404 ; Crystal structure of human ERK2 complexed with a MAPK docking peptide 4FMQ ; 2.098 ; Crystal structure of human ERK2 complexed with a MAPK docking peptide 4H3P ; 2.3 ; Crystal structure of human ERK2 complexed with a MAPK docking peptide 4H3Q ; 2.2 ; Crystal structure of human ERK2 complexed with a MAPK docking peptide 1WZY ; 2.5 ; Crystal structure of human ERK2 complexed with a pyrazolopyridazine derivative 7E75 ; 2.481 ; Crystal structure of human ERK2 mutant (G37C) 7E73 ; 2.28 ; Crystal structure of human ERK2 mutant (Y36H) 4F9Z ; 2.2 ; Crystal Structure of human ERp27 2R2J ; 2.6 ; crystal structure of human ERp44 5GU6 ; 2.0 ; Crystal structure of Human ERp44 form I 5GU7 ; 2.05 ; Crystal Structure of human ERp44 form II 6I65 ; 1.5 ; Crystal structure of human ERRg LBD in complex with 4-iso-propylphenol 6I66 ; 1.6 ; Crystal structure of human ERRg LBD in complex with 4-sec-butylphenol 6I63 ; 2.229 ; Crystal structure of human ERRg LBD in complex with bisphenol-A 6I61 ; 1.65 ; Crystal structure of human ERRg LBD in complex with bisphenol-B 6I64 ; 1.91 ; Crystal structure of human ERRg LBD in complex with bisphenol-E 6I62 ; 1.65 ; Crystal structure of human ERRg LBD in complex with HPTE 6I67 ; 1.75 ; Crystal structure of human ERRg LBD in complex with tetrahydro-2-naphtol 1T8P ; 2.5 ; Crystal structure of Human erythrocyte 2,3-bisphosphoglycerate mutase 1QQW ; 2.75 ; CRYSTAL STRUCTURE OF HUMAN ERYTHROCYTE CATALASE 3F57 ; 2.9 ; Crystal structure of human erythroid beta spectrin repeats 14 and 15 (ankyrin binding domain) 1EER ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN ERYTHROPOIETIN COMPLEXED TO ITS RECEPTOR AT 1.9 ANGSTROMS 3FCX ; 1.5 ; Crystal structure of human esterase D 3Q95 ; 2.05 ; Crystal structure of human estrogen receptor alpha LBD in complex with GRIP peptide and estriol 3HLV ; 3.0 ; Crystal structure of human Estrogen Receptor Alpha Ligand-Binding Domain in complex with a Glucocorticoid Receptor Interacting Protein 1 Nr Box II Peptide and 16-alpha-hydroxy-estrone ((8S,9R,13S,14R,16R)-3,16-dihydroxy-13-methyl-7,8,9,11,12,14,15, 16-octahydro-6H-cyclopenta[a]phenanthren-17-one 3L03 ; 1.896 ; Crystal Structure of human Estrogen Receptor alpha Ligand-Binding Domain in complex with a Glucocorticoid Receptor Interacting Protein 1 Nr Box II peptide and Estetrol (Estra-1,3,5(10)-triene-3,15 alpha,16alpha,17beta-tetrol) 3HM1 ; 2.33 ; Crystal structure of human Estrogen Receptor Alpha Ligand-Binding Domain in complex with a Glucocorticoid Receptor Interacting Protein 1 Nr Box II Peptide and estrone ((8R,9S,13S,14S)-3-hydroxy-13-methyl-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-17-one) 4JVM ; 1.994 ; Crystal structure of human estrogen sulfotransferase (SULT1E1) in complex with inactive cofactor PAP and brominated flame retardant TBBPA (tetrabromobisphenol A) 4JVL ; 1.943 ; Crystal structure of human estrogen sulfotransferase (SULT1E1) in complex with inactive cofactor PAP and estradiol (E2) 4JVN ; 2.05 ; Crystal structure of human estrogen sulfotransferase (SULT1E1) in complex with inactive cofactor PAP and metabolite of brominated flame retardant 3OH BDE47 (3-hydroxyl bromodiphenyl ether) 1G3M ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN ESTROGEN SULFOTRANSFERASE IN COMPLEX WITH IN-ACTIVE COFACTOR PAP AND 3,5,3',5'-TETRACHLORO-BIPHENYL-4,4'-DIOL 1HY3 ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN ESTROGEN SULFOTRANSFERASE V269E MUTANT IN THE PRESENCE OF PAPS 2PJL ; 2.3 ; Crystal Structure of Human Estrogen-Related Receptor alpha in Complex with a Synthetic Inverse Agonist reveals its Novel Molecular Mechanism 2ZBS ; 1.8 ; Crystal structure of human estrogen-related receptor gamma ligand binding domain apo form 2ZAS ; 2.0 ; Crystal structure of human estrogen-related receptor gamma ligand binding domain complex with 4-alpha-cumylphenol, a bisphenol A derivative 2E2R ; 1.6 ; Crystal structure of human estrogen-related receptor gamma ligand binding domain complex with bisphenol A 2ZKC ; 1.7 ; Crystal structure of human estrogen-related receptor gamma ligand binding domain complex with bisphenol Z 6K3N ; 1.97 ; Crystal structure of human estrogen-related receptor gamma ligand binding domain complex with BPA-monoF 1QYW ; 1.63 ; Crystal structure of human estrogenic 17beta-hydroxysteroid dehydrogenase complex with androstanedione and NADP 1QYX ; 1.89 ; Crystal structure of human estrogenic 17beta-hydroxysteroid dehydrogenase complex with androstenedione and NADP 1QYV ; 1.81 ; Crystal structure of human estrogenic 17beta-hydroxysteroid dehydrogenase complex with NADP 6IGK ; 2.0 ; Crystal Structure of human ETB receptor in complex with Endothelin-3 6IGL ; 2.7 ; Crystal Structure of human ETB receptor in complex with IRL1620 8DYS ; 1.8 ; Crystal structure of human Eukaryotic translation initiation factor 2A (eIF2A) 3CPF ; 2.5 ; Crystal structure of human eukaryotic translation initiation factor EIF5A 5V07 ; 2.15 ; Crystal structure of human exonuclease 1 Exo1 (D173A) in complex with 5' recessed-end DNA (rV) 5V08 ; 2.812 ; Crystal structure of human exonuclease 1 Exo1 (D173A) in complex with 5' recessed-end DNA (rVI) 3QE9 ; 2.51 ; Crystal structure of human exonuclease 1 Exo1 (D173A) in complex with DNA (complex I) 5V09 ; 2.75 ; Crystal structure of human exonuclease 1 Exo1 (D225A) in complex with 5' recessed-end DNA (rVII) 5V0A ; 2.38 ; Crystal structure of human exonuclease 1 Exo1 (D225A) in complex with 5' recessed-end DNA (rVIII) 7MXX ; 2.85 ; Crystal structure of human exonuclease 1 Exo1 (R92A) in complex with 5' flap DNA (uf4) 7MXU ; 3.042 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' flap DNA (cf2) 5V0C ; 2.58 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' flap DNA (f2I) 5V0D ; 2.63 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' flap DNA (f2II) 5V0E ; 2.744 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' flap DNA (f5I) 7MXW ; 2.836 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' flap DNA (uf1) 7MXT ; 3.048 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (cmr) 7MXS ; 2.798 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (cr) 7MXQ ; 3.23 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (r-1) 7MXR ; 3.101 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (r-2) 5UZV ; 2.45 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (rI) 5V04 ; 2.65 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (rII) 5V05 ; 2.902 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (rIII) 5V06 ; 2.75 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (rIV) 5V0B ; 2.63 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (rIX) 7MXV ; 2.211 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with 5' recessed-end DNA (ur) 3QEA ; 3.1 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with DNA (complex II) 3QEB ; 3.0 ; Crystal structure of human exonuclease 1 Exo1 (WT) in complex with DNA and Mn2+ (complex III) 2JLP ; 1.7 ; Crystal structure of human extracellular copper-zinc superoxide dismutase. 4RM9 ; 2.0 ; Crystal structure of human ezrin in space group C2221 4RM8 ; 1.9 ; Crystal structure of human ezrin in space group P21 2ZOT ; 2.7 ; Crystal structure of human F-spondin reeler domain (fragment 1) 2ZOU ; 1.45 ; Crystal structure of human F-spondin reeler domain (fragment 2) 1XMI ; 2.25 ; Crystal structure of human F508A NBD1 domain with ATP 5J3D ; 4.077 ; Crystal structure of human Fab 14N4 in complex with post-fusion RSV F 7T1X ; 2.6 ; Crystal structure of human Fab A194-01 in complex with its synthetic heptasaccharide Ara6-Man epitope (BSI110888) 7T1W ; 2.45 ; Crystal structure of human Fab A194-01 in complex with its synthetic tetrasaccharide Ara4 epitope (BSI110886) 4OCR ; 1.895 ; Crystal structure of human Fab CAP256-VRC26.01, a potent V1V2-directed HIV-1 neutralizing antibody 4OD1 ; 2.69 ; Crystal structure of human Fab CAP256-VRC26.03, a potent V1V2-directed HIV-1 neutralizing antibody 4ORG ; 3.121 ; Crystal structure of human Fab CAP256-VRC26.04, a potent V1V2-directed HIV-1 neutralizing antibody 4OCW ; 3.001 ; Crystal structure of human Fab CAP256-VRC26.06, a potent V1V2-directed HIV-1 neutralizing antibody 4OD3 ; 2.616 ; Crystal structure of human Fab CAP256-VRC26.07, a potent V1V2-directed HIV-1 neutralizing antibody 4OCS ; 1.901 ; Crystal structure of human Fab CAP256-VRC26.10, a potent V1V2-directed HIV-1 neutralizing antibody 5DT1 ; 1.954 ; Crystal structure of human Fab CAP256-VRC26.25, a potent V1V2-directed HIV-1 broadly neutralizing antibody 4ODH ; 2.894 ; Crystal structure of human Fab CAP256-VRC26.UCA, a potent V1V2-directed HIV-1 neutralizing antibody 6P3S ; 4.0 ; Crystal structure of human Fab H5.28 in complex with influenza A H5N1 Vietnam hemagglutinin head domain 6P3R ; 3.0 ; crystal structure of human Fab H5.31 in complex with influenza A H5N1 Vietnam hemagglutinin head domain 3MUG ; 2.49 ; Crystal structure of human Fab PG16, a broadly reactive and potent HIV-1 neutralizing antibody 4RQQ ; 3.1 ; Crystal structure of human Fab PGDM1400, a broadly reactive and potent HIV-1 neutralizing antibody 4JY4 ; 2.8 ; Crystal structure of human Fab PGT121, a broadly reactive and potent HIV-1 neutralizing antibody 4JY5 ; 1.75 ; Crystal structure of human Fab PGT122, a broadly reactive and potent HIV-1 neutralizing antibody 4JY6 ; 2.5 ; Crystal structure of human Fab PGT123, a broadly reactive and potent HIV-1 neutralizing antibody 4R26 ; 2.4969 ; Crystal structure of human Fab PGT124, a broadly neutralizing and potent HIV-1 neutralizing antibody 5UY3 ; 2.9 ; Crystal structure of human Fab PGT144, a broadly reactive and potent HIV-1 neutralizing antibody 3U1S ; 2.3 ; Crystal structure of human Fab PGT145, a broadly reactive and potent HIV-1 neutralizing antibody 7STR ; 1.5 ; Crystal Structure of Human Fab S24-1063 in the Complex with the N-teminal Domain of Nucleocapsid Protein from SARS CoV-2 7STS ; 2.16 ; Crystal Structure of Human Fab S24-1379 in the Complex with the N-teminal Domain of Nucleocapsid Protein from SARS CoV-2 7N3D ; 1.53 ; Crystal Structure of Human Fab S24-1564 in the complex with the N-terminal Domain of Nucleocapsid protein from SARS CoV-2 7SUE ; 2.9 ; Crystal Structure of Human Fab S24-188 in the complex with the N-teminal Domain of Nucleocapsid protein from SARS CoV-2 7N3C ; 1.82 ; Crystal Structure of Human Fab S24-202 in the complex with the N-terminal Domain of Nucleocapsid protein from SARS CoV-2 7G00 ; 2.6 ; Crystal Structure of human FABP1 in complex with 2-[[3-(5-tert-butyl-1,2,4-oxadiazol-3-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]cyclopentene-1-carboxylic acid 7FY8 ; 2.23 ; Crystal Structure of human FABP1 in complex with 2-[[4-cyclopropyl-5-methyl-3-[3-(trifluoromethyl)-1,2,4-oxadiazol-5-yl]thiophen-2-yl]carbamoyl]cyclopentene-1-carboxylic acid 7FZQ ; 1.597 ; Crystal Structure of human FABP3 in complex with myristate 7G10 ; 1.26 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with 1-[(4-chloro-2-phenoxyphenyl)methyl]-4-hydroxypyridin-2-one 7FWM ; 1.17 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with 1-[(4-chloro-2-phenylphenyl)methyl]-4-hydroxypyridin-2-one 7FW8 ; 1.16 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with 6-chloro-2-methyl-4-phenylquinoline-3-carboxylic acid 7FWQ ; 1.2 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with 6-chloro-4-(2-chlorophenoxy)-2-methylquinoline-3-carboxylic acid 7FXX ; 1.29 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with 6-cyclopentyl-N,5-dimethyl-4-phenyl-N-propan-2-yl-3-(1H-tetrazol-5-yl)pyridin-2-amine 7FZK ; 1.12 ; Crystal Structure of human FABP4 binding site mutated to that of FABP3 in complex with myristate 7FWX ; 1.13 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 7FZU ; 1.25 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-(indole-1-carbonylamino)benzoic acid 7FY4 ; 1.51 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-benzyl-6-tert-butyl-3-methyl-4-phenyl-5-(1H-tetrazol-5-yl)pyridine 7FY9 ; 1.74 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-cyclopentyl-4-(4-fluorophenyl)-6-[1-(methoxymethyl)cyclopentyl]-3-methyl-5-(1H-tetrazol-5-yl)pyridine 7G0C ; 1.14 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-[2,3-bis[(2-chlorophenyl)methoxy]phenyl]-2-methoxyacetic acid 7G0O ; 1.32 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5-dimethylthiophen-2-yl]carbamoyl]cyclohexene-1-carboxylic acid 7FX2 ; 1.47 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 2-[[6,6-difluoro-3-(4-methyl-1,3-thiazol-2-yl)-5,7-dihydro-4H-1-benzothiophen-2-yl]carbamoyl]cyclohexene-1-carboxylic acid 7G13 ; 1.15 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 4-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]-3,6-dihydro-2H-pyran-5-carboxylic acid 7G1W ; 1.34 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 5-(3,5-dichloroanilino)-3,3-dimethyl-5-oxopentanoic acid 7FYM ; 1.21 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 5-(3-bromo-4-methylphenyl)-3,3-dimethyl-5-oxopentanoic acid 7FWF ; 1.24 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 5-cyclohexyl-6-(2,2,2-trifluoroethoxy)-2-(trifluoromethyl)pyridine-3-carboxylic acid 7FXS ; 1.25 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 5-phenoxy-6-(2,2,2-trifluoroethoxy)-2-(trifluoromethyl)pyridine-3-carboxylic acid 7G0Z ; 0.84 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 5-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]-3,6-dihydro-2H-pyran-4-carboxylic acid 7G1P ; 1.28 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 6-chloro-5-fluoro-1H-benzimidazole 7FWV ; 1.45 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 6-cyclopentyl-N,5-dimethyl-4-phenyl-N-propan-2-yl-3-(1H-tetrazol-5-yl)pyridin-2-amine 7FYH ; 1.34 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with 6-fluoro-1,3-benzothiazol-2-amine 7G0X ; 1.48 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with isoquinolin-3-amine 7FXL ; 1.12 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with myristic acid 7G12 ; 1.64 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with N-methyl-6-(3-methylthiophen-2-yl)-4-phenyl-N-propan-2-yl-3-(1H-tetrazol-5-yl)pyridin-2-amine 7G1M ; 1.34 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with rac-(1R,2R)-2-[[3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]cyclohexane-1-carboxylic acid 7FZT ; 1.4 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with rac-(1R,2S)-2-[(3,4-dichlorobenzoyl)amino]cyclohexane-1-carboxylic acid 7G15 ; 1.28 ; Crystal Structure of human FABP4 binding site mutated to that of FABP5 in complex with rac-(1R,2S)-2-[(3,4-dichlorophenoxy)methyl]cyclohexane-1-carboxylic acid 8WDX ; 1.65 ; Crystal structure of human FABP4 complexed with C3 8WE3 ; 1.82 ; Crystal structure of human FABP4 complexed with C7 5Y0X ; 1.604 ; Crystal structure of human FABP4 complexed with ligand 2-fluoro-3-((4-methoxynaphthalene)-1-sulfonamido)benzoic acid 5Y0F ; 1.54 ; Crystal structure of human FABP4 complexed with ligand 2-fluoro-5-((4-methoxynaphthalene)-1-sulfonamido) benzoic acid 5Y0G ; 1.542 ; Crystal structure of human FABP4 complexed with ligand 4-Fluoro-3-((4-methoxynaphthalene)-1-sulfonamido) benzoic acid 5Y13 ; 1.75 ; Crystal structure of human FABP4 complexed with ligand 5-((4-bromonaphthalene)-1-sulfonamido)pentanoic acid 5Y12 ; 1.75 ; Crystal structure of human FABP4 complexed with ligand 5-((4-methoxynaphthalene)-1-sulfonamido)pentanoic acid 7FWS ; 1.1 ; Crystal Structure of human FABP4 covalently modified with 1,2-benzothiazol-3-one 7FVV ; 1.08 ; Crystal Structure of human FABP4 in complex with (1S,2R)-2-[(5-carbamoyl-3-ethoxycarbonyl-4-methyl-2-thienyl)carbamoyl]cyclohexanecarboxylic acid 7FYP ; 1.12 ; Crystal Structure of human FABP4 in complex with (1S,2S)-2-[(1R,2S,5R)-5-methyl-2-propan-2-ylcyclohexyl]oxycarbonylcyclopropane-1-carboxylic acid 7FZN ; 1.12 ; Crystal Structure of human FABP4 in complex with (1S,2S,5R)-3-(2-thiophen-3-ylacetyl)-3-azabicyclo[3.1.0]hexane-2-carboxylic acid 7FYC ; 1.08 ; Crystal Structure of human FABP4 in complex with (2R)-1-[(2-phenylphenyl)carbamoyl]pyrrolidine-2-carboxylic acid 7G0K ; 1.13 ; Crystal Structure of human FABP4 in complex with (2R)-1-[(3,5-dichloro-2-phenylphenyl)carbamoyl]pyrrolidine-2-carboxylic acid 7G0H ; 1.46 ; Crystal Structure of human FABP4 in complex with (2R,3S)-2-(phenoxymethyl)-1-phenyl-pyrrolidine-3-carboxylic acid 7FZX ; 1.07 ; Crystal Structure of human FABP4 in complex with (2S)-6-(4-chlorophenoxy)-2-(4-methylphenoxy)hexanoic acid 7FWW ; 1.05 ; Crystal Structure of human FABP4 in complex with (3-bromophenyl)-[(2Z)-2-phenylimino-1,3-thiazepan-3-yl]methanone 7FXY ; 1.13 ; Crystal Structure of human FABP4 in complex with (4-chlorophenyl)methyl 5-fluoro-2,4-dioxo-1H-pyrimidine-6-carboxylate 7FVZ ; 1.12 ; Crystal Structure of human FABP4 in complex with (E)-6-(5-methoxy-3,6,7-trimethyl-1,2-benzoxazol-4-yl)-4-methyl-hex-4-enoic acid 7FXP ; 1.05 ; Crystal Structure of human FABP4 in complex with (Z)-4-(4-bromo-2-chloroanilino)-4-oxobut-2-enoic acid 7G1F ; 0.91 ; Crystal Structure of human FABP4 in complex with 1-(4-methylphenyl)sulfonyl-3-(8-tricyclo[5.2.1.02,6]decanyl)urea 7FZV ; 2.55 ; Crystal Structure of human FABP4 in complex with 1-[(2,4-dichlorophenyl)methyl]-4-hydroxy-3-[(E)-3-phenylprop-2-enyl]pyridin-2-one 7FWK ; 0.95 ; Crystal Structure of human FABP4 in complex with 1-[(2-chlorophenyl)methyl]pyrrole-2-carboxamide 7FWG ; 1.13 ; Crystal Structure of human FABP4 in complex with 1-[(4-chloro-3-phenoxyphenyl)methyl]-4-hydroxypyridin-2-one 7FXJ ; 1.03 ; Crystal Structure of human FABP4 in complex with 1-[(4-chlorophenyl)methyl]-3,4-dihydroxy-2H-pyrrol-5-one 7FYE ; 1.25 ; Crystal Structure of human FABP4 in complex with 1-[(4-chlorophenyl)methyl]-4-hydroxypyridin-2-one 7G20 ; 1.12 ; Crystal Structure of human FABP4 in complex with 1-[(4-methoxyphenyl)methyl]-5-propan-2-yl-5-prop-2-enyl-1,3-diazinane-2,4,6-trione 7G0T ; 1.65 ; Crystal Structure of human FABP4 in complex with 1-[[4-chloro-2-(trifluoromethyl)phenyl]carbamoylamino]cyclopentane-1-carboxylic acid 7G0S ; 1.02 ; Crystal Structure of human FABP4 in complex with 2,3-bis(phenylmethoxy)benzoic acid 7G11 ; 1.12 ; Crystal Structure of human FABP4 in complex with 2,4,6-triisopropylbenzenesulfonic acid 7FY5 ; 1.12 ; Crystal Structure of human FABP4 in complex with 2,5,5-trimethyl-6,7,8,9-tetrahydrobenzo[7]annulene-3-carboxylic acid 7G05 ; 0.95 ; Crystal Structure of human FABP4 in complex with 2,6-dichloro-4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenol 7G17 ; 1.05 ; Crystal Structure of human FABP4 in complex with 2-(1H-indol-7-yloxymethyl)-1,3-thiazole-4-carboxylic acid 7G1G ; 1.03 ; Crystal Structure of human FABP4 in complex with 2-(2-hydroxy-3,5,5,8,8-pentamethyl-3,4,4a,6,7,8a-hexahydro-1H-naphthalen-2-yl)acetic acid 7G0Y ; 0.99 ; Crystal Structure of human FABP4 in complex with 2-(2-methoxyanilino)benzoic acid 7FYQ ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-(3,5-ditert-butyl-2-hydroxyphenyl)-3,3,3-trifluoro-2-hydroxypropanoic acid 7G1H ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-(3,5-ditert-butyl-2-hydroxyphenyl)-3,3,3-trifluoro-2-hydroxypropanoic acid 7G08 ; 0.99 ; Crystal Structure of human FABP4 in complex with 2-(3-chloro-2-methylanilino)benzoic acid 7FX9 ; 1.1 ; Crystal Structure of human FABP4 in complex with 2-(3-cyanoanilino)benzoic acid 7FX1 ; 0.99 ; Crystal Structure of human FABP4 in complex with 2-(3-phenyl-4-piperidin-1-ylphenyl)acetic acid 7FXQ ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-(5,6,7,8,9,10-hexahydrobenzo[8]annulen-3-yl)acetic acid 7FZF ; 1.09 ; Crystal Structure of human FABP4 in complex with 2-(6-methyl-4-oxo-5-phenylthieno[2,3-d]pyrimidin-3-yl)butanoic acid 7FXE ; 1.04 ; Crystal Structure of human FABP4 in complex with 2-(9-benzyl-6-methyl-1,2,3,4-tetrahydrocarbazol-1-yl)acetic acid 7FWU ; 1.01 ; Crystal Structure of human FABP4 in complex with 2-(fluoren-9-ylidenemethyl)-4-hydroxy-2,3-dihydropyran-6-one 7FY7 ; 1.05 ; Crystal Structure of human FABP4 in complex with 2-(indole-1-carbonylamino)benzoic acid 7FYU ; 1.17 ; Crystal Structure of human FABP4 in complex with 2-benzyl-6-tert-butyl-3-methyl-4-phenyl-5-(1H-tetrazol-5-yl)pyridine 7FXG ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-chloro-4,6-bis(trifluoromethylsulfanyl)phenol 7FY2 ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-chloro-5-pyrrol-1-ylbenzoic acid 7FWO ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-cyclohexyl-6-hydroxy-1-benzofuran-3-one 7FW1 ; 1.26 ; Crystal Structure of human FABP4 in complex with 2-cyclopentyl-4-(4-fluorophenyl)-6-[1-(methoxymethyl)cyclopentyl]-3-methyl-5-(1H-tetrazol-5-yl)pyridine 7FXB ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-methyl-2-(2,3,4,5,6-pentachlorophenoxy)propanoic acid 7FZ0 ; 1.02 ; Crystal Structure of human FABP4 in complex with 2-tert-butyl-6-ethyl-4,5-diphenyl-3-(1H-tetrazol-5-yl)pyridine 7G0M ; 1.05 ; Crystal Structure of human FABP4 in complex with 2-tert-butylsulfanyl-6-phenyl-1H-1,3,5-triazine-4-thione 7FXF ; 0.95 ; Crystal Structure of human FABP4 in complex with 2-[(2-chlorophenoxy)methyl]-1,3-thiazole-4-carboxylic acid 7FXH ; 1.02 ; Crystal Structure of human FABP4 in complex with 2-[(2R)-oxolan-2-yl]-4-phenyl-3-(1H-tetrazol-5-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 7FXN ; 1.02 ; Crystal Structure of human FABP4 in complex with 2-[(2S)-oxolan-2-yl]-4-phenyl-3-(1H-tetrazol-5-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 7FW7 ; 1.06 ; Crystal Structure of human FABP4 in complex with 2-[(3-chloro-4-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid 7FWY ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-[(3-chloro-5,6-dihydrobenzo[b][1]benzothiepin-6-yl)sulfanyl]acetic acid 7FW6 ; 1.04 ; Crystal Structure of human FABP4 in complex with 2-[(3-chlorophenoxy)methyl]-4-phenoxycyclohexane-1-carboxylic acid 7FVY ; 1.0 ; Crystal Structure of human FABP4 in complex with 2-[(3-chlorophenyl)methyl]-1,3-thiazole-4-carboxylic acid 7FW9 ; 1.0 ; Crystal Structure of human FABP4 in complex with 2-[(3-ethoxycarbonyl-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)carbamoyl]cyclopentene-1-carboxylic acid 7G1R ; 0.93 ; Crystal Structure of human FABP4 in complex with 2-[(3-ethoxycarbonylthiophen-2-yl)carbamoyl]cyclopentene-1-carboxylic acid 7G1Y ; 0.95 ; Crystal Structure of human FABP4 in complex with 2-[(3-methoxyphenyl)sulfanylmethyl]-1,3-thiazole-4-carboxylic acid 7FYX ; 1.4 ; Crystal Structure of human FABP4 in complex with 2-[(3-phenylthiophen-2-yl)carbamoyl]cyclopentene-1-carboxylic acid 7G1A ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-[(3S)-oxolan-3-yl]oxy-4-phenyl-3-(1H-tetrazol-5-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 8S1K ; 1.22 ; Crystal Structure of human FABP4 in complex with 2-[1-(methoxymethyl)cyclopentyl]-6-pentyl-4-phenyl-3-(1H-tetrazol-5-yl)-5,6,7,8-tetrahydroquinoline 7G1B ; 1.17 ; Crystal Structure of human FABP4 in complex with 2-[1-[(3-chlorophenyl)methyl]indol-2-yl]cyclopropane-1-carboxylic acid 7FYZ ; 1.13 ; Crystal Structure of human FABP4 in complex with 2-[2,3-bis[(2-chlorophenyl)methoxy]phenyl]-2-methoxyacetic acid 7FVW ; 1.04 ; Crystal Structure of human FABP4 in complex with 2-[2-(3-chlorophenyl)ethyl]-1,3-thiazole-4-carboxylic acid 7FVU ; 1.24 ; Crystal Structure of human FABP4 in complex with 2-[2-(benzothiophen-3-yl)-2,3-dihydrobenzothiophene-3-carbonyl]benzoic acid 7FZ7 ; 1.12 ; Crystal Structure of human FABP4 in complex with 2-[2-[(2-chlorophenyl)methyl]-1-hydroxycyclohexyl]acetic acid 7G0J ; 1.08 ; Crystal Structure of human FABP4 in complex with 2-[3-(4-chloro-2-phenoxyphenyl)phenyl]acetic acid 7FZB ; 1.08 ; Crystal Structure of human FABP4 in complex with 2-[5-methyl-2-(1-methylcyclohexyl)-1,3-oxazol-4-yl]acetic acid 7FXR ; 0.99 ; Crystal Structure of human FABP4 in complex with 2-[rac-(9R,10S)-10-benzyl-3,3-dimethyl-1,5-dioxaspiro[5.5]undecan-9-yl]acetic acid 7FZI ; 1.07 ; Crystal Structure of human FABP4 in complex with 2-[[2-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)phenyl]carbamoyl]cyclopentene-1-carboxylic acid 7G1J ; 1.11 ; Crystal Structure of human FABP4 in complex with 2-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5-dimethylthiophen-2-yl]carbamoyl]cyclohexene-1-carboxylic acid 7FXU ; 1.96 ; Crystal Structure of human FABP4 in complex with 2-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5-dimethylthiophen-2-yl]carbamoyl]cyclopentene-1-carboxylic acid 7FZW ; 1.24 ; Crystal Structure of human FABP4 in complex with 2-[[5-bromo-2-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)phenyl]carbamoyl]cyclopentene-1-carboxylic acid 7G1U ; 1.14 ; Crystal Structure of human FABP4 in complex with 2-[[5-chloro-2-(3-methyl-1,2,4-oxadiazol-5-yl)phenyl]carbamoyl]cyclopentene-1-carboxylic acid 7G1S ; 1.08 ; Crystal Structure of human FABP4 in complex with 3-(3,4-dichlorophenyl)-3,7a-dihydro-1H-imidazo[1,5-c][1,3]thiazole-5,7-dione 7FZL ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-(3-chlorophenyl)-4-prop-2-enyl-1H-1,2,4-triazole-5-thione 7FZD ; 1.02 ; Crystal Structure of human FABP4 in complex with 3-(4-chlorophenyl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d][1,2]oxazole-5-carboxylic acid 7FWE ; 1.05 ; Crystal Structure of human FABP4 in complex with 3-(4-chlorophenyl)sulfanylbutanoic acid 7FWN ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-(5-methyl-2,3-diphenylindol-1-yl)propanoic acid 7FZJ ; 1.25 ; Crystal Structure of human FABP4 in complex with 3-cyclohexyl-2-ethylsulfanyl-6-hydroxypyrimidin-4-one 7FWP ; 1.03 ; Crystal Structure of human FABP4 in complex with 3-hydroxy-4-[3-(3-methoxyphenyl)propyl]-2-(2-phenylethyl)-2H-furan-5-one 7FW0 ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-methyl-2-(2,4,5-trichlorophenyl)sulfanylbutanoic acid 7FZZ ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-[(2,4-dichloro-5-methylphenyl)sulfonylamino]thiophene-2-carboxamide 7G1E ; 1.21 ; Crystal Structure of human FABP4 in complex with 3-[(2-phenylphenoxy)methyl]benzoic acid 7G1V ; 1.02 ; Crystal Structure of human FABP4 in complex with 3-[(2-sulfanylphenyl)carbamoyl]bicyclo[2.2.1]heptane-2-carboxylic acid 7FWR ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-[(3,4-dichlorophenyl)methylsulfanyl]-1,2,4-triazin-5-ol 7G0L ; 1.18 ; Crystal Structure of human FABP4 in complex with 3-[(4-methyl-3-phenoxyphenyl)methyl]-1H-pyrazol-5-ol 7G0P ; 1.02 ; Crystal Structure of human FABP4 in complex with 3-[(4-phenyl-5-sulfanylidene-1,3,4-thiadiazol-2-yl)sulfanyl]propane-1-sulfonic acid 7FZ1 ; 0.99 ; Crystal Structure of human FABP4 in complex with 3-[(E)-anilino-(2-oxo-1H-indol-3-ylidene)methyl]sulfanylpropanoic acid 7FWD ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-[1-(4-carbamoylphenyl)-5-(4-fluorophenyl)pyrrol-2-yl]propanoic acid 7FWH ; 1.12 ; Crystal Structure of human FABP4 in complex with 3-[5-(3,5-dichlorophenyl)tetrazol-2-yl]propanoic acid 7FVX ; 1.05 ; Crystal Structure of human FABP4 in complex with 4-(1-methyl-2-phenylindol-3-yl)cyclohexane-1-carboxylic acid 7FX8 ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-(2-methylpropyl)-2-phenyl-3-(1H-tetrazol-5-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 7G18 ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-(4-chloro-3-fluorophenoxy)-2-(3,4-dichlorophenyl)-2-methylbutanoic acid 7FZ3 ; 1.1 ; Crystal Structure of human FABP4 in complex with 4-(4-chlorophenoxy)benzenesulfinic acid:sodium hydride 7FYF ; 1.02 ; Crystal Structure of human FABP4 in complex with 4-(4-fluorophenyl)-2-piperidin-1-yl-3-(1H-tetrazol-5-yl)-7,8-dihydro-5H-pyrano[4,3-b]pyridine 7G1K ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-(4-fluorophenyl)sulfanyl-6-methyl-2-phenylpyrimidine-5-carboxylic acid 7G1O ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-chloro-2,5-dimethyl-N-(2-methylpyrazol-3-yl)benzenesulfonamide 7FXZ ; 1.03 ; Crystal Structure of human FABP4 in complex with 4-hexylsulfanyl-1-(3-pyridylmethyl)-6-sulfanyl-1,3,5-triazin-2-one 7G21 ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-hydroxy-2-[(E)-2-(2-phenylcyclohexyl)ethenyl]-2,3-dihydropyran-6-one 7FZR ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-hydroxy-6-(2-naphthalen-1-ylethyl)pyran-2-one 7G0R ; 1.03 ; Crystal Structure of human FABP4 in complex with 4-methoxy-1,2-benzoxazol-3-amine 7FZO ; 0.99 ; Crystal Structure of human FABP4 in complex with 4-oxo-3-(2-phenylethyl)-10-oxa-3-azatricyclo[5.2.1.01,5]dec-8-ene-6-carboxylic acid 7G0Q ; 1.02 ; Crystal Structure of human FABP4 in complex with 4-[3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid 7FWZ ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-[3-(trifluoromethyl)-5,6,7,8-tetrahydro-4H-cyclohepta[c]pyrazol-1-yl]butanoic acid 7G07 ; 1.61 ; Crystal Structure of human FABP4 in complex with 4-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]-3,6-dihydro-2H-pyran-5-carboxylic acid 7FZH ; 1.12 ; Crystal Structure of human FABP4 in complex with 4-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-6,6-difluoro-5,7-dihydro-4H-1-benzothiophen-2-yl]carbamoyl]-3,6-dihydro-2H-pyran-5-carboxylic acid 7FXW ; 1.18 ; Crystal Structure of human FABP4 in complex with 5,6-dichloro-3-(2-chlorophenyl)-1H-indole-2-carboxylic acid 7FYY ; 1.12 ; Crystal Structure of human FABP4 in complex with 5,7-bis(trifluoromethylsulfanyl)quinolin-8-ol 7FYR ; 1.05 ; Crystal Structure of human FABP4 in complex with 5-(3,4-dichlorophenyl)-5-methyl-2-sulfanylidene-1,3-diazinane-4,6-dione 7FYO ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-(3,5-dichloroanilino)-3,3-dimethyl-5-oxopentanoic acid 7G0G ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-(3-bromo-4-methylphenyl)-3,3-dimethyl-5-oxopentanoic acid 7FWC ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-(4-chlorophenyl)-2-(hydroxymethylene)cyclohexane-1,3-dione 7G1I ; 1.53 ; Crystal Structure of human FABP4 in complex with 5-(4-chlorophenyl)-6-(2,2,2-trifluoroethoxy)-2-(trifluoromethyl)pyridine-3-carboxylic acid 7FYV ; 0.97 ; Crystal Structure of human FABP4 in complex with 5-(4-chlorophenyl)-9-methyl-3-oxa-4-azatricyclo[5.2.1.02,6]dec-4-ene-8-carboxylic acid 7G0A ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-(6-chloro-4-phenyl-2-piperidin-1-ylquinolin-3-yl)-3H-1,3,4-oxadiazol-2-one 7G06 ; 1.26 ; Crystal Structure of human FABP4 in complex with 5-(chloromethyl)-2-phenyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FXK ; 1.03 ; Crystal Structure of human FABP4 in complex with 5-benzyl-4-(2,5-dimethylpyrrol-1-yl)-1,2,4-triazole-3-thiol 7FXM ; 1.19 ; Crystal Structure of human FABP4 in complex with 5-cyclohexyl-2-hydroxybenzoic acid 7FWJ ; 1.08 ; Crystal Structure of human FABP4 in complex with 5-cyclohexyl-6-(2,2,2-trifluoroethoxy)-2-(trifluoromethyl)pyridine-3-carboxylic acid 7G1D ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-ethyl-6-(3-methoxyphenyl)-3-methyl-2-sulfanylidene-1H-pyrimidin-4-one 7G0I ; 1.07 ; Crystal Structure of human FABP4 in complex with 5-phenoxy-6-(2,2,2-trifluoroethoxy)-2-(trifluoromethyl)pyridine-3-carboxylic acid 7FYK ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-phenylmethoxy-4-prop-2-enyl-1,2,4-triazole-3-thiol 7FX0 ; 1.03 ; Crystal Structure of human FABP4 in complex with 5-[(2-chloroanilino)methyl]-4-ethyl-1,2,4-triazole-3-thiol 7FZC ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[(2-chlorophenoxy)methyl]-4-propan-2-yl-1,2,4-triazole-3-thiol 7FWL ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[(3,4-dichlorophenyl)methyl]-1,1-dioxo-1,2,5-thiadiazolidin-3-one 7FYJ ; 2.6 ; Crystal Structure of human FABP4 in complex with 5-[(3-chloro-2-methylphenoxy)methyl]-2-phenyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FYT ; 1.24 ; Crystal Structure of human FABP4 in complex with 5-[(3-chloro-2-methylphenoxy)methyl]-2-phenyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7G0U ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[(3-chlorophenyl)methyl]-6-hydroxy-1-methyl-4-morpholin-4-ylpyrimidin-2-one 7G1Z ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[(4-chloro-3-phenoxyphenyl)methyl]-1H-tetrazole 7FWA ; 1.07 ; Crystal Structure of human FABP4 in complex with 5-[(4-chloroanilino)methyl]-2-phenyl-4H-[1,2,4]triazolo[1,5-a]pyrimidin-7-one 7FW2 ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[(4-chlorophenoxy)methyl]-4-prop-2-enyl-1,2,4-triazole-3-thiol 7FYI ; 1.14 ; Crystal Structure of human FABP4 in complex with 5-[(4-chlorophenyl)sulfanylmethyl]-2-methylpyrazol-3-ol 7G19 ; 1.04 ; Crystal Structure of human FABP4 in complex with 5-[2-(1H-tetrazol-5-yl)ethyl]-6,7,8,9,10,11-hexahydrocycloocta[b]indole 7FWB ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[2-(2,4-dichlorophenoxy)phenyl]-1H-tetrazole 7FX5 ; 1.12 ; Crystal Structure of human FABP4 in complex with 5-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-6,6-difluoro-5,7-dihydro-4H-1-benzothiophen-2-yl]carbamoyl]-3,6-dihydro-2H-pyran-4-carboxylic acid 7G1L ; 0.98 ; Crystal Structure of human FABP4 in complex with 6-(1,3-benzodioxol-5-ylmethyl)-3-sulfanyl-1,2,4-triazin-5-ol 7FYL ; 1.07 ; Crystal Structure of human FABP4 in complex with 6-(4-chlorophenyl)sulfanyl-2-(4-methylphenyl)sulfanylhexanoic acid 7FZ4 ; 1.01 ; Crystal Structure of human FABP4 in complex with 6-(difluoromethyl)-4-isobutyl-5-methoxycarbonyl-2-(trifluoromethyl)pyridine-3-carboxylic acid 7FYG ; 0.94 ; Crystal Structure of human FABP4 in complex with 6-benzyl-2H-1,2,4-triazine-3,5-dithione 7G16 ; 1.1 ; Crystal Structure of human FABP4 in complex with 6-bromo-3-hexyl-2-oxo-3,4-dihydro-1H-quinoline-4-carboxylic acid 7FXA ; 1.12 ; Crystal Structure of human FABP4 in complex with 6-bromo-4-hexyl-2-oxo-1,3-dihydroquinoline-4-carboxylic acid 7FZY ; 1.17 ; Crystal Structure of human FABP4 in complex with 6-chloro-4-phenyl-2-piperidin-1-yl-3-(1H-tetrazol-5-yl)quinoline 7FZS ; 1.04 ; Crystal Structure of human FABP4 in complex with 6-chloro-4-[(2-chlorophenyl)methyl]-2-methylquinoline-3-carboxylic acid 7G14 ; 1.2 ; Crystal Structure of human FABP4 in complex with 6-cyclopentyl-N,5-dimethyl-4-phenyl-N-propan-2-yl-3-(1H-tetrazol-5-yl)pyridin-2-amine 7G03 ; 1.27 ; Crystal Structure of human FABP4 in complex with 6-fluoro-1,3-benzothiazol-2-amine 7G1T ; 1.1 ; Crystal Structure of human FABP4 in complex with 6-methyl-3-phenyl-1,2,4-triazin-5-ol 7FY6 ; 1.12 ; Crystal Structure of human FABP4 in complex with 6-phenyl-11H-pyrimido[4,5-c][2]benzazepin-3-amine 7FXC ; 1.12 ; Crystal Structure of human FABP4 in complex with 6-[(3,4-dichlorophenyl)methyl]-5-methyl-1,1-dioxo-1,2,6-thiadiazin-3-one 7G0F ; 1.12 ; Crystal Structure of human FABP4 in complex with 6-[(3-methoxycarbonyl-4-thiophen-2-ylthiophen-2-yl)carbamoyl]cyclohex-3-ene-1-carboxylic acid 7FZP ; 1.12 ; Crystal Structure of human FABP4 in complex with 6-[(4-chlorophenyl)methylsulfanylmethyl]-2-sulfanylidene-1H-pyrimidin-4-one 7FXV ; 0.88 ; Crystal Structure of human FABP4 in complex with 6-[(4-methoxyphenyl)methyl]-2H-1,2,4-triazine-3,5-dithione 7FW3 ; 1.08 ; Crystal Structure of human FABP4 in complex with 7-(4-chlorophenyl)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid 7FYS ; 1.05 ; Crystal Structure of human FABP4 in complex with 7-(4-methoxyphenyl)-1,8-dithia-3-azaspiro[4.5]dec-6-ene-2,4-dione 7G02 ; 1.03 ; Crystal Structure of human FABP4 in complex with 7-methoxy-1-(3-methoxyphenyl)naphthalene-2-carboxylic acid 7G09 ; 1.05 ; Crystal Structure of human FABP4 in complex with 8-(3-bromophenyl)-7,9-dioxa-1-thia-3-azaspiro[4.5]decane-2,4-dione 6LJS ; 1.75 ; Crystal structure of human FABP4 in complex with a novel inhibitor 6LJT ; 1.45 ; Crystal structure of human FABP4 in complex with a novel inhibitor 6LJU ; 1.5 ; Crystal structure of human FABP4 in complex with a novel inhibitor 6LJV ; 1.401 ; Crystal structure of human FABP4 in complex with a novel inhibitor 6LJW ; 1.4 ; Crystal structure of human FABP4 in complex with a novel inhibitor 6LJX ; 1.75 ; Crystal structure of human FABP4 in complex with a novel inhibitor 7FX6 ; 1.05 ; Crystal Structure of human FABP4 in complex with N,N-diethyl-4-pyridin-4-yl-3-(1H-tetrazol-5-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-2-amine 7FXT ; 1.07 ; Crystal Structure of human FABP4 in complex with N-(2,1,3-benzothiadiazol-4-yl)-2,5-dichlorothiophene-3-sulfonamide 7FZM ; 1.05 ; Crystal Structure of human FABP4 in complex with N-(2,4-dichlorophenyl)-2-(2,6-dihydroxypyrimidin-4-yl)acetamide 7FZ9 ; 0.96 ; Crystal Structure of human FABP4 in complex with N-methyl-6-(3-methylthiophen-2-yl)-4-phenyl-N-propan-2-yl-3-(1H-tetrazol-5-yl)pyridin-2-amine 7G1N ; 1.55 ; Crystal Structure of human FABP4 in complex with rac-(1R,2R)-2-[[3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]cyclohexane-1-carboxylic acid 7FZ6 ; 1.09 ; Crystal Structure of human FABP4 in complex with rac-(1R,2S)-2-(phenoxymethyl)cyclohexane-1-carboxylic acid 7FX4 ; 1.02 ; Crystal Structure of human FABP4 in complex with rac-(1R,2S)-2-[(3,4-dichlorophenoxy)methyl]cyclohexane-1-carboxylic acid 7G1C ; 1.08 ; Crystal Structure of human FABP4 in complex with rac-(1R,2S)-2-[(3-methylphenoxy)methyl]cyclohexane-1-carboxylic acid 7G0V ; 1.06 ; Crystal Structure of human FABP4 in complex with rac-(1R,2S)-2-[[3-(trifluoromethyl)phenoxy]methyl]cyclohexane-1-carboxylic acid 7FYB ; 1.05 ; Crystal Structure of human FABP4 in complex with rac-(1R,2S,4R)-2-[(3-chlorobenzoyl)amino]-4-phenoxycyclohexane-1-carboxylic acid 7FXI ; 1.51 ; Crystal Structure of human FABP4 in complex with rac-(1R,3S)-2,2-dimethyl-3-[(2-phenylphenyl)carbamoyl]cyclopropane-1-carboxylic acid 7FZ5 ; 1.25 ; Crystal Structure of human FABP4 in complex with rac-(2R)-1-[[3-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydro-1-benzothiophen-2-yl]carbamoyl]pyrrolidine-2-carboxylic acid 7FY3 ; 1.12 ; Crystal Structure of human FABP4 in complex with sulfate 7FZ8 ; 1.22 ; Crystal Structure of human FABP4 in complex with thieno[2,3-d]pyrimidine-2,4-diamine 7FZ2 ; 1.12 ; Crystal Structure of human FABP4 in complex with [3-oxo-5-[4-(trifluoromethyl)phenyl]cyclohexen-1-yl] acetate 7FW4 ; 1.44 ; Crystal Structure of human FABP4 soaked with glycerol 7FW5 ; 1.15 ; Crystal Structure of human FABP4 with active site mutated to that of FABP3 in complex with palmitate 7FX7 ; 1.12 ; Crystal Structure of human FABP4 with binding site mutated to FABP5 in complex with 5-methylsulfanyl-2-[(4-phenylmethoxy-1H-indazol-3-yl)methylsulfanyl]pyrimidin-4-ol 7G1Q ; 1.24 ; Crystal Structure of human FABP5 in complex with (1S,2R)-2-[(5-carbamoyl-3-ethoxycarbonyl-4-methyl-2-thienyl)carbamoyl]cyclohexanecarboxylic acid 7FY0 ; 1.34 ; Crystal Structure of human FABP5 in complex with (2R)-1-[(3,5-dichloro-2-phenylphenyl)carbamoyl]pyrrolidine-2-carboxylic acid 7FWI ; 2.0 ; Crystal Structure of human FABP5 in complex with 2-(indole-1-carbonylamino)benzoic acid 7FXD ; 2.44 ; Crystal Structure of human FABP5 in complex with 2-(indole-1-carbonylamino)benzoic acid 7G0E ; 1.11 ; Crystal Structure of human FABP5 in complex with 2-[(3-ethoxycarbonyl-4,5,6,7-tetrahydro-1-benzothiophen-2-yl)carbamoyl]cyclopentene-1-carboxylic acid 7G01 ; 1.17 ; Crystal Structure of human FABP5 in complex with 6-chloro-4-phenyl-2-piperidin-1-ylquinoline-3-carboxylic acid 7FYD ; 1.45 ; Crystal Structure of human FABP5 in complex with 6-chloro-4-phenyl-2-propan-2-ylquinoline-3-carboxylic acid 7G04 ; 1.4 ; Crystal Structure of human FABP5 in complex with 7-(4-chlorophenyl)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid 7G0B ; 1.47 ; Crystal Structure of human FABP5 in complex with 7-bromo-1-methyl-5-phenyl-2,3,4,5-tetrahydro-1-benzazepine-4-carboxylic acid 5L8I ; 1.88 ; crystal structure of human FABP6 apo-protein 5L8O ; 2.39 ; crystal structure of human FABP6 in complex with cholate 5L8N ; 2.12 ; crystal structure of human FABP6 protein with fragment 1 7E25 ; 1.6 ; Crystal structure of human FABP7 complexed with palmitic acid 4Z2N ; 1.923 ; Crystal structure of human FACT SPT16 middle domain 1NL0 ; 2.2 ; Crystal structure of human factor IX Gla domain in complex of an inhibitory antibody, 10C12 3CDZ ; 3.98 ; Crystal structure of human factor VIII 2P3T ; 1.92 ; Crystal structure of human factor XA complexed with 3-Chloro-4-(2-methylamino-imidazol-1-ylmethyl)-thiophene-2-carboxylic acid [4-chloro-2-(5-chloro-pyridin-2-ylcarbamoyl)-6-methoxy-phenyl]-amide 2P3U ; 1.62 ; Crystal structure of human factor XA complexed with 3-chloro-N-(4-chloro-2-{[(5-chloropyridin-2-yl)amino]carbonyl}-6-methoxyphenyl)-4-[(1-methyl-1H-imidazol-2-yl)methyl]thiophene-2-carboxamide {Pfizer 320663} 8ROM ; 1.69 ; Crystal structure of human FAD synthase PAPS domain in complex with FAD 8RON ; 2.6 ; Crystal structure of human FAD synthase, isoform 2 3O55 ; 1.9 ; Crystal structure of human FAD-linked augmenter of liver regeneration (ALR) 7CTP ; 1.8 ; Crystal Structure of Human FAM129B/MINERVA/NIBAN2 7BRQ ; 1.404 ; Crystal structure of human FAM134B LIR fused to human GABARAP 8EXF ; 3.22 ; Crystal structure of human FAM46A-BCCIPa complex at 3.2 angstrom resolution 8EXE ; 3.5 ; Crystal structure of human FAM46A-BCCIPa complex at 3.5 angstrom resolution 8FZB ; 3.35 ; Crystal structure of human FAM86A 2IQC ; 2.4 ; Crystal structure of Human FancF Protein that Functions in the Assembly of a DNA Damage Signaling Complex 2ILR ; 2.0 ; Crystal structure of human Fanconi Anemia protein E C-terminal domain 4RY3 ; 2.802 ; Crystal structure of human Fanconi-associated nuclease 1 3CP6 ; 1.95 ; Crystal structure of human farnesyl diphosphate synthase (T201A mutant) complexed with Mg and biphosphonate inhibitor 4N1Z ; 2.35 ; Crystal Structure of Human Farnesyl Diphosphate Synthase in Complex with BPH-1222 4GA3 ; 2.39 ; Crystal Structure of Human Farnesyl Diphosphate Synthase in Complex with BPH-1260 4RXA ; 2.2 ; Crystal structure of human farnesyl diphosphate synthase in complex with BPH-1358 4P0V ; 2.4 ; Crystal structure of human farnesyl diphosphoate synthase in complex with zoledronate and taxodione 4KFA ; 1.98 ; Crystal structure of human farnesyl pyrophosphate synthase (t201a mutant) complexed with mg and zoledronate 4KPD ; 1.96 ; Crystal Structure of Human Farnesyl Pyrophosphate Synthase (Y204F) Mutant Complexed with Mg, Risedronate and Isopentenyl Pyrophosphate 4KQ5 ; 2.4 ; Crystal Structure of Human Farnesyl Pyrophosphate Synthase Mutant (Y204A) Complexed with Mg and Zoledronate 2QIS ; 1.8 ; Crystal structure of human farnesyl pyrophosphate synthase T210S mutant bound to risedronate 1DFC ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN FASCIN, AN ACTIN-CROSSLINKING PROTEIN 2F73 ; 2.5 ; Crystal structure of human fatty acid binding protein 1 (FABP1) 4W4N ; 1.8 ; Crystal structure of human Fc at 1.80 A 1OVZ ; 3.0 ; Crystal structure of human FcaRI 1OW0 ; 3.1 ; Crystal structure of human FcaRI bound to IgA1-Fc 7YTE ; 3.0 ; crystal structure of human FcmR-D1 bound to IgM C4-domain 3M1B ; 3.1 ; Crystal structure of human FcRn with a dimeric peptide inhibitor 3M17 ; 2.6 ; Crystal structure of human FcRn with a monomeric peptide inhibitor 5BJT ; 3.2 ; Crystal structure of human FcRn with a peptide inhibitor at multiple sites 2IDH ; 2.28 ; Crystal Structure of human FE65 WW domain 2OEI ; 1.35 ; Crystal structure of human FE65-WW domain in complex with human Mena peptide 3BKB ; 1.78 ; Crystal structure of human Feline Sarcoma Viral Oncogene Homologue (v-FES) 3CBL ; 1.75 ; Crystal structure of human feline sarcoma viral oncogene homologue (v-FES) in complex with staurosporine and a consensus peptide 4E93 ; 1.84 ; Crystal structure of human Feline Sarcoma Viral Oncogene Homologue (v-FES)in complex with TAE684 6KC4 ; 1.37 ; Crystal structure of human Fer SH2 domain bound to a phosphopeptide (DEpYENVD) 3P1M ; 2.54 ; Crystal structure of human ferredoxin-1 (FDX1) in complex with iron-sulfur cluster 3KXU ; 1.85 ; Crystal structure of human ferritin FTL498InsTC pathogenic mutant 2Z6M ; 2.72 ; Crystal structure of Human Ferritin H8 as biotemplate for noble metal nanoparticle synthesis 7CK8 ; 1.8 ; Crystal structure of human ferritin heavy chain mutant C90S/C102S/C130S 4V6B ; 2.85 ; Crystal structure of human ferritin Phe167SerfsX26 mutant. 1HRK ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN FERROCHELATASE 2PO5 ; 2.2 ; Crystal structure of human ferrochelatase mutant with His 263 replaced by Cys 2PO7 ; 2.2 ; Crystal structure of human ferrochelatase mutant with His 341 replaced by Cys 2PNJ ; 2.35 ; Crystal structure of human ferrochelatase mutant with Phe 337 replaced by Ala 4CJM ; 2.7 ; Crystal structure of human FGF18 2P23 ; 1.8 ; Crystal structure of human FGF19 2P39 ; 1.5 ; Crystal structure of human FGF23 7UY0 ; 2.55 ; Crystal structure of human Fgr tyrosine kinase in complex with A-419259 7UY3 ; 2.99 ; Crystal structure of human Fgr tyrosine kinase in complex with TL02-59 1Q1U ; 1.7 ; Crystal structure of human FHF1b (FGF12b) 5K31 ; 2.2 ; Crystal structure of Human fibrillar procollagen type I C-propeptide Homo-trimer 4AE2 ; 1.68 ; Crystal structure of Human fibrillar procollagen type III C- propeptide trimer 4AEJ ; 2.21 ; Crystal structure of Human fibrillar procollagen type III C- propeptide trimer 4AK3 ; 3.5 ; Crystal structure of Human fibrillar procollagen type III C- propeptide trimer 7SE9 ; 1.75 ; Crystal structure of human Fibrillarin in complex with compound 1 from single soak 7SEC ; 1.9 ; Crystal structure of human Fibrillarin in complex with compound 1a 7SEA ; 1.91 ; Crystal structure of human Fibrillarin in complex with compound 2 from cocktail soak 7SEB ; 1.81 ; Crystal structure of human Fibrillarin in complex with compound 2 from single soak 7SED ; 1.9 ; Crystal structure of human Fibrillarin in complex with compound 2a 7SE8 ; 1.75 ; Crystal structure of human Fibrillarin in complex with fragment 1 from cocktail soak 7SE7 ; 1.75 ; Crystal structure of human Fibrillarin in complex with S-adenosyl-L-methionine 7SE6 ; 1.99 ; Crystal structure of human Fibrillarin in ligand-free state 3GHG ; 2.9 ; Crystal Structure of Human Fibrinogen 1Z68 ; 2.6 ; Crystal Structure Of Human Fibroblast Activation Protein alpha 3HBW ; 1.9 ; Crystal Structure of Human Fibroblast Growth Factor Homologous Factor 2A (FHF2A), also referred to as Fibroblast Growth Factor 13A (FGF13A) 4F63 ; 2.55 ; Crystal structure of Human Fibroblast Growth Factor Receptor 1 Kinase domain in complex with compound 1 4F64 ; 2.05 ; Crystal structure of Human Fibroblast Growth Factor Receptor 1 Kinase domain in complex with compound 6 4F65 ; 2.26 ; Crystal structure of Human Fibroblast Growth Factor Receptor 1 Kinase domain in complex with compound 8 4NK9 ; 2.57 ; Crystal structure of human fibroblast growth factor receptor 1 kinase domain in complex with pyrazolaminopyrimidine 1 4NKA ; 2.19 ; Crystal structure of human fibroblast growth factor receptor 1 kinase domain in complex with pyrazolaminopyrimidine 2 4NKS ; 2.5 ; Crystal structure of human fibroblast growth factor receptor 1 kinase domain in complex with pyrazolaminopyrimidine 3 3CQA ; 1.8 ; Crystal structure of human fibroblast growth factor-1 with mutations Glu81Ala and Lys101Ala 3CRG ; 1.85 ; Crystal structure of human fibroblast growth factor-1 with mutations Glu81Ala, Glu82Asn and Lys101Ala 3CRH ; 2.15 ; Crystal structure of human fibroblast growth factor-1 with mutations Glu81Ser and Lys101Ala 3CRI ; 2.1 ; Crystal structure of human fibroblast growth factor-1 with mutations Glu81Ser, Glu82Asn and Lys101Ala 5MX0 ; 2.21 ; Crystal structure of human fibromodulin 3D8B ; 2.0 ; Crystal structure of human fidgetin-like protein 1 in complex with ADP 5JWP ; 2.1 ; Crystal structure of human FIH D201E variant in complex with Zn, alpha-ketoglutarate, and HIF1 alpha peptide. 2WA5 ; 1.9 ; Crystal structure of human filamin B actin binding domain at 1.9 Angstroms resolution 4B7L ; 2.05 ; Crystal Structure of Human Filamin B Actin Binding Domain with 1st Filamin Repeat 7OUU ; 1.47 ; Crystal structure of human filamin C domains 14-15 7P0E ; 1.6 ; Crystal structure of human filamin C domains 14-15 cardiovascular disease causing mutation G1676R 7OUV ; 1.8 ; Crystal structure of human filamin C domains 14-15 cardiovascular disease causing mutation S1624L 4MGX ; 3.16 ; Crystal structure of human filamin C domains 4-5 and GPIB alpha cytoplasmic domain complex 3B7X ; 2.1 ; Crystal structure of human FK506-Binding Protein 6 5D75 ; 1.83 ; Crystal structure of Human FKBD25 in complex with FK506 6TX7 ; 1.13 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH 2-PIPERIDONE 6TX4 ; 1.06 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH 2-PYRIDONE 6TX5 ; 1.08 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH 4-METHYLIMIDAZOLE 6TX9 ; 1.42 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH HYDANTOIN 6TX8 ; 1.2 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH IMIDAZOLE 6TX6 ; 0.98 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH NICOTINAMIDE 6TXX ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN FKBP51 FK1 DOMAIN A19T MUTANT IN COMPLEX WITH SAFit2 3Q8M ; 2.6 ; Crystal Structure of Human Flap Endonuclease FEN1 (D181A) in complex with substrate 5'-flap DNA and K+ 3Q8K ; 2.2001 ; Crystal Structure of Human Flap Endonuclease FEN1 (WT) in complex with product 5'-flap DNA, SM3+, and K+ 3Q8L ; 2.319 ; Crystal Structure of Human Flap Endonuclease FEN1 (WT) in complex with substrate 5'-flap DNA, SM3+, and K+ 2Q7R ; 4.0 ; Crystal structure of human FLAP with an iodinated analog of MK-591 2Q7M ; 4.25 ; Crystal structure of human FLAP with MK-591 6ANO ; 2.61 ; Crystal structure of human FLASH N-terminal domain 6AOZ ; 2.1 ; Crystal structure of human FLASH N-terminal domain C54S/C83A (Crystal form 1) 6AP0 ; 2.581 ; Crystal structure of human FLASH N-terminal domain C54S/C83A (Crystal form 2) 4YC7 ; 2.5 ; Crystal structure of human FMNL2 GBD-FH3 Domains bound to Cdc42-GppNHp 4Q9S ; 2.07 ; Crystal Structure of human Focal Adhesion Kinase (Fak) bound to Compound1 (3,5-DIHYDRO[1,2,4]TRIAZINO[3,4-C][1,4]BENZOXAZIN-2(1H)-ONE) 7W7Z ; 2.15 ; Crystal Structure of human Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 7W8B ; 2.093 ; Crystal Structure of human Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 4LRH ; 2.8 ; Crystal structure of human folate receptor alpha in complex with folic acid 5IZQ ; 3.6 ; Crystal structure of human folate receptor alpha in complex with novel antifolate AGF183 1XWD ; 2.92 ; Crystal Structure of Human Follicle Stimulating Hormone Complexed with its Receptor 5SSY ; 1.29 ; Crystal Structure of human formylglycine generating enzyme 8ARU ; 1.08 ; Crystal Structure of human formylglycine generating enzyme 2F92 ; 2.15 ; Crystal structure of human FPPS in complex with alendronate 5KSX ; 2.65 ; Crystal structure of human FPPS in complex with an allosteric inhibitor AM-02-072 5JUZ ; 2.4 ; Crystal structure of human FPPS in complex with an allosteric inhibitor CL-06-057 5JV0 ; 2.4 ; Crystal structure of human FPPS in complex with an allosteric inhibitor CL-08-038 5JV1 ; 2.3 ; Crystal structure of human FPPS in complex with an allosteric inhibitor CL-08-066 5JV2 ; 2.3 ; Crystal structure of human FPPS in complex with an allosteric inhibitor MIT-01-055 6N7Y ; 2.0 ; Crystal structure of human FPPS in complex with an allosteric inhibitor MIT-01-102 6OAH ; 2.2 ; Crystal structure of human FPPS in complex with an allosteric inhibitor YF-02-78 6OAG ; 2.3 ; Crystal structure of human FPPS in complex with an allosteric inhibitor YF-02-82 6N7Z ; 2.55 ; Crystal structure of human FPPS in complex with an allosteric inhibitor YF-02037 6N82 ; 2.0 ; Crystal structure of human FPPS in complex with an allosteric inhibitor YF-02037 6N83 ; 2.0 ; Crystal structure of human FPPS in complex with an allosteric inhibitor YF-02037 5YGI ; 2.177 ; Crystal structure of human FPPS in complex with an inhibitor THZ93 5DJP ; 2.4 ; Crystal structure of human FPPS in complex with biaryl compound 5 5DJR ; 2.4 ; Crystal structure of human FPPS in complex with biaryl compound 6 5DJV ; 2.3 ; Crystal structure of human FPPS in complex with biaryl compound 8e 4LPG ; 2.35 ; Crystal structure of human FPPS in complex with CL01131 4LPH ; 2.3 ; Crystal structure of human FPPS in complex with CL03093 5DGN ; 2.08 ; Crystal structure of human FPPS in complex with compound 13 2F94 ; 1.94 ; Crystal structure of human FPPS in complex with ibandronate 4NFI ; 1.85 ; Crystal structure of human FPPS in complex with magnesium and JDS05120 4JVJ ; 2.8 ; Crystal structure of human FPPS in complex with magnesium, CL01131, and sulfate 4L2X ; 2.55 ; Crystal structure of human FPPS in complex with magnesium, CL02134, and inorganic pyrophosphate 4NFJ ; 2.05 ; Crystal structure of human FPPS in complex with magnesium, JDS05120, and sulfate 5DGM ; 2.86 ; Crystal structure of human FPPS in complex with monophosphonate compound 7 4NFK ; 1.85 ; Crystal structure of human FPPS in complex with nickel, JDS05120, and sulfate 4XQS ; 2.3 ; Crystal structure of human FPPS in complex with one magnesium ion 2F89 ; 2.6 ; Crystal structure of human FPPS in complex with pamidronate 5DIQ ; 2.1 ; Crystal structure of human FPPS in complex with salicylic acid derivative 3a 5DGS ; 2.62 ; Crystal structure of human FPPS in complex with the monophosphonate compound 15 4XQT ; 2.1 ; Crystal structure of human FPPS in complex with three magnesium ions 4QXS ; 1.9 ; Crystal structure of human FPPS in complex with WC01088 4LFV ; 2.0 ; Crystal structure of human FPPS in complex with YS0470 and two molecules of inorganic phosphate 4DEM ; 1.85 ; Crystal structure of human FPPS in complex with YS_04_70 2F8Z ; 2.6 ; Crystal structure of human FPPS in complex with zoledronate and isopentenyl diphosphate 2F9K ; 2.06 ; Crystal structure of human FPPS in complex with Zoledronate and Zn2+ 4PVX ; 2.18 ; Crystal structure of human FPPS in complex with [({4-[4-(cyclopropyloxy)phenyl]pyridin-2-yl}amino)methanediyl]bis(phosphonic acid) 4PVY ; 2.05 ; Crystal structure of human FPPS in complex with [({5-[4-(propan-2-yloxy)phenyl]pyridin-3-yl}amino)methanediyl]bis(phosphonic acid) 4H5C ; 2.02 ; Crystal structure of human FPPS in ternary complex with YS0470 and inorganic phosphate 4H5D ; 2.02 ; Crystal structure of human FPPS in ternary complex with YS0470 and inorganic pyrophosphate 4H5E ; 2.04 ; Crystal structure of human FPPS in ternary complex with YS0470 and isopentenyl pyrophosphate 5JA0 ; 1.9 ; Crystal structure of human FPPS with allosterically bound FPP 2H43 ; 2.7 ; Crystal Structure of Human Fragment D Complexed with Ala-His-Arg-Pro-amide 3S5D ; 1.5 ; Crystal structure of human frataxin variant W155A 3S5F ; 1.5 ; Crystal structure of human frataxin variant W155F 3S5E ; 1.31 ; Crystal structure of human frataxin variant W155R, one of the Friedreich's ataxia point mutations 1G8I ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN FREQUENIN (NEURONAL CALCIUM SENSOR 1) 5CM4 ; 2.4 ; Crystal structure of human Frizzled 4 Cysteine-Rich Domain (CRD) 4CXX ; 2.76 ; Crystal structure of human FTO in complex with acylhydrazine inhibitor 16 4CXY ; 2.65 ; Crystal structure of human FTO in complex with acylhydrazine inhibitor 21 6AEJ ; 2.8 ; Crystal structure of human FTO in complex with small-molecule inhibitors 6AK4 ; 2.8 ; Crystal structure of human FTO in complex with small-molecule inhibitors 4CXW ; 3.1 ; Crystal structure of human FTO in complex with subfamily-selective inhibitor 12 2NYU ; 1.76 ; Crystal Structure of Human FtsJ homolog 2 (E.coli) protein in complex with S-adenosylmethionine 5HBF ; 1.95 ; Crystal structure of human full-length chitotriosidase (CHIT1) 1TR2 ; 2.9 ; Crystal structure of human full-length vinculin (residues 1-1066) 6FUY ; 3.0 ; Crystal structure of human full-length vinculin-T12-A974K (residues 1-1066) 3E04 ; 1.95 ; Crystal structure of human fumarate hydratase 5UPP ; 1.8 ; Crystal structure of human fumarate hydratase 3HPT ; 2.19 ; Crystal structure of human FxA in complex with (S)-2-cyano-1-(2-methylbenzofuran-5-yl)-3-(2-oxo-1-(2-oxo-2-(pyrrolidin-1-yl)ethyl)azepan-3-yl)guanidine 3ENS ; 2.3 ; Crystal structure of human FXA in complex with methyl (2Z)-3-[(3-chloro-1H-indol-7-yl)amino]-2-cyano-3-{[(3S)-2-oxo-1-(2-oxo-2-pyrrolidin-1-ylethyl)azepan-3-yl]amino}acrylate 3OKI ; 2.0 ; Crystal structure of human FXR in complex with (2S)-2-[2-(4-chlorophenyl)-1H-benzimidazol-1-yl]-N,2-dicyclohexylethanamide 3OMK ; 1.9 ; Crystal structure of human FXR in complex with (2S)-2-[2-(4-chlorophenyl)-5,6-difluoro-1H-benzimidazol-1-yl]-2-cyclohexyl-N-(2-methylphenyl)ethanamide 3OKH ; 2.5 ; Crystal structure of human FXR in complex with 2-(4-chlorophenyl)-1-[(1S)-1-cyclohexyl-2-(cyclohexylamino)-2-oxoethyl]-1H-benzimidazole-6-carboxylic acid 3OOK ; 2.29 ; Crystal structure of human FXR in complex with 4-({(2S)-2-[2-(4-chlorophenyl)-5,6-difluoro-1H-benzimidazol-1-yl]-2-cyclohexylacetyl}amino)-3,5-difluorobenzoic acid 3OMM ; 2.1 ; Crystal structure of human FXR in complex with 4-({(2S)-2-[2-(4-chlorophenyl)-5,6-difluoro-1H-benzimidazol-1-yl]-2-cyclohexylacetyl}amino)-3-fluorobenzoic acid 3OLF ; 1.9 ; Crystal structure of human FXR in complex with 4-({(2S)-2-[2-(4-chlorophenyl)-5,6-difluoro-1H-benzimidazol-1-yl]-2-cyclohexylacetyl}amino)-3-methylbenzoic acid 3OOF ; 2.29 ; Crystal structure of human FXR in complex with 4-({(2S)-2-[2-(4-chlorophenyl)-5,6-difluoro-1H-benzimidazol-1-yl]-2-cyclohexylacetyl}amino)benzoic acid 5Y1J ; 2.0 ; Crystal structure of human FXR in complex with a functional drug ligand 6A60 ; 3.05 ; Crystal structure of human FXR/RXR-LBD heterodimer bound to GW4064 and 9cRA and SRC1 6A5Y ; 2.1 ; Crystal structure of human FXR/RXR-LBD heterodimer bound to HNC143 and 9cRA and SRC1 6A5Z ; 2.95 ; Crystal structure of human FXR/RXR-LBD heterodimer bound to HNC180 and 9cRA and SRC1 2XNS ; 3.41 ; Crystal Structure Of Human G alpha i1 Bound To A Designed Helical Peptide Derived From The Goloco Motif Of RGS14 5ZTY ; 2.8 ; Crystal structure of human G protein coupled receptor 8UAP ; 2.5 ; Crystal Structure of Human G Protein-Coupled Receptor Kinase 5 D311N in Complex with CCG273441 8UAQ ; 2.8 ; Crystal Structure of Human G Protein-Coupled Receptor Kinase 5 in Complex with GRL018-21 5FW5 ; 1.92 ; Crystal structure of human G3BP1 in complex with Semliki Forest Virus nsP3-25 comprising two FGDF motives 6TA7 ; 1.93 ; CRYSTAL STRUCTURE OF HUMAN G3BP1-NTF2 IN COMPLEX WITH HUMAN CAPRIN1-DERIVED SOLOMON MOTIF 7S17 ; 2.36 ; Crystal structure of human G3BP1-NTF2 with three mutations- F15W, F33W, and F124W 6JYU ; 1.89 ; Crystal structure of Human G6PD Canton 5KZW ; 2.0 ; Crystal structure of human GAA 5KZX ; 2.0 ; Crystal structure of human GAA 3UNW ; 2.56 ; Crystal Structure of Human GAC in Complex with Glutamate 3UO9 ; 2.3 ; Crystal Structure of Human GAC in Complex with Glutamate and BPTES 6UJG ; 3.0 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UKB ; 3.0 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6ULA ; 2.95 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6ULJ ; 2.69 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UMC ; 2.75 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UMD ; 2.7 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UME ; 2.9 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UMF ; 2.68 ; Crystal structure of human GAC in complex with inhibitor UPGL00012 6UJM ; 2.5 ; Crystal structure of human GAC in complex with inhibitor UPGL00013 6UK6 ; 2.9 ; Crystal structure of human GAC in complex with inhibitor UPGL00018 6UL9 ; 2.5 ; Crystal structure of human GAC in complex with inhibitor UPGL00023 5FI2 ; 2.5 ; Crystal structure of human GAC in complex with inhibitor UPGL_00009: 2-phenyl-~{N}-[5-[[(3~{R})-1-[5-(2-phenylethanoylamino)-1,3,4-thiadiazol- 2-yl]pyrrolidin-3-yl]amino]-1,3,4-thiadiazol-2-yl]ethanamide 5FI6 ; 2.52 ; Crystal structure of human GAC in complex with inhibitor UPGL_00011: 2-phenyl-~{N}-[5-[[(3~{S})-1-[5-(2-phenylethanoylamino)-1,3,4-thiadiazol-2-yl]pyrrolidin-3-yl]amino]-1,3,4-thiadiazol-2-yl]ethanamide 5FI7 ; 2.5 ; Crystal structure of human GAC in complex with inhibitor UPGL_00015: 2-phenyl-~{N}-[5-[(3~{S})-3-[[5-(2-phenylethanoylamino)-1,3,4-thiadiazol-2-yl]oxy]pyrrolidin-1-yl]-1,3,4-thiadiazol-2-yl]ethanamide 2WAL ; 2.4 ; Crystal Structure of human GADD45gamma 1WUU ; 2.5 ; crystal structure of human galactokinase complexed with MgAMPPNP and galactose 1SO0 ; 2.3 ; Crystal structure of human galactose mutarotase complexed with galactose 2A8U ; 1.69 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with Beta-Methyl Lactoside 1ZIZ ; 1.49 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with Galactose 1ZJP ; 1.59 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with Galactose-grease 1ZJ2 ; 1.69 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with H type I Trisaccharide 1ZJ3 ; 1.69 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with H type II Trisaccharide 1ZJ0 ; 1.67 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with Lactose 1ZJ1 ; 1.65 ; Crystal Structure of Human Galactosyltransferase (GTB) Complexed with N-acetyllactosamine 3OY8 ; 2.19 ; Crystal structure of human galectin-1 in complex with lactobionic acid 6B94 ; 1.8 ; Crystal structure of Human galectin-1 in complex with Lactulose 3T2T ; 1.9 ; Crystal structure of human galectin-1 in complex with methyl 2-O-acetyl-3-O-toluoyl-beta-D-talopyranoside 6F83 ; 2.2 ; Crystal Structure of Human Galectin-1 in Complex With Thienyl-1,2, 3-triazolyl Thiodigalactoside Inhibitor 3OYW ; 2.5 ; Crystal structure of human galectin-1 in complex with thiodigalactoside 4XBL ; 1.931 ; Crystal Structure of Human Galectin-1 in Complex with Type 1 N-acetyllactosamine 6LJP ; 2.0 ; Crystal structure of human galectin-16 3T1M ; 1.55 ; Crystal structure of human galectin-3 carbohydrate recognition domain in complex with methyl 3-deoxy-2-O-toluoyl-3-N-toluoyl-beta-D-talopyranoside 2NMN ; 2.45 ; Crystal structure of human galectin-3 carbohydrate-recognising domain at 2.45 angstrom resolution 2NMO ; 1.35 ; Crystal structure of human galectin-3 carbohydrate-recognition domain at 1.35 angstrom resolution 2NN8 ; 1.35 ; Crystal structure of human galectin-3 carbohydrate-recognition domain with lactose bound, at 1.35 angstrom resolution 5E89 ; 1.5 ; Crystal structure of Human galectin-3 CRD in complex with 3-fluophenyl-1,2,3-triazolyl thiodigalactoside inhibitor 5E8A ; 1.5 ; Crystal structure of Human galectin-3 CRD in complex with 4-fluophenyl-1,2,3-triazolyl thiodigalactoside inhibitor 4LBO ; 1.65 ; Crystal structure of Human galectin-3 CRD in complex with a-GM3 7RDO ; 1.99 ; Crystal structure of human galectin-3 CRD in complex with diselenodigalactoside 4R9B ; 1.2 ; Crystal structure of Human galectin-3 CRD in complex with lactose (pH 7.0, PEG 6000) 4R9A ; 1.197 ; Crystal structure of Human galectin-3 CRD in complex with lactose (pH 7.0, PEG4000) 4R9C ; 1.19 ; Crystal structure of Human galectin-3 CRD in complex with lactose (pH 7.5, PEG6000) 4RL7 ; 2.0 ; Crystal structure of Human galectin-3 CRD in complex with lactose (pH 7.5, PEG6000) 4R9D ; 1.239 ; Crystal structure of Human galectin-3 CRD in complex with lactose (pH 7.9, PEG6000) 3ZSJ ; 0.86 ; Crystal structure of Human Galectin-3 CRD in complex with Lactose at 0.86 angstrom resolution 6B8K ; 1.28 ; Crystal structure of Human galectin-3 CRD in complex with Lactulose 4LBN ; 1.7 ; Crystal structure of Human galectin-3 CRD in complex with LNnT 4LBM ; 1.55 ; Crystal structure of Human galectin-3 CRD in complex with LNT 7RGY ; 1.337 ; Crystal structure of human galectin-3 CRD in complex with Methyl 2-O-(2-nitro-4-chloro)-benzoyl-3-O-toluoyl-b-D-talopyranoside 7RGZ ; 1.485 ; Crystal structure of human galectin-3 CRD in complex with Methyl 2-O-(2-nitro-4-fluoro)-benzoyl-3-O-toluoyl-b-D-talopyranoside 7RH0 ; 1.487 ; Crystal structure of human galectin-3 CRD in complex with Methyl 2-O-(2-nitro-4-trifluoromethyl-benzoyl)-3-O-toluoyl-b-D-talopyranoside 7RGX ; 1.58 ; Crystal structure of human galectin-3 CRD in complex with Methyl 2-O-(2-nitrobenzoyl)-3-O-(4-methylbenzoyl)-b-D-talopyranoside 7RH1 ; 1.444 ; Crystal structure of human galectin-3 CRD in complex with Methyl 2-O-(3-nitro-benzoyl)-3-toluoyl-b-D-talopyranoside 5EXO ; 1.502 ; Crystal structure of Human galectin-3 CRD in complex with methyl 2-O-acetyl-3-O-(2H-chromene-3-yl-methyl)-a-D-galactopyranoside inhibitor 6Q0Q ; 1.98601 ; Crystal structure of Human galectin-3 CRD in complex with Methyl 3-O-(1-{3-O-[1-(b-D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl-b-D-galactopyranosyl}-1,2,3-triazol-4-yl)-methyl-b-D-galactopyranoside 6Q17 ; 1.98 ; Crystal structure of Human galectin-3 CRD in complex with Methyl 3-O-[1-(b-D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl-b-D-galactopyranoside 7RDP ; 1.96 ; Crystal structure of human galectin-3 CRD in complex with selenodigalactoside 5H9R ; 1.58 ; Crystal Structure of Human Galectin-3 CRD in Complex with TAZTDG 5H9P ; 2.04 ; Crystal Structure of Human Galectin-3 CRD in Complex with TD139 5E88 ; 1.6 ; Crystal structure of Human galectin-3 CRD in complex with thienyl-1,2,3-triazolyl thiodigalactoside inhibitor 4XBN ; 2.208 ; Crystal Structure of Human Galectin-3 CRD in Complex with Type 1 N-acetyllactosamine 4LBL ; 1.58 ; Crystal structure of Human galectin-3 CRD K176L mutant in complex with a-GM3 4LBK ; 1.6 ; Crystal structure of Human galectin-3 CRD K176L mutant in complex with LNnT 4LBJ ; 1.8 ; Crystal structure of Human galectin-3 CRD K176L mutant in complex with LNT 3ZSK ; 0.9 ; Crystal structure of Human Galectin-3 CRD with glycerol bound at 0.90 angstrom resolution 3T1L ; 1.6 ; Crystal structure of human Galectin-3 in complex with methyl 2-O-acetyl-3-O-toluoyl-beta-D-talopyranoside 8ITX ; 1.12 ; Crystal structure of human Galectin-3 in complex with small molecule inhibitor 8ITZ ; 1.22 ; Crystal structure of human Galectin-3 in complex with small molecule inhibitor 6WAB ; 2.28 ; Crystal structure of human galectin-4 C-terminal carbohydrate recognition domain in complex with galactose derivative 1BKZ ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN GALECTIN-7 6VTO ; 1.69 ; Crystal structure of human Galectin-7 in complex with 4-O-beta-D-Galactopyranosyl-D-glucose 3ZXE ; 1.67 ; Crystal structure of Human Galectin-7 in complex with a galactose- benzylphosphate inhibitor 3GAL ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN GALECTIN-7 IN COMPLEX WITH GALACTOSAMINE 2GAL ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN GALECTIN-7 IN COMPLEX WITH GALACTOSE 4GAL ; 1.95 ; CRYSTAL STRUCTURE OF HUMAN GALECTIN-7 IN COMPLEX WITH LACTOSE 5GAL ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN GALECTIN-7 IN COMPLEX WITH N-ACETYLLACTOSAMINE 5H9S ; 1.821 ; Crystal Structure of Human Galectin-7 in Complex with TAZTDG 5H9Q ; 1.931 ; Crystal Structure of Human Galectin-7 in Complex with TD139 4XBQ ; 2.234 ; Crystal Structure of Human Galectin-7 in Complex with Type 1 N-acetyllactosamine 3NV1 ; 1.5 ; Crystal structure of human galectin-9 C-terminal CRD 3NV3 ; 1.57 ; Crystal structure of human galectin-9 C-terminal CRD in complex with biantennary oligosaccharide 3NV2 ; 2.34 ; Crystal structure of human galectin-9 C-terminal CRD in complex with N-acetyllactosamine 3NV4 ; 1.99 ; Crystal structure of human galectin-9 C-terminal CRD in complex with Sialyllactose 2EAL ; 1.85 ; Crystal structure of human galectin-9 N-terminal CRD in complex with Forssman pentasaccharide 2EAK ; 1.97 ; Crystal structure of human galectin-9 N-terminal CRD in complex with lactose 2ZHK ; 1.8 ; Crystal structure of human galectin-9 N-terminal CRD in complex with N-acetyllactosamine dimer (crystal 1) 2ZHL ; 1.75 ; Crystal structure of human galectin-9 N-terminal CRD in complex with N-acetyllactosamine dimer (crystal 2) 2ZHM ; 1.84 ; Crystal structure of human galectin-9 N-terminal CRD in complex with N-acetyllactosamine trimer (crystal 1) 2ZHN ; 1.3 ; Crystal structure of human galectin-9 N-terminal CRD in complex with N-acetyllactosamine trimer (crystal 2) 3WLU ; 1.4 ; Crystal Structure of human galectin-9 NCRD with Selenolactose 6PXU ; 2.007 ; Crystal structure of human GalNAc-T12 bound to a diglycosylated peptide, Mn2+, and UDP 2R2Q ; 1.65 ; Crystal structure of human Gamma-Aminobutyric Acid Receptor-Associated Protein-like 1 (GABARAP1), Isoform CRA_a 3N6W ; 2.0 ; Crystal structure of human gamma-butyrobetaine hydroxylase 3MS5 ; 1.82 ; Crystal Structure of Human gamma-butyrobetaine,2-oxoglutarate dioxygenase 1 (BBOX1) 3O2G ; 1.78 ; Crystal Structure of Human gamma-butyrobetaine,2-oxoglutarate dioxygenase 1 (BBOX1) 4CWD ; 1.899 ; CRYSTAL STRUCTURE OF HUMAN GAMMA-BUTYROBETAINE,2-OXOGLUTARATE IN COMPLEX WITH 449, A NOVEL SUBSTRATE 6ETA ; 2.198 ; Crystal Structure of Human Gamma-D crystallin Mutant P23T+R36S at Room Temperature 7P53 ; 1.57 ; Crystal Structure of Human gamma-D-crystallin mutant C110M at 1.57 Angstroms resolution 6ETC ; 1.197 ; Crystal Structure of Human gamma-D-crystallin Mutant P23T+R36S at 1.2 Angstroms Resolution 4GDX ; 1.67 ; Crystal Structure of Human Gamma-Glutamyl Transpeptidase--Glutamate complex 3CB2 ; 2.303 ; Crystal structure of human gamma-tubulin bound to GDP 1Z5V ; 2.71 ; Crystal structure of human gamma-tubulin bound to GTPgammaS 3RIP ; 2.3 ; Crystal Structure of human gamma-tubulin complex protein 4 (GCP4) 1IU1 ; 1.8 ; Crystal structure of human gamma1-adaptin ear domain 7Z1X ; 1.86 ; Crystal structure of human Gasdermin D complexed with nanobodies VHH-2 and VHH-6 1HLG ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN GASTRIC LIPASE 7W41 ; 2.952 ; Crystal Structure of Human Gastrin Releasing Peptide Receptor in complex with the antagonist PD176252 4CO7 ; 2.0 ; Crystal structure of human GATE-16 5TRL ; 2.299 ; Crystal structure of human GCN5 histone acetyltransferase domain 5TRM ; 2.9 ; Crystal structure of human GCN5 histone acetyltransferase domain 8E6O ; 2.37 ; Crystal structure of human GCN5 histone acetyltransferase domain 8H65 ; 3.0 ; Crystal structure of human GCN5 histone acetyltransferase domain bound with butyryl-CoA 8H6D ; 3.26 ; Crystal structure of human GCN5 histone acetyltransferase domain bound with glutaryl-CoA 8H6C ; 2.5 ; Crystal structure of human GCN5 histone acetyltransferase domain bound with malonyl-CoA 8H66 ; 2.8 ; Crystal structure of human GCN5 histone acetyltransferase domain bound with propionyl-CoA 7ALM ; 2.8 ; Crystal structure of human GDAP1 at 2.8 Angstrom resolution. 1T2A ; 1.84 ; Crystal structure of human GDP-D-mannose 4,6-dehydratase 6GPK ; 1.47 ; Crystal structure of human GDP-D-mannose 4,6-dehydratase (E157Q) in complex with GDP-Man 6Q94 ; 2.8 ; Crystal structure of human GDP-D-mannose 4,6-dehydratase (S156D) in complex with GDP-Man 6GPJ ; 1.94 ; Crystal structure of human GDP-D-mannose 4,6-dehydratase in complex with GDP-4F-Man 6GPL ; 1.76 ; Crystal structure of human GDP-D-mannose 4,6-dehydratase in complex with GDP-4k6d-Man 4BKP ; 2.7 ; Crystal structure of human GDP-L-fucose synthase with bound NADP 4B8Z ; 2.75 ; Crystal structure of human GDP-L-fucose synthase with bound NADP and GDP, rhombohedral crystal form 4B8W ; 2.75 ; Crystal structure of human GDP-L-fucose synthase with bound NADP and GDP, tetragonal crystal form 4BL5 ; 2.6 ; Crystal structure of human GDP-L-fucose synthase with bound NADP and product GDP-L-fucose 7P2B ; 3.0 ; Crystal structure of human gelsolin amyloid mutant A551P 3FFK ; 3.0 ; Crystal structure of human Gelsolin domains G1-G3 bound to Actin 2HT6 ; 2.4 ; Crystal structure of Human Gem G-domain bound to GDP 5T9J ; 3.00013 ; Crystal Structure of human GEN1 in complex with Holliday junction DNA in the upper interface 6R4V ; 2.202 ; Crystal structure of human geranylgeranyl diphosphate synthase bound to ibandronate 6G32 ; 3.281 ; Crystal structure of human geranylgeranyl diphosphate synthase mutant D188Y 6G31 ; 3.0 ; Crystal structure of human geranylgeranyl diphosphate synthase mutant D188Y bound to zoledronate 2Q80 ; 2.7 ; Crystal structure of human geranylgeranyl pyrophosphate synthase bound to GGPP 4KMT ; 2.1 ; Crystal structure of human germline antibody 5-51/O12 5I15 ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV1-69/IGKV1-39 5I16 ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV1-69/IGKV3-11 5I17 ; 3.3 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV1-69/IGKV3-20 5I18 ; 1.92 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV1-69/IGKV4-1 5I19 ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-23/IGKV1-39 5I1A ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-23/IGKV3-11 5I1C ; 2.25 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-23/IGKV3-20 5I1D ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-23/IGKV4-1 5I1E ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-53/IGKV1-39 5I1G ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-53/IGKV3-11 5I1H ; 2.222 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-53/IGKV3-20 5I1I ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV3-53/IGKV4-1 5I1J ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV5-51/IGKV3-11 5I1K ; 1.65 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV5-51/IGKV3-20 5I1L ; 1.95 ; CRYSTAL STRUCTURE OF HUMAN GERMLINE ANTIBODY IGHV5-51/IGKV4-1 6R4H ; 2.244 ; Crystal structure of human GFAT-1 G451E 6R4J ; 2.42 ; Crystal structure of human GFAT-1 G451E in complex with UDP-GlcNAc 6R4I ; 2.586 ; Crystal structure of human GFAT-1 G461E 6SVQ ; 2.717 ; Crystal structure of human GFAT-1 G461E after UDP-GlcNAc soaking 6SVO ; 2.328 ; Crystal structure of human GFAT-1 in complex with Glucosamine-6-Phosphate and L-Glu 6R4F ; 2.501 ; Crystal structure of human GFAT-1 in complex with Glucose-6-Phosphate 6R4E ; 2.353 ; Crystal structure of human GFAT-1 in complex with Glucose-6-Phosphate and L-Glu 6SVM ; 2.481 ; Crystal structure of human GFAT-1 in complex with Glucose-6-Phosphate, L-Glu, and UDP-GalNAc 6SVP ; 2.531 ; Crystal structure of human GFAT-1 in complex with Glucose-6-Phosphate, L-Glu, and UDP-GlcNAc 6R4G ; 2.501 ; Crystal structure of human GFAT-1 in complex with UDP-GlcNAc 6ZMK ; 2.382 ; Crystal structure of human GFAT-1 L405R 6ZMJ ; 2.774 ; Crystal structure of human GFAT-1 R203H 7NDL ; 2.223 ; Crystal structure of human GFAT-1 S205D 1O3X ; 2.1 ; Crystal structure of human GGA1 GAT domain 1X79 ; 2.41 ; Crystal structure of human GGA1 GAT domain complexed with the GAT-binding domain of Rabaptin5 1JWF ; 2.1 ; Crystal Structure of human GGA1 VHS domain. 1MHQ ; 2.2 ; Crystal Structure Of Human GGA2 VHS Domain 4Z9O ; 2.3 ; Crystal Structure of human GGT1 5V4Q ; 2.2 ; Crystal Structure of human GGT1 in complex with DON 4ZBK ; 2.18 ; Crystal Structure of human GGT1 in complex with GGsTop inhibitor 4ZCG ; 2.22 ; Crystal Structure of human GGT1 in complex with Glutamate (with all atoms of glutamate) 4ZC6 ; 2.1 ; Crystal Structure of human GGT1 in complex with Serine Borate 2EHO ; 3.0 ; Crystal structure of human GINS complex 2Q1M ; 2.3 ; Crystal Structure of human GITRL 3B93 ; 2.2 ; crystal structure of human GITRL 3B94 ; 2.5 ; Crystal structure of human GITRL 2R30 ; 3.2 ; Crystal Structure of human GITRL mutant 2R32 ; 1.95 ; Crystal Structure of human GITRL variant 1V82 ; 1.85 ; Crystal structure of human GlcAT-P apo form 1V84 ; 1.82 ; Crystal structure of human GlcAT-P in complex with N-acetyllactosamine, Udp, and Mn2+ 1V83 ; 1.9 ; Crystal structure of human GlcAT-P in complex with Udp and Mn2+ 2D0J ; 2.0 ; Crystal Structure of Human GlcAT-S Apo Form 6B4F ; 2.811 ; Crystal structure of human Gle1 CTD-Nup42 GBM complex 6B4I ; 3.619 ; Crystal structure of human Gle1 CTD-Nup42 GBM-DDX19B(ADP) complex 6B4J ; 3.4 ; Crystal structure of human Gle1 CTD-Nup42 GBM-DDX19B(AMPPNP) complex 4GIX ; 1.8 ; Crystal structure of human GLTP bound with 12:0 disulfatide 4GHS ; 3.2 ; Crystal structure of human GLTP bound with 12:0 disulfatide (orthorombic form; two subunits in asymmetric unit) 4H2Z ; 1.45 ; Crystal structure of human GLTP bound with 12:0 monosulfatide 4GXG ; 2.4 ; Crystal structure of human GLTP bound with 12:0 monosulfatide (orthorhombic form; four subunits in asymmetric unit) 4GJQ ; 2.0 ; Crystal structure of human GLTP bound with 12:0 monosulfatide (orthorhombic form;two subunits in asymmetric unit) 1V4S ; 2.3 ; Crystal structure of human glucokinase 1V4T ; 3.4 ; Crystal structure of human glucokinase 4IXC ; 2.0 ; Crystal structure of Human Glucokinase in complex with a small molecule activator. 3IMX ; 2.0 ; Crystal Structure of human glucokinase in complex with a synthetic activator 4DHY ; 2.38 ; Crystal structure of human glucokinase in complex with glucose and activator 3CXQ ; 2.3 ; Crystal structure of human glucosamine 6-phosphate N-acetyltransferase 1 bound to GlcN6P 3CXP ; 2.01 ; Crystal structure of human glucosamine 6-phosphate N-acetyltransferase 1 mutant E156A 5UKW ; 2.65 ; Crystal structure of human Glucose 6-phosphate Dehydrogenase mutant (A277C) complexed with G6P 7CRZ ; 2.3 ; Crystal structure of human glucose transporter GLUT3 bound with C3361 7SPS ; 2.3 ; Crystal structure of human glucose transporter GLUT3 bound with exofacial inhibitor SA47 3QXM ; 1.65 ; Crystal Structure of Human GluK2 Ligand-Binding Core in Complex with Novel Marine-Derived Toxins, Neodysiherbaine A 4ZW9 ; 1.502 ; Crystal structure of human GLUT3 bound to D-glucose in the outward-occluded conformation at 1.5 angstrom 3IWW ; 2.3 ; Crystal structure of human glutamate carboxypeptidase II (GCPII) in a complex with DBIBzL, a urea-based inhibitor 3FEC ; 1.49 ; Crystal structure of human Glutamate Carboxypeptidase III (GCPIII/NAALADase II), pseudo-unliganded 3II0 ; 2.05 ; Crystal structure of human Glutamate oxaloacetate transaminase 1 (GOT1) 6LIG ; 2.62 ; Crystal structure of human Glutamate oxaloacetate transaminase 1 (GOT1) in complex with AH 5I94 ; 2.983 ; Crystal structure of human glutaminase C in complex with the inhibitor UPGL-00019 3VOY ; 2.2 ; Crystal structure of human glutaminase in apo form 4O7D ; 2.3 ; Crystal structure of human glutaminase in complex DON 3VOZ ; 2.4 ; Crystal structure of human glutaminase in complex with BPTES 3VP2 ; 2.7 ; Crystal structure of human glutaminase in complex with inhibitor 2 3VP3 ; 2.7 ; Crystal structure of human glutaminase in complex with inhibitor 3 3VP4 ; 2.45 ; Crystal structure of human glutaminase in complex with inhibitor 4 3CZD ; 2.4 ; Crystal structure of human glutaminase in complex with L-glutamate 3VP1 ; 2.3 ; Crystal structure of human glutaminase in complex with L-glutamate and BPTES 3VP0 ; 2.4 ; Crystal structure of human glutaminase in complex with L-glutamine 6LOX ; 3.2 ; Crystal Structure of human glutaminase with macrocyclic inhibitor 2QC8 ; 2.6 ; Crystal structure of human glutamine synthetase in complex with ADP and methionine sulfoximine phosphate 2OJW ; 2.05 ; Crystal structure of human glutamine synthetase in complex with ADP and phosphate 6OFB ; 2.84 ; Crystal structure of human glutamine-dependent NAD+ synthetase complexed with NaAD+, AMP, pyrophosphate, and Mg2+ 2AFM ; 1.66 ; Crystal structure of human glutaminyl cyclase at pH 6.5 2AFO ; 2.35 ; Crystal structure of human glutaminyl cyclase at pH 8.0 2AFX ; 1.64 ; Crystal structure of human glutaminyl cyclase in complex with 1-benzylimidazole 2AFZ ; 1.68 ; Crystal structure of human glutaminyl cyclase in complex with 1-vinylimidazole 6YI1 ; 1.92 ; Crystal structure of human glutaminyl cyclase in complex with Glu(gamma-hydrazide)-Phe-Ala 2AFU ; 2.22 ; Crystal structure of human glutaminyl cyclase in complex with glutamine t-butyl ester 2AFW ; 1.56 ; Crystal structure of human glutaminyl cyclase in complex with N-acetylhistamine 6YJY ; 1.67 ; Crystal structure of human glutaminyl cyclase in complex with neurotensin 1-5 6GBX ; 1.72 ; Crystal structure of human glutaminyl cyclase variant Y115E-Y117E in complex with SEN177 2FLS ; 2.05 ; Crystal structure of Human Glutaredoxin 2 complexed with glutathione 4RQR ; 1.08 ; Crystal Structure of Human Glutaredoxin with MESNA 2R37 ; 1.85 ; Crystal structure of human glutathione peroxidase 3 (selenocysteine to glycine mutant) 2I3Y ; 2.0 ; Crystal structure of human glutathione peroxidase 5 2P31 ; 2.0 ; Crystal structure of human glutathione peroxidase 7 2GH5 ; 1.7 ; Crystal Structure of human Glutathione Reductase complexed with a Fluoro-Analogue of the Menadione Derivative M5 1YJ6 ; 2.5 ; crystal structure of human glutathione S-transferase M1A-1A complexed with glutathionyl-zinc-trihydroxide 2PGT ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN GLUTATHIONE S-TRANSFERASE P1-1[V104] COMPLEXED WITH (9R,10R)-9-(S-GLUTATHIONYL)-10-HYDROXY-9,10-DIHYDROPHENANTHRENE 1PGT ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN GLUTATHIONE S-TRANSFERASE P1-1[V104] COMPLEXED WITH S-HEXYLGLUTATHIONE 1PKZ ; 2.1 ; Crystal structure of human glutathione transferase (GST) A1-1 1PL1 ; 1.75 ; Crystal structure of human glutathione transferase (GST) A1-1 in complex with a decarboxy-glutathione 1PKW ; 2.0 ; Crystal structure of human glutathione transferase (GST) A1-1 in complex with glutathione 1PL2 ; 1.8 ; Crystal structure of human glutathione transferase (GST) A1-1 T68E mutant in complex with decarboxy-glutathione 2A2S ; 1.7 ; Crystal Structure of Human Glutathione Transferase in complex with S-nitrosoglutathione in the absence of reducing agent 3LFL ; 2.1 ; Crystal Structure of human Glutathione Transferase Omega 1, delta 155 6Y1E ; 1.402 ; Crystal structure of human glutathione transferase P1-1 (hGSTP1-1) that was co-crystallised in the presence of indanyloxyacetic acid-94 (IAA-94) 5DAK ; 2.11 ; Crystal Structure of human Glutathione Transferase Pi complexed with a metalloid in the absence of Glutathione 5DAL ; 1.5 ; Crystal Structure of human Glutathione Transferase Pi complexed with a metalloid in the presence of Glutathione 3HJM ; 2.1 ; Crystal structure of human Glutathione Transferase Pi Y108V mutant 4MPG ; 1.951 ; Crystal structure of human glutathione transferase theta-2, complex with glutathione and unknown ligand, target EFI-507257 4MPF ; 2.1 ; Crystal structure of human glutathione transferase theta-2, complex with inorganic phosphate, GSH free, target EFI-507257 2J9H ; 2.4 ; Crystal structure of human glutathione-S-transferase P1-1 cys-free mutant in complex with S-hexylglutathione at 2.4 A resolution 2PLA ; 2.51 ; Crystal structure of human glycerol-3-phosphate dehydrogenase 1-like protein 6I33 ; 2.3 ; Crystal structure of human glycine decarboxylase (P-protein) 6I35 ; 2.0 ; Crystal structure of human glycine decarboxylase (P-protein) bound with pyridoxyl-glycine-5'-monophosphate 1R74 ; 2.55 ; Crystal Structure of Human Glycine N-Methyltransferase 5TIO ; 3.25 ; Crystal Structure of Human Glycine Receptor alpha-3 Bound to AM-3607 5VDH ; 2.85 ; Crystal Structure of Human Glycine Receptor alpha-3 Bound to AM-3607, Glycine, and Ivermectin 5CFB ; 3.04 ; Crystal Structure of Human Glycine Receptor alpha-3 Bound to Strychnine 5TIN ; 2.61 ; Crystal Structure of Human Glycine Receptor alpha-3 Mutant N38Q Bound to AM-3607 5VDI ; 3.1 ; Crystal Structure of Human Glycine Receptor alpha-3 Mutant N38Q Bound to AM-3607, Glycine, and Ivermectin 4BZY ; 2.75 ; Crystal structure of human glycogen branching enzyme (GBE1) 5CLT ; 2.79 ; Crystal structure of human glycogen branching enzyme (GBE1) in complex with acarbose 5CLW ; 2.8 ; Crystal structure of human glycogen branching enzyme (GBE1) in complex with maltoheptaose 3SAY ; 2.231 ; Crystal structure of human glycogen synthase kinase 3 beta (GSK3b) in complex with inhibitor 142 3U2T ; 2.05 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese 3U2W ; 1.68 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese and glucose or a glucal species 3QVB ; 2.26 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese and UDP 3T7N ; 1.98 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese and UDP, in a monoclinic closed form 3T7M ; 1.8 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese and UDP, in a triclinic closed form 3U2X ; 1.77 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese, UDP and 1'-deoxyglucose 3U2V ; 1.5 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese, UDP and maltohexaose 3U2U ; 1.45 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese, UDP and maltotetraose 3T7O ; 1.85 ; Crystal Structure of Human Glycogenin-1 (GYG1) complexed with manganese, UDP-Glucose and glucose 3RMV ; 1.82 ; Crystal Structure of Human Glycogenin-1 (GYG1) T83M mutant complexed with manganese and UDP 3RMW ; 1.93 ; Crystal Structure of Human Glycogenin-1 (GYG1) T83M mutant complexed with manganese and UDP-glucose 6EQL ; 2.38 ; Crystal Structure of Human Glycogenin-1 (GYG1) Tyr195pIPhe mutant complexed with manganese and UDP 6EQJ ; 2.18 ; Crystal Structure of Human Glycogenin-1 (GYG1) Tyr195pIPhe mutant, apo form 3Q4S ; 1.98 ; Crystal Structure of Human Glycogenin-1 (GYG1), apo form 4UEG ; 1.93 ; Crystal structure of human glycogenin-2 catalytic domain 2RDT ; 1.95 ; Crystal Structure of Human Glycolate Oxidase (GO) in Complex with CDST 2RDU ; 1.65 ; Crystal Structure of Human Glycolate Oxidase in Complex with Glyoxylate 2RDW ; 1.95 ; Crystal Structure of Human Glycolate Oxidase in Complex with Sulfate 2W0U ; 2.84 ; CRYSTAL STRUCTURE OF HUMAN GLYCOLATE OXIDASE IN COMPLEX WITH THE INHIBITOR 5-[(4-CHLOROPHENYL)SULFANYL]- 1,2,3-THIADIAZOLE-4-CARBOXYLATE. 7M2O ; 2.07 ; Crystal structure of Human Glycolate Oxidase with Inhibitor Compound 15 2EVD ; 2.0 ; Crystal structure of human Glycolipid Transfer Protein complexed with 12:0 Lactosylceramide 2EVL ; 2.2 ; Crystal structure of human Glycolipid Transfer Protein complexed with 18:2 Galactosylceramide 2EUK ; 1.85 ; Crystal Structure of Human Glycolipid Transfer Protein complexed with 24:1 Galactosylceramide 3RZN ; 1.1 ; Crystal Structure of Human Glycolipid Transfer Protein complexed with 3-O-sulfo-galactosylceramide containing nervonoyl acyl chain (24:1) 2EUM ; 2.3 ; Crystal structure of human Glycolipid Transfer Protein complexed with 8:0 Lactosylceramide 3S0K ; 1.4 ; Crystal Structure of Human Glycolipid Transfer Protein complexed with glucosylceramide containing oleoyl acyl chain (18:1) 2EVS ; 2.2 ; Crystal structure of human Glycolipid Transfer Protein complexed with n-hexyl-beta-D-glucoside 1SX6 ; 1.95 ; Crystal structure of human Glycolipid Transfer protein in lactosylceramide-bound form 5M3Y ; 2.3 ; Crystal structure of human glycosylated angiotensinogen 6F02 ; 3.0 ; Crystal structure of human glycosylated kallistatin at 3.0 Angstrom resolution 2ZT6 ; 3.08 ; Crystal structure of human Glycyl-tRNA synthetase (GlyRS) in complex with AMPCPP 2ZXF ; 3.4 ; Crystal structure of human glycyl-trna synthetase (GLYRS) in complex with AP4A (cocrystallized with AP4A) 2ZT5 ; 2.5 ; Crystal structure of human glycyl-trna synthetase (GLYRS) in complex with AP4A (cocrystallized with ATP) 2ZT8 ; 3.35 ; Crystal structure of human Glycyl-tRNA synthetase (GlyRS) in complex with Gly-AMP analog 2ZT7 ; 2.7 ; Crystal structure of human Glycyl-tRNA synthetase (GlyRS) in complex with Glycine and ATP 3ZI1 ; 1.9 ; Crystal structure of human glyoxalase domain-containing protein 4 (GLOD4) 2WWR ; 2.82 ; Crystal Structure of Human Glyoxylate Reductase Hydroxypyruvate Reductase 3CXS ; 2.7 ; Crystal structure of human GNA1 5ZIB ; 1.9 ; Crystal structure of human GnT-V luminal domain in apo form 5ZIC ; 2.1 ; Crystal structure of human GnT-V luminal domain in complex with acceptor sugar 7ZL9 ; 2.7 ; Crystal structure of human GPCR Niacin receptor (HCA2) 7ZLY ; 2.7 ; Crystal structure of human GPCR Niacin receptor (HCA2) expressed from Spodoptera frugiperda 4PHU ; 2.332 ; Crystal structure of Human GPR40 bound to allosteric agonist TAK-875 5H5Q ; 1.1 ; Crystal structure of human GPX4 in complex with GXpep-1 5H5R ; 1.2 ; Crystal structure of human GPX4 in complex with GXpep-2 5H5S ; 1.85 ; Crystal structure of human GPX4 in complex with GXpep-3 7L8K ; 1.38 ; Crystal structure of human GPX4-U46C 7U4M ; 1.93 ; Crystal structure of human GPX4-U46C in complex with LOC1886 7U4L ; 2.25 ; Crystal structure of human GPX4-U46C in complex with MAC-5576 7U4N ; 1.6 ; Crystal structure of human GPX4-U46C in complex with RSL3 7L8R ; 1.52 ; Crystal structure of human GPX4-U46C mutant K48A 7L8M ; 2.07 ; Crystal structure of human GPX4-U46C mutant K48L 7L8Q ; 1.48 ; Crystal structure of human GPX4-U46C with oxidized Cys-46 7U4I ; 1.97 ; Crystal structure of human GPX4-U46C-R152H in complex with CDS9 7U4K ; 1.69 ; Crystal structure of human GPX4-U46C-R152H in complex with ML162 7U4J ; 1.81 ; Crystal structure of human GPX4-U46C-R152H in complex with TMT10 6GN5 ; 1.41 ; CRYSTAL STRUCTURE OF HUMAN GRAMD1C START DOMAIN 1OP8 ; 2.5 ; Crystal Structure of Human Granzyme A 1FQ3 ; 3.1 ; CRYSTAL STRUCTURE OF HUMAN GRANZYME B 3TK9 ; 2.2 ; Crystal structure of human granzyme H 3TJV ; 2.4 ; Crystal structure of human granzyme H with a peptidyl substrate 3TJU ; 2.7 ; Crystal structure of human granzyme H with an inhibitor 5AEJ ; 1.904 ; Crystal structure of human Gremlin-1 8B7H ; 1.95 ; Crystal structure of human Gremlin-1 in complex with Fab 4MF3 ; 3.0 ; Crystal Structure of Human GRIK1 complexed with a 6-(tetrazolyl)aryl decahydroisoquinoline antagonist 1WAQ ; 2.28 ; Crystal structure of human Growth and Differentiation Factor 5 (GDF-5) 2BHK ; 2.4 ; Crystal structure of human growth and differentiation factor 5 (GDF5) 5E4G ; 1.5 ; Crystal structure of human growth differentiation factor 11 (GDF-11) 3B9C ; 1.9 ; Crystal Structure of Human GRP CRD 3LDN ; 2.2 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in apo form 5F0X ; 1.6 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with 2'-deoxy-ADP and inorganic phosphate 5EY4 ; 1.86 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with 2'-deoxy-ATP 5EX5 ; 1.9 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with 7-deaza-ADP and inorganic phosphate 5EXW ; 1.9 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with 7-deaza-ATP 5EVZ ; 1.85 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with ADP and inorganic phosphate 5F2R ; 2.15 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with AMP-PCP 3LDO ; 1.95 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with AMPPNP 3LDL ; 2.3 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with ATP 5F1X ; 1.9 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with ATP 3LDP ; 2.2 ; Crystal structure of human GRP78 (70kDa heat shock protein 5 / BIP) ATPase domain in complex with small molecule inhibitor 6DWS ; 1.9 ; Crystal structure of human GRP78 in complex with (2R,3R,4S,5R)-2-(6-amino-8-((2-chlorobenzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 6DO2 ; 1.7 ; Crystal structure of human GRP78 in complex with 7-deaza-2'-C-methyladenosine 6DFM ; 2.14 ; Crystal structure of human GRP78 in complex with 8-aminoadenosine 6DFO ; 2.54 ; Crystal structure of human GRP78 in complex with 8-bromoadenosine 6N9O ; 3.5 ; Crystal structure of human GSDMD 7U36 ; 2.75 ; Crystal structure of human GSK3B in complex with ARN1484 7U33 ; 2.6 ; Crystal structure of human GSK3B in complex with ARN9133 7U2Z ; 2.21 ; Crystal structure of human GSK3B in complex with G12 7U31 ; 2.38 ; Crystal structure of human GSK3B in complex with G5 7BIC ; 2.46 ; Crystal structure of human GSTA1-1 bound to allyl-isothiocyanate 6YAW ; 2.19 ; Crystal structure of human GSTA1-1 bound to the glutathione adduct of cinnamaldehyde 7BIB ; 2.03 ; Crystal structure of human GSTA1-1 bound to the glutathione adduct of hexyl-isothiocyanate 7BIA ; 1.73 ; Crystal structure of human GSTP1 bound to iberin 1FB1 ; 3.1 ; CRYSTAL STRUCTURE OF HUMAN GTP CYCLOHYDROLASE I 3V70 ; 2.206 ; Crystal Structure of Human GTPase IMAP family member 1 3P1J ; 2.58 ; Crystal structure of human GTPase IMAP family member 2 in the nucleotide-free state 3LXX ; 2.15 ; Crystal structure of human GTPase IMAP family member 4 2A7R ; 3.0 ; Crystal structure of human Guanosine Monophosphate reductase 2 (GMPR2) 2BZN ; 2.15 ; Crystal structure of human guanosine monophosphate reductase 2 GMPR2 in complex with IMP 2C6Q ; 1.7 ; Crystal structure of human guanosine monophosphate reductase 2 GMPR2 in complex with IMP and NADPH 2GGZ ; 3.0 ; Crystal Structure of Human Guanylate Cyclase Activating Protein-3 7M1S ; 2.91 ; Crystal structure of human guanylate-binding protein 2 (hGBP2) K51A mutant 1KJY ; 2.7 ; Crystal Structure of Human G[alpha]i1 Bound to the GoLoco Motif of RGS14 2OM2 ; 2.2 ; Crystal Structure Of Human G[alpha]i1 Bound To The Goloco Motif Of Rgs14 3AJP ; 1.901 ; Crystal structure of human H ferritin E140A mutant 3AJQ ; 1.58 ; Crystal structure of human H ferritin E140Q mutant 6WYG ; 2.27 ; Crystal structure of Human H-chain Ferritin variant 157C Delta C-star Modified with a RAFT agent 6WYF ; 1.25 ; Crystal structure of Human H-chain Ferritin variant 157C Delta C-star Modified with a RAFT Agent Soaked in an Acrylate Solution 6WYH ; 2.22 ; Crystal structure of Human H-chain Ferritin variant 157C Delta C-star Modified with a RAFT Agent Soaked in an Acrylate Solution 7K26 ; 2.7 ; Crystal structure of Human H-chain Ferritin variant infused with Sodium Acrylate 8JAI ; 2.56 ; Crystal Structure of Human H-Ferritin variant 123F assembling in solution 1 8J9L ; 2.5 ; Crystal Structure of Human H-Ferritin variant 123F assembling in solution2 8J9M ; 2.9 ; Crystal Structure of Human H-Ferritin variant 123F assembling in solution3 5UJJ ; 2.1 ; Crystal structure of human H130R tryptophanyl-tRNA synthetase in complex with TrpAMP 3K1Z ; 1.55 ; Crystal Structure of Human Haloacid Dehalogenase-like Hydrolase Domain containing 3 (HDHD3) 8RDK ; 2.0 ; Crystal structure of human Haspin (GSG2) kinase bound to MD420 3IQ7 ; 2.0 ; Crystal Structure of human Haspin in complex with 5-Iodotubercidin 3DLZ ; 1.85 ; Crystal structure of human haspin in complex with AMP 3E7V ; 2.0 ; Crystal Structure of Human Haspin with a pyrazolo-pyrimidine ligand 3F2N ; 1.8 ; Crystal Structure of Human Haspin with an Imidazo-pyridazine ligand 3FMD ; 2.0 ; Crystal Structure of Human Haspin with an Isoquinoline ligand 5GK9 ; 2.4 ; Crystal structure of human HBO1 in complex with BRPF2 7D0O ; 2.51 ; Crystal structure of human HBO1-BRPF2 in apo form 7D0Q ; 2.21 ; Crystal structure of human HBO1-BRPF2 in complex with butyryl-coenzyme A 7D0R ; 1.95 ; Crystal structure of human HBO1-BRPF2 in complex with crotonoyl-coenzyme A 7D0P ; 1.8 ; Crystal structure of human HBO1-BRPF2 in complex with propionyl-coenzyme A 7D0S ; 2.3 ; Crystal structure of human HBO1-BRPF2 in complex with succinyl-coenzyme A 3MAX ; 2.05 ; Crystal Structure of Human HDAC2 complexed with an N-(2-aminophenyl)benzamide 6G3O ; 2.27 ; Crystal structure of human HDAC2 in complex with (R)-6-[3,4-Dioxo-2-(4-trifluoromethoxy-phenylamino)-cyclobut-1-enylamino]-heptanoic acid hydroxyamide 3PHD ; 3.0 ; Crystal structure of human HDAC6 in complex with ubiquitin 3C5K ; 1.55 ; Crystal structure of human HDAC6 zinc finger domain 3GV4 ; 1.72 ; Crystal structure of human HDAC6 zinc finger domain and ubiquitin C-terminal peptide RLRGG 1VKG ; 2.2 ; Crystal Structure of Human HDAC8 complexed with CRA-19156 1T67 ; 2.31 ; Crystal Structure of Human HDAC8 complexed with MS-344 1T69 ; 2.91 ; Crystal Structure of human HDAC8 complexed with SAHA 1T64 ; 1.9 ; Crystal Structure of human HDAC8 complexed with Trichostatin A 3SFF ; 2.0 ; Crystal Structure of Human HDAC8 Inhibitor Complex, an Amino Acid Derived Inhibitor 3SFH ; 2.7 ; Crystal Structure of Human HDAC8 Inhibitor Complex, an Amino Acid Derived Inhibitor 2O2L ; 2.53 ; Crystal structure of human heat-labile enterotoxin in complex with a blood group A antigen analog 1ZC0 ; 1.85 ; Crystal structure of human hematopoietic tyrosine phosphatase (HePTP) catalytic domain 1N3U ; 2.58 ; Crystal structure of human heme oxygenase 1 (HO-1) in complex with its substrate heme, crystal form B 5BTQ ; 2.08 ; Crystal structure of human heme oxygenase 1 H25R with biliverdin bound 1S8C ; 2.19 ; Crystal structure of human heme oxygenase in a complex with biliverdine 3CZY ; 1.54 ; Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(Adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone 5UC8 ; 2.0 ; Crystal structure of human Heme Oxygenase-2 2Q32 ; 2.4 ; Crystal structure of human heme oxygenase-2 C127A (HO-2) 2QPP ; 2.61 ; Crystal structure of human heme oxygenase-2 C127A (HO-2) with bound heme 5UCA ; 2.117 ; Crystal structure of human Heme Oxygenase-2 in complex with Laurate 5UC9 ; 1.903 ; Crystal structure of human Heme Oxygenase-2 in complex with Myristate 1SI4 ; 2.2 ; Crystal structure of Human hemoglobin A2 (in R2 state) at 2.2 A resolution 1NQP ; 1.73 ; Crystal structure of Human hemoglobin E at 1.73 A resolution 1ZRH ; 2.1 ; Crystal structure of Human heparan sulfate glucosamine 3-O-sulfotransferase 1 in complex with PAP 5E8M ; 1.75 ; Crystal structure of human heparanase 6ZDM ; 1.714 ; Crystal structure of human heparanase in complex with a N',6O'-bis-sulfated 4-methylumbelliferyl heparan sulfate disaccharide 8OHQ ; 1.7 ; Crystal structure of human heparanase in complex with competitive inhibitor derrived from siastatin B 8BAC ; 2.05 ; Crystal structure of human heparanase in complex with competitive inhibitor GD05 7PRT ; 1.7 ; Crystal structure of human heparanase in complex with covalent inhibitor CB678 7PR8 ; 1.66 ; Crystal structure of human heparanase in complex with covalent inhibitor GR109 8B0B ; 1.95 ; Crystal structure of human heparanase in complex with covalent inhibitor VB151 8B0C ; 2.1 ; Crystal structure of human heparanase in complex with covalent inhibitor VB158 7PR7 ; 1.52 ; Crystal structure of human heparanase in complex with covalent inhibitor VL166 8OHR ; 1.8 ; Crystal structure of human heparanase in complex with glucuronic acid configured 3-geminal diol iminosugar inhibitor 5E9C ; 1.73 ; Crystal structure of human heparanase in complex with heparin tetrasaccharide dp4 5E98 ; 1.63 ; Crystal structure of human heparanase in complex with HepMer M04S02a 5E9B ; 1.88 ; Crystal structure of human heparanase in complex with HepMer M09S05a 5L9Z ; 1.57 ; Crystal structure of human heparanase nucleophile mutant (E343Q), in complex with unreacted glucuronic acid configured aziridine probe JJB355 5L9Y ; 1.88 ; Crystal structure of human heparanase, in complex with glucuronic acid configured aziridine probe JJB355 5X6V ; 2.02 ; Crystal structure of human heteroheptameric complex 5X6U ; 2.4 ; Crystal structure of human heteropentameric complex 5HG1 ; 2.76 ; Crystal Structure of Human Hexokinase 2 with cmpd 1, a C-2-substituted glucosamine 5HFU ; 2.923 ; Crystal Structure of Human Hexokinase 2 with cmpd 27, a 2-amido-6-benzenesulfonamide glucosamine 5HEX ; 2.734 ; Crystal Structure of Human Hexokinase 2 with cmpd 30, a 2-amino-6-benzenesulfonamide glucosamine 2NZT ; 2.45 ; Crystal structure of human hexokinase II 3O7X ; 2.9248 ; Crystal structure of human Hili PAZ domain 6J58 ; 1.521 ; Crystal structure of human HINT1 complexing with AP4A 5ED3 ; 1.309 ; crystal structure of human Hint1 complexing with AP5A 6J53 ; 1.52 ; Crystal structure of human HINT1 complexing with ATP 5ED6 ; 1.52 ; crystal structure of human Hint1 H114A mutant complexing with ATP 6J5Z ; 1.3 ; Crystal structure of human HINT1 mutant complexing with AP3A 6J64 ; 0.95 ; Crystal structure of human HINT1 mutant complexing with AP4A 6J65 ; 1.42 ; Crystal structure of human HINT1 mutant complexing with AP4A II 6J5S ; 1.02 ; Crystal structure of human HINT1 mutant complexing with AP5A 5G4P ; 2.42 ; Crystal structure of human hippocalcin at 2.4 A resolution 4G84 ; 2.4 ; Crystal structure of human HisRS 4G85 ; 3.11 ; Crystal structure of human HisRS 7F61 ; 2.6 ; Crystal structure of human histamine receptor H3R in complex with antagonist PF03654746 5O9L ; 1.75 ; Crystal structure of human Histamine-Releasing Factor (HRF/TCTP) 5O9M ; 1.4 ; Crystal structure of human Histamine-Releasing Factor (HRF/TCTP)containing a disulphide-linked dimer 4ZKL ; 2.34 ; Crystal structure of human histidine triad nucleotide-binding protein 1 (hHINT1) complexed with JB419 (AP4A analog) 5O8I ; 1.27 ; Crystal structure of human histidine triad nucleotide-binding protein 1 (hHINT1) crystallized at P212121 space group, and refined to 1.27 A 6G9Z ; 1.43 ; Crystal structure of human histidine triad nucleotide-binding protein 1 (hHINT1) crystallized at P212121 space group, with visible extended fragment of N-terminus 4ZKV ; 1.92 ; Crystal structure of human histidine triad nucleotide-binding protein 1 (hHINT1) refined to 1.92A at P21 space group 8PA6 ; 1.58 ; Crystal structure of human Histidine Triad Nucleotide-Binding Protein 1 in complex with 5'-O-[(3-Indolyl)-1-Ethyl]Carbamoyl 2-aminoethenoadenosine 8P8P ; 1.9 ; Crystal structure of human Histidine Triad Nucleotide-Binding Protein 1 in complex with 5'-O-[(3-Indolyl)-1-Ethyl]Carbamoyl Ethenoadenosine 8PA9 ; 1.5 ; Crystal structure of human Histidine Triad Nucleotide-Binding Protein 1 in complex with 5'-O-[(3-Indolyl)-1-Ethyl]Carbamoyl N2-methyl-2-aminoethenoadenosine 8PAF ; 2.1 ; Crystal structure of human Histidine Triad Nucleotide-Binding Protein 1 in complex with 5'-O-[N-(3-Indolepropionic acid)sulfamoyl] 2-aminoethenoadenosine 8PAI ; 1.8 ; Crystal structure of human Histidine Triad Nucleotide-Binding Protein 1 in complex with 5'-O-[N-(3-Indolepropionic acid)sulfamoyl] N2-methyl-2-aminoethenoadenosine 6VO5 ; 1.6 ; Crystal structure of Human histone acetytransferas 1 (HAT1) in complex with isobutryl-COA and K12A mutant variant of histone H4 5EDU ; 2.79 ; Crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with trichostatin A 7JVV ; 1.84 ; Crystal structure of human histone deacetylase 8 (HDAC8) E66D/Y306F double mutation complexed with a tetrapeptide substrate 7JVW ; 2.40302 ; Crystal structure of human histone deacetylase 8 (HDAC8) G320R mutation complexed with M344 7JVU ; 1.50048 ; Crystal structure of human histone deacetylase 8 (HDAC8) I45T mutation complexed with SAHA 3OOI ; 1.75 ; Crystal Structure of Human Histone-Lysine N-methyltransferase NSD1 SET domain in Complex with S-adenosyl-L-methionine 3MEK ; 2.1 ; Crystal Structure of Human Histone-Lysine N-methyltransferase SMYD3 in Complex with S-adenosyl-L-methionine 3O7V ; 2.1 ; Crystal Structure of human Hiwi1 (V361M) PAZ domain (residues 277-399) in complex with 14-mer RNA (12-bp + 2-nt overhang) containing 2'-OCH3 at its 3'-end 3O6E ; 2.904 ; Crystal Structure of human Hiwi1 PAZ domain (residues 277-399) in complex with 14-mer RNA (12-bp + 2-nt overhang) containing 2'-OCH3 at its 3'-end 3O3I ; 2.801 ; Crystal Structure of human Hiwi1 PAZ domain (residues 277-399) in complex with 14-mer RNA (12-bp + 2-nt overhang) containing 2'-OH at its 3'-end 5UJT ; 1.94 ; Crystal structure of human HLA-DQ8 in complex with insulin mimotope binding in register 3 3QVE ; 2.04 ; Crystal structure of human HMG box-containing protein 1, HBP1 2CW6 ; 2.1 ; Crystal Structure of Human HMG-CoA Lyase: Insights into Catalysis and the Molecular Basis for Hydroxymethylglutaric Aciduria 4WD4 ; 2.95 ; Crystal structure of human HO1 H25R 2RCT ; 1.2 ; Crystal structure of human holo cellular retinol-binding protein II (CRBP-II) 7L1T ; 2.25 ; Crystal structure of human holo SepSecS 2P8V ; 1.85 ; Crystal structure of human Homer3 EVH1 domain 5J8E ; 1.7 ; Crystal structure of human Hook3's conserved Hook domain 6M3G ; 1.57 ; Crystal structure of human HPF1 8CIJ ; 2.821 ; CRYSTAL STRUCTURE OF HUMAN HPK1 (MAP4K1) COMPLEX WITH 2-[8-Amino-7-fluoro-6-(8-methyl-2,3-dihydro-1H-pyrido[2,3-b][1,4]oxazin-7-yl)-isoquinolin-3-ylamino]-6-isopropyl-5,6-dihydro-4H-1,6,8a-triaza-azulen-7-one 8CDW ; 1.941 ; CRYSTAL STRUCTURE OF HUMAN HPK1 (MAP4K1) COMPLEX WITH 7-(1-methyl-1H-pyrazol-4-yl)-N-[4-(1-methylpiperidin-4-yl)phenyl]quinazolin-2-amine 8IM3 ; 2.78 ; Crystal structure of human HPPD complexed with compound a10 8IM2 ; 2.81 ; Crystal structure of human HPPD complexed with NTBC 7YI7 ; 2.8 ; Crystal structure of Human HPSE1 in complex with inhibitor 7YJC ; 2.3 ; Crystal structure of Human HPSE1 in complex with inhibitor 8JYG ; 2.0 ; Crystal structure of Human HPSE1 in complex with inhibitor 4DPZ ; 1.25 ; Crystal structure of human HRASLS2 4DOT ; 1.96 ; Crystal structure of human HRASLS3. 5D5U ; 2.91 ; Crystal structure of human Hsf1 with HSE DNA 5D5V ; 2.55 ; Crystal structure of human Hsf1 with Satellite III repeat DNA 3AGX ; 1.85 ; Crystal structure of human Hsp40 Hdj1 peptide-binding domain 3AGY ; 1.85 ; Crystal structure of human Hsp40 Hdj1 peptide-binding domain complexed with a C-terminal peptide of Hsp70 3AGZ ; 2.51 ; Crystal structure of human Hsp40 Hdj1 peptide-binding domain complexed with a C-terminal peptide of Hsp70 4IO8 ; 2.58 ; Crystal structure of human HSP70 complexed with 4-{(2R,3S,4R)-5-[(R)-6-Amino-8-(3,4-dichloro-benzylamino)-purin-9-yl]-3,4-dihydroxy-tetrahydro-furan-2-ylmethoxymethyl}-benzonitrile 3ATU ; 1.65 ; Crystal structure of human Hsp70 NBD in the ADP- and Mg ion-bound state 3AY9 ; 1.75 ; Crystal structure of human Hsp70 NBD in the ADP-, Mg ion-, and K ion-bound state 3ATV ; 1.58 ; Crystal structure of human Hsp70 NBD in the ADP-bound and Mg ion-free state 7Q4R ; 1.79 ; Crystal structure of human HSP72-NBD in complex with fragment 1 5XQD ; 1.6 ; Crystal structure of Human Hsp90 with FS2 5XQE ; 1.699 ; Crystal structure of Human Hsp90 with FS3 5XR5 ; 1.6 ; Crystal structure of Human Hsp90 with FS4 5XR9 ; 1.501 ; Crystal structure of Human Hsp90 with FS6 4R3M ; 1.8 ; Crystal structure of Human Hsp90 with JR9 4L8Z ; 1.703 ; Crystal structure of Human Hsp90 with RL1 4L90 ; 2.001 ; Crystal structure of Human Hsp90 with RL3 4L93 ; 1.845 ; Crystal structure of Human Hsp90 with S36 4L94 ; 1.649 ; Crystal structure of Human Hsp90 with S46 4L91 ; 1.75 ; Crystal structure of Human Hsp90 with X29 1YC3 ; 2.12 ; Crystal Structure of human HSP90alpha complexed with dihydroxyphenylpyrazoles 1YC4 ; 1.81 ; Crystal structure of human HSP90alpha complexed with dihydroxyphenylpyrazoles 6PFL ; 2.1 ; Crystal structure of Human HUWE1 WWE domain in complex with ADPR 2NZL ; 1.35 ; Crystal structure of human hydroxyacid oxidase 1 2GF2 ; 2.38 ; Crystal structure of human hydroxyisobutyrate dehydrogenase 2I9P ; 2.55 ; Crystal structure of human hydroxyisobutyrate dehydrogenase complexed with NAD+ 7SAN ; 2.58156 ; Crystal structure of human hypoxanthine guanine phosphoribzosyltransferase in complex with (4S,7S)-7-hydroxy-4-((guanin-9-yl)methyl)-2,5-dioxaheptan-1,7-diphosphonate 4KN6 ; 2.728 ; Crystal structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with 6-fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) ribose-5'-monophosphate 2JJZ ; 2.15 ; Crystal Structure of Human Iba2, orthorhombic crystal form 2VTG ; 2.45 ; Crystal Structure of Human Iba2, trigonal crystal form 5DE1 ; 2.25 ; Crystal structure of human IDH1 in complex with GSK321A 5LGE ; 2.7 ; Crystal Structure of human IDH1 mutant (R132H) in complex with NADP+ and an Inhibitor related to BAY 1436032 8HB9 ; 2.8 ; Crystal Structure of Human IDH1 R132H Mutant in Complex with NADPH and Compound IHMT-IDH1-053 7CE3 ; 3.472 ; Crystal structure of human IDH3 holoenzyme in APO form. 6O3I ; 2.69 ; Crystal Structure of Human IDO1 bound to navoximod (NLG-919) 8FUR ; 2.285 ; Crystal structure of human IDO1 with compound 11 3KG5 ; 3.2 ; Crystal structure of human Ig-beta homodimer 7MLH ; 2.1 ; Crystal structure of human IgE (2F10) in complex with Der p 2.0103 5MOI ; 2.2 ; Crystal structure of human IgE-Fc epsilon 3-4 5MOK ; 2.0 ; Crystal structure of human IgE-Fc epsilon 3-4 2VXV ; 1.49 ; Crystal structure of human IgG ABT-325 Fab Fragment 4B7I ; 2.36 ; Crystal Structure of Human IgG Fc Bearing Hybrid-type Glycans 5YC5 ; 2.71 ; Crystal structure of human IgG-Fc in complex with aglycan and optimized Fc gamma receptor IIIa 5VME ; 3.1 ; Crystal structure of human IgG1 Fc K248E, T437R mutant 5JII ; 1.79 ; Crystal structure of human IgG1-Fc 5W5L ; 1.9 ; Crystal structure of human IgG1-Sigma Fc fragment 5W5M ; 1.9 ; Crystal structure of human IgG4-Sigma1 Fc fragment 5W5N ; 1.85 ; Crystal structure of human IgG4-Sigma2 Fc fragment 5EBZ ; 4.5 ; Crystal structure of human IKK1 2H24 ; 2.0 ; Crystal structure of human IL-10 1Y6K ; 2.52 ; Crystal structure of human IL-10 complexed with the soluble IL-10R1 chain 8CDG ; 2.9 ; Crystal structure of human IL-17A cytokine in complex with macrocycle 7ZAN ; 5.061 ; Crystal Structure of human IL-17A in complex with IL-17RA and IL-17RC 5N92 ; 2.3 ; Crystal Structure of Human IL-17AF 5NAN ; 3.3 ; Crystal Structure of human IL-17AF in complex with human IL-17RA 6HGO ; 2.1 ; Crystal Structure of human IL-17F 2VXT ; 1.49 ; Crystal structure of human IL-18 complexed to murine reference antibody 125-2H Fab 3F62 ; 2.0 ; Crystal Structure of Human IL-18 in complex with Ectromelia virus IL-18 Binding Protein 8C3U ; 1.945 ; Crystal Structure of human IL-1beta in complex with a low molecular weight antagonist 7CHY ; 2.65 ; Crystal Structure Of Human Il-1beta In Complex With Antibody Binding Fragment Of IgG26 7CHZ ; 2.5 ; Crystal Structure Of Human Il-1beta In Complex With Antibody Binding Fragment Of IgG26A 4G6J ; 2.03 ; Crystal structure of human IL-1beta in complex with the therapeutic antibody binding fragment of canakinumab 4G6M ; 1.81 ; Crystal structure of human IL-1beta in complex with therapeutic antibody binding fragment of gevokizumab 1M48 ; 1.95 ; Crystal Structure of Human IL-2 Complexed with (R)-N-[2-[1-(Aminoiminomethyl)-3-piperidinyl]-1-oxoethyl]-4-(phenylethynyl)-L-phenylalanine methyl ester 2MIP ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) TYPE 2 PROTEASE IN COMPLEX WITH A REDUCED AMIDE INHIBITOR AND COMPARISON WITH HIV-1 PROTEASE STRUCTURES 1S6P ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R100943 7FAB ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN IMMUNOGLOBULIN FRAGMENT FAB NEW REFINED AT 2.0 ANGSTROMS RESOLUTION 5TBK ; 3.45 ; Crystal structure of human importin a3 bound to RCC1 8FUB ; 2.75 ; Crystal structure of human Importin alpha 3 in complex with Hendra virus matrix protein NLS1 2P8Q ; 2.35 ; Crystal Structure of human Importin beta bound to the Snurportin1 IBB-domain 2Q5D ; 3.2 ; Crystal Structure of Human Importin Beta bound to the Snurportin1 IBB-domain second crystal form 2QNA ; 2.84 ; Crystal structure of human Importin-beta (127-876) in complex with the IBB-domain of Snurportin1 (1-65) 5XAH ; 3.004 ; Crystal structure of human Importin4 5XBK ; 3.223 ; Crystal structure of human Importin4 6E35 ; 2.411 ; Crystal structure of human indoleamime 2,3-dioxygenase (IDO1) in complex with L-Trp and cyanide, Northeast Structural Genomics Target HR6160 7E0T ; 2.137 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with (1R,2S)-2-(((5-bromo-1H-indazol-4-yl)amino)methyl)Cyclohexan-1-ol (36) 7E0S ; 2.712 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with (1R,2S)-2-(((6-Bromo-1H-indazol-4-yl)amino)methyl)cyclohexan-1-ol (23) 7E0Q ; 2.462 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with (1S,2R)-2-(((6-Bromo-1H-indazol-4-yl)amino)methyl)cyclohexan-1-ol (22) 7E0P ; 2.635 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with 4-(((6-Bromo-1H-indazol-4-yl)amino)methyl)phenol (2) 7E0O ; 3.337 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with 6-Bromo-1H-indazol-4-amine (1) 7E0U ; 2.278 ; Crystal Structure of Human Indoleamine 2,3-dioxygenagse 1 (hIDO1) Complexed with 6-Bromo-N-(((1S,2S)-2-chlorocyclohexyl)methyl)-1H-indazol-4-amine (39) 6E44 ; 1.903 ; CRYSTAL STRUCTURE OF HUMAN INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) free enzyme in the ferric state 6E45 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) free enzyme in the ferrous state 6E43 ; 1.705 ; Crystal structure of human indoleamine 2,3-dioxygenase 1 (IDO1) in complex with a BMS-978587 analog 6E42 ; 2.103 ; CRYSTAL STRUCTURE OF HUMAN INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) in complex with ferric heme and 4-Chlorophenyl imidazole 6E41 ; 2.291 ; CRYSTAL STRUCTURE OF HUMAN INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) in complex with ferric heme and an Epacadostat analog 6E46 ; 2.09 ; CRYSTAL STRUCTURE OF HUMAN INDOLEAMINE 2,3-DIOXYGENASE 1 (IDO1) in complex with ferrous heme and tryptophan 6PZ1 ; 2.65 ; Crystal Structure of human Indoleamine 2,3-Dioxygenase 1 in complex with PF-06840003 in Active Site and Si site 6F0A ; 2.26 ; Crystal structure of human indoleamine 2,3-dioxygenase bound to a triazole inhibitor and alanine molecule. 7YXT ; 2.48 ; Crystal structure of human Indoleamine-2,3-dioxygenase 1 (hIDO1) with different conformations for G261-G265 fragment 2A14 ; 1.7 ; Crystal Structure of Human Indolethylamine N-methyltransferase with SAH 8I3J ; 2.69 ; Crystal structure of human inner-arm dynein heavy chain d stalk and microtubule binding domain 7CMO ; 3.4 ; Crystal structure of human inorganic pyrophosphatase 6C45 ; 2.388 ; Crystal structure of human inorganic pyrophosphatase in the P212121 space group 7BTN ; 2.382 ; Crystal structure of human inorganic pyrophosphatase with metal ions 2CAR ; 1.09 ; Crystal Structure Of Human Inosine Triphosphatase 2I5D ; 1.63 ; Crystal Structure of Human Inosine Triphosphate Pyrophosphatase 4F95 ; 2.07 ; Crystal structure of human inosine triphosphate pyrophosphatase P32T variant 2QB5 ; 1.8 ; Crystal Structure of Human Inositol 1,3,4-Trisphosphate 5/6-Kinase (ITPK1) in Complex with ADP and Mn2+ 2Q7D ; 1.6 ; Crystal Structure of Human Inositol 1,3,4-Trisphosphate 5/6-kinase (ITPK1) in complex with AMPPNP and Mn2+ 6E7F ; 2.5 ; Crystal Structure of Human Inositol Polyphosphate Multikinase (IPMK) Catalytic Core Domain 2XSW ; 1.9 ; Crystal structure of human INPP5E 4CXN ; 1.7 ; Crystal structure of human insulin analogue (NMe-AlaB8)-insulin crystal form I 4CY7 ; 1.4 ; Crystal structure of human insulin analogue (NMe-AlaB8)-insulin crystal form II 3IR0 ; 2.2 ; Crystal Structure of Human Insulin complexed with Cu+2 metal ion 4RE9 ; 2.908 ; Crystal structure of human insulin degrading enzyme (IDE) in complex with compound 71290 4IFH ; 3.286 ; Crystal structure of human insulin degrading enzyme (IDE) in complex with compound BDM44619 7K1D ; 3.0 ; Crystal structure of human insulin degrading enzyme (IDE) in complex with compound BDM_77291 7K1F ; 2.6 ; Crystal structure of human insulin degrading enzyme (IDE) in complex with compound BDM_88558 7K1E ; 2.8 ; Crystal structure of human insulin degrading enzyme (IDE) in complex with compound BDM_88646 4DTT ; 3.22 ; Crystal structure of human insulin degrading enzyme (ide) in complex with compund 41367 4QIA ; 3.202 ; Crystal structure of human insulin degrading enzyme (ide) in complex with inhibitor N-benzyl-N-(carboxymethyl)glycyl-L-histidine 2JBU ; 3.0 ; Crystal structure of human insulin degrading enzyme complexed with co- purified peptides. 3E4Z ; 2.28 ; Crystal structure of human insulin degrading enzyme in complex with insulin-like growth factor II 2WC0 ; 2.8 ; crystal structure of human insulin degrading enzyme in complex with iodinated insulin 3E50 ; 2.3 ; Crystal structure of human insulin degrading enzyme in complex with transforming growth factor-alpha 8PJC ; 2.14 ; Crystal structure of human insulin desB30 precursor with an Alanine-Alanine-Lysine C-peptide in dimer (T2) conformation 8PI4 ; 1.25 ; Crystal structure of human insulin desB30 precursor with an Alanine-Methionine-Lysine C-peptide in dimer (T2) conformation 8PI5 ; 1.66 ; Crystal structure of human insulin desB30 precursor with an Alanine-Methionine-Lysine C-peptide in hexamer (T3R3) conformation 8PJH ; 1.5 ; Crystal structure of human insulin desB30 precursor with an Aspartate-Glycine-Lysine C-peptide in dimer (T2) conformation 4NIB ; 1.4 ; Crystal structure of human insulin mutant B20 D-ala, B23 D-ala 4P8Q ; 3.02 ; Crystal Structure of Human Insulin Regulated Aminopeptidase with Alanine in Active Site 4PJ6 ; 2.96 ; Crystal Structure of Human Insulin Regulated Aminopeptidase with Lysine in Active Site 8ONR ; 1.88 ; Crystal structure of human insulin trans-HypB26-DTI analogue 3INC ; 1.85 ; Crystal structure of human insulin with Ni+2 complex 7Z5L ; 1.4 ; Crystal structure of human insulin, crystallised in the presence of macrophage migration inhibitory factor (MIF) and dimethyl sulfoxide (DMSO) 7Z5Q ; 1.8 ; Crystal structure of human insulin, crystallised in the presence of macrophage migration inhibitory factor (MIF) and p-Hydroxyphenylpyruvate (HPP) 3N57 ; 3.03 ; Crystal Structure of human Insulin-degrading enzyme (IDE) in complex with human atrial natriuretic peptide (ANP) 3N56 ; 3.102 ; Crystal Structure of human Insulin-degrading enzyme (IDE) in complex with human B-type natriuretic peptide (BNP) 2G48 ; 2.6 ; crystal structure of human insulin-degrading enzyme in complex with amylin 3HGZ ; 2.91 ; Crystal structure of human insulin-degrading enzyme in complex with amylin 2G47 ; 2.1 ; Crystal structure of human insulin-degrading enzyme in complex with amyloid-beta (1-40) 2WK3 ; 2.59 ; Crystal structure of human insulin-degrading enzyme in complex with amyloid-beta (1-42) 2G49 ; 2.5 ; Crystal structure of human insulin-degrading enzyme in complex with glucagon 2WBY ; 2.6 ; Crystal structure of human insulin-degrading enzyme in complex with insulin 2G56 ; 2.2 ; crystal structure of human insulin-degrading enzyme in complex with insulin B chain 3OFI ; 2.35 ; Crystal structure of human insulin-degrading enzyme in complex with ubiquitin 4ZYO ; 3.25 ; Crystal Structure of Human Integral Membrane Stearoyl-CoA Desaturase with Substrate 5V8W ; 2.1 ; Crystal structure of human Integrator IntS9-IntS11 CTD complex 3ZGQ ; 2.203 ; Crystal structure of human interferon-induced protein IFIT5 6KN9 ; 3.302 ; Crystal structure of human interleukin 18 receptor beta extracellular domain in complex with an antagonistic scFv 4NI7 ; 2.4 ; Crystal structure of human interleukin 6 in complex with a modified nucleotide aptamer (SOMAMER SL1025) 4NI9 ; 2.55 ; Crystal structure of human interleukin 6 in complex with a modified nucleotide aptamer (SOMAMER SL1025), FORM 2 6MOM ; 2.1 ; Crystal structure of human Interleukin-1 receptor associated Kinase 4 (IRAK 4, CID 100300) in complex with compound NCC00371481 (BSI 107591) 2ILK ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN INTERLEUKIN-10 AT 1.6 ANGSTROMS RESOLUTION 3WO2 ; 2.33 ; Crystal structure of human interleukin-18 1N1F ; 1.95 ; Crystal Structure of Human Interleukin-19 1M47 ; 1.99 ; Crystal Structure of Human Interleukin-2 1M4C ; 2.4 ; Crystal Structure of Human Interleukin-2 1M49 ; 2.0 ; Crystal Structure of Human Interleukin-2 Complexed with SP-1985 1M4B ; 2.15 ; Crystal Structure of Human Interleukin-2 K43C Covalently Modified at C43 with 2-[2-(2-Cyclohexyl-2-guanidino-acetylamino)-acetylamino]-N-(3-mercapto-propyl)-propionamide 1M4A ; 2.18 ; Crystal Structure of Human Interleukin-2 Y31C Covalently Modified at C31 with (1H-Indol-3-yl)-(2-mercapto-ethoxyimino)-acetic acid 1NBP ; 2.2 ; Crystal Structure Of Human Interleukin-2 Y31C Covalently Modified At C31 With 3-Mercapto-1-(1,3,4,9-tetrahydro-B-carbolin-2-yl)-propan-1-one 4DKC ; 1.85 ; Crystal Structure of Human Interleukin-34 4DKE ; 3.0 ; Crystal Structure of Human Interleukin-34 Bound to FAb1.1 4DKF ; 2.61 ; Crystal Structure of Human Interleukin-34 Bound to FAb2 4DKD ; 3.0 ; Crystal Structure of Human Interleukin-34 Bound to Human CSF-1R 3VA2 ; 2.703 ; Crystal structure of human Interleukin-5 in complex with its alpha receptor 3JZY ; 1.56 ; Crystal structure of human Intersectin 2 C2 domain 3GF9 ; 2.5 ; Crystal structure of human Intersectin 2 RhoGEF domain 2PMV ; 2.6 ; Crystal Structure of Human Intrinsic Factor- Cobalamin Complex at 2.6 A Resolution 8HPP ; 3.0 ; Crystal structure of human INTS3 with SAGE1 2DHO ; 1.6 ; Crystal structure of human IPP isomerase I in space group P212121 2VGQ ; 2.1 ; Crystal Structure of Human IPS-1 CARD 6BFN ; 2.26 ; Crystal structure of human IRAK1 4U6R ; 2.5 ; Crystal structure of human IRE1 cytoplasmic domains in complex with a sulfonamide inhibitor. 4Z7G ; 2.6 ; Crystal structure of human IRE1 cytoplasmic kinase-RNase region - apo 4Z7H ; 2.9 ; Crystal structure of human IRE1 cytoplasmic kinase-RNase region - complex with imidazopyridine compound 3 6SHC ; 3.55 ; Crystal structure of human IRE1 luminal domain Q105C 3SDL ; 2.29 ; Crystal structure of human ISG15 in complex with NS1 N-terminal region from influenza B virus, Northeast Structural Genomics Consortium Target IDs HX6481, HR2873, and OR2 3R66 ; 2.3 ; Crystal structure of human ISG15 in complex with NS1 N-terminal region from influenza virus B, Northeast Structural Genomics Consortium Target IDs HX6481, HR2873, and OR2 4CVH ; 2.39 ; Crystal structure of human isoprenoid synthase domain-containing protein 5JK9 ; 2.1 ; Crystal structure of human IZUMO1 5JKC ; 2.9 ; Crystal structure of human IZUMO1-JUNO complex (crystal form 1) 5JKD ; 2.9 ; Crystal structure of human IZUMO1-JUNO complex (crystal form 2) 5JKE ; 2.86 ; Crystal structure of human IZUMO1-JUNO complex (crystal form 3) 5FV3 ; 2.37 ; Crystal structure of human JARID1B construct c2 in complex with N- Oxalylglycine. 5FUP ; 2.15 ; Crystal structure of human JARID1B in complex with 2-oxoglutarate. 5FPL ; 2.35 ; Crystal structure of human JARID1B in complex with CCT363901 5FUN ; 2.3 ; Crystal structure of human JARID1B in complex with GSK467 5FPU ; 2.24 ; Crystal structure of human JARID1B in complex with GSKJ1 5LW9 ; 2.3 ; Crystal structure of human JARID1B in complex with S40563a 5LWB ; 2.39 ; Crystal structure of human JARID1B in complex with S40650a 5FWJ ; 2.1 ; Crystal structure of human JARID1C in complex with KDM5-C49 5F5I ; 2.63 ; Crystal Structure of human JMJD2A complexed with KDOOA011340 4URA ; 2.23 ; Crystal structure of human JMJD2A in complex with compound 14a 5A7Q ; 2.0 ; Crystal structure of human JMJD2A in complex with compound 30 5A7W ; 2.27 ; Crystal structure of human JMJD2A in complex with compound 35 5A7P ; 2.28 ; Crystal structure of human JMJD2A in complex with compound 36 5A80 ; 2.28 ; Crystal structure of human JMJD2A in complex with compound 40 5A7O ; 2.15 ; Crystal structure of human JMJD2A in complex with compound 42 5A7N ; 2.39 ; Crystal structure of human JMJD2A in complex with compound 43 5A7S ; 2.2 ; Crystal structure of human JMJD2A in complex with compound 44 5FPV ; 2.44 ; Crystal structure of human JMJD2A in complex with compound KDOAM20A 5FY8 ; 2.343 ; Crystal structure of human JMJD2A in complex with D-threo-isocitrate 5FYH ; 2.348 ; Crystal structure of human JMJD2A in complex with fumarate 5FYI ; 2.096 ; Crystal structure of human JMJD2A in complex with pyruvate 5FYC ; 2.261 ; Crystal structure of human JMJD2A in complex with succinate 2XML ; 2.55 ; Crystal structure of human JMJD2C catalytic domain 5FJK ; 1.66 ; Crystal structure of human JMJD2C catalytic domain in complex 6-ethyl- 5-methyl-7-oxo-4,7-dihydropyrazolo(1,5-a)pyrimidine-3-carbonitrile 5FJH ; 2.1 ; Crystal structure of human JMJD2C catalytic domain in complex with epitherapuetic compound 2-(((2-((2-(dimethylamino)ethyl) (ethyl)amino) -2-oxoethyl)amino)methyl)isonicotinic acid 5F5A ; 1.41 ; Crystal Structure of human JMJD2D complexed with KDOAM16 5F5C ; 1.88 ; Crystal Structure of human JMJD2D complexed with KDOPP7 4D6Q ; 1.292 ; crystal structure of human JMJD2D in complex with 2,4-PDCA 4D6S ; 1.4 ; crystal structure of human JMJD2D in complex with N-OXALYLGLYCINE and bound 5,6-Dimethylbenzimidazole 4D6R ; 1.398 ; crystal structure of human JMJD2D in complex with N-OXALYLGLYCINE and bound o-toluenesulfonamide 4HOO ; 2.495 ; Crystal structure of human JMJD2D/KDM4D apoenzyme 4HON ; 1.799 ; Crystal structure of human JMJD2D/KDM4D in complex with an H3K9me3 peptide and 2-oxoglutarate 4QU1 ; 1.57 ; Crystal structure of human JMJD5 jmj-c domain 2WAJ ; 2.4 ; Crystal structure of human Jnk3 complexed with a 1-aryl-3,4- dihydroisoquinoline inhibitor 2ZDT ; 2.0 ; Crystal Structure of human JNK3 complexed with an isoquinolone inhibitor 2ZDU ; 2.5 ; Crystal Structure of human JNK3 complexed with an isoquinolone inhibitor 2O2U ; 2.45 ; Crystal structure of human JNK3 complexed with N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)-2-fluorobenzamide 3DA6 ; 2.0 ; Crystal Structure of human JNK3 complexed with N-(3-methyl-4-(3-(2-(methylamino)pyrimidin-4-yl)pyridin-2-yloxy)naphthalen-1-yl)-1H-benzo[d]imidazol-2-amine 2O0U ; 2.1 ; Crystal structure of human JNK3 complexed with N-{3-cyano-6-[3-(1-piperidinyl)propanoyl]-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl}-1-naphthalenecarboxamide 4U79 ; 2.23 ; Crystal structure of human JNK3 in complex with a benzenesulfonamide inhibitor. 1NBQ ; 2.9 ; Crystal Structure of Human Junctional Adhesion Molecule Type 1 5JKA ; 2.0 ; Crystal structure of human JUNO (crystal form 1) 5JKB ; 3.23 ; Crystal structure of human JUNO (crystal form 2) 5XCO ; 1.25 ; Crystal structure of human K-Ras G12D Mutant in complex with GDP and Cyclic Inhibitory Peptide 6QFE ; 1.67 ; Crystal Structure of Human Kallikrein 5 in complex with GSK144 2PSX ; 2.3 ; Crystal Structure of Human Kallikrein 5 in complex with Leupeptin 2PSY ; 2.3 ; Crystal Structure of Human Kallikrein 5 in complex with Leupeptin and Zinc 6QFG ; 1.68 ; Crystal Structure of Human Kallikrein 6 (I218Y) in complex with GSK144 6SKD ; 2.26 ; Crystal Structure of Human Kallikrein 6 (I218Y) in complex with GSK3397892A 6SKC ; 2.18 ; Crystal Structure of Human Kallikrein 6 (I218Y) in complex with GSK3448330A 6QFH ; 1.65 ; Crystal Structure of Human Kallikrein 6 (N217D/I218Y/K224R) in complex with GSK144. 6SKB ; 1.84 ; Crystal Structure of Human Kallikrein 6 (N217D/I218Y/K224R) in complex with GSK3496783A 6QFF ; 1.64 ; Crystal Structure of Human Kallikrein 6 in complex with GSK144 6QHA ; 1.82 ; Crystal Structure of Human Kallikrein 6 in complex with GSK3205388B 6QH9 ; 2.27 ; Crystal Structure of Human Kallikrein 6 in complex with GSK3239861A 6QHC ; 1.87 ; Crystal Structure of Human Kallikrein 6 in complex with GSK358180B 6QHB ; 1.84 ; Crystal Structure of Human Kallikrein 6 in complex with GSK578724A 2QXG ; 2.6 ; Crystal Structure of Human Kallikrein 7 in Complex with Ala-Ala-Phe-chloromethylketone 2QXH ; 2.0 ; Crystal Structure of Human Kallikrein 7 in Complex with Suc-Ala-Ala-Pro-Phe-chloromethylketone 2QXJ ; 2.1 ; Crystal Structure of Human Kallikrein 7 in Complex with Suc-Ala-Ala-Pro-Phe-chloromethylketone and Copper 3BSQ ; 2.8 ; Crystal structure of human kallikrein 7 produced as a secretion protein in E.coli 4OO6 ; 2.7 ; Crystal structure of human KAP-beta2 bound to the NLS of HCC1 (Hepato Cellular Carcinoma protein 1) 1YZX ; 1.93 ; Crystal structure of human kappa class glutathione transferase 3RPP ; 1.8 ; Crystal structure of human kappa class glutathione transferase in apo form 3RPN ; 1.9 ; Crystal structure of human kappa class glutathione transferase in complex with S-hexylglutathione 5J3V ; 3.05 ; Crystal structure of human Karyopherin-beta2 bound to the histone H3 tail 4JLQ ; 3.05 ; Crystal structure of human Karyopherin-beta2 bound to the PY-NLS of Saccharomyces cerevisiae NAB2 2XH1 ; 2.1 ; Crystal structure of human KAT II-inhibitor complex 5TF5 ; 1.807 ; CRYSTAL STRUCTURE OF HUMAN KAT-2 IN COMPLEX WITH A REVERSIBLE INHIBITOR 5ZQL ; 3.007 ; crystal structure of human katanin AAA ATPase domain 5ZQM ; 2.9 ; Crystal structure of human katanin AAA ATPase domain complex with ATPgammaS 6OCR ; 2.28 ; Crystal structure of human KCTD16 T1 domain 6OCT ; 2.8 ; Crystal structure of human KCTD16 T1 domain 5VMP ; 2.48 ; Crystal Structure of Human KDM4 with Small Molecule Inhibitor QC5714 6HGT ; 2.33 ; Crystal structure of human KDM4A complexed with co-substrate analog NOG and histone H3 peptide with K9R mutation 5F2S ; 2.08 ; Crystal structure of human KDM4A in complex with compound 15 5F2W ; 2.6 ; Crystal structure of human KDM4A in complex with compound 16 6H4P ; 2.19 ; Crystal structure of human KDM4A in complex with compound 16a 6H4S ; 2.45 ; Crystal structure of human KDM4A in complex with compound 16m 6H4X ; 2.34 ; Crystal structure of human KDM4A in complex with compound 17b 6H4Y ; 2.38 ; Crystal structure of human KDM4A in complex with compound 17e 6H4R ; 2.14 ; Crystal structure of human KDM4A in complex with compound 17f 6H4O ; 2.25 ; Crystal structure of human KDM4A in complex with compound 18a 6H4T ; 2.38 ; Crystal structure of human KDM4A in complex with compound 19a 6H4W ; 2.81 ; Crystal structure of human KDM4A in complex with compound 19d 6H4Q ; 2.31 ; Crystal structure of human KDM4A in complex with compound 34a 6H4U ; 2.21 ; Crystal structure of human KDM4A in complex with compound 34b 6H4V ; 2.15 ; Crystal structure of human KDM4A in complex with compound 34g 5F39 ; 2.65 ; Crystal structure of human KDM4A in complex with compound 37 5F32 ; 2.05 ; Crystal structure of human KDM4A in complex with compound 40 5F3C ; 2.06 ; Crystal structure of human KDM4A in complex with compound 52d 5F3G ; 2.5 ; Crystal structure of human KDM4A in complex with compound 53a 5F3E ; 2.16 ; Crystal structure of human KDM4A in complex with compound 54a 5F3I ; 2.24 ; Crystal structure of human KDM4A in complex with compound 54j 5F37 ; 2.22 ; Crystal structure of human KDM4A in complex with compound 58 4XDP ; 2.07 ; Crystal structure of human KDM4C catalytic domain bound to tris 4XDO ; 1.97 ; Crystal structure of human KDM4C catalytic domain with OGA 5FPB ; 1.91 ; Crystal structure of human KDM4D in complex with 2-1H-pyrazol-4-yloxy- 3H,4H-pyrido-3,4-d-pyrimidin-4-one 5FP4 ; 2.0 ; Crystal structure of human KDM4D in complex with 3-(4- phenylbutanamido)pyridine-4-carboxylic acid 5FP7 ; 2.0 ; Crystal structure of human KDM4D in complex with 3-4-methylthiophen-2- yl methylaminopyridine-4-carboxylic acid 5FP8 ; 1.98 ; Crystal structure of human KDM4D in complex with 3-4-methylthiophen-2- ylmethylaminopyridine-4-carboxylic acid 5FP9 ; 2.0 ; Crystal structure of human KDM4D in complex with 3-aminopyridine-4- carboxylic acid 5FPA ; 1.96 ; Crystal structure of human KDM4D in complex with 3H,4H-pyrido-3,4-d- pyrimidin-4-one 6H4Z ; 2.3 ; Crystal structure of human KDM5B in complex with compound 16a 6H50 ; 2.19 ; Crystal structure of human KDM5B in complex with compound 34a 6H51 ; 2.21 ; Crystal structure of human KDM5B in complex with compound 34f 6H52 ; 2.14 ; Crystal structure of human KDM5B in complex with compound 34g 6GQO ; 1.87 ; Crystal structure of human KDR (VEGFR2) kinase domain in complex with AZD3229-analogue (compound 18) 6GQP ; 2.09 ; Crystal structure of human KDR (VEGFR2) kinase domain in complex with AZD3229-analogue (compound 23) 6GQQ ; 1.52 ; Crystal structure of human KDR (VEGFR2) kinase domain in complex with AZD3229-analogue (compound 35) 6FFM ; 2.2 ; Crystal Structure of Human KEAP1 BTB Domain in Complex with isoxazoline-based inhibitor 5DAD ; 2.61 ; Crystal Structure of Human KEAP1 BTB Domain in Complex with Small Molecule TX64014 5DAF ; 2.37 ; Crystal Structure of Human KEAP1 BTB Domain in Complex with Small Molecule TX64063 2HLZ ; 1.85 ; Crystal Structure of human ketohexokinase 2HQQ ; 1.86 ; Crystal structure of human ketohexokinase complexed to different sugar molecules 2HW1 ; 2.1 ; Crystal structure of human ketohexokinase complexed to different sugar molecules 4FC0 ; 2.95 ; Crystal Structure of Human Kinase Domain of B-raf with a DFG-out Inhibitor 2X2R ; 2.2 ; Crystal structure of human kinesin Eg5 in complex with (R)-2-amino-3-((4-chlorophenyl)diphenylmethylthio)propanoic acid 2XAE ; 2.6 ; Crystal structure of human kinesin Eg5 in complex with (R)-2-amino-3-((S)-2-methyl-1,1-diphenylbutylthio)propanoic acid 2X7E ; 2.4 ; Crystal structure of human kinesin Eg5 in complex with (R)-fluorastrol 2IEH ; 2.7 ; Crystal structure of human kinesin Eg5 in complex with (R)-mon97, a new monastrol-based inhibitor that binds as (R)-enantiomer 2X7D ; 2.3 ; Crystal structure of human kinesin Eg5 in complex with (S)-dimethylenastron 2X7C ; 1.9 ; Crystal structure of human kinesin Eg5 in complex with (S)-enastron 4A51 ; 2.75 ; Crystal structure of human kinesin Eg5 in complex with 1-(3-(((2-Aminoethyl)thio)diphenylmethyl)phenyl)ethanone hydrochloride 4A50 ; 2.75 ; Crystal structure of human kinesin Eg5 in complex with 2-Amino-5-(3-methylphenyl)-5,5-diphenylpentanoic acid 4BBG ; 2.75 ; Crystal structure of human kinesin Eg5 in complex with 3-(((2-Aminoethyl)sulfanyl)(3-ethylphenyl) phenylmethyl)phenol 6VTX ; 2.14 ; Crystal structure of human KLF4 zinc finger DNA binding domain in complex with NANOG DNA 6KBR ; 2.0 ; Crystal structure of Human KLK4 and SPINK2 derived KLK4 inhibitor complex 6O21 ; 1.15 ; Crystal Structure of Human KLK4 in Complex With Cleaved SFTI-FCQR(Asn14)[1,14] Inhibitor 5X68 ; 2.1 ; Crystal Structure of Human KMO 6BP1 ; 2.001 ; Crystal structure of human KRAS A59G mutant in complex with GCP 8FMI ; 1.12 ; Crystal structure of human KRAS at 1.12 A 5VP7 ; 1.7 ; Crystal structure of human KRAS G12A mutant in complex with GDP 5VQ0 ; 2.3 ; Crystal structure of human KRAS G12A mutant in complex with GDP (EDTA soaked) 5VPY ; 2.0 ; Crystal structure of human KRAS G12A mutant in complex with GppNHp 5VPI ; 1.62 ; Crystal structure of human KRAS G12A mutant in complex with GTP 5VPZ ; 1.85 ; Crystal structure of human KRAS G12A mutant in complex with GTP-gamma-S 6PGO ; 1.6 ; Crystal structure of human KRAS G12C covalently bound to a phthalazine inhibitor 6PGP ; 1.5 ; Crystal structure of human KRAS G12C covalently bound to a quinazolinone inhibitor 6OIM ; 1.65 ; Crystal Structure of human KRAS G12C covalently bound to AMG 510 6P8Z ; 1.65 ; Crystal structure of human KRAS G12C covalently bound to an acryloylazetidine acetamide inhibitor 6P8W ; 2.1 ; Crystal structure of human KRAS G12C covalently bound to an acryloylazetidine acetamide inhibitor. 6P8X ; 2.11 ; Crystal structure of human KRAS G12C covalently bound to an acryloylazetidine acetamide inhibitor. 6P8Y ; 2.31 ; Crystal structure of human KRAS G12C covalently bound to an acryloylazetidine acetamide inhibitor. 8DNI ; 1.5 ; Crystal structure of human KRAS G12C covalently bound with Araxes WO2020/028706A1 compound I-1 8DNJ ; 1.81 ; Crystal structure of human KRAS G12C covalently bound with AstraZeneca WO2020/178282A1 compound 76 8DNK ; 2.23 ; Crystal structure of human KRAS G12C covalently bound with Taiho WO2020/085493A1 compound 6 5US4 ; 1.83 ; Crystal structure of human KRAS G12D mutant in complex with GDP 5USJ ; 1.94 ; Crystal Structure of human KRAS G12D mutant in complex with GDPNP 5UQW ; 1.5 ; Crystal structure of human KRAS G12V mutant in complex with GDP 8FMJ ; 1.33 ; Crystal structure of human KRAS in space group R32 6O36 ; 2.0 ; Crystal structure of human KRAS P34R mutant in complex with GNP 6O46 ; 1.9 ; Crystal structure of human KRAS P34R mutant in complex with GNP and Phosphate 5VQ1 ; 1.78 ; Crystal structure of human KRAS Q61A mutant in complex with GDP 8FMK ; 1.48 ; Crystal structure of human KRAS with extended switch I loop 1W7L ; 2.0 ; Crystal structure of human kynurenine aminotransferase I 3FVU ; 1.55 ; Crystal Structure of Human Kynurenine Aminotransferase I in Complex with Indole-3-acetic Acid 1W7M ; 2.7 ; Crystal structure of human kynurenine aminotransferase I in complex with L-Phe 1W7N ; 2.9 ; Crystal structure of human kynurenine aminotransferase I in PMP form 2QLR ; 2.3 ; Crystal structure of human kynurenine aminotransferase II 2VGZ ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN KYNURENINE AMINOTRANSFERASE II 4WP0 ; 3.0 ; Crystal structure of human kynurenine aminotransferase-I with a C-terminal V5-hexahistidine tag 6TSJ ; 2.3 ; Crystal structure of human L ferritin (HuLf) Fe(III)-loaded for 15 minutes 6TSA ; 2.18 ; Crystal structure of human L ferritin (HuLf) Fe(III)-loaded for 30 minutes 6TSF ; 2.09 ; Crystal structure of human L ferritin (HuLf) Fe(III)-loaded for 60 minutes 6TR9 ; 2.46 ; Crystal structure of human L ferritin (HuLf) triple variant E60A-E61A-E64A 6TS0 ; 2.2 ; Crystal structure of human L ferritin (HuLf) triple variant E60A-E61A-E64A Fe(III)-loaded for 30 minutes 6TS1 ; 2.2 ; Crystal structure of human L ferritin (HuLf) triple variant E60A-E61A-E64A Fe(III)-loaded for 60 minutes 3RQS ; 2.001 ; Crystal Structure of human L-3- Hydroxyacyl-CoA dehydrogenase (EC1.1.1.35) from mitochondria at the resolution 2.0 A, Northeast Structural Genomics Consortium Target HR487, Mitochondrial Protein Partnership 9JDW ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH ALPHA-AMINO BUTYRIC ACID 7JDW ; 2.37 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH DELTA-AMINO VALERIC ACID 6JDW ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH GAMMA-AMINO BUTYRIC ACID 5JDW ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH GLYCINE 8JDW ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH L-ALANINE 1JDX ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE IN COMPLEX WITH L-NORVALINE 2JDX ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN L-ARGININE:GLYCINE AMIDINOTRANSFERASE, DELETIONMUTANT ATDELTAM302 4O0H ; 1.97 ; Crystal structure of human L-asparaginase protein with covalently linked substrate L-asparagine 1KR5 ; 2.1 ; Crystal structure of human L-isoaspartyl methyltransferase 7M2N ; 2.5 ; Crystal structure of Human Lactate Dehydrogenase A with Inhibitor Compound 15 4AD9 ; 2.6 ; Crystal structure of human LACTB2. 3RP1 ; 2.6 ; Crystal structure of Human LAIR-1 in C2 space group 3TYY ; 2.399 ; Crystal Structure of Human Lamin-B1 Coil 2 Segment 3E6U ; 2.6 ; Crystal structure of Human LanCL1 3E73 ; 2.8 ; Crystal Structure of Human LanCL1 complexed with GSH 3JUV ; 3.12 ; Crystal structure of human lanosterol 14alpha-demethylase (CYP51) 3JUS ; 2.9 ; Crystal structure of human lanosterol 14alpha-demethylase (CYP51) in complex with econazole 3LD6 ; 2.8 ; Crystal structure of human lanosterol 14alpha-demethylase (CYP51) in complex with ketoconazole 3WAL ; 2.0 ; Crystal structure of human LC3A_2-121 3VTU ; 1.6 ; Crystal structure of human LC3B_2-119 3WAM ; 1.75 ; Crystal structure of human LC3C_8-125 5BV7 ; 2.45 ; Crystal structure of human LCAT (L4F, N5D) in complex with Fab of an agonistic antibody 7DBK ; 1.802 ; Crystal structure of human LDHB in complex with NADH 7DBJ ; 1.551 ; Crystal structure of human LDHB in complex with NADH, oxamate, and AXKO-0046 1YXJ ; 1.78 ; Crystal structure of human lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) at low pH 1YXK ; 2.4 ; Crystal structure of human lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) disulfide-linked dimer 5LUB ; 2.1 ; Crystal structure of human legumain (AEP) in complex with compound 11 5LUA ; 2.0 ; Crystal structure of human legumain (AEP) in complex with compound 11b 7FQI ; 1.45 ; Crystal Structure of human Legumain in complex with (2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[1-[4-[(2,4-difluorophenyl)methoxy]phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide 7FQJ ; 1.7 ; Crystal Structure of human Legumain in complex with (2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[1-[4-[(2,4-difluorophenyl)methoxy]phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide 7FQL ; 2.53 ; Crystal Structure of human Legumain in complex with (2S)-N-[(1S)-3-amino-1-cyano-3-oxopropyl]-1-[1-[4-[(2,4-difluorophenyl)methoxy]phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide 7FQK ; 1.97 ; Crystal Structure of human Legumain in complex with (2S)-N-[(3S)-5-amino-1-(1,3-oxazol-2-yl)-5-oxopent-1-yn-3-yl]-1-[1-[4-(trifluoromethoxy)phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide 7FQH ; 2.18 ; Crystal Structure of human Legumain in complex with (2S)-N-[(3S)-5-amino-5-oxopent-1-yn-3-yl]-1-[1-[4-(cyclopropylmethoxy)phenyl]cyclopropanecarbonyl]pyrrolidine-2-carboxamide 8AE4 ; 1.79 ; Crystal structure of human legumain in complex with Clitocypin 2 7O50 ; 1.9 ; Crystal structure of human legumain in complex with Gly-Ser-Asn peptide 8AE5 ; 2.29 ; Crystal structure of human legumain in complex with macrocypin 1a 3IEI ; 1.9 ; Crystal structure of human leucine carboxylmethyltransferase-1 in complex with S-adenosyl homocysteine 6KID ; 3.15 ; Crystal structure of human leucyl-tRNA synthetase, ATP-bound form 6KIE ; 3.15 ; Crystal structure of human leucyl-tRNA synthetase, Leu-AMS-bound form 6KQY ; 3.3 ; Crystal structure of human leucyl-tRNA synthetase, Leucine-bound form 1EMR ; 3.5 ; CRYSTAL STRUCTURE OF HUMAN LEUKEMIA INHIBITORY FACTOR (LIF) 5B0H ; 1.94 ; CRYSTAL STRUCTURE OF HUMAN LEUKOCYTE CELL-DERIVED CHEMOTAXIN 2 2Y05 ; 2.2 ; Crystal structure of human leukotriene B4 12-hydroxydehydrogenase in complex with NADP and raloxifene 2PNO ; 3.3 ; Crystal structure of human leukotriene C4 synthase 2UUI ; 2.0 ; Crystal structure of Human Leukotriene C4 Synthase 2UUH ; 2.15 ; Crystal structure of Human Leukotriene C4 Synthase in complex with substrate glutathione 3STK ; 1.55 ; Crystal Structure of human LFABP complex with two molecules of palmitic acid (holo-LFABP) 5Y2Z ; 2.67 ; Crystal structure of human LGI1 EPTP-ADAM22 complex 5Y31 ; 7.125 ; Crystal structure of human LGI1-ADAM22 complex 8HPY ; 5.87 ; Crystal structure of human LGI1-ADAM22 complex 8HQ1 ; 4.17 ; Crystal Structure Of Human Lgi1-Adam22 Complex In Space Group C2 3EQT ; 2.0 ; Crystal structure of human LGP2 C-terminal domain in complex with dsRNA 4QXF ; 2.25 ; crystal structure of human LGR4 and Rspo1 4KNG ; 2.5 ; Crystal structure of human LGR5-RSPO1-RNF43 3K7E ; 3.0 ; Crystal structure of human ligand-free mature caspase-6 3NKF ; 2.9 ; Crystal structure of human ligand-free mature caspase-6 with intersubunit linker attached 7SUM ; 2.9 ; Crystal structure of human ligase I with nick duplexes containing cognate A:T 2V1W ; 1.9 ; Crystal structure of human LIM protein RIL (PDLIM4) PDZ domain bound to the C-terminal peptide of human alpha-actinin-1 8GI4 ; 2.06 ; Crystal structure of human LIMK2 PDZ domain 5LP1 ; 1.91 ; CRYSTAL STRUCTURE OF HUMAN LIPOPROTEIN-ASSOCIATED PHOSPHOLIPASE A2 IN COMPLEX WITH A [1.1.1]BICYCLOPENTANE-CONTAINING INHIBITOR AT 1.91A RESOLUTION. 1QDD ; 1.3 ; CRYSTAL STRUCTURE OF HUMAN LITHOSTATHINE TO 1.3 A RESOLUTION 3CMF ; 1.9 ; Crystal structure of human liver 5beta-reductase (AKR1D1) in complex with NADP and CORTISONE. Resolution 1.90 A. 3G1R ; 1.701 ; Crystal structure of human liver 5beta-reductase (AKR1D1) in complex with NADP and Finasteride. Resolution 1.70 A 1K6M ; 2.4 ; Crystal Structure of Human Liver 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3K9B ; 3.1 ; Crystal structure of human liver carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Cyclosarin (GF) 2HRQ ; 2.7 ; Crystal structure of Human Liver Carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Soman (GD) 2HRR ; 2.7 ; Crystal structure of Human Liver Carboxylesterase 1 (hCE1) in covalent complex with the nerve agent Tabun (GA) 1YA4 ; 3.2 ; Crystal Structure of Human Liver Carboxylesterase 1 in complex with tamoxifen 1YAH ; 3.0 ; Crystal Structure of Human Liver Carboxylesterase complexed to Etyl Acetate; A Fatty Acid Ethyl Ester Analogue 1YAJ ; 3.2 ; Crystal Structure of Human Liver Carboxylesterase in complex with benzil 1YA8 ; 3.0 ; Crystal Structure of Human Liver Carboxylesterase in complex with cleavage products of Mevastatin 1MX1 ; 2.4 ; Crystal Structure of Human Liver Carboxylesterase in complex with tacrine 1MX5 ; 2.8 ; Crystal Structure of Human Liver Carboxylesterase in complexed with homatropine, a cocaine analogue 1MX9 ; 2.9 ; Crystal Structure of Human Liver Carboxylesterase in complexed with naloxone methiodide, a heroin analogue 3COT ; 2.03 ; Crystal structure of human liver delta(4)-3-ketosteroid 5beta-reductase (akr1d1) in complex with progesterone and nadp. Resolution: 2.03 A. 7WJV ; 1.724 ; Crystal structure of human liver FBPase complexed with an covalent inhibitor 3A29 ; 2.6 ; Crystal structure of human liver FBPase in complex with tricyclic inhibitor 3KC0 ; 2.8 ; Crystal structure of human liver FBPase in complex with tricyclic inhibitor 10b 3KC1 ; 2.25 ; Crystal structure of human liver FBPase in complex with tricyclic inhibitor 19a 3KBZ ; 2.45 ; Crystal structure of human liver FBPase in complex with tricyclic inhibitor 6 5ZWK ; 2.104 ; Crystal structure of Human liver fructose-1,6-bisphoaphatase complex with fructose-1,6-bisphophate and AMP 7C9Q ; 1.878 ; Crystal structure of Human liver fructose-1,6-bisphoaphatase complex with Mg2+ and AMP 1ZNQ ; 2.5 ; Crystal Structure of Human Liver GAPDH 4BQM ; 2.18 ; Crystal structure of human liver-type glutaminase, catalytic domain 4NFT ; 2.61 ; Crystal structure of human lnkH2B-h2A.Z-Anp32e 5JNR ; 2.0 ; Crystal structure of human low molecular weight protein tyrosine phosphatase (LMPTP) type A 5JNT ; 1.45 ; Crystal structure of human low molecular weight protein tyrosine phosphatase (LMPTP) type A complexed with MES 5JNS ; 1.8 ; Crystal structure of human low molecular weight protein tyrosine phosphatase (LMPTP) type A complexed with phosphate 1YOK ; 2.5 ; crystal structure of human LRH-1 bound with TIF-2 peptide and phosphatidylglycerol 5Z8X ; 3.15 ; Crystal structure of human LRRTM2 5Z8Y ; 3.4 ; Crystal structure of human LRRTM2 in complex with Neurexin 1beta 6NQM ; 2.9 ; Crystal structure of Human LSD1 2DW4 ; 2.3 ; Crystal structure of human LSD1 at 2.3 A resolution 5NI6 ; 1.54 ; Crystal structure of human LTA4H mutant D375N in complex with LTA4 5NIA ; 1.764 ; Crystal structure of human LTA4H mutant D375N in open conformation (crystal form I) 5NID ; 1.568 ; Crystal structure of human LTA4H mutant D375N in open conformation (crystal form II) 5NI2 ; 1.501 ; Crystal structure of human LTA4H mutant E271A in complex with LTA4 (crystal form I) 5NI4 ; 1.895 ; Crystal structure of human LTA4H mutant E271A in complex with LTA4 (crystal form II) 5NIE ; 2.603 ; Crystal structure of human LTA4H mutant R563A in open conformation 5OXS ; 1.65 ; Crystal structure of human lung surfactant protein D trimeric fragment with bound ligand Salmonella enterica Minnesota R5 oligosaccharide 5OXR ; 1.75 ; Crystal structure of human lung surfactant protein D trimeric fragment with bound ligand Salmonella enterica Minnesota R7 oligosaccharide 3MP3 ; 2.4 ; Crystal Structure of Human Lyase in complex with inhibitor HG-CoA 3MP5 ; 2.25 ; Crystal Structure of Human Lyase R41M in complex with HMG-CoA 3MP4 ; 2.2 ; Crystal structure of Human lyase R41M mutant 4JOB ; 2.171 ; Crystal structure of human lysophosphatidic acid phosphatase type 6 complexed with L-(+)-tartrate 4JOC ; 2.208 ; Crystal structure of human lysophosphatidic acid phosphatase type 6 complexed with Malonate 4JOD ; 2.21 ; Crystal structure of human lysophosphatidic acid phosphatase type 6 complexed with Tris 4Z36 ; 2.9 ; Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO-3080573 4Z35 ; 2.9 ; Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO-9910539 4Z34 ; 3.0 ; Crystal Structure of Human Lysophosphatidic Acid Receptor 1 in complex with ONO9780307 5NN3 ; 1.9 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA 5NN5 ; 2.0 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with 1-deoxynojirimycin 5NN8 ; 2.45 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with acarbose 7P2Z ; 1.85 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with cyclosulfamidate 4 7P32 ; 1.82 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with cyclosulfamidate 6 5NN4 ; 1.83 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-acetyl-cysteine 5NN6 ; 2.0 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-hydroxyethyl-1-deoxynojirimycin 8CB1 ; 1.75 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-PNT-DNM 15 8CB6 ; 1.9 ; Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in covalent complex with TAMRA tagged 1,6-Epi-cylcophellitol aziridine activity based probe 8K7J ; 2.01 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3R,4S,5R)-2-((dimethylamino)methyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol 8K7L ; 2.0 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3R,4S,5R)-2-(aminomethyl)-5-(hydroxymethyl)-1-methylpyrrolidine-3,4-diol 8K7D ; 2.61 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3R,4S,5R)-2-(aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol 8K7E ; 2.2 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3R,4S,5R)-2-(aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol 8K7H ; 2.28 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3S,4R)-2-(hydroxymethyl)-1-methylpyrrolidine-3,4-diol 8K7K ; 2.0 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3S,4R,5R)-2,5-bis(hydroxymethyl)-1-methylpyrrolidine-3,4-diol 8K7F ; 1.98 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3S,4R,5R)-2,5-bis(hydroxymethyl)pyrrolidine-3,4-diol 8K7G ; 2.32 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3S,4R,5R)-2,5-bis(hydroxymethyl)pyrrolidine-3,4-diol 8K7I ; 2.12 ; Crystal structure of human lysosomal alpha-galactosidase A in complex with (2R,3S,4R,5R)-2-(hydroxymethyl)-5-((methylamino)methyl)pyrrolidine-3,4-diol 7XF6 ; 1.3 ; Crystal Structure of Human Lysozyme 1JWR ; 1.4 ; Crystal structure of human lysozyme at 100 K 7XF7 ; 1.55 ; Crystal Structure of Human Lysozyme Complexed with N-Acetyl-alpha-D-Glucosamine 7XF8 ; 1.6 ; Crystal Structure of Human Lysozyme Complexed with N-Acetyl-alpha-D-Glucosamine 2ZIJ ; 1.9 ; Crystal Structure of Human Lysozyme Expressed in E. coli. 2ZIK ; 1.81 ; Crystal Structure of Human Lysozyme from Pichia pastoris 2ZIL ; 1.8 ; Crystal Structure of Human Lysozyme from Urine 4DPG ; 2.844 ; Crystal Structure of Human LysRS: P38/AIMP2 Complex I 6ILD ; 1.882 ; Crystal Structure of Human LysRS: P38/AIMP2 Complex II 5ZE3 ; 2.4 ; Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state 6CHD ; 2.5 ; Crystal Structure of Human Lysyl-tRNA Synthetase complexed with L-Lysylsulfamoyl Adenosine 6ILH ; 2.501 ; Crystal Structure of human lysyl-tRNA synthetase L350H mutant 7EA9 ; 2.5 ; Crystal Structure of human lysyl-tRNA synthetase Y145H mutant 1KFX ; 3.15 ; Crystal Structure of Human m-Calpain Form I 1KFU ; 2.5 ; Crystal Structure of Human m-Calpain Form II 1PJL ; 2.9 ; Crystal structure of human m-NAD-ME in ternary complex with NAD and Lu3+ 5CCB ; 2.0 ; Crystal structure of human m1A58 methyltransferase in a complex with tRNA3Lys and SAH 4EEG ; 2.2 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with GLCNAC-BETA1,6-Gal-Beta 4EEA ; 2.0 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with GLCNAC-BETA1,6-Gal-Beta1,4-Glc-BETA 4EEO ; 2.3 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with GLCNAC-BETA1,6-GlcNAc-ALPHA-benzyl 4EEM ; 2.2 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with GLCNAC-BETA1,6-MAN-ALPHA-methyl 4EE3 ; 2.3 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with pentasaccharide 4EE4 ; 1.95 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with tetrasaccharide from Lacto-N-neohexose 4EE5 ; 2.2 ; Crystal structure of human M340H-beta-1,4-galactosyltransferase-1 (M340H-B4GAL-T1) in complex with trisaccharide from Lacto-N-neotetraose 2AH9 ; 2.0 ; Crystal Structure of Human M340H-Beta-1,4-Galactosyltransferase-I (M340H-B4Gal-T1) in Complex with Chitotriose 2AGD ; 1.9 ; Crystal Structure of Human M340H-Beta-1,4-Galactosyltransferase-I(M340H-B4Gal-T1) in Complex with GlcNAc-beta1,4-Man-alpha1,3-Man-beta-OR 2AES ; 2.0 ; Crystal Structure of Human M340H-Beta1,4-Galactosyltransferase-I (M340H-B4Gal-T1) in Complex with GlcNAc-beta1,2-Man-alpha1,3-Man-beta-OR 2AEC ; 2.0 ; Crystal Structure of Human M340H-Beta1,4-Galactosyltransferase-I (M340H-B4GAL-T1) in Complex with GlcNAc-beta1,2-Man-alpha1,6-Man-beta-OR 3EE5 ; 2.2 ; Crystal structure of human M340H-Beta1,4-Galactosyltransferase-I (M340H-B4GAL-T1) in complex with GLCNAC-Beta1,3-Gal-Beta-Naphthalenemethanol 2AE7 ; 2.0 ; Crystal Structure of Human M340H-Beta1,4-Galactosyltransferase-I (M340H-B4GAL-T1) in Complex with Pentasaccharide 2X47 ; 1.7 ; Crystal structure of human MACROD1 4HCR ; 2.3 ; Crystal structure of human MAdCAM-1 D1D2 complexed with Fab PF-547659 3NR5 ; 1.55 ; Crystal structure of human Maf1 2WM8 ; 1.75 ; Crystal structure of human magnesium-dependent phosphatase 1 of the haloacid dehalogenase superfamily (MGC5987) 6J08 ; 2.9 ; Crystal structure of human MAJIN and TERB2 2DFD ; 1.9 ; Crystal Structure of Human Malate Dehydrogenase Type 2 4F0X ; 3.29 ; Crystal structure of human Malonyl-CoA Decarboxylase (Peroxisomal Isoform) 7ZW3 ; 2.0 ; Crystal Structure of human MAO B in complex with (Z)-N-benzyl-1-(8-hydroxyquinolin-2-yl)methanimine oxide (inhibitor 19) 6FW2 ; 1.78 ; Crystal Structure of human mARC1 7P41 ; 1.6 ; Crystal Structure of human mARC1 A165T Variant 8QDZ ; 1.16 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 11 8QE0 ; 1.12 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 12 8QE1 ; 1.095 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 15 8QE2 ; 1.109 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 21 8QE3 ; 1.089 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 31 8QDY ; 1.19 ; Crystal structure of human MAT2a bound to S-Adenosylmethionine and Compound 8 8OOG ; 1.384 ; Crystal structure of human MAT2a with S-Adenosylmethionine and a fragment bound in a novel pocket 1L6J ; 2.5 ; Crystal structure of human matrix metalloproteinase MMP9 (gelatinase B). 4GWN ; 3.0 ; Crystal structure of human mature meprin beta 7AQ1 ; 2.413 ; Crystal structure of human mature meprin beta in complex with the specific inhibitor MWT-S-270 3Q6M ; 3.0 ; Crystal Structure of Human MC-HSP90 in C2221 Space Group 3Q6N ; 3.05 ; Crystal Structure of Human MC-HSP90 in P21 space group 2YGW ; 2.8 ; Crystal structure of human MCD 4OQ5 ; 2.86 ; Crystal Structure of Human MCL-1 Bound to Inhibitor 4-(4-methylnaphthalen-1-yl)-2-{[(4-phenoxyphenyl)sulfonyl]amino}benzoic acid 4OQ6 ; 1.81 ; Crystal Structure of Human MCL-1 Bound to Inhibitor 4-hydroxy-4'-propylbiphenyl-3-carboxylic acid 8QSO ; 2.106 ; Crystal structure of human Mcl-1 in complex with compound 1 5W8F ; 1.85 ; Crystal structure of human Mcl-1 in complex with modified Bim BH3 peptide SAH-MS1-14 5W89 ; 1.42 ; Crystal structure of human Mcl-1 in complex with modified Bim BH3 peptide SAH-MS1-18 5BO0 ; 2.906 ; Crystal structure of Human MCM2 HBD and ASF1b chaperoning a histone H3.2-H4 dimer 5BNX ; 2.305 ; Crystal structure of Human MCM2 HBD and ASF1b chaperoning a histone H3.3-H4 dimer 5BNV ; 2.795 ; Crystal structure of Human MCM2 HBD chaperoning a histone H3-H4 tetramer 7WI7 ; 6.6 ; Crystal structure of human MCM8/9 complex 2BDN ; 2.53 ; Crystal structure of human MCP-1 bound to a blocking antibody, 11K2 3SHT ; 1.95 ; Crystal structure of human MCPH1 tandem BRCT domains 3SHV ; 2.1 ; Crystal structure of human MCPH1 tandem BRCT domains-gamma H2AX complex 2E56 ; 2.0 ; Crystal structure of human MD-2 2E59 ; 2.21 ; Crystal structure of human MD-2 in complex with lipid IVa 5XEQ ; 3.136 ; Crystal Structure of human MDGA1 and human neuroligin-2 complex 3IWY ; 1.93 ; Crystal structure of human MDM2 complexed with D-peptide (12 residues) 5UMM ; 1.65 ; CRYSTAL STRUCTURE OF HUMAN MDM2 IN COMPLEX WITH 12-MER PEPTIDE INHIBITOR M3 5VK0 ; 1.8 ; Crystal structure of human MDM2 in complex with a 12-mer lysine-cysteine side chain dithiocarbamate stapled peptide inhibitor PMI 3EQS ; 1.65 ; Crystal structure of human MDM2 in complex with a 12-mer peptide inhibitor 3IUX ; 1.65 ; Crystal structure of human MDM2 in complex with a potent miniature protein inhibitor (18-residues) 3TPX ; 1.8 ; Crystal structure of human MDM2 in complex with a trifluoromethylated D-peptide inhibitor 3LNJ ; 2.4 ; Crystal structure of human MDM2 in complex with D-peptide inhibitor (DPMI-alpha) 7KJM ; 1.4 ; CRYSTAL STRUCTURE OF HUMAN MDM2 IN COMPLEX WITH D-PEPTIDE INHIBITOR (DPMI-OMEGA) 6SQO ; 1.41 ; Crystal structure of human MDM2 RING domain homodimer bound to UbcH5B-Ub 3LNZ ; 1.95 ; Crystal structure of human MDM2 with a 12-mer peptide inhibitor PMI (N8A mutant) 3VZV ; 2.8 ; Crystal structure of human mdm2 with a dihydroimidazothiazole inhibitor 3W69 ; 1.9 ; Crystal structure of human mdm2 with a dihydroimidazothiazole inhibitor 1RV1 ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN MDM2 WITH AN IMIDAZOLINE INHIBITOR 7AI0 ; 1.559 ; Crystal structure of human MDM2-G443T RING domain homodimer bound to UbcH5B-Ub (Crystal form 1) 7AI1 ; 2.07 ; Crystal structure of human MDM2-G443T RING domain homodimer bound to UbcH5B-Ub (Crystal form 2) 4XXB ; 2.4 ; Crystal structure of human MDM2-RPL11 5VK1 ; 2.69 ; Crystal structure of human MDM4 in complex with a 12-mer lysine-cysteine side chain dithiocarbamate stapled peptide inhibitor PMI 5UML ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN MDMX IN COMPLEX WITH 12-MER PEPTIDE INHIBITOR M3 3EQY ; 1.63 ; Crystal structure of human MDMX in complex with a 12-mer peptide inhibitor 7KJN ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN MDMX IN COMPLEX WITH D-PEPTIDE INHIBITOR (DPMI-OMEGA) 7BSJ ; 2.48 ; Crystal structure of human ME2 R484W 7BSL ; 2.55 ; Crystal Structure of human ME2 R67A mutant 7BSK ; 2.55 ; Crystal structure of human ME2 R67Q mutant 6H02 ; 2.8 ; Crystal structure of human Mediator subunit MED23 3E6P ; 2.1 ; Crystal structure of human meizothrombin desF1 6PX5 ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN MEIZOTHROMBIN DESF1 MUTANT S195A bound with PPACK 3SLS ; 2.3 ; Crystal Structure of human MEK-1 kinase in complex with UCB1353770 and AMPPNP 6R7T ; 2.682 ; Crystal Structure of human Melanoma-associated antigen B1 (MAGEB1) in complex with nanobody 6XR0 ; 3.064 ; Crystal Structure of Human Melanotransferrin in complex with SC57.32 Fab 3U84 ; 2.5 ; Crystal Structure of Human Menin 7O9T ; 2.159 ; Crystal structure of Human Menin in apo form 4I80 ; 3.1 ; Crystal structure of human menin in complex with a high-affinity macrocyclic peptidomimetics 7O9Z ; 1.979 ; Crystal structure of Human Menin in complex with BD-08 7OA9 ; 2.098 ; Crystal structure of Human Menin in complex with Fragment 21 3U86 ; 2.843 ; Crystal structure of human menin in complex with JunD 3U85 ; 3.0 ; Crystal structure of human menin in complex with MLL1 3U88 ; 3.0 ; Crystal structure of human menin in complex with MLL1 and LEDGF 7O9X ; 2.299 ; Crystal structure of Human Menin with fragment 16 5WB0 ; 2.601 ; Crystal structure of human metapneumovirus fusion glycoprotein stabilized in the prefusion state 3SZK ; 3.01 ; Crystal Structure of Human metHaemoglobin Complexed with the First NEAT Domain of IsdH from Staphylococcus aureus 4FC3 ; 2.26 ; Crystal Structure of Human Methaemoglobin Complexed with the Second NEAT Domain of IsdH from Staphylococcus aureus 8P1W ; 1.15 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with allosteric compound STL232591 8AXZ ; 1.154 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with S-adenosylmethionine, adenosin and diphosphono-aminophosphonic acid. 8P1V ; 1.54 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric compound 2 8P4H ; 1.71 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric compound IDEAYA cmpd A 7KCC ; 1.32 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor AG-270 7KCF ; 1.1 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor AGI-24512 7RWH ; 1.17 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor AGI-41998 7RW5 ; 2.48 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor Compound 1 7KCE ; 1.14 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor compound 2 7KDA ; 1.24 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor compound 34 7KDB ; 1.24 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor compound 35 7RW7 ; 1.19 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor Compound 9 8P1T ; 1.442 ; Crystal structure of human methionine adenosyltransferase 2A (MAT2A) in complex with SAM and allosteric inhibitor Z237451470 6LZB ; 1.29 ; crystal structure of Human Methionine aminopeptidase (HsMetAP1b) in complex with AN-P2-5H-06 6LZC ; 1.35 ; crystal structure of Human Methionine aminopeptidase (HsMetAP1b) in complex with KV-P2-4H-05 8KHN ; 1.51 ; Crystal structure of human methionine aminopeptidase 12 (MAP12) in complex with two cobalt ions 8KHO ; 1.45 ; Crystal structure of human methionine aminopeptidase 12 (MAP12) in complex with two Cobalt ions and Methionine 8KHM ; 1.39 ; Crystal structure of human methionine aminopeptidase 12 (MAP12) in the unbound form 2NQ6 ; 1.5 ; Crystal structure of human methionine aminopeptidase type 1 in complex with 3-tert-Butoxycarbonylaminopyridine-2-carboxylic acid thiazole-2-ylamide 2B3K ; 1.55 ; Crystal structure of Human Methionine Aminopeptidase Type I in the holo form 2B3H ; 1.1 ; Crystal structure of Human Methionine Aminopeptidase Type I with a third cobalt in the active site 8OXG ; 1.731 ; Crystal structure of human methionine aminopeptidase-2 complexed with (3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-2-buten-1-yl)-2-oxiranyl]-1-oxaspiro[2.5]oct-6-yl N-(trans-4-aminocyclohexyl)carbamate 6QEF ; 1.79 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR (S)-3-Hydroxy-2-oxo-1-phenyl-pyrrolidine-3-carboxylic acid 3-chloro-5-fluoro-benzylamide 6QEG ; 2.08 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR 2-Oxo-1-phenyl-pyrrolidine-3-carboxylic acid (2-thiophen-2-yl-ethyl)-amide 6QEI ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR 5,6-Difluoro-3-(2-isopropoxy-4-piperazin-1-yl-phenyl)-1H-indole-2-carboxylic acid amide 6QEH ; 2.17 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR 5-Chloro-quinolin-8-ol 7A13 ; 2.04 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR GSK1978537A (COMPOUND 27) 7A14 ; 2.14 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR GSK2218325A (COMPOUND 32) 7A15 ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR GSK2224863A (COMPOUND 42) 7A16 ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR GSK2229238A (COMPOUND 43) 7A12 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR GW557358X (COMPOUND 9) 6QEJ ; 1.62 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX WITH AN INHIBITOR Thiophene-2-sulfonic acid (4-fluoro-benzyl)-(4H-[1,2,4]triazol-3-ylmethyl)-amide 6QED ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX; WITH AN INHIBITOR (S)-3-Hydroxy-2-oxo-1-(2-oxo-1,2,3,4-tetrahydro-quinolin-6-yl)-pyrrolidine-3-carboxylic acid 3-chloro-5-fluoro-benzylamide 5LYX ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX; WITH AN INHIBITOR 5-((R)-1-[1,2,4]Triazolo[1,5-a]pyrimidin-7-yl-pyrrolidin-2-ylmethoxy)-isoquinoline 5LYW ; 1.69 ; CRYSTAL STRUCTURE OF HUMAN METHIONINE AMINOPEPTIDASE-2 IN COMPLEX; WITH AN INHIBITOR 6-((R)-2-o-Tolyloxymethyl-pyrrolidin-1-yl)-9H-purine 3MAO ; 1.42 ; Crystal Structure of Human Methionine-R-Sulfoxide Reductase B1 (MsrB1) 6QH4 ; 1.922 ; Crystal structure of human Methylmalonyl-CoA epimerase (MCEE) p.Arg143Cys variant 3RMU ; 1.8 ; Crystal structure of human Methylmalonyl-CoA epimerase, MCEE 3BIC ; 2.6 ; Crystal structure of human methylmalonyl-CoA mutase 8GJU ; 2.79 ; Crystal structure of human methylmalonyl-CoA mutase (MMUT) in complex with methylmalonic acidemia type A protein (MMAA), coenzyme A, and GDP 8DYL ; 1.9 ; Crystal structure of human methylmalonyl-CoA mutase bound to aquocobalamin 2XIJ ; 1.95 ; Crystal structure of human methylmalonyl-CoA mutase in complex with adenosylcobalamin 2XIQ ; 1.95 ; Crystal structure of human methylmalonyl-CoA mutase in complex with adenosylcobalamin and malonyl-CoA 8DYJ ; 2.2 ; Crystal structure of human methylmalonyl-CoA mutase in complex with ADP and cob(II)alamin 2EX4 ; 1.75 ; Crystal Structure of Human methyltransferase AD-003 in complex with S-adenosyl-L-homocysteine 3CKK ; 1.55 ; Crystal structure of human methyltransferase-like protein 1 5WCJ ; 1.7 ; Crystal Structure of Human Methyltransferase-like protein 13 in complex with SAH 4QPN ; 1.25 ; Crystal Structure of Human Methyltransferase-Like Protein 21B 7U20 ; 3.1 ; Crystal structure of human METTL1 and WDR4 complex 7PL1 ; 1.85 ; Crystal structure of human METTL1 bound to Sinefungin 7OGJ ; 1.59 ; Crystal structure of human METTL1 in complex with SAH 8D5B ; 1.93 ; Crystal structure of human METTL1 in complex with SAH 8D59 ; 2.26 ; Crystal structure of human METTL1 in complex with SAM 8D58 ; 2.47 ; Crystal structure of human METTL1-WDR4 complex 6H2U ; 1.6 ; Crystal structure of human METTL5-TRMT112 complex, the 18S rRNA m6A1832 methyltransferase at 1.6A resolution 6H2V ; 2.49 ; Crystal structure of human METTL5-TRMT112 complex, the 18S rRNA m6A1832 methyltransferase at 2.5A resolution 8GZE ; 3.4 ; Crystal Structure of human METTL9-SAH-SLC39A7 peptide complex 3D4J ; 2.4 ; Crystal structure of Human mevalonate diphosphate decarboxylase 5ZYT ; 2.702 ; Crystal structure of human MGME1 with 3' overhang double strand DNA3 5ZYV ; 2.72 ; Crystal structure of human MGME1 with single strand DNA2 and Ca2+ 1HYR ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN MICA IN COMPLEX WITH NATURAL KILLER CELL RECEPTOR NKG2D 7FI5 ; 2.39 ; Crystal structure of human MICA mutants in complex with natural killer cell receptor NKG2D 7FI6 ; 2.9 ; Crystal structure of human MICA mutants in complex with natural killer cell receptor NKG2D 7FI7 ; 2.78 ; Crystal structure of human MICA mutants in complex with natural killer cell receptor NKG2D 7FI8 ; 2.8 ; Crystal structure of human MICA mutants in complex with natural killer cell receptor NKG2D 7FI9 ; 2.16 ; Crystal structure of human MICA mutants in complex with natural killer cell receptor NKG2D 6ICI ; 2.3 ; Crystal structure of human MICAL3 7E50 ; 1.95 ; Crystal structure of human microplasmin in complex with kazal-type inhibitor AaTI 6SSS ; 2.498 ; Crystal structure of Human Microsomal Glutathione S-Transferase 2 6SSR ; 3.8 ; Crystal structure of Human Microsomal Glutathione S-Transferase 2 at 3.8 Angstroms resolution 6SSW ; 3.0 ; Crystal structure of Human Microsomal Glutathione S-Transferase 2 in complex with an Inhibitor Glutathione sulfonic acid 6SSU ; 2.499 ; Crystal structure of Human Microsomal Glutathione S-Transferase 2 in complex with co-substrate Glutathione 2HI4 ; 1.95 ; Crystal Structure of Human Microsomal P450 1A2 in complex with alpha-naphthoflavone 2PG6 ; 2.53 ; Crystal Structure of Human Microsomal P450 2A6 L240C/N297Q 2PG5 ; 1.95 ; Crystal Structure of Human Microsomal P450 2A6 N297Q 2PG7 ; 2.8 ; Crystal Structure of Human Microsomal P450 2A6 N297Q/I300V 1Z10 ; 1.9 ; Crystal Structure of Human Microsomal P450 2A6 with Coumarin Bound 1Z11 ; 2.05 ; Crystal Structure of Human Microsomal P450 2A6 with Methoxsalen Bound 2FDW ; 2.05 ; Crystal Structure Of Human Microsomal P450 2A6 with the inhibitor (5-(Pyridin-3-yl)furan-2-yl)methanamine bound 1TQN ; 2.05 ; Crystal Structure of Human Microsomal P450 3A4 1FV9 ; 3.0 ; Crystal structure of human microurokinase in complex with 2-amino-5-hydroxy-benzimidazole 7SFY ; 2.5 ; Crystal structure of human Mis18ab_cc 7AYC ; 2.02 ; Crystal Structure of human mitochondrial 2-Enoyl Thioester Reductase (MECR) with single mutation G165Q 2WYA ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN MITOCHONDRIAL 3-HYDROXY-3-METHYLGLUTARYL- COENZYME A SYNTHASE 2 (HMGCS2) 4C2K ; 2.0 ; Crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase 4C2J ; 2.0 ; Crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase in complex with CoA 4MWO ; 1.67 ; Crystal structure of human mitochondrial 5'(3')-deoxyribonucleotidase in complex with the inhibitor CPB-T 4NFL ; 1.375 ; Crystal structure of human mitochondrial 5'(3')-deoxyribonucleotidase in complex with the inhibitor NPB-T 6G2M ; 1.37 ; Crystal structure of human mitochondrial 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PAU 6G22 ; 1.85 ; Crystal structure of human mitochondrial 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PEU 6G2L ; 1.48 ; Crystal structure of human mitochondrial 5'(3')-deoxyribonucleotidase in complex with the inhibitor PB-PMTMU 3HLK ; 2.1 ; Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2) 6BBA ; 2.796 ; Crystal structure of human mitochondrial ClpP complex with acyldepsipeptide ADEP-28 1SG4 ; 1.3 ; Crystal structure of human mitochondrial delta3-delta2-enoyl-CoA isomerase 1Q91 ; 1.6 ; Crystal structure of human mitochondrial deoxyribonucleotidase in complex with the inhibitor DPB-T 4L6C ; 1.8 ; Crystal structure of human mitochondrial deoxyribonucleotidase in complex with the inhibitor pib-t 1Q92 ; 1.4 ; Crystal structure of human mitochondrial deoxyribonucleotidase in complex with the inhibitor PMcP-U 3IKM ; 3.24 ; Crystal structure of human mitochondrial DNA polymerase holoenzyme 4A35 ; 1.74 ; Crystal structure of human Mitochondrial enolase superfamily member 1 (ENOSF1) 7O64 ; 1.96 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 1 minute. 7O68 ; 1.68 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 120 minutes showing either a dioxygen or a superoxide anion coordinated to iron ions in the ferroxidase site. 7O67 ; 1.86 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 15 minutes showing either a dioxygen or a superoxide anion coordinated to iron ions in the ferroxidase site 7O6C ; 1.2 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 15 minutes under anaerobic environment 7OWY ; 1.55 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 3 minutes showing a peroxide anion as bridging species of iron ions in the ferroxidase site 7O6D ; 1.47 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 3 minutes under anaerobic environment 7O69 ; 1.35 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 5 minutes showing a peroxide anion as bridging species of iron ions in the ferroxidase site 7O6A ; 1.4 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 5 minutes under anaerobic environment 7O66 ; 1.6 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 60 minutes showing either a dioxygen or a superoxide anion coordinated to iron ions in the ferroxidase site 7O65 ; 1.7 ; Crystal structure of human mitochondrial ferritin (hMTF) Fe(II)-loaded for 90 minutes showing either a dioxygen or a superoxide anion coordinated to iron ions in the ferroxidase site 6AVJ ; 1.9 ; Crystal structure of human Mitochondrial inner NEET protein (MiNT)/CISD3 5I96 ; 1.55 ; Crystal Structure of Human Mitochondrial Isocitrate Dehydrogenase (IDH2) R140Q Mutant Homodimer in Complex with AG-221 (Enasidenib) Inhibitor. 6VFZ ; 1.99 ; Crystal Structure of Human Mitochondrial Isocitrate Dehydrogenase (IDH2) R140Q Mutant Homodimer in Complex with NADPH and AG-881 (Vorasidenib) Inhibitor. 5I95 ; 1.54 ; Crystal Structure of Human Mitochondrial Isocitrate Dehydrogenase R140Q Mutant Homodimer bound to NADPH and alpha-Ketoglutaric acid 5TC4 ; 1.89 ; Crystal structure of human mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase (MTHFD2) in complex with LY345899 and cofactors 3N7Q ; 2.4 ; Crystal structure of human mitochondrial mTERF fragment (aa 99-399) in complex with a 12-mer DNA encompassing the tRNALeu(UUR) binding sequence 3N6S ; 3.1 ; Crystal structure of human mitochondrial mTERF in complex with a 15-mer DNA encompassing the tRNALeu(UUR) binding sequence 7R4J ; 2.95 ; Crystal structure of human mitochondrial NAD kinase 7R4K ; 3.33 ; Crystal structure of human mitochondrial NAD kinase 7R4L ; 2.6 ; Crystal structure of human mitochondrial NAD kinase 1PJ4 ; 2.3 ; Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme in a pentary complex with natural substrate malate, ATP, Mn++, and allosteric activator fumarate. 1PJ2 ; 2.3 ; Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme in a pentary complex with natural substrate malate, cofactor NADH, Mn++, and allosteric activator fumarate 1PJ3 ; 2.1 ; Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme in a pentary complex with natural substrate pyruvate, cofactor NAD+, Mn++, and allosteric activator fumarate. 8EYN ; 1.94 ; Crystal Structure of Human Mitochondrial NADP+ Malic Enzyme 3 in Apo Form 8EYO ; 2.49 ; Crystal Structure of Human Mitochondrial NADP+ Malic Enzyme 3 with NADP bound 3CMQ ; 2.2 ; Crystal structure of human mitochondrial phenylalanine tRNA synthetase 3HFV ; 2.6 ; Crystal structure of human mitochondrial phenylalanyl-tRNA synthetase complexed with m-tyrosine 3TUP ; 3.05 ; Crystal structure of human mitochondrial PheRS complexed with tRNAPhe in the active open state 3PQ1 ; 3.1 ; Crystal structure of human mitochondrial poly(A) polymerase (PAPD1) 3SPA ; 2.5 ; Crystal Structure of Human Mitochondrial RNA Polymerase 2DUD ; 2.7 ; Crystal structure of human mitochondrial single-stranded DNA-binding protein(hmtSSB) 3TQ6 ; 2.45 ; Crystal structure of human mitochondrial transcription factor A, TFAM or mtTFA, bound to the light strand promoter LSP 3M66 ; 1.6 ; Crystal structure of human Mitochondrial Transcription Termination Factor 3 6DV2 ; 3.6 ; Crystal Structure of Human Mitochondrial Trifunctional Protein 3ZXI ; 2.75 ; Crystal structure of human mitochondrial tyrosyl-tRNA synthetase in complex with a tyrosyl-adenylate analog 2PID ; 2.2 ; Crystal structure of human mitochondrial tyrosyl-tRNA synthetase in complex with an adenylate analog 5X49 ; 1.65 ; Crystal Structure of Human mitochondrial X-prolyl Aminopeptidase (XPNPEP3) 3GP0 ; 1.9 ; Crystal Structure of Human Mitogen Activated Protein Kinase 11 (p38 beta) in complex with Nilotinib 7AQB ; 2.25 ; Crystal structure of human mitogen activated protein kinase 6 (MAPK6) 3FME ; 2.26 ; Crystal Structure of Human Mitogen-Activated Protein Kinase Kinase 6 (MEK6) Activated Mutant (S207D, T211D) 2DYL ; 2.45 ; Crystal structure of human mitogen-activated protein kinase kinase 7 activated mutant (S287D, T291D) 2C60 ; 1.25 ; crystal structure of human mitogen-activated protein kinase kinase kinase 3 isoform 2 phox domain at 1.25 A resolution 2R13 ; 1.8 ; Crystal structure of human mitoNEET reveals a novel [2Fe-2S] cluster coordination 2ZMC ; 3.14 ; Crystal structure of human mitotic checkpoint kinase Mps1 catalytic domain apo form 1I7K ; 1.95 ; CRYSTAL STRUCTURE OF HUMAN MITOTIC-SPECIFIC UBIQUITIN-CONJUGATING ENZYME, UBCH10 2RF0 ; 2.0 ; Crystal structure of human mixed lineage kinase MAP3K10 SH3 domain 3EZZ ; 2.9 ; Crystal Structure of human MKP-2 4P7A ; 2.3 ; Crystal Structure of human MLH1 3SOM ; 2.4 ; crystal structure of human MMACHC 1JK3 ; 1.09 ; Crystal structure of human MMP-12 (Macrophage Elastase) at true atomic resolution 2HU6 ; 1.32 ; Crystal structure of human MMP-12 in complex with acetohydroxamic acid and a bicyclic inhibitor 3KEJ ; 2.3 ; Crystal Structure of Human MMP-13 complexed with a (pyridin-4-yl)-2H-tetrazole compound 3KEK ; 1.97 ; Crystal Structure of Human MMP-13 complexed with a (pyridin-4-yl)-2H-tetrazole compound 3KEC ; 2.05 ; Crystal Structure of Human MMP-13 complexed with a phenyl-2H-tetrazole compound 3LJZ ; 2.0 ; Crystal Structure of Human MMP-13 complexed with an Amino-2-indanol compound 7XGJ ; 2.8 ; Crystal structure of human MMP-2 catalytic domain in complex with inhibitor 7XJO ; 2.0 ; Crystal structure of human MMP-2 catalytic domain in complex with inhibitor 8H78 ; 2.4 ; Crystal structure of human MMP-2 catalytic domain in complex with inhibitor 7WXX ; 1.5 ; Crystal structure of human MMP-7 in complex with inhibitor 8JUD ; 1.5 ; Crystal structure of human MMP-7 in complex with inhibitor 8JUF ; 1.39 ; Crystal structure of human MMP-7 in complex with inhibitor 8JUG ; 1.3 ; Crystal structure of human MMP-7 in complex with inhibitor 3SHI ; 2.2 ; Crystal structure of human MMP1 catalytic domain at 2.2 A resolution 4ONN ; 1.5 ; Crystal structure of human Mms2/Ubc13 - BAY 11-7082 4ONM ; 1.35 ; Crystal structure of human Mms2/Ubc13 - NSC697923 4ONL ; 1.35 ; Crystal structure of human Mms2/Ubc13_D81N, R85S, A122V, N123P 5H7Q ; 1.451 ; Crystal structure of human MNDA PYD domain with MBP tag 1PM9 ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN MNSOD H30N, Y166F MUTANT 1PL4 ; 1.47 ; Crystal Structure of human MnSOD Y166F mutant 3I2V ; 1.25 ; Crystal structure of human MOCS3 rhodanese-like domain 4DNC ; 2.05 ; Crystal structure of human MOF in complex with MSL1 4AP8 ; 2.78 ; Crystal structure of human Molybdopterin synthase catalytic subunit (MOCS2B) 5MPO ; 2.43 ; Crystal structure of human molybdopterin synthase complex 3JW8 ; 2.1 ; Crystal structure of human mono-glyceride lipase 4UUQ ; 2.36 ; Crystal structure of human mono-glyceride lipase in complex with SAR127303 3JWE ; 2.7 ; Crystal structure of human mono-glyceride lipase in complex with SAR629 7OTS ; 1.792 ; Crystal structure of human Monoacylglycerol Lipase ABHD6 in complex with oleic acid and octyl glucoside 7L4T ; 2.2 ; Crystal structure of human monoacylglycerol lipase in complex with compound 1 7L4U ; 2.25 ; Crystal structure of human monoacylglycerol lipase in complex with compound 1h 7L4W ; 2.2 ; Crystal structure of human monoacylglycerol lipase in complex with compound 2d 5ZUN ; 1.35 ; Crystal structure of human monoacylglycerol lipase in complex with compound 3l 7L50 ; 2.3 ; Crystal structure of human monoacylglycerol lipase in complex with compound 4f 2Z5Y ; 2.17 ; Crystal Structure of Human Monoamine Oxidase A (G110A) with Harmine 2Z5X ; 2.2 ; Crystal Structure of Human Monoamine Oxidase A with Harmine 6FW0 ; 1.6 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with chlorophenyl-chromone-carboxamide 6FVZ ; 1.8 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with dimethylphenyl-chromone-carboxamide 6FWC ; 1.7 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with fluorophenyl-chromone-carboxamide 5MRL ; 2.42 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with N(Furan2ylmethyl)Nmethylprop2yn1amine (F2MPA) 4A79 ; 1.89 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with pioglitazone 4A7A ; 1.7 ; Crystal structure of human monoamine oxidase B (MAO B) in complex with rosiglitazone 7B0V ; 2.3 ; Crystal Structure of human monoamine oxidase B in complex with (E)-3-phenyl-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one 7B0Z ; 2.1 ; Crystal Structure of human monoamine oxidase B in complex with (E)-3-phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one 6YT2 ; 1.8 ; Crystal Structure of human monoamine oxidase B in complex with Diphenylene iodonium (DPI) 3ZYX ; 2.2 ; Crystal structure of human monoamine oxidase B in complex with methylene blue and bearing the double mutation I199A-Y326A 6RKB ; 2.3 ; Crystal structure of human monoamine oxidase B in complex with styrylpiperidine analogue 1 6RKP ; 1.7 ; Crystal structure of human monoamine oxidase B in complex with styrylpiperidine analogue 84 6RLE ; 2.3 ; Crystal structure of human monoamine oxidase B in complex with styrylpiperidine analogue 97 4CRT ; 1.8 ; Crystal structure of human monoamine oxidase B in complex with the multi-target inhibitor ASS234 5XRQ ; 2.6 ; Crystal structure of human monoclonal antibody H3v-47 5W42 ; 3.569 ; Crystal structure of human monoclonal antibody H3v-47 in complex with influenza virus hemagglutinin from A/Minnesota/11/2010 (H3N2) 6UIG ; 3.2 ; Crystal structure of human monoclonal antibody H7.200 in complex with H7N9 hemagglutinin HA1 6MEG ; 1.41 ; Crystal structure of human monoclonal antibody HEPC46 2RA4 ; 1.7 ; Crystal Structure of Human Monocyte Chemoattractant Protein 4 (MCP-4/CCL13) 1ESR ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN MONOCYTE CHEMOTACTIC PROTEIN-2 3HJU ; 2.2 ; Crystal structure of human monoglyceride lipase 7PRM ; 1.65 ; CRYSTAL STRUCTURE OF HUMAN MONOGLYCERIDE LIPASE WITH COMPOUND 13 8AQF ; 1.55 ; CRYSTAL STRUCTURE OF HUMAN MONOGLYCERIDE LIPASE WITH COMPOUND LEI-515 7ZPG ; 1.16 ; CRYSTAL STRUCTURE OF HUMAN MONOGLYCERIDE LIPASE WITH LIGAND 5OF9 ; 1.807 ; Crystal structure of human MORC2 (residues 1-603) 5OFB ; 2.02 ; Crystal structure of human MORC2 (residues 1-603) with spinal muscular atrophy mutation S87L 5OFA ; 2.57 ; Crystal structure of human MORC2 (residues 1-603) with spinal muscular atrophy mutation T424R 7K7T ; 2.94 ; Crystal structure of human MORC4 ATPase-CW in complex with AMPPNP 7M5U ; 2.02 ; Crystal structure of human MPP8 chromodomain in complex with peptidomimetic ligand UNC5246 5O91 ; 3.2 ; Crystal structure of human Mps1 (TTK) C604W mutant in complex with Cpd-5 5NTT ; 2.75 ; Crystal structure of human Mps1 (TTK) C604Y mutant in complex with NMS-P715 5MRB ; 2.2 ; Crystal structure of human Mps1 (TTK) in complex with Cpd-5 5LJJ ; 3.0 ; Crystal structure of human Mps1 (TTK) in complex with Reversine 3WYY ; 3.05 ; CRYSTAL STRUCTURE OF HUMAN MPS1 CATALYTIC DOMAIN IN COMPLEX WITH (E)-3-(4-((6-(((3s,5s,7s)-adamantan-1-yl)amino)-4-amino-5-cyanopyridin-2-yl)amino)-2-(cyanomethoxy)phenyl)-N-(2-methoxyethyl)acrylamide 3WZJ ; 2.75 ; CRYSTAL STRUCTURE OF HUMAN MPS1 CATALYTIC DOMAIN IN COMPLEX WITH 4-(6-(cyclohexylamino)-8-(((tetrahydro-2H-pyran-4-yl)methyl)amino)imidazo[1,2-b]pyridazin-3-yl)-N-cyclopropylbenzamide 3VQU ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN MPS1 CATALYTIC DOMAIN IN COMPLEX WITH 4-[(4-amino-5-cyano-6-ethoxypyridin-2- yl)amino]benzamide 3W1F ; 2.7 ; Crystal structure of Human MPS1 catalytic domain in complex with 5-(5-ethoxy-6-(1-methyl-1H-pyrazol-4-yl)-1H-indazol-3-yl)-2-methylbenzenesulfonamide 3WYX ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN MPS1 CATALYTIC DOMAIN IN COMPLEX WITH 6-((3-(cyanomethoxy)-4-(1-methyl-1H-pyrazol-4-yl)phenyl)amino)-2-(cyclohexylamino)nicotinonitrile 3HMP ; 2.3 ; Crystal structure of human Mps1 catalytic domain in complex with a quinazolin ligand Compound 4 3HMN ; 2.7 ; Crystal structure of human Mps1 catalytic domain in complex with ATP 3WZK ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN MPS1 CATALYTIC DOMAIN IN COMPLEX WITH N-cyclopropyl-4-(8-((thiophen-2-ylmethyl)amino)imidazo[1,2-a]pyrazin-3-yl)benzamide 3HMO ; 2.4 ; Crystal structure of human Mps1 catalytic domain in complex with the inhibitor staurosporine 2ZMD ; 2.88 ; Crystal structure of human Mps1 catalytic domain T686A mutant in complex with SP600125 inhibitor 4B94 ; 2.2 ; Crystal structure of human Mps1 TPR domain 3T1I ; 3.0 ; Crystal Structure of Human Mre11: Understanding Tumorigenic Mutations 3S24 ; 3.0137 ; Crystal structure of human mRNA guanylyltransferase 6AO5 ; 2.955 ; Crystal structure of human MST2 in complex with SAV1 SARAH domain 4HKD ; 1.503 ; Crystal structure of human MST2 SARAH domain 3MVA ; 2.2 ; Crystal structure of human MTERF1 bound to the termination sequence 3ZR1 ; 1.9 ; Crystal structure of human MTH1 3ZR0 ; 1.8 ; Crystal structure of human MTH1 in complex with 8-oxo-dGMP 6JVH ; 2.04 ; Crystal structure of human MTH1 in complex with compound MI0320 6JVG ; 1.844 ; Crystal structure of human MTH1 in complex with compound MI0639 6JVI ; 2.249 ; Crystal structure of human MTH1 in complex with compound MI0861 6JVJ ; 2.297 ; Crystal structure of human MTH1 in complex with compound MI1006 6JVK ; 2.1 ; Crystal structure of human MTH1 in complex with compound MI1012 6JVL ; 1.9 ; Crystal structure of human MTH1 in complex with compound MI1014 6JVM ; 2.098 ; Crystal structure of human MTH1 in complex with compound MI1016 6JVN ; 2.102 ; Crystal structure of human MTH1 in complex with compound MI1020 6JVO ; 1.902 ; Crystal structure of human MTH1 in complex with compound MI1022 6JVP ; 2.206 ; Crystal structure of human MTH1 in complex with compound MI1024 6JVQ ; 2.197 ; Crystal structure of human MTH1 in complex with compound MI1025 6JVR ; 2.295 ; Crystal structure of human MTH1 in complex with compound MI1026 6JVS ; 2.1 ; Crystal structure of human MTH1 in complex with compound MI1029 6JVT ; 1.801 ; Crystal structure of human MTH1 in complex with compound MI1030 5NGR ; 2.2 ; Crystal structure of human MTH1 in complex with fragment inhibitor 8-(methylsulfanyl)-7H-purin-6-amine 5NGS ; 1.85 ; Crystal structure of human MTH1 in complex with inhibitor 6-[(2-phenylethyl)sulfanyl]-7H-purin-2-amine 5NGT ; 1.54 ; Crystal structure of human MTH1 in complex with inhibitor 7-(furan-2-yl)-5-methyl-1,3-benzoxazol-2-amine 6QVO ; 2.45 ; Crystal structure of human MTH1 in complex with N6-methyl-dAMP 5OTM ; 1.8 ; Crystal structure of human MTH1 in complex with O6-methyl-dGMP 8I8T ; 1.22 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dAMP and Mn2+ 5GHJ ; 1.2 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP 8I1D ; 1.2 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP at pH 7.7 8I1E ; 1.1 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP at pH 8.0 8I1F ; 1.05 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP at pH 8.6 8I1G ; 1.18 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP at pH 9.1 8I1H ; 1.18 ; Crystal structure of human MTH1(G2K mutant) in complex with 2-oxo-dATP at pH 9.7 8I8S ; 1.42 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGMP and Mn2+ 5GHI ; 1.211 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGTP 8I18 ; 1.1 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGTP at pH 7.7 8I19 ; 1.48 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGTP at pH 8.0 8I1A ; 1.4 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGTP at pH 8.6 8I1C ; 1.4 ; Crystal structure of human MTH1(G2K mutant) in complex with 8-oxo-dGTP at pH 9.1 5WS7 ; 1.0 ; Crystal structure of human MTH1(G2K/C87A/C104S mutant) in complex with 2-oxo-dATP 6IJY ; 1.04 ; Crystal structure of human MTH1(G2K/C87A/C104S mutant) in complex with 8-oxo-dGTP determined using a crystal obtained under microgravity 5GHP ; 1.192 ; Crystal structure of human MTH1(G2K/D120A mutant) in complex with 2-oxo-dATP 5GHQ ; 1.181 ; Crystal structure of human MTH1(G2K/D120A mutant) in complex with 2-oxo-dATP under high concentrations of 2-oxo-dATP 5GHO ; 1.191 ; Crystal structure of human MTH1(G2K/D120A mutant) in complex with 8-oxo-dGTP 5GHN ; 1.391 ; Crystal structure of human MTH1(G2K/D120N mutant) in complex with 2-oxo-dATP 8I1I ; 1.2 ; Crystal structure of human MTH1(G2K/D120N mutant) in complex with 2-oxo-dATP at pH 7.7 8I1J ; 1.08 ; Crystal structure of human MTH1(G2K/D120N mutant) in complex with 2-oxo-dATP at pH 9.7 6ILI ; 1.45 ; Crystal structure of human MTH1(G2K/D120N mutant) in complex with 8-oxo-dGTP at pH 6.5 5GHM ; 1.5 ; Crystal structure of human MTH1(G2K/D120N mutant) in complex with 8-oxo-dGTP at pH 7.0 6IEG ; 3.55 ; Crystal structure of human MTR4 6OAE ; 1.9 ; Crystal Structure of Human Mucin-like Protocadherin EC1-2 4P0Q ; 2.851 ; Crystal structure of Human Mus81-Eme1 in complex with 5'-flap DNA 4P0P ; 2.8 ; Crystal structure of Human Mus81-Eme1 in complex with 5'-flap DNA, and Mg2+ 7F6L ; 3.2 ; Crystal structure of human MUS81-EME2 complex 4HE0 ; 2.69 ; Crystal structure of human muscle fructose-1,6-bisphosphatase 4HE2 ; 1.6 ; Crystal structure of human muscle fructose-1,6-bisphosphatase Q32R mutant complex with AMP 4HE1 ; 2.23 ; Crystal structure of human muscle fructose-1,6-bisphosphatase Q32R mutant complex with fructose-6-phosphate and phosphate 1Z8D ; 2.3 ; Crystal Structure of Human Muscle Glycogen Phosphorylase a with AMP and Glucose 4OJN ; 2.4 ; Crystal structure of human muscle L-lactate dehydrogenase 4QT0 ; 3.2 ; Crystal structure of human muscle L-lactate dehydrogenase in complex with inhibitor 1, 3-{[3-CARBAMOYL-7-(2,4-DIMETHOXYPYRIMIDIN-5-YL)QUINOLIN-4-YL]AMINO}BENZOIC ACID 4QSM ; 3.0 ; Crystal structure of human muscle L-lactate dehydrogenase in complex with inhibitor 2, 3-{[7-(2,4-dimethoxypyrimidin-5-yl)-3-sulfamoylquinolin-4-yl]amino}benzoic acid 4OKN ; 2.1 ; Crystal structure of human muscle L-lactate dehydrogenase, ternary complex with NADH and oxalate 4OMT ; 6.0 ; Crystal structure of human muscle phosphofructokinase (dissociated homodimer) 2I99 ; 2.6 ; Crystal structure of human Mu_crystallin at 2.6 Angstrom 4X0R ; 2.905 ; Crystal structure of human MxB stalk domain 7O60 ; 2.4 ; Crystal structure of human myelin protein P2 at room temperature from joint X-ray and neutron refinement. 7O60 ; 2.0 ; Crystal structure of human myelin protein P2 at room temperature from joint X-ray and neutron refinement. 2WUT ; 1.85 ; Crystal structure of human myelin protein P2 in complex with palmitate 5FIW ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN MYELOPEROXIDASE AT 1.7 ANGSTROMS RESOLUTION 1D7W ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN MYELOPEROXIDASE ISOFORM C COMPLEXED WITH CYANIDE AND BROMIDE AT PH 4.0 1MHL ; 2.25 ; CRYSTAL STRUCTURE OF HUMAN MYELOPEROXIDASE ISOFORM C CRYSTALLIZED IN SPACE GROUP P2(1) AT PH 5.5 AND 20 DEG C 4DL1 ; 2.0 ; Crystal Structure of human Myeloperoxidase with covalent thioxanthine analog 2DDK ; 2.7 ; Crystal structure of human myo-inositol monophosphatase 2 (IMPA2) (orthorhombic form) 2CZK ; 2.9 ; Crystal structure of human myo-inositol monophosphatase 2 (IMPA2) (trigonal form) 2CZI ; 3.0 ; Crystal structure of human myo-inositol monophosphatase 2 (IMPA2) with calcium and phosphate ions 2CZH ; 2.7 ; Crystal structure of human myo-inositol monophosphatase 2 (IMPA2) with phosphate ion (orthorhombic form) 2IBN ; 1.5 ; Crystal structure of Human myo-Inositol Oxygenase (MIOX) 3RGK ; 1.65 ; Crystal Structure of Human Myoglobin Mutant K45R 4BYF ; 2.74 ; Crystal structure of human Myosin 1c in complex with calmodulin in the pre-power stroke state 4LLI ; 2.2 ; Crystal Structure of human Myosin 5a globular domain 4LNZ ; 3.11 ; Crystal structure of human Myosin 5b globular domain 5C5S ; 2.2 ; Crystal Structure of human Myosin 9b RhoGAP domain at 2.2 angstrom 1RXT ; 3.0 ; Crystal structure of human myristoyl-CoA:protein N-myristoyltransferase. 2OZU ; 2.3 ; Crystal structure of human MYST histone acetyltransferase 3 in complex with acetylcoenzyme A 5VD3 ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN (de-phosphorylated) IN COMPLEX WITH SARACATINIB 5VCX ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN (UNTREATED) IN COMPLEX WITH SARACATINIB 8D6C ; 2.2 ; Crystal Structure of Human Myt1 Kinase domain Bounded with compound 28 8D6D ; 2.35 ; Crystal Structure of Human Myt1 Kinase domain Bounded with compound 39 8D6F ; 2.49 ; Crystal Structure of Human Myt1 Kinase domain Bounded with Eph receptor inhibitor / compound 41 8D6E ; 2.15 ; Crystal Structure of Human Myt1 Kinase domain Bounded with RP-6306 5VCY ; 1.56 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH BOSUTINIB 5VCZ ; 1.5 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH Bosutinib isomer 5VCV ; 1.92 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH Dasatinib 5VD0 ; 2.13 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH MK1775 5VCW ; 2.25 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH Pelitinib 5VD1 ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN MYT1 KINASE DOMAIN IN COMPLEX WITH PHA-848125 2A8W ; 1.59 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with Beta-Methyllactoside 1ZHJ ; 1.59 ; Crystal Structure of human N-acetylgalactosaminyltransferase (GTA) Complexed with Galactose 1ZJO ; 1.64 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with Galactose-grease 1ZI5 ; 1.55 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with H type I Trisaccharide 1ZI4 ; 1.85 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with H type II Trisaccharide 1ZI1 ; 1.57 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with Lactose 1ZI3 ; 1.69 ; Crystal Structure of Human N-acetylgalactosaminyltransferase (GTA) Complexed with N-acetyllactosamine 2CH6 ; 2.72 ; Crystal structure of human N-acetylglucosamine kinase in complex with ADP and glucose 2CH5 ; 1.9 ; Crystal structure of human N-acetylglucosamine kinase in complex with N-acetylglucosamine 4A6D ; 2.4 ; Crystal structure of human N-acetylserotonin methyltransferase (ASMT) in complex with SAM 4A6E ; 2.7 ; Crystal structure of human N-acetylserotonin methyltransferase (ASMT) in complex with SAM and N-acetylserotonin 6XI5 ; 2.61 ; Crystal structure of human N-acetylserotonin O-methyltransferase-like protein soaked with PDHPTAO 7RK3 ; 2.05 ; Crystal structure of human N-myristoyltransferase 1 fragment (residues 109-496) bound to diacylated human Arf6 octapeptide and Coenzyme A 3QEH ; 2.59 ; Crystal structure of human N12-i15, an ADCC and non-neutralizing anti-HIV-1 Env antibody 3QEG ; 1.95 ; Crystal structure of human N12-i2 Fab, an ADCC and neutralizing anti-HIV-1 Env antibody 6Q3V ; 1.882 ; Crystal structure of Human N4BP1 KH domains 6KMS ; 3.2 ; Crystal structure of human N6amt1-Trm112 in complex with SAM (space group I422) 6KMR ; 2.0 ; Crystal structure of human N6amt1-Trm112 in complex with SAM (space group P6122) 6PZH ; 2.3 ; Crystal structure of human NA-22 Fab 6PZE ; 2.3 ; Crystal structure of human NA-45 Fab in complex with neuraminidase Y169aH mutant from A/Shanghai/2/2013 (H7N9) 6PZF ; 2.8 ; Crystal structure of human NA-63 Fab in complex with neuraminidase from A/Hunan/02650/2016(H7N9) 6PZG ; 1.59 ; Crystal structure of human NA-80 Fab 6WF3 ; 2.291 ; Crystal structure of human Naa50 in complex with a cofactor derived inhibitor (compound 1) 6WF5 ; 2.04 ; Crystal structure of human Naa50 in complex with a truncated cofactor derived inhibitor (compound 2) 6WFN ; 1.07 ; Crystal structure of human Naa50 in complex with AcCoA and an inhibitor (compound 4a) identified using DNA encoded library technology 6WFO ; 1.85 ; Crystal structure of human Naa50 in complex with AcCoA and an inhibitor (compound 4b) identified using DNA encoded library technology 6WFG ; 2.16 ; Crystal structure of human Naa50 in complex with an inhibitor (compound 3) identified using DNA encoded library technology 6WFK ; 1.87 ; Crystal structure of human Naa50 in complex with CoA and an inhibitor (compound 4a) identified using DNA encoded library technology 5HGZ ; 1.383 ; Crystal structure of human Naa60 in complex with acetyl-CoA 5HH0 ; 1.6 ; Crystal structure of human Naa60 in complex with CoA 5HH1 ; 1.803 ; Crystal structure of human Naa60 mutant - F34A in complex with CoA 3PFN ; 2.7 ; Crystal Structure of human NAD kinase 7THG ; 2.9 ; Crystal Structure Of Human NADH-Cytochrome B5 Reductase 7TSW ; 2.4 ; Crystal Structure Of Human NADH-Cytochrome B5 Reductase T117D Mutant 7TNV ; 1.93 ; Crystal Structure Of Human NADH-Cytochrome B5 Reductase T117S Mutant 1ZSV ; 2.3 ; Crystal structure of human NADP-dependent leukotriene B4 12-hydroxydehydrogenase 3QFC ; 1.8 ; Crystal Structure of Human NADPH-Cytochrome P450 (V492E mutant) 3QE2 ; 1.75 ; Crystal Structure of Human NADPH-Cytochrome P450 Reductase 3QFR ; 2.4 ; Crystal Structure of Human NADPH-Cytochrome P450 Reductase (R457H Mutant) 5EMN ; 2.2 ; Crystal Structure of Human NADPH-Cytochrome P450 Reductase(A287P mutant) 1D4A ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN NAD[P]H-QUINONE OXIDOREDUCTASE AT 1.7 A RESOLUTION 1DXO ; 2.5 ; Crystal structure of human NAD[P]H-QUINONE oxidoreductase CO with 2,3,5,6,tetramethyl-P-benzoquinone (duroquinone) at 2.5 Angstrom resolution 1H69 ; 1.86 ; CRYSTAL STRUCTURE OF HUMAN NAD[P]H-QUINONE OXIDOREDUCTASE CO WITH 2,3,5,6,TETRAMETHYL-P-BENZOQUINONE (DUROQUINONE) AT 2.5 ANGSTROM RESOLUTION 1H66 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN NAD[P]H-QUINONE OXIDOREDUCTASE CO WITH 2,5-diaziridinyl-3-hydroxyl-6-methyl-1,4-benzoquinone 6ARH ; 1.6 ; Crystal structure of Human NAL at a resolution of 1.6 Angstrom 3DGR ; 2.1 ; Crystal structure of human NAMPT complexed with ADP analogue 3DKJ ; 2.0 ; Crystal structure of human NAMPT complexed with benzamide and phosphoribosyl pyrophosphate 3DHD ; 2.0 ; Crystal structure of human NAMPT complexed with nicotinamide mononucleotide and pyrophosphate 8IVU ; 2.09001 ; Crystal Structure of Human NAMPT in complex with A4276 7ENQ ; 2.20497 ; Crystal structure of human NAMPT in complex with compound NAT 6ATB ; 2.53 ; Crystal Structure of human NAMPT in complex with NVP-LOD812 6B75 ; 2.53 ; Crystal Structure of human NAMPT in complex with NVP-LOQ594 6AZJ ; 2.53 ; Crystal Structure of human NAMPT in complex with NVP-LQN520 6PEB ; 2.46 ; Crystal Structure of human NAMPT in complex with NVP-LTM976 6B76 ; 2.44 ; Crystal Structure of human NAMPT in complex with NVP-LVR596 5U2M ; 1.89 ; Crystal structure of human NAMPT with A-1293201 5U2N ; 1.73 ; Crystal structure of human NAMPT with A-1326133 5WI0 ; 2.05 ; Crystal structure of human NAMPT with fragment 2: 2-[(2-fluorophenyl)amino]-6-propylpyrimidin-4(3H)-one 5WI1 ; 1.99 ; Crystal structure of human NAMPT with fragment 5: (3E)-3-[(phenylamino)methylidene]oxan-2-one 5UPE ; 1.93 ; Crystal structure of human NAMPT with isoindoline urea inhibitor compound 5 5UPF ; 1.69 ; Crystal structure of human NAMPT with isoindoline urea inhibitor compound 53 7KD7 ; 1.44 ; Crystal structure of human NatD (NAA40) bound to a bisubstrate analogue 7KPU ; 1.43 ; Crystal structure of human NatD (NAA40) bound to a bisubstrate analogue with a C-3 linker 5ICV ; 1.53 ; Crystal structure of human NatF (hNaa60) bound to a bisubstrate analogue 5ICW ; 1.951 ; Crystal structure of human NatF (hNaa60) homodimer bound to Coenzyme A 4WO2 ; 1.82 ; CRYSTAL STRUCTURE OF HUMAN NATIVE CKIT PROTO-ONCOGENE PROMOTER QUADRUPLEX DNA 2HI9 ; 2.3 ; Crystal Structure of human native protein C inhibitor 6MC9 ; 3.3 ; Crystal Structure of Human Nav1.4 C-Terminal (1599-1754) domain in complex with calcium-bound calmodulin 6MBA ; 1.799 ; Crystal Structure of Human Nav1.4 CTerminal Domain in Complex with apo Calmodulin 3GD7 ; 2.7 ; Crystal structure of human NBD2 complexed with N6-Phenylethyl-ATP (P-ATP) 5AEA ; 1.9 ; Crystal structure of human NCAM domain 1 5QU2 ; 1.04 ; Crystal Structure of human Nck SH3.1 in complex with peptide PPPVPNPDY 6ZMM ; 2.96 ; Crystal structure of human NDRG1 2XMQ ; 2.81 ; Crystal structure of human NDRG2 protein provides insight into its role as a tumor suppressor 2XMR ; 2.0 ; Crystal structure of human NDRG2 protein provides insight into its role as a tumor suppressor 2XMS ; 2.15 ; Crystal structure of human NDRG2 protein provides insight into its role as a tumor suppressor 6L4H ; 3.4 ; Crystal structure of human NDRG3 C30S mutant 6L4G ; 3.304 ; Crystal structure of human NDRG3 I171M/S176H mutant 4FMF ; 3.2 ; Crystal structure of human nectin-1 full ectodomain (D1-D3) 4FOM ; 3.93 ; Crystal structure of human nectin-3 full ectodomain (D1-D3) 4FRW ; 3.5 ; Crystal structure of human nectin-4 extracellular fragment D1-D2 4FQP ; 3.6 ; Crystal structure of human Nectin-like 5 full ectodomain (D1-D3) 8FTJ ; 2.3 ; Crystal structure of human NEIL1 (P2G (242K) C(delta)100) glycosylase bound to DNA duplex containing urea 5ITT ; 2.53 ; Crystal Structure of Human NEIL1 bound to duplex DNA containing THF 5ITU ; 2.41 ; Crystal Structure of Human NEIL1(242K) bound to duplex DNA containing THF 6LWM ; 2.67 ; Crystal structure of human NEIL1(K242) bound to duplex DNA containing 2'-fluoro-2'-deoxy-5,6-dihydrouridine 6LWR ; 2.9 ; Crystal structure of human NEIL1(K242) bound to duplex DNA containing a cleaved C:T mismatch 5ITX ; 2.65 ; Crystal Structure of Human NEIL1(P2G R242K) bound to duplex DNA containing Thymine Glycol 5ITR ; 2.46 ; Crystal Structure of Human NEIL1(P2G) bound to duplex DNA containing THF 5ITY ; 2.48 ; Crystal Structure of Human NEIL1(P2G) bound to duplex DNA containing Thymine Glycol 6LWA ; 2.76 ; Crystal structure of human NEIL1(P2G, E3Q, K242) bound to duplex DNA containing 5-hydroxyuracil (5-OHU) 6LWH ; 2.78 ; Crystal structure of human NEIL1(P2G, E3Q, K242) bound to duplex DNA containing dihydrothymine (DHT) 6LWJ ; 2.83 ; Crystal structure of human NEIL1(P2G, E3Q, K242) bound to duplex DNA containing dihydrouracil (DHU) 6LWF ; 2.79 ; Crystal structure of human NEIL1(P2G, E3Q, K242) bound to duplex DNA containing guanidinohydantoin (Gh) 6LWC ; 2.91 ; Crystal structure of human NEIL1(P2G, E3Q, K242) bound to duplex DNA containing spiroiminodihydantoin (Sp) 6LWB ; 2.55 ; Crystal structure of human NEIL1(P2G, E3Q, R242) bound to duplex DNA containing 5-hydroxyuracil (5-OHU) 6LWI ; 2.72 ; Crystal structure of human NEIL1(P2G, E3Q, R242) bound to duplex DNA containing dihydrothymine (DHT) 6LWK ; 2.88 ; Crystal structure of human NEIL1(P2G, E3Q, R242) bound to duplex DNA containing dihydrouracil (DHU) 6LWG ; 2.53 ; Crystal structure of human NEIL1(P2G, E3Q, R242) bound to duplex DNA containing guanidinohydantoin (Gh) 6LWD ; 2.41 ; Crystal structure of human NEIL1(P2G, E3Q, R242) bound to duplex DNA containing spiroiminodihydantoin (Sp) 6LWL ; 2.55 ; Crystal structure of human NEIL1(R242) bound to duplex DNA containing 2'-fluoro-2'-deoxy-5,6-dihydrouridine 6LWQ ; 2.89 ; Crystal structure of human NEIL1(R242) bound to duplex DNA containing a C:T mismatch 6LWN ; 2.74 ; Crystal structure of human NEIL1(R242, G249P) bound to duplex DNA containing 2'-fluoro-2'-deoxy-5,6-dihydrouridine 6LWO ; 2.51 ; Crystal structure of human NEIL1(R242, Y244H) bound to duplex DNA containing 2'-fluoro-2'-deoxy-5,6-dihydrouridine 6LWP ; 2.64 ; Crystal structure of human NEIL1(R242, Y244R) bound to duplex DNA containing 2'-fluoro-2'-deoxy-5,6-dihydrouridine 5ITQ ; 1.48 ; Crystal Structure of Human NEIL1, Free Protein 7JL5 ; 2.6 ; Crystal structure of human NEIL3 tandem zinc finger GRF domains 6S76 ; 3.38 ; Crystal structure of human Nek7 6YEK ; 3.2 ; Crystal structure of human NEMO apo form 3FX0 ; 3.2 ; Crystal structure of Human NEMO CC2_LZ domain 1Y8J ; 2.25 ; Crystal Structure of human NEP complexed with an imidazo[4,5-c]pyridine inhibitor 6SH2 ; 2.6 ; Crystal structure of human neprilysin E584D in complex with C-type natriuretic peptide. 1TE6 ; 1.8 ; Crystal Structure of Human Neuron Specific Enolase at 1.8 angstrom 7O1N ; 1.56 ; Crystal Structure of Human Neuropilin-1 b1 Domain mutant - Y297A 4WGK ; 2.582 ; Crystal structure of human neutral ceramidase with Zn-bound phosphate 2YB9 ; 2.4 ; Crystal Structure of Human Neutral Endopeptidase complexed with a heteroarylalanine diacid. 7NAB ; 2.15 ; Crystal structure of human neutralizing mAb CV3-25 binding to SARS-CoV-2 S MPER peptide 1140-1165 6SMA ; 2.59 ; Crystal structure of Human Neutrophil Elastase (HNE) in complex with the 3-Oxo-beta-Sultam inhibitor LMC249 1H1B ; 2.0 ; Crystal structure of human neutrophil elastase complexed with an inhibitor (GW475151) 5A09 ; 1.81 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A0A ; 1.78 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A0B ; 2.23 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A0C ; 2.1 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A8X ; 2.23 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A8Y ; 1.9 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 5A8Z ; 2.0 ; Crystal Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 1B0F ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN NEUTROPHIL ELASTASE WITH MDL 101, 146 1DFV ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN NEUTROPHIL GELATINASE ASSOCIATED LIPOCALIN MONOMER 1ZMH ; 1.5 ; Crystal structure of human neutrophil peptide 2, HNP-2 (variant Gly16-> D-Ala) 4G3D ; 2.9 ; Crystal structure of human NF-kappaB inducing kinase (NIK) 1S9K ; 3.1 ; Crystal Structure of Human NFAT1 and Fos-Jun on the IL-2 ARRE1 Site 1OWR ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN NFAT1 BOUND MONOMERICALLY TO DNA 5USR ; 3.09 ; Crystal structure of human NFS1-ISD11 in complex with E. coli acyl-carrier protein at 3.09 angstroms 6RMJ ; 2.65 ; Crystal structure of human NGR-TNF 1GZU ; 2.9 ; Crystal Structure of Human Nicotinamide Mononucleotide Adenylyltransferase in Complex with NMN 2QG6 ; 1.5 ; Crystal structure of human nicotinamide riboside kinase (NRK1) in complex with nicotinamide mononucleotide (NMN) 4YUB ; 2.9 ; Crystal structure of human Nicotinic Acid Phosphoribosyltransferase 5U73 ; 3.348 ; Crystal structure of human Niemann-Pick C1 protein 4APC ; 2.1 ; Crystal Structure of Human NIMA-related Kinase 1 (NEK1) 4B9D ; 1.9 ; Crystal Structure of Human NIMA-related Kinase 1 (NEK1) with inhibitor. 8ESF ; 2.56 ; Crystal structure of human Nischarin PX and LRR domains with engineered mutations 5Y3S ; 2.451 ; Crystal structure of human NLRP1 leucine rich repeat domain 4XHS ; 1.7 ; Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction 5H7N ; 1.849 ; Crystal structure of human NLRP12-PYD with a MBP tag 6NDJ ; 2.27 ; Crystal structure of human NLRP6 PYD domain with MBP fusion 6Z2G ; 1.95 ; Crystal structure of human NLRP9 PYD 3L7U ; 2.1 ; Crystal structure of human NM23-H1 1KR2 ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN NMN/NAMN ADENYLYL TRANSFERASE COMPLEXED WITH TIAZOFURIN ADENINE DINUCLEOTIDE (TAD) 2GVG ; 2.2 ; Crystal Structure of human NMPRTase and its complex with NMN 2E5B ; 2.0 ; Crystal structure of Human NMPRTase as free-form 2E5C ; 2.2 ; Crystal structure of Human NMPRTase complexed with 5'-phosphoribosyl-1'-pyrophosphate 2E5D ; 2.0 ; Crystal structure of Human NMPRTase complexed with nicotinamide 2GVJ ; 2.1 ; Crystal Structure of Human NMPRTase in complex with FK866 4DIQ ; 2.4 ; Crystal Structure of human NO66 3ALN ; 2.3 ; Crystal Structure of human non-phosphorylated MKK4 kinase domain complexed with AMP-PNP 3ALO ; 2.6 ; Crystal structure of human non-phosphorylated MKK4 kinase domain ternary complex with AMP-PNP and p38 peptide 5I4E ; 2.25 ; Crystal Structure of Human Nonmuscle Myosin 2C motor domain 8G0W ; 2.87 ; Crystal structure of human norovirus GII.4 P domain in complex with Nanobody M4 4LQ3 ; 2.6 ; Crystal structure of human norovirus RNA-dependent RNA-polymerase bound to the inhibitor PPNDS 4LQ9 ; 2.04 ; Crystal structure of human norovirus RNA-dependent RNA-polymerase in complex with NAF2 4GML ; 2.9 ; Crystal structure of human NOT1 MIF4G domain 2F8Y ; 1.55 ; Crystal structure of human Notch1 ankyrin repeats to 1.55A resolution. 7WWP ; 2.99 ; Crystal structure of human Npl4 8C9J ; 2.7 ; Crystal structure of human NQO1 by serial femtosecond crystallography 8OK0 ; 1.6 ; Crystal structure of human NQO1 in complex with the inhibitor PMSF 4XAJ ; 3.551 ; Crystal structure of human NR2E1/TLX 5CVD ; 1.3 ; Crystal structure of human NRMT1 in complex with alpha-N-dimethylated human CENP-A peptide 6KDQ ; 1.499 ; Crystal structure of human NRMT1 in complex with alpha-N-monomethylated human CENP-A peptide 5CVE ; 1.5 ; Crystal Structure of human NRMT1 in complex with dimethylated fly H2B peptide and SAH 6KDS ; 1.844 ; Crystal structure of human NRMT2 in complex with alpha-N-monomethylated human CENP-A peptide 6KDR ; 2.112 ; Crystal structure of human NRMT2 in complex with human centromere protein B peptide 5WWQ ; 2.815 ; Crystal structure of human NSun6 5WWT ; 3.197 ; Crystal structure of human NSun6/tRNA 5WWS ; 3.247 ; Crystal structure of human NSun6/tRNA/SAM 5WWR ; 3.096 ; Crystal structure of human NSun6/tRNA/SFG 3QOR ; 1.753 ; Crystal structure of human nuclear migration protein NudC 4QJR ; 2.4 ; Crystal structure of human nuclear receptor sf-1 (nr5a1) bound to its hormone pip3 at 2.4 a resolution 4QK4 ; 2.81 ; Crystal structure of human nuclear receptor sf-1 (nr5a1) bound to pip2 at 2.8 a resolution 2P1B ; 2.75 ; Crystal structure of human nucleophosmin-core 5EHD ; 2.55 ; Crystal structure of human nucleophosmin-core in complex with cytochrome c 1JXV ; 2.2 ; Crystal Structure of Human Nucleoside Diphosphate Kinase A 6KVD ; 2.21 ; Crystal structure of human nucleosome containing H2A.J 5AY8 ; 2.8 ; Crystal structure of human nucleosome containing H3.Y 2CV5 ; 2.5 ; Crystal structure of human nucleosome core particle 3AZG ; 2.4 ; Crystal Structure of Human Nucleosome Core Particle Containing H3K115Q mutation 3AZH ; 3.49 ; Crystal Structure of Human Nucleosome Core Particle Containing H3K122Q mutation 3AYW ; 2.9 ; Crystal Structure of Human Nucleosome Core Particle Containing H3K56Q mutation 3AZE ; 3.0 ; Crystal Structure of Human Nucleosome Core Particle Containing H3K64Q mutation 3AZF ; 2.7 ; Crystal Structure of Human Nucleosome Core Particle Containing H3K79Q mutation 3AZI ; 2.7 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K31Q mutation 3AZJ ; 2.89 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K44Q mutation 3AZK ; 3.2 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K59Q mutation 3AZL ; 2.7 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K77Q mutation 3AZM ; 2.89 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K79Q mutation 3AZN ; 3.0 ; Crystal Structure of Human Nucleosome Core Particle Containing H4K91Q mutation 3W96 ; 3.0 ; Crystal Structure of Human Nucleosome Core Particle lacking H2A N-terminal region 3W97 ; 3.2 ; Crystal Structure of Human Nucleosome Core Particle lacking H2B N-terminal region 3W98 ; 3.42 ; Crystal Structure of Human Nucleosome Core Particle lacking H3.1 N-terminal region 3W99 ; 3.0 ; Crystal Structure of Human Nucleosome Core Particle lacking H4 N-terminal region 3COU ; 1.8 ; Crystal structure of human Nudix motif 16 (NUDT16) 2XSQ ; 1.72 ; Crystal structure of human Nudix motif 16 (NUDT16) in complex with IMP and magnesium 5BON ; 1.799 ; Crystal structure of human Nudt15 (MTH2) 3MGM ; 1.801 ; Crystal structure of human NUDT16 5LF9 ; 1.45 ; Crystal structure of human NUDT22 6GRU ; 1.93 ; Crystal structure of human NUDT5 3ACA ; 2.05 ; Crystal structure of human NUDT5 complexed with 8-oxo-dADP and manganese 3AC9 ; 2.1 ; Crystal structure of human NUDT5 complexed with 8-oxo-dGDP and manganese 3L85 ; 2.301 ; Crystal structure of human NUDT5 complexed with 8-oxo-dGMP 4I79 ; 1.75 ; Crystal structure of human NUP43 3V3Q ; 2.22 ; Crystal Structure of Human Nur77 Ligand-binding Domain in Complex with Ethyl 2-[2,3,4 trimethoxy-6(1-octanoyl)phenyl]acetate 4JGV ; 3.01 ; Crystal Structure of Human Nur77 Ligand-binding Domain in Complex with THPN 8FE7 ; 2.98 ; Crystal structure of human O-GlcNAc transferase (OGT) in complex with an exosite-binding peptide (SMG9) and UDP-GlcNAc 8FUF ; 3.69 ; Crystal structure of human O-GlcNAc transferase (OGT) in complex with an exosite-binding peptide (ZNF831) and UDP-GlcNAc 8FE6 ; 3.06 ; Crystal structure of human O-GlcNAc transferase (OGT) in complex with an exosite-binding peptide and UDP-GlcNAc 4N3A ; 1.88 ; Crystal Structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (1-26)E10A 4N39 ; 1.76 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) 6MA5 ; 2.0 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) and inhibitor 1a 6MA3 ; 2.0 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) and inhibitor 2a 6MA4 ; 2.0 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) and inhibitor 3a 6MA1 ; 2.75 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) and inhibitor 4a 6MA2 ; 2.1 ; Crystal structure of human O-GlcNAc transferase bound to a peptide from HCF-1 pro-repeat 2 (11-26) and inhibitor ent-1a 4N3C ; 2.55 ; Crystal Structure of human O-GlcNAc Transferase bound to a peptide from HCF-1 pro-repeat2(1-26) and UDP-GlcNAc 4N3B ; 2.17 ; Crystal Structure of human O-GlcNAc Transferase bound to a peptide from HCF-1 pro-repeat2(1-26)E10Q and UDP-5SGlcNAc 6TKA ; 1.91 ; Crystal structure of human O-GlcNAc transferase bound to substrate 7 and a peptide from HCF-1 pro-repeat 2 (11-26) 4GYW ; 1.7 ; Crystal structure of human O-GlcNAc Transferase in complex with UDP and a glycopeptide 4GZ3 ; 1.9 ; Crystal structure of human O-GlcNAc Transferase with UDP and a thioglycopeptide 4GZ6 ; 2.98 ; Crystal structure of human O-GlcNAc Transferase with UDP-5SGlcNAc 4GYY ; 1.85 ; Crystal structure of human O-GlcNAc Transferase with UDP-5SGlcNAc and a peptide substrate 4GZ5 ; 3.075 ; Crystal structure of human O-GlcNAc Transferase with UDP-GlcNAc 8P0L ; 2.5 ; Crystal structure of human O-GlcNAcase in complex with an S-linked CKII peptide 5UN8 ; 2.13 ; Crystal Structure of human O-GlcNAcase in complex with glycopeptide p53 4S3N ; 2.0 ; Crystal structure of human OAS3 domain I in complex with dsRNA 5NNZ ; 2.651 ; Crystal structure of human ODA16 4RUN ; 2.6 ; Crystal structure of human odorant binding protein OBPIIa 4NHX ; 2.105 ; Crystal structure of human OGFOD1, 2-oxoglutarate and iron-dependent oxygenase domain containing 1, in complex with N-oxalylglycine (NOG) 4NHY ; 2.603 ; Crystal structure of human OGFOD1, 2-oxoglutarate and iron-dependent oxygenase domain containing 1, in complex with pyridine-2,4-dicarboxylic acid (2,4-PDCA) 2OHF ; 2.7 ; Crystal structure of human OLA1 in complex with AMPPCP 1EVS ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN ONCOSTATIN M 5UV6 ; 2.65002 ; Crystal structure of human Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML) 3M03 ; 2.5 ; Crystal structure of human Orc6 fragment 5WQC ; 1.96 ; Crystal structure of human orexin 2 receptor bound to the selective antagonist EMPA determined by the synchrotron light source at SPring-8. 1D7K ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN ORNITHINE DECARBOXYLASE AT 2.1 ANGSTROMS RESOLUTION 1OTH ; 1.85 ; CRYSTAL STRUCTURE OF HUMAN ORNITHINE TRANSCARBAMOYLASE COMPLEXED WITH N-PHOSPHONACETYL-L-ORNITHINE 1FVO ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN ORNITHINE TRANSCARBAMYLASE COMPLEXED WITH CARBAMOYL PHOSPHATE 3BK0 ; 1.6 ; Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylase Complexed with 5-CN-UMP 3MW7 ; 2.32 ; Crystal structure of human orotidine 5'-monophosphate decarboxylase complexed with 5-fluoro-UMP(produced from 5-fluoro-6-amino-UMP) 3DBP ; 1.5 ; Crystal Structure of Human Orotidine 5'-Monophosphate Decarboxylase Complexed with 6-NH2-UMP 3BGG ; 1.93 ; Crystal structure of Human Orotidine 5'-monophosphate Decarboxylase complexed with BMP 4HKP ; 1.75 ; Crystal structure of human orotidine 5'-monophosphate decarboxylase complexed with CMP-N3-oxide 4HIB ; 1.8 ; Crystal structure of human orotidine 5'-monophosphate decarboxylase complexed with CMP-N4-OH 3BVJ ; 1.8 ; Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylase Complexed with XMP 3MO7 ; 1.35 ; Crystal structure of human orotidine 5'-monophosphate decarboxylase covalently modified by 2'-fluoro-6-iodo-UMP 3G3D ; 1.7 ; Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylase Covalently Modified by 5-fluoro-6-azido-UMP 3G3M ; 1.4 ; Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylase Covalently Modified by 5-fluoro-6-iodo-UMP 3BGJ ; 2.0 ; Crystal Structure of Human Orotidine 5'-monophosphate Decarboxylase Covalently Modified by 6-iodo-UMP 3MI2 ; 1.2 ; Crystal structure of human orotidine-5'-monophosphate decarboxylase complexed with pyrazofurin monophosphate 5ZM5 ; 2.6 ; Crystal structure of human ORP1-ORD in complex with cholesterol at 2.6 A resolution 7V62 ; 3.25 ; Crystal structure of human OSBP ORD in complex with cholesterol 3EHQ ; 2.57 ; Crystal Structure of Human Osteoclast Stimulating Factor 3EHR ; 1.95 ; Crystal Structure of Human Osteoclast Stimulating Factor 5YQ5 ; 2.17 ; Crystal structure of human osteomodulin 4DDG ; 3.2987 ; Crystal structure of human OTUB1/UbcH5b~Ub/Ub 4DDI ; 3.802 ; Crystal structure of human OTUB1/UbcH5b~Ub/Ub 2ZFY ; 1.69 ; Crystal structure of human Otubain 1 4FJV ; 2.047 ; Crystal Structure of Human Otubain2 and Ubiquitin Complex 4ZMW ; 2.3 ; Crystal structure of human P-cadherin (enc-X-dimer) 4ZMX ; 3.1 ; Crystal structure of human P-cadherin (int-X-dimer) 4ZMY ; 1.5 ; Crystal structure of human P-cadherin (monomer 1) 4ZMZ ; 2.05 ; Crystal structure of human P-cadherin (monomer 2) 4ZMO ; 2.48 ; Crystal structure of human P-cadherin (ss-dimer K14E) 4ZMN ; 2.6 ; Crystal structure of human P-cadherin (ss-dimer long) 4ZMP ; 2.15 ; Crystal structure of human P-cadherin (ss-dimer Q101L) 4ZML ; 1.85 ; Crystal structure of human P-cadherin (ss-dimer) 4ZMV ; 2.4 ; Crystal structure of human P-cadherin (ss-X-dimer pocket I) 4ZMQ ; 2.2 ; Crystal structure of human P-cadherin (ss-X-dimer) 4ZMT ; 2.7 ; Crystal structure of human P-cadherin (ss-X-dimer-long) 4OY9 ; 1.62 ; Crystal structure of human P-Cadherin EC1-EC2 in closed conformation 6ZTB ; 1.4 ; Crystal Structure of human P-Cadherin EC1_EC2 8HYI ; 2.85 ; Crystal structure of human P-cadherin MEC12 (X dimer) in complex with 2-(2-methyl-5-phenyl-1H-indole-3-yl)ethan-1-amine 7CME ; 2.45 ; Crystal structure of human P-cadherin MEC12 (X dimer) in complex with 2-(5-chloro-2-methyl-1H-indol-3-yl)ethan-1-amine (inhibitor) 7CMF ; 2.3 ; Crystal structure of human P-cadherin REC12 (monomer) in complex with 2-(5-chloro-2-methyl-1H-indol-3-yl)ethan-1-amine (inhibitor) 2O4X ; 2.0 ; Crystal structure of human P100 tudor domain 2HQX ; 1.42 ; Crystal structure of human P100 tudor domain conserved region 2HQE ; 2.0 ; Crystal structure of human P100 Tudor domain: Large fragment 5YVE ; 3.4 ; Crystal structure of human P2X3 receptor in complex with the AF-219 negative allosteric modulator 1P32 ; 2.25 ; CRYSTAL STRUCTURE OF HUMAN P32, A DOUGHNUT-SHAPED ACIDIC MITOCHONDRIAL MATRIX PROTEIN 3ROC ; 1.7 ; Crystal structure of human p38 alpha complexed with a pyrimidinone compound 2Y8O ; 1.95 ; Crystal structure of human p38alpha complexed with a MAPK docking peptide 3HP2 ; 2.15 ; Crystal Structure of Human p38alpha complexed with a pyridinone compound 3HP5 ; 2.3 ; Crystal Structure of Human p38alpha complexed with a pyrimidopyridazinone compound 3KF7 ; 2.0 ; Crystal Structure of Human p38alpha Complexed With a Triazolopyrimidine compound 3HLL ; 1.95 ; Crystal Structure of Human p38alpha complexed with PH-797804 3HL7 ; 1.88 ; Crystal Structure of Human p38alpha complexed with SD-0006 3HVC ; 2.1 ; Crystal structure of human p38alpha MAP kinase 6VLT ; 3.12 ; Crystal Structure of Human P450 2C9*2 Genetic Variant in Complex with Losartan 2J0D ; 2.75 ; Crystal structure of human P450 3A4 in complex with erythromycin 2V0M ; 2.8 ; Crystal structure of human P450 3A4 in complex with ketoconazole 2J8Z ; 2.5 ; Crystal Structure of human P53 inducible oxidoreductase (TP53I3,PIG3) 2OBY ; 3.0 ; Crystal structure of Human P53 inducible oxidoreductase (TP53I3,PIG3) 3HF1 ; 2.6 ; Crystal structure of human p53R2 2Y4U ; 3.2 ; Crystal structure of human P58(IPK) in space group P312 4A9Z ; 2.29 ; CRYSTAL STRUCTURE OF HUMAN P63 TETRAMERIZATION DOMAIN 3B4D ; 2.001 ; Crystal Structure of Human PABPN1 RRM 3B4M ; 2.82 ; Crystal Structure of Human PABPN1 RRM 6JPT ; 0.96 ; Crystal structure of human PAC3 homodimer (trigonal form) 3Q84 ; 2.8 ; Crystal structure of human PACSIN 1 F-BAR domain 3QNI ; 2.8 ; Crystal structure of human PACSIN 1 F-BAR domain 3Q0K ; 2.6 ; Crystal structure of Human PACSIN 2 F-BAR 3HAH ; 2.77 ; Crystal structure of human PACSIN1 F-BAR domain (C2 lattice) 3HAI ; 2.881 ; Crystal structure of human PACSIN1 F-BAR domain (P21 lattice) 3HAJ ; 2.78 ; Crystal structure of human PACSIN2 F-BAR domain (p212121 lattice) 7ALE ; 2.95 ; Crystal structure of human PAICS in complex with inhibitor 69 2H31 ; 2.8 ; Crystal structure of human PAICS, a bifunctional carboxylase and synthetase in purine biosynthesis 5XOF ; 1.963 ; Crystal structure of human paired immunoglobulin-like type 2 receptor alpha with synthesized glycopeptide I 5XO2 ; 2.201 ; Crystal structure of human paired immunoglobulin-like type 2 receptor alpha with synthesized glycopeptide II 6Q42 ; 1.9 ; Crystal Structure of Human Pancreatic Phospholipase A2 3ELO ; 1.55 ; Crystal Structure of Human Pancreatic Prophospholipase A2 3AQG ; 2.75 ; Crystal structure of human pancreatic secretory protein ZG16b 3APA ; 1.65 ; Crystal structure of human pancreatic secretory protein ZG16p 3VZE ; 1.9 ; Crystal structure of human pancreatic secretory protein ZG16p with alpha1,3-mannobiose 3VY6 ; 2.0 ; Crystal structure of human pancreatic secretory protein ZG16p with laminaribiose 3VZF ; 2.8 ; Crystal structure of human pancreatic secretory protein ZG16p with methyl alpha-D-mannopyranoside 3VY7 ; 2.14 ; Crystal structure of human pancreatic secretory protein ZG16p with O-(alpha-D-mannosyl)-L-serine 3VZG ; 2.7 ; Crystal structure of human pancreatic secretory protein ZG16p with O-(alpha-D-mannosyl)-L-threonine 2I7N ; 1.9 ; Crystal structure of human PANK1 alpha: the catalytic core domain in complex with AcCoA 5E26 ; 2.14 ; Crystal structure of human PANK2: the catalytic core domain in complex with pantothenate and adenosine diphosphate 2I7P ; 2.05 ; Crystal structure of human PANK3 in complex with AcCoA 6IGE ; 2.9 ; Crystal structure of Human Papillomavirus type 33 pentamer 6IGF ; 2.751 ; Crystal structure of Human Papillomavirus type 52 pentamer 5J6R ; 4.011 ; Crystal structure of Human Papillomavirus Type 59 L1 pentamer 1ET1 ; 0.9 ; CRYSTAL STRUCTURE OF HUMAN PARATHYROID HORMONE 1-34 AT 0.9 A RESOLUTION 7ZTW ; 1.93 ; Crystal Structure of Human Parechovirus 1 2A protein 7ZU3 ; 1.74 ; Crystal Structure of Human Parechovirus 1 2A protein lacking the C-terminal oligomerisation helix 7ZU4 ; 2.1 ; Crystal Structure of Human Parechovirus 1 2A protein lacking the C-terminal oligomerisation helix 8A2E ; 2.29 ; Crystal Structure of Human Parechovirus 3 2A protein 6NRH ; 1.5 ; Crystal Structure of human PARP-1 ART domain bound inhibitor UTT63 6NTU ; 1.8 ; Crystal Structure of human PARP-1 ART domain bound to inhibitor UKTT-15 6NRF ; 2.0 ; Crystal Structure of human PARP-1 ART domain bound to inhibitor UTT103 6NRG ; 1.7 ; Crystal Structure of human PARP-1 ART domain bound to inhibitor UTT57 6NRI ; 2.2 ; Crystal Structure of human PARP-1 ART domain bound to inhibitor UTT83 6NRJ ; 1.65 ; Crystal Structure of human PARP-1 ART domain bound to inhibitor UTT93 6VKQ ; 2.9 ; Crystal Structure of human PARP-1 CAT domain bound to inhibitor EB-47 6VKK ; 2.1 ; Crystal Structure of human PARP-1 CAT domain bound to inhibitor rucaparib 6VKO ; 2.8 ; Crystal Structure of human PARP-1 CAT domain bound to inhibitor UKTT15 8FYZ ; 3.4 ; Crystal structure of human PARP1 ART domain bound to inhibitor UKTT10 (compound 13) 8FZ1 ; 2.7 ; Crystal structure of human PARP1 ART domain bound to inhibitor UKTT22 (compound 14) 8FYY ; 2.8 ; Crystal structure of human PARP1 ART domain bound to inhibitor UKTT5 (compound 10) 5V7W ; 2.65 ; Crystal structure of human PARP14 bound to 2-{[(1-methylpiperidin-4-yl)methyl]amino}-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one inhibitor 3UI5 ; 1.4 ; Crystal structure of human Parvulin 14 3DLS ; 2.3 ; Crystal structure of human PAS kinase bound to ADP 4XGZ ; 2.5 ; Crystal structure of human paxillin LD2 motif in complex with Fab fragment 4XH2 ; 2.0 ; Crystal structure of human paxillin LD4 motif in complex with Fab fragment 5FE0 ; 2.3 ; Crystal structure of human PCAF bromodomain in complex with acetyllysine 5FDZ ; 2.4 ; Crystal structure of human PCAF bromodomain in complex with compound BDOMB00091a (compound 14) 5FE9 ; 2.35 ; Crystal structure of human PCAF bromodomain in complex with compound SL1122 (compound 13) 5FE8 ; 2.1 ; Crystal structure of human PCAF bromodomain in complex with compound SL1126 (compound 12) 5LVQ ; 2.05 ; Crystal structure of human PCAF bromodomain in complex with compound-D (CPD-D), N-methyl-2-(tetrahydro-2H-pyran-4-yloxy)benzamide 5LVR ; 2.05 ; Crystal structure of human PCAF bromodomain in complex with compound-E (CPD-E) 5FE1 ; 2.22 ; Crystal structure of human PCAF bromodomain in complex with fragment BR004 (fragment 1) 5FE2 ; 2.25 ; Crystal structure of human PCAF bromodomain in complex with fragment BR013 (fragment 3) 5FE5 ; 2.12 ; Crystal structure of human PCAF bromodomain in complex with fragment MB093 (fragment 7) 5FE3 ; 2.12 ; Crystal structure of human PCAF bromodomain in complex with fragment MB360 (fragment 4) 5FE4 ; 2.15 ; Crystal structure of human PCAF bromodomain in complex with fragment MB364 (fragment 5) 5FE6 ; 1.77 ; Crystal structure of human PCAF bromodomain in complex with fragment ZB1916 (fragment 10) 5FE7 ; 2.08 ; Crystal structure of human PCAF bromodomain in complex with fragment ZB2216 (fragment 11) 6FCM ; 2.8 ; Crystal structure of human PCNA 4ZTD ; 2.199 ; Crystal Structure of Human PCNA in complex with a TRAIP peptide 5YD8 ; 2.3 ; Crystal structure of human PCNA in complex with APIM of human ZRANB3 6K3A ; 2.3 ; Crystal structure of human PCNA in complex with DNMT1 PIP box motif. 8COB ; 2.73 ; Crystal structure of human PCNA in complex with ERCC6L2 PIP box peptide 4D2G ; 2.65 ; Crystal structure of human PCNA in complex with p15 peptide 5MAV ; 2.575 ; Crystal structure of human PCNA in complex with PARG (poly(ADP-ribose) glycohydrolase) peptide. 5IY4 ; 2.945 ; Crystal structure of human PCNA in complex with the PIP box of DVC1 8F5Q ; 1.9 ; Crystal structure of human PCNA in complex with the PIP box of FBH1 6GWS ; 2.9 ; Crystal structure of human PCNA in complex with three p15 peptides 6HVO ; 2.1 ; Crystal structure of human PCNA in complex with three peptides of p12 subunit of human polymerase delta 5MLW ; 2.45 ; Crystal structure of human PCNA in complex with ZRANB3 APIM motif peptide 5MLO ; 1.96 ; Crystal structure of human PCNA in complex with ZRANB3 PIP box peptide 6FCN ; 3.22 ; Crystal structure of human PCNA soaked with p47phox(106-127) peptide 6U6V ; 1.9 ; Crystal structure of human PD-1H / VISTA 4Z18 ; 1.952 ; CRYSTAL STRUCTURE OF HUMAN PD-L1 5IUS ; 2.889 ; Crystal structure of human PD-L1 in complex with high affinity PD-1 mutant 5GRJ ; 3.206 ; Crystal structure of human PD-L1 with monoclonal antibody avelumab 5UWF ; 1.87 ; Crystal structure of human PDE10A in complex with inhibitor 16d 4NPW ; 1.9 ; Crystal structure of human PDE1B bound to inhibitor 19A (7,8-dimethoxy-N-[(2S)-1-(3-methyl-1H-pyrazol-5-yl)propan-2-yl]quinazolin-4-amine) 4NPV ; 2.4 ; Crystal structure of human PDE1B bound to inhibitor 7A (6,7,8-trimethoxy-N-(pentan-3-yl)quinazolin-4-amine) 5UOY ; 1.82 ; Crystal structure of human PDE1B catalytic domain in complex with inhibitor 16j (6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one) 5UP0 ; 2.04 ; Crystal structure of human PDE1B catalytic domain in complex with inhibitor 3 (6-(4-chlorobenzyl)-8,9,10,11-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one) 5B25 ; 1.9 ; Crystal structure of human PDE1B with inhibitor 3 5TZC ; 2.36 ; Crystal Structure of human PDE2a in complex with (5S)-1-[(3-bromo-4-fluorophenyl)carbonyl]-3,3-difluoro-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 3I8V ; 2.25 ; Crystal structure of human PDE4a with 4-(3-butoxy-4-methoxyphenyl)methyl-2-imidazolidone 3KKT ; 2.48 ; Crystal structure of human PDE4b with 5-[3-[(1S,2S,4R)-Bicyclo[2.2.1]hept-2-yloxy]-4-methoxyp henyl]tetrahydro-2(1H)-pyrimidinone reveals ordering of the C-terminal helix residues 502-509. 4HQX ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN PDGF-BB IN COMPLEX WITH A Modified nucleotide aptamer (SOMAmer SL4) 4HQU ; 2.2 ; Crystal structure of human PDGF-BB in complex with a modified nucleotide aptamer (SOMAmer SL5) 5K5X ; 2.168 ; Crystal structure of human PDGFRA 3UEM ; 2.29 ; Crystal structure of human PDI bb'a' domains 3HRF ; 1.9 ; Crystal structure of Human PDK1 kinase domain in complex with an allosteric activator bound to the PIF-pocket 6LIL ; 1.93 ; Crystal structure of human PDK2 complexed with an allosteric inhibitor compound 8c 6LIN ; 2.67 ; Crystal structure of human PDK2 complexed with GM10030 6LIO ; 1.76 ; Crystal structure of human PDK2 complexed with GM67520 2ZKJ ; 2.0 ; Crystal structure of human PDK4-ADP complex 1YCK ; 1.7 ; Crystal structure of human peptidoglycan recognition protein (PGRP-S) 4DIP ; 1.82 ; Crystal structure of human Peptidyl-prolyl cis-trans isomerase FKBP14 4MSP ; 1.9 ; Crystal structure of human peptidyl-prolyl cis-trans isomerase FKBP22 (aka FKBP14) containing two EF-hand motifs 2DEX ; 2.1 ; Crystal structure of human peptidylarginine deiminase 4 in complex with histone H3 N-terminal peptide including Arg17 2DEW ; 2.1 ; Crystal structure of human peptidylarginine deiminase 4 in complex with histone H3 N-terminal tail including Arg8 2DEY ; 2.25 ; Crystal structure of human peptidylarginine deiminase 4 in complex with histone H4 N-terminal tail including Arg3 4DKT ; 2.98 ; Crystal structure of human peptidylarginine deiminase 4 in complex with N-acetyl-L-threonyl-L-alpha-aspartyl-N5-[(1E)-2-fluoroethanimidoyl]-L-ornithinamide 2DW5 ; 2.3 ; Crystal structure of human peptidylarginine deiminase 4 in complex with N-alpha-benzoyl-N5-(2-fluoro-1-iminoethyl)-L-ornithine amide 3B1T ; 2.5 ; Crystal structure of human peptidylarginine deiminase 4 in complex with o-Cl-amidine 3B1U ; 2.1 ; Crystal structure of human peptidylarginine deiminase 4 in complex with o-F-amidine 1WDA ; 2.3 ; Crystal structure of human peptidylarginine deiminase type4 (PAD4) in complex with benzoyl-L-arginine amide 4X8C ; 3.1 ; Crystal structure of human peptidylarginine deiminase type4 (PAD4) in complex with GSK147 4X8G ; 3.29 ; Crystal structure of human peptidylarginine deiminase type4 (PAD4) in complex with GSK199 3NR3 ; 1.95 ; Crystal Structure of Human Peripheral Myelin Protein 2 2PN8 ; 1.8 ; Crystal structure of human peroxiredoxin 4 (thioredoxin peroxidase) 4RQX ; 2.256 ; Crystal structure of human peroxiredoxin 4(THIOREDOXIN PEROXIDASE) with MESNA 5B6M ; 2.496 ; Crystal structure of human peroxiredoxin 6 in reduced state 2RII ; 2.6 ; Crystal Structure of Human Peroxiredoxin I in complex with Sulfiredoxin 3TJK ; 2.09 ; Crystal Structure of human peroxiredoxin IV C245A mutant in reduced form 3TJJ ; 1.91 ; Crystal structure of human peroxiredoxin IV C245A mutant in sulfenylated form 3TJG ; 2.24 ; Crystal Structure of human peroxiredoxin IV C51A mutant in oxidized form 3TJF ; 2.04 ; Crystal Structure of human peroxiredoxin IV C51A mutant in reduced form 2IIK ; 2.55 ; Crystal Structure of human peroxisomal acetyl-CoA acyl transferase 1 (ACAA1) 7Q84 ; 2.0 ; Crystal structure of human peroxisomal acyl-Co-A oxidase 1a, apo-form 7Q86 ; 2.09 ; Crystal structure of human peroxisomal acyl-Co-A oxidase 1a, FAD-bound-form 5T3P ; 2.03 ; Crystal structure of Human Peroxisomal coenzyme A diphosphatase NUDT7 2VRE ; 1.95 ; crystal structure of human peroxisomal delta3,5,delta2,4-dienoyl coa isomerase 4U18 ; 2.64 ; Crystal structure of human peroxisomal delta3,delta2, enoyl-CoA isomerase (ISO-ECI2) 4U1A ; 2.85 ; Crystal structure of human peroxisomal delta3,delta2, enoyl-CoA isomerase helix-10 deletion mutant (ISOB-ECI2) 4U19 ; 1.88 ; Crystal structure of human peroxisomal delta3,delta2, enoyl-CoA isomerase V349A mutant (ISOA-ECI2) 3AJB ; 2.5 ; Crystal Structure of human Pex3p in complex with N-terminal Pex19p peptide 4O33 ; 2.1 ; Crystal Structure of human PGK1 3PG and terazosin(TZN) ternary complex 4X8Y ; 1.95 ; Crystal structure of human PGRMC1 cytochrome b5-like domain 2APH ; 2.1 ; Crystal structure of human PGRP-IalphaC in complex with muramyl pentapeptide 2EAX ; 2.1 ; Crystal structure of human PGRP-IBETAC in complex with glycosamyl muramyl pentapeptide 4ANP ; 2.11 ; Crystal structure of human phenylalanine hydroxylase in complex with a pharmacological chaperone 6WS1 ; 2.76 ; Crystal structure of human phenylethanolamine N-methyltransferase (PNMT) in complex with (2S)-2-amino-4-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(3-(7,8-dichloro-1,2,3,4-tetrahydroisoquinolin-4-yl)propyl)amino)butanoic acid and AdoHcy (SAH) 7TX2 ; 2.43 ; Crystal structure of human phenylethanolamine N-methyltransferase (PNMT) in complex with (2S)-2-amino-4-(((5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(4-(7,8-dichloro-1,2,3,4-tetrahydroisoquinolin-4-yl)butyl)amino)butanoic acid 7TWU ; 2.1 ; Crystal structure of human phenylethanolamine N-methyltransferase (PNMT) in complex with (2S)-2-amino-4-(((5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(4-(7,8-dichloro-1,2,3,4-tetrahydroisoquinolin-4-yl)butyl)amino)butanoic acid and AdoHcy (SAH) 5SYB ; 1.82 ; Crystal structure of human PHF5A 4DO0 ; 2.55 ; Crystal Structure of human PHF8 in complex with Daminozide 6PLF ; 1.7 ; Crystal structure of human PHGDH complexed with Compound 1 6PLG ; 2.93 ; Crystal structure of human PHGDH complexed with Compound 15 7EWH ; 2.99 ; Crystal structure of human PHGDH in complex with Homoharringtonine 5K25 ; 3.05 ; Crystal structure of human phosphatase PRL-2 in complex with the ADP-bound Bateman domain of human magnesium transporter CNNM3 5BZZ ; 2.2 ; Crystal structure of human phosphatase PTEN in its reduced state 5BUG ; 2.4 ; Crystal structure of human phosphatase PTEN oxidized by H2O2 5BZX ; 2.5 ; Crystal structure of human phosphatase PTEN treated with a bisperoxovanadium complex 1LN1 ; 2.4 ; Crystal Structure of Human Phosphatidylcholine Transfer Protein in Complex with Dilinoleoylphosphatidylcholine 1LN2 ; 2.9 ; Crystal Structure of Human Phosphatidylcholine Transfer Protein in Complex with Dilinoleoylphosphatidylcholine (Seleno-Met Protein) 7U9D ; 2.18 ; Crystal Structure of Human Phosphatidylcholine Transfer Protein in Complex with PC(16:0/20:4) 6GL3 ; 2.77 ; Crystal structure of human Phosphatidylinositol 4-kinase III beta (PI4KIIIbeta) in complex with ligand 44 2YBX ; 2.56 ; Crystal Structure of Human Phosphatidylinositol-5-phosphate 4-kinase type-2 alpha 1WOJ ; 1.8 ; Crystal structure of human phosphodiesterase 5SJH ; 2.1 ; Crystal Structure of human phosphodiesterase 10 5SFC ; 2.18 ; Crystal Structure of human phosphodiesterase 10 in complex with 5SHW ; 2.19 ; Crystal Structure of human phosphodiesterase 10 in complex with (2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)methanol 5SJR ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with (2R)-2-[[3-cyano-2-[4-(2-ethoxyphenyl)phenyl]-6-fluoroquinolin-4-yl]amino]propanoic acid 5SIA ; 2.27 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-(2,3-dimethylquinoxalin-6-yl)-3-(3-methoxyphenyl)urea 5SF7 ; 2.08 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-(2-chlorophenyl)-8-methoxy-3,4-dimethylimidazo[1,5-a]quinazolin-5-one 5SII ; 2.18 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-(3,4-dimethoxyphenyl)-5-ethyl-7,8-dimethoxy-4-methyl-5H-2,3-benzodiazepine 5SHV ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-(6-fluoropyridin-2-yl)piperidin-4-one 5SGV ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-benzyl-3-(2-phenylpyrazol-3-yl)pyridazin-4-one 5SI3 ; 2.4 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-methyl-5-[(2-phenylimidazo[1,2-a]pyrimidin-7-yl)carbamoyl]pyrazole-4-carboxylic acid 5SJ4 ; 2.77 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-methyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-5H-pyrazolo[3,4-d]pyrimidin-4-one 5SKR ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-methyl-N-(2-methyl-5-pyridin-2-ylpyrazol-3-yl)-4-pyridin-4-ylpyrazole-3-carboxamide 5SIG ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[(4-methoxyphenyl)methyl]-1-[(4-oxo-3H-quinazolin-2-yl)methyl]-3-phenylurea 5SG5 ; 2.17 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[(4-methoxyphenyl)methyl]-3-(4-methylphenyl)-1-[(4-oxo-3H-quinazolin-2-yl)methyl]urea 5SJD ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[2-(3,5-dimethylpyrazol-1-yl)ethyl]-3-(2-phenylpyrazol-3-yl)urea 5SHC ; 2.33 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethyl]-2-oxo-N-pyrimidin-5-ylpyridine-3-carboxamide 5SG0 ; 2.06 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethyl]-3-(2-phenylpyrazol-3-yl)imidazolidin-2-one 5SFZ ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethyl]-3-(2-phenylpyrazol-3-yl)urea 5SJG ; 1.97 ; Crystal Structure of human phosphodiesterase 10 in complex with 1-[2-[2-(5,8-dimethyl-[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)ethyl]-1-methylimidazol-4-yl]pyrrolidin-2-one 5SGU ; 2.14 ; Crystal Structure of human phosphodiesterase 10 in complex with 12-methoxy-5,7-dimethyl-3-propyl-2,4,8,13-tetrazatricyclo[7.4.0.02,6]trideca-1(13),3,5,7,9,11-hexaene 5SJ8 ; 2.49 ; Crystal Structure of human phosphodiesterase 10 in complex with 12-methoxy-5-methyl-3-propyl-2,4,8,13-tetrazatricyclo[7.4.0.02,6]trideca-1(13),3,5,7,9,11-hexaene-7-carbonitrile 5SHI ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3,5-trimethyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]imidazo[1,2-a]pyridine 5SEV ; 2.31 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3,5-trimethyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]pyrazine 5SJ2 ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dichloro-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyridine-4-carboxamide 5SE9 ; 1.94 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dimethyl-6-[(1-methyl-4-phenylimidazol-2-yl)methoxy]imidazo[1,2-b]pyridazine 5SF5 ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dimethyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]imidazo[1,2-b]pyridazine 5SGN ; 2.07 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dimethyl-6-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-7-(trifluoromethyl)imidazo[1,2-b]pyridazine 5SH3 ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dimethyl-6-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-8-methylsulfonylimidazo[1,2-b]pyridazine 5SHE ; 2.19 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,3-dimethylquinoxalin-6-amine 5SE6 ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 2,9-dimethyl-6-[(1-methyl-4-phenylimidazol-2-yl)methoxy]purine 5SK2 ; 2.14 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-(4-fluorophenyl)-4-(2-isoquinolin-3-yloxyethyl)-5-methyl-1,3-oxazole 5SF1 ; 2.11 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-(difluoromethyl)-3-methyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethynyl]imidazo[1,2-b]pyridazine 5SH5 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-amino-4-cyclohexyloxyquinoline-3-carbonitrile 5SI7 ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-benzyl-6,6-dimethyl-1H-imidazo[4,5-h]isoquinoline-7,9-dione 5SGR ; 2.04 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-chloro-3-[(1-methyl-4-phenylimidazol-2-yl)methoxy]quinoxaline 5SK9 ; 2.82 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-chloro-5-methoxy-3-methylquinoxaline 5SKG ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-chloro-6-(cyclopropylamino)-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyridine-4-carboxamide 5SEZ ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-chloro-6-ethyl-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyridine-4-carboxamide 5SE3 ; 2.14 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-chloro-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyridine-4-carboxamide 5SIQ ; 1.97 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-ethyl-3-[4-(4-methylphenyl)sulfonylpiperazin-1-yl]quinoxaline 5SF3 ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)-4-N-(1H-pyrazol-5-ylmethyl)pyrazole-3,4-dicarboxamide 5SFJ ; 2.41 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)-4-N-(pyridin-2-ylmethyl)pyrazole-3,4-dicarboxamide 5SHX ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-pyrrolidin-1-ylquinoxaline 5SF9 ; 2.37 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-[(1-methyl-4-phenylimidazol-2-yl)methoxy]quinoxaline 5SEK ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]quinoxaline 5SGS ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-[2-(1-pyridin-2-ylpyrrolidin-3-yl)ethyl]quinoxaline 5SEB ; 2.28 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-3-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]quinoxaline 5SIM ; 1.75 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(2-methylpyrrolidine-1-carbonyl)-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3-carboxamide 5SIO ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(2-methylpyrrolidine-1-carbonyl)-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3-carboxamide 5SFM ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(morpholine-4-carbonyl)-N-(2-phenyl-[1,2,4]triazolo[1,5-c]pyrimidin-7-yl)pyrazole-3-carboxamide 5SK5 ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(morpholine-4-carbonyl)-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3-carboxamide, space group H3 5SI1 ; 1.75 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(morpholine-4-carbonyl)-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3-carboxamide, space group I23 5SJZ ; 2.19 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-(morpholine-4-carbonyl)-N-(2-pyrrolidin-1-yl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyrazole-3-carboxamide 5SHN ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-N-(1,3-oxazol-2-ylmethyl)-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3,4-dicarboxamide 5SDV ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-methyl-4-N-(1,3-oxazol-4-ylmethyl)-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3,4-dicarboxamide 5SGW ; 1.9 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-phenyl-6-(2-phenylpyrazol-3-yl)-3,4-dihydropyridazin-5-one 5SKE ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-tert-butyl-5-(pyrimidin-5-ylamino)-N-[3-(trifluoromethoxy)phenyl]pyrimidine-4-carboxamide 5SGG ; 2.09 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[(4-chloro-3,5-dimethylpyridin-2-yl)methylsulfanyl]-6,7-dihydro-3H-furo[3,2-f]benzimidazole 5SHU ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfanyl]-3,5,6,7-tetrahydropyrrolo[3,2-f]benzimidazole 5SJB ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfanyl]-3H-imidazo[4,5-f]quinoline 5SHP ; 2.18 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfanyl]-3H-imidazo[4,5-h]quinoline 5SG9 ; 2.13 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[(E)-2-(4-methyl-6-pyrrolidin-1-ylpyrimidin-2-yl)ethenyl]quinoline 5SEC ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(1,4-diphenylimidazol-2-yl)ethyl]-3-methylquinoxaline 5SE2 ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]quinoline 5SEU ; 2.09 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-6-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine 5SG1 ; 2.41 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]quinoline 5SEP ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(4-cyclopentyl-1-methylimidazol-2-yl)ethyl]-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazine 5SEO ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-(5-methyl-2-phenyl-1H-imidazol-4-yl)ethyl]isoindole-1,3-dione 5SGT ; 2.26 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-[3-(4-methoxyphenyl)-4-oxoquinazolin-2-yl]ethyl]isoindole-1,3-dione 5SH9 ; 2.06 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-[5-[(3R)-3-fluoropyrrolidin-1-yl]-2-methyl-1,2,4-triazol-3-yl]ethyl]-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazine 5SHA ; 2.24 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[2-[5-[3-(difluoromethyl)pyrrolidin-1-yl]-2-methyl-1,2,4-triazol-3-yl]ethyl]-5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazine 5SJX ; 2.06 ; Crystal Structure of human phosphodiesterase 10 in complex with 2-[[4-(1-methyl-4-pyridin-4-ylpyrazol-3-yl)phenoxy]methyl]quinoline 5SIR ; 2.5 ; Crystal Structure of human phosphodiesterase 10 in complex with 3,6-dimethyl-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyridine-2-carboxamide 5SHF ; 2.28 ; Crystal Structure of human phosphodiesterase 10 in complex with 3,6-dimethyl-N-(2-phenylpyrazolo[1,5-a]pyridin-6-yl)pyridine-2-carboxamide 5SGZ ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(2-chlorophenyl)-12-methoxy-5-methyl-2,4,8,13-tetrazatricyclo[7.4.0.02,6]trideca-1(13),3,5,9,11-pentaen-7-one 5SHG ; 2.12 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(2-chlorophenyl)-12-methoxy-5-methyl-2,4,8,13-tetrazatricyclo[7.4.0.02,6]trideca-1(9),3,5,7,10,12-hexaen-7-amine 5SI4 ; 2.39 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(2-naphthalen-1-ylpyrazol-3-yl)-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SJM ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(2-phenylethyl)-5-pyridin-4-yl-1H-pyridin-2-one 5SJF ; 2.05 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(2-quinolin-4-ylpyrazol-3-yl)-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SHS ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-(naphthalen-1-ylmethyl)-7-piperidin-1-yltriazolo[4,5-d]pyrimidine 5SEM ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-methyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-2-(trifluoromethyl)imidazo[1,2-b]pyridazine 5SIB ; 2.54 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-methyl-6-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-2-(trifluoromethyl)imidazo[1,2-b]pyridazine 5SG2 ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-methylimidazo[4,5-f]quinolin-2-amine 5SG4 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-N-[2-(3-chlorophenyl)-1H-benzimidazol-5-yl]-2-methylpyrazole-3,4-dicarboxamide 5SFE ; 1.86 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-N-[2-(3-fluorophenyl)imidazo[1,2-a]pyrimidin-7-yl]-4-N,4-N,2-trimethylpyrazole-3,4-dicarboxamide 5SGM ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-N-[2-(4-fluorophenyl)imidazo[1,2-a]pyridin-7-yl]-4-N,4-N,2-trimethylpyrazole-3,4-dicarboxamide 5SJE ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(2,2-difluoro-1,3-benzodioxol-4-yl)pyrazol-3-yl]-1-(3-methylsulfonylphenyl)pyridazin-4-one 5SJO ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(2,4-difluorophenyl)pyrazol-3-yl]-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SIF ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(2,5-difluorophenyl)pyrazol-3-yl]-1-(3-methylsulfonylphenyl)pyridazin-4-one 5SKD ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(2,5-difluorophenyl)pyrazol-3-yl]-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SG7 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(2-fluorophenyl)pyrazol-3-yl]-1-[3-(trifluoromethyl)phenyl]pyridazin-4-one 5SHB ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(3-bromophenyl)pyrazol-3-yl]-1-pyridin-4-ylpyridazin-4-one 5SHZ ; 2.55 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(3-ethynylphenyl)pyrazol-3-yl]-1-phenylpyridazin-4-one 5SKH ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(3-fluorophenyl)pyrazol-3-yl]-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SIU ; 2.01 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[2-(6,8-dichloro-5-methyl-[1,2,4]triazolo[1,5-a]pyridin-2-yl)ethyl]-1H-quinoxalin-2-one 5SKU ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[4-[2-[2-(2-ethoxy-4-fluorophenyl)-5-methyl-1,3-oxazol-4-yl]ethoxy]naphthalen-1-yl]-2-methoxypropanoic acid 5SKF ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 3-[5-[1-(2,2-difluoro-1,3-benzodioxol-4-yl)-4-oxopyridazin-3-yl]pyrazol-1-yl]benzonitrile 5SJ6 ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(2-chloroquinazolin-4-yl)morpholine 5SEN ; 2.04 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(1-quinolin-2-ylimidazol-4-yl)pyrazole-3-carboxamide 5SEL ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-methyl-5-pyridin-2-ylpyrazol-3-yl)pyrazole-3-carboxamide 5SH2 ; 2.19 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-morpholin-4-yl-1,3-benzothiazol-5-yl)pyrazole-3-carboxamide 5SEH ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-morpholin-4-yl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyrazole-3-carboxamide 5SGC ; 2.09 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-morpholin-4-yl-[1,2,4]triazolo[1,5-c]pyrimidin-7-yl)pyrazole-3-carboxamide 5SES ; 2.11 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-phenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-7-yl)pyrazole-3-carboxamide 5SE7 ; 2.17 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyrazole-3-carboxamide 5SIP ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3-carboxamide 5SF0 ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-(3-pyridin-2-yl-1H-pyrazol-5-yl)pyrazole-3-carboxamide 5SGK ; 2.13 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[(7R)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-7-yl]pyrazole-3-carboxamide 5SFO ; 1.96 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]pyrazole-3-carboxamide 5SFN ; 2.02 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[2-(1-methylbenzimidazol-2-yl)ethyl]pyrazole-3-carboxamide 5SE8 ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[2-(2-methyl-5-phenyl-1,2,4-triazol-3-yl)ethyl]pyrazole-3-carboxamide 5SF8 ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[2-(5-phenyl-2-pyridin-2-yl-1,2,4-triazol-3-yl)ethyl]pyrazole-3-carboxamide 5SHJ ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-2-methyl-N-[3-(phenylcarbamoyl)phenyl]pyrazole-3-carboxamide 5SFV ; 2.41 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-N-(1-cyclopentylpyrazol-3-yl)-2-methylpyrazole-3-carboxamide 5SI6 ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-N-(6-cyano-2-phenylimidazo[1,2-a]pyridin-7-yl)-2-methylpyrazole-3-carboxamide 5SFQ ; 2.21 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-N-[1-(2,2-difluoroethyl)pyrazol-3-yl]-2-methylpyrazole-3-carboxamide 5SK6 ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(azetidine-1-carbonyl)-N-[3-(1,3-benzoxazol-2-yl)phenyl]-2-methylpyrazole-3-carboxamide 5SGD ; 2.54 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-(methoxymethyl)-2-methyl-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyrazole-3-carboxamide 5SJY ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-bromo-2,5-dimethyl-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3-carboxamide 5SJC ; 2.08 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-2,5-dimethyl-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3-carboxamide 5SJW ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-2-(2-methylpropyl)-N-(2-phenyl-1H-benzimidazol-5-yl)pyrazole-3-carboxamide 5SGY ; 2.36 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-2-(2-methylpropyl)-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3-carboxamide 5SJI ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-2-methyl-N-(2-phenyl-1H-benzimidazol-5-yl)pyrazole-3-carboxamide 5SK8 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-N-(2-phenyl-1H-benzimidazol-5-yl)-2-propylpyrazole-3-carboxamide 5SIL ; 2.5 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-chloro-N-[2-(3,5-dimethylphenyl)-1H-benzimidazol-5-yl]-2-methylpyrazole-3-carboxamide 5SK1 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N,2-dimethyl-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3,4-dicarboxamide 5SIS ; 1.85 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N,2-dimethyl-4-N-[2-(methylamino)ethyl]-3-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3,4-dicarboxamide 5SDW ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N,4-N,2-trimethyl-3-N-(2-phenyl-1H-benzimidazol-5-yl)pyrazole-3,4-dicarboxamide 5SJT ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N,4-N,2-trimethyl-3-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3,4-dicarboxamide 5SER ; 2.25 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-(2-fluoroethyl)-4-N,2-dimethyl-3-N-(2-phenyl-[1,2,4]triazolo[1,5-a]pyridin-7-yl)pyrazole-3,4-dicarboxamide 5SI9 ; 2.01 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-(2-hydroxyethyl)-2-methyl-3-N-(2-phenylimidazo[1,2-a]pyrimidin-7-yl)pyrazole-3,4-dicarboxamide 5SGP ; 1.95 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-(2-methoxyethyl)-4-N,2-dimethyl-3-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3,4-dicarboxamide 5SHO ; 1.9 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-cyclopropyl-2-methyl-3-N-(2-phenylimidazo[1,2-a]pyridin-7-yl)pyrazole-3,4-dicarboxamide 5SFR ; 2.04 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-ethyl-3-N-[2-[3-(2-fluoroethoxy)phenyl]imidazo[1,2-a]pyrimidin-7-yl]-4-N,2-dimethylpyrazole-3,4-dicarboxamide 5SJJ ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-N-ethyl-5-[3-(trifluoromethyl)phenyl]-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 5SHQ ; 2.08 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-pyrrolidin-1-yl-7H-pyrrolo[2,3-d]pyrimidine 5SGH ; 1.97 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-[1-methyl-6-[(1-methyl-4-phenylimidazol-2-yl)methoxy]pyrazolo[3,4-d]pyrimidin-4-yl]morpholine 5SH6 ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-[2-(1-methylbenzimidazol-2-yl)ethyl]-2,3-dihydro-1,4-benzoxazepin-5-one 5SED ; 2.32 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-[6-chloro-2-[(1-methyl-4-phenylimidazol-2-yl)methoxy]quinazolin-4-yl]morpholine 5SDX ; 2.19 ; Crystal Structure of human phosphodiesterase 10 in complex with 4-[6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]pyridin-2-yl]morpholine 5SEQ ; 2.18 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,6,8-trimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SEF ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,7,8-trimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine 5SJK ; 2.24 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dichloro-2,3,4,9-tetrahydropyrido[3,4-b]indol-1-one 5SFY ; 2.08 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[(E)-2-[2-methyl-5-(1H-pyrazol-4-yl)-1,2,4-triazol-3-yl]ethenyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SIJ ; 2.55 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SFT ; 2.32 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-(1-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SFD ; 2.05 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-(2-methyl-5-piperidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SG6 ; 1.96 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SFI ; 2.01 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-[2-methyl-5-(2-methylpyrrolidin-1-yl)-1,2,4-triazol-3-yl]ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SGX ; 1.93 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-[2-methyl-5-[(2R)-2-(trifluoromethyl)pyrrolidin-1-yl]-1,2,4-triazol-3-yl]ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine 5SFS ; 2.24 ; Crystal Structure of human phosphodiesterase 10 in complex with 5,8-dimethyl-2-[2-[2-methyl-5-[(3S)-3-methylpyrrolidin-1-yl]-1,2,4-triazol-3-yl]ethyl]-[1,2,4]triazolo[1,5-a]pyrazine 5SGB ; 2.39 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-(4-chloronaphthalen-1-yl)oxythiadiazole 5SIK ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-(cyclopentylmethoxy)pyrimidin-2-amine 5SG8 ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-butoxy-4-ethoxypyrimidin-2-amine 5SID ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-chloro-2-[2-(6,8-dichloro-5-methyl-[1,2,4]triazolo[1,5-a]pyridin-2-yl)ethyl]-1,3-benzothiazole 5SIE ; 2.12 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-chloro-8-hydroxy-2-methyl-1,4-dihydropyrrolo[3,4-b]indol-3-one 5SE4 ; 2.5 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-cyclopropyl-7-methyl-2-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyrimidine 5SFW ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-ethyl-8-methyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine 5SH1 ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-methyl-2-phenyl-4-(2-quinolin-8-yloxyethyl)-1,3-oxazole 5SDU ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-methyl-4-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-2-phenyl-1,3-oxazole 5SIX ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-[(3R)-3-fluoropyrrolidin-1-yl]-2-(3-methylquinoxalin-2-yl)-N-(oxan-4-yl)pyrazolo[1,5-a]pyrimidin-7-amine 5SIY ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-[(3R)-3-fluoropyrrolidin-1-yl]-N-methyl-2-(3-methylquinoxalin-2-yl)-N-(oxan-4-yl)pyrazolo[1,5-a]pyrimidin-7-amine 5SJV ; 1.94 ; Crystal Structure of human phosphodiesterase 10 in complex with 5-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]quinoxaline 5SF6 ; 2.03 ; Crystal Structure of human phosphodiesterase 10 in complex with 6,7-dimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-N-propan-2-ylimidazo[2,1-f][1,2,4]triazin-4-amine 5SJN ; 2.05 ; Crystal Structure of human phosphodiesterase 10 in complex with 6,8-dichloro-2-[2-(6,7-dimethyl-1H-benzimidazol-2-yl)ethyl]-5-methyl-[1,2,4]triazolo[1,5-a]pyridine 5SGI ; 1.97 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-(3-methylphenoxy)-2-(4-pyridin-2-ylpiperazin-1-yl)-9H-purine 5SIH ; 1.9 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-(3-methylphenyl)sulfanyl-2-(4-pyridin-2-ylpiperazin-1-yl)-9H-purine 5SHL ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloro-2,3-dimethyl-8-pyrrolidin-1-ylimidazo[1,2-b]pyridazine 5SJQ ; 2.12 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloro-2,3-dimethylquinoxaline 5SEI ; 2.37 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloro-2-[(E)-2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethenyl]-[1,2,4]triazolo[1,5-a]pyridine 5SEJ ; 2.44 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloro-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-a]pyridine 5SKM ; 1.91 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloro-N,N-dimethyl-2-[2-(1-pyridin-2-ylpyrrolidin-3-yl)ethyl]quinazolin-4-amine 5SJ5 ; 2.49 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-chloroquinoxalin-2-amine 5SFK ; 2.33 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-3-(pyrimidin-5-ylamino)-N-[1-(2,2,2-trifluoroethyl)pyrazol-3-yl]pyridine-2-carboxamide 5SFU ; 2.4 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-3-(pyrimidin-5-ylamino)-N-[4-(pyrrolidine-1-carbonyl)pyridin-3-yl]pyridine-2-carboxamide 5SGQ ; 2.04 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-3-(pyrimidin-5-ylamino)pyrazine-2-carboxylic acid 5SIZ ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-3-methoxy-N-[2-(3-pyridin-3-yl-1H-1,2,4-triazol-5-yl)ethyl]pyrazine-2-carboxamide 5SFA ; 2.32 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-3-[(1-methyl-4-phenylimidazol-2-yl)methoxy]-N-(oxolan-3-yl)pyrazine-2-carboxamide 5SI2 ; 2.4 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-(1-pyridin-2-ylpyrrolidin-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SET ; 2.4 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-(2-methyl-5-pyridin-2-ylpyrazol-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SEA ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-(2-phenylpyrazol-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SEE ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-(2-pyridin-2-ylpyrazol-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SF2 ; 2.02 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-(3-oxo-1,2-dihydroisoindol-5-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SEW ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[1-(2-methoxyethyl)-5-(methylcarbamoyl)pyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SE5 ; 2.08 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[1-methyl-5-(methylcarbamoyl)pyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyrazine-2-carboxamide 5SE0 ; 2.01 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[2-(2-hydroxyethyl)-5-pyridin-2-ylpyrazol-3-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SF4 ; 2.25 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[2-[2-(dimethylamino)ethyl]-5-pyridin-2-ylpyrazol-3-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SKJ ; 2.74 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[2-[2-(methylamino)-2-oxoethyl]phenyl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SE1 ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[3-(dimethylcarbamoyl)-1-methylpyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SKV ; 2.6 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[3-[(2-hydroxy-2-methylpropyl)carbamoyl]-1-methylpyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SDZ ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[3-[2,3-dihydroxypropyl(methyl)carbamoyl]-1-methylpyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SJS ; 2.7 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[4-(dimethylcarbamoyl)pyridin-3-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SHD ; 2.6 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[4-(methylcarbamoyl)pyridin-3-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SJU ; 1.97 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[4-(piperidin-1-ylmethyl)-1,3-thiazol-2-yl]-3-(pyrimidin-5-ylamino)pyrazine-2-carboxamide 5SJL ; 2.64 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[4-[(2-hydroxy-2-methylpropyl)carbamoyl]pyridin-3-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SDY ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[5-(dimethylcarbamoyl)-1-(2-methoxyethyl)pyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SFL ; 2.13 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-cyclopropyl-N-[5-[(2-hydroxy-2-methylpropyl)carbamoyl]-1-methylpyrazol-4-yl]-3-(pyrimidin-5-ylamino)pyrazine-2-carboxamide 5SK4 ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-methyl-3-(2-phenylpyrazol-3-yl)-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5SKC ; 2.6 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-methyl-N-(1-propan-2-ylpyrazol-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SIT ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-methyl-N-(4-methylphenyl)pyrimidin-4-amine 5SH8 ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-methyl-N-(5-methyl-2-phenylpyrazol-3-yl)-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SGJ ; 2.66 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-[(3,6-dimethylpyridine-2-carbonyl)amino]-N-methyl-2-phenyl-3H-benzimidazole-5-carboxamide 5SEG ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-[(5-bromo-1-methyl-2-oxopyridine-3-carbonyl)amino]-N-(oxetan-3-yl)-2-phenyl-3H-benzimidazole-5-carboxamide 5SH7 ; 2.66 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-[(5-cyclopropyl-2-oxo-1H-pyridine-3-carbonyl)amino]-N-(oxetan-3-yl)-2-phenyl-3H-benzimidazole-5-carboxamide 5SH4 ; 2.22 ; Crystal Structure of human phosphodiesterase 10 in complex with 6-[(5-methoxy-3,4,6-trimethylpyridin-2-yl)methylsulfanyl]-5H-[1,3]dioxolo[4,5-f]benzimidazole 5SGE ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with 6H-imidazo[1,2-c]quinazolin-5-one 5SKT ; 2.02 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-(cyclopropylmethoxy)-2-methyl-4-pyrrolidin-1-ylquinazoline:hydrochloride 5SK7 ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-bromo-N,N-dimethyl-[1,2,4]triazolo[1,5-a]pyridin-2-amine 5SI0 ; 2.27 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-methyl-2,5-bis[2-(1-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine 5SJ1 ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-[(3,5-dimethyl-4-propan-2-yloxypyridin-2-yl)methylsulfinyl]-6H-imidazo[4,5-g][1,3]benzothiazole 5SKA ; 2.21 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-[(4-ethoxy-5-methylpyridin-2-yl)methylsulfanyl]-6H-imidazo[4,5-g][1,3]benzothiazole 5SHH ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfanyl]-6H-imidazo[4,5-g][1,3]benzothiazole 5SJ7 ; 2.14 ; Crystal Structure of human phosphodiesterase 10 in complex with 7-[(5-methyl-4-propan-2-yloxypyridin-2-yl)methylsulfanyl]-6H-imidazo[4,5-g][1,3]benzothiazole 5SHT ; 2.27 ; Crystal Structure of human phosphodiesterase 10 in complex with 8-chloro-5,7-dimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine 5SKB ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with 9-methoxy-3,5-dihydropyrimido[5,4-b]indol-4-one 5SGF ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with ethyl 1-methyl-5-(propylcarbamoyl)pyrazole-4-carboxylate 5SKS ; 2.31 ; Crystal Structure of human phosphodiesterase 10 in complex with ethyl 1-[3-[3-(4-ethoxycarbonyl-5-methyl-imidazol-1-yl)phenoxy]phenyl]-5-methyl-imidazole-4-carboxylate 5SJP ; 2.25 ; Crystal Structure of human phosphodiesterase 10 in complex with ethyl N-[[4-[[4-(azetidine-1-carbonyl)-2-methylpyrazole-3-carbonyl]amino]-6-methylpyridin-2-yl]carbamothioyl]carbamate 5SFB ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with N,2,3-trimethyl-6-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]imidazo[1,2-b]pyridazine-8-carboxamide 5SH0 ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(1,3-dimethyl-2-oxobenzimidazol-5-yl)-2-[methylsulfonyl(naphthalen-1-yl)amino]acetamide 5SI5 ; 2.27 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(12-methoxy-5-methyl-3-propyl-2,4,8,13-tetrazatricyclo[7.4.0.02,6]trideca-1(13),3,5,7,9,11-hexaen-7-yl)methanesulfonamide 5SFX ; 2.04 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(2-acetamido-1,3-benzothiazol-5-yl)-4-(azetidine-1-carbonyl)-2-methylpyrazole-3-carboxamide 5SFP ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(2-chloropyridin-4-yl)-2-phenylpyrazolo[1,5-a]pyridine-6-carboxamide 5SJA ; 2.13 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(2-tert-butyl-5-methylpyrazol-3-yl)-1-phenyl-3-(pyridin-2-yloxymethyl)thieno[2,3-c]pyrazole-5-carboxamide 5SKO ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(3-imidazo[1,2-a]pyridin-2-ylphenyl)-1-methyl-3-(pyrimidin-5-ylamino)pyrazole-4-carboxamide 5SIN ; 2.4 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(3-methyl-1-pyridin-2-ylthieno[2,3-c]pyrazol-5-yl)benzamide 5SI8 ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(6-cyano-2-phenylimidazo[1,2-a]pyridin-7-yl)-1-methyl-4-(morpholine-4-carbonyl)pyrazole-3-carboxamide 5SKL ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(6-cyano-2-phenylimidazo[1,2-a]pyridin-7-yl)-2-methyl-4-(morpholine-4-carbonyl)pyrazole-3-carboxamide 5SHK ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(6-methylpyridin-2-yl)-5-pyridin-3-yl-1,7-naphthyridin-8-amine 5SIV ; 2.2 ; Crystal Structure of human phosphodiesterase 10 in complex with N-(thiophen-2-ylmethyl)quinoxaline-6-carboxamide 5SJ0 ; 2.35 ; Crystal Structure of human phosphodiesterase 10 in complex with N-cyclohexyl-N-methyl-9H-purin-6-amine 5SFH ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with N-cyclopropyl-5-[2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)ethyl]-N,1-dimethyl-1,2,4-triazol-3-amine 5SKQ ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with N-ethyl-6-(4-fluorophenyl)sulfanyl-N-methyl-9H-purin-2-amine 5SEX ; 1.99 ; Crystal Structure of human phosphodiesterase 10 in complex with N-methyl-6-[(6-methylpyridine-2-carbonyl)amino]-2-phenyl-3H-benzimidazole-5-carboxamide 5SK0 ; 2.02 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(3R)-1-(5-chloropyridin-2-yl)pyrrolidin-3-yl]-1-methyl-4-pyridin-4-ylpyrazole-3-carboxamide 5SFG ; 2.31 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(3R)-1-(5-chloropyridin-2-yl)pyrrolidin-3-yl]-6-cyclopropyl-3-(pyrimidin-5-ylamino)pyridine-2-carboxamide 5SHM ; 2.26 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(3R)-1-(5-chloropyridin-2-yl)pyrrolidin-3-yl]-6-cyclopropyl-3-methoxypyrazine-2-carboxamide 5SKI ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)methyl]-2-methyl-5-phenyl-1,2,4-triazol-3-amine 5SHR ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)methyl]-N,2-dimethyl-5-phenyl-1,2,4-triazol-3-amine 5SG3 ; 1.98 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(E)-(4-bromo-3,5-dimethoxyphenyl)methylideneamino]-2-ethoxy-2-(4-morpholin-4-ylphenyl)acetamide 5SGL ; 2.28 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[(E)-(4-bromo-3,5-dimethoxyphenyl)methylideneamino]-2-ethoxy-2-(4-pyrazol-1-ylphenyl)acetamide 5SKK ; 2.15 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[1-methyl-5-(methylcarbamoyl)pyrazol-4-yl]-6-[(3S)-oxolan-3-yl]-3-(pyrimidin-5-ylamino)pyrazine-2-carboxamide 5SJ9 ; 2.39 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]-3-propan-2-yl-[1,2,4]triazolo[4,3-a]pyridine-8-carboxamide 5SKN ; 1.9 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[3-[3-[2-(2-fluorophenyl)pyrazol-3-yl]-4-oxopyridazin-1-yl]phenyl]acetamide 5SGO ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with N-[3-[3-[5-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4-yl]oxypropoxy]phenyl]acetamide 5SJ3 ; 2.1 ; Crystal Structure of human phosphodiesterase 10 in complex with [1-(4-chlorophenyl)-3-methylthieno[2,3-c]pyrazol-5-yl]-piperidin-1-ylmethanone 5SK3 ; 2.32 ; Crystal Structure of human phosphodiesterase 10 in complex with [2-cyclopropyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethyl]imidazo[1,2-b]pyridazin-3-yl]methanol 5SEY ; 2.29 ; Crystal Structure of human phosphodiesterase 10 in complex with [2-cyclopropyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethynyl]imidazo[1,2-b]pyridazin-3-yl]methanol 5SFF ; 2.16 ; Crystal Structure of human phosphodiesterase 10 in complex with [2-methyl-6-[2-(1-methyl-4-phenylimidazol-2-yl)ethynyl]imidazo[1,2-b]pyridazin-3-yl]methanol 5SKP ; 2.0 ; Crystal Structure of human phosphodiesterase 10 in complex with [4-(2-methoxyphenyl)piperazin-1-yl]-(3-methyl-1-phenylthieno[2,3-c]pyrazol-5-yl)methanone 5SHY ; 2.3 ; Crystal Structure of human phosphodiesterase 10 in complex with [8-[(2-methyl-1,3-thiazol-4-yl)amino]-5-pyridin-3-yl-1,7-naphthyridin-2-yl]methanol 4ZKF ; 1.82 ; Crystal structure of human phosphodiesterase 12 5TZW ; 1.59 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX WITH 1-[(3,4-difluorophenyl)carbonyl]-3,3-difluoro-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 5TZZ ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX WITH 1-[(3-bromo-4-fluorophenyl)carbonyl]-3,3-difluoro-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 5TZX ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX WITH 1-[(3-chloro-4-fluorophenyl)carbonyl]-3,3-difluoro-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 5U00 ; 1.41 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX WITH 3,3-difluoro-1-[(4-fluoro-3-iodophenyl)carbonyl]-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 5TZH ; 1.6 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX WITH 3,3-difluoro-1-[(4-fluorophenyl)carbonyl]-5-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}piperidine 5XKM ; 2.16 ; Crystal structure of human phosphodiesterase 2A in complex with 6-methyl-N-(1-(4-(trifluoromethoxy)phenyl)propyl)pyrazolo[1,5-a]pyrimidine-3-carboxamide 5TZ3 ; 1.72 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A IN COMPLEX with [1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(naphthalene-2-yl)piperidine-3-carboxamide 6C7F ; 1.82 ; Crystal structure of human phosphodiesterase 2A with 1-(2-chloro-5-isobutoxy-phenyl)-N,4-dimethyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 6C7I ; 1.713 ; Crystal structure of human phosphodiesterase 2A with 1-(2-chloro-5-methoxy-phenyl)-N-isobutyl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 6C7E ; 1.43 ; Crystal structure of human phosphodiesterase 2A with 1-(2-chlorophenyl)-N,4-dimethyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 6C7J ; 1.85 ; Crystal structure of human phosphodiesterase 2A with 1-(5-tert-butoxy-2-chloro-phenyl)-N-isobutyl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 5TZA ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 2A WITH 3-{5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-1-[(naphthalene-2-yl)carbonyl]piperidine 6C7G ; 1.68 ; Crystal structure of human phosphodiesterase 2A with N-(1-adamantyl)-1-(2-chloro-5-isobutoxy-phenyl)-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 6C7D ; 1.79 ; Crystal structure of human phosphodiesterase 2A with N-(1-adamantyl)-1-(2-chlorophenyl)-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline-8-carboxamide 4KP6 ; 1.5 ; Crystal structure of human phosphodiesterase 4B (PDE4B) in complex with a [1,3,5]triazine derivative 5LAQ ; 2.4 ; Crystal structure of human phosphodiesterase 4B catalytic domain with inhibitor NPD-001 3G45 ; 2.63 ; Crystal structure of human phosphodiesterase 4b with regulatory domain and d155988 3IAK ; 2.8 ; Crystal structure of human phosphodiesterase 4d (PDE4d) with papaverine. 5TKB ; 2.16 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHODIESTERASE 4D IN COMPLEX WITH A TETRAFLUORANLINE COMPOUND 3IAD ; 2.65 ; Crystal structure of human phosphodiesterase 4D with bound allosteric modulator 3G4I ; 1.9 ; Crystal structure of human phosphodiesterase 4d with d155871 3G58 ; 2.05 ; Crystal structure of human phosphodiesterase 4d with d155988/pmnpq 3G4G ; 2.3 ; Crystal structure of human phosphodiesterase 4d with regulatory domain and d155871 3G4L ; 2.5 ; Crystal structure of human phosphodiesterase 4d with roflumilast 3G4K ; 1.95 ; Crystal structure of human phosphodiesterase 4d with rolipram 5LBO ; 2.25 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-001 6FW3 ; 1.78 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-007 6FTW ; 2.16 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-048 6RCW ; 2.08 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-053 6FEB ; 1.93 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-1086 6HWO ; 1.99 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-1335 7ABJ ; 2.11 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-1361 6FET ; 1.88 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-1439 6FDI ; 1.9 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-226 6FTA ; 2.34 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-3098 6FE7 ; 2.0 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-356 6IBF ; 2.31 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-417 6FT0 ; 2.1 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-425 7AAG ; 1.79 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-617 7A9V ; 2.17 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-635 6IAG ; 2.0 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-637 7A8Q ; 2.24 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-654 7AB9 ; 2.19 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-656 7ABD ; 2.41 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-768 7ABE ; 1.83 ; Crystal structure of human phosphodiesterase 4D2 catalytic domain with inhibitor NPD-769 1UDT ; 2.3 ; Crystal structure of Human Phosphodiesterase 5 complexed with Sildenafil(Viagra) 1UDU ; 2.83 ; Crystal structure of Human Phosphodiesterase 5 complexed with tadalafil(Cialis) 1UHO ; 2.5 ; Crystal structure of Human Phosphodiesterase 5 complexed with Vardenafil(Levitra) 4XYK ; 3.4 ; Crystal structure of human phosphofructokinase-1 in complex with ADP, Northeast Structural Genomics Consortium Target HR9275 4XYJ ; 3.1 ; Crystal structure of human phosphofructokinase-1 in complex with ATP and Mg, Northeast Structural Genomics Consortium Target HR9275 6XUH ; 2.38 ; Crystal structure of human phosphoglucose isomerase in complex with inhibitor 6XUI ; 1.95 ; Crystal structure of human phosphoglucose isomerase in complex with inhibitor 1IAT ; 1.62 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHOGLUCOSE ISOMERASE/NEUROLEUKIN/AUTOCRINE MOTILITY FACTOR/MATURATION FACTOR 3C39 ; 1.85 ; Crystal Structure of human phosphoglycerate kinase bound to 3-phosphoglycerate 3C3A ; 2.3 ; Crystal Structure of human phosphoglycerate kinase bound to 3-phosphoglycerate and L-ADP 3C3C ; 2.4 ; Crystal Structure of human phosphoglycerate kinase bound to 3-phosphoglycerate and L-CDP 2ZGV ; 2.0 ; Crystal Structure of human phosphoglycerate kinase bound to D-ADP 3C3B ; 1.8 ; Crystal Structure of human phosphoglycerate kinase bound to D-CDP 3O0T ; 1.9 ; Crystal structure of human phosphoglycerate mutase family member 5 (PGAM5) in complex with phosphate 5MUF ; 3.1 ; Crystal structure of human phosphoglycerate mutase family member 5 (PGAM5) in its enzymatically active dodecameric form induced by the presence of the N-terminal WDPNWD motif 2HW4 ; 1.9 ; Crystal structure of human phosphohistidine phosphatase 2NMM ; 2.7 ; Crystal structure of human phosphohistidine phosphatase. Northeast Structural Genomics Consortium target HR1409 2PE2 ; 2.13 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) 3-{5-[2-Oxo-5-ureido-1,2-dihydro-indol-(3Z)-ylidenemethyl]-1H-pyrrol-3-yl}-N-(2-piperidin-1-yl-ethyl)-benzamide COMPLEX 2PE0 ; 2.35 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) 5-Hydroxy-3-[1-(1H-pyrrol-2-yl)-eth-(Z)-ylidene]-1,3-dihydro-indol-2-one COMPLEX 2PE1 ; 2.14 ; CRYSTAL STRUCTURE OF HUMAN PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) {2-Oxo-3-[1-(1H-pyrrol-2-yl)-eth-(Z)-ylidene]-2,3-dihydro-1H-indol-5-yl}-urea {BX-517} COMPLEX 2X4D ; 1.92 ; Crystal structure of human phospholysine phosphohistidine inorganic pyrophosphate phosphatase LHPP 1QZU ; 2.91 ; crystal structure of human phosphopantothenoylcysteine decarboxylase 2H06 ; 2.2 ; Crystal structure of human phosphoribosyl pyrophosphate synthetase 1 3EFH ; 2.6 ; Crystal structure of human phosphoribosyl pyrophosphate synthetase 1 2HCR ; 2.2 ; crystal structure of human phosphoribosyl pyrophosphate synthetase 1 in complex with AMP(ATP), cadmium and sulfate ion 2H07 ; 2.2 ; crystal structure of human phosphoribosyl pyrophosphate synthetase 1 mutant S132A 2H08 ; 2.5 ; crystal structure of human phosphoribosyl pyrophosphate synthetase 1 mutant Y146M 2C4K ; 2.65 ; Crystal structure of human phosphoribosylpyrophosphate synthetase- associated protein 39 (PAP39) 4YZ9 ; 2.463 ; Crystal Structure of human phosphorylated IRE1alpha in complex with a type III kinase inhibitor (GSK2850163A) 4YZD ; 3.102 ; Crystal Structure of human phosphorylated IRE1alpha in complex with ADP-Mg 7JFL ; 1.68 ; Crystal structure of human phosphorylated IRF-3 bound to CBP 1NNL ; 1.53 ; Crystal structure of Human Phosphoserine Phosphatase 2OPW ; 1.9 ; Crystal structure of human phytanoyl-CoA dioxygenase PHYHD1 (apo) 3OBZ ; 2.15 ; Crystal structure of human phytanoyl-COA dioxygenase phyhd1 2-oxoglutarate and iron complex 4WWN ; 2.7 ; Crystal structure of human PI3K-gamma in complex with (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine AMG319 inhibitor 4DK5 ; 2.95 ; Crystal structure of human PI3K-gamma in complex with a pyridyl-triazine inhibitor 4F1S ; 3.0 ; Crystal structure of human PI3K-gamma in complex with a pyridyl-triazine-sulfonamide inhibitor 4FLH ; 2.6 ; Crystal structure of human PI3K-gamma in complex with AMG511 5EDS ; 2.8 ; Crystal structure of human PI3K-gamma in complex with benzimidazole inhibitor 5 3APF ; 2.82 ; Crystal structure of human PI3K-gamma in complex with CH5039699 3APD ; 2.55 ; Crystal structure of human PI3K-gamma in complex with CH5108134 3APC ; 2.544 ; Crystal structure of human PI3K-gamma in complex with CH5132799 6XRN ; 2.96 ; Crystal structure of human PI3K-gamma in complex with Compound 17 6XRM ; 2.88 ; Crystal structure of human PI3K-gamma in complex with Compound 4 6XRL ; 2.99 ; Crystal structure of human PI3K-gamma in complex with inhibitor IPI-549 4WWO ; 2.3 ; Crystal structure of human PI3K-gamma in complex with phenylquinoline inhibitor N-{(1S)-1-[8-chloro-2-(3-fluorophenyl)quinolin-3-yl]ethyl}-9H-purin-6-amine 4WWP ; 2.4 ; Crystal structure of human PI3K-gamma in complex with pyridinylquinoline inhibitor N-{(1S)-1-[8-chloro-2-(2-methylpyridin-3-yl)quinolin-3-yl]ethyl}-9H-purin-6-amine 5KAE ; 2.65 ; Crystal structure of human PI3K-gamma in complex with quinoline-containing inhibitor 5g 7MLK ; 2.91 ; Crystal structure of human PI3Ka (p110a subunit) with MMV085400 bound to the active site determined at 2.9 angstroms resolution 2A4Z ; 2.9 ; Crystal Structure of human PI3Kgamma complexed with AS604850 2A5U ; 2.7 ; Crystal Structure of human PI3Kgamma complexed with AS605240 6HPU ; 3.96 ; Crystal structure of human Pif1 helicase in complex with ADP-AlF4 6HPH ; 1.13 ; Crystal structure of human Pif1 helicase in complex with AMP-PNP 6HPQ ; 1.43 ; Crystal structure of human Pif1 helicase in complex with AMP-PNP, brominated crystal form. 6HPT ; 1.44 ; Crystal structure of human Pif1 helicase, apoform. 3LS8 ; 2.25 ; Crystal structure of human PIK3C3 in complex with 3-[4-(4-Morpholinyl)thieno[3,2-d]pyrimidin-2-yl]-phenol 3F2A ; 1.9 ; Crystal structure of human Pim-1 in complex with DAPPA 5N52 ; 2.252 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule (E)-3-(2,3-dimethoxyphenyl)acrylic acid 5NDT ; 1.985 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule (E)-3-(2-(thiophen-2-yl)vinyl)-3,4-dihydroquinoxalin-2(1H)-one 5N4Z ; 2.257 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule (E)-4-(4-hydroxyphenyl)but-3-en-2-one 5N4Y ; 2.56 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule 2,5-dihydro-1H-isothiochromeno[3,4-d]pyrazol-3-one 5N50 ; 1.92 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule 2-(4-chlorophenyl)sulfanylacetohydrazide 5N4R ; 2.13 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule 2-(azepan-1-yl)-1-(1H-indol-3-yl)propan-1-one 5N51 ; 2.118 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule 3,4-Dibromothiophene-2-carboxylic acid 5N4N ; 2.09 ; Crystal structure of human Pim-1 kinase in complex with a consensus peptide and fragment like molecule 3,4-dimethyl-5-(1H-1,2,4-triazol-3-yl)thiophene-2-carbonitrile 5N5M ; 2.21 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and (R)-3-(2-((isoquinolin-5-ylmethyl)(methyl)carbamoyl)phenyl)pyrrolidin-1-ium 5N4O ; 2.22 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and fragment like molekule (E)-3-(p-tolyl)acrylic acid 5N4V ; 1.85 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and fragment like molekule 2-cyclopropyl-4,5-dimethylthieno[5,4-d]pyrimidine-6-carboxylic acid 5N4X ; 2.2 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and fragment like molekule 4,5-dibromothiophene-2-carbohydrazide 5N4U ; 2.202 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and fragment like molekule 5-(2-amino-1,3-thiazol-4-yl)-1,3-dihydrobenzimidazol-2-one 5MZL ; 1.955 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and fragment like molekule N-quinolin-5-ylpyridine-3-carboxamide 5N5L ; 1.97 ; Crystal structure of human Pim-1 kinase in complex with a consensuspeptide and [2-oxo-2-(1H-pyrrol-2-yl)ethyl] 5-bromo-1H-indole-3-carboxylate 5EOL ; 2.2 ; Crystal structure of human Pim-1 kinase in complex with a macrocyclic quinoxaline-pyrrolodihydropiperidinone inhibitor 6MT0 ; 2.2 ; Crystal structure of human Pim-1 kinase in complex with a quinazolinone-pyrrolodihydropyrrolone inhibitor 5IPJ ; 2.1 ; Crystal structure of human Pim-1 kinase in complex with a quinazolinone-pyrrolopyrrolone inhibitor. 4WT6 ; 2.3 ; Crystal structure of human Pim-1 kinase in complex with a thiadiazolamine-indole inhibitor. 4WSY ; 2.3 ; Crystal structure of human Pim-1 kinase in complex with a thiazolamine-indazole inhibitor. 4TY1 ; 2.7 ; Crystal structure of human Pim-1 kinase in complex with an aminooxadiazole-indole inhibitor. 4WRS ; 2.2 ; Crystal structure of human Pim-1 kinase in complex with an azaspiro pyrazinyl-indazole inhibitor. 5KZI ; 2.1 ; Crystal structure of human Pim-1 kinase in complex with an imidazopyridazine inhibitor. 2OBJ ; 2.5 ; Crystal structure of human PIM-1 Kinase in complex with inhibitor 2OI4 ; 2.2 ; Crystal structure of human PIM1 in complex with fluorinated ruthenium pyridocarbazole 2C3I ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN PIM1 IN COMPLEX WITH IMIDAZOPYRIDAZIN I 3DCV ; 2.7 ; Crystal structure of human Pim1 kinase complexed with 4-(4-hydroxy-3-methyl-phenyl)-6-phenylpyrimidin-2(1H)-one 7EKV ; 1.95 ; Crystal Structure of human Pin1 complexed with a covalent inhibitor 7F0M ; 1.9 ; Crystal Structure of human Pin1 complexed with a potent covalent inhibitor 7EFX ; 2.41 ; Crystal Structure of human PIN1 complexed with covalent inhibitor 5JCT ; 1.73 ; Crystal Structure of Human Pirin in complex with a Chemical Probe pyrrolidine 24 6H1I ; 1.69 ; Crystal structure of human Pirin in complex with bisamide compound 2 6H1H ; 1.54 ; Crystal structure of human Pirin in complex with compound 7 (PLX4720) 3ACL ; 2.35 ; Crystal Structure of Human Pirin in complex with Triphenyl Compound 1J1L ; 2.1 ; Crystal structure of human Pirin: a Bcl-3 and Nuclear factor I interacting protein and a cupin superfamily member 3N94 ; 1.8 ; Crystal structure of human pituitary adenylate cyclase 1 Receptor-short N-terminal extracellular domain 6V74 ; 2.32 ; Crystal Structure of Human PKM2 in Complex with L-asparagine 6V75 ; 2.85 ; Crystal Structure of Human PKM2 in Complex with L-aspartate 6NU1 ; 2.25 ; Crystal Structure of Human PKM2 in Complex with L-cysteine 6V76 ; 2.75 ; Crystal Structure of Human PKM2 in Complex with L-valine 3KEU ; 2.1 ; Crystal Structure of Human PL Kinase with bound PLP and ATP 4EOH ; 2.1 ; Crystal Structure of Human PL Kinase with bound Theophylline 3S7S ; 3.21 ; Crystal structure of human placental aromatase complexed with breast cancer drug exemestane 3EQM ; 2.9 ; Crystal structure of human placental aromatase cytochrome P450 in complex with androstenedione 1U8F ; 1.75 ; Crystal Structure Of Human Placental Glyceraldehyde-3-Phosphate Dehydrogenase At 1.75 Resolution 1Z7C ; 2.0 ; Crystal Structure of Human Placental Lactogen 3D59 ; 1.5 ; Crystal structure of human plasma platelet activating factor acetylhydrolase 3F9C ; 2.3 ; Crystal structure of human plasma platelet activating factor acetylhydrolase covalently inhibited by diisopropylfluorophosphate 3D5E ; 2.1 ; Crystal structure of human plasma platelet activating factor acetylhydrolase covalently inhibited by paraoxon 3F96 ; 2.1 ; Crystal structure of human plasma platelet activating factor acetylhydrolase covalently inhibited by sarin 3F97 ; 1.7 ; Crystal structure of human plasma platelet activating factor acetylhydrolase covalently inhibited by soman 3F98 ; 1.7 ; Crystal structure of human plasma platelet activating factor acetylhydrolase covalently inhibited by tabun 1DDJ ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN PLASMINOGEN CATALYTIC DOMAIN 2GI7 ; 2.4 ; Crystal structure of human platelet Glycoprotein VI (GPVI) 7NMU ; 2.5 ; Crystal structure of human platelet glycoprotein VI in complex with an inhibitory nanobody. 7TFF ; 3.6 ; Crystal structure of human platelet phosphofructokinase-1 mutant- D564N 7MT1 ; 1.3 ; Crystal structure of Human Platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B1) 1PDG ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN PLATELET-DERIVED GROWTH FACTOR BB 8V08 ; 3.0 ; Crystal structure of human PLD4 co-crystallized with 5'Pi-ssDNA 8B3K ; 2.685 ; Crystal structure of human Plexin-B1 (20-535) in the unbound state 6GY2 ; 3.11 ; Crystal structure of human Plk1-PBD in complex with WSSSLATPPTLSSpTVLI phosphopeptide from BRCA2 4N7V ; 2.758 ; Crystal structure of human Plk4 cryptic polo box (CPB) in complex with a Cep152 N-terminal fragment 4N7Z ; 2.85 ; Crystal structure of human Plk4 cryptic polo box (CPB) in complex with a Cep192 N-terminal fragment 4YYP ; 2.6 ; Crystal structure of human PLK4-PB3 in complex with STIL-CC 5A3T ; 1.9 ; Crystal structure of human PLU-1 (JARID1B) in complex with KDM5-C49 (2-(((2-((2-(dimethylamino)ethyl)(ethyl)amino)-2-oxoethyl)amino)methyl) isonicotinic acid). 5A3N ; 2.0 ; Crystal structure of human PLU-1 (JARID1B) in complex with KDOAM25a 5A3W ; 2.0 ; Crystal structure of human PLU-1 (JARID1B) in complex with Pyridine-2, 6-dicarboxylic Acid (PDCA) 1HNN ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN PNMT COMPLEXED WITH SK&F 29661 AND ADOHCY(SAH) 4DM3 ; 2.4001 ; Crystal structure of human PNMT in complex adohcy, resorcinol and imidazole 1M73 ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN PNP AT 2.3A RESOLUTION 3D1V ; 2.7 ; Crystal structure of human PNP complexed with 2-mercapto(3H) quinazolinone 1V45 ; 2.86 ; Crystal Structure of human PNP complexed with 3-deoxyguanosine 1V41 ; 2.85 ; Crystal structure of human PNP complexed with 8-Azaguanine 1PWY ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN PNP COMPLEXED WITH ACYCLOVIR 1V2H ; 2.7 ; Crystal structure of human PNP complexed with guanine 1PF7 ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN PNP COMPLEXED WITH IMMUCILLIN H 1YRY ; 2.8 ; Crystal structure of human PNP complexed with MESG 3U1K ; 2.13 ; Crystal structure of human PNPase 4AP5 ; 3.003 ; Crystal structure of human POFUT2 4AP6 ; 3.401 ; Crystal structure of human POFUT2 E54A mutant in complex with GDP- fucose 4Y97 ; 2.51 ; Crystal Structure of human Pol alpha B-subunit in complex with C-terminal domain of catalytic subunit 4LT6 ; 2.79 ; Crystal Structure of human poly(A) polymerase gamma 4PY4 ; 2.76 ; Crystal structure of human poly(ADP-ribose) polymerase 14, catalytic domain in complex with an inhibitor XL2 3GOY ; 2.8 ; Crystal structure of human poly(adp-ribose) polymerase 14, catalytic fragment in complex with an inhibitor 3-aminobenzamide 3BLJ ; 2.2 ; Crystal structure of human poly(ADP-ribose) polymerase 15, catalytic fragment 3GEY ; 2.2 ; Crystal structure of human poly(ADP-ribose) polymerase 15, catalytic fragment in complex with an inhibitor Pj34 1UK1 ; 3.0 ; Crystal structure of human poly(ADP-ribose) polymerase complexed with a potent inhibitor 3L9Q ; 1.698 ; Crystal structure of human polymerase alpha-primase p58 iron-sulfur cluster domain 6W5X ; 2.59 ; Crystal structure of human polymerase eta complexed with N7-benzylguanine and dCTP* 7LCD ; 1.98 ; Crystal structure of human polymerase eta complexed with syn N7-acetophenoneguanine 7L69 ; 1.91 ; Crystal structure of human polymerase eta complexed with syn N7-benzylguanine 6WK6 ; 2.35 ; Crystal structure of human polymerase eta complexed with Xanthine containing DNA 4O3R ; 1.62 ; Crystal structure of human polymerase eta extending an 8-oxog dna lesion: post insertion of 8-oxog-da pair 4O3S ; 1.717 ; Crystal structure of human polymerase eta extending an 8-oxog dna lesion: post insertion of 8-oxog-dc pair 4RNO ; 2.82 ; Crystal structure of human polymerase eta extending an abasic site-dA pair by inserting dCTP opposite template G 4RNM ; 2.144 ; Crystal structure of human polymerase eta inserting dAMPnPP opposite DNA template containing an abasic site 4O3O ; 1.698 ; Crystal structure of human polymerase eta inserting datp opposite an 8-oxog containing dna template 4O3P ; 1.72 ; Crystal structure of human polymerase eta inserting dctp opposite an 8-oxog containing dna template 4RNN ; 1.808 ; Crystal structure of human polymerase eta inserting dGMPnPP opposite DNA template containing an abasic site 4O3Q ; 1.72 ; Crystal structure of human polymerase eta inserting dgtp opposite an 8-oxog containing dna template 8UJT ; 2.31 ; Crystal structure of human polymerase eta with incoming dAMPnPP nucleotide opposite urea lesion 8UJV ; 2.23 ; Crystal structure of human polymerase eta with incoming dCMPnPP nucleotide opposite urea lesion 8UJX ; 2.17 ; Crystal structure of human polymerase eta with incoming dGMPnPP nucleotide opposite urea lesion 8UK4 ; 3.02 ; Crystal structure of human polymerase eta with incoming dTMPnPP nucleotide opposite urea lesion 5H65 ; 2.1 ; Crystal structure of human POT1 and TPP1 1XJV ; 1.73 ; Crystal structure of human POT1 bound to telomeric single-stranded DNA (TTAGGGTTAG) 1ZSX ; 1.9 ; Crystal Structure Of Human Potassium Channel Kv Beta-subunit (KCNAB2) 3NOA ; 1.98 ; Crystal structure of human PPAR-gamma ligand binding domain complex with a potency improved agonist 3GBK ; 2.3 ; Crystal Structure of Human PPAR-gamma Ligand Binding Domain Complexed with a Potent and Selective Agonist 1ZEO ; 2.5 ; Crystal Structure of Human PPAR-gamma Ligand Binding Domain Complexed with an Alpha-Aryloxyphenylacetic Acid Agonist 2P4Y ; 2.25 ; Crystal structure of human PPAR-gamma-ligand binding domain complexed with an indole-based modulator 6VZO ; 2.27 ; Crystal structure of human PPARgamma ligand binding domain (Protein delipidated by denature and refold) 6MCZ ; 2.1 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Arachidonic Acid 6DGQ ; 2.45 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with CAY10506 6DGR ; 2.15 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with CAY10638 6O68 ; 2.78 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Ciglitazone 6DGL ; 1.95 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Darglitazone 5UGM ; 2.1 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Edaglitazone 6VZL ; 2.07 ; Crystal structure of human PPARgamma ligand binding domain in complex with GW1929 6MD2 ; 2.2 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with GW9662 and Arachidonic acid 6AVI ; 2.29 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with GW9662 and Nonanoic acid 6MD1 ; 2.2 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with GW9662 and Oleic acid 6DHA ; 1.88 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Hydroxy Pioglitazone (M-IV) 6O67 ; 2.52 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Mitoglitazone 6DH9 ; 2.7 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with MSDC-0602 6MD0 ; 1.95 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Oleic Acid 6MD4 ; 2.24 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Rosiglitazone and Oleic acid 6AUG ; 2.73 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with SR16832 6C1I ; 2.26 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with T0070907 6DGP ; 3.1 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with TRAP220 Coactivator Peptide 6DGO ; 3.1 ; Crystal Structure of Human PPARgamma Ligand Binding Domain in Complex with Troglitazone 6VZN ; 2.3 ; Crystal structure of human PPARgamma ligand binding domain Y473E mutant 6VZM ; 2.4 ; Crystal structure of human PPARgamma ligand binding domain Y473E mutant in complex with Darglitazone 7JQG ; 2.15 ; Crystal structure of human PPARgamma ligand binding domain Y473E mutant in complex with GW1929 4MWS ; 2.8 ; Crystal structure of human PPCA (trigonal crystal form 1) 4MWT ; 3.85 ; Crystal structure of human PPCA (trigonal crystal form 2) 7EDZ ; 1.95 ; Crystal Structure of human PPCS in complex with P-HoPan and AMPPNP 2FFU ; 1.64 ; Crystal Structure of Human ppGalNAcT-2 complexed with UDP and EA2 2IQ1 ; 2.25 ; Crystal structure of human PPM1K 3EBQ ; 1.9 ; Crystal structure of human PPPDE1 1ILH ; 2.76 ; Crystal Structure of Human Pregnane X Receptor Ligand Binding Domain Bound to SR12813 1Q1Q ; 2.91 ; Crystal structure of human pregnenolone sulfotransferase (SULT2B1a) in the presence of PAP 4NGE ; 2.704 ; Crystal Structure of Human Presequence Protease in Complex with Amyloid-beta (1-40) 4RPU ; 2.265 ; Crystal Structure of Human Presequence Protease in Complex with Inhibitor MitoBloCK-60 3NXP ; 2.2 ; Crystal structure of human prethrombin-1 6V5T ; 2.1 ; Crystal structure of human prethrombin-2 with tryptophans replaced by 5-F-tryptophan 4RR2 ; 2.65 ; Crystal structure of human primase 4BPW ; 3.003 ; Crystal structure of human primase bound to UTP 4MHQ ; 2.2 ; Crystal structure of human primase catalytic subunit 4BPX ; 3.4 ; Crystal structure of human primase in complex with the primase- binding motif of DNA polymerase alpha 4BPU ; 2.7 ; Crystal structure of human primase in heterodimeric form, comprising PriS and truncated PriL lacking the C-terminal Fe-S domain. 5EXR ; 3.6 ; Crystal structure of human primosome 5L2X ; 2.2 ; Crystal structure of human PrimPol ternary complex 6DU9 ; 2.33 ; Crystal Structure of Human Prion Protein 90-231 7Y1G ; 2.3 ; Crystal structure of human PRKACA complexed with DS01080522 1XM2 ; 2.7 ; Crystal structure of Human PRL-1 4HSG ; 2.3 ; Crystal structure of human PRMT3 in complex with an allosteric inhibitor (PRMT3- KTD) 6P7I ; 2.0 ; Crystal structure of Human PRMT6 in complex with S-Adenosyl-L-Homocysteine and YS17-117 Compound 5DST ; 2.963 ; Crystal structure of human PRMT8 in complex with SAH 6CZS ; 1.66 ; Crystal structure of human pro-cathepsin H C26S mutant 1MZA ; 2.23 ; crystal structure of human pro-granzyme K 1MZD ; 2.9 ; crystal structure of human pro-granzyme K 5NTU ; 2.58 ; Crystal Structure of human Pro-myostatin Precursor at 2.6 A Resolution 5NXS ; 4.19 ; Crystal Structure of Human Pro-myostatin Precursor at 4.2 A Resolution with Experimental Phases from SeMet labelling 5VQP ; 2.9 ; Crystal structure of human pro-TGF-beta1 8FXS ; 3.15 ; Crystal structure of human pro-TGF-beta2 in complex with Nb9 1GQF ; 2.9 ; Crystal structure of human procaspase-7 2PBH ; 3.3 ; CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN B AT 3.3 ANGSTROM RESOLUTION 1DEU ; 1.7 ; CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN X: A CYSTEINE PROTEASE WITH THE PROREGION COVALENTLY LINKED TO THE ACTIVE SITE CYSTEINE 1D1J ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN PROFILIN II 5LA7 ; 1.94 ; Crystal structure of human proheparanase, in complex with glucuronic acid configured aziridine probe JJB355 4I18 ; 3.238 ; Crystal structure of human prolactin receptor complexed with Fab fragment 2IW2 ; 1.82 ; Crystal structure of human Prolidase 6SRF ; 1.847 ; Crystal Structure of Human Prolidase G278N variant expressed in the presence of chaperones 6SRG ; 2.558 ; Crystal Structure of Human Prolidase G448R variant expressed in the presence of chaperones 6SRE ; 1.39 ; Crystal Structure of Human Prolidase S202F variant expressed in the presence of chaperones 4K86 ; 2.4 ; Crystal structure of human prolyl-tRNA synthetase (apo form) 4K88 ; 2.619 ; Crystal structure of human prolyl-tRNA synthetase (halofuginone bound form) 5VAD ; 2.36 ; Crystal structure of human Prolyl-tRNA synthetase (PRS) in complex with inhibitor 4K87 ; 2.301 ; Crystal structure of human prolyl-tRNA synthetase (substrate bound form) 5V58 ; 2.59 ; Crystal structure of human prolyl-tRNA synthetase in complex with Aze-SA 4HVC ; 2.0 ; Crystal structure of human prolyl-tRNA synthetase in complex with halofuginone and ATP analogue 7BBU ; 2.19 ; Crystal Structure of human Prolyl-tRNA synthetase in complex with NCP26 and L-Proline 4GWM ; 1.85 ; Crystal structure of human promeprin beta 8K5V ; 1.7 ; Crystal structure of human proMMP-9 catalytic domain in complex with inhibitor 8K5W ; 2.0 ; Crystal structure of human proMMP-9 catalytic domain in complex with inhibitor 8K5X ; 1.9 ; Crystal structure of human proMMP-9 catalytic domain in complex with inhibitor 8K5Y ; 1.52 ; Crystal structure of human proMMP-9 catalytic domain in complex with inhibitor 5MFA ; 1.2 ; Crystal structure of human promyeloperoxidase (proMPO) 3VCM ; 2.93 ; Crystal structure of human prorenin 2IAG ; 2.15 ; Crystal structure of human prostacyclin synthase 3B6H ; 1.62 ; Crystal structure of human prostacyclin synthase in complex with inhibitor minoxidil 3DFJ ; 1.45 ; Crystal structure of human Prostasin 3DFL ; 2.0 ; Crystal structure of human Prostasin complexed to 4-guanidinobenzoic acid 3QUM ; 3.2 ; Crystal structure of human prostate specific antigen (PSA) in Fab sandwich with a high affinity and a PCa selective antibody 2ZCH ; 2.83 ; Crystal structure of human prostate specific antigen complexed with an activating antibody 2ZCL ; 3.25 ; Crystal structure of human prostate specific antigen complexed with an activating antibody 1CVI ; 3.2 ; CRYSTAL STRUCTURE OF HUMAN PROSTATIC ACID PHOSPHATASE 3VW7 ; 2.2 ; Crystal structure of human protease-activated receptor 1 (PAR1) bound with antagonist vorapaxar at 2.2 angstrom 5DSV ; 3.75 ; Crystal structure of human proteasome alpha7 tetradecamer 5WTQ ; 1.9 ; Crystal structure of human proteasome-assembling chaperone PAC4 6WIA ; 2.21 ; CRYSTAL STRUCTURE OF HUMAN PROTECTIVE PROTEIN/CATHEPSIN A, DFP-INHIBITED (AGED) 6PDM ; 2.45 ; Crystal structure of Human Protein Arginine Methyltransferase 9 (PRMT9) 4Y2H ; 2.37 ; Crystal structure of human protein arginine methyltransferase PRMT6 bound to SAH and an aryl pyrazole inhibitor 4Y30 ; 2.1 ; Crystal structure of human protein arginine methyltransferase PRMT6 bound to SAH and EPZ020411 6WAD ; 2.45 ; Crystal Structure of Human Protein arginine N-methyltransferase 6 (PRMT6) in complex with MT2739 inhibitor 6W6D ; 1.91 ; Crystal Structure of Human Protein arginine N-methyltransferase 6 (PRMT6) in complex with SGC6870 inhibitor 8CPQ ; 1.8 ; Crystal structure of human protein disulfide isomerase PDIA6 domain b 5XF7 ; 2.381 ; Crystal structure of human protein disulfide isomerase-like protein of the testis 2F0Y ; 2.7 ; Crystal Structure Of Human Protein Farnesyltransferase Complexed With Farnesyl Diphosphate and hydantoin derivative 1JCQ ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH FARNESYL DIPHOSPHATE AND THE PEPTIDOMIMETIC INHIBITOR L-739,750 4RA4 ; 2.63 ; Crystal Structure of Human Protein Kinase C Alpha in Complex with Compound 28 ((R)-6-((3S,4S)-1,3-Dimethyl-piperidin-4-yl)-7-(2-fluoro-phenyl)-4-methyl-2,10-dihydro-9-oxa-1,2,4a-triaza-phenanthren-3-one) 3PE1 ; 1.6 ; Crystal structure of human protein kinase CK2 alpha subunit in complex with the inhibitor CX-4945 3R0T ; 1.75 ; Crystal structure of human protein kinase CK2 alpha subunit in complex with the inhibitor CX-5279 5N9L ; 1.79 ; Crystal structure of human Protein kinase CK2 catalytic subunit in complex with the ATP-competitive dibenzofuran inhibitor TF (4b) 5N9K ; 1.643 ; Crystal structure of human Protein kinase CK2 catalytic subunit in complex with the ATP-competitive, tight-binding dibenzofuran inhibitor TF107 (5) 5N9N ; 1.841 ; Crystal structure of human Protein kinase CK2 catalytic subunit in complex with the ATP-competitive, tight-binding dibenzofuran inhibitor TF85 (4a) 1JWH ; 3.1 ; Crystal Structure of Human Protein Kinase CK2 Holoenzyme 3PE2 ; 1.9 ; Crystal structure of human protein kinase CK2 in complex with the inhibitor CX-5011 3EED ; 2.8 ; Crystal structure of human protein kinase CK2 regulatory subunit (CK2beta; mutant 1-193) 6TEI ; 1.756 ; Crystal structure of human protein kinase CK2alpha (CSNK2A1 gene product) in complex with the 2-aminothiazole-type inhibitor 17 7A4C ; 2.502 ; Crystal structure of human protein kinase CK2alpha (CSNK2A1 gene product) in complex with the ATP-competitive inhibitor 5,6,7-tribromo-1H-triazolo[4,5-b]pyridine 7A4B ; 2.06 ; Crystal structure of human protein kinase CK2alpha (CSNK2A1 gene product) in complex with the ATP-competitive inhibitor 5,6-dibromo-1H-triazolo[4,5-b]pyridine 7A49 ; 2.03 ; Crystal structure of human protein kinase CK2alpha (CSNK2A1 gene product) in complex with the ATP-competitive inhibitor 6-bromo-5-chloro-1H-triazolo[4,5-b]pyridine 6TE2 ; 0.922 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the 2-aminothiazole-type inhibitor 17 6TEW ; 1.082 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the 2-aminothiazole-type inhibitor 27 7A2H ; 1.01 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the ATP-competitive inhibitor 5,6,7-tribromo-1H-imidazo[4,5-b]pyridine 7A22 ; 1.01 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the ATP-competitive inhibitor 5,6,7-tribromo-1H-triazolo[4,5-b]pyridine 7A1B ; 1.287 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the ATP-competitive inhibitor 5,6-dibromo-1H-triazolo[4,5-b]pyridine 7A1Z ; 1.024 ; Crystal structure of human protein kinase CK2alpha' (CSNK2A2 gene product) in complex with the ATP-competitive inhibitor 6-bromo-5-chloro-1H-triazolo[4,5-b]pyridine 6TGU ; 0.833 ; Crystal structure of human protein kinase CK2alpha'(CSNK2A2 gene product) in complex with the 2-aminothiazole-type inhibitor Cl-OH-3 7LV3 ; 2.41 ; Crystal structure of human protein kinase G (PKG) R-C complex in inhibited state 6A0E ; 1.947 ; Crystal structure of human protein N-terminal asparagine amidohydrolase (NTAN1) 6A0I ; 1.996 ; Crystal structure of human protein N-terminal asparagine amidohydrolase (NTAN1) C75S mutant 6A0H ; 3.185 ; Crystal structure of human protein N-terminal asparagine amidohydrolase (NTAN1) C75S mutant with Asn-Leu-Ala-Ala-Arg peptide 6A0F ; 2.384 ; Crystal structure of human protein N-terminal asparagine amidohydrolase (NTAN1) C75S mutant with Asn-Phe-Ala-Ala-Arg peptide 4W79 ; 1.5 ; Crystal Structure of Human Protein N-terminal Glutamine Amidohydrolase 5GGG ; 3.0 ; Crystal structure of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase form I 5GGF ; 2.49 ; Crystal structure of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase form II 5GGI ; 2.6 ; Crystal structure of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with Mn, UDP and Mannosyl-peptide 3FXL ; 2.3 ; Crystal Structure of Human Protein phosphatase 1A (PPM1A) Bound with Citrate at 1 mM of Mn2+ 3FXM ; 2.5 ; Crystal Structure of Human Protein phosphatase 1A (PPM1A) Bound with Citrate at 10 mM of Mn2+ 3FXO ; 2.5 ; Crystal Structure of Human Protein phosphatase 1A (PPM1A) Bound with Phosphate at 1 mM of Mn2+ 3FXK ; 2.1 ; Crystal Structure of Human Protein phosphatase 1A (PPM1A) Bound with Phosphate at 10 mM of Mn2+ 3FXJ ; 2.5 ; Crystal Structure of Human Protein phosphatase 1A (PPM1A) Bound with Phosphate at 3 mM of Mn2+ 5UI1 ; 1.96 ; Crystal Structure of Human Protein Phosphatase 5C (PP5C) in complex with a triazole inhibitor 3KVH ; 1.7 ; Crystal structure of human protein syndesmos (NUDT16-like protein) 2HNP ; 2.85 ; CRYSTAL STRUCTURE OF HUMAN PROTEIN TYROSINE PHOSPHATASE 1B 2HNQ ; 2.85 ; CRYSTAL STRUCTURE OF HUMAN PROTEIN TYROSINE PHOSPHATASE 1B 1RXD ; 1.9 ; Crystal structure of human protein tyrosine phosphatase 4A1 2C7S ; 1.95 ; Crystal structure of human protein tyrosine phosphatase kappa at 1.95A resolution 2I75 ; 2.45 ; Crystal Structure of Human Protein Tyrosine Phosphatase N4 (PTPN4) 2PA5 ; 1.6 ; Crystal structure of human protein tyrosine phosphatase PTPN9 4GE2 ; 1.8 ; Crystal structure of human protein tyrosine phosphatase PTPN9 (MEG2) complex with compound 3 4GE5 ; 2.0 ; Crystal structure of human protein tyrosine phosphatase PTPN9 (MEG2) complex with compound 5 4GE6 ; 1.4 ; Crystal structure of human protein tyrosine phosphatase PTPN9 (MEG2) complex with compound 7 2CFV ; 2.5 ; Crystal structure of human protein tyrosine phosphatase receptor type J 8FXV ; 2.2 ; Crystal structure of human proTGF-beta2 in complex with Nb18 6C2W ; 4.12 ; Crystal structure of human prothrombin mutant S101C/A470C 3CXW ; 2.1 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and a beta carboline ligand I 3CY2 ; 2.01 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and a beta carboline ligand II 3QF9 ; 2.2 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and a furan-thiazolidinedione ligand 3MA3 ; 2.3 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and a naphtho-difuran ligand 3JPV ; 2.35 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and a pyrrolo[2,3-a]carbazole ligand 3CY3 ; 2.15 ; Crystal structure of human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and the JNK inhibitor V 7DUA ; 1.64 ; Crystal structure of human Proto-oncogene tyrosine-protein kinase receptor Ret in complex with 4-amino-7-(1-methylcyclopropyl)-N-(5-methyl-1H-pyrazol-3-yl)pyrrolo[2,3-d]pyrimidine-5-carboxamide 7DU9 ; 2.31 ; Crystal structure of human Proto-oncogene tyrosine-protein kinase receptor Ret in complex with Pralsetinib 7DU8 ; 2.75 ; Crystal structure of human Proto-oncogene tyrosine-protein kinase receptor Ret in complex with Selpercatinib 6VFP ; 3.2 ; Crystal structure of human protocadherin 1 EC1-EC4 6VFR ; 2.79 ; Crystal structure of human protocadherin 18 EC1-EC4 6VFU ; 3.5 ; Crystal structure of human protocadherin 19 EC1-EC4 6VFV ; 2.9 ; Crystal structure of human protocadherin 8 EC5-EC6 6BX7 ; 2.85 ; Crystal Structure of Human Protocadherin-1 EC1-4 6MGA ; 3.15 ; Crystal Structure of Human Protocadherin-1 EC1-4 with glycosylation 6PIM ; 3.05 ; Crystal Structure of Human Protocadherin-1 EC3-4 6MFO ; 3.15 ; Crystal Structure of Human Protocadherin-15 EC1-3 G16D N369D Q370N 6N2E ; 2.9 ; Crystal Structure of Human Protocadherin-15 EC1-3 G16D N369D Q370N and Mouse Cadherin-23 EC1-2 T15E 5ULY ; 2.64 ; Crystal Structure of Human Protocadherin-15 EC2-3 6EB5 ; 2.6 ; Crystal Structure of Human Protocadherin-15 EC2-3 V250N 5T4M ; 2.24 ; Crystal Structure of Human Protocadherin-15 EC3-5 6E8F ; 2.99 ; Crystal Structure of Human Protocadherin-15 EC3-5 CD2-1 5T4N ; 2.701 ; Crystal Structure of Human Protocadherin-15 EC3-5 D414A Variant 4XHZ ; 2.803 ; Crystal Structure of Human Protocadherin-15 EC8-10 5CZR ; 2.3 ; Crystal Structure of Human Protocadherin-24 EC1-2 7N86 ; 3.175 ; Crystal Structure of Human Protocadherin-24 EC1-2 Form II 3E9L ; 1.95 ; Crystal Structure of Human Prp8, Residues 1755-2016 4IJP ; 2.25 ; Crystal Structure of Human PRPF4B kinase domain in complex with 4-{5-[(2-Chloro-pyridin-4-ylmethyl)-carbamoyl]-thiophen-2-yl}-benzo[b]thiophene-2-carboxylic acid amine 4LZO ; 3.31 ; Crystal structure of human PRS1 A87T mutant 4F8E ; 2.27 ; Crystal structure of human PRS1 D52H mutant 4LZN ; 2.14 ; Crystal structure of human PRS1 D65N mutant 4LYG ; 3.0 ; Crystal structure of human PRS1 E43T mutant 4M0P ; 2.11 ; Crystal structure of human PRS1 M115T mutant 4M0U ; 2.74 ; crystal structure of human PRS1 Q133P mutant 4AL0 ; 1.16 ; Crystal structure of Human PS-1 4AL1 ; 1.95 ; Crystal structure of Human PS-1 GSH-analog complex 3ZRT ; 3.398 ; Crystal structure of human PSD-95 PDZ1-2 5KKP ; 2.26 ; Crystal Structure of Human Pseudouridylate Synthase 7 4C45 ; 1.45 ; Crystal structure of human pterin-4-alpha-carbinolamine dehydratase 2 (PCBD2) 3SQD ; 2.153 ; Crystal structure of human PTIP BRCT5/6-gamma H2AX complex 2G62 ; 1.6 ; Crystal structure of human PTPA 4RCA ; 2.9908 ; Crystal structure of human PTPdelta and human Slitrk1 complex 7UAD ; 2.044 ; Crystal structure of human PTPN2 with inhibitor ABBV-CLS-484 5AWX ; 1.86 ; Crystal structure of Human PTPRZ D1 domain 4WZR ; 2.154 ; Crystal structure of human Puf-A 4WZW ; 2.9516 ; Crystal structure of human Puf-A in complex with DNA 3BSX ; 2.32 ; Crystal Structure of Human Pumilio 1 in complex with Puf5 RNA 3BSB ; 2.8 ; Crystal Structure of Human Pumilio1 in Complex with CyclinB reverse RNA 8CHT ; 1.95 ; Crystal structure of human PURA (fragment Glu57-Glu212, PUR repeat I and II) 8CHV ; 2.15 ; Crystal structure of human PURA (fragment Glu57-Glu212, PUR repeat I and II) R140P mutant 8CHW ; 1.7 ; Crystal structure of human PURA (fragment Pro216-Lys280, PUR repeat III) 8CHU ; 2.45 ; Crystal structure of human PURA repeat I-II K97E mutant 5UGF ; 2.2 ; Crystal structure of human purine nucleoside phosphorylase (F159Y) mutant complexed with DADMe-ImmG and phosphate 1RFG ; 2.9 ; Crystal Structure of Human Purine Nucleoside Phosphorylase Complexed with Guanosine 1RCT ; 2.8 ; Crystal structure of Human purine nucleoside phosphorylase complexed with INOSINE 3INY ; 2.75 ; Crystal structure of human purine nucleoside phosphorylase in complex with 7-deazaguanine 3PHB ; 2.3 ; Crystal Structure of human purine nucleoside phosphorylase in complex with DADMe-ImmG 3K8O ; 2.4 ; Crystal structure of human purine nucleoside phosphorylase in complex with DATMe-ImmH 3K8Q ; 2.5 ; Crystal structure of human purine nucleoside phosphorylase in complex with SerMe-Immucillin H 2OC4 ; 2.592 ; Crystal structure of human purine nucleoside phosphorylase mutant H257D with Imm-H 2ON6 ; 2.503 ; Crystal structure of human purine nucleoside phosphorylase mutant H257F with Imm-H 2OC9 ; 2.59 ; Crystal structure of human purine nucleoside phosphorylase mutant H257G with Imm-H 2BQ8 ; 2.2 ; Crystal structure of human purple acid phosphatase with an inhibitory conformation of the repression loop 2V9K ; 2.0 ; Crystal structure of human PUS10, a novel pseudouridine synthase. 2CFR ; 2.4 ; crystal structure of human pyridoxal 5'-phosphate phosphatase 2CFS ; 2.4 ; crystal structure of human pyridoxal 5'-phosphate phosphatase 5GYN ; 1.995 ; Crystal structure of human pyridoxal 5'-phosphate phosphatase (Chronophin) mutant - C221S 2CFT ; 1.8 ; Crystal structure of human pyridoxal 5'-phosphate phosphatase with its substrate 2F7K ; 2.8 ; Crystal Structure of Human Pyridoxal Kinase 8WR2 ; 1.94 ; Crystal Structure of Human Pyridoxal Kinase with bound Luteolin 2OYC ; 1.72 ; Crystal structure of human pyridoxal phosphate phosphatase 2P27 ; 1.9 ; Crystal Structure of Human Pyridoxal Phosphate Phosphatase with Mg2+ at 1.9 A resolution 2P69 ; 2.25 ; Crystal Structure of Human Pyridoxal Phosphate Phosphatase with PLP 3HY8 ; 2.5 ; Crystal Structure of Human Pyridoxine 5'-Phosphate Oxidase R229W Mutant 6H00 ; 1.66 ; Crystal structure of human pyridoxine 5-phophate oxidase, R116Q variant 6ZK7 ; 3.2 ; Crystal Structure of human PYROXD1/FAD complex 2IZZ ; 1.95 ; Crystal structure of human pyrroline-5-carboxylate reductase 2GRA ; 3.1 ; crystal structure of Human Pyrroline-5-carboxylate Reductase complexed with nadp 2H5G ; 2.25 ; Crystal structure of human pyrroline-5-carboxylate synthetase 3BG3 ; 2.8 ; Crystal Structure of Human Pyruvate Carboxylase (missing the biotin carboxylase domain at the N-terminus) 3BG9 ; 3.0 ; Crystal Structure of Human Pyruvate Carboxylase (missing the biotin carboxylase domain at the N-terminus) F1077A Mutant 7EA0 ; 2.34 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 1 7EBH ; 1.96 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 13 7EAS ; 1.97 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 2 7VBX ; 2.6 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 20 7VBU ; 1.89 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 5 7VBV ; 2.21 ; Crystal structure of human pyruvate dehydrogenase kinase 2 in complex with compound 7 2E0A ; 1.86 ; Crystal structure of human pyruvate dehydrogenase kinase 4 in complex with AMPPNP 7EAT ; 2.1 ; Crystal structure of human pyruvate dehydrogenase kinase 4 in complex with compound 1 7EBB ; 1.9 ; Crystal structure of human pyruvate dehydrogenase kinase 4 in complex with compound 2 7EBG ; 1.95 ; Crystal structure of human pyruvate dehydrogenase kinase 4 in complex with compound 7 6JFB ; 2.12 ; Crystal structure of human pyruvate kinase M2 isoform 5AYX ; 2.8 ; Crystal structure of Human Quinolinate Phosphoribosyltransferase 5AYZ ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN QUINOLINATE PHOSPHORIBOSYLTRANSFERASE IN COMPLEX WITH THE PRODUCT NICOTINATE MONONUCLEOTIDE 5AYY ; 3.09 ; CRYSTAL STRUCTURE OF HUMAN QUINOLINATE PHOSPHORIBOSYLTRANSFERASE IN COMPLEX WITH THE REACTANT QUINOLINATE 8BQ3 ; 2.66 ; Crystal structure of human R13 mutant of the c-Src SH3 domain in complex with VSL12-peptide 7L8L ; 1.61 ; Crystal structure of human R152H GPX4-U46C 6HX7 ; 1.8 ; Crystal structure of human R180T variant of ORNITHINE AMINOTRANSFERASE at 1.8 Angstrom 2D7C ; 1.75 ; Crystal structure of human Rab11 in complex with FIP3 Rab-binding domain 4UJ3 ; 3.0 ; Crystal structure of human Rab11-Rabin8-FIP3 4UJ4 ; 4.2 ; Crystal structure of human Rab11-Rabin8-FIP3 4UJ5 ; 2.604 ; Crystal structure of human Rab11-Rabin8-FIP3 4DRZ ; 2.3 ; Crystal structure of human RAB14 1X3S ; 1.32 ; Crystal structure of human Rab18 in complex with Gppnhp 2FOL ; 2.631 ; Crystal structure of human RAB1A in complex with GDP 4HLQ ; 3.3 ; Crystal structure of human rab1b bound to GDP and BEF3 in complex with the GAP domain of TBC1D20 from homo sapiens 5O74 ; 2.5 ; Crystal structure of human Rab1b covalently bound to the GEF domain of DrrA/SidM from Legionella pneumophila in the presence of GDP 3JZA ; 1.8 ; Crystal structure of human Rab1b in complex with the GEF domain of DrrA/SidM from Legionella pneumophila 2OIL ; 2.3 ; Crystal structure of human RAB25 in complex with GDP 2G6B ; 2.0 ; Crystal structure of human RAB26 in complex with a GTP analogue 2A5J ; 1.501 ; Crystal Structure of Human RAB2B 2FG5 ; 2.801 ; Crystal structure of human RAB31 in complex with a GTP analogue 6HDU ; 1.793 ; Crystal structure of human Rab38 in complex with GTP 3DZ8 ; 1.9 ; Crystal structure of human Rab3B GTPase bound with GDP 2GF9 ; 1.53 ; Crystal structure of human RAB3D in complex with GDP 2HUP ; 2.05 ; Crystal structure of human RAB43 in complex with GDP 2O52 ; 2.2 ; Crystal structure of human RAB4B in complex with GDP 1N6H ; 1.51 ; Crystal Structure of Human Rab5a 1N6P ; 1.54 ; Crystal Structure of Human Rab5a A30E mutant complex with GppNHp 1N6O ; 1.8 ; Crystal Structure of Human Rab5a A30K mutant complex with GppNHp 1N6R ; 1.55 ; Crystal Structure of Human Rab5a A30L mutant complex with GppNHp 1N6I ; 1.6 ; Crystal Structure of Human Rab5a A30P mutant Complex with GDP 1N6K ; 1.55 ; Crystal Structure of Human Rab5a A30P mutant complex with GDP and aluminum fluoride 1N6L ; 1.6 ; Crystal Structure of Human Rab5a A30P mutant complex with GTP 1N6N ; 1.6 ; Crystal Structure of Human Rab5a A30R mutant complex with GppNHp 1R2Q ; 1.05 ; Crystal Structure of Human Rab5a GTPase Domain at 1.05 A resolution 3MJH ; 2.03 ; Crystal Structure of Human Rab5A in complex with the C2H2 Zinc Finger of EEA1 2HEI ; 1.55 ; Crystal structure of human RAB5B in complex with GDP 2OCB ; 2.2 ; Crystal structure of human RAB9B in complex with a GTP analogue 2IC5 ; 1.9 ; Crystal structure of human RAC3 grown in the presence of Gpp(NH)p. 2QME ; 1.75 ; Crystal structure of human RAC3 in complex with CRIB domain of human p21-activated kinase 1 (PAK1) 2DPX ; 1.8 ; Crystal Structure of human Rad GTPase 3CJJ ; 1.85 ; Crystal structure of human rage ligand-binding domain 2GRN ; 1.8 ; Crystal Structure of human RanGAP1-Ubc9 2GRQ ; 1.7 ; Crystal Structure of human RanGAP1-Ubc9-D127A 2GRR ; 1.3 ; Crystal Structure of human RanGAP1-Ubc9-D127S 2GRO ; 1.7 ; Crystal Structure of human RanGAP1-Ubc9-N85Q 2GRP ; 2.05 ; Crystal Structure of human RanGAP1-Ubc9-Y87A 3GJ0 ; 1.48 ; Crystal structure of human RanGDP 3GJ6 ; 2.7 ; Crystal structure of human RanGDP-Nup153ZnF1 complex 3GJ7 ; 1.93 ; Crystal structure of human RanGDP-Nup153ZnF12 complex 3GJ3 ; 1.79 ; Crystal structure of human RanGDP-Nup153ZnF2 complex 3GJ4 ; 2.15 ; Crystal structure of human RanGDP-Nup153ZnF3 complex 3GJ8 ; 1.82 ; Crystal structure of human RanGDP-Nup153ZnF34 complex 3GJ5 ; 1.79 ; Crystal structure of human RanGDP-Nup153ZnF4 complex 1U4R ; 2.2 ; Crystal Structure of human RANTES mutant 44-AANA-47 1U4P ; 1.7 ; Crystal Structure of human RANTES mutant K45E 5MLB ; 3.22 ; Crystal structure of human RAS in complex with darpin K27 5MLA ; 2.19 ; Crystal structure of human RAS in complex with darpin K55 3C5C ; 1.85 ; Crystal structure of human Ras-like, family 12 protein in complex with GDP 3V53 ; 2.9 ; Crystal structure of human RBM25 5GWN ; 1.309 ; Crystal structure of human RCC2 3O3U ; 1.497 ; Crystal Structure of Human Receptor for Advanced Glycation Endproducts (RAGE) 6V08 ; 2.58 ; Crystal structure of human recombinant Beta-2 glycoprotein I (hrB2GPI) 6V09 ; 2.99 ; Crystal structure of human recombinant Beta-2 glycoprotein I short tag (ST-B2GPI) 1RCB ; 2.25 ; CRYSTAL STRUCTURE OF HUMAN RECOMBINANT INTERLEUKIN-4 AT 2.25 ANGSTROMS RESOLUTION 1PBH ; 3.2 ; CRYSTAL STRUCTURE OF HUMAN RECOMBINANT PROCATHEPSIN B AT 3.2 ANGSTROM RESOLUTION 2D8N ; 2.2 ; Crystal structure of human recoverin at 2.2 A resolution 2V1X ; 2.0 ; Crystal structure of human RECQ-like DNA helicase 7ZML ; 2.79 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G1-001 7ZMQ ; 2.7 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G2*-006 7ZMR ; 3.3 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G2*-011 7ZMM ; 2.5 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G2-001 7ZMN ; 3.2 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G3-048 7ZMO ; 3.75 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G3-052 7ZMP ; 3.626 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G3-055 7ZMS ; 2.7 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G4-043 7ZMT ; 2.3 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G5-006 7ZMV ; 2.002 ; Crystal structure of human RECQL5 helicase APO form in complex with engineered nanobody (Gluebody) G5-006 5LB8 ; 3.4 ; Crystal structure of human RECQL5 helicase APO form. 5LB5 ; 2.0 ; Crystal structure of human RECQL5 helicase in complex with ADP/Mg (tricilinc form). 5LB3 ; 1.8 ; Crystal structure of human RECQL5 helicase in complex with ADP/Mg. 5LBA ; 2.5 ; Crystal structure of human RECQL5 helicase in complex with DSPL fragment(1-cyclohexyl-3-(oxolan-2-ylmethyl)urea, SGC - Diamond XChem I04-1 fragment screening. 3LQ9 ; 2.0 ; Crystal structure of human REDD1, a hypoxia-induced regulator of mTOR 2IHD ; 1.7 ; Crystal structure of Human Regulator of G-protein signaling 8, RGS8 3QJ4 ; 2.5 ; Crystal structure of Human Renalase (isoform 1) 3GW5 ; 2.0 ; Crystal structure of human renin complexed with a novel inhibitor 2IKO ; 1.9 ; Crystal Structure of Human Renin Complexed with Inhibitor 2IL2 ; 2.24 ; Crystal Structure of Human Renin Complexed with Inhibitor 2IKU ; 2.6 ; Crystal Structure of Human Renin Complexed with Inhibitors 5V8V ; 2.6 ; Crystal Structure of Human Renin in Complex with a biphenylpipderidinylcarbinol 5VPM ; 2.9 ; Crystal Structure of Human Renin in Complex with a biphenylpipderidinylcarbinol 5VRP ; 3.22 ; Crystal Structure of Human Renin in Complex with a biphenylpipderidinylcarbinol 7UJ3 ; 3.5 ; Crystal structure of Human respiratory syncytial virus F variant (construct pXCS847A) 6EAL ; 2.751 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT D486N STABILIZED IN THE PREFUSION STATE 6EAM ; 2.739 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT E487D STABILIZED IN THE PREFUSION STATE 6EAD ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT F140I STABILIZED IN THE PREFUSION STATE 6EAN ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT F488I STABILIZED IN THE PREFUSION STATE 6EAF ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT G143S STABILIZED IN THE PREFUSION STATE 6EAH ; 3.0 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT K394R-S398L STABILIZED IN THE PREFUSION STATE 6EAE ; 2.9 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT L141W STABILIZED IN THE PREFUSION STATE 6EAI ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT S398L STABILIZED IN THE PREFUSION STATE 6EAJ ; 2.851 ; CRYSTAL STRUCTURE OF HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION GLYCOPROTEIN INHIBITOR ESCAPE VARIANT T400A STABILIZED IN THE PREFUSION STATE 2VN8 ; 2.1 ; Crystal structure of human Reticulon 4 interacting protein 1 in complex with NADPH 1YDE ; 2.4 ; Crystal Structure of Human Retinal Short-Chain Dehydrogenase/Reductase 3 3OZJ ; 2.1 ; Crystal structure of human retinoic X receptor alpha complexed with bigelovin and coactivator SRC-1 3PCU ; 2.0 ; Crystal structure of human retinoic X receptor alpha ligand-binding domain complexed with LX0278 and SRC1 peptide 4RMD ; 1.9 ; Crystal structure of human Retinoid X receptor alpha ligand binding domain complex with 9cUAB110 and coactivator peptide GRIP-1 4RME ; 2.3 ; Crystal structure of human Retinoid X receptor alpha ligand binding domain complex with 9cUAB111 and coactivator peptide GRIP-1 7UW4 ; 2.1 ; Crystal structure of human Retinoid X receptor alpha ligand binding domain complex with UAB113 and coactivator peptide GRIP-1 7UW2 ; 1.88 ; Crystal structure of human Retinoid X receptor alpha ligand binding domain complex with UAB116 and coactivator peptide GRIP-1 4M8H ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN RETINOID X RECEPTOR ALPHA-LIGAND BINDING DOMAIN COMPLEX WITH (R)4-METHYL 9cUAB30 AND COACTIVATOR PEPTIDE GRIP-1 4M8E ; 2.4 ; CRYSTAL STRUCTURE OF HUMAN RETINOID X RECEPTOR ALPHA-LIGAND BINDING DOMAIN COMPLEX WITH (S) 4-Methyl 9cUAB30 COACTIVATOR PEPTIDE GRIP-1 4PP5 ; 2.0 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 5-methyl UAB30 and the coactivator peptide GRIP-1 4PP3 ; 2.0 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 6-methyl UAB30 and the coactivator peptide GRIP-1 4POJ ; 2.0 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 7-methyl UAB30 and the coactivator peptide GRIP-1 4POH ; 2.3 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 8-methyl UAB30 and the coactivator peptide GRIP-1 3OAP ; 2.05 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 9-cis retinoic acid and the coactivator peptide GRIP-1 4K4J ; 2.0 ; Crystal structure of human Retinoid X Receptor alpha-ligand binding domain complex with 9cUAB30 and the coactivator peptide GRIP-1 4RFW ; 2.4 ; Crystal structure of human retinoid X Receptor alpha-ligand binding domain complex with 9cUAB70 and the coactivator peptide GRIP-1 4RMC ; 2.7 ; Crystal Structure of human retinoid X receptor alpha-ligand binding domain complex with 9cUAB76 and the coactivator peptide GRIP-1 4K6I ; 2.1 ; Crystal structure of human retinoid X receptor alpha-ligand binding domain complex with Targretin and the coactivator peptide GRIP-1 6WMQ ; 2.55 ; Crystal Structure of Human REV-ERBbeta Ligand Binding Domain Co-Bound to Heme and NCoR ID1 Peptide 6WMS ; 2.0 ; Crystal Structure of Human REV-ERBbeta Ligand Binding Domain Co-Bound to Heme and NCoR ID2 Peptide 4GK0 ; 2.7 ; Crystal structure of human Rev3-Rev7-Rev1 complex 4GK5 ; 3.21 ; Crystal structure of human Rev3-Rev7-Rev1-Polkappa complex 6WW9 ; 2.7 ; Crystal structure of human REV7(R124A)-SHLD3(35-58) complex 6NIF ; 2.002 ; crystal structure of human REV7-RAN complex 1R1A ; 3.2 ; CRYSTAL STRUCTURE OF HUMAN RHINOVIRUS SEROTYPE 1A (HRV1A) 3BYI ; 2.25 ; Crystal structure of human Rho GTPase activating protein 15 (ARHGAP15) 2J1L ; 2.5 ; Crystal Structure of Human Rho-related GTP-binding protein RhoD 1CXZ ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN RHOA COMPLEXED WITH THE EFFECTOR DOMAIN OF THE PROTEIN KINASE PKN/PRK1 1XCG ; 2.5 ; Crystal Structure of Human RhoA in complex with DH/PH fragment of PDZRHOGEF 4XH9 ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN RHOA IN COMPLEX WITH DH/PH FRAGMENT OF THE GUANINE NUCLEOTIDE EXCHANGE FACTOR NET1 6HXU ; 1.19 ; Crystal structure of Human RHOB Q63L in complex with GTP 6SGE ; 1.5 ; Crystal structure of Human RHOB-GTP in complex with nanobody B6 5M70 ; 2.2 ; Crystal Structure of human RhoGAP mutated in its arginin finger (R85A) in complex with RhoA.GDP.AlF4- human 5M6X ; 2.4 ; Crystal Structure of human RhoGAP mutated in its arginine finger (R85A) in complex with RhoA.GDP.MgF3- human 1NB0 ; 1.7 ; Crystal Structure of Human Riboflavin Kinase 2FV7 ; 2.1 ; Crystal structure of human ribokinase 5BYC ; 1.95 ; Crystal structure of human ribokinase in C2 spacegroup 5BYF ; 2.0 ; Crystal structure of human ribokinase in complex with AMP 6WJZ ; 1.8 ; Crystal structure of human ribokinase in complex with AMPCP 6WK0 ; 2.0 ; Crystal structure of human ribokinase in complex with AMPPCP and ribose 5C3Z ; 1.9 ; Crystal structure of human ribokinase in complex with AMPPCP in C2 spacegroup 5C40 ; 1.5 ; Crystal structure of human ribokinase in complex with AMPPCP in P21 spacegroup 5C41 ; 1.95 ; Crystal structure of human ribokinase in complex with AMPPCP in P21 spacegroup and with 4 protomers 5BYD ; 2.1 ; Crystal structure of human ribokinase in P21 spacegroup 5BYE ; 1.75 ; Crystal structure of human ribokinase in P212121 spacegroup 6CWX ; 2.25 ; Crystal structure of human ribonuclease P/MRP proteins Rpp20/Rpp25 4X3V ; 3.7 ; Crystal structure of human ribonucleotide reductase 1 bound to inhibitor 3HNC ; 2.41 ; Crystal structure of human ribonucleotide reductase 1 bound to the effector TTP 3HND ; 3.21 ; Crystal structure of human ribonucleotide reductase 1 bound to the effector TTP and substrate GDP 3HNE ; 3.11 ; Crystal structure of human ribonucleotide reductase 1 bound to the effectors TTP and ATP 3HNF ; 3.16 ; Crystal structure of human ribonucleotide reductase 1 bound to the effectors TTP and dATP 3OLJ ; 2.1 ; Crystal structure of human ribonucleotide reductase subunit M2 (hRRM2) 3VPM ; 2.7 ; Crystal structure of human ribonucleotide reductase subunit M2 (hRRM2) mutant 3VPN ; 2.25 ; Crystal structure of human ribonucleotide reductase subunit M2 (hRRM2) mutant 3VPO ; 2.3 ; Crystal structure of human ribonucleotide reductase subunit M2 (hRRM2) mutant 2UW2 ; 2.8 ; Crystal structure of human ribonucleotide reductase subunit R2 2PA2 ; 2.5 ; Crystal structure of human Ribosomal protein L10 core domain 3VI6 ; 1.59 ; Crystal Structure of human ribosomal protein L30e 3LRR ; 2.15 ; Crystal structure of human RIG-I CTD bound to a 12 bp AU rich 5' ppp dsRNA 3LRN ; 2.6 ; Crystal structure of human RIG-I CTD bound to a 14 bp GC 5' ppp dsRNA 3OG8 ; 2.4 ; Crystal structure of human RIG-I CTD bound to a 14-bp blunt-ended dsRNA 7FCZ ; 2.21 ; Crystal Structure of human RIPK1 kinase domain in complex with a novel inhibitor 7FD0 ; 2.0 ; Crystal Structure of human RIPK1 kinase domain in complex with a novel inhibitor 7YDX ; 2.642 ; Crystal structure of human RIPK1 kinase domain in complex with compound RI-962 7XMK ; 2.376 ; Crystal structure of human RIPK1 kinase domain in complex with compound SKLB923 7MX3 ; 3.23 ; Crystal structure of human RIPK3 complexed with GSK'843 3NBI ; 2.0 ; Crystal structure of human RMI1 N-terminus 3NBH ; 2.0 ; Crystal structure of human RMI1C-RMI2 complex 2EK6 ; 2.38 ; Crystal structure of Human RNA-Binding Protein 12 3PUF ; 3.1 ; Crystal structure of human RNase H2 complex 3V3L ; 1.65 ; Crystal structure of human RNF146 WWE domain in complex with iso-ADPRibose 6L5H ; 1.3 ; Crystal structure of human rootletin 1108-1200 6L5J ; 2.77 ; Crystal structure of human rootletin 1108-1317 4ZLD ; 1.6 ; Crystal structure of human Roquin-2 ROQ domain in complex with Roquin CDE RNA 6SLZ ; 2.2 ; Crystal structure of human ROR gamma LBD in complex with a (quinolinoxymethyl)benzamide inverse agonist 6Q2W ; 1.99 ; Crystal structure of human ROR gamma LBD in complex with a quinoline sulfonamide inverse agonist 7XQE ; 2.57 ; Crystal Structure of human RORgamma (C455E) LBD in complex with compound XY039 2GU0 ; 2.8 ; Crystal Structure of Human Rotavirus NSP2 (Group C / Bristol Strain) 3B2D ; 2.8 ; Crystal structure of human RP105/MD-1 complex 6LT7 ; 2.7 ; Crystal structure of human RPP20-RPP25 proteins in complex with the P3 domain of lncRNA RMRP 6AHV ; 2.6 ; Crystal structure of human RPP40 4FLA ; 2.2 ; Crystal structure of human RPRD1B, carboxy-terminal domain 7XC0 ; 1.56 ; Crystal structure of Human RPTPH 3RNY ; 2.7 ; Crystal structure of human RSK1 C-terminal kinase domain 4L1P ; 2.12 ; Crystal Structure of Human Rtf1 Plus3 domain 4L1U ; 2.424 ; Crystal Structure of Human Rtf1 Plus3 Domain in Complex with Spt5 CTR Phosphopeptide 7BRU ; 2.149 ; Crystal structure of human RTN3 LIR fused to human GABARAP 2YW8 ; 3.0 ; Crystal structure of human RUN and FYVE domain-containing protein 7CFO ; 2.15 ; Crystal structure of human RXRalpha ligand binding domain complexed with CBTF-EE. 7NKE ; 2.35 ; Crystal structure of human RXRalpha ligand binding domain in complex with 2,4-di-tert-butylphenol and a coactivator fragment 4ERV ; 1.75 ; Crystal structure of human ryanodine receptor 3 (2597-2800) 6UHH ; 3.138 ; Crystal Structure of Human RYR Receptor 3 ( 848-1055) in Complex with ATP 6UHB ; 2.504 ; Crystal Structure of Human RYR Receptor 3 (848-1055) 3MTG ; 2.64 ; Crystal structure of human S-adenosyl homocysteine hydrolase-like 1 protein 2YDX ; 2.8 ; Crystal structure of human S-adenosylmethionine synthetase 2, beta subunit 2YDY ; 2.25 ; Crystal structure of human S-adenosylmethionine synthetase 2, beta subunit in Orthorhombic crystal form 1DCY ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN S-PLA2 IN COMPLEX WITH INDOLE 3 ACTIVE SITE INHIBITOR 2EGD ; 1.8 ; Crystal structure of human S100A13 in the Ca2+-bound state 3HCM ; 2.0 ; Crystal structure of human S100B in complex with S45 1XV8 ; 3.0 ; Crystal Structure of Human Salivary Alpha-Amylase Dimer 5AO1 ; 2.545 ; Crystal structure of human SAMHD1 (amino acid residues 115-583) bound to ddGTP 5AO2 ; 2.966 ; Crystal structure of human SAMHD1 (amino acid residues 115-583) R164A variant bound to dGTP 5AO3 ; 3.004 ; Crystal structure of human SAMHD1 (amino acid residues 115-626) bound to GTP 5AO0 ; 3.731 ; Crystal structure of human SAMHD1 (amino acid residues 41-583) bound to ddGTP 4CC9 ; 2.473 ; Crystal structure of human SAMHD1 (amino acid residues 582-626) bound to Vpx isolated from sooty mangabey and human DCAF1 (amino acid residues 1058-1396) 2DOB ; 2.0 ; Crystal Structure of Human Saposin A 1N69 ; 2.2 ; Crystal structure of human saposin B 2GTG ; 2.4 ; Crystal Structure of Human Saposin C 2Z9A ; 2.5 ; Crystal Structure of Human Saposin C Dimer in Open Conformation 2RB3 ; 2.1 ; Crystal Structure of Human Saposin D 3BQP ; 1.3 ; Crystal Structure of Human Saposin D (orthorhombic) 3BQQ ; 2.0 ; Crystal Structure of Human Saposin D (triclinic) 2R0R ; 2.5 ; Crystal Structure of Human Saposin D variant SapD K9E 2GAO ; 2.0 ; Crystal Structure of Human SAR1a in Complex With GDP 8DZN ; 2.107 ; Crystal structure of human Sar1a in complex with GDP 8DZM ; 1.648 ; Crystal structure of human Sar1a in complex with ppGpp and Magnesium 8E0H ; 2.0 ; Crystal structure of human Sar1aD104/D140A double mutant 8DZT ; 1.8 ; Crystal structure of human Sar1aH79G mutant 8E0A ; 1.797 ; Crystal structure of human Sar1b 8E0D ; 1.981 ; Crystal structure of human Sar1bE140D 8E0C ; 1.993 ; Crystal structure of human Sar1bH79G 8E0B ; 2.212 ; Crystal structure of human Sar1bT39N 8DZO ; 1.8 ; Crystal structure of human Sar1T39N mutant 4Z9M ; 2.1 ; Crystal structure of human sarcomeric mitochondrial creatine kinase 7YDF ; 2.8 ; Crystal structure of human SARS2 catalytic domain 7YDG ; 3.2 ; Crystal structure of human SARS2 catalytic domain with a disease related mutation 5CTR ; 3.012 ; Crystal structure of human SART3 HAT-C domain-human USP4 DUSP-UBL domain complex 5CTQ ; 2.6 ; Crystal structure of human SART3/TIP110 half-a TPR (HAT) domain 5CTT ; 1.7 ; Crystal structure of human SART3/TIP110 NLS-mouse importin alpha complex 7CUX ; 3.29477 ; Crystal structure of human Schlafen 5 N'-terminal domain (SLFN5-N) involved in ssRNA cleaving and DNA binding 2GGT ; 2.4 ; Crystal structure of human SCO1 complexed with nickel. 4YGY ; 2.36 ; Crystal Structure of Human Scp1 bound to trans-proline peptidomimetic CTD phospho-Ser5 peptide 5VWC ; 1.911 ; Crystal structure of human Scribble PDZ1 domain 8CD3 ; 1.9 ; Crystal structure of human Scribble PDZ1 domain in complex with human TMIGD1 6MYE ; 1.1 ; Crystal structure of human Scribble PDZ1 domain in complex with internal PDZ binding motif of Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF) 5VWI ; 1.75 ; Crystal structure of human Scribble PDZ1:Beta-PIX complex 5VWK ; 2.35 ; Crystal structure of human Scribble PDZ1:Beta-PIX complex 6MTV ; 2.597 ; Crystal structure of human Scribble PDZ1:MCC complex 6MTU ; 2.141 ; Crystal structure of human Scribble PDZ1:pMCC complex 6XA8 ; 2.2 ; Crystal Structure of Human Scribble PDZ1:Vangl2 complex 7JO7 ; 2.44 ; Crystal Structure of Human Scribble PDZ2 6XA7 ; 2.5 ; Crystal Structure of Human Scribble PDZ2:Vangl2 complex 6XA6 ; 1.95 ; Crystal Structure of Human Scribble PDZ3:Vangl2 Complex 6EEY ; 1.145 ; Crystal structure of human Scribble PDZ4 R1110G Mutant 6VAX ; 2.59 ; Crystal structure of human SDHA-SDHAF2 assembly intermediate 8DYD ; 1.52 ; Crystal structure of human SDHA-SDHAF2-SDHAF4 assembly intermediate 8DYE ; 1.44 ; Crystal structure of human SDHA-SDHAF4 assembly intermediate 2QQ5 ; 1.8 ; Crystal structure of human SDR family member 1 6HKW ; 3.09 ; Crystal structure of human SDS22 5WZM ; 2.0 ; Crystal structure of human secreted phospholipase A2 group IIE 5WZT ; 2.4 ; Crystal structure of human secreted phospholipase A2 group IIE with Compound 14 5WZU ; 2.2 ; Crystal structure of human secreted phospholipase A2 group IIE with Compound 24 5WZS ; 2.3 ; Crystal structure of human secreted phospholipase A2 group IIE with Compound 8 5WZW ; 1.95 ; Crystal structure of human secreted phospholipase A2 group IIE with LY311727 5WZV ; 2.2 ; Crystal structure of human secreted phospholipase A2 group IIE with Me-indoxam 5WZO ; 1.9 ; Crystal structure of human secreted phospholipase A2 group IIE, crystallized with calcium 3PBB ; 1.95 ; Crystal structure of human secretory glutaminyl cyclase in complex with PBD150 3A3A ; 3.1 ; Crystal structure of human selenocystine tRNA 3FD6 ; 1.95 ; Crystal structure of human selenophosphate synthetase 1 complex with ADP and phosphate 3FD5 ; 1.9 ; Crystal structure of human selenophosphate synthetase 1 complex with AMPCP 1N76 ; 3.4 ; CRYSTAL STRUCTURE OF HUMAN SEMINAL LACTOFERRIN AT 3.4 A RESOLUTION 3IX0 ; 2.3 ; Crystal structure of human seminal plasma protein PSP94 3G4H ; 1.92 ; Crystal structure of Human Senescence Marker Protein-30 (Zinc Bound) 3G4E ; 1.42 ; Crystal structure of human senescence marker protein-30(SMP30)(Calcium bound) 2G4D ; 2.8 ; Crystal structure of human SENP1 mutant (C603S) in complex with SUMO-1 2XPH ; 2.4 ; Crystal structure of human SENP1 with the bound cobalt 2IO0 ; 2.3 ; Crystal structure of human Senp2 in complex with preSUMO-2 2IO1 ; 2.6 ; Crystal structure of human Senp2 in complex with preSUMO-3 2IO2 ; 2.9 ; Crystal structure of human Senp2 in complex with RanGAP1-SUMO-1 2IO3 ; 3.2 ; Crystal structure of human Senp2 in complex with RanGAP1-SUMO-2 4XWY ; 2.35 ; Crystal structure of human sepiapterin reductase in complex with an N-acetylserotinin analogue 1Z6Z ; 2.5 ; Crystal Structure of Human Sepiapterin Reductase in complex with NADP+ 4HWK ; 2.4 ; Crystal structure of human sepiapterin reductase in complex with sulfapyridine 4J7X ; 2.6 ; Crystal structure of human sepiapterin reductase in complex with sulfasalazine 4J7U ; 2.44 ; Crystal structure of human sepiapterin reductase in complex with sulfathiazole 3SOP ; 2.885 ; Crystal Structure Of Human Septin 3 GTPase Domain 3TW4 ; 3.35 ; Crystal Structure of Human Septin 7 GTPase Domain 2QAG ; 4.0 ; Crystal structure of human septin trimer 2/6/7 4I41 ; 2.7 ; Crystal Structure of human Ser/Thr kinase Pim1 in complex with mitoxantrone 5X2L ; 1.806 ; Crystal Structure of Human Serine Racemase 7NBF ; 1.6 ; Crystal structure of human serine racemase in complex with DSiP fragment Z126932614, XChem fragment screen. 7NBD ; 1.865 ; Crystal structure of human serine racemase in complex with DSiP fragment Z235449082, XChem fragment screen. 7NBH ; 1.77 ; Crystal structure of human serine racemase in complex with DSiP fragment Z26781964, XChem fragment screen. 7NBC ; 1.71 ; Crystal structure of human serine racemase in complex with DSiP fragment Z2856434779, XChem fragment screen. 7NBG ; 1.53 ; Crystal structure of human serine racemase in complex with DSiP fragment Z52314092, XChem fragment screen. 4AOT ; 2.33 ; Crystal Structure of Human Serine Threonine Kinase-10 (LOK) Bound to GW830263A 4BC6 ; 2.2 ; Crystal structure of human serine threonine kinase-10 bound to novel Bosutinib Isoform 1, previously thought to be Bosutinib 2J7T ; 2.0 ; Crystal structure of human serine threonine kinase-10 bound to SU11274 3LM0 ; 2.35 ; Crystal Structure of human Serine/Threonine Kinase 17B (STK17B) 3LM5 ; 2.29 ; Crystal Structure of human Serine/Threonine Kinase 17B (STK17B) in complex with Quercetin 1F3M ; 2.3 ; CRYSTAL STRUCTURE OF HUMAN SERINE/THREONINE KINASE PAK1 4FR4 ; 2.29 ; Crystal structure of human serine/threonine-protein kinase 32A (YANK1) 3GGF ; 2.35 ; Crystal structure of human Serine/threonine-protein kinase MST4 in complex with an quinazolin 4GA7 ; 2.9 ; Crystal structure of human serpinB1 mutant 1AO6 ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN SERUM ALBUMIN 1BM0 ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN SERUM ALBUMIN 1E78 ; 2.6 ; Crystal structure of human serum albumin 6YG9 ; 1.89 ; CRYSTAL STRUCTURE OF HUMAN SERUM ALBUMIN (HSA) IN COMPLEX WITH GN-07. 7DL4 ; 2.4 ; Crystal structure of human serum albumin and nitrosylruthenium complex adduct 8H0O ; 2.479 ; Crystal structure of human serum albumin and ruthenium PZA complex adduct 7VR9 ; 2.3 ; Crystal structure of human serum albumin complex with aripiprazole and myristic acid 6WUW ; 2.2 ; Crystal structure of Human Serum Albumin complex with JMS-053 3JQZ ; 3.3 ; Crystal Structure of Human serum albumin complexed with Lidocaine 3CX9 ; 2.8 ; Crystal Structure of Human serum albumin complexed with Myristic acid and lysophosphatidylethanolamine 1E7B ; 2.38 ; Crystal structure of human serum albumin complexed with the general anesthetic halothane 1E7A ; 2.2 ; Crystal structure of human serum albumin complexed with the general anesthetic propofol 6JE7 ; 3.9 ; Crystal structure of human serum albumin crystallized by ammonium sulfate 8CKS ; 2.6 ; Crystal structure of Human Serum Albumin in complex with FESAN 7QFE ; 2.2 ; Crystal structure of Human Serum albumin in complex with Gemfibrozil 7JWN ; 2.6 ; Crystal structure of Human Serum Albumin in complex with ketoprofen 7AAE ; 2.27 ; Crystal structure of Human serum albumin in complex with myristic acid at 2.27 Angstrom Resolution 7AAI ; 2.1 ; Crystal structure of Human serum albumin in complex with perfluorooctanoic acid (PFOA) at 2.10 Angstrom Resolution 5ID7 ; 2.26 ; Crystal structure of human serum albumin in complex with phosphorodithioate derivative of myristoyl cyclic phosphatidic acid (cPA) 7Z57 ; 2.2 ; Crystal structure of Human Serum Albumin in complex with surfactant GenX (2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate) 6ZL1 ; 3.272 ; Crystal structure of human serum albumin in complex with the MCL-1 neutralizing Alphabody CMPX-383B 5IJF ; 2.65 ; Crystal structure of Human Serum Albumin in the presence of 0.5 mM zinc at pH 9.0 1N7W ; 2.2 ; Crystal Structure of Human Serum Transferrin, N-Lobe L66W mutant 6CBX ; 1.94 ; Crystal structure of human SET and MYND Domain Containing protein 2 with MTF1497 6CBY ; 2.55 ; Crystal structure of human SET and MYND Domain Containing protein 2 with MTF9975 3SMT ; 2.04 ; Crystal structure of human SET domain-containing protein3 5V22 ; 2.4 ; Crystal structure of human SETD2 SET-domain in complex with H3K36M peptide and SAH 5V21 ; 2.415 ; Crystal structure of human SETD2 SET-domain in complex with H3K36M peptide and SAM 7P0V ; 1.56 ; Crystal structure of human SF3A1 ubiquitin-like domain in complex with U1 snRNA stem-loop 4 7SP0 ; 1.83 ; Crystal structure of human SFPQ L534I mutant in complex with zinc 6WMZ ; 2.85 ; Crystal structure of human SFPQ/NONO complex 7LRQ ; 2.3 ; Crystal structure of human SFPQ/NONO heterodimer, conserved DBHS region 3NR8 ; 2.8 ; Crystal structure of human SHIP2 6SRR ; 2.45 ; Crystal structure of human SHIP2 catalytic domain 6SQU ; 2.27 ; Crystal structure of human SHIP2 catalytic domain in complex with 1,2,4 Dimer 4A9C ; 2.1 ; Crystal structure of human SHIP2 in complex with biphenyl 2,3',4,5',6- pentakisphosphate 5OKM ; 1.96 ; Crystal structure of human SHIP2 Phosphatase-C2 5OKN ; 2.65 ; Crystal structure of human SHIP2 Phosphatase-C2 D607A mutant 5OKO ; 1.94 ; Crystal structure of human SHIP2 Phosphatase-C2 double mutant F593D/L597D 5OKP ; 1.85 ; Crystal structure of human SHIP2 Phosphatase-C2 double mutant F593D/L597D 6WWA ; 3.8 ; Crystal structure of human SHLD2-SHLD3-REV7 complex 6KTO ; 3.44976 ; Crystal structure of human SHLD3-C-REV7-O-REV7-SHLD2 complex 7T7A ; 1.79 ; Crystal Structure of Human SHOC2: A Leucine-Rich Repeat Protein 2VIG ; 1.9 ; Crystal structure of human short-chain acyl CoA dehydrogenase 7Y0A ; 2.317 ; Crystal structure of human short-chain acyl-CoA dehydrogenase 7Y0B ; 2.076 ; Crystal structure of human short-chain acyl-CoA dehydrogenase 5DY4 ; 1.77 ; Crystal structure of human Sirt2 in complex with a brominated 2nd generation SirReal inhibitor and NAD+ 5DY5 ; 1.95 ; Crystal structure of human Sirt2 in complex with a SirReal probe fragment 8OWZ ; 1.65 ; Crystal structure of human Sirt2 in complex with a triazole-based SirReal 5D7Q ; 2.01 ; Crystal structure of human Sirt2 in complex with ADPR and CHIC35 5D7P ; 1.76 ; Crystal structure of human Sirt2 in complex with ADPR and EX-243 3GLS ; 2.7 ; Crystal Structure of Human SIRT3 5D7N ; 1.83 ; Crystal structure of human Sirt3 at an improved resolution 8BBK ; 3.27 ; Crystal structure of human Sirt3 in complex with a fragment of the human AROS protein 5BWO ; 2.376 ; Crystal Structure of Human SIRT3 in Complex with a Palmitoyl H3K9 Peptide 8CCW ; 1.65 ; Crystal structure of human Sirt3 in complex with an acetylated HIV1 Tat-46-54 substrate peptide 8CCZ ; 1.95 ; Crystal structure of human Sirt3 in complex with an inhibiting HIV1 Tat-37-59 peptide 4O8Z ; 2.0 ; Crystal structure of human SIRT3 in complex with compound (2-butylbenzofuran-3-yl)(4-(2-(diethylamino)ethoxy)-3,5-diiodophenyl)methanone 4HD8 ; 2.3 ; Crystal structure of human Sirt3 in complex with Fluor-de-Lys peptide and piceatannol 4BVG ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN SIRT3 IN COMPLEX WITH NATIVE ALKYLIMIDATE FORMED FROM ACETYL-LYSINE ACS2-PEPTIDE CRYSTALLIZED IN PRESENCE OF THE INHIBITOR EX-527 4BVH ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN SIRT3 IN COMPLEX WITH THE INHIBITOR EX-527 AND 2'-O-ACETYL-ADP-RIBOSE 4BVB ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN SIRT3 IN COMPLEX WITH THE INHIBITOR EX-527 AND ADP-RIBOSE 4BVE ; 2.05 ; CRYSTAL STRUCTURE OF HUMAN SIRT3 IN COMPLEX WITH THIOALKYLIMIDATE FORMED FROM THIO-ACETYL-LYSINE ACS2-PEPTIDE 4BVF ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN SIRT3 IN COMPLEX WITH THIOALKYLIMIDATE FORMED FROM THIO-ACETYL-LYSINE ACS2-PEPTIDE CRYSTALLIZED IN PRESENCE OF THE INHIBITOR EX-527 3GLU ; 2.5 ; Crystal Structure of Human SIRT3 with AceCS2 peptide 3GLR ; 1.8 ; Crystal Structure of human SIRT3 with acetyl-lysine AceCS2 peptide 3GLT ; 2.1 ; Crystal Structure of Human SIRT3 with ADPR bound to the AceCS2 peptide containing a thioacetyl lysine 4JSR ; 1.7 ; Crystal Structure of human SIRT3 with ELT inhibitor 11c [N-{2-[1-(6-carbamoylthieno[3,2-d]pyrimidin-4-yl)piperidin-4-yl]ethyl}-N'-ethylthiophene-2,5-dicarboxamide] 4JT8 ; 2.26 ; Crystal Structure of human SIRT3 with ELT inhibitor 28 [4-(4-{2-[(2,2-dimethylpropanoyl)amino]ethyl}piperidin-1-yl)thieno[3,2-d]pyrimidine-6-carboxamide[ 4JT9 ; 2.24 ; Crystal Structure of human SIRT3 with ELT inhibitor 3 [14-(4-{2-[(methylsulfonyl)amino]ethyl}piperidin-1-yl)thieno[3,2-d]pyrimidine-6-carboxamide] 6LJK ; 1.394 ; Crystal structure of human Sirt5 in complex with an internally quenched fluorescent substrate GluIQF 7X3P ; 1.56 ; Crystal structure of human SIRT5 in complex with diazirine inhibitor 9 4HDA ; 2.601 ; Crystal structure of human Sirt5 in complex with Fluor-de-Lys peptide and resveratrol 6LJM ; 1.78 ; Crystal structure of human Sirt5 in complex with the fluorogenic tetrapeptide substrate P13 6LJN ; 1.8 ; Crystal structure of human Sirt5 in complex with the fluorogenic tetrapeptide substrate P15 3K35 ; 2.0 ; Crystal Structure of Human SIRT6 7CL0 ; 2.53 ; Crystal structure of human SIRT6 5Y5N ; 2.3 ; Crystal structure of human Sirtuin 2 in complex with a selective inhibitor 2B4Y ; 1.9 ; Crystal Structure of Human Sirtuin homolog 5 2NYR ; 2.06 ; Crystal Structure of Human Sirtuin Homolog 5 in Complex with Suramin 4RCW ; 3.1925 ; Crystal structure of human Slitrk1 7BU5 ; 1.8 ; Crystal Structure of Human SLX4 and MUS81 5ZOK ; 2.85 ; Crystal structure of human SMAD1-MAN1 complex. 5ZOJ ; 2.794 ; Crystal structure of human SMAD2-MAN1 complex 5XOD ; 1.851 ; Crystal structure of human Smad2-Ski complex 5XOC ; 2.4 ; Crystal structure of human Smad3-FoxH1 complex 3PGL ; 2.35 ; Crystal structure of human small C-terminal domain phosphatase 1 (Scp1) bound to rabeprazole 1T91 ; 1.9 ; crystal structure of human small GTPase Rab7(GTP) 3FAU ; 1.9 ; Crystal Structure of human small-MutS related domain 6WG6 ; 3.54 ; Crystal structure of human SMC1-SMC3 hinge domain heterodimer in north-open conformation 6WG4 ; 2.31 ; Crystal structure of human SMC1-SMC3 hinge domain heterodimer in south-open conformation 4GLI ; 1.903 ; Crystal Structure of Human SMN YG-Dimer 3PYC ; 1.96 ; Crystal structure of human SMURF1 C2 domain 6MON ; 2.711 ; Crystal structure of human SMYD2 in complex with Nle-peptide inhibitor 5EX0 ; 2.7 ; Crystal structure of human SMYD3 in complex with a MAP3K2 peptide 5EX3 ; 2.408 ; Crystal structure of human SMYD3 in complex with a VEGFR1 peptide 7V6P ; 2.9 ; Crystal structure of human sNASP TPR domain 5M9O ; 1.45 ; Crystal structure of human SND1 extended Tudor domain in complex with a symmetrically dimethylated E2F peptide 4PQP ; 3.0 ; Crystal structure of human SNX14 PX domain in space group P43212 4OYW ; 1.7 ; Crystal Structure of Human Soluble Adenylate Cyclase 4CLF ; 1.7 ; Crystal structure of human soluble Adenylyl Cyclase (Apo form) 8CO7 ; 1.9 ; Crystal structure of human soluble adenylyl cyclase (sAC) in complex with inhibitor TDI-09066 8CNH ; 2.0 ; Crystal structure of human soluble adenylyl cyclase (sAC) in complex with inhibitor TDI-10512 8COJ ; 2.1 ; Crystal structure of human soluble adenylyl cyclase catalytic domain in complex with the inhibitor TDI-10228 4CLP ; 1.9 ; Crystal structure of human soluble Adenylyl Cyclase complex with adenosine-3',5'-cyclic-monophosphate 4CLK ; 2.2 ; Crystal structure of human soluble Adenylyl Cyclase in complex with alpha,beta-methyleneadenosine-5'-triphosphate 4USU ; 1.95 ; Crystal structure of human soluble Adenylyl Cyclase in complex with alpha,beta-methyleneadenosine-5'-triphosphate 5IV3 ; 1.86 ; Crystal structure of human soluble adenylyl cyclase in complex with alpha,beta-methyleneadenosine-5'-triphosphate and the allosteric inhibitor LRE1 4CLW ; 2.15 ; Crystal structure of human soluble Adenylyl Cyclase in complex with alpha,beta-methyleneadenosine-5'-triphosphate soaked with bisulfite 4CLL ; 1.7 ; Crystal structure of human soluble Adenylyl Cyclase in complex with bicarbonate 8B75 ; 1.82 ; CRYSTAL STRUCTURE OF HUMAN SOLUBLE ADENYLYL CYCLASE IN COMPLEX WITH THE INHIBITOR TDI-011861 4CLY ; 2.05 ; Crystal structure of human soluble Adenylyl Cyclase soaked with biselenite 4CM2 ; 1.8 ; Crystal structure of human soluble Adenylyl Cyclase soaked with bisulfite 4CLT ; 1.95 ; Crystal structure of human soluble Adenylyl Cyclase with adenosine-3', 5'-cyclic-monophosphate and pyrophosphate 4CM0 ; 3.2 ; Crystal structure of human soluble Adenylyl Cyclase with alpha,beta- methyleneadenosine-5'-triphosphate soaked with bicarbonate 4USW ; 2.05 ; Crystal structure of human soluble Adenylyl Cyclase with ATP 4CLZ ; 1.9 ; Crystal structure of human soluble Adenylyl Cyclase with Inhibitor 4, 4'-Diisothiocyano-2,2'-stilbenedisulfonic acid 4CLS ; 1.85 ; Crystal structure of human soluble Adenylyl Cyclase with Pyrophosphate 4CLU ; 1.9 ; Crystal structure of human soluble Adenylyl Cyclase with pyrophosphate 4USV ; 2.0 ; Crystal structure of human soluble Adenylyl Cyclase with pyrophosphate resulting from soaking with ATP and Calcium 4UST ; 1.9 ; Crystal structure of human soluble Adenylyl Cyclase with pyrophosphate resulting from soaking with GTP and Magnesium 5D0R ; 2.24 ; Crystal structure of human soluble Adenylyl Cyclase with the inhibitor bithionol 2H2N ; 2.3 ; Crystal structure of human soluble calcium-activated nucleotidase (SCAN) with calcium ion 6I3C ; 1.336 ; Crystal structure of Human soluble catechol O-methyltransferase in complex with 3,5-dinitrocatechol and S-adensoyl-L-methionine 6I3D ; 1.45 ; Crystal structure of Human soluble catechol O-methyltransferase in complex with 3,5-dinitrocatechol and Sinefungin 7F8R ; 2.51 ; Crystal structure of human soluble CLIC1 with catalytic cysteine (Cys24) in sulphonic acid form. 4OCZ ; 2.94 ; Crystal structure of human soluble epoxide hydrolase complexed with 1-(1-isobutyrylpiperidin-4-yl)-3-(4-(trifluoromethyl)phenyl)urea 4OD0 ; 2.92 ; Crystal structure of human soluble epoxide hydrolase complexed with 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea 4J03 ; 2.92 ; Crystal structure of human soluble epoxide hydrolase complexed with fulvestrant 4HAI ; 2.55 ; Crystal structure of human soluble epoxide hydrolase complexed with N-cycloheptyl-1-(mesitylsulfonyl)piperidine-4-carboxamide. 6AUM ; 2.95 ; Crystal structure of human soluble epoxide hydrolase complexed with trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid. 3M1N ; 1.85 ; Crystal structure of Human Sonic Hedgehog N-terminal domain 4ON3 ; 2.6 ; Crystal structure of human sorting nexin 10 (SNX10) 4PZG ; 2.8 ; Crystal structure of human sorting nexin 10 (SNX10) 4AKV ; 2.651 ; Crystal structure of human sorting nexin 33 (SNX33) 3R85 ; 1.95 ; Crystal structure of human SOUL BH3 domain in complex with Bcl-xL 3R8K ; 2.85 ; Crystal structure of human SOUL protein (hexagonal form) 3R8J ; 1.6 ; Crystal structure of human SOUL protein (orthorhombic form) 6G5P ; 1.35 ; Crystal structure of human SP100 in complex with bromodomain-focused fragment FM009493b 2,3-Dimethoxy-2,3-dimethyl-2,3-dihydro-1,4-benzodioxin-6-amine 6G5N ; 1.765 ; Crystal structure of human SP100 in complex with bromodomain-focused fragment XS039818e 1-(3-Phenyl-1,2,4-oxadiazol-5-yl)methanamine 4PTB ; 1.6 ; Crystal structure of human SP100 PHD-Bromodomain in the free state 3H9E ; 1.72 ; Crystal structure of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) complex with NAD and phosphate 3PFW ; 2.15 ; Crystal structure of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) complex with NAD, a binary form 3RW9 ; 2.0 ; Crystal Structure of human Spermidine Synthase in Complex with decarboxylated S-adenosylhomocysteine 2G3T ; 1.8 ; Crystal structure of human spermidine/spermine N1-acetyltransferase (hSSAT) 7OXL ; 2.4 ; Crystal structure of human Spermine Oxidase 3C6K ; 1.95 ; Crystal structure of human spermine synthase in complex with spermidine and 5-methylthioadenosine 3C6M ; 2.45 ; Crystal structure of human spermine synthase in complex with spermine and 5-methylthioadenosine 2JEV ; 2.3 ; Crystal structure of human spermine,spermidine acetyltransferase in complex with a bisubstrate analog (N1-acetylspermine-S-CoA). 8AYF ; 1.84 ; Crystal structure of human Sphingosine-1-phosphate lyase 1 4Q6R ; 2.4 ; Crystal structure of human sphingosine-1-phosphate lyase in complex with inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile 5LUG ; 1.7 ; Crystal structure of human Spindlin-2B protein in complex with ART(M3L)QTA(2MR)KS peptide 4MZF ; 2.098 ; Crystal structure of human Spindlin1 bound to histone H3(K4me3-R8me2a) peptide 4MZH ; 2.204 ; Crystal structure of human Spindlin1 bound to histone H3(K4me3-R8me2s) peptide 4MZG ; 1.698 ; Crystal structure of human Spindlin1 bound to histone H3K4me3 peptide 4H75 ; 2.098 ; Crystal structure of human Spindlin1 in complex with a histone H3K4(me3) peptide 5Y5W ; 3.3 ; Crystal structure of human Spindlin1 in complex with a histone H4K20(me3) peptide 8GTX ; 1.8 ; Crystal Structure of human Spindlin1-HBx complex 5A1H ; 2.0 ; Crystal structure of human Spindlin3 3F2O ; 2.05 ; Crystal Structure of human splA/ryanodine receptor domain and SOCS box containing 1 (SPSB1) in complex with a 20-residue VASA peptide 3EMW ; 1.8 ; Crystal Structure of human splA/ryanodine receptor domain and SOCS box containing 2 (SPSB2) in complex with a 20-residue VASA peptide 3CW1 ; 5.493 ; Crystal Structure of Human Spliceosomal U1 snRNP 3GIX ; 1.33 ; Crystal structure of human splicing factor dim2 4IN0 ; 1.327 ; Crystal Structure of human splicing factor dim2/TXNL4B 5I7J ; 2.544 ; Crystal Structure of Human SPLUNC1 Disulfide Mutant M3 (I76C, V214C) 5I7K ; 2.552 ; Crystal Structure of Human SPLUNC1 Dolphin Mutant D1 (G58A, S61A, G62E, G63D, G66D, I67T) 4KGH ; 2.806 ; Crystal Structure of human splunc1 lacking the secretion signal sequence 2YYO ; 2.0 ; Crystal structure of human SPRY domain 6JKJ ; 1.9 ; Crystal structure of human SPSB2 in the apo-state 4Z2M ; 2.981 ; Crystal structure of human SPT16 Mid-AID/H3-H4 tetramer FACT Histone complex 5E5B ; 1.84 ; Crystal structure of Human Spt16 N-terminal domain 1EZF ; 2.15 ; CRYSTAL STRUCTURE OF HUMAN SQUALENE SYNTHASE 2ZV6 ; 2.7 ; Crystal structure of human squamous cell carcinoma antigen 1 5MXX ; 1.75 ; Crystal structure of human SR protein kinase 1 (SRPK1) in complex with compound 1 4WUA ; 2.0 ; Crystal structure of human SRPK1 complexed to an inhibitor SRPIN340 6APJ ; 3.1 ; Crystal Structure of human ST6GALNAC2 6APL ; 2.35 ; Crystal Structure of human ST6GALNAC2 in complex with CMP 6B25 ; 2.39 ; Crystal structure of human STAC1 Tandem SH3 Domains (288-402) 6B26 ; 1.2 ; Crystal structure of human STAC2 Tandem SH3 Domains (296-411) 6B27 ; 1.73 ; Crystal structure of human STAC2 Tandem SH3 Domains (296-411) in complex with a CaV1.1 II-III loop peptide 6B28 ; 2.55 ; Crystal structure of human STAC2 Tandem SH3 Domains Q347I (296-411) 3LDZ ; 2.6 ; Crystal structure of human STAM1 VHS domain in complex with ubiquitin 6SER ; 2.299 ; Crystal structure of human STARD10 8D3F ; 2.97 ; Crystal structure of human STAT1 in complex with the repeat region from Toxoplasma protein TgIST 2JFL ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN STE20-LIKE KINASE (DIPHOSPHORYLATED FORM) BOUND TO 5- AMINO-3-((4-(AMINOSULFONYL)PHENYL)AMINO)-N-(2,6- DIFLUOROPHENYL)-1H-1,2,4-TRIAZOLE-1-CARBOTHIOAMIDE 2JFM ; 2.85 ; CRYSTAL STRUCTURE OF HUMAN STE20-LIKE KINASE (UNLIGANDED FORM) 8A5J ; 2.123 ; Crystal structure of Human STE20-like kinase 1, MST1 in complex with compound XMU-MP-1 2UV2 ; 2.3 ; Crystal Structure Of Human Ste20-Like Kinase Bound To 4-(4-(5- Cyclopropyl-1H-pyrazol-3-ylamino)-quinazolin-2-ylamino)-phenyl)- acetonitrile 2J51 ; 2.1 ; Crystal structure of Human STE20-like kinase bound to 5-Amino-3-((4-(aminosulfonyl)phenyl)amino) -N-(2,6-difluorophenyl)-1H-1,2,4-triazole- 1-carbothioamide 8SLS ; 1.71 ; Crystal structure of human STEP (PTPN5) at cryogenic temperature (100 K) and ambient pressure (0.1 MPa) 8SLU ; 1.84 ; Crystal structure of human STEP (PTPN5) at cryogenic temperature (100 K) and high pressure (205 MPa) 8SLT ; 1.96 ; Crystal structure of human STEP (PTPN5) at physiological temperature (310 K) and ambient pressure (0.1 MPa) 6Z1W ; 2.48 ; Crystal structure of human steroid carrier protein SL (SCP-2L) mutant A100C 6Z1X ; 2.09 ; Crystal structure of human steroid carrier protein SL (SCP-2L) mutant V83C 8SBI ; 2.73 ; Crystal structure of human sterol 14 alpha-demethylase (CYP51) in the ligand-free state 6MX3 ; 1.362 ; Crystal structure of human STING (G230A, H232R, R293Q) in complex with Compound 1 6MXE ; 2.47 ; Crystal structure of human STING (G230A, H232R, R293Q) in complex with Compound 18 6MX0 ; 1.73 ; Crystal structure of human STING apoprotein (G230A, H232R, R293Q) 4EMT ; 1.5 ; Crystal Structure of human STING bound to c-di-GMP 7X9Q ; 2.4 ; Crystal structure of human STING complexed with compound BSP16 7X9P ; 2.7 ; Crystal structure of human STING complexed with compound BSP17 4F5Y ; 2.396 ; Crystal structure of human STING CTD complex with C-di-GMP 6XNP ; 1.77 ; Crystal Structure of Human STING CTD complex with SR-717 8P01 ; 2.094 ; Crystal structure of human STING ectodomain in complex with BI 7446, a potent cyclic dinucleotide STING agonist with broad-spectrum variant activity for the treatment of cancer 7ZXB ; 3.0 ; Crystal structure of human STING in complex with 3',3'-c-(2'dAMP-2'F,2'dAMP) 8A2X ; 3.0 ; Crystal structure of human STING in complex with 3',3'-c-(2'F,2'dAMP(S)-2'F,2'dAMP(S)) 7ZKU ; 1.7 ; Crystal structure of human STING in complex with 3',3'-c-(2'F,2'dAMP-2'dGMP) 7ZV0 ; 2.31 ; Crystal structure of human STING in complex with 3',3'-c-(2'F,2'dAMP-2'F,2'dAMP) 7ZVK ; 2.83 ; Crystal structure of human STING in complex with 3',3'-c-(2'F,2'dAMP-IMP) 7ZWL ; 2.0 ; Crystal structure of human STING in complex with 3',3'-c-di-(2'F,2'dAMP) 5BQX ; 2.0 ; Crystal structure of human STING in complex with 3'2'-cGAMP 7Q3B ; 2.55734 ; Crystal structure of human STING in complex with 3'3'-c-(2'F,2'dA-isonucA)MP 8B2J ; 2.174 ; Crystal structure of human STING in complex with ADU-S100 7Q85 ; 2.359 ; Crystal structure of human STING in complex with MD1193 8P45 ; 3.23 ; Crystal structure of human STING in complex with the agonist MD1202D 8ORW ; 2.95 ; Crystal structure of human STING in complex with the agonist MD1203 7SSM ; 1.96 ; Crystal structure of human STING R232 in complex with compound 11 4N6J ; 2.001 ; Crystal structure of human Striatin-3 coiled coil domain 4PJU ; 3.05 ; crystal structure of human Stromal Antigen 2 (SA2) in complex with Sister Chromatid Cohesion protein 1 (Scc1) 4PK7 ; 2.95 ; crystal structure of human Stromal Antigen 2 (SA2) in complex with Sister Chromatid Cohesion protein 1 (Scc1) with bound MES, native proteins 4PJW ; 2.85 ; crystal structure of human Stromal Antigen 2 (SA2) in complex with Sister Chromatid Cohesion protein 1 (Scc1), with bound MES 6THA ; 2.4 ; Crystal structure of human sugar transporter GLUT1 (SLC2A1) in the inward conformation 6OI5 ; 2.811 ; Crystal structure of human Sulfide Quinone Oxidoreductase 6OIB ; 2.03 ; Crystal structure of human Sulfide Quinone Oxidoreductase in complex with coenzyme Q 6WH6 ; 2.25 ; Crystal structure of human sulfide quinone oxidoreductase in complex with coenzyme Q (cyanide soaked) 6OI6 ; 2.56 ; Crystal structure of human Sulfide Quinone Oxidoreductase in complex with coenzyme Q (sulfide soaked) 6OIC ; 2.21 ; Crystal structure of human Sulfide Quinone Oxidoreductase in complex with coenzyme Q (sulfite soaked) 8DHK ; 2.3 ; Crystal structure of human Sulfide Quinone Oxidoreductase K207E 1XW3 ; 1.65 ; Crystal Structure of Human Sulfiredoxin (Srx) 1XW4 ; 2.0 ; Crystal Structure of Human Sulfiredoxin (Srx) in Complex with ADP 3CYI ; 1.8 ; Crystal Structure of Human Sulfiredoxin (Srx) in Complex with ATP:Mg2+ 2REO ; 2.651 ; Crystal structure of human sulfotransferase 1C3 (Sult1C3) in complex with PAP 2A3R ; 2.6 ; Crystal Structure of Human Sulfotransferase SULT1A3 in Complex with Dopamine and 3-Phosphoadenosine 5-Phosphate 3BFX ; 1.8 ; Crystal structure of human sulfotransferase SULT1C1 in complex with PAP 3U3M ; 2.3 ; Crystal structure of Human SULT1A1 bound to PAP and 3-Cyano-7-hydroxycoumarin 3U3O ; 2.0 ; Crystal structure of Human SULT1A1 bound to PAP and two 3-Cyano-7-hydroxycoumarin 5FQ2 ; 2.201 ; Crystal structure of human SUMO E1 UFD domain in complex with Ubc9 in a P422 space group. 4W5V ; 2.5 ; Crystal structure of Human SUMO E2-conjugating enzyme (Ubc9) in complex with E1-activating enzyme (Uba2) ubiquitin fold domain (Ufd) 1WM2 ; 1.6 ; Crystal structure of human SUMO-2 protein 1WM3 ; 1.2 ; Crystal structure of human SUMO-2 protein 7XX3 ; 1.9 ; Crystal structure of human Superoxide Dismutase (SOD1) in complex with a fungal metabolite molecule, Phialomustin B (PB) 5YTO ; 1.9 ; Crystal Structure of human Superoxide Dismutase I (hSOD1) in complex with a napthalene-catechol linked compound. 4KM9 ; 3.19 ; Crystal structure of human Suppressor of Fused 3UEF ; 2.45 ; Crystal structure of human Survivin bound to histone H3 (C2 space group). 3UED ; 2.7 ; Crystal structure of human Survivin bound to histone H3 phosphorylated on threonine-3 (C2 space group). 3UEC ; 2.18 ; Crystal structure of human Survivin bound to histone H3 phosphorylated on threonine-3. 7LBO ; 2.5 ; Crystal structure of human Survivin bound to histone H3 T3phK4me1 peptide 7LBQ ; 2.69 ; Crystal structure of human Survivin bound to histone H3 T3phK4me2 peptide 7LBK ; 2.7 ; Crystal structure of human Survivin bound to histone H3 T3phK4me3 peptide 7LBP ; 2.6 ; Crystal structure of human Survivin bound to histone H3T3phK4ac peptide 3UEI ; 2.7 ; Crystal structure of human Survivin E65A mutant 3UEH ; 2.6 ; Crystal structure of human Survivin H80A mutant 3UII ; 2.6 ; crystal structure of human Survivin in complex with H3(1-10) peptide 3UIH ; 2.4 ; crystal structure of human Survivin in complex with Smac/DIABLO(1-15) peptide 3UIG ; 2.4 ; crystal structure of human Survivin in complex with T3 phosphorylated H3(1-15) peptide 3UEG ; 2.8 ; Crystal structure of human Survivin K62A mutant 3UEE ; 2.61 ; Crystal structure of human Survivin K62A mutant bound to N-terminal histone H3 3UIJ ; 2.705 ; Crystal structure of human Survivin K62Y/H80W mutant in complex with Smac/DIABLO(1-15) peptide 3UIK ; 2.701 ; crystal structure of human Survivin mutant K62Y/H80W in complex with H3(1-10) peptide 7W1R ; 3.2 ; Crystal structure of human Suv3 monomer 4A27 ; 2.1 ; Crystal structure of human synaptic vesicle membrane protein VAT-1 homolog-like protein 4CPC ; 2.24 ; Crystal structure of human synaptonemal complex protein SYCP3 6TZ3 ; 1.17 ; Crystal Structure of Human Synaptotagmin 1 C2B without Ca2+ 5H4Y ; 1.9 ; Crystal structure of human synaptotagmin 5 C2A domain 6RX1 ; 2.1 ; Crystal structure of human syncytin 1 in post-fusion conformation 6RX3 ; 2.2 ; Crystal structure of human syncytin 2 in post-fusion conformation 5HA6 ; 2.0006 ; Crystal structure of human syncytin-1 fusion subunit 5DZO ; 1.301 ; Crystal structure of human T-cell immunoglobulin and mucin domain protein 1 2B7F ; 2.6 ; Crystal structure of human T-cell leukemia virus protease, a novel target for anti-cancer design 1WSR ; 2.0 ; Crystal Structure of Human T-protein of Glycine Cleavage System 1WSV ; 2.6 ; Crystal Structure of Human T-protein of Glycine Cleavage System 8AM0 ; 2.818 ; Crystal structure of human T1061E PI3Kalpha in complex with its regulatory subunit and the inhibitor GDC-0077 (Inavolisib) 5UJI ; 2.79 ; Crystal structure of human T2-Tryptophanyl-tRNA synthetase with H130R mutation 8GW3 ; 2.05 ; Crystal structure of human TAK1 kinase domain fused with TAB1 5JGB ; 2.8 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 10 5JGA ; 2.0 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 11c 5JGD ; 3.101 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 12 5GJD ; 2.79 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 2 5GJF ; 2.89 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 3 5GJG ; 2.61 ; Crystal structure of human TAK1/TAB1 fusion protein in complex with ligand 4 2RF5 ; 2.3 ; Crystal structure of human tankyrase 1- catalytic PARP domain 3U9Y ; 2.3 ; Crystal structure of human tankyrase 2 catalytic domain in complex with olaparib 4BUU ; 1.6 ; Crystal structure of human tankyrase 2 in complex with (4-(4-oxo-3,4- dihydroquinazolin-2-yl)phenyl)methanesulfonamide 4PNT ; 1.6 ; Crystal Structure of human Tankyrase 2 in complex with 1,5-IQD. 4UVU ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 1-((4-(5- methyl-1-oxo-1,2-dihydroisoquinolin-3-yl)phenyl)methyl)pyrrolidin-1- ium 4UX4 ; 1.8 ; Crystal structure of human tankyrase 2 in complex with 1-methyl-7-(4- methylphenyl)-5-oxo-5,6-dihydro-1,6-naphthyridin-1-ium 4W5I ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 1-methyl-7-phenyl-1,2,3,4,5,6-hexahydro-1,6- naphthyridin-5-one 4BUF ; 2.5 ; Crystal structure of human tankyrase 2 in complex with 2-(4- acetylphenyl)-3,4-dihydroquinazolin-4-one 4BU6 ; 1.8 ; Crystal structure of human tankyrase 2 in complex with 2-(4- aminophenyl)-3,4-dihydroquinazolin-4-one 4BU7 ; 2.05 ; Crystal structure of human tankyrase 2 in complex with 2-(4- bromophenyl)-3,4-dihydroquinazolin-4-one 4BU5 ; 1.8 ; Crystal structure of human tankyrase 2 in complex with 2-(4- hydroxyphenyl)-3,4-dihydroquinazolin-4-one 4BU9 ; 1.65 ; Crystal structure of human tankyrase 2 in complex with 2-(4- methoxyphenyl)-3,4-dihydroquinazolin-4-one 4BUW ; 1.85 ; Crystal structure of human tankyrase 2 in complex with 2-(4-(2-oxo-1, 3-oxazolidin-3-yl)phenyl)-3,4-dihydroquinazolin-4-one 4BUS ; 1.9 ; Crystal structure of human tankyrase 2 in complex with 2-(4-(4-oxo-3, 4-dihydroquinazolin-2-yl)phenoxy)acetic acid 4BUA ; 1.85 ; Crystal structure of human tankyrase 2 in complex with 2-(4-(methylsulfanyl)phenyl)-3,4-dihydroquinazolin-4-one 4BUD ; 2.5 ; Crystal structure of human tankyrase 2 in complex with 2-(4-tert- butylphenyl)-1,4-dihydroquinazolin-4-one 4BU3 ; 2.15 ; Crystal structure of human tankyrase 2 in complex with 2-phenyl-3,4- dihydroquinazolin-4-one 4TJU ; 1.57 ; Crystal Structure of human Tankyrase 2 in complex with 3,4-CPQ-5-C. 4BUX ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 3-((4-(4-oxo-3, 4-dihydroquinazolin-2-yl)phenyl)methyl)imidazolidine-2,4-dione 4UVX ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 3-(4- chlorophenyl)-5-fluoro-1,2-dihydroisoquinolin-1-one 4UVY ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 3-(4- chlorophenyl)-5-methoxy-1,2- dihydroisoquinolin-1-one 4UVV ; 1.9 ; Crystal structure of human tankyrase 2 in complex with 3-(4- chlorophenyl)-5-methyl-1,2-dihydroisoquinolin-1-one 4PML ; 1.87 ; Crystal Structure of human Tankyrase 2 in complex with 3-amino-benzamide. 4BUE ; 1.6 ; Crystal structure of human tankyrase 2 in complex with 3-methyl-N-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl)butanamide 4KZU ; 2.1 ; Crystal structure of human tankyrase 2 in complex with 4' -bromo flavone 4KZQ ; 2.25 ; Crystal structure of human tankyrase 2 in complex with 4' -hydroxy flavone 4KZL ; 2.0 ; Crystal structure of human tankyrase 2 in complex with 4'-fluoro flavone 4BS4 ; 1.89 ; Crystal structure of human tankyrase 2 in complex with 4'-isopropylflavone 4UVW ; 2.1 ; Crystal structure of human tankyrase 2 in complex with 4,5-dimethyl-3- phenyl-1,2-dihydroisoquinolin-1-one 4BU8 ; 1.85 ; Crystal structure of human tankyrase 2 in complex with 4-(4-oxo-1,4- dihydroquinazolin-2-yl)benzonitrile 4BUT ; 1.9 ; Crystal structure of human tankyrase 2 in complex with 4-(4-oxo-3,4- dihydroquinazolin-2-yl)benzene-1-sulfonamide 4L09 ; 2.05 ; Crystal structure of human tankyrase 2 in complex with 4-(4-oxo-4H-chromen-2-yl)benzoic acid 4PNN ; 1.65 ; Crystal Structure of human Tankyrase 2 in complex with 4HQN. 4UVL ; 2.0 ; Crystal structure of human tankyrase 2 in complex with 5-amino-1,2- dihydroisoquinolin-1-one 4UVP ; 1.75 ; Crystal structure of human tankyrase 2 in complex with 5-amino-3- ethyl-1,2-dihydroisoquinolin-1-one 4UVS ; 2.0 ; Crystal structure of human tankyrase 2 in complex with 5-amino-3- pentyl-1,2-dihydroisoquinolin-1-one 4UVZ ; 1.6 ; Crystal structure of human tankyrase 2 in complex with 5-amino-3- phenyl-1,2-dihydroisoquinolin-1-one 4UVN ; 2.2 ; Crystal structure of human tankyrase 2 in complex with 5-amino-3-(4- chlorophenyl)-1,2-dihydroisoquinolin-1-one 4UVO ; 1.85 ; Crystal structure of human tankyrase 2 in complex with 5-amino-3-(4- methoxyphenyl)-1,2-dihydroisoquinolin-1-one 4UVT ; 1.95 ; Crystal structure of human tankyrase 2 in complex with 5-amino-4- methyl-1,2-dihydroisoquinolin-1-one 4BUY ; 1.9 ; Crystal structure of human tankyrase 2 in complex with 5-methyl-5-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl)imidazolidine-2,4-dione 4PNQ ; 1.85 ; Crystal Structure of human Tankyrase 2 in complex with 5AIQ. 4AVU ; 2.4 ; Crystal structure of human tankyrase 2 in complex with 6(5H)- phenanthridinone 3UA9 ; 2.15 ; Crystal structure of human tankyrase 2 in complex with a selective inhibitor 4TJY ; 1.9 ; Crystal Structure of human Tankyrase 2 in complex with ABT-888. 4TKG ; 1.95 ; Crystal Structure of human Tankyrase 2 in complex with AZD2281. 4TKI ; 2.15 ; Crystal Structure of human Tankyrase 2 in complex with BSI-201. 4TK0 ; 1.65 ; Crystal Structure of human Tankyrase 2 in complex with DPQ. 4BJ9 ; 2.05 ; Crystal structure of human tankyrase 2 in complex with EB-47 4TK5 ; 2.02 ; Crystal Structure of human Tankyrase 2 in complex with EB47. 4PNS ; 1.65 ; Crystal Structure of human Tankyrase 2 in complex with INH2BP. 4TKF ; 2.6 ; Crystal Structure of human Tankyrase 2 in complex with IWR-1. 5ADQ ; 2.1 ; Crystal structure of human tankyrase 2 in complex with JW55 4BUI ; 1.95 ; Crystal structure of human tankyrase 2 in complex with methyl 4-(4- oxo-3,4-dihydroquinazolin-2-yl)benzoate 4BUV ; 1.8 ; Crystal structure of human tankyrase 2 in complex with N-(4-(4-oxo-3, 4-dihydroquinazolin-2-yl)phenyl)thiophene-2-carboxamide 4PNM ; 2.19 ; Crystal Structure of human Tankyrase 2 in complex with Nu1025. 5AEH ; 1.85 ; Crystal structure of human tankyrase 2 in complex with OD332 5NOB ; 1.85 ; Crystal structure of human tankyrase 2 in complex with OD336 5ADR ; 2.1 ; Crystal structure of human tankyrase 2 in complex with OD38 5ADS ; 1.8 ; Crystal structure of human tankyrase 2 in complex with OD39 5ADT ; 2.15 ; Crystal structure of human tankyrase 2 in complex with OD73 4BJB ; 2.3 ; Crystal structure of human tankyrase 2 in complex with PJ-34 4TJW ; 1.7 ; Crystal Structure of human Tankyrase 2 in complex with PJ-34. 4BJC ; 2.2 ; Crystal structure of human tankyrase 2 in complex with Rucaparib 4UFU ; 2.1 ; Crystal structure of human tankyrase 2 in complex with TA-12 4UFY ; 1.7 ; Crystal structure of human tankyrase 2 in complex with TA-13 4UHG ; 1.7 ; Crystal structure of human tankyrase 2 in complex with TA-21 4UI3 ; 2.0 ; Crystal structure of human tankyrase 2 in complex with TA-26 4UI4 ; 2.4 ; Crystal structure of human tankyrase 2 in complex with TA-29 4UI5 ; 1.65 ; Crystal structure of human tankyrase 2 in complex with TA-41 4UI6 ; 1.8 ; Crystal structure of human tankyrase 2 in complex with TA-47 4UI7 ; 1.8 ; Crystal structure of human tankyrase 2 in complex with TA-49 4UI8 ; 2.05 ; Crystal structure of human tankyrase 2 in complex with TA-55 5FPF ; 2.6 ; Crystal structure of human tankyrase 2 in complex with TA-91 5FPG ; 2.75 ; Crystal structure of human tankyrase 2 in complex with TA-92 4AVW ; 2.15 ; Crystal structure of human tankyrase 2 in complex with TIQ-A 4PNR ; 1.71 ; Crystal Structure of human Tankyrase 2 in complex with TIQ-A. 4BFP ; 2.4 ; Crystal structure of human tankyrase 2 in complex with WIKI4 5ETY ; 2.9 ; Crystal Structure of human Tankyrase-1 bound to K-756 5C5P ; 1.75 ; CRYSTAL STRUCTURE OF HUMAN TANKYRASE-2 IN COMPLEX WITH A PYRANOPYRIDONE INHIBITOR 5C5Q ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN TANKYRASE-2 IN COMPLEX WITH A PYRANOPYRIDONE INHIBITOR 5C5R ; 1.55 ; CRYSTAL STRUCTURE OF HUMAN TANKYRASE-2 IN COMPLEX WITH A PYRANOPYRIDONE INHIBITOR 6BDN ; 1.5 ; Crystal structure of human TAO3 kinase binding ADP 2A8I ; 2.0 ; Crystal Structure of human Taspase1 2A8J ; 1.9 ; Crystal Structure of human Taspase1 (acivated form) 2A8L ; 2.0 ; Crystal structure of Human Taspase1 (T234A mutant) 2A8M ; 2.6 ; Crystal Structure of Human Taspase1 (T234S mutant) 8EFG ; 1.5 ; Crystal structure of human TATDN1 bound to dAMP and two zinc ions 2QFZ ; 2.1 ; Crystal structure of human TBC1 domain family member 22A 3QWL ; 1.9 ; Crystal structure of human TBC1 domain family member 7 3QYE ; 2.2 ; Crystal Structure of Human TBC1D1 RabGAP domain 2X6V ; 2.2 ; Crystal structure of human TBX5 in the DNA-bound and DNA-free form 2X6U ; 1.9 ; Crystal structure of human TBX5 in the DNA-free form 4WWK ; 3.1 ; Crystal structure of human TCR Alpha Chain-TRAV12-3, Beta Chain-TRBV6-5, Antigen-presenting molecule CD1d, and Beta-2-microglobulin 4WW1 ; 1.38 ; Crystal structure of human TCR Alpha Chain-TRAV21-TRAJ8 and Beta Chain-TRBV7-8 4WW2 ; 2.48 ; Crystal structure of human TCR Alpha Chain-TRAV21-TRAJ8, Beta Chain-TRBV7-8, Antigen-presenting glycoprotein CD1d, and Beta-2-microglobulin 5TI9 ; 2.5 ; Crystal structure of human TDO in complex with Trp and dioxygen, Northeast Structural Genomics Consortium Target HR6161 5TIA ; 2.441 ; Crystal structure of human TDO in complex with Trp, Northeast Structural Genomics Consortium Target HR6161 6A4I ; 2.65 ; Crystal Structure of human TDO inhibitor complex 8QV7 ; 2.66 ; Crystal structure of human TDO with alpha-methyl-L-tryptophan 6T4B ; 2.55 ; CRYSTAL STRUCTURE OF HUMAN TDP-43 N-TERMINAL DOMAIN AT 2.55 A RESOLUTION 4IUF ; 2.752 ; Crystal Structure of Human TDP-43 RRM1 Domain in Complex with a Single-stranded DNA 4Y0F ; 2.648 ; Crystal Structure of Human TDP-43 RRM1 Domain in Complex with an Unmodified Single-stranded DNA 4Y00 ; 3.0 ; Crystal Structure of Human TDP-43 RRM1 Domain with D169G Mutation in Complex with an Unmodified Single-stranded DNA 5M9N ; 1.95 ; Crystal structure of human TDRD1 extended Tudor domain in complex with a symmetrically dimethylated E2F peptide 4RE1 ; 2.2 ; Crystal structure of human TEAD1 and disulfide-engineered YAP 8CUH ; 2.4 ; Crystal structure of human TEAD2 complexed with its inhibitor TM2. 6VAH ; 2.11 ; Crystal structure of human TEAD2 transcription factor in complex with Flufenamic acid derivative 6E5G ; 2.43 ; Crystal structure of human TEAD2-Yap binding domain covalently bound to an allosteric regulator 1XKI ; 1.8 ; Crystal structure of human tear lipocalin/von Ebners gland protein 6XCL ; 2.7 ; Crystal Structure of human telomeric DNA G-quadruplex in complex with a novel platinum(II) complex. 6J07 ; 3.298 ; Crystal structure of human TERB2 and TERB1 6F9U ; 1.9 ; Crystal structure of human testis Angiotensin-1 converting enzyme in complex with Sampatrilat-Asp. 6F9T ; 1.6 ; Crystal structure of human testis Angiotensin-1 converting enzyme in complex with Sampatrilat. 4C2O ; 1.8 ; Crystal structure of human testis angiotensin-I converting enzyme mutant D465T 4C2N ; 2.59 ; Crystal structure of human testis angiotensin-I converting enzyme mutant E403R 4C2Q ; 2.4 ; Crystal structure of human testis angiotensin-I converting enzyme mutant R522K 4C2P ; 1.99 ; Crystal structure of human testis angiotensin-I converting enzyme mutant R522K in complex with captopril 4C2R ; 2.3 ; Crystal structure of human testis angiotensin-I converting enzyme mutant R522Q 4A60 ; 1.53 ; Crystal structure of human testis-specific fatty acid binding protein 9 (FABP9) 4NPN ; 1.633 ; Crystal structure of human tetra-SUMO-2 5TCX ; 2.955 ; Crystal structure of human tetraspanin CD81 7BPR ; 1.95 ; Crystal structure of human TEX101 8J0K ; 2.1 ; Crystal structure of human TFAP2A in complex with DNA 7Y62 ; 2.0 ; Crystal structure of human TFEB HLHLZ domain 1M9Z ; 1.05 ; CRYSTAL STRUCTURE OF HUMAN TGF-BETA TYPE II RECEPTOR LIGAND BINDING DOMAIN 7RCO ; 2.9 ; Crystal structure of human TGF-beta-2 bound to 4A11.V2 Fab 4AE8 ; 1.594 ; Crystal structure of human THEM4 4AE7 ; 1.45 ; Crystal structure of human THEM5 3S4Y ; 1.8 ; Crystal structure of human thiamin pyrophosphokinase 1 3BHD ; 1.5 ; Crystal structure of human thiamine triphosphatase (THTPA) 1S4B ; 2.0 ; Crystal structure of human thimet oligopeptidase. 4XJV ; 2.8 ; Crystal structure of human thioesterase 2 2H4U ; 2.2 ; Crystal Structure of Human Thioesterase Superfamily Member 2 3M9J ; 1.1 ; Crystal structure of human thioredoxin C69/73S double mutant, reduced form 3M9K ; 1.5 ; Crystal structure of human thioredoxin C69/73S double-mutant, oxidized form 4OO4 ; 0.97 ; Crystal Structure of Human Thioredoxin Mutant 2CFY ; 2.7 ; Crystal structure of human thioredoxin reductase 1 2ZZ0 ; 2.8 ; Crystal structure of human thioredoxin reductase I (SeCys 498 Cys) 2ZZB ; 3.2 ; Crystal structure of human thioredoxin reductase I and terpyridine platinum(II) 8AGF ; 3.4 ; Crystal structure of human Thiosulfate sulfurtransferase amino acids 2-297 4HWT ; 2.3 ; Crystal structure of human Threonyl-tRNA synthetase bound to a novel inhibitor 6V64 ; 2.29 ; Crystal structure of human thrombin bound to ppack with tryptophans replaced by 5-F-tryptophan 6PXQ ; 2.8 ; Crystal structure of human thrombin mutant D194A 6PXJ ; 1.7 ; Crystal structure of human thrombin mutant I16T 3JZ2 ; 2.4 ; Crystal structure of human thrombin mutant N143P in E* form 3JZ1 ; 1.6 ; Crystal structure of human thrombin mutant N143P in E:Na+ form 3LU9 ; 1.8 ; Crystal structure of human thrombin mutant S195A in complex with the extracellular fragment of human PAR1 6P9U ; 3.3 ; Crystal structure of human thrombin mutant W215A 3HKJ ; 2.6 ; Crystal structure of human thrombin mutant W215A/E217A in complex with the extracellular fragment of human PAR1 4TTV ; 2.8 ; Crystal structure of human ThrRS complexing with a bioengineered macrolide BC194 1XBT ; 2.4 ; Crystal Structure of Human Thymidine Kinase 1 1UOU ; 2.11 ; Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor 3EGY ; 2.18 ; Crystal Structure of Human Thymidyalte Synthase A191K with Loop 181-197 stabilized in the inactive conformation 3EHI ; 2.0 ; Crystal Structure of Human Thymidyalte Synthase M190K with Loop 181-197 stabilized in the inactive conformation 1NN3 ; 1.55 ; Crystal structure of human thymidylate kinase with d4TMP + ADP 1NN5 ; 1.5 ; Crystal structure of human thymidylate kinase with d4TMP + AppNHp 1NN0 ; 1.6 ; Crystal structure of human thymidylate kinase with ddTMP and ADP 1NN1 ; 1.9 ; Crystal structure of human thymidylate kinase with ddTMP and AppNHp 1NMX ; 1.7 ; Crystal structure of human thymidylate kinase with FLTMP and ADP 1NMY ; 1.6 ; Crystal structure of human thymidylate kinase with FLTMP and AppNHp 1NMZ ; 1.75 ; Crystal structure of human thymidylate kinase with NH2TMP and AppNHp 1HZW ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN THYMIDYLATE SYNTHASE 6QYQ ; 2.25 ; Crystal structure of human thymidylate synthase (hTS) variant R175C 3N5E ; 2.26 ; Crystal Structure of human thymidylate synthase bound to a peptide inhibitor 6PF5 ; 2.39 ; Crystal structure of human thymidylate synthase Delta (7-29) in complex with dUMP and 2-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-methoxyphenyl)acetic acid 6PF4 ; 2.854 ; Crystal structure of human thymidylate synthase Delta (7-29) in complex with dUMP and 2-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)phenyl)acetic acid 6PF3 ; 2.391 ; Crystal structure of human thymidylate synthase Delta (7-29) in complex with dUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-chlorobenzoic acid 6OJU ; 2.884 ; Crystal structure of human thymidylate synthase Delta (7-29) in complex with dUMP and 2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidine-methyl-phenyl-D-glutamic acid 6OJV ; 2.593 ; Crystal structure of human thymidylate synthase delta(7-29) in complex with dUMP and 2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidine-methyl-phenyl-L-glutamic acid 4O1X ; 2.32 ; Crystal structure of human thymidylate synthase double mutant C195S-Y202C 4O1U ; 2.26 ; Crystal structure of human thymidylate synthase mutant Y202C 4JEF ; 2.311 ; Crystal structure of human thymidylate synthase Y202A in inactive conformation. 1I00 ; 2.5 ; CRYSTAL STRUCTURE OF HUMAN THYMIDYLATE SYNTHASE, TERNARY COMPLEX WITH DUMP AND TOMUDEX 3UO7 ; 3.002 ; Crystal structure of Human Thymine DNA Glycosylase Bound to Substrate 5-carboxylcytosine 3UOB ; 3.011 ; Crystal structure of Human Thymine DNA Glycosylase Bound to Substrate Analog 2'-deoxy-2'-beta-fluoro-cytidine 5J3E ; 2.6 ; Crystal Structure of Human THYN1 protein in complex with 5-methylcytosine containing DNA 1Q4X ; 2.8 ; Crystal Structure of Human Thyroid Hormone Receptor beta LBD in complex with specific agonist GC-24 4X30 ; 1.55 ; Crystal structure of human Thyroxine-binding globulin complexed with thyroine at 1.55 Angstrom resolution 7VYT ; 1.53 ; Crystal structure of human TIGIT(23-129) in complex with the scFv fragment of anti-TIGIT antibody MG1131 2CW9 ; 1.9 ; Crystal structure of human Tim44 C-terminal domain 4FZ5 ; 3.6 ; Crystal Structure of Human TIRAP TIR-domain 3Q5O ; 2.05 ; Crystal structure of human titin domain M10 2QE3 ; 2.5 ; Crystal structure of human tl1a extracellular domain 2RJK ; 2.3 ; Crystal Structure of Human TL1A Extracellular Domain C95S Mutant 2RJL ; 2.05 ; Crystal structure of human TL1A extracellular domain C95S/C135S mutant 4OM3 ; 2.855 ; Crystal structure of human TLE1 Q-domain residues 20-156 6NIH ; 2.3 ; Crystal structure of human TLR1 4G8A ; 2.4 ; Crystal structure of human TLR4 polymorphic variant D299G and T399I in complex with MD-2 and LPS 3W3G ; 2.3 ; Crystal structure of human TLR8 (unliganded form) 6V9U ; 2.65 ; Crystal structure of human TLR8 ectodomain bound to small molecule antagonist 14c 7RC9 ; 2.76 ; Crystal structure of human TLR8 ectodomain bound to small molecule antagonist 21 6KYA ; 2.89 ; Crystal structure of human TLR8 in complex TH1027 3W3K ; 2.3 ; Crystal structure of human TLR8 in complex with CL075 3W3J ; 2.0 ; Crystal structure of human TLR8 in complex with CL097 6TY5 ; 2.793 ; Crystal structure of human TLR8 in complex with Compound 11 7R53 ; 3.121 ; Crystal structure of human TLR8 in complex with Compound 15 7R52 ; 2.943 ; Crystal structure of human TLR8 in complex with Compound 2 8PFI ; 2.785 ; Crystal structure of human TLR8 in complex with compound 34 7R54 ; 2.836 ; Crystal structure of human TLR8 in complex with Compound 4 7CRF ; 2.89 ; Crystal structure of human TLR8 in complex with CU-CPD107 5WYX ; 2.4 ; Crystal structure of human TLR8 in complex with CU-CPT8m 5Z14 ; 2.8 ; Crystal structure of human TLR8 in complex with CU-CPT9a 5WYZ ; 2.3 ; Crystal structure of human TLR8 in complex with CU-CPT9b 5Z15 ; 2.9 ; Crystal structure of human TLR8 in complex with CU-CPT9c 4QBZ ; 2.0 ; Crystal structure of human TLR8 in complex with DS-802 3WN4 ; 1.81 ; Crystal structure of human TLR8 in complex with DS-877 4R6A ; 2.1 ; Crystal structure of human TLR8 in complex with Hybrid-2 5AZ5 ; 2.4 ; Crystal structure of human TLR8 in complex with MB-343 5AWC ; 2.5 ; Crystal structure of human TLR8 in complex with MB-564 5AWA ; 2.2 ; Crystal structure of human TLR8 in complex with MB-568 5AWB ; 2.1 ; Crystal structure of human TLR8 in complex with N1-3-aminomethylbenzyl (meta-amine) 5AWD ; 2.05 ; Crystal structure of human TLR8 in complex with N1-4-aminomethylbenzyl (IMDQ) 4R07 ; 2.0 ; Crystal structure of human TLR8 in complex with ORN06 4R09 ; 2.62 ; Crystal structure of human TLR8 in complex with ORN06S 3W3L ; 2.33 ; Crystal structure of human TLR8 in complex with Resiquimod (R848) crystal form 1 3W3M ; 2.7 ; Crystal structure of human TLR8 in complex with Resiquimod (R848) crystal form 2 3W3N ; 2.1 ; Crystal structure of human TLR8 in complex with Resiquimod (R848) crystal form 3 4R08 ; 2.4 ; Crystal structure of human TLR8 in complex with ssRNA40 4R0A ; 1.9 ; Crystal structure of human TLR8 in complex with uridine mononucleoside 4QC0 ; 2.1 ; Crystal structure of human TLR8 in complex with XG-1-236 5HDH ; 2.6 ; Crystal structure of human TLR8 with an uncleaved Z-loop 5OC9 ; 3.2 ; Crystal Structure of human TMEM16K / Anoctamin 10 6R65 ; 3.5 ; Crystal Structure of human TMEM16K / Anoctamin 10 (Form 2) 7MEQ ; 1.95 ; Crystal structure of human TMPRSS2 in complex with Nafamostat 8DS8 ; 1.84 ; Crystal structure of human TNRC18 BAH domain in complex with H3K9me3 peptide 5CI8 ; 2.328 ; Crystal structure of human Tob in complex with inhibitor fragment 1 5CI9 ; 2.3 ; Crystal structure of human Tob in complex with inhibitor fragment 6 2Z15 ; 2.3 ; Crystal structure of human Tob1 protein 5JA4 ; 2.424 ; Crystal structure of human TONSL and MCM2 HBDs binding to a histone H3-H4 tetramer 1EJ9 ; 2.6 ; CRYSTAL STRUCTURE OF HUMAN TOPOISOMERASE I DNA COMPLEX 5ZRF ; 2.3 ; Crystal structure of human topoisomerase II beta in complex with 5-iodouridine-containing-DNA and etoposide in space group p21 5ZQF ; 3.873 ; Crystal structure of human topoisomerase II beta in complex with 5-iodouridine-containing-DNA in space group P3221 5ZEN ; 2.75 ; Crystal structure of human topoisomerase II beta in complex with DNA: a new quaternary conformation showing opening of the protein-linked DNA-gate 2I46 ; 2.7 ; Crystal structure of human TPP1 2H77 ; 2.33 ; Crystal structure of human TR alpha bound T3 in monoclinic space group 2H79 ; 1.87 ; Crystal Structure of human TR alpha bound T3 in orthorhombic space group 1N46 ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN TR BETA LIGAND-BINDING DOMAIN COMPLEXED WITH A POTENT SUBTYPE-SELECTIVE THYROMIMETIC 1D2Q ; 2.8 ; CRYSTAL STRUCTURE OF HUMAN TRAIL 7QPO ; 3.0 ; Crystal structure of human trans-3-Hydroxy-L-proline dehydratase 1F05 ; 2.45 ; CRYSTAL STRUCTURE OF HUMAN TRANSALDOLASE 5DQE ; 2.183 ; Crystal structure of human transcription factor TEAD2 in complex with bromo-fenamic acid 5DQ8 ; 2.305 ; Crystal structure of human transcription factor TEAD2 in complex with flufenamic acid 5HGU ; 2.046 ; Crystal structure of human transcription factor TEAD2 in complex with palmitate 6CTC ; 2.6 ; Crystal structure of human transferrin bound to Triferic FPC iron pyrophosphate 6OKD ; 1.85 ; Crystal Structure of human transferrin receptor in complex with a cystine-dense peptide 3LY6 ; 3.14 ; Crystal structure of human transglutaminase 2 complex with adenosine 5' Triphosphate 3OOY ; 2.05 ; Crystal structure of human Transketolase (TKT) 3BPJ ; 1.85 ; Crystal structure of human translation initiation factor 3, subunit 1 alpha 1YZ1 ; 2.0 ; Crystal structure of human translationally controlled tumour associated protein 3EBM ; 2.6 ; Crystal structure of human translationally controlled tumour associated protein (hTCTP) mutant E12V 1J1J ; 2.2 ; Crystal Structure of human Translin 4WYV ; 3.0 ; Crystal Structure of Human Translin in Open Conformation 6TP5 ; 2.25 ; Crystal structure of human Transmembrane prolyl 4-hydroxylase 1DVQ ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN 4N85 ; 1.6 ; Crystal structure of human transthyretin 4TLT ; 1.7 ; Crystal structure of human transthyretin 3A4E ; 1.7 ; Crystal structure of Human Transthyretin (E54G) 3A4F ; 1.99 ; Crystal Structure of Human Transthyretin (E54K) 3D7P ; 1.72 ; Crystal structure of human Transthyretin (TTR) at pH 4.0 3CBR ; 1.7 ; Crystal structure of human Transthyretin (TTR) at pH3.5 5DWP ; 1.2 ; Crystal Structure of human transthyretin (TTR) processed with the CrystalDirect automated mounting and cryo-cooling technology 3A4D ; 2.0 ; Crystal structure of Human Transthyretin (wild-type) 3I9P ; 1.9 ; Crystal structure of human transthyretin - wild type 4TLU ; 1.75 ; Crystal Structure of Human Transthyretin Ala108Trp Mutant 8AWI ; 1.15 ; Crystal structure of Human Transthyretin at 1.15 Angstrom resolution 1F41 ; 1.3 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN AT 1.5A RESOLUTION 2G4G ; 1.85 ; Crystal structure of human transthyretin at pH 4.6 4N86 ; 2.001 ; Crystal structure of human transthyretin complexed with glabridin 6FZL ; 1.446 ; Crystal structure of human transthyretin double mutant K35T/T119M 6FWD ; 1.576 ; Crystal structure of human transthyretin double mutant R34G/T119M at pH 5.5 4TLS ; 1.35 ; Crystal Structure of Human Transthyretin Glu92Pro Mutant 3CFT ; 1.87 ; Crystal structure of human transthyretin in complex with 1-amino-5-naphthalene sulfonate 3CFN ; 1.87 ; Crystal structure of human transthyretin in complex with 1-anilino-8-naphthalene sulfonate 5JIQ ; 1.45 ; Crystal Structure of Human Transthyretin in Complex with 2,2',4,4'-tetrahydroxybenzophenone (BP2) 6GR7 ; 1.4 ; Crystal Structure Of Human Transthyretin in complex with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) 5L4F ; 1.48 ; Crystal Structure of Human Transthyretin in Complex with 2,6-Dinitro-p-cresol (DNPC) 6GRP ; 1.6 ; Crystal Structure Of Human Transthyretin in complex with 3,5,6-trichloro-2-pyridinol (TC2P) 5L4M ; 1.581 ; Crystal Structure of Human Transthyretin in Complex with 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) 8C85 ; 1.19 ; Crystal structure of human transthyretin in complex with 3-O-methyltolcapone analogue 1 8C86 ; 1.1 ; Crystal structure of human transthyretin in complex with 3-O-methyltolcapone analogue 2 6SUH ; 1.26 ; Crystal structure of human transthyretin in complex with 3-O-methyltolcapone, a tolcapone analogue 5L4J ; 1.62 ; Crystal Structure of Human Transthyretin in Complex with 4,4'-Dihydroxydiphenyl sulfone (Bisphenol S, BPS) 7DT3 ; 1.198 ; Crystal structure of human transthyretin in complex with 4-chloro-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid 7DT5 ; 1.25 ; Crystal structure of human transthyretin in complex with 4-chloro-9-oxo-9H-xanthene-2-carboxylic acid 7EJQ ; 1.15 ; Crystal structure of human transthyretin in complex with 8-chloro-9-oxo-9H-xanthene-3-carboxylic acid 7ACU ; 1.541 ; Crystal structure of human transthyretin in complex with Benzbromarone 5L4I ; 1.45 ; Crystal Structure of Human Transthyretin in Complex with Clonixin 1DVU ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN IN COMPLEX WITH DIBENZOFURAN-4,6-DICARBOXYLIC ACID 1DVX ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN IN COMPLEX WITH DICLOFENAC 1DVT ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN IN COMPLEX WITH FLURBIPROFEN 5BOJ ; 1.75 ; Crystal Structure of Human Transthyretin in Complex with Gemfibrozil 4IK7 ; 2.1 ; Crystal structure of human transthyretin in complex with indomethacin 4IK6 ; 2.0 ; Crystal structure of human transthyretin in complex with lumiracoxib 4QXV ; 1.12 ; CRYSTAL STRUCTURE of HUMAN TRANSTHYRETIN IN COMPLEX WITH LUTEOLIN AT 1.1 A RESOLUTION 5EN3 ; 1.25 ; Crystal structure of human transthyretin in complex with luteolin-Cl at 1.25 A resolution 5IHH ; 1.35 ; Crystal structure of human transthyretin in complex with luteolin-MeO at 1.35 A resolution 1DVZ ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN IN COMPLEX WITH O-TRIFLUOROMETHYLPHENYL ANTHRANILIC ACID 5JIM ; 1.26 ; Crystal Structure of Human Transthyretin in Complex with Perfluoroktansulfonsyra (PFOS) 5JID ; 1.2 ; Crystal Structure of Human Transthyretin in Complex with Perfluorooctanoic acid (PFOA) 1DVS ; 2.0 ; CRYSTAL STRUCTURE OF HUMAN TRANSTHYRETIN IN COMPLEX WITH RESVERATROL 5HJG ; 1.4 ; Crystal Structure of Human Transthyretin in Complex with Tetrabromobisphenol A (TBBPA) 4TKW ; 1.8 ; Crystal Structure of Human Transthyretin Leu55Pro Mutant 4TNF ; 1.6 ; Crystal Structure of Human Transthyretin Lys15Trp Mutant 6FXU ; 1.359 ; Crystal structure of human transthyretin mutant T119M at pH 5.5 4TL5 ; 1.44 ; Crystal Structure of Human Transthyretin Ser85Pro Mutant 4TLK ; 1.44 ; Crystal Structure of Human Transthyretin Ser85Pro/Glu92Pro Mutant 4TNG ; 1.6 ; Crystal Structure of Human Transthyretin Thr119Met Mutant 4TM9 ; 1.7 ; Crystal Structure of Human Transthyretin Thr119Trp Mutant 4TNE ; 1.55 ; Crystal Structure of Human Transthyretin Thr119Tyr Mutant 4TL4 ; 1.75 ; Crystal Structure of Human Transthyretin Val30Met Mutant 3I9A ; 1.65 ; Crystal structure of human transthyretin variant A25T - #1 3I9I ; 1.8 ; Crystal structure of human transthyretin variant A25T - #2 3OZL ; 1.9 ; Crystal structure of human transthyretin variant A25T in complex with flufenamic acid. 3OZK ; 1.9 ; Crystal structure of human transthyretin variant A25T in complex with thyroxine (T4) 7Y6J ; 1.38 ; Crystal structure of human transthyretin variant A97S at pH 5.4 8HY4 ; 1.53 ; Crystal structure of human transthyretin variant A97S at pH 7.6 7YCQ ; 1.99 ; Crystal structure of human transthyretin variant A97S complexed with Diflunisal 7YBR ; 1.71 ; Crystal structure of human transthyretin variant A97S complexed with Tolcapone 7THA ; 1.75 ; Crystal structure of human transthyretin variant C10A/M13V 4QYA ; 1.7 ; Crystal structure of human transthyretin variant V30M in complex with luteolin 1ZD6 ; 1.9 ; Crystal structure of human transthyretin with bound chloride 1ZCR ; 1.8 ; Crystal structure of human Transthyretin with bound iodide 4Z1I ; 3.3 ; Crystal structure of human Trap1 with AMPPNP 4Z1G ; 3.1 ; Crystal structure of human Trap1 with BIIB-021 7C04 ; 1.7 ; Crystal structure of human Trap1 with DN203492 7C05 ; 2.59 ; Crystal structure of human Trap1 with DN203495 4Z1F ; 2.703 ; Crystal structure of human Trap1 with PU-H71 7C7B ; 1.5 ; Crystal structure of human TRAP1 with SJT009 7C7C ; 3.0 ; Crystal structure of human TRAP1 with SJT104 4Z1H ; 2.9 ; Crystal structure of human Trap1 with SMTIN-P01 6V1D ; 2.4 ; Crystal structure of human trefoil factor 1 6V1C ; 1.55 ; Crystal structure of human trefoil factor 3 in complex with its cognate ligand 1SMO ; 1.47 ; Crystal Structure of Human Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) at 1.47 . 8R5D ; 1.8 ; Crystal structure of human TRIM7 PRYSPRY domain 8R5C ; 1.6 ; Crystal structure of human TRIM7 PRYSPRY domain bound to (2-(1-oxoisoindolin-2-yl)-3-phenylpropanoyl)-L-glutamine 8R5B ; 1.6 ; Crystal structure of human TRIM7 PRYSPRY domain bound to (3-phenoxybenzoyl)-L-glutamine 4UNK ; 2.0 ; Crystal structure of human triosephosphate isomerase (mutant N15D) 6F00 ; 2.163 ; Crystal Structure of human tRNA dihydrouridine synthase (20) dsRBD E423A mutant 4XP7 ; 1.9 ; Crystal structure of Human tRNA dihydrouridine synthase 2 6EI8 ; 2.25 ; Crystal structure of human tRNA-dihydrouridine (20) synthase dsRBD F359A mutant 6EZA ; 2.0 ; Crystal Structure of human tRNA-dihydrouridine(20) synthase catalytic domain E294K mutant 6EZC ; 2.0 ; Crystal Structure of human tRNA-dihydrouridine(20) synthase catalytic domain E294K Q305K double mutant 6EZB ; 2.25 ; Crystal Structure of human tRNA-dihydrouridine(20) synthase catalytic domain Q305K mutant 5OC6 ; 3.2 ; Crystal structure of human tRNA-dihydrouridine(20) synthase dsRBD in complex with a 22 nucleotide dsRNA 5OC5 ; 1.893 ; Crystal structure of human tRNA-dihydrouridine(20) synthase dsRBD K419A-K420A mutant 5OC4 ; 1.71 ; Crystal structure of human tRNA-dihydrouridine(20) synthase dsRBD R361A-R362A mutant 3DH1 ; 2.8 ; Crystal structure of human tRNA-specific adenosine-34 deaminase subunit ADAT2 3OTB ; 2.95 ; Crystal structure of human tRNAHis guanylyltransferase (Thg1) - dGTP complex 3OTD ; 2.28 ; Crystal structure of human tRNAHis guanylyltransferase (Thg1)- NaI derivative 3OTE ; 2.56 ; Crystal structure of human tRNAHis guanylyltransferase (Thg1)- Native I 3OTC ; 3.01 ; Crystal structure of human tRNAHis guanylyltransferase (Thg1)- Native II 3ZWF ; 1.7 ; Crystal structure of Human tRNase Z, short form (ELAC1). 1WOU ; 1.8 ; Crystal Structure of human Trp14 3HF8 ; 1.85 ; Crystal structure of human tryoptophan hydroxylase type 1 with bound LP-533401 and Fe 3HFB ; 1.92 ; Crystal structure of human tryoptophan hydroxylase type 1 with LP-534193 1TRN ; 2.2 ; CRYSTAL STRUCTURE OF HUMAN TRYPSIN 1: UNEXPECTED PHOSPHORYLATION OF TYROSINE 151 2ZA5 ; 2.3 ; Crystal Structure of human tryptase with potent non-peptide inhibitor 6UD5 ; 2.05 ; Crystal structure of human tryptophan 2,3-dioxygenase in complex with carbon monoxide and tryptophan 6PYZ ; 2.02 ; Crystal Structure of human Tryptophan 2,3-dioxygenase in complex with PF-06840003 in Active Site 6PYY ; 2.4 ; Crystal Structure of human Tryptophan 2,3-dioxygenase in complex with PF-06840003 in Active Site and Exo site 7ZIH ; 1.46891 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor AG-01-128 7ZIG ; 1.80888 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-05-060 7ZIJ ; 1.94678 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-05-080 7ZII ; 1.628 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-05-193 8CJO ; 1.86634 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-06-004 8CJJ ; 1.66416 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-06-057 8CJN ; 1.68081 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-06-070 8CJK ; 1.45915 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-06-098 8CJM ; 1.9 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-07-047 8CJI ; 1.65 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-07-052 7ZIF ; 1.8686 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor KM-480 7ZIK ; 2.58926 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor LP533401 8CJL ; 1.83 ; Crystal structure of human tryptophan hydroxylase 1 in complex with inhibitor TPT-004 4V06 ; 2.63 ; Crystal structure of human tryptophan hydroxylase 2 (TPH2), catalytic domain 3HF6 ; 1.8 ; Crystal structure of human tryptophan hydroxylase type 1 with bound LP-521834 and FE 1MLW ; 1.71 ; Crystal structure of human tryptophan hydroxylase with bound 7,8-dihydro-L-biopterin cofactor and Fe(III) 1R6T ; 2.1 ; crystal structure of human tryptophanyl-tRNA synthetase 2XVS ; 1.8 ; Crystal structure of human TTC5 (Strap) C-terminal OB domain 5WU2 ; 2.95 ; Crystal structure of human Tut1 bound with BaUTP, form I 5WU4 ; 2.8 ; Crystal structure of human Tut1 bound with MgATP, form II 5WU3 ; 2.703 ; Crystal structure of human Tut1 bound with MgUTP, form II 8IDF ; 3.7 ; Crystal structure of human TUT1 complexed with U6 snRNA 4TWK ; 2.6 ; Crystal structure of human two pore domain potassium ion channel TREK1 (K2P2.1) 4BW5 ; 3.2 ; Crystal structure of human two pore domain potassium ion channel TREK2 (K2P10.1) 4XDJ ; 3.8 ; Crystal structure of human two pore domain potassium ion channel TREK2 (K2P10.1) in an alternate conformation (FORM 2) 4XDL ; 3.5 ; Crystal structure of human two pore domain potassium ion channel TREK2 (K2P10.1) in complex with a brominated fluoxetine derivative. 4XDK ; 3.6 ; Crystal structure of human two pore domain potassium ion channel TREK2 (K2P10.1) in complex with norfluoxetine 2HDJ ; 2.0 ; Crystal structure of human type 3 3alpha-hydroxysteroid dehydrogenase in complex with NADP(H) 1XJB ; 1.9 ; Crystal structure of human type 3 3alpha-hydroxysteroid dehydrogenase in complex with NADP(H), citrate and acetate molecules 2I6K ; 2.0 ; Crystal structure of human type I IPP isomerase complexed with a substrate analog 1IHI ; 3.0 ; Crystal Structure of Human Type III 3-alpha-Hydroxysteroid Dehydrogenase/Bile Acid Binding Protein (AKR1C2) Complexed with NADP+ and Ursodeoxycholate 3DMW ; 2.3 ; Crystal structure of human type III collagen G982-G1023 containing C-terminal cystine knot 2GEE ; 2.01 ; Crystal Structure of Human Type III Fibronectin Extradomain B and Domain 8 3IU1 ; 1.42 ; Crystal Structure of human type-I N-myristoyltransferase with bound myristoyl-CoA 3IWE ; 1.79 ; Crystal Structure of human type-I N-myristoyltransferase with bound myristoyl-CoA and inhibitor DDD85646 3JTK ; 1.61 ; Crystal Structure of human type-I N-myristoyltransferase with bound myristoyl-CoA and inhibitor DDD90055 3IU2 ; 1.73 ; Crystal Structure of human type-I N-myristoyltransferase with bound myristoyl-CoA and inhibitor DDD90096 1RHF ; 1.96 ; Crystal Structure of human Tyro3-D1D2 5M8L ; 2.35 ; Crystal structure of human tyrosinase related protein 1 5M8R ; 2.4 ; Crystal structure of human tyrosinase related protein 1 (T391V-R374S-Y362F) in complex with mimosine 5M8T ; 2.35 ; Crystal structure of human tyrosinase related protein 1 (T391V-R374S-Y362F) in complex with tropolone 5M8M ; 2.65 ; Crystal structure of human tyrosinase related protein 1 in complex with kojic acid 5M8N ; 2.6 ; Crystal structure of human tyrosinase related protein 1 in complex with mimosine 5M8O ; 2.5 ; Crystal structure of human tyrosinase related protein 1 in complex with tropolone 5M8P ; 2.8 ; Crystal structure of human tyrosinase related protein 1 in complex with tyrosine 5M8Q ; 2.85 ; Crystal structure of human tyrosinase related protein 1 mutant (T391V-R374S-Y362F) in complex with kojic acid 5M8S ; 2.2 ; Crystal structure of human tyrosinase related protein 1 mutant (T391V-R374S-Y362F) in complex with phenylthiourea (PTU) 2XSN ; 2.68 ; Crystal Structure of Human Tyrosine Hydroxylase Catalytic Domain 2P6X ; 1.9 ; Crystal structure of human tyrosine phosphatase PTPN22 2B3O ; 2.8 ; Crystal structure of human tyrosine phosphatase SHP-1 2R0B ; 1.6 ; Crystal structure of human tyrosine phosphatase-like serine/threonine/tyrosine-interacting protein 1FMK ; 1.5 ; CRYSTAL STRUCTURE OF HUMAN TYROSINE-PROTEIN KINASE C-SRC 2SRC ; 1.5 ; CRYSTAL STRUCTURE OF HUMAN TYROSINE-PROTEIN KINASE C-SRC, IN COMPLEX WITH AMP-PNP 6JMF ; 2.0 ; Crystal structure of human tyrosine-protein kinase Fes/Fps in complex with compound 4 1JY1 ; 1.69 ; CRYSTAL STRUCTURE OF HUMAN TYROSYL-DNA PHOSPHODIESTERASE (TDP1) 1NOP ; 2.3 ; Crystal structure of human tyrosyl-DNA phosphodiesterase (Tdp1) in complex with vanadate, DNA and a human topoisomerase I-derived peptide 1RFF ; 1.7 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octapeptide KLNYYDPR, and tetranucleotide AGTT. 1RH0 ; 2.3 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octopamine and trinucleotide GTT 1RG2 ; 2.1 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octopamine, and tetranucleotide AGTA 1RGT ; 2.0 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octopamine, and tetranucleotide AGTC 1RG1 ; 2.1 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octopamine, and tetranucleotide AGTT 1RFI ; 2.2 ; Crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, pentapeptide KLNYK, and tetranucleotide AGTC 5WRI ; 1.6 ; Crystal structure of human tyrosylprotein sulfotransferase-1 complexed with PAP and C4 peptide 5WRJ ; 2.31 ; Crystal structure of human tyrosylprotein sulfotransferase-1 complexed with PAP and gastrin peptide 3AP3 ; 3.5 ; Crystal structure of human tyrosylprotein sulfotransferase-2 complexed with PAP 3AP1 ; 1.9 ; Crystal structure of human tyrosylprotein sulfotransferase-2 complexed with PAP and C4 peptide 3AP2 ; 2.4 ; Crystal structure of human tyrosylprotein sulfotransferase-2 complexed with PAP,C4 peptide, and phosphate ion 3AL5 ; 2.503 ; Crystal structure of Human TYW5 3AL6 ; 2.8 ; Crystal structure of Human TYW5 3PGW ; 4.4 ; Crystal structure of human U1 snRNP 5IAA ; 1.85 ; Crystal structure of human UBA5 in complex with UFM1 5L95 ; 2.1 ; Crystal structure of human UBA5 in complex with UFM1 and AMP 7PVN ; 2.71 ; Crystal Structure of Human UBA6 in Complex with ATP 7PYV ; 3.27 ; Crystal structure of human UBA6 in complex with the ubiquitin-like modifier FAT10 3L1Y ; 1.6 ; Crystal structure of human UBC4 E2 conjugating enzyme 5F6E ; 1.12 ; Crystal Structure of human Ubc9 (K48A/K49A/E54A) 6CYO ; 1.85 ; Crystal structure of human UBE2A (RAD6A) 6R75 ; 2.0 ; Crystal structure of human Ube2T E54R mutant 6DC6 ; 3.14 ; Crystal structure of human ubiquitin activating enzyme E1 (Uba1) in complex with ubiquitin 3ONS ; 1.8 ; Crystal structure of Human Ubiquitin in a new crystal form 3BZH ; 1.6 ; Crystal structure of human ubiquitin-conjugating enzyme E2 E1 2C4P ; 2.35 ; Crystal structure of human ubiquitin-conjugating enzyme UbcH5A 2CLW ; 1.945 ; Crystal structure of human ubiquitin-conjugating enzyme UbcH5B 5EGG ; 1.76 ; Crystal structure of human ubiquitin-conjugating enzyme UBCH5C 8HM1 ; 1.29 ; crystal structure of human ubiquitin-like protein from Bacteroides fragilis 8HM2 ; 1.34 ; Crystal structure of human ubiquitin-like protein from bacteroides fragilis c terminal cysteine mutant 1QK1 ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN UBIQUITOUS MITOCHONDRIAL CREATINE KINASE 7YV4 ; 1.58 ; Crystal structure of human UCHL3 in complex with Farrerol 2B69 ; 1.21 ; Crystal Structure of Human UDP-glucoronic acid decarboxylase 3TDK ; 2.8 ; Crystal Structure of Human UDP-Glucose Dehydrogenase 3KHU ; 2.3 ; Crystal structure of human UDP-glucose dehydrogenase Glu161Gln, in complex with thiohemiacetal intermediate 2QG4 ; 2.1 ; Crystal structure of human UDP-glucose dehydrogenase product complex with UDP-glucuronate 3ITK ; 2.4 ; Crystal structure of human UDP-glucose dehydrogenase Thr131Ala, apo form. 6FM9 ; 3.6 ; Crystal structure of human UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) 5LEV ; 3.2 ; Crystal structure of human UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) (V264G mutant) 5O5E ; 3.4 ; Crystal structure of human UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) (V264G mutant) in complex with tunicamycin 6FWZ ; 3.1 ; Crystal structure of human UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) (V264G mutant) in complex with UDP-GlcNAc 4LK3 ; 2.64 ; Crystal structure of Human UDP-xylose synthase R236A substitution 4M55 ; 2.86 ; Crystal structure of Human UDP-xylose synthase R236H substitution 4GLL ; 2.5 ; Crystal structure of human UDP-xylose synthase. 7WWQ ; 2.72 ; Crystal structure of human Ufd1-Npl4 complex 6IIW ; 1.699 ; Crystal structure of human UHRF1 PHD finger in complex with PAF15 7FB7 ; 1.45 ; Crystal structure of human UHRF1 TTD in complex with 5-amino-2,4-dimethylpyridine 7CGA ; 3.15 ; Crystal structure of human unphosphorylated p38gamma 4QTI ; 3.0 ; Crystal structure of human uPAR in complex with anti-uPAR Fab 8B12 1EMH ; 1.8 ; CRYSTAL STRUCTURE OF HUMAN URACIL-DNA GLYCOSYLASE BOUND TO UNCLEAVED SUBSTRATE-CONTAINING DNA 3TKB ; 1.5 ; crystal structure of human uracil-DNA glycosylase D183G/K302R mutant 1UGH ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN URACIL-DNA GLYCOSYLASE IN COMPLEX WITH A PROTEIN INHIBITOR: PROTEIN MIMICRY OF DNA 3Q91 ; 2.7 ; Crystal Structure of Human Uridine Diphosphate Glucose Pyrophosphatase (NUDT14) 2XRF ; 2.3 ; Crystal structure of human uridine phosphorylase 2 2JEO ; 2.5 ; Crystal structure of human uridine-cytidine kinase 1 2UVQ ; 3.0 ; Crystal structure of human uridine-cytidine kinase 1 in complex with ADP 6PWZ ; 3.0 ; Crystal structure of human uridine-cytidine kinase 2 complexed with 2'-azidocytidine 6N54 ; 2.424 ; Crystal structure of human uridine-cytidine kinase 2 complexed with 2'-azidocytidine monophosphate 6N55 ; 3.085 ; Crystal structure of human uridine-cytidine kinase 2 complexed with 2'-azidouridine 6N53 ; 2.7 ; Crystal structure of human uridine-cytidine kinase 2 complexed with 2'-azidouridine monophosphate 1UDW ; 2.6 ; Crystal structure of human uridine-cytidine kinase 2 complexed with a feedback-inhibitor, CTP 1UEI ; 2.6 ; Crystal structure of human uridine-cytidine kinase 2 complexed with a feedback-inhibitor, UTP 1UEJ ; 2.61 ; Crystal structure of human uridine-cytidine kinase 2 complexed with a substrate, cytidine 7SQL ; 2.4 ; Crystal structure of human uridine-cytidine kinase 2 complexed with a weak small molecule inhibitor 1UJ2 ; 1.8 ; Crystal structure of human uridine-cytidine kinase 2 complexed with products, CMP and ADP 7ZRR ; 1.64 ; Crystal structure of human Urokinase-type plasminogen activator in complex with bicycle peptide inhibitor UK965 7ZRT ; 1.8 ; Crystal structure of human Urokinase-type plasminogen activator in complex with bicycle peptide inhibitor UK970 1FLH ; 2.45 ; CRYSTAL STRUCTURE OF HUMAN UROPEPSIN AT 2.45 A RESOLUTION 8IA3 ; 3.5 ; Crystal structure of human USF2 bHLHLZ domain in complex with DNA 5XVE ; 1.24 ; Crystal structure of human USP2 C276S mutant in complex with ubiquitin 5XU8 ; 1.81 ; Crystal structure of human USP2 in complex with ubiquitin and 6-thioguanine 5O71 ; 3.283 ; Crystal structure of human USP25 8D1T ; 2.94 ; Crystal structure of human USP30 in complex with a covalent inhibitor 552 and a Fab 8D0A ; 3.19 ; Crystal structure of human USP30 in complex with a covalent inhibitor 829 and a Fab 6JLQ ; 3.101 ; Crystal structure of human USP46-WDR48-WDR20 complex 7RUO ; 1.8 ; Crystal structure of human UTP15 7DF7 ; 2.3 ; Crystal structure of human V-1 in the apo form 6AC9 ; 2.07 ; Crystal structure of human Vaccinia-related kinase 1 (VRK1) in complex with AMP-PNP 5UU1 ; 2.0 ; Crystal Structure of Human Vaccinia-related kinase 2 (VRK-2) bound to BI-D1870 8Q1Z ; 1.85 ; Crystal Structure of Human Vaccinia-related kinase 2 (VRK-2) bound to JA-296 6NCG ; 2.45 ; Crystal Structure of Human Vaccinia-related kinase 2 (VRK-2) bound to pyridin-benzenesulfonamide inhibitor 2OCG ; 1.75 ; Crystal structure of human valacyclovir hydrolase 8HL6 ; 1.8 ; Crystal structure of human valosin-containing protein methyltransferase 1PU4 ; 3.2 ; Crystal structure of human vascular adhesion protein-1 1US1 ; 2.9 ; Crystal structure of human vascular adhesion protein-1 4BTW ; 2.8 ; Crystal structure of human vascular adhesion protein-1 in complex with pyridazinone inhibitors 4BTX ; 2.78 ; Crystal structure of human vascular adhesion protein-1 in complex with pyridazinone inhibitors 4BTY ; 3.1 ; Crystal structure of human vascular adhesion protein-1 in complex with pyridazinone inhibitors 2C7W ; 2.48 ; Crystal Structure of human vascular endothelial growth factor-B: Identification of amino acids important for angiogeninc activity 6K81 ; 2.28 ; Crystal structure of human VASH1-SVBP complex 6K9Y ; 2.2 ; Crystal structure of human VAT-1 4KZN ; 1.7114 ; crystal structure of human VEGF-A receptor binding domain 3VHE ; 1.55 ; Crystal structure of human VEGFR2 kinase domain with a novel pyrrolopyrimidine inhibitor. 3VID ; 2.3 ; Crystal structure of human VEGFR2 kinase domain with Compound A. 2UXW ; 1.45 ; Crystal structure of human very long chain acyl-CoA dehydrogenase (ACADVL) 4EHP ; 2.66 ; Crystal Structure of human vinculin head domain (residues 1-252) in complex with alpha-catenin (residues 277-382) 6OIL ; 1.85 ; Crystal structure of human VISTA extracellular domain 5V39 ; 2.2 ; Crystal structure of human vitamin D receptor ligand binding domain in complex with a VDRM 1KXP ; 2.1 ; CRYSTAL STRUCTURE OF HUMAN VITAMIN D-BINDING PROTEIN IN COMPLEX WITH SKELETAL ACTIN 5XDO ; 3.1 ; Crystal structure of human voltage-dependent anion channel 1 (hVDAC1) in C222 space group 5XDN ; 3.15 ; Crystal structure of human voltage-dependent anion channel 1 (hVDAC1) in P22121 space group 4NT5 ; 3.281 ; Crystal structure of human von Willebrand factor CTCK domain 2FAU ; 2.1 ; Crystal structure of human vps26 1W24 ; 2.1 ; Crystal Structure Of human Vps29 8ESE ; 1.35 ; Crystal structure of human Vps29 bound to a peptide from Vps35L 6XS5 ; 2.01 ; Crystal structure of human Vps29 complexed with RaPID-derived cyclic peptide RT-D1 6XS7 ; 1.58 ; Crystal structure of human Vps29 complexed with RaPID-derived cyclic peptide RT-D2 6XS9 ; 2.69 ; Crystal structure of human Vps29 complexed with RaPID-derived cyclic peptide RT-L1 6XSA ; 1.83 ; Crystal structure of human Vps29 complexed with RaPID-derived cyclic peptide RT-L2 5XGS ; 2.0 ; Crystal structure of human WBSCR16 4IA9 ; 1.66 ; Crystal structure of human WD REPEAT DOMAIN 5 in complex with 2-chloro-4-fluoro-3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-nitrophenyl]benzamide 3SMR ; 1.82 ; Crystal structure of human WD repeat domain 5 with compound 3UR4 ; 1.8 ; Crystal structure of human WD repeat domain 5 with compound 4GM3 ; 3.393 ; Crystal structure of human WD repeat domain 5 with compound MM-101 4GM8 ; 2.601 ; Crystal structure of human WD repeat domain 5 with compound MM-102 4GM9 ; 2.1 ; Crystal structure of human WD repeat domain 5 with compound MM-401 4GMB ; 2.781 ; Crystal structure of human WD repeat domain 5 with compound MM-402 8UJY ; 2.01 ; Crystal structure of human WD repeat-containing protein 5 in complex with 4-(3,5-dimethoxybenzyl)-9-(4-fluoro-2-methylphenyl)-7-((2-imino-3-methyl-2,3-dihydro-1H-imidazol-1-yl)methyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one (compound 8) 8W3V ; 2.2 ; Crystal structure of human WDR41 6OFZ ; 1.85 ; Crystal structure of human WDR5 8G3E ; 1.33 ; Crystal structure of human WDR5 in complex with (1M)-N-[(3,5-difluoro[1,1'-biphenyl]-4-yl)methyl]-6-methyl-4-oxo-1-(pyridin-3-yl)-1,4-dihydropyridazine-3-carboxamide (compound 2, WDR5-MYC inhibitor) 7WVK ; 1.42 ; Crystal structure of human WDR5 in complex with compound 19 5EAR ; 1.8 ; Crystal structure of human WDR5 in complex with compound 9d 5EAP ; 1.73 ; Crystal structure of human WDR5 in complex with compound 9e 5EAL ; 1.8 ; Crystal structure of human WDR5 in complex with compound 9h 5EAM ; 1.8 ; Crystal structure of human WDR5 in complex with compound 9o 4QL1 ; 1.5 ; Crystal structure of human WDR5 in complex with compound OICR-9429 8F1G ; 2.14 ; Crystal structure of human WDR5 in complex with compound WM662 6OI0 ; 1.92 ; Crystal structure of human WDR5 in complex with L-arginine 6OI3 ; 1.66 ; Crystal structure of human WDR5 in complex with monomethyl H3R2 peptide 6OI1 ; 1.68 ; Crystal structure of human WDR5 in complex with monomethyl L-arginine 8T5I ; 1.7 ; Crystal structure of human WDR5 in complex with MR4397 8G3C ; 1.8 ; Crystal structure of human WDR5 in complex with N-[(2'-cyano[1,1'-biphenyl]-4-yl)methyl]-3-hydroxy-6-methyl-4-oxo-4H-pyran-2-carboxamide (compound 1, WDR5-MYC PPI inhibitor) 6OI2 ; 1.68 ; Crystal structure of human WDR5 in complex with symmetric dimethyl-L-arginine 7KQQ ; 1.8 ; Crystal structure of human WDR55 5VC3 ; 1.97 ; CRYSTAL STRUCTURE OF HUMAN WEE1 KINASE DOMAIN IN COMPLEX WITH BOSUTINIB 5VC4 ; 2.1 ; Crystal structure of HUMAN WEE1 KINASE domain in complex with Bosutinib-isomer 5V5Y ; 1.9 ; CRYSTAL STRUCTURE OF HUMAN WEE1 KINASE DOMAIN IN COMPLEX WITH MK1775 5VC5 ; 1.93 ; Crystal structure of human WEE1 kinase domain in complex with PD-166285 5VD2 ; 2.05 ; crystal structure of human WEE1 kinase domain in complex with PF-03814735 5VC6 ; 2.0 ; crystal structure of human WEE1 kinase domain in complex with PHA-848125 5VD4 ; 2.02 ; CRYSTAL STRUCTURE OF HUMAN WEE1 KINASE DOMAIN IN COMPLEX WITH RAC-IV-016, a MK1775 analougue 5VD5 ; 2.05 ; CRYSTAL STRUCTURE OF HUMAN WEE1 KINASE DOMAIN IN COMPLEX WITH RAC-IV-050, a MK1775 analougue 5VD9 ; 1.87 ; Crystal structure of human WEE1 kinase domain in complex with RAC-IV-097, a MK1775 analogue 5VD7 ; 2.08 ; CRYSTAL STRUCTURE OF HUMAN WEE1 KINASE DOMAIN IN COMPLEX WITH RAC-IV-098, a MK1775 analogue 5VD8 ; 1.85 ; Crystal structure of human WEE1 kinase domain in complex with RAC-IV-099, a MK1775 analogue 5VDA ; 2.1 ; Crystal structure of human WEE1 kinase domain in complex with RAC-IV-101, a MK1775 analogue 7N3U ; 2.65 ; Crystal structure of human WEE1 kinase domain in complex with ZN-c3 5VDK ; 2.7 ; Crystal structure of human WEE2 kinase domain in complex with MK1775 6FWU ; 2.35 ; Crystal structure of human wild type beta-1,4-galactosyltransferase-1 (B4GalT1) in apo-closed dimeric form 6FWT ; 1.845 ; Crystal structure of human wild type beta-1,4-galactosyltransferase-1 (B4GalT1) in apo-open monomeric form 5E6M ; 2.927 ; Crystal structure of human wild type GlyRS bound with tRNAGly 6S26 ; 2.05 ; Crystal structure of human wild type STING in complex with 2'-3'-cyclic-GMP-7-deaza-AMP 6S27 ; 2.802 ; Crystal structure of human wild type STING in complex with 2'3'-cyclic-GMP-2'F-2'dAMP 7QC5 ; 1.2 ; Crystal structure of human wild type transthyretin in complex with (3,4-dihydroxy-5-nitrophenyl)-(3-fluoro-5-hydroxyphenyl)methanone compound 6LK0 ; 2.6 ; Crystal structure of human wild type TRIP13 4WNC ; 1.99 ; Crystal structure of human wild-type GAPDH at 1.99 angstroms resolution 3CFQ ; 2.09 ; Crystal structure of human wild-type transthyretin in complex with diclofenac 6KLR ; 2.21 ; Crystal structure of human WIPI3 in complex with the WIR-peptide from ATG2A 6IYY ; 1.796 ; Crystal structure of human WIPI3,loop deletion mutant 6L4B ; 2.2 ; Crystal structure of human WT NDRG3 5W22 ; 1.762 ; Crystal structure of human WT-KRAS in complex with GDP 5VQ8 ; 2.3 ; Crystal structure of human WT-KRAS in complex with GDP (EDTA soaked) 5VQ2 ; 1.96 ; Crystal structure of human WT-KRAS in complex with GTP 5VQ6 ; 1.99 ; Crystal structure of human WT-KRAS in complex with GTP-gamma-S 7YFJ ; 2.4 ; Crystal structure of human WTAP 2E1Q ; 2.6 ; Crystal Structure of Human Xanthine Oxidoreductase mutant, Glu803Val 2R9A ; 2.5 ; Crystal structure of human XLF 3SR2 ; 3.9708 ; Crystal Structure of Human XLF-XRCC4 Complex 2QM4 ; 2.3 ; Crystal structure of human XLF/Cernunnos, a non-homologous end-joining factor 1FU1 ; 2.7 ; CRYSTAL STRUCTURE OF HUMAN XRCC4 3KYS ; 2.8 ; Crystal structure of human YAP and TEAD complex 7F3J ; 1.95 ; Crystal structure of human YBX2 CSD in complex with m5C RNA in space group P1 7F3K ; 1.76 ; Crystal structure of human YBX2 CSD in complex with m5C RNA in space group P21212 7F3I ; 2.25 ; Crystal structure of human YBX2 CSD in complex with m5C RNA in space group P212121 7F3L ; 1.88 ; Crystal structure of human YBX2 CSD in complex with m5C RNA in space group P62 5VNA ; 2.1 ; Crystal structure of human YEATS domain 8DKB ; 2.58 ; Crystal Structure of human YEATS4 in complex with Pfizer small molecule compound 3b 6LXJ ; 2.903 ; Crystal structure of human Z2B3 Fab in complex with influenza virus neuraminidase from A/Anhui/1/2013 (H7N9) 6UCA ; 3.103 ; Crystal structure of human ZCCHC4 in complex with SAH 1YB5 ; 1.85 ; Crystal structure of human Zeta-Crystallin with bound NADP 3FKC ; 1.7 ; Crystal Structure of Human Zinc finger and BTB domain containing 33 6UEI ; 2.51 ; Crystal structure of human zinc finger antiviral protein 6UEJ ; 2.21 ; Crystal structure of human zinc finger antiviral protein bound to RNA 5CNY ; 1.7 ; Crystal Structure of human zinc insulin at pH 5.5 5CO6 ; 1.8 ; Crystal structure of human zinc insulin at pH 6.5 5CO9 ; 1.92 ; Crystal structure of human zinc insulin at pH 6.5 2W4Q ; 2.0 ; Crystal structure of human zinc-binding alcohol dehydrogenase 1 (ZADH1) in ternary complex with NADP and 18beta-glycyrrhetinic acid 2W98 ; 1.85 ; CRYSTAL STRUCTURE OF HUMAN ZINC-BINDING ALCOHOL DEHYDROGENASE 1 (ZADH1) IN TERNARY COMPLEX WITH NADP AND PHENYLBUTAZONE 2J90 ; 2.0 ; Crystal structure of human ZIP kinase in complex with a tetracyclic pyridone inhibitor (Pyridone 6) 5VJA ; 2.46 ; Crystal Structure of human zipper-interacting protein kinase (ZIPK, alias DAPK3) in complex with a pyrazolo[3,4-d]pyrimidinone ligand (HS38) 5B73 ; 1.8 ; Crystal structure of human ZMYND8 PHD-Bromo-PWWP domain 6FGE ; 1.74 ; Crystal structure of human ZUFSP/ZUP1 in complex with ubiquitin 4WYO ; 2.89 ; Crystal structure of human-yeast chimera acetyl coA carboxylase CT domain bound to Compound 1 4WZ8 ; 2.23 ; Crystal structure of human-yeast chimera acetyl coA carboxylase CT domain bound to Compound 6 2X29 ; 2.3 ; Crystal structure of human4-1BB ligand ectodomain 6CA4 ; 1.623 ; Crystal structure of humanized D. rerio TDP2 by 14 mutations 2YSS ; 2.4 ; Crystal structure of Humanized HYHEL-10 FV mutant(HQ39KW47Y)-HEN lysozyme complex 2EIZ ; 1.9 ; Crystal structure of humanized HYHEL-10 fv mutant(HW47Y)-hen lysozyme complex 2EKS ; 2.0 ; Crystal structure of humanized HyHEL-10 FV-HEN lysozyme complex 2EH7 ; 2.5 ; Crystal structure of humanized KR127 FAB 5W1X ; 3.374 ; Crystal Structure of Humanpapillomavirus18 (HPV18) Capsid L1 Pentamers Bound to Heparin Oligosaccharides 3ILG ; 1.9 ; Crystal structure of humnan insulin Sr+2 complex 2QA7 ; 2.8 ; Crystal structure of Huntingtin-interacting protein 1 (HIP1) coiled-coil domain with a basic surface suitable for HIP-protein interactor (HIPPI) 1WPS ; 2.8 ; Crystal Structure of HutP, an RNA binding anti-termination protein 1WPT ; 2.7 ; Crystal Structure of HutP, an RNA binding anti-termination protein 1VEA ; 2.8 ; Crystal Structure of HutP, an RNA binding antitermination protein 1WRQ ; 2.2 ; Crystal Structure of HutP-Antitermination complex 7CEA ; 2.55 ; Crystal structure of HUTS-4 Fv-clasp fragment 3TGV ; 1.999 ; Crystal structure of HutZ,the heme storsge protein from Vibrio cholerae 5FV2 ; 3.45 ; Crystal structure of hVEGF in complex with VH domain antibody 5FV1 ; 2.7 ; Crystal structure of hVEGF in complex with VK domain antibody 4FHQ ; 2.251 ; Crystal Structure of HVEM 5UWT ; 2.342 ; Crystal Structure of Hxk2 Peptide in complex with CRM1 K579A mutant-Ran-RanBP1 2OQQ ; 2.0 ; Crystal structure of HY5 leucine zipper homodimer from Arabidopsis thaliana 3RMR ; 2.3 ; Crystal structure of Hyaloperonospora arabidopsidis ATR1 effector domain 8FYG ; 2.05 ; Crystal structure of Hyaluronate lyase A from Cutibacterium acnes 8FNX ; 2.1 ; Crystal structure of Hyaluronate lyase B from Cutibacterium acnes 6WGZ ; 2.2 ; Crystal structure of HyBcl-2-4 with HyBak1 BH3 6WH0 ; 1.99 ; Crystal structure of HyBcl-2-4 with HyBax BH3 7CHL ; 3.4 ; Crystal structure of hybrid Arabinose isomerase AI-10 6NCY ; 2.05 ; Crystal structure of hybrid beta-glucuronidase/beta-galacturonidase from Fusicatenibacter saccharivorans 6NCZ ; 2.2 ; Crystal structure of hybrid beta-glucuronidase/beta-galacturonidase from Fusicatenibacter saccharivorans bound to phenyl-thio-beta-D-glucuronide 6FSH ; 2.5 ; Crystal structure of hybrid P450 OxyBtei(BC/FGvan) 4UC4 ; 2.5612 ; Crystal structure of hybrid tudor domain of human lysine demethylase KDM4B 2EQ5 ; 2.2 ; Crystal structure of hydantoin racemase from Pyrococcus horikoshii OT3 5KH0 ; 2.8 ; Crystal Structure of HydF from thermosipho melanesiensis in complex with a [4Fe-4S] cluster 4WCX ; 1.59 ; Crystal structure of HydG: A maturase of the [FeFe]-hydrogenase 3L2Z ; 2.8 ; Crystal structure of hydrated Biotin Protein Ligase from M. tuberculosis 5H6T ; 1.6 ; Crystal structure of Hydrazidase from Microbacterium sp. strain HM58-2 5H6S ; 1.8 ; Crystal structure of Hydrazidase S179A mutant complexed with a substrate 6KMK ; 2.3 ; Crystal structure of hydrogen peroxide bound bovine lactoperoxidase at 2.3 A resolution 7C4R ; 2.44 ; Crystal structure of hydrogen peroxide treated zebrafish TRF2 complexed with DNA 8IQ0 ; 1.88 ; Crystal structure of hydrogen sulfide-bound superoxide dismutase in oxidized state 8IQ1 ; 1.8 ; Crystal structure of hydrogen sulfide-bound superoxide dismutase in reduced state 5B55 ; 2.14 ; Crystal structure of hydrogen sulfide-producing enzyme (Fn1055) D232N mutant in complexed with alpha-aminoacrylate intermediate: lysine-dimethylated form 5B53 ; 2.91 ; Crystal structure of hydrogen sulfide-producing enzyme (Fn1055) from Fusobacterium nucleatum 5Z5C ; 2.07 ; Crystal structure of hydrogen sulfide-producing enzyme (Fn1055) from Fusobacterium nucleatum: lysine-dimethylated form 5TTX ; 2.401 ; Crystal structure of hydrogenase 2 maturation peptidase from Thaumarchaeota archaeon SCGC_AB-539-E09 2WSM ; 2.3 ; Crystal structure of Hydrogenase Maturation Factor HypB From Archaeoglobus Fulgidus 2Z1T ; 2.6 ; Crystal Structure of Hydrogenase Maturation Protein HypE 2Z1U ; 2.0 ; Crystal Structure of Hydrogenase Maturation Protein HypE in complex with ATP 2QGV ; 2.7 ; Crystal structure of hydrogenase-1 operon protein hyaE from Shigella flexneri. Northeast Structural Genomics Consortium Target SfR170 4XUK ; 2.0 ; Crystal structure of hydrolase AbOPH in beta lactamase superfamily 3PDC ; 2.6 ; Crystal structure of hydrolase domain of human soluble epoxide hydrolase complexed with a benzoxazole inhibitor 3FDK ; 2.1 ; Crystal structure of hydrolase DR0930 with promiscuous catalytic activity 2HCF ; 1.8 ; Crystal structure of hydrolase haloacid dehalogenase-like family (np_662590.1) from Chlorobium tepidum TLS at 1.80 A resolution 3IPW ; 1.95 ; Crystal structure of hydrolase TatD family protein from Entamoeba histolytica 1VLA ; 1.8 ; Crystal structure of Hydroperoxide resistance protein OsmC (TM0919) from Thermotoga maritima at 1.80 A resolution 1HYP ; 1.8 ; CRYSTAL STRUCTURE OF HYDROPHOBIC PROTEIN FROM SOYBEAN; A MEMBER OF A NEW CYSTINE-RICH FAMILY 2FZ6 ; 2.1 ; Crystal structure of hydrophobin HFBI 2GVM ; 2.3 ; Crystal structure of hydrophobin HFBI with detergent 7S86 ; 2.0 ; Crystal structure of hydrophobin SC16, C2221 7S7S ; 2.2 ; Crystal structure of hydrophobin SC16, P21212 5M22 ; 2.4 ; Crystal structure of hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 5M4O ; 2.1 ; Crystal structure of hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 in complex with 4-nitrophenol 5M26 ; 1.9 ; Crystal structure of hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 in complex with methylhydroquinone 5M21 ; 1.99 ; Crystal structure of hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 with 4-hydroxybenzoate bound 4ZXD ; 3.052 ; Crystal Structure of hydroquinone 1,2-dioxygenase PnpCD 4ZXA ; 2.488 ; Crystal Structure of hydroquinone 1,2-dioxygenase PnpCD in complex with Cd2+ and 4-hydroxybenzonitrile 4ZXC ; 3.05 ; Crystal Structure of hydroquinone 1,2-dioxygenase PnpCD in complex with Fe3+ 7L0B ; 1.65 ; Crystal structure of hydroxyacyl glutathione hydrolase (GloB) from Staphylococcus aureus, apoenzyme 2J5I ; 1.8 ; Crystal Structure of Hydroxycinnamoyl-CoA Hydratase-Lyase 2IQG ; 1.7 ; Crystal Structure of Hydroxyethyl Secondary Amine-based Peptidomimetic Inhibitor of Human Beta-Secretase (BACE) 1EKQ ; 1.5 ; CRYSTAL STRUCTURE OF HYDROXYETHYLTHIAZOLE KINASE IN R3 SPACE GROUP 1EKK ; 2.0 ; CRYSTAL STRUCTURE OF HYDROXYETHYLTHIAZOLE KINASE IN THE R3 FORM WITH HYDROXYETHYLTHIAZOLE 8UW4 ; 2.15 ; Crystal structure of hydroxyisourate hydrolase from Herbaspirillum seropedicae 2FTP ; 2.4 ; Crystal Structure of hydroxymethylglutaryl-CoA lyase from Pseudomonas aeruginosa 7N7S ; 2.4 ; Crystal Structure of Hydroxymethylglutaryl-CoA reductase from Elizabethkingia anophelis NUHP1 7VB3 ; 1.48 ; Crystal structure of hydroxynitrile lyase from Linum usitatissimum 7VB5 ; 1.58 ; Crystal structure of hydroxynitrile lyase from Linum usitatissimum complexed with acetone cyanohydrin 7VB6 ; 1.74 ; Crystal structure of hydroxynitrile lyase from Linum usitatissium complexed with (R)-2-hydroxy-2-methylbutanenitrile 1DWP ; 2.2 ; Crystal Structure of Hydroxynitrile Lyase from Manihot esculenta at 2.2 Angstrom Resolution 1DWO ; 2.2 ; Crystal Structure of Hydroxynitrile Lyase from Manihot esculenta in Complex with Substrates Acetone and Chloroacetone:Implications for the Mechanism of Cyanogenesis 1DWQ ; 2.2 ; Crystal Structure of Hydroxynitrile Lyase from Manihot esculenta in Complex with Substrates Acetone and Chloroacetone:Implications for the Mechanism of Cyanogenesis 1GXS ; 2.3 ; Crystal Structure of Hydroxynitrile Lyase from Sorghum bicolor in Complex with Inhibitor Benzoic Acid: a novel cyanogenic enzyme 6VXC ; 2.05 ; Crystal structure of hydroxyproline dehydratase (HypD) from Clostridioides difficile 6VXE ; 2.464 ; Crystal structure of hydroxyproline dehydratase (HypD) from Clostridioides difficile with substrate trans-4-hydroxy-L-proline bound 3DDN ; 2.4 ; Crystal structure of hydroxypyruvic acid phosphate bound D-3-phosphoglycerate dehydrogenase in mycobacterium tuberculosis 1TMX ; 1.75 ; Crystal structure of hydroxyquinol 1,2-dioxygenase from Nocardioides Simplex 3E 7ENY ; 2.703 ; Crystal structure of hydroxysteroid dehydrogenase from Escherichia coli 4ZPI ; 2.504 ; Crystal Structure of HygX from Streptomyces hygroscopicus with iron bound 4XCA ; 2.295 ; Crystal Structure of HygX from Streptomyces hygroscopicus with nickel and 2-oxoglutarate bound 4XCB ; 1.6 ; Crystal Structure of HygX from Streptomyces hygroscopicus with nickel, 2-oxoglutarate, and hygromycin B bound 5AYU ; 1.8 ; Crystal structure of HyHEL-10 Fv 2DQJ ; 1.8 ; Crystal structure of hyhel-10 FV (wild-type) complexed with hen egg lysozyme at 1.8A resolution 2DQD ; 1.8 ; Crystal structure of hyhel-10 FV mutant (Hy50f) complexed with hen egg lysozyme 2DQE ; 1.9 ; Crystal structure of hyhel-10 FV mutant (Hy53a) complexed with hen egg lysozyme 2DQG ; 2.3 ; Crystal structure of hyhel-10 FV mutant (Hy53f) complexed with hen egg lysozyme 2DQH ; 2.3 ; Crystal structure of hyhel-10 FV mutant (Hy58a) complexed with hen egg lysozyme 2DQI ; 2.0 ; Crystal structure of hyhel-10 FV mutant (Ly50a) complexed with hen egg lysozyme 2DQF ; 2.5 ; Crystal structure of hyhel-10 FV mutant (y33ay53a) complexed with hen egg lysozyme 3A67 ; 1.8 ; Crystal Structure of HyHEL-10 Fv mutant LN31D complexed with hen egg white lysozyme 3A6B ; 1.8 ; Crystal Structure of HyHEL-10 Fv mutant LN32D complexed with hen egg white lysozyme 3A6C ; 1.8 ; Crystal Structure of HyHEL-10 Fv mutant LN92D complexed with hen egg white lysozyme 1J1P ; 1.8 ; Crystal structure of HyHEL-10 Fv mutant LS91A complexed with hen egg white lysozyme 1J1X ; 1.8 ; Crystal Structure of HyHEL-10 Fv mutant LS93A complexed with hen egg white lysozyme 1J1O ; 1.8 ; Crystal Structure of HyHEL-10 Fv mutant LY50F complexed with hen egg white lysozyme 1UA6 ; 1.9 ; Crystal structure of HYHEL-10 FV MUTANT SFSF complexed with HEN EGG WHITE LYSOZYME complex 1UAC ; 1.7 ; Crystal Structure of HYHEL-10 FV MUTANT SFSF Complexed with TURKEY WHITE LYSOZYME 1IC4 ; 2.5 ; CRYSTAL STRUCTURE OF HYHEL-10 FV MUTANT(HD32A)-HEN LYSOZYME COMPLEX 1IC7 ; 2.1 ; CRYSTAL STRUCTURE OF HYHEL-10 FV MUTANT(HD32A99A)-HEN LYSOZYME COMPLEX 1IC5 ; 2.3 ; CRYSTAL STRUCTURE OF HYHEL-10 FV MUTANT(HD99A)-HEN LYSOZYME COMPLEX 2DQC ; 1.8 ; Crystal structure of hyhel-10 FV mutant(Hy33f) complexed with hen egg lysozyme 1C08 ; 2.3 ; CRYSTAL STRUCTURE OF HYHEL-10 FV-HEN LYSOZYME COMPLEX 1NBY ; 1.8 ; Crystal Structure of HyHEL-63 complexed with HEL mutant K96A 1NBZ ; 1.85 ; Crystal Structure of HyHEL-63 complexed with HEL mutant K97A 2YVV ; 2.6 ; Crystal structure of hyluranidase complexed with lactose at 2.6 A resolution reveals three specific sugar recognition sites 2YW0 ; 2.6 ; Crystal structure of hyluranidase trimer at 2.6 A resolution 7ER7 ; 1.7 ; Crystal structure of hyman Biliverdin IX-beta reductase B with Tamibarotene (A80) 2PQ0 ; 2.6 ; Crystal structure of Hyopthetical protein (gk_1056) from geobacillus Kaustophilus HTA426 8II9 ; 2.17 ; crystal structure of Hyp mutant from Hypoxylon sp. E7406B 8IJT ; 2.56 ; crystal structure of Hyp N135A mutant from Hypoxylon sp. E7406B 3IE5 ; 1.688 ; Crystal structure of Hyp-1 protein from Hypericum perforatum (St John's wort) involved in hypericin biosynthesis 4N3E ; 2.43 ; Crystal structure of Hyp-1, a St John's wort PR-10 protein, in complex with 8-anilino-1-naphthalene sulfonate (ANS) 3A43 ; 2.3 ; Crystal structure of HypA 3A44 ; 3.31 ; Crystal structure of HypA in the dimeric form 4LPS ; 2.0 ; Crystal structure of HypB from Helicobacter pylori in complex with nickel 2HF9 ; 1.9 ; Crystal structure of HypB from Methanocaldococcus jannaschii in the triphosphate form 2HF8 ; 2.1 ; Crystal structure of HypB from Methanocaldococcus jannaschii in the triphosphate form, in complex with zinc 2Z1C ; 1.8 ; Crystal structure of HypC from Thermococcus kodakaraensis KOD1 5CZJ ; 1.92 ; Crystal structure of HypD, a 1-pyrroline-4-hydroxy-2-carboxylate deaminase from Sinorhizobium meliloti 6ZMD ; 2.64 ; Crystal structure of HYPE covalently tethered to BiP bound to AMP-PNP 2Z1F ; 1.7 ; Crystal structure of HypE from Thermococcus kodakaraensis (inward form) 2Z1E ; 1.55 ; Crystal structure of HypE from Thermococcus kodakaraensis (outward form) 3WJR ; 1.864 ; crystal structure of HypE in complex with a nucleotide 3VTI ; 2.56 ; Crystal structure of HypE-HypF complex 5FM2 ; 3.3 ; Crystal structure of hyper-phosphorylated RET kinase domain with (proximal) juxtamembrane segment 5FM3 ; 2.95 ; Crystal structure of hyper-phosphorylated RET kinase domain with (proximal) juxtamembrane segment 7UGT ; 1.21 ; Crystal structure of hyperfolder fluorescent protein FOLD6 7UGR ; 1.74 ; Crystal structure of hyperfolder YFP 2EHG ; 1.6 ; Crystal structure of hyperthermophilic archaeal RNase HI 3APG ; 2.35 ; Crystal structure of hyperthermophilic beta-glucosidase from pyrococcus furiosus 3RJX ; 2.4 ; Crystal Structure of Hyperthermophilic Endo-Beta-1,4-glucanase 3RJY ; 2.2 ; Crystal Structure of Hyperthermophilic Endo-beta-1,4-glucanase in complex with substrate 3IVZ ; 1.57 ; Crystal structure of hyperthermophilic nitrilase 3IW3 ; 1.8 ; Crystal structure of hyperthermophilic nitrilase 3KI8 ; 1.6 ; Crystal structure of hyperthermophilic nitrilase 3KLC ; 1.76 ; Crystal structure of hyperthermophilic nitrilase 5B7Y ; 1.32 ; Crystal Structure of Hyperthermophilic Thermotoga maritima L-Ketose-3-Epimerase with Co2+ 5B80 ; 1.7 ; Crystal Structure of Hyperthermophilic Thermotoga maritima L-Ketose-3-Epimerase with Cu2+ 5H1W ; 1.631 ; Crystal Structure of Hyperthermophilic Thermotoga maritima L-Ketose-3-Epimerase with Mn2+ and L(+)-Erythrulose 5B7Z ; 1.5 ; Crystal Structure of Hyperthermophilic Thermotoga maritima L-Ketose-3-Epimerase with Ni2+ 5H6H ; 1.446 ; Crystal Structure of Hyperthermophilic Thermotoga maritima L-Ribulose 3-Epimerase with Mn2+ 2D7U ; 2.5 ; Crystal structure of hypothetical adenylosuccinate synthetase, PH0438 from Pyrococcus horikoshii OT3 2Z0M ; 1.9 ; Crystal structure of hypothetical ATP-dependent RNA helicase from Sulfolobus tokodaii 2GGS ; 1.7 ; crystal structure of hypothetical dTDP-4-dehydrorhamnose reductase from sulfolobus tokodaii 2E87 ; 2.35 ; Crystal structure of hypothetical GTP-binding protein PH1320 from Pyrococcus horikoshii OT3, in complex with GDP 2EO4 ; 1.8 ; Crystal structure of hypothetical histidine triad nucleotide-binding protein ST2152 from Sulfolobus tokodaii strain7 2YR0 ; 1.9 ; Crystal Structure of Hypothetical Methyltransferase TTHA0223 from Thermus thermophilus HB8 2YQZ ; 1.8 ; Crystal Structure of Hypothetical Methyltransferase TTHA0223 from Thermus thermophilus HB8 complexed with S-adenosylmethionine 2OHD ; 2.2 ; Crystal structure of hypothetical molybdenum cofactor biosynthesis protein C from Sulfolobus tokodaii 2EGT ; 2.0 ; Crystal Structure of Hypothetical protein (AQ1549) from Aquifex aeolicus 3VNP ; 2.4 ; Crystal structure of hypothetical protein (GK2848) from Geobacillus Kaustophilus 5YIT ; 2.79 ; Crystal Structure of Hypothetical protein (Rv3272) from Mycobacterium tuberculosis 2IDG ; 2.69 ; Crystal Structure of hypothetical protein AF0160 from Archaeoglobus fulgidus 1TJN ; 2.01 ; Crystal structure of hypothetical protein af0721 from Archaeoglobus fulgidus 2P6H ; 1.95 ; Crystal structure of hypothetical protein APE1520 from Aeropyrum pernix K1 1WDV ; 1.7 ; Crystal structure of hypothetical protein APE2540 2P6C ; 2.0 ; Crystal structure of hypothetical protein aq_2013 from Aquifex aeolicus VF5. 3OA4 ; 1.94 ; CRYSTAL STRUCTURE OF hypothetical protein BH1468 from Bacillus halodurans C-125 1S5U ; 1.7 ; Crystal Structure of Hypothetical Protein EC709 from Escherichia coli 2DVK ; 1.8 ; Crystal Structure of Hypothetical protein from Aeropyrum pernix 3KBY ; 1.8 ; Crystal structure of hypothetical protein from Staphylococcus aureus 2I5T ; 2.01 ; Crystal Structure of hypothetical protein LOC79017 from Homo sapiens 3Q4N ; 2.88 ; Crystal structure of hypothetical protein MJ0754 from Methanococcus jannaschii DSM 2661 2EKY ; 1.8 ; Crystal Structure of hypothetical protein MJ1052 from Methanocaldococcus jannaschii (Form 1) 2DB7 ; 1.9 ; Crystal structure of hypothetical protein MS0332 3FX7 ; 1.65 ; Crystal structure of hypothetical protein of HP0062 from Helicobacter pylori 1V96 ; 1.75 ; Crystal structure of hypothetical protein of unknown function from pyrococcus horikoshii OT3 1YE5 ; 2.0 ; Crystal structure of hypothetical protein of unknown function from pyrococcus horikoshii OT3 4IX1 ; 2.8 ; Crystal structure of hypothetical protein OPAG_01669 from Rhodococcus Opacus PD630, Target 016205 2X5C ; 1.8 ; Crystal structure of hypothetical protein ORF131 from Pyrobaculum Spherical Virus 2X3M ; 1.45 ; Crystal Structure of Hypothetical Protein ORF239 from Pyrobaculum Spherical Virus 4B7C ; 2.1 ; Crystal structure of hypothetical protein PA1648 from Pseudomonas aeruginosa. 4B7X ; 2.2 ; Crystal structure of hypothetical protein PA1648 from Pseudomonas aeruginosa. 2HDW ; 2.0 ; Crystal structure of hypothetical protein PA2218 from Pseudomonas Aeruginosa 4PGO ; 2.3 ; Crystal structure of hypothetical protein PF0907 from Pyrococcus furiosus solved by sulfur SAD using Swiss Light Source data 4PII ; 2.17 ; Crystal structure of hypothetical protein PF0907 from pyrococcus furiosus solved by sulfur SAD using Swiss light source data 2P62 ; 2.5 ; Crystal structure of hypothetical protein PH0156 from Pyrococcus horikoshii OT3 2Z0T ; 1.8 ; Crystal structure of hypothetical protein PH0355 2HUN ; 2.07 ; Crystal structure of hypothetical protein PH0414 from Pyrococcus horikoshii OT3 1J31 ; 1.6 ; Crystal Structure of Hypothetical Protein PH0642 from Pyrococcus horikoshii 3D79 ; 1.73 ; Crystal structure of hypothetical protein PH0734.1 from hyperthermophilic archaea Pyrococcus horikoshii OT3 2GJU ; 2.0 ; Crystal structure of hypothetical protein PH1004 from Pyrococcus horikoshii OT3 2HVB ; 2.5 ; Crystal structure of hypothetical protein PH1083 from Pyrococcus horikoshii OT3 2E6U ; 1.8 ; Crystal structure of hypothetical protein PH1109 from Pyrococcus horikoshii 1WR8 ; 1.6 ; Crystal structure of hypothetical protein PH1421 from Pyrococcus horikoshii. 1ZJJ ; 1.85 ; Crystal structure of hypothetical protein PH1952 from Pyrococcus horikoshii OT3 2CVI ; 1.5 ; Crystal structure of hypothetical protein PHS023 from Pyrococcus horikoshii 2VXZ ; 1.7 ; Crystal Structure of hypothetical protein PyrSV_gp04 from Pyrobaculum spherical virus 4M20 ; 2.0 ; Crystal Structure of hypothetical protein SAV0944 from Staphylococcus aureus subsp. aureus Mu50 4ITQ ; 2.7 ; Crystal structure of hypothetical protein SCO1480 bound to DNA 4DNH ; 2.5 ; Crystal structure of hypothetical protein SMc04132 from Sinorhizobium meliloti 1021 2IVY ; 1.4 ; Crystal structure of hypothetical protein sso1404 from Sulfolobus solfataricus P2 2X5Q ; 2.05 ; Crystal Structure of Hypothetical protein sso1986 from Sulfolobus solfataricus P2 1ZZG ; 1.95 ; Crystal structure of hypothetical protein TT0462 from Thermus thermophilus HB8 2Z0R ; 2.3 ; Crystal structure of hypothetical protein TTHA0547 1WV8 ; 2.2 ; Crystal structure of hypothetical protein TTHA1013 from an extremely thermophilic bacterium thermus thermophilus HB8 3VG8 ; 2.2 ; Crystal structure of hypothetical protein TTHB210 from Thermus thermophilus HB8 4H3U ; 1.15 ; Crystal structure of hypothetical protein with ketosteroid isomerase-like protein fold from Catenulispora acidiphila DSM 44928 4HVN ; 1.95 ; Crystal structure of hypothetical protein with ketosteroid isomerase-like protein fold from Catenulispora acidiphila DSM 44928 in complex with Trimethylamine. 4NAV ; 2.69 ; Crystal structure of hypothetical protein XCC2798 from Xanthomonas campestris, Target EFI-508608 2ICU ; 1.6 ; Crystal Structure of Hypothetical Protein YedK From Escherichia coli 1ZYL ; 2.8 ; Crystal Structure of Hypothetical Protein YihE from Escherichia coli 1U5W ; 2.3 ; Crystal structure of hypothetical protein yjjX from Escherichia coli 1SGM ; 2.0 ; Crystal Structure of Hypothetical Protein YXAF 1WY6 ; 2.2 ; Crystal Structure of Hypothetical Protein [ST1625p] from Hyperthermophilic Archaeon Sulfolobus tokodaii 2EGJ ; 1.8 ; Crystal Structure of Hypothetical Protein(AQ1494) from Aquifex aeolicus 2EGR ; 1.8 ; Crystal Structure of Hypothetical Protein(AQ1494) from Aquifex aeolicus 2RBG ; 1.75 ; Crystal structure of hypothetical protein(ST0493) from sulfolobus tokodaii 2EI5 ; 1.88 ; Crystal Structure of Hypothetical protein(TTHA0061) from Thermus thermophilus 2DUM ; 2.75 ; Crystal structure of hypothetical protein, PH0823 2ZG6 ; 2.4 ; Crystal structure of Hypothetical protein; probable 2-haloalkanoic acid dehalogenase from Sulfolobus tokodaii 4I82 ; 2.5 ; Crystal Structure of Hypothetical Thioesterase Protein SP_1851 from Streptococcus pneumoniae TIGR4 4ZRF ; 1.86 ; Crystal Structure of Hypothetical Thioesterase Protein SP_1851 from Streptococcus pneumoniae TIGR4 4ZRB ; 2.2 ; Crystal Structure of Hypothetical Thioesterase Protein SP_1851 with Coenzyme A from Streptococcus pneumoniae TIGR4 3VK0 ; 1.88 ; Crystal Structure of hypothetical transcription factor NHTF from Neisseria 2CWE ; 2.7 ; Crystal structure of hypothetical transcriptional regulator protein, PH1932 from Pyrococcus horikoshii OT3 2ZKI ; 2.9 ; Crystal structure of hypothetical Trp repressor binding protein from Sul folobus tokodaii (ST0872) 4PFQ ; 2.1 ; Crystal structure of hypoxanthine phosphoribosyltransferase from Brachybacterium faecium DSM 4810, NYSGRC Target 029763. 4LYY ; 1.86 ; Crystal structure of hypoxanthine phosphoribosyltransferase from Shewanella pealeana ATCC 700345, NYSGRC Target 029677. 5ESX ; 2.71 ; Crystal structure of hypoxanthine-guanine phosphoribosyltransferase complexed with GMP from Legionella pneumophila 5IPF ; 2.8 ; Crystal structure of Hypoxanthine-guanine phosphoribosyltransferase from Schistosoma mansoni in complex with IMP 1R3U ; 2.5 ; Crystal Structure of Hypoxanthine-Guanine Phosphoribosyltransferase from Thermoanaerobacter tengcongensis 3ACB ; 2.06 ; Crystal structure of hypoxanthine-guanine phosphoribosyltransferase from Thermus thermophilus HB8 3ACC ; 2.16 ; Crystal structure of hypoxanthine-guanine phosphoribosyltransferase with GMP from Thermus thermophilus HB8 3ACD ; 1.89 ; Crystal structure of hypoxanthine-guanine phosphoribosyltransferase with IMP from Thermus thermophilus HB8 6AR9 ; 2.28 ; Crystal structure of hypoxanthine-guanine-xanthine phosphorybosyltranferase in complex with [(2-{[2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)ethyl][(E)-2-phosphonoethenyl]amino}ethoxy)methyl]phosphonic acid 6AQO ; 2.64 ; Crystal structure of hypoxanthine-guanine-xanthine phosphorybosyltranferase in complex with {[(2S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)propane-1,2-diyl]bis(oxyethane-2,1-diyl)}bis(phosphonic acid) 4KBZ ; 2.15 ; Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2) with (S)-{2-[2-(5-Cyano-3-hydroxy-pyridin-2-yl)-thiazol-4-yl]-acetylamino}-phenyl-acetic acid 1XKF ; 1.9 ; Crystal structure of Hypoxic Response Protein I (HRPI) with two coordinated zinc ions 6J0P ; 1.79 ; Crystal structure of HypX from Aquifex aeolicus (Crystal Form I) 6J1E ; 2.4 ; Crystal structure of HypX from Aquifex aeolicus (Crystal Form II) 6J1F ; 2.1 ; Crystal structure of HypX from Aquifex aeolicus in complex with Tetrahydrofolic acid 6J1I ; 2.29 ; Crystal structure of HypX from Aquifex aeolicus, A392F-I419F variant 6J1J ; 2.0 ; Crystal structure of HypX from Aquifex aeolicus, A392F-I419F variant in complex with Tetrahydrofolic acid 6J1H ; 2.101 ; Crystal structure of HypX from Aquifex aeolicus, Q15A-R131A-S194A-Q195A-N306A-R542A variant 6J1G ; 2.5 ; Crystal structure of HypX from Aquifex aeolicus, R9A-Q15A-R131A-R542A variant 6PQN ; 3.01 ; Crystal structure of HzTransib transposase 1UHI ; 1.8 ; Crystal structure of i-aequorin 1N3E ; 2.5 ; Crystal structure of I-CreI bound to a palindromic DNA sequence I (palindrome of left side of wildtype DNA target sequence) 1N3F ; 2.0 ; Crystal structure of I-CreI bound to a palindromic DNA sequence II (palindrome of right side of wildtype DNA target sequence) 4AQU ; 2.3 ; Crystal structure of I-CreI complexed with its target methylated at position plus 2 (in the b strand) in the presence of calcium 4AQX ; 2.2 ; Crystal structure of I-CreI complexed with its target methylated at position plus 2 (in the b strand) in the presence of magnesium 4EFJ ; 2.8 ; Crystal structure of I-GzeII LAGLIDADG homing endonuclease in complex with DNA target site 2YXM ; 1.51 ; Crystal structure of I-set domain of human Myosin Binding ProteinC 3A0H ; 4.0 ; Crystal structure of I-substituted Photosystem II complex 7KYR ; 1.71 ; Crystal structure of I107E CuB myoglobin (I107E L29H F43H sperm whale myoglobin) 7L3U ; 1.47 ; Crystal structure of I107E F33Y CuB myoglobin (I107E F33Y L29H F43H sperm whale myoglobin) 2ZBM ; 1.5 ; Crystal Structure of I115M Mutant Cold-Active Protein Tyrosine Phosphatase 6LTV ; 1.87 ; Crystal Structure of I122A/I330A variant of S-adenosylmethionine synthetase from Cryptosporidium hominis in complex with ONB-SAM (2-nitro benzyme S-adenosyl-methionine) 6I45 ; 1.8 ; Crystal structure of I13V/I62V/V77I South African HIV-1 subtype C protease containing a D25A mutation 4QLE ; 1.35 ; Crystal structure of I14A DHFR mutant complexed with folate and NADP+ 4QLF ; 1.44 ; Crystal structure of I14G DHFR mutant complexed with folate and NADP+ 4QLG ; 1.5 ; Crystal structure of I14V DHFR mutant complexed with folate and NADP+ 3VAD ; 2.602 ; Crystal structure of I170F mutant branched-chain alpha-ketoacid dehydrogenase kinase in complex with 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid 4QA2 ; 2.377 ; Crystal structure of I243N HDAC8 in complex with SAHA 4QA6 ; 2.053 ; Crystal structure of I243N/Y306F HDAC8 in complex with a tetrapeptide substrate 3EM6 ; 2.1 ; Crystal structure of I50L/A71V mutant of hiv-1 protease in complex with inhibitor darunavir 7WL6 ; 1.41801 ; Crystal structure of I73L mutated human transthyretin 5JOE ; 2.0 ; Crystal structure of I81 from titin 5U5M ; 1.88 ; CRYSTAL STRUCTURE OF I83E MEDITOPE-ENABLED TRASTUZUMAB WITH AZIDO-MEDITOPE 5U6A ; 1.736 ; CRYSTAL STRUCTURE OF I83E MEDITOPE-ENABLED TRASTUZUMAB WITH AZIDO-PEG3-MEDITOPE 5B4H ; 1.11 ; Crystal structure of I86D mutant of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin (data 1) 5B4I ; 1.11 ; Crystal structure of I86D mutant of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin (data 2) 5B4J ; 1.05 ; Crystal structure of I86D mutant of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin (data 3) 4QRV ; 1.978 ; Crystal structure of I86F mutant of papain 4QRG ; 2.497 ; Crystal structure of I86L mutant of papain 7YOG ; 2.3 ; Crystal Structure of I88L single mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae at 2.3 A 7YOH ; 2.5 ; Crystal structure of I88L single mutant of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high-affinity inhibitory peptide from serine acetyltransferase of Haemophilus influenzae at 2.5 A 7YOI ; 2.14 ; Crystal structure of I88L single mutant of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high-affinity inhibitory peptide from serine acetyltransferase of Salmonella typhimurium at 2.14 A 5JDE ; 1.9 ; Crystal structure of I9-I11 tandem from titin (P1) 5JDD ; 1.53 ; Crystal structure of I9-I11 tandem from titin (P212121) 6XNT ; 3.1 ; Crystal structure of I91A mutant of human CEACAM1 4H0T ; 2.2 ; Crystal structure of Ia-ADPR-actin complex 3BUZ ; 2.81 ; Crystal structure of ia-bTAD-actin complex 7S80 ; 1.4 ; Crystal structure of iAChSnFR Acetylcholine Sensor precursor binding protein 7S7Z ; 1.55 ; Crystal structure of iAChSnFR Acetylcholine Sensor precursor binding protein with choline bound 6V1R ; 1.64 ; Crystal structure of iAChSnFR Fluorescent Acetylcholine Sensor precursor binding protein 6BLQ ; 1.8 ; Crystal Structure of IAg7 in complex with insulin mimotope p8E9E 6BLR ; 1.96 ; Crystal Structure of IAg7 in complex with insulin mimotope p8E9E6SS 6BLX ; 2.323 ; Crystal structure of IAg7 in complex with insulin mimotope p8G9E 5DMK ; 2.45 ; Crystal Structure of IAg7 in complex with RLGL-WE14 7Z3H ; 2.4 ; Crystal structure of Iba57 from Chaetomium thermophilum 1WCD ; 3.0 ; Crystal structure of IBDV T1 virus-like particle reveals a missing link in icosahedral viruses evolution 3N3U ; 1.846 ; Crystal Structure of IbpAFic2 6SIU ; 2.49 ; Crystal structure of IbpAFic2 covalently tethered to Cdc42 4ITR ; 2.3 ; Crystal Structure of IbpAFic2-H3717A in complex with adenylylated Cdc42 7F52 ; 2.559 ; Crystal Structure of IBV Nsp2 3LD1 ; 2.498 ; Crystal Structure of IBV Nsp2a 5BZ0 ; 2.1 ; Crystal structure of IBV papain-like protease PLpro C101S mutant in complex with ubiquitin 3EKE ; 2.1 ; Crystal structure of IBV X-domain at pH 5.6 3EJF ; 1.6 ; Crystal structure of IBV X-domain at pH 8.5 4OI9 ; 2.5 ; Crystal Structure of ICAM-5 D1-D4 ectodomain fragment, Space Group P21 4OIA ; 3.7 ; Crystal Structure of ICAM-5 D1-D4 ectodomain fragment, Space Group P4322 4OIB ; 3.503 ; Crystal Structure of ICAM-5 D1-D4 ectodomain fragment, Space Group R3 3BN3 ; 2.099 ; crystal structure of ICAM-5 in complex with aL I domain 3GEU ; 1.9 ; Crystal Structure of IcaR from Staphylococcus aureus, a member of the tetracycline repressor protein family 2ZCM ; 1.33 ; Crystal structure of IcaR, a repressor of the TetR family 2ZCN ; 1.9 ; Crystal structure of IcaR, a repressor of the TetR family 6IDN ; 1.5 ; Crystal structure of ICChI chitinase from ipomoea carnea 5UYT ; 1.75 ; Crystal structure of ice binding protein from an Antarctic bacterium Flavobacteriaceae 6A8K ; 1.4 ; Crystal structure of Ice-binding Protein from a Sea-Ice Microalga 7BWX ; 1.904 ; Crystal structure of ice-binding protein from an Antarctic ascomycete, Antarctomyces psychrotrophicus. 7BWY ; 2.02 ; Crystal structure of ice-binding protein from an Antarctic ascomycete, Antarctomyces psychrotrophicus. 5TJJ ; 2.5 ; Crystal structure of IcIR transcriptional regulator from Alicyclobacillus acidocaldarius 5WHM ; 1.95 ; Crystal Structure of IclR Family Transcriptional Regulator from Brucella abortus 7JOO ; 2.4 ; Crystal structure of ICOS in complex with antibody STIM003 and anti-kappa VHH domain 6X4G ; 3.5 ; Crystal structure of ICOS in complex with ICOS-L and an anti ICOS-L VNAR domain 6X4T ; 3.15 ; Crystal structure of ICOS-L in complex with Prezalumab and VNAR domain 6A9V ; 2.9 ; Crystal structure of Icp55 from Saccharomyces cerevisiae (N-terminal 42 residues deletion) 6A9T ; 2.15 ; Crystal structure of Icp55 from Saccharomyces cerevisiae (N-terminal 58 residues deletion) 7S7Y ; 1.3 ; Crystal structure of iCytSnFR Cytisine Sensor precursor binding protein 7S7X ; 1.7 ; Crystal structure of iCytSnFR Cytisine Sensor precursor binding protein with varenicline bound 4AYA ; 2.103 ; Crystal structure of ID2 HLH homodimer at 2.1A resolution 3CWW ; 1.96 ; Crystal Structure of IDE-bradykinin complex 6QG9 ; 2.05 ; Crystal structure of Ideonella sakaiensis MHETase 6QGB ; 2.2 ; Crystal structure of Ideonella sakaiensis MHETase bound to benzoic acid 6QGA ; 2.1 ; Crystal structure of Ideonella sakaiensis MHETase bound to the non-hydrolyzable ligand MHETA 6ANE ; 2.02 ; Crystal Structure of Ideonella sakaiensis PET Hydrolase 6Q6F ; 3.3 ; Crystal structure of IDH1 R132H in complex with HMS101 6O2Y ; 2.8 ; Crystal structure of IDH1 R132H mutant in complex with compound 24 6O2Z ; 2.5 ; Crystal structure of IDH1 R132H mutant in complex with compound 32 6U4J ; 2.11 ; Crystal structure of IDH1 R132H mutant in complex with FT-2102 8BAY ; 2.35 ; Crystal Structure of IDH1 variant R132C S280F in complex with NADPH, Ca2+ and 3-butyl-2-oxoglutarate 6HNM ; 2.0 ; Crystal structure of IdmH 96-104 loop truncation variant 5JJQ ; 2.6 ; Crystal structure of IdnL1 6AKD ; 2.1 ; Crystal structure of IdnL7 6LNH ; 2.34 ; Crystal structure of IDO from Bacillus thuringiensis 8ABX ; 1.65 ; Crystal structure of IDO1 in complex with Apoxidole-1 3N77 ; 1.86 ; Crystal structure of Idp01880, putative NTP pyrophosphohydrolase of Salmonella typhimurium LT2 4LNQ ; 2.0 ; Crystal structure of Ifi202 HINa domain in complex with 20bp dsDNA 4J0U ; 1.969 ; Crystal structure of IFIT5/ISG58 4LVP ; 2.323 ; Crystal structure of IFT81 N-terminal domain 4LVR ; 2.6 ; Crystal structure of IFT81 N-terminal domain 3BFO ; 1.15 ; Crystal structure of Ig-like C2-type 2 domain of the human Mucosa-associated lymphoid tissue lymphoma translocation protein 1 2NQC ; 2.05 ; Crystal structure of ig-like domain 23 from human filamin C 3M45 ; 2.21 ; Crystal structure of Ig1 domain of mouse SynCAM 2 4GRG ; 4.24 ; Crystal structure of IgE complexed with E2_79, an anti-IgE inhibitor 5ANM ; 2.85 ; Crystal structure of IgE Fc in complex with a neutralizing antibody 5MOJ ; 2.26 ; Crystal structure of IgE-Fc epsilon 3-4 3KR3 ; 2.2 ; Crystal structure of IGF-II antibody complex 4BM7 ; 1.95 ; Crystal Structure of IgG Fc F241A mutant with native glycosylation 5GSQ ; 1.85 ; Crystal structure of IgG Fc with a homogeneous glycoform and Antibody-Dependent Cellular Cytotoxicity 7Q3P ; 2.1 ; Crystal structure of IgG1-Fc-MST-HN (efgartigimod) 4B3F ; 2.5 ; crystal structure of Ighmbp2 helicase 4B3G ; 2.85 ; crystal structure of Ighmbp2 helicase in complex with RNA 6DLE ; 3.994 ; Crystal structure of IgLON5 homodimer 6DLD ; 3.3 ; Crystal structure of IgLON5/NEGR1 heterodimer 3RN8 ; 1.7 ; Crystal Structure of iGluR2 Ligand Binding Domain and Symmetrical Carboxyl Containing Potentiator 3RNN ; 1.75 ; Crystal Structure of iGluR2 Ligand Binding Domain with Symmetric Sulfonamide Containing Potentiator 6QSS ; 1.892 ; Crystal Structure of Ignicoccus islandicus malate dehydrogenase co-crystallized with 10 mM Tb-Xo4 5DNX ; 1.8 ; Crystal structure of IGPD from Pyrococcus furiosus in complex with (R)-C348 5DNL ; 1.53 ; Crystal structure of IGPD from Pyrococcus furiosus in complex with (S)-C348 3N1O ; 2.55 ; Crystal structure of IhhN 3N1M ; 1.69 ; Crystal Structure of IhhN bound to BOCFn3 3N1P ; 2.7 ; Crystal Structure of IhhN bound to BOCFn3 3N1F ; 1.6 ; Crystal Structure of IhhN bound to CDOFn3 5AEU ; 2.49 ; Crystal structure of II9 variant of Biphenyl dioxygenase from Burkholderia xenovorans LB400 5AEW ; 1.88 ; Crystal structure of II9 variant of Biphenyl dioxygenase from Burkholderia xenovorans LB400 in complex with biphenyl 1A3A ; 1.8 ; CRYSTAL STRUCTURE OF IIA MANNITOL FROM ESCHERICHIA COLI 3WJJ ; 2.6 ; Crystal structure of IIb selective Fc variant, Fc(P238D), in complex with FcgRIIb 3WJL ; 2.86 ; Crystal structure of IIb selective Fc variant, Fc(V12), in complex with FcgRIIb 1IIB ; 1.8 ; CRYSTAL STRUCTURE OF IIBCELLOBIOSE FROM ESCHERICHIA COLI 1TPZ ; 2.0 ; Crystal Structure of IIGP1: a paradigm for interferon inducible p47 resistance GTPases 1TQ2 ; 2.7 ; Crystal Structure of IIGP1: a paradigm for interferon inducible p47 resistance GTPases 1TQ4 ; 1.95 ; Crystal Structure of IIGP1: a paradigm for interferon inducible p47 resistance GTPases 1TQ6 ; 2.7 ; Crystal Structure of IIGP1: a paradigm for interferon inducible p47 resistance GTPases 1TQD ; 2.3 ; Crystal structure of IIGP1: a paradigm for interferon inducible p47 resistance GTPases 7REW ; 2.1 ; Crystal Structure of IL-13 in complex with MMAb3 Fab 3VBC ; 1.8 ; Crystal Structure of iL-17 receptor B SEFIR domain 4QHU ; 2.2 ; Crystal Structure of IL-17A/Fab6785 complex 1JPY ; 2.85 ; Crystal structure of IL-17F 3WO3 ; 3.1 ; Crystal structure of IL-18 in complex with IL-18 receptor alpha 3QWR ; 3.25 ; Crystal structure of IL-23 in complex with an adnectin 3D85 ; 1.9 ; Crystal structure of IL-23 in complex with neutralizing FAB 4IZE ; 2.0 ; Crystal Structure of IL-36gamma 6P9E ; 2.0 ; Crystal structure of IL-36gamma complexed to A-552 5BOW ; 1.31 ; CRYSTAL STRUCTURE OF IL-38 6PPG ; 2.75 ; Crystal structure of IL17FF bound to Fab fragments of MCAF5352A 4YH6 ; 3.0 ; Crystal structure of IL1RAPL1 ectodomain 7KQ7 ; 2.203 ; Crystal structure of IL21R in complex with an antibody Fab fragment 6UIB ; 2.74 ; Crystal structure of IL23 bound to peptide 23-652 1U3Y ; 1.901 ; Crystal structure of ILAC mutant of dimerisation domain of NF-kB p50 transcription factor 4WF0 ; 1.95 ; Crystal Structure of iLID - an Improved Light-Inducible Dimer 6PTB ; 2.15 ; Crystal Structure of ILNAMIAKI peptide bound to HLA-A2 6PTE ; 1.901 ; Crystal Structure of ILNAMITKI peptide bound to HLA-A2 6OPD ; 1.791 ; Crystal Structure of ILNAMIVKI peptide bound to HLA-A2 4EES ; 1.805 ; Crystal structure of iLOV 4EET ; 1.2 ; Crystal structure of iLOV 4NXE ; 2.103 ; Crystal structure of iLOV-I486(2LT) at pH 6.5 4NXB ; 2.561 ; Crystal structure of iLOV-I486(2LT) at pH 7.0 4NXF ; 1.766 ; Crystal structure of iLOV-I486(2LT) at pH 8.0 4NXG ; 2.09 ; Crystal structure of iLOV-I486z(2LT) at pH 9.0 7ABY ; 1.45 ; Crystal structure of iLOV-Q489K mutant 6OVT ; 1.88 ; Crystal Structure of IlvD from Mycobacterium tuberculosis 3HT5 ; 1.9 ; Crystal Structure of IlvE a Branched Chain Amino Acid Transaminase from Mycobacterium tuberculosis 5YPY ; 1.966 ; Crystal structure of IlvN. Val-1c 5YPP ; 1.9 ; Crystal structure of IlvN.Val-1a 5YPW ; 2.3 ; Crystal structure of IlvN.Val-1b 4UDM ; 2.96 ; Crystal structure of Im3 in complex with Y52A mutant of E3RNase 1JND ; 1.3 ; Crystal structure of imaginal disc growth factor-2 1JNE ; 1.7 ; Crystal structure of imaginal disc growth factor-2 2Q73 ; 1.8 ; Crystal structure of iMazG from Vibrio DAT 722: Ctag-iMazG (P41212) 2Q9L ; 2.2 ; Crystal structure of iMazG from Vibrio DAT 722: Ctag-iMazG (P43212) 2Q5Z ; 2.3 ; Crystal structure of iMazG from Vibrio DAT 722: Ntag-iMazG (P43212) 2ZM1 ; 2.1 ; Crystal structure of imidazo pyrazin 1 bound to the kinase domain of human LCK, (auto-phosphorylated on TYR394) 3ACJ ; 2.2 ; Crystal structure of imidazo pyrimidine derivative bound to the kinase domain of human LCK, (Auto-phosphorylated on TYR394) 2ZM4 ; 2.7 ; Crystal structure of imidazo quinoxaline 1 bound to the kinase domain of human LCK, activated form (auto-phosphorylated on TYR394) 1RHY ; 2.3 ; Crystal structure of Imidazole Glycerol Phosphate Dehydratase 6YJH ; 1.61 ; Crystal structure of Imidazole Glycerol Phosphate Dehydratase from Mycobacterium tuberculosis at 1.61 A resolution 2A0N ; 1.64 ; Crystal structure of Imidazole glycerol phosphate synthase subunit hisF (EC 4.1.3.-) (tm1036) from Thermotoga maritima at 1.64 A resolution 1JVN ; 2.1 ; CRYSTAL STRUCTURE OF IMIDAZOLE GLYCEROL PHOSPHATE SYNTHASE: A TUNNEL THROUGH A (BETA/ALPHA)8 BARREL JOINS TWO ACTIVE SITES 1DP9 ; 2.6 ; CRYSTAL STRUCTURE OF IMIDAZOLE-BOUND FIXL HEME DOMAIN 2AE8 ; 2.01 ; Crystal Structure of Imidazoleglycerol-phosphate Dehydratase from Staphylococcus aureus subsp. aureus N315 2G3F ; 2.0 ; Crystal Structure of imidazolonepropionase complexed with imidazole-4-acetic acid sodium salt, a substrate homologue 2PUZ ; 1.83 ; Crystal structure of Imidazolonepropionase from Agrobacterium tumefaciens with bound product N-formimino-L-Glutamate 2Q09 ; 1.97 ; Crystal structure of Imidazolonepropionase from environmental sample with bound inhibitor 3-(2,5-Dioxo-imidazolidin-4-yl)-propionic acid 7WNN ; 1.53 ; Crystal structure of Imine Reductase from Actinoalloteichus hymeniacidonis in complex with NADPH 7WXE ; 2.5 ; Crystal Structure of Imine Reductase from Paenibacillus mucilaginosus 7XE8 ; 1.72 ; Crystal structure of imine reductase from Streptomyces albidoflavus 7WNW ; 2.13 ; Crystal structure of Imine Reductase Mutant(M5) from Actinoalloteichus hymeniacidonis in complex with NADPH 7XR5 ; 1.58 ; Crystal structure of imine reductase with NAPDH from Streptomyces albidoflavus 6PXS ; 2.836 ; Crystal structure of iminodiacetate oxidase (IdaA) from Chelativorans sp. BNC1 2HP0 ; 1.5 ; Crystal structure of iminodisuccinate epimerase 2HP3 ; 1.71 ; Crystal structure of iminodisuccinate epimerase 4IT3 ; 2.495 ; Crystal Structure of Iml3 from S. cerevisiae 2Z35 ; 2.2 ; Crystal structure of immune receptor 6NIX ; 2.1 ; Crystal structure of Immune Receptor 2Z31 ; 2.7 ; Crystal structure of immune receptor complex 5JKP ; 2.106 ; Crystal structure of immunity protein Pa5087 from Pseudomonas aeruginosa 3K2D ; 2.6 ; Crystal structure of Immunogenic lipoprotein A from Vibrio vulnificus 1JGL ; 2.15 ; Crystal structure of immunoglobulin Fab fragment complexed with 17-beta-estradiol 8HT3 ; 2.5 ; Crystal structure of immunoglobulin new antigen receptor variable domain from Okamejei kenojei 2IEP ; 2.205 ; Crystal structure of immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK 2OTP ; 2.6 ; Crystal Structure of Immunoglobulin-Like Transcript 1 (ILT1/LIR7/LILRA2) 6G9E ; 2.69 ; Crystal structure of immunomodulatory active chitinase from Trichuris suis - TsES1 - 6 molecules in ASU 6G9C ; 1.74 ; Crystal structure of immunomodulatory active chitinase from Trichuris suis, TsES1 2QR6 ; 1.5 ; Crystal structure of IMP dehydrogenase/GMP reductase-like protein (NP_599840.1) from Corynebacterium glutamicum ATCC 13032 Kitasato at 1.50 A resolution 7YHA ; 2.135 ; Crystal structure of IMP-1 MBL in complex with (3-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)benzyl)phosphonic acid 7YH9 ; 2.39 ; Crystal structure of IMP-1 MBL in complex with 3-(4-benzyl-1H-1,2,3-triazol-1-yl)phthalic acid 1DDK ; 3.1 ; CRYSTAL STRUCTURE OF IMP-1 METALLO BETA-LACTAMASE FROM PSEUDOMONAS AERUGINOSA 5Y5B ; 1.7 ; Crystal Structure Of IMP-1 Metallo-beta-lactamase 3WXC ; 2.1 ; Crystal Structure of IMP-1 metallo-beta-lactamase complexed with a 3-aminophtalic acid inhibitor 6JED ; 1.57 ; Crystal structure of IMP-1 metallo-beta-lactamase in a complex with MCR 6LBL ; 1.68 ; Crystal structure of IMP-1 metallo-beta-lactamase in complex with NO9 inhibitor 4UBQ ; 2.3 ; Crystal Structure of IMP-2 Metallo-beta-Lactamase from Acinetobacter spp. 6GX6 ; 2.0 ; Crystal structure of IMP3 RRM12 in complex with RNA (ACAC) 6FQR ; 2.1 ; Crystal structure of IMP3 RRM12 in complex with RNA (CCCC) 4G61 ; 2.3 ; Crystal structure of IMPase/NADP phosphatase complexed with Mg2+ and phosphate 5EYG ; 2.2 ; Crystal structure of IMPase/NADP phosphatase complexed with NADP and Ca2+ 5EYH ; 2.5 ; Crystal Structure of IMPase/NADP phosphatase complexed with NADP and Ca2+ at pH 7.0 3ZJY ; 3.6 ; Crystal Structure of Importin 13 - RanGTP - eIF1A complex 2XWU ; 2.8 ; CRYSTAL STRUCTURE OF IMPORTIN 13 - UBC9 COMPLEX 7JJM ; 2.06 ; Crystal structure of Importin alpha 2 in complex with LSD1 NLS 7JK7 ; 1.96 ; Crystal structure of Importin alpha 2 in complex with LSD1 NLS S111E mutant 7JJL ; 2.6 ; Crystal structure of Importin Alpha 3 in complex with human LSD1 NLS 4XRK ; 3.25 ; Crystal Structure of Importin Beta in a Polyethylene Glycol Condition 4XRI ; 2.05 ; Crystal Structure of Importin Beta in an Ammonium Sulfate Condition 6K06 ; 1.75 ; Crystal structure of Importin-alpha and phosphomimetic GM130 6IWA ; 2.4 ; Crystal structure of Importin-alpha and phosphoserine GM130 6IW8 ; 2.8 ; Crystal structure of Importin-alpha and wild-type GM130 3OQS ; 2.0 ; Crystal structure of importin-alpha bound to a CLIC4 NLS peptide 4ZDU ; 2.3 ; Crystal structure of importin-alpha bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein 4RXH ; 1.7553 ; Crystal Structure of Importin-alpha from Neurospora crassa complexed with SV40NLS 6IUA ; 1.7 ; Crystal structure of importin-alpha1 bound to the 53BP1 nuclear localization signal (S1678D) 6IU7 ; 1.9 ; Crystal structure of importin-alpha1 bound to the 53BP1 nuclear localization signal (wild-type) 8HE3 ; 1.9 ; Crystal structure of importin-alpha1 bound to the HIF-1alpha nuclear localization signal (delta 724-751) 8HE0 ; 1.8 ; Crystal structure of importin-alpha1 bound to the HIF-1alpha nuclear localization signal (wild-type) 8HKW ; 1.9 ; Crystal structure of importin-alpha3 bound to the 53BP1 nuclear localization signal 5XZX ; 3.0 ; Crystal structure of importin-alpha3 bound to the nuclear localization signal of Ran-binding protein 3 1UKL ; 3.0 ; Crystal structure of Importin-beta and SREBP-2 complex 2X1G ; 3.35 ; Crystal structure of Importin13 - Mago-Y14 complex 2X19 ; 2.8 ; Crystal structure of Importin13 - RanGTP complex 5GQN ; 1.55 ; Crystal structure of in cellulo Cypovirus Polyhedra mutant with deletion of Gly192-Ala194 4OTV ; 1.7 ; Crystal structure of in cellulo Operophtera brumata CPV18 5EXY ; 1.55 ; Crystal structure of in cellulo recombinant CPV1 Polyhedra 5GQM ; 1.68 ; Crystal structure of in cellulo Wild Type Cypovirus Polyhedra 4B6X ; 2.2 ; Crystal structure of in planta processed AvrRps4 7P8K ; 2.65 ; Crystal structure of in planta processed AvrRps4 in complex with the WRKY domain of RRS1 6FX7 ; 1.82 ; Crystal structure of in vitro evolved Af1521 5ZJU ; 2.8 ; Crystal structure of in vitro expressed and assembled PCV2 Virus-like Particle 5MDO ; 1.95 ; Crystal structure of in vitro folded Chitoporin VhChip from Vibrio harveyi (crystal form I) 5MDP ; 3.08 ; Crystal structure of in vitro folded Chitoporin VhChip from Vibrio harveyi (crystal form II) 5MDR ; 1.9 ; Crystal structure of in vitro folded Chitoporin VhChip from Vibrio harveyi in complex with chitohexaose 5AO4 ; 3.7 ; Crystal structure of in vitro phosphorylated human SAMHD1 (amino acid residues 115-626) bound to GTP 3KU2 ; 2.3 ; Crystal Structure of inactivated form of CDPK1 from toxoplasma gondii, TGME49.101440 4ATF ; 1.9 ; Crystal structure of inactivated mutant beta-agarase B in complex with agaro-octaose 7UM4 ; 2.8 ; Crystal structure of inactive 5-HT5AR in complex with AS2674723 2HIW ; 2.2 ; Crystal Structure of Inactive Conformation Abl Kinase Catalytic Domain Complexed with Type II Inhibitor 5BUT ; 5.97 ; Crystal structure of inactive conformation of KtrAB K+ transporter 6X41 ; 2.36 ; Crystal structure of inactive enzymatic binary toxin component from Clostridium difficile 6X6W ; 1.89 ; Crystal structure of inactive enzymatic binary toxin component from Clostridium difficile 6X6V ; 2.42 ; Crystal structure of inactive enzymatic binary toxin component from Clostridium difficile in complex with NADPH 7AT2 ; 1.44 ; Crystal structure of inactive EstD11 S144A 1XQV ; 2.3 ; Crystal structure of inactive F1-mutant G37A 7CJU ; 1.74 ; Crystal structure of inactive form of chitosanase crystallized by ammonium sulfate 4QJA ; 1.54 ; Crystal structure of inactive HIV-1 protease in complex with p1-p6 substrate variant (P453L) 4QJ9 ; 1.83 ; Crystal structure of inactive HIV-1 protease in complex with p1-p6 substrate variant (R452S) 4OBH ; 1.85 ; Crystal Structure of Inactive HIV-1 Protease in Complex with the p1-p6 substrate variant (L449F) 4OBK ; 1.65 ; Crystal structure of inactive HIV-1 protease in complex with the P1-P6 substrate variant (L449F/S451N) 4OBJ ; 1.75 ; Crystal Structure of Inactive HIV-1 Protease in Complex with the p1-p6 substrate variant (S451N) 4QJ6 ; 1.5 ; Crystal structure of inactive HIV-1 protease variant (I50V/A71V) in complex with p1-p6 substrate variant (L449F) 4QJ8 ; 2.0 ; Crystal structure of inactive HIV-1 protease variant (I50V/A71V) in complex with p1-p6 substrate variant (P453L) 4QJ7 ; 1.67 ; Crystal structure of inactive HIV-1 protease variant (I50V/A71V) in complex with p1-p6 substrate variant (R452S) 4QJ2 ; 2.13 ; Crystal structure of inactive HIV-1 protease variant (I50V/A71V) in complex with WT p1-p6 substrate 7ACQ ; 1.86 ; CRYSTAL STRUCTURE OF INACTIVE KRAS G12D (GDP) IN COMPLEX WITH THE SOAKED DIMERIC INHIBITOR BI-5747 1RNJ ; 1.7 ; Crystal structure of inactive mutant dUTPase complexed with substrate analogue imido-dUTP 1SYL ; 1.95 ; Crystal structure of inactive mutant dUTPase complexed with substrate dUTP 3B9E ; 1.7 ; Crystal structure of inactive mutant E315M chitinase A from Vibrio harveyi 7VVC ; 1.82 ; Crystal structure of inactive mutant of leaf-branch compost cutinase variant 1N5I ; 1.85 ; CRYSTAL STRUCTURE OF INACTIVE MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE MONOPHOSPHATE (TMP) AT PH 4.6 (RESOLUTION 1.85 A) 6UNA ; 2.554 ; Crystal structure of inactive p38gamma 2PQG ; 2.38 ; Crystal structure of inactive ribosome inactivating protein from maize (b-32) 2R5T ; 1.9 ; Crystal Structure of Inactive Serum and Glucocorticoid- Regulated Kinase 1 in Complex with AMP-PNP 4EQ0 ; 1.7 ; Crystal Structure of inactive single chain variant of HIV-1 Protease in Complex with the substrate p2-NC 4EQJ ; 1.8 ; Crystal Structure of inactive single chain variant of HIV-1 Protease in Complex with the substrate RT-RH 4EP3 ; 1.81 ; Crystal Structure of inactive single chain wild-type HIV-1 Protease in Complex with the substrate CA-p2 4EPJ ; 1.69 ; Crystal Structure of inactive single chain wild-type HIV-1 Protease in Complex with the substrate p2-NC 4EP2 ; 1.9 ; Crystal Structure of inactive single chain wild-type HIV-1 Protease in Complex with the substrate RT-RH 6IGQ ; 2.3 ; Crystal structure of inactive state of S9 peptidase from Deinococcus radiodurans R1 (PMSF treated) 8P1G ; 1.42 ; Crystal structure of inactive TtCE16 in complex with acetate 7VM7 ; 1.87 ; Crystal structure of inactive uPA in complex with nafamostat 4LZK ; 1.89 ; Crystal structure of inclusion body protein (PixA pfam12306) from Burkholderia cenocepacia J2315 6JXS ; 1.95 ; Crystal Structure of Indigo reductase (Y151F) from Bacillus smithii type strain DSM 4216 6JXN ; 1.97 ; Crystal Structure of Indigo reductase from Bacillus smithii type strain DSM 4216 2OJY ; 1.6 ; Crystal structure of indol-3-acetaldehyde derived TTQ-amide adduct of aromatic amine dehydrogenase 7P9Q ; 2.53 ; Crystal structure of Indole 3-Carboxylic acid decarboxylase from Arthrobacter nicotianae FI1612 in complex with co-factor prFMN. 7W8U ; 2.25 ; Crystal Structure of Indole Prenyltransferase IptA 5IUU ; 2.09 ; Crystal Structure of Indole-3-acetaldehyde Dehydrogenase in Apo form 5IUV ; 1.928 ; Crystal Structure of Indole-3-acetaldehyde Dehydrogenase in complexed with NAD+ 5IUW ; 2.093 ; Crystal Structure of Indole-3-acetaldehyde Dehydrogenase in complexed with NAD+ and IAA 3B5I ; 2.75 ; Crystal structure of Indole-3-acetic Acid Methyltransferase 1LBF ; 2.05 ; CRYSTAL STRUCTURE OF INDOLE-3-GLYCEROL PHOSPHATE SYNTASE (IGPS)WITH REDUCED 1-(O-CABOXYPHENYLAMINO)-1-DEOXYRIBULOSE 5-PHOSPHATE (RCDRP) 1LBL ; 2.4 ; Crystal structure of indole-3-glycerol phosphate synthase (IGPS) in complex with 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate (CdRP) 1J5T ; 3.0 ; Crystal structure of indole-3-glycerol phosphate synthase (TM0140) from Thermotoga maritima at 3.0 A resolution 1VC4 ; 1.8 ; Crystal Structure of Indole-3-Glycerol Phosphate Synthase (TrpC) from Thermus Thermophilus At 1.8 A Resolution 3TSM ; 2.15 ; Crystal structure of Indole-3-glycerol phosphate synthase from Brucella melitensis 5XDC ; 1.5785 ; Crystal structure of Indole-bound TdsC from Paenibacillus sp. A11-2 8I7L ; 2.8 ; Crystal structure of indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with a novel inhibitor 6KW7 ; 3.02 ; Crystal structure of indoleamine 2,3-dioxygenagse 1 (IDO1) in complex with compound 12 6KPS ; 2.249 ; Crystal structure of indoleamine 2,3-dioxygenagse 1 (IDO1) in complex with compound 36 6KOF ; 2.263 ; Crystal structure of indoleamine 2,3-dioxygenagse 1 (IDO1) in complex with compound 47 6R63 ; 2.894 ; Crystal structure of indoleamine 2,3-dioxygenase 1 (IDO1) in complex with ferric heme and MMG-0358 7AH4 ; 2.401 ; Crystal structure of indoleamine 2,3-dioxygenase 1 (IDO1) in complex with ferric heme and MMG-0363 7ZV3 ; 2.551 ; Crystal structure of indoleamine 2,3-dioxygenase 1 (IDO1) in complex with ferric heme and MMG-0472 7AH5 ; 2.9 ; Crystal structure of indoleamine 2,3-dioxygenase 1 (IDO1) in complex with ferric heme and MMG-0706 7AH6 ; 2.998 ; Crystal structure of indoleamine 2,3-dioxygenase 1 (IDO1) in complex with ferric heme and MMG-0752 1I4N ; 2.5 ; CRYSTAL STRUCTURE OF INDOLEGLYCEROL PHOSPHATE SYNTHASE FROM THERMOTOGA MARITIMA 1OVM ; 2.65 ; Crystal structure of Indolepyruvate decarboxylase from Enterobacter cloacae 7U9B ; 1.95 ; Crystal structure of indoline 7 with KPC-2 7UA7 ; 2.247 ; Crystal structure of indoline 9 with KPC-2 3NQS ; 2.2 ; Crystal Structure of Inducible Nitric Oxide Synthase with N-Nitrosated-pterin 6APC ; 1.7 ; Crystal Structure of Infant Antibody ADI-19425 8UA5 ; 2.45 ; Crystal Structure of infected cell protein 0 (ICP0) from herpes simplex virus 1 (A636-Q776) 8UA2 ; 2.65 ; Crystal Structure of infected cell protein 0 (ICP0) from herpes simplex virus 1 (proteolyzed fragment) 3JVB ; 2.17 ; Crystal structure of infectious baculovirus polyhedra 2Q6D ; 2.35 ; Crystal structure of infectious bronchitis virus (IBV) main protease 2Q6F ; 2.0 ; Crystal structure of infectious bronchitis virus (IBV) main protease in complex with a Michael acceptor inhibitor N3 2QJ1 ; 3.48 ; Crystal structure of infectious bursal disease virus VP1 polymerase incubated with an oligopeptide mimicking the VP3 C-terminus 2R70 ; 2.7 ; Crystal structure of infectious bursal disease virus VP1 polymerase, cocrystallized with an oligopeptide mimicking the VP3 C-terminus. 2R72 ; 3.15 ; Crystal structure of infectious bursal disease virus VP1 polymerase, incubated with Mg2+ ion. 2DF7 ; 2.6 ; Crystal structure of infectious bursal disease virus VP2 subviral particle 2F3C ; 2.5 ; Crystal structure of infestin 1, a Kazal-type serineprotease inhibitor, in complex with trypsin 2ERW ; 1.4 ; Crystal Structure of Infestin 4, a factor XIIa inhibitor 4HZW ; 1.701 ; Crystal structure of influenza A neuraminidase N3 complexed with laninamivir 4HZX ; 2.2 ; Crystal structure of influenza A neuraminidase N3 complexed with oseltamivir 4HZY ; 1.598 ; Crystal structure of influenza A neuraminidase N3-H274Y 4I00 ; 1.6 ; Crystal structure of influenza A neuraminidase N3-H274Y complexed with zanamivir 2RHK ; 1.95 ; Crystal structure of influenza A NS1A protein in complex with F2F3 fragment of human cellular factor CPSF30, Northeast Structural Genomics Targets OR8C and HR6309A 6IUV ; 2.332 ; Crystal structure of influenza A virus H5 hemagglutinin globular head in complex with the Fab of antibody 3C11 5DUM ; 3.003 ; Crystal structure of influenza A virus H5 hemagglutinin globular head in complex with the Fab of antibody 65C6 6IUT ; 2.3 ; Crystal structure of influenza A virus H5 hemagglutinin globular head in complex with the Fab of antibody AVFluIgG01 6A67 ; 2.33 ; Crystal structure of influenza A virus H5 hemagglutinin globular head in complex with the Fab of antibody FLD21.140 2Q06 ; 3.3 ; Crystal structure of Influenza A Virus H5N1 Nucleoprotein 6UYN ; 2.85 ; Crystal structure of influenza A virus hemagglutinin from A/Ohio/09/2015 bound to the stalk-binding CR6261 antibody Fab 6I3H ; 1.9 ; Crystal structure of influenza A virus M1 N-terminal domain (G18A mutation) 4PUS ; 2.2 ; Crystal Structure of Influenza A Virus Matrix Protein M1 5V7B ; 2.5 ; Crystal structure of Influenza A virus matrix protein M1 (NLS-88E) 5V7S ; 2.5 ; Crystal structure of Influenza A virus matrix protein M1 (NLS-88E, pH 6.2) 5V8A ; 3.0 ; Crystal structure of Influenza A virus matrix protein M1 (NLS-88R, pH 7.3) 5V6G ; 2.0 ; Crystal structure of Influenza A virus Matrix Protein M1(NLS-88R) 3SAL ; 1.5 ; Crystal Structure of Influenza A Virus Neuraminidase N5 7E6Q ; 2.2 ; Crystal structure of influenza A virus neuraminidase N5 complexed with 4'-phenyl-1,2,3-triazolylated oseltamivir carboxylate 3TI8 ; 1.601 ; Crystal structure of influenza A virus neuraminidase N5 complexed with laninamivir 3SAN ; 1.6 ; Crystal structure of influenza A virus neuraminidase N5 complexed with Zanamivir 3RO5 ; 2.66 ; Crystal structure of influenza A virus nucleoprotein with ligand 3TG6 ; 3.0 ; Crystal Structure of Influenza A Virus nucleoprotein with Ligand 4WSA ; 3.4 ; Crystal structure of Influenza B polymerase bound to the vRNA promoter (FluB1 form) 6QCW ; 2.88 ; Crystal structure of influenza B polymerase initiation state with capped 14-mer RNA primer 6QCV ; 3.24 ; Crystal structure of influenza B polymerase initiation state with capped 14-mer RNA primer and CTP 6QCX ; 3.08 ; Crystal structure of influenza B polymerase initiation state with capped 15-mer RNA primer 5EPI ; 4.1 ; CRYSTAL STRUCTURE OF INFLUENZA B POLYMERASE WITH BOUND 5' CRNA EXHIBITS A NOVEL DOMAIN ARRANGEMENT 5FMZ ; 3.4 ; Crystal structure of Influenza B polymerase with bound 5' vRNA 4WRT ; 2.7 ; Crystal structure of Influenza B polymerase with bound vRNA promoter (form FluB2) 3BT6 ; 2.8 ; Crystal Structure of Influenza B Virus Hemagglutinin 2RFT ; 2.8 ; Crystal structure of influenza B virus hemagglutinin in complex with LSTa receptor analog 2RFU ; 2.8 ; Crystal structure of influenza B virus hemagglutinin in complex with LSTc receptor analog 3TJ0 ; 3.233 ; Crystal Structure of Influenza B Virus Nucleoprotein 3FKU ; 3.2 ; Crystal structure of influenza hemagglutinin (H5) in complex with a broadly neutralizing antibody F10 6ONA ; 1.95 ; Crystal structure of Influenza hemagglutinin from strain A/Hickox/JY2/1940 6OSR ; 2.55 ; Crystal structure of Influenza hemagglutinin from strain A/Melbourne/1/1946(H1N1) 4HZZ ; 1.601 ; Crystal structure of influenza neuraminidase N3-H274Y complexed with oseltamivir 7XGC ; 1.6 ; Crystal structure of influenza polymerase acidic subunit N-terminal domain crystallized by ammonium sulfate with glycan 1L7F ; 1.8 ; Crystal structure of influenza virus neuraminidase in complex with BCX-1812 2G6Q ; 2.0 ; Crystal structure of ING2 PHD finger in complex with H3K4Me3 peptide 3FNF ; 2.3 ; Crystal structure of InhA bound to triclosan derivative 3FNG ; 1.97 ; Crystal structure of InhA bound to triclosan derivative 3FNH ; 2.8 ; Crystal structure of InhA bound to triclosan derivative 3FNE ; 1.98 ; Crystal structure of InhA bound to triclosan derivative 17 7E48 ; 2.5 ; Crystal structure of InhA in complex with 3-nitropropanoic acid inhibitor 6R9W ; 1.75 ; Crystal structure of InhA in complex with AP-124 inhibitor 4BGI ; 2.09 ; Crystal structure of InhA(S94A) mutant in complex with OH-141 4BGE ; 2.25 ; Crystal structure of InhA(S94A) mutant in complex with pyridomycin 6ZKZ ; 2.3 ; Crystal structure of InhA:01 TCR in complex with HLA-E (F116C) bound to InhA (53-61 H4C) 6ZKY ; 2.65 ; Crystal structure of InhA:01 TCR in complex with HLA-E (S147C) bound to InhA (53-61 H3C) 6ZKX ; 2.17 ; Crystal structure of InhA:01 TCR in complex with HLA-E (Y84C) bound to InhA (53-61 GCG) 6ZKW ; 2.26 ; Crystal structure of InhA:01 TCR in complex with HLA-E bound to InhA (53-61) 3OF2 ; 2.0 ; Crystal structure of InhA_T266D:NADH complex 3OEY ; 2.0 ; Crystal structure of InhA_T266E:NADH complex 1W22 ; 2.5 ; Crystal structure of inhibited human HDAC8 1IBC ; 2.73 ; CRYSTAL STRUCTURE OF INHIBITED INTERLEUKIN-1BETA CONVERTING ENZYME 1T7J ; 2.2 ; crystal structure of inhibitor amprenavir in complex with a multi-drug resistant variant of HIV-1 protease (L63P/V82T/I84V) 5EA7 ; 2.851 ; Crystal Structure of Inhibitor BMS-433771 in Complex with Prefusion RSV F Glycoprotein 3AYQ ; 1.77 ; Crystal structure of inhibitor bound lysozyme from Meretrix lusoria 5EA6 ; 2.75 ; Crystal Structure of Inhibitor BTA-9881 in Complex with Prefusion RSV F Glycoprotein 1MXF ; 2.3 ; Crystal Structure of Inhibitor Complex of Putative Pteridine Reductase 2 (PTR2) from Trypanosoma cruzi 5EA3 ; 2.75 ; Crystal Structure of Inhibitor JNJ-2408068 in Complex with Prefusion RSV F Glycoprotein 6VKD ; 2.5 ; Crystal Structure of Inhibitor JNJ-36689282 in Complex with Prefusion RSV F Glycoprotein 6VKC ; 2.6 ; Crystal Structure of Inhibitor JNJ-36811054 in Complex with Prefusion RSV F Glycoprotein 6VKE ; 2.1 ; Crystal Structure of Inhibitor JNJ-40012665 in Complex with Prefusion RSV F Glycoprotein 5EA4 ; 2.3 ; Crystal Structure of Inhibitor JNJ-49153390 in Complex with Prefusion RSV F Glycoprotein 5KWW ; 2.5 ; Crystal Structure of Inhibitor JNJ-53718678 In Complex with Prefusion RSV F Glycoprotein 3QA8 ; 3.6 ; Crystal Structure of inhibitor of kappa B kinase beta 3RZF ; 4.0 ; Crystal Structure of Inhibitor of kappaB kinase beta (I4122) 3EL4 ; 2.0 ; Crystal structure of inhibitor saquinavir (SQV) complexed with the multidrug HIV-1 protease variant L63P/V82T/I84V 3EKQ ; 2.2 ; Crystal structure of inhibitor saquinavir (SQV) in complex with multi-drug resistant HIV-1 protease (L63P/V82T/I84V) (referred to as ACT in paper) 5EA5 ; 3.05 ; Crystal Structure of Inhibitor TMC-353121 in Complex with Prefusion RSV F Glycoprotein 7S49 ; 2.2 ; Crystal Structure of Inhibitor-bound Galactokinase 7S4C ; 2.2 ; Crystal Structure of Inhibitor-bound Galactokinase 3NN6 ; 2.19 ; Crystal structure of inhibitor-bound in active centre 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans 4JS6 ; 1.55 ; Crystal structure of inhibitor-free hCAII H94D 7N6T ; 1.32 ; Crystal structure of inhibitor-free HIV-1 PRS17 revertant mutant PRS17 V48G 2YMX ; 1.9 ; Crystal structure of inhibitory anti-AChE Fab408 6C7Y ; 2.499 ; Crystal structure of inhibitory protein SOCS1 in complex with JAK1 kinase domain 4GL9 ; 3.9 ; Crystal structure of inhibitory protein SOCS3 in complex with JAK2 kinase domain and fragment of GP130 intracellular domain 7CD1 ; 1.89 ; Crystal structure of inhibitory Smad, Smad7 6J73 ; 3.211 ; Crystal structure of IniA from Mycobacterium smegmatis 6J72 ; 2.2 ; Crystal structure of IniA from Mycobacterium smegmatis with GTP bound 6EFR ; 2.4 ; Crystal Structure of iNicSnFR 1.0 7S7V ; 2.5 ; Crystal structure of iNicSnFR3a Fluorescent Nicotine Sensor 7S7U ; 2.95 ; Crystal structure of iNicSnFR3a Fluorescent Nicotine Sensor with nicotine bound 7S7W ; 1.1 ; Crystal structure of iNicSnFR3a Nicotine Sensor precursor binding protein 1HR0 ; 3.2 ; CRYSTAL STRUCTURE OF INITIATION FACTOR IF1 BOUND TO THE 30S RIBOSOMAL SUBUNIT 2OMU ; 1.8 ; Crystal structure of InlA G194S+S Y369S/hEC1 complex 2OMT ; 2.0 ; Crystal structure of InlA G194S+S/hEC1 complex 2OMX ; 1.7 ; Crystal structure of InlA S192N G194S+S/hEC1 complex 2OMV ; 1.9 ; Crystal structure of InlA S192N Y369S/hEC1 complex 2OMW ; 1.85 ; Crystal structure of InlA S192N Y369S/mEC1 complex 2OMY ; 1.7 ; Crystal structure of InlA S192N/hEC1 complex 2OMZ ; 1.6 ; Crystal structure of InlA Y369A/hEC1 complex 5YCA ; 1.57 ; Crystal structure of inner membrane protein Bqt4 in complex with LEM2 5YC2 ; 2.704 ; Crystal structure of inner membrane protein Bqt4 in complex with telomeric protein Rap1 7YBF ; 2.15 ; Crystal structure of inner membrane protein Sad1 in complex with histone H2A-H2B 3LD3 ; 1.75 ; Crystal structure of inorganic phosphatase from anaplasma phagocytophilum at 1.75a resolution 3FQ3 ; 1.9 ; Crystal structure of inorganic phosphatase from brucella melitensis 1WOQ ; 1.8 ; Crystal Structure of Inorganic Polyphosphate/ATP-Glucomannokinase From Arthrobacter sp. strain KM At 1.8 A Resolution 1Y3H ; 2.8 ; Crystal Structure of Inorganic Polyphosphate/ATP-NAD kinase from Mycobacterium tuberculosis 4HAO ; 2.551 ; Crystal Structure of Inorganic Polyphosphate/ATP-NAD Kinase from Yersinia pestis CO92 4XEL ; 2.0 ; Crystal structure of Inorganic pyrophosphatase (PPase) from Pseudomonas aeruginosa 3SW5 ; 2.0 ; Crystal structure of inorganic pyrophosphatase from Bartonella henselae 3D63 ; 2.3 ; Crystal structure of inorganic pyrophosphatase from Burkholderia pseudomallei 3EJ2 ; 2.12 ; Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound 5-amino-1-(4-chlorophenyl)-1h-pyrazole-4-carbonitrile, H32 crystal form 3EJ0 ; 1.96 ; Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound N-(pyridin-3-ylmethyl) aniline, H32 crystal form 3EIY ; 2.1 ; Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei with bound pyrophosphate 3EIZ ; 1.88 ; Crystal structure of inorganic pyrophosphatase from burkholderia pseudomallei, H32 crystal form 3LO0 ; 1.95 ; Crystal structure of inorganic pyrophosphatase from Ehrlichia chaffeensis 1YGZ ; 2.6 ; Crystal Structure of Inorganic Pyrophosphatase from Helicobacter pylori 6N1C ; 2.0 ; Crystal structure of Inorganic pyrophosphatase from Legionella pneumophila Philadelphia 1 6MT2 ; 2.89 ; Crystal structure of Inorganic Pyrophosphatase from Medicago truncatula (I23 crystal form) 6MT1 ; 1.84 ; Crystal structure of Inorganic Pyrophosphatase from Medicago truncatula (R3 crystal form) 4Z73 ; 3.3 ; Crystal structure of inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with a phosphate ion and an inorganic pyrophosphate 4Z70 ; 1.95 ; Crystal structure of inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with Ca ions 4Z74 ; 2.55 ; Crystal structure of inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with inorganic pyrophosphate 4Z71 ; 1.85 ; Crystal structure of inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with Mg ions 4Z72 ; 2.352 ; Crystal structure of inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with two phosphate ions 4RPA ; 2.1 ; Crystal structure of inorganic pyrophosphatase from Staphylococcus aureus in complex with Mn2+ 2PRD ; 2.0 ; CRYSTAL STRUCTURE OF INORGANIC PYROPHOSPHATASE FROM THERMUS THERMOPHILUS 4LUG ; 1.93 ; Crystal structure of Inorganic Pyrophosphatase PPA1 from Arabidopsis thaliana 5LS0 ; 1.83 ; Crystal structure of Inorganic Pyrophosphatase PPA1 from Arabidopsis thaliana 3R2G ; 1.941 ; Crystal structure of Inosine 5' monophosphate dehydrogenase from Legionella pneumophila 4Q33 ; 2.885 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and A110 4Q32 ; 2.788 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and C91 5UWX ; 1.85 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P176 5UXE ; 2.1 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P178 5UZE ; 2.27 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P182 5UZS ; 2.367 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P200 5UZC ; 1.85 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P221 5VSV ; 2.205 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase from Clostridium perfringens Complexed with IMP and P225 4R7J ; 2.1172 ; Crystal Structure of Inosine 5'-monophosphate Dehydrogenase with the Internal Deletion Containing CBS Domain from Campylobacter jejuni 1JR1 ; 2.6 ; Crystal structure of Inosine Monophosphate Dehydrogenase in complex with Mycophenolic Acid 1VRD ; 2.18 ; Crystal structure of Inosine-5'-monophosphate dehydrogenase (TM1347) from THERMOTOGA MARITIMA at 2.18 A resolution 3TSB ; 2.595 ; Crystal Structure of Inosine-5'-monophosphate Dehydrogenase from Bacillus anthracis str. Ames 3TSD ; 2.653 ; Crystal Structure of Inosine-5'-monophosphate Dehydrogenase from Bacillus anthracis str. Ames complexed with XMP 2CU0 ; 2.1 ; Crystal structure of inosine-5'-monophosphate dehydrogenase from Pyrococcus horikoshii OT3 5W1Z ; 1.55 ; Crystal Structure of inosine-substituted decamer duplex DNA (I4) 5W20 ; 1.36 ; Crystal Structure of inosine-substituted duplex DNA 2C40 ; 2.2 ; CRYSTAL STRUCTURE OF INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE FROM BACILLUS ANTHRACIS AT 2.2A RESOLUTION 5XU6 ; 2.35 ; Crystal structure of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) from Cryptococcus neoformans 4LV7 ; 2.6 ; Crystal structure of inositol 1,3,4,5,6-pentakisphosphate 2-kinase E82C/S142C 5XA0 ; 5.812 ; Crystal structure of inositol 1,4,5-trisphosphate receptor cytosolic domain 5XA1 ; 6.204 ; Crystal structure of inositol 1,4,5-trisphosphate receptor cytosolic domain with inositol 1,4,5-trisphosphate 5X9Z ; 7.311 ; Crystal structure of inositol 1,4,5-trisphosphate receptor large cytosolic domain 5GUG ; 7.399 ; Crystal structure of inositol 1,4,5-trisphosphate receptor large cytosolic domain with inositol 1,4,5-trisphosphate 7D5M ; 1.75 ; Crystal structure of inositol dehydrogenase homolog complexed with NAD+ from Azotobacter vinelandii 7D5N ; 1.8 ; Crystal structure of inositol dehydrogenase homolog complexed with NADH and myo-inositol from Azotobacter vinelandii 3T0J ; 2.59 ; Crystal structure of inositol monophosphatase - II from Staphylococcus aureus MSSA476 5J16 ; 2.4 ; Crystal structure of Inositol monophosphate bound SaIMPase-II 3IKP ; 1.75 ; Crystal structure of inositol phosphate bound trimeric human lung surfactant protein D 2IEW ; 2.0 ; Crystal structure of Inositol Phosphate Multikinase Ipk2 from S. cerevisiae 2IF8 ; 2.4 ; Crystal structure of Inositol Phosphate Multikinase Ipk2 in complex with ADP and Mn2+ from S. cerevisiae 7KIO ; 2.4 ; Crystal structure of inositol polyphosphate 1-phosphatase (INPP1) D54A mutant 7KIR ; 2.6 ; Crystal structure of inositol polyphosphate 1-phosphatase (INPP1) D54A mutant in complex with inositol (1,4)-bisphosphate 1INP ; 2.3 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 1-PHOSPHATASE AT 2.3 ANGSTROMS RESOLUTION 4QXD ; 2.55 ; Crystal structure of Inositol Polyphosphate 1-Phosphatase from Entamoeba histolytica 6X25 ; 3.2 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 1-PHOSPHATASE INPP1 IN COMPLEX GADOLINIUM AFTER ADDITION OF INOSITOL 1,3,4-TRISPHOSPHATE AND LITHIUM AT 3.2 ANGSTROM RESOLUTION 6WRY ; 2.8 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 1-PHOSPHATASE INPP1 IN COMPLEX GADOLINIUM AFTER ADDITION OF INOSITOL 1,3,4-TRISPHOSPHATE AT 2.5 ANGSTROM RESOLUTION 6WRR ; 2.5 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 1-PHOSPHATASE INPP1 IN COMPLEX GADOLINIUM AND LITHIUM AT 2.5 ANGSTROM RESOLUTION 6WRO ; 3.0 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 1-PHOSPHATASE INPP1 IN COMPLEX GADOLINIUM BUT NO LITHIUM AT 3 ANGSTROM RESOLUTION 1I9Y ; 2.0 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 5-PHOSPHATASE DOMAIN (IPP5C) OF SPSYNAPTOJANIN 1I9Z ; 1.8 ; CRYSTAL STRUCTURE OF INOSITOL POLYPHOSPHATE 5-PHOSPHATASE DOMAIN (IPP5C) OF SPSYNAPTOJANIN IN COMPLEX WITH INOSITOL (1,4)-BISPHOSPHATE AND CALCIUM ION 1VKO ; 2.3 ; Crystal structure of inositol-3-phosphate synthase (ce21227) from Caenorhabditis elegans at 2.30 A resolution 3N9V ; 2.65 ; Crystal Structure of INPP5B 5A7J ; 2.9 ; Crystal structure of INPP5B in complex with benzene 1,2,4,5- tetrakisphosphate 5A7I ; 2.89 ; Crystal structure of INPP5B in complex with biphenyl 3,3',4,4',5,5'- hexakisphosphate 4CML ; 2.3 ; Crystal Structure of INPP5B in complex with Phosphatidylinositol 3,4- bisphosphate 3MTC ; 2.4 ; Crystal Structure of INPP5B in complex with phosphatidylinositol 4-phosphate 5Y1B ; 2.207 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with a berberine derivative (SYSU-00679) 5Y0V ; 2.423 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with berberine 3WMB ; 2.7 ; Crystal structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with naphthalimide derivative Q1 3WMC ; 2.095 ; Crystal structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with naphthalimide derivative Q2 3OZO ; 2.0 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with NGT 3OZP ; 2.0 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with PUGNAc 3NSN ; 2.1 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 complexed with TMG-chitotriomycin 3VTR ; 2.5 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 E328A complexed with TMG-chitotriomycin 3NSM ; 2.1 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 from Ostrinia furnacalis 3S6T ; 2.3 ; Crystal Structure of insect beta-N-acetyl-D-hexosaminidase OfHex1 V327G complexed with PUGNAc 1YKB ; 2.6 ; Crystal Structure of Insect Cell Expressed IL-22 1TBQ ; 3.1 ; CRYSTAL STRUCTURE OF INSECT DERIVED DOUBLE DOMAIN KAZAL INHIBITOR RHODNIIN IN COMPLEX WITH THROMBIN 1TBR ; 2.6 ; CRYSTAL STRUCTURE OF INSECT DERIVED DOUBLE DOMAIN KAZAL INHIBITOR RHODNIIN IN COMPLEX WITH THROMBIN 4FD7 ; 1.8 ; Crystal structure of insect putative arylalkylamine N-Acetyltransferase 7 from the yellow fever mosquito Aedes aegypt 5DBQ ; 1.95 ; Crystal structure of insect thioredoxin at 1.95 Angstroms 3EB7 ; 2.3 ; Crystal Structure of Insecticidal Delta-Endotoxin Cry8Ea1 from Bacillus Thuringiensis at 2.2 Angstroms Resolution 1DLC ; 2.5 ; CRYSTAL STRUCTURE OF INSECTICIDAL DELTA-ENDOTOXIN FROM BACILLUS THURINGIENSIS AT 2.5 ANGSTROMS RESOLUTION 8HGZ ; 1.7 ; Crystal structure of insulin 4PF7 ; 2.33 ; Crystal structure of insulin degrading enzyme complexed with inhibitor 4PF9 ; 2.5 ; Crystal structure of insulin degrading enzyme complexed with inhibitor 4PFC ; 2.21 ; Crystal structure of insulin degrading enzyme complexed with inhibitor 4PES ; 2.21 ; Crystal structure of insulin degrading enzyme complexed with inhibitor tert-butyl [(2S)-2-(2,5-difluorophenyl)-3-(quinolin-3-yl)propyl]carbamate 4NXO ; 2.73 ; Crystal Structure of Insulin Degrading Enzyme in complex with BDM44768 3H44 ; 3.0 ; Crystal Structure of Insulin Degrading Enzyme in Complex with macrophage inflammatory protein 1 alpha 4RAL ; 3.148 ; Crystal structure of insulin degrading enzyme in complex with macrophage inflammatory protein 1 beta 8IPZ ; 1.4 ; Crystal structure of insulin detemir 6OR0 ; 1.55 ; Crystal structure of Insulin from Non-merohedrally twinned crystals 6JR3 ; 14.5 ; Crystal structure of insulin hexamer fitted into cryo EM density map where each dimer was kept as rigid body 4IBM ; 1.8 ; Crystal structure of insulin receptor kinase domain in complex with an inhibitor Irfin-1 5HHW ; 1.79 ; Crystal structure of insulin receptor kinase domain in complex with cis-(R)-7-(3-(azetidin-1-ylmethyl)cyclobutyl)-5-(3-((tetrahydro-2H-pyran-2-yl)methoxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine. 4Z7I ; 3.31 ; Crystal structure of insulin regulated aminopeptidase in complex with ligand 3NW6 ; 2.2 ; Crystal structure of insulin-like growth factor 1 receptor (IGF-1R-WT) complex with a carbon-linked proline isostere inhibitor (11A) 3NW5 ; 2.14 ; Crystal structure of insulin-like growth factor 1 receptor (IGF-1R-WT) complex with a carbon-linked proline isostere inhibitor (11B) 3NW7 ; 2.11 ; Crystal structure of insulin-like growth factor 1 receptor (IGF-1R-WT) complex with a carbon-linked proline isostere inhibitor (34) 3I81 ; 2.08 ; Crystal structure of insulin-like growth factor 1 receptor (IGF-1R-WT) complex with BMS-754807 [1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoro-3-pyridinyl)-2-methyl-L-prolinamide] 3TUV ; 2.27 ; Crystal structure of insulysin with bound ATP 1HYU ; 2.0 ; CRYSTAL STRUCTURE OF INTACT AHPF 1YZ6 ; 3.37 ; Crystal structure of intact alpha subunit of aIF2 from Pyrococcus abyssi 7S3C ; 1.51 ; Crystal structure of intact U2AF65 RRM-region bound to AdML-A5 oligonucleotide 7S3A ; 1.48 ; Crystal structure of intact U2AF65 RRM-region bound to AdML-C5 oligonucleotide 7S3B ; 1.89 ; Crystal structure of intact U2AF65 RRM-region bound to AdML-G5 oligonucleotide 2F2B ; 1.68 ; Crystal structure of integral membrane protein Aquaporin AqpM at 1.68A resolution 3NKH ; 2.502 ; Crystal Structure of Integrase from MRSA strain Staphylococcus aureus 4G1E ; 3.0 ; Crystal structure of integrin alpha V beta 3 with coil-coiled tag. 5FFG ; 2.25 ; Crystal structure of integrin alpha V beta 6 head 5XAU ; 1.8 ; Crystal structure of integrin binding fragment of laminin-511 3F6Q ; 1.6 ; Crystal structure of integrin-linked kinase ankyrin repeat domain in complex with PINCH1 LIM1 domain 2CW7 ; 2.7 ; Crystal structure of intein homing endonuclease II 2CW8 ; 2.5 ; Crystal structure of intein homing endonuclease II 2G9F ; 1.9 ; Crystal structure of intein-tagged mouse PNGase C-terminal domain 3KCP ; 1.94 ; Crystal structure of interacting Clostridium thermocellum multimodular components 3FXD ; 2.1 ; Crystal structure of interacting domains of IcmR and IcmQ 3FXE ; 2.2 ; Crystal structure of interacting domains of IcmR and IcmQ (seleno-derivative) 191D ; 1.4 ; CRYSTAL STRUCTURE OF INTERCALATED FOUR-STRANDED D(C3T) 5OEM ; 1.9 ; Crystal Structure of Interferon Regulatory Factor 9 IAD Domain 4G1T ; 2.8 ; Crystal structure of interferon-stimulated gene 54 1L2H ; 1.54 ; Crystal structure of Interleukin 1-beta F42W/W120F mutant 2PSM ; 2.19 ; Crystal structure of Interleukin 15 in complex with Interleukin 15 receptor alpha 3IL8 ; 2.0 ; CRYSTAL STRUCTURE OF INTERLEUKIN 8: SYMBIOSIS OF NMR AND CRYSTALLOGRAPHY 2C6Y ; 2.4 ; Crystal structure of interleukin enhancer-binding factor 1 bound to DNA 6VQL ; 2.069 ; CRYSTAL STRUCTURE OF INTERLEUKIN-1 RECEPTOR-ASSOCIATED KINASE 4 (IRAK4-WT) COMPLEX WITH A NICOTINAMIDE INHIBITOR 3V5J ; 2.59 ; Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 090 3V8W ; 2.27 ; Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 469 3V8T ; 2.0 ; Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 477 3V5L ; 1.86 ; Crystal Structure of Interleukin-2 Inducible T-cell Kinase Itk Catalytic Domain with Thienopyrazolylindole Inhibitor 542 3D87 ; 2.9 ; Crystal structure of Interleukin-23 5HN1 ; 2.25 ; Crystal structure of Interleukin-37 3HI6 ; 2.3 ; Crystal structure of intermediate affinity I domain of integrin LFA-1 with the Fab fragment of its antibody AL-57 5HAD ; 2.238 ; Crystal structure of intermembrane space region of chloroplast protein ARC6 5GTB ; 2.871 ; crystal structure of intermembrane space region of the ARC6-PDV2 complex 3FP9 ; 2.0 ; Crystal structure of Intern Domain of proteasome-associated ATPase, Mycobacterium tuberculosis 1RY6 ; 1.6 ; Crystal Structure of Internal Kinesin Motor Domain 8H62 ; 1.91 ; Crystal structure of Internalin A from Listeria monocytogenes with human E-cadherin EC12 8H63 ; 1.53 ; Crystal structure of Internalin A from Listeria monocytogenes with nanobody VHH10 bound 8H64 ; 2.35 ; Crystal structure of Internalin A from Listeria monocytogenes with nanobody VHH24 bound 1M9S ; 2.65 ; Crystal structure of Internalin B (InlB), a Listeria monocytogenes virulence protein containing SH3-like domains. 1XEU ; 2.05 ; Crystal Structure of Internalin C from Listeria monocytogenes 4L3A ; 2.591 ; Crystal structure of Internalin K (InlK) from Listeria monocytogenes 4L3F ; 2.39 ; Crystal structure of Internalin K (InlK) from Listeria monocytogenes 2ZQK ; 2.8 ; Crystal structure of intimin-Tir68 complex 2ZWK ; 3.1 ; Crystal structure of intimin-Tir90 complex 8IGT ; 1.56 ; Crystal Structure of Intracellular B30.2 Domain of BTN2A1 8IH4 ; 2.12 ; Crystal Structure of Intracellular B30.2 Domain of BTN2A2 Mutant 8IXV ; 1.72 ; Crystal structure of intracellular B30.2 domain of BTN3A in complex with 2Cl-HMBPP 4N7I ; 1.4015 ; Crystal Structure of Intracellular B30.2 Domain of BTN3A1 8JYC ; 2.29 ; Crystal Structure of Intracellular B30.2 Domain of BTN3A1 and BTN2A1 in Complex with DMAPP 8JYE ; 2.18 ; Crystal Structure of Intracellular B30.2 Domain of BTN3A1 and BTN2A1 in Complex with HMBPP 5LYK ; 1.7 ; CRYSTAL STRUCTURE OF INTRACELLULAR B30.2 DOMAIN OF BTN3A1 BOUND TO CITRATE 5LYG ; 1.6 ; CRYSTAL STRUCTURE OF INTRACELLULAR B30.2 DOMAIN OF BTN3A1 BOUND TO MALONATE 8IZE ; 1.4 ; Crystal structure of intracellular B30.2 domain of BTN3A1 in complex with 4-HMBPP 8IZG ; 1.6 ; Crystal structure of intracellular B30.2 domain of BTN3A1 in complex with 5-HMBPP 4N7U ; 1.4598 ; Crystal Structure of Intracellular B30.2 Domain of BTN3A1 in Complex with CHDMAPP 5ZXK ; 1.96 ; Crystal structure of intracellular B30.2 domain of BTN3A1 in complex with HMBPP 6J06 ; 2.65 ; Crystal structure of intracellular B30.2 domain of BTN3A1 in complex with HMBPP-08 6ISM ; 1.25 ; Crystal structure of intracellular B30.2 domain of BTN3A1 mutant 6ITA ; 1.2 ; Crystal structure of intracellular B30.2 domain of BTN3A1 mutant 5ZZ3 ; 3.0 ; Crystal structure of intracellular B30.2 domain of BTN3A3 6J0G ; 1.6 ; Crystal structure of intracellular B30.2 domain of BTN3A3 mutant in complex with HMBPP 6J0K ; 2.0 ; Crystal structure of intracellular B30.2 domain of BTN3A3 mutant in complex with HMBPP 6J0L ; 1.95 ; Crystal structure of intracellular B30.2 domain of BTN3A3 mutant in complex with sulfate ion 8JYB ; 1.91 ; Crystal Structure of Intracellular B30.2 Domain of VpBTN3 8HJT ; 2.91 ; Crystal Structure of Intracellular B30.2 Domain of VpBTN3 and VpBTN2 in Complex with HMBPP 8JYF ; 1.8 ; Crystal Structure of Intracellular B30.2 Domain of VpBTN3 in Complex with DMAPP 8JY9 ; 1.83 ; Crystal Structure of Intracellular B30.2 Domain of VpBTN3 in Complex with HMBPP 8JYA ; 1.5 ; Crystal Structure of Intracellular B30.2 Domain of VpBTN3 in Complex with IPP 2QBV ; 2.0 ; Crystal Structure of Intracellular Chorismate Mutase from Mycobacterium Tuberculosis 2E40 ; 1.9 ; Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium in complex with gluconolactone 2E3Z ; 1.5 ; Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium in substrate-free form 2INU ; 1.8 ; Crystal structure of Inulin fructotransferase in the absence of substrate 2INV ; 1.8 ; Crystal structure of Inulin fructotransferase in the presence of di-fructose 2YFR ; 1.75 ; Crystal structure of inulosucrase from Lactobacillus johnsonii NCC533 2YFT ; 1.85 ; Crystal structure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with 1-kestose 2YFS ; 2.6 ; Crystal structure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with sucrose 1CWV ; 2.3 ; CRYSTAL STRUCTURE OF INVASIN: A BACTERIAL INTEGRIN-BINDING PROTEIN 3DTD ; 2.35 ; Crystal structure of invasion associated protein b from bartonella henselae 6D8W ; 2.35 ; Crystal structure of InvbI.18715.a.KN11: Influenza hemagglutinin from strain A/Jiangsu/ALSI/2011 6N41 ; 2.5 ; Crystal structure of InvbM.18715.a.KN11: Influenza hemagglutinin from strain A/Netherlands/002P1/1951 6MYA ; 2.05 ; Crystal structure of InvbP.18715.a.KN11: Influenza hemagglutinin from strain A/Almaty/32/1998 6M86 ; 3.6 ; Crystal Structure of Inward Rectifier Kir2.2 Force Open Mutant 6M85 ; 2.71 ; Crystal Structure of Inward Rectifier Kir2.2 in a different salt condition 5KUK ; 2.0 ; Crystal Structure of Inward Rectifier Kir2.2 K62W Mutant 5KUM ; 2.8 ; Crystal Structure of Inward Rectifier Kir2.2 K62W Mutant In Complex with PIP2 2R1Q ; 2.5 ; Crystal Structure of Iodinated Human Saposin D in Space Group C2221 6TYK ; 1.35 ; Crystal structure of iodotyrosine deiodinase (IYD) in the semiquinone form bound to FMN and 3-iodo-L-tyrosine 3UPS ; 1.75 ; Crystal structure of iojap-like protein from Zymomonas mobilis 7TQG ; 2.07 ; Crystal Structure of IOMA Fab inferred germline 6D2P ; 2.6 ; Crystal structure of IOMA-class CLK31 Fab from an HIV-1 naive donor in complex with a germline-targeting gp120 engineered outer domain eOD-GT8 at 2.6 A 3LMW ; 2.6 ; Crystal structure of iota-carrageenase family GH82 from A. fortis in absence of chloride ions 1O80 ; 2.0 ; Crystal structure of IP-10 H-Form 1O7Y ; 3.0 ; Crystal structure of IP-10 M-form 1O7Z ; 1.92 ; Crystal structure of IP-10 T-form 5V3S ; 1.8 ; Crystal structure of IP-1A from Alcaligenes faecalis at 1.8A resolution 4UPU ; 2.34 ; Crystal structure of IP3 3-K calmodulin binding region in complex with Calmodulin 7V8E ; 1.9 ; Crystal structure of IpaH1.4 LRR domain bound to HOIL-1L UBL domain. 8GTK ; 3.1 ; Crystal structure of IpaH7.8-LRR and GSDMB isoform-1 complex 8GTJ ; 2.7 ; Crystal structure of IpaH7.8-LRR and GSDMB isoform-4 complex 7EAP ; 1.42 ; Crystal structure of IpeA-XXXG complex 3LYQ ; 2.3 ; Crystal structure of IpgB2 from Shigella flexneri 3GYZ ; 2.15 ; Crystal structure of IpgC from Shigella flexneri 7P42 ; 1.5 ; Crystal structure of IpgC in complex with a follow-up compound based on J2 7OWV ; 1.59 ; Crystal structure of IpgC in complex with a follow-up compound based on J20 8QH6 ; 1.8 ; Crystal structure of IpgC in complex with a follow-up compound based on J20 3GZ2 ; 2.65 ; Crystal structure of IpgC in complex with an IpaB peptide 7PEF ; 1.54 ; Crystal structure of IpgC in complex with DMSO 7PE0 ; 1.5 ; Crystal structure of IpgC in complex with J52 3GZ1 ; 2.15 ; Crystal structure of IpgC in complex with the chaperone binding region of IpaB 6RP8 ; 2.6 ; Crystal Structure of Ipilimumab Fab complexed with CTLA-4 at 2.6A resolution 4KP1 ; 1.8 ; Crystal structure of IPM isomerase large subunit from methanococcus jannaschii (MJ0499) 1WPW ; 2.8 ; Crystal Structure of IPMDH from Sulfolobus tokodaii 3U1H ; 2.8 ; Crystal structure of IPMDH from the last common ancestor of Bacillus 1VCF ; 2.6 ; Crystal Structure of IPP isomerase at I422 1VCG ; 3.02 ; Crystal Structure of IPP isomerase at P43212 4EL6 ; 1.71 ; Crystal structure of IPSE/alpha-1 from Schistosoma mansoni eggs 2Q5U ; 1.5 ; Crystal structure of IQN17 2Q7C ; 2.0 ; Crystal structure of IQN17 7VMB ; 1.99777 ; Crystal structure of IQSEC1-IQ motif, Sec7PH tandem in complex with calmodulin 2NRU ; 2.0 ; Crystal structure of IRAK-4 2NRY ; 2.15 ; Crystal structure of IRAK-4 4RMZ ; 2.2 ; Crystal Structure of IRAK-4 5W84 ; 2.9 ; CRYSTAL STRUCTURE OF IRAK-4 WITH A 4,6-DIAMINONICOTINAMIDE INHIBITOR (COMPOUND NUMBER 4) 5W85 ; 2.25 ; CRYSTAL STRUCTURE OF IRAK-4 WITH A 4,6-DIAMINONICOTINAMIDE INHIBITOR (COMPOUND NUMBER 9) 5UIR ; 2.64 ; Crystal structure of IRAK4 in complex with compound 11 5UIS ; 2.5 ; Crystal structure of IRAK4 in complex with compound 12 5UIT ; 1.84 ; Crystal structure of IRAK4 in complex with compound 14 6O8U ; 1.8 ; Crystal structure of IRAK4 in complex with compound 23 5UIU ; 2.02 ; Crystal structure of IRAK4 in complex with compound 30 5UIQ ; 2.64 ; Crystal structure of IRAK4 in complex with compound 9 2OIB ; 2.0 ; Crystal structure of IRAK4 kinase domain apo form 2OID ; 2.3 ; Crystal structure of IRAK4 kinase domain complexed with AMPPNP 2OIC ; 2.4 ; Crystal structure of IRAK4 kinase domain complexed with staurosporine 4Y73 ; 2.14 ; Crystal structure of IRAK4 kinase domain with inhibitor 7C2W ; 3.2 ; Crystal Structure of IRAK4 kinase in complex with a small molecule inhibitor 7C2V ; 2.44 ; Crystal Structure of IRAK4 kinase in complex with the inhibitor CA-4948 7EMM ; 1.25 ; Crystal structure of IrCp* immobilized apo-R52H-rHLFr 7W7J ; 1.5 ; Crystal structure of IrCp* immobilized apo-R52H-rHLFr (25 equiv) 5E1U ; 1.56 ; Crystal structure of IrCp*-apo-Fr 5HQO ; 1.81 ; Crystal structure of IrCp*/I-Pd(allyl)-apo-rHLFr 5E2D ; 1.87 ; Crystal structure of IrCp*/Pd(allyl)-apo-Fr 2H7Z ; 1.5 ; Crystal structure of irditoxin 6XDD ; 2.4 ; Crystal structure of IRE1 in complex with G-3053 6URC ; 2.2 ; Crystal structure of IRE1a in complex with compound 18 6XDF ; 2.54 ; Crystal structure of IRE1a in complex with G-4100 6XDB ; 2.45 ; Crystal structure of IRE1a in complex with G-6904 2O6G ; 3.1 ; Crystal structure of IRF-3 bound to the interferon-b enhancer 2PI0 ; 2.31 ; Crystal Structure of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-B enhancer 3QU6 ; 2.3 ; Crystal structure of IRF-3 DBD free form 3QU3 ; 1.3 ; Crystal structure of IRF-7 DBD apo form 8E51 ; 2.594 ; Crystal Structure of Iridescent Shark Catfish Cadherin-23 EC1-2 and Protocadherin-15 EC1-2 5COA ; 2.2 ; Crystal structure of iridoid synthase at 2.2-angstrom resolution 5DBG ; 1.95 ; Crystal Structure of Iridoid Synthase from Cantharanthus roseus in complex with NAD+ 5DBI ; 2.2 ; Crystal Structure of Iridoid Synthase from Cantharanthus roseus in complex with NAD+ and 10-oxogeranial 5EMH ; 2.1 ; Crystal structure of Iridoid Synthase from Cantharanthus roseus in complex with NADP+ 5DBF ; 2.0 ; Crystal Structure of Iridoid Synthase from Cantharanthus roseus in complex with NADPH 5COB ; 2.65 ; Crystal structure of iridoid synthase in complex with NADP+ and 8-oxogeranial at 2.65-angstrom resolution 7QTZ ; 2.1 ; Crystal structure of Iripin-1 serpin from tick Ixodes ricinus 7B2T ; 1.5 ; Crystal structure of Iripin-5 serpin from Ixodes ricinus 5O46 ; 1.76 ; Crystal structure of Iristatin, a secreted salivary cystatin from the hard tick Ixodes ricinus 3GFF ; 2.12 ; Crystal structure of IroE-like serine hydrolase (NP_718593.1) from SHEWANELLA ONEIDENSIS at 2.12 A resolution 4HN9 ; 1.85 ; Crystal structure of iron ABC transporter solute-binding protein from Eubacterium eligens 8FFC ; 1.85 ; Crystal structure of iron bound Dps protein (PA0962) from Pseudomonas aeruginosa (cubic form) 8FFB ; 2.25 ; Crystal structure of iron bound Dps protein (PA0962) from Pseudomonas aeruginosa (orthorhombic form) 3VSG ; 2.4 ; Crystal structure of iron free 1,6-APD, 2-Animophenol-1,6-Dioxygenase 4IWJ ; 1.95 ; Crystal structure of iron soaked (45 min) ferritin from Pseudo-nitzschia multiseries 4ISP ; 2.2 ; Crystal structure of iron soaked (4h) ferritin from Pseudo-nitzschia multiseries 4ITT ; 2.1 ; Crystal structure of iron soaked (5 min) ferritin from Pseudo-nitzschia multiseries 4IWK ; 1.65 ; Crystal structure of iron soaked (overnight) ferritin from Pseudo-nitzschia multiseries 3JS4 ; 1.95 ; Crystal structure of iron superoxide dismutase from Anaplasma phagocytophilum 4F2N ; 1.85 ; Crystal structure of iron superoxide dismutase from Leishmania major 6IU4 ; 3.5 ; Crystal structure of iron transporter VIT1 with cobalt ion 6IU3 ; 2.7 ; Crystal structure of iron transporter VIT1 with zinc ions 4H59 ; 1.658 ; Crystal structure of iron uptake ABC transporter substrate-binding protein PiaA from Streptococcus pneumoniae Canada MDR_19A bound to Bis-tris propane 5JJ5 ; 2.3 ; Crystal structure of iron uptake ABC transporter substrate-binding protein PiaA from Streptococcus pneumoniae Canada MDR_19A bound to hydroxymate siderophore ferrioxamine E and iron(III) 4HMP ; 2.7 ; Crystal structure of iron uptake ABC transporter substrate-binding protein PiaA from Streptococcus pneumoniae TIGR4 4JCC ; 1.133 ; Crystal structure of iron uptake ABC transporter substrate-binding protein PiuA from Streptococcus pneumoniae Canada MDR_19A 3E19 ; 2.0 ; Crystal Structure of Iron Uptake Regulatory Protein (FeoA) Solved by Sulfur SAD in a Monoclinic Space Group 6Q09 ; 1.75 ; Crystal structure of iron-bound Hemerythrin HHE cation binding domain-containing protein: Rv2633c homolog from Mycobacterium kansasii 6IVY ; 2.0 ; Crystal structure of iron-bound HitA from Pseudomonas aeruginosa 6XMA ; 1.45 ; Crystal structure of iron-bound LSD4 from Sphingobium sp. strain SYK-6 8X3H ; 0.93 ; Crystal structure of iron-bound recombinant ovotransferrin N-lobe at 0.93 angstrom resolution 3IV7 ; 2.07 ; Crystal structure of Iron-containing alcohol dehydrogenase (NP_602249.1) from Corynebacterium glutamicum ATCC 13032 KITASATO at 2.07 A resolution 1XVY ; 1.74 ; Crystal Structure of iron-free Serratia marcescens SfuA 1XVX ; 1.53 ; Crystal Structure of iron-loaded Yersinia enterocolitica YfuA 2O1A ; 1.6 ; Crystal structure of iron-regulated surface determinant protein A from Staphylococcus aureus- targeted domain 47...188 7ENU ; 2.322 ; Crystal structure of iron-saturated C-terminal half of lactoferrin produced proteolytically using pepsin at 2.32A resolution 3RN4 ; 1.79 ; Crystal structure of iron-substituted Sod2 from Saccharomyces cerevisiae 2QQ4 ; 1.85 ; Crystal structure of Iron-sulfur cluster biosynthesis protein IscU (TTHA1736) from thermus thermophilus HB8 5LFA ; 2.5 ; Crystal structure of iron-sulfur cluster containing bacterial (6-4) photolyase PhrB - Y424F mutant with impaired DNA repair activity 5KCM ; 2.149 ; Crystal structure of iron-sulfur cluster containing photolyase PhrB mutant I51W 2PHZ ; 2.15 ; Crystal structure of Iron-uptake system-binding protein FeuA from Bacillus subtilis. Northeast Structural Genomics target SR580. 7SPN ; 2.92 ; Crystal structure of IS11, a thermophilic esterase 2F4F ; 1.8 ; Crystal structure of IS200 transposase 2F5G ; 1.7 ; Crystal structure of IS200 transposase 1R94 ; 2.3 ; Crystal Structure of IscA (MERCURY DERIVATIVE) 1R95 ; 2.65 ; Crystal Structure of IscA (native) 1X0G ; 2.5 ; Crystal Structure of IscA with the [2Fe-2S] cluster 4HF1 ; 2.222 ; Crystal Structure of IscR bound to its promoter 7ZPN ; 1.94 ; Crystal Structure of IscR from Dinoroseobacter shibae 4ISY ; 2.59 ; Crystal structure of IscS from Mycobacterium tuberculosis 7C8O ; 1.84 ; Crystal structure of IscU D40A/H106A variant 7C8N ; 1.5 ; Crystal structure of IscU H106A variant 7CNV ; 2.23 ; Crystal structure of IscU H106C variant 7C8M ; 3.5 ; Crystal structure of IscU wild-type 7XLI ; 1.7 ; Crystal structure of IsdB linker-NEAT2 bound to a nanobody (VHH) 8AVH ; 1.9 ; Crystal structure of IsdG from Bacillus cereus 8AVI ; 2.0 ; Crystal structure of IsdG from Bacillus cereus in complex with heme 2ZDO ; 1.8 ; Crystal structure of IsdG-N7A in complex with hemin 7XLD ; 1.65 ; Crystal structure of IsdH linker-NEAT3 bound to a nanobody (VHH) 2ZDP ; 1.5 ; Crystal structure of IsdI in complex with Cobalt protoporphyrin IX 3LGN ; 1.5 ; Crystal structure of IsdI in complex with heme 3QGP ; 1.8 ; Crystal structure of IsdI in complex with heme and cyanide 4FNH ; 1.9 ; Crystal structure of IsdI-W66Y in complex with heme 4FNI ; 1.8 ; Crystal structure of IsdI-W66Y in complex with heme and cyanide 1Z2M ; 2.5 ; Crystal Structure of ISG15, the Interferon-Induced Ubiquitin Cross Reactive Protein 3MTT ; 3.3 ; Crystal structure of iSH2 domain of human p85beta, Northeast Structural Genomics Consortium Target HR5531C 4JCJ ; 3.0 ; Crystal structure of Isl1 LIM domains with Ldb1 LIM-interaction domain 5L58 ; 3.04 ; Crystal structure of Iso-citrate Dehydrogenase 1 [IDH1 (R132H)] in complex with a novel inhibitor (Compound 2) 5L57 ; 2.695 ; Crystal structure of Iso-citrate Dehydrogenase R132H in complex with a novel inhibitor (compound 13a) 3MIL ; 1.6 ; Crystal structure of isoamyl acetate-hydrolyzing esterase from Saccharomyces cerevisiae 8DQM ; 2.7 ; Crystal structure of isoaspartyl aminopeptidase from Roseivivax halodurans DSM 15395 1POK ; 2.7 ; Crystal structure of Isoaspartyl Dipeptidase 1ONW ; 1.65 ; Crystal structure of Isoaspartyl Dipeptidase from E. coli 1ONX ; 2.1 ; Crystal structure of isoaspartyl dipeptidase from escherichia coli complexed with aspartate 8DQN ; 1.8 ; Crystal structure of isoaspartyl dipeptidase from Leucothrix mucor DSM2157 1RX0 ; 1.77 ; Crystal structure of isobutyryl-CoA dehydrogenase complexed with substrate/ligand. 2A67 ; 2.0 ; Crystal structure of Isochorismatase family protein 3HU5 ; 1.5 ; CRYSTAL STRUCTURE OF isochorismatase family protein from Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough 6LKZ ; 2.8 ; Crystal structure of isocitrate dehydrogenase 1 from Phaeodactylum tricornutum 7E3N ; 1.9 ; Crystal structure of Isocitrate dehydrogenase D252N mutant from Trypanosoma brucei in complexed with NADP+, alpha-ketoglutarate, and ca2+ 1V94 ; 2.28 ; Crystal structure of isocitrate dehydrogenase from Aeropyrum pernix 1HQS ; 1.55 ; CRYSTAL STRUCTURE OF ISOCITRATE DEHYDROGENASE FROM BACILLUS SUBTILIS 7Y1U ; 2.5 ; Crystal structure of isocitrate dehydrogenase from Campylobacter corcagiensis 6C0E ; 1.7 ; Crystal Structure of Isocitrate Dehydrogenase from Legionella pneumophila with bound NADPH with an alpha-ketoglutarate adduct 6LKY ; 2.2 ; Crystal structure of isocitrate dehydrogenase from Methylococcus capsulatus 6IXL ; 1.75 ; Crystal structure of isocitrate dehydrogenase from Ostreococcus tauri 7E2W ; 1.8 ; Crystal structure of isocitrate dehydrogenase from Ostreococcus tauri in complex with isocitrate and magnesium(II) 6IXN ; 1.87 ; Crystal structure of isocitrate dehydrogenase from Ostreococcus tauri in complex with NAD+ and citrate 6IXT ; 1.78 ; Crystal structure of isocitrate dehydrogenase from Ostreococcus tauri in complex with NAD+ and Mg2+ 2E5M ; 2.4 ; Crystal structure of isocitrate dehydrogenase from Sulfolobus tokodaii strain 7 2DHT ; 2.5 ; Crystal structure of isocitrate dehydrogenase from Sulfolobus tokodaii strain7 2E0C ; 2.0 ; crystal structure of isocitrate dehydrogenase from Sulfolobus tokodaii strain7 at 2.0 A resolution 4ZDA ; 2.8 ; Crystal structure of isocitrate dehydrogenase in complex with isocitrate and Mn from M. smegmatis 1CW1 ; 2.1 ; CRYSTAL STRUCTURE OF ISOCITRATE DEHYDROGENASE MUTANT K230M BOUND TO ISOCITRATE AND MN2+ 5KVU ; 2.66 ; Crystal structure of isocitrate dehydrogenase-2 in complex with NADP(+) from Mycobacterium tuberculosis 6LRT ; 2.9 ; Crystal structure of isocitrate lyase (Caur_3889) from Chloroflexus aurantiacus in complex with isocitrate and manganese ion 6LRP ; 2.05 ; Crystal structure of isocitrate lyase (Caur_3889) from Chloroflexus aurantiacus in complex with manganese ion 7RBX ; 1.8 ; Crystal structure of isocitrate lyase and phosphorylmutase:isocitrate lyase from Brucella melitensis biovar Abortus 2308 bound to itaconic acid 3P0X ; 2.35 ; Crystal structure of isocitrate lyase from Brucella melitensis, bound to magnesium isocitrate 3OQ8 ; 2.25 ; Crystal structure of isocitrate lyase from Brucella melitensis, bound to the product mimic malonate 3I4E ; 2.69 ; Crystal structure of Isocitrate Lyase from Burkholderia pseudomallei 1F61 ; 2.0 ; CRYSTAL STRUCTURE OF ISOCITRATE LYASE FROM MYCOBACTERIUM TUBERCULOSIS 7CP1 ; 2.58 ; Crystal structure of isocitrate lyase in complex with succinate and itaconate 7EBE ; 2.69 ; Crystal structure of Isocitrate lyase-1 from Candida albicans 7EBC ; 2.3 ; Crystal structure of Isocitrate lyase-1 from Saccaromyces cervisiae 1F8I ; 2.25 ; CRYSTAL STRUCTURE OF ISOCITRATE LYASE:NITROPROPIONATE:GLYOXYLATE COMPLEX FROM MYCOBACTERIUM TUBERCULOSIS 3NON ; 1.05 ; Crystal Structure of Isocyanide Hydratase from Pseudomonas fluorescens 1ZGA ; 2.35 ; Crystal structure of isoflavanone 4'-O-methyltransferase complexed with (+)-6a-hydroxymaackiain 1ZGJ ; 2.5 ; Crystal structure of isoflavanone 4'-O-methyltransferase complexed with (+)-pisatin 2QYO ; 1.95 ; Crystal structure of isoflavone O-methyltransferase homolog in complex with biochanin A and SAH 2GAS ; 1.6 ; Crystal Structure of Isoflavone Reductase 5TBS ; 1.9 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase complexed with adenine 5TBT ; 2.101 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase complexed with Cytidine 5TBU ; 2.1 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase complexed with Hypoxanthine 5CXS ; 1.75 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase complexed with MES 5TBV ; 1.95 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase complexed with tubercidin 5CXQ ; 1.57 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase from Schistosoma mansoni in APO form 5KO5 ; 1.36 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase from Schistosoma mansoni in complex with cytosine 5KO6 ; 1.42 ; Crystal Structure of Isoform 2 of Purine Nucleoside Phosphorylase from Schistosoma mansoni in complex with cytosine and ribose-1-phosphate 5CYG ; 2.017 ; Crystal Structure of isoform 2 of uridine phosphorylase from Schistosoma mansoni APO form 5CYF ; 1.983 ; Crystal structure of isoform 2 of uridine phosphorylase from Schistosoma mansoni in complex with citrate 6TMY ; 1.8 ; Crystal structure of isoform CBd of the basic phospholipase A2 subunit of crotoxin from Crotalus durissus terrificus 3DHX ; 2.1 ; Crystal structure of isolated C2 domain of the methionine uptake transporter 3B2U ; 2.58 ; Crystal structure of isolated domain III of the extracellular region of the epidermal growth factor receptor in complex with the Fab fragment of IMC-11F8 4OTS ; 1.704 ; Crystal Structure of isolated Operophtera brumata CPV18 1WY5 ; 2.42 ; Crystal structure of isoluecyl-tRNA lysidine synthetase 3A47 ; 1.59 ; Crystal structure of isomaltase from Saccharomyces cerevisiae 3A4A ; 1.6 ; Crystal structure of isomaltase from Saccharomyces cerevisiae 3AJ7 ; 1.3 ; Crystal Structure of isomaltase from Saccharomyces cerevisiae 3AXH ; 1.8 ; Crystal structure of isomaltase in complex with isomaltose 3AXI ; 1.4 ; Crystal structure of isomaltase in complex with maltose 1M53 ; 2.2 ; CRYSTAL STRUCTURE OF ISOMALTULOSE SYNTHASE (PALI) FROM KLEBSIELLA SP. LX3 7F13 ; 2.15 ; Crystal structure of isomerase Dcr3 7F14 ; 2.4 ; Crystal structure of isomerase Dcr3 complex with substrate analogue 3 7F0Y ; 1.6 ; Crystal structure of isomerase NsrQ F58A in complex with substrate analogue 6SLA ; 2.55 ; Crystal structure of isomerase PaaG mutant - D136N with Oxepin-CoA 6SLB ; 1.88 ; Crystal structure of isomerase PaaG with trans-3,4-didehydroadipyl-CoA 3WXO ; 2.12 ; Crystal structure of isoniazid bound KatG catalase peroxidase from Synechococcus elongatus PCC7942 2AQH ; 2.01 ; Crystal structure of Isoniazid-resistant I21V Enoyl-ACP(CoA) reductase mutant enzyme from Mycobacterium tuberculosis in complex with NADH 2IE0 ; 2.2 ; Crystal Structure of Isoniazid-resistant I21V Enoyl-ACP(COA) Reductase Mutant Enzyme From MYCOBACTERIUM TUBERCULOSIS in Complex with NADH-INH 2AQI ; 2.2 ; Crystal structure of Isoniazid-resistant I47T Enoyl-ACP(CoA) reductase mutant enzyme from Mycobacterium tuberculosis in complex with NADH 2AQK ; 2.3 ; Crystal structure of Isoniazid-resistant S94A Enoyl-ACP(CoA) reductase mutant enzyme from Mycobacterium tuberculosis in complex with NADH 2IEB ; 2.2 ; Crystal Structure of Isoniazid-resistant S94A ENOYL-ACP(COA) Reductase Mutant Enzyme from MYCOBACTERIUM TUBERCULOSIS in Complex with NADH-INH 2IED ; 2.14 ; CRYSTAL STRUCTURE of ISONIAZID-RESISTANT S94A ENOYL-ACP(COA) REDUCTASE MUTANT ENZYME FROM MYCOBACTERIUM TUBERCULOSIS UNCOMPLEXED 3K52 ; 2.7 ; Crystal Structure of Isopentenyl Phosphate Kinase from M. jannaschii in complex with IP 3K4Y ; 2.54 ; Crystal Structure of Isopentenyl Phosphate Kinase from M. jannaschii in complex with IPP 3K56 ; 2.34 ; Crystal Structure of Isopentenyl Phosphate Kinase from M. jannaschii in complex with IPP beta-S 3K4O ; 2.05 ; Crystal Structure of Isopentenyl Phosphate Kinase from Methanocaldococcus jannaschii 8U0M ; 2.54 ; Crystal structure of isopentenyl phosphate kinase from Thermococcus paralvinellae bound to (E)-2-methylbut-2-en-1-yl monophosphate and ATP 8U0L ; 2.8 ; Crystal structure of isopentenyl phosphate kinase from Thermococcus paralvinellae bound to (E)-But-2-en-1-yl monophosphate and ADP 8U0N ; 2.5 ; Crystal structure of isopentenyl phosphate kinase from Thermococcus paralvinellae bound to 2-cyclopentylideneethyl monophosphate and ADP 8U0K ; 2.5 ; Crystal structure of isopentenyl phosphate kinase from Thermococcus paralvinellae bound to DMAP and ADP 3HYQ ; 1.525 ; Crystal Structure of Isopentenyl-Diphosphate delta-Isomerase from Salmonella entericase 7DJS ; 1.7 ; Crystal structure of isopiperitenol dehydrogenase from Pseudomonas aeruginosa complexed with NAD 3N0F ; 2.7 ; Crystal Structure of Isoprene Synthase from Grey Poplar Leaves (Populus x canescens) 3N0G ; 2.8 ; Crystal Structure of Isoprene Synthase from Grey Poplar Leaves (Populus x canescens) in complex with three Mg2+ ions and dimethylallyl-S-thiolodiphosphate 3L3B ; 1.9 ; Crystal structure of isoprenoid biosynthesis protein with amidotransferase-like domain from Ehrlichia Chaffeensis at 1.90A resolution 3UCA ; 2.0 ; Crystal structure of isoprenoid synthase (target EFI-501974) from clostridium perfringens 4DHD ; 1.65 ; Crystal structure of isoprenoid synthase A3MSH1 (TARGET EFI-501992) from Pyrobaculum calidifontis 4GP1 ; 1.94 ; Crystal structure of ISOPRENOID SYNTHASE A3MSH1 (TARGET EFI-501992) from pyrobaculum calidifontis complexed with DMAPP 4GP2 ; 2.0 ; Crystal structure of ISOPRENOID SYNTHASE A3MSH1 (TARGET EFI-501992) from pyrobaculum calidifontis complexed with DMAPP and Magnesium 4FP4 ; 2.0 ; Crystal structure of isoprenoid synthase a3mx09 (target efi-501993) from pyrobaculum calidifontis 1WMR ; 2.4 ; Crystal Structure of Isopullulanase from Aspergillus niger ATCC 9642 5XK7 ; 1.911 ; Crystal structure of Isosesquilavandulyl Diphosphate Synthase from Streptomyces sp. strain CNH-189 in complex with DMAPP 5XK8 ; 2.304 ; Crystal structure of Isosesquilavandulyl Diphosphate Synthase from Streptomyces sp. strain CNH-189 in complex with GPP 5XK9 ; 2.137 ; Crystal structure of Isosesquilavandulyl Diphosphate Synthase from Streptomyces sp. strain CNH-189 in complex with GSPP and DMAPP 5HS2 ; 1.9 ; Crystal structure of IspD complexed with CTP and Mg2+ from Bacillus subtilis at 1.90 Angstroms resolution 5DDT ; 1.8 ; Crystal structure of IspD from Bacillus subtilis at 1.80 Angstroms resolution, crystal form I 5DDV ; 2.3 ; Crystal structure of IspD from Bacillus subtilis at 2.30 Angstroms resolution, crystal form II 7KMW ; 2.35 ; Crystal structure of IspD from Mycobacterium paratuberculosis 2XWM ; 1.8 ; Crystal structure of IspD from Mycobacterium smegmatis in complex with CMP 2XWL ; 1.49 ; Crystal structure of IspD from Mycobacterium smegmatis in complex with CTP and Mg 2XWN ; 2.9 ; Crystal structure of IspD from Mycobacterium tuberculosis in complex with CTP and Mg 4ED4 ; 1.75 ; Crystal structure of IspE (4-diphosphocytidyl-2-C-methyl-D-erythritol kinase) from Mycobacterium abcessus, bound to ATP 4EMD ; 1.75 ; Crystal structure of IspE (4-diphosphocytidyl-2-C-methyl-D-erythritol kinase) from Mycobacterium abcessus, bound to CMP and SO4 4DXL ; 2.0 ; Crystal structure of IspE (4-diphosphocytidyl-2-C-methyl-D-erythritol kinase) from Mycobacterium abscessus, bound to CMP and ATP 8CKH ; 1.8 ; Crystal structure of IspE from Klebsiella pneumoniae 8J17 ; 1.97 ; Crystal structure of IsPETase variant 3NOY ; 2.7 ; Crystal structure of IspG (gcpE) 4EB3 ; 1.9 ; Crystal structure of IspH in complex with iso-HMBPP 3KEF ; 1.7 ; Crystal structure of IspH:DMAPP-complex 3KE8 ; 1.7 ; Crystal structure of IspH:HMBPP-complex 3KE9 ; 1.9 ; Crystal structure of IspH:Intermediate-complex 3KEM ; 2.0 ; Crystal structure of IspH:IPP complex 3KEL ; 1.8 ; Crystal Structure of IspH:PP complex 5CDC ; 4.0 ; Crystal Structure of Israel acute Paralysis Virus 5CDD ; 2.7 ; Crystal Structure of Israel acute Paralysis Virus Pentamer 8IIC ; 3.25 ; Crystal structure of Israeli acute paralysis virus RNA-dependent RNA polymerase delta40 mutant (residues 41-546) 8IIB ; 2.69 ; Crystal structure of Israeli acute paralysis virus RNA-dependent RNA polymerase delta85 mutant (residues 86-546) 6XPP ; 1.55 ; Crystal structure of itaconate modified Mycobaterium tuberculosis isocitrate lyase 5DWS ; 1.65 ; Crystal Structure of ITCH WW3 domain in complex with TXNIP peptide 4M0Y ; 1.7 ; Crystal structure of ITK in complex with compound 1 [4-(carbamoylamino)-1-(naphthalen-1-yl)-1H-pyrazole-3-carboxamide] 4M0Z ; 2.0 ; Crystal structure of ITK in complex with compound 5 {4-(carbamoylamino)-1-(7-methoxynaphthalen-1-yl)-1H-pyrazole-3-carboxamide} 4HCT ; 1.48 ; Crystal structure of ITK in complex with compound 52 4HCV ; 1.48 ; Crystal structure of ITK in complex with compound 53 4M12 ; 2.15 ; Crystal structure of ITK in complex with compound 7 [4-(carbamoylamino)-1-(7-ethoxynaphthalen-1-yl)-1H-pyrazole-3-carboxamide] 4M13 ; 1.85 ; Crystal structure of ITK in complex with compound 8 [4-(carbamoylamino)-1-(7-propoxynaphthalen-1-yl)-1H-pyrazole-3-carboxamide] 4M14 ; 1.55 ; Crystal structure of ITK in complex with compound 9 [4-(carbamoylamino)-1-[7-(propan-2-yloxy)naphthalen-1-yl]-1H-pyrazole-3-carboxamide] 4M15 ; 1.52 ; Crystal structure of ITK in complex with compound 9 [4-(carbamoylamino)-1-[7-(propan-2-yloxy)naphthalen-1-yl]-1H-pyrazole-3-carboxamide] and ADP 4HCU ; 1.43 ; Crystal structure of ITK in complext with compound 40 3QGY ; 2.1 ; Crystal structure of ITK inhibitor complex 3QGW ; 2.1 ; Crystal Structure of ITK kinase bound to an inhibitor 5TSQ ; 1.53 ; Crystal structure of IUnH from Leishmania braziliensis in complex with D-Ribose 7PJM ; 2.1 ; Crystal Structure of Ivosidenib-resistant IDH1 variant R132C S280F in complex with NADPH and Ca2+/2-Oxoglutarate 7PJN ; 2.45 ; Crystal Structure of Ivosidenib-resistant IDH1 variant R132C S280F in complex with NADPH and inhibitor DS-1001B 2XPL ; 2.25 ; Crystal structure of Iws1(Spn1) conserved domain from Encephalitozoon cuniculi 7AHP ; 1.95 ; Crystal structure of Ixodes ricinus serpin - Iripin-3 7D2J ; 1.6 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with a Cd ion bound to the active site 7D2I ; 1.85 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with a Fe ion bound to the active site 7D2D ; 1.8 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with a Mn ion bound to the active site 7D2B ; 1.99 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with a Ni ion bound to the active site 7D1H ; 1.69 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with D238A mutation 7D23 ; 1.4 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with one K ion bound to the active site 7D1P ; 2.36 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with three Cd ions bound to the active site 7D1N ; 2.26 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with three Cu ions bound to the active site 7D1Y ; 1.95 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with two Co ions bound to the active site 7D21 ; 1.97 ; Crystal structure of Ixodes scapularis glutaminyl cyclase with two Zn ions bound to the active site 5B5K ; 2.5 ; Crystal structure of Izumo1, the mammalian sperm ligand for egg Juno 2QSA ; 1.68 ; Crystal structure of J-domain of DnaJ homolog dnj-2 precursor from C.elegans. 3APQ ; 1.84 ; Crystal structure of J-Trx1 fragment of ERdj5 2V4X ; 1.5 ; Crystal Structure of Jaagsiekte Sheep Retrovirus Capsid N-terminal domain 1KU8 ; 1.75 ; Crystal structure of Jacalin 1KUJ ; 2.0 ; Crystal structure of Jacalin complexed with 1-O-methyl-alpha-D-mannose 1UGW ; 1.7 ; Crystal structure of jacalin- Gal complex 1UH1 ; 2.8 ; Crystal structure of jacalin- GalNAc-beta(1-3)-Gal-alpha-O-Me complex 1UH0 ; 2.8 ; Crystal structure of jacalin- Me-alpha-GalNAc complex 1WS4 ; 1.9 ; Crystal structure of Jacalin- Me-alpha-Mannose complex: Promiscuity vs Specificity 1UGX ; 1.6 ; Crystal structure of jacalin- Me-alpha-T-antigen (Gal-beta(1-3)-GalNAc-alpha-o-Me) complex 1UGY ; 2.4 ; Crystal structure of jacalin- mellibiose (Gal-alpha(1-6)-Glc) complex 1WS5 ; 1.9 ; Crystal structure of Jacalin-Me-alpha-Mannose complex: Promiscuity vs Specificity 1M26 ; 1.62 ; Crystal structure of jacalin-T-antigen complex 4GOA ; 2.2 ; Crystal structure of jack bean urease inhibited with fluoride 8GDX ; 2.74 ; Crystal structure of JADE1 PZP domain 8GE0 ; 2.4 ; Crystal structure of JADE1 PZP domain in complex with Histone H3 5KHW ; 2.47 ; Crystal structure of JAK1 in complex with ADP 6BBU ; 2.08 ; Crystal Structure of JAK1 in complex with compound 25 6AAH ; 1.83 ; Crystal structure of JAK1 in complex with peficitinib 5KHX ; 2.4 ; Crystal structure of JAK1 in complex with PF-4950736 6W8L ; 2.11 ; Crystal structure of JAK1 kinase with compound 10 3LPB ; 2.0 ; Crystal structure of Jak2 complexed with a potent 2,8-diaryl-quinoxaline inhibitor 3KRR ; 1.8 ; Crystal Structure of JAK2 complexed with a potent quinoxaline ATP site inhibitor 6BBV ; 1.8 ; Crystal Structure of JAK2 in complex with compound 25 6AAJ ; 2.37 ; Crystal structure of JAK2 in complex with peficitinib 8BX6 ; 1.5 ; Crystal structure of JAK2 JH1 in complex with cerdulatinib 8BM2 ; 1.5 ; Crystal structure of JAK2 JH1 in complex with gandotinib 8BX9 ; 1.4 ; Crystal structure of JAK2 JH1 in complex with ilginatinib 8BXC ; 1.9 ; Crystal structure of JAK2 JH1 in complex with itacitinib 8BPW ; 1.8 ; Crystal structure of JAK2 JH1 in complex with lestaurtinib 8BXH ; 1.3 ; Crystal structure of JAK2 JH1 in complex with momelotinib 8BPV ; 1.7 ; Crystal structure of JAK2 JH1 in complex with pacritinib 7TEU ; 1.45 ; Crystal structure of JAK2 JH1 with type II inhibitor YLIU-04-105-1 8EX0 ; 1.85 ; Crystal structure of JAK2 JH2 (pseudokinase domain) in complex with CDK2-IV 8EX2 ; 1.9 ; Crystal structure of JAK2 JH2 (pseudokinase domain) in complex with HTSA3 8EX1 ; 1.5 ; Crystal structure of JAK2 JH2 (pseudokinase domain) in complex with Reversine 8BA3 ; 1.4 ; Crystal structure of JAK2 JH2 in complex with Bemcentinib 8B9H ; 1.5 ; Crystal structure of JAK2 JH2 in complex with Z902-A3 8C09 ; 1.9 ; Crystal structure of JAK2 JH2-I559F 8C08 ; 2.2 ; Crystal structure of JAK2 JH2-K539L 8C0A ; 1.7 ; Crystal structure of JAK2 JH2-R683S 8BA4 ; 2.1 ; Crystal structure of JAK2 JH2-V617F in complex with Bemcentinib 8BAB ; 1.55 ; Crystal structure of JAK2 JH2-V617F in complex with CB76 8B8N ; 2.0 ; Crystal structure of JAK2 JH2-V617F in complex with Cdk2 inhibitor IV 8B8U ; 1.5 ; Crystal structure of JAK2 JH2-V617F in complex with HTS-A3 8B99 ; 1.6 ; Crystal structure of JAK2 JH2-V617F in complex with JNJ-7706621 8BAK ; 1.65 ; Crystal structure of JAK2 JH2-V617F in complex with Reversine 8BA2 ; 1.5 ; Crystal structure of JAK2 JH2-V617F in complex with Z902-A1 8B9E ; 1.5 ; Crystal structure of JAK2 JH2-V617F in complex with Z902-A3 7UYW ; 2.51 ; Crystal structure of JAK2 kinase domain in complex with compound 30 6X8E ; 1.75 ; Crystal structure of JAK2 with Compound 11 6G3C ; 1.6 ; Crystal Structure of JAK2-V617F pseudokinase domain in complex with Compound 2 4QPS ; 1.8 ; Crystal structure of Jak3 complexed to N-[3-(6-Phenylamino-pyrazin-2-yl)-3H-benzoimidazol-5-yl]-acrylamide 3PJC ; 2.2 ; Crystal structure of JAK3 complexed with a potent ATP site inhibitor showing high selectivity within the Janus kinase family 6GL9 ; 1.7 ; Crystal structure of JAK3 in complex with Compound 10 (FM475) 6GLA ; 1.92 ; Crystal structure of JAK3 in complex with Compound 11 (FM481) 6GLB ; 2.0 ; Crystal structure of JAK3 in complex with Compound 20 (FM484) 5LWM ; 1.55 ; Crystal structure of JAK3 in complex with Compound 4 (FM381) 5LWN ; 1.6 ; Crystal structure of JAK3 in complex with Compound 5 (FM409) 7C3N ; 1.98 ; Crystal structure of JAK3 in complex with Delgocitinib 7APG ; 2.4 ; Crystal structure of JAK3 in complex with FM587 (compound 9a) 7APF ; 1.95 ; Crystal structure of JAK3 in complex with FM601 (compound 10a) 6AAK ; 2.67 ; Crystal structure of JAK3 in complex with peficitinib 3ZEP ; 2.35 ; Crystal Structure of JAK3 Kinase Domain in Complex with a Pyrrolopyrazine-2-phenyl Ether Inhibitor 4RIO ; 2.69 ; Crystal structure of JAK3 kinase domain in complex with a pyrrolopyridazine carboxamide inhibitor 6NY4 ; 2.33 ; Crystal structure of JAK3 kinase domain in complex with a pyrrolopyridazine carboxamide inhibitor 5VO6 ; 2.65 ; CRYSTAL STRUCTURE OF JAK3 KINASE DOMAIN IN COMPLEX WITH A PYRROLOPYRIDAZINE INHIBITOR 3ZC6 ; 2.42 ; Crystal structure of JAK3 kinase domain in complex with an indazole substituted pyrrolopyrazine inhibitor 7UYV ; 2.15 ; Crystal structure of JAK3 kinase domain in complex with compound 25 5W86 ; 2.61 ; CRYSTAL STRUCTURE OF JAK3 KINASE DOMAIN WITH A 4,6-DIAMINONICOTINAMIDE INHIBITOR (COMPOUND NUMBER 7) 5DOV ; 1.8 ; Crystal structure of JamJ enoyl reductase (apo form) 5DOZ ; 2.26 ; Crystal structure of JamJ enoyl reductase (NADPH bound) 3MJ9 ; 2.95 ; Crystal structure of JAML in complex with the stimulatory antibody HL4E10 4ZIM ; 2.65 ; CRYSTAL STRUCTURE OF JANUS KINASE 2 IN COMPLEX WITH A 9H-CARBAZOLE-1-CARBOXAMIDE INHIBITOR 5CF4 ; 2.38 ; CRYSTAL STRUCTURE OF JANUS KINASE 2 IN COMPLEX WITH N,N-DICYCLOPROPYL-10-ETHYL-7-[(3-METHOXYPROPYL)AMINO] -3-METHYL-3,5,8,10-TETRAAZATRICYCLO[7.3.0.0,6] DODECA-1(9),2(6),4,7,11-PENTAENE-11-CARBOXAMIDE 5CF8 ; 1.8 ; CRYSTAL STRUCTURE OF JANUS KINASE 2 IN COMPLEX WITH N,N-DICYCLOPROPYL-10-ETHYL-7-[(3-METHOXYPROPYL)AMINO] -3-METHYL-3,5,8,10-TETRAAZATRICYCLO[7.3.0.0,6] DODECA-1(9),2(6),4,7,11-PENTAENE-11-CARBOXAMIDE 5CF6 ; 2.5 ; CRYSTAL STRUCTURE OF JANUS KINASE 2 IN COMPLEX WITH N,N-DICYCLOPROPYL-10-[(2S)-2,3-DIHYDROXYPROPYL]-3-METHYL-7-(METHYLAMINO)-3,5,8,10-TETRAAZATRICYCLO [7.3.0.02,6]DODECA-1(9),2(6),4,7,11-PENTAENE-11-CARBOXAMIDE 5CF5 ; 2.45 ; CRYSTAL STRUCTURE OF JANUS KINASE 2 IN COMPLEX WITH N,N-DICYCLOPROPYL-7-[(DIMETHYL-1,3-THIAZOL-2-YL)AMINO]-10-ETHYL-3-METHYL-3,5,8,10-TETRAAZATRICYCLO[7.3.0.02,6] DODECA-1(9),2(6),4,7,11-PENTAENE-11-CARBOXAMIDE 1IQQ ; 1.5 ; Crystal Structure of Japanese pear S3-RNase 5C11 ; 2.803 ; Crystal Structure of Jarid1a PHD finger bound to histone H3C4me3 peptide 3GL6 ; 1.9 ; Crystal structure of JARID1A-PHD3 complexed with H3(1-9)K4me3 peptide 7PB2 ; 3.41 ; Crystal structure of JDI TCR in complex with HLA-A*11:01 bound to KRAS G12D peptide (VVVGADGVGK) 4O8S ; 2.1 ; Crystal structure of JHP933 from Helicobacter pylori 8WIM ; 1.84 ; Crystal structure of Jingmen tick virus RNA-dependent RNA polymerase (D307 construct) 8WIL ; 2.1 ; Crystal structure of Jingmen tick virus RNA-dependent RNA polymerase (D55 construct) 4ZDH ; 2.0984 ; Crystal structure of JKA6 TCR 2Q8D ; 2.29 ; Crystal structure of JMJ2D2A in ternary complex with histone H3-K36me2 and succinate 4C8D ; 2.18 ; Crystal structure of JmjC domain of human histone 3 Lysine-specific demethylase 3B (KDM3B) 3ZLI ; 1.8 ; Crystal structure of JmjC domain of human histone demethylase UTY 5FXZ ; 1.98 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with citrate 5FYM ; 2.0 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with D-2-hydroxyglutarate 4UF0 ; 1.78 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with epitherapuetic compound 2-(((2-((2-(dimethylamino)ethyl) (ethyl)amino)-2-oxoethyl)amino)methyl)isonicotinic acid. 5FXW ; 2.09 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with fumarate 5FY0 ; 2.14 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with L-malate 5FXV ; 1.91 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with N05859b 5FY1 ; 1.78 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with N08619b 5FXX ; 1.99 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with oxaloacetate 5FY7 ; 1.86 ; Crystal structure of JmjC domain of human histone demethylase UTY in complex with succinate 3ZPO ; 2.0 ; Crystal structure of JmjC domain of human histone demethylase UTY with bound GSK J1 5A1L ; 2.0 ; Crystal structure of JmjC domain of human histone demethylase UTY with S21056a 7EQV ; 2.6 ; Crystal structure of JMJD2A complexed with 3,4-dihydroxybenzoic acid 3NJY ; 2.6 ; Crystal structure of JMJD2A complexed with 5-carboxy-8-hydroxyquinoline 3PDQ ; 1.989 ; Crystal structure of JMJD2A complexed with bipyridyl inhibitor 2OX0 ; 1.95 ; Crystal structure of JMJD2A complexed with histone H3 peptide dimethylated at Lys9 2OT7 ; 2.135 ; Crystal structure of JMJD2A complexed with histone H3 peptide monomethylated at Lys9 2OS2 ; 2.3 ; Crystal structure of JMJD2A complexed with histone H3 peptide trimethylated at Lys36 2OQ6 ; 2.0 ; Crystal structure of JMJD2A complexed with histone H3 peptide trimethylated at Lys9 3RVH ; 2.251 ; Crystal Structure of JMJD2A Complexed with Inhibitor 4GD4 ; 2.33 ; Crystal Structure of JMJD2A Complexed with Inhibitor 2VD7 ; 2.25 ; Crystal Structure of JMJD2A complexed with inhibitor Pyridine-2,4- dicarboxylic acid 2Q8C ; 2.047 ; Crystal structure of JMJD2A in ternary complex with an histone H3K9me3 peptide and 2-oxoglutarate 4LXL ; 1.87 ; Crystal structure of JMJD2B complexed with pyridine-2,4-dicarboxylic acid and H3K9me3 2XUE ; 2.0 ; CRYSTAL STRUCTURE OF JMJD3 4ASK ; 1.86 ; CRYSTAL STRUCTURE OF JMJD3 WITH GSK-J1 3UYJ ; 2.351 ; Crystal structure of JMJD5 catalytic core domain in complex with nickle and alpha-KG 4AAP ; 2.6 ; Crystal structure of JMJD5 domain of human Lysine-specific demethylase 8 (KDM8) in complex with N-oxalylglycine (NOG) 4YR8 ; 2.4 ; Crystal structure of JNK in complex with a regulator protein 4UX9 ; 2.34 ; Crystal structure of JNK1 bound to a MKK7 docking motif 6ZR5 ; 2.699 ; Crystal structure of JNK1 in complex with ATF2(19-58) 4HYS ; 2.415 ; Crystal structure of JNK1 in complex with JIP1 peptide and 4-(4-Indazol-1-yl-pyrimidin-2-ylamino)-cyclohexan 4HYU ; 2.152 ; Crystal structure of JNK1 in complex with JIP1 peptide and 4-{4-[4-(3-Methanesulfonyl-propoxy)-indazol-1-yl]-pyrimidin-2-ylamino}-cyclohexan 4IZY ; 2.3 ; Crystal structure of JNK1 in complex with JIP1 peptide and 4-{4-[4-(4-Methanesulfonyl-piperidin-1-yl)-indol-1-yl]-pyrimidin-2-ylamino}-cyclohexan 4G1W ; 2.45 ; Crystal structure of JNK1 in complex with JIP1 peptide and 7-Fluoro-3-[4-(2-hydroxy-ethanesulfonyl)-benzyl]-4-oxo-1-phenyl-1,4-dihydro-quinoline-2-carboxylic acid methyl ester 3O17 ; 3.0 ; Crystal Structure of JNK1-alpha1 isoform 3O2M ; 2.7 ; Crystal Structure of JNK1-alpha1 isoform complex with a biaryl tetrazol (A-82118) 4E73 ; 2.27 ; Crystal structure of JNK1beta-JIP in complex with an azaquinolone inhbitor 3E7O ; 2.14 ; Crystal Structure of JNK2 3NPC ; 2.35 ; Crystal structure of JNK2 complexed with BIRB796 2OK1 ; 2.4 ; Crystal structure of JNK3 bound to N-benzyl-4-(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-1H-pyrrole-2-carboxamide 3TTJ ; 2.1 ; Crystal Structure of JNK3 complexed with CC-359, a JNK inhibitor for the prevention of ischemia-reperfusion injury 3TTI ; 2.2 ; Crystal Structure of JNK3 complexed with CC-930, an orally active anti-fibrotic JNK inhibitor 7YL1 ; 2.48 ; Crystal structure of JNK3 in complex with a fragment molecule 6EKD ; 2.1 ; Crystal structure of JNK3 in complex with a pyridinylimidazole inhibitor 6EMH ; 1.76 ; Crystal structure of JNK3 in complex with a pyridinylimidazole inhibitor 6EQ9 ; 1.83 ; Crystal structure of JNK3 in complex with AMP-PCP 1PMN ; 2.2 ; Crystal structure of JNK3 in complex with an imidazole-pyrimidine inhibitor 4H36 ; 3.0 ; Crystal Structure of JNK3 in Complex with ATF2 Peptide 7ORF ; 1.7 ; Crystal structure of JNK3 in complex with FMU-001-367 (compound 1) 4H39 ; 1.992 ; Crystal Structure of JNK3 in Complex with JIP1 Peptide 7ORE ; 2.18 ; Crystal structure of JNK3 in complex with light-activated covalent inhibitor MR-II-249 with both non-covalent and covalent binding modes (compound 4) 4H3B ; 2.08 ; Crystal Structure of JNK3 in Complex with SAB Peptide 3FI2 ; 2.28 ; Crystal structure of JNK3 with amino-pyrazole inhibitor, SR-3451 3FI3 ; 2.2 ; Crystal structure of JNK3 with indazole inhibitor, SR-3737 6LSV ; 2.651 ; Crystal structure of JOX2 in complex with 2OG, Fe, and JA 1WRM ; 1.5 ; Crystal structure of JSP-1 1PW3 ; 1.9 ; Crystal structure of JtoR68S 6I9K ; 2.145 ; Crystal structure of Jumping Spider Rhodopsin-1 bound to 9-cis retinal 2NPZ ; 3.35 ; Crystal structure of junctioned hairpin ribozyme incorporating synthetic propyl linker 7RW4 ; 1.31 ; Crystal structure of junctophilin-1 7RXE ; 2.35 ; Crystal structure of junctophilin-2 7RXQ ; 2.03 ; Crystal structure of junctophilin-2 in complex with a CaV1.1 peptide 4K7E ; 2.2 ; Crystal structure of Junin virus nucleoprotein 5EJN ; 2.703 ; Crystal structure of Juno, the mammalian egg receptor for sperm Izumo1 7EBS ; 2.95 ; Crystal structure of juvenile hormone acid methyltransferase JHAMT from silkworm 7EC0 ; 2.494 ; Crystal structure of juvenile hormone acid methyltransferase JHAMT in complex with S-Adenosyl homocysteine and methyl farnesoate 7EBX ; 2.89 ; Crystal structure of juvenile hormone acid methyltransferase JHAMT in complex with S-adenosyl-L-homocysteine. 7V2S ; 2.133 ; Crystal structure of juvenile hormone acid methyltransferase JHAMT isoform3 from silkworm 7EJB ; 2.85 ; Crystal structure of juvenile hormone acid methyltransferase JHAMT mutant Q15E 7VEO ; 2.53 ; Crystal structure of juvenile hormone acid methyltransferase silkworm JHAMT isoform3 complex with S-Adenosyl-L-homocysteine 2RCK ; 2.44 ; Crystal structure of juvenile hormone binding protein from Galleria mellonella hemolymph 3A1Z ; 2.59 ; Crystal structure of juvenile hormone binding protein from silkworm 3AOS ; 2.2 ; Crystal structure of juvenile hormone binding protein from silkworm in complex with JH II 3AOT ; 2.2 ; Crystal structure of juvenile hormone binding protein from silkworm in its apo form 6KTH ; 1.22 ; Crystal structure of Juvenile hormone diol kinase JHDK-L2 from silkworm, Bombyx mori 4QLA ; 2.3 ; Crystal structure of juvenile hormone epoxide hydrolase from the silkworm Bombyx mori 2FJ0 ; 2.7 ; Crystal Structure of Juvenile Hormone Esterase from Manduca sexta, with OTFP covalently attached 1WD6 ; 2.9 ; crystal structure of JW1657 from Escherichia coli 2HIQ ; 2.0 ; Crystal structure of JW1657 from Escherichia coli 6CNU ; 1.05 ; Crystal Structure of JzTX-V 4PDM ; 1.58 ; Crystal Structure of K+ selective NaK mutant in rubidium 4LRW ; 2.151 ; Crystal Structure of K-Ras G12C (cysteine-light), GDP-bound 4L8G ; 1.521 ; Crystal Structure of K-Ras G12C, GDP-bound 4LPK ; 1.5 ; Crystal Structure of K-Ras WT, GDP-bound 6WGN ; 1.601 ; Crystal structure of K-Ras(G12D) GppNHp bound to cyclic peptide ligand KD2 7TLK ; 1.71102 ; Crystal Structure of K-Ras(G12S) 5OMC ; 2.38 ; Crystal structure of K. lactis Ddc2 N-terminus in complex with S. cerevisiae Rfa1 (K45E mutant) N-OB domain 5OMB ; 1.94 ; Crystal structure of K. lactis Ddc2 N-terminus in complex with S. cerevisiae Rfa1 N-OB domain 4GPS ; 2.4 ; Crystal Structure of K. lactis Dxo1 (YDR370C) 4GPU ; 2.8 ; Crystal structure of K. lactis Dxo1 (YDR370C) in complex with manganese 6AM0 ; 2.84 ; Crystal structure of K. lactis Edc1-Dcp1-Dcp2-Edc3 decapping complex with synthetic cap substrate analog 4G89 ; 2.1 ; Crystal structure of k. pneumoniae mta/adohcy nucleosidase in complex with fragmented s-adenosyl-l-homocysteine 3RV0 ; 2.29 ; Crystal structure of K. polysporus Dcr1 without the C-terminal dsRBD 4M3O ; 2.1 ; Crystal structure of K.lactis Rtr1 NTD 2OPR ; 2.9 ; Crystal Structure of K101E Mutant HIV-1 Reverse Transcriptase in Complex with GW420867X. 2HND ; 2.5 ; Crystal Structure of K101E Mutant HIV-1 Reverse Transcriptase in Complex with Nevirapine 3A2G ; 1.75 ; Crystal Structure of K102C-Myoglobin conjugated with Fluorescein 1SV5 ; 2.9 ; CRYSTAL STRUCTURE OF K103N MUTANT HIV-1 REVERSE TRANSCRIPTASE (RT) IN COMPLEX WITH JANSSEN-R165335 3DOK ; 2.9 ; Crystal structure of K103N mutant HIV-1 reverse transcriptase in complex with GW678248. 2IAJ ; 2.5 ; Crystal Structure of K103N/Y181C Mutant HIV-1 Reverse Transcriptase (RT) in Complex with ATP 5FDL ; 3.1 ; Crystal Structure of K103N/Y181C Mutant HIV-1 Reverse Transcriptase (RT) in Complex with IDX899 2IC3 ; 3.0 ; Crystal Structure of K103N/Y181C Mutant HIV-1 Reverse Transcriptase (RT) in Complex with Nonnucleoside Inhibitor HBY 097 3BGR ; 2.1 ; Crystal structure of K103N/Y181C mutant HIV-1 reverse transcriptase (RT) in complex with TMC278 (Rilpivirine), a non-nucleoside RT inhibitor 4I2Q ; 2.7004 ; Crystal structure of K103N/Y181C mutant of HIV-1 reverse transcriptase in complex with rilpivirine (TMC278) analogue 2XEW ; 2.2 ; Crystal structure of K11-linked diubiquitin 3BAH ; 1.65 ; Crystal structure of K112N mutant of Human acidic fibroblast growth factor 3BAG ; 1.75 ; Crystal structure of K112N/N114A mutant of Human acidic fibroblast growth factor 4Q9G ; 1.554 ; Crystal structure of K12V/C16S/C117V/P134V mutant of human acidic fibroblast growth factor 3FJI ; 2.55 ; Crystal structure of K12V/C83I/C117V mutant of Human acidic fibroblast growth factor 3BAU ; 1.6 ; Crystal structure of K12V/L26D/D28A mutant of Human acidic fibroblast growth factor 5ZVU ; 2.2 ; Crystal structure of K132A mutant of phosphomannose isomerase from Salmonella typhimurium 8GR3 ; 2.4 ; Crystal structure of K151L/Y158F mutant of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 3Q7Y ; 1.45 ; Crystal structure of K15R/E18D/Y22W/H41G/F44W/E51D/E53P/K57R/E60D/Y64W/H82G/F85W/E90D/E94P/K98R/E101D/Y108W/H129G/F132W/E137D Symfoil-4P: de novo designed beta-trefoil architecture with symmetric primary structure 3NNT ; 1.6 ; Crystal Structure of K170M Mutant of Type I 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium LT2 in Non-Covalent Complex with Dehydroquinate. 2O84 ; 2.6 ; Crystal structure of K206E mutant of N-lobe human transferrin 2O7U ; 2.8 ; Crystal structure of K206E/K296E mutant of the N-terminal half molecule of human transferrin 2HXU ; 1.8 ; Crystal structure of K220A mutant of L-Fuconate Dehydratase from Xanthomonas campestris liganded with Mg++ and L-fuconate 1CW4 ; 2.1 ; CRYSTAL STRUCTURE OF K230M ISOCITRATE DEHYDROGENASE IN COMPLEX WITH ALPHA-KETOGLUTARATE 4MBK ; 1.46 ; Crystal structure of K234R inhibitor-resistant variant of SHV beta-lactamase in complex with SA2-13 5OPL ; 1.8 ; Crystal structure of K25E cN-II mutant 3EIB ; 1.85 ; Crystal structure of K270N variant of LL-diaminopimelate aminotransferase from Arabidopsis thaliana 3EI9 ; 1.55 ; Crystal structure of K270N variant of LL-diaminopimelate aminotransferase from Arabidopsis thaliana complexed with L-Glu: External aldimine form 3EI8 ; 1.6 ; Crystal structure of K270N variant of LL-diaminopimelate aminotransferase from Arabidopsis thaliana complexed with LL-DAP: External aldimine form 3EIA ; 1.85 ; Crystal structure of K270Q variant of LL-diaminopimelate aminotransferase from Arabidopsis thaliana complexed with L-Glu: External aldimine form 4S22 ; 2.3 ; Crystal structure of K29 linked di-Ubiquitin 7KEO ; 2.9 ; Crystal structure of K29-linked di-ubiquitin in complex with synthetic antigen binding fragment 4XYZ ; 1.65 ; Crystal structure of K33 linked di-Ubiquitin 4Y1H ; 1.4 ; Crystal structure of K33 linked tri-Ubiquitin 6UYX ; 1.7 ; Crystal structure of K37-acetylated SUMO1 in complex with phosphorylated DAXX 6V7S ; 1.47 ; Crystal structure of K37-acetylated SUMO1 in complex with phosphorylated PIAS-SIM2 6UYS ; 1.59 ; Crystal structure of K37-acetylated SUMO1 in complex with phosphorylated PML-SIM 6V7R ; 1.549 ; Crystal structure of K37-acetylated SUMO1 in complex with PIAS-SIM2 6UYO ; 1.639 ; Crystal structure of K37-acetylated SUMO1 in complex with PML-SIM 6UYY ; 1.599 ; Crystal structure of K39-acetylated SUMO1 in complex with phosphorylated DAXX 6UYT ; 1.662 ; Crystal structure of K39-acetylated SUMO1 in complex with phosphorylated PML-SIM 6UYP ; 1.418 ; Crystal structure of K39-acetylated SUMO1 in complex with PML-SIM 5B1I ; 3.3 ; Crystal structure of K42A mutant of cystathionine beta-synthase from Lactobacillus plantarum in a complex with L-methionine 4HNU ; 3.0 ; crystal structure of K442E mutant of S. aureus Pyruvate carboxylase 8AZF ; 1.41 ; Crystal structure of K449E variant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa in complex with adenosine 6UYU ; 1.66 ; Crystal structure of K45-acetylated SUMO1 in complex with phosphorylated PML-SIM 6UYQ ; 1.501 ; Crystal structure of K45-acetylated SUMO1 in complex with PML-SIM 6UYZ ; 1.4 ; Crystal structure of K46-acetylated SUMO1 in complex with phosphorylated DAXX 6UYV ; 1.401 ; Crystal structure of K46-acetylated SUMO1 in complex with phosphorylated PML-SIM 6UYR ; 1.3 ; Crystal structure of K46-acetylated SUMO1 in complex with PML-SIM 5EMZ ; 1.66 ; Crystal structure of K48-linked diubiquitin with F45W mutation in the proximal unit 2E0Q ; 1.49 ; Crystal structure of K53E thioredoxin from Sulfolobus tokodaii strain7 2XK5 ; 3.0 ; Crystal structure of K6-linked diubiquitin 3H7P ; 1.9 ; Crystal structure of K63-linked di-ubiquitin 3DVG ; 2.6 ; Crystal structure of K63-specific fab Apu.3A8 bound to K63-linked di-ubiquitin 3DVN ; 2.7 ; Crystal structure of K63-specific fab Apu2.16 bound to K63-linked di-ubiquitin 1SO4 ; 1.7 ; Crystal structure of K64A mutant of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate 5BSC ; 1.89 ; Crystal structure of K66A mutant of human macrophage migration inhibitory factor 5TY3 ; 1.25 ; Crystal structure of K72A variant of Human Cytochrome c 7YIA ; 2.428 ; Crystal structure of K74A mutant of Cap4 SAVED domain-containing receptor from Enterobacter cloacae 7F08 ; 3.16 ; Crystal Structure of K8 7RLR ; 1.88 ; Crystal Structure of K83A Mutant of Class D beta-lactamase from Clostridium difficile 630 5ZVX ; 1.7 ; Crystal structure of K86A mutant of phosphomannose isomerase from Salmonella typhimurium 3NTO ; 1.9124 ; Crystal structure of K97V mutant myo-inositol dehydrogenase from Bacillus subtilis 3NTQ ; 2.6004 ; Crystal structure of K97V mutant myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor NAD 3NTR ; 2.6503 ; Crystal structure of K97V mutant of myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor NAD and inositol 6C9D ; 2.499 ; Crystal structure of KA1-autoinhibited MARK1 kinase 7KZ3 ; 1.55 ; Crystal structure of KabA from Bacillus cereus UW85 in complex with the internal aldimine 7KZ5 ; 1.6 ; Crystal structure of KabA from Bacillus cereus UW85 in complex with the plp external aldimine adduct with kanosamine-6-phosphate 7KZD ; 1.9 ; Crystal structure of KabA from Bacillus cereus UW85 in complex with the reduced internal aldimine and with bound Glutarate 7KZ6 ; 1.65 ; Crystal structure of KabA from Bacillus cereus UW85 with bound cofactor PMP 4HRX ; 2.11 ; Crystal structure of KAI2 5Z9G ; 1.49 ; Crystal structure of KAI2 4JYP ; 1.3 ; crystal Structure of KAI2 Apo form 4JYM ; 1.35 ; crystal Structure of KAI2 in complex with 3-methyl-2H-furo[2,3-c]pyran-2-one 5DNW ; 2.02 ; Crystal structure of KAI2-like protein from Striga (apo state 1) 5DNV ; 2.65 ; Crystal structure of KAI2-like protein from Striga (apo state 2) 5Z9H ; 1.49 ; Crystal structure of KAI2_ply2(A219V) 1WWJ ; 1.9 ; crystal structure of KaiB from Synechocystis sp. 5JWQ ; 3.871 ; Crystal structure of KaiC S431E in complex with foldswitch-stabilized KaiB from Thermosynechococcus elongatus 8DB3 ; 2.9 ; Crystal structure of KaiC with truncated C-terminal coiled-coil domain 2ZTS ; 2.07 ; Crystal structure of KaiC-like protein PH0186 from hyperthermophilic archaea Pyrococcus horikoshii OT3 4F6M ; 2.4 ; Crystal structure of Kaiso zinc finger DNA binding domain in complex with Kaiso binding site DNA 4F6N ; 2.8 ; Crystal structure of Kaiso zinc finger DNA binding protein in complex with methylated CpG site DNA 4KGA ; 2.32 ; Crystal structure of kallikrein-related peptidase 4 7W6Y ; 3.1 ; Crystal structure of Kangiella koreensis RseP orthologue in complex with batimastat in space group P1 7W6Z ; 3.15 ; Crystal structure of Kangiella koreensis RseP orthologue in complex with batimastat in space group P21 7DDX ; 2.5 ; Crystal structure of KANK1 S1179F mutant in complex wtih eIF4A1 5YAY ; 1.55 ; Crystal structure of KANK1/KIF21A complex 4HBD ; 1.72 ; Crystal structure of KANK2 ankyrin repeats 6TMD ; 1.5 ; Crystal structure of KANK2 ankyrin repeats mutant (A670V) 4FDD ; 2.3 ; Crystal structure of KAP beta2-PY-NLS 6AHO ; 2.502 ; Crystal structure of Kap114p 3W3T ; 2.9 ; Crystal structure of Kap121p 3W3Y ; 2.8 ; Crystal structure of Kap121p bound to Nup53p 3W3X ; 2.9 ; Crystal structure of Kap121p bound to Pho4p 3W3Z ; 2.7 ; Crystal structure of Kap121p bound to RanGTP 3W3W ; 2.2 ; Crystal structure of Kap121p bound to Ste12p 3W3V ; 3.2 ; Crystal structure of Kap121p mutant D353K/E396K/D438K 3W3U ; 2.6 ; Crystal structure of Kap121p mutant R349A/Q350A/D353A/E396A/N430K/D438A/N477A 5T94 ; 2.631 ; Crystal structure of Kap60 bound to yeast RCC1 (Prp20) 7CZF ; 3.2 ; Crystal structure of Kaposi Sarcoma associated herpesvirus (KSHV ) gHgL in complex with the ligand binding domian (LBD) of EphA2 4P2T ; 2.15 ; Crystal structure of Kaposi's sarcoma-associated herpesvirus (KSHV) protease in complex with a dimer disruptor 4P3H ; 1.45 ; Crystal structure of Kaposi's sarcoma-associated herpesvirus (KSHV) protease in complex with dimer disruptor 3NJQ ; 2.0 ; Crystal structure of Kaposi's sarcoma-associated herpesvirus protease in complex with dimer disruptor 3DVI ; 1.53 ; Crystal structure of kappa 1 amyloidogenic light chain variable domain 1KBA ; 2.3 ; CRYSTAL STRUCTURE OF KAPPA-BUNGAROTOXIN AT 2.3-ANGSTROM RESOLUTION 4IH1 ; 1.55 ; Crystal structure of Karrikin Insensitive 2 (KAI2) from Arabidopsis thaliana 5YVH ; 3.15 ; Crystal structure of Karyopherin beta2 in complex with FUS(371-526) 5YVI ; 2.9 ; Crystal structure of Karyopherin beta2 in complex with FUS(456-526) 5YVG ; 4.05 ; Crystal structure of Karyopherin beta2 in complex with FUS(full length) 7CYL ; 2.7 ; Crystal structure of Karyopherin-beta2 in complex with FUS PY-NLS(P525L) 7RP2 ; 2.2 ; Crystal structure of Kas G12C in complex with 2H11 CLAMP 5YO9 ; 2.002 ; Crystal structure of KAS III from Acinetobacter baumannii 5YOA ; 2.33 ; Crystal structure of KAS III from Acinetobacter baumannii 5YZU ; 2.122 ; Crystal structure of KAS III from Acinetobacter baumannii 6A9N ; 2.099 ; Crystal structure of KAS III from Propionibacterium acnes 2WGD ; 2.01 ; Crystal structure of KasA of Mycobacterium tuberculosis 2WGE ; 1.8 ; Crystal structure of KasA of Mycobacterium tuberculosis with bound TLM 2HHH ; 3.35 ; Crystal structure of kasugamycin bound to the 30S ribosomal subunit 8DD5 ; 2.58 ; Crystal structure of KAT6A in complex with inhibitor CTx-648 (PF-9363) 4R42 ; 1.902 ; Crystal structure of KatB, a manganese catalase from Anabaena PCC7120 6LFK ; 2.1 ; Crystal structure of KatE from atypical E. coli 2I0A ; 1.8 ; Crystal Structure of KB-19 complexed with wild type HIV-1 protease 2Q54 ; 1.85 ; Crystal structure of KB73 bound to HIV-1 protease 2P7T ; 2.05 ; Crystal Structure of KcsA mutant 2HVJ ; 2.75 ; Crystal structure of KcsA-Fab-TBA complex in low K+ 2DWE ; 2.5 ; Crystal structure of KcsA-FAB-TBA complex in Rb+ 2DWD ; 2.6 ; crystal structure of KcsA-FAB-TBA complex in Tl+ 2R91 ; 2.0 ; Crystal Structure of KD(P)GA from T.tenax 2R94 ; 2.2 ; Crystal Structure of KD(P)GA from T.tenax 3NTC ; 1.55 ; Crystal structure of KD-247 Fab, an anti-V3 antibody that inhibits HIV-1 Entry 1SQW ; 1.9 ; Crystal structure of KD93, a novel protein expressed in the human pro 7UVA ; 1.98 ; Crystal structure of KDM2A histone demethylase catalytic domain in complex with an H3C36 peptide modified by UNC8015 6RBJ ; 2.093 ; Crystal structure of KDM3B in complex with 5-(1H-tetrazol-5-yl)quinolin-8-ol 5VGI ; 2.07 ; Crystal Structure of KDM4 with the Small Molecule Inhibitor QC6352 5VAR ; 1.83 ; Crystal structure of KDM4A tandem TUDOR domain in complex with a tri-methyl lysine competitive inhibitor 6CG1 ; 2.16 ; Crystal Structure of KDM4A with Compound 14 6CG2 ; 2.34 ; Crystal Structure of KDM4A with Compound 8 6G5X ; 1.78 ; Crystal Structure of KDM4A with compound YP-02-145 6G5W ; 1.83 ; Crystal Structure of KDM4A with compound YP-03-038 7JM5 ; 2.7 ; Crystal structure of KDM4B in complex with QC6352 6F5Q ; 1.43 ; Crystal Structure of KDM4D with GF026 ligand 6F5R ; 1.607 ; Crystal Structure of KDM4D with GF028 ligand 6ETT ; 1.257 ; Crystal structure of KDM4D with tetrazole compound 4 6F5S ; 1.48 ; Crystal Structure of KDM4D with tetrazole ligand GF049 6F5T ; 1.58 ; Crystal Structure of KDM4D with tetrazole ligand GF057 6ETS ; 1.333 ; Crystal structure of KDM4D with tetrazolhydrazide compound 1 6ETV ; 1.18 ; Crystal structure of KDM4D with tetrazolhydrazide compound 2 6ETW ; 1.35 ; Crystal structure of KDM4D with tetrazolhydrazide compound 3 6ETE ; 1.468 ; Crystal structure of KDM4D with tetrazolhydrazide compound 5 6ETG ; 1.279 ; Crystal structure of KDM4D with tetrazolhydrazide compound 6 6ETU ; 1.33 ; Crystal structure of KDM4D with tetrazolhydrazide compound 7 6H11 ; 1.516 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand AA028 6H0X ; 1.64 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand AA040 6H0Z ; 1.34 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand NR067 6H10 ; 1.104 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand NR073 6H0Y ; 1.212 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand NS022 6H0W ; 1.23 ; Crystal Structure of KDM4D with tetrazolylhydrazide ligand NS035 5K4L ; 3.179 ; Crystal structure of KDM5A in complex with a naphthyridone inhibitor 6RBI ; 2.21 ; Crystal structure of KDM5B in complex with 5-(1H-tetrazol-5-yl)quinolin-8-ol 6EIY ; 2.15 ; Crystal structure of KDM5B in complex with KDOPZ000034a. 6EJ0 ; 2.06 ; Crystal structure of KDM5B in complex with KDOPZ000049a. 6EIU ; 1.88 ; Crystal structure of KDM5B in complex with KDOPZ29a 6EJ1 ; 2.07 ; Crystal structure of KDM5B in complex with KDOPZ48a. 6EK6 ; 2.05 ; Crystal structure of KDM5B in complex with S49195a. 6EIN ; 2.11 ; Crystal structure of KDM5B in complex with S49365a. 1O60 ; 1.8 ; Crystal structure of KDO-8-phosphate synthase 1PHW ; 2.36 ; Crystal structure of KDO8P synthase in its binary complex with substrate analog 1-deoxy-A5P 1PHQ ; 2.7 ; Crystal structure of KDO8P synthase in its binary complex with substrate analog E-FPEP 1PL9 ; 2.9 ; Crystal structure of KDO8P synthase in its binary complex with substrate analog Z-FPEP 1Q3N ; 2.7 ; Crystal structure of KDO8P synthase in its binary complex with substrate PEP 1FWR ; 2.7 ; CRYSTAL STRUCTURE OF KDPG ALDOLASE DOUBLE MUTANT K133Q/T161K 6OVI ; 1.6 ; Crystal Structure of KDPG Aldolase from Legionella Pneumophila with pyruvate captured at low pH as a covalent carbinolamine intermediate 7X4W ; 3.209 ; Crystal structure of Keap1 BTB domain in complex with dimethyl fumarate (DMF) 2Z32 ; 2.0 ; Crystal structure of Keap1 complexed with Prothymosin alpha 4ZY3 ; 1.8 ; Crystal Structure of Keap1 in Complex with a small chemical compound, K67 6LRZ ; 1.54 ; Crystal structure of Keap1 in complex with dimethyl fumarate (DMF) 7C5E ; 1.75 ; Crystal structure of Keap1 in complex with fumarate (FUM) 7C60 ; 1.95 ; Crystal structure of Keap1 in complex with monoethyl fumarate (MEF) 3WDZ ; 2.6 ; Crystal Structure of Keap1 in Complex with phosphorylated p62 3ADE ; 2.8 ; Crystal Structure of Keap1 in Complex with Sequestosome-1/p62 3VNG ; 2.1 ; Crystal Structure of Keap1 in Complex with Synthetic Small Molecular based on a co-crystallization 3WN7 ; 1.57 ; Crystal Structure of Keap1 in Complex with the N-terminal region of the Nrf2 transcription factor 7XM4 ; 2.7 ; Crystal structure of Keap1 Kelch domain (residues 322-609) in complex with 6e 7XM3 ; 2.8 ; Crystal structure of Keap1 Kelch domain (residues 322-609) in complex with 6k 7XM2 ; 2.3 ; Crystal structure of Keap1 Kelch domain (residues 322-609) in complex with NXPZ-2 3VNH ; 2.1 ; Crystal Structure of Keap1 Soaked with Synthetic Small Molecular 7XOT ; 2.7 ; Crystal structure of Keap1_6k 5YQ4 ; 1.58 ; Crystal structure of kelch domain of KLHL20 6N3H ; 2.6 ; Crystal structure of Kelch domain of the human NS1 binding protein 8FMC ; 2.36 ; Crystal Structure of Kemp Eliminase 1A53-core in unbound state 8FOQ ; 1.6 ; Crystal Structure of Kemp Eliminase 1A53-core with bound transition state analogue 3NYD ; 1.23 ; Crystal Structure of Kemp Eliminase HG-2 Complexed with Transition State Analog 5-Nitro Benzotriazole 8USK ; 1.6 ; Crystal Structure of Kemp Eliminase HG185 in unbound state, 280 K 8USL ; 1.55 ; Crystal Structure of Kemp Eliminase HG185 with bound transition state analogue, 280 K 8USI ; 1.9 ; Crystal Structure of Kemp Eliminase HG198 in unbound state, 280 K 8USJ ; 1.6 ; Crystal Structure of Kemp Eliminase HG198 with bound transition state analogue, 280 K 7K4P ; 1.08 ; Crystal structure of Kemp Eliminase HG3 7K4Q ; 1.28 ; Crystal structure of Kemp Eliminase HG3 in complex with the transition state analog 6-nitrobenzotriazole 5RG4 ; 1.99 ; Crystal Structure of Kemp Eliminase HG3 in unbound state, 277K 7K4R ; 1.57 ; Crystal structure of Kemp Eliminase HG3 K50Q 7K4U ; 1.3 ; Crystal structure of Kemp Eliminase HG3 K50Q in complex with the transition state analog 6-nitrobenzotriazole 5RGA ; 1.86 ; Crystal Structure of Kemp Eliminase HG3 with bound transition state analogue, 277K 8FME ; 1.44 ; Crystal Structure of Kemp Eliminase HG3-shell in unbound state 8FOS ; 1.56 ; Crystal Structure of Kemp Eliminase HG3-shell with bound transition state analogue 5RG7 ; 1.47 ; Crystal Structure of Kemp Eliminase HG3.14 in unbound state, 277K 5RGD ; 1.6 ; Crystal Structure of Kemp Eliminase HG3.14 with bound transition state analogue, 277K 7K4T ; 0.999 ; Crystal structure of Kemp Eliminase HG3.17 7K4V ; 1.3 ; Crystal structure of Kemp Eliminase HG3.17 7K4Y ; 1.8 ; Crystal structure of Kemp Eliminase HG3.17 at 343 K 4BS0 ; 1.09 ; Crystal Structure of Kemp Eliminase HG3.17 E47N,N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 7K4Z ; 1.08 ; Crystal structure of Kemp Eliminase HG3.17 in complex with the transition state analog 6-nitrobenzotriazole 7K4W ; 1.9 ; Crystal structure of Kemp Eliminase HG3.17 in the inactive state 5RG8 ; 1.73 ; Crystal Structure of Kemp Eliminase HG3.17 in unbound state, 277K 5RGE ; 1.77 ; Crystal Structure of Kemp Eliminase HG3.17 with bound transition state analog, 277K 5RG5 ; 1.62 ; Crystal Structure of Kemp Eliminase HG3.3b in unbound state, 277K 5RGB ; 1.42 ; Crystal Structure of Kemp Eliminase HG3.3b with bound transition state analogue, 277K 7K4S ; 2.0 ; Crystal structure of Kemp Eliminase HG3.7 7K4X ; 1.6 ; Crystal structure of Kemp Eliminase HG3.7 in complex with the transition state analog 6-nitrobenzotriazole 5RG6 ; 1.35 ; Crystal Structure of Kemp Eliminase HG3.7 in unbound state, 277K 5RGC ; 1.39 ; Crystal Structure of Kemp Eliminase HG3.7 with bound transition state analogue, 277K 5RG9 ; 1.47 ; Crystal Structure of Kemp Eliminase HG4 in unbound state, 277K 5RGF ; 1.46 ; Crystal Structure of Kemp Eliminase HG4 with bound transition state analogue, 277K 8USG ; 1.37 ; Crystal Structure of Kemp Eliminase HG630 in unbound state, 280 K 8USH ; 1.32 ; Crystal Structure of Kemp Eliminase HG630 with bound transition state analogue, 280 K 8USE ; 1.55 ; Crystal Structure of Kemp Eliminase HG649 in unbound state, 280 K 8USF ; 1.45 ; Crystal Structure of Kemp Eliminase HG649 with bound transition state analogue, 280 K 8FMD ; 2.2 ; Crystal Structure of Kemp Eliminase KE70-core in unbound state 8FOR ; 2.2 ; Crystal Structure of Kemp Eliminase KE70-core with bound transition state analogue 3NYZ ; 1.514 ; Crystal Structure of Kemp Elimination Catalyst 1A53-2 3NZ1 ; 1.56 ; Crystal Structure of Kemp Elimination Catalyst 1A53-2 Complexed with Transition State Analog 5-Nitro Benzotriazole 4RMB ; 1.7 ; Crystal structure of keratin 4 binding domain of surface adhesin Srr-1 of S.agalactiae 7LTB ; 0.95 ; Crystal Structure of Keratinicyclin B 7LKC ; 0.95 ; Crystal Structure of Keratinimicin A 5HWJ ; 1.648 ; Crystal structure of keto-deoxy-D-galactarate dehydratase 4UR8 ; 2.097 ; Crystal structure of keto-deoxy-D-galactarate dehydratase complexed with 2-oxoadipic acid 5HWM ; 2.097 ; Crystal structure of keto-deoxy-D-galactarate dehydratase complexed with 2-oxoadipic acid 4UR7 ; 1.499 ; Crystal structure of keto-deoxy-D-galactarate dehydratase complexed with pyruvate 5HWN ; 1.499 ; Crystal structure of keto-deoxy-D-galactarate dehydratase complexed with pyruvate 4XIY ; 2.5 ; Crystal structure of ketol-acid reductoisomerase from Azotobacter 6JX2 ; 2.6 ; Crystal structure of Ketol-acid reductoisomerase from Corynebacterium glutamicum 1M3U ; 1.8 ; Crystal Structure of Ketopantoate Hydroxymethyltransferase complexed the Product Ketopantoate 5ZIK ; 2.45 ; Crystal structure of Ketopantoate reductase from Pseudomonas aeruginosa 5ZIX ; 2.57 ; Crystal structure of Ketopantoate reductase from Pseudomonas aeruginosa bound to NADP+ 6K1R ; 2.55 ; Crystal structure of Ketopantoate reductase from Pseudomonas aeruginosa in complex with NAD+ and ketopantoate 5HWS ; 2.3 ; Crystal structure of ketopantoate reductase from Thermococcus kodakarensis complexed with NADP+ 1YJQ ; 2.09 ; Crystal structure of ketopantoate reductase in complex with NADP+ 5B6K ; 1.701 ; Crystal structure of Ketoreductase 1 from Candida glabrata 4RF4 ; 2.201 ; Crystal structure of ketoreductase from Lactobacillus kefir 4RF5 ; 1.596 ; Crystal structure of ketoreductase from Lactobacillus kefir, E145S mutant 4RF3 ; 1.694 ; Crystal Structure of ketoreductase from Lactobacillus kefir, mutant A94F 1OH0 ; 1.1 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE COMPLEXED WITH EQUILENIN 5G2G ; 1.599 ; Crystal structure of ketosteroid isomerase containing M116K mutation in the equilenin-bound form 5AI1 ; 2.103 ; Crystal structure of ketosteroid isomerase containing Y32F, D40N, Y57F and Y119F mutations in the equilenin-bound form 4L7K ; 2.1 ; Crystal Structure of Ketosteroid Isomerase D38E from Pseudomonas Testosteroni (tKSI) 3MKI ; 2.0 ; Crystal Structure of Ketosteroid Isomerase D38ED99N from Pseudomonas Testosteroni (tKSI) 3NM2 ; 1.887 ; Crystal Structure of Ketosteroid Isomerase D38EP39GV40GS42G from Pseudomonas Testosteroni (tKSI) 5UGI ; 1.8 ; Crystal Structure of Ketosteroid Isomerase D38GF54A mutant from Pseudomonas Testosteroni (tKSI) bound to Equilenin 5DRE ; 2.151 ; Crystal Structure of Ketosteroid Isomerase D38GP39GD99N mutant from Pseudomonas Testosteroni (tKSI) 3MYT ; 1.961 ; Crystal structure of Ketosteroid Isomerase D38HD99N from Pseudomonas testosteroni (tKSI) 6P44 ; 1.251 ; Crystal Structure of Ketosteroid Isomerase D38N mutant from Mycobacterium hassiacum (mhKSI) bound to 3,4-dinitrophenol 3NUV ; 1.76 ; Crystal structure of ketosteroid isomerase D38ND99N from Pseudomonas testosteroni (tKSI) with 4-Androstene-3,17-dione Bound 3NBR ; 1.73 ; Crystal Structure of Ketosteroid Isomerase D38NP39GD99N from Pseudomonas Testosteroni (tKSI) with 4-Androstene-3,17-dione Bound 2INX ; 1.5 ; Crystal Structure of Ketosteroid Isomerase D40N from Pseudomonas putida (pKSI) with bound 2,6-difluorophenol 3VGN ; 1.3 ; Crystal Structure of Ketosteroid Isomerase D40N from Pseudomonas putida (pKSI) with bound 3-fluoro-4-nitrophenol 2PZV ; 1.25 ; Crystal Structure of Ketosteroid Isomerase D40N from Pseudomonas Putida (pksi) with bound Phenol 6C17 ; 1.1 ; Crystal Structure of Ketosteroid Isomerase D40N mutant from Pseudomonas Putida (pKSI) bound to 3,4-dinitrophenol 3CPO ; 1.24 ; Crystal structure of ketosteroid isomerase D40N with bound 2-fluorophenol 3FZW ; 1.32 ; Crystal Structure of Ketosteroid Isomerase D40N-D103N from Pseudomonas putida (pKSI) with bound equilenin 3OX9 ; 2.0 ; Crystal Structure of Ketosteroid Isomerase D40N/C69S/C81S/C97S/F86C-CN from P. putida 3OWU ; 1.7 ; Crystal Structure of Ketosteroid Isomerase D40N/C69S/C81S/C97S/F86C-CN from P. putida with Bound Equilenin 3OWY ; 2.3 ; Crystal Structure of Ketosteroid Isomerase D40N/C69S/C81S/C97S/M105C-CN from P. putida with Bound Equilenin 3OXA ; 1.89 ; Crystal Structure of Ketosteroid Isomerase D40N/C69S/C81S/C97S/M116C-CN from P. putida 3OWS ; 1.71 ; Crystal Structure of Ketosteroid Isomerase D40N/C69S/C81S/C97S/M116C-CN from P. putida with Bound Equilenin 6C1X ; 1.05 ; Crystal Structure of Ketosteroid Isomerase D40N/D103N mutant from Pseudomonas Putida (pKSI) bound to 3,4-dinitrophenol 3NXJ ; 1.966 ; Crystal Structure of Ketosteroid Isomerase D99N from Pseudomonas Testosteroni (tKSI) 3NHX ; 1.59 ; Crystal Structure of Ketosteroid Isomerase D99N from Pseudomonas Testosteroni (tKSI) with 4-Androstene-3,17-dione Bound 3M8C ; 2.1 ; Crystal Structure of Ketosteroid Isomerase D99N from Pseudomonas Testosteroni (tKSI) with Equilenin Bound 6F50 ; 2.0 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE DOUBLE VARIANT V88I/L99V 3UNL ; 2.52 ; Crystal structure of ketosteroid isomerase F54G from Pseudomonas testosteroni 4KVH ; 1.61 ; Crystal structure of ketosteroid isomerase fold protein Hmuk_0747 4MJD ; 1.28 ; Crystal structure of ketosteroid isomerase fold protein Hmuk_0747 6P3L ; 1.571 ; Crystal Structure of Ketosteroid Isomerase from Mycobacterium hassiacum (mhKSI) 1E3V ; 2.0 ; Crystal structure of ketosteroid isomerase from Psedomonas putida complexed with deoxycholate 6U1Z ; 1.5005 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) at 280 K 5KP4 ; 1.706 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI) bound to 19-nortestosterone 6UBQ ; 1.2991 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) bound to 4-Androstenedione at 100 K 6TZD ; 1.4507 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) bound to 4-Androstenedione at 280 K 6UFS ; 1.47 ; Crystal structure of ketosteroid isomerase from Pseudomonas putida (pKSI) bound to 5 alpha-dihydronandrolone 6U4I ; 1.55 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) bound to Equilenin at 280 K 5KP1 ; 1.218 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI) bound to Equilenin; D40N, Y16(Cl-Y) 5KP3 ; 1.7 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI) bound to Equilenin; D40N, Y57(Cl-Y) 5D82 ; 1.37 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI); D40N, Y16(Cl-Y) 5D83 ; 1.7 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI); D40N, Y32(Cl-Y) 5D81 ; 1.39 ; Crystal Structure of Ketosteroid Isomerase from Pseudomonas putida (pKSI); D40N, Y57(Cl-Y) 1E97 ; 2.0 ; Crystal structure of ketosteroid isomerase from Pseudomonas putida ; triple mutant y16f/y32f/y57f 3RGR ; 1.594 ; Crystal structure of ketosteroid isomerase M116A from Pseudomonas putida 1E3R ; 2.5 ; Crystal structure of ketosteroid isomerase mutant D40N (D38N TI numbering) from Pseudomonas putida complexed with androsten-3beta-ol-17-one 3MHE ; 1.722 ; Crystal Structure of Ketosteroid Isomerase P39A from Pseudomonas Testosteroni (tKSI) 3OV4 ; 1.83 ; Crystal Structure of Ketosteroid Isomerase P39GV40GS42G from Pseudomonas Testosteroni (tKSI) bound to Equilenin 6F53 ; 1.49 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE QUADRUPLE VARIANT V88I/L99V/D103S/V101A 6F54 ; 1.08 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE TRIPLE VARIANT V88I/L99VD103S 6F4Y ; 1.92 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE VARIANT D103S 3SED ; 1.302 ; Crystal Structure of Ketosteroid Isomerase Variant M105A from Pseudomonos putida 3T8U ; 2.5 ; Crystal structure of ketosteroid isomerase Y14AY55FD99A from Pseudomonas testosteroni 3T8N ; 1.47 ; Crystal structure of ketosteroid isomerase Y16AD103A from Pseudomonas putida 1OHO ; 1.9 ; CRYSTAL STRUCTURE OF KETOSTEROID ISOMERASE Y16F/D40N mutant COMPLEXED WITH EQUILENIN 3IPT ; 1.632 ; Crystal Structure of Ketosteroid Isomerase Y16S/D40N from Pseudomonas putida with Bound Equilenin 6C1J ; 1.063 ; Crystal Structure of Ketosteroid Isomerase Y32F/Y57F/D40N mutant from Pseudomonas Putida (pKSI) bound to 3,4-dinitrophenol 3D9R ; 2.4 ; Crystal structure of ketosteroid isomerase-like protein (YP_049581.1) from ERWINIA CAROTOVORA ATROSEPTICA SCRI1043 at 2.40 A resolution 6MHK ; 1.93 ; Crystal structure of ketosynthase nine from bacillaene polyketide synthase in Bacillus amyloliquefaciens 6MHL ; 1.82 ; Crystal structure of ketosynthase twelve from bacillaene polyketide synthase in Bacillus amyloliquefaciens 1AC5 ; 2.4 ; CRYSTAL STRUCTURE OF KEX1(DELTA)P, A PROHORMONE-PROCESSING CARBOXYPEPTIDASE FROM SACCHAROMYCES CEREVISIAE 4GB5 ; 1.55 ; Crystal structure of Kfla4162 protein from Kribbella flavida 3EXR ; 1.7 ; Crystal structure of KGPDC from Streptococcus mutans 3EXT ; 2.0 ; Crystal structure of KGPDC from Streptococcus mutans 3EXS ; 2.5 ; Crystal structure of KGPDC from Streptococcus mutans in complex with D-R5P 2PQU ; 2.12 ; Crystal structure of KH1 domain of human PCBP2 complexed to single-stranded 12-mer telomeric dna 2AXY ; 1.7 ; Crystal Structure of KH1 domain of human Poly(C)-binding protein-2 with C-rich strand of human telomeric DNA 7BJS ; 2.28 ; Crystal structure of Khc/atypical Tm1 complex 8UG1 ; 1.99 ; Crystal structure of KHK-C and compound 13 8UG3 ; 2.02 ; Crystal structure of KHK-C and compound 23 6JJX ; 2.0 ; Crystal Structure of KIBRA and Angiomotin complex 6JJY ; 2.298 ; Crystal Structure of KIBRA and beta-Dystroglycan 6JJW ; 2.4 ; Crystal Structure of KIBRA and PTPN14 complex 7A0Q ; 1.5 ; Crystal structure of kievitone hydratase from Nectria haematococca (C2 SG) 7A0T ; 2.0 ; Crystal structure of kievitone hydratase from Nectria haematococca (P21 SG) 4EJQ ; 1.893 ; Crystal structure of KIF1A C-CC1-FHA 4EGX ; 2.51 ; Crystal structure of KIF1A CC1-FHA tandem 7EOB ; 1.76 ; Crystal structure of KIF1A Motor-Neck domain E239K mutant with ADP-Mg-AlFx 7EO9 ; 2.57 ; Crystal structure of KIF1A Motor-Neck domain with ADP-Mg-AlFx 3RC2 ; 1.8 ; Crystal Structure of KijD10, a 3-ketoreductase from Actinomadura kijaniata in complex with TDP-benzene and NADP; open conformation 3RBV ; 1.9 ; Crystal Structure of KijD10, a 3-ketoreductase from Actinomadura kijaniata incomplex with NADP 3RC1 ; 1.71 ; Crystal Structure of KijD10, a 3-ketoreductase from Actinomadura kijaniata incomplex with NADP and TDP-benzene 3WYR ; 2.8 ; Crystal structure of Killer cell immunoglobulin-like receptor 2DL4 4N8V ; 2.5 ; Crystal structure of killer cell immunoglobulin-like receptor KIR2DS2 in complex with HLA-A 7YTB ; 3.0 ; Crystal structure of Kin4B8 5C01 ; 2.15 ; Crystal Structure of kinase 5C03 ; 1.9 ; Crystal Structure of kinase 5Y86 ; 1.9 ; Crystal structure of kinase 1FQ1 ; 3.0 ; CRYSTAL STRUCTURE OF KINASE ASSOCIATED PHOSPHATASE (KAP) IN COMPLEX WITH PHOSPHO-CDK2 3DFA ; 2.45 ; Crystal structure of kinase domain of calcium-dependent protein kinase cgd3_920 from Cryptosporidium parvum 2YZA ; 3.02 ; Crystal structure of kinase domain of Human 5'-AMP-activated protein kinase alpha-2 subunit mutant (T172D) 4OW8 ; 2.03 ; Crystal structure of kinase domain of PknA from Mtb 3CC6 ; 1.6 ; Crystal structure of kinase domain of protein tyrosine kinase 2 beta (PTK2B) 3MA6 ; 2.5 ; Crystal structure of kinase domain of TgCDPK1 in presence of 3BrB-PP1 4IZO ; 1.85 ; Crystal structure of kinase Phosphoribosylaminoimidazole carboxylase, ATPase subunit from Burkholderia thailandensis 1YXX ; 2.0 ; Crystal Structure of Kinase Pim1 in complex with (3E)-3-[(4-HYDROXYPHENYL)IMINO]-1H-INDOL-2(3H)-ONE 1YXV ; 2.0 ; Crystal Structure of Kinase Pim1 in complex with 3,4-Dihydroxy-1-methylquinolin-2(1H)-one 1YXU ; 2.24 ; Crystal Structure of Kinase Pim1 in Complex with AMP 1YXT ; 2.0 ; Crystal Structure of Kinase Pim1 in complex with AMPPNP 1YXS ; 2.2 ; Crystal Structure of Kinase Pim1 with P123M mutation 5ZBR ; 2.0 ; Crystal Structure of Kinesin-3 KIF13B motor domain in AMPPNP form 5ZBS ; 2.203 ; Crystal Structure of Kinesin-3 KIF13B motor Y73C mutant 1SDM ; 2.3 ; Crystal structure of kinesin-like calmodulin binding protein 4IGV ; 1.5 ; Crystal structure of kirola (Act d 11) 4IGX ; 2.35 ; Crystal structure of kirola (Act d 11) - triclinic form 4IGY ; 2.92 ; Crystal structure of kirola (Act d 11) - triclinic form 4IH2 ; 2.0 ; Crystal structure of kirola (Act d 11) from crystal soaked with 2-aminopurine 4IH0 ; 1.75 ; Crystal structure of kirola (Act d 11) from crystal soaked with serotonin 4IGW ; 2.55 ; Crystal structure of kirola (Act d 11) in P6122 space group 4K9E ; 2.7 ; Crystal structure of KIT D4D5 fragment in complex with anti-Kit antibodies Fab79D 4K94 ; 2.4 ; Crystal structure of KIT D4D5 fragment in complex with anti-Kit antibody Fab19 4U0I ; 2.0 ; Crystal structure of KIT in complex with ponatinib 7KHG ; 2.15 ; Crystal structure of KIT kinase domain with a small molecule inhibitor, PLX3397 4HVS ; 1.9 ; Crystal structure of KIT kinase domain with a small molecule inhibitor, PLX647 7KHJ ; 2.8 ; Crystal structure of KIT kinase domain with a small molecule inhibitor, PLX8512 in the DFG-in state 7KHK ; 2.34 ; Crystal structure of KIT kinase domain with a small molecule inhibitor, PLX9486 (bezuclastinib) in the DFG-in state 6MOB ; 1.8 ; Crystal structure of KIT1 in complex with DP2976 via co-crystallization 4PMK ; 2.05 ; Crystal structure of kiwellin 4BCT ; 0.98 ; Crystal structure of kiwi-fruit allergen Act d 2 2Q55 ; 1.9 ; Crystal structure of KK44 bound to HIV-1 protease 4RLD ; 2.9 ; Crystal structure of kkf mutant of bla G 2 protein 4R9Y ; 4.11 ; Crystal structure of KKOFab in complex with platelet factor 4 5WI9 ; 2.7 ; Crystal structure of KL with an agonist Fab 6F9I ; 3.993 ; Crystal structure of KLC2 bound to the second tryptophan-acidic motif peptide from calsyntenin-1 5OJF ; 3.4 ; Crystal Structure of KLC2-TPR domain (fragment [A1-B6] 1KRA ; 2.3 ; CRYSTAL STRUCTURE OF KLEBSIELLA AEROGENES UREASE, ITS APOENZYME AND TWO ACTIVE SITE MUTANTS 1KRB ; 2.5 ; CRYSTAL STRUCTURE OF KLEBSIELLA AEROGENES UREASE, ITS APOENZYME AND TWO ACTIVE SITE MUTANTS 1KRC ; 2.5 ; CRYSTAL STRUCTURE OF KLEBSIELLA AEROGENES UREASE, ITS APOENZYME AND TWO ACTIVE SITE MUTANTS 7SS7 ; 1.73 ; Crystal structure of Klebsiella LpxH in complex with JH-LPH-50 6JVU ; 2.8 ; Crystal structure of Klebsiella pneumoniae CysE in complex with L-cysteine 6T77 ; 1.75 ; Crystal structure of Klebsiella pneumoniae FabG(NADPH-dependent) NADP-complex at 1.75 A resolution 6T6P ; 1.57 ; Crystal structure of Klebsiella pneumoniae FabG2(NADH-dependent) at 1.57 A resolution 6T6N ; 2.5 ; Crystal structure of Klebsiella pneumoniae FabG2(NADH-dependent) in complex with NADH at 2.5 A resolution 5WEW ; 3.178 ; Crystal structure of Klebsiella pneumoniae fosfomycin resistance protein (FosAKP) with inhibitor (ANY1) bound 6C3U ; 1.85 ; Crystal structure of Klebsiella pneumoniae fosfomycin resistance protein (FosAKP) with inhibitor (ANY2) bound 3RP6 ; 2.2 ; Crystal Structure of Klebsiella pneumoniae HpxO complexed with FAD 3RP7 ; 2.042 ; Crystal Structure of Klebsiella pneumoniae HpxO complexed with FAD and uric acid 7W1D ; 2.78 ; Crystal structure of Klebsiella pneumoniae K1 capsule-specific polysaccharide lyase in a C2 crystal form 7W1C ; 1.48 ; Crystal structure of Klebsiella pneumoniae K1 capsule-specific polysaccharide lyase in a P1 crystal form 7W1E ; 1.46 ; Crystal structure of Klebsiella pneumoniae K1 capsule-specific polysaccharide lyase in complex with products 4GI7 ; 1.95 ; Crystal structure of Klebsiella pneumoniae pantothenate kinase in complex with a pantothenate analogue 4F7W ; 2.1 ; Crystal structure of Klebsiella pneumoniae pantothenate kinase in complex with N-pentylpantothenamide 4S04 ; 3.2 ; Crystal structure of Klebsiella pneumoniae PmrA in complex with PmrA box DNA 4S05 ; 3.8 ; Crystal structure of Klebsiella pneumoniae PmrA in complex with PmrA box DNA 2A2L ; 2.2 ; Crystal structure of Klebsiella pneumoniae protein ORFY, Pfam DUF336 3RP8 ; 1.968 ; Crystal Structure of Klebsiella pneumoniae R204Q HpxO complexed with FAD 4NIC ; 3.18 ; Crystal structure of Klebsiella pneumoniae RstA BeF3-activated N-terminal receiver domain 4NHJ ; 2.701 ; Crystal structure of Klebsiella pneumoniae RstA DNA-binding domain in complex with RstA box 6IDO ; 3.748 ; Crystal structure of Klebsiella pneumoniae sigma4 of sigmaS fusing with the RNA polymerase beta-flap-tip-helix in complex with -35 element DNA 3PLR ; 1.7 ; Crystal structure of Klebsiella pneumoniae UDP-glucose 6-dehydrogenase complexed with NADH and UDP-glucose 3PLN ; 1.5 ; Crystal structure of Klebsiella pneumoniae UDP-glucose 6-dehydrogenase complexed with UDP-glucose 5O7T ; 1.8 ; Crystal structure of KlenTaq mutant M747K in a closed ternary complex with a dG:dCTP base pair 5OXJ ; 2.0 ; Crystal structure of KlenTaq mutant M747K in a closed ternary complex with a O6-MeG:BenziTP base pair 6R2N ; 2.596 ; Crystal structure of KlGlk1 glucokinase from Kluyveromyces lactis 4HXI ; 3.513 ; Crystal structure of KLHL3/Cul3 complex 7QFT ; 1.47 ; Crystal structure of KLK6 in complex with compound 16a 7QFV ; 1.56 ; Crystal structure of KLK6 in complex with compound 17a 7QHZ ; 1.5 ; Crystal structure of KLK6 in complex with compound DKFZ917 7QI0 ; 1.88 ; Crystal structure of KLK6 in complex with compound DKFZ918 3VU4 ; 2.6 ; Crystal structure of Kluyvelomyces marxianus Hsv2 3E1K ; 3.0 ; Crystal structure of Kluyveromyces lactis Gal80p in complex with the acidic activation domain of Gal4p 3VQI ; 2.5 ; Crystal structure of Kluyveromyces marxianus Atg5 3VX6 ; 2.6 ; Crystal structure of Kluyveromyces marxianus Atg7NTD 3VX7 ; 3.2 ; Crystal structure of Kluyveromyces marxianus Atg7NTD-Atg10 complex 5ZED ; 2.199 ; Crystal structure of Kluyveromyces polyspora ADH (KpADH) mutant (E214V/T215S) 5ZEC ; 1.779 ; Crystal structure of Kluyveromyces polyspora ADH (KpADH) mutant (Q136N/F161V/S196G/E214G/S237C) 7C1E ; 1.75 ; Crystal structure of Kluyveromyces polyspora ADH (KpADH) mutant (Y127W) 4F1N ; 3.187 ; Crystal structure of Kluyveromyces polysporus Argonaute with a guide RNA 3BHB ; 2.2 ; Crystal Structure of KMD Phosphopeptide Bound to Human Class I MHC HLA-A2 7F0K ; 3.5 ; Crystal structure of Kmp11 3FNU ; 3.0 ; Crystal structure of KNI-10006 bound histo-aspartic protease (HAP) from Plasmodium falciparum 3QS1 ; 3.1 ; Crystal structure of KNI-10006 complex of Plasmepsin I (PMI) from Plasmodium falciparum 5YIC ; 1.9 ; Crystal Structure of KNI-10333 bound Plasmepsin II (PMII) from Plasmodium falciparum 5YIA ; 2.0 ; Crystal Structure of KNI-10343 bound Plasmepsin II (PMII) from Plasmodium falciparum 3QVI ; 2.5 ; Crystal structure of KNI-10395 bound histo-aspartic protease (HAP) from Plasmodium falciparum 5YID ; 2.1 ; Crystal Structure of KNI-10395 bound Plasmepsin II (PMII) from Plasmodium falciparum 5YIE ; 2.1 ; Crystal Structure of KNI-10742 bound Plasmepsin II (PMII) from Plasmodium falciparum 5YIB ; 2.15 ; Crystal Structure of KNI-10743 bound Plasmepsin II (PMII) from Plasmodium falciparum 5EVH ; 1.852 ; Crystal structure of known function protein from Kribbella flavida DSM 17836 7OM3 ; 1.92 ; Crystal structure of KOD DNA Polymerase in a binary complex with Hypoxanthine containing template 7OMB ; 2.01 ; Crystal structure of KOD DNA Polymerase in a ternary complex with a p/t duplex containing an extended 5' single stranded template overhang 7OMG ; 2.1 ; Crystal structure of KOD DNA Polymerase in a ternary complex with an Uracil containing template 3WIR ; 2.05 ; Crystal structure of kojibiose phosphorylase complexed with glucose 3WIQ ; 2.8 ; Crystal structure of kojibiose phosphorylase complexed with kojibiose 2W7N ; 1.85 ; Crystal Structure of KorA Bound to Operator DNA: Insight into Repressor Cooperation in RP4 Gene Regulation 5CKT ; 2.0 ; Crystal Structure of KorA, a plasmid-encoded, global transcription regulator 5CM3 ; 2.302 ; Crystal Structure of KorA, a plasmid-encoded, global transcription regulator 5CLV ; 2.5 ; Crystal Structure of KorA-operator DNA complex (KorA-OA) 4ZBE ; 1.8 ; Crystal structure of KPC-2 beta-lactamase complexed with avibactam 7VQN ; 2.34 ; Crystal structure of KPC-2 beta-lactamase complexed with hydrolyzed EXW-1 5EEC ; 1.87 ; Crystal structure of KPC-2 beta-lactamase in complex with the S02030 boronic acid inhibitor 5LL7 ; 1.4 ; Crystal structure of KPC-2 carbapenemase in complex with a phenyl boronic inhibitor. 5MGI ; 1.5 ; Crystal structure of KPC-2 carbapenemase in complex with a phenyl boronic inhibitor. 6D15 ; 1.3 ; Crystal structure of KPC-2 complexed with compound 1 6D16 ; 1.4 ; Crystal structure of KPC-2 complexed with compound 2 6D17 ; 1.45 ; Crystal structure of KPC-2 complexed with compound 3 6D18 ; 1.35 ; Crystal structure of KPC-2 complexed with compound 6 6D19 ; 1.45 ; Crystal structure of KPC-2 complexed with compound 9 6QW9 ; 1.04 ; Crystal structure of KPC-2 complexed with relebactam (16 hour soak) 7E9A ; 2.25 ; Crystal structure of KPC-2 in complex with (S)-2-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-3-yl)acrylic acid (4a-(S)) 7LNL ; 1.82 ; Crystal structure of KPC-2 S70G/T215P mutant with hydrolyzed imipenem 7LR9 ; 1.47 ; Crystal structure of KPC-2 S70G/T215P mutant with hydrolyzed imipenem 7LLB ; 1.67 ; Crystal structure of KPC-2 S70G/T215P mutant with hydrolyzed meropenem 7LK8 ; 1.43 ; Crystal structure of KPC-2 T215P mutant 7U8S ; 1.6 ; Crystal Structure of KPC-2 with compound 2 6M7I ; 1.701 ; Crystal structure of KPC-2 with compound 3 6MNP ; 2.202 ; Crystal structure of KPC-2 with compound 6 6MLL ; 1.86 ; Crystal structure of KPC-2 with compound 7 6MEY ; 1.42 ; Crystal structure of KPC-2 with compound 9 7A61 ; 1.25 ; Crystal structure of KPC-2 with hydrolyzed faropenem (ring-open form) 6QWD ; 1.2 ; Crystal structure of KPC-3 6QWA ; 1.06 ; Crystal structure of KPC-3 complexed with relebactam (16 hour soak) 6QWE ; 1.4 ; Crystal structure of KPC-4 6QWC ; 1.3 ; Crystal structure of KPC-4 complexed with relebactam (1 hour soak) 6QWB ; 1.04 ; Crystal structure of KPC-4 complexed with relebactam (16 hour soak) 8TJM ; 1.28 ; Crystal structure of KPC-44 carbapenemase 8TMR ; 1.37 ; Crystal structure of KPC-44 carbapenemase complexed with avibactam 8TMT ; 1.7 ; Crystal structure of KPC-44 carbapenemase in complex with vaborbactam 8TN0 ; 1.31 ; Crystal structure of KPC-44 carbapenemase w/o cryoprotectant 6LL5 ; 1.75 ; Crystal structure of KpFtsZ (residues 11-316) 6XJP ; 2.802 ; Crystal Structure of KPT-185 bound to CRM1 (537-DLTVK-541 to GLCEQ) 6XJR ; 1.941 ; Crystal Structure of KPT-185 bound to CRM1 (E582K, 537-DLTVK-541 to GLCEQ) 7L5E ; 1.944 ; Crystal Structure of KPT-330 bound to CRM1 (537-DLTVK-541 to GLCEQ) 6XJS ; 1.942 ; Crystal Structure of KPT-330 bound to CRM1 (E582K, 537-DLTVK-541 to GLCEQ) 6XJT ; 2.406 ; Crystal Structure of KPT-8602 bound to CRM1 (537-DLTVK-541 to GLCEQ) 6XJU ; 2.193 ; Crystal Structure of KPT-8602 bound to CRM1 (E582K, 537-DLTVK-541 to GLCEQ) 4GMX ; 2.1 ; Crystal structure of KPT185 in complex with CRM1-Ran-RanBP1 4GPT ; 2.22 ; Crystal structure of KPT251 in complex with CRM1-Ran-RanBP1 4WVF ; 1.8 ; Crystal structure of KPT276 in complex with CRM1-Ran-RanBP1 5JLJ ; 2.5 ; Crystal Structure of KPT8602 in complex with CRM1-Ran-RanBP1 7Q36 ; 2.6 ; Crystal structure of KR2 sodium pump rhodopsin pressurized with krypton 8DA1 ; 2.67 ; Crystal structure of Krait alpha-neurotoxin in complex with Centi-3FTX-D09 antibody 1TC8 ; 2.7 ; Crystal structure of Krait-venom phospholipase A2 in a complex with a natural fatty acid tridecanoic acid 6BOF ; 1.401 ; Crystal structure of KRAS A146T-GDP demonstrating open switch 1 conformation 7RP4 ; 2.15 ; Crystal structure of KRAS G12C in complex with GNE-1952 6GJ5 ; 1.499 ; CRYSTAL STRUCTURE OF KRAS G12D (GPPCP) IN COMPLEX WITH 15 6GJ6 ; 1.761 ; CRYSTAL STRUCTURE OF KRAS G12D (GPPCP) IN COMPLEX WITH 18 6GJ7 ; 1.67 ; CRYSTAL STRUCTURE OF KRAS G12D (GPPCP) IN COMPLEX WITH 22 6GJ8 ; 1.65 ; CRYSTAL STRUCTURE OF KRAS G12D (GPPCP) IN COMPLEX WITH BI 2852 8TXH ; 1.2 ; Crystal structure of KRAS G12D in complex with GDP and compound 14 8TXE ; 1.35 ; Crystal structure of KRAS G12D in complex with GDP and compound 5 8TXG ; 1.5 ; Crystal structure of KRAS G12D in complex with GDP and compound 8 7RT1 ; 1.27 ; Crystal Structure of KRAS G12D with compound 15 (4-(4-[(1R,5S)-3,8-diazabicyclo[3.2.1]octan-3-yl]-8-fluoro-2-{[(2S)-1-methylpyrrolidin-2-yl]methoxy}pyrido[4,3-d]pyrimidin-7-yl)naphthalen-2-ol) bound 7RT3 ; 1.56 ; Crystal Structure of KRAS G12D with compound 24 (4-(4-[(1R,5S)-3,8-diazabicyclo[3.2.1]octan-3-yl]-8-fluoro-2-{[(2S,4S,7aR)-2-fluorotetrahydro-1H-pyrrolizin-7a(5H)-yl]methoxy}pyrido[4,3-d]pyrimidin-7-yl)naphthalen-2-ol) bound 7RT2 ; 1.59 ; Crystal Structure of KRAS G12D with compound 25 (4-(4-[(1R,5S)-3,8-diazabicyclo[3.2.1]octan-3-yl]-8-fluoro-2-{[(2R,4R,7aS)-2-fluorotetrahydro-1H-pyrrolizin-7a(5H)-yl]methoxy}pyrido[4,3-d]pyrimidin-7-yl)naphthalen-2-ol) bound 7RT5 ; 1.29 ; Crystal structure of KRAS G12D with compound 36 (4-[(1R,5S)-3,8-diazabicyclo[3.2.1]octan-3-yl]-7-(8-ethynyl-7-fluoronaphthalen-1-yl)-8-fluoro-2-{[(4s,7as)-tetrahydro-1H-pyrrolizin-7a(5H)-yl]methoxy}pyrido[4,3-d]pyrimidine) bound 5WHD ; 1.641 ; Crystal structure of KRas G12V/D38P, bound to GDP 6MQN ; 1.6 ; Crystal structure of KRAS V14I-GDP demonstrating disorder switch 1 conformation - Form 2 6MQG ; 1.5 ; Crystal structure of KRAS V14I-GDP demonstrating open switch 1 conformation - Form 1 6V65 ; 2.763 ; Crystal structure of KRAS(GMPPNP)-NF1(GRD)-SPRED1 complex 8AFC ; 2.41 ; CRYSTAL STRUCTURE OF KRAS-G12C IN COMPLEX WITH COMPOUND 12 8AFB ; 1.12 ; CRYSTAL STRUCTURE OF KRAS-G12C IN COMPLEX WITH COMPOUND 23 (BI-0474) 7F0W ; 1.39 ; Crystal structure of KRAS-G12D bound to GDP with switch 1 open conformation 6ZLI ; 1.73 ; CRYSTAL STRUCTURE OF KRAS-G12D IN COMPLEX WITH COMPOUND 13 AND GCP 6QUU ; 1.477 ; Crystal Structure of KRAS-G12D in complex with GMP-PCP 6QUV ; 1.475 ; Crystal Structure of KRAS-G12D in complex with GMP-PCP and compound 15R 6QUX ; 1.62 ; Crystal Structure of KRAS-G12D in Complex with Natural Product-Like Compound 15 6QUW ; 1.242 ; Crystal Structure of KRAS-G12D in Complex with Natural Product-Like Compound 9b 6ZL5 ; 1.645 ; CRYSTAL STRUCTURE OF KRAS-G12D(C118S) IN COMPLEX WITH BI-2852 AND GDP 8STN ; 2.03 ; Crystal structure of KRAS-G12D/G75A mutant, GDP-bound 6WS4 ; 1.84 ; Crystal structure of KRAS-G12D/K104Q mutant, GDP-bound 6XHA ; 2.87 ; Crystal Structure of KRAS-G12V (GMPPNP-bound) in complex with RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF1/CRAF 6XGV ; 2.11 ; Crystal Structure of KRAS-G13D (GMPPNP-bound) in complex with RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF1/CRAF 8STM ; 2.0 ; Crystal structure of KRAS-G75A mutant, GDP-bound 6WS2 ; 1.59 ; Crystal structure of KRAS-K104Q mutant, GDP-bound 6XGU ; 2.7 ; Crystal Structure of KRAS-Q61R (GMPPNP-bound) in complex with RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF1/CRAF 8T74 ; 1.65 ; Crystal structure of KRAS4a (GMPPNP) in complex with RAF1 (RBD) 8T75 ; 2.65 ; Crystal Structure of KRAS4a (GMPPNP) in complex with RAF1 (RBD-CRD) 7VVB ; 1.7 ; Crystal Structure of KRas4A(GMPPNP-bound) in complex with the Ras-binding domain(RBD) of SIN1 8T73 ; 1.5 ; Crystal structure of KRAS4a-R151G with bound GDP and Mg ion 7LC1 ; 2.35 ; Crystal Structure of KRAS4b (GMPPNP-bound) in complex with the RBD-PH domains of SIN1 8EPW ; 2.0 ; Crystal Structure of KRAS4b-G13D (GMPPNP-bound) in complex with RAS-binding domain (RBD) of RAF1/CRAF 7LC2 ; 2.7 ; Crystal Structure of KRAS4b-Q61R (GMPPNP-bound) in complex with the RAS-binding domain (RBD) of SIN1 8BE3 ; 1.85 ; Crystal structure of KRasG12V-Nanobody84 7OK4 ; 1.7 ; Crystal Structure of KRasG13C in Complex with Nucleotide-based covalent Inhibitor bdaGDP 7OK3 ; 1.6 ; Crystal Structure of KRasG13C in Complex with Nucleotide-based Covalent Inhibitor edaGDP 7VDO ; 1.85572 ; Crystal structure of KRED F147L/L153Q/Y190P variant 7EJJ ; 1.80001 ; Crystal structure of KRED F147L/L153Q/Y190P variant and methyl methacrylate complex 7EJI ; 1.56002 ; Crystal structure of KRED F147L/L153Q/Y190P/L199A/M205F/M206F variant and methyl methacrylate complex 7VE7 ; 1.72001 ; Crystal structure of KRED mutant-F147L/L153Q/Y190P/L199A/M205F/M206F 7EJH ; 1.72884 ; Crystal structure of KRED mutant-F147L/L153Q/Y190P/L199A/M205F/M206F and 2-hydroxyisoindoline-1,3-dione complex 6YC8 ; 1.77 ; Crystal structure of KRED1-Pglu enzyme 5D68 ; 2.908 ; Crystal structure of KRIT1 ARD-FERM 4PG3 ; 2.696 ; Crystal structure of KRS complexed with inhibitor 4QEP ; 3.1 ; crystal structure of KRYPTONITE in complex with mCHG DNA and SAH 4QEN ; 2.002 ; crystal structure of KRYPTONITE in complex with mCHH DNA and SAH 4QEO ; 2.0 ; crystal structure of KRYPTONITE in complex with mCHH DNA, H3(1-15) peptide and SAH 7TDQ ; 2.5 ; Crystal structure of KSHV KicGAS/ORF52 6XF9 ; 2.22 ; Crystal structure of KSHV ORF68 2PBK ; 1.73 ; Crystal structure of KSHV protease in complex with hexapeptide phosphonate inhibitor 1K41 ; 2.2 ; Crystal structure of KSI Y57S mutant 2PG2 ; 1.849 ; Crystal structure of KSP in complex with ADP and thiophene containing inhibitor 15 2UYI ; 2.1 ; Crystal structure of KSP in complex with ADP and thiophene containing inhibitor 33 2UYM ; 2.11 ; Crystal structure of KSP in complex with ADP and thiophene containing inhibitor 37 1YRS ; 2.5 ; Crystal structure of KSP in complex with inhibitor 1 2Q2Y ; 2.5 ; Crystal Structure of KSP in complex with Inhibitor 1 2FKY ; 2.3 ; crystal structure of KSP in complex with inhibitor 13 2FL2 ; 2.5 ; crystal structure of KSP in complex with inhibitor 19 2Q2Z ; 3.0 ; Crystal Structure of KSP in Complex with Inhibitor 22 3CJO ; 2.28 ; Crystal structure of KSP in complex with inhibitor 30 2FL6 ; 2.5 ; crystal structure of KSP in complex with inhibitor 6 2G1Q ; 2.51 ; crystal structure of KSP in complex with inhibitor 9h 7JUW ; 2.88 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP 7JV1 ; 3.62 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor APS-9-95-1 7JUY ; 3.096 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor Cobimetinib 7JV0 ; 3.63 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor PD0325901 7JUZ ; 3.21 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor Selumetinib 7JUX ; 3.34 ; Crystal Structure of KSR1:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor Trametinib 7JUQ ; 3.22 ; Crystal Structure of KSR2:MEK1 in complex with ADP 7JUV ; 3.36 ; Crystal Structure of KSR2:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor APS-9-95-1 7JUS ; 2.99 ; Crystal Structure of KSR2:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor Cobimetinib 7JUU ; 3.19 ; Crystal Structure of KSR2:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor PD0325901 7JUR ; 2.82 ; Crystal Structure of KSR2:MEK1 in complex with AMP-PNP, and allosteric MEK inhibitor Trametinib 7JUT ; 3.09 ; Crystal Structure of KSR2:MEK1 in complex with ANP-PNP, and allosteric MEK inhibitor Selumetinib 4D4Q ; 2.395 ; Crystal Structure of Kti13/AtS1 4RGI ; 1.732 ; Crystal Structure of KTSC Domain Protein YPO2434 from Yersinia pestis 5Y58 ; 2.8 ; Crystal structure of Ku70/80 and TLC1 5Y59 ; 2.402 ; Crystal structure of Ku80 and Sir4 1ZR0 ; 1.802 ; Crystal Structure of Kunitz Domain 1 of Tissue Factor Pathway Inhibitor-2 with Bovine Trypsin 2QEQ ; 3.1 ; Crystal structure of kunjin virus ns3 helicase 2ZO6 ; 1.4 ; Crystal Structure of Kusabira-Cyan (KCY), a Cyan-Emitting GFP-Like Protein 5M6Q ; 1.98 ; Crystal Structure of Kutzneria albida transglutaminase 1S1E ; 2.3 ; Crystal Structure of Kv Channel-interacting protein 1 (KChIP-1) 4JTA ; 2.5 ; Crystal structure of Kv1.2-2.1 paddle chimera channel in complex with Charybdotoxin 4JTC ; 2.56 ; Crystal structure of Kv1.2-2.1 paddle chimera channel in complex with Charybdotoxin in Cs+ 4JTD ; 2.54 ; Crystal structure of Kv1.2-2.1 paddle chimera channel in complex with Lys27Met mutant of Charybdotoxin 1S1G ; 2.6 ; Crystal Structure of Kv4.3 T1 Domain 2A0L ; 3.9 ; Crystal structure of KvAP-33H1 Fv complex 8FAN ; 2.9 ; Crystal structure of Ky15.1 Fab in complex with circumsporozoite protein KQPA peptide 8FA6 ; 2.6 ; Crystal structure of Ky15.10 Fab in complex with circumsporozoite protein DND peptide 8FB6 ; 2.15 ; Crystal structure of Ky15.10 Fab in complex with circumsporozoite protein KQPA peptide 8FB7 ; 1.75 ; Crystal structure of Ky15.10 Fab in complex with circumsporozoite protein NPDP peptide 8FB8 ; 1.69 ; Crystal structure of Ky15.10-Y100EK Fab in complex with circumsporozoite protein KQPA peptide 8FA7 ; 1.8 ; Crystal structure of Ky15.11 Fab in complex with circumsporozoite protein KQPA peptide 8FA8 ; 1.8 ; Crystal structure of Ky15.11 Fab in complex with circumsporozoite protein NDN peptide 8FB5 ; 2.9 ; Crystal structure of Ky15.11-S100IK Fab in complex with circumsporozoite protein KQPA peptide 8F95 ; 2.45 ; Crystal structure of Ky15.2 Fab in complex with circumsporozoite protein DND peptide 8F9E ; 2.95 ; Crystal structure of Ky15.2 Fab in complex with circumsporozoite protein KQPA peptide 8F9F ; 2.2 ; Crystal structure of Ky15.2 Fab in complex with circumsporozoite protein NANP3 peptide 8F9S ; 2.1 ; Crystal structure of Ky15.2 Fab in complex with circumsporozoite protein NDN peptide 8F9T ; 1.85 ; Crystal structure of Ky15.2 Fab in complex with circumsporozoite protein NPDP peptide 8FDD ; 1.54 ; Crystal structure of Ky15.3 Fab in complex with circumsporozoite protein NPDP peptide 8FA9 ; 2.45 ; Crystal structure of Ky15.5 Fab in complex with circumsporozoite protein NPDP peptide 8F9U ; 1.7 ; Crystal structure of Ky15.7 Fab in complex with circumsporozoite protein NPDP peptide 8F9V ; 2.25 ; Crystal structure of Ky15.8 Fab in complex with circumsporozoite protein KQPA peptide 8F9W ; 2.4 ; Crystal structure of Ky15.8 Fab in complex with circumsporozoite protein NPDP peptide 8FAT ; 2.95 ; Crystal structure of Ky224 Fab in complex with circumsporozoite protein NPDP peptide 8FAS ; 1.55 ; Crystal structure of Ky230 Fab in complex with circumsporozoite protein NANP5 peptide 8FDC ; 1.8 ; Crystal structure of Ky311 Fab in complex with circumsporozoite protein KQPA peptide 8FBA ; 1.96 ; Crystal structure of Ky315 Fab in complex with circumsporozoite protein DND peptide 4J33 ; 1.82 ; Crystal Structure of kynurenine 3-monooxygenase (KMO-394) 4J31 ; 2.4 ; Crystal Structure of kynurenine 3-monooxygenase (KMO-396Prot) 4J2W ; 2.6 ; Crystal Structure of kynurenine 3-monooxygenase (KMO-396Prot-Se) 4J34 ; 2.03 ; Crystal Structure of kynurenine 3-monooxygenase - truncated at position 394 plus HIS tag cleaved. 3DC1 ; 2.5 ; Crystal structure of kynurenine aminotransferase II complex with alpha-ketoglutarate 6D0A ; 1.46809 ; Crystal structure of Kynurenine Aminotransferase-II in apo-form, at 1.47 A resolution 4E15 ; 1.5 ; Crystal structure of kynurenine formamidase conjugated with an inhibitor 4E14 ; 1.64 ; Crystal structure of kynurenine formamidase conjugated with phenylmethylsulfonyl fluoride 4CO9 ; 1.95 ; Crystal structure of kynurenine formamidase from Bacillus anthracis 4CZ1 ; 2.24 ; Crystal structure of kynurenine formamidase from Bacillus anthracis complexed with 2-aminoacetophenone. 4COG ; 1.6 ; Crystal structure of kynurenine formamidase from Burkholderia cenocepacia 4E11 ; 2.0 ; Crystal structure of kynurenine formamidase from Drosophila melanogaster 5BMQ ; 2.05 ; Crystal structure of L,D-transpeptidase (Yku) from Stackebrandtia nassauensis 6D4K ; 1.32 ; Crystal structure of L,D-transpeptidase 3 from Mycobacterium tuberculosis at 1.32 A resolution 6D51 ; 1.83 ; Crystal structure of L,D-transpeptidase 3 from Mycobacterium tuberculosis in complex with a faropenem-derived adduct 6D5A ; 2.622 ; Crystal structure of L,D-transpeptidase 5 from Mycobacterium tuberculosis in apo form 6OXM ; 2.25 ; Crystal structure of L,L-diaminopimelate aminotransferase (DapL) from Verrucomicrobium spinosum 3A28 ; 2.0 ; Crystal structure of L-2,3-butanediol dehydrogenase 3D3S ; 1.87 ; Crystal structure of L-2,4-diaminobutyric acid acetyltransferase from Bordetella parapertussis 8GSR ; 1.73 ; Crystal structure of L-2,4-diketo-3-deoxyrhamnonate hydrolase from Sphingomonas sp. (apo-form) 8GST ; 1.71 ; Crystal structure of L-2,4-diketo-3-deoxyrhamnonate hydrolase from Sphingomonas sp. (pyruvate bound-form) 1HYH ; 2.2 ; CRYSTAL STRUCTURE OF L-2-HYDROXYISOCAPROATE DEHYDROGENASE FROM LACTOBACILLUS CONFUSUS AT 2.2 ANGSTROMS RESOLUTION-AN EXAMPLE OF STRONG ASYMMETRY BETWEEN SUBUNITS 1ZH0 ; 1.9 ; Crystal Structure of L-3-(2-napthyl)alanine-tRNA synthetase in complex with L-3-(2-napthyl)alanine 3AJR ; 1.77 ; Crystal structure of L-3-Hydroxynorvaline bound L-Threonine dehydrogenase (Y137F) from Hyperthermophilic Archaeon Thermoplasma volcanium 2FM1 ; 2.25 ; Crystal structure of L-ALLO-threonine aldolase (tm1744) from Thermotoga maritima at 2.25 A resolution 3VOT ; 1.8 ; Crystal structure of L-amino acid ligase from Bacillus licheniformis 5TS5 ; 2.3 ; Crystal structure of L-amino acid oxidase from Bothrops atrox 1F8R ; 2.0 ; CRYSTAL STRUCTURE OF L-AMINO ACID OXIDASE FROM CALLOSELASMA RHODOSTOMA COMPLEXED WITH CITRATE 1F8S ; 2.0 ; CRYSTAL STRUCTURE OF L-AMINO ACID OXIDASE FROM CALLOSELASMA RHODOSTOMA, COMPLEXED WITH THREE MOLECULES OF O-AMINOBENZOATE. 5Z2G ; 2.676 ; Crystal Structure of L-amino acid oxidase from venom of Naja atra 5J83 ; 3.001 ; Crystal structure of L-arabinonate dehydratase in apo-form 5J84 ; 2.4 ; Crystal structure of L-arabinonate dehydratase in holo-form 2AJT ; 2.6 ; Crystal structure of L-Arabinose Isomerase from E.coli 4LQL ; 3.232 ; Crystal structure of L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 2OCD ; 2.45 ; Crystal structure of L-asparaginase I from Vibrio cholerae O1 biovar eltor str. N16961 3NTX ; 1.9 ; Crystal Structure of L-asparaginase I from Yersinia pestis 1WLS ; 2.16 ; Crystal structure of L-asparaginase I homologue protein from Pyrococcus horikoshii 2DC1 ; 1.9 ; Crystal Structure Of L-Aspartate Dehydrogenase From Hyperthermophilic Archaeon Archaeoglobus fulgidus 2E5V ; 2.09 ; Crystal structure of L-Aspartate Oxidase from hyperthermophilic archaeon Sulfolobus tokodaii 5KXJ ; 1.87 ; Crystal Structure of L-Aspartate Oxidase from Salmonella typhimurium in the Complex with Substrate L-Aspartate 1VC3 ; 1.5 ; Crystal Structure of L-Aspartate-alpha-Decarboxylase 5ELM ; 2.0 ; Crystal structure of L-aspartate/glutamate specific racemase in complex with L-glutamate 5ELL ; 1.801 ; Crystal structure of L-aspartate/glutamate-specific racemase from Escherichia coli 1VFT ; 2.3 ; Crystal structure of L-cycloserine-bound form of alanine racemase from D-cycloserine-producing Streptomyces lavendulae 7CEU ; 2.9 ; Crystal structure of L-cycloserine-bound form of cysteine desulfurase NifS from Helicobacter pylori 7E6C ; 1.73 ; Crystal structure of L-cycloserine-bound form of cysteine desulfurase SufS C361A from Bacillus subtilis 7CEP ; 2.05 ; Crystal structure of L-cycloserine-bound form of cysteine desulfurase SufS from Bacillus subtilis 7CES ; 2.2 ; Crystal structure of L-cycloserine-bound form of cysteine desulfurase SufS H121A from Bacillus subtilis 4IP4 ; 2.128 ; Crystal structure of l-fuconate dehydratase from Silicibacter sp. tm1040 liganded with Mg 4IP5 ; 2.13 ; Crystal structure of l-fuconate dehydratase from Silicibacter sp. tm1040 liganded with Mg and d-erythronohydroxamate 2HXT ; 1.7 ; Crystal structure of L-Fuconate Dehydratase from Xanthomonas campestris liganded with Mg++ and D-erythronohydroxamate 1YEY ; 2.34 ; Crystal Structure of L-fuconate Dehydratase from Xanthomonas campestris pv. campestris str. ATCC 33913 2HNE ; 2.0 ; Crystal structure of l-fuconate dehydratase from xanthomonas campestris pv. campestris str. ATCC 33913 2OPI ; 2.5 ; Crystal Structure of L-fuculose-1-phosphate aldolase from Bacteroides thetaiotaomicron 2FK5 ; 1.9 ; Crystal structure of l-fuculose-1-phosphate aldolase from Thermus thermophilus HB8 2FLF ; 2.7 ; Crystal structure of l-fuculose-1-phosphate aldolase from Thermus Thermophilus HB8 7SML ; 2.1 ; Crystal Structure of L-GALACTONO-1,4-LACTONE DEHYDROGENASE de Myrciaria dubia 8SCC ; 2.09 ; Crystal Structure of L-galactose 1-dehydrogenase de Myrciaria dubia 8USU ; 2.97 ; Crystal Structure of L-galactose 1-dehydrogenase of Myrciaria dubia in complex with NAD 7SMI ; 1.4 ; Crystal Structure of L-galactose dehydrogenase from Spinacia oleracea 7SVQ ; 1.75 ; Crystal Structure of L-galactose dehydrogenase from Spinacia oleracea in complex with NAD+ 1O0C ; 2.7 ; CRYSTAL STRUCTURE OF L-GLUTAMATE AND AMPCPP BOUND TO GLUTAMINE AMINOACYL TRNA SYNTHETASE 2E1M ; 2.8 ; Crystal Structure of L-Glutamate Oxidase from Streptomyces sp. X-119-6 1O0B ; 2.7 ; CRYSTAL STRUCTURE OF L-GLUTAMINE AND AMPCPP BOUND TO GLUTAMINE AMINOACYL TRNA SYNTHETASE 7ERU ; 2.85 ; Crystal structure of L-histidine decarboxylase (C57S mutant) from Photobacterium phosphoreum 7ERV ; 2.5 ; Crystal structure of L-histidine decarboxylase (C57S/C101V/C282V mutant) from Photobacterium phosphoreum 1FG3 ; 2.2 ; CRYSTAL STRUCTURE OF L-HISTIDINOL PHOSPHATE AMINOTRANSFERASE COMPLEXED WITH L-HISTIDINOL 1IJI ; 2.2 ; Crystal Structure of L-Histidinol Phosphate Aminotransferase with PLP 1FG7 ; 1.5 ; CRYSTAL STRUCTURE OF L-HISTIDINOL PHOSPHATE AMINOTRANSFERASE WITH PYRIDOXAL-5'-PHOSPHATE 4GC3 ; 1.32 ; Crystal structure of L-HISTIDINOL PHOSPHATE PHOSPHATASE (HISK) from Lactococcus lactis subsp. lactis Il1403 complexed with ZN and sulfate 1JG2 ; 1.5 ; Crystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with adenosine 1JG3 ; 2.1 ; Crystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with adenosine & VYP(ISP)HA substrate 1JG1 ; 1.2 ; Crystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with S-ADENOSYL-L-HOMOCYSTEINE 1JG4 ; 1.5 ; Crystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with S-adenosylmethionine 2YXE ; 2.0 ; Crystal structure of L-isoaspartyl protein carboxyl methyltranferase 7Z2L ; 2.56 ; Crystal structure of L-Kynurenine in the active site of human Indoleamine-2,3-dioxygenase 1 (hIDO1) 4LN1 ; 1.9 ; CRYSTAL STRUCTURE OF L-lactate dehydrogenase from Bacillus cereus ATCC 14579 complexed with calcium, NYSGRC Target 029452 4LMR ; 2.45 ; Crystal structure of L-lactate dehydrogenase from Bacillus cereus ATCC 14579, NYSGRC Target 029452 4M1Q ; 1.6 ; Crystal structure of L-lactate dehydrogenase from Bacillus selenitireducens MLS10, NYSGRC Target 029814. 3PQD ; 2.376 ; Crystal structure of L-lactate dehydrogenase from Bacillus subtilis complexed with FBP and NAD+ 3PQF ; 2.49 ; Crystal structure of L-lactate dehydrogenase from Bacillus subtilis mutation H171C complexed with NAD+ 3PQE ; 2.2 ; Crystal structure of L-lactate dehydrogenase from Bacillus subtilis with H171C mutation 1V6A ; 2.3 ; Crystal Structure of L-lactate dehydrogenase from Cyprinus carpio 2E77 ; 1.9 ; Crystal structure of L-lactate oxidase with pyruvate complex 5CQF ; 2.28 ; Crystal structure of L-lysine 6-monooxygenase from Pseudomonas syringae 3ABI ; 2.44 ; Crystal Structure of L-Lysine Dehydrogenase from Hyperthermophilic Archaeon Pyrococcus horikoshii 3MTW ; 1.7 ; Crystal structure of L-Lysine, L-Arginine carboxypeptidase Cc2672 from Caulobacter Crescentus CB15 complexed with N-methyl phosphonate derivative of L-Arginine 4WLU ; 2.14 ; Crystal structure of L-malate and NAD bound MDH2 4WLF ; 2.2 ; Crystal structure of L-malate bound MDH2 1PG8 ; 2.68 ; Crystal Structure of L-methionine alpha-, gamma-lyase 7CIF ; 1.8 ; Crystal structure of L-methionine decarboxylase from Streptomyces sp.590 (internal aldimine form). 7CIJ ; 1.61 ; Crystal structure of L-methionine decarboxylase from Streptomyces sp.590 in complexed with 3-methlythiopropylamine (external aldimine form). 7CIM ; 1.8 ; Crystal structure of L-methionine decarboxylase from Streptomyces sp.590 in complexed with 3-methlythiopropylamine (geminal diamine form). 7CII ; 1.51 ; Crystal structure of L-methionine decarboxylase from Streptomyces sp.590 in complexed with L- methionine methyl ester (external aldimine form). 7CIG ; 1.45 ; Crystal structure of L-methionine decarboxylase Q64A mutant from Streptomyces sp.590 in complexed with L- methionine methyl ester (geminal diamine form). 4MKJ ; 1.849 ; Crystal structure of L-methionine gamma-lyase from Citrobacter freundii modified by allicine 4HF8 ; 2.45 ; Crystal structure of L-methionine gamma-lyase from Citrobacter freundii with glycine 3JWA ; 1.45 ; Crystal structure of L-methionine gamma-lyase from Citrobacter freundii with methionine phosphinate 3JWB ; 1.63 ; Crystal structure of L-methionine gamma-lyase from Citrobacter freundii with norleucine 3JW9 ; 1.8 ; Crystal structure of L-methionine gamma-lyase from Citrobacter freundii with S-ethyl-cysteine 3VK4 ; 2.61 ; Crystal Structure of L-Methionine gamma-Lyase from Pseudomonas putida C116H Mutant complexed with L-homocysteine 3VK3 ; 2.1 ; Crystal Structure of L-Methionine gamma-Lyase from Pseudomonas putida C116H Mutant Complexed with L-methionine 3VK2 ; 2.3 ; Crystal Structure of L-Methionine gamma-Lyase from Pseudomonas putida C116H Mutant. 2O7C ; 1.7 ; Crystal structure of L-methionine-lyase from Pseudomonas 3N5F ; 2.75 ; Crystal Structure of L-N-carbamoylase from Geobacillus stearothermophilus CECT43 8AQ0 ; 2.3 ; Crystal structure of L-N-Carbamoylase from Sinorhizobium meliloti mutant L217G/F329C 2YR4 ; 1.7 ; Crystal structure of L-phenylalanine oxiase from Psuedomonas sp. P-501 2YR5 ; 1.25 ; Crystal structure of L-phenylalanine oxidase from Psuedomonas sp.P501 2YR6 ; 1.35 ; Crystal structure of L-phenylalanine oxidase from Psuedomonas sp.P501 3FJ7 ; 1.7 ; Crystal structure of L-phospholactate Bound PEB3 1Y56 ; 2.86 ; Crystal structure of L-proline dehydrogenase from P.horikoshii 3R0P ; 1.9 ; Crystal structure of L-PSP putative endoribonuclease from uncultured organism 2OZ3 ; 2.0 ; Crystal structure of L-Rhamnonate dehydratase from Azotobacter vinelandii 3EKG ; 1.6 ; CRYSTAL STRUCTURE OF L-RHAMNONATE DEHYDRATASE FROM AZOTOBACTER VINELANDII complexed with Mg and L-TARTRATE 2P0I ; 2.1 ; Crystal structure of L-rhamnonate dehydratase from Gibberella zeae 2GSH ; 2.393 ; Crystal structure of L-rhamnonate dehydratase from Salmonella typhimurium 2P3Z ; 1.8 ; Crystal structure of L-Rhamnonate dehydratase from Salmonella typhimurium 3BOX ; 1.8 ; Crystal structure of L-rhamnonate dehydratase from Salmonella typhimurium complexed with Mg 3CXO ; 2.0 ; Crystal structure of L-rhamnonate dehydratase from Salmonella typhimurium complexed with Mg and 3-deoxy-L-rhamnonate 3D47 ; 1.8 ; Crystal structure of L-rhamnonate dehydratase from Salmonella typhimurium complexed with Mg and D-malate 3D46 ; 1.9 ; Crystal structure of L-rhamnonate dehydratase from Salmonella typhimurium complexed with Mg and L-tartrate 3UU0 ; 2.7 ; Crystal structure of L-rhamnose isomerase from Bacillus halodurans in complex with Mn 8JQ3 ; 1.9 ; Crystal structure of L-rhamnose isomerase from Lactobacillus rhamnosus 2I57 ; 1.97 ; Crystal Structure of L-Rhamnose Isomerase from Pseudomonas stutzeri in Complex with D-Allose 2I56 ; 1.97 ; Crystal structure of L-Rhamnose Isomerase from Pseudomonas stutzeri with L-Rhamnose 2HCV ; 2.0 ; Crystal structure of L-rhamnose isomerase from Pseudomonas stutzeri with metal ion 3UVA ; 2.69 ; Crystal structure of L-rhamnose isomerase mutant W38F from Bacillus halodurans in complex with Mn 3UXI ; 2.73 ; Crystal structure of L-rhamnose isomerase W38A mutant from Bacillus halodurans 3P14 ; 2.51 ; Crystal structure of L-rhamnose isomerase with a novel high thermo-stability from Bacillus halodurans 6HHN ; 1.47 ; Crystal structure of L-rhamnose mutarotase FA22100 from Formosa agariphila 2CGK ; 2.46 ; Crystal Structure of L-rhamnulose kinase from Escherichia coli in an open uncomplexed conformation. 2CGJ ; 2.26 ; Crystal Structure of L-rhamnulose kinase from Escherichia coli in complex with L-fructose and ADP. 2CGL ; 1.88 ; Crystal Structure of L-rhamnulose kinase from Escherichia coli in complex with L-fructose, ADP and a modeled ATP gamma phosphate. 1JDI ; 2.4 ; CRYSTAL STRUCTURE OF L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE 1K0W ; 2.1 ; CRYSTAL STRUCTURE OF L-RIBULOSE-5-PHOSPHATE 4-EPIMERASE 5VC1 ; 1.94 ; Crystal structure of L-selectin lectin/EGF domains 4RQO ; 2.25 ; Crystal structure of L-Serine Dehydratase from Legionella pneumophila 4WXG ; 2.0 ; Crystal structure of L-Serine Hydroxymethyltransferase in complex with a mixture of L-Threonine and Glycine 4WXF ; 2.4 ; Crystal structure of L-Serine Hydroxymethyltransferase in complex with glycine 3VVL ; 1.81 ; Crystal structure of L-serine-O-acetyltransferase found in D-cycloserine biosynthetic pathway 3CB3 ; 2.0 ; Crystal structure of L-Talarate dehydratase from Polaromonas sp. JS666 complexed with Mg and L-glucarate 2PP0 ; 2.2 ; Crystal structure of L-talarate/galactarate dehydratase from Salmonella typhimurium LT2 2PP1 ; 2.2 ; Crystal structure of L-talarate/galactarate dehydratase from Salmonella typhimurium LT2 liganded with Mg and L-lyxarohydroxamate 2PP3 ; 2.2 ; Crystal structure of L-talarate/galactarate dehydratase mutant K197A liganded with Mg and L-glucarate 5KIA ; 2.1 ; Crystal structure of L-threonine 3-dehydrogenase from Burkholderia thailandensis 7YVR ; 2.8 ; Crystal Structure of L-Threonine Aldolase from Neptunomonas marina 5VYE ; 2.275 ; Crystal Structure of L-Threonine Aldolase from Pseudomonas putida 3A9W ; 1.85 ; Crystal structure of L-Threonine bound L-Threonine dehydrogenase (Y137F) from Hyperthermophilic Archaeon Thermoplasma volcanium 3A1N ; 2.07 ; Crystal structure of L-Threonine dehydrogenase from Hyperthermophilic Archaeon Thermoplasma volcanium 6JYG ; 2.31 ; Crystal Structure of L-threonine dehydrogenase from Phytophthora infestans 7K34 ; 1.66 ; Crystal structure of L-threonine transaldolase from Pseudomonas fluorescens in internal aldimine state 1LC7 ; 1.8 ; Crystal Structure of L-Threonine-O-3-phosphate Decarboxylase from S. enterica complexed with a substrate 1LC8 ; 1.8 ; Crystal Structure of L-Threonine-O-3-phosphate Decarboxylase from S. enterica complexed with its reaction intermediate 1LC5 ; 1.46 ; Crystal Structure of L-Threonine-O-3-phosphate Decarboxylase from S. enterica in its apo state 1LKC ; 1.8 ; Crystal Structure of L-Threonine-O-3-Phosphate Decarboxylase from Salmonella enterica 7NGE ; 2.3 ; Crystal structure of L-Trp/Indoleamine 2,3-dioxygenagse 1 (hIDO1) complex with the JK-loop refined in the closed conformation 7P0N ; 2.5 ; Crystal structure of L-Trp/Indoleamine 2,3-dioxygenagse 1 (hIDO1) complex with the JK-loop refined in the open conformation 7P0R ; 2.5 ; Crystal structure of L-Trp/Indoleamine 2,3-dioxygenase (hIDO1) complex with the JK-loop refined in the intermediate conformation 5B37 ; 3.4 ; Crystal structure of L-tryptophan dehydrogenase from Nostoc punctiforme 6ESD ; 2.6 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum 6FW7 ; 3.0 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with 4-Fluoro-L-Tryptophan 6FW8 ; 2.4 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with 5-Methyl-L-Tryptophan 6FW9 ; 2.739 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with 6-Fluoro-L-Tryptophan 6FWA ; 2.846 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with 7-Methyl-L-Tryptophan 6G2P ; 2.6 ; Crystal structure of L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with L-tryptophan 3F9T ; 2.11 ; Crystal structure of L-tyrosine decarboxylase MfnA (EC 4.1.1.25) (NP_247014.1) from METHANOCOCCUS JANNASCHII at 2.11 A resolution 3CQI ; 2.1 ; Crystal Structure of L-xylulose-5-phosphate 3-epimerase UlaE (form B) complex with sulfate 3CQJ ; 2.04 ; Crystal Structure of L-xylulose-5-phosphate 3-epimerase UlaE (form B) complex with Zn2+ 3CQK ; 2.33 ; Crystal Structure of L-xylulose-5-phosphate 3-epimerase UlaE (form B) complex with Zn2+ and sulfate 3CQH ; 2.08 ; Crystal Structure of L-xylulose-5-phosphate 3-epimerase UlaE from the Anaerobic L-ascorbate Utilization Pathway of Escherichia coli 4NDS ; 0.997 ; Crystal structure of L. decastes alpha-galactosyl-binding lectin 4NDU ; 1.301 ; Crystal structure of L. decastes alpha-galactosyl-binding lectin in complex with alpha-methylgalactoside 4NDV ; 1.3 ; Crystal structure of L. decastes alpha-galactosyl-binding lectin in complex with globotriose 4NDT ; 1.03 ; Crystal structure of L. decastes alpha-galactosyl-binding lectin, orthorhombic crystal form 2BSL ; 2.3 ; Crystal structure of L. lactis dihydroorotate dehydrogense A in complex with 3,4-dihydroxybenzoate 2BX7 ; 2.04 ; Crystal structure of L. lactis dihydroorotate dehydrogense A in complex with 3,5-dihydroxybenzoate 2HFS ; 1.75 ; Crystal structure of L. major mevalonate kinase 2HFU ; 2.0 ; Crystal structure of L. major mevalonate kinase in complex with R-mevalonate 4S1C ; 2.398 ; Crystal Structure of L. monocytogenes phosphodiesterase PgpH HD domain 4S1B ; 2.099 ; Crystal Structure of L. monocytogenes phosphodiesterase PgpH HD domain in complex with Cyclic-di-AMP 4RWX ; 2.9 ; Crystal Structure of L. monocytogenes PstA 4RWW ; 1.6 ; Crystal Structure of L. monocytogenes PstA in complex with cyclic-di-AMP 4QSH ; 2.51 ; Crystal Structure of L. monocytogenes Pyruvate Carboxylase in complex with Cyclic-di-AMP 4QSK ; 2.7 ; Crystal Structure of L. monocytogenes Pyruvate Carboxylase in complex with Cyclic-di-AMP 3QR1 ; 3.2 ; Crystal Structure of L. pealei PLC21 7CMJ ; 2.76 ; Crystal structure of L.donovani Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) 5MRS ; 1.9 ; Crystal structure of L1 protease Lysobacter sp. XL1 in complex with AEBSF 6QOY ; 1.9 ; Crystal structure of L1 protease Lysobacter sp. XL1 in complex with AEBSF 5MRR ; 1.35 ; Crystal structure of L1 protease of Lysobacter sp. XL1 1I2A ; 1.85 ; CRYSTAL STRUCTURE OF L1 RIBOSOMAL PROTEIN FROM METHANOCOCCUS JANNASCHII WITH 1.85A RESOLUTION. 7A63 ; 1.57 ; Crystal structure of L1 with hydrolyzed faropenem (imine, ring-closed form) 5ML7 ; 3.3 ; CRYSTAL STRUCTURE OF L1-STALK FRAGMENT OF 23S rRNA FROM HALOARCULA MARISMORTUI 2OPQ ; 2.8 ; Crystal Structure of L100I Mutant HIV-1 Reverse Transcriptase in Complex with GW420867X. 3DOL ; 2.5 ; Crystal structure of L100I mutant HIV-1 reverse transcriptase in complex with GW695634. 1S1U ; 3.0 ; Crystal structure of L100I mutant HIV-1 reverse transcriptase in complex with nevirapine 1S1V ; 2.6 ; Crystal structure of L100I mutant HIV-1 reverse transcriptase in complex with TNK-651 1S1T ; 2.4 ; Crystal structure of L100I mutant HIV-1 reverse transcriptase in complex with UC-781 2ZE2 ; 2.9 ; Crystal structure of L100I/K103N mutant HIV-1 reverse transcriptase (RT) in complex with TMC278 (rilpivirine), a non-nucleoside RT inhibitor 5N09 ; 3.9 ; Crystal structure of L107C/A313C covalently linked dengue 2 virus envelope glycoprotein dimer in complex with the Fab fragment of the broadly neutralizing human antibody EDE2 A11 2ALL ; 1.47 ; Crystal structure of L122V/L132V mutant of nitrophorin 2 2AMM ; 1.9 ; Crystal structure of L122V/L132V mutant of nitrophorin 2 5BRL ; 2.003 ; Crystal Structure of L124D STARD4 3TGA ; 1.3 ; Crystal structure of L130R mutant of Nitrophorin 4 from Rhodnius prolixus at pH 7.4 3TGB ; 1.35 ; Crystal structure of L130R mutant of Nitrophorin 4 from Rhodnius prolixus complexed with imidazole at pH 7.4 3TGC ; 1.4 ; Crystal structure of L130R mutant of Nitrophorin 4 from Rhodnius prolixus complexed with nitrite at pH 7.4 7P8M ; 1.71 ; Crystal structure of L147A/I351A variant of S-adenosylmethionine synthetase from Methanocaldococcus jannaschii in complex with DMNB-SAM (4,5-dimethoxy-2-nitro benzyme S-adenosyl-methionine) 7P84 ; 2.054 ; Crystal structure of L147A/I351A variant of S-adenosylmethionine synthetase from Methanocaldococcus jannaschii in complex with ONB-SAM (2-nitro benzyme S-adenosyl-methionine) 7EA4 ; 1.95 ; Crystal Structure of L182E D-Succinylase (DSA) from Cupriavidus sp. P4-10-C 6QW7 ; 1.78 ; Crystal structure of L2 complexed with relebactam (16 hour soak) 1I4J ; 1.8 ; CRYSTAL STRUCTURE OF L22 RIBOSOMAL PROTEIN MUTANT 3BAQ ; 1.8 ; Crystal structure of L26A mutant of Human acidic fibroblast growth factor 3BAV ; 1.62 ; Crystal structure of L26A/D28N mutant of Human acidic fibroblast growth factor 3BA4 ; 1.8 ; Crystal structure of L26D mutant of Human acidic fibroblast growth factor 3BB2 ; 1.5 ; Crystal structure of L26D/D28N mutant of Human acidic fibroblast growth factor 3BAO ; 1.55 ; Crystal structure of L26N mutant of Human acidic fibroblast growth factor 3BA7 ; 1.6 ; Crystal structure of L26N/D28A mutant of Human acidic fibroblast growth factor 3B9U ; 1.55 ; Crystal structure of L26N/D28N/H93G mutant of Human acidic fibroblast growth factor 4M2B ; 2.2 ; Crystal structure of L281D mutant of udp-glucose pyrophosphorylase from leishmania major in complex with udp-glc 3CPQ ; 1.9 ; Crystal Structure of L30e a ribosomal protein from Methanocaldococcus jannaschii DSM2661 (MJ1044) 6CDA ; 2.0 ; Crystal structure of L34A CzrA in the Zn(II)bound state 3P8H ; 2.55 ; Crystal structure of L3MBTL1 (MBT repeat) in complex with a nicotinamide antagonist 2RJF ; 2.05 ; Crystal structure of L3MBTL1 in complex with H4K20Me2 (residues 12-30), orthorhombic form I 2RJE ; 1.86 ; Crystal structure of L3MBTL1 in complex with H4K20Me2 (residues 17-25), orthorhombic form II 2PQW ; 2.0 ; Crystal structure of L3MBTL1 in complex with H4K20Me2 (residues 17-25), trigonal form 6BYB ; 1.74 ; Crystal structure of L3MBTL1 MBT Domain with MBK14970 2RJD ; 1.65 ; Crystal structure of L3MBTL1 protein 2RJC ; 2.0 ; Crystal structure of L3MBTL1 protein in complex with MES 3CEY ; 2.2 ; Crystal structure of L3MBTL2 3F70 ; 2.1 ; Crystal structure of L3MBTL2-H4K20me1 complex 2HQZ ; 1.2 ; Crystal structure of L42H design intermediate for GFP metal ion reporter 2HRS ; 1.4 ; Crystal structure of L42H V224H design intermediate for GFP metal ion reporter 3FGM ; 1.95 ; Crystal structure of L44F/C83T/C117V/F132W mutant of Human acidic fibroblast growth factor 3FJD ; 1.9 ; Crystal structure of L44F/F132W mutant of Human acidic fibroblast growth factor 3FJC ; 2.0 ; Crystal structure of L44W mutant of Human acidic fibroblast growth factor 5MRT ; 1.6 ; Crystal structure of L5 protease Lysobacter sp. XL1 8UFM ; 1.65 ; Crystal Structure of L516C/Y647C Mutant of SARS-Unique Domain (SUD) from SARS-CoV-2 4LS4 ; 1.66 ; Crystal structure of L66S mutant toxin from Helicobacter pylori 3PS8 ; 2.55 ; Crystal structure of L68V mutant of human cystatin C 3QRD ; 2.19 ; Crystal structure of L68V mutant of human cystatin C 2XSV ; 1.8 ; Crystal structure of L69A mutant Acinetobacter radioresistens catechol 1,2 dioxygenase 1PXW ; 1.94 ; Crystal structure of L7Ae sRNP core protein from Pyrococcus abyssii 4I21 ; 3.37 ; Crystal structure of L858R + T790M EGFR kinase domain in complex with MIG6 peptide 4BGP ; 1.8 ; Crystal structure of La Crosse virus nucleoprotein 3EOT ; 1.9 ; Crystal structure of LAC031, an engineered anti-VLA1 Fab 4F7K ; 2.2 ; Crystal structure of Lac15 from a marine microbial metagenome 3KW7 ; 3.44 ; Crystal structure of LacB from Trametes sp. AH28-2 2AWD ; 2.0 ; Crystal structure of LacC from Enterococcus faecalis 2F02 ; 1.9 ; Crystal Structure of LacC from Enterococcus Faecalis in complex with ATP 5ANH ; 2.492 ; CRYSTAL STRUCTURE OF LACCASE FROM BASIDIOMYCETE PM1 (CECT 2971) 3SQR ; 1.67 ; Crystal structure of laccase from Botrytis aclada at 1.67 A resolution 3DIV ; 1.76 ; Crystal structure of laccase from Cerrena maxima at 1.76A resolution 2H5U ; 1.9 ; Crystal structure of laccase from Cerrena maxima at 1.9A resolution 5Z1X ; 1.38 ; Crystal Structure of Laccase from Cerrena sp. RSD1 5Z22 ; 1.5 ; Crystal Structure of Laccase from Cerrena sp. RSD1 4A2H ; 2.3 ; Crystal Structure of Laccase from Coriolopsis gallica pH 7.0 2HZH ; 2.6 ; Crystal structure of laccase from Coriolus zonatus at 2.6 A resolution 3X1B ; 1.8 ; Crystal structure of laccase from Lentinus sp. at 1.8 A resolution 1GW0 ; 2.4 ; Crystal Structure of Laccase from Melanocarpus albomyces in Four Copper Form 6F5K ; 1.62 ; Crystal structure of laccase from Myceliophthora thermophila 6Z0J ; 2.5 ; Crystal structure of laccase from Pediococcus acidilactici Pa5930 (Tris-HCl pH 8.5) 6Z0K ; 2.0 ; Crystal structure of laccase from Pediococcus acidilactici Pp5930 (Hepes pH 7.5) 3T6V ; 2.0 ; Crystal Structure of Laccase from Steccherinum ochraceum 2XU9 ; 1.501 ; Crystal structure of Laccase from Thermus thermophilus HB27 5K0D ; 1.824 ; Crystal structure of laccase from Thermus thermophilus HB27 (Cu(II)-cyclophanes, 3 min) 5JX9 ; 1.599 ; Crystal structure of laccase from Thermus thermophilus HB27 (Cu(II)-cyclophanes, 5 min) 5K15 ; 1.55 ; Crystal structure of laccase from Thermus thermophilus HB27 (Cu2PO, 8 min) 5K3K ; 1.644 ; Crystal structure of laccase from Thermus thermophilus HB27 (CuSO4, 20 min) 5K84 ; 1.78 ; Crystal structure of laccase from Thermus thermophilus HB27 (sodium nitrate 10 min) 5AFA ; 2.193 ; Crystal structure of Laccase from Thermus thermophilus HB27 complexed with Ag, crystal of the holoenzyme soaked for 30 m in 5 mM AgNO3 at 278 K. 4AI7 ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 complexed with Hg, crystal of the apoenzyme soaked for 2 h in 5 mM HgCl2 at 278 K. 2XVB ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 complexed with Hg, crystal of the apoenzyme soaked for 5 min. in 5 mM HgCl2 at 278 K. 6W2K ; 2.0 ; Crystal structure of laccase from Thermus thermophilus HB27 in reducing conditions (Na2,S2,O2, 20 min) 6TYR ; 1.813 ; Crystal structure of Laccase from Thermus thermophilus HB27 with a close conformation of its beta-hairpin 6WCG ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 10.33 MGy) 6WCL ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 12.91 MGy) 6WCM ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 15.50 MGy) 6WCN ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 18.08 MGy) 6WCP ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 20.67 MGy) 6W9X ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 5.1 MGy) 6WCH ; 1.7 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposited dose 7.75 MGy) 6Q29 ; 1.702 ; Crystal structure of Laccase from Thermus thermophilus HB27 with an open conformation of beta-hairpin (Average deposted dose 2.5 MGy) 5K7A ; 1.5 ; Crystal structure of laccase fron Thermus thermophilus HB27 (sodium nitrate 1.5 min) 7ZN6 ; 1.9 ; Crystal structure of laccase-like multicopper oxidase (LMCO) from Thermothelomyces thermophilus 5NQ7 ; 2.75 ; Crystal structure of laccases from Pycnoporus sanguineus, izoform I 5NQ8 ; 2.0 ; Crystal structure of laccases from Pycnoporus sanguineus, izoform II 5NQ9 ; 2.72 ; Crystal structure of laccases from Pycnoporus sanguineus, izoform II, monoclinic 5K5K ; 1.796 ; Crystal structure of laccasse from Thermus thermophilus HB27 (ascorbic acid 10 min) 5XUZ ; 2.4 ; Crystal structure of Lachnospiraceae bacterium ND2006 Cpf1 in complex with crRNA and target DNA (CCCA PAM) 5XUU ; 2.5 ; Crystal structure of Lachnospiraceae bacterium ND2006 Cpf1 in complex with crRNA and target DNA (TCCA PAM) 5XUT ; 2.4 ; Crystal structure of Lachnospiraceae bacterium ND2006 Cpf1 in complex with crRNA and target DNA (TCTA PAM) 5XUS ; 2.5 ; Crystal structure of Lachnospiraceae bacterium ND2006 Cpf1 in complex with crRNA and target DNA (TTTA PAM) 5VGL ; 1.4 ; Crystal structure of lachrymatory factor synthase from Allium cepa 5VGS ; 1.9 ; Crystal structure of lachrymatory factor synthase from Allium cepa in complex with crotyl alcohol 3GV0 ; 2.35 ; Crystal structure of LacI family transcription regulator from Agrobacterium tumefaciens 3G85 ; 1.84 ; Crystal structure of LacI family transcription regulator from Clostridium acetobutylicum 4RK6 ; 1.76 ; Crystal structure of LacI family transcriptional regulator CCPA from Weissella paramesenteroides, Target EFI-512926, with bound glucose 4RK7 ; 1.8 ; Crystal structure of LacI family transcriptional regulator CCPA from Weissella paramesenteroides, Target EFI-512926, with bound sucrose 4RKQ ; 1.903 ; Crystal structure of LacI family transcriptional regulator from Arthrobacter sp. FB24, target EFI-560007 4RKR ; 2.2 ; Crystal structure of LacI family transcriptional regulator from Arthrobacter sp. FB24, target EFI-560007, complex with lactose 4RK0 ; 1.8 ; Crystal structure of LacI family transcriptional regulator from Enterococcus faecalis V583, Target EFI-512923, with bound ribose 4RK1 ; 1.9 ; Crystal structure of LacI family transcriptional regulator from Enterococcus faecium, Target EFI-512930, with bound ribose 4RK4 ; 1.32 ; Crystal structure of LacI family transcriptional regulator from Lactobacillus casei, Target EFI-512911, with bound glucose 4RK5 ; 1.35 ; Crystal structure of LacI family transcriptional regulator from Lactobacillus casei, Target EFI-512911, with bound sucrose 6CHK ; 1.8 ; Crystal structure of LacI family transcriptional regulator from Lactobacillus casei, Target EFI-512911, with bound TRIS 3JY6 ; 1.97 ; Crystal structure of LacI Transcriptional regulator from Lactobacillus brevis 3K9C ; 2.14 ; Crystal structure of LacI Transcriptional regulator from Rhodococcus species. 2ILU ; 2.7 ; Crystal structure of lactaldehyde dehydrogenase from E. coli: the binary complex with NADPH 2IMP ; 2.1 ; Crystal structure of lactaldehyde dehydrogenase from E. coli: the ternary complex with lactate (occupancy 0.5) and NADH. Crystals soaked with (L)-Lactate. 2OPX ; 2.53 ; Crystal Structure of Lactaldehyde Dehydrogenase from Escherichia coli 1RRM ; 1.6 ; Crystal Structure of Lactaldehyde reductase 1V6T ; 1.7 ; Crystal Structure of Lactam Utilization Protein from Pyrococcus horikoshii Ot3 2DFA ; 1.9 ; Crystal Structure of Lactam Utilization Protein from Thermus thermophilus HB8 5W8H ; 1.8 ; Crystal Structure of Lactate Dehydrogenase A in complex with inhibitor compound 11 5W8I ; 1.95 ; Crystal Structure of Lactate Dehydrogenase A in complex with inhibitor compound 23 and Zinc 5W8J ; 1.55 ; Crystal Structure of Lactate Dehydrogenase A in complex with inhibitor compound 29 5W8K ; 1.6 ; Crystal Structure of Lactate Dehydrogenase A in complex with inhibitor compound 29 and NADH 5W8L ; 1.95 ; Crystal Structure of Lactate Dehydrogenase A in complex with inhibitor compound 59 and NADH 2V6B ; 2.5 ; Crystal structure of lactate dehydrogenase from Deinococcus Radiodurans (apo form) 6CT6 ; 1.705 ; Crystal structure of lactate dehydrogenase from Eimeria maxima with NADH and oxamate 2A92 ; 2.04 ; Crystal structure of lactate dehydrogenase from Plasmodium vivax: complex with NADH 7NAY ; 1.84 ; Crystal structure of lactate dehydrogenase from Selenomonas ruminantium with NADH. 3D0O ; 1.8 ; Crystal structure of Lactate Dehydrogenase from Staphylococcus Aureus 3D4P ; 1.8 ; Crystal structure of Lactate Dehydrogenase from Staphylococcus Aureus complexed with NAD and pyruvate 2V6M ; 2.2 ; Crystal structure of lactate dehydrogenase from Thermus Thermophilus HB8 (Apo form) 2V7P ; 2.1 ; Crystal structure of lactate dehydrogenase from Thermus Thermophilus HB8 (Holo form) 3H3J ; 1.8 ; Crystal structure of lactate dehydrogenase mutant (A85R) from staphylococcus aureus complexed with NAD and pyruvate 3GVH ; 2.3 ; Crystal structure of Lactate/malate dehydrogenase from Brucella melitensis 3GVI ; 2.25 ; Crystal structure of Lactate/malate dehydrogenase from Brucella melitensis in complex with ADP 4U4R ; 2.801 ; Crystal structure of Lactimidomycin bound to the yeast 80S ribosome 8IE2 ; 3.6 ; Crystal structure of Lactiplantibacillus plantarum GlyRS 7V6I ; 2.51 ; Crystal structure of lacto-N-biosidase BsaX from Bifidobacterium saguini, lacto-N-biose complex 4JAW ; 1.8 ; Crystal Structure of Lacto-N-Biosidase from Bifidobacterium bifidum complexed with LNB-thiazoline 5GQG ; 2.7 ; Crystal structure of lacto-N-biosidase LnbX from Bifidobacterium longum subsp. longum, galacto-N-biose complex 5GQF ; 1.82 ; Crystal structure of lacto-N-biosidase LnbX from Bifidobacterium longum subsp. longum, lacto-N-biose complex 5GQC ; 2.36 ; Crystal structure of lacto-N-biosidase LnbX from Bifidobacterium longum subsp. longum, ligand-free form 8HVC ; 1.58 ; Crystal structure of lacto-N-biosidase StrLNBase from Streptomyces sp. strain 142, galacto-N-biose complex 1 8HVD ; 1.41 ; Crystal structure of lacto-N-biosidase StrLNBase from Streptomyces sp. strain 142, galacto-N-biose complex 2 8HVB ; 1.6 ; Crystal structure of lacto-N-biosidase StrLNBase from Streptomyces sp. strain 142, lacto-N-biose complex 7V6M ; 1.92 ; Crystal structure of lacto-N-biosidase TnX from Tynzenella nexilis, lacto-N-biose complex 6L9I ; 2.79 ; Crystal Structure of Lactobacillus farciminis Oxalate Decarboxylase Formate Complex 4MEJ ; 2.1 ; Crystal structure of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) 4AMC ; 3.6 ; Crystal structure of Lactobacillus reuteri 121 N-terminally truncated glucansucrase GTFA 3KLK ; 1.65 ; Crystal structure of Lactobacillus reuteri N-terminally truncated glucansucrase GTF180 in triclinic apo- form 3KLL ; 2.0 ; Crystal structure of Lactobacillus reuteri N-terminally truncated glucansucrase GTF180-maltose complex 7VGK ; 3.1 ; Crystal structure of Lactobacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase KduI 7E4S ; 2.79 ; Crystal structure of Lactobacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase KduI complexed with HEPES 7YE3 ; 2.553 ; Crystal structure of Lactobacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase KduI complexed with MES 7YRS ; 2.802 ; Crystal structure of Lactobacillus rhamnosus 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase KduI complexed with MOPS 8JQ6 ; 1.71 ; Crystal structure of Lactobacillus rhamnosus L-rhamnose isomerase in complex with D-allose 8JQ5 ; 1.73 ; Crystal structure of Lactobacillus rhamnosus L-rhamnose isomerase in complex with D-allulose 8JQ4 ; 1.61 ; Crystal structure of Lactobacillus rhamnosus L-rhamnose isomerase in complex with L-rhamnose 3DRI ; 1.8 ; Crystal structure of Lactococcal OppA co-crystallized with an octamer peptide in an open conformation 3DRH ; 1.7 ; Crystal structure of Lactococcal OppA co-crystallized with Leu-enkephalin in an open conformation 3DRK ; 1.8 ; Crystal structure of Lactococcal OppA co-crystallized with Neuropeptide S in an open conformation 3DRJ ; 1.5 ; Crystal structure of Lactococcal OppA co-crystallized with pTH-related peptide in an open conformation 3L6H ; 2.3 ; Crystal structure of lactococcal OpuAC in its closed-liganded conformation complexed with glycine betaine 3L6G ; 1.9 ; Crystal structure of lactococcal OpuAC in its open conformation 4EEX ; 2.2 ; Crystal Structure of Lactococcus lactis Alcohol Dehydrogenase 4EEZ ; 1.9 ; Crystal Structure of Lactococcus lactis Alcohol Dehydrogenase variant RE1 1EP1 ; 2.2 ; CRYSTAL STRUCTURE OF LACTOCOCCUS LACTIS DIHYDROOROTATE DEHYDROGENASE B 1EP2 ; 2.4 ; CRYSTAL STRUCTURE OF LACTOCOCCUS LACTIS DIHYDROOROTATE DEHYDROGENASE B COMPLEXED WITH OROTATE 1EP3 ; 2.1 ; CRYSTAL STRUCTURE OF LACTOCOCCUS LACTIS DIHYDROOROTATE DEHYDROGENASE B. DATA COLLECTED UNDER CRYOGENIC CONDITIONS. 1KFV ; 2.55 ; Crystal Structure of Lactococcus lactis Formamido-pyrimidine DNA Glycosylase (alias Fpg or MutM) Non Covalently Bound to an AP Site Containing DNA. 1PIE ; 2.1 ; Crystal Structure of Lactococcus lactis Galactokinase Complexed with Galactose 4KQP ; 0.95 ; Crystal structure of Lactococcus lactis GlnP substrate binding domain 2 (SBD2) in complex with glutamine at 0.95 A resolution 4KR5 ; 1.5 ; Crystal structure of Lactococcus lactis GlnP substrate binding domain 2 (SBD2) in open conformation 5VYW ; 3.1 ; Crystal structure of Lactococcus lactis pyruvate carboxylase 5VZ0 ; 2.0 ; Crystal structure of Lactococcus lactis pyruvate carboxylase G746A mutant in complex with cyclic-di-AMP 5VYZ ; 2.3 ; Crystal structure of Lactococcus lactis pyruvate carboxylase in complex with cyclic-di-AMP 7WJB ; 2.0 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase in complex with glucose 7WJF ; 1.8 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase mutant D394A in complex with kojibiose 7WJC ; 1.75 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase mutant D394A in complex with nigerose 7WJE ; 1.8 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase mutant D394A in complex with nigerotetraose 7WJD ; 1.8 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase mutant D394A in complex with nigerotriose 7WJ9 ; 1.75 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase, P21 space group 7WJA ; 1.85 ; Crystal structure of Lactococcus lactis subsp. cremoris GH31 alpha-1,3-glucosidase, P6322 space group 5MJK ; 2.0 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase (FO conformation) 5MH4 ; 2.14 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase (FR conformation) 5MIR ; 2.0 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase Exposed to Visible Light (120 min) 5MIS ; 1.81 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase Exposed to Visible Light (180 min) 5MIT ; 1.8 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase Exposed to Visible Light (240 min) 5MIP ; 2.0 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase Exposed to Visible Light (30 min) 5MIQ ; 1.92 ; Crystal Structure of Lactococcus lactis Thioredoxin Reductase Exposed to Visible Light (60 min) 2R5L ; 2.4 ; Crystal structure of lactoperoxidase at 2.4A resolution 3FAQ ; 2.7 ; Crystal structure of lactoperoxidase complex with cyanide 1PV6 ; 3.5 ; Crystal structure of lactose permease 1PV7 ; 3.6 ; Crystal structure of lactose permease with TDG 1NHE ; 2.5 ; Crystal structure of Lactose synthase complex with UDP 1NKH ; 2.0 ; Crystal structure of Lactose synthase complex with UDP and Manganese 1O23 ; 2.32 ; CRYSTAL STRUCTURE OF LACTOSE SYNTHASE IN THE PRESENCE OF UDP-GLUCOSE 1NQI ; 2.0 ; crystal structure of lactose synthase, a 1:1 complex between beta1,4-galactosyltransferase and alpha-lactalbumin in the presence of GlcNAc 1NF5 ; 2.0 ; Crystal Structure of Lactose Synthase, Complex with Glucose 3R4Q ; 2.51 ; Crystal structure of Lactoylglutathione lyase from Agrobacterium tumefaciens 2Y5Y ; 3.38 ; Crystal structure of LacY in complex with an affinity inactivator 5JD3 ; 2.3 ; Crystal structure of LAE5, an alpha/beta hydrolase enzyme from the metagenome of Lake Arreo, Spain 5JD4 ; 2.05 ; Crystal structure of LAE6 Ser161Ala mutant, an alpha/beta hydrolase enzyme from the metagenome of Lake Arreo, Spain 7SAH ; 1.6 ; Crystal Structure of LaG16 Nanobody bound to eGFP 7SAI ; 2.23 ; Crystal Structure of Lag30 Nanobody bound to eGFP 4Z1X ; 2.8 ; Crystal structure of LAGLIDADG homing endonuclease I-GzeII in complex with DNA target 4YIT ; 3.24 ; Crystal Structure of LAGLIDADG Meganuclease I-AabMI Bound to Uncleaved DNA 4YIS ; 2.89 ; Crystal Structure of LAGLIDADG Meganuclease I-CpaMI Bound to Uncleaved DNA 4YHX ; 2.15 ; Crystal Structure of LAGLIDADG Meganuclease I-GpeMI Bound to Uncleaved DNA 5ESP ; 2.995 ; Crystal Structure of LAGLIDADG Meganuclease I-PanMI with coordinated Calcium ions 7JZK ; 2.457 ; Crystal structure of LAIR1 ectodomain (from MGD21) in complex with Plasmodium RIFIN (PF3D7_0401300) V2 domain 7JZI ; 2.707 ; Crystal structure of LAIR1 ectodomain (from MGD21) in complex with Plasmodium RIFIN (PF3D7_1040300) V2 domain 7SAJ ; 2.37 ; Crystal Structure of LaM2 Nanobody bound to mCherry 7SAK ; 1.15 ; Crystal Structure of LaM4 Nanobody bound to mCherry 7SAL ; 1.93 ; Crystal Structure of LaM6 Nanobody bound to mCherry 4BOW ; 1.35 ; Crystal structure of LamA_E269S from Z. galactanivorans in complex with laminaritriose and laminaritetraose 4BPZ ; 1.13 ; Crystal structure of lamA_E269S from Zobellia galactanivorans in complex with a trisaccharide of 1,3-1,4-beta-D-glucan. 3SLP ; 2.3 ; Crystal Structure of Lambda Exonuclease in Complex with a 12 BP Symmetric DNA Duplex 4WUZ ; 2.38 ; Crystal structure of lambda exonuclease in complex with DNA and Ca2+ 6M9K ; 2.3 ; Crystal structure of lambda exonuclease in complex with the Red beta C-terminal domain 5ZCA ; 1.801 ; Crystal structure of lambda repressor (1-20) fused with maltose-binding protein 3WOA ; 2.0 ; Crystal structure of lambda repressor (1-45) fused with maltose-binding protein 6CRO ; 3.0 ; CRYSTAL STRUCTURE OF LAMBDA-CRO BOUND TO A CONSENSUS OPERATOR AT 3.0 ANGSTROM RESOLUTION 6SNZ ; 2.6 ; Crystal structure of lamin A coil1b tetramer 6JLB ; 3.205 ; Crystal structure of lamin A/C fragment and assembly mechanisms of intermediate filaments 7DTG ; 3.6 ; Crystal structure of lamin B1 Ig-like domain from human 3UMN ; 2.0 ; Crystal Structure of Lamin-B1 5WUT ; 1.6 ; Crystal structure of laminarinase from Flavobacterium sp. UMI-01 3GD0 ; 1.62 ; Crystal structure of laminaripentaose-producing beta-1,3-glucanase 3GD9 ; 1.8 ; Crystal structure of laminaripentaose-producing beta-1,3-glucanase in complex with laminaritetraose 5LF2 ; 1.85 ; Crystal structure of laminin beta2 LE5-LF-LE6 8ATH ; 2.366 ; CRYSTAL STRUCTURE OF LAMP1 IN COMPLEX WITH FAB-B. 4PO4 ; 2.5 ; Crystal Structure of Lampetra planeri VLRC 5ZU4 ; 2.39 ; Crystal structure of Lamprey immune protein 6IUL ; 2.25 ; Crystal structure of Lamprey immune protein 2R9U ; 2.1 ; Crystal Structure of Lamprey Variable Lymphocyte Receptor 2913 Ectodomain 8YNJ ; 2.48 ; Crystal structure of Langat virus helicase 5G6U ; 1.844 ; Crystal structure of langerin carbohydrate recognition domain with GlcNS6S 8K80 ; 3.37 ; Crystal structure of Langya Virus attachment (G) glycoprotein 5EQB ; 2.19 ; Crystal structure of lanosterol 14-alpha demethylase with intact transmembrane domain bound to itraconazole 6ZCV ; 1.7 ; Crystal structure of lanthanide-dependent alcohol dehydrogenase PedH from Pseudomonas putida KT2440 6ZCW ; 1.65 ; Crystal structure of lanthanide-dependent alcohol dehydrogenase PedH from Pseudomonas putida KT2440 6DAM ; 1.85 ; Crystal structure of lanthanide-dependent methanol dehydrogenase XoxF from Methylomicrobium buryatense 5G 6IP9 ; 1.85 ; Crystal Structure of Lanthanum ion (La3+) bound bovine alpha-lactalbumin 3NXS ; 2.3 ; Crystal structure of LAO/AO transport system from Mycobacterium smegmatis bound to GDP 2P67 ; 1.8 ; Crystal structure of LAO/AO transport system kinase 5GNE ; 2.5 ; Crystal structure of LapB from Legionella pneumophila 4Q7R ; 1.4 ; Crystal structure of large Stokes shift fluorescent protein LSSmOrange 8DHU ; 2.295 ; Crystal structure of LARP-DM15 from Drosophila melanogaster bound to m7GpppC 8DIO ; 2.3 ; Crystal structure of LARP1-DM15 from Danio rerio bound to m7GpppC 4ZC4 ; 1.86 ; Crystal structure of LARP1-unique domain DM15 5V7C ; 2.59 ; Crystal structure of LARP1-unique domain DM15 bound 5'TOP RNA sequence 5V87 ; 1.692 ; Crystal structure of LARP1-unique domain DM15 bound to m7GpppC 5V4R ; 1.77 ; Crystal structure of LARP1-unique domain DM15 bound to m7GTP 4NG2 ; 2.413 ; Crystal structure of LasR LBD-QslA complex from Pseudomonas aeruginosa 6V7W ; 3.0 ; Crystal structure of LasR-Aqs1 complex from Pseudomonas aeruginosa 3MWT ; 1.982 ; Crystal structure of Lassa fever virus nucleoprotein in complex with Mn2+ 8GQ9 ; 2.3 ; Crystal structure of lasso peptide epimerase MslH 8GQB ; 2.41 ; Crystal structure of lasso peptide epimerase MslH D11A mutant 8ITH ; 2.55 ; Crystal structure of lasso peptide epimerase MslH H295N 8GQA ; 2.29 ; Crystal structure of lasso peptide epimerase MslH in complexed with precursor peptide analog MslAdeltaW21 8ITG ; 2.25 ; Crystal structure of lasso peptide epimerase MslH in complexed with precursor peptide variant MslAW21G 6JGY ; 3.389 ; Crystal structure of LASV-GP2 in a post fusion conformation 6P7J ; 3.501 ; Crystal structure of Latency Associated Peptide unbound to TGF-beta1 2OAY ; 2.35 ; Crystal structure of latent human C1-inhibitor 4KDS ; 1.6682 ; Crystal structure of latent rainbow trout plasminogen activator inhibitor 1 (PAI-1) 4OZK ; 2.038 ; Crystal structure of Laterosporulin, a broad spectrum leaderless bacteriocin produced by Brevibacillus laterosporus strain GI-9 6LWZ ; 2.2 ; Crystal structure of Laterosporulin10, bacteriocin produced by Brevibacillus sp. strain SKDU10 6LWY ; 2.3 ; Crystal structure of Laterosporulin3, bacteriocin produced by Brevibacillus sp. strain SKR3 5HC6 ; 2.15 ; Crystal structure of lavandulyl diphosphate synthase from Lavandula x intermedia in apo form 5HC8 ; 1.87 ; Crystal structure of lavandulyl diphosphate synthase from Lavandula x intermedia in complex with dimethylallyl diphosphate 5HC7 ; 2.05 ; Crystal structure of lavandulyl diphosphate synthase from Lavandula x intermedia in complex with S-thiolo-isopentenyldiphosphate 5W1I ; 2.2 ; Crystal structure of LbaCas13a (C2c2) bound to mature crRNA (20-nt spacer) 5W1H ; 1.99 ; Crystal structure of LbaCas13a (C2c2) bound to mature crRNA (24-nt spacer) 5WLH ; 1.80001 ; Crystal structure of LbaCas13a H328A (C2c2) bound to pre-crRNA (24-nt spacer) 7RQF ; 3.5 ; Crystal Structure of LbcA (lipoprotein binding partner of CtpA) of Pseudomonas aeruginosa 8ODW ; 3.07 ; Crystal structure of LbmA Ox-ACP didomain in complex with NADP and ethyl glycinate from the lobatamide PKS (Gynuella sunshinyii) 5XWP ; 3.086 ; Crystal structure of LbuCas13a-crRNA-target RNA ternary complex 7M1H ; 2.78 ; Crystal structure of LC/A-JPU-C10-JPU-D12-JPU-B8-JPU-G3-ciA-F12-ciA-D12 4H8K ; 2.3 ; Crystal structure of LC11-RNase H1 in complex with RNA/DNA hybrid 1UGM ; 2.05 ; Crystal Structure of LC3 4ZDV ; 1.8 ; Crystal structure of LC3 in complex with FAM134B LIR 5DCN ; 2.0 ; Crystal structure of LC3 in complex with TECPR2 LIR 5D94 ; 1.53 ; Crystal structure of LC3-LIR peptide complex 2ZJD ; 1.56 ; Crystal Structure of LC3-p62 complex 8T2L ; 2.24 ; Crystal structure of LC3A in complex with the LIR of NSs4 5WRD ; 1.9 ; Crystal structure of LC3B in complex with FYCO1 LIR 3BRL ; 1.9 ; Crystal Structure of LC8 S88E / Swa 4IBN ; 1.62 ; Crystal structure of LC9-RNase H1, a type 1 RNase H with the type 2 active-site motif 4XWG ; 2.65 ; Crystal Structure of LCAT (C31Y) in complex with Fab1 1IJR ; 2.2 ; Crystal structure of LCK SH2 complexed with nonpeptide phosphotyrosine mimetic 1X27 ; 2.7 ; Crystal Structure of Lck SH2-SH3 with SH2 binding site of p130Cas 4JMN ; 2.2 ; Crystal structure of LD transpeptidase LdtMt1 from M. tuberculosis 8D5N ; 1.8 ; Crystal structure of Ld-HF10 6BYA ; 2.26 ; Crystal structure of LdBPK_091320 with inhibitor bound 6Q0D ; 2.05 ; CRYSTAL STRUCTURE OF LDHA IN COMPLEX WITH COMPOUND NCGC00384414-01 AT 2.05 A RESOLUTION 6Q13 ; 2.0 ; CRYSTAL STRUCTURE OF LDHA IN COMPLEX WITH COMPOUND NCGC00420737-09 AT 2.00 A RESOLUTION 6BOI ; 2.102 ; Crystal Structure of LdtMt2 (56-408) with a panipenem adduct at the active site cysteine-354 5DU7 ; 1.79 ; Crystal structure of ldtMt2 at 1.79 Angstrom resolution 6RLG ; 1.51 ; Crystal structure of LdtMt2 from Mycobacterium tuberculosis 6RRM ; 1.64 ; Crystal structure of LdtMt2 from Mycobacterium tuberculosis bound to Ebselen 5DUJ ; 2.17 ; Crystal structure of ldtMt2 in complex with Faropenem adduct 4HU2 ; 1.46 ; Crystal structure of LdtMt2, a L,D-transpeptidase from Mycobacterium tuberculosis: domain A and B 4HUC ; 1.86 ; Crystal structure of LdtMt2, a L,D-transpeptidase from Mycobacterium tuberculosis: domain B and C 4EB0 ; 1.5 ; Crystal structure of Leaf-branch compost bacterial cutinase homolog 4CPB ; 1.57 ; CRYSTAL STRUCTURE OF LECA IN COMPLEX WITH A DIVALENT GALACTOSIDE AT 1. 57 ANGSTROM IN MAGNESIUM 4CP9 ; 1.65 ; Crystal structure OF lecA lectin complexed with a divalent galactoside at 1.65 angstrom 5TXF ; 3.1 ; Crystal structure of Lecithin:cholesterol acyltransferase (LCAT) in a closed conformation 6MVD ; 3.1 ; Crystal structure of Lecithin:cholesterol acyltransferase (LCAT) in complex with isopropyl dodec-11-enylfluorophosphonate (IDFP) and a small molecule activator 6AOW ; 1.6 ; Crystal structure of lectin domain of F9 pilus adhesin FmlH from E. coli UTI89 7LJG ; 2.21 ; Crystal Structure of Lectin from Dioclea altissima 6CJ9 ; 1.7 ; Crystal structure of lectin from Dioclea lasiophylla seeds (DlyL) complexed with X-Man 6LIK ; 2.4 ; Crystal Structure of Lectin from Pleurotus ostreatus in complex with Galactose 6LI7 ; 2.098 ; Crystal Structure of Lectin from Pleurotus ostreatus in complex with GalNAc 6KBQ ; 2.299 ; Crystal Structure of Lectin from Pleurotus ostreatus in complex with Glycerol 6KC2 ; 2.246 ; Crystal Structure of Lectin from Pleurotus ostreatus in complex with Rhamnose 6TLA ; 2.16 ; CRYSTAL STRUCTURE OF LECTIN-LIKE OX-LDL RECEPTOR 1 (C 1 2 1) 6TL7 ; 1.11 ; CRYSTAL STRUCTURE OF LECTIN-LIKE OX-LDL RECEPTOR 1 (P212121) 6TL9 ; 2.734 ; CRYSTAL STRUCTURE OF LECTIN-LIKE OX-LDL RECEPTOR 1 IN COMPLEX WITH BI-0115 1I8N ; 2.2 ; CRYSTAL STRUCTURE OF LEECH ANTI-PLATELET PROTEIN 7EYO ; 1.85 ; Crystal structure of leech hyaluronidase 2DFL ; 2.9 ; Crystal structure of left-handed RadA filament 2ZUC ; 3.3 ; Crystal structure of left-handed RadA filament 2ZUD ; 3.2 ; Crystal Structure of Left-handed RadA Filament 5CZY ; 2.2 ; Crystal structure of LegAS4 8SWI ; 3.0 ; Crystal structure of legAS4 from Legionella pneumophila subsp. pneumophila with histone H3 (1-12)peptide 8SR6 ; 2.22 ; Crystal structure of legAS4 from Legionella pneumophila subsp. pneumophila with histone H3 (3-17)peptide 6B7Q ; 2.2 ; Crystal structure of Legionella effector protein sdeA (lpg2157) aa. 211-910 6B7P ; 1.51 ; Crystal structure of Legionella effector sdeD (lpg2509) 6B7O ; 1.85 ; Crystal structure of Legionella effector sdeD (lpg2509) H67A in complex with ADP-ribosylated Ubiquitin 6B7M ; 1.7 ; Crystal structure of Legionella effector sdeD (lpg2509) in complex with Ubiquitin 5ZI5 ; 2.6 ; Crystal structure of Legionella pneumophila aminopeptidase A 5ZIE ; 2.0 ; Crystal structure of Legionella pneumophila aminopeptidase A in complex with aspartic acid 5ZI7 ; 1.86 ; Crystal structure of Legionella pneumophila aminopeptidase A in complex with glutamic acid 4TTP ; 2.2 ; Crystal structure of Legionella pneumophila dephospho-CoA kinase in apo-form 4TTQ ; 2.2 ; Crystal structure of Legionella pneumophila dephospho-CoA kinase in complex with ATP 4TTR ; 2.1 ; Crystal structure of Legionella pneumophila dephospho-CoA kinase in complex with Bu2 6KS5 ; 2.8 ; Crystal structure of Legionella pneumophila deubiquitinase Ceg23 5VRQ ; 3.205 ; Crystal structure of Legionella pneumophila effector AnkC 6AOK ; 1.88 ; Crystal structure of Legionella pneumophila effector Ceg4 with N-terminal TEV protease cleavage sequence 6AOJ ; 1.902 ; Crystal structure of Legionella pneumophila effector Ceg4 with N-terminal yeast Hog1p sequence 5WD8 ; 1.944 ; Crystal structure of Legionella pneumophila effector lpg2328 5WD9 ; 1.4 ; Crystal structure of Legionella pneumophila effector lpg2328 7WBK ; 2.74 ; Crystal structure of Legionella pneumophila effector protein Lpg0081 7WBM ; 2.7 ; Crystal structure of Legionella pneumophila effector protein Lpg0081 4KUN ; 1.95 ; Crystal structure of Legionella pneumophila Lpp1115 / KaiB 8DMP ; 2.17 ; Crystal structure of Legionella pneumophila macrodomain effector MavL 8DMQ ; 2.195 ; Crystal structure of Legionella pneumophila macrodomain MavL in complex with ubiquitin vinyl methyl ester 8DMS ; 2.15 ; Crystal structure of Legionella pneumophila macrodomain MavL in complex with ubiquitin vinyl methyl ester soaked with ADP-ribose 4C7P ; 3.1 ; Crystal structure of Legionella pneumophila RalF F255K mutant 4Q63 ; 1.953 ; Crystal Structure of Legionella Uncharacterized Protein Lpg0364 5CKW ; 2.49 ; Crystal structure of LegK4_AMPPNP Kinase 5CLR ; 3.706 ; Crystal structure of LegK4_APO Kinase 6EDI ; 1.85 ; Crystal structure of Leishmania braziliensis glucokinase 8C79 ; 3.1 ; Crystal structure of Leishmania donovani 6-Phosphogluconate Dehydrogenase complexed with NADPH 4P4P ; 2.2973 ; Crystal structure of Leishmania infantum polymerase beta: Nick complex 4P4O ; 2.3001 ; Crystal structure of Leishmania infantum polymerase beta: Ternary gap complex 4P4M ; 1.9185 ; Crystal structure of Leishmania infantum polymerase beta: Ternary P/T complex 4ADW ; 3.61 ; CRYSTAL STRUCTURE OF LEISHMANIA INFANTUM TRYPANOTHIONE REDUCTASE IN COMPLEX WITH NADPH AND TRYPANOTHIONE 2X77 ; 2.1 ; Crystal Structure of Leishmania major ADP ribosylation factor-like 1. 3TQ0 ; 1.9 ; Crystal structure of Leishmania major dihydroorotate dehydrogenase in complex with fumarate 3TRO ; 1.86 ; Crystal Structure of Leishmania major dihydroorotate dehydrogenase mutant D171A 3TJX ; 1.64 ; Crystal Structure of Leishmania major dihydroorotate dehydrogenase mutant H174A 6EBS ; 2.05 ; Crystal structure of Leishmania major dihydroorotate dehydrogenase mutant H174A in complex with orotate 6DWG ; 1.9 ; Crystal structure of Leishmania major dihydroorotate dehydrogenase mutant Q139A 6DGS ; 1.75 ; Crystal Structure of Leishmania major dihydroorotate dehydrogenase mutant Y142A 5OEZ ; 2.41 ; Crystal structure of Leishmania major fructose-1,6-bisphosphatase in apo form. 5OEY ; 2.8 ; Crystal structure of Leishmania major fructose-1,6-bisphosphatase in holo form. 5OFU ; 2.62 ; Crystal structure of Leishmania major fructose-1,6-bisphosphatase in T-state. 3FWU ; 1.8 ; Crystal structure of Leishmania major MIF1 3FWT ; 1.9 ; Crystal structure of Leishmania major MIF2 5AG7 ; 2.6 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A BENZOMORPHOLINE LIGAND 5AGE ; 2.0 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A BENZOMORPHOLINONE LIGAND 4UCM ; 2.32 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A FRAGMENT 4UCN ; 1.8 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A FRAGMENT 4UCP ; 1.5 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A FRAGMENT 6GNV ; 2.2 ; Crystal Structure of Leishmania major N-Myristoyltransferase (NMT) With Bound Myristoyl-CoA and a isopropyl methyl indole aryl sulphonamide ligand 4A2Z ; 2.31 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A PYRAZOLE SULPHONAMIDE LIGAND 4A30 ; 1.5 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A PYRAZOLE SULPHONAMIDE LIGAND 4A31 ; 2.09 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A PYRAZOLE SULPHONAMIDE LIGAND 4A32 ; 2.2 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A PYRAZOLE SULPHONAMIDE LIGAND 4A33 ; 2.4 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A PYRAZOLE SULPHONAMIDE LIGAND 2WSA ; 1.6 ; Crystal Structure of Leishmania major N-myristoyltransferase (NMT) with bound myristoyl-CoA and a pyrazole sulphonamide ligand (DDD85646) 6GNT ; 1.6 ; Crystal Structure of Leishmania major N-Myristoyltransferase (NMT) With Bound Myristoyl-CoA and a Quionlinyl aryl sulphonamide ligand 6GNU ; 1.54 ; Crystal Structure of Leishmania major N-Myristoyltransferase (NMT) With Bound Myristoyl-CoA and a Quionlinyl aryl sulphonamide ligand 5AG4 ; 1.99 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A THIAZOLIDINONE LIGAND 5AG5 ; 2.0 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A THIAZOLIDINONE LIGAND 5AG6 ; 2.0 ; CRYSTAL STRUCTURE OF LEISHMANIA MAJOR N-MYRISTOYLTRANSFERASE (NMT) WITH BOUND MYRISTOYL-COA AND A THIAZOLIDINONE LIGAND 6GNH ; 1.89 ; Crystal Structure of Leishmania major N-Myristoyltransferase (NMT) With Bound Myristoyl-CoA and an Azepanyl Phenyl Benzylsulphonamide Ligand 6GNS ; 1.8 ; Crystal Structure of Leishmania major N-Myristoyltransferase (NMT) With Bound Myristoyl-CoA and an Azepanyl Phenyl Benzylsulphonamide Ligand 3H5Z ; 1.49 ; Crystal Structure of Leishmania major N-myristoyltransferase with bound myristoyl-CoA 5XIL ; 1.9 ; Crystal Structure of Leishmania major Prolyl-tRNA Synthetase (LmPRS) 3G1U ; 2.2 ; Crystal structure of Leishmania major S-adenosylhomocysteine hydrolase 4ITY ; 1.8 ; Crystal structure of Leishmania mexicana arginase 4IU5 ; 1.95 ; Crystal structure of Leishmania mexicana arginase in complex with catalytic product L-ornithine 4IU0 ; 1.77 ; Crystal structure of Leishmania mexicana arginase in complex with inhibitor ABH 5HJA ; 1.65 ; Crystal structure of Leishmania mexicana arginase in complex with inhibitor ABHDP 5HJ9 ; 1.28 ; Crystal structure of Leishmania mexicana arginase in complex with inhibitor ABHPE 4IU4 ; 1.8 ; Crystal structure of Leishmania mexicana arginase in complex with inhibitor BEC 4IU1 ; 1.95 ; Crystal structure of Leishmania mexicana arginase in complex with inhibitor nor-NOHA 1EVY ; 1.75 ; CRYSTAL STRUCTURE OF LEISHMANIA MEXICANA GLYCEROL-3-PHOSPHATE DEHYDROGENASE 1N1E ; 1.9 ; Crystal structure of Leishmania mexicana Glycerol-3-phosphate dehydrogenase complexed with DHAP and NAD 1JDJ ; 2.2 ; CRYSTAL STRUCTURE OF LEISHMANIA MEXICANA GLYCEROL-3-PHOSPHATE DEHYDROGENASE IN COMPLEX WITH 2-FLUORO-6-CHLOROPURINE 1EVZ ; 2.8 ; CRYSTAL STRUCTURE OF LEISHMANIA MEXICANA GLYCEROL-3-PHOSPHATE DEHYDROGENASE IN COMPLEX WITH NAD 1N1G ; 2.5 ; Crystal structure of Leishmania mexicana Glycerol-3-phosphate dehydrogenase with inhibitor BCP 1M66 ; 1.9 ; Crystal Structure of Leishmania mexicana GPDH Complexed with Inhibitor 2-bromo-6-chloro-purine 1M67 ; 2.5 ; Crystal Structure of Leishmania mexicana GPDH Complexed with Inhibitor 2-bromo-6-hydroxy-purine 3HQP ; 2.3 ; Crystal structure of Leishmania mexicana pyruvate kinase (LmPYK) in complex with ATP, Oxalate and fructose 2,6 bisphosphate 3HQQ ; 5.07 ; Crystal structure of Leishmania mexicana pyruvate kinase (LmPYK) in complex with Fructose 2,6 bisphosphate 3IS4 ; 2.1 ; Crystal structure of Leishmania mexicana pyruvate kinase (LmPYK)in complex with 1,3,6,8-pyrenetetrasulfonic acid 3KTX ; 2.1 ; Crystal structure of Leishmania mexicana pyruvate kinase (LmPYK)in complex with 1,3,6,8-pyrenetetrasulfonic acid 3PP7 ; 2.35 ; Crystal structure of Leishmania mexicana pyruvate kinase in complex with the drug suramin, an inhibitor of glycolysis. 3QV6 ; 2.85 ; Crystal structure of Leishmania mexicana pyruvate kinase(LmPYK)in complex with acid blue 80. 3QV8 ; 2.45 ; Crystal structure of Leishmania mexicana pyruvate kinase(LmPYK)in complex with benzothiazole-2,5-disulfonic acid. 3QV7 ; 2.7 ; Crystal structure of Leishmania mexicana pyruvate kinase(LmPYK)in complex with ponceau S and acid blue 25. 3NGR ; 2.95 ; Crystal structure of Leishmania nucleoside diphosphate kinase b with unordered nucleotide-binding loop. 2Y63 ; 1.97 ; Crystal structure of Leishmanial E65Q-TIM complexed with Bromohydroxyacetone phosphate 2Y62 ; 1.08 ; Crystal structure of Leishmanial E65Q-TIM complexed with R-Glycidol phosphate 2Y61 ; 0.99 ; Crystal structure of Leishmanial E65Q-TIM complexed with S-Glycidol phosphate 7U1H ; 2.5 ; Crystal structure of Lens culinaris vicilin 2YWE ; 2.05 ; Crystal structure of LepA from Aquifex aeolicus 4IRU ; 3.2 ; Crystal Structure of lepB GAP core in a transition state mimetic complex with Rab1A and ALF3 4JVS ; 2.783 ; Crystal structure of LepB GAP domain from Legionella drancourtii in complex with Rab1-GDP and AlF3 4F5V ; 2.27 ; Crystal Structure of Leporine Serum Albumin 6OCK ; 1.9 ; Crystal Structure of Leporine Serum Albumin in Complex with Ketoprofen 4PO0 ; 2.73 ; Crystal Structure of Leporine Serum Albumin in complex with naproxen 6OCL ; 2.35 ; Crystal Structure of Leporine Serum Albumin in Complex with Suprofen 8OHA ; 2.37 ; Crystal structure of Leptospira interrogans GAPDH 4X22 ; 2.084 ; Crystal structure of Leptospira Interrogans Triosephosphate Isomerase (LiTIM) 4JZB ; 1.9 ; Crystal Structure of Leshmaniasis major Farnesyl diphosphate synthase in complex with 1-(2-HYDROXY-2,2-DIPHOSPHONOETHYL)-3-PHENYLPYRIDINIUM, IPP and Ca2+ 4JZX ; 1.8 ; Crystal Structure of Leshmaniasis major Farnesyl diphosphate synthase in complex with 3-BUTYL-1-(2,2-DIPHOSPHONOETHYL)PYRIDINIUM, IPP and Ca2+ 4K10 ; 2.3 ; Crystal Structure of Leshmaniasis major Farnesyl diphosphate synthase in complex with 3-FLUORO-1-(2-HYDROXY-2,2-DIPHOSPHONOETHYL)PYRIDINIUM and Mg2+ 2EGS ; 1.9 ; Crystal structure of Leu261 to Met mutant of Diphthine synthase 2ER8 ; 2.85 ; Crystal Structure of Leu3 DNA-binding domain complexed with a 12mer DNA duplex 2ERG ; 3.15 ; Crystal Structure of Leu3 DNA-binding domain with a single H50C mutation complexed with a 15mer DNA duplex 2DV5 ; 2.2 ; Crystal structure of Leu65 to Ala mutant of Diphthine synthase 2DV3 ; 1.9 ; Crystal structure of Leu65 to Arg mutant of Diphthine synthase 2DV4 ; 2.2 ; Crystal structure of Leu65 to Gln mutant of Diphthine synthase 1SR9 ; 2.0 ; Crystal Structure of LeuA from Mycobacterium tuberculosis 4MM8 ; 3.31 ; Crystal structure of LeuBAT (delta13 mutant) in complex with (R)-fluoxetine 4MM6 ; 3.1 ; Crystal structure of LeuBAT (delta13 mutant) in complex with (S)-duloxetine 4MMA ; 3.3 ; Crystal structure of LeuBAT (delta13 mutant) in complex with clomipramine 4MM7 ; 2.85 ; Crystal structure of LeuBAT (delta13 mutant) in complex with desvenlafaxine 4MM9 ; 2.9 ; Crystal structure of LeuBAT (delta13 mutant) in complex with fluvoxamine 4MM4 ; 2.886 ; Crystal structure of LeuBAT (delta13 mutant) in complex with paroxetine 4MM5 ; 3.2 ; Crystal structure of LeuBAT (delta13 mutant) in complex with sertraline 4MMF ; 2.7 ; Crystal structure of LeuBAT (delta5 mutant) in complex with mazindol 4MMD ; 2.3 ; Crystal structure of LeuBAT (delta6 mutant) in complex with (S)-duloxetine 4MMC ; 2.3 ; Crystal structure of LeuBAT (delta6 mutant) in complex with desvenlafaxine 4MME ; 2.5 ; Crystal structure of LeuBAT (delta6 mutant) in complex with mazindol 4MMB ; 2.25 ; Crystal structure of LeuBAT (delta6 mutant) in complex with sertraline 4ZI6 ; 2.0 ; Crystal structure of leucine aminopeptidase from Helicobacter pylori 8HPE ; 3.22 ; Crystal structure of Leucine dehydrogenase 3VPX ; 2.55 ; Crystal structure of leucine dehydrogenase from a psychrophilic bacterium Sporosarcina psychrophila. 4XFK ; 1.3 ; Crystal structure of Leucine-, Isoleucine-, Valine-, Threonine-, and Alanine-binding protein from Brucella ovis 7JFN ; 1.7 ; Crystal Structure of Leucine-, isoleucine-, valine-, threonine-, and alanine-binding protein from Brucella ovis, closed conformation 3FIG ; 2.3 ; Crystal Structure of Leucine-bound LeuA from Mycobacterium tuberculosis 5V5T ; 2.15 ; Crystal structure of leucine-rich protein regulator, ElrR, from Enterococcus faecalis 5V5U ; 2.278 ; Crystal structure of leucine-rich protein regulator, ElrR, from Enterococcus faecalis 4XGO ; 1.74 ; Crystal structure of leucine-rich repeat domain of APL1B 4Q62 ; 1.898 ; Crystal Structure of Leucine-rich repeat- and Coiled coil-containing Protein from Legionella pneumophila 5NGY ; 3.7 ; Crystal structure of Leuconostoc citreum NRRL B-1299 dextransucrase DSR-M 5LFC ; 3.2 ; Crystal structure of Leuconostoc citreum NRRL B-1299 N-terminally truncated dextransucrase DSR-M 6HTV ; 3.9 ; Crystal structure of Leuconostoc citreum NRRL B-1299 N-terminally truncated dextransucrase DSR-M in complex with isomaltotetraose 5O8L ; 3.6 ; Crystal structure of Leuconostoc citreum NRRL B-1299 N-terminally truncated dextransucrase DSR-M in complex with sucrose 3TTQ ; 1.9 ; Crystal structure of Leuconostoc mesenteroides NRRL B-1299 N-terminally truncated dextransucrase DSR-E in orthorhombic apo-form at 1.9 angstrom resolution 3TTO ; 3.3 ; Crystal structure of Leuconostoc mesenteroides NRRL B-1299 N-terminally truncated dextransucrase DSR-E in triclinic form 4Q1L ; 1.9 ; Crystal structure of Leucurolysin-a complexed with an endogenous tripeptide (QSW). 3JRU ; 2.6 ; Crystal structure of Leucyl Aminopeptidase (pepA) from Xoo0834,Xanthomonas oryzae pv. oryzae KACC10331 1WKB ; 2.05 ; Crystal Structure of Leucyl-tRNA Synthetase from the Archaeon Pyrococcus horikoshii Reveals a Novel Editing Domain Orientation 2CXA ; 1.6 ; Crystal structure of Leucyl/phenylalanyl-tRNA protein transferase from Escherichia coli 1PVH ; 2.5 ; Crystal structure of leukemia inhibitory factor in complex with gp130 2Q7N ; 4.0 ; Crystal structure of Leukemia inhibitory factor in complex with LIF receptor (domains 1-5) 6XLV ; 1.4 ; Crystal structure of leukemia-associated N196K mutant of U2AF65 bound to AdML splice site 7T87 ; 3.0 ; CRYSTAL STRUCTURE OF LEUKOCIDIN AB/CENTYRIN S17/FAB 214F COMPLEX 7T82 ; 3.5 ; Crystal Structure of LEUKOCIDIN E/CENTYRIN S26/FAB B438 2D3V ; 1.85 ; Crystal Structure of Leukocyte Ig-like Receptor A5 (LILRA5/LIR9/ILT11) 3P2T ; 1.699 ; Crystal Structure of Leukocyte Ig-like Receptor LILRB4 (ILT3/LIR-5/CD85k) 3ROH ; 3.2 ; Crystal Structure of Leukotoxin (LukE) from Staphylococcus aureus subsp. aureus COL. 7P8T ; 1.459 ; Crystal Structure of leukotoxin LukE from Staphylococcus aureus at 1.5 Angstrom resolution 7P8S ; 1.9 ; Crystal Structure of leukotoxin LukE from Staphylococcus aureus at 1.9 Angstrom resolution 7P8X ; 1.4 ; Crystal Structure of leukotoxin LukE from Staphylococcus aureus in complex with a doubly sulfated CCR2 N-terminal peptide 7P93 ; 1.55 ; Crystal Structure of leukotoxin LukE from Staphylococcus aureus in complex with a sulfated ACKR1 N-terminal peptide 7P8U ; 1.6 ; Crystal Structure of leukotoxin LukE from Staphylococcus aureus in complex with p-cresyl sulfate 3CHS ; 2.55 ; Crystal structure of leukotriene A4 hydrolase in complex with (2S)-2-amino-5-[[4-[(2S)-2-hydroxy-2-phenyl-ethoxy]phenyl]amino]-5-oxo-pentanoic acid 3CHP ; 2.1 ; Crystal structure of leukotriene a4 hydrolase in complex with (3S)-3-amino-4-oxo-4-[(4-phenylmethoxyphenyl)amino]butanoic acid 3CHO ; 1.8 ; Crystal structure of leukotriene a4 hydrolase in complex with 2-amino-N-[4-(phenylmethoxy)phenyl]-acetamide 3CHR ; 2.2 ; Crystal structure of leukotriene A4 hydrolase in complex with 4-amino-N-[4-(phenylmethoxy)phenyl]-butanamide 3CHQ ; 2.09 ; Crystal structure of leukotriene a4 hydrolase in complex with N5-[4-(phenylmethoxy)phenyl]-L-glutamine 1V3T ; 2.3 ; Crystal structure of leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase 1V3V ; 2.0 ; Crystal structure of leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase complexed with NADP and 15-oxo-PGE2 1V3U ; 2.0 ; Crystal structure of leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase in apo form 3F3C ; 2.1 ; Crystal structure of LeuT bound to 4-Fluoro-L-Phenylalanine and sodium 3F4J ; 2.15 ; Crystal structure of LeuT bound to glycine and sodium 7LQJ ; 2.144 ; Crystal structure of LeuT bound to L-Alanine 3F48 ; 1.9 ; Crystal structure of LeuT bound to L-alanine and sodium 3F3E ; 1.8 ; Crystal structure of LeuT bound to L-leucine (30 mM) and sodium 3USG ; 2.502 ; Crystal structure of LeuT bound to L-leucine in space group C2 from lipid bicelles 3USI ; 3.106 ; Crystal structure of LeuT bound to L-leucine in space group P2 from lipid bicelles 3USJ ; 3.5 ; Crystal structure of LeuT bound to L-leucine in space group P21 from lipid bicelles 3USK ; 4.5 ; Crystal structure of LeuT bound to L-leucine in space group P21 from lipid bicelles 3F3D ; 2.3 ; Crystal structure of LeuT bound to L-Methionine and sodium 3F4I ; 1.95 ; Crystal Structure of LeuT bound to L-selenomethionine and sodium 3USL ; 2.71 ; Crystal Structure of LeuT bound to L-selenomethionine in space group C2 from lipid bicelles 3USM ; 3.008 ; Crystal Structure of LeuT bound to L-selenomethionine in space group C2 from lipid bicelles (collected at 1.2 A) 3USO ; 4.5 ; Crystal structure of LeuT bound to L-selenomethionine in space group P21212 from lipid bicelles 3F3A ; 2.0 ; Crystal Structure of LeuT bound to L-Tryptophan and Sodium 3USP ; 2.1 ; Crystal structure of LeuT in heptyl-beta-D-Selenoglucoside 7DIX ; 3.49 ; Crystal structure of LeuT in lipidic cubic phase at pH 5 7DII ; 2.403 ; Crystal structure of LeuT in lipidic cubic phase at pH 7 3TT3 ; 3.22 ; Crystal Structure of LeuT in the inward-open conformation in complex with Fab 3TT1 ; 3.099 ; Crystal Structure of LeuT in the outward-open conformation in complex with Fab 3QS4 ; 2.631 ; Crystal structure of LeuT mutant F259V bound to sodium and L-tryptophan 3QS6 ; 2.801 ; Crystal structure of LeuT mutant F259V,I359Q bound to sodium and L-tryptophan 3QS5 ; 2.6 ; Crystal structure of LeuT mutant I359Q bound to sodium and L-tryptophan 8FT5 ; 3.8 ; Crystal structure of LeuT soaked with Crown-5 3GJD ; 2.0 ; Crystal Structure of LeuT with bound OG 4HMK ; 3.0 ; Crystal structure of LeuT-E290S with bound Br 4HOD ; 3.3 ; Crystal structure of LeuT-E290S with bound Cl 4FXZ ; 2.601 ; Crystal structure of LeuT-F253A bound to L-leucine from lipid bicelles 4FY0 ; 3.0 ; Crystal structure of LeuT-F253A bound to L-selenomethionine from lipid bicelles 2A65 ; 1.65 ; Crystal structure of LEUTAA, a bacterial homolog of Na+/Cl--dependent neurotransmitter transporters 4FFI ; 2.3 ; Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose 4FFH ; 2.2 ; Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose 4FFF ; 2.57 ; Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens 4FFG ; 2.3 ; Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV 1PT2 ; 2.1 ; Crystal structure of levansucrase (E342A) complexed with sucrose 6PWQ ; 2.6 ; Crystal structure of Levansucrase from Bacillus subtilis mutant S164A at 2.6 A 1W18 ; 2.5 ; Crystal Structure of levansucrase from Gluconacetobacter diazotrophicus 1IY8 ; 1.6 ; Crystal Structure of Levodione Reductase 4GQ7 ; 2.53 ; Crystal structure of Lg-Flo1p 5VO5 ; 2.004 ; Crystal structure of Lgd-Shrub complex, single chain fusion 5AZG ; 1.81 ; Crystal structure of LGG-1 complexed with a UNC-51 peptide 5AZF ; 1.6 ; Crystal structure of LGG-1 complexed with a WEEL peptide 5AZH ; 2.3 ; Crystal structure of LGG-2 fused with an EEEWEEL peptide 5Y30 ; 1.781 ; Crystal structure of LGI1 LRR domain 3RO3 ; 1.1 ; crystal structure of LGN/mInscuteable complex 8ENF ; 3.29 ; Crystal structure of LGR ligand alpha2/beta5 from C. elegans in crystal form 1 (native) 8END ; 3.54 ; Crystal structure of LGR ligand alpha2/beta5 from C. elegans in crystal form 1 (SeMet) 8ENB ; 2.35 ; Crystal structure of LGR ligand alpha2/beta5 from C. elegans in crystal form 2 4QXE ; 2.2 ; Crystal structure of LGR4 fused with hagfish VLR 1NKZ ; 2.0 ; Crystal structure of LH2 B800-850 from Rps. acidophila at 2.0 Angstrom resolution 3SZ5 ; 2.8 ; Crystal Structure of LHK-Exo in complex with 5-phosphorylated oligothymidine (dT)4 3SZ4 ; 2.59 ; Crystal Structure of LHK-Exo in complex with dAMP 2RGT ; 2.05 ; Crystal Structure of Lhx3 LIM domains 1 and 2 with the binding domain of Isl1 7EV1 ; 1.38 ; Crystal structure of LI-Cadherin EC1-2 7CYM ; 2.7 ; Crystal structure of LI-Cadherin EC1-4 3KYK ; 3.2 ; Crystal structure of li33 Igg1 Fab 3KYM ; 2.62 ; Crystal structure of Li33 IgG2 di-Fab 4R78 ; 1.45 ; Crystal structure of LicA in complex with AMP 6ST5 ; 2.82 ; crystal structure of LicM2 7A4V ; 1.94 ; Crystal structure of lid-truncated ADP-bound BiP in an oligomeric state 7A4U ; 1.77 ; Crystal structure of lid-truncated apo BiP in an oligomeric state 7S4E ; 2.25 ; Crystal Structure of ligand ACBi1 in complex with bromodomain of human Smarca2 and pVHL:ElonginC:ElonginB complex 8QVU ; 2.24 ; Crystal Structure of ligand ACBI3 in complex with KRAS G12D C118S GDP and pVHL:ElonginC:ElonginB complex 4LQ2 ; 2.694 ; Crystal structure of ligand binding domain of CysB, a LysR member from Salmonella typhimurium in complex with effector ligand, O-acetylserine 4M4G ; 2.7 ; Crystal structure of ligand binding domain of CysB, a LysR member from Salmonella typhimurium LT2 in complex with effector ligand, N-acetylserine. 4LQ5 ; 2.803 ; Crystal structure of ligand binding domain of CysB, a LysR member from Salmonella typhimurium LT2 in complex with effector ligand, O-acetylserine at 2.8A 1UFU ; 3.0 ; Crystal structure of ligand binding domain of immunoglobulin-like transcript 2 (ILT2; LIR-1) 4GWO ; 2.394 ; Crystal structure of ligand binding domain of LysR family member,CysB in complex with sulfate from Salmonella typhimurium LT2 3KL3 ; 2.33 ; Crystal structure of Ligand bound XynC 4L13 ; 1.66 ; Crystal structure of Ligand Free EGFP-based Calcium Sensor CatchER 2WDP ; 1.95 ; Crystal Structure of Ligand Free Human Caspase-6 4EMU ; 1.9 ; Crystal structure of ligand free human STING 4F5W ; 2.201 ; Crystal structure of ligand free human STING CTD 7NBZ ; 1.35 ; Crystal structure of ligand free open conformation of sulfoquinovosyl binding protein (SQBP) from Agrobacterium tumefaciens 6PVG ; 1.709 ; Crystal structure of ligand free PhqK 6W3R ; 1.38 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with 3-methylisoleucine 6W3O ; 1.42 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with 4-methylisoleucine 6W3P ; 1.383 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with beta-methylnorleucine 6W3Y ; 1.32 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with L-alanine 6W3S ; 1.4 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with L-leucine 6W3T ; 2.1 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with L-norvaline 6W3V ; 1.47 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with L-phenylalanine 6W3X ; 1.4 ; Crystal structure of ligand-binding domain of Campylobacter jejuni chemoreceptor Tlp3 in complex with L-valine 3D24 ; 2.11 ; Crystal structure of ligand-binding domain of estrogen-related receptor alpha (ERRalpha) in complex with the peroxisome proliferators-activated receptor coactivator-1alpha box3 peptide (PGC-1alpha) 6PYI ; 1.95 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA 6PXY ; 2.0 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-alanine 6PY3 ; 1.9 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-isoleucine 6PY4 ; 2.0 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-leucine 6Q0G ; 2.0 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-proline 6PY5 ; 1.9 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-serine 6Q0F ; 2.2 ; Crystal structure of ligand-binding domain of Pseudomonas fluorescens chemoreceptor CtaA in complex with L-valine 1J8E ; 1.85 ; Crystal structure of ligand-binding repeat CR7 from LRP 4CQK ; 1.6 ; Crystal structure of ligand-bound NaD1 5Y41 ; 2.05 ; Crystal Structure of LIGAND-BOUND NURR1-LBD 4ZMJ ; 3.31 ; Crystal Structure of Ligand-Free BG505 SOSIP.664 HIV-1 Env Trimer 3NRS ; 1.8 ; Crystal structure of ligand-free bifunctional folylpolyglutamate synthase/dihydrofolate synthase from yersinia pestis c092 7EIP ; 1.88 ; Crystal structure of ligand-free chondroitin ABC lyase I 7QNO ; 2.38 ; Crystal structure of ligand-free Danio rerio HDAC6 CD1 CD2 7COK ; 1.5 ; Crystal structure of ligand-free form of 5-ketofructose reductase of Gluconobacter sp. strain CHM43 5ZNN ; 2.448 ; Crystal structure of ligand-free form of the Vps10 ectodomain of Sortilin 3IT2 ; 1.838 ; Crystal structure of ligand-free Francisella tularensis histidine acid phosphatase 3EUE ; 2.3 ; Crystal structure of ligand-free human uridine phosphorylase 1 (hUPP1) 1UFQ ; 2.5 ; Crystal structure of ligand-free human uridine-cytidine kinase 2 6PER ; 2.1 ; Crystal Structure of Ligand-Free iSeroSnFR 5AIQ ; 2.716 ; Crystal structure of ligand-free NadR 6J33 ; 1.297 ; Crystal structure of ligand-free of PulA from Klebsiella pneumoniae 6J35 ; 1.839 ; Crystal structure of ligand-free of PulA-G680L mutant from Klebsiella pneumoniae 5AJT ; 2.43 ; Crystal structure of ligand-free phosphoribohydrolase lonely guy from Claviceps purpurea 5AJU ; 2.5 ; Crystal structure of ligand-free phosphoribohydroxylase lonely guy from Claviceps purpurea in complex with phosphoribose 7KK7 ; 2.8 ; crystal structure of ligand-free PLEKHA7 PH domain 3RDX ; 2.101 ; Crystal structure of ligand-free R7-2 streptavidin 6JCM ; 2.08 ; Crystal structure of ligand-free Rv0187. 7BAJ ; 1.65 ; Crystal structure of ligand-free SARS-CoV-2 main protease 7UXT ; 3.4 ; Crystal structure of ligand-free SeThsA 4XG2 ; 2.21 ; Crystal structure of ligand-free Syk 6AJ5 ; 3.5 ; Crystal structure of ligand-free type DHODH from Eimeria tenella 6VLB ; 1.85 ; Crystal structure of ligand-free UDP-GlcNAc 2-epimerase from Neisseria meningitidis 5JXA ; 1.6 ; Crystal structure of ligand-free VRC03 antigen-binding fragment. 4ZS8 ; 2.6 ; Crystal structure of ligand-free, full length DasR 1HBP ; 1.9 ; CRYSTAL STRUCTURE OF LIGANDED AND UNLIGANDED FORMS OF BOVINE PLASMA RETINOL-BINDING PROTEIN 1HBQ ; 1.7 ; CRYSTAL STRUCTURE OF LIGANDED AND UNLIGANDED FORMS OF BOVINE PLASMA RETINOL-BINDING PROTEIN 7UF7 ; 2.0 ; Crystal structure of liganded Hb with the 5-HMF analog, MMA503 7UF6 ; 2.0 ; Crystal structure of liganded Hb with the 5-HMF analog, MMA509 3R5I ; 2.2 ; Crystal structure of liganded Hemoglobin complexed with a potent Antisickling agent, INN-312 3IC2 ; 2.4 ; Crystal Structure of liganded hemoglobin in complex with a potent antisickling agent, INN-266 3IC0 ; 1.8 ; Crystal Structure of liganded hemoglobin in complex with a potent antisickling agent, INN-298 4NQA ; 3.102 ; Crystal structure of liganded hRXR-alpha/hLXR-beta heterodimer on DNA 1TUK ; 1.12 ; Crystal structure of liganded type 2 non specific lipid transfer protein from wheat 7SXE ; 3.0 ; Crystal structure of ligase I with nick duplexes containing cognate G:T 7SX5 ; 2.8 ; Crystal structure of ligase I with nick duplexes containing mismatch A:C 4Y9D ; 2.012 ; Crystal structure of LigD in complex with NADH from Sphingobium sp. strain SYK-6 4Y98 ; 2.648 ; Crystal structure of LigD-apo form from Sphingobium sp. strain SYK-6 4YAN ; 2.593 ; Crystal structure of LigE in complex with glutathione (GSH) from Sphingobium sp. strain SYK-6 4YAM ; 1.905 ; Crystal structure of LigE-apo form from Sphingobium sp. strain SYK-6 4YAV ; 1.401 ; Crystal structure of LigG in complex with B-glutathionyl-acetoveratrone (GS-AV) from Sphingobium sp. strain SYK-6 4YAP ; 1.111 ; Crystal structure of LigG-apo form from Sphingobium sp. strain SYK-6 4EN0 ; 2.59 ; Crystal structure of light 3P7N ; 2.1 ; Crystal structure of light activated transcription factor El222 from Erythrobacter litoralis 4J6G ; 2.4 ; CRYSTAL STRUCTURE OF LIGHT AND DcR3 COMPLEX 4KG8 ; 2.25 ; Crystal structure of light mutant 4KGG ; 2.78 ; Crystal structure of light mutant2 and dcr3 complex 8A5R ; 1.85 ; Crystal structure of light-activated DNA-binding protein EL222 from Erythrobacter litoralis crystallized and measured in dark. 8A5S ; 1.85 ; Crystal structure of light-activated DNA-binding protein EL222 from Erythrobacter litoralis crystallized in dark, measured illuminated. 6L1G ; 2.2 ; Crystal structure of light-dependent protochlorophyllide oxidoreductase from Synechocystis sp. PCC 6803 6L1H ; 2.409 ; Crystal structure of light-dependent protochlorophyllide oxidoreductase from Thermosynechococcus elongatus 5C8F ; 2.65 ; Crystal structure of light-exposed full-length Thermus thermophilus CarH bound to cobalamin 4YAI ; 1.6 ; Crystal structure of LigL in complex with NADH and GGE from Sphingobium sp. strain SYK-6 4YAG ; 1.5 ; Crystal structure of LigL in complex with NADH from Sphingobium sp. strain SYK-6 4YAE ; 1.602 ; Crystal structure of LigL-apo form from Sphingobium sp. strain SYK-6 6XM8 ; 1.85 ; Crystal structure of lignostilbene bound to Co-LSD4 from Sphingobium sp. strain SYK-6 4YAC ; 1.699 ; Crystal structure of LigO in complex with NADH from Sphingobium sp. strain SYK-6 4YA6 ; 1.799 ; Crystal structure of LigO-apo form from Sphingobium sp. strain SYK-6 6P3J ; 2.02 ; Crystal structure of LigU 6P3K ; 1.88 ; Crystal structure of LigU(C100S) 6P3H ; 1.62 ; Crystal structure of LigU(K66M) bound to substrate 5VN5 ; 1.9 ; Crystal structure of LigY from Sphingobium sp. strain SYK-6 7KFK ; 2.63 ; Crystal structure of LILRB1 D3D4 domain in complex with Plasmodium RIFIN (PF3D7_1373400) V2 domain 2DYP ; 2.5 ; Crystal Structure of LILRB2(LIR2/ILT4/CD85d) complexed with HLA-G 1H34 ; 2.04 ; Crystal structure of lima bean trypsin inhibitor 8JE4 ; 2.19 ; Crystal structure of LimF prenyltransferase (H239G/W273T mutant) bound with the thiodiphosphate moiety of farnesyl S-thiolodiphosphate (FSPP) 7VMW ; 1.93 ; Crystal structure of LimF prenyltransferase bound with a peptide substrate and GSPP 7VMY ; 1.77 ; Crystal structure of LimF prenyltransferase bound with GSPP 5K5W ; 2.591 ; Crystal structure of limiting CO2-inducible protein LCIB 5B5X ; 2.511 ; Crystal structure of limiting CO2-inducible protein LCIC 5HVJ ; 2.2 ; Crystal structure of LIMK1 D460N mutant in complex with AMP-PNP 5HVK ; 3.5 ; Crystal structure of LIMK1 mutant D460N in complex with full-length cofilin-1 4Q4F ; 2.8 ; Crystal structure of LIMP-2 (space group C2) 4Q4B ; 2.82 ; Crystal structure of LIMP-2 (space group C2221) 1QTJ ; 3.0 ; CRYSTAL STRUCTURE OF LIMULUS POLYPHEMUS SAP 7N40 ; 2.55 ; Crystal structure of LIN9-RbAp48-LIN37, a MuvB subcomplex 5NX4 ; 2.38 ; Crystal structure of Linalool/Nerolidol synthase from Streptomyces clavuligerus 5NX5 ; 1.82 ; Crystal structure of Linalool/Nerolidol synthase from Streptomyces clavuligerus in complex with 2-fluorogeranyl diphosphate 4FO1 ; 2.15 ; Crystal structure of lincosamide antibiotic adenylyltransferase LnuA, apo 4WH5 ; 1.82 ; Crystal structure of lincosamide antibiotic adenylyltransferase LnuA, lincomycin-bound 2W9N ; 2.25 ; crystal structure of linear di-ubiquitin 3AXC ; 2.19 ; Crystal structure of linear diubiquitin 4RA6 ; 2.503 ; Crystal structure of linker less Pyrococcus furiosus L-asparaginase 5CMR ; 3.792 ; Crystal Structure of Linker-Mediated Zn-bound Human H-Ferritin variant 122H-delta C-star 1IGZ ; 2.9 ; Crystal Structure of Linoleic acid Bound in the Cyclooxygenase Channel of Prostaglandin Endoperoxide H Synthase-1. 3O0D ; 1.7 ; Crystal structure of Lip2 lipase from Yarrowia lipolytica at 1.7 A resolution 4TXP ; 3.01 ; Crystal structure of LIP5 N-terminal domain 4TXQ ; 2.21 ; Crystal structure of LIP5 N-terminal domain complexed with CHMP1B MIM 4TXR ; 1.0 ; Crystal structure of LIP5 N-terminal domain complexed with CHMP1B MIM and CHMP5 MIM 2QUA ; 1.95 ; Crystal structure of LipA from Serratia marcescens 4X6U ; 2.201 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 6FZA ; 1.75 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant A187F 6FZ9 ; 1.2463 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant A187F/L360F 4X71 ; 2.0 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant A269T 6S3V ; 2.0 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant E251C/G332C 4X7B ; 2.4 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant H86Y/A269T 4X85 ; 2.192 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant H86Y/A269T/R374W 6FZ7 ; 1.736 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant L184F 6FZ8 ; 2.2 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant L184F/A187F 6FZ1 ; 2.2 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 methanol stable variant L360F 6S3G ; 1.9 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 variant A187C/F291C 6S3J ; 1.9 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 variant E134C/F149C 6FZD ; 1.8 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 variant L184F/A187F/L360F 6FZC ; 2.7 ; Crystal Structure of lipase from Geobacillus stearothermophilus T6 variant L184F/L360F 3NGM ; 2.8 ; Crystal structure of lipase from Gibberella zeae 6A0W ; 2.0 ; Crystal structure of lipase from Rhizopus microsporus var. chinensis 7WOL ; 2.0 ; Crystal structure of lipase TrLipB from Thermomocrobium roseum 3D3N ; 2.5 ; Crystal structure of lipase/esterase (lp_2923) from Lactobacillus plantarum. Northeast Structural Genomics Consortium target LpR108 1X2G ; 2.4 ; Crystal Structure of Lipate-Protein Ligase A from Escherichia coli 1X2H ; 2.91 ; Crystal Structure of Lipate-Protein Ligase A from Escherichia coli complexed with lipoic acid 1Y6H ; 2.2 ; Crystal structure of LIPDF 5H0Q ; 1.501 ; Crystal structure of lipid binding protein Nakanori at 1.5A 4PX7 ; 3.2 ; Crystal structure of lipid phosphatase E. coli PgpB 3W9U ; 2.0 ; Crystal structure of Lipk107 2ZZ8 ; 2.01 ; Crystal structure of LipL32, the most abundant surface protein of pathogenic leptospira spp 2A8X ; 2.4 ; Crystal Structure of Lipoamide Dehydrogenase from Mycobacterium tuberculosis 2EQ6 ; 1.6 ; Crystal structure of lipoamide dehydrogenase from thermus thermophilus HB8 2EQ9 ; 2.09 ; Crystal structure of lipoamide dehydrogenase from thermus thermophilus HB8 with psbdb 2EQ7 ; 1.8 ; Crystal structure of lipoamide dehydrogenase from thermus thermophilus HB8 with psbdo 2EQ8 ; 1.94 ; Crystal structure of lipoamide dehydrogenase from thermus thermophilus HB8 with psbdp 6JOM ; 2.45 ; Crystal structure of lipoate protein ligase from Mycoplasma hyopneumoniae 2ARU ; 2.5 ; Crystal structure of lipoate-protein ligase A bound with ATP 2ART ; 2.4 ; Crystal structure of lipoate-protein ligase A bound with lipoyl-AMP 2ARS ; 2.04 ; Crystal structure of lipoate-protein ligase A From Thermoplasma acidophilum 3RJT ; 1.5 ; Crystal structure of lipolytic protein G-D-S-L family from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 5BVC ; 2.0 ; Crystal structure of Lipomyces starkeyi levoglucosan kinase bound to ADP, magnesium and levoglucosan in an alternate orientation. 3CAY ; 1.2 ; Crystal structure of Lipopeptide Detergent (LPD-12) 3CBA ; 1.7 ; Crystal structure of Lipopeptide Detergent (LPD-12) (Hexagonal) 4M4D ; 2.909 ; Crystal structure of lipopolysaccharide binding protein 4QC2 ; 2.22 ; Crystal structure of lipopolysaccharide transport protein LptB in complex with ATP and Magnesium ions 4HRV ; 1.89 ; Crystal Structure of Lipoprotein GNA1162 from Neisseria meningitidis 3IR1 ; 2.15 ; Crystal Structure of Lipoprotein GNA1946 from Neisseria meningitidis 3AB9 ; 1.65 ; Crystal Structure of lipoylated E. coli H-protein (reduced form) 8IW5 ; 1.7 ; Crystal structure of liprin-beta H2H3 dimer 2GW5 ; 1.8 ; Crystal Structure of LIR-2 (ILT4) at 1.8 : differences from LIR-1 (ILT2) in regions implicated in the binding of the Cytomegalovirus class I MHC homolog UL18 1VDG ; 2.8 ; Crystal structure of LIR1.01, one of the alleles of LIR1 1UGN ; 1.8 ; Crystal structure of LIR1.02, one of the alleles of LIR1 3JUL ; 2.4 ; Crystal structure of Listeria innocua D-Tagatose-6-Phosphate Kinase bound with substrate 6XNV ; 2.4 ; CRYSTAL STRUCTURE OF LISTERIA MONOCYTOGENES CBPB PROTEIN (LMO1009) IN COMPLEX WITH C-DI-AMP 4UQF ; 2.4 ; CRYSTAL STRUCTURE OF LISTERIA MONOCYTOGENES GTP CYCLOHYDROLASE I 4NL2 ; 2.6 ; Crystal Structure of Listeria monocytogenes Hfq 4NOY ; 2.795 ; Crystal structure of Listeria monocytogenes Hfq F43W 4NL3 ; 3.1 ; Crystal Structure of Listeria monocytogenes Hfq in complex with U6 RNA 5HL3 ; 1.4 ; Crystal structure of Listeria monocytogenes InlP 5KS7 ; 2.9 ; Crystal structure of Listeria monocytogenes OpuCA CBS domain dimer in complex with cyclic-di-AMP 4QSL ; 3.28 ; Crystal Structure of Listeria Monocytogenes Pyruvate Carboxylase 4CDB ; 2.15 ; Crystal structure of listeriolysin O 1IJ8 ; 2.0 ; CRYSTAL STRUCTURE OF LITE AVIDIN-BNI COMPLEX 2CYD ; 2.8 ; Crystal structure of Lithium bound rotor ring of the V-ATPase from Enterococcus hirae 4BG4 ; 1.601 ; Crystal structure of Litopenaeus vannamei arginine kinase in a ternary analog complex with arginine, ADP-Mg and NO3 4BHL ; 1.9 ; Crystal structure of Litopenaeus vannamei arginine kinase in binary complex with arginine 5EYW ; 1.7 ; Crystal structure of Litopenaeus vannamei triosephosphate isomerase complexed with 2-Phosphoglycolic acid 5JBW ; 2.05 ; Crystal structure of LiuC 5JBX ; 1.1 ; Crystal structure of LiuC in complex with coenzyme A and malonic acid 7N4P ; 2.097 ; Crystal Structure of Lizard Cadherin-23 EC1-2 7ZUA ; 1.68 ; Crystal Structure of Ljungan virus 4 2A2 protein I222 crystal form 7ZUO ; 2.07 ; Crystal Structure of Ljungan virus 4 2A2 protein, P212121 form 8A2F ; 1.73 ; Crystal Structure of Ljunganvirus 1 2A protein 6F7V ; 3.03 ; Crystal structure of LkcE E64Q mutant in complex with LC-KA05 6F7L ; 2.5 ; Crystal structure of LkcE R326Q mutant in complex with its substrate 2Z20 ; 1.95 ; Crystal structure of LL-Diaminopimelate Aminotransferase from Arabidopsis thaliana 2Z1Z ; 2.4 ; Crystal structure of LL-Diaminopimelate Aminotransferase from Arabidopsis thaliana complexed with L-malate ion 3EI6 ; 1.9 ; Crystal structure of LL-diaminopimelate aminotransferase from Arabidopsis thaliana complexed with PLP-DAP: an external aldimine mimic 3EI5 ; 2.05 ; Crystal structure of LL-diaminopimelate aminotransferase from Arabidopsis thaliana complexed with PLP-Glu: an external aldimine mimic 7R73 ; 1.76 ; Crystal structure of llama VHH antibody D7 in complex with HIV-1 gp120 core 7R74 ; 2.76 ; Crystal structure of llama VHH antibody in complex with HIV-1 HXBC2 gp120 core 8IL0 ; 2.81 ; Crystal structure of LmbT from Streptomyces lincolnensis NRRL ISP-5355 8ILA ; 2.79 ; Crystal structure of LmbT from Streptomyces lincolnensis NRRL ISP-5355 in complex with substrates 4KIA ; 1.75 ; Crystal structure of LmHde, heme-degrading enzyme, from Listeria monocytogenes 2I2C ; 1.85 ; Crystal structure of LmNADK1 2I2D ; 2.22 ; Crystal structure of LmNADK1 2I2F ; 1.9 ; Crystal structure of LmNADK1 2I2A ; 2.1 ; Crystal structure of LmNADK1 from Listeria monocytogenes 2I2B ; 2.1 ; Crystal structure of LmNADK1 from Listeria monocytogenes 2Q5F ; 1.9 ; Crystal structure of LMNADK1 from Listeria monocytogenes 2AML ; 1.5 ; Crystal structure of Lmo0035 protein (46906266) from LISTERIA MONOCYTOGENES 4b F2365 at 1.50 A resolution 4KFZ ; 2.8 ; Crystal structure of LMO2 and anti-LMO2 VH complex 3K2T ; 2.4 ; Crystal structure of Lmo2511 protein from Listeria monocytogenes, northeast structural genomics consortium target LkR84A 5GSD ; 2.3 ; Crystal structure of LMP2 peptide from EBV in complex with HLA-A*11:01 1MV5 ; 3.1 ; Crystal structure of LmrA ATP-binding domain 6R1L ; 2.095 ; Crystal structure of LmrR with bound copper phenanthroline 6I8N ; 1.79 ; Crystal structure of LmrR with V15 replaced by unnatural amino acid 4-amino-L-phenylalanine 6SNC ; 3.2 ; crystal structure of LN01 Fab in complex with an HIV-1 gp41 peptide 6SND ; 3.1 ; crystal structure of LN01 Fab in complex with an HIV-1 gp41 peptide 6SNE ; 3.9 ; crystal structure of LN01 Fab in complex with an HIV-1 gp41 peptide 4NNQ ; 2.01 ; Crystal structure of LnmF protein from Streptomyces amphibiosporus 5LY0 ; 1.877 ; Crystal structure of LOB domain of Ramosa2 from Wheat 5OOW ; 2.9 ; Crystal structure of lobe II from the nucleotide binding domain of DnaK in complex with AMPPCP 4PT1 ; 1.65 ; Crystal structure of Locusta migratoria odorant binding proteins lmigOBP1 6HJ6 ; 1.98 ; Crystal structure of Loei River virus GP1 glycoprotein at pH 5.0 6HJC ; 2.51 ; Crystal structure of Loei River virus GP1 glycoprotein at pH 8.0 7W2I ; 1.8 ; Crystal structure of LOG (Rv1205) from Mycobacterium tuberculosis 5ITS ; 2.3 ; Crystal structure of LOG from Corynebacterium glutamicum 5YED ; 1.6 ; Crystal structure of LokiProfilin1 5YEE ; 1.81 ; Crystal structure of LokiProfilin1/Rabbit Actin Complex 3BUU ; 1.2 ; Crystal structure of LolA superfamily protein NE2245 from Nitrosomonas europaea 6ZB6 ; 1.9 ; Crystal structure of Lolium rigidum GSTF in complex with S-(p-nitrobenzyl) glutathione 3JPZ ; 1.95 ; Crystal Structure of Lombricine Kinase 3JQ3 ; 2.503 ; Crystal Structure of Lombricine Kinase, complexed with substrate ADP 4ZPX ; 2.03 ; Crystal structure of Lon ATPase domain from Thermococcus onnurineus NA1 7CAY ; 2.8 ; Crystal Structure of Lon N-terminal domain protein from Xanthomonas campestris 3LJC ; 2.6 ; Crystal structure of Lon N-terminal domain. 3K1J ; 2.0 ; Crystal structure of Lon protease from Thermococcus onnurineus NA1 8SXP ; 2.9 ; Crystal structure of long neurotoxin from the venom of the king cobra (3FTx-L15) in complex with Fab of broadly neutralizing antibody 95Mat5 3B9N ; 2.7 ; Crystal structure of long-chain alkane monooxygenase (LadA) 1XCR ; 1.7 ; Crystal Structure of Longer Splice Variant of PTD012 from Homo sapiens reveals a novel Zinc-containing fold 3STC ; 1.91 ; Crystal structure of loop 7 truncated mutant of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 8ED5 ; 1.79 ; Crystal structure of loop deletion AioX mutant from Pseudorhizobium sp. str. NT-26 3B9G ; 1.4 ; Crystal structure of loop deletion mutant of Trypanosoma vivax nucleoside hydrolase (3GTvNH) in complex with ImmH 2VG9 ; 2.0 ; Crystal structure of Loop Swap mutant of Necallimastix patriciarum Xyn11A 4P0J ; 2.298 ; Crystal Structure of Loop-Swapped Interleukin-36Ra 7VE2 ; 3.2 ; Crystal Structure of Lopinavir bound Plasmepsin II (PMII) from Plasmodium falciparum 2Q5K ; 1.95 ; Crystal structure of lopinavir bound to wild type HIV-1 protease 8PEH ; 1.95 ; Crystal structure of Lotus japonicus SYMRK kinase domain D738N 8IYN ; 2.081 ; Crystal structure of LOV1 D33N mutant of phototropin from Klebsormidium nitens 8I11 ; 1.855 ; Crystal structure of LOV1 domain of phototropin from Klebsormidium nitens 2Z6C ; 2.1 ; Crystal structure of LOV1 domain of phototropin1 from Arabidopsis thaliana 2Z6D ; 2.0 ; Crystal structure of LOV1 domain of phototropin2 from Arabidopsis thaliana 5DJT ; 1.4 ; Crystal structure of LOV2 (C450A) domain in complex with Zdk2 5DJU ; 2.1 ; Crystal structure of LOV2 (C450A) domain in complex with Zdk3 4EEP ; 1.7 ; Crystal structure of LOV2 domain of Arabidopsis thaliana phototropin 2 4EER ; 1.753 ; Crystal structure of LOV2 domain of Arabidopsis thaliana phototropin 2 C426A mutant 5EFW ; 2.1 ; Crystal structure of LOV2-Zdk1 - the complex of oat LOV2 and the affibody protein Zdark1 4LYM ; 2.1 ; CRYSTAL STRUCTURE OF LOW HUMIDITY TETRAGONAL LYSOZYME AT 2.1-ANGSTROMS RESOLUTION. VARIABILITY IN HYDRATION SHELL AND ITS STRUCTURAL CONSEQUENCES 5Z3M ; 2.6 ; Crystal structure of Low Molecular Weight Phosphotyrosine phosphatase (VcLMWPTP-2) from Vibrio choleraeO395 4Z9B ; 2.41 ; Crystal structure of Low Molecular Weight Protein Tyrosine Phosphatase isoform A complexed with benzylphosphonic acid 4Z9A ; 2.1 ; Crystal structure of Low Molecular Weight Protein Tyrosine Phosphatase isoform A complexed with phenylmethanesulfonic acid 1Y9I ; 1.8 ; Crystal structure of low temperature requirement C protein from Listeria monocytogenes 2ZBO ; 1.6 ; Crystal structure of low-redox-potential cytochrom c6 from brown alga Hizikia fusiformis at 1.6 A resolution 3WLX ; 2.51 ; Crystal structure of low-specificity L-threonine aldolase from Escherichia coli 3RLG ; 1.6 ; Crystal structure of Loxosceles intermedia phospholipase D isoform 1 H12A mutant 5YB2 ; 3.8 ; Crystal structure of LP-11/N44 5Y14 ; 1.762 ; Crystal structure of LP-40/N44 5YC0 ; 2.0 ; Crystal structure of LP-46/N44 6M06 ; 2.1 ; Crystal structure of Lp-PLA2 in complex with a novel covalent inhibitor 6M07 ; 2.64 ; Crystal structure of Lp-PLA2 in complex with a novel covalent inhibitor 6M08 ; 2.19 ; Crystal structure of Lp-PLA2 in complex with a novel covalent inhibitor. 3AAP ; 1.6 ; Crystal Structure of Lp1NTPDase from Legionella pneumophila 3AAR ; 1.65 ; Crystal structure of Lp1NTPDase from Legionella pneumophila in complex with AMPPNP 3AAQ ; 2.0 ; Crystal structure of Lp1NTPDase from Legionella pneumophila in complex with the inhibitor ARL 67156 6LG1 ; 3.047 ; Crystal structure of LpCGTa in complex with UDP 6LFN ; 2.395 ; Crystal structure of LpCGTb 1XDI ; 2.81 ; Crystal structure of LpdA (Rv3303c) from Mycobacterium tuberculosis 4GYT ; 2.047 ; Crystal structure of lpg0076 protein from Legionella pneumophila 6L6H ; 2.403 ; Crystal structure of Lpg0189 4R0G ; 2.7 ; Crystal structure of Lpg0393 from Legionella pneumophila 5DIP ; 2.097 ; Crystal structure of lpg0406 in reduced form from Legionella pneumophila 7YJI ; 2.1 ; Crystal structure of Lpg1083 from Legionella pneumophila 5T8C ; 1.481 ; Crystal structure of lpg1496 under 300 MPa 5T8B ; 1.5 ; Crystal structure of lpg1496 under 350 MPa 5XTA ; 2.0 ; Crystal structure of lpg1832, a VirK family protein from Legionella pneumophila 4HFV ; 1.901 ; Crystal structure of lpg1851 protein from Legionella pneumophila (putative T4SS effector) 6K3B ; 1.974 ; Crystal structure of Lpg2147-Lpg2149 complex 8CRI ; 2.1 ; Crystal structure of LplA1 in complex with lipoic acid (Listeria monocytogenes) 8CRJ ; 2.6 ; Crystal structure of LplA1 in complex with lipoyl-AMP (Listeria monocytogenes) 8CRL ; 2.6 ; Crystal structure of LplA1 in complex with the inhibitor C3 (Listeria monocytogenes) 6R48 ; 1.87 ; Crystal structure of LPOR (Synechocystis) complexed with NADPH at 1.87A resolution. 6R46 ; 2.5 ; Crystal structure of LPOR (Thermosynechococcus elongatus) complexed with NADP+ at 2.5A resolution 4TVV ; 1.4 ; Crystal structure of LppA from Legionella pneumophila 6E5D ; 1.65 ; Crystal structure of LpqN involved in cell envelope biogenesis of Mycobacterium tuberculosis 6E5F ; 1.37 ; Crystal structure of LpqN involved in cell envelope biogenesis of Mycobacterium tuberculosis 6MNA ; 1.75 ; Crystal structure of LpqN involved in cell envelope biogenesis of Mycobacterium tuberculosis 2GRV ; 2.4 ; Crystal Structure of LpqW 7APE ; 1.7 ; Crystal structure of LpqY from Mycobacterium thermoresistible in complex with trehalose 4QA8 ; 1.1 ; Crystal structure of LprF from Mycobacterium bovis 3MH8 ; 1.995 ; Crystal structure of LprG from Mycobacterium tuberculosis 3MHA ; 1.85 ; Crystal structure of LprG from Mycobacterium tuberculosis bound to PIM 3MH9 ; 1.794 ; Crystal structure of LprG mutant V91W from Mycobacterium tuberculosis 4W8I ; 2.85 ; Crystal structure of LpSPL/Lpp2128, Legionella pneumophila sphingosine-1 phosphate lyase 3MY2 ; 2.2 ; Crystal structure of LptC 8H1R ; 2.98 ; Crystal structure of LptDE-YifL complex 4UU4 ; 2.751 ; Crystal structure of LptH, the LptA homologous periplasmic component of the conserved lipopolysaccharide transport device from Pseudomonas aeruginosa 4J09 ; 1.9 ; Crystal Structure of LpxA bound to RJPXD33 2VES ; 1.9 ; Crystal Structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor 6E54 ; 1.65 ; Crystal structure of LpxC from Pseudomonas aeruginosa in complex with ligand PT802 5UPG ; 1.7 ; Crystal structure of LpxC from Pseudomonas aeruginosa in complex with PF-5081090 6DUI ; 1.55 ; Crystal structure of LpxC from Pseudomonas aeruginosa in complex with PT801 6CAX ; 1.25 ; Crystal structure of LpxC from Pseudomonas aeruginosa in complex with PT805 6C9C ; 2.0 ; Crystal structure of LpxC from Pseudomonas aeruginosa in complex with racemic ligand PT803 3EH0 ; 2.6 ; Crystal Structure of LpxD from Escherichia coli 5B4B ; 1.6 ; Crystal structure of LpxH with lipid X in spacegroup C2 5B4A ; 1.72 ; Crystal structure of LpxH with lipid X in spacegroup P21 5B49 ; 1.65 ; Crystal structure of LpxH with manganese from Pseudomonas aeruginosa 4EHX ; 1.9 ; Crystal structure of LpxK from Aquifex aeolicus at 1.9 angstrom resolution 4EHW ; 2.3 ; Crystal structure of LpxK from Aquifex aeolicus at 2.3 angstrom resolution 4EHY ; 2.199 ; Crystal structure of LpxK from Aquifex aeolicus in complex with ADP/Mg2+ at 2.2 angstrom resolution 4ITL ; 2.09 ; Crystal structure of LpxK from Aquifex aeolicus in complex with AMP-PCP at 2.1 angstrom resolution 3I3U ; 2.8 ; Crystal structure of lp_1913 protein from lactobacillus plantarum, northeast structural genomics Consortium target lpr140a 3FLH ; 2.0 ; Crystal structure of lp_1913 protein from Lactobacillus plantarum,Northeast Structural Genomics Consortium Target LpR140B 5I9I ; 2.7 ; Crystal structure of LP_PLA2 in complex with Darapladib 5I8P ; 2.37 ; Crystal structure of LP_PLA2 in complex with novel inhibitor 3AH3 ; 2.4 ; Crystal structure of LR5-1, 3-isopropylmalate dehydrogenase created by directed evolution 3TX7 ; 2.76 ; Crystal structure of LRH-1/beta-catenin complex 3O53 ; 2.0 ; Crystal Structure of LRIM1 leucine-rich repeat domain 3OJA ; 2.7 ; Crystal structure of LRIM1/APL1C complex 8FFE ; 1.72 ; Crystal structure of LRP6 E1E2 domains bound to YW210.09 Fab and engineered XWnt8 peptide 6L6R ; 3.8 ; Crystal structure of LRP6 E1E2-SOST complex 8DVN ; 2.53 ; Crystal structure of LRP6 E3E4 in complex with disulfide constrained peptide E3.10 8DVL ; 2.5 ; Crystal structure of LRP6 E3E4 in complex with disulfide constrained peptide E3.18 8DVM ; 2.0 ; Crystal structure of LRP6 E3E4 in complex with disulfide constrained peptide E3.6 3S8V ; 3.1 ; Crystal structure of LRP6-Dkk1 complex 3S94 ; 2.8 ; Crystal structure of LRP6-E1E2 3S8Z ; 2.8 ; Crystal structure of LRP6-E3E4 4A0P ; 1.9 ; Crystal structure of LRP6P3E3P4E4 7V8H ; 2.46 ; Crystal structure of LRR domain from Shigella flexneri IpaH1.4 6DLO ; 2.7 ; Crystal structure of LRRK2 WD40 domain dimer 6DLP ; 4.0 ; Crystal structure of LRRK2 WD40 domain dimer 3ZDG ; 2.48 ; Crystal Structure of Ls-AChBP complexed with carbamoylcholine analogue 3-(dimethylamino)butyl dimethylcarbamate (DMABC) 3ZDH ; 2.195 ; Crystal structure of Ls-AChBP complexed with carbamoylcholine analogue N,N-dimethyl-4-(1-methyl-1H-imidazol-2-yloxy)butan-2-amine 4ALX ; 2.3 ; Crystal Structure of Ls-AChBP complexed with the potent nAChR antagonist DHbE 5ISZ ; 2.06 ; Crystal structure of LS01-TCR/M1-HLA-A*02 complex 5JHD ; 2.46 ; Crystal structure of LS10-TCR/M1-HLA-A*02 complex 3LP9 ; 2.2 ; Crystal structure of LS24, A Seed Albumin from Lathyrus sativus 2HKO ; 2.8 ; Crystal structure of LSD1 3ABU ; 3.1 ; Crystal Structure of LSD1 in complex with a 2-PCPA derivative, S1201 7W3L ; 2.51 ; Crystal structure of LSD1 in complex with cis-4-Br-2,5-F2-PCPA (S1024) 7VQS ; 2.94 ; Crystal structure of LSD1 in complex with compound 4 7VQT ; 2.91 ; Crystal structure of LSD1 in complex with compound 5 7VQU ; 2.94 ; Crystal structure of LSD1 in complex with compound S1427 3ABT ; 3.2 ; Crystal Structure of LSD1 in complex with trans-2-pentafluorophenylcyclopropylamine 2XAH ; 3.1 ; Crystal structure of LSD1-CoREST in complex with (+)-trans-2- phenylcyclopropyl-1-amine 2XAJ ; 3.3 ; Crystal structure of LSD1-CoREST in complex with (-)-trans-2- phenylcyclopropyl-1-amine 2Y48 ; 3.0 ; Crystal structure of LSD1-CoREST in complex with a N-terminal SNAIL peptide 2XAS ; 3.2 ; Crystal structure of LSD1-CoREST in complex with a tranylcypromine derivative (MC2580, 14e) 2XAQ ; 3.2 ; Crystal structure of LSD1-CoREST in complex with a tranylcypromine derivative (MC2584, 13b) 2XAF ; 3.25 ; Crystal structure of LSD1-CoREST in complex with para-bromo-(+)-cis-2- phenylcyclopropyl-1-amine 2XAG ; 3.1 ; Crystal structure of LSD1-CoREST in complex with para-bromo-(-)-trans- 2-phenylcyclopropyl-1-amine 5H6Q ; 2.53 ; Crystal structure of LSD1-CoREST in complex with peptide 11 5H6R ; 2.6 ; Crystal structure of LSD1-CoREST in complex with peptide 13 5X60 ; 2.69 ; Crystal structure of LSD1-CoREST in complex with peptide 9 7CDE ; 2.68 ; Crystal structure of LSD1-CoREST in complex with PRSFLVRKR peptide 7CDD ; 2.76 ; Crystal structure of LSD1-CoREST in complex with PRSFLVRR peptide 7CDF ; 2.68 ; Crystal structure of LSD1-CoREST in complex with PRSFLVRRK peptide 7CDC ; 2.64 ; Crystal structure of LSD1-CoREST in complex with PRSFLVRRP peptide 7CDG ; 2.8 ; Crystal structure of LSD1-CoREST in complex with PRSFLVRRR peptide 8WVB ; 2.5 ; Crystal structure of Lsd18 mutant S195M 8WVF ; 3.757 ; Crystal structure of Lsd18 mutant T189M and S195M 4GU1 ; 2.939 ; Crystal structure of LSD2 7XE3 ; 2.82 ; Crystal structure of LSD2 in complex with cis-4-Br-2,5-F2-PCPA (S1024) 7XE1 ; 2.07 ; Crystal structure of LSD2 in complex with cis-4-Br-PCPA 7XE2 ; 2.05 ; Crystal structure of LSD2 in complex with trans-4-Br-PCPA 4GU0 ; 3.103 ; Crystal structure of LSD2 with H3 4GUT ; 1.998 ; Crystal structure of LSD2-NPAC 4GUR ; 2.506 ; Crystal structure of LSD2-NPAC with H3 in space group P21 4GUS ; 2.23 ; Crystal structure of LSD2-NPAC with H3 in space group P3221 4HSU ; 1.988 ; Crystal structure of LSD2-NPAC with H3(1-26)in space group P21 4GUU ; 2.302 ; Crystal structure of LSD2-NPAC with tranylcypromine 4M75 ; 2.95 ; Crystal structure of Lsm1-7 complex 4N0A ; 3.15 ; Crystal structure of Lsm2-3-Pat1C complex from Saccharomyces cerevisiae 4M7A ; 2.781 ; Crystal structure of Lsm2-8 complex bound to the 3' end sequence of U6 snRNA 4M7D ; 2.595 ; Crystal structure of Lsm2-8 complex bound to the RNA fragment CGUUU 4M77 ; 3.111 ; Crystal structure of Lsm2-8 complex, space group I212121 4M78 ; 2.794 ; Crystal structure of Lsm2-8 complex, space group P21 3PLT ; 2.9 ; Crystal structure of Lsp1 from Saccharomyces cerevisiae 3T95 ; 1.75 ; Crystal structure of LsrB from Yersinia pestis complexed with autoinducer-2 5YA0 ; 2.997 ; Crystal structure of LsrK and HPr complex 5YA2 ; 2.701 ; Crystal structure of LsrK-HPr complex with ADP 5YA1 ; 2.701 ; crystal structure of LsrK-HPr complex with ATP 3NT9 ; 1.99 ; CRYSTAL STRUCTURE OF LSSmKate1 red fluorescent proteins with large Stokes shift 3NT3 ; 1.5 ; CRYSTAL STRUCTURE OF LSSmKate2 red fluorescent proteins with large Stokes shift 7OIN ; 1.4 ; Crystal structure of LSSmScarlet - a genetically encoded red fluorescent protein with a large Stokes shift 8ARM ; 1.41 ; Crystal structure of LSSmScarlet2 5N3W ; 2.3 ; Crystal structure of LTA4H bound to a selective inhibitor against LTB4 generation 5H9L ; 1.37 ; Crystal Structure of LTBP1 in complex with cleaved Leukotriene C4 5HAE ; 2.002 ; Crystal structure of LTBP1 LTC4 complex collected on an in-house source 5H9N ; 1.28 ; Crystal structure of LTBP1 Y114A mutant in complex with leukotriene C4 6R7D ; 2.35 ; Crystal structure of LTC4S in complex with AZ13690257 8B9V ; 2.16 ; Crystal structure of Lu AF82422 in complex with alpha-synuclein 110-120 7BB9 ; 1.97 ; Crystal structure of Lugdulysin E242Q Y315F mutant 7BB8 ; 1.506 ; Crystal structure of Lugdulysin, a Staphylococcus lugdunensis M30 zinc metallopeptidase 5K59 ; 2.84 ; Crystal structure of LukGH from Staphylococcus aureus in complex with a neutralising antibody 1NQX ; 1.82 ; Crystal Structure of Lumazine Synthase from Aquifex aeolicus in Complex with Inhibitor: 3-(7-hydroxy-8-ribityllumazine-6-yl)propionic acid 1NQW ; 2.2 ; Crystal Structure of Lumazine Synthase from Aquifex aeolicus in Complex with Inhibitor: 5-(6-D-ribitylamino-2,4(1H,3H)pyrimidinedione-5-yl)-1-pentyl-phosphonic acid 1NQV ; 2.05 ; Crystal Structure of Lumazine Synthase from Aquifex aeolicus in Complex with Inhibitor: 5-nitroso-6-ribityl-amino-2,4(1H,3H)pyrimidinedione 1NQU ; 1.75 ; Crystal Structure of Lumazine Synthase from Aquifex aeolicus in Complex with Inhibitor: 6,7-dioxo-5H-8-ribitylaminolumazine 4V7G ; 3.5 ; Crystal Structure of Lumazine Synthase from Bacillus Anthracis 1DI0 ; 2.7 ; CRYSTAL STRUCTURE OF LUMAZINE SYNTHASE FROM BRUCELLA ABORTUS 1XN1 ; 3.05 ; Crystal Structure Of Lumazine Synthase From Brucella Abortus (Orthorhombic Form At 3.05 Angstroms) 1T13 ; 2.9 ; Crystal Structure Of Lumazine Synthase From Brucella Abortus Bound To 5-nitro-6-(D-ribitylamino)-2,4(1H,3H) pyrimidinedione 3MK3 ; 3.569 ; Crystal structure of Lumazine synthase from Salmonella typhimurium LT2 4OTY ; 2.354 ; Crystal structure of lumiracoxib bound to the apo-mouse-cyclooxygenase-2 3A3G ; 2.0 ; Crystal structure of LumP complexed with 6,7-dimethyl-8-(1'-D-ribityl) lumazine 3A3B ; 2.0 ; Crystal structure of LumP complexed with flavin mononucleotide 3A35 ; 1.421 ; Crystal structure of LumP complexed with riboflavin 3ONE ; 1.35 ; Crystal structure of Lupinus luteus S-adenosyl-L-homocysteine hydrolase in complex with adenine 3OND ; 1.17 ; Crystal structure of Lupinus luteus S-adenosyl-L-homocysteine hydrolase in complex with adenosine 3ONF ; 2.0 ; Crystal structure of Lupinus luteus S-adenosyl-L-homocysteine hydrolase in complex with cordycepin 1OOI ; 2.04 ; Crystal structure of LUSH from Drosophila melanogaster at pH 6.5 1T14 ; 1.86 ; Crystal structure of LUSH from Drosophila melanogaster: apo protein 4J2P ; 1.85 ; Crystal structure of LuxF from Photobacterium leiognathi 1JX6 ; 1.5 ; CRYSTAL STRUCTURE OF LUXP FROM VIBRIO HARVEYI COMPLEXED WITH AUTOINDUCER-2 4YP9 ; 2.7 ; Crystal Structure of LuxP In Complex With a Formose Derived AI-2 Analogue 4YRZ ; 2.571 ; Crystal Structure of LuxP In Complex With L-xylulofuranose-1,2-borate 1IE0 ; 1.6 ; CRYSTAL STRUCTURE OF LUXS 4K82 ; 1.6 ; Crystal structure of lv-ranaspumin (Lv-RSN-1) from the foam nest of Leptodactylus vastus, monoclinic crystal form 4K83 ; 1.75 ; Crystal structure of lv-ranaspumin (Lv-RSN-1) from the foam nest of Leptodactylus vastus, orthorhombic crystal form 4DK7 ; 2.45 ; Crystal structure of LXR ligand binding domain in complex with full agonist 1 4DK8 ; 2.75 ; Crystal structure of LXR ligand binding domain in complex with partial agonist 5 5AVL ; 2.8 ; Crystal structure of LXRalpha in complex with tert-butyl benzoate analog, compound 32b 5AVI ; 2.7 ; Crystal structure of LXRalpha in complex with tert-butyl benzoate analog, compound 4 5JY3 ; 2.4 ; CRYSTAL STRUCTURE OF LXRbeta (NUCLEAR RECEPTOR SUBFAMILY 1, GROUP H, MEMBER 2) COMPLEXED WITH BMS-852927 5XFF ; 2.7 ; Crystal structure of LY2874455 in complex of FGFR4 gatekeeper mutation (V550L) 5XFJ ; 3.25 ; Crystal structure of LY2874455 in complex of FGFR4 gatekeeper mutation (V550M) 2G5X ; 1.7 ; Crystal structure of lychnin a type 1 Ribosome Inactivating Protein (RIP) 4U4U ; 3.0 ; Crystal structure of Lycorine bound to the yeast 80S ribosome 6XWE ; 1.49 ; Crystal structure of LYK3 ectodomain 5A96 ; 1.914 ; Crystal structure of Lymantria dispar CPV14 polyhedra 8QPH ; 1.34 ; Crystal structure of Lymantria dispar CPV14 polyhedra 14 crystals 8QQC ; 1.3 ; Crystal structure of Lymantria dispar CPV14 polyhedra single crystal 1G5Z ; 2.51 ; CRYSTAL STRUCTURE OF LYME DISEASE ANTIGEN OUTER SURFACE PROTEIN C (OSPC) FROM BORRELIA BURGDORFERI STRAIN N40 1L8W ; 2.3 ; Crystal Structure of Lyme Disease Variable Surface Antigen VlsE of Borrelia burgdorferi 7DJI ; 2.2 ; Crystal structure of Lymnaea stagnalis Acetylcholine binding protein (AChBP) complexed with Paraherquamide A 2ZJV ; 2.7 ; Crystal Structure of Lymnaea stagnalis Acetylcholine Binding Protein (Ls-AChBP) Complexed with Clothianidin 2ZJU ; 2.58 ; Crystal Structure of Lymnaea stagnalis Acetylcholine Binding Protein (Ls-AChBP) Complexed with Imidacloprid 3WTN ; 2.09 ; Crystal Structure of Lymnaea stagnalis Acetylcholine Binding Protein Complexed with Desnitro-imidacloprid 3WTL ; 2.3 ; Crystal Structure of Lymnaea stagnalis Acetylcholine Binding Protein Complexed with Nitromethylene Analogue of Imidacloprid 3WTJ ; 2.24 ; Crystal Structure of Lymnaea stagnalis Acetylcholine Binding Protein Complexed with Thiacloprid 7PDR ; 2.33 ; Crystal structure of Lymnaea stagnalis Acetylcholine-binding protein (Ls-AChBP) Q55R/M114V double mutant complexed with Dichloromezotiaz 7PDB ; 2.33 ; Crystal structure of Lymnaea stagnalis Acetylcholine-binding protein (Ls-AChBP) Q55R/M114V double mutant complexed with Flupyradifurone 7PE6 ; 2.01 ; Crystal structure of Lymnaea stagnalis Acetylcholine-binding protein (Ls-AChBP) Q55R/M114V double mutant complexed with Flupyrimin 7PD6 ; 2.0 ; Crystal structure of Lymnaea stagnalis Acetylcholine-binding protein (Ls-AChBP) Q55R/M114V double mutant complexed with Sulfoxaflor 7PE5 ; 2.1 ; Crystal structure of Lymnaea stagnalis Acetylcholine-binding protein (Ls-AChBP) Q55R/M114V double mutant complexed with Triflumezopyrim 4ZK1 ; 1.75 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein (LsAChBP) in Complex with 3-Pyrrolylmethylene Anabaseine 3WTI ; 2.68 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein Q55R Mutant Complexed with Clothianidin 3WTO ; 2.25 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein Q55R Mutant Complexed with Desnitro-imidacloprid 3WTH ; 2.54 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein Q55R Mutant Complexed with Imidacloprid 3WTM ; 2.48 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein Q55R Mutant Complexed with Nitromethylene Analogue of Imidacloprid 3WTK ; 2.69 ; Crystal Structure of Lymnaea stagnalis Acetylcholine-Binding Protein Q55R Mutant Complexed with Thiacloprid 5T2T ; 1.967 ; Crystal structure of Lymphocytic choriomeningitis mammarenavirus endonuclease bound to compound L742001 5LTF ; 2.43 ; Crystal structure of Lymphocytic choriomeningitis mammarenavirus endonuclease complexed with catalytic ions 5LTN ; 1.88 ; Crystal structure of Lymphocytic choriomeningitis mammarenavirus endonuclease complexed with DPBA 5LTS ; 2.51 ; Crystal structure of Lymphocytic choriomeningitis mammarenavirus endonuclease Mutant D118A 5XY1 ; 2.7 ; Crystal structure of Lyn kinase domain in complex with N-(1H-indazol-6-yl)-8-(piperidin-4-yloxy)-6-propylquinazolin-2-amine 7BAX ; 2.9 ; Crystal structure of LYS11 ectodomain 2EBE ; 1.8 ; Crystal structure of Lys11 to Met mutant of hypothetical protein from Thermus thermophilus 2HW9 ; 1.6 ; Crystal structure of Lys12Cys/Cys117Val mutant of human acidic fibroblast Growth factor at 1.60 angstrom resolution. 2HWA ; 1.65 ; Crystal structure of Lys12Thr/Cys117Val mutant of human acidic fibroblast growth factor at 1.65 angstrom resolution. 2HZ9 ; 1.7 ; Crystal structure of Lys12Val/Asn95Val/Cys117Val mutant of human acidic fibroblast growth factor at 1.70 angstrom resolution. 2HWM ; 1.6 ; Crystal structure of Lys12Val/Cys117Val mutant of human acidic fibroblast growth factor at 1.60 angstrom resolution 1Z88 ; 2.1 ; Crystal structure of Lys154Arg mutant of mature AphA of S. typhimurium 2AUT ; 2.25 ; Crystal structure of Lys154Asn mutant of mature AphA of S. typhimurium 7D55 ; 1.397 ; Crystal structure of lys170 CBD 2DV7 ; 2.3 ; Crystal structure of Lys187 to Arg mutant of Diphthine synthase 2DSG ; 2.0 ; Crystal structure of Lys26 to Arg mutant of Diphthine synthase 2DSH ; 2.0 ; Crystal structure of Lys26 to Tyr mutant of Diphthine synthase 6ISU ; 1.866 ; Crystal structure of Lys27-linked di-ubiquitin in complex with its selective interacting protein UCHL3 8TW1 ; 1.27 ; Crystal structure of Lys2972, a phage endolysin targeting Streptococcus thermophilus 8E7O ; 1.7 ; CRYSTAL STRUCTURE OF LYS48-LINKED TETRAUBIQUITIN 2Z6R ; 1.5 ; Crystal structure of Lys49 to Arg mutant of Diphthine synthase 1S8G ; 2.3 ; Crystal structure of Lys49-Phospholipase A2 from Agkistrodon contortrix laticinctus, fatty acid bound form 1S8H ; 1.8 ; Crystal structure of Lys49-Phospholipase A2 from Agkistrodon contortrix laticinctus, first fatty acid free form 1S8I ; 1.609 ; Crystal structure of Lys49-Phospholipase A2 from Agkistrodon contortrix laticinctus, second fatty acid free form 2JF5 ; 1.95 ; crystal structure of Lys63-linked di-ubiquitin 6AKV ; 2.4 ; Crystal structure of LysB4, the endolysin from Bacillus cereus-targeting bacteriophage B4 5EC5 ; 3.1 ; Crystal structure of lysenin pore 3HC7 ; 2.0 ; Crystal structure of lysin B from Mycobacteriophage D29 1XRS ; 2.8 ; Crystal structure of Lysine 5,6-Aminomutase in complex with PLP, cobalamin, and 5'-deoxyadenosine 3WWL ; 1.2 ; Crystal structure of lysine biosynthetic amino acid carrier protein LysW from Thermus thermophilus conjugated with alpha-aminoadipate 5GJM ; 2.91 ; Crystal structure of Lysine decarboxylase from Selenomonas ruminantium in C2 space group 5GJN ; 2.0 ; Crystal structure of Lysine decarboxylase from Selenomonas ruminantium in P43212 space group 3D0U ; 2.8 ; Crystal Structure of Lysine Riboswitch Bound to Lysine 6W4K ; 2.93 ; Crystal structure of Lysine Specific Demethylase 1 (LSD1) with CC-90011 7XW8 ; 2.28 ; Crystal structure of Lysine Specific Demethylase 1 (LSD1) with TAK-418 distomer, FAD-adduct 7E0G ; 2.25 ; Crystal structure of Lysine Specific Demethylase 1 (LSD1) with TAK-418, FAD-adduct 2Q3K ; 2.0 ; Crystal Structure of Lysine Sulfonamide Inhibitor Reveals the Displacement of the Conserved Flap Water Molecule in HIV-1 Protease 2Z3Y ; 2.25 ; Crystal structure of Lysine-specific demethylase1 2Z5U ; 2.25 ; Crystal structure of Lysine-specific histone demethylase 1 2PLK ; 2.14 ; Crystal structure of lysine/ornithine decarboxylase complexed with cadaverine from Vibrio vulnificus 2PLJ ; 1.7 ; Crystal structure of lysine/ornithine decarboxylase complexed with putrescine from Vibrio vulnificus 5XOY ; 2.39 ; Crystal structure of LysK from Thermus thermophilus in complex with Lysine 5BUM ; 2.5 ; Crystal Structure of LysM domain from Equisetum arvense chitinase A 4PXV ; 1.8 ; Crystal Structure of LysM domain from pteris ryukyuensis chitinase A 5YLG ; 1.48 ; Crystal Structure of LysM domain from pteris ryukyuensis chitinase A 5K2L ; 1.2 ; Crystal structure of LysM domain from Volvox carteri chitinase 2ZYJ ; 1.67 ; Crystal structure of LysN, alpha-aminoadipate aminotransferase (complexed with N-(5'-phosphopyridoxyl)-L-glutamate), from Thermus thermophilus HB27 2Z1Y ; 1.75 ; Crystal structure of LysN, alpha-aminoadipate aminotransferase (complexed with N-(5'-phosphopyridoxyl)-L-leucine), from Thermus thermophilus HB27 2ZP7 ; 2.26 ; Crystal structure of LysN, alpha-aminoadipate aminotransferase (Leucine complex), from Thermus thermophilus HB27 2EGY ; 2.67 ; Crystal structure of LysN, alpha-aminoadipate aminotransferase (substrate free form), from Thermus thermophilus HB27 3CBF ; 1.67 ; Crystal structure of LysN, alpha-aminoadipate aminotransferase, from Thermus thermophilus HB27 8ITR ; 2.44 ; Crystal structure of lysophosphatidylcholine in complex with human serum albumin 8ITT ; 3.03 ; Crystal structure of lysophosphatidylcholine in complex with human serum albumin and myristate 6BJE ; 2.7 ; Crystal Structure of Lysophospholipase A2 Conjugated with Phenylmethylsulfonyl Fluoride 7YMQ ; 2.29 ; Crystal structure of lysoplasmalogen specific phopholipase D, F211L mutant 7YMP ; 2.57 ; Crystal structure of lysoplasmalogen specific phospholipase D 4X90 ; 1.84 ; Crystal structure of Lysosomal Phospholipase A2 4X94 ; 2.7 ; Crystal structure of Lysosomal Phospholipase A2 crystallized in the presence of methyl arachidonyl fluorophosphonate (hexagonal form) 4X93 ; 2.6 ; Crystal structure of Lysosomal Phospholipase A2 crystallized in the presence of methyl arachidonyl fluorophosphonate (tetragonal form) 4X91 ; 2.3 ; Crystal structure of Lysosomal Phospholipase A2 in complex with Isopropyl dodec-11-enylfluorophosphonate (IDFP) 4X97 ; 2.65 ; Crystal structure of Lysosomal Phospholipase A2 in complex with methyl arachidonyl fluorophosphonate (MAFP) 4X92 ; 3.0 ; Crystal structure of Lysosomal Phospholipase A2-S165A 5K2K ; 1.65 ; Crystal structure of lysozyme 5K2P ; 1.24 ; Crystal structure of lysozyme 5K2R ; 1.6 ; Crystal structure of lysozyme 7F26 ; 1.7 ; Crystal structure of lysozyme 7WBF ; 1.6 ; Crystal structure of lysozyme 8GMV ; 2.2 ; Crystal structure of lysozyme 8GMW ; 1.35 ; Crystal structure of lysozyme 7WBE ; 1.9 ; Crystal structure of lysozyme (multilcrystal diffraction, CrystFEL/MOSFLM) 7WBD ; 1.9 ; Crystal structure of lysozyme (multilcrystal diffraction, CrystFEL/XGANDALF) 8WDI ; 2.2 ; Crystal structure of lysozyme by fixed-target pink-beam serial synchrotron crystallography 6IRJ ; 1.65 ; Crystal structure of lysozyme by fixed-target serial femtosecond crystallography 6LL3 ; 1.85 ; Crystal structure of lysozyme by fixed-target serial femtosecond crystallography 7CVJ ; 1.5 ; Crystal structure of lysozyme by fixed-target serial synchrotron crystallography (100 ms) 7CVL ; 1.6 ; Crystal structure of lysozyme by fixed-target serial synchrotron crystallography (500 ms) 8YBH ; 1.55 ; Crystal structure of lysozyme by macromolecular crystallography 8YBG ; 1.55 ; Crystal structure of lysozyme by serial synchrotron crystallography 6K5Q ; 1.177 ; Crystal structure of lysozyme complexed with a bioactive compound from Jatropha gossypiifolia 7BVO ; 1.9 ; Crystal structure of lysozyme delivered in alginate 6IG6 ; 1.7 ; Crystal structure of lysozyme delivered in polyacrylamide using x-ray free electron laser 7BVM ; 2.0 ; Crystal structure of lysozyme delivered in wheat starch 3B6L ; 2.3 ; Crystal structure of lysozyme folded in SDS and 2-methyl-2,4-pentanediol 3B72 ; 1.5 ; Crystal structure of lysozyme folded in SDS and 2-methyl-2,4-pentanediol 5XUW ; 1.76 ; Crystal structure of lysozyme from Equus asinus 3RNX ; 1.856 ; Crystal Structure of Lysozyme in 30% ethanol 3RW8 ; 1.855 ; Crystal structure of lysozyme in 40% ethanol 3T6U ; 2.213 ; Crystal Structure of Lysozyme in 40% sucrose 7OL5 ; 0.94 ; Crystal structure of Lysozyme in complex with Hepes 7OL6 ; 1.1 ; Crystal structure of Lysozyme in complex with Imidazole 7OL8 ; 1.15 ; Crystal structure of Lysozyme in complex with trifluoroethanol: orthorhombic form 7OL7 ; 1.15 ; Crystal structure of Lysozyme in complex with trifluoroethanol: tetragonal form 4B1A ; 1.67 ; Crystal structure of lysozyme with Keggin molecule 3KN3 ; 2.412 ; Crystal Structure of LysR Substrate Binding Domain (25-263) of Putative Periplasmic Protein from Wolinella succinogenes 5EIO ; 1.8 ; Crystal structure of LysY from Thermus thermophilus complexed with NADP+ and LysW-gamma-aminoadipic semialdehyde 6NRZ ; 2.1 ; Crystal Structure of Lysyl-tRNA Synthetase from Chlamydia trachomatis complexed with L-lysine and Adenosine 6NS0 ; 2.2 ; Crystal Structure of Lysyl-tRNA Synthetase from Chlamydia trachomatis complexed with L-lysine and Cladosporin 6O3F ; 2.4 ; Crystal Structure of Lysyl-tRNA Synthetase from Chlamydia trachomatis with complexed with L-lysine and a difluoro cyclohexyl chromone ligand 5ELN ; 1.9 ; Crystal Structure of Lysyl-tRNA Synthetase from Cryptosporidium parvum complexed with L-lysine 6HCW ; 1.46 ; Crystal Structure of Lysyl-tRNA Synthetase from Cryptosporidium parvum complexed with L-lysine and a difluoro cyclohexyl chromone ligand 6BNI ; 1.85 ; Crystal Structure of Lysyl-tRNA Synthetase from Cryptosporidium parvum complexed with L-lysine and Adenosine 5ELO ; 1.9 ; Crystal Structure of Lysyl-tRNA Synthetase from Cryptosporidium parvum complexed with L-lysine and cladosporin 6C86 ; 2.15 ; Crystal Structure of Lysyl-tRNA Synthetase from Cryptosporidium parvum complexed with L-Lysylsulfamoyl Adenosine 6AQH ; 2.35 ; Crystal Structure of Lysyl-tRNA Synthetase from Mycobacterium thermoresistibile complexed with L-lysine and Cladosporin 7QH8 ; 1.92 ; CRYSTAL STRUCTURE OF LYSYL-TRNA SYNTHETASE FROM Mycobacterium tuberculosis COMPLEXED WITH L-LYSINE 7QHN ; 2.58 ; CRYSTAL STRUCTURE OF LYSYL-TRNA SYNTHETASE FROM Mycobacterium tuberculosis COMPLEXED WITH L-LYSINE and an inhibitor 7QI8 ; 2.2 ; CRYSTAL STRUCTURE OF LYSYL-TRNA SYNTHETASE FROM Mycobacterium tuberculosis COMPLEXED WITH L-LYSINE AND INHIBITOR 5VL1 ; 2.7 ; Crystal Structure of Lysyl-tRNA Synthetase from Mycobacterium ulcerans complexed with L-lysine 6AQG ; 2.25 ; Crystal Structure of Lysyl-tRNA Synthetase from Mycobacterium ulcerans complexed with L-lysine and Cladosporin 6HCU ; 1.62 ; Crystal Structure of Lysyl-tRNA Synthetase from Plasmodium falciparum bound to a difluoro cyclohexyl chromone ligand 6HCV ; 2.2 ; Crystal Structure of Lysyl-tRNA Synthetase from Plasmodium falciparum complexed with a chromone ligand 6L4Q ; 3.1 ; Crystal Structure of Lysyl-tRNA Synthetase from Plasmodium falciparum complexed with L-lysine and Clado-B 6L3Y ; 3.1 ; Crystal Structure of Lysyl-tRNA Synthetase from Plasmodium falciparum complexed with L-lysine and Clado-C 6M0T ; 2.68 ; Crystal Structure of Lysyl-tRNA Synthetase from Plasmodium falciparum complexed with L-lysine and Cladosporin derivative (CL-2) 6WBD ; 2.05 ; Crystal Structure of Lysyl-tRNA synthetase from Stenotrophomonas maltophilia with bound L-lysine 4EX5 ; 2.4 ; Crystal structure of lysyl-tRNA synthetase LysRS from Burkholderia thailandensis bound to lysine 3WWN ; 1.85 ; Crystal structure of LysZ from Thermus thermophilus complex with LysW 3WWM ; 2.8 ; Crystal structure of LysZ from Thermus thermophilus with ADP 3T36 ; 2.25 ; Crystal structure of lytic transglycosylase MltE from Eschericha coli 1MFR ; 2.8 ; CRYSTAL STRUCTURE OF M FERRITIN 2PKF ; 1.5 ; Crystal structure of M tuberculosis Adenosine Kinase (apo) 2PKK ; 1.93 ; Crystal structure of M tuberculosis Adenosine Kinase complexed with 2-fluro adenosine 4UBE ; 1.933 ; CRYSTAL STRUCTURE OF M TUBERCULOSIS ADENOSINE KINASE COMPLEXED WITH 2-FLURO ADENOSINE 2PKM ; 1.9 ; Crystal structure of M tuberculosis Adenosine Kinase complexed with adenosine 2PKN ; 1.9 ; Crystal structure of M tuberculosis Adenosine Kinase complexed with AMP-PCP (non-hydrolyzable ATP analog) 1DF0 ; 2.6 ; Crystal structure of M-Calpain 5HT9 ; 1.869 ; Crystal structure of M-crystallin in the presence of nickel 3TPW ; 1.65 ; CRYSTAL STRUCTURE OF M-PMV DUTPASE - DUPNPP complex revealing distorted ligand geometry (approach intermediate) 3TPS ; 1.85 ; Crystal structure of M-PMV dUTPASE complexed with dUPNPP substrate 3TPN ; 1.65 ; Crystal structure of M-PMV dUTPASE complexed with dUPNPP, substrate 2D4N ; 1.53 ; Crystal Structure of M-PMV dUTPase complexed with dUPNPP, substrate analogue 3TQ5 ; 1.4 ; Crystal structure of M-PMV dUTPASE post-inversion product (dUMP) COMPLEX 3TRL ; 1.8 ; Crystal structure of M-PMV dUTPASE post-inversion product (dUMP) complex 3TRN ; 1.83 ; Crystal structure of M-PMV dUTPASE post-inversion product (dUMP) complex 3TS6 ; 1.84 ; Crystal structure of M-PMV DUTPASE relaxed end-product (dUMP) complex 3TSL ; 2.2 ; Crystal structure of M-PMV DUTPASE relaxed end-product (dUMP) complex 3TTA ; 2.0 ; Crystal structure of M-PMV DUTPASE relaxed end-product (dUMP) complex 3TPY ; 1.75 ; Crystal structure of M-PMV dUTPase with a mixed population of substrate (dUPNPP) and post-inversion product (dUMP) in the active sites 3TQ3 ; 1.85 ; Crystal structure of M-PMV dUTPase with a mixed population of substrate (dUPNPP) and post-inversion product (dUMP) in the active sites 3TQ4 ; 1.6 ; Crystal structure of M-PMV dUTPase with a mixed population of substrate (dUPNPP) and post-inversion product (dUMP) in the active sites 1X1R ; 1.3 ; Crystal structure of M-Ras in complex with GDP 1X1S ; 2.2 ; Crystal structure of M-Ras in complex with GppNHp 3KKQ ; 1.2 ; Crystal structure of M-Ras P40D in complex with GDP 3KKP ; 1.35 ; Crystal structure of M-Ras P40D in complex with GppNHp 3KKO ; 1.9 ; Crystal structure of M-Ras P40D/D41E/L51R in complex with GppNHp 3PIR ; 2.75 ; Crystal structure of M-RasD41E in complex with GppNHp (type 1) 3PIT ; 1.55 ; Crystal structure of M-RasD41E in complex with GppNHp (type 2) 5B86 ; 3.017 ; Crystal structure of M-Sec 3CFX ; 1.6 ; Crystal structure of M. acetivorans periplasmic binding protein ModA/WtpA with bound tungstate 4XUL ; 2.26 ; Crystal structure of M. chilensis Mg662 protein complexed with GTP 1XHK ; 1.9 ; Crystal structure of M. jannaschii Lon proteolytic domain 3CFZ ; 1.7 ; Crystal structure of M. jannaschii periplasmic binding protein ModA/WtpA with bound tungstate 3A27 ; 2.005 ; Crystal structure of M. jannaschii TYW2 in complex with AdoMet 4CDM ; 2.7 ; Crystal structure of M. mazei photolyase soaked with synthetic 8-HDF 4CDN ; 1.9 ; Crystal structure of M. mazei photolyase with its in vivo reconstituted 8-HDF antenna chromophore 4C03 ; 1.58 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 reduced 4C08 ; 1.338 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with CaCl2 at 1.34 Angstroms 4C07 ; 1.499 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with CaCl2 at 1.5 Angstroms 4C04 ; 1.576 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with inhibitor 4C06 ; 1.6 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with MgCl2 4C05 ; 2.195 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with SAH 5FQO ; 1.899 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with SAH and magnesium 5FQN ; 1.657 ; Crystal structure of M. musculus protein arginine methyltransferase PRMT6 with SAH at 1.65 Angstroms 7DIE ; 1.9 ; Crystal structure of M. penetrans Ferritin 3WA8 ; 2.8 ; Crystal structure of M. ruber CasB 4F4Q ; 2.619 ; Crystal structure of M. smegmatis DprE1 in complex with FAD and covalently bound BTZ043 2A5V ; 2.2 ; Crystal structure of M. tuberculosis beta carbonic anhydrase, Rv3588c, tetrameric form 4C6W ; 1.7 ; Crystal structure of M. tuberculosis C171Q KasA 4C6X ; 1.95 ; Crystal structure of M. tuberculosis C171Q KasA in complex with thiolactomycin (TLM) 4C71 ; 1.8 ; Crystal structure of M. tuberculosis C171Q KasA in complex with TLM18 4C6Z ; 1.8 ; Crystal structure of M. tuberculosis C171Q KasA in complex with TLM3 4C70 ; 1.75 ; Crystal structure of M. tuberculosis C171Q KasA in complex with TLM4 4C72 ; 1.5 ; Crystal structure of M. tuberculosis C171Q KasA in complex with TLM5 4C73 ; 1.8 ; Crystal structure of M. tuberculosis C171Q KasA in complex with TLM6 1HX5 ; 3.5 ; Crystal structure of M. tuberculosis chaperonin-10 4U0H ; 3.2479 ; Crystal Structure of M. tuberculosis ClpP1P1 4U0G ; 3.1978 ; Crystal Structure of M. tuberculosis ClpP1P2 bound to ADEP and agonist 8AMO ; 1.4 ; Crystal structure of M. tuberculosis CYP143 4NCR ; 1.881 ; Crystal structure of M. tuberculosis DprE1 in complex with PBTZ169 6G83 ; 2.4 ; Crystal structure of M. tuberculosis DprE1 in complex with sPBTZ169 (sulfonylPBTZ) 4P8H ; 3.0 ; Crystal structure of M. tuberculosis DprE1 in complex with the nitro-benzothiazole 6a 4P8M ; 2.09 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor QN114 4P8N ; 1.79 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor QN118 4P8C ; 1.95 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor QN127 4P8P ; 2.2 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor QN127 4P8T ; 2.55 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor QN129 4P8Y ; 2.01 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor Ty21c 4P8L ; 2.02 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor Ty36c 4P8K ; 2.49 ; Crystal structure of M. tuberculosis DprE1 in complex with the non-covalent inhibitor Ty38c 5DTP ; 1.91 ; Crystal structure of M. tuberculosis EchA6 (apo, trigonal crystal form) 5DTW ; 2.439 ; Crystal structure of M. tuberculosis EchA6 bound to C20-CoA 5DU8 ; 2.23 ; Crystal structure of M. tuberculosis EchA6 bound to GSK572A 5DU6 ; 2.61 ; Crystal structure of M. tuberculosis EchA6 bound to ligand GSK059A. 5DU4 ; 1.702 ; Crystal structure of M. tuberculosis EchA6 bound to ligand GSK366A 5DUF ; 1.5 ; Crystal structure of M. tuberculosis EchA6 bound to ligand GSK729A 5DUC ; 2.704 ; Crystal structure of M. tuberculosis EchA6 bound to ligand GSK951A 6HRD ; 2.11 ; Crystal structure of M. tuberculosis FadB2 (Rv0468) 3E25 ; 2.7 ; Crystal structure of M. tuberculosis glucosyl-3-phosphoglycerate synthase 3E26 ; 2.5 ; Crystal structure of M. tuberculosis glucosyl-3-phosphoglycerate synthase 6OFC ; 3.14 ; Crystal structure of M. tuberculosis glutamine-dependent NAD+ synthetase complexed with Sulfonamide derivative 1, pyrophosphate, and glutamine 4PFD ; 2.3 ; Crystal structure of M. tuberculosis in complex with a cBT - non-covalent adduct 4PFA ; 2.56 ; Crystal structure of M. tuberculosis in complex with BTO - covalent adduct 6SQ7 ; 1.76 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and 2-(4-chloro-3-nitrobenzoyl)benzoic acid 6SQD ; 1.72 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and 2-pyrazol-1-ylbenzoic acid 6SQB ; 1.774 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and 3-(3-chlorophenyl)propanoic acid 6SQ9 ; 1.75 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and 3-hydroxynaphthalene-2-carboxylic acid 6SQ5 ; 1.84 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and 3-[3-(trifluoromethyl)phenyl]prop-2-enoic acid 6SQL ; 2.35 ; Crystal structure of M. tuberculosis InhA in complex with NAD+ and N-(3-(aminomethyl)phenyl)-5-chloro-3-methylbenzo[b]thiophene-2-sulfonamide 5UGS ; 2.8 ; Crystal structure of M. tuberculosis InhA inhibited by PT501 5UGT ; 2.6 ; Crystal structure of M. tuberculosis InhA inhibited by PT504 5UGU ; 1.95 ; Crystal structure of M. tuberculosis InhA inhibited by PT506 5MTQ ; 2.6 ; Crystal structure of M. tuberculosis InhA inhibited by PT511 5MTR ; 2.0 ; Crystal structure of M. tuberculosis InhA inhibited by PT512 5MTP ; 2.0 ; Crystal structure of M. tuberculosis InhA inhibited by PT514 2X22 ; 2.1 ; crystal structure of M. tuberculosis InhA inhibited by PT70 2X23 ; 1.807 ; crystal structure of M. tuberculosis InhA inhibited by PT70 6YUU ; 2.01 ; Crystal structure of M. tuberculosis InhA inhibited by SKTS1 6Y2J ; 2.886 ; Crystal structure of M. tuberculosis KasA in complex with 4,4,4-trifluoro-N-(isoquinolin-6-yl)butane-1-sulfonamide 6Y2I ; 1.533 ; Crystal structure of M. tuberculosis KasA in complex with N-(1H-indazol-5-yl)butane-1-sulfonamide 4C6U ; 2.4 ; Crystal structure of M. tuberculosis KasA in complex with TLM5 4C6V ; 2.7 ; Crystal structure of M. tuberculosis KasA in complex with TLM5 (Soak for 5 min) 3TUR ; 1.72 ; Crystal Structure of M. tuberculosis LD-transpeptidase type 2 complexed with a peptidoglycan fragment 3U1Q ; 2.4 ; Crystal Structure of M. tuberculosis LD-transpeptidase type 2 with 2-Mercaptoethanol 3U1P ; 2.8 ; Crystal Structure of M. tuberculosis LD-transpeptidase type 2 with Modified Catalytic Cysteine (C354) 3VAE ; 2.8 ; Crystal Structure of M. tuberculosis LD-transpeptidase type 2 with Modified Catalytic Cysteine (C354) 5EXJ ; 1.64 ; Crystal structure of M. tuberculosis lipoyl synthase at 1.64 A resolution 5EXI ; 2.28 ; Crystal structure of M. tuberculosis lipoyl synthase at 2.28 A resolution 5EXK ; 1.86 ; Crystal structure of M. tuberculosis lipoyl synthase with 6-thiooctanoyl peptide intermediate 5HK0 ; 2.25 ; Crystal structure of M. tuberculosis MazF-mt3 (Rv1991c) in complex with RNA 5HKC ; 1.68 ; Crystal structure of M. tuberculosis MazF-mt3 T52D-F62D mutant in complex with 8-mer RNA 5HK3 ; 1.56 ; Crystal structure of M. tuberculosis MazF-mt3 T52D-F62D mutant in complex with DNA 5ESS ; 2.2 ; Crystal Structure of M. tuberculosis MenD bound to Mg2+ and covalent intermediate I (a ThDP and decarboxylated 2-oxoglutarate adduct) 5ESU ; 2.2 ; Crystal Structure of M. tuberculosis MenD bound to Mg2+ and Covalent Intermediate II (a ThDP + de-carboxylated 2-oxoglutarate + Isochorismate adduct) 5ESD ; 2.25 ; Crystal Structure of M. tuberculosis MenD bound to ThDP and Mn2+ 5ESO ; 2.05 ; Crystal Structure of M. tuberculosis MenD with ThDP, Mg2+ and Isochorismate bound 4QJK ; 1.59 ; Crystal structure of M. tuberculosis phosphopantetheinyl transferase PptT 3F61 ; 1.8 ; Crystal Structure of M. tuberculosis PknB Leu33Asp/Val222Asp double mutant in complex with ADP 1I80 ; 2.0 ; CRYSTAL STRUCTURE OF M. TUBERCULOSIS PNP IN COMPLEX WITH IMINORIBITOL, 9-DEAZAHYPOXANTHINE AND PHOSPHATE ION 3GO7 ; 2.5 ; Crystal Structure of M. tuberculosis ribokinase (Rv2436) in complex with ribose 3GO6 ; 1.98 ; Crystal Structure of M. tuberculosis ribokinase (Rv2436) in complex with ribose and AMP-PNP 2A87 ; 3.0 ; Crystal Structure of M. tuberculosis Thioredoxin reductase 4FX0 ; 2.6981 ; Crystal structure of M. tuberculosis transcriptional regulator MosR 4FX4 ; 3.1001 ; Crystal structure of M. tuberculosis transcriptional regulator MOSR (Rv1049) in compex with DNA 4LXF ; 2.6 ; Crystal structure of M. tuberculosis TreS 3TWP ; 1.83 ; Crystal structure of M. tuberculosis TrpD in complex with an inhibitor 5K2Y ; 2.41 ; Crystal structure of M. tuberculosis UspC (monoclinic crystal form) 5K2X ; 1.5 ; Crystal structure of M. tuberculosis UspC (tetragonal crystal form) 3CTO ; 2.5 ; Crystal Structure of M. tuberculosis YefM antitoxin 3D55 ; 2.13 ; Crystal structure of M. tuberculosis YefM antitoxin 4QJL ; 1.65 ; Crystal structure of M. ulcerans phosphopantetheinyl transferase MuPPT 1G61 ; 1.3 ; CRYSTAL STRUCTURE OF M.JANNASCHII EIF6 2YX1 ; 2.2 ; Crystal structure of M.jannaschii tRNA m1G37 methyltransferase 8AMP ; 2.0 ; Crystal structure of M.tuberculosis ferredoxin Fdx 7DDV ; 2.2 ; Crystal structure of M.tuberculosis imidazole glycerol phosphate dehydratase in complex with an inhibitor 7DNQ ; 2.28 ; Crystal structure of M.tuberculosis imidazole glycerol phosphate dehydratase in complex with an inhibitor 7FCY ; 1.848 ; Crystal structure of M.tuberculosis imidazole glycerol phosphate dehydratase in complex with an inhibitor 5XKA ; 1.599 ; Crystal structure of M.tuberculosis PknI kinase domain 6JMI ; 2.896 ; Crystal structure of M.tuberculosis Rv0081 6IFG ; 1.9 ; Crystal structure of M1 zinc metallopeptidase E323A mutant bound to Tyr-ser-ala substrate from Deinococcus radiodurans 6IFF ; 1.83 ; Crystal structure of M1 zinc metallopeptidase E323A mutant from Deinococcus radiodurans 6A8Z ; 2.045 ; Crystal structure of M1 zinc metallopeptidase from Deinococcus radiodurans 5HEK ; 3.0 ; crystal structure of M1.HpyAVI 5HFJ ; 3.1 ; crystal structure of M1.HpyAVI-SAM complex 3BL2 ; 2.3 ; Crystal Structure of M11, the BCL-2 Homolog of Murine Gamma-herpesvirus 68, Complexed with Mouse Beclin1 (residues 106-124) 2O42 ; 2.91 ; Crystal Structure of M11L, Bcl-2 homolog from myxoma virus 5XCN ; 1.69 ; Crystal structure of M120A mutant of O-acetyl-L-serine sulfahydrylase from Haemophilus influenzae 6AIF ; 2.3 ; Crystal structure of M120A mutant of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high affinity inhibitory peptide from serine acetyl transferase of Salmonella typhimurium 4MFH ; 1.54 ; Crystal Structure of M121G Azurin 1GS6 ; 2.2 ; Crystal structure of M144A mutant of Alcaligenes xylosoxidans Nitrite Reductase 2NYK ; 2.1 ; Crystal structure of m157 from mouse cytomegalovirus 1LWC ; 2.62 ; CRYSTAL STRUCTURE OF M184V MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH NEVIRAPINE 5ZK8 ; 3.0 ; Crystal structure of M2 muscarinic acetylcholine receptor bound with NMS 6GG3 ; 3.72 ; Crystal structure of M2 PYK in complex with Alanine. 6GG4 ; 2.46 ; Crystal structure of M2 PYK in complex with Phenyalanine. 6GG6 ; 2.96 ; Crystal structure of M2 PYK in complex with Serine. 6GG5 ; 3.2 ; Crystal structure of M2 PYK in complex with Tryptophan. 4S0Z ; 1.45 ; Crystal structure of M26V human DJ-1 4XX7 ; 1.77 ; Crystal structure of M2A mutant of human macrophage migration inhibitory factor 8H3C ; 3.43 ; Crystal structure of M2e Influenza peptide in complex with antibody scFv 5J3Z ; 1.8 ; Crystal structure of m2hTDP2-CAT in complex with a small molecule inhibitor 5J42 ; 1.7 ; Crystal structure of m2hTDP2-CAT in complex with a small molecule inhibitor 5GIV ; 2.4 ; Crystal structure of M32 carboxypeptidase from Deinococcus radiodurans R1 2ORY ; 2.2 ; Crystal structure of M37 lipase 1LWE ; 2.81 ; CRYSTAL STRUCTURE OF M41L/T215Y MUTANT HIV-1 REVERSE TRANSCRIPTASE (RTMN) IN COMPLEX WITH NEVIRAPINE 2HS2 ; 1.22 ; Crystal structure of M46L mutant of HIV-1 protease complexed with TMC114 (darunavir) 7KLC ; 4.3 ; Crystal structure of M4H2K1 Fab bound to HIV-1 BG505 gp120 core and to 17b Fab 4MEZ ; 2.047 ; Crystal structure of M68L/M69T double mutant TEM-1 3V5M ; 1.3 ; Crystal structure of M69V mutant of SHV beta-lactamase 5XCP ; 2.043 ; Crystal structure of M92A mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae 5XCW ; 1.89 ; Crystal structure of M92A-M120A double mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae 7C35 ; 2.1 ; Crystal structure of M96A mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae 4A2N ; 3.4 ; Crystal Structure of Ma-ICMT 3SGE ; 1.89 ; Crystal structure of mAb 17.2 in complex with R13 peptide 5OVL ; 2.4 ; crystal structure of MabA bound to NADP+ from M. smegmatis 2NTN ; 2.3 ; Crystal structure of MabA-C60V/G139A/S144L 2DS2 ; 1.7 ; Crystal structure of mabinlin II 8CDA ; 2.1 ; Crystal structure of MAB_4123 from Mycobacterium abscessus 7Q3A ; 2.0 ; Crystal structure of MAB_4324 a tandem repeat GNAT from Mycobacterium abscessus 5OVY ; 1.9 ; Crystal structure of MAB_4384 tetR 4DK0 ; 3.5 ; Crystal structure of MacA from Actinobacillus actinomycetemcomitans 4DK1 ; 3.499 ; Crystal Structure of MacA-MexA chimeric protein, containing the Pseudomonas aeruginosa MexA alpha-hairpin domain. 6VOR ; 1.85 ; Crystal structure of macaque anti-HIV-1 antibody RM20E1 6VSR ; 2.176 ; Crystal structure of macaque anti-HIV-1 antibody RM20F 6VOS ; 2.299 ; Crystal structure of macaque anti-HIV-1 antibody RM20J 5W3V ; 2.243 ; Crystal Structure of macaque APOBEC3H in complex with RNA 2XUO ; 2.8 ; CRYSTAL STRUCTURE OF MACHE-Y337A mutant in complex with soaked TZ2PA6 ANTI inhibitor 2XUF ; 2.55 ; CRYSTAL STRUCTURE OF MACHE-Y337A-TZ2PA6 ANTI COMPLEX (1 MTH) 2XUG ; 2.6 ; Crystal structure of mAChE-Y337A-TZ2PA6 anti complex (1 wk) 2XUH ; 2.65 ; CRYSTAL STRUCTURE OF MACHE-Y337A-TZ2PA6 ANTI COMPLEX (10 MTH) 2XUJ ; 2.65 ; CRYSTAL STRUCTURE OF MACHE-Y337A-TZ2PA6 SYN COMPLEX (1 MTH) 2XUI ; 2.6 ; CRYSTAL STRUCTURE OF MACHE-Y337A-TZ2PA6 SYN COMPLEX (1 WK) 2XUK ; 2.75 ; CRYSTAL STRUCTURE OF MACHE-Y337A-TZ2PA6 SYN COMPLEX (10 MTH) 2WFO ; 1.73 ; Crystal structure of Machupo virus envelope glycoprotein GP1 3GPG ; 1.65 ; Crystal structure of macro domain of Chikungunya virus 3GPO ; 1.9 ; Crystal structure of macro domain of Chikungunya virus in complex with ADP-ribose 3GPQ ; 2.0 ; Crystal structure of macro domain of Chikungunya virus in complex with RNA 3GQE ; 2.3 ; Crystal structure of macro domain of Venezuelan Equine Encephalitis virus 3GQO ; 2.6 ; Crystal structure of macro domain of Venezuelan Equine Encephalitis virus in complex with ADP-ribose 7M4S ; 2.493 ; Crystal structure of macrocyclase AMdnB from Anabaena sp. PCC 7120 5IG8 ; 2.278 ; Crystal structure of macrocyclase MdnB from Microcystis aeruginosa MRC 5IG9 ; 2.665 ; Crystal structure of macrocyclase MdnC bound with precursor peptide MdnA from Microcystis aeruginosa MRC 4NTP ; 1.987 ; Crystal structure of macrocycles containing A 17-23 (LV(PHI)FAED) and A 30-36 (AII(SAR)L(ORN)V) 5V64 ; 2.023 ; Crystal structure of macrocycles containing Abeta 15-21 (QKLV(PHI)FA) and Abeta 30-36 (AII(SAR)L(ORN)V) 5V63 ; 2.091 ; Crystal structure of macrocycles containing Abeta 16-22 (KLV(PHI)FAE) and Abeta 30-36 (AII(SAR)L(ORN)V) 5V65 ; 2.52 ; Crystal structure of macrocycles containing Abeta 17-23 (LV(PHI)FAED) and Abeta 30-36 (AII(SAR)L(ORN)V) 4NTR ; 1.7 ; Crystal structure of macrocycles containing Abeta 17-23 (LVFFAED) and Abeta 30-36 (AII(SAR)L(ORN)V) 4NW8 ; 2.02 ; Crystal structure of macrocycles containing Abeta17-23 (LV(PHI)(MEA)AED) and Abeta30-36 (AIIGL(ORN)V) 4NW9 ; 1.66 ; Crystal structure of macrocycles containing Abeta17-23 (LVF(MEA)AED) and Abeta30-36 (AIIGL(ORN)V) 7WMC ; 2.55 ; Crystal structure of macrocyclic peptide 1 bound to human Nicotinamide N-methyltransferase 6SIS ; 3.5 ; Crystal structure of macrocyclic PROTAC 1 in complex with the second bromodomain of human Brd4 and pVHL:ElonginC:ElonginB 8DMT ; 2.28 ; Crystal structure of macrodomain CG2909 from Drosophila melanogaster in complex with ADP-ribose 8DMU ; 2.0 ; Crystal structure of macrodomain CG3568 from Drosophila melanogaster in complex with ADP-ribose 5UXA ; 1.95 ; Crystal structure of macrolide 2'-phosphotransferase MphB from Escherichia coli 5UXD ; 1.7 ; Crystal structure of macrolide 2'-phosphotransferase MphH from Brachybacterium faecium in complex with azithromycin 5UXC ; 1.72 ; Crystal structure of macrolide 2'-phosphotransferase MphH from Brachybacterium faecium in complex with GDP 5UXB ; 2.794 ; Crystal structure of macrolide 2'-phosphotransferase MphH from Brachybacterium faecium, apoenzyme 4M60 ; 1.77 ; Crystal structure of macrolide glycosyltransferases OleD 3OP1 ; 2.488 ; Crystal Structure of Macrolide-efflux Protein SP_1110 from Streptococcus pneumoniae 8UZ4 ; 2.4 ; Crystal Structure of macrophage migration inhibitory factor (MIF) from Trichomonas vaginalis (Apo, P41212 form) 8UR2 ; 1.9 ; Crystal Structure of macrophage migration inhibitory factor (MIF) from Trichomonas vaginalis (I41 form) 8UR4 ; 2.55 ; Crystal Structure of macrophage migration inhibitory factor (MIF) from Trichomonas vaginalis (I4122 form) 5HVS ; 1.75 ; Crystal Structure of Macrophage Migration Inhibitory Factor (MIF) with a Biaryltriazole Inhibitor (3i-305) 5HVT ; 1.75 ; Crystal Structure of Macrophage Migration Inhibitory Factor (MIF) with a Potent Inhibitor (NVS-2) 3L5U ; 1.9 ; Crystal structure of macrophage migration inhibitory factor (MIF) with benzothiazole inhibitor at 1.90A resolution 3L5V ; 1.7 ; Crystal structure of macrophage migration inhibitory factor (MIF) with glycerol at 1.70A resolution 3JSF ; 1.93 ; Crystal structure of macrophage migration inhibitory factor (mif) with hydroxyquinoline inhibitor 638 at 1.93a resolution 3JSG ; 1.58 ; Crystal structure of macrophage migration inhibitory factor (mif) with hydroxyquinoline inhibitor 707 at 1.58a resolution 3JTU ; 1.86 ; Crystal structure of macrophage migration inhibitory factor (mif) with hydroxyquinoline inhibitor 708 at 1.86a resolution 3L5P ; 1.8 ; Crystal structure of macrophage migration inhibitory factor (MIF) with imidazopyridazinol inhibitor at 1.80A resolution 3L5S ; 1.86 ; Crystal structure of macrophage migration inhibitory factor (MIF) with imidazopyrimidinylphenyl inhibitor at 1.86A resolution 3L5R ; 1.94 ; Crystal structure of macrophage migration inhibitory factor (MIF) with phenylchromenone inhibitor at 1.94A resolution 3L5T ; 1.86 ; Crystal structure of macrophage migration inhibitory factor (MIF) with thiophenepiperazinylquinolinone inhibitor at 1.86A resolution 3DJI ; 1.95 ; Crystal Structure of Macrophage Migration Inhibitory Factor Bound to an Acetaminophen Dimer Derived from NAPQI 5XEJ ; 2.5 ; Crystal Structure of Macrophage Migration Inhibitory Factor bound to MTX 1MFI ; 1.8 ; CRYSTAL STRUCTURE OF MACROPHAGE MIGRATION INHIBITORY FACTOR COMPLEXED WITH (E)-2-FLUORO-P-HYDROXYCINNAMATE 1LJT ; 2.0 ; Crystal Structure of Macrophage Migration Inhibitory Factor complexed with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole-acetic acid methyl ester (ISO-1) 2WKB ; 1.78 ; Crystal Structure of Macrophage Migration Inhibitory Factor from Plasmodium berghei 2WKF ; 2.05 ; Crystal Structure of Macrophage Migration Inhibitory Factor from Plasmodium falciparum 9B0M ; 1.8 ; Crystal structure of Macrophage migration inhibitory factor from Plasmodium vivax 1UIZ ; 2.5 ; Crystal Structure Of Macrophage Migration Inhibitory Factor From Xenopus Laevis. 2XCZ ; 1.64 ; Crystal Structure of macrophage migration inhibitory factor homologue from Prochlorococcus marinus 4PLU ; 1.63 ; Crystal structure of Macrophage Migration Inhibitory Factor in complex with benzaldehyde 5B4O ; 1.37 ; Crystal structure of Macrophage Migration Inhibitory Factor in complex with BTZO-14 4PKK ; 1.78 ; Crystal structure of Macrophage Migration inhibitory factor in complex with furan-2-ylmethyl)imino methanethiol 4TRF ; 1.63 ; Crystal structure of Macrophage Migration Inhibitory Factor in complex with N-(pyridin-3-ylmethyl)thioformamide 8VJ2 ; 1.9 ; Crystal Structure of Macrophage migration inhibitory factor-1 (MIF1) from Onchocerca volvulus 6CUQ ; 2.45 ; Crystal structure of Macrophage migration inhibitory factor-like protein (EhMIF) from Entamoeba histolytica 7D17 ; 2.998 ; Crystal structure of Macrostomum lignano glutaminyl cyclase 3DIT ; 3.2 ; Crystal structure of MAD MH2 domain 3GMJ ; 2.8 ; Crystal structure of MAD MH2 domain 1NLW ; 2.0 ; Crystal structure of Mad-Max recognizing DNA 1GO4 ; 2.05 ; Crystal structure of Mad1-Mad2 reveals a conserved Mad2 binding motif in Mad1 and Cdc20. 7K75 ; 2.5 ; Crystal structure of MAD2-6 IgA Fab in complex with PfCSP N-terminal peptide. 7K76 ; 2.14 ; Crystal structure of MAD2-6 IgG Fab in complex with PfCSP N-terminal peptide. 5XPU ; 2.304 ; Crystal structure of MAD2L2/REV7 in complex with a CAMP fragment in a monoclinic crystal 5XPT ; 2.102 ; Crystal structure of MAD2L2/REV7 in complex with a CAMP fragment in a tetragonal crystal 6JQH ; 2.303 ; Crystal structure of MaDA 7E2V ; 2.94 ; Crystal structure of MaDA-3 8C84 ; 1.9 ; Crystal structure of MADS-box/MEF2D N-terminal domain complex 2P5X ; 2.0 ; Crystal structure of Maf domain of human N-acetylserotonin O-methyltransferase-like protein 6XI4 ; 2.22 ; Crystal structure of Maf domain of human N-acetylserotonin O-methyltransferase-like protein soaked with TFBQ 4OO0 ; 2.15 ; Crystal Structure of Maf-like protein BceJ2315_23540 from Burkholderia cenocepacia 2AMH ; 2.0 ; Crystal Structure of Maf-like Protein Tbru21784AAA from T.brucei 3A5T ; 2.8 ; Crystal structure of MafG-DNA complex 6WJH ; 2.19 ; Crystal structure of MAGE-A11 bound to the PCF11 degron 5WY5 ; 2.92 ; Crystal structure of MAGEG1 and NSE1 complex 6JJZ ; 1.65 ; Crystal Structure of MAGI2 and Dendrin complex 7YKH ; 2.5 ; Crystal structure of MAGI2 PDZ0-GK domain in complex with phospho-SAPAP1 GBR2 peptide 7YKI ; 2.0 ; Crystal structure of MAGI2 PDZ0-GK domain in complex with phospho-SAPAP1 GBR3 peptide 7YKF ; 2.28 ; Crystal structure of MAGI2 PDZ0-GK/pEphexin4 complex 7YKG ; 2.16 ; Crystal structure of MAGI2 PDZ0-GK/pSGEF complex 6KKG ; 2.15 ; Crystal structure of MAGI2-Dendrin complex 4HG0 ; 3.102 ; Crystal Structure of magnesium and cobalt efflux protein CorC, Northeast Structural Genomics Consortium (NESG) Target ER40 4QDK ; 1.7 ; Crystal structure of magnesium protoporphyrin IX methyltransferase (ChlM) from Synechocystis PCC 6803 with bound SAH 4QDJ ; 1.6 ; Crystal structure of magnesium protoporphyrin IX methyltransferase (ChlM) from Synechocystis PCC 6803 with bound SAM 2YVX ; 3.5 ; Crystal structure of magnesium transporter MgtE 4WIB ; 3.2 ; Crystal structure of Magnesium transporter MgtE 2YVY ; 2.3 ; Crystal structure of magnesium transporter MgtE cytosolic domain, Mg2+ bound form 2YVZ ; 3.9 ; Crystal structure of magnesium transporter MgtE cytosolic domain, Mg2+-free form 5BY0 ; 1.8 ; Crystal structure of magnesium-bound Duf89 protein Saccharomyces cerevisiae 4HQL ; 2.241 ; Crystal structure of magnesium-loaded Plasmodium vivax TRAP protein 4RAY ; 1.55 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 Apo-Fur 4RB1 ; 2.75 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 Fur-Mn2+-E. coli Fur box 4RB3 ; 2.6 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 Fur-Mn2+-feoAB1 operator 4RAZ ; 1.9 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 holo-Fur 4RB0 ; 1.85 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 SeMet-Apo-Fur 4RB2 ; 2.82 ; Crystal structure of Magnetospirillum gryphiswaldense MSR-1 SeMet-Fur-Mn2+-feoAB1 operator 1HXS ; 2.2 ; CRYSTAL STRUCTURE OF MAHONEY STRAIN OF POLIOVIRUS AT 2.2A RESOLUTION 8FTC ; 2.0 ; Crystal structure of main protease of SARS-CoV-2 complexed with inhibitor 5JGW ; 2.3 ; Crystal structure of maize AKR4C13 in complex with NADP and acetate 5JGY ; 1.45 ; Crystal structure of maize AKR4C13 in P21 space group 5OU5 ; 2.2 ; Crystal structure of maize chloroplastic photosynthetic NADP(+)-dependent malic enzyme 3PZH ; 1.919 ; Crystal structure of maize CK2 alpha in complex with emodin at 1.92 A resolution 1OM1 ; 1.68 ; Crystal structure of maize CK2 alpha in complex with IQA 3PWD ; 2.2 ; Crystal structure of maize CK2 in complex with NBC (Z1) 4DGM ; 1.65 ; Crystal Structure of maize CK2 in complex with the inhibitor apigenin 4DGN ; 1.75 ; Crystal Structure of maize CK2 in complex with the inhibitor luteolin 6QS5 ; 1.961 ; Crystal Structure of maize CK2 in complex with tyrphostin AG99 8CK6 ; 1.9 ; Crystal structure of maize CKO/CKX8 in complex with urea-derived inhibitor 2-[(3,5-dichlorophenyl)carbamoylamino]-4-methoxy-benzamide 8CJ9 ; 1.93 ; Crystal structure of maize CKO/CKX8 in complex with urea-derived inhibitor 2-[(3,5-dichlorophenyl)carbamoylamino]benzamide 8CKT ; 2.0 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (CKO/CKX4) in complex with inhibitor 2-[(3,5-dichlorophenyl)carbamoylamino]-4-(trifluoromethoxy)benzamide 8CLW ; 1.8 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (CKO/CKX4) in complex with inhibitor 2-[(3,5-dichlorophenyl)carbamoylamino]-4-methoxy-benzamide 8CKQ ; 2.0 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (CKO/CKX4) in complex with inhibitor 2-[(3,5-dichlorophenyl)carbamoylamino]benzamide 8CM2 ; 2.05 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (CKO/CKX4) in complex with inhibitor 2-[[3,5-dichloro-2-(2-hydroxyethyl)phenyl]carbamoylamino]-4-(trifluoromethoxy)benzamide 5HHZ ; 2.0 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (ZmCKO4) in complex with 6-(3-methylpyrrol-1-yl)-9H-purine 5HMR ; 2.0 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (ZmCKO4) in complex with phenylurea inhibitor 3FMTDZ 4O95 ; 1.75 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (ZmCKO4) in complex with phenylurea inhibitor CPPU 4OAL ; 1.9 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (ZmCKO4) in complex with phenylurea inhibitor CPPU in alternative spacegroup 5HQX ; 2.05 ; Crystal structure of maize cytokinin oxidase/dehydrogenase 4 (ZmCKO4) in complex with phenylurea inhibitor HETDZ 2QKN ; 2.15 ; Crystal structure of Maize cytokinin oxidase/dehydrogenase complexed with phenylurea inhibitor CPPU 5D0N ; 3.2 ; Crystal structure of maize PDRP bound with AMP 5D1F ; 3.4 ; Crystal structure of maize PDRP bound with AMP and Hg2+ 7W82 ; 3.1 ; Crystal structure of maize RDR2 7EEZ ; 1.902 ; crystal structure of maize SHH2 SAWADEE domain 7EF0 ; 1.5 ; Crystal structure of maize SHH2 SAWADEE domain in complex with an H3K9M peptide 7EF2 ; 2.0 ; Crystal structure of maize SHH2 SAWADEE domain in complex with an H3K9me3 peptide 7EF1 ; 1.9 ; crystal structure of maize SHH2 SAWADEE domain in complex with and H3K9me1 peptide 7EF3 ; 2.1 ; crystal structure of maize SHH2 SAWADEE domain in complex with H3K9me2 peptide 5UV4 ; 2.3 ; Crystal Structure of Maize SIRK1 (sucrose-induced receptor kinase 1) kinase domain bound to AMP-PNP 7V3K ; 2.49 ; crystal structure of MAJ1 3EBK ; 1.9 ; Crystal structure of major allergens, Bla g 4 from cockroaches 3EBW ; 2.8 ; Crystal structure of major allergens, Per a 4 from cockroaches 6FXO ; 2.5 ; Crystal structure of Major Bifunctional Autolysin 4A84 ; 1.5 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a F30V mutant in complex with deoxycholate. 4A80 ; 1.96 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in complex with 8-Anilinonaphthalene-1-sulfonate (ANS) 4A83 ; 1.54 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in complex with deoxycholate. 4A8G ; 2.1 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in complex with dimethylbenzylammonium propane sulfonate 4A85 ; 1.4 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in complex with kinetin. 4A87 ; 1.24 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in complex with naringenin. 4A81 ; 2.05 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in ternary complex with 8-Anilinonaphthalene-1-sulfonate (ANS) and deoxycholic acid 4A86 ; 1.59 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 a in ternary complex with kinetin and 8-Anilinonaphthalene-1-sulfonate (ANS) 4QIP ; 2.0 ; Crystal Structure of Major Birch Pollen Allergen Bet v 1 isoform a in complex with Sodium Dodecyl Sulfate 4EGT ; 2.0 ; Crystal structure of major capsid protein P domain from rabbit hemorrhagic disease virus 4EJR ; 2.0 ; Crystal structure of major capsid protein S domain from rabbit hemorrhagic disease virus 5HLJ ; 2.406 ; Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus 3SMH ; 2.433 ; Crystal structure of major peanut allergen Ara h 1 4S3L ; 2.8 ; Crystal Structure of major pilin protein PitB from type II pilus of Streptococcus pneumoniae 2Y92 ; 3.01 ; Crystal structure of MAL adaptor protein 6UCT ; 3.47 ; Crystal structure of Mal de Rio Cuarto virus P9-1 viroplasm protein (C-arm deletion mutant) 3TPM ; 2.1 ; Crystal structure of MAL RPEL domain in complex with importin-alpha 5WGY ; 2.0 ; Crystal Structure of MalA' C112S/C128S, malbrancheamide B complex 5WGV ; 2.3 ; Crystal Structure of MalA' C112S/C128S, premalbrancheamide complex 5WGU ; 2.052 ; Crystal Structure of MalA' E494D, premalbrancheamide complex 5WGX ; 1.973 ; Crystal Structure of MalA' H253A, malbrancheamide B complex 5WGT ; 2.093 ; Crystal Structure of MalA' H253A, premalbrancheamide complex 5WGS ; 2.34 ; Crystal Structure of MalA' H253F, premalbrancheamide complex 3FS3 ; 2.3 ; Crystal structure of malaria parasite Nucleosome Assembly Protein (NAP) 6E64 ; 3.15 ; Crystal structure of malaria transmission-blocking antibody 85RF45.1 6E65 ; 1.5 ; Crystal structure of malaria transmission-blocking antibody TB31F 6E62 ; 2.7 ; Crystal structure of malaria transmission-blocking antigen Pfs48/45 6C in complex with antibody 85RF45.1 6E63 ; 2.6 ; Crystal structure of malaria transmission-blocking antigen Pfs48/45 6C in complex with antibody TB31F 7UNB ; 2.18 ; Crystal structure of malaria transmission-blocking antigen Pfs48/45-6C variant in complex with human antibodies RUPA-117 and RUPA-47 7UXL ; 2.86 ; Crystal structure of malaria transmission-blocking antigen Pfs48/45-6C variant in complex with human antibodies RUPA-44 and RUPA-29 3D5T ; 2.51 ; Crystal structure of malate dehydrogenase from Burkholderia pseudomallei 6ITK ; 2.0 ; Crystal structure of malate dehydrogenase from Corynebacterium glutamicum ATCC 13032 in complex with NAD and malate 3I0P ; 2.6 ; Crystal structure of malate dehydrogenase from Entamoeba histolytica 7Q3X ; 1.95 ; Crystal structure of Malate dehydrogenase from Haloarcula marismortui with Potassium and Chloride ions 6PBL ; 1.85 ; Crystal structure of Malate dehydrogenase from Legionella pneumophila Philadelphia 1 6ITL ; 1.97 ; Crystal structure of malate dehydrogenase from Mannheimia succiniciproducens in complex with NAD 6IHD ; 2.3 ; Crystal structure of Malate dehydrogenase from Metallosphaera sedula 6IHE ; 1.9 ; Crystal structure of Malate dehydrogenase from Metallosphaera sedula 6UM4 ; 2.05 ; Crystal structure of malate dehydrogenase from Naegleria fowleri ATCC 30863 5NFR ; 2.4 ; Crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) 6R8G ; 2.0 ; Crystal structure of malate dehydrogenase from Plasmodium Falciparum in complex with 4-(3,4-difluorophenyl)thiazol-2-amine 6Y91 ; 2.5 ; Crystal structure of malate dehydrogenase from Plasmodium Falciparum in complex with NADH 3FI9 ; 1.9 ; Crystal structure of malate dehydrogenase from Porphyromonas gingivalis 1IZ9 ; 2.0 ; Crystal Structure of Malate Dehydrogenase from Thermus thermophilus HB8 7NRZ ; 2.6 ; Crystal structure of malate dehydrogenase from Trypanosoma cruzi 5OAS ; 1.62 ; Crystal structure of malate synthase G from Pseudomonas aeruginosa in apo form. 1LAX ; 1.85 ; CRYSTAL STRUCTURE OF MALE31, A DEFECTIVE FOLDING MUTANT OF MALTOSE-BINDING PROTEIN 3HL0 ; 1.6 ; Crystal structure of Maleylacetate reductase from Agrobacterium tumefaciens 3W5S ; 1.49 ; Crystal Structure of Maleylacetate Reductase from Rhizobium sp. strain MTP-10005 4IGJ ; 1.48 ; Crystal structure of Maleylacetoacetate isomerase from Anaeromyxobacter dehalogenans 2CP-1, target EFI-507175 4KAE ; 1.5 ; Crystal structure of Maleylacetoacetate isomerase from Anaeromyxobacter dehalogenans 2CP-1, TARGET EFI-507175, with bound dicarboxyethyl glutathione and citrate in the active site 4KDY ; 1.5 ; Crystal structure of maleylacetoacetate isomerase from Anaeromyxobacter dehalogenans 2CP-1, Target EFI-507175, with bound GSH in the active site 4PX1 ; 1.85 ; CRYSTAL STRUCTURE OF Maleylacetoacetate isomerase from Methylobacteriu extorquens AM1 WITH BOUND MALONATE (TARGET EFI-507068) 4PXO ; 1.8 ; Crystal structure of Maleylacetoacetate isomerase from Methylobacteriu extorquens AM1 WITH BOUND MALONATE AND GSH (TARGET EFI-507068) 6JVW ; 2.25 ; Crystal structure of maleylpyruvate hydrolase from Sphingobium sp. SYK-6 in complex with manganese (II) ion and pyruvate 6JVV ; 1.51 ; Crystal structure of maleylpyruvate hydrolase from Sphingobium.sp SYK-6 6JWK ; 1.86 ; Crystal structure of maleylpyruvate isomerase from Pseudomonas aeruginosa PAO1 1LLQ ; 2.3 ; Crystal Structure of Malic Enzyme from Ascaris suum Complexed with Nicotinamide Adenine Dinucleotide 1WW8 ; 2.5 ; Crystal Structure of malic enzyme from Pyrococcus horikoshii Ot3 3R90 ; 1.7 ; Crystal structure of Malignant T cell-amplified sequence 1 protein 6XQW ; 2.991 ; Crystal Structure of MaliM03 Fab in complex with Pfmsp1-19 5K87 ; 1.219 ; crystal structure of malonate bound to methylaconitate isomerase PrpF from Shewanella oneidensis 3DG9 ; 1.5 ; Crystal Structure of Malonate Decarboxylase from Bordatella bronchiseptica 3E4P ; 2.3 ; Crystal structure of malonate occupied DctB 4PVP ; 1.85 ; Crystal structure of malonate-bound human L-asparaginase protein 3G87 ; 2.3 ; Crystal structure of malonyl CoA-acyl carrier protein transacylase from Burkholderia pseudomallei using dried seaweed as nucleant or protease 3PTW ; 2.1 ; CRYSTAL STRUCTURE OF malonyl CoA-acyl carrier protein transacylase from Clostridium perfringens Atcc 13124 2CUY ; 2.1 ; Crystal structure of malonyl CoA-acyl carrier protein transacylase from Thermus thermophilus HB8 2X2B ; 2.69 ; Crystal structure of malonyl-ACP (acyl carrier protein) from Bacillus subtilis 4KS9 ; 2.3 ; Crystal Structure of Malonyl-CoA decarboxylase (Rmet_2797) from Cupriavidus metallidurans, Northeast Structural Genomics Consortium Target CrR76 4KSF ; 3.1 ; Crystal Structure of Malonyl-CoA decarboxylase from Agrobacterium vitis, Northeast Structural Genomics Consortium Target RiR35 4KSA ; 2.7 ; Crystal Structure of Malonyl-CoA decarboxylase from Rhodopseudomonas palustris, Northeast Structural Genomics Consortium Target RpR127 3R97 ; 2.3 ; Crystal structure of malonyl-CoA:acyl carrier protein transacylase (FabD), Xoo0880, from Xanthomonas oryzae pv. oryzae KACC10331 2H1Y ; 2.5 ; Crystal structure of malonyl-CoA:Acyl carrier protein transacylase (MCAT) from Helicobacter pylori 5BN7 ; 3.7 ; Crystal structure of maltodextrin glucosidase from E.coli at 3.7 A resolution 4AEE ; 2.28 ; CRYSTAL STRUCTURE OF MALTOGENIC AMYLASE FROM S.MARINUS 1WPC ; 1.9 ; Crystal structure of maltohexaose-producing amylase complexed with pseudo-maltononaose 1WP6 ; 2.1 ; Crystal structure of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. 2D3N ; 1.9 ; Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltohexaose 2D3L ; 2.3 ; Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose. 1IV8 ; 1.9 ; Crystal Structure of Maltooligosyl trehalose synthase 5BK2 ; 2.6 ; Crystal structure of maltose binding protein in complex with a peristeric synthetic antibody 5BJZ ; 1.95 ; Crystal structure of maltose binding protein in complex with an allosteric synthetic antibody 5BK1 ; 2.15 ; Crystal structure of maltose binding protein in complex with an endosteric synthetic antibody 3PGF ; 2.1 ; Crystal structure of maltose bound MBP with a conformationally specific synthetic antigen binder (sAB) 3IGJ ; 2.6 ; Crystal Structure of Maltose O-acetyltransferase Complexed with Acetyl Coenzyme A from Bacillus anthracis 3HJJ ; 2.153 ; Crystal Structure of Maltose O-acetyltransferase from Bacillus anthracis 6AG8 ; 1.34 ; Crystal structure of Maltose O-acetyltransferase from E. coli 2IC7 ; 1.78 ; Crystal Structure of Maltose Transacetylase from Geobacillus kaustophilus 2P2O ; 1.74 ; Crystal structure of maltose transacetylase from Geobacillus kaustophilus P2(1) crystal form 3HPI ; 2.0 ; Crystal structure of maltose-binding protein mutant with bound sucrose 4ZWB ; 2.4 ; Crystal structure of maltose-bound human GLUT3 in the outward-occluded conformation at 2.4 angstrom 4ZWC ; 2.6 ; Crystal structure of maltose-bound human GLUT3 in the outward-open conformation at 2.6 angstrom 1FQD ; 2.3 ; CRYSTAL STRUCTURE OF MALTOTETRAITOL BOUND TO CLOSED-FORM MALTODEXTRIN BINDING PROTEIN 6J34 ; 1.498 ; Crystal Structure of maltotriose-complex of PulA from Klebsiella pneumoniae 6J4H ; 1.641 ; Crystal Structure of maltotriose-complex of PulA-G680L mutant from Klebsiella pneumoniae 1FQC ; 2.3 ; CRYSTAL STRUCTURE OF MALTOTRIOTOL BOUND TO CLOSED-FORM MALTODEXTRIN BINDING PROTEIN 6YSB ; 1.2 ; Crystal structure of Malus domestica Double Bond Reductase (MdDBR) apo form 6YTZ ; 1.4 ; Crystal structure of Malus domestica Double Bond Reductase (MdDBR) in complex with NADPH 6YUX ; 1.36 ; Crystal structure of Malus domestica Double Bond Reductase (MdDBR) ternary complex 3VTY ; 2.0 ; Crystal structure of MamA 3VTX ; 1.75 ; Crystal structure of MamA protein 8DA0 ; 2.2 ; Crystal structure of Mamba alpha-neurotoxin in complex with Centi-3FTX-D09 antibody 4ORC ; 2.7 ; Crystal structure of mammalian calcineurin 3RTX ; 2.81 ; Crystal structure of mammalian capping enzyme (Mce1) and Pol II CTD complex 2O48 ; 2.59 ; Crystal structure of Mammalian Dimeric Dihydrodiol Dehydrogenase 2O4U ; 2.0 ; Crystal structure of Mammalian Dimeric Dihydrodiol Dehydrogenase 3OHS ; 1.9 ; Crystal Structure of Mammalian Dimeric Dihydrodiol Dehydrogenase in complex with Dihydroxyacetone 2VZ8 ; 3.219 ; Crystal Structure of Mammalian Fatty Acid Synthase 2VZ9 ; 3.3 ; Crystal Structure of Mammalian Fatty Acid Synthase in complex with NADP 2WCU ; 1.9 ; Crystal structure of mammalian FucU 1WLE ; 1.65 ; Crystal Structure of mammalian mitochondrial seryl-tRNA synthetase complexed with seryl-adenylate 4Q8S ; 2.09 ; Crystal structure of mammalian Peptidoglycan recognition protein PGRP-S with paranitrophenyl palmitate and N-acetyl glucosamine at 2.09 A resolution 4U8H ; 2.798 ; Crystal Structure of Mammalian Period-Cryptochrome Complex 1F5A ; 2.5 ; CRYSTAL STRUCTURE OF MAMMALIAN POLY(A) POLYMERASE 1Q79 ; 2.15 ; CRYSTAL STRUCTURE OF MAMMALIAN POLY(A) POLYMERASE 6EKJ ; 1.6 ; Crystal structure of mammalian Rev7 in complex with human Chromosome alignment-maintaining phosphoprotein 1 6EKL ; 1.6 ; Crystal structure of mammalian Rev7 in complex with human Chromosome alignment-maintaining phosphoprotein 1 6EKM ; 2.76 ; Crystal structure of mammalian Rev7 in complex with human Rev3 second binding site 5O8K ; 1.8 ; Crystal structure of mammalian Rev7 in complex with Rev3 1875-1895 6TYL ; 3.3 ; Crystal structure of mammalian Ric-8A:Galpha(i):nanobody complex 8J72 ; 3.16 ; Crystal structure of mammalian Trim71 in complex with lncRNA Trincr1 5HM9 ; 2.6 ; Crystal structure of MamO protease domain from Magnetospirillum magneticum (apo form) 5HMA ; 2.299 ; Crystal structure of MamO protease domain from Magnetospirillum magneticum (Ni bound form) 4JJ0 ; 1.8 ; Crystal structure of MamP 4JJ3 ; 2.8 ; Crystal structure of MamP soaked with iron(II) 4H83 ; 2.094 ; Crystal structure of Mandelate racemase/muconate lactonizing enzyme (EFI target:502127) 3T8Q ; 2.0 ; Crystal structure of mandelate racemase/muconate lactonizing enzyme family protein from Hoeflea phototrophica 3MSY ; 2.5 ; Crystal Structure of Mandelate racemase/muconate lactonizing enzyme from a Marine actinobacterium 3NO1 ; 2.16 ; Crystal Structure of Mandelate racemase/muconate lactonizing enzyme from a Marine actinobacterium in complex with magnesium 2GDQ ; 1.8 ; Crystal structure of mandelate racemase/muconate lactonizing enzyme from Bacillus subtilis at 1.8 A resolution 2GGE ; 1.89 ; Crystal Structure of Mandelate Racemase/Muconate Lactonizing Enzyme from Bacillus Subtilis complexed with MG++ at 1.8 A 3DDM ; 2.6 ; CRYSTAL STRUCTURE OF MANDELATE RACEMASE/MUCONATE LACTONIZING ENZYME FROM Bordetella bronchiseptica RB50 4J3Z ; 2.5 ; Crystal structure of mandelate racemase/muconate lactonizing enzyme from Jannaschia sp. CCS1 2OG9 ; 1.9 ; Crystal Structure of mandelate racemase/muconate lactonizing enzyme from Polaromonas sp. JS666 2RDX ; 2.0 ; Crystal structure of mandelate racemase/muconate lactonizing enzyme from Roseovarius nubinhibens ISM 3RCY ; 1.994 ; CRYSTAL STRUCTURE OF Mandelate racemase/muconate lactonizing enzyme-like protein from Roseovarius sp. TM1035 2QQ6 ; 2.9 ; Crystal structure of mandelate racemase/muconate lactonizing enzyme-like protein from Rubrobacter xylanophilus DSM 9941 2QDE ; 1.93 ; Crystal structure of mandelate racemase/muconate lactonizing family protein from Azoarcus sp. EbN1 3N6J ; 2.4 ; Crystal structure of Mandelate racemase/muconate lactonizing protein from Actinobacillus succinogenes 130Z 3N6H ; 2.3 ; Crystal structure of Mandelate racemase/muconate lactonizing protein from Actinobacillus succinogenes 130Z complexed with magnesium/sulfate 3N4F ; 1.88 ; CRYSTAL STRUCTURE OF Mandelate racemase/muconate lactonizing protein from Geobacillus sp. Y412MC10 3OPS ; 2.2 ; Crystal structure of mandelate racemase/muconate lactonizing protein FROM GEOBACILLUS SP. Y412MC10 complexed with magnesium/tartrate 3IK4 ; 2.1 ; CRYSTAL STRUCTURE OF mandelate racemase/muconate lactonizing protein from Herpetosiphon aurantiacus 3N4E ; 2.4 ; CRYSTAL STRUCTURE OF mandelate racemase/muconate lactonizing protein from Paracoccus denitrificans Pd1222 4DWD ; 1.5 ; Crystal structure of mandelate racemase/muconate lactonizing protein from Paracoccus denitrificans PD1222 complexed with magnesium 5AJA ; 2.649 ; Crystal structure of mandrill SAMHD1 (amino acid residues 1-114) bound to Vpx isolated from mandrill and human DCAF1 (amino acid residues 1058-1396) 3HHS ; 1.97 ; Crystal Structure of Manduca sexta prophenoloxidase 6CJ7 ; 1.6 ; Crystal structure of Manduca sexta Serine protease inhibitor (Serpin)-12 8FFD ; 2.2 ; Crystal structure of manganeese bound Dps protein (PA0962) from Pseudomonas aeruginosa (cubic form) 4NNO ; 1.174 ; Crystal Structure of Manganese ABC transporter substrate-binding protein MntC from Staphylococcus Aureus bound to a Zinc ion 3PDR ; 1.853 ; Crystal structure of manganese bound M-box RNA 1JKU ; 1.84 ; Crystal Structure of Manganese Catalase from Lactobacillus plantarum 1JKV ; 1.39 ; Crystal Structure of Manganese Catalase from Lactobacillus plantarum complexed with azide 4BM1 ; 1.098 ; CRYSTAL STRUCTURE OF MANGANESE PEROXIDASE 4 FROM PLEUROTUS OSTREATUS - CRYSTAL FORM I 4BM2 ; 1.391 ; CRYSTAL STRUCTURE OF MANGANESE PEROXIDASE 4 FROM PLEUROTUS OSTREATUS - CRYSTAL FORM II 4BM3 ; 1.65 ; CRYSTAL STRUCTURE OF MANGANESE PEROXIDASE 4 FROM PLEUROTUS OSTREATUS - CRYSTAL FORM III 4BM4 ; 2.3 ; CRYSTAL STRUCTURE OF MANGANESE PEROXIDASE 4 FROM PLEUROTUS OSTREATUS - CRYSTAL FORM IV 1PM2 ; 1.8 ; CRYSTAL STRUCTURE OF MANGANESE SUBSTITUTED R2-D84E (D84E MUTANT OF THE R2 SUBUNIT OF E. COLI RIBONUCLEOTIDE REDUCTASE) 4C7U ; 1.951 ; Crystal structure of manganese superoxide dismutase from Arabidopsis thaliana 1Y67 ; 1.853 ; Crystal Structure of Manganese Superoxide Dismutase from Deinococcus radiodurans 6BEJ ; 1.894 ; Crystal structure of manganese superoxide dismutase from Xanthomonas citri 1JR9 ; 2.8 ; Crystal Structure of manganese superoxide dismutases from Bacillus halodenitrificans 2CWL ; 1.65 ; Crystal structure of manganese-free form of pseudocatalase from Thermus thermophilus HB8 8IUV ; 1.75 ; Crystal structure of Manganese-free N(omega)-hydroxy-L-arginine hydrolase with oxidized Cys86 8IUS ; 2.14 ; Crystal structure of Manganese-free N(omega)-hydroxy-L-arginine hydrolase with reduced Cys86 4HQN ; 2.196 ; Crystal structure of manganese-loaded Plasmodium vivax TRAP protein 3D2O ; 2.04 ; Crystal Structure of Manganese-metallated GTP Cyclohydrolase Type IB 8IUU ; 1.26 ; Crystal structure of Manganese-rebound N(omega)-hydroxy-L-arginine hydrolase with oxidized Cys86 1EF2 ; 2.5 ; CRYSTAL STRUCTURE OF MANGANESE-SUBSTITUTED KLEBSIELLA AEROGENES UREASE 7YRO ; 2.42 ; Crystal structure of mango fucosyltransferase 13 1J9Y ; 1.85 ; Crystal structure of mannanase 26A from Pseudomonas cellulosa 1SI0 ; 1.35 ; Crystal Structure of Mannheimia haemolytica Ferric iron-Binding Protein A in a closed conformation 1SI1 ; 1.45 ; Crystal Structure of Mannheimia haemolytica Ferric iron-Binding Protein A in an open conformation 7KRG ; 2.03797 ; Crystal Structure of Mannitol Dehydrogenase (ChMDH) from Cladosporium herbarum in complex with NADP+ and Na 1LJ8 ; 1.7 ; Crystal structure of mannitol dehydrogenase in complex with NAD 3BRJ ; 2.75 ; Crystal structure of mannitol operon repressor (MtlR) from Vibrio parahaemolyticus RIMD 2210633 4PFT ; 1.747 ; Crystal structure of mannobiose bound oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (TM1223) from THERMOTOGA MARITIMA at 1.75 A resolution 4PFU ; 2.049 ; Crystal structure of mannobiose bound oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (TM1226) from THERMOTOGA MARITIMA at 2.05 A resolution 4PFY ; 1.5 ; Crystal structure of mannohexaose bound oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (TM1223) from THERMOTOGA MARITIMA at 1.5 A resolution 4PFW ; 2.198 ; Crystal structure of mannohexaose bound oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (TM1226) from THERMOTOGA MARITIMA at 2.2 A resolution 3VCN ; 1.45 ; Crystal structure of mannonate dehydratase (target EFI-502209) from Caulobacter crescentus CB15 4GME ; 2.0 ; Crystal structure of mannonate dehydratase (target EFI-502209) from caulobacter crescentus cb15 complexed with magnesium and d-mannonate 4EAC ; 2.3 ; Crystal structure of mannonate dehydratase from Escherichia coli strain K12 4FI4 ; 2.0 ; Crystal structure of mannonate dehydratase PRK15072 (TARGET EFI-502214) from Caulobacter sp. K31 2WFP ; 1.67 ; Crystal structure of mannose 6-phosphate isomerase (apo form) from Salmonella typhimurium 3H1M ; 2.5 ; Crystal structure of mannose 6-phosphate isomerase (holo; zinc bound) 3H1W ; 1.94 ; Crystal structure of mannose 6-phosphate isomerase bound with zinc and yttrium 3H1Y ; 2.04 ; Crystal structure of mannose 6-phosphate isomerase from Salmonella typhimurium bound to substrate (f6p)and metal atom (zn) 2CU2 ; 2.2 ; Crystal structure of mannose-1-phosphate geranyltransferase from Thermus thermophilus HB8 2QH5 ; 2.3 ; Crystal structure of mannose-6-phosphate isomerase from Helicobacter pylori 7S5F ; 1.72 ; Crystal structure of mannose-6-phosphate reductase from celery (Apium graveolens) leaves with NADP+ and mannonic acid bound 2ZOS ; 1.7 ; Crystal structure of mannosyl-3-phosphoglycerate phosphatase from Pyrococcus horikoshii 2ZU7 ; 2.5 ; Crystal structure of mannosyl-3-phosphoglycerate synthase from Pyrococcus horikoshii 2ZU8 ; 2.4 ; Crystal structure of mannosyl-3-phosphoglycerate synthase from Pyrococcus horikoshii 2ZU9 ; 2.0 ; Crystal structure of mannosyl-3-phosphoglycerate synthase from Pyrococcus horikoshii 3KIA ; 2.8 ; Crystal structure of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus 3LFH ; 1.805 ; Crystal structure of manxA from Thermoanaerobacter tengcongensis 3LFJ ; 1.556 ; Crystal structure of manxB from Thermoanaerobacter tengcongensis 1S3E ; 1.6 ; Crystal structure of MAOB in complex with 6-hydroxy-N-propargyl-1(R)-aminoindan 1S3B ; 1.65 ; Crystal structure of MAOB in complex with N-methyl-N-propargyl-1(R)-aminoindan 1S2Q ; 2.07 ; Crystal structure of MAOB in complex with N-propargyl-1(R)-aminoindan (Rasagiline) 1S2Y ; 2.12 ; Crystal structure of MAOB in complex with N-propargyl-1(S)-aminoindan 3KH8 ; 2.0 ; Crystal structure of MaoC-like dehydratase from Phytophthora Capsici 3GCG ; 2.3 ; crystal structure of MAP and CDC42 complex 3N9X ; 2.05 ; Crystal structure of Map Kinase from plasmodium berghei, PB000659.00.0 7BE4 ; 2.1 ; Crystal structure of MAP kinase p38 alpha in complex with inhibitor SR159 7BE5 ; 1.80005 ; Crystal structure of MAP kinase p38 alpha in complex with inhibitor SR276 1LEZ ; 2.3 ; CRYSTAL STRUCTURE OF MAP KINASE P38 COMPLEXED TO THE DOCKING SITE ON ITS ACTIVATOR MKK3B 1LEW ; 2.3 ; CRYSTAL STRUCTURE OF MAP KINASE P38 COMPLEXED TO THE DOCKING SITE ON ITS NUCLEAR SUBSTRATE MEF2A 8PM3 ; 2.0 ; Crystal structure of MAP2K6 with a covalent compound GCL94 8P7J ; 2.4 ; Crystal structure of MAP2K6 with a covalent compound GCL96 7CBX ; 2.061 ; Crystal structure of MAP2K7 complexed with a covalent inhibitor 12 5JGF ; 1.83 ; Crystal structure of mApe1 3OZ6 ; 2.37 ; Crystal structure of MapK from Cryptosporidium Parvum, cgd2_1960 4QNY ; 2.257 ; Crystal structure of MapK from Leishmania donovani, LDBPK_331470 4YNO ; 1.7 ; Crystal structure of MAPK13 at INACTIVE FORM 5EKN ; 2.594 ; Crystal structure of MAPK13 complex with inhibitor 5EKO ; 2.0 ; Crystal structure of MAPK13 complex with inhibitor 4B99 ; 2.8 ; Crystal Structure of MAPK7 (ERK5) with inhibitor 3M2W ; 2.41 ; Crystal structure of MAPKAK kinase 2 (MK2) complexed with a spiroazetidine-tetracyclic ATP site inhibitor 3KGA ; 2.55 ; Crystal structure of MAPKAP kinase 2 (MK2) complexed with a potent 3-aminopyrazole ATP site inhibitor 3M42 ; 2.68 ; Crystal structure of MAPKAP kinase 2 (MK2) complexed with a tetracyclic ATP site inhibitor 3WI6 ; 2.99 ; Crystal structure of MAPKAP Kinase-2 (MK2) in complex with non-selective inhibitor 1KWP ; 2.8 ; Crystal Structure of MAPKAP2 6T8X ; 2.81 ; Crystal structure of MAPKAPK2 (MK2) complexed with PF-3644022 and 5-(4-bromophenyl)-N-[4-(1-piperazinyl)phenyl]-N-(2-pyridinylmethyl)-2-furancarboxamide 5UQY ; 3.6 ; Crystal structure of Marburg virus GP in complex with the human survivor antibody MR78 5F5M ; 2.902 ; Crystal structure of Marburg virus nucleoprotein core domain 5F5O ; 2.2 ; Crystal structure of Marburg virus nucleoprotein core domain bound to VP35 regulation peptide 4OR8 ; 2.654 ; Crystal structure of Marburg virus VP24 4GH9 ; 1.65 ; Crystal structure of Marburg virus VP35 RNA binding domain 4GHA ; 2.5 ; Crystal structure of Marburg virus VP35 RNA binding domain bound to 12-bp dsRNA 5B0V ; 2.81 ; Crystal Structure of Marburg virus VP40 Dimer 5YPT ; 2.394 ; Crystal structure of Marchantia paleacea chalone synthase like 1 (CHSL1) 2P0U ; 1.9 ; crystal structure of Marchantia polymorpha stilbenecarboxylate synthase 2 (STCS2) 1IWQ ; 2.0 ; Crystal Structure of MARCKS calmodulin binding domain peptide complexed with Ca2+/Calmodulin 5YAD ; 1.76 ; Crystal structure of Marf1 Lotus domain from Mus musculus 5YAA ; 1.75 ; Crystal structure of Marf1 NYN domain from Mus musculus 6J4C ; 1.58 ; Crystal structure of MarH, an epimerase for biosynthesis of Maremycins in Streptomyces, under 10 mM ZnSO4 6J4B ; 1.58 ; Crystal structure of MarH, an epimerase for biosynthesis of Maremycins in Streptomyces, under 400 mM Zinc acetate 6J4D ; 1.4 ; Crystal structure of MarH, an epimerase for biosynthesis of Maremycins in Streptomyces, under pH 4.7, without Zn 6PI1 ; 1.7 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 4-(dimethylamino)-N-[7-hydroxyamino)-7-oxoheptyl]benzamide 6PHR ; 1.65 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 5-[(3-aminopropyl)amino]pentane-1-thiol 6PHT ; 1.8 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 5-[(3-aminopropyl)amino]pentylboronic acid 6PIC ; 2.031 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 6-amino-N-hydroxyhexanamide 6PIA ; 1.75 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 6-[(3-aminopropyl)amino]-N-hydroxyhexanamide 6PHZ ; 2.0 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 7-[(3-aminopropyl)amino]-1,1,1-trifluoroheptan-2-one 6PID ; 1.546 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with 8-amino-N-hydroxyoctanamide 6PI8 ; 1.635 ; Crystal structure of Marinobacter subterrani acetylpolyamine amidohydrolase (msAPAH) complexed with acetate 3BPV ; 1.4 ; Crystal Structure of MarR 3BPX ; 1.95 ; Crystal Structure of MarR 3BJ6 ; 2.01 ; Crystal structure of MarR family transcription regulator SP03579 3BOQ ; 2.39 ; Crystal structure of MarR family transcriptional regulator from Silicibacter pomeroyi 3U2R ; 2.2 ; Crystal structure of MarR transcription factor from Planctomyces limnophilus 3NRV ; 2.001 ; Crystal structure of MarR/EmrR family transcriptional regulator from Acinetobacter sp. ADP1 7EI4 ; 1.66 ; Crystal structure of MasL in complex with a novel covalent inhibitor, collimonin C 7EI3 ; 1.78 ; Crystal structure of MasL, a thiolase from Massilia sp. YMA4 3POF ; 1.501 ; Crystal structure of MASP-1 CUB2 domain bound to Ca2+ 3POJ ; 1.451 ; Crystal structure of MASP-1 CUB2 domain bound to Ethylamine 3POI ; 1.701 ; Crystal structure of MASP-1 CUB2 domain bound to Methylamine 3POB ; 1.801 ; Crystal structure of MASP-1 CUB2 domain in complex with the collagen-like domain of MBL 4G3A ; 1.994 ; Crystal Structure of MAST/Orbit N-terminal domain 5XP0 ; 2.0 ; Crystal structure of master biofilm regulator CsgD regulatory domain 6FWB ; 1.79 ; Crystal structure of Mat2A at 1.79 Angstron resolution 7BHW ; 1.15 ; Crystal structure of MAT2a bound to allosteric inhibitor (compound 29) 7BHX ; 1.08 ; Crystal structure of MAT2a bound to allosteric inhibitor (compound 31) 7BHV ; 1.16 ; Crystal structure of MAT2a bound to allosteric inhibitor and in vivo tool compound 28 5UGH ; 2.062 ; Crystal structure of Mat2a bound to the allosteric inhibitor PF-02929366 7BHU ; 1.15 ; Crystal structure of MAT2a with elaborated fragment 26 bound in the allosteric site 7BHS ; 1.05 ; Crystal structure of MAT2a with quinazoline fragment 2 bound in the allosteric site 7BHT ; 1.052 ; Crystal structure of MAT2a with quinazolinone fragment 5 bound in the allosteric site 7BHR ; 1.08 ; Crystal structure of MAT2a with triazinone fragment 1 bound in the allosteric site 3VVP ; 2.91 ; Crystal structure of MATE in complex with Br-NRF 3VVS ; 2.6 ; Crystal structure of MATE in complex with MaD3S 3VVR ; 3.0 ; Crystal structure of MATE in complex with MaD5 3WBN ; 2.45 ; Crystal structure of MATE in complex with MaL6 3VVO ; 2.504 ; Crystal structure of MATE in the bent conformation 3VVN ; 2.398 ; Crystal structure of MATE in the straight conformation 3W4T ; 2.096 ; Crystal structure of MATE P26A mutant 4IXP ; 2.749 ; Crystal structure of Maternal Embryonic Leucine Zipper Kinase (MELK) 6GVX ; 2.24 ; Crystal structure of Maternal Embryonic Leucine Zipper Kinase (MELK) in complex with dorsomorphin (Compound C) 3VEB ; 2.8 ; Crystal Structure of Matp-matS 3VEA ; 2.55 ; Crystal Structure of matP-matS23mer 4JYT ; 2.0 ; Crystal Structure of Matriptase in complex with Inhibitor 4JZ1 ; 1.9 ; Crystal Structure of Matriptase in complex with Inhibitor 4O97 ; 2.2 ; Crystal structure of matriptase in complex with inhibitor 4O9V ; 1.9 ; Crystal structure of matriptase in complex with inhibitor 4R0I ; 1.9 ; CRYSTAL STRUCTURE of MATRIPTASE in COMPLEX WITH INHIBITOR 4JZI ; 2.0 ; Crystal Structure of Matriptase in complex with Inhibitor"". 4ISN ; 2.45 ; Crystal Structure of Matriptase in complex with its inhibitor HAI-1 4ISO ; 2.01 ; Crystal Structure of Matriptase in complex with its inhibitor HAI-1 2GV6 ; 2.1 ; Crystal Structure of Matriptase with Inhibitor CJ-730 6N4T ; 1.945 ; Crystal structure of Matriptase1 in complex with a peptidomimetic benzothiazole 2Z16 ; 2.02 ; Crystal structure of Matrix protein 1 from influenza A virus A/crow/Kyoto/T1/2004(H5N1) 5M1M ; 1.5 ; Crystal structure of matrix protein 1 from Influenza C virus (strain C/Ann Arbor/1/1950) 3TCQ ; 1.6 ; Crystal Structure of matrix protein VP40 from Ebola virus Sudan 2AS8 ; 1.95 ; Crystal structure of mature and fully active Der p 1 allergen 3IV2 ; 2.2 ; Crystal structure of mature apo-Cathepsin L C25A mutant 3K24 ; 2.5 ; Crystal structure of mature apo-Cathepsin L C25A mutant in complex with Gln-Leu-Ala peptide 5N71 ; 1.88 ; CRYSTAL STRUCTURE OF MATURE CATHEPSIN D FROM THE TICK IXODES RICINUS (IRCD1) 5N7Q ; 1.45 ; CRYSTAL STRUCTURE OF MATURE CATHEPSIN D FROM THE TICK IXODES RICINUS (IRCD1) IN COMPLEX WITH THE INHIBITOR PEPSTATIN A 5N70 ; 1.81 ; CRYSTAL STRUCTURE OF MATURE CATHEPSIN D FROM THE TICK IXODES RICINUS (IRCD1) IN COMPLEX WITH THE N-TERMINAL OCTAPEPTIDE OF THE PROPEPTID 3DOR ; 2.2 ; Crystal Structure of mature CPAF 2Z2X ; 1.7 ; Crystal structure of mature form of Tk-subtilisin 4MTH ; 1.47 ; Crystal structure of mature human RegIIIalpha 3TM2 ; 2.0 ; Crystal structure of mature ThnT with a covalently bound product mimic 3TM1 ; 1.8 ; Crystal structure of mature ThnT, a pantetheine hydrolase 6TH5 ; 1.99 ; Crystal structure of mature wildtype primitive Phytochelatin synthase from Nostoc spec. - Alr0975 1QYF ; 1.5 ; Crystal structure of matured green fluorescent protein R96A variant 6UMS ; 2.344 ; Crystal structure of MavC in complex with its substrate mimic in C222(1) space group 6UMP ; 2.8 ; Crystal structure of MavC in complex with substrate mimic in P65 space group 6P5B ; 2.099 ; Crystal Structure of MavC in Complex with Ub-UbE2N 6KFP ; 2.92 ; Crystal structure of MavC ternary complex 6KL4 ; 2.85 ; Crystal structure of MavC-UBE2N-Ub 6KG6 ; 2.39 ; Crystal structure of MavC/UBE2N-Ub complex 1WS7 ; 1.9 ; Crystal Structure of Mavicyanin from Cucurbita pepo medullosa (Zucchini) 1WS8 ; 1.6 ; Crystal Structure of Mavicyanin from Cucurbita pepo medullosa (Zucchini) 6G45 ; 2.5 ; Crystal structure of mavirus major capsid protein 6G44 ; 1.5 ; Crystal structure of mavirus major capsid protein lacking the C-terminal domain 6G42 ; 2.7 ; Crystal structure of mavirus penton protein 3U5V ; 1.7 ; Crystal structure of Max-E47 7D2Q ; 1.99 ; Crystal structure of MazE-MazF (Form-I) from Deinococcus radiodurans 7D2P ; 2.07 ; Crystal structure of MazE-MazF (Form-II) from Deinococcus radiodurans 7D2N ; 1.6 ; Crystal structure of MazE-MazF (Form-III) from Deinococcus radiodurans 1UB4 ; 1.7 ; crystal structure of MazEF complex 7D28 ; 1.5 ; Crystal structure of MazF (Form-I) from Deinococcus radiodurans 7D2M ; 1.79 ; Crystal structure of MazF (Form-II) from Deinococcus radiodurans 7DHP ; 1.3 ; Crystal structure of MazF from Deinococcus radiodurans 1VMG ; 1.46 ; Crystal structure of MazG nucleotide pyrophosphohydrolase (13816655) from Sulfolobus solfataricus at 1.46 A resolution 2YXH ; 2.0 ; Crystal structure of mazG-related protein from Thermotoga maritima 5E95 ; 1.402 ; Crystal Structure of Mb(NS1)/H-Ras Complex 6CNP ; 2.1 ; Crystal structure of MBD2 complex with methylated CpG island 7MWK ; 2.453 ; Crystal structure of MBD2 with DNA 7MWM ; 1.601 ; Crystal structure of MBD2 with DNA 7RAY ; 1.78 ; Crystal structure of MBD2 with DNA 4DK9 ; 2.76 ; Crystal Structure of MBD4 Catalytic Domain Bound to Abasic DNA 4UDS ; 1.76 ; Crystal structure of MbdR regulator from Azoarcus sp. CIB 3POD ; 1.497 ; Crystal structure of MBL collagen-like peptide 3PON ; 1.5 ; Crystal structure of MBL collagen-like peptide 3D2N ; 2.7 ; Crystal structure of MBNL1 tandem zinc finger 1 and 2 domain 3D2Q ; 1.5 ; Crystal structure of MBNL1 tandem zinc finger 3 and 4 domain 3D2S ; 1.7 ; Crystal structure of MBNL1 tandem zinc finger 3 and 4 domain in complex with CGCUGU RNA 5W0Z ; 3.61 ; Crystal structure of MBP fused activation-induced cytidine deaminase (AID) 5W0R ; 2.4 ; Crystal structure of MBP fused activation-induced cytidine deaminase (AID) in complex with cacodylic acid 5W1C ; 3.18 ; Crystal structure of MBP fused activation-induced cytidine deaminase (AID) in complex with cytidine 5W0U ; 2.9 ; Crystal structure of MBP fused activation-induced cytidine deaminase (AID) in complex with dCMP 8IIY ; 2.15 ; Crystal structure of MBP fused GAS41 YEATS domain in complex with H3K14ac peptide 8IIZ ; 2.1 ; Crystal structure of MBP fused GAS41 YEATS domain in complex with H3K27ac peptide 4KEG ; 2.5 ; Crystal Structure of MBP Fused Human SPLUNC1 6M4V ; 2.92 ; Crystal structure of MBP fused split FKBP in complex with rapamycin 6M4W ; 3.11 ; Crystal structure of MBP fused split FKBP-FRB T2098L mutant in complex with rapamycin 7VN2 ; 2.42 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning ATCACGTGAT 7VN3 ; 1.94 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning CACACGTGTG 7VN6 ; 2.79 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning CGCACGTGCG 7VN7 ; 2.11 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning GACACGTGTC 7VN8 ; 2.04 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning GTCACGTGAC 7VN4 ; 2.1 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning TCCACGTGGA 7VN5 ; 1.95 ; Crystal structure of MBP-fused BIL1/BZR1 (21-90) in complex with double-stranded DNA contaning TTCACGTGAA 5ZD4 ; 2.17 ; Crystal structure of MBP-fused BIL1/BZR1 in complex with double-stranded DNA 6X91 ; 3.51 ; Crystal structure of MBP-fused human APOBEC1 4EGC ; 1.994 ; Crystal Structure of MBP-fused Human Six1 Bound to Human Eya2 Eya Domain 7WR3 ; 1.87 ; Crystal structure of MBP-fused OspC3 in complex with calmodulin 5AZA ; 2.08 ; Crystal structure of MBP-sAglB fusion protein with a 20-residue spacer in the connector helix 6KEA ; 2.35 ; crystal structure of MBP-tagged REV7-IpaB complex 5AZ8 ; 1.7 ; Crystal structure of MBP-Tom20 fusion protein tethered with ALDH presequence via a disulfide bond 5AZ6 ; 2.56 ; Crystal structure of MBP-Tom20 fusion protein with a 2-residue spacer in the connector helix 5AZ7 ; 1.96 ; Crystal structure of MBP-Tom20 fusion protein with a 4-residue spacer in the connector helix 6XDS ; 1.466 ; Crystal structure of MBP-TREM2 Ig domain fusion with fragment, 2-((4-bromophenyl)amino)ethan-1-ol 6K7D ; 2.0 ; Crystal structure of MBPapo-Tim21 fusion protein with a 16-residue helical linker 6K7E ; 1.534 ; Crystal structure of MBPapo-Tim21 fusion protein with a 17-residue helical linker 6K7F ; 1.8 ; Crystal structure of MBPholo-Tim21 fusion protein with a 17-residue helical linker 5WVN ; 2.8 ; Crystal structure of MBS-BaeS fusion protein 4C5I ; 2.586 ; Crystal structure of MBTD1 YY1 complex 3LOG ; 1.73 ; Crystal structure of MbtI from Mycobacterium tuberculosis 2BBR ; 1.2 ; Crystal Structure of MC159 Reveals Molecular Mechanism of DISC Assembly and vFLIP Inhibition 2BBZ ; 3.8 ; Crystal Structure of MC159 Reveals Molecular Mechanism of DISC Assembly and vFLIP Inhibition 4OQW ; 2.21 ; Crystal structure of mCardinal far-red fluorescent protein 2QC3 ; 2.3 ; Crystal structure of MCAT from Mycobacterium tuberculosis 3IM9 ; 1.46 ; Crystal structure of MCAT from Staphylococcus aureus 3IM8 ; 2.1 ; Crystal structure of MCAT from Streptococcus pneumoniae 5FCD ; 2.1 ; Crystal structure of MccD protein 4H1H ; 2.46 ; Crystal structure of MccF homolog from Listeria monocytogenes EGD-e 5FD8 ; 2.05 ; Crystal Structure of MccF-like Protein (BA_5613) in complex with ASA (alanyl sulfamoyl adenylates) 5USD ; 2.095 ; Crystal structure of MccF-like protein (BA_5613) in the complex with aspartyl sulfamoyl adenylate 4E94 ; 1.651 ; Crystal structure of MccF-like protein from Streptococcus pneumoniae 4EYS ; 1.58 ; Crystal structure of MccF-like protein from Streptococcus pneumoniae in complex with AMP 4E5S ; 1.952 ; Crystal structure of MccFlike protein (BA_5613) from Bacillus anthracis str. Ames 6MJ4 ; 2.0 ; Crystal structure of MCD1D/INKTCR TERNARY COMPLEX bound to glycolipid (XXW) 7AI3 ; 2.9 ; Crystal structure of MCE domain of Mce4A from Mycobacterium tuberculosis H37Rv 3A4U ; 1.84 ; Crystal structure of MCFD2 in complex with carbohydrate recognition domain of ERGIC-53 6RIX ; 1.655 ; Crystal structure of MchDnaB-1 intein 6RIY ; 1.63 ; Crystal structure of MchDnaB-1 intein (N145AA) 2H5Q ; 1.36 ; Crystal structure of mCherry 5FHV ; 1.55 ; Crystal structure of mCherry after reaction with 2-mercaptoethanol 5C3F ; 1.43 ; Crystal structure of Mcl-1 bound to BID-MM 6VBX ; 1.95 ; Crystal structure of Mcl-1 in complex with 138E12 peptide, Lys-covalent antagonist 5VKC ; 2.31 ; Crystal structure of MCL-1 in complex with a BIM competitive inhibitor 6B4L ; 2.25 ; Crystal structure of MCL-1 in complex with a BIM competitive inhibitor 6B4U ; 1.95 ; Crystal structure of MCL-1 in complex with a BIM competitive inhibitor 6ZIE ; 2.3 ; Crystal structure of MCL-1 in complex with a neutralizing Alphabody CMPX-383B 3D7V ; 2.03 ; Crystal structure of Mcl-1 in complex with an Mcl-1 selective BH3 ligand 3WIY ; 2.15 ; Crystal structure of Mcl-1 in complex with compound 10 3WIX ; 1.9 ; Crystal structure of Mcl-1 in complex with compound 4 6P3P ; 1.61 ; Crystal structure of Mcl-1 in complex with compound 65 7XGE ; 2.38 ; Crystal structure of MCL-1 in complex with computationally designed inhibitor protein 3PK1 ; 2.486 ; Crystal structure of Mcl-1 in complex with the BaxBH3 domain 5KU9 ; 2.2 ; Crystal structure of MCL1 with compound 1 6OQN ; 1.7 ; Crystal structure of Mcl1 with inhibitor 7 6OQD ; 1.48 ; Crystal structure of Mcl1 with inhibitor 8 6OQC ; 1.8 ; Crystal structure of Mcl1 with inhibitor 9 5JSB ; 2.74 ; Crystal structure of Mcl1-inhibitor complex 6TTD ; 1.801 ; Crystal structure of McoA multicopper oxidase 2F4 variant from the hyperthermophile Aquifex aeolicus 6SYY ; 1.794 ; Crystal structure of McoA multicopper oxidase from the hyperthermophile Aquifex aeolicus 3V34 ; 2.003 ; Crystal structure of MCPIP1 conserved domain with magnesium ion in the catalytic center 3V33 ; 2.005 ; Crystal structure of MCPIP1 conserved domain with zinc-finger motif 3V32 ; 2.0 ; Crystal structure of MCPIP1 N-terminal conserved domain 3C8C ; 1.5 ; Crystal structure of Mcp_N and cache domains of methyl-accepting chemotaxis protein from Vibrio cholerae 5GRR ; 1.45 ; Crystal structure of MCR-1 5YLC ; 1.5 ; Crystal Structure of MCR-1 Catalytic Domain 7YJP ; 1.88 ; Crystal structure of MCR-1 treated by AuCl 5GOV ; 2.33 ; Crystal Structure of MCR-1, a phosphoethanolamine transferase, extracellular domain 6LI4 ; 1.78 ; Crystal structure of MCR-1-S 7WAA ; 1.58 ; Crystal structure of MCR-1-S treated by AgNO3 6LI6 ; 1.68 ; Crystal structure of MCR-1-S treated by Au(PEt3)Cl 7YJQ ; 1.6 ; Crystal structure of MCR-1-S treated by auranofin 7YJT ; 2.1 ; Crystal structure of MCR-1-S treated by aurothioglucose 7YJR ; 2.3 ; Crystal structure of MCR-1-S treated by sodium aurothiomalate 7YJS ; 2.5 ; Crystal structure of MCR-1-S treated by sodium aurothiosulfate 1VR4 ; 2.09 ; Crystal Structure of MCSG TArget APC22750 from Bacillus cereus 1XPJ ; 2.3 ; Crystal Structure of MCSG Target APC26283 from Vibrio cholerae 1Y2I ; 2.3 ; Crystal Structure of MCSG Target APC27401 from Shigella flexneri 1XA0 ; 2.8 ; Crystal Structure of MCSG Target APC35536 from Bacillus stearothermophilus 3UN0 ; 2.3 ; Crystal Structure of MDC1 FHA Domain 3UOT ; 1.8 ; Crystal Structure of MDC1 FHA Domain in Complex with a Phosphorylated Peptide from the MDC1 N-terminus 2ETX ; 1.33 ; Crystal Structure of MDC1 Tandem BRCT Domains 1Z2C ; 3.0 ; Crystal structure of mDIA1 GBD-FH3 in complex with RhoC-GMPPNP 3EG5 ; 2.7 ; Crystal structure of MDIA1-TSH GBD-FH3 in complex with CDC42-GMPPNP 5UWP ; 2.054 ; Crystal Structure of mDia2 NES Peptide in complex with CRM1-Ran-RanBP1 6X2Y ; 2.304 ; Crystal Structure of mDia2NES peptide bound to CRM1(E571K) 5CH8 ; 1.62 ; Crystal structure of MDLA N225Q mutant form Penicillium cyclopium 5GYD ; 3.106 ; Crystal Structure of Mdm12 5VKZ ; 4.1 ; Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies 5GYK ; 3.596 ; Crystal Structure of Mdm12-deletion mutant 5YK7 ; 3.799 ; Crystal Structure of Mdm12-Mmm1 complex 4ERE ; 1.8 ; crystal structure of MDM2 (17-111) in complex with compound 23 4ERF ; 2.0 ; crystal structure of MDM2 (17-111) in complex with compound 29 (AM-8553) 6H22 ; 2.006 ; Crystal structure of Mdm2 bound to a stapled peptide 6I3S ; 1.77 ; Crystal structure of MDM2 in complex with compound 13. 3JZK ; 2.1 ; crystal structure of MDM2 with chromenotriazolopyrimidine 1 4YTV ; 1.45 ; Crystal structure of Mdm35 4RXZ ; 1.55 ; Crystal Structure of MDMX phosporylated Tyr99 in complex with a 12-mer peptide 7X11 ; 2.07 ; Crystal structure of ME1 in complex with NADPH 7X12 ; 2.07 ; Crystal structure of ME1 in complex with NADPH 3EVF ; 1.45 ; Crystal structure of Me7-GpppA complex of yellow fever virus methyltransferase and S-adenosyl-L-homocysteine 2OXT ; 2.9 ; Crystal structure of Meaban virus nucleoside-2'-O-methyltransferase 8HGN ; 1.95 ; Crystal structure of MeaC (Mesaconyl-CoA hydratase) 5E4V ; 2.71 ; Crystal structure of measles N0-P complex 7SKS ; 2.541 ; Crystal structure of measles virus matrix protein 5BSE ; 1.7 ; Crystal structure of Medicago truncatula (delta)1-Pyrroline-5-Carboxylate Reductase (MtP5CR) 5BSH ; 2.1 ; Crystal structure of Medicago truncatula (delta)1-Pyrroline-5-Carboxylate Reductase (MtP5CR) in complex with L-Proline 5BSF ; 1.85 ; Crystal structure of Medicago truncatula (delta)1-Pyrroline-5-Carboxylate Reductase (MtP5CR) in complex with NAD+ 5BSG ; 1.95 ; Crystal structure of Medicago truncatula (delta)1-Pyrroline-5-Carboxylate Reductase (MtP5CR) in complex with NADP+ 6NIB ; 1.2 ; Crystal Structure of Medicago truncatula Agmatine Iminohydrolase (Deiminase) 6NIC ; 2.2 ; Crystal Structure of Medicago truncatula Agmatine Iminohydrolase (Deiminase) in Complex with 6-aminohexanamide 6CZL ; 2.92 ; Crystal structure of Medicago truncatula ATP-phosphoribosyltransferase in relaxed form 6CZM ; 2.88 ; Crystal structure of Medicago truncatula ATP-phosphoribosyltransferase in tense form 4R1U ; 2.18 ; Crystal structure of Medicago truncatula cinnamoyl-CoA reductase 8BJ4 ; 1.45 ; Crystal structure of Medicago truncatula histidinol-phosphate aminotransferase (HISN6) in apo form 8BJ3 ; 1.61 ; Crystal structure of Medicago truncatula histidinol-phosphate aminotransferase (HISN6) in complex with histidinol-phosphate 8BJ2 ; 1.4 ; Crystal structure of Medicago truncatula histidinol-phosphate aminotransferase (HISN6) in the closed state 8BJ1 ; 1.57 ; Crystal structure of Medicago truncatula histidinol-phosphate aminotransferase (HISN6) in the open state 5EQ7 ; 1.19 ; Crystal structure of Medicago truncatula Histidinol-Phosphate Phosphatase (MtHPP) in complex with free phosphate 5EQ8 ; 1.3 ; Crystal structure of Medicago truncatula Histidinol-Phosphate Phosphatase (MtHPP) in complex with L-histidinol 5EQ9 ; 1.36 ; Crystal structure of Medicago truncatula Histidinol-Phosphate Phosphatase (MtHPP) in complex with L-histidinol phosphate and Mg2+ 5EQA ; 1.32 ; Crystal structure of Medicago truncatula Histidinol-Phosphate Phosphatase (MtHPP) with intermolecular cross-link between Lys158 and Cys245 5VLB ; 2.25 ; Crystal Structure of Medicago truncatula L-Histidinol Dehydrogenase in Complex with Imidazole 5VLD ; 2.59 ; Crystal Structure of Medicago truncatula L-Histidinol Dehydrogenase in Complex with L-Histidine and NAD+ 5VLC ; 1.97 ; Crystal Structure of Medicago truncatula L-Histidinol Dehydrogenase in Complex with L-Histidinol 5H8K ; 2.39 ; Crystal structure of Medicago truncatula N-carbamoylputrescine amidohydrolase (MtCPA) C158S mutant 5H8L ; 2.29 ; Crystal structure of Medicago truncatula N-carbamoylputrescine amidohydrolase (MtCPA) C158S mutant in complex with putrescine 5H8J ; 2.19 ; Crystal structure of Medicago truncatula N-carbamoylputrescine amidohydrolase (MtCPA) in complex with cadaverine 5H8I ; 1.97 ; Crystal structure of Medicago truncatula N-carbamoylputrescine amidohydrolase (MtCPA) in complex with N-(dihydroxymethyl)putrescine 7QB6 ; 2.52 ; Crystal Structure of Medicago truncatula Nodulin 13 (MtN13) in complex with 3-carboxybenzophenone 4JHH ; 2.2 ; Crystal Structure of Medicago truncatula Nodulin 13 (MtN13) in complex with kinetin 4JHI ; 2.6 ; Crystal Structure of Medicago truncatula Nodulin 13 (MtN13) in complex with N6-benzyladenine 4GY9 ; 2.04 ; Crystal Structure of Medicago truncatula Nodulin 13 (MtN13) in complex with N6-isopentenyladenine (2iP) 4JHG ; 1.85 ; Crystal Structure of Medicago truncatula Nodulin 13 (MtN13) in complex with trans-zeatin 6VCW ; 1.4 ; Crystal structure of Medicago truncatula S-adenosylmethionine Synthase 3A (MtMAT3A) 6CCZ ; 2.14 ; Crystal structure of Medicago truncatula serine hydroxymethyltransferase 3 (MtSHMT3) soaked with selenourea 6CD1 ; 1.91 ; Crystal structure of Medicago truncatula serine hydroxymethyltransferase 3 (MtSHMT3), complexes with reaction intermediates 6CD0 ; 1.74 ; Crystal structure of Medicago truncatula serine hydroxymethyltransferase 3 (MtSHMT3), PLP-internal aldimine and apo form 6BQ2 ; 1.68 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) 6BQ5 ; 1.8 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) in complex with 5'-methylthioadenosine 6BQ3 ; 1.91 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) in complex with 5'-S-(3-aminopropyl)-5'-thioadenosine 6BQ4 ; 1.89 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) in complex with adenosine 6BQ7 ; 1.95 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) in complex with spermidine 6BQ6 ; 1.65 ; Crystal structure of Medicago truncatula Thermospermine Synthase (MtTSPS) in complex with thermospermine 2ACV ; 2.0 ; Crystal Structure of Medicago truncatula UGT71G1 2ACW ; 2.6 ; Crystal Structure of Medicago truncatula UGT71G1 complexed with UDP-glucose 2PQ6 ; 2.1 ; Crystal structure of Medicago truncatula UGT85H2- Insights into the structural basis of a multifunctional (Iso) flavonoid glycosyltransferase 8BBU ; 1.1 ; Crystal structure of medical leech destabilase (high salt) 8BBW ; 1.4 ; Crystal structure of medical leech destabilase (low salt) 1UKW ; 2.4 ; Crystal structure of medium-chain acyl-CoA dehydrogenase from Thermus thermophilus HB8 1EGW ; 1.5 ; CRYSTAL STRUCTURE OF MEF2A CORE BOUND TO DNA 7X1N ; 3.315 ; Crystal structure of MEF2D-MRE complex 6XVI ; 2.596 ; Crystal structure of Megabody Mb-Nb207-c7HopQ_A12 6XV8 ; 3.15 ; Crystal structure of Megabody Mb-Nb207-c7HopQ_G10 6XUX ; 1.90001 ; Crystal structure of Megabody Mb-Nb207-cYgjK_NO 4Z1Z ; 3.2 ; Crystal Structure of Meganuclease I-SmaMI Bound to Uncleaveable DNA with a TTCT Central Four 4Z20 ; 3.2 ; Crystal Structure of Meganuclease I-SmaMI Bound to Uncleaveable DNA with a TTGT Central Four 4TQG ; 2.2 ; Crystal structure of Megavirus UDP-GlcNAc 4,6-dehydratase, 5-epimerase Mg534 8HGW ; 2.80001 ; Crystal structure of MehpH in complex with MBP 7EIO ; 1.895 ; Crystal Structure of Mei2 RRM3 7EIU ; 2.349 ; Crystal structure of Mei2 RRM3 in complex with 8mer meiRNA 7DUS ; 2.5 ; Crystal structure of Mei2-RRM3 domain in S.pombe 7F2X ; 2.007 ; Crystal structure of MEK1 C121S mutant 3ZM4 ; 2.37 ; Crystal structure of MEK1 in complex with fragment 1 3ZLX ; 2.2 ; Crystal structure of MEK1 in complex with fragment 18 3ZLW ; 2.12 ; Crystal structure of MEK1 in complex with fragment 3 3ZLS ; 2.5 ; Crystal structure of MEK1 in complex with fragment 6 3ZLY ; 2.11 ; Crystal structure of MEK1 in complex with fragment 8 4LMN ; 2.8 ; Crystal Structure of MEK1 kinase bound to GDC0973 6X2S ; 2.496 ; Crystal Structure of Mek1(NQ)NES peptide bound to CRM 6X2X ; 2.458 ; Crystal Structure of Mek1NES peptide bound to CRM1(E571K) 1TVB ; 1.8 ; Crystal structure of Melanoma Antigen gp100(209-217) Bound to Human Class I MHC HLA-A2 3W6Q ; 2.052 ; Crystal structure of melB apo-protyrosinase from Asperugillus oryzae 3W6W ; 1.394 ; Crystal structure of melB holo-protyrosinase from Asperugillus oryzae 5M5A ; 1.9 ; Crystal structure of MELK in complex with an inhibitor 5MAF ; 2.8 ; Crystal structure of MELK in complex with an inhibitor 5MAG ; 2.35 ; Crystal structure of MELK in complex with an inhibitor 5MAH ; 2.0 ; Crystal structure of MELK in complex with an inhibitor 5MAI ; 2.15 ; Crystal structure of MELK in complex with an inhibitor 6E0S ; 1.78 ; Crystal structure of MEM-A1, a subclass B3 metallo-beta-lactamase isolated from a soil metagenome library 4HC5 ; 1.45 ; Crystal structure of member of Glyoxalase/bleomycin resistance protein/dioxygenase superfamily from Sphaerobacter thermophilus DSM 20745 5F2T ; 2.06 ; Crystal structure of membrane associated PatA from Mycobacterium smegmatis in complex with palmitate - C 2 space group 5F31 ; 2.43 ; Crystal structure of membrane associated PatA from Mycobacterium smegmatis in complex with palmitate - P 42 21 2 space group 5F2Z ; 2.9 ; Crystal structure of membrane associated PatA from Mycobacterium smegmatis in complex with palmitate - P21 space group 5F34 ; 3.281 ; Crystal structure of membrane associated PatA from Mycobacterium smegmatis in complex with S-hexadecyl Coenzyme A - P21 space group 2PNW ; 1.9 ; Crystal structure of membrane-bound lytic murein transglycosylase from Agrobacterium tumefaciens 3NPS ; 1.5 ; Crystal structure of membrane-type serine protease 1 (MT-SP1) in complex with the Fab Inhibitor S4 3BCZ ; 2.1 ; Crystal structure of Memo 3BD0 ; 3.01 ; Crystal structure of Memo, form II 3P4S ; 3.1 ; Crystal structure of Menaquinol:fumarate oxidoreductase in complex with a 3-nitropropionate adduct 3P4P ; 2.8 ; Crystal structure of Menaquinol:fumarate oxidoreductase in complex with fumarate 3P4R ; 3.05 ; Crystal structure of Menaquinol:fumarate oxidoreductase in complex with glutarate 3P4Q ; 3.35 ; Crystal structure of Menaquinol:oxidoreductase in complex with oxaloacetate 3HWW ; 1.95 ; Crystal structure of menaquinone synthesis protein MenD from E. coli in complex with oxoglutarate 3HWX ; 2.6 ; Crystal structure of menaquinone synthesis protein MenD from E. coli in complex with ThDP 3GSE ; 2.28 ; Crystal structure of menaquinone-specific isochorismate synthase from Yersinia pestis CO92 1RJM ; 2.15 ; Crystal Structure of MenB (Rv0548c) from Mycobacterium tuberculosis 4QIJ ; 2.2 ; Crystal structure of MenB from Mycobacteria tuberculosis in complex with 1-HNA-CoA 2PGE ; 1.6 ; Crystal structure of MenC from Desulfotalea psychrophila LSv54 3FLM ; 2.7 ; Crystal structure of menD from E.coli 6YDR ; 1.34 ; Crystal structure of Mengla Virus VP30 C-terminal domain 8IG0 ; 2.6 ; Crystal structure of menin in complex with DS-1594b 3RE2 ; 1.95 ; Crystal structure of menin reveals the binding site for Mixed Lineage Leukemia (MLL) protein 5DTL ; 2.7 ; Crystal structure of mEos2-A69T fluorescent protein 3P8U ; 2.25 ; Crystal structure of mEosFP in its green state 4LQE ; 2.1 ; Crystal Structure of MepB 4L9N ; 1.6 ; Crystal structure of MepR A103V mutant from multidrug resistant S. aureus clinical isolate 4L9T ; 1.794 ; Crystal structure of MepR F27L mutant from multidrug resistant S. aureus clinical isolate 4XRF ; 2.16 ; Crystal structure of MepR like protein complexed with pseudoligands 4LD5 ; 2.4 ; Crystal structure of MepR Q18P mutant from multidrug resistant S. aureus clinical isolate 3ECO ; 2.4 ; Crystal structure of MepR, a transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA 3FN8 ; 1.88 ; Crystal Structure of MerB complexed with mercury 3F2G ; 1.781 ; Crystal structure of MerB mutant C160S, the Organomercurial Lyase involved in a bacterial mercury resistance system 3F0O ; 1.76 ; Crystal structure of MerB, the Organomercurial Lyase involved in a bacterial mercury resistance system 1FMJ ; 2.0 ; CRYSTAL STRUCTURE OF MERCURY DERIVATIVE OF RETINOL DEHYDRATASE IN A COMPLEX WITH RETINOL AND PAP 5YDC ; 1.91 ; Crystal structure of mercury soaked C-terminal domain of Rv1828 from Mycobacterium tuberculosis 1FE4 ; 1.75 ; CRYSTAL STRUCTURE OF MERCURY-HAH1 6ZLZ ; 3.52 ; Crystal Structure of Merkel Cell Polyomavirus Virus-like Particle 3WA0 ; 2.31 ; Crystal structure of merlin complexed with DCAF1/VprBP 1ISN ; 2.9 ; Crystal structure of merlin FERM domain 4ZRI ; 2.7 ; Crystal structure of Merlin-FERM and Lats2 8E6B ; 1.55 ; Crystal structure of MERS 3CL protease in complex with a dimethyl sulfinyl benzene inhibitor 8E6C ; 2.7 ; Crystal structure of MERS 3CL protease in complex with a m-fluorophenyl dimethyl sulfane inhibitor 8E6D ; 2.7 ; Crystal structure of MERS 3CL protease in complex with a p-fluorophenyl dimethyl sulfane inhibitor 8E6E ; 1.5 ; Crystal structure of MERS 3CL protease in complex with a phenyl sulfane inhibitor 5C3N ; 3.0 ; Crystal structure of MERS coronavirus main protease in spacegroup C2221 4R3D ; 2.818 ; Crystal structure of MERS Coronavirus papain like protease 8IG6 ; 2.07 ; Crystal structure of MERS main protease in complex with GC376 7XRY ; 1.99 ; Crystal structure of MERS main protease in complex with inhibitor YH-53 7WQJ ; 2.75 ; Crystal structure of MERS main protease in complex with PF07304814 7VTC ; 2.53866 ; Crystal structure of MERS main protease in complex with PF07321332 8HUT ; 1.98 ; Crystal structure of MERS main protease in complex with S217622 7DR9 ; 2.77587 ; Crystal structure of MERS-CoV 3CL protease (C148A) in spacegroup P212121 7DRA ; 2.7841 ; Crystal structure of MERS-CoV 3CL protease (C148A) in spacegroup P212121,pH 9.0 7DR8 ; 2.33815 ; Crystal structure of MERS-CoV 3CL protease in spacegroup P212121 7ENE ; 2.98 ; Crystal structure of MERS-CoV 3CLpro in complex with the non-covalent inhibitor WU-04 4L72 ; 3.005 ; Crystal structure of MERS-CoV complexed with human DPP4 5ZU9 ; 1.499 ; Crystal structure of MERS-CoV macro domain in complex with ADP 5DUS ; 1.432 ; Crystal structure of MERS-CoV macro domain in complex with ADP-ribose 5ZU7 ; 1.705 ; Crystal structure of MERS-CoV macro domain in complex with AMP 5ZUA ; 2.471 ; Crystal structure of MERS-CoV macro domain in complex with ATP 5ZUB ; 1.677 ; Crystal structure of MERS-CoV macro domain in complex with NAD 8R5J ; 1.898 ; Crystal structure of MERS-CoV main protease 6KL6 ; 2.77 ; Crystal structure of MERS-CoV N-NTD complexed with 5-Benzyloxygramine 6LNN ; 2.634 ; Crystal structure of MERS-CoV N-NTD complexed with ligand P4-1 7DYD ; 2.39 ; Crystal structure of MERS-CoV N-NTD complexed with ligand P4-2 6LZ6 ; 2.646 ; Crystal structure of MERS-CoV N-NTD complexed with ligand P4-3 6LZ8 ; 2.59 ; Crystal structure of MERS-CoV N-NTD complexed with ligand P4-4 6PXG ; 2.1 ; Crystal Structure of MERS-CoV neutralizing antibody G2 Fab 5VZR ; 1.57 ; Crystal Structure of MERS-CoV neutralizing antibody G4 Fab 5YN5 ; 1.96 ; Crystal structure of MERS-CoV nsp10/nsp16 complex 5YN6 ; 1.947 ; Crystal structure of MERS-CoV nsp10/nsp16 complex bound to SAM 5YNF ; 1.791 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to m7GpppA 5YNJ ; 2.043 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to m7GpppG 5YN8 ; 1.97 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to SAH 5YNO ; 1.96 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to SAH and m7GpppA 5YNQ ; 1.958 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to SAH and m7GpppG 5YNM ; 1.68 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to SAM and m7GpppA 5YNI ; 2.07 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to SAM and m7GpppG 5YNB ; 1.98 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to Sinefungin 5YNP ; 2.27 ; Crystal structure of MERS-CoV nsp16/nsp10 complex bound to sinefungin and m7GpppA 5YNN ; 1.86 ; Crystal structure of MERS-CoV nsp16/nsp10complex bound to sinefungin and m7GpppG 5W8T ; 2.758 ; Crystal structure of MERS-CoV papain-like protease in complex with the C-terminal domain of human ISG15 5W8U ; 2.411 ; Crystal structure of MERS-CoV papain-like protease in complex with the C-terminal domain of human ISG15 5VYH ; 2.0 ; Crystal Structure of MERS-CoV S1 N-terminal Domain 6PXH ; 2.3 ; Crystal Structure of MERS-CoV S1-NTD bound with G2 Fab 8DGX ; 2.89 ; Crystal structure of MERS-CoV spike stem helix peptide in complex with Fab of broadly neutralizing antibody CC68.109 isolated from a vaccinated COVID-19 convalescent 8DGV ; 2.3 ; Crystal structure of MERS-CoV spike stem helix peptide in complex with Fab of broadly neutralizing antibody CC99.103 isolated from a vaccinated COVID-19 convalescent 7AAZ ; 1.855 ; Crystal structure of MerTK in complex with a type 1.5 aminopyridine inhibitor 7AB1 ; 1.93 ; Crystal structure of MerTK kinase domain in complex with Gilteritinib 7AAX ; 1.762 ; Crystal structure of MerTK kinase domain in complex with LDC1267 7AAY ; 1.87 ; Crystal structure of MerTK kinase domain in complex with Merestinib 7AB2 ; 1.78 ; Crystal structure of MerTK kinase domain in complex with UNC2025 7XHY ; 2.16 ; Crystal structure of MerTK Kinase domain with BMS794833 1S7C ; 2.04 ; Crystal structure of MES buffer bound form of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli 6YVG ; 2.2 ; Crystal structure of MesI (Lpg2505) from Legionella pneumophila 3WGY ; 2.0 ; Crystal structure of meso-dapdh Q154L/T173I/R199M/P248S/H249N/N276S mutant with 4-methyl-2-oxovalerate of from Clostridium tetani E88 3WGZ ; 2.25 ; Crystal structure of meso-dapdh Q154L/T173I/R199M/P248S/H249N/N276S mutant with D-leucine of from Clostridium tetani E88 3WGQ ; 2.0 ; Crystal structure of meso-dapdh Q154L/T173I/R199M/P248S/H249N/N276S mutant with DAP of from Clostridium tetani E88 5X7M ; 2.4 ; Crystal structure of meso-diaminopimelate decarboxylase (DAPDC) from Corynebacterium glutamicum 5X7N ; 1.72 ; Crystal structure of meso-diaminopimelate decarboxylase (DAPDC) from Corynebacterium glutamicum 8HP0 ; 2.47 ; Crystal structure of meso-diaminopimelate dehydrogenase from Prevotella timonensis 8HP3 ; 3.07 ; Crystal structure of meso-diaminopimelate dehydrogenase from Prevotella timonensis 3WBF ; 2.12 ; Crystal Structure of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum co-crystallized with NADP+ and DAP 1JN2 ; 1.9 ; Crystal Structure of meso-tetrasulphonatophenyl porphyrin complexed with Concanavalin A 1RIR ; 2.9 ; Crystal structure of meso-tetrasulphonatophenylporphyrin in complex with Peanut lectin. 1KOK ; 1.7 ; Crystal Structure of Mesopone Cytochrome c Peroxidase (MpCcP) 1S73 ; 1.53 ; Crystal Structure of Mesopone Cytochrome c Peroxidase (R-isomer) [MpCcP-R] 2Z7B ; 1.9 ; Crystal Structure of Mesorhizobium loti 3-hydroxy-2-methylpyridine-4,5-dicarboxylate decarboxylase 4NV7 ; 2.02 ; Crystal Structure of Mesorhizobium Loti Arylamine N-acetyltransferase 1 In Complex With CoA 4NV8 ; 1.84 ; Crystal Structure of Mesorhizobium Loti Arylamine N-acetyltransferase F42W Mutant 7U8C ; 1.74 ; Crystal structure of Mesothelin C-terminal peptide-MORAb 15B6 FAB complex 7U9J ; 2.09 ; Crystal structure of Mesothelin-207 fragment 6HAR ; 1.497 ; Crystal structure of Mesotrypsin in complex with APPI-M17C/I18F/F34C 1GY2 ; 1.82 ; Crystal structure of Met148Leu rusticyanin 1ZDS ; 1.55 ; Crystal Structure of Met150Gly AfNiR with Acetamide Bound 1ZDQ ; 1.8 ; Crystal Structure of Met150Gly AfNiR with Methylsulfanyl Methane Bound 1J5O ; 3.5 ; CRYSTAL STRUCTURE OF MET184ILE MUTANT OF HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH DOUBLE STRANDED DNA TEMPLATE-PRIMER 4XMZ ; 2.15 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with 2,4-diaminobutyric acid 4XMX ; 2.3 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with Bestatin 4XMT ; 2.0 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-2,3-Diaminopropionic acid 4XMU ; 2.91 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Alanine 4XMV ; 2.92 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Arginine 4XMW ; 2.2 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-aspartic acid 4XN1 ; 2.2 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Glutamate 4XN2 ; 2.11 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Leucine 4XN4 ; 1.99 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Methionine 4XN5 ; 2.66 ; Crystal Structure of Met260Ala mutant of E. coli Aminopeptidase N in complex with L-Phenylalanine 6MN0 ; 2.4 ; Crystal structure of meta-AAC0038, an environmental aminoglycoside resistance enzyme, H168A mutant in complex with acetyl-CoA 6MMZ ; 3.3 ; Crystal structure of meta-AAC0038, an environmental aminoglycoside resistance enzyme, H29A mutant apoenzyme 6MN1 ; 2.25 ; Crystal structure of meta-AAC0038, an environmental aminoglycoside resistance enzyme, mutant H168A in abortive complex with gentamicin-CoA 6MN2 ; 2.744 ; Crystal structure of meta-AAC0038, an environmental aminoglycoside resistance enzyme, mutant H168A in abortive complex with sisomicin-CoA 7KES ; 2.36 ; Crystal structure of meta-AAC0038, an environmental aminoglycoside resistance enzyme, mutant H168A in complex with apramycin and CoA 3SM9 ; 2.26 ; Crystal Structure of Metabotropic glutamate receptor 3 precursor in presence of LY341495 antagonist 1ISS ; 3.3 ; Crystal Structure of Metabotropic Glutamate Receptor Subtype 1 Complexed with an antagonist 1EWK ; 2.2 ; CRYSTAL STRUCTURE OF METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 COMPLEXED WITH GLUTAMATE 1ISR ; 4.0 ; Crystal Structure of Metabotropic Glutamate Receptor Subtype 1 Complexed with Glutamate and Gadolinium Ion 1EWT ; 3.7 ; CRYSTAL STRUCTURE OF METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 LIGAND FREE FORM I 1EWV ; 4.0 ; CRYSTAL STRUCTURE OF METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 LIGAND FREE FORM II 6W8R ; 2.801 ; Crystal structure of metacaspase 4 C139A from Arabidopsis 6W8S ; 3.484 ; Crystal structure of metacaspase 4 from Arabidopsis 6W8T ; 3.2 ; Crystal structure of metacaspase 4 from Arabidopsis (microcrystals treated with calcium) 7QP1 ; 3.0 ; Crystal structure of metacaspase from candida glabrata with calcium 7QP0 ; 1.6 ; Crystal structure of metacaspase from candida glabrata with magnesium 3WX5 ; 1.85 ; Crystal structure of metagenome-derived glycoside hydrolase family 12 endoglucanase 3X17 ; 2.15 ; Crystal structure of metagenome-derived glycoside hydrolase family 9 endoglucanase 8EO7 ; 2.15 ; Crystal structure of metagenomic beta-lactamase LRA-5 Y69Q/V166E mutant at 2.15 Angstrom resolution 8EO6 ; 2.35 ; Crystal structure of metagenomic class A beta-lactamase precursor LRA-5 in complex with ceftazidime at 2.35 Angstrom resolution 2GUB ; 1.8 ; Crystal Structure of Metal Free D-Xylose Isomerase. 7WGU ; 1.85 ; Crystal structure of metal-binding protein EfeO from Escherichia coli 1TXL ; 1.7 ; Crystal structure of metal-binding protein yodA from E. coli, Pfam DUF149 7CJO ; 1.4 ; Crystal structure of metal-bound state of glucose isomerase 4NRN ; 1.802 ; Crystal structure of metal-bound toxin from Helicobacter pylori 7F6P ; 2.15 ; Crystal structure of metal-citrate-binding mutant (D28A) protein (MctA) of ABC transporter endogenously bound to citrate 7F6R ; 2.09 ; Crystal structure of metal-citrate-binding mutant (S164A) protein (MctA) of ABC transporter in apo state 7F6N ; 2.3 ; Crystal structure of metal-citrate-binding mutant (S26A) protein (MctA) of ABC transporter endogenously bound to Mg2+-citrate complex 7F6O ; 2.5 ; Crystal structure of metal-citrate-binding mutant (S26A) protein (MctA) of ABC transporter endogenously bound to Mn2+-citrate complex 7F6Q ; 1.63 ; Crystal structure of metal-citrate-binding mutant (S79A) protein (MctA) of ABC transporter in apo state 7F6S ; 1.8 ; Crystal structure of metal-citrate-binding mutant (T199A) protein (MctA) of ABC transporter in apo state 7F6U ; 1.75 ; Crystal structure of metal-citrate-binding mutant (Y221A) protein (MctA) of ABC transporter in apo state 7F6T ; 1.9 ; Crystal structure of metal-citrate-binding mutant (Y221F) protein (MctA) of ABC transporter in apo state 7F6K ; 2.1 ; Crystal structure of metal-citrate-binding protein (MctA) of ABC transporter endogenously bound to citrate 7F6E ; 1.77 ; Crystal structure of metal-citrate-binding protein (MctA) of ABC transporter endogenously bound to Mg2+-citrate complex (Form I) 7F6F ; 2.1 ; Crystal structure of metal-citrate-binding protein (MctA) of ABC transporter endogenously bound to Mg2+-citrate complex (Form II) 8Q59 ; 2.0 ; Crystal structure of metal-dependent class II sulfofructose phosphate aldolase from Yersinia aldovae in complex with sulfofructose phosphate (YaSqiA-Zn-SFP) 8Q5A ; 2.8 ; Crystal structure of metal-dependent class II sulfofructosephosphate aldolase from Hafnia paralvei HpSqiA-Zn in complex with dihydroxyacetone phosphate (DHAP) 8Q58 ; 1.7 ; Crystal structure of metal-dependent classII sulfofructosephosphate aldolase (SFPA) from Hafnia paralvei HpSqiA-Zn 8HMO ; 2.53 ; Crystal Structure of metal-dependent hydrolase complexed with manganese from Bacillus smithii 1J6P ; 1.9 ; Crystal structure of Metal-dependent hydrolase of cytosinedemaniase/chlorohydrolase family (TM0936) from Thermotoga maritima at 1.9 A resolution 1XM5 ; 2.7 ; Crystal structure of metal-dependent hydrolase ybeY from E. coli, Pfam UPF0054 3BDF ; 1.4 ; Crystal structure of metal-free E. coli alkaline phosphatase (T155V) 3TF3 ; 1.64 ; Crystal structure of metal-free Human Arginase I 1HZT ; 1.45 ; CRYSTAL STRUCTURE OF METAL-FREE ISOPENTENYL DIPHOSPHATE:DIMETHYLALLYL DIPHOSPHATE ISOMERASE 6PPX ; 1.85 ; Crystal structure of metal-free NeuB, an N-acetylneuraminate synthase from Neisseria meningitidis in complex with malate 7CJP ; 1.5 ; Crystal structure of metal-free state of glucose isomerase 6V72 ; 1.5 ; Crystal Structure of Metallo Beta Lactamase from Erythrobacter litoralis 6V73 ; 2.4 ; Crystal Structure of Metallo Beta Lactamase from Erythrobacter litoralis with beta mercaptoethanol in the active site 6V54 ; 1.45 ; Crystal Structure of Metallo Beta Lactamase from Hirschia baltica 6V5M ; 1.5 ; Crystal Structure of Metallo Beta Lactamase from Hirschia baltica in Complex with Succinate 6V61 ; 1.58 ; Crystal Structure of Metallo Beta Lactamase from Hirschia baltica in the Complex with the Inhibitor Captopril 6V70 ; 1.95 ; Crystal Structure of Metallo Beta Lactamase from Hirschia baltica with Cadmium in the Active Site 6V71 ; 1.4 ; Crystal Structure of Metallo Beta Lactamase from Hirschia baltica with Nitrate in the Active Site 3LY0 ; 1.399 ; Crystal structure of metallo peptidase from Rhodobacter sphaeroides liganded with phosphinate mimic of dipeptide L-Ala-D-Ala 2ZO4 ; 2.1 ; Crystal structure of metallo-beta-lactamase family protein TTHA1429 from Thermus thermophilus HB8 3X30 ; 1.921 ; Crystal structure of metallo-beta-lactamase from Thermotoga maritima 3X2X ; 3.42 ; Crystal structure of metallo-beta-lactamase H48A from Thermotoga maritima 3X2Y ; 2.67 ; Crystal structure of metallo-beta-lactamase H8A from Thermotoga maritima 7XHW ; 1.94 ; Crystal structure of metallo-beta-lactamase IMP-1 5HH4 ; 2.0 ; Crystal structure of metallo-beta-lactamase IMP-1 in complex with a phosphonate-based inhibitor 7DTM ; 2.0 ; Crystal structure of metallo-beta-lactamase IMP-1 in complex with citrate. 7DTN ; 1.85 ; Crystal structure of metallo-beta-lactamase IMP-1 mutant (D120E) in complex with citrate. 1WUO ; 2.01 ; Crystal structure of metallo-beta-lactamase IMP-1 mutant (D81A) 1WUP ; 3.0 ; Crystal structure of metallo-beta-lactamase IMP-1 mutant (D81E) 5B3R ; 2.0 ; Crystal structure of metallo-beta-lactamase IMP-18 from Pseudomonas aeruginosa 6L3S ; 1.7 ; Crystal structure of metallo-beta-lactamase IMP-27 from Morganella morganii 7XHX ; 1.7 ; Crystal structure of metallo-beta-lactamase IMP-6 7WZU ; 1.954 ; Crystal structure of metallo-beta-lactamase IMP-6. 3X2Z ; 2.33 ; Crystal structure of metallo-beta-lactamase in complex with nickel from Thermotoga maritima 3L6N ; 1.65 ; Crystal structure of metallo-beta-lactamase IND-7 7FCT ; 1.8 ; Crystal structure of metallo-beta-lactamase MBLBt2 3VPE ; 1.6 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 5AXR ; 2.1 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 Bound to 2-mercaptoethanesulfonate 5B15 ; 1.39 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 Bound to Hydrolyzed Doripenem 5B1U ; 1.57 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 Bound to Hydrolyzed Imipenem 5AXO ; 1.39 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 Bound to Hydrolyzed Meropenem 5AYA ; 2.02 ; Crystal Structure of Metallo-beta-Lactamase SMB-1 Bound to L-captopril 5NDB ; 2.38 ; Crystal structure of metallo-beta-lactamase SPM-1 complexed with cyclobutanone inhibitor 5NDE ; 1.7 ; Crystal structure of metallo-beta-lactamase SPM-1 in space group P4222 5LS3 ; 1.754 ; Crystal structure of metallo-beta-lactamase SPM-1 with Y58C mutation 8U00 ; 1.85 ; Crystal structure of metallo-beta-lactamase superfamily protein from Caulobacter vibrioides 5N5H ; 1.3 ; Crystal structure of metallo-beta-lactamase VIM-1 in complex with ML302F inhibitor 6JV4 ; 1.7 ; Crystal structure of metallo-beta-lactamase VMB-1 3VQZ ; 2.2 ; Crystal structure of metallo-beta-lactamase, SMB-1, in a complex with mercaptoacetic acid 8Y0S ; 2.75 ; Crystal structure of metallo-beta-lactamse, IMP-1, complexed with a quinolinone-based inhibitor 6JKA ; 2.006 ; Crystal structure of metallo-beta-lactamse, IMP-1, in complex with a thiazole-bearing inhibitor 6JKB ; 2.444 ; Crystal structure of metallo-beta-lactamse, NDM-1, in complex with hydrolyzed ampicillin 4B6Z ; 1.9 ; Crystal structure of metallo-carboxypeptidase from Burkholderia cenocepacia 4L24 ; 2.7 ; Crystal structure of metallo-DNA duplex containing consecutive T-Hg(II)-T base pairs 5IX7 ; 1.398 ; Crystal structure of metallo-DNA nanowire with infinite one-dimensional silver array 7Y7O ; 1.9 ; Crystal structure of metallo-endoribonuclease YbeY from Staphylococcus aureus 4RZY ; 1.949 ; Crystal structure of metallopeptidase-like dimethylsulphoniopropionate (DMSP) lyase RlDddP in complex with MES 4RZZ ; 2.1 ; Crystal structure of metallopeptidase-like dimethylsulphoniopropionate (DMSP) lyase RlDddP in complex with phosphate 4S01 ; 2.1 ; Crystal structure of metallopeptidase-like dimethylsulphoniopropionate (DMSP) lyase RlDddP mutant D377N in complex with acrylate 4S00 ; 2.099 ; Crystal structure of metallopeptidase-like dimethylsulphoniopropionate (DMSP) lyase RlDddP mutant Y366A in complex with acrylate 3RQZ ; 1.95 ; Crystal structure of metallophosphoesterase from Sphaerobacter thermophilus 2IF6 ; 1.8 ; Crystal structure of metalloprotein yiiX from Escherichia coli O157:H7, DUF1105 4ON1 ; 2.13 ; Crystal Structure of metalloproteinase-II from Bacteroides fragilis 4IR0 ; 1.6 ; Crystal Structure of Metallothiol Transferase FosB 2 from Bacillus anthracis str. Ames 4JD1 ; 1.7 ; Crystal Structure of Metallothiol Transferase FosB 2 from Bacillus anthracis str. Ames 5F6Q ; 1.52 ; Crystal Structure of Metallothiol Transferase from Bacillus anthracis str. Ames 6AUF ; 2.603 ; Crystal structure of Metalo beta Lactamases MIM-1 from Novosphingobium pentaromativorans 1R5G ; 2.0 ; Crystal Structure of MetAP2 complexed with A311263 1R5H ; 2.4 ; Crystal Structure of MetAP2 complexed with A320282 1R58 ; 1.9 ; Crystal Structure of MetAP2 complexed with A357300 7K4M ; 2.5 ; Crystal structure of MetAP2 Modified Hemoglobin S 4HJW ; 2.6 ; Crystal structure of Metarhizium anisopliae IDCase in apo form 3PXO ; 3.0 ; Crystal structure of Metarhodopsin II 3PQR ; 2.85 ; Crystal structure of Metarhodopsin II in complex with a C-terminal peptide derived from the Galpha subunit of transducin 3CGA ; 2.03 ; Crystal structure of metastasis-associated protein S100A4 in the active, calcium-bound form 5X5H ; 1.51 ; Crystal structure of metB from Corynebacterium glutamicum 3L8A ; 1.539 ; Crystal structure of MetC from Streptococcus mutans 3L7R ; 2.397 ; crystal structure of MetE from streptococcus mutans 8SP2 ; 2.2 ; Crystal structure of metformin hydrolase (MfmAB) from Pseudomonas mendocina sp. MET-2 apo form 8SNK ; 1.85 ; Crystal structure of metformin hydrolase (MfmAB) from Pseudomonas mendocina sp. MET-2 mutant (MfmA/D188N) 8SNF ; 2.3 ; Crystal structure of metformin hydrolase (MfmAB) from Pseudomonas mendocina sp. MET-2 with Ni2+2 bound 1KUU ; 2.2 ; CRYSTAL STRUCTURE OF METHANOBACTERIUM THERMOAUTOTROPHICUM CONSERVED PROTEIN MTH1020 REVEALS AN NTN-HYDROLASE FOLD 1M8K ; 3.0 ; Crystal Structure Of Methanobacterium Thermoautotrophicum Nicotinamide Mononucleotide Adenylyltransferase Mutant H19A complexed with NAD 1M8F ; 2.4 ; Crystal Structure Of Methanobacterium Thermoautotrophicum Nicotinamide Mononucleotide Adenylyltransferase Mutant R11A complexed with NAD 1M8G ; 2.0 ; Crystal Structure Of Methanobacterium Thermoautotrophicum Nicotinamide Mononucleotide Adenylyltransferase Mutant R11K complexed with NAD 1M8J ; 2.4 ; Crystal Structure Of Methanobacterium Thermoautotrophicum Nicotinamide Mononucleotide Adenylyltransferase Mutant R136A complexed with NAD 1EJ2 ; 1.9 ; Crystal structure of methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase with bound NAD+ 4YP5 ; 2.21 ; Crystal structure of Methanobacterium thermoautotrophicum NMNAT in complex with NADP 4YP6 ; 1.9 ; Crystal structure of Methanobacterium thermoautotrophicum NMNAT in complex with NADP 4YP7 ; 2.3 ; Crystal structure of Methanobacterium thermoautotrophicum NMNAT in complex with NADP 1ZPS ; 1.7 ; Crystal structure of Methanobacterium thermoautotrophicum phosphoribosyl-AMP cyclohydrolase HisI 6Q2E ; 1.768 ; Crystal structure of Methanobrevibacter smithii Dph2 bound to 5'-methylthioadenosine 6Q2D ; 3.45 ; Crystal structure of Methanobrevibacter smithii Dph2 in complex with Methanobrevibacter smithii elongation factor 2 3FHF ; 1.995 ; Crystal structure of Methanocaldococcus jannaschii 8-oxoguanine DNA glycosylase (MjOgg) 3KNT ; 2.7 ; Crystal structure of Methanocaldococcus jannaschii 8-oxoguanine glycosylase/lyase in complex with 15mer DNA containing 8-oxoguanine 4QHG ; 2.2 ; Crystal structure of Methanocaldococcus jannaschii dimeric selecase 5DNI ; 2.3 ; Crystal structure of Methanocaldococcus jannaschii Fumarate hydratase beta subunit 4QHF ; 2.1 ; Crystal structure of Methanocaldococcus jannaschii monomeric selecase 2C49 ; 1.92 ; Crystal Structure of Methanocaldococcus jannaschii Nucleoside Kinase - An Archaeal Member of the Ribokinase Family 2C4E ; 1.7 ; Crystal Structure of Methanocaldococcus jannaschii Nucleoside Kinase - An Archaeal Member of the Ribokinase Family 2YX5 ; 2.3 ; Crystal Structure of Methanocaldococcus jannaschii PurS, One of the Subunits of Formylglycinamide Ribonucleotide Amidotransferase in the Purine Biosynthetic Pathway 4QHJ ; 1.75 ; Crystal structure of Methanocaldococcus jannaschii selecase mutant I100F+H107F 4QHI ; 2.3 ; Crystal structure of Methanocaldococcus jannaschii selecase mutant R36W 4QHH ; 3.0 ; Crystal structure of Methanocaldococcus jannaschii tetrameric selecase 3AY0 ; 3.05 ; Crystal structure of Methanocaldococcus jannaschii Trm5 in complex with adenosine 7XKY ; 2.46 ; Crystal structure of Methanocaldococcus jannaschii two-subunit Fumarate hydratase apo-protein complex 4NES ; 1.42 ; Crystal structure of Methanocaldococcus jannaschii UDP-GlcNAc 2-epimerase in complex with UDP-GlcNAc and UDP 2DU7 ; 3.6 ; Crystal structure of Methanococcus jannacshii O-phosphoseryl-tRNA synthetase 1QWG ; 1.6 ; Crystal structure of Methanococcus jannaschii phosphosulfolactate synthase 2EB0 ; 2.2 ; Crystal structure of Methanococcus jannaschii putative family II inorganic pyrophosphatase 3VBA ; 2.0 ; Crystal structure of methanogen 3-isopropylmalate isomerase small subunit 5H02 ; 1.776 ; Crystal structure of Methanohalophilus portucalensis glycine sarcosine N-methyltransferase tetramutant (H21G, E23T, E24N, L28S) 2D0V ; 2.49 ; Crystal structure of methanol dehydrogenase from Hyphomicrobium denitrificans 2AD6 ; 1.5 ; crystal structure of methanol dehydrogenase from M. W3A1 (form C) 2AD8 ; 1.6 ; crystal structure of methanol dehydrogenase from M. W3A1 (form C) in the presence of ethanol 2AD7 ; 1.5 ; crystal structure of methanol dehydrogenase from M. W3A1 (form C) in the presence of methanol 5XM3 ; 1.701 ; Crystal Structure of Methanol dehydrogenase from Methylophaga aminisulfidivorans 1LRW ; 2.5 ; Crystal structure of methanol dehydrogenase from P. denitrificans 2I2X ; 2.5 ; Crystal structure of methanol:cobalamin methyltransferase complex MtaBC from Methanosarcina barkeri 7U0R ; 1.8 ; Crystal structure of Methanomethylophilus alvus PylRS(N166A/V168A) complexed with meta-trifluoromethyl-2-benzylmalonate and AMP-PNP 6U45 ; 2.35 ; Crystal structure of Methanoperedens nitroreducens elongation factor 2 bound to GMPPCP and magnesium 6U44 ; 2.1 ; Crystal structure of Methanoperedens nitroreducens elongation factor 2 H595N bound to GMPPCP and magnesium (monoclinic crystal form) 6U43 ; 1.4 ; Crystal structure of Methanoperedens nitroreducens elongation factor 2 H595N bound to GMPPCP and magnesium (triclinic crystal form) 5CAX ; 2.451 ; CRYSTAL STRUCTURE OF METHANOSARCINA ACETIVORANS METHANOREDOXIN 2CIM ; 2.51 ; Crystal structure of Methanosarcina barkeri seryl-tRNA synthetase 2CJ9 ; 2.3 ; Crystal structure of Methanosarcina barkeri seryl-tRNA synthetase complexed with an analog of seryladenylate 2CJA ; 2.2 ; Crystal structure of Methanosarcina barkeri seryl-tRNA synthetase complexed with ATP 2CJB ; 2.7 ; Crystal structure of Methanosarcina barkeri seryl-tRNA synthetase complexed with serine 6AAQ ; 1.551 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with BCNLys 6AAC ; 1.479 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with mAzZLys 6AAN ; 1.51 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with mEtZLys 6AAD ; 1.444 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with mTmdZLys 6AB1 ; 1.381 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with oAzZLys 6ABL ; 1.47 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with oBrZLys 6AB2 ; 1.4 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with oClZLys 6AB0 ; 1.441 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with pAmPyLys 6AAZ ; 1.842 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with pNO2ZLys 6ABM ; 1.368 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with pTmdZLys 6AAO ; 1.403 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with TCO*Lys 6ABK ; 1.58 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with TeocLys 6AAP ; 1.5 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with ZaeSeCys 6AB8 ; 1.753 ; Crystal structure of Methanosarcina mazei PylRS(Y306A/Y384F) complexed with ZLys 2QBU ; 2.1 ; Crystal structure of Methanothermobacter thermautotrophicus CbiL 3SSJ ; 1.4 ; Crystal structure of Methanothermobacter thermautotrophicus orotidine 5'-monophosphate decarboxylase complexed with 5-fluoro-6-amino-UMP 3THQ ; 1.5 ; Crystal structure of Methanothermobacter thermautotrophicus orotidine 5'-monophosphate decarboxylase complexed with 6-amino-UMP 3SEC ; 1.7 ; Crystal structure of Methanothermobacter thermautotrophicus orotidine 5'-monophosphate decarboxylase complexed with pyrazofurin monophosphate 3SW6 ; 1.5 ; Crystal structure of Methanothermobacter thermautotrophicus orotidine 5'-monophosphate decarboxylase covalently modified by 5-fluoro-6-azido-UMP 3SGU ; 1.7 ; Crystal structure of Methanothermobacter thermautotrophicus orotidine 5'-monophosphate decarboxylase covalently modified by 5-fluoro-6-iodo-UMP 1SBQ ; 2.2 ; Crystal Structure of methenyltetrahydrofolate synthetase from Mycoplasma pneumoniae at 2.2 resolution 4FIO ; 1.37 ; Crystal Structure of Methenyltetrahydromethanopterin Cyclohydrolase from Methanobrevibacter ruminantium 6S81 ; 1.784 ; Crystal structure of methionine adenosyltransferase from Pyrococcus furiosus 6S83 ; 2.336 ; Crystal structure of methionine adenosyltransferase from Pyrococcus furiosus in complex with AMPPCP, SAM, and PCP 2EVO ; 1.7 ; crystal structure of methionine amino peptidase in complex with N-cyclopentyl-N-(thiazol-2-yl)oxalamide 1O0X ; 1.9 ; Crystal structure of Methionine aminopeptidase (TM1478) from Thermotoga maritima at 1.90 A resolution 3S6B ; 1.95 ; Crystal structure of methionine aminopeptidase 1b from Plasmodium Falciparum, PF10_0150 6LVH ; 3.2 ; Crystal structure of methionine aminopeptidase from Pyrococcus furiosus 6M00 ; 3.2 ; crystal structure of Methionine aminopeptidase from Pyrococcus furiosus 3MR1 ; 2.0 ; Crystal structure of methionine aminopeptidase from Rickettsia prowazekii 3MX6 ; 1.7 ; Crystal structure of methionine aminopeptidase from Rickettsia prowazekii bound to methionine 2EVM ; 1.7 ; crystal structure of methionine aminopeptidase in complex with 5-(2,5-dichlorophenyl)furan-2-carboxylic acid 6S0C ; 1.46 ; Crystal structure of methionine gamma-lyase from Citrobacter freundii modified by dimethylthiosulfinate 5K30 ; 1.59 ; Crystal structure of methionine gamma-lyase from Citrobacter freundii modified by S-Ethyl-L-cysteine sulfoxide 5E4Z ; 2.27 ; Crystal structure of methionine gamma-lyase from Citrobacter freundii with C115A substitution 5D5S ; 1.7 ; Crystal structure of methionine gamma-lyase from Citrobacter freundii, S339A mutant 5DX5 ; 2.37 ; Crystal structure of methionine gamma-lyase from Clostridium sporogenes 6LXU ; 1.19 ; Crystal structure of methionine gamma-lyase from Fusobacterium nucleatum 7BQW ; 2.5 ; Crystal structure of Methionine gamma-lyase from Fusobacterium nucleatum 3DHW ; 3.7 ; Crystal structure of methionine importer MetNI 4LWJ ; 1.8 ; Crystal structure of methionine sulfoxide reductase U16C from clostridium oremlandii 4LWL ; 1.6 ; Crystal structure of methionine sulfoxide reductase U16C/E55A from clostridium oremlandii 4LWM ; 1.804 ; Crystal structure of methionine sulfoxide reductase U16C/E55D from clostridium oremlandii with methionie sulfoxide 4LWK ; 1.8 ; Crystal structure of methionine sulfoxide reductase U16S from clostridium oremlandii 3CEZ ; 2.1 ; Crystal structure of methionine-R-sulfoxide reductase from Burkholderia pseudomallei 7ULZ ; 2.8 ; Crystal Structure of Methionine-tRNA ligase / Methionyl-tRNA synthetase (MetRS) from Pseudomonas aeruginosa PAO1 2D54 ; 2.0 ; Crystal Structure of Methionyl tRNA Synthetase Y225A Mutant from Thermus Thermophilus 1WOY ; 2.0 ; Crystal structure of methionyl tRNA synthetase Y225F mutant from Thermus thermophilus 5UAI ; 2.75 ; Crystal structure of Methionyl-tRNA formyltransferase from Pseudomonas aeruginosa 3R8X ; 2.256 ; Crystal Structure of Methionyl-tRNA Formyltransferase from Yersinia pestis complexed with L-methionine 5URB ; 1.9 ; Crystal Structure of Methionyl-tRNA synthetase (MetRS) from Acinetobacter baumannii with bound L-Methionine 4DLP ; 2.65 ; Crystal structure of methionyl-tRNA synthetase MetRS from Brucella melitensis bound to selenomethionine 4PY2 ; 2.15 ; Crystal structure of methionyl-tRNA synthetase MetRS from Brucella melitensis in complex with inhibitor 1-{3-[(3,5-DICHLOROBENZYL)AMINO]PROPYL}-3-THIOPHEN-3-YLUREA 5K0S ; 2.45 ; Crystal structure of methionyl-tRNA synthetase MetRS from Brucella melitensis in complex with inhibitor Chem 1312 5K0T ; 2.6 ; Crystal structure of methionyl-tRNA synthetase MetRS from Brucella melitensis in complex with inhibitor Chem 1415 3AD4 ; 2.2 ; Crystal Structure of Methoxy Benzofuran Derivative bound to the Kinase domain of human LCK, (auto-phosphorylated on TYR394) 4IQF ; 2.378 ; Crystal Structure of Methyionyl-tRNA Formyltransferase from Bacillus anthracis 3VXX ; 2.204 ; Crystal structure of methyl CpG binding domain of MBD4 in complex with the 5mCG/5mCG sequence 3VYB ; 2.4 ; Crystal structure of methyl CpG binding domain of MBD4 in complex with the 5mCG/hmCG sequence 3VXV ; 2.0 ; Crystal structure of methyl CpG Binding Domain of MBD4 in complex with the 5mCG/TG sequence 6MRO ; 1.6 ; Crystal structure of methyl transferase from Methanosarcina acetivorans at 1.6 Angstroms resolution, Northeast Structural Genomics Consortium (NESG) Target MvR53. 3MGG ; 1.86 ; Crystal Structure of Methyl Transferase from Methanosarcina mazei 2QHK ; 1.91 ; Crystal structure of methyl-accepting chemotaxis protein from Vibrio parahaemolyticus RIMD 2210633 2PVZ ; 1.97 ; Crystal structure of methylaconitate isomerase PrpF from Shewanella oneidensis 6IE2 ; 2.8 ; Crystal structure of methyladenine demethylase 6IE3 ; 1.97 ; Crystal structure of methyladenine demethylase 6KR7 ; 4.0 ; Crystal structure of methylated human leucyl-tRNA synthetase, Leu-AMS-bound form 6JDR ; 2.5 ; Crystal structure of methylated PRRSV nsp10 (helicase) 1Z1Y ; 2.0 ; Crystal structure of Methylated Pvs25, an ookinete protein from Plasmodium vivax 3HHL ; 2.65 ; Crystal structure of methylated RPA0582 protein 4ZYG ; 2.8 ; Crystal structure of methylated Sulfolobus solfataricus O6-methylguanine methyltransferase 3HWK ; 2.3 ; Crystal structure of methylcitrate synthase from Mycobacterium tuberculosis 7WMW ; 2.053 ; Crystal structure of methylenetetrahydrofolate reductase MSMEG_6649 from Mycobacterium smegmatis 7WMX ; 2.264 ; Crystal structure of methylenetetrahydrofolate reductase MSMEG_6649 from Mycobacterium smegmatis with 5,10-methylenetetrahydrofolate 7WMY ; 2.266 ; Crystal structure of methylenetetrahydrofolate reductase MSMEG_6649 from Mycobacterium smegmatis with 5-methyltetrahydrofolate 7WMZ ; 1.916 ; Crystal structure of methylenetetrahydrofolate reductase MSMEG_6649 from Mycobacterium smegmatis with NADH 1Z69 ; 2.61 ; Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420 1VMD ; 2.06 ; Crystal structure of Methylglyoxal synthase (TM1185) from Thermotoga maritima at 2.06 A resolution 8U2V ; 2.5 ; Crystal Structure of methylglyoxal synthase from Borrelia burgdorferi 6PHE ; 2.1 ; Crystal structure of Methylglyoxal synthase from Elizabethkingia anophelis NUHP1 1WO8 ; 1.7 ; Crystal structure of methylglyoxal synthase from Thermus thermophilus HB8 3G7K ; 2.7 ; Crystal Structure of Methylitaconate-delta-isomerase 1T90 ; 2.5 ; Crystal structure of methylmalonate semialdehyde dehydrogenase from Bacillus subtilis 4ZZ7 ; 2.9 ; Crystal structure of methylmalonate-semialdehyde dehydrogenase (DddC) from Oceanimonas doudoroffii 2WWW ; 2.64 ; Crystal Structure of Methylmalonic Acidemia Type A Protein 1EF8 ; 1.85 ; CRYSTAL STRUCTURE OF METHYLMALONYL COA DECARBOXYLASE 6BU2 ; 1.997 ; Crystal structure of methylmalonyl-CoA epimerase from Mycobacterium tuberculosis 4ROS ; 1.95 ; Crystal structure of Methylobacterium extorquens malate dehydrogenase complexed with oxaloacetate and adenosine-5-diphosphoribose 3T7V ; 1.5 ; Crystal structure of methylornithine synthase (PylB) 3CHX ; 3.9 ; Crystal structure of Methylosinus trichosporium OB3b particulate methane monooxygenase (pMMO) 6VK6 ; 1.52 ; Crystal Structure of Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase 6VK4 ; 2.35 ; Crystal Structure of Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex 6VK5 ; 1.86 ; Crystal Structure of Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex 6VK8 ; 2.03 ; Crystal Structure of Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex with small organic carboxylate at active center 4GLJ ; 1.9 ; Crystal structure of methylthioadenosine phosphorylase in complex with rhodamine B 4GLF ; 1.98 ; Crystal structure of methylthioadenosine phosphorylase sourced from an antarctic soil metagenomic library 6E1J ; 2.096 ; Crystal Structure of Methylthioalkylmalate Synthase (BjuMAM1.1) from Brassica juncea 3VSE ; 2.099 ; Crystal structure of methyltransferase 4Z2Y ; 3.4 ; Crystal structure of methyltransferase CalO6 6IWT ; 2.53 ; Crystal structure of methyltransferase COMT-S in P. praeruptorum 3BO5 ; 1.59 ; Crystal structure of methyltransferase domain of human Histone-lysine N-methyltransferase SETMAR 3RAY ; 1.73 ; Crystal structure of Methyltransferase domain of human PR domain-containing protein 11 3DB5 ; 2.15 ; Crystal structure of methyltransferase domain of human PR domain-containing protein 4 4IJD ; 2.15 ; Crystal structure of methyltransferase domain of human PR domain-containing protein 9 4FMW ; 2.0 ; Crystal structure of methyltransferase domain of human RNA (guanine-9-) methyltransferase domain containing protein 2 4FMU ; 2.1 ; Crystal structure of Methyltransferase domain of human SET domain-containing protein 2 Compound: Pr-SNF 2PY6 ; 2.15 ; Crystal structure of Methyltransferase FkbM (YP_546752.1) from Methylobacillus flagellatus KT at 2.20 A resolution 3L8D ; 1.7 ; Crystal structure of methyltransferase from Bacillus Thuringiensis 3EVZ ; 2.2 ; Crystal structure of Methyltransferase from Pyrococcus furiosus 2NQ5 ; 1.9 ; Crystal structure of methyltransferase from Streptococcus mutans 4KIG ; 2.4 ; Crystal structure of methyltransferase from Streptomyces hygroscopicus complexed with 4-hydroxyphenylpyruvic acid 4KIF ; 2.5 ; Crystal structure of methyltransferase from Streptomyces hygroscopicus complexed with phenylpyruvic acid 4KIB ; 2.0 ; Crystal structure of methyltransferase from Streptomyces hygroscopicus complexed with S-adenosyl-L-homocysteine and methylphenylpyruvic acid 4KIC ; 2.43 ; Crystal structure of methyltransferase from Streptomyces hygroscopicus complexed with S-adenosyl-L-methionine and phenylpyruvic acid 3DOU ; 1.45 ; Crystal structure of methyltransferase involved in cell division from thermoplasma volcanicum gss1 1G60 ; 1.74 ; Crystal Structure of Methyltransferase MboIIa (Moraxella bovis) 7DLZ ; 3.002 ; Crystal Structure of Methyltransferase Ribozyme 4DCM ; 2.297 ; Crystal Structure of methyltransferase RlmG modifying G1835 of 23S rRNA in Escherichia coli 5GM1 ; 2.501 ; Crystal structure of methyltransferase TleD complexed with SAH 5GM2 ; 2.8 ; Crystal structure of methyltransferase TleD complexed with SAH and teleocidin A1 2CX8 ; 2.53 ; Crystal structure of methyltransferase with ligand(SAH) 2CWP ; 2.1 ; Crystal structure of MetRS related protein from Pyrococcus horikoshii 7YF4 ; 2.75 ; Crystal structure of METTL9 in complex with SLC39A5 mutant peptide and SAH 7Y9C ; 2.1 ; Crystal structure of METTL9 in complex with SLC39A5 peptide and SAH 7YF3 ; 3.434 ; Crystal structure of METTL9 in complex with unmethylated S100A9 peptide and SAH 7YF2 ; 1.691 ; Crystal structure of METTL9 in complex with unmethylated SLC39A5 peptide and SAH 8GZF ; 2.5 ; Crystal Structure of METTL9-SAH 7T71 ; 2.19 ; Crystal Structure of Mevalonate 3,5-Bisphosphate Decarboxylase from Picrophilus Torridus 2HK2 ; 2.3 ; Crystal structure of mevalonate diphosphate decarboxylase from Staphylococcus aureus (monoclinic form) 2HK3 ; 2.3 ; Crystal structure of mevalonate diphosphate decarboxylase from Staphylococcus aureus (orthorhombic form) 1VIS ; 2.69 ; Crystal structure of mevalonate kinase 2X7I ; 2.2 ; Crystal structure of mevalonate kinase from methicillin-resistant Staphylococcus aureus MRSA252 4RKP ; 2.1 ; Crystal Structure of Mevalonate-3-Kinase from Thermoplasma acidophilum (apo form) 4RKZ ; 2.3 ; Crystal Structure of Mevalonate-3-Kinase from Thermoplasma acidophilum (Mevalonate 3-Phosphate/ADP Bound) 4RKS ; 2.0 ; Crystal Structure of Mevalonate-3-Kinase from Thermoplasma acidophilum (Mevalonate Bound) 6EXZ ; 1.3 ; Crystal structure of Mex67 C-term 1OF5 ; 2.8 ; Crystal structure of Mex67-Mtr2 3MEX ; 2.1 ; Crystal structure of MexR in oxidized state 2WUI ; 2.9 ; Crystal Structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa. 4NU3 ; 1.399 ; Crystal structure of mFfIBP, a capping head region swapped mutant of ice-binding protein 7UX8 ; 1.4 ; Crystal structure of MfnG, an L- and D-tyrosine O-methyltransferase from the marformycin biosynthesis pathway of Streptomyces drozdowiczii, with SAH and L-Tyrosine bound at 1.4 A resolution (P212121 - form II) 7UX7 ; 1.14 ; Crystal structure of MfnG, an L- and D-tyrosine O-methyltransferase from the marformycin biosynthesis pathway of Streptomyces drozdowiczii, with SAH bound at 1.2 A resolution (P212121 - form II) 7UX6 ; 1.35 ; Crystal structure of MfnG, an L- and D-tyrosine O-methyltransferase from the marformycin biosynthesis pathway of Streptomyces drozdowiczii, with SAH bound at 1.35 A resolution (P212121 - form I) 2FKA ; 2.0 ; Crystal structure of Mg(2+) and BeF(3)(-)-bound CheY in complex with CheZ(200-214) solved from a F432 crystal grown in CAPS (pH 10.5) 3H1E ; 2.4 ; Crystal structure of Mg(2+) and BeH(3)(-)-bound CheY of Helicobacter pylori 1J34 ; 1.55 ; Crystal Structure of Mg(II)-and Ca(II)-bound Gla Domain of Factor IX Complexed with Binding Protein 1RC5 ; 2.3 ; CRYSTAL STRUCTURE OF MG(II)-COMPLEX OF RNASE III ENDONUCLEASE DOMAIN FROM AQUIFEX AEOLICUS AT 2.30 ANGSTROM RESOLUTION 7BGP ; 1.68 ; Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 in absence of DTT. 7NF5 ; 1.94 ; Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 in spacegroup C2. 7NG6 ; 1.87 ; Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 in spacegroup P1 in absence of DTT. 7NG3 ; 1.8 ; Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 in spacegroup P1. 7BE7 ; 1.68 ; Crystal structure of MG-132 covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 1M74 ; 3.0 ; Crystal structure of Mg-ADP-bound SecA from Bacillus subtilis 3GWI ; 1.6 ; Crystal Structure of Mg-ATPase Nucleotide binding domain 7EYX ; 1.82 ; Crystal structure of Mg-free KRAS-G12D bound to GDP 6MBQ ; 1.35 ; Crystal structure of Mg-free wild-type KRAS (2-166) bound to GMPPNP in the state 1 conformation 1L5Y ; 2.1 ; CRYSTAL STRUCTURE OF MG2+ / BEF3-BOUND RECEIVER DOMAIN OF SINORHIZOBIUM MELILOTI DCTD 2FMH ; 2.001 ; Crystal structure of Mg2+ and BeF3- bound CheY in complex with CheZ 200-214 solved from a F432 crystal grown in Tris (pH 8.4) 2FMK ; 1.999 ; Crystal structure of Mg2+ and BeF3- bound CheY in complex with CheZ 200-214 solved from a P2(1)2(1)2 crystal grown in MES (pH 6.0) 2FLW ; 2.0 ; Crystal structure of Mg2+ and BeF3- ound CheY in complex with CheZ 200-214 solved from a F432 crystal grown in Hepes (pH 7.5) 4QHE ; 1.4 ; Crystal structure of Mg2+ bound human APE1 4YEH ; 2.45 ; Crystal structure of Mg2+ ion containing hemopexin fold from Kabuli chana (chickpea white) at 2.45A resolution reveals a structural basis of metal ion transport 2AFI ; 3.1 ; Crystal Structure of MgADP bound Av2-Av1 Complex 8V9Q ; 2.29 ; Crystal structure of mGalNAc-T1 in complex with the mucin glycopeptide Muc5AC-13, Mn2+, and UDP. 4WZB ; 2.3 ; Crystal Structure of MgAMPPCP-bound Av2-Av1 complex 8CE3 ; 1.89 ; Crystal structure of MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation, in complex with 3D fragment 2548 6YJS ; 1.6 ; Crystal structure of MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation, in complex with biantennary pentasaccharide M592 6YJT ; 1.7 ; Crystal structure of MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation, in complex with UDP 6YJU ; 1.96 ; Crystal structure of MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation, in complex with UDP and biantennary pentasaccharide M592 4PUR ; 2.95 ; Crystal structure of MglA from Francisella tularensis 5JX2 ; 2.0504 ; Crystal structure of MglB-2 (Tp0684) from Treponema pallidum 7CT3 ; 1.85 ; Crystal Structure of MglC from Myxococcus xanthus 7CY1 ; 2.19 ; Crystal Structure of MglC from Myxococcus xanthus 3AGE ; 2.6 ; Crystal structure of Mglu in its L-glutamate binding form in the presence of 4.3M NaCl 3AGD ; 2.2 ; Crystal structure of Mglu in its native form in the presence of 4.3M NaCl 7EPE ; 2.5 ; Crystal structure of mGlu2 bound to NAM563 7EPF ; 2.7 ; Crystal structure of mGlu2 bound to NAM597 6FFH ; 2.65 ; Crystal Structure of mGluR5 in complex with Fenobam at 2.65 A 6FFI ; 2.2 ; Crystal Structure of mGluR5 in complex with MMPEP at 2.2 A 3LX5 ; 1.9 ; Crystal structure of mGMPPNP-bound NFeoB from S. thermophilus 2BV6 ; 2.8 ; Crystal structure of MgrA, a global regulator and major virulence determinant in Staphylococcus aureus 2YVQ ; 1.98 ; Crystal structure of MGS domain of carbamoyl-phosphate synthetase from homo sapiens 4Q3K ; 1.57 ; Crystal structure of MGS-M1, an alpha/beta hydrolase enzyme from a Medee basin deep-sea metagenome library 4Q3L ; 3.01 ; Crystal structure of MGS-M2, an alpha/beta hydrolase enzyme from a Medee basin deep-sea metagenome library 4Q3M ; 2.552 ; Crystal structure of MGS-M4, an aldo-keto reductase enzyme from a Medee basin deep-sea metagenome library 4Q3N ; 1.97 ; Crystal structure of MGS-M5, a lactate dehydrogenase enzyme from a Medee basin deep-sea metagenome library 5JD6 ; 2.463 ; Crystal structure of MGS-MChE2, an alpha/beta hydrolase enzyme from the metagenome of sediments from the lagoon of Mar Chica, Morocco 5JD5 ; 1.95 ; Crystal structure of MGS-MilE3, an alpha/beta hydrolase enzyme from the metagenome of pyrene-phenanthrene enrichment culture with sediment sample of Milazzo Harbor, Italy 4Q3O ; 1.74 ; Crystal structure of MGS-MT1, an alpha/beta hydrolase enzyme from a Lake Matapan deep-sea metagenome library 1F3B ; 2.0 ; CRYSTAL STRUCTURE OF MGSTA1-1 IN COMPLEX WITH GLUTATHIONE CONJUGATE OF BENZO[A]PYRENE EPOXIDE 1F3A ; 1.9 ; CRYSTAL STRUCTURE OF MGSTA1-1 IN COMPLEX WITH GSH 1ML6 ; 1.9 ; Crystal Structure of mGSTA2-2 in Complex with the Glutathione Conjugate of Benzo[a]pyrene-7(R),8(S)-Diol-9(S),10(R)-Epoxide 1B48 ; 2.6 ; CRYSTAL STRUCTURE OF MGSTA4-4 IN COMPLEX WITH GSH CONJUGATE OF 4-HYDROXYNONENAL IN ONE SUBUNIT AND GSH IN THE OTHER: EVIDENCE OF SIGNALING ACROSS DIMER INTERFACE IN MGSTA4-4 5HWA ; 1.35 ; Crystal Structure of MH-K1 chitosanase in substrate-bound form 1G7Q ; 1.6 ; CRYSTAL STRUCTURE OF MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND MUC1 VNTR PEPTIDE SAPDTRPA 1G7P ; 1.5 ; CRYSTAL STRUCTURE OF MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND YEAST ALPHA-GLUCOSIDASE 3MRK ; 1.4 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with AFP137 nonapeptide 3MRE ; 1.1 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with EBV bmlf1-280-288 nonapeptide 3MRF ; 2.3 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with EBV bmlf1-280-288 nonapeptide T4P variant 3MRB ; 1.4 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCMV pp65-495-503 nonapeptide A7H variant 3MR9 ; 1.93 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCMV pp65-495-503 nonapeptide M5A variant 3MRC ; 1.8 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCMV pp65-495-503 nonapeptide V6C variant 3MRD ; 1.7 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCMV pp65-495-503 nonapeptide V6G variant 3MRG ; 1.3 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1073-1081 nonapeptide 3MRL ; 2.41 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1073-1081 nonapeptide C6V variant 3MRI ; 2.1 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1073-1081 nonapeptide G4M-V5W variant 3MRH ; 2.4 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1073-1081 nonapeptide N3S variant 3MRJ ; 1.87 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1073-1081 nonapeptide V5M variant 3MRM ; 1.9 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS3-1406-1415 decapeptide 3MRN ; 2.3 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with HCV NS4b-1807-1816 decapeptide 3MRR ; 1.6 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with Human Prostaglandin Transporter decapeptide 3MRO ; 2.35 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with Melan-A MART1 decapeptide variant 3MRP ; 2.1 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with Melan-A MART1 decapeptide variant 3MRQ ; 2.2 ; Crystal Structure of MHC class I HLA-A2 molecule complexed with Melan-A MART1 decapeptide variant 2X4T ; 2.3 ; Crystal structure of MHC CLass I HLA-A2.1 bound to a Peiodate- cleavable peptide 2X4S ; 2.55 ; Crystal structure of MHC CLass I HLA-A2.1 bound to a peptide representing the epitope of the H5N1 (Avian Flu) Nucleoprotein 2X4P ; 2.3 ; Crystal structure of MHC CLass I HLA-A2.1 bound to a photocleavable peptide 2X4Q ; 1.9 ; Crystal structure of MHC CLass I HLA-A2.1 bound to a photocleavable peptide 2X70 ; 2.0 ; Crystal structure of MHC CLass I HLA-A2.1 bound to a photocleavable peptide 2X4R ; 2.3 ; Crystal structure of MHC CLass I HLA-A2.1 bound to Cytomegalovirus (CMV) pp65 epitope 2X4O ; 2.3 ; Crystal structure of MHC CLass I HLA-A2.1 bound to HIV-1 envelope peptide env120-128 2X4U ; 2.1 ; Crystal structure of MHC CLass I HLA-A2.1 bound to HIV-1 Peptide RT468-476 2X4N ; 2.34 ; Crystal structure of MHC CLass I HLA-A2.1 bound to residual fragments of a photocleavable peptide that is cleaved upon UV-light treatment 1ICF ; 2.0 ; CRYSTAL STRUCTURE OF MHC CLASS II ASSOCIATED P41 II FRAGMENT IN COMPLEX WITH CATHEPSIN L 5TRZ ; 2.247 ; Crystal structure of MHC-I H2-KD complexed with peptides of Mycobacterial tuberculosis (YQSGLSIVM) 5TS1 ; 2.3 ; Crystal structure of MHC-I H2-KD complexed with peptides of Mycobacterial tuberculosis (YYQSGLSIV) 6BMH ; 2.298 ; Crystal structure of MHC-I like protein 6BMK ; 2.43 ; Crystal structure of MHC-I like protein 6A97 ; 2.148 ; Crystal structure of MHC-like MILL2 6JTU ; 2.1 ; Crystal structure of MHETase from Ideonella sakaiensis 4DRA ; 2.414 ; Crystal structure of MHF complex 4H2N ; 2.302 ; Crystal structure of MHPCO, Y270F mutant 6YU4 ; 2.26 ; Crystal structure of MhsT in complex with L-4F-phenylalanine 6YU2 ; 3.1 ; Crystal structure of MhsT in complex with L-isoleucine 6YU6 ; 2.35 ; Crystal structure of MhsT in complex with L-leucine 6YU3 ; 2.25 ; Crystal structure of MhsT in complex with L-phenylalanine 6YU7 ; 2.3 ; Crystal structure of MhsT in complex with L-tyrosine 6YU5 ; 2.6 ; Crystal structure of MhsT in complex with L-valine 6PLE ; 2.5 ; Crystal structure of MhuD R26S mutant in complex with biliverdin 6DS7 ; 1.9 ; Crystal structure of MhuD R26S mutant with two hemes bound per active site 6DS8 ; 2.4 ; Crystal structure of MhuD R26S mutant with two Manganese protoporphyrin IX bound per active site 4Z5V ; 3.049 ; Crystal Structure of MHV ns2 PDE Domain 1WDF ; 2.5 ; crystal structure of MHV spike protein fusion core 1WDG ; 2.06 ; crystal structure of MHV spike protein fusion core 4BLG ; 2.2 ; Crystal structure of MHV-68 Latency-associated nuclear antigen (LANA) C-terminal DNA binding domain 6ZTK ; 1.55 ; Crystal structure of Mialostatin, a gut cystatin from the hard tick Ixodes ricinus 5UAO ; 1.88 ; Crystal structure of MibH, a lathipeptide tryptophan 5-halogenase 3OMZ ; 3.04 ; Crystal structure of MICA-specific human gamma delta T cell receptor 7VA8 ; 2.85003 ; Crystal structure of MiCGT 7VAA ; 3.10003 ; Crystal structure of MiCGT(W93V/V124F/ F191A/R282H) in complex with UDPs 2D20 ; 1.85 ; Crystal structure of michaelis complex of catalytic-site mutant xylanase from Streptomyces olivaceoviridis E-86 2D32 ; 2.4 ; Crystal Structure of Michaelis Complex of gamma-Glutamylcysteine Synthetase 5GQE ; 2.5 ; Crystal structure of michaelis complex of xylanase mutant (T82A, N127S, and E128H) from Streptomyces olivaceoviridis E-86 1K9O ; 2.3 ; CRYSTAL STRUCTURE OF MICHAELIS SERPIN-TRYPSIN COMPLEX 4RPG ; 2.4001 ; Crystal structure of Micobacterium tuberculosis UDP-Galactopyranose mutase in complex with substrate UDP-Galp 4RPH ; 2.6 ; Crystal structure of Micobacterium tuberculosis UDP-Galactopyranose mutase in complex with substrate UDP-Galp (reduced) 4RPK ; 2.55 ; Crystal structure of Micobacterium tuberculosis UDP-Galactopyranose mutase in complex with tetrafluorinated substrate analog UDP-F4-Galf 4RPL ; 2.2499 ; Crystal structure of Micobacterium tuberculosis UDP-Galactopyranose mutase in complex with tetrafluorinated substrate analog UDP-F4-Galp 4RPJ ; 2.5 ; Crystal structure of Micobacterium tuberculosis UDP-Galactopyranose mutase in complex with UDP 3R95 ; 1.6 ; Crystal structure of Microcin C7 self immunity acetyltransferase MccE in complex with Acetyl-CoA 3R96 ; 1.3 ; Crystal structure of Microcin C7 self immunity acetyltransferase MccE in complex with Acetyl-CoA and AMP 3R9E ; 1.25 ; Crystal structure of Microcin C7 self immunity acetyltransferase MccE in complex with coenzyme A and aspartyl sulfamoyl adenosine (DSA) 3R9F ; 1.2 ; Crystal structure of Microcin C7 self immunity acetyltransferase MccE in complex with Coenzyme A and Glutamyl sulfamoyl adenosine (ESA) 3R9G ; 1.35 ; Crystal structure of Microcin C7 self immunity acetyltransferase MccE in complex with Coenzyme A and processed Microcin C7 antibiotic 5K99 ; 1.5 ; Crystal structure of microcin immunity protein MccF from Bacillus anthracis in complex with McC 3GJZ ; 2.1 ; Crystal structure of microcin immunity protein MccF from Bacillus anthracis str. Ames 7YLQ ; 2.68 ; Crystal structure of Microcystinase C from Sphingomonas sp. ACM-3962 at 2.6 A resolution 5WXX ; 2.35 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate racemase in complex with citrate 5WXZ ; 2.8 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate racemase in complex with D-aspartate 5XNK ; 3.4 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate racemase in complex with DL-methyl-aspartate 5WXY ; 2.63 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate racemase in complex with L-aspartate 5XNI ; 3.22 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate/glutamate racemase in complex with D-glutamate 5XNJ ; 2.82 ; Crystal structure of Microcystis aeruginosa PCC 7806 aspartate/glutamate racemase in complex with L-glutamate 1WY9 ; 2.1 ; Crystal structure of microglia-specific protein, Iba1 1L4D ; 2.3 ; CRYSTAL STRUCTURE OF MICROPLASMINOGEN-STREPTOKINASE ALPHA DOMAIN COMPLEX 5ES1 ; 2.8 ; CRYSTAL STRUCTURE OF MICROTUBULE AFFINITY-REGULATING KINASE 4 CATALYTIC DOMAIN IN COMPLEX WITH A PYRAZOLOPYRIMIDINE INHIBITOR 3CO1 ; 1.4 ; Crystal structure of microtubule binding domain of human EB3 3LUC ; 1.691 ; Crystal structure of MID domain from hAGO2 3LUK ; 1.7 ; Crystal structure of MID domain from hAGO2 3LUD ; 2.095 ; Crystal structure of MID domain from hAGO2 in complex with AMP 3QX9 ; 2.0 ; Crystal structure of MID domain from hAGO2 in complex with ATP 3LUG ; 1.849 ; Crystal structure of MID domain from hAGO2 in complex with CMP 3LUH ; 1.999 ; Crystal structure of MID domain from hAGO2 in complex with GMP 3QX8 ; 2.3 ; Crystal structure of MID domain from hAGO2 in complex with m7GpppG 3LUJ ; 1.796 ; Crystal structure of MID domain from hAGO2 in complex with UMP 4ZVC ; 1.5 ; Crystal structure of MID domain of the E. coli DosC - form I 4ZVD ; 1.9 ; Crystal structure of MID domain of the E. coli DosC - form II 4XXD ; 2.41 ; Crystal Structure of mid-region amyloid beta capture by solanezumab 4U1F ; 2.2 ; Crystal structure of middle domain of eukaryotic translation initiation factor eIF3b 6L1E ; 2.0939 ; Crystal structure of middle domain of hSSRP1 5UMS ; 1.569 ; Crystal structure of middle double PH domain of human FACT complex subunit SSRP1 8E7T ; 2.5 ; Crystal structure of Middle East respiratory syndrome coronavirus (MERS-CoV) 3CL protease inactive mutant C148A 5WWP ; 3.0 ; Crystal structure of Middle East respiratory syndrome coronavirus helicase (MERS-CoV nsp13) 4NJL ; 2.3 ; Crystal structure of middle east respiratory syndrome coronavirus S2 protein fusion core 6C6Y ; 3.32 ; Crystal structure of Middle-East Respiratory Syndrome (MERS) coronavirus neutralizing antibody JC57-14 isolated from a vaccinated rhesus macaque in complex with MERS Receptor Binding Domain 6C6X ; 1.99 ; Crystal structure of Middle-East Respiratory Syndrome (MERS) coronavirus neutralizing antibody JC57-14 isolated from a vaccinated rhesus macaque. 2OOH ; 1.85 ; Crystal Structure of MIF bound to a Novel Inhibitor, OXIM-11 7E4A ; 1.475 ; Crystal structure of MIF bound to compound 13 7E4B ; 1.772 ; Crystal structure of MIF bound to compound 5 7E49 ; 1.574 ; Crystal structure of MIF bound to compound10 7E4C ; 1.644 ; Crystal structure of MIF bound to compound11 4EVG ; 1.7 ; Crystal Structure of MIF L46A mutant 4EUI ; 1.7 ; Crystal Structure of MIF L46F mutant 4ETG ; 1.61 ; Crystal Structure of MIF L46G mutant 7X15 ; 2.852 ; Crystal structure of MIGA2 LD targeting domain 1W94 ; 2.0 ; Crystal Structure of Mil (Mth680), an archaeal Imp4-like protein 4JEM ; 1.553 ; Crystal structure of MilB complexed with cytidine 5'-monophosphate 4OHB ; 2.4 ; Crystal structure of MilB E103A in complex with 5-hydroxymethylcytidine 5'-monophosphate (hmCMP) from Streptomyces rimofaciens 4OHR ; 1.8 ; Crystal structure of MilB from Streptomyces rimofaciens 4H0H ; 2.0 ; Crystal structure of mimicry-recognizing 2D10 scFv with peptide 4H0G ; 2.3 ; Crystal structure of mimicry-recognizing native 2D10 scFv 6LYE ; 3.1 ; Crystal Structure of mimivirus UNG Y322F in complex with UGI 6LYD ; 2.598 ; Crystal Structure of mimivirus UNG Y322L in complex with UGI 5X55 ; 2.302 ; Crystal structure of mimivirus uracil-DNA glycosylase 8HB5 ; 2.6 ; Crystal structure of Mincle in complex with HD-275 5MN9 ; 2.05 ; Crystal structure of MINDY-1 tMIU in complex with K48-diUb 6TUV ; 2.16 ; Crystal structure of Mindy1 in complex with Lys48 linked di-ubiquitin 6TXB ; 2.18 ; Crystal structure of Mindy1 mutant (P138A) in complex with Lys48 linked di-ubiquitin 6Z90 ; 3.59 ; Crystal structure of MINDY1 mutant-P138A 6YJG ; 3.28 ; Crystal structure of MINDY1 mutant-Y114F 6Y6R ; 3.32 ; Crystal structure of MINDY1 T335D mutant 6Z7V ; 2.65 ; Crystal structure of Mindy2 (C266A) in complex with Lys48 linked di-ubiquitin (K48-Ub2) 7NPI ; 2.81 ; Crystal structure of Mindy2 (C266A) in complex with Lys48-linked penta-ubiquitin (K48-Ub5) 3FNV ; 2.1 ; Crystal Structure of Miner1: The Redox-active 2Fe-2S Protein Causative in Wolfram Syndrome 2 6L88 ; 3.0 ; Crystal structure of mineralocorticoid receptor ligand binding domain in complex with esaxerenone 1OX3 ; 2.0 ; crystal structure of mini-fibritin 1TGR ; 1.42 ; Crystal Structure of mini-IGF-1(2) 4OUN ; 1.8 ; Crystal Structure of Mini-ribonuclease 3 from Bacillus subtilis 6MII ; 3.15 ; Crystal structure of minichromosome maintenance protein MCM/DNA complex 1Q81 ; 2.95 ; Crystal Structure of minihelix with 3' puromycin bound to A-site of the 50S ribosomal subunit. 3JS2 ; 2.2 ; Crystal structure of minimal kinase domain of fibroblast growth factor receptor 1 in complex with 5-(2-thienyl)nicotinic acid 6GPU ; 1.17 ; Crystal structure of miniSOG at 1.17A resolution 8Q5F ; 2.0 ; Crystal structure of miniSOG protein from Arabidopsis thaliana with covalent FMN 3WSW ; 2.3 ; Crystal structure of minor L-lactate dehydrogenase from Enterococcus mundtii in the ligands-bound form 3WSV ; 2.38 ; Crystal structure of minor L-lactate dehydrogenase from Enterococcus mundtii in the ligands-unbound form 5YPZ ; 3.521 ; Crystal structure of minor pilin CofB from CFA/III complexed with N-terminal peptide fragment of CofJ 7W63 ; 2.32 ; Crystal structure of minor pilin TcpB from Vibrio cholerae 7W64 ; 2.3 ; Crystal structure of minor pilin TcpB from Vibrio cholerae complexed with N-terminal peptide fragment of TcpF 7W65 ; 4.05 ; Crystal structure of minor pilin TcpB from Vibrio cholerae complexed with secreted protein TcpF 6UTU ; 2.85 ; Crystal structure of minor pseudopilin ternary complex of XcpVWX from the Type 2 secretion system of Pseudomonas aeruginosa in the P3 space group 3IIR ; 2.9 ; Crystal Structure of Miraculin like protein from seeds of Murraya koenigii 5CFF ; 2.5 ; Crystal structure of Miranda/Staufen dsRBD5 complex 7C3K ; 2.6 ; Crystal Structure of mIRGB10 5HJ0 ; 2.64 ; Crystal Structure of Mis18 'Yippee-like' Domain 5J6P ; 2.6 ; Crystal Structure of Mis18(17-118) from Schizosaccharomyces pombe 7SFZ ; 3.002 ; Crystal structure of Mis18a-yippee domain 6J62 ; 2.486 ; Crystal structure of mISG15/NS1B complex 2R9K ; 2.7 ; Crystal Structure of Misteltoe Lectin I in Complex with Phloretamide 6ELY ; 2.84 ; Crystal Structure of Mistletoe Lectin I (ML-I) from Viscum album in Complex with 4-N-Furfurylcytosine at 2.84 A Resolution 5VPK ; 2.0 ; CRYSTAL STRUCTURE OF MITE ALLERGEN DER F 1 6OVQ ; 1.8 ; Crystal structure of mithramycin 3-side chain keto-reductase MtmW 6OW0 ; 2.67 ; Crystal structure of mithramycin 3-side chain keto-reductase MtmW in complex with NAD+ and PEG 6OVX ; 2.1 ; Crystal structure of mithramycin 3-side chain keto-reductase MtmW in complex with NAD+, P422 form 5JW2 ; 3.1 ; Crystal structure of mithramycin analogue MTM SA-Phe in complex with a 10-mer DNA AGGGATCCCT 5JW0 ; 2.4 ; Crystal structure of mithramycin analogue MTM SA-Phe in complex with a 10-mer DNA AGGGTACCCT 5JVW ; 2.0 ; Crystal structure of mithramycin analogue MTM SA-Trp in complex with a 10-mer DNA AGAGGCCTCT. 4MUM ; 1.271 ; Crystal structure of mitochondrial 5'(3')-deoxy ribonucleotidase alternative spliced variant 5YAT ; 1.745 ; Crystal structure of mitochondrial alcohol dehydrogenase isozyme III from Komagataella phaffii GS115 6IIH ; 1.958 ; crystal structure of mitochondrial calcium uptake 2(MICU2) 8GQZ ; 1.42 ; Crystal structure of mitochondrial citrate synthase (Cit1) from Saccharomyces cerevisiae 1R4W ; 2.5 ; Crystal structure of Mitochondrial class kappa glutathione transferase 1NTM ; 2.4 ; Crystal Structure of Mitochondrial Cytochrome bc1 Complex at 2.4 Angstrom 1NTZ ; 2.6 ; Crystal Structure of Mitochondrial Cytochrome bc1 Complex Bound with Ubiquinone 1NU1 ; 3.2 ; Crystal Structure of Mitochondrial Cytochrome bc1 Complexed with 2-nonyl-4-hydroxyquinoline N-oxide (NQNO) 1NTK ; 2.6 ; Crystal Structure of Mitochondrial Cytochrome bc1 in Complex with Antimycin A1 1D2E ; 1.94 ; CRYSTAL STRUCTURE OF MITOCHONDRIAL EF-TU IN COMPLEX WITH GDP 6MSO ; 2.053 ; Crystal structure of mitochondrial fumarate hydratase from Leishmania major in a complex with inhibitor thiomalate 3KC2 ; 1.55 ; Crystal structure of mitochondrial HAD-like phosphatase from Saccharomyces cerevisiae 4IVG ; 1.749 ; Crystal structure of mitochondrial Hsp90 (TRAP1) NTD-Middle domain dimer with AMPPNP 4IPE ; 2.289 ; Crystal structure of mitochondrial Hsp90 (TRAP1) with AMPPNP 5TVU ; 3.5 ; Crystal structure of mitochondrial Hsp90 (TRAP1) with ATP in absence of Mg 5TVX ; 2.2 ; Crystal structure of mitochondrial Hsp90 (TRAP1) with ATP in absence of Mg, fully hydrolyzed 5TVW ; 2.5 ; Crystal structure of mitochondrial Hsp90 (TRAP1) with ATP in absence of Mg, hemi-hydrolyzed 4QQF ; 2.672 ; Crystal structure of mitochondrial import inner membrane translocase subunit TIM50 4FAI ; 1.65 ; Crystal structure of mitochondrial isoform of glutaminyl cyclase from Drosophila melanogaster 7R4M ; 2.29 ; Crystal structure of mitochondrial NAD kinase 4WZ7 ; 3.6 ; Crystal structure of mitochondrial NADH:ubiquinone oxidoreductase from Yarrowia lipolytica. 1ZP0 ; 3.5 ; Crystal Structure of Mitochondrial Respiratory Complex II bound with 3-nitropropionate and 2-thenoyltrifluoroacetone 1ZOY ; 2.4 ; Crystal Structure of Mitochondrial Respiratory Complex II from porcine heart at 2.4 Angstroms 4YSZ ; 3.3 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with 2-iodo-N-[3-(1-methylethoxy)phenyl]benzamide 4YT0 ; 3.66 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with 2-methyl-N-[3-(1-methylethoxy)phenyl]benzamide. 4YTM ; 3.4 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with N-biphenyl-3-yl-2-(trifluoromethyl)benzamide 4YSY ; 3.1 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with N-[(2,4-dichlorophenyl)methyl]-2-(trifluoromethyl)benzamide 4YTN ; 3.0 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with N-[3-(pentafluorophenoxy)phenyl]-2-(trifluoromethyl)benzamide 5C2T ; 2.75 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with rhodoquinone-2 4YSX ; 2.25 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with the specific inhibitor NN23 5C3J ; 2.8 ; Crystal structure of Mitochondrial rhodoquinol-fumarate reductase from Ascaris suum with Ubiquinone-1 6CQO ; 2.8 ; Crystal Structure of mitochondrial single-stranded DNA binding proteins from S. cerevisiae (SeMet Labeled), Rim1 (Form2) 6CQK ; 2.8 ; Crystal Structure of mitochondrial single-stranded DNA binding proteins from S. cerevisiae, Rim1 (Form1) 6CQM ; 3.0 ; Crystal Structure of mitochondrial single-stranded DNA binding proteins from S. cerevisiae, Rim1 (Form2) 2OE0 ; 2.0 ; Crystal Structure of Mitochondrial Thioredoxin 3 from Saccharomyces cerevisiae 2OE3 ; 1.8 ; Crystal Structure of Mitochondrial Thioredoxin 3 from Saccharomyces cerevisiae (oxidized form) 2OE1 ; 2.1 ; Crystal Structure of Mitochondrial Thioredoxin 3 from Saccharomyces cerevisiae (reduced form) 7W5C ; 2.201 ; Crystal structure of Mitogen Activated Protein Kinase 4 (MPK4) from Arabidopsis thaliana 4S31 ; 1.45 ; Crystal structure of mitogen-activated protein kinase 1 wtERK2 at 1.45A 4KIP ; 2.27 ; Crystal structure of mitogen-activated protein kinase 14 (P38-H5) complex with 2-(2-CHLOROPHENYL)-N-(5-(CYCLOPROPYLCARBAMOYL)-2-METHYLPHENYL)-1,3-THIAZOLE-5-CARBOXAMIDE 4KIN ; 1.97 ; Crystal structure of mitogen-activated protein kinase 14 (P38-H5) complex with 5-(2-CHLOROPHENYL)-N-(5-(CYCLOPROPYLCARBAMOYL)-2-METHYLPHENYL)-2-THIOPHENECARBOXAMIDE 4KIQ ; 2.5 ; Crystal structure of mitogen-activated protein kinase 14 (P38-H5) complex with ETHYL 6-((5-(CYCLOPROPYLCARBAMOYL)-2-METHYLPHENYL)CARBAMOYL)-1H-INDOLE-1-CARBOXYLATE 2IRM ; 3.0 ; Crystal structure of mitogen-activated protein kinase kinase kinase 7 interacting protein 1 from Anopheles gambiae 5Z33 ; 1.99 ; Crystal structure of Mitogen-activated Protein Kinase Mps1 in Magnaporthe oryzae 2A4W ; 1.5 ; Crystal Structure Of Mitomycin C-Binding Protein Complexed with Copper(II)-Bleomycin A2 2A4X ; 1.4 ; Crystal Structure Of Mitomycin C-Binding Protein Complexed with Metal-Free Bleomycin A2 2QD0 ; 1.81 ; Crystal structure of mitoNEET 3REE ; 1.76 ; Crystal structure of mitoNEET 4AEZ ; 2.3 ; Crystal Structure of Mitotic Checkpoint Complex 5XG5 ; 1.54 ; Crystal structure of Mitsuba-1 with bound NAcGal 7EHG ; 1.95 ; Crystal Structure of MiXBM 3DTC ; 2.6 ; Crystal structure of mixed-lineage kinase MLK1 complexed with compound 16 7T58 ; 2.05333 ; Crystal structure of Miz1 BTB domain 6WRN ; 1.6 ; Crystal structure of Mj 3-nitro-tyrosine tRNA synthetase (5B) C70A variant bound to 3-nitro-tyrosine 6WRT ; 1.55 ; Crystal structure of Mj 3-nitro-tyrosine tRNA synthetase (5B) C70A/S158C variant bound to 3-nitro-tyrosine 6WRQ ; 1.85 ; Crystal structure of Mj 3-nitro-tyrosine tRNA synthetase (5B) S158C variant bound to 3-nitro-tyrosine 1DK4 ; 2.6 ; CRYSTAL STRUCTURE OF MJ0109 GENE PRODUCT INOSITOL MONOPHOSPHATASE 1G0H ; 2.3 ; CRYSTAL STRUCTURE OF MJ0109 GENE PRODUCT INOSITOL MONOPHOSPHATASE-FRUCTOSE 1,6 BISPHOSPHATASE 1G0I ; 2.4 ; CRYSTAL STRUCTURE OF MJ0109 GENE PRODUCT INOSITOL MONOPHOSPHATASE-FRUCTOSE 1,6 BISPHOSPHATASE 2PA6 ; 1.85 ; Crystal structure of MJ0232 from Methanococcus jannaschii 1HYG ; 2.8 ; Crystal structure of MJ0490 gene product, the family of lactate/malate dehydrogenase 2Z61 ; 2.2 ; Crystal structure of MJ0684 from Methanococcus jannaschii reveals its similarity in the active site to kynurenine aminotransferases 1F3O ; 2.7 ; Crystal structure of MJ0796 ATP-binding cassette 3EYQ ; 2.4 ; Crystal structure of MJ5 Fab, a germline antibody variant of anti-human cytomegalovirus antibody 8f9 2P5D ; 1.7 ; Crystal structure of MJECL36 from Methanocaldococcus jannaschii DSM 2661 8OG0 ; 1.712 ; Crystal structure of MJF14-6-4-2 Fab fragment in complex with epitope peptide 5JMV ; 3.38647 ; Crystal structure of mjKae1-pfuPcc1 complex 4TUI ; 3.59 ; Crystal structure of MjMre11-DNA1 complex 4TUG ; 3.55 ; Crystal structure of MjMre11-DNA2 complex 4ZN1 ; 2.8 ; Crystal Structure of MjSpt4:Spt5 complex conformation A 4ZN3 ; 2.3 ; Crystal Structure of MjSpt4:Spt5 complex conformation B 3T0R ; 2.49 ; Crystal Structure of MjTX-I, a myotoxic Lys49-phospholipase A2 from Bothrops moojeni 3SVU ; 2.695 ; Crystal structure of mKate mutant S143C 3SVO ; 1.984 ; Crystal structure of mKate mutant S158A/S143C at pH 10.0 3SVS ; 1.74 ; Crystal structure of mkate mutant S158A/S143C at pH 4.0 3SVR ; 1.907 ; Crystal structure of mkate mutant S158A/S143C at pH 7.5 3SVN ; 1.899 ; Crystal structure of mKate S158A mutant at pH 7.5 8OMG ; 1.82 ; Crystal structure of mKHK (apo) 8OMD ; 2.0 ; Crystal structure of mKHK in complex with compound-4 6YG3 ; 2.05 ; Crystal structure of MKK7 (MAP2K7) covalently bound with CPT1-70-1 6YG7 ; 2.2 ; Crystal structure of MKK7 (MAP2K7) covalently bound with type-II inhibitor SB1-G-23 6YG6 ; 2.15 ; Crystal structure of MKK7 (MAP2K7) covalently bound with type-II inhibitor TL10-105 6YG1 ; 2.22 ; Crystal structure of MKK7 (MAP2K7) in an active state, allosterically triggered by the N-terminal helix 6YG5 ; 2.4 ; Crystal structure of MKK7 (MAP2K7) in complex with ASC69 6YG2 ; 2.0 ; Crystal structure of MKK7 (MAP2K7) in complex with ibrutnib, with covalent and allosteric binding modes 6YG4 ; 2.3 ; Crystal structure of MKK7 (MAP2K7) in complex with K00007 6YZ4 ; 1.7 ; Crystal structure of MKK7 (MAP2K7) with ibrutinib bound at allosteric site 6YFZ ; 1.9 ; Crystal structure of MKK7 (MAP2K7), apo form 3LJ8 ; 2.7 ; Crystal Structure of MKP-4 2CKD ; 2.8 ; Crystal structure of ML2640 from Mycobacterium leprae 2UYO ; 1.7 ; Crystal structure of ML2640c from Mycobacterium leprae in an hexagonal crystal form 2UYQ ; 1.8 ; Crystal structure of ML2640c from Mycobacterium leprae in complex with S-adenosylmethionine 7VR6 ; 2.5 ; Crystal structure of MlaC from Escherichia coli in quasi-open state 1U3Z ; 1.9 ; Crystal structure of MLAC mutant of dimerisation domain of NF-kB p50 transcription factor 1U42 ; 2.699 ; Crystal structure of MLAM mutant of dimerisation domain of NF-kB p50 transcription factor 1U3J ; 1.901 ; Crystal structure of MLAV mutant of dimerisation domain of NF-kB p50 transcription factor 1Z6R ; 2.7 ; Crystal structure of Mlc from Escherichia coli 3BP8 ; 2.85 ; Crystal structure of Mlc/EIIB complex 1M45 ; 1.65 ; CRYSTAL STRUCTURE OF MLC1P BOUND TO IQ2 OF MYO2P, A CLASS V MYOSIN 1M46 ; 2.103 ; CRYSTAL STRUCTURE OF MLC1P BOUND TO IQ4 OF MYO2P, A CLASS V MYOSIN 8JDC ; 1.696 ; Crystal structure of mLDHD in apo form 8JDZ ; 1.56 ; Crystal structure of mLDHD in complex with 2-keto-3-methylvaleric acid 8JDT ; 1.55 ; Crystal structure of mLDHD in complex with 2-ketobutanoic acid 8JDV ; 1.96 ; Crystal structure of mLDHD in complex with 2-ketohexanoic acid 8JDY ; 1.59 ; Crystal structure of mLDHD in complex with 2-ketoisocaproic acid 8JDX ; 1.79 ; Crystal structure of mLDHD in complex with 2-ketoisovaleric acid 8JDU ; 1.67 ; Crystal structure of mLDHD in complex with 2-ketovaleric acid 8JDE ; 1.729 ; Crystal structure of mLDHD in complex with D-lactate 8JDS ; 1.636 ; Crystal structure of mLDHD in complex with Pyruvate 1F9C ; 2.5 ; CRYSTAL STRUCTURE OF MLE D178N VARIANT 5ZTM ; 2.899 ; Crystal structure of MLE dsRBDs in complex with roX2 (R2H1) 4NUH ; 1.34 ; Crystal structure of mLeIBP, a capping head region swapped mutant of ice-binding protein 6ZZ1 ; 1.64 ; Crystal structure of MLKL executioner domain in complex with a covalent inhibitor 4NW3 ; 2.82 ; Crystal structure of MLL CXXC domain in complex with a CpG DNA 3LQI ; 1.92 ; Crystal structure of MLL1 PHD3-Bromo complexed with H3(1-9)K4me2 peptide 3LQJ ; 1.9 ; Crystal structure of MLL1 PHD3-Bromo complexed with H3(1-9)K4me3 peptide 3LQH ; 1.72 ; Crystal structure of MLL1 PHD3-Bromo in the free form 3RD6 ; 2.8 ; Crystal structure of Mll3558 protein from Rhizobium loti. Northeast Structural Genomics Consortium target id MlR403 3PKN ; 1.8 ; Crystal structure of MLLE domain of poly(A) binding protein in complex with PAM2 motif of La-related protein 4 (LARP4) 6T1M ; 1.85 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with benzimidazole-amide derivative 4 6T1N ; 1.95 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with benzimidazole-amide derivative 5 6T1O ; 1.9 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with benzimidazole-amide derivative 6 6HT0 ; 1.8 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with compound 94 6T1I ; 1.8 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with piperazine-urea derivative 1 6T1J ; 1.97 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with piperazine-urea derivative 2 6T1L ; 2.0 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with piperazine-urea derivative 3 6HT1 ; 2.1 ; Crystal structure of MLLT1 (ENL) YEATS domain in complexed with SGC-iMLLT (compound 92) 7B10 ; 1.92 ; Crystal structure of MLLT1 YEATS domain T1 mutant in complex with benzimidazole-amide based compound 1 7B0T ; 2.05 ; Crystal structure of MLLT1 YEATS domain T3 mutant in complex with benzimidazole-amide based compound 1 2GAE ; 2.5 ; Crystal structure of MltA from E. coli 2AE0 ; 2.0 ; Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold 2G6G ; 2.2 ; Crystal structure of MltA from Neisseria gonorrhoeae 2G5D ; 1.95 ; Crystal structure of MltA from Neisseria gonorrhoeae Monoclinic form 4CHX ; 2.45 ; Crystal structure of MltC in complex with disaccharide pentapeptide DHl89 4CFP ; 2.15 ; Crystal structure of MltC in complex with tetrasaccharide at 2.15 A resolution 4P0G ; 1.65 ; Crystal structure of MltF from Pseudomonas aeruginosa complexed with bulgecin and muropeptide 4OWD ; 2.21 ; Crystal structure of MltF from Pseudomonas aeruginosa complexed with cysteine 4OZ9 ; 2.24 ; Crystal structure of MltF from Pseudomonas aeruginosa complexed with isoleucine 4OYV ; 2.31 ; Crystal structure of MltF from Pseudomonas aeruginosa complexed with leucine 4OXV ; 2.2 ; Crystal structure of MltF from Pseudomonas aeruginosa complexed with valine 5AA4 ; 2.4 ; Crystal structure of MltF from Pseudomonas aeruginosa in complex with cell-wall tetrapeptide 5AA1 ; 2.89 ; Crystal structure of MltF from Pseudomonas aeruginosa in complex with NAG-anhNAM-pentapeptide 5AA2 ; 2.8 ; Crystal structure of MltF from Pseudomonas aeruginosa in complex with NAM-pentapeptide. 5AA3 ; 3.2 ; Crystal structure of MltF from Pseudomonas aeruginosa in the presence of tetrasaccharide and tetrapeptide 3SC0 ; 1.95 ; Crystal Structure of MMACHC (1-238), a human B12 processing enzyme, complexed with MethylCobalamin 5LNX ; 2.6 ; Crystal structure of MmgC, an acyl-CoA dehydrogenase from bacillus subtilis. 5DNP ; 2.3 ; Crystal structure of Mmi1 YTH domain 5DNO ; 1.8 ; Crystal structure of Mmi1 YTH domain complex with RNA 7WW3 ; 1.9 ; Crystal structure of MmIMP1-KH34 tandem domain 7VKL ; 1.95 ; Crystal structure of MmIMP3-KH12 in complex with zipcode RNA 7VSJ ; 2.38 ; Crystal structure of MmIMP3-RRM12 in complex with 9-mer RNA 5YK6 ; 2.8 ; Crystal Structure of Mmm1 3S7Y ; 4.3077 ; Crystal structure of mmNAGS in Space Group P3121 at 4.3 A resolution 3LJX ; 2.3 ; Crystal Structure of MmoQ Response regulator (fragment 20-298) from Methylococcus capsulatus str. Bath, Northeast Structural Genomics Consortium Target McR175G 3P3Q ; 2.4 ; Crystal Structure of MmoQ Response regulator from Methylococcus capsulatus str. Bath at the resolution 2.4A, Northeast Structural Genomics Consortium Target McR175M 4AUO ; 3.0 ; Crystal structure of MMP-1(E200A) in complex with a triple-helical collagen peptide 1UTZ ; 2.5 ; Crystal Structure of MMP-12 complexed to (2R)-3-({[4-[(pyridin-4-yl)phenyl]-thien-2-yl}carboxamido)(phenyl)propanoic acid 1ROS ; 2.0 ; Crystal structure of MMP-12 complexed to 2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl-4-(4-ethoxy[1,1-biphenyl]-4-yl)-4-oxobutanoic acid 1UTT ; 2.2 ; Crystal Structure of MMP-12 complexed to 2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl-4-(4-ethoxy[1,1-biphenyl]-4-yl)-4-oxobutanoic acid 3ELM ; 1.9 ; Crystal Structure of MMP-13 Complexed with Inhibitor 24f 3KRY ; 1.9 ; Crystal structure of MMP-13 in complex with SC-78080 3AYU ; 2.0 ; Crystal structure of MMP-2 active site mutant in complex with APP-drived decapeptide inhibitor 1JH1 ; 2.7 ; Crystal Structure of MMP-8 complexed with a 6H-1,3,4-thiadiazine derived inhibitor 6EOX ; 1.3 ; Crystal structure of MMP12 in complex with carboxylic inhibitor LP165. 6ENM ; 1.59 ; Crystal structure of MMP12 in complex with hydroxamate inhibitor LP168. 6ELA ; 1.485 ; Crystal structure of MMP12 in complex with inhibitor BE4. 6EKN ; 1.2 ; Crystal structure of MMP12 in complex with inhibitor BE7. 5L79 ; 2.07 ; Crystal structure of MMP12 in complex with RXP470.1 conjugated with fluorophore Cy5,5 in space group P21212. 5L7F ; 1.8 ; Crystal structure of MMP12 mutant K421A in complex with RXP470.1 conjugated with fluorophore Cy5,5 in space group P21. 1D8M ; 2.44 ; CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A HETEROCYCLE-BASED INHIBITOR 1D7X ; 2.0 ; CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A MODIFIED PROLINE SCAFFOLD BASED INHIBITOR. 1D8F ; 2.4 ; CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A PIPERAZINE BASED INHIBITOR. 1D5J ; 2.6 ; CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A THIAZEPINE BASED INHIBITOR. 1BZS ; 1.7 ; CRYSTAL STRUCTURE OF MMP8 COMPLEXED WITH HMR2909 1JJ9 ; 2.0 ; Crystal Structure of MMP8-Barbiturate Complex Reveals Mechanism for Collagen Substrate Recognition 6ESM ; 1.104 ; Crystal structure of MMP9 in complex with inhibitor BE4. 6N40 ; 3.307 ; Crystal structure of MmpL3 from Mycobacterium smegmatis 6TBL ; 2.65 ; Crystal structure of MMS19(CTD)-CIAO1-CIAO2B CIA targeting complex 6TC0 ; 3.6 ; Crystal structure of MMS19-CIAO1-CIAO2B CIA targeting complex 1J74 ; 1.9 ; Crystal Structure of Mms2 3HTK ; 2.31 ; Crystal structure of Mms21 and Smc5 complex 3FD2 ; 2.69 ; Crystal structure of mMsoI/DNA complex with calcium 7VVV ; 2.45 ; Crystal structure of MmtN 3FK9 ; 2.5 ; Crystal structure of mMutator MutT protein from Bacillus halodurans 2V8T ; 0.98 ; Crystal structure of Mn catalase from Thermus Thermophilus complexed with chloride 2R34 ; 2.25 ; Crystal structure of MN human arg-insulin 5TIR ; 1.62 ; Crystal Structure of Mn Superoxide Dismutase mutant M27V from Trichoderma reesei 8FJ8 ; 2.17 ; Crystal structure of Mn(2+),Ca(2+)-S100B 1QB4 ; 2.6 ; CRYSTAL STRUCTURE OF MN(2+)-BOUND PHOSPHOENOLPYRUVATE CARBOXYLASE 4XJK ; 1.76 ; Crystal structure of Mn(II) Ca(II) Na(I) bound calprotectin 1XNZ ; 1.52 ; Crystal Structure of Mn(II) form of E. coli. Methionine Aminopeptidase in complex with 5-(2-chlorophenyl)furan-2-carboxylic acid 1JFZ ; 2.1 ; Crystal Structure of MN(II)-Complex of RNAse III Endonuclease Domain from Aquifex Aeolicus at 2.10 Angstrom Resolution 4CMQ ; 3.09 ; Crystal structure of Mn-bound S.pyogenes Cas9 4H9D ; 2.599 ; Crystal Structure of Mn-dependent Gme HNH nicking endonuclease from Geobacter metallireducens GS-15, Northeast Structural Genomics Consortium (NESG) Target GmR87 5H7F ; 1.601 ; Crystal Structure of Mn-derivative drCPDase 5ZIS ; 3.1 ; Crystal structure of Mn-ProtoporphyrinIX-reconstituted P450BM3 5ZLH ; 3.4 ; Crystal structure of Mn-ProtoporphyrinIX-reconstituted P450BM3 4GGF ; 1.6 ; Crystal structure of Mn2+ bound calprotectin 2HXG ; 2.8 ; Crystal Structure of Mn2+ bound ECAI 4QH9 ; 2.175 ; Crystal structure of Mn2+ bound human APE1 4GWC ; 1.9 ; Crystal Structure of Mn2+2,Zn2+-Human Arginase I 4Z3B ; 1.42 ; Crystal structure of MnCO/apo-R52CFr 5WPZ ; 2.0 ; Crystal structure of MNDA PYD with MBP tag 2HW6 ; 2.5 ; Crystal structure of Mnk1 catalytic domain 6CJ5 ; 2.8 ; Crystal Structure of Mnk2-D228G in Complex With Inhibitor 6CJE ; 3.36 ; Crystal Structure of Mnk2-D228G in complex with Inhibitor 6CJW ; 3.38 ; Crystal Structure of Mnk2-D228G in Complex With Inhibitor 6CJY ; 3.05 ; Crystal Structure of Mnk2-D228G in complex with Inhibitor 6CK6 ; 3.32 ; Crystal Structure of Mnk2-D228G in complex with Inhibitor 2HW7 ; 2.71 ; Crystal Structure of Mnk2-D228G in complex with Staurosporine 1XMO ; 3.25 ; Crystal Structure of mnm5U34t6A37-tRNALysUUU Complexed with AAG-mRNA in the Decoding Center 3PS9 ; 2.54 ; Crystal structure of MnmC from E. coli 3VYW ; 2.49 ; Crystal structure of MNMC2 from Aquifex Aeolicus 3GEI ; 3.4 ; Crystal structure of MnmE from Chlorobium tepidum in complex with GCP 3GEE ; 2.95 ; Crystal structure of MnmE from Chlorobium tepidum in complex with GDP and FOLINIC ACID 3GEH ; 3.2 ; Crystal structure of MnmE from Nostoc in complex with GDP, FOLINIC ACID and ZN 8H0S ; 2.9 ; Crystal structure of MnmM from B. subtilis complexed with Gln-TTG anti-codon stem loop and SAM (2.90 A) 8H0T ; 1.17 ; Crystal structure of MnmM from B. subtilis complexed with SAH (1.17 A) 8H26 ; 1.5 ; Crystal structure of MnmM from S. aureus complexed with SAH (1.50 A) 8H27 ; 2.04 ; Crystal structure of MnmM from S. aureus complexed with SAM (2.04 A) 8H1B ; 1.55 ; Crystal structure of MnmM from S. aureus complexed with SAM and tRNA anti-codon stem loop (ASL) (1.55 A) 8H1A ; 1.44 ; Crystal structure of MnmM from S. aureus in apo state (1.44 A) 1NXD ; 1.9 ; Crystal structure of MnMn Concanavalin A 4IRM ; 3.5 ; Crystal structure of mntc r116a mutant exhibits flexibility in the c-terminal domain 1UPL ; 2.6 ; Crystal structure of MO25 alpha 1UPK ; 1.85 ; Crystal structure of MO25 in complex with a C-terminal peptide of STRAD 2IHO ; 2.41 ; Crystal structure of MOA, a lectin from the mushroom Marasmius oreades in complex with the trisaccharide Gal(1,3)Gal(1,4)GlcNAc 1R2K ; 2.1 ; Crystal structure of MoaB from Escherichia coli 1MKZ ; 1.6 ; Crystal structure of MoaB protein at 1.6 A resolution. 1V8C ; 1.6 ; Crystal Structure of MoaD related protein from Thermus thermophilus HB8 8HLG ; 2.0 ; Crystal structure of MoaE 5B5W ; 2.957 ; Crystal structure of MOB1-LATS1 NTR domain complex 5C8O ; 2.09 ; Crystal structure of MoCVNH3 variant (Mo0v) 5C8P ; 2.2 ; Crystal structure of MoCVNH3 variant (Mo0v) in complex with (N-GlcNAc)3 5C8Q ; 1.9 ; Crystal structure of MoCVNH3 variant (Mo0v) in complex with (N-GlcNAc)4 1WOD ; 1.75 ; CRYSTAL STRUCTURE OF MODA, A MOLYBDATE PROTEIN, COMPLEXED WITH TUNGSTATE 1AMF ; 1.75 ; CRYSTAL STRUCTURE OF MODA, A MOLYBDATE TRANSPORT PROTEIN, COMPLEXED WITH MOLYBDATE 8DFI ; 1.9 ; Crystal structure of moderately neutralizing / interfering human monoclonal antibody 42C11 Fab in complex with MSP1-19 5BRO ; 2.4 ; Crystal structure of modified HexB (modB) 1TVH ; 1.802 ; Crystal structure of Modified Melanoma Antigen gp100(209-T2M) Bound to Human Class I MHC HLA-A2 3SZR ; 3.5 ; Crystal structure of modified nucleotide-free human MxA 2ZR8 ; 2.2 ; Crystal Structure of Modified Serine Racemase complexed with Serine 2ZPU ; 1.7 ; Crystal Structure of Modified Serine Racemase from S.pombe. 2X0K ; 1.95 ; Crystal structure of modular FAD synthetase from Corynebacterium ammoniagenes 7S6B ; 2.35 ; Crystal structure of modular polyketide synthase apo-Lsd14 from the Lasalocid biosynthesis pathway, trapped in the transacylation step 2AMJ ; 1.8 ; Crystal Structure of Modulator of Drug Activity B from Escherichia coli O157:H7 2B3D ; 2.1 ; Crystal structure of Modulator of Drug activity B in complex with flavin adenine dinucleotide 3VK5 ; 1.39 ; Crystal structure of MoeO5 in complex with its product FPG 3VKA ; 1.57 ; Crystal structure of MoeO5 soaked for 3 hours in FsPP 3VKD ; 1.66 ; Crystal structure of MoeO5 soaked with 3-phosphoglycerate 3VKB ; 1.8 ; Crystal structure of MoeO5 soaked with FsPP overnight 3VKC ; 1.66 ; Crystal structure of MoeO5 soaked with pyrophosphate 4RTF ; 2.77 ; Crystal structure of molecular chaperone DnaK from Mycobacterium tuberculosis H37Rv 4WGX ; 2.29 ; Crystal Structure of Molinate Hydrolase 4RXL ; 1.52 ; Crystal structure of Molybdenum ABC transporter solute binding protein Vc_A0726 from Vibrio Cholerae, Target EFI-510913, in complex with tungstate 2PBQ ; 1.7 ; Crystal structure of molybdenum cofactor biosynthesis (aq_061) From aquifex aeolicus VF5 3MCI ; 1.7 ; Crystal structure of molybdenum cofactor biosynthesis (AQ_061) from aquifex aeolicus VF5 2QQ1 ; 1.9 ; Crystal Structure Of Molybdenum Cofactor Biosynthesis (aq_061) Other Form From Aquifex Aeolicus Vf5 3MCJ ; 1.9 ; Crystal structure of molybdenum cofactor biosynthesis (AQ_061) other form from aquifex aeolicus VF5 1Y5E ; 1.9 ; Crystal structure of Molybdenum cofactor biosynthesis protein B 2F7W ; 1.9 ; Crystal structure of Molybdenum cofactor biosynthesis protein Mog from Shewanella oneidensis 2F7Y ; 2.3 ; Crystal structure of Molybdenum cofactor biosynthesis protein Mog from Shewanella oneidensis 3K6A ; 1.89 ; Crystal structure of molybdenum cofactor biosynthesis protein mog from shewanella oneidensis 4XCW ; 1.8 ; Crystal structure of molybdenum cofactor biosynthesis protein MogA from Helicobacter pylori str. J99 3OI9 ; 1.95 ; Crystal structure of molybdenum cofactor synthesis domain from Mycobacterium avium 1FC5 ; 2.2 ; CRYSTAL STRUCTURE OF MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN 1WU2 ; 2.3 ; Crystal Structure of molybdopterin biosynthesis moeA protein from Pyrococcus horikoshii OT3 3PZY ; 1.8 ; Crystal structure of Molybdopterin biosynthesis mog protein from Mycobacterium paratuberculosis 2OMD ; 2.0 ; Crystal structure of molybdopterin converting factor subunit 2 (aq_2181) from aquifex aeolicus VF5 2F1R ; 2.1 ; Crystal Structure of molybdopterin-guanine biosynthesis protein B (mobB) 3NGW ; 2.31 ; Crystal Structure of Molybdopterin-guanine dinucleotide biosynthesis protein A from Archaeoglobus fulgidus, Northeast Structural Genomics Consortium Target GR189 4P6W ; 1.951 ; Crystal Structure of mometasone furoate-bound glucocorticoid receptor ligand binding domain 6KM8 ; 3.099 ; Crystal Structure of Momordica charantia 7S globulin 1MOM ; 2.16 ; CRYSTAL STRUCTURE OF MOMORDIN, A TYPE I RIBOSOME INACTIVATING PROTEIN FROM THE SEEDS OF MOMORDICA CHARANTIA 8T3P ; 1.9 ; Crystal structure of MonC1 (a flavin-dependent monooxygenase) 4YU4 ; 2.8 ; Crystal structure of Mongoose (Helogale parvula) hemoglobin at pH 7.0 5XVQ ; 2.29 ; Crystal structure of monkey Nicotinamide N-methyltransferase (NNMT) bound with end product, 1-methyl Nicotinamide (MNA) 8S9H ; 2.437 ; Crystal structure of monkey TLR7 ectodomain with compound 14 8TTZ ; 3.14 ; Crystal structure of monkey TLR7 ectodomain with compound 20 8TTY ; 2.101 ; Crystal structure of monkey TLR7 ectodomain with compound 5 6IF5 ; 2.0 ; Crystal structure of monkey TLR7 in complex with 2',3'-cGMP (Guanosine 2',3'-cyclic phosphate) 5ZSN ; 2.4 ; Crystal structure of monkey TLR7 in complex with AAUUAA 5ZSH ; 2.6 ; Crystal structure of monkey TLR7 in complex with CL075 5ZSI ; 2.7 ; Crystal structure of monkey TLR7 in complex with CL097 5ZSG ; 2.3 ; Crystal structure of monkey TLR7 in complex with gardiquimod 5ZSM ; 2.5 ; Crystal structure of monkey TLR7 in complex with GGUCCC 5ZSL ; 2.3 ; Crystal structure of monkey TLR7 in complex with GGUUGG 5ZSJ ; 2.4 ; Crystal structure of monkey TLR7 in complex with GS9620 5GMF ; 2.5 ; Crystal structure of monkey TLR7 in complex with guanosine and polyU 5ZSB ; 2.7 ; Crystal structure of monkey TLR7 in complex with IMDQ and AAUUAA 5ZSC ; 2.2 ; Crystal structure of monkey TLR7 in complex with IMDQ and CCUUCC 5ZSE ; 2.201 ; Crystal structure of monkey TLR7 in complex with IMDQ and GGUCCC 5ZSD ; 2.603 ; Crystal structure of monkey TLR7 in complex with IMDQ and GGUUGG 5ZSA ; 2.5 ; Crystal structure of monkey TLR7 in complex with IMDQ and UUUUUU 5ZSF ; 2.1 ; Crystal structure of monkey TLR7 in complex with imiquimod 5GMG ; 2.6 ; Crystal structure of monkey TLR7 in complex with loxoribine and polyU 5GMH ; 2.2 ; Crystal structure of monkey TLR7 in complex with R848 8CEV ; 2.14 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with inhibitor TO1119 8CEQ ; 2.5 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with inhibitor TO427 8CER ; 2.6 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with inhibitor TO494 8CES ; 2.5 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with inhibitor TO500 8CET ; 2.5 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with inhibitor TO507 8B07 ; 2.05 ; Crystal structure of monkeypox virus methyltransferase VP39 in complex with sinefungin 8P44 ; 1.93 ; Crystal structure of monkeypox virus poxin in complex with the STING agonist MD1202D 8ORV ; 1.65 ; Crystal structure of monkeypox virus poxin in complex with the STING agonist MD1203 5XK2 ; 1.695 ; Crystal structure of mono- and diacylglycerol lipase from Aspergillus oryzae 3UUE ; 1.45 ; Crystal structure of mono- and diacylglycerol lipase from Malassezia globosa 3UUF ; 2.6 ; Crystal structure of mono- and diacylglycerol lipase from Malassezia globosa 7AE9 ; 2.9 ; Crystal structure of mono-AMPylated HEPN(R46E) toxin in complex with MNT antitoxin 4O23 ; 2.09 ; Crystal structure of mono-zinc form of succinyl diaminopimelate desuccinylase from Neisseria meningitidis MC58 3ISZ ; 2.0 ; Crystal structure of mono-zinc form of succinyl-diaminopimelate desuccinylase from Haemophilus influenzae 3VGW ; 1.6 ; Crystal structure of monoAc-biotin-avidin complex 7E0N ; 1.85 ; Crystal structure of Monoacylglycerol Lipase chimera 3RM3 ; 1.2 ; Crystal structure of monoacylglycerol lipase from Bacillus sp. H257 3RLI ; 1.854 ; Crystal structure of monoacylglycerol lipase from Bacillus sp. H257 in complex with PMSF 5XKS ; 2.189 ; Crystal structure of monoacylglycerol lipase from thermophilic Geobacillus sp. 12AMOR 8HGV ; 2.30006 ; Crystal structure of monoalkyl phthalate hydrolase MehpH 7P4H ; 2.1 ; Crystal Structure of Monoamine Oxidase B in complex with inhibitor (+)-2 7P4F ; 2.3 ; Crystal Structure of Monoamine Oxidase B in complex with inhibitor 1 3T04 ; 2.1 ; Crystal structure of monobody 7c12/abl1 sh2 domain complex 5DC4 ; 1.48 ; CRYSTAL STRUCTURE OF MONOBODY AS25/ABL1 SH2 DOMAIN COMPLEX, CRYSTAL A 5DC9 ; 1.56 ; CRYSTAL STRUCTURE OF MONOBODY AS25/ABL1 SH2 DOMAIN COMPLEX, CRYSTAL B 4JEG ; 2.3 ; Crystal Structure of Monobody CS1/SHP2 C-SH2 Domain Complex 5DC0 ; 2.23 ; CRYSTAL STRUCTURE OF MONOBODY GG3/ABL1 SH2 DOMAIN COMPLEX 3K2M ; 1.75 ; Crystal Structure of Monobody HA4/Abl1 SH2 Domain Complex 5ECJ ; 3.05 ; Crystal structure of monobody Mb(S4) bound to Prdm14 in complex with Mtgr1 7TVJ ; 2.39 ; Crystal Structure of Monobody Mb(SHP2PTP_13)/SHP2 PTP Domain Complex 2OBG ; 2.35 ; Crystal Structure of Monobody MBP-74/Maltose Binding Protein Fusion Complex 4JE4 ; 2.31 ; Crystal Structure of Monobody NSa1/SHP2 N-SH2 Domain Complex 3UYO ; 1.83 ; Crystal structure of monobody SH13/ABL1 SH2 domain complex 3CSG ; 1.798 ; Crystal Structure of Monobody YS1(MBP-74)/Maltose Binding Protein Fusion Complex 3CSB ; 1.999 ; Crystal Structure of Monobody YSX1/Maltose Binding Protein Fusion Complex 6RP5 ; 1.49 ; Crystal structure of monocarboxylated hemoglobin from the sub-Antarctic fish Eleginops maclovinus 1JAZ ; 2.27 ; Crystal Structure of Monoclinic Form of D90E Mutant of Escherichia coli Asparaginase II 2P7L ; 2.2 ; Crystal structure of monoclinic form of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes at pH 5.75 2P7M ; 1.85 ; Crystal structure of monoclinic form of genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes at pH 6.5 2AVW ; 2.0 ; Crystal structure of monoclinic form of streptococcus Mac-1 1JJ3 ; 1.9 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN AT PH 4.6 1LJ3 ; 2.0 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN AT PH 4.6 1LJ4 ; 1.95 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN AT PH 4.6 1LJI ; 2.0 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE 10% SORBITOL 1LJE ; 2.0 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 10% SUCROSE 1LJF ; 1.8 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 10% SUCROSE 1LJJ ; 2.0 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 10% TREHALOSE 1LJK ; 2.1 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 15% TREHALOSE 1LJG ; 1.9 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 5% GLYCEROL 1LJH ; 1.8 ; CRYSTAL STRUCTURE OF MONOCLINIC LYSOZYME GROWN IN PRESENCE OF 5% GLYCEROL 6P6U ; 2.42 ; Crystal Structure of Monoclinic Rabbit Muscle Lactate Dehydrogenase with Four Tetramers as the Asymmetric Unit 2ADG ; 2.5 ; Crystal structure of monoclonal anti-CD4 antibody Q425 2ADI ; 2.8 ; Crystal structure of monoclonal anti-CD4 antibody Q425 in complex with Barium 2ADJ ; 2.9 ; Crystal structure of monoclonal anti-CD4 antibody Q425 in complex with Calcium 4YNY ; 1.584 ; Crystal structure of monoclonal anti-human podoplanin antibody NZ-1 4YO0 ; 1.56 ; Crystal structure of monoclonal anti-human podoplanin antibody NZ-1 with bound PA peptide 1NC4 ; 2.25 ; Crystal Structure of Monoclonal Antibody 2D12.5 Fab Complexed with Gd-DOTA 1NC2 ; 2.1 ; Crystal Structure of Monoclonal Antibody 2D12.5 Fab Complexed with Y-DOTA 3VFG ; 1.65 ; Crystal structure of monoclonal antibody 3F8 Fab fragment that binds to GD2 ganglioside 4TRP ; 1.25 ; Crystal structure of monoclonal antibody against neuroblastoma associated antigen. 4TUJ ; 1.89 ; Crystal structure of monoclonal antibody against neuroblastoma associated antigen. 4TUK ; 1.6 ; Crystal structure of monoclonal antibody against neuroblastoma associated antigen. 4TUL ; 1.4 ; Crystal structure of monoclonal antibody against neuroblastoma associated antigen. 4TUO ; 1.55 ; Crystal structure of monoclonal antibody against neuroblastoma associated antigen. 8HN6 ; 2.07 ; Crystal structure of monoclonal antibody complexed with SARS-CoV-2 RBD 8HN7 ; 3.0 ; Crystal structure of monoclonal antibody complexed with SARS-CoV-2 RBD 3L1O ; 2.0 ; Crystal structure of monoclonal antibody MN423 Fab fragment with free combining site, crystallized in the presence of zinc 5JRP ; 2.0 ; crystal structure of monoclonal antibody MR78 Fab 3C5S ; 2.0 ; Crystal Structure of monoclonal Fab F22-4 specific for Shigella flexneri 2a O-Ag 3V95 ; 2.7 ; Crystal structure of monoclonal human anti-rhesus D Fc and IgG1 t125(yb2/0) in the presence of EDTA 3V8C ; 2.77 ; Crystal structure of monoclonal human anti-rhesus D Fc IgG1 t125(yb2/0) double mutant (H310 and H435 in K) 3V7M ; 2.02 ; Crystal structure of monoclonal human anti-Rhesus D Fc IgG1 T125(YB2/0) in the presence of Zn2+ 7TQA ; 2.328 ; Crystal Structure of monoclonal S9.6 Fab 7TQB ; 3.1 ; Crystal structure of monoclonal S9.6 Fab bound to DNA-RNA hybrid 3OL0 ; 1.483 ; Crystal structure of Monofoil-4P homo-trimer: de novo designed monomer trefoil-fold sub-domain which forms homo-trimer assembly 4KE7 ; 1.699 ; Crystal structure of Monoglyceride lipase from Bacillus sp. H257 in complex with an 1-myristoyl glycerol analogue 4KE9 ; 2.2 ; Crystal structure of Monoglyceride lipase from Bacillus sp. H257 in complex with an 1-stearyol glycerol analogue 4KE8 ; 1.85 ; Crystal structure of Monoglyceride lipase from Bacillus sp. H257 in complex with monopalmitoyl glycerol analogue 5DG4 ; 1.5 ; Crystal structure of monomer human cellular retinol binding protein II-Y60L 4ZGU ; 1.49 ; Crystal structure of monomer Y60W hCRBPII 4I20 ; 3.34 ; Crystal structure of monomeric (V948R) primary oncogenic mutant L858R EGFR kinase domain 3EL2 ; 2.5 ; Crystal Structure of Monomeric Actin Bound to Ca-ATP 3EKS ; 1.8 ; Crystal Structure of Monomeric Actin bound to Cytochalasin D 3EKU ; 2.5 ; Crystal Structure of Monomeric Actin bound to Cytochalasin D 2HF4 ; 1.8 ; Crystal structure of Monomeric Actin in its ATP-bound state 2HF3 ; 1.8 ; Crystal structure of monomeric Actin in the ADP bound state 1NWK ; 1.85 ; CRYSTAL STRUCTURE OF MONOMERIC ACTIN IN THE ATP STATE 4IJG ; 1.701 ; Crystal structure of monomeric bacteriophytochrome 4ZRR ; 1.5 ; Crystal Structure of Monomeric Bacteriophytochrome mutant D207L Y263F at 1.5 A resolution Using a home source. 4Z1W ; 1.3 ; CRYSTAL STRUCTURE OF MONOMERIC BACTERIOPHYTOCHROME mutant D207L Y263F From Synchrotron 5B6Q ; 1.78 ; Crystal structure of monomeric cytochrome c5 from Shewanella violacea 6I7J ; 2.65 ; Crystal structure of monomeric FICD mutant L258D 6I7L ; 2.32 ; Crystal structure of monomeric FICD mutant L258D complexed with MgAMP-PNP 6I7K ; 2.54 ; Crystal structure of monomeric FICD mutant L258D complexed with MgATP 3KZI ; 3.6 ; Crystal Structure of Monomeric Form of Cyanobacterial Photosystem II 3W9P ; 2.1 ; Crystal structure of monomeric FraC (second crystal form) 3WLD ; 2.7 ; Crystal structure of monomeric GCaMP6m 3L01 ; 2.6 ; Crystal structure of monomeric glycogen synthase from Pyrococcus abyssi 6AO9 ; 1.13 ; Crystal structure of monomeric guanylyl cyclase domain of RhoGC fusion protein from the aquatic fungus Blastocladiella emersonii 3M7M ; 2.9 ; Crystal structure of monomeric hsp33 5KVI ; 1.995 ; Crystal structure of monomeric human apoptosis-inducing factor with E413A/R422A/R430A mutations 1LDS ; 1.8 ; Crystal Structure of monomeric human beta-2-microglobulin 3GAX ; 1.7 ; Crystal structure of monomeric human cystatin C stabilized against aggregation 6VFQ ; 2.3 ; Crystal structure of monomeric human protocadherin 10 EC1-EC4 7UGS ; 1.63 ; Crystal structure of monomeric hyperfolder YFP (K206V mutant) 3MBC ; 1.9 ; Crystal structure of monomeric isocitrate dehydrogenase from Corynebacterium glutamicum in complex with NADP 3O80 ; 2.18 ; Crystal structure of monomeric KlHxk1 in crystal form IX (open state) 3O6W ; 1.48 ; Crystal structure of monomeric KlHxk1 in crystal form VIII (open state) 3O8M ; 1.42 ; Crystal structure of monomeric KlHxk1 in crystal form XI with glucose bound (closed state) 2ZMW ; 2.0 ; Crystal Structure of Monomeric Kusabira-Orange (MKO), Orange-Emitting GFP-like Protein, at pH 6.0 3MGF ; 1.8 ; Crystal Structure of Monomeric Kusabira-Orange (MKO), Orange-Emitting GFP-like Protein, at pH 7.5 2ZMU ; 1.65 ; Crystal Structure of Monomeric Kusabira-Orange (MKO), Orange-Emitting GFP-like Protein, at pH 9.1 4LP2 ; 2.3 ; Crystal structure of monomeric ligand binding domain of S. typhimurium CysB, a LysR transcriptional regulator at 2.2A 3SQF ; 1.6324 ; Crystal structure of monomeric M-PMV retroviral protease 2XIT ; 1.8 ; Crystal structure of monomeric MipZ 5W0T ; 2.63 ; Crystal structure of monomeric Msp1 from S. cerevisiae 3W8S ; 2.07 ; Crystal structure of monomeric Na-GST-3, a glutathione s-transferase from the major human hookworm parasite Necator americanus 5VIV ; 1.33 ; Crystal structure of monomeric near-infrared fluorescent protein miRFP670 5VIK ; 1.35 ; Crystal structure of monomeric near-infrared fluorescent protein miRFP703 5VIQ ; 1.34 ; Crystal structure of monomeric near-infrared fluorescent protein miRFP709 3WCK ; 2.3 ; Crystal structure of monomeric photosensitizing fluorescent protein, Supernova 3U8A ; 1.783 ; Crystal structure of monomeric reversibly photoswitchable red fluorescent protein rsTagRFP in the OFF state 3U8C ; 2.188 ; Crystal structure of monomeric reversibly photoswitchable red fluorescent protein rsTagRFP in the ON state 1ZOV ; 1.86 ; Crystal Structure of Monomeric Sarcosine Oxidase from Bacillus sp. NS-129 4LON ; 2.2 ; Crystal structure of monomeric sulphate free form of ligand binding domain of CysB,an LTTR from Salmonella typhimurium LT2 4LPT ; 2.544 ; Crystal structure of monomeric TENCON variant P54CR4-31 2F0A ; 1.8 ; Crystal Structure of Monomeric Uncomplexed form of Xenopus dishevelled PDZ domain 4E82 ; 1.7 ; Crystal structure of monomeric variant of human alpha-defensin 5, HD5 (Glu21EMe mutant) 6N29 ; 2.5 ; Crystal structure of monomeric von Willebrand Factor D`D3 assembly 4AZW ; 2.47 ; Crystal structure of monomeric WbdD. 4M9O ; 2.14 ; Crystal Structure of monomeric zebrafish beta-2-microglobulin 3BS2 ; 1.15 ; Crystal Structure of Monomine 3BU1 ; 1.4 ; Crystal structure of monomine-histamine complex 2I7G ; 1.73 ; Crystal Structure of Monooxygenase from Agrobacterium tumefaciens 7BIP ; 1.6 ; Crystal structure of monooxygenase RslO1 from Streptomyces bottropensis 7BIO ; 1.795 ; Crystal structure of monooxygenase RslO4 from Streptomyces bottropensis 6SGN ; 2.501 ; Crystal structure of monooxygenase RutA complexed with 2,4-dimethoxypyrimidine. 6SGM ; 2.0 ; Crystal structure of monooxygenase RutA complexed with 4-Thiouracil. 6TEF ; 1.8 ; Crystal structure of monooxygenase RutA complexed with dioxygen under 0.5 MPa / 5 bars of oxygen pressure. 6SGG ; 1.8 ; Crystal structure of monooxygenase RutA complexed with dioxygen under 1.5 MPa / 15 bars of oxygen pressure. 6TEG ; 1.8 ; Crystal structure of monooxygenase RutA complexed with uracil and dioxygen under 1.5 MPa / 15 bars of oxygen pressure. 6SGL ; 2.01 ; Crystal structure of monooxygenase RutA complexed with Uracil under atmospheric pressure. 6TEE ; 2.2 ; Crystal structure of monooxygenase RutA under anaerobic conditions. 7EPW ; 2.23 ; Crystal structure of monooxygenase Tet(X4) with tigecycline 6V6Q ; 2.46 ; Crystal Structure of Monophosphorylated FGF Receptor 2 isoform IIIb with PTR657 8G19 ; 1.77 ; Crystal structure of monoreactive 4C05 human Fab 6BFG ; 2.2 ; Crystal structure of monotopic membrane protein (S)-mandelate dehydrogenase 7BBD ; 2.2 ; Crystal structure of monoubiquitinated TRIM21 RING (Ub-RING) In complex with ubiquitin charged Ube2N (Ube2N~Ub) and Ube2V2 3VHI ; 1.76 ; Crystal structure of monoZ-biotin-avidin complex 7WWW ; 1.88 ; Crystal Structure of Moonlighting GAPDH protein of Lactobacillus gasseri 2V9V ; 1.1 ; Crystal Structure of Moorella thermoacetica SelB(377-511) 5D70 ; 2.06 ; Crystal structure of MOR03929, a neutralizing anti-human GM-CSF antibody Fab fragment in complex with human GM-CSF 5D72 ; 2.6 ; Crystal structure of MOR04252, a neutralizing anti-human GM-CSF antibody Fab fragment in complex with human GM-CSF 5D71 ; 2.25 ; Crystal structure of MOR04302, a neutralizing anti-human GM-CSF antibody Fab fragment in complex with human GM-CSF 5D7S ; 1.88 ; Crystal structure of MOR04357, a neutralizing anti-human GM-CSF antibody Fab fragment 5C7X ; 2.95 ; Crystal structure of MOR04357, a neutralizing anti-human GM-CSF antibody Fab fragment in complex with human GM-CSF 2H5O ; 1.08 ; Crystal structure of mOrange 7FCM ; 2.22 ; Crystal structure of Moraxella catarrhalis enoyl-ACP-reductase (FabI) in complex with NAD and Triclosan 7F44 ; 2.12 ; Crystal structure of Moraxella catarrhalis enoyl-ACP-reductase (FabI) in complex with the cofactor NAD 6O5W ; 1.412 ; Crystal structure of MORC3 CW domain fused with viral influenza A NS1 peptide 6JLE ; 1.55 ; Crystal structure of MORN4/Myo3a complex 8D50 ; 4.32 ; Crystal Structure of Mosaic HIV-1 Envelope (MosM3.1) in Complex with antibodies PGT124 and 35O22 at 4.3 Angstrom 8D4R ; 3.81 ; Crystal Structure of Mosaic HIV-1 Envelope (MosM3.2) in Complex with antibodies PGT124 and 35O22 at 3.8 Angstrom 4FD4 ; 1.95 ; Crystal structure of mosquito arylalkylamine N-Acetyltransferase like 5b 5YAG ; 1.95 ; Crystal structure of mosquito arylalkylamine N-Acetyltransferase like 5b/spermine N-Acetyltransferase 7E4V ; 1.37 ; Crystal structure of mosquito Staufen dsRNA binding domain 4 4BHK ; 2.32 ; Crystal Structure of Moss Leafy bound to DNA 5ZG9 ; 2.04 ; Crystal structure of MoSub1-ssDNA complex in phosphate buffer 4ZYP ; 5.5 ; Crystal Structure of Motavizumab and Quaternary-Specific RSV-Neutralizing Human Antibody AM14 in Complex with Prefusion RSV F Glycoprotein 3IXT ; 2.75 ; Crystal Structure of Motavizumab Fab Bound to Peptide Epitope 3OQ0 ; 2.7 ; Crystal Structure of motif N of Saccharomyces cerevisiae Dbf4 3OQ4 ; 2.4 ; Crystal Structure of motif N of Saccharomyces cerevisiae Dbf4 6W1W ; 2.58 ; Crystal Structure of Motility Associated Killing Factor B from Vibrio cholerae 6W08 ; 1.75 ; Crystal Structure of Motility Associated Killing Factor E from Vibrio cholerae 2ZF8 ; 2.85 ; Crystal structure of MotY 3V9L ; 1.502 ; Crystal structure of mouse 1-pyrroline-5-carboxylate dehydrogenase complexed with NAD+ 3V9J ; 1.299 ; Crystal structure of mouse 1-pyrroline-5-carboxylate dehydrogenase complexed with sulfate ion 3V9K ; 1.501 ; Crystal structure of mouse 1-pyrroline-5-carboxylate dehydrogenase complexed with the product glutamate 7EXE ; 2.75 ; Crystal structure of mouse 14-3-3zeta in complex with doubly phosphorylated ADAM22 peptide 2ZB3 ; 2.0 ; Crystal structure of mouse 15-ketoprostaglandin delta-13-reductase in complex with NADPH 2P5N ; 1.8 ; Crystal structure of mouse 17-alpha hydroxysteroid dehydrogenase in complex with coenzyme NADPH 5HCU ; 2.4151 ; Crystal structure of mouse acetylchoinesterase inhibited by DFP 5DTI ; 2.003 ; Crystal structure of mouse acetylcholinesterase 2HA0 ; 2.2 ; Crystal structure of mouse acetylcholinesterase complexed with 4-ketoamyltrimethylammonium 2HA3 ; 2.25 ; Crystal structure of mouse acetylcholinesterase complexed with choline 2H9Y ; 2.4 ; Crystal structure of mouse acetylcholinesterase complexed with m-(N,N,N-trimethylammonio)trifluoroacetophenone 2HA2 ; 2.05 ; Crystal structure of mouse acetylcholinesterase complexed with succinylcholine 5FKJ ; 3.133 ; Crystal structure of mouse acetylcholinesterase in complex with C-547, an alkyl ammonium derivative of 6-methyl uracil 3ZLU ; 2.6 ; Crystal structure of mouse acetylcholinesterase in complex with cyclosarin 2WU3 ; 2.7 ; CRYSTAL STRUCTURE OF MOUSE ACETYLCHOLINESTERASE IN COMPLEX WITH FENAMIPHOS AND HI-6 2WU4 ; 2.4 ; CRYSTAL STRUCTURE OF MOUSE ACETYLCHOLINESTERASE IN COMPLEX WITH FENAMIPHOS AND ORTHO-7 3ZLV ; 2.5 ; Crystal structure of mouse acetylcholinesterase in complex with tabun and HI-6 1J06 ; 2.35 ; Crystal structure of mouse acetylcholinesterase in the apo form 2JGM ; 2.9 ; Crystal structure of mouse acetylcholinesterase inhibited by aged diisopropyl fluorophosphate (DFP) 2JGK ; 2.9 ; Crystal structure of mouse acetylcholinesterase inhibited by aged fenamiphos 2JGJ ; 2.5 ; Crystal structure of mouse acetylcholinesterase inhibited by aged methamidophos 2JGL ; 2.6 ; Crystal structure of mouse acetylcholinesterase inhibited by aged VX and sarin 2JGI ; 2.9 ; Crystal structure of mouse acetylcholinesterase inhibited by non-aged diisopropyl fluorophosphate (DFP) 2JGF ; 2.5 ; Crystal structure of mouse acetylcholinesterase inhibited by non-aged fenamiphos 2JGE ; 2.6 ; Crystal structure of mouse acetylcholinesterase inhibited by non-aged methamidophos 6VFY ; 2.6 ; Crystal structure of mouse acyl-CoA thioesterase 7 with CoA 7NZ7 ; 2.96 ; Crystal structure of mouse ADAT2/ADAT3 tRNA deamination complex 1 7NZ8 ; 2.12 ; Crystal structure of mouse ADAT2/ADAT3 tRNA deamination complex 2 7NZ9 ; 1.99 ; Crystal structure of mouse ADAT2/ADAT3 tRNA deamination complex V128L mutant 2QTY ; 1.8 ; Crystal Structure of mouse ADP-ribosylhydrolase 3 (mARH3) 6VLG ; 2.5 ; Crystal structure of mouse alpha 1,6-fucosyltransferase, FUT8 bound to GDP 6VLF ; 1.8 ; Crystal structure of mouse alpha 1,6-fucosyltransferase, FUT8 in its Apo-form 1ON6 ; 2.3 ; Crystal structure of mouse alpha-1,4-N-acetylhexosaminotransferase (EXTL2) in complex with UDPGlcNAc 1OMX ; 2.4 ; Crystal structure of mouse alpha-1,4-N-acetylhexosaminyltransferase (EXTL2) 1OMZ ; 2.1 ; crystal structure of mouse alpha-1,4-N-acetylhexosaminyltransferase (EXTL2) in complex with UDPGalNAc 1ON8 ; 2.7 ; Crystal structure of mouse alpha-1,4-N-acetylhexosaminyltransferase (EXTL2) with UDP and GlcUAb(1-3)Galb(1-O)-naphthalenelmethanol an acceptor substrate analog 3W67 ; 2.61 ; Crystal structure of mouse alpha-tocopherol transfer protein in complex with alpha-tocopherol and phosphatidylinositol-(3,4)-bisphosphate 3W68 ; 2.05 ; Crystal structure of mouse alpha-tocopherol transfer protein in complex with alpha-tocopherol and phosphatidylinositol-(4,5)-bisphosphate 2CVP ; 1.8 ; Crystal structure of mouse AMF 2CXR ; 1.7 ; Crystal structure of mouse AMF / 6PG complex 2CXP ; 1.7 ; Crystal structure of mouse AMF / A5P complex 2CXO ; 1.8 ; Crystal structure of mouse AMF / E4P complex 2CXS ; 1.5 ; Crystal structure of mouse AMF / F6P complex 2CXT ; 1.5 ; Crystal structure of mouse AMF / F6P complex 2CXU ; 1.65 ; Crystal structure of mouse AMF / M6P complex 2CXN ; 1.4 ; Crystal structure of mouse AMF / phosphate complex 2CXQ ; 1.5 ; Crystal structure of mouse AMF / S6P complex 2WXX ; 2.95 ; Crystal structure of mouse angiotensinogen in the oxidised form 2WY0 ; 2.38 ; Crystal structure of mouse angiotensinogen in the oxidised form with space group P6122 2WXY ; 2.1 ; Crystal structure of mouse angiotensinogen in the reduced form 7KKZ ; 1.5 ; Crystal structure of mouse anti-HIV potent neutralizing antibody M4H2K1 8E0P ; 2.33 ; Crystal structure of mouse APCDD1 in fusion with engineered MBP 8E0W ; 2.15 ; Crystal structure of mouse APCDD1 in P1 space group 8E0R ; 1.95 ; Crystal structure of mouse APCDD1 in P21 space group 2DG2 ; 2.45 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein 2O8N ; 2.0 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein 3RNO ; 2.5 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with NADP. 3ROZ ; 2.8 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with Nicotinamide 3ROX ; 2.4 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with Theophylline 3ROE ; 2.11 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with Thymidine 3ROG ; 2.05 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with Thymidine 3'-monophosphate 3RO7 ; 2.5 ; Crystal Structure of Mouse Apolipoprotein A-I Binding Protein in Complex with Thymine. 2XKL ; 2.5 ; Crystal Structure of Mouse Apolipoprotein M 1O3Y ; 1.5 ; Crystal structure of mouse ARF1 (delta17-Q71L), GTP form 3D15 ; 2.3 ; Crystal structure of mouse Aurora A (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with 1-(3-chloro-phenyl)-3-{5-[2-(thieno[3,2-d]pyrimidin-4-ylamino)- ethyl]-thiazol-2-yl}-urea [SNS-314] 3D2I ; 2.9 ; Crystal structure of mouse Aurora A (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with 1-{5-[2-(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-ylamino)-ethyl]-thiazol-2-yl}-3-(3-trifluoromethyl-phenyl)-urea 3D14 ; 1.9 ; Crystal structure of mouse Aurora A (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with 1-{5-[2-(thieno[3,2-d]pyrimidin-4-ylamino)-ethyl]- thiazol-2-yl}-3-(3-trifluoromethyl-phenyl)-urea 3D2K ; 2.5 ; Crystal structure of mouse Aurora A (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with [7-(2-{2-[3-(3-chloro-phenyl)-ureido]-thiazol-5-yl}-ethylamino)-pyrazolo[4,3-d]pyrimidin-1-yl]-acetic acid 3NKM ; 2.002 ; Crystal structure of mouse autotaxin 3NKN ; 1.8 ; Crystal structure of mouse autotaxin in complex with 14:0-LPA 3NKO ; 1.75 ; Crystal structure of mouse autotaxin in complex with 16:0-LPA 3NKP ; 1.751 ; Crystal structure of mouse autotaxin in complex with 18:1-LPA 3NKQ ; 1.7 ; Crystal structure of mouse autotaxin in complex with 18:3-LPA 3NKR ; 1.704 ; Crystal structure of mouse autotaxin in complex with 22:6-LPA 5HRT ; 1.997 ; Crystal structure of mouse autotaxin in complex with a DNA aptamer 6Y5M ; 2.011 ; Crystal structure of mouse Autotaxin in complex with compound 1a 6VIL ; 3.301 ; Crystal structure of mouse BAHCC1 BAH domain in complex with H3K27me3 6MCY ; 1.748 ; Crystal structure of mouse Bak 5KTG ; 2.802 ; Crystal structure of mouse Bak BH3-in-groove homodimer (GFP) 5W62 ; 2.196 ; Crystal structure of mouse BAX monomer 1PQ0 ; 2.2 ; Crystal structure of mouse Bcl-xl 3IHC ; 1.85 ; Crystal structure of mouse Bcl-xl (wt) at pH 5.0 3IIH ; 2.75 ; Crystal structure of mouse Bcl-xl (wt) at pH 6.0 3IIG ; 2.3 ; Crystal structure of mouse Bcl-xl mutant (F105A) at pH 5.0 3IHE ; 3.0 ; Crystal structure of mouse Bcl-xl mutant (F105A) at pH 6.0 3IHF ; 2.28 ; Crystal structure of mouse Bcl-xl mutant (R139A) at pH 5.0 3ILB ; 2.38 ; Crystal structure of mouse Bcl-xl mutant (R139A) at pH 6.0 3IHD ; 1.88 ; Crystal structure of mouse Bcl-xl mutant (Y101A) at pH 5.0 3ILC ; 1.64 ; Crystal structure of mouse Bcl-xl mutant (Y101A) at pH 6.0 3NI0 ; 1.601 ; Crystal Structure of Mouse BST-2/Tetherin Ectodomain 6MNY ; 2.8 ; Crystal structure of mouse BTK kinase domain in complex with compound 9a 4D7Y ; 1.44 ; Crystal structure of mouse C1QL1 globular domain 2A4C ; 2.9 ; Crystal structure of mouse cadherin-11 EC1 2A4E ; 3.2 ; Crystal structure of mouse cadherin-11 EC1-2 2WBX ; 1.5 ; Crystal structure of mouse cadherin-23 EC1 2WCP ; 1.98 ; CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 2WHV ; 2.36 ; CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 (ALL CATION BINDING SITES OCCUPIED BY CALCIUM) 4APX ; 1.65 ; CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 AND PROTOCADHERIN-15 EC1- 2 FORM I 4AQ8 ; 2.63 ; CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 AND PROTOCADHERIN-15 EC1- 2 FORM II 4AXW ; 2.23 ; CRYSTAL STRUCTURE OF MOUSE CADHERIN-23 EC1-2 AND PROTOCADHERIN-15 EC1- 2, FORM I 2.2A. 4XXW ; 2.261 ; Crystal structure of mouse Cadherin-23 EC1-2 and Protocadherin-15 EC1-2 splice variant 5VH2 ; 2.84 ; Crystal Structure of Mouse Cadherin-23 EC12-13 with Engineered Mutation S1339D 7U71 ; 1.975 ; Crystal Structure of Mouse Cadherin-23 EC13-15 7SKH ; 2.265 ; Crystal Structure of Mouse Cadherin-23 EC16-17 5WJM ; 2.9 ; Crystal Structure of Mouse Cadherin-23 EC17-18 7T80 ; 2.301 ; Crystal Structure of Mouse Cadherin-23 EC18-19 5ULU ; 2.85 ; Crystal Structure of Mouse Cadherin-23 EC19-21 (S2087P) with non-syndromic deafness (DFNB12) associated mutation D2148N 5I8D ; 2.69 ; Crystal Structure of Mouse Cadherin-23 EC19-21 S2064P 5UN2 ; 2.96 ; Crystal Structure of Mouse Cadherin-23 EC19-21 with non-syndromic deafness (DFNB12) associated mutation R2029W 5TFK ; 2.8 ; Crystal Structure of Mouse Cadherin-23 EC19-21 WT 5UZ8 ; 1.85 ; Crystal Structure of Mouse Cadherin-23 EC22-24 5VT8 ; 2.92 ; Crystal Structure of Mouse Cadherin-23 EC24-25 7SUU ; 2.248 ; Crystal Structure of Mouse Cadherin-23 EC25-26 5TFL ; 3.56 ; Crystal Structure of Mouse Cadherin-23 EC7+8 7T3S ; 2.966 ; Crystal Structure of Mouse Cadherin-23 EC8-9 7UQU ; 1.976 ; Crystal Structure of Mouse Cadherin-23 EC9 2A62 ; 4.5 ; Crystal structure of mouse cadherin-8 EC1-3 4ORB ; 3.108 ; Crystal structure of mouse calcineurin 5IS7 ; 2.29 ; Crystal structure of mouse CARM1 in complex with decarboxylated SAH 7QRD ; 2.0 ; Crystal structure of mouse CARM1 in complex with histone H3_10-25 7OKP ; 2.2 ; Crystal structure of mouse CARM1 in complex with histone H3_13-22 K18 acetylated 7OS4 ; 2.54 ; Crystal structure of mouse CARM1 in complex with histone H3_13-31 K18 7QPH ; 1.9 ; Crystal structure of mouse CARM1 in complex with histone H3_22-31 K27 acetylated 5TBH ; 2.341 ; Crystal structure of mouse CARM1 in complex with inhibitor LH1236 5LV2 ; 2.29 ; Crystal structure of mouse CARM1 in complex with inhibitor LH1246 5TBI ; 2.294 ; Crystal structure of mouse CARM1 in complex with inhibitor LH1427 5TBJ ; 2.32 ; Crystal structure of mouse CARM1 in complex with inhibitor LH1452 5IS8 ; 2.709 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0271 5IS9 ; 2.4 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0375 5ISA ; 2.4 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0401 5ISB ; 2.0 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0435 5ISC ; 2.6 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0491 5ISD ; 2.601 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0592 5ISE ; 2.1 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0649 5NTC ; 2.25 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0678 5ISF ; 2.22 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0705 5ISG ; 2.418 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0707 5ISH ; 2.152 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0765 5ISI ; 2.74 ; Crystal structure of mouse CARM1 in complex with inhibitor SA0920 (5'-amino-5'-deoxyadenosine) 5K8W ; 2.1 ; Crystal structure of mouse CARM1 in complex with inhibitor U2 5K8X ; 1.991 ; Crystal structure of mouse CARM1 in complex with inhibitor U3 5LV3 ; 1.8 ; Crystal structure of mouse CARM1 in complex with ligand LH1561Br 5LGP ; 2.04 ; Crystal structure of mouse CARM1 in complex with ligand P1C3s 5LGR ; 2.0 ; Crystal structure of mouse CARM1 in complex with ligand P1C3u 5LGQ ; 2.11 ; Crystal structure of mouse CARM1 in complex with ligand P2C3s 5LGS ; 2.1 ; Crystal structure of mouse CARM1 in complex with ligand P2C3u 5LKJ ; 2.595 ; Crystal structure of mouse CARM1 in complex with ligand SA684 5IH3 ; 1.77 ; Crystal structure of mouse CARM1 in complex with SAH at 1.8 Angstroms resolution 5IS6 ; 2.007 ; Crystal structure of mouse CARM1 in complex with Sinefungin at 2.0 Angstroms resolution 4K17 ; 2.895 ; Crystal Structure of mouse CARMIL residues 1-668 1XL7 ; 2.0 ; Crystal Structure of Mouse Carnitine Octanoyltransferase 1XL8 ; 2.2 ; Crystal structure of mouse carnitine octanoyltransferase in complex with octanoylcarnitine 2ZOF ; 2.3 ; Crystal structure of mouse carnosinase CN2 complexed with MN and bestatin 2ZOG ; 1.7 ; Crystal structure of mouse carnosinase CN2 complexed with ZN and bestatin 4EV8 ; 1.9 ; Crystal structure of mouse catenin beta-59 in 2.4M urea. 4EV9 ; 2.1 ; Crystal Structure of Mouse Catenin beta-59 in 4.0M urea 4EVA ; 2.003 ; Crystal Structure of Mouse Catenin beta-59 in 5.6M urea 4EVP ; 2.255 ; Crystal Structure of Mouse Catenin beta-59 in 7.2M urea 4EVT ; 2.339 ; Crystal Structure of Mouse Catenin beta-59 in 8.3M urea 5T6U ; 2.9 ; Crystal structure of mouse cathepsin K at 2.9 Angstroms resolution. 5Y3B ; 3.0 ; Crystal structure of mouse Ccd1 DIX domain 6RHV ; 2.29 ; Crystal structure of mouse CD11b I-domain (CD11b-I) in complex with Staphylococcus aureus octameric bi-component leukocidin LukGH (LukH K319A mutant) 1ZHN ; 2.8 ; Crystal Structure of mouse CD1d bound to the self ligand phosphatidylcholine 3AU1 ; 2.5 ; Crystal structure of mouse CD1d in complex with ganglioside GD3 5EFI ; 1.8 ; Crystal structure of mouse CD1d in complex with the p99p lipopeptide 3HE7 ; 2.8 ; Crystal structure of mouse CD1d-alpha-galactosylceramide with mouse Valpha14-Vbeta7 NKT TCR 3HE6 ; 2.9 ; Crystal structure of mouse CD1d-alpha-galactosylceramide with mouse Valpha14-Vbeta8.2 NKT TCR 3QI9 ; 2.3 ; Crystal structure of mouse CD1d-alpha-phosphotidylinositol with mouse Valpha14-Vbeta6 2A3-D NKT TCR 5FFL ; 1.602 ; Crystal structure of mouse CD300lf at 1.6 Angstroms resolution. 3R08 ; 4.1 ; Crystal structure of mouse cd3epsilon in complex with antibody 2C11 Fab 5B1R ; 1.2 ; Crystal structure of mouse CD72a CTLD 4KBR ; 2.547 ; Crystal structure of mouse Ceramide-1-phosphate transfer protein (apo-form) 8AXC ; 2.12 ; Crystal structure of mouse Ces2c 5N6I ; 3.6 ; Crystal structure of mouse cGAS in complex with 39 bp DNA 6R6T ; 2.535 ; Crystal structure of mouse cis-aconitate decarboxylase 4P79 ; 2.4 ; Crystal structure of mouse claudin-15 3X29 ; 3.7 ; CRYSTAL STRUCTURE of MOUSE CLAUDIN-19 IN COMPLEX with C-TERMINAL FRAGMENT OF CLOSTRIDIUM PERFRINGENS ENTEROTOXIN 6AKE ; 3.6 ; Crystal structure of mouse claudin-3 in complex with C-terminal fragment of Clostridium perfringens enterotoxin 6AKF ; 3.9 ; Crystal structure of mouse claudin-3 P134A mutant in complex with C-terminal fragment of Clostridium perfringens enterotoxin 6AKG ; 4.3 ; Crystal structure of mouse claudin-3 P134G mutant in complex with C-terminal fragment of Clostridium perfringens enterotoxin 7QZS ; 1.8 ; Crystal structure of mouse CNPase catalytic domain, G324D mutant 7QZK ; 1.66 ; Crystal structure of mouse CNPase catalytic domain, V318I mutant 5E7L ; 2.002 ; Crystal structure of mouse CNTN2 FN1-FN3 domains 5E4Q ; 2.822 ; Crystal structure of mouse CNTN3 FN1-FN3 domains 5I99 ; 2.4 ; Crystal structure of mouse CNTN3 Ig5-Fn2 domains 5E4S ; 2.5 ; Crystal structure of mouse CNTN4 FN1-FN3 domains 5E4I ; 2.6 ; Crystal structure of mouse CNTN5 Ig1-Ig4 domains 5E55 ; 2.702 ; Crystal structure of mouse CNTN6 FN1-FN3 domains 4P58 ; 2.06 ; Crystal structure of mouse comt bound to an inhibitor 7OL2 ; 3.89 ; Crystal structure of mouse contactin 1 immunoglobulin domains 8A0Y ; 3.5 ; Crystal structure of mouse contactin 2 immunoglobulin domains 3R4D ; 3.1 ; Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor 6UIO ; 1.83 ; Crystal structure of mouse CRES (Cystatin-Related Epididymal Spermatogenic) 5UQC ; 1.78 ; Crystal structure of mouse CRMP2 7DLI ; 2.2 ; Crystal structure of mouse CRY1 in complex with KL001 compound 7D0M ; 1.95 ; Crystal structure of mouse CRY1 with bound cryoprotectant 7D0N ; 2.8 ; Crystal structure of mouse CRY2 apo form 7V8Y ; 1.9 ; Crystal structure of mouse CRY2 in complex with SHP1703 compound 7V8Z ; 1.95 ; Crystal structure of mouse CRY2 in complex with SHP656 compound 4K0R ; 2.65 ; Crystal structure of mouse Cryptochrome 1 6KX4 ; 2.0 ; Crystal structure of mouse Cryptochrome 1 apo form 6LUE ; 2.1 ; Crystal structure of mouse Cryptochrome 1 in complex with compound KL201 7D19 ; 2.35 ; Crystal structure of mouse Cryptochrome 1 in complex with compound TH129 7D1C ; 1.91 ; Crystal structure of mouse Cryptochrome 1 in complex with compound TH303 6KX5 ; 2.0 ; Crystal structure of mouse Cryptochrome 1 in complex with KL044 compound 6KX6 ; 2.0 ; Crystal structure of mouse Cryptochrome 1 in complex with KL101 compound 6KX7 ; 2.1 ; Crystal structure of mouse Cryptochrome 1 in complex with TH301 compound 7WVA ; 2.05 ; Crystal structure of mouse Cryptochrome 1 in complex with TH401 compound 6KX8 ; 2.25 ; Crystal structure of mouse Cryptochrome 2 in complex with TH301 compound 4CT0 ; 2.45 ; Crystal Structure of Mouse Cryptochrome1 in Complex with Period2 6ZEK ; 2.1 ; Crystal structure of mouse CSAD 7A0A ; 2.8 ; Crystal structure of mouse CSAD in apo form 5E56 ; 1.504 ; Crystal structure of mouse CTLA-4 5E5M ; 2.182 ; Crystal structure of mouse CTLA-4 in complex with nanobody 5E03 ; 1.685 ; Crystal structure of mouse CTLA-4 nanobody 1ZAB ; 2.36 ; Crystal Structure of Mouse Cytidine Deaminase Complexed with 3-Deazauridine 2FR6 ; 2.07 ; Crystal Structure of Mouse Cytidine Deaminase Complexed with Cytidine 2FR5 ; 1.48 ; Crystal Structure of Mouse Cytidine Deaminase Complexed with Tetrahydrouridine 5YZH ; 1.994 ; Crystal Structure of Mouse Cytosolic Isocitrate Dehydrogenase 5YZI ; 2.519 ; Crystal Structure of Mouse Cytosolic Isocitrate Dehydrogenase complexed with Cadmium 2ZVQ ; 1.3 ; Crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAP and alpha-naphthol 2ZVP ; 1.3 ; Crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAP and p-nitrophenol 2ZYW ; 1.8 ; crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAP and p-nitrophenol, obtained by two-step soaking method 2ZYT ; 1.55 ; Crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAPS 2ZYU ; 1.8 ; Crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAPS and p-nitrophenyl sulfate 2ZYV ; 1.81 ; Crystal structure of mouse cytosolic sulfotransferase mSULT1D1 complex with PAPS/PAP and p-nitrophenol 7EOV ; 2.6 ; Crystal structure of mouse cytosolic sulfotransferase mSULT2A8 in complex with PAP and cholic acid 7V1O ; 2.4 ; Crystal structure of mouse cytosolic sulfotransferase mSULT3A1 6KZR ; 2.304 ; Crystal structure of mouse DCAR2 CRD domain 6LKR ; 1.84 ; Crystal structure of mouse DCAR2 CRD domain complex 6LFJ ; 1.84 ; Crystal structure of mouse DCAR2 CRD domain complex with IPM2 3AV4 ; 2.75 ; Crystal structure of mouse DNA methyltransferase 1 5WY1 ; 3.27 ; Crystal structure of mouse DNA methyltransferase 1 (T1505A mutant) 3AV5 ; 3.25 ; Crystal structure of mouse DNA methyltransferase 1 with AdoHcy 3AV6 ; 3.09 ; Crystal structure of mouse DNA methyltransferase 1 with AdoMet 6W8V ; 3.12 ; Crystal structure of mouse DNMT1 in complex with ACG DNA 6W8W ; 3.0 ; Crystal structure of mouse DNMT1 in complex with CCG DNA 3PT6 ; 3.0 ; Crystal structure of mouse DNMT1(650-1602) in complex with DNA 3PT9 ; 2.5 ; Crystal structure of mouse DNMT1(731-1602) in the free state 5ULI ; 2.1 ; Crystal Structure of mouse DXO in complex with (3'-NADP)+ and calcium ion 6WUF ; 1.6 ; Crystal structure of mouse DXO in complex with 3'-FADP 6WRE ; 2.0 ; Crystal structure of mouse DXO in complex with 5'-OH RNA substrate mimic and calcium ion 6WUK ; 1.599 ; Crystal structure of mouse DXO in complex with CoA 4J7N ; 1.5 ; Crystal structure of mouse DXO in complex with M7GPPPG cap 4J7L ; 1.8 ; Crystal structure of mouse DXO in complex with PRODUCT RNA AND two MAGNESIUM ions 4J7M ; 1.7 ; Crystal structure of mouse DXO in complex with substrate mimic RNA and calcium ion 3Q2V ; 3.4 ; Crystal structure of mouse E-cadherin ectodomain 3JTG ; 2.2 ; Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA 3W0F ; 2.0 ; Crystal structure of mouse Endonuclease VIII-LIKE 3 (mNEIL3) 4GTW ; 2.7 ; Crystal structure of mouse Enpp1 in complex with AMP 4GTZ ; 3.191 ; Crystal structure of mouse Enpp1 in complex with CMP 4GTY ; 3.19 ; Crystal structure of mouse Enpp1 in complex with GMP 4GTX ; 3.201 ; Crystal structure of mouse Enpp1 in complex with TMP 5DMQ ; 4.0 ; Crystal structure of mouse eRF1 in complex with Reverse Transcriptase (RT) of Moloney Murine Leukemia Virus 7CQZ ; 2.3497 ; crystal structure of mouse FAM46C (TENT5C) 6HPV ; 2.3 ; Crystal structure of mouse fetuin-B 1QQJ ; 1.55 ; CRYSTAL STRUCTURE OF MOUSE FUMARYLACETOACETATE HYDROLASE REFINED AT 1.55 ANGSTROM RESOLUTION 6ENZ ; 3.0 ; Crystal structure of mouse GADL1 4LBQ ; 2.4 ; Crystal structure of mouse galectin-1 8ILU ; 1.8 ; Crystal structure of mouse Galectin-3 in complex with small molecule inhibitor 8IU1 ; 1.97 ; Crystal structure of mouse Galectin-3 in complex with small molecule inhibitor 2D6K ; 2.5 ; Crystal structure of mouse galectin-9 N-terminal CRD (crystal form 1) 2D6L ; 2.5 ; Crystal structure of mouse galectin-9 N-terminal CRD (crystal form 2) 2D6M ; 1.6 ; Crystal structure of mouse galectin-9 N-terminal CRD in complex with lactose 2D6N ; 2.0 ; Crystal structure of mouse galectin-9 N-terminal CRD in complex with N-acetyllactosamine 2D6O ; 1.78 ; Crystal structure of mouse galectin-9 N-terminal CRD in complex with N-acetyllactosamine dimer 2D6P ; 2.7 ; Crystal structure of mouse galectin-9 N-terminal CRD in complex with T-antigen 6IKO ; 3.756 ; Crystal structure of mouse GAS7cb 2Q8O ; 1.75 ; crystal structure of mouse GITR ligand dimer 2QDN ; 2.09 ; Crystal Structure of mouse GITRL 3B9I ; 2.49 ; Crystal Structure of mouse GITRL at 2.5 A. 4JKT ; 2.77 ; Crystal structure of mouse Glutaminase C, BPTES-bound form 3SS5 ; 2.8 ; Crystal structure of mouse Glutaminase C, L-glutamate-bound form 3SS3 ; 2.42 ; Crystal structure of mouse Glutaminase C, ligand-free form 3SS4 ; 2.85 ; Crystal structure of mouse Glutaminase C, phosphate-bound form 2DC5 ; 1.6 ; Crystal structure of mouse glutathione S-transferase, mu7 (GSTM7) at 1.6 A resolution 1R8Y ; 3.0 ; Crystal Structure of Mouse Glycine N-Methyltransferase (Monoclinic Form) 1R8X ; 2.95 ; Crystal Structure of Mouse Glycine N-Methyltransferase (Tetragonal Form) 6L0U ; 1.95 ; Crystal structure of mouse glyoxalase I complexed with a small molecule inhibitor 4X2A ; 2.0 ; Crystal structure of mouse glyoxalase I complexed with baicalein 4KYK ; 2.0 ; Crystal structure of mouse glyoxalase I complexed with indomethacin 4OPN ; 2.1 ; Crystal structure of mouse glyoxalase I complexed with mAH 2ZA0 ; 1.7 ; Crystal structure of mouse glyoxalase I complexed with methyl-gerfelin 4KYH ; 2.5 ; Crystal structure of mouse glyoxalase I complexed with zopolrestat 4PV5 ; 2.3 ; Crystal structure of mouse glyoxalase I in complexed with 18-beta-glycyrrhetinic acid 2AGC ; 2.5 ; Crystal Structure of mouse GM2- activator Protein 1LVG ; 2.1 ; Crystal structure of mouse guanylate kinase in complex with GMP and ADP 3ECB ; 1.698 ; Crystal structure of mouse H-2Dd in complex with peptide P18-I10 derived from human immunodeficiency virus envelope glycoprotein 120 1K8I ; 3.1 ; CRYSTAL STRUCTURE OF MOUSE H2-DM 5JIF ; 2.0 ; Crystal structure of mouse hepatitis virus strain DVIM Hemagglutinin-Esterase 4C7L ; 2.1 ; Crystal structure of Mouse Hepatitis virus strain S Hemagglutinin- esterase 4C7W ; 2.5 ; Crystal structure of Mouse Hepatitis virus strain S Hemagglutinin- esterase in complex with 4-O-acetylated sialic acid 6M3H ; 1.71 ; Crystal structure of mouse HPF1 5VAA ; 1.55 ; Crystal structure of mouse IgG2a Fc T370K mutant 6KRU ; 2.3 ; Crystal structure of mouse IgG2b Fc 6KRV ; 3.3 ; Crystal structure of mouse IgG2b Fc complexed with B domain of Protein A 8FUC ; 2.1 ; Crystal structure of mouse Importin alpha in complex with Hendra virus matrix protein minor site NLS2 8FUA ; 1.9 ; Crystal structure of mouse Importin alpha in complex with Hendra virus matrix protein NLS1 5WUN ; 2.2 ; Crystal structure of mouse importin-alpha1 bound to non-phosphorylated NLS of EBNA1 5WUM ; 2.0 ; Crystal structure of mouse importin-alpha1 bound to S385-phosphorylated NLS of EBNA1 5X8N ; 2.15 ; Crystal structure of mouse importin-alpha1 bound to the nuclear localization signal of Epstein-Barr virus EBNA-LP protein 7E0E ; 2.102 ; Crystal structure of mouse interferon alpha2 at 2.1 angstrom resolution 4EXN ; 2.7 ; Crystal structure of mouse Interleukin-34 2R3Z ; 2.5 ; Crystal structure of mouse IP-10 5TLA ; 3.244 ; Crystal structure of mouse ISG15 5H3F ; 3.29 ; Crystal structure of mouse isocitrate dehydrogenases 2 complexed with isocitrate 5H3E ; 2.21 ; Crystal structure of mouse isocitrate dehydrogenases 2 K256Q mutant complexed with isocitrate 4QSZ ; 2.86 ; Crystal structure of mouse JMJd7 fused with maltose-binding protein 5JYJ ; 2.3 ; Crystal structure of mouse JUNO 6TLH ; 1.8 ; Crystal structure of mouse KANK3 ankyrin repeats 4TN7 ; 2.2 ; Crystal structure of mouse KDM2A-H3K36ME-NO complex 5FJY ; 4.0 ; Crystal structure of mouse kinesin light chain 2 (residues 161-480) 3E2Y ; 2.26 ; Crystal structure of mouse kynurenine aminotransferase III in complex with glutamine 3E2Z ; 2.81 ; Crystal structure of mouse kynurenine aminotransferase III in complex with kynurenine 3E2F ; 2.59 ; Crystal structure of mouse kynurenine aminotransferase III, PLP-bound form 1WNH ; 1.83 ; Crystal structure of mouse Latexin (tissue carboxypeptidase inhibitor) 8HPW ; 2.39 ; Crystal structure of mouse LGI1 LRR domain in space group P21 5JNU ; 2.535 ; Crystal structure of mouse Low-Molecular Weight Protein Tyrosine Phosphatase type A (LMPTP-A) complexed with phosphate 8VZ9 ; 3.4 ; Crystal structure of mouse MAIT M2A TCR-MR1-5-OP-RU complex 8VZ8 ; 3.45 ; Crystal structure of mouse MAIT M2B TCR-MR1-5-OP-RU complex 1I05 ; 2.0 ; CRYSTAL STRUCTURE OF MOUSE MAJOR URINARY PROTEIN (MUP-I) COMPLEXED WITH HYDROXY-METHYL-HEPTANONE 1I06 ; 1.9 ; CRYSTAL STRUCTURE OF MOUSE MAJOR URINARY PROTEIN (MUP-I) COMPLEXED WITH SEC-BUTYL-THIAZOLINE 1I04 ; 2.0 ; CRYSTAL STRUCTURE OF MOUSE MAJOR URINARY PROTEIN-I FROM MOUSE LIVER 3M7O ; 1.65 ; Crystal structure of mouse MD-1 in complex with phosphatidylcholine 3C6L ; 3.4 ; Crystal structure of mouse MHC class II I-Ab/3K peptide complexed with mouse TCR 2W20 3C5Z ; 2.55 ; Crystal structure of mouse MHC class II I-Ab/3K peptide complexed with mouse TCR B3K506 3C60 ; 3.05 ; Crystal structure of mouse MHC class II I-Ab/3K peptide complexed with mouse TCR YAe62 3PDB ; 2.4 ; Crystal structure of mouse mitochondrial aspartate aminotransferase in complex with oxaloacetic acid 3PD6 ; 2.4 ; Crystal structure of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV 3HLM ; 2.5 ; Crystal Structure of Mouse Mitochondrial Aspartate Aminotransferase/Kynurenine Aminotransferase IV 3DGZ ; 2.25 ; Crystal Structure of Mouse Mitochondrial Thioredoxin Reductase, C-terminal 3-residue truncation 5IX1 ; 2.6 ; Crystal structure of mouse Morc3 ATPase-CW cassette in complex with AMPPNP and H3K4me3 peptide 5IX2 ; 2.9 ; Crystal structure of mouse Morc3 ATPase-CW cassette in complex with AMPPNP and unmodified H3 peptide 7YDT ; 2.055 ; Crystal structure of mouse MPND 5MZG ; 1.85 ; Crystal structure of mouse MTH1 in complex with TH588 6EHH ; 2.4 ; Crystal structure of mouse MTH1 mutant L116M with inhibitor TH588 5MZE ; 2.1 ; Crystal structure of mouse MTH1 with 8-oxo-dGTP 7EF8 ; 2.45 ; Crystal structure of mouse MUTYH in complex with DNA containing AP site analogue:8-oxoG (Form I) 7EF9 ; 1.97 ; Crystal structure of mouse MUTYH in complex with DNA containing AP site analogue:8-oxoG (Form II) 6JO7 ; 2.4 ; Crystal structure of mouse MXRA8 3BXD ; 2.0 ; Crystal structure of Mouse Myo-inositol oxygenase (re-refined) 2HUO ; 2.0 ; Crystal structure of mouse myo-inositol oxygenase in complex with substrate 4ZLK ; 2.502 ; Crystal structure of mouse myosin-5a in complex with calcium-bound calmodulin 4NUM ; 3.3 ; Crystal structure of mouse N-cadherin EC1-2 A78SI92M 4NUQ ; 2.116 ; Crystal structure of mouse N-cadherin EC1-2 W2F 4NUP ; 2.7 ; Crystal structure of mouse N-cadherin EC1-2 with AA insertion between residues 2 and 3 3Q2W ; 3.2 ; Crystal structure of mouse N-cadherin ectodomain 1DXQ ; 2.8 ; CRYSTAL STRUCTURE OF MOUSE NAD[P]H-QUINONE OXIDOREDUCTASE 4FMK ; 2.56 ; Crystal structure of mouse nectin-2 extracellular fragment D1-D2 4FN0 ; 3.35 ; Crystal structure of mouse nectin-2 extracellular fragment D1-D2, 2nd crystal form 5ZO1 ; 2.201 ; Crystal structure of mouse nectin-like molecule 4 (mNecl-4) full ectodomain (Ig1-Ig3), 2.2A 5ZO2 ; 3.29 ; Crystal structure of mouse nectin-like molecule 4 (mNecl-4) full ectodomain in complex with mouse nectin-like molecule 1 (mNecl-1) Ig1 domain, 3.3A 3JSV ; 2.7 ; Crystal structure of mouse NEMO CoZi in complex with Lys63-linked di-ubiquitin 4OFD ; 3.94 ; Crystal Structure of mouse Neph1 D1-D2 8SNP ; 3.4 ; Crystal structure of mouse Netrin-1 in complex with samarium ions 7OK5 ; 2.97 ; Crystal structure of mouse neurofascin 155 immunoglobulin domains 7CEE ; 2.763 ; Crystal structure of mouse neuroligin-3 1JJO ; 3.06 ; Crystal Structure of Mouse Neuroserpin (Cleaved form) 5XVK ; 1.88 ; Crystal structure of mouse Nicotinamide N-methyltransferase (NNMT) bound with end product, 1-methyl Nicotinamide (MNA) 2H3B ; 1.95 ; Crystal Structure of Mouse Nicotinamide Phosphoribosyltransferase/Visfatin/Pre-B Cell Colony Enhancing Factor 1 2H3D ; 2.1 ; Crystal Structure of Mouse Nicotinamide Phosphoribosyltransferase/Visfatin/Pre-B Cell Colony Enhancing Factor in Complex with Nicotinamide Mononuleotide 2W1V ; 1.49 ; Crystal structure of mouse nitrilase-2 at 1.4A resolution 4NQQ ; 3.2 ; Crystal structure of mouse P-cadherin extracellular domains EC1-EC2 3LLL ; 3.3 ; Crystal structure of mouse pacsin2 F-BAR domain 3M3W ; 2.6 ; Crystal structure of mouse PACSIN3 BAR domain mutant 3D45 ; 3.0 ; Crystal structure of mouse PARN in complex with m7GpppG 6C10 ; 1.399 ; Crystal structure of mouse PCDH15 EC11-EL 5DXW ; 1.441 ; Crystal structure of mouse PD-L1 nanobody 6LOS ; 2.476 ; Crystal structure of mouse PEDF in complex with heterotrimeric collagen model peptide. 2I74 ; 1.75 ; Crystal structure of mouse Peptide N-Glycanase C-terminal domain in complex with mannopentaose 3QD2 ; 2.81 ; Crystal structure of mouse PERK kinase domain 4O3F ; 2.106 ; Crystal Structure of mouse PGK1 3PG and terazosin(TZN) ternary complex 1U0E ; 1.6 ; Crystal structure of mouse phosphoglucose isomerase 1U0G ; 1.7 ; Crystal structure of mouse phosphoglucose isomerase in complex with erythrose 4-phosphate 1U0F ; 1.6 ; Crystal structure of mouse phosphoglucose isomerase in complex with glucose 6-phosphate 5L71 ; 1.8 ; Crystal structure of mouse phospholipid hydroperoxide glutathione peroxidase 4 (GPx4) 7JFM ; 2.23 ; Crystal structure of mouse phosphorylated IRF-3 bound to CBP 5AE8 ; 2.42 ; Crystal structure of mouse PI3 kinase delta in complex with GSK2269557 5AE9 ; 2.44 ; Crystal structure of mouse PI3 kinase delta in complex with GSK2292767 1KCM ; 2.0 ; Crystal Structure of Mouse PITP Alpha Void of Bound Phospholipid at 2.0 Angstroms Resolution 8V05 ; 2.08 ; Crystal structure of mouse PLD3 8V07 ; 1.99 ; Crystal structure of mouse PLD3 co-crystallized with 5'Pi-ssDNA for 30 days 8V06 ; 2.73 ; Crystal structure of mouse PLD3 co-crystallized with 5'Pi-ssDNA for 9 days 3IG3 ; 1.99 ; Crystal structure of mouse Plexin A3 intracellular domain 8BB7 ; 2.95 ; Crystal structure of Mouse Plexin-B1 (20-535) in complex with VHH15 8BF4 ; 2.15 ; Crystal structure of Mouse Plexin-B1 (20-535) in complex with VHH15 and VHH14 5X3S ; 2.899 ; Crystal structure of mouse Plk1-PBD in complex with phosphopeptide from HEF1 (799-809) 4FC2 ; 1.91 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain 4NA5 ; 2.0 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain mutant E748N 4N9Y ; 2.3 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain mutant E748Q 4NA6 ; 2.48 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain mutant E749N 4N9Z ; 1.9 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain mutant E749Q 4NA4 ; 2.5 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain with ADP-HPD 4NA0 ; 2.4 ; Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain with ADPRibose 6EF4 ; 3.4 ; Crystal structure of mouse PP2A Aalpha P179R mutant 4MA8 ; 2.2 ; Crystal structure of mouse prion protein complexed with Chlorpromazine 4MA7 ; 1.97 ; Crystal structure of mouse prion protein complexed with Promazine 7NUD ; 1.65 ; Crystal structure of mouse PRMT6 in complex with inhibitor EML734 7NUE ; 2.0 ; Crystal structure of mouse PRMT6 in complex with inhibitor EML736 7P2R ; 2.3 ; Crystal structure of mouse PRMT6 in complex with inhibitor EML980 5LV4 ; 1.66 ; Crystal structure of mouse PRMT6 in complex with inhibitor LH1236 5LV5 ; 1.802 ; Crystal structure of mouse PRMT6 in complex with inhibitor LH1458 6SQ3 ; 2.15 ; Crystal structure of mouse PRMT6 in complex with inhibitor U1 6SQ4 ; 1.7 ; Crystal structure of mouse PRMT6 in complex with inhibitor U2 6SQI ; 1.6 ; Crystal structure of mouse PRMT6 with C-terminal TEV cleavage site 6SQK ; 1.4 ; Crystal structure of mouse PRMT6 with modified H7-4 peptide 6SQH ; 2.39 ; Crystal structure of mouse PRMT6 with partial C-terminal TEV cleavage site 5MKT ; 3.2 ; Crystal structure of mouse prorenin 4C4A ; 1.7 ; Crystal structure of mouse protein arginine methyltransferase 7 in complex with SAH 6OGN ; 2.4 ; Crystal structure of mouse protein arginine methyltransferase 7 in complex with SGC8158 chemical probe 6N22 ; 2.4 ; Crystal structure of mouse Protocadherin-15 EC1-2 BAP 5W1D ; 3.35 ; Crystal Structure of Mouse Protocadherin-15 EC4-7 6BXU ; 3.79 ; Crystal Structure of Mouse Protocadherin-15 EC5-7 I582T 6BWN ; 2.94 ; Crystal Structure of Mouse Protocadherin-15 EC6-7 5TPK ; 2.0 ; Crystal Structure of Mouse Protocadherin-15 EC7-8 V875A 5KJ4 ; 3.35 ; Crystal Structure of Mouse Protocadherin-15 EC9-10 6EET ; 3.23 ; Crystal structure of mouse Protocadherin-15 EC9-MAD12 5CYX ; 2.1 ; Crystal Structure of Mouse Protocadherin-24 EC1-3 3SR9 ; 2.4 ; Crystal structure of mouse PTPsigma 2HCM ; 2.0 ; Crystal structure of mouse putative dual specificity phosphatase complexed with zinc tungstate, New York Structural Genomics Consortium 6YJZ ; 2.45 ; Crystal structure of mouse pyridoxal kinase in apo form 6YK0 ; 2.9 ; Crystal structure of mouse pyridoxal kinase in complex with ATP-gamma-S 6YK1 ; 2.4 ; Crystal structure of mouse pyridoxal kinase in complex with ATP-gamma-S and artesunate 2IEY ; 3.18 ; Crystal Structure of mouse Rab27b bound to GDP in hexagonal space group 2IEZ ; 2.8 ; Crystal Structure of mouse Rab27b bound to GDP in monoclinic space group 2IF0 ; 2.8 ; Crystal Structure of mouse Rab27b bound to GDP in monoclinic space group 6VIJ ; 1.95 ; Crystal structure of mouse RABL3 in complex with GDP 6VII ; 2.0 ; Crystal structure of mouse RABL3 in complex with GTPgammaS 3ME4 ; 2.01 ; Crystal structure of mouse RANK 4GIQ ; 2.7 ; Crystal Structure of mouse RANK bound to RANKL 4E4D ; 2.7 ; Crystal structure of mouse RANKL-OPG complex 3ME2 ; 2.8 ; Crystal structure of mouse RANKL-RANK complex 6NXF ; 2.791 ; Crystal structure of mouse REC114 PH domain in complex with ANKRD31 C terminus 5UXF ; 1.501 ; Crystal Structure of mouse RECON (AKR1C13) in complex with Cyclic di-AMP 3TVD ; 2.989 ; Crystal Structure of Mouse RhoA-GTP complex 1W68 ; 2.2 ; Crystal Structure of Mouse Ribonucleotide Reductase Subunit R2 under Oxidizing Conditions. A Fully Occupied Dinuclear Iron Cluster. 1W69 ; 2.2 ; Crystal Structure of Mouse Ribonucleotide Reductase Subunit R2 under Reducing Conditions. A Fully Occupied Dinuclear Iron Cluster and Bound Acetate. 3T6Q ; 1.9 ; Crystal structure of mouse RP105/MD-1 complex 4KEI ; 2.406 ; Crystal structure of mouse Ryanodine Receptor 2 (1-217) disease mutant P164S 4KEJ ; 2.553 ; Crystal structure of mouse Ryanodine Receptor 2 (1-217) disease mutant R169Q 4KEK ; 2.146 ; Crystal structure of mouse Ryanodine Receptor 2 (1-217) disease mutant R176Q 4ETV ; 1.65 ; Crystal structure of mouse ryanodine receptor 2 (2699-2904) 3IM5 ; 2.55 ; Crystal structure of mouse Ryanodine Receptor 2 (residues 1-217) 3IM6 ; 1.7 ; Crystal structure of mouse Ryanodine Receptor 2 mutant V186M 3IM7 ; 2.21 ; Crystal structure of mouse Ryanodine Receptor 2 N-terminal domain (1-217) disease mutant A77V 5C33 ; 1.21 ; Crystal Structure of Mouse Ryanodine Receptor 2 SPRY1 Domain 6J6L ; 1.452 ; Crystal structure of mouse Ryanodine Receptor 2 SPRY1 Domain (650-844) disease mutant I784F 4P9I ; 1.3401 ; Crystal Structure of mouse Ryanodine Receptor 2 SPRY2 Domain (1080-1253) 4P9L ; 1.4361 ; Crystal Structure of mouse Ryanodine Receptor 2 SPRY2 Domain (1080-1253) disease mutant A1107M 5VSN ; 1.439 ; Crystal structure of mouse ryanodine receptor 2 SPRY2 domain (1080-1253) disease mutant P1124L 4L4H ; 2.0 ; Crystal structure of mouse Ryanodine Receptor isoform 2 (RyR2) 1-547 4L4I ; 2.15 ; Crystal structure of mouse Ryanodine Receptor isoform 2 (RyR2) 1-547 disease mutant R420Q 5AXC ; 1.55 ; Crystal structure of mouse SAHH complexed with 3'-keto aristeromycin 5AXA ; 1.55 ; Crystal structure of mouse SAHH complexed with adenosine 5AXB ; 1.65 ; Crystal structure of mouse SAHH complexed with noraristeromycin 5AXD ; 1.6 ; Crystal structure of mouse SAHH complexed with ribavirin 6F2O ; 3.0 ; Crystal structure of mouse SALM5 adhesion protein extracellular LRR-Ig domain fragment 4A90 ; 1.9 ; Crystal structure of mouse SAP18 residues 1-143 4A6Q ; 1.5 ; Crystal structure of mouse SAP18 residues 6-143 6WF2 ; 3.51 ; Crystal structure of mouse SCD1 with a diiron center 5B26 ; 2.6 ; Crystal structure of mouse SEL1L 3BC8 ; 1.65 ; Crystal structure of mouse selenocysteine synthase 3BCA ; 2.25 ; Crystal structure of mouse selenocysteine synthase, sodium iodide soak 3BCB ; 1.85 ; Crystal structure of mouse selenocysteine synthase, sodium phosphate soak 4Q5G ; 2.057 ; Crystal Structure of mouse Serum Amyloid A3 6PY0 ; 2.204 ; Crystal Structure of mouse Serum Amyloid A3 (SAA3) bound with Retinol 6PXZ ; 1.7 ; Crystal Structure of mouse Serum Amyloid A3 (SAA3) in the trimeric form 2ZAO ; 3.2 ; Crystal structure of mouse SKD1/VPS4B ADP-form 2ZAM ; 3.5 ; Crystal structure of mouse SKD1/VPS4B apo-form 2ZAN ; 3.0 ; Crystal structure of mouse SKD1/VPS4B ATP-form 7DG5 ; 2.0 ; Crystal structure of mouse Smc1-Smc3 hinge domain containing a D574Y mutation 6N64 ; 3.3 ; Crystal structure of mouse SMCHD1 hinge domain 8HQL ; 2.4 ; Crystal structure of mouse SNX25 PX domain 7WF8 ; 1.35 ; Crystal structure of mouse SNX25 RGS domain in space group P212121 7WF9 ; 2.55 ; Crystal structure of mouse SNX25 RGS domain in space group P41212 4YF2 ; 2.15 ; Crystal structure of mouse sperm C-type lysozyme-like protein 1 6XNN ; 2.49 ; Crystal Structure of Mouse STING CTD complex with SR-717. 2IKQ ; 2.609 ; Crystal structure of mouse Sts-1 PGM domain in complex with phosphate 2ZPT ; 1.15 ; Crystal structure of mouse sulfotransferase SULT1D1 complex with PAP 5X2B ; 2.08 ; Crystal structure of mouse sulfotransferase SULT7A1 complexed with PAP 4ZG0 ; 2.006 ; Crystal structure of Mouse Syndesmos protein 3K6F ; 1.813 ; Crystal structure of mouse T-cadherin EC1 3K5R ; 2.0 ; Crystal Structure of mouse T-cadherin EC1 EC2 5EKZ ; 2.0 ; Crystal structure of mouse Taco1 5HKP ; 2.2 ; Crystal structure of mouse Tankyrase/human TRF1 complex 4JL9 ; 3.0999 ; Crystal structure of mouse TBK1 bound to BX795 4JLC ; 3.0 ; Crystal structure of mouse TBK1 bound to SU6668 1U3H ; 2.42 ; Crystal structure of mouse TCR 172.10 complexed with MHC class II I-Au molecule at 2.4 A 3D2W ; 1.65 ; Crystal structure of mouse TDP-43 RRM2 domain in complex with DNA 2AIU ; 1.6 ; Crystal Structure of Mouse Testicular Cytochrome C at 1.6 Angstrom 1KEY ; 2.65 ; Crystal Structure of Mouse Testis/Brain RNA-binding Protein (TB-RBP) 7BPS ; 2.35 ; Crystal structure of mouse TEX101 5A65 ; 1.98 ; Crystal structure of mouse thiamine triphosphatase in complex with thiamine diphosphate, orthophosphate and magnesium ions. 5A64 ; 2.1 ; Crystal structure of mouse thiamine triphosphatase in complex with thiamine triphosphate. 1ZDL ; 3.0 ; Crystal Structure of Mouse Thioredoxin Reductase Type 2 1ZKQ ; 2.6 ; Crystal structure of mouse thioredoxin reductase type 2 3IHI ; 1.94 ; Crystal structure of mouse thymidylate synthase 4EIN ; 1.75 ; Crystal structure of mouse thymidylate synthase in binary complex with a substrate analogue and strong inhibitor, N(4)-hydroxy-2'-deoxycytidine-5'-monophosphate 4E5O ; 1.7 ; Crystal structure of mouse thymidylate synthase in complex with dUMP 4EB4 ; 1.74 ; Crystal structure of mouse thymidylate synthase in ternary complex with dUMP and Tomudex 4EZ8 ; 1.17 ; Crystal structure of mouse thymidylate sythase in ternary complex with N(4)-hydroxy-2'-deoxycytidine-5'-monophosphate and the cofactor product, dihydrofolate 6L9U ; 2.601 ; Crystal structure of mouse TIFA 6L9V ; 3.05 ; Crystal structure of mouse TIFA (T9D/C36S mutant) 6L9W ; 2.9 ; Crystal structure of mouse TIFA (T9E/C36S mutant) 8WWY ; 1.79 ; Crystal structure of mouse TIFA/TIFAB heterodimer 3DJN ; 2.2 ; Crystal structure of mouse TIS21 3CIG ; 2.66 ; Crystal structure of mouse TLR3 ectodomain 2Z64 ; 2.84 ; Crystal structure of mouse TLR4 and mouse MD-2 complex 7MLM ; 2.104 ; Crystal structure of mouse TLR4/MD-2 in complex with sulfatides 3VQ1 ; 2.7 ; Crystal structure of mouse TLR4/MD-2/lipid IVa complex 3VQ2 ; 2.48 ; Crystal structure of mouse TLR4/MD-2/LPS complex 3WPF ; 1.959 ; Crystal structure of mouse TLR9 (unliganded form) 3WPG ; 2.246 ; Crystal structure of mouse TLR9 in complex with inhibitory DNA4084 (form 1) 3WPH ; 2.327 ; Crystal structure of mouse TLR9 in complex with inhibitory DNA4084 (form 2) 3WPI ; 2.246 ; Crystal structure of mouse TLR9 in complex with inhibitory DNA_super 5ZLN ; 2.3 ; Crystal structure of mouse TLR9 in complex with two DNAs (CpG DNA and TCGCCA DNA) 5W0X ; 2.717 ; Crystal structure of mouse TOR signaling pathway regulator-like (TIPRL) delta 94-103 8SLR ; 2.4 ; Crystal Structure of mouse TRAIL 2CWN ; 2.1 ; Crystal structure of mouse transaldolase 2E1D ; 2.0 ; Crystal structure of mouse transaldolase 2QPF ; 2.05 ; Crystal Structure of Mouse Transthyretin 1U9K ; 1.76 ; Crystal Structure of Mouse Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) at 1.76 3RG5 ; 2.0 ; Crystal Structure of Mouse tRNA(Sec) 5ELH ; 1.8 ; Crystal structure of mouse Unkempt zinc fingers 1-3 (ZnF1-3), bound to RNA 5ELK ; 2.3 ; Crystal structure of mouse Unkempt zinc fingers 4-6 (ZnF4-6), bound to RNA 6Q2P ; 1.452 ; Crystal structure of mouse viperin bound to cytidine triphosphate and S-adenosylhomocysteine 6Q2Q ; 1.892 ; Crystal structure of mouse viperin bound to uridine triphosphate and S-adenosylhomocysteine 2R51 ; 2.1 ; Crystal Structure of mouse Vps26B 3LH8 ; 2.6 ; Crystal structure of mouse VPS26B in spacegroup P41 21 2 3LH9 ; 2.4 ; Crystal structure of mouse VPS26B(L197S/R199E) in spacegroup P41 21 2 3LHA ; 2.8 ; Crystal structure of mouse VPS26B(R240S/G241A/E242S) in spacegroup P41 21 2 1Z2X ; 2.22 ; Crystal structure of mouse Vps29 1Z2W ; 2.0 ; Crystal structure of mouse Vps29 complexed with Mn2+ 3PSN ; 2.4 ; Crystal structure of mouse VPS29 complexed with Mn2+ 3PSO ; 3.2 ; Crystal structure of mouse VPS29 complexed with Zn2+ 2QYW ; 2.0 ; Crystal structure of mouse vti1b Habc domain 6VIK ; 1.7 ; Crystal structure of mouse xm RABL3 in complex with GTPgammsS 4WM0 ; 2.37 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with acceptor ligand 4WLM ; 3.0 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese 4WLZ ; 3.03 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese and UDP 4WMB ; 2.05 ; crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese, acceptor ligand and UDP 4WMI ; 1.87 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese, product ligand and UDP (Product complex I) 4WMK ; 2.08 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese, product ligand and UDP (Product complex II) 4WN2 ; 1.95 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese, product ligand and UDP (Product complex III) 4WMA ; 1.62 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese,acceptor ligand and UDP-Glucose 4WNH ; 1.95 ; Crystal structure of mouse Xyloside xylosyltransferase 1 complexed with manganese,acceptor ligand and UDP-Xylose 4WLG ; 3.0 ; crystal structure of mouse Xyloside xylosyltransferase 1, apo form 5ZYB ; 2.13 ; Crystal structure of MOX-1 complexed with a boronic acid transition state inhibitor S02030 2XKK ; 3.25 ; CRYSTAL STRUCTURE OF MOXIFLOXACIN, DNA, and A. BAUMANNII TOPO IV (PARE-PARC FUSION TRUNCATE) 4HKE ; 1.87 ; Crystal Structure of MoxT of Bacillus anthracis 3V43 ; 1.47 ; Crystal structure of MOZ 4LJN ; 3.0 ; Crystal Structure of MOZ double PHD finger 5B76 ; 1.653 ; Crystal structure of MOZ double PHD finger domain in complex with histone H3 crotonylation at K14 4LK9 ; 1.6 ; Crystal Structure of MOZ double PHD finger histone H3 tail complex 4LLB ; 2.5 ; Crystal Structure of MOZ double PHD finger histone H3K14ac complex 4LKA ; 1.61 ; Crystal Structure of MOZ double PHD finger histone H3K9ac complex 5B75 ; 1.704 ; Crystal structure of MOZ double PHD finger in complex with histone H3 butyrylation at K14 5B78 ; 1.4 ; Crystal structure of MOZ double PHD finger mutant-S210D/N235R in complex with histone H3 crotonylation at K14 3L1N ; 1.3 ; Crystal structure of Mp1p ligand binding domain 2 complexd with palmitic acid 3SYV ; 3.1 ; Crystal structure of mPACSIN 3 F-BAR domain mutant 5BQG ; 1.436 ; Crystal Structure of mPGES-1 Bound to an Inhibitor 6VL4 ; 1.4 ; Crystal Structure of mPGES-1 bound to DG-031 5T36 ; 1.4 ; Crystal structure of mPGES-1 bound to inhibitor 5T37 ; 1.761 ; crystal structure of mPGES-1 bound to inhibitor 5TL9 ; 1.2 ; crystal structure of mPGES-1 bound to inhibitor 4WAB ; 2.704 ; Crystal structure of mPGES1 solved by native-SAD phasing 7W1A ; 2.17 ; Crystal Structure of MPH-E in complex with GMP and Azithromycin 7W15 ; 1.77 ; Crystal Structure of MPH-E in complex with GTP and Erythromycin 4O2Z ; 2.71 ; Crystal Structure of MPK3 from Leishmania donovani, LdBPK_100540 in the presence of NVP-BBT594 4E0Q ; 2.5 ; Crystal structure of MPN domain from COP9 signalosome 2I15 ; 2.4 ; Crystal structure of MPN423 from Mycoplasma pneumoniae 3U7E ; 1.7 ; Crystal structure of mPNKP catalytic fragment (D170A) 3U7G ; 2.1 ; Crystal structure of mPNKP catalytic fragment (D170A) bound to single-stranded DNA (TCCTAp) 3U7F ; 1.8 ; Crystal structure of mPNKP catalytic fragment (D170A) bound to single-stranded DNA (TCCTCp) 3U7H ; 2.0 ; Crystal structure of mPNKP catalytic fragment (D170A) bound to single-stranded DNA (TCCTTp) 6B9T ; 2.35 ; Crystal structure of MPnS with substrate 2-hydroxyethylphosphonate (2-HEP) and Fe(II) bound 5V50 ; 2.43 ; Crystal Structure of MpPR-1i 5V51 ; 2.92 ; Crystal Structure of MpPR-1i Soaked with Selenourea for 10 min 7LTN ; 1.79 ; Crystal structure of Mpro in complex with inhibitor CDD-1713 7JP0 ; 1.65 ; Crystal structure of Mpro with inhibitor r1 8GZ4 ; 1.802 ; Crystal structure of MPXV phosphatase 5HAB ; 2.3 ; Crystal structure of mpy-RNase J (mutant H84A), an archaeal RNase J from Methanolobus psychrophilus R15, complex with RNA 5WS2 ; 2.398 ; Crystal structure of mpy-RNase J (mutant S247A), an archaeal RNase J from Methanolobus psychrophilus R15, complex with RNA 6LLB ; 2.6 ; Crystal structure of mpy-RNase J (mutant S247A), an archaeal RNase J from Methanolobus psychrophilus R15, in complex with 6 nt RNA 5HAA ; 2.904 ; Crystal structure of mpy-RNase J, an archaeal RNase J from Methanolobus psychrophilus R15 6O9A ; 2.326 ; Crystal structure of MqnA complexed with 3-hydroxybenzoic acid 3A3U ; 1.65 ; Crystal structure of MqnD (TTHA1568), a menaquinone biosynthetic enzyme from Thermus thermophilus HB8 2CZL ; 1.55 ; Crystal structure of MqnD (TTHA1568), a menaquinone biosynthetic enzyme from Thermus thermophilus HB8 (Cys11 modified with beta-mercaptoethanol) 6OZ6 ; 3.7 ; Crystal structure of MraY bound to 3'-hydroxymureidomycin A 8CXR ; 3.65 ; Crystal structure of MraY bound to a sphaerimicin analogue 6OYZ ; 3.62 ; Crystal structure of MraY bound to capuramycin 6OYH ; 2.95 ; Crystal structure of MraY bound to carbacaprazamycin 5CKR ; 2.95 ; Crystal Structure of MraY in complex with Muraymycin D2 3THN ; 2.811 ; Crystal structure of Mre11 core with manganese 2Q8U ; 2.2 ; CRYSTAL STRUCTURE OF MRE11 FROM THERMOTOGA MARITIMA MSB8 (TM1635) AT 2.20 A RESOLUTION 3AUZ ; 3.206 ; Crystal structure of Mre11 with manganese 1S8E ; 2.3 ; Crystal structure of Mre11-3 3AV0 ; 3.1 ; Crystal structure of Mre11-Rad50 bound to ATP S 3THO ; 2.6081 ; Crystal structure of Mre11:Rad50 in its ATP/ADP bound state 7BVY ; 2.5 ; Crystal structure of MreB 5 of Spiroplasma citri bound to AMPPNP 7ZPT ; 1.8 ; Crystal structure of MreB from Geobacillus stearothermophilus ATCC7953 8AAM ; 2.29 ; Crystal structure of MreB from Geobacillus stearothermophilus ATCC7953 7ZPU ; 1.96 ; Crystal structure of MreB from Geobacillus stearothermophilus ATCC7953 in complex with ATP 8AZG ; 2.29 ; Crystal structure of MreB from Geobacillus stearothermophilus ATCC7953 in complex with ATP 8AB4 ; 2.22 ; Crystal structure of MreB from Geobacillus stearothermophilus ATCC7953 in complex with GTP 7BVZ ; 2.3 ; Crystal structure of MreB5 of Spiroplasma citri bound to ADP 6ZM0 ; 1.471 ; Crystal structure of MreC from Pseudomonas aeruginosa 6WBH ; 2.455 ; Crystal structure of mRECK(CC4) in fusion with engineered MBP at medium resolution 2F5J ; 2.2 ; Crystal structure of MRG domain from human MRG15 6AGO ; 3.103 ; Crystal structure of MRG15-ASH1L Histone methyltransferase complex 6OKO ; 2.1 ; Crystal structure of mRIPK3 complexed with N-(3-fluoro-4-{1H-pyrrolo[2,3-b]pyridin-4-yloxy}phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide 8JED ; 2.16 ; Crystal structure of mRNA cap (guanine-N7) methyltransferase E12 subunit from monkeypox virus and discovery of its inhibitors 3EPP ; 2.41 ; Crystal structure of mRNA cap guanine-N7 methyltransferase (RNMT) in complex with sinefungin 5E8J ; 2.35 ; Crystal structure of mRNA cap guanine-N7 methyltransferase in complex with RAM 3BGV ; 2.3 ; Crystal structure of mRNA cap guanine-N7 methyltransferase in complex with SAH 5E9W ; 2.283 ; Crystal structure of mRNA cap guanine-N7 methyltransferase obtained by limited proteolysis 1VLR ; 1.83 ; Crystal structure of mRNA decapping enzyme (DcpS) from Mus musculus at 1.83 A resolution 5H87 ; 2.24 ; Crystal structure of mRojoA mutant - P63H - W143S 5H89 ; 1.76 ; Crystal structure of mRojoA mutant - T16V - P63Y - W143G - L163V 5H88 ; 2.06 ; Crystal structure of mRojoA mutant - T16V -P63F - W143A - L163V 4NWB ; 1.8 ; Crystal structure of Mrt4 2DUK ; 2.62 ; Crystal structure of MS0616 2DTC ; 1.7 ; Crystal structure of MS0666 2YY0 ; 2.4 ; Crystal Structure of MS0802, c-Myc-1 binding protein domain from Homo sapiens 2YVR ; 1.8 ; Crystal structure of MS1043 1BMS ; 2.7 ; CRYSTAL STRUCTURE OF MS2 CAPSIDS WITH MUTATIONS IN THE SUBUNIT FG LOOP 1MST ; 2.6 ; CRYSTAL STRUCTURE OF MS2 CAPSIDS WITH MUTATIONS IN THE SUBUNIT FG LOOP 1MSC ; 2.0 ; CRYSTAL STRUCTURE OF MS2 COAT PROTEIN DIMER 6L77 ; 1.9 ; Crystal structure of MS5 from Brassica napus 4JKZ ; 1.8 ; Crystal structure of ms6564 from mycobacterium smegmatis 4JL3 ; 2.5 ; Crystal structure of ms6564-dna complex 5B6O ; 2.202 ; Crystal structure of MS8104 3B5Z ; 4.2 ; Crystal Structure of MsbA from Salmonella typhimurium with ADP Vanadate 3B5Y ; 4.5 ; Crystal Structure of MsbA from Salmonella typhimurium with AMPPNP 3B60 ; 3.7 ; Crystal Structure of MsbA from Salmonella typhimurium with AMPPNP, higher resolution form 3B5X ; 5.5 ; Crystal Structure of MsbA from Vibrio cholerae 5EHX ; 2.1 ; Crystal structure of MSF-aged Torpedo californica Acetylcholinesterase 5EI5 ; 2.1 ; Crystal structure of MSF-aged Torpedo californica Acetylcholinesterase in complex with alkylene-linked bis-tacrine dimer (7 carbon linker) 4EWL ; 1.85 ; Crystal Structure of MshB with glycerol and Acetate bound in the active site 4WAN ; 1.8 ; Crystal structure of Msl5 protein in complex with RNA at 1.8 A 4F3F ; 2.65 ; Crystal Structure of Msln7-64 MORAb-009 FAB complex 6OWN ; 1.95 ; Crystal structure of Msm DnaB1 intein splicing domain bound with zinc 4ZRC ; 2.7 ; Crystal structure of MSM-13, a putative T1-like thiolase from Mycobacterium smegmatis 5BYV ; 2.162 ; Crystal structure of MSM-13, a putative T1-like thiolase from Mycobacterium smegmatis 5XKP ; 3.0 ; Crystal structure of Msmeg3575 in complex with 5-azacytosine 5XKQ ; 2.7 ; Crystal structure of Msmeg3575 in complex with ammeline 5XKR ; 1.38 ; Crystal structure of Msmeg3575 in complex with benzoguanamine 5E7P ; 2.507 ; Crystal Structure of MSMEG_0858 (Uniprot A0QQS4), a AAA ATPase. 6HB0 ; 1.9 ; Crystal structure of MSMEG_1712 from Mycobacterium smegmatis 6HBM ; 2.76 ; Crystal structure of MSMEG_1712 from Mycobacterium smegmatis in complex with alpha-L-arabinofuranose 6HYH ; 2.5 ; Crystal structure of MSMEG_1712 from Mycobacterium smegmatis in complex with Beta-D-Fucofuranose 6HBD ; 2.44 ; Crystal structure of MSMEG_1712 from Mycobacterium smegmatis in complex with Beta-D-Galactofuranose 5E0N ; 2.061 ; Crystal Structure of MSMEG_3139, a monofunctional enoyl CoA isomerase from M.smegmatis 7WA9 ; 1.9 ; Crystal structure of MSMEG_5634 from Mycobacterium smegmatis 3AJA ; 2.9 ; Crystal Structure of MSMEG_6394 5T2V ; 1.9 ; Crystal structure of MSMEG_6753 a putative betaketoacyl-ACP reductase 6YEV ; 2.94 ; Crystal structure of MsrA C206 and Trx C35S complex from Escherichia coli 7OT4 ; 2.19 ; Crystal structure of MsrA variant C198C206 from Escherichia coli, oxidized 3E0O ; 2.6 ; Crystal structure of MsrB 1HXR ; 1.65 ; CRYSTAL STRUCTURE OF MSS4 AT 1.65 ANGSTROMS 3COM ; 2.2 ; Crystal structure of Mst1 kinase 5DH3 ; 2.468 ; Crystal structure of MST2 in complex with XMU-MP-1 8A66 ; 1.901 ; Crystal structure of MST2 in complex with XMU-MP-1 4U8Z ; 1.63 ; Crystal structure of MST3 with a pyrrolopyrimidine inhibitor (PF-06447475) 4W8D ; 1.77 ; Crystal structure of MST3 with a pyrrolopyrimidine inhibitor (PF-06454589). 4O27 ; 3.185 ; Crystal structure of MST3-MO25 complex with WIF motif 4GEH ; 1.95 ; Crystal structure of MST4 dimerization domain complex with PDCD10 4FZA ; 3.15 ; Crystal structure of MST4-MO25 complex 4FZF ; 3.64 ; Crystal structure of MST4-MO25 complex with DKI 4FZD ; 3.25 ; Crystal structure of MST4-MO25 complex with WSF motif 4LOJ ; 1.77 ; Crystal structure of mSting in complex with c[G(2',5')pA(3',5')p] 4LOK ; 2.07 ; Crystal structure of mSting in complex with c[G(3',5')pA(3',5')p] 4LOL ; 2.43 ; Crystal structure of mSting in complex with DMXAA 2H5R ; 1.6 ; Crystal structure of mStrawberry at pH 10.5 2H5P ; 1.21 ; Crystal structure of mStrawberry at pH 9.5 5TFV ; 2.54 ; Crystal Structure of MT-I isolated from Bothrops asper venom. 3NCL ; 1.19 ; Crystal Structure of MT-SP1 bound to Benzamidine Phosphonate Inhibitor 3P8G ; 1.2 ; Crystal Structure of MT-SP1 in complex with benzamidine 3BN9 ; 2.173 ; Crystal Structure of MT-SP1 in complex with Fab Inhibitor E2 3P8F ; 2.0 ; Crystal Structure of MT-SP1 in complex with SFTI-1 1Z5O ; 2.0 ; Crystal structure of MTA/AdoHcy nucleosidase Asp197Asn mutant complexed with 5'-methylthioadenosine 1Y6R ; 2.2 ; Crystal structure of MTA/AdoHcy nucleosidase complexed with MT-ImmA. 1Z5N ; 2.1 ; Crystal structure of MTA/AdoHcy nucleosidase Glu12Gln mutant complexed with 5-methylthioribose and adenine 1Z5P ; 2.0 ; Crystal structure of MTA/AdoHcy nucleosidase with a ligand-free purine binding site 7F4R ; 1.83 ; Crystal structure of MTA1 7F4L ; 2.72 ; Crystal structure of MTA1-p1-p2 complex 7F4O ; 3.1 ; Crystal structure of MTA1-p2 complex 1R8D ; 2.7 ; Crystal Structure of MtaN Bound to DNA 1JBG ; 2.75 ; Crystal Structure of MtaN, the Bacillus subtilis Multidrug Transporter Activator, N-terminus 6OZ8 ; 2.7 ; Crystal structure of Mtb aspartate decarboxylase in active form 6P1Y ; 2.33 ; Crystal structure of Mtb aspartate decarboxylase mutant M117I 6P02 ; 2.25 ; Crystal structure of Mtb aspartate decarboxylase, 6-Chlorine pyrazinoic acid complex 6OYY ; 2.7 ; Crystal structure of Mtb aspartate decarboxylase, pyrazinoic acid complex 4JR4 ; 2.498 ; Crystal structure of Mtb DsbA (Oxidized) 4IR7 ; 2.8 ; Crystal Structure of Mtb FadD10 in Complex with Dodecanoyl-AMP 4WOU ; 2.122 ; Crystal Structure of Mtb PEPCK in complex with GDP and metals 4WL8 ; 1.61 ; Crystal Structure of Mtb PEPCK in complex with non-hydrolyzable analog of GTP 4WPT ; 1.6 ; Crystal Structure of Mtb PEPCK in complex with PEP 7M7V ; 2.29 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with Compound 6 5V3X ; 1.936 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM1 5V3Y ; 1.98 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM16 5V42 ; 1.987 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM3 5V41 ; 2.051 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM5 5V40 ; 1.991 ; Crystal Structure of Mtb Pks13 Thioesterase domain in complex with inhibitor TAM6 7VJT ; 1.94 ; Crystal Structure of Mtb Pks13-TE in complex with inhibitor coumestan derivative 8 6TYE ; 3.79 ; Crystal structure of MTB sigma L transcription initiation complex with 5 nt long RNA primer 6TYF ; 3.8 ; Crystal structure of MTB sigma L transcription initiation complex with 6 nt long RNA primer 6TYG ; 3.5 ; Crystal structure of MTB sigma L transcription initiation complex with 9 nt long RNA primer 4FOG ; 2.4 ; Crystal Structure of Mtb ThyA in Complex with 5-Fluoro-dUMP and 5-methyltetrahydrofolic acid 4FOX ; 2.3 ; Crystal Structure of Mtb ThyA in complex with dUMP and Raltitrexed 5CCA ; 3.2 ; Crystal structure of Mtb toxin 4I14 ; 3.0 ; Crystal Structure of Mtb-ribA2 (Rv1415) 4PCQ ; 2.95 ; Crystal Structure of MtbAldR (Rv2779c) 3I54 ; 2.2 ; Crystal structure of MtbCRP in complex with cAMP 3I59 ; 2.29 ; Crystal structure of MtbCRP in complex with N6-cAMP 7OZM ; 2.15 ; Crystal Structure of mtbMGL K74A (Closed Cap Conformation) 7P0Y ; 2.25 ; Crystal Structure of mtbMGL K74A (Substrate Analog Complex) 1A1X ; 2.0 ; CRYSTAL STRUCTURE OF MTCP-1 INVOLVED IN T CELL MALIGNANCIES 7XPU ; 2.2 ; crystal structure of MtdL-S228A-His soaked GDP-Fucp and Mn 6SBA ; 1.3 ; Crystal Structure of mTEAD with a VGL4 Tertiary Structure Mimetic 5EXH ; 1.3 ; Crystal structure of mTET3-CXXC domain in complex with 5-carboxylcytosine DNA at 1.3 Angstroms resolution. 7VT8 ; 2.99 ; Crystal structure of MtGlu5 from Meiothermus taiwanensis WR-220 6AA3 ; 2.001 ; Crystal structure of MTH1 in apo form (cocktail No. 1) 6IMZ ; 2.1 ; Crystal structure of MTH1 in complex with 18-Crown-6 6AA5 ; 1.901 ; Crystal structure of MTH1 in complex with 3-isomangostin 6AA4 ; 1.9 ; Crystal structure of MTH1 in complex with alpha-mangostin (cocktail No. 9) 7N03 ; 1.13 ; Crystal structure of MTH1 in complex with compound 31 7N13 ; 1.59 ; Crystal structure of MTH1 in complex with compound 32 7BGM ; 1.6 ; Crystal structure of MtHISN2, a bifunctional enzyme from the histidine biosynthetic pathway 7BGN ; 2.7 ; Crystal structure of MtHISN2-AMP complex, a bifunctional enzyme from the histidine biosynthetic pathway 1LNQ ; 3.3 ; CRYSTAL STRUCTURE OF MTHK AT 3.3 A 4RO0 ; 3.18 ; Crystal structure of MthK gating ring in a ligand-free form 4HYO ; 1.65 ; Crystal Structure of MthK Pore 2FY8 ; 2.79 ; Crystal structure of MthK rck domain in its ligand-free gating-ring form 2WBM ; 1.75 ; Crystal structure of mthSBDS, the homologue of the Shwachman-Bodian- Diamond syndrome protein in the euriarchaeon Methanothermobacter thermautotrophicus 2R47 ; 1.88 ; Crystal structure of MTH_862 protein of unknown function from Methanothermobacter thermautotrophicus 4R1E ; 1.98 ; Crystal Structure of MTIP from Plasmodium falciparum in complex with a peptide-fragment chimera 4MZL ; 2.01 ; Crystal Structure of MTIP from Plasmodium falciparum in complex with HBS myoA, a hydrogen bond surrogate myoA helix mimetic 4MZJ ; 1.474 ; Crystal Structure of MTIP from Plasmodium falciparum in complex with pGly[801,805], a stapled myoA tail peptide 4MZK ; 1.82 ; Crystal Structure of MTIP from Plasmodium falciparum in complex with pGly[807,811], a stapled myoA tail peptide 5JXR ; 2.404 ; Crystal structure of MtISWI 5JXT ; 3.009 ; Crystal structure of MtISWI bound with histone H4 tail 5JNM ; 1.701 ; Crystal structure of MtlD from Staphylococcus aureus at 1.7-Angstrom resolution 4RV9 ; 2.2 ; Crystal structure of MtmC in complex with SAH 4RVH ; 2.4 ; Crystal structure of MtmC in complex with SAH and TDP-4-keto-D-olivose 4RVD ; 2.2 ; Crystal structure of MtmC in complex with SAM 4RVG ; 2.3 ; Crystal structure of MtmC in complex with SAM and TDP 4RVF ; 2.7 ; Crystal structure of MtmC in complex with TDP 1ZVR ; 1.98 ; Crystal Structure of MTMR2 in complex with phosphatidylinositol 3,5-bisphosphate 1ZSQ ; 1.82 ; Crystal Structure of MTMR2 in complex with phosphatidylinositol 3-phosphate 4Y7I ; 2.802 ; Crystal Structure of MTMR8 3FPF ; 1.66 ; Crystal Structure of MtNAS in complex with MTA and tNA 3FPE ; 1.7 ; Crystal Structure of MtNAS in complex with thermonicotianamine 2FEA ; 2.0 ; Crystal structure of MtnX phosphatase from Bacillus Subtilis at 2.00 A resolution 6GDJ ; 1.5 ; Crystal structure of Mto2 twin-cysteine dimerisation domain 3JBZ ; 28.0 ; Crystal structure of mTOR docked into EM map of dimeric ATM kinase 5WBU ; 3.42 ; Crystal structure of mTOR(deltaN)-mLST8-PRAS40(alpha-helix & beta-strand) complex 5WBY ; 3.1 ; Crystal structure of mTOR(deltaN)-mLST8-PRAS40(beta-strand) complex 5A2V ; 1.82 ; Crystal structure of mtPAP in Apo form 5A2W ; 2.5 ; Crystal structure of mtPAP in complex with ATPgammaS 5A2X ; 3.1 ; Crystal structure of mtPAP in complex with CTP 5A2Z ; 2.45 ; Crystal structure of mtPAP in complex with GTP 5A2Y ; 2.75 ; Crystal structure of mtPAP in complex with UTP 5A30 ; 2.75 ; Crystal structure of mtPAP N472D mutant in complex with ATPgammaS 6YFV ; 2.75 ; Crystal structure of Mtr4-Red1 minimal complex from Chaetomium thermophilum 6QYC ; 2.29 ; Crystal structure of MtrC from Shewanella baltica OS185 2OA8 ; 2.1 ; Crystal Structure of mTREX1 with ssDNA 8HCE ; 1.501 ; Crystal structure of mTREX1-CMP complex 8HCG ; 1.799 ; Crystal structure of mTREX1-dAMP complex 8HCD ; 2.0 ; Crystal structure of mTREX1-DNA product complex (dNMP) 8HCC ; 2.0 ; Crystal structure of mTREX1-RNA product complex (AMP) 8HCF ; 1.6 ; Crystal structure of mTREX1-UMP complex 8HCH ; 2.0 ; Crystal structure of mTREX1-Uridine complex 5HZR ; 2.33 ; Crystal structure of MtSnf2 1EAX ; 1.3 ; Crystal structure of MTSP1 (matriptase) 2IMZ ; 1.7 ; Crystal structure of Mtu recA intein splicing domain 2IN0 ; 1.6 ; crystal structure of Mtu recA intein splicing domain 2IN8 ; 1.7 ; crystal structure of Mtu recA intein, splicing domain 2IN9 ; 1.8 ; crystal structure of Mtu recA intein, splicing domain 3IFJ ; 1.9 ; Crystal structure of Mtu recA intein, splicing domain 3IGD ; 2.4 ; Crystal structure of Mtu recA intein, splicing domain 4K06 ; 2.08 ; Crystal structure of MTX-II from Bothrops brazili venom complexed with polyethylene glycol 3GUR ; 2.5 ; Crystal Structure of mu class glutathione S-transferase (GSTM2-2) in complex with glutathione and 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) 4MT5 ; 2.6 ; Crystal structure of Mub-RV 6IN8 ; 2.2 ; Crystal structure of MucB 6IN9 ; 1.801 ; Crystal structure of MucB in complex with MucA(peri) 8K2Y ; 2.7 ; Crystal structure of MucD 4WLQ ; 2.85 ; Crystal structure of mUCH37-hRPN13 CTD complex 4WLR ; 1.997 ; Crystal Structure of mUCH37-hRPN13 CTD-hUb complex 3I6T ; 1.9 ; Crystal structure of muconate cycloisomerase from Jannaschia sp. 3CT2 ; 1.8 ; Crystal structure of muconate cycloisomerase from Pseudomonas fluorescens 2ZAD ; 1.6 ; Crystal Structure of Muconate Cycloisomerase from Thermotoga maritima MSB8 3I4K ; 2.2 ; Crystal structure of Muconate lactonizing enzyme from Corynebacterium glutamicum 3FCP ; 1.8 ; Crystal structure of Muconate lactonizing enzyme from Klebsiella pneumoniae 3DG3 ; 1.6 ; Crystal structure of muconate lactonizing enzyme from Mucobacterium Smegmatis 3DG6 ; 1.6 ; Crystal structure of muconate lactonizing enzyme from Mucobacterium Smegmatis complexed with muconolactone 3DG7 ; 2.0 ; Crystal structure of muconate lactonizing enzyme from Mucobacterium Smegmatis complexed with muconolactone 3DGB ; 1.7 ; Crystal structure of muconate lactonizing enzyme from Pseudomonas Fluorescens complexed with muconolactone 3FJ4 ; 1.8 ; Crystal structure of muconate lactonizing enzyme from Pseudomonas Fluorescens complexed with muconolactone 3I6E ; 1.7 ; CRYSTAL STRUCTURE OF MUCONATE LACTONIZING ENZYME FROM Ruegeria pomeroyi. 1MLI ; 3.3 ; CRYSTAL STRUCTURE OF MUCONOLACTONE ISOMERASE AT 3.3 ANGSTROMS RESOLUTION 5EM0 ; 1.1 ; Crystal structure of mugwort allergen Art v 4 3EUK ; 4.0 ; Crystal structure of MukE-MukF(residues 292-443)-MukB(head domain)-ATPgammaS complex, asymmetric dimer 3EUJ ; 3.1 ; Crystal structure of MukE-MukF(residues 292-443)-MukB(head domain)-ATPgammaS complex, symmetric dimer 1T98 ; 2.9 ; Crystal Structure of MukF(1-287) 6XIZ ; 1.8 ; Crystal structure of multi-copper oxidase from Pediococcus acidilactici 6XJ0 ; 2.34 ; Crystal structure of multi-copper oxidase from Pediococcus pentosaceus 6VOX ; 3.8 ; Crystal structure of multi-copper oxidase from Pseudomonas Parafulva 6VOW ; 1.92 ; Crystal structure of multi-copper oxidase from Pseudomonas Thermotolerans 5UAN ; 3.508 ; Crystal structure of multi-domain RAR-beta-RXR-alpha heterodimer on DNA 5T2E ; 1.5 ; Crystal Structure of multi-drug resistant HIV-1 protease PR-S17 6O54 ; 1.21 ; Crystal Structure of multi-drug resistant HIV-1 protease PR-S17 (D25N) 5T2Z ; 1.5 ; Crystal Structure of Multi-drug Resistant HIV-1 Protease PR-S17 in Complex with Darunavir 6O57 ; 1.71 ; Crystal Structure of multi-drug resistant HIV-1 protease PR-S17 with a substrate analog p2-NC in P41 6O5A ; 1.67 ; Crystal Structure of multi-drug resistant HIV-1 protease PR-S17 with a substrate analog p2-NC in P61 6O5X ; 1.7 ; Crystal Structure of multi-drug resistant HIV-1 protease PR-S17 with substrate analog CA-p2 7FHX ; 2.63 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 5.0 7FHV ; 2.28 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 6.5 7FHY ; 2.2 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 7.0 7FHZ ; 2.5 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 9.0 7FI0 ; 2.31 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in ManA bound form at pH-5.0 7FI1 ; 2.43 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 (WT) from Stenotrophomonas maltophilia (strain K279a) in ManA bound form at pH-7.0 7FHW ; 2.061 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 5.5 7FHU ; 2.43 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia (strain K279a) in apo form at pH 8.5 7FI2 ; 2.6 ; Crystal structure of Multi-functional Polysaccharide lyase Smlt1473-H168A from Stenotrophomonas maltophilia (strain K279a) at pH-5.0 3GDC ; 1.8 ; Crystal structure of multicopper oxidase 5YS1 ; 1.49 ; Crystal structure of Multicopper Oxidase CueO G304K mutant 5YS5 ; 2.2 ; Crystal structure of Multicopper Oxidase CueO G304K mutant with seven copper ions 7WW4 ; 2.23006 ; Crystal structure of multidomain beta-1,3(4)-glucanase 3EZU ; 1.95 ; Crystal structure of multidomain protein of unknown function with GGDEF-domain (NP_951600.1) from GEOBACTER SULFURREDUCENS at 1.95 A resolution 5K9O ; 3.387 ; Crystal structure of multidonor HV1-18+HD3-9 class broadly neutralizing Influenza A antibody 31.b.09 in complex with Hemagglutinin H1 A/California/04/2009 5K9Q ; 2.503 ; Crystal structure of multidonor HV1-18-class broadly neutralizing Influenza A antibody 16.a.26 in complex with A/Hong Kong/1-4-MA21-1/1968 (H3N2) Hemagglutinin 5KAN ; 2.785 ; Crystal structure of multidonor HV1-18-class broadly neutralizing Influenza A antibody 16.g.07 in complex with A/Hong Kong/1-4-MA21-1/1968 (H3N2) Hemagglutinin 5K9K ; 2.97 ; Crystal structure of multidonor HV6-1-class broadly neutralizing Influenza A antibody 56.a.09 in complex with Hemagglutinin Hong Kong 1968. 5K9J ; 1.904 ; Crystal structure of multidonor HV6-1-class broadly neutralizing Influenza A antibody 56.a.09 isolated following H5 immunization. 3HTJ ; 2.7 ; Crystal structure of multidrug binding protein EbrR complexed with ethidium 3HTA ; 2.3 ; Crystal structure of multidrug binding protein EbrR complexed with imidazole 3HTI ; 2.5 ; Crystal structure of multidrug binding protein EbrR complexed with malachite green 3HTH ; 2.7 ; Crystal structure of multidrug binding protein EbrR complexed with proflavin 2HQ5 ; 2.8 ; Crystal structure of multidrug binding protein QacR from Staphylococcus aureus cocrystallized with compound DB359 2DTZ ; 2.8 ; Crystal Structure of multidrug binding protein QacR from Staphylococcus aureus cocrystallized with compound DB75 3F8F ; 2.2 ; Crystal structure of multidrug binding transcriptional regulator LmrR complexed with Daunomycin 3F8C ; 2.2 ; Crystal structure of multidrug binding transcriptional regulator LmrR complexed with Hoechst 33342 7CZ9 ; 1.85 ; Crystal structure of multidrug efflux transporter OqxB from Klebsiella pneumoniae 4ZZD ; 2.351 ; CRYSTAL STRUCTURE OF MULTIDRUG RESISTANCE REGULATOR LMRR BOUND TO RIBOFLAVIN 4YHQ ; 1.3 ; Crystal structure of multidrug resistant clinical isolate PR20 with GRL-5010A 3UF3 ; 1.63 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical isolate PR20 4J5J ; 1.8 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20 in Complex with Amprenavir 3UCB ; 1.38 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20 in Complex with Darunavir 3UHL ; 2.2 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20 in Complex with p2-NC substrate analog 3UFN ; 1.45 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20 in Complex with Saquinavir 4YE3 ; 1.35 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20 with Inhibitor GRL-4410A 4J55 ; 1.31 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical isolate PR20 with the potent antiviral inhibitor GRL-02031 4J54 ; 1.55 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical isolate PR20 with the potent antiviral inhibitor GRL-0519A 4Z4X ; 1.75 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20D25N with Open Flap 4Z50 ; 1.45 ; Crystal Structure of Multidrug Resistant HIV-1 Protease Clinical Isolate PR20D25N with Tucked Flap 4EYR ; 1.8 ; Crystal structure of multidrug-resistant clinical isolate 769 HIV-1 protease in complex with ritonavir 4RVJ ; 1.6 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with amprenavir 4NJT ; 1.95 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with darunavir 4NJS ; 1.8 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with non-peptidic inhibitor, GRL008 4RVI ; 1.99 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with non-peptidic inhibitor, GRL0519 4RVX ; 1.955 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with non-peptidic inhibitor, GRL079 4NJV ; 1.8 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with ritonavir 4NJU ; 1.8 ; Crystal structure of multidrug-resistant clinical isolate A02 HIV-1 protease in complex with tipranavir 2EX0 ; 1.65 ; Crystal structure of multifunctional sialyltransferase from Pasteurella Multocida 2ILV ; 2.27 ; crystal structure of multifunctional sialyltransferase from Pasteurella multocida with CMP and alpha-lactose bound 2IHK ; 1.9 ; crystal structure of multifunctional sialyltransferase from pasteurella multocida with CMP-3F(equatorial)-Neu5Ac bound 2IHZ ; 2.0 ; Crystal structure of multifunctional sialyltransferase from pasteurella multocida with CMP-3F-Neu5Ac and alpha-lactose bound 2IHJ ; 2.0 ; crystal structure of multifunctional sialyltransferase from pasteurella multocida with CMP-3F-Neu5Ac bound 1WVL ; 2.6 ; Crystal Structure of Multimeric DNA-binding Protein Sac7d-GCN4 with DNA decamer 2QWW ; 2.07 ; Crystal structure of multiple antibiotic-resistance repressor (MarR) (YP_013417.1) from Listeria monocytogenes 4b F2365 at 2.07 A resolution 1WST ; 1.95 ; Crystal structure of multiple substrate aminotransferase (MsAT) from Thermococcus profundus 2D62 ; 2.1 ; Crystal structure of multiple sugar binding transport ATP-binding protein 5B2C ; 2.238 ; Crystal structure of Mumps virus hemagglutinin-neuraminidase 5B2D ; 2.177 ; Crystal structure of Mumps virus hemagglutinin-neuraminidase bound to 3-sialyllactose 6JJN ; 2.5 ; Crystal structure of Mumps virus hemagglutinin-neuraminidase bound to sialyl lewisX 6JJM ; 2.049 ; Crystal structure of Mumps virus hemagglutinin-neuraminidase bound to the oligosaccharide portion of the GM2 ganglioside 4Y21 ; 2.9 ; Crystal Structure of Munc13-1 MUN domain 5UF7 ; 2.896 ; CRYSTAL STRUCTURE OF MUNC13-1 MUN DOMAIN 6A30 ; 2.793 ; Crystal Structure of Munc13-1 MUN Domain and Synaptobrevin-2 Juxtamembrane Linker Region 4JEH ; 2.5 ; Crystal Structure of Munc18a and Syntaxin1 lacking N-peptide complex 4JEU ; 3.2 ; Crystal Structure of Munc18a and Syntaxin1 with native N-terminus complex 1SBW ; 1.8 ; CRYSTAL STRUCTURE OF MUNG BEAN INHIBITOR LYSINE ACTIVE FRAGMENT COMPLEX WITH BOVINE BETA-TRYPSIN AT 1.8A RESOLUTION 1D02 ; 1.7 ; CRYSTAL STRUCTURE OF MUNI RESTRICTION ENDONUCLEASE IN COMPLEX WITH COGNATE DNA 4XH7 ; 1.65 ; Crystal structure of MUPP1 PDZ4 5DTH ; 1.95 ; Crystal structure of MUPP1 PDZ8 domain from rattus norvegicus 6FXD ; 1.45 ; Crystal structure of MupZ from Pseudomonas fluorescens 6Q03 ; 1.7 ; Crystal structure of MurA from Clostridium difficile in the presence of UDP-N-acetyl-alpha-D-muramic acid with modified Cys116 (S-[(1S)-1-carboxy-1-(phosphonooxy)ethyl]-L-cysteine) 6Q0Y ; 1.7 ; Crystal structure of MurA from Clostridium difficile, mutant C116S, in the presence of Uridine-Diphosphate-N-Acetylglucosamine 6Q0A ; 1.65 ; Crystal structure of MurA from Clostridium difficile, mutation C116D, n the presence of UDP-N-acetylmuramic acid 6Q11 ; 1.8 ; Crystal structure of MurA from Clostridium difficile, mutation C116S, in the presence of URIDINE-DIPHOSPHATE-2(N-ACETYLGLUCOSAMINYL) BUTYRIC ACID 6ET6 ; 1.2 ; Crystal structure of muramidase from Acinetobacter baumannii AB 5075UW prophage 6UUK ; 2.348 ; Crystal structure of muramoyltetrapeptide carboxypeptidase from Oxalobacter formigenes 5A5E ; 1.84 ; CRYSTAL STRUCTURE OF MURD LIGASE FROM ESCHERICHIA COLI 5A5F ; 1.9 ; CRYSTAL STRUCTURE OF MURD LIGASE FROM ESCHERICHIA COLI IN COMPLEX WITH UMA AND ADP 4BUC ; 2.17 ; CRYSTAL STRUCTURE OF MURD LIGASE FROM THERMOTOGA MARITIMA IN APO FORM 2WJP ; 1.6 ; CRYSTAL STRUCTURE OF MURD LIGASE IN COMPLEX WITH D-GLU CONTAINING RHODANINE INHIBITOR 2JFF ; 1.89 ; Crystal structure of MurD ligase in complex with D-Glu containing sulfonamide inhibitor 2UUO ; 2.5 ; Crystal structure of MurD ligase in complex with D-Glu containing sulfonamide inhibitor 2UUP ; 1.88 ; Crystal structure of MurD ligase in complex with D-Glu containing sulfonamide inhibitor 2VTD ; 1.94 ; Crystal structure of MurD ligase in complex with D-Glu containing sulfonamide inhibitor 2VTE ; 2.2 ; Crystal structure of MurD ligase in complex with D-Glu containing sulfonamide inhibitor 2JFH ; 1.97 ; Crystal structure of MurD ligase in complex with L-Glu containing sulfonamide inhibitor 2JFG ; 1.52 ; Crystal structure of MurD ligase in complex with UMA and ADP 7B53 ; 1.75 ; Crystal structure of MurE from E.coli 7B6J ; 2.09 ; Crystal structure of MurE from E.coli in complex with minifrag succinimide 7B6M ; 1.67 ; Crystal structure of MurE from E.coli in complex with Z1198948504 7B60 ; 1.91 ; Crystal structure of MurE from E.coli in complex with Z1269139261 7B6I ; 2.069 ; Crystal structure of MurE from E.coli in complex with Z1373445602 7B6G ; 1.937 ; Crystal structure of MurE from E.coli in complex with Z1675346324 7B9E ; 2.12 ; Crystal structure of MurE from E.coli in complex with Z275151340 7B6L ; 2.08 ; Crystal structure of MurE from E.coli in complex with Z57299368 7B61 ; 1.65 ; Crystal structure of MurE from E.coli in complex with Z57299526 7B68 ; 1.89 ; Crystal structure of MurE from E.coli in complex with Z57299526 7B6Q ; 1.82 ; Crystal structure of MurE from E.coli in complex with Z57299526 7B6K ; 1.838 ; Crystal structure of MurE from E.coli in complex with Z57715447 7B9W ; 1.82 ; Crystal structure of MurE from E.coli in complex with Z757284380 7B6N ; 1.79 ; Crystal structure of MurE from E.coli in complex with Z757284952 4BUB ; 2.9 ; CRYSTAL STRUCTURE OF MURE LIGASE FROM THERMOTOGA MARITIMA IN COMPLEX WITH ADP 5HXD ; 2.6 ; Crystal structure of murein-tripeptide amidase MpaA from Escherichia coli O157 3ZL8 ; 1.65 ; CRYSTAL STRUCTURE OF MURF LIGASE FROM THERMOTOGA MARITIMA IN COMPLEX WITH ADP 3ZM5 ; 2.94 ; CRYSTAL STRUCTURE OF MURF LIGASE IN COMPLEX WITH CYANOTHIOPHENE INHIBITOR 3ZM6 ; 1.84 ; CRYSTAL STRUCTURE OF MURF LIGASE IN COMPLEX WITH CYANOTHIOPHENE INHIBITOR 1NLM ; 2.5 ; CRYSTAL STRUCTURE OF MURG:GLCNAC COMPLEX 5QIJ ; 2.65 ; CRYSTAL STRUCTURE OF MURINE 11B- HYDROXYSTEROIDDEHYDROGENASE COMPLEXED WITH 2-(3-(1-(4- CHLOROPHENYL)CYCLOPROPYL)-[1,2,4]TRIAZOLO[4,3-A]PYRIDIN-8- YL)PROPAN-2-OL 5PGZ ; 2.9 ; CRYSTAL STRUCTURE OF MURINE 11BETA- HYDROXYSTEROIDDEHYDROGENASE COMPLEXED WITH 2-[(5R,7S)-6-HYDROXY-2-PHENYLADAMANTAN-2-YL]-1-(3-HYDROXYAZETIDIN-1-YL)ETHAN-1-ONE (BMS-816336) 4X8J ; 2.35 ; Crystal Structure of murine 12F4 Fab monoclonal antibody against ADAMTS5 4Q6I ; 3.65 ; Crystal structure of murine 2D5 Fab, a potent anti-CD4 HIV-1-neutralizing antibody in complex with CD4 5WI8 ; 2.95 ; Crystal structure of murine 4-1BB from HEK293T cells in P21 space group 5WJF ; 2.6 ; Crystal structure of murine 4-1BB from HEK293T cells in P21212 space group 6MKB ; 2.5 ; Crystal structure of murine 4-1BB ligand 5WIW ; 2.3 ; Crystal structure of murine 4-1BB N128A mutant from HEK293T cells in P43 space group 6MKZ ; 2.65 ; Crystal structure of murine 4-1BB/4-1BBL complex 4X80 ; 2.6 ; Crystal Structure of murine 7B4 Fab monoclonal antibody against ADAMTS5 1GUK ; 2.9 ; CRYSTAL STRUCTURE OF MURINE ALPHA-CLASS GSTA4-4 3NH4 ; 2.0 ; Crystal structure of murine aminoacylase 3 3NFZ ; 2.147 ; Crystal structure of murine aminoacylase 3 in complex with N-acetyl-L-tyrosine 3NH8 ; 2.802 ; Crystal structure of murine aminoacylase 3 in complex with N-acetyl-S-1,2-dichlorovinyl-L-cysteine 3ZBV ; 1.64 ; Crystal Structure of murine Angiogenin-2 3ZBW ; 1.801 ; Crystal Structure of murine Angiogenin-3 1U5X ; 1.8 ; Crystal structure of murine APRIL at pH 5.0 1U5Y ; 2.3 ; Crystal structure of murine APRIL, pH 8.0 1FZQ ; 1.7 ; CRYSTAL STRUCTURE OF MURINE ARL3-GDP 8A1I ; 2.69 ; Crystal structure of murine Armc8 isoform beta 5LIA ; 1.92 ; Crystal structure of murine autotaxin in complex with a small molecule inhibitor 4I0K ; 2.97 ; Crystal structure of murine B7-H3 extracellular domain 2H3P ; 2.2 ; Crystal structure of murine carnitine acetyltransferase in complex with carnitine and acetyl-CoA 2H3U ; 1.9 ; Crystal structure of murine carnitine acetyltransferase in complex with carnitine and CoA 6NS7 ; 2.4 ; Crystal structure of murine caspase-11 6C74 ; 1.358 ; Crystal Structure of Murine CD300lf in complex with phosphocholine 1L6Z ; 3.32 ; CRYSTAL STRUCTURE OF MURINE CEACAM1A[1,4]: A CORONAVIRUS RECEPTOR AND CELL ADHESION MOLECULE IN THE CEA FAMILY 5VST ; 3.1 ; Crystal structure of murine CEACAM1b 4TZU ; 2.0 ; Crystal Structure of Murine Cereblon in Complex with Pomalidomide 4TZC ; 1.88 ; Crystal Structure of Murine Cereblon in Complex with Thalidomide 4BX3 ; 2.193 ; Crystal Structure of murine Chronophin (Pyridoxal Phosphate Phosphatase) 5AES ; 2.751 ; Crystal Structure of murine Chronophin (Pyridoxal Phosphate Phosphatase) in Complex with a PNP-derived Inhibitor 4BX2 ; 2.193 ; Crystal Structure of murine Chronophin (Pyridoxal Phosphate Phosphatase) in complex with Beryllium trifluoride 5X17 ; 2.0 ; Crystal structure of murine CK1d in complex with ADP 1FFP ; 2.6 ; CRYSTAL STRUCTURE OF MURINE CLASS I H-2DB COMPLEXED WITH PEPTIDE GP33 (C9M/K1S) 1FFN ; 2.7 ; CRYSTAL STRUCTURE OF MURINE CLASS I H-2DB COMPLEXED WITH PEPTIDE GP33(C9M) 1FFO ; 2.65 ; CRYSTAL STRUCTURE OF MURINE CLASS I H-2DB COMPLEXED WITH SYNTHETIC PEPTIDE GP33 (C9M/K1A) 1BZ9 ; 2.8 ; CRYSTAL STRUCTURE OF MURINE CLASS I MHC H2-DB COMPLEXED WITH A SYNTHETIC PEPTIDE P1027 1MUJ ; 2.15 ; Crystal structure of murine class II MHC I-Ab in complex with a human CLIP peptide 2AQ5 ; 1.75 ; Crystal Structure of Murine Coronin-1 2B4E ; 2.3 ; Crystal Structure of Murine Coronin-1: monoclinic form 4M10 ; 2.01 ; Crystal Structure of Murine Cyclooxygenase-2 Complex with Isoxicam 4M11 ; 2.45 ; Crystal Structure of Murine Cyclooxygenase-2 Complex with Meloxicam 4RUT ; 2.16 ; crystal structure of murine cyclooxygenase-2 with 13-methyl-arachidonic Acid 2RMC ; 1.64 ; Crystal structure of murine cyclophilin C complexed with immunosuppressive drug cyclosporin A 6V3R ; 2.66 ; Crystal structure of murine cycloxygenase in complex with a harmaline analog, 4,9-dihydro-3H-pyrido[3,4-b]indole 6O16 ; 2.875 ; Crystal structure of murine DHX37 in complex with RNA 1F5Q ; 2.5 ; CRYSTAL STRUCTURE OF MURINE GAMMA HERPESVIRUS CYCLIN COMPLEXED TO HUMAN CYCLIN DEPENDENT KINASE 2 7E57 ; 3.302 ; Crystal structure of murine GITR-GITRL complex 6N9N ; 3.3 ; Crystal structure of murine GSDMD 4RS0 ; 2.807 ; Crystal Structure of Murine H90W Cyclooxygenase-2 Complexed with S-ibuprofen 5O9K ; 4.014 ; Crystal structure of Murine Histmaine-Releasing Factor (HRF/TCTP) 3KHO ; 3.11 ; Crystal structure of murine Ig-beta (CD79b) homodimer 3KHQ ; 1.7 ; Crystal structure of murine Ig-beta (CD79b) in the monomeric form 1QW4 ; 2.4 ; Crystal Structure of Murine Inducible Nitric Oxide Synthase Oxygenase Domain in complex with N-omega-propyl-L-arginine. 3B5K ; 2.5 ; Crystal structure of murine interleukin-5 4PL3 ; 2.9 ; Crystal structure of murine IRE1 in complex with MKC9989 inhibitor 4PL4 ; 3.0 ; Crystal structure of murine IRE1 in complex with OICR464 inhibitor 4PL5 ; 3.4 ; Crystal structure of murine IRE1 in complex with OICR573 inhibitor 5CHF ; 2.3 ; Crystal structure of murine ISG15 in space group P21212 5CGJ ; 3.36 ; Crystal structure of murine Keap1 in complex with RA839, a non-covalent small-molecule binder to Keap1 and selective activator of Nrf2 signalling. 1LDP ; 3.1 ; CRYSTAL STRUCTURE OF MURINE MHC CLASS I H-2LD WITH A MIXTURE OF BOUND PEPTIDES 5T7G ; 1.961 ; Crystal Structure of Murine MHC-I H-2Dd in complex with Murine Beta2-Microglobulin and a Variant of Peptide (PT9) of HIV gp120 MN Isolate (IGPGRAFYT) 5KD7 ; 2.35 ; Crystal Structure of Murine MHC-I H-2Dd in complex with Murine Beta2-Microglobulin and a Variant of Peptide (PV9) of HIV gp120 MN Isolate (IGPGRAFYV) 5KD4 ; 3.05 ; Crystal Structure of Murine MHC-I H-2Dd in complex with Murine Beta2-Microglobulin and a Variant of Peptide (PVI10) of HIV gp120 MN Isolate (IGPGRAFYVI) 6NK3 ; 2.2 ; Crystal structure of murine Mxra8 ectodomain 7VMT ; 1.95001 ; Crystal structure of murine N-acetylglucosaminyl transferase IVa (GnT-IVa) lectin domain in unliganded form 5LAE ; 1.85 ; Crystal structure of murine N1-acetylpolyamine oxidase 5LGB ; 1.8 ; Crystal structure of murine N1-acetylpolyamine oxidase in complex with MDL72527 5LFO ; 1.66 ; Crystal structure of murine N1-acetylpolyamine oxidase in complex with N1-acetylspermine 3G8K ; 2.0 ; Crystal structure of murine natural killer cell receptor, Ly49L4 3G8L ; 2.5 ; Crystal structure of murine natural killer cell receptor, Ly49L4 1Q1F ; 1.5 ; Crystal structure of murine neuroglobin 5EOH ; 1.9 ; Crystal structure of murine neuroglobin at 270 MPa pressure 5EQM ; 2.05 ; Crystal structure of murine neuroglobin at 310 MPa pressure 5EET ; 2.0 ; Crystal structure of murine neuroglobin at ambient pressure 6I40 ; 1.9 ; Crystal structure of murine neuroglobin bound to CO at 15K under illumination using optical fiber 6I3T ; 2.0 ; Crystal structure of murine neuroglobin bound to CO at 40 K. 4O1T ; 1.6 ; Crystal structure of murine neuroglobin mutant F106W 5F0B ; 2.146 ; Crystal structure of murine neuroglobin mutant F106W at 280 MPa pressure 5F2A ; 2.1 ; Crystal structure of murine neuroglobin mutant F106W at 310 MPa pressure 5EYS ; 1.75 ; Crystal structure of murine neuroglobin mutant F106W at ambient pressure 4MU5 ; 1.8 ; Crystal structure of murine neuroglobin mutant M144W 5EV5 ; 2.0 ; Crystal structure of murine neuroglobin mutant V101F at 150 MPa pressure 5EYJ ; 2.4 ; Crystal structure of murine neuroglobin mutant V101F at 240 MPa pressure 5EU2 ; 2.0 ; Crystal structure of murine neuroglobin mutant V101F at ambient pressure 4NZI ; 2.1 ; Crystal structure of murine neuroglobin mutant V140W 5O18 ; 1.86 ; Crystal structure of murine neuroglobin mutant V140W 5O1K ; 2.05 ; Crystal structure of murine neuroglobin mutant V140W under 20 bar xenon pressure 5O27 ; 2.31 ; Crystal structure of murine neuroglobin mutant V140W under 30 bar xenon pressure 5O17 ; 1.8 ; Crystal structure of murine neuroglobin under 100 bar krypton 6EYE ; 1.7 ; Crystal structure of murine neuroglobin under 150 bar krypton 5NVI ; 1.6 ; Crystal structure of murine neuroglobin under 50 bar argon pressure 5NW6 ; 1.7 ; Crystal structure of murine neuroglobin under 50 bar krypton pressure 3GKT ; 1.86 ; Crystal structure of murine neuroglobin under Kr pressure 4G3F ; 1.642 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to a 2-(aminothiazoly)phenol (cmp2) 4G3E ; 2.5 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to a 6-alkynylindoline (cmp1) 5T8Q ; 2.63 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to aryl pyrrole fragment 17 5T8P ; 2.32 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to benzoxepin compound 2 5T8O ; 2.41 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to Imidazobenzoxepin Compound 3 6MYN ; 2.744 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) bound to inhibitor R7 6G4Y ; 2.65 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) in complex with compound 1a 6G4Z ; 2.84 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) in complex with compound 2f 4G3G ; 2.5 ; Crystal structure of murine NF-kappaB inducing kinase (NIK) V408L bound to a 2-(aminothiazolyl)phenol (cmp3) 3GK9 ; 1.8 ; Crystal structure of murine Ngb under Xe pressure 1JFM ; 2.85 ; CRYSTAL STRUCTURE OF MURINE NK CELL LIGAND RAE-1 BETA 4PP8 ; 1.95 ; Crystal structure of murine NK cell ligand RAE-1 beta in complex with NKG2D 2GVL ; 2.1 ; Crystal Structure of Murine NMPRTase 6XW5 ; 1.72 ; Crystal structure of murine norovirus P domain in complex with Nanobody NB-5820 6XW7 ; 2.15 ; Crystal structure of murine norovirus P domain in complex with Nanobody NB-5829 and glycochenodeoxycholate (GCDCA) 6XW6 ; 1.96 ; Crystal structure of murine norovirus P domain in complex with Nanobody NB-5853 6XW4 ; 2.19 ; Crystal structure of murine norovirus P domain in complex with Nanobody NB-5867 3LQ6 ; 2.0 ; Crystal Structure of Murine Norovirus Protruding (P) Domain 3SFG ; 2.209 ; crystal structure of murine norovirus RNA dependent RNA polymerase in complex with 2thiouridine(2TU) 3SFU ; 2.501 ; crystal structure of murine norovirus RNA dependent RNA polymerase in complex with ribavirin 3UPF ; 2.6 ; Crystal structure of murine norovirus RNA-dependent RNA polymerase bound to NF023 1F35 ; 2.3 ; CRYSTAL STRUCTURE OF MURINE OLFACTORY MARKER PROTEIN 1JOB ; 2.4 ; Crystal Structure of Murine Olfactory Marker Protein in Spacegroup P3121 1JOD ; 3.2 ; Crystal Structure of Murine Olfactory Marker Protein in Spacegroup P43212 2HEY ; 2.0 ; Crystal structure of murine OX40L bound to human OX40 5M02 ; 1.75 ; Crystal structure of murine P14 TCR / H-2Db with PF, modified gp33 peptide from LCMV 5M00 ; 1.95 ; Crystal structure of murine P14 TCR complex with H-2Db and Y4A, modified gp33 peptide from LCMV 5M01 ; 1.95 ; Crystal structure of murine P14 TCR/ H-2Db complex with PA, modified gp33 peptide from LCMV 6SB1 ; 2.05 ; Crystal structure of murine perforin-2 P2 domain crystal form 1 6SB4 ; 3.17 ; Crystal structure of murine perforin-2 P2 domain crystal form 2 8F69 ; 2.2 ; Crystal structure of murine PolG2 dimer bound to DNA 8F6B ; 2.75 ; Crystal structure of murine PolG2 hexamer bound to DNA 5CPU ; 1.64 ; Crystal structure of murine polyomavirus PTA strain VP1 5CPX ; 1.87 ; Crystal structure of murine polyomavirus PTA strain VP1 in complex with the DSLNT glycan 5CPY ; 1.93 ; Crystal structure of murine polyomavirus PTA strain VP1 in complex with the GD1a glycan 5CPW ; 1.75 ; Crystal structure of murine polyomavirus PTA strain VP1 in complex with the GT1a glycan 5CQ0 ; 1.9 ; Crystal structure of murine polyomavirus RA strain VP1 in complex with the GD1a glycan 5CPZ ; 1.71 ; Crystal structure of murine polyomavirus RA strain VP1 in complex with the GT1a glycan 5WNL ; 2.5 ; Crystal structure of murine receptor-interacting protein 4 (Ripk4) D143N bound to staurosporine 5WNK ; 3.11 ; Crystal structure of murine receptor-interacting protein 4 (Ripk4) D143N bound to TG100-115 5WNM ; 2.6 ; Crystal structure of murine receptor-interacting protein 4 (Ripk4) D143N bound to tozasertib (VX-680) 5WNI ; 2.65 ; Crystal structure of murine receptor-interacting protein kinase 4 (Ripk4) D143N in complex with ATP 5WNJ ; 2.55 ; Crystal structure of murine receptor-interacting protein kinase 4 (Ripk4) D143N in complex with lestaurtinib 2VXU ; 2.36 ; Crystal structure of murine reference antibody 125-2H Fab fragment 6ZFE ; 2.35 ; Crystal structure of murine S100A9 mutant C80A bound to calcium and zinc 3S26 ; 1.8 ; Crystal Structure of Murine Siderocalin (Lipocalin 2, 24p3) 3U9P ; 2.8 ; Crystal Structure of Murine Siderocalin in Complex with an Fab Fragment 1EK2 ; 3.0 ; CRYSTAL STRUCTURE OF MURINE SOLUBLE EPOXIDE HYDROLASE COMPLEXED WITH CDU INHIBITOR 1EK1 ; 3.1 ; CRYSTAL STRUCTURE OF MURINE SOLUBLE EPOXIDE HYDROLASE COMPLEXED WITH CIU INHIBITOR 1CR6 ; 2.8 ; CRYSTAL STRUCTURE OF MURINE SOLUBLE EPOXIDE HYDROLASE COMPLEXED WITH CPU INHIBITOR 1CQZ ; 2.8 ; CRYSTAL STRUCTURE OF MURINE SOLUBLE EPOXIDE HYDROLASE. 5DBX ; 2.5 ; Crystal structure of murine SPAK(T243D) in complex with AMPPNP 1JNP ; 2.5 ; Crystal Structure of Murine Tcl1 at 2.5 Resolution 1KEJ ; 3.0 ; Crystal Structure of Murine Terminal Deoxynucleotidyl Transferase complexed with ddATP 4GC5 ; 1.801 ; Crystal structure of murine TFB1M 4GC9 ; 2.103 ; Crystal structure of murine TFB1M in complex with SAM 2PUX ; 2.0 ; Crystal structure of murine thrombin in complex with the extracellular fragment of murine PAR3 2PV9 ; 3.5 ; Crystal structure of murine thrombin in complex with the extracellular fragment of murine PAR4 3HK3 ; 1.94 ; Crystal structure of murine thrombin mutant W215A/E217A (one molecule in the asymmetric unit) 3HK6 ; 3.2 ; Crystal structure of murine thrombin mutant W215A/E217A (two molecules in the asymmetric unit) 3HKI ; 2.2 ; Crystal structure of murine thrombin mutant W215A/E217A in complex with the extracellular fragment of human PAR1 5JXD ; 2.029 ; Crystal structure of murine Tnfaip8 C165S mutant 7WAG ; 2.55 ; Crystal structure of MurJ squeezed form 4M0D ; 2.577 ; Crystal structure of MurQ from H.influenzae in apo form 4LZJ ; 2.405 ; Crystal Structure of MurQ from H.influenzae with bound inhibitor 3ZC9 ; 2.24 ; Crystal Structure of Murraya koenigii Miraculin-Like Protein at 2.2 A resolution at pH 4.6 3ZC8 ; 2.24 ; Crystal Structure of Murraya koenigii Miraculin-Like Protein at 2.2 A resolution at pH 7.0 6OZQ ; 2.153 ; Crystal structure of Mus musculus (Mm) Endonuclease V (K155M) in complex with a 23mer RNA oligo containing an inosine after a 100 min soak in 10 mM Mn2+ and K+ 6OZK ; 2.104 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after 68h soak in Ca2+ 6OZM ; 2.15 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 10 min soak in 10 mM Mn2+ 6OZR ; 2.15 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 15 min soak in 10 mM Mg2+ 6OZN ; 1.9 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 15 min soak in 10 mM Mn2+ 6OZP ; 1.96 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 180 min soak in 10 mM Mn2+ 6OZL ; 2.1 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 2 min soak in Mn2+ 6OZO ; 2.235 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 30 min soak in 10 mM Mn2+ 6OZS ; 2.41 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine after a 90 min soak in 10 mM Mg2+ 6OZJ ; 2.247 ; Crystal structure of Mus musculus (Mm) Endonuclease V in complex with a 23mer RNA oligo containing an inosine in the absence of divalent cation 4E3X ; 1.24 ; Crystal Structure of Mus musculus 1-pyrroline-5-carboxylate dehydrogenase cryoprotected in proline 2WLS ; 2.6 ; Crystal structure of Mus musculus Acetylcholinesterase in complex with AMTS13 2GYU ; 2.2 ; Crystal structure of Mus musculus Acetylcholinesterase in complex with HI-6 2GYW ; 2.4 ; Crystal Structure of Mus musculus Acetylcholinesterase in Complex with Obidoxime 2GYV ; 2.5 ; Crystal structure of Mus musculus Acetylcholinesterase in complex with Ortho-7 3GB5 ; 2.0 ; Crystal structure of Mus musculus iodotyrosine deiodinase (IYD) bound to FMN 3GH8 ; 2.61 ; Crystal structure of Mus musculus iodotyrosine deiodinase (IYD) bound to FMN and di-iodotyrosine (DIT) 3GFD ; 2.45 ; Crystal structure of Mus musculus iodotyrosine deiodinase (IYD) bound to FMN and mono-iodotyrosine (MIT) 3TO0 ; 2.655 ; Crystal structure of Mus musculus iodotyrosine deiodinase (IYD) C217A, C239A bound to FMN 3TNZ ; 2.25 ; Crystal structure of Mus musculus iodotyrosine deiodinase (IYD) C217A, C239A bound to FMN and mono-iodotyrosine (MIT) 7BR9 ; 3.3 ; Crystal structure of mus musculus IRG1 8BVA ; 2.19 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 in complex with RSF1_114-126 8C1J ; 2.0 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 in complex with RSF1_18-30 5FWA ; 1.8 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 with CP1 5FWD ; 2.0 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 with CP2 5JMQ ; 1.795 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 with CP3 5FUL ; 1.89 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 2 with SAH 5K8V ; 2.25 ; Crystal Structure of Mus musculus Protein Arginine Methyltransferase 4 (CARM1 130-487) with CP1 6MBX ; 2.4 ; CRYSTAL STRUCTURE OF MUSKMELON ALLERGEN CUC M 2 4XY5 ; 1.8 ; Crystal Structure of mutant (Asp52Ala) Hypothetical Thioesterase Protein SP_1851 from Streptococcus pneumoniae TIGR4 3TX4 ; 2.32 ; Crystal Structure of Mutant (C354A) M. tuberculosis LD-transpeptidase type 2 4GVI ; 1.55 ; Crystal structure of mutant (D248N) Salmonella typhimurium family 3 glycoside hydrolase (NagZ) in complex with GlcNAc-1,6-anhMurNAc 4ZO6 ; 2.0 ; Crystal Structure of mutant (D270A) beta-glucosidase from Listeria innocua in complex with cellobiose 4ZO7 ; 2.0 ; Crystal structure of mutant (D270A) beta-glucosidase from Listeria innocua in complex with gentiobiose 4ZO9 ; 1.99 ; Crystal Structure of mutant (D270A) beta-glucosidase from Listeria innocua in complex with laminaribiose 4ZO8 ; 2.0 ; Crystal Structure of mutant (D270A) beta-glucosidase from Listeria innocua in complex with sophorose 4ZOC ; 1.79 ; Crystal Structure of mutant (D270A) beta-glucosidase from Listeria innocua in complex with sophorotriose 5XXN ; 2.05 ; Crystal Structure of mutant (D286N) beta-glucosidase from Bacteroides thetaiotaomicron in complex with sophorose 5XXO ; 2.02 ; Crystal structure of mutant (D286N) GH3 beta-glucosidase from Bacteroides thetaiotaomicron in complex with sophorotriose 4GYJ ; 1.65 ; Crystal structure of mutant (D318N) bacillus subtilis family 3 glycoside hydrolase (nagz) in complex with glcnac-murnac (space group P1) 4GYK ; 1.8 ; Crystal structure of mutant (D318N) bacillus subtilis family 3 glycoside hydrolase (nagz) in complex with glcnac-murnac (space group P1211) 1MZZ ; 2.0 ; Crystal Structure of Mutant (M182T)of Nitrite Reductase 4XY6 ; 2.0 ; Crystal Structure of mutant (Thr68Ala) Hypothetical Thioesterase Protein SP_1851 from Streptococcus pneumoniae TIGR4 5UQU ; 1.7 ; Crystal structure of mutant 2-methylcitrate synthase (mcsAG352A) from Aspergillus fumigatus 6BOM ; 2.05 ; Crystal structure of mutant 2-methylcitrate synthase mcsAG306A from Aspergillus fumigatus. 6BOL ; 2.2 ; Crystal structure of mutant 2-methylcitrate synthase mcsAG419A from Aspergillus fumigatus. 3DK3 ; 2.02 ; Crystal structure of mutant ABL kinase domain in complex with small molecule fragment 3DK6 ; 2.02 ; Crystal structure of mutant ABL kinase domain in complex with small molecule fragment 3DK7 ; 2.01 ; Crystal structure of mutant ABL kinase domain in complex with small molecule fragment 5OAN ; 2.6 ; Crystal structure of mutant AChBP in complex with glycine (T53F, Q74R, Y110A, I135S, G162E, S206CCP_KGTG) 5OAD ; 2.1 ; Crystal structure of mutant AChBP in complex with HEPES (T53F, Q74R, Y110A, I135S, G162E) 5OAL ; 3.2 ; Crystal structure of mutant AChBP in complex with strychnine (T53F, Q74R, Y110A, I135S, G162E) 5OA0 ; 2.6 ; Crystal structure of mutant AChBP in complex with strychnine (T53F, Q74R, Y110A, I135S, W164F) 5OAJ ; 2.47 ; Crystal structure of mutant AChBP in complex with tropisetron (T53F, Q74R, Y110A, I135S, G162E) 7YXR ; 2.5 ; Crystal structure of mutant AncGR2-LBD (Y545A) bound to dexamethasone and SHP coregulator fragment 8FH1 ; 1.69 ; Crystal structure of mutant Androgen Receptor ligand binding domain F877L/T878A with DHT 8FH0 ; 1.59 ; Crystal structure of mutant Androgen Receptor ligand binding domain H875Y/F877L/T878A with DHT 8FH2 ; 1.59 ; Crystal structure of mutant Androgen Receptor ligand binding domain L702H/H875Y with DHT 8FGZ ; 1.61 ; Crystal structure of mutant Androgen Receptor ligand binding domain L702H/H875Y/F877L with DHT 8FGY ; 2.2 ; Crystal structure of mutant Androgen Receptor ligand binding domain L702H/H875Y/F877L/T878A with DHT 7ZTV ; 1.94 ; Crystal structure of mutant AR-LBD (F755L) bound to dihydrotestosterone 7ZTX ; 1.89 ; Crystal structure of mutant AR-LBD (F755V) bound to dihydrotestosterone 7ZU2 ; 1.74 ; Crystal structure of mutant AR-LBD (Q799E) bound to dihydrotestosterone 7ZU1 ; 1.68 ; Crystal structure of mutant AR-LBD (V758A) bound to dihydrotestosterone 7ZTZ ; 1.4 ; Crystal structure of mutant AR-LBD (Y764C) bound to dihydrotestosterone 6NL6 ; 1.4 ; Crystal structure of mutant B1 immunoglobulin-binding domain of Streptococcal Protein G (T16F, T18A, V21E, T25L, K28Y, V29I, K31R, Q32H, Y33L, N35K, D36H, N37Q) 6DUC ; 1.791 ; Crystal structure of mutant beta-K167T tryptophan synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the alpha-site, cesium ion at the metal coordination site, and 2-aminophenol quinonoid (1D0) at the beta-site 3T9M ; 2.03 ; Crystal structure of Mutant C221D of Carbapenemase CphA from Aeromonas Hydrophila 5ZLA ; 1.7 ; Crystal structure of mutant C387A of DFA-IIIase from Arthrobacter chlorophenolicus A6 in complex with DFA-III 4M05 ; 2.28 ; Crystal Structure of Mutant Chlorite Dismutase from Candidatus Nitrospira defluvii R173E 4M07 ; 2.5 ; Crystal Structure of Mutant Chlorite Dismutase from Candidatus Nitrospira defluvii W145F 4M06 ; 2.6 ; Crystal Structure of Mutant Chlorite Dismutase from Candidatus Nitrospira defluvii W145F in Complex with Cyanide 4M08 ; 2.799 ; Crystal Structure of Mutant Chlorite Dismutase from Candidatus Nitrospira defluvii W145V 4M09 ; 2.45 ; Crystal Structure of Mutant Chlorite Dismutase from Candidatus Nitrospira defluvii W146Y R173Q 5W2D ; 2.7 ; Crystal structure of mutant CJ YCEI protein (CJ-G34C) for nanotechnology applications 5W2R ; 2.9 ; Crystal structure of mutant CJ YCEI protein (CJ-G34C) with 5-mercapto-2-nitrobenzoic acid guest structure 5W2K ; 2.78 ; Crystal structure of mutant CJ YCEI protein (CJ-G34C) with hydroxymercuribenzoic acid guest structure 5W2V ; 2.9 ; Crystal structure of mutant CJ YCEI protein (CJ-G34C) with selenocysteine guest structure 5W37 ; 2.52 ; Crystal structure of mutant CJ YCEI protein (CJ-N182C) for nanotechnology applications 5W3A ; 2.76 ; Crystal structure of mutant CJ YCEI protein (CJ-N182C) with 5-mercapto-2-nitrobenzoic acid guest structure 5W3B ; 2.7 ; Crystal structure of mutant CJ YCEI protein (CJ-N182C) with mercuribenzoic acid guest structure 5W39 ; 2.48 ; Crystal structure of mutant CJ YCEI protein (CJ-N182C) with monobromobimane guest structure 5W3C ; 2.87 ; Crystal structure of mutant CJ YCEI protein (CJ-N182C) with selenocysteine guest structure 5W2X ; 2.73 ; Crystal structure of mutant CJ YCEI protein (CJ-N48C) for nanotechnology applications 5W2Z ; 2.8 ; Crystal structure of mutant CJ YCEI protein (CJ-N48C) with 5-mercapto-2-nitrobenzoic acid guest structure 5W31 ; 2.56 ; Crystal structure of mutant CJ YCEI protein (CJ-N48C) with mercuribenzoic acid guest structure 5W30 ; 2.75 ; Crystal structure of mutant CJ YCEI protein (CJ-N48C) with monobromobimane guest structure 5W32 ; 2.6 ; Crystal structure of mutant CJ YCEI protein (CJ-N48C) with selenocysteine guest structure 3GJP ; 2.0 ; Crystal structure of mutant coiled coil GCN4 leucine zipper 3BT8 ; 2.7 ; Crystal Structure of Mutant Cyclophilin (R147A) from Leishmania donovani 6JHH ; 2.025 ; Crystal structure of mutant D350A of Pullulanase from Paenibacillus barengoltzii complexed with maltotriose 6JHI ; 2.319 ; Crystal structure of mutant D470A of Pullulanase from Paenibacillus barengoltzii complexed with maltotetraose 3LY8 ; 1.9 ; Crystal structure of mutant D471E of the periplasmic domain of CadC 3LY9 ; 2.2 ; Crystal structure of mutant D471N of the periplasmic domain of CadC 1GS8 ; 1.9 ; Crystal structure of mutant D92N Alcaligenes xylosoxidans Nitrite Reductase 3PWT ; 1.9 ; Crystal structure of mutant E.coli topoisomerase IA 2V8D ; 2.3 ; Crystal structure of mutant E159A of beta-alanine synthase from Saccharomyces kluyveri 2V8H ; 2.0 ; Crystal structure of mutant E159A of beta-alanine synthase from Saccharomyces kluyveri in complex with its substrate N-carbamyl-beta- alanine 1F8U ; 2.9 ; CRYSTAL STRUCTURE OF MUTANT E202Q OF HUMAN ACETYLCHOLINESTERASE COMPLEXED WITH GREEN MAMBA VENOM PEPTIDE FASCICULIN-II 7VT4 ; 1.93 ; Crystal structure of mutant E393Q of MtGlu5 1W00 ; 2.2 ; Crystal structure of mutant enzyme D103L of Ketosteroid Isomerase from Pseudomonas putida biotype B 1W02 ; 2.3 ; Crystal structure of mutant enzyme Y16F/D103L of ketosteroid isomerase from Pseudomonas putida biotype B 1DMQ ; 2.15 ; CRYSTAL STRUCTURE OF MUTANT ENZYME Y32F OF KETOSTEROID ISOMERASE FROM PSEUDOMONAS PUTIDA BIOTYPE B 1VZZ ; 2.3 ; CRYSTAL STRUCTURE OF MUTANT ENZYME Y32F/D103L OF KETOSTEROID ISOMERASE FROM PSEUDOMONAS PUTIDA BIOTYPE B 1DMN ; 2.05 ; CRYSTAL STRUCTURE OF MUTANT ENZYME Y32F/Y57F OF KETOSTEROID ISOMERASE FROM PSEUDOMONAS PUTIDA BIOTYPE B 1W01 ; 2.2 ; Crystal structure of mutant enzyme Y57F/D103L of ketosteroid isomerase from Pseudomonas putida biotype B 7WNV ; 2.3 ; Crystal structure of mutant estrogen receptor alpha Y537S in complex with CO9 8T3I ; 1.57 ; Crystal structure of mutant exfoliative toxin C (ExhC) from Mammaliicoccus sciuri 4FS0 ; 3.25 ; Crystal structure of mutant F136D of mouse nectin-2 extracellular fragment D1-D2 1X91 ; 1.5 ; Crystal structure of mutant form A of a pectin methylesterase inhibitor from Arabidopsis 1X90 ; 2.68 ; Crystal structure of mutant form B of a pectin methylesterase inhibitor from Arabidopsis 4HQ0 ; 3.0 ; Crystal Structure of mutant form of Caspase-7 4HQR ; 3.0 ; Crystal Structure of mutant form of Caspase-7 8HWO ; 1.96 ; Crystal Structure of mutant GDSL Esterase of Photobacterium sp. J15 8HWP ; 1.73 ; Crystal Structure of Mutant GDSL Esterase of Photobacterium sp. J15 S12A in Complex with Butyrate 4ACS ; 2.1 ; Crystal structure of mutant GST A2-2 with enhanced catalytic efficiency with azathioprine 8GUN ; 2.30001 ; Crystal structure of mutant H528A of EsaD from Staphylococcus aureus 3QKZ ; 1.87 ; Crystal structure of mutant His269Arg AKR1B14 6C57 ; 3.5 ; Crystal structure of mutant human geranylgeranyl pyrophosphate synthase (Y246D) in complex with bisphosphonate inhibitor FV0109 6C56 ; 2.8 ; Crystal structure of mutant human geranylgeranyl pyrophosphate synthase (Y246D) in its Apo form 1GDW ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GDX ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GE0 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GE1 ; 1.7 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GE2 ; 2.0 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GE3 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GE4 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT LEFT-HANDED HELICAL POSITIONS 1GAY ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GAZ ; 1.8 ; Crystal Structure of Mutant Human Lysozyme Substituted at the Surface Positions 1GB0 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB2 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB3 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB5 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB6 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB7 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB8 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GB9 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GBO ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GBW ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GBX ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GBY ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GBZ ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GF8 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GF9 ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFA ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFE ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFG ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFH ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFJ ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFK ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFR ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFT ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFU ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1GFV ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1INU ; 1.8 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME SUBSTITUTED AT THE SURFACE POSITIONS 1C7P ; 2.4 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME WITH FOUR EXTRA RESIDUES (EAEA) AT THE N-TERMINAL 1IOC ; 2.4 ; CRYSTAL STRUCTURE OF MUTANT HUMAN LYSOZYME, EAEA-I56T 5UD8 ; 1.8 ; Crystal Structure of Mutant Ig-like Domain 1ZU3 ; 1.33 ; Crystal Structure Of Mutant K8A Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 1ZVG ; 1.2 ; Crystal Structure Of Mutant K8DP9S Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 1ZUT ; 1.7 ; Crystal Structure Of Mutant K8DP9SR58K Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 1ZYW ; 1.3 ; Crystal Structure Of Mutant K8DP9SR58KP60G Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 1ZYV ; 1.5 ; Crystal Structure Of Mutant K8DP9SR58KV59G Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 1ZVE ; 1.7 ; Crystal Structure Of Mutant K8G Of Scorpion alpha-Like Neurotoxin Bmk M1 From Buthus Martensii Karsch 7R6A ; 1.89 ; Crystal structure of mutant L124D/R125A/C273S of L-Asparaginase I from Yersinia pestis 1T7A ; 1.5 ; Crystal structure of mutant Lys8Asp of scorpion alpha-like neurotoxin BmK M1 from Buthus martensii Karsch 1T7B ; 1.85 ; Crystal structure of mutant Lys8Gln of scorpion alpha-like neurotoxin BmK M1 from Buthus martensii Karsch 1QZ3 ; 2.3 ; CRYSTAL STRUCTURE OF MUTANT M211S/R215L OF CARBOXYLESTERASE EST2 COMPLEXED WITH HEXADECANESULFONATE 5O4I ; 1.8 ; Crystal Structure of mutant M54L/M64L/M96L of Two-Domain Laccase from Streptomyces griseoflavus dialyzed against solution containing 0.25 mM copper sulfate 5O4Q ; 1.9 ; Crystal Structure of mutant M54L/M64L/M96L of Two-Domain Laccase from Streptomyces griseoflavus with 0.25 mM copper sulfate on growth medium 5O3K ; 2.1 ; Crystal Structure of mutant M54L/M64L/M96L of Two-Domain Laccase from Streptomyces griseoflavus with 1 mM copper sulfate on growth medium 1J72 ; 2.5 ; Crystal Structure of Mutant Macrophage Capping Protein (Cap G) with Actin-severing Activity in the Ca2+-Free Form 3VOD ; 2.6 ; Crystal Structure of mutant MarR C80S from E.coli 5H3R ; 2.67 ; Crystal Structure of mutant MarR C80S from E.coli complexed with operator DNA 4H1Q ; 1.59 ; Crystal structure of mutant MMP-9 catalytic domain in complex with a twin inhibitor. 4H82 ; 1.9 ; Crystal structure of mutant MMP-9 catalytic domain in complex with a twin inhibitor. 5F78 ; 1.8518 ; Crystal structure of Mutant N87T of adenosine/Methylthioadenosine phosphorylase from Schistosoma mansoni in APO form 5F7J ; 1.66 ; Crystal structure of Mutant N87T of adenosine/Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with Adenine 2NOO ; 1.65 ; Crystal Structure of Mutant NikA 3WJD ; 1.1 ; Crystal structure of mutant nitrobindin F44W/M75L/H76L/Q96C/M148L/H158L (NB5) from Arabidopsis thaliana 4YMY ; 1.0 ; Crystal structure of mutant nitrobindin M75A/H76L/Q96C/M148L/H158A (NB11) from Arabidopsis thaliana 3WJB ; 2.2 ; Crystal structure of mutant nitrobindin M75L/H76L/Q96C/M148L/H158L (NB4) from Arabidopsis thaliana 3WJC ; 2.0 ; Crystal structure of mutant nitrobindin M75L/H76L/Q96C/M148L/H158L covalently linked with [Rh(Cp-Mal)(COD)] (NB4-Rh) from Arabidopsis thaliana 3WJG ; 1.1 ; Crystal structure of mutant nitrobindin M75L/H76L/Q96C/M148W/H158L (NB10) from Arabidopsis thaliana 3WJF ; 2.2 ; Crystal structure of mutant nitrobindin M75L/H76L/Q96C/V128W/M148L/H158L (NB9) from Arabidopsis thaliana 3WJE ; 1.7 ; Crystal structure of mutant nitrobindin M75W/H76L/Q96C/M148L/H158L (NB6) from Arabidopsis thaliana 4YBV ; 2.0 ; Crystal Structure of mutant of (Q32A) thioesterase enzyme SAV0944 from Staphylococcus aureus subsp. aureus Mu50 7CQB ; 1.86 ; Crystal structure of mutant of a Petase mutant 3PII ; 2.9 ; Crystal structure of Mutant of ht- Alcohol Dehydrogenase with substrate analogue butyramide 4H0E ; 1.973 ; Crystal Structure of mutant ORR3 in complex with NTD of AraR 8B8Z ; 2.22 ; Crystal structure of mutant PPARG (C313A) and NCOR2 with an inverse agonist (compound 7e) 8B91 ; 2.23 ; Crystal structure of mutant PPARG (C313A) and NCOR2 with an inverse agonist (compound SI-1) 8AG0 ; 2.7 ; Crystal structure of mutant PRELID3a-TRIAP1 complex - R53E 1T7E ; 1.4 ; Crystal structure of mutant Pro9Ser of scorpion alpha-like neurotoxin BmK M1 from Buthus martensii Karsch 5F7O ; 1.8148 ; Crystal structure of Mutant Q289L of adenosine/Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with Adenine 5F7X ; 1.77 ; Crystal structure of Mutant Q289L of adenosine/Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with Tubercidin 1I5O ; 2.8 ; CRYSTAL STRUCTURE OF MUTANT R105A OF E. COLI ASPARTATE TRANSCARBAMOYLASE 2V8V ; 2.9 ; Crystal structure of mutant R322A of beta-alanine synthase from Saccharomyces kluyveri 7R69 ; 1.8 ; Crystal structure of mutant R43D/C273S of L-Asparaginase I from Yersinia pestis 7R6B ; 2.03 ; Crystal structure of mutant R43D/L124D/R125A/C273S of L-Asparaginase I from Yersinia pestis 4X44 ; 2.0535 ; Crystal Structure of Mutant R89Q of human Adenine phosphoribosyltransferase 4HLS ; 1.45 ; Crystal structure of mutant rabbit PRP 121-230 (S170N) 4HMR ; 1.6 ; Crystal structure of mutant rabbit PRP 121-230 (S170N/S174N) 4HMM ; 1.5 ; Crystal structure of mutant rabbit PRP 121-230 (S174N) 1Z3M ; 2.0 ; Crystal structure of mutant Ribonuclease S (F8Nva) 4QGB ; 2.6 ; Crystal structure of mutant ribosomal protein G219V TthL1 4QG3 ; 2.0 ; Crystal structure of mutant ribosomal protein G219V TthL1 in complex with 80nt 23S RNA from Thermus thermophilus 4LQ4 ; 1.75 ; crystal structure of mutant ribosomal protein L1 from Methanococcus jannaschii with deletion of 8 residues from C-terminus 4QVI ; 1.9 ; Crystal structure of mutant ribosomal protein M218L TthL1 in complex with 80nt 23S RNA from Thermus thermophilus 3UMY ; 1.9 ; Crystal structure of mutant ribosomal protein T217A TthL1 in complex with 80nt 23S RNA from Thermus thermophilus 3U56 ; 2.1 ; Crystal structure of mutant ribosomal protein T217V TthL1 in complex with 80nt 23S RNA from Thermus thermophilus 5NPM ; 2.7 ; CRYSTAL STRUCTURE OF MUTANT RIBOSOMAL PROTEIN TTHL1 LACKING 8 N-TERMINAL RESIDUES IN COMPLEX WITH 80NT 23S RNA FROM THERMUS THERMOPHILUS 6WUI ; 1.9 ; Crystal Structure of mutant S. pombe Rai1 (E150S/E199Q/E239Q) in complex with 3'-FADP 5F77 ; 2.02 ; Crystal structure of Mutant S12T of adenosine/Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with Adenine 5F76 ; 1.95 ; Crystal structure of Mutant S12T of Adenosine/Methylthioadenosine Phosphorylase from Schistosoma mansoni in complex with Methylthioadenosine 5F73 ; 2.06 ; Crystal structure of Mutant S12T of Adenosine/Methylthioadenosine Phosphorylase in APO form 1RM5 ; 2.1 ; Crystal structure of mutant S188A of photosynthetic glyceraldehyde-3-phosphate dehydrogenase A4 isoform, complexed with NADP 3QT8 ; 2.1 ; Crystal structure of mutant S192A Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with inhibitor 6-FMVAPP 2HA5 ; 2.15 ; Crystal structure of mutant S203A of acetylcholinesterase complexed with acetylthiocholine 2HA4 ; 2.56 ; Crystal structure of mutant S203A of mouse acetylcholinesterase complexed with acetylcholine 2HA7 ; 2.66 ; Crystal structure of mutant S203A of mouse acetylcholinesterase complexed with butyrylthiocholine 2HA6 ; 2.25 ; Crystal structure of mutant S203A of mouse acetylcholinesterase complexed with succinylcholine 4F1P ; 2.3 ; Crystal Structure of mutant S554D for ArfGAP and ANK repeat domain of ACAP1 6B3K ; 2.09 ; Crystal structure of mutant Spinach RNA aptamer in complex with Fab BL3-6 1I2C ; 1.6 ; CRYSTAL STRUCTURE OF MUTANT T145A SQD1 PROTEIN COMPLEX WITH NAD AND UDP-GLUCOSE 1I2B ; 1.75 ; CRYSTAL STRUCTURE OF MUTANT T145A SQD1 PROTEIN COMPLEX WITH NAD AND UDP-SULFOQUINOVOSE/UDP-GLUCOSE 1RM3 ; 2.2 ; Crystal structure of mutant T33A of photosynthetic glyceraldehyde-3-phosphate dehydrogenase A4 isoform, complexed with NADP 4QDA ; 2.299 ; Crystal structure of mutant Thioesterase PA1618 (E64A) from Pseudomonas aeruginosa 4QDB ; 2.023 ; Crystal structure of mutant Thioesterase PA1618 (Q49A) from Pseudomonas aeruginosa 7EDC ; 1.946 ; Crystal structure of mutant tRNA [Gm18] methyltransferase TrmH (E107G) in complex with S-adenosyl-L-methionine from Escherichia coli 1WCX ; 2.0 ; Crystal Structure of Mutant Uroporphyrinogen III Synthase from an Extremely Thermophilic Bacterium Thermus thermophilus HB8 (L75M/I193M/L248M, SeMet derivative, Form-1 crystal) 7DP5 ; 1.6 ; Crystal structure of mutant V45A Brugia malayi thymidylate synthase complexed with 2'-deoxyuridine monophosphate and methotrexate 7DP6 ; 1.85 ; Crystal structure of mutant V45T Brugia malayi thymidylate synthase complexed with 2'-deoxyuridine monophosphate 6T8F ; 2.0 ; Crystal structure of mutant xylose isomerase (V270A/A273G) from Piromyces E2 grown in yeast, in complex with xylose 3NBB ; 2.05 ; Crystal structure of mutant Y305F expressed in E. coli in the copper amine oxidase from hansenula polymorpha 5IKE ; 2.09 ; Crystal structure of mutant-D97N of peptidyl-tRNA hydrolase from Vibrio cholerae 5EKT ; 1.63 ; Crystal structure of mutant-K146A of peptidyl-tRNA hydrolase from Vibrio cholerae at 1.63A resolution. 1UWI ; 2.55 ; CRYSTAL STRUCTURE OF MUTATED BETA-GLYCOSIDASE FROM SULFOLOBUS SOLFATARICUS, WORKING AT MODERATE TEMPERATURE 5GTX ; 2.28 ; Crystal structure of mutated buckwheat glutaredoxin 4FRV ; 1.1 ; Crystal structure of mutated cyclophilin B that causes hyperelastosis cutis in the American Quarter Horse 2EB2 ; 2.5 ; Crystal structure of mutated EGFR kinase domain (G719S) 2EB3 ; 2.84 ; Crystal structure of mutated EGFR kinase domain (L858R) in complex with AMPPNP 2QZP ; 2.7 ; Crystal structure of mutation of an acylptide hydrolase/esterase from Aeropyrum pernix K1 3HHJ ; 2.1 ; Crystal structure of mutator mutT from Bartonella henselae 2AOR ; 2.0 ; Crystal structure of MutH-hemimethylated DNA complex 2AOQ ; 2.2 ; Crystal structure of MutH-unmethylated DNA complex 2EX1 ; 2.0 ; Crystal structure of mutifunctional sialyltransferase from Pasteurella multocida with CMP bound 3RBN ; 2.16 ; Crystal structure of MutL protein homolog 1 isoform 1 [Homo sapiens] 1EE8 ; 1.9 ; CRYSTAL STRUCTURE OF MUTM (FPG) PROTEIN FROM THERMUS THERMOPHILUS HB8 6TC6 ; 2.9 ; Crystal structure of MutM from Neisseria meningitidis 6TC9 ; 2.175 ; Crystal structure of MutM from Neisseria meningitidis 4DYW ; 2.5 ; Crystal structure of MutT NUDIX hydrolase from Burkholderia pseudomallei 3GRN ; 1.7 ; CRYSTAL STRUCTURE OF MUTT PROTEIN FROM Methanosarcina mazei Go1 3A6T ; 1.96 ; Crystal structure of MutT-8-OXO-DGMP complex 7X9O ; 1.58 ; Crystal structure of MutT-8-oxo-dGMP complex with Mg2+ ions: Reaction using Mg2+ 3A6U ; 2.56 ; Crystal structure of MutT-8-OXO-dGMP-MN(II) complex 7WW5 ; 1.57 ; Crystal structure of MutT-8-oxo-dGTP complex 7X9N ; 1.7 ; Crystal structure of MutT-8-oxo-dGTP complex with three Mg2+ ions: Reaction using Mg2+ 7WW7 ; 1.67 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 1 hr in 5 mM Mn2+ 7WW9 ; 1.8 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 1.5 hr in 20 mM Mn2+ 7X9I ; 1.9 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 12 hr using 5 mM Mn2+ 7X9K ; 1.81 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 2 hr using 10 mM Mn2+ 7WWA ; 1.9 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 2.5 hr in 20 mM Mn2+ 7WW6 ; 1.36 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 20 min in 5 mM Mn2+ 7X9J ; 1.98 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 24 hr using 5 mM Mn2+ 7X9L ; 1.82 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 4 hr using 10 mM Mn2+ 7WW8 ; 1.64 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 5 hr in 5 mM Mn2+ 7X9H ; 1.69 ; Crystal structure of MutT-8-oxo-dGTP complex: Reaction for 9 hr using 5 mM Mn2+ 3DUP ; 1.8 ; Crystal structure of mutt/nudix family hydrolase from rhodospirillum rubrum atcc 11170 2FML ; 2.26 ; Crystal structure of MutT/nudix family protein from Enterococcus faecalis 2PQV ; 1.63 ; Crystal structure of MutT/nudix family protein from Streptococcus pneumoniae 1DL3 ; 2.7 ; CRYSTAL STRUCTURE OF MUTUALLY GENERATED MONOMERS OF DIMERIC PHOSPHORIBOSYLANTRANILATE ISOMERASE FROM THERMOTOGA MARITIMA 4YOQ ; 2.21 ; Crystal Structure of MutY bound to its anti-substrate 4YPH ; 2.32 ; Crystal Structure of MutY bound to its anti-substrate with the disulfide cross-linker reduced 3G0Q ; 2.2 ; Crystal Structure of MutY bound to its inhibitor DNA 8ISC ; 2.27 ; Crystal structure of MV in complex with LLP 8IVP ; 1.93 ; Crystal structure of MV in complex with LLP and FRU from Mycobacterium vanbaalenii 6K11 ; 1.936 ; Crystal structure of MvcA from Legionella pneumophila 6JKY ; 2.454 ; Crystal structure of MvcA-UBE2N-Ub complex from Legionella pneumophila 6B8A ; 2.65 ; Crystal structure of MvfR ligand binding domain in complex with M64 4XU5 ; 2.1 ; Crystal structure of MvINS bound to a bromine-derived 14C Diacylglycerol (DAG) at 2.1A resolution 1ZHS ; 1.8 ; Crystal structure of MVL bound to Man3GlcNAc2 6CIT ; 2.027 ; Crystal Structure of MVM NS2 NES Peptide in complex with CRM1-Ran-RanBP1 3A42 ; 2.6 ; Crystal structure of MvNei1 3A46 ; 2.2 ; Crystal structure of MvNei1/THF complex 3A45 ; 2.3 ; Crystal structure of MvNei1_2 5SV6 ; 1.92 ; Crystal structure of MxaJ from Methlophaga aminisulfidivorans MPT 3PIN ; 2.7 ; Crystal structure of Mxr1 from Saccharomyces cerevisiae in complex with Trx2 3PIL ; 2.04 ; Crystal structure of Mxr1 from Saccharomyces cerevisiae in reduced form 3PIM ; 1.9 ; Crystal structure of Mxr1 from Saccharomyces cerevisiae in unusual oxidized form 6ZVA ; 2.68 ; Crystal structure of My5 1NKP ; 1.8 ; Crystal structure of Myc-Max recognizing DNA 4RQW ; 2.2 ; Crystal structure of Myc3 N-terminal JAZ-binding domain [44-238] from Arabidopsis 4YWC ; 2.4 ; Crystal structure of Myc3(5-242) fragment in complex with Jaz9(218-239) peptide 4YZ6 ; 1.95 ; Crystal Structure of Myc3[44-238] from Arabidopsis in complex with Jaz1 peptide [200-221] 6E29 ; 1.818 ; Crystal structure of Myceliophteria_thermophila Cps50 (Swd1) beta-propeller domain 5LOI ; 3.153 ; Crystal structure of Myceliophthora thermophila Rad26 (residues 373-841) 5FOI ; 2.21 ; Crystal structure of mycinamicin VIII C21 methyl hydroxylase MycCI from Micromonospora griseorubida bound to mycinamicin VIII 5F2N ; 1.9 ; Crystal structure of mycobacterial fatty acid O-methyltransferase in complex with SAH and 3-hydroxy-decanoate. 5F2K ; 1.6 ; Crystal structure of mycobacterial fatty acid O-methyltransferase in complex with SAH and octanoate 5F2O ; 1.85 ; Crystal structure of mycobacterial fatty acid O-methyltransferase Q154A mutant in complex with SAH and 3-hydroxy-decanoate. 4N8N ; 1.874 ; Crystal structure of Mycobacterial FtsX extracellular domain 4N8O ; 2.3 ; Crystal structure of Mycobacterial FtsX extracellular domain, bromide derivative 7BDW ; 2.55 ; Crystal structure of mycobacterial PptAb in complex with ACP and compound 8918 2FHG ; 3.23 ; Crystal Structure of Mycobacterial Tuberculosis Proteasome 4J2N ; 2.348 ; Crystal Structure of mycobacteriophage Pukovnik Xis 7YWM ; 1.624 ; Crystal structure of Mycobacterium abcessus Phosphopantetheine adenylyltransferase in complex with ATP 5UWV ; 2.98 ; Crystal structure of Mycobacterium abscessus L,D-transpeptidase 2 7YY0 ; 1.745 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with 4'-phosphopantetheine 7YXZ ; 1.779 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Coenzyme A 7YY2 ; 1.598 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Compound 20 7YY6 ; 1.506 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 10 7YY7 ; 1.538 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 11 7YY8 ; 1.516 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 12 7YY9 ; 1.485 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 13 7YYA ; 1.807 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 14 7YYB ; 1.751 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 15 7YYC ; 1.499 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 16 7YY3 ; 1.535 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 7 7YY4 ; 1.671 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 8 7YY5 ; 1.499 ; Crystal structure of Mycobacterium abscessus Phosphopantetheine adenylyltransferase in complex with Fragment 9 5IS2 ; 1.881 ; Crystal structure of Mycobacterium avium SerB2 at pH 6.6 5JLP ; 2.495 ; Crystal structure of Mycobacterium avium SerB2 in complex with serine at ACT domain 5JMA ; 2.03 ; Crystal structure of Mycobacterium avium SerB2 in complex with serine at catalytic (PSP) domain 5JJB ; 2.305 ; Crystal structure of Mycobacterium avium SerB2 mutant D343G 5IT4 ; 2.102 ; Crystal structure of Mycobacterium avium SerB2 mutant D343N 5IT0 ; 1.968 ; Crystal structure of Mycobacterium avium SerB2 mutant D343N/D347N 5T41 ; 3.149 ; Crystal structure of Mycobacterium avium SerB2 mutant S275A/R279A at pH 6.6 with ethylene glycol bound at ACT- I domain 5JLR ; 2.261 ; Crystal structure of Mycobacterium avium SerB2 with serine present at slightly different position near ACT domain 7P8G ; 2.13 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 5.5 - apo form 7PD5 ; 1.95 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 5.5 in complex with 4-aminobenzoic acid 7PDO ; 1.97 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 5.5 in complex with UDP 7PE4 ; 2.05 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 5.5 in complex with UDP-glucose 7P5L ; 1.22 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 7.1 - apo form 7PHO ; 1.27 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 7.1 in complex with 4-hydroxybenzaldehyde 7QCP ; 1.11 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 7.2 - apo form 7QI9 ; 1.23 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 7.2 in complex with UDP 7PVL ; 1.43 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 8.5 - apo form 7QIB ; 1.6 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 8.5 in complex with UDP 7QOQ ; 1.93 ; Crystal structure of Mycobacterium hassiacum glucosyl-3-phosphoglycerate synthase at pH 8.5 in complex with UMP and Magnesium 3WY7 ; 2.3 ; Crystal structure of Mycobacterium smegmatis 7-Keto-8-aminopelargonic acid (KAPA) synthase BioF 2XT6 ; 2.74 ; Crystal structure of Mycobacterium smegmatis alpha-ketoglutarate decarboxylase homodimer (orthorhombic form) 5E57 ; 1.98 ; Crystal structure of Mycobacterium smegmatis AmtR 5XS9 ; 1.9 ; Crystal structure of Mycobacterium smegmatis BioQ 3JZ6 ; 1.9 ; Crystal structure of Mycobacterium smegmatis Branched Chain Aminotransferase in complex with pyridoxal-5'-phosphate at 1.9 angstrom. 6TH2 ; 1.844 ; Crystal structure of Mycobacterium smegmatis CoaB in complex with CTP 6THC ; 2.033 ; Crystal structure of Mycobacterium smegmatis CoaB in complex with CTP and (4-hydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone 6TGV ; 2.5 ; Crystal structure of Mycobacterium smegmatis CoaBC in complex with CTP and FMN 3R9B ; 1.89 ; Crystal structure of Mycobacterium smegmatis CYP164A2 in ligand free state 3R9C ; 2.14 ; Crystal structure of Mycobacterium smegmatis CYP164A2 with Econazole bound 4QB9 ; 3.293 ; Crystal structure of Mycobacterium smegmatis Eis in complex with paromomycin 7N3V ; 1.83 ; Crystal structure of Mycobacterium smegmatis LmcA 7SHW ; 1.79 ; Crystal structure of Mycobacterium smegmatis LmcA with xenon 2X1M ; 2.8 ; Crystal structure of Mycobacterium smegmatis methionyl-tRNA synthetase in complex with methionine 2X1L ; 2.3 ; Crystal structure of Mycobacterium smegmatis methionyl-tRNA synthetase in complex with methionine and adenosine 6AC8 ; 2.75 ; Crystal structure of Mycobacterium smegmatis Mfd at 2.75 A resolution 6ACX ; 3.5 ; Crystal structure of Mycobacterium smegmatis Mfd in complex with ADP + Pi at 3.5 A resolution. 8HFM ; 2.41 ; Crystal Structure of Mycobacterium smegmatis MshC 8HFN ; 1.98 ; Crystal Structure of Mycobacterium smegmatis MshC in Complex with Compound 7b 8HFO ; 2.77 ; Crystal Structure of Mycobacterium smegmatis MshC in Complex with Compound 7d 5GG5 ; 1.64 ; Crystal structure of Mycobacterium smegmatis MutT1 5GGB ; 1.1 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGDP 6M72 ; 1.6 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGDP 5GG6 ; 1.75 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGTP 6M6Y ; 1.5 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGTP 5GG7 ; 1.7 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGTP, 8-oxo-dGMP and pyrophosphate (I) 5GG8 ; 1.85 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-dGTP, 8-oxo-dGMP and pyrophosphate (II) 5GGA ; 1.75 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-GDP, 8-oxo-GMP and pyrophosphate 5GG9 ; 1.6 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with 8-oxo-GTP, 8-oxo-GMP and pyrophosphate 5XD1 ; 1.6 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with Ap5A, ATP and magnesium 5XD2 ; 1.75 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with Ap5A, ATP and manganese 5XD3 ; 1.78 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with ATP (I) 5XD4 ; 1.47 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with ATP (II) 5XD5 ; 1.75 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with ATP, magnesium fluoride and phosphate 6M69 ; 1.5 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with GMPPCP (GDP) 6M65 ; 1.44 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with GMPPNP (GDP) 5GGC ; 1.85 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with phosphate and magnesium ions (excess magnesium, I) 5GGD ; 1.7 ; Crystal structure of Mycobacterium smegmatis MutT1 in complex with phosphate and magnesium ions (excess magnesium, II) 8CCI ; 1.56 ; Crystal structure of Mycobacterium smegmatis thioredoxin reductase 8CCM ; 1.73 ; Crystal structure of Mycobacterium smegmatis thioredoxin reductase in complex with Compound 2-06 8CCL ; 1.85 ; Crystal structure of Mycobacterium smegmatis thioredoxin reductase in complex with fragment F2X-Entry A09 8CCK ; 1.63 ; Crystal structure of Mycobacterium smegmatis thioredoxin reductase in complex with fragment F2X-Entry H07 8CCJ ; 1.8 ; Crystal structure of Mycobacterium smegmatis thioredoxin reductase in complex with NADPH 6PCM ; 3.107 ; Crystal Structure of Mycobacterium smegmatis Topoisomerase I with ssDNA bound to both N- and C-terminal domains 8G6P ; 1.45 ; Crystal structure of Mycobacterium thermoresistibile MurE in complex with ADP and 2,6-Diaminopimelic acid 3LV2 ; 2.18 ; Crystal structure of Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase in complex with substrate analog sinefungin 7RYT ; 2.67 ; Crystal structure of Mycobacterium tuberculosis acetylated Homoserine transacetylase with Coenzyme A 2CDN ; 1.9 ; Crystal structure of Mycobacterium tuberculosis adenylate kinase complexed with two molecules of ADP and Mg 3B4W ; 1.8 ; Crystal structure of Mycobacterium tuberculosis aldehyde dehydrogenase complexed with NAD+ 1GU9 ; 1.9 ; Crystal Structure of Mycobacterium tuberculosis Alkylperoxidase AhpD 1ME5 ; 2.4 ; Crystal Structure of Mycobacterium Tuberculosis Alkylperoxidase AhpD H132Q Mutant 1LW1 ; 2.3 ; Crystal Structure Of Mycobacterium Tuberculosis Alkylperoxidase Ahpd H137F mutant 3HUG ; 2.35 ; Crystal structure of Mycobacterium tuberculosis anti-sigma factor RslA in complex with -35 promoter binding domain of sigL 7NLF ; 2.08 ; Crystal structure of Mycobacterium tuberculosis ArgB in apo form. 7NLU ; 2.235 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 1-(1H-indol-3-yl)ethan-1-one 7NM0 ; 2.281 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 1-(2,6-dihydroxyphenyl)ethan-1-one. 7NN8 ; 2.267 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 1H-indole-3-carbonitrile. 7NNB ; 2.186 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 2,8-bis(trifluoromethyl)quinolin-4-ol. 7NLW ; 2.32 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 2-(5-methoxy-1H-indol-3-yl)acetonitrile 7NLQ ; 2.497 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 2-(isoxazol-5-yl)phenol 7NLY ; 2.246 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 2-Chlorobenzimidazole. 7NLR ; 2.254 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 2-phenyl-1H-imidazole 7NLT ; 2.225 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 4-(4-methylpiperazin-1-yl)benzoic acid 7NLZ ; 2.163 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 5-Methoxy-6-(trifluoromethyl)indole. 7NLX ; 2.234 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with 7-(trifluoromethyl)quinolin-4-ol. 7NN7 ; 2.172 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with dimethyl 5-hydroxyisophthalate. 7NLO ; 1.82 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with L-arginine 7NLP ; 2.213 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with L-canavanine 7NLS ; 2.648 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with methyl 4-hydroxy-3-iodobenzoate 7NLN ; 1.92 ; Crystal structure of Mycobacterium tuberculosis ArgB in complex with N-acetyl-glutamate 7NNI ; 1.544 ; Crystal structure of Mycobacterium tuberculosis ArgC apoenzyme 7NPH ; 2.57 ; Crystal structure of Mycobacterium tuberculosis ArgC in complex with 5-methoxy-1,3-benzoxazole-2-carboxylic acid 7NPJ ; 2.81 ; Crystal structure of Mycobacterium tuberculosis ArgC in complex with 6-phenoxy-3-pyridinamine 7NNQ ; 1.73 ; Crystal structure of Mycobacterium tuberculosis ArgC in complex with nicotinamide adenine dinucleotide phosphate (NADP+) 7NOT ; 2.54 ; Crystal structure of Mycobacterium tuberculosis ArgC in complex with nicotinamide adenine dinucleotide phosphate (NADP+) and 5-Methoxy-3-indoleacetic acid 7NNR ; 1.7 ; Crystal structure of Mycobacterium tuberculosis ArgC in complex with xanthene-9-carboxylic acid 7NN1 ; 1.54 ; Crystal structure of Mycobacterium tuberculosis ArgD with prosthetic group pyridoxal 5'-phosphate 7NN4 ; 1.47 ; Crystal structure of Mycobacterium tuberculosis ArgD with prosthetic group pyridoxal 5'-phosphate and 3-hydroxy-2-naphthoic acid. 7NNC ; 1.7 ; Crystal structure of Mycobacterium tuberculosis ArgD with prosthetic group pyridoxal-5'-phosphate and 6-Methoxyquinoline-3-carboxylic acid 7NNF ; 1.52 ; Crystal structure of Mycobacterium tuberculosis ArgF in apo form. 7NOU ; 1.98 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with (3,5-dichlorophenyl)boronic acid. 7NOV ; 1.9 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with (4-methyl-3-nitrophenyl)boronic acid. 7NP0 ; 1.76 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with (4-nitrophenyl)boronic acid. 7NOR ; 1.59 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with 2-fluoro-4-hydroxybenzonitrile. 7NOS ; 1.77 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with 4-bromo-6-(trifluoromethyl)-1H-benzo[d]imidazole. 7NNZ ; 1.68 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with 5-methyl-4-phenylthiazol-2-amine. 7NNV ; 1.67 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with carbamoyl phosphate. 7NNW ; 1.78 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with methyl 4-hydroxy-3-iodobenzoate. 7NNY ; 1.57 ; Crystal structure of Mycobacterium tuberculosis ArgF in complex with naphthalen-1-ol. 5IET ; 2.88 ; Crystal Structure of Mycobacterium Tuberculosis ATP-independent Proteasome activator 5IEU ; 2.8 ; Crystal Structure of Mycobacterium Tuberculosis ATP-independent Proteasome Activator Tetramer 3QD8 ; 3.0 ; Crystal structure of Mycobacterium tuberculosis BfrB 6GE8 ; 1.869 ; Crystal structure of Mycobacterium tuberculosis BioA 2WGF ; 2.15 ; Crystal structure of Mycobacterium tuberculosis C171Q KasA variant 2WGG ; 2.0 ; Crystal Structure of Mycobacterium tuberculosis C171Q KasA variant with bound TLM 4ILU ; 2.3 ; Crystal structure of Mycobacterium tuberculosis CarD 4MFR ; 2.5 ; Crystal structure of Mycobacterium tuberculosis CarD 1SJ2 ; 2.41 ; Crystal structure of Mycobacterium tuberculosis catalase-peroxidase 5W5A ; 1.85 ; Crystal structure of Mycobacterium tuberculosis CRP-FNR family transcription factor Cmr (Rv1675c) 5W5B ; 1.8 ; Crystal structure of Mycobacterium tuberculosis CRP-FNR family transcription factor Cmr (Rv1675c), truncated construct 6UPI ; 1.808 ; Crystal structure of Mycobacterium tuberculosis CYP121 bound with a hydroxylated intermediate of cYF-4-OMe 4G2G ; 2.25 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4,4'-(1H-1,2,3-triazole-1,5-diyl)diphenol 4KTL ; 1.95 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4,4'-(3-((4-hydroxyphenyl)amino)-1H-pyrazole-4,5-diyl)diphenol 4KTF ; 1.35 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4,4'-(3-amino-1H-pyrazole-4,5-diyl)diphenol 4G1X ; 1.3 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4-(1H-1,2,4-triazol-1-yl)quinolin-6-amine 4KTJ ; 1.35 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4-(3-amino-1H-pyrazol-4-yl)phenol 4KTK ; 1.4 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with 4-(3-amino-4-(4-hydroxyphenyl)-1H-pyrazol-5-yl)benzene-1,3-diol 6UPG ; 1.393 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with cYF-4-OMe 5EDT ; 2.45 ; Crystal structure of Mycobacterium tuberculosis CYP121 in complex with LIG9 5LI7 ; 1.58 ; Crystal structure of Mycobacterium tuberculosis CYP126A1 in complex with 1-(3-(1H-imidazol-1-yl)propyl)-3-((3s,5s,7s)-adamantan-1-yl)urea 5LIE ; 1.799 ; Crystal structure of Mycobacterium tuberculosis CYP126A1 in complex with imidazole 5LI8 ; 1.83 ; Crystal structure of Mycobacterium tuberculosis CYP126A1 in complex with ketoconazole 5LI6 ; 1.95 ; Crystal structure of Mycobacterium tuberculosis CYP126A1 in complex with N-isopropyl-N-((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-2-(4-nitrophenyl)acetamide 2XKR ; 1.601 ; Crystal Structure of Mycobacterium tuberculosis CYP142: A novel cholesterol oxidase 3DWI ; 2.81 ; Crystal structure of Mycobacterium tuberculosis CysM, the cysteine synthase B 3DWM ; 2.69 ; Crystal structure of Mycobacterium tuberculosis CysO, an antigen 6GEO ; 1.5 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP121A1 in complex with Triazole Pyrazole inhibitor 10j 6GEQ ; 1.6 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP121A1 in complex with Triazole Pyrazole inhibitor 14a 3IW1 ; 2.0 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP125 in complex with androstenedione 3IW2 ; 2.19 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP125 in complex with econazole 3IW0 ; 1.7 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP125, C2221 crystal form 3IVY ; 1.352 ; Crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP125, p212121 crystal form 4PPR ; 2.0 ; Crystal structure of Mycobacterium tuberculosis D,D-peptidase Rv3330 in complex with meropenem 4ONC ; 1.83 ; Crystal Structure of Mycobacterium Tuberculosis Decaprenyl Diphosphate Synthase in Complex with BPH-640 3FMF ; 2.05 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase complexed with 7,8 diaminopelargonic acid carbamate 3FMI ; 2.18 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase complexed with 7-Keto 8-aminopelargonic acid 3FPA ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase complexed with dethiobiotin and phosphate 6NKA ; 2.23 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with 2'-deoxycytidine 6NN0 ; 2.343 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with 2'-deoxycytidine and fragment degradation product B9D 6NL5 ; 2.314 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with 2'-deoxycytidine triphosphate 6CZD ; 2.4 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with adenosine diphosphate 6CVV ; 2.41 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with adenosine triphosphate (ATP) - promiscuous binding mode with disordered nucleoside 6NMZ ; 2.4 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with an intentionally produced fragment degradation product B9D 6CVU ; 2.426 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with cytidine 6CVF ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with cytidine diphosphate 6CVE ; 2.2 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin Synthetase in complex with cytidine triphosphate and 7,8-diaminopelargonic acid 6E06 ; 2.5 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with cytidine triphosphate solved by precipitant-ligand exchange (crystals grown in citrate precipitant) 6E05 ; 2.5 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with cytidine triphosphate solved by precipitant-ligand exchange (crystals grown in sulfate precipitant) 6NWG ; 1.939 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 3a 6NNZ ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 4 6NU6 ; 2.437 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 5 6NVC ; 2.25 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 6 6NVE ; 2.0 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 7 6NVF ; 1.989 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 8 6NLZ ; 1.9 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment degradation product B9D 6NL4 ; 1.991 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with gemcitabine 6NWN ; 2.005 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with glutamic acid linked compound 10 6CZE ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with inosine triphosphate (ITP) - promiscuous binding mode with disordered nucleoside 6CZC ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with thymidine triphosphate (TTP) - promiscuous binding mode with disordered nucleoside 6NVD ; 2.44 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with triazole linked compound 9 6CZB ; 2.4 ; Crystal structure of Mycobacterium tuberculosis dethiobiotin synthetase in complex with uridine triphosphate (UTP) - promiscuous binding mode with disordered nucleoside 1YL5 ; 2.3 ; Crystal structure of Mycobacterium tuberculosis dihydrodipicolinate reductase (RV2773C) (crystal form A) 1YL6 ; 2.9 ; crystal structure of Mycobacterium tuberculosis dihydrodipicolinate reductase (Rv2773c) (crystal form B) 5UJF ; 2.3 ; Crystal Structure of Mycobacterium tuberculosis Dihydrofolate Reductase Bound p218 Inhibitor 5U26 ; 1.85 ; Crystal Structure of Mycobacterium tuberculosis Dihydrofolate Reductase Bound to NADP and p218 Inhibitor 5U27 ; 2.05 ; Crystal Structure of Mycobacterium tuberculosis Dihydrofolate Reductase Bound to NADP and p65 Inhibitor 5EDD ; 1.97 ; Crystal structure of Mycobacterium tuberculosis dUTPase R140K, H145W mutant 3I93 ; 1.8 ; Crystal structure of Mycobacterium tuberculosis dUTPase STOP138T mutant 4A03 ; 1.65 ; Crystal Structure of Mycobacterium tuberculosis DXR in complex with the antibiotic FR900098 and cofactor NADPH 4JD6 ; 3.5 ; Crystal structure of Mycobacterium tuberculosis Eis in complex with coenzyme A and tobramycin 7CDW ; 3.0 ; Crystal Structure of Mycobacterium Tuberculosis Elongation Factor G1 4U0J ; 1.62 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (INHA) complexed with 1-CYCLOHEXYL-5-OXO-N-PHENYLPYRROLIDINE-3-CARBOXAMIDE, refined with new ligand restraints 4TZK ; 1.62 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (INHA) complexed WITH 1-CYCLOHEXYL-N-(3,5-DICHLOROPHENYL)-5-OXOPYRROLIDINE-3-CARBOXAMIDE 4TRJ ; 1.73 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (INHA) complexed with N-(3-bromophenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide, refined with new ligand restraints 4TZT ; 1.86 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS ENOYL REDUCTASE (INHA) COMPLEXED WITH N-(3-CHLORO-2-METHYLPHENYL)-1-CYCLOHEXYL- 5-OXOPYRROLIDINE-3-CARBOXAMIDE 2B37 ; 2.6 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (InhA) inhibited by 5-octyl-2-phenoxyphenol 2B36 ; 2.8 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (InhA) inhibited by 5-pentyl-2-phenoxyphenol 2B35 ; 2.3 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase (InhA) inhibited by triclosan 4U0K ; 1.9 ; Crystal structure of Mycobacterium tuberculosis enoyl reductase complexed with N-(5-chloro-2-methylphenyl)-1-cyclohexyl-5-oxopyrrolidine-3-carboxamide 2ZJF ; 2.4 ; Crystal structure of Mycobacterium tuberculosis epoxide hydrolase B complexed with an inhibitor 3QYX ; 3.75 ; Crystal structure of Mycobacterium tuberculosis EspR in complex with a small DNA fragment 4NDW ; 3.3 ; Crystal STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS ESX-1 SECRETED PROTEIN REGULATOR (EspR) 5XE7 ; 2.162 ; Crystal structure of Mycobacterium tuberculosis extracytoplasmic function sigma factor SigJ 4B3H ; 2.3 ; Crystal structure of Mycobacterium tuberculosis fatty acid beta- oxidation complex 4B3I ; 2.63 ; Crystal structure of Mycobacterium tuberculosis fatty acid beta- oxidation complex with CoenzymeA bound at the hydratase active sites 4B3J ; 2.5 ; Crystal structure of Mycobacterium tuberculosis fatty acid beta- oxidation complex with CoenzymeA bound at the hydratase and thiolase active sites 2AF6 ; 2.01 ; Crystal structure of Mycobacterium tuberculosis Flavin dependent thymidylate synthase (Mtb ThyX) in the presence of co-factor FAD and substrate analog 5-Bromo-2'-Deoxyuridine-5'-Monophosphate (BrdUMP) 4APA ; 2.04 ; Crystal structure of Mycobacterium tuberculosis fumarase (Rv1098c) S318A in apo form 4APB ; 1.94 ; Crystal structure of Mycobacterium tuberculosis fumarase (Rv1098c) S318C in complex with fumarate 2WHI ; 2.2 ; Crystal structure of Mycobacterium Tuberculosis Glutamine Synthetase in complex with a purine analogue inhibitor and L-methionine-S- sulfoximine phosphate. 2WGS ; 2.55 ; Crystal structure of Mycobacterium Tuberculosis Glutamine Synthetase in complex with a purine analogue inhibitor. 2BVC ; 2.1 ; Crystal structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition state mimic 4ACF ; 2.0 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS GLUTAMINE SYNTHETASE IN COMPLEX WITH IMIDAZOPYRIDINE INHIBITOR ((4-(6-BROMO-3-(BUTYLAMINO)IMIDAZO(1,2-A)PYRIDIN-2-YL)PHENOXY) ACETIC ACID) AND L-METHIONINE-S-SULFOXIMINE PHOSPHATE. 3ZXR ; 2.15 ; Crystal structure of Mycobacterium Tuberculosis Glutamine Synthetase in complex with tri-substituted imidazole inhibitor (3-(2-tert-butyl- 5-(pyridin-4-yl)-1H-imidazol-4-yl)quinoline) and L-methionine-S- sulfoximine phosphate. 3ZXV ; 2.26 ; Crystal structure of Mycobacterium Tuberculosis Glutamine Synthetase in complex with tri-substituted imidazole inhibitor (4-(2-tert-butyl- 4-(6-methoxynaphthalen-2-yl)-1H-imidazol-5-yl)pyridin-2-amine) and L- methionine-S-sulfoximine phosphate 3M6C ; 2.2 ; Crystal structure of Mycobacterium tuberculosis GroEL1 apical domain 1ZNY ; 2.3 ; Crystal Structure Of Mycobacterium tuberculosis Guanylate Kinase In Complex With GDP 1ZNX ; 2.35 ; Crystal Structure Of Mycobacterium tuberculosis Guanylate Kinase In Complex With GMP 5HKF ; 2.25 ; Crystal structure of Mycobacterium tuberculosis H37Rv orotate phosphoribosyltransferase in complex with 5-phospho-alpha-D-ribosyl 1-diphosphate (PRPP) 5HKI ; 2.4 ; Crystal structure of Mycobacterium tuberculosis H37Rv orotate phosphoribosyltransferase in complex with Fe(III) dicitrate 5HKL ; 1.899 ; Crystal structure of Mycobacterium tuberculosis H37Rv orotate phosphoribosyltransferase in complex with inorganic phosphate 7NAA ; 2.75 ; Crystal structure of Mycobacterium tuberculosis H37Rv PknF kinase domain 5XDS ; 1.75 ; Crystal structure of Mycobacterium tuberculosis HisB bound with an inhibitor 5ZQN ; 1.8 ; Crystal structure of Mycobacterium tuberculosis HisB in complex with a ligand 4LOM ; 2.1 ; Crystal Structure of Mycobacterium tuberculosis HisB in complex with its substrate 8F2L ; 2.89 ; Crystal structure of Mycobacterium tuberculosis Homoserine transacetylase in complex with L-Homoserine 6IEO ; 1.83 ; Crystal structure of Mycobacterium tuberculosis HtrA1 (Rv1223) in regulated conformation 5KNY ; 2.91 ; Crystal structure of Mycobacterium tuberculosis hypoxanthine guanine phosphoribosyltransferase in complex with (3-((3R,4R)-3-(Guanin-9-yl)-4-((S)-2-hydroxy-2-phosphonoethoxy)pyrrolidin-1-yl)-3-oxopropyl)phosphonic acid 5KNQ ; 2.553 ; Crystal structure of Mycobacterium tuberculosis hypoxanthine guanine phosphoribosyltransferase in complex with [3S,4R]-(4-(Guanin-9-yl)pyrrolidin-3-yl)oxymethanephosphonic acid and pyrophosphate 5KNP ; 2.45 ; Crystal structure of Mycobacterium tuberculosis hypoxanthine guanine phosphoribosyltransferase in complex with [3S,4R]-(4-(Hypoxanthin-9-yl)pyrrolidin-3-yl)-oxymethanephosphonic acid 6EE1 ; 2.36 ; Crystal structure of Mycobacterium tuberculosis ICL2 in complex with acetyl-CoA 6EDZ ; 2.67 ; Crystal structure of Mycobacterium tuberculosis ICL2 in complex with acetyl-CoA, form I 6EDW ; 1.8 ; Crystal structure of Mycobacterium tuberculosis ICL2 in the apo form 4LPF ; 2.3 ; Crystal structure of Mycobacterium tuberculosis imidazole glycerol phosphate dehydratase in complex with an inhibitor 3T40 ; 1.752 ; Crystal Structure of Mycobacterium tuberculosis Indole Glycerol Phosphate Synthase (IGPS) complex with N-2-Carboxyphenyl Glycine (CPG) 3T78 ; 1.6 ; Crystal Structure of Mycobacterium tuberculosis Indole Glycerol Phosphate Synthase (IGPS) in Complex with 5-Fluoroanthranilate 3T44 ; 1.6 ; Crystal structure of Mycobacterium tuberculosis Indole Glycerol Phosphate Synthase (IGPS) in complex with indole glycerol phosphate (IGP) amd anthranilate 3T55 ; 2.06 ; Crystal structure of Mycobacterium tuberculosis Indole Glycerol Phosphate Synthase (IGPS) in complex with Phenoxymethyl Benzoic Acid (PMBA) 4OIM ; 1.848 ; Crystal structure of Mycobacterium tuberculosis InhA in complex with inhibitor PT119 in 2.4 M acetate 4OHU ; 1.598 ; Crystal structure of Mycobacterium tuberculosis InhA in complex with inhibitor PT92 6CON ; 2.1 ; Crystal structure of Mycobacterium tuberculosis IpdAB 5W2O ; 1.8 ; Crystal structure of Mycobacterium tuberculosis KasA 5W2P ; 2.0 ; Crystal structure of Mycobacterium tuberculosis KasA in complex with 6U5 5W2Q ; 1.8 ; Crystal structure of Mycobacterium tuberculosis KasA in complex with 6U5 6P9L ; 2.305 ; Crystal structure of Mycobacterium tuberculosis KasA in complex with JFX 5W2S ; 2.399 ; Crystal Structure of Mycobacterium Tuberculosis KasA in complex with KMG 6P9K ; 1.703 ; Crystal structure of Mycobacterium tuberculosis KasA in complex with O6G 6P9M ; 2.256 ; Crystal structure of Mycobacterium tuberculosis KasA in complex with O6J 4YPO ; 1.001 ; Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase in complex with Mg2+ 5CXI ; 2.0 ; Crystal structure of Mycobacterium tuberculosis KstR in complex with 3-oxo-23,24-bisnorchol-4-en-22-oyl-CoA (4-BNC-CoA) 5CW8 ; 2.6 ; Crystal structure of Mycobacterium tuberculosis KstR in complex with 3-oxo-4-cholesten-26-oyl-CoA 5CXG ; 2.1001 ; Crystal structure of Mycobacterium tuberculosis KstR in complex with PEG 5E5L ; 1.89 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 1 at 1.89 Angstrom 5E51 ; 2.25 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 1 with Faropenem adduct 5DZJ ; 2.095 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with carbapenem drug T206 in conformation A 5DZP ; 2.19 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with carbapenem drug T206 in conformation B 5E1G ; 1.852 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with carbapenem drug T208 5E1I ; 2.003 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with carbapenem drug T210 5K69 ; 2.001 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with carbapenem drug T224 5DVP ; 2.18 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase 2 with Doripenem adduct 3VYO ; 1.8 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase LdtMt2 N140 truncation mutant (resideus 140-408) 3VYN ; 2.5 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase LdtMt2 N55 truncation mutant (resideus 55-408) 3VYP ; 1.4 ; Crystal structure of Mycobacterium tuberculosis L,D-transpeptidase LdtMt2-N140 adduct with meropenem 3HPX ; 2.03 ; Crystal structure of Mycobacterium tuberculosis LeuA active site domain 1-425 (truncation mutant delta:426-644) 3HPZ ; 2.2 ; Crystal structure of Mycobacterium tuberculosis LeuA complexed with bromopyruvate 3HQ1 ; 1.7 ; Crystal structure of Mycobacterium tuberculosis LeuA complexed with citrate and Mn2+ 3HPS ; 1.8 ; Crystal structure of Mycobacterium tuberculosis LeuA complexed with ketoisocaproate (KIC) 2QZ8 ; 2.16 ; Crystal structure of Mycobacterium tuberculosis Leucine response regulatory protein (LrpA) 2BYO ; 2.15 ; Crystal structure of Mycobacterium tuberculosis lipoprotein LppX (Rv2945c) 1U2P ; 1.9 ; Crystal structure of Mycobacterium tuberculosis Low Molecular Protein Tyrosine Phosphatase (MPtpA) at 1.9A resolution 1U2Q ; 2.5 ; Crystal structure of Mycobacterium tuberculosis Low Molecular Weight Protein Tyrosine Phosphatase (MPtpA) at 2.5A resolution with glycerol in the active site 4ZJM ; 2.851 ; Crystal Structure of Mycobacterium tuberculosis LpqH (Rv3763) 8JA9 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis LpqY in complex with trehalose analogue YB-03 8JAA ; 1.7 ; Crystal structure of Mycobacterium tuberculosis LpqY in complex with trehalose analogue YB-04 8JAB ; 1.7 ; Crystal structure of Mycobacterium tuberculosis LpqY in complex with trehalose analogue YB-06 8JAC ; 2.1 ; Crystal structure of Mycobacterium tuberculosis LpqY in complex with trehalose analogue YB-16 8JAD ; 2.3 ; Crystal structure of Mycobacterium tuberculosis LpqY in complex with trehalose analogue YB-17 8JA8 ; 1.6 ; Crystal structure of Mycobacterium tuberculosis LpqY with trehalose bound in a closed liganded form 4ZRA ; 1.83 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS LPRG BINDING TO TRIACYLGLYCERIDE 5H8M ; 2.7 ; Crystal structure of Mycobacterium tuberculosis malate synthase C619A, G459A mutant in complex with product malate 5H8P ; 2.105 ; Crystal structure of Mycobacterium tuberculosis malate synthase in apo form 5C9W ; 2.0928 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with (Z)-N-(2-bromophenyl)-2-(hydroxyimino)acetamide 5CC5 ; 2.14 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 1H-indole-3-carboxylic acid 5CC6 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 1H-indole-5-carboxylic acid 5CC7 ; 2.12 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 1H-indole-6-carboxylic acid 5C7V ; 2.504 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 1H-pyrrole-2-carboxylic acid 5C9X ; 2.1 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2,4-dichloro-5-fluorobenzoic acid 6DL9 ; 1.8 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2,6-Cl-phenyldiketoacid 6DKO ; 1.556 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2,6-F-phenyldiketoacid 5C9U ; 1.95 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-(2-(2,4-dichlorophenyl)hydrazinyl)-2-oxoacetic acid 5CEW ; 2.03 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-(pyridin-4-yl)thiazolidine-4-carboxylic acid 3S9I ; 1.9 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-4-dioxo-4-phenylbutanoic acid inhibitor 6BU1 ; 1.584 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-Br-3-OH-phenyldiketoacid 6C6O ; 2.3 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-Br-4-OH-phenyldiketoacid 6C2X ; 2.6 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-Br-6-Me-phenyldiketoacid 5E9X ; 1.943 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxylic acid 6BA7 ; 2.496 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-Cl-4-OH-phenyldiketoacid 6DNP ; 1.711 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-F-3-Methyl-6-F-phenyldiketoacid 6C8P ; 1.635 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-F-phenyldiketoacid 5CAK ; 1.99 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-hydroxy-3-(1H-indol-3-yl)propanoic acid 5DRC ; 2.18 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-hydroxy-4-(1H-indol-3-yl)-4-oxobut-2-enoic acid 5DRI ; 2.8 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-hydroxy-4-(1H-indol-5-yl)-4-oxobut-2-enoic acid inhibitor 5ECV ; 2.085 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-hydroxy-4-(4-methyl-1H-indol-5-yl)-4-oxobut-2-enoic acid 6AXB ; 1.8 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-naphthyldiketoacid 6DLJ ; 2.604 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-Nitro-phenyldiketoacid 5T8G ; 2.04 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 2-oxo-4-((thiophene-2-carbonyl)oxy)butanoic acid 5C9R ; 2.0 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-((4-chlorophenyl)thio)propanoic acid 5CJN ; 2.19 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-(3-oxo-3,4-dihydroquinoxalin-2-yl)acrylate 5CCZ ; 2.136 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-(4-fluorophenyl)-4-methyl-1H-pyrazol-5-amine 5CBJ ; 1.957 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-(phenylthio)acrylic acid 6APZ ; 2.254 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-hydroxy-phenyldiketoacid 6AS6 ; 1.4 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 3-Prop-6-Me-phenyldiketoacid 3S9Z ; 1.793 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4-(2-bromophenyl)-2,4-dioxobutanoic acid inhibitor 3SB0 ; 2.199 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4-(2-chloro-6-fluoro-3-methylphenyl)-2,4-dioxobutanoic acid inhibitor 3SAD ; 1.82 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4-(2-mehtylphenyl)-2,4-dioxobutanoic acid inhibitor 3SAZ ; 2.04 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4-(3-bromophenyl)-2,4-dioxobutanoic acid inhibitor 6ASU ; 2.316 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4-methyl-phenyldiketoacid 5CJM ; 2.13 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 4H-thieno[3,2-b]pyrrole-5-carboxylic acid 5CBB ; 2.012 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 5-(3H-indol-3-ylidene)-2,5-dihydro-1H-pyrazole-3-carboxylate 5DX7 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 5-(5-chlorothiophen-2-yl)isoxazole-3-carboxylic acid 5CBI ; 1.988 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 5-chloro-2-hydroxybenzonitrile 5CC3 ; 2.204 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 6-bromo-1H-indole-2-carboxylic acid 5CAH ; 2.303 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with 6H-thieno[2,3-b]pyrrole-5-carboxylic acid 6AU9 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with dioxine-phenyldiketoacid 6C7B ; 2.133 ; Crystal structure of Mycobacterium tuberculosis malate synthase in complex with Methoxynaphthyldiketoacid 4O7O ; 2.4006 ; Crystal structure of Mycobacterium tuberculosis maltose kinase MaK 4O7P ; 2.9 ; Crystal structure of Mycobacterium tuberculosis maltose kinase MaK complexed with maltose 5HSM ; 1.9 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS MARR FAMILY PROTEIN RV2887 5HSO ; 2.5 ; Crystal structure of MYCOBACTERIUM TUBERCULOSIS MARR FAMILY PROTEIN Rv2887 complex with DNA 5X7Z ; 2.2 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS MARR FAMILY PROTEIN RV2887 COMPLEX WITH P-AMINOSALICYLIC ACID 5X80 ; 2.4 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS MARR FAMILY PROTEIN RV2887 COMPLEX WITH SALICYLIC ACID 1Q51 ; 2.3 ; Crystal Structure of Mycobacterium tuberculosis MenB in Complex with Acetoacetyl-Coenzyme A, a Key Enzyme in Vitamin K2 Biosynthesis 3T8A ; 2.245 ; Crystal structure of Mycobacterium tuberculosis MenB in complex with substrate analogue, OSB-NCoA 3T8B ; 1.649 ; Crystal structure of Mycobacterium tuberculosis MenB with altered hexameric assembly 1Q52 ; 1.8 ; Crystal Structure of Mycobacterium tuberculosis MenB, a Key Enzyme in Vitamin K2 Biosynthesis 8XHR ; 2.1 ; Crystal structure of Mycobacterium tuberculosis MenT3 bound with CTP 5XET ; 2.38 ; Crystal structure of Mycobacterium tuberculosis methionyl-tRNA synthetase bound by methionyl-adenylate (Met-AMP) 6ACA ; 3.6 ; Crystal structure of Mycobacterium tuberculosis Mfd at 3.6 A resolution 8F5V ; 1.45 ; Crystal structure of Mycobacterium tuberculosis Mycothiol S-transferase enzyme in complex with mycothiol and Zn2+ 1U0R ; 2.8 ; Crystal structure of Mycobacterium tuberculosis NAD kinase 1U0T ; 2.3 ; Crystal structure of Mycobacterium tuberculosis NAD kinase 1Y3I ; 2.6 ; Crystal Structure of Mycobacterium tuberculosis NAD kinase-NAD complex 1K0R ; 1.7 ; Crystal Structure of Mycobacterium tuberculosis NusA 4BHB ; 1.8 ; Crystal structure of Mycobacterium tuberculosis O6-METHYLGUANINE METHYLTRANSFERASE 4WX9 ; 3.0 ; Crystal structure of Mycobacterium tuberculosis OGT in complex with DNA 4WXD ; 2.3 ; Crystal structure of Mycobacterium tuberculosis OGT-R37K 4WXC ; 2.6 ; Crystal structure of Mycobacterium tuberculosis OGT-Y139F 8J5U ; 1.98 ; Crystal structure of Mycobacterium tuberculosis OppA complexed with an endogenous oligopeptide 4BFY ; 2.3 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a biaryl inhibitory compound (2a) and phosphate 4BFZ ; 2.1 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a biaryl inhibitory compound (2b) and phosphate 4BFS ; 2.9 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1a) 4BFT ; 2.29 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1b) and phosphate 4BFU ; 2.28 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1c) and phosphate 4BFV ; 2.29 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1d) and phosphate 4BFW ; 2.27 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1e) and phosphate 4BFX ; 2.7 ; Crystal structure of Mycobacterium tuberculosis PanK in complex with a triazole inhibitory compound (1f) and phosphate 3COV ; 1.5 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.5 Ang resolution- apo form 3IMC ; 1.6 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.6 Ang resolution in complex with fragment compound 5-methoxyindole, sulfate and glycerol 3LE8 ; 1.7 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.70 Angstrom resolution in complex with 2-(2-((benzofuran-2-carboxamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid 3IOD ; 1.75 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.75 Ang resolution in complex with 5'-deoxy-5'-((3-nitrobenzyl)disulfanyl)-adenosine 3IMG ; 1.8 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.8 Ang resolution in a ternary complex with fragment compounds 5-methoxyindole and 1-benzofuran-2-carboxylic acid 3COW ; 1.8 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.8 Ang resolution- in complex with sulphonamide inhibitor 2 3IOB ; 1.8 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.80 Ang resolution in complex with 5'-deoxy-5'-thioadenosine 3IOE ; 1.95 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 1.95 Ang resolution in complex with 5'-deoxy-5'-((R)-3,4-dihydroxybutylthio)-adenosine 3COZ ; 2.0 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 2.0 Ang resolution- in complex with sulphonamide inhibitor 4 3COY ; 2.03 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 2.05 Ang resolution- in complex with sulphonamide inhibitor 3 3IME ; 2.39 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 2.40 Ang resolution in complex with fragment compound 1-Benzofuran-2-carboxylic acid 3IOC ; 2.5 ; Crystal Structure of Mycobacterium Tuberculosis Pantothenate Synthetase at 2.50 Ang resolution in complex with 5'-deoxy-5'-(benzyldisulfanyl)-adenosine 4G5Y ; 1.8 ; Crystal Structure of Mycobacterium tuberculosis Pantothenate synthetase in a ternary complex with ATP and N,N-DIMETHYLTHIOPHENE-3-SULFONAMIDE 4EF6 ; 1.94 ; Crystal Structure of Mycobacterium tuberculosis Pantothenate synthetase in complex with fragment 1 3E3U ; 1.56 ; Crystal structure of Mycobacterium tuberculosis peptide deformylase in complex with inhibitor 7DAW ; 2.83 ; Crystal structure of Mycobacterium tuberculosis phenylalanyl-tRNA synthetase 7DB7 ; 2.71 ; Crystal structure of Mycobacterium tuberculosis phenylalanyl-tRNA synthetase in complex with compound GDI05-001 7DB8 ; 2.3 ; Crystal structure of Mycobacterium tuberculosis phenylalanyl-tRNA synthetase in complex with compound PF-3845 6H53 ; 2.9 ; Crystal structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase (PgsA1) in apo form 6H5A ; 1.88 ; Crystal structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase (PgsA1) in complex with manganese and citrate 6H59 ; 1.8 ; Crystal structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase (PgsA1) with CDP-DAG bound 2Y88 ; 1.33 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS PHOSPHORIBOSYL ISOMERASE (VARIANT D11N) WITH BOUND PRFAR 2Y89 ; 2.5 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS PHOSPHORIBOSYL ISOMERASE A (VARIANT D11N) 3ZS4 ; 1.9 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS PHOSPHORIBOSYL ISOMERASE WITH BOUND PRFAR 2Y85 ; 2.4 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS PHOSPHORIBOSYL ISOMERASE WITH BOUND RCDRP 5M06 ; 2.0 ; Crystal structure of Mycobacterium tuberculosis PknI kinase domain 5M07 ; 2.5 ; Crystal structure of Mycobacterium tuberculosis PknI kinase domain, C20A mutant 5M08 ; 3.03 ; Crystal structure of Mycobacterium tuberculosis PknI kinase domain, C20A_R136A double mutant 5M09 ; 2.98 ; Crystal structure of Mycobacterium tuberculosis PknI kinase domain, C20A_R136N double mutant 4JAR ; 1.98 ; Crystal structure of mycobacterium tuberculosis pks11 in complex with polyketide intermediates and evidence that it synthesize ALKYLPYRONES 4JAO ; 2.05 ; Crystal Structure of Mycobacterium tuberculosis PKS11 Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones 4JAP ; 1.833 ; Crystal Structure of Mycobacterium tuberculosis PKS11 Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones 4JAQ ; 1.73 ; Crystal Structure of Mycobacterium tuberculosis PKS11 Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones 4JAT ; 2.42 ; Crystal Structure of Mycobacterium tuberculosis PKS11 Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones 4JD3 ; 2.25 ; Crystal Structure of Mycobacterium tuberculosis PKS11 Reveals Intermediates in the Synthesis of Methyl-branched Alkylpyrones 1N3I ; 1.9 ; Crystal Structure of Mycobacterium tuberculosis PNP with transition state analog DADMe-ImmH 3MI0 ; 2.2 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome at 2.2 A 2FHH ; 2.99 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome in complex with a peptidyl boronate inhibitor MLN-273 3KRD ; 2.5 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome in complex with Fellutamide B 5THO ; 3.002 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome in complex with N,C-capped Dipeptide Inhibitor PKS2205 6OCW ; 2.6 ; Crystal Structure of Mycobacterium tuberculosis Proteasome in Complex with Phenylimidazole-based Inhibitor A85 6OCZ ; 2.65 ; Crystal Structure of Mycobacterium tuberculosis Proteasome in Complex with Phenylimidazole-based Inhibitor A86 6ODE ; 2.9 ; Crystal Structure of Mycobacterium tuberculosis Proteasome in Complex with Phenylimidazole-based Inhibitor B6 3H6I ; 2.43 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome Modified by inhibitor GL1 3H6F ; 2.51 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome Modified by inhibitor HT1171 3HFA ; 2.504 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome open-gate mutant 3HF9 ; 2.878 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome open-gate mutant modified by inhibitor GL1 3MFE ; 2.6 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome open-gate mutant with H0 movement 3MKA ; 2.51 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome with propetide and an T1A mutation at beta-subunit 5UN0 ; 3.0 ; Crystal Structure of Mycobacterium Tuberculosis Proteasome-assembly chaperone homologue Rv2125 1YWF ; 1.71 ; Crystal Structure of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase PtpB 2OZ5 ; 2.0 ; Crystal structure of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB in complex with the specific inhibitor OMTS 4A1O ; 2.48 ; Crystal structure of Mycobacterium tuberculosis PurH complexed with AICAR and a novel nucleotide CFAIR, at 2.48 A resolution. 3ZZM ; 2.2 ; Crystal structure of Mycobacterium tuberculosis PurH with a novel bound nucleotide CFAIR, at 2.2 A resolution. 8IBP ; 1.45 ; Crystal structure of Mycobacterium tuberculosis R21K ClpC1 N-terminal domain in complex with Lassomycin 3OEI ; 2.145 ; Crystal structure of Mycobacterium tuberculosis RelJK (Rv3357-Rv3358-RelBE3) 4CGE ; 2.756 ; Crystal structure of Mycobacterium tuberculosis Resuscitation promoting factor E 2VVO ; 1.85 ; Crystal structure of Mycobacterium tuberculosis ribose-5-phosphate isomerase B in complex with alpha d-allose 6-phosphate 2VVP ; 1.65 ; Crystal structure of Mycobacterium tuberculosis ribose-5-phosphate isomerase B in complex with its substrates ribose 5-phosphate and ribulose 5-phosphate 2VVQ ; 2.0 ; Crystal structure of Mycobacterium tuberculosis ribose-5-phosphate isomerase B in complex with the inhibitor 5-deoxy-5-phospho-D- ribonate 3B4T ; 2.1 ; Crystal structure of Mycobacterium tuberculosis RNase PH, the Mycobacterium tuberculosis Structural Genomics Consortium target Rv1340 5D18 ; 2.04 ; Crystal structure of Mycobacterium tuberculosis Rv0302, form I 5D19 ; 2.655 ; Crystal structure of Mycobacterium tuberculosis Rv0302, form II 2WAW ; 1.6 ; crystal structure of Mycobacterium tuberculosis rv0371c homolog from mycobacterium sp. strain JC1 2WE7 ; 2.9 ; Crystal structure of Mycobacterium tuberculosis Rv0376c homologue from Mycobacterium smegmatis 2WE8 ; 2.3 ; Crystal structure of Mycobacterium tuberculosis Rv0376c homologue from Mycobacterium smegmatis 5D1R ; 2.0 ; Crystal structure of Mycobacterium tuberculosis Rv1816 transcriptional regulator. 5D1W ; 3.59 ; Crystal structure of Mycobacterium tuberculosis Rv3249c transcriptional regulator. 3CAI ; 1.8 ; Crystal structure of Mycobacterium tuberculosis Rv3778c protein 2ZJ0 ; 2.42 ; Crystal structure of Mycobacterium tuberculosis S-Adenosyl-L-homocysteine hydrolase in ternary complex with NAD and 2-fluoroadenosine 2ZJ1 ; 2.01 ; Crystal structure of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with NAD and 3'-keto-aristeromycin 2ZIZ ; 2.2 ; Crystal structure of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with NAD and 3-deazaadenosine 3CE6 ; 1.6 ; Crystal structure of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with NAD and adenosine 4P4G ; 1.7 ; Crystal Structure of Mycobacterium tuberculosis Shikimate Dehydrogenase 4P4L ; 2.009 ; Crystal Structure of Mycobacterium tuberculosis Shikimate Dehydrogenase 4P4N ; 1.95 ; Crystal Structure of Mycobacterium tuberculosis Shikimate Dehydrogenase 2G1J ; 2.0 ; Crystal structure of Mycobacterium tuberculosis Shikimate Kinase at 2.0 angstrom resolution 4BQS ; 2.15 ; Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with ADP and a shikimic acid derivative. 1U8A ; 2.15 ; Crystal Structure of Mycobacterium Tuberculosis Shikimate Kinase in Complex with Shikimate and ADP at 2.15 Angstrom Resolution 1ZYU ; 2.9 ; Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with shikimate and amppcp at 2.85 angstrom resolution 2G1K ; 1.75 ; Crystal structure of Mycobacterium tuberculosis shikimate kinase in complex with shikimate at 1.75 angstrom resolution 5Z9Y ; 1.48 ; Crystal structure of Mycobacterium tuberculosis thiazole synthase (ThiG) complexed with DXP 4FQS ; 1.8 ; Crystal Structure of Mycobacterium tuberculosis ThyA in complex with UMP and Pemetrexed 1MRS ; 2.0 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH 5-CH2OH DEOXYURIDINE MONOPHOSPHATE 1W2H ; 2.0 ; Crystal Structure Of Mycobacterium Tuberculosis Thymidylate Kinase Complexed With Azidothymidine Monophosphate (AZT-MP) (2.0 A Resolution) 1MRN ; 2.45 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH BISUBSTRATE INHIBITOR (TP5A) 1W2G ; 2.1 ; Crystal Structure Of Mycobacterium Tuberculosis Thymidylate Kinase Complexed With Deoxythymidine (dT) (2.1 A Resolution) 1N5J ; 1.85 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE DIPHOSPHATE (TDP) AND THYMIDINE TRIPHOSPHATE (TTP) AT PH 5.4 (1.85 A RESOLUTION) 1G3U ; 1.95 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE MONOPHOSPHATE (TMP) 1GSI ; 1.6 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE MONOPHOSPHATE (TMP) 1GTV ; 1.55 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE-5'-DIPHOSPHATE (TDP) 1N5K ; 2.1 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE CRYSTALLIZED IN SODIUM MALONATE (RESOLUTION 2.1 A) 1N5L ; 2.3 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS THYMIDYLATE KINASE CRYSTALLIZED IN SODIUM MALONATE, AFTER CATALYSIS IN THE CRYSTAL (2.3 A RESOLUTION) 3GWC ; 1.9 ; Crystal structure of Mycobacterium tuberculosis thymidylate synthase X bound to FdUMP and FAD 3HZG ; 2.45 ; Crystal structure of mycobacterium tuberculosis thymidylate synthase X bound with FAD 5D5H ; 2.52 ; Crystal structure of Mycobacterium tuberculosis Topoisomerase I 5UJ1 ; 2.153 ; Crystal structure of Mycobacterium tuberculosis Topoisomerase I at 2.15A resolution limit 6CQ2 ; 3.004 ; Crystal structure of Mycobacterium tuberculosis Topoisomerase I in complex with oligonucleotide MTS2-12 and Magnesium 5UHA ; 3.906 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex 5UH9 ; 4.402 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 2nt RNA 5UH6 ; 3.837 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 2ntRNA in complex with Rifampin 5UH5 ; 3.746 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 3 nt of RNA 5UHC ; 3.796 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 3nt RNA in complex with Rifampin 5UH8 ; 4.176 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 4nt RNA 5UHD ; 4.01 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex containing 4nt RNA in complex with Rifampin 5UHE ; 4.039 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex in complex with D-AAP1 5UHG ; 3.971 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex in complex with D-AAP1 and Rifampin 5UHF ; 4.345 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex in complex with D-IX336 5UHB ; 4.29 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex in complex with Rifampin 6DVE ; 3.812 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex(ECF selenomethionine-labelled sigma factor L) with 6 nt spacer 6DV9 ; 3.8 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex(ECF sigma factor L) containing 5nt RNA with 4nt spacer 6DVB ; 3.8 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex(ECF sigma factor L) containing 5nt RNA with 5nt spacer 6DVC ; 3.3 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex(ECF sigma factor L) containing 5nt RNA with 6nt spacer 6DVD ; 3.899 ; Crystal structure of Mycobacterium tuberculosis transcription initiation complex(ECF sigma factor L) with 6 nt spacer and bromine labelled in position ""-11 3RIM ; 2.49 ; Crystal structure of mycobacterium tuberculosis Transketolase (Rv1449c) 2GKM ; 1.731 ; Crystal structure of Mycobacterium tuberculosis trHbN TyrB10Phe mutant 2GLN ; 1.98 ; Crystal structure of Mycobacterium tuberculosis trHbN, GlnE11Ala mutant 2GKN ; 2.1 ; Crystal structure of Mycobacterium tuberculosis trHbN, GlnE11Val mutant 2GL3 ; 1.92 ; Crystal structure of Mycobacterium tuberculosis trHbN, TyrB10Phe GlnE11Val mutant 2QRW ; 1.93 ; Crystal structure of Mycobacterium tuberculosis trHbO WG8F mutant 7EL8 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase 7ENS ; 2.2 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase complexed with Indolmycin and ATP 7ELT ; 1.9 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase complexed with Trp-AMP 7EV3 ; 2.7 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase complexed with Y-10 and ATP 7EV2 ; 2.1 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase complexed with Y-11 and ATP 7ENT ; 2.4 ; Crystal structure of Mycobacterium tuberculosis tryptophanyl-tRNA synthetase complexed with Y-13 and ATP 4CIY ; 2.1 ; Crystal structure of Mycobacterium tuberculosis type 2 dehydroquinase in complex with (1R,4R,5R)-1,4,5-trihydroxy-3-((1R)-1-hydroxy-2- phenyl)ethylcyclohex-2-en-1-carboxylic acid 4CIW ; 2.2 ; Crystal structure of Mycobacterium tuberculosis type 2 dehydroquinase in complex with (1R,4R,5R)-1,4,5-trihydroxy-3-(2-hydroxy)ethylcyclohex-2-ene-1-carboxylic acid 4CIV ; 2.9 ; Crystal structure of Mycobacterium tuberculosis type 2 dehydroquinase in complex with (1R,4R,5R)-1,4,5-trihydroxy-3-hydroxymethylcyclohex-2-ene-1-carboxylic acid 4CIX ; 2.9 ; Crystal structure of Mycobacterium tuberculosis type 2 dehydroquinase in complex with(1R,4R,5R)-1,4,5-trihydroxy-3-((1S)-1-hydroxy-2-phenyl) ethylcyclohex-2-en-1-carboxylic acid 4V0S ; 1.55 ; Crystal structure of Mycobacterium tuberculosis Type II Dehydroquinase D88N mutant inhibited by a 3-dehydroquinic acid derivative 4MFI ; 1.5 ; Crystal structure of Mycobacterium tuberculosis UgpB 2WAM ; 2.6 ; Crystal structure of Mycobacterium tuberculosis unknown function protein Rv2714 8I67 ; 1.72 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with 2,4-Thiazolidinedione, Form I 4WS8 ; 1.4 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 2-thiouracil, Form V 4WS6 ; 1.1 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-aminouracil, Form I 4WS7 ; 1.88 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-chlorouracil, Form II 8I69 ; 2.0 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with 5-Fluoroorotic acid and Citric acid, Form I 4WS0 ; 1.974 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-fluorouracil (A), Form II 4WRZ ; 1.193 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-fluorouracil (AB), Form I 4WS1 ; 1.4 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-fluorouracil (AB), Form II 4WRY ; 1.43 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-fluorouracil(B), Form I 8I6B ; 1.6 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with 5-Hydroxy-2,4(1H,3H)-pyrimidinedione, Form I 8I6D ; 2.4 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with 5-Hydroxy-2,4(1H,3H)-pyrimidinedione, Form VI 4WS4 ; 1.18 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-nitrouracil, Form I 4WS5 ; 1.4 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 5-nitrouracil, Form III 4WS2 ; 1.13 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 6-aminouracil, Form I 4WS3 ; 1.4 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with 6-aminouracil, Form IV 8I6C ; 2.28 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with 6-Formyl-uracil, Form III 8I61 ; 1.24 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Barbituric acid and Citric acid, Form I 8I62 ; 1.26 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Barbituric acid, Form I 8I64 ; 2.26 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Barbituric acid, Form II 8I63 ; 1.95 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Barbituric acid, Form III 8I66 ; 2.6 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with isoorotic acid (2,4-Dihydroxypyrimidine-5-carboxylic Acid) and citric acid, Form I 8I65 ; 1.72 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with isoorotic acid (2,4-Dihydroxypyrimidine-5-carboxylic Acid), Form I 8I6A ; 2.0 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Orotic acid, Form III 4WPL ; 1.15 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with uracil, Form I 4WRU ; 1.24 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with uracil, Form II 4WRV ; 1.44 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase in complex with uracil, Form III 8I68 ; 1.88 ; Crystal structure of Mycobacterium tuberculosis Uracil-DNA glycosylase in complex with Uric acid, Form III 4WPK ; 0.98 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase, Form I 4WRW ; 1.9 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase, Form IV 4WRX ; 1.4 ; Crystal structure of Mycobacterium tuberculosis uracil-DNA glycosylase, Form V 6A7V ; 1.67 ; Crystal structure of Mycobacterium tuberculosis VapBC11 toxin-antitoxin complex 5WZ4 ; 1.775 ; Crystal structure of Mycobacterium tuberculosis VapC20 (Rv2549c), Sarcin-Ricin loop cleaving toxin 5WZF ; 1.75 ; Crystal structure of Mycobacterium tuberculosis VapC20 (Rv2549c), Sarcin-Ricin loop cleaving toxin 5H8U ; 2.85 ; Crystal structure of mycobacterium tuberculosis wild-type malate synthase in complex with product malate 3ZUK ; 2.6 ; CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS ZINC METALLOPROTEASE ZMP1 IN COMPLEX WITH INHIBITOR 6BWH ; 2.18 ; Crystal structure of Mycoibacterium tuberculosis Rv2983 in complex with PEP 1KPG ; 2.0 ; Crystal Structure of mycolic acid cyclopropane synthase CmaA1 complexed with SAH and CTAB 1KPH ; 2.0 ; Crystal Structure of mycolic acid cyclopropane synthase CmaA1 complexed with SAH and DDDMAB 1KP9 ; 2.21 ; Crystal structure of mycolic acid cyclopropane synthase CmaA1, apo-form 1KPI ; 2.65 ; Crystal Structure of mycolic acid cyclopropane synthase CmaA2 complexed with SAH and DDDMAB 1L1E ; 2.0 ; Crystal Structure of Mycolic Acid Cyclopropane Synthase PcaA Complexed with S-adenosyl-L-homocysteine 6AJF ; 2.698 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis 6AJH ; 2.818 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with AU1235 6AJJ ; 2.794 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with ICA38 7C2M ; 3.1 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with NITD-349 6AJI ; 2.9 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with Rimonabant 7C2N ; 2.82 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with SPIRO 6AJG ; 2.604 ; Crystal structure of mycolic acid transporter MmpL3 from Mycobacterium smegmatis complexed with SQ109 6Q5T ; 2.54 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) - apo form 5OHZ ; 2.036 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) - SeMet derivative 5OIW ; 1.71 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) D182A variant in complex with glucosylglycerate 5ONZ ; 1.93 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) D182A variant in complex with glucosylglycolate 5OJ4 ; 1.79 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) D182A variant in complex with mannosylglycerate 5OI1 ; 1.75 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) D182A variant in complex with serine and glycerol 5OIV ; 1.783 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) D43A variant in complex with serine and glycerol 5OJU ; 2.17 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) E419A variant in complex with glucosylglycerate 5OO2 ; 2.06 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) E419A variant in complex with glucosylglycolate 5OJV ; 2.062 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) E419A variant in complex with mannosylglycerate 5OIE ; 2.071 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) E419A variant in complex with serine and glycerol 5OHC ; 2.0 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) in complex with glycerol 5OI0 ; 1.68 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase (MhGgH) in complex with serine and glycerol 5ONT ; 2.05 ; Crystal structure of Mycolicibacterium hassiacum glucosylglycerate hydrolase(MhGgH) E419A variant in complex with glucosylglycerol 3KPH ; 2.8 ; Crystal structure of Mycoplasma arthritidis-derived mitogen 6J36 ; 2.301 ; crystal structure of Mycoplasma hyopneumoniae Enolase 3ZIU ; 2.07 ; Crystal structure of Mycoplasma mobile Leucyl-tRNA Synthetase with Leu-AMS in the active site 7E2Q ; 1.8 ; Crystal structure of Mycoplasma pneumoniae Enolase 8QCK ; 4.7 ; Crystal structure of mycothiol disulfide reductase Mtr from Mycobacterium smegmatis 8QCJ ; 2.9 ; Crystal structure of mycothiol disulfide reductase Mtr from Rhodococcus erythropolis 4KB5 ; 2.15 ; Crystal structure of MycP1 from Mycobacterium smegmatis 4J94 ; 1.857 ; Crystal structure of MycP1 from the ESX-1 type VII secretion system 4KPG ; 2.148 ; Crystal structure of MycP1 from the ESX-1 type VII secretion system 4M1Z ; 2.25 ; Crystal structure of MycP1 with the N-terminal propeptide removed 6IGO ; 2.746 ; Crystal structure of myelin protein zero-like protein 1 (MPZL1) 5H5P ; 2.461 ; Crystal structure of Myelin-gene Regulatory Factor DNA binding domain 3F9P ; 2.93 ; Crystal structure of myeloperoxidase from human leukocytes 6WYD ; 2.55 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-12 (AKA; 7-benzyl-1H-[1,2,3]triazolo[4,5-b]pyrid 7LAG ; 2.85 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-14 AKA 7-({1-[(3-phenoxyphenyl)methyl]-1H-pyrazol-4-yl}methyl)-3H-[1,2,3]triazolo[4,5-b]pyridin-5-amine 7LAL ; 2.75 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH COMPOUND-18 AKA 7-(3-(2,3-DIHYDRO-1H-INDEN-1-YLAMINO)-1-PHENYLPROPYL)-1H-[1,2,3]TRIAZOLO[4,5-B]PYRIDIN-5-AMINE 5QJ3 ; 2.76 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH COMPOUND-24 AKA 7-({4-CHLORO-3'-FLUORO-[1,1'- BIPHENYL]-3-YL}METHOXY)-3H-[1,2,3]TRIAZOLO[4,5-B]PYRIDIN- 5-AMINE 6WXZ ; 2.226 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-29 A.K.A 7-(1,2-DIPHENYLETHYL)-1H-[1,2,3]TRIAZOLO[4,5-B]PYRIDIN-5-AMINE 7LAN ; 2.28 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH COMPOUND-30 AKA 7-[(3~{S},4~{R},6~{R})-4-benzyl-2-oxa-7,13,14-triazatetracyclo[14.3.1.1^{3,6}.1^{11,14}]docosa-1(19),11(21),12,16(20),17-pentaen-10-yl]-3~{H}-triazolo[4,5-b]pyridin-5-amine 6WY5 ; 2.898 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-37 A.K.A 7-(1-phenyl-3-(((1S,3S)-3-phenyl-2,3-dihydro-1H-inden-1-yl)amino)propyl)-1H-[1,2,3]triazolo[4,5-b]pyridin-5-amine 7LAE ; 2.97 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-4 6WY0 ; 2.799 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-40 A.K.A 7-[(1R)-1-phenyl-3-{[(1r,4r)-4-phenylcyclohexyl]amino}propyl]-3H-[1,2,3]triazolo[4,5-b]pyridin-5-amine 6WY7 ; 2.089 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH Compound-41 A.K.A 7-[1-phenyl-3-({4-phenylbicyclo[2.2.2]octan-1-yl}amino)propyl]-3H-[1,2,3]triazolo[4,5-b]pyridin-5-amine 5WDJ ; 2.4 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) COMPLEX WITH COMPOUND-6 AKA 7-(BENZYLOXY)-1H-[1,2, 3]TRIAZOLO[4,5-D]PYRIMIDIN-5-AMINE 5QJ2 ; 2.82 ; CRYSTAL STRUCTURE OF MYELOPEROXIDASE SUBFORM C (MPO) OMPLEX WITH COMPOUND-20 AKA 7-((3-(1-METHYL-1H-PYRAZOL-3- YL)BENZYL)OXY)- 1H-[1,2,3]TRIAZOLO[4,5-B]PYRIDIN-5-AMINE 1RM0 ; 2.05 ; Crystal Structure of Myo-Inositol 1-Phosphate Synthase From Saccharomyces cerevisiae In Complex With NAD+ and 2-deoxy-D-glucitol 6-(E)-vinylhomophosphonate 3CEA ; 2.4 ; Crystal structure of myo-inositol 2-dehydrogenase (NP_786804.1) from Lactobacillus plantarum at 2.40 A resolution 3NT2 ; 2.3003 ; Crystal structure of myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor 3NT5 ; 2.9006 ; Crystal structure of myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor and product inosose 3NT4 ; 2.5001 ; Crystal structure of myo-inositol dehydrogenase from Bacillus subtilis with bound cofactor NADH and inositol 4MJL ; 1.6 ; Crystal Structure of myo-inositol dehydrogenase from Lactobacillus casei in complex with NAD and D-chiro-inositol 4MIY ; 1.42 ; Crystal Structure of myo-inositol dehydrogenase from Lactobacillus casei in complex with NAD and myo-inositol 4MIO ; 1.5 ; Crystal Structure of myo-inositol dehydrogenase from Lactobacillus casei in complex with NAD(H) and myo-inositol 4MIN ; 1.6 ; Crystal Structure of myo-inositol dehydrogenase from Lactobacillus casei with bound cofactor NAD 2PCR ; 2.6 ; Crystal structure of Myo-inositol-1(or 4)-monophosphatase (aq_1983) from Aquifex Aeolicus VF5 5ET1 ; 1.65 ; Crystal structure of Myo3b-ARB1 in complex with Espin1-AR 5ET0 ; 2.3 ; Crystal structure of Myo3b-ARB2 in complex with Espin1-AR 4LX1 ; 1.87 ; Crystal structure of Myo5a globular tail domain 4LX2 ; 1.5 ; Crystal structure of Myo5a globular tail domain in complex with melanophilin GTBD 4LX0 ; 2.19 ; Crystal structure of Myo5b globular tail domain in complex with active Rab11a 4LWZ ; 2.55 ; Crystal structure of Myo5b globular tail domain in complex with inactive Rab11a 5WST ; 2.1 ; Crystal structure of Myo7a SAH 5XBF ; 1.802 ; Crystal Structure of Myo7b C-terminal MyTH4-FERM in complex with USH1C PDZ3 5F3Y ; 3.409 ; Crystal Structure of Myo7b N-MyTH4-FERM-SH3 in complex with Anks4b CEN 1MDY ; 2.8 ; CRYSTAL STRUCTURE OF MYOD BHLH DOMAIN BOUND TO DNA: PERSPECTIVES ON DNA RECOGNITION AND IMPLICATIONS FOR TRANSCRIPTIONAL ACTIVATION 7WZ6 ; 2.05 ; Crystal structure of MyoD-E47 6EEL ; 1.93 ; Crystal Structure of Myoferlin C2A with divalent cation 2VLY ; 1.6 ; Crystal structure of myoglobin compound III (radiation-induced) 4DC7 ; 1.5 ; Crystal Structure of Myoglobin Exposed to Excessive SONICC Imaging Laser Dose. 2EKT ; 1.1 ; Crystal structure of myoglobin reconstituted with 6-methyl-6-depropionatehemin 2EKU ; 1.4 ; Crystal structure of myoglobin reconstituted with 7-methyl-7-depropionatehemin 2D6C ; 2.26 ; Crystal structure of myoglobin reconstituted with iron porphycene 4DC8 ; 1.5 ; Crystal Structure of Myoglobin Unexposed to Excessive SONICC Imaging Laser Dose. 2IN4 ; 2.15 ; Crystal Structure of Myoglobin with Charge Neutralized Heme, ZnDMb-dme 7QQH ; 2.25 ; Crystal structure of MYORG (D520N) in complex with Gal-a1,4-Glc 7QQG ; 2.43 ; Crystal structure of MYORG bound to 1-deoxygalactonojirimycin 5V7X ; 3.141 ; Crystal Structure of Myosin 1b residues 1-728 with bound sulfate and Calmodulin 1W8J ; 2.7 ; Crystal Structure Of Myosin V Motor Domain - Nucleotide-Free 1W7J ; 2.0 ; Crystal Structure Of Myosin V Motor With Essential Light Chain + ADP-BeFx - Near Rigor 1OE9 ; 2.05 ; Crystal structure of Myosin V motor with essential light chain-nucleotide-free 1W7I ; 3.0 ; Crystal Structure Of Myosin V Motor Without nucleotide soaked in 10 mM MgADP 6J56 ; 1.798 ; Crystal structure of Myosin VI CBD in complex with Tom1 MBM 3H8D ; 2.2 ; Crystal structure of Myosin VI in complex with Dab2 peptide 5V6E ; 3.506 ; Crystal structure of Myosin VI in complex with GH2 domain of GIPC1 5V6H ; 3.601 ; Crystal structure of Myosin VI in complex with GH2 domain of GIPC2 5WSV ; 2.33 ; Crystal structure of Myosin VIIa IQ5 in complex with Ca2+-CaM 5WSU ; 3.0 ; Crystal structure of Myosin VIIa IQ5-SAH in complex with apo-CaM 5I0H ; 1.8 ; Crystal structure of myosin X motor domain in pre-powerstroke state 5I0I ; 3.15 ; Crystal structure of myosin X motor domain with 2IQ motifs in pre-powerstroke state 4R8G ; 3.503 ; Crystal Structure of Myosin-1c tail in complex with Calmodulin 3MKD ; 2.4 ; Crystal structure of myosin-2 dictyostelium discoideum motor domain S456Y mutant in complex with adp-orthovanadate 2JJ9 ; 2.3 ; Crystal structure of myosin-2 in complex with ADP-metavanadate 2XO8 ; 2.4 ; Crystal Structure of Myosin-2 in Complex with Tribromodichloropseudilin 2JHR ; 2.8 ; Crystal structure of myosin-2 motor domain in complex with ADP- metavanadate and pentabromopseudilin 2X9H ; 2.7 ; CRYSTAL STRUCTURE OF MYOSIN-2 MOTOR DOMAIN IN COMPLEX WITH ADP- METAVANADATE AND PENTACHLOROCARBAZOLE 3MJX ; 2.2 ; Crystal structure of myosin-2 motor domain in complex with ADP-Metavanadate and blebbistatin 3MNQ ; 2.2 ; Crystal structure of myosin-2 motor domain in complex with ADP-metavanadate and resveratrol 7DHW ; 2.84 ; Crystal structure of myosin-XI motor domain in complex with ADP-ALF4 6DKU ; 2.6 ; Crystal structure of Myotis VP35 mutant of interferon inhibitory domain 6CE2 ; 2.15 ; Crystal structure of Myotoxin I (MjTX-I) from Bothrops moojeni complexed to inhibitor suramin 4KF3 ; 1.92 ; Crystal Structure of Myotoxin II (MjTX-II), a myotoxic Lys49-phospholipase A2 from Bothrops moojeni. 6B84 ; 1.997 ; Crystal structure of Myotoxin II from Bothrops moojeni 6B83 ; 1.7 ; Crystal structure of Myotoxin II from Bothrops moojeni complexed to Caproic acid 6B81 ; 1.76 ; Crystal structure of Myotoxin II from Bothrops moojeni complexed to Caprylic acid 6B80 ; 1.949 ; Crystal structure of myotoxin II from Bothrops moojeni complexed to myristic acid 4YV5 ; 1.9 ; Crystal Structure of Myotoxin II from Bothrops moojeni complexed to Suramin 1LW3 ; 2.3 ; Crystal Structure of Myotubularin-related protein 2 complexed with phosphate 1M7R ; 2.6 ; Crystal Structure of Myotubularin-related Protein-2 (MTMR2) Complexed with Phosphate 3WB8 ; 2.499 ; Crystal Structure of MyoVa-GTD 6KU0 ; 1.6 ; Crystal structure of MyoVa-GTD in complex with MICAL1-GTBM 4KP3 ; 2.405 ; Crystal Structure of MyoVa-GTD in Complex with Two Cargos 7B3E ; 1.77 ; Crystal structure of myricetin covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 4DFZ ; 2.0 ; Crystal structure of myristoylated K7C catalytic subunit of cAMP-dependent protein kinase in complex with SP20 4DFX ; 1.35 ; Crystal structure of myristoylated K7C catalytic subunit of cAMP-dependent protein kinase in complex with SP20 and AMP-PNP 4DG2 ; 2.0 ; Crystal structure of myristoylated WT catalytic subunit of cAMP-dependent protein kinase in complex with SP20 4DG0 ; 2.0 ; Crystal structure of myristoylated WT catalytic subunit of cAMP-dependent protein kinase in complex with SP20 and AMP-PNP 5HYB ; 1.94 ; Crystal structure of myristoylated Y81A mutant MMTV matrix protein 5CZW ; 1.6 ; Crystal structure of myroilysin 6BA4 ; 1.949 ; Crystal structure of MYST acetyltransferase domain in complex with Acetyl-CoA cofactor 6BA2 ; 1.85004 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 6OIP ; 1.8 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 34 6PD8 ; 2.738 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 39 6PDE ; 2.22 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 40 6PDD ; 2.15 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 41 6PDC ; 1.96 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 42 6PDF ; 2.22 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 55 6OIO ; 1.7 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 60 6PD9 ; 2.8 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 60 6OIR ; 2.03 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 62 6OIQ ; 1.75 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 63 6PDA ; 2.448 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 74 6PDB ; 2.42 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 80 6PDG ; 1.919 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 83 6OWI ; 1.75 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 85 6OWH ; 2.0 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor 92 6OIN ; 1.7 ; Crystal structure of MYST acetyltransferase domain in complex with inhibitor CTX-124143 5LIV ; 2.67 ; Crystal structure of myxobacterial CYP260A1 6GK6 ; 1.6 ; Crystal structure of myxobacterial cytochrome P450 CYP267B1 in complex with myristic acid 3NOK ; 1.65 ; Crystal structure of Myxococcus xanthus Glutaminyl Cyclase 1NHK ; 1.9 ; CRYSTAL STRUCTURE OF MYXOCOCCUS XANTHUS NUCLEOSIDE DIPHOSPHATE KINASE AND ITS INTERACTION WITH A NUCLEOTIDE SUBSTRATE AT 2.0 ANGSTROMS RESOLUTION 1NLK ; 2.0 ; CRYSTAL STRUCTURE OF MYXOCOCCUS XANTHUS NUCLEOSIDE DIPHOSPHATE KINASE AND ITS INTERACTION WITH A NUCLEOTIDE SUBSTRATE AT 2.0 ANGSTROMS RESOLUTION 2NCK ; 2.0 ; CRYSTAL STRUCTURE OF MYXOCOCCUS XANTHUS NUCLEOSIDE DIPHOSPHATE KINASE AND ITS INTERACTION WITH A NUCLEOTIDE SUBSTRATE AT 2.0 ANGSTROMS RESOLUTION 5CZ3 ; 2.5 ; Crystal Structure of Myxoma Virus M64 3H4L ; 2.5 ; Crystal Structure of N terminal domain of a DNA repair protein 1Q1C ; 1.9 ; Crystal structure of N(1-260) of human FKBP52 6LUG ; 1.9 ; Crystal structure of N(omega)-hydroxy-L-arginine hydrolase 7EUN ; 1.28 ; Crystal structure of N(omega)-hydroxy-L-arginine hydrolase in complex with ABH 7EUK ; 1.4 ; Crystal structure of N(omega)-hydroxy-L-arginine hydrolase in complex with L-Orn 4D7K ; 2.22 ; Crystal structure of N,N-8-amino-8-demethyl-D-riboflavin dimethyltransferase (RosA) from Streptomyces davawensis 2XX8 ; 1.55 ; Crystal structure of N,N-dimethyl-4-(3-(trifluoromethyl)-4,5,6,7- tetrahydro-1H-indazol-1-yl)benzamide in complex with the ligand binding domain of the Rat GluA2 receptor and glutamate at 2.2A resolution. 7NG0 ; 2.95 ; Crystal structure of N- and C-terminally truncated Geobacillus thermoleovorans nucleoid occlusion protein Noc 2XHD ; 1.8 ; Crystal structure of N-((2S)-5-(6-fluoro-3-pyridinyl)-2,3-dihydro-1H- inden-2-yl)-2-propanesulfonamide in complex with the ligand binding domain of the human GluA2 receptor 2CFF ; 2.5 ; Crystal Structure Of N-((5'-Phosphoribosyl)-Formimino)-5- Aminoimidazol-4-Carboxamid Ribonucleotid Isomerase mutant D127V (Ec 3. 1.3.15, Hisa) 1QO2 ; 1.85 ; Crystal structure of N-((5'-phosphoribosyl)-formimino)-5-aminoimidazol-4-carboxamid ribonucleotid isomerase (EC 3.1.3.15, HisA) 4KKY ; 2.0 ; Crystal structure of N-(1-Pyrene)acetamide labeled P450cam in substrate bound form. 7L5F ; 1.51 ; Crystal Structure of N-(2-oxocyclobutyl) decanamide Bound AiiA-Co 6UF0 ; 1.96 ; Crystal structure of N-(4-((4-methoxy-N-(2,2,2-trifluoroethyl)phenyl)sulfonamido)isoquinolin-1-yl)-N-((4-methoxyphenyl)sulfonyl)glycine bound to human Keap1 Kelch domain 6JDH ; 1.9 ; Crystal structure of N-acetyl mannosmaine kinase from Pasteurella multocida 6JDC ; 2.271 ; Crystal structure of N-acetyl mannosmaine kinase in complex with ManNAc from Haemophilus influenzae 6JDB ; 2.65 ; Crystal structure of N-acetyl mannosmaine kinase in complex with ManNAc-6P and ADP from Haemophilus influenzae 6JDA ; 2.9 ; Crystal structure of N-acetyl mannosmaine kinase in complex with N-acetylmannosamine in Pasteurella multocida 6JDO ; 2.002 ; Crystal structure of N-acetyl mannosmaine kinase with AMP-PNP from Pasteurella multocida 2P53 ; 2.1 ; Crystal structure of N-acetyl-D-glucosamine-6-phosphate deacetylase D273N mutant complexed with N-acetyl phosphonamidate-d-glucosamine-6-phosphate 6FV3 ; 2.58 ; Crystal structure of N-acetyl-D-glucosamine-6-phosphate deacetylase from Mycobacterium smegmatis. 2P50 ; 2.2 ; Crystal structure of N-acetyl-D-Glucosamine-6-Phosphate deacetylase liganded with Zn 2I3A ; 2.15 ; Crystal structure of N-Acetyl-gamma-Glutamyl-Phosphate Reductase (Rv1652) from Mycobacterium tuberculosis 2NQT ; 1.58 ; Crystal structure of N-Acetyl-gamma-Glutamyl-Phosphate Reductase (Rv1652) from Mycobacterium tuberculosis at 1.58 A resolution 2I3G ; 1.85 ; Crystal structure of N-Acetyl-gamma-Glutamyl-Phosphate Reductase (Rv1652) from Mycobacterium tuberculosis in complex with NADP+. 1VKN ; 1.8 ; Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase (TM1782) from Thermotoga maritima at 1.80 A resolution 2OZP ; 2.01 ; Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase (TTHA1904) from Thermus thermophilus 3T7B ; 2.5 ; Crystal Structure of N-acetyl-L-glutamate kinase from Yersinia pestis 3KZC ; 2.2 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase 3KZM ; 1.95 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase complexed with carbamyl phosphate 3KZO ; 1.9 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase complexed with carbamyl phosphate and N-acetyl-L-norvaline 3KZN ; 1.8 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase complexed with N-acetyl-L-ornirthine 3M4J ; 2.2 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase complexed with PALAO 3L02 ; 2.3 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase E92A mutant complexed with carbamyl phosphate and N-succinyl-L-norvaline 3L04 ; 2.5 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase E92P mutant complexed with carbamyl phosphate and N-succinyl-L-norvaline 3L05 ; 2.8 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase E92S mutant complexed with carbamyl phosphate and N-succinyl-L-norvaline 3L06 ; 2.81 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase E92V mutant complexed with carbamyl phosphate and N-succinyl-L-norvaline 3M4N ; 1.9 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase K302A mutant complexed with PALAO 3M5C ; 1.85 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase K302E mutant complexed with PALAO 3M5D ; 2.2 ; Crystal structure of N-acetyl-L-ornithine transcarbamylase K302R mutant complexed with PALAO 4Q7A ; 2.048 ; Crystal Structure of N-acetyl-ornithine/N-acetyl-lysine Deacetylase from Sphaerobacter thermophilus 6P0Z ; 1.011 ; Crystal structure of N-acetylated KRAS (2-169) bound to GDP and Mg 2IXB ; 2.4 ; Crystal structure of N-ACETYLGALACTOSAMINIDASE in complex with GalNAC 1FXJ ; 2.25 ; CRYSTAL STRUCTURE OF N-ACETYLGLUCOSAMINE 1-PHOSPHATE URIDYLTRANSFERASE 1FWY ; 2.3 ; CRYSTAL STRUCTURE OF N-ACETYLGLUCOSAMINE 1-PHOSPHATE URIDYLTRANSFERASE BOUND TO UDP-GLCNAC 2DWH ; 2.8 ; Crystal structure of N-acetylglucosamine complex of bovine lactoferrin C-lobe at 2.8 A resolution 2HOE ; 2.46 ; Crystal structure of N-acetylglucosamine kinase (TM1224) from Thermotoga maritima at 2.46 A resolution 3FOQ ; 3.41 ; Crystal structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group. 1O12 ; 2.5 ; Crystal structure of N-acetylglucosamine-6-phosphate deacetylase (TM0814) from Thermotoga maritima at 2.5 A resolution 6JKU ; 1.95 ; Crystal structure of N-acetylglucosamine-6-phosphate deacetylase from Pasteurella Multocida 2DKA ; 1.93 ; Crystal structure of N-acetylglucosamine-phosphate mutase, a member of the alpha-D-phosphohexomutase superfamily, in the apo-form 2DKD ; 2.1 ; Crystal structure of N-acetylglucosamine-phosphate mutase, a member of the alpha-D-phosphohexomutase superfamily, in the product complex 2DKC ; 2.2 ; Crystal structure of N-acetylglucosamine-phosphate mutase, a member of the alpha-D-phosphohexomutase superfamily, in the substrate complex 1FO8 ; 1.4 ; CRYSTAL STRUCTURE OF N-ACETYLGLUCOSAMINYLTRANSFERASE I 1FO9 ; 1.5 ; CRYSTAL STRUCTURE OF N-ACETYLGLUCOSAMINYLTRANSFERASE I 1FOA ; 1.8 ; CRYSTAL STRUCTURE OF N-ACETYLGLUCOSAMINYLTRANSFERASE I 2AM5 ; 1.6 ; Crystal Structure of N-Acetylglucosaminyltransferase I in Complex with UDP 2AM4 ; 1.7 ; Crystal Structure of N-Acetylglucosaminyltransferase I in Complex with UDP-2-deoxy-2-fluoro-glucose 2APC ; 1.5 ; Crystal Structure of N-Acetylglucosaminyltransferase I in Complex with UDP-GlcNAc phosphonate 2AM3 ; 1.8 ; Crystal Structure of N-Acetylglucosaminyltransferase I in Complex with UDP-Glucose 2R98 ; 2.4 ; Crystal Structure of N-acetylglutamate synthase (selenoMet substituted) from Neisseria gonorrhoeae 3D2P ; 2.56 ; Crystal structure of N-acetylglutamate synthase from Neisseria gonorrhoeae complexed with coenzyme A and L-arginine 3D2M ; 2.21 ; Crystal structure of N-acetylglutamate synthase from Neisseria gonorrhoeae complexed with coenzyme A and L-glutamate 2YI1 ; 2.15 ; Crystal structure of N-Acetylmannosamine kinase in complex with N- acetyl mannosamine 6-phosphate and ADP. 8U90 ; 1.85 ; Crystal structure of N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (Apo, hexagonal form) 8U91 ; 2.65 ; Crystal structure of N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (Apo, Orthorhombic P form) 8U93 ; 1.9 ; Crystal structure of N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (PEG bound) 8U8W ; 1.8 ; Crystal structure of N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (pyruvate and halides bound) 8U92 ; 2.1 ; Crystal structure of N-acetylneuraminate lyase (NanA) from Klebsiella aerogenes (pyruvate bound, Orthorhombic P form) 1HL2 ; 1.8 ; Crystal structure of N-acetylneuraminate lyase from E. coli mutant L142R in complex with b-hydroxypyruvate 5ZJM ; 2.323 ; Crystal structure of N-acetylneuraminate lyase from Fusobacterium nucleatum 5ZKA ; 1.76 ; Crystal structure of N-acetylneuraminate lyase from Fusobacterium nucleatum complexed with Pyruvate 4N4P ; 1.8 ; Crystal Structure of N-acetylneuraminate lyase from Mycoplasma synoviae, crystal form I 4N4Q ; 2.0 ; Crystal Structure of N-acetylneuraminate lyase from Mycoplasma synoviae, crystal form II 6NCS ; 1.8 ; Crystal structure of N-acetylneuraminic acid (Sialic acid) synthetase from Leptospira borgpetersenii serovar Hardjo-bovis in complex with citrate 4AHO ; 2.0 ; Crystal Structure of N-acetylneuraminic acid lyase from Staphylococcus aureus with the chemical modification thia-lysine at position 165 4AMA ; 2.35 ; Crystal Structure of N-acetylneuraminic acid lyase from Staphylococcus aureus with the chemical modification thia-lysine at position 165 in complex with pyruvate 4AHQ ; 1.95 ; Crystal Structure of N-acetylneuraminic acid lyase mutant K165C from Staphylococcus aureus 6W7X ; 1.9 ; Crystal structure of N-acetylornithine aminotransferase from Stenotrophomonas maltophilia K279a 7XRJ ; 2.2 ; crystal structure of N-acetyltransferase DgcN-25328 4LUA ; 1.6001 ; Crystal structure of N-acetyltransferase from Staphylococcus aureus Mu50 4M85 ; 2.0 ; Crystal structure of N-acetyltransferase from Staphylococcus aureus Mu50 4MBU ; 2.15 ; Crystal structure of N-acetyltransferase from Staphylococcus aureus Mu50 5IX3 ; 1.81 ; Crystal structure of N-acetyltransferase from Staphylococcus aureus. 1FP3 ; 2.0 ; CRYSTAL STRUCTURE OF N-ACYL-D-GLUCOSAMINE 2-EPIMERASE FROM PORCINE KIDNEY 3GIQ ; 1.8 ; Crystal structure of N-acyl-D-Glutamate Deacylase from Bordetella Bronchiseptica complexed with zinc and phosphonate inhibitor, a mimic of the reaction tetrahedral intermediate. 3GIP ; 1.5 ; Crystal structure of N-acyl-D-Glutamate Deacylase from Bordetella Bronchiseptica complexed with zinc, acetate and formate ions. 2ZC8 ; 1.95 ; Crystal structure of N-Acylamino Acid Racemase from Thermus thermophilus HB8 3G2N ; 2.1 ; Crystal structure of N-acylglucosylamine with glycogen phosphorylase 5L10 ; 2.75 ; Crystal Structure of N-Acylhomoserine Lactone Dependent LuxR Family Transcriptionl Factor CepR2 from Burkholderia cenocepacia 1UHK ; 1.6 ; Crystal structure of n-aequorin 2QVI ; 3.012 ; Crystal structure of N-cadherin domains EC12 3EEF ; 2.35 ; Crystal structure of N-carbamoylsarcosine amidase from thermoplasma acidophilum 1ERZ ; 1.7 ; CRYSTAL STRUCTURE OF N-CARBAMYL-D-AMINO ACID AMIDOHYDROLASE WITH A NOVEL CATALYTIC FRAMEWORK COMMON TO AMIDOHYDROLASES 1ZNS ; 2.5 ; Crystal structure of N-ColE7/12-bp DNA/Zn complex 6K8V ; 2.2 ; Crystal structure of N-domain of baterial malonyl-CoA reductase 6K8W ; 3.17 ; Crystal structure of N-domain with NADP of baterial malonyl-CoA reductase 8BPP ; 3.1 ; crystal structure of N-ethylmaleimide reductase (nemA) from Escherichia coli 7TMB ; 2.1 ; Crystal Structure of N-ethylmaleimide reductase from Klebsiella pneumoniae 3GKA ; 2.3 ; Crystal structure of N-ethylmaleimidine reductase from Burkholderia pseudomallei 2Q7S ; 2.0 ; Crystal structure of N-formylglutamate amidohydrolase (YP_297560.1) from Ralstonia eutropha JMP134 at 2.00 A resolution 5SUO ; 2.1 ; Crystal structure of N-glycan transport solute binding protein (NgtS) from Streptococcus pneumoniae 5SWA ; 3.0 ; Crystal structure of N-glycan transport solute binding protein (NgtS) from Streptococcus pneumoniae in complex with Man1GlcNAc 5SWB ; 1.73 ; Crystal structure of N-glycan transport solute binding protein (NgtS) from Streptococcus pneumoniae in complex with Man5GlcNAc 6PFO ; 1.78 ; Crystal structure of N-glycosylated human calcitonin receptor extracellular domain in complex with salmon calcitonin (16-32) 6PGQ ; 2.85 ; Crystal structure of N-glycosylated human calcitonin receptor extracellular domain in complex with salmon calcitonin (22-32) 4ACR ; 2.55 ; Crystal structure of N-glycosylated, C-terminally truncated human glypican-1 2QT3 ; 2.24 ; Crystal structure of N-Isopropylammelide isopropylaminohydrolase AtzC from Pseudomonas sp. strain ADP complexed with Zn 6NBO ; 1.95 ; Crystal structure of N-isopropylammelide isopropylaminohydrolase from Burkholderia multivorans ATCC 17616 4R7V ; 1.73 ; Crystal structure of N-lobe of human ARRDC3(1-165) 4R7X ; 2.61 ; Crystal structure of N-lobe of human ARRDC3(1-180) 7JX4 ; 0.95 ; Crystal Structure of N-Lysine Peptoid-modified Collagen Triple Helix 4INE ; 1.45 ; Crystal structure of N-methyl transferase (PMT-2) from Caenorhabditis elegant complexed with S-adenosyl homocysteine and phosphoethanolamine 4IV8 ; 1.9 ; Crystal structure of N-methyl transferase from Plasmodium knowlesi complexed with S-adenosyl methionine 4IV0 ; 1.4 ; Crystal structure of N-methyl transferase from Plasmodium vivax complexed with S-adenosyl methionine and phosphate 4MWZ ; 1.5 ; Crystal structure of N-methyl transferase from Plasmodium vivax complexed with S-adenosyl methionine, phosphate and amodiaquine 8IOF ; 2.33 ; Crystal structure of N-methyl-Cis-4-hydroxy-D-proline dehydratase in Clostridium sp. FS41 8ID1 ; 3.115 ; Crystal structure of N-Methyl-cis-4-hydroxy-L-proline dehydratase in Intestinibacter bartlettii 3OFJ ; 2.43 ; Crystal structure of N-methyltransferase NodS from Bradyrhizobium japonicum WM9 3OFK ; 1.85 ; Crystal structure of N-methyltransferase NodS from Bradyrhizobium japonicum WM9 in complex with S-adenosyl-l-homocysteine (SAH) 6MB1 ; 1.5 ; Crystal structure of N-myristoyl transferase (NMT) from Plasmodium vivax in complex with inhibitor IMP-1002 6MAY ; 2.05 ; Crystal structure of N-myristoyl transferase (NMT) G386E mutant from Plasmodium vivax 6MAZ ; 1.55 ; Crystal structure of N-myristoyl transferase (NMT) G386E mutant from Plasmodium vivax in complex with inhibitor IMP-0366 6MB0 ; 1.55 ; Crystal structure of N-myristoyl transferase (NMT) G386E mutant from Plasmodium vivax in complex with inhibitor IMP-1002 4QBJ ; 2.1 ; Crystal structure of N-myristoyl transferase from Aspergillus fumigatus complexed with a synthetic inhibitor 4ZV5 ; 1.57 ; Crystal structure of N-myristoylated mouse mammary tumor virus matrix protein 7JX5 ; 1.1 ; Crystal Structure of N-Phenylalanine Peptoid-modified Collagen Triple Helix 2IUR ; 1.3 ; CRYSTAL STRUCTURE OF N-QUINOL FORM OF AROMATIC AMINE DEHYDROGENASE (AADH) FROM ALCALIGENES FAECALIS, FORM A COCRYSTAL 2IUV ; 1.55 ; CRYSTAL STRUCTURE OF N-QUINOL FORM OF AROMATIC AMINE DEHYDROGENASE (AADH) FROM ALCALIGENES FAECALIS, FORM B 7F68 ; 1.24 ; Crystal structure of N-ras S89D 2P88 ; 2.4 ; Crystal structure of N-succinyl Arg/Lys racemase from Bacillus cereus ATCC 14579 2P8C ; 2.0 ; Crystal structure of N-succinyl Arg/Lys racemase from Bacillus cereus ATCC 14579 complexed with N-succinyl Arg. 2P8B ; 1.7 ; Crystal structure of N-succinyl Arg/Lys racemase from Bacillus cereus ATCC 14579 complexed with N-succinyl Lys. 1YNF ; 1.9 ; Crystal Structure of N-Succinylarginine Dihydrolase, AstB, bound to Substrate and Product, an Enzyme from the Arginine Catabolic Pathway of Escherichia coli 1YNH ; 1.95 ; Crystal Structure of N-Succinylarginine Dihydrolase, AstB, bound to Substrate and Product, an Enzyme from the Arginine Catabolic Pathway of Escherichia coli 1YNI ; 2.2 ; Crystal Structure of N-Succinylarginine Dihydrolase, AstB, bound to Substrate and Product, an Enzyme from the Arginine Catabolic Pathway of Escherichia coli 1Q25 ; 1.8 ; Crystal structure of N-terminal 3 domains of CI-MPR 1NHI ; 2.0 ; Crystal structure of N-terminal 40KD MutL (LN40) complex with ADPnP and one potassium 1NHH ; 2.4 ; Crystal structure of N-terminal 40KD MutL protein (LN40) complex with ADPnP and one Rubidium 1NHJ ; 2.3 ; Crystal structure of N-terminal 40KD MutL/A100P mutant protein complex with ADPnP and one sodium 3M6K ; 2.6 ; Crystal Structure of N-terminal 44 kDa fragment of topoisomerase V in the presence of guanidium hydrochloride 2B1L ; 1.9 ; Crystal structure of N-terminal 57 residue deletion mutant of E. coli CcmG protein(residues 58-185) 4JW1 ; 3.16 ; Crystal structure of N-terminal 618-residue fragment of LepB from Legionella pneumophila 4KUD ; 3.203 ; Crystal structure of N-terminal acetylated Sir3 BAH domain D205N mutant in complex with yeast nucleosome core particle 4KUI ; 1.85 ; Crystal structure of N-terminal acetylated yeast Sir3 BAH domain 4KUL ; 2.62 ; Crystal structure of N-terminal acetylated yeast Sir3 BAH domain V83P mutant 3FER ; 2.4 ; Crystal structure of n-terminal actin-binding domain from human filamin b (tandem ch-domains). northeast structural genomics consortium target hr5571a. 5HYY ; 2.323 ; Crystal structure of N-terminal amidase 5K5U ; 2.7 ; Crystal structure of N-terminal amidase 5K5V ; 1.947 ; Crystal structure of N-terminal amidase C187S 5K62 ; 1.899 ; Crystal structure of N-terminal amidase C187S 5K63 ; 2.5 ; Crystal structure of N-terminal amidase C187S 5K66 ; 2.002 ; Crystal structure of N-terminal amidase with Asn-Glu peptide 5B62 ; 3.042 ; Crystal structure of N-terminal amidase with Asn-Glu-Ala peptide 5K61 ; 2.001 ; Crystal structure of N-terminal amidase with Gln-Gly peptide 5K60 ; 1.9 ; Crystal structure of N-terminal amidase with Gln-Val peptide 4TL7 ; 1.936 ; Crystal structure of N-terminal C1 domain of KaiC 4TL8 ; 1.859 ; Crystal structure of N-terminal C1 domain of KaiC 4TL9 ; 1.822 ; Crystal structure of N-terminal C1 domain of KaiC 4TLA ; 1.8 ; Crystal structure of N-terminal C1 domain of KaiC 4TLB ; 1.983 ; Crystal structure of N-terminal C1 domain of KaiC 4TLC ; 2.09 ; Crystal structure of N-terminal C1 domain of KaiC 4TLD ; 1.949 ; Crystal structure of N-terminal C1 domain of KaiC 4TLE ; 1.936 ; Crystal structure of N-terminal C1 domain of KaiC 5YZ8 ; 2.81 ; Crystal Structure of N-terminal C1 domain of KaiC 4N5X ; 2.1 ; Crystal structure of N-terminal calmodulin-like Calcium sensor of human mitochondrial ATP-Mg/Pi carrier SCaMC1 7ZOM ; 1.601 ; Crystal structure of N-terminal catalytic domain of human PLAAT3 3G05 ; 3.49 ; Crystal structure of N-terminal domain (2-550) of E.coli MnmG 3QOC ; 2.15 ; Crystal structure of N-terminal domain (Creatinase/Prolidase like domain) of putative metallopeptidase from Corynebacterium diphtheriae 4LGO ; 1.7 ; Crystal Structure of N-terminal domain 1 of VompD from Bartonella quintana 5XOP ; 1.9 ; Crystal Structure of N-terminal domain EhCaBP1 EF-2 mutant 3E53 ; 2.35 ; Crystal structure of N-terminal domain of a Fatty Acyl AMP Ligase FAAL28 from Mycobacterium tuberculosis 2V1O ; 1.78 ; Crystal structure of N-terminal domain of acyl-CoA thioesterase 7 6JUZ ; 1.21 ; Crystal Structure of N-terminal domain of ArgZ(N71S) covalently bond to a reaction intermediate 6JV0 ; 1.14 ; Crystal Structure of N-terminal domain of ArgZ, bound to Product, an arginine dihydrolase from the Ornithine-Ammonia Cycle in Cyanobacteria 6JV1 ; 1.2 ; Crystal Structure of N-terminal domain of ArgZ, C264S mutant, bound to Substrate, an arginine dihydrolase from the Ornithine-Ammonia Cycle in Cyanobacteria 5OFJ ; 1.34 ; Crystal structure of N-terminal domain of bifunctional CbXyn10C 5E2C ; 1.7 ; Crystal structure of N-terminal domain of cytoplasmic peptidase PepQ from Mycobacterium tuberculosis H37Rv 3TUO ; 1.697 ; Crystal structure of N-terminal domain of DNA-binding protein satb1 1HX8 ; 2.2 ; CRYSTAL STRUCTURE OF N-TERMINAL DOMAIN OF DROSOPHILA AP180 3EOD ; 1.75 ; Crystal structure of N-terminal domain of E. coli RssB 2ANE ; 2.03 ; Crystal structure of N-terminal domain of E.Coli Lon Protease 4F3V ; 2.0 ; Crystal structure of N-terminal domain of EccA1 ATPase from ESX-1 secretion system of Mycobacterium tuberculosis 3T5A ; 2.05 ; Crystal structure of N-terminal domain of FAAL28 G330W mutant from Mycobacterium tuberculosis 3T5B ; 2.35 ; Crystal structure of N-terminal domain of FACL13 from Mycobacterium tuberculosis 3T5C ; 2.09 ; Crystal structure of N-terminal domain of FACL13 from Mycobacterium tuberculosis in different space group C2 2Y3P ; 2.62 ; Crystal structure of N-terminal domain of GyrA with the antibiotic simocyclinone D8 4XKK ; 2.7 ; Crystal structure of N-terminal domain of Hsp90 from Dictyostelium discoideum 5UMT ; 2.092 ; Crystal structure of N-terminal domain of human FACT complex subunit SPT16 5UMR ; 1.501 ; Crystal structure of N-terminal domain of human FACT complex subunit SSRP1 2YV8 ; 1.92 ; Crystal structure of N-terminal domain of human galectin-8 2YXS ; 2.13 ; Crystal Structure of N-terminal domain of human galectin-8 with D-lactose 2YY1 ; 2.17 ; Crystal structure of N-terminal domain of human galectin-9 containing L-acetyllactosamine 1P9A ; 1.7 ; Crystal Structure of N-Terminal Domain of Human Platelet Receptor Glycoprotein Ib-alpha at 1.7 Angstrom Resolution 1QYY ; 2.8 ; Crystal Structure of N-Terminal Domain of Human Platelet Receptor Glycoprotein Ib-alpha at 2.8 Angstrom Resolution 5GGO ; 1.502 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with GalNac-beta1,3-GlcNAc-beta-pNP 5GGL ; 1.27 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with GlcNAc-alpha-pNP 5GGN ; 1.211 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with GlcNAc-beta-pNP 5GGP ; 1.599 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with GlcNAc-beta1,2-Man-peptide 5GGJ ; 1.424 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with Man-alpha-pNP 5GGK ; 1.3 ; Crystal structure of N-terminal domain of human protein O-mannose beta-1,2-N-acetylglucosaminyltransferase in complex with Man-beta-pNP 5IQZ ; 2.334 ; Crystal structure of N-terminal domain of Human SIRT7 6L1R ; 1.79844 ; Crystal structure of N-terminal domain of human SSRP1 1WV3 ; 1.75 ; Crystal structure of N-terminal domain of hypothetical protein SAV0287 from Staphylococcus aureus 4TL6 ; 1.763 ; Crystal structure of N-terminal domain of KaiC 5I5N ; 1.418 ; Crystal Structure of N-terminal Domain of Matrix Protein of Thogoto Virus at Acidic pH. 5I5O ; 2.682 ; Crystal Structure of N-terminal Domain of Matrix Protein of Thogoto Virus at Neutral pH. 6VBK ; 2.0 ; Crystal structure of N-terminal domain of Mycobacterium tuberculosis complex Lon protease 8X1H ; 2.0 ; Crystal structure of N-terminal domain of Nucleocapsid protein of SARS-CoV-2 3K60 ; 2.3 ; Crystal structure of N-terminal domain of Plasmodium falciparum Hsp90 (PF07_0029) bound to ADP 3IED ; 2.01 ; Crystal structure of N-terminal domain of Plasmodium falciparum Hsp90 (PF14_0417) in complex with AMPPN 5ZKH ; 2.991 ; Crystal Structure of N-terminal Domain of Plasmodium falciparum p43 5ZKF ; 2.75 ; Crystal Structure of N-terminal Domain of Plasmodium vivax p43 in space group P21 5ZKE ; 1.492 ; Crystal Structure of N-terminal Domain of Plasmodium vivax p43 in space group P212121 3F6C ; 1.45 ; CRYSTAL STRUCTURE OF N-TERMINAL DOMAIN OF POSITIVE TRANSCRIPTION REGULATOR evgA FROM ESCHERICHIA COLI 2D7E ; 2.5 ; Crystal structure of N-terminal domain of PriA from E.coli 1NPS ; 1.8 ; CRYSTAL STRUCTURE OF N-TERMINAL DOMAIN OF PROTEIN S 3EWB ; 2.1 ; Crystal structure of N-terminal domain of putative 2-isopropylmalate synthase from Listeria monocytogenes 3G5J ; 1.76 ; Crystal structure of N-terminal domain of putative ATP/GTP binding protein from Clostridium difficile 630 2HBA ; 1.25 ; Crystal Structure of N-terminal Domain of Ribosomal Protein L9 (NTL9) K12M 2HVF ; 1.57 ; Crystal Structure of N-terminal Domain of Ribosomal Protein L9 (NTL9), G34dA 7XQC ; 2.8 ; Crystal structure of N-terminal domain of Rv2908c fused with Maltose Binding Protein (MBP) 5FIE ; 2.0 ; Crystal structure of N-terminal domain of shaft pilin spaA from Lactobacillus rhamnosus GG 8CBA ; 1.25 ; Crystal structure of N-terminal domain of TraF, protein of a type IV secretion system from E.faecalis (pIP501) 6JQY ; 1.643 ; Crystal structure of N-terminal domain of VapB46 antitoxin from Mycobacterium tuberculosis 1TBU ; 2.2 ; Crystal structure of N-terminal domain of yeast peroxisomal thioesterase-1 2R2A ; 1.82 ; Crystal structure of N-terminal domain of zonular occludens toxin from Neisseria meningitidis 5CUX ; 2.8 ; Crystal structure of N-terminal domain truncated Trypanosoma cruzi Vacuolar Soluble Pyrophosphatases in complex with PPi 2VON ; 2.1 ; Crystal structure of N-terminal domains of Human La protein complexed with RNA oligomer AUAAUUU 2VOD ; 2.1 ; Crystal structure of N-terminal domains of Human La protein complexed with RNA oligomer AUAUUUU 2VOP ; 2.8 ; Crystal structure of N-terminal domains of Human La protein complexed with RNA oligomer AUUUU 2VOO ; 1.8 ; Crystal structure of N-terminal domains of Human La protein complexed with RNA oligomer UUUUUUUU 3UUN ; 2.3 ; Crystal Structure of N-terminal first spectrin repeat of dystrophin 3UUM ; 2.0 ; Crystal Structure of N-terminal first spectrin repeat of utrophin 8HN0 ; 2.2 ; Crystal structure of N-terminal fragment (20-132aa) of human SCARF1 8HNA ; 2.6 ; Crystal structure of N-terminal fragment (20-221aa) of human SCARF1 6BXA ; 2.298 ; Crystal structure of N-terminal fragment of Zebrafish Toll-Like Receptor 5 (TLR5) with Lamprey Variable Lymphocyte Receptor 2 (VLR2) bound 6BXC ; 2.5 ; Crystal structure of N-terminal fragment of Zebrafish Toll-Like Receptor 5 (TLR5) with Lamprey Variable Lymphocyte Receptor 9 (VLR9) bound 4P22 ; 2.75 ; Crystal Structure of N-terminal Fragments of E1 5X4B ; 1.5 ; Crystal Structure of N-terminal G-domain of EngA from Bacillus subtilis 2DYK ; 1.96 ; Crystal structure of N-terminal GTP-binding domain of EngA from Thermus thermophilus HB8 5VYL ; 3.51 ; Crystal Structure of N-terminal half of Herpes Simplex virus Type 1 UL37 protein 4K70 ; 2.0 ; Crystal Structure of N-terminal half of Pseudorabiesvirus UL37 protein 7CJ8 ; 2.05 ; Crystal structure of N-terminal His-tagged D-allulose 3-epimerase from Methylomonas sp. in complex with D-allulose 7CJ9 ; 1.58 ; Crystal structure of N-terminal His-tagged D-allulose 3-epimerase from Methylomonas sp. with additional C-terminal residues 4HOU ; 1.95 ; Crystal Structure of N-terminal Human IFIT1 4QCF ; 2.26 ; Crystal structure of N-terminal mutant (V1A) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 4QDM ; 1.964 ; Crystal structure of N-terminal mutant (V1L) of an alkali thermostable GH10 xylanase from Bacillus sp. NG-27 3SLR ; 1.712 ; Crystal structure of N-terminal part of the protein BF1531 from Bacteroides fragilis containing phosphatase domain complexed with Mg. 4YDP ; 1.4 ; Crystal structure of N-terminal PDZ domain of ZASP in complex with myotilin C-terminal peptide. 7YIR ; 2.099 ; Crystal structure of N-terminal PH domain of ARAP3 protein from human 7YIS ; 3.3 ; Crystal structure of N-terminal PH domain of ARAP3 protein in complex with inositol 1,3,4,5-tetrakisphosphate 4H9J ; 1.6 ; Crystal structure of N-terminal protease (Npro) of classical swine fever virus. 3U0C ; 2.05 ; Crystal structure of N-terminal region of Type III Secretion First Translocator IpaB (residues 74-224) 3TUL ; 2.793 ; Crystal structure of N-terminal region of Type III Secretion Major Translocator SipB (residues 82-226) 3RUJ ; 2.1 ; Crystal Structure of N-terminal region of yeast Atg7 5XOR ; 2.699 ; Crystal structure of N-terminal replicase protein of porcine circovirus type 2 8CRM ; 1.42 ; Crystal structure of N-terminal SARS-CoV-2 nsp1 in complex with fragment hit 11C6 refined against anomalous diffraction data 8CRF ; 1.15 ; Crystal structure of N-terminal SARS-CoV-2 nsp1 in complex with fragment hit 5E11 refined against anomalous diffraction data 8CRK ; 1.1 ; Crystal structure of N-terminal SARS-CoV-2 nsp1 in complex with fragment hit 7H2 refined against anomalous diffraction data 3U2P ; 2.57 ; Crystal structure of N-terminal three extracellular domains of ErbB4/Her4 2IKS ; 1.85 ; Crystal structure of N-terminal truncated DNA-binding transcriptional dual regulator from Escherichia coli K12 5CV0 ; 1.9 ; Crystal structure of N-terminal truncated human B12-chaperone CblD (108-296) 1T92 ; 1.6 ; Crystal structure of N-terminal truncated pseudopilin PulG 3CR7 ; 2.5 ; Crystal structure of N-terminal truncation of APS Kinase from Penicillium chrysogenum: Ternary structure with ADP and PAPS 5M1C ; 2.75 ; Crystal structure of N-terminally tagged apo-UbiD from E. coli 5M1D ; 2.7 ; Crystal structure of N-terminally tagged UbiD from E. coli reconstituted with prFMN cofactor 5M1E ; 2.62 ; Crystal structure of N-terminally tagged UbiD from E. coli reconstituted with prFMN cofactor 4CII ; 2.15 ; Crystal structure of N-terminally truncated Helicobacter pylori T4SS Protein CagL as domain swapped dimer 6TWT ; 0.95 ; Crystal structure of N-terminally truncated NDM-1 metallo-beta-lactamase 8AID ; 1.52 ; Crystal structure of N-terminally truncated PA4183 from P. aeruginosa PAO1 3VWV ; 1.8 ; crystal structure of N-terminally truncated peroxiredoxin 4 from M. musculus 6AF2 ; 3.001 ; Crystal structure of N-terminus deletion mutant of Mycobacterium avium diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase 4TXA ; 2.75 ; Crystal structure of N-terminus of Roquin 7FA1 ; 1.6 ; Crystal Structure of N-terminus of the non-structural protein 2 from SARS coronavirus 5L16 ; 1.882 ; Crystal Structure of N-terminus truncated selenophosphate synthetase from Leishmania major 6X8Z ; 2.5 ; Crystal structure of N-truncated human B12 chaperone CblD(C262S)-thiolato-cob(III)alamin complex (108-296) 2VCP ; 3.2 ; Crystal structure of N-Wasp VC domain in complex with skeletal actin 6V6Z ; 1.6 ; Crystal structure of N-[(4-methoxyphenyl)sulfonyl]-N-(4-{[(4-methoxyphenyl)sulfonyl]amino}naphthalen-1-yl)glycine bound to human Keap1 Kelch domain 5DKP ; 2.381 ; Crystal Structure of N. meningitidis ClpP in complex with agonist ADEP A54556. 5IG4 ; 2.35 ; Crystal structure of N. vectensis CaMKII-A hub 5IG5 ; 3.0 ; Crystal structure of N. vectensis CaMKII-B hub at pH 4.2 7S0I ; 2.892 ; CRYSTAL STRUCTURE OF N1 NEURAMINIDASE FROM A/Michigan/45/2015(H1N1) 7M58 ; 2.45 ; Crystal structure of N1, a member of cis-3-chloroacrylic acid dehalogenase (cis-CaaD) family 1Z5M ; 2.17 ; Crystal Structure Of N1-[3-[[5-bromo-2-[[3-[(1-pyrrolidinylcarbonyl)amino]phenyl]amino]-4-pyrimidinyl]amino]propyl]-2,2-dimethylpropanediamide Complexed with Human PDK1 4JJZ ; 2.5 ; Crystal Structure of N10-Formyltetrahydrofolate Synthetase with ADP and Formylphosphate 3QUS ; 2.84 ; Crystal Structure of N10-Formyltetrahydrofolate Synthetase with ATPgS 4JJK ; 3.0 ; Crystal Structure of N10-Formyltetrahydrofolate Synthetase with Folate 4JKI ; 2.6 ; Crystal Structure of N10-Formyltetrahydrofolate Synthetase with ZD9331, Formylphosphate, and ADP 5V70 ; 1.94 ; Crystal structure of N102A mutant of human macrophage migration inhibitory factor 7DW7 ; 1.8 ; Crystal Structure of N1051A mutant of Formylglycinamidine Synthetase 5BS9 ; 1.98 ; Crystal structure of N109A mutant of human macrophage migration inhibitory factor 7D97 ; 1.89 ; Crystal structure of N109P mutant of GATase subunit of Methanocaldococcus jannaschii GMP synthetase 5V73 ; 1.68 ; Crystal structure of N110A mutant of human macrophage migration inhibitory factor 1XGK ; 1.4 ; CRYSTAL STRUCTURE OF N12G AND A18G MUTANT NMRA 1JVJ ; 1.73 ; CRYSTAL STRUCTURE OF N132A MUTANT OF TEM-1 BETA-LACTAMASE IN COMPLEX WITH A N-FORMIMIDOYL-THIENAMYCINE 7CIY ; 1.47 ; Crystal structure of N191G-mutated tyrosinase from Streptomyces castaneoglobisporus in complex with the caddie protein obtained by soaking in the solution containing Cu(II) and hydroxylamine for 24 h 5FZY ; 2.47 ; CRYSTAL STRUCTURE OF N19D POTATO STI-KUNITZ BI-FUNCTIONAL INHIBITOR OF SERINE AND ASPARTIC PROTEASES IN SPACE GROUP C2221 AND PH 3.5 5FZU ; 2.43 ; CRYSTAL STRUCTURE OF N19D POTATO STI-KUNITZ BI-FUNCTIONAL INHIBITOR OF SERINE AND ASPARTIC PROTEASES IN SPACE GROUP P4322 AND PH 7.2 2CHM ; 1.6 ; Crystal structure of N2 substituted pyrazolo pyrimidinones - a flipped binding mode in PDE5 7M59 ; 1.65 ; Crystal structure of N2, a member of 4-oxalocrotonate tautomerase (4-OT) family 3H2I ; 2.1 ; Crystal structure of N228W mutant of the rice cell wall degrading esterase LipA from Xanthomonas oryzae 3QL0 ; 1.6 ; Crystal structure of N23PP/S148A mutant of E. coli dihydrofolate reductase 6EIG ; 2.7 ; Crystal structure of N24Q/C128T mutant of Channelrhodopsin 2 4FZE ; 1.999 ; Crystal structure of N26_i1 Fab, an ADCC mediating anti-HIV-1 antibody. 5IMP ; 2.038 ; Crystal structure of N299A Aspergillus terreus aristolochene synthase complexed with (1S,8S,9aR)-1,9a-dimethyl-8-(prop-1-en-2-yl)decahydroquinolizin-5-ium 5IMN ; 2.527 ; Crystal structure of N299A/S303A Aspergillus terreus aristolochene synthase complexed with (1S,8S,9aR)-1,9a-dimethyl-8-(prop-1-en-2-yl)decahydroquinolizin-5-ium 6FK6 ; 2.36 ; Crystal structure of N2C/D282C stabilized opsin bound to RS01 6FK7 ; 2.62 ; Crystal structure of N2C/D282C stabilized opsin bound to RS06 6FK8 ; 2.87 ; Crystal structure of N2C/D282C stabilized opsin bound to RS08 6FK9 ; 2.63 ; Crystal structure of N2C/D282C stabilized opsin bound to RS09 6FKA ; 2.7 ; Crystal structure of N2C/D282C stabilized opsin bound to RS11 6FKB ; 3.03 ; Crystal structure of N2C/D282C stabilized opsin bound to RS13 6FKC ; 2.46 ; Crystal structure of N2C/D282C stabilized opsin bound to RS15 6FKD ; 2.49 ; Crystal structure of N2C/D282C stabilized opsin bound to RS16 2VMO ; 1.74 ; Crystal structure of N341AbsSHMT Gly external aldimine 2VMN ; 1.74 ; Crystal structure of N341AbsSHMT internal aldimine 2VMP ; 1.74 ; Crystal structure of N341AbsSHMT L-Ser external aldimine 3KE0 ; 2.7 ; Crystal structure of N370S Glucocerebrosidase at acidic pH. 3KEH ; 2.8 ; Crystal Structure of N370S Glucocerebrosidase mutant at pH 7.4 2DZY ; 2.57 ; Crystal structure of N392A mutant of yeast bleomycin hydrolase 2E00 ; 2.0 ; Crystal structure of N392L mutant of yeast bleomycin hydrolase 2DZZ ; 2.15 ; Crystal structure of N392V mutant of yeast bleomycin hydrolase 6O55 ; 1.7 ; Crystal Structure of N5-carboxyaminoimidazole ribonucleotide mutase (PurE) from Legionella pneumophila 3ORS ; 1.45 ; Crystal Structure of N5-Carboxyaminoimidazole Ribonucleotide Mutase from Staphylococcus aureus 3AX6 ; 2.2 ; Crystal structure of N5-carboxyaminoimidazole ribonucleotide synthetase from Thermotoga maritima 3AW8 ; 2.6 ; Crystal structure of N5-carboxyaminoimidazole ribonucleotide synthetase from Thermus thermophilus HB8 3K5I ; 2.0 ; Crystal structure of N5-carboxyaminoimidazole synthase from aspergillus clavatus in complex with ADP and 5-aminoimadazole ribonucleotide 3ORR ; 2.23 ; Crystal Structure of N5-Carboxyaminoimidazole synthetase from Staphylococcus aureus 3ORQ ; 2.23 ; Crystal Structure of N5-Carboxyaminoimidazole synthetase from Staphylococcus aureus complexed with ADP 1VQ1 ; 2.8 ; Crystal structure of N5-glutamine methyltransferase, HemK(EC 2.1.1.-) (TM0488) from Thermotoga maritima at 2.80 A resolution 3TNN ; 1.95 ; Crystal structure of N5-i5 Fab, an ADCC mediating and non-neutralizing CD4i anti-HIV- 1 antibody. 4WQN ; 2.121 ; Crystal structure of N6-methyladenosine RNA reader YTHDF2 7MRI ; 2.46 ; Crystal structure of N63T yeast iso-1-cytochrome c 3ZOY ; 2.3 ; Crystal Structure of N64Del Mutant of Nitrosomonas europaea Cytochrome c552 (hexagonal space group) 3ZOX ; 2.1 ; Crystal Structure of N64Del Mutant of Nitrosomonas europaea Cytochrome c552 (monoclinic space group) 2PXS ; 2.2 ; Crystal Structure of N66D Mutant of Green Fluorescent Protein from Zoanthus sp. at 2.2 A Resolution (Mature State) 2PXW ; 2.4 ; Crystal Structure of N66D Mutant of Green Fluorescent Protein from Zoanthus sp. at 2.4 A Resolution (Transition State) 3KT2 ; 1.651 ; Crystal Structure of N88D mutant HIV-1 Protease 3KT5 ; 1.801 ; Crystal Structure of N88S mutant HIV-1 Protease 6XO1 ; 1.758 ; Crystal structure of N97A mutant of human CEACAM1 5UZY ; 1.71 ; Crystal structure of N97A mutant of human macrophage migration inhibitory factor 3LWX ; 1.1 ; Crystal structure of Na(+)-translocating NADH-quinone reductase subunit C (YP_001302508.1) from Parabacteroides distasonis ATCC 8503 at 1.10 A resolution 6A31 ; 2.19 ; Crystal structure of Na+ bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii at 2.19 A resolution 8JBK ; 2.8 ; Crystal structure of Na+,K+-ATPase in the E1.3Na+ state 8JBL ; 3.0 ; Crystal structure of Na+,K+-ATPase in the E1.Mg2+ state 8JBM ; 2.9 ; Crystal structure of Na+,K+-ATPase in the E1.Mn2+ state 4HQJ ; 4.3 ; Crystal structure of Na+,K+-ATPase in the Na+-bound state 1Q3I ; 2.6 ; Crystal Structure of Na,K-ATPase N-domain 3NT8 ; 2.2 ; Crystal Structure of Na-ASP-1 6L9S ; 2.0 ; Crystal structure of Na-dithionite reduced auracyanin from photosynthetic bacterium Roseiflexus castenholzii 3GIS ; 2.4 ; Crystal Structure of Na-free Thrombin in Complex with Thrombomodulin 4KVX ; 2.0 ; Crystal structure of Naa10 (Ard1) bound to AcCoA 5WJE ; 1.765 ; Crystal structure of Naa80 bound to a bisubstrate analogue 5WJD ; 2.001 ; Crystal structure of Naa80 bound to acetyl-CoA 4LY5 ; 1.664 ; Crystal structure of NaASP2 with Zn2+ 3MCB ; 1.9 ; Crystal structure of NAC domains of human nascent polypeptide-associated complex (NAC) 4GQA ; 2.42 ; Crystal structure of NAD binding oxidoreductase from Klebsiella pneumoniae 8DU1 ; 1.85 ; Crystal Structure of NAD bound dTDP-glucose 4,6-dehydratase from Elizabethkingia anophelis 4WLV ; 2.4 ; Crystal structure of NAD bound MDH2 1WMB ; 2.0 ; Crystal structure of NAD dependent D-3-hydroxybutylate dehydrogenase 2D4V ; 1.9 ; Crystal structure of NAD dependent isocitrate dehydrogenase from Acidithiobacillus thiooxidans 2I1W ; 2.34 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes 2I29 ; 2.1 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes 4DY6 ; 2.2 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with 2'-phosphate bis(adenosine)-5'-diphosphate 3V7W ; 2.0102 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with 5'-azido-5'-deoxyadenosine 3V7Y ; 1.97 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with 5'-N-Propargylamino-5'-deoxyadenosine 3V80 ; 2.0301 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with 5'-O-Propargylamino-5'-deoxyadenosine 3V8N ; 2.3801 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with 8-bromo-5'-amino-5'-deoxyadenosine, reacted with a citrate molecule in N site 8B47 ; 2.53 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a cyclic di-adenosine derivative 6Z61 ; 2.47 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a di-adenosine derivative 6Z64 ; 1.89 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a di-adenosine derivative 6Z65 ; 1.97 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a di-adenosine derivative 7ZZ7 ; 2.0 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZ9 ; 1.89 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZA ; 2.05 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZB ; 1.56 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZC ; 2.1 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZD ; 1.79 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZE ; 1.78 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZF ; 2.41 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZG ; 2.3 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZH ; 2.0 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 7ZZJ ; 1.99 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 8A9V ; 1.984 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a linear di-adenosine derivative 3V8P ; 2.2901 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a new di-adenosine inhibitor formed in situ 5DHP ; 2.27 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 5DHQ ; 2.29 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 5DHR ; 2.31 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 5DHS ; 2.62 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 5DHT ; 2.59 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 5DHU ; 2.33 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with a novel inhibitor 6RGE ; 1.801 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with an inhibitor 6RGF ; 2.3 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with an inhibitor 3V7U ; 1.97 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complex with MTA 3V8M ; 2.48 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with 5'-azido-8-bromo-5'-deoxyadenosine 6RBO ; 1.941 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBP ; 2.473 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBQ ; 2.236 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBR ; 2.06 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBS ; 2.324 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBT ; 2.55 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBU ; 1.97 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBV ; 2.29 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBW ; 2.5 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBX ; 2.47 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBY ; 2.312 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RBZ ; 2.318 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC0 ; 2.75 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC1 ; 2.54 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC2 ; 2.048 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC3 ; 2.315 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC4 ; 2.278 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC5 ; 2.038 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RC6 ; 2.29 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RR2 ; 1.991 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an adenine derivative 6RG6 ; 2.52 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RG7 ; 2.08 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RG8 ; 2.47 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RG9 ; 2.08 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RGA ; 2.18 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RGB ; 2.25 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RGC ; 2.19 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 6RGD ; 2.3 ; Crystal structure of NAD kinase 1 from Listeria monocytogenes in complexe with an inhibitor 3V8Q ; 2.37 ; Crystal structure of NAD kinase 1 H223E mutant from Listeria monocytogenes in complex with 5'-amino-5'-deoxyadenosine 3V8R ; 2.39 ; Crystal structure of NAD kinase 1 H223E mutant from Listeria monocytogenes in complex with 5'-amino-8-bromo-5'-deoxyadenosine 7MH7 ; 2.61 ; crystal structure of NAD kinase from Pseudomonas aeruginosa PAO1 1YT5 ; 2.3 ; Crystal structure of NAD kinase from Thermotoga maritima 5EJF ; 2.12 ; Crystal structure of NAD kinase P101A mutant from Listeria monocytogenes 5EJG ; 2.877 ; Crystal structure of NAD kinase P252D mutant from Listeria monocytogenes 5EJH ; 2.0 ; Crystal structure of NAD kinase V98S mutant from Listeria monocytogenes 5EJI ; 2.292 ; Crystal structure of NAD kinase W78F mutant from Listeria monocytogenes in complex with NADP/Mn++/PPi 6C8Q ; 2.583 ; Crystal structure of NAD synthetase (NadE) from Enterococcus faecalis in complex with NAD+ 5WP0 ; 2.6 ; Crystal structure of NAD synthetase NadE from Vibrio fischeri 1RJW ; 2.35 ; CRYSTAL STRUCTURE OF NAD(+)-DEPENDENT ALCOHOL DEHYDROGENASE FROM BACILLUS STEAROTHERMOPHILUS STRAIN LLD-R 2CVQ ; 2.08 ; Crystal structure of NAD(H)-dependent malate dehydrogenase complexed with NADPH 1Y7T ; 1.65 ; Crystal structure of NAD(H)-depenent malate dehydrogenase complexed with NADPH 5EAI ; 2.9 ; Crystal Structure of NAD(P)H dehydrogenase, quinone 1 complexed with a chemotherapeutic naphthoquinone E6a 7TMG ; 1.9 ; Crystal Structure of NAD(P)H nitroreductase from Klebsiella pneumoniae (long b-axis) 7TMF ; 1.97 ; Crystal Structure of NAD(P)H nitroreductase from Klebsiella pneumoniae (short b-axis) 7JH4 ; 2.0 ; Crystal structure of NAD(P)H-flavin oxidoreductase (NfoR) from S. aureus complexed with reduced FMN and NAD+ 2H0U ; 1.9 ; Crystal structure of NAD(P)H-flavin oxidoreductase from Helicobacter pylori 1QFJ ; 2.2 ; CRYSTAL STRUCTURE OF NAD(P)H:FLAVIN OXIDOREDUCTASE FROM ESCHERICHIA COLI 8GXB ; 2.15 ; Crystal structure of NAD+ -II riboswitch in complex with NAD+ 8GXC ; 2.5 ; Crystal structure of NAD+ -II riboswitch in complex with NMN 3DPI ; 2.2 ; Crystal Structure of NAD+ synthetase from Burkholderia Pseudomallei 6KV3 ; 2.3 ; Crystal Structure of NAD+ Synthetase from Staphylococcus aureus 1ZEM ; 1.9 ; Crystal Structure of NAD+-Bound Xylitol Dehydrogenase 1V9P ; 2.9 ; Crystal Structure Of Nad+-Dependent DNA Ligase 1DGS ; 2.9 ; CRYSTAL STRUCTURE OF NAD+-DEPENDENT DNA LIGASE FROM T. FILIFORMIS 4H0V ; 2.03 ; Crystal structure of NAD+-Ia(E378S)-actin complex 4H0X ; 2.33 ; Crystal structure of NAD+-Ia(E380A)-actin complex 4H0Y ; 1.94 ; Crystal structure of NAD+-Ia(E380S)-actin complex 4H03 ; 1.75 ; Crystal structure of NAD+-Ia-actin complex 5XF9 ; 2.58 ; Crystal structure of NAD+-reducing [NiFe]-hydrogenase in the air-oxidized state 5XFA ; 2.7 ; Crystal structure of NAD+-reducing [NiFe]-hydrogenase in the H2-reduced state 4GBJ ; 2.05 ; Crystal structure of NAD-binding 6-phosphogluconate dehydrogenase from Dyadobacter fermentans 3QSG ; 1.9 ; Crystal structure of NAD-binding phosphogluconate dehydrogenase-like protein from Alicyclobacillus acidocaldarius 3E18 ; 1.95 ; CRYSTAL STRUCTURE OF NAD-BINDING PROTEIN FROM Listeria innocua 7QOZ ; 1.85 ; Crystal structure of NAD-bound glycosomal malate dehydrogenase from Trypanosoma cruzi 2VUT ; 2.3 ; Crystal structure of NAD-bound NmrA-AreA zinc finger complex 2EIH ; 2.3 ; Crystal Structure of NAD-dependent alcohol dehydrogenase 5UJU ; 2.05 ; Crystal structure of NAD-dependent aldehyde dehydrogenase from Burkholderia multivorans 3ROS ; 1.88 ; Crystal structure of NAD-dependent aldehyde dehydrogenase from Lactobacillus acidophilus 3U4J ; 2.0 ; Crystal structure of NAD-dependent aldehyde dehydrogenase from Sinorhizobium meliloti 3R6D ; 1.25 ; Crystal structure of NAD-dependent epimerase/dehydratase from Veillonella parvula DSM 2008 with Cz-methylated lysine 6TTB ; 2.7 ; Crystal structure of NAD-dependent formate dehydrogenase from Staphylococcus aureus in complex with NAD 8QC6 ; 2.4 ; Crystal Structure of NAD-dependent glycoside hydrolase from Arthrobacter sp. U41 in complex with NAD+ and sulfoquinovose (SQ) 8QC5 ; 1.95 ; crystal structure of NAD-dependent glycoside hydrolase from Arthrobacter sp. U41 in complex with NAD+ cofactor and citrate 8QC8 ; 2.35 ; Crystal structure of NAD-dependent glycoside hydrolase from Flavobacterium sp. (strain K172) in complex with co-factor NAD+ 8QC2 ; 2.3 ; Crystal structure of NAD-dependent glycoside hydrolase from Flavobacterium sp. (strain K172) in complex with co-factor NAD+ and sulfoquinovose (SQ) 1VL6 ; 2.61 ; Crystal structure of NAD-dependent malic enzyme (TM0542) from Thermotoga maritima at 2.61 A resolution 8HBA ; 2.64 ; Crystal structure of NAD-II riboswitch (single strand) with NAD 8HB8 ; 2.3 ; Crystal structure of NAD-II riboswitch (single strand) with NMN 8HB1 ; 2.23 ; Crystal structure of NAD-II riboswitch (two strands) with NMN 8I3Z ; 1.67 ; Crystal structure of NAD-II riboswitch (two strands) with NMN at 1.67 angstrom 8HB3 ; 2.87 ; Crystal structure of NAD-II riboswitch (two strands) with NR 5HUO ; 2.8 ; Crystal Structure of NadC Deletion Mutant in C2221 Space Group 5HUL ; 2.855 ; Crystal Structure of NadC Deletion Mutant in Cubic Space Group 5HUP ; 3.42 ; Crystal Structure of NadC from Streptococcus pyogenes 5HUH ; 2.5 ; Crystal Structure of NadE from Streptococcus pyogenes 5HUJ ; 2.1 ; Crystal Structure of NadE from Streptococcus pyogenes 5H5X ; 2.3 ; Crystal structure of NADH bound carbonyl reductase from Streptomyces coelicolor 7CTL ; 1.97 ; Crystal structure of NADH bound holo form of alpha-glucuronidase (TM0752) from Thermotoga maritima at 1.97 Angstrom resolution 3MCR ; 2.65 ; Crystal structure of NADH dehydrogenase subunit C (Tfu_2693) from THERMOBIFIDA FUSCA YX-ER1 at 2.65 A resolution 1F8W ; 2.45 ; CRYSTAL STRUCTURE OF NADH PEROXIDASE MUTANT: R303M 1VK6 ; 2.2 ; Crystal structure of NADH pyrophosphatase (1790429) from Escherichia coli k12 at 2.20 A resolution 2GB5 ; 2.3 ; Crystal structure of NADH pyrophosphatase (EC 3.6.1.22) (1790429) from Escherichia coli K12 at 2.30 A resolution 1NDH ; 2.1 ; CRYSTAL STRUCTURE OF NADH-CYTOCHROME B5 REDUCTASE FROM PIG LIVER AT 2.4 ANGSTROMS RESOLUTION 1VLJ ; 1.78 ; Crystal structure of NADH-dependent butanol dehydrogenase A (TM0820) from Thermotoga maritima at 1.78 A resolution 6L1K ; 1.97 ; Crystal structure of NADH-dependent butanol dehydrogenase A from Fusobacterium nucleatum 1D7Y ; 2.1 ; CRYSTAL STRUCTURE OF NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4 3AK4 ; 2.0 ; Crystal structure of NADH-dependent quinuclidinone reductase from agrobacterium tumefaciens 4TKM ; 2.67 ; Crystal structure of NADH-dependent reductase A1-R' complexed with NAD 4TKL ; 1.8 ; Crystal structure of NADH-dependent reductase A1-R' responsible for alginate metabolism 4YWN ; 1.8 ; Crystal structure of NADH-FMN oxidoreductase from Mycobacterium avium 3K86 ; 2.0 ; Crystal structure of NADH:FAD oxidoreductase (TftC) - apo form 3K87 ; 2.0 ; Crystal structure of NADH:FAD oxidoreductase (TftC) - FAD complex 3K88 ; 2.0 ; Crystal structure of NADH:FAD oxidoreductase (TftC) - FAD, NADH complex 3E4V ; 1.4 ; Crystal structure of NADH:FMN oxidoreductase like protein in complex with FMN (YP_544701.1) from METHYLOBACILLUS FLAGELLATUS KT at 1.40 A resolution 6E2A ; 2.2 ; Crystal structure of NADH:quinone reductase PA1024 from Pseudomonas aeruginosa PAO1 in complex with NAD+ 3KLJ ; 2.1 ; Crystal structure of NADH:rubredoxin oxidoreductase from Clostridium acetobutylicum 8DU0 ; 2.1 ; Crystal Structure of NADP bound GDP-L-fucose synthase from Brucella ovis 3W6Z ; 1.44 ; Crystal structure of NADP bound L-serine 3-dehydrogenase (K170M) from Hyperthermophilic Archaeon Pyrobaculum calidifontis 3W6U ; 2.0 ; Crystal structure of NADP bound L-serine 3-dehydrogenase from Hyperthermophilic Archaeon Pyrobaculum calidifontis 2ZZC ; 2.6 ; Crystal structure of NADP(H):human thioredoxin reductase I 4RF2 ; 2.089 ; Crystal structure of NADP+ bound ketoreductase from Lactobacillus kefir 8I70 ; 1.9 ; Crystal structure of NADP-binding form of malonyl-CoA reductase C-domain from Chloroflexus aurantiacus 2VUU ; 2.8 ; Crystal structure of NADP-bound NmrA-AreA zinc finger complex 4J2O ; 2.653 ; Crystal structure of NADP-bound WbjB from A. baumannii community strain D1279779 5TQV ; 1.65 ; Crystal structure of NADP-dependent carbonyl reductase from Burkholderia multivorans 5U1P ; 1.9 ; Crystal structure of NADP-dependent carbonyl reductase from Burkholderia multivorans in complex with NADP 5C5I ; 2.2 ; Crystal structure of NADP-dependent dehydrogenase from Rhodobacter sphaeroides 4ZQB ; 1.85 ; Crystal structure of NADP-dependent dehydrogenase from Rhodobactersphaeroides in complex with NADP and sulfate 3PRL ; 2.0 ; Crystal structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Bacillus halodurans C-125 3RHH ; 2.3 ; Crystal structure of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Bacillus halodurans C-125 complexed with NADP 2D2I ; 2.5 ; Crystal Structure of NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase from Synechococcus Sp. complexed with Nadp+ 1LWD ; 1.85 ; CRYSTAL STRUCTURE OF NADP-DEPENDENT ISOCITRATE DEHYDROGENASE FROM PORCINE HEART MITOCHONDRIA 7TWZ ; 2.1 ; Crystal Structure of NADP-linked putative oxidoreductase from Klebsiella pneumoniae 6JHB ; 2.27 ; Crystal structure of NADPH and 4-hydroxyphenylpyruvic acid bound AerF from Microcystis aeruginosa 6JHA ; 1.78 ; Crystal structure of NADPH bound AerF from Microcystis aeruginosa 5B1Y ; 2.09 ; Crystal structure of NADPH bound carbonyl reductase from Aeropyrum pernix 3WXB ; 1.98 ; Crystal structure of NADPH bound carbonyl reductase from chicken fatty liver 1TH3 ; 2.8 ; Crystal structure of NADPH depleted bovine live catalase complexed with cyanide 1TH4 ; 2.98 ; crystal structure of NADPH depleted bovine liver catalase complexed with 3-amino-1,2,4-triazole 1TH2 ; 2.8 ; crystal structure of NADPH depleted bovine liver catalase complexed with azide 3QFT ; 1.4 ; Crystal Structure of NADPH-Cytochrome P450 Reductase (FAD/NADPH domain and R457H Mutant) 3QFS ; 1.4 ; Crystal Structure of NADPH-Cytochrome P450 Reductase (FAD/NADPH domain) 5TSD ; 1.9 ; Crystal structure of NADPH-dependent 2-hydroxyacid dehydrogenase from Rhizobium etli CFN 42 in complex with NADPH and oxalate 4O0L ; 2.2 ; Crystal structure of NADPH-Dependent 3-Quinuclidinone Reductase from Rhodotorula Rubra 5UNN ; 2.0 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc02828 (SmGhrA) from Sinorhizobium meliloti in apo form 4WEQ ; 2.0 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc02828 (SmGhrA) from Sinorhizobium meliloti in complex with NADP and sulfate 4Z0P ; 1.7 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc02828 (SmGhrA) from Sinorhizobium meliloti in complex with NADPH and oxalate 5UOG ; 2.4 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in apo form 5J23 ; 2.3 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in complex with 2'-phospho-ADP-ribose 5V72 ; 2.1 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in complex with citrate 5V7N ; 1.75 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in complex with NADP and 2-Keto-D-gluconic acid 5V6Q ; 1.95 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in complex with NADP and malonate 5V7G ; 1.75 ; Crystal structure of NADPH-dependent glyoxylate/hydroxypyruvate reductase SMc04462 (SmGhrB) from Sinorhizobium meliloti in complex with NADPH and oxalate 2ZCV ; 2.3 ; Crystal structure of NADPH-dependent quinone oxidoreductase QOR2 complexed with NADPH from escherichia coli 4GDE ; 2.2 ; Crystal structure of NADPH-reduced Aspergillus fumigatus UDP-galactopyranose 5AIP ; 2.3 ; Crystal structure of NadR in complex with 4-hydroxyphenylacetate 6GZO ; 3.0 ; Crystal structure of NadR protein in complex with NAD and AMP-PNP 6GYE ; 2.3 ; Crystal structure of NadR protein in complex with NR 6GYF ; 2.7 ; Crystal structure of NadR protein in complex with NR 1IAW ; 2.4 ; CRYSTAL STRUCTURE OF NAEI COMPLEXED WITH 17MER DNA 4OOA ; 1.58 ; CRYSTAL STRUCTURE of NAF1 (MINER1): H114C THE REDOX-ACTIVE 2FE-2S PROTEIN 3AB6 ; 1.78 ; Crystal structure of NAG3 bound lysozyme from Meretrix lusoria 8EOL ; 2.17 ; CRYSTAL STRUCTURE OF NAGB-II PHOSPHOSUGAR ISOMERASE FROM SHEWANELLA DENITRIFICANS OS217 AT 2.17 A RESOLUTION 8EYM ; 2.311 ; CRYSTAL STRUCTURE OF NAGB-II PHOSPHOSUGAR ISOMERASE FROM SHEWANELLA DENITRIFICANS OS217 IN COMPLEX WITH GLUCITOLAMINE-6-PHOSPHATE AND N-ACETYLGLUCOSAMINE-6-PHOSPHATE AT 2.31 A RESOLUTION 8FDB ; 3.06 ; CRYSTAL STRUCTURE OF NAGB-II PHOSPHOSUGAR ISOMERASE FROM Shewanella denitrificans OS217 IN COMPLEX WITH GLUCITOLAMINE-6-PHOSPHATE AT 3.06 A RESOLUTION. 4U52 ; 3.0 ; Crystal structure of Nagilactone C bound to the yeast 80S ribosome 6JTJ ; 2.18 ; Crystal structure of NagZ from Neisseria gonorrhoeae in complex with N-acetylglucosamine 6JTK ; 2.2 ; Crystal structure of NagZ from Neisseria gonorrhoeae in complex with N-trifluoroacetyl-D-glucosamine 6JTL ; 2.4 ; Crystal structure of NagZ from Neisseria gonorrhoeae in complex with zinc ion 5G1M ; 1.8 ; Crystal structure of NagZ from Pseudomonas aeruginosa 5G2M ; 3.0 ; Crystal structure of NagZ from Pseudomonas aeruginosa in complex with N-acetylglucosamine 5G3R ; 2.18 ; Crystal structure of NagZ from Pseudomonas aeruginosa in complex with N-acetylglucosamine and L-Ala-1,6-anhydroMurNAc 5G5K ; 3.1 ; Crystal structure of NagZ from Pseudomonas aeruginosa in complex with the inhibitor 2-acetamido-1,2-dideoxynojirimycin 5G5U ; 2.25 ; Crystal structure of NagZ H174A mutant from Pseudomonas aeruginosa 5LY7 ; 3.1 ; Crystal structure of NagZ H174A mutant from Pseudomonas aeruginosa in complex with the inhibitor 2-acetamido-1,2-dideoxynojirimycin 8DO5 ; 2.1 ; Crystal structure of NahE in complex with intermediate (R)-4-hydroxy-4-(2-hydroxyphenyl)-2-iminobutanoate 2Q67 ; 2.3 ; Crystal Structure of Nak channel D66A mutant 2Q68 ; 2.5 ; Crystal Structure of Nak channel D66A, S70E double mutants 2Q6A ; 2.6 ; Crystal Structure of Nak channel D66E mutant 2Q69 ; 2.4 ; Crystal Structure of Nak channel D66N mutant 3T1C ; 1.802 ; Crystal Structure of NaK Channel D66Y Mutant 3T2M ; 1.953 ; Crystal Structure of NaK Channel N68D Mutant 3TCU ; 1.75 ; Crystal Structure of NaK2K Channel D68E Mutant 3T4D ; 1.7 ; Crystal Structure of NaK2K Channel Y55F Mutant 3T4Z ; 1.901 ; Crystal Structure of NaK2K Channel Y55W Mutant 3TET ; 1.9 ; Crystal Structure of NaK2K Channel Y66F Mutant 5DAJ ; 2.65 ; Crystal structure of NalD, the secondary repressor of MexAB-OprM multidrug efflux pump in Pseudomonas aeruginosa 8ABT ; 1.39 ; Crystal structure of NaLdpA in complex with the product analog Resveratrol 8ABU ; 1.661 ; Crystal structure of NaLdpA mutant H97Q in complex with erythro-DGPD 3QF2 ; 1.7 ; Crystal structure of NALP3 PYD 7Q8T ; 2.15 ; Crystal structure of NAMPT bound to ligand TSY535(compound 9a) 7PPE ; 1.86 ; CRYSTAL STRUCTURE OF NAMPT IN COMPLEX WITH COMPOUND 1 7PPH ; 1.74 ; CRYSTAL STRUCTURE OF NAMPT IN COMPLEX WITH Compound 10 7PPI ; 2.33 ; Crystal STRUCTURE OF NAMPT IN COMPLEX WITH Compound 11 7PPF ; 2.36 ; CRYSTAL STRUCTURE OF NAMPT IN COMPLEX WITH COMPOUND 8 7PPG ; 2.13 ; CRYSTAL STRUCTURE OF NAMPT IN COMPLEX WITH COMPOUND 9 4XIK ; 1.91 ; Crystal structure of NanB sialidase from streptococcus pneumoniae in complex with DMSO 6JRI ; 3.101 ; Crystal structure of Nanobody 7X2M ; 1.8 ; Crystal structure of nanobody 1-2C7 with SARS-CoV-2 RBD 7X2L ; 2.4 ; Crystal structure of nanobody 3-2A2-4 with SARS-CoV-2 RBD 7X4I ; 3.38 ; Crystal structure of nanobody aSA3 in complex with dimer SARS-CoV-1 RBD 6JB9 ; 1.15 ; Crystal structure of nanobody D3-L11 (unbound form) 6JB8 ; 1.65 ; Crystal structure of nanobody D3-L11 in complex with hen egg-white lysozyme 6JB2 ; 1.5 ; Crystal structure of nanobody D3-L11 mutant Y102A in complex with hen egg-white lysozyme 6JB5 ; 1.55 ; Crystal structure of nanobody D3-L11 mutant Y102A in complex with hen egg-white lysozyme (form II) 7RBY ; 2.82 ; Crystal structure of Nanobody nb112 and SARS-CoV-2 RBD 7X2K ; 2.4 ; Crystal structure of nanobody Nb70 with antibody 1F11 fab and SARS-CoV-2 RBD 7X2J ; 2.4 ; Crystal structure of nanobody Nb70 with SARS-CoV RBD 7NDF ; 2.1 ; Crystal structure of nanobody Nb_MsbA#1 in complex with the nucleotide binding domain of MsbA 8IDM ; 3.59 ; Crystal structure of nanobody VHH-227 with nanobody VHH-T71 and MERS-CoV RBD 8IEE ; 3.21 ; Crystal structure of nanobody VHH-31 with MERS-CoV RBD 8IDO ; 2.5 ; Crystal structure of nanobody VHH-T148 with MERS-CoV RBD 8IDI ; 1.901 ; Crystal structure of nanobody VHH-T71 with MERS-CoV RBD 8EVD ; 2.0 ; Crystal Structure of Nanobody VHH101 Bound to Its Antigen PA14 Cif 8F6V ; 2.3 ; Crystal Structure of Nanobody VHH108 Bound to Its Antigen PA14 Cif 8E1B ; 1.65 ; Crystal Structure of Nanobody VHH108 Specific for PA14 Cif 8F6U ; 1.7 ; Crystal Structure of Nanobody VHH113 Bound to Its Antigen PA14 Cif 8E2N ; 1.1 ; Crystal Structure of Nanobody VHH113 Specific for PA14 Cif 8EE2 ; 2.4 ; Crystal Structure of Nanobody VHH219 Bound to Its Antigen PA14 Cif 8ELN ; 2.4 ; Crystal Structure of Nanobody VHH222 Bound to Its Antigen PA14 Cif 8E1C ; 1.9 ; Crystal Structure of Nanobody VHH222 Specific for PA14 Cif 7RGA ; 2.9 ; Crystal structure of nanoCLAMP3:VHH in complex with MTX 7RG7 ; 1.83 ; Crystal structure of nanoclamp8:VHH in complex with MTX 7MJB ; 1.7 ; Crystal Structure of Nanoluc Luciferase Mutant R164Q 3ALR ; 2.1 ; Crystal structure of Nanos 3PT5 ; 1.6 ; Crystal structure of NanS 7EA2 ; 2.14 ; crystal structure of NAP1 FIR in complex with RB1CC1 Claw domain 7EA7 ; 2.69 ; crystal structure of NAP1 LIR in complex with GABARAP 2HMO ; 1.6 ; Crystal Structure of Naphthalene 1,2-Dioxygenase Bound to 3-Nitrotoluene. 2HMM ; 1.6 ; Crystal Structure of Naphthalene 1,2-Dioxygenase Bound to Anthracene 2HMK ; 1.65 ; Crystal Structure of Naphthalene 1,2-Dioxygenase Bound to Phenanthrene 2B1X ; 2.0 ; Crystal structure of naphthalene 1,2-dioxygenase from Rhodococcus sp. 2B24 ; 3.0 ; Crystal structure of naphthalene 1,2-dioxygenase from Rhodococcus sp. bound to indole 4CCW ; 1.75 ; Crystal structure of naproxen esterase (carboxylesterase NP) from Bacillus subtilis 2C7X ; 1.75 ; Crystal structure of narbomycin-bound cytochrome P450 PikC (CYP107L1) 8GUE ; 1.9 ; Crystal Structure of narbomycin-bound cytochrome P450 PikC with the unnatural amino acid p-Acetyl-L-Phenylalanine incorporated at position 238 1NAR ; 1.8 ; CRYSTAL STRUCTURE OF NARBONIN REFINED AT 1.8 ANGSTROMS RESOLUTION 4U51 ; 3.2 ; Crystal structure of Narciclasine bound to the yeast 80S ribosome 1R27 ; 2.0 ; Crystal Structure of NarGH complex 3IR5 ; 2.3 ; Crystal structure of NarGHI mutant NarG-H49C 3IR6 ; 2.8 ; Crystal structure of NarGHI mutant NarG-H49S 3IR7 ; 2.5 ; Crystal structure of NarGHI mutant NarG-R94S 3WHJ ; 1.65 ; Crystal structure of Nas2 N-terminal domain 3WHL ; 4.0 ; Crystal structure of Nas2 N-terminal domain complexed with PAN-Rpt5C chimera 2UWC ; 2.3 ; Crystal structure of Nasturtium xyloglucan hydrolase isoform NXG2 4U9V ; 1.78 ; Crystal structure of NatD (Naa40p) bound to acetyl CoA 4U9W ; 2.49 ; Crystal Structure of NatD bound to H4/H2A peptide and CoA 5C1J ; 1.7 ; Crystal Structure of native (reduced) CorB 3VSI ; 2.5 ; Crystal structure of native 1,6-APD (2-Animophenol-1,6-dioxygenase) complex with 4-Nitrocatechol 3VSH ; 2.7 ; Crystal structure of native 1,6-APD (with Iron), 2-Animophenol-1,6-Dioxygenase 4X19 ; 1.944 ; Crystal structure of native 4-OT from Pseudomonas putida mt-2 at 1.94 Angstrom 5NAQ ; 2.48 ; Crystal structure of native 6-phospho-glucosidase LpBgl from Lactobacillus plantarum 3KLX ; 2.5 ; Crystal structure of native abscisic acid receptor PYL3 4JDL ; 2.65 ; Crystal structure of native abscisic acid receptor PYL5 at 2.65 Angstrom 3OQU ; 2.68 ; Crystal structure of native abscisic acid receptor PYL9 with ABA 6GSZ ; 1.38 ; Crystal structure of native alfa-L-rhamnosidase from Aspergillus terreus 5NBU ; 1.67 ; Crystal structure of native alpha-1-antitrypsin with seven stabilising mutations 5NBV ; 1.73 ; Crystal structure of native alpha-1-antitrypsin with seven stabilising mutations 4ZJG ; 2.3 ; Crystal structure of native alpha-2-macroglobulin from Escherichia coli spanning domains MG0-NIE-MG1. 4ZJH ; 1.6 ; Crystal structure of native alpha-2-macroglobulin from Escherichia coli spanning domains NIE-MG1. 4ZIU ; 2.7 ; Crystal structure of native alpha-2-macroglobulin from Escherichia coli spanning the residues from domain MG7 to the C-terminus. 3DC0 ; 2.78 ; Crystal structure of native alpha-amylase from Bacillus sp. KR-8104 4GZB ; 1.79 ; Crystal structure of native AmpC beta-lactamase from Pseudomonas aeruginosa PAO1 1T1F ; 2.75 ; Crystal Structure of Native Antithrombin in its Monomeric Form 6IXG ; 3.801 ; Crystal structure of native apo SH3BP5 (P41) 4LTT ; 1.28 ; Crystal structure of native apo toxin from Helicobacter pylori 4QJY ; 2.294 ; Crystal structure of native Ara127N, a GH127 beta-L-arabinofuranosidase from Geobacillus Stearothermophilus T6 4FD6 ; 1.8 ; Crystal structure of native arylalkylamine N-Acetyltransferase 2 from the yellow fever mosquito, Aedes aegypti 5F9M ; 2.402 ; Crystal structure of native B3275, member of MccF family of enzymes 5OAR ; 2.3 ; Crystal structure of native beta-N-acetylhexosaminidase isolated from Aspergillus oryzae 4A8U ; 1.16 ; Crystal Structure of native Birch Pollen Allergen Bet v 1 isoform j 7JSM ; 2.5 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 7MP1 ; 2.66 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH 1,5-DI-METHYLENEBISPHOSPHONATE INOSITOL TETRAKISPHOSPHATE (1,5-PCP-IP4) 7MP2 ; 3.0 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH 1D-MYO-INOSITOL 1,5-BISDIPHOSPHATE TETRAKISPHOSPHATE (1,5-PP IP4) 7MP0 ; 2.6 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH 1D-MYO-INOSITOL 5-DIPHOSPHATE PENTAKISPHOSPHATE (5-PP IP5) 7MOR ; 2.8 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH 5-METHYLENEBIPHOSPHONATE INOSITOL PENTAKISPHAOPHATE (5-PCP IP5) 7JXA ; 2.4 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH INOSITOL 1,4,5-TRIPHOSPHATE 7JTB ; 2.6 ; CRYSTAL STRUCTURE OF NATIVE BOVINE ARRESTIN 1 IN COMPLEX WITH INOSITOL HEXAKISPHOSPHATE 3MQ3 ; 2.8 ; Crystal structure of native bovine PDP1c 1XVT ; 2.3 ; Crystal Structure of Native CaiB in complex with coenzyme A 1WUV ; 2.3 ; Crystal structure of native Canavalia gladiata lectin (CGL): a tetrameric ConA-like lectin 5SW5 ; 2.05 ; Crystal structure of native catalase-peroxidase KatG at pH7.5 5SW4 ; 1.9 ; Crystal structure of native catalase-peroxidase KatG at pH8.0 3N4G ; 2.44 ; Crystal structure of native Cg10062 7MS0 ; 1.37 ; Crystal structure of native Cg10062 1EI3 ; 5.5 ; CRYSTAL STRUCTURE OF NATIVE CHICKEN FIBRINOGEN 1M1J ; 2.7 ; Crystal structure of native chicken fibrinogen with two different bound ligands 7C6C ; 1.258 ; Crystal structure of native chitosanase from Bacillus subtilis MY002 3MF8 ; 2.01 ; Crystal Structure of Native cis-CaaD 1FBB ; 3.2 ; CRYSTAL STRUCTURE OF NATIVE CONFORMATION OF BACTERIORHODOPSIN 4HBT ; 1.1 ; Crystal structure of native CTX-M-15 extended-spectrum beta-lactamase 6OS3 ; 1.7 ; Crystal structure of native CymD prenyltransferase 6PNU ; 2.0 ; Crystal structure of native DauA 8DB1 ; 2.72 ; Crystal structure of native DMATS1 prenyltransferase 5Y26 ; 2.003 ; Crystal structure of native Dpb4-Dpb3 5H7E ; 1.6 ; Crystal Structure of native drCPDase 7DKR ; 2.378 ; Crystal structure of native E. coli Grx2 at 2.38 A 6G3D ; 2.221 ; Crystal structure of Native EDDS lyase 8T3J ; 2.705 ; Crystal structure of native exfoliative toxin C (ExhC) from Mammaliicoccus sciuri 6GGU ; 2.6 ; Crystal structure of native FE-hydrogenase from Methanothermobacter marburgensis 4LHP ; 2.02 ; Crystal Structure of Native FG41Malonate Semialdehyde Decarboxylase 6BLM ; 1.488 ; Crystal Structure of Native Fused 4-OT 4Y2F ; 1.396 ; CRYSTAL STRUCTURE OF NATIVE GAF DOMAIN of POTASSIUM SENSOR HISTIDINE KINASE KDPD FROM ESCHERICHIA COLI 6PHI ; 1.1 ; Crystal structure of native glucagon in space group I41 at 1.1 A resolution 6PHJ ; 1.99 ; Crystal structure of native glucagon in space group P213 at 1.99 A resolution 1JMJ ; 2.35 ; Crystal Structure of Native Heparin Cofactor II 3FLP ; 2.3 ; Crystal structure of native heptameric SAP-like pentraxin from Limulus polyphemus 5C21 ; 2.5 ; Crystal structure of native HlyD from E. coli 1E51 ; 2.83 ; Crystal structure of native human erythrocyte 5-aminolaevulinic acid dehydratase 4HD9 ; 1.7 ; Crystal structure of native human MAdCAM-1 D1D2 domain 7NI3 ; 2.1 ; CRYSTAL STRUCTURE OF NATIVE HUMAN MYELOPEROXIDASE IN COMPLEX WITH CPD 3 7NI1 ; 2.11 ; CRYSTAL STRUCTURE OF NATIVE HUMAN MYELOPEROXIDASE IN COMPLEX WITH CPD 9 3FGQ ; 2.09 ; Crystal structure of native human neuroserpin 6MP5 ; 2.99 ; Crystal structure of native human sulfide:quinone oxidoreductase 4UP1 ; 2.991 ; Crystal structure of native human Thymidylate synthase in active form 7ZBF ; 2.3 ; Crystal structure of native Iripin-4 serpin from tick Ixodes ricinus 7PMU ; 1.89 ; Crystal structure of native Iripin-8 5JRR ; 1.9 ; Crystal structure of native laccase from Thermus thermophilus HB27 5U3E ; 2.3 ; Crystal Structure of Native Lectin from Canavalia bonariensis Seeds (CaBo) complexed with alpha-methyl-D-mannoside 5U38 ; 1.6 ; Crystal structure of native lectin from Platypodium elegans seeds (PELa) complexed with Man1-3Man-OMe. 4A88 ; 1.51 ; Crystal Structure of native Major Birch Pollen Allergen Bet v 1 isoform a 1SD6 ; 2.65 ; Crystal Structure of Native MecI at 2.65 A 1JC5 ; 2.2 ; Crystal Structure of Native Methylmalonyl-CoA Epimerase 3S6H ; 3.102 ; Crystal structure of native mmNAGS/k 5XKO ; 1.89 ; Crystal structure of native Msmeg3575 deaminase from Mycobacterium smegmatis 6JTI ; 2.2 ; Crystal structure of native NagZ from Neisseria gonorrhoeae 5H9T ; 2.89 ; Crystal structure of native NalD at resolution of 2.9, the secondary repressor of MexAB-OprM multidrug efflux pump in Pseudomonas aeruginosa 2HI2 ; 2.3 ; Crystal structure of native Neisseria gonorrhoeae Type IV pilin at 2.3 Angstroms Resolution 3FLR ; 3.0 ; Crystal structure of native octameric SAP-like pentraxin from Limulus polyphemus 3CAP ; 2.9 ; Crystal Structure of Native Opsin: the G Protein-Coupled Receptor Rhodopsin in its Ligand-free State 1XQO ; 1.03 ; Crystal structure of native Pa-AGOG, 8-oxoguanine DNA glycosylase from Pyrobaculum aerophilum 2A1S ; 2.6 ; Crystal structure of native PARN nuclease domain 4LWQ ; 1.38 ; Crystal structure of native peptidyl t-RNA hydrolase from Acinetobacter baumannii at 1.38A resolution 3KJZ ; 2.4 ; Crystal structure of native peptidyl-tRNA hydrolase from Mycobacterium smegmatis 1QXJ ; 1.8 ; Crystal structure of native phosphoglucose isomerase from Pyrococcus furiosus 1TZB ; 1.16 ; Crystal structure of native phosphoglucose/phosphomannose isomerase from Pyrobaculum aerophilum 6YYJ ; 2.16 ; Crystal structure of native Phycocyanin from T. elongatus in spacegroup P21212 at 2.1 Angstroms 6YQ8 ; 1.82 ; Crystal structure of native Phycocyanin from T. elongatus in spacegroup P63 at 1.8 Angstroms 6YPQ ; 1.29 ; Crystal structure of native Phycocyanin from T. elongatus in spacegroup R32 at 1.29 Angstroms 6YQG ; 1.45 ; Crystal structure of native Phycocyanin in spacegroup P63 at 1.45 Angstroms. 1DB2 ; 2.7 ; CRYSTAL STRUCTURE OF NATIVE PLASMINOGEN ACTIVATOR INHIBITOR-1 5C9L ; 1.65 ; Crystal structure of native PLL lectin from Photorhabdus luminescens at 1.65 A resolution 4LA4 ; 2.07 ; Crystal structure of native PnpB 4DY0 ; 2.35 ; Crystal structure of native protease nexin-1 with heparin 2AIP ; 1.65 ; Crystal structure of native protein C activator from the venom of copperhead snake Agkistrodon contortrix contortrix 5UIF ; 2.57 ; Crystal Structure of Native Ps01740 3EF4 ; 1.18 ; Crystal structure of native pseudoazurin from Hyphomicrobium denitrificans 1Z27 ; 2.08 ; Crystal structure of Native Pvs25, an ookinete protein from Plasmodium vivax. 3TRQ ; 1.76 ; Crystal structure of native rabbit skeletal calsequestrin 4ATD ; 2.1 ; Crystal structure of native Raucaffricine glucosidase 6H0T ; 1.9 ; Crystal structure of native recombinant human bile salt activated lipase 4U5P ; 1.782 ; Crystal structure of native RhCC (YP_702633.1) from Rhodococcus jostii RHA1 at 1.78 Angstrom 5XXS ; 2.09 ; Crystal structure of native ribT from Bacillus subtilis 6BWG ; 1.99 ; Crystal structure of native Rv2983 from Mycobacterium tuberculosis 1JOU ; 1.8 ; Crystal Structure of Native S195A Thrombin with an Unoccupied Active Site 1Z1I ; 2.8 ; Crystal structure of native SARS CLpro 1U7S ; 1.4 ; Crystal structure of Native Sperm Whale myoglobin from low ionic strength enviroment (Form 1) 1U7R ; 1.15 ; Crystal structure of Native Sperm Whale myoglobin from low ionic strength enviroment (Form2 ) 2FP9 ; 2.96 ; Crystal structure of Native Strictosidine Synthase 5T1X ; 1.7 ; Crystal Structure of Native Tarin Lectin 1C3Q ; 2.0 ; CRYSTAL STRUCTURE OF NATIVE THIAZOLE KINASE IN THE MONOCLINIC FORM 4XHI ; 2.15 ; Crystal structure of native Thosea asigna virus RNA-dependent RNA polymerase (RdRP) at 2.15 Angstrom resolution 2BF2 ; 2.1 ; Crystal structure of native toluene-4-monooxygenase catalytic effector protein, T4moD 5DUO ; 2.4 ; Crystal structure of native translocator protein 18kDa (TSPO) from Rhodobacter sphaeroides (A139T Mutant) in C2 space group 2DJX ; 1.58 ; Crystal structure of native Trypanosoma cruzi dihydroorotate dehydrogenase 1EWX ; 1.7 ; Crystal structure of native tryparedoxin I from Crithidia fasciculata 3IEK ; 2.05 ; Crystal Structure of native TTHA0252 from Thermus thermophilus HB8 3S9Q ; 1.67 ; Crystal structure of native type 1 ribosome inactivating protein from Momordica balsamina at 1.67 A resolution 5Y98 ; 1.36 ; Crystal structure of native unbound peptidyl tRNA hydrolase from Acinetobacter baumannii at 1.36 A resolution 1IDQ ; 2.03 ; CRYSTAL STRUCTURE OF NATIVE VANADIUM-CONTAINING CHLOROPEROXIDASE FROM CURVULARIA INAEQUALIS 1VBU ; 1.8 ; Crystal structure of native xylanase 10B from Thermotoga maritima 3NIY ; 1.58 ; Crystal structure of native xylanase 10B from Thermotoga petrophila RKU-1 5NH5 ; 1.8 ; Crystal structure of native xylose isomerase from Piromyces E2 6T8E ; 1.86 ; Crystal structure of native xylose isomerase from Piromyces E2 grown in yeast, in complex with xylose 7DAO ; 2.28 ; Crystal structure of native yak lactoperoxidase at 2.28 A resolution 5OK4 ; 1.29 ; Crystal structure of native [Fe]-hydrogenase Hmd from Methanothermobacter marburgensis inactivated by O2. 2PHA ; 1.9 ; Crystal structure of native, unliganded human arginase at 1.90 resolution 2Z46 ; 2.97 ; Crystal Structure of Native-ORF134 2OSH ; 2.2 ; crystal structure of Natratoxin, a snake sPLA2 that blocks A-type K+ channel 1XX5 ; 2.4 ; Crystal Structure of Natrin from Naja atra snake venom 1XTA ; 1.58 ; Crystal Structure of Natrin, a snake venom CRISP from Taiwan cobra (Naja atra) 3QDC ; 2.5 ; Crystal structure of Natronomonas pharaonis sensory rhodopsin II in the active state 3QAP ; 1.9 ; Crystal structure of Natronomonas pharaonis sensory rhodopsin II in the ground state 7VYU ; 1.8 ; Crystal structure of NatS 4DWW ; 1.74 ; Crystal Structure of Nattokinase from Bacillus subtilis natto 2VLC ; 2.95 ; Crystal structure of Natural Cinnamomin (Isoform III) 3NOI ; 1.842 ; Crystal Structure of Natural Killer Cell Cytotoxicity Receptor NKp30 (NCR3) 3CAD ; 2.6 ; Crystal structure of Natural Killer Cell Receptor, Ly49G 4QFQ ; 2.035 ; Crystal structure of natvie Npu DnaE split intein 3WFN ; 1.95 ; Crystal Structure of Nav1.6 IQ motif in complex with apo-CaM 8DIW ; 3.11 ; Crystal structure of NavAb E96P as a basis for the human Nav1.7 Inherited Erythromelalgia S211P mutation 8DIZ ; 2.75 ; Crystal structure of NavAb I119T as a basis for the human Nav1.7 Inherited Erythromelalgia I234T mutation 8DIV ; 2.54 ; Crystal structure of NavAb I22V as a basis for the human Nav1.7 Inherited Erythromelalgia I136V mutation 8DIY ; 2.85 ; Crystal structure of NavAb L101S as a basis for the human Nav1.7 Inherited Erythromelalgia F216S mutation 8DJ0 ; 2.7 ; Crystal structure of NavAb L123T as a basis for the human Nav1.7 Inherited Erythromelalgia I848T mutation 8DJ1 ; 3.1 ; Crystal structure of NavAb V126T as a basis for the human Nav1.7 Inherited Erythromelalgia S241T mutation 4DXW ; 3.052 ; Crystal structure of NavRh, a voltage-gated sodium channel 5VNV ; 1.4 ; Crystal structure of Nb.b201 5VNW ; 2.6 ; Crystal structure of Nb.b201 bound to human serum albumin 8F8V ; 1.81 ; Crystal structure of Nb.X0 8F8W ; 2.71 ; Crystal structure of Nb.X0 bound to the afucosylated human IgG1 fragment crystal form I 8F8X ; 2.6 ; Crystal structure of Nb.X0 bound to the afucosylated human IgG1 fragment crystal form II 6XXP ; 1.5 ; Crystal structure of NB37, a nanobody targeting prostate specific membrane antigen 6XXN ; 2.65 ; Crystal structure of NB7, a nanobody targeting prostate specific membrane antigen 6XXO ; 1.5 ; Crystal structure of NB8, a nanobody targeting prostate specific membrane antigen 1OJH ; 1.8 ; Crystal structure of NblA from PCC 7120 7R9D ; 1.83 ; Crystal structure of Nb_0 in complex with Fab_8D3 2VAJ ; 2.701 ; Crystal structure of NCAM2 Ig1 (I4122 cell unit) 2XY2 ; 1.82 ; CRYSTAL STRUCTURE OF NCAM2 IG1-2 2WIM ; 3.0 ; Crystal structure of NCAM2 IG1-3 2V5T ; 2.0 ; Crystal structure of NCAM2 Ig2-3 2XY1 ; 1.979 ; CRYSTAL STRUCTURE OF NCAM2 IG3-4 2XYC ; 2.51 ; CRYSTAL STRUCTURE OF NCAM2 IGIV-FN3I 2JLL ; 2.3 ; Crystal structure of NCAM2 IgIV-FN3II 4G6H ; 2.262 ; Crystal structure of NDH with NADH 4G73 ; 2.522 ; Crystal structure of NDH with NADH and Quinone 4G74 ; 2.48 ; Crystal structure of NDH with Quinone 4G6G ; 2.39 ; Crystal structure of NDH with TRT 5ZGE ; 1.0 ; Crystal structure of NDM-1 at pH5.5 (Bis-Tris) in complex with hydrolyzed ampicillin 8GPC ; 1.4 ; Crystal structure of NDM-1 at pH5.5 (Succinate) in complex with hydrolyzed ampicillin 8I8F ; 1.89 ; Crystal structure of NDM-1 at pH5.5 (Succinate) in complex with hydrolyzed compound 1 8GPE ; 1.4 ; Crystal structure of NDM-1 at pH5.5 (Succinate) in complex with hydrolyzed penicillin G 8GPD ; 1.4 ; Crystal structure of NDM-1 at pH5.5 (Succinate) in complex with hydrolyzed penicillin V 5ZGP ; 1.15 ; Crystal structure of NDM-1 at pH6.2 (Bis-Tris) in complex with hydrolyzed ampicillin 5ZGI ; 0.98 ; Crystal structure of NDM-1 at pH6.5 (Succinate) with 1 molecule per asymmetric unit 5ZGU ; 1.55 ; Crystal structure of NDM-1 at pH7.0 (HEPES) with 2 molecules per asymmetric unit 5ZGR ; 1.15 ; Crystal structure of NDM-1 at pH7.3 (HEPES) in complex with hydrolyzed ampicillin 5ZGY ; 0.95 ; Crystal structure of NDM-1 at pH7.5 (Bis-Tris) with 1 molecule per asymmetric unit 5ZGT ; 1.2 ; Crystal structure of NDM-1 at pH7.5 (HEPES) with 2 molecules per asymmetric unit 5ZGZ ; 0.95 ; Crystal structure of NDM-1 at pH7.5 (Imidazole) with 1 molecule per asymmetric unit 5ZH1 ; 1.05 ; Crystal structure of NDM-1 at pH7.5 (Imidazole) with 2 molecules per asymmetric unit 5ZGX ; 0.95 ; Crystal structure of NDM-1 at pH7.5 (Succinate) with 1 molecule per asymmetric unit 5ZGQ ; 1.5 ; Crystal structure of NDM-1 at pH7.5 (Tris-HCl, (NH4)2SO4) in complex with hydrolyzed ampicillin 5ZGW ; 0.95 ; Crystal structure of NDM-1 at pH7.5 with 1 molecule per asymmetric unit (crystallized at succinate pH5.5 and soaked at succinate pH7.5) 5ZGV ; 1.15 ; Crystal structure of NDM-1 at pH8.0 (Tris) with 2 molecules per asymmetric unit 6Q30 ; 1.5 ; Crystal structure of NDM-1 beta-lactamase in complex with boronic inhibitor cpd 5 6IBS ; 1.37 ; Crystal structure of NDM-1 beta-lactamase in complex with boronic inhibitor cpd 6 6IBV ; 1.4 ; Crystal structure of NDM-1 beta-lactamase in complex with broad spectrum boronic inhibitor cpd 1 6Q2Y ; 1.0 ; Crystal structure of NDM-1 beta-lactamase in complex with broad spectrum boronic inhibitor cpd3 4EXY ; 1.47 ; Crystal structure of NDM-1 bound to ethylene glycol 4EYF ; 1.8 ; Crystal structure of NDM-1 bound to hydrolyzed benzylpenicillin 5YPI ; 2.3 ; Crystal structure of NDM-1 bound to hydrolyzed imipenem representing an EI1 complex 5YPK ; 2.0 ; Crystal structure of NDM-1 bound to hydrolyzed imipenem representing an EI2 complex 5YPL ; 1.8 ; Crystal structure of NDM-1 bound to hydrolyzed imipenem representing an EP complex 4EYL ; 1.9 ; Crystal structure of NDM-1 bound to hydrolyzed meropenem 5YPM ; 2.15 ; Crystal structure of NDM-1 bound to hydrolyzed meropenem representing an EI1 complex 5YPN ; 2.12 ; Crystal structure of NDM-1 bound to hydrolyzed meropenem representing an EI2 complex 4EY2 ; 1.17 ; Crystal structure of NDM-1 bound to hydrolyzed methicillin 4EYB ; 1.16 ; Crystal structure of NDM-1 bound to hydrolyzed oxacillin 4EXS ; 2.4 ; Crystal structure of NDM-1 bound to L-captopril 6D1A ; 1.25 ; Crystal structure of NDM-1 complexed with compound 1 6D1H ; 1.25 ; Crystal structure of NDM-1 complexed with compound 11 6D1I ; 1.1 ; Crystal structure of NDM-1 complexed with compound 12 6D1J ; 1.15 ; Crystal structure of NDM-1 complexed with compound 13 6D1K ; 1.2 ; Crystal structure of NDM-1 complexed with compound 14 6D1B ; 1.25 ; Crystal structure of NDM-1 complexed with compound 2 6D1C ; 1.25 ; Crystal structure of NDM-1 complexed with compound 3 6D1D ; 1.4 ; Crystal structure of NDM-1 complexed with compound 6 6D1E ; 1.15 ; Crystal structure of NDM-1 complexed with compound 7 6D1F ; 1.15 ; Crystal structure of NDM-1 complexed with compound 8 6D1G ; 1.15 ; Crystal structure of NDM-1 complexed with compound 9 6NY7 ; 1.4 ; Crystal Structure of NDM-1 D199N with Compound 16 6O3R ; 1.3 ; Crystal Structure of NDM-1 D199N with Compound 7 8R5T ; 1.58 ; Crystal structure of NDM-1 in complex with benzobisheterocycle compound 14. 5N0I ; 1.47 ; Crystal structure of NDM-1 in complex with beta-mercaptoethanol - new refinement 5ZJ2 ; 1.1 ; Crystal structure of NDM-1 in complex with D-captopril 5ZJ7 ; 0.96 ; Crystal structure of NDM-1 in complex with D-captopril derivative CY22 5ZJ8 ; 0.96 ; Crystal structure of NDM-1 in complex with D-captopril derivative CY32 5ZJC ; 0.96 ; Crystal structure of NDM-1 in complex with D-captopril derivative CY41 5ZJ1 ; 0.96 ; Crystal structure of NDM-1 in complex with D-captopril derivative CYT-14 6LIZ ; 1.05 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss02120 6LJ0 ; 1.2 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss02122 6LJ1 ; 1.151 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss02127 monomer 6LIP ; 0.98 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss0218 6LJ8 ; 1.4 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss04134 6LJ5 ; 1.26 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss04145 6LJ4 ; 1.15 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss04146 6LJ6 ; 1.27 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss05008 6LJ7 ; 1.16 ; Crystal structure of NDM-1 in complex with D-captopril derivative wss05010 6LJ2 ; 1.35 ; Crystal structure of NDM-1 in complex with heterodimer of D-captopril derivative wss02127 stereoisomer 7VQJ ; 2.45 ; Crystal structure of NDM-1 in complex with hydrolyzed 1u. 5O2F ; 2.01 ; Crystal structure of NDM-1 in complex with hydrolyzed ampicillin - new refinement 5O2E ; 1.3 ; Crystal structure of NDM-1 in complex with hydrolyzed cefuroxime - new refinement 5N0H ; 1.9 ; Crystal structure of NDM-1 in complex with hydrolyzed meropenem - new refinement 5ZIO ; 0.98 ; Crystal structure of NDM-1 in complex with L-captopril 6TGD ; 1.33 ; Crystal structure of NDM-1 in complex with triazole-based inhibitor OP31 5ZR8 ; 1.5 ; Crystal Structure Of NDM-1 Metallo-beta-lactamase 6CAC ; 1.79 ; Crystal structure of NDM-1 metallo-beta-lactamase harboring an insertion of a Pro residue in L3 loop 6EX7 ; 1.95 ; Crystal structure of NDM-1 metallo-beta-lactamase in complex with Cd ions and a hydrolyzed beta-lactam ligand - new refinement 6KXI ; 1.38 ; Crystal Structure Of NDM-1 Metallo-beta-lactamase In Complex With Inhibitor NO9 6KZL ; 1.763 ; Crystal Structure Of NDM-1 Metallo-beta-lactamase In Complex With Inhibitor X2 5ZGF ; 1.2 ; Crystal structure of NDM-1 Q123G mutant 6MDU ; 1.15 ; Crystal structure of NDM-1 with compound 7 6EFJ ; 1.65 ; Crystal structure of NDM-1 with compound 9 6RMF ; 1.51 ; Crystal structure of NDM-1 with VNRX-5133 6OL8 ; 2.1 ; Crystal structure of NDM-12 metallo-beta-lactamase in complex with hydrolyzed ampicillin 6OGO ; 1.43 ; Crystal structure of NDM-9 metallo-beta-lactamase 4H2D ; 1.8 ; Crystal structure of NDOR1 2BEF ; 2.3 ; CRYSTAL STRUCTURE OF NDP KINASE COMPLEXED WITH MG, ADP, AND BEF3 3G79 ; 2.4 ; Crystal structure of NDP-N-acetyl-D-galactosaminuronic acid dehydrogenase from Methanosarcina mazei Go1 7EAA ; 2.6 ; crystal structure of NDP52 SKICH domain in complex with RB1CC1 coiled-coil domain 5Z7A ; 2.38 ; Crystal structure of NDP52 SKICH region 5Z7L ; 2.02 ; Crystal structure of NDP52 SKICH region in complex with NAP1 4XKL ; 2.1 ; Crystal structure of NDP52 ZF2 in complex with mono-ubiquitin 2YVN ; 1.84 ; Crystal structure of NDX2 from thermus thermophilus HB8 2YVO ; 1.67 ; Crystal structure of NDX2 in complex with MG2+ and AMP from thermus thermophilus HB8 2YVP ; 1.66 ; Crystal structure of NDX2 in complex with MG2+ and ampcpr from thermus thermophilus HB8 2YVM ; 1.7 ; Crystal structure of NDX2 in complex with MG2+ from thermus thermophilus HB8 7C3S ; 1.66 ; Crystal structure of NE0047 (E143D) mutant in complex with 8-azaguanine 7C3U ; 1.86 ; Crystal structure of NE0047 (N66A) mutant in complex with 8-azaguanine 7C3T ; 2.07 ; Crystal structure of NE0047 (N66Q) mutant in complex with 8-azaguanine 4LD2 ; 1.55 ; Crystal structure of NE0047 in complex with cytidine 4LD4 ; 3.0 ; Crystal structure of NE0047 in complex with cytosine 4LCO ; 2.7 ; Crystal structure of NE0047 with complex with substrate ammeline 2PD1 ; 1.86 ; Crystal structure of NE2512 protein of unknown function from Nitrosomonas europaea 5NX8 ; 1.7 ; Crystal structure of Neanderthal Adenylosuccinate Lyase (ADSL) 5NX9 ; 2.3 ; Crystal structure of Neanderthal Adenylosuccinate Lyase (ADSL) in complex with its products AMP and fumarate 5NXA ; 2.4 ; Crystal structure of Neanderthal Adenylosuccinate Lyase (ADSL)in complex with its products AICAR and fumarate 6I34 ; 2.1 ; Crystal structure of Neanderthal glycine decarboxylase (P-protein) 5KZF ; 3.49 ; Crystal structure of near full-length hexameric Mycobacterium tuberculosis proteasomal ATPase Mpa in apo form 7LSC ; 1.8 ; Crystal structure of near-infrared fluorescent protein miRFP670nano3 7LSD ; 1.7 ; Crystal structure of near-infrared fluorescent protein miRFP718nano 4KGE ; 2.3 ; Crystal structure of near-infrared fluorescent protein with an extended stokes shift, pH 4.5 4KGF ; 2.3 ; Crystal structure of near-infrared fluorescent protein with an extended stokes shift, ph 8.0 2Z6F ; 1.9 ; Crystal structure of NEAT domain from Staphylococcus aureus in complex with heme 5JRE ; 2.1 ; Crystal structure of NeC3PO in complex with ssDNA. 5JRC ; 1.9 ; Crystal structure of NeC3PO in complex with ssRNA. 3ST1 ; 1.8 ; Crystal structure of Necrosis and Ethylene inducing Protein 2 from the causal agent of cocoa's Witches Broom disease 3U83 ; 2.499 ; Crystal structure of nectin-1 1Z9M ; 2.4 ; Crystal Structure of Nectin-like molecule-1 protein Domain 1 5V4K ; 2.099 ; Crystal structure of NEDD4 LIR-fused human LC3B_2-119 5C7J ; 3.0 ; CRYSTAL STRUCTURE OF NEDD4 WITH A UB VARIANT 5L3X ; 2.75 ; Crystal structure of negative elongation factor subcomplex NELF-AC 8B9N ; 2.0 ; Crystal structure of NEI domain of mouse NEIL3 trapped in covalent complex with ssDNA with abasic site 8DR2 ; 2.81 ; Crystal structure of Neisseria gonorrhoeae carbonic anhydrase with 2-cyclohexyl-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)acetamide 8DRB ; 2.59 ; Crystal structure of Neisseria gonorrhoeae carbonic anhydrase with 3-phenyl-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)propanamide 8DPO ; 2.6 ; Crystal structure of Neisseria gonorrhoeae carbonic anhydrase with Acetazolamide 8DYQ ; 2.15 ; Crystal structure of Neisseria gonorrhoeae carbonic anhydrase with Acetazolamide 8DQF ; 2.8 ; Crystal structure of Neisseria gonorrhoeae carbonic anhydrase with N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)cyclohexanecarboxamide 7NU4 ; 2.18 ; Crystal Structure of Neisseria gonorrhoeae LeuRS 7NU1 ; 2.51 ; Crystal Structure of Neisseria gonorrhoeae LeuRS E169G mutant 7NU3 ; 2.27 ; Crystal Structure of Neisseria gonorrhoeae LeuRS E169G mutant in Complex with ATP and L-leucinol 7NU2 ; 2.1 ; Crystal Structure of Neisseria gonorrhoeae LeuRS E169G mutant in Complex with the Reaction Intermediate Leu-AMP 7NU9 ; 2.17 ; Crystal Structure of Neisseria gonorrhoeae LeuRS in Complex with ATP and L-leucinol 7NU6 ; 2.2 ; Crystal Structure of Neisseria gonorrhoeae LeuRS in Complex with ATP in Conformation 1 7NU7 ; 2.31 ; Crystal Structure of Neisseria gonorrhoeae LeuRS in Complex with ATP in Conformation 2 7NU5 ; 2.58 ; Crystal Structure of Neisseria gonorrhoeae LeuRS in Complex with L-leucine 7NU8 ; 2.11 ; Crystal Structure of Neisseria gonorrhoeae LeuRS in Complex with the Reaction Intermediate Leu-AMP 7NTY ; 2.39 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550A mutant 7NU0 ; 1.89 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550A mutant in Complex with ATP and L-leucinol 7NTZ ; 2.1 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550A mutant in Complex with the Reaction Intermediate Leu-AMP 7NUA ; 3.09 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550G mutant 7NUC ; 2.77 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550G mutant in Complex with ATP and L-leucinol 7NUB ; 3.02 ; Crystal Structure of Neisseria gonorrhoeae LeuRS L550G mutant in Complex with the Reaction Intermediate Leu-AMP 6WYE ; 2.01 ; Crystal structure of Neisseria gonorrhoeae serine acetyltransferase (CysE) 7RA4 ; 2.8 ; Crystal structure of Neisseria gonorrhoeae serine acetyltransferase (CysE) in complex with serine 6NAW ; 2.399 ; Crystal structure of Neisseria meningitidis ClpP E58A activated mutant 6W9T ; 1.64 ; Crystal structure of Neisseria meningitidis ClpP protease complex with small molecule activator ACP1-06 6NAY ; 2.199 ; Crystal structure of Neisseria meningitidis ClpP protease E31A+E58A activated double mutant 6NAQ ; 2.022 ; Crystal structure of Neisseria meningitidis ClpP protease in Apo form 6NAH ; 2.7 ; Crystal structure of Neisseria meningitidis ClpP protease in complex with Acyldepsipeptide-14 (ADEP-14) 6DNU ; 2.283 ; Crystal Structure of Neisseria meningitidis DsbD c-terminal domain in the oxidised form 6DNL ; 1.7 ; Crystal Structure of Neisseria meningitidis DsbD c-terminal domain in the reduced form 6DPS ; 2.556 ; Crystal Structure of Neisseria meningitidis DsbD n-terminal domain in the oxidised form 6DNV ; 1.603 ; Crystal Structure of Neisseria meningitidis DsbD n-terminal domain in the reduced form 7F2A ; 2.58 ; Crystal structure of Neisseria meningitidis EarP bound TDP 7VCH ; 2.85 ; Crystal structure of Neisseria meningitidis EarP bound TDP-L-Rhamnose 7COX ; 3.0 ; Crystal structure of Neisseria meningitidis EarP R268A mutant 6EUP ; 2.65 ; Crystal structure of Neisseria meningitidis NadA variant 3 double mutant A33I-I38L 1RV9 ; 1.53 ; Crystal Structure of Neisseria meningitidis protein NMB0706, Pfam DUF152 4CJD ; 2.056 ; Crystal structure of Neisseria meningitidis trimeric autotransporter and vaccine antigen NadA 6EUN ; 2.45 ; Crystal structure of Neisseria meningitidis vaccine antigen NadA variant 3 5N6V ; 1.6 ; Crystal structure of Neisseria polysaccharea amylosucrase mutant derived from Neutral genetic Drift-based engineering 5N7J ; 2.001 ; Crystal structure of Neisseria polysaccharea amylosucrase mutant efficient for the synthesis of controlled size maltooligosaccharides 3AY2 ; 1.9 ; Crystal structure of Neisserial azurin 1P4T ; 2.55 ; Crystal structure of Neisserial surface protein A (NspA) 6S75 ; 3.3 ; Crystal structure of Nek7 bound to compound 51 6S73 ; 3.5 ; Crystal structure of Nek7 SRS mutant bound to compound 51 3EL5 ; 1.6 ; Crystal structure of nelfinavir (NFV) complexed with a multidrug variant (ACT) (V82T/I84V) of HIV-1 protease 4OBD ; 1.9 ; Crystal Structure of Nelfinavir-Resistant, Inactive HIV-1 Protease (D30N/N88D) in Complex with the p1-p6 substrate variant (L449F/S451N) 4OBG ; 1.78 ; Crystal Structure of Nelfinavir-Resistant, Inactive HIV-1 Protease (D30N/N88D) in Complex with the p1-p6 substrate. 4OBF ; 1.68 ; Crystal Structure of Nelfinavir-Resistant, Inactive HIV-1 Protease Variant (D30N/N88D) in Complex with the p1-p6 substrate variant (S451N) 7BII ; 3.037 ; Crystal structure of Nematocida HUWE1 6LE8 ; 1.39909 ; Crystal structure of nematode family I chitinase,CeCht1, in complex with dihydropyrrolopyrazol-6-one derivate 1 6LE7 ; 1.85753 ; Crystal structure of nematode family I chitinase,CeCht1, in complex with dihydropyrrolopyrazol-6-one derivate 2 7TV4 ; 4.2 ; Crystal structure of NEMO CoZi in complex with HOIP NZF1 and linear diubiquitin 6XX0 ; 2.6 ; Crystal structure of NEMO in complex with Ubv-LIN 6XDH ; 2.35 ; Crystal Structure of NendoU (Uridylate-specific endoribonuclease, nsp15) from Betacoronavirus SARS-CoV-2 8U2X ; 2.25 ; Crystal Structure of NendoU (Uridylate-specific endoribonuclease, nsp15) from Betacoronavirus SARS-CoV-2 (H235A mutant) 2D04 ; 2.76 ; Crystal structure of neoculin, a sweet protein with taste-modifying activity. 1J0I ; 2.4 ; Crystal structure of neopullulanase complex with panose 1J0K ; 3.2 ; Crystal structure of neopullulanase E357Q complex with isopanose 1J0J ; 2.8 ; Crystal structure of neopullulanase E357Q complex with maltotetraose 6SUK ; 1.75 ; Crystal structure of Neprilysin in complex with Omapatrilat. 6SVY ; 2.6 ; Crystal structure of Neprilysin in complex with Sampatrilat-ASP. 6XVP ; 2.65 ; Crystal structure of Neprilysin in complex with Sampatrilat. 5OXZ ; 1.2 ; Crystal Structure of NeqN/NeqC complex from Nanoarcheaum equitans at 1.2A 5OXX ; 1.74 ; Crystal structure of NeqN/NeqC complex from Nanoarcheaum equitans at 1.7A 4XPJ ; 2.605 ; Crystal structure of Nerve growth factor in complex with lysophosphatidylinositol 7EE4 ; 1.4 ; Crystal structure of Neu5Ac bound PltC 7EE5 ; 1.24 ; Crystal structure of Neu5Gc bound PltC 6PPW ; 1.85 ; Crystal structure of NeuB, an N-acetylneuraminate synthase from Neisseria meningitidis, in complex with magnesium and malate 6PPZ ; 2.4 ; Crystal structure of NeuB, an N-acetylneuraminate synthase from Neisseria meningitidis, in complex with manganese, inorganic phosphate, and N-acetylmannosamine (NeuB.Mn2+.Pi.ManNAc) 6PPY ; 2.0 ; Crystal structure of NeuNAc oxime complexed with NeuB, an N-acetylneuraminate synthase from Neisseria meningitidis 4CBP ; 1.6 ; Crystal structure of neural ectodermal development factor IMP-L2. 4QN4 ; 1.8 ; Crystal structure of Neuraminidase N6 4QN6 ; 1.945 ; Crystal structure of Neuraminidase N6 complexed with Laninamivir 4QN3 ; 2.092 ; Crystal structure of Neuraminidase N7 4QN7 ; 2.302 ; Crystal structure of neuramnidase N7 complexed with Oseltamivir 3VKF ; 3.3 ; Crystal Structure of Neurexin 1beta/Neuroligin 1 complex 6CW1 ; 2.84 ; Crystal structure of Neurexin-1 alpha ectodomain fragment, L2-L3 4YU8 ; 1.8 ; Crystal structure of Neuroblastoma suppressor of tumorigenicity 1 3P40 ; 3.2 ; Crystal structure of neurofascin adhesion complex in space group p3221 3P3Y ; 2.6 ; Crystal structure of neurofascin homophilic adhesion complex in space group p6522 3PEG ; 2.524 ; Crystal structure of Neurofibromins Sec14-PH module containing a patient derived duplication (TD) 8UFN ; 2.73 ; Crystal Structure of neuronal HAstV VA1 capsid spike domain at 2.73 A resolution 2XOT ; 2.0 ; Crystal structure of neuronal leucine rich repeat protein AMIGO-1 1URQ ; 2.0 ; Crystal structure of neuronal Q-SNAREs in complex with R-SNARE motif of Tomosyn 7JJC ; 2.36 ; Crystal structure of neuropilin-1 b1 domain in complex with SARS-CoV-2 S1 C-end rule (CendR) peptide 1XTG ; 2.1 ; Crystal structure of NEUROTOXIN BONT/A complexed with Synaptosomal-associated protein 25 6U7N ; 3.321 ; Crystal structure of neurotrimin (NTM) 7SI2 ; 3.2 ; Crystal structure of neutralizing antibody 10-28 in complex with SARS-CoV-2 spike receptor binding domain (RBD) 8DNN ; 3.12 ; Crystal structure of neutralizing antibody 80 in complex with SARS-CoV-2 receptor binding domain 8DW9 ; 4.0 ; Crystal structure of neutralizing antibody D29 Fab in complex with SARS-CoV-2 spike receptor binding domain (RBD) 4YE4 ; 2.72 ; Crystal Structure of Neutralizing Antibody HJ16 in Complex with HIV-1 gp120 8DWA ; 3.2 ; Crystal structure of neutralizing antibody P1D9 Fab in complex with SARS-CoV-2 spike receptor binding domain (RBD) 8GZ5 ; 1.7 ; Crystal structure of neutralizing VHH P17 in complex with SARS-CoV-2 Alpha variant spike receptor-binding domain 8GZ6 ; 1.35 ; Crystal structure of neutralizing VHH P17 in complex with SARS-CoV-2 Alpha variant spike receptor-binding domain 8D4Q ; 2.2 ; Crystal Structure of Neutrophil Elastase Inhibited by Eap1 from S. aureus 8D4U ; 1.9 ; Crystal Structure of Neutrophil Elastase Inhibited by Eap2 from S. aureus 3TF6 ; 2.35 ; Crystal structure of Neutrophil gelatinase-associated lipocalin (C87S mutant) in complex with Europium and the siderophore analog tren(cam)(1,2-hopo)2 3TZS ; 2.45 ; Crystal structure of Neutrophil gelatinase-associated lipocalin NGAL (C87S mutant) in complex with fragment 1026, phenylurea 3SBL ; 2.31 ; Crystal Structure of New Delhi Metal-beta-lactamase-1 from Klebsiella pneumoniae 3S0Z ; 2.5 ; Crystal structure of New Delhi Metallo-beta-lactamase (NDM-1) 4GYU ; 1.803 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1 A121F mutant from Klebsiella pneumoniae 4GYQ ; 1.351 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1 D223A mutant from Klebsiella pneumoniae 3RKK ; 2.35 ; Crystal Structure of New Delhi Metallo-Beta-Lactamase-1 from Klebsiella pneumoniae 3RKJ ; 2.0 ; Crystal Structure of New Delhi Metallo-Beta-Lactamase-1 from Klebsiella pnueumoniae 4RBS ; 2.405 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1 in the Complex with Hydrolyzed Meropenem 4RAW ; 1.302 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1 Mutant M67V Complexed with Hydrolyzed Ampicillin 4RAM ; 1.495 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1 Mutant M67V Complexed with Hydrolyzed Penicillin G 4HL1 ; 1.5 ; Crystal Structure of New Delhi Metallo-beta-Lactamase-1, Complexed with Cd and Ampicillin 3D38 ; 3.21 ; Crystal structure of new trigonal form of photosynthetic reaction center from Blastochloris viridis. Crystals grown in microfluidics by detergent capture. 4G1G ; 2.2 ; Crystal structure of Newcastle disease virus matrix protein 4G1L ; 2.207 ; Crystal structure of Newcastle disease virus matrix protein 4G1O ; 2.2 ; Crystal structure of Newcastle disease virus matrix protein 1OOA ; 2.45 ; CRYSTAL STRUCTURE OF NF-kB(p50)2 COMPLEXED TO A HIGH-AFFINITY RNA APTAMER 4DN5 ; 2.5 ; Crystal Structure of NF-kB-inducing Kinase (NIK) 5DV7 ; 3.5 ; Crystal Structure of NF90 tandem dsRBDs with dsRNA 2O93 ; 3.05 ; Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element 5FH9 ; 3.159 ; Crystal structure of NFeoB from Escherichia coli BL21 in the apo state. 3W5I ; 2.15 ; Crystal structure of NfeoB from Gallionella capsiferriformans 3K53 ; 2.7 ; Crystal Structure of NFeoB from P. furiosus 3SS8 ; 2.51 ; Crystal structure of NFeoB from S. thermophilus bound to GDP.AlF4- and K+ 8K89 ; 2.1 ; Crystal structure of NFIL3 8K8A ; 2.07 ; Crystal structure of NFIL3 in complex with TTACGTAA DNA 8K86 ; 2.06 ; Crystal structure of NFIL3 in complex with TTATGTAA DNA 2O61 ; 2.8 ; Crystal Structure of NFkB, IRF7, IRF3 bound to the interferon-b enhancer 4Q3J ; 1.862 ; Crystal structure of NFkB-p65-degrading zinc protease family protein 4Q76 ; 1.9 ; Crystal structure of Nfs2 C384S mutant, the plastidial cysteine desulfurase from Arabidopsis thaliana 4Q75 ; 1.709 ; Crystal structure of Nfs2, the plastidial cysteine desulfurase from Arabidopsis thaliana 3KXA ; 2.8 ; Crystal Structure of NGO0477 from Neisseria gonorrhoeae 2QHB ; 2.4 ; Crystal structure of NgTRF complexed with telomeric DNA 2CKX ; 1.9 ; Crystal structure of NgTRF1, double-stranded telomeric repeat binding factor from Nicotiana tabacum. 5F23 ; 1.5 ; Crystal structure of NH(3)-dependent NAD(+) synthetase Pseudomonas aeruginosa in complex with NAD 1NSY ; 2.0 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS 1FYD ; 2.25 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS COMPLEXED WITH ONE MOLECULE AMP, ONE PYROPHOSPHATE ION AND ONE MG2+ ION 1EE1 ; 2.06 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS COMPLEXED WITH ONE MOLECULE ATP, TWO MOLECULES DEAMIDO-NAD+ AND ONE MG2+ ION 1IFX ; 2.25 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS COMPLEXED WITH TWO MOLECULES DEAMIDO-NAD 2NSY ; 2.0 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS IN COMPLEX WITH NAD-ADENYLATE 1XNG ; 1.7 ; Crystal Structure of NH3-dependent NAD+ synthetase from Helicobacter pylori 1XNH ; 2.3 ; Crystal Structure of NH3-dependent NAD+ synthetase from Helicobacter pylori 3N05 ; 2.35 ; CRYSTAL STRUCTURE OF NH3-DEPENDENT NAD+ SYNTHETASE FROM STREPTOMYCES AVERMITILIS 4LMM ; 1.1 ; Crystal structure of NHERF1 PDZ1 domain complexed with the CXCR2 C-terminal tail in P21 space group 4MPA ; 1.097 ; Crystal structure of NHERF1-CXCR2 signaling complex in P21 space group 4P0C ; 1.339 ; Crystal Structure of NHERF2 PDZ1 Domain in Complex with LPA2 7B2R ; 1.6 ; Crystal structure of NHL domain of TRIM2 7QRV ; 1.45 ; Crystal structure of NHL domain of TRIM2 (full C-terminal) 7QRW ; 1.7 ; Crystal structure of NHL domain of TRIM3 7QRX ; 2.2 ; Crystal structure of NHL domain of TRIM71 6G7W ; 1.746 ; Crystal structure of NHL repeat containing domain of human NHLRC2 6WIT ; 2.79 ; Crystal structure of NHP D15.SD7 Fab in complex with 16055 V1V2 1FD6 scaffold 6XSN ; 2.87 ; Crystal structure of NHP VD20.5A4 Fab in complex with 16055 V1V2 1FD6 scaffold 2R36 ; 2.0 ; Crystal structure of ni human ARG-insulin 5W1F ; 2.6 ; Crystal structure of Ni(II)- and Ca(II)-bound human calprotectin 6DS2 ; 2.1 ; Crystal structure of Ni(II)-bound human calprotectin 7RWU ; 1.8 ; Crystal structure of Ni-bound RIDC1 variant in the presence of reductant 1Q0D ; 2.2 ; Crystal structure of Ni-containing superoxide dismutase with Ni-ligation corresponding to the oxidized state 1Q0G ; 1.6 ; Crystal structure of Ni-containing superoxide dismutase with Ni-ligation corresponding to the state after full x-ray-induced reduction 1Q0M ; 1.68 ; Crystal structure of Ni-containing superoxide dismutase with Ni-ligation corresponding to the state after full x-ray-induced reduction 1Q0F ; 2.2 ; Crystal structure of Ni-containing superoxide dismutase with Ni-ligation corresponding to the state after partial x-ray-induced reduction 1Q0K ; 2.1 ; Crystal structure of Ni-containing superoxide dismutase with Ni-ligation corresponding to the thiosulfate-reduced state 4GSM ; 1.7 ; Crystal Structure of Ni2+2-Human Arginase I 6P2L ; 1.08 ; Crystal structure of Niastella koreensis GH74 (NkGH74) enzyme 3T66 ; 2.8 ; Crystal structure of Nickel ABC transporter from Bacillus halodurans 1FN3 ; 2.48 ; CRYSTAL STRUCTURE OF NICKEL RECONSTITUTED HEMOGLOBIN-A CASE FOR PERMANENT, T-STATE HEMOGLOBIN 1P25 ; 2.9 ; Crystal structure of nickel(II)-d(GGCGCC)2 1ZIU ; 2.0 ; Crystal Structure of nickel-bound engineered Maltose Binding Protein 4NUK ; 2.4 ; Crystal structure of nickel-bound Na-ASP-2 1G3V ; 3.1 ; CRYSTAL STRUCTURE OF NICKEL-D[CGTGTACACG]2 1IQY ; 1.8 ; CRYSTAL STRUCTURE OF NICKEL-SUBSTITUTED AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS 1IOO ; 1.55 ; CRYSTAL STRUCTURE OF NICOTIANA ALATA GEMETOPHYTIC SELF-INCOMPATIBILITY ASSOCIATED SF11-RNASE 2XR7 ; 3.1 ; Crystal Structure of Nicotiana tabacum malonyltransferase (NtMat1) complexed with malonyl-coa 5ZN8 ; 2.0 ; Crystal structure of nicotinamidase PncA from Bacillus subtilis 6A8L ; 2.0 ; Crystal structure of nicotinamidase/ pyrazinamidase PncA from Bacillus subtilis 5KIT ; 1.6 ; Crystal Structure of Nicotinamide Phosphoribosyltransferase (Nampt) in Complex with Inhibitors 37 3HRD ; 2.2 ; Crystal structure of nicotinate dehydrogenase 1D0S ; 1.9 ; CRYSTAL STRUCTURE OF NICOTINATE MONONUCLEOTIDE : 5,6-DIMETHYLBENZIMIDAZOLE PHOSPHORIBOSYLTRANSFERASE (COBT) FROM SALMONELLA TYPHIMURIUM COMPLEXED WITH 5, 6-DIMETHYLBENZIMIDAZOLE 2QTM ; 2.4 ; Crystal Structure of Nicotinate Mononucleotide Adenylyltransferase 2QTN ; 2.4 ; Crystal Structure of Nicotinate Mononucleotide Adenylyltransferase 2QTR ; 1.7 ; Crystal Structure of Nicotinate Mononucleotide Adenylyltransferase 4RPI ; 2.417 ; Crystal Structure of Nicotinate Mononucleotide Adenylyltransferase from Mycobacterium tuberculosis 6B5F ; 1.95 ; Crystal structure of nicotinate mononucleotide-5,6-dimethylbenzimidazole phosphoribosyltransferase CobT from Yersinia enterocolitica 1D0V ; 1.9 ; CRYSTAL STRUCTURE OF NICOTINATE MONONUCLEOTIDE:5,6-DIMETHYLBENZIMIDAZOLE PHOSPHORIBOSYLTRANSFERASE (COBT) FROM SALMONELLA TYPHIMURIUM COMPLEXED WITH ITS REACTION PRODUCTS DETERMINED TO 1.9 A RESOLUTION 4HL7 ; 1.8 ; Crystal structure of nicotinate phosphoribosyltransferase (target NYSGR-026035) from Vibrio cholerae 2IM5 ; 2.2 ; Crystal structure of Nicotinate phosphoribosyltransferase from Porphyromonas Gingivalis 3GNN ; 2.25 ; Crystal structure of nicotinate-nucleotide pyrophosphorylase from Burkholderi pseudomallei 3L0G ; 2.05 ; Crystal structure of Nicotinate-nucleotide pyrophosphorylase from Ehrlichia chaffeensis at 2.05A resolution 2I14 ; 2.9 ; Crystal structure of nicotinate-nucleotide pyrophosphorylase from Pyrococcus furiosus 5TTJ ; 2.2 ; Crystal Structure of Nicotine Oxidoreductase from Pseudomonas putida 3DV2 ; 2.3 ; Crystal Structure of nicotinic acid mononucleotide adenylyltransferase from Bacillus anthracis 1YUL ; 2.0 ; Crystal Structure of Nicotinic Acid Mononucleotide Adenylyltransferase from Pseudomonas aeruginosa 1YUM ; 1.7 ; Crystal Structure of Nicotinic Acid Mononucleotide Adenylyltransferase from Pseudomonas aeruginosa 1YUN ; 2.0 ; Crystal Structure of Nicotinic Acid Mononucleotide Adenylyltransferase from Pseudomonas aeruginosa 2H29 ; 2.0 ; Crystal structure of Nicotinic acid mononucleotide Adenylyltransferase from Staphylococcus aureus: product bound form 1 2H2A ; 2.1 ; Crystal structure of Nicotinic acid mononucleotide adenylyltransferase from Staphylococcus aureus: product bound form 2 6KH2 ; 3.04 ; Crystal structure of Nicotinic acid mononucleotide adenylyltransferase mutant P22K/Y84V/Y118D/C132L/W176Y from Escherichia coli 6KG3 ; 3.08 ; Crystal structure of Nicotinic acid mononucleotide adenylyltransferase mutant P22K/Y84V/Y118D/C132Q/W176F from Escherichia coli 1WX1 ; 1.97 ; Crystal structure of nictinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase from Thermus thermophilus HB8 1NPE ; 2.3 ; Crystal structure of Nidogen/Laminin Complex 3RXY ; 2.0 ; Crystal structure of NIF3 superfamily protein from Sphaerobacter thermophilus 5M41 ; 2.1 ; Crystal structure of nigritoxine 3U7W ; 2.6 ; Crystal structure of NIH45-46 Fab 5IGX ; 3.39 ; Crystal structure of NIH45-46 Fab germline precursor in complex with 426c.TM1deltaV1-3 gp120 4IDT ; 2.4 ; Crystal Structure of NIK with 11-bromo-5,6,7,8-tetrahydropyrimido[4',5':3,4]cyclohepta[1,2-b]indol-2-amine (T28) 4IDV ; 2.9 ; Crystal Structure of NIK with compound 4-{3-[2-amino-5-(2-methoxyethoxy)pyrimidin-4-yl]-1H-indol-5-yl}-2-methylbut-3-yn-2-ol (13V) 4OES ; 1.951 ; Crystal structure of NikA from Brucella suis in complex with Fe(III)-EDTA 4OER ; 1.85 ; Crystal structure of NikA from Brucella suis, unliganded form 4OFJ ; 1.7 ; Crystal structure of NikA from Staphylococcus aureus in complex with Ni(L-His)2 4XKP ; 1.9 ; Crystal structure of NikA from Staphylococcus aureus in complex with Ni(L-His)2 (co-crystallization with Ni(II) and BHI medium supernatant) 4XKQ ; 1.9 ; Crystal structure of NikA from Staphylococcus aureus in complex with Ni(L-His)2 (co-crystallization with Ni(II) and CD medium supernatant) 4XKN ; 1.85 ; Crystal structure of NikA from Staphylococcus aureus in complex with Ni(L-His)2 (co-crystallization with Ni(II) and L-Histidine) 4XKR ; 1.75 ; Crystal structure of NikA from Staphylococcus aureus in complex with Ni-(L-His)(2-methyl-thiazolidine dicarboxylate) (co-crystallization with Ni(II) and CDdeltaHis medium supernatant) 8SPM ; 2.15 ; Crystal structure of NikA in complex Ni-AMA 5ON4 ; 2.3 ; Crystal structure of NikA in complex with Fe-L1 (N-(2-hydroxybenzyl)-N'-(2-thiomethylbenzyl)-N,N'-ethylenediamine diacetic acid) 5ON5 ; 1.7 ; Crystal structure of NikA in complex with Fe-L2 (Fe-L2 (N-(2-hydroxy-3-methoxybenzyl)-N'-(2-thiomethylbenzyl)- N,N'-ethylenediamine diacetic acid) after dioxygen oxidation 5ON0 ; 1.9 ; Crystal structure of NikA in complex with Fe-L2 (N-(2-hydroxy-3methoxybenzyl)-N-N'-ethylenediaminediacetic acid) 5ON1 ; 1.7 ; Crystal structure of NikA in complex with hydroxylated Fe-L1 (N-(2-hydroxybenzyl)-N'-(2-thiomethylbenzyl)-N,N'-ethylenediamine diacetic acid) 5ON9 ; 1.7 ; Crystal structure of NikA in complex with reduced Fe-L1 (N-(2-hydroxybenzyl)-N'-(2-thiomethylbenzyl)-N,N'-ethylenediamine diacetic acid) 5ON8 ; 1.6 ; Crystal structure of NikA in complex with reduced Fe-L2 (N-(2-hydroxy-3-methoxybenzyl)-N'-(2-thiomethylbenzyl)- N,N'-ethylenediamine diacetic acid) 3LGH ; 2.37 ; Crystal structure of NikR from Helicobacter pylori with variable Ni site coordination 4OEV ; 1.9 ; Crystal structure of NikZ from Campylobacter jejuni in complex with Ni(II) ion 4OEU ; 2.2 ; Crystal structure of NikZ from Campylobacter jejuni in complex with Ni(L-His) 4OET ; 2.4 ; Crystal structure of NikZ from Campylobacter jejuni, unliganded form 1W3O ; 1.6 ; Crystal structure of NimA from D. radiodurans 6VY5 ; 3.4 ; Crystal structure of Nipah receptor binding protein head domain in complex with human neutralizing antibody HENV-26 1WP7 ; 2.2 ; crystal structure of Nipah Virus fusion core 5EVM ; 3.367 ; Crystal Structure of Nipah Virus Fusion Glycoprotein in the Prefusion State 7SKT ; 2.048 ; Crystal structure of Nipah virus matrix protein 3G50 ; 1.9 ; Crystal Structure of NiSOD D3A mutant at 1.9 A 4NCQ ; 2.08 ; Crystal structure of NiSOD H1A mutant 3G4X ; 2.01 ; Crystal Structure of NiSOD Y9F mutant 3G4Z ; 1.87 ; Crystal Structure of NiSOD Y9F mutant at 1.9 A 3WUY ; 3.1 ; Crystal structure of Nit6803 1Q16 ; 1.9 ; Crystal structure of Nitrate Reductase A, NarGHI, from Escherichia coli 2BII ; 1.7 ; crystal structure of nitrate-reducing fragment of assimilatory nitrate reductase from Pichia angusta 4JR9 ; 2.6 ; Crystal structure of nitrate/nitrite exchanger NarK 4JRE ; 2.8 ; Crystal structure of nitrate/nitrite exchanger NarK with nitrite bound 5OCB ; 1.78 ; Crystal structure of nitric oxide bound D97N mutant of three-domain heme-Cu nitrite reductase from Ralstonia pickettii 5OCF ; 1.8 ; Crystal structure of nitric oxide bound to three-domain heme-Cu nitrite reductase from Ralstonia pickettii 3AYF ; 2.5 ; Crystal structure of nitric oxide reductase 3AYG ; 2.7 ; Crystal structure of nitric oxide reductase complex with HQNO 3O0R ; 2.7 ; Crystal structure of nitric oxide reductase from Pseudomonas aeruginosa in complex with antibody fragment 2FLQ ; 3.2 ; Crystal Structure of Nitric Oxide Synthase from Geobacillus Stearothermophilus (ATCC 12980) complexed with L-arginine 1ROM ; 2.0 ; CRYSTAL STRUCTURE OF NITRIC REDUCTASE FROM DENITRIFYING FUNGUS FUSARIUM OXYSPORUM 2ROM ; 2.0 ; CRYSTAL STRUCTURE OF NITRIC REDUCTASE FROM DENITRIFYING FUNGUS FUSARIUM OXYSPORUM COMPLEX WITH CARBON MONOXIDE 3A8O ; 1.47 ; Crystal structure of Nitrile Hydratase complexed with Trimethylacetamide 1V29 ; 2.6 ; Crystal structure of Nitrile hydratase from a thermophile Bacillus smithii 4OB3 ; 1.92 ; Crystal Structure of Nitrile Hydratase from Pseudonocardia thermophila : A Reference Structure to Boronic Acid Inhibition of Nitrile Hydratase 4OB1 ; 1.631 ; Crystal Structure of Nitrile Hydratase from Pseudonocardia thermophila bound to Butaneboronic Acid via Co-crystallization 4OB2 ; 1.52 ; Crystal Structure of Nitrile Hydratase from Pseudonocardia thermophila bound to Butaneboronic Acid via Crystal Soaking 4OB0 ; 1.2 ; Crystal Structure of Nitrile Hydratase from Pseudonocardia thermophila bound to Phenyl Boronic Acid 3X28 ; 1.65 ; Crystal structure of Nitrile Hydratase mutant bR56K 3WVE ; 1.57 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, before photo-activation 3X24 ; 1.24 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, photo-activated for 120 min 3X20 ; 1.18 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, photo-activated for 25 min 3X26 ; 1.34 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, photo-activated for 5 min 3WVD ; 1.18 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, photo-activated for 50 min 3X25 ; 1.2 ; Crystal structure of Nitrile Hydratase mutant bR56K complexed with Trimethylacetonitrile, photo-activated for 700 min 3A8H ; 1.66 ; Crystal structure of Nitrile Hydratase mutant S113A complexed with Trimethylacetamide 3A8G ; 1.11 ; Crystal structure of Nitrile Hydratase mutant S113A complexed with Trimethylacetonitrile 3A8M ; 1.32 ; Crystal structure of Nitrile Hydratase mutant Y72F complexed with Trimethylacetonitrile 3NFW ; 1.6 ; Crystal structure of nitrilotriacetate monooxygenase component B (A0R521 homolog) from Mycobacterium thermoresistibile 3BPK ; 1.56 ; Crystal structure of nitrilotriacetate monooxygenase component B from Bacillus cereus 6TFD ; 2.25 ; Crystal structure of nitrite and NO bound three-domain copper-containing nitrite reductase from Hyphomicrobium denitrificans strain 1NES1 5OBO ; 1.89 ; Crystal structure of nitrite bound D97N mutant of three-domain heme-Cu nitrite reductase from Ralstonia pickettii 6QPT ; 1.9 ; Crystal structure of nitrite bound synthetic core domain of nitrite reductase from Ralstonia pickettii (residues 1-331) 6QPX ; 1.7 ; Crystal structure of nitrite bound Y323A mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 6QQ0 ; 1.4 ; Crystal structure of nitrite bound Y323E mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 6QQ2 ; 2.6 ; Crystal structure of nitrite bound Y323F mutant of haem-Cu containing nitrite reductase from Ralstonia pickettii 1MZY ; 1.46 ; Crystal Structure of Nitrite Reductase 1ET5 ; 1.9 ; CRYSTAL STRUCTURE OF NITRITE REDUCTASE ASP98ASN MUTANT FROM ALCALIGENES FAECALIS S-6 2DV6 ; 2.2 ; Crystal structure of nitrite reductase from Hyphomicrobium denitrificans 2ZOO ; 1.95 ; Crystal structure of nitrite reductase from Pseudoalteromonas haloplanktis TAC125 1ET8 ; 1.8 ; CRYSTAL STRUCTURE OF NITRITE REDUCTASE HIS255ASN MUTANT FROM ALCALIGENES FAECALIS 1ET7 ; 1.7 ; CRYSTAL STRUCTURE OF NITRITE REDUCTASE HIS255ASP MUTANT FROM ALCALIGENES FAECALIS S-6 1L9O ; 1.7 ; CRYSTAL STRUCTURE OF NITRITE SOAKED I257A VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIS 1L9P ; 1.75 ; CRYSTAL STRUCTURE OF NITRITE SOAKED I257G VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIES S-6 1J9Q ; 1.65 ; Crystal structure of nitrite soaked oxidized D98N AFNIR 1J9S ; 1.9 ; Crystal structure of nitrite soaked oxidized H255N AFNIR 1J9R ; 2.0 ; Crystal structure of nitrite soaked reduced D98N AFNIR 1J9T ; 1.95 ; Crystal structure of nitrite soaked reduced H255N AFNIR 4QIS ; 1.906 ; Crystal structure of Nitroalkane Oxidase from Pseudomonas aeruginosa 4QIT ; 1.4 ; Crystal structure of Nitroalkane Oxidase from Pseudomonas aeruginosa in mutant complex form 4QIU ; 1.401 ; Crystal structure of Nitroalkane Oxidase from Pseudomonas aeruginosa in Mutant complex form 2C12 ; 2.07 ; Crystal Structure of Nitroalkane Oxidase in Complex with Spermine, a Competitive Inhibitor 2A0J ; 2.5 ; Crystal Structure of Nitrogen Regulatory Protein IIA-Ntr from Neisseria meningitidis 7JMB ; 3.0 ; Crystal structure of Nitrogenase iron-molybdenum cofactor biosynthesis enzyme NifB from Methanothermobacter thermautotrophicus with three Fe4S4 clusters 3ENU ; 1.86 ; Crystal structure of Nitrollin, a betagamma-crystallin from Nitrosospira multiformis 3ENT ; 2.14 ; Crystal structure of Nitrollin, a betagamma-crystallin from Nitrosospira multiformis-in alternate space group (P65) 5LSM ; 2.5 ; Crystal structure of nitronate monooxygenase (SO_0471) from Shewanella oneidensis MR-1 6BKA ; 1.65 ; Crystal Structure of Nitronate Monooxygenase from Cyberlindnera saturnus 4Q4K ; 1.44 ; Crystal structure of nitronate monooxygenase from Pseudomonas aeruginosa PAO1 2NP1 ; 2.0 ; CRYSTAL STRUCTURE OF NITROPHORIN 1 FROM RHODNIUS PROLIXUS 1EUO ; 2.0 ; Crystal structure of nitrophorin 2 (prolixin-S) 2A3F ; 1.4 ; Crystal structure of nitrophorin 2 aqua complex 2ACP ; 1.4 ; Crystal structure of nitrophorin 2 aqua complex 2AH7 ; 1.7 ; Crystal structure of nitrophorin 2 aqua complex 1PEE ; 1.5 ; Crystal Structure of Nitrophorin 2 complex with imidazole 1T68 ; 1.45 ; Crystal structure of nitrophorin 2 complex with NO 2GTF ; 1.4 ; Crystal structure of nitrophorin 2 complex with pyrimidine 2HYS ; 1.2 ; Crystal structure of nitrophorin 2 complexed with cyanide 2AL0 ; 1.6 ; Crystal structure of nitrophorin 2 ferrous aqua complex 1PM1 ; 1.1 ; Crystal structure of nitrophorin 2 L122V/L132V mutant complex with imidazole 1ML7 ; 1.25 ; Crystal structure of nitrophorin 4 complexed with 4-iodopyrazole 1EQD ; 1.6 ; CRYSTAL STRUCTURE OF NITROPHORIN 4 COMPLEXED WITH CN 1ERX ; 1.4 ; CRYSTAL STRUCTURE OF NITROPHORIN 4 COMPLEXED WITH NO 5HWZ ; 1.45 ; Crystal structure of nitrophorin 4 D30N mutant with nitrite 1NP4 ; 1.5 ; CRYSTAL STRUCTURE OF NITROPHORIN 4 FROM RHODNIUS PROLIXUS 4HPB ; 1.6 ; Crystal structure of Nitrophorin 4 from Rhodnius prolixus Complexed with Beta-Mercaptoethanol at pH 7.4 4HPC ; 1.4 ; Crystal structure of Nitrophorin 4 from Rhodnius prolixus Complexed with Cysteine at pH 7.4 1IKE ; 1.5 ; Crystal Structure of Nitrophorin 4 from Rhodnius Prolixus Complexed with Histamine at 1.5 A Resolution 4HPD ; 1.3 ; Crystal structure of Nitrophorin 4 from Rhodnius prolixus Complexed with homocysteine at pH 7.4 1KOI ; 1.08 ; CRYSTAL STRUCTURE OF NITROPHORIN 4 FROM RHODNIUS PROLIXUS COMPLEXED WITH NITRIC OXIDE AT 1.08 A RESOLUTION 3MVF ; 1.4 ; Crystal Structure of Nitrophorin 4 from Rhodnius prolixus Complexed with Nitrite at pH 7.4 4HPA ; 1.5 ; Crystal structure of Nitrophorin 4 from Rhodnius prolixus Complexed with sulfide ion at pH 7.4 4GNW ; 1.15 ; Crystal structure of nitrophorin 4 triple mutant complex with ammonia 4GRJ ; 1.15 ; Crystal structure of nitrophorin 4 triple mutant complex with NO 1U0X ; 1.45 ; Crystal structure of nitrophorin 4 under pressure of xenon (200 psi) 5M6J ; 1.7 ; Crystal structure of nitrophorin 7 E27V mutant from Rhodnius prolixus 5M6K ; 1.6 ; Crystal structure of nitrophorin 7 E27V mutant from Rhodnius prolixus with imidazole 4XMC ; 1.421 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 5.8 4XMD ; 1.6 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 7.8 4XMH ; 1.29 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 7.8 complexed with Gly-Gly-Gly 4XMF ; 1.6 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 7.8 complexed with histamine 4XMG ; 1.8 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 7.8 complexed with imidazole 4XME ; 1.29 ; Crystal structure of nitrophorin 7 from Rhodnius prolixus at pH 7.8 complexed with NO 3G14 ; 1.75 ; Crystal structure of nitroreductase family protein (YP_877874.1) from Clostridium novyi NT at 1.75 A resolution 8Q5G ; 2.0 ; Crystal structure of nitroreductase from Bacillus tequilensis with covalent FMN 3EK3 ; 1.7 ; Crystal structure of Nitroreductase with Bound FMN (YP_211706.1) from Bacteroides fragilis NCTC 9343 at 1.70 A resolution 7AAS ; 1.8 ; Crystal structure of nitrosoglutathione reductase (GSNOR) from Chlamydomonas reinhardtii 7AAU ; 2.301 ; Crystal structure of nitrosoglutathione reductase from Chlamydomonas reinhardtii in complex with NAD+ 3MXL ; 3.15 ; Crystal structure of nitrososynthase from Micromonospora carbonacea var. africana 6VCH ; 2.35 ; Crystal structure of Nitrosotalea devanaterra carotenoid cleavage dioxygenase in complex with 3-hydroxy-beta-apo-14'-carotenal 6VCG ; 2.3 ; Crystal structure of Nitrosotalea devanaterra carotenoid cleavage dioxygenase, cobalt form 6VCF ; 2.687 ; Crystal structure of Nitrosotalea devanaterra carotenoid cleavage dioxygenase, iron form 4G3R ; 2.2 ; Crystal Structure of Nitrosyl Cytochrome P450cam 4FYZ ; 2.32 ; Crystal Structure of Nitrosyl Cytochrome P450cin 1FWX ; 1.6 ; CRYSTAL STRUCTURE OF NITROUS OXIDE REDUCTASE FROM P. DENITRIFICANS 1QNI ; 2.4 ; Crystal Structure of Nitrous Oxide Reductase from Pseudomonas nautica, at 2.4A Resolution 5GGQ ; 1.9 ; Crystal structure of Nivolumab Fab fragment 4WAA ; 2.35 ; Crystal structure of Nix LIR-fused human LC3B_2-119 1P4L ; 2.9 ; Crystal structure of NK receptor Ly49C mutant with its MHC class I ligand H-2Kb 3SP8 ; 1.86 ; Crystal structure of NK2 in complex with fractionated Heparin DP10 4S0U ; 2.35 ; Crystal structure of NKG2D in complex with ULBP6 3PV6 ; 2.3 ; Crystal structure of NKp30 bound to its ligand B7-H6 3PV7 ; 2.0 ; Crystal structure of NKp30 ligand B7-H6 4IOP ; 3.2 ; Crystal structure of NKp65 bound to its ligand KACL 5FLV ; 3.005 ; Crystal structure of NKX2-5 and TBX5 bound to the Nppa promoter region 3KBH ; 3.31 ; Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor 8ER5 ; 1.92 ; Crystal Structure of NlpC/P60 domain from Clostridium innocuum NlpC/P60 domain-containing protein CI_01448. 6B8C ; 2.403 ; Crystal structure of NlpC/p60 domain of peptidoglycan hydrolase SagA 6QBD ; 1.95 ; Crystal structure of NLPPya P41A, D44N, N48E mutant 4KXF ; 3.2 ; Crystal structure of NLRC4 reveals its autoinhibition mechanism 8RI2 ; 2.8 ; Crystal structure of NLRP3 in complex with inhibitor NP3-562 7ALV ; 2.835 ; Crystal Structure of NLRP3 NACHT domain in complex with a potent inhibitor 3SLU ; 2.41 ; Crystal structure of NMB0315 3KJJ ; 1.9 ; Crystal structure of NMB1025, a member of YjgF protein family, from Neisseria meningitidis (hexagonal crystal form) 3KJK ; 2.29 ; Crystal structure of NMB1025, a member of YjgF protein family, from Neisseria meningitidis (monoclinic crystal form) 3MW6 ; 2.209 ; Crystal structure of NMB1681 from Neisseria meningitidis MC58, a FinO-like RNA chaperone 6JDQ ; 2.95 ; Crystal structure of Nme1Cas9 in complex with sgRNA 6JDV ; 3.1 ; Crystal structure of Nme1Cas9 in complex with sgRNA and target DNA (ATATGATT PAM) in catalytic state 6KC7 ; 3.3 ; Crystal structure of Nme1Cas9 in complex with sgRNA and target DNA (ATATGATT PAM) in seed-base paring state 6JE9 ; 3.46 ; Crystal structure of Nme1Cas9-sgRNA dimer mediated by double protein inhibitor AcrIIC3 monomers 6JE4 ; 3.069 ; Crystal structure of Nme1Cas9-sgRNA-dsDNA dimer mediated by double protein inhibitor AcrIIC3 monomers 6JFU ; 3.2 ; Crystal structure of Nme2Cas9 in complex with sgRNA and target DNA (AGGCCC PAM) 6JE3 ; 2.931 ; Crystal structure of Nme2Cas9 in complex with sgRNA and target DNA (AGGCCC PAM) with 5 nt overhang 5VGB ; 1.497 ; Crystal structure of NmeCas9 HNH domain bound to anti-CRISPR AcrIIC1 1KQO ; 2.5 ; Crystal structure of NMN/NaMN adenylyltransferase complexed with deamido-NAD 1KQN ; 2.2 ; Crystal structure of NMN/NaMN adenylyltransferase complexed with NAD 1K6J ; 1.8 ; Crystal structure of Nmra, a negative transcriptional regulator (Monoclinic form) 1K6I ; 1.8 ; Crystal structure of Nmra, a negative transcriptional regulator (Trigonal form) 1K6X ; 1.5 ; Crystal structure of Nmra, a negative transcriptional regulator in complex with NAD at 1.5 A resolution (Trigonal form) 1TI7 ; 1.7 ; CRYSTAL STRUCTURE OF NMRA, A NEGATIVE TRANSCRIPTIONAL REGULATOR, IN COMPLEX WITH NADP AT 1.7A RESOLUTION 2WMD ; 2.0 ; Crystal structure of NmrA-like family domain containing protein 1 in complex with NADP and 2-(4-chloro-phenylamino)-nicotinic acid 2WM3 ; 1.85 ; Crystal structure of NmrA-like family domain containing protein 1 in complex with niflumic acid 3LMF ; 2.3 ; Crystal Structure of Nmul_A1745 protein from Nitrosospira multiformis, Northeast Structural Genomics Consortium Target NmR72 3WRV ; 2.75 ; Crystal structure of NN domain of resistance protein 1FKO ; 2.9 ; CRYSTAL STRUCTURE OF NNRTI RESISTANT K103N MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH DMP-266(EFAVIRENZ) 1FKP ; 2.9 ; CRYSTAL STRUCTURE OF NNRTI RESISTANT K103N MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH NEVIRAPINE 1F24 ; 1.4 ; CRYSTAL STRUCTURE OF NO COMPLEX OF THR243ALA MUTANTS OF CYTOCHROME P450NOR 1F25 ; 1.4 ; CRYSTAL STRUCTURE OF NO COMPLEX OF THR243ASN MUTANTS OF CYTOCHROME P450NOR 1F26 ; 1.4 ; CRYSTAL STRUCTURE OF NO COMPLEX OF THR243VAL MUTANTS OF CYTOCHROME P450NOR 2OUA ; 1.85 ; Crystal Structure of Nocardiopsis Protease (NAPase) 7AU7 ; 2.547 ; Crystal structure of Nod Factor Perception ectodomain 3SIW ; 1.98 ; Crystal structure of NodZ alpha-1,6-fucosyltransferase co-crystallized with GDP 3SIX ; 2.35 ; Crystal structure of NodZ alpha-1,6-fucosyltransferase soaked with GDP-fucose 1P8T ; 3.2 ; Crystal structure of Nogo-66 Receptor 4P8S ; 1.8 ; Crystal structure of Nogo-receptor-2 4OMZ ; 2.64 ; Crystal Structure of NolR from Sinorhizobium fredii 4ON0 ; 3.0 ; Crystal Structure of NolR from Sinorhizobium fredii in complex with oligo AA DNA 7X20 ; 3.3 ; Crystal structure of non gastric H,K-ATPase alpha2 in (K+)E2-AlF state 7JUL ; 2.53 ; Crystal structure of non phosphorylated PTEN (n-crPTEN-13sp-T1, SDTTDSDPENEG) 4C0N ; 1.77 ; Crystal structure of non symbiotic plant hemoglobin AHb3 (GLB3) from Arabidopsis thaliana 1EZ4 ; 2.3 ; CRYSTAL STRUCTURE OF NON-ALLOSTERIC L-LACTATE DEHYDROGENASE FROM LACTOBACILLUS PENTOSUS AT 2.3 ANGSTROM RESOLUTION 5MVG ; 2.2 ; Crystal structure of non-amyloidogenic light chain dimer M7 6AOB ; 1.7 ; Crystal structure of non-canonical dimeric guanylyl cyclase domain of RhoGC fusion protein from the aquatic fungus Blastocladiella emersonii 5M6I ; 2.2 ; Crystal structure of non-cardiotoxic Bence-Jones light chain dimer M8 4I6X ; 1.5 ; Crystal Structure of Non-catalyic Domain of Protein Disulfide Isomerase-related (PDIr) Protein 4KY4 ; 2.79 ; Crystal structure of non-classical TS inhibitor 2 in complex with Toxoplasma gondii TS-DHFR 4KYA ; 3.263 ; Crystal structure of non-classical TS inhibitor 3 in complex with Toxoplasma gondii TS-DHFR 4WJ4 ; 3.294 ; Crystal structure of non-discriminating aspartyl-tRNA synthetase from Pseudomonas aeruginosa complexed with tRNA(Asn) and aspartic acid 4NRV ; 2.601 ; Crystal Structure of non-edited human NEIL1 5EPA ; 2.24 ; Crystal structure of non-heme alpha ketoglutarate dependent carbocyclase SnoK from nogalamycin biosynthesis 4DGQ ; 1.85 ; Crystal structure of Non-heme chloroperoxidase from Burkholderia cenocepacia 4M23 ; 1.76 ; Crystal structure of non-heme iron oxygenase OrfP 4NE0 ; 2.17 ; Crystal structure of non-heme iron oxygenase OrfP D157A mutant in complex with (3S)-hydroxy-L-Arg 4M2I ; 2.53 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe 4M25 ; 1.84 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe and alpha-ketoglutaric acid 4M2C ; 2.35 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe and D-Arg 4M27 ; 2.35 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe and L-Arg 4M2F ; 1.92 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe and L-canavanine 4M2E ; 2.06 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe and L-homoarginine 4M2G ; 2.39 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe, succinate, and (3R,4R)-dihydroxy-L-Arg 4M26 ; 2.02 ; Crystal structure of non-heme iron oxygenase OrfP in complex with Fe, succinate, and (3S)-hydroxy-L-Arg 4YI8 ; 1.2 ; Crystal structure of non-myristoylated E153A recoverin at 1.2 A resolution with calcium ions bound to EF-hands 2 and 3 4YI9 ; 1.35 ; Crystal structure of non-myristoylated E153A recoverin at 1.35 A resolution with a sodium ion bound to EF-hand 2 and calcium ion bound to EF-hand 3 5I27 ; 2.05 ; Crystal structure of non-myristoylated MMTV matrix protein 4MLW ; 1.45 ; Crystal structure of non-myristoylated recoverin at 1.45 A resolution with calcium bound to EF-hand 3 4M2Q ; 1.9 ; Crystal structure of non-myristoylated recoverin with Cysteine-39 oxidized to sulfenic acid 8DFH ; 2.3 ; Crystal structure of non-neutralizing / interfering human monoclonal antibody 42C3 Fab in complex with MSP1-19 4H8W ; 1.85 ; Crystal structure of non-neutralizing and ADCC-potent antibody N5-i5 in complex with HIV-1 clade A/E gp120 and sCD4. 4Q0X ; 2.9 ; Crystal structure of non-neutralizing antibody in complex with Epitope II of HCV E2 6APB ; 3.0 ; Crystal Structure of Non-Neutralizing Infant Antibody ADI-14359 in Complex with Postfusion RSV F Glycoprotein 5CIN ; 1.7 ; Crystal Structure of non-neutralizing version of 4E10 (DeltaLoop) with epitope bound 5CIL ; 1.81 ; Crystal Structure of non-neutralizing version of 4E10 (WDWD) with epitope bound 4R4H ; 4.28 ; Crystal structure of non-neutralizing, A32-like antibody 2.2c in complex with HIV-1 Env gp120 4R4F ; 3.514 ; Crystal structure of non-neutralizing, A32-like antibody 2.2c in complex with HIV-1 YU2 gp120 4NO5 ; 2.101 ; Crystal structure of non-phosphorylated form of AMPD2 phosphopeptide bound to HLA-A2 4NNY ; 1.9 ; Crystal structure of non-phosphorylated form of PKD2 phosphopeptide bound to HLA-A2 6EWC ; 3.2 ; Crystal structure of non-phosphorylated form of RLS PHOSPHOPEPTIDE BOUND TO HLA-A2 in complex with LILRB1 4NO0 ; 2.7 ; Crystal structure of non-phosphorylated form of RQA_V phosphopeptide bound to HLA-A2 in complex with LILRB1 6EWO ; 2.3 ; Crystal structure of non-phosphorylated form of RTF PHOSPHOPEPTIDE BOUND TO HLA-A2 in complex with LILRB1 2B9F ; 1.8 ; Crystal structure of non-phosphorylated Fus3 5I4C ; 2.0 ; Crystal structure of non-phosphorylated receiver domain of the stress response regulator RcsB from Escherichia coli 2IVS ; 2.0 ; Crystal structure of non-phosphorylated RET tyrosine kinase domain 8U7X ; 2.06 ; Crystal structure of non-receptor protein tyrosine phosphatase SHP2 in complex with inhibitor compound 24 8U7W ; 2.05 ; Crystal structure of non-receptor protein tyrosine phosphatase SHP2 in complex with inhibitor compound 7 7F7A ; 2.7 ; Crystal structure of Non-specific class-C acid phosphatase from Sphingobium sp. RSMS bound to Adenine at pH 9 7F7C ; 2.2 ; Crystal structure of Non-specific class-C acid phosphatase from Sphingobium sp. RSMS bound to Adenosine at pH 5.5 7F7D ; 2.2 ; Crystal structure of Non-specific class-C acid phosphatase from Sphingobium sp. RSMS bound to Adenosine at pH 5.5 7F7B ; 2.34 ; Crystal structure of Non-specific class-C acid phosphatase from Sphingobium sp. RSMS bound to BIS-TRIS at pH 5.5 5TVI ; 1.87 ; Crystal structure of non-specific lipid transfer protein reveals non-canonical lipid binding: possible relevance in modulating allergenicity 1D8U ; 2.35 ; CRYSTAL STRUCTURE OF NON-SYMBIOTIC PLANT HEMOGLOBIN FROM RICE 2GNV ; 2.3 ; Crystal structure of non-symbiotic plant hemoglobin from rice, B10 mutant F40L 2GNW ; 2.4 ; Crystal structure of non-symbiotic plant hemoglobin from rice, B10 mutant F40W 3QQQ ; 1.84 ; Crystal structure of non-symbiotic plant hemoglobin from Trema tomentosa 6QBE ; 2.0 ; Crystal structure of non-toxic HaNLP3 protein 6GUT ; 1.63 ; CRYSTAL STRUCTURE OF NON-TYPEABLE HAEMOPHILUS INFLUENZAE PROTEIN E AND PILA EXPRESSED AS A SINGLE-CHAIN CHIMERIC PROTEIN 3AY4 ; 2.2 ; Crystal structure of nonfucosylated Fc complexed with bis-glycosylated soluble form of Fc gamma receptor IIIa 5BW7 ; 3.0 ; Crystal structure of nonfucosylated Fc Y296W mutant complexed with bis-glycosylated soluble form of Fc gamma receptor IIIa 7Z1G ; 2.85 ; Crystal structure of nonphosphorylated (Tyr216) GSK3b in complex with CX-4945 6NFY ; 2.17 ; Crystal structure of nonphosphorylated, HPK1 kinase domain in complex with sunitinib in the inactive state. 6LTA ; 2.45 ; Crystal Structure of Nonribosomal peptide synthetases (NRPS), FmoA3 (S1046A) 6LTC ; 3.3 ; Crystal Structure of Nonribosomal peptide synthetases (NRPS), FmoA3 (S1046A)-alpha-methyl-L-serine-AMP bound form 6LTD ; 4.1 ; Crystal Structure of Nonribosomal peptide synthetases (NRPS), FmoA3 (S1046A)-alpha-methyl-L-serine-AMP bound form 6LTB ; 3.1 ; Crystal Structure of Nonribosomal peptide synthetases (NRPS), FmoA3 (S1046A)-AMPPNP bound form 2WD0 ; 2.74 ; CRYSTAL STRUCTURE OF NONSYNDROMIC DEAFNESS (DFNB12) ASSOCIATED MUTANT D124G OF MOUSE CADHERIN-23 EC1-2 3VUO ; 3.9 ; Crystal structure of nontoxic nonhemagglutinin subcomponent (NTNHA) from clostridium botulinum serotype D strain 4947 8TV8 ; 2.25 ; Crystal structure of nontypeable Haemophilus influenzae SapA 6WPI ; 3.02 ; Crystal structure of Nop9 in complex with ITS1 RNA 8UKE ; 2.4 ; Crystal Structure of Norbelladine O-methyltransferase variant in complex with SAH 8HO2 ; 1.711 ; crystal structure of Norcoclaurine synthase from Chinese lotus (Nelumbo nucicera) 3DDC ; 1.8 ; Crystal Structure of NORE1A in Complex with RAS 1WQS ; 2.8 ; Crystal structure of Norovirus 3C-like protease 4RDJ ; 1.5 ; Crystal structure of Norovirus Boxer P domain 4RDK ; 1.629 ; Crystal structure of Norovirus Boxer P domain in complex with Lewis b tetrasaccharide 4RDL ; 1.449 ; Crystal structure of Norovirus Boxer P domain in complex with Lewis y tetrasaccharide 4X7F ; 1.7 ; Crystal structure of norovirus GII.10 P domain in complex with Nano-25 4X7E ; 2.11 ; Crystal structure of norovirus GII.10 P domain in complex with Nano-85 4RLZ ; 1.19 ; Crystal structure of Norovirus OIF P domain 4RM0 ; 1.999 ; Crystal structure of Norovirus OIF P domain in complex with Lewis a trisaccharide 5BQE ; 2.3 ; Crystal structure of Norrin in complex with the cysteine-rich domain of Frizzled 4 -Methylated form 5BQC ; 3.0 ; Crystal structure of Norrin in complex with the cysteine-rich domain of Frizzled 4 and sucrose octasulfate 4MY2 ; 2.4 ; Crystal Structure of Norrin in fusion with Maltose Binding Protein 5BPU ; 2.4 ; Crystal structure of Norrin, a Wnt signalling activator, Crystal Form I 5BQ8 ; 2.0 ; Crystal structure of Norrin, a Wnt signalling activator, Crystal Form II 5BQB ; 2.3 ; Crystal structure of Norrin, a Wnt signalling activator, Crystal Form III 1T5Y ; 2.5 ; Crystal Structure of Northeast Structural Genomics Consortium Target HR2118: A Human Homolog of Saccharomyces cerevisiae Nip7p 1XM3 ; 1.8 ; Crystal structure of Northeast Structural Genomics Target SR156 1SH2 ; 2.3 ; Crystal Structure of Norwalk Virus Polymerase (Metal-free, Centered Orthorhombic) 1SH3 ; 2.95 ; Crystal Structure of Norwalk Virus Polymerase (MgSO4 crystal form) 1SH0 ; 2.17 ; Crystal Structure of Norwalk Virus Polymerase (Triclinic) 2FYR ; 2.2 ; Crystal Structure of Norwalk Virus Protease grown in the presence of AEBSF 4ZA1 ; 2.5 ; Crystal Structure of NosA Involved in Nosiheptide Biosynthesis 5V7O ; 2.3 ; Crystal Structure of NosK from Streptomyces actuosus 2WC7 ; 2.37 ; Crystal structure of Nostoc Punctiforme Debranching Enzyme(NPDE)(Acarbose soaked) 2G18 ; 2.5 ; Crystal Structure of Nostoc sp. 7120 phycocyanobilin:ferredoxin oxidoreductase (PcyA) Apoprotein 4ZLP ; 2.479 ; Crystal Structure of Notch3 Negative Regulatory Region 5CZV ; 3.19 ; Crystal structure of Notch3 NRR in complex with 20350 Fab 5CZX ; 2.1 ; Crystal structure of Notch3 NRR in complex with 20358 Fab 5XQN ; 1.19 ; Crystal structure of Notched-fin eelpout type III antifreeze protein (NFE6, AFP), C2221 form. 5XQP ; 1.0 ; Crystal structure of Notched-fin eelpout type III antifreeze protein (NFE6, AFP), P212121 form 5XQU ; 1.0 ; Crystal structure of Notched-fin eelpout type III antifreeze protein A20I mutant (NFE6, AFP), P212121 form 5XQV ; 0.97 ; Crystal structure of Notched-fin eelpout type III antifreeze protein A20L mutant (NFE6, AFP), P21 form 5XR0 ; 0.98 ; Crystal structure of Notched-fin eelpout type III antifreeze protein A20T mutant (NFE6, AFP), P21 form 5XQR ; 1.3 ; Crystal structure of Notched-fin eelpout type III antifreeze protein A20V mutant (NFE6, AFP), C2221 form 4E4C ; 1.8 ; Crystal structure of Notexin at 1.8 A resolution 6VYA ; 3.0 ; Crystal structure of NotF in complex with brevianamide F and DMSPP 6VY9 ; 3.19 ; Crystal structure of NotF prenyltransferase 3C25 ; 2.5 ; Crystal Structure of NotI Restriction Endonuclease Bound to Cognate DNA 5X6L ; 1.862 ; Crystal structure of Notothenia coriiceps adenylate kinase variant 5XRU ; 1.9 ; Crystal structure of Notothenia coriiceps adenylate kinase variant 5YCB ; 2.272 ; Crystal structure of notothenia coriiceps adenylate kinase variant 5YCC ; 2.7 ; Crystal structure of Notothenia coriiceps adenylate kinase variant 7QRR ; 1.9 ; Crystal structure of Noumeavirus NMV_189 protein 5C82 ; 2.2 ; Crystal structure of Nourseothricin acetyltransferase 1DT4 ; 2.6 ; CRYSTAL STRUCTURE OF NOVA-1 KH3 K-HOMOLOGY RNA-BINDING DOMAIN 1DTJ ; 2.0 ; CRYSTAL STRUCTURE OF NOVA-2 KH3 K-HOMOLOGY RNA-BINDING DOMAIN 1EC6 ; 2.4 ; CRYSTAL STRUCTURE OF NOVA-2 KH3 K-HOMOLOGY RNA-BINDING DOMAIN BOUND TO 20-MER RNA HAIRPIN 2IA4 ; 1.5 ; Crystal structure of Novel amino acid binding protein from Shigella flexneri 3GUQ ; 2.47 ; Crystal structure of novel carcinogenic factor of H. pylori 5IR2 ; 2.079 ; Crystal structure of novel cellulases from microbes associated with the gut ecosystem 4HPP ; 2.5 ; Crystal structure of novel glutamine synthase homolog 2QHL ; 1.56 ; Crystal Structure of Novel Immune-Type Receptor 10 Extracellular Fragment from Ictalurus punctatus 2QJD ; 2.44 ; Crystal Structure of Novel Immune-Type Receptor 10 Extracellular Fragment Mutant N30D 3B5T ; 1.75 ; Crystal Structure of Novel Immune-Type Receptor 10 Se-Met Extracellular Fragment Mutant N30D 2QQQ ; 1.98 ; Crystal Structure of Novel Immune-Type Receptor 11 Extracellular Fragment from Ictalurus punctatus 3BDB ; 2.8 ; Crystal Structure of Novel Immune-Type Receptor 11 Extracellular Fragment from Ictalurus punctatus including Stalk Region 2QTE ; 1.9 ; Crystal Structure of Novel Immune-Type Receptor 11 Extracellular Fragment Mutant N30D 5GGZ ; 2.015 ; Crystal structure of novel inhibitor bound with Hsp90 1UZ3 ; 1.1 ; Crystal structure of novel protein EMSY 1UTU ; 2.0 ; Crystal structure of novel protein EMSY truncate 3FJV ; 1.9 ; Crystal structure of novel protein of unknown function (YP_111841.1) from BURKHOLDERIA PSEUDOMALLEI K96243 at 1.90 A resolution 6FF6 ; 2.5 ; Crystal structure of novel repeat protein BRIC1 6FES ; 3.0 ; Crystal structure of novel repeat protein BRIC2 fused to DARPin D12 3MEW ; 1.92 ; Crystal structure of Novel Tudor domain-containing protein SGF29 7V3C ; 1.9 ; Crystal structure of NP exonuclease C409A-PCMB complex 7V3B ; 1.8 ; Crystal structure of NP exonuclease C409A-PCMPS complex 7V39 ; 2.2 ; Crystal structure of NP exonuclease-PCMB complex 7V38 ; 2.403 ; Crystal structure of NP exonuclease-PCMPS complex 5SWZ ; 2.65 ; Crystal Structure of NP1-B17 TCR-H2Db-NP complex 5SWS ; 2.86 ; Crystal Structure of NP2-B17 TCR-H2Db-NP complex 3VHM ; 2.0 ; Crystal structure of NPC-biotin-avidin complex 8EUS ; 2.3 ; Crystal structure of NPC1 luminal domain C 7MK3 ; 3.06 ; Crystal structure of NPR1 4GPK ; 3.2 ; Crystal structure of NprR in complex with its cognate peptide NprX 4O1R ; 1.4 ; Crystal structure of NpuDnaB intein 4KL5 ; 1.72 ; Crystal structure of NpuDnaE intein 2E03 ; 2.13 ; Crystal structure of NQ67E mutant of yeast bleomycin hydrolase 2F1O ; 2.75 ; Crystal Structure of NQO1 with Dicoumarol 4U9O ; 1.6 ; Crystal structure of NqrA from Vibrio cholerae 4U9Q ; 2.1 ; Crystal structure of NqrA in spacegroup P21 4U9S ; 1.7 ; Crystal structure of NqrC from Vibrio cholerae 4U9U ; 1.55 ; Crystal structure of NqrF FAD-binding domain from Vibrio cholerae 4UAJ ; 2.7019 ; Crystal structure of NqrF in hexagonal space group 6ZIO ; 1.55 ; CRYSTAL STRUCTURE OF NRAS (C118S) IN COMPLEX WITH GDP 6ZIR ; 1.9 ; CRYSTAL STRUCTURE OF NRAS (C118S) IN COMPLEX WITH GDP AND COMPOUND 18 6ZIZ ; 1.785 ; CRYSTAL STRUCTURE OF NRAS Q61R IN COMPLEX WITH GTP AND COMPOUND 18 4IUH ; 2.1971 ; Crystal structure of NreA of Staphylococcus carnosus with bound iodide 4IUK ; 2.35 ; Crystal structure of NreA of Staphylococcus carnosus with bound nitrate 8K3D ; 2.3 ; Crystal structure of NRF1 DBD bound to DNA 8K4L ; 2.1 ; Crystal structure of NRF1 homodimer in complex with DNA 8BCX ; 1.941 ; Crystal structure of NrfA-1 from Geobacter metallireducens 5E1B ; 1.65 ; Crystal structure of NRMT1 in complex with SPKRIA peptide 8IVW ; 3.205 ; Crystal structure of NRP2 in complex with aNRP2-10 Fab fragment 8IVX ; 1.9 ; Crystal structure of NRP2 in complex with aNRP2-14 Fab fragment 1SP4 ; 2.2 ; Crystal structure of NS-134 in complex with bovine cathepsin B: a two headed epoxysuccinyl inhibitor extends along the whole active site cleft 7Y57 ; 2.183 ; Crystal structure of NS1 nuclease domain in P21 space group 7Y56 ; 1.752 ; Crystal structure of NS1 nuclease domain in P41212 space group 7RCH ; 3.1 ; Crystal structure of NS1-ED of Vietnam influenza A virus in complex with the p85-beta-iSH2 domain of human PI3K 4WF8 ; 1.7 ; Crystal structure of NS3/4A protease in complex with Asunaprevir 3SUD ; 1.96 ; Crystal structure of NS3/4A protease in complex with MK-5172 3SV6 ; 1.4 ; Crystal structure of NS3/4A protease in complex with Telaprevir 3SU3 ; 1.3 ; Crystal structure of NS3/4A protease in complex with vaniprevir 3SU2 ; 1.496 ; Crystal structure of NS3/4A protease variant A156T in complex with danoprevir 3SUG ; 1.8 ; Crystal structure of NS3/4A protease variant A156T in complex with MK-5172 3SV9 ; 1.6 ; Crystal structure of NS3/4A protease variant A156T in complex with Telaprevir 3SU6 ; 1.1 ; Crystal structure of NS3/4A protease variant A156T in complex with vaniprevir 3SU1 ; 1.399 ; Crystal structure of NS3/4A protease variant D168A in complex with danoprevir 3SUF ; 2.19 ; Crystal structure of NS3/4A protease variant D168A in complex with MK-5172 3SV8 ; 2.5 ; Crystal structure of NS3/4A protease variant D168A in complex with Telaprevir 3SU5 ; 1.55 ; Crystal structure of NS3/4A protease variant D168A in complex with vaniprevir 3SU0 ; 1.159 ; Crystal structure of NS3/4A protease variant R155K in complex with danoprevir 3SUE ; 2.2 ; Crystal structure of NS3/4A protease variant R155K in complex with MK-5172 3SV7 ; 1.55 ; Crystal structure of NS3/4A protease variant R155K in complex with Telaprevir 3SU4 ; 2.255 ; Crystal structure of NS3/4A protease variant R155K in complex with vaniprevir 7ENV ; 2.45 ; crystal structure of NS5 in complex with the N-terminal bromodomain of BRD2 (BRD2-BD1). 2FVC ; 2.0 ; Crystal structure of NS5B BK strain (delta 24) in complex with a 3-(1,1-Dioxo-2H-(1,2,4)-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinone 8FBH ; 2.32 ; Crystal structure of NSD1 Mutant-T1927A 8FBG ; 2.29 ; Crystal structure of NSD1 Mutant-Y1869C 4GND ; 2.27 ; Crystal Structure of NSD3 tandem PHD5-C5HCH domains 4GNF ; 1.55 ; Crystal Structure of NSD3 tandem PHD5-C5HCH domains complexed with H3 peptide 1-15 4GNE ; 1.47 ; Crystal Structure of NSD3 tandem PHD5-C5HCH domains complexed with H3 peptide 1-7 4GNG ; 1.73 ; Crystal Structure of NSD3 tandem PHD5-C5HCH domains complexed with H3K9me3 peptide 2H85 ; 2.6 ; Crystal Structure of Nsp 15 from SARS 7K3N ; 1.65 ; Crystal Structure of NSP1 from SARS-CoV-2 2FYG ; 1.8 ; Crystal structure of NSP10 from Sars coronavirus 3R24 ; 2.0 ; Crystal structure of nsp10/nsp16 complex of SARS coronavirus 6X4I ; 1.85 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with 3'-uridinemonophosphate 6WXC ; 1.85 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with potential repurposing drug Tipiracil 6X1B ; 1.97 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with the Product Nucleotide GpU. 7K1L ; 2.25 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with Uridine-2',3'-Vanadate 7K1O ; 2.4 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with Uridine-3',5'-Diphosphate 6WLC ; 1.82 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with Uridine-5'-Monophosphate 6VWW ; 2.2 ; Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2. 2RHB ; 2.8 ; Crystal structure of Nsp15-H234A mutant- Hexamer in asymmetric unit 6WVN ; 2.0 ; Crystal Structure of Nsp16-Nsp10 from SARS-CoV-2 in Complex with 7-methyl-GpppA and S-Adenosylmethionine. 6WQ3 ; 2.1 ; Crystal Structure of Nsp16-Nsp10 Heterodimer from SARS-CoV-2 in Complex with 7-methyl-GpppA and S-adenosyl-L-homocysteine. 7C2I ; 2.5 ; Crystal structure of nsp16-nsp10 heterodimer from SARS-CoV-2 in complex with SAM (with additional SAM during crystallization) 7C2J ; 2.799 ; Crystal structure of nsp16-nsp10 heterodimer from SARS-CoV-2 in complex with SAM (without additional SAM during crystallization) 6WRZ ; 2.25 ; Crystal Structure of Nsp16-Nsp10 Heterodimer from SARS-CoV-2 with 7-methyl-GpppA and S-adenosyl-L-homocysteine in the Active Site and Sulfates in the mRNA Binding Groove. 4ZTB ; 2.59 ; Crystal structure of nsP2 protease from Chikungunya virus in P212121 space group at 2.59 A (4molecules/ASU). 7F10 ; 1.65 ; Crystal structure of NsrQ M128I in complex with substrate analogue 3 7F11 ; 1.6 ; Crystal structure of NsrQ M128I in complex with substrate analogue 7 7F0Z ; 2.0 ; Crystal structure of NsrQ W31A 7YTA ; 2.31 ; crystal structure of NtAGDP3 AGD1-2 in complex with an H3K9me2 peptide 7ZIU ; 2.8 ; Crystal structure of Ntaya virus NS5 polymerase domain 2IF7 ; 3.0 ; Crystal Structure of NTB-A 3LA7 ; 1.9 ; Crystal structure of NtcA in apo-form 3LA3 ; 2.4 ; Crystal structure of NtcA in complex with 2,2-difluoropentanedioic acid 3LA2 ; 2.6 ; Crystal structure of NtcA in complex with 2-oxoglutarate 4K2B ; 2.31 ; Crystal structure of ntda from bacillus subtilis in complex with the internal aldimine 4K2M ; 1.71 ; Crystal structure of ntda from bacillus subtilis in complex with the plp external aldimine adduct with kanosamine-6-phosphate 4K2I ; 2.225 ; Crystal structure of ntda from bacillus subtilis with bound cofactor pmp 4ONQ ; 2.502 ; Crystal structure of ntDRM E283S/R309S/F310S/Y590S/D591S mutant 3EN8 ; 1.85 ; Crystal structure of NTF-2 like protein of unknown function (YP_553245.1) from BURKHOLDERIA XENOVORANS LB400 at 1.85 A resolution 1JB4 ; 2.23 ; CRYSTAL STRUCTURE OF NTF2 M102E MUTANT 1JB5 ; 2.3 ; CRYSTAL STRUCTURE OF NTF2 M118E MUTANT 1JB2 ; 2.0 ; CRYSTAL STRUCTURE OF NTF2 M84E MUTANT 3ER7 ; 1.5 ; Crystal structure of NTF2-like protein of unknown function (YP_001812677.1) from EXIGUOBACTERIUM SP. 255-15 at 1.50 A resolution 3LYG ; 1.61 ; Crystal structure of NTF2-like protein of unknown function (YP_270605.1) from Colwellia psychrerythraea 34H at 1.61 A resolution 3F40 ; 1.27 ; Crystal structure of NTF2-like protein of unknown function (YP_677363.1) from CYTOPHAGA HUTCHINSONII ATCC 33406 at 1.27 A resolution 3F14 ; 1.45 ; Crystal structure of NTF2-like protein of unknown function (YP_680363.1) from CYTOPHAGA HUTCHINSONII ATCC 33406 at 1.45 A resolution 3FSD ; 1.7 ; Crystal structure of NTF2-like protein of unknown function in nutrient uptake (YP_427473.1) from RHODOSPIRILLUM RUBRUM ATCC 11170 at 1.70 A resolution 3HZP ; 1.4 ; Crystal structure of NTF2-like protein of unknown function MN2A_0505 from Prochlorococcus marinus (YP_291699.1) from Prochlorococcus sp. NATL2A at 1.40 A resolution 3GRD ; 1.25 ; Crystal structure of NTF2-superfamily protein with unknown function (NP_977240.1) from BACILLUS CEREUS ATCC 10987 at 1.25 A resolution 7U1M ; 3.17 ; Crystal structure of NTMT1 in complex with compound YD206 5E2B ; 1.95 ; Crystal structure of NTMT1 in complex with N-terminally methylated PPKRIA peptide 5E2A ; 1.75 ; Crystal structure of NTMT1 in complex with N-terminally methylated SPKRIA peptide 5E1M ; 1.75 ; Crystal structure of NTMT1 in complex with PPKRIA peptide 5E1O ; 2.0 ; Crystal structure of NTMT1 in complex with RPKRIA peptide 7XWW ; 2.8 ; Crystal structure of NTR in complex with BN-XB 2Q5C ; 1.49 ; Crystal structure of NtrC family transcriptional regulator from Clostridium acetobutylicum 3FKQ ; 2.1 ; Crystal structure of NtrC-like two-domain protein (RER070207001320) from Eubacterium rectale at 2.10 A resolution 4FTH ; 3.004 ; Crystal Structure of NtrC4 DNA-binding domain bound to double-stranded DNA 6DLF ; 3.446 ; Crystal structure of NTRI homodimer 5M7P ; 2.36 ; Crystal structure of NtrX from Brucella abortus in complex with ADP processed with the CrystalDirect automated mounting and cryo-cooling technology 5M7N ; 2.9 ; Crystal structure of NtrX from Brucella abortus in complex with ATP processed with the CrystalDirect automated mounting and cryo-cooling technology 5M7O ; 2.2 ; Crystal structure of NtrX from Brucella abortus processed with the CrystalDirect automated mounting and cryo-cooling technology 4MZW ; 1.95 ; CRYSTAL STRUCTURE OF NU-CLASS GLUTATHIONE TRANSFERASE YGHU FROM Streptococcus sanguinis SK36, COMPLEX WITH GLUTATHIONE DISULFIDE, TARGET EFI-507286 1BYS ; 2.0 ; CRYSTAL STRUCTURE OF NUC COMPLEXED WITH TUNGSTATE 4QH0 ; 2.0 ; Crystal structure of NucA from Streptococcus agalactiae with magnesium ion bound 4QGO ; 1.5 ; Crystal structure of NucA from Streptococcus agalactiae with no metal bound 6AMX ; 2.05 ; Crystal Structure of Nucelotide Binding Domain of O-antigen polysaccharide ABC-transporter 1KKU ; 2.5 ; Crystal structure of nuclear human nicotinamide mononucleotide adenylyltransferase 5DIZ ; 3.2 ; Crystal Structure of nuclear proteinaceous RNase P 2 (PRORP2) from A. thaliana 4RAK ; 2.04 ; Crystal structure of nuclear receptor subfamily 1, group h, member 2 (lxrb) complexed with partial agonist 1OUN ; 2.3 ; CRYSTAL STRUCTURE OF NUCLEAR TRANSPORT FACTOR 2 (NTF2) 2A11 ; 2.1 ; Crystal Structure of Nuclease Domain of Ribonuclase III from Mycobacterium Tuberculosis 4IJS ; 3.2 ; Crystal structure of nucleocapsid protein encoded by the prototypic member of orthobunyavirus 7MO0 ; 2.45 ; Crystal Structure of Nucleoporin NUP50 Ran-Binding Domain in Complex with Ran-GPPNHP 7NQA ; 2.2 ; Crystal structure of Nucleoporin-98 nanobody MS98-6 complex solved at 2.2A resolution 5B7B ; 3.0 ; Crystal structure of Nucleoprotein-nucleozin complex 1F8X ; 2.5 ; CRYSTAL STRUCTURE OF NUCLEOSIDE 2-DEOXYRIBOSYLTRANSFERASE 2F62 ; 1.5 ; Crystal structure of Nucleoside 2-deoxyribosyltransferase from Trypanosoma brucei at 1.5 A resolution with (2-ETHYLPHENYL)METHANOL bound 2F64 ; 1.6 ; Crystal structure of Nucleoside 2-deoxyribosyltransferase from Trypanosoma brucei at 1.6 A resolution with 1-METHYLQUINOLIN-2(1H)-ONE bound 2F67 ; 1.6 ; Crystal structure of Nucleoside 2-deoxyribosyltransferase from Trypanosoma brucei at 1.6 A resolution with BENZO[CD]INDOL-2(1H)-ONE bound 2F2T ; 1.7 ; Crystal structure of Nucleoside 2-deoxyribosyltransferase from Trypanosoma brucei at 1.7 A resolution with 5-Aminoisoquinoline bound 2A0K ; 1.8 ; Crystal structure of Nucleoside 2-deoxyribosyltransferase from Trypanosoma brucei at 1.8 A resolution 1S57 ; 1.8 ; crystal structure of nucleoside diphosphate kinase 2 from Arabidopsis 4S0M ; 1.922 ; Crystal Structure of nucleoside diphosphate kinase at 1.92 A resolution from acinetobacter baumannii 4FKX ; 1.7 ; Crystal structure of nucleoside diphosphate kinase B from Trypanosoma brucei bound to CDP 4FKY ; 1.95 ; Crystal structure of nucleoside diphosphate kinase B from Trypanosoma brucei bound to GTP 4F36 ; 2.3 ; Crystal structure of Nucleoside diphosphate kinase B from Trypanosoma brucei, apo form 4F4A ; 2.1 ; Crystal structure of Nucleoside diphosphate kinase B from Trypanosoma brucei, UDP-bound form 3JS9 ; 2.5 ; Crystal structure of nucleoside diphosphate kinase family protein from Babesia bovis 1NB2 ; 2.2 ; Crystal Structure of Nucleoside Diphosphate Kinase from Bacillus Halodenitrificans 3MPD ; 2.08 ; Crystal structure of nucleoside diphosphate kinase from encephalitozoon cuniculi, cubic form, apo 3R9L ; 2.65 ; Crystal structure of nucleoside diphosphate kinase from Giardia lamblia featuring a disordered dinucleotide binding site 2ZUA ; 2.59 ; Crystal structure of nucleoside diphosphate kinase from Haloarcula quadrata 5V6D ; 1.85 ; Crystal structure of nucleoside diphosphate kinase from Neisseria gonorrhoeae in complex with citrate 6AES ; 3.55 ; Crystal structure of Nucleoside diphosphate kinase from Pseudomonas aeruginosa at 3.55 A resolution. 1PKU ; 2.5 ; Crystal Structure of Nucleoside Diphosphate Kinase from Rice 5IOL ; 1.741 ; Crystal structure of Nucleoside Diphosphate Kinase from Schistosoma mansoni 5KK8 ; 2.11 ; Crystal structure of Nucleoside Diphosphate Kinase from Schistosoma mansoni in complex with ADP 5IOM ; 1.9 ; Crystal Structure of Nucleoside Diphosphate Kinase from Schistosoma mansoni is space group P6322 1WKJ ; 2.0 ; Crystal Structure of Nucleoside Diphosphate Kinase from Thermus thermophilus HB8 1WKL ; 2.2 ; Crystal Structure of Nucleoside Diphosphate Kinase from Thermus thermophilus HB8 in Complex with ATP and ADP 1WKK ; 2.7 ; Crystal Structure of Nucleoside Diphosphate Kinase from Thermus thermophilus HB8 in Complex with GDP 2DY9 ; 2.01 ; Crystal structure of nucleoside diphosphate kinase in complex with ADP 2DXD ; 1.77 ; Crystal structure of nucleoside diphosphate kinase in complex with ATP analog 2DXE ; 1.7 ; Crystal structure of nucleoside diphosphate kinase in complex with GDP 2DXF ; 1.7 ; Crystal structure of nucleoside diphosphate kinase in complex with GTP analog 1EZR ; 2.5 ; CRYSTAL STRUCTURE OF NUCLEOSIDE HYDROLASE FROM LEISHMANIA MAJOR 3KD6 ; 1.88 ; Crystal Structure of Nucleoside Kinase from Chlorobium tepidum in Complex with AMP 7D8I ; 1.62 ; Crystal structure of nucleoside phosphatase Sa1684 complex with ATP analogue from staphylococus aureus 7DL9 ; 3.0 ; Crystal structure of nucleoside transporter NupG 7DLA ; 3.0 ; Crystal structure of nucleoside transporter NupG (D323A mutant) 3AGR ; 2.8 ; Crystal structure of nucleoside triphosphate hydrolases from Neospora caninum 7SYC ; 2.0 ; Crystal Structure of Nucleoside triphosphate pyrophosphohydrolase from Klebsiella pneumoniae subsp. pneumoniae 4DI6 ; 2.4 ; crystal structure of nucleoside-diphosphate kinase from Borrelia burgdorferi 6WWD ; 2.1 ; Crystal structure of Nucleoside-triphosphatase / dITP/XTP pyrophosphatase from Mycobacterium abscessus ATCC 19977 / DSM 44196 3GYV ; 3.0 ; Crystal structure of nucleosome assembly protein from Plasmodium falciparum 3GYW ; 2.4 ; Crystal structure of nucleosome assembly protein from Plasmodium falciparum at 2.4 A resolution 5X7V ; 2.802 ; Crystal structure of Nucleosome assembly protein S (PfNapS) from Plasmodium falciparum 5GT0 ; 2.82 ; Crystal structure of nucleosome complex with human testis-specific histone variants, Th2a 3UT9 ; 2.2 ; Crystal Structure of Nucleosome Core Particle Assembled with a Palindromic Widom '601' Derivative (NCP-601L) 3UTA ; 2.07 ; Crystal Structure of Nucleosome Core Particle Assembled with an Alpha-Satellite Sequence Containing Two TTAAA elements (NCP-TA2) 3UTB ; 2.2 ; Crystal Structure of Nucleosome Core Particle Assembled with the 146b Alpha-Satellite Sequence (NCP146b) 3LZ0 ; 2.5 ; Crystal Structure of Nucleosome Core Particle Composed of the Widom 601 DNA Sequence (orientation 1) 3LZ1 ; 2.5 ; Crystal Structure of Nucleosome Core Particle Composed of the Widom 601 DNA Sequence (orientation 2) 5GSU ; 3.1 ; Crystal structure of nucleosome core particle consisting of human testis-specific histone variants, Th2A and Th2B 3X1T ; 2.808 ; Crystal structure of nucleosome core particle consisting of mouse testis specific histone variants H2aa and H2ba 2FJ7 ; 3.2 ; Crystal structure of Nucleosome Core Particle Containing a Poly (dA.dT) Sequence Element 3X1V ; 2.921 ; Crystal structure of nucleosome core particle in the presence of histone variant involved in reprogramming 3X1U ; 3.25 ; Crystal structure of nucleosome core particle in the presence of histone variants involved in reprogramming 5GT3 ; 2.91 ; Crystal structure of nucleosome particle in the presence of human testis-specific histone variant, hTh2b 7XX6 ; 3.39 ; Crystal Structure of Nucleosome-H1.0 Linker Histone Assembly (sticky-169a DNA fragment) 7XVL ; 3.506 ; Crystal Structure of Nucleosome-H1.0 Linker Histone Assembly (sticky-169an DNA fragment) 7XX5 ; 3.19 ; Crystal Structure of Nucleosome-H1.3 Linker Histone Assembly (sticky-169a DNA fragment) 8YTI ; 2.7 ; Crystal Structure of Nucleosome-H1x Linker Histone Assembly (sticky-169a DNA fragment) 7XVM ; 2.84 ; Crystal Structure of Nucleosome-H5 Linker Histone Assembly (sticky-169a DNA fragment) 2CWK ; 1.75 ; Crystal structure of nucleotide diphosphate kinase from Pyrococcus horikoshii 6UK1 ; 2.693 ; Crystal structure of nucleotide-binding domain 2 (NBD2) of the human Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) 2PH1 ; 2.7 ; Crystal structure of nucleotide-binding protein AF2382 from Archaeoglobus fulgidus, Northeast Structural Genomics Target GR165 3HWS ; 3.25 ; Crystal structure of nucleotide-bound hexameric ClpX 4I4L ; 3.6981 ; Crystal Structure of Nucleotide-Bound W-W-W ClpX Hexamer 3VR2 ; 2.8 ; Crystal structure of nucleotide-free A3B3 complex from Enterococcus hirae V-ATPase [eA3B3] 2AFH ; 2.1 ; Crystal Structure of Nucleotide-Free Av2-Av1 Complex 3VR5 ; 3.9 ; Crystal structure of nucleotide-free Enterococcus hirae V1-ATPase [eV1(L)] 3HTE ; 4.026 ; Crystal structure of nucleotide-free hexameric ClpX 3SNH ; 3.7 ; Crystal structure of nucleotide-free human dynamin1 2XTP ; 1.5 ; Crystal structure of nucleotide-free human GIMAP2, amino acid residues 1-260 5BPN ; 2.1 ; Crystal structure of nucleotide-free human Hsp70 NBD double mutant E268Q+R272K. 5BN8 ; 1.34 ; Crystal structure of nucleotide-free human Hsp70 NBD. 7VES ; 2.0 ; Crystal Structure of nucleotide-free Irgb6 8H4O ; 2.05 ; Crystal Structure of nucleotide-free Irgb6_T95D mutant 6QL4 ; 3.6 ; Crystal structure of nucleotide-free Mgm1 7DQC ; 2.706 ; Crystal structure of nucleotide-free mutant A(S23C)3B(N64C)3 complex from Enterococcus hirae V-ATPase 4L79 ; 2.3 ; Crystal Structure of nucleotide-free Myosin 1b residues 1-728 with bound Calmodulin 4LHX ; 3.05 ; Crystal structure of nucleotide-free Rab8:Rabin8 3C18 ; 1.9 ; Crystal structure of nucleotidyltransferase-like protein (ZP_00538802.1) from Exiguobacterium sibiricum 255-15 at 1.90 A resolution 7E44 ; 2.0 ; Crystal structure of NudC complexed with dpCoA 2RH0 ; 1.95 ; Crystal structure of NudC domain-containing protein 2 (13542905) from Mus musculus at 1.95 A resolution 6DBY ; 2.0 ; Crystal structure of Nudix 1 from Arabidopsis thaliana 6DBZ ; 1.9 ; Crystal structure of Nudix 1 from Arabidopsis thaliana complexed with isopentenyl diphosphate 2YYH ; 1.8 ; Crystal structure of Nudix family protein from Aquifex aeolicus 5ISY ; 2.354 ; Crystal structure of Nudix family protein with NAD 1SJY ; 1.39 ; Crystal Structure of NUDIX HYDROLASE DR1025 FROM DEINOCOCCUS RADIODURANS 1SOI ; 1.8 ; CRYSTAL STRUCTURE OF NUDIX HYDROLASE DR1025 IN COMPLEX WITH SM+3 1SZ3 ; 1.6 ; CRYSTAL STRUCTURE OF NUDIX HYDROLASE DR1025 IN COMPLEXED WITH GNP AND MG+2 3QSJ ; 1.7 ; Crystal structure of NUDIX hydrolase from Alicyclobacillus acidocaldarius 3CNG ; 2.0 ; Crystal structure of NUDIX hydrolase from Nitrosomonas europaea 3DKU ; 2.69 ; Crystal structure of Nudix hydrolase Orf153, ymfB, from Escherichia coli K-1 3SHD ; 2.5 ; Crystal structure of Nudix hydrolase Orf153, ymfB, from Escherichia coli K-1 4C9W ; 1.65 ; Crystal structure of NUDT1 (MTH1) with R-crizotinib 4C9X ; 1.2 ; Crystal structure of NUDT1 (MTH1) with S-crizotinib 7NNJ ; 1.755 ; Crystal Structure of NUDT4 (Diphosphoinositol polyphosphate phosphohydrolase 2) in complex with 4-O-Bn-1-PCP-InsP4 (AMR2105) 5LTU ; 2.23 ; Crystal Structure of NUDT4A- Diphosphoinositol polyphosphate phosphohydrolase 2 6HC2 ; 4.31 ; Crystal structure of NuMA/LGN hetero-hexamers 8OZB ; 2.09 ; Crystal structure of Nup35-Nb complex 7MNW ; 2.4 ; Crystal Structure of Nup358/RanBP2 Ran-binding domain 1 in complex with Ran-GPPNHP 7MNX ; 2.4 ; Crystal Structure of Nup358/RanBP2 Ran-binding domain 2 in complex with Ran-GPPNHP 7MNY ; 2.7 ; Crystal Structure of Nup358/RanBP2 Ran-binding domain 3 in complex with Ran-GPPNHP 7MNZ ; 2.35 ; Crystal Structure of Nup358/RanBP2 Ran-binding domain 4 in complex with Ran-GPPNHP 3TAI ; 2.82 ; Crystal structure of NurA 3TAZ ; 3.2 ; Crystal structure of NurA bound to dAMP and manganese 3TAL ; 3.15 ; Crystal structure of NurA with manganese 2XYI ; 1.75 ; Crystal Structure of Nurf55 in complex with a H4 peptide 2YBA ; 2.55 ; Crystal structure of Nurf55 in complex with histone H3 2YB8 ; 2.3 ; Crystal structure of Nurf55 in complex with Su(z)12 7WNH ; 3.1 ; Crystal structure of Nurr1 binding to NBRE 1OVL ; 2.2 ; Crystal Structure of Nurr1 LBD 1HH2 ; 2.1 ; Crystal structure of NusA from Thermotoga maritima 1L2F ; 2.5 ; Crystal structure of NusA from Thermotoga maritima: a structure-based role of the N-terminal domain 6I37 ; 1.54 ; Crystal structure of nv1Pizza6-AYW, a circularly permuted designer protein 6I38 ; 1.58 ; Crystal structure of nv2Pizza6-AYW, a circularly permuted designer protein 5CHB ; 1.55 ; Crystal structure of nvPizza2-S16H58 coordinating a CdCl2 nanocrystal 4ZCN ; 1.3 ; Crystal structure of nvPizza2-S16S58 7BIE ; 1.8 ; Crystal structure of nvWrap-T, a 7-bladed symmetric propeller 2VH9 ; 2.1 ; CRYSTAL STRUCTURE OF NXG1-DELTAYNIIG IN COMPLEX WITH XLLG, A XYLOGLUCAN DERIVED OLIGOSACCHARIDE 3R1Z ; 1.9 ; Crystal structure of NYSGRC enolase target 200555, a putative dipeptide epimerase from Francisella philomiragia : Complex with L-Ala-L-Glu and L-Ala-D-Glu 3R11 ; 2.0 ; Crystal structure of NYSGRC enolase target 200555, a putative dipeptide epimerase from Francisella philomiragia : Mg and Fumarate complex 3R10 ; 2.0 ; Crystal structure of NYSGRC enolase target 200555, a putative dipeptide epimerase from Francisella philomiragia : Mg complex 3R0U ; 1.9 ; Crystal structure of NYSGRC enolase target 200555, a putative dipeptide epimerase from Francisella philomiragia : Tartrate and Mg complex 3R0K ; 2.0 ; Crystal structure of NYSGRC enolase target 200555, a putative dipeptide epimerase from Francisella philomiragia : Tartrate bound, no Mg 5XCV ; 2.143 ; Crystal structure of NZ-1 Fv-clasp fragment with its antigen peptide 6XAJ ; 1.498 ; Crystal structure of NzeB 6XAM ; 1.481 ; Crystal structure of NzeB in complex with cyclo-(L-Trp-L-homoalanine) 6XAI ; 1.489 ; Crystal structure of NzeB in complex with cyclo-(L-Trp-L-Pro) 6XAK ; 1.479 ; Crystal structure of NzeB in complex with cyclo-(L-Trp-L-Pro) and cyclo-(L-Trp-L-Trp) 6XAL ; 1.349 ; Crystal structure of NzeB in complex with cyclo-(L-Trp-L-Val) 8P61 ; 1.9 ; Crystal structure of O'nyong'nyong virus capsid protease (106-256) 7YNW ; 2.79 ; Crystal structure of O-(2-nitrobenzyl)-L-tyrosine-tRNA sythetase in complex with O-(2-nitrobenzyl)-L-tyrosine 2CTZ ; 2.6 ; Crystal structure of o-acetyl homoserine sulfhydrylase from Thermus thermophilus HB8 7DJQ ; 2.3 ; Crystal Structure of O-acetyl L-serine sulfhydrylase from Haemophilus influenzae in complex with C-Terminal peptide of ribosomal S4 Domain protein from Lactobacillus salivarius. 4IL5 ; 2.03 ; Crystal structure of O-Acetyl Serine Sulfhydrylase from Entamoeba histolytica in complex with isoleucine 4JBL ; 2.0 ; Crystal structure of O-Acetyl Serine Sulfhydrylase from Entamoeba histolytica in complex with Methionine 4JBN ; 1.87 ; Crystal structure of O-Acetyl Serine Sulfhydrylase from Entamoeba histolytica in complex with Serine acetyl transferase derived tetrapeptide, SPSI 3SPX ; 1.79 ; Crystal structure of O-Acetyl Serine Sulfhydrylase from Leishmania donovani 3T4P ; 1.77 ; Crystal structure of O-Acetyl Serine Sulfhydrylase from Leishmania donovani in complex with designed tetrapeptide 3TBH ; 1.68 ; Crystal structure of O-Acetyl Serine Sulfhydrylase in complex with octapeptide derived from Serine Acetyl Transferase of Leishmania donovani 6KR5 ; 1.544 ; Crystal structure of O-Acetyl Serine Sulfhydrylase isoform 3 from Entamoeba histolytica 8OVH ; 2.171 ; Crystal structure of O-acetyl-L-homoserine sulfhydrolase from Saccharomyces cerevisiae in complex with Pyridoxal-5'-phosphate 3BM5 ; 2.4 ; Crystal structure of O-acetyl-serine sulfhydrylase from Entamoeba histolytica in complex with cysteine 5IJG ; 2.0 ; Crystal structure of O-acetylhomoserine sulfhydrolase from Brucella melitensis at 2.0 A resolution 8WKO ; 2.91 ; Crystal structure of O-acetylhomoserine sulfhydrylase from Lactobacillus plantarum in the closed form 8WKR ; 2.05 ; Crystal structure of O-acetylhomoserine sulfhydrylase from Lactobacillus plantarum in the open form 6AHI ; 1.9 ; Crystal structure of O-acetylserine dependent cystathionine beta-synthase from Helicobacter pylori. 2EGU ; 1.9 ; Crystal structure of O-acetylserine sulfhydrase from Geobacillus kaustophilus HTA426 1O58 ; 1.8 ; Crystal structure of O-acetylserine sulfhydrylase (TM0665) from Thermotoga maritima at 1.80 A resolution 2BHT ; 2.1 ; Crystal structure of O-acetylserine sulfhydrylase B 1Z7W ; 2.2 ; Crystal Structure of O-Acetylserine Sulfhydrylase from Arabidopsis thaliana 2ISQ ; 2.8 ; Crystal Structure of O-Acetylserine Sulfhydrylase from Arabidopsis Thaliana in Complex with C-Terminal Peptide from Arabidopsis Serine Acetyltransferase 4LI3 ; 2.592 ; Crystal Structure of O-Acetylserine Sulfhydrylase from Haemophilus influenzae in complex with high affinity inhibitory peptide from Serine acetyl transferase of Salmonella typhimurium 4NU8 ; 2.07 ; Crystal structure of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high affinity inhibitory peptide from serine acetyl transferase of Salmonella typhimurium at 2.0 A 4ZU1 ; 2.202 ; Crystal Structure of O-Acetylserine Sulfhydrylase from Haemophilus influenzae in complex with O-acetyl serine and peptide inhibitor 4ZU6 ; 2.03 ; Crystal Structure of O-Acetylserine Sulfhydrylase from Haemophilus influenzae in complex with pre-reactive o-acetyl serine, alpha-aminoacrylate reaction intermediate and Peptide inhibitor at the resolution of 2.25A 5DBE ; 2.25 ; Crystal structure of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with pre-reactive O-acetyl serine, alpha-aminoacrylate reaction intermediate and peptide inhibitor at the resolution of 2.25A 5DBH ; 1.98 ; Crystal structure of O-acetylserine sulfhydrylase from haemophilus influenzae in complex with reaction intermediate alpha-aminoacrylate 5XA2 ; 2.034 ; Crystal Structure of O-acetylserine sulfhydrylase from Planctomyces Limnophila 5XOQ ; 1.87 ; Crystal structure of O-Acetylserine Sulfhydrylase with bound Transcription Factor peptide inhibitor from Planctomyces limnophilus 2CB1 ; 2.0 ; Crystal Structure of O-actetyl Homoserine Sulfhydrylase From Thermus Thermophilus HB8,OAH2. 6OIH ; 3.85 ; Crystal structure of O-antigen polysaccharide ABC-transporter 8HIU ; 2.99 ; Crystal structure of O-carbamoyltransferase VtdB and the compound VtdB with carbamoyladenylate from Streptomyces sp. NO1W98 6ELC ; 1.41 ; Crystal Structure of O-linked Glycosylated VSG3 5I2H ; 1.551 ; Crystal structure of O-methyltransferase family 2 protein Plim_1147 from Planctomyces limnophilus DSM 3776 complex with Apigenin 3R3H ; 2.65 ; Crystal structure of O-methyltransferase from Legionella pneumophila 5B3A ; 2.14 ; Crystal Structure of O-Phoshoserine Sulfhydrylase from Aeropyrum pernix in Complexed with the alpha-Aminoacrylate Intermediate 1WKV ; 2.0 ; Crystal structure of O-phosphoserine sulfhydrylase 3VSA ; 2.07 ; Crystal Structure of O-phosphoserine sulfhydrylase without acetate 3AM1 ; 2.4 ; Crystal structure of O-Phosphoseryl-tRNA kinase complexed with anticodon-stem/loop truncated tRNA(Sec) 3ADB ; 2.8 ; Crystal structure of O-phosphoseryl-tRNA kinase complexed with selenocysteine tRNA and AMPPNP (crystal type 1) 3ADC ; 2.9 ; Crystal structure of O-phosphoseryl-tRNA kinase complexed with selenocysteine tRNA and AMPPNP (crystal type 2) 3ADD ; 2.4 ; Crystal structure of O-phosphoseryl-tRNA kinase complexed with selenocysteine tRNA and AMPPNP (crystal type 3) 2OPJ ; 1.6 ; Crystal structure of O-succinylbenzoate synthase 2QVH ; 1.76 ; Crystal structure of O-succinylbenzoate synthase complexed with O-succinyl benzoate (OSB) 3CAW ; 1.87 ; Crystal structure of o-succinylbenzoate synthase from Bdellovibrio bacteriovorus liganded with Mg 2OZT ; 1.42 ; Crystal structure of O-succinylbenzoate synthase from Thermosynechococcus elongatus BP-1 3H7V ; 1.7 ; CRYSTAL STRUCTURE OF O-SUCCINYLBENZOATE SYNTHASE FROM THERMOSYNECHOCOCCUS ELONGATUS BP-1 complexed with MG in the active site 3H70 ; 1.6 ; Crystal structure of o-succinylbenzoic acid synthetase from staphylococcus aureus Complexed with mg in the active site 2OLA ; 2.45 ; Crystal structure of O-succinylbenzoic acid synthetase from Staphylococcus aureus, cubic crystal form 2OKT ; 1.3 ; Crystal structure of O-succinylbenzoic acid synthetase from Staphylococcus aureus, ligand-free form 3IPL ; 2.3 ; CRYSTAL STRUCTURE OF o-succinylbenzoic acid-CoA ligase FROM Staphylococcus aureus subsp. aureus Mu50 3NDN ; 1.85 ; Crystal structure of O-succinylhomoserine sulfhydrylase from Mycobacterium tuberculosis covalently bound to pyridoxal-5-phosphate 3X43 ; 2.25 ; Crystal structure of O-ureido-L-serine synthase 3X44 ; 1.9 ; Crystal structure of O-ureido-L-serine-bound K43A mutant of O-ureido-L-serine synthase 7VDY ; 2.12 ; Crystal structure of O-ureidoserine racemase 1WRJ ; 2.0 ; Crystal structure of O6-methylguanine methyltransferase from Sulfolobus tokodaii 7DQT ; 1.13 ; Crystal structure of O6-methylguanine methyltransferase Y91F variant 1MGT ; 1.8 ; CRYSTAL STRUCTURE OF O6-METHYLGUANINE-DNA METHYLTRANSFERASE FROM HYPERTHERMOPHILIC ARCHAEON PYROCOCCUS KODAKARAENSIS STRAIN KOD1 2HEK ; 1.997 ; Crystal structure of O67745, a hypothetical protein from Aquifex aeolicus at 2.0 A resolution. 1FCJ ; 2.0 ; CRYSTAL STRUCTURE OF OASS COMPLEXED WITH CHLORIDE AND SULFATE 6Z4N ; 1.2 ; CRYSTAL STRUCTURE OF OASS COMPLEXED WITH UPAR INHIBITOR 2F8P ; 1.93 ; Crystal structure of obelin following Ca2+ triggered bioluminescence suggests neutral coelenteramide as the primary excited state 4FOZ ; 2.4 ; Crystal Structure of OccD1 (OprD) Y282R/D307H 2PVQ ; 1.803 ; Crystal structure of Ochrobactrum anthropi glutathione transferase Cys10Ala mutant with glutathione bound at the H-site 8JEP ; 1.7 ; Crystal structure of Ociperlimab 4CMN ; 3.13 ; Crystal structure of OCRL in complex with a phosphate ion 3QBT ; 2.0 ; Crystal structure of OCRL1 540-678 in complex with Rab8a:GppNHp 1E3O ; 1.9 ; Crystal structure of Oct-1 POU dimer bound to MORE 1SP3 ; 2.2 ; Crystal structure of octaheme cytochrome c from Shewanella oneidensis 8RV0 ; 1.55 ; Crystal structure of octaheme nitrite reductase from Trichlorobacter ammonificans in complex with nitrite 8RXU ; 1.737 ; Crystal structure of octaheme nitrite reductase from Trichlorobacter ammonificans in space group P21 8RVM ; 1.6 ; Crystal structure of octaheme nitrite reductase from Trichlorobacter ammonificans in space group P63 1W6T ; 2.1 ; Crystal Structure Of Octameric Enolase From Streptococcus pneumoniae 5YOL ; 2.2 ; Crystal structure of octameric form of Nucleoside diphosphate kinase from Acinetobacter baumannii at 2.2 A resolution 3B07 ; 2.495 ; Crystal structure of octameric pore form of gamma-hemolysin from Staphylococcus aureus 2CWX ; 2.0 ; Crystal structure of octameric ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Pyrococcus horikoshii OT3 (form-1 crystal) 2CXE ; 3.0 ; Crystal structure of octameric ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Pyrococcus horikoshii OT3 (form-2 crystal) 7EFV ; 2.77 ; Crystal structure of octameric state of C-phycocyanin from Thermoleptolyngbya sp. O-77 7LBJ ; 1.85 ; Crystal structure of octaprenyl diphosphate synthase from Stenotrophomonas maltophilia 3WJK ; 2.2 ; Crystal structure of Octaprenyl Pyrophosphate synthase from Escherichia coli 5ZE6 ; 2.5 ; CRYSTAL STRUCTURE OF OCTAPRENYL PYROPHOSPHATE SYNTHASE FROM ESCHERICHIA COLI WITH BPH-981 3WJN ; 2.6 ; Crystal structure of Octaprenyl Pyrophosphate synthase from Escherichia coli with farnesyl S-thiol-pyrophosphate (FSPP) 3WJO ; 2.45 ; Crystal structure of Octaprenyl Pyrophosphate synthase from Escherichia coli with isopentenyl pyrophosphate (IPP) 5ZLF ; 2.845 ; CRYSTAL STRUCTURE OF OCTAPRENYL PYROPHOSPHATE SYNTHASE FROM ESCHERICHIA COLI WITH ligand BPH-629 3TC1 ; 2.0 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Helicobacter pylori 1V4E ; 2.28 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima 1VG2 ; 3.1 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima A76Y mutant 1VG3 ; 2.7 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima A76Y/S77F mutant 1V4I ; 2.4 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima F132A mutant 1VG4 ; 3.3 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima F132A/L128A mutant 1VG6 ; 3.35 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima F132A/L128A/I123A mutant 1VG7 ; 3.4 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima F132A/L128A/I123A/D62A mutant 1V4H ; 2.8 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima F52A mutant 1WL1 ; 3.45 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima H74A mutant 1WKZ ; 3.4 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima K41A mutant 1WL0 ; 3.2 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima R44A mutant 1WL2 ; 2.8 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima R90A mutant 1WL3 ; 3.5 ; Crystal Structure Of Octaprenyl Pyrophosphate Synthase From Hyperthermophilic Thermotoga Maritima R91A mutant 1V4K ; 2.45 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima S77F mutant 1V4J ; 2.85 ; Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima V73Y mutant 5B7C ; 2.35 ; Crystal structure of octopus S-crystallin Q108F mutant in complex with glutathione 5MZH ; 2.398 ; Crystal structure of ODA16 from Chlamydomonas reinhardtii 5BWA ; 3.2 ; Crystal structure of ODC-PLP-AZ1 ternary complex 1KM6 ; 1.5 ; Crystal structure of ODCase mutant D70AK72A complexed with OMP 1KM5 ; 1.5 ; Crystal structure of ODCase mutant D75N complexed with 6-azaUMP 1KM3 ; 1.5 ; crystal structure of ODCase mutant K42A complexed with 6-azaUMP 1KM4 ; 1.5 ; crystal structure of ODCase mutant K72A complexed with UMP 4QCJ ; 2.0 ; Crystal Structure of OdhI from Corynebacterium glutamicum 3K1E ; 1.85 ; Crystal structure of odorant binding protein 1 (AaegOBP1) from Aedes aegypti 8BY4 ; 2.0 ; Crystal structure of Odorant Binding Protein 1 from Aedes albopictus (Asian tiger mosquito) 3N7H ; 1.6 ; Crystal structure of Odorant Binding Protein 1 from Anopheles gambiae (AgamOBP1) with DEET (N,N-Diethyl-meta-toluamide) and PEG 5EL2 ; 1.75 ; Crystal structure of Odorant Binding Protein 1 from Anopheles gambiae (AgamOBP1) with Icaridin (butan-2-yl 2-(2-hydroxyethyl)piperidine-1-carboxylate) 8C68 ; 2.05 ; CRYSTAL STRUCTURE OF ODORANT BINDING PROTEIN 4 FROM ANOPHELES GAMBIAE (AGAMOBP4) AT PH 4.6 8C6G ; 2.05 ; CRYSTAL STRUCTURE OF ODORANT BINDING PROTEIN 4 FROM ANOPHELES GAMBIAE (AGAMOBP4) AT PH 6.5 8C6E ; 2.05 ; CRYSTAL STRUCTURE OF ODORANT BINDING PROTEIN 4 FROM ANOPHELES GAMBIAE (AGAMOBP4) AT PH 8.5 6JPM ; 2.098 ; Crystal Structure of Odorant Binding Protein 4 in the Natural Predator Chrysopa pallens 4IJ7 ; 2.25 ; Crystal structure of Odorant Binding Protein 48 from Anopheles gambiae (AgamOBP48) with PEG 4KYN ; 3.3 ; Crystal structure of odorant binding protein 48 from Anopheles gambiae at 3.3 Angstrom resolution 8BXW ; 1.3 ; Crystal structure of Odorant Binding Protein 5 from Anopheles gambiae (AgamOBP5) with Carvacrol 8BXU ; 1.35 ; Crystal structure of Odorant Binding Protein 5 from Anopheles gambiae (AgamOBP5) with MPD (2-Methyl-2,4-pentanediol) 8BXV ; 1.3 ; Crystal structure of Odorant Binding Protein 5 from Anopheles gambiae (AgamOBP5) with Thymol 6Q7O ; 2.0 ; Crystal structure of OE1 6Q7P ; 1.96 ; Crystal structure of OE1.2 6Q7Q ; 1.9 ; Crystal structure of OE1.3 6Q7R ; 1.5 ; Crystal structure of OE1.3 alkylated with the mechanistic inhibitor 2-bromoacetophenone 4JHL ; 1.7 ; Crystal Structure of of Axe2, an Acetylxylan Esterase from Geobacillus stearothermophilus 4BQ1 ; 1.5 ; Crystal structure of of LamAcat from Zobellia galactanivorans 2ONG ; 2.7 ; Crystal Structure of of limonene synthase with 2-fluorogeranyl diphosphate (FGPP). 2ONH ; 2.7 ; Crystal Structure of of limonene synthase with 2-fluorolinalyl diphosphate(FLPP) 4JIB ; 1.72 ; Crystal structure of of PDE2-inhibitor complex 6L1C ; 1.58 ; Crystal Structure Of of PHF20L1 Tudor1 Y24L mutant 6L1I ; 1.849 ; Crystal Structure Of of PHF20L1 Tudor1 Y24W/Y29W mutant 3E7P ; 1.9 ; CRYSTAL STRUCTURE OF of putative methyltransferase from Bacteroides vulgatus ATCC 8482 1Y0M ; 1.2 ; Crystal structure of of the SH3 domain of phospholipase C Gamma-1 5YLB ; 1.79 ; Crystal structure of Ofd2 from Schizosaccharomyces pombe at 1.80 A 5YL6 ; 2.0 ; Crystal structure of Ofd2 in complex with 2OG from Schizosaccharomyces pombe 2Q37 ; 2.5 ; Crystal structure of OHCU decarboxylase in the presence of (S)-allantoin 1Z9C ; 2.64 ; Crystal structure of OhrR bound to the ohrA promoter: Structure of MarR family protein with operator DNA 7KAX ; 3.514 ; Crystal structure of OhyA(E82A) from Staphylococcus aureus 7KAY ; 1.95 ; Crystal structure of OhyA(E82A)-18:1 complex from Staphylococcus aureus 7KAZ ; 1.854 ; Crystal structure of OhyA(E82A)-18:1/h18:0-FAD complex from Staphylococcus aureus 7KAV ; 1.843 ; Crystal structure of OhyA-PEG400 complex from Staphylococcus aureus 7KAW ; 2.105 ; Crystal structure of OhyA-PEG400-FAD complex from Staphylococcus aureus 4EFV ; 2.32 ; Crystal structure of OIF from Llama seminal plasma 4WRI ; 1.4 ; Crystal structure of okadaic acid binding protein 2.1 7QFX ; 2.8 ; Crystal structure of Old Yellow Enzyme AnOYE8 from Aspergillus niger 4TMB ; 1.8 ; CRYSTAL STRUCTURE of OLD YELLOW ENZYME from CANDIDA MACEDONIENSIS AKU4588 4TMC ; 1.8 ; CRYSTAL STRUCTURE of OLD YELLOW ENZYME from CANDIDA MACEDONIENSIS AKU4588 COMPLEXED with P-HYDROXYBENZALDEHYDE 6AGZ ; 2.0 ; Crystal structure of Old Yellow Enzyme from Pichia sp. AKU4542 1K02 ; 2.7 ; Crystal Structure of Old Yellow Enzyme Mutant Gln114Asn 1K03 ; 2.7 ; Crystal Structure of Old Yellow Enzyme Mutant Gln114Asn Complexed with Para-hydroxy Benzaldehyde 7FEV ; 1.594 ; Crystal structure of Old Yellow Enzyme6 (OYE6) 5Z70 ; 2.91 ; Crystal structure of oleate hydratase from Stenotrophomonas sp. KCTC 12332 2OWN ; 2.0 ; Crystal structure of oleoyl thioesterase (putative) (NP_784467.1) from Lactobacillus plantarum at 2.00 A resolution 6ZI3 ; 2.08 ; Crystal structure of OleP-6DEB bound to L-rhamnose 6ZI7 ; 2.28 ; Crystal structure of OleP-oleandolide(DEO) bound to L-rhamnose 4XAV ; 2.052 ; Crystal structure of olfactomedin domain from gliomedin 2QR4 ; 2.5 ; Crystal structure of oligoendopeptidase-F from Enterococcus faecium 3C5M ; 2.6 ; Crystal structure of oligogalacturonate lyase (VPA0088) from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium Target VpR199 4W8W ; 2.803 ; Crystal structure of oligomeric Cmr4 from Pyrococcus furiosus 2AN9 ; 2.35 ; Crystal Structure Of Oligomeric E.coli Guanylate Kinase In Complex With GDP 2ANB ; 2.9 ; Crystal Structure Of Oligomeric E.coli Guanylate Kinase In Complex With GMP 2CJR ; 2.5 ; Crystal structure of oligomerization domain of SARS coronavirus nucleocapsid protein. 6NPO ; 2.4 ; Crystal structure of oligopeptide ABC transporter from Bacillus anthracis str. Ames (substrate-binding domain) 1VR5 ; 1.73 ; Crystal structure of Oligopeptide ABC transporter, periplasmic oligopeptide-binding (TM1223) from THERMOTOGA MARITIMA at 1.73 A resolution 5HM4 ; 2.0 ; Crystal structure of oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (TM1226) from THERMOTOGA MARITIMA at 2.0 A resolution 7VH4 ; 2.3 ; Crystal structure of oligoribonuclease of Escherichia coli 7WIK ; 1.87 ; Crystal structure of oligoribonuclease of Mycobacterium smegmatis mc2 155 1YTA ; 2.2 ; Crystal Structure of Oligoribonuclease, the lone essential exoribonuclease in Escherichia coli 6F1E ; 2.296 ; Crystal structure of olive flounder [Paralichthys olivaceus] interferon gamma at 2.3 Angstrom resolution 7SFN ; 2.1 ; Crystal structure of OlmO, a spirocyclase involved in the biosynthesis of oligomycin 1IRQ ; 1.5 ; Crystal structure of omega transcriptional repressor at 1.5A resolution 3A8U ; 1.4 ; Crystal Structure of omega-Amino Acid:Pyruvate Aminotransferase 4BA5 ; 1.76 ; Crystal structure of omega-transaminase from Chromobacterium violaceum 3NUI ; 2.0 ; Crystal structure of omega-transferase from Vibrio Fluvialis JS17 7XAZ ; 3.0 ; Crystal structure of Omicron BA.1.1 RBD complexed with hACE2 7XB0 ; 2.9 ; Crystal structure of Omicron BA.2 RBD complexed with hACE2 7XB1 ; 2.7 ; Crystal structure of Omicron BA.3 RBD complexed with hACE2 8GPY ; 2.51 ; Crystal structure of Omicron BA.4/5 RBD in complex with a neutralizing antibody scFv 7AM8 ; 2.04 ; Crystal structure of Omniligase mutant W189F 5O78 ; 2.85 ; Crystal structure of Omp35 from Enterobacter aerogenes 5O9C ; 2.469 ; Crystal structure of Omp36 from Enterobacter aerogenes 4G4Y ; 1.7 ; Crystal structure of OmpA peptidoglycan-binding domain from Acinetobacter baumannii 4G4Z ; 1.8 ; Crystal structure of OmpA peptidoglycan-binding domain from Acinetobacter baumannii 4G88 ; 1.7 ; Crystal structure of OmpA peptidoglycan-binding domain from Acinetobacter baumannii 3TD4 ; 1.79 ; Crystal structure of OmpA-like domain from Acinetobacter baumannii in complex with diaminopimelate 3TD3 ; 1.59 ; Crystal structure of OmpA-like domain from Acinetobacter baumannii in complex with glycine 3TD5 ; 2.0 ; Crystal structure of OmpA-like domain from Acinetobacter baumannii in complex with L-Ala-gamma-D-Glu-m-DAP-D-Ala-D-Ala 4JFB ; 3.801 ; Crystal structure of OmpF in C2 with tNCS 3O0E ; 3.01 ; Crystal structure of OmpF in complex with colicin peptide OBS1 6ZHP ; 2.053 ; Crystal structure of OmpF porin soaked in ciprofloxacin metaloantibiotic 6ZHV ; 1.945 ; Crystal structure of OmpF porin soaked in ciprofloxacin metaloantibiotic 3NSG ; 2.79 ; Crystal Structure of OmpF, an Outer Membrane Protein from Salmonella typhi 7Q5C ; 2.717 ; Crystal structure of OmpG in space group 96 7V1D ; 1.87 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAH and GpppA) 7V1J ; 1.98 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAH and m7GpppA) 7V1E ; 1.59 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAH and m7GpppAmG) 7V1B ; 1.45 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAH) 7V1F ; 2.0 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAM and GTP) 7V1H ; 2.0 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAM and m7GTP) 7FJT ; 1.4 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SAM) 7V1C ; 1.95 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (in complex with SIN) 7V1G ; 1.38 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (with a GMP-Arg28 adduct and in complex with SAM) 7V1I ; 2.06 ; Crystal structure of Omsk hemorrhagic fever virus NS5 MTase (with an m7GMP-Arg28 adduct and in complex with SAH) 1DS3 ; 1.65 ; CRYSTAL STRUCTURE OF OMTKY3-CH2-ASP19I 4K3J ; 2.8 ; Crystal structure of Onartuzumab Fab in complex with MET and HGF-beta 7LZ5 ; 1.5 ; Crystal structure of oncogenic KRAS Q61E GMPPCP-bound 4CKI ; 2.116 ; Crystal Structure of oncogenic RET tyrosine kinase M918T bound to adenosine 6V6V ; 1.4 ; Crystal structure of oncogenic RhoA mutant G14V complexed with GDP 4O7K ; 1.748 ; Crystal structure of Oncogenic Suppression Activity Protein - A Plasmid Fertility Inhibition Factor 4OVB ; 2.034 ; Crystal structure of Oncogenic Suppression Activity Protein - A Plasmid Fertility Inhibition Factor, Gold (I) Cyanide derivative 3FD7 ; 1.531 ; Crystal structure of Onconase C87A/C104A-ONC 3U01 ; 1.12 ; Crystal structure of onconase double mutant C30A/C75A at 1.12 A resolution 2GMK ; 1.65 ; Crystal structure of onconase double mutant with spontaneously-assembled (AMP) 4 stack 2I5S ; 1.9 ; Crystal structure of onconase with bound nucleic acid 3U89 ; 0.96 ; Crystal structure of one turn of g/c rich b-dna revisited 5GTG ; 1.7 ; Crystal structure of onion lachrymatory factor synthase (LFS) containing 1,2-propanediol 5GTF ; 1.8 ; Crystal structure of onion lachrymatory factor synthase (LFS) containing glycerol 5GTE ; 2.0 ; Crystal structure of onion lachrymatory factor synthase (LFS), solute-free form 4X68 ; 1.68 ; Crystal Structure of OP0595 complexed with AmpC 4X69 ; 1.42 ; Crystal structure of OP0595 complexed with CTX-M-44 4YFU ; 1.5 ; Crystal structure of open Bacillus fragment DNA polymerase bound to DNA and dTTP 3BZM ; 1.95 ; Crystal Structure of Open form of Menaquinone-Specific Isochorismate Synthase, MenF 3BZN ; 2.0 ; Crystal Structure of Open form of Menaquinone-Specific Isochorismate Synthase, MenF 4DK2 ; 1.47 ; Crystal Structure of Open Trypanosoma brucei dUTPase 3S4U ; 3.3 ; Crystal structure of open, unliganded E. coli PhnD H157A 5A9P ; 1.476 ; Crystal structure of Operophtera brumata CPV18 polyhedra 5A99 ; 1.511 ; Crystal structure of Operophtera brumata CPV19 polyhedra 5N0P ; 2.16 ; Crystal structure of OphA-DeltaC18 in complex with SAH 5N0Q ; 2.402 ; Crystal structure of OphA-DeltaC6 in complex with SAH 5N0X ; 1.67 ; Crystal structure of OphA-DeltaC6 in complex with SAM 5N0U ; 1.68 ; Crystal structure of OphA-DeltaC6 mutant R72A in complex with SAH 5N0W ; 1.93 ; Crystal structure of OphA-DeltaC6 mutant R72A in complex with SAM 5N4I ; 1.59 ; Crystal structure of OphA-DeltaC6 mutant W400A in complex with SAM 5OUF ; 1.7 ; Crystal structure of OphA-DeltaC6 mutant W400A in complex with Sinefungin 5N0N ; 1.76 ; Crystal structure of OphA-DeltaC6 mutant Y63F in complex with SAM 5N0R ; 1.61 ; Crystal structure of OphA-DeltaC6 mutant Y66F in complex with SAM 5N0V ; 1.91 ; Crystal structure of OphA-DeltaC6 mutant Y76F in complex with SAH 5N0T ; 1.78 ; Crystal structure of OphA-DeltaC6 mutant Y76F in complex with SAM 5N0S ; 1.95 ; Crystal structure of OphA-DeltaC6 mutant Y98A in complex with SAM 3FTO ; 2.38 ; Crystal structure of OppA in a open conformation 3VTV ; 1.7 ; Crystal structure of Optineurin LIR-fused human LC3B_2-119 5B83 ; 2.694 ; Crystal structure of Optineurin UBAN in complex with linear ubiquitin 5WQ4 ; 3.0 ; Crystal structure of OPTN and linear diubiquitin complex 5EOA ; 2.503 ; Crystal structure of OPTN E50K mutant and TBK1 complex 5EOF ; 2.05 ; Crystal structure of OPTN NTD and TBK1 CTD complex 5NXX ; 2.2 ; Crystal structure of OpuAC from B. subtilis in complex with Arsenobetaine 5NXY ; 1.9 ; Crystal structure of OpuAC from B. subtilis in complex with Arsenobetaine 6EYL ; 1.5 ; Crystal structure of OpuBC in complex with carnitine 5UI2 ; 2.1 ; CRYSTAL STRUCTURE OF ORANGE CAROTENOID PROTEIN 5TUW ; 2.302 ; Crystal structure of Orange Carotenoid Protein with partial loss of 3'OH Echinenone chromophore 5C8H ; 2.01 ; Crystal structure of ORC2 C-terminal domain 6JQT ; 1.8 ; Crystal structure of ordered Asn70 and Asn116 in native peptidyl t-RNA hydrolase from Acinetobacter baumannii at 1.80 Angstrom resolution. 7YPV ; 2.415 ; Crystal structure of OrE-ST-F 2HQ1 ; 1.9 ; Crystal Structure of ORF 1438 a putative Glucose/ribitol dehydrogenase from Clostridium thermocellum 2HQ4 ; 1.99 ; Crystal Structure of ORF 1580 a hypothetical protein from Pyrococcus horikoshii 2P84 ; 1.8 ; Crystal structure of ORF041 from Bacteriophage 37 3D8L ; 2.9 ; Crystal structure of ORF12 from the lactococcus lactis bacteriophage p2 2X5T ; 2.2 ; Crystal structure of ORF131 from Sulfolobus islandicus rudivirus 1 3FBL ; 1.95 ; Crystal structure of ORF132 of the archaeal virus Acidianus Filamentous Virus 1 (AFV1) 2X4J ; 1.62 ; Crystal structure of ORF137 from Pyrobaculum spherical virus 3FBZ ; 2.3 ; Crystal structure of ORF140 of the archaeal virus Acidianus Filamentous Virus 1 (AFV1) 3ILE ; 3.3 ; Crystal structure of ORF157-E86A of Acidianus filamentous virus 1 2OA5 ; 2.1 ; Crystal structure of ORF52 from Murid herpesvirus (MUHV-4) (Murine gammaherpesvirus 68) at 2.1 A resolution. Northeast Structural Genomics Consortium target MHR28B. 2H3R ; 2.7 ; Crystal structure of ORF52 from Murid herpesvirus 4 (MuHV-4) (Murine gammaherpesvirus 68). Northeast Structural Genomics Consortium target MhR28B. 3R87 ; 1.05 ; Crystal Structure of Orf6 protein from Photobacterium profundum 4I45 ; 1.4 ; Crystal Structure of Orf6 protein from Photobacterium profundum, Mg2+-bound form 4FAK ; 1.7 ; Crystal Structure of OrfX in Complex with S-Adenosylmethionine 8FBE ; 1.73 ; Crystal structure of OrfX1 from Clostridium botulinum E1 8FBD ; 2.05 ; Crystal structure of OrfX1-OrfX3 complex from Clostridium botulinum E1 8FBF ; 1.85 ; Crystal structure of OrfX2 from Clostridium botulinum E1 3L7G ; 2.7 ; Crystal structure of organophosphate anhydrolase/prolidase 4ZWO ; 2.141 ; Crystal structure of organophosphate anhydrolase/prolidase mutant Y212F 4ZWP ; 2.397 ; Crystal structure of organophosphate anhydrolase/prolidase mutant Y212F 4ZWU ; 2.2 ; Crystal structure of organophosphate anhydrolase/prolidase mutant Y212F, V342L, I215Y 3RVA ; 1.8 ; Crystal structure of organophosphorus acid anhydrolase from Alteromonas macleodii 3F4D ; 2.36 ; Crystal structure of organophosphorus hydrolase from Geobacillus stearothermophilus strain 10 3F4C ; 2.07 ; Crystal structure of organophosphorus hydrolase from Geobacillus stearothermophilus strain 10, with glycerol bound 5A8U ; 1.609 ; Crystal structure of Orgyia pseudotsugata CPV5 polyhedra 5A8V ; 2.074 ; Crystal structure of Orgyia pseudotsugata CPV5 polyhedra with SeMet substitution 3KP1 ; 2.01 ; Crystal structure of ornithine 4,5 aminomutase (Resting State) 3KOW ; 2.9 ; Crystal Structure of ornithine 4,5 aminomutase backsoaked complex 3KOX ; 2.4 ; Crystal Structure of ornithine 4,5 aminomutase in complex with 2,4-diaminobutyrate (Anaerobic) 3KP0 ; 2.8 ; Crystal Structure of ORNITHINE 4,5 AMINOMUTASE in complex with 2,4-diaminobutyrate (DAB) (Aerobic) 3KOY ; 2.8 ; Crystal Structure of ornithine 4,5 aminomutase in complex with ornithine (Aerobic) 3KOZ ; 2.8 ; Crystal Structure of ornithine 4,5 aminomutase in complex with ornithine (Anaerobic) 1VLV ; 2.25 ; Crystal structure of Ornithine carbamoyltransferase (TM1097) from Thermotoga maritima at 2.25 A resolution 2I6U ; 2.2 ; Crystal Structure of Ornithine Carbamoyltransferase complexed with Carbamoyl Phosphate and L-Norvaline from Mycobacterium tuberculosis (Rv1656) at 2.2 A 4OH7 ; 1.5 ; Crystal structure of Ornithine carbamoyltransferase from Brucella melitensis 3GD5 ; 2.1 ; Crystal structure of ornithine carbamoyltransferase from Gloeobacter violaceus 7TMD ; 2.35 ; Crystal structure of Ornithine carbamoyltransferase from Klebsiella pneumoniae 2P2G ; 2.7 ; Crystal Structure of Ornithine Carbamoyltransferase from Mycobacterium Tuberculosis (Rv1656): Orthorhombic Form 6OVW ; 1.903 ; Crystal structure of ornithine carbamoyltransferase from Salmonella enterica 2EF0 ; 2.0 ; Crystal structure of ornithine carbamoyltransferase from thermus thermophilus 4AIB ; 2.87 ; Crystal Structure of Ornithine Decarboxylase from Entamoeba histolytica. 8QEV ; 1.55 ; Crystal structure of ornithine transcarbamylase from Arabidopsis thaliana (AtOTC) in complex with carbamoyl phosphate 8QEU ; 1.5 ; Crystal structure of ornithine transcarbamylase from Arabidopsis thaliana (AtOTC) in complex with ornithine 7UOC ; 2.3 ; Crystal structure of Orobanche minor KAI2d4 1STO ; 2.6 ; CRYSTAL STRUCTURE OF OROTATE PHOSPHORIBOSYLTRANSFERASE 4OHC ; 1.85 ; Crystal structure of orotate phosphoribosyltransferase (OPRTase) from Burkholderia cenocepacia 2YZK ; 1.8 ; Crystal structure of orotate phosphoribosyltransferase from Aeropyrum pernix 3DEZ ; 2.4 ; Crystal structure of Orotate phosphoribosyltransferase from Streptococcus mutans 2AEE ; 1.95 ; Crystal structure of Orotate phosphoribosyltransferase from Streptococcus pyogenes 1LOR ; 1.6 ; crystal structure of orotidine 5'-monophosphate complexed with BMP 2ZA1 ; 2.65 ; Crystal Structure of orotidine 5'-monophosphate decarboxylase complexed with orotidine 5'-monophosphate from P.falciparum 2ZA3 ; 2.65 ; Crystal Structure of orotidine 5'-monophosphate decarboxylase complexed with uridine 5'-monophosphate from P.falciparum 4N2Y ; 1.549 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Archaeoglobus fulgidus 4MUZ ; 1.39 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Archaeoglobus fulgidus complexed with inhibitor BMP 1DBT ; 2.4 ; CRYSTAL STRUCTURE OF OROTIDINE 5'-MONOPHOSPHATE DECARBOXYLASE FROM BACILLUS SUBTILIS COMPLEXED WITH UMP 3VE9 ; 1.45 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Metallosphaera sedula 3VE7 ; 1.539 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Metallosphaera sedula complexed with inhibitor BMP 3G18 ; 1.6 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 4NT0 ; 1.769 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 3-deazauridine 5'-monophosphate 3G1F ; 2.5 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 5,6-dihydroorotidine 5'-monophosphate 3G1H ; 2.3 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 5,6-dihydrouridine 5'-monophosphate 4O8R ; 2.293 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from methanobacterium thermoautotrophicum complexed with 5,6-dihydrouridine 5'-monophosphate 3G1A ; 1.5 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 4NX5 ; 1.591 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 4O11 ; 1.59 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-hydroxyuridine 5'-monophosphate 3LTP ; 1.4 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3G1D ; 1.5 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with uridine 5'-monophosphate 4NUW ; 1.591 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from methanobacterium thermoautotrophicum complexed with uridine 5'-monophosphate 4LUI ; 1.6 ; Crystal structure of Orotidine 5'-monophosphate decarboxylase from methanocaldococcus jannaschii 4LUJ ; 1.6 ; Crystal structure of Orotidine 5'-monophosphate decarboxylase from methanocaldococcus jannaschii complexed with inhibitor BMP 4DBD ; 1.699 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Sulfolobus solfataricus 4DBE ; 1.789 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Sulfolobus solfataricus complexed with inhibitor BMP 4DF0 ; 1.5 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Thermoproteus neutrophilus 4DF1 ; 1.899 ; Crystal structure of orotidine 5'-monophosphate decarboxylase from Thermoproteus neutrophilus complexed with inhibitor BMP 1DQW ; 2.1 ; CRYSTAL STRUCTURE OF OROTIDINE 5'-PHOSPHATE DECARBOXYLASE 1VQT ; 2.0 ; Crystal structure of Orotidine 5'-phosphate decarboxylase (TM0332) from Thermotoga maritima at 2.00 A resolution 1DQX ; 2.4 ; CRYSTAL STRUCTURE OF OROTIDINE 5'-PHOSPHATE DECARBOXYLASE COMPLEXED TO 6-HYDROXYURIDINE 5'-PHOSPHATE (BMP) 8CSO ; 2.6 ; Crystal Structure of Orotidine 5'-phosphate decarboxylase from Klebsiella pneumoniae in complex with Uridine-5'-monophosphate 3TFX ; 2.19 ; Crystal structure of Orotidine 5'-phosphate decarboxylase from Lactobacillus acidophilus 2Q8L ; 2.1 ; Crystal structure of orotidine 5'-phosphate decarboxylase from Plasmodium falciparum 2CZ5 ; 1.85 ; Crystal structure of orotidine 5'-phosphate decarboxylase from Pyrococcus horikoshii OT3 2CZD ; 1.6 ; Crystal structure of orotidine 5'-phosphate decarboxylase from Pyrococcus horikoshii OT3 at 1.6 A resolution 2CZE ; 1.85 ; Crystal structure of orotidine 5'-phosphate decarboxylase from Pyrococcus horikoshii OT3 complexed with UMP 2CZF ; 1.85 ; Crystal structure of orotidine 5'-phosphate decarboxylase from Pyrococcus horikoshii OT3 complexed with XMP 3R89 ; 1.844 ; Crystal structure of orotidine 5-phosphate decarboxylase from Anaerococcus prevotii DSM 20548 1DV7 ; 1.8 ; CRYSTAL STRUCTURE OF OROTIDINE MONOPHOSPHATE DECARBOXYLASE 1LOL ; 1.9 ; Crystal structure of orotidine monophosphate decarboxylase complex with XMP 1DVJ ; 1.5 ; CRYSTAL STRUCTURE OF OROTIDINE MONOPHOSPHATE DECARBOXYLASE COMPLEXED WITH 6-AZAUMP 1LP6 ; 1.9 ; Crystal structure of orotidine monophosphate decarboxylase complexed with CMP 1LOQ ; 1.5 ; Crystal structure of orotidine monophosphate decarboxylase complexed with product UMP 1KLZ ; 1.5 ; Crystal structure of orotidine monophosphate decarboxylase mutant D70A complexed with UMP 1KM0 ; 1.7 ; Crystal structure of orotidine monophosphate decarboxylase mutant D70N complexed with 6-azaUMP 1LOS ; 1.9 ; crystal structure of orotidine monophosphate decarboxylase mutant deltaR203A complexed with 6-azaUMP 1KM2 ; 1.5 ; crystal structure of orotidine monophosphate mutant Q185A with 6-azaUMP 5ZM7 ; 3.401 ; Crystal structure of ORP1-ORD in complex with cholesterol at 3.4 A resolution 5ZM6 ; 2.7 ; Crystal structure of ORP1-ORD in complex with PI(4,5)P2 5ZM8 ; 2.7 ; Crystal structure of ORP2-ORD in complex with PI(4,5)P2 5U77 ; 2.157 ; Crystal structure of ORP8 PH domain 5U78 ; 1.978 ; Crystal structure of ORP8 PH domain in P1211 space group 3KYT ; 2.35 ; Crystal structure of orphan nuclear receptor RORgamma in complex with natural ligand 3L0J ; 2.4 ; Crystal structure of orphan nuclear receptor RORgamma in complex with natural ligand 3L0L ; 1.74 ; Crystal structure of orphan nuclear receptor RORgamma in complex with natural ligand 5W82 ; 1.8 ; Crystal structure of Orsay virus delta protein N-terminal fragment (aa 1-101) 4NWV ; 3.25 ; Crystal structure of Orsay virus-like particle 1JJA ; 2.3 ; CRYSTAL STRUCTURE OF ORTHORHOMBIC FORM OF D90E MUTANT OF ESCHERICHIA COLI L-ASPARAGINASE II 1JJ1 ; 1.9 ; CRYSTAL STRUCTURE OF ORTHORHOMBIC LYSOZYME GROWN AT PH 4.6 IN PRESENCE OF 5% SORBITOL 6S7N ; 1.2 ; Crystal structure of orthorhombic lysozyme grown at pH 5.5 with a 26% of solvent content 1F0W ; 1.9 ; CRYSTAL STRUCTURE OF ORTHORHOMBIC LYSOZYME GROWN AT PH 6.5 1F10 ; 1.7 ; CRYSTAL STRUCTURE OF ORTHORHOMBIC LYSOZYME GROWN AT PH 6.5 AT 88% RELATIVE HUMIDITY 6SYE ; 0.97 ; Crystal structure of orthorhombic lysozyme in presence of the dye bromophenol blue at pH 7.0 5XFH ; 1.903 ; Crystal structure of Orysata lectin in complex with biantennary N-glycan 5H3G ; 1.6 ; Crystal Structure of Oryza sativa Acyl-CoA-Binding Protein 1 5H3I ; 2.302 ; Crystal Structure of Oryza sativa Acyl-CoA-Binding Protein 2 3W04 ; 1.45 ; Crystal structure of Oryza sativa DWARF14 (D14) 3W05 ; 1.58 ; Crystal structure of Oryza sativa DWARF14 (D14) in complex with PMSF 4KVK ; 1.98 ; Crystal structure of Oryza sativa fatty acid alpha-dioxygenase 4KVJ ; 2.12 ; Crystal structure of Oryza sativa fatty acid alpha-dioxygenase with hydrogen peroxide 4KVL ; 1.96 ; Crystal structure of Oryza sativa fatty acid alpha-dioxygenase Y379F with palmitic acid 5ZQT ; 2.84 ; Crystal structure of Oryza sativa hexokinase 6 7D6A ; 1.7 ; Crystal structure of Oryza sativa Os4BGlu18 monolignol beta-glucosidase 7D6B ; 2.1 ; Crystal structure of Oryza sativa Os4BGlu18 monolignol beta-glucosidase with delta-gluconolactone 7XOF ; 2.56 ; Crystal structure of Oryza sativa plastid glycyl-tRNA synthetase 6KHO ; 1.972 ; Crystal structure of Oryza sativa TDC with PLP 6KHN ; 2.293 ; Crystal structure of Oryza sativa TDC with PLP and SEROTONIN 6KHP ; 2.299 ; Crystal structure of Oryza sativa TDC with PLP and tryptamine 8CID ; 3.6 ; Crystal structure of Oryza sativa UAM 2 6LK7 ; 1.903 ; crystal structure of Os1348 from Pseudomonas sp. Os17 5TMD ; 2.19 ; Crystal structure of Os79 from O. sativa in complex with U2F and trichothecene. 6BK3 ; 2.17 ; Crystal structure of Os79 from O. sativa in complex with UDP and deoxynivalenol-3-glucoside (glucose moitey not resolved) 5TMB ; 2.34 ; Crystal structure of Os79 from O. sativa in complex with UDP. 5TME ; 1.78 ; Crystal structure of Os79 from O. sativa in complex with UDP. 6BK2 ; 1.68 ; Crystal structure of Os79 H122A/L123A from O. sativa in complex with UDP. 6BK0 ; 1.47 ; Crystal structure of Os79 Q202A from O. sativa in complex with UDP. 6BK1 ; 1.58 ; Crystal structure of Os79 T291V from O. sativa in complex with UDP. 5JCD ; 2.4 ; Crystal structure of OsCEBiP 5JCE ; 2.51 ; Crystal structure of OsCEBiP complex 7XED ; 2.5 ; Crystal Structure of OsCIE1-Ubox and OsUBC8 complex 3VXK ; 1.75 ; Crystal structure of OsD14 5ZHS ; 1.49 ; Crystal structure of OsD14 in complex with covalently bound KK052 5ZHT ; 1.532 ; Crystal structure of OsD14 in complex with covalently bound KK073 5ZHR ; 1.45 ; Crystal structure of OsD14 in complex with covalently bound KK094 5YZ7 ; 1.898 ; Crystal structure of OsD14 in complex with D-ring-opened 7'-carba-4BD 3WIO ; 2.1 ; Crystal structure of OSD14 in complex with hydroxy D-ring 7DK8 ; 1.99 ; Crystal structure of OsGH3-8 with AMP 5H2A ; 1.9 ; Crystal structure of Osh1 ANK domain from Kluyveromyces lactis 5H28 ; 1.5 ; Crystal structure of Osh1 ANK domain from Saccharomyces cerevisia 5WVR ; 2.2 ; Crystal structure of Osh1 ORD domain in complex with cholesterol 5H2D ; 1.6 ; Crystal structure of Osh1 ORD domain in complex with ergosterol 4IC4 ; 1.5 ; Crystal structure of Osh3 ORD from Saccharomyces cerevisiae 4INQ ; 2.2 ; Crystal structure of Osh3 ORD in complex with PI(4)P from Saccharomyces cerevisiae 6JJ4 ; 2.6 ; Crystal structure of OsHXK6-apo form 6JJ8 ; 2.8 ; Crystal structure of OsHXK6-ATP-Mg2+ complex 6JJ7 ; 2.9 ; Crystal structure of OsHXK6-Glc complex 6JJ9 ; 3.0 ; Crystal structure of OsHXK6-Glc-ATP-Mg2+ complex 1NYE ; 2.4 ; Crystal structure of OsmC from E. coli 1LQL ; 2.85 ; Crystal structure of OsmC like protein from Mycoplasma pneumoniae 4MH4 ; 1.9 ; Crystal Structure of OsmC-like protein from Burkholderia cenocepacia J2315 1PCV ; 2.3 ; Crystal structure of osmotin, a plant antifungal protein 4L2J ; 1.61 ; Crystal Structure of Osmotin, an antifungal laticifer protein 2I5V ; 1.1 ; Crystal structure of OspA mutant 3AUM ; 1.6 ; Crystal structure of OspA mutant 7WR4 ; 2.75 ; Crystal structure of OspC3-calmodulin-caspase-4 complex 7WR5 ; 3.1 ; Crystal structure of OspC3-calmodulin-caspase-4 complex binding with 2'-aF-NAD+ 7D3T ; 2.7 ; Crystal structure of OSPHR2 in complex with DNA 3B21 ; 2.01 ; Crystal structure of OspI from Shigella flexineri 5ZCL ; 2.661 ; Crystal structure of OsPP2C50 I267L:OsPYL/RCAR3 with (+)-ABA 5ZCH ; 2.474 ; Crystal structure of OsPP2C50 I267W:OsPYL/RCAR3 with (+)-ABA 5ZCG ; 2.1 ; Crystal structure of OsPP2C50 S265L/I267V:OsPYL/RCAR3 with (+)-ABA 7SFP ; 2.2 ; Crystal structure of OssO, a spirocyclase involved in the biosynthesis of ossamycin 6J0D ; 1.9 ; Crystal structure of OsSUF4 3GA4 ; 1.3 ; Crystal structure of Ost6L (photoreduced form) 6JMN ; 2.5 ; Crystal structure of Ostrinia furnacalis Chitinase h complexed with compound 2-8-s2 3WL0 ; 2.204 ; Crystal structure of Ostrinia furnacalis Group I chitinase catalytic domain E148A mutant in complex with a(GlcNAc)2 3WQV ; 2.043 ; Crystal structure of Ostrinia furnacalis Group I chitinase catalytic domain in complex with a(GlcN)5 3WQW ; 2.0 ; Crystal structure of Ostrinia furnacalis Group I chitinase catalytic domain in complex with a(GlcN)6 3WL1 ; 1.772 ; Crystal structure of Ostrinia furnacalis Group I chitinase catalytic domain in complex with reaction products (GlcNAc)2,3 5Y29 ; 1.8 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 6JAY ; 1.498 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 in complex with a dipyrido-pyrimidine derivative 6JAW ; 1.981 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 in complex with a napthalimide derivative 6JAV ; 1.437 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 in complex with a piperidine-thienopyridine derivative 6JAX ; 1.7 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 in complex with chitooctaose [(GlcN)8] 5Y2B ; 2.2 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 1 in complex with HEPTA-N-ACETYLCHITOOCTAOSE (NAG)7 5Y2A ; 1.9 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 2 5Y2C ; 2.45 ; Crystal structure of Ostrinia furnacalis Group II chitinase catalytic domain 2 E2180L mutant in complex with PENTA-N-ACETYLCHITOOCTAOSE (NAG)5 6JM7 ; 1.572 ; Crystal structure of Ostrinia furnacalis Group IV chitinase 6JM8 ; 1.911 ; Crystal structure of Ostrinia furnacalis Group IV chitinase 6JMB ; 1.389 ; Crystal structure of Ostrinia furnacalis Group IV chitinase in complex with allosamidin 5EE0 ; 2.2 ; Crystal structure of OsYchF1 at pH 6.5 5EE1 ; 2.55 ; Crystal structure of OsYchF1 at pH 7.85 3UOV ; 2.045 ; Crystal Structure of OTEMO (FAD bound form 1) 3UOX ; 1.956 ; Crystal Structure of OTEMO (FAD bound form 2) 3UOY ; 2.0 ; Crystal Structure of OTEMO complex with FAD and NADP (form 1) 3UOZ ; 2.407 ; Crystal Structure of OTEMO complex with FAD and NADP (form 2) 3UP4 ; 2.804 ; Crystal Structure of OTEMO complex with FAD and NADP (form 3) 3UP5 ; 2.453 ; Crystal Structure of OTEMO complex with FAD and NADP (form 4) 4I6L ; 2.488 ; Crystal structure of OTUB1 in complex with ubiquitin variant 3ZNZ ; 1.9 ; Crystal structure of OTULIN OTU domain (C129A) in complex with Met1- di ubiquitin 6I5B ; 2.2 ; Crystal Structure of Outer Cell Wall Cytochrome OcwA 8BZ2 ; 1.7 ; Crystal structure of outer membrane attachment porin OmpM1 SLH domain 1THQ ; 1.9 ; Crystal Structure of Outer Membrane Enzyme PagP 5MDQ ; 2.5 ; Crystal structure of outer membrane expressed Chitoporin VhChip from Vibrio harveyi 5MDS ; 2.6 ; Crystal structure of outer membrane expressed Chitoporin VhChip from Vibrio harveyi in complex with chitotetraose 8T5T ; 1.8 ; Crystal structure of outer membrane lipoprotein carrier protein (LolA) from Borrelia burgdorferi (steric acid bound) 9AZZ ; 2.0 ; Crystal structure of outer membrane lipoprotein carrier protein (LolA) from Ehrlichia ruminantium 8T5J ; 1.55 ; Crystal structure of outer membrane lipoprotein carrier protein (LolA) from Francisella philomiragia 8V1K ; 1.8 ; Crystal structure of outer membrane lipoprotein carrier protein (LolA) from Francisella tularensis 8VEH ; 2.6 ; Crystal structure of outer membrane lipoprotein carrier protein (LolA) from Rickettsia bellii 1I78 ; 2.6 ; CRYSTAL STRUCTURE OF OUTER MEMBRANE PROTEASE OMPT FROM ESCHERICHIA COLI 3VZT ; 2.3 ; Crystal Structure of outer membrane protein PorB from Neisseria meningitidis 3VZU ; 2.9 ; Crystal Structure of outer membrane protein PorB from Neisseria meningitidis in complex with AMP-PNP 3VZW ; 3.2 ; Crystal Structure of outer membrane protein PorB from Neisseria meningitidis in complex with galactose 3A2S ; 2.2 ; Crystal Structure of outer membrane protein PorB from Neisseria meningitidis in complex with sucrose 7DE8 ; 2.76 ; Crystal Structure of outer membrane protein PorB with G103K mutations from Neisseria meningitidis W135 4N74 ; 2.9 ; Crystal Structure of Outer Membrane Protein TamA beta-barrel Domain in E.coli 1OSP ; 1.95 ; CRYSTAL STRUCTURE OF OUTER SURFACE PROTEIN A OF BORRELIA BURGDORFERI COMPLEXED WITH A MURINE MONOCLONAL ANTIBODY FAB 7QDV ; 1.9 ; Crystal structure of outer surface protein BBA14 (OrfD) from Borrelia burgdorferi 1F1M ; 1.8 ; CRYSTAL STRUCTURE OF OUTER SURFACE PROTEIN C (OSPC) 7BML ; 1.85 ; Crystal structure of outer surface protein C (OspC) from Borrelia burgdorferi 7NEN ; 1.98 ; Crystal structure of outer surface protein C (OspC) from Borrelia garinii 7QRN ; 1.83 ; Crystal structure of Ovalbumin-related protein X (OVAX) complexed with fondaparinux 4O1Z ; 2.4 ; Crystal Structure of Ovine Cyclooxygenase-1 Complex with Meloxicam 4LUF ; 2.3 ; Crystal Structure of Ovine Serum Albumin 5Z0Q ; 2.77 ; Crystal Structure of OvoB 3LCE ; 2.0 ; Crystal Structure of Oxa-10 Beta-Lactamase Covalently Bound to Cyclobutanone Beta-Lactam Mimic 6RTN ; 2.17 ; Crystal structure of OXA-10 with VNRX-5133 6ZRH ; 1.88 ; Crystal structure of OXA-10loop24 in complex with ertapenem 6ZRI ; 1.6 ; Crystal structure of OXA-10loop24 in complex with meropenem 6ZRG ; 1.74 ; Crystal structure of OXA-10loop48 in complex with hydrolyzed doripenem 6ZW2 ; 1.75 ; Crystal structure of OXA-10loop48 in complex with hydrolyzed meropenem 4S2L ; 1.72 ; Crystal Structure of OXA-163 beta-lactamase 4S2M ; 2.87 ; Crystal Structure of OXA-163 complexed with iodide in the active site 7KHZ ; 2.04 ; Crystal structure of OXA-163 K73A in complex with imipenem 7KHY ; 1.84 ; Crystal structure of OXA-163 K73A in complex with meropenem 5HFO ; 2.21 ; CRYSTAL STRUCTURE OF OXA-232 BETA-LACTAMASE 3ZNT ; 1.95 ; Crystal structure of OXA-24 class D beta-lactamase with tazobactam 5FDH ; 2.26 ; CRYSTAL STRUCTURE OF OXA-405 BETA-LACTAMASE 6HUH ; 2.78 ; CRYSTAL STRUCTURE OF OXA-427 class D BETA-LACTAMASE 4GN2 ; 2.01 ; Crystal Structure of OXA-45, a Class D beta-lactamase with extended spectrum activity 3IF6 ; 2.4 ; Crystal structure of OXA-46 beta-lactamase from P. aeruginosa 3HBR ; 1.9 ; Crystal structure of OXA-48 beta-lactamase 7AUX ; 2.05 ; Crystal structure of OXA-48 beta-lactamase in the complex with the inhbitor ID2 7AW5 ; 1.65 ; Crystal structure of OXA-48 beta-lactamase in the complex with the inhibitor ID3 7KH9 ; 2.29 ; Crystal structure of OXA-48 K73A in complex with imipenem 7KHQ ; 2.0 ; Crystal structure of OXA-48 K73A in complex with meropenem 6PK0 ; 1.75 ; Crystal Structure of OXA-48 with Hydrolyzed Imipenem 6HB8 ; 1.86 ; Crystal structure of OXA-517 beta-lactamase 4OH0 ; 1.3 ; Crystal structure of OXA-58 carbapenemase 4Z9Q ; 2.23 ; Crystal structure of OXA-58 with disordered active site 5BOH ; 1.8 ; Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State 4Y0O ; 2.37 ; Crystal structure of OXA-58, a carbapenem hydrolyzing Class D beta-lactamase from Acinetobacter baumanii. 5MMY ; 1.88 ; Crystal structure of OXA10 with HEPES 5W7P ; 2.4 ; Crystal structure of OxaC 5W7R ; 2.497 ; Crystal structure of OxaC in complex with SAH and oxaline 5W7S ; 2.948 ; Crystal structure of OxaC in complex with sinefungin and meleagrin 5W7K ; 1.994 ; Crystal structure of OxaG 1J58 ; 1.75 ; Crystal Structure of Oxalate Decarboxylase 1UW8 ; 2.0 ; CRYSTAL STRUCTURE OF OXALATE DECARBOXYLASE 1L3J ; 1.9 ; Crystal Structure of Oxalate Decarboxylase Formate Complex 5EXD ; 2.5 ; Crystal structure of oxalate oxidoreductase from Moorella thermoacetica bound with carboxy-di-oxido-methyl-TPP (COOM-TPP) intermediate 5EXE ; 1.88 ; Crystal structure of oxalate oxidoreductase from Moorella thermoacetica bound with carboxy-TPP adduct 3LYE ; 1.3 ; Crystal structure of oxaloacetate acetylhydrolase 4WLO ; 2.5 ; Crystal structure of oxaloacetate and NADH bound MDH2 3B8I ; 1.9 ; Crystal Structure of Oxaloacetate Decarboxylase from Pseudomonas Aeruginosa (PA4872) in complex with oxalate and Mg2+. 2Q27 ; 2.12 ; Crystal structure of oxalyl-coA decarboxylase from Escherichia coli 2Q29 ; 1.82 ; Crystal structure of oxalyl-coA decarboxylase from Escherichia coli in complex with acetyl coenzyme A 2Q28 ; 1.74 ; Crystal structure of oxalyl-coA decarboxylase from Escherichia coli in complex with adenosine-5`-diphosphate 2C31 ; 1.73 ; CRYSTAL STRUCTURE OF OXALYL-COA DECARBOXYLASE IN COMPLEX WITH THE COFACTOR DERIVATIVE THIAMIN-2-THIAZOLONE DIPHOSPHATE AND ADENOSINE DIPHOSPHATE 2QRL ; 1.6 ; Crystal Structure of Oxalylglycine-bound Saccharopine Dehydrogenase (L-Lys Forming) from Saccharomyces cerevisiae 7F30 ; 2.0 ; Crystal structure of OxdB E85A in complex with Z-2- (3-bromophenyl) propanal oxime 7F2Y ; 1.55 ; Crystal structure of OxdB E85A mutant (form I) 7F2Z ; 2.3 ; Crystal structure of OxdB E85A mutant (form II) 8I1M ; 1.699 ; Crystal structure of oxidated APSK1 domain from human PAPSS1 in complex with APS and ADP 3W2F ; 1.76 ; Crystal structure of oxidation intermediate (10 min) of NADH-cytochrome b5 reductase from pig liver 3W2H ; 1.752 ; Crystal structure of oxidation intermediate (1min) of NADH-cytochrome b5 reductase from pig liver 3W2E ; 2.1 ; Crystal structure of oxidation intermediate (20 min) of NADH-cytochrome b5 reductase from pig liver 6GAR ; 2.4 ; Crystal structure of oxidised ferredoxin/flavodoxin NADP+ oxidoreductase 1 (FNR1) from Bacillus cereus 6GAS ; 2.4 ; Crystal structure of oxidised ferredoxin/flavodoxin NADP+ oxidoreductase 2 (FNR2) from Bacillus cereus 6FSG ; 1.27 ; Crystal structure of oxidised Flavodoxin 1 from Bacillus cereus (1.27 A resolution) 6FT1 ; 1.4 ; Crystal structure of oxidised Flavodoxin 1 from Bacillus cereus (1.4 A resolution) 6GAQ ; 2.5 ; Crystal structure of oxidised Flavodoxin 2 from Bacillus cereus 4YF6 ; 3.002 ; Crystal structure of oxidised Rv1284 3HOM ; 2.3 ; Crystal structure of oxidized A66C mutant of Human acidic fibroblast growth factor 6LYX ; 1.696 ; Crystal structure of oxidized ACHT1 1Z8U ; 2.4 ; Crystal structure of oxidized alpha hemoglobin bound to AHSP 6R7P ; 3.22 ; Crystal structure of oxidized Aquifex aeolicus NADH-quinone oxidoreductase subunits NuoE and NuoF S96M 5VWU ; 2.75 ; Crystal structure of oxidized Aspergillus fumigatus UDP-galactopyranose mutase complexed with NADH 5VWT ; 2.75 ; Crystal structure of oxidized Aspergillus fumigatus UDP-galactopyranose mutase complexed with NADPH 3ICR ; 2.1 ; Crystal structure of oxidized Bacillus anthracis CoADR-RHD 1XLN ; 2.03 ; Crystal structure of oxidized C73S/C85S putidaredoxin, a [2Fe-2S] ferredoxin from Pseudomonas putida 5B8A ; 2.7 ; Crystal structure of oxidized chimeric EcAhpC1-186-YFSKHN 2H6B ; 2.2 ; Crystal structure of oxidized CprK in complex with o-chlorophenolacetic acid 5YRC ; 1.67 ; Crystal Structure of Oxidized Cypovirus Polyhedra R13A/E73C/Y83C Mutant 5YRB ; 1.65 ; Crystal Structure of Oxidized Cypovirus Polyhedra R13A/E73C/Y83C/S193C/A194C Mutant 5YRD ; 1.85 ; Crystal Structure of Oxidized Cypovirus Polyhedra R13A/S193C/A194C Mutant 1GU2 ; 1.19 ; Crystal structure of oxidized cytochrome c'' from Methylophilus methylotrophus 1C6O ; 2.0 ; CRYSTAL STRUCTURE OF OXIDIZED CYTOCHROME C6 FROM THE GREEN ALGAE SCENEDESMUS OBLIQUUS 2DGE ; 1.5 ; Crystal structure of oxidized cytochrome C6A from Arabidopsis thaliana 3F0L ; 1.3 ; Crystal structure of oxidized D105N Synechocystis sp. PcyA 5H2G ; 2.0 ; Crystal structure of oxidized DapF from Corynebacterium glutamicum 5D9V ; 1.69 ; Crystal structure of oxidized dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica 2FCR ; 1.8 ; CRYSTAL STRUCTURE OF OXIDIZED FLAVODOXIN FROM A RED ALGA CHONDRUS CRISPUS REFINED AT 1.8 ANGSTROMS RESOLUTION: DESCRIPTION OF THE FLAVIN MONONUCLEOTIDE BINDING SITE 2FA4 ; 2.38 ; Crystal Structure of Oxidized Form from Saccharomyces cerevisiae 4N44 ; 1.77 ; Crystal structure of oxidized form of thiolase from Clostridium acetobutylicum 4XL2 ; 1.77 ; Crystal structure of oxidized form of thiolase from Clostridium acetobutylicum 7NCW ; 2.4 ; Crystal structure of oxidized glutaredoxin 2 from Chlamydomonas reinhardtii 3C1R ; 2.0 ; Crystal structure of oxidized GRX1 3CTF ; 2.1 ; Crystal structure of oxidized GRX2 3NB8 ; 1.3 ; Crystal structure of oxidized H88Q Synechocystis sp. PCYA 4M90 ; 1.6 ; crystal structure of oxidized hN33/Tusc3 4YDR ; 1.6 ; Crystal structure of oxidized homoserine dehydrogenase of Sulfolobus tokodaii 4EL1 ; 2.883 ; Crystal structure of oxidized hPDI (abb'xa') 2COG ; 2.1 ; Crystal structure of oxidized human cytosolic branched-chain aminotransferase complexed with 4-methylvalerate 2COI ; 1.9 ; Crystal structure of oxidized human cytosolic branched-chain aminotransferase complexed with gabapentin 3U9J ; 1.603 ; Crystal structure of oxidized human FBXL5 hemerythrin like domain 4ENO ; 2.8 ; Crystal structure of oxidized human nm23-H1 6Q1B ; 1.596 ; Crystal structure of oxidized iodotyrosine deiodinase (IYD) bound to FMN and 3-fluoro-L-tyrosine 6Q1L ; 1.6 ; Crystal structure of oxidized iodotyrosine deiodinase (IYD) bound to FMN and 3-iodo-L-tyrosine 6PZ0 ; 1.8 ; Crystal structure of oxidized iodotyrosine deiodinase (IYD) bound to FMN and L-Tyrosine 4N6N ; 1.87 ; Crystal structure of oxidized legumain in complex with cystatin E/M 1OSD ; 2.0 ; crystal structure of Oxidized MerP from Ralstonia metallidurans CH34 3G7Y ; 2.215 ; Crystal structure of oxidized Ost6L 6KEW ; 2.29 ; Crystal structure of oxidized phosphoribulokinase from Arabidopsis thaliana 4NMC ; 1.901 ; Crystal structure of oxidized proline utilization A (PutA) from Geobacter sulfurreducens PCA complexed with Zwittergent 3-12 5K2I ; 1.481 ; Crystal structure of Oxidized Prx3 from Vibrio vulnificus 1M70 ; 1.25 ; Crystal structure of oxidized recombinant cytochrome c4 from Pseudomonas stutzeri 8QG1 ; 2.0 ; Crystal structure of oxidized respiratory Complex I subunits NuoEF from Aquifex aeolicus bound to ADP-ribose 8QGW ; 1.6 ; Crystal structure of oxidized respiratory Complex I subunits NuoEF from Aquifex aeolicus bound to oxidized 3-acetylpyridine adenine dinucleotide 4GL4 ; 1.8 ; Crystal structure of oxidized S-nitrosoglutathione reductase from Arabidopsis thalina, complex with NADH 2XC2 ; 1.56 ; Crystal structure of oxidized Schistosoma mansoni Thioredoxin pre- protein at 1.6 Angstrom 4B5N ; 1.1 ; Crystal structure of oxidized Shewanella Yellow Enzyme 4 (SYE4) 5K1K ; 1.301 ; Crystal structure of oxidized Shewanella Yellow Enzyme 4 (SYE4) in complex with p-hydroxybenzaldehyde 5K1M ; 1.5 ; Crystal structure of oxidized Shewanella Yellow Enzyme 4 (SYE4) in complex with p-methoxyphenol 5K1Q ; 1.55 ; Crystal structure of oxidized Shewanella Yellow Enzyme 4 (SYE4) in complex with p-methylphenol 5K1W ; 1.6 ; Crystal structure of oxidized Shewanella Yellow Enzyme 4 (SYE4) in complex with trinitrophenol 3QHB ; 1.2 ; Crystal structure of oxidized Symerythrin from Cyanophora paradoxa 3SID ; 1.4 ; Crystal structure of oxidized Symerythrin from Cyanophora paradoxa, azide adduct at 50% occupancy 1XR2 ; 2.35 ; Crystal Structure of oxidized T. maritima Cobalamin-Independent Methionine Synthase complexed with Methyltetrahydrofolate 2YZU ; 1.9 ; Crystal structure of oxidized thioredoxin from Thermus thermophilus HB8 4DSG ; 2.249 ; Crystal Structure of oxidized UDP-Galactopyranose mutase 5EQF ; 2.145 ; Crystal structure of oxidized UDP-galactopyranose mutase from Corynebacterium diphtheriae with UDP bound in closed form 7KM4 ; 2.65 ; Crystal Structure of Oxidized Version of Redox-Sensitive Superfolder Green Fluorescent Protein 1Z41 ; 1.3 ; Crystal structure of oxidized YqjM from Bacillus subtilis 1Z42 ; 1.85 ; Crystal structure of oxidized YqjM from Bacillus subtilis complexed with p-hydroxybenzaldehyde 1Z44 ; 1.4 ; Crystal structure of oxidized YqjM from Bacillus subtilis complexed with p-nitrophenol 3BIO ; 1.8 ; Crystal structure of oxidoreductase (Gfo/Idh/MocA family member) from Porphyromonas gingivalis W83 5WJS ; 2.15 ; Crystal structure of oxidoreductase (short chain dehydrogenase/reductase family) from Burkholderia thailandensis complexed with NADH 1ZH8 ; 2.5 ; Crystal structure of Oxidoreductase (TM0312) from Thermotoga maritima at 2.50 A resolution 4H3V ; 1.68 ; Crystal structure of oxidoreductase domain protein from Kribbella flavida 2REM ; 1.9 ; Crystal Structure of oxidoreductase DsbA from Xylella fastidiosa 4JXK ; 2.0 ; Crystal Structure of Oxidoreductase ROP_24000 (Target EFI-506400) from Rhodococcus opacus B4 6N1F ; 2.05 ; Crystal structure of Oxidoreductase, 2OG-Fe(II) oxygenase family, from Burkholderia pseudomallei 2HO5 ; 2.56 ; Crystal structure of Oxidoreductase, Gfo/Idh/MocA family from Streptococcus pneumoniae 4IQ0 ; 2.0 ; Crystal structure of oxidoreductase, Gfo/Idh/MocA family from Streptococcus pneumoniae with reductive methylated Lysine 8QC3 ; 2.65 ; Crystal structure of oxidoreductive sulfoquinovosidase from Arthrobacter sp. U41 (ArSqgA)in complex with co-factor NAD+ 5KHY ; 3.501 ; Crystal structure of oxime-linked K6 diubiquitin 3TYH ; 2.1 ; Crystal structure of oxo-cupper clusters binding to ferric binding protein from Neisseria gonorrhoeae 7VRF ; 1.7 ; Crystal structure of Oxpecker chromodomain in complex with H3K9me3 1F65 ; 1.7 ; CRYSTAL STRUCTURE OF OXY SPERM WHALE MYOGLOBIN MUTANT Y(B10)Q(E7)R(E10) 3BCQ ; 2.4 ; Crystal structure of oxy-hemoglobin from Brycon cephalus 1R1X ; 2.15 ; Crystal structure of oxy-human hemoglobin Bassett at 2.15 angstrom 7L3Y ; 1.18 ; Crystal structure of oxy-I107E CuB myoglobin (I107E L29H F43H sperm whale myoglobin; partial occupancy) 1LFK ; 1.7 ; Crystal structure of OxyB, a Cytochrome P450 Implicated in an Oxidative Phenol Coupling Reaction During Vancomycin Biosynthesis 1LG9 ; 2.0 ; Crystal structure of OxyB, a Cytochrome P450 Implicated in an Oxidative Phenol Coupling Reaction During Vancomycin Biosynthesis 1LGF ; 2.2 ; Crystal structure of OxyB, a Cytochrome P450 Implicated in an Oxidative Phenol Coupling Reaction During Vancomycin Biosynthesis 1UED ; 1.9 ; Crystal Structure of OxyC a Cytochrome P450 Implicated in an Oxidative C-C Coupling Reaction During Vancomycin Biosynthesis. 3S1I ; 1.77 ; Crystal structure of oxygen-bound hell's gate globin I 8T7W ; 1.55 ; Crystal structure of Oxygen-dependent coproporphyrinogen-III oxidase (hemF) from Klebsiella aerogenes 4YUU ; 2.77 ; Crystal structure of oxygen-evolving photosystem II from a red alga 1HBI ; 1.7 ; CRYSTAL STRUCTURE OF OXYGENATED SCAPHARCA DIMERIC HEMOGLOBIN AT 1.7 ANGSTROMS RESOLUTION 3HO7 ; 1.58 ; Crystal structure of OxyR from Porphyromonas gingivalis 3T22 ; 2.2 ; Crystal structure of OxyR mutant from Porphyromonas gingivalis 8J48 ; 1.94 ; Crystal structure of OY phytoplasma SAP05 in complex with AtGATA18 8J4A ; 1.97 ; Crystal structure of OY phytoplasma SAP05 in complex with AtRPN10 8J4B ; 2.0 ; Crystal structure of OY phytoplasma SAP05 in complex with AtSPL13 8J49 ; 1.66 ; Crystal structure of OY phytoplasma SAP05 in complex with AtSPL5 3PUM ; 2.252 ; Crystal structure of P domain dimer of Norovirus VA207 3PVD ; 1.9 ; Crystal structure of P domain dimer of Norovirus VA207 complexed with 3'-sialyl-Lewis x tetrasaccharide 3PUN ; 2.05 ; Crystal structure of P domain dimer of Norovirus VA207 with Lewis y tetrasaccharide 6J0Q ; 2.0 ; Crystal structure of P domain from GII.11 swine norovirus 3ASP ; 1.6 ; Crystal structure of P domain from Norovirus Funabashi258 stain in the complex with A-antigen 3ASQ ; 1.6 ; Crystal structure of P domain from Norovirus Funabashi258 stain in the complex with H-antigen 3ASR ; 1.6 ; Crystal structure of P domain from Norovirus Funabashi258 stain in the complex with Lewis-a 3ASS ; 1.6 ; Crystal structure of P domain from Norovirus Funabashi258 stain in the complex with Lewis-b 8I5L ; 2.7 ; Crystal structure of P domain from norovirus GI.4 capsid protein in complex with broad specificity antibody single-chain Fv fragment CV-2F5. 7VS8 ; 2.4 ; Crystal structure of P domain from norovirus GI.9 capsid protein in complex with Lewis b antigen. 7VS9 ; 2.26 ; Crystal structure of P domain from norovirus GI.9 capsid protein in complex with Lewis x antigen. 7VP0 ; 2.1 ; Crystal structure of P domain from norovirus GI.9 capsid protein. 4OOV ; 1.53 ; Crystal structure of P domain from norovirus strain Farmington Hills 2004 4X05 ; 1.98 ; Crystal structure of P domain from norovirus strain Farmington Hills 2004 in complex with HBGA type B (triglycan) 4OPS ; 1.76 ; Crystal structure of P domain from norovirus strain Farmington Hills 2004 in complex with HBGA type Leb (tetraglycan) 4OOS ; 1.64 ; Crystal structure of P domain from norovirus strain NSW0514 4WZT ; 1.91 ; Crystal structure of P domain from norovirus strain NSW0514 in complex with HBGA type A (triglycan) 4OP7 ; 1.92 ; Crystal structure of P domain from norovirus strain NSW0514 in complex with HBGA type B (triglycan) 4X0C ; 1.72 ; Crystal structure of P domain from norovirus strain NSW0514 in complex with HBGA type Lex (triglycan) 4OOX ; 1.2 ; Crystal structure of P domain from norovirus strain Saga4 4X07 ; 1.46 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type A (triglycan) 4X06 ; 1.218 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type B (triglycan) 4WZK ; 1.49 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type H2 (triglycan) 4WZL ; 1.7 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type Lea (triglycan) 4OPO ; 1.4 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type Leb (tetraglycan) 4WZE ; 1.46 ; Crystal structure of P domain from norovirus strain Saga4 in complex with HBGA type Ley (tetraglycan) 3ONU ; 1.395 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 3Q6Q ; 1.43 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with disordered HBGA type Lea 3Q6R ; 1.4 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with disordered HBGA type Lex 3ONY ; 1.85 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with Fucose 3PA1 ; 1.48 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with HBGA type A 3Q38 ; 1.28 ; Crystal structure of P domain from norwalk virus strain vietnam 026 in complex with HBGA type B (triglycan) 3Q39 ; 1.25 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with HBGA type H2 (diglycan) 3Q3A ; 1.4 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with HBGA type H2 (triglycan) 3PA2 ; 1.48 ; Crystal Structure of P Domain from Norwalk Virus Strain Vietnam 026 in complex with HBGA type Ley 4RPD ; 1.51 ; Crystal Structure of P Domain of 485 Norovirus 4ROX ; 1.89 ; Crystal Structure of P Domain of Hawaii Norovirus (GII.1) 4RPB ; 1.61 ; Crystal Structure of P Domain of Snow Mountain Norovirus 3AST ; 1.4 ; Crystal structure of P domain Q389N mutant from Norovirus Funabashi258 stain in the complex with Lewis-b 1ZH6 ; 2.5 ; Crystal Structure of p-acetylphenylalanine-tRNA synthetase in complex with p-acetylphenylalanine 4ZJ1 ; 1.54 ; Crystal Structure of p-acrylamido-phenylalanine modified TEM1 beta-lactamase from Escherichia coli : V216AcrF mutant 4ZJ2 ; 1.8 ; Crystal Structure of p-acrylamido-phenylalanine modified TEM1 beta-lactamase from Escherichia coli :E166N mutant 2AG6 ; 1.9 ; Crystal structure of p-bromo-l-phenylalanine-tRNA sythetase in complex with p-bromo-l-phenylalanine 2GC9 ; 1.7 ; Crystal structure of p-coumaric acid decarboxylase (NP_786857.1) from Lactobacillus plantarum at 1.70 A resolution 2W2A ; 1.38 ; Crystal Structure of p-coumaric Acid Decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism 1DII ; 2.5 ; CRYSTAL STRUCTURE OF P-CRESOL METHYLHYDROXYLASE AT 2.5 A RESOLUTION 1DIQ ; 2.75 ; CRYSTAL STRUCTURE OF P-CRESOL METHYLHYDROXYLASE WITH SUBSTRATE BOUND 5X3O ; 2.194 ; Crystal structure of p-DiUb-S65-COOH 1PHH ; 2.3 ; CRYSTAL STRUCTURE OF P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH ITS REACTION PRODUCT 3,4-DIHYDROXYBENZOATE 1PDH ; 2.1 ; CRYSTAL STRUCTURE OF P-HYDROXYBENZOATE HYDROXYLASE RECONSTITUTED WITH THE MODIFIED FAD PRESENT IN ALCOHOL OXIDASE FROM METHYLOTROPHIC YEASTS: EVIDENCE FOR AN ARABINOFLAVIN 5DAM ; 1.95 ; Crystal Structure of p-iodoHoechst bound to d(CGCAAATTTGCG) 3QJY ; 2.35 ; Crystal structure of P-loop G234A mutant of subunit A of the A1AO ATP synthase 3QIA ; 2.6 ; Crystal structure of P-loop G237A mutant of subunit A of the A1AO ATP synthase 3QG1 ; 2.95 ; Crystal structure of P-loop G239A mutant of subunit A of the A1AO ATP synthase 6AIN ; 2.48 ; Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4 6AIO ; 2.04 ; Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4 1G1Q ; 2.4 ; Crystal structure of P-selectin lectin/EGF domains 1G1R ; 3.4 ; Crystal structure of P-selectin lectin/EGF domains complexed with SLeX 4OGR ; 3.0 ; crystal structure of P-TEFb complex with AFF4 and Tat 5X3M ; 1.818 ; crystal structure of p-Ub-S65-NH2 2V94 ; 1.9 ; Crystal structure of P. abyssi RPS24 6F8Y ; 2.86 ; Crystal structure of P. abyssi Sua5 complexed with L-threonine 6F87 ; 2.62 ; Crystal structure of P. abyssi Sua5 complexed with L-threonine and PPi 3LGA ; 2.05 ; Crystal structure of P. abyssi tRNA m1A58 methyltransferase in complex with S-adenosyl-L-homocysteine 3LHD ; 2.59 ; Crystal structure of P. abyssi tRNA m1A58 methyltransferase in complex with S-adenosyl-L-homocysteine 3MB5 ; 1.6 ; Crystal structure of P. abyssi tRNA m1A58 methyltransferase in complex with S-adenosyl-L-methionine 3U25 ; 1.18 ; Crystal structure of P. aeruginoas azurin containing a Tyr-His hydrogen bonded pair 3U9S ; 3.5 ; Crystal structure of P. aeruginosa 3-methylcrotonyl-CoA carboxylase (MCC) 750 kD holoenzyme, CoA complex 3U9T ; 2.9 ; Crystal structure of P. aeruginosa 3-methylcrotonyl-CoA carboxylase (MCC) 750 kD holoenzyme, free enzyme 3U9R ; 1.5 ; Crystal structure of P. aeruginosa 3-methylcrotonyl-CoA carboxylase (MCC), beta subunit 4WYY ; 1.28 ; Crystal Structure of P. aeruginosa AmpC 4WZ4 ; 1.05 ; Crystal structure of P. aeruginosa AmpC 3G6O ; 2.85 ; Crystal structure of P. aeruginosa bacteriophytochrome PaBphP photosensory core domain mutant Q188L 3IBR ; 2.97 ; Crystal Structure of P. aeruginosa Bacteriophytochrome Photosensory Core Module Mutant Q188L in the Mixed Pr/Pfr State 4E37 ; 2.53 ; Crystal Structure of P. aeruginosa catalase, KatA tetramer 5IKL ; 2.4 ; Crystal structure of P. aeruginosa geranyl-CoA carboxylase (GCC), beta subunit 7K9A ; 2.0 ; Crystal Structure of P. aeruginosa LpxC with N-Hydroxyformamide inhibitor 7K99 ; 1.9 ; Crystal Structure of P. aeruginosa LpxC with N-Hydroxyformamide inhibitor 19 4JAY ; 2.23 ; Crystal structure of P. aeruginosa MurB in complex with NADP+ 4JB1 ; 2.1 ; Crystal structure of P. aeruginosa MurB in complex with NADP+ 1N2F ; 2.01 ; CRYSTAL STRUCTURE OF P. AERUGINOSA OHR 4WZ5 ; 1.6 ; Crystal structure of P. aeruginosa OXA10 1LRY ; 2.6 ; Crystal Structure of P. aeruginosa Peptide Deformylase Complexed with Antibiotic Actinonin 4FYJ ; 1.77 ; Crystal Structure of P. aeruginosa peptidyl-tRNA hydrolase 3JVV ; 2.6 ; Crystal Structure of P. aeruginosa PilT with bound AMP-PCP 6SW2 ; 1.7 ; Crystal Structure of P. aeruginosa PqsL in complex with 2-aminobenzoylacetate 6SW1 ; 1.8 ; Crystal Structure of P. aeruginosa PqsL: R41Y, I43R, G45R, C105G mutant 4R0S ; 2.03 ; Crystal structure of P. aeruginosa TpbA 4R0T ; 2.603 ; Crystal structure of P. aeruginosa TpbA (C132S) in complex with pTyr 8B62 ; 2.02 ; Crystal Structure of P. aeruginosa WaaG in complex with UDP-galactose 8B63 ; 2.2 ; Crystal Structure of P. aeruginosa WaaG in complex with UDP-GalNAc 8B5S ; 1.95 ; Crystal Structure of P. aeruginosa WaaG in complex with UDP-glucose 8B5Q ; 2.0 ; Crystal Structure of P. aeruginosa WaaG in complex with UMP 1M8P ; 2.6 ; Crystal Structure of P. chrysogenum ATP Sulfurylase in the T-state 3SL0 ; 1.997 ; Crystal Structure of P. falciparum arginase complexed with 2-amino-6-borono-2-(difluoromethyl)hexanoic acid 3SL1 ; 1.902 ; Crystal Structure of P. falciparum arginase complexed with 2-amino-6-borono-2-methylhexanoic acid 5T8U ; 2.324 ; Crystal structure of P. falciparum LipL1 in complex lipoate 4H02 ; 2.905 ; Crystal structure of P. falciparum Lysyl-tRNA synthetase 3S9Y ; 1.7 ; Crystal Structure of P. falciparum orotidine 5'-monophosphate decarboxylase complexed with 5-fluoro-6-amino-UMP in space group P21, produced from 5-fluoro-6-azido-UMP 3BPW ; 1.7 ; Crystal Structure of P. falciparum Orotidine 5'-monophosphate Decarboxylase Complexed with XMP 3DSC ; 2.7 ; Crystal structure of P. furiosus Mre11 DNA synaptic complex 1II7 ; 2.2 ; Crystal structure of P. furiosus Mre11 with manganese and dAMP 3DSD ; 2.2 ; Crystal structure of P. furiosus Mre11-H85S bound to a branched DNA and manganese 3CG1 ; 1.6 ; Crystal structure of P. furiosus periplasmic binding protein ModA/WtpA with bound tungstate 3CG3 ; 1.8 ; Crystal structure of P. horikoshii periplasmic binding protein ModA/WtpA with bound tungstate 2YX0 ; 2.21 ; Crystal structure of P. horikoshii TYW1 3A25 ; 2.3 ; Crystal structure of P. horikoshii TYW2 in complex with AdoMet 3A26 ; 2.5 ; Crystal structure of P. horikoshii TYW2 in complex with MeSAdo 3RYW ; 2.9 ; Crystal structure of P. vivax geranylgeranyl diphosphate synthase complexed with BPH-811 7CI4 ; 2.0 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CI5 ; 2.5 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CI6 ; 2.7 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CI7 ; 2.1 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CI8 ; 3.0 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CI9 ; 1.9 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CIA ; 1.92 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CIB ; 1.61 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CIC ; 1.78 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CID ; 2.49 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7CIE ; 2.15 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7DEL ; 2.15 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7DEM ; 1.9 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 7DEN ; 2.07 ; Crystal structure of P.aeruginosa LpxC in complex with inhibitor 3BRE ; 2.4 ; Crystal Structure of P.aeruginosa PA3702 4L0L ; 2.1 ; Crystal structure of P.aeruginosa PBP3 in complex with compound 4 1IX1 ; 1.85 ; Crystal Structure of P.aeruginosa Peptide deformylase Complexed with Antibiotic Actinonin 7TCL ; 1.97 ; Crystal structure of P.IsnB complexed with tyrosine isonitrile 1XTL ; 2.0 ; Crystal structure of P104H mutant of SOD-like protein from Bacillus subtilis. 4HRG ; 2.0001 ; Crystal Structure of p11-Annexin A2(N-terminal) Fusion Protein in Complex with AHNAK1 Peptide 4HRH ; 3.001 ; Crystal Structure of p11-Annexin A2(N-terminal) Fusion Protein in Complex with SMARCA3 Peptide 4HRE ; 2.7852 ; Crystal Structure of p11/Annexin A2 Heterotetramer in Complex with SMARCA3 Peptide 4L1B ; 2.586 ; Crystal Structure of p110alpha complexed with niSH2 of p85alpha 4L2Y ; 2.8 ; Crystal Structure of p110alpha complexed with niSH2 of p85alpha and compound 9d 4L23 ; 2.501 ; Crystal Structure of p110alpha complexed with niSH2 of p85alpha and PI-103 3HIZ ; 3.3 ; Crystal structure of p110alpha H1047R mutant in complex with niSH2 of p85alpha 3HHM ; 2.8 ; Crystal structure of p110alpha H1047R mutant in complex with niSH2 of p85alpha and the drug wortmannin 4A55 ; 3.5 ; Crystal structure of p110alpha in complex with iSH2 of p85alpha and the inhibitor PIK-108 4OVU ; 2.96 ; Crystal Structure of p110alpha in complex with niSH2 of p85alpha 2Y3A ; 3.3 ; Crystal structure of p110beta in complex with icSH2 of p85beta and the drug GDC-0941 5H0Z ; 1.735 ; Crystal structure of P113A mutated human transthyretin 1IAP ; 1.9 ; CRYSTAL STRUCTURE OF P115RHOGEF RGRGS DOMAIN 3AB3 ; 2.4 ; Crystal structure of p115RhoGEF RGS domain in complex with G alpha 13 3L6X ; 2.4 ; Crystal structure of p120 catenin in complex with E-cadherin 3L6Y ; 3.0 ; Crystal structure of p120 catenin in complex with E-cadherin 8DGQ ; 1.95 ; Crystal structure of p120RasGAP SH2-SH3-SH2 in complex with p190RhoGAP doubly phosphorylated peptide 1OYH ; 2.62 ; Crystal Structure of P13 Alanine Variant of Antithrombin 2HIJ ; 2.9 ; Crystal Structure of P14 Alanine Variant of Antithrombin 1VET ; 1.9 ; Crystal Structure of p14/MP1 at 1.9 A resolution 2G0F ; 2.2 ; Crystal Structure of P144A mutant of E.coli CcmG protein 1JSG ; 2.5 ; CRYSTAL STRUCTURE OF P14TCL1, AN ONCOGENE PRODUCT INVOLVED IN T-CELL PROLYMPHOCYTIC LEUKEMIA, REVEALS A NOVEL B-BARREL TOPOLOGY 2HQH ; 1.8 ; Crystal structure of p150Glued and CLIP-170 1IHB ; 1.95 ; CRYSTAL STRUCTURE OF P18-INK4C(INK6) 1R9F ; 1.85 ; Crystal structure of p19 complexed with 19-bp small interfering RNA 4J39 ; 1.7 ; Crystal structure of p19 in complex with double-helical 19mer RNA p(CAG)3C(CUG)3 4J5V ; 2.15 ; Crystal structure of p19 in complex with double-helical RNA 19mer p(CAG)3C(CCG)3 7MW7 ; 1.1 ; Crystal structure of P1G mutant of D-dopachrome tautomerase 4PKZ ; 1.9 ; Crystal structure of P1M mutant of Macrophage Migration Inhibitory Factor 2XCJ ; 1.8 ; Crystal structure of P2 C, the immunity repressor of temperate E. coli phage P2 2ZPK ; 1.8 ; Crystal structure of P20.1 Fab fragment in complex with its antigen peptide 5XCQ ; 1.313 ; Crystal structure of P20.1 Fv-clasp fragment with its antigen peptide 5XCR ; 1.75 ; Crystal structure of P20.1 Fv-clasp fragment with its antigen peptide 5XCT ; 1.17 ; Crystal structure of P20.1 Fv-clasp fragment with its antigen peptide 4L5Q ; 2.23 ; Crystal structure of p202 HIN1 4L5R ; 1.873 ; Crystal structure of p202 HIN1 in complex with 20-mer dsDNA 6OE9 ; 1.94 ; Crystal structure of p204 HIN1 domain 5YZP ; 1.581 ; Crystal structure of p204 HINa domain 5YZW ; 2.001 ; Crystal structure of p204 HINb domain 4ZY4 ; 2.6 ; Crystal structure of P21 activated kinase 1 in complex with an inhibitor compound 4 5IME ; 2.217 ; Crystal structure of P21-activated kinase 1 (PAK1) in complex with compound 9 4ZY5 ; 2.35 ; Crystal Structure of p21-activated kinase 1 in complex with an inhibitor compound 17 4ZY6 ; 2.15 ; Crystal structure of P21-activated kinase 1 in complex with an inhibitor compound 29 5BMS ; 2.903 ; Crystal structure of P21-activated kinase 4 in complex with an inhibitor compound 29 6SXN ; 2.66 ; Crystal structure of P212121 apo form of CrtE 2ANV ; 1.04 ; crystal structure of P22 lysozyme mutant L86M 1TSP ; 2.0 ; CRYSTAL STRUCTURE OF P22 TAILSPIKE PROTEIN: INTERDIGITATED SUBUNITS IN A THERMOSTABLE TRIMER 3WOE ; 2.351 ; Crystal structure of P23-45 gp39 (6-109) bound to Thermus thermophilus RNA polymerase beta-flap domain 3WOF ; 3.298 ; Crystal structure of P23-45 gp39 (6-132) bound to Thermus thermophilus RNA polymerase beta-flap domain 5AZW ; 1.5 ; Crystal structure of p24beta1 GOLD domain 5AZX ; 1.58 ; Crystal structure of p24delta1 GOLD domain (native 1) 5AZY ; 1.8 ; Crystal structure of p24delta1 GOLD domain (Native 2) 5GU5 ; 2.8 ; Crystal structure of p24gamma2 GOLD domain determined by sulfur-SAD 1XCF ; 1.8 ; Crystal structure of P28L/Y173F tryptophan synthase alpha-subunits from Escherichia coli 4PXZ ; 2.5 ; Crystal structure of P2Y12 receptor in complex with 2MeSADP 4PY0 ; 3.1 ; Crystal structure of P2Y12 receptor in complex with 2MeSATP 7QGS ; 2.0 ; Crystal structure of p300 CH1 domain in complex with CITIF (a CITED2-HIF-1alpha hybrid) 3BIY ; 1.7 ; Crystal structure of p300 histone acetyltransferase domain in complex with a bisubstrate inhibitor, Lys-CoA 4PZS ; 1.94 ; Crystal structure of p300 histone acetyltransferase domain in complex with Acetyl-Coenzyme A 4PZT ; 2.8 ; Crystal structure of p300 histone acetyltransferase domain in complex with an inhibitor, Acetonyl-Coenzyme A 4PZR ; 2.099 ; Crystal structure of p300 histone acetyltransferase domain in complex with Coenzyme A 6DS6 ; 1.95 ; Crystal structure of p300 ZZ domain in complex with histone H3 peptide 1YQJ ; 2.0 ; Crystal Structure of p38 Alpha in Complex with a Selective Pyridazine Inhibitor 6SFI ; 1.6 ; Crystal structure of p38 alpha in complex with compound 75 (MCP33) 6SFJ ; 1.95 ; Crystal structure of p38 alpha in complex with compound 77 (MCP41) 6SFK ; 1.8 ; Crystal structure of p38 alpha in complex with compound 81 (MCP42) 3NNU ; 2.4 ; Crystal structure of P38 alpha in complex with DP1376 3NNV ; 2.1 ; Crystal structure of P38 alpha in complex with DP437 3NNW ; 1.89 ; Crystal structure of P38 alpha in complex with DP802 4R3C ; 2.06 ; Crystal structure of p38 alpha MAP kinase in complex with a novel isoform selective drug candidate 5LAR ; 1.5 ; Crystal structure of p38 alpha MAPK14 in complex with VPC00628 2PUU ; 2.5 ; Crystal structure of p38 complex with 1-(5-tert-Butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(6-morpholin-4-ylmethyl-pyridin-3-yl)naphthalen-1-yl]urea 2ZAZ ; 1.8 ; Crystal structure of P38 in complex with 4-anilino quinoline inhibitor 3IPH ; 2.1 ; Crystal structure of p38 in complex with a biphenylamide inhibitor 2ZB0 ; 2.1 ; Crystal structure of P38 in complex with biphenyl amide inhibitor 2ZB1 ; 2.5 ; Crystal structure of P38 in complex with biphenyl amide inhibitor 6YK7 ; 1.9 ; Crystal structure of p38 in complex with SR43 6Y4T ; 1.98 ; Crystal structure of p38 in complex with SR63. 6Y4U ; 1.86 ; Crystal structure of p38 in complex with SR65 6Y4V ; 1.75 ; Crystal structure of p38 in complex with SR68 6Y4W ; 1.86 ; Crystal structure of p38 in complex with SR69 6Y4X ; 1.6 ; Crystal structure of p38 in complex with SR72 3FC1 ; 2.4 ; Crystal structure of p38 kinase bound to pyrimido-pyridazinone inhibitor 3E92 ; 2.0 ; Crystal Structure of P38 Kinase in Complex with A Biaryl Amide Inhibitor 3E93 ; 2.0 ; Crystal Structure of P38 Kinase in Complex with A Biaryl Amide Inhibitor 3D7Z ; 2.1 ; Crystal Structure of P38 Kinase in Complex with a biphenyl amide inhibitor 3D83 ; 1.9 ; Crystal structure of P38 kinase in complex with a biphenyl amide inhibitor 3MPT ; 1.89 ; Crystal structure of P38 kinase in complex with a pyrrole-2-carboxamide inhibitor 1M7Q ; 2.4 ; Crystal structure of p38 MAP kinase in complex with a dihydroquinazolinone inhibitor 1ZZL ; 2.0 ; Crystal structure of P38 with triazolopyridine 3ITZ ; 2.25 ; Crystal Structure of p38a Mitogen-Activated Protein Kinase in Complex with a Pyrazolopyridazine Inhibitor 3GFE ; 2.1 ; Crystal Structure of p38a Mitogen-Activated Protein Kinase in Complex with a Pyrazolopyridinone Inhibitor 3LHJ ; 3.31 ; Crystal Structure of p38a Mitogen-Activated Protein Kinase in Complex with a Pyrazolopyridinone Inhibitor. 3U8W ; 2.15 ; Crystal Structure of p38a Mitogen-Activated Protein Kinase in Complex with a Triazolopyridazinone inhibitor 7Z9T ; 2.6 ; Crystal structure of p38alpha C162S in complex with ATPgS and CAS 2094667-81-7 (in catalytic site, Y35 out), P 1 21 1 7PVU ; 2.154 ; Crystal structure of p38alpha C162S in complex with CAS2094511-69-8, P 1 21 1 7Z6I ; 2.25 ; Crystal structure of p38alpha C162S in complex with SB20358 and CAS 2094667-81-7 (behind catalytic site; Y35 in), P 21 21 21 3TG1 ; 2.71 ; Crystal structure of p38alpha in complex with a MAPK docking partner 6HWV ; 1.7 ; Crystal structure of p38alpha in complex with a photoswitchable 2-Azoimidazol-based Inhibitor (compound 3) 6HWU ; 2.3 ; Crystal structure of p38alpha in complex with a photoswitchable 2-Azothiazol-based Inhibitor (compound 2) 6HWT ; 1.7 ; Crystal structure of p38alpha in complex with a reduced photoswitchable 2-Azothiazol-based Inhibitor (compound 31) 5N63 ; 2.4 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9c 5N64 ; 2.4 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9g 5N65 ; 2.0 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9h 5N66 ; 2.4 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9j 5N67 ; 1.9 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9l 5N68 ; 1.85 ; Crystal Structure of p38alpha in Complex with Lipid Pocket Ligand 9m 6YJC ; 1.74101 ; Crystal structure of p38alpha in complex with SR154 3ODY ; 2.2 ; Crystal structure of p38alpha Y323Q active mutant 3ODZ ; 2.3 ; Crystal structure of P38alpha Y323R active mutant 3OD6 ; 2.682 ; Crystal structure of p38alpha Y323T active mutant 3COI ; 2.09 ; Crystal structure of p38delta kinase 2XSO ; 2.2 ; CRYSTAL STRUCTURE OF P4 VARIANT OF BIPHENYL DIOXYGENASE FROM BURKHOLDERIA XENOVORANS LB400 2XSH ; 2.29 ; CRYSTAL STRUCTURE OF P4 VARIANT OF BIPHENYL DIOXYGENASE FROM BURKHOLDERIA XENOVORANS LB400 IN COMPLEX WITH 2,6 DI CHLOROBIPHENYL 1M59 ; 1.9 ; Crystal Structure of P40V Mutant of Trypsin-solubilized Fragment of Cytochrome b5 3KYF ; 2.1 ; Crystal structure of P4397 complexed with c-di-GMP 3UGU ; 1.85 ; Crystal Structure of p44 (Splice Variant of Visual Arrestin) 4H1N ; 2.99 ; Crystal Structure of P450 2B4 F297A Mutant in Complex with Anti-platelet Drug Clopidogrel 3TMZ ; 2.248 ; Crystal Structure of P450 2B4(H226Y) in complex with Amlodipine 4JLT ; 2.14 ; Crystal structure of P450 2B4(H226Y) in complex with paroxetine 3UA5 ; 2.8 ; Crystal Structure of P450 2B6 (Y226H/K262R) in complex with two molecules of Amlodipine 4HGJ ; 1.9 ; Crystal structure of P450 BM3 5F5 heme domain variant 4HGH ; 1.4 ; Crystal structure of P450 BM3 5F5 heme domain variant complexed with styrene (dataset I) 4HGI ; 1.5 ; Crystal structure of P450 BM3 5F5 heme domain variant complexed with styrene (dataset II) 4HGF ; 1.7 ; Crystal structure of P450 BM3 5F5K heme domain variant complexed with styrene 4HGG ; 1.7 ; Crystal structure of P450 BM3 5F5R heme domain variant complexed with styrene 5E7Y ; 2.0 ; Crystal structure of P450 BM3 heme domain M7 variant 5E78 ; 2.0 ; Crystal structure of P450 BM3 heme domain variant complexed with Co(III)Sep 7Y9M ; 2.16 ; Crystal structure of P450 BM3-2F from Bacillus megaterium 7Y9L ; 1.76 ; Crystal structure of P450 BM3-2F from Bacillus megaterium in complex with 2-Hydroxy-5-Nitrobenzonitrile 7Y9K ; 2.23 ; Crystal structure of P450 BM3-TMK from Bacillus megaterium 7Y9J ; 1.83 ; Crystal structure of P450 BM3-TMK from Bacillus megaterium in complex with 5-nitro-1,2-benzisoxazole 5O4L ; 1.64 ; Crystal structure of P450 CYP121 in complex with compound 6a. 5O4K ; 1.5 ; Crystal structure of P450 CYP121 in complex with compound 6b. 3MGX ; 2.1 ; Crystal Structure of P450 OxyD that is involved in the Biosynthesis of Vancomycin-type Antibiotics 1R9O ; 2.0 ; Crystal Structure of P4502C9 with Flurbiprofen bound 3EJD ; 2.1 ; Crystal Structure of P450BioI in complex with hexadec-9Z-enoic acid ligated Acyl Carrier Protein 3EJE ; 2.1 ; Crystal Structure of P450BioI in complex with octadec-9Z-enoic acid ligated Acyl Carrier Protein 3EJB ; 2.0 ; Crystal Structure of P450BioI in complex with tetradecanoic acid ligated Acyl Carrier Protein 5B2X ; 1.9 ; Crystal Structure of P450BM3 mutant with N-perfluoroheptanoyl-L-tryptophan 5XHJ ; 2.0 ; Crystal Structure of P450BM3 with 5-Cyclohexylvaleroyl-L-Tryptophan 5XA3 ; 2.2 ; Crystal Structure of P450BM3 with Benzyloxycarbonyl-L-prolyl-L-phenylalanine 7XZK ; 1.54 ; Crystal Structure of P450BM3 with N-(3-cyclohexylpropanoyl)-L-pipecolyl-L-phenylalanine 6K3Q ; 2.06 ; Crystal Structure of P450BM3 with N-(3-cyclohexylpropanoyl)-L-prolyl-L-phenylalanine 6L1B ; 1.74 ; Crystal Structure of P450BM3 with N-(3-cyclopentylpropanoyl)-L-pipecolyl-L-phenylalanine 6L1A ; 1.84 ; Crystal Structure of P450BM3 with N-enanthoyl-L-prolyl-L-phenylalanine 5B2Y ; 2.01 ; Crystal Structure of P450BM3 with N-perfluorodecanoyl-L-tryptophan 5B2W ; 1.65 ; Crystal Structure of P450BM3 with N-perfluorododecanoyl-L-tryptophan 5B2U ; 1.9 ; Crystal Structure of P450BM3 with N-perfluorohexanoyl -L-tryptophan 5B2V ; 2.3 ; Crystal Structure of P450BM3 with N-perfluorohexanoyl-L-tryptophan 3WSP ; 1.8 ; Crystal Structure of P450BM3 with N-perfluorononanoyl-L-tryptophan 8HKD ; 2.35 ; Crystal structure of P450BSbeta-L78G/Q85F/F173S/G290I variant in complex with palmitoleic acid 7WYG ; 2.0 ; Crystal structure of P450BSbeta-L78I/Q85H/G290I variant in complex with palmitic acid. 3WRH ; 1.62 ; Crystal structure of P450cam 3WRI ; 2.9 ; Crystal structure of P450cam 3WRJ ; 1.85 ; Crystal structure of P450cam 3WRK ; 2.609 ; Crystal structure of P450cam 3WRL ; 1.65 ; Crystal structure of P450cam 3WRM ; 1.95 ; Crystal structure of P450cam 4LHT ; 2.137 ; Crystal Structure of P450cin Y81F mutant, crystallized in 3 mM 1,8-cineole 4L6G ; 1.371 ; Crystal Structure of P450cin Y81F mutant, crystallized in 7 mM 1,8-cineole 1XQD ; 1.8 ; Crystal structure of P450NOR complexed with 3-pyridinealdehyde adenine dinucleotide 1ULW ; 2.0 ; Crystal structure of P450nor Ser73Gly/Ser75Gly mutant 8FBC ; 1.53 ; Crystal structure of P450T2 5WIX ; 2.8 ; Crystal structure of P47 of Clostridium botulinum E1 1G6B ; 1.9 ; CRYSTAL STRUCTURE OF P47S MUTANT OF FERREDOXIN I 3W8J ; 2.1 ; Crystal structure of P5 a0 in a complex with Prx4 c-term 4HJE ; 1.907 ; Crystal structure of p53 core domain in complex with DNA 7YGI ; 2.1 ; Crystal structure of p53 DBD domain in complex with azurin 5SWK ; 1.923 ; Crystal structure of p53 epitope-scaffold based on a inhibitor of cysteine proteases in complex with human MDM2 1C26 ; 1.7 ; CRYSTAL STRUCTURE OF P53 TETRAMERIZATION DOMAIN 8DC8 ; 1.7201 ; Crystal structure of p53 Y220C covalently bound to azaindole KG13 8DC4 ; 2.4 ; Crystal structure of p53 Y220C covalently bound to carbazole KG3 8DC7 ; 1.98701 ; Crystal structure of p53 Y220C covalently bound to indole KG10 8DC6 ; 1.60001 ; Crystal structure of p53 Y220C covalently bound to indole KG6 6LHD ; 2.499 ; Crystal structure of p53/BCL-xL fusion complex 8HLL ; 2.62 ; Crystal structure of p53/BCL2 fusion complex (complex 1) 8HLM ; 2.522 ; Crystal structure of p53/BCL2 fusion complex (complex 2) 8HLN ; 2.354 ; Crystal structure of p53/BCL2 fusion complex(complex3) 2PCX ; 1.54 ; Crystal structure of p53DBD(R282Q) at 1.54-angstrom Resolution 3IEG ; 2.51 ; Crystal Structure of P58(IPK) TPR Domain at 2.5 A 2GR9 ; 3.1 ; Crystal structure of P5CR complexed with NADH 6MIU ; 1.9 ; Crystal structure of p62 ZZ domain in complex with Arg-Glu peptide 6MJ7 ; 1.412 ; Crystal structure of p62 ZZ domain in complex with free arginine 7Z71 ; 1.85 ; Crystal structure of p63 DBD in complex with darpin C14 7Z7E ; 1.8 ; Crystal structure of p63 DNA binding domain in complex with inhibitory DARPin G4 7Z72 ; 1.8 ; Crystal structure of p63 SAM in complex with darpin A5 7Z73 ; 2.27 ; Crystal structure of p63 tetramerization domain in complex with darpin 8F1 8P9D ; 2.7 ; Crystal structure of p63-p73 heterotetramer (tetramerisation domain) in complex with darpin 1810 A2 8P9C ; 1.76 ; Crystal structure of p63-p73 heterotetramer (tetramerisation domain) in complex with darpin 1810 F11 2RGN ; 3.5 ; Crystal Structure of p63RhoGEF complex with Galpha-q and RhoA 1FYX ; 2.8 ; CRYSTAL STRUCTURE OF P681H MUTANT OF TIR DOMAIN OF HUMAN TLR2 7EZJ ; 2.9 ; Crystal structure of p73 DNA binding domain complex bound with 1 bp and 2 bp spacer DNA response elements. 4G82 ; 3.1 ; Crystal Structure of p73 DNA-Binding Domain Tetramer bound to a Full Response-Element 4G83 ; 4.0 ; Crystal Structure of p73 DNA-Binding Domain Tetramer bound to a Full Response-Element 8F5M ; 2.4 ; Crystal structure of P74 gp62 7QUX ; 1.48 ; Crystal structure of P7C8 bound to CK2alpha 6J98 ; 1.56 ; Crystal structure of P8 from Lactobacillus rhamnosus 6YZH ; 1.19 ; Crystal structure of P8C9 bound to CK2alpha 6Z19 ; 1.47 ; Crystal structure of P8C9 bound to CK2alpha 5D1D ; 2.011 ; Crystal structure of P91L-Y306F HDAC8 in complex with a tetrapeptide substrate 8HL7 ; 2.8 ; Crystal structure of p97 N/D1 in complex with a valosin-containing protein methyltransferase 3QQ8 ; 2.0 ; Crystal structure of p97-N in complex with FAF1-UBX 4KDI ; 1.86 ; Crystal structure of p97/VCP N in complex with OTU1 UBXL 4KDL ; 1.81 ; Crystal structure of p97/VCP N in complex with OTU1 UBXL 3TIW ; 1.802 ; Crystal structure of p97N in complex with the C-terminus of gp78 5XHR ; 1.8 ; Crystal structure of P99 beta-lactamase in complex with a penicillin derivative MPC-1 2WYF ; 2.4 ; Crystal structure of PA-IL lectin complexed with aGal12bGal-O-Met at 2.4 A resolution 2VXJ ; 1.9 ; CRYSTAL STRUCTURE OF PA-IL LECTIN COMPLEXED WITH AGAL13BGAL14GLC AT 1.9 A RESOLUTION 3ZYB ; 2.29 ; CRYSTAL STRUCTURE OF PA-IL LECTIN COMPLEXED WITH GALAG0 AT 2.3 A RESOLUTION 3ZYH ; 1.501 ; CRYSTAL STRUCTURE OF PA-IL LECTIN COMPLEXED WITH GALBG0 AT 1.5 A RESOLUTION 3ZYF ; 1.944 ; CRYSTAL STRUCTURE OF PA-IL LECTIN COMPLEXED WITH NPG AT 1.9 A RESOLUTION 2ZNL ; 2.3 ; Crystal structure of PA-PB1 complex form influenza virus RNA polymerase 5ZBU ; 3.2 ; Crystal Structure of PA-TM-RING E3 ligase RNF13 RING domain in complex with E2~Ub 2QNU ; 2.05 ; Crystal structure of PA0076 from Pseudomonas aeruginosa PAO1 at 2.05 A resolution 4MTK ; 3.322 ; Crystal structure of PA0091 VgrG1, the central spike of the Type VI Secretion System 3FZV ; 2.71 ; Crystal structure of PA01 protein, putative LysR family transcriptional regulator from Pseudomonas aeruginosa 6JFW ; 2.002 ; Crystal structure of PA0833 periplasmic domain from Pseudomonas aeruginosa reveals an unexpected enlarged peptidoglycan binding pocket 2AZP ; 2.13 ; Crystal Structure of PA1268 Solved by Sulfur SAD 5J6Y ; 1.03 ; Crystal structure of PA14 domain of MpAFP Antifreeze protein 2F2E ; 1.85 ; Crystal Structure of PA1607, a Putative Transcription Factor 4EQ8 ; 1.392 ; Crystal structure of PA1844 from Pseudomonas aeruginosa PAO1 4EQA ; 1.6 ; Crystal structure of PA1844 in complex with PA1845 from Pseudomonas aeruginosa PAO1 3KAW ; 2.4 ; Crystal Structure of PA2107 PROTEIN from Pseudomonas aeruginosa, Northeast Structural Genomics Consortium Target PaR198 1U69 ; 1.6 ; Crystal Structure of PA2721 Protein of Unknown Function from Pseudomonas aeruginosa PAO1 8AJQ ; 1.25 ; Crystal structure of PA2722 from Pseudomonas aeruginosa PAO1 5XMG ; 2.8 ; Crystal structure of PA3488 from Pseudomonas aeruginosa 1X7V ; 1.78 ; Crystal structure of PA3566 from Pseudomonas aeruginosa 2X4G ; 2.65 ; Crystal structure of PA4631, a nucleoside-diphosphate-sugar epimerase from Pseudomonas aeruginosa 6LB3 ; 2.497 ; Crystal structure of PA4674 in complex with its operator DNA (18bp) from Pseudomonas aeruginosa 6JPI ; 3.143 ; Crystal structure of PA4674 in complex with its operator DNA (28bp) from Pseudomonas aeruginosa 4R8Z ; 2.2 ; Crystal Structure of PA4781 HD-GYP domain from Pseudomonas aeruginosa at 2.2A resolution showing a bi-metallic Ni ion center 3PGP ; 1.42 ; Crystal structure of PA4794 - GNAT superfamily protein in complex with AcCoA 6M10 ; 2.985 ; Crystal structure of PA4853 (Fis) from Pseudomonas aeruginosa 1J1Y ; 1.7 ; Crystal Structure of PaaI from Thermus thermophilus HB8 2Y27 ; 1.6 ; crystal structure of PaaK1 in complex with ATP from Burkholderia cenocepacia 2Y4O ; 1.9 ; Crystal Structure of PaaK2 in complex with phenylacetyl adenylate 4GRN ; 1.25 ; crystal structure of PAAM mutant of human MIF 8A39 ; 2.3 ; Crystal Structure of PaaX from Escherichia coli W 4N65 ; 1.816 ; Crystal structure of paAzoR1 bound to anthraquinone-2-sulphonate 4N9Q ; 2.0 ; Crystal structure of paAzoR1 bound to ubiquinone-1 7OLI ; 1.65 ; Crystal structure of Pab-AGOG in complex with 8-oxoguanosine 7OLB ; 1.1 ; Crystal structure of Pab-AGOG, an 8-oxoguanine DNA glycosylase from Pyrococcus abyssi 4GRH ; 2.25 ; Crystal structure of pabB of Stenotrophomonas maltophilia 6RPP ; 1.6 ; Crystal structure of PabCDC21-1 intein 7JQD ; 2.7 ; Crystal Structure of PAC1r in complex with peptide antagonist 3MNF ; 2.97 ; Crystal structure of PAC2 family protein from Streptomyces avermitilis MA 3M7K ; 1.92 ; Crystal structure of PacI-DNA Enzyme product complex 7VS4 ; 2.55 ; Crystal structure of PacII_M1M2S-DNA(m6A)-SAH complex 7VRU ; 2.4 ; Crystal structure of PacII_M1M2S-DNA-SAH complex 4U4Y ; 3.2 ; Crystal structure of Pactamycin bound to the yeast 80S ribosome 5Z4Z ; 2.053 ; Crystal structure of PaCysB NTD domain with space group C2 5Z4Y ; 2.401 ; Crystal structure of PaCysB NTD domain with space group P4 5Z50 ; 2.206 ; Crystal structure of PaCysB regulatory domain 6P90 ; 1.9 ; Crystal structure of PaDHDPS2-H56Q mutant 4EJO ; 2.1 ; Crystal structure of padr family transcriptional regulator from Eggerthella lenta DSM 2243 8IOI ; 2.94 ; Crystal Structure of PadR- family transcriptional regulator Rv1176c from Mycobacterium tuberculosis H37Rv. 4ESB ; 2.5 ; Crystal structure of PadR-like transcriptional regulator (BC4206) from Bacillus cereus strain ATCC 14579 4ESF ; 2.2 ; Crystal structure of PadR-like transcriptional regulator (BCE3449) from Bacillus cereus strain ATCC 10987 2FE1 ; 2.2 ; Crystal Structure of PAE0151 from Pyrobaculum aerophilum 1V8O ; 2.8 ; Crystal Structure of PAE2754 from Pyrobaculum aerophilum 1V8P ; 2.52 ; Crystal structure of PAE2754 from Pyrobaculum aerophilum 6P2N ; 1.35 ; Crystal structure of Paenibacillus graminis GH74 (PgGH74) 5X7O ; 2.0 ; Crystal structure of Paenibacillus sp. 598K alpha-1,6-glucosyltransferase 5X7P ; 2.4 ; Crystal structure of Paenibacillus sp. 598K alpha-1,6-glucosyltransferase complexed with acarbose 5X7R ; 1.95 ; Crystal structure of Paenibacillus sp. 598K alpha-1,6-glucosyltransferase complexed with isomaltohexaose 5X7Q ; 1.95 ; Crystal structure of Paenibacillus sp. 598K alpha-1,6-glucosyltransferase complexed with maltohexaose 5X7S ; 2.4 ; Crystal structure of Paenibacillus sp. 598K alpha-1,6-glucosyltransferase, terbium derivative 5X7G ; 2.2 ; Crystal Structure of Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase 5X7H ; 2.6 ; Crystal Structure of Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase complexed with cycloisomaltoheptaose 6HA4 ; 1.33 ; Crystal structure of PAF - p-sulfonatocalix[4]arene complex 6HAH ; 1.45 ; Crystal structure of PAF - p-sulfonatocalix[6]arene complex 6HAJ ; 1.5 ; Crystal structure of PAF - p-sulfonatocalix[8]arene complex 4R8A ; 3.2 ; Crystal structure of paFAN1 - 5' flap DNA complex 4R89 ; 4.002 ; Crystal structure of paFAN1 - 5' flap DNA complex with Manganase 5Y7G ; 3.4 ; Crystal structure of paFAN1 bound to 1nt 5'flap DNA with gap 5Y7Q ; 2.7 ; Crystal structure of paFAN1 bound to 2nt 5'flap DNA with gap 5Z6W ; 3.2 ; Crystal structure of paFAN1 bound to 2nt 5'flap DNA with gap with Manganese 7BAE ; 1.2 ; Crystal structure of PAFB 7BAD ; 1.69 ; Crystal structure of PAFB in complex with p-sulfonato-calix[8]arene and zinc 7BAF ; 1.123 ; Crystal structure of PAFB in complex with zinc 4LE4 ; 1.8 ; Crystal structure of PaGluc131A with cellotriose 3GP6 ; 1.4 ; Crystal structure of PagP in SDS/MPD 4IC0 ; 2.32 ; Crystal Structure of PAI-1 in Complex with Gallate 3K9U ; 2.3 ; Crystal structure of paia acetyltransferase (ta0374) from thermoplasma acidophilum 3NE7 ; 2.3 ; Crystal structure of paia n-acetyltransferase from thermoplasma acidophilum in complex with coenzyme a 8HUC ; 1.984 ; Crystal structure of PaIch (Pec1) 5DEW ; 1.9 ; Crystal structure of PAK1 in complex with an inhibitor compound 5 5DFP ; 2.2 ; Crystal structure of PAK1 in complex with an inhibitor compound FRAX1036 5DEY ; 2.1 ; Crystal structure of PAK1 in complex with an inhibitor compound G-5555 4EQC ; 2.01 ; Crystal structure of PAK1 kinase domain in complex with FRAX597 inhibitor 1YHW ; 1.8 ; Crystal Structure of PAK1 kinase domain with one point mutations (K299R) 3FY0 ; 2.35 ; Crystal structure of PAK1 kinase domain with ruthenium complex DW1 3FXZ ; 1.64 ; Crystal structure of PAK1 kinase domain with ruthenium complex lambda-FL172 4DAW ; 2.0 ; Crystal structure of PAK1 kinase domain with the ruthenium phthalimide complex 1YHV ; 1.8 ; Crystal Structure of PAK1 kinase domain with two point mutations (K299R, T423E) 7CMB ; 2.592 ; Crystal Structure of PAK4 in complex with inhibitor 41 7CP3 ; 2.9 ; Crystal Structure of PAK4 in complex with inhibitor 47 7CP4 ; 2.5 ; Crystal Structure of PAK4 in complex with inhibitor 55 5ZJW ; 1.798 ; Crystal Structure of PAK4 in complex with inhibitor CZg353 5XVF ; 2.655 ; Crystal Structure of PAK4 in complex with inhibitor CZH062 5XVA ; 1.847 ; Crystal Structure of PAK4 in complex with inhibitor CZH216 5XVG ; 2.1 ; Crystal Structure of PAK4 in complex with inhibitor CZH226 3R7L ; 2.585 ; Crystal Structure of PALA-bound Aspartate Transcarbamoylase from Bacillus subtilis 6QE2 ; 1.7461 ; Crystal structure of Paleococcus ferrophilus monoacylglycerol lipase. 1EI9 ; 2.25 ; CRYSTAL STRUCTURE OF PALMITOYL PROTEIN THIOESTERASE 1 1EXW ; 2.4 ; CRYSTAL STRUCTURE OF PALMITOYL PROTEIN THIOESTERASE 1 COMPLEXED WITH HEXADECYLSULFONYL FLUORIDE 1EH5 ; 2.5 ; CRYSTAL STRUCTURE OF PALMITOYL PROTEIN THIOESTERASE 1 COMPLEXED WITH PALMITATE 4WSI ; 2.95 ; Crystal Structure of PALS1/Crb complex 5AC3 ; 1.8 ; Crystal structure of PAM12A 3KCS ; 1.5 ; Crystal structure of PAmCherry1 in the dark state 3KCT ; 1.65 ; CRYSTAL STRUCTURE OF PAmCherry1 in the photoactivated state 8HHD ; 2.27 ; Crystal structure of PaMurU 7B3A ; 1.34 ; Crystal structure of PamZ 6BTJ ; 1.999 ; Crystal structure of pan-H7, anti-hemagglutinin monoclonal antibody H7.5 (Fab fragment) 3WHK ; 2.6 ; Crystal structure of PAN-Rpt5C chimera 3HWR ; 2.15 ; Crystal structure of PanE/ApbA family ketopantoate reductase (YP_299159.1) from Ralstonia eutropha JMP134 at 2.15 A resolution 5SX5 ; 2.5 ; Crystal Structure of panitumumab in complex with epidermal growth factor receptor domain 3 mutant S468R. 5SX4 ; 2.8 ; Crystal Structure of panitumumab in complex with epidermal growth factor receptor domain 3. 2EJC ; 2.4 ; Crystal Structure Of Pantoate--Beta-Alanine Ligase (panC) From Thermotoga maritima 3UY4 ; 1.851 ; Crystal Structure of Pantoate--Beta-Alanine Ligase from Campylobacter jejuni complexed with AMP and vitamin B5 1V8F ; 1.9 ; Crystal Structure of Pantoate-beta-Alanine (Pantothenate Synthetase) from Thermus Thermophilus HB8 3MXT ; 1.85 ; Crystal Structure of Pantoate-Beta-alanine Ligase from Campylobacter jejuni 3N8H ; 2.001 ; Crystal Structure of Pantoate-beta-alanine Ligase from Francisella tularensis 5HG0 ; 2.4 ; Crystal Structure of Pantoate-beta-alanine Ligase from Francisella tularensis complex with SAM 3QTT ; 2.599 ; Crystal Structure of Pantoate-beta-alanine Ligase from Francisella tularensis Complexed with Beta-gamma ATP and Beta-alanine 3MUE ; 2.701 ; Crystal Structure of Pantoate-beta-Alanine Ligase from Salmonella typhimurium 3INN ; 2.1 ; Crystal structure of pantoate-beta-alanine-ligase in complex with ATP at low occupancy at 2.1 A resolution 3DJC ; 2.4 ; CRYSTAL STRUCTURE OF PANTOTHENATE KINASE FROM LEGIONELLA PNEUMOPHILA 7TOT ; 1.8 ; Crystal Structure of pantothenate synthetase from Bartonella henselae 1N2I ; 1.7 ; Crystal Structure of Pantothenate Synthetase from M. tuberculosis in complex with a reaction intermediate, pantoyl adenylate, different occupancies of pantoyl adenylate 1N2O ; 2.1 ; Crystal Structure of Pantothenate Synthetase from M. tuberculosis, low occupancy of beta-alanine at the pantoate binding sites 3IUB ; 1.5 ; Crystal structure of pantothenate synthetase from Mycobacterium tuberculosis in complex with 5-Methoxy-N-(5-methylpyridin-2-ylsulfonyl)-1H-indole-2-carboxamide 3ISJ ; 2.2 ; Crystal structure of pantothenate synthetase from Mycobacterium tuberculosis in complex with 5-methoxy-N-(methylsulfonyl)-1H-indole-2-carboxamide 3AG5 ; 2.5 ; Crystal Structure of Pantothenate Synthetase from Staphylococcus aureus 3AG6 ; 1.85 ; Crystal Structure of Pantothenate Synthetase from Staphylococcus aureus in complex with pantoyl adenylate 1UFV ; 2.05 ; Crystal Structure Of Pantothenate Synthetase From Thermus Thermophilus HB8 3IVG ; 1.95 ; Crystal structure of pantothenate synthetase in complex with 2-(2-((benzofuran-2-sulfonamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid 3IVC ; 2.13 ; Crystal structure of pantothenate synthetase in complex with 2-(2-((benzofuran-2-ylmethoxy)carbonyl)-5-methoxy-1H-indol-1-yl)acetic acid 4MUF ; 2.5 ; Crystal structure of pantothenate synthetase in complex with 2-(2-(4-tert-butylphenylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl)acetic acid 4MUH ; 1.72 ; Crystal structure of pantothenate synthetase in complex with 2-(2-(5-acetamido-1,3,4-thiadiazol-2-ylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl)acetic acid 3IVX ; 1.73 ; Crystal structure of pantothenate synthetase in complex with 2-(2-(benzofuran-2-ylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl)acetic acid 4MUJ ; 1.92 ; Crystal structure of pantothenate synthetase in complex with 2-(2-(benzylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl)acetic acid 4MUN ; 1.57 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(2-nitro-4-(trifluoromethyl)phenylsulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 4MUK ; 1.9 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(4-(trifluoromethyl)benzylsulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 4MUI ; 2.1 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(4-methoxyphenylsulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 3IUE ; 1.73 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(5-Methylpyridin-2-ylsulfonylcarbamoyl)-1H-indol-1-yl) acetic acid 4MUG ; 1.54 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(morpholinosulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 4MUL ; 1.75 ; Crystal structure of pantothenate synthetase in complex with 2-(5-methoxy-2-(naphthalen-2-ylsulfonylcarbamoyl)-1H-indol-1-yl)acetic acid 2Q8W ; 1.7 ; Crystal structure of PAP-S1aci, a pokeweed antiviral protein from seeds of Phytolacca acinosa 6H8T ; 2.1 ; Crystal structure of Papain modify by achiral Ru(II)complex 1PPP ; 1.9 ; CRYSTAL STRUCTURE OF PAPAIN-E64-C COMPLEX. BINDING DIVERSITY OF E64-C TO PAPAIN S2 AND S3 SUBSITES 1PIP ; 1.7 ; CRYSTAL STRUCTURE OF PAPAIN-SUCCINYL-GLN-VAL-VAL-ALA-ALA-P-NITROANILIDE COMPLEX AT 1.7 ANGSTROMS RESOLUTION: NONCOVALENT BINDING MODE OF A COMMON SEQUENCE OF ENDOGENOUS THIOL PROTEASE INHIBITORS 6EEM ; 2.61001 ; Crystal structure of Papaver somniferum tyrosine decarboxylase in complex with L-tyrosine 2FAW ; 1.7 ; crystal structure of papaya glutaminyl cyclase 4DOX ; 2.7 ; Crystal Structure of Papaya mosaic virus capsid protein 2V9P ; 3.0 ; Crystal structure of papillomavirus E1 hexameric helicase DNA-free form 2GXA ; 3.15 ; Crystal structure of papillomavirus E1 hexameric helicase with ssDNA and MgADP 4I6P ; 2.9 ; Crystal structure of Par3-NTD domain 3EA0 ; 2.2 ; Crystal Structure of ParA Family ATPase from Chlorobium tepidum TLS 3H9M ; 1.57 ; Crystal structure of para-aminobenzoate synthetase, component I from Cytophaga hutchinsonii 5F2F ; 1.665 ; Crystal structure of para-biphenyl-2-methyl-3', 5' di-methyl amide mannoside bound to FimH lectin domain 5F3F ; 1.76 ; Crystal structure of para-biphenyl-2-methyl-3'-methyl amide mannoside bound to FimH lectin domain 7ON9 ; 1.63 ; Crystal structure of para-hydroxybenzoate-3-hydroxylase PraI 7QEF ; 2.41 ; Crystal structure of para-nitrophenyl-Beta-D-glucuronide bound to a mutant of SN243 (D415A) 6DXU ; 1.9 ; Crystal Structure of Parabacteroides merdae Beta-Glucuronidase (GUS) 6CK1 ; 2.15 ; Crystal structure of Paracoccus denitrificans AztD 6YWF ; 1.9 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase 7PBF ; 1.54 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase in complex with di-mannuronic acid 7P25 ; 1.47 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase in complex with hexa-mannuronic acid products 7ORY ; 1.46 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase in complex with penta-mannuronic acid products 7P90 ; 1.87 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase in complex with tetra-mannuronic acid products 7OOF ; 1.3 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase in complex with tri-mannuronic acid 7NL3 ; 1.7 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F 7NM6 ; 1.78 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F in complex with di-mannuronic acid 7NCZ ; 1.64 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F in complex with hexa-mannuronic acid 7NPP ; 1.45 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F in complex with penta-mannuronic acid 7NY3 ; 1.82 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F in complex with tetra-mannuronic acid 7O6H ; 1.66 ; Crystal structure of Paradendryphiella salina PL7A alginate lyase mutant Y223F in complex with tri-mannuronic acid 8BJR ; 1.1 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase 8C3X ; 0.82 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase 8PC3 ; 1.1 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase in complex with pentamannuronic acid 8R43 ; 0.87 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant H110N in complex with tri-mannuronic acid 8RBI ; 0.98 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant H124 8C0M ; 1.2 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant Y220F 8P6O ; 1.05 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant Y220F in complex with di-mannuronic acid 8BJO ; 1.51 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant Y220F in complex with hexa-mannuronic acid 8BXZ ; 1.2 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase mutant Y220F in complex with penta-mannuronic acid 8PDT ; 1.09 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase soaked with dimannuronic acid 8PC8 ; 1.24 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase soaked with hexamannuronic acid 8PCX ; 1.14 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase soaked with tetramannuronic acid 8PED ; 1.1 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase soaked with trimannuronic acid 8BZK ; 1.45 ; Crystal structure of Paradendryphiella salina PL7C alginate lyase with sulphate bound in the active site 2YIL ; 1.95 ; Crystal Structure of Parasite Sarcocystis muris Lectin SML-2 2YIO ; 2.43 ; Crystal Structure of Parasite Sarcocystis muris Microneme Protein SML- 2 in complex with 1-Thio-beta-D-Galactose (SPACEGROUP C2221) 2YIP ; 2.14 ; Crystal Structure of Parasite Sarcocystis muris Microneme Protein SML- 2 in complex with 1-Thio-beta-D-Galactose (SPACEGROUP P212121) 3QQR ; 2.16 ; Crystal structure of Parasponia hemoglobin; Differential Heme Coordination is Linked to Quaternary Structure 6CKA ; 1.559 ; Crystal Structure of Paratox 7BNK ; 1.9 ; Crystal structure of ParB from Myxococcus xanthus bound to CDP and Monothiophosphate 3LPS ; 2.29 ; Crystal structure of parE 3LNU ; 2.2 ; Crystal structure of ParE subunit 4Z92 ; 3.1 ; crystal structure of parechovirus-1 virion 7PDX ; 2.27 ; Crystal structure of parent MAGE-A10 TCR (728) 7PDW ; 1.82 ; Crystal structure of parent TCR (728) complexed to HLA-A*02:01 presenting MAGE-A10 9-mer peptide 4MQ0 ; 2.12 ; Crystal structure of Parkia biglobosa seed lectin (PBL) in complex with methyl alpha D-mannopyranoside 4K95 ; 6.499 ; Crystal Structure of Parkin 4K7D ; 2.8 ; Crystal Structure of Parkin C-terminal RING domains 4ZYN ; 2.54 ; Crystal Structure of Parkin E3 ubiquitin ligase (linker deletion; delta 86-130) 3B1L ; 1.85 ; Crystal Structure of parkin ubiquitin-like domain R33Q mutant 2A1R ; 2.6 ; Crystal structure of PARN nuclease domain 5NDV ; 3.3 ; Crystal structure of Paromomycin bound to the yeast 80S ribosome 4HHY ; 2.3637 ; Crystal structure of PARP catalytic domain in complex with novel inhibitors 4HHZ ; 2.7199 ; Crystal structure of PARP catalytic domain in complex with novel inhibitors 5V7T ; 2.3 ; crystal structure of PARP14 bound to N-{4-[4-(diphenylmethoxy)piperidin-1-yl]butyl}[1,2,4]triazolo[4,3-b]pyridazin-6-amine inhibitor 2ZFB ; 3.0 ; Crystal structure of parrot hemoglobin (Psittacula krameri) at pH 7.5 3OGJ ; 2.751 ; Crystal structure of partial apo (92-227) of cGMP-dependent protein kinase 2F61 ; 2.5 ; Crystal structure of partially deglycosylated acid beta-glucosidase 3KK0 ; 2.65 ; Crystal structure of partially folded intermediate state of peptidyl-tRNA hydrolase from Mycobacterium smegmatis 1J7Y ; 1.7 ; Crystal structure of partially ligated mutant of HbA 6Q47 ; 1.57 ; Crystal structure of partially oxidized thioredoxin h1 from Chlamydomonas reinhardtii 6I82 ; 2.05 ; Crystal structure of partially phosphorylated RET V804M tyrosine kinase domain complexed with PDD00018412 3ICS ; 1.94 ; Crystal structure of partially reduced Bacillus anthracis CoADR-RHD 3O5A ; 1.72 ; Crystal Structure of partially reduced Periplasmic Nitrate Reductase from Cupriavidus necator using Ionic Liquids 3NQU ; 2.5 ; Crystal structure of partially trypsinized (CENP-A/H4)2 heterotetramer 4PVR ; 1.75 ; Crystal structure of partially-cleaved human l-asparaginase protein in complex with l-aspartate 1YEW ; 2.801 ; Crystal structure of particulate methane monooxygenase 3RFR ; 2.68 ; Crystal Structure of particulate methane monooxygenase (pMMO) from Methylocystis sp. strain M 3RGB ; 2.8 ; Crystal structure of particulate methane monooxygenase from Methylococcus capsulatus (Bath) 4PHZ ; 2.59 ; Crystal structure of particulate methane monooxygenase from Methylocystis sp. ATCC 49242 (Rockwell) 4PI0 ; 3.15 ; Crystal structure of particulate methane monooxygenase from Methylocystis sp. ATCC 49242 (Rockwell) soaked in copper 4PI2 ; 3.33 ; Crystal structure of particulate methane monooxygenase from Methylocystis sp. ATCC 49242 (Rockwell) soaked in zinc 6CXH ; 2.704 ; Crystal structure of particulate methane monooxygenase from Methylomicrobium alcaliphilum 20Z 3ES5 ; 3.3 ; Crystal Structure of Partitivirus (PsV-F) 5ZH6 ; 1.54 ; Crystal structure of Parvalbumin SPV-II of Mustelus griseus 5ZGM ; 1.399 ; Crystal Structure of Parvalbumin SPVI, the Major Allergens in Mustelus griseus 4HP4 ; 2.0 ; Crystal structure of PAS domain from the fruit-fly ELK potassium channel 4HQA ; 1.96 ; Crystal structure of PAS domain from the human ERG (hERG) potassium channel 4HOI ; 1.85 ; Crystal structure of PAS domain from the mouse EAG1 potassium channel 3BWL ; 1.73 ; Crystal structure of PAS domain of HTR-like protein from Haloarcula marismortui 3FG8 ; 1.8 ; Crystal structure of PAS domain of RHA05790 4MN5 ; 2.0 ; Crystal structure of PAS domain of S. aureus YycG 3CWF ; 2.2 ; Crystal structure of PAS domain of two-component sensor histidine kinase 7YRT ; 2.27 ; Crystal structure of PAS like domain of FlrB, the histidine kinase involved in flagellar synthesis of Vibrio cholerae 5HWW ; 2.0 ; Crystal structure of PAS1 complexed with 1,2,4-TMB 5HWV ; 1.65 ; Crystal structure of PAS1 complexed with toluene 5E0Y ; 2.001 ; Crystal Structure of PASTA Domain 4 of Mycobacterium tuberculosis Protein Kinase B 5E10 ; 1.801 ; Crystal Structure of PASTA Domains 1 and 2 of Mycobacterium tuberculosis Protein Kinase B 5E12 ; 2.208 ; Crystal Structure of PASTA Domains 2, 3 and 4 of Mycobacterium tuberculosis Protein Kinase B 5E0Z ; 2.0 ; Crystal Structure of PASTA Domains 3 and 4 of Mycobacterium tuberculosis Protein Kinase B 7O4C ; 1.51 ; Crystal structure of PASTA domains of the Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus 1Q35 ; 1.2 ; Crystal Structure of Pasteurella haemolytica Apo Ferric ion-Binding Protein A 4IMC ; 1.85 ; Crystal Structure of Pasteurella multocida N-Acetyl-D-Neuraminic acid lyase 4IMF ; 1.9 ; Crystal Structure of Pasteurella multocida N-Acetyl-D-Neuraminic acid lyase K164 mutant complexed with N-Acetylneuraminic acid 4IMG ; 1.85 ; Crystal Structure of Pasteurella multocida N-Acetyl-D-Neuraminic acid lyase K164 mutant complexed with N-Glycolylneuraminic acid 4IME ; 1.75 ; Crystal Structure of Pasteurella multocida N-Acetyl-D-Neuraminic acid lyase K164A Mutant 4IMD ; 2.1 ; Crystal Structure of Pasteurella multocida N-Acetyl-D-Neuraminic acid lyase trapped with pyruvate covalently bound through a Schiff base to Lys164 2II6 ; 1.75 ; Crystal structure of Pasteurella multocida sialyltransferase D141N mutant in open conformation with CMP bound 2IIB ; 2.2 ; Crystal structure of Pasteurella multocida sialyltransferase D141N mutant with CMP bound 2IIQ ; 2.3 ; Crystal structure of Pasteurella multocida sialyltransferase in an open conformation with CMP bound 3S44 ; 1.45 ; Crystal Structure of Pasteurella multocida sialyltransferase M144D mutant with CMP bound 4PKA ; 2.6 ; Crystal structure of patatin aged with diisopropylphosphorofluoridate 4PKB ; 2.09 ; CRYSTAL STRUCTURE OF PATATIN-17 COMPLEXED WITH METHYL ARACHIDONYL FLUOROPHOSPHONATE (MAFP) 6RVC ; 2.2 ; Crystal structure of Patched-1 ectodomain 2 (PTCH1-ECD2) in complex with nanobody 75 6CTH ; 1.7 ; Crystal Structure of Pathogenesis-related Protein 1G (PR-1G) Kinase Domain from Cacao 8H3J ; 1.75 ; Crystal Structure of Pathogenesis-related Protein HcPR10 from Halostachys caspica in complex with trans-Zeatin-riboside 1XDF ; 1.9 ; Crystal structure of pathogenesis-related protein LlPR-10.2A from yellow lupine 2QIM ; 1.35 ; Crystal Structure of Pathogenesis-related Protein LlPR-10.2B from yellow lupine in complex with Cytokinin 3E85 ; 1.95 ; Crystal Structure of Pathogenesis-related Protein LlPR-10.2B from yellow lupine in complex with Diphenylurea 1ICX ; 1.95 ; CRYSTAL STRUCTURE OF PATHOGENESIS-RELATED PROTEIN LLPR10.1A FROM YELLOW LUPINE 1IFV ; 2.25 ; CRYSTAL STRUCTURE OF PATHOGENESIS-RELATED PROTEIN LLPR10.1B FROM YELLOW LUPINE 5MGH ; 1.87 ; Crystal structure of pathogenic mutants of human mitochodnrial PheRS 6HV6 ; 2.001 ; Crystal structure of PatoxP, a cysteine protease-like domain of Photorhabdus asymbiotica toxin PaTox 5UWH ; 2.26 ; Crystal Structure of Paxillin NES Peptide in complex with CRM1-Ran-RanBP1 4WJA ; 2.6 ; Crystal Structure of PAXX 1N0Y ; 1.75 ; Crystal Structure of Pb-bound Calmodulin 5NGJ ; 2.2 ; Crystal structure of pb6, major tail tube protein of bacteriophage T5 4JMQ ; 1.895 ; Crystal structure of pb9: The Dit of bacteriophage T5. 3Q5I ; 2.1 ; Crystal Structure of PBANKA_031420 3KK5 ; 10.6 ; Crystal structure of PBCV-1 VP54 fitted into a cryo-EM reconstruction of the virophage Sputnik 3VDH ; 1.62 ; Crystal structure of PbGH5A, a glycoside hydrolase family 5 enzyme from Prevotella bryantii B14 5D9O ; 1.55 ; Crystal structure of PbGH5A, a glycoside hydrolase family 5 enzyme from Prevotella bryantii B14, E280A mutant in complex with cellotetraose 5D9M ; 1.9 ; Crystal structure of PbGH5A, a glycoside hydrolase family 5 enzyme from Prevotella bryantii B14, E280A mutant in complex with the xyloglucan tetradecasaccharide XXXGXXXG 5D9P ; 1.8 ; Crystal structure of PbGH5A, a glycoside hydrolase family 5 enzyme from Prevotella bryantii B14, in complex with an inhibitory N-bromoacetylglycosylamine derivative of XXXG 5D9N ; 1.86 ; Crystal structure of PbGH5A, a glycoside hydrolase family 5 member from Prevotella bryantii B14, in complex with the xyloglucan heptasaccharide XXXG 3SLG ; 2.1 ; Crystal structure of PbgP3 protein from Burkholderia pseudomallei 8FEK ; 2.058 ; Crystal structure of PBP cyclase Ulm16 7EJG ; 1.68 ; Crystal structure of PBP domain of RMCA 2V2F ; 1.9 ; Crystal structure of PBP1a from drug-resistant strain 5204 from Streptococcus pneumoniae 4OON ; 3.2 ; Crystal structure of PBP1a in complex with compound 17 ((4Z,8S,11E,14S)-5-(2-amino-1,3-thiazol-4-yl)-14-(5,6-dihydroxy-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-8-formyl-2-methyl-6-oxo-3,10-dioxa-4,7,11-triazatetradeca-4,11-diene-2,12,14-tricarboxylic acid) 4BL2 ; 2.72 ; Crystal structure of PBP2a clinical mutant E150K from MRSA 4BL3 ; 3.0 ; Crystal structure of PBP2a clinical mutant N146K from MRSA 4CPK ; 2.35 ; Crystal structure of PBP2a double clinical mutant N146K-E150K from MRSA 3ZG5 ; 2.55 ; Crystal structure of PBP2a from MRSA in complex with peptidoglycan analogue at allosteric 6Q9N ; 2.5 ; Crystal structure of PBP2a from MRSA in complex with piperacillin and quinazolinone 6H5O ; 2.82 ; Crystal structure of PBP2a from MRSA in complex with piperacillin at active site. 4CJN ; 1.947 ; Crystal structure of PBP2a from MRSA in complex with quinazolinone ligand 5M18 ; 1.98 ; Crystal structure of PBP2a from MRSA in the presence of Cefepime ligand 5M1A ; 2.0 ; Crystal structure of PBP2a from MRSA in the presence of Ceftazidime ligand 5M19 ; 2.0 ; Crystal structure of PBP2a from MRSA in the presence of Oxacillin ligand 3PBS ; 2.0 ; Crystal structure of PBP3 complexed with aztreonam 3PBO ; 1.74 ; Crystal structure of PBP3 complexed with ceftazidime 3PBQ ; 1.7 ; Crystal structure of PBP3 complexed with imipenem 3PBT ; 1.641 ; Crystal structure of PBP3 complexed with MC-1 3PBR ; 1.95 ; Crystal structure of PBP3 complexed with meropenem 7ONW ; 2.7 ; Crystal structure of PBP3 from E. coli in complex with AIC499 7ONX ; 2.16 ; Crystal structure of PBP3 from P. aeruginosa 7ONY ; 1.77 ; Crystal structure of PBP3 from P. aeruginosa 7ONZ ; 1.86 ; Crystal structure of PBP3 from P. aeruginosa 7ONK ; 1.73 ; Crystal structure of PBP3 from P. aeruginosa in complex with AIC499 4OOM ; 2.0 ; Crystal structure of PBP3 in complex with BAL30072 ((2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-{[(1,5-dihydroxy-4-oxo-1,4-dihydropyridin-2-yl)methoxy]imino}-N-{(2S)-1-hydroxy-3-methyl-3-[(sulfooxy)amino]butan-2-yl}ethanamide) 4OOL ; 2.3 ; Crystal structure of PBP3 in complex with compound 14 ((2E)-2-({[(2S)-2-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-{[(1,5-dihydroxy-4-oxo-1,4-dihydropyridin-2-yl)methoxy]imino}acetyl]amino}-3-oxopropyl]oxy}imino)pentanedioic acid) 7ONO ; 2.3 ; Crystal structure of PBP3 transpeptidase domain from E. coli 7ONN ; 1.92 ; Crystal structure of PBP3 transpeptidase domain from E. coli in complex with AIC499 1W5D ; 2.1 ; Crystal structure of PBP4a from Bacillus subtilis 6C84 ; 2.511 ; Crystal structure of PBP5 from Enterococcus faecium 3LO7 ; 2.05 ; Crystal structure of PBPA from Mycobacterium tuberculosis 3UN7 ; 2.0 ; Crystal structure of PBPA from MYCOBACTERIUM TUBERCULOSIS 6I56 ; 2.12 ; Crystal structure of PBSX exported protein XepA 8GBV ; 2.08 ; Crystal structure of PC39-17A, an anti-HIV broadly neutralizing antibody 8GBW ; 1.5 ; Crystal structure of PC39-23D, an anti-HIV broadly neutralizing antibody 8GBY ; 2.35 ; Crystal structure of PC39-50E, an anti-HIV broadly neutralizing antibody 8GBX ; 2.7 ; Crystal structure of PC39-50I, an anti-HIV broadly neutralizing antibody 8GC0 ; 2.43 ; Crystal structure of PC39-50L, an anti-HIV broadly neutralizing antibody 8GBZ ; 1.97 ; Crystal structure of PC39-55C, an anti-HIV broadly neutralizing antibody 4USG ; 1.973 ; Crystal structure of PC4 W89Y mutant complex with DNA 4NSQ ; 2.3108 ; Crystal structure of PCAF 6LFV ; 1.9 ; Crystal structure of PCB4scFv(hN56D) 6LFW ; 1.41 ; Crystal structure of PCB4scFv(hN56D) in complex with PCB#126 6LFX ; 1.43 ; Crystal structure of PCB4scFv(hN56D) in complex with PCB#77 7RDK ; 2.46 ; Crystal structure of PCDN-16B, an anti-HIV antibody from the PCDN bnAb lineage (cysteinylated state) 7RDJ ; 1.93 ; Crystal structure of PCDN-16B, an anti-HIV antibody from the PCDN bnAb lineage (non-cysteinylated state) 7RDL ; 2.71 ; Crystal structure of PCDN-22A, an anti-HIV antibody from the PCDN bnAb lineage 5BZD ; 2.7 ; Crystal Structure of PCDN-27A, an antibody from the PCDN family of HIV-1 antibodies 5BZW ; 2.9 ; Crystal Structure of PCDN-27B, an antibody from the PCDN family of HIV-1 antibodies 7RDM ; 2.08 ; Crystal structure of PCDN-38B, a broadly neutralizing anti-HIV antibody 3CHM ; 1.5 ; Crystal structure of PCI domain from A. thaliana COP9 signalosome subunit 7 (CSN7) 5MOM ; 2.27 ; Crystal Structure of PCNA encoding the hypomorphic mutation S228I 7O1E ; 2.34 ; Crystal structure of PCNA from Chaetomium thermophilum 4HK1 ; 2.001 ; Crystal Structure of PCNA from Drosophila melanogaster 4CS5 ; 3.0 ; Crystal Structure of PCNA from Litopenaeus vannamei 7EP8 ; 1.95 ; Crystal structure of PCNA from Neurospora crassa 6T7X ; 2.3 ; Crystal structure of PCNA from P. abyssi 7BUP ; 2.7 ; Crystal structure of PCNA from pathogenic yeast Candida albicans 2ZVK ; 2.7 ; Crystal structure of PCNA in complex with DNA polymerase eta fragment 2ZVM ; 2.3 ; Crystal structure of PCNA in complex with DNA polymerase iota fragment 2ZVL ; 2.5 ; Crystal structure of PCNA in complex with DNA polymerase kappa fragment 6AIG ; 2.0 ; Crystal structure of PCNA1 from Aeropyrum pernix 2IO4 ; 2.6 ; Crystal structure of PCNA12 dimer from Sulfolobus solfataricus. 2NTI ; 2.5 ; Crystal structure of PCNA123 heterotrimer. 3AIX ; 2.9 ; Crystal structure of PCNA2-PCNA3 complex from Sulfolobus tokodaii (I222) 3AIZ ; 2.8 ; Crystal structure of PCNA2-PCNA3 complex from Sulfolobus tokodaii (P21212) 2IJX ; 1.9 ; Crystal structure of PCNA3 monomer from Sulfolobus solfataricus. 7CXZ ; 1.561 ; crystal structure of pco2 7CHJ ; 2.44 ; crystal structure of pco4 7CHI ; 2.502 ; crystal structure of pco5 1LYQ ; 1.5 ; Crystal Structure of PcoC, a Methionine Rich Copper Resistance Protein from Escherichia coli 3VZZ ; 2.04 ; Crystal structure of PcrB complexed with FsPP from bacillus subtilis subap. subtilis str. 168 3W00 ; 2.5 ; Crystal structure of PcrB complexed with G1P and FsPP from bacillus subtilis subap. subtilis str. 168 3VZY ; 1.63 ; Crystal structure of PcrB complexed with G1P from bacillus subtilis subap. subtilis str. 168 3W01 ; 1.54 ; Crystal structure of PcrB complexed with PEG from Staphylococcus aureus subsp. aureus Mu3 3W02 ; 2.98 ; Crystal structure of PcrB complexed with SO4 from Staphylococcus aureus subsp. aureus Mu3 3VZX ; 1.54 ; Crystal structure of PcrB from bacillus subtilis subap. subtilis str. 168 2XCC ; 2.13 ; Crystal structure of PcrH from Pseudomonas aeruginosa 4JL0 ; 2.22 ; Crystal structure of PcrH in complex with the chaperone binding region of PopB 2XCB ; 1.85 ; Crystal structure of PcrH in complex with the chaperone binding region of PopD 8E75 ; 1.25 ; Crystal structure of Pcryo_0616, the aminotransferase required to synthesize UDP-N-acetyl-3-amino-D-glucosaminuronic acid (UDP-GlcNAc3NA) 2P4E ; 1.98 ; Crystal Structure of PCSK9 3H42 ; 2.3 ; Crystal structure of PCSK9 in complex with Fab from LDLR competitive antibody 4OV6 ; 2.69 ; Crystal structure of PCSK9(53-451) with Adnectin 6CA7 ; 1.643 ; Crystal structure of PCT64_13C, a strain specific anti-HIV antibody 5FEH ; 3.1 ; Crystal structure of PCT64_35B, a broadly neutralizing anti-HIV antibody 6CA6 ; 2.43 ; Crystal structure of PCT64_35S, a broadly neutralizing anti-HIV antibody. 3AJG ; 1.9 ; Crystal structure of PcyA V225D-biliverdin IX alpha complex 3AJH ; 2.25 ; Crystal structure of PcyA V225D-biliverdin XIII alpha complex 3I8U ; 1.48 ; Crystal structure of PcyA-181,182-dihydrobiliverdin complex 2D1E ; 1.51 ; Crystal structure of PcyA-biliverdin complex 3I94 ; 1.04 ; Crystal structure of PcyA-biliverdin XIII alpha complex 3AF8 ; 1.66 ; Crystal Structure of Pd(ally)/apo-C126AFr 3AF9 ; 1.85 ; Crystal Structure of Pd(allyl)/apo-C48AFr 3NP2 ; 1.86 ; Crystal Structure of Pd(allyl)/apo-E45C/C48A-rHLFr 3NP0 ; 1.48 ; Crystal Structure of Pd(allyl)/apo-E45C/H49A/R52H-rHLFr 3NOZ ; 1.52 ; Crystal Structure of Pd(allyl)/apo-E45C/R52H-rHLFr 2ZG7 ; 1.7 ; Crystal Structure of Pd(allyl)/apo-Fr 2ZG9 ; 1.75 ; Crystal Structure of Pd(allyl)/apo-H114AFr 2ZG8 ; 1.6 ; Crystal Structure of Pd(allyl)/apo-H49AFr 5YHB ; 2.08 ; Crystal structure of Pd(allyl)/polyhedra mutant with deletion of Gly192-Ala194 5YHA ; 1.58 ; Crystal structure of Pd(allyl)/Wild Type Polyhedra 7BXA ; 3.32 ; Crystal structure of PD-1 in complex with tislelizumab Fab 5JDS ; 1.7 ; Crystal structure of PD-L1 complexed with a nanobody at 1.7 Angstron resolution 5XXY ; 2.9 ; Crystal structure of PD-L1 complexed with atezolizumab fab at 2.9A 3LE7 ; 1.65 ; Crystal structure of PD-L1 from P. dioica in complex with adenine 7CZD ; 1.64 ; Crystal structure of PD-L1 in complex with a VHH 8SDL ; 1.75 ; Crystal structure of PDC-3 beta-lactamase 8SDR ; 1.35 ; Crystal structure of PDC-3 beta-lactamase in complex with the boronic acid inhibitor LP-06 8SDT ; 1.38 ; Crystal structure of PDC-3 beta-lactamase in complex with the boronic acid inhibitor S02030 8SDN ; 2.1 ; Crystal structure of PDC-3 Y221H beta-lactamase 8SDS ; 1.63 ; Crystal structure of PDC-3 Y221H beta-lactamase in complex with the boronic acid inhibitor LP-06 8SDV ; 1.42 ; Crystal structure of PDC-3 Y221H beta-lactamase in complex with the boronic acid inhibitor S02030 3EIJ ; 2.8 ; Crystal structure of Pdcd4 3EIQ ; 3.5 ; Crystal structure of Pdcd4-eIF4A 6IJI ; 2.7 ; Crystal structure of PDE10 in complex with inhibitor 2b 6IJH ; 2.6 ; Crystal structure of PDE10 in complex with inhibitor AF-399/14387019 2OUP ; 1.56 ; crystal structure of PDE10A 5ZNL ; 2.8 ; Crystal structure of PDE10A catalytic domain complexed with LHB-6 4WN1 ; 3.13 ; Crystal structure of PDE10A in complex with 1-methyl-5-(1-methyl-3-{[4-(quinolin-2-yl)phenoxy]methyl}-1H-pyrazol-4-yl)pyridin-2(1H)-one 5XUI ; 2.77 ; Crystal structure of PDE10A in complex with 2-methyl-5-[2-([1,2,4]triazolo[1,5-a]pyrimidin-2-yl)et hyl]pyrazolo[1,5-a]pyrimidin-7-ol 5XUJ ; 2.44 ; Crystal structure of PDE10A in complex with 7-(4-chlorophenyl)-2-methylpyrazolo[1,5-a]pyrimidine 3WS9 ; 2.99 ; Crystal structure of PDE10A in complex with a benzimdazole inhibitor 3WS8 ; 2.6 ; Crystal structure of PDE10A in complex with a benzimidazole inhibitor 6KDX ; 2.44 ; Crystal structure of PDE10A in complex with a triazolopyrimidine inhibitor 6KDZ ; 3.1 ; Crystal structure of PDE10A in complex with a triazolopyrimidine inhibitor 6KE0 ; 2.95 ; Crystal structure of PDE10A in complex with a triazolopyrimidine inhibitor 4XY2 ; 2.03 ; Crystal structure of PDE10A in complex with ASP9436 3WI2 ; 2.26 ; Crystal structure of PDE10A in complex with inhibitor 4PHW ; 2.5 ; Crystal Structure of PDE10A with 1H-benzimidazol-2-yl(4-((3-(tetrahydro-2H-pyran-4-yl)-2-pyridinyl)oxy)phenyl)methanone 4HEU ; 2.0 ; Crystal Structure of PDE10A with a biaryl ether inhibitor ((1-(3-(4-((1H-benzo[d]imidazol-2-yl)amino)phenoxy)pyridin-2-yl)piperidin-4-yl)methanol) 4HF4 ; 2.0 ; Crystal Structure of PDE10A with a biaryl ether inhibitor (1-(1-(3-(4-(benzo[d]thiazol-2-ylamino)phenoxy)pyrazin-2-yl)piperidin-4-yl)ethanol) 4P0N ; 2.08 ; Crystal structure of PDE10a with a novel Imidazo[4,5-b]pyridine inhibitor 4P1R ; 2.243 ; Crystal Structure of PDE10A with Imidazo[4,5-b]pyridines as Potent and Selective Inhibitors 4MUW ; 2.639 ; Crystal Structure of PDE10A with Novel Keto-Benzimidazole Inhibitor 4MVH ; 2.496 ; Crystal Structure of PDE10A with Novel Keto-Benzimidazole Inhibitor 2OUN ; 1.56 ; crystal structure of PDE10A2 in complex with AMP 2OUQ ; 1.9 ; crystal structure of PDE10A2 in complex with GMP 2OUY ; 1.9 ; crystal structure of pde10a2 mutant D564A in complex with cAMP. 2OUS ; 1.45 ; crystal structure of PDE10A2 mutant D674A 2OUR ; 1.45 ; crystal structure of PDE10A2 mutant D674A in complex with cAMP 2OUU ; 1.52 ; crystal structure of PDE10A2 mutant D674A in complex with cGMP 2OUV ; 1.56 ; crystal structure of pde10a2 mutant of D564N 4MRW ; 1.96 ; Crystal structure of PDE10A2 with fragment ZT0120 (7-chloroquinolin-4-ol) 4MSH ; 2.3 ; Crystal Structure of PDE10A2 with fragment ZT0143 ((2S)-4-chloro-2,3-dihydro-1,3-benzothiazol-2-amine) 4LKQ ; 1.62 ; Crystal structure of PDE10A2 with fragment ZT017 4MRZ ; 1.58 ; Crystal structure of PDE10A2 with fragment ZT0429 (4-methyl-3-nitropyridin-2-amine) 4MS0 ; 1.79 ; Crystal structure of PDE10A2 with fragment ZT0443 (6-chloropyrimidine-2,4-diamine) 4MSA ; 1.62 ; Crystal structure of PDE10A2 with fragment ZT0449 (5-nitro-1H-benzimidazole) 4MSN ; 2.3 ; Crystal structure of PDE10A2 with fragment ZT0451 (8-nitroquinoline) 4MSC ; 2.47 ; Crystal structure of PDE10A2 with fragment ZT1595 (2-[(quinolin-7-yloxy)methyl]quinoline) 4MSE ; 2.81 ; Crystal structure of PDE10A2 with fragment ZT1597 (2-({[(2S)-2-methyl-2,3-dihydro-1,3-benzothiazol-5-yl]oxy}methyl)quinoline) 4LLJ ; 1.56 ; Crystal structure of PDE10A2 with fragment ZT214 4LLK ; 1.55 ; Crystal structure of PDE10A2 with fragment ZT217 4LLP ; 1.75 ; Crystal structure of PDE10A2 with fragment ZT401 4LLX ; 1.75 ; Crystal structure of PDE10A2 with fragment ZT434 4LM0 ; 1.66 ; Crystal structure of PDE10A2 with fragment ZT448 4LM1 ; 1.6 ; Crystal structure of PDE10A2 with fragment ZT450 4LM2 ; 1.55 ; Crystal structure of PDE10A2 with fragment ZT462 4LM3 ; 1.49 ; Crystal structure of PDE10A2 with fragment ZT464 4LM4 ; 1.48 ; Crystal structure of PDE10A2 with fragment ZT902 4HTX ; 1.9 ; Crystal structure of PDE2 catalytic domain in complex with BAY60-7550 4HTZ ; 2.0 ; Crystal structure of PDE2 catalytic domain in space group P1 6B97 ; 1.76 ; Crystal structure of PDE2 in complex with complex 9 6B96 ; 1.88 ; Crystal Structure of PDE2 in complex with compound 16 8SYC ; 2.7 ; Crystal structure of PDE3B in complex with GSK4394835A 2QYK ; 2.1 ; Crystal structure of PDE4A10 in complex with inhibitor NPV 3D3P ; 1.75 ; Crystal structure of PDE4B catalytic domain in complex with a pyrazolopyridine inhibitor 1RO6 ; 2.0 ; Crystal structure of PDE4B2B complexed with Rolipram (R & S) 2QYL ; 1.95 ; Crystal structure of PDE4B2B in complex with inhibitor NPV 1MKD ; 2.9 ; crystal structure of PDE4D catalytic domain and zardaverine complex 7W4X ; 2.20007 ; Crystal structure of PDE4D catalytic domain complexed with 17 7W4Y ; 2.10003 ; Crystal structure of PDE4D catalytic domain complexed with 33a 6KJZ ; 2.2 ; Crystal structure of PDE4D catalytic domain complexed with compound 1 7F2K ; 2.10002 ; Crystal structure of PDE4D catalytic domain complexed with compound 17a 7F2L ; 2.10111 ; Crystal structure of PDE4D catalytic domain complexed with compound 18a 7F2M ; 2.20004 ; Crystal structure of PDE4D catalytic domain complexed with compound 18d 7XAA ; 2.10041 ; Crystal structure of PDE4D catalytic domain complexed with compound 21d 7XAB ; 2.00067 ; Crystal structure of PDE4D catalytic domain complexed with compound 22d 7XBB ; 2.10001 ; Crystal structure of PDE4D catalytic domain complexed with compound 23a 6KK0 ; 2.20009 ; Crystal structure of PDE4D catalytic domain complexed with compound 4e 5WQA ; 2.3 ; Crystal structure of PDE4D catalytic domain complexed with Selaginpulvilins K 7CBQ ; 1.59 ; Crystal structure of PDE4D catalytic domain in complex with Apremilast 6LRM ; 1.45 ; Crystal structure of PDE4D catalytic domain in complex with arctigenin 7CBJ ; 1.5 ; Crystal structure of PDE4D catalytic domain in complex with compound 36 6IM6 ; 1.702 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMB ; 1.549 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMD ; 1.499 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMI ; 1.46 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMO ; 1.55 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMR ; 1.503 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IMT ; 1.483 ; Crystal structure of PDE4D complexed with a novel inhibitor 6IND ; 1.872 ; Crystal structure of PDE4D complexed with a novel inhibitor 6INK ; 1.7 ; Crystal structure of PDE4D complexed with a novel inhibitor 6INM ; 1.999 ; Crystal structure of PDE4D complexed with a novel inhibitor 8K4H ; 1.95 ; Crystal structure of PDE4D complexed with benzbromarone 8W4R ; 1.37 ; Crystal structure of PDE4D complexed with CVT-313 8W4Q ; 1.55 ; Crystal structure of PDE4D complexed with CX-4945 8K4C ; 2.1 ; Crystal structure of PDE4D complexed with ethaverine hydrochloride 7YQF ; 1.54 ; Crystal structure of PDE4D complexed with glycyrrhisoflavone 7YSX ; 1.65 ; Crystal structure of PDE4D complexed with licoisoflavone A 2FM0 ; 2.0 ; Crystal structure of PDE4D in complex with L-869298 1OYN ; 2.0 ; Crystal structure of PDE4D2 in complex with (R,S)-rolipram 5WH6 ; 1.6 ; Crystal structure of PDE4D2 in complex with inhibitor (S_Zl-n-91) 2FM5 ; 2.03 ; Crystal structure of PDE4D2 in complex with inhibitor L-869299 6ZBA ; 1.6 ; Crystal structure of PDE4D2 in complex with inhibitor LEO39652 2QYN ; 1.57 ; Crystal structure of PDE4D2 in complex with inhibitor NPV 6VBI ; 2.30001 ; crystal structure of PDE5 in complex with a non-competitive inhibitor 4MD6 ; 2.0 ; Crystal structure of PDE5 in complex with inhibitor 5R 5ZZ2 ; 2.6 ; Crystal structure of PDE5 in complex with inhibitor LW1634 6ACB ; 2.8 ; Crystal structure of PDE5 in complex with inhibitor LW1805 2H42 ; 2.3 ; Crystal structure of PDE5 in complex with sildenafil 4G2Y ; 2.4 ; Crystal structure of PDE5A complexed with its inhibitor 3MF0 ; 3.1 ; Crystal structure of PDE5A GAF domain (89-518) 6IWI ; 2.155 ; Crystal structure of PDE5A in complex with a novel inhibitor 8W4T ; 2.199 ; Crystal structure of PDE5A in complex with a novel inhibitor 8W4S ; 1.848 ; Crystal structure of PDE5A in complex with CVT-313 7FAQ ; 2.20014 ; Crystal structure of PDE5A in complex with inhibitor L1 7FAR ; 2.40006 ; Crystal structure of PDE5A in complex with inhibitor L12 4G2W ; 2.28 ; Crystal structure of PDE5A in complex with its inhibitor 3B2R ; 2.07 ; Crystal Structure of PDE5A1 catalytic domain in complex with Vardenafil 2H44 ; 1.8 ; Crystal structure of PDE5A1 in complex with icarisid II 1RKP ; 2.05 ; Crystal structure of PDE5A1-IBMX 7QF9 ; 1.95 ; Crystal structure of PDE6D bound to HRas peptide 7Q9Q ; 1.45 ; Crystal structure of PDE6D Geranylgeranylated cystein complex 5T4X ; 1.81 ; CRYSTAL STRUCTURE OF PDE6D IN APO-STATE 7QJK ; 3.1 ; Crystal structure of PDE6D in complex with Compound-2 4JVB ; 1.75 ; Crystal structure of PDE6D in complex with the inhibitor rac-2 7Q9S ; 1.85 ; Crystal structure of PDE6D KRas peptide complex with Compound-1 7VSL ; 2.50007 ; Crystal structure of PDE8A catalytic domain in complex with 10 7VTV ; 2.8 ; Crystal structure of PDE8A catalytic domain in complex with 15 7VTW ; 2.79971 ; Crystal structure of PDE8A catalytic domain in complex with 17 7VTX ; 2.50011 ; Crystal structure of PDE8A catalytic domain in complex with 22 7CWF ; 2.8 ; Crystal structure of PDE8A catalytic domain in complex with 2c 7CWG ; 2.8 ; Crystal structure of PDE8A catalytic domain in complex with 3a 7CWA ; 2.8 ; Crystal structure of PDE8A catalytic domain in complex with clofarabine 3ECN ; 2.1 ; Crystal structure of PDE8A catalytic domain in complex with IBMX 2HD1 ; 2.23 ; Crystal structure of PDE9 in complex with IBMX 4Y86 ; 2.01 ; Crystal structure of PDE9 in complex with racemic inhibitor C33 3N3Z ; 2.75 ; Crystal structure of PDE9A (E406A) mutant in complex with IBMX 3QI4 ; 2.5 ; Crystal structure of PDE9A(Q453E) in complex with IBMX 3QI3 ; 2.3 ; Crystal structure of PDE9A(Q453E) in complex with inhibitor BAY73-6691 5MTC ; 1.7 ; Crystal structure of PDF from the Vibrio parahaemolyticus bacteriophage VP16T - crystal form I 5MTD ; 1.5 ; Crystal structure of PDF from the Vibrio parahaemolyticus bacteriophage VP16T - crystal form II 5MTE ; 1.4 ; Crystal structure of PDF from the Vibrio parahaemolyticus bacteriophage VP16T in complex with actinonin - crystal form II 6JOL ; 1.9 ; Crystal structure of PDGFRA in complex with imatinib by co-crystallization 6JOK ; 3.8 ; Crystal structure of PDGFRA in complex with sunitinib by soaking 5GRN ; 1.77 ; Crystal structure of PDGFRA in Complex with WQ-C-159 6A32 ; 1.87 ; Crystal structure of PDGFRA kinase domain mutant T674I 6JOI ; 3.1 ; Crystal structure of PDGFRA T674I in complex with crenolanib by co-crystallization 6JOJ ; 2.6 ; Crystal structure of PDGFRA T674I in complex with crenolanib by soaking 7JWF ; 2.187 ; Crystal structure of PdGH110B D344N in complex with alpha-(1,3)-galactobiose 7JW4 ; 2.342 ; Crystal structure of PdGH110B in complex with D-galactose 2XCH ; 2.0 ; Crystal structure of PDK1 in complex with a pyrazoloquinazoline inhibitor 2XCK ; 2.3 ; Crystal structure of PDK1 in complex with a pyrazoloquinazoline inhibitor 4RRV ; 1.412 ; Crystal structure of PDK1 in complex with ATP and PIFtide 4XX9 ; 1.4 ; Crystal structure of PDK1 in complex with ATP and the PIF-pocket ligand RF4 4RQK ; 1.55 ; Crystal structure of PDK1 in complex with ATP and the PIF-pocket ligand RS1 4RQV ; 1.502 ; Crystal structure of PDK1 in complex with ATP and the PIF-pocket ligand RS2 4OZD ; 2.95 ; Crystal structure of PdSP15a 4QIG ; 3.297 ; Crystal Structure of PduA with edge mutation K26A and pore mutation S40C 4QIF ; 1.9951 ; Crystal Structure of PduA with edge mutation K26A and pore mutation S40H 4QIE ; 2.3501 ; Crystal Structure of PduA with edge mutation K26D 5CX7 ; 1.97 ; Crystal Structure of PduOC:Heme Complex 3PAC ; 1.86 ; Crystal structure of PduT a trimeric bacterial microcompartment protein with 4Fe-4S cluster binding site 2Z17 ; 2.7 ; Crystal structure of PDZ domain from human Pleckstrin homology, Sec7 2EAQ ; 1.46 ; Crystal structure of PDZ domain of KIAA0858 (LIM), MS0793 from Homo sapiens 5HJ1 ; 1.5 ; Crystal structure of PDZ domain of pullulanase C protein of type II secretion system from Klebsiella pneumoniae in complex with fatty acid 3QE1 ; 1.68 ; Crystal Structure of PDZ domain of sorting nexin 27 (SNX27) fused to the C-terminal residues (ESESKV) of GIRK3 3QDO ; 1.88 ; Crystal Structure of PDZ domain of sorting nexin 27 (SNX27) fused to the Gly-Gly linker followed by C-terminal (ESESKV) of GIRK3 3QGL ; 3.31 ; Crystal Structure of PDZ domain of sorting nexin 27 (SNX27) in complex with the ESESKV peptide corresponding to the C-terminal tail of GIRK3 2JIK ; 1.35 ; Crystal structure of PDZ domain of Synaptojanin-2 binding protein 2JIN ; 1.5 ; Crystal structure of PDZ domain of Synaptojanin-2 binding protein 5J0A ; 2.74 ; Crystal structure of PDZ-binding kinase 5GLJ ; 1.6 ; Crystal Structure of PDZ1 Domain of Human Protein Tyrosine Phosphatase PTP-Bas 6SPV ; 2.04 ; Crystal structure of PDZ1-2 from PSD-95 6SPZ ; 2.08 ; Crystal structure of PDZ1-2 from PSD-95 with peptide ligand sequence RRESEI bound to both domains 1TP5 ; 1.54 ; Crystal structure of PDZ3 domain of PSD-95 protein complexed with a peptide ligand KKETWV 3TSZ ; 2.502 ; crystal structure of PDZ3-SH3-GUK core module from human ZO-1 in complex with 12mer peptide from human JAM-A cytoplasmic tail 7DE7 ; 1.49 ; Crystal structure of PDZD7 HHD domain 3CX6 ; 2.5 ; Crystal Structure of PDZRhoGEF rgRGS Domain in a Complex with Galpha-13 Bound to GDP 3CX7 ; 2.25 ; Crystal Structure of PDZRhoGEF rgRGS Domain in a Complex with Galpha-13 Bound to GDP-AlF4 3CX8 ; 2.0 ; Crystal Structure of PDZRhoGEF rgRGS Domain in a Complex with Galpha-13 Bound to GTP-gamma-S 3FLT ; 2.7 ; Crystal structure of PE-bound octameric SAP-like pentraxin from Limulus polyphemus 8ITE ; 2.1 ; Crystal structure of pE301R from African swine fever virus 5XFS ; 2.9 ; Crystal structure of PE8-PPE15 in complex with EspG5 from M. tuberculosis 3KSC ; 2.606 ; Crystal structure of pea prolegumin, an 11S seed globulin from Pisum sativum L. 1H65 ; 2.0 ; Crystal structure of pea Toc34 - a novel GTPase of the chloroplast protein translocon 2ALG ; 2.3 ; Crystal structure of peach Pru p3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens 2B5S ; 2.35 ; Crystal structure of peach Pru p3, the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens 4ESP ; 1.1 ; Crystal Structure of Peanut Allergen Ara h 5 2DVD ; 2.25 ; Crystal structure of peanut lectin GAL-ALPHA-1,3-GAL complex 2DVG ; 2.78 ; Crystal structure of peanut lectin GAL-ALPHA-1,6-GLC complex 2DV9 ; 2.48 ; Crystal structure of peanut lectin GAL-BETA-1,3-GAL complex 2DVA ; 2.2 ; Crystal structure of peanut lectin GAL-BETA-1,3-GALNAC-ALPHA-O-ME (Methyl-T-antigen) complex 2DVB ; 2.25 ; Crystal structure of peanut lectin GAl-beta-1,6-GalNAc complex 1RIT ; 2.85 ; Crystal structure of Peanut lectin in complex with meso-tetrasulphonatophenylporphyrin and lactose 2DH1 ; 7.65 ; Crystal structure of peanut lectin lactose-azobenzene-4,4'-dicarboxylic acid-lactose complex 3C3V ; 1.73 ; Crystal structure of peanut major allergen ara h 3 2HXW ; 1.6 ; Crystal Structure of Peb3 from Campylobacter jejuni 5C14 ; 2.8 ; Crystal structure of PECAM-1 D1D2 domain 5E1R ; 2.651 ; Crystal structure of pecan (carya illinoinensis) vicilin, a new food allergen 1JTA ; 1.8 ; Crystal Structure of Pectate Lyase A (C2 form) 3VMV ; 1.54 ; Crystal structure of pectate lyase Bsp165PelA from Bacillus sp. N165 3VMW ; 1.9 ; Crystal structure of pectate lyase Bsp165PelA from Bacillus sp. N165 in complex with trigalacturonate 2EWE ; 2.2 ; Crystal structure of Pectate Lyase C R218K mutant in complex with pentagalacturonic acid 1EE6 ; 2.3 ; CRYSTAL STRUCTURE OF PECTATE LYASE FROM BACILLUS SP. STRAIN KSM-P15. 4U4B ; 2.1 ; Crystal Structure of Pectate Lyase Pel3 from Pectobacterium carotovorum with one monomer in the A.U. 4U49 ; 1.8 ; Crystal structure of Pectate Lyase Pel3 from Pectobacterium carotovorum with two monomers in the A.U 1RU4 ; 1.6 ; Crystal structure of pectate lyase Pel9A 3B8Y ; 2.3 ; Crystal Structure of Pectate Lyase PelI from Erwinia chrysanthemi in complex with tetragalacturonic acid 2NSP ; 1.7 ; Crystal structure of pectin methylesterase D178A mutant in complex with hexasaccharide I 2NST ; 1.7 ; Crystal structure of pectin methylesterase D178A mutant in complex with hexasaccharide II 2NT6 ; 1.7 ; Crystal structure of pectin methylesterase D178A mutant in complex with hexasaccharide III 2NT9 ; 1.9 ; Crystal structure of pectin methylesterase D178A mutant in complex with hexasaccharide IV 2NTB ; 1.8 ; Crystal structure of pectin methylesterase in complex with hexasaccharide V 2NTP ; 1.7 ; Crystal structure of pectin methylesterase in complex with hexasaccharide VI 2NTQ ; 1.8 ; Crystal structure of pectin methylesterase in complex with hexasaccharide VII 4ZA2 ; 1.55 ; Crystal structure of Pectobacterium carotovorum 2-keto-3-deoxy-D-gluconate dehydrogenase complexed with NAD+ 4N58 ; 1.86 ; Crystal Structure of Pectocin M2 at 1.86 Angstroms 2IP6 ; 1.35 ; Crystal structure of PedB 6RHS ; 2.6 ; Crystal structure of Pediococcus acidilactici (Putative)lactate oxidase Refolded WT protein 6R9V ; 2.0 ; Crystal structure of Pediococcus acidilactici lactate oxidase A94G mutant 4XPP ; 2.3 ; Crystal structure of Pedobacter saltans GH31 alpha-galactosidase complexed with D-galactose 4XPQ ; 1.85 ; Crystal structure of Pedobacter saltans GH31 alpha-galactosidase complexed with L-fucose 5HIY ; 3.0 ; Crystal structure of PEDV NSP9 Mutant-C59A 5ZZV ; 1.57 ; Crystal structure of PEG-1500 crystallized Peptidyl-tRNA Hydrolase from Acinetobacter baumannii at 1.5 A resolution 5XG9 ; 1.78 ; Crystal Structure of PEG-bound SH3 domain of Myosin IB from Entamoeba histolytica 4R0O ; 4.2 ; Crystal structure of PEGylated plastocyanin at 4.2 A resolution 4ETX ; 2.0 ; Crystal Structure of PelD 158-CT from Pseudomonas aeruginosa PAO1 4ETZ ; 2.05 ; Crystal Structure of PelD 158-CT from Pseudomonas aeruginosa PAO1 4EU0 ; 1.7 ; Crystal Structure of PelD 158-CT from Pseudomonas aeruginosa PAO1 4EUV ; 2.0 ; Crystal Structure of PelD 158-CT from Pseudomonas aeruginosa PAO1, in complex with c-di-GMP, form 1 3EGA ; 1.8 ; Crystal structure of Pellino2 FHA Domain at 1.8 Angstroms resolution 5EO3 ; 2.6 ; Crystal Structure of Pelota C terminal domain from human 5DK3 ; 2.28 ; Crystal Structure of Pembrolizumab, a full length IgG4 antibody 3W4Q ; 1.2 ; Crystal structure of PenA beta-lactamase from Burkholderia multivorans at pH4.2 7DOO ; 1.6 ; Crystal Structure of PenA beta-Lactamase-Avibactam Complex 7DDM ; 1.2 ; Crystal Structure of PenA39 beta-Lactamase 3N7X ; 2.5 ; Crystal structure of Penaeus stylirostris densovirus capsid 4MBF ; 1.54 ; Crystal structure of Penam sulfone PSR-4-157 bound to SHV-1 beta-lactamase 6MKH ; 2.62 ; Crystal structure of pencillin binding protein 4 (PBP4) from Enterococcus faecalis in the imipenem-bound form 3W4P ; 1.05 ; Crystal structure of PenI beta-lactamase from Burkholderia pseudomallei at pH7.5 3W4O ; 1.18 ; Crystal structure of PenI beta-lactamase from Burkholderia pseudomallei at pH9.5 6KGH ; 2.108 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis (apo-form) 6KGV ; 2.301 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis, complexed with amoxicillin 6KGW ; 2.407 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis, complexed with ampicillin 6KGU ; 2.106 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis, complexed with aztreonam 6KGT ; 2.308 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis, complexed with faropenem 6KGS ; 2.309 ; Crystal structure of Penicillin binding protein 3 (PBP3) from Mycobacterium tuerculosis, complexed with meropenem 2EX2 ; 1.55 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli 2EX6 ; 1.6 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, complexed with ampicillin 2EXA ; 1.7 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, complexed with FAROM 2EXB ; 1.75 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, complexed with FLOMOX 2EX8 ; 1.6 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-G 2EX9 ; 1.65 ; Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, complexed with penicillin-V 3A3D ; 1.6 ; Crystal structure of penicillin binding protein 4 (dacB) from Haemophilus influenzae 3A3I ; 2.0 ; Crystal structure of penicillin binding protein 4 (dacB) from Haemophilus influenzae, complexed with ampicillin (AIX) 3A3E ; 2.4 ; Crystal structure of penicillin binding protein 4 (dacB) from Haemophilus influenzae, complexed with novel beta-lactam (CMV) 3A3F ; 2.1 ; Crystal structure of penicillin binding protein 4 (dacB) from Haemophilus influenzae,complexed with novel beta-lactam (FMZ) 3ZG8 ; 2.094 ; Crystal Structure of Penicillin Binding Protein 4 from Listeria monocytogenes in the Ampicillin bound form 3HUN ; 2.0 ; Crystal structure of Penicillin binding protein 4 from Staphylococcus aureus COL in complex with Ampicillin 3HUM ; 2.3 ; Crystal structure of Penicillin binding protein 4 from Staphylococcus aureus COL in complex with Cefotaxime 6MKG ; 2.94 ; Crystal structure of penicillin binding protein 5 (PBP5) from Enterococcus faecium in the benzylpenicilin-bound form 6MKJ ; 2.864 ; Crystal structure of penicillin binding protein 5 (PBP5) from Enterococcus faecium in the closed conformation 6MKF ; 2.8 ; Crystal structure of penicillin binding protein 5 (PBP5) from Enterococcus faecium in the imipenem-bound form 6MKA ; 2.698 ; Crystal structure of penicillin binding protein 5 (PBP5) from Enterococcus faecium in the open conformation 8F3V ; 3.1 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) PAPAPAP variant apo form from Enterococcus faecium 8F3W ; 3.0 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) PAPAPAP variant penicillin bound form from Enterococcus faecium 8F3X ; 3.4 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) Poly-Gly variant apo form from Enterococcus faecium 8F3Y ; 2.99 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) Poly-Gly variant penicillin bound form from Enterococcus faecium 8F3O ; 3.0 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) R464A variant apo form from Enterococcus faecium 8F3P ; 3.09 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) R464A variant penicillin bound form from Enterococcus faecium 8F3Z ; 2.8 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) S422A variant apo form from Enterococcus faecium 8F3H ; 2.6 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) S466 insertion variant apo form from Enterococcus faecium 8F3I ; 2.8 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) S466 insertion variant penicillin bound form from Enterococcus faecium 8F3J ; 2.59 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485A variant apo form from Enterococcus faecium 8F3L ; 3.4 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485A variant penicillin bound form from Enterococcus faecium 8F3M ; 2.81 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485A variant with S466 insertion apo form from Enterococcus faecium 8F3N ; 2.99 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485A variant with S466 insertion penicillin bound form from Enterococcus faecium 8F3T ; 2.56 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M T499I V629E variant apo form from Enterococcus faecium 8F3U ; 2.6 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M T499I V629E variant penicillin bound form from Enterococcus faecium 8F3R ; 3.3 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M T499I variant apo form from Enterococcus faecium 8F3S ; 3.5 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M T499I variant penicillin bound form from Enterococcus faecium 8F3F ; 2.84 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M variant apo form from Enterococcus faecium 8F3G ; 3.59 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) T485M variant in the penicillin bound form from Enterococcus faecium 8F3Q ; 2.9 ; Crystal structure of Penicillin Binding Protein 5 (PBP5) Y460A variant apo form from Enterococcus faecium 5FSR ; 2.4 ; Crystal structure of penicillin binding protein 6B from Escherichia coli 6NVW ; 2.203 ; Crystal structure of penicillin G acylase from Bacillus megaterium 6NVX ; 1.36 ; Crystal structure of penicillin G acylase from Bacillus sp. FJAT-27231 6NVY ; 2.27 ; Crystal structure of penicillin G acylase from Bacillus thermotolerans 1CP9 ; 2.5 ; CRYSTAL STRUCTURE OF PENICILLIN G ACYLASE FROM THE BRO1 MUTANT STRAIN OF PROVIDENCIA RETTGERI 2OQC ; 2.5 ; Crystal Structure of Penicillin V acylase from Bacillus subtilis 7O49 ; 3.03 ; Crystal structure of Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus 7O4B ; 2.593 ; Crystal structure of Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus in complex with penicillin G 7OK9 ; 3.36 ; Crystal structure of Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus in complex with pentaglycine 7O4A ; 3.028 ; Crystal structure of Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus in complex with piperacillin 7U4H ; 3.1 ; Crystal Structure of Penicillin-binding protein 1A (Pbp1a) from Chlamydia trachomatis 3EQU ; 2.4 ; Crystal structure of penicillin-binding protein 2 from Neisseria gonorrhoeae 5KSH ; 2.4 ; Crystal structure of penicillin-binding protein 2 from Neisseria gonorrhoeae containing an A501T mutation associated with cephalosporin resistance 3EQV ; 2.4 ; Crystal structure of penicillin-binding protein 2 from Neisseria gonorrhoeae containing four mutations associated with penicillin resistance 6TII ; 2.26 ; Crystal structure of penicillin-binding protein 2 from Yersinia pestis 6XV5 ; 2.673 ; Crystal structure of penicillin-binding protein 2 from Yersinia pestis in complex with ertapenem 6TIX ; 2.8 ; Crystal structure of penicillin-binding protein 2 from Yersinia pestis in complex with mecillinam 3VSK ; 2.301 ; Crystal structure of penicillin-binding protein 3 (PBP3) from methicilin-resistant Staphylococcus aureus in the apo form. 3VSL ; 2.4 ; Crystal structure of penicillin-binding protein 3 (PBP3) from methicilin-resistant Staphylococcus aureus in the cefotaxime bound form. 8C5B ; 2.5 ; Crystal Structure of Penicillin-binding Protein 3 (PBP3) from Staphylococcus Epidermidis 8C5W ; 2.51 ; Crystal Structure of Penicillin-binding Protein 3 (PBP3) from Staphylococcus Epidermidis in complex with Cefotaxime 8C5O ; 2.3 ; Crystal Structure of Penicillin-binding Protein 3 (PBP3) from Staphylococcus Epidermidis in complex with Vaborbactam 3OC2 ; 1.968 ; Crystal structure of penicillin-binding protein 3 from Pseudomonas aeruginosa 4KQQ ; 2.1 ; CRYSTAL STRUCTURE OF PENICILLIN-BINDING PROTEIN 3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH (5S)-Penicilloic Acid 4KQR ; 2.01 ; CRYSTAL STRUCTURE OF PENICILLIN-BINDING PROTEIN 3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH (5S)-Penicilloic Acid 5DF7 ; 2.0 ; CRYSTAL STRUCTURE OF PENICILLIN-BINDING PROTEIN 3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH AZLOCILLIN 3OCL ; 2.3 ; Crystal structure of penicillin-binding protein 3 from Pseudomonas aeruginosa in complex with carbenicillin 5DF8 ; 2.0 ; CRYSTAL STRUCTURE OF PENICILLIN-BINDING PROTEIN 3 FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH CEFOPERAZONE 3OCN ; 2.61 ; Crystal structure of penicillin-binding protein 3 from Pseudomonas aeruginosa in complex with ceftazidime 4KQO ; 2.31 ; Crystal structure of penicillin-binding protein 3 from pseudomonas aeruginosa in complex with piperacillin 5DF9 ; 2.7 ; CRYSTAL STRUCTURE OF PENICILLIN-BINDING PROTEIN 3 IN COMPLEX WITH DEACYLATED PRODUCT OF CEFOPERAZONE 6BSR ; 2.34 ; Crystal structure of penicillin-binding protein 4 (PBP4) from Enterococcus faecalis in the benzylpenicillin bound form. 6MKI ; 2.984 ; Crystal structure of penicillin-binding protein 4 (PBP4) from Enterococcus faecalis in the ceftaroline-bound form 1TVF ; 2.0 ; Crystal Structure of penicillin-binding protein 4 (PBP4) from Staphylococcus aureus 3ZG7 ; 1.991 ; Crystal Structure of Penicillin-Binding Protein 4 from Listeria monocytogenes in the apo form 3ZGA ; 2.005 ; Crystal Structure of Penicillin-Binding Protein 4 from Listeria monocytogenes in the Carbenicillin bound form 3ZG9 ; 1.804 ; Crystal Structure of Penicillin-Binding Protein 4 from Listeria monocytogenes in the Cefuroxime bound form 4K91 ; 2.05 ; Crystal structure of Penicillin-Binding Protein 5 (PBP5) from Pseudomonas aeruginosa in apo state 1Z6F ; 1.6 ; Crystal structure of penicillin-binding protein 5 from E. coli in complex with a boronic acid inhibitor 3ITA ; 1.8 ; Crystal structure of Penicillin-Binding Protein 6 (PBP6) from E. coli in acyl-enzyme complex with ampicillin 3IT9 ; 2.1 ; Crystal structure of Penicillin-Binding Protein 6 (PBP6) from E. coli in apo state 3ITB ; 1.8 ; Crystal structure of Penicillin-Binding Protein 6 (PBP6) from E. coli in complex with a substrate fragment 5ZQC ; 1.702 ; Crystal Structure of Penicillin-Binding Protein D2 from Listeria monocytogenes in the Ampicillin bound form 5ZQA ; 1.55 ; Crystal Structure of Penicillin-Binding Protein D2 from Listeria monocytogenes in the apo form 5ZQD ; 1.888 ; Crystal Structure of Penicillin-Binding Protein D2 from Listeria monocytogenes in the Cefotaxime bound form 5ZQE ; 1.996 ; Crystal Structure of Penicillin-Binding Protein D2 from Listeria monocytogenes in the Cefuroxime bound form 5ZQB ; 1.896 ; Crystal Structure of Penicillin-Binding Protein D2 from Listeria monocytogenes in the Penicillin G bound form 1RZN ; 2.302 ; Crystal Structure of Penicillin-binding protein-related factor A from Bacillus Subtilis. 5Z6O ; 1.7 ; Crystal structure of Penicillium cyclopium protease 6FHV ; 2.0 ; Crystal structure of Penicillium oxalicum Glucoamylase 6V0K ; 2.41 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain 7S09 ; 3.1 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain variant, F760A 7S0A ; 2.8 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain variant, H786A 7S0L ; 2.65 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain variant, S723F 7S0M ; 2.0 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain variant, S723T, bound with non-productive isopentenyl diphosphate 7S0H ; 3.15 ; Crystal structure of Penicillium verruculosum copalyl diphosphate synthase (PvCPS) alpha prenyltransferase domain variant, S723Y 7BQ6 ; 1.89 ; Crystal structure of Pennisetum glaucum monodehydroascorbate reductase 7BUZ ; 2.288 ; Crystal structure of Pennisetum glaucum monodehydroascorbate reductase 7BVI ; 2.391 ; Crystal structure of Pennisetum glaucum monodehydroascorbate reductase 7BTJ ; 2.373 ; Crystal structure of Pennisetum glaucum monodehydroascorbate reductase in complex with FADH2 8R3D ; 1.71 ; Crystal structure of Pent only at pH 8.8 5VHG ; 1.27 ; Crystal structure of pentad mutant GAPR-1 6GIA ; 1.7 ; Crystal structure of pentaerythritol tetranitrate reductase (PETNR) mutant I107A 6GI9 ; 1.45 ; Crystal structure of pentaerythritol tetranitrate reductase (PETNR) mutant I107L 6GI8 ; 1.42 ; Crystal structure of pentaerythritol tetranitrate reductase (PETNR) mutant L25A 6GI7 ; 1.3 ; Crystal structure of pentaerythritol tetranitrate reductase (PETNR) mutant L25I 3KFT ; 2.1 ; Crystal structure of Pentaerythritol Tetranitrate Reductase complex with 1,4,5,6-tetrahydro NADH 3F03 ; 1.34 ; Crystal structure of Pentaerythritol Tetranitrate Reductase complex with 1-nitrocyclohexene 6WKD ; 2.2 ; Crystal structure of pentalenene synthase complexed with 12,13-difluorofarnesyl diphosphate 6WKC ; 1.65 ; Crystal structure of pentalenene synthase complexed with Mg2+ ions 6WKI ; 2.35 ; Crystal structure of pentalenene synthase mutant F76H 6WKJ ; 2.3 ; Crystal structure of pentalenene synthase mutant F76H complexed with 12,13-difluorofarnesyl diphosphate 6WKG ; 2.3 ; Crystal structure of pentalenene synthase mutant F76W 6WKH ; 2.55 ; Crystal structure of pentalenene synthase mutant F76W complexed with 12,13-difluorofarnesyl diphosphate 6WKE ; 2.4 ; Crystal structure of pentalenene synthase mutant F76Y 6WKF ; 2.5 ; Crystal structure of pentalenene synthase mutant F76Y complexed with 12,13-difluorofarnesyl diphosphate 5BXB ; 2.171 ; Crystal structure of pentameric KCTD1 BTB domain form 1 5BXD ; 1.796 ; Crystal structure of pentameric KCTD1 BTB domain form 2 5BXH ; 2.76 ; Crystal structure of pentameric KCTD9 BTB domain 3KL9 ; 2.7 ; Crystal structure of PepA from Streptococcus pneumoniae 4WIU ; 2.02 ; Crystal Structure of PEPCK (Rv0211) from Mycobacterium tuberculosis in complex with oxalate and Mn2+ 4IUW ; 1.85 ; Crystal structure of PEPO from Lactobacillus rhamnosis HN001 (DR20) 7SZU ; 2.24 ; Crystal structure of Pepper RNA aptamer in complex with HBC ligand and Fab BL3-6 7U0Y ; 2.66 ; Crystal structure of Pepper RNA aptamer in complex with HBC599 ligand and Fab BL3-6 5GR8 ; 2.587 ; Crystal structure of PEPR1-AtPEP1 4ICS ; 1.97 ; Crystal structure of PepS from Streptococcus pneumoniae in complex with a substrate 7EV0 ; 2.7 ; Crystal structure of pepsin cleaved C-terminal half of lactoferrin at 2.7A resolution 7FDW ; 2.277 ; Crystal structure of pepsin cleaved lactoferrin C-lobe at 2.28 A resolution 3FNT ; 3.3 ; Crystal structure of pepstatin A bound histo-aspartic protease (HAP) from Plasmodium falciparum 6CXD ; 2.75 ; Crystal structure of peptidase B from Yersinia pestis CO92 at 2.75 A resolution 6IRU ; 2.7 ; Crystal structure of Peptidase E from Deinococcus radiodurans in P6422 space group 6A4T ; 2.0 ; Crystal structure of Peptidase E from Deinococcus radiodurans R1 6A4S ; 1.9 ; Crystal structure of peptidase E with ordered active site loop from Salmonella enterica 3GWB ; 1.9 ; Crystal structure of peptidase M16 inactive domain from Pseudomonas fluorescens. Northeast Structural Genomics target PlR293L 3IIB ; 1.7 ; Crystal structure of Peptidase M28 precursor (YP_926796.1) from SHEWANELLA AMAZONENSIS SB2B at 1.70 A resolution 3O6P ; 1.65 ; Crystal structure of peptide ABC transporter, peptide-binding protein 1ZBT ; 2.34 ; Crystal structure of Peptide chain release factor 1 (RF-1) (SMU.1085) from Streptococcus mutans at 2.34 A resolution 2OKL ; 1.7 ; Crystal structure of Peptide Deformylase 2 with actinonin from Bacillus cereus 3OCA ; 2.4 ; Crystal structure of peptide deformylase from Ehrlichia chaffeensis 3U04 ; 1.7 ; Crystal structure of peptide deformylase from ehrlichia chaffeensis in complex with actinonin 1VEV ; 2.51 ; Crystal structure of peptide deformylase from Leptospira Interrogans (LiPDF) at pH6.5 1VEY ; 3.3 ; Crystal Structure of Peptide Deformylase from Leptospira Interrogans (LiPDF) at pH7.0 1SV2 ; 3.0 ; Crystal Structure of Peptide Deformylase from Leptospira Interrogans (LiPDF) at pH7.5 1SZZ ; 3.3 ; Crystal structure of peptide deformylase from Leptospira Interrogans complexed with inhibitor actinonin 1VEZ ; 2.3 ; Crystal Structure of Peptide Deformylase from Leptospira Interrogans(LiPDF) at pH8.0 1N5N ; 1.8 ; Crystal Structure of Peptide Deformylase from Pseudomonas aeruginosa 1LM6 ; 1.75 ; Crystal Structure of Peptide Deformylase from Streptococcus pneumoniae 1LME ; 2.2 ; Crystal Structure of Peptide Deformylase from Thermotoga maritima 3CMD ; 2.7 ; Crystal structure of peptide deformylase from VRE-E.faecium 6JP3 ; 1.66 ; Crystal structure of peptide in complex with HLA-A1101. 4NM0 ; 2.5 ; Crystal structure of peptide inhibitor-free GSK-3/Axin complex 7X1B ; 1.399 ; Crystal structure of peptide KAGQVVTI in complex with HLA-B5801 7WZZ ; 1.305 ; Crystal structure of peptide KAGQVVTIW in complex with HLA-B5801 1RQ0 ; 2.65 ; Crystal structure of peptide releasing factor 1 6GS4 ; 2.645 ; Crystal structure of peptide transporter DtpA-nanobody in complex with valganciclovir 6GS7 ; 3.3 ; Crystal structure of peptide transporter DtpA-nanobody in glycine buffer 6GS1 ; 3.29 ; Crystal structure of peptide transporter DtpA-nanobody in MES buffer 4IKV ; 1.9 ; Crystal structure of peptide transporter POT 4IKX ; 2.3 ; Crystal structure of peptide transporter POT (E310Q mutant) 4IKZ ; 2.4 ; Crystal structure of peptide transporter POT (E310Q mutant) in complex with alafosfalin 4IKY ; 2.1 ; Crystal structure of peptide transporter POT (E310Q mutant) in complex with sulfate 4IKW ; 2.004 ; Crystal structure of peptide transporter POT in complex with sulfate 7X00 ; 1.45 ; Crystal structure of peptide VSFIEFVGW in complex with HLA-B5801 7X1C ; 1.409 ; Crystal structure of peptide VSFIEFVI in complex with HLA-B5801 3H0X ; 1.92 ; Crystal structure of peptide-binding domain of Kar2 protein from Saccharomyces cerevisiae 6JZD ; 2.479 ; Crystal structure of peptide-bound VASH2-SVBP complex 5XOV ; 2.684 ; Crystal structure of peptide-HLA-A24 bound to S19-2 V-delta/V-beta TCR 1PNG ; 2.2 ; CRYSTAL STRUCTURE OF PEPTIDE-N(4)-(N-ACETYL-BETA-D-GLUCOSAMINYL) ASPARAGINE AMIDASE AT 2.2 ANGSTROMS RESOLUTION 1TJC ; 2.3 ; Crystal structure of peptide-substrate-binding domain of human type I collagen prolyl 4-hydroxylase 6EVN ; 1.48 ; Crystal structure of peptide-substrate-binding domain of human type II collagen prolyl 4-hydroxylase complex with Pro-Pro-Gly-Pro-Ala-Gly-Pro-Pro-Gly. 4LY4 ; 2.199 ; Crystal structure of peptidoglycan deacetylase (HP0310) with Zinc from Helicobacter pylori 4JBF ; 1.92 ; Crystal structure of peptidoglycan glycosyltransferase from Atopobium parvulum DSM 20469. 2ZYC ; 1.74 ; Crystal structure of peptidoglycan hydrolase from Sphingomonas sp. A1 3VWO ; 1.802 ; Crystal structure of peptidoglycan hydrolase mutant from Sphingomonas sp. A1 5XGY ; 2.45 ; Crystal structure of peptidoglycan recognition protein (PGRP-S) at 2.45 A resolution 6IDM ; 3.2 ; Crystal structure of Peptidoglycan recognition protein (PGRP-S) with Tartaric acid at 3.20 A resolution 3C2X ; 1.83 ; Crystal structure of peptidoglycan recognition protein at 1.8A resolution 2CB3 ; 2.4 ; Crystal structure of peptidoglycan recognition protein-LE in complex with tracheal cytotoxin (monomeric diaminopimelic acid-type peptidoglycan) 3UMQ ; 2.2 ; Crystal structure of peptidoglycan recognition protein-S complexed with butyric acid at 2.2 A resolution 4G4V ; 1.9 ; Crystal structure of peptidoglycan-associated lipoprotein from Acinetobacter baumannii 4G4W ; 1.9 ; Crystal structure of peptidoglycan-associated lipoprotein from Acinetobacter baumannii 4G4X ; 1.5 ; Crystal structure of peptidoglycan-associated lipoprotein from Acinetobacter baumannii 4PWT ; 1.752 ; Crystal structure of peptidoglycan-associated outer membrane lipoprotein from Yersinia pestis CO92 6CE1 ; 2.8 ; Crystal structure of Peptidyl Arginine Deiminase Type III (PADI3) 4FNO ; 2.25 ; Crystal structure of peptidyl t-RNA hydrolase from Pseudomonas aeruginosa at 2.2 Angstrom resolution 4HOY ; 1.78 ; Crystal structure of Peptidyl- tRNA Hydrolase from Acinetobacter baumannii at 1.78 A resolution 4FOT ; 2.2 ; Crystal structure of Peptidyl- tRNA Hydrolase from Acinetobacter baumannii at 2.20 A resolution 4ZXP ; 1.63 ; Crystal structure of Peptidyl- tRNA Hydrolase from Vibrio cholerae 4G2P ; 1.82 ; Crystal structure of peptidyl-prolyl cis-trans isomerase domain II of molecular chaperone SurA from Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 3K2C ; 1.95 ; Crystal structure of peptidyl-prolyl cis-trans isomerase from Encephalitozoon cuniculi at 1.9 A resolution 7L6Z ; 1.88 ; Crystal Structure of Peptidyl-Prolyl Cis-Trans Isomerasefrom (PpiB) Streptococcus pneumoniae R6 4YLY ; 2.25 ; Crystal structure of peptidyl-tRNA hydrolase from a Gram-positive bacterium, staphylococcus aureus at 2.25 angstrom resolution 4QT4 ; 2.19 ; Crystal structure of Peptidyl-tRNA hydrolase from a Gram-positive bacterium, Streptococcus pyogenes at 2.19 Angstrom resolution shows the Closed Structure of the Substrate Binding Cleft 6J93 ; 0.95 ; Crystal structure of Peptidyl-tRNA hydrolase from Acinetobacter baumannii at 0.95 A resolution 6JJ1 ; 0.97 ; Crystal structure of peptidyl-tRNA hydrolase from Acinetobacter baumannii at 0.97 A resolution with disordered five N-terminal residues 6JJQ ; 0.99 ; Crystal structure of peptidyl-tRNA hydrolase from Acinetobacter baumannii at 0.99 A resolution. 7CSN ; 1.0 ; Crystal structure of peptidyl-tRNA hydrolase from Acinetobacter baumannii at 1.00 A resolution 4FOP ; 1.86 ; Crystal Structure of Peptidyl-tRNA hydrolase from Acinetobacter baumannii at 1.86 A resolution 6IYE ; 1.55 ; Crystal structure of peptidyl-tRNA hydrolase from Acinetobacter baumannii with 12% PEG 1500 at 1.55 A resolution. 7Y52 ; 1.92 ; Crystal structure of peptidyl-tRNA hydrolase from Enterococcus faecium 3VJR ; 2.4 ; Crystal structure of Peptidyl-tRNA hydrolase from Escherichia coli in complex with the CCA-acceptor-T[PSI]C domain of tRNA 3OFV ; 3.2 ; Crystal structure of peptidyl-tRNA hydrolase from Escherichia Coli, I222 crystal form 3NEA ; 2.25 ; Crystal Structure of Peptidyl-tRNA hydrolase from Francisella tularensis 7BRD ; 1.892 ; Crystal structure of Peptidyl-tRNA hydrolase from Klebsiella pneumoniae 3P2J ; 2.22 ; Crystal structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis at 2.2 A resolution 2Z2I ; 1.98 ; Crystal structure of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis 2Z2J ; 2.35 ; Crystal structure of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis 2Z2K ; 2.5 ; Crystal structure of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis 3TCK ; 2.3 ; Crystal structure of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis - Form 4 4QAJ ; 1.5 ; Crystal structure of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa at 1.5 Angstrom resolution 4JC4 ; 2.25 ; Crystal structure of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa at 2.25 angstrom resolution 4QD3 ; 1.89 ; Crystal structure of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa with 5-azacytidine at 1.89 Angstrom resolution 4DHW ; 2.43 ; Crystal structure of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa with Adipic acid at 2.4 Angstrom resolution 5ZX8 ; 1.0 ; Crystal structure of peptidyl-tRNA hydrolase from Thermus thermophilus 5GVZ ; 1.75 ; Crystal structure of Peptidyl-tRNA hydrolase from Vibrio cholerae in space group C2221 at resolution 1.75A. 5B6J ; 2.43 ; Crystal structure of Peptidyl-tRNA hydrolase mutant -H24N from Vibrio cholerae 5ZK0 ; 2.55 ; Crystal structure of Peptidyl-tRNA hydrolase mutant -M71A from Vibrio cholerae 4Z86 ; 1.63 ; Crystal structure of Peptidyl-tRNA hydrolase mutant -N118D from Vibrio cholerae at 1.63A resolution. 8IU6 ; 2.9 ; Crystal structure of peptidyl-tRNA hydrolase mutant from Enterococcus faecium 5IMB ; 2.4 ; Crystal structure of peptidyl-tRNA hydrolase mutant-N14D from Vibrio cholerae 6JKX ; 1.08 ; Crystal structure of peptidyl-tRNA hydrolase with multiple sodium and chloride ions at 1.08 A resolution. 6XD8 ; 1.52 ; Crystal Structure of Peptidylprolyl Isomerase (PrsA) Fragment from Bacillus anthracis 6B4P ; 1.55 ; Crystal Structure of Peptidylprolyl Isomerase from Naegleria fowleri 6MKE ; 2.05 ; Crystal Structure of Peptidylprolyl Isomerase from Naegleria fowleri with bound FK506 7L75 ; 3.15 ; Crystal Structure of Peptidylprolyl Isomerase PrsA from Streptococcus mutans. 7AM4 ; 1.81 ; Crystal structure of Peptiligase mutant - L217H/M222P 7AM5 ; 2.3 ; Crystal structure of Peptiligase mutant - L217H/M222P/A225N 7AM6 ; 2.7 ; Crystal structure of Peptiligase mutant - L217H/M222P/A225N/F189W 7AM3 ; 1.61 ; Crystal structure of Peptiligase mutant - M222P 7AM7 ; 2.61 ; Crystal structure of Peptiligase mutant - M222P/L217H/A225N/F189W/N218D 7RB4 ; 2.19 ; Crystal structure of Peptono Toxin, a diphtheria toxin homolog, from Seinonella peptonophila 1LFW ; 1.8 ; Crystal structure of pepV 4K7C ; 1.66 ; Crystal structure of pepw from lactobacillus rhamnosis hn001 (dr20) determined as the selenomet derivative 3UYI ; 2.313 ; Crystal Structure of Perakine Reductase, Founder Member of a Novel AKR Subfamily with Unique Conformational Changes during NADPH Binding 3V0S ; 1.773 ; Crystal Structure of Perakine Reductase, Founder Member of a Novel AKR Subfamily with Unique Conformational Changes during NADPH Binding 3V0T ; 2.333 ; Crystal Structure of Perakine Reductase, Founder Member of a Novel AKR Subfamily with Unique Conformational Changes during NADPH Binding 3V0U ; 2.203 ; Crystal Structure of Perakine Reductase, Founder Member of a Novel AKR Subfamily with Unique Conformational Changes during NADPH Binding 1QAH ; 1.8 ; CRYSTAL STRUCTURE OF PERCHLORIC ACID SOLUBLE PROTEIN-A TRANSLATIONAL INHIBITOR 2PLL ; 1.9 ; Crystal structure of perdeuterated human arginase I 7BB4 ; 1.7 ; Crystal structure of perdeuterated PLL lectin in complex with L-fucose 3P9C ; 1.8 ; Crystal structure of perennial ryegrass LpOMT1 bound to SAH 3P9K ; 2.25 ; Crystal structure of perennial ryegrass LpOMT1 complexed with S-adenosyl-L-homocysteine and coniferaldehyde 3P9I ; 1.85 ; Crystal structure of perennial ryegrass LpOMT1 complexed with S-adenosyl-L-homocysteine and sinapaldehyde 5B7N ; 1.399 ; Crystal structure of periplasmic 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Aeromonas hydrophila 4RXM ; 1.75 ; Crystal structure of periplasmic ABC transporter solute binding protein A7JW62 from Mannheimia haemolytica PHL213, Target EFI-511105, in complex with Myo-inositol 8IM8 ; 2.7 ; Crystal structure of Periplasmic alpha-amylase (MalS) from E.coli 4MLZ ; 1.72 ; Crystal structure of periplasmic binding protein from Jonesia denitrificans 4MPT ; 1.75 ; Crystal Structure of Periplasmic binding Protein Type 1 from Bordetella pertussis Tohama I 4Q6W ; 1.84 ; Crystal Structure of Periplasmic Binding Protein type 1 from Bordetella pertussis Tohama I complexed with 3-Hydroxy Benzoic Acid 6ONP ; 2.27 ; Crystal structure of periplasmic binding protein XoxJ from Methylobacterium extorquens AM1 3CTP ; 1.41 ; Crystal structure of periplasmic binding protein/LacI transcriptional regulator from Alkaliphilus metalliredigens QYMF complexed with D-xylulofuranose 3HS3 ; 1.6 ; Crystal structure of periplasmic binding ribose operon repressor protein from Lactobacillus acidophilus 4F3S ; 2.14 ; Crystal structure of periplasmic D-alanine ABC transporter from Salmonella enterica 5F1Q ; 1.956 ; Crystal Structure of Periplasmic Dipeptide Transport Protein from Yersinia pestis 1VHF ; 1.54 ; Crystal structure of periplasmic divalent cation tolerance protein 1O5J ; 1.95 ; Crystal structure of Periplasmic divalent cation tolerance protein (TM1056) from Thermotoga maritima at 1.95 A resolution 6PSH ; 2.21 ; Crystal structure of periplasmic domain of antiholin RI from T4 phage 7SGN ; 2.8 ; Crystal structure of periplasmic domain of Helicobacter pylori FliL (residues 81 to 183) (crystal form A) 7SGO ; 2.695 ; Crystal structure of periplasmic domain of Helicobacter pylori FliL (residues 81 to 183) (crystal form B) 7SGP ; 2.1 ; Crystal structure of periplasmic domain of Helicobacter pylori FliL (residues 81 to 183) (crystal form C) 5XPJ ; 2.5 ; Crystal Structure of Periplasmic glucose binding protein ppGBP deletion mutant- Del-ppGBP 1YDY ; 1.7 ; Crystal structure of periplasmic glycerophosphodiester phosphodiesterase from Escherichia coli 5KHL ; 2.397 ; Crystal Structure of periplasmic Heme binding protein HutB of Vibrio cholerae 4KQ9 ; 1.9 ; Crystal structure of periplasmic ribose ABC transporter from Conexibacter woesei DSM 14684 4RY1 ; 1.4 ; Crystal structure of periplasmic solute binding protein ECA2210 from Pectobacterium atrosepticum SCRI1043, Target EFI-510858 4MDY ; 1.78 ; Crystal structure of periplasmic solute binding protein from Mycobacterium smegmatis str. MC2 155 4OVK ; 1.71 ; Crystal structure of periplasmic solute binding protein from Veillonella parvula DSM 2008 3D02 ; 1.3 ; Crystal structure of periplasmic sugar-binding protein (YP_001338366.1) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.30 A resolution 5YSC ; 1.673 ; Crystal Structure of periplasmic Vitamin B12 binding protein BtuF of Vibrio cholerae 3MGL ; 2.25 ; Crystal structure of permease family protein from Vibrio cholerae 4USC ; 2.6 ; Crystal structure of peroxidase from palm tree Chamaerops excelsa 5EPF ; 1.35 ; Crystal structure of Peroxidoxin BcpB from Mycobacterium tuberculosis 4BTZ ; 1.47 ; Crystal Structure of peroxinitrite treated Major Birch Pollen Allergen Bet v 1.0101 (isoform a) 1WE0 ; 2.9 ; Crystal structure of peroxiredoxin (AhpC) from Amphibacillus xylanus 3VWU ; 3.3 ; Crystal structure of peroxiredoxin 4 from M. musculus 2XHF ; 1.3 ; Crystal structure of peroxiredoxin 5 from Alvinella pompejana 2WFC ; 1.75 ; Crystal structure of peroxiredoxin 5 from Arenicola Marina 4DSS ; 2.1 ; Crystal structure of peroxiredoxin Ahp1 from Saccharomyces cerevisiae in complex with thioredoxin Trx2 4DSQ ; 2.4 ; Crystal structure of peroxiredoxin Ahp1 from Saccharomyces cerevisiae in oxidized form 4DSR ; 2.91 ; Crystal structure of peroxiredoxin Ahp1 from Saccharomyces cerevisiae in reduced form 5J9B ; 2.1 ; Crystal structure of peroxiredoxin Asp f3 5J9C ; 1.956 ; Crystal structure of peroxiredoxin Asp f3 C31S/C61S variant 7WEU ; 1.81 ; Crystal structure of Peroxiredoxin I in complex with compound 19-048 7WET ; 1.76 ; Crystal structure of Peroxiredoxin I in complex with the inhibitor Cela 3QPM ; 1.9 ; Crystal structure of peroxiredoxin Prx4 from Pseudosciaena crocea 7E4U ; 2.6 ; Crystal structure of Peroxiredoxin-1 4KW6 ; 3.0 ; Crystal structure of Peroxiredoxin-1 (C-terminal truncation mutant) from the human hookworm Ancylostoma ceylanicum bound to conoidin A 4FH8 ; 2.11 ; Crystal Structure of Peroxiredoxin-1 from the human hookworm Ancylostoma ceylanicum 2YZH ; 1.85 ; Crystal structure of peroxiredoxin-like protein from Aquifex aeolicus 2YWN ; 1.6 ; Crystal structure of peroxiredoxin-like protein from Sulfolobus tokodaii 1IS2 ; 2.2 ; Crystal Structure of Peroxisomal Acyl-CoA Oxidase-II from Rat Liver 2XQ1 ; 2.9 ; Crystal structure of peroxisomal catalase from the yeast Hansenula polymorpha 8GR9 ; 1.48 ; Crystal structure of peroxisomal citrate synthase (Cit2) from Saccharomyces cerevisiae in complex with oxaloacetate and coenzyme-A 8GR8 ; 2.39 ; Crystal structure of peroxisomal citrate synthase (Cit2) from Saccharomycescerevisiae 1HNO ; 2.5 ; CRYSTAL STRUCTURE OF PEROXISOMAL DELTA3-DELTA2-ENOYL-COA ISOMERASE FROM SACCHAROMYCES CEREVISIAE 1HNU ; 2.15 ; CRYSTAL STRUCTURE OF PEROXISOMAL DELTA3-DELTA2-ENOYL-COA ISOMERASE FROM SACCHAROMYCES CEREVISIAE 2WU9 ; 1.5 ; Crystal structure of peroxisomal KAT2 from Arabidopsis thaliana 1YXM ; 1.9 ; Crystal structure of peroxisomal trans 2-enoyl CoA reductase 3GZ9 ; 2.0 ; Crystal Structure of Peroxisome Proliferator-Activated Receptor Delta (PPARd) in Complex with a Full Agonist 6A6P ; 2.1 ; Crystal Structure of Peroxisome Proliferator-Activated Receptor Delta (PPARd)LBD in Complex with DN003316 3H0A ; 2.1 ; Crystal Structure of Peroxisome Proliferator-Activated Receptor Gamma (PPARg) and Retinoic Acid Receptor Alpha (RXRa) in Complex with 9-cis Retinoic Acid, Co-activator Peptide, and a Partial Agonist 6TSG ; 2.98 ; Crystal structure of Peroxisome proliferator-activated receptor gamma (PPARG) in complex with TETRAC 7AWD ; 1.93 ; Crystal structure of Peroxisome proliferator-activated receptor gamma (PPARG)in complex with garcinoic acid 7AWC ; 1.74 ; Crystal structure of Peroxisome proliferator-activated receptor gamma (PPARG)in complex with rosiglitazone 3KDU ; 2.07 ; Crystal structure of peroxisome proliferator-activatedeceptor alpha (PPARalpha) complex with N-3-((2-(4-Chlorophenyl)-5-methyl-1,3-oxazol-4-yl)methoxy)benzyl)-N-((4-methylphenoxy)carbonyl)glycine 3KDT ; 2.7 ; Crystal structure of peroxisome proliferator-activatedeceptor alpha (PPARalpha) complex with N-3-((2-(4-Chlorophenyl)-5-methyl-1,3-oxazol-4-yl)methoxy)benzyl)-N-(methoxycarbonyl)glycine 2VLX ; 1.3 ; Crystal structure of peroxymyoglobin generated by cryoradiolytic reduction of myoglobin compound III 2VLZ ; 1.5 ; Crystal structure of peroxymyoglobin generated by cryoradiolytic reduction of myoglobin compound III 1SDA ; 2.5 ; CRYSTAL STRUCTURE OF PEROXYNITRITE-MODIFIED BOVINE CU,ZN SUPEROXIDE DISMUTASE 3F8N ; 3.15 ; Crystal structure of PerR-Zn-Mn 5VE5 ; 2.35 ; Crystal structure of persulfide dioxygenase rhodanese fusion protein with rhodanese domain inactivating mutation (C314S) from Burkholderia phytofirmans in complex with glutathione 5VE4 ; 2.65 ; Crystal structure of persulfide dioxygenase-rhodanese fusion protein with rhodanese domain inactivating mutation (C314S) from Burkholderia phytofirmans 4LLY ; 1.6 ; Crystal structure of Pertuzumab Clambda Fab with variable and constant domain redesigns (VRD2 and CRD2) at 1.6A 4LLW ; 1.95 ; Crystal structure of Pertuzumab Clambda Fab with variable domain redesign (VRD2) at 1.95A 6ORM ; 2.15 ; Crystal Structure of Peruvianin-I (Cysteine peptidase from Thevetia peruviana latex) 6EXX ; 1.1 ; Crystal Structure of Pes4 RRM4 4AQN ; 1.98 ; Crystal structure of pesticin from Y. pestis 7CEF ; 1.6 ; Crystal structure of PET-degrading cutinase Cut190 /S226P/R228S/ mutant with the C-terminal three residues deletion 5ZRS ; 1.4 ; Crystal structure of PET-degrading cutinase Cut190 S176A/S226P/R228S mutant in monoethyl adipate bound state 5ZRR ; 1.34 ; Crystal structure of PET-degrading cutinase Cut190 S176A/S226P/R228S mutant in monoethyl succinate bound state 5ZRQ ; 1.12 ; Crystal structure of PET-degrading cutinase Cut190 S176A/S226P/R228S mutant in Zn(2+)-bound state 5ZNO ; 1.60264 ; Crystal structure of PET-degrading cutinase Cut190 S176A/S226P/R228S/ mutant in Ca(2+)-bound state 7CEH ; 1.09 ; Crystal structure of PET-degrading cutinase Cut190 S176A/S226P/R228S/ mutant with the C-terminal three residues deletion in ligand ejecting form 4WFJ ; 1.75 ; Crystal structure of PET-degrading cutinase Cut190 S226P mutant in Ca(2+)-bound state at 1.75 angstrom resolution 4WFK ; 2.35 ; Crystal structure of PET-degrading cutinase Cut190 S226P mutant in Ca(2+)-bound state at 2.35 angstrom resolution 4WFI ; 1.446 ; Crystal structure of PET-degrading cutinase Cut190 S226P mutant in Ca(2+)-free state 5XJH ; 1.54 ; Crystal structure of PETase from Ideonella sakaiensis 6ILW ; 1.575 ; Crystal structure of PETase from Ideonella sakaiensis 8H5L ; 1.7 ; Crystal structure of PETase N37D/S121E/R132E/A171C/A180V/P181V/D186H/S193C/A202C/V211C/S214Y/R224E/N233C/S242T/N246D/N275C/S282C/F284C mutant from Ideonella sakaiensis 8H5K ; 1.2 ; Crystal structure of PETase N37D/S121E/R132E/A171C/A180V/P181V/D186H/S193C/R224E/N233C/S242T/N246D/S282C mutant from Ideonella sakaiensis 6IJ5 ; 1.72 ; Crystal structure of PETase P181A mutant from Ideonella sakaiensis 5YNS ; 1.36 ; Crystal structure of PETase R280A mutant from Ideonella sakaiensis 6IJ3 ; 1.4 ; Crystal structure of PETase S121D, D186H mutant from Ideonella sakaiensis 6IJ4 ; 1.86 ; Crystal structure of PETase S121E, D186H mutant from Ideonella sakaiensis 6IJ6 ; 1.95 ; Crystal structure of PETase S121E, D186H, R280A mutant from Ideonella sakaiensis 8H5J ; 1.4 ; Crystal structure of PETase S121E/A180V/P181V/D186H/N233C/S242T/N246D/S282C mutant from Ideonella sakaiensis 8H5M ; 1.89 ; Crystal structure of PETase S121E/D186H/N233C/S242T/N246D/S282C mutant from Ideonella sakaiensis 8H5O ; 2.1 ; Crystal structure of PETase S121E/P181V/D186H/N233C/S242T/N246D/S282C mutant from Ideonella sakaiensis 6ILX ; 1.45 ; Crystal structure of PETase W159F mutant from Ideonella sakaiensis 3TO3 ; 2.382 ; Crystal Structure of Petrobactin Biosynthesis Protein AsbB from Bacillus anthracis str. Sterne 3GFV ; 1.75 ; Crystal Structure of Petrobactin-binding Protein YclQ from Bacillu subtilis 4R1S ; 1.6 ; Crystal structure of Petunia hydrida cinnamoyl-CoA reductase 4R1T ; 1.7 ; Crystal structure of Petunia hydrida cinnamoyl-CoA reductase 2ZFW ; 2.9 ; Crystal structure of Pex from Synechococcus sp. (strain PCC 7942) (Anacystis nidulans R2) 7Z35 ; 2.3 ; Crystal structure of PEX13 SH3 domain of Trypanosoma cruzi 1JQQ ; 2.65 ; Crystal structure of Pex13p(301-386) SH3 domain 1Q4J ; 2.2 ; Crystal Structure of Pf-GST1 with its inhibitor s-hexyl-GSH 2DFI ; 2.1 ; Crystal structure of Pf-MAP(1-292)-C 2DF5 ; 2.3 ; Crystal Structure of Pf-PCP(1-204)-C 3NRN ; 2.1 ; Crystal Structure of PF1083 protein from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR223 3TLX ; 2.75 ; Crystal Structure of PF10_0086, adenylate kinase from plasmodium falciparum 3UOW ; 2.72 ; Crystal Structure of PF10_0123, a GMP Synthetase from Plasmodium Falciparum 3NIE ; 2.3 ; Crystal Structure of PF11_0147 2YMO ; 1.9 ; Crystal structure of Pf12 tandem 6-cys domains from Plasmodium falciparum 3LLT ; 2.5 ; Crystal structure of PF14_0431, kinase domain. 5CHI ; 2.472 ; Crystal structure of PF2046 in complex with ssDNA 4NXJ ; 2.18 ; Crystal Structure of PF3D7_1475600, a bromodomain from Plasmodium Falciparum 4YS4 ; 2.45 ; Crystal structure of Pf41 tandem 6-cys domains from Plasmodium falciparum 4ZQT ; 1.981 ; Crystal structure of PfA-M1 with virtual ligand inhibitor 5CBM ; 2.3 ; Crystal structure of PfA-M17 with virtual ligand inhibitor 4Z9R ; 2.8 ; Crystal structure of PfaD from Shewanella oneidensis in complex with NAD+ determined by in-situ diffraction. 6LKC ; 1.998 ; Crystal structure of PfaD from Shewanella piezotolerans in complex with FMN 1TQX ; 2.0 ; Crystal Structure of Pfal009167 A Putative D-Ribulose 5-Phosphate 3-Epimerase from P.falciparum 8G6B ; 1.55 ; Crystal structure of PfAMA1-RON2L chimera 4MR0 ; 1.95 ; Crystal structure of PfbA, a surface adhesin of Streptococcus pneumoniae 3NI8 ; 2.5 ; Crystal Structure of PFC0360w, an HSP90 activator from plasmodium falciparum 7RD3 ; 1.81 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m42.126 7LKB ; 1.8 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m42.127 7RDA ; 1.92 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m43.138 7RD4 ; 1.75 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m43.149 7LKG ; 2.02 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m43.151 7RD9 ; 1.91 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m43.159 7RCS ; 2.4 ; Crystal structure of PfCSP peptide 21 with vaccine-elicited human anti-malaria antibody m43.160 5EZN ; 2.51 ; Crystal Structure of PfCyRPA 5EZO ; 3.63 ; Crystal Structure of PfCyRPA in complex with an invasion-inhibitory antibody Fab. 3WQR ; 1.97 ; Crystal structure of pfdxr complexed with inhibitor-12 3WQS ; 2.35 ; Crystal structure of pfdxr complexed with inhibitor-126 3WQQ ; 2.25 ; Crystal structure of PfDXR complexed with inhibitor-3 4K2U ; 2.45 ; Crystal structure of PfEBA-175 F1 in complex with R218 antibody Fab fragment 4QEX ; 4.5 ; Crystal structure of PfEBA-175 RII in complex with a Fab fragment from inhibitory antibody R217 3KHD ; 2.7 ; Crystal Structure of PFF1300w. 1N81 ; 2.1 ; Crystal structure of Pfg27 from Plasmodium falciparum 4ZEW ; 1.9 ; Crystal structure of PfHAD1 in complex with glucose-6-phosphate 4ZEX ; 2.0 ; Crystal structure of PfHAD1 in complex with glyceraldehyde-3-phosphate 4ZEV ; 1.8 ; Crystal structure of PfHAD1 in complex with mannose-6-phosphate 7XNT ; 1.822 ; Crystal structure of PfHPPD-Y13161 complex 7X8E ; 2.749 ; Crystal structure of PfHPPD-Y13287 complex 4A3S ; 2.3 ; Crystal structure of PFK from Bacillus subtilis 1VK4 ; 1.91 ; Crystal structure of PfkB Carbohydrate kinase (TM0415) from Thermotoga maritima at 1.91 A resolution 4GM6 ; 2.0 ; Crystal structure of PfkB family carbohydrate kinase(TARGET EFI-502146 FROM Listeria grayi DSM 20601 4DU5 ; 2.7 ; Crystal structure of PfkB protein from Polaromonas sp. JS666 2I1V ; 2.5 ; Crystal structure of PFKFB3 in complex with ADP and Fructose-2,6-bisphosphate 6AGT ; 1.953 ; Crystal structure of PfKRS complexed with chromone inhibitor 5ZH5 ; 3.08 ; CRYSTAL STRUCTURE OF PfKRS WITH INHIBITOR CLADO-2 5ZH2 ; 2.66 ; CRYSTAL STRUCTURE OF PfKRS WITH INHIBITOR CLADO-5 5ZH3 ; 2.86 ; CRYSTAL STRUCTURE OF PfKRS WITH INHIBITOR CLADO-6 5ZH4 ; 2.6 ; CRYSTAL STRUCTURE OF PfKRS WITH INHIBITOR CLADO-7 2PFL ; 2.9 ; CRYSTAL STRUCTURE OF PFL FROM E.COLI 3PFL ; 2.6 ; CRYSTAL STRUCTURE OF PFL FROM E.COLI IN COMPLEX WITH SUBSTRATE ANALOGUE OXAMATE 4P7S ; 2.87 ; Crystal structure of PfMIF in complex with 4-(3-methoxy-5-methylphenoxy)-2-(4-methoxyphenyl)-6-methylpyridine 3C3Y ; 1.371 ; Crystal Structure of PFOMT, Phenylpropanoid and Flavonoid O-methyltransferase from M. crystallinum 2PML ; 2.6 ; Crystal structure of PfPK7 in complex with an ATP analogue 2PMN ; 2.8 ; Crystal structure of PfPK7 in complex with an ATP-site inhibitor 2PMO ; 2.9 ; Crystal structure of PfPK7 in complex with hymenialdisine 4WAT ; 2.18 ; Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes 6AZZ ; 2.4 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1190 6B0G ; 1.9 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1245 6B0E ; 3.3 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1260 6B0H ; 2.7 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1262 6B0A ; 2.5 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1269 6B08 ; 2.2 ; Crystal structure of Pfs25 in complex with the transmission blocking antibody 1276 4LVN ; 2.25 ; Crystal structure of PfSUB1-prodomain-NIMP.M7 Fab complex 4LVO ; 2.26 ; Crystal structure of PfSUB1-prodomain-NIMP.M7 Fab complex with added CaCl2 1ZD0 ; 1.7 ; Crystal structure of Pfu-542154 conserved hypothetical protein 4PSL ; 3.5 ; Crystal structure of pfuThermo-DBP-RP1 (crystal form I) 4PSM ; 2.43 ; Crystal structure of pfuThermo-DBP-RP1 (crystal form II) 5YD6 ; 2.34 ; Crystal structure of PG-bound Nurr1-LBD 4DQO ; 2.438 ; Crystal Structure of PG16 Fab in Complex with V1V2 Region from HIV-1 strain ZM109 3U36 ; 3.281 ; Crystal Structure of PG9 Fab 3U4E ; 2.185 ; Crystal Structure of PG9 Fab in Complex with V1V2 Region from HIV-1 strain CAP45 3U2S ; 1.797 ; Crystal Structure of PG9 Fab in Complex with V1V2 Region from HIV-1 strain ZM109 3MUH ; 3.0 ; Crystal structure of PG9 light chain 5WKI ; 2.75 ; Crystal structure of PG90 TCR-CD1b-PG complex 2QA1 ; 1.8 ; Crystal structure of PgaE, an aromatic hydroxylase involved in angucycline biosynthesis 3NBU ; 2.05 ; Crystal structure of pGI glucosephosphate isomerase 4ZXM ; 2.8 ; Crystal structure of PGRP domain from Branchiostoma belcheri tsingtauense peptidoglycan recognition protein 3 3USX ; 2.28 ; Crystal structure of PGRP-S complexed with Myristic Acid at 2.28 A resolution 4JM4 ; 1.751 ; Crystal Structure of PGT 135 Fab 4JM2 ; 3.1 ; Crystal Structure of PGT 135 Fab in Complex with gp120 Core Protein from HIV-1 Strain JR-FL Bound to CD4 and 17b Fab 4FQ1 ; 3.0 ; Crystal Structure of PGT121 Fab 4FQC ; 2.4 ; Crystal Structure of PGT121 Fab Bound to a complex-type sialylated N-glycan 4R2G ; 3.283 ; Crystal Structure of PGT124 Fab bound to HIV-1 JRCSF gp120 core and to CD4 5C6R ; 1.8 ; Crystal structure of PH domain of ASAP1 2Z0P ; 2.58 ; Crystal structure of PH domain of Bruton's tyrosine kinase 4IAP ; 2.3 ; Crystal structure of PH domain of Osh3 from Saccharomyces cerevisiae 2DBB ; 2.0 ; Crystal structure of PH0061 1WNF ; 2.5 ; Crystal Structure of PH0066 from Pyrococcus horikoshii 7FBY ; 2.001 ; Crystal Structure of PH0140 from Pyrococcus horikosii OT3 1VE3 ; 2.1 ; Crystal structure of PH0226 protein from Pyrococcus horikoshii OT3 3VRH ; 2.1 ; Crystal structure of ph0300 2CQZ ; 2.6 ; Crystal Structure of PH0347 protein from Pyrococcus horikoshii OT3 2DB0 ; 2.2 ; Crystal structure of PH0542 2D8A ; 2.05 ; Crystal Structure of PH0655 from Pyrococcus horikoshii OT3 2E8H ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2HR8 ; 2.8 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2HUQ ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2HUT ; 2.4 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2HUV ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2HUX ; 2.4 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2OWF ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2OWG ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2OWK ; 2.0 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2OWU ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2OWV ; 2.8 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P2X ; 2.9 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P5C ; 2.4 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P5F ; 2.5 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P6D ; 2.4 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P6I ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P6K ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P6L ; 2.0 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2P9D ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PB4 ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PB5 ; 2.1 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PB6 ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCA ; 2.0 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCG ; 2.2 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCH ; 2.0 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCI ; 2.0 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCK ; 2.6 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2PCM ; 2.4 ; Crystal structure of PH0725 from Pyrococcus horikoshii OT3 2CSU ; 2.2 ; Crystal structure of PH0766 from Pyrococcus horikoshii OT3 2YX6 ; 2.0 ; Crystal structure of PH0822 2P9X ; 1.65 ; Crystal structure of PH0832 from Pyrococcus horikoshii OT3 2YXL ; 2.55 ; Crystal Structure of PH0851 1WMM ; 2.2 ; Crystal structure of PH1033 from Pyrococcus horikoshii Ot3 2HD9 ; 1.35 ; Crystal structure of PH1033 from Pyrococcus horikoshii OT3 2ZBN ; 2.0 ; Crystal structure of PH1033 from Pyrococcus horikoshii OT3 2D13 ; 2.4 ; Crystal Structure of PH1257 from Pyrococcus horikoshii OT3 1VBK ; 1.9 ; Crystal structure of PH1313 from Pyrococcus horikoshii Ot3 1WL8 ; 1.45 ; Crystal structure of PH1346 protein from Pyrococcus horikoshii 2CYY ; 1.8 ; Crystal structure of PH1519 from Pyrococcus horikosii OT3 2ZSK ; 2.55 ; Crystal structure of PH1733, an aspartate racemase homologue, from Pyrococcus horikoshii OT3 1WR2 ; 2.0 ; Crystal structure of PH1788 from Pyrococcus horikoshii Ot3 2AS0 ; 1.8 ; Crystal Structure of PH1915 (APC 5817): A Hypothetical RNA Methyltransferase 2D16 ; 1.65 ; Crystal Structure of PH1918 protein from Pyrococcus horikoshii OT3 1WWZ ; 1.75 ; Crystal structure of PH1933 from Pyrococcus horikoshii OT3 2DM9 ; 1.85 ; Crystal Structure of PH1978 from Pyrococcus horikoshii OT3 2DMA ; 2.05 ; Crystal Structure of PH1978 from Pyrococcus horikoshii OT3 (form II) 5AVA ; 3.0 ; Crystal structure of PHA-E lectin in complex with bisected glycan 3VZP ; 1.792 ; Crystal structure of PhaB from Ralstonia eutropha 3VZS ; 2.14 ; Crystal structure of PhaB from Ralstonia eutropha in complex with Acetoacetyl-CoA and NADP 4RZI ; 2.891 ; Crystal structure of PhaB from Synechocystis sp. PCC 6803 5HZ2 ; 1.8 ; Crystal structure of PhaC1 from Ralstonia eutropha 5T1E ; 1.83 ; Crystal structure of Phaeospaeria nodrum fructosyl peptide oxidase 5T1F ; 1.98 ; Crystal structure of Phaeospaeria nodrum fructosyl peptide oxidase mutant Asn56Ala 5XAO ; 1.8 ; Crystal structure of Phaeospaeria nodrum fructosyl peptide oxidase mutant Asn56Ala in complexes with sodium and chloride ions 3TXQ ; 2.8 ; Crystal Structure of phage 44RR small terminase gp16 3TXS ; 1.81 ; Crystal Structure of phage 44RR small terminase gp16 2H9G ; 2.32 ; Crystal structure of phage derived Fab BdF1 with human Death Receptor 5 (DR5) 1DZB ; 2.0 ; Crystal structure of phage library-derived single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme 3K93 ; 2.15 ; Crystal structure of phage related exonuclease (YP_719632.1) from HAEMOPHILUS SOMNUS 129PT at 2.15 A resolution 1SSY ; 2.4 ; Crystal structure of phage T4 lysozyme mutant G28A/I29A/G30A/C54T/C97A 1T8G ; 1.8 ; Crystal structure of phage T4 lysozyme mutant L32A/L33A/T34A/C54T/C97A/E108V 1T8F ; 2.15 ; Crystal structure of phage T4 lysozyme mutant R14A/K16A/I17A/K19A/T21A/E22A/C54T/C97A 1SSW ; 2.13 ; Crystal structure of phage T4 lysozyme mutant Y24A/Y25A/T26A/I27A/C54T/C97A 4PPJ ; 2.3 ; Crystal structure of Phanta, a weakly fluorescent photochromic GFP-like protein. ON state 3ABW ; 1.9 ; Crystal structure of pharaonis halorhodopsin in complex with azide ion 5JO1 ; 2.3 ; Crystal structure of phaseic acid-bound abscisic acid receptor PYL3 in complex with type 2C protein phosphatase HAB1 2D80 ; 1.7 ; Crystal structure of PHB depolymerase from Penicillium funiculosum 4PZO ; 2.25 ; Crystal structure of PHC3 SAM L967R 4PZN ; 2.3 ; Crystal structure of PHC3 SAM L971E 3SHB ; 1.8 ; Crystal Structure of PHD Domain of UHRF1 2F6N ; 2.0 ; Crystal structure of PHD finger-linker-bromodomain fragment of human BPTF in the free form 2FSA ; 1.9 ; Crystal structure of PHD finger-linker-bromodomain fragment of human BPTF in the H3(1-15)K4ME2 bound state 2F6J ; 2.0 ; Crystal structure of PHD finger-linker-bromodomain fragment of human BPTF in the H3(1-15)K4me3 bound state 2RI7 ; 1.45 ; Crystal structure of PHD finger-linker-bromodomain Y17E mutant from human BPTF in the H3(1-9)K4ME2 bound state 3HRY ; 2.25 ; Crystal structure of PHD in a trigonal space group and partially disordered 3HS2 ; 2.2 ; Crystal structure of PHD truncated to residue 57 in an orthorhombic space group 7UMP ; 1.8 ; CRYSTAL STRUCTURE OF PHD2 CATALYTIC DOMAIN (CID 7465) IN COMPLEX WITH AKB-6548 AT 1.8 A RESOLUTION 1JME ; 2.0 ; Crystal Structure of Phe393His Cytochrome P450 BM3 7Z3S ; 1.99 ; CRYSTAL STRUCTURE of PheF from Geobacillus stearothermophilus 6UI4 ; 2.65 ; Crystal structure of phenamacril-bound F. graminearum myosin I 7ENZ ; 1.7 ; Crystal structure of Phenanthredinone moiety in complex with the second bromodomain of BRD2 (BRD2-BD2). 7PDA ; 2.65 ; Crystal structure of Phenazine 1-carboxylic acid decarboxylase from Mycobacterium fortuitum 3B4O ; 1.9 ; Crystal structure of phenazine biosynthesis protein PhzA/B from Burkholderia cepacia R18194, apo form 3B4P ; 1.7 ; Crystal structure of phenazine biosynthesis protein PhzA/B from Burkholderia cepacia R18194, complex with 2-(cyclohexylamino)benzoic acid 3CNM ; 1.65 ; Crystal Structure of Phenazine Biosynthesis Protein PhzA/B from Burkholderia cepacia R18194, DHHA complex 1S7J ; 2.3 ; Crystal structure of phenazine biosynthesis protein PhzF family (Enterococcus faecalis) 3SK2 ; 1.01 ; Crystal structure of phenazine resistance protein EhpR from Enterobacter agglomerans (Erwinia herbicola, Pantoea agglomerans) Eh1087 in complex with griseoluteic acid 3SK1 ; 2.15 ; Crystal structure of phenazine resistance protein EhpR from Enterobacter agglomerans (Erwinia herbicola, Pantoea agglomerans) Eh1087, apo form 2P8G ; 1.36 ; Crystal structure of phenolic acid decarboxylase (2635953) from Bacillus subtilis at 1.36 A resolution 3NAD ; 1.69 ; Crystal Structure of Phenolic Acid Decarboxylase from Bacillus pumilus UI-670 2I0T ; 1.35 ; Crystal structure of phenylacetaldehyde derived R-carbinolamine adduct of aromatic amine dehydrogenase 3HRX ; 1.85 ; Crystal structure of phenylacetic acid degradation protein PaaG 2EJB ; 2.15 ; Crystal Structure Of Phenylacrylic Acid Decarboxylase from Aquifex aeolicus 6RGS ; 2.42001 ; Crystal Structure of Phenylalanine Ammonia Lyase (PAL) from Petroselinum crispum bound to cinnamate 1T6J ; 2.1 ; Crystal Structure of Phenylalanine Ammonia Lyase from Rhodosporidium toruloides 1T6P ; 2.7 ; Crystal Structure of Phenylalanine Ammonia Lyase from Rhodosporidium toruloides 2NYN ; 1.9 ; Crystal structure of phenylalanine ammonia-lyase from Anabaena variabilis 5LTM ; 2.413 ; Crystal structure of phenylalanine ammonia-lyase from Anabaena variabilis (Y78F-C503S-C565S) bound to cinnamate 2NYF ; 2.5 ; Crystal structure of phenylalanine ammonia-lyase from Nostoc punctiforme 1Y2M ; 1.6 ; Crystal structure of phenylalanine ammonia-lyase from yeast Rhododporidium toruloides 1TG2 ; 2.2 ; Crystal structure of phenylalanine hydroxylase A313T mutant with 7,8-dihydrobiopterin bound 7VGM ; 2.27 ; Crystal structure of Phenylalanine hydroxylase from Bacillus cereus ATCC 14579 3TK4 ; 1.5 ; Crystal structure of phenylalanine hydroxylase from Chromobacterium violaceum bound to cobalt 4JPX ; 1.55 ; Crystal structure of phenylalanine hydroxylase S203P mutant from Chromobacterium violaceum 6Y3G ; 3.1 ; Crystal structure of phenylalanine tRNA from Escherichia coli 1KFL ; 2.8 ; Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHP synthase) from E.coli complexed with Mn2+, PEP, and Phe 1QR7 ; 2.6 ; CRYSTAL STRUCTURE OF PHENYLALANINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM ESCHERICHIA COLI COMPLEXED WITH PB2+ AND PEP 2AMC ; 2.7 ; Crystal structure of Phenylalanyl-tRNA synthetase complexed with L-tyrosine 2ZYB ; 2.55 ; Crystal structure of phenylimidazo pyrazin 2 bound to the kinase domain of human LCK, (auto-phosphorylated on TYR394) 2NXW ; 1.5 ; Crystal structure of phenylpyruvate decarboxylase of Azospirillum brasilense 8HPG ; 3.895 ; Crystal structure of phenylpyruvate reductase from Lactobacillus sp. CGMCC 9967 1V72 ; 2.05 ; Crystal Structure of Phenylserine Aldolase from Pseudomonas Putida 4WHB ; 2.958 ; Crystal structure of phenylurea hydrolase B 6WAV ; 1.7 ; Crystal structure of PHF1 in complex with H3K36me3 substitution 7LKY ; 1.85 ; Crystal Structure of PHF1 Tudor domain in complex with a peptidomimetic ligand UNC6641 8H43 ; 2.3 ; Crystal structure of PHF1 Tudor domain in complex with hit 1 3O7A ; 1.67 ; Crystal structure of PHF13 in complex with H3K4me3 3KQI ; 1.78 ; crystal structure of PHF2 PHD domain complexed with H3K4Me3 peptide 6L1P ; 1.231 ; Crystal structure of PHF20L1 in complex with Hit 1 6L1F ; 1.9 ; Crystal structure of PHF20L1 Tudor1 in complex with K142me1 DNMT1 6RJ6 ; 1.984 ; Crystal structure of PHGDH in complex with BI-4924 6RJ3 ; 1.42 ; Crystal structure of PHGDH in complex with compound 15 6RJ5 ; 1.89 ; Crystal structure of PHGDH in complex with compound 39 6RJ2 ; 2.0 ; Crystal structure of PHGDH in complex with compound 40 6RIH ; 2.15 ; Crystal structure of PHGDH in complex with compound 9 4KZ2 ; 3.05 ; Crystal Structure of phi29 pRNA 3WJ Core 6JXM ; 3.32 ; Crystal Structure of phi29 pRNA domain II 8ANV ; 2.2 ; Crystal structure of phi3T_93 and phi3T AimX complex 8C8E ; 2.2 ; Crystal structure of phi3T_93 L23D mutant 5JS4 ; 1.48 ; Crystal structure of phiAB6 tailspike 5JSD ; 1.48 ; Crystal structure of phiAB6 tailspike in complex with five-repeated oligosaccharides of Acinetobacter baumannii surface polysaccharide 5JSE ; 1.89 ; Crystal structure of phiAB6 tailspike in complex with three-repeated oligosaccharides of Acinetobacter baumannii surface polysaccharide 4EEU ; 1.4068 ; Crystal structure of phiLOV2.1 7D2W ; 1.97 ; Crystal structure of PHIT/PHISTa-like subfamily PF3D7_1372300 protein from plasmodium falciparum 1N10 ; 2.9 ; Crystal Structure of Phl p 1, a Major Timothy Grass Pollen Allergen 3TSH ; 1.9 ; Crystal structure of Phl p 4, a grass pollen allergen with glucose dehydrogenase activity 3TSJ ; 2.0 ; Crystal structure of Phl p 4, a grass pollen allergen with glucose dehydrogenase activity 1NLX ; 2.8 ; Crystal Structure of PHL P 6, A Major Timothy Grass Pollen Allergen Co-Crystallized with Zinc 5XOT ; 2.787 ; Crystal structure of pHLA-B35 in complex with TU55 T cell receptor 7E1N ; 2.1 ; Crystal structure of PhlH in complex with 2,4-diacetylphloroglucinol 7E5U ; 1.62 ; Crystal structure of Phm7 7E5V ; 1.61 ; Crystal structure of Phm7 in complex with inhibitor 7S6G ; 2.02 ; Crystal structure of PhnD from Synechococcus MITS9220 in complex with phosphate 2FA1 ; 1.7 ; Crystal structure of PhnF C-terminal domain 3F8M ; 1.8 ; Crystal Structure of PhnF from Mycobacterium smegmatis 3P2U ; 1.48 ; Crystal structure of PhnP in complex with orthovanadate 4MLM ; 1.7 ; Crystal Structure of PhnZ from uncultured bacterium HF130_AEPn_1 6O19 ; 1.596 ; Crystal Structure of Pho7 complex with pho1 promoter site 2 6E33 ; 1.705 ; Crystal Structure of Pho7-DNA complex 4KRD ; 1.952 ; Crystal Structure of Pho85-Pcl10 Complex 4KRC ; 2.597 ; Crystal Structure of Pho85-Pcl10-ATP-gamma-S Complex 6RPQ ; 2.654 ; Crystal structure of PhoCDC21-1 intein 7DNB ; 2.81 ; Crystal structure of PhoCl barrel 6FX2 ; 1.7 ; crystal structure of Pholiota squarrosa lectin in complex with a decasaccharide 6FX3 ; 1.7 ; crystal structure of Pholiota squarrosa lectin in complex with a dodecasaccharide 6FX1 ; 2.1 ; Crystal structure of Pholiota squarrosa lectin in complex with an octasaccharide 5FVB ; 1.93 ; CRYSTAL STRUCTURE OF PHORMIDIUM C-PHYCOERYTHRIN AT PH 5.0 5AQD ; 2.121 ; Crystal structure of Phormidium Phycoerythrin at pH 8.5 6XWK ; 1.17 ; Crystal structure of Phormidium rubidum phycocyanin 5Y7M ; 3.1 ; Crystal structure of PhoRpp38 bound to a K-turn in P12.1 helix 5XTM ; 2.1 ; Crystal structure of PhoRpp38 bound to a K-turn in P12.2 helix 5DCV ; 3.401 ; Crystal structure of PhoRpp38-SL12M complex 3IRU ; 2.3 ; Crystal structure of phoshonoacetaldehyde hydrolase like protein from Oleispira antarctica 1YS9 ; 2.56 ; Crystal structure of phosphatase SPy1043 from Streptococcus pyogenes 4EXL ; 1.7 ; Crystal structure of phosphate ABC transporter, periplasmic phosphate-binding protein PstS 1 (PBP1) from Streptococcus pneumoniae Canada MDR_19A 4LAT ; 1.88 ; Crystal structure of phosphate ABC transporter, periplasmic phosphate-binding protein PstS 1 (PBP1) from Streptococcus pneumoniae Canada MDR_19A in complex with phosphate 3L6O ; 2.2 ; Crystal Structure of Phosphate bound apo Glyceraldehyde-3-phosphate dehydrogenase 1 from MRSA252 at 2.2 Angstrom resolution 3K73 ; 2.5 ; Crystal Structure of Phosphate bound Holo Glyceraldehyde-3-phosphate dehydrogenase 1 from MRSA252 at 2.5 Angstrom resolution 3FJM ; 1.6 ; crystal structure of phosphate bound PEB3 2Z22 ; 2.0 ; Crystal structure of phosphate preplasmic binding protein psts from yersinia pestis 2A96 ; 2.5 ; Crystal structure of phosphate tethered PhoN of S. typhimurium 1T72 ; 2.9 ; Crystal structure of phosphate transport system protein phoU from Aquifex aeolicus 5WNN ; 1.85 ; Crystal structure of Phosphate-binding protein PstS protein from Burkholderia pseudomallei 3GZH ; 1.9 ; Crystal structure of phosphate-bound adenylosuccinate lyase from E. coli 4NK1 ; 2.21 ; Crystal structure of phosphate-bound Hell's gate globin IV 6KYL ; 3.55 ; Crystal Structure of Phosphatidic acid Transporter Ups1/Mdm35 in Complex with (2R)-3-(phosphonooxy)propane-1,2-diyl dihexanoate 5JQM ; 1.5 ; Crystal Structure of Phosphatidic acid Transporter Ups1/Mdm35 Void of Bound Phospholipid from Saccharomyces Cerevisiae at 1.5 Angstroms Resolution 5JQL ; 2.9 ; Crystal Structure of Phosphatidic acid Transporter Ups1/Mdm35 Void of Bound Phospholipid from Saccharomyces Cerevisiae at 2.9 Angstroms Resolution 4PLA ; 2.771 ; Crystal structure of phosphatidyl inositol 4-kinase II alpha in complex with ATP 4YC4 ; 2.58 ; Crystal structure of phosphatidyl inositol 4-kinase II alpha in complex with nucleotide analog 5EUT ; 2.802 ; Crystal structure of phosphatidyl inositol 4-kinase II alpha in the apo state 8A5X ; 2.4 ; Crystal structure of phosphatidyl inositol 4-kinase II beta in complex with MM1373 4N9W ; 1.94 ; Crystal structure of phosphatidyl mannosyltransferase PimA 4NC9 ; 3.192 ; Crystal structure of phosphatidyl mannosyltransferase PimA 7B1K ; 2.2 ; Crystal structure of phosphatidyl serine synthase (PSS) in the closed conformation with bound citrate. 7B1L ; 1.85 ; Crystal structure of phosphatidyl serine synthase (PSS) in the closed conformation with bound citrate. 7B1N ; 2.8 ; Crystal structure of phosphatidyl serine synthase (PSS) in the closed conformation with bound citrate. 7POW ; 2.51 ; Crystal structure of phosphatidyl serine synthase (PSS) in transition state. 2R77 ; 1.65 ; Crystal structure of phosphatidylethanolamine-binding protein, pfl0955c, from Plasmodium falciparum 7DRK ; 3.0 ; Crystal structure of phosphatidylglycerol phosphate synthase in complex with cytidine diphosphate-diacylglycerol 7DRJ ; 2.5 ; Crystal structure of phosphatidylglycerol phosphate synthase in complex with phosphatidylglycerol phosphate 7QIE ; 2.39 ; Crystal Structure of Phosphatidylinositol 5-Phosphate 4-Kinase (PI5P4K2C) bound to an allosteric inhibitor 7QPN ; 1.95 ; Crystal Structure of Phosphatidylinositol 5-Phosphate 4-Kinase (PI5P4K2C) bound to an allosteric inhibitor and AMP-PNP 8BQ4 ; 2.42 ; Crystal Structure of Phosphatidylinositol 5-Phosphate 4-Kinase (PI5P4K2C) bound to an inhibitor 8C8C ; 2.096 ; Crystal Structure of Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha (PI5P4Ka) bound to an inhibitor 2GEK ; 2.4 ; Crystal Structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP 2GEJ ; 2.6 ; Crystal Structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP-Man 5E3S ; 3.1 ; Crystal structure of Phosphatidylinositol-4-phosphate 5-kinase 5E3T ; 3.3 ; Crystal structure of phosphatidylinositol-4-phosphate 5-kinase 5E3U ; 3.6 ; Crystal structure of phosphatidylinositol-4-phosphate 5-kinase 3HSI ; 2.2 ; Crystal structure of phosphatidylserine synthase Haemophilus influenzae Rd KW20 1YR0 ; 2.0 ; Crystal structure of phosphinothricin acetyltransferase from agrobacterium tumefaciens 8I83 ; 2.62 ; Crystal Structure of phosphinothricin dehydrogenase 5DWM ; 1.45 ; Crystal structure of Phosphinothricin N-acetyltransferase from Brucella ovis 5DWN ; 1.95 ; Crystal structure of Phosphinothricin N-acetyltransferase from Brucella ovis in complex with AcetylCoA 4)-beta-D-GlcNAc-(1->3)-4,6-Pyr-beta-D-ManNAcOMe 7SV3 ; 1.7 ; Crystal structure of SpaA-SLH in complex with 4,6-Pyr-beta-D-ManNAc-(1->4)-beta-D-GlcNAcOMe 6CWF ; 2.25 ; Crystal structure of SpaA-SLH in complex with 4,6-Pyr-beta-D-ManNAcOMe 6CWI ; 2.16 ; Crystal structure of SpaA-SLH in complex with 4,6-Pyr-beta-D-ManNAcOMe (C2) 6CWH ; 2.0 ; Crystal structure of SpaA-SLH in complex with 4,6-Pyr-beta-D-ManNAcOMe (P1) 6CWL ; 2.15 ; Crystal structure of SpaA-SLH in complex with beta-D-GlcNAc-(1->3)-4,6-Pyr-beta-D-ManNAcOMe 6CWM ; 1.15 ; Crystal structure of SpaA-SLH/G109A 7SV5 ; 1.72 ; Crystal structure of SpaA-SLH/G109A in complex with 4,6-Pyr-beta-D-ManNAc-(1->4)-beta-D-GlcNAcOMe 6CWN ; 1.53 ; Crystal structure of SpaA-SLH/G109A in complex with 4,6-Pyr-beta-D-ManNAcOMe 7SV6 ; 1.85 ; Crystal structure of SpaA-SLH/G46A/G109A in complex with 4,6-Pyr-beta-D-ManNAc-(1->4)-beta-D-GlcNAcOMe 6CWR ; 1.24 ; Crystal structure of SpaA-SLH/G46A/G109A in complex with 4,6-Pyr-beta-D-ManNAcOMe 7CBS ; 2.39 ; Crystal structure of SpaB basal pilin from Lactobacillus rhamnosus GG 4E57 ; 2.0 ; Crystal Structure of spacer 6aa-shortened cephalosporin acylase mutant 4E56 ; 2.2 ; Crystal Structure of spacer 8aa-shortened cephalosporin acylase mutant 4E55 ; 2.3 ; Crystal Structure of spacer removed cephalosporin acylase mutant 6JCH ; 1.536 ; Crystal structure of SpaE basal pilin from Lactobacillus rhamnosus GG - Orthorhombic form 6JBV ; 1.712 ; Crystal structure of SpaE basal pilin from Lactobacillus rhamnosus GG - Selenium derivative 6JK7 ; 3.204 ; Crystal structure of SpaE basal pilin from Lactobacillus rhamnosus GG - Trigonal form 5D9H ; 3.1 ; Crystal structure of SPAK (STK39) dimer in the basal activity state 5XWK ; 1.901 ; Crystal Structure of SPAP, an alkaline phosphatase from Sphingomonas in complex with inorganic phosphate 5XWI ; 1.872 ; Crystal Structure of SPAP, an alkaline phosphatase from Sphingomonas showing covalent intermediate 3Q3Q ; 1.953 ; Crystal Structure of SPAP: an novel alkaline phosphatase from bacterium Sphingomonas sp. strain BSAR-1 3EAB ; 2.5 ; Crystal structure of Spastin MIT in complex with ESCRT III 3IPV ; 2.04 ; Crystal structure of Spatholobus parviflorus seed lectin 3E07 ; 2.4 ; Crystal structure of spatzle cystine knot 6I5O ; 1.33 ; Crystal structure of SPBc2 prophage-derived protein YomS 2Q6Q ; 1.97 ; Crystal structure of Spc42p, a critical component of spindle pole body in budding yeast 7Z4D ; 3.1 ; Crystal structure of SpCas9 bound to a 10 nucleotide complementary DNA substrate 5FW2 ; 2.676 ; Crystal structure of SpCas9 variant EQR bound to sgRNA and TGAG PAM target DNA 5FW3 ; 2.7 ; Crystal structure of SpCas9 variant VRER bound to sgRNA and TGCG PAM target DNA 6AI6 ; 2.7 ; Crystal structure of SpCas9-NG 2Z34 ; 2.4 ; Crystal structure of SpCia1/Asf1 complex with Hip1 2Z3F ; 2.7 ; Crystal structure of spCia1/Asf1 complexed with Cac2 peptide 7F00 ; 2.7 ; Crystal structure of SPD_0310 3LMO ; 2.0 ; Crystal Structure of specialized acyl carrier protein (RPA2022) from Rhodopseudomonas palustris, Northeast Structural Genomics Consortium Target RpR324 5LC8 ; 1.8 ; Crystal Structure of specific mutant from Pseudomonas aeruginosa Lipoxygenase at 1.8A resolution 5DWB ; 2.4 ; Crystal structure of specific restriction endonuclease AgeI-DNA complex 6SXJ ; 2.1 ; Crystal structure of spectinomycin adenyltransferase AAD(9) from Enterococcus faecialis 6XXQ ; 3.0 ; Crystal structure of spectinomycin adenyltransferase AAD(9) from Enterococcus faecialis with ATP and spectinomycin 6XZ0 ; 2.8 ; Crystal structure of spectinomycin adenyltransferase AAD(9) from Enterococcus faecialis with spectinomycin 3I0O ; 2.4 ; Crystal Structure of Spectinomycin Phosphotransferase, APH(9)-Ia, in complex with ADP and Spectinomcyin 3Q2M ; 2.9 ; Crystal Structure of Spectinomycin Phosphotransferase, APH(9)-Ia, Protein Kinase Inhibitor CKI-7 Complex 6VFM ; 2.67 ; Crystal structure of SpeG allosteric polyamine acetyltransferase from Bacillus thuringiensis 6VFN ; 2.5 ; Crystal structure of SpeG allosteric polyamine acetyltransferase from Bacillus thuringiensis in complex with spermine 3O89 ; 1.1 ; Crystal Structure of Sperm Whale Myoglobin G65T 2W6Y ; 1.6 ; Crystal structure of Sperm Whale Myoglobin mutant YQR in complex with Xenon 2W6X ; 1.73 ; Crystal structure of Sperm Whale Myoglobin mutant YQRF in complex with Xenon 7SPH ; 1.3 ; Crystal structure of sperm whale myoglobin variant sMb13(pCaaF) in space group P21 7SPG ; 1.3 ; Crystal structure of sperm whale myoglobin variant sMb13(pCaaF) in space group P212121 7SPE ; 1.7 ; Crystal structure of sperm whale myoglobin variant sMb5(O2beY) 7SPF ; 1.17 ; Crystal structure of sperm whale myoglobin variant sMb5(pCaaF) 3WR7 ; 2.5 ; Crystal Structure of Spermidine Acetyltransferase from Escherichia coli 4LRO ; 1.98 ; Crystal structure of spermidine inhibited Ribosome inactivating protein from Momordica balsamina 4R9M ; 2.9 ; Crystal structure of spermidine N-acetyltransferase from Escherichia coli 4R57 ; 2.079 ; Crystal structure of spermidine N-acetyltransferase from Vibrio cholerae in complex with acetyl-CoA 4R87 ; 2.61 ; Crystal structure of spermidine N-acetyltransferase from Vibrio cholerae in complex with CoA and spermine 4MJ8 ; 2.04 ; Crystal structure of spermidine N-acetyltransferase from Vibrio cholerae in complex with polyamine 4MHD ; 2.32 ; Crystal structure of spermidine N-acetyltransferase from Vibrio cholerae in complex with spermidine 4MI4 ; 1.848 ; Crystal structure of spermidine N-acetyltransferase from Vibrio cholerae in complex with spermine 1IY9 ; 2.3 ; Crystal structure of spermidine synthase 3O4F ; 2.9 ; Crystal Structure of Spermidine Synthase from E. coli 2CMG ; 2.0 ; Crystal Structure of Spermidine Synthase from Helicobacter Pylori 2CMH ; 2.3 ; Crystal Structure of Spermidine Synthase from Helicobacter Pylori 2PWP ; 2.1 ; Crystal structure of spermidine synthase from Plasmodium falciparum in complex with spermidine 3B7P ; 2.0 ; Crystal structure of spermidine synthase from Plasmodium falciparum in complex with spermine 2E5W ; 2.0 ; Crystal structure of spermidine synthase from Pyrococcus horikoshii OT3 2ZSU ; 2.2 ; Crystal structure of spermidine synthase from Pyrococcus horikoshii OT3, P1 form 1INL ; 1.5 ; Crystal Structure of Spermidine Synthase from Thermotoga Maritima 3BWC ; 2.3 ; Crystal structure of spermidine synthase from Trypanosoma cruzi in complex with SAM at 2.3 A resolution 1JQ3 ; 1.8 ; Crystal Structure of Spermidine Synthase in Complex with Transition State Analogue AdoDATO 6CY6 ; 1.75 ; Crystal structure of spermidine/spermine N-acetyltransferase SpeG from Escherichia coli in complex with tris(hydroxymethyl)aminomethane. 6CX8 ; 2.41 ; Crystal structure of spermidine/spermine N-acetyltransferase SpeG from Vibrio cholerae in complex with manganese ions. 5WIF ; 2.5 ; Crystal structure of spermidine/spermine N-acetyltransferase SpeG from Yersinia pestis 6D72 ; 2.17 ; Crystal structure of spermidine/spermine N-acetyltransferase SpeG from Yersinia pestis in complex with calcium ions. 4OMJ ; 1.6 ; Crystal structure of SPF bound to 2,3-oxidosqualene 4OMK ; 1.75 ; Crystal structure of SPF bound to squalene 5LSO ; 2.22 ; Crystal structure of SPF45 UHM domain with cyclic peptide inhibitor 7XXE ; 4.202 ; Crystal structure of spFft3 C-terminal truncation 7XWY ; 2.25 ; Crystal structure of spFft3 N-terminal truncation 8DY4 ; 2.4 ; Crystal Structure of spFv CAT2200 HL 8DY5 ; 2.2 ; Crystal Structure of spFv CAT2200 LH in complex with IL-17A 8DY2 ; 1.65 ; Crystal Structure of spFv GLK1 8DY0 ; 2.1 ; Crystal Structure of spFv GLK1 HL 8DY3 ; 1.509 ; Crystal Structure of spFv GLK2 HL 6OR4 ; 2.1 ; Crystal structure of SpGH29 6ORF ; 1.7 ; Crystal structure of SpGH29 6ORG ; 1.72 ; Crystal structure of SpGH29 6ORH ; 1.62 ; Crystal structure of SpGH29 5SWI ; 2.15 ; Crystal structure of SpGH92 in complex with mannose 2UX8 ; 2.65 ; Crystal Structure of Sphingomonas elodea ATCC 31461 Glucose-1- phosphate uridylyltransferase in Complex with glucose-1-phosphate. 5TL4 ; 1.751 ; Crystal structure of Sphingomonas paucimobilis aryl O-demethylase LigM 6OJR ; 2.3 ; Crystal structure of Sphingomonas paucimobilis TMY1009 apo-LsdA 6OJW ; 2.6 ; Crystal structure of Sphingomonas paucimobilis TMY1009 holo-LsdA 6OJT ; 3.0 ; Crystal structure of Sphingomonas paucimobilis TMY1009 LsdA phenylazophenol complex 3VLW ; 2.0 ; Crystal structure of Sphingomonas sp. A1 alginate-binding protein AlgQ1 in complex with mannuronate-guluronate disaccharide 3VLU ; 1.55 ; Crystal structure of Sphingomonas sp. A1 alginate-binding protein AlgQ1 in complex with saturated trimannuronate 3A09 ; 1.4 ; Crystal structure of Sphingomonas sp. A1 alginate-binding protein AlgQ1 in complex with unsaturated trimannuronate 3VLV ; 1.5 ; Crystal structure of Sphingomonas sp. A1 alginate-binding ptotein AlgQ1 in complex with unsaturated triguluronate 6JBN ; 2.3 ; Crystal structure of Sphingomonas sp. A1 peroxidase EfeB responsible for import of iron 7CNE ; 2.0 ; Crystal Structure of Sphingomyelinase C from Streptomyces griseocarneus 2DDR ; 1.4 ; Crystal structure of sphingomyelinase from Bacillus cereus with calcium ion 2DDS ; 1.8 ; Crystal structure of sphingomyelinase from Bacillus cereus with cobalt ion 2DDT ; 1.8 ; Crystal structure of sphingomyelinase from Bacillus cereus with magnesium ion 3VZB ; 2.0 ; Crystal structure of Sphingosine Kinase 1 3VZC ; 2.3 ; Crystal structure of Sphingosine Kinase 1 with inhibitor 3VZD ; 2.3 ; Crystal structure of Sphingosine Kinase 1 with inhibitor and ADP 4L02 ; 2.75 ; Crystal Structure of SphK1 with inhibitor 5DFS ; 1.15 ; Crystal structure of Spider Monkey Cytochrome C at 1.15 Angstrom 7SN0 ; 3.08 ; Crystal structure of spike protein receptor binding domain of escape mutant SARS-CoV-2 from immunocompromised patient (d146*) in complex with human receptor ACE2 3SCJ ; 3.0 ; Crystal structure of spike protein receptor-binding domain from a predicted SARS coronavirus civet strain complexed with human receptor ACE2 3SCK ; 3.0 ; Crystal structure of spike protein receptor-binding domain from a predicted SARS coronavirus civet strain complexed with human-civet chimeric receptor ACE2 3SCI ; 2.9 ; Crystal structure of spike protein receptor-binding domain from a predicted SARS coronavirus human strain complexed with human receptor ACE2 3SCL ; 3.0 ; Crystal structure of spike protein receptor-binding domain from SARS coronavirus epidemic strain complexed with human-civet chimeric receptor ACE2 3D0H ; 3.1 ; Crystal structure of spike protein receptor-binding domain from the 2002-2003 SARS coronavirus civet strain complexed with human-civet chimeric receptor ACE2 3D0G ; 2.8 ; Crystal structure of spike protein receptor-binding domain from the 2002-2003 SARS coronavirus human strain complexed with human-civet chimeric receptor ACE2 3D0I ; 2.9 ; Crystal structure of spike protein receptor-binding domain from the 2005-2006 SARS coronavirus civet strain complexed with human-civet chimeric receptor ACE2 1ZYT ; 1.7 ; Crystal structure of spin labeled T4 Lysozyme (A82R1) 3G3X ; 1.8 ; Crystal structure of spin labeled T4 Lysozyme (T151R1) at 100 K 3G3W ; 2.3 ; Crystal structure of spin labeled T4 Lysozyme (T151R1) at 291 K 2CUU ; 1.75 ; Crystal structure of spin labeled T4 Lysozyme (V131R1) 3G3V ; 2.1 ; Crystal structure of spin labeled T4 Lysozyme (V131R1) at 291 K 1ZWN ; 1.8 ; Crystal structure of spin labeled T4 Lysozyme (V131R1B) 1ZUR ; 1.6 ; Crystal structure of spin labeled T4 Lysozyme (V131R1F) 2A4T ; 1.7 ; Crystal structure of spin labeled T4 Lysozyme (V131R7) 3L2X ; 1.8 ; Crystal Structure of Spin Labeled T4 Lysozyme Mutant 115-119RX 3K2R ; 1.5 ; Crystal Structure of Spin Labeled T4 Lysozyme Mutant K65V1/R76V1 2W8H ; 2.76 ; Crystal structure of spin labeled Wza24-345. 4BWW ; 1.48 ; Crystal structure of spin labelled azurin T21R1. 7A5C ; 2.2 ; Crystal structure of spin labelled VcSiaP R125A bound to an artificial peptide ligand. 3RGM ; 2.6 ; Crystal structure of spin-labeled BtuB T156R1 3M8B ; 2.44 ; Crystal structure of spin-labeled BtuB V10R1 in the apo state 3M8D ; 2.44 ; Crystal structure of spin-labeled BtuB V10R1 with bound calcium and cyanocobalamin 3RGN ; 2.3 ; Crystal structure of spin-labeled BtuB W371R1 5UUI ; 1.4 ; Crystal Structure of Spin-Labeled T77C TNFa 1KMH ; 3.4 ; Crystal Structure of spinach chloroplast F1-ATPase complexed with tentoxin 1SPI ; 2.8 ; CRYSTAL STRUCTURE OF SPINACH CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE AT 2.8 ANGSTROMS RESOLUTION 1RWT ; 2.72 ; Crystal Structure of Spinach Major Light-harvesting complex at 2.72 Angstrom Resolution 3PL9 ; 2.8 ; Crystal structure of spinach minor light-harvesting complex CP29 at 2.80 angstrom resolution 1IR1 ; 1.8 ; Crystal Structure of Spinach Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Complexed with CO2, Mg2+ and 2-Carboxyarabinitol-1,5-Bisphosphate 6B14 ; 1.64 ; Crystal structure of Spinach RNA aptamer in complex with Fab BL3-6S97N 2NS2 ; 2.2 ; Crystal Structure of Spindlin1 5JSG ; 2.5 ; Crystal structure of Spindlin1 bound to compound EML405 5JSJ ; 2.348 ; Crystal structure of Spindlin1 bound to compound EML631 7BQZ ; 3.101 ; Crystal Structure of Spindlin1 bound to H3(K4me3-K9me3) peptide 7EA1 ; 2.7 ; Crystal Structure of Spindlin1 bound to SPINDOC Docpep2 7E9M ; 2.5 ; Crystal Structure of Spindlin1 bound to SPINDOC Docpep3 6QPL ; 1.6 ; Crystal structure of Spindlin1 in complex with the inhibitor MS31 6I8L ; 1.58 ; Crystal structure of Spindlin1 in complex with the inhibitor TD001851a 6I8B ; 1.76 ; Crystal structure of Spindlin1 in complex with the inhibitor VinSpinIn 7OCB ; 1.42 ; Crystal structure of Spindlin1 in complex with the inhibitor XY49-92B 6I8Y ; 1.52 ; Crystal structure of Spindlin1 in complex with the Methyltransferase inhibitor A366 7BU9 ; 3.502 ; Crystal Structure of Spindlin1-H3(K4me3-K9me2) complex 7CNA ; 1.6 ; Crystal structure of Spindlin1/C11orf84 complex bound to histone H3K4me3K9me3 peptide 7Y4I ; 2.85 ; Crystal structure of SPINDLY in complex with GDP 4CDZ ; 2.503 ; Crystal Structure of Spinosyn Rhamnosyl 4'-O-Methyltransferase SpnH from Saccharopolyspora spinosa 5I10 ; 2.0 ; Crystal structure of spinosyn rhamnosyl 4'-O-methyltransferase spnh mutant T242Q from Saccharopolyspora Spinosa 3RBW ; 3.2 ; Crystal structure of Spire KIND domain 3R7G ; 2.2 ; Crystal structure of Spire KIND domain in complex with the tail of FMN2 4INK ; 1.56 ; Crystal structure of SplD protease from Staphylococcus aureus at 1.56 A resolution 4INL ; 2.1 ; Crystal structure of SplD protease from Staphylococcus aureus at 2.1 A resolution 8ABV ; 1.683 ; Crystal structure of SpLdpA in complex with erythro-DGPD 8ABW ; 1.83 ; Crystal structure of SpLdpA in complex with threo-DGPD 6HM7 ; 1.64 ; CRYSTAL STRUCTURE OF SPLEEN TYROSINE KINASE (SYK) IN COMPLEX WITH A 2-(PHENOXYMETHYL)PYRIDINE INHIBITOR 6HM6 ; 2.1 ; CRYSTAL STRUCTURE OF SPLEEN TYROSINE KINASE (SYK) IN COMPLEX WITH A 2-(PYRIDINYLOXYMETHYL)PYRIDINE INHIBITOR 3SRV ; 1.95 ; Crystal structure of spleen tyrosine kinase (SYK) in complex with a diaminopyrimidine carboxamide inhibitor 4PV0 ; 2.0 ; Crystal structure of spleen tyrosine kinase (Syk) in complex with an imidazopyrazine inhibitor 4PUZ ; 2.085 ; Crystal structure of spleen tyrosine kinase (Syk) in complex with GS-9973 4I0R ; 2.1 ; Crystal structure of spleen tyrosine kinase complexed with 2-(3,4,5-Trimethoxy-phenyl)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide 4I0T ; 1.7 ; Crystal structure of spleen tyrosine kinase complexed with 2-(5,6,7,8-Tetrahydro-imidazo[1,5-a]pyridin-1-yl)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid tert-butylamide 4I0S ; 1.98 ; Crystal structure of spleen tyrosine kinase complexed with 2-(6-Chloro-1-methyl-1H-indazol-3-yl)-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid isopropylamide 4FYN ; 2.318 ; Crystal structure of spleen tyrosine kinase complexed with 3-(8-{4-[Ethyl-(2-hydroxy-ethyl)-amino]-phenylamino}-imidazo[1,2-a]pyrazin-5-yl)-phenol 4FZ7 ; 1.75 ; Crystal structure of spleen tyrosine kinase complexed with 6-((1R,2S)-2-Amino-cyclohexylamino)-4-(6-ethyl-pyridin-2-ylamino)-pyridazine-3-carboxylic acid amide 3FQH ; 2.26 ; Crystal structure of spleen tyrosine kinase complexed with a 2-substituted 7-azaindole 4DFL ; 1.98 ; Crystal structure of spleen tyrosine kinase complexed with a sulfonamidopyrazine piperidine inhibitor 4DFN ; 2.48 ; Crystal structure of spleen tyrosine kinase complexed with an adamantylpyrazine inhibitor 4FYO ; 1.4 ; Crystal structure of spleen tyrosine kinase complexed with N-{(S)-1-[7-(3,4-Dimethoxy-phenylamino)-thiazolo[5,4-d]pyrimidin-5-yl]-pyrrolidin-3-yl}-terephthalamic acid 3FQS ; 2.1 ; Crystal structure of spleen tyrosine kinase complexed with R406 4GFG ; 2.35 ; Crystal structure of spleen tyrosine kinase complexed with r9021 3FQE ; 2.5 ; Crystal structure of spleen tyrosine kinase complexed with YM193306 4FZ6 ; 1.85 ; Crystal structure of spleen tyrosine kinase complexed with [6-((S)-2-Methyl-pyrrolidin-1-yl)-pyridin-2-yl]-(6-phenyl-imidazo[1,2-b]pyridazin-8-yl)-amine 3VF8 ; 2.08 ; Crystal Structure of Spleen Tyrosine Kinase Syk Catalytic Domain with Pyrazolylbenzimidazole Inhibitor 416 3VF9 ; 2.3 ; Crystal Structure of Spleen Tyrosine Kinase Syk Catalytic Domain with Thienopyrazolylindole Inhibitor 027 4KF5 ; 2.599 ; Crystal Structure of Split GFP complexed with engineered sfCherry with an insertion of GFP fragment 6OFO ; 2.603 ; Crystal structure of split green fluorescent protein (GFP); s10 circular permutant (194-195) 4EMG ; 2.7 ; Crystal structure of SpLsm3 4EMH ; 2.2 ; Crystal structure of SpLsm4 4EMK ; 2.3 ; Crystal structure of SpLsm5/6/7 5I7L ; 2.598 ; Crystal Structure of SPLUNC1 Disulfide Mutant M2 (A48C, V253C) 3O8Z ; 2.15 ; Crystal structure of Spn1 (Iws1) core domain 5CL2 ; 2.3 ; Crystal structure of Spo0M, sporulation control protein, from Bacillus subtilis. 6Q2V ; 2.594 ; Crystal structure of SPOC domain of human PHD-finger protein 3 (PHF3) 5CG0 ; 2.09 ; Crystal structure of Spodoptera frugiperda Beta-glycosidase 4H0N ; 2.712 ; Crystal structure of Spodoptera frugiperda DNMT2 E260A/E261A/K263A mutant 3UZ0 ; 2.82 ; Crystal Structure of SpoIIIAH and SpoIIQ Complex 1IXM ; 2.6 ; CRYSTAL STRUCTURE OF SPOOB FROM BACILLUS SUBTILIS 1NAT ; 2.45 ; CRYSTAL STRUCTURE OF SPOOF FROM BACILLUS SUBTILIS 7D3D ; 1.45 ; Crystal structure of SPOP bound with a peptide 1VLI ; 2.38 ; Crystal structure of Spore coat polysaccharide biosynthesis protein spsE (BSU37870) from Bacillus subtilis at 2.38 A resolution 4L3K ; 1.88 ; Crystal structure of Sporosarcina pasteurii UreE bound to Ni2+ and Zn2+ 2X8K ; 2.95 ; Crystal Structure of SPP1 Dit (gp 19.1) Protein, a Paradigm of Hub Adsorption Apparatus in Gram-positive Infecting Phages. 3GDB ; 1.87 ; Crystal structure of Spr0440 glycoside hydrolase domain, Endo-D from Streptococcus pneumoniae R6 7C5Z ; 1.5 ; Crystal structure of spring viremia of carp virus phosphoprotein central domain 5XJ1 ; 1.753 ; Crystal structure of spRlmCD 5ZQ1 ; 3.1 ; Crystal structure of spRlmCD with U1939loop RNA at 3.10 angstrom 5ZTH ; 3.24 ; Crystal structure of spRlmCD with U1939loop RNA at 3.24 angstrom 5ZQ8 ; 2.18 ; Crystal structure of spRlmCD with U747 stemloop RNA 5ZQ0 ; 2.0 ; Crystal structure of spRlmCD with U747loop RNA 7B2S ; 1.5 ; Crystal structure of SPRY domain of TRIM9 5XN3 ; 1.34 ; Crystal structure of SPSB2 in complex with a rational designed RGD containing cyclic peptide inhibitor of SPSB2-iNOS interaction 3LPE ; 1.9 ; Crystal structure of Spt4/5NGN heterodimer complex from Methanococcus jannaschii 4JWG ; 2.5 ; Crystal structure of spTrm10(74) 4JWF ; 2.4 ; Crystal structure of spTrm10(74)-SAH complex 4JWH ; 2.04 ; Crystal structure of spTrm10(Full length)-SAH complex 3TTM ; 2.0 ; Crystal structure of SpuD in complex with putrescine 6IKM ; 3.398 ; Crystal structure of SpuE-Spermidine in complex with ScFv5 1Z3E ; 1.5 ; Crystal Structure of Spx in Complex with the C-terminal Domain of the RNA Polymerase Alpha Subunit 6GHO ; 1.79 ; Crystal structure of Spx in complex with YjbH 6GHB ; 3.104 ; Crystal structure of Spx in complex with YjbH (oxidized) 3O39 ; 2.599 ; Crystal Structure of SPY 3PSQ ; 2.32 ; Crystal structure of Spy0129, a Streptococcus pyogenes class B sortase involved in pilus biogenesis 5FW1 ; 2.499 ; Crystal structure of SpyCas9 variant VQR bound to sgRNA and TGAG PAM target DNA 5VW1 ; 2.598 ; Crystal structure of SpyCas9-sgRNA-AcrIIA4 ternary complex 7OFY ; 1.7 ; Crystal structure of SQ binding protein from Agrobacterium tumefaciens in complex with sulfoquinovosyl glycerol (SQGro) 1QRR ; 1.6 ; CRYSTAL STRUCTURE OF SQD1 PROTEIN COMPLEX WITH NAD AND UDP-GLUCOSE 5AMS ; 3.35 ; Crystal structure of Sqt1 4ZN4 ; 1.94 ; Crystal structure of Sqt1 from Chaetomium thermophilum solved by MR 4HD1 ; 2.4 ; Crystal structure of squalene synthase HpnC from Alicyclobacillus acidocaldarius 7KVU ; 2.68 ; Crystal structure of Squash RNA aptamer in complex with DFHBI-1T 7KVV ; 2.85 ; Crystal structure of Squash RNA aptamer in complex with DFHBI-1T 7KVT ; 2.73 ; Crystal structure of Squash RNA aptamer in complex with DFHBI-1T with iridium (III) ions 6BK9 ; 3.00006 ; Crystal Structure of Squid Arrestin 2IAX ; 1.1 ; Crystal structure of squid ganglion DFPase D232S mutant 2IAP ; 1.9 ; Crystal structure of squid ganglion DFPase E21Q mutant 2IAO ; 2.0 ; Crystal structure of squid ganglion DFPase E37Q mutant 2IAV ; 1.07 ; Crystal structure of squid ganglion DFPase H287A mutant 2IAW ; 1.74 ; Crystal structure of squid ganglion DFPase N175D mutant 2IAQ ; 2.1 ; Crystal structure of squid ganglion DFPase S271A mutant 2IAS ; 2.0 ; Crystal structure of squid ganglion DFPase W244F mutant 2IAR ; 1.9 ; Crystal structure of squid ganglion DFPase W244H mutant 2IAT ; 1.9 ; Crystal structure of squid ganglion DFPase W244L mutant 2IAU ; 2.0 ; Crystal structure of squid ganglion DFPase W244Y mutant 4YD9 ; 3.0 ; Crystal structure of squid hemocyanin 3AYN ; 2.7 ; Crystal structure of squid isorhodopsin 3I5F ; 3.1 ; Crystal structure of squid MG.ADP myosin S1 2Z73 ; 2.5 ; Crystal structure of squid rhodopsin 2ZIY ; 3.7 ; Crystal structure of squid rhodopsin 3BEG ; 2.9 ; Crystal structure of SR protein kinase 1 complexed to its substrate ASF/SF2 6XKB ; 1.6 ; Crystal structure of SR-related and CTD-associated factor 4(SCAF4-CID)with peptide S2,S5p-CTD 4R06 ; 2.22 ; Crystal Structure of SR2067 bound to PPARgamma 1YOJ ; 1.95 ; Crystal structure of Src kinase domain 1YOL ; 2.3 ; Crystal structure of Src kinase domain in complex with CGP77675 2HWO ; 2.5 ; Crystal structure of Src kinase domain in complex with covalent inhibitor 2HWP ; 2.48 ; Crystal structure of Src kinase domain in complex with covalent inhibitor PD168393 1YOM ; 2.9 ; Crystal structure of Src kinase domain in complex with Purvalanol A 2QLQ ; 2.33 ; Crystal structure of SRC kinase domain with covalent inhibitor RL3 1NZL ; 1.9 ; Crystal Structure of Src SH2 domain bound to doubly phosphorylated peptide PQpYEpYIPI 1NZV ; 2.1 ; Crystal Structure of Src SH2 domain bound to doubly phosphorylated peptide PQpYIpYVPA 8J8D ; 1.51 ; Crystal structure of SRCR domain 11 of DMBT1 2GNC ; 1.8 ; Crystal structure of srGAP1 SH3 domain in the slit-robo signaling pathway 5I6J ; 2.7 ; Crystal Structure of SRGAP2 F-BARx 5I6R ; 2.15 ; Crystal Structure of srGAP2 F-BARx WT Form-1 5I7D ; 3.95 ; Crystal Structure of srGAP2 F-BARx WT Form-2 5GJP ; 2.5 ; Crystal structure of SrLDC in complex with PLP and Cadaverine 5GJO ; 1.8 ; Crystal structure of SrLDC mutant (A225C/T302C) in complex with PLP 2OAJ ; 2.4 ; Crystal structure of Sro7 from S. cerevisiae 1L9A ; 2.9 ; CRYSTAL STRUCTURE OF SRP19 IN COMPLEX WITH THE S DOMAIN OF SIGNAL RECOGNITION PARTICLE RNA 7DD1 ; 2.05 ; Crystal structure of SRPK1 in complex with a peptide inhibitor 5MY8 ; 1.7 ; Crystal structure of SRPK1 in complex with SPHINX31 5MYV ; 2.9 ; Crystal structure of SRPK2 in complex with compound 1 8DDP ; 1.591 ; Crystal structure of SRS57 from Toxoplasma gondii 7K1U ; 2.4 ; Crystal Structure of SrtB-anchored Collagen-binding Adhesin Fragment (residues 206-565) from Clostridioides difficile strain 630 6EDB ; 3.209 ; Crystal structure of SRY.hcGAS-21bp dsDNA complex 4NPH ; 2.09 ; Crystal structure of SsaN from Salmonella enterica 5D8F ; 2.35 ; crystal structure of SSB and ssDNA complex from homo sapiens 5YUN ; 2.67 ; Crystal structure of SSB complexed with myc 7VUM ; 2.319 ; Crystal structure of SSB complexed with que 5D8E ; 3.0 ; crystal structure of SSB from homo sapiens 7F2N ; 2.35 ; Crystal structure of SSB from Klebsiella pneumonia. 7F25 ; 2.87 ; Crystal structure of SSB from Salmonella enterica serovar Typhimurium LT2. 5YUO ; 2.037 ; Crystal structure of SSB protein from Pseudomonas aeruginosa PAO1 3HP9 ; 1.6 ; Crystal structure of SSB/Exonuclease I in complex with inhibitor CFAM 6S9R ; 2.4 ; Crystal structure of SSDP from D. melanogaster 4FZR ; 2.397 ; Crystal Structure of SsfS6, Streptomyces sp. SF2575 glycosyltransferase 3CM1 ; 2.6 ; Crystal structure of SsgA-like sporulation-specific cell division protein (YP_290167.1) from Thermobifida fusca YX-ER1 at 2.60 A resolution 3KXI ; 2.65 ; crystal structure of SsGBP and GDP complex 3KXK ; 2.35 ; Crystal structure of SsGBP mutation variant G235P 3KXL ; 2.5 ; crystal structure of SsGBP mutation variant G235S 4BMH ; 1.5 ; Crystal structure of SsHAT 3WJ1 ; 1.5 ; Crystal structure of SSHESTI 4P9N ; 1.8 ; Crystal structure of sshesti PE mutant 4XQ3 ; 2.6 ; Crystal structure of Sso-SmAP2 4IC1 ; 2.35 ; Crystal structure of SSO0001 4HW0 ; 2.0 ; Crystal structure of Sso10a-2, a DNA-binding protein from Sulfolobus solfataricus 2W0M ; 2.0 ; Crystal Structure of sso2452 from Sulfolobus solfataricus P2 2X3D ; 2.7 ; Crystal Structure of SSo6206 from Sulfolobus solfataricus P2 5VSA ; 2.0 ; Crystal structure of SsoPox AsA1 mutant (C258L-I261F-W263A) 5VRI ; 2.15 ; Crystal structure of SsoPox AsA6 mutant (F46L-C258A-W263M-I280T) - closed form 5VRK ; 1.4 ; Crystal structure of SsoPox AsA6 mutant (F46L-C258A-W263M-I280T) - open form 5W3U ; 2.5 ; Crystal structure of SsoPox AsB5 mutant (V27A-I76T-Y97W-Y99F-L130P-L226V) 5W3Z ; 2.55 ; Crystal structure of SsoPox AsC6 mutant (L72I-Y99F-I122L-L228M-F229S-W263L) 5W3W ; 2.95 ; Crystal structure of SsoPox AsD6 mutant (V27A-Y97W-L228M-W263M) - open form 3UF9 ; 2.68 ; Crystal structure of SsoPox in complex with the phosphotriester fensulfothion 4KEZ ; 1.85 ; Crystal structure of SsoPox W263F 4KET ; 2.0 ; Crystal structure of SsoPox W263I 4KF1 ; 2.0 ; Crystal structure of SsoPox W263I in complex with C10HTL 4KEV ; 2.65 ; Crystal structure of SsoPox W263L 4KEU ; 2.2 ; Crystal structure of SsoPox W263M 4KES ; 2.1 ; Crystal structure of SsoPox W263T 4KER ; 2.6 ; Crystal structure of SsoPox W263V 6FRH ; 2.03 ; Crystal structure of Ssp DnaB Mini-Intein variant M86 3FOJ ; 1.6 ; Crystal Structure of SSP1007 From Staphylococcus saprophyticus subsp. saprophyticus. Northeast Structural Genomics Target SyR101A. 1OX8 ; 2.2 ; Crystal structure of SspB 1OX9 ; 2.9 ; Crystal structure of SspB-ssrA complex 4NKH ; 2.75 ; Crystal structure of SspH1 LRR domain 4NKG ; 2.9 ; Crystal structure of SspH1 LRR domain in complex PKN1 HR1b domain 7XN9 ; 2.6 ; Crystal structure of SSTR2 and L-054,522 complex 3OMX ; 2.3366 ; Crystal structure of Ssu72 with vanadate complex 3OMW ; 2.8701 ; Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II 6DQP ; 1.546 ; Crystal structure of SsuE FMN reductase Delta118 mutant in apo form 6DQI ; 1.95 ; Crystal structure of SsuE FMN reductase Y118A mutant in apo form. 6DQO ; 1.705 ; Crystal structure of SsuE FMN reductase Y118A mutant in FMN bound form. 1TBX ; 2.7 ; Crystal structure of SSV1 F-93 5I8F ; 1.3 ; Crystal structure of St. John's wort Hyp-1 protein in complex with melatonin 1WSC ; 2.45 ; Crystal structure of ST0229, function unknown protein from Sulfolobus tokodaii 2DGD ; 2.9 ; Crystal structure of ST0656, a function unknown protein from Sulfolobus tokodaii 1WOL ; 1.62 ; Crystal Structure of ST0689, an archaeal HEPN homologue 3GFI ; 2.1 ; Crystal structure of ST1710 complexed with its promoter DNA 2D1H ; 2.05 ; Crystal structure of ST1889 protein from thermoacidophilic archaeon Sulfolobus tokodaii 2EF7 ; 2.1 ; Crystal structure of ST2348, a hypothetical protein with CBS domains from Sulfolobus tokodaii strain7 3BXW ; 2.7 ; Crystal Structure of Stabilin-1 Interacting Chitinase-Like Protein, SI-CLP 3TRT ; 2.3 ; Crystal structure of stabilised vimentin coil2 fragment 5N2S ; 3.303 ; Crystal structure of stabilized A1 receptor in complex with PSB36 at 3.3A resolution 5MZP ; 2.1 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with caffeine at 2.1A resolution 6ZDR ; 1.918 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with Chromone 4d 6ZDV ; 2.13 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with Chromone 5d 8CIC ; 2.102 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with clinical candidate Etrumadenant 5IUA ; 2.2 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with compound 12b at 2.2A resolution 5IU7 ; 1.9 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with compound 12c at 1.9A resolution 5IU8 ; 2.002 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with compound 12f at 2.0A resolution 5IUB ; 2.1 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with compound 12x at 2.1A resolution 5N2R ; 2.8 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with PSB36 at 2.8A resolution 5MZJ ; 2.0 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with theophylline at 2.0A resolution 5IU4 ; 1.72 ; Crystal structure of stabilized A2A adenosine receptor A2AR-StaR2-bRIL in complex with ZM241385 at 1.7A resolution 6GWQ ; 2.32 ; Crystal Structure of Stabilized Active Plasminogen Activator Inhibitor-1 (PAI-1-stab) in Complex with an Inhibitory Nanobody (VHH-2g-42) 6GWP ; 2.28 ; Crystal Structure of Stabilized Active Plasminogen Activator Inhibitor-1 (PAI-1-stab) in Complex with Two Inhibitory Nanobodies (VHH-2g-42, VHH-2w-64) 6ZRV ; 1.88 ; Crystal Structure of Stabilized Active Plasminogen Activator Inhibitor-1 (PAI-1-W175F) in Complex with an Inhibitory Nanobody (VHH-s-a93, Nb93) 6GWN ; 2.03 ; Crystal Structure of Stabilized Active Plasminogen Activator Inhibitor-1 (PAI-1-W175F) in Complex with Two Inhibitory Nanobodies (VHH-2g-42, VHH-2w-64) 6VKM ; 3.5 ; Crystal Structure of Stabilized GP from Makona Variant of Ebola Virus 7QA4 ; 2.19 ; Crystal structure of stabilized H3N2 A/Hong Kong/1/1968 Hemagglutinin at 2.2 Angstrom 3U74 ; 2.39 ; Crystal structure of stabilized human uPAR mutant 3U73 ; 3.19 ; Crystal structure of stabilized human uPAR mutant in complex with ATF 6L6O ; 1.8 ; Crystal structure of stabilized Rab5a GTPase domain from Leishmania donovani 4IBX ; 2.68 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 4OPR ; 1.45 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying G238S mutation 4OPZ ; 1.45 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying G238S mutation in complex with boron-based inhibitor EC25 4IBR ; 2.2 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying G238S/E104K mutations 4OP5 ; 1.05 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S mutation 4OQH ; 1.7 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S mutation in complex with boron-based inhibitor EC25 4OQ0 ; 1.42 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S/G238S mutation in complex with boron-based inhibitor EC25 4OQI ; 1.13 ; Crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S/G238S mutations 3AHP ; 2.7 ; Crystal structure of stable protein, CutA1, from a psychrotrophic bacterium Shewanella sp. SIB1 4QUQ ; 2.266 ; Crystal structure of stachydrine demethylase in complex with azide 4QUR ; 1.759 ; Crystal Structure of stachydrine demethylase in complex with cyanide, oxygen, and N-methyl proline in a new orientation 4QUP ; 1.7 ; Crystal structure of stachydrine demethylase with N-methyl proline from low X-ray dose composite datasets 3RNR ; 2.0 ; Crystal Structure of Stage II Sporulation E Family Protein from Thermanaerovibrio acidaminovorans 3LM6 ; 2.5 ; Crystal Structure of Stage V sporulation protein AD (spoVAD) from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR525 2OV8 ; 2.58 ; Crystal Structure of StaL 2OVF ; 2.95 ; Crystal Structure of StaL-PAP complex 2OVB ; 2.61 ; Crystal Structure of StaL-sulfate complex 1OQD ; 2.6 ; Crystal structure of sTALL-1 and BCMA 1JH5 ; 3.0 ; Crystal Structure of sTALL-1 of TNF family ligand 1OQE ; 2.5 ; Crystal structure of sTALL-1 with BAFF-R 1UJ0 ; 1.7 ; Crystal Structure of STAM2 SH3 domain in complex with a UBPY-derived peptide 7L97 ; 2.01 ; Crystal structure of STAMBPL1 in complex with an engineered binder 4URM ; 2.94 ; Crystal Structure of Staph GyraseB 24kDa in complex with Kibdelomycin 4URO ; 2.59 ; Crystal Structure of Staph GyraseB 24kDa in complex with Novobiocin 4URN ; 2.3 ; Crystal Structure of Staph ParE 24kDa in complex with Novobiocin 4URL ; 2.29 ; Crystal Structure of Staph ParE43kDa in complex with KBD 3FY8 ; 2.2 ; Crystal Structure of Staph. aureus DHFR complexed with NADPH and AR-101 1XAH ; 2.2 ; CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+ AND NAD+ 1XAG ; 2.45 ; CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+, NAD+ AND CARBAPHOSPHONATE 1XAI ; 2.3 ; CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+, NAD+ AND CARBAPHOSPHONATE 1XAJ ; 2.35 ; CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+, NAD+ AND CARBAPHOSPHONATE 1XAL ; 2.8 ; CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+, NAD+ AND CARBAPHOSPHONATE (SOAK) 8OIG ; 1.58 ; Crystal Structure of Staphopain C from Staphylococcus aureus 4YIJ ; 1.64 ; Crystal structure of Staphylcoccal nuclease variant Delta+PHS A109E at cryogenic temperature 4PMC ; 1.65 ; Crystal structure of Staphylcoccal nuclease variant Delta+PHS I72K V74K at cryogenic temperature 4TRD ; 1.6 ; Crystal structure of Staphylcoccal nuclease variant Delta+PHS I72K/V74K at pH 9.0 at cryogenic temperature 4PMB ; 1.8 ; Crystal structure of Staphylcoccal nuclease variant Delta+PHS I92S at cryogenic temperature 6EEG ; 1.95 ; Crystal structure of Staphylcoccal nuclease variant Delta+PHS T62E at cryogenic temperature 4WRD ; 1.65 ; Crystal structure of Staphylcoccal nulease variant Delta+PHS V66E L125E at cryogenic temperature 2RDF ; 2.01 ; Crystal Structure of staphyloccocal nuclease VIAGAN/E75A variant at cryogenic temperature 1QXW ; 1.67 ; Crystal structure of Staphyloccocus aureus in complex with an aminoketone inhibitor 54135. 2QFF ; 1.8 ; Crystal structure of Staphylococcal Complement Inhibitor 3T46 ; 1.5 ; Crystal structure of Staphylococcal Complement Inhibitor D (SCIN-D) at 1.5 Angstrom 4H6I ; 3.091 ; Crystal Structure of Staphylococcal Complement Inhibitor SCIN-B 4H6H ; 2.5024 ; Crystal Structure of Staphylococcal Complement Inhibitor SCIN-B(4-85) 3W2D ; 3.1 ; Crystal Structure of Staphylococcal Eenterotoxin B in complex with a novel neutralization monoclonal antibody Fab fragment 5FK9 ; 3.1 ; Crystal structure of staphylococcal enterotoxin A F47A mutant in complex with a T cell receptor 1I4G ; 2.1 ; Crystal structure of Staphylococcal enterotoxin A mutant H187A with reduced Zn2+ affinity 3R8B ; 2.95 ; Crystal structure of Staphylococcal Enterotoxin B in complex with an affinity matured mouse TCR VBeta8.2 protein, G5-8 1CQV ; 2.06 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN C2 AT 100K CRYSTALLIZED AT PH 5.0 1I4P ; 2.0 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN C2 AT 100K CRYSTALLIZED AT PH 5.5 1I4Q ; 2.2 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN C2 AT 100K CRYSTALLIZED AT PH 6.0 1I4R ; 2.1 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN C2 AT 100K CRYSTALLIZED AT PH 6.5 4UDU ; 2.5 ; Crystal structure of staphylococcal enterotoxin E in complex with a T cell receptor 5FKA ; 2.4 ; Crystal structure of staphylococcal enterotoxin E in complex with a T cell receptor 1XXG ; 2.2 ; Crystal Structure of Staphylococcal Enterotoxin G 3OWE ; 2.6 ; Crystal Structure of Staphylococcal Enterotoxin G (SEG) in Complex with a High Affinity Mutant Mouse T-cell Receptor Chain 3MC0 ; 2.0 ; Crystal Structure of Staphylococcal Enterotoxin G (SEG) in Complex with a Mouse T-cell Receptor beta Chain 1ENF ; 1.69 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN H DETERMINED TO 1.69 A RESOLUTION 1HXY ; 2.6 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN H IN COMPLEX WITH HUMAN MHC CLASS II 2G9H ; 2.0 ; Crystal Structure of Staphylococcal Enterotoxin I (SEI) in Complex with a Human MHC class II Molecule 4P1Y ; 2.992 ; Crystal structure of staphylococcal gamma-hemolysin prepore 3VAZ ; 3.19 ; Crystal structure of Staphylococcal GAPDH1 in a hexagonal space group 4I3E ; 2.6 ; Crystal structure of Staphylococcal IMPase - I complexed with products. 4PTK ; 2.503 ; Crystal structure of Staphylococcal IMPase-I complex with 3Mg2+ and Phosphate 5I3S ; 2.2 ; Crystal structure of Staphylococcal IMPase-II 4I3Y ; 2.04 ; Crystal structure of Staphylococcal inositol monophosphatase-1: 100 mM LiCl soaked inhibitory complex 4I40 ; 2.5 ; crystal structure of Staphylococcal inositol monophosphatase-1: 50mM LiCl inhibited complex 4P1X ; 2.4 ; Crystal structure of staphylococcal LUK prepore 2F0I ; 1.8 ; Crystal structure of Staphylococcal nuclease mutant I72L 2F0J ; 1.8 ; Crystal structure of Staphylococcal nuclease mutant I72V 4H7B ; 1.6 ; Crystal Structure of Staphylococcal nuclease mutant I72V/V99L 2F0D ; 2.5 ; Crystal structure of Staphylococcal nuclease mutant I92V 4K8I ; 2.1 ; Crystal Structure of Staphylococcal Nuclease mutant I92V/V99L 2F0F ; 2.15 ; Crystal structure of Staphylococcal nuclease mutant L25I 2F0N ; 1.7 ; Crystal structure of Staphylococcal nuclease mutant L25I/I72L 2EYM ; 1.8 ; Crystal structure of Staphylococcal nuclease mutant T120C 2EYO ; 1.7 ; Crystal structure of Staphylococcal nuclease mutant T120S 2EYP ; 1.8 ; Crystal structure of Staphylococcal nuclease mutant T120V 2EXZ ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant T22C 2EY1 ; 1.85 ; Crystal structure of Staphylococcal nuclease mutant T22V 2EY2 ; 1.7 ; Crystal structure of Staphylococcal nuclease mutant T41C 2EY5 ; 2.0 ; Crystal structure of Staphylococcal nuclease mutant T41S 2EY6 ; 1.65 ; Crystal structure of Staphylococcal nuclease mutant T41V 2EYF ; 1.8 ; Crystal structure of Staphylococcal nuclease mutant T44V 2EYH ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant T62S 2EYJ ; 1.85 ; Crystal structure of Staphylococcal nuclease mutant T62V 2EYL ; 1.7 ; Crystal structure of Staphylococcal nuclease mutant T82S 4ID6 ; 1.898 ; Crystal Structure of Staphylococcal nuclease mutant V23I/I72L 2F0K ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant V23I/L25I 2F0U ; 1.83 ; Crystal structure of Staphylococcal nuclease mutant V23I/L25I/I72V 2F0W ; 2.1 ; Crystal structure of Staphylococcal nuclease mutant V23I/L25I/V66L/I72L 4I65 ; 1.61 ; Crystal Structure of Staphylococcal nuclease mutant V23I/L25V/I72V/I92V 2F0E ; 1.95 ; Crystal structure of Staphylococcal nuclease mutant V23L 2F0L ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant V23L/I72L 2F0M ; 2.0 ; Crystal structure of Staphylococcal nuclease mutant V23L/I72V 4QB4 ; 1.6 ; Crystal Structure of Staphylococcal Nuclease mutant V23L/L25V/V66L 4K8J ; 2.0 ; Crystal Structure of Staphylococcal nuclease mutant V23L/V66I 2F0V ; 2.0 ; Crystal structure of Staphylococcal nuclease mutant V23L/V66L/I72L 2OXP ; 2.0 ; Crystal Structure of Staphylococcal Nuclease mutant V66D/P117G/H124L/S128A 1U9R ; 2.1 ; Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature 2F0G ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant V66I 2F0O ; 1.9 ; Crystal structure of Staphylococcal nuclease mutant V66I/I72V 2F0P ; 2.05 ; Crystal structure of Staphylococcal nuclease mutant V66I/V99I 4K14 ; 1.601 ; Crystal Structure of Staphylococcal nuclease mutant V66I/V99L 2F0H ; 2.15 ; Crystal structure of Staphylococcal nuclease mutant V66L 2F0Q ; 1.95 ; Crystal structure of Staphylococcal nuclease mutant V66L/I92L 2F0S ; 1.75 ; Crystal structure of Staphylococcal nuclease mutant V66L/I92V 2F0T ; 1.7 ; Crystal structure of Staphylococcal nuclease mutant V66L/V99I 3QOL ; 1.9 ; Crystal structure of Staphylococcal nuclease variant D+PHS/V23E at pH 6 determined at 100 K 3HZX ; 2.0 ; Crystal Structure of Staphylococcal nuclease variant D+PHS/V66K at pH 9 determined at 100 K 3TME ; 1.4 ; Crystal structure of Staphylococcal nuclease variant Delta+NVIAGLA V23E at cryogenic temperature 3TP5 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+NVIAGLA V23E/L36E at cryogenic temperature 3SK6 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+NVIAGLA V23K/L36E at cryogenic temperature 3D4W ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A109R at cryogenic temperature 6XSB ; 1.95 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A132S at cryogenic temperature 5I6W ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A58D at cryogenic temperature 3T13 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A69G at cryogenic temperature 3SR1 ; 1.45 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A69G bound to Ca2+ and thymidine-5',3'-diphosphate at cryogenic temperature 5J1Z ; 1.73 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A90D at cryogenic temperature 5I6Y ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A90E at cryogenic temperature 3DHQ ; 2.15 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS A90R at cryogenic temperature 3BDC ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS at cryogenic temperature 3LX0 ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS D21N at cryogenic temperature 3SK4 ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS D21N/V23E at cryogenic temperature 3MVV ; 1.72 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS F34A at cryogenic temperature 3ITP ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS F34K at cryogenic temperature 6XSE ; 2.1 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS F34Y at cryogenic temperature 5E1F ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS G20E at cryogenic temperature 4IAL ; 1.595 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS H121E at cryogenic temperature 4J6H ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS H121Q at cryogenic temperature 4IZ8 ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS H8E at cryogenic temperature 4EQP ; 1.35 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72D at cryogenic temperature 5C3X ; 1.95 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72D/N100E at cryogenic temperature 3ERO ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72E at cryogenic temperature 4PNY ; 1.68 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72H at cryogenic temperature 2RBM ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72K at cryogenic temperature 5K5P ; 1.83 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72K L103K at cryogenic temperature 3D8G ; 1.99 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I72R at cryogenic temperature 3MEH ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A at cryogenic temperature 4DGZ ; 1.47 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/L125A at cryogenic temperature 4F7X ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/L25A at cryogenic temperature 4DFA ; 1.404 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/L36A at cryogenic temperature 3VA5 ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/V23A at cryogenic temperature 3V2T ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/V66A at cryogenic temperature 4DU9 ; 1.63 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92A/V74A at cryogenic temperature 3SXH ; 1.4 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92AL103A at cryogenic temperature 5KIX ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92E at cryogenic temperature 5C4H ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92H at cryogenic temperature 5E3F ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92K at cryogenic temperature 4S3S ; 1.64 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92K/V23A at cryogenic temperature 3QB3 ; 1.63 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92KL25A at cryogenic temperature 4NDX ; 1.496 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92N at cryogenic temperature 5F2D ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92N/V99T at cryogenic temperature 4K2L ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92Q at cryogenic temperature 4ZQ3 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS I92T at cryogenic temperature 6OK8 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS K127L at cryogenic temperature 6U0W ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS K133M at cryogenic temperature 5CV5 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS K64G/V66K/E67G at cryogenic temperature 3MZ5 ; 1.58 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L103A at cryogenic temperature 5J22 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L103D at cryogenic temperature 3E5S ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L103K at cryogenic temperature 3NXW ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L125A at cryogenic temperature 3C1E ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L125K at cryogenic temperature 3OSO ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25A at cryogenic temperature 4K2K ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25A/L36A/I92A at cryogenic temperature 4KD3 ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25A/V66A/I92A at cryogenic temperature 4KY6 ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25D at pH 6 and cryogenic temperature 5C6A ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25E / N100E at cryogenic temperature 3EVQ ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25E at cryogenic temperature 5C4Z ; 1.62 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25H at cryogenic temperature 5JOB ; 1.45 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25K/I92A at cryogenic temperature 5KEE ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25K/I92F at cryogenic temperature 5HGT ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25K/I92T at cryogenic temperature 5HUR ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L25T/I92K at cryogenic temperature 3NP8 ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36A at cryogenic temperature 4KJO ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36A/V66T/V99T at cryogenic temperature 4HMJ ; 1.35 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36D at cryogenic temperature 5IGB ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36D/V66H at cryogenic temperature 3TP8 ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36E at cryogenic temperature 3TP6 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36E/L103K at cryogenic temperature 5CV9 ; 1.62 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36E/V66H at cryogenic temperature 4LAA ; 1.58 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36H at cryogenic temperature 3EJI ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36K at cryogenic temperature 5I9O ; 1.95 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L36K L103K at cryogenic temperature 3MHB ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L38A at cryogenic temperature 5ISR ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS L38E at cryogenic temperature 3SK8 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS M98G apo protein at cryogenic temperature 3S9W ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS M98G bound to Ca2+ and thymidine-5',3'-diphosphate at cryogenic temperature 5DEH ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS N100D at cryogenic temperature 5KGU ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS N118D at cryogenic temperature 6U0X ; 1.86 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS Q123D at cryogenic temperature 4J1M ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS R105E at cryogenic temperature 4KTA ; 1.95 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS R105Q at cryogenic temperatures 4IUN ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS R126E at cryogenic temperature 4KV6 ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS R126Q at cryogenic temperature 6XSF ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T41V at cryogenic temperature 3MXP ; 1.61 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature 3R3O ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature and with high redundancy 5C5M ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62D / V104E at cryogenic temperature 5IIF ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62D at cryogenic temperature 5EKL ; 2.1 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62D/N100E at cryogenic temperature 5C5L ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62E / L125E at cryogenic temperature 5CC4 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62E/V66E at cryogenic temperature 5KRU ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62E/V66K at cryogenic temperature 5I9P ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62H at cryogenic temperature 5IGD ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62H/I92E at cryogenic temperature 5IGF ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62H/V66D at cryogenic temperature 5IGE ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62H/V99D at cryogenic temperature 5KYL ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62K/V66E pH 7 at cryogenic temperature 5KYI ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62K/V66E pH 9 at cryogenic temperature 3HEJ ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62R at cryogenic temperature 6XSH ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS T62V at cryogenic temperature 3P75 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V104D at cryogenic temperature 3H6M ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V104E at cryogenic temperature 5CR3 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V104E/L125E at cryogenic temperature 3C1F ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V104K at cryogenic temperature 6XSI ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V104T at cryogenic temperature 3PMF ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23A at cryogenic temperature 4KY5 ; 1.4 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23D at pH 7 and cryogenic temperature 5CV8 ; 1.58 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23D/T62H at cryogenic temperature 5CV4 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23D/V66H at cryogenic temperature 4EQN ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23E/I72K at cryogenic temperature 5IGC ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23E/V66H at cryogenic temperature 4ZUI ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23H at cryogenic temperature 4F8M ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23I/I92V at cryogenic temperature 3P1H ; 1.79 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23K/I92A at cryogenic temperature 6AMF ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23K/L36E at cryogenic temperature 6B8R ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23K/L36Q at cryogenic temperature 4DF7 ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23L/V99I at cryogenic temperature 4NMZ ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23Q/V66A at cryogenic temperature 4KHV ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23S at cryogenic temperature 4ME5 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23S/V66A at cryogenic temperature 6XSC ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T at cryogenic temperature 4N9P ; 1.4 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T/L25A/V99T at cryogenic temperature 4K5V ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T/L36A/V99T at cryogenic temperature 4KJN ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T/V66A/V99T at cryogenic temperature 4RKL ; 1.66 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T/V66T at cryogenic temperature 4MIU ; 1.67 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V23T/V99T at cryogenic temperature 3SK5 ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V39D at cryogenic temperature 5EKK ; 2.1 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V39D/L125E at cryogenic temperature 5DAU ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V39E/V104E at cryogenic temperature 3NQT ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66A at cryogenic temperature 4NP5 ; 1.5 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66A/I92N at cryogenic temperature 4NKL ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66A/I92Q at cryogenic temperature 4N9T ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66A/I92S at cryogenic temperature 5CGK ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66D/N100E at cryogenic temperature 4OL7 ; 1.67 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66E A109E at cryogenic temperature 5EGT ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66E at cryogenic temperature 5C3W ; 1.72 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H at cryogenic temperature 5IGG ; 1.7 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H/I72E at cryogenic temperature 5CV7 ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H/I92D at cryogenic temperature 5CV6 ; 1.95 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H/I92E at cryogenic temperature 5IOC ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H/V99D at cryogenic temperature 5IOD ; 1.6 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66H/V99E at cryogenic temperature 3OWF ; 1.85 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66R at cryogenic temperature 6XSG ; 2.0 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66T at cryogenic temperature 4RKB ; 1.88 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V66T/V99T at cryogenic temperature 3NK9 ; 1.65 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V74A at cryogenic temperature 4KY7 ; 1.55 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V74D at cryogenic temperature 3RUZ ; 1.58 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V74K at cryogenic temperature 3SHL ; 1.48 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V74KL25A at cryogenic temperature 4EQO ; 1.697 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V99D at cryogenic temperature 3TP7 ; 1.9 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V99E at cryogenic temperature 4HMI ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS V99K at cryogenic temperature 5JAV ; 1.895 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS Y91D at cryogenic temperature 3D4D ; 2.1 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS Y91E at cryogenic temperature 4ZUJ ; 1.72 ; Crystal structure of Staphylococcal nuclease variant Delta+PHS Y91H at cryogenic temperature 4HTH ; 1.75 ; Crystal structure of Staphylococcal nuclease variant Delta+VIAGLA at cryogenic temperature 2QDB ; 2.2 ; Crystal structure of staphylococcal nuclease variant E75Q/D21N/T33V/T41I/S59A/P117G/S128A at 100 K 3ERQ ; 2.1 ; Crystal structure of Staphylococcal nuclease variant L25K at cryogenic temperature 4E6I ; 2.0 ; Crystal structure of Staphylococcal nuclease variant NVIAGA V99G at cryogenic temperature 4EVO ; 1.95 ; Crystal structure of Staphylococcal nuclease variant NVIAGA/E122G at cryogenic temperature 3T16 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant NVIAGA/M98G at cryogenic temperature 3U9O ; 1.95 ; Crystal structure of Staphylococcal nuclease variant NVIAGA/N100G at cryogenic temperature 3D6C ; 2.0 ; Crystal structure of Staphylococcal nuclease variant PHS L38E at cryogenic temperature 2RKS ; 2.01 ; Crystal structure of Staphylococcal nuclease variant PHS L38K at cryogenic temperature 3DMU ; 1.8 ; Crystal structure of Staphylococcal nuclease variant PHS T62K at cryogenic temperature 3NHH ; 2.0 ; Crystal structure of Staphylococcal nuclease variant V23E-L36K at cryogenic temperature 4R8N ; 1.65 ; Crystal structure of Staphylococcal nuclease variant V23I/V66I/I72V/I92V at cryogenic temperature 4ODG ; 1.73 ; Crystal structure of Staphylococcal nuclease variant V23I/V66I/V74I/V99I at cryogenic temperature 4KD4 ; 1.55 ; Crystal structure of Staphylococcal nuclease variant V23L/L25V/V66I/I72V at cryogenic temperature 4QF4 ; 1.8 ; Crystal structure of Staphylococcal nuclease variant V23M at cryogenic temperature 4K5W ; 1.65 ; Crystal structure of Staphylococcal nuclease variant V23M/L25F/T62F at cryogenic temperature 4K5X ; 1.65 ; Crystal structure of Staphylococcal nuclease variant V23M/L36F at cryogenic temperature 4K6D ; 1.65 ; Crystal structure of Staphylococcal nuclease variant V23M/T62F at cryogenic temperature 2PZU ; 2.1 ; Crystal structure of Staphylococcal nuclease variant V66N/P117G/H124L/S128A at cryogenic temperature 2PZW ; 2.1 ; Crystal structure of Staphylococcal nuclease variant V66N/P117G/H124L/S128A at room temperature 2PZT ; 2.1 ; Crystal structure of Staphylococcal nuclease variant V66Q/P117G/H124L/S128A at 100 K 2PYK ; 2.1 ; Crystal structure of Staphylococcal nuclease variant V66Q/P117G/H124L/S128A at room temperature 2PW7 ; 2.1 ; Crystal Structure of Staphylococcal nuclease variant V66Y/P117G/H124L/S128A at 100K 2PW5 ; 2.1 ; Crystal Structure of Staphylococcal nuclease variant V66Y/P117G/H124L/S128A at room temperature 4DG5 ; 2.3 ; Crystal structure of staphylococcal Phosphoglycerate kinase 6LWT ; 1.9 ; Crystal structure of Staphylococcal Superantigen-Like protein 10 2RDH ; 1.7 ; Crystal structure of Staphylococcal Superantigen-Like protein 11 2RDG ; 1.6 ; Crystal structure of Staphylococcal Superantigen-Like protein 11 in complex with Sialyl Lewis X 5D3D ; 1.94 ; Crystal structure of Staphylococcal Superantigen-Like protein 3 4DXF ; 1.7 ; Crystal structure of Staphylococcal Superantigen-Like protein 4 4DXG ; 2.5 ; Crystal structure of Staphylococcal Superantigen-Like protein 4 complexed with sialyl Lewis X 4O1N ; 2.5 ; Crystal structure of Staphylococcal superantigen-like protein SAOUHSC_00383 2UZF ; 2.9 ; Crystal structure of Staphylococcus aureus 1,4-dihydroxy-2-naphthoyl CoA synthase (MenB) in complex with acetoacetyl CoA 4GMH ; 2.0 ; Crystal structure of staphylococcus aureus 5'-methylthioadenosine/s-adenosylhomocysteine nucleosidase 3BL6 ; 1.7 ; Crystal structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase in complex with formycin A 3V8J ; 2.1 ; Crystal structure of Staphylococcus aureus biotin protein ligase 6NDL ; 2.0 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with a sulfonamide inhibitor 3V8K ; 3.23 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with biotin 3V8L ; 2.6 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with biotinyl-5'-AMP 3V7R ; 2.61 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with inhibitor 6APW ; 2.614 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with inhibitor 6AQQ ; 2.71 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with inhibitor 8ENI ; 2.4 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with inhibitor 3V7S ; 3.1 ; Crystal structure of Staphylococcus aureus biotin protein ligase in complex with inhibitor 0364 6O9W ; 1.95 ; Crystal structure of Staphylococcus aureus BlaR1 antibiotic-sensor domain in complex with avibactam 4EMW ; 2.39 ; Crystal Structure of Staphylococcus aureus bound with the covalent inhibitor EtVC-CoA 4EM3 ; 1.977 ; Crystal Structure of Staphylococcus aureus bound with the covalent inhibitor MeVS-CoA 4EM4 ; 1.821 ; Crystal Structure of Staphylococcus aureus bound with the covalent inhibitor Pethyl-VS-CoA 5CZZ ; 2.6 ; Crystal structure of Staphylococcus aureus Cas9 in complex with sgRNA and target DNA (TTGAAT PAM) 5AXW ; 2.7 ; Crystal structure of Staphylococcus aureus Cas9 in complex with sgRNA and target DNA (TTGGGT PAM) 4EMM ; 2.4 ; Crystal structure of Staphylococcus aureus ClpP in compact conformation 7XBZ ; 2.15 ; Crystal structure of Staphylococcus aureus ClpP in complex with R-ZG197 7WID ; 1.9 ; Crystal structure of Staphylococcus aureus ClpP in complex with ZG180 3T8R ; 1.7 ; Crystal structure of Staphylococcus aureus CymR 3T8T ; 1.752 ; Crystal structure of Staphylococcus aureus CymR oxidized form 7MCB ; 2.14 ; Crystal structure of Staphylococcus aureus Cystathionine gamma lyase Holoenzyme 7MD0 ; 2.12 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme in the presence of NL1F3 7MD9 ; 1.8 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103A mutant 7MDA ; 2.24 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103A mutant co-crystallized with NL1 7MDB ; 1.8 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103A mutant co-crystallized with NL2 7MD1 ; 2.3 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103N mutant 7MD6 ; 2.2 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103N mutant co-crystallized with NL1 7MD8 ; 2.06 ; Crystal structure of Staphylococcus aureus cystathionine gamma lyase holoenzyme Y103N mutant co-crystallized with NL2 7MCQ ; 2.84 ; Crystal structure of Staphylococcus aureus Cystathionine gamma lyase, AOAA-bound enzyme in dimeric form 7MCT ; 1.6 ; Crystal structure of Staphylococcus aureus Cystathionine gamma lyase, Holoenzyme with bound NL1 7MCU ; 2.4 ; Crystal structure of Staphylococcus aureus Cystathionine gamma lyase, Holoenzyme with bound NL2 7MCY ; 1.72 ; Crystal structure of Staphylococcus aureus Cystathionine gamma lyase, Holoenzyme with bound NL3 7MCP ; 2.4 ; Crystal structure of Staphylococcus aureus Cystathionine gamma-lyase, Holoenzyme dimer 7MCN ; 2.52 ; Crystal structure of Staphylococcus aureus Cystathionine gamma-lyase, Holoenzyme with High HEPES 7MCL ; 2.4 ; Crystal structure of Staphylococcus aureus Cystathionine gamma-lyase, PLP bound 2H92 ; 2.3 ; Crystal Structure of Staphylococcus aureus Cytidine Monophosphate Kinase in complex with cytidine-5'-monophosphate 3BCI ; 1.81 ; Crystal Structure of Staphylococcus aureus DsbA 3BD2 ; 1.81 ; Crystal Structure of Staphylococcus aureus DsbA E96Q 3BCK ; 1.95 ; Crystal Structure of Staphylococcus aureus DsbA T153V 2XEX ; 1.9 ; crystal structure of Staphylococcus aureus elongation factor G 3ZZT ; 2.95 ; Crystal structure of Staphylococcus aureus elongation factor G with a fusidic-acid-resistant mutation F88L 3ZZU ; 2.98 ; Crystal structure of Staphylococcus aureus elongation factor G with mutations M16I and F88L 5BOF ; 2.45 ; Crystal Structure of Staphylococcus aureus Enolase 5BOE ; 1.6 ; Crystal structure of Staphylococcus aureus enolase in complex with PEP 4FS3 ; 1.8 ; Crystal structure of Staphylococcus aureus enoyl-ACP reductase in complex with NADP and AFN-1252 2JFQ ; 2.15 ; Crystal structure of Staphylococcus aureus glutamate racemase in complex with D- Glutamate 2J41 ; 1.9 ; Crystal structure of Staphylococcus aureus guanylate monophosphate kinase 3G75 ; 2.3 ; Crystal structure of Staphylococcus aureus Gyrase B co-complexed with 4-METHYL-5-[3-(METHYLSULFANYL)-1H-PYRAZOL-5-YL]-2-THIOPHEN-2-YL-1,3-THIAZOLE inhibitor 1XPL ; 2.0 ; Crystal Structure of Staphylococcus aureus HMG-COA Synthase with Acetoacetyl-COA and Acetylated Cysteine 1XPM ; 1.6 ; Crystal Structure of Staphylococcus aureus HMG-COA Synthase with HMG-CoA and Acetoacetyl-COA and Acetylated Cysteine 1XPK ; 2.0 ; CRYSTAL STRUCTURE OF STAPHYLOCOCCUS AUREUS HMG-COA SYNTHASE WITH HMG-CoA AND WITH ACETOACETYL-COA AND ACETYLATED CYSTEINE 4KNK ; 1.124 ; Crystal structure of Staphylococcus aureus hydrolase AmiA 4KNL ; 1.55 ; Crystal structure of Staphylococcus aureus hydrolase AmiA in complex with its ligand 2NYD ; 2.0 ; Crystal structure of Staphylococcus aureus hypothetical protein SA1388 5W3K ; 1.589 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase in complex NADPH, Mg2+ and CPD 6VO2 ; 1.59 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase in complex with Mg, NADPH and inhibitor. 7KE2 ; 2.59 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase in complex with Mg2+ and NSC116565 7KH7 ; 2.63 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase in complex with Mg2+, NADPH, and NSC116565 6C5N ; 1.673 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase with hydroxyoxamate inhibitor 1 6BUL ; 1.88 ; Crystal structure of Staphylococcus aureus ketol-acid reductoisomerase with hydroxyoxamate inhibitor 2 6C55 ; 2.09 ; Crystal structure of Staphylococcus aureus Ketol-acid Reductosimerrase with hydroxyoxamate inhibitor 3 3EIW ; 1.6 ; Crystal structure of Staphylococcus aureus lipoprotein, HtsA 8GHH ; 2.1 ; Crystal structure of Staphylococcus aureus Lysophosphatidylglycerol phospholipase D 8GHI ; 2.4 ; Crystal structure of Staphylococcus aureus Lysophosphatidylglycerol phospholipase D 6O9S ; 1.59 ; Crystal structure of Staphylococcus aureus MecR1 antibiotic-sensor domain in complex with avibactam 3VMT ; 2.299 ; Crystal structure of Staphylococcus aureus membrane-bound transglycosylase in complex with a Lipid II analog 3VMR ; 3.688 ; Crystal structure of Staphylococcus aureus membrane-bound transglycosylase in complex with moenomycin 3VMS ; 3.202 ; Crystal structure of Staphylococcus aureus membrane-bound transglycosylase in complex with NBD-Lipid II 3VMQ ; 2.518 ; Crystal structure of Staphylococcus aureus membrane-bound transglycosylase: Apoenzyme 3KHX ; 2.3 ; Crystal structure of Staphylococcus aureus metallopeptidase (Sapep/DapE) in the apo-form 3KI9 ; 2.9 ; Crystal structure of Staphylococcus aureus metallopeptidase (Sapep/DapE) in the Mn2+ bound form 3Q83 ; 2.5 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase 3Q8U ; 2.22 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase complexed with ADP 3Q8Y ; 2.7 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase complexed with ADP and Vanadate 3Q89 ; 2.9 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase complexed with CDP 3Q86 ; 2.38 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase complexed with GTP 3Q8V ; 2.5 ; Crystal structure of Staphylococcus aureus nucleoside diphosphate kinase complexed with UDP 3LNL ; 2.0 ; Crystal structure of Staphylococcus aureus protein SA1388 3HSR ; 1.9 ; Crystal structure of Staphylococcus aureus protein SarZ in mixed disulfide form 3HSE ; 2.9 ; Crystal structure of Staphylococcus aureus protein SarZ in reduced form 3HRM ; 2.3 ; Crystal structure of Staphylococcus aureus protein SarZ in sulfenic acid form 4GXO ; 2.05 ; Crystal structure of Staphylococcus aureus protein SarZ mutant C13E 8DTQ ; 1.45 ; Crystal Structure of Staphylococcus aureus pSK41 Cop 4WK1 ; 1.98 ; Crystal structure of Staphylococcus aureus PstA in complex with c-di-AMP 3BG5 ; 2.8 ; Crystal Structure of Staphylococcus Aureus Pyruvate Carboxylase 6IS4 ; 1.854 ; Crystal Structure of Staphylococcus aureus response regulator ArlR DNA binding domain 6KYX ; 2.0048 ; Crystal Structure of Staphylococcus aureus response regulator ArlR DNA binding domain with His tag cleaved 6IS3 ; 1.549 ; Crystal Structure of Staphylococcus aureus response regulator ArlR receiver domain 6IS1 ; 1.59 ; Crystal Structure of Staphylococcus aureus response regulator ArlR receiver domain in complex with BeF3 and Mg 6IS2 ; 1.591 ; Crystal Structure of Staphylococcus aureus response regulator ArlR receiver domain in complex with Mg 6ZHM ; 2.15 ; Crystal Structure of Staphylococcus aureus RsgA bound to GDP. 6ZHL ; 1.94 ; Crystal Structure of Staphylococcus aureus RsgA bound to ppGpp. 6ZJO ; 2.01 ; Crystal Structure of Staphylococcus aureus RsgA. 5HS5 ; 2.55 ; Crystal structure of Staphylococcus aureus SarX 3TIP ; 1.7009 ; Crystal structure of Staphylococcus aureus SasG E-G52 module 3TIQ ; 1.8739 ; Crystal structure of Staphylococcus aureus SasG G51-E-G52 module 5WTA ; 2.3 ; Crystal Structure of Staphylococcus aureus SdrE apo form 5YYU ; 2.984 ; Crystal structure of Staphylococcus aureus single-stranded DNA-binding protein SsbB 3MWG ; 2.1 ; Crystal structure of Staphylococcus aureus SirA 3MWF ; 1.7 ; Crystal structure of Staphylococcus aureus SirA complexed with staphyloferrin B 3UWV ; 2.07 ; Crystal structure of Staphylococcus Aureus triosephosphate isomerase complexed with 2-phosphoglyceric acid 3UWW ; 2.25 ; Crystal structure of Staphylococcus Aureus triosephosphate isomerase complexed with 3-phosphoglyceric acid 3UWZ ; 2.5 ; Crystal structure of Staphylococcus aureus triosephosphate isomerase complexed with glycerol-2-phosphate 3UWU ; 2.15 ; Crystal structure of Staphylococcus Aureus triosephosphate isomerase complexed with glycerol-3-phosphate 2B3J ; 2.0 ; Crystal Structure of Staphylococcus aureus tRNA Adenosine Deaminase, TadA, in Complex with RNA 3N8D ; 2.3 ; Crystal structure of Staphylococcus aureus VRSA-9 D-Ala:D-Ala ligase 5M94 ; 3.101 ; Crystal structure of Staphylococcus capitis divalent metal ion transporter (DMT) in complex with nanobody 5TU7 ; 3.34 ; Crystal structure of Staphylococcus epidermidis Aap G511-spacer-G513 (consensus G5-spacer-consensus G5) 5TU9 ; 1.9 ; Crystal structure of Staphylococcus epidermidis Aap G58-spacer-G513 (variant G5-spacer-consensus G5) 5TU8 ; 2.33 ; Crystal structure of Staphylococcus epidermidis Aap G58-spacer-G513* (variant G5-spacer-variant G5) 4DU8 ; 2.1 ; Crystal structure of Staphylococcus epidermidis D283A mevalonate diphosphate decarboxylase complexed with inhibitor DPGP 4DPW ; 2.605 ; Crystal structure of Staphylococcus epidermidis D283A mevalonate diphosphate decarboxylase complexed with mevalonate diphosphate and ATPgS 3QT5 ; 1.848 ; Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase 3QT7 ; 2.199 ; Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with inhibitor 6-FMVAPP 4DPT ; 2.191 ; Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with inhibitor 6-FMVAPP and ATPgS 3QT6 ; 2.047 ; Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with inhibitor DPGP 4DU7 ; 2.201 ; Crystal structure of Staphylococcus epidermidis mevalonate diphosphate decarboxylase complexed with substrate mevalonate diphosphate 4DPU ; 1.9 ; Crystal structure of Staphylococcus epidermidis S192A mevalonate diphosphate decarboxylase complexed with inhibitor 6-FMVAPP and ATPgS 4DPY ; 2.14 ; Crystal structure of Staphylococcus epidermidis S192A mevalonate diphosphate decarboxylase complexed with inhibitor DPGP 2HIH ; 2.86 ; Crystal structure of Staphylococcus hyicus lipase 3LAT ; 1.7 ; Crystal structure of Staphylococcus peptidoglycan hydrolase AmiE 6NR6 ; 1.9 ; Crystal Structure of Staphylococcus pseudintermedius SbnI in complex with ADP 5OEN ; 2.919 ; Crystal Structure of STAT2 in complex with IRF9 4ZIA ; 2.7 ; Crystal Structure of STAT3 N-terminal domain 4E6B ; 1.47 ; Crystal Structure of statistically disordered 19mer duplex p(CGG)3C(CUG)3 1NXK ; 2.7 ; Crystal structure of staurosporine bound to MAP KAP kinase 2 4YMK ; 2.605 ; Crystal Structure of Stearoyl-Coenzyme A Desaturase 1 3T6W ; 2.15 ; Crystal Structure of Steccherinum ochraceum Laccase obtained by multi-crystals composite data collection technique (10% dose) 3T6X ; 2.15 ; Crystal Structure of Steccherinum ochraceum Laccase obtained by multi-crystals composite data collection technique (20% dose) 3T6Z ; 2.15 ; Crystal Structure of Steccherinum ochraceum Laccase obtained by multi-crystals composite data collection technique (60% dose) 3T71 ; 2.15 ; Crystal Structure of Steccherinum ochraceum Laccase obtained by multi-crystals composite data collection technique (90% dose) 1RC9 ; 1.6 ; Crystal Structure of Stecrisp, a Member of CRISP Family from Trimeresurus Stejnegeri Refined at 1.6 Angstroms Resolution: Structual relationship of the two domains 1NB5 ; 2.4 ; Crystal structure of stefin A in complex with cathepsin H 1NB3 ; 2.8 ; Crystal structure of stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo-and exopeptidases 7YJ5 ; 1.701 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) 7YJ6 ; 1.704 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with CoA 7YJB ; 2.0 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with CoA and Eriodictyol 7YJ9 ; 1.851 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with CoA and Naringenin 7YJA ; 2.17 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with CoA and Pinocembrin 7YJ7 ; 1.997 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with Naringenin 7YJ8 ; 2.2 ; Crystal structure of Stenoloma chusanum chalcone synthase 1 (ScCHS1) complex with Pinocembrin 3MHX ; 1.7 ; Crystal Structure of Stenotrophomonas maltophilia FeoA complexed with Zinc: A Unique Procaryotic SH3 Domain Protein Possibly Acting as a Bacterial Ferrous Iron Transport Activating Factor 5KH2 ; 2.3 ; Crystal Structure of Steptococcus pneumoniae Undecaprenyl pyrophosphate Synthase (UPPS) 5KH5 ; 2.63 ; Crystal Structure of Steptococcus pneumoniae Undecaprenyl pyrophosphate Synthase (UPPS) IN COMPLEX WITH ~{N}-(3-azanyl-3-oxidanylidene-propyl)-5-(1-benzothiophen-5-yl)-1-(phenylmethyl)-~{N}-[(4-propan-2-yloxyphenyl)methyl]pyrazole-4-carboxamide 5KH4 ; 3.2 ; Crystal Structure of Steptococcus pneumoniae Undecaprenyl pyrophosphate Synthase (UPPS) with FARNESYL DIPHOSPHATE 3FVM ; 2.9 ; Crystal structure of Steptococcus suis mannonate dehydratase with metal Mn++ 3CKW ; 1.96 ; Crystal structure of sterile 20-like kinase 3 (MST3, STK24) 3CKX ; 2.7 ; Crystal structure of sterile 20-like kinase 3 (MST3, STK24) in complex with staurosporine 7BW1 ; 2.8 ; Crystal structure of Steroid 5-alpha-reductase 2 in complex with Finasteride 5FSA ; 2.86 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from a pathogenic yeast Candida albicans in complex with the antifungal drug posaconazole 5TZ1 ; 2.0 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from Candida albicans in complex with the tetrazole-based antifungal drug candidate VT1161 (VT1) 3L4D ; 2.75 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from Leishmania infantum in complex with fluconazole 3GW9 ; 1.87 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from Trypanosoma brucei bound to an inhibitor N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxaziazol-2-yl)benzamide 3G1Q ; 1.89 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from Trypanosoma brucei in ligand free state 3K1O ; 2.89 ; Crystal structure of sterol 14-alpha demethylase (CYP51) from Trypanosoma cruzi in complex with a potential antichagasic drug, posaconazole 5FRB ; 2.99 ; Crystal structure of sterol 14-alpha demethylase (CYP51B) from a pathogenic filamentous fungus Aspergillus fumigatus in complex with a tetrazole-based inhibitor VT-1598 4UYL ; 2.81 ; Crystal structure of sterol 14-alpha demethylase (CYP51B) from a pathogenic filamentous fungus Aspergillus fumigatus in complex with VNI 4UYM ; 2.55 ; Crystal structure of sterol 14-alpha demethylase (CYP51B) from a pathogenic filamentous fungus Aspergillus fumigatus in complex with voriconazole 6CR2 ; 2.38 ; Crystal structure of sterol 14-alpha demethylase (CYP51B) from Aspergillus fumigatus in complex with the VNI derivative N-(1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(2-fluoro-4-(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazol-2-yl)benzamide 3KSW ; 3.05 ; Crystal structure of sterol 14alpha-demethylase (CYP51) from Trypanosoma cruzi in complex with an inhibitor VNF ((4-(4-chlorophenyl)-N-[2-(1H-imidazol-1-yl)-1-phenylethyl]benzamide) 3KHM ; 2.85 ; Crystal structure of sterol 14alpha-demethylase (CYP51) from Trypanosoma cruzi in complex with inhibitor fluconazole 2CX7 ; 1.75 ; Crystal structure of sterol carrier protein 2 2QZT ; 1.7 ; Crystal Structure of Sterol Carrier Protein 2 Like 2 (SCP2-L2) from Aedes Aegypti 3BKR ; 1.4 ; Crystal Structure of Sterol Carrier Protein-2 like-3 (SCP2-L3) from Aedes Aegypti 3BKS ; 2.1 ; Crystal Structure of Sterol Carrier Protein-2 like-3 (SCP2-L3) from Aedes Aegypti 6KMB ; 2.4 ; Crystal structure of Sth1 bromodomain 6KMJ ; 1.4 ; Crystal structure of Sth1 bromodomain in complex with H3K14Ac 7F3S ; 1.4 ; Crystal structure of Sth1 Bromodomain in complex with H3K14bz peptide 4O8O ; 1.21 ; Crystal structure of SthAraf62A, a GH62 family alpha-L-arabinofuranosidase from Streptomyces thermoviolaceus, bound to alpha-L-arabinose 4O8P ; 1.557 ; Crystal structure of SthAraf62A, a GH62 family alpha-L-arabinofuranosidase from Streptomyces thermoviolaceus, bound to xylotetraose 4O8N ; 1.6476 ; Crystal structure of SthAraf62A, a GH62 family alpha-L-arabinofuranosidase from Streptomyces thermoviolaceus, in the apoprotein form 1Z1E ; 2.4 ; Crystal structure of stilbene synthase from Arachis hypogaea 1Z1F ; 2.9 ; Crystal structure of stilbene synthase from Arachis hypogaea (resveratrol-bound form) 1XES ; 1.7 ; Crystal structure of stilbene synthase from Pinus sylvestris 1XET ; 2.0 ; Crystal structure of stilbene synthase from Pinus sylvestris, complexed with methylmalonyl CoA 6YQY ; 1.876 ; Crystal structure of sTIM11noCys, a de novo designed TIM barrel 4F9G ; 2.95 ; Crystal structure of STING complex with Cyclic di-GMP. 4EF5 ; 2.45 ; Crystal structure of STING CTD 4EF4 ; 2.147 ; Crystal structure of STING CTD complex with c-di-GMP 8T5L ; 2.01 ; Crystal structure of STING CTD in complex with 2'3'-cGAMP 8T5K ; 1.95 ; Crystal structure of STING CTD in complex with BDW-OH 6O8B ; 3.4 ; Crystal structure of STING CTD in complex with TBK1 6O8C ; 3.17 ; Crystal structure of STING CTT in complex with TBK1 4KSY ; 1.881 ; Crystal structure of STING in complex with cGAMP 6XF3 ; 2.38 ; Crystal structure of STING in complex with E7766 6XF4 ; 2.77 ; Crystal structure of STING REF variant in complex with E7766 6ZJF ; 1.75 ; Crystal structure of STK17B (DRAK2) in complex with AP-229 6Y6F ; 1.98 ; Crystal structure of STK17B (DRAK2) in complex with PKIS43 6Y6H ; 1.95 ; Crystal structure of STK17b (DRAK2) in complex with UNC-AP-194 probe 7AKG ; 2.08 ; Crystal structure of STK17B with bound dovitinib 4NZW ; 3.583 ; Crystal Structure of STK25-MO25 Complex 4L0N ; 1.4 ; Crystal structure of STK3 (MST2) SARAH domain 6YAT ; 2.58 ; Crystal structure of STK4 (MST1) in complex with compound 6 4NR2 ; 2.0 ; Crystal structure of STK4 (MST1) SARAH domain 3EPU ; 2.5 ; Crystal Structure of STM2138, a novel virulence chaperone in Salmonella 3ERW ; 2.5 ; Crystal Structure of StoA from Bacillus subtilis 2GW3 ; 1.4 ; Crystal structure of stony coral fluorescent protein Kaede, green form 2GW4 ; 1.6 ; Crystal structure of stony coral fluorescent protein Kaede, red form 5D2S ; 2.2 ; Crystal structure of STPR from Bombyx mori in complex with 18-bp DNA containing four repetitive units of ATAC 5D2Q ; 2.4 ; Crystal structure of STPR from Bombyx Mori in complex with 20-bp DNA derived from +290 site of the fibroin gene 5T33 ; 3.2092 ; Crystal structure of strain-specific glycan-dependent CD4 binding site-directed neutralizing antibody CAP257-RH1, in complex with HIV-1 strain RHPA gp120 core with an oligomannose N276 glycan. 5N8T ; 1.61 ; CRYSTAL STRUCTURE OF STREPTAVIDIN D-amino acid containing peptide Gdlwqheatwkkq 1MEP ; 1.65 ; Crystal Structure of Streptavidin Double Mutant S45A/D128A with Biotin: Cooperative Hydrogen-Bond Interactions in the Streptavidin-Biotin System. 1RXJ ; 1.14 ; Crystal structure of streptavidin mutant (M2) where the L3,4 loop was replace by that of avidin 1RXK ; 1.7 ; crystal structure of streptavidin mutant (M3) a combination of M1+M2 1RXH ; 2.9 ; Crystal structure of streptavidin mutant L124R (M1) complexed with biotinyl p-nitroanilide (BNI) 5N99 ; 1.5 ; CRYSTAL STRUCTURE OF STREPTAVIDIN with cyclic peptide NQpWQ 5N8W ; 1.1 ; CRYSTAL STRUCTURE OF STREPTAVIDIN with D-amino acid containing peptide GGwhdeatwkpG 5TO2 ; 1.65 ; Crystal structure of streptavidin with one wild type subunit and three mutated subunits (N23A/S27D/S45A) 5N8B ; 1.03 ; CRYSTAL STRUCTURE OF STREPTAVIDIN WITH PEPTIDE AFPDYLAEYHGG 5N8J ; 1.05 ; CRYSTAL STRUCTURE OF STREPTAVIDIN WITH PEPTIDE D-amino acid containing peptide GyGlanvdessG 5N7X ; 1.12 ; CRYSTAL STRUCTURE OF STREPTAVIDIN WITH PEPTIDE EWVHPQFEQKAK 5N89 ; 1.27 ; CRYSTAL STRUCTURE OF STREPTAVIDIN WITH PEPTIDE GNSFDDWLASKG 5N8E ; 1.1 ; CRYSTAL STRUCTURE OF STREPTAVIDIN WITH PEPTIDE RDPAPAWAHGGG 7CPZ ; 2.5 ; Crystal structure of Streptoavidin-C1 from Streptomyces cinamonensis 7CQ0 ; 2.03 ; Crystal structure of Streptoavidin-C1 from Streptomyces cinamonensis 3QFM ; 1.9 ; Crystal structure of Streptococcal asymmetric Ap4A hydrolase and phosphodiesterase Spr1479/SapH 3QFO ; 2.2 ; Crystal structure of Streptococcal asymmetric Ap4A hydrolase and phosphodiesterase Spr1479/SapH im complex with AMP 3QFN ; 2.31 ; Crystal structure of Streptococcal asymmetric Ap4A hydrolase and phosphodiesterase Spr1479/SapH in complex with inorganic phosphate 6WV2 ; 2.21 ; Crystal Structure of Streptococcal Bacteriophage Hyaluronidase: Presence of a Prokaryotic Collagen and Elucidation of Catalytic Mechanism 4E8D ; 1.8 ; Crystal structure of streptococcal beta-galactosidase 4E8C ; 1.95 ; Crystal structure of streptococcal beta-galactosidase in complex with galactose 1FNW ; 3.9 ; CRYSTAL STRUCTURE OF STREPTOCOCCAL PYROGENIC EXOTOXIN A 2ICI ; 1.56 ; Crystal Structure of Streptococcal Pyrogenic Exotoxin I 4JKK ; 2.59 ; Crystal Structure of Streptococcus agalactiae beta-glucuronidase in space group I222 4JKL ; 2.288 ; Crystal Structure of Streptococcus agalactiae beta-glucuronidase in space group P21212 1F1S ; 2.1 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS AGALACTIAE HYALURONATE LYASE AT 2.1 ANGSTROM RESOLUTION. 1I8Q ; 2.2 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS AGALACTIAE HYALURONATE LYASE COMPLEXED WITH ENZYME PRODUCT, UNSATURATED DISACCHARIDE HYALURONAN 1LXM ; 2.2 ; Crystal Structure of Streptococcus agalactiae Hyaluronate Lyase Complexed with Hexasaccharide Unit of Hyaluronan 6W1A ; 2.8 ; Crystal structure of Streptococcus dysgalactiae SHP pheromone receptor Rgg2 bound to DNA 5W4M ; 2.388 ; Crystal structure of Streptococcus dysgalactiae SHP pheromone receptor Rgg2(C45S) 5W4N ; 2.198 ; Crystal structure of Streptococcus dysgalactiae SHP pheromone receptor Rgg2(C45S) 5C2O ; 2.35 ; Crystal structure of Streptococcus mutans Deoxycytidylate Deaminase complexed with dTTP 2ZIC ; 2.2 ; Crystal structure of Streptococcus mutans dextran glucosidase 3T0C ; 2.187 ; Crystal structure of Streptococcus mutans MetE complexed with Zinc 5BOD ; 2.2 ; Crystal structure of Streptococcus pneumonia ParE inhibitor 5YIG ; 2.8 ; Crystal structure of Streptococcus pneumonia ParE with inhibitor 1FTH ; 1.9 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS PNEUMONIAE ACYL CARRIER PROTEIN SYNTHASE (3'5'-ADP COMPLEX) 1FTE ; 2.4 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS PNEUMONIAE ACYL CARRIER PROTEIN SYNTHASE (NATIVE 1) 1FTF ; 2.05 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS PNEUMONIAE ACYL CARRIER PROTEIN SYNTHASE (NATIVE 2) 3H71 ; 1.7 ; Crystal structure of Streptococcus pneumoniae D39 neuraminidase A precursor (NanA) 3H73 ; 1.7 ; Crystal structure of Streptococcus pneumoniae D39 neuraminidase A precursor (NanA) in complex with DANA 3H72 ; 1.7 ; Crystal structure of Streptococcus pneumoniae D39 neuraminidase A precursor (NanA) in complex with NANA 3IX9 ; 1.95 ; Crystal structure of Streptococcus pneumoniae dihydrofolate reductase - Sp9 mutant 6JBX ; 2.2 ; Crystal structure of Streptococcus pneumoniae FabT in complex with DNA 1EGU ; 1.56 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE AT 1.56 A RESOLUTION 1F9G ; 2.0 ; CRYSTAL STRUCTURE OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE COCRYSTALLIZED WITH ASCORBIC ACID 2BRW ; 2.8 ; Crystal structure of Streptococcus Pneumoniae Hyaluronate Lyase from 30percent PEGMME. 2BRV ; 3.3 ; Crystal structure of Streptococcus Pneumoniae Hyaluronate Lyase from 70percent saturated malonate. 3MMS ; 1.6 ; Crystal structure of Streptococcus pneumoniae MTA/SAH nucleosidase in complex with 8-aminoadenine 2YA4 ; 1.8 ; Crystal structure of Streptococcus pneumoniae NanA (TIGR4) 2YA6 ; 2.0 ; Crystal structure of Streptococcus pneumoniae NanA (TIGR4) in complex with DANA 2YA8 ; 1.75 ; Crystal structure of Streptococcus pneumoniae NanA (TIGR4) in complex with Oseltamivir carboxylate 2YA5 ; 2.0 ; Crystal structure of Streptococcus pneumoniae NanA (TIGR4) in complex with sialic acid 2YA7 ; 1.89 ; Crystal structure of Streptococcus pneumoniae NanA (TIGR4) in complex with Zanamivir 2JKB ; 1.54 ; Crystal structure of Streptococcus pneumoniae NanB in complex with 2, 7-anhydro-Neu5Ac 4YZ1 ; 1.97 ; Crystal Structure of Streptococcus pneumoniae NanC, apo structure. 4YW2 ; 2.0 ; Crystal Structure of Streptococcus pneumoniae NanC, complex 6'SL 4YW1 ; 2.25 ; Crystal Structure of Streptococcus pneumoniae NanC, complex with Neu5Ac and Neu5Ac2en following soaking with 3'SL 4YW3 ; 2.05 ; Crystal Structure of Streptococcus pneumoniae NanC, complex with Neu5Ac and Neu5Ac2en following soaking with Neu5Ac2en 4YW5 ; 2.3 ; Crystal Structure of Streptococcus pneumoniae NanC, complex with oseltamivir carboxylate 5F9T ; 2.05 ; Crystal Structure of Streptococcus pneumoniae NanC, covalent complex with a fluorinated Neu5Ac derivative 4YZ2 ; 2.06 ; Crystal Structure of Streptococcus pneumoniae NanC, in complex with 2-deoxy-2,3-didehydro-N-acetylneuraminic acid. 4YZ5 ; 2.27 ; Crystal Structure of Streptococcus pneumoniae NanC, in complex with 3-Sialyllactose 4YZ4 ; 2.15 ; Crystal Structure of Streptococcus pneumoniae NanC, in complex with N-Acetylneuraminic acid. 4YZ3 ; 2.38 ; Crystal Structure of Streptococcus pneumoniae NanC, in complex with Oseltamivir. 8IAS ; 2.0 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase 8IAV ; 2.59 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase in complex with fructose 1,6-bisphosphate 8IAT ; 1.8 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase in complex with oxalate 8IAU ; 2.0 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase in complex with oxalate and fructose 1,6-bisphosphate 8IAW ; 2.89 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase in complex with phosphoenolpyruvate 8IAX ; 1.8 ; Crystal structure of Streptococcus pneumoniae pyruvate kinase in complex with phosphoenolpyruvate and fructose 1,6-bisphosphate 3KR9 ; 2.0 ; Crystal structure of Streptococcus pneumoniae Sp1610, a putative tRNA (m1A22) methyltransferase 3KU1 ; 3.0 ; Crystal structure of Streptococcus pneumoniae Sp1610, a putative tRNA (m1A22) methyltransferase, in complex with S-adenosyl-L-methionine 5ZKL ; 1.951 ; Crystal structure of Streptococcus pneumoniae SP_0782 (residues 7-79) in complex with single-stranded DNA dT12 6JIP ; 1.659 ; Crystal structure of Streptococcus pneumoniae SP_0782 (residues 7-79) in complex with single-stranded DNA dT6 6JIQ ; 1.67 ; Crystal structure of Streptococcus pneumoniae SP_0782 (residues 7-79) in complex with single-stranded DNA dT6 5ZKM ; 1.65 ; Crystal structure of Streptococcus pneumoniae SP_0782 (residues 7-79) in complex with single-stranded DNA TCTTCC 4HMO ; 2.0 ; Crystal structure of streptococcus pneumoniae TIGR4 PiaA in complex with Bis-tris propane 4HMQ ; 2.1 ; Crystal structure of streptococcus pneumoniae TIGR4 PiaA in complex with ferrichrome 4QR0 ; 2.4 ; Crystal structure of Streptococcus pyogenes Cas2 at pH 5.6 4QR1 ; 2.193 ; Crystal structure of Streptococcus pyogenes Cas2 at pH 6.5 4QR2 ; 1.8 ; Crystal structure of Streptococcus pyogenes Cas2 at pH 7.5 4OO8 ; 2.5 ; Crystal structure of Streptococcus pyogenes Cas9 in complex with guide RNA and target DNA 3TOC ; 2.201 ; Crystal structure of Streptococcus pyogenes Csn2 3V7F ; 2.9 ; Crystal Structure of Streptococcus pyogenes Csn2 6E58 ; 2.75 ; Crystal structure of Streptococcus pyogenes endo-beta-N-acetylglucosaminidase (EndoS2) 6MDS ; 2.5 ; Crystal structure of Streptococcus pyogenes endo-beta-N-acetylglucosaminidase (EndoS2) with complex biantennary glycan 6MDV ; 2.5 ; Crystal structure of Streptococcus pyogenes endo-beta-N-acetylglucosaminidase (EndoS2) with high-mannose glycan 5ZYF ; 1.76 ; Crystal structure of Streptococcus pyogenes type II-A Cas2 3QPB ; 1.82 ; Crystal Structure of Streptococcus Pyogenes Uridine Phosphorylase Reveals a Subclass of the NP-I Superfamily 2XJM ; 2.3 ; Crystal structure of Streptococcus suis Dpr with cobalt 2XJN ; 2.1 ; Crystal structure of Streptococcus suis Dpr with copper 2XKQ ; 2.4 ; Crystal structure of Streptococcus suis Dpr with manganese 2XJO ; 2.1 ; Crystal structure of Streptococcus suis Dpr with nickel 3BDK ; 2.5 ; Crystal Structure of Streptococcus suis mannonate dehydratase complexed with substrate analogue 5V1Q ; 2.5 ; Crystal structure of Streptococcus suis SuiB 5V1T ; 2.1 ; Crystal structure of Streptococcus suis SuiB bound to precursor peptide SuiA 5V1S ; 2.492 ; Crystal structure of Streptococcus suis SuiB bound to S-adenosylmethionine 6M0X ; 2.561 ; Crystal structure of Streptococcus thermophilus Cas9 in complex with AGGA PAM 6M0W ; 2.76 ; Crystal structure of Streptococcus thermophilus Cas9 in complex with the AGAA PAM 6W1E ; 2.202 ; Crystal structure of Streptococcus thermophilus SHP pheromone receptor Rgg3 6W1F ; 3.2 ; Crystal structure of Streptococcus thermophilus SHP pheromone receptor Rgg3 bound to DNA 5ZQH ; 2.4 ; Crystal structure of Streptococcus transcriptional regulator 1MR7 ; 1.8 ; Crystal Structure of Streptogramin A Acetyltransferase 6X3J ; 2.7 ; Crystal structure of streptogramin A acetyltransferase VatA from Staphylococcus aureus in complex with streptogramin analog F0224 (46) 6X3C ; 3.05 ; Crystal structure of streptogramin A acetyltransferase VatA from Staphylococcus aureus in complex with streptogramin analog F1037 (47) 1MR9 ; 3.0 ; Crystal structure of Streptogramin A Acetyltransferase with acetyl-CoA bound 1MRL ; 2.8 ; Crystal structure of streptogramin A acetyltransferase with dalfopristin 4MYO ; 2.696 ; Crystal structure of streptogramin group A antibiotic acetyltransferase VatA from Staphylococcus aureus 4HUR ; 2.15 ; Crystal structure of streptogramin group A antibiotic acetyltransferase VatA from Staphylococcus aureus in complex with acetyl coenzyme A 4HUS ; 2.36 ; Crystal structure of streptogramin group A antibiotic acetyltransferase VatA from Staphylococcus aureus in complex with virginiamycin M1 1QQR ; 2.3 ; CRYSTAL STRUCTURE OF STREPTOKINASE DOMAIN B 7CU1 ; 1.91 ; CRYSTAL STRUCTURE OF STREPTOMYCES ALBOGRISEOLUS FLAVIN-DEPENDENT TRYPTOPHAN 6-HALOGENASE (THAL) IN COMPLEX WITH FAD and AMP 7CU2 ; 2.4 ; CRYSTAL STRUCTURE OF STREPTOMYCES ALBOGRISEOLUS FLAVIN-DEPENDENT TRYPTOPHAN 6-HALOGENASE THAL IN COMPLEX WITH REDUCED FAD 7CU0 ; 1.95 ; Crystal structure of Streptomyces albogriseolus flavin-dependent tryptophan 6-halogenase Thal in complex with tryptophan 3W5M ; 1.8 ; Crystal Structure of Streptomyces avermitilis alpha-L-rhamnosidase 3W5N ; 1.8 ; Crystal Structure of Streptomyces avermitilis alpha-L-rhamnosidase complexed with L-rhamnose 3A21 ; 1.51 ; Crystal Structure of Streptomyces avermitilis beta-L-Arabinopyranosidase 4HWX ; 1.9 ; Crystal structure of Streptomyces caespitosus sermetstatin 4HX2 ; 2.25 ; Crystal structure of Streptomyces caespitosus sermetstatin in complex with Bacillus licheniformis subtilisin 4HX3 ; 2.7 ; Crystal structure of Streptomyces caespitosus sermetstatin in complex with S. caespitosus snapalysin 3B6D ; 1.2 ; Crystal Structure of Streptomyces Cholesterol Oxidase H447Q/E361Q mutant (1.2A) 3B3R ; 0.98 ; Crystal structure of Streptomyces cholesterol oxidase H447Q/E361Q mutant bound to glycerol (0.98A) 1S1F ; 1.5 ; Crystal Structure of Streptomyces Coelicolor A3(2) CYP158A2 from antibiotic biosynthetic pathways 1SE6 ; 1.75 ; Crystal Structure of Streptomyces Coelicolor A3(2) CYP158A2 from antibiotic biosynthetic pathways 3WMY ; 1.4 ; Crystal Structure of Streptomyces coelicolor alpha-L-arabinofuranosidase 3WMZ ; 1.9 ; Crystal Structure of Streptomyces coelicolor alpha-L-arabinofuranosidase ethylmercury derivative 3WN0 ; 1.9 ; Crystal Structure of Streptomyces coelicolor alpha-L-arabinofuranosidase in complex with L-arabinose 3WN2 ; 2.1 ; Crystal Structure of Streptomyces coelicolor alpha-L-arabinofuranosidase in complex with xylohexaose 3WN1 ; 2.0 ; Crystal Structure of Streptomyces coelicolor alpha-L-arabinofuranosidase in complex with xylotriose 7PMZ ; 2.03 ; Crystal structure of Streptomyces coelicolor guaB (IMP dehydrogenase) bound to ATP and ppGpp at 2.0 A resolution 3TVR ; 1.8 ; Crystal Structure of Streptomyces coelicolor Polyketide Aromatase/Cyclase whiE-ORFVI 5X15 ; 3.094 ; Crystal structure of Streptomyces coelicolor RraAS2, an unusual member of the RNase ES inhibitor RraA protein family 1CLK ; 1.9 ; CRYSTAL STRUCTURE OF STREPTOMYCES DIASTATICUS NO.7 STRAIN M1033 XYLOSE ISOMERASE AT 1.9 A RESOLUTION WITH PSEUDO-I222 SPACE GROUP 5IVU ; 2.42 ; Crystal Structure of Streptomyces griseoflavus Cofilin 5T7D ; 1.4 ; Crystal structure of Streptomyces hygroscopicus bialaphos resistance (BAR) protein in complex with acetyl coenzyme A 5T7E ; 1.8 ; Crystal structure of Streptomyces hygroscopicus Bialaphos Resistance (BAR) protein in complex with Coenzyme A and L-phosphinothricin 1HP4 ; 2.2 ; CRYSTAL STRUCTURE OF STREPTOMYCES PLICATUS BETA-N-ACETYLHEXOSAMINIDASE 1HVB ; 1.17 ; CRYSTAL STRUCTURE OF STREPTOMYCES R61 DD-PEPTIDASE COMPLEXED WITH A NOVEL CEPHALOSPORIN ANALOG OF CELL WALL PEPTIDOGLYCAN 6P2O ; 1.88 ; Crystal structure of Streptomyces rapamycinicus GH74 in complex with xyloglucan fragments XLLG and XXXG 4G2T ; 2.405 ; Crystal Structure of Streptomyces sp. SF2575 glycosyltransferase SsfS6, complexed with thymidine diphosphate 6XBC ; 2.863 ; Crystal structure of Streptomyces sviceus SsDesB 6XBB ; 2.366 ; Crystal structure of Streptomyces sviceus SsDesB in complex with NADP+ 7KDX ; 1.791 ; Crystal structure of Streptomyces tokunonesis TokK with hydroxycobalamin, 5'-deoxyadenosine, and methionine 7KDY ; 1.939 ; Crystal structure of Streptomyces tokunonesis TokK with hydroxycobalamin, 5'-deoxyadenosine, methionine, and (2R)-pantetheinylated carbapenam 3AWX ; 1.25 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie H82Q mutant soaked in a Cu(II)-containing solution for 80 hr 3AWZ ; 1.43 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie H97Q mutant soaked in a Cu(II)-containing solution for 80 hr 3AWY ; 1.58 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie M84L mutant soaked in a Cu(II)-containing solution for 80 hr 3AWT ; 1.35 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie soaked in a Cu(II)-containing solution for 20 hr: occupancy of Cu(II) is high 3AWS ; 1.24 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie soaked in a Cu(II)-containing solution for 20 hr: occupancy of Cu(II) is low 3AWU ; 1.16 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie soaked in a Cu(II)-containing solution for 40 h 3AWW ; 1.35 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie soaked in a Cu(II)-containing solution for 80 hr: occupancy of CuA is high 3AWV ; 1.4 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie soaked in a Cu(II)-containing solution for 80 hr: occupancy of CuA is low 3AX0 ; 1.4 ; Crystal structure of Streptomyces tyrosinase in a complex with caddie Y98F mutant soaked in a Cu(II)-containing solution for 80 hr 3BXO ; 2.0 ; Crystal Structure of Streptomyces venezuelae DesVI 3DNP ; 1.85 ; Crystal structure of Stress response protein yhaX from Bacillus subtilis 6AKL ; 1.75 ; Crystal structure of Striatin3 in complex with SIKE1 Coiled-coil domain 3ZJ7 ; 2.5 ; Crystal structure of strictosidine glucosidase in complex with inhibitor-1 3ZJ8 ; 3.01 ; Crystal structure of strictosidine glucosidase in complex with inhibitor-2 6N5V ; 2.549 ; Crystal Structure of Strictosidine in complex with 1H-indole-4-ethanamine 7T5I ; 2.94 ; Crystal Structure of Strictosidine Synthase in complex with R-IPA(2-(1H-indol-3-yl) propan-1-amine) 7T5J ; 2.86 ; Crystal Structure of Strictosidine Synthase in complex with S-IPA (2-(1H-indol-3-yl) propan-1-amine) 5Z7Z ; 1.978 ; Crystal structure of Striga hermonthica Dwarf14 (ShD14) 5Z7W ; 1.657 ; Crystal structure of Striga hermonthica HTL1 (ShHTL1) 5Z7X ; 2.055 ; Crystal structure of Striga hermonthica HTL4 (ShHTL4) 5Z7Y ; 1.9 ; Crystal structure of Striga hermonthica HTL7 (ShHTL7) 6J2R ; 1.4 ; Crystal structure of Striga hermonthica HTL8 (ShHTL8) 5DNU ; 1.2 ; Crystal structure of Striga KAI2-like protein in complex with karrikin 6V91 ; 1.9 ; Crystal structure of Stringent starvation protein A (BTH_I2974) from Burkholderia thailandensis 1YY7 ; 2.02 ; Crystal structure of stringent starvation protein A (SspA), an RNA polymerase-associated transcription factor 1QIA ; 2.0 ; CRYSTAL STRUCTURE OF STROMELYSIN CATALYTIC DOMAIN 1QIC ; 2.0 ; CRYSTAL STRUCTURE OF STROMELYSIN CATALYTIC DOMAIN 3HRP ; 1.7 ; Crystal structure of Structural genomics protein of unknown function (NP_812590.1) from Bacteroides thetaiotaomicron VPI-5482 at 1.70 A resolution 3LWC ; 1.4 ; Crystal structure of Structural Genomics, unknown function (YP_766765.1) from Rhizobium leguminosarum BV. viciae 3841 at 1.40 A resolution 4UXM ; 1.5 ; Crystal Structure of Struthiocalcin-1, a different crystal form. 2ZBC ; 1.9 ; Crystal structure of STS042, a stand-alone RAM module protein, from hyperthermophilic archaeon Sulfolobus tokodaii strain7. 3MAF ; 2.971 ; Crystal structure of StSPL (asymmetric form) 3MAD ; 2.0 ; Crystal structure of StSPL (symmetric form) 3MBB ; 2.051 ; Crystal structure of StSPL - apo form, after treatment with semicarbazide 3MAU ; 2.9 ; Crystal structure of StSPL in complex with phosphoethanolamine 3ZTH ; 2.4 ; Crystal structure of Stu0660 of Streptococcus thermophilus 7TB1 ; 1.785 ; Crystal structure of STUB1 with a macrocyclic peptide 3N1H ; 2.201 ; Crystal Structure of StWhy2 3R9Y ; 2.35 ; Crystal Structure of StWhy2 K67A (form I) 3R9Z ; 1.755 ; Crystal Structure of StWhy2 K67A (form II) 7BV4 ; 2.0 ; Crystal structure of STX17 LIR region in complex with GABARAP 7NBY ; 1.93 ; Crystal structure of SU3327 (halicin) covalently bound to the main protease (3CLpro/Mpro) of SARS-CoV-2. 2WEL ; 1.9 ; Crystal structure of SU6656-bound calcium/calmodulin-dependent protein kinase II delta in complex with calmodulin 4AXK ; 2.25 ; CRYSTAL STRUCTURE OF subHisA from the thermophile Corynebacterium efficiens 4KPT ; 1.4 ; Crystal structure of substrate binding domain 1 (SBD1) OF ABC transporter GLNPQ from lactococcus lactis 6FXG ; 1.7 ; Crystal structure of substrate binding domain 1 (SBD1) OF ABC transporter GLNPQ in complex with Asparagine 4ZEF ; 1.4 ; Crystal structure of substrate binding domain 2 (SBD2) OF ABC transporter GLNPQ from Enterococcus faecalis 7X0R ; 1.47 ; Crystal structure of substrate binding protein Lbp complexed wtih guanosine from Clostridium thermocellum 8IDU ; 2.0 ; Crystal structure of substrate bound-form dehydroquinate dehydratase from Corynebacterium glutamicum 1MXH ; 2.2 ; Crystal Structure of Substrate Complex of Putative Pteridine Reductase 2 (PTR2) from Trypanosoma cruzi 6W0S ; 1.7 ; Crystal structure of substrate free cytochrome P450 NasF5053 from Streptomyces sp. NRRL F-5053 2Z3T ; 1.9 ; Crystal Structure of Substrate Free Cytochrome P450 StaP (CYP245A1) 1MMF ; 2.5 ; Crystal structure of substrate free form of glycerol dehydratase 3LOP ; 1.55 ; Crystal structure of substrate-binding periplasmic protein (Pbp) from Ralstonia solanacearum 7KZ8 ; 2.2 ; Crystal structure of substrate-binding protein Aapf from Pseudomonas sp. PDC86 8WXM ; 1.5 ; Crystal structure of substrate-binding protein from Rhodothermus marinus (Dose I) 8WXN ; 1.58 ; Crystal structure of substrate-binding protein from Rhodothermus marinus (Dose II) 8WXO ; 1.68 ; Crystal structure of substrate-binding protein from Rhodothermus marinus (Dose III) 8WXP ; 1.75 ; Crystal structure of substrate-binding protein from Rhodothermus marinus (Dose IV) 3K7Q ; 2.05 ; Crystal structure of substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans 3UJH ; 2.1 ; Crystal structure of substrate-bound Glucose-6-phosphate isomerase from Toxoplasma gondii 5E9S ; 2.8 ; Crystal structure of substrate-bound glutamate transporter homologue GltTk 3NMU ; 2.729 ; Crystal Structure of substrate-bound halfmer box C/D RNP 4FMX ; 1.554 ; Crystal Structure of Substrate-Bound P450cin 6IKG ; 2.3 ; Crystal structure of substrate-bound S9 peptidase (S514A mutant) from Deinococcus radiodurans 5U8E ; 2.18 ; Crystal Structure of substrate-free arginine kinase from spider Polybetes pythagoricus 5OFQ ; 2.7 ; Crystal structure of substrate-free CYP109A2 from Bacillus megaterium 3A15 ; 1.79 ; Crystal Structure of Substrate-Free Form of Aldoxime Dehydratase (OxdRE) 2DKE ; 2.5 ; Crystal structure of substrate-free form of PcyA 6SH1 ; 2.1 ; Crystal structure of substrate-free human neprilysin E584D. 4L3T ; 2.03 ; Crystal Structure of Substrate-free Human Presequence Protease 3L61 ; 1.5 ; Crystal structure of substrate-free P450cam at 200 mM [K+] 3L62 ; 1.7 ; Crystal structure of substrate-free P450cam at low [K+] 4FB2 ; 1.37 ; Crystal Structure of Substrate-Free P450cin 1PHC ; 1.6 ; CRYSTAL STRUCTURE OF SUBSTRATE-FREE PSEUDOMONAS PUTIDA CYTOCHROME P450 3ZFO ; 2.01 ; Crystal structure of substrate-like, unprocessed N-terminal protease Npro mutant S169P 3ZFU ; 1.76 ; Crystal structure of substrate-like, unprocessed N-terminal protease Npro mutant S169P with sulphate 1BFK ; 2.3 ; CRYSTAL STRUCTURE OF SUBTILISIN CARLSBERG IN 40% ACETONITRILE 1AF4 ; 2.6 ; CRYSTAL STRUCTURE OF SUBTILISIN CARLSBERG IN ANHYDROUS DIOXANE 3VYV ; 1.36 ; Crystal structure of subtilisin NAT at 1.36 1SCJ ; 2.0 ; CRYSTAL STRUCTURE OF SUBTILISIN-PROPEPTIDE COMPLEX 4AFA ; 2.05 ; Crystal Structure of subtype-switched Epithelial Adhesin 1 to 2 A domain (Epa1to2A) from Candida glabrata in complex with glycerol 4AFB ; 1.9 ; Crystal Structure of subtype-switched Epithelial Adhesin 1 to 3 A domain (Epa1to3A) from Candida glabrata in complex with glycerol 4AFC ; 1.55 ; Crystal Structure of subtype-switched Epithelial Adhesin 1 to 6 A domain (Epa1to6A) from Candida glabrata in complex with Galb1-3Glc 6Y9J ; 1.1 ; Crystal Structure of subtype-switched Epithelial Adhesin 1 to 9 A domain (Epa1-CBL2Epa9) from Candida glabrata in complex with beta-lactose 6Y98 ; 2.8 ; Crystal Structure of subtype-switched Epithelial Adhesin 9 to 1 A domain (Epa9-CBL2Epa1) from Candida glabrata in complex with beta-lactose 5X09 ; 2.35 ; Crystal structure of subunit A mutant P235A/S238C of the A-ATP synthase from pyrococcus horikoshii OT3 3TGW ; 1.75 ; Crystal structure of subunit B mutant H156A of the A1AO ATP synthase 3TIV ; 1.75 ; Crystal structure of subunit B mutant N157A of the A1AO ATP synthase 3SSA ; 1.7 ; Crystal structure of subunit B mutant N157T of the A1AO ATP synthase 1U7L ; 1.75 ; Crystal Structure of subunit C (vma5p) of the yeast V-ATPase 1R5Z ; 1.95 ; Crystal Structure of Subunit C of V-ATPase 4IX9 ; 2.33 ; Crystal structure of subunit F of V-ATPase from S. cerevisiae 1XB4 ; 3.1 ; Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II 6KM9 ; 2.724 ; Crystal structure of SucA from Vibrio vulnificus 6KMA ; 2.282 ; Crystal structure of SucA with glycolaldehyde-1-13C from Vibrio vulnificus 3E4O ; 2.3 ; Crystal structure of succinate bound state DctB 5VBF ; 2.35 ; Crystal structure of succinate semialdehyde dehydrogenase from Burkholderia vietnamiensis 4V6H ; 2.7 ; Crystal structure of succinate-semialdehyde dehydrogenase from Burkholderia pseudomallei 4OGD ; 1.6 ; Crystal structure of succinic semialdehyde dehydrogenase from Streptococcus pyogenes in complex with NADP+ as the cofactor 4OHT ; 2.1 ; Crystal structure of succinic semialdehyde dehydrogenase from Streptococcus pyogenes in complex with NADP+ as the cofactor 2QGM ; 1.7 ; Crystal structure of succinoglycan biosynthesis protein at the resolution 1.7 A. Northeast Structural Genomics Consortium target BcR136. 1VGY ; 1.9 ; Crystal structure of succinyl diaminopimelate desuccinylase 2YV2 ; 2.2 ; Crystal Structure of Succinyl-CoA Synthetase Alpha Chain from Aeropyrum pernix K1 2YV1 ; 1.7 ; Crystal Structure of Succinyl-CoA Synthetase Alpha Chain from Methanocaldococcus jannaschii DSM 2661 4PQA ; 1.78 ; Crystal Structure of succinyl-diaminopimelate desuccinylase from Neisseria meningitidis MC58 in complex with the Inhibitor Captopril 1YW6 ; 3.1 ; Crystal Structure of Succinylglutamate Desuccinylase from Escherichia coli, Northeast Structural Genomics Target ET72. 2G9D ; 3.0 ; Crystal Structure of Succinylglutamate desuccinylase from Vibrio cholerae, Northeast Structural Genomics Target VcR20 3CDX ; 2.1 ; Crystal structure of succinylglutamatedesuccinylase/aspartoacylase from Rhodobacter sphaeroides 3JU8 ; 1.82 ; Crystal Structure of Succinylglutamic Semialdehyde Dehydrogenase from Pseudomonas aeruginosa. 6S9U ; 2.05 ; Crystal structure of sucrose 6F-phosphate phosphorylase from Ilumatobacter coccineus 6S9V ; 1.83 ; Crystal structure of sucrose 6F-phosphate phosphorylase from Thermoanaerobacter thermosaccharolyticum 5YKS ; 2.9 ; Crystal structure of sucrose nonfermenting-related kinase (SNRK) 3VE0 ; 3.353 ; Crystal structure of Sudan Ebolavirus Glycoprotein (strain Boniface) bound to 16F6 3S88 ; 3.351 ; Crystal structure of Sudan Ebolavirus Glycoprotein (strain Gulu) bound to 16F6 8B1O ; 1.75 ; Crystal structure of SUDV VP40 C314S mutant 8B1P ; 1.7 ; Crystal structure of SUDV VP40 CCS mutant 8B2U ; 1.8 ; Crystal structure of SUDV VP40 in complex with salicylic acid 8AYU ; 2.0 ; Crystal structure of SUDV VP40 L117A mutant 8AYT ; 1.9 ; Crystal structure of SUDV VP40 W95A mutant 5AWF ; 2.957 ; Crystal structure of SufB-SufC-SufD complex from Escherichia coli 2ZU0 ; 2.2 ; Crystal structure of SufC-SufD complex involved in the iron-sulfur cluster biosynthesis 6JZV ; 2.0 ; Crystal structure of SufU from Bacillus subtilis 6JZW ; 2.64 ; Crystal structure of SufU from Bacillus subtilis with Cys persulfurated 4KM8 ; 2.26 ; Crystal structure of Sufud60 4KMD ; 1.7 ; Crystal structure of Sufud60-Gli1p 5IX8 ; 1.6 ; Crystal structure of sugar ABC transport system, substrate-binding protein from Bordetella parapertussis 12822 3G1W ; 2.02 ; Crystal structure of sugar ABC transporter (sugar-binding protein) from Bacillus halodurans 5ULB ; 1.28 ; Crystal structure of sugar ABC transporter from Yersinia enterocolitica subsp. enterocolitica 8081 2YYZ ; 2.11 ; Crystal structure of Sugar ABC transporter, ATP-binding protein 4ZAS ; 2.47 ; Crystal structure of sugar aminotransferase CalS13 from Micromonospora echinospora 4PIW ; 2.7 ; Crystal structure of sugar aminotransferase WecE from Escherichia coli K-12 4ZAH ; 2.24 ; Crystal structure of sugar aminotransferase WecE with External Aldimine VII from Escherichia coli K-12 7X0H ; 1.85 ; Crystal structure of sugar binding protein CbpA complexed wtih glucose from Clostridium thermocellum 7X0G ; 2.1 ; Crystal structure of sugar binding protein CbpA from Clostridium thermocellum 7X0J ; 1.7 ; Crystal structure of sugar binding protein CbpB complexed wtih cellobiose from Clostridium thermocellum 7X0M ; 2.0 ; Crystal structure of sugar binding protein CbpB complexed wtih cellopentaose from Clostridium thermocellum 7X0L ; 1.9 ; Crystal structure of sugar binding protein CbpB complexed wtih cellotetraose from Clostridium thermocellum 7X0K ; 1.7 ; Crystal structure of sugar binding protein CbpB complexed wtih cellotriose from Clostridium thermocellum 7X0N ; 1.68 ; Crystal structure of sugar binding protein CbpB complexed wtih laminaribiose from Clostridium thermocellum 7X0I ; 1.7 ; Crystal structure of sugar binding protein CbpB from Clostridium thermocellum 7X0O ; 2.0 ; Crystal structure of sugar binding protein CbpC from Clostridium thermocellum 7X0P ; 1.5 ; Crystal structure of sugar binding protein CbpD from Clostridium thermocellum 3VW5 ; 2.6 ; Crystal structure of sugar epimerase from ruminal bacterium 3I7D ; 2.3 ; Crystal structure of sugar phosphate isomerase from a cupin superfamily SPO2919 from Silicibacter pomeroyi (YP_168127.1) from SILICIBACTER POMEROYI DSS-3 at 2.30 A resolution 3L23 ; 1.7 ; Crystal structure of Sugar phosphate isomerase/epimerase (YP_001303399.1) from Parabacteroides distasonis ATCC 8503 at 1.70 A resolution 6BLG ; 2.102 ; Crystal Structure of Sugar Transaminase from Klebsiella pneumoniae Complexed with PLP 4R2F ; 2.0 ; Crystal structure of sugar transporter ACHL_0255 from Arthrobacter chlorophenolicus A6, target EFI-510633, with bound laminaribiose 4QRZ ; 1.34 ; Crystal structure of sugar transporter atu4361 from agrobacterium fabrum c58, target efi-510558, with bound maltotriose 4RK9 ; 2.15 ; CRYSTAL STRUCTURE OF SUGAR TRANSPORTER BL01359 FROM Bacillus licheniformis, TARGET EFI-510856, IN COMPLEX WITH STACHYOSE 3BRS ; 2.0 ; Crystal structure of sugar transporter from Clostridium phytofermentans 4R2B ; 1.87 ; Crystal structure of sugar transporter Oant_3817 from Ochrobactrum anthropi, target EFI-510528, with bound glucose 4RK2 ; 1.8 ; Crystal structure of sugar transporter RHE_PF00321 from Rhizobium etli, target EFI-510806, an open conformation 5Z6B ; 1.582 ; Crystal structure of sugar-binding protein YesO in complex with rhamnogalacturonan trisaccharide 3CS3 ; 2.4 ; Crystal structure of sugar-binding transcriptional regulator (LacI family) from Enterococcus faecalis 3DBI ; 2.45 ; CRYSTAL STRUCTURE OF SUGAR-BINDING TRANSCRIPTIONAL REGULATOR (LACI FAMILY) FROM ESCHERICHIA COLI COMPLEXED WITH PHOSPHATE 7L16 ; 3.15 ; Crystal structure of sugar-bound melibiose permease MelB 7L17 ; 3.05 ; Crystal structure of sugar-bound melibiose permease MelB 1PVT ; 2.5 ; Crystal structure of sugar-phosphate aldolase from Thermotoga maritima 5WAX ; 2.0 ; Crystal Structure of Sugarcane SAPK10 (serine/threonine-protein kinase 10) 7KSN ; 1.51 ; Crystal Structure of Sugarwin 5VE6 ; 2.953 ; Crystal structure of Sugen kinase 223 1OFT ; 2.9 ; Crystal structure of SulA from Pseudomonas aeruginosa 1OFU ; 2.1 ; Crystal structure of SulA:FtsZ from Pseudomonas aeruginosa 2A3U ; 1.34 ; Crystal structure of sulbactam bound to E166A variant of SHV-1 beta-lactamase 8GOL ; 1.6 ; crystal structure of SulE 8GP0 ; 1.46 ; crystal structure of SulE 8IVE ; 1.44 ; crystal structure of SulE mutant 8IVH ; 1.45 ; crystal structure of SulE mutant 8IVM ; 1.32 ; crystal structure of SulE mutant 8IVN ; 1.5 ; crystal structure of SulE mutant 8IVS ; 1.52 ; crystal structure of SulE mutant 8IVT ; 1.42 ; crystal structure of SulE mutant 8IW3 ; 1.56 ; crystal structure of SulE mutant 8IW6 ; 1.44 ; crystal structure of SulE mutant 8IW8 ; 1.57 ; crystal structure of SulE mutant 8J7G ; 1.63 ; crystal structure of SulE mutant 8J7J ; 1.54 ; crystal structure of SulE mutant 8J7K ; 1.36 ; crystal structure of SulE mutant 4MHX ; 2.0 ; Crystal Structure of Sulfamidase 4MIV ; 2.4 ; Crystal Structure of Sulfamidase, Crystal Form L 7STT ; 1.603 ; Crystal structure of sulfatase from Pedobacter yulinensis 7STU ; 2.23 ; Crystal structure of sulfatase from Pedobacter yulinensis 7STV ; 2.35 ; Crystal structure of sulfatase from Pedobacter yulinensis 4GXA ; 2.807 ; Crystal structure of Sulfate free form of CYSB, a member of LysR family from Salmonella typhimurium LT2 3OIR ; 1.85 ; Crystal structure of sulfate transporter family protein from Wolinella succinogenes 4XS5 ; 2.9 ; Crystal structure of Sulfate transporter/antisigma-factor antagonist STAS from Dyadobacter fermentans DSM 18053 4PVQ ; 2.13 ; Crystal structure of sulfate-bound human l-asparaginase protein 2QRJ ; 1.6 ; Crystal Structure of Sulfate-bound Saccharopine Dehydrogenase (L-Lys Forming) from Saccharomyces cerevisiae 5YPQ ; 2.65 ; Crystal structure of sulfated dehydroquinate dehydratase from Acinetobacter baumannii at 2.65 A resolution 3SXI ; 2.1792 ; Crystal structure of sulfide:quinone oxidoreductase Cys128Ala variant from Acidithiobacillus ferrooxidans complexed with decylubiquinone 3T14 ; 2.21 ; Crystal structure of sulfide:quinone oxidoreductase Cys128Ala variant from Acidithiobacillus ferrooxidans with bound disulfide 3T2K ; 2.3501 ; Crystal structure of sulfide:quinone oxidoreductase Cys128Ala variant from Acidithiobacillus ferrooxidans with bound trisulfane 3SZW ; 2.2 ; Crystal structure of sulfide:quinone oxidoreductase Cys128Ser variant from Acidithiobacillus ferrooxidans in complex with decylubiquinone 3SX6 ; 1.7955 ; Crystal structure of sulfide:quinone oxidoreductase Cys356Ala variant from Acidithiobacillus ferrooxidans complexed with decylubiquinone 3T2Z ; 2.2994 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans 3T31 ; 2.3 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans in complex with decylubiquinone 3SZC ; 2.2 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans in complex with gold (I) cyanide 3SZ0 ; 2.1501 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans in complex with sodium selenide 3T0K ; 2.0 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans with bound trisulfide and decylubiquinone 3KPK ; 2.05 ; Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans, C160A mutant 3SZF ; 2.0994 ; Crystal structure of sulfide:quinone oxidoreductase H198A variant from Acidithiobacillus ferrooxidans in complex with bound trisulfide and decylubiquinone 3T2Y ; 2.5001 ; Crystal structure of sulfide:quinone oxidoreductase His132Ala variant from Acidithiobacillus ferrooxidans with bound disulfide 3SY4 ; 1.91 ; Crystal structure of sulfide:quinone oxidoreductase Ser126Ala variant from Acidithiobacillus ferrooxidans 3SYI ; 2.2001 ; Crystal structure of sulfide:quinone oxidoreductase Ser126Ala variant from Acidithiobacillus ferrooxidans using 7.0 keV diffraction data 6KY4 ; 3.2 ; Crystal structure of Sulfiredoxin from Arabidopsis thaliana 3HY2 ; 2.1 ; Crystal Structure of Sulfiredoxin in Complex with Peroxiredoxin I and ATP:Mg2+ 7XCM ; 3.2 ; Crystal structure of sulfite MttB structure at 3.2 A resolution 2PW8 ; 1.84 ; Crystal structure of sulfo-hirudin complexed to thrombin 6JKO ; 1.9 ; Crystal structure of sulfoacetaldehyde reductase from Bifidobacterium kashiwanohense 6JKP ; 3.008 ; Crystal structure of sulfoacetaldehyde reductase from Bifidobacterium kashiwanohense in complex with NAD+ 5A7Z ; 2.1 ; Crystal structure of Sulfolobus acidocaldarius Trm10 at 2.1 angstrom resolution. 5A7T ; 2.4 ; Crystal structure of Sulfolobus acidocaldarius Trm10 at 2.4 angstrom resolution. 5A7Y ; 2.5 ; Crystal structure of Sulfolobus acidocaldarius Trm10 in complex with S-adenosylhomocysteine 4CNF ; 1.4 ; Crystal structure of Sulfolobus acidocaldarius TrmJ 4CNG ; 1.1 ; Crystal structure of Sulfolobus acidocaldarius TrmJ in complex with S-adenosyl-L-Homocysteine 3KXT ; 1.602 ; Crystal structure of Sulfolobus Cren7-dsDNA complex 4R56 ; 2.3 ; Crystal structure of Sulfolobus Cren7-dsDNA(GTGATCAC) complex 2ZRU ; 2.0 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with FMN 2ZRX ; 3.0 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with FMN and DMAPP. 2ZRW ; 2.4 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with FMN and IPP. 3B04 ; 2.3 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with oIPP. 2ZRZ ; 2.9 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with reduced FMN and DMAPP 3B06 ; 2.29 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with reduced FMN and DMAPP. 3B05 ; 2.2 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with reduced FMN and IPP at 2.2A resolution. 2ZRY ; 2.64 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with reduced FMN and IPP. 2ZRV ; 2.3 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with reduced FMN. 3B03 ; 2.2 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase in complex with vIPP. 3VKJ ; 1.7 ; Crystal structure of Sulfolobus shibatae isopentenyl diphosphate isomerase, octameric form 2Y0S ; 3.8 ; Crystal structure of Sulfolobus shibatae RNA polymerase in P21 space group 2V78 ; 2.0 ; Crystal structure of Sulfolobus solfataricus 2-keto-3-deoxygluconate kinase 2VAR ; 2.1 ; Crystal structure of Sulfolobus solfataricus 2-keto-3-deoxygluconate kinase complexed with 2-keto-3-deoxygluconate 3FHG ; 1.9 ; Crystal structure of Sulfolobus solfataricus 8-oxoguanine DNA glycosylase (SsOgg) 3I4C ; 2.0 ; Crystal structure of Sulfolobus Solfataricus ADH(SsADH) double mutant (W95L,N249Y) 3ID5 ; 4.01 ; Crystal structure of Sulfolobus solfataricus C/D RNP assembled with Nop5, fibrillarin, L7Ae and a split half C/D RNA 5GME ; 1.7 ; Crystal structure of Sulfolobus solfataricus Diphosphomevalonate decarboxylase in complex with ADP 5GMD ; 1.5 ; Crystal structure of Sulfolobus solfataricus diphosphomevalonate decarboxylase in complex with ATP-gamma-S 1JNY ; 1.8 ; Crystal structure of Sulfolobus solfataricus elongation factor 1 alpha in complex with GDP 1EH9 ; 3.0 ; CRYSTAL STRUCTURE OF SULFOLOBUS SOLFATARICUS GLYCOSYLTREHALOSE TREHALOHYDROLASE 4RZK ; 2.677 ; Crystal structure of Sulfolobus solfataricus Hsp20.1 ACD 6JD2 ; 2.53 ; Crystal structure of Sulfolobus solfataricus ketol-acid reductoisomerase (Sso-KARI) in complex with Mg2+ at pH8.5 3ID6 ; 2.6 ; Crystal structure of Sulfolobus solfataricus Nop5 (1-262) and fibrillarin complex 3ICX ; 3.1 ; Crystal structure of Sulfolobus solfataricus Nop5 (135-380) 4ZYE ; 1.85 ; Crystal structure of Sulfolobus solfataricus O6-methylguanine methyltransferase 5LLQ ; 2.7 ; Crystal structure of Sulfolobus solfataricus O6-methylguanine methyltransferase C119F variant 4ZYH ; 2.6 ; Crystal structure of Sulfolobus solfataricus O6-methylguanine methyltransferase C119L variant 4ZYD ; 2.682 ; Crystal structure of Sulfolobus solfataricus O6-methylguanine methyltransferase in complex with modified DNA 1XTY ; 1.8 ; Crystal structure of Sulfolobus solfataricus peptidyl-tRNA hydrolase 3F8R ; 1.95 ; Crystal structure of Sulfolobus solfataricus Thioredoxin reductase B3 in complex with two NADP molecules 4LGM ; 2.711 ; Crystal Structure of Sulfolobus solfataricus Vps4 2E2P ; 2.0 ; Crystal structure of Sulfolobus tokodaii hexokinase in complex with ADP 2E2O ; 1.65 ; Crystal structure of Sulfolobus tokodaii hexokinase in complex with glucose 2E2Q ; 2.0 ; Crystal structure of Sulfolobus tokodaii hexokinase in complex with xylose, Mg2+, and ADP 2E2N ; 1.9 ; Crystal structure of Sulfolobus tokodaii hexokinase in the apo form 3HJE ; 1.9 ; Crystal structure of sulfolobus tokodaii hypothetical maltooligosyl trehalose synthase 2F7L ; 2.8 ; Crystal structure of Sulfolobus tokodaii phosphomannomutase/phosphoglucomutase 7S2I ; 2.32 ; Crystal structure of sulfonamide resistance enzyme Sul1 in complex with 6-hydroxymethylpterin 7S2J ; 1.85 ; Crystal structure of sulfonamide resistance enzyme Sul2 apoenzyme 7S2K ; 1.74 ; Crystal structure of sulfonamide resistance enzyme Sul2 in complex with 7,8-dihydropteroate, magnesium, and pyrophosphate 7S2L ; 2.79 ; Crystal structure of sulfonamide resistance enzyme Sul3 apoenzyme 7S2M ; 2.42 ; Crystal structure of sulfonamide resistance enzyme Sul3 in complex with 6-hydroxymethylpterin 8SCD ; 2.06 ; Crystal structure of sulfonamide resistance enzyme Sul3 in complex with reaction intermediate 7BVV ; 2.12 ; Crystal structure of sulfonic peroxiredoxin Ahp1 in complex with thioredoxin Trx2 3RNL ; 1.752 ; Crystal Structure of Sulfotransferase from Alicyclobacillus acidocaldarius 2ZQ5 ; 2.0 ; Crystal structure of sulfotransferase STF1 from Mycobacterium tuberculosis H37Rv (type1 form) 2Z6V ; 2.6 ; Crystal structure of sulfotransferase STF9 from Mycobacterium avium 6M35 ; 1.73 ; Crystal structure of sulfur oxygenase reductase from Sulfurisphaera tokodaii 3IPP ; 2.4 ; crystal structure of sulfur-free YnjE 7DQR ; 1.74 ; Crystal structure of Sulfurisphaera tokodaii methylated O6-methylguanine methyltransferase 7DKN ; 1.79 ; Crystal structure of Sulfurisphaera tokodaii O6-methylguanine methyltransferase 7CSM ; 1.25 ; Crystal structure of Sulfurisphaera tokodaii O6-methylguanine methyltransferase C120S variant 7E1P ; 1.63 ; Crystal structure of Sulfurisphaera tokodaii O6-methylguanine methyltransferase C120S variant in complex with O6-methyldeoxyguanosine 7D4V ; 1.78 ; Crystal structure of Sulfurisphaera tokodaii O6-methylguanine methyltransferase Y91F/C120S variant 7DQQ ; 2.6 ; Crystal structure of Sulfurisphaera tokodaii O6-methylguanine methyltransferase Y91F/C120S variant in complex with O6-methyldeoxyguanosine 7SYB ; 1.45 ; Crystal Structure of sulfurtransferase (DsrC family protein) from Acinetobacter baumannii 4IFB ; 2.3 ; Crystal structure of SULT 2A1 LLGG mutant with PAPS 4GRA ; 2.56 ; Crystal structure of SULT1A1 bound with PAP 6CWY ; 2.462 ; Crystal structure of SUMO E1 in complex with an allosteric inhibitor 4MVT ; 2.3 ; Crystal structure of SUMO E3 Ligase PIAS3 2BF8 ; 2.3 ; Crystal structure of SUMO modified ubiquitin conjugating enzyme E2- 25K 2D07 ; 2.1 ; Crystal Structure of SUMO-3-modified Thymine-DNA Glycosylase 4WJQ ; 1.35 ; Crystal Structure of SUMO1 in complex with Daxx 4WJP ; 1.7 ; Crystal Structure of SUMO1 in complex with phosphorylated Daxx 6V7Q ; 1.35 ; Crystal structure of SUMO1 in complex with phosphorylated PIAS-SIM2 4WJN ; 1.5 ; Crystal structure of SUMO1 in complex with phosphorylated PML 6V7P ; 1.395 ; Crystal structure of SUMO1 in complex with PIAS-SIM2 4WJO ; 1.46 ; Crystal Structure of SUMO1 in complex with PML 1WYW ; 2.1 ; Crystal Structure of SUMO1-conjugated thymine DNA glycosylase 7E34 ; 3.19 ; Crystal structure of SUN1-Speedy A-CDK2 4MO7 ; 1.701 ; Crystal structure of superantigen PfiT 4MXM ; 1.95 ; Crystal structure of superantigen pfit 3URY ; 1.9 ; Crystal Structure of Superantigen-like Protein, Exotoxin from Staphylococcus aureus subsp. aureus NCTC 8325 3R2I ; 2.3 ; Crystal Structure of Superantigen-like Protein, Exotoxin SACOL0473 from Staphylococcus aureus subsp. aureus COL 2P6R ; 3.0 ; Crystal structure of superfamily 2 helicase Hel308 in complex with unwound DNA 6CYL ; 1.8 ; Crystal Structure of Superoxide Dismutase double mutant (G74Q+Q149G) from Trichoderma reesei 3H1S ; 1.9 ; Crystal structure of superoxide dismutase from Francisella tularensis subsp. tularensis SCHU S4 3CEI ; 2.4 ; Crystal Structure of Superoxide Dismutase from Helicobacter pylori 2Q2L ; 2.367 ; Crystal Structure of Superoxide Dismutase from P. atrosanguina 2CW2 ; 1.86 ; Crystal structure of Superoxide dismutase from P. Marinus 1P7G ; 1.8 ; Crystal structure of superoxide dismutase from Pyrobaculum aerophilum 4RVP ; 2.6 ; Crystal structure of superoxide dismutase from sedum alfredii 1DQI ; 1.7 ; CRYSTAL STRUCTURE OF SUPEROXIDE REDUCTASE FROM P. FURIOSUS IN THE OXIDIZED STATE AT 1.7 ANGSTROMS RESOLUTION 1DO6 ; 2.0 ; CRYSTAL STRUCTURE OF SUPEROXIDE REDUCTASE IN THE OXIDIZED STATE AT 2.0 ANGSTROM RESOLUTION 1DQK ; 2.0 ; CRYSTAL STRUCTURE OF SUPEROXIDE REDUCTASE IN THE REDUCED STATE AT 2.0 ANGSTROMS RESOLUTION 4KMH ; 3.04 ; Crystal structure of Suppressor of Fused d20 3RQ4 ; 1.8 ; Crystal structure of suppressor of variegation 4-20 homolog 2 6KSU ; 2.2 ; Crystal structure of SurE 2WQK ; 1.5 ; Crystal Structure of Sure Protein from Aquifex aeolicus 1J9K ; 2.1 ; CRYSTAL STRUCTURE OF SURE PROTEIN FROM T.MARITIMA IN COMPLEX WITH TUNGSTATE 1J9L ; 1.9 ; CRYSTAL STRUCTURE OF SURE PROTEIN FROM T.MARITIMA IN COMPLEX WITH VANADATE 6KSV ; 2.42 ; Crystal structure of SurE with D-Leu 6HKI ; 3.3 ; Crystal structure of surface entropy mutant of human O-GlcNAc hydrolase 6D2Y ; 2.19 ; Crystal structure of surface glycan-binding protein PbSGBP-B from Prevotella bryantii 3HOE ; 2.303 ; Crystal Structure of Surface Lipoprotein 5FFR ; 2.2 ; Crystal Structure of Surfactant Protein-A complexed with phosphocholine 4WR9 ; 2.301 ; Crystal Structure of Surfactant Protein-A DED Mutant (E171D/P175E/K203D) 4WUW ; 2.398 ; Crystal Structure of Surfactant Protein-A DED Mutant (E171D/P175E/K203D) Complexed with Inositol 4WUX ; 1.9 ; Crystal Structure of Surfactant Protein-A DED Mutant (E171D/P175E/K203D) Complexed with Mannose 4WRC ; 1.8 ; Crystal Structure of Surfactant Protein-A DEDN Mutant (E171D/P175E/R197N/K203D) 4WRE ; 1.751 ; Crystal Structure of Surfactant Protein-A DEDN Mutant (E171D/P175E/R197N/K203D) Complexed with Inositol 4WRF ; 1.901 ; Crystal Structure of Surfactant Protein-A DEDN Mutant (E171D/P175E/R197N/K203D) Complexed with Mannose 5FFS ; 1.8 ; Crystal Structure of Surfactant Protein-A Y164A Mutant 5FFT ; 2.2 ; Crystal Structure of Surfactant Protein-A Y221A Mutant 4M17 ; 2.096 ; Crystal Structure of Surfactant Protein-D D325A/R343V mutant 4M18 ; 3.203 ; Crystal Structure of Surfactant Protein-D D325A/R343V mutant in complex with trimannose (Man-a1,2Man-a1,2Man) 4A0I ; 2.605 ; Crystal structure of Survivin bound to the N-terminal tail of hSgo1 4A0J ; 2.803 ; Crystal structure of Survivin bound to the phosphorylated N-terminal tail of histone H3 4A0N ; 2.743 ; Crystal structure of Survivin bound to the phosphorylated N-terminal tail of histone H3 4I9A ; 2.096 ; Crystal Structure of Sus scrofa Quinolinate Phosphoribosyltransferase in Complex with Nicotinate Mononucleotide 7FEX ; 2.69 ; Crystal structure of Sus scrofa Schlafen11 N-terminal domain (2.69 A) 2ZQ0 ; 1.6 ; Crystal structure of SusB complexed with acarbose 3IV0 ; 1.35 ; Crystal structure of SusD homolog (NP_809186.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.35 A resolution 3IHV ; 1.7 ; Crystal structure of SusD homolog (NP_813570.1) from Bacteroides thetaiotaomicron VPI-5482 at 1.70 A resolution 3MCX ; 1.49 ; Crystal structure of SusD superfamily protein (BT_2365) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.49 A resolution 3HDX ; 1.5 ; Crystal structure of SusD superfamily protein (NP_809182.1) from BACTEROIDES THETAIOTAOMICRON VPI-5482 at 1.50 A resolution 3JQ1 ; 1.55 ; Crystal structure of SusD superfamily protein (YP_001297730.1) from Bacteroides vulgatus ATCC 8482 at 1.55 A resolution 3JYS ; 2.0 ; Crystal structure of SusD superfamily protein (YP_001298690.1) from Bacteroides vulgatus ATCC 8482 at 2.00 A resolution 3JQ0 ; 1.13 ; Crystal structure of SusD superfamily protein (YP_001299712.1) from Bacteroides vulgatus ATCC 8482 at 1.13 A resolution 3LEW ; 1.7 ; Crystal structure of SusD-like carbohydrate binding protein (YP_001298396.1) from Bacteroides vulgatus ATCC 8482 at 1.70 A resolution 4FE9 ; 2.0 ; Crystal Structure of SusF from Bacteroides thetaiotaomicron 3K8K ; 2.2 ; Crystal structure of SusG 3K8M ; 2.5 ; Crystal structure of SusG with acarbose 3K8L ; 2.3 ; Crystal structure of SusG-D498N mutant with maltoheptaose 4YGI ; 2.6 ; Crystal Structure of SUVH5 SRA bound to fully hydroxymethylated CG DNA 3Q0B ; 2.2 ; Crystal structure of SUVH5 SRA- fully methylated CG DNA complex in space group P42212 3Q0D ; 2.3704 ; Crystal structure of SUVH5 SRA- hemi methylated CG DNA complex 3Q0F ; 2.75 ; Crystal structure of SUVH5 SRA- methylated CHH DNA complex 3Q0C ; 2.6567 ; Crystal structure of SUVH5 SRA-fully methylated CG DNA complex in space group P6122 4NJ5 ; 2.4 ; Crystal structure of SUVH9 6KOS ; 2.0 ; Crystal structure of SUWA (Super WA20), a hyper-stable de novo protein with a dimeric bisecting topology 2NTC ; 2.4 ; Crystal Structure of sv40 large T antigen origin binding domain with DNA 2IF9 ; 2.586 ; Crystal Structure of SV40 T-antigen origin binding domain disulfide-linked dimer 6J9H ; 2.31 ; Crystal structure of SVBP-VASH1 complex 6J8N ; 1.95 ; Crystal structure of SVBP-VASH1 complex, mutation C169A of VASH1 6J8F ; 2.283 ; Crystal structure of SVBP-VASH1 with peptide mimic the C-terminal of alpha-tubulin 5QU4 ; 1.05 ; Crystal Structure of swapped human Nck SH3.1 domain, 1.05A, orthorhombic form I 5QU7 ; 1.27 ; Crystal Structure of swapped human Nck SH3.1 domain, 1.3A, orthorhombic form III 5QUA ; 1.51 ; Crystal Structure of swapped human Nck SH3.1 domain, 1.5A, C2221 5QU6 ; 1.816 ; Crystal Structure of swapped human Nck SH3.1 domain, 1.8A, triclinic 5WQU ; 2.49 ; Crystal structure of Sweet Potato Beta-Amylase complexed with Maltotetraose 3ALD ; 1.1 ; Crystal structure of sweet-tasting protein Thaumatin I at 1.10 A 3AOK ; 1.27 ; Crystal structure of sweet-tasting protein thaumatin II 3VIQ ; 2.2 ; Crystal structure of Swi5-Sfr1 complex from fission yeast 5EDX ; 1.801 ; Crystal structure of swine CD8aa homodimer 3M5R ; 2.0 ; Crystal Structure of Swine Flu Virus NS1 Effector Domain from H1N1 Influenza A/California/07/2009 3M8A ; 2.1 ; Crystal Structure of Swine Flu Virus NS1 N-Terminal RNA Binding Domain from H1N1 Influenza A/California/07/2009 1JSD ; 1.8 ; CRYSTAL STRUCTURE OF SWINE H9 HAEMAGGLUTININ 3QQ3 ; 2.59 ; Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides 3QQ4 ; 2.097 ; Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides 6A6H ; 2.31 ; Crystal Structure of Swine Major Histocompatibility Complex Class I SLA-2*040202 For 2.3 Angstrom 5H94 ; 1.48 ; Crystal structure of Swine MHC CLASSI for 1.48 angstroms 7DC8 ; 2.757 ; Crystal structure of Switch Ab Fab and hIL6R in complex with ATP 4PQZ ; 2.3 ; Crystal structure of swt1 C-terminal domain from yeast 5BQM ; 3.1 ; Crystal structure of SXN101959, a Clostridium botulinum neurotoxin type D derivative and targeted secretion inhibitor 1JYA ; 1.74 ; Crystal Structure of SycE 4R3Q ; 1.901 ; Crystal structure of SYCE3 4OF6 ; 1.696 ; Crystal Structure of SYG-1 D1, Crystal form 1 4OF7 ; 2.1 ; Crystal Structure of SYG-1 D1, Crystal Form 2 4OF3 ; 2.5 ; Crystal Structure of SYG-1 D1-D2, Glycosylated 4OF0 ; 2.3 ; Crystal Structure of SYG-1 D1-D2, refolded 4OFP ; 3.0 ; Crystal Structure of SYG-2 D3-D4 4OFK ; 1.802 ; Crystal Structure of SYG-2 D4 5T68 ; 2.93 ; Crystal structure of Syk catalytic domain in complex with a furo[3,2-d]pyrimidine 5C26 ; 1.95 ; Crystal structure of SYK in complex with compound 1 5C27 ; 2.15 ; Crystal structure of SYK in complex with compound 2 6VOV ; 1.95 ; Crystal structure of Syk in complex with GS-9876 3TUB ; 2.23 ; Crystal structure of SYK kinase domain with 1-(5-(6,7-dimethoxyquinolin-4-yloxy)pyridin-2-yl)-3-((1R,2S)-2-phenylcyclopropyl)urea 3TUC ; 2.1 ; Crystal structure of SYK kinase domain with 1-benzyl-N-(5-(6,7-dimethoxyquinolin-4-yloxy)pyridin-2-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide 5TIU ; 1.49 ; Crystal structure of SYK kinase domain with inhibitor 3TUD ; 2.33 ; Crystal structure of SYK kinase domain with N-(4-methyl-3-(8-methyl-7-oxo-2-(phenylamino)-7,8-dihydropyrido[2,3-d]pyrimidin-6-yl)phenyl)-3-(trifluoromethyl)benzamide 2POS ; 1.6 ; Crystal Structure of sylvaticin, a new secreted protein from pythium sylvaticum 2PR0 ; 1.72 ; Crystal structure of Sylvaticin, a new secreted protein from Pythium Sylvaticum 3QHC ; 1.25 ; Crystal structure of Symerythrin from Cyanophora paradoxa, reduced with dithionite 3O49 ; 1.45 ; Crystal structure of Symfoil-1: de novo designed beta-trefoil architecture with symmetric primary structure 3O4A ; 1.45 ; Crystal structure of Symfoil-2: de novo designed beta-trefoil architecture with symmetric primary structure 3Q7W ; 1.5 ; Crystal structure of Symfoil-4P/PV1: de novo designed beta-trefoil architecture with symmetric primary structure, primitive version 1 3Q7X ; 1.4 ; Crystal structure of Symfoil-4P/PV1: de novo designed beta-trefoil architecture with symmetric primary structure, primitive version 1 4D8H ; 1.901 ; Crystal structure of Symfoil-4P/PV2: de novo designed beta-trefoil architecture with symmetric primary structure, primitive version 2 (6xLeu / PV1) 3O4D ; 1.65 ; Crystal structure of Symfoil-4P: de novo designed beta-trefoil architecture with symmetric primary structure 3SNV ; 2.2 ; Crystal structure of Symfoil-4T Permutation #1: de novo designed beta-trefoil architecture with symmetric primary structure 3P6I ; 1.32 ; Crystal structure of Symfoil-4T Permutation #2: de novo designed beta-trefoil architecture with symmetric primary structure 3P6J ; 1.35 ; Crystal structure of Symfoil-4T Permutation #3: de novo designed beta-trefoil architecture with symmetric primary structure 3O4B ; 1.8 ; Crystal structure of Symfoil-4T: de novo designed beta-trefoil architecture with symmetric primary structure 3O4C ; 1.75 ; Crystal structure of Symfoil-4V: de novo designed beta-trefoil architecture with symmetric primary structure 4MD9 ; 3.5 ; Crystal Structure of symmetric CK2 holoenzyme with mutated alpha subunit (F121E truncated at aa 336) 5QU8 ; 0.93 ; Crystal Structure of symmetric swapped human Nck SH3.1 domain, 0.93A, orthorhombic form IV 4I9K ; 5.0003 ; Crystal structure of symmetric W-W-W ClpX Hexamer 2WQZ ; 3.9 ; Crystal structure of synaptic protein neuroligin-4 in complex with neurexin-beta 1: alternative refinement 3HN8 ; 3.5 ; Crystal structure of synaptotagmin 3F04 ; 1.35 ; Crystal Structure of Synaptotagmin I C2A domain 3F00 ; 1.36 ; Crystal Structure of Synaptotagmin I C2A domain with Cu(II) 3F01 ; 1.7 ; Crystal Structure of Synaptotagmin I C2A domain with Cu(II) 3F05 ; 1.4 ; Crystal Structure of Synaptotagmin I C2A domain with Mn(II) 1DQV ; 3.2 ; CRYSTAL STRUCTURE OF SYNAPTOTAGMIN III C2A/C2B 6LCY ; 2.301 ; Crystal structure of Synaptotagmin-7 C2B in complex with IP6 2ZMV ; 2.8 ; Crystal structure of Synbindin 8H02 ; 1.552 ; Crystal structure of Synechococcus elongatus PCC 7942 RNA polymerase SI3-tail 4MAX ; 1.444 ; Crystal structure of Synechococcus sp. PCC 7002 globin at cryogenic temperature with heme modification 2F1K ; 1.55 ; Crystal structure of Synechocystis arogenate dehydrogenase 6NTE ; 2.33 ; Crystal Structure of Synechocystis Dihydroxyacid Dehydratase (DHAD) 7ZOU ; 1.58 ; Crystal structure of Synechocystis halorhodopsin (SyHR), Cl-pumping mode, ground state 7ZOV ; 1.7 ; Crystal structure of Synechocystis halorhodopsin (SyHR), Cl-pumping mode, K state 7ZOW ; 1.6 ; Crystal structure of Synechocystis halorhodopsin (SyHR), Cl-pumping mode, O state 7ZOY ; 1.91 ; Crystal structure of Synechocystis halorhodopsin (SyHR), SO4-bound form, ground state 1RTX ; 1.8 ; Crystal Structure of Synechocystis Hemoglobin with a Covalent Heme Linkage 7OI1 ; 1.9 ; Crystal structure of Synechocystis sp PCC6803 guanidinium hydrolase 7ESR ; 1.42 ; Crystal structure of Synechocystis sp PCC6803 guanidinium hydrolase (R32) 4LHC ; 1.899 ; Crystal structure of Synechocystis sp. PCC 6803 glycine decarboxylase (P-protein), holo form with pyridoxal-5'-phosphate and glycine 4LHD ; 1.7959 ; Crystal structure of Synechocystis sp. PCC 6803 glycine decarboxylase (P-protein), holo form with pyridoxal-5'-phosphate and glycine, closed flexible loop 6QMM ; 2.18 ; Crystal structure of Synecochoccus Spermidine Synthase in complex with putrescine, spermidine and MTA 6NHA ; 2.381 ; Crystal structure of SYNT001, a human FcRn blocking monoclonal antibody 4DND ; 1.4 ; Crystal structure of syntaxin 10 from Homo sapiens 3LRY ; 1.98 ; Crystal structure of synthetic HIV-1 capsid C-terminal domain (CCA) 4M0I ; 2.8 ; CRYSTAL STRUCTURE OF SYNTHETIC HIV-1 CAPSID C-TERMINAL DOMAIN (CTD) C198S mutant 7MFU ; 1.7 ; Crystal structure of synthetic nanobody (Sb14+Sb68) complexes with SARS-CoV-2 receptor binding domain 7MFV ; 1.9 ; Crystal structure of synthetic nanobody (Sb16) 7KGK ; 2.6 ; Crystal structure of synthetic nanobody (Sb16) complexes with SARS-CoV-2 receptor binding domain 7KGJ ; 2.3 ; Crystal structure of synthetic nanobody (Sb45) complexes with SARS-CoV-2 receptor binding domain 7KLW ; 2.6 ; Crystal structure of synthetic nanobody (Sb45+Sb68) complexes with SARS-CoV-2 receptor binding domain 4JMH ; 2.408 ; Crystal structure of synthetic protein in complex with double pY peptide 4GMO ; 2.1 ; Crystal structure of Syo1 4YXL ; 2.604 ; Crystal structure of Syrian hamster prion protein complexed with POM1 FAB 4FZN ; 3.12 ; Crystal structure of syringacin M mutant D232A from Pseudomonas syringae pv. tomato DC3000 3C2H ; 2.6 ; Crystal Structure of SYS-1 at 2.6A resolution 5CK6 ; 2.5 ; Crystal structure of SZ348 in complex with cyclopentene oxide 5YNG ; 2.497 ; Crystal structure of SZ348 in complex with cyclopentene oxide 5CLK ; 2.701 ; Crystal structure of SZ348 in complex with S,S-cyclohexanediol 5GKW ; 2.01 ; crystal structure of SZ529 complex with (R,R)-cyclopentanediol 8E8W ; 2.5 ; Crystal structure of SznF from Streptomyces achromogenes var. streptozoticus NRRL 2697 mononuclear Fe(II) structure on the HDO cofactor assembly pathway 6M9R ; 1.69 ; Crystal structure of SznF from Streptomyces achromogenes var. streptozoticus NRRL 2697 with a bound N(delta)-hydroxy-N(omega)-methyl-L-arginine intermediate 6VZY ; 1.66 ; Crystal structure of SznF from Streptomyces achromogenes var. streptozoticus NRRL 2697 with a diiron(II) central domain cofactor 3W1Y ; 2.3 ; Crystal structure of T brucei ATG8.2 in complex with E coli S10 5H2Q ; 1.66 ; Crystal structure of T brucei phosphodiesterase B2 bound to compound 13e 5H2R ; 1.8 ; Crystal structure of T brucei phosphodiesterase B2 bound to compound 15b 4RWH ; 1.802 ; Crystal structure of T cell costimulatory ligand B7-1 (CD80) 4U6F ; 3.1 ; Crystal structure of T-2 toxin bound to the yeast 80S ribosome 4NXQ ; 2.1 ; Crystal Structure of T-cell Lymphoma Invasion and Metastasis-1 PDZ Domain Quadruple Mutant (QM) in Complex With Caspr4 Peptide 4NXR ; 1.9 ; Crystal Structure of T-cell Lymphoma Invasion and Metastasis-1 PDZ Domain Quadruple Mutant (QM) in Complex With Neurexin-1 Peptide 4GVC ; 1.54 ; Crystal Structure of T-cell Lymphoma Invasion and Metastasis-1 PDZ in complex with phosphorylated Syndecan1 Peptide 3KZE ; 1.8 ; Crystal Structure of T-cell Lymphoma Invasion and Metastasis-1 PDZ in Complex With SSRKEYYA Peptide 4GVD ; 1.85 ; Crystal Structure of T-cell Lymphoma Invasion and Metastasis-1 PDZ in complex with Syndecan1 Peptide 2AQ3 ; 2.3 ; Crystal structure of T-cell receptor V beta domain variant complexed with superantigen SEC3 2AQ1 ; 2.1 ; Crystal structure of T-cell receptor V beta domain variant complexed with superantigen SEC3 mutant 2AQ2 ; 1.8 ; Crystal structure of T-cell receptor V beta domain variant complexed with superantigen SEC3 mutant 5WSR ; 1.5 ; Crystal structure of T-Hg-T pair containing DNA duplex 5WSS ; 1.45 ; Crystal structure of T-Hg-T pair containing DNA duplex in the presence Ba2+ 1WOO ; 2.4 ; Crystal structure of T-protein of the Glycine Cleavage System 1WOP ; 2.0 ; Crystal Structure of T-protein of the Glycine Cleavage System 1WOR ; 1.95 ; Crystal Structure of T-protein of the Glycine Cleavage System 1WOS ; 1.84 ; Crystal Structure of T-protein of the Glycine Cleavage System 4IRO ; 2.2 ; Crystal structure of T-state carbonmonoxy hemoglobin from Trematomus bernacchii at pH 8.4 2D5Z ; 1.45 ; Crystal structure of T-state human hemoglobin complexed with three L35 molecules 4O5V ; 2.1 ; Crystal structure of T. acidophilum IdeR 3LL5 ; 1.987 ; Crystal structure of T. acidophilum isopentenyl phosphate kinase product complex 3CTY ; 2.35 ; Crystal structure of T. acidophilum thioredoxin reductase 4XLN ; 4.0 ; Crystal structure of T. aquaticus transcription initiation complex containing bubble promoter and RNA 4XLS ; 4.01 ; Crystal structure of T. aquaticus transcription initiation complex with CarD containing upstream fork promoter. 4RHQ ; 2.18 ; Crystal structure of T. brucei arginase-like protein double mutant S149D/S153D 4RHK ; 2.38 ; Crystal structure of T. brucei arginase-like protein in an oxidized form 4RHM ; 1.95 ; Crystal structure of T. brucei arginase-like protein quadruple mutant S149D/R151H/S153D/S226D 4RHL ; 3.1 ; Crystal structure of T. brucei arginase-like protein triple mutant S149D/R151H/S226D bound with Mn2+ 8UH1 ; 1.898 ; Crystal structure of T. brucei EIF4E6 in complex with EIF4G5 peptide 4RYP ; 2.21 ; Crystal Structure of T. Brucei Farnesyl Diphosphate Synthase 7SB7 ; 2.64717 ; Crystal structure of T. brucei hypoxanthine guanine phosphoribosyltransferase in complex with (4S,7S)-7-hydroxy-4-((guanin-9-yl)methyl)-2,5-dioxaheptan-1,7-diphosphonate 4YJ1 ; 2.05 ; Crystal structure of T. brucei MRB1590-ADP bound to poly-U RNA 5G57 ; 1.73 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-001 6FV9 ; 2.48 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-007 5G2B ; 1.83 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-008 5G5V ; 1.8 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-038 5L8C ; 2.01 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-039 6FTM ; 2.1 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-048 6RB6 ; 1.9 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-053 6RGK ; 2.03 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-055 6QGP ; 1.942 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-0769 6RFN ; 2.29 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1018 6RFW ; 2.183 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1039 6FDX ; 2.31 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1086 6GXQ ; 1.96 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1335 6QGU ; 1.77 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1361 6FE3 ; 1.62 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-1439 6FDS ; 2.2 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-226 5L9H ; 2.25 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-340 6FDW ; 1.96 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-356 7A28 ; 1.89 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-617 6FRD ; 2.2 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-637 7A2F ; 2.0 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-656 5L8Y ; 2.14 ; Crystal structure of T. brucei PDE-B1 catalytic domain with inhibitor NPD-937 3RA6 ; 2.0 ; Crystal structure of T. celer L30e E62A/K46A variant 3RA5 ; 1.8 ; Crystal structure of T. celer L30e E6A/R92A variant 3LFO ; 1.8 ; Crystal structure of T. celer L30e E90A/R92A variant 3KJS ; 2.5 ; Crystal Structure of T. cruzi DHFR-TS with 3 high affinity DHFR inhibitors: DQ1 inhibitor complex 5QQC ; 1.62 ; Crystal Structure of T. cruzi FPPS after initial refinement with no ligand modelled (structure $n) 3E0U ; 2.3 ; Crystal structure of T. cruzi GPX1 4YRE ; 2.25 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with (2-bromophenyl)methanol (Chem 145) 4YRK ; 2.2 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with (4-chlorophenyl)methanol (Chem 260) 4YRG ; 2.15 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with (6-bromopyridin-2-yl)methanol (Chem 149) 4YRI ; 2.0 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 1-(3-bromophenyl)methanamine (Chem 166) 4YRP ; 2.2 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 1-(4-BROMOPHENYL)METHANAMINE (Chem 707) 4YRC ; 2.1 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 2-aminoquinolin-8-ol (Chem 89) 4YRM ; 2.3 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 3-methoxypyridine (Chem 443) 4YRL ; 2.3 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 4-(methylsulfanyl)aniline (Chem 262) 4YRJ ; 2.3 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 4-chlorobenzene-1,2-diamine (Chem 256) 4YP0 ; 2.1 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 5-aminoisoquinoline (Chem 79) 4YRO ; 2.5 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 5-bromo-6-methylpyridin-2-amine (Chem 491) 4YRF ; 2.2 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 5-bromopyridin-2(1H)-one (Chem 148) 4YRQ ; 2.05 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 6-amino-2H-chromen-2-one (Chem 744) 4YRN ; 2.2 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with 6-bromopyridin-3-amine (Chem 475) 4YRT ; 2.05 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with N-(5-hydroxynaphthalen-2-yl)propanamide (Chem 1781) 4YRR ; 2.3 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with N-(quinolin-3-yl)acetamide (Chem 1691) 4YRS ; 2.75 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with N-(quinolin-3-yl)propanamide (Chem 1698) 4YPF ; 2.2 ; Crystal structure of T. cruzi Histidyl-tRNA synthetase in complex with quinolin-3-amine (Chem 84) 4O0M ; 2.84 ; Crystal structure of T. Elongatus BP-1 Clock Protein KaiC 4QQW ; 2.664 ; Crystal structure of T. fusca Cas3 4QQY ; 3.12 ; Crystal structure of T. fusca Cas3-ADP 4QQZ ; 2.93 ; Crystal structure of T. fusca Cas3-AMPPNP 4QQX ; 3.34 ; Crystal structure of T. fusca Cas3-ATP 2AA0 ; 1.75 ; Crystal structure of T. gondii adenosine kinase complexed with 6-methylmercaptopurine riboside 2AB8 ; 1.75 ; Crystal structure of T. gondii adenosine kinase complexed with 6-methylmercaptopurine riboside and AMP-PCP 2ABS ; 1.1 ; Crystal structure of T. gondii adenosine kinase complexed with AMP-PCP 2A9Y ; 1.35 ; Crystal structure of T. gondii adenosine kinase complexed with N6-dimethyladenosine 2A9Z ; 1.35 ; Crystal structure of T. gondii adenosine kinase complexed with N6-dimethyladenosine and AMP-PCP 3NJ8 ; 2.7 ; Crystal structure of T. gondii enoyl acyl carrier protein reductase with bound triclosan like inhibitor 6A88 ; 2.596 ; Crystal Structure of T. gondii prolyl tRNA synthetase with Febrifugine and ATP Analog 1LWH ; 2.6 ; CRYSTAL STRUCTURE OF T. MARITIMA 4-ALPHA-GLUCANOTRANSFERASE 1LWJ ; 2.5 ; CRYSTAL STRUCTURE OF T. MARITIMA 4-ALPHA-GLUCANOTRANSFERASE/ACARBOSE COMPLEX 3BQ6 ; 2.1 ; Crystal Structure of T. maritima Cobalamin-Independent Methionine Synthase complexed with Zn2+ (Monoclinic) 1XDJ ; 2.2 ; Crystal Structure of T. maritima Cobalamin-Independent Methionine Synthase complexed with Zn2+ and Homocysteine 3BQ5 ; 2.0 ; Crystal Structure of T. maritima Cobalamin-Independent Methionine Synthase complexed with Zn2+ and Homocysteine (Monoclinic) 1XPG ; 2.59 ; Crystal Structure of T. maritima Cobalamin-Independent Methionine Synthase complexed with Zn2+ and Methyltetrahydrofolate 2X5S ; 2.35 ; Crystal structure of T. maritima GDP-mannose pyrophosphorylase in apo state. 2X5Z ; 2.7 ; Crystal structure of T. maritima GDP-mannose pyrophosphorylase in complex with GDP-mannose. 2X60 ; 2.8 ; Crystal structure of T. maritima GDP-mannose pyrophosphorylase in complex with GTP. 2X65 ; 2.1 ; Crystal structure of T. maritima GDP-mannose pyrophosphorylase in complex with mannose-1-phosphate. 7FSF ; 2.77 ; CRYSTAL STRUCTURE OF T. MARITIMA REVERSE GYRASE ACTIVE SITE VARIANT Y851F 7FSE ; 2.89 ; Crystal Structure of T. maritima reverse gyrase with a minimal latch 8OFB ; 2.39 ; Crystal Structure of T. maritima reverse gyrase with a minimal latch, hexagonal form 7WB3 ; 2.401 ; Crystal structure of T. maritima Rex in ternary complex 6N9L ; 2.01 ; Crystal structure of T. maritima UvrA d117-399 with ADP 6MLX ; 2.0 ; Crystal structure of T. pallidum Leucine Rich Repeat protein (TpLRR) 3GX5 ; 2.402 ; Crystal structure of T. tencongensis SAM-I riboswitch variant A94G/U34 bound with SAM 3HM9 ; 3.3 ; Crystal structure of T. thermophilus Argonaute complexed with DNA guide strand and 19-nt RNA target strand 3HVR ; 3.211 ; Crystal structure of T. thermophilus Argonaute complexed with DNA guide strand and 19-nt RNA target strand with two Mg2+ at the cleavage site 3HJF ; 3.056 ; Crystal structure of T. thermophilus Argonaute E546 mutant protein complexed with DNA guide strand and 15-nt RNA target strand 3HK2 ; 2.8 ; Crystal structure of T. thermophilus Argonaute N478 mutant protein complexed with DNA guide strand and 19-nt RNA target strand 3HO1 ; 2.6 ; Crystal structure of T. thermophilus Argonaute N546 mutant protein complexed with DNA guide strand and 12-nt RNA target strand 5XP8 ; 3.1 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 4A5 on the guide strand 5XQ2 ; 3.33 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 5A6 on the guide strand 5XOW ; 2.902 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 6'A7' on the target strand 5XPG ; 2.8 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 6'U7' on the target strand 5XOU ; 2.63 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 7T8 on the guide strand 5XPA ; 2.9 ; Crystal structure of T. thermophilus Argonaute protein complexed with a bulge 9'U10' on the target strand 6V6Y ; 2.15202 ; Crystal Structure of T. thermophilus methylenetetrahydrofolate dehydrogenase (MTHFD) 5D8B ; 3.63 ; Crystal structure of T. thermophilus ribosome containing a P-site wobble mismatch 5I2D ; 4.405 ; Crystal structure of T. thermophilus TTHB099 class II transcription activation complex: TAP-RPo 4XLQ ; 4.6 ; Crystal structure of T.aquaticus transcription initiation complex containing upstream fork (-11 base-paired) promoter 4XLP ; 4.0 ; Crystal structure of T.aquaticus transcription initiation complex containing upstream fork promoter 4XLR ; 4.3 ; Crystal structure of T.aquaticus transcription initiation complex with CarD containing bubble promoter and RNA 4G9I ; 4.5 ; Crystal structure of T.kodakarensis HypF 6LDN ; 2.6 ; Crystal structure of T.onnurineus Csm5 1V2D ; 1.9 ; Crystal Structure of T.th HB8 Glutamine Aminotransferase 1V2F ; 2.35 ; Crystal Structure of T.th HB8 Glutamine Aminotransferase complex with 3-phenylpropionate 1V2E ; 2.6 ; Crystal Structure of T.th HB8 Glutamine Aminotransferase complex with a-keto-g-methylthiobutyrate 1VCM ; 2.35 ; Crystal Structure of T.th. HB8 CTP synthetase 1VCO ; 2.15 ; Crystal Structure of T.th. HB8 CTP synthetase complex with Glutamine 1VCN ; 2.25 ; Crystal Structure of T.th. HB8 CTP synthetase complex with Sulfate anion 2EEO ; 1.6 ; Crystal Structure of T.th. HB8 L-Aspartate-alpha-Decarboxylase Complexed with Fumarate 1VE1 ; 1.45 ; Crystal Structure of T.th. HB8 O-acetylserine sulfhydrylase 2ECQ ; 1.9 ; Crystal Structure of T.th. HB8 O-acetylserine sulfhydrylase Complexed with 3-Hydroxylactate 2EFY ; 2.35 ; Crystal Structure of T.th. HB8 O-acetylserine sulfhydrylase Complexed with 4-Acetylbutyric acid 2ECO ; 1.9 ; Crystal Structure of T.th. HB8 O-acetylserine sulfhydrylase Complexed with 4-methylvalerate 1VE5 ; 2.15 ; Crystal Structure of T.th. HB8 Threonine deaminase 2E9F ; 2.8 ; Crystal Structure of T.th.HB8 Argininosuccinate lyase complexed with L-Arginine 1WRV ; 1.5 ; Crystal Structure of T.th.HB8 Branched-Chain Amino Acid Aminotransferase 2EIY ; 1.35 ; Crystal Structure of T.th.HB8 Branched-Chain Amino Acid Aminotransferase Complexed with 4-Methylvaleric Acid 2EJ3 ; 2.2 ; Crystal Structure of T.th.HB8 Branched-Chain Amino Acid Aminotransferase Complexed with Gabapentin 2EJ2 ; 2.0 ; Crystal Structure of T.th.HB8 Branched-Chain Amino Acid Aminotransferase Complexed with N-(5'-Phosphopyridoxyl)-L-Glutamate 2EJ0 ; 1.6 ; Crystal Structure of T.th.HB8 Branched-Chain Amino Acid Aminotransferase with Pyridoxamine 5'-phosphate 2DKJ ; 1.15 ; Crystal Structure of T.th.HB8 Serine Hydroxymethyltransferase 2ALY ; 2.6 ; Crystal Structure of T.Thermophilus Phenylalanyl-tRNA synthetase complexed with 5'-O-[N-(L-tyrosyl)sulphamoyl]adenosine 2AKW ; 2.8 ; Crystal Structure of T.Thermophilus Phenylalanyl-tRNA synthetase complexed with p-Cl-Phenylalanine 2DSN ; 1.5 ; Crystal structure of T1 lipase 2Z5G ; 1.8 ; Crystal structure of T1 lipase F16L mutant 1R3H ; 2.5 ; Crystal Structure of T10 6BKI ; 2.94 ; Crystal structure of T101A variant mouse cathepsin K at 2.94 Angstrom resolution. 3NOR ; 1.9 ; Crystal Structure of T102S Isocyanide Hydratase from Pseudomonas fluorescens 2PLG ; 2.6 ; Crystal structure of T110839 protein from Synechococcus elongatus 6DNA ; 3.0 ; Crystal structure of T110A mutant human Glutamate oxaloacetate transaminase 1 (GOT1) 6DNB ; 1.7 ; Crystal structure of T110A:S256A mutant human Glutamate oxaloacetate transaminase 1 (GOT1) 5AIO ; 3.148 ; Crystal structure of t131 N-terminal TPR array 2YX4 ; 2.0 ; Crystal Structure of T134A of ST1022 from Sulfolobus tokodaii 5AIM ; 1.401 ; Crystal structure of T138 central eWH domain 7T8Q ; 2.15 ; CRYSTAL STRUCTURE OF T151G CAO1 7T8P ; 1.9 ; CRYSTAL STRUCTURE OF T151V CAO1 2IPB ; 2.23 ; Crystal structure of T159D mutant of S. Typhimurium PhoN protein 1TJV ; 2.0 ; Crystal Structure of T161D Duck Delta 2 Crystallin Mutant 1TJW ; 2.0 ; Crystal Structure of T161D Duck Delta 2 Crystallin Mutant with bound argininosuccinate 1TJU ; 2.1 ; Crystal Structure of T161S Duck Delta 2 Crystallin Mutant 3VZR ; 2.901 ; Crystal structure of T173S mutant of PhaB from Ralstonia eutropha 1LW2 ; 3.0 ; CRYSTAL STRUCTURE OF T215Y MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH 1051U91 1LW0 ; 2.8 ; CRYSTAL STRUCTURE OF T215Y MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH NEVIRAPINE 5X1D ; 2.2 ; Crystal Structure of T246A-N247A Human CRMP-2 Mutant 7REH ; 1.545 ; Crystal structure of T252E CYP199A4 bound to 4-methoxybenzoic acid 8D1C ; 1.95 ; Crystal structure of T252E-CYP199A4 in complex with 4-(Trifluoromethoxy)benzoic acid 8GLY ; 2.03 ; Crystal structure of T252E-CYP199A4 in complex with 4-hydroxybenzoic acid 8GLZ ; 2.02 ; Crystal structure of T252E-CYP199A4 in complex with 4-hydroxybenzoic acid. Crystal was initially co-crystallised with 4-methoxybenzoic acid and soaked with 4 mM hydrogen peroxide 8GM1 ; 1.85 ; Crystal structure of T252E-CYP199A4 in complex with 4-methoxybenzoic acid soaked with 1 mM hydrogen peroxide 8GM2 ; 2.33 ; Crystal structure of T252E-CYP199A4 in complex with 4-methoxybenzoic acid soaked with 2 mM hydrogen peroxide 6FJA ; 2.2 ; Crystal structure of T2D three-domain heme-Cu nitrite reductase from Ralstonia pickettii 7OGN ; 2.2 ; Crystal structure of T2R-TTL -mebendazole complex 5XI7 ; 2.99 ; Crystal structure of T2R-TTL bound with PO-7 5Z4U ; 3.18 ; Crystal Structure of T2R-TTL complex with 7a3 7CPD ; 2.506 ; Crystal structure of T2R-TTL-(+)-6-Br-JP18 complex 7CPQ ; 2.595 ; crystal structure of T2R-TTL-(+)-6-Cl-JP18 complex 7EXC ; 2.39 ; Crystal structure of T2R-TTL-1129A2 complex 5H74 ; 2.6 ; Crystal structure of T2R-TTL-14b complex 7XQY ; 2.35 ; Crystal structure of T2R-TTL-15 complex 7XQX ; 3.36 ; Crystal structure of T2R-TTL-27a complex 7XR0 ; 2.7 ; Crystal structure of T2R-TTL-27a complex 5YZ3 ; 2.545 ; Crystal structure of T2R-TTL-28 complex 7XR1 ; 2.81 ; Crystal structure of T2R-TTL-3a complex 8HUH ; 2.8 ; Crystal structure of T2R-TTL-3a complex 5YL4 ; 2.64 ; CRYSTAL STRUCTURE OF T2R-TTL-8WR COMPLEX 7CBZ ; 2.61 ; Crystal structure of T2R-TTL-A31 complex 7EMJ ; 2.33 ; Crystal structure of T2R-TTL-Barbigerone complex 7CEK ; 2.696 ; Crystal structure of T2R-TTL-BML-284 complex 7CLD ; 2.611 ; Crystal structure of T2R-TTL-Cevipabulin complex 7DP8 ; 2.446 ; Crystal structure of T2R-TTL-Cevipabulin-eribulin complex 5XKH ; 2.25 ; Crystal structure of T2R-TTL-CF1 complex 5XKG ; 2.2 ; Crystal structure of T2R-TTL-CH1 complex 5XIW ; 2.9 ; Crystal structure of T2R-TTL-Colchicine complex 7CE8 ; 2.725 ; Crystal structure of T2R-TTL-Compound11 complex 7CE6 ; 2.695 ; Crystal structure of T2R-TTL-Compound9 complex 5XKE ; 2.6 ; Crystal structure of T2R-TTL-Demecolcine complex 6KNZ ; 2.475 ; Crystal structure of T2R-TTL-KXO1 complex 5CA0 ; 2.501 ; Crystal structure of T2R-TTL-Lexibulin complex 5YLJ ; 2.7 ; Crystal structure of T2R-TTL-Millepachine complex 5XKF ; 2.8 ; Crystal structure of T2R-TTL-MPC6827 complex 5CA1 ; 2.401 ; Crystal structure of T2R-TTL-Nocodazole complex 7CDA ; 2.659 ; Crystal structure of T2R-TTL-PAC complex 5C8Y ; 2.594 ; Crystal structure of T2R-TTL-Plinabulin complex 7ZYW ; 2.45 ; Crystal structure of T2R-TTL-PM534 complex 5XHC ; 2.75 ; Crystal structure of T2R-TTL-PO10 complex 5XI5 ; 2.81 ; Crystal structure of T2R-TTL-PO5 complex 5EZY ; 2.05 ; Crystal structure of T2R-TTL-taccalonolide AJ complex 5CB4 ; 2.193 ; Crystal structure of T2R-TTL-Tivantinib complex 5YL2 ; 2.09 ; Crystal structure of T2R-TTL-Y28 complex 5YLS ; 3.0 ; Crystal structure of T2R-TTL-Y50 complex 8JJB ; 2.68 ; Crystal structure of T2R-TTL-Y61 complex 3GWS ; 2.2 ; Crystal Structure of T3-Bound Thyroid Hormone Receptor 4QA3 ; 2.876 ; Crystal structure of T311M HDAC8 in complex with Trichostatin A (TSA) 2JJE ; 2.2 ; Crystal structure of T330S mutant of Rv3290c from M. tuberculosis 3SVV ; 2.204 ; Crystal Structure of T338C c-Src covalently bound to vinylsulfonamide-pyrazolopyrimidine 9 3TU0 ; 2.994 ; Crystal structure of T355V, S354A, K288A LeuT mutant in complex with alanine and sodium 4Y23 ; 2.89 ; Crystal structure of T399A precursor mutant protein of gamma-glutamyl transpeptidase from Bacillus licheniformis 1KUQ ; 2.84 ; CRYSTAL STRUCTURE OF T3C MUTANT S15 RIBOSOMAL PROTEIN IN COMPLEX WITH 16S RRNA 2QNF ; 3.0 ; Crystal structure of T4 Endonuclease VII H43N mutant in complex with heteroduplex DNA containing base mismatches 2QNC ; 3.1 ; Crystal structure of T4 Endonuclease VII N62D mutant in complex with a DNA Holliday junction 3CPE ; 2.8 ; Crystal Structure of T4 gp17 3TBI ; 3.0 ; Crystal structure of T4 gp33 bound to E. coli RNAP beta-flap domain 2HUM ; 2.35 ; Crystal structure of T4 Lysozyme D72C synthetic dimer 3FI5 ; 1.53 ; Crystal Structure of T4 Lysozyme Mutant R96W 1G0G ; 1.9 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT T152A 1G0K ; 1.85 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT T152C 1G0M ; 1.7 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT T152I 1G0J ; 1.8 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT T152S 1G0L ; 1.8 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT T152V 1G07 ; 1.7 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT V149C 1G0P ; 1.8 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT V149G 1G0Q ; 1.8 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT V149I 1G06 ; 1.85 ; CRYSTAL STRUCTURE OF T4 LYSOZYME MUTANT V149S 2HUL ; 1.8 ; Crystal structure of T4 Lysozyme S44C synthetic dimer 2HUK ; 2.0 ; Crystal structure of T4 Lysozyme V131C synthetic dimer 3HWL ; 1.8 ; Crystal Structure of T4 lysozyme with the unnatural amino acid p-Acetyl-L-Phenylalanine incorporated at position 131 4PJZ ; 1.87 ; CRYSTAL STRUCTURE OF T4 LYSOZYME-GSS-PEPTIDE IN COMPLEX WITH TEICOPLANIN-A2-2 4PK0 ; 2.3 ; CRYSTAL STRUCTURE OF T4 LYSOZYME-PEPTIDE IN COMPLEX WITH TEICOPLANIN-A2-2 3WX4 ; 1.9 ; CRYSTAL STRUCTURE of T4 PHAGE ARN PROTEIN 1J39 ; 1.87 ; Crystal Structure of T4 phage BGT in complex with its UDP-glucose substrate 1LTQ ; 2.33 ; CRYSTAL STRUCTURE OF T4 POLYNUCLEOTIDE KINASE 6X6O ; 1.52 ; Crystal structure of T4 protein Spackle as determined by native SAD phasing 2FCC ; 2.3 ; Crystal Structure of T4 Pyrimidine Dimer Glycosylase (T4-Pdg) Covalently Complexed with a DNA Substrate Containing Abasic Site 1VQ2 ; 2.2 ; CRYSTAL STRUCTURE OF T4-BACTERIOPHAGE DEOXYCYTIDYLATE DEAMINASE, MUTANT R115E 1LYD ; 2.0 ; CRYSTAL STRUCTURE OF T4-LYSOZYME GENERATED FROM SYNTHETIC CODING DNA EXPRESSED IN ESCHERICHIA COLI 6UP9 ; 1.949 ; Crystal structure of T467A variant of cytosolic fumarate hydratase from Leishmania major in a complex with malonate 6UPM ; 2.03 ; Crystal structure of T467A variant of cytosolic fumarate hydratase from Leishmania major in a complex with S-malate 5HML ; 1.482 ; Crystal Structure of T5 D15 Protein Co-crystallized with Metal Ions 5HMM ; 1.5 ; Crystal Structure of T5 D15 Protein Co-crystallized with Metal Ions 3B86 ; 2.0 ; Crystal structure of T57S substituted LUSH protein complexed with ethanol 5HNK ; 2.22 ; Crystal structure of T5Fen in complex intact substrate and metal ions. 7FJS ; 2.9 ; Crystal structure of T6 Fab bound to theSARS-CoV-2 RBD of B.1.351 4GIG ; 1.8 ; crystal structure of T69A mutant of trapped Dnae intein precursor 1XMQ ; 3.0 ; Crystal Structure of t6A37-ASLLysUUU AAA-mRNA Bound to the Decoding Center 7FCF ; 3.3 ; Crystal structure of T6SS Hcp protein 3U66 ; 2.63 ; Crystal structure of T6SS SciP/TssL from Escherichia Coli Enteroaggregative 042 6QX5 ; 3.6 ; Crystal structure of T7 bacteriophage portal protein, 12mer, closed valve 6QWP ; 3.4 ; Crystal structure of T7 bacteriophage portal protein, 13mer, closed valve 6TJP ; 3.74 ; Crystal structure of T7 bacteriophage portal protein, 13mer, closed valve - P212121 2PFJ ; 3.1 ; Crystal Structure of T7 Endo I resolvase in complex with a Holliday Junction 3VTW ; 2.52 ; Crystal structure of T7-tagged Optineurin LIR-fused human LC3B_2-119 5M6C ; 3.0 ; CRYSTAL STRUCTURE OF T71N MUTANT OF HUMAN HIPPOCALCIN 5BNK ; 1.8 ; Crystal structure of T75C mutant of Triosephosphate isomerase from Plasmodium falciparum 5BMX ; 1.8 ; Crystal structure of T75N mutant of Triosephosphate isomerase from Plasmodium falciparum 4ZZ9 ; 1.81 ; Crystal structure of T75S mutant of Triosephosphate isomerase from Plasmodium falciparum 5BMW ; 1.86 ; Crystal structure of T75V mutant of Triosephosphate isomerase from Plasmodium falciparum 4OGH ; 2.98 ; Crystal structure of T877A-AR-LBD 4OH5 ; 2.0 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4OH6 ; 3.56 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4OHA ; 1.42 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4OIL ; 2.51 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4OIU ; 3.01 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4OJ9 ; 3.31 ; Crystal structure of T877A-AR-LBD bound with co-regulator peptide 4JK0 ; 2.3 ; Crystal structure of T89Q-mutant of RNA silencing suppressor p19 with 2nt-5'-overhanging double-helical RNA 21mer pUUUG(CUG)5CU 3COD ; 2.7 ; Crystal Structure of T90A/D115A mutant of Bacteriorhodopsin 5DYS ; 2.3 ; Crystal Structure of T94I rhodopsin mutant 5EN0 ; 2.81 ; Crystal Structure of T94I rhodopsin mutant 2FSN ; 2.9 ; Crystal structure of Ta0583, an archaeal actin homolog, complex with ADP 2FSJ ; 1.9 ; Crystal structure of Ta0583, an archaeal actin homolog, native data 2FSK ; 2.1 ; Crystal structure of Ta0583, an archaeal actin homolog, SeMet data 1XPP ; 1.6 ; Crystal Structure of TA1416,DNA-directed RNA polymerase subunit L, from Thermoplasma acidophilum 3U3N ; 1.651 ; Crystal structure of tablysin-15 1J4J ; 2.55 ; Crystal Structure of Tabtoxin Resistance Protein (form II) complexed with an Acyl Coenzyme A 1GHE ; 1.55 ; CRYSTAL STRUCTURE OF TABTOXIN RESISTANCE PROTEIN COMPLEXED WITH AN ACYL COENZYME A 6H0V ; 2.2 ; Crystal structure of tabun surrogate NEDPA inhibited recombinant human bile salt activated lipase 2FV5 ; 2.1 ; Crystal structure of TACE in complex with IK682 2FV9 ; 2.02 ; Crystal structure of TACE in complex with JMV 390-1 2DDF ; 1.7 ; Crystal structure of TACE in complex with TAPI-2 3G42 ; 2.1 ; Crystal Structure of TACE with Tryptophan Sulfonamide Derivative Inhibitor 7R2D ; 1.61 ; Crystal structure of TaCel5A E133A variant in complex with cellopentaose 7R29 ; 1.28 ; Crystal structure of TaCel5A E133Q Y200F variant with covalently linked cellotriose 7R2C ; 1.48 ; Crystal structure of TaCel5A Y200F variant in complex with 2-chloro-4-nitrophenyl-glucose 5FVJ ; 1.7 ; Crystal structure of TacT (tRNA acetylating toxin) from Salmonella 6G96 ; 1.47661 ; Crystal structure of TacT3 (tRNA acetylating toxin) from Salmonella 8E2P ; 2.72 ; Crystal structure of TadA*8.20 in a complex with ssDNA 8E2R ; 2.22 ; Crystal structure of TadAC-1.14 8E2Q ; 2.34 ; Crystal structure of TadAC-1.17 in a complex with ssDNA 8E2S ; 2.95 ; Crystal structure of TadAC-1.19 4YYM ; 1.5 ; Crystal structure of TAF1 BD2 Bromodomain bound to a butyryllysine peptide 4YYN ; 1.85 ; Crystal structure of TAF1 BD2 Bromodomain bound to a crotonyllysine peptide 4OY2 ; 2.9 ; Crystal structure of TAF1-TAF7, a TFIID subcomplex 6MIP ; 2.0 ; Crystal structure of Taf14 YEATS domain G82A mutant 6MIN ; 1.9 ; Crystal structure of Taf14 YEATS domain G82A mutant in complex with histone H3K9cr 5D7E ; 1.9 ; Crystal structure of Taf14 YEATS domain in complex with H3K9ac 7F4A ; 2.0 ; Crystal structure of Taf14 YEATS domain in complex with H3K9bz peptide 6MIQ ; 1.75 ; Crystal structure of Taf14 YEATS domain in complex with histone H3K9bu 5IOK ; 2.22 ; Crystal structure of Taf14 YEATS domain in complex with histone H3K9cr 6MIO ; 1.85 ; Crystal structure of Taf14 YEATS domain in complex with histone H3K9pr 5WXH ; 1.297 ; Crystal structure of TAF3 PHD finger bound to H3K4me3 5XMY ; 1.699 ; Crystal structure of TAF3 PHD finger bound to H3K4me3Q5ser 5C13 ; 2.101 ; Crystal Structure of TAF3 PHD finger bound to histone H3C4me3 peptide 7MPK ; 2.993 ; Crystal structure of TagA with UDP-GlcNAc 7N41 ; 3.3 ; Crystal structure of TagA with UDP-ManNAc 3KAO ; 1.9 ; Crystal structure of tagatose 1,6-diphosphate aldolase from Staphylococcus aureus 3MYP ; 2.99 ; Crystal structure of tagatose-1,6-bisphosphate aldolase from Staphylococcus aureus 3MYO ; 2.5 ; Crystal structure of tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes 3C3J ; 1.8 ; Crystal structure of tagatose-6-phosphate ketose/aldose isomerase from Escherichia coli 3M24 ; 2.2 ; Crystal structure of TagBFP fluorescent protein 6IZ8 ; 2.7 ; Crystal Structure of TagF from Pseudomonas aeruginosa 3M22 ; 2.2 ; Crystal structure of TagRFP fluorescent protein 4QNL ; 2.411 ; Crystal structure of tail fiber protein gp63.1 from E. coli phage G7C 5Z4C ; 1.65 ; Crystal structure of Tailor 8OQ0 ; 2.59 ; Crystal structure of tailspike depolymerase (APK09_gp48) from Acinetobacter phage APK09 8OQ1 ; 1.55 ; Crystal structure of tailspike depolymerase (APK14_gp49) from Acinetobacter phage vB_AbaP_APK14 8D9Y ; 2.2 ; Crystal structure of Taipan alpha-neurotoxin in complex with Centi-3FTX-D09 antibody 3VC0 ; 2.15 ; Crystal structure of Taipoxin beta subunit isoform 1 3VBZ ; 1.76 ; Crystal structure of Taipoxin beta subunit isoform 2 7D0V ; 2.175 ; Crystal structure of Taiwan cobra 5'-nucleotidase 2BHI ; 2.31 ; Crystal structure of Taiwan cobra cardiotoxin A3 complexed with sulfogalactoceramide 5V5N ; 2.006 ; Crystal structure of Takinib bound to TAK1 4OSJ ; 2.79 ; Crystal structure of TAL effector reveals the recognition between asparagine and adenine 4OSK ; 2.398 ; Crystal structure of TAL effector reveals the recognition between asparagine and guanine 4OSL ; 2.447 ; Crystal structure of TAL effector reveals the recognition between histidine and guanine 3CQ0 ; 1.9 ; Crystal Structure of TAL2_YEAST 7WVR ; 1.41 ; Crystal structure of Talaromyces leycettanus JCM12802 expansin 6FQQ ; 3.25 ; Crystal structure of TALE homeobox domain transcription factor TGIF1 double alanine mutant bound to its consensus DNA 6FQP ; 2.42 ; Crystal structure of TALE homeobox domain transcription factor TGIF1 with its consensus DNA 4F7G ; 2.05 ; Crystal structure of talin autoinhibition complex 8IVZ ; 2.8 ; Crystal structure of talin R7 in complex with KANK1 KN motif 7ZW4 ; 2.72 ; Crystal structure of Talin R7R8 domains with Caskin-2 LD-peptide 1SJ7 ; 2.5 ; Crystal Structure of Talin Rod 482-655 6TWN ; 2.28 ; Crystal structure of Talin1 R7R8 in complex with CDK1 (206-223) 3G9W ; 2.165 ; Crystal Structure of Talin2 F2-F3 in Complex with the Integrin Beta1D Cytoplasmic Tail 4HVM ; 2.704 ; Crystal structure of tallysomycin biosynthesis protein TlmII 7ECD ; 2.6 ; Crystal structure of Tam41 from Firmicutes bacterium, complex with CTP-Mg 4C00 ; 2.25 ; Crystal structure of TamA from E. coli 4QAY ; 2.35 ; Crystal structure of TamA POTRA domains 4BZA ; 1.839 ; Crystal structure of TamA POTRA domains 1-3 from E. coli 2EGO ; 1.8 ; Crystal Structure of Tamalin PDZ Domain 2EGN ; 2.4 ; Crystal Structure of Tamalin PDZ Domain in Complex with mGluR5 C-terminal Peptide 2EGK ; 2.85 ; Crystal Structure of Tamalin PDZ-Intrinsic Ligand Fusion Protein 7MWS ; 1.8 ; Crystal structure of tamarin CD81 large extracellular loop 4B15 ; 1.49 ; crystal structure of tamarind chitinase like lectin (TCLL) 4B16 ; 1.61 ; crystal structure of tamarind chitinase like lectin (TCLL) complexed with N-acetyl glucosamine (GlcNAc) 7Q8A ; 2.05 ; Crystal structure of tandem domain RRM1-2 of FUBP-interacting repressor (FIR) bound to FUSE ssDNA fragment 3HFH ; 2.703 ; Crystal structure of tandem FF domains 5YYA ; 1.7 ; Crystal structure of Tandem Tudor Domain of human UHRF1 5YY9 ; 2.653 ; Crystal structure of Tandem Tudor Domain of human UHRF1 in complex with LIG1-K126me3 4QQD ; 2.28 ; Crystal Structure of tandem tudor domains of UHRF1 in complex with a small organic molecule 1CFB ; 2.0 ; CRYSTAL STRUCTURE OF TANDEM TYPE III FIBRONECTIN DOMAINS FROM DROSOPHILA NEUROGLIAN AT 2.0 ANGSTROMS 7PB9 ; 1.8 ; Crystal structure of tandem WH domains of Vps25 from Odinarchaeota 3NFI ; 1.9 ; Crystal structure of tandem winged helix domain of RNA polymerase I subunit A49 3NFH ; 2.17 ; Crystal structure of tandem winged helix domain of RNA polymerase I subunit A49 (P4) 5CQ2 ; 1.4 ; Crystal Structure of tandem WW domains of ITCH in complex with TXNIP peptide 1P47 ; 2.2 ; Crystal Structure of tandem Zif268 molecules complexed to DNA 2QKD ; 2.0 ; Crystal structure of tandem ZPR1 domains 4TOS ; 1.802 ; Crystal structure of Tankyrase 1 with 355 4MSG ; 1.8 ; Crystal structure of tankyrase 1 with compound 22 4I9I ; 2.4 ; Crystal structure of tankyrase 1 with compound 4 4TOR ; 1.501 ; Crystal structure of Tankyrase 1 with IWR-8 4DVI ; 1.9 ; Crystal structure of Tankyrase 1 with IWR2 4HLM ; 1.95 ; Crystal structure of Tankyrase 2 in complex with 3',4'-Dihydroxyflavone 4HLG ; 2.0 ; Crystal structure of Tankyrase 2 in complex with 3'-hydroxyflavone 4HLH ; 1.75 ; Crystal structure of Tankyrase 2 in complex with 4'-fluoroflavone 4HLK ; 2.0 ; Crystal structure of Tankyrase 2 in complex with 4'-methylflavone 4HLF ; 2.15 ; Crystal structure of Tankyrase 2 in complex with 7,3',4'-Trihydroxyflavone 4HMH ; 2.3 ; Crystal structure of tankyrase 2 in complex with 7,3-dihydroxyflavone 4OA7 ; 2.301 ; Crystal structure of Tankyrase1 in complex with IWR1 4JUI ; 1.7 ; crystal structure of tannase from from Lactobacillus plantarum 3WA6 ; 1.8 ; Crystal structure of tannase from Lactobacillus plantarum in the orthorhombic crystal 6EU8 ; 1.47 ; Crystal structure of Tannerella forsythia Apo HmuY analog (TFO) 6QRO ; 2.1 ; Crystal structure of Tannerella forsythia glutaminyl cyclase 8OQW ; 2.05 ; Crystal structure of Tannerella forsythia MurNAc kinase MurK 8OW9 ; 2.7 ; Crystal structure of Tannerella forsythia MurNAc kinase MurK in complex with N-acetylmuramic acid (MurNAc) 8OQX ; 2.12 ; Crystal structure of Tannerella forsythia MurNAc kinase MurK with a phosphate analogue 8OQK ; 2.0 ; Crystal structure of Tannerella forsythia sugar kinase K1058 8OW7 ; 3.06 ; Crystal structure of Tannerella forsythia sugar kinase K1058 in complex with N-acetylmuramic acid (MurNAc) 7OW1 ; 1.4 ; Crystal Structure of TAP01 in complex with amyloid beta peptide 7OXN ; 2.5 ; Crystal Structure of TAP01 in complex with cyclised amyloid beta peptide 7TUE ; 3.1 ; Crystal structure of Tapasin in complex with HLA-B*44:05 (T73C) 7TUF ; 2.8 ; Crystal structure of Tapasin in complex with PaSta1-Fab 7TUG ; 3.9 ; Crystal structure of Tapasin in complex with PaSta2-Fab 5WER ; 3.412 ; Crystal Structure of TAPBPR and H2-Dd complex 2DQA ; 1.6 ; Crystal Structure of Tapes japonica Lysozyme 1EWR ; 3.19 ; CRYSTAL STRUCTURE OF TAQ MUTS 5O0U ; 0.99 ; Crystal structure of tarantula venom peptide Protoxin-II 5T20 ; 1.91 ; Crystal Structure of Tarin Lectin bound to Trimannose 4WAC ; 2.4 ; Crystal Structure of TarM 4WAD ; 2.8 ; Crystal Structure of TarM with UDP-GlcNAc 3FMX ; 2.95 ; Crystal structure of Tartrate dehydrogenase from Pseudomonas putida complexed with NADH 3FLK ; 2.0 ; Crystal Structure of Tartrate Dehydrogenase from Pseudomonas putida in complex with NADH, oxalate and metal ion 4P5U ; 2.0 ; Crystal structure of TatD 1XWY ; 2.0 ; Crystal structure of tatD deoxyribonuclease from Escherichia coli K12 at 2.0 A resolution 4PE8 ; 2.894 ; Crystal structure of TatD in complex with trinucleotide DNA 1J6O ; 1.8 ; Crystal structure of TatD-related deoxyribonuclease (TM0667) from Thermotoga maritima at 1.8 A resolution 7EYC ; 2.49 ; Crystal structure of Tau and acetylated tau peptide antigen 1OS7 ; 2.5 ; Crystal structure of TauD with iron, alpha-ketoglutarate and Taurine bound at pH 7.5 5VN6 ; 2.1 ; Crystal structure of Taurine dioxygenase from Burkholderia ambifaria 2ZI0 ; 2.82 ; Crystal structure of Tav2b/siRNA complex 3SFJ ; 1.24 ; Crystal Structure of Tax-Interacting Protein-1 (TIP-1) PDZ domain bound to iCAL36 inhibitor peptide 4E3B ; 1.5 ; Crystal structure of Tax-Interacting Protein-1 (TIP-1) PDZ domain bound to iCAL36-L (ANSRWPTSIL) peptide 5Z7G ; 2.301 ; Crystal structure of TAX1BP1 SKICH region in complex with NAP1 5YT6 ; 1.501 ; Crystal structure of TAX1BP1 UBZ2 in complex with mono-ubiquitin 3P5P ; 1.816 ; Crystal Structure of Taxadiene Synthase from Pacific Yew (Taxus brevifolia) in complex with Mg2+ and 13-aza-13,14-dihydrocopalyl diphosphate 3P5R ; 2.247 ; Crystal Structure of Taxadiene Synthase from Pacific Yew (Taxus brevifolia) in complex with Mg2+ and 2-fluorogeranylgeranyl diphosphate 7R28 ; 1.22 ; Crystal structure of Ta_Cel5A E133Q Y200F variant, apoform 7R2A ; 1.3 ; Crystal structure of Ta_Cel5A Y200F variant, apoform 6JM5 ; 1.6 ; Crystal structure of TBC1D23 C terminal domain 6JL7 ; 2.5 ; crystal structure of TBC1D23 N terminal domain 4LG9 ; 2.28 ; Crystal structure of TBL1XR1 WD40 repeats 3OCI ; 1.899 ; Crystal structure of TBP (TATA box binding protein) 2CZR ; 2.3 ; Crystal structure of TBP-interacting protein (Tk-TIP26) and implications for its inhibition mechanism of the interaction between TBP and TATA-DNA 4I15 ; 1.65 ; Crystal structure of TbrPDEB1 6IF4 ; 1.934 ; Crystal structure of Tbtudor 5BQD ; 2.583 ; Crystal Structure of TBX5 (1-239) Dimer 6H12 ; 2.2 ; Crystal structure of TcACHE complexed to 1-(6-Oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-(((1-(2-((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)methyl)pyridin-2-yl)urea 6H14 ; 1.86 ; Crystal structure of TcACHE complexed to 1-(6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)-3-(4-(1-(2-((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)pyridin-2-yl)urea 6H13 ; 2.8 ; Crystal structure of TcACHE complexed to1-(4-((Methyl((1-(2-((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methyl)pyridin-2-yl)-3-(6-oxo-1,2,3,4,6,10b-hexahydropyrido[2,1-a]isoindol-10-yl)urea 6NEY ; 1.68 ; Crystal structure of TcBDF5, a bromodomain containing protein from Trypanosoma cruzi 6JTD ; 1.85 ; Crystal structure of TcCGT1 in complex with UDP 4NBZ ; 1.75 ; Crystal Structure of TcdA-A1 Bound to A26.8 VHH 4NC1 ; 2.61 ; Crystal Structure of TcdA-A2 Bound to A20.1 VHH and A26.8 VHH 4NC0 ; 2.3 ; Crystal Structure of TcdA-A2 Bound to A26.8 VHH 4NBY ; 2.08 ; Crystal Structure of TcdA-A2 Bound to Two Molecules of A20.1 VHH 4O9Y ; 3.502 ; Crystal Structure of TcdA1 4NC2 ; 2.5 ; Crystal structure of TcdB-B1 bound to B39 VHH 4O9X ; 2.17 ; Crystal Structure of TcdB2-TccC3 6H6G ; 3.004 ; Crystal Structure of TcdB2-TccC3 without hypervariable C-terminal region 6SUP ; 2.0 ; Crystal Structure of TcdB2-TccC3-Cdc42 6SUQ ; 3.7 ; Crystal Structure of TcdB2-TccC3-TEV 5N12 ; 1.38 ; Crystal structure of TCE treated rPPEP-1 6FSJ ; 1.2 ; Crystal structure of TCE-treated Lysozyme 6FSM ; 1.39 ; Crystal structure of TCE-treated Thermolysin 1JL2 ; 1.76 ; Crystal structure of TCEO RNase H-a chimera combining the folding core from T. thermophilus RNase H and the remaining region of E. coli RNase H 3TVQ ; 1.67 ; Crystal structure of TCM Aro/Cyc complexed with trans-dihidroquercetin 3ATY ; 1.7 ; Crystal structure of TcOYE 3ATZ ; 2.04 ; Crystal structure of TcOYE with pHBA 5ZKT ; 1.74 ; Crystal structure of TCP domain of PCF6 in Oryza sativa 4MPZ ; 2.701 ; Crystal structure of TCP10c domain of Drosophila melanogaster Sas-4 3HRV ; 1.5 ; Crystal structure of TcpA, a Type IV pilin from Vibrio cholerae El Tor biotype 7F5N ; 1.93 ; Crystal structure of TCPTP catalytic domain 5D2L ; 3.511 ; Crystal structure of TCR C7 in complex with HCMV NLV epitope presented by HLA-A2 5E6I ; 4.0 ; Crystal structure of TCR PF8 in complex with flu MP(58-66) epitope presented by HLA-A2 7EA6 ; 2.18 ; Crystal structure of TCR-017 ectodomain 6BNK ; 3.2 ; Crystal structure of TCR-MHC-like molecule 6BNL ; 2.6 ; Crystal structure of TCR-MHC-like molecule 4NQC ; 2.5 ; Crystal structure of TCR-MR1 ternary complex and covalently bound 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil 4NQD ; 2.2 ; Crystal structure of TCR-MR1 ternary complex and non-covalently bound 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil 4NQE ; 2.1 ; Crystal structure of TCR-MR1 ternary complex bound to 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil 7F5K ; 3.00003 ; Crystal structure of TCR4-1 ectodomain 4MVE ; 2.11 ; Crystal structure of Tcur_1030 protein from Thermomonospora curvata 7ALR ; 1.93 ; Crystal structure of TD1-gatorbulin1 complex 7ODN ; 2.33 ; Crystal structure of TD1-mebendazole complex 5MDI ; 2.1 ; Crystal structure of TDP-43 N-terminal domain at 2.1 A resolution 1PN3 ; 2.8 ; Crystal Structure of TDP-epi-Vancosaminyltransferase GtfA in complexes with TDP and the acceptor substrate DVV. 1PNV ; 2.8 ; Crystal Structure of TDP-epi-Vancosaminyltransferase GtfA in complexes with TDP and Vancomycin 2FS5 ; 1.95 ; Crystal structure of TDP-fucosamine acetyltransferase (WecD)- apo form 2FT0 ; 1.66 ; Crystal structure of TDP-fucosamine acetyltransferase (WecD)- complex with acetyl-CoA 6DJF ; 1.67 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ502 6DJG ; 1.88 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ503 6DJH ; 1.918 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ515 6MJ5 ; 1.853 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ519 6MYZ ; 1.661 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ520 6DJI ; 1.75 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ522 6N0O ; 1.943 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ523 6MZ0 ; 1.969 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ530 6DJJ ; 1.741 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ532 6N0R ; 1.544 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ572 6N0N ; 1.477 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ574 6N0D ; 1.453 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ575 6N17 ; 1.639 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ577 6N19 ; 1.501 ; Crystal structure of Tdp1 catalytic domain in complex with compound XZ578 6DJE ; 1.705 ; Crystal structure of Tdp1 catalytic domain in complex with Sigma Aldrich compound CDS010292 6DIH ; 1.78 ; Crystal structure of Tdp1 catalytic domain in complex with Sigma Aldrich compound PH004941 6DIE ; 1.78 ; Crystal structure of Tdp1 catalytic domain in complex with Zenobia fragment benzene-1,2,4-tricarboxylic acid from single soak 6DHU ; 1.63 ; Crystal structure of Tdp1 catalytic domain in complex with Zenobia fragment ZT0911 from cocktail soak 6DJD ; 1.777 ; Crystal structure of Tdp1 catalytic domain in complex with Zenobia fragment ZT1982 (single soak) 6DIM ; 1.81 ; Crystal structure of Tdp1 catalytic domain in complex with Zenobia fragment ZT1982 from cocktail soak 8CW2 ; 1.811 ; Crystal structure of TDP1 complexed with compound XZ760 8CVQ ; 1.65 ; Crystal structure of TDP1 complexed with compound XZ761 7UFY ; 1.584 ; Crystal structure of TDP1 complexed with compound XZ766 7UFZ ; 1.559 ; Crystal structure of TDP1 complexed with compound XZ768 4GEW ; 2.35 ; Crystal structure of TDP2 from C. elegans 4F1H ; 1.662 ; Crystal structure of TDP2 from Danio rerio complexed with a single strand DNA 5GIJ ; 3.0 ; Crystal structure of TDR-TDIF complex 3FDR ; 1.75 ; Crystal structure of TDRD2 6LYH ; 3.15 ; Crystal structure of tea N9-methyltransferase CkTcS in complex with SAH and 1,3,7-trimethyluric acid 6CDY ; 2.32 ; Crystal structure of TEAD complexed with its inhibitor 8Q68 ; 1.58 ; Crystal structure of TEAD1-YBD in complex with irreversible compound SWTX-143 7CMM ; 3.5 ; Crystal structure of TEAD1-YBD in complex with K-975 6UYB ; 1.543 ; Crystal structure of TEAD2 bound to Compound 1 6UYC ; 1.658 ; Crystal structure of TEAD2 bound to Compound 2 7T2J ; 2.7 ; Crystal Structure of TEAD2 in a covalent complex with TED-642 7T2K ; 2.34 ; Crystal Structure of TEAD2 in a covalent complex with TED-661 7T2L ; 2.15 ; Crystal Structure of TEAD2 in a covalent complex with TED-662 7T2M ; 2.81 ; Crystal Structure of TEAD2 in a covalent complex with TED-664 8A0V ; 2.699 ; Crystal structure of TEAD3 in complex with CPD2 8A0U ; 2.895 ; Crystal structure of TEAD3 in complex with CPD4 8P0M ; 1.961 ; Crystal structure of TEAD3 in complex with IAG933 7CNL ; 2.6 ; Crystal structure of TEAD3 in complex with VT105 6L9F ; 2.555 ; Crystal structure of TEAD4 in complex with a novel FAM181A peptide 8C17 ; 2.25 ; Crystal structure of TEAD4 in complex with peptide 1 8A8R ; 1.696 ; Crystal structure of TEAD4 in complex with YAP peptide 8CAA ; 1.999 ; Crystal structure of TEAD4 in complex with YTP-13 1HXC ; 2.25 ; CRYSTAL STRUCTURE OF TEAS C440W 1HX9 ; 3.5 ; CRYSTAL STRUCTURE OF TEAS W273S FORM 1 1HXA ; 2.32 ; CRYSTAL STRUCTURE OF TEAS W273S FORM 2 1HXG ; 2.9 ; CRYSTAL STRUCTURE OF TEAS W273S/C440W 3HFP ; 2.098 ; Crystal structure of teh complex between CA II and the activator MAI 3M70 ; 1.95 ; Crystal Structure of TehB from Haemophilus influenzae 3CGG ; 2.0 ; Crystal structure of TehB-like SAM-dependent methyltransferase (NP_600671.1) from Corynebacterium glutamicum ATCC 13032 Kitasato at 2.00 A resolution 6TOV ; 0.767 ; Crystal Structure of Teicoplanin Aglycone 1JI7 ; 1.45 ; Crystal Structure of TEL SAM Polymer 1YIJ ; 2.6 ; Crystal Structure Of Telithromycin Bound To The G2099A Mutant 50S Ribosomal Subunit Of Haloarcula Marismortui 3P06 ; 2.1 ; Crystal structure of Tellina virus 1 VP4 protease in the form of an intra-molecular(cis)acyl-enzyme complex. 3FA1 ; 1.5 ; Crystal Structure of Tellurium Derivatized DNA 3K10 ; 2.5 ; Crystal structure of telomere capping protein Stn1 from Saccharomyces cerevisiae 3K0X ; 1.7 ; Crystal structure of telomere capping protein Ten1 from Saccharomyces pombe 1JTG ; 1.73 ; CRYSTAL STRUCTURE OF TEM-1 BETA-LACTAMASE / BETA-LACTAMASE INHIBITOR PROTEIN COMPLEX 4OQG ; 2.4 ; Crystal structure of TEM-1 beta-lactamase in complex with boron-based inhibitor EC25 6B2N ; 2.0 ; Crystal structure of TEM-1 beta-lactamase mutant M182N 1LHY ; 2.0 ; Crystal structure of TEM-30 beta-Lactamase at 2.0 Angstrom 1LI0 ; 1.61 ; Crystal structure of TEM-32 beta-Lactamase at 1.6 Angstrom 1LI9 ; 1.52 ; Crystal structure of TEM-34 beta-Lactamase at 1.5 Angstrom 1JWZ ; 1.8 ; Crystal structure of TEM-64 beta-lactamase in complex with a boronic acid inhibitor (105) 1YT4 ; 1.4 ; Crystal structure of TEM-76 beta-lactamase at 1.4 Angstrom resolution 5HVI ; 1.64 ; Crystal structure of TEM1 beta-lactamase 5HW1 ; 1.7 ; Crystal structure of TEM1 beta-lactamase in the presence of 1.2 MPa xenon 5HW5 ; 1.41 ; Crystal structure of TEM1 beta-lactamase in the presence of 2.0 MPa xenon 5IQ8 ; 2.06 ; Crystal structure of TEM1 beta-lactamase mutant A224C/G283C disulfide 6APA ; 1.86 ; Crystal structure of TEM1 beta-lactamase mutant I263A 6AYK ; 1.44 ; Crystal structure of TEM1 beta-lactamase mutant I263A in the presence of 1.2 MPa xenon 5KKF ; 1.82 ; Crystal structure of TEM1 beta-lactamase mutant I263L 5KPU ; 1.5 ; Crystal structure of TEM1 beta-lactamase mutant I263L in the presence of 1.2 MPa xenon 5I52 ; 1.75 ; Crystal structure of TEM1 beta-lactamase mutant I263N 5I63 ; 1.95 ; Crystal structure of TEM1 beta-lactamase mutant I263N in the presence of 1.2 MPa xenon 1HTZ ; 2.4 ; CRYSTAL STRUCTURE OF TEM52 BETA-LACTAMASE 2RD3 ; 2.7 ; Crystal structure of TenA homologue (HP1287) from Helicobacter pylori 3TES ; 2.5 ; Crystal Structure of Tencon 4LPW ; 2.8 ; Crystal structure of TENCON variant A6 4LPX ; 1.9 ; Crystal structure of TENCON variant D4 4LPY ; 1.92 ; Crystal structure of TENCON variant G10 4LPU ; 3.4 ; Crystal structure of TENCON variant P40AR2-32R2 4LPV ; 1.8 ; Crystal structure of TENCON variant P41BR3-42 1OK0 ; 0.93 ; Crystal Structure of Tendamistat 3QH2 ; 2.231 ; Crystal structure of TenI from Bacillus subtilis complexed with product cThz-P 1WVH ; 1.5 ; Crystal structure of tensin1 PTB domain 2PN5 ; 2.698 ; Crystal Structure of TEP1r 4D94 ; 2.7 ; Crystal Structure of TEP1r 4LNV ; 3.7 ; Crystal Structure of TEP1s 8I98 ; 2.54 ; Crystal structure of TePixD Y8F 6WF4 ; 1.97 ; Crystal Structure of TerC Co-crystallized with Polyporic Acid 7VJU ; 2.27 ; Crystal Structure of terephthalate dioxygenase from Comamonas testosteroni KF1 4DYR ; 1.65 ; Crystal structure of terminase small subunit gp1 of the bacterial virus sf6 with CAPS PH10.5 buffer 1TMM ; 1.25 ; Crystal structure of ternary complex of E.coli HPPK(W89A) with MGAMPCPP and 6-Hydroxymethylpterin 4H4L ; 2.5 ; Crystal Structure of ternary complex of HutP(HutP-L-His-Zn) 6DF3 ; 2.15 ; Crystal structure of ternary complex of IL-24 with soluble receptors IL-22RA and IL-20RB 4OYT ; 2.4 ; Crystal structure of ternary complex of Plasmodium vivax SHMT with D-serine and folinic acid 4TN4 ; 2.2 ; Crystal structure of ternary complex of Plasmodium vivax SHMT with glycine and a novel pyrazolopyran 33G: (4S)-6-amino-4-(5-cyano-3'-fluorobiphenyl-3-yl)-4-cyclobutyl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile 4TMR ; 2.7 ; Crystal structure of ternary complex of Plasmodium vivax SHMT with glycine and a novel pyrazolopyran 99S: methyl 5-{3-[(4S)-6-amino-5-cyano-3-methyl-4-(propan-2-yl)-2,4-dihydropyrano[2,3-c]pyrazol-4-yl]-5-cyanophenyl}thiophene-2-carboxylate . 7ZUS ; 2.26 ; Crystal structure of ternary complex of Pol theta polymerase domain 5MDH ; 2.4 ; CRYSTAL STRUCTURE OF TERNARY COMPLEX OF PORCINE CYTOPLASMIC MALATE DEHYDROGENASE ALPHA-KETOMALONATE AND TNAD AT 2.4 ANGSTROMS RESOLUTION 1MMK ; 2.0 ; Crystal structure of ternary complex of the catalytic domain of human phenylalanine hydroxylase ((FeII)) complexed with tetrahydrobiopterin and thienylalanine 1MMT ; 2.0 ; Crystal structure of ternary complex of the catalytic domain of human phenylalanine hydroxylase (Fe(II)) complexed with tetrahydrobiopterin and norleucine 4N90 ; 3.3 ; Crystal structure of ternary complex of TRAIL, DR5, and Fab fragment from a DR5 agonist antibody 1LRT ; 2.2 ; CRYSTAL STRUCTURE OF TERNARY COMPLEX OF TRITRICHOMONAS FOETUS INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE: STRUCTURAL CHARACTERIZATION OF NAD+ SITE IN MICROBIAL ENZYME 7DN7 ; 1.7 ; Crystal structure of ternary complexes of lactoperoxidase with hydrogen peroxide at 1.70 A resolution 6P0U ; 3.3 ; Crystal structure of ternary DNA complex "" FX(1-2)-2Xis"" containing E. coli Fis and phage lambda Xis 6P0T ; 3.603 ; Crystal structure of ternary DNA complex ""FX(1-2)-1Xis"" containing E. coli Fis and phage lambda Xis 6P0S ; 2.7 ; Crystal structure of ternary DNA complex ""FX2"" containing E. coli Fis and phage lambda Xis 1H88 ; 2.8 ; CRYSTAL STRUCTURE OF TERNARY PROTEIN-DNA COMPLEX1 1H89 ; 2.45 ; CRYSTAL STRUCTURE OF TERNARY PROTEIN-DNA COMPLEX2 1H8A ; 2.23 ; CRYSTAL STRUCTURE OF TERNARY PROTEIN-DNA COMPLEX3 8T8U ; 2.01 ; Crystal structure of Terrestrivirus full-length Inositol pyrophosphate kinase in complex with ADP 8T8Z ; 2.6 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and myo-(1OH)IP5 8T90 ; 2.3 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and myo-(3OH)IP5 8T91 ; 2.56 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and myo-IP6 8T95 ; 2.61 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and scyllo-(1,2,4,5)-IP4 8T92 ; 2.3 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and scyllo-D-(1,2,3,4)-IP4 8T96 ; 2.36 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and scyllo-IP5 8T97 ; 2.46 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and scyllo-IP6 8T93 ; 1.95 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ADP and scyllo-L-(1,2,3,4)-IP4 8T8W ; 2.0 ; Crystal structure of Terrestrivirus Inositol pyrophosphatase kinase in complex with ATP 8T8V ; 1.96 ; Crystal structure of Terrestrivirus inositol pyrophosphate kinase in complex with ADP 8T8Y ; 2.5 ; Crystal structure of Terrestrivirus inositol pyrophosphate kinase in complex with ADP and 1,4,5-InsP3 8T8X ; 2.59 ; Crystal structure of Terrestrivirus inositol pyrophosphate kinase in complex with AMP-PNP 5HJ5 ; 1.7 ; Crystal structure of tertiary complex of glucosamine-6-phosphate deaminase from Vibrio cholerae with BETA-D-GLUCOSE-6-PHOSPHATE and FRUCTOSE-6-PHOSPHATE 5XDE ; 1.6 ; Crystal structure of tertiary complex of TdsC from Paenibacillus sp. A11-2 with FMN and dibenzothiophene 5XDG ; 1.747 ; Crystal structure of tertiary complex of TdsC from Paenibacillus sp. A11-2 with FMN and dibenzothiophene sulfoxide 5XDD ; 1.9 ; Crystal structure of tertiary complex of TdsC from Paenibacillus sp. A11-2 with FMN and Indole 4JGG ; 1.9 ; Crystal Structure of TesA 5DS0 ; 2.8 ; Crystal structure of TET aminopeptidase from marine sediment archaeon Thaumarchaeota archaeon SCGC AB-539-E09 5D9Y ; 1.971 ; Crystal structure of TET2-5fC complex 5DEU ; 1.801 ; Crystal structure of TET2-5hmC complex 4NM6 ; 2.026 ; Crystal structure of TET2-DNA complex 4HP3 ; 2.05 ; Crystal structure of Tet3 in complex with a CpG dsDNA 4HP1 ; 2.25 ; Crystal structure of Tet3 in complex with a non-CpG dsDNA 6C31 ; 3.0 ; Crystal structure of TetR family protein Rv0078 in complex with DNA 5WM9 ; 1.85 ; Crystal Structure of TetR family regulator Rv0078 from Mycobacterium tuberculosis 5YDP ; 3.091 ; Crystal Structure of TetR Family Repressor AlkX from Dietzia sp. Strain DQ12-45-1b Implicated in Biodegradation of n-Alkanes 1T56 ; 1.7 ; Crystal structure of TetR family repressor M. tuberculosis EthR 2ZB9 ; 2.25 ; Crystal structure of TetR family transcription regulator SCO0332 2ZCX ; 2.22 ; Crystal structure of TetR family transcriptional regulator SCO7815 6RX9 ; 1.8 ; Crystal structure of TetR from Acinetobacter baumannii AYE 3C2B ; 2.1 ; Crystal structure of TetR transcriptional regulator from Agrobacterium tumefaciens 3ON4 ; 1.85 ; Crystal structure of TetR transcriptional regulator from Legionella pneumophila 2Q24 ; 1.8 ; Crystal structure of TetR transcriptional regulator SCO0520 from Streptomyces coelicolor 3FK6 ; 2.1 ; Crystal structure of TetR triple mutant (H64K, S135L, S138I) 3FK7 ; 2.06 ; Crystal structure of TetR triple mutant (H64K, S135L, S138I) in complex with 4-ddma-atc 2NP3 ; 2.35 ; Crystal structure of TetR-family regulator (SCO0857) from Streptomyces coelicolor A3. 2REK ; 1.86 ; Crystal structure of tetR-family transcriptional regulator 2QIB ; 1.7 ; Crystal structure of tetR-family transcriptional regulator from Streptomyces coelicolor 3BNI ; 2.3 ; Crystal structure of TetR-family transcriptional regulator from Streptomyces coelicolor 6RXB ; 2.25 ; Crystal structure of TetR-Q116A from Acinetobacter baumannii AYE in complex with minocycline 8KE8 ; 2.05 ; Crystal structure of TetR-type transcriptional factor NalC from P. aeruginosa 7YOL ; 2.4 ; Crystal structure of tetra mutant (D67E, A68P, L98I, A301S) of O-acetylserine sulfhydrylase from Haemophilus influenzae in complex with high-affinity inhibitory peptide of serine acetyltransferase from Haemophilus influenzae at 2.4 A 7YOK ; 2.799 ; Crystal Structure of Tetra mutant (D67E, A68P, L98I, A301S) tetra mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae at 2.8 A 7YOM ; 2.8 ; Crystal structure of tetra mutant (D67E,A68P,L98I,A301S) of O-acetylserine sulfhydrylase from Salmonella typhimurium in complex with high-affinity inhibitory peptide from serine acetyltransferase of Salmonella typhimurium at 2.8 A 6XI3 ; 2.0 ; Crystal structure of tetra-tandem repeat in extending region of large adhesion protein 6XI1 ; 1.75 ; Crystal structure of tetra-tandem repeat in extending RTX adhesin from Aeromonas hydrophila 5TUE ; 2.1 ; Crystal structure of tetracycline destructase Tet(50) 5TUF ; 2.25 ; Crystal structure of tetracycline destructase Tet(50) in complex with anhydrotetracycline 5TUI ; 1.75 ; Crystal structure of tetracycline destructase Tet(50) in complex with chlortetracycline 5TUK ; 1.85 ; Crystal structure of tetracycline destructase Tet(51) 5TUL ; 2.0 ; Crystal structure of tetracycline destructase Tet(55) 5TUM ; 3.299 ; Crystal structure of tetracycline destructase Tet(56) 6WG9 ; 2.55 ; Crystal structure of tetracycline destructase Tet(X7) 1QPI ; 2.5 ; CRYSTAL STRUCTURE OF TETRACYCLINE REPRESSOR/OPERATOR COMPLEX 3FYG ; 2.2 ; CRYSTAL STRUCTURE OF TETRADECA-(3-FLUOROTYROSYL)-GLUTATHIONE S-TRANSFERASE 3AW7 ; 2.1 ; Crystal structure of tetragonal hen egg white lysozyme at 71.9% relative humidity 3AW6 ; 2.1 ; Crystal structure of tetragonal hen egg white lysozyme at 84.2% relative humidity 1JIS ; 1.9 ; CRYSTAL STRUCTURE OF TETRAGONAL LYSOZYME GROWN AT PH 4.6 1JIY ; 1.9 ; CRYSTAL STRUCTURE OF TETRAGONAL LYSOZYME GROWN IN PRESENCE 20% SORBITOL 1JIT ; 1.9 ; CRYSTAL STRUCTURE OF TETRAGONAL LYSOZYME GROWN IN PRESENCE 30% TREHALOSE 1JJ0 ; 1.9 ; CRYSTAL STRUCTURE OF TETRAGONAL LYSOZYME GROWN IN PRESENCE of 30% SUCROSE 1Y0Y ; 1.6 ; Crystal structure of tetrahedral aminopeptidase from P. horikoshii in complex with amastatin 3VTE ; 2.75 ; Crystal structure of tetrahydrocannabinolic acid synthase from Cannabis sativa 3BXY ; 2.0 ; Crystal structure of tetrahydrodipicolinate N-succinyltransferase from E. coli 1KGQ ; 2.0 ; Crystal Structure of Tetrahydrodipicolinate N-Succinyltransferase in Complex with L-2-aminopimelate and Succinamide-CoA 1KGT ; 2.3 ; Crystal Structure of Tetrahydrodipicolinate N-Succinyltransferase in Complex with Pimelate and Succinyl-CoA 1QST ; 1.7 ; CRYSTAL STRUCTURE OF TETRAHYMENA GCN5 1QSR ; 2.0 ; CRYSTAL STRUCTURE OF TETRAHYMENA GCN5 WITH BOUND ACETYL-COENZYME A 1PU9 ; 2.3 ; Crystal Structure of Tetrahymena GCN5 with Bound Coenzyme A and a 19-residue Histone H3 Peptide 1Q2C ; 2.25 ; Crystal Structure of Tetrahymena GCN5 With Bound Coenzyme A and a 19-residue Histone H4 Peptide 1Q2D ; 2.25 ; Crystal Structure of Tetrahymena GCN5 With Bound Coenzyme A and a 19-residue p53 peptide 1PUA ; 2.3 ; Crystal Structure of Tetrahymena GCN5 with Bound Coenzyme A and a Phosphorylated, 19-residue Histone H3 peptide 1QSN ; 2.2 ; CRYSTAL STRUCTURE OF TETRAHYMENA GCN5 WITH BOUND COENZYME A AND HISTONE H3 PEPTIDE 5DOF ; 1.7 ; Crystal structure of Tetrahymena p19 5DOK ; 2.3 ; Crystal structure of Tetrahymena p45C 5DOI ; 2.2 ; Crystal structure of Tetrahymena p45N and p19 8G2N ; 1.33 ; Crystal structure of Tetrahymena thermophila G-rich DNA with novel ligand PyDH2 6TZZ ; 3.0 ; Crystal Structure of Tetrahymena Thermophila Lipin Phosphatidic Acid Phosphatase with Magnesium 4BHH ; 3.4 ; Crystal structure of tetramer of La Crosse virus nucleoprotein in complex with ssRNA 7AFV ; 2.4 ; Crystal structure of tetrameric beta-2-microglobulin deltaN6 S52C stabilized by a covalent ligand 2GN2 ; 2.5 ; Crystal structure of tetrameric biodegradative threonine deaminase (TdcB) from Salmonella typhimurium in complex with CMP at 2.5A resolution (Hexagonal form) 8RKG ; 2.9 ; Crystal structure of tetrameric collagenase-cleaved Xenopus ZP2-N2N3 (cleaved xZP2-N2N3) 4M7H ; 2.0 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 6ZR4 ; 2.0 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 4M7F ; 2.1 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with bound ManNAc 6ZQR ; 1.93 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with GlcNAc ligand bound 6ZQX ; 1.84 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with N,N'-diacetyl chitobiose ligand bound 6ZR3 ; 1.97 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with N-acetyl-galactosamine-4-sulfate ligand bound 6ZR0 ; 1.94 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with N-acetylalanine ligand bound 6ZQY ; 1.85 ; Crystal structure of tetrameric fibrinogen-like recognition domain of FIBCD1 with Neu5Ac ligand bound 3BJU ; 2.31 ; Crystal Structure of tetrameric form of human lysyl-tRNA synthetase 1X0L ; 1.85 ; Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus 6TX0 ; 2.01 ; Crystal structure of tetrameric human D137N-SAMHD1 (residues 109-626) with XTP, dAMPNPP and Mg 6TXF ; 2.25 ; Crystal structure of tetrameric human D137N-SAMHD1 (residues 109-626) with XTP, dAMPNPP and Mn 6YOM ; 3.25 ; Crystal structure of tetrameric human D137N-SAMHD1 (residues 109-626) with XTP, dATP, dCMPNPP, Mn and Mg 6TXA ; 2.853 ; Crystal structure of tetrameric human D137N-SAMHD1 (residues 109-626) with XTP, dGMPNPP and Mg 6XU1 ; 2.2 ; Crystal structure of tetrameric human H215A-SAMHD1 (residues 109-626) with GTP, dAMPNPP and Mg 7A5Y ; 2.29 ; Crystal structure of tetrameric human H215A-SAMHD1 (residues 109-626) with Rp-dGTP-alphaS (T8T) and Mg 6F6P ; 2.45 ; Crystal structure of tetrameric human Rabin8 GEF domain 6TXC ; 2.84 ; Crystal structure of tetrameric human wt-SAMHD1 (residues 109-626) with GTP, dATP, dCMPNPP and Mg 6TXE ; 3.19 ; Crystal structure of tetrameric human wt-SAMHD1 (residues 109-626) with GTP, dATP, dTMPNPP and Mg 8IQE ; 2.17 ; Crystal structure of tetrameric K2-2 TSP 1VGL ; 2.6 ; Crystal structure of tetrameric KaiB from T.elongatus BP-1 5YIH ; 1.98 ; Crystal structure of tetrameric Nucleoside diphosphate kinase at 1.98 A resolution from Acinetobacter baumannii 6JKD ; 3.9 ; Crystal structure of tetrameric PepTSo2 in I4 space group 6JKC ; 3.5 ; Crystal structure of tetrameric PepTSo2 in P4212 space group 3NDR ; 2.88 ; Crystal structure of tetrameric pyridoxal 4-dehydrogenase from Mesorhizobium loti 2EZV ; 2.4 ; Crystal structure of tetrameric restriction endonuclease SfiI bound to cognate DNA. 2F03 ; 3.05 ; Crystal structure of tetrameric restriction endonuclease SfiI in complex with cognate DNA (partial bound form) 3NSP ; 2.9 ; Crystal structure of tetrameric RXRalpha-LBD 3NSQ ; 2.6 ; Crystal structure of tetrameric RXRalpha-LBD complexed with antagonist danthron 5ZQU ; 2.60039 ; Crystal structure of tetrameric RXRalpha-LBD complexed with partial agonist CBt-PMN 1UB3 ; 1.4 ; Crystal Structure of Tetrameric Structure of Aldolase from thermus thermophilus HB8 1HG3 ; 2.7 ; Crystal structure of tetrameric TIM from Pyrococcus woesei. 7LVY ; 1.85 ; Crystal Structure of Tetur04g02350 7MCO ; 2.0 ; Crystal Structure of Tetur04g02350 3P9U ; 2.81 ; Crystal structure of TetX2 from Bacteroides thetaiotaomicron with substrate analogue 3V3N ; 2.703 ; Crystal structure of TetX2 T280A: an adaptive mutant in complex with minocycline 3V3O ; 2.9 ; Crystal structure of TetX2 T280A: an adaptive mutant in complex with tigecycline 2OCE ; 3.1 ; Crystal structure of Tex family protein PA5201 from Pseudomonas aeruginosa 6HK8 ; 2.111 ; Crystal structure of TEX12 delta-Ctip 6HK9 ; 1.454 ; Crystal structure of TEX12 F102A F109E V116A 6R2F ; 2.29 ; Crystal structure of TEX12 F102A F109E V116A in an alternative conformation 3BYB ; 1.63 ; Crystal structure of Textilinin-1, a Kunitz-type serine protease inhibitor from the Australian Common Brown snake venom 3D65 ; 1.64 ; Crystal structure of Textilinin-1, a Kunitz-type serine protease inhibitor from the Australian Common Brown snake venom, in complex with trypsin 7LBW ; 2.84 ; Crystal structure of TFAM (mitochondrial transcription factor A) bridging two non-sequence specific DNA substrates 7LBX ; 2.7 ; Crystal structure of TFAM (mitochondrial transcription factor A) in complex with LSP 6AJK ; 3.001 ; Crystal structure of TFB1M and h45 in homo sapiens 6AAX ; 2.994 ; Crystal structure of TFB1M and h45 with SAM in homo sapiens 4WFQ ; 2.4 ; Crystal structure of TFIIH subunit 6TRS ; 2.68 ; Crystal structure of TFIIH subunit p52 in complex with p8 6S9J ; 2.698 ; Crystal structure of TfR1 mimicry in complex with GP1 from MACV 4JSB ; 1.87 ; Crystal structure of Tfu_1878, a putative enoyl-CoA hydratase from Thermobifida fusca YX 4OMR ; 1.85 ; Crystal structure of Tfu_1878, a putative enoyl-CoA hydratase from Thermobifida fusca YX in complex with acetoacetyl-CoA 4JVT ; 1.65 ; Crystal structure of Tfu_1878, a putative enoyl-CoA hydratase fromThermobifida fusca YX in complex with CoA 7OU3 ; 1.49 ; Crystal structure of Tga-AGOG, an 8-oxoguanine DNA glycosylase from Thermococcus gammatolerans 5JMS ; 2.3 ; Crystal structure of TgCDPK1 bound to CGP060476 5JN2 ; 2.2 ; Crystal structure of TgCDPK1 bound to NVPACU106 5T6A ; 2.05 ; Crystal Structure of TgCDPK1 from toxoplasma gondii complexed with 5GA 5T6I ; 2.05 ; CRYSTAL STRUCTURE OF TGCDPK1 FROM TOXOPLASMA GONDII COMPLEXED WITH 5GB 5DVR ; 2.4 ; Crystal Structure of TgCDPK1 From Toxoplasma Gondii complexed with GW780159X 5T6K ; 2.4 ; Crystal Structure of TgCDPK1 From Toxoplasma Gondii complexed with GW780159X 4IFG ; 2.11 ; Crystal structure of TgCDPK1 with inhibitor bound 4IH8 ; 2.877 ; Crystal structure of TgCDPK1 with inhibitor bound 4IHP ; 2.27 ; Crystal structure of TgCDPK1 with inhibitor bound 1RW8 ; 2.4 ; Crystal Structure of TGF-beta receptor I kinase with ATP site inhibitor 1PY5 ; 2.3 ; Crystal Structure of TGF-beta receptor I kinase with inhibitor 4KXZ ; 2.83 ; crystal structure of tgfb2 in complex with GC2008. 3FAA ; 3.35 ; Crystal structure of TGFbRI complexed with a 2-aminoimidazole inhibitor 3KCF ; 2.8 ; Crystal structure of TGFbRI complexed with a pyrazolone inhibitor 2X7O ; 3.7 ; Crystal structure of TGFbRI complexed with an indolinone inhibitor 1Q4W ; 1.93 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2,6-DIAMINO-3H-QUINAZOLIN-4-ONE 1R5Y ; 1.2 ; Crystal Structure of TGT in complex with 2,6-Diamino-3H-Quinazolin-4-one Crystallized at PH 5.5 1Q63 ; 1.85 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2,6-Diamino-8-(1H-imidazol-2-ylsulfanylmethyl)-3H-quinazoline-4-one crystallized at pH 5.5 1Q65 ; 2.1 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2,6-DIAMINO-8-(2-dimethylaminoethylsulfanylmethyl)-3H-QUINAZOLIN-4-ONE crystallized at pH 5.5 5UTJ ; 1.549 ; Crystal Structure of TGT in complex with 2,6-dioxy-8-azapurine, 2,6-dioxy-8-azapurine, 2,6-dioxy-8-azapurine 1Q66 ; 1.75 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2-AMINO-6-AMINOMETHYL-8-phenylsulfanylmethyl-3H-QUINAZOLIN-4-ONE crystallized at pH 5.5 1S38 ; 1.81 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2-AMINO-8-METHYLQUINAZOLIN-4(3H)-ONE 1S39 ; 1.95 ; CRYSTAL STRUCTURE OF TGT IN COMPLEX WITH 2-aminoquinazolin-4(3H)-one 1N2V ; 2.1 ; Crystal Structure of TGT in complex with 2-Butyl-5,6-dihydro-1H-imidazo[4,5-d]pyridazine-4,7-dione 5SW3 ; 1.38 ; Crystal Structure of TGT in complex with 3-Pyridinecarboxylic acid, 6-(dimethylamino) 5V3C ; 1.419 ; Crystal structure of TGT in complex with 4-(aminomethane)cyclohexane-1-carboxylic acid 5UTI ; 1.36 ; Crystal Structure of TGT in complex with fragment in preQ1 pocket 5N6F ; 1.1191 ; Crystal structure of TGT in complex with guanine fragment 6FSO ; 1.449 ; Crystal Structure of TGT in complex with methyl({[5-(pyridin-3-yloxy)furan-2-yl]methyl})amine 6RKT ; 1.746 ; Crystal Structure of TGT in complex with N2-methyl-1H,7H,8H-imidazo[4,5-g]quinazoline-2,6-diamine 6RKQ ; 1.665 ; Crystal Structure of TGT in complex with N2-methyl-8-(prop-1-yn-1-yl)-3H,7H,8H-imidazo[4,5-g]quinazoline-2,6-diamine 4N2S ; 3.0 ; Crystal Structure of THA8 in complex with Zm1a-6 RNA 4N2Q ; 2.8 ; Crystal structure of THA8 in complex with Zm4 RNA 4ME2 ; 1.6 ; Crystal Structure of THA8 protein from Brachypodium distachyon 4LEU ; 2.0 ; Crystal Structure of THA8-like protein from Arabidopsis thaliana 8HVE ; 1.13 ; Crystal structure of Thaumatin (1 s) 8HVF ; 1.13 ; Crystal structure of Thaumatin (100 ms) 1LR2 ; 1.8 ; Crystal structure of thaumatin at high hydrostatic pressure 1LR3 ; 1.8 ; Crystal structure of thaumatin at high hydrostatic pressure 4DC6 ; 1.48 ; Crystal Structure of Thaumatin Exposed to Excessive SONICC Imaging Laser Dose. 4AXR ; 1.38 ; CRYSTAL STRUCTURE OF thaumatin FROM A AUTO-HARVESTED CRYSTAL 4AXU ; 1.38 ; CRYSTAL STRUCTURE OF THAUMATIN FROM AN AUTO-HARVESTED CRYSTAL, control experiment 6C5Y ; 2.5 ; Crystal structure of thaumatin from microcrystals 5AMZ ; 1.4 ; Crystal Structure of Thaumatin processed with the CrystalDirect automated mounting and cryo-cooling technology 4DC5 ; 1.48 ; Crystal Structure of Thaumatin Unexposed to Excessive SONICC Imaging Laser Dose. 2O8X ; 3.0 ; Crystal structure of the ""-35 element"" promoter recognition domain of Mycobacterium tuberculosis SigC 4GXX ; 1.799 ; Crystal structure of the ""avianized"" 1918 influenza virus hemagglutinin 4CHD ; 2.4 ; Crystal structure of the '627' domain of the PB2 subunit of Thogoto virus polymerase 1G5C ; 2.1 ; CRYSTAL STRUCTURE OF THE 'CAB' TYPE BETA CLASS CARBONIC ANHYDRASE FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 3KWW ; 2.18 ; Crystal structure of the 'restriction triad' mutant of HLA B*3508, beta-2-microglobulin and EBV peptide 4DMO ; 2.14 ; Crystal structure of the (BACCR)NAT3 arylamine N-acetyltransferase from Bacillus cereus reveals a unique Cys-His-Glu catalytic triad 2EW8 ; 2.1 ; Crystal Structure of the (S)-Specific 1-Phenylethanol Dehydrogenase of the Denitrifying Bacterium Strain EbN1 2EWM ; 2.4 ; Crystal Structure of the (S)-Specific 1-Phenylethanol Dehydrogenase of the Denitrifying Bacterium Strain EbN1 6YSO ; 3.13 ; Crystal structure of the (SR) Ca2+-ATPase solved by vanadium SAD phasing 5A3Q ; 3.05 ; Crystal structure of the (SR) Calcium ATPase E2-vanadate complex bound to thapsigargin and TNP-AMPPCP 5A3S ; 3.3 ; Crystal structure of the (SR) Calcium ATPase E2-vanadate complex bound to thapsigargin and TNP-ATP 5A3R ; 3.05 ; Crystal structure of the (SR) Calcium ATPase E2.BeF3- complex bound to TNP-AMPPCP 5KYM ; 2.8 ; Crystal Structure of the 1-acyl-sn-glycerophosphate (LPA) acyltransferase, PlsC, from Thermotoga maritima 5B0W ; 1.7 ; Crystal structure of the 11-cis isomer of pharaonis halorhodopsin in the absence of halide ions 7Z2M ; 1.899 ; Crystal Structure of the 11.003 Fab in complex with human IL-17A 6DFK ; 3.1 ; Crystal structure of the 11S subunit of the Plasmodium falciparum proteasome, PA28 2QG1 ; 1.4 ; Crystal structure of the 11th PDZ domain of MPDZ (MUPP1) 1X0S ; 2.5 ; Crystal structure of the 13-cis isomer of bacteriorhodopsin 6MQY ; 1.9 ; Crystal Structure of the 13-cis Product of All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E Mutant of Human Cellular Retinoic Acid Binding Protein II Irradiated with 400 nm Laser (30 seconds) at 1.9 Angstrom 6MQZ ; 2.07 ; Crystal Structure of the 13-cis Product of the All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E Mutant of Human Cellular Retinoic Acid Binding Protein II Irradiated with 400 nm Laser (5 minutes) at 2.07 Angstrom 6MPK ; 1.58 ; Crystal Structure of the 13-cis Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E:A32Y Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.58 Angstrom Resolution 8P6I ; 2.5 ; Crystal structure of the 139H2 Fab fragment bound to Muc1 peptide epitope 2QHR ; 2.0 ; Crystal structure of the 13F6-1-2 Fab fragment bound to its Ebola virus glycoprotein peptide epitope. 1IB1 ; 2.7 ; CRYSTAL STRUCTURE OF THE 14-3-3 ZETA:SEROTONIN N-ACETYLTRANSFERASE COMPLEX 5N6N ; 2.29 ; CRYSTAL STRUCTURE OF THE 14-3-3:NEUTRAL TREHALASE NTH1 COMPLEX 5KVJ ; 2.261 ; Crystal structure of the 16-mer doublestranded RNA. Northeast Structural Genomics Consortium (NESG) target RNA1 6BGB ; 1.65 ; Crystal Structure of the 16mer GCAGNCUUAAGUCUGC containing BrPh 7-triazolyl-8-aza-7-deazaadenosine 5BW5 ; 2.5 ; Crystal structure of the 16S rRNA (adenine(1408)-N(1))-methyltransferase D21A mutant from Catenulisporales acidiphilia 4X1O ; 1.7 ; Crystal structure of the 16S rRNA (adenine(1408)-N(1))-methyltransferase from Catenulisporales acidiphilia 5D1H ; 2.803 ; Crystal structure of the 16S rRNA (adenine(1408)-N(1))-methyltransferase W203A mutant from Catenulisporales acidiphilia 5BW4 ; 2.1 ; Crystal structure of the 16S rRNA (adenine(1408)-N(1))-methyltransferase W203A mutant with cosubstrate SAM from Catenulisporales acidiphilia 5D1N ; 2.713 ; Crystal structure of the 16S rRNA (adenine(1408)-N(1))-methyltransferase with its reaction by-product SAH from Catenulisporales acidiphilia 3QWF ; 1.88 ; Crystal structure of the 17beta-hydroxysteroid dehydrogenase from Cochliobolus lunatus 3QWH ; 2.62 ; Crystal structure of the 17beta-hydroxysteroid dehydrogenase from Cochliobolus lunatus in complex with NADPH and kaempferol 1RD8 ; 3.0 ; Crystal Structure of the 1918 Human H1 Hemagglutinin Precursor (HA0) 6RJ7 ; 1.73002 ; Crystal structure of the 19F labelled OXA-48 1DVL ; 2.4 ; CRYSTAL STRUCTURE OF THE 1:1 NETROPSIN-DECAMER D(CCIICICCII)2 COMPLEX WITH ONLY ONE DRUG BOUND AT ONE END 2O5Z ; 2.4 ; Crystal structure of the 1E9 LeuH47Trp/ArgH100Trp Fab 5-beta-androstane-3,17-dione complex 2O5Y ; 2.85 ; Crystal structure of the 1E9 LeuH47Trp/ArgH100Trp Fab progesterone complex 3O2W ; 2.55 ; Crystal structure of the 1E9 PheL89Ser/LeuH47Trp/MetH100bPhe Fab in complex with a 39A11 transition state analog 1P1J ; 1.7 ; Crystal structure of the 1L-myo-inositol 1-phosphate synthase complexed with NADH 1P1K ; 2.1 ; Crystal structure of the 1L-myo-inositol 1-phosphate synthase complexed with NADH in the presence of EDTA 1P1H ; 1.95 ; Crystal structure of the 1L-myo-inositol/NAD+ complex 4NOB ; 1.51 ; Crystal structure of the 1st Ig domain from mouse Polymeric Immunoglobulin receptor [PSI-NYSGRC-006220] 2I1N ; 1.85 ; Crystal structure of the 1st PDZ domain of Human DLG3 4WCI ; 1.65 ; Crystal structure of the 1st SH3 domain from human CD2AP (CMS) in complex with a proline-rich peptide (aa 378-393) from human RIN3 7VW7 ; 3.818 ; Crystal structure of the 2 ADP-AlF4-bound V1 complex 5KNB ; 3.251 ; Crystal structure of the 2 ADP-bound V1 complex 3SKW ; 2.95 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to 2'- Deoxyguanosine, cesium soak 3SKR ; 3.1 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to 2'- Deoxyguanosine, cobalt Hexammine soak 3SKT ; 3.1 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to 2'- Deoxyguanosine, manganese Soak 3SKI ; 2.3 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to 2'-deoxyguanosine 3SKL ; 2.9 ; Crystal structure of the 2'- deoxyguanosine riboswitch bound to 2'-deoxyguanosine, iridium hexammine soak 3SLM ; 2.7 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to 2'-deoxyguanosine-5'-monophosphate 3SKZ ; 2.605 ; Crystal structure of the 2'- deoxyguanosine riboswitch bound to guanosine 3SLQ ; 2.5 ; Crystal structure of the 2'- Deoxyguanosine riboswitch bound to guanosine-5'-monophosphate 1PX5 ; 1.74 ; Crystal structure of the 2'-specific and double-stranded RNA-activated interferon-induced antiviral protein 2'-5'-oligoadenylate synthetase 2JBW ; 2.1 ; Crystal Structure of the 2,6-dihydroxy-pseudo-oxynicotine Hydrolase. 7TXY ; 1.75 ; Crystal structure of the 2-Aminophenol 1,6-dioxygenase from the ARO bacterial microcompartment of Micromonospora rosaria 2C11 ; 2.9 ; Crystal structure of the 2-hydrazinopyridine of semicarbazide- sensitive amine oxidase 2DFU ; 2.2 ; Crystal structure of the 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase from Thermus Thermophilus HB8 7CD0 ; 2.31 ; Crystal structure of the 2-iodoporphobilinogen-bound ES2 intermediate form of human hydroxymethylbilane synthase 7CCY ; 2.4 ; Crystal structure of the 2-iodoporphobilinogen-bound holo form of human hydroxymethylbilane synthase 5XSE ; 1.799 ; Crystal structure of the 2-keto-3-deoxy-6-phosphogluconate aldolase of Zymomonas mobilis ZM4 5XSF ; 1.962 ; Crystal structure of the 2-keto-3-deoxy-6-phosphogluconate aldolase of Zymomonas mobilis ZM4 with 3-phosphoglycerate 1OQF ; 1.93 ; Crystal structure of the 2-methylisocitrate lyase 4D8L ; 2.0 ; Crystal structure of the 2-pyrone-4,6-dicarboxylic acid hydrolase from sphingomonas paucimobilis 4L2M ; 2.25 ; Crystal structure of the 2/2 hemoglobin from Synechococcus sp. PCC 7002 in the cyanomet state and with covalently attached heme 3MLH ; 2.09 ; Crystal structure of the 2009 H1N1 influenza virus hemagglutinin receptor-binding domain 4QNP ; 2.8 ; Crystal structure of the 2009 pandemic H1N1 influenza virus neuraminidase with a neutralizing antibody 7BRO ; 2.0 ; Crystal structure of the 2019-nCoV main protease 7BRP ; 1.8 ; Crystal structure of the 2019-nCoV main protease complexed with Boceprevir 1RYP ; 1.9 ; CRYSTAL STRUCTURE OF THE 20S PROTEASOME FROM YEAST AT 2.4 ANGSTROMS RESOLUTION 1FNT ; 3.2 ; CRYSTAL STRUCTURE OF THE 20S PROTEASOME FROM YEAST IN COMPLEX WITH THE PROTEASOME ACTIVATOR PA26 FROM TRYPANOSOME BRUCEI AT 3.2 ANGSTROMS RESOLUTION 1Z7Q ; 3.22 ; Crystal structure of the 20s proteasome from yeast in complex with the proteasome activator PA26 from Trypanosome brucei at 3.2 angstroms resolution 3QIW ; 3.3 ; Crystal structure of the 226 TCR in complex with MCC-p5E/I-Ek 3QIU ; 2.7 ; Crystal structure of the 226 TCR in complex with MCC/I-Ek 1YA9 ; 2.09 ; Crystal Structure of the 22kDa N-Terminal Fragment of Mouse Apolipoprotein E 3BAP ; 1.85 ; Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor Im 3MDI ; 2.07 ; Crystal Structure of the 25kDa Subunit of Human Cleavage factor Im in complex with RNA UGUAAA 3MDG ; 2.22 ; Crystal Structure of the 25kDa Subunit of Human Cleavage factor Im in complex with RNA UUGUAU 3BHO ; 1.8 ; Crystal Structure of the 25kDa Subunit of Human Cleavage factor Im with Ap4A 1M9B ; 2.6 ; Crystal structure of the 26 kDa glutathione S-transferase from Schistosoma japonicum complexed with gamma-glutamyl[S-(2-iodobenzyl)cysteinyl]glycine 1M99 ; 2.3 ; Crystal structure of the 26 kDa glutathione S-transferase from Schistosoma japonicum complexed with glutathione sulfonic acid 1M9A ; 2.1 ; Crystal structure of the 26 kDa glutathione S-transferase from Schistosoma japonicum complexed with S-hexylglutathione 1U87 ; 3.5 ; Crystal Structure Of The 26 Kda Glutathione S-Transferase Y7F mutant From Schistosoma Japonicum Complexed With Glutathione 1U88 ; 3.5 ; Crystal Structure Of The 26 Kda Glutathione S-Transferase Y7F mutant From Schistosoma Japonicum Complexed With S-Octyl Glutathione 358D ; 2.5 ; CRYSTAL STRUCTURE OF THE 2:1 NETROPSIN-DNA DECAMER D(CBRCCCCIIIII) COMPLEX WITH END-TO-END BINDING 4WZN ; 2.7 ; CRYSTAL STRUCTURE OF THE 2B PROTEIN SOLUBLE DOMAIN FROM HEPATITIS A VIRUS 3QJF ; 2.4 ; Crystal structure of the 2B4 TCR 4P2O ; 2.603 ; Crystal structure of the 2B4 TCR in complex with 2A/I-Ek 3QIB ; 2.7 ; Crystal structure of the 2B4 TCR in complex with MCC/I-Ek 3BQU ; 3.0 ; Crystal Structure of the 2F5 Fab'-3H6 Fab Complex 3AB5 ; 1.18 ; Crystal structure of the 2Fe 2S Ferredoxin from Cyanidioschyzon merolae 3D4I ; 1.95 ; Crystal structure of the 2H-phosphatase domain of Sts-2 3DB1 ; 2.77 ; Crystal structure of the 2H-phosphatase domain of Sts-2 in complex with phosphate 3D6A ; 2.25 ; Crystal structure of the 2H-phosphatase domain of Sts-2 in complex with tungstate. 2Z0W ; 2.5 ; Crystal structure of the 2nd CAP-Gly domain in human Restin-like protein 2 reveals a swapped-dimer 4X1V ; 1.58 ; Crystal structure of the 2nd SH3 domain from human CD2AP (CMS) in complex with a proline-rich peptide (aa 76-91) from human ARAP1 3EUN ; 1.05 ; Crystal structure of the 2[4Fe-4S] C57A ferredoxin variant from allochromatium vinosum 2ZVS ; 1.65 ; Crystal structure of the 2[4FE-4S] ferredoxin from escherichia coli 3EXY ; 1.48 ; Crystal structure of the 2[4Fe-4S] ferredoxin V13G variant from allochromatium vinosum 5KNC ; 3.015 ; Crystal structure of the 3 ADP-bound V1 complex 3JXV ; 2.08 ; Crystal Structure of the 3 FKBP domains of wheat FKBP73 3JYM ; 2.28 ; Crystal Structure of the 3 FKBP domains of wheat FKBP73 1RY7 ; 3.2 ; Crystal Structure of the 3 Ig form of FGFR3c in complex with FGF1 5OLC ; 2.79 ; Crystal structure of the 3,6-anhydro-D-galactonate cycloisomerase from Zobellia galactanivorans 2DKN ; 1.8 ; Crystal structure of the 3-alpha-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 complexed with NADH 3S42 ; 1.45 ; Crystal Structure of the 3-Dehydroquinate Dehydratase (aroD) from Salmonella enterica Typhimurium LT2 with Malonate and Boric Acid at the Active Site 3LB0 ; 1.65 ; Crystal Structure of the 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium LT2 with Citrate Bound to the Active Site. 2EGZ ; 1.75 ; Crystal structure of the 3-dehydroquinate dehydratase from Aquifex aeolicus VF5 2YSW ; 2.25 ; Crystal Structure of the 3-dehydroquinate dehydratase from Aquifex aeolicus VF5 3QBE ; 2.07 ; Crystal structure of the 3-Dehydroquinate Synthase (aroB) from Mycobacterium tuberculosis 6C5C ; 1.85 ; Crystal structure of the 3-dehydroquinate synthase (DHQS) domain of Aro1 from Candida albicans SC5314 in complex with NADH 1ZEJ ; 2.0 ; Crystal structure of the 3-hydroxyacyl-coa dehydrogenase (hbd-9, af2017) from archaeoglobus fulgidus dsm 4304 at 2.00 A resolution 2Y7G ; 1.4 ; Crystal structure of the 3-keto-5-aminohexanoate cleavage enzyme (Kce) from C. Cloacamonas acidaminovorans in complex with the product acetoacetate 2Y7F ; 1.75 ; Crystal structure of the 3-keto-5-aminohexanoate cleavage enzyme (Kce) from C. Cloacamonas acidaminovorans in complex with the substrate 3- keto-5-aminohexanoate 2Y7D ; 1.59 ; Crystal structure of the 3-keto-5-aminohexanoate cleavage enzyme (Kce) from Candidatus Cloacamonas acidaminovorans (orthorombic form) 2Y7E ; 1.28 ; Crystal structure of the 3-keto-5-aminohexanoate cleavage enzyme (Kce) from Candidatus Cloacamonas acidaminovorans (tetragonal form) 8JAT ; 3.2 ; Crystal structure of the 3-ketodihydrosphingosine reductase TSC10 from Cryptococcus neoformans 2RHI ; 1.66 ; Crystal structure of the 3-MBT domain from human L3MBTL1 in complex with H1.5K27me2 at 1.66 angstrom 3OQ5 ; 2.5005 ; Crystal structure of the 3-MBT domain from human L3MBTL1 in complex with p53K382me1 3UT1 ; 2.05 ; Crystal structure of the 3-MBT repeat domain of L3MBTL3 4L59 ; 2.29 ; Crystal structure of the 3-MBT repeat domain of L3MBTL3 and UNC2533 complex 2RHX ; 2.1 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 bound to dimethyl-lysine 2RHU ; 1.9 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 bound to dimethyl-lysine and in chimera with histone H3.3(28-34) 2RHY ; 1.9 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 bound to monomethyl-lysine 2RI2 ; 2.2 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 with D355A point mutation 2RHZ ; 2.2 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 with D355N point mutation 2RI5 ; 2.0 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 with N358A point mutation 2RI3 ; 2.0 ; Crystal structure of the 3-MBT repeats from human L3MBTL1 with N358Q point mutation 3MQG ; 1.43 ; crystal structure of the 3-N-acetyl transferase WlbB from Bordetella petrii in complex with acetyl-CoA 3MQH ; 1.43 ; crystal structure of the 3-N-acetyl transferase WlbB from Bordetella petrii in complex with CoA and UDP-3-amino-2-acetamido-2,3-dideoxy glucuronic acid 3OSU ; 1.9 ; Crystal structure of the 3-oxoacyl-acyl carrier protein reductase, FabG, from Staphylococcus aureus 1CYY ; 2.15 ; CRYSTAL STRUCTURE OF THE 30 KDA FRAGMENT OF E. COLI DNA TOPOISOMERASE I. HEXAGONAL FORM 1CY9 ; 1.8 ; CRYSTAL STRUCTURE OF THE 30 KDA FRAGMENT OF E. COLI DNA TOPOISOMERASE I. MONOCLINIC FORM 3KBG ; 1.75 ; Crystal structure of the 30S ribosomal protein S4e from Thermoplasma acidophilum. Northeast Structural Genomics Consortium Target TaR28. 4NXM ; 3.65 ; Crystal Structure of the 30S ribosomal subunit from a GidB (RsmG) mutant of Thermus thermophilus (HB8) 4NXN ; 3.544 ; Crystal Structure of the 30S ribosomal subunit from a GidB (RsmG) mutant of Thermus thermophilus (HB8), bound with streptomycin 3OTO ; 3.69 ; Crystal Structure of the 30S ribosomal subunit from a KsgA mutant of Thermus thermophilus (HB8) 1I95 ; 4.5 ; CRYSTAL STRUCTURE OF THE 30S RIBOSOMAL SUBUNIT FROM THERMUS THERMOPHILUS IN COMPLEX WITH EDEINE 1I97 ; 4.5 ; CRYSTAL STRUCTURE OF THE 30S RIBOSOMAL SUBUNIT FROM THERMUS THERMOPHILUS IN COMPLEX WITH TETRACYCLINE 5IWA ; 3.5 ; Crystal structure of the 30S ribosomal subunit from Thermus thermophilus in complex with the GE81112 peptide antibiotic 1I96 ; 4.2 ; CRYSTAL STRUCTURE OF THE 30S RIBOSOMAL SUBUNIT FROM THERMUS THERMOPHILUS IN COMPLEX WITH THE TRANSLATION INITIATION FACTOR IF3 (C-TERMINAL DOMAIN) 4YHH ; 3.417 ; Crystal structure of the 30S ribosomal subunit from Thermus thermophilus in complex with tigecycline 4B3M ; 2.9 ; Crystal structure of the 30S ribosome in complex with compound 1 4B3R ; 3.0 ; Crystal structure of the 30S ribosome in complex with compound 30 4B3S ; 3.15 ; Crystal structure of the 30S ribosome in complex with compound 37 4B3T ; 3.0 ; Crystal structure of the 30S ribosome in complex with compound 39 2YZ8 ; 2.0 ; Crystal structure of the 32th Ig-like domain of human obscurin (KIAA1556) 2GBM ; 1.55 ; Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin 2GBN ; 1.6 ; Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin 2GBR ; 2.0 ; Crystal Structure of the 35-36 MoaD Insertion Mutant of Ubiquitin 8FG0 ; 2.36 ; Crystal structure of the 3764 Fab in complex with the C-terminal PfCSP linker, PfCSP281-294. 3SJ8 ; 2.199 ; Crystal structure of the 3C protease from coxsackievirus A16 5HM2 ; 3.2 ; Crystal structure of the 3C protease from South African Territories type 2 foot-and-mouth disease virus 7N08 ; 2.0 ; Crystal structure of the 3D6 antibody fragment bound to the HIV-1 gp41 immunodominant region 3K2J ; 2.2 ; Crystal Structure of the 3rd Bromodomain of Human Poly-bromodomain containing protein 1 (PB1) 2HE2 ; 1.5 ; Crystal structure of the 3rd PDZ domain of human discs large homologue 2, DLG2 3BPU ; 1.6 ; Crystal structure of the 3rd PDZ domain of human membrane associated guanylate kinase, C677S and C709S double mutant 2V90 ; 2.0 ; Crystal structure of the 3rd PDZ domain of intestine- and kidney- enriched PDZ domain IKEPP (PDZD3) 3SOE ; 1.6 ; Crystal Structure of the 3rd PDZ domain of the human Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 3 (MAGI3) 5KDL ; 2.665 ; Crystal structure of the 4 alanine insertion variant of the Gi alpha1 subunit bound to GTPgammaS 1QR0 ; 1.9 ; CRYSTAL STRUCTURE OF THE 4'-PHOSPHOPANTETHEINYL TRANSFERASE SFP-COENZYME A COMPLEX 8GYE ; 2.3 ; Crystal Structure of the 4-1BB in complex with ZG033 Fab 6BWV ; 2.4 ; Crystal Structure of the 4-1BB/4-1BBL Complex 5O7W ; 1.35 ; Crystal structure of the 4-FLUORO RSL lectin in complex with Lewis x tetrasaccharide 3R4A ; 2.0701 ; Crystal structure of the 4-helix coiled coil CC-tet 3R4H ; 2.7003 ; Crystal structure of the 4-helix coiled coil CC-Tet-phi22 2ORM ; 2.1 ; Crystal Structure of the 4-Oxalocrotonate Tautomerase Homologue DmpI from Helicobacter pylori. 6ENG ; 2.3 ; Crystal structure of the 43K ATPase domain of Escherichia coli gyrase B in complex with an aminocoumarin 6ENH ; 1.94 ; Crystal structure of the 43K ATPase domain of Thermus thermophilus gyrase B in complex with an aminocoumarin 1KIJ ; 2.3 ; Crystal structure of the 43K ATPase domain of Thermus thermophilus gyrase B in complex with novobiocin 1J1D ; 2.61 ; Crystal structure of the 46kDa domain of human cardiac troponin in the Ca2+ saturated form 6SU4 ; 1.5 ; Crystal structure of the 48C12 heliorhodopsin in the blue form at pH 4.3 6SU3 ; 1.5 ; Crystal structure of the 48C12 heliorhodopsin in the violet form at pH 8.8 6X2R ; 2.299 ; Crystal Structure of the 4E-TNES peptide bound to CRM1 3Q36 ; 2.5 ; Crystal structure of the 4Fe-4S cluster domain of human DNA primase large subunit 4N5U ; 1.456 ; Crystal structure of the 4th FN3 domain of human Protein Tyrosine phosphatase, receptor type F [PSI-NYSGRC-006240] 3PIE ; 2.9 ; Crystal structure of the 5'->3' exoribonuclease Xrn1, E178Q mutant 3PIF ; 2.92 ; Crystal structure of the 5'->3' exoribonuclease Xrn1, E178Q mutant in Complex with Manganese 2PAQ ; 2.1 ; Crystal structure of the 5'-deoxynucleotidase YfbR 2PAU ; 2.1 ; Crystal structure of the 5'-deoxynucleotidase YfbR mutant E72A complexed with Co(2+) and dAMP 2PAR ; 2.1 ; Crystal structure of the 5'-deoxynucleotidase YfbR mutant E72A complexed with Co(2+) and TMP 7QRH ; 2.36 ; Crystal structure of the 5-(aminomethyl)furan-3-yl methyl phosphate kinase MfnE from Methanococcus vannielii. 6JYY ; 2.0 ; Crystal structure of the 5-(Hydroxyethyl)-methylthiazole Kinase ThiM from Klebsiella pneumonia 6K28 ; 2.002 ; Crystal structure of the 5-(Hydroxyethyl)-methylthiazole Kinase ThiM from Klebsiella pneumonia in complex with TZE 4HI4 ; 2.304 ; Crystal structure of the 5-coordinate ferric heme-binding PAS domain of Aer2 from P. aeruginosa 7TBU ; 1.85 ; Crystal structure of the 5-enolpyruvate-shikimate-3-phosphate synthase (EPSPS) domain of Aro1 from Candida albicans in complex with shikimate-3-phosphate 4NC3 ; 2.8 ; Crystal structure of the 5-HT2B receptor solved using serial femtosecond crystallography in lipidic cubic phase. 7A17 ; 2.73 ; Crystal structure of the 5-phosphatase domain of Synaptojanin1 bound to its substrate diC8-PI(3,4,5)P3 in complex with a nanobody 7A0V ; 2.3 ; Crystal structure of the 5-phosphatase domain of Synaptojanin1 in complex with a nanobody 5D3U ; 1.45 ; Crystal structure of the 5-selective H176F mutant of Cytochrome TxtE 5D40 ; 1.51 ; Crystal structure of the 5-selective H176Y mutant of Cytochrome TxtE 1SAT ; 1.75 ; CRYSTAL STRUCTURE OF THE 50 KDA METALLO PROTEASE FROM S. MARCESCENS 5CSL ; 3.2 ; Crystal structure of the 500 kD yeast acetyl-CoA carboxylase holoenzyme dimer 5DM6 ; 2.9 ; Crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans 5DM7 ; 3.0 ; Crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with hygromycin A 1J1E ; 3.3 ; Crystal structure of the 52kDa domain of human cardiac troponin in the Ca2+ saturated form 1KZY ; 2.5 ; Crystal Structure of the 53bp1 BRCT Region Complexed to Tumor Suppressor P53 3LGF ; 1.5 ; Crystal structure of the 53BP1 tandem tudor domain in complex with p53K370me2 3LH0 ; 1.9 ; Crystal structure of the 53BP1 tandem tudor domain in complex with p53K372me2 4X34 ; 1.801 ; Crystal structure of the 53BP1 tandem tudor domain in complex with p53K381acK382me2 3LGL ; 1.6 ; Crystal structure of the 53BP1 tandem tudor domain in complex with p53K382me2 6AZM ; 1.6 ; Crystal structure of the 580 germline antibody bound to circumsporozoite protein NANP 5-mer 4P2R ; 3.295 ; Crystal structure of the 5cc7 TCR in complex with 5c1/I-Ek 4P2Q ; 3.3 ; Crystal structure of the 5cc7 TCR in complex with 5c2/I-Ek 7T2B ; 2.8 ; Crystal structure of the 5F TCR in complex with HLA-DP4-Ply 5O7V ; 1.28 ; Crystal structure of the 5F-tryptophan RSL lectin in complex with Lewis x tetrasaccharide 2QKT ; 2.05 ; Crystal Structure of the 5th PDZ domain of InaD 5FLL ; 2.34 ; Crystal structure of the 6-carboxyhexanoate-CoA ligase (BioW) from Bacillus subtilis in complex with a Pimeloyl-adenylate 5FM0 ; 2.44 ; Crystal structure of the 6-carboxyhexanoate-CoA ligase (BioW)from Bacillus subtilis (PtCl4 derivative) 5FLG ; 2.04 ; Crystal structure of the 6-carboxyhexanoate-CoA ligase (BioW)from Bacillus subtilis in complex with AMPPNP 5G1F ; 2.25 ; Crystal structure of the 6-carboxyhexanoate-CoA ligase (BioW)from Bacillus subtilis in complex with coenzyme A 3MCM ; 2.2 ; Crystal Structure of the 6-hyroxymethyl-7,8-dihydropterin pyrophosphokinase dihydropteroate synthase bifunctional enzyme from Francisella tularensis 3MCN ; 2.2 ; Crystal Structure of the 6-hyroxymethyl-7,8-dihydropterin pyrophosphokinase dihydropteroate synthase bifunctional enzyme from Francisella tularensis 3MCO ; 2.3 ; Crystal Structure of the 6-hyroxymethyl-7,8-dihydropterin pyrophosphokinase dihydropteroate synthase bifunctional enzyme from Francisella tularensis 6OZW ; 2.063 ; Crystal structure of the 65-kilodalton amino-terminal fragment of DNA topoisomerase I from Streptococcus mutans 5O7U ; 1.15 ; Crystal structure of the 7-Fluorotryptophan RSL lectin in complex with Lewis x tetrasaccharide 1QSA ; 1.65 ; CRYSTAL STRUCTURE OF THE 70 KDA SOLUBLE LYTIC TRANSGLYCOSYLASE SLT70 FROM ESCHERICHIA COLI AT 1.65 ANGSTROMS RESOLUTION 1QTE ; 1.9 ; CRYSTAL STRUCTURE OF THE 70 KDA SOLUBLE LYTIC TRANSGLYCOSYLASE SLT70 FROM ESCHERICHIA COLI AT 1.90 A RESOLUTION IN COMPLEX WITH A 1,6-ANHYDROMUROTRIPEPTIDE 2V7Z ; 3.5 ; Crystal structure of the 70-kDa heat shock cognate protein from Rattus norvegicus in post-ATP hydrolysis state 4V9N ; 3.4 ; Crystal structure of the 70S ribosome bound with the Q253P mutant of release factor RF2. 4V9A ; 3.2999 ; Crystal Structure of the 70S ribosome with tetracycline. 4V9B ; 3.1 ; Crystal Structure of the 70S ribosome with tigecycline. 4V4X ; 5.0 ; Crystal structure of the 70S Thermus thermophilus ribosome showing how the 16S 3'-end mimicks mRNA E and P codons. 4V4Y ; 5.5 ; Crystal structure of the 70S Thermus thermophilus ribosome with translocated and rotated Shine-Dalgarno Duplex. 7X9E ; 2.6 ; Crystal structure of the 76E1 Fab in complex with a SARS-CoV-2 spike peptide 2GBJ ; 1.35 ; Crystal Structure of the 9-10 8 Glycine Insertion Mutant of Ubiquitin. 2GBK ; 1.99 ; Crystal Structure of the 9-10 MoaD Insertion Mutant of Ubiquitin 1U07 ; 1.13 ; Crystal Structure of the 92-residue C-term. part of TonB with significant structural changes compared to shorter fragments 7VKB ; 1.82 ; Crystal structure of the a bacterial kinase complex 3N8I ; 1.5 ; Crystal structure of the A isoform of human cytoplasmic protein tyrosine phosphatase (HCPTP-A) in complex with 1-naphtylacetic acid 3APU ; 2.1 ; Crystal structure of the A variant of human alpha1-acid glycoprotein 3APV ; 2.15 ; Crystal structure of the A variant of human alpha1-acid glycoprotein and amitriptyline complex 3APX ; 2.2 ; Crystal structure of the A variant of human alpha1-acid glycoprotein and chlorpromazine complex 3APW ; 2.2 ; Crystal structure of the A variant of human alpha1-acid glycoprotein and disopyramide complex 1QNC ; 2.3 ; Crystal structure of the A(-31) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 6BBL ; 1.68 ; Crystal structure of the a-96Gln MoFe protein variant in the presence of the substrate acetylene 1YI5 ; 4.2 ; Crystal structure of the a-cobratoxin-AChBP complex 213D ; 1.6 ; CRYSTAL STRUCTURE OF THE A-DNA DECAMER D(CCIGGCCM5CGG) AT 1.6 ANGSTROMS SHOWING THE UNEXPECTED WOBBLE I.M5C BASE PAIR 1QPH ; 2.5 ; CRYSTAL STRUCTURE OF THE A-DNA DODECAMER GACCACGTGGTC 1Y9F ; 1.6 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-allyl Thymidine (T*) 1Y9S ; 1.55 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-propargyl Thymidine (T*) 1Y8V ; 1.5 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-propyl Thymidine (T*) 1YBC ; 1.8 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-(benzyloxy)ethyl] Thymidine (T*) 1Y86 ; 1.7 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-(fluoro)ethyl] Thymidine (T*) 1Y84 ; 1.6 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-(imidazolyl)ethyl] Thymidine (T*) 1YB9 ; 1.65 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-(N,N-dimethylaminooxy)ethyl] Thymidine (T*) 1Y8L ; 1.5 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-(trifluoro)ethyl] Thymidine (T*) 1Y7F ; 1.6 ; Crystal structure of the A-DNA GCGTAT*CGC with a 2'-O-[2-[hydroxy(methyleneamino)oxy]ethyl] Thymidine (T*) 1F6E ; 2.0 ; CRYSTAL STRUCTURE OF THE A-DNA HEXAMER GGCGM5CC 281D ; 2.38 ; CRYSTAL STRUCTURE OF THE A-DNA OCTAMER D(GGCATGCC) 2IY9 ; 1.8 ; Crystal structure of the A-subunit of the AB5 toxin from E. coli 3DWQ ; 2.1 ; Crystal structure of the A-subunit of the AB5 toxin from E. coli with Neu5Gc-2,3Gal-1,3GlcNAc 2O7Q ; 2.2 ; Crystal Structure of the A. thaliana DHQ-dehydroshikimate-SDH-shikimate-NADP(H) 2O7S ; 1.78 ; Crystal Structure of the A. thaliana DHQ-dehydroshikimate-SDH-shikimate-NADP(H) 5ADP ; 2.13 ; Crystal structure of the A.17 antibody FAB fragment - Light chain S35R mutant 4X4N ; 2.953 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix 4X4O ; 3.201 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix and CTP 4X4P ; 3.0 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix ending in CCAC 4X4Q ; 3.15 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix ending in CCAC and CTP 4X4R ; 3.202 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix ending in CCACC and AMPcPP 4X4S ; 3.25 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix ending in CCACC and CTP 4X4T ; 2.5 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a G70A arginyl-tRNA minihelix ending in CCACCA 4X4U ; 2.7 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a human MenBeta minihelix ending in CCACC 4X4V ; 2.6 ; Crystal structure of the A.fulgidus CCA-adding enzyme in complex with a human MenBeta minihelix ending in CCACC and AMPcPP 8TJ4 ; 1.95 ; CRYSTAL STRUCTURE OF THE A/Bangkok/1/1979(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 8TJ6 ; 2.85 ; CRYSTAL STRUCTURE OF THE A/Beijing/353/1989(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLN 6AOQ ; 2.35 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin apo form 6AOR ; 1.7 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin apo form 6NSC ; 2.25 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin G186V/L194P mutant apo form 6NSF ; 2.1 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin G186V/L194P mutant in complex with 3'-SLNLN 6NSG ; 2.4 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin G186V/L194P mutant in complex with 6'-SLNLN 6AOU ; 1.75 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin in complex with 3'-SLNLN 6AOV ; 1.75 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin in complex with 6'-SLNLN 6AOP ; 2.3 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin L194P mutant apo form 6AOS ; 2.3 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin L194P mutant in complex with 3'-SLNLN 6AOT ; 1.95 ; Crystal structure of the A/Brisbane/10/2007 (H3N2) influenza virus hemagglutinin L194P mutant in complex with 6'-SLNLN 8TJA ; 2.05 ; CRYSTAL STRUCTURE OF THE A/Ecuador/1374/2016(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 4FNK ; 1.901 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin 6BKM ; 2.2 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin E190D mutant apo form 6BKQ ; 2.25 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin E190D mutant in complex with 6'-SLN 5VTU ; 2.45 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225L/L226S mutant apo form 5VTQ ; 2.95 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225L/L226S mutant in complex with 3'-SLN 5VTR ; 2.5 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225L/L226S mutant in complex with 6'-SLN 5VTX ; 2.65 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225M/L226T/S228A mutant apo form 5VTV ; 2.25 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225M/L226T/S228A mutant in complex with 3'-SLN 5VTW ; 2.35 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225M/L226T/S228A mutant in complex with 6'-SLN 5VTZ ; 2.15 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225Q/L226A mutant apo form 5VTY ; 2.36 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225Q/L226A mutant in complex with 3'-SLN 5VU4 ; 2.25 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin G225Q/L226A mutant in complex with 6'-SLN 4ZCJ ; 3.0 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin HA1 Cys30, HA2 Cys47 mutant 6NHR ; 2.1 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin HA2 I45F mutant 6NHQ ; 2.5 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin HA2 I45M mutant 6NHP ; 2.25 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin HA2 I45T mutant 6TZB ; 2.243 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin in complex with 6'-SLNLN 6CEX ; 2.57 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin in complex with small molecule N-Cyclohexyltaurine 5T6N ; 2.541 ; Crystal structure of the A/Hong Kong/1/1968 (H3N2) influenza virus hemagglutinin in complex with the antiviral drug arbidol 6BKP ; 2.05 ; Crystal structure of the A/Michigan/15/2014 (H3N2) influenza virus hemagglutinin apo form 6BKT ; 1.8 ; Crystal structure of the A/Michigan/15/2014 (H3N2) influenza virus hemagglutinin in complex with 6'-SLN 8TJ9 ; 1.9 ; CRYSTAL STRUCTURE OF THE A/Michigan/15/2014(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 8TJ8 ; 2.56 ; CRYSTAL STRUCTURE OF THE A/Moscow/10/1999(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 5W6U ; 2.878 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP121068 (P2) 5W5S ; 2.284 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP141019 (P5) 5W5U ; 2.461 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP141037 (P4) 5W6I ; 3.104 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP141046 (P3) 5W6R ; 2.731 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP141099 (P6) 5W6T ; 2.59 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with cyclic peptide CP151070 (P7) 6WCR ; 2.68 ; Crystal structure of the A/Puerto Rico/8/1934 (H1N1) influenza virus hemagglutinin in complex with small molecule F0045(S) 8TJ7 ; 2.85 ; CRYSTAL STRUCTURE OF THE A/Shandong/9/1993(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 5T6S ; 2.36 ; Crystal structure of the A/Shanghai/2/2013 (H7N9) influenza virus hemagglutinin in complex with the antiviral drug arbidol 6CF7 ; 2.719 ; Crystal structure of the A/Solomon Islands/3/2006(H1N1) influenza virus hemagglutinin in complex with small molecule JNJ4796 8TJB ; 2.45 ; CRYSTAL STRUCTURE OF THE A/Texas/73/2017(H3N2) INFLUENZA VIRUS HEMAGGLUTININ WITH HUMAN RECEPTOR ANALOG 6'-SLNLN 6CF5 ; 2.04 ; Crystal structure of the A/Viet Nam/1203/2004(H5N1) influenza virus hemagglutinin in complex with small molecule N-Cyclohexyltaurine 6CFG ; 2.32 ; Crystal structure of the A/Vietnam/1203/2004 (H5N1) influenza virus hemagglutinin in complex with small molecule JNJ4796 6BKN ; 1.85 ; Crystal structure of the A/Wyoming/3/2003 (H3N2) influenza virus hemagglutinin apo form 6BKO ; 1.85 ; Crystal structure of the A/Wyoming/3/2003 (H3N2) influenza virus hemagglutinin D190E mutant apo form 6BKS ; 1.8 ; Crystal structure of the A/Wyoming/3/2003 (H3N2) influenza virus hemagglutinin D190E mutant in complex with 6'-SLN 6BKR ; 1.76 ; Crystal structure of the A/Wyoming/3/2003 (H3N2) influenza virus hemagglutinin in complex with 6'-SLN 3IDV ; 1.95 ; Crystal structure of the a0a fragment of ERp72 8AU0 ; 2.07 ; Crystal structure of the a1 luminal coiled-coil domain of SUN1 5TXQ ; 1.9 ; Crystal structure of the A143D variant of catalase-peroxidase from B. pseudomallei 3BF2 ; 2.6 ; Crystal structure of the A1KSW9_NEIMF protein from Neisseria meningitidis. Northeast Structural Genomics Consortium target MR36a 3OJ3 ; 2.5 ; Crystal structure of the A20 ZnF4 and ubiquitin complex 3OJ4 ; 3.4 ; Crystal structure of the A20 ZnF4, ubiquitin and UbcH5A complex 7RQ9 ; 2.6 ; Crystal structure of the A2058-dimethylated Thermus thermophilus 70S ribosome in complex with iboxamycin, mRNA, deacylated A- and E-site tRNAs, and aminoacylated P-site tRNA at 2.60A resolution 6XHV ; 2.4 ; Crystal structure of the A2058-dimethylated Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A- and P-site tRNAs, and deacylated E-site tRNA at 2.40A resolution 8UD7 ; 2.55 ; Crystal structure of the A2058-N6-dimethylated Thermus thermophilus 70S ribosome in complex with cresomycin, mRNA, deacylated A-site tRNAphe, aminoacylated P-site fMet-tRNAmet, and deacylated E-site tRNAphe at 2.70A resolution 8FC5 ; 2.65 ; Crystal structure of the A2058-N6-dimethylated Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and azithromycin at 2.65A resolution 8FC4 ; 2.45 ; Crystal structure of the A2058-N6-dimethylated Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and erythromycin at 2.45A resolution 8FC6 ; 2.35 ; Crystal structure of the A2058-N6-dimethylated Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and telithromycin at 2.35A resolution 6XHX ; 2.55 ; Crystal structure of the A2058-unmethylated Thermus thermophilus 70S ribosome in complex with erythromycin and protein Y (YfiA) at 2.55A resolution 6XHW ; 2.5 ; Crystal structure of the A2058-unmethylated Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A- and P-site tRNAs, and deacylated E-site tRNA at 2.50A resolution 4FEJ ; 1.5 ; Crystal structure of the A24U mutant xpt-pbuX guanine riboswitch aptamer domain in complex with hypoxanthine 4FEN ; 1.35 ; Crystal structure of the A24U/U25A/A46G mutant xpt-pbuX guanine riboswitch aptamer domain in complex with hypoxanthine 4FEP ; 1.65 ; Crystal structure of the A24U/U25A/A46G/C74U mutant xpt-pbuX guanine riboswitch aptamer domain in complex with 2,6-diaminopurine 8UD8 ; 2.6 ; Crystal structure of the A2503-C2,C8-dimethylated Thermus thermophilus 70S ribosome in complex with cresomycin, mRNA, deacylated A-site tRNAphe, aminoacylated P-site fMet-tRNAmet, and deacylated E-site tRNAphe at 2.70A resolution 8G2B ; 2.55 ; Crystal structure of the A2503-C2,C8-dimethylated Thermus thermophilus 70S ribosome in complex with iboxamycin, mRNA, deacylated A- and E-site tRNAphe, and aminoacylated P-site fMet-tRNAmet at 2.55A resolution 8G29 ; 2.55 ; Crystal structure of the A2503-C2,C8-dimethylated Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Phe-tRNAphe, aminoacylated P-site fMet-tRNAmet, and deacylated E-site tRNAphe at 2.55A resolution 8G2A ; 2.45 ; Crystal structure of the A2503-C2,C8-dimethylated Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Phe-tRNAphe, peptidyl P-site fMTHSMRC-tRNAmet, and deacylated E-site tRNAphe at 2.45A resolution 8G2C ; 2.65 ; Crystal structure of the A2503-C2,C8-dimethylated Thermus thermophilus 70S ribosome in complex with tylosin, mRNA, aminoacylated A-site Phe-tRNAphe, aminoacylated P-site fMet-tRNAmet, and deacylated E-site tRNAphe at 2.65A resolution 3EKB ; 2.3 ; Crystal structure of the A264C mutant heme domain of cytochrome P450 BM3 3EKD ; 2.5 ; Crystal structure of the A264M heme domain of cytochrome P450 BM3 3EKF ; 2.1 ; Crystal structure of the A264Q heme domain of cytochrome P450 BM3 3DL5 ; 2.74 ; Crystal Structure of the A287F Active Site Mutant of TS-DHFR from Cryptosporidium hominis 3DL6 ; 3.25 ; Crystal Structure of the A287F/S290G Active Site Mutant of TS-DHFR from Cryptosporidium hominis 5KQ0 ; 1.8 ; Crystal structure of the A290D variant of catalase-peroxidase from B. pseudomallei 6GT3 ; 2.0 ; Crystal Structure of the A2A-StaR2-bRIL562 in complex with AZD4635 at 2.0A resolution 2QQM ; 2.0 ; Crystal Structure of the a2b1b2 Domains from Human Neuropilin-1 2QQO ; 2.3 ; Crystal Structure of the a2b1b2 Domains from Human Neuropilin-2 4K1W ; 1.646 ; Crystal structure of the A314P mutant of mannonate dehydratase from novosphingobium aromaticivorans complexed with mg and d-mannonate 3M4V ; 1.9 ; Crystal structure of the A330P mutant of cytochrome P450 BM3 5KQ2 ; 1.9 ; Crystal structure of the A357D variant of catalase-peroxidase from B. pseudomallei 5KQ6 ; 1.62 ; Crystal structure of the A359D variant of catalase-peroxidase from B. pseudomallei 3GQB ; 2.8 ; Crystal Structure of the A3B3 complex from V-ATPase 3A54 ; 1.502 ; Crystal structure of the A47Q1 mutant of pro-protein-glutaminase 3A55 ; 1.5 ; Crystal structure of the A47Q2 mutant of pro- protein-glutaminase 2HL3 ; 2.03 ; Crystal structure of the A49M mutant CAP-Gly domain of human Dynactin-1 (p150-Glued) in complex with human EB1 C-terminal hexapeptide 2APF ; 1.8 ; Crystal Structure of the A52V/S54N/K66E variant of the murine T cell receptor V beta 8.2 domain 2XSU ; 1.6 ; Crystal structure of the A72G mutant of Acinetobacter radioresistens catechol 1,2 dioxygenase 2D7G ; 3.3 ; Crystal structure of the aa complex of the N-terminal domain of PriA 1LV7 ; 1.5 ; Crystal Structure of the AAA domain of FtsH 6Z1E ; 2.454 ; Crystal structure of the AAA domain of Rubisco Activase from Nostoc sp. (strain PCC 7120) 6Z1D ; 2.705 ; Crystal structure of the AAA domain of Rubisco Activase from Nostoc sp. (strain PCC 7120), Gadolinium complex 3SYL ; 3.0 ; Crystal structure of the AAA+ protein CbbX, native structure 3SYK ; 3.08 ; Crystal structure of the AAA+ protein CbbX, selenomethionine structure 4AEI ; 2.3 ; Crystal structure of the AaHII-Fab4C1 complex 7Z3W ; 2.0 ; Crystal structure of the AAL160 Fab 2YZ2 ; 2.3 ; Crystal structure of the ABC transporter in the cobalt transport system 5UVE ; 2.5 ; Crystal Structure of the ABC Transporter Substrate-binding protein BAB1_0226 from Brucella abortus 2FGK ; 2.7 ; Crystal structure of the ABC-cassette E631Q mutant of HlyB with bound ATP 2FGJ ; 2.6 ; Crystal structure of the ABC-cassette H662A mutant of HlyB with bound ATP 1EHK ; 2.4 ; CRYSTAL STRUCTURE OF THE ABERRANT BA3-CYTOCHROME-C OXIDASE FROM THERMUS THERMOPHILUS 7N9G ; 2.2 ; Crystal structure of the Abl 1b Kinase domain in complex with Dasatinib and Imatinib 7PVV ; 1.82 ; Crystal structure of the Abl SH3 domain G92N-Y93N-N94T-H95E mutant 7PW2 ; 1.1 ; Crystal structure of the Abl SH3 domain V73E-A74S-S75R-G76T-D77E mutant 7PVS ; 1.05 ; Crystal structure of the Abl SH3 domain V73E-A74S-S75R-G76T-D77E-G92N-Y93N-N94T-H95E mutant in presence of PEG 200 7PVQ ; 1.55 ; Crystal structure of the Abl SH3 domain V73E-A74S-S75R-G76T-D77E-G92N-Y93N-N94T-H95E mutant in the space group P21221 7PVR ; 1.65 ; Crystal structure of the Abl SH3 domain V73E-A74S-S75R-G76T-D77E-G92N-Y93N-N94T-H95E mutant in the space group P41 5OAZ ; 1.03 ; Crystal structure of the Abl-SH3 domain at pH 7.5 4JJB ; 1.65 ; Crystal structure of the Abl-SH3 domain at pH3 4JJC ; 1.6 ; Crystal structure of the Abl-SH3 domain at pH5 1BBZ ; 1.65 ; CRYSTAL STRUCTURE OF THE ABL-SH3 DOMAIN COMPLEXED WITH A DESIGNED HIGH-AFFINITY PEPTIDE LIGAND: IMPLICATIONS FOR SH3-LIGAND INTERACTIONS 4J9I ; 2.2 ; Crystal structure of the ABL-SH3 domain complexed with the designed high-affinity peptide ligand P17 4J9H ; 1.7 ; Crystal structure of the ABL-SH3 domain complexed with the designed high-affinity peptide ligand P7 at pH 8 4J9G ; 1.8 ; Crystal structure of the ABL-SH3 domain complexed with the designed high-affinity peptide ligand P7 at pH7 4J9F ; 1.094 ; Crystal structure of the Abl-SH3 domain complexed with the high affinity peptide P0 4J9B ; 1.702 ; Crystal structure of the Abl-SH3 domain H59Q-N96T mutant 4J9C ; 1.051 ; Crystal structure of the Abl-SH3 domain H59Q-N96T mutant complexed with the designed high-affinity peptide ligand P17 2X8S ; 1.5 ; Crystal Structure of the Abn2 D171A mutant in complex with arabinotriose 2X8T ; 1.79 ; Crystal Structure of the Abn2 H318A mutant 5YGV ; 2.5 ; Crystal structure of the abscisic acid receptor PYR1 in complex with an antagonist 3WG8 ; 2.3 ; Crystal structure of the abscisic acid receptor PYR1 in complex with an antagonist AS6 3NMH ; 1.85 ; Crystal structure of the abscisic receptor PYL2 in complex with pyrabactin 3NMP ; 2.1 ; Crystal structure of the abscisic receptor PYL2 mutant A93F in complex with pyrabactin 1G5H ; 1.95 ; CRYSTAL STRUCTURE OF THE ACCESSORY SUBUNIT OF MURINE MITOCHONDRIAL POLYMERASE GAMMA 1G5I ; 2.3 ; CRYSTAL STRUCTURE OF THE ACCESSORY SUBUNIT OF MURINE MITOCHONDRIAL POLYMERASE GAMMA 6SXH ; 2.3 ; Crystal structure of the accessory translocation ATPase, SecA2, from Clostridium difficile 6T4H ; 2.9 ; Crystal structure of the accessory translocation ATPase, SecA2, from Clostridium difficile, in complex with adenosine-5'-(gamma-thio)-triphosphate 4UAQ ; 2.8 ; Crystal structure of the accessory translocation ATPase, SecA2, from Mycobacterium tuberculosis 3U8J ; 2.35 ; Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea stagnalis in complex with NS3531 (1-(pyridin-3-yl)-1,4-diazepane) 3U8L ; 2.32 ; Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea stagnalis in complex with NS3570 (1-(5-phenylpyridin-3-yl)-1,4-diazepane) 3U8K ; 2.47 ; Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea stagnalis in complex with NS3573 (1-(5-ethoxypyridin-3-yl)-1,4-diazepane) 3U8M ; 2.7 ; Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea stagnalis in complex with NS3920 (1-(6-bromopyridin-3-yl)-1,4-diazepane) 3U8N ; 2.35 ; Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea stagnalis in complex with NS3950 (1-(6-bromo-5-ethoxypyridin-3-yl)-1,4-diazepane) 2FSR ; 1.52 ; Crystal Structure of the Acetyltransferase from Agrobacterium tumefaciens str. C58 3JVN ; 2.61 ; Crystal Structure of the acetyltransferase VF_1542 from Vibrio fischeri, Northeast Structural Genomics Consortium Target VfR136 1X0I ; 2.3 ; Crystal Structure of the Acid Blue Form of Bacteriorhodopsin 6BYI ; 2.2 ; Crystal structure of the acid-base mutant (E477A) of the GH2 exo-beta-mannanase from Xanthomonas axonopodis pv. citri 1HUX ; 3.0 ; CRYSTAL STRUCTURE OF THE ACIDAMINOCOCCUS FERMENTANS (R)-2-HYDROXYGLUTARYL-COA DEHYDRATASE COMPONENT A 5XH7 ; 2.0 ; Crystal structure of the Acidaminococcus sp. BV3L6 Cpf1 RR variant in complex with crRNA and target DNA (TCCA PAM) 5XH6 ; 2.0 ; Crystal structure of the Acidaminococcus sp. BV3L6 Cpf1 RVR variant in complex with crRNA and target DNA (TATA PAM) 6GIE ; 2.1 ; Crystal structure of the Acinetobacter baumannii outer membrane protein Omp33 6E1R ; 2.693 ; Crystal structure of the Acinetobacter phage vB_ApiP_P1 tailspike protein 5MXR ; 1.75 ; Crystal Structure of the Acquired VIM-2 Metallo-beta-Lactamase in Complex with ANT-330 Inhibitor 6HF5 ; 1.8 ; Crystal Structure of the Acquired VIM-2 Metallo-beta-Lactamase in Complex with ANT-431 Inhibitor 5MXQ ; 2.0 ; Crystal Structure of the Acquired VIM-2 Metallo-beta-Lactamase in Complex with ANT-90 Inhibitor 3IBW ; 1.93 ; Crystal Structure of the ACT domain from GTP pyrophosphokinase of Chlorobium tepidum. Northeast Structural Genomics Consortium Target CtR148A 5V0S ; 2.01 ; Crystal structure of the ACT domain of prephenate dehydrogenase tyrA from Bacillus anthracis 1MB8 ; 2.15 ; Crystal Structure of the actin binding domain of plectin 1PEV ; 2.0 ; Crystal Structure of the Actin Interacting Protein from Caenorhabditis Elegans 2EYI ; 1.7 ; Crystal structure of the actin-binding domain of human alpha-actinin 1 at 1.7 Angstrom resolution 2EYN ; 1.8 ; Crystal structure of the actin-binding domain of human alpha-actinin 1 at 1.8 Angstrom resolution 6O31 ; 1.51 ; CRYSTAL STRUCTURE OF THE ACTIN-BINDING DOMAIN OF HUMAN ALPHA-ACTININ-4 6OA6 ; 1.37 ; CRYSTAL STRUCTURE OF THE ACTIN-BINDING DOMAIN OF HUMAN ALPHA-ACTININ-4 2R0O ; 2.2 ; Crystal structure of the actin-binding domain of human alpha-actinin-4 mutant(K255E) 1PXY ; 2.4 ; Crystal structure of the actin-crosslinking core of Arabidopsis fimbrin 1RT8 ; 2.0 ; CRYSTAL STRUCTURE OF THE ACTIN-CROSSLINKING CORE OF SCHIZOSACCHAROMYCES POMBE FIMBRIN 3Q3E ; 2.1 ; Crystal structure of the Actinobacillus pleuropneumoniae HMW1C glycosyltransferase 3Q3H ; 2.25 ; Crystal structure of the Actinobacillus pleuropneumoniae HMW1C glycosyltransferase in complex with UDP-GLC 3Q3I ; 2.45 ; Crystal structure of the Actinobacillus pleuropneumoniae HMW1C glycosyltransferase in the presence of peptide N1131 2WKE ; 2.2 ; Crystal structure of the Actinomadura R39 DD-peptidase inhibited by 6- beta-iodopenicillanate. 3G4N ; 2.1 ; Crystal structure of the activated aerolysin mutant H132D 3G4O ; 2.3 ; Crystal structure of the activated aerolysin mutant H132N 5EG3 ; 2.606 ; Crystal Structure of the Activated FGF Receptor 2 (FGFR2) Kinase Domain in complex with the cSH2 domain of Phospholipase C gamma (PLCgamma) 4XLV ; 2.3 ; Crystal structure of the activated insulin receptor tyrosine kinase dimer 2X1V ; 1.7 ; Crystal Structure of the activating H-Ras I163F mutant in Costello Syndrome, bound to MG-GDP 2QUZ ; 1.49 ; Crystal Structure of the activating H-RasK117R mutant in Costello Syndrome, bound to Mg-GDP 4JO8 ; 3.2 ; Crystal structure of the activating Ly49H receptor in complex with m157 (G1F strain) 2O2K ; 1.6 ; Crystal Structure of the Activation Domain of Human Methionine Synthase Isoform/Mutant D963E/K1071N 5E7I ; 2.223 ; Crystal structure of the active catalytic core of the human DEAD-box protein DDX3 5E7J ; 2.23 ; Crystal structure of the active catalytic core of the human DEAD-box protein DDX3 bound to AMP 5E7M ; 2.304 ; Crystal structure of the active catalytic core of the human DEAD-box protein DDX3 bound to AMPPNP 6PT2 ; 2.8 ; Crystal structure of the active delta opioid receptor in complex with the peptide agonist KGCHM07 6PT3 ; 3.3 ; Crystal structure of the active delta opioid receptor in complex with the small molecule agonist DPI-287 4M8M ; 3.307 ; Crystal structure of the active dimer of zebrafish PlexinC1 cytoplasmic region 2GS2 ; 2.8 ; Crystal Structure of the active EGFR kinase domain 2GS6 ; 2.6 ; Crystal Structure of the active EGFR kinase domain in complex with an ATP analog-peptide conjugate 2CLT ; 2.67 ; Crystal structure of the active form (full-length) of human fibroblast collagenase. 5AJP ; 1.65 ; Crystal structure of the active form of GalNAc-T2 in complex with UDP and the glycopeptide MUC5AC-13 5K5S ; 2.6 ; Crystal structure of the active form of human calcium-sensing receptor extracellular domain 5DZK ; 3.07 ; Crystal structure of the active form of the proteolytic complex clpP1 and clpP2 5E0S ; 2.9 ; crystal structure of the active form of the proteolytic complex clpP1 and clpP2 3DQB ; 3.2 ; Crystal structure of the active G-protein-coupled receptor opsin in complex with a C-terminal peptide derived from the Galpha subunit of transducin 4PXF ; 2.75 ; Crystal structure of the active G-protein-coupled receptor opsin in complex with the finger-loop peptide derived from the full-length arrestin-1 4F76 ; 1.85 ; Crystal Structure of the active HIV-1 Protease in Complex with the products of p1-p6 substrate 1LFD ; 2.1 ; CRYSTAL STRUCTURE OF THE ACTIVE RAS PROTEIN COMPLEXED WITH THE RAS-INTERACTING DOMAIN OF RALGDS 1JGI ; 2.0 ; Crystal Structure of the Active Site Mutant Glu328Gln of Amylosucrase from Neisseria polysaccharea in Complex with the Natural Substrate Sucrose 1AXE ; 2.0 ; CRYSTAL STRUCTURE OF THE ACTIVE-SITE MUTANT PHE93->TRP OF HORSE LIVER ALCOHOL DEHYDROGENASE IN COMPLEX WITH NAD AND INHIBITOR TRIFLUOROETHANOL 7U5P ; 3.14 ; CRYSTAL STRUCTURE OF THE ACTIVIN RECEPTOR TYPE-2A LIGAND BINDING DOMAIN IN COMPLEX WITH ACTIVIN-A 5NH3 ; 2.35 ; CRYSTAL STRUCTURE OF THE Activin receptor type-2A LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV 5NHR ; 3.35 ; CRYSTAL STRUCTURE OF THE Activin receptor type-2B LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV, CUBIC CRYSTAL FORM 5NGV ; 2.0 ; CRYSTAL STRUCTURE OF THE Activin receptor type-2B LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV, ORTHORHOMBIC CRYSTAL FORM 1S4Y ; 2.3 ; Crystal structure of the activin/actrIIb extracellular domain 6GIP ; 2.17 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with a Quinazolinone based ALK2 inhibitor with a 2, 5-dimethyl core. 6GI6 ; 1.98 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with a Quinazolinone based ALK2 inhibitor with a 5-methyl core. 6GIN ; 2.2 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with an Quinazolinone based ALK2 inhibitor with a 4-morpholinophenyl solvent accessible group. 5OY6 ; 2.56 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with cyclical inhibitor OD36. 6I1S ; 1.52 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with FKBP12 and the inhibitor E6201 5OXG ; 2.13 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with LDN-212854 6TN8 ; 1.63 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound BI-9564 6SZM ; 1.42 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2009 6SRH ; 1.25 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2117 6Z36 ; 1.37 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2118 6T6D ; 2.56 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2149 7A21 ; 2.14 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2158 8C7W ; 2.26 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2304 8C7Z ; 2.23 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K2308 6T8N ; 1.77 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound M4K3007 7NNS ; 2.14 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound Momelotinib 6ZGC ; 2.67 ; Crystal structure of the ACVR1 (ALK2) kinase in complex with the compound Saracatinib (AZD0530) 3Q4U ; 1.82 ; Crystal structure of the ACVR1 kinase domain in complex with LDN-193189 4DYM ; 2.42 ; Crystal structure of the ACVR1 kinase domain in complex with the imidazo[1,2-b]pyridazine inhibitor K00135 3OOM ; 2.0 ; Crystal structure of the ACVR1 kinase domain in complex with the imidazo[1,2-b]pyridazine inhibitor K00507 3MTF ; 2.15 ; Crystal structure of the ACVR1 kinase in complex with a 2-aminopyridine inhibitor 4BGG ; 2.56 ; Crystal structure of the ACVR1 kinase in complex with LDN-213844 3MY0 ; 2.65 ; Crystal structure of the ACVRL1 (ALK1) kinase domain bound to LDN-193189 1X3O ; 1.5 ; Crystal structure of the acyl carrier protein from thermus thermophilus HB8 6OSS ; 2.19 ; Crystal Structure of the Acyl-Carrier-Protein UDP-N-Acetylglucosamine O-Acyltransferase LpxA from Proteus mirabilis 2A7S ; 2.9 ; Crystal Structure of the Acyl-CoA Carboxylase, AccD5, from Mycobacterium tuberculosis 2WKH ; 1.791 ; Crystal structure of the acyl-enzyme OXA-10 K70C-Ampicillin at pH 7 2WGI ; 2.85 ; Crystal structure of the acyl-enzyme OXA-10 W154A-benzylpenicillin at pH 6 1KZF ; 1.8 ; Crystal Structure of the Acyl-homoserine Lactone Synthase, EsaI 1K4J ; 2.5 ; Crystal Structure of the Acyl-homoserinelactone Synthase EsaI Complexed with Rhenate 1XKZ ; 1.75 ; Crystal structure of the acylated beta-lactam sensor domain of Blar1 from S. aureus 6IYR ; 2.05 ; Crystal Structure of the acyltransferase domain from module 8 of the salinomycin polyketide synthase 6IYT ; 1.78 ; Crystal Structure of the acyltransferase domain from second module 14 of salinomycin polyketide synthase 6IYO ; 2.2 ; Crystal Structure of the acyltransferase domain from the second module of the salinomycin polyketide synthase 6J0U ; 1.79 ; Crystal Structure of the acyltransferase domain from the third module of the ansamitocin polyketide synthase 6L3M ; 1.77 ; Crystal Structure of the acyltransferase domain from the third module of the ansamitocin polyketide synthase 6L3N ; 1.83 ; Crystal Structure of the acyltransferase domain from the third module of the ansamitocin polyketide synthase 4AMM ; 1.4 ; Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis Reveals the Molecular Basis of Substrate Specificity 4AMN ; 1.5 ; Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis Reveals the Molecular Basis of Substrate Specificity 4AMO ; 1.9 ; Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis Reveals the Molecular Basis of Substrate Specificity 4AMP ; 1.65 ; Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis Reveals the Molecular Basis of Substrate Specificity 6MFJ ; 2.62 ; Crystal structure of the ADCC potent antibody DH677.3 Fab elicited in the RV305 vaccine trial. 4RFO ; 3.2 ; Crystal structure of the ADCC-Potent Antibody N60-I3 Fab in complex with HIV-1 Clade A/E gp120 and M48u1 5KJR ; 2.98 ; Crystal structure of the ADCC-potent antibody N60-i3 Fab in complex with HIV-1 Clade A/E gp120 W69A/S115W mutant and M48U1. 6W4M ; 3.2 ; CRYSTAL STRUCTURE OF THE ADCC-POTENT, WEAKLY NEUTRALIZING HIV ENV CO-RECEPTOR BINDING SITE ANTIBODY N12-I2 FAB IN COMPLEX WITH HIV-1 CLADE A/E GP120 AND M48U1 8BRC ; 3.17 ; Crystal structure of the adduct between human serum transferrin and cisplatin 3CJK ; 1.8 ; Crystal structure of the adduct HAH1-Cd(II)-MNK1. 2IBS ; 2.4 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing 2-aminopurine at the target position 2IBT ; 1.7 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing 2-aminopurine at the target position and an abasic site analog at the target base partner position 2IH2 ; 1.61 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing 5-methylpyrimidin-2(1H)-one at the target base partner position 2IH5 ; 1.8 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing an abasic site analog at the target base partner position 2NP6 ; 2.1 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing an abasic site analog at the target position 2NP7 ; 1.9 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing an abasic site analog at the target position and pyrrolo-dC at the target base partner position 2IH4 ; 2.1 ; Crystal structure of the adenine-specific DNA methyltransferase M.TaqI complexed with the cofactor analog AETA and a 10 bp DNA containing pyrrolo-dC at the target base partner position 7PX4 ; 2.25 ; Crystal structure of the adenosine A2A receptor (A2A-PSB1-bRIL) in complex with preladenant conjugate PSB-2113 7PYR ; 2.6 ; Crystal structure of the adenosine A2A receptor (A2A-PSB1-bRIL) in complex with preladenant conjugate PSB-2115 8C9W ; 2.114 ; Crystal structure of the adenosine A2A receptor (construct A2A-PSB2-bRIL) complexed with Etrumadenant at the orthosteric pocket 5KB5 ; 1.8 ; Crystal structure of the adenosine kinase from Mus musculus in complex with adenosine and adenosine-diphosphate 4GMA ; 3.94 ; Crystal structure of the adenosylcobalamin riboswitch 8FW4 ; 4.3 ; Crystal structure of the adenosylcobalamin riboswitch holo conformation in absence of ligand 2III ; 2.3 ; Crystal structure of the adenosylmethionine decarboxylase (aq_254) from aquifex aeolicus vf5 1QNE ; 1.9 ; Crystal structure of the Adenovirus major late promoter TATA box bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). 6HF7 ; 1.96 ; Crystal structure of the adenylate kinase from Methanothermococcus thermolithotrophicus co-crystallized with Tb-Xo4 2OOX ; 2.6 ; Crystal structure of the adenylate sensor from AMP-activated protein kinase complexed with AMP 2OOY ; 2.88 ; Crystal structure of the adenylate sensor from AMP-activated protein kinase complexed with ATP 2QRE ; 3.01 ; Crystal structure of the adenylate sensor from AMP-activated protein kinase in complex with 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranotide (ZMP) 2QR1 ; 2.7 ; Crystal structure of the adenylate sensor from AMP-activated protein kinase in complex with ADP 2QRC ; 2.7 ; Crystal structure of the adenylate sensor from AMP-activated protein kinase in complex with ADP and AMP 2QRD ; 2.41 ; Crystal Structure of the Adenylate Sensor from AMP-activated Protein Kinase in complex with ADP and ATP 6OZ1 ; 1.97 ; Crystal structure of the adenylation (A) domain of the carboxylate reductase (CAR) GR01_22995 from Mycobacterium chelonae 7XBS ; 1.64 ; Crystal structure of the adenylation domain of CmnG 7XBT ; 1.84 ; Crystal structure of the adenylation domain of CmnG in complex with AMP 7XBV ; 1.94 ; Crystal structure of the adenylation domain of CmnG in complex with AMPCPP 7XBU ; 2.35 ; Crystal structure of the adenylation domain of CmnG in complex with capreomycidine 3JSL ; 1.8 ; Crystal structure of the adenylation domain of NAD+-dependent DNA ligase from Staphylococcus aureus 3JSN ; 1.9 ; Crystal structure of the adenylation domain of NAD+-dependent DNA ligase from Staphylococcus aureus 3R5G ; 1.5 ; Crystal structure of the adenylyl cyclase CyaB from P. aeruginosa 1K8T ; 2.6 ; Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF) 1K93 ; 2.95 ; Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF) in complex with calmodulin 1LVC ; 3.6 ; Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF) in complex with calmodulin and 2' deoxy, 3' anthraniloyl ATP 1K90 ; 2.75 ; Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF) in complex with calmodulin and 3' deoxy-ATP 1SK6 ; 3.2 ; Crystal structure of the adenylyl cyclase domain of anthrax edema factor (EF) in complex with calmodulin, 3',5' cyclic AMP (cAMP), and pyrophosphate 4ES9 ; 2.0 ; Crystal Structure of the adhesin domain of Epf from Streptococcus pyogenes in P21 4ES8 ; 1.58 ; Crystal Structure of the adhesin domain of Epf from Streptococcus pyogenes in P212121 1G6H ; 1.6 ; CRYSTAL STRUCTURE OF THE ADP CONFORMATION OF MJ1267, AN ATP-BINDING CASSETTE OF AN ABC TRANSPORTER 6TFG ; 2.45 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Adenosine 3-phosphate 5-phosphosulfate (APPS) 6TF2 ; 2.55 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Adenosine 5-triphosphate (ATP) 6TF1 ; 2.4 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Adenosine diphosphate (ADP) 6TB7 ; 2.53 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Adenosine monophosphate (AMP) 6TF3 ; 2.66 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Cordycepin 5-triphosphate (3-dATP) 6TFE ; 2.3 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with N6-Methyl-adenosine-5'-triphosphate (m6ATP) 6TFF ; 2.52 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Nicotinamide adenine dinucleotide (NAD+) 6TF0 ; 2.1 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Nicotinamide adenine dinucleotide, reduced (NADH) 6TFH ; 2.95 ; Crystal structure of the ADP-binding domain of the NAD+ riboswitch with Nicotinamide adenine dinucleotide, reduced (NADH); soaking with Manganese(II) (Mn2+) 6YXT ; 2.2 ; Crystal structure of the ADP-bound form of choline kinase from Plasmodium falciparum 7DQE ; 2.694 ; Crystal structure of the ADP-bound mutant A(S23C)3B(N64C)3 complex from enterococcus hirae V-ATPase 2AWO ; 2.8 ; Crystal structure of the ADP-Mg-bound E. Coli MALK (Crystallized with ADP-Mg) 2AWN ; 2.3 ; Crystal structure of the ADP-Mg-bound E. Coli MALK (Crystallized with ATP-Mg) 1GA7 ; 2.71 ; CRYSTAL STRUCTURE OF THE ADP-RIBOSE PYROPHOSPHATASE IN COMPLEX WITH GD+3 5A3A ; 1.54 ; Crystal structure of the ADP-ribosylating sirtuin (SirTM) from Streptococcus pyogenes (Apo form) 5A3B ; 1.9 ; Crystal structure of the ADP-ribosylating sirtuin (SirTM) from Streptococcus pyogenes in complex with ADP-ribose 5A3C ; 2.03 ; Crystal structure of the ADP-ribosylating sirtuin (SirTM) from Streptococcus pyogenes in complex with NAD 1D6Z ; 2.1 ; CRYSTAL STRUCTURE OF THE AEROBICALLY FREEZE TRAPPED RATE-DETERMINING CATALYTIC INTERMEDIATE OF E. COLI COPPER-CONTAINING AMINE OXIDASE. 6AMB ; 2.5 ; Crystal Structure of the Afadin RA1 domain in complex with HRAS 7CP2 ; 2.19 ; Crystal structure of the African swine fever virus core shell protein p15 8I6G ; 1.79 ; Crystal structure of the African swine fever virus DNA sliding clamp (native form) 8I6H ; 2.292 ; Crystal structure of the African swine fever virus DNA sliding clamp (selenomethionine form) 8WWO ; 2.2 ; Crystal structure of the AFSV topoisomerase ATPase domain in complex with AMPPNP 4WLW ; 2.8 ; CRYSTAL STRUCTURE OF THE AG(I) (ACTIVATOR) FORM OF E. COLI CUER, A COPPER EFFLUX REGULATOR, BOUND TO COPA PROMOTER DNA 1Q06 ; 2.07 ; Crystal structure of the Ag(I) form of E. coli CueR, a copper efflux regulator 7DNM ; 2.3 ; Crystal structure of the AgCarB2-C2 complex 7DNN ; 2.25 ; Crystal structure of the AgCarB2-C2 complex with homoorientin 1P93 ; 2.7 ; CRYSTAL STRUCTURE OF THE AGONIST FORM OF GLUCOCORTICOID RECEPTOR 3MNO ; 1.55 ; Crystal structure of the agonist form of mouse glucocorticoid receptor stabilized by (A611V, F608S) mutations at 1.55A 3MNP ; 1.5 ; Crystal structure of the agonist form of mouse glucocorticoid receptor stabilized by (A611V, V708A, E711G) mutations at 1.50A 3MNE ; 1.96 ; Crystal structure of the agonist form of mouse glucocorticoid receptor stabilized by F608S mutation at 1.96A 1XIU ; 2.5 ; Crystal structure of the agonist-bound ligand-binding domain of Biomphalaria glabrata RXR 1RO5 ; 2.3 ; Crystal Structure of the AHL Synthase LasI 5V0L ; 4.0 ; Crystal structure of the AHR-ARNT heterodimer in complex with the DRE 3ELI ; 2.8 ; Crystal structure of the AHSA1 (SPO3351) protein from Silicibacter pomeroyi, Northeast Structural Genomics Consortium Target SiR160 4BVY ; 1.992 ; Crystal structure of the AIMP3-MRS N-terminal domain complex 4BL7 ; 1.892 ; Crystal structure of the AIMP3-MRS N-terminal domain complex in different space group 4BVX ; 1.6 ; Crystal structure of the AIMP3-MRS N-terminal domain complex with I3C 4XKH ; 3.0 ; CRYSTAL STRUCTURE OF THE AIRAPL TANDEM UIMS IN COMPLEX WITH A LYS48-LINKED TRI-UBIQUITIN 4K9N ; 1.7 ; Crystal Structure of the Ala460Ile mutant of Benzoylformate Decarboxylase from Pseudomonas putida 1FEV ; 2.25 ; CRYSTAL STRUCTURE OF THE ALA4AIB MUTATION IN RNASE S 5IRP ; 2.1 ; Crystal structure of the alanine racemase Bsu17640 from Bacillus subtilis 6Q71 ; 1.92 ; Crystal structure of the alanine racemase Bsu17640 from Bacillus subtilis in the presence of Bis-Tris propane 6Q70 ; 2.05 ; Crystal structure of the alanine racemase Bsu17640 from Bacillus subtilis in the presence of HEPES 6Q72 ; 3.0 ; Crystal structure of the alanine racemase from Bacillus subtilis in the presence of only PEG 4000 and Magnesium chloride in the crystallization condition 2E1B ; 2.7 ; Crystal structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii 2BKY ; 1.7 ; Crystal structure of the Alba1:Alba2 heterodimer from sulfolobus solfataricus 7R3W ; 3.6 ; Crystal structure of the albicidin resistance protein STM3175 from Salmonella typhimurium 4R0C ; 2.963 ; Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology 1H2B ; 1.62 ; Crystal Structure of the Alcohol Dehydrogenase from the Hyperthermophilic Archaeon Aeropyrum pernix at 1.65A Resolution 1SIJ ; 2.3 ; Crystal structure of the Aldehyde Dehydrogenase (a.k.a. AOR or MOP) of Desulfovibrio gigas covalently bound to [AsO3]- 3L4P ; 1.45 ; Crystal structure of the Aldehyde Dehydrogenase (a.k.a. AOR or MOP) of Desulfovibrio gigas covalently bound to [AsO3]- 1DGJ ; 2.8 ; CRYSTAL STRUCTURE OF THE ALDEHYDE OXIDOREDUCTASE FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 7QK9 ; 1.782 ; Crystal structure of the ALDH1A3-ATP complex 7QK8 ; 1.893 ; Crystal structure of the ALDH1A3-NAD+ complex 4JN6 ; 1.93 ; Crystal Structure of the Aldolase-Dehydrogenase Complex from Mycobacterium tuberculosis HRv37 1UAI ; 1.2 ; Crystal Structure of the Alginate Lyase from Corynebacterium sp. 4OZX ; 1.88 ; Crystal Structure of the alginate lyase from Klebsiella pneumoniae 5FTQ ; 1.7 ; Crystal structure of the ALK kinase domain in complex with Cmpd 17 5FTO ; 2.22 ; Crystal structure of the ALK kinase domain in complex with Entrectinib 3E4R ; 2.01 ; Crystal structure of the alkanesulfonate binding protein (SsuA) from the phytopathogenic bacteria Xanthomonas axonopodis pv. citri bound to HEPES 4O5Q ; 2.0 ; Crystal Structure of the Alkylhydroperoxide Reductase AhpF from Escherichia coli 4YKG ; 2.4 ; Crystal Structure of the Alkylhydroperoxide Reductase subunit F (AhpF) with NAD+ from Escherichia coli 4YKF ; 2.5 ; Crystal Structure of the Alkylhydroperoxide Reductase subunit F (AhpF) with NADH from Escherichia coli 1OIH ; 1.89 ; Crystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase 1OIJ ; 2.1 ; Crystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase in complex with alphaketoglutarate 1OIK ; 2.06 ; Crystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase in complex with fe, alphaketoglutarate and 2-ethyl-1-hexanesulfuric acid 1OII ; 2.19 ; Crystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase in complex with iron and alphaketoglutarate 6MR0 ; 2.649 ; Crystal Structure of the All-trans Retinal Bound R111K:Y134F:T54V:R132Q:P39Q:R59Y:L121E Human Cellular Retinoic Acid Binding Protein II Mutant After 5 Minutes UV irradiation at 2.6 Angstrom Resolution 6MOV ; 1.752 ; Crystal Structure of the All-trans Retinal bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121Q Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.75 Angstrom Resolution 6MQI ; 1.87 ; Crystal Structure of the All-trans Retinal bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121Q mutant of Human Cellular Retinoic Acid Binding Protein II Irradiated with 400 nm Laser for 5 minutes at 1.87 Angstrom Resolution 6MQJ ; 2.125 ; Crystal Structure of the All-Trans Retinal bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121Q mutant of Human Cellular Retinoic Acid Binding Protein II Irradiated with 532 nm Laser for 10 minutes at 2.1 Angstrom Resolution 6NNY ; 1.668 ; Crystal Structure of the All-Trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39E:R59Y:L121E Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.67 Angstrom Resolution 6MOX ; 2.18 ; Crystal Structure of the All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Q:R59Y:L121E Human Cellular Retinoic Acid Binding Protein II Mutant in the Dark at 2.18 Angstrom Resolution 6MOP ; 1.9 ; Crystal Structure of the All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.9 Angstrom Resolution 6NOE ; 1.969 ; Crystal Structure of the All-Trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121E:I63D Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.97 Angstrom Resolution 6NNX ; 1.87 ; Crystal Structure of the All-Trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121M Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.87 Angstrom Resolution 6MOQ ; 2.198 ; Crystal Structure of the All-trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121W Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 2.2 Angstrom Resolution 6MOR ; 1.79 ; Crystal Structure of the All-Trans Retinal-Bound R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121Y Mutant of Human Cellular Retinoic Acid Binding Protein II in the Dark at 1.79 Angstrom Resolution 3IGF ; 2.0 ; Crystal Structure of the All4481 protein from Nostoc sp. PCC 7120, Northeast Structural Genomics Consortium Target NsR300 4H6C ; 1.35 ; Crystal Structure of the Allene Oxide Cyclase 1 from Physcomitrella patens 4H6A ; 1.95 ; Crystal Structure of the Allene Oxide Cyclase 2 from Physcomitrella patens 4H69 ; 2.0 ; Crystal Structure of the Allene Oxide Cyclase 2 from Physcomitrella patens complexed with substrate analog 2DIO ; 1.7 ; Crystal Structure of the Allene Oxide Cyclase 2 with bound inhibitor vernolic acid 5FEF ; 2.2 ; Crystal structure of the allergen profilin (Zea m 12) 7FEE ; 2.7 ; Crystal structure of the allosteric modulator ZCZ011 binding to CP55940-bound cannabinoid receptor 1 2YEY ; 4.5 ; Crystal structure of the allosteric-defective chaperonin GroEL E434K mutant 4EX6 ; 1.25 ; Crystal structure of the alnumycin P phosphatase AlnB 4EX7 ; 1.5 ; Crystal structure of the alnumycin P phosphatase in complex with free phosphate 6KDY ; 3.02 ; Crystal structure of the alpha bata heterodimer of human IDH3 in complex with NAD. 6KE3 ; 3.307 ; Crystal structure of the alpha bata heterodimer of human IDH3 in complex with NADH 6KDF ; 3.05 ; Crystal structure of the alpha beta heterodimer of human IDH3 in APO form. 6KDE ; 2.999 ; Crystal structure of the alpha beta heterodimer of human IDH3 in complex with Ca(2+) 6QQM ; 1.75 ; Crystal structure of the alpha carbonic anhydrase from Schistosoma mansoni 6L57 ; 2.302 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with CIT , Mg and ATP binding at allosteric site. 6L59 ; 2.254 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with CIT, Mg and ATP binding at allosteric site and Mg, ATP binding at active site. 5GRH ; 2.8 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with Mg(2+) 5GRI ; 2.31 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with Mg(2+) and citrate 5YVT ; 2.4 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with Mg(2+) and NADH 5GRE ; 2.65 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with Mg(2+), citrate and ADP 5GRL ; 2.79 ; Crystal structure of the alpha gamma heterodimer of human IDH3 in complex with Mg(2+), isocitrate and ADP 5GRF ; 2.5 ; Crystal structure of the alpha gamma mutant (gamma-K151A) of human IDH3 in complex with Mg(2+), citrate and ADP 4F16 ; 1.93 ; Crystal Structure of the alpha spectrin SH3 domain at pH 5 4F17 ; 1.55 ; Crystal Structure of the alpha spectrin SH3 domain at pH 9 5IHI ; 1.45 ; Crystal Structure of the alpha spectrin SH3 domain double mutant V46G-D48G 5IHK ; 1.35 ; Crystal Structure of the alpha spectrin SH3 domain mutant N47A 5IHN ; 1.5 ; Crystal Structure of the alpha spectrin SH3 domain mutant N47G 5F5W ; 2.81 ; Crystal structure of the alpha subunit of glycyl tRNA synthetase (GlyRS) from Aquifex aeolicus in complex with an analog of glycyl adenylate (Gly-SA) 5LTE ; 1.65 ; Crystal structure of the alpha subunit of heme dependent oxidative N-demethylase (HODM) 5LTH ; 1.76 ; Crystal structure of the alpha subunit of heme dependent oxidative N-demethylase (HODM) in complex with the dimethylamine substrate 5LTI ; 1.9 ; Crystal structure of the alpha subunit of heme dependent oxidative N-demethylase (HODM) in complex with the dimethylamine substrate 2P02 ; 1.21 ; Crystal structure of the alpha subunit of human S-adenosylmethionine synthetase 2 1F0Q ; 2.63 ; CRYSTAL STRUCTURE OF THE ALPHA SUBUNIT OF PROTEIN KINASE CK2 IN COMPLEX WITH THE NUCLEOTIDE COMPETITIVE INHIBITOR EMODIN 1W80 ; 1.9 ; Crystal structure of the alpha-adaptin appendage domain, from the AP2 adaptor complex, bound to 2 peptides from Synaptojanin170 2VJ0 ; 1.6 ; Crystal structure of the alpha-adaptin appendage domain, from the AP2 adaptor complex, in complex with an FXDNF peptide from amphiphysin1 and a WVXF peptide from synaptojanin P170 1DOV ; 3.0 ; CRYSTAL STRUCTURE OF THE ALPHA-CATENIN DIMERIZATION DOMAIN 6DV1 ; 2.2 ; Crystal structure of the alpha-E-catenin actin-binding domain 5IKX ; 2.19 ; Crystal structure of the alpha-esterase-7 carboxyl esterase (dimer), E3, from Lucilia cuprina 3MI6 ; 2.704 ; Crystal structure of the alpha-galactosidase from Lactobacillus brevis, Northeast Structural Genomics Consortium Target LbR11. 3G08 ; 1.6 ; Crystal structure of the alpha-galactosylceramide analog OCH in complex with mouse CD1d 1FP4 ; 2.5 ; CRYSTAL STRUCTURE OF THE ALPHA-H195Q MUTANT OF NITROGENASE 3LMH ; 2.0 ; Crystal Structure of the Alpha-kinase Domain of Myosin Heavy Chain Kinase A Complex with ADP 3LLA ; 2.11 ; Crystal Structure of the Alpha-kinase Domain of Myosin Heavy Chain Kinase A Complex with AMPPCP 4ZME ; 1.98 ; Crystal Structure of the Alpha-kinase Domain of Myosin-II Heavy Chain Kinase A in Complex with Adenosine 5E9E ; 2.4 ; Crystal Structure of the Alpha-kinase Domain of Myosin-II Heavy Chain Kinase A in Complex with AMP-PNP 4N4B ; 1.44 ; Crystal Structure of the alpha-L-arabinofuranosidase PaAbf62A from Podospora anserina 4N2Z ; 1.8 ; Crystal Structure of the alpha-L-arabinofuranosidase PaAbf62A from Podospora anserina in complex with cellotriose 4N1I ; 1.0 ; Crystal Structure of the alpha-L-arabinofuranosidase UmAbf62A from Ustilago maidys 4N2R ; 1.2 ; Crystal Structure of the alpha-L-arabinofuranosidase UmAbf62A from Ustilago maydis in complex with L-arabinofuranose 6DUW ; 2.2 ; Crystal structure of the alpha-N-catenin actin-binding domain H1 mutant 6DUY ; 2.81 ; Crystal structure of the alpha-N-catenin actin-binding domain H1 mutant 3POY ; 3.02 ; Crystal Structure of the alpha-Neurexin-1 ectodomain, LNS 2-6 6NRU ; 2.505 ; Crystal Structure of the Alpha-ribazole Phosphatase from Shigella flexneri 1N3Y ; 1.65 ; Crystal structure of the alpha-X beta2 integrin I domain 4IZI ; 2.4 ; Crystal Structure of the Alpha1 dimer of Thermus thermophilus Transhydrogenase in P4(3) 4IZH ; 1.8 ; Crystal Structure of the Alpha1 dimer of Thermus thermophilus Transhydrogenase in P6 6KUY ; 3.2 ; Crystal structure of the alpha2A adrenergic receptor in complex with a partial agonist 4K1O ; 2.603 ; Crystal structure of the alphaN-catenin actin-binding domain 3F2I ; 2.0 ; Crystal structure of the alr0221 protein from Nostoc, Northeast Structural Genomics Consortium Target NsR422. 3ILM ; 2.262 ; Crystal Structure of the Alr3790 protein from Anabaena sp. Northeast Structural Genomics Consortium Target NsR437h 6E12 ; 2.4 ; Crystal Structure of the Alr8543 protein in complex with Oleic Acid and magnesium ion from Nostoc sp. PCC 7120, Northeast Structural Genomics Consortium Target NsR141 3ECV ; 1.9 ; Crystal structure of the ALS-related pathological mutant I113T of human apo Cu,Zn Superoxide Dismutase (SOD1) 3ECW ; 2.15 ; Crystal structure of the ALS-related pathological mutant T54R of human apo Cu,Zn Superoxide Dismutase (SOD1) 3S7N ; 2.451 ; Crystal Structure of the alternate His 207 conformation of the Infrared Fluorescent D207H variant of Deinococcus Bacteriophytochrome chromophore binding domain at 2.45 angstrom resolution 3HYU ; 1.67 ; Crystal structure of the altitude adapted hemoglobin of guinea pig. 7YX8 ; 1.5 ; Crystal structure of the AM0627 (E326A) inactive mutant in complex with PSGL-1-like bis-T glycopeptide and Zn2+ 2PLQ ; 1.9 ; Crystal structure of the amidase from geobacillus pallidus RAPc8 3ZZF ; 2.2 ; Crystal structure of the amino acid kinase domain from Saccharomyces cerevisiae acetylglutamate kinase complexed with its substrate N- acetylglutamate 3ZZH ; 2.1 ; Crystal structure of the amino acid kinase domain from Saccharomyces cerevisiae acetylglutamate kinase in complex with its feed- back inhibitor L-arginine 3ZZG ; 2.95 ; Crystal structure of the amino acid kinase domain from Saccharomyces cerevisiae acetylglutamate kinase without ligands 3M9B ; 3.94 ; Crystal structure of the amino terminal coiled coil domain and the inter domain of the Mycobacterium tuberculosis proteasomal ATPase Mpa 3M9H ; 2.0 ; Crystal structure of the amino terminal coiled coil domain of the Mycobacterium tuberculosis proteasomal ATPase Mpa 5KC9 ; 2.3 ; Crystal structure of the amino-terminal domain (ATD) of iGluR Delta-1 (GluD1) 5KC8 ; 1.751 ; Crystal structure of the amino-terminal domain (ATD) of iGluR Delta-2 (GluD2) 3Q5L ; 2.65 ; Crystal structure of the amino-terminal domain of HSP90 from Leishmania major, LMJF33.0312:M1-K 213 in the presence of 17-AEP-geldanamycin 3H80 ; 2.0 ; Crystal structure of the amino-terminal domain of HSP90 from Leishmania major, LmjF33.0312:M1-K213 3Q5J ; 2.1 ; Crystal structure of the amino-terminal domain of HSP90 from Leishmania major, LMJF33.0312:M1-K213 in the presence of 17-DMAP-geldanamycin 3Q5K ; 2.35 ; Crystal structure of the amino-terminal domain of HSP90 from Leishmania major, LMJF33.0312:M1-K213 in the presence of an inhibitor 3SD6 ; 1.37 ; Crystal structure of the amino-terminal domain of human cardiac troponin C in complex with cadmium at 1.4 resolution. 3SWB ; 1.67 ; Crystal structure of the amino-terminal domain of human cardiac troponin C in complex with cadmium at 1.7 A resolution 4GJG ; 2.0 ; Crystal structure of the amino-terminal domain of human cardiac troponin C mutant D2N/V28I/L29Q/G30D (NIQD) in complex with cadmium. 4GJF ; 1.9 ; Crystal structure of the amino-terminal domain of human cardiac troponin C mutant L29Q in complex with cadmium 2W21 ; 2.95 ; Crystal structure of the aminoacid kinase domain of the glutamate 5 kinase of Escherichia coli. 1O5T ; 2.5 ; Crystal structure of the aminoacylation catalytic fragment of human tryptophanyl-tRNA synthetase 7BXZ ; 2.502 ; Crystal structure of the aminoglycoside 6'-N-acetyltransferase from Enterococcus faecium 4EJ7 ; 2.29 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, ATP-bound 4GKH ; 1.863 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor 1-NA-PP1 4GKI ; 1.88 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor 1-NM-PP1 4FEU ; 2.37 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor anthrapyrazolone SP600125 4FEV ; 1.89 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor pyrazolopyrimidine PP1 4FEW ; 1.98 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor pyrazolopyrimidine PP2 4FEX ; 2.71 ; Crystal structure of the aminoglycoside phosphotransferase APH(3')-Ia, with substrate kanamycin and small molecule inhibitor tyrphostin AG1478 4OX9 ; 3.8035 ; Crystal structure of the aminoglycoside resistance methyltransferase NpmA bound to the 30S ribosomal subunit 7EHF ; 1.5 ; Crystal structure of the aminoglycoside resistance methyltransferase NpmB1 2IQ6 ; 2.0 ; Crystal Structure of the Aminopeptidase from Vibrio proteolyticus in Complexation with Leucyl-leucyl-leucine. 4FGM ; 2.394 ; Crystal structure of the aminopeptidase N family protein Q5QTY1 from Idiomarina loihiensis. Northeast Structural Genomics Consortium Target IlR60. 2DEA ; 1.24 ; Crystal Structure of the Aminopeptidase of Aeromonas proteolytica at pH 4.7 7XII ; 2.25 ; Crystal structure of the aminopropyltransferase, SpeE from hyperthermophilic crenarchaeon, Pyrobaculum calidifontis in complex with 5'-methylthioadenosine (MTA) & aminopropylagmatine 7XIF ; 2.14 ; Crystal structure of the aminopropyltransferase, SpeE from hyperthermophilic crenarchaeon, Pyrobaculum calidifontis in complex with 5'-methylthioadenosine (MTA) alone or together with spermidine or thermospermine 7XIH ; 1.2 ; Crystal structure of the aminopropyltransferase, SpeE from hyperthermophilic crenarchaeon, Pyrobaculum calidifontis in complex with 5'-methylthioadenosine (MTA) and spermidine 7XIG ; 2.25 ; Crystal structure of the aminopropyltransferase, SpeE from hyperthermophilic crenarchaeon, Pyrobaculum calidifontis in complex with 5'-methylthioadenosine (MTA) and spermine 6HNU ; 1.8 ; Crystal structure of the aminotransferase Aro8 from C. Albicans with ligands 3I0Q ; 2.8 ; Crystal Structure of the AMP-bound complex of Spectinomycin Phosphotransferase, APH(9)-Ia 7DQD ; 3.383 ; Crystal structure of the AMP-PNP-bound mutant A(S23C)3B(N64C)3 complex from enterococcus hirae V-ATPase 8QEZ ; 1.55 ; Crystal structure of the AMPA receptor GluA2-L504Y-N775S ligand binding domain in complex with L-glutamate and positive allosteric modulator BPAM395 at 1.55A resolution 5FWY ; 2.12 ; Crystal structure of the AMPA receptor GluA2/A3 N-terminal domain heterodimer 5FWX ; 2.5 ; Crystal structure of the AMPA receptor GluA2/A4 N-terminal domain heterodimer 3IJO ; 2.003 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, althiazide 3IK6 ; 2.101 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, chlorothiazide 3IJX ; 2.881 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, hydrochlorothiazide 3ILU ; 2.003 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, hydroflumethiazide 3IL1 ; 1.998 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, IDRA-21 3ILT ; 2.107 ; Crystal structure of the AMPA subunit GluR2 bound to the allosteric modulator, trichlormethiazide 6I30 ; 2.21 ; Crystal structure of the AmpC from Pseudomonas aeruginosa with 1C 4ZBP ; 2.6 ; Crystal structure of the AMPCPR-bound AtNUDT7 2ONV ; 1.61 ; Crystal Structure of the amyloid-fibril forming peptide GGVVIA derived from the Alzheimer's amyloid Abeta (Abeta37-42). 4E0K ; 0.97 ; Crystal Structure of the amyloid-fibril forming peptide KDWSFY derived from human Beta 2 Microglobulin (58-63) 4K07 ; 2.83 ; Crystal structure of the amyloid-forming immunoglobulin AL-103 cis-proline 95 mutant 6FHC ; 1.51 ; Crystal Structure of the Amyloid-like hexametric polymorph of the LFKFFK segment from the S. aureus PSMalpha3 6RHB ; 1.26 ; Crystal structure of the amyloid-like IATLYV segment from the Candida albicans Agglutinin-like protein (Adhesin) 5 6FGR ; 1.5 ; Crystal Structure of the Amyloid-like IIKIIK Segment from the S. aureus Biofilm-associated PSMalpha4 6FG4 ; 1.1 ; Crystal Structure of the Amyloid-like IIKVIK Segment from the S. aureus Biofilm-associated PSMalpha1 6G8C ; 1.65 ; Crystal Structure of the Amyloid-like IYQYGG segment from the R1 repeat of the E. coli Biofilm-associated CsgA Curli protein 6G8D ; 1.85 ; Crystal Structure of the Amyloid-like LNIYQY segment from the R1 repeat of the E. coli Biofilm-associated CsgA Curli protein 6RHA ; 1.6 ; Crystal structure of the amyloid-like NTVTFN segment from the Candida albicans Agglutinin-like protein (Adhesin) 5 6RHD ; 1.2 ; Crystal structure of the amyloid-like TSYVGV segment from the Candida albicans Agglutinin-like protein (Adhesin) 5 6G8E ; 1.7 ; Crystal Structure of the Amyloid-like VTQVGF segment from the R5 repeat of the E. coli Biofilm-associated CsgA Curli protein 6FHD ; 1.85 ; Crystal Structure of the Amyloid-like, out-of-register beta-sheets, polymorph of the LFKFFK segment from the S. aureus PSMalpha3 3OK4 ; 1.149 ; Crystal structure of the ANA:RNA decamer suffering from lattice translocation defects 3OK2 ; 1.963 ; Crystal structure of the ANA:RNA decamer without lattice translocation defects 3WKU ; 2.7 ; Crystal structure of the anaerobic DesB-gallate complex 3WR3 ; 2.5 ; Crystal structure of the anaerobic DesB-gallate complex 3WR4 ; 2.4 ; Crystal structure of the anaerobic DesB-gallate complex 3WR9 ; 2.4 ; Crystal structure of the Anaerobic DesB-Gallate complex 3WPM ; 2.5 ; Crystal structure of the anaerobic DesB-gallate complex by co-crystallization 3WRC ; 2.4 ; Crystal structure of the anaerobic DesB-Protocatechuate (PCA) complex 3WRB ; 2.1 ; Crystal structure of the anaerobic H124F DESb-Gallate complex 4COJ ; 2.48 ; Crystal structure of the anaerobic ribonucleotide reductase from Thermotoga maritima in complex with dATP and CTP 4CON ; 2.12 ; Crystal structure of the anaerobic ribonucleotide reductase from Thermotoga maritima with citrate in the active site 4COL ; 1.96 ; Crystal structure of the anaerobic ribonucleotide reductase from Thermotoga maritima with dATP bound in the specificity site 4COI ; 1.94 ; Crystal structure of the anaerobic ribonucleotide reductase from Thermotoga maritima with glycerol in the active site 4COM ; 1.92 ; Crystal structure of the anaerobic ribonucleotide reductase from Thermotoga maritima with MES in the active site 5IUH ; 2.1 ; Crystal Structure of the Anaplastic Lymphoma Kinase (ALK) in complex with 5d 3L9P ; 1.8 ; Crystal Structure of the Anaplastic Lymphoma Kinase Catalytic Domain 3LCS ; 1.95 ; Crystal Structure of the Anaplastic Lymphoma Kinase Catalytic Domain 3LCT ; 2.1 ; Crystal Structure of the Anaplastic Lymphoma Kinase Catalytic Domain 5T0W ; 2.59 ; Crystal structure of the ancestral amino acid-binding protein AncCDT-1, a precursor of cyclohexadienyl dehydratase 8HNE ; 1.13 ; Crystal structure of the ancestral GH19 chitinase Anc4 8HNF ; 1.57 ; Crystal structure of the ancestral GH19 chitinase Anc5 8X2V ; 1.29 ; Crystal structure of the ancestral GH19 chitinase, Anc4+LoopII (P12K/N13H mutant) 8X2W ; 1.4 ; Crystal structure of the ancestral GH19 chitinase, Anc4+LoopII (P12K/N13H/S58T/N193G/Y194F/D197R) 4M1V ; 1.3 ; Crystal structure of the ancestral soluble variant of the Human Phosphate Binding Protein (HPBP) 1T5Z ; 2.3 ; Crystal Structure of the Androgen Receptor Ligand Binding Domain (LBD) with DHT and a peptide derived from its physiological coactivator ARA70 5VO4 ; 2.35 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain In Complex With 5-(2-fluoro-4-hydroxyphenyl)-1-methyl-1H-pyrrole-2-carbonitrile 1T7T ; 1.7 ; Crystal structure of the androgen receptor ligand binding domain in complex with 5-alpha dihydrotestosterone 1T73 ; 2.2 ; Crystal structure of the androgen receptor ligand binding domain in complex with a FxxFF motif 1T7R ; 1.4 ; Crystal structure of the androgen receptor ligand binding domain in complex with a FxxLF motif 1T79 ; 1.8 ; Crystal structure of the androgen receptor ligand binding domain in complex with a FxxLW motif 1T7M ; 1.6 ; Crystal structure of the androgen receptor ligand binding domain in complex with a FxxYF motif 1T7F ; 1.6 ; Crystal structure of the androgen receptor ligand binding domain in complex with a LxxLL motif 1T74 ; 2.0 ; Crystal structure of the androgen receptor ligand binding domain in complex with a WxxLF motif 1T76 ; 2.1 ; Crystal structure of the androgen receptor ligand binding domain in complex with a WxxVW motif 4K7A ; 2.44 ; Crystal structure of the androgen receptor ligand binding domain in complex with minoxidil 2AX9 ; 1.65 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain In Complex With R-3 2AXA ; 1.8 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain In Complex With S-1 3B67 ; 1.9 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM C-23 3B5R ; 1.8 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM C-31 3B66 ; 1.65 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM S-21 3RLJ ; 1.9 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM S-22 3B65 ; 1.8 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM S-24 3B68 ; 1.9 ; Crystal structure of the androgen receptor ligand binding domain in complex with SARM S-4 2AX6 ; 1.5 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain T877A Mutant In Complex With Hydroxyflutamide 2AX7 ; 1.9 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain T877A Mutant In Complex With S-1 2AX8 ; 1.7 ; Crystal Structure Of The Androgen Receptor Ligand Binding Domain W741L Mutant In Complex With S-1 1T65 ; 1.66 ; Crystal structure of the androgen receptor ligand binding domain with DHT and a peptide derived form its physiological coactivator GRIP1 NR box 2 bound in a non-helical conformation 1T63 ; 2.07 ; Crystal Structure of the Androgen Receptor Ligand Binding Domain with DHT and a peptide derived from its physiological coactivator GRIP1 NR box3 1Z95 ; 1.8 ; Crystal Structure of the Androgen Receptor Ligand-binding Domain W741L Mutant Complex with R-bicalutamide 7JNI ; 3.0 ; Crystal structure of the angiotensin II type 2 receptoror (AT2R) in complex with EMA401 4BXK ; 2.2 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with a domain-specific inhibitor 4UFA ; 1.8 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with Ac-SD 5AMA ; 1.8 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with amyloid-beta 1-16 5AM9 ; 1.8 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with amyloid-beta 10-16 5AMB ; 1.55 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with amyloid-beta 35-42 5AM8 ; 1.9 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with amyloid-beta 4-10 5AMC ; 1.65 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with amyloid-beta fluorogenic fragment 4-10 4UFB ; 1.8 ; Crystal structure of the Angiotensin-1 converting enzyme N-domain in complex with Lys-Pro 4YZF ; 3.5 ; Crystal structure of the anion exchanger domain of human erythrocyte Band 3 7XC5 ; 2.1 ; Crystal structure of the ANK domain of CLPB 5YAZ ; 1.9 ; Crystal structure of the ANKRD domain of KANK1 1BG5 ; 2.6 ; CRYSTAL STRUCTURE OF THE ANKYRIN BINDING DOMAIN OF ALPHA-NA,K-ATPASE AS A FUSION PROTEIN WITH GLUTATHIONE S-TRANSFERASE 3KBT ; 2.75 ; Crystal structure of the ankyrin binding domain of human erythroid beta spectrin (repeats 13-15) in complex with the spectrin binding domain of human erythroid ankyrin (ZU5-ANK) 3KBU ; 2.75 ; Crystal structure of the ankyrin binding domain of human erythroid beta spectrin (repeats 13-15) in complex with the spectrin binding domain of human erythroid ankyrin (ZU5-ANK), EMTS derivative 1K1A ; 1.86 ; Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family 1K1B ; 1.9 ; Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family 3W9G ; 2.0 ; Crystal structure of the ankyrin repeat domain of chicken TRPV4 3W9F ; 1.9 ; Crystal structure of the ankyrin repeat domain of chicken TRPV4 in complex with IP3 2F37 ; 1.7 ; Crystal structure of the ankyrin repeat domain of human TRPV2 2ETA ; 2.2 ; Crystal structure of the ankyrin repeat domain of the TRPV2 2NYJ ; 3.2 ; Crystal structure of the ankyrin repeat domain of TRPV1 2PNN ; 2.7 ; Crystal Structure of the Ankyrin Repeat Domain of Trpv1 2ETB ; 1.65 ; Crystal structure of the ankyrin repeat domain of TRPV2 2ETC ; 3.1 ; Crystal structure of the ankyrin repeat domain of TRPV2 4D8O ; 2.203 ; Crystal Structure of the ankyrin-B ZU5-ZU5-UPA-DD tandem 3EDU ; 2.1 ; Crystal structure of the ankyrin-binding domain of human erythroid spectrin 1AEI ; 2.8 ; CRYSTAL STRUCTURE OF THE ANNEXIN XII HEXAMER 7U1N ; 2.4 ; Crystal structure of the Anopheles darlingi AD-118 long form D7 salivary protein 3L47 ; 2.506 ; Crystal Structure of the Anopheles gambiae Odorant-binding Protein 22a 3NHI ; 1.43 ; Crystal structure of the AnSt-D7L1-leukotriene C4 complex 3NHT ; 1.45 ; Crystal structure of the AnSt-D7L1-U46619 complex 1NHZ ; 2.3 ; Crystal Structure of the Antagonist Form of Glucocorticoid Receptor 3H52 ; 2.8 ; Crystal structure of the antagonist form of human glucocorticoid receptor 4WV3 ; 2.599 ; Crystal structure of the anthranilate CoA ligase AuaEII in complex with anthranoyl-AMP 2QK8 ; 2.4 ; Crystal structure of the anthrax drug target, Bacillus anthracis dihydrofolate reductase 1JKY ; 3.9 ; Crystal Structure of the Anthrax Lethal Factor (LF): Wild-type LF Complexed with the N-terminal Sequence of MAPKK2 1PWP ; 2.9 ; Crystal Structure of the Anthrax Lethal Factor complexed with Small Molecule Inhibitor NSC 12155 1TZO ; 3.6 ; Crystal Structure of the Anthrax Toxin Protective Antigen Heptameric Prepore 1TZN ; 4.3 ; Crystal Structure of the Anthrax Toxin Protective Antigen Heptameric Prepore bound to the VWA domain of CMG2, an anthrax toxin receptor 4AEH ; 1.6 ; Crystal structure of the anti-AaHI Fab9C2 antibody 3ULQ ; 2.3 ; Crystal Structure of the Anti-Activator RapF Complexed with the Response Regulator ComA DNA Binding Domain 2G5B ; 2.3 ; Crystal Structure of the anti-Bax monoclonal antibody 6A7 and a Bax peptide. 7T0R ; 3.65 ; Crystal structure of the anti-CD4 adnectin 6940_B01 as a complex with the extracellular domains of CD4 and ibalizumab fAb 6B0W ; 1.9 ; Crystal structure of the anti-circumsporozoite protein 1710 antibody 5BK5 ; 3.0 ; Crystal structure of the anti-circumsporozoite protein 663 germline antibody 5YHR ; 1.34 ; Crystal structure of the anti-CRISPR protein, AcrF2 5Y6A ; 2.0 ; Crystal structure of the anti-CRISPR protein, AcrIIA1 7N6P ; 2.15 ; Crystal structure of the anti-EBOV and SUDV monoclonal antibody 1C3 Fab 1L7I ; 1.8 ; Crystal Structure of the anti-ErbB2 Fab2C4 1JHK ; 2.51 ; Crystal structure of the anti-estradiol antibody 57-2 4O4Y ; 1.85 ; Crystal structure of the anti-hinge rabbit antibody 2095-2 in complex with IDES hinge peptide 1KTR ; 2.7 ; Crystal Structure of the Anti-His Tag Antibody 3D5 Single-Chain Fragment (scFv) in Complex with a Oligohistidine peptide 6P3B ; 2.02 ; Crystal structure of the anti-HIV antibody DH501 unmutated common ancestor (UCA) 3RPT ; 1.303 ; Crystal structure of the anti-HIV b12 scaffold protein 4R4B ; 2.199 ; Crystal structure of the anti-hiv-1 antibody 2.2c 4R4N ; 3.56 ; Crystal structure of the anti-hiv-1 antibody 2.2c in complex with hiv-1 93ug037 gp120 4NWT ; 1.75 ; Crystal structure of the anti-human NGF Fab APE1531 6ZTF ; 1.55 ; Crystal Structure of the anti-human P-Cadherin Fab CQY684 6ZTR ; 2.1 ; Crystal Structure of the anti-human P-Cadherin Fab CQY684 in complex with human P-Cadherin(108-324) 7C95 ; 2.13 ; Crystal structure of the anti-human podoplanin antibody Fab fragment 7C94 ; 2.84 ; Crystal structure of the anti-human podoplanin antibody Fab fragment complex with glycopeptide 5YFI ; 1.848 ; Crystal structure of the anti-human prostaglandin E receptor EP4 antibody Fab fragment 1DQJ ; 2.0 ; CRYSTAL STRUCTURE OF THE ANTI-LYSOZYME ANTIBODY HYHEL-63 COMPLEXED WITH HEN EGG WHITE LYSOZYME 7O30 ; 2.65 ; Crystal structure of the anti-PAS Fab 1.1 in complex with its epitope peptide 7O31 ; 1.55 ; Crystal structure of the anti-PAS Fab 1.2 in complex with its epitope peptide and the anti-Kappa VHH domain 7O2Z ; 2.55 ; Crystal structure of the anti-PAS Fab 2.2 in complex with its epitope peptide 7O33 ; 1.85 ; Crystal structure of the anti-PAS Fab 3.1 in complex with its epitope peptide 1CR9 ; 2.0 ; CRYSTAL STRUCTURE OF THE ANTI-PRION FAB 3F4 1CU4 ; 2.9 ; CRYSTAL STRUCTURE OF THE ANTI-PRION FAB 3F4 IN COMPLEX WITH ITS PEPTIDE EPITOPE 5ITB ; 2.0 ; Crystal structure of the anti-RSV F Fab 14N4 7QH3 ; 2.3 ; Crystal structure of the anti-sigma factor RsfG from Streptomyces tsukubaensis NRRL18488 5JEN ; 2.3 ; Crystal structure of the anti-sigma factor RsiV bound to lysozyme 3IQS ; 2.3 ; Crystal structure of the anti-viral APOBEC3G catalytic domain 4PL0 ; 2.7 ; Crystal structure of the antibacterial peptide ABC transporter McjD in an outward occluded state 4RWZ ; 1.801 ; Crystal structure of the antibiotic-resistance methyltransferase Kmr 4NZR ; 1.65 ; Crystal structure of the antibody-binding region of Protein M (Protein M TD) in complex with anti-HIV antibody PGT135 Fab 4NZT ; 2.497 ; Crystal structure of the antibody-binding region of Protein M (Protein M TD) in complex with anti-infleunza hemagglutinin antibody CR9114 Fab 1MH0 ; 2.8 ; Crystal structure of the anticoagulant slow form of thrombin 1SGI ; 2.3 ; Crystal structure of the anticoagulant slow form of thrombin 1TQ7 ; 2.4 ; Crystal structure of the anticoagulant thrombin mutant W215A/E217A bound to PPACK 1UYW ; 2.0 ; Crystal Structure of the antiflavivirus Fab4g2 7X9R ; 2.25 ; Crystal structure of the antirepressor GmaR 3KCG ; 1.7 ; Crystal structure of the antithrombin-factor IXa-pentasaccharide complex 2GD4 ; 3.3 ; Crystal Structure of the Antithrombin-S195A Factor Xa-Pentasaccharide Complex 6UVU ; 2.1 ; Crystal structure of the AntR antimony-specific transcriptional repressor 6FIG ; 1.48 ; Crystal structure of the ANX1 ectodomain from Arabidopsis thaliana 6FIH ; 1.08 ; Crystal structure of the ANX2 ectodomain from Arabidopsis thaliana 1QTP ; 1.6 ; CRYSTAL STRUCTURE OF THE AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE 1QTS ; 1.4 ; CRYSTAL STRUCTURE OF THE AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE 7DXS ; 2.102 ; Crystal structure of the ap1h peptide homodimer. 1CY5 ; 1.3 ; CRYSTAL STRUCTURE OF THE APAF-1 CARD 1VRM ; 1.58 ; Crystal structure of the apbe protein (tm1553) from thermotoga maritima msb8 at 1.58 A resolution 5L9W ; 2.9 ; Crystal structure of the Apc core complex 1JHJ ; 1.6 ; Crystal structure of the APC10/Doc1 subunit of the human anaphase-promoting complex 3P1Z ; 2.8 ; Crystal structure of the Aperopyrum pernix RNA splicing endonuclease 7A4D ; 2.694 ; Crystal structure of the APH coiled-coil in complex with nanobodies Nb28 and Nb30 7A50 ; 1.999 ; Crystal structure of the APH coiled-coil in complex with nanobody Nb26 7A48 ; 1.547 ; Crystal structure of the APH coiled-coil in complex with Nb49 4DR1 ; 3.6 ; Crystal structure of the apo 30S ribosomal subunit from Thermus thermophilus (HB8) 7N07 ; 2.4 ; Crystal structure of the apo 3D6 antibody fragment 5VZ1 ; 2.112 ; Crystal structure of the Apo Antibody fragment (Fab) raised against C-terminal domain of Ebola nucleoprotein (EBOV, TAFV, BDBV strains) 6B6Z ; 2.112 ; Crystal structure of the Apo Antibody fragment (Fab) raised against C-terminal domain of Ebola nucleoprotein (EBOV, TAFV, BDBV strains) 4ZB3 ; 2.3 ; Crystal structure of the apo AtNUDT7 3U39 ; 2.7921 ; Crystal Structure of the apo Bacillus Stearothermophilus phosphofructokinase 7WRU ; 2.5 ; Crystal structure of the apo chicken glutamyl-tRNA synthetase 1 (EARS1) 3FWE ; 2.3 ; Crystal Structure of the Apo D138L CAP mutant 6E50 ; 1.965 ; Crystal structure of the apo domain-swapped dimer Q108K:K40L:T51F mutant of human Cellular Retinol Binding Protein II 6E51 ; 2.256 ; Crystal structure of the apo domain-swapped dimer Q108K:K40L:T51W mutant of human cellular retinol binding protein II 6E5E ; 1.696 ; Crystal structure of the apo domain-swapped dimer Q108K:T51D mutant of human cellular retinol binding protein II 6E5R ; 2.592 ; Crystal structure of the apo domain-swapped dimer Q108K:T51D:A28C mutant of human Cellular Retinol Binding Protein II 6E5Q ; 1.99 ; Crystal structure of the apo domain-swapped dimer Q108K:T51D:A28H mutant of human Cellular Retinol Binding Protein II 2NLX ; 2.7 ; Crystal structure of the apo E. coli xylulose kinase 4NMI ; 1.78 ; Crystal Structure of the Apo ectoine hydroxylase ECTD from Salibacillus salexigens 7FC8 ; 2.377 ; Crystal structure of the Apo enoyl-ACP-reductase (FabI) from Moraxella catarrhalis 4IC8 ; 2.8 ; Crystal structure of the apo ERK5 kinase domain 4FNW ; 1.75 ; Crystal structure of the apo F1174L anaplastic lymphoma kinase catalytic domain 7N04 ; 1.70001 ; Crystal structure of the apo F240 antibody fragment 6F2E ; 1.9 ; Crystal structure of the APO Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO1 1FA8 ; 1.7 ; CRYSTAL STRUCTURE OF THE APO FORM GLYOXALASE I OF ESCHERICHIA COLI 1INJ ; 1.55 ; CRYSTAL STRUCTURE OF THE APO FORM OF 4-DIPHOSPHOCYTIDYL-2-C-METHYLERYTHRITOL (CDP-ME) SYNTHETASE (YGBP) INVOLVED IN MEVALONATE INDEPENDENT ISOPRENOID BIOSYNTHESIS 4IS2 ; 1.9 ; Crystal structure of the apo form of a 3alpha-hydroxysteroid dehydrogenase (BaiA2) associated with secondary bile acid synthesis from Clostridium scindens VPI12708 at 1.90 A resolution 6IZ9 ; 2.199 ; Crystal structure of the apo form of a beta-transaminase from Mesorhizobium sp. strain LUK 4ADZ ; 1.7 ; Crystal Structure of the apo form of a Copper-sensitive operon Regulator (CsoR) protein from Streptomyces lividans 1O62 ; 2.1 ; Crystal structure of the apo form of a PLP-dependent enzyme 6Y8J ; 2.05 ; Crystal structure of the apo form of a quaternary ammonium Rieske monooxygenase CntA 5JH1 ; 1.45 ; Crystal structure of the apo form of AKR4C7 from maize 7QK7 ; 2.289 ; Crystal structure of the APO form of ALDH1A3 2JIJ ; 2.9 ; Crystal structure of the apo form of Chlamydomonas reinhardtii prolyl- 4 hydroxylase type I 6YXS ; 2.0 ; Crystal structure of the apo form of choline kinase from Plasmodium falciparum 6IFI ; 2.8 ; Crystal Structure of the Apo form of CMP-N-acetylneuraminate Synthetase from Vibrio cholerae 5JUF ; 1.946 ; Crystal structure of the apo form of ComR from S. thermophilus. 4QUW ; 2.26 ; Crystal structure of the apo form of cyanobacterial aldehyde-deformylating oxygenase 2FB9 ; 1.9 ; Crystal structure of the Apo form of D-alanine: D-alanine ligase (Ddl) from Thermus caldophilus: a basis for the substrate-induced conformational changes 3K3P ; 2.23 ; Crystal Structure of the Apo Form of D-Alanine:D-Alanine Ligase (DDl) from Streptococcus mutans 2OQX ; 1.9 ; Crystal Structure of the apo form of E. coli tryptophanase at 1.9 A resolution 2PWZ ; 2.2 ; Crystal structure of the apo form of E.Coli malate dehydrogenase 3RHB ; 1.2 ; Crystal structure of the apo form of glutaredoxin C5 from Arabidopsis thaliana 5H9A ; 1.381 ; Crystal structure of the Apo form of human cellular retinol binding protein 1 4DYZ ; 2.3 ; Crystal Structure of the apo form of Human H-Ferritin variant MIC1 7M3X ; 1.46 ; Crystal Structure of the Apo Form of Human RBBP7 3CFM ; 1.6 ; Crystal structure of the apo form of human wild-type transthyretin 4BV8 ; 2.3 ; Crystal structure of the apo form of mouse Mu-crystallin. 4BT8 ; 2.198 ; CRYSTAL STRUCTURE OF THE APO FORM OF N-TERMINAL DOMAIN AND PEPTIDE SUBSTRATE BINDING DOMAIN OF PROLYL-4 HYDROXYLASE TYPE I FROM HUMAN 7JMA ; 1.7 ; Crystal structure of the apo form of Nitrogenase iron-molybdenum cofactor biosynthesis enzyme NifB from Methanothermobacter thermautotrophicus 4I1A ; 2.443 ; Crystal Structure of the Apo Form of RapI 8BVB ; 1.8 ; Crystal structure of the apo form of SmbA loop deletion mutant. 3BWB ; 2.5 ; Crystal structure of the apo form of spermidine synthase from Trypanosoma cruzi at 2.5 A resolution 2C4U ; 2.5 ; Crystal structure of the apo form of the 5'-Fluoro-5'-deoxyadenosine synthase enzyme from Streptomyces cattleya 3SL3 ; 2.1 ; Crystal structure of the apo form of the catalytic domain of PDE4D2 1UR3 ; 2.57 ; Crystal structure of the apo form of the E.coli ydhF protein 4FJW ; 2.2 ; Crystal Structure of the apo form of the E131Q Mtb crotonase 4JCA ; 2.411 ; Crystal Structure of the apo form of the evolved variant of the computationally designed serine hydrolase, OSH55.4_H1. Northeast Structural Genomics Consortium (NESG) Target OR273 4P2B ; 2.8 ; Crystal structure of the apo form of the glutaminyl-tRNA synthetase catalytic domain from Toxoplasma gondii. 8BZ4 ; 2.52 ; Crystal structure of the apo form of the L. monocytogenes RmlT 7AGL ; 1.6 ; crystal structure of the apo form of the N-acetylmuramyl-L-alanine amidase, Ami1, from Mycobacterium abscessus. 1TM2 ; 1.9 ; Crystal Structure of the apo form of the Salmonella typhimurium AI-2 receptor LsrB 5A6O ; 1.6 ; Crystal structure of the apo form of the unphosphorylated human death associated protein kinase 3 (DAPK3) 3UGQ ; 2.1 ; Crystal structure of the apo form of the yeast mitochondrial threonyl-tRNA synthetase determined at 2.1 Angstrom resolution 4KDE ; 1.798 ; Crystal Structure of the Apo Form of Thermus thermophilus Malate Dehydrogenase 5V3W ; 1.723 ; Crystal Structure of the Apo form of Thioesterase domain of Mtb Pks13 1ZHH ; 1.94 ; Crystal Structure of the Apo Form of Vibrio Harveyi LUXP Complexed with the Periplasmic Domain of LUXQ 2V1P ; 1.9 ; Crystal Structure of the apo form of Y74F mutant E. coli tryptophanase 6IPX ; 2.634 ; Crystal structure of the apo form transcription factor 2W2K ; 1.85 ; Crystal structure of the apo forms of Rhodotorula graminis D- mandelate dehydrogenase at 1.8A. 8ASN ; 2.571 ; Crystal structure of the apo human TTL in complex with tubulin-stathmin 4L00 ; 1.8 ; Crystal structure of the apo Jak1 pseudokinase domain 4Z99 ; 2.3 ; Crystal structure of the apo Low Molecular Weight Protein Tyrosine Phosphatase isoform A 3RP9 ; 2.4 ; Crystal Structure of the apo MapK from Toxoplasma Gondii, 25.m01780 or TGME49_007820 1FMV ; 2.1 ; CRYSTAL STRUCTURE OF THE APO MOTOR DOMAIN OF DICTYOSTELLIUM MYOSIN II 6YGA ; 2.397 ; Crystal structure of the apo NatC complex 4BA4 ; 1.73 ; Crystal structure of the apo omega-transaminase from Chromobacterium violaceum 8BFU ; 2.41 ; Crystal structure of the apo p110alpha catalytic subunit from homo sapiens 5WLF ; 1.4 ; Crystal structure of the apo PPS PHD finger 6MOW ; 2.354 ; Crystal Structure of the apo R111K:Y134F:T54V:R132Q:P39Y:R59Y:L121Q mutant of Human Cellular Retinoic Acid Binding Protein II at 2.3 Angstrom Resolution 4FNX ; 1.7 ; Crystal structure of the apo R1275Q anaplastic lymphoma kinase catalytic domain 3I17 ; 1.68 ; Crystal structure of the apo R132K:L121E mutant of cellular retinoic acid-binding protein II at 1.68 angstrom resolution 3FA7 ; 1.9 ; Crystal structure of the apo R132K:R111L:L121E:R59E mutant of cellular retinoic acid-binding protein II at 1.90 angstrom resolution 3FA9 ; 1.94 ; Crystal structure of the apo R132K:Y134F:R111L:L121D mutant of cellular retinoic acid-binding protein II at 1.94 angstrom resolution 3FA8 ; 1.78 ; Crystal structure of the apo R132K:Y134F:R111L:L121E mutant of cellular retinoic acid-binding protein II at 1.78 angstrom resolution 7SA7 ; 3.2 ; Crystal structure of the apo SH2 domains of Syk 1M61 ; 2.5 ; Crystal structure of the apo SH2 domains of ZAP-70 5XOE ; 2.98 ; Crystal Structure of the apo Staphylococcus aureus phosphofructokinase 5C6Q ; 3.251 ; Crystal structure of the apo TOPLESS related protein 2 (TPR2) N-terminal domain (1-209) from rice 5LPW ; 2.431 ; Crystal structure of the apo-BRI1 kinase domain (865-1160) 5GVW ; 2.4 ; Crystal structure of the apo-form glycosyltransferase GlyE in Streptococcus pneumoniae TIGR4 2CBM ; 2.03 ; Crystal structure of the apo-form of a neocarzinostatin mutant evolved to bind testosterone. 3QA0 ; 2.5 ; Crystal structure of the apo-form of human CK2 alpha at pH 6.5 3Q04 ; 1.8 ; Crystal structure of the apo-form of human CK2 alpha at pH 8.5 2ZA2 ; 2.7 ; Crystal Structure of the apo-form of orotidine-5'-monophosphate decarboxylase from P.falciparum 5N76 ; 1.9 ; Crystal structure of the apo-form of the CO dehydrogenase accessory protein CooT from Rhodospirillum rubrum 1PT7 ; 1.8 ; Crystal structure of the apo-form of the yfdW gene product of E. coli 5KYB ; 2.2 ; Crystal structure of the apo-form of USP7 catalytic domain [V302K] mutant 8H3I ; 1.9 ; Crystal Structure of the apo-form Pathogenesis-related Protein HcPR10 from Halostachys caspica 4FZO ; 1.3 ; Crystal Structure of the apo-form uranyl binding protein 3UJ4 ; 3.0 ; Crystal structure of the apo-inositol 1,4,5-trisphosphate receptor 4J5W ; 2.8 ; Crystal Structure of the apo-PXR/RXRalpha LBD Heterotetramer Complex 4RWQ ; 3.1 ; Crystal structure of the apo-state of porcine OAS1 1FFL ; 2.94 ; CRYSTAL STRUCTURE OF THE APO-THYMIDYLATE SYNTHASE R166Q MUTANT 1SUL ; 2.0 ; Crystal Structure of the apo-YsxC 5J6X ; 2.493 ; Crystal structure of the apo-Zalpha of Zebrafish PKZ 6B8L ; 2.3 ; Crystal Structure of the Apo/CaM:Kv7.4 (KCNQ4) AB Domain Complex 7EG2 ; 2.22 ; Crystal structure of the apoAequorin complex with (S)-daCTZ 7EG3 ; 2.09 ; Crystal structure of the apoAequorin complex with (S)-HM-daCTZ 4J4J ; 3.1 ; Crystal structure of the APOBEC3F Vif binding domain 3IR2 ; 2.25 ; Crystal structure of the APOBEC3G catalytic domain 5B4X ; 3.2 ; Crystal structure of the ApoER2 ectodomain in complex with the Reelin R56 fragment 2X5J ; 2.3 ; Crystal structure of the Apoform of the D-Erythrose-4-phosphate dehydrogenase from E. coli 2XCX ; 2.3 ; Crystal structure of the apoform of the D52N variant of cytosolic 5'- nucleotidase II 1SIW ; 2.2 ; Crystal structure of the apomolybdo-NarGHI 1JIW ; 1.74 ; Crystal structure of the APR-APRin complex 2OFW ; 2.05 ; Crystal structure of the APSK domain of human PAPSS1 complexed with 2 APS molecules 2OFX ; 1.9 ; crystal structure of the APSK domain of human PAPSS1 in complex with ADPMg and PAPS 4M4O ; 2.0 ; Crystal structure of the aptamer minE-lysozyme complex 4M6D ; 2.68 ; Crystal structure of the aptamer minF-lysozyme complex. 5ZHZ ; 1.18 ; Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis 1J4N ; 2.2 ; Crystal Structure of the AQP1 water channel 3P3C ; 1.25 ; Crystal Structure of the Aquifex aeolicus LpxC/LPC-009 complex 2AU3 ; 2.0 ; Crystal Structure of the Aquifex aeolicus primase (Zinc Binding and RNA Polymerase Domains) 6O14 ; 2.65 ; Crystal structure of the Aquifex aeolicus Wzt Carbohydrate Binding Domain 8DKY ; 1.61 ; Crystal structure of the Aquifex aeolicus Wzt Carbohydrate Binding Domain bound to 3-O-methyl-D-mannose 4BJH ; 2.2 ; Crystal Structure of the Aquifex Reactor Complex Formed by Dihydroorotase (H180A, H232A) with Dihydroorotate and Aspartate Transcarbamoylase with N-(phosphonacetyl)-L-aspartate (PALA) 4RL5 ; 3.1 ; Crystal structure of the Arabidopsis exocyst subunit exo70 family protein A1 5IYX ; 2.43 ; Crystal structure of the Arabidopsis receptor kinase HAESA in complex with the peptide hormone IDA and the co-receptor SERK1 5IXO ; 1.74 ; Crystal structure of the Arabidopsis receptor kinase HAESA LRR ectdomain (apo form). 5IXQ ; 1.86 ; Crystal structure of the Arabidopsis receptor kinase HAESA LRR ectdomain in complex with the peptide hormone IDA. 5IYV ; 2.56 ; Crystal structure of the Arabidopsis receptor kinase HAESA LRR ectdomain in complex with the peptide hormone IDL1. 8F8N ; 1.798 ; Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain 5EWU ; 1.25 ; Crystal structure of the Arabidopsis thaliana C-terminal Chlh at 1.25A 5YDG ; 2.405 ; Crystal structure of the Arabidopsis thaliana chloroplast RNA editing factors 2(MORF2) 4AEC ; 2.4 ; Crystal Structure of the Arabidopsis thaliana O-Acetyl-Serine-(Thiol)- Lyase C 1Z7Y ; 2.7 ; Crystal Structure of the Arabidopsis thaliana O-Acetylserine Sulfhydrylase K46A mutant 5WBI ; 3.0 ; Crystal structure of the Arabidopsis thaliana Raptor 5WBJ ; 3.0 ; Crystal structure of the arabidopsis thaliana Raptor in complex with the TOS peptide of human 4EBP1 5WBL ; 3.35 ; Crystal structure of the Arabidopsis thaliana Raptor in complex with the TOS peptide of human PRAS40 5WBK ; 3.11 ; Crystal structure of the arabidopsis thaliana Raptor in complex with the TOS peptide of human S6K1 7OVV ; 1.45 ; Crystal structure of the Arabidopsis thaliana thialysine acetyltransferase AtNATA2 4PUT ; 3.0 ; Crystal structure of the Arabidopsis thaliana TOP2 oligopeptidase 5G49 ; 2.3 ; Crystal structure of the Arabodopsis thaliana histone-fold dimer L1L NF-YC3 5NLA ; 2.7 ; Crystal structure of the AraC-like transcriptional activator CuxR 2H9U ; 2.0 ; Crystal structure of the archaea specific DNA binding protein 3P8T ; 1.78 ; Crystal structure of the archaeal asparagine synthetase A 3REX ; 1.8 ; Crystal structure of the archaeal asparagine synthetase A complexed with Adenosine monophosphate 3P8Y ; 1.8 ; Crystal structure of the archaeal asparagine synthetase A complexed with L-Asparagine 3RL6 ; 2.0 ; Crystal structure of the archaeal asparagine synthetase A complexed with L-Asparagine and Adenosine monophosphate 3P8V ; 1.8 ; Crystal structure of the archaeal asparagine synthetase A complexed with L-Aspartic acid 3REU ; 1.9 ; Crystal structure of the archaeal asparagine synthetase A complexed with L-Aspartic acid and Adenosine triphosphate 2AUS ; 2.1 ; Crystal structure of the archaeal box H/ACA sRNP Nop10-Cbf5 complex 7CSL ; 2.0 ; Crystal structure of the archaeal EF1A-EF1B complex 5YVS ; 2.345 ; Crystal Structure of the archaeal halo-thermophilic Red Sea brine pool alcohol dehydrogenase ADH/D1 bound to NADP 5YVM ; 2.12 ; Crystal Structure of the archaeal halo-thermophilic Red Sea brine pool alcohol dehydrogenase ADH/D1 bound to NZQ 4L7M ; 2.002 ; Crystal structure of the archaeal HEAT-like repeats protein TON_1937 from Thermococcus onnurineus NA1 1GEF ; 2.0 ; Crystal structure of the archaeal holliday junction resolvase HJC 1IPI ; 2.16 ; CRYSTAL STRUCTURE OF THE ARCHAEAL HOLLIDAY JUNCTION RESOLVASE HJC FROM PYROCOCCUS FURIOSUS FORM II 1TS9 ; 1.7 ; Crystal Structure of the Archaeal Homolog of Human RNase P Protein Rpp29 from Archaeoglobus fulgidus 1TSF ; 1.7 ; Crystal Structure of the Archaeal homolog of Human RNase P Protein Rpp29 from Archaeoglobus fulgidus 2OAP ; 2.95 ; Crystal structure of the archaeal secretion ATPase GspE in complex with AMP-PNP 2OAQ ; 3.15 ; Crystal structure of the archaeal secretion ATPase GspE in complex with phosphate 5E71 ; 1.7 ; Crystal structure of the archaeal tRNA m2G/m22G10 methyltransferase (aTrm11) from Thermococcus kodakarensis 5E72 ; 1.739 ; Crystal structure of the archaeal tRNA m2G/m22G10 methyltransferase (aTrm11) in complex with S-adenosyl-L-methionine (SAM) from Thermococcus kodakarensis 3WAJ ; 2.501 ; Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) complex with Zn and sulfate 3WAK ; 3.413 ; Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) in the apo form 5GMY ; 3.5 ; Crystal structure of the Archaeoglobus fulgidus oligosaccharyltransferase (O29867_ARCFU) tethered with an acceptor peptide containing the NVT sequon via a disulfide bond 5K0P ; 1.94 ; Crystal structure of the archaeosine synthase QueF-Like in the apo form 6PTA ; 2.5 ; Crystal structure of the ARF family small GTPase ARF1 from Candida albicans in complex with GDP 5UF8 ; 1.872 ; Crystal structure of the ARF family small GTPase ARF2 from Candida albicans in complex with GDP 1DCQ ; 2.1 ; CRYSTAL STRUCTURE OF THE ARF-GAP DOMAIN AND ANKYRIN REPEATS OF PAPBETA. 2J59 ; 2.1 ; Crystal structure of the ARF1:ARHGAP21-ArfBD complex 4CHK ; 2.85 ; Crystal Structure of the ARF5 oligomerization domain 2W83 ; 1.93 ; Crystal structure of the ARF6 GTPase in complex with a specific effector, JIP4 3DWD ; 2.4 ; Crystal structure of the ArfGAP domain of human ARFGAP1 1CVR ; 2.0 ; Crystal structure of the Arg specific cysteine proteinase gingipain R (RGPB) 2P3J ; 1.9 ; Crystal structure of the Arg101Ala mutant protein of Rhesus rotavirus VP8* 2EF4 ; 2.3 ; Crystal structure of the arginase from thermus thermophilus 2EF5 ; 2.0 ; Crystal structure of the arginase from thermus thermophilus 2EIV ; 2.91 ; Crystal Structure of the arginase from Thermus thermophilus 3FHZ ; 3.27 ; Crystal structure of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator and co-repressor, L-arginine 5JVO ; 1.9 ; Crystal structure of the Arginine Repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis 3ERE ; 2.5 ; Crystal structure of the arginine repressor protein from Mycobacterium tuberculosis in complex with the DNA operator 8HQR ; 1.32 ; Crystal structure of the arginine-/lysine-binding protein SAR11_1210 from 'Candidatus Pelagibacter ubique' HTCC1062 bound to arginine 6GPC ; 1.75 ; Crystal structure of the arginine-bound form of domain 1 from TmArgBP 1F7U ; 2.2 ; CRYSTAL STRUCTURE OF THE ARGINYL-TRNA SYNTHETASE COMPLEXED WITH THE TRNA(ARG) AND L-ARG 7RTC ; 3.31 ; Crystal structure of the ARM domain from Drosophila SARM1 in complex with NaMN 7LCZ ; 1.65 ; Crystal structure of the ARM domain from Drosophila SARM1 in complex with NMN 7M6K ; 1.69 ; Crystal structure of the ARM domain from Drosophila SARM1 in complex with VMN 7VPS ; 2.29 ; Crystal structure of the ARM domain of C. glabrata importin alpha 5A8J ; 1.46 ; Crystal structure of the ArnB paralog VWA2 from Sulfolobus acidocaldarius 4EQ1 ; 1.6 ; Crystal Structure of the ARNT PAS-B homodimer 2RER ; 1.9 ; Crystal structure of the aromatase/cyclase domain of TcmN from Streptomyces glaucescens 4MY5 ; 2.194 ; Crystal structure of the aromatic amino acid aminotransferase from Streptococcus mutants 4JE5 ; 1.909 ; Crystal structure of the aromatic aminotransferase Aro8, a putative alpha-aminoadipate aminotransferase in Saccharomyces cerevisiae 6HND ; 2.23 ; Crystal structure of the aromatic aminotransferase Aro9 from C. Albicans 5KCG ; 1.9 ; Crystal structure of the aromatic prenyltransferase AtaPT (apo state) from Aspergillus terreus A8-4 5KCL ; 2.1 ; Crystal structure of the aromatic prenyltransferase AtaPT from Aspergillus terreus A8-4 in complex with dimethylallyl S-thiolodiphosphate 5KD6 ; 1.84 ; Crystal structure of the aromatic prenyltransferase AtaPT from Aspergillus terreus A8-4 in complex with dimethylallyl S-thiolodiphosphate and (-)-butyrolactone II 5KDA ; 2.0 ; Crystal structure of the aromatic prenyltransferase AtaPT from Aspergillus terreus A8-4 in complex with dimethylallyl S-thiolodiphosphate and genistein 5KCQ ; 2.0 ; Crystal structure of the aromatic prenyltransferase AtaPT from Aspergillus terreus A8-4 in complex with geranyl S-thiolodiphosphate 5KCY ; 2.3 ; Crystal structure of the aromatic prenyltransferase AtaPT from Aspergillus terreus A8-4 in complex with geranyl S-thiolodiphosphate and (+)-butyrolactone II 5KD0 ; 2.82 ; Crystal structure of the aromatic prenyltransferase AtaPT(E91A) mutant from Aspergillus terreus A8-4 in complex with geranyl S-thiolodiphosphate and (+)-butyrolactone II 5KBH ; 2.55 ; CRYSTAL STRUCTURE OF THE AROMATIC SENSOR DOMAIN OF MOPR IN COMPLEX WITH 3-CHLORO-PHENOL 5KBI ; 2.9 ; CRYSTAL STRUCTURE OF THE AROMATIC SENSOR DOMAIN OF MOPR IN COMPLEX WITH CATACHOL 5KBG ; 2.8 ; CRYSTAL STRUCTURE OF THE AROMATIC SENSOR DOMAIN OF MOPR IN COMPLEX WITH OCRESOL 5KBE ; 2.5 ; CRYSTAL STRUCTURE OF THE AROMATIC SENSOR DOMAIN OF MOPR IN COMPLEX WITH PHENOL 5NBL ; 2.8 ; Crystal structure of the Arp4-N-actin(APO-state) heterodimer bound by a nanobody 5NBM ; 3.4 ; Crystal structure of the Arp4-N-actin(ATP-state) heterodimer bound by a nanobody 5NBN ; 4.0 ; Crystal structure of the Arp4-N-actin-Arp8-Ino80HSA module of INO80 4AAY ; 2.7 ; Crystal Structure of the arsenite oxidase protein complex from Rhizobium species strain NT-26 4BKL ; 3.25 ; Crystal structure of the arthritogenic antibody M2139 (Fab fragment) in complex with the triple-helical J1 peptide 1RW9 ; 1.35 ; Crystal structure of the Arthrobacter aurescens chondroitin AC lyase 4ZV6 ; 2.22 ; Crystal structure of the artificial alpharep-7 octarellinV.1 complex 5BOP ; 1.95 ; Crystal structure of the artificial nanobody octarellinV.1 complex 3WKN ; 2.9 ; Crystal structure of the artificial protein AFFinger p17 (AF.p17) complexed with Fc fragment of human IgG 6E97 ; 1.8 ; Crystal structure of the aryl acid adenylating enzyme FscC from Fuscachelin NRPS in complex with DHB-adenylate 2JD6 ; 2.75 ; Crystal Structure of the as isolated Ferritin from the Hyperthermophilic Archaeal Anaerobe Pyrococcus furiosus 5H9C ; 1.783 ; Crystal structure of the ASLV fusion protein core 1Z9A ; 2.4 ; Crystal Structure Of The Asn-309 To Asp Mutant Of Candida Tenuis Xylose Reductase (Akr2B5) Bound To Nad+ 5DNE ; 2.39 ; Crystal structure of the Asn-bound guinea pig L-asparaginase 1 catalytic domain active site mutant K188M 5DND ; 2.29 ; Crystal structure of the Asn-bound guinea pig L-asparaginase 1 catalytic domain active site mutant T116A 5DNC ; 2.01 ; Crystal structure of the Asn-bound guinea pig L-asparaginase 1 catalytic domain active site mutant T19A 3S4X ; 1.95 ; Crystal structure of the Asn152Gly mutant of P99 beta-lactamase 2CLA ; 2.35 ; CRYSTAL STRUCTURE OF THE ASP-199-ASN MUTANT OF CHLORAMPHENICOL ACETYLTRANSFERASE TO 2.35 ANGSTROMS RESOLUTION. STRUCTURAL CONSEQUENCES OF DISRUPTION OF A BURIED SALT-BRIDGE 4R8L ; 2.41 ; Crystal structure of the Asp-bound guinea pig L-asparaginase 1 catalytic domain 4WJ3 ; 3.705 ; Crystal structure of the asparagine transamidosome from Pseudomonas aeruginosa 6F35 ; 1.9 ; Crystal structure of the aspartate aminotranferase from Rhizobium meliloti 2WCD ; 3.29 ; Crystal structure of the assembled cytolysin A pore 1AON ; 3.0 ; CRYSTAL STRUCTURE OF THE ASYMMETRIC CHAPERONIN COMPLEX GROEL/GROES/(ADP)7 4CSA ; 2.28 ; Crystal structure of the asymmetric human metapneumovirus M2-1 tetramer bound to a DNA 4-mer 4CS9 ; 2.01 ; Crystal structure of the asymmetric human metapneumovirus M2-1 tetramer bound to adenosine monophosphate 4CS7 ; 2.47 ; Crystal structure of the asymmetric human metapneumovirus M2-1 tetramer, form 1 4CS8 ; 2.1 ; Crystal structure of the asymmetric human metapneumovirus M2-1 tetramer, form 2 2PNR ; 2.5 ; Crystal Structure of the asymmetric Pdk3-l2 Complex 4YK8 ; 3.0 ; Crystal structure of the Atg101-Atg13 complex from fission yeast 4HPQ ; 3.06 ; Crystal Structure of the Atg17-Atg31-Atg29 Complex 3SKX ; 1.59 ; Crystal structure of the ATP binding domain of Archaeoglobus fulgidus COPB 1YS3 ; 1.9 ; Crystal Structure of the ATP binding domain of PrrB from Mycobacterium Tuberculosis 5CPH ; 1.2 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a fragment 5CTU ; 1.45 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a fragment 5CTW ; 1.48 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a fragment 5CTX ; 1.6 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a fragment 5CTY ; 1.6 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a fragment 5D6P ; 2.05 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a ligand 5D6Q ; 1.5 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a ligand 5D7C ; 1.55 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a ligand 5D7D ; 1.6 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a ligand 5D7R ; 1.55 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with a ligand 6TTG ; 1.7 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with LMD62 6TCK ; 1.6 ; Crystal structure of the ATP binding domain of S. aureus GyrB complexed with ULD-2 3LF0 ; 2.4 ; Crystal structure of the ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein 7FH3 ; 1.8 ; Crystal structure of the ATP sulfurylase domain of human PAPSS2 7FHA ; 2.0 ; Crystal structure of the ATP sulfurylase domain of human PAPSS2 in complex with APS 1VCI ; 2.9 ; Crystal structure of the ATP-binding cassette of multisugar transporter from Pyrococcus horikoshii OT3 complexed with ATP 3EHG ; 1.74 ; Crystal structure of the ATP-binding domain of DesK in complex with ATP 3ZXQ ; 1.9 ; CRYSTAL STRUCTURE OF THE ATP-BINDING DOMAIN OF MYCOBACTERIUM TUBERCULOSIS DOST 2PP6 ; 2.7 ; Crystal structure of the ATP-binding sugar transporter-like protein from Salmonella typhimurium 1Q12 ; 2.6 ; Crystal Structure of the ATP-bound E. coli MalK 3M0E ; 2.63 ; Crystal structure of the ATP-bound state of Walker B mutant of NtrC1 ATPase domain 5OLK ; 2.45 ; Crystal structure of the ATP-cone-containing NrdB from Leeuwenhoekiella blandensis 3FES ; 1.82 ; Crystal Structure of the ATP-dependent Clp Protease ClpC from Clostridium difficile 2CBY ; 2.6 ; Crystal structure of the ATP-dependent Clp Protease proteolytic subunit 1 (ClpP1) from Mycobacterium tuberculosis 2CE3 ; 2.6 ; CRYSTAL STRUCTURE OF THE ATP-DEPENDENT CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPP1) FROM MYCOBACTERIUM TUBERCULOSIS 7CLG ; 3.1 ; Crystal structure of the ATP-dependent restriction endonuclease SauUSI 5SVM ; 3.093 ; Crystal structure of the ATP-gated human P2X3 ion channel bound to agonist 2-methylthio-ATP in the desensitized state 5SVR ; 3.13 ; Crystal structure of the ATP-gated human P2X3 ion channel bound to competitive antagonist A-317491 5SVQ ; 3.25 ; Crystal structure of the ATP-gated human P2X3 ion channel bound to competitive antagonist TNP-ATP 5SVL ; 2.9 ; Crystal structure of the ATP-gated human P2X3 ion channel in the ATP-bound, closed (desensitized) state 5SVK ; 2.773 ; Crystal structure of the ATP-gated human P2X3 ion channel in the ATP-bound, open state 5SVJ ; 2.984 ; Crystal structure of the ATP-gated human P2X3 ion channel in the closed, apo state 4DW1 ; 2.8 ; Crystal structure of the ATP-gated P2X4 ion channel in the ATP-bound, open state at 2.8 Angstroms 4DW0 ; 2.9 ; Crystal structure of the ATP-gated P2X4 ion channel in the closed, apo state at 2.9 Angstroms 3H9V ; 3.1 ; Crystal structure of the ATP-gated P2X4 ion channel in the closed, apo state at 3.1 Angstroms 3I5D ; 3.46 ; Crystal structure of the ATP-gated P2X4 ion channel in the closed, apo state at 3.5 Angstroms (R3) 5U1U ; 3.604 ; Crystal structure of the ATP-gated P2X7 ion channel bound to allosteric antagonist A740003 5U1V ; 3.4 ; Crystal structure of the ATP-gated P2X7 ion channel bound to allosteric antagonist A804598 5U1W ; 3.501 ; Crystal structure of the ATP-gated P2X7 ion channel bound to allosteric antagonist AZ10606120 5U1Y ; 3.3 ; Crystal structure of the ATP-gated P2X7 ion channel bound to allosteric antagonist GW791343 5U1X ; 3.201 ; Crystal structure of the ATP-gated P2X7 ion channel bound to allosteric antagonist JNJ47965567 5U2H ; 3.903 ; Crystal structure of the ATP-gated P2X7 ion channel bound to ATP and allosteric antagonist A804598 5U1L ; 3.4 ; Crystal structure of the ATP-gated P2X7 ion channel in the closed, apo state 1XEF ; 2.5 ; Crystal structure of the ATP/Mg2+ bound composite dimer of HlyB-NBD 7L6S ; 1.95 ; Crystal structure of the ATPase and transducer domains of DNA topoisomerase II from Balamuthia mandrillaris CDC:V039: baboon/San Diego/1986 5X9Y ; 3.443 ; Crystal structure of the ATPase domain from bacterial mismatch repair endonuclease Aquifex aeolicus MutL. 5EQT ; 1.943 ; crystal structure of the ATPase domain of PAN from Pyrococcus horikoshii 2IXE ; 2.0 ; Crystal structure of the ATPase domain of TAP1 with ATP (D645N mutant) 4K8O ; 2.65 ; CRYSTAL STRUCTURE OF THE ATPASE DOMAIN OF TAP1 WITH ATP (D645N, D651A MUTANT) 2IXF ; 2.0 ; Crystal structure of the ATPase domain of TAP1 with ATP (D645Q, Q678H mutant) 2IXG ; 2.7 ; Crystal structure of the ATPase domain of TAP1 with ATP (S621A, G622V, D645N mutant) 1QDE ; 2.0 ; CRYSTAL STRUCTURE OF THE ATPASE DOMAIN OF TRANSLATION INITIATION FACTOR 4A FROM SACCHAROMYCES CEREVISIAE-THE PROTOTYPE OF THE DEAD BOX PROTEIN FAMILY 3ZM7 ; 3.3 ; CRYSTAL STRUCTURE OF THE ATPASE REGION OF Mycobacterium tuberculosis GyrB WITH AMPPCP 3ZKB ; 2.9 ; CRYSTAL STRUCTURE OF THE ATPASE REGION OF Mycobacterium tuberculosis GyrB WITH AMPPNP 3ZKD ; 2.95 ; CRYSTAL STRUCTURE OF THE ATPASE REGION OF Mycobacterium tuberculosis GyrB WITH AMPPNP 1PVG ; 1.8 ; Crystal Structure of the ATPase region of Saccharomyces Cerevisiae topoisomerase II 1QZR ; 1.9 ; CRYSTAL STRUCTURE OF THE ATPASE REGION OF SACCHAROMYCES CEREVISIAE TOPOISOMERASE II BOUND TO ICRF-187 (DEXRAZOXANE) 5XG3 ; 3.5 ; Crystal structure of the ATPgS-engaged Smc head domain with an extended coiled coil bound to the C-terminal domain of ScpA derived from Bacillus subtilis 5A68 ; 1.67 ; Crystal structure of the AtTTM3 product complex with two orthophosphates and manganese ions (form B) 6J4E ; 3.126 ; Crystal structure of the AtWRKY1 domain 6J4F ; 2.4 ; Crystal structure of the AtWRKY2 domain 6J4G ; 3.0 ; Crystal structure of the AtWRKY33 domain 1CC7 ; 1.2 ; CRYSTAL STRUCTURE OF THE ATX1 METALLOCHAPERONE PROTEIN 1CC8 ; 1.02 ; CRYSTAL STRUCTURE OF THE ATX1 METALLOCHAPERONE PROTEIN 4EZA ; 1.5 ; Crystal structure of the atypical phosphoinositide (aPI) binding domain of IQGAP2 5NYN ; 1.6 ; Crystal structure of the atypical poplar thioredoxin-like2.1 in complex with gluathione 5NYK ; 1.05 ; Crystal structure of the atypical poplar thioredoxin-like2.1 in oxidized state 5NYM ; 1.4 ; Crystal structure of the atypical poplar thioredoxin-like2.1 in reduced state 1IAH ; 2.4 ; CRYSTAL STRUCTURE OF THE ATYPICAL PROTEIN KINASE DOMAIN OF A TRP CA-CHANNEL, CHAK (ADP-MG COMPLEX) 1IA9 ; 2.0 ; CRYSTAL STRUCTURE OF THE ATYPICAL PROTEIN KINASE DOMAIN OF A TRP CA-CHANNEL, CHAK (AMPPNP COMPLEX) 1IAJ ; 2.8 ; CRYSTAL STRUCTURE OF THE ATYPICAL PROTEIN KINASE DOMAIN OF A TRP CA-CHANNEL, CHAK (APO) 5NII ; 2.0 ; Crystal structure of the atypical thioredoxin reductase TRi from Desulfovibrio vulgaris Hildenborough 1Q07 ; 2.5 ; Crystal structure of the Au(I) form of E. coli CueR, a copper efflux regulator 4FEO ; 1.6 ; Crystal structure of the AU25A/A46G/C74U mutant xpt-pbuX guanine riboswitch aptamer domain in complex with 2,6-diaminopurine 1N8N ; 1.69 ; Crystal structure of the Au3+ complex of AphA class B acid phosphatase/phosphotransferase from E. coli at 1.69 A resolution 4FTB ; 2.7 ; Crystal structure of the authentic Flock House virus particle 2BDW ; 1.8 ; Crystal Structure of the Auto-Inhibited Kinase Domain of Calcium/Calmodulin Activated Kinase II 5XMC ; 2.6 ; Crystal structure of the auto-inhibited Nedd4 family E3 ligase Itch 1K2D ; 2.2 ; Crystal structure of the autoimmune MHC class II I-Au complexed with myelin basic protein 1-11 at 2.2A 2HJ9 ; 2.34 ; Crystal structure of the Autoinducer-2-bound form of Vibrio harveyi LuxP complexed with the periplasmic domain of LuxQ 4S0O ; 1.9 ; Crystal Structure of the Autoinhibited Dimer of Pro-apoptotic BAX (I) 4S0P ; 3.252 ; Crystal Structure of the Autoinhibited Dimer of Pro-apoptotic BAX (II) 2YA9 ; 2.3 ; Crystal structure of the autoinhibited form of mouse DAPK2 2YAB ; 1.9 ; Crystal structure of the autoinhibited form of mouse DAPK2 in complex with AMP 2YAA ; 2.3 ; Crystal structure of the autoinhibited form of mouse DAPK2 in complex with ATP 2OGV ; 2.7 ; Crystal Structure of the Autoinhibited Human c-Fms Kinase Domain 2F31 ; 2.1 ; Crystal structure of the autoinhibitory switch in Formin mDia1; the DID/DAD complex 3FI7 ; 2.35 ; Crystal Structure of the autolysin Auto (Lmo1076) from Listeria monocytogenes, catalytic domain 4X36 ; 2.101 ; Crystal structure of the autolysin LytA from Streptococcus pneumoniae TIGR4 7BV6 ; 3.05 ; Crystal structure of the autophagic STX17/SNAP29/VAMP8 SNARE complex 3NQY ; 2.6 ; Crystal structure of the autoprocessed complex of Vibriolysin MCP-02 with a single point mutation E346A 3NQZ ; 2.05 ; Crystal structure of the autoprocessed Vibriolysin MCP-02 with E369A mutation 3KEP ; 1.82 ; Crystal structure of the autoproteolytic domain from the nuclear pore complex component NUP145 from Saccharomyces cerevisiae 3KES ; 2.1 ; Crystal structure of the autoproteolytic domain from the nuclear pore complex component NUP145 from Saccharomyces cerevisiae in the Hexagonal, P61 space group 8E7F ; 2.0 ; Crystal structure of the autotransporter Ssp from Serratia marcescens. 6BEA ; 1.97 ; Crystal structure of the autotransporter UpaB from E. coli strain CFT073 7NUV ; 1.76 ; Crystal structure of the Aux2pLS20 tetramerization domain 4IO5 ; 1.721 ; Crystal Structure of the AvGluR1 ligand binding domain complex with alanine at 1.72 Angstrom resolution 4IO3 ; 1.66 ; Crystal Structure of the AvGluR1 ligand binding domain complex with aspartate at 1.66 Angstrom resolution 4IO2 ; 1.37 ; Crystal Structure of the AvGluR1 ligand binding domain complex with glutamate at 1.37 Angstrom resolution 4IO6 ; 1.6 ; Crystal Structure of the AvGluR1 ligand binding domain complex with methionine at 1.6 Angstrom resolution 4IO7 ; 1.92 ; Crystal Structure of the AvGluR1 ligand binding domain complex with phenylalanine at 1.9 Angstrom resolution 4IO4 ; 1.941 ; Crystal Structure of the AvGluR1 ligand binding domain complex with serine at 1.94 Angstrom resolution 2VAK ; 2.34 ; Crystal structure of the avian reovirus inner capsid protein sigmaA 7O9Q ; 1.85 ; Crystal structure of the Awp1 (adhesin-like wall protein 1) A-domain from Candida glabrata 7O9O ; 1.55 ; Crystal structure of the Awp3b (adhesin-like wall protein 3b) A-domain from Candida glabrata 7O9P ; 1.99 ; Crystal structure of the Awp3b (adhesin-like wall protein 3b) A-domain from Candida glabrata showing a gadolinium cluster 4JYY ; 2.101 ; Crystal structure of the azide and iron substituted Clostrium difficile SOD2 complex 1SOF ; 2.6 ; Crystal structure of the azotobacter vinelandii bacterioferritin at 2.6 A resolution 4UII ; 2.827 ; Crystal structure of the Azotobacter vinelandii globin-coupled oxygen sensor in the aquo-met form 1NZR ; 2.2 ; CRYSTAL STRUCTURE OF THE AZURIN MUTANT NICKEL-TRP48MET FROM PSEUDOMONAS AERUGINOSA AT 2.2 ANGSTROMS RESOLUTION 1AZN ; 2.6 ; CRYSTAL STRUCTURE OF THE AZURIN MUTANT PHE114ALA FROM PSEUDOMONAS AERUGINOSA AT 2.6 ANGSTROMS RESOLUTION 7PRP ; 2.3 ; Crystal Structure of the B subunit of heat labile enterotoxin LT-IIc from Escherichia coli in apo form 7PRS ; 2.0 ; Crystal Structure of the B subunit of heat labile enterotoxin LT-IIc from Escherichia coli in complex with Sialyl-lacto-N-neotetraose d 1B44 ; 3.3 ; CRYSTAL STRUCTURE OF THE B SUBUNIT OF HEAT-LABILE ENTEROTOXIN FROM E. COLI CARRYING A PEPTIDE WITH ANTI-HSV ACTIVITY 1LTR ; 3.04 ; CRYSTAL STRUCTURE OF THE B SUBUNIT OF HUMAN HEAT-LABILE ENTEROTOXIN FROM E. COLI CARRYING A PEPTIDE WITH ANTI-HSV ACTIVITY 4NWY ; 2.0 ; Crystal structure of the b' domain of human protein disulfide isomerase-like protein of the testis (PDILT) 5CRW ; 1.6 ; Crystal structure of the b'-a' domain of oxidized protein disulfide isomerase complexed with alpha-synuclein peptide (31-41) 3WT2 ; 3.3 ; Crystal structure of the b'-a' domain of thermophilic fungal protein disulfide isomerase (oxidized form) 3WT1 ; 1.85 ; Crystal structure of the b'-a' domain of thermophilic fungal protein disulfide isomerase (reduced form) 7COI ; 1.8 ; Crystal structure of the b-carbonic anhydrase CafA of the fungal pathogen Aspergillus fumigatus 7COJ ; 2.0 ; Crystal structure of the b-carbonic anhydrase CafA of the fungal pathogen Aspergillus fumigatus 1R29 ; 1.3 ; Crystal Structure of the B-Cell Lymphoma 6 (BCL6) BTB Domain to 1.3 Angstrom 1R28 ; 2.2 ; Crystal Structure of the B-Cell Lymphoma 6 (BCL6) BTB domain to 2.2 Angstrom 252D ; 2.3 ; CRYSTAL STRUCTURE OF THE B-DNA DECAMER D(CGCAATTGCG)2; SEQUENCE-DEPENDENT CROSSED HELIX PACKING 478D ; 2.2 ; CRYSTAL STRUCTURE OF THE B-DNA DODECAMER 5'-D(CGCGAA(TAF)TCGCG), WHERE TAF IS 2'-DEOXY-2'-FLUORO-ARABINO-FURANOSYL THYMINE 1JO2 ; 1.5 ; Crystal Structure of the B-DNA Hexamer (CgATCG).Daunomycin Complex Containing a Ribose at the Intercalation Site 1F69 ; 2.6 ; CRYSTAL STRUCTURE OF THE B-DNA HEXAMER GGCGCC WITH COBALT HEXAMINE 1IH1 ; 2.0 ; Crystal Structure of the B-DNA Hexamer GGCGCC with Cobalt Hexamine Resolved to 2.0 Angstroms 1F6C ; 2.7 ; CRYSTAL STRUCTURE OF THE B-DNA HEXAMER GGCGCC WITH SPERMINE 253D ; 2.2 ; CRYSTAL STRUCTURE OF THE B-DNA NONAMER D(GCGTACGCG) WITH A NOVEL D[G*(G.C)] BASE-TRIPLET INVOLVING THE MINOR GROOVE 3V58 ; 1.85 ; Crystal Structure of the B-phycoerythrin from the red algae Porphyridium Cruentum at pH5 3V57 ; 1.7 ; Crystal Structure of the B-phycoerythrin from the red algae Porphyridium Cruentum at pH8 3U0X ; 1.85 ; Crystal structure of the B-specific-1,3-galactosyltransferase (GTB) in complex with compound 382 3DWA ; 2.084 ; Crystal structure of the B-subunit of the AB5 toxin from E. coli 3DWP ; 2.2 ; Crystal structure of the B-subunit of the AB5 toxin from E. Coli with Neu5Gc 5B12 ; 1.721 ; Crystal structure of the B-type halohydrin hydrogen-halide-lyase mutant F71W/Q125T/D199H from Corynebacterium sp. N-1074 3LB9 ; 3.0 ; Crystal structure of the B. circulans cpA123 circular permutant 6Q56 ; 2.0 ; Crystal structure of the B. subtilis M1A22 tRNA methyltransferase TrmK 1Y7M ; 2.05 ; Crystal Structure of the B. subtilis YkuD protein at 2 A resolution 2ACJ ; 2.6 ; Crystal structure of the B/Z junction containing DNA bound to Z-DNA binding proteins 1KEX ; 1.9 ; Crystal Structure of the b1 Domain of Human Neuropilin-1 5C7G ; 1.45 ; Crystal Structure of the b1 Domain of Human Neuropilin-1 in complex with a bicine molecule 7T2D ; 3.4 ; Crystal structure of the B1 TCR in complex with HLA-DP4-Ply 2QQI ; 1.8 ; Crystal Structure of the b1b2 Domains from Human Neuropilin-1 2QQJ ; 1.95 ; Crystal Structure of the b1b2 Domains from Human Neuropilin-2 4N6C ; 1.548 ; Crystal Structure of the B1RZQ2 protein from Streptococcus pneumoniae. Northeast Structural Genomics Consortium (NESG) Target SpR36. 3DDT ; 1.9 ; Crystal structure of the B2 box from MuRF1 in dimeric state 3ZI3 ; 1.7 ; Crystal structure of the B24His-insulin - human analogue 7O0O ; 1.45 ; Crystal structure of the B3 metallo-beta-lactamase L1 with hydrolysed ertapenem 2IHS ; 2.2 ; Crystal structure of the B30.2/SPRY domain of GUSTAVUS in complex with a 20-residue VASA peptide 6MCO ; 3.526 ; Crystal structure of the B41 SOSIP.664 Env trimer with PGT124 and 35O22 Fabs, in P23 space group 6MDT ; 3.816 ; Crystal structure of the B41 SOSIP.664 Env trimer with PGT124 and 35O22 Fabs, in P63 space group 7T2C ; 3.1 ; Crystal structure of the B5 TCR in complex with HLA-DP4-Ply 4U87 ; 3.8 ; Crystal structure of the Ba-soaked C2 crystal form of pMV158 replication initiator RepB (P3221 space group) 5B5N ; 3.3 ; Crystal structure of the Ba-substituted LH1-RC complex from Tch. tepidum 5ANP ; 1.4 ; CRYSTAL STRUCTURE OF THE BA41 PROTEIN FROM BIZIONIA ARGENTINENSIS 4OA3 ; 1.39 ; Crystal structure of the BA42 protein from BIZIONIA ARGENTINENSIS 5F8K ; 2.8 ; Crystal structure of the Bac7(1-16) antimicrobial peptide bound to the Thermus thermophilus 70S ribosome 2F3E ; 2.11 ; Crystal Structure of the Bace complex with AXQ093, a macrocyclic inhibitor 2F3F ; 2.3 ; Crystal Structure of the Bace complex with BDF488, a macrocyclic inhibitor 1YVK ; 3.01 ; Crystal Structure of the Bacillis subtilis Acetyltransferase in complex with CoA, Northeast Structural Genomics Target SR237. 1YDO ; 2.71 ; Crystal Structure of the Bacillis subtilis HMG-CoA Lyase, Northeast Structural Genomics Target SR181. 5WK0 ; 1.335 ; Crystal structure of the bacillithiol transferase BstA from Staphylococcus aureus. 3SS6 ; 1.7 ; Crystal structure of the Bacillus anthracis acetyl-CoA acetyltransferase 3L3C ; 2.85 ; Crystal structure of the Bacillus anthracis glmS ribozyme bound to Glc6P 3G96 ; 3.01 ; Crystal structure of the Bacillus anthracis glmS ribozyme bound to MaN6P 4YMP ; 3.15 ; Crystal structure of the Bacillus anthracis Hal NEAT domain in complex with heme 3SIK ; 2.149 ; Crystal structure of the Bacillus anthracis hemophore IsdX1 complexed with heme 3EDN ; 1.5 ; Crystal structure of the Bacillus anthracis phenazine biosynthesis protein, PhzF family 2H1I ; 2.8 ; Crystal Structure of the Bacillus cereus Carboxylesterase 3OJE ; 3.02 ; Crystal Structure of the Bacillus cereus Enoyl-Acyl Carrier Protein Reductase (Apo form) 3OJF ; 2.2 ; Crystal Structure of the Bacillus cereus Enoyl-Acyl Carrier Protein Reductase with NADP+ and indole naphthyridinone (Complex form) 4S3J ; 1.6 ; Crystal structure of the Bacillus cereus spore cortex-lytic enzyme SleL 3VZJ ; 2.406 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) E172H mutant 3VZM ; 1.86 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) E172H mutant with Glu78 covalently bonded to 2-deoxy-2-fluoro-xylobiose 3VZK ; 1.55 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) N35E mutant 3VZN ; 1.67 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) N35E mutant with Glu78 covalently bonded to 2-deoxy-2-fluoro-xylobiose 3VZL ; 2.0 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) N35H mutant 3VZO ; 1.73 ; Crystal structure of the Bacillus circulans endo-beta-(1,4)-xylanase (BcX) N35H mutant with Glu78 covalently bonded to 2-deoxy-2-fluoro-xylobiose 4S3K ; 1.7 ; Crystal structure of the Bacillus megaterium QM B1551 spore cortex-lytic enzyme SleL 1L0O ; 2.9 ; Crystal Structure of the Bacillus stearothermophilus Anti-Sigma Factor SpoIIAB with the Sporulation Sigma Factor SigmaF 4I36 ; 2.3 ; Crystal Structure of the Bacillus stearothermophilus Phosphofructokinase Mutant D12A 4I7E ; 2.0 ; Crystal Structure of the Bacillus stearothermophilus Phosphofructokinase Mutant D12A in Complex with PEP 5GUJ ; 2.5 ; Crystal structure of the Bacillus subtilis DnaG RNA Polymerase Domain, natural degradation of full length DnaG 1VZY ; 1.97 ; Crystal structure of the Bacillus subtilis HSP33 1CSP ; 2.45 ; CRYSTAL STRUCTURE OF THE BACILLUS SUBTILIS MAJOR COLD SHOCK PROTEIN, CSPB: A UNIVERSAL NUCLEIC-ACID BINDING DOMAIN 1CSQ ; 2.7 ; CRYSTAL STRUCTURE OF THE BACILLUS SUBTILIS MAJOR COLD SHOCK PROTEIN, CSPB: A UNIVERSAL NUCLEIC-ACID BINDING DOMAIN 2PR1 ; 3.2 ; Crystal structure of the Bacillus subtilis N-acetyltransferase YlbP protein in complex with Coenzyme-A 2J9P ; 2.8 ; Crystal structure of the Bacillus subtilis PBP4a, and its complex with a peptidoglycan mimetic peptide. 4JZS ; 2.2 ; Crystal structure of the Bacillus subtilis pyrophosphohydrolase BsRppH (E68A mutant) 4JZT ; 2.9 ; Crystal structure of the Bacillus subtilis pyrophosphohydrolase BsRppH (E68A mutant) bound to GTP 4JZU ; 1.7 ; Crystal structure of the Bacillus subtilis pyrophosphohydrolase BsRppH bound to a non-hydrolysable triphosphorylated dinucleotide RNA (pcp-pGpG) - first guanosine residue in guanosine binding pocket 4JZV ; 2.2 ; Crystal structure of the Bacillus subtilis pyrophosphohydrolase BsRppH bound to a non-hydrolysable triphosphorylated dinucleotide RNA (pcp-pGpG) - second guanosine residue in guanosine binding pocket 1FSE ; 2.05 ; CRYSTAL STRUCTURE OF THE BACILLUS SUBTILIS REGULATORY PROTEIN GERE 6E8D ; 2.34 ; Crystal structure of the Bacillus subtilis sliding clamp-MutL complex. 5H66 ; 1.82195 ; Crystal structure of the Bacillus subtilis SMC head domain complexed with the cognate ScpA C-terminal domain 5H67 ; 2.07204 ; Crystal structure of the Bacillus subtilis SMC head domain complexed with the cognate ScpA C-terminal domain and soaked ATP 2RCV ; 1.6 ; Crystal structure of the Bacillus subtilis superoxide dismutase 2W27 ; 2.8 ; CRYSTAL STRUCTURE OF THE BACILLUS SUBTILIS YKUI PROTEIN, WITH AN EAL DOMAIN, IN COMPLEX WITH SUBSTRATE C-DI-GMP AND CALCIUM 2BAS ; 2.61 ; Crystal Structure of the Bacillus subtilis YkuI Protein, with an EAL Domain. 5IE9 ; 2.8 ; Crystal structure of the Bacillus-conserved MazG protein, a nucleotide pyrophosphohydrolase 4P3T ; 1.6 ; Crystal structure of the bacterial A1408C-mutant ribosomal decoding site 4P3S ; 2.3 ; Crystal structure of the bacterial A1408C-mutant ribosomal decoding site in complex with geneticin 3TD0 ; 1.6 ; Crystal structure of the bacterial A1408G-mutant and the protozoa cytoplasmic ribosomal decoding site 3TD1 ; 2.1 ; Crystal structure of the bacterial A1408G-mutant and the protozoa cytoplasmic ribosomal decoding site in complex with geneticin 5ZEG ; 2.4 ; Crystal structure of the bacterial A1408me1A-mutant ribosomal decoding site 5ZEI ; 2.1 ; Crystal structure of the bacterial A1408me1A-mutant ribosomal decoding site in complex with geneticin 5ZEJ ; 3.5 ; Crystal structure of the bacterial A1408me1A-mutant ribosomal decoding site in complex with paromomycin 5ZEM ; 3.103 ; Crystal structure of the bacterial A1408me1A-mutant ribosomal decoding site in the presence of gentamicin 4P3U ; 3.0 ; Crystal structure of the bacterial A1408U-mutant ribosomal decoding site (C2 form 1) 4P43 ; 2.0 ; Crystal structure of the bacterial A1408U-mutant ribosomal decoding site (C2 form 2) 2ICP ; 1.88 ; Crystal structure of the bacterial antitoxin HigA from Escherichia coli at pH 4.0. Northeast Structural Genomics Consortium TARGET ER390. 2ICT ; 1.63 ; Crystal structure of the bacterial antitoxin HigA from Escherichia coli at pH 8.5. Northeast Structural Genomics TARGET ER390. 5Z2W ; 3.0 ; Crystal structure of the bacterial cell division protein FtsQ and FtsB 1HF2 ; 2.2 ; Crystal structure of the bacterial cell-division inhibitor MinC from T. maritima 6TJ0 ; 2.2 ; Crystal structure of the bacterial cellulose secretion regulator BcsE, residues 217-523, with bound c-di-GMP. 6PCZ ; 1.44 ; Crystal structure of the bacterial cellulose synthase subunit G (BcsG) catalytic domain from Escherichia coli, selenomethionine variant 6PD0 ; 1.75 ; Crystal structure of the bacterial cellulose synthase subunit G (BcsG) from Escherichia coli, catalytic domain 6IA6 ; 2.7 ; Crystal structure of the bacterial Dehalococcoides mccartyi Elp3 with desulfo-CoA 4OMG ; 1.64 ; Crystal structure of the bacterial diterpene cyclase COTB2 4OMH ; 1.64 ; Crystal structure of the bacterial diterpene cyclase COTB2 variant F149L 1T16 ; 2.6 ; Crystal structure of the bacterial fatty acid transporter FadL from Escherichia coli 3FGC ; 2.3 ; Crystal Structure of the Bacterial Luciferase:Flavin Complex Reveals the Basis of Intersubunit Communication 1JFX ; 1.65 ; Crystal structure of the bacterial lysozyme from Streptomyces coelicolor at 1.65 A resolution 4US3 ; 2.098 ; Crystal Structure of the bacterial NSS member MhsT in an Occluded Inward-Facing State 4US4 ; 2.6 ; Crystal Structure of the Bacterial NSS Member MhsT in an Occluded Inward-Facing State (lipidic cubic phase form) 8HPJ ; 3.3 ; Crystal structure of the bacterial oxalate transporter OxlT in a ligand-free outward-facing form 8HPK ; 3.0 ; Crystal structure of the bacterial oxalate transporter OxlT in an oxalate-bound occluded form 5LFJ ; 2.6 ; Crystal Structure of the Bacterial Proteasome Activator Bpa of Mycobacterium tuberculosis 5LFQ ; 3.503 ; Crystal Structure of the Bacterial Proteasome Activator Bpa of Mycobacterium tuberculosis (space group P3) 5LFP ; 3.303 ; Crystal Structure of the Bacterial Proteasome Activator Bpa of Mycobacterium tuberculosis (space group P6322, SeMet) 3BNL ; 2.602 ; Crystal structure of the bacterial ribosomal decoding A site in the presence of [Co(NH3)6]Cl3 2PWT ; 1.8 ; Crystal structure of the bacterial ribosomal decoding site complexed with aminoglycoside containing the L-HABA group 3S4P ; 2.56 ; Crystal structure of the bacterial ribosomal decoding site complexed with an amphiphilic paromomycin O2''-ether analogue 6JBF ; 2.6 ; Crystal structure of the bacterial ribosomal decoding site in complex with 4'-deoxy-4'-fluoro neamine analog (axial 4'-F) 6JBG ; 3.1 ; Crystal structure of the bacterial ribosomal decoding site in complex with 4'-deoxy-4'-fluoro neamine analog (equatorial 4'-F) 4PDQ ; 3.0 ; Crystal structure of the bacterial ribosomal decoding site in complex with 4'-deoxy-4'-fluoro neomycin analog 5Z1H ; 2.4 ; Crystal structure of the bacterial ribosomal decoding site in complex with 6'-fluoro sisomicin 4GPY ; 2.8 ; Crystal structure of the bacterial ribosomal decoding site in complex with 6'-hydroxysisomicin 7EDL ; 2.6 ; Crystal structure of the bacterial ribosomal decoding site in complex with G418 and Hg(II) 4F8U ; 2.0 ; Crystal structure of the bacterial ribosomal decoding site in complex with sisomicin (C2 form) 4F8V ; 2.8 ; Crystal structure of the bacterial ribosomal decoding site in complex with sisomicin (P21212 form) 3WRU ; 2.3 ; Crystal structure of the bacterial ribosomal decoding site in complex with synthetic aminoglycoside with F-HABA group 4V4Q ; 3.46 ; Crystal structure of the bacterial ribosome from Escherichia coli at 3.5 A resolution. 4V55 ; 4.0 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with gentamicin and ribosome recycling factor (RRF). 4V53 ; 3.54 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with gentamicin. 4V64 ; 3.5 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with hygromycin B. 4V52 ; 3.21 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with neomycin. 4V5Y ; 4.45 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with paromomycin and ribosome recycling factor (RRF). 4V54 ; 3.3 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with ribosome recycling factor (RRF). 4V57 ; 3.5 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with spectinomycin and neomycin. 4V56 ; 3.93 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with spectinomycin. 4V4H ; 3.46 ; Crystal structure of the bacterial ribosome from Escherichia coli in complex with the antibiotic kasugamyin at 3.5A resolution. 4V97 ; 3.516 ; Crystal structure of the bacterial ribosome ram mutation G299A. 4V8J ; 3.9 ; Crystal structure of the bacterial ribosome ram mutation G347U. 3M7H ; 2.2 ; Crystal structure of the bacteriocin LLPA from Pseudomonas sp. 4GC2 ; 2.1201 ; Crystal structure of the bacteriocin LLPA from pseudomonas sp. in complex with GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man 4GC1 ; 2.0801 ; Crystal structure of the bacteriocin LLPA from pseudomonas sp. in complex with Man alpha(1-2)Man 3M7J ; 2.26 ; Crystal structure of the bacteriocin LLPA from pseudomonas sp. in complex with Met-mannose 4FZM ; 2.83 ; Crystal structure of the bacteriocin syringacin M from Pseudomonas syringae pv. tomato DC3000 4ZJN ; 1.98 ; Crystal structure of the bacteriophage G20C portal protein 4FCY ; 3.706 ; Crystal structure of the bacteriophage Mu transpososome 3QR8 ; 2.03 ; Crystal structure of the bacteriophage P2 membrane-piercing protein gpV 3GQH ; 1.8 ; Crystal Structure of the Bacteriophage phi29 gene product 12 C-terminal fragment 3GQK ; 2.5 ; Crystal Structure of the Bacteriophage phi29 gene product 12 C-terminal fragment in complex with ATP 3GQ7 ; 2.05 ; Crystal Structure of the Bacteriophage Phi29 Gene Product 12 N-terminal Fragment 3GQ9 ; 2.0 ; Crystal Structure of the Bacteriophage phi29 gene product 12 N-terminal fragment in an apo form 3GQ8 ; 2.0 ; Crystal Structure of the Bacteriophage phi29 gene product 12 N-terminal fragment in complex with 2-(N-cyclohexylamino)ethane sulfonic acid (CHES) 3GQA ; 2.1 ; Crystal Structure of the Bacteriophage phi29 gene product 12 N-terminal fragment in complex with cobalt ions 5FB5 ; 3.5 ; Crystal structure of the bacteriophage phi29 tail knob protein gp9 5FB4 ; 2.039 ; Crystal structure of the bacteriophage phi29 tail knob protein gp9 truncation variant 5FEI ; 2.604 ; Crystal structure of the bacteriophage phi29 tail knob protein gp9 truncation variant 3PQI ; 2.642 ; Crystal structure of the bacteriophage phi92 membrane-piercing protein gp138 3BKH ; 2.5 ; Crystal structure of the bacteriophage phiKZ lytic transglycosylase, gp144 3HEF ; 1.65 ; Crystal structure of the bacteriophage Sf6 terminase small subunit 4ZWQ ; 2.351 ; Crystal Structure of the Bacteriophage T4 recombination mediator protein UvsY, Lattice Type I 4ZWR ; 3.3857 ; Crystal Structure of the Bacteriophage T4 recombination mediator protein UvsY, Lattice Type II 4ZWS ; 2.6 ; Crystal Structure of the Bacteriophage T4 recombination mediator protein UvsY, Lattice Type III 4ZWT ; 4.2 ; Crystal Structure of the Bacteriophage T4 recombination mediator protein UvsY, Lattice Type IV 3FOA ; 3.5 ; Crystal structure of the bacteriophage T4 tail sheath protein, deletion mutant gp18M 3FO8 ; 1.8 ; Crystal structure of the bacteriophage T4 tail sheath protein, protease resistant fragment gp18PR 1ZMA ; 1.25 ; Crystal Structure of the Bacterocin Transport Accessory Protein from Streptococcus pneumoniae 4V46 ; 3.3 ; Crystal structure of the BAFF-BAFF-R complex 8JIX ; 1.71 ; Crystal structure of the Bagaza virus helicase and structure-based discovery of a novel inhibitor 3SOG ; 2.3 ; Crystal structure of the BAR domain of human Amphiphysin, isoform 1 4ATM ; 1.783 ; Crystal structure of the BAR domain of human Amphiphysin, isoform 1 at 1.8 Angstrom resolution featuring increased order at the N- terminus. 4NSW ; 2.2 ; Crystal structure of the BAR-PH domain of ACAP1 2ELB ; 2.6 ; Crystal Structure of the BAR-PH domain of human APPL1 3C5R ; 2.0 ; Crystal Structure of the BARD1 Ankyrin Repeat Domain and Its Functional Consequences 2NTE ; 1.9 ; Crystal Structure of the BARD1 BRCT Domains 6M14 ; 1.88002 ; Crystal Structure of the BARD1 BRCT Mutant 2R1Z ; 2.1 ; Crystal Structure of the BARD1 BRCT Repeat 5DAR ; 2.9 ; CRYSTAL STRUCTURE OF THE BASE OF THE RIBOSOMAL P STALK FROM METHANOCOCCUS JANNASCHII 5D8H ; 2.8 ; CRYSTAL STRUCTURE OF THE BASE OF THE RIBOSOMAL P STALK FROM METHANOCOCCUS JANNASCHII WITH ANTIBIOTIC THIOSTREPTON 3TI9 ; 1.8 ; Crystal structure of the basic protease BprB from the ovine footrot pathogen, Dichelobacter nodosus 3TI7 ; 2.0 ; Crystal structure of the basic protease BprV from the ovine footrot pathogen, Dichelobacter nodosus 2QL2 ; 2.5 ; Crystal Structure of the basic-helix-loop-helix domains of the heterodimer E47/NeuroD1 bound to DNA 4P1G ; 2.603 ; Crystal structure of the Bateman domain of murine magnesium transporter CNNM2 bound to AMP 4P1O ; 3.06 ; Crystal structure of the Bateman domain of murine magnesium transporter CNNM2 bound to ATP-Mg 2NYC ; 1.9 ; Crystal structure of the Bateman2 domain of yeast Snf4 2NYE ; 2.5 ; Crystal structure of the Bateman2 domain of yeast Snf4 3AYM ; 2.8 ; Crystal structure of the batho intermediate of squid rhodopsin 3EC3 ; 1.92 ; Crystal structure of the bb fragment of ERp72 2H8L ; 2.0 ; Crystal structure of the bb' fragment of ERp57 2HJW ; 2.5 ; Crystal Structure of the BC domain of ACC2 3JRX ; 2.5 ; Crystal structure of the BC domain of ACC2 in complex with soraphen A 4L1G ; 2.336 ; Crystal structure of the Bc1960 peptidoglycan N-acetylglucosamine deacetylase from Bacillus cereus 5O6Y ; 2.498 ; Crystal structure of the Bc1960 peptidoglycan N-acetylglucosamine deacetylase in complex with 4-naphthalen-1-yl-~{N}-oxidanyl-benzamide 8DV4 ; 2.4 ; Crystal structure of the BC8B TCR-CD1b-PI complex 1R2B ; 2.2 ; Crystal structure of the BCL6 BTB domain complexed with a SMRT co-repressor peptide 3LBZ ; 2.3 ; Crystal Structure of the BCL6 BTB domain complexed with the small molecule inhibitor 79-6 3BIM ; 2.6 ; Crystal structure of the BCL6 BTB domain dimer in complex with the BCOR BBD corepressor peptide 6TCJ ; 2.13 ; Crystal structure of the BCL6 BTB domain in complex with a hybrid BTB-binding (HBP) peptide 6TBT ; 1.63 ; Crystal structure of the BCL6 BTB domain in complex with an Apt48 peptide 6EW6 ; 1.39 ; Crystal structure of the BCL6 BTB domain in complex with anilinopyrimidine ligand 6EW7 ; 1.6 ; Crystal structure of the BCL6 BTB domain in complex with anilinopyrimidine ligand 6EW8 ; 1.84 ; Crystal structure of the BCL6 BTB domain in complex with anilinopyrimidine ligand 5X4M ; 1.65 ; Crystal structure of the BCL6 BTB domain in complex with Compound 1 5X9O ; 1.58 ; Crystal structure of the BCL6 BTB domain in complex with Compound 1a 5X4N ; 1.94 ; Crystal structure of the BCL6 BTB domain in complex with Compound 4 5X4O ; 2.05 ; Crystal structure of the BCL6 BTB domain in complex with Compound 5 5X9P ; 1.86 ; Crystal structure of the BCL6 BTB domain in complex with Compound 5 5X4P ; 2.06 ; Crystal structure of the BCL6 BTB domain in complex with Compound 6 5X4Q ; 2.0 ; Crystal structure of the BCL6 BTB domain in complex with Compound 7 5H7G ; 1.85 ; Crystal structure of the BCL6 BTB domain in complex with F1324 5H7H ; 1.95 ; Crystal structure of the BCL6 BTB domain in complex with F1324(10-13) 7LZR ; 1.34 ; Crystal structure of the BCL6 BTB domain in complex with OICR-10256 7RV8 ; 1.25 ; Crystal structure of the BCL6 BTB domain in complex with OICR-10268 7RV9 ; 1.5 ; Crystal structure of the BCL6 BTB domain in complex with OICR-10269 7T0T ; 2.0 ; Crystal structure of the BCL6 BTB domain in complex with OICR-10562 7LZS ; 1.49 ; Crystal structure of the BCL6 BTB domain in complex with OICR-11029 7T0S ; 1.86 ; Crystal structure of the BCL6 BTB domain in complex with OICR-11864 7T0U ; 1.49 ; Crystal structure of the BCL6 BTB domain in complex with OICR-12387 7LWG ; 1.3 ; Crystal structure of the BCL6 BTB domain in complex with OICR-12694 7LZQ ; 1.71 ; Crystal structure of the BCL6 BTB domain in complex with OICR-4425 7LWE ; 1.17 ; Crystal structure of the BCL6 BTB domain in complex with OICR-7629 7RUW ; 1.3 ; Crystal structure of the BCL6 BTB domain in complex with OICR-7859 7RUX ; 1.3 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8311 7RUY ; 1.27 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8388 7RUZ ; 1.62 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8445 7RV0 ; 1.45 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8446 7RV1 ; 1.17 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8826 7RV2 ; 1.29 ; Crystal structure of the BCL6 BTB domain in complex with OICR-8828 7RV3 ; 1.35 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9124 7RV4 ; 1.25 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9153 7RV5 ; 2.21 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9287 7RV6 ; 1.683 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9288 7LWF ; 1.22 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9320 7RV7 ; 1.63 ; Crystal structure of the BCL6 BTB domain in complex with OICR-9322 5N1X ; 1.72 ; Crystal structure of the BCL6 BTB domain in complex with pyrazolo-pyrimidine ligand 5N20 ; 1.38 ; Crystal structure of the BCL6 BTB domain in complex with pyrazolo-pyrimidine ligand 5N21 ; 1.58 ; Crystal structure of the BCL6 BTB domain in complex with pyrazolo-pyrimidine ligand 5N1Z ; 1.81 ; Crystal structure of the BCL6 BTB domain in complex with pyrazolo-pyrimidine macrocyclic ligand 6XYX ; 1.44 ; Crystal structure of the BCL6 BTB domain in complex with the NCoR1 BBD corepressor peptide 6XZZ ; 1.39 ; Crystal structure of the BCL6 BTB domain in complex with the NCoR1 BBD2 peptide 5MW6 ; 1.65 ; Crystal structure of the BCL6 BTB-domain with compound 1 5MWD ; 1.85 ; Crystal structure of the BCL6 BTB-domain with compound 2 6ZTD ; 3.43 ; Crystal structure of the BCR Fab fragment from subset #169 case P6540 5IFH ; 2.293 ; Crystal structure of the BCR Fab fragment from subset #2 case P11475 5DRW ; 2.27 ; Crystal structure of the BCR Fab fragment from subset #4 case CLL183 5DRX ; 2.104 ; Crystal structure of the BCR Fab fragment from subset #4 case CLL240 3P04 ; 2.2 ; Crystal Structure of the BCR protein from Corynebacterium glutamicum. Northeast Structural Genomics Consortium Target CgR8 7UXS ; 1.57 ; Crystal structure of the BcThsA SLOG domain in complex with 3'cADPR 5JNO ; 2.2 ; Crystal structure of the BD1-NTPR complex from BEND3 and PICH 5C7Q ; 1.52 ; Crystal Structure of the Bdellovibrio bacteriovorus Nucleoside Diphosphate Sugar Hydrolase 5C8L ; 1.8 ; Crystal Structure of the Bdellovibrio bacteriovorus Nucleoside Diphosphate Sugar Hydrolase 5C7T ; 2.06 ; Crystal Structure of the Bdellovibrio bacteriovorus Nucleoside Diphosphate Sugar Hydrolase in complex with ADP-ribose 6FMB ; 1.3 ; Crystal structure of the BEC1054 RNase-like effector from the fungal pathogen Blumeria graminis 1XHF ; 2.152 ; Crystal structure of the bef3-activated receiver domain of redox response regulator arca 2V3W ; 2.2 ; Crystal structure of the benzoylformate decarboxylase variant L461A from Pseudomonas putida 2HXC ; 1.45 ; Crystal structure of the benzylamine complex of aromatic amine dehydrogenase in N-semiquinone form 1XA7 ; 2.4 ; Crystal structure of the benzylpenicillin-acylated BlaR1 sensor domain from Staphylococcus aureus 2GVR ; 1.65 ; Crystal structure of the berenil-D(CGCGAATTCGCG)2 complex at 1.65 A resolution. 5HEV ; 3.192 ; Crystal Structure of the beryllofluoride-activated LiaR from Enterococcus faecium 2C0J ; 2.2 ; Crystal structure of the bet3-trs33 heterodimer 4RXY ; 1.901 ; Crystal Structure of the Beta Carbonic Anhydrase psCA3 isolated from Pseudomonas aeruginosa 5JJ8 ; 2.585 ; Crystal Structure of the Beta Carbonic Anhydrase psCA3 isolated from Pseudomonas aeruginosa - alternate crystal packing form 3QQ2 ; 3.0 ; Crystal Structure of the Beta Domain of the Bordetella Autotransporter Brka 2H6J ; 3.2 ; Crystal Structure of the Beta F145A Rhodococcus Proteasome 2DTU ; 2.37 ; Crystal structure of the beta hairpin loop deletion variant of RB69 gp43 in complex with DNA containing an abasic site analog 6NI1 ; 1.9 ; Crystal Structure of the Beta Lactamase Class A penP from Bacillus subtilis 6W2Z ; 1.5 ; Crystal Structure of the Beta Lactamase Class A PenP from Bacillus subtilis in the Complex with the Non-beta- lactam Beta-lactamase Inhibitor Avibactam 7K3M ; 1.8 ; Crystal Structure of the Beta Lactamase Class D from Chitinophaga pinensis by Serial Crystallography 6NHU ; 2.3 ; Crystal Structure of the Beta Lactamase Class D YbxI from Agrobacterium fabrum 6NI0 ; 2.3 ; Crystal Structure of the Beta Lactamase Class D YbxI from Burkholderia thailandensis 6NHS ; 2.0 ; Crystal Structure of the Beta Lactamase Class D YbXI from Nostoc 2AVT ; 2.0 ; Crystal structure of the beta subunit from DNA polymerase of Streptococcus pyogenes 3EBY ; 1.75 ; Crystal structure of the beta subunit of a putative aromatic-ring-hydroxylating dioxygenase (YP_001165631.1) from NOVOSPHINGOBIUM AROMATICIVORANS DSM 12444 at 1.75 A resolution 6P57 ; 3.16 ; Crystal Structure of the Beta Subunit of Luteinizing Hormone 3E99 ; 1.9 ; Crystal structure of the beta subunit of the benzoate 1,2-dioxygenase (benb, bmaa0186) from burkholderia mallei atcc 23344 at 1.90 A resolution 3TM6 ; 2.7 ; Crystal structure of the beta-2 microglobulin DIMC50 disulphide-linked homodimer mutant 3VP7 ; 2.3 ; Crystal structure of the beta-alpha repeated, autophagy-specific (BARA) domain of Vps30/Atg6 3FC3 ; 1.75 ; Crystal structure of the beta-beta-alpha-Me type II restriction endonuclease Hpy99I 3GOX ; 1.5 ; Crystal structure of the beta-beta-alpha-Me type II restriction endonuclease Hpy99I in the absence of EDTA 1LUJ ; 2.5 ; Crystal Structure of the Beta-catenin/ICAT Complex 2ASU ; 1.85 ; Crystal Structure of the beta-chain of HGFl/MSP 3E66 ; 2.05 ; Crystal structure of the beta-finger domain of yeast Prp8 6JFP ; 2.7 ; Crystal structure of the beta-glucosidase Bgl15 5BWF ; 2.6 ; Crystal structure of the beta-glucosidase from Trichoderma harzianum 1QVB ; 2.4 ; CRYSTAL STRUCTURE OF THE BETA-GLYCOSIDASE FROM THE HYPERTHERMOPHILE THERMOSPHAERA AGGREGANS 6QKB ; 1.701 ; Crystal structure of the beta-hydroxyaspartate aldolase of Paracoccus denitrificans 3O04 ; 1.85 ; Crystal structure of the beta-keto-acyl carrier protein synthase II (lmo2201) from Listeria monocytogenes 8EP6 ; 1.5 ; Crystal Structure of the Beta-lactamase Class D from Chitinophaga pinensis in complex with Avibactam 5ODZ ; 2.07 ; CRYSTAL STRUCTURE OF THE BETA-LACTAMASE OXA-163 5OE0 ; 2.05001 ; CRYSTAL STRUCTURE OF THE BETA-LACTAMASE OXA-181 5OE2 ; 2.2 ; CRYSTAL STRUCTURE OF THE BETA-LACTAMASE OXA-245 3WO8 ; 2.43 ; Crystal structure of the beta-N-acetylglucosaminidase from Thermotoga maritima 4AWD ; 2.4 ; Crystal structure of the beta-porphyranase BpGH16B (BACPLE_01689) from the human gut bacterium Bacteroides plebeius 1K7X ; 1.7 ; CRYSTAL STRUCTURE OF THE BETA-SER178PRO MUTANT OF TRYPTOPHAN SYNTHASE 5MU7 ; 2.57 ; Crystal Structure of the beta/delta-COPI Core Complex 3SN6 ; 3.2 ; Crystal structure of the beta2 adrenergic receptor-Gs protein complex 8A5U ; 2.4 ; Crystal structure of the beta3 subunit extracellular domain of nicotinic acetylcholine receptor 5CEZ ; 3.031 ; Crystal Structure of the BG505 SOSIP gp140 HIV-1 Env trimer in Complex with an early putative precursor of the PGT121 family at 3.0 Angstrom 4NCO ; 4.7 ; Crystal Structure of the BG505 SOSIP gp140 HIV-1 Env trimer in Complex with the Broadly Neutralizing Fab PGT122 5D9Q ; 4.4 ; Crystal Structure of the BG505 SOSIP gp140 HIV-1 Env trimer in Complex with the Broadly Neutralizing Fab PGT122 and scFv NIH45-46 1F7C ; 2.4 ; CRYSTAL STRUCTURE OF THE BH DOMAIN FROM GRAF, THE GTPASE REGULATOR ASSOCIATED WITH FOCAL ADHESION KINASE 2PUY ; 1.43 ; Crystal Structure of the BHC80 PHD finger 2GKS ; 2.31 ; Crystal Structure of the Bi-functional ATP Sulfurylase-APS Kinase from Aquifex aeolicus, a Chemolithotrophic Thermophile 4YK1 ; 2.1 ; Crystal Structure of the BID Domain of Bep6 from Bartonella rochalimae 4YK2 ; 2.05 ; Crystal Structure of the BID Domain of Bep9 from Bartonella clarridgeiae 4YK3 ; 2.2 ; Crystal Structure of the BID Domain of BepE from Bartonella henselae 1VJ7 ; 2.1 ; Crystal structure of the bifunctional catalytic fragment of RelSeq, the RelA/SpoT homolog from Streptococcus equisimilis. 1R52 ; 2.89 ; Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae 1R53 ; 2.2 ; Crystal structure of the bifunctional chorismate synthase from Saccharomyces cerevisiae 1B1U ; 2.2 ; CRYSTAL STRUCTURE OF THE BIFUNCTIONAL INHIBITOR RAGI 7OCN ; 2.6 ; Crystal structure of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD from Acinetobacter baumannii 1VZW ; 1.8 ; Crystal structure of the bifunctional protein Pria 1K9B ; 2.8 ; Crystal structure of the bifunctional soybean Bowman-Birk inhibitor at 0.28 nm resolution. Structural peculiarities in a folded protein conformation 2FT3 ; 3.4 ; Crystal structure of the biglycan dimer core protein 7A1I ; 1.87 ; Crystal structure of the BILBO2/FPC4 complex 4XXI ; 2.2 ; Crystal structure of the Bilin-binding domain of phycobilisome core-membrane linker ApcE 5NHW ; 1.78 ; CRYSTAL STRUCTURE OF THE BIMAGRUMAB Fab 4FIZ ; 1.9 ; Crystal structure of the binary complex between a fungal 17beta-hydroxysteroid dehydrogenase (Apo form) and coumestrol 2PUK ; 3.0 ; Crystal structure of the binary complex between ferredoxin: thioredoxin reductase and thioredoxin m 3GSO ; 1.6 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV peptide 3GSV ; 1.9 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-M5Q peptide variant 3GSQ ; 2.12 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-M5S peptide variant 3GSU ; 1.8 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-M5T peptide variant 3GSR ; 1.95 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-M5V peptide variant 3GSW ; 1.81 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-T8A peptide variant 3GSX ; 2.1 ; Crystal structure of the binary complex between HLA-A2 and HCMV NLV-T8V peptide variant 6LRH ; 2.7051 ; Crystal Structure of the Binary Complex of AgrE C264A mutant with L-arginine 2FZE ; 1.9 ; Crystal structure of the binary complex of human glutathione-dependent formaldehyde dehydrogenase with ADP-ribose 4HDO ; 1.67 ; Crystal structure of the binary Complex of KRIT1 bound to the Rap1 GTPase 3QV1 ; 2.0 ; Crystal structure of the binary complex of photosyntetic A4 glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with cp12-2, both from Arabidopsis thaliana. 3GP8 ; 2.5 ; Crystal structure of the binary complex of RecD2 with DNA 1RUS ; 2.9 ; CRYSTAL STRUCTURE OF THE BINARY COMPLEX OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE AND ITS PRODUCT, 3-PHOSPHO-D-GLYCERATE 3RVD ; 2.7 ; Crystal structure of the binary complex, obtained by soaking, of photosyntetic a4 glyceraldehyde 3-phosphate dehydrogenase (gapdh) with cp12-2, both from arabidopsis thaliana. 1P0F ; 1.8 ; Crystal Structure of the Binary Complex: NADP(H)-Dependent Vertebrate Alcohol Dehydrogenase (ADH8) with the cofactor NADP 6ES1 ; 2.0 ; Crystal structure of the binding domain from botulinum neurotoxin A2 bound to extracellular domain of human receptor SV2C 6G5K ; 2.0 ; Crystal structure of the binding domain of Botulinum Neurotoxin type B in complex with human synaptotagmin 1 6QNS ; 2.4 ; Crystal structure of the binding domain of Botulinum Neurotoxin type B mutant I1248W/V1249W in complex with human synaptotagmin 1 and GD1a receptors 6HOX ; 1.95 ; Crystal structure of the binding domain of Paraclostridial Mosquitocidal Protein 1 5GPD ; 3.501 ; Crystal structure of the binding domain of SREBP from fission yeast 3DP6 ; 1.55 ; Crystal structure of the binding domain of the AMPA subunit GluR2 bound to glutamate 3H06 ; 2.8 ; Crystal structure of the binding domain of the AMPA subunit GluR2 bound to the willardiine antagonist, UBP282 3H03 ; 1.9 ; Crystal structure of the binding domain of the AMPA subunit GluR2 bound to UBP277 3DP4 ; 2.11 ; Crystal structure of the binding domain of the AMPA subunit GluR3 bound to AMPA 3DLN ; 1.91 ; Crystal structure of the binding domain of the AMPA subunit GluR3 bound to glutamate 2B4L ; 2.0 ; Crystal structure of the binding protein OpuAC in complex with glycine betaine 2B4M ; 2.8 ; Crystal structure of the binding protein OpuAC in complex with proline betaine 1D3V ; 1.7 ; CRYSTAL STRUCTURE OF THE BINUCLEAR MANGANESE METALLOENZYME ARGINASE COMPLEXED WITH 2(S)-AMINO-6-BORONOHEXANOIC ACID, AN L-ARGININE ANALOG 1HQF ; 2.9 ; CRYSTAL STRUCTURE OF THE BINUCLEAR MANGANESE METALLOENZYME ARGINASE COMPLEXED WITH N-HYDROXY-L-ARGININE 1HQH ; 2.8 ; CRYSTAL STRUCTURE OF THE BINUCLEAR MANGANESE METALLOENZYME ARGINASE COMPLEXED WITH NOR-N-HYDROXY-L-ARGININE 1HQ5 ; 2.3 ; CRYSTAL STRUCTURE OF THE BINUCLEAR MANGANESE METALLOENZYME ARGINASE COMPLEXED WITH S-(2-BORONOETHYL)-L-CYSTEINE, AN L-ARGININE ANALOGUE 3QS3 ; 2.1 ; Crystal structure of the biofilm forming subunit of the E. coli common pilus: donor strand complemented (DSC) EcpA 3QS2 ; 1.78 ; Crystal structure of the biofilm forming subunit of the E. coli common pilus: full length domain swapped dimer of EcpA 3NZP ; 3.0 ; Crystal Structure of the Biosynthetic Arginine decarboxylase SpeA from Campylobacter jejuni, Northeast Structural Genomics Consortium Target BR53 2DZD ; 2.4 ; Crystal structure of the biotin carboxylase domain of pyruvate carboxylase 1ULZ ; 2.2 ; Crystal structure of the biotin carboxylase subunit of pyruvate carboxylase 2GPS ; 2.8 ; Crystal Structure of the Biotin Carboxylase Subunit, E23R mutant, of Acetyl-CoA Carboxylase from Escherichia coli. 3G8D ; 1.9 ; Crystal structure of the biotin carboxylase subunit, E296A mutant, of acetyl-COA carboxylase from Escherichia coli 2GPW ; 2.2 ; Crystal Structure of the Biotin Carboxylase Subunit, F363A Mutant, of Acetyl-CoA Carboxylase from Escherichia coli. 2EJG ; 2.71 ; Crystal Structure Of The Biotin Protein Ligase (Mutation R48A) and Biotin Carboxyl Carrier Protein Complex From Pyrococcus Horikoshii OT3 2EJF ; 2.0 ; Crystal Structure Of The Biotin Protein Ligase (Mutations R48A and K111A) and Biotin Carboxyl Carrier Protein Complex From Pyrococcus Horikoshii OT3 6HA7 ; 2.49 ; Crystal structure of the BiP NBD and MANF complex 6H9U ; 1.57 ; Crystal structure of the BiP NBD and MANF SAP complex 3GZY ; 1.62 ; Crystal Structure of the Biphenyl Dioxygenase from Comamonas testosteroni Sp. Strain B-356 3GZX ; 1.58 ; Crystal Structure of the Biphenyl Dioxygenase in complex with Biphenyl from Comamonas testosteroni Sp. Strain B-356 1HAN ; 1.9 ; CRYSTAL STRUCTURE OF THE BIPHENYL-CLEAVING EXTRADIOL DIOXYGENASE FROM A PCB-DEGRADING PSEUDOMONAD 8PEI ; 3.0 ; Crystal structure of the biphotochromic fluorescent protein SAASoti (C21N/V127T variant) in its green on-state 6Q82 ; 2.994 ; Crystal structure of the biportin Pdr6 in complex with RanGTP 6Q83 ; 4.53 ; Crystal structure of the biportin Pdr6 in complex with UBC9 3UW5 ; 1.71 ; Crystal structure of the BIR domain of MLIAP bound to GDC0152 6FG7 ; 1.9 ; Crystal structure of the BIR2 ectodomain from Arabidopsis thaliana. 6FG8 ; 1.25 ; Crystal structure of the BIR3 - SERK1 complex from Arabidopsis thaliana. 6G3W ; 2.2 ; Crystal structure of the BIR3 - SERK2 complex from Arabidopsis thaliana. 1FM4 ; 1.97 ; CRYSTAL STRUCTURE OF THE BIRCH POLLEN ALLERGEN BET V 1L 1XSD ; 2.7 ; Crystal structure of the BlaI repressor in complex with DNA 7KW6 ; 1.68 ; Crystal structure of the BlCel48B from Bacillus licheniformis 4CGZ ; 3.2 ; Crystal structure of the Bloom's syndrome helicase BLM in complex with DNA 4CDG ; 2.794 ; Crystal structure of the Bloom's syndrome helicase BLM in complex with Nanobody 1FL3 ; 2.45 ; CRYSTAL STRUCTURE OF THE BLUE FLUORESCENT ANTIBODY (19G2) IN COMPLEX WITH STILBENE HAPTEN AT 277K 6JC5 ; 2.051 ; Crystal structure of the blue fluorescent protein with a Leu-Leu-Gly tri-peptide chromophore derived from the purple chromoprotein of Stichodactyla haddoni 4FOF ; 2.416 ; Crystal Structure of the blue-light absorbing form of the Thermosynechococcus elongatus PixJ GAF-domain 4GLQ ; 1.772 ; Crystal Structure of the blue-light absorbing form of the Thermosynechococcus elongatus PixJ GAF-domain 1LX5 ; 3.3 ; Crystal Structure of the BMP7/ActRII Extracellular Domain Complex 3PUB ; 1.91 ; Crystal structure of the Bombyx mori low molecular weight lipoprotein 7 (Bmlp7) 4D25 ; 1.9 ; Crystal structure of the Bombyx mori Vasa helicase (E339Q) in complex with RNA and AMPPNP 4D26 ; 2.1 ; Crystal structure of the Bombyx mori Vasa helicase (E339Q) in complex with RNA,ADP and Pi 7U5O ; 3.45 ; CRYSTAL STRUCTURE OF THE BONE MORPHOGENETIC PROTEIN RECEPTOR TYPE 2 LIGAND BINDING DOMAIN IN COMPLEX WITH ACTIVIN-B 5MOY ; 2.302 ; Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C 2PZJ ; 1.9 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmF in complex with NAD+ 2Q1T ; 1.75 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmF in complex with NAD+ and UDP 2Q1U ; 1.7 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmF in complex with NAD+ and UDP 2Q1S ; 1.5 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmF in complex with NADH 2PZK ; 2.1 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmG in complex with NAD 2PZL ; 2.39 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmG in complex with NAD and UDP 2PZM ; 2.0 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmG in complex with NAD and UDP 2Q1W ; 2.19 ; Crystal structure of the Bordetella bronchiseptica enzyme WbmH in complex with NAD+ 2RAW ; 2.4 ; Crystal structure of the Borealin-Survivin complex 3F1J ; 2.65 ; Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals RNA binding properties 1N93 ; 1.76 ; Crystal Structure of the Borna Disease Virus Nucleoprotein 1PP1 ; 1.9 ; Crystal structure of the Borna Disease Virus Nucleoprotein 7MIE ; 1.6 ; Crystal structure of the Borreliella burgdorferi PlzA protein in complex with c-di-GMP 2H8I ; 1.9 ; Crystal Structure of the Bothropstoxin-I complexed with polyethylene glycol 4JRA ; 2.3 ; CRYSTAL STRUCTURE OF THE BOTULINUM NEUROTOXIN A RECEPTOR-BINDING DOMAIN IN COMPLEX WITH THE LUMINAL DOMAIN Of SV2C 2VUA ; 1.7 ; Crystal Structure of the Botulinum Neurotoxin Serotype A binding domain 2VXR ; 1.9 ; Crystal Structure of the Botulinum Neurotoxin serotype G binding domain 2NP0 ; 2.62 ; Crystal structure of the Botulinum neurotoxin type B complexed with synaptotagamin-II ectodomain 1FGX ; 2.4 ; CRYSTAL STRUCTURE OF THE BOVINE BETA 1,4 GALACTOSYLTRANSFERASE (B4GALT1) CATALYTIC DOMAIN COMPLEXED WITH UMP 1FR8 ; 2.4 ; CRYSTAL STRUCTURE OF THE BOVINE BETA 1,4 GALACTOSYLTRANSFERASE (B4GALT1) CATALYTIC DOMAIN COMPLEXED WITH URIDINE DIPHOSPHOGALACTOSE 1G93 ; 2.5 ; CRYSTAL STRUCTURE OF THE BOVINE CATALYTIC DOMAIN OF ALPHA-1,3-GALACTOSYLTRANSFERASE IN THE PRESENCE OF UDP-GALACTOSE 4YB9 ; 3.2 ; Crystal structure of the Bovine Fructose transporter GLUT5 in an open inward-facing conformation 2PQS ; 2.4 ; Crystal Structure of the Bovine Lactadherin C2 Domain 3A7U ; 3.44 ; Crystal structure of the bovine lipoyltransferase in its unliganded form 1G4I ; 0.97 ; Crystal structure of the bovine pancreatic phospholipase A2 at 0.97A 1OX1 ; 2.0 ; crystal structure of the bovine trypsin complex with a synthetic 11 peptide inhibitor 2ILN ; 2.0 ; Crystal structure of the Bowman-Birk inhibitor from snail medic seeds in complex with bovine trypsin 2G81 ; 1.55 ; Crystal Structure of the Bowman-Birk Inhibitor from Vigna unguiculata Seeds in Complex with Beta-trypsin at 1.55 Angstrons Resolution 3RU4 ; 1.68 ; Crystal structure of the Bowman-Birk serine protease inhibitor BTCI in complex with trypsin and chymotrypsin 8AG2 ; 1.025 ; Crystal structure of the BPTF bromodomain in complex with BI-7190 6AZE ; 2.451 ; Crystal Structure of the BPTF PHD-bromodomain module bound to H3KC4me3 methyl lysine analog 1EJM ; 1.85 ; CRYSTAL STRUCTURE OF THE BPTI ALA16LEU MUTANT IN COMPLEX WITH BOVINE TRYPSIN 4RZV ; 2.994 ; Crystal structure of the BRAF (R509H) kinase domain monomer bound to Vemurafenib 4MNE ; 2.8483 ; Crystal structure of the BRAF:MEK1 complex 6V2W ; 3.12 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP 7M0U ; 3.09 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and Binimetinib 7M0Z ; 3.12 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and CH5126766 7M0V ; 3.16 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and Cobimetinib 7M0X ; 2.47 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and PD0325901 7M0W ; 3.09 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and Pimasertib 7M0T ; 3.19 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and Selumetinib 7M0Y ; 3.45 ; Crystal structure of the BRAF:MEK1 kinases in complex with AMPPNP and Trametinib 4DQN ; 1.97 ; Crystal structure of the branched-chain aminotransferase from Streptococcus mutans 5XNF ; 1.9 ; Crystal structure of the branched-chain polyamine synthase (BpsA) from Thermococcus kodakarensis 5XNC ; 1.84 ; Crystal structure of the branched-chain polyamine synthase (BpsA) in complex with N4-aminopropylspermidine and 5-methylthioadenosine 5XNH ; 1.95 ; Crystal structure of the branched-chain polyamine synthase (BpsA) in complex with spermidine 6J28 ; 1.9 ; Crystal structure of the branched-chain polyamine synthase C9 mutein from Thermus thermophilus (Tth-BpsA C9) in complex with N4-aminopropylspermidine and 5'-methylthioadenosine 6J26 ; 2.0 ; Crystal structure of the branched-chain polyamine synthase from Thermococcus kodakarensis (Tk-BpsA) in complex with N4-bis(aminopropyl)spermidine and 5'-methylthioadenosine 6J27 ; 1.66 ; Crystal structure of the branched-chain polyamine synthase from Thermus thermophilus (Tth-BpsA) in complex with N4-aminopropylspermidine and 5'-methylthioadenosine 6H65 ; 2.35 ; Crystal structure of the branched-chain-amino-acid aminotransferase from Haliangium ochraceum 3FA2 ; 2.2 ; Crystal Structure of the BRCA1 Associated Ring Domain (BARD1) Tandem BRCT Domains 1T15 ; 1.85 ; Crystal Structure of the Brca1 BRCT Domains in Complex with the Phosphorylated Interacting Region from Bach1 Helicase 1T29 ; 2.3 ; Crystal structure of the BRCA1 BRCT repeats bound to a phosphorylated BACH1 peptide 6GVW ; 3.75 ; Crystal structure of the BRCA1-A complex 4ID3 ; 1.9669 ; Crystal Structure of the BRCT domain of S. Cerevisiae Rev1 5UMV ; 1.75 ; Crystal structure of the BRCT domain of S. cerevisiae Rev1 5ECG ; 3.0 ; Crystal structure of the BRCT domains of 53BP1 in complex with p53 and H2AX-pSer139 (gammaH2AX) 1GZH ; 2.6 ; Crystal structure of the BRCT domains of human 53BP1 bound to the p53 tumor supressor 3COJ ; 3.21 ; Crystal Structure of the BRCT Domains of Human BRCA1 in Complex with a Phosphorylated Peptide from Human Acetyl-CoA Carboxylase 1 1JNX ; 2.5 ; Crystal structure of the BRCT repeat region from the breast cancer associated protein, BRCA1 2ADO ; 1.45 ; Crystal Structure Of The Brct Repeat Region From The Mediator of DNA damage checkpoint protein 1, MDC1 7UU0 ; 1.3 ; Crystal structure of the BRD2-BD2 in complex with a ligand 5XHK ; 1.28 ; Crystal structure of the BRD2-BD2 in complex with phenanthridinone 4ZC9 ; 0.99 ; Crystal Structure of the BRD4a/DB-2-190 complex 5MQ1 ; 1.5 ; Crystal structure of the BRD7 bromodomain in complex with BI-9564 5F1H ; 1.82 ; Crystal structure of the BRD9 bromodamian in complex with BI-9564. 5JI8 ; 1.42 ; Crystal structure of the BRD9 bromodomain and hit 1 5F2P ; 1.8 ; Crystal structure of the BRD9 bromodomain in complex with compound 3. 5F25 ; 1.68 ; Crystal structure of the BRD9 bromodomain in complex with compound 4. 8AHC ; 1.504 ; Crystal structure of the BRD9 bromodomain with BI-7189 3O24 ; 2.5 ; Crystal structure of the brevianamide F prenyltransferase FtmPT1 from Aspergillus fumigatus 6FIF ; 2.54 ; Crystal structure of the BRI1 Gly644-Asp (bri1-6) mutant from Arabidopsis thaliana. 5LPB ; 1.98 ; Crystal structure of the BRI1 kinase domain (865-1160) in complex with ADP from Arabidopsis thaliana 5LPV ; 2.7 ; Crystal structure of the BRI1 kinase domain (865-1160) in complex with AMPPNP and Mn from Arabidopsis thaliana 5LPY ; 2.3 ; Crystal structure of the BRI1 kinase domain (865-1160) in complex with ATP from Arabidopsis thaliana 5LPZ ; 2.48 ; Crystal structure of the BRI1 kinase domain (865-1196) in complex with ADP from Arabidopsis thaliana 2IHC ; 2.44 ; Crystal structure of the bric-a-brac (BTB) domain of human BACH1 6XW2 ; 1.75 ; Crystal structure of the bright genetically encoded calcium indicator NCaMP7 based on mNeonGreen fluorescent protein 2XUS ; 1.912 ; Crystal Structure of the BRMS1 N-terminal region 4AUV ; 1.999 ; Crystal Structure of the BRMS1 N-terminal region 5CRU ; 2.4 ; Crystal structure of the Bro domain of HD-PTP 5CRV ; 2.001 ; Crystal structure of the Bro domain of HD-PTP in a complex with the core region of STAM2 4WB0 ; 1.91 ; Crystal structure of the broad specificity aminotransferase from Leishmania mexicana 1RHH ; 1.9 ; Crystal Structure of the Broadly HIV-1 Neutralizing Fab X5 at 1.90 Angstrom Resolution 1U6A ; 2.81 ; Crystal Structure of the Broadly Neutralizing Anti-HIV Fab F105 1TJH ; 2.1 ; Crystal Structure of the broadly neutralizing anti-HIV-1 antibody 2F5 in complex with a gp41 11mer epitope 1TJI ; 2.2 ; Crystal Structure of the broadly neutralizing anti-HIV-1 antibody 2F5 in complex with a gp41 17mer epitope 1TJG ; 2.0 ; Crystal Structure of the broadly neutralizing anti-HIV-1 antibody 2F5 in complex with a gp41 7mer epitope 6OZ2 ; 2.55 ; Crystal structure of the broadly neutralizing antibody N49P6 Fab in complex with HIV-1 Clade A/E strain 93TH057 gp120 core. 5WCC ; 2.461 ; Crystal structure of the broadly neutralizing Influenza A antibody VRC 315 02-1F07 Fab. 5WCD ; 1.814 ; Crystal structure of the broadly neutralizing Influenza A antibody VRC 315 04-1D02 Fab. 5TY6 ; 1.361 ; Crystal structure of the broadly neutralizing Influenza A antibody VRC 315 13-1b02 Fab. 5WCA ; 1.369 ; Crystal structure of the broadly neutralizing Influenza A antibody VRC 315 27-1C08 Fab. 5U4R ; 1.762 ; Crystal structure of the broadly neutralizing Influenza A antibody VRC 315 53-1A09 Fab. 2XA3 ; 1.5 ; crystal structure of the broadly neutralizing llama VHH D7 and its mode of HIV-1 gp120 interaction 3SVH ; 1.8 ; Crystal Structure of the bromdomain of human CREBBP in complex with a 3,5-dimethylisoxazol ligand 1N9K ; 2.2 ; Crystal structure of the bromide adduct of AphA class B acid phosphatase/phosphotransferase from E. coli at 2.2 A resolution 3QXR ; 1.62 ; Crystal structure of the brominated CKIT-1 proto-oncogene promoter quadruplex DNA 2OSS ; 1.35 ; Crystal structure of the Bromo domain 1 in human Bromodomain Containing Protein 4 (BRD4) 2RFJ ; 2.05 ; Crystal structure of the bromo domain 1 in human bromodomain containing protein, testis specific (BRDT) 2OUO ; 1.89 ; Crystal Structure of the Bromo domain 2 in human Bromodomain Containing Protein 4 (BRD4) 2OO1 ; 1.7 ; Crystal structure of the Bromo domain 2 of human Bromodomain containing protein 3 (BRD3) 4N4G ; 1.947 ; Crystal structure of the Bromo-PWWP of the mouse zinc finger MYND-type containing 11 isoform alpha 4N4H ; 2.302 ; Crystal structure of the Bromo-PWWP of the mouse zinc finger MYND-type containing 11 isoform alpha in complex with histone H3.1K36me3 4N4I ; 1.999 ; Crystal structure of the Bromo-PWWP of the mouse zinc finger MYND-type containing 11 isoform alpha in complex with histone H3.3K36me3 7K6S ; 1.23 ; Crystal structure of the bromodomain (BD) of human Bromodomain and PHD finger-containing Transcription Factor (BPTF) bound to Compound 4 (SKT1174) 7KDW ; 1.71 ; Crystal structure of the bromodomain (BD) of human Bromodomain and PHD finger-containing Transcription Factor (BPTF) bound to Compound 6 (HZ01052) 7K6R ; 1.6 ; Crystal structure of the bromodomain (BD) of human Bromodomain and PHD finger-containing Transcription Factor (BPTF) bound to GSK4027 7KDZ ; 1.54 ; Crystal structure of the bromodomain (BD) of human Bromodomain and PHD finger-containing Transcription Factor (BPTF) bound to TP-238 3JVJ ; 1.55 ; Crystal structure of the bromodomain 1 in mouse Brd4 7M97 ; 2.0 ; Crystal structure of the bromodomain from Plasmodium falciparum bromodomain protein 1 7Q6T ; 2.05 ; Crystal structure of the bromodomain of ATAD2 with AZ13824374 7Q6U ; 1.95 ; Crystal structure of the bromodomain of ATAD2 with phenol HTS hit (cpd 6) 7Q6W ; 1.96 ; Crystal structure of the bromodomain of ATAD2 with triazolopyridazine (cpd 22) 7Q6V ; 1.96 ; Crystal structure of the bromodomain of ATAD2 with triazolopyridine (cpd 14) 4XY8 ; 1.7 ; Crystal Structure of the bromodomain of BRD9 in complex with a 2-amine-9H-purine ligand 5F1L ; 2.3 ; Crystal structure of the bromodomain of BRD9 in complex with compound 9. 5CUA ; 1.89 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 1-Acetyl-4-(4-hydroxyphenyl)piperazine (SGC - Diamond I04-1 fragment screening) 5CQ5 ; 1.961 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 2,3-Ethylenedioxybenzoic Acid (SGC - Diamond I04-1 fragment screening) 5CQ6 ; 1.97 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 2,6-Pyridinedicarboxylic acid (SGC - Diamond I04-1 fragment screening) 5CU8 ; 2.05 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 2-Amino-6-chlorobenzothiazole (SGC - Diamond I04-1 fragment screening) 5CQ4 ; 1.782 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 3'-Hydroxyacetophenone (SGC - Diamond I04-1 fragment screening) 5CUB ; 2.1 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 314268-40-1 (SGC - Diamond I04-1 fragment screening) 5CQ8 ; 1.651 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 4'-Hydroxyacetophenone (SGC - Diamond I04-1 fragment screening) 5CUG ; 1.78 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 4-Acetamidobenzoic acid (SGC - Diamond I04-1 fragment screening) 5CUD ; 1.75 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 6-CHLOROPURINE (SGC - Diamond I04-1 fragment screening) 5CQ3 ; 1.925 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with 6-Hydroxypicolinic acid (SGC - Diamond I04-1 fragment screening) 5CUE ; 2.08 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with AGN-PC-04G0SS (SGC - Diamond I04-1 fragment screening) 5CQ7 ; 1.86 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with N,N-dimethylquinoxaline-6-carboxamide (SGC - Diamond I04-1 fragment screening) 5CUC ; 1.85 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with N-Acetyl-2-phenylethylamine (SGC - Diamond I04-1 fragment screening) 5CQA ; 2.13 ; Crystal structure of the bromodomain of bromodomain adjacent to zinc finger domain protein 2B (BAZ2B) in complex with N-methyl-2,3-dihydrothieno[3,4-b][1,4]dioxine-5-carboxamide (SGC - Diamond I04-1 fragment screening) 3LXJ ; 2.33 ; Crystal Structure of the Bromodomain of Human AAA domain containing 2B (ATAD2B) 3MQM ; 2.54 ; Crystal Structure of the Bromodomain of human ASH1L 5EPB ; 1.5 ; Crystal structure of the bromodomain of human ATAD2 in complex with Compound 49 5F36 ; 1.5 ; Crystal structure of the bromodomain of human ATAD2 in complex with Compound A12 5F3A ; 1.599 ; Crystal structure of the bromodomain of human ATAD2 in complex with Compound A14 6CPS ; 1.93 ; Crystal structure of the bromodomain of human ATAD2 with a disulfide bridge 4LZ2 ; 1.76 ; Crystal structure of the bromodomain of human BAZ2A 4IR4 ; 2.05 ; Crystal Structure of the bromodomain of human BAZ2B in complex with 1-[7-(morpholin-4-yl)-1-(pyridin-2-yl)indolizin-3-yl]ethanone (GSK2834113A) 4IR3 ; 2.0 ; Crystal Structure of the bromodomain of human BAZ2B in complex with 1-[7-amino-1-(pyrimidin-2-yl)indolizin-3-yl]ethanone (GSK2833282A) 4IR5 ; 1.7 ; Crystal Structure of the bromodomain of human BAZ2B in complex with 1-{1-[2-(hydroxymethyl)phenyl]-7-phenoxyindolizin-3-yl}ethanone (GSK2847449A) 4IR6 ; 1.8 ; Crystal Structure of the bromodomain of human BAZ2B in complex with 1-{1-[2-(METHYLSULFONYL)PHENYL]-7-PHENOXYINDOLIZIN-3-YL}ETHANONE (GSK2838097A) 3Q2F ; 2.06 ; Crystal Structure of the bromodomain of human BAZ2B in complex with a triazolo ligand 4NR9 ; 1.98 ; Crystal Structure of the bromodomain of human BAZ2B in complex with acetylated lysine 4XUB ; 1.98 ; Crystal Structure of the bromodomain of human BAZ2B in complex with BAZ2-ICR chemical probe 4NRB ; 2.08 ; Crystal Structure of the bromodomain of human BAZ2B in complex with compound-1 N01197 4NRC ; 1.86 ; Crystal Structure of the bromodomain of human BAZ2B in complex with compound-3 N01186 4NRA ; 1.85 ; Crystal Structure of the bromodomain of human BAZ2B in complex with compound-6 E11322 4XUA ; 1.75 ; Crystal Structure of the bromodomain of human BAZ2B in complex with E11919 BAZ2-ICR analogue 4RVR ; 1.98 ; Crystal Structure of the bromodomain of human BAZ2B in complex WITH GSK2801 3RCW ; 2.21 ; Crystal Structure of the bromodomain of human BRD1 5FG6 ; 1.1 ; Crystal structure of the bromodomain of human BRD1 (BRPF2) in complex with OF-1 chemical probe 6V1E ; 2.3 ; Crystal structure of the bromodomain of human BRD7 bound to BI7273 6V1F ; 2.0 ; Crystal structure of the bromodomain of human BRD7 bound to BI9564 6V1H ; 1.93 ; Crystal structure of the bromodomain of human BRD7 bound to bromosporine 6V17 ; 2.05 ; Crystal structure of the bromodomain of human BRD7 bound to I-BRD9 6V0Q ; 1.69 ; Crystal structure of the bromodomain of human BRD7 bound to TG003 6V16 ; 1.9 ; Crystal structure of the bromodomain of human BRD7 bound to TP472 6V1B ; 1.35 ; Crystal structure of the bromodomain of human BRD9 bound to I-BRD9 6V0X ; 1.5 ; Crystal structure of the bromodomain of human BRD9 bound to sunitinib 6V0S ; 2.4 ; Crystal structure of the bromodomain of human BRD9 bound to TG003 6V14 ; 1.7 ; Crystal structure of the bromodomain of human BRD9 bound to TP472 4NQN ; 1.73 ; Crystal Structure of the bromodomain of human BRD9 in complex with a triazolo-phthalazine ligand 5IGM ; 1.6 ; Crystal structure of the bromodomain of human BRD9 in complex with bromosporine (BSP) 5DKD ; 2.0 ; Crystal structure of the bromodomain of human BRG1 (SMARCA4) in complex with PFI-3 chemical probe 5DKH ; 1.7 ; Crystal structure of the bromodomain of human BRM (SMARCA2) in complex with a hydroxyphenyl propenone inhibitor 17 5DKC ; 1.6 ; Crystal structure of the bromodomain of human BRM (SMARCA2) in complex with PFI-3 chemical probe 5FFY ; 1.55 ; Crystal structure of the bromodomain of human BRPF1 in complex with a benzimidazole ligand 5T4U ; 1.5 ; Crystal structure of the bromodomain of human BRPF1 in complex with a quinolinone ligand 5FFV ; 1.3 ; Crystal structure of the bromodomain of human BRPF1 in complex with H3K14ac histone peptide 5FFW ; 1.5 ; Crystal structure of the bromodomain of human BRPF1 in complex with H4K5acK8ac histone peptide 5T4V ; 1.65 ; Crystal structure of the bromodomain of human BRPF1 in complex with NI-48 ligand 5MYG ; 2.3 ; Crystal structure of the bromodomain of human BRPF1 in complex with NI-57 chemical probe 5FG4 ; 1.65 ; Crystal structure of the bromodomain of human BRPF1 in complex with OF-1 chemical probe 5FG5 ; 1.5 ; Crystal structure of the bromodomain of human BRPF1 in complex with PFI-4 chemical probe 4LC2 ; 1.65 ; Crystal structure of the bromodomain of human BRPF1B 3NXB ; 1.83 ; Crystal Structure of the Bromodomain of human CECR2 3DWY ; 1.98 ; Crystal Structure of the Bromodomain of Human CREBBP 5KTU ; 1.38 ; Crystal structure of the bromodomain of human CREBBP bound to pyrazolopiperidine scaffold 5I83 ; 1.35 ; Crystal structure of the bromodomain of human CREBBP bound to the benzodiazepinone G02773986 5I86 ; 1.05 ; Crystal structure of the bromodomain of human CREBBP bound to the benzodiazepinone G02778174 5I89 ; 1.07 ; Crystal structure of the bromodomain of human CREBBP bound to the benzodiazepinone G02857790 5LPJ ; 1.65 ; Crystal structure of the bromodomain of human CREBBP bound to the inhibitor XDM1 5LPL ; 1.65 ; Crystal structure of the bromodomain of human CREBBP bound to the inhibitor XDM3c 5J0D ; 1.05 ; Crystal structure of the bromodomain of human CREBBP in complex with a benzoxazepine compound 4NYW ; 1.43 ; Crystal Structure of the Bromodomain of human CREBBP in complex with a dihydroquinoxalinone ligand 4NYX ; 1.1 ; Crystal Structure of the Bromodomain of human CREBBP in complex with a dihydroquinoxalinone ligand 3P1F ; 1.63 ; Crystal structure of the bromodomain of human CREBBP in complex with a hydroquinazolin ligand 4NYV ; 1.83 ; Crystal Structure of the Bromodomain of human CREBBP in complex with a quinazolin-one ligand 6SXX ; 2.01 ; Crystal structure of the bromodomain of human CREBBP in complex with ACA007 3P1C ; 1.82 ; Crystal structure of the bromodomain of human CREBBP in complex with acetylated lysine 4NR4 ; 1.69 ; Crystal structure of the bromodomain of human CREBBP in complex with an isoxazolyl-benzimidazole ligand 4NR5 ; 1.66 ; Crystal structure of the bromodomain of human CREBBP in complex with an isoxazolyl-benzimidazole ligand 4NR7 ; 1.2 ; Crystal structure of the bromodomain of human CREBBP in complex with an isoxazolyl-benzimidazole ligand 4NR6 ; 1.66 ; Crystal structure of the bromodomain of human CREBBP in complex with an oxazepin ligand 5EIC ; 1.5 ; Crystal structure of the bromodomain of human CREBBP in complex with AYC 3P1E ; 1.8 ; Crystal structure of the bromodomain of human CREBBP in complex with dimethyl sulfoxide (DMSO) 3P1D ; 1.86 ; Crystal structure of the bromodomain of human CREBBP in complex with N-Methyl-2-pyrrolidone (NMP) 4TQN ; 1.7 ; Crystal structure of the bromodomain of human CREBBP in complex with UL04 5EP7 ; 1.198 ; Crystal structure of the bromodomain of human CREBBP in complex with UN32 5H85 ; 1.701 ; Crystal structure of the bromodomain of human CREBBP in complex with UO37D 5ENG ; 1.3 ; Crystal structure of the bromodomain of human CREBBP in complex with UP39 4TS8 ; 2.0 ; Crystal structure of the bromodomain of human CREBBP in complex with XZ08 3I3J ; 2.33 ; Crystal Structure of the Bromodomain of Human EP300 5LPK ; 2.1 ; Crystal structure of the bromodomain of human EP300 bound to the inhibitor XDM1 5LPM ; 1.5 ; Crystal structure of the bromodomain of human Ep300 bound to the inhibitor XDM3d 3D7C ; 2.06 ; Crystal structure of the bromodomain of human GCN5, the general control of amino-acid synthesis protein 5-like 2 3UV2 ; 1.58 ; Crystal structure of the bromodomain of human nucleosome-remodeling factor subunit BPTF 3GG3 ; 2.25 ; Crystal Structure of the Bromodomain of Human PCAF 4QY4 ; 1.97 ; Crystal structure of the bromodomain of human SMARCA2 6HAZ ; 1.31 ; Crystal structure of the bromodomain of human SMARCA2 in complex with SMARCA-BD ligand 5AME ; 1.578 ; Crystal structure of the bromodomain of human surface epitope engineered BRD1A in complex with 3D Consortium fragment 4-acetyl- piperazin-2-one (SGC - Diamond I04-1 fragment screening) 5AMF ; 1.75 ; Crystal structure of the bromodomain of human surface epitope engineered BRD1A in complex with 3D Consortium fragment Ethyl 4,5,6,7- tetrahydro-1H-indazole-5-carboxylate (SGC - Diamond I04-1 fragment screening) 6ZS2 ; 1.57 ; Crystal Structure of the bromodomain of human transcription activator BRG1 (SMARCA4) in complex with 2-(6-amino-5-(piperazin-1-yl)pyridazin-3-yl)phenol 3UVD ; 1.85 ; Crystal Structure of the bromodomain of human Transcription activator BRG1 (SMARCA4) in complex with N-Methyl-2-pyrrolidone 3DAI ; 1.95 ; Crystal structure of the bromodomain of the human ATAD2 4N3W ; 1.9 ; Crystal Structure of the Bromodomain-PHD Finger Module of Human Transcriptional Co-Activator CBP in complex with Acetylated Histone 4 Peptide (H4K20ac). 4N4F ; 1.83 ; Crystal Structure of the Bromodomain-PHD Finger Module of Human Transcriptional Co-Activator CBP in complex with di-Acetylated Histone 4 Peptide (H412acK16ac). 7RE6 ; 1.53 ; Crystal Structure of the brown dog tick (Rhipicephalus sanguineus) Arginine Kinase in absence of substrate or ligands 3R9M ; 1.95 ; Crystal structure of the Brox Bro1 domain 3UM3 ; 3.8 ; Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP4B 3UM0 ; 3.102 ; Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP5 3UM1 ; 2.708 ; Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP5 3UM2 ; 2.589 ; Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP5 5VR3 ; 2.102 ; Crystal structure of the BRS domain of BRAF 5VYK ; 1.749 ; Crystal structure of the BRS domain of BRAF in complex with the CC-SAM domain of KSR1 3UPL ; 1.5 ; Crystal structure of the Brucella abortus enzyme catalyzing the first committed step of the methylerythritol 4-phosphate pathway. 3UPY ; 1.8 ; Crystal structure of the Brucella abortus enzyme catalyzing the first committed step of the methylerythritol 4-phosphate pathway. 5HDA ; 2.3899 ; Crystal Structure of the BS69 coiled coil-MYND domains bound to an EBNA2 PXLXP motif 6EKB ; 1.9 ; Crystal structure of the BSD2 homolog of Arabidopsis thaliana 6EKC ; 2.63 ; Crystal structure of the BSD2 homolog of Arabidopsis thaliana bound to the octameric assembly of RbcL from Thermosynechococcus elongatus 1Q0U ; 1.85 ; Crystal Structure of the BstDEAD N-terminal Domain 3M5B ; 2.0 ; Crystal structure of the BTB domain from FAZF/ZBTB32 3M4T ; 2.05 ; Crystal structure of the BTB domain from Kaiso/ZBTB33, form I 3M8V ; 2.7 ; Crystal structure of the BTB domain from Kaiso/ZBTB33, form II 2NN2 ; 2.1 ; Crystal structure of the BTB domain from the LRF/ZBTB7 transcriptional regulator 3M52 ; 2.59 ; Crystal structure of the BTB domain from the Miz-1/ZBTB17 transcription regulator 7EXI ; 1.82 ; Crystal structure of the BTB domain human Keap1 5A15 ; 2.76 ; Crystal structure of the BTB domain of human KCTD16 5A6R ; 2.85 ; Crystal structure of the BTB domain of human KCTD17 2VPK ; 2.0 ; Crystal structure of the BTB domain of human myoneurin 6N34 ; 2.8 ; Crystal structure of the BTB domain of Human NS1-BP 4UYI ; 1.86 ; Crystal structure of the BTB domain of human SLX4 (BTBD12) 4UIJ ; 2.7 ; Crystal structure of the BTB domain of KCTD13 4ZOU ; 2.15 ; Crystal structure of the BTB domain of SLX4 3I3N ; 2.6 ; Crystal structure of the BTB-BACK domains of human KLHL11 4CRH ; 1.72 ; Crystal structure of the BTB-T1 domain of human SHKBP1 7UXR ; 1.42 ; Crystal structure of the BtTir TIR domain 2O9O ; 2.8 ; Crystal Structure of the buffalo Secretory Signalling Glycoprotein at 2.8 A resolution 2ES4 ; 1.85 ; Crystal structure of the Burkholderia glumae lipase-specific foldase in complex with its cognate lipase 3TU8 ; 1.04 ; Crystal Structure of the Burkholderia Lethal Factor 1 (BLF1) 6RVU ; 0.99 ; Crystal structure of the Burkholderia Lethal Factor 1 (BLF1) 7PPZ ; 2.52 ; Crystal structure of the Burkholderia Lethal Factor 1 (BLF1) C94S inactive mutant in complex with human eIF4A - Crystal form A 7PQ0 ; 3.0 ; Crystal structure of the Burkholderia Lethal Factor 1 (BLF1) C94S inactive mutant in complex with human eIF4A - Crystal form B 3TUA ; 1.09 ; Crystal Structure of the Burkholderia Lethal Factor 1 (BLF1) C94S mutant 6G1N ; 1.85 ; Crystal structure of the Burkholderia Pseudomallei antitoxin HicB 2WT7 ; 2.3 ; Crystal structure of the bZIP heterodimeric complex MafB:cFos bound to DNA 4AUW ; 2.9 ; CRYSTAL STRUCTURE OF THE BZIP HOMODIMERIC MAFB IN COMPLEX WITH THE C- MARE BINDING SITE 4RS6 ; 2.6 ; Crystal structure of the C domain of Polo like Kinase II in Homo Sapiens 4WWI ; 2.307 ; Crystal structure of the C domain of staphylococcal protein A in complex with the Fc fragment of human IgG at 2.3 Angstrom resolution 1V9M ; 1.85 ; Crystal structure of the C subunit of V-type ATPase from Thermus thermophilus 2NRW ; 2.3 ; Crystal structure of the C terminal half of UvrC 1QN3 ; 1.95 ; Crystal structure of the C(-25) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QN9 ; 1.9 ; Crystal structure of the C(-29) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 3NRI ; 2.85 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from S. aureus complexed with dehydrosqualene (DHS) 3NPR ; 2.0 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from S. aureus complexed with Presqualene diphosphate (PSPP) 2ZCO ; 1.58 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus 2ZCQ ; 2.38 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with bisphosphonate BPH-652 2ZCR ; 1.92 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with bisphosphonate BPH-698 2ZCS ; 2.03 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with bisphosphonate BPH-700 2ZY1 ; 1.78 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with bisphosphonate BPH-830 3ACW ; 1.63 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with BPH-651 3ACX ; 1.31 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with BPH-673 3ACY ; 1.84 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with BPH-702 3W7F ; 2.25 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from staphylococcus aureus complexed with farnesyl thiopyrophosphate 3AE0 ; 2.37 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with geranylgeranyl thiopyrophosphate 3ADZ ; 1.89 ; Crystal structure of the C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus complexed with intermediate PSPP 2E2B ; 2.2 ; Crystal structure of the c-Abl kinase domain in complex with INNO-406 1M52 ; 2.6 ; Crystal Structure of the c-Abl Kinase domain in complex with PD173955 1IEP ; 2.1 ; CRYSTAL STRUCTURE OF THE C-ABL KINASE DOMAIN IN COMPLEX WITH STI-571. 3G98 ; 1.85 ; Crystal Structure of the C-Ala domain from Aquifex aeolicus alanyl-tRNA synthetase 1U2E ; 2.1 ; Crystal Structure of the C-C bond hydrolase MhpC 1YVH ; 2.05 ; Crystal Structure of the c-Cbl TKB Domain in Complex with the APS pTyr-618 Phosphopeptide 4RLE ; 1.3 ; Crystal structure of the c-di-AMP binding PII-like protein DarA 5EUH ; 2.989 ; Crystal structure of the c-di-GMP-bound GGDEF domain of P. fluorescens GcbC 1Q89 ; 2.75 ; Crystal structure of the C-domain of the T.vaginalis Inr binding protein, IBP39 (cubic crystal form) 1Q88 ; 2.42 ; Crystal structure of the C-domain of the T.vaginalis Inr binding protein, IBP39 (monoclinic form) 1Q87 ; 2.32 ; Crystal structure of the C-domain of the T.vaginalis Inr binding protein, IBP39 (tetragonal form) 1IOZ ; 2.0 ; Crystal Structure of the C-HA-RAS Protein Prepared by the Cell-Free Synthesis 6SID ; 1.05 ; Crystal structure of the C-lobe of drosophila Arc 1 at atomic resolution 6SIE ; 2.8 ; Crystal structure of the C-lobe of drosophila Arc 2 7EQU ; 2.743 ; Crystal structure of the C-lobe of lactoferrin produced by limited proteolysis using pepsin at 2.74A resolution 5T3Q ; 2.0 ; Crystal structure of the c-Met kinase domain in complex with a pyrazolone inhibitor 7PVY ; 1.4 ; Crystal structure of the c-Src SH3 domain E93V-S94A-R95S-T96G mutant 6XX3 ; 1.36 ; Crystal structure of the c-Src SH3 domain H122R-Q128E mutant in complex with Cu(II) at pH 6.5 co-crystallized with methyl beta-cyclodextrin 6XX4 ; 1.05 ; Crystal structure of the c-Src SH3 domain H122R-Q128E mutant in complex with Ni(II) at pH 7.5 co-crystallized with methyl beta-cyclodextrin 6XX2 ; 1.25 ; Crystal structure of the c-Src SH3 domain H122R-Q128K mutant in complex with Cu(II) at pH 7.5 co-crystallized with methyl beta-cyclodextrin 6XX5 ; 1.3 ; Crystal structure of the c-Src SH3 domain H122R-Q128K mutant in complex with Ni(II) at pH 7.5 co-crystallized with methyl beta-cyclodextrin 4QT7 ; 1.55 ; Crystal structure of the c-Src SH3 domain in complex with a peptide from the Hepatitis C virus NS5A-protein 7PVX ; 1.43 ; Crystal structure of the c-Src SH3 domain mutant E93V-S94A-R95S-T96G-N112G-N113Y-T114N-E115H in complex with the synthetic peptide VSL12 7A3C ; 1.8 ; Crystal structure of the c-Src SH3 domain mutant L100I at pH 3.0 7A33 ; 0.96 ; Crystal structure of the c-Src SH3 domain mutant S94A-T98D-V111L-N113S-T114S at pH 3.0 7A31 ; 0.94 ; Crystal structure of the c-Src SH3 domain mutant S94A-T98D-V111L-N113S-T114S at pH 4.5 7A32 ; 1.15 ; Crystal structure of the c-Src SH3 domain mutant S94A-T98D-V111L-N113S-T114S at pH 7.0 7A35 ; 1.314 ; Crystal structure of the c-Src SH3 domain mutant V111L-N113S-T114S at pH 7.0 7A37 ; 1.52 ; Crystal structure of the c-Src SH3 domain mutant V111L-N113S-T114S in 3 M urea 7A36 ; 1.5 ; Crystal structure of the c-Src SH3 domain mutant V111L-N113S-T114S in 7 M urea 7A38 ; 1.62 ; Crystal structure of the c-Src SH3 domain mutant V111L-N113S-T114S-Q128E at pH 6.0 7A39 ; 1.65 ; Crystal structure of the c-Src SH3 domain mutant V111L-N113S-T114S-Q128E at pH 7.0 7PW0 ; 1.7 ; Crystal structure of the c-Src SH3 domain N112G-N113Y-T114N-E115H mutant 4OMO ; 1.04 ; Crystal structure of the c-Src tyrosine kinase SH3 domain mutant Q128E 3FJ5 ; 1.65 ; Crystal structure of the c-src-SH3 domain 4RTW ; 1.24 ; Crystal structure of the c-Src-SH3 domain E93V/Q128R mutant in complex with the high affinity peptide APP12 5OB2 ; 1.8 ; Crystal structure of the c-Src-SH3 domain E97T mutant in complex with the high affinity peptide APP12 4RTY ; 1.279 ; Crystal structure of the c-Src-SH3 domain in complex with the high affinity peptide APP12 4RTZ ; 0.979 ; Crystal structure of the c-Src-SH3 domain in complex with the high affinity peptide VSL12 5OB0 ; 1.172 ; Crystal structure of the c-Src-SH3 domain Q128E mutant in complex with the high affinity peptide APP12 5OB1 ; 1.172 ; Crystal structure of the c-Src-SH3 domain Q128R mutant in complex with the high affinity peptide APP12 4IWT ; 2.6 ; Crystal structure of the C-teminal choline-binding domain of the Streptococcus pneumoniae prophage LytA 2P32 ; 3.2 ; Crystal structure of the C-terminal 10 kDa subdomain from C. elegans Hsp70 1UD0 ; 3.45 ; CRYSTAL STRUCTURE OF THE C-TERMINAL 10-kDA SUBDOMAIN OF HSC70 5AF2 ; 1.39 ; Crystal structure of the C-terminal 2',5'-phosphodiesterase domain of group A rotavirus protein VP3 1Q5Z ; 1.8 ; Crystal Structure of the C-terminal Actin Binding Domain of Salmonella Invasion Protein A (SipA) 4XKZ ; 1.95 ; Crystal structure of the C-terminal anticodon loop binding domain of a valyl-tRNA synthetase from Pseudomonas aeruginosa 6DED ; 2.204 ; Crystal structure of the C-terminal ARM domain of Homo sapiens SPIN90 (SH3-protein interacting with Nck), residues 351-722 1JJ7 ; 2.4 ; Crystal Structure of the C-terminal ATPase domain of human TAP1 2VZC ; 1.05 ; Crystal structure of the C-terminal calponin homology domain of alpha parvin 2VZD ; 2.1 ; Crystal structure of the C-terminal calponin homology domain of alpha parvin in complex with paxillin LD1 motif 2VZG ; 1.8 ; Crystal structure of the C-terminal calponin homology domain of alpha- parvin in complex with paxillin LD2 motif 2VZI ; 2.2 ; Crystal structure of the C-terminal calponin homology domain of alpha- parvin in complex with paxillin LD4 motif 6DGB ; 2.52 ; Crystal structure of the C-terminal catalytic domain of IS1535 TnpA, an IS607-like serine recombinase 6DGC ; 2.92 ; Crystal structure of the C-terminal catalytic domain of ISC1926 TnpA, an IS607-like serine recombinase 4ZCT ; 2.22 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase 4ZCS ; 2.45 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase in complex with CDP-choline 4ZCQ ; 1.92 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase in complex with choline 4ZCP ; 1.98 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase in complex with CMP 4ZCR ; 1.8 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase in complex with phosphocholine 7PY9 ; 2.03 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with (pyrrolidin-2-yl)methanol 7Q3W ; 1.75 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with (R)-2-Aminobutanamide hydrochloride 7Z9V ; 1.9 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 1,4-Anhydroerythritol 7QAD ; 2.11 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 1,4-Oxazepane hydrochloride 7Q9V ; 1.5 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 1-(1,3-oxazol-4-yl)methanamine 7Q2V ; 1.96 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 1-methylpyrrolidin-3-ol 7PYC ; 2.36 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 2-Aminopyridine 7PYB ; 2.03 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 2-Hydroxypyridine 7PUI ; 2.08 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 2-pyridineboronic acid 7Q2K ; 1.94 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 2-pyrrolidinone 7Q2L ; 2.12 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 3-Aminopyrrolidin-2-one hydrochloride 7PVF ; 2.33 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 3-hydroxy-1lambda6-thietane-1,1-dione 7PYA ; 2.2 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 3-Hydroxyazetidine hydrochloride 7Q3M ; 2.2 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 3-hydroxypiperidine 7Q9W ; 1.8 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 4-(aminomethyl)pyridin-2-amine 7PVE ; 2.39 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with 4-bromo-1H-imidazole 7Q2M ; 2.08 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with but-3-yn-2-amine hydrochloride 7QA7 ; 2.36 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with Cyclopropanemethylamine 7QVO ; 1.62 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with guanidine 7PVG ; 2.27 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with isonicotinic acid 7QD3 ; 2.43 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with morpholine 7Q2I ; 1.87 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with Tetrahydrofurfurylamine 7QVN ; 2.21 ; Crystal structure of the C-terminal catalytic domain of Plasmodium falciparum CTP:phosphocholine cytidylyltransferase with(1H-pyrazol-5-yl)methanol 5FUI ; 1.4 ; Crystal structure of the C-terminal CBM6 of LamC a marine laminarianse from Zobellia galactanivorans 4BFC ; 1.7 ; Crystal structure of the C-terminal CMP-Kdo binding domain of WaaA from Acinetobacter baumannii 4YTD ; 1.5 ; Crystal structure of the C-terminal Coiled Coil of mouse Bicaudal D1 5ABS ; 1.74 ; CRYSTAL STRUCTURE OF THE C-TERMINAL COILED-COIL DOMAIN OF CIN85 IN SPACE GROUP P321 4QJI ; 2.65 ; Crystal Structure of the C-terminal CTP-binding domain of a Phosphopantothenoylcysteine decarboxylase/phosphopantothenate-cysteine ligase with bound CTP from Mycobacterium smegmatis 3VC8 ; 2.0 ; Crystal structure of the C-terminal cytoplasmic domain of non-structural protein 4 from mouse hepatitis virus A59 3C5A ; 1.23 ; Crystal structure of the C-terminal deleted mutant of the class A carbapenemase KPC-2 at 1.23 angstrom 6RO6 ; 1.41 ; Crystal structure of the C-terminal dimerization domain of the essential repressor DdrO from radiation-resistant Deinococcus bacteria (Deinococcus deserti) 3LRX ; 2.6 ; Crystal Structure of the C-terminal domain (residues 78-226) of PF1911 hydrogenase from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR246A 3LYU ; 2.3 ; Crystal Structure of the C-terminal domain (residues 83-215) of PF1911 hydrogenase from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR246A 6Y3P ; 2.3 ; Crystal structure of the C-terminal domain from K. lactis Pby1, an ATP-grasp enzyme interacting with the mRNA decapping enzyme Dcp2 1U2K ; 2.0 ; Crystal structure of the C-terminal domain from the catalase-peroxidase KatG of Escherichia coli (I41) 1U2L ; 2.3 ; Crystal structure of the C-terminal domain from the catalase-peroxidase KatG of Escherichia coli (P1) 1U2J ; 2.3 ; Crystal structure of the C-terminal domain from the catalase-peroxidase KatG of Escherichia coli (P21 21 21) 3KFO ; 1.9 ; Crystal structure of the C-terminal domain from the nuclear pore complex component NUP133 from Saccharomyces cerevisiae 3G1G ; 2.01 ; Crystal structure of the C-terminal domain from the Rous Sarcoma Virus capsid protein: High pH 3G0V ; 2.0 ; Crystal structure of the C-terminal domain from the Rous Sarcoma Virus capsid protein: mutant D179A 4OTM ; 1.95 ; Crystal structure of the C-terminal domain from yeast GCN2 3BUE ; 2.15 ; Crystal structure of the C-terminal domain hexamer of ArgR from Mycobacterium tuberculosis 2ZFZ ; 1.85 ; Crystal structure of the C-terminal domain hexamer of ArgR from Mycobacterium tuberculosis in complex with arginine 4GO2 ; 2.28 ; Crystal structure of the c-terminal domain of 10'formyltetrahydrofolate dehydrogenase in complex with Thio-NADP 3F2Z ; 1.3 ; Crystal structure of the C-terminal domain of a chitobiase (BF3579) from Bacteroides fragilis, Northeast Structural Genomics Consortium Target BfR260B 3BJO ; 2.05 ; Crystal structure of the C-terminal domain of a possible ATP-binding protein from Methanocaldococcus jannaschii DSM 2661 2QL3 ; 2.05 ; Crystal structure of the C-terminal domain of a probable LysR family transcriptional regulator from Rhodococcus sp. RHA1 4Q6G ; 2.25 ; Crystal Structure of the C-terminal domain of AcKRS-1 bound with N-acetyl-lysine and ADPNP 2QZ5 ; 2.6 ; Crystal Structure of the C-terminal domain of Aida 2QW6 ; 2.3 ; Crystal structure of the C-terminal domain of an AAA ATPase from Enterococcus faecium DO 4TYZ ; 1.6 ; Crystal structure of the C-terminal domain of an unknown protein from Leishmania infantum 3LKL ; 2.15 ; Crystal structure of the C-terminal domain of Anti-Sigma factor antagonist STAS from Rhodobacter sphaeroides 1IU9 ; 2.04 ; Crystal structure of the C-terminal domain of aspartate racemase from Pyrococcus horikoshii OT3 2W1R ; 1.5 ; Crystal Structure of the C-terminal Domain of B. subtilis SpoVT 5X03 ; 2.0 ; Crystal structure of the C-terminal domain of Bacillus subtilis GabR reveals a closed conformation by the binding of gamma-aminobutyric acid, inducing the transcriptional activation 2FKD ; 2.7 ; Crystal Structure of the C-terminal domain of Bacteriophage 186 repressor 1WCK ; 1.36 ; Crystal structure of the C-terminal domain of BclA, the major antigen of the exosporium of the Bacillus anthracis spore. 7XTM ; 1.47 ; Crystal structure of the C-terminal domain of Bombyx mori N-acetylglucosaminyltransferase IV 7XTN ; 1.15 ; Crystal structure of the C-terminal domain of Bombyx mori N-acetylglucosaminyltransferase IV in complex with N-acetylglucosamine 2P87 ; 2.3 ; Crystal structure of the C-terminal domain of C. elegans pre-mRNA splicing factor Prp8 2P8R ; 2.1 ; Crystal structure of the C-terminal domain of C. elegans pre-mRNA splicing factor Prp8 carrying R2303K mutant 5XLX ; 1.969 ; Crystal structure of the C-terminal domain of CheR1 containing SAH 4FCT ; 4.0 ; Crystal structure of the C-terminal domain of ClpB 4FCV ; 3.4 ; Crystal structure of the C-terminal domain of ClpB 4FCW ; 2.35 ; Crystal structure of the C-terminal domain of ClpB 4FD2 ; 3.0 ; Crystal structure of the C-terminal domain of ClpB 6YHM ; 1.13 ; Crystal structure of the C-terminal domain of CNFy from Yersinia pseudotuberculosis 5INT ; 2.15 ; Crystal structure of the C-terminal Domain of Coenzyme A biosynthesis bifunctional protein CoaBC 4NAD ; 2.8 ; Crystal Structure of the C-terminal Domain of CREPT 3A9F ; 1.3 ; Crystal structure of the C-terminal domain of cytochrome cz from Chlorobium tepidum 6VPQ ; 1.74 ; Crystal structure of the C-terminal domain of DENR 6VPR ; 2.2 ; Crystal structure of the C-terminal domain of DENR 1WP5 ; 1.79 ; Crystal structure of the C-terminal domain of DNA topoisomerase IV 6B4A ; 2.0 ; Crystal structure of the C-Terminal Domain of Doublecortin (TgDCX) from Toxoplasma gondii ME49 4H4A ; 2.2 ; Crystal structure of the C-terminal domain of Drosophila melanogaster Zucchini 3EYW ; 2.4 ; Crystal structure of the C-terminal domain of E. coli KefC in complex with KefF 1YSP ; 1.8 ; Crystal structure of the C-terminal domain of E. coli transcriptional regulator KdgR. 2I8B ; 2.0 ; Crystal structure of the C-terminal domain of Ebola virus VP30 3V7O ; 2.25 ; Crystal structure of the C-terminal domain of Ebola virus VP30 (strain Reston-89) 6VU0 ; 3.5 ; CRYSTAL STRUCTURE OF THE C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FROM THE ESCHERICHIA COLI ENZYME 3SNS ; 1.5 ; Crystal structure of the C-terminal domain of Escherichia coli lipoprotein BamC 7ZC8 ; 2.08 ; Crystal structure of the C-terminal domain of FusB, a TonB homologue 4HE6 ; 1.1 ; Crystal structure of the C-terminal domain of Geobacillus thermoleovorans putative U32 peptidase 4GBF ; 1.949 ; Crystal structure of the C-terminal domain of gp131 from bacteriophage phiKZ 2Q5X ; 1.9 ; Crystal Structure of the C-terminal domain of hNup98 2Q5Y ; 2.3 ; Crystal Structure of the C-terminal domain of hNup98 6JSA ; 1.3 ; Crystal structure of the C-terminal domain of HtaA from Corynebacterium glutamicum 8AXR ; 1.5 ; Crystal structure of the C-terminal domain of human CFAP410 2HL5 ; 1.93 ; Crystal structure of the C-terminal domain of human EB1 in complex with the A49M mutant CAP-Gly domain of human Dynactin-1 (p150-Glued) 2HKQ ; 1.86 ; Crystal structure of the C-terminal domain of human EB1 in complex with the CAP-Gly domain of human Dynactin-1 (p150-Glued) 5W2F ; 1.4 ; Crystal Structure of the C-terminal Domain of Human eIF2D at 1.4 A resolution 5CBL ; 1.781 ; Crystal structure of the C-terminal domain of human galectin-4 with lactose 3GA3 ; 1.45 ; Crystal structure of the C-terminal domain of human MDA5 7XTL ; 1.972 ; Crystal structure of the C-terminal domain of human N-acetylglucosaminyltransferase IVa 3JUI ; 2.0 ; Crystal Structure of the C-terminal Domain of Human Translation Initiation Factor eIF2B epsilon Subunit 4ERN ; 1.8 ; Crystal structure of the C-terminal domain of human XPB/ERCC-3 excision repair protein at 1.80 A 4TQF ; 2.7143 ; Crystal Structure of the C-terminal domain of IFRS bound with 2-(5-bromothienyl)-L-Ala and ATP 4TQD ; 2.1429 ; Crystal Structure of the C-terminal domain of IFRS bound with 3-iodo-L-Phe and ATP 2X49 ; 1.5 ; Crystal structure of the C-terminal domain of InvA 2X4A ; 2.54 ; Crystal structure of the C-terminal domain of InvA 3JTP ; 2.17 ; crystal structure of the C-terminal domain of MecA 5H34 ; 1.748 ; Crystal structure of the C-terminal domain of methionyl-tRNA synthetase (MetRS-C) in Nanoarchaeum equitans 5D7U ; 1.5 ; Crystal structure of the C-terminal domain of MMTV integrase 2Q2B ; 2.5 ; Crystal structure of the C-terminal domain of mouse acyl-CoA thioesterase 7 2OGB ; 1.95 ; Crystal structure of the C-terminal domain of mouse Nrdp1 4QDH ; 2.399 ; Crystal Structure of the C-terminal Domain of Mouse TLR9 6CUJ ; 1.805 ; Crystal structure of the C-terminal domain of neisserial heparin binding antigen (NHBA) 4HTE ; 3.0 ; Crystal Structure of the C-terminal domain of Nicking Enzyme from Staphylococcus aureus 3NF5 ; 1.94 ; Crystal structure of the C-terminal domain of nuclear pore complex component NUP116 from Candida glabrata 5WTP ; 2.15 ; Crystal structure of the C-terminal domain of outer membrane protein A (OmpA) from Capnocytophaga gingivalis 4OT9 ; 3.35 ; crystal structure of the C-terminal domain of p100/NF-kB2 7D8U ; 2.7 ; Crystal structure of the C-terminal domain of pNP868R from African swine fever virus 2PHP ; 2.03 ; Crystal structure of the C-terminal domain of protein MJ0236 (Y236_METJA) 4ZIB ; 2.054 ; Crystal Structure of the C-terminal domain of PylRS mutant bound with 3-benzothienyl-l-alanine and ATP 4S36 ; 1.46 ; Crystal structure of the C-terminal domain of R2 pyocin membrane-piercing spike 2O2P ; 1.7 ; Crystal structure of the C-terminal domain of rat 10'formyltetrahydrofolate dehydrogenase 2O2Q ; 2.0 ; Crystal structure of the C-terminal domain of rat 10'formyltetrahydrofolate dehydrogenase in complex with NADP 2O2R ; 2.2 ; Crystal structure of the C-terminal domain of rat 10'formyltetrahydrofolate dehydrogenase in complex with NADPH 5C9S ; 2.7 ; Crystal Structure of the C-terminal domain of Rrp5 4EHC ; 1.98 ; Crystal structure of the C-terminal domain of Rv0977 of Mycobacterium tuberculosis 2FUL ; 1.5 ; Crystal Structure of the C-terminal Domain of S. cerevisiae eIF5 7C22 ; 2.0 ; Crystal structure of the C-terminal domain of SARS-CoV-2 nucleocapsid protein 3AO9 ; 2.1 ; Crystal structure of the C-terminal domain of sequence-specific ribonuclease 3L3P ; 3.2 ; Crystal structure of the C-terminal domain of Shigella type III effector IpaH9.8, with a novel domain swap 3X38 ; 1.801 ; Crystal structure of the C-terminal domain of Sld7 2WOY ; 1.5 ; Crystal structure of the C-terminal domain of Streptococcus gordonii surface protein SspB 2WQS ; 1.7 ; Crystal structure of the C-terminal domain of Streptococcus gordonii surface protein SspB 3OPU ; 2.181 ; Crystal structure of the C-terminal domain of Streptococcus mutans surface protein SpaP 5BND ; 2.68 ; Crystal structure of the C-terminal domain of TagH 4EYT ; 2.5 ; Crystal structure of the C-terminal domain of Tetrahymena telomerase protein p65 4ERD ; 2.589 ; Crystal structure of the C-terminal domain of Tetrahymena telomerase protein p65 in complex with stem IV of telomerase RNA 2FKK ; 1.2 ; Crystal structure of the C-terminal domain of the bacteriophage T4 gene product 10 2FWE ; 1.65 ; crystal structure of the C-terminal domain of the electron transfer catalyst DsbD (oxidized form) 1WU9 ; 1.54 ; Crystal structure of the C-terminal domain of the end-binding protein 1 (EB1) 2FJI ; 2.4 ; Crystal structure of the C-terminal domain of the exocyst subunit Sec6p 6T6E ; 1.302 ; Crystal Structure of the C-terminal domain of the HIV-1 Integrase (PNL4-3) 6T6I ; 2.203 ; Crystal Structure of the C-terminal domain of the HIV-1 Integrase (subtype A2) 6T6J ; 2.003 ; Crystal Structure of the C-terminal domain of the HIV-1 Integrase (subtype A2, mutant N254K, K340Q) 1O9Y ; 2.29 ; Crystal structure of the C-terminal domain of the HrcQb protein from Pseudomonas syringae pv. phaseolicola 2GIY ; 1.78 ; Crystal Structure of the C-terminal domain of the HSV-1 gE ectodomain 5IKF ; 2.8 ; Crystal structure of the C-terminal domain of the Mit1 nucleosome remodeler in complex with Clr1 3L48 ; 2.1 ; Crystal structure of the C-terminal domain of the PapC usher 7T88 ; 2.1 ; Crystal Structure of the C-terminal Domain of the Phosphate Acetyltransferase from Escherichia coli 1I27 ; 1.02 ; CRYSTAL STRUCTURE OF THE C-TERMINAL DOMAIN OF THE RAP74 SUBUNIT OF HUMAN TRANSCRIPTION FACTOR IIF (TFIIF) 3G29 ; 2.5 ; Crystal structure of the C-terminal domain of the Rous Sarcoma Virus capsid protein: D179N mutant, neutral pH 3G1I ; 2.1 ; Crystal structure of the C-terminal domain of the Rous Sarcoma Virus capsid protein: Intermediate pH 3G21 ; 0.9 ; Crystal structure of the C-terminal domain of the Rous Sarcoma Virus capsid protein: Low pH 3G26 ; 1.55 ; Crystal structure of the C-terminal domain of the Rous Sarcoma Virus capsid protein: Mutant A184C 3G28 ; 1.64 ; Crystal structure of the C-terminal domain of the Rous Sarcoma Virus capsid protein: mutant D179N, low pH 3CKD ; 2.65 ; Crystal structure of the C-terminal domain of the Shigella type III effector IpaH 1R62 ; 1.6 ; Crystal structure of the C-terminal Domain of the Two-Component System Transmitter Protein NRII (NtrB) 3OC8 ; 2.1 ; Crystal Structure of the C-terminal Domain of the Vibrio cholerae soluble colonization factor TcpF 3QQZ ; 2.55 ; Crystal structure of the C-terminal domain of the yjiK protein from Escherichia coli CFT073 3WHP ; 2.52 ; Crystal structure of the C-terminal domain of Themus thermophilus LitR in complex with cobalamin 1V2Z ; 1.8 ; Crystal structure of the C-terminal domain of Thermosynechococcus elongatus BP-1 KaiA 1QXX ; 2.7 ; CRYSTAL STRUCTURE OF THE C-TERMINAL DOMAIN OF TONB 8AXO ; 1.29 ; Crystal structure of the C-terminal domain of Trypanosoma brucei CFAP410 1T5I ; 1.9 ; Crystal structure of the C-terminal domain of UAP56 3EUR ; 1.3 ; Crystal structure of the C-terminal domain of uncharacterized protein from Bacteroides fragilis NCTC 9343 2G3K ; 3.05 ; Crystal structure of the C-terminal domain of Vps28 2R5O ; 1.3 ; Crystal structure of the C-terminal domain of wzt 3JTN ; 2.09 ; Crystal Structure of the c-terminal domain of YpbH 3JTO ; 2.4 ; Crystal structure of the c-terminal domain of YpbH 3U2G ; 2.3 ; Crystal structure of the C-terminal DUF1608 domain of the Methanosarcina acetivorans S-layer (MA0829) protein 3U2H ; 2.36 ; Crystal structure of the C-terminal DUF1608 domain of the Methanosarcina acetivorans S-layer (MA0829) protein 5B42 ; 1.35 ; Crystal structure of the C-terminal endonuclease domain of Aquifex aeolicus MutL. 3PTY ; 2.0 ; Crystal structure of the C-terminal extracellular domain of Mycobacterium tuberculosis EmbC 8FNB ; 1.8 ; Crystal structure of the C-terminal Fg domain of human TNC with the mutations Y2140H and S2164H 8FNA ; 1.75 ; Crystal structure of the C-terminal Fg domain of human TNR 8FN8 ; 1.89 ; Crystal structure of the C-terminal Fg domain of TNC with the single FN domain of PTPRZ 8FN9 ; 1.8 ; Crystal structure of the C-terminal Fg domain of TNR with the single FN domain of PTPRZ 3JT0 ; 2.392 ; Crystal Structure of the C-terminal fragment (426-558) Lamin-B1 from Homo sapiens, Northeast Structural Genomics Consortium Target HR5546A 8WAG ; 3.003 ; Crystal structure of the C-terminal fragment (residues 716-982) of Arabidopsis thaliana CHUP1 8WAF ; 2.8 ; Crystal structure of the C-terminal fragment (residues 756-982 with the C864S mutation) of Arabidopsis thaliana CHUP1 2R9G ; 2.09 ; Crystal structure of the C-terminal fragment of AAA ATPase from Enterococcus faecium 8G28 ; 1.3 ; Crystal Structure of the C-terminal Fragment of AAA ATPase from Streptococcus pneumoniae. 3BGE ; 1.85 ; Crystal structure of the C-terminal fragment of AAA+ATPase from Haemophilus influenzae 5YXA ; 2.1 ; Crystal structure of the C-terminal fragment of NS1 protein from yellow fever virus 2D3E ; 2.6 ; Crystal structure of the C-Terminal fragment of rabbit skeletal alpha-tropomyosin 3QR7 ; 0.94 ; Crystal structure of the C-terminal fragment of the bacteriophage P2 membrane-piercing protein gpV 3PQH ; 1.295 ; Crystal structure of the C-terminal fragment of the bacteriophage phi92 membrane-piercing protein gp138 2ZMF ; 2.1 ; Crystal structure of the C-terminal GAF domain of human phosphodiesterase 10A 3WAI ; 1.897 ; Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (AfAglB-L, O29867_ARCFU) from Archaeoglobus fulgidus as a MBP fusion 3VU0 ; 1.94 ; Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (AfAglB-S2, AF_0040, O30195_ARCFU) from Archaeoglobus fulgidus 3VGP ; 1.75 ; Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (AF_0329) from Archaeoglobus fulgidus 3WOV ; 3.11 ; Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (PaAglB-L, Q9V250_PYRAB, PAB2202) from Pyrococcus abyssi 3VU1 ; 2.7 ; Crystal structure of the C-terminal globular domain of oligosaccharyltransferase (PhAglB-L, O74088_PYRHO) from Pyrococcus horikoshii 6D8Z ; 2.65 ; Crystal Structure of the C-terminal Guanine Nucleotide Exchange Factor Module of Human Trio 6MIC ; 1.531 ; Crystal Structure of the C-terminal half of the Vibrio cholerae minor pilin TcpB 2NRT ; 1.5 ; Crystal structure of the C-terminal half of UvrC 2NRV ; 1.8 ; Crystal structure of the C-terminal half of UvrC 2NRZ ; 2.0 ; Crystal structure of the C-terminal half of UvrC bound to its catalytic divalent cation 2NRX ; 1.9 ; Crystal structure of the C-terminal half of UvrC, in the presence of sulfate molecules 3HM8 ; 2.8 ; Crystal structure of the C-terminal Hexokinase domain of human HK3 3KN6 ; 2.0 ; Crystal structure of the C-terminal kinase domain of MSK1 3KN5 ; 2.4 ; Crystal structure of the C-terminal kinase domain of msk1 in complex with AMP-PNP 7TRW ; 2.28 ; Crystal Structure of the C-terminal Ligand-Binding Domain of the LysR family Transcriptional Regulator YfbA from Yersinia pestis 5THE ; 2.097 ; Crystal structure of the C-terminal lobe of a budding yeast Argonaute 2P1S ; 1.93 ; Crystal structure of the C-terminal lobe of bovine lactoferrin complexed with O-alpha-D-Glucopyranosyl-(1 3)-alpha-D-fructofuranosyl- (2 1)- alpha-D-glucopyranoside at 1.93 A resolution 5W87 ; 2.199 ; Crystal structure of the C-terminal lobe of the human HERC6 HECT domain 3PT3 ; 1.97 ; Crystal structure of the C-terminal lobe of the human UBR5 HECT domain 5H45 ; 2.7 ; Crystal structure of the C-terminal Lon protease-like domain of Thermus thermophilus RadA/Sms 2IOL ; 2.0 ; Crystal structure of the C-terminal MA3 domain of Pdcd4 (mouse); form 1 2IOS ; 1.76 ; Crystal structure of the C-terminal MA3 domain of Pdcd4 (mouse); form 3 2ION ; 1.57 ; Crystal structure of the C-terminal MA3 domain of Pdcd4 (mouse); form2 1L1D ; 1.85 ; Crystal structure of the C-terminal methionine sulfoxide reductase domain (MsrB) of N. gonorrhoeae pilB 3G9H ; 2.8 ; Crystal structure of the C-terminal mu homology domain of Syp1 3CED ; 2.15 ; Crystal structure of the C-terminal NIL domain of an ABC transporter protein homologue from Staphylococcus aureus 2REU ; 1.9 ; Crystal Structure of the C-terminal of Sau3AI fragment 5GN1 ; 1.95 ; Crystal structure of the C-terminal part of Fun30 ATPase domain 8AY2 ; 2.5 ; Crystal structure of the C-terminal part of rat Sec8 4KC5 ; 2.14 ; Crystal structure of the C-terminal part of RhiE from Burkholderia rhizoxinica 3LG8 ; 4.1 ; Crystal structure of the C-terminal part of subunit E (E101-206) from Methanocaldococcus jannaschii of A1AO ATP synthase 3U4T ; 2.282 ; Crystal Structure of the C-terminal part of the TPR repeat-containing protein Q11TI6_CYTH3 from Cytophaga hutchinsonii. Northeast Structural Genomics Consortium Target ChR11B. 7O61 ; 1.78 ; Crystal structure of the C-terminal PASTA domains of Staphylococcus aureus PBP1 5U1H ; 1.5 ; Crystal structure of the C-terminal peptidoglycan binding domain of OprF (PA1777) from Pseudomonas aeruginosa 1SK3 ; 2.8 ; Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ialpha 1SK4 ; 1.65 ; crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ialpha 2EAV ; 2.2 ; Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ibeta 4WN5 ; 1.15 ; Crystal structure of the C-terminal Per-Arnt-Sim (PASb) of human HIF-3alpha9 bound to 18:1-1-monoacylglycerol 6A82 ; 2.1 ; Crystal structure of the C-terminal periplasmic domain of EcEptC from Escherichia coli 6A83 ; 2.602 ; Crystal structure of the C-terminal periplasmic domain of EcEptC from Escherichia coli complex with Zn 5ZZU ; 2.1 ; Crystal structure of the C-terminal periplasmic domain of EcEptC from Escherichia coli- complex with Zn 4TN0 ; 2.4 ; Crystal Structure of the C-terminal Periplasmic Domain of Phosphoethanolamine Transferase EptC from Campylobacter jejuni 1TWQ ; 2.3 ; Crystal structure of the C-terminal PGN-binding domain of human PGRP-Ialpha in complex with PGN analog muramyl tripeptide 2I5C ; 1.75 ; Crystal structure of the C-terminal PH domain of pleckstrin in complex with D-myo-Ins(1,2,3,4,5)P5 2I5F ; 1.35 ; Crystal structure of the C-terminal PH domain of pleckstrin in complex with D-myo-Ins(1,2,3,5,6)P5 2DYQ ; 3.1 ; Crystal Structure of the C-terminal Phophotyrosine Interaction Domain of Human APBB3 6F9S ; 3.03 ; Crystal structure of the C-terminal RecA domain of DDX6 in complex with a conserved peptide from LSM14 2VGE ; 2.1 ; Crystal structure of the C-terminal region of human iASPP 3L6A ; 2.0 ; Crystal structure of the C-terminal region of Human p97 4BKW ; 2.53 ; Crystal structure of the C-terminal region of human ZFYVE9 1KQL ; 2.7 ; Crystal structure of the C-terminal region of striated muscle alpha-tropomyosin at 2.7 angstrom resolution 3WIT ; 1.95 ; Crystal structure of the C-terminal region of VgrG1 from E. coli O157 EDL933 4C8S ; 3.0 ; Crystal structure of the C-terminal region of yeast Ctf4 4C8H ; 2.691 ; Crystal structure of the C-terminal region of yeast Ctf4, selenomethionine protein. 4OTN ; 1.9 ; Crystal structure of the C-terminal regulatory domain of murine GCN2 2EB1 ; 2.0 ; Crystal Structure of the C-Terminal RNase III Domain of Human Dicer 2NRR ; 1.2 ; Crystal structure of the C-terminal RNAseH endonuclase domain of UvrC 4M6W ; 2.9 ; Crystal structure of the C-terminal segment of FANCM in complex with FAAP24 1QAD ; 1.8 ; Crystal Structure of the C-Terminal SH2 Domain of the P85 alpha Regulatory Subunit of Phosphoinositide 3-Kinase: An SH2 domain mimicking its own substrate 2D0N ; 1.57 ; Crystal structure of the C-terminal SH3 domain of the adaptor protein GADS in complex with SLP-76 motif peptide reveals a unique SH3-SH3 interaction 1DXS ; 2.54 ; Crystal structure of the C-terminal sterile alpha motif (SAM) domain of human p73 alpha splice variant 4N4C ; 2.48 ; Crystal structure of the C-terminal swapped dimer of a Bovine seminal ribonuclease mutant 7VPG ; 2.49 ; Crystal structure of the C-terminal tail of SARS-CoV-1 Orf6 complex with human nucleoporin pair Rae1-Nup98 7VPH ; 2.8 ; Crystal structure of the C-terminal tail of SARS-CoV-2 Orf6 complex with human nucleoporin pair Rae1-Nup98 6AQK ; 1.8 ; Crystal structure of the C-terminal toxin domain of RHS2 from Yersinia entomophaga 2EFR ; 1.8 ; Crystal structure of the c-terminal tropomyosin fragment with N- and C-terminal extensions of the leucine zipper at 1.8 angstroms resolution 2EFS ; 2.0 ; Crystal structure of the C-terminal tropomyosin fragment with N- and C-terminal extensions of the leucine zipper at 2.0 angstroms resolution 3PDT ; 1.8 ; Crystal Structure of the C-terminal Truncated Alpha-Kinase Domain of Myosin Heavy chain Kinase 5C3O ; 2.3 ; Crystal structure of the C-terminal truncated Neurospora crassa T7H (NcT7HdeltaC) in apo form 2H84 ; 2.9 ; Crystal Structure of the C-terminal Type III Polyketide Synthase (PKS III) Domain of 'Steely1' (a Type I/III PKS Hybrid from Dictyostelium) 2W18 ; 1.9 ; Crystal structure of the C-terminal WD40 domain of human PALB2 1R5M ; 1.55 ; Crystal Structure Of The C-Terminal WD40 Domain Of Sif2 1ERJ ; 2.3 ; CRYSTAL STRUCTURE OF THE C-TERMINAL WD40 DOMAIN OF TUP1 2AYD ; 1.6 ; Crystal Structure of the C-terminal WRKY domainof AtWRKY1, an SA-induced and partially NPR1-dependent transcription factor 5J4G ; 2.6 ; Crystal structure of the C-terminally His6-tagged HP0902, an uncharacterized protein from Helicobacter pylori 26695 6T1F ; 2.9 ; Crystal structure of the C-terminally truncated chromosome-partitioning protein ParB from Caulobacter crescentus complexed to the centromeric parS site 7BM8 ; 2.73 ; Crystal structure of the C-terminally truncated chromosome-partitioning protein ParB from Caulobacter crescentus complexed with CTP-gamma-S 8QA8 ; 2.3 ; Crystal structure of the C-terminally truncated transcriptional repressor protein KorB from the RK2 plasmid complexed with CTP-gamma-S 6DEE ; 3.04 ; Crystal structure of the C-terminus of Homo sapiens SPIN90 (SH3-protein interacting with Nck), residues 306-722 1SZI ; 2.8 ; Crystal Structure of the C-terminus of TIP47 4DCK ; 2.2 ; Crystal structure of the C-terminus of voltage-gated sodium channel in complex with FGF13 and CaM 4PWA ; 2.19 ; Crystal structure of the c-type cytochrome SorU from Sinorhizobium meliloti 1Q40 ; 1.95 ; Crystal structure of the C. albicans Mtr2-Mex67 M domain complex 8Q66 ; 2.03 ; Crystal Structure of the C. elegans MUT-7 MUT-8 CTD complex 1EMS ; 2.8 ; CRYSTAL STRUCTURE OF THE C. ELEGANS NITFHIT PROTEIN 8AY1 ; 2.13 ; Crystal structure of the C. elegans POFUT2 (CePoFUT2) triple mutant (R298K-R299K-A418C) in complex with the Rattus norvegicus TSR4 single mutant (E10C) from F-spondin 5FOE ; 1.98 ; Crystal structure of the C. elegans Protein O-fucosyltransferase 2 (CePOFUT2) double mutant (R298K-R299K) in complex with GDP and the human TSR1 from thrombospondin 1 6GBS ; 1.946 ; Crystal Structure of the C. themophilum Scavenger Decapping Enzyme DcpS apo form 6QJ0 ; 2.0 ; Crystal structure of the C. thermophilum condensin Smc2 ATPase head (crystal form II) 6QJ1 ; 2.56 ; Crystal structure of the C. thermophilum condensin Smc2 ATPase head (crystal from I) 6QJ2 ; 3.0 ; Crystal structure of the C. thermophilum condensin Smc4 ATPase head in complex with the C-terminal domain of Brn1 6QJ3 ; 3.3 ; Crystal structure of the C. thermophilum condensin Ycs4-Brn1 subcomplex 6QJ4 ; 5.8 ; Crystal structure of the C. thermophilum condensin Ycs4-Brn1 subcomplex bound to the Smc4 ATPase head in complex with the C-terminal domain of Brn1 3CX2 ; 1.3 ; Crystal structure of the C1 domain of cardiac isoform of myosin binding protein-C at 1.3A 2V6H ; 1.55 ; Crystal structure of the C1 domain of cardiac myosin binding protein-C 1DLG ; 1.9 ; CRYSTAL STRUCTURE OF THE C115S ENTEROBACTER CLOACAE MURA IN THE UN-LIGANDED STATE 1Y55 ; 1.0 ; Crystal structure of the C122S mutant of E. Coli expressed avidin related protein 4 (AVR4)-biotin complex 1XG4 ; 1.6 ; Crystal Structure of the C123S 2-Methylisocitrate Lyase Mutant from Escherichia coli in complex with the inhibitor isocitrate 1XG3 ; 1.9 ; Crystal structure of the C123S 2-methylisocitrate lyase mutant from Escherichia coli in complex with the reaction product, Mg(II)-pyruvate and succinate 1GGV ; 2.5 ; CRYSTAL STRUCTURE OF THE C123S MUTANT OF DIENELACTONE HYDROLASE (DLH) BOUND WITH THE PMS MOIETY OF THE PROTEASE INHIBITOR, PHENYLMETHYLSULFONYL FLUORIDE (PMSF) 2BO0 ; 1.35 ; Crystal structure of the C130A mutant of nitrite reductase from Alcaligenes xylosoxidans 4K7Z ; 1.5 ; Crystal structure of the C136(42)A/C141(47)A double mutant of Tn501 MerA in complex with NADP and Hg2+ 4FBE ; 1.88 ; Crystal structure of the C136A/C164A variant of mitochondrial isoform of glutaminyl cyclase from Drosophila melanogaster 1PQP ; 2.06 ; Crystal Structure of the C136S Mutant of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae Bound with Aspartate Semialdehyde and Phosphate 4IAM ; 1.99 ; Crystal Structure of the C139A mutant of nostoc H-NOX domain 6TQJ ; 2.3 ; Crystal structure of the c14 ring of the F1FO ATP synthase from spinach chloroplast 3NVJ ; 3.2 ; Crystal structure of the C143A/C166A mutant of Ero1p 3SJK ; 2.096 ; Crystal structure of the C147A mutant 3C from enterovirus 71 3SJ9 ; 2.399 ; crystal structure of the C147A mutant 3C of CVA16 in complex with FAGLRQAVTQ peptide 3AYH ; 2.193 ; Crystal structure of the C17/25 subcomplex from S. pombe RNA Polymerase III 3ML5 ; 2.05 ; Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide 3RZP ; 2.0 ; Crystal Structure of the C194A mutant of 7-cyano-7-deazaguanine reductase, QueF from Vibrio cholerae complexed with preQ1 8POW ; 1.61 ; Crystal Structure of the C19G variant of the membrane-bound [NiFe]-Hydrogenase from Cupriavidus necator in the air-oxidized state at 1.61 A Resolution. 8POU ; 1.65 ; Crystal Structure of the C19G/C120G variant of the membrane-bound [NiFe]-Hydrogenase from Cupriavidus necator in the air-oxidized state at 1.65 A Resolution. 8POV ; 1.92 ; Crystal Structure of the C19G/C120G variant of the membrane-bound [NiFe]-Hydrogenase from Cupriavidus necator in the H2-reduced state at 1.92 A Resolution. 4NN0 ; 1.42 ; Crystal structure of the C1QTNF5 globular domain in space group P63 3BN6 ; 1.67 ; Crystal Structure of the C2 Domain of Bovine Lactadherin at 1.67 Angstrom Resolution 2B3R ; 2.3 ; Crystal structure of the C2 domain of class II phosphatidylinositide 3-kinase C2 1CZT ; 1.87 ; CRYSTAL STRUCTURE OF THE C2 DOMAIN OF HUMAN COAGULATION FACTOR V 1CZS ; 1.9 ; CRYSTAL STRUCTURE OF THE C2 DOMAIN OF HUMAN COAGULATION FACTOR V: COMPLEX WITH PHENYLMERCURY 1CZV ; 2.4 ; CRYSTAL STRUCTURE OF THE C2 DOMAIN OF HUMAN COAGULATION FACTOR V: DIMERIC CRYSTAL FORM 1D7P ; 1.5 ; Crystal structure of the c2 domain of human factor viii at 1.5 a resolution at 1.5 A 2NQ3 ; 1.8 ; Crystal structure of the C2 Domain of Human Itchy Homolog E3 Ubiquitin Protein Ligase 2UZP ; 2.0 ; Crystal structure of the C2 domain of human protein kinase C gamma. 3B7Y ; 1.8 ; Crystal structure of the C2 Domain of the E3 Ubiquitin-Protein Ligase NEDD4 2NSQ ; 1.85 ; Crystal structure of the C2 domain of the human E3 ubiquitin-protein ligase NEDD4-like protein 3FBK ; 2.0 ; Crystal structure of the C2 domain of the human regulator of G-protein signaling 3 isoform 6 (RGP3), Northeast Structural Genomics Consortium Target HR5550A 2I1L ; 2.5 ; Crystal structure of the C2 form of FAD synthetase from Thermotoga maritima 1FCC ; 3.2 ; CRYSTAL STRUCTURE OF THE C2 FRAGMENT OF STREPTOCOCCAL PROTEIN G IN COMPLEX WITH THE FC DOMAIN OF HUMAN IGG 3BXJ ; 3.0 ; Crystal Structure of the C2-GAP Fragment of synGAP 1PA1 ; 1.6 ; Crystal structure of the C215D mutant of protein tyrosine phosphatase 1B 2Q9J ; 2.2 ; Crystal structure of the C217S mutant of diaminopimelate epimerase 6GEU ; 1.55 ; Crystal structure of the C230A mutant of human IBA57 4A5B ; 2.48 ; Crystal structure of the C258S/C268S variant of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) 4A5A ; 2.85 ; Crystal structure of the C258S/C268S variant of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) in complex with magnesium and AMPPNP 5Y8U ; 2.92 ; Crystal structure of the C276S mutant of MAP2K7 4MJJ ; 2.0 ; Crystal structure of the C2A domain of DOC2A 2CHD ; 1.92 ; Crystal structure of the C2A domain of Rabphilin-3A 4LT7 ; 2.5 ; Crystal structure of the c2a domain of rabphilin-3a in complex with a calcium 2CM5 ; 1.28 ; crystal structure of the C2B domain of rabphilin 2CM6 ; 1.85 ; crystal structure of the C2B domain of rabphilin3A 7A1R ; 1.5 ; Crystal structure of the C2B domain of Trypanosoma brucei extended synaptotagmin (E-Syt) 3IUF ; 1.8 ; Crystal structure of the C2H2-type zinc finger domain of human ubi-d4 4E0I ; 3.0 ; Crystal structure of the C30S/C133S mutant of Erv1 from Saccharomyces cerevisiae 2A9K ; 1.73 ; Crystal structure of the C3bot-NAD-RalA complex reveals a novel type of action of a bacterial exoenzyme 2A78 ; 1.81 ; Crystal structure of the C3bot-RalA complex reveals a novel type of action of a bacterial exoenzyme 1FF2 ; 2.3 ; CRYSTAL STRUCTURE OF THE C42D MUTANT OF AZOTOBACTER VINELANDII 7FE FERREDOXIN (FDI) 4EQX ; 1.7 ; Crystal Structure of the C43S Mutant of Staphylococcus aureus CoADR 2V2G ; 1.6 ; Crystal Structure of the C45S mutant of the Peroxiredoxin 6 of Arenicola Marina. Monoclinic form 2V32 ; 2.0 ; Crystal Structure of the C45S mutant of the Peroxiredoxin 6 of Arenicola Marina. Monoclinic form 2 2V41 ; 2.4 ; Crystal Structure of the C45S mutant of the Peroxiredoxin 6 of Arenicola Marina. Orthorhombic form 2CJZ ; 1.7 ; crystal structure of the c472s mutant of human protein tyrosine phosphatase ptpn5 (step, striatum enriched phosphatase) in complex with phosphotyrosine 3NPM ; 2.1 ; Crystal Structure of the C47A/A241C disulfide-linked C6 Aspartate Transcarbamoylase enzyme 3MPU ; 2.855 ; Crystal structure of the C47A/A241C disulfide-linked E. coli Aspartate Transcarbamoylase holoenzyme 5H8Z ; 1.8 ; Crystal structure of the C49A C353A mutant Fenna-Matthews-Olson Protein from Chlorobaculum Tepidum 4K8D ; 1.86 ; Crystal structure of the C558(464)A/C559(465)A double mutant of Tn501 MerA in complex with NADPH and Hg2+ 2QKV ; 1.55 ; Crystal Structure of the C645S Mutant of the 5th PDZ Domain of InaD 3RHQ ; 2.1 ; Crystal structure of the C707A mutant of C-Terminal domain of 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE in complex with NADP 3RHP ; 2.5 ; Crystal structure of the C707A mutant of the C-Terminal domain of 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE 3RHR ; 2.3 ; Crystal structure of the C707A mutant of the C-Terminal domain of 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE in complex with NADPH 4GNZ ; 2.3 ; Crystal structure of the c707s mutant of c-terminal domain of 10'formyltetrahydrofolate dehydrogenase in complex with NADP 4GO0 ; 3.38 ; Crystal structure of the c707s mutant of c-terminal domain of 10'formyltetrahydrofolate dehydrogenase in complex with NADPH 1O77 ; 3.2 ; CRYSTAL STRUCTURE OF THE C713S MUTANT OF THE TIR DOMAIN OF HUMAN TLR2 2Q9H ; 2.3 ; Crystal structure of the C73S mutant of diaminopimelate epimerase 5VOK ; 2.89 ; Crystal structure of the C7orf59-HBXIP dimer 7CVS ; 3.01 ; Crystal structure of the C85A/L194A mutant CLC-ec1 with Fab fragment 7CVT ; 2.9 ; Crystal structure of the C85A/L194A/H234C mutant CLC-ec1 with Fab fragment 2Q9V ; 2.0 ; Crystal structure of the C890S mutant of the 4th PDZ domain of human membrane associated guanylate kinase 4WIO ; 3.15 ; Crystal structure of the C89A GMP synthetase inactive mutant from Plasmodium falciparum in complex with glutamine 7ZU9 ; 2.8 ; CRYSTAL STRUCTURE OF THE C89A_C113A GMP SYNTHETASE INACTIVE DOUBLE MUTANT FROM PLASMODIUM FALCIPARUM 4BPY ; 1.4 ; Crystal structure of the C90A mutant of the Sco copper chaperone protein from Streptomyces lividans 3MUR ; 3.0 ; Crystal Structure of the C92U mutant c-di-GMP riboswith bound to c-di-GMP 7YGV ; 2.8 ; Crystal structure of the Ca2+-bound EFhd1/Swiprosin-2 6LB7 ; 2.101 ; Crystal structure of the Ca2+-free and Ca2+-bound MICU1-MICU2 complex 6LB8 ; 3.283 ; Crystal structure of the Ca2+-free T4L-MICU1-MICU2 complex 3TZ1 ; 1.8 ; Crystal structure of the Ca2+-saturated C-terminal domain of Akazara scallop troponin C in complex with a troponin I fragment 6N5W ; 2.15 ; Crystal structure of the Ca2+/CaM complex with independent peptides of Kv7.4 (KCNQ4) A & B domains 6B8M ; 2.3 ; Crystal Structure of the Ca2+/CaM:Kv7.4 (KCNQ4) AB Domain Complex, 1 mM CaCl2 soak 6B8N ; 2.201 ; Crystal Structure of the Ca2+/CaM:Kv7.4 (KCNQ4) AB Domain Complex, 10 uM CaCl2 soak 3VHQ ; 2.15 ; Crystal structure of the Ca6 site mutant of Pro-SA-subtilisin 4B0E ; 2.0 ; Crystal structure of the Caf1A usher protein N-terminal domain from Yersinia pestis 4JWQ ; 2.15 ; Crystal Structure of the Calcium Binding Domain of CDPK3 from Plasmodium Berghei, PB000947.00 4AQO ; 0.99 ; CRYSTAL STRUCTURE OF THE CALCIUM BOUND PKD-like DOMAIN OF COLLAGENASE G FROM CLOSTRIDIUM HISTOLYTICUM AT 0.99 ANGSTROM RESOLUTION. 3ONR ; 1.8 ; Crystal structure of the calcium chelating immunodominant antigen, calcium dodecin (Rv0379),from Mycobacterium tuberculosis with a novel calcium-binding site 3W5A ; 3.01 ; Crystal structure of the calcium pump and sarcolipin from rabbit fast twitch skeletal muscle in the E1.Mg2+ state 3W5C ; 2.5 ; Crystal structure of the calcium pump in the E2 state free from exogenous inhibitors 3W5D ; 2.45 ; Crystal structure of the calcium pump in the E2+Pi state 2DQS ; 2.5 ; Crystal structure of the calcium pump with amppcp in the absence of calcium 4YCN ; 3.5 ; Crystal structure of the calcium pump with bound marine macrolide BLLB 4YCM ; 3.2 ; Crystal structure of the calcium pump with bound marine macrolide BLS 3OX5 ; 2.9 ; Crystal Structure of the calcium sensor calcium-binding protein 1 (CaBP1) 3OX6 ; 2.4 ; Crystal Structure of the calcium sensor calcium-binding protein 1 (CaBP1) 2OPO ; 1.75 ; Crystal structure of the calcium-binding pollen allergen Che a 3 1K9U ; 1.75 ; Crystal Structure of the Calcium-Binding Pollen Allergen Phl p 7 (Polcalcin) at 1.75 Angstroem 1ZH2 ; 2.0 ; Crystal Structure Of The Calcium-Bound Receiver Domain Of Kdp Potassium Transport System Response Regulator KdpE 3DXN ; 2.17 ; Crystal structure of the calcium-dependent kinase from toxoplasma gondii, 541.m00134, kinase domain. 3KHE ; 1.95 ; Crystal structure of the calcium-loaded calmodulin-like domain of the CDPK, 541.m00134 from toxoplasma gondii 4GKO ; 3.3 ; Crystal structure of the calcium2+-bound human IgE-Fc(epsilon)3-4 bound to its B cell receptor derCD23 6P2M ; 1.98 ; Crystal structure of the Caldicellulosiruptor lactoaceticus GH74 (ClGH74a) enzyme in complex with LLG xyloglucan 3G43 ; 2.1 ; Crystal structure of the calmodulin-bound Cav1.2 C-terminal regulatory domain dimer 1GGZ ; 1.5 ; CRYSTAL STRUCTURE OF THE CALMODULIN-LIKE PROTEIN (HCLP) FROM HUMAN EPITHELIAL CELLS 3I6X ; 2.5 ; Crystal structure of the calponin homology domain of IQGAP1 1P2X ; 2.21 ; CRYSTAL STRUCTURE OF THE CALPONIN-HOMOLOGY DOMAIN OF RNG2 FROM SCHIZOSACCHAROMYCES POMBE 3O0V ; 2.3 ; Crystal structure of the calreticulin lectin domain 3FQ4 ; 1.487 ; Crystal structure of the Calx-beta domain of integrin beta4 3FSO ; 1.405 ; Crystal structure of the Calx-beta domain of integrin beta4, calcium soak 1RI8 ; 1.85 ; Crystal Structure of the Camelid Single Domain Antibody 1D2L19 in complex with Hen Egg White Lysozyme 1RJC ; 1.4 ; Crystal structure of the camelid single domain antibody cAb-Lys2 in complex with hen egg white lysozyme 6Y2O ; 2.01 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with 1,7-Naphthyridin-8-amine and PKI (5-24) 7AXW ; 1.69 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with 1-aminoisoquinoline and PKI (5-24) 7AXV ; 1.79 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with 5-isoquinolinesulfonic acid and PKI (5-24) 7BAQ ; 1.54 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with a chiral ligand (S- and E-configuration) and PKI (5-24) 6Y05 ; 1.7 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with adenine and PKI (5-24) 6Y2U ; 1.93 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with aminofasudil and PKI (5-24) 6Y8C ; 1.76 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with ATP and PKI (5-24) 6F14 ; 1.867 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with isoquinoline and PKI (5-24) 7AXT ; 1.86 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with isoquinoline-5-carboxylic acid and PKI (5-24) 6Y89 ; 1.56 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with Methyl 5-isoquinolinecarboxylate and PKI (5-24) 6YOT ; 1.96 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with N,N-dimethylisoquinoline-5-sulfonamide and PKI (5-24) 7BB0 ; 1.75 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with NAT22-366511 and PKI (5-24) 6YPP ; 1.75 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with PKI (5-24). Soaking of aminofasudil and displacing it with the fragment isoquinoline. 6Y0B ; 1.71 ; Crystal structure of the cAMP-dependent protein kinase A cocrystallized with quinazolin-4-amine and PKI (5-24) 6YNR ; 1.9 ; Crystal structure of the cAMP-dependent protein kinase A in complex with 1,7-Naphthyridin-8-amine (soaked) and PKI (5-24) 6YPS ; 1.35 ; Crystal structure of the cAMP-dependent protein kinase A in complex with 4-hydroxybenzamidine 6YNT ; 1.52 ; Crystal structure of the cAMP-dependent protein kinase A in complex with aminofasudil and PKI (5-24) 6Z44 ; 1.38 ; Crystal structure of the cAMP-dependent protein kinase A in complex with phenol 6YOU ; 1.73 ; Crystal structure of the cAMP-dependent protein kinase A in complex with Pyrido[3,2-d]pyrimidin-4-amine (soaked) 7BAR ; 1.37 ; Crystal structure of the cAMP-dependent protein kinase A with a chiral ligand (S- and E-configuration, soaked) 4MT4 ; 2.373 ; Crystal structure of the Campylobacter jejuni CmeC outer membrane channel 5CQD ; 2.08 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 5CQH ; 1.73 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 5CQI ; 1.68 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 5CQK ; 1.88 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 5SXG ; 1.93 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 5SXH ; 1.78 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B 6NFM ; 2.53 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B with loop 7 from APOBEC3G 6NFK ; 1.86 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B with loop 7 from APOBEC3G bound to iodide 6NFL ; 1.731 ; Crystal Structure of the Cancer Genomic DNA Mutator APOBEC3B with loop 7 from APOBEC3G complexed with 2-HP 1U6G ; 3.1 ; Crystal Structure of The Cand1-Cul1-Roc1 Complex 7LFF ; 2.01 ; Crystal structure of the Candida albicans kinesin-8 motor domain 3PPG ; 1.98 ; Crystal structure of the Candida albicans methionine synthase by surface entropy reduction, alanine variant with zinc 3PPF ; 2.3 ; Crystal structure of the Candida albicans methionine synthase by surface entropy reduction, alanine variant without zinc 3PPH ; 2.8 ; Crystal structure of the Candida albicans methionine synthase by surface entropy reduction, threonine variant 3PPC ; 2.2 ; Crystal structure of the Candida albicans methionine synthase by surface entropy reduction, tyrosine variant with zinc 4L64 ; 2.18 ; Crystal structure of the Candida albicans Methionine Synthase in complex with 5-Methyl-Tetrahydrofolate 4L65 ; 2.31 ; Crystal structure of the Candida albicans Methionine Synthase in complex with 5-Methyl-Tetrahydrofolate and Methionine 4L6O ; 1.88 ; Crystal structure of the Candida albicans Methionine Synthase in complex with Glutamine 4L5Z ; 2.18 ; Crystal structure of the Candida albicans Methionine Synthase in complex with Homocysteine 4L61 ; 2.13 ; Crystal structure of the Candida albicans Methionine Synthase in complex with Methionine 4L6H ; 1.75 ; Crystal structure of the Candida albicans Methionine Synthase in complex with Methotrexate and Homocysteine 5D06 ; 3.1 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme 7EKW ; 3.1 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (D535N) in complex with maltotetrose 5D0F ; 3.3 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (E564Q) in complex with maltopentaose 7EKX ; 3.4 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (W470A E564Q) in complex with maltononaose 7EJT ; 3.2 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (W470A) in complex with maltoheptaose 7EJP ; 3.1 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (W470A) in complex with maltohexaose 7EIM ; 3.1 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (W470A) in complex with maltopentaose 7EKU ; 3.1 ; Crystal Structure of the Candida Glabrata Glycogen Debranching Enzyme (W958A) 6WSK ; 1.55 ; Crystal Structure of the Cannabinoid Receptor 1 Interacting Protein 1a (CRIP1a) 3TF2 ; 2.1 ; Crystal structure of the cap free human translation initiation factor eIF4E 4ES5 ; 1.8 ; Crystal structure of the cap-binding domain of polymerase basic protein 2 from influenza virus A/Bar-headed Gs/Qinghai/15c/2005 (h5n1) with bound m7GTP 4EQK ; 1.95 ; Crystal structure of the cap-binding domain of polymerase basic protein 2 from influenza virus A/Hong Kong/1/68 (h3n2) with bound m7GTP 4ENF ; 1.32 ; Crystal structure of the cap-binding domain of polymerase basic protein 2 from influenza virus A/Puerto Rico/8/34(h1n1) 6EUW ; 1.0 ; Crystal structure of the cap-binding domain of the PB2 subunit of influenza A/H5N1 polymerase bound to an azaindazole inhibitor 2HKN ; 1.87 ; Crystal structure of the CAP-Gly domain of human Dynactin-1 (p150-Glued) 6S5V ; 1.35 ; Crystal structure of the Cap-Midlink region of the H5N1 Influenza A virus polymerase in complex with a Cap-domain binding analogue 4I1T ; 2.8 ; Crystal structure of the cap-snatching endonuclease from Pichinde virus 5X6X ; 2.1 ; Crystal structure of the capping enzyme P5 from Rice Dwarf Virus 7NY6 ; 1.34 ; Crystal structure of the Capsaspora owczarzaki macroH2A macrodomain 7NY7 ; 2.0 ; Crystal structure of the Capsaspora owczarzaki macroH2A macrodomain in complex with ADP-ribose 3R6J ; 1.75 ; Crystal Structure of the Capsid P Domain from Norwalk Virus Strain Hiroshima/1999 3R6K ; 1.6 ; Crystal Structure of the Capsid P Domain from Norwalk Virus Strain Hiroshima/1999 in complex with HBGA type B (triglycan) 4AGJ ; 1.98 ; Crystal structure of the capsid protein (110-267) from Aura virus in complex with dioxane 5YGH ; 1.884 ; Crystal Structure of the Capsid Protein from Zika Virus 8CRV ; 1.6 ; Crystal Structure of the Carbamate Kinase from Pseudomonas aeruginosa 1C3O ; 2.1 ; CRYSTAL STRUCTURE OF THE CARBAMOYL PHOSPHATE SYNTHETASE: SMALL SUBUNIT MUTANT C269S WITH BOUND GLUTAMINE 2AGZ ; 1.6 ; Crystal structure of the carbinolamine intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. F222 form 2AH0 ; 1.45 ; Crystal structure of the carbinolamine intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. Monoclinic form 3C22 ; 1.5 ; Crystal structure of the carbohydrate recognition domain of human Langerin 3LCP ; 2.45 ; Crystal structure of the carbohydrate recognition domain of LMAN1 in complex with MCFD2 1DV8 ; 2.3 ; CRYSTAL STRUCTURE OF THE CARBOHYDRATE RECOGNITION DOMAIN OF THE H1 SUBUNIT OF THE ASIALOGLYCOPROTEIN RECEPTOR 6PUV ; 1.2 ; Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin 6PY1 ; 1.701 ; Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc 6XIY ; 2.307 ; Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to methyl 2-(acetylamino)-2-deoxy-1-thio-alpha-D-galactopyranose 6W12 ; 2.0 ; Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to the Tumor-Associated Tn Antigen 6UT9 ; 1.21 ; Crystal structure of the carbohydrate-binding domain VP8* of human P[4] rotavirus strain BM5265 7KHU ; 2.54 ; Crystal structure of the carbohydrate-binding domain VP8* of human P[4] rotavirus strain BM5265 in complex with LNDFH I 6VKX ; 1.71 ; Crystal structure of the carbohydrate-binding domain VP8* of human P[8] rotavirus strain BM13851 7JHZ ; 2.68 ; Crystal structure of the carbohydrate-binding domain VP8* of human P[8] rotavirus strain BM13851 in complex with LNDFH I 3CPP ; 1.9 ; CRYSTAL STRUCTURE OF THE CARBON MONOXY-SUBSTRATE-CYTOCHROME P450-CAM TERNARY COMPLEX 2O4Z ; 2.1 ; Crystal structure of the Carbonic Anhydrase II complexed with hydroxysulfamide inhibitor 7O4Z ; 1.67 ; Crystal structure of the carbonic anhydrase-like domain of CcmM from Synechococcus elongatus (strain PCC 7942) 7O54 ; 1.63 ; Crystal structure of the carbonic anhydrase-like domain of CcmM in complex with the C-terminal 17 residues of CcaA from Synechococcus elongatus (strain PCC 7942) 2DFX ; 1.9 ; Crystal structure of the carboxy terminal domain of colicin E5 complexed with its inhibitor 1FUK ; 1.75 ; CRYSTAL STRUCTURE OF THE CARBOXY TERMINAL DOMAIN OF YEAST EIF4A 3CVE ; 1.75 ; Crystal Structure of the carboxy terminus of Homer1 3CVF ; 2.9 ; Crystal Structure of the carboxy terminus of Homer3 8IOM ; 3.0 ; Crystal structure of the carboxy-terminal channel-forming domain of Colicin Ib 7Y96 ; 3.415 ; Crystal structure of the carboxy-terminal domain of a coronavirus M protein fused with a split GFP 3HJC ; 2.5 ; Crystal structure of the carboxy-terminal domain of HSP90 from Leishmania major, LmjF33.0312 1SF8 ; 2.6 ; Crystal structure of the carboxy-terminal domain of htpG, the E. coli Hsp90 5NXQ ; 2.413 ; Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to a stapled Sld5 CIP 5HOG ; 3.092 ; Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Dna2. 4C93 ; 2.694 ; Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Pol alpha. 4C95 ; 2.694 ; Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Sld5 5HOI ; 3.3 ; Crystal structure of the carboxy-terminal domain of yeast Ctf4 bound to Tof2. 4UXF ; 2.0 ; Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34, P21 native crystal 4UXE ; 2.0 ; Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34, P21 selenomethionine crystal 4UXG ; 3.0 ; Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34, R32 native crystal 5NXH ; 2.89 ; Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34, residues 744-1289 at 2.9 Angstrom resolution 5NXF ; 1.9 ; Crystal structure of the carboxy-terminal region of the bacteriophage T4 proximal long tail fibre protein gp34, residues 795 to 1289, at 1.9 Angstrom. 2DJH ; 1.9 ; Crystal structure of the carboxy-terminal ribonuclease domain of Colicin E5 3VJ7 ; 2.3 ; Crystal structure of the carboxy-terminal ribonuclease domain of Colicin E5 R33Q mutant 1ZM0 ; 2.1 ; Crystal Structure of the Carboxyl Terminal PH Domain of Pleckstrin To 2.1 Angstroms 1X0U ; 2.2 ; Crystal Structure of the carboxyl transferase subunit of putative PCC of Sulfolobus tokodaii 3FLO ; 2.5 ; Crystal structure of the carboxyl-terminal domain of yeast DNA polymerase alpha in complex with its B subunit 1W2X ; 2.8 ; Crystal structure of the carboxyltransferase domain of acetyl- coenzyme A carboxylase in complex with CP-640186 3H0J ; 2.8 ; Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with compound 2 3H0Q ; 2.5 ; Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with compound 3 3H0S ; 2.43 ; Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with compound 7 3K8X ; 2.3 ; Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with tepraloxydim 3PGQ ; 2.8 ; Crystal Structure of the Carboxyltransferase Domain of S. cerevisiae Acetyl CoA Carboxylase in Complex with Pinoxaden 2NX9 ; 1.7 ; Crystal structure of the carboxyltransferase domain of the oxaloacetate decarboxylase Na+ pump from Vibrio cholerae 4G2R ; 2.28 ; Crystal Structure of the carboxyltransferase subunit of ACC (AccD6) in complex with inhibitor haloxyfop from Mycobacterium tuberculosis 6TZV ; 2.388 ; Crystal Structure of the carboxyltransferase subunit of ACC (AccD6) in complex with inhibitor Phenyl-Cyclodiaone from Mycobacterium tuberculosis 6PK2 ; 2.402 ; CRYSTAL STRUCTURE OF THE CARBOXYLTRANSFERASE SUBUNIT OF ACC (ACCD6) IN COMPLEX WITH INHIBITOR QUIZALOFOP-P derivative FROM MYCOBACTERIUM TUBERCULOSIS 6PRW ; 2.609 ; CRYSTAL STRUCTURE OF THE CARBOXYLTRANSFERASE SUBUNIT OF ACC (ACCD6) IN COMPLEX WITH INHIBITOR QUIZALOFOP-P DERIVATIVE FROM MYCOBACTERIUM TUBERCULOSIS 6P7U ; 2.198 ; CRYSTAL STRUCTURE OF THE CARBOXYLTRANSFERASE SUBUNIT OF ACC (ACCD6) IN COMPLEX WITH INHIBITOR QUIZALOFOP-P FROM MYCOBACTERIUM TUBERCULOSIS 2F9I ; 1.98 ; Crystal Structure of the carboxyltransferase subunit of ACC from Staphylococcus aureus 1PIX ; 2.2 ; Crystal structure of the carboxyltransferase subunit of the bacterial ion pump glutaconyl-coenzyme A decarboxylase 1JQG ; 2.5 ; Crystal Structure of the Carboxypeptidase A from Helicoverpa Armigera 3KAT ; 3.1 ; Crystal Structure of the CARD domain of the human NLRP1 protein, Northeast Structural Genomics Consortium Target HR3486E 3IDU ; 1.7 ; Crystal Structure of the CARDB domain of the PF1109 protein in complex with di-metal ions from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR193A 7KFL ; 2.35 ; Crystal structure of the cargo-binding domain from the plant class XI myosin (MyoXIk) 3IOQ ; 1.87 ; Crystal structure of the Carica candamarcensis cysteine protease CMS1MS2 in complex with E-64. 8FTY ; 1.95 ; Crystal structure of the carotenoid isomerooxygenase, NinaB 7ZVR ; 2.0 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP) complexed with zeaxanthin 7ZTQ ; 1.45 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP) in the apoform 7ZTU ; 1.9 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP) in the apoform, D162L mutant 7ZVQ ; 2.5 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP) in the apoform, S206V mutant 7ZTR ; 1.75 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP) in the apoform, W232F mutant 8AAQ ; 1.8 ; Crystal structure of the carotenoid-binding protein domain from silkworm Bombyx mori (BmCBP), CRT-416 form 4P6I ; 2.3 ; Crystal structure of the Cas1-Cas2 complex from Escherichia coli 7D3J ; 2.45 ; Crystal structure of the Cas12i1 R-loop complex after target DNA cleavage 7D2L ; 2.75 ; Crystal structure of the Cas12i1 R-loop complex before target DNA cleavage 7D8C ; 3.6 ; Crystal structure of the Cas12i1-crRNA binary complex 7VTI ; 1.89 ; Crystal structure of the Cas13bt3-crRNA binary complex 5G4D ; 1.701 ; Crystal structure of the Cas2 in T.onnurineus 6DD5 ; 2.85 ; Crystal Structure of the Cas6 Domain of Marinomonas mediterranea MMB-1 Cas6-RT-Cas1 Fusion Protein 4IS7 ; 2.751 ; Crystal Structure of the CASKIN2 SAM Domain Tandem 1KMC ; 2.9 ; Crystal Structure of the Caspase-7 / XIAP-BIR2 Complex 1I4E ; 3.0 ; CRYSTAL STRUCTURE OF THE CASPASE-8/P35 COMPLEX 1SY7 ; 1.75 ; Crystal structure of the catalase-1 from Neurospora crassa, native structure at 1.75A resolution. 2CCA ; 2.0 ; Crystal structure of the catalase-peroxidase (KatG) and S315T mutant from Mycobacterium tuberculosis 2CCD ; 2.1 ; Crystal structure of the catalase-peroxidase (KatG) and S315T mutant from Mycobacterium tuberculosis 4C50 ; 2.5 ; Crystal Structure of the Catalase-Peroxidase (KatG) D137S mutant from Mycobacterium Tuberculosis 4C51 ; 3.1 ; Crystal Structure of the Catalase-Peroxidase (KatG) R418L mutant from Mycobacterium Tuberculosis 5KSK ; 1.69 ; Crystal structure of the catalase-peroxidase from B. pseudomallei treated with acetate 5KT9 ; 1.88 ; Crystal structure of the catalase-peroxidase from B. pseudomallei treated with hydrogen peroxide and carbon monoxide 6B9B ; 1.8 ; Crystal structure of the catalase-peroxidase from B. pseudomallei with maltose bound 5WHS ; 2.6 ; Crystal structure of the catalase-peroxidase from Neurospora crassa at 2.6 A 5WHQ ; 2.9 ; Crystal structure of the catalase-peroxidase from Neurospora crassa at 2.9 A 5SX3 ; 2.0 ; Crystal structure of the catalase-peroxidase KatG of B. pseudomaallei at pH 4.5 5SX6 ; 1.9 ; Crystal structure of the catalase-peroxidase KatG of B. pseudomallei at pH 6.5 3X16 ; 2.65 ; Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 6ZZI ; 1.932 ; Crystal structure of the catalyic domain of Corynebacterium glutamicum acetyltransferase AceF (E2p). 2HNH ; 2.3 ; Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III 2HQA ; 2.6 ; Crystal structure of the catalytic alpha subunit of E. Coli replicative DNA polymerase III 4GT8 ; 1.51 ; Crystal Structure of the Catalytic and ATP-binding Domain from VraS in Complex with ADP 2AQX ; 2.5 ; Crystal Structure of the Catalytic and CaM-Binding domains of Inositol 1,4,5-Trisphosphate 3-Kinase B 8H70 ; 1.88 ; Crystal structure of the catalytic ATP-binding domain of the PhoR sensor histidine kinase from Vibrio cholera 3DLR ; 2.2 ; Crystal structure of the catalytic core domain from PFV integrase 3K3N ; 2.4 ; Crystal structure of the catalytic core domain of human PHF8 3K3O ; 2.1 ; Crystal structure of the catalytic core domain of human PHF8 complexed with alpha-ketoglutarate 2GP3 ; 2.35 ; Crystal structure of the catalytic core domain of jmjd2a 3DXT ; 1.8 ; Crystal structure of the catalytic core domain of JMJD2D 5CZ1 ; 1.7 ; Crystal structure of the catalytic core domain of MMTV integrase 5OYH ; 2.249 ; crystal structure of the catalytic core of a rhodopsin-guanylyl cyclase with converted specificity in complex with ATPalphaS 3IVK ; 3.1 ; Crystal Structure of the Catalytic Core of an RNA Polymerase Ribozyme Complexed with an Antigen Binding Antibody Fragment 5U7G ; 2.401 ; Crystal Structure of the Catalytic Core of CBP 4LJQ ; 2.45 ; Crystal structure of the catalytic core of E3 ligase HOIP 6AS7 ; 2.95 ; CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF HUMAN DNA POLYMERASE ALPHA IN TERNARY COMPLEX WITH AN DNA-PRIMED DNA TEMPLATE AND DCTP 4Q5V ; 2.52 ; Crystal structure of the catalytic core of human DNA polymerase alpha in ternary complex with an RNA-primed DNA template and aphidicolin 4QCL ; 2.2 ; Crystal structure of the catalytic core of human DNA polymerase alpha in ternary complex with an RNA-primed DNA template and dCTP 1T94 ; 2.4 ; Crystal structure of the catalytic core of human DNA polymerase kappa 1TZD ; 2.2 ; CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF INOSITOL 1,4,5-TRISPHOSPHATE 3-KINASE 1JMS ; 2.36 ; Crystal Structure of the Catalytic Core of Murine Terminal Deoxynucleotidyl Transferase 4NLB ; 2.4 ; Crystal structure of the catalytic core of RRP6 from Trypanosoma brucei 4NLC ; 2.15 ; Crystal structure of the catalytic core of RRP6 from Trypanosoma brucei, mutant C496S 3RQC ; 4.01 ; Crystal structure of the catalytic core of the 2-oxoacid dehydrogenase multienzyme complex from Thermoplasma acidophilum 4I4N ; 1.84 ; Crystal Structure of the catalytic Cys to Ala mutant of VcHsp31 from Vibrio cholerae 6MGJ ; 2.0 ; Crystal structure of the catalytic domain from GH74 enzyme PoGH74 from Paenibacillus odorifer, apoenzyme 6MGL ; 1.5 ; Crystal structure of the catalytic domain from GH74 enzyme PoGH74 from Paenibacillus odorifer, D60A mutant in complex with XXLG and XGXXLG xyloglucan 6MGK ; 2.1 ; Crystal structure of the catalytic domain from GH74 enzyme PoGH74 from Paenibacillus odorifer, in complex with XLX xyloglucan 8OW8 ; 2.0 ; Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium 4RL3 ; 1.57 ; Crystal Structure of the Catalytic Domain of a family GH18 Chitinase from fern, Peteris ryukyuensis 7V91 ; 1.6 ; Crystal Structure of the Catalytic Domain of a Family GH19 Chitinase from Gazyumaru, Ficus microcarpa 6JP4 ; 2.069 ; Crystal structure of the catalytic domain of a multi-domain alginate lyase Dp0100 from thermophilic bacterium Defluviitalea phaphyphila 6JPH ; 2.759 ; Crystal structure of the catalytic domain of a multi-domain alginate lyase Dp0100 from thermophilic bacterium Defluviitalea phaphyphila 6JPN ; 2.85 ; Crystal structure of the catalytic domain of a multi-domain alginate lyase Dp0100 from thermophilic bacterium Defluviitalea phaphyphila 1GH2 ; 2.22 ; Crystal structure of the catalytic domain of a new human thioredoxin-like protein 1TML ; 1.8 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF A THERMOPHILIC ENDOCELLULASE 3HY9 ; 2.02 ; Crystal Structure of the Catalytic Domain of ADAMTS-5 in Complex with an Amino-2-indanol compound 3HYG ; 1.4 ; Crystal Structure of the Catalytic Domain of ADAMTS-5 in Complex with an Amino-2-indanol compound 3LJT ; 1.6 ; Crystal Structure of the Catalytic Domain of ADAMTS-5 in Complex with an Amino-2-indanol compound 3HY7 ; 1.69 ; Crystal Structure of the Catalytic Domain of ADAMTS-5 in Complex with Marimastat 6YJM ; 2.25 ; Crystal Structure of the Catalytic Domain of ADAMTS-5 in Complex with the Inhibitor GLPG1972 2VK9 ; 2.85 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF ALPHA-TOXIN FROM CLOSTRIDIUM NOVYI 1ZY7 ; 1.7 ; Crystal structure of the catalytic domain of an adenosine deaminase that acts on RNA (hADAR2) bound to inositol hexakisphosphate (IHP) 7WME ; 1.7 ; Crystal Structure of the catalytic domain of At-HIGLE 1ZRZ ; 3.0 ; Crystal Structure of the Catalytic Domain of Atypical Protein Kinase C-iota 4ASM ; 1.5 ; Crystal structure of the catalytic domain of beta-agarase D from Zobellia galactanivorans 3VOC ; 1.95 ; Crystal structure of the catalytic domain of beta-amylase from paenibacillus polymyxa 4ELC ; 1.8 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A C134 mutant with MTSEA modified Cys-165 4KUF ; 1.697 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A C134 mutant with MTSEA modified Cys-165 causing stretch disorder 4KS6 ; 1.93 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A C134S mutant with covalent inhibitor that modifies Cys-165 causing disorder in 166-174 stretch 4KTX ; 2.59 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A C134S mutant with covalent inhibitor that modifies Cys-165 causing disorder in 167-174 stretch 4EL4 ; 1.2 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A C134S/C165S double mutant 4EJ5 ; 1.87 ; Crystal structure of the catalytic domain of botulinum neurotoxin BoNT/A wild-type 4ZJX ; 1.94 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with a Novel Cyclic Peptide Inhibitor 3DDA ; 1.5 ; Crystal structure of the catalytic domain of Botulinum neurotoxin serotype a with a snap-25 peptide 3DDB ; 1.6 ; Crystal structure of the catalytic domain of Botulinum neurotoxin serotype a with a substrate analog peptide 3BWI ; 1.7 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with an acetate ion bound at the active site 3C88 ; 1.6 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with inhibitory peptide RRGC 3C8B ; 1.47 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with inhibitory peptide RRGI 3C8A ; 1.52 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with inhibitory peptide RRGL 3C89 ; 1.58 ; Crystal structure of the catalytic domain of botulinum neurotoxin serotype A with inhibitory peptide RRGM 7DVL ; 2.006 ; Crystal Structure of the Catalytic Domain of Botulinum Neurotoxin Subtype A3 6F47 ; 1.35 ; Crystal structure of the catalytic domain of botulinum neurotoxin X 1O0R ; 2.3 ; Crystal structure of the catalytic domain of bovine beta1,4-galactosyltransferase complex with UDP-galactose 2FYC ; 2.0 ; Crystal structure of the catalytic domain of bovine beta1,4-galactosyltransferase-I in complex with alpha-lactalbumin, Ca and UDP-galactose 3RHK ; 1.94 ; Crystal structure of the catalytic domain of c-Met kinase in complex with ARQ 197 6ZZK ; 2.09 ; Crystal structure of the catalytic domain of C. glutamicum AceF (E2p) in ternary complex with CoA and dihydrolipoamide. 6KST ; 1.25 ; Crystal structure of the catalytic domain of chitinase ChiL from Chitiniphilus shinanonensis (CsChiL) 6KXL ; 1.35 ; Crystal structure of the catalytic domain of Chitiniphilus shinanonensis chitinase ChiL (CsChiL) complexed with N,N'-diacetylchitobiose 3QHP ; 1.5 ; Crystal structure of the catalytic domain of cholesterol-alpha-glucosyltransferase from Helicobacter pylori 5TSP ; 1.24 ; Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase (NanI) in complex with a CHES 1ZMN ; 2.05 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with (R)-1-(4-(4-(hydroxymethyl)-1,3,2-dioxaborolan-2-yl)phenyl)guanidine 1ZTK ; 2.5 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with 2-(5-Amino-6-oxo-2-m-tolyl-6H-pyrimidin-1-yl)-N-[4-guanidino-1-(thiazole-2-carbonyl)-butyl]-acetamide 1ZTJ ; 2.05 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with 2-(5-Benzylamino-2-methylsulfanyl-6-oxo-6H-pyrimidin-1-yl)-N-[4-guanidino-1-(thiazole-2-carbonyl)-butyl]-acetamide 1ZPC ; 2.6 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with 2-[2-(3-Chloro-phenyl)-2-hydroxy-acetylamino]-N-[4-guanidino-1-(thiazole-2-carbonyl)-butyl]-3-methyl-butyramide 1ZPB ; 2.1 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with 4-Methyl-pentanoic acid {1-[4-guanidino-1-(thiazole-2-carbonyl)-butylcarbamoyl]-2-methyl-propyl}-amide 1ZSK ; 1.9 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with 6-Carbamimidoyl-4-(3-hydroxy-2-methyl-benzoylamino)-naphthalene-2-carboxylic acid methyl ester 1ZOM ; 2.25 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in complex with a peptidomimetic Inhibitor 1ZHR ; 1.73 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with Benzamidine (S434A-T475A-C482S-K437A Mutant) 1ZHP ; 2.7 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with Benzamidine (S434A-T475A-K505 Mutant) 1ZJD ; 2.6 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with Kunitz Protease Inhibitor Domain of Protease Nexin II 1ZSJ ; 1.9 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in complex with N-(7-Carbamimidoyl-naphthalen-1-yl)-3-hydroxy-2-methyl-benzamide 1ZTL ; 2.6 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with N-[4-Guanidino-1-(thiazole-2-carbonyl)-butyl]-2-{6-oxo-5-[(quinolin-8-ylmethyl)-amino]-2-m-tolyl-6H-pyrimidin-1-yl}-acetamide 6TWB ; 2.91 ; Crystal Structure of the Catalytic Domain of Coagulation Factor XIa in Complex with Double Bridged Peptide F19 6ZZJ ; 1.35 ; Crystal structure of the catalytic domain of Corynebacterium glutamicum acetyltransferase AceF (E2p) in complex with oxidized CoA. 6ZZM ; 2.5 ; Crystal structure of the catalytic domain of Corynebacterium mustelae predicted acetyltransferase AceF (E2p). 4ONW ; 1.65 ; Crystal structure of the catalytic domain of DapE protein from V.cholerea 4OP4 ; 1.651 ; Crystal structure of the catalytic domain of DapE protein from V.cholerea in the Zn bound form 1XPI ; 2.2 ; Crystal structure of the catalytic domain of E. coli pseudouridine synthase RluC 1HQ0 ; 1.83 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF E.COLI CYTOTOXIC NECROTIZING FACTOR TYPE 1 1ZML ; 2.25 ; Crystal Structure of the Catalytic Domain of Factor XI in complex with (R)-1-(4-(4-(hydroxymethyl)-1,3,2-dioxaborolan-2-yl)phenethyl)guanidine 1ZMJ ; 2.0 ; Crystal Structure of the Catalytic Domain of Factor XI in complex with 4-(guanidinomethyl)-phenylboronic acid 3RHX ; 2.01 ; Crystal structure of the catalytic domain of FGFR1 kinase in complex with ARQ 069 3RI1 ; 2.1 ; Crystal structure of the catalytic domain of FGFR2 kinase in complex with ARQ 069 2XDV ; 2.57 ; Crystal Structure of the Catalytic Domain of FLJ14393 8AKP ; 1.9 ; Crystal structure of the catalytic domain of G7048 from Penicillium sumatraense 1ITG ; 2.3 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HIV-1 INTEGRASE: SIMILARITY TO OTHER POLYNUCLEOTIDYL TRANSFERASES 1R55 ; 1.58 ; Crystal structure of the catalytic domain of human ADAM 33 1R54 ; 1.85 ; Crystal structure of the catalytic domain of human ADAM33 2FDA ; 2.0 ; Crystal Structure of the Catalytic Domain of Human Coagulation Factor XIa in Complex with alpha-Ketothiazole Arginine Derived Ligand 1ELV ; 1.7 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN COMPLEMENT C1S PROTEASE 5BYB ; 2.3 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and 1,5-(PA)2-IP4 5BYA ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and 1,5-(PCP)2-IP4 3T9F ; 2.0 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and 1,5-(PP)2-IP4 (1,5-IP8) 5DGI ; 1.85 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and 3,5-(PCP)2-IP4 3T99 ; 2.1 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and in the absence of cadmium at pH 7.0 4Q4C ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP and synthetic 1,5-(PP)2-IP4 (1,5-IP8) 3T7A ; 1.7 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP at pH 5.2 3T9E ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ADP, 5-(PP)-IP5 (5-IP7) and MgF3 (transition state mimic) 8G9E ; 1.75 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMP-PNP and 5-(PCF2P)-IP5, an analog of 5-IP7 5DGH ; 2.1 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMP-PNP and 5-(PCP)-IP5 4Q4D ; 1.85 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMP-PNP and synthetic 3,5-(PP)2-IP4 (3,5-IP8) 3T9D ; 1.85 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMPPNP and 5-(PP)-IP5 (5-IP7) 4HN2 ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMPPNP and a substrate analog 5PA-IP5 3T9C ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMPPNP and inositol hexakisphosphate (IP6) 3T9B ; 1.85 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMPPNP at pH 5.2 3T9A ; 1.8 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with AMPPNP at pH 7.0 3T54 ; 1.9 ; Crystal structure of the catalytic domain of human diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) in complex with ATP and Cadmium 1ZWS ; 2.9 ; Crystal structure of the catalytic domain of human DRP-1 kinase 4Y2E ; 1.67 ; Crystal structure of the catalytic domain of human dual-specificity phosphatase 7 (C232S) 4JNB ; 3.0 ; Crystal structure of the Catalytic Domain of Human DUSP12 4KI9 ; 2.0 ; Crystal structure of the catalytic domain of human DUSP12 at 2.0 A resolution 4B04 ; 2.205 ; Crystal structure of the Catalytic Domain of Human DUSP26 (C152S) 6OZE ; 1.5 ; Crystal structure of the catalytic domain of human Endonuclease V (C140S/C225S/C226A/C228S) 1SLN ; 2.27 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST STROMELYSIN-1 INHIBITED WITH THE N-CARBOXY-ALKYL INHIBITOR L-702,842 1HFS ; 1.7 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST STROMELYSIN-1 INHIBITED WITH THE N-CARBOXY-ALKYL INHIBITOR L-764,004 2USN ; 2.2 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST STROMELYSIN-1 INHIBITED WITH THIADIAZOLE INHIBITOR PNU-141803 1USN ; 1.8 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST STROMELYSIN-1 INHIBITED WITH THIADIAZOLE INHIBITOR PNU-142372 3PB4 ; 1.13 ; Crystal structure of the catalytic domain of human Golgi-resident glutaminyl cyclase at pH 6.0 3PB6 ; 1.05 ; Crystal structure of the catalytic domain of human Golgi-resident glutaminyl cyclase at pH 6.5 3PB9 ; 1.12 ; Crystal structure of the catalytic domain of human Golgi-resident glutaminyl cyclase in complex with 1-benzylimidazole 3PB8 ; 1.13 ; Crystal structure of the catalytic domain of human Golgi-resident glutaminyl cyclase in complex with N-acetylhistamine 3PB7 ; 1.4 ; Crystal structure of the catalytic domain of human Golgi-resident glutaminyl cyclase in complex with PBD150 3KVO ; 2.25 ; Crystal structure of the catalytic domain of human Hydroxysteroid dehydrogenase like 2 (HSDL2) 2A98 ; 2.6 ; Crystal structure of the catalytic domain of human inositol 1,4,5-trisphosphate 3-kinase C 5FZ0 ; 2.42 ; Crystal structure of the catalytic domain of human JARID1B in complex with 2,5-dichloro-N-(pyridin-3-yl)thiophene-3-carboxamide (N08137b) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZ4 ; 2.07 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment (3R)-1-[(3-phenyl-1,2,4-oxadiazol-5-yl)methyl]pyrrolidin-3-ol (N10057a) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FYT ; 1.87 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment (5-fluoro-2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid (N09996a) 5FYZ ; 1.75 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment 2-(2-oxo-2,3-dihydro-1H-indol-3-yl)acetonitrile (N10063a) 5FZA ; 2.099 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment 2-piperidin-4-yloxy-5-(trifluoromethyl)pyridine (N10072a) (ligand modelled based on PANDDA event map) 5FYU ; 2.06 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment 3-Amino-4-methyl-1,3-dihydro-2H-indol-2-one (N10042a) 5FZL ; 2.55 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment 3-methyl-N-pyridin-4-yl-1,2-oxazole-5-carboxamide (N09954a) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZM ; 2.49 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment 5-(2-fluorophenyl)-1,3-oxazole-4-carboxylic acid (N09989b) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZK ; 2.05 ; Crystal structure of the catalytic domain of human JARID1B in complex with 3D fragment N,3-dimethyl-N-(pyridin-3-ylmethyl)-1,2-oxazole-5- carboxamide (N10051a) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FYS ; 1.89 ; Crystal structure of the catalytic domain of human JARID1B in complex with D-2-hydroxyglutarate 5FY5 ; 2.47 ; Crystal structure of the catalytic domain of human JARID1B in complex with fumarate 5FZD ; 2.05 ; Crystal structure of the catalytic domain of human JARID1B in complex with L-2-hydroxyglutarate 5FZ8 ; 1.86 ; Crystal structure of the catalytic domain of human JARID1B in complex with malate 5FZ1 ; 2.39 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 2,4-dichloro-N-pyridin-3-ylbenzamide (E48115b) (ligand modelled based on PANDDA event map) 5FZ3 ; 2.5 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 3,6-Dihydroxybenzonorbornane (N08776b) (ligand modelled based on PANDDA event map) 5FYY ; 2.18 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 3-pyridin-3-ylaniline (N05798a) (ligand modelled based on PANDDA event map) 5FZC ; 2.05 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 4,5-dihydronaphtho(1,2-b)thiophene-2- carboxylicacid (N11181a) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZH ; 2.09 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 4,5-dihydronaphtho(1,2-b)thiophene-2- carboxylicacid (N11181a) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZB ; 2.18 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment 4-Pyridylthiourea (N06275b) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZ7 ; 2.3 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment ethyl 2-amino-4-thiophen-2-ylthiophene-3- carboxylate (N06131b) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZ6 ; 2.33 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment N05859b (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FZ9 ; 2.06 ; Crystal structure of the catalytic domain of human JARID1B in complex with Maybridge fragment thieno(3,2-b)thiophene-5-carboxylic acid (N06263b) (ligand modelled based on PANDDA event map, SGC - Diamond I04-1 fragment screening) 5FYB ; 1.87 ; Crystal structure of the catalytic domain of human JARID1B in complex with MC1648 5FZI ; 1.95 ; Crystal structure of the catalytic domain of human JARID1B in complex with MC3095 5FZG ; 1.96 ; Crystal structure of the catalytic domain of human JARID1B in complex with MC3948 5FZE ; 2.02 ; Crystal structure of the catalytic domain of human JARID1B in complex with MC3960 5FZF ; 1.97 ; Crystal structure of the catalytic domain of human JARID1B in complex with MC3962 5FYV ; 1.87 ; Crystal structure of the catalytic domain of human JARID1B in complex with oxaloacetate 5FY9 ; 2.03 ; Crystal structure of the catalytic domain of human JARID1B in complex with pyruvate 5FY4 ; 2.1 ; Crystal structure of the catalytic domain of human JARID1B in complex with succinate 5FZO ; 1.84 ; Crystal structure of the catalytic domain of human JmjD1C 4ARK ; 2.6 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN MAP KINASE KINASE 1 (MEK1) IN COMPLEX WITH A SMALL MOLECULE INHIBITOR AND ADP 1Q3A ; 2.1 ; Crystal structure of the catalytic domain of human matrix metalloproteinase 10 2OUD ; 2.8 ; Crystal structure of the catalytic domain of human MKP5 1Y93 ; 1.03 ; Crystal structure of the catalytic domain of human MMP12 complexed with acetohydroxamic acid at atomic resolution 3EHY ; 1.9 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor (R)-2-(4-methoxyphenylsulfonamido)propanoic acid 3EHX ; 1.9 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor (R)-2-(biphenyl-4-ylsulfonamido)-4-methylpentanoic acid 3F16 ; 1.16 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor (R)-N-(3-hydroxy-1-nitroso-1-oxopropan-2-yl)-4-methoxybenzenesulfonamide 3F15 ; 1.7 ; Crystal structure of the catalytic domain of human mmp12 complexed with the inhibitor (S)-N-(2,3-dihydroxypropyl)-4-methoxy-N-(2-nitroso-2-oxoethyl)benzenesulfonamide 3F18 ; 1.13 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor 4-fluoro-N-(2-hydroxyethyl)-N-(2-nitroso-2-oxoethyl)benzenesulfonamide 3F19 ; 1.13 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor 4-fluoro-N-(2-nitroso-2-oxoethyl)benzenesulfonamide 3F1A ; 1.25 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor N-(2-nitroso-2-oxoethyl)benzenesulfonamide 3F17 ; 1.1 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor N-(2-nitroso-2-oxoethyl)biphenyl-4-sulfonamide 3N2U ; 1.81 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor N-hydroxy-2-(4-methoxy-N(2-(3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)ethyl)phenylsulfonamido)acetamide 3NX7 ; 1.8 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor N-Hydroxy-2-(N-(2-hydroxyethyl)4-methoxyphenylsulfonamido)acetamide 3N2V ; 1.55 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor N-hydroxy-2-(N-hydroxyethyl)biphenyl-4-ylsulfonamido)acetamide 5LAB ; 1.34 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor NNGH 1RMZ ; 1.34 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor NNGH at 1.3 A resolution 3LK8 ; 1.8 ; Crystal structure of the catalytic domain of human MMP12 complexed with the inhibitor paramethoxy-sulfonyl-glycine hydroxamate 4H76 ; 1.5 ; Crystal structure of the catalytic domain of Human MMP12 in complex with a broad spectrum hydroxamate inhibitor 5CXA ; 1.3 ; Crystal structure of the catalytic domain of Human MMP12 in complex with a carboxylate inhibitor related to RXP470 4H84 ; 1.592 ; Crystal structure of the catalytic domain of Human MMP12 in complex with a selective carboxylate based inhibitor. 4GQL ; 1.15 ; Crystal structure of the catalytic domain of Human MMP12 in complex with selective phosphinic inhibitor RXP470.1 4GR3 ; 1.494 ; Crystal structure of the catalytic domain of Human MMP12 in complex with selective phosphinic inhibitor RXP470A 4GR0 ; 1.497 ; Crystal structure of the catalytic domain of Human MMP12 in complex with selective phosphinic inhibitor RXP470B 4GR8 ; 1.299 ; Crystal structure of the catalytic domain of Human MMP12 in complex with selective phosphinic inhibitor RXP470C 6SCX ; 2.92 ; Crystal structure of the catalytic domain of human NUDT12 in complex with 7-methyl-guanosine-5'-triphosphate 7AAA ; 1.74 ; Crystal structure of the catalytic domain of human PARP1 (apo) 7AAB ; 2.8 ; Crystal structure of the catalytic domain of human PARP1 in complex with inhibitor EB-47 7AAD ; 2.21 ; Crystal structure of the catalytic domain of human PARP1 in complex with olaparib 7AAC ; 1.593 ; Crystal structure of the catalytic domain of human PARP1 in complex with veliparib 5B4L ; 2.4 ; Crystal structure of the catalytic domain of human PDE10A complexed with 1-(cyclopropylmethyl)-5-(2-(2,3-dihydro-1H-imidazo[1,2-a]benzimidazol-1-yl)ethoxy)-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one 5B4K ; 2.9 ; Crystal structure of the catalytic domain of human PDE10A complexed with N-(4-((5-methyl-5H-pyrrolo[3,2-d]pyrimidin-4-yl)oxy)phenyl)-1H-benzimidazol-2-amine 7L27 ; 1.7 ; Crystal structure of the catalytic domain of human PDE3A 7L29 ; 2.08 ; Crystal structure of the catalytic domain of human PDE3A bound to AMP 7KWE ; 2.0 ; Crystal structure of the catalytic domain of human PDE3A bound to DNMDP 7L28 ; 2.2 ; Crystal structure of the catalytic domain of human PDE3A bound to Trequinsin 8UAK ; 2.82 ; Crystal structure of the catalytic domain of human PKC alpha (D463N, V568I, S657E) in complex with Darovasertib (NVP-LXS196) at 2.82-A resolution 8U37 ; 2.48 ; Crystal structure of the catalytic domain of human PKC alpha (D463N, V568I, S657E) in complex with NVP-CJL037 at 2.48-A resolution 5A3P ; 2.008 ; Crystal structure of the catalytic domain of human PLU1 (JARID1B). 5J8R ; 2.043 ; Crystal Structure of the Catalytic Domain of Human Protein Tyrosine Phosphatase non-receptor Type 12 - K61R mutant 2OC3 ; 1.5 ; Crystal Structure of the Catalytic Domain of Human Protein Tyrosine Phosphatase non-receptor Type 18 4IQM ; 1.8 ; Crystal structure of the catalytic domain of human Pus1 4J37 ; 1.75 ; Crystal structure of the catalytic domain of human Pus1 4ITS ; 1.85 ; Crystal structure of the catalytic domain of human Pus1 with MES in the active site 4HNE ; 2.95 ; Crystal structure of the catalytic domain of human type II alpha Phosphatidylinositol 4-kinase (PI4KIIalpha) in complex with ADP 2A8B ; 2.3 ; Crystal Structure of the Catalytic Domain of Human Tyrosine Phosphatase Receptor, Type R 2AHS ; 2.1 ; Crystal Structure of the Catalytic Domain of Human Tyrosine Receptor Phosphatase Beta 5J3P ; 3.1 ; Crystal structure of the catalytic domain of human tyrosyl DNA phosphodiesterase 2 5J3S ; 3.4 ; Crystal structure of the catalytic domain of human tyrosyl DNA phosphodiesterase 2 in complex with a small molecule inhibitor 6LOH ; 3.207 ; Crystal structure of the catalytic domain of human ubiquitin ligase AREL1 5WCH ; 2.5 ; Crystal structure of the catalytic domain of human USP9X 7XLO ; 2.6 ; Crystal Structure of the Catalytic Domain of Inosine Monophosphate Dehydrogenase (IMPDH) from Methanocaldococcus jannaschii 2VL8 ; 2.31 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF LETHAL TOXIN FROM CLOSTRIDIUM SORDELLII IN COMPLEX WITH UDP, CASTANOSPERMINE AND CALCIUM ION 2VKH ; 2.3 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF LETHAL TOXIN FROM CLOSTRIDIUM SORDELLII IN COMPLEX WITH UDP-GLC AND CALCIUM ION 2VKD ; 2.53 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF LETHAL TOXIN FROM CLOSTRIDIUM SORDELLII IN COMPLEX WITH UDP-GLC AND MANGANESE ION 3BLE ; 2.0 ; Crystal structure of the catalytic domain of LiCMS in complexed with malonate 3BLF ; 2.6 ; Crystal structure of the catalytic domain of LiCMS in complexed with pyruvate 3BLI ; 2.5 ; Crystal structure of the catalytic domain of LiCMS in complexed with pyruvate and acetyl-CoA 5ZJV ; 1.82 ; Crystal structure of the catalytic domain of MCR-1 (cMCR-1) in complex with xylose 5H0U ; 2.239 ; Crystal structure of the catalytic domain of membrane type 1 matrix metalloproteinase 5K7W ; 1.65 ; Crystal structure of the catalytic domain of Mettl3/Mettl14 complex with SAH 3QTC ; 1.75 ; Crystal structure of the catalytic domain of MmOmeRS, an O-methyl tyrosyl-tRNA synthetase evolved from Methanosarcina mazei PylRS, complexed with O-methyl tyrosine and AMP-PNP 2J0T ; 2.54 ; Crystal Structure of the Catalytic Domain of MMP-1 in Complex with the Inhibitory Domain of TIMP-1 5I0L ; 2.45 ; Crystal structure of the catalytic domain of MMP-12 in complex with a selective sugar-conjugated arylsulfonamide carboxylate water-soluble inhibitor (DC27). 5I3M ; 2.17 ; Crystal structure of the catalytic domain of MMP-12 in complex with a selective sugar-conjugated thiourea-linked carboxylate zinc-chelator water-soluble inhibitor (DC31). 5I2Z ; 2.3 ; Crystal structure of the catalytic domain of MMP-12 in complex with a selective sugar-conjugated triazole-linked carboxylate chelating water-soluble inhibitor (DC24). 5I43 ; 1.95 ; Crystal structure of the catalytic domain of MMP-12 in complex with a selective sugar-conjugated triazole-linked carboxylate chelator water-soluble inhibitor (DC32). 5I4O ; 2.05 ; Crystal structure of the catalytic domain of MMP-12 in complex with a selective sugar-conjugated triazole-linked carboxylate zinc-chelator water-soluble inhibitor (DC28). 4H30 ; 1.43 ; Crystal structure of the catalytic domain of MMP-12 in complex with a twin inhibitor. 4H49 ; 2.16 ; Crystal structure of the catalytic domain of MMP-12 in complex with a twin inhibitor. 3WV1 ; 1.98 ; Crystal structure of the catalytic domain of MMP-13 complexed with 4-(2-((6-fluoro-2-((3-methoxybenzyl)carbamoyl)-4-oxo-3,4-dihydroquinazolin-5-yl)oxy)ethyl)benzoic acid 5B5P ; 1.6 ; Crystal structure of the catalytic domain of MMP-13 complexed with 4-oxo-N-(3-(2-(1H-1,2,4-triazol-3-ylsulfanyl)ethoxy)benzyl)-3,4-dihydroquinazoline-2-carboxamide 1YOU ; 2.3 ; Crystal structure of the catalytic domain of MMP-13 complexed with a potent pyrimidinetrione inhibitor 3WV2 ; 2.3 ; Crystal structure of the catalytic domain of MMP-13 complexed with N-(3-methoxybenzyl)-4-oxo-3,4-dihydroquinazoline-2-carboxamide 3WV3 ; 1.6 ; Crystal structure of the catalytic domain of MMP-13 complexed with N-(3-methoxybenzyl)-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-2-carboxamide 5B5O ; 1.2 ; Crystal structure of the catalytic domain of MMP-13 complexed with N-phenyl-4-((4H-1,2,4-triazol-3-ylsulfanyl)methyl)-1,3-thiazol-2-amine 1ZTQ ; 2.0 ; Crystal structure of the catalytic domain of MMP-13 complexed with WAY-033 2PJT ; 2.8 ; Crystal structure of the catalytic domain of MMP-13 complexed with WAY-344 1RM8 ; 1.8 ; Crystal structure of the catalytic domain of MMP-16/MT3-MMP: Characterization of MT-MMP specific features 5I12 ; 1.59 ; Crystal structure of the catalytic domain of MMP-9 in complex with a selective sugar-conjugated arylsulfonamide carboxylate water-soluble inhibitor (DC27). 2F7T ; 2.25 ; Crystal structure of the catalytic domain of Mos1 mariner transposase 6O3P ; 1.6 ; Crystal structure of the catalytic domain of mouse Nudt12 in complex with AMP and 3 Mg2+ ions 5FOH ; 1.6 ; Crystal structure of the catalytic domain of NcLPMO9A 4ONJ ; 2.807 ; Crystal structure of the catalytic domain of ntDRM 6XQZ ; 2.04 ; Crystal structure of the catalytic domain of PBP2 S310A from Neisseria gonorrhoeae at pH 7.5 6XQY ; 1.9 ; Crystal structure of the catalytic domain of PBP2 S310A from Neisseria gonorrhoeae at pH 9.5 6XQV ; 2.05 ; Crystal structure of the catalytic domain of PBP2 S310A from Neisseria gonorrhoeae in a pre-acylation complex with ceftriaxone 6XQX ; 2.15 ; Crystal structure of the catalytic domain of PBP2 S310A from Neisseria gonorrhoeae with the H514A mutation at pH 7.5 3WYM ; 2.0 ; Crystal structure of the catalytic domain of PDE10A complexed with 1-(2-fluoro-4-(1H-pyrazol-1-yl)phenyl)-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one 5AXP ; 1.95 ; Crystal structure of the catalytic domain of PDE10A complexed with 1-(2-fluoro-4-(2-oxo-1,3-oxazolidin-3-yl)phenyl)-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one 3WYK ; 2.5 ; Crystal structure of the catalytic domain of PDE10A complexed with 3-(1-phenyl-1H-pyrazol-5-yl)-1-(3-(trifluoromethyl)phenyl)pyridazin-4(1H)-one 3WYL ; 2.68 ; Crystal structure of the catalytic domain of PDE10A complexed with 5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-1-(3-(trifluoromethyl)phenyl)pyridazin-4(1H)-one 5AXQ ; 1.77 ; Crystal structure of the catalytic domain of PDE10A complexed with highly potent and brain-penetrant PDE10A Inhibitor with 2-oxindole scaffold 3SL5 ; 2.65 ; Crystal structure of the catalytic domain of PDE4D2 complexed with compound 10d 3V9B ; 2.1 ; Crystal structure of the catalytic domain of PDE4D2 with (S)-N-(3-{1-[1-(3-Cyclopropylmethoxy-4-difluoromethoxyphenyl)-2-(1-oxypyridin-4-yl)-ethyl]-1H-pyrazl-3-yl}phenyl)acetamide 3SL4 ; 1.9 ; Crystal structure of the catalytic domain of PDE4D2 with compound 10D 3SL8 ; 2.6 ; Crystal structure of the catalytic domain of PDE4D2 with compound 10o 3SL6 ; 2.44 ; Crystal structure of the catalytic domain of PDE4D2 with compound 12c 4OGB ; 2.032 ; Crystal structure of the catalytic domain of PDE4D2 with compound 2 3B90 ; 2.11 ; Crystal Structure of the Catalytic Domain of Pectate Lyase PelI from Erwinia chrysanthemi 2WWU ; 2.15 ; Crystal structure of the catalytic domain of PHD finger protein 8 3SUB ; 2.4 ; Crystal structure of the catalytic domain of Plasmodium falciparum ARF GTPase activating protein 5A1F ; 2.1 ; Crystal structure of the catalytic domain of PLU1 in complex with N-oxalylglycine. 3RDE ; 1.892 ; Crystal structure of the catalytic domain of porcine leukocyte 12-lipoxygenase 4NZO ; 1.9 ; Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 2,5-DI-O-BN-INSP4 4NZN ; 1.75 ; Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 2-O-BN-5-PA-INSP4 4NZM ; 2.0 ; Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 5-PA-InsP5 6N5C ; 1.95 ; Crystal structure of the catalytic domain of PPIP5K2 in complex with AMPPNP and 5-PCF2Am-InsP5 3H25 ; 2.7 ; Crystal structure of the catalytic domain of primase Repb' in complex with initiator DNA 2G59 ; 2.19 ; Crystal Structure of the Catalytic Domain of Protein Tyrosine Phosphatase from Homo sapiens 1JLN ; 1.81 ; Crystal structure of the catalytic domain of protein tyrosine phosphatase PTP-SL/BR7 2B49 ; 1.54 ; Crystal Structure of the Catalytic Domain of Protein Tyrosine Phosphatase, non-receptor Type 3 3S3E ; 2.4 ; Crystal structure of the catalytic domain of PTP10D from Drosophila melanogaster 3S3H ; 2.8 ; Crystal structure of the catalytic domain of PTP10D from Drosophila melanogaster with a phosphopeptide substrate GP4 3S3K ; 3.2 ; Crystal structure of the catalytic domain of PTP10D from Drosophila melanogaster with a small molecular inhibitor para-NitroCatechol Sulphate 3S3F ; 2.7 ; Crystal Structure of the catalytic domain of PTP10D from Drosophila melanogaster with a small molecule inhibitor Vanadate 2E3C ; 2.65 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase 2ZIO ; 2.06 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with AlocLys-AMP and PNP 3VQV ; 1.9 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with AMPPNP (re-refined) 3VQY ; 2.4 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with BocLys and AMPPNP (form 2) 2ZIN ; 1.79 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with BocLys and an ATP analogue 2ZCE ; 1.8 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in complex with pyrrolysine and an ATP analogue 3VQX ; 2.3 ; Crystal structure of the catalytic domain of pyrrolysyl-tRNA synthetase in triclinic crystal form 2O8H ; 1.8 ; Crystal structure of the catalytic domain of rat phosphodiesterase 10A 2OVV ; 2.0 ; Crystal structure of the catalytic domain of rat phosphodiesterase 10A 2OVY ; 1.8 ; Crystal structure of the catalytic domain of rat phosphodiesterase 10A 3UEK ; 1.95 ; Crystal structure of the catalytic domain of rat poly (ADP-ribose) glycohydrolase 3UEL ; 3.0 ; Crystal structure of the catalytic domain of rat poly (ADP-ribose) glycohydrolase bound to ADP-HPD 4LAB ; 2.5043 ; Crystal structure of the catalytic domain of RluB 4LGT ; 1.3 ; Crystal structure of the catalytic domain of RluB in complex with a 21-nucleotide RNA substrate 4KL7 ; 1.45 ; Crystal structure of the catalytic domain of RpfB from Mycobacterium tuberculosis 4KPM ; 1.33 ; Crystal structure of the catalytic domain of RpfB from Mycobacterium tuberculosis in complex with triNAG 4HND ; 3.2 ; Crystal structure of the catalytic domain of Selenomethionine substituted human PI4KIIalpha in complex with ADP 2CM1 ; 2.0 ; Crystal structure of the catalytic domain of serine threonine protein phosphatase PstP in complex with 2 Manganese ions. 4H2K ; 1.84 ; Crystal structure of the catalytic domain of succinyl-diaminopimelate desuccinylase from Haemophilus influenzae 3LE9 ; 1.85 ; Crystal structure of the catalytic domain of TACE with Indazolinone-phenyl-hydantoin inhibitor 3LEA ; 2.0 ; Crystal structure of the catalytic domain of TACE with Isoindolinone-biphenyl-hydantoin inhibitor 4F55 ; 1.85 ; Crystal Structure of the Catalytic Domain of the Bacillus cereus SleB Protein 2EXO ; 1.8 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF THE BETA-1,4-GLYCANASE CEX FROM CELLULOMONAS FIMI 1ZHM ; 1.96 ; Crystal Structure of the Catalytic Domain of the Coagulation Factor XIa in Complex with Benzamidine (S434A-T475A-K437 Mutant) 6TWC ; 2.86 ; Crystal Structure of the Catalytic Domain of the Coagulation Factor XIa in Complex with Double Bridged Peptide F21 3W9A ; 1.99 ; Crystal structure of the catalytic domain of the glycoside hydrolase family 131 protein from Coprinopsis cinerea 3UVJ ; 2.08 ; Crystal structure of the catalytic domain of the heterodimeric human soluble guanylate cyclase 1. 2FYA ; 1.9 ; Crystal structure of the catalytic domain of the human beta1, 4-galactosyltransferase mutant M339H complex with manganese 2FY7 ; 1.7 ; Crystal structure of the catalytic domain of the human beta1,4-galactosyltransferase mutant M339H in apo form 2FYB ; 1.9 ; Crystal structure of the catalytic domain of the human beta1,4-galactosyltransferase mutant M339H in complex with Mn and UDP-galactose in open conformation 4OTP ; 2.7 ; Crystal structure of the catalytic domain of the human RioK1 atypical protein kinase in complex with ADP/Mg2+ 5UUV ; 2.75 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus anthracis in the complex with a product IMP and the inhibitor P182 7MTX ; 2.44 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus anthracis in the complex with IMP and the inhibitor P176 5URS ; 2.388 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus anthracis in the complex with IMP and the inhibitor P178 5UUZ ; 2.496 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus anthracis in the complex with IMP and the inhibitor P200 7MTU ; 2.34 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus anthracis in the complex with IMP and the inhibitor P221 6MGU ; 1.54 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Bacillus Anthracis in the complex with inhibitor Oxanosine monophosphate 5UQF ; 2.73 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Campylobacter jejuni in the complex with IMP and the inhibitor P225 6MGR ; 1.97 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Campylobacter jejuni in the complex with inhibitor Oxanosine monophosphate 5URQ ; 2.7 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Campylobacter jejuni in the complex with inhibitor p176 5UQH ; 2.201 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Campylobacter jejuni in the complex with inhibitor p182 5UQG ; 2.03 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Campylobacter jejuni in the complex with inhibitor p200 4IXH ; 2.105 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Cryptosporidium parvum 8EBC ; 2.5 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Listeria monocytogenes in the complex with IMP 5UPY ; 2.35 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Listeria Monocytogenes in the complex with IMP and Q21 5UPX ; 1.855 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Listeria Monocytogenes in the presence of Xanthosine Monophosphate 4ZQR ; 1.692 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis 4ZQP ; 1.9 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis in the complex with IMP and the inhibitor MAD1 4ZQN ; 2.0 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis in the complex with IMP and the inhibitor P41 4ZQO ; 1.76 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis in the complex with IMP and the inhibitor Q67 4ZQM ; 1.602 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis in the complex with XMP and NAD 5UPV ; 1.63 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis In the presence of G36 5UPU ; 2.905 ; Crystal Structure of the Catalytic Domain of the Inosine Monophosphate Dehydrogenase from Mycobacterium tuberculosis in the presence of TBK6 4CRQ ; 1.5 ; Crystal structure of the catalytic domain of the modular laminarinase ZgLamC mutant E142S 4CTE ; 1.8 ; Crystal structure of the catalytic domain of the modular laminarinase ZgLamC mutant E142S in complex with a thio-oligosaccharide 2CB6 ; 3.0 ; Crystal structure of the catalytic domain of the mosquitocidal toxin from Bacillus sphaericus, mutant E195Q 2CB4 ; 2.5 ; Crystal structure of the catalytic domain of the mosquitocidal toxin from Bacillus sphaericus, mutant E197Q 1GWZ ; 2.5 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF THE PROTEIN TYROSINE PHOSPHATASE SHP-1 7CQE ; 2.69 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with AZD-7762 4MHA ; 2.59 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC1817 4MH7 ; 2.51 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC1896 4M3Q ; 2.718 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC1917 5K0K ; 2.545 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC2434 5K0X ; 2.231 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC2541 6MEP ; 2.893 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC3437 3TCP ; 2.69 ; Crystal structure of the catalytic domain of the proto-oncogene tyrosine-protein kinase MER in complex with inhibitor UNC569 3IAI ; 2.2 ; Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX 6RIM ; 1.6 ; Crystal structure of the catalytic domain of the Weissela oryzae botulinum like toxin 2BVL ; 2.2 ; Crystal structure of the catalytic domain of toxin B from Clostridium difficile in complex with UDP, Glc and manganese ion 2BVM ; 2.55 ; Crystal structure of the catalytic domain of toxin B from Clostridium difficile in complex with UDP, Glc and manganese ion 6S96 ; 2.18 ; Crystal structure of the catalytic domain of UBE2S C118A. 6S98 ; 1.55 ; Crystal structure of the catalytic domain of UBE2S WT. 3RII ; 2.0008 ; Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme 3RIS ; 2.398 ; Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme 2H40 ; 1.85 ; Crystal structure of the catalytic domain of unliganded PDE5 1NQ6 ; 1.78 ; Crystal Structure of the catalytic domain of xylanase A from Streptomyces halstedii JM8 3RO8 ; 1.34 ; Crystal structure of the catalytic domain of XynA1 from Paenibacillus sp. JDR-2 1HY5 ; 2.25 ; CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF YOPE-YERSINIA PESTIS GAP EFFECTOR PROTEIN. 6ZZL ; 2.229 ; Crystal structure of the catalytic domain plus N-terminal linker of the acetyltransferase AceF (E2p) from Corynebacterium glutamicum. 5K7M ; 1.65 ; Crystal structure of the catalytic domains of Mettl3/Mettl14 complex 5K7U ; 1.7 ; Crystal structure of the catalytic domains of Mettl3/Mettl14 complex with SAM 1YGB ; 2.48 ; Crystal Structure of the catalytic fragment of alanyl-tRNA synthetase in complex with L-serine 3HTZ ; 2.5 ; Crystal Structure of the catalytic fragment of alanyl-tRNA synthetase in complex with L-serine: Re-refined 1PAQ ; 2.3 ; CRYSTAL STRUCTURE OF THE CATALYTIC FRAGMENT OF EUKARYOTIC INITIATION FACTOR 2B EPSILON 7ARX ; 2.42 ; Crystal structure of the catalytic fragment of masp-1 in complex with SFMI1 1GS0 ; 2.8 ; Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2 1EFY ; 2.2 ; CRYSTAL STRUCTURE OF THE CATALYTIC FRAGMENT OF POLY (ADP-RIBOSE) POLYMERASE COMPLEXED WITH A BENZIMIDAZOLE INHIBITOR 2WMK ; 1.9 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98) in complex with the A-LewisY pentasaccharide blood group antigen. 2WMJ ; 2.0 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98) in complex with the B-trisaccharide blood group antigen. 2WMI ; 1.9 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 in complex with the A-trisaccharide blood group antigen. 2WMG ; 2.3 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae TIGR4 (Sp4GH98) in complex with the LewisY pentasaccharide blood group antigen. 2WMF ; 1.5 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae TIGR4 (Sp4GH98) in its native form. 2WMH ; 1.7 ; Crystal structure of the catalytic module of a family 98 glycoside hydrolase from Streptococcus pneumoniae TIGR4 in complex with the H- disaccharide blood group antigen. 4RHH ; 2.15 ; Crystal structure of the catalytic mutant Xyn52B2-E335G, a GH52 Beta-D-xylosidase from Geobacillus stearothermophilus T6 5SV8 ; 1.588 ; Crystal Structure of the catalytic nucleophile and surface cysteine mutant of VvEG16 in complex with a xyloglucan oligosaccharide 5DZF ; 1.65 ; Crystal Structure of the catalytic nucleophile mutant of VvEG16 in complex with a mixed-linkage glucan octasaccharide 5DZG ; 1.79 ; Crystal Structure of the catalytic nucleophile mutant of VvEG16 in complex with a xyloglucan tetradecasaccharide 5DZE ; 0.97 ; Crystal Structure of the catalytic nucleophile mutant of VvEG16 in complex with cellotetraose 3GOV ; 2.55 ; Crystal structure of the catalytic region of human MASP-1 1Q3X ; 2.23 ; Crystal structure of the catalytic region of human MASP-2 1IEC ; 2.2 ; CRYSTAL STRUCTURE OF THE CATALYTIC SITE MUTANT (H157A) OF THE HUMAN CYTOMEGALOVIRUS PROTEASE 1IED ; 2.0 ; CRYSTAL STRUCTURE OF THE CATALYTIC SITE MUTANT (H157E) OF THE HUMAN CYTOMEGALOVIRUS PROTEASE 1ID4 ; 2.2 ; CRYSTAL STRUCTURE OF THE CATALYTIC SITE MUTANT (H157Q) OF THE HUMAN CYTOMEGALOVIRUS PROTEASE 1IEF ; 2.3 ; CRYSTAL STRUCTURE OF THE CATALYTIC SITE MUTANT S134A OF THE HUMAN CYTOMEGALOVIRUS PROTEASE 1IEG ; 2.0 ; CRYSTAL STRUCTURE OF THE CATALYTIC SITE MUTANT S134A/H157A OF THE HUMAN CYTOMEGALOVIRUS PROTEASE 1O4V ; 1.77 ; Crystal structure of the catalytic subunit of a phosphoribosylaminoimidazole mutase (tm0446) from thermotoga maritima at 1.77 A resolution 1JLU ; 2.25 ; Crystal Structure of the Catalytic Subunit of cAMP-dependent Protein Kinase Complexed with a Phosphorylated Substrate Peptide and Detergent 1JBP ; 2.2 ; Crystal Structure of the Catalytic Subunit of cAMP-dependent Protein Kinase Complexed with a Substrate Peptide, ADP and Detergent 4HPT ; 2.15 ; Crystal structure of the catalytic subunit of cAMP-dependent protein kinase displaying complete phosphoryl transfer of AMP-PNP onto a substrate peptide 4HPU ; 1.55 ; Crystal structure of the catalytic subunit of cAMP-dependent protein kinase displaying partial phosphoryl transfer of AMP-PNP onto a substrate peptide 2CPK ; 2.7 ; CRYSTAL STRUCTURE OF THE CATALYTIC SUBUNIT OF CYCLIC ADENOSINE MONOPHOSPHATE-DEPENDENT PROTEIN KINASE 4LIK ; 1.7 ; Crystal structure of the catalytic subunit of human primase 4LIL ; 2.6 ; Crystal structure of the catalytic subunit of human primase bound to UTP and Mn 1NA7 ; 2.4 ; Crystal structure of the catalytic subunit of human protein kinase CK2 3H30 ; 1.56 ; Crystal structure of the catalytic subunit of human protein kinase CK2 with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole 4ZHJ ; 2.502 ; Crystal Structure of the Catalytic Subunit of Magnesium Chelatase 2PVR ; 1.605 ; Crystal structure of the catalytic subunit of protein kinase CK2 (C-terminal deletion mutant 1-335) in complex with two sulfate ions 1JSC ; 2.6 ; Crystal Structure of the Catalytic Subunit of Yeast Acetohydroxyacid Synthase: A target for Herbicidal Inhibitors 4LIM ; 1.63 ; Crystal structure of the catalytic subunit of yeast primase 7C7D ; 1.16 ; Crystal structure of the catalytic unit of thermostable GH87 alpha-1,3-glucanase from Streptomyces thermodiastaticus strain HF3-3 5DVX ; 1.598 ; Crystal structure of the catalytic-domain of human carbonic anhydrase IX at 1.6 angstrom resolution 2OTN ; 2.4 ; Crystal structure of the catalytically active form of diaminopimelate epimerase from Bacillus anthracis 3KEX ; 2.797 ; Crystal structure of the catalytically inactive kinase domain of the human epidermal growth factor receptor 3 (HER3) 4JGF ; 2.5 ; Crystal Structure of the Cataract-Causing P23T gamma D-Crystallin Mutant 1LXE ; 2.5 ; CRYSTAL STRUCTURE OF THE CATHELICIDIN MOTIF OF PROTEGRINS 4EYC ; 1.9 ; Crystal structure of the cathelin-like domain of human cathelicidin LL-37 (hCLD) 3C9E ; 1.8 ; Crystal structure of the cathepsin K : chondroitin sulfate complex. 2AA1 ; 1.8 ; Crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus Newnesi 5KLB ; 2.7 ; Crystal structure of the CavAb voltage-gated calcium channel(wild-type, 2.7A) 3FEX ; 3.549 ; Crystal structure of the CBC-importin alpha complex. 3FEY ; 2.2 ; Crystal structure of the CBC-importin alpha complex. 4LQQ ; 3.6 ; Crystal structure of the Cbk1(T743E)-Mob2 kinase-coactivator complex in crystal form B 4LQP ; 4.5 ; Crystal structure of the Cbk1(T743E)-Mob2 kinase-coactivator complex, in crystal form A 4LQS ; 3.3 ; Crystal structure of the Cbk1-Mob2 kinase-coactivator complex 5NCL ; 3.15 ; Crystal structure of the Cbk1-Mob2 kinase-coactivator complex with an SSD1 peptide 5KC5 ; 2.351 ; Crystal structure of the Cbln1 C1q domain trimer 5KCA ; 3.1 ; Crystal structure of the Cbln1 C1q domain trimer in complex with the amino-terminal domain (ATD) of iGluR Delta-2 (GluD2) 7TOK ; 2.45 ; Crystal structure of the CBM domain of carbohydrate esterase FjoAcXE 6UFV ; 1.06 ; Crystal structure of the CBM3 from Bacillus subtilis at 1.06 angstrom resolution 6UFW ; 1.28 ; Crystal structure of the CBM3 from Bacillus subtilis at 1.28 angstrom resolution 7AY3 ; 2.00002 ; Crystal structure of the CBM36-1 domain of a multidomain xylanase from the hindgut metagenome of Trinervitermes trinervoides 4YK0 ; 1.65 ; Crystal structure of the CBP bromodomain in complex with CPI098 5DBM ; 1.86 ; Crystal structure of the CBP bromodomain in complex with CPI703 6LQX ; 2.46 ; Crystal structure of the CBP bromodomain in complex with small molecule LC-CPin7 7XM7 ; 2.36 ; Crystal Structure of the CBP in complex with the Y08188 6RWT ; 1.42 ; Crystal structure of the Cbp3 homolog from Brucella abortus 3L2B ; 2.27 ; Crystal structure of the CBS and DRTGG domains of the regulatory region of Clostridium perfringens pyrophosphatase complexed with activator, diadenosine tetraphosphate 3L31 ; 2.3 ; Crystal structure of the CBS and DRTGG domains of the regulatory region of Clostridium perfringens pyrophosphatase complexed with the inhibitor, AMP 4ESY ; 2.011 ; Crystal Structure of the CBS Domain of CBS Domain Containing Membrane Protein from Sphaerobacter thermophilus 3KPC ; 1.79 ; Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine 3KPB ; 1.6 ; Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine. 3KPD ; 2.91 ; Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine. 3FV6 ; 1.95 ; Crystal Structure of the CBS domains from the Bacillus subtilis CcpN repressor 3FWR ; 2.45 ; Crystal Structure of the CBS domains from the Bacillus subtilis CcpN repressor complexed with ADP 3FWS ; 2.03 ; Crystal Structure of the CBS domains from the Bacillus subtilis CcpN repressor complexed with AppNp, phosphate and magnesium ions 4O9K ; 1.85 ; Crystal structure of the CBS pair of a putative D-arabinose 5-phosphate isomerase from Methylococcus capsulatus in complex with CMP-Kdo 3FNA ; 2.1 ; Crystal structure of the CBS pair of possible D-arabinose 5-phosphate isomerase yrbH from Escherichia coli CFT073 3FHM ; 2.7 ; Crystal structure of the CBS-domain containing protein ATU1752 from Agrobacterium tumefaciens 3KUP ; 1.77 ; Crystal Structure of the CBX3 Chromo Shadow Domain 2Q8T ; 2.23 ; Crystal Structure of the CC chemokine CCL14 6STK ; 1.52 ; Crystal structure of the CC-chemokine 5 (CCL5) E66S mutation 5DJO ; 1.74 ; Crystal structure of the CC1-FHA tandem of Kinesin-3 KIF13A 6QY6 ; 1.8 ; Crystal structure of the CCA-adding enzyme of a psychrophilic organism 6QXN ; 1.849 ; Crystal structure of the CCA-adding enzyme of a psychrophilic organism in complex with CTP 2D7H ; 3.0 ; Crystal structure of the ccc complex of the N-terminal domain of PriA 4FQN ; 1.9 ; Crystal structure of the CCM2 C-terminal Harmonin Homology Domain (HHD) 7U0L ; 3.3 ; Crystal structure of the CCoV-HuPn-2018 RBD (domain B) in complex with canine APN 5Y9Q ; 1.953 ; Crystal structure of the CcpE regulatory domain at 1.95 Angstrom from Staphylococcus aureus 4MBS ; 2.71 ; Crystal Structure of the CCR5 Chemokine Receptor 1CCZ ; 1.8 ; CRYSTAL STRUCTURE OF THE CD2-BINDING DOMAIN OF CD58 (LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN 3) AT 1.8-A RESOLUTION 7KX0 ; 2.69 ; Crystal structure of the CD27:CD70 co-stimulatory complex 3QD6 ; 3.5 ; Crystal structure of the CD40 and CD154 (CD40L) complex 3DMM ; 2.6 ; Crystal structure of the CD8 alpha beta/H-2Dd complex 3QXL ; 2.237 ; Crystal structure of the CDC25 Domain from Ral-specific Guanine-nucleotide Exchange Factor RalGPS1a 2IJE ; 2.2 ; Crystal Structure of the Cdc25 domain of RasGRF1 1YMK ; 1.7 ; Crystal Structure of the CDC25B phosphatase catalytic domain in the apo form 1YS0 ; 2.0 ; Crystal Structure of the CDC25B phosphatase catalytic domain with the active site cysteine in the disulfide form 1YML ; 1.7 ; Crystal Structure of the CDC25B phosphatase catalytic domain with the active site cysteine in the sulfenic form 1YM9 ; 2.0 ; Crystal structure of the CDC25B phosphatase catalytic domain with the active site cysteine in the sulfinic form 1YMD ; 1.7 ; Crystal Structure of the CDC25B phosphatase catalytic domain with the active site cysteine in the sulfonic form 2DFK ; 2.15 ; Crystal structure of the CDC42-Collybistin II complex 1GRN ; 2.1 ; CRYSTAL STRUCTURE OF THE CDC42/CDC42GAP/ALF3 COMPLEX. 4EK4 ; 1.26 ; Crystal structure of the cdk2 in complex with aminopyrazole inhibitor 4EK5 ; 1.6 ; Crystal structure of the cdk2 in complex with aminopyrazole inhibitor 4EK6 ; 1.52 ; Crystal structure of the cdk2 in complex with aminopyrazole inhibitor 4FKG ; 1.51 ; Crystal structure of the cdk2 in complex with aminopyrazole inhibitor 4FKI ; 1.6 ; Crystal Structure of the Cdk2 in Complex with Aminopyrazole Inhibitor 4FKJ ; 1.63 ; Crystal structure of the cdk2 in complex with aminopyrazole inhibitor 4FKP ; 1.6 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKQ ; 1.75 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKR ; 1.9 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKS ; 1.55 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKT ; 1.6 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKU ; 1.47 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKV ; 1.7 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 4FKW ; 1.8 ; Crystal structure of the cdk2 in complex with oxindole inhibitor 3SW4 ; 1.7 ; Crystal Structure of the CDK2 in complex with thiazolylpyrimidine inhibitor 3SW7 ; 1.8 ; Crystal Structure of the CDK2 in complex with thiazolylpyrimidine inhibitor 4EK8 ; 1.7 ; Crystal structure of the cdk2 in complex with thiazolylpyrimidine inhibitor 4FKL ; 1.26 ; Crystal structure of the cdk2 in complex with thiazolylpyrimidine inhibitor 4FKO ; 1.55 ; Crystal structure of the cdk2 in complex with thiazolylpyrimidine inhibitor 4FX3 ; 2.75 ; Crystal Structure of the CDK2/Cyclin A complex with oxindole inhibitor 1XFP ; 1.5 ; Crystal structure of the CDR2 germline reversion mutant of cAb-Lys3 in complex with hen egg white lysozyme 4HAE ; 2.0 ; Crystal structure of the CDYL2-chromodomain 6P72 ; 3.283 ; Crystal Structure of the Cedar henipavirus Attachment G Glycoprotein global domain 6P7S ; 3.49 ; Crystal Structure of the Cedar henipavirus Attachment G Glycoprotein globular domain in complex with the receptor ephrin-B1 6P7Y ; 2.844 ; Crystal Structure of the Cedar henipavirus Attachment G Glycoprotein globular domain in complex with the receptor ephrin-B2 1QB3 ; 3.0 ; CRYSTAL STRUCTURE OF THE CELL CYCLE REGULATORY PROTEIN CKS1 1SCE ; 2.2 ; CRYSTAL STRUCTURE OF THE CELL CYCLE REGULATORY PROTEIN SUC1 REVEALS A NOVEL BETA-HINGE CONFORMATIONAL SWITCH 4RU3 ; 1.172 ; Crystal structure of the cell puncturing protein Orf41 from Pseudomonas phage SN 2Q7A ; 2.1 ; Crystal structure of the cell surface heme transfer protein Shp 1R77 ; 1.75 ; Crystal structure of the cell wall targeting domain of peptidylglycan hydrolase ALE-1 2XSC ; 2.052 ; Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli 1FSZ ; 2.8 ; CRYSTAL STRUCTURE OF THE CELL-DIVISION PROTEIN FTSZ AT 2.8A RESOLUTION 5AX0 ; 1.521 ; Crystal Structure of the Cell-Free Synthesized Membrane Protein, Acetabularia Rhodopsin I, at 1.52 angstrom 5AWZ ; 1.57 ; Crystal Structure of the Cell-Free Synthesized Membrane Protein, Acetabularia Rhodopsin I, at 1.57 angstrom 5AX1 ; 1.803 ; Crystal Structure of the Cell-Free Synthesized Membrane Protein, Acetabularia Rhodopsin I, at 1.80 angstrom 6L00 ; 1.75 ; Crystal structure of the cell-wall binding domain (CBD) of endolysin LysIME-EF1 1FBO ; 2.3 ; Crystal structure of the cellulase CEL48F from C. cellulolyticum in complex with cellobiitol 1FAE ; 2.0 ; Crystal structure of the cellulase CEL48F from C. cellulolyticum in complex with cellobiose 1FBW ; 2.0 ; Crystal structure of the cellulase CEL48F from C. cellulolyticum in complex with cellohexaose 1F9D ; 2.3 ; Crystal structure of the cellulase CEL48F from C. cellulolyticum in complex with cellotetraose 1F9O ; 2.5 ; Crystal structure of the cellulase Cel48F from C. Cellulolyticum with the thiooligosaccharide inhibitor PIPS-IG3 1IA7 ; 2.0 ; CRYSTAL STRUCTURE OF THE CELLULASE CEL9M OF C. CELLULOLYTICIUM IN COMPLEX WITH CELLOBIOSE 1IA6 ; 1.8 ; CRYSTAL STRUCTURE OF THE CELLULASE CEL9M OF C. CELLULOLYTICUM 3K4Z ; 2.11 ; Crystal Structure of the Cellulosomal CBM4 from Clostridium thermocellum Cellulase CbhA 7UNP ; 2.0 ; Crystal structure of the CelR catalytic domain and CBM3c 3KNC ; 2.5 ; Crystal structure of the CeNA-RNA hybrid octamer ce(GCGTAGCG):r(CGCUACGC) 7PB8 ; 3.68 ; Crystal structure of the CENP-OPQUR complex 3AON ; 2.0 ; Crystal structure of the central axis (NtpD-NtpG) in the catalytic portion of Enterococcus hirae V-type sodium ATPase 5JJ2 ; 1.25 ; Crystal structure of the central domain of human AKAP18 gamma/delta in complex with malonate 2A1I ; 1.9 ; Crystal Structure of the Central Domain of Human ERCC1 5I6E ; 3.0 ; Crystal structure of the central domain of yeast acetyl-CoA carboxylase 5M0H ; 2.65 ; Crystal structure of the central flexible region of ASH1 mRNA E3-localization element 1JY2 ; 1.4 ; Crystal Structure of the Central Region of Bovine Fibrinogen (E5 fragment) at 1.4 Angstroms Resolution 1JY3 ; 1.6 ; Crystal Structure of the Central Region of Bovine Fibrinogen (E5 Fragment) at 1.4 Angstroms Resolution 6R7O ; 2.31 ; Crystal structure of the central region of human cohesin subunit STAG1 6RRK ; 3.17 ; Crystal structure of the central region of human cohesin subunit STAG1 in complex with RAD21 peptide 4CVD ; 1.666 ; Crystal structure of the central repeat of cell wall binding module of Cpl7 3NO7 ; 1.4 ; Crystal structure of the centromere-binding protein ParB from plasmid pCXC100 5JJD ; 2.403 ; crystal structure of the ceramide transfer protein PH and START domain complex 8A14 ; 1.9 ; Crystal structure of the cerato-platanin-like protein Cpl1 from Ustilago maydis 3PUT ; 1.828 ; Crystal Structure of the CERT START domain (mutant V151E) from Rhizobium etli at the resolution 1.8A, Northeast Structural Genomics Consortium Target ReR239. 3H3Q ; 2.0 ; Crystal structure of the CERT START domain in complex with HPA-13 3H3R ; 1.85 ; Crystal structure of the CERT START domain in complex with HPA-14 3H3S ; 1.66 ; Crystal structure of the CERT START domain in complex with HPA-15 3H3T ; 2.4 ; Crystal structure of the CERT START domain in complex with HPA-16 1XOU ; 2.8 ; Crystal structure of the CesA-EspA complex 3VAC ; 2.6 ; Crystal Structure of the CFA/I Enterotoxigenic E. coli adhesin CfaE mutant G168D 4Y7S ; 2.0 ; Crystal Structure of the CFEM protein Csa2 3KD2 ; 1.8 ; Crystal structure of the CFTR inhibitory factor Cif 4EUS ; 1.65 ; Crystal structure of the CFTR inhibitory factor Cif bound to 1,2-hexanediol 5HK9 ; 1.8 ; Crystal structure of the CFTR inhibitory factor Cif bound to a urea inhibitor 5HKA ; 2.05 ; Crystal structure of the CFTR inhibitory factor Cif bound to an amide inhibitor 5HKB ; 1.65 ; Crystal structure of the CFTR inhibitory factor Cif bound to the inhibitor KB2115 4YX9 ; 1.75 ; Crystal structure of the CFTR inhibitory factor Cif bound to tiratricol 4DLN ; 1.55 ; Crystal structure of the CFTR inhibitory factor Cif with the D129S mutation 4EHB ; 1.85 ; Crystal structure of the CFTR inhibitory factor Cif with the D129S mutation bound to epoxyhexane 4DM7 ; 1.36 ; Crystal structure of the CFTR inhibitory factor Cif with the E153D mutation 4DMC ; 1.66 ; Crystal structure of the CFTR inhibitory factor Cif with the E153Q mutation 4DNO ; 1.95 ; Crystal structure of the CFTR inhibitory factor Cif with the E153Q mutation adducted with the 1,2-epoxyhexane hydrolysis intermediate 4DNF ; 1.8 ; Crystal structure of the CFTR inhibitory factor Cif with the E153Q mutation adducted with the epibromohydrin hydrolysis intermediate 4DMF ; 2.12 ; Crystal structure of the CFTR inhibitory factor Cif with the H177A mutation 3PI6 ; 1.5 ; Crystal structure of the CFTR inhibitory factor Cif with the H177Y mutation 4DMH ; 1.9 ; Crystal structure of the CFTR inhibitory factor Cif with the H207A mutation 3KDA ; 1.5 ; Crystal structure of the CFTR inhibitory factor Cif with the H269A mutation 4DMK ; 1.5 ; Crystal structure of the CFTR inhibitory factor Cif with the Y239F mutation 3ZZR ; 1.45 ; Crystal structure of the CG11501 protein in P21212 spacegroup 3ZZO ; 1.15 ; Crystal structure of the CG11501 protein in P212121 spacegroup 3DBA ; 2.57 ; Crystal structure of the cGMP-bound GAF a domain from the photoreceptor phosphodiesterase 6C 5DYK ; 2.45 ; Crystal structure of the cGMP-dependent protein kinase PKG from Plasmodium falciparum - Apo form 5DZC ; 2.3 ; Crystal structure of the cGMP-dependent protein kinase PKG from Plasmodium Vivax - AMPPNP bound 5DYL ; 2.4 ; Crystal structure of the cGMP-dependent protein kinase PKG from Plasmodium Vivax - Apo form 7PT5 ; 2.3 ; Crystal structure of the CH domain of human CEP44 1CQK ; 2.2 ; CRYSTAL STRUCTURE OF THE CH3 DOMAIN FROM THE MAK33 ANTIBODY 6QV5 ; 2.3 ; Crystal structure of the CHAD domain from the plant Ricinus communis 5CWW ; 2.2 ; Crystal structure of the Chaetomium thermophilum heterotrimeric Nup82 NTD-Nup159 TAIL-Nup145N APD complex 7MVX ; 4.35 ; Crystal structure of the Chaetomium thermophilum Nup188-Nic96 complex (Nup188 residues 1-1858; Nic96 residues 240-301) 7MVT ; 3.6 ; Crystal structure of the Chaetomium thermophilum Nup192-Nic96 complex (Nup192 residues 185-1756; Nic96 residues 187-301) 5M5G ; 2.27 ; Crystal structure of the Chaetomium Thermophilum polycomb repressive complex 2 (PRC2) 4ZOY ; 1.5 ; Crystal structure of the Chaetomium thermophilum Sqt1 4ZOZ ; 1.7 ; Crystal structure of the Chaetomium thermophilum Sqt1 bound to the N-terminus of the ribosomal protein L10 2I88 ; 2.5 ; Crystal structure of the Channel-forming Domain of Colicin E1 4V4O ; 2.8 ; Crystal Structure of the Chaperonin Complex Cpn60/Cpn10/(ADP)7 from Thermus Thermophilus 1Q3S ; 3.0 ; Crystal structure of the chaperonin from Thermococcus strain KS-1 (FormIII crystal complexed with ADP) 1Q3R ; 2.9 ; Crystal structure of the chaperonin from Thermococcus strain KS-1 (nucleotide-free form of single mutant) 1Q2V ; 2.4 ; Crystal structure of the chaperonin from Thermococcus strain KS-1 (nucleotide-free form) 1Q3Q ; 2.3 ; Crystal structure of the chaperonin from Thermococcus strain KS-1 (two-point mutant complexed with AMP-PNP) 6TMT ; 4.03 ; Crystal structure of the chaperonin gp146 from the bacteriophage EL 2 (Pseudomonas aeruginosa) in presence of ATP-BeFx, crystal form I 6TMU ; 3.54 ; Crystal structure of the chaperonin gp146 from the bacteriophage EL 2 (Pseudomonas aeruginosa) in presence of ATP-BeFx, crystal form II 2EU1 ; 3.29 ; Crystal structure of the chaperonin GroEL-E461K 3TED ; 2.0 ; Crystal structure of the Chd1 DNA-binding domain in complex with a DNA duplex 7DXT ; 1.8 ; Crystal structure of the chemically synthesized mk2h peptide homodimer 7DXY ; 1.4 ; Crystal structure of the chemically synthesized mk2h_deltaMILPS peptide homodimer 7DYC ; 2.3 ; Crystal structure of the chemically synthesized mk2h_deltaMILPYS peptide homodimer in complex with malate 7DXZ ; 1.9 ; Crystal structure of the chemically synthesized mk2h_deltaMILPYS peptide homodimer in complex with malonate 4P5I ; 2.25 ; Crystal structure of the chemokine binding protein from orf virus 3OE9 ; 3.1 ; Crystal structure of the chemokine CXCR4 receptor in complex with a small molecule antagonist IT1t in P1 spacegroup 4JL7 ; 1.16 ; Crystal Structure of the Chemokine Receptor CXCR2 in Complex with the First PDZ Domain of NHERF1 4N6X ; 1.051 ; Crystal Structure of the Chemokine Receptor CXCR2 in Complex with the First PDZ Domain of NHERF1 7OVP ; 2.9 ; Crystal structure of the chemotactic adaptor protein CheF 3HZH ; 1.96 ; Crystal structure of the CheX-CheY-BeF3-Mg+2 complex from Borrelia burgdorferi 6TG7 ; 1.65 ; Crystal structure of the CheY in presence of magnesium 1MDU ; 2.2 ; Crystal structure of the chicken actin trimer complexed with human gelsolin segment 1 (GS-1) 5XW6 ; 3.1 ; Crystal structure of the chicken ATP-gated P2X7 receptor channel in the presence of competitive antagonist TNP-ATP at 3.1 Angstroms 4JZ3 ; 1.852 ; Crystal structure of the chicken c-Src-SH3 domain intertwined dimer 3B0B ; 2.15 ; Crystal structure of the chicken CENP-S/CENP-X complex 3B0C ; 2.201 ; Crystal structure of the chicken CENP-T histone fold/CENP-W complex, crystal form I 3B0D ; 2.197 ; Crystal structure of the chicken CENP-T histone fold/CENP-W complex, crystal form II 3VH5 ; 2.402 ; Crystal structure of the chicken CENP-T histone fold/CENP-W/CENP-S/CENP-X heterotetrameric complex, crystal form I 3VH6 ; 3.351 ; Crystal structure of the chicken CENP-T histone fold/CENP-W/CENP-S/CENP-X heterotetrameric complex, crystal form II 7WRS ; 2.4 ; Crystal structure of the chicken isoleucyl-tRNA synthetase 1 (IARS1) UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1) 5OJ2 ; 3.2 ; Crystal structure of the chicken MDGA1 ectodomain 5OJ6 ; 3.3 ; Crystal structure of the chicken MDGA1 ectodomain in complex with the human neuroligin 1 (NL1(-A-B)) cholinesterase domain. 7DA1 ; 2.01 ; Crystal structure of the chicken MHF complex 3VZ9 ; 1.03 ; Crystal structure of the chicken Spc24-Spc25 globular domain 3VZA ; 1.898 ; Crystal structure of the chicken Spc24-Spc25 globular domain in complex with CENP-T peptide 7YLF ; 1.9 ; Crystal structure of the chicken Toll-like receptor 15 TIR domain (2-mercaptoethanol adduct) 7YLG ; 1.8 ; Crystal structure of the chicken Toll-like receptor 15 TIR domain (glutathione adduct) 3JXI ; 2.3 ; Crystal structure of the chicken TRPV4 ankyrin repeat domain 3JXJ ; 2.8 ; Crystal structure of the chicken TRPV4 ankyrin repeat domain 7OAW ; 2.95 ; Crystal structure of the Chili RNA aptamer in complex with DMHBI+ 7OAX ; 2.24 ; Crystal structure of the Chili RNA aptamer in complex with DMHBO+ 8P1H ; 1.95 ; Crystal structure of the chimera of human 14-3-3 zeta and phosphorylated cytoplasmic loop fragment of the alpha7 acetylcholine receptor 3P1Y ; 2.05 ; Crystal structure of the chimeric Archaeoglobus fulgidus RNA splicing endonuclease with the broadest substrate specificity 3FEV ; 1.3 ; Crystal structure of the chimeric muscarinic toxin MT7 with loop 1 from MT1. 3NEQ ; 1.25 ; Crystal structure of the chimeric muscarinic toxin MT7 with loop 3 from MT1 4IAQ ; 2.8 ; Crystal structure of the chimeric protein of 5-HT1B-BRIL in complex with dihydroergotamine (PSI Community Target) 4IAR ; 2.7 ; Crystal structure of the chimeric protein of 5-HT1B-BRIL in complex with ergotamine (PSI Community Target) 4IB4 ; 2.7 ; Crystal structure of the chimeric protein of 5-HT2B-BRIL in complex with ergotamine 4EIY ; 1.8 ; Crystal structure of the chimeric protein of A2aAR-BRIL in complex with ZM241385 at 1.8A resolution 5JTB ; 2.8 ; Crystal structure of the chimeric protein of A2aAR-BRIL with bound iodide ions 1EVP ; 1.8 ; CRYSTAL STRUCTURE OF THE CHIMERICAL DECAMER D(CCACTAGTG)R(G) 2VED ; 2.6 ; crystal structure of the chimerical mutant CapABK55M protein 4JLV ; 2.2 ; Crystal structure of the chimerical protein CapA1B1 in complex with ADP-Mg 4JMP ; 1.3 ; Crystal structure of the chimerical protein CapA2B2 3BFV ; 1.8 ; crystal structure of the chimerical protein CapAB 2C2L ; 3.3 ; Crystal structure of the CHIP U-box E3 ubiquitin ligase 2C2V ; 2.9 ; Crystal structure of the CHIP-UBC13-UEV1a complex 1ZTY ; 2.3 ; Crystal Structure of the Chitin Oligasaccharide Binding Protein 4GF8 ; 2.3 ; Crystal Structure of the Chitin Oligasaccharide Binding Protein 4MPI ; 1.602 ; Crystal structure of the chitin-binding module (CBM18) of a chitinase-like protein from Hevea brasiliensis 4A5Q ; 17.0 ; Crystal structure of the chitinase Chi1 fitted into the 3D structure of the Yersinia entomophaga toxin complex 6T9M ; 1.3 ; Crystal structure of the Chitinase Domain of the Spore Coat Protein CotE from Clostridium difficile 6TSB ; 2.1 ; Crystal structure of the Chitinase Domain of the Spore Coat Protein CotE from Clostridium difficile 4FSM ; 2.3 ; Crystal Structure of the CHK1 4FSN ; 2.1 ; Crystal Structure of the CHK1 4FSQ ; 2.4 ; Crystal Structure of the CHK1 4FSR ; 2.5 ; Crystal Structure of the CHK1 4FST ; 1.9 ; Crystal Structure of the CHK1 4FSU ; 2.1 ; Crystal Structure of the CHK1 4FSW ; 2.3 ; Crystal Structure of the CHK1 4FSY ; 2.3 ; Crystal Structure of the CHK1 4FSZ ; 2.3 ; Crystal Structure of the CHK1 4FT0 ; 2.3 ; Crystal Structure of the CHK1 4FT3 ; 2.5 ; Crystal Structure of the CHK1 4FT5 ; 2.4 ; Crystal Structure of the CHK1 4FT7 ; 2.2 ; Crystal Structure of the CHK1 4FT9 ; 2.2 ; Crystal Structure of the CHK1 4FTA ; 2.4 ; Crystal Structure of the CHK1 4FTC ; 2.0 ; Crystal Structure of the CHK1 4FTI ; 2.2 ; Crystal Structure of the CHK1 4FTJ ; 2.2 ; Crystal Structure of the CHK1 4FTK ; 2.3 ; Crystal Structure of the CHK1 4FTL ; 2.5 ; Crystal Structure of the CHK1 4FTM ; 1.9 ; Crystal Structure of the CHK1 4FTN ; 2.02 ; Crystal Structure of the CHK1 4FTO ; 2.1 ; Crystal Structure of the CHK1 4FTQ ; 2.0 ; Crystal Structure of the CHK1 4FTR ; 2.25 ; Crystal Structure of the CHK1 4FTT ; 2.3 ; Crystal Structure of the CHK1 4FTU ; 2.1 ; Crystal Structure of the CHK1 4GH2 ; 2.03 ; Crystal Structure of the CHK1 4P17 ; 1.7941 ; Crystal structure of the Chlamydomonas flagellar RabGAP TBC domain. 4UZY ; 2.477 ; Crystal structure of the Chlamydomonas IFT70 and IFT52 complex 6BHP ; 3.209 ; Crystal structure of the Chlamydomonas reinhardtii LCI1 channel 8B7S ; 2.1 ; Crystal structure of the Chloramphenicol-inactivating oxidoreductase from Novosphingobium sp 3RK8 ; 1.8 ; Crystal structure of the chloride inhibited dihydrodipicolinate synthase from Acinetobacter baumannii complexed with pyruvate at 1.8 A resolution 5B1K ; 1.35 ; Crystal structure of the chloride-bound form of blue copper nitrite reductase 6HJW ; 2.5 ; Crystal structure of the chloroplast chorismate mutase from Zea mays 1FX0 ; 3.2 ; Crystal structure of the chloroplast F1-ATPase from spinach 1RYB ; 1.7 ; Crystal Structure of the Chloroplast Group II Intron Splicing Factor CRS2 7BJK ; 2.25 ; Crystal structure of the chloroplastic Fe superoxide dismutase PAP9 from Arabidopsis thaliana. 5A3V ; 2.34 ; Crystal structure of the chloroplastic gamma-ketol reductase from Arabidopsis thaliana 5A3J ; 2.776 ; Crystal structure of the chloroplastic gamma-ketol reductase from Arabidopsis thaliana bound to 13-Oxo-9(Z),11(E),15(Z)- octadecatrienoic acid. 5A4D ; 2.807 ; Crystal structure of the chloroplastic gamma-ketol reductase from Arabidopsis thaliana bound to 13KOTE and NADP 7F8Y ; 2.5 ; Crystal structure of the cholecystokinin receptor CCKAR in complex with devazepide 7F8U ; 2.8 ; Crystal structure of the cholecystokinin receptor CCKAR in complex with lintitript 7F8X ; 3.0 ; Crystal structure of the cholecystokinin receptor CCKAR in complex with NN9056 2WV6 ; 1.895 ; Crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii to 1.9 angstrom 6KO8 ; 1.55 ; Crystal structure of the Cholic acid bound RamR determined with XtaLAB Synergy 3HIA ; 2.38 ; Crystal structure of the choline binding domain of Spr1274 in Streptococcus pneumoniae 4CNL ; 1.7 ; Crystal structure of the Choline-binding domain of CbpL from Streptococcus pneumoniae 1SQ1 ; 2.8 ; Crystal Structure of the Chorismate Synthase from Campylobacter jejuni, Northeast Structural Genomics Target BR19 3TIX ; 2.9001 ; Crystal structure of the Chp1-Tas3 complex core 6FTO ; 1.6 ; Crystal structure of the Chp2 chromoshadow domain in complex with N-terminal domain of chromatin remodeler Mit1 3MVD ; 2.9 ; Crystal structure of the chromatin factor RCC1 in complex with the nucleosome core particle 5E5A ; 2.809 ; Crystal structure of the chromatin-tethering domain of Human cytomegalovirus IE1 protein bound to the nucleosome core particle 2F5K ; 2.2 ; Crystal structure of the chromo domain of human MRG15 3R93 ; 2.057 ; Crystal structure of the chromo domain of M-phase phosphoprotein 8 bound to H3K9Me3 peptide 7VYW ; 1.6 ; Crystal structure of the chromodomain of Arabidopsis LHP1 in complex with methylated histone H3K9 peptide 6BPH ; 1.85 ; Crystal structure of the chromodomain of RBBP1 3MWY ; 3.7 ; Crystal structure of the chromodomain-ATPase portion of the yeast Chd1 chromatin remodeler 2OOL ; 2.2 ; Crystal structure of the chromophore-binding domain of an unusual bacteriophytochrome RpBphP3 from R. palustris 4RQ9 ; 2.5 ; Crystal structure of the chromophore-binding domain of Stigmatella aurantiaca bacteriophytochrome (Thr289His mutant) in the Pr state 7SWS ; 1.642 ; Crystal structure of the chromoprotein amilCP 7SWT ; 2.005 ; Crystal structure of the chromoprotein eforRED 7SWR ; 1.388 ; Crystal structure of the chromoprotein gfasPurple 7SWU ; 1.444 ; Crystal structure of the chromoprotein spisPINK 6IZD ; 1.6 ; Crystal structure of the chromosome-encoded beta-lactamase mutant R168H/M221I of Vibrio parahaemolyticus 6IZC ; 1.55 ; Crystal structure of the chromosome-encoded beta-lactamase of Vibrio parahaemolyticus 4CG4 ; 2.4 ; Crystal structure of the CHS-B30.2 domains of TRIM20 4IN3 ; 2.936 ; Crystal Structure of the Chs5-Bch1 Exomer Cargo Adaptor Complex 4YG8 ; 2.75 ; CRYSTAL STRUCTURE OF THE CHS5-CHS6 EXOMER CARGO ADAPTOR COMPLEX 4WJW ; 2.59 ; Crystal Structure of the Chs5-Chs6 Exomer Cargo Adaptor Complex Bound to portion of Chs3 4X28 ; 1.99 ; Crystal structure of the ChsE4-ChsE5 complex from Mycobacterium tuberculosis 4W78 ; 1.541 ; Crystal structure of the ChsH1-ChsH2 complex from Mycobacterium tuberculosis 4WNB ; 1.76 ; Crystal structure of the ChsH1-ChsH2 complex from Mycobacterium tuberculosis bound to 3-OPC-CoA 3HJ3 ; 2.7 ; Crystal Structure of the ChTS-DHFR F207A Non-Active Site Mutant 2IO5 ; 2.7 ; Crystal structure of the CIA- histone H3-H4 complex 4MEA ; 1.95 ; Crystal structure of the Cif epoxide hydrolase from Acinetobacter nosocomialis 2DQL ; 1.7 ; Crystal structure of the circadian clock associated protein Pex from anabaena 5XTF ; 2.095 ; Crystal structure of the cis-dihydrodiol naphthalene dehydrogenase NahB from Pseudomonas sp. MC1 5XTG ; 2.318 ; Crystal structure of the cis-dihydrodiol naphthalene dehydrogenase NahB from Pseudomonas sp. MC1 in the presence of NAD+ and 2,3-dihydroxybiphenyl 6ZSQ ; 2.004 ; Crystal structure of the Cisplatin beta-Lactoglobulin adduct formed after 18 h of soaking 6ZSR ; 2.005 ; Crystal structure of the Cisplatin beta-Lactoglobulin adduct formed after 72 h of soaking 2VRB ; 2.0 ; Crystal structure of the Citrobacter sp. triphenylmethane reductase complexed with NADP(H) 2VRC ; 2.5 ; Crystal structure of the Citrobacter sp. triphenylmethane reductase complexed with NADP(H) 4DGL ; 3.0 ; Crystal Structure of the CK2 Tetrameric Holoenzyme 5B0X ; 2.3 ; Crystal structure of the CK2a/benzoic acid derivative complex 6A1C ; 1.68 ; Crystal structure of the CK2a1-go289 complex 3WIK ; 1.995 ; Crystal structure of the CK2alpha/compound10 complex 3WIL ; 2.9 ; Crystal structure of the CK2alpha/compound3 complex 6ME1 ; 1.97 ; Crystal structure of the clade B isolate B41 mutant fusion peptide (residues 512-521) in complex with VRC34.01 1IQP ; 2.8 ; Crystal Structure of the Clamp Loader Small Subunit from Pyrococcus furiosus 2WK0 ; 1.65 ; Crystal structure of the class A beta-lactamase BS3 inhibited by 6- beta-iodopenicillanate. 1W7F ; 1.8 ; Crystal structure of the class A beta-lactamase BS3 inhibited with isocitrate 2CC1 ; 2.13 ; Crystal structure of the class A beta-lactamase from Mycobacterium fortuitum 1N4O ; 1.85 ; Crystal structure of the Class A beta-lactamase L2 from Stenotrophomonas maltophilia 5GL9 ; 1.5 ; Crystal structure of the class A beta-lactamase PenL 5GLA ; 1.5 ; Crystal structure of the class A beta-lactamase PenL-tTR10 containing 10 residues insertion in omega-loop 5GLB ; 1.6 ; Crystal structure of the class A beta-lactamase PenL-tTR10 in complex with CBA 5GLC ; 1.601 ; Crystal structure of the class A beta-lactamase PenL-tTR11 containing 20 residues insertion in omega-loop 5GLD ; 1.7 ; Crystal structure of the class A beta-lactamase PenL-tTR11 in complex with CBA 8EO5 ; 1.8 ; Crystal structure of the class A beta-lactamase precursor LRA-5 from an Alaskan soil metagenome at 1.8 Angstrom resolution 3BFE ; 2.4 ; Crystal Structure of the Class A beta-lactamase SED-1 from Citrobacter sedlakii 3BFD ; 2.0 ; Crystal Structure of the Class A beta-lactamase SED-G238C mutant from Citrobacter sedlakii 1O7E ; 1.51 ; Crystal structure of the class A beta-lactamse L2 from Stenotrophomonas maltophilia at 1.51 angstrom 8EK9 ; 1.4 ; Crystal structure of the class A carbapenemase CRH-1 in complex with avibactam at 1.4 Angstrom resolution 3DW0 ; 1.6 ; Crystal structure of the class A carbapenemase KPC-2 at 1.6 angstrom resolution 3ZNY ; 1.2 ; Crystal structure of the class A extended-spectrum beta-lactamase CTX- M-96, a natural D240G mutant derived from CTX-M-12 8EHH ; 1.03 ; Crystal structure of the class A extended-spectrum beta-lactamase CTX-M-96 in complex with relebactam at 1.03 Angstrom resolution 4D2O ; 2.2 ; Crystal structure of the class A extended-spectrum beta-lactamase PER- 2 5AEB ; 2.1 ; Crystal structure of the class B3 di-zinc metallo-beta-lactamase LRA- 12 from an Alaskan soil metagenome. 6FM6 ; 1.05 ; Crystal structure of the class C beta-lactamase TRU-1 from Aeromonas enteropelogenes 6FM7 ; 1.04 ; Crystal structure of the class C beta-lactamase TRU-1 from Aeromonas enteropelogenes in complex with avibactam 1FOF ; 2.0 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-10 2X02 ; 1.35 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-10 AT 1.35 A RESOLUTION 1K4F ; 1.6 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-10 AT 1.6 A RESOLUTION 1H8Z ; 1.8 ; Crystal structure of the class D beta-lactamase OXA-13 1H5X ; 1.9 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-13 COMPLEXED WITH IMIPENEM 1H8Y ; 2.0 ; Crystal structure of the class D beta-lactamase OXA-13 in complex with meropenem 1K38 ; 1.5 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-2 7L5V ; 1.3 ; Crystal Structure of the Class D Beta-lactamase OXA-935 from Pseudomonas aeruginosa, Monoclinic Crystal Form 7N1M ; 1.96 ; Crystal Structure of the Class D Beta-lactamase OXA-935 from Pseudomonas aeruginosa, Orthorhombic Crystal Form 1K4E ; 2.0 ; CRYSTAL STRUCTURE OF THE CLASS D BETA-LACTAMASES OXA-10 DETERMINED BY MAD PHASING WITH SELENOMETHIONINE 5KIJ ; 1.649 ; Crystal structure of the class I human endoplasmic reticulum 1,2-alpha-mannosidase and Man9GlcNAc2-PA complex 5KK7 ; 1.7324 ; Crystal structure of the class I human endoplasmic reticulum 1,2-alpha-mannosidase T688A mutant and Thio-disaccharide substrate analog complex 3R1H ; 3.15 ; Crystal structure of the Class I ligase ribozyme-substrate preligation complex, C47U mutant, Ca2+ bound 3R1L ; 3.125 ; Crystal structure of the Class I ligase ribozyme-substrate preligation complex, C47U mutant, Mg2+ bound 3FOM ; 2.1 ; Crystal structure of the Class I MHC Molecule H-2Kwm7 with a Single Self Peptide IQQSIERL 3FON ; 2.03 ; Crystal structure of the Class I MHC Molecule H-2Kwm7 with a Single Self Peptide VNDIFEAI 3FOL ; 2.5 ; Crystal structure of the Class I MHC Molecule H-2Kwm7 with a Single Self Peptide VNDIFERI 5IM3 ; 2.298 ; Crystal structure of the class I ribonucleotide reductase from Pseudomonas aeruginosa in complex with dATP 1UZR ; 2.2 ; Crystal Structure of the Class Ib Ribonucleotide Reductase R2F-2 subunit from Mycobacterium tuberculosis 7MMP ; 2.15 ; Crystal Structure of the Class Ie Ribonucleotide Reductase 7MMW ; 1.55 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae (in alternate conformation) 6EBP ; 1.59 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae in Activated Form 6EBZ ; 1.66 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae in Activated Form with Thiocyanate Bound 6EBO ; 1.58 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae in Unactivated Form 7MMU ; 2.08 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae with Cu(I) bound (Cu acetonitrile soak) 7MMT ; 1.54 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae with Cu(I) bound (Cu chloride soak) 7MMV ; 1.78 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta Subunit from Aerococcus urinae with Cu(I) bound (Cu sulfate soak) 7MMR ; 2.0 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta-NrdI complex from Aerococcus urinae in Oxidized Form with Cu(I) bound 7MMQ ; 2.4 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta-NrdI complex from Aerococcus urinae in Reduced Hydroquinone Form 7MMS ; 1.91 ; Crystal Structure of the Class Ie Ribonucleotide Reductase Beta-NrdI complex from Aerococcus urinae in Semiquinone Form with Cu(I) bound 1KPK ; 3.5 ; Crystal Structure of the ClC Chloride Channel from E. coli 1KPL ; 3.0 ; Crystal Structure of the ClC Chloride Channel from S. typhimurium 6K5F ; 3.203 ; Crystal structure of the CLC-ec1 deltaNC in presence of 200 mM NaBr 6B0N ; 3.4 ; Crystal structure of the cleavage-independent prefusion HIV Env glycoprotein trimer of the clade A BG505 isolate (NFL construct) in complex with Fabs PGT122 and PGV19 at 3.39 A 2YV7 ; 1.7 ; Crystal structure of the CLIC homolog from drosophila melanogaster 2YV9 ; 1.6 ; Crystal structure of the CLIC homologue EXC-4 from c. elegans 2E3I ; 2.0 ; Crystal structure of the CLIP-170 CAP-Gly domain 1 2E3H ; 1.45 ; Crystal structure of the CLIP-170 CAP-Gly domain 2 5VJI ; 1.86 ; Crystal structure of the CLOCK Transcription Domain Exon19 in Complex with a Repressor 5VJX ; 2.695 ; Crystal structure of the CLOCK Transcription Domain Exon19 in Complex with a Repressor 1LV5 ; 1.95 ; Crystal Structure of the Closed Conformation of Bacillus DNA Polymerase I Fragment Bound to DNA and dCTP 2CST ; 1.9 ; CRYSTAL STRUCTURE OF THE CLOSED FORM OF CHICKEN CYTOSOLIC ASPARTATE AMINOTRANSFERASE AT 1.9 ANGSTROMS RESOLUTION 4BP0 ; 2.24 ; Crystal structure of the closed form of Pseudomonas aeruginosa SPM-1 3WFW ; 1.65 ; Crystal Structure of the Closed Form of the HGbRL's Globin Domain 3UG9 ; 2.3 ; Crystal Structure of the Closed State of Channelrhodopsin 1GZ7 ; 1.97 ; Crystal structure of the closed state of lipase 2 from Candida rugosa 6UJE ; 1.75 ; Crystal structure of the Clostridial cellulose synthase subunit Z (CcsZ) from Clostridioides difficile 6UJF ; 2.0 ; Crystal structure of the Clostridial cellulose synthase subunit Z (CcsZ) from Clostridioides difficile 6UWI ; 3.7 ; Crystal structure of the Clostridium difficile translocase CDTb 4U6T ; 1.76 ; Crystal structure of the Clostridium histolyticum colH collagenase polycystic kidney disease-like domain 2a at 1.76 Angstrom resolution 4U7K ; 1.91 ; Crystal structure of the Clostridium histolyticum colH collagenase polycystic kidney disease-like domain 2a in the presence of calcium at 1.9 Angstrom resolution 3BW8 ; 1.8 ; Crystal structure of the Clostridium limosum C3 exoenzyme 4H56 ; 3.9 ; Crystal structure of the Clostridium perfringens NetB toxin in the membrane inserted form 5JIP ; 1.8 ; Crystal structure of the Clostridium perfringens spore cortex lytic enzyme SleM 3F52 ; 1.75 ; Crystal structure of the clp gene regulator ClgR from C. glutamicum 3F51 ; 2.05 ; Crystal Structure of the clp gene regulator ClgR from Corynebacterium glutamicum 2F6I ; 2.45 ; Crystal structure of the ClpP protease catalytic domain from Plasmodium falciparum 4RWG ; 2.44 ; Crystal structure of the CLR:RAMP1 extracellular domain heterodimer with bound high affinity CGRP analog 4RWF ; 1.76 ; Crystal structure of the CLR:RAMP2 extracellular domain heterodimer with bound adrenomedullin 3P30 ; 3.3 ; crystal structure of the cluster II Fab 1281 in complex with HIV-1 gp41 ectodomain 3W2V ; 2.6 ; Crystal structure of the Cmr2dHD-Cmr3 subcomplex bound to 3'-AMP 3W2W ; 2.5 ; Crystal structure of the Cmr2dHD-Cmr3 subcomplex bound to ATP 1LT0 ; 2.4 ; Crystal structure of the CN-bound BjFixL heme domain 2E39 ; 1.3 ; Crystal structure of the CN-bound form of Arthromyces ramosus peroxidase at 1.3 Angstroms resolution 6G52 ; 3.691 ; CRYSTAL STRUCTURE OF THE CNMP BINDING DOMAIN OF THE MAGNESIUM TRANSPORTER CNNM4 8F6D ; 3.2 ; Crystal structure of the CNNM2 CBS-pair domain in complex with ARL15 1FA6 ; 1.9 ; CRYSTAL STRUCTURE OF THE CO(II)-BOUND GLYOXALASE I OF ESCHERICHIA COLI 1LSV ; 2.4 ; Crystal structure of the CO-bound BjFixL heme domain 5VTD ; 1.95 ; Crystal Structure of the Co-bound Human Heavy-Chain Ferritin variant 122H-delta C-star 8U5G ; 3.2 ; Crystal structure of the co-expressed SDS22:PP1:I3 complex 3CDK ; 2.59 ; Crystal structure of the co-expressed succinyl-CoA transferase A and B complex from Bacillus subtilis 6WIQ ; 2.85 ; Crystal structure of the co-factor complex of NSP7 and the C-terminal domain of NSP8 from SARS CoV-2 5TKY ; 2.6 ; Crystal structure of the co-translational Hsp70 chaperone Ssb in the ATP-bound, open conformation 3THH ; 1.85 ; Crystal structure of the Co2+2-HAI-ABH complex 3THJ ; 1.5 ; Crystal structure of the Co2+2-HAI-L-Orn complex 4FCK ; 1.9 ; Crystal Structure of the Co2+2-Human Arginase I-AGPA Complex 4FRG ; 2.95 ; Crystal structure of the cobalamin riboswitch aptamer domain 4FRN ; 3.43 ; Crystal structure of the cobalamin riboswitch regulatory element 4QQU ; 2.98 ; Crystal structure of the cobalamin-independent methionine synthase enzyme in a closed conformation 4RXW ; 1.73 ; Crystal Structure of the cobalt human insulin derivative 1C0W ; 3.2 ; CRYSTAL STRUCTURE OF THE COBALT-ACTIVATED DIPHTHERIA TOXIN REPRESSOR-DNA COMPLEX REVEALS A METAL BINDING SH-LIKE DOMAIN 7NP8 ; 2.3 ; Crystal structure of the Coenzyme F420-dependent sulfite reductase from Methanocaldococcus jannaschii at 2.3-A resolution 7NPA ; 1.55 ; Crystal structure of the Coenzyme F420-dependent sulfite reductase from Methanothermococcus thermolithotrophicus at 1.55-A resolution 3JXP ; 2.2 ; Crystal Structure of the Coenzyme PQQ Synthesis Protein (PqqB) from Pseudomonas putida 1XTO ; 2.8 ; Crystal Structure of the Coenzyme PQQ Synthesis Protein (PqqB) from Pseudomonas putida, Northeast Structural Genomics Target PpR6 3S0T ; 1.26 ; Crystal structure of the CofA Type IV pilin subunit from enterotoxigenic E. coli 2FYI ; 2.8 ; Crystal Structure of the Cofactor-Binding Domain of the Cbl Transcriptional Regulator 6IPB ; 1.78 ; Crystal Structure of the Cofactor-binding Domain of the Human Phase II Drug Metabolism Enzyme UGT2B15 7OKZ ; 2.101 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) CATALYTICALLY INACTIVE H251A VARIANT COMPLEXED WITH 2-METHYL- QUINOLIN-4(1H)-ONE UNDER HYPEROXIC CONDITIONS 7OJM ; 2.001 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) CATALYTICALLY INACTIVE H251A VARIANT COMPLEXED WITH 2-METHYL-QUINOLIN-4(1H)-ONE UNDER NORMOXIC CONDITIONS 4CFS ; 1.94 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) CATALYTICALLY INACTIVE H251A VARIANT COMPLEXED WITH ITS NATURAL SUBSTRATE 1-H-3-HYDROXY-4- OXOQUINALDINE 2WJ3 ; 2.09 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) FROM ARTHROBACTER NITROGUAJACOLICUS RU61A 2WJ4 ; 2.1 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) FROM ARTHROBACTER NITROGUAJACOLICUS RU61A ANAEROBICALLY COMPLEXED WITH ITS NATURAL SUBSTRATE 1-H-3-HYDROXY-4-OXOQUINALDINE 2WJ6 ; 2.0 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) FROM ARTHROBACTER NITROGUAJACOLICUS RU61A COMPLEXED WITH ITS NATURAL PRODUCT N- ACETYLANTHRANILATE 2WM2 ; 2.7 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) FROM ARTHROBACTER NITROGUAJACOLICUS RU61A IN COMPLEX WITH CHLORIDE 8OXT ; 2.003 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) H251A VARIANT COMPLEXED WITH N-ACETYLANTHRANILATE AS RESULT OF IN CRYSTALLO TURNOVER OF ITS NATURAL SUBSTRATE 1-H-3-HYDROXY-4- OXOQUINALDINE UNDER HYPEROXIC CONDITIONS 8ORO ; 2.0 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) S101A VARIANT COMPLEXED WITH 2-METHYL-QUINOLIN-4(1H)-ONE UNDER HYPEROXYC CONDITIONS 8OXN ; 2.0 ; CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) S101A VARIANT COMPLEXED WITH 2-METHYL-QUINOLIN-4(1H)-ONE UNDER NORMOXYC CONDITIONS 6RGT ; 1.6 ; Crystal structure of the cofactor-free Aspergillus flavus urate oxidase T57A variant anaerobically complexed with 9-methyl uric acid 4RL8 ; 2.3 ; Crystal structure of the COG4313 outer membrane channel from Pseudomonas putida F1 4U6U ; 3.0 ; Crystal Structure of the Cog5-Cog7 complex from Kluyveromyces lactis 5M0Y ; 1.5 ; Crystal Structure of the CohScaA-XDocCipB type II complex from Clostridium thermocellum at 1.5Angstrom resolution 5G5D ; 3.0 ; Crystal Structure of the CohScaC2-XDocCipA type II complex from Clostridium thermocellum 6TTR ; 2.85 ; Crystal Structure of the coiled coil and GGDEF domain of DgcB from Caulobacter crescentus in complex with c-di-GMP 3Q8T ; 1.9 ; Crystal structure of the coiled coil domain of Beclin 1, an essential autophagy protein 4M3L ; 2.1 ; Crystal Structure of the coiled coil domain of MuRF1 5CJ1 ; 2.1 ; Crystal structure of the coiled coil of MYH7 residues 1526 to 1571 fused to Gp7 1M5I ; 2.0 ; Crystal Structure of the coiled coil region 129-250 of the tumor suppressor gene product APC 4DJG ; 1.9 ; Crystal structure of the coiled-coil 1 domain of actin-binding protein SCAB1 1T6F ; 1.47 ; Crystal Structure of the Coiled-coil Dimerization Motif of Geminin 1NYH ; 3.1 ; Crystal Structure of the Coiled-coil Dimerization Motif of Sir4 5U96 ; 1.95 ; Crystal structure of the coiled-coil domain from Listeria Innocua (Tetragonal Form) 5UDO ; 2.541 ; Crystal structure of the coiled-coil domain from Listeria Innocua Phage Integrase (Tetragonal Form II) 5UAE ; 2.75 ; Crystal structure of the coiled-coil domain from Listeria Innocua Phage Integrase (Trigonal Form) 4GKW ; 3.3 ; Crystal Structure of the Coiled-coil Domain of C. elegans SAS-6 2AKF ; 1.2 ; Crystal structure of the coiled-coil domain of coronin 1 5N7H ; 2.2 ; Crystal structure of the coiled-coil domain of human tricellulin 5N7I ; 2.88 ; Crystal structure of the coiled-coil domain of human tricellulin 5N7K ; 2.81 ; Crystal structure of the coiled-coil domain of human tricellulin 2V66 ; 2.1 ; Crystal Structure of the coiled-coil domain of Ndel1 (a.a. 58 to 169) C 3VVI ; 1.25 ; Crystal structure of the coiled-coil domain of the transient receptor potential channel from Gibberella zeae (TRPGz) 8FXF ; 2.8 ; Crystal structure of the coiled-coil domain of TRIM56 7UG2 ; 2.052 ; Crystal structure of the coiled-coil domain of TRIM75 6JN2 ; 3.6 ; Crystal structure of the coiled-coil domains of human DOT1L in complex with AF10 4XA1 ; 3.2 ; Crystal Structure of the coiled-coil surrounding Skip 1 of MYH7 4XA3 ; 2.548 ; Crystal structure of the coiled-coil surrounding Skip 2 of MYH7 4XA4 ; 2.327 ; Crystal Structure of the coiled-coil surrounding Skip 3 of MYH7 4XA6 ; 3.42 ; Crystal Structure of the coiled-coil surrounding Skip 4 of MYH7 4GMV ; 2.403 ; Crystal Structure of the coiled-coil, RA and PH domains of Lamellipodin 6E0W ; 1.803 ; Crystal structure of the colanidase tailspike protein gp150 of Phage Phi92 complexed with one repeating unit of colanic acid 6A6L ; 1.78 ; Crystal structure of the cold shock domain of YB-1 in complex with m5C RNA 3CAM ; 2.6 ; Crystal structure of the cold shock domain protein from Neisseria meningitidis 3U43 ; 1.72 ; Crystal structure of the colicin E2 DNase-Im2 complex 1V14 ; 2.9 ; Crystal Structure of the Colicin E9, mutant His103Ala, in complex with Mg+2 and dsDNA (resolution 2.9A) 1V15 ; 2.4 ; CRYSTAL STRUCTURE OF THE COLICIN E9, MUTANT HIS103ALA, IN COMPLEX WITH ZN+2 AND DSDNA (RESOLUTION 2.4A) 2HDF ; 2.65 ; Crystal structure of the Colicin I receptor Cir from E.coli 2HDI ; 2.5 ; Crystal structure of the Colicin I receptor Cir from E.coli in complex with receptor binding domain of Colicin Ia. 1XWR ; 2.56 ; Crystal structure of the coliphage lambda transcription activator protein CII 8JL8 ; 1.81 ; Crystal structure of the collagen binding domain of Cnm from Streptococcus mutans 3V10 ; 1.75 ; Crystal structure of the collagen binding domain of Erysipelothrix rhusiopathiae surface protein RspB 1K6F ; 1.3 ; Crystal Structure of the Collagen Triple Helix Model [(Pro-Pro-Gly)10]3 1WZB ; 1.5 ; Crystal structure of the collagen triple helix model [{HYP(R)-HYP(R)-GLY}10]3 3B2C ; 1.36 ; Crystal structure of the collagen triple helix model [{PRO-HYP(R)-GLY}4-{HYP(S)-Pro-GLY}2-{PRO-HYP(R)-GLY}4]3 6SNK ; 2.2 ; Crystal structure of the Collagen VI alpha3 N2 domain 4IGI ; 1.2 ; Crystal structure of the Collagen VI alpha3 N5 domain 4IHK ; 1.2 ; Crystal structure of the Collagen VI alpha3 N5 domain R1061Q 1P9H ; 1.55 ; CRYSTAL STRUCTURE OF THE COLLAGEN-BINDING DOMAIN OF YERSINIA ADHESIN YadA 7VLZ ; 1.6 ; Crystal structure of the collagenase unit of a Vibrio collagenase from Vibrio harveyi VHJR7 7ESI ; 1.8 ; Crystal structure of the collagenase unit of a Vibrio collagenase from Vibrio harveyi VHJR7 at 1. 8 angstrom resolution. 4ARE ; 2.19 ; Crystal structure of the collagenase Unit of collagenase G from Clostridium histolyticum at 2.19 angstrom resolution. 6G75 ; 1.391 ; Crystal structure of the common ancestor of haloalkane dehalogenases and Renilla luciferase (AncHLD-RLuc) 1Y2T ; 1.5 ; Crystal structure of the common edible mushroom (Agaricus bisporus) lectin 1Y2U ; 1.85 ; Crystal structure of the common edible mushroom (Agaricus bisporus) lectin in complex with Lacto-N-biose 1Y2V ; 1.9 ; Crystal structure of the common edible mushroom (Agaricus bisporus) lectin in complex with T-antigen 5V01 ; 1.3 ; Crystal structure of the competence damage-inducible protein A (ComA) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 5KOL ; 1.91 ; Crystal structure of the competence-damaged protein (CinA) superfamily protein ECK1530/EC0983 from Escherichia coli 5VU3 ; 1.868 ; Crystal structure of the competence-damaged protein (CinA) superfamily protein ECL_02051 from Enterobacter cloacae 6MR3 ; 2.05 ; Crystal structure of the competence-damaged protein (CinA) superfamily protein from Streptococcus mutans 5KVK ; 1.66 ; Crystal structure of the Competence-Damaged Protein (CinA) Superfamily Protein KP700603 from Klebsiella pneumoniae 700603 1QZW ; 4.1 ; Crystal structure of the complete core of archaeal SRP and implications for inter-domain communication 1QZX ; 4.0 ; Crystal structure of the complete core of archaeal SRP and implications for inter-domain communication 2X10 ; 3.0 ; Crystal structure of the complete EphA2 ectodomain 2X11 ; 4.83 ; Crystal structure of the complete EphA2 ectodomain in complex with ephrin A5 receptor binding domain 1GH7 ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLETE EXTRACELLULAR DOMAIN OF THE BETA-COMMON RECEPTOR OF IL-3, IL-5, AND GM-CSF 3K70 ; 3.59 ; Crystal structure of the complete initiation complex of RecBCD 3IJE ; 2.9 ; Crystal structure of the complete integrin alhaVbeta3 ectodomain plus an Alpha/beta transmembrane fragment 2BIB ; 1.92 ; Crystal structure of the complete modular teichioic acid phosphorylcholine esterase Pce (CbpE) from Streptococcus pneumoniae 8RKE ; 2.7 ; Crystal structure of the complete N-terminal region of human ZP2 (hZP2-N1N2N3) 1DTO ; 1.9 ; CRYSTAL STRUCTURE OF THE COMPLETE TRANSACTIVATION DOMAIN OF E2 PROTEIN FROM THE HUMAN PAPILLOMAVIRUS TYPE 16 6MJ0 ; 3.1 ; Crystal structure of the complete turnip yellow mosaic virus 3'UTR 5L0Q ; 2.759 ; Crystal structure of the complex between ADAM10 D+C domain and a conformation specific mAb 8C7. 3GRV ; 1.9 ; Crystal Structure of the Complex between Adenosine and Methanocaldococcus jannaschi Dim1 5VU0 ; 2.26 ; Crystal structure of the complex between afucosylated/galactosylated human IgG1 Fc and Fc gamma receptor IIIa (CD16A) with Man5 N-glycans 3GRU ; 1.6 ; Crystal Structure of the Complex between AMP and Methanocaldococcus jannaschi Dim1 1KXH ; 2.3 ; Crystal structure of the complex between an inactive mutant of psychrophilic alpha-amylase (D174N) and acarbose 2G1A ; 2.0 ; Crystal structure of the complex between Apha class B acid phosphatase/phosphotransferase 2FOT ; 2.45 ; Crystal structure of the complex between calmodulin and alphaII-spectrin 1IT6 ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CALYCULIN A AND THE CATALYTIC SUBUNIT OF PROTEIN PHOSPHATASE 1 3EFT ; 1.85 ; Crystal structure of the complex between Carbonic Anhydrase II and a spin-labeled sulfonamide incorporating TEMPO moiety 3K7K ; 1.9 ; Crystal structure of the complex between Carbonic Anhydrase II and anions 5E5R ; 2.6 ; Crystal structure of the complex between Carbonic anhydrase-like domain of PTPRG and Immunoglobulin domains 2-3 of CNTN3 5E5U ; 2.0 ; Crystal structure of the complex between Carbonic anhydrase-like domain of PTPRG and Immunoglobulin domains 2-3 of CNTN6 1CBX ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CARBOXYPEPTIDASE A AND THE BIPRODUCT ANALOG INHIBITOR L-BENZYLSUCCINATE AT 2.0 ANGSTROMS RESOLUTION 3UCS ; 1.87 ; Crystal structure of the complex between CBPA J-domain and CBPM 5WK3 ; 1.9 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CCL17 AND M116 FAB 5WCM ; 1.2 ; Crystal structure of the complex between class B3 beta-lactamase BJP-1 and 4-nitrobenzene-sulfonamide - new refinement 3G6D ; 3.2 ; Crystal structure of the complex between CNTO607 Fab and IL-13 4DN4 ; 2.8 ; Crystal structure of the complex between cnto888 fab and mcp-1 mutant p8a 2Y0M ; 2.7 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN DOSAGE COMPENSATION FACTORS MSL1 AND MOF 2Y0N ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN DOSAGE COMPENSATION FACTORS MSL1 AND MSL3 1BO5 ; 3.2 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN ESCHERICHIA COLI GLYCEROL KINASE AND THE ALLOSTERIC REGULATOR FRUCTOSE 1,6-BISPHOSPHATE. 1BOT ; 3.05 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN ESCHERICHIA COLI GLYCEROL KINASE AND THE ALLOSTERIC REGULATOR FRUCTOSE 1,6-BISPHOSPHATE. 1GAQ ; 2.59 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN FERREDOXIN AND FERREDOXIN-NADP+ REDUCTASE 1OMW ; 2.5 ; Crystal Structure of the complex between G Protein-Coupled Receptor Kinase 2 and Heterotrimeric G Protein beta 1 and gamma 2 subunits 2ZZO ; 2.2 ; Crystal structure of the complex between GP41 fragment N36 and fusion inhibitor C34/S138A 2Z2T ; 2.1 ; Crystal structure of the complex between gp41 fragment N36 and fusion inhibitor SC34EK 3AHA ; 1.7 ; Crystal structure of the complex between gp41 fragments N36 and C34 mutant N126K/E137Q 6D07 ; 2.1 ; Crystal structure of the complex between human chromobox homolog 1 (CBX1) and H3K9me3 peptide 3TJS ; 2.25 ; Crystal Structure of the complex between human cytochrome P450 3A4 and desthiazolylmethyloxycarbonyl ritonavir 5DEA ; 2.7973 ; Crystal structure of the complex between human FMRP RGG motif and G-quadruplex RNA, cesium bound form. 5DE8 ; 3.1003 ; Crystal structure of the complex between human FMRP RGG motif and G-quadruplex RNA, iridium hexammine bound form. 5DE5 ; 3.0011 ; Crystal structure of the complex between human FMRP RGG motif and G-quadruplex RNA. 2WG3 ; 2.6 ; Crystal structure of the complex between human hedgehog-interacting protein HIP and desert hedgehog without calcium 2WFX ; 3.2 ; Crystal structure of the complex between human hedgehog-interacting protein HIP and Sonic Hedgehog in the presence of calcium 2WG4 ; 3.15 ; Crystal structure of the complex between human hedgehog-interacting protein HIP and sonic hedgehog without calcium 2WJV ; 2.85 ; Crystal structure of the complex between human nonsense mediated decay factors UPF1 and UPF2 2WJY ; 2.5 ; Crystal structure of the complex between human nonsense mediated decay factors UPF1 and UPF2 Orthorhombic form 5K23 ; 2.96 ; Crystal structure of the complex between human phosphatase PRL-2 in the oxidized state with the Bateman domain of human magnesium transporter CNNM3 5K22 ; 3.0 ; Crystal structure of the complex between human PRL-2 phosphatase in reduced state and Bateman domain of human CNNM3 2XNA ; 2.1 ; Crystal structure of the complex between human T cell receptor and staphylococcal enterotoxin 4M7L ; 3.4 ; Crystal structure of the complex between human tissue factor extracellular domain and antibody 10H10 FAB fragment 3L5W ; 2.0 ; Crystal structure of the complex between IL-13 and C836 FAB 3L5X ; 1.9 ; Crystal structure of the complex between IL-13 and H2L6 FAB 4PS4 ; 2.8 ; Crystal structure of the complex between IL-13 and M1295 FAB 1S6C ; 2.0 ; Crystal structure of the complex between KChIP1 and Kv4.2 N1-30 2NLI ; 1.59 ; Crystal Structure of the complex between L-lactate oxidase and a substrate analogue at 1.59 angstrom resolution 4WZ3 ; 2.7 ; Crystal structure of the complex between LubX/LegU2/Lpp2887 U-box 1 and Homo sapiens UBE2D2 1NYY ; 1.9 ; Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (105) 1NYM ; 1.2 ; Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (CXB) 1NY0 ; 1.75 ; Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (NBF) 1NXY ; 1.6 ; Crystal Structure of the complex between M182T mutant of TEM-1 and a boronic acid inhibitor (SM2) 5H8V ; 2.2 ; Crystal structure of the complex between maize Sulfite Reductase and ferredoxin in the form-1 crystal 5H8Y ; 2.2 ; Crystal structure of the complex between maize sulfite reductase and ferredoxin in the form-2 crystal 5H92 ; 2.08 ; Crystal structure of the complex between maize Sulfite Reductase and ferredoxin in the form-3 crystal 1ZP5 ; 1.8 ; Crystal structure of the complex between MMP-8 and a N-hydroxyurea inhibitor 3DNG ; 2.0 ; Crystal structure of the complex between MMP-8 and a non-zinc chelating inhibitor 3DPE ; 1.6 ; Crystal structure of the complex between MMP-8 and a non-zinc chelating inhibitor 3DPF ; 2.1 ; Crystal structure of the complex between MMP-8 and a non-zinc chelating inhibitor 1ZVX ; 1.87 ; Crystal structure of the complex between MMP-8 and a phosphonate inhibitor (R-enantiomer) 1ZS0 ; 1.56 ; Crystal structure of the complex between MMP-8 and a phosphonate inhibitor (S-enantiomer) 3RNK ; 1.74 ; Crystal structure of the complex between mouse PD-1 mutant and PD-L2 IgV domain 7CEG ; 3.85 ; Crystal structure of the complex between mouse PTP delta and neuroligin-3 2QX1 ; 2.6 ; Crystal structure of the complex between mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III (FABH) and decyl-COA disulfide 1U6S ; 2.3 ; Crystal Structure of the Complex Between Mycobacterium Tuberculosis Beta-Ketoacyl-Acyl Carrier Protein Synthase III and Lauroyl Coenzyme A 5O0W ; 2.57 ; Crystal structure of the complex between Nb474 and Trypanosoma congolense fructose-1,6-bisphosphate aldolase 2HEV ; 2.41 ; Crystal structure of the complex between OX40L and OX40 1XG2 ; 1.9 ; Crystal structure of the complex between pectin methylesterase and its inhibitor protein 6PX4 ; 1.65 ; Crystal structure of the complex between periplasmic domains of antiholin RI and holin T from T4 phage, in H32 6PXE ; 2.3 ; Crystal structure of the complex between periplasmic domains of antiholin RI and holin T from T4 phage, in P21 6PSK ; 2.2 ; Crystal structure of the complex between periplasmic domains of antiholin RI and holin T from T4 phage, in P6522 5K24 ; 3.1 ; Crystal structure of the complex between phosphatase PRL-2 in the oxidized state with the Bateman domain of murine magnesium transporter CNNM3 3CDS ; 2.65 ; Crystal structure of the complex between PPAR-gamma and the agonist LT248 (clofibric acid analogue) 2I4J ; 2.1 ; Crystal structure of the complex between PPARgamma and the agonist LT160 (ureidofibrate derivative) 3B3K ; 2.6 ; Crystal structure of the complex between PPARgamma and the full agonist LT175 2I4P ; 2.1 ; Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). Structure obtained from crystals of the apo-form soaked for 30 days. 2I4Z ; 2.25 ; Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). This structure has been obtained from crystals soaked for 6 hours. 6AN1 ; 2.687 ; Crystal structure of the complex between PPARgamma LBD and the ligand AM-879 4JL4 ; 2.5 ; Crystal structure of the complex between PPARgamma LBD and the ligand LJ570 [(2S)-3-(biphenyl-4-yl)-2-(biphenyl-4-yloxy)propanoic acid] 6F2L ; 2.1 ; Crystal structure of the complex between PPARgamma LBD and the ligand LJ570: structure obtained from crystals of the apo-form soaked for 15 days. 6T9C ; 1.95 ; Crystal structure of the complex between PPARgamma LBD and the ligand NV1346 (3a) 6ZLY ; 1.79 ; Crystal structure of the complex between PPARgamma LBD and the ligand NV1362 (7a) 3D6D ; 2.4 ; Crystal Structure of the complex between PPARgamma LBD and the LT175(R-enantiomer) 4JAZ ; 2.85 ; Crystal structure of the complex between PPARgamma LBD and trans-resveratrol 4O8F ; 2.6 ; Crystal Structure of the complex between PPARgamma mutant R357A and rosiglitazone 4PVU ; 2.6 ; Crystal structure of the complex between PPARgamma-LBD and the R enantiomer of Mbx-102 (Metaglidasen) 4PWL ; 2.6 ; Crystal structure of the complex between PPARgamma-LBD and the S enantiomer of Mbx-102 (Metaglidasen) 4BJR ; 2.8 ; Crystal structure of the complex between Prokaryotic Ubiquitin-like Protein Pup and its Ligase PafA 2PDA ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN PYRUVATE-FERREDOXIN OXIDOREDUCTASE FROM DESULFOVIBRIO AFRICANUS AND PYRUVATE. 1O07 ; 1.71 ; Crystal Structure of the complex between Q120L/Y150E mutant of AmpC and a beta-lactam inhibitor (MXG) 1LS3 ; 2.7 ; Crystal Structure of the Complex between Rabbit Cytosolic Serine Hydroxymethyltransferase and TriGlu-5-formyl-tetrahydrofolate 1DP2 ; 2.01 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN RHODANESE AND LIPOATE 6THL ; 2.8 ; Crystal structure of the complex between RTT106 and BCD1 3GRR ; 1.8 ; Crystal Structure of the complex between S-Adenosyl Homocysteine and Methanocaldococcus jannaschi Dim1. 3GRY ; 2.2 ; Crystal Structure of the complex between S-Adenosyl Methionine and Methanocaldococcus jannaschi Dim1. 4OAJ ; 2.3 ; Crystal structure of the complex between SAP97 PDZ2 and 5HT2A receptor peptide 4I98 ; 2.8 ; Crystal structure of the complex between ScpA(residues 1-160)-ScpB(residues 1-183) 6FE4 ; 3.0 ; Crystal structure of the complex between Shiga toxin Stx2 B subunit and neutralising Nb113 4Y61 ; 3.358 ; Crystal structure of the complex between Slitrk2 LRR1 and PTP delta Ig1-Fn1 3WMQ ; 1.6 ; Crystal structure of the complex between SLL-2 and GalNAc. 4NUT ; 1.55 ; Crystal structure of the complex between Snu13p and the PEP domain of Rsa1 3DGP ; 1.8 ; Crystal Structure of the complex between Tfb5 and the C-terminal domain of Tfb2 3DOM ; 2.6 ; Crystal Structure of the complex between Tfb5 and the C-terminal domain of Tfb2 3N9U ; 1.92 ; Crystal Structure of the Complex between the 25 kDa Subunit and the 59 kDa Subunit (RRM domain) of Human Cleavage Factor Im 2QO0 ; 1.85 ; Crystal structure of the complex between the A246F mutant of mycobacterium beta-ketoacyl-acyl carrier protein synthase III (FABH) and 11-(decyldithiocarbonyloxy)-undecanoic acid 2QNY ; 2.15 ; Crystal structure of the complex between the A246F mutant of mycobacterium beta-ketoacyl-acyl carrier protein synthase III (FABH) and SS-(2-hydroxyethyl) O-decyl ester carbono(dithioperoxoic) acid 3QHE ; 2.4 ; Crystal structure of the complex between the armadillo repeat domain of adenomatous polyposis coli and the tyrosine-rich domain of Sam68 6L4P ; 1.703 ; Crystal structure of the complex between the axonemal outer-arm dynein light chain-1 and microtubule binding domain of gamma heavy chain 3A8Y ; 2.3 ; Crystal structure of the complex between the BAG5 BD5 and Hsp70 NBD 7EFA ; 2.7 ; Crystal structure of the complex between the C-terminal domain of mouse MUTYH and human PCNA 2A1J ; 2.7 ; Crystal Structure of the Complex between the C-Terminal Domains of Human XPF and ERCC1 1IOD ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THE COAGULATION FACTOR X BINDING PROTEIN FROM SNAKE VENOM AND THE GLA DOMAIN OF FACTOR X 3SF4 ; 2.6 ; Crystal structure of the complex between the conserved cell polarity proteins Inscuteable and LGN 5FT8 ; 2.5 ; Crystal structure of the complex between the cysteine desulfurase CsdA and the sulfur-acceptor CsdE in the persulfurated state at 2.50 Angstroem resolution 2RF9 ; 3.5 ; Crystal structure of the complex between the EGFR kinase domain and a Mig6 peptide 2RFD ; 3.6 ; Crystal structure of the complex between the EGFR kinase domain and a Mig6 peptide 2RFE ; 2.9 ; Crystal structure of the complex between the EGFR kinase domain and a Mig6 peptide 3SBW ; 2.28 ; Crystal structure of the complex between the extracellular domains of mouse PD-1 mutant and human PD-L1 3RNQ ; 1.6 ; Crystal structure of the complex between the extracellular domains of mouse PD-1 mutant and PD-L2 4FHR ; 1.931 ; Crystal structure of the complex between the flagellar motor proteins FliG and FliM. 1HE1 ; 2.0 ; Crystal structure of the complex between the GAP domain of the Pseudomonas aeruginosa ExoS toxin and human Rac 1GZS ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THE GEF DOMAIN OF THE SALMONELLA TYPHIMURIUM SOPE TOXIN AND HUMAN Cdc42 4U5Y ; 1.926 ; Crystal Structure of the complex between the GNAT domain of S. lividans PAT and the acetyl-CoA synthetase C-terminal domain of S. enterica 1S1C ; 2.6 ; Crystal structure of the complex between the human RhoA and Rho-binding domain of human ROCKI 5JHG ; 2.5 ; Crystal structure of the complex between the human RhoA and the DH/PH domain of human ARHGEF11 6H0S ; 1.75 ; Crystal structure of the complex between the Lactococcus lactis FPG mutant G226P and a Fapy-dG containing DNA 6FL1 ; 1.6 ; Crystal structure of the complex between the Lactococcus lactis FPG mutant T221P and a Fapy-dG containing DNA 1DTD ; 1.65 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THE LEECH CARBOXYPEPTIDASE INHIBITOR AND THE HUMAN CARBOXYPEPTIDASE A2 (LCI-CPA2) 2QNX ; 2.7 ; Crystal structure of the complex between the mycobacterium beta-ketoacyl-acyl carrier protein synthase III (FABH) and 11-[(decyloxycarbonyl)dithio]-undecanoic acid 2QNZ ; 2.3 ; Crystal structure of the complex between the mycobacterium beta-ketoacyl-acyl carrier protein synthase III (FABH) and SS-(2-hydroxyethyl)-O-decyl ester carbono(dithioperoxoic) acid 4XA9 ; 2.0 ; Crystal structure of the complex between the N-terminal domain of RavJ and LegL1 from Legionella pneumophila str. Philadelphia 1F3V ; 2.0 ; Crystal structure of the complex between the N-terminal domain of TRADD and the TRAF domain of TRAF2 5L23 ; 1.77 ; Crystal structure of the complex between the N-terminal SH3 domain of CrkII and a proline-rich ligand 1N83 ; 1.63 ; Crystal Structure of the complex between the Orphan Nuclear Hormone Receptor ROR(alpha)-LBD and Cholesterol 1DVA ; 3.0 ; Crystal Structure of the Complex Between the Peptide Exosite Inhibitor E-76 and Coagulation Factor VIIA 1CZY ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN THE TRAF DOMAIN OF HUMAN TRAF2 AND AN LMP1 BINDING PEPTIDE 6OX6 ; 2.17 ; Crystal structure of the complex between the Type VI effector Tas1 and its immunity protein 5Y04 ; 2.85 ; Crystal Structure of the complex between the vinculin D1 domain and alphaE-catenin 2A45 ; 3.65 ; Crystal structure of the complex between thrombin and the central ""E"" region of fibrin 6LHR ; 2.62 ; Crystal structure of the complex between Vesicle Amine Transport-1 and NADP 3WTU ; 2.7 ; Crystal structure of the complex comprised of ETS1 (V170A), RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTY ; 2.7 ; Crystal structure of the complex comprised of ETS1(G333P), RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTW ; 2.9 ; Crystal structure of the complex comprised of ETS1(K167A), RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTV ; 2.7 ; Crystal structure of the complex comprised of ETS1(V170G), RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTX ; 2.8 ; Crystal structure of the complex comprised of ETS1(Y329A), RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTS ; 2.35 ; Crystal structure of the complex comprised of ETS1, RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 3WTT ; 2.35 ; Crystal structure of the complex comprised of phosphorylated ETS1, RUNX1, CBFBETA, and the tcralpha gene enhancer DNA 8AMQ ; 1.6 ; Crystal structure of the complex CYP143-FdxE from M. tuberculosis 2HKF ; 2.01 ; Crystal structure of the Complex Fab M75- Peptide 6F2B ; 2.0 ; Crystal structure of the complex Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO1 with Fe(II)/alpha-ketoglutarate 6F2A ; 2.0 ; Crystal structure of the complex Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO1 with Fe(II)/Lysine 6EUR ; 2.3 ; Crystal structure of the complex Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO5 with Fe(II)/alpha-ketoglutarate 6EXF ; 1.95 ; Crystal structure of the complex Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO5 with Fe(II)/Lysine 6EXH ; 2.6 ; Crystal structure of the complex Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO5 with Fe(II)/succinate/(4R)-4-hydroxy-L-lysine 2OLI ; 2.21 ; Crystal structure of the complex formed between a group II phospholipase A2 and an indole derivative at 2.2 A resolution 3G8F ; 1.25 ; Crystal structure of the complex formed between a group II phospholipase A2 and designed peptide inhibitor carbobenzoxy-dehydro-val-ala-arg-ser at 1.2 A resolution 3GCI ; 2.04 ; Crystal Structure of the Complex Formed Between a New Isoform of Phospholipase A2 with C-terminal Amyloid Beta Heptapeptide at 2 A Resolution 1TK2 ; 1.54 ; Crystal Structure of the Complex formed between Alkaline Proteinase Savinase and Gramicidin S at 1.5A Resolution 1F2S ; 1.79 ; CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN BOVINE BETA-TRYPSIN AND MCTI-A, A TRYPSIN INHIBITOR OF SQUASH FAMILY AT 1.8 A RESOLUTION 2OTV ; 1.56 ; Crystal structure of the complex formed between bovine trypsin and nicotinamide at 1.56 A resolution 3CFL ; 2.25 ; Crystal structure of the complex formed between C-lobe of bovine lactoferrin and 5-chloro-6'-methyl-3-[4-(methylsulfonyl)phenyl]-2,3'-bipyridine at 2.25 A resolution 2DWI ; 2.2 ; Crystal structure of the complex formed between C-terminal half of bovine lactoferrin and cellobiose at 2.2 A resolution 2DXR ; 2.85 ; Crystal structure of the complex formed between C-terminal half of bovine lactoferrin and sorbitol at 2.85 A resolution 2DT3 ; 2.28 ; Crystal structure of the complex formed between goat signalling protein and the hexasaccharide at 2.28 A resolution 2DT2 ; 2.9 ; Crystal structure of the complex formed between goat signalling protein with pentasaccharide at 2.9A resolution 2B31 ; 3.1 ; Crystal structure of the complex formed between goat signalling protein with pentasaccharide at 3.1 A resolution reveals large scale conformational changes in the residues of TIM barrel 1ZR8 ; 2.03 ; Crystal Structure of the complex formed between group II phospholipase A2 and a plant alkaloid ajmaline at 2.0A resolution 1TJK ; 1.25 ; Crystal structure of the complex formed between group II phospholipase A2 with a designed pentapeptide, Phe- Leu- Ser- Thr- Lys at 1.2 A resolution 1SV9 ; 2.71 ; Crystal structure of the complex formed between groupII phospholipase A2 and anti-inflammatory agent 2-[(2,6-Dichlorophenyl)amino] benzeneacetic acid at 2.7A resolution 2PMJ ; 2.4 ; Crystal structure of the complex formed between phospholipase A2 and 1, 2 benzopyrone at 2.4 A resolution 2PWS ; 2.21 ; Crystal structure of the complex formed between phospholipase A2 and 2-(4-isobutyl-phenyl)-propionic acid at 2.2 A resolution 3JQL ; 1.2 ; Crystal Structure of the Complex Formed Between Phospholipase A2 and a Hexapeptide Fragment of Amyloid Beta Peptide, Lys-Leu-Val-Phe-Phe-Ala at 1.2 A Resolution 2OTF ; 1.95 ; Crystal structure of the complex formed between phospholipase A2 and atenolol at 1.95 A resolution 2OUB ; 2.75 ; Crystal structure of the complex formed between phospholipase A2 and atenolol at 2.75 A resolution 2PB8 ; 2.0 ; Crystal structure of the complex formed between phospholipase A2 and peptide Ala-Val-Tyr-Ser at 2.0 A resolution 1Y38 ; 2.44 ; Crystal structure of the complex formed between phospholipase A2 dimer and glycerophosphate at 2.4 A resolution 3JTI ; 1.8 ; Crystal structure of the complex formed between Phospholipase A2 with beta-amyloid fragment, Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met at 1.8 A resolution 2DP4 ; 2.9 ; Crystal structure of the complex formed between proteinase K and a human lactoferrin fragment at 2.9 A resolution 2DUJ ; 1.67 ; Crystal structure of the complex formed between proteinase K and a synthetic peptide Leu-Leu-Phe-Asn-Asp at 1.67 A resolution 1Q7A ; 1.6 ; Crystal structure of the complex formed between russell's viper phospholipase A2 and an antiinflammatory agent oxyphenbutazone at 1.6A resolution 1TG1 ; 1.25 ; Crystal Structure of the complex formed between russells viper phospholipase A2 and a designed peptide inhibitor PHQ-Leu-Val-Arg-Tyr at 1.2A resolution 1ZBW ; 2.8 ; Crystal structure of the complex formed between signalling protein from goat mammary gland (SPG-40) and a tripeptide Trp-Pro-Trp at 2.8A resolution 1FPR ; 2.5 ; CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN THE CATALYTIC DOMAIN OF SHP-1 AND AN IN VITRO PEPTIDE SUBSTRATE PY469 DERIVED FROM SHPS-1. 2AYW ; 0.97 ; Crystal Structure of the complex formed between trypsin and a designed synthetic highly potent inhibitor in the presence of benzamidine at 0.97 A resolution 3U6Z ; 1.7 ; Crystal structure of the complex formed between type 1 ribosome inactivating protein and adenine at 1.7A resolution 4O4Q ; 1.81 ; Crystal structure of the complex formed between type 1 ribosome inactivating protein and uridine diphosphate at 1.81 A resolution 3N3X ; 1.7 ; Crystal Structure of the complex formed between type I ribosome inactivating protein and hexapeptide Ser-Asp-Asp-Asp-Met-Gly at 1.7 A resolution 3NJS ; 2.1 ; Crystal structure of the complex formed between typeI ribosome inactivating protein and lactose at 2.1A resolution 1ZM6 ; 2.6 ; Crystal structure of the complex formed beween a group I phospholipase A2 and designed penta peptide Leu-Ala-Ile-Tyr-Ser at 2.6A resolution 4LUP ; 1.2 ; Crystal structure of the complex formed by region of E. coli sigmaE bound to its -10 element non template strand 7ESY ; 2.297 ; Crystal structure of the complex formed by Wolbachia cytoplasmic incompatibility factors CidA and CidBND1-ND2 from wPip 7FIV ; 2.59 ; Crystal structure of the complex formed by Wolbachia cytoplasmic incompatibility factors CidA and CidBND1-ND2 from wPip(Tunis) 7FIW ; 2.16 ; Crystal structure of the complex formed by Wolbachia cytoplasmic incompatibility factors CidAwMel(ST) and CidBND1-ND2 from wPip(Pel) 7ET0 ; 2.2 ; Crystal structure of the complex formed by Wolbachia cytoplasmic incompatibility factors CinA and CinB from wPip 7ESZ ; 2.476 ; Crystal structure of the complex formed by Wolbachia cytoplasmic incompatibility factors CinA and CinB with Mn2+ from wPip 5H8X ; 1.3 ; Crystal structure of the complex MMP-8/BF471 (catechol inhibitor) 5XWD ; 2.894 ; Crystal structure of the complex of 059-152-Fv and EGFR-ECD 5SY8 ; 1.62 ; Crystal structure of the complex of 10E8 Fab light chain mutant1 and T117v2 HIV-1 MPER scaffold 5T5B ; 2.07 ; CRYSTAL STRUCTURE OF THE COMPLEX OF 10E8 FAB LIGHT CHAIN MUTANT5 AND T117V2 HIV-1 MPER SCAFFOLD 1D7R ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF 2,2-DIALKYLGLYCINE DECARBOXYLASE WITH 5PA 1D7S ; 2.05 ; CRYSTAL STRUCTURE OF THE COMPLEX OF 2,2-DIALKYLGLYCINE DECARBOXYLASE WITH DCS 1D7U ; 1.95 ; Crystal structure of the complex of 2,2-dialkylglycine decarboxylase with LCS 1D7V ; 2.8 ; CRYSTAL STRUCTURE OF THE COMPLEX OF 2,2-DIALKYLGLYCINE DECARBOXYLASE WITH NMA 1A05 ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF 3-ISOPROPYLMALATE DEHYDROGENASE FROM THIOBACILLUS FERROOXIDANS WITH 3-ISOPROPYLMALATE 4N7H ; 1.698 ; Crystal Structure of the Complex of 3rd WW domain of Human Nedd4 and 1st PPXY Motif of ARRDC3 1KNO ; 3.2 ; CRYSTAL STRUCTURE OF THE COMPLEX OF A CATALYTIC ANTIBODY FAB WITH A TRANSITION STATE ANALOG: STRUCTURAL SIMILARITIES IN ESTERASE-LIKE ABZYMES 6GND ; 2.889 ; Crystal structure of the complex of a Ferredoxin-Flavin Thioredoxin Reductase and a Thioredoxin from Clostridium acetobutylicum at 2.9 A resolution 1ZYX ; 1.95 ; Crystal structure of the complex of a group IIA phospholipase A2 with a synthetic anti-inflammatory agent licofelone at 1.9A resolution 4FXM ; 1.651 ; Crystal structure of the complex of a human telomeric repeat G-quadruplex and N-methyl mesoporphyrin IX (P21212) 4G0F ; 2.15 ; Crystal structure of the complex of a human telomeric repeat G-quadruplex and N-methyl mesoporphyrin IX (P6) 4J9W ; 1.6 ; Crystal structure of the complex of a hydroxyproline epimerase (TARGET EFI-506499, PSEUDOMONAS FLUORESCENS PF-5) with the inhibitor pyrrole-2-carboxylate 4J9X ; 1.7 ; Crystal structure of the complex of a hydroxyproline epimerase (TARGET EFI-506499, PSEUDOMONAS FLUORESCENS PF-5) with trans-4-hydroxy-l-proline 3PMZ ; 2.44 ; Crystal Structure of the Complex of Acetylcholine Binding Protein and d-tubocurarine 1LOT ; 2.5 ; CRYSTAL STRUCTURE OF THE COMPLEX OF ACTIN WITH VITAMIN D-BINDING PROTEIN 1CQI ; 3.3 ; Crystal Structure of the Complex of ADP and MG2+ with Dephosphorylated E. Coli Succinyl-CoA Synthetase 5XC1 ; 2.26 ; Crystal structure of the complex of an aromatic mutant (W6A) of an alkali thermostable GH10 Xylanase from Bacillus sp. NG-27 with S-1,2-Propanediol 2NR6 ; 2.81 ; Crystal structure of the complex of antibody and the allergen Bla g 2 1PAU ; 2.5 ; Crystal structure of the complex of apopain with the tetrapeptide aldehyde inhibitor AC-DEVD-CHO 1CP3 ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX OF APOPAIN WITH THE TETRAPEPTIDE INHIBITOR ACE-DVAD-FMC 5YV5 ; 2.1 ; Crystal structure of the complex of archaeal ribosomal stalk protein aP1 and archaeal ribosome recycling factor aABCE1. 5YT0 ; 1.89 ; Crystal structure of the complex of archaeal ribosomal stalk protein aP1 and archaeal translation initiation factor aIF5B 1CX9 ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX OF BACTERIAL TRYPTOPHAN SYNTHASE WITH THE TRANSITION STATE ANALOGUE INHIBITOR 4-(2-AMINOPHENYLTHIO)-BUTYLPHOSPHONIC ACID 1C9D ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX OF BACTERIAL TRYPTOPHAN SYNTHASE WITH THE TRANSITION STATE ANALOGUE INHIBITOR 4-(2-HYDROXY-4-FLUOROPHENYLTHIO)-BUTYLPHOSPHONIC ACID 1CW2 ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF BACTERIAL TRYPTOPHAN SYNTHASE WITH THE TRANSITION STATE ANALOGUE INHIBITOR 4-(2-HYDROXYPHENYLSULFINYL)-BUTYLPHOSPHONIC ACID 1C29 ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX OF BACTERIAL TRYPTOPHAN SYNTHASE WITH THE TRANSITION STATE ANALOGUE INHIBITOR 4-(2-HYDROXYPHENYLTHIO)-1-BUTENYLPHOSPHONIC ACID 1C8V ; 2.2 ; CRYSTAL STRUCTURE OF THE COMPLEX OF BACTERIAL TRYPTOPHAN SYNTHASE WITH THE TRANSITION STATE ANALOGUE INHIBITOR 4-(2-HYDROXYPHENYLTHIO)-BUTYLPHOSPHONIC ACID 3BK3 ; 2.7 ; Crystal structure of the complex of BMP-2 and the first Von Willebrand domain type C of Crossveinless-2 2QJE ; 2.3 ; Crystal structure of the complex of Bovine C-lobe with Amygdalin at 2.3A resolution 2R71 ; 2.07 ; Crystal structure of the complex of bovine C-lobe with inositol at 2.1A resolution 2FA7 ; 2.38 ; Crystal structure of the complex of bovine lactoferrin C-lobe with a pentasaccharide at 2.38 A resolution 2PX1 ; 2.5 ; crystal structure of the complex of bovine lactoferrin C-lobe with Ribose at 2.5 A resolution 3R5O ; 2.6 ; Crystal structure of the complex of bovine lactoperoxidase with 4-allyl-2-methoxyphenol at 2.6 A resolution 2QQT ; 2.5 ; Crystal structure of the complex of bovine lactoperoxidase with acetyl salicylic acid at 2.5 A resolution 3TGY ; 2.35 ; Crystal structure of the complex of Bovine Lactoperoxidase with Ascorbic acid at 2.35 A resolution 3V6Q ; 2.0 ; Crystal structure of the complex of bovine lactoperoxidase with Carbon monoxide at 2.0 A resolution 5GH0 ; 2.3 ; Crystal structure of the complex of bovine lactoperoxidase with mercaptoimidazole at 2.3 A resolution 5ZGS ; 2.2 ; Crystal structure of the complex of bovine lactoperoxidase with multiple SCN and OSCN ions in the distal heme cavity 6L9T ; 1.89 ; Crystal structure of the complex of bovine lactoperoxidase with OSCN at 1.89 A resolution 3UBA ; 2.65 ; Crystal structure of the complex of bovine lactoperoxidase with p-hydroxycinnamic acid at 2.6 A resolution 2QPK ; 2.34 ; Crystal structure of the complex of bovine lactoperoxidase with salicylhydroxamic acid at 2.34 A resolution 2Z5Z ; 3.5 ; Crystal structure of the complex of buffalo Lactoperoxidase with fluoride ion at 3.5A resolution 3FNL ; 2.48 ; Crystal Structure of the Complex of Buffalo Lactoperoxidase with Salicylhydroxamic Acid at 2.48 A Resolution 2QF8 ; 2.8 ; Crystal structure of the complex of Buffalo Secretory Glycoprotein with tetrasaccharide at 2.8A resolution 4MPK ; 2.65 ; Crystal structure of the complex of buffalo signaling protein SPB-40 with N-acetylglucosamine at 2.65 A resolution 4MTV ; 2.8 ; Crystal structure of the complex of Buffalo Signalling Glycoprotein with pentasaccharide at 2.8A resolution 4Q7N ; 1.79 ; Crystal structure of the complex of Buffalo Signalling protein SPB-40 with 4-N-trimethylaminobutyraldehyde at 1.79 Angstrom Resolution 3KJ7 ; 1.91 ; Crystal Structure of the Complex of C-lobe of Bovine Lactoferrin with Dextrin at 1.9 A Resolution 2B65 ; 1.5 ; Crystal structure of the complex of C-lobe of bovine lactoferrin with maltose at 1.5A resolution 2Q8J ; 2.71 ; Crystal Structure of the complex of C-lobe of bovine lactoferrin with Mannitol and Mannose at 2.7 A resolution 3CRB ; 2.6 ; Crystal structure of the complex of C-lobe of lactoferrin with 2-chromenone at 2.6 A resolution 3O97 ; 2.68 ; Crystal Structure of the complex of C-lobe of lactoferrin with indole acetic acid at 2.68 A Resolution 3MJN ; 2.38 ; Crystal Structure of the complex of C-lobe of lactoferrin with isopropylamino-3-(1-naphthyloxy)propan-2-ol at 2.38 A Resolution 3E9X ; 2.7 ; Crystal Structure of the Complex of C-lobe of Lactoferrin with Nimesulide at 2.7 A Resolution 3CI8 ; 2.4 ; Crystal structure of the complex of C-lobe of lactoferrin with vitamin B3 (niacin) at 2.4 A resolution 2E1S ; 2.7 ; Crystal structure of the complex of C-terminal half of bovine lactoferrin and arabinose at 2.7 A resolution 2DOJ ; 2.4 ; Crystal structure of the complex of C-terminal lobe of bovine lactoferrin with adenosine at 2.4 A resolution 2NUV ; 2.25 ; Crystal structure of the complex of C-terminal lobe of bovine lactoferrin with atenolol at 2.25 A resolution 2ZMB ; 2.9 ; Crystal structure of the complex of C-terminal lobe of bovine lactoferrin with parecoxib at 2.9 A resolution 5E0A ; 2.6 ; Crystal Structure of the complex of Camel Peptidoglycan Recognition Protein (CPGRP-S) and N-Acetylglucosamine at 2.6 A 2R2K ; 3.25 ; Crystal structure of the complex of camel peptidoglycan recognition protein with disaccharide at 3.2A resolution 3T39 ; 2.7 ; Crystal structure of the complex of camel peptidoglycan recognition protein(CPGRP-S) with a mycobacterium metabolite shikimate at 2.7 A resolution 3QF1 ; 2.6 ; Crystal structure of the complex of caprine lactoperoxidase with diethylenediamine at 2.6A resolution 6CPA ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CARBOXYPEPTIDASE A WITH A STRONGLY BOUND PHOSPHONATE IN A NEW CRYSTALLINE FORM: COMPARISON WITH STRUCTURES OF OTHER COMPLEXES 1RHU ; 2.51 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-3 WITH A 5,6,7 TRICYCLIC PEPTIDOMIMETIC INHIBITOR 1RHQ ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-3 WITH A BROMOMETHOXYPHENYL INHIBITOR 1RHR ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-3 WITH A CINNAMIC ACID METHYL ESTER INHIBITOR 1RHM ; 2.5 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-3 WITH A NICOTINIC ACID ALDEHYDE INHIBITOR 1RHK ; 2.5 ; Crystal structure of the complex of caspase-3 with a phenyl-propyl-ketone inhibitor 1RHJ ; 2.2 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-3 WITH A PRYAZINONE INHIBITOR 1QTN ; 1.2 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-8 WITH THE TETRAPEPTIDE INHIBITOR ACE-IETD-ALDEHYDE 1QDU ; 2.8 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CASPASE-8 WITH THE TRIPEPTIDE KETONE INHIBITOR ZEVD-DCBMK 7SEG ; 2.156 ; Crystal structure of the complex of CD16A bound by an anti-CD16A Fab 1JW6 ; 1.93 ; Crystal Structure of the Complex of Concanavalin A and Hexapeptide 1HQW ; 2.4 ; CRYSTAL STRUCTURE OF THE COMPLEX OF CONCANAVALIN A WITH A TRIPEPTIDE YPY 4FNN ; 2.24 ; Crystal structure of the complex of CPGRP-S with stearic acid at 2.2 A RESOLUTION 1K9G ; 1.4 ; Crystal Structure of the Complex of Cryptolepine-d(CCTAGG)2 3T1U ; 2.0 ; Crystal Structure of the complex of Cyclophilin-A enzyme from Azotobacter vinelandii with sucAFPFpNA peptide 3BR2 ; 2.9 ; Crystal Structure of the Complex of Dequalinium Bound to QacR(E120Q), a Mutant of a Multidrug Binding Transcriptional Repressor 3BR1 ; 3.31 ; Crystal Structure of the Complex of Dequalinium Bound to QacR(E90Q), a Mutant of a Multidrug Binding Transcriptional Repressor 3TAK ; 1.42 ; Crystal structure of the complex of DHDPS from Acinetobacter baumannii with Pyruvate at 1.4 A resolution 3PUL ; 2.3 ; Crystal structure of the complex of Dhydrodipicolinate synthase from Acinetobacter baumannii with lysine at 2.3A resolution 3PUE ; 2.6 ; Crystal structure of the complex of Dhydrodipicolinate synthase from Acinetobacter baumannii with lysine at 2.6A resolution 5YE4 ; 1.799 ; Crystal structure of the complex of di-acetylated histone H4 and 1A9D7 Fab fragment 5YE3 ; 1.7 ; Crystal structure of the complex of di-acetylated histone H4 and 2A7D9 Fab fragment 3TDF ; 1.99 ; Crystal structure of the complex of Dihydrodipicolinate synthase from Acinetobacter baumannii with 2-Ketobutanoic acid at 1.99 A resolution 3TCE ; 2.6 ; Crystal structure of the complex of Dihydrodipicolinate synthase from Acinetobacter baumannii with 5-Hydroxylysine at 2.6 A resolution 3U8G ; 1.8 ; Crystal structure of the complex of Dihydrodipicolinate synthase from Acinetobacter baumannii with Oxalic acid at 1.80 A resolution 3NIU ; 2.94 ; Crystal structure of the complex of dimeric goat lactoperoxidase with diethylene glycol at 2.9 A resolution 4L5K ; 2.71 ; Crystal structure of the complex of DNA hexamer d(CGATCG) with Coptisine 1D8Y ; 2.08 ; CRYSTAL STRUCTURE OF THE COMPLEX OF DNA POLYMERASE I KLENOW FRAGMENT WITH DNA 1D9F ; 3.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF DNA POLYMERASE I KLENOW FRAGMENT WITH DNA TETRAMER CARRYING 2'-O-(3-AMINOPROPYL)-RNA MODIFICATION 5'-D(TT)-AP(U)-D(T)-3' 7NXV ; 2.55 ; Crystal structure of the complex of DNase I/G-actin/PPP1R15A_582-621 5EO9 ; 2.2988 ; Crystal Structure of the complex of Dpr6 Domain 1 bound to DIP-alpha Domain 1+2 1EOM ; 2.1 ; CRYSTAL STRUCTURE OF THE COMPLEX OF ENDO-BETA-N-ACETYLGLUCOSAMINIDASE F3 WITH A BIANTENNARY COMPLEX OCTASACCHARIDE 1XEY ; 2.05 ; Crystal structure of the complex of Escherichia coli GADA with glutarate at 2.05 A resolution 3BR3 ; 2.8 ; Crystal Structure of the Complex of Ethidium Bound to QacR(E90Q), a Mutant of a Multidrug Binding Transcriptional Repressor 4L98 ; 2.28 ; Crystal structure of the complex of F360L PPARgamma mutant with the ligand LT175 4GHW ; 2.6 ; Crystal structure of the complex of Fungal lipase from Thermomyces lanuginosa with decanoic acid at 2.6 A resolution 1M10 ; 3.1 ; Crystal structure of the complex of Glycoprotein Ib alpha and the von Willebrand Factor A1 Domain 4MSF ; 1.98 ; Crystal structure of the complex of goat lactoperoxidase with 3-hydroxymethyl phenol at 1.98 Angstrom resolution 3SXV ; 2.1 ; Crystal structure of the complex of goat lactoperoxidase with amitrole at 2.1 A resolution 6LF7 ; 1.794 ; Crystal structure of the complex of goat lactoperoxidase with hypothiocyanite and hydrogen peroxide at 1.79 A resolution. 3NAK ; 3.3 ; Crystal structure of the complex of goat lactoperoxidase with hypothiocyanite at 3.3 A resolution 2E9E ; 3.25 ; Crystal structure of the complex of goat lactoperoxidase with Nitrate at 3.25 A resolution 4OEK ; 2.47 ; Crystal Structure of the Complex of goat Lactoperoxidase with Phenylethylamine at 2.47 A Resolution 2EFB ; 2.94 ; Crystal structure of the complex of goat lactoperoxidase with phosphate at 2.94 A resolution 3R55 ; 2.1 ; Crystal structure of the complex of goat lactoperoxidase with Pyrazinamide at 2.1 A resolution 3N8F ; 3.25 ; Crystal structure of the complex of goat lactoperoxidase with thiocyanate at 3.2 A resolution 2DT1 ; 2.09 ; Crystal Structure Of The Complex Of Goat Signalling Protein With Tetrasaccharide At 2.09 A Resolution 2DT0 ; 2.45 ; Crystal structure of the complex of goat signalling protein with the trimer of N-acetylglucosamine at 2.45A resolution 3OSH ; 1.5 ; Crystal Structure of The Complex of Group 1 Phospholipase A2 With Atropin At 1.5 A Resolution 3NJU ; 1.4 ; Crystal structure of the complex of group I phospholipase A2 with 4-Methoxy-benzoicacid at 1.4A resolution 4HMB ; 2.21 ; Crystal Structure of the complex of group II phospholipase A2 with a 3-{3-[(Dimethylamino)methyl]-1H-indol-7-yl}propan-1-ol at 2.21 A Resolution 2QU9 ; 2.08 ; Crystal structure of the complex of group II phospholipase A2 with Eugenol 1TP2 ; 2.4 ; Crystal structure of the complex of group II phospholipaseA2 dimer with a fatty acid tridecanoic acid at 2.4 A resolution 2QO8 ; 1.4 ; Crystal structure of the complex of hcaii with an indane-sulfonamide inhibitor 2QOA ; 1.6 ; Crystal structure of the complex of hcaii with an indane-sulfonamide inhibitor 5TV3 ; 2.9 ; Crystal structure of the complex of Helicobacter pylori alpha-carbonic anhydrase with (E)-5-(((4-(tert-butyl)phenyl)sulfonyl)imino)-4-methyl-4,5-dihydro-1,3,4-thiadiazole-2-sulfonamide 5TUO ; 2.5 ; Crystal structure of the complex of Helicobacter pylori alpha-carbonic anhydrase with 5-amino-1,3,4-thiadiazole-2-sulfonamide inhibitor. 4YGF ; 2.0 ; Crystal structure of the complex of Helicobacter pylori alpha-Carbonic Anhydrase with acetazolamide 5TT8 ; 2.4 ; Crystal structure of the complex of Helicobacter pylori alpha-carbonic anhydrase with benzolamide 5TT3 ; 2.2 ; Crystal structure of the complex of Helicobacter pylori alpha-carbonic anhydrase with ethoxzolamide 4YHA ; 2.2 ; Crystal structure of the complex of Helicobacter pylori alpha-Carbonic Anhydrase with methazolamide 1FQX ; 3.1 ; CRYSTAL STRUCTURE OF THE COMPLEX OF HIV-1 PROTEASE WITH A PEPTIDOMIMETIC INHIBITOR 1QRV ; 2.2 ; CRYSTAL STRUCTURE OF THE COMPLEX OF HMG-D AND DNA 7AMP ; 2.64 ; Crystal structure of the complex of HuJovi-1 Fab with the human A6 T-cell receptor TRBC1 7AMQ ; 2.353 ; Crystal structure of the complex of HuJovi-1 Fab with the human TRBC2 1IHS ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF HUMAN ALPHA-THROMBIN AND NON-HYDROLYZABLE BIFUNCTIONAL INHIBITORS, HIRUTONIN-2 AND HIRUTONIN-6 1IHT ; 2.1 ; CRYSTAL STRUCTURE OF THE COMPLEX OF HUMAN ALPHA-THROMBIN AND NON-HYDROLYZABLE BIFUNCTIONAL INHIBITORS, HIRUTONIN-2 AND HIRUTONIN-6 6I3F ; 2.55 ; Crystal structure of the complex of human angiotensinogen and renin at 2.55 Angstrom 5C50 ; 1.63 ; Crystal structure of the complex of human Atg101-Atg13 HORMA domain 3H91 ; 1.5 ; Crystal structure of the complex of human chromobox homolog 2 (CBX2) and H3K27 peptide 3TZD ; 1.81 ; Crystal structure of the complex of Human Chromobox Homolog 3 (CBX3) 3DM1 ; 2.4 ; Crystal structure of the complex of human chromobox homolog 3 (CBX3) with peptide 3FDT ; 2.0 ; Crystal structure of the complex of human chromobox homolog 5 (CBX5) with H3K9(me)3 peptide 1IVO ; 3.3 ; Crystal Structure of the Complex of Human Epidermal Growth Factor and Receptor Extracellular Domains. 3DI3 ; 2.9 ; Crystal structure of the complex of human interleukin-7 with glycosylated human interleukin-7 receptor alpha ectodomain 3DI2 ; 2.7 ; Crystal structure of the complex of human interleukin-7 with unglycosylated human interleukin-7 receptor alpha ectodomain 2PMS ; 2.91 ; Crystal structure of the complex of human lactoferrin N-lobe and lactoferrin-binding domain of pneumococcal surface protein A 2NPT ; 1.75 ; Crystal Structure of the complex of human mitogen activated protein kinase kinase 5 phox domain (MAP2K5-phox) with human mitogen activated protein kinase kinase kinase 2 phox domain (MAP3K2-phox) 2O2V ; 1.83 ; Crystal Structure of the Complex of Human Mitogen Activated Protein Kinase Kinase 5 Phox Domain (MAP2K5-phox) with Human Mitogen Activated Protein Kinase Kinase Kinase 3 (MAP3K3B-phox) 2Z7F ; 1.7 ; Crystal structure of the complex of human neutrophil elastase with 1/2SLPI 1MA9 ; 2.4 ; Crystal structure of the complex of human vitamin D binding protein and rabbit muscle actin 2EH8 ; 2.6 ; Crystal structure of the complex of humanized KR127 fab and PRES1 peptide epitope 3EKA ; 3.1 ; Crystal structure of the complex of hyaluranidase trimer with ascorbic acid at 3.1 A resolution reveals the locations of three binding sites 1BMQ ; 2.5 ; CRYSTAL STRUCTURE OF THE COMPLEX OF INTERLEUKIN-1BETA CONVERTING ENZYME (ICE) WITH A PEPTIDE BASED INHIBITOR, (3S )-N-METHANESULFONYL-3-({1-[N-(2-NAPHTOYL)-L-VALYL]-L-PROLYL }AMINO)-4-OXOBUTANAMIDE 1PXD ; 1.8 ; Crystal structure of the complex of jacalin with meso-tetrasulphonatophenylporphyrin. 3MJ7 ; 2.8 ; Crystal structure of the complex of JAML and Coxsackie and Adenovirus receptor, CAR 3CR9 ; 3.49 ; Crystal structure of the complex of Lactoferrin with 6-(Hydroxymethyl)oxane-2,3,4,5-tetrol at 3.49 A resolution 4NJB ; 2.31 ; Crystal structure of the complex of lactoperoxidase from bovine with 3,3-oxydipyridine at 2.31 A resolution 3KRQ ; 2.25 ; Crystal structure of the complex of lactoperoxidase with a potent inhibitor amino-triazole at 2.2a resolution 4PNX ; 2.41 ; Crystal structure of the complex of lactoperoxidase with bromo methane at 2.41 angstrom resolution 8Y9X ; 2.0 ; Crystal structure of the complex of lactoperoxidase with four inorganic substrates, SCN, I, Br and Cl 7DLQ ; 1.773 ; CRYSTAL STRUCTURE OF THE COMPLEX OF LACTOPEROXIDASE WITH HYDROGEN PEROXIDE AT 1.77A RESOLUTION 7Y3U ; 2.5 ; Crystal structure of the complex of Lactoperoxidase with Nitric oxide at 2.50A resolution 3P71 ; 2.7 ; Crystal structure of the complex of LCMT-1 and PP2A 7K9M ; 2.5 ; Crystal structure of the complex of M. tuberculosis PheRS with cognate precursor tRNA and 5'-O-(N-phenylalanyl)sulfamoyl-adenosine 7KA0 ; 2.4 ; Crystal structure of the complex of M. tuberculosis PheRS with cognate precursor tRNA and phenylalanine 3BR0 ; 2.42 ; Crystal Structure of the Complex of Malachite Green Bound to QacR(E120Q), a Mutant of a Multidrug Binding Transcriptional Repressor 3BQZ ; 2.17 ; Crystal Structure of the Complex of Malachite Green Bound to QacR(E90Q), a Mutant of a Multidrug Binding Transcriptional Repressor 4MI8 ; 2.1 ; Crystal structure of the complex of murine gamma-herpesvirus 68 Bcl-2 homolog M11 and a Beclin 1 BH3 domain-derived peptide 3DVU ; 2.5 ; Crystal structure of the complex of murine gamma-herpesvirus 68 Bcl-2 homolog M11 and the Beclin 1 BH3 domain 1ZPK ; 1.65 ; Crystal structure of the complex of mutant HIV-1 protease (A71V, V82T, I84V) with a hydroxyethylamine peptidomimetic inhibitor BOC-PHE-PSI[R-CH(OH)CH2NH]-PHE-GLU-PHE-NH2 1LZQ ; 2.2 ; Crystal structure of the complex of mutant HIV-1 protease (A71V, V82T, I84V) with an ethylenamine peptidomimetic inhibitor BOC-PHE-PSI[CH2CH2NH]-PHE-GLU-PHE-NH2 1Z8C ; 2.2 ; Crystal structure of the complex of mutant HIV-1 protease (l63P, A71V, V82T, I84V) with a hydroxyethylamine peptidomimetic inhibitor BOC-PHE-PSI[R-CH(OH)CH2NH]-PHE-GLU-PHE-NH2 3NP1 ; 2.3 ; CRYSTAL STRUCTURE OF THE COMPLEX OF NITROPHORIN 1 FROM RHODNIUS PROLIXUS WITH CYANIDE 1NP1 ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF NITROPHORIN 1 FROM RHODNIUS PROLIXUS WITH HISTAMINE 2XKO ; 2.25 ; Crystal structure of the complex of NtcA with its transcriptional co- activator PipX 3KZ1 ; 2.7 ; Crystal Structure of the Complex of PDZ-RhoGEF DH/PH domains with GTP-gamma-S Activated RhoA 1OBY ; 1.85 ; Crystal structure of the complex of PDZ2 of syntenin with a syndecan-4 peptide. 1OBX ; 1.35 ; Crystal structure of the complex of PDZ2 of syntenin with an interleukin 5 receptor alpha peptide. 3O4K ; 2.11 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) and lipoteichoic acid at 2.1 A resolution 3QS0 ; 2.5 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) with a bound N-acetylglucosamine in the diffusion channel at 2.5 A resolution 3NNO ; 2.9 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) with Alpha-Rhamnose at 2.9 A resolution 3QV4 ; 2.7 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) with dipeptide L-ALA D-GLU at 2.7 A resolution 3OGX ; 2.8 ; Crystal structure of the complex of Peptidoglycan Recognition protein (PGRP-s) with Heparin-Dissacharide at 2.8 A resolution 3COR ; 3.1 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) with N-acetylgalactosamine at 3.1 A resolution 3NW3 ; 2.5 ; Crystal structure of the complex of peptidoglycan recognition protein (PGRP-S) with the PGN Fragment at 2.5 A resolution 5E0B ; 2.6 ; Crystal structure of the complex of Peptidoglycan recognition protein PGRP-S with N-Acetyl Muramic acid at 2.6 A resolution 3CXA ; 3.4 ; Crystal structure of the complex of peptidoglycan recognition protein with alpha-D-glucopyranosyl alpha-D-glucopyranoside at 3.4 A resolution 3TRU ; 3.2 ; Crystal structure of the complex of peptidoglycan recognition protein with cellular metabolite chorismate at 3.2 A resolution 3CG9 ; 2.9 ; Crystal structure of the complex of peptidoglycan recognition protein with methyloxane-2,3,4,5-tetrol at 2.9 A resolution 5DWF ; 1.83 ; Crystal structure of the complex of Peptidoglycan recognition protein, PGRP-S from camel with ethylene glycol at 1.83 A resolution 3T2V ; 2.51 ; Crystal structure of the complex of peptidoglycan recognition protein-short (CPGRP-S) with mycolic acid at 2.5 A resolution 4JX9 ; 1.4 ; Crystal structure of the complex of peptidyl t-RNA hydrolase from Acinetobacter baumannii with uridine at 1.4A resolution 5Y9A ; 1.1 ; Crystal structure of the complex of peptidyl tRNA hydrolase with a phosphate ion at the substrate binding site and cytarabine at a new ligand binding site at 1.1 A resolution 4JWK ; 1.87 ; Crystal structure of the complex of peptidyl-tRNA hydrolase from Acinetobacter baumannii with cytidine at 1.87 A resolution 4QBK ; 1.77 ; Crystal structure of the complex of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa with amino acyl-tRNA analogue at 1.77 Angstrom resolution 4ERX ; 2.5 ; Crystal structure of the complex of peptidyl-tRNA hydrolase from Pseudomonas aeruginosa with diethylene glycol at 2.5 Angstrom resolution 4DJJ ; 2.94 ; Crystal structure of the complex of Peptidyl-tRNA hydrolase from Pseudomonas aeruginosa with Pimelic acid at 2.9 Angstrom resolution 6IX6 ; 1.43 ; Crystal structure of the complex of peptidyl-tRNA hydrolase with N-propanol at 1.43 A resolution 2XDE ; 1.4 ; Crystal structure of the complex of PF-3450074 with an engineered HIV capsid N terminal domain 3UIL ; 2.2 ; Crystal Structure of the complex of PGRP-S with lauric acid at 2.2 A resolution 6JOG ; 2.3 ; Crystal structure of the complex of phospho pantetheine adenylyl transferase from Acinetobacter baumannii with two ascorbic acid (Vitamin-C) molecules. 1PFK ; 2.4 ; CRYSTAL STRUCTURE OF THE COMPLEX OF PHOSPHOFRUCTOKINASE FROM ESCHERICHIA COLI WITH ITS REACTION PRODUCTS 2ARM ; 1.23 ; Crystal Structure of the Complex of Phospholipase A2 with a natural compound atropine at 1.2 A resolution 2ZBH ; 2.6 ; Crystal structure of the complex of phospholipase A2 with Bavachalcone from Aerva lanata at 2.6 A resolution 4QF7 ; 1.48 ; Crystal Structure of the Complex of Phospholipase A2 with Corticosterone at 1.48 A Resolution 4QGD ; 1.8 ; Crystal Structure of the Complex of Phospholipase A2 with Gramine derivative at 1.80 A Resolution 2OYF ; 1.2 ; Crystal Structure of the complex of phospholipase A2 with indole acetic acid at 1.2 A resolution 4QEM ; 1.2 ; Crystal structure of the complex of Phospholipase A2 With P-Coumaric Acid At 1.2 A Resolution 4QER ; 1.2 ; Crystal Structure of the Complex of Phospholipase A2 with Resveratrol at 1.20 A Resolution 4QF8 ; 1.65 ; Crystal Structure of the Complex of Phospholipase A2 with Spermidine at 1.65 A Resolution 6KKW ; 3.202 ; Crystal structure of the complex of phosphopantetheine adenylyl transferase from Acinetobacter baumannii with Dephospho Coenzyme at 3.2 A resolution. 5H7X ; 1.76 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with 2-hydroxy-1,2,3-propane tricarboxylate at 1.76 A resolution 5H16 ; 2.3 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with citrate at 2.3 A resolution. 5YH7 ; 2.03 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Coenzyme A at 2.0 A resolution 5ZZC ; 1.96 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Dephospho Coenzyme A at 1.94A resolution 6A7D ; 2.74 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Dephospho Coenzyme A at 2.74 A resolution 6A75 ; 2.75 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Dephospho Coenzyme A at 2.75 A resolution 6A6D ; 2.9 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Dephospho Coenzyme A at 2.90A resolution 8I8P ; 2.19 ; Crystal structure of the complex of phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Dephosphocoenzyme-A at 2.19 A resolution. 6J3M ; 2.3 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Pyrophosphate at 2.30A resolution 6JNH ; 2.0 ; Crystal structure of the complex of Phosphopantetheine adenylyltransferasefrom Acinetobacter baumannii with Ascorbic acid (Vitamin-C) at 2.0A resolution 1P8V ; 2.6 ; CRYSTAL STRUCTURE OF THE COMPLEX OF PLATELET RECEPTOR GPIB-ALPHA AND ALPHA-THROMBIN AT 2.6A 1OOK ; 2.3 ; Crystal Structure of the Complex of Platelet Receptor GPIb-alpha and Human alpha-Thrombin 4DOQ ; 2.0 ; Crystal structure of the complex of Porcine Pancreatic Trypsin with 1/2SLPI 7WP3 ; 2.954 ; Crystal structure of the complex of proliferating cell nuclear antigen (PCNA) from Leishmania donovani with 1,5-Bis (4-amidinophenoxy) pentane (PNT) at 2.95 A resolution 6K2M ; 3.19 ; Crystal structure of the complex of Proliferating Cell Nuclear Antigen from Leishmania donovani with arginine at 3.19 A resolution. 1P7W ; 1.02 ; Crystal structure of the complex of Proteinase K with a designed heptapeptide inhibitor Pro-Ala-Pro-Phe-Ala-Ser-Ala at atomic resolution 2DQK ; 1.93 ; Crystal structure of the complex of proteinase K with a specific lactoferrin peptide Val-Leu-Leu-His at 1.93 A resolution 2PWA ; 0.83 ; Crystal Structure of the complex of Proteinase K with Alanine Boronic acid at 0.83A resolution 3OSZ ; 2.26 ; Crystal Structure of the complex of proteinase K with an antimicrobial nonapeptide, at 2.26 A resolution 2PYZ ; 1.79 ; Crystal structure of the complex of proteinase K with auramine at 1.8A resolution 2PWB ; 1.9 ; Crystal structure of the complex of proteinase K with coumarin at 1.9 A resolution 2H4I ; 2.55 ; Crystal structure of the complex of proteolytically produced C-terminal half of bovine lactoferrin with lactose at 2.55 A resolution 1FRT ; 4.5 ; CRYSTAL STRUCTURE OF THE COMPLEX OF RAT NEONATAL FC RECEPTOR WITH FC 1RL8 ; 2.0 ; Crystal structure of the complex of resistant strain of hiv-1 protease(v82a mutant) with ritonavir 3BR6 ; 3.2 ; Crystal Structure of the Complex of Rhodamine 6G Bound to QacR(E120Q), a Mutant of a Multidrug Binding Transcriptional Repressor 3BR5 ; 2.9 ; Crystal Structure of the Complex of Rhodamine 6G Bound to QacR(E90Q), a Mutant of a Multidrug Binding Transcriptional Repressor 4M5A ; 1.7 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica balsamina inhibited by asymmetric dimethyl arginine at 1.70 A resolution 4FZ9 ; 1.7 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica Balsamina with disaccharide, N-Acetylglucosamine (beta-1, 4) Mannose at 1.7 A resolution 4FXA ; 1.7 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica balsamina with N-acetyl arginine at 1.7 Angstrom resolution 4H0Z ; 2.0 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica balsamina with N-acetyl muramic acid at 2.0 Angstrom resolution 4XY7 ; 2.5 ; Crystal structure of the complex of ribosome inactivating protein from Momordica balsamina with N-acetylglucosamine at 2.5 A resolution 4LWX ; 1.78 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica Balsamina with peptidoglycan fragment at 1.78 A resolution 4KPV ; 2.57 ; Crystal structure of the complex of ribosome inactivating protein from Momordica balsamina with Pyrimidine-2,4(1H,3H)-dione at 2.57 A resolution 5Y48 ; 1.7 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica balsamina with Pyrimidine-2,4-dione at 1.70 Angstrom resolution 5WV1 ; 1.9 ; Crystal structure of the complex of Ribosome inactivating protein from Momordica balsamina with ribose sugar at 1.90 A resolution. 5GZ7 ; 1.95 ; Crystal Structure of the complex of Ribosome Inactivating Protein with 1,2-ethanediol at 1.95 Angstrom resolution 3QJI ; 1.75 ; Crystal structure of the complex of ribosome inactivating protein with 7-methylguanosine triphosphate at 1.75A resolution 4IJ8 ; 2.0 ; Crystal structure of the complex of SETD8 with SAM 2G41 ; 3.0 ; Crystal structure of the complex of sheep signalling glycoprotein with chitin trimer at 3.0A resolution 4ML4 ; 2.5 ; Crystal structure of the complex of signaling glycoprotein from buffalo (SPB-40) with tetrahydropyran at 2.5 A resolution 4NSB ; 3.05 ; Crystal structure of the complex of signaling glycoprotein, SPB-40 and N-acetyl salicylic acid at 3.05 A resolution 1ZL1 ; 3.5 ; Crystal structure of the complex of signalling protein from sheep (SPS-40) with a designed peptide Trp-His-Trp reveals significance of Asn79 and Trp191 in the complex formation 1TM1 ; 1.7 ; CRYSTAL STRUCTURE OF THE COMPLEX OF SUBTILISIN BPN' WITH CHYMOTRYPSIN INHIBITOR 2 1LW6 ; 1.5 ; Crystal Structure of the Complex of Subtilisin BPN' with Chymotrypsin Inhibitor 2 at 1.5 Angstrom Resolution 1Y34 ; 1.55 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 E60A mutant 1Y3B ; 1.8 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 E60S mutant 1Y3F ; 1.72 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 F69A mutant 1TM5 ; 1.45 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59A mutant 1TMG ; 1.67 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59F mutant 1TM3 ; 1.57 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59k mutant 1TO2 ; 1.3 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59K, in pH 9 cryosoak 1Y4A ; 1.6 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59R/E60S mutant 1Y4D ; 2.0 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59R/E60S mutant 1TM7 ; 1.59 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 M59Y mutant 1Y3C ; 1.69 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 R62A mutant 1Y48 ; 1.84 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 R65A mutant 1Y3D ; 1.8 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 R67A mutant 1Y1K ; 1.56 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 T58A mutant 1Y33 ; 1.8 ; Crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 T58P mutant 1TO1 ; 1.68 ; crystal structure of the complex of subtilisin BPN' with chymotrypsin inhibitor 2 Y61A mutant 1TM4 ; 1.7 ; crystal structure of the complex of subtilsin BPN'with chymotrypsin inhibitor 2 M59G mutant 2D69 ; 1.9 ; Crystal structure of the complex of sulfate ion and octameric ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Pyrococcus horikoshii OT3 (form-2 crystal) 4OFY ; 3.3 ; Crystal Structure of the Complex of SYG-1 D1-D2 and SYG-2 D1-D4 5M4Z ; 1.179 ; Crystal structure of the complex of T.spiralis thymidylate synthase with N(4)-hydroxy-2'-deoxycytidine-5'-monophosphate, crystallized in the presence of N(5,10)-methylenetetrahydrofolate 5NW9 ; 2.04 ; Crystal structure of the complex of Tdp1 with duplex DNA 5NWA ; 3.2 ; Crystal structure of the complex of Tdp1 with duplex DNA 4FL6 ; 2.55 ; Crystal structure of the complex of the 3-MBT repeat domain of L3MBTL3 and UNC1215 1ABO ; 2.0 ; CRYSTAL STRUCTURE OF THE COMPLEX OF THE ABL TYROSINE KINASE SH3 DOMAIN WITH 3BP-1 SYNTHETIC PEPTIDE 2I6J ; 1.66 ; Crystal structure of the complex of the archaeal sulfolobus PTP-fold phosphatase with phosphate ion 2DXP ; 2.1 ; Crystal structure of the complex of the archaeal sulfolobus PTP-fold phosphatase with phosphopeptides A-(p)Y-R 2I6O ; 1.9 ; Crystal structure of the complex of the archaeal sulfolobus PTP-fold phosphatase with phosphopeptides N-G-(p)Y-K-N 2I6P ; 2.5 ; Crystal structure of the complex of the archaeal sulfolobus PTP-fold phosphatase with pNPP 3RO1 ; 1.9 ; Crystal structure of the complex of the archaeal sulfolobus PTP-fold phosphatase with terpyridine platinum(II) 3DPB ; 2.2 ; Crystal structure of the complex of the Caf1M chaperone with the mini-fiber of two Caf1 subunits (Caf1:Caf1), carrying the Ala9Val, Ala11Val, and Leu13Val mutations in the Gd donor strand 3DOS ; 2.4 ; Crystal structure of the complex of the Caf1M chaperone with the mini-fiber of two Caf1 subunits (Caf1:Caf1), carrying the Thr7Phe and Ala9Val mutations in the Gd donor strand 3DSN ; 2.2 ; Crystal structure of the complex of the Caf1M chaperone with the mini-fiber of two Caf1 subunits (Caf1:Caf1), carrying the Thr7Phe mutation in the Gd donor strand 4AZ8 ; 2.65 ; Crystal structure of the complex of the Caf1M:Caf1 chaperone:subunit preassembly complex carrying the KDKDTN insertion at the F1G1 loop region 4AYF ; 2.07 ; Crystal structure of the complex of the Caf1M:Caf1 chaperone:subunit preassembly complex carrying the Tyr40Ala mutation in the Caf1M chaperone 2XR5 ; 1.42 ; Crystal structure of the complex of the carbohydrate recognition domain of human DC-SIGN with pseudo dimannoside mimic. 2XR6 ; 1.35 ; Crystal structure of the complex of the carbohydrate recognition domain of human DC-SIGN with pseudo trimannoside mimic. 4CJ6 ; 1.896 ; Crystal structure of the complex of the Cellular Retinal Binding Protein Mutant R234W with 9-cis-retinal 4CIZ ; 3.403 ; Crystal structure of the complex of the Cellular Retinal Binding Protein with 9-cis-retinal 2GYK ; 1.6 ; Crystal structure of the complex of the Colicin E9 DNase domain with a mutant immunity protein, IMME9 (D51A) 3GIB ; 2.4 ; Crystal Structure of the Complex of the E. coli Hfq with Poly(A) 4UY2 ; 2.697 ; Crystal structure of the complex of the extracellular domain of human alpha9 nAChR with alpha-bungarotoxin. 1MJ7 ; 2.25 ; Crystal Structure Of The Complex Of The Fab fragment of Esterolytic Antibody MS5-393 and A Transition-State Analog 6A9K ; 1.9 ; Crystal structure of the complex of the hydrolytic antibody Fab 9C10 with a transition-state analog 3A98 ; 2.1 ; Crystal structure of the complex of the interacting regions of DOCK2 and ELMO1 6KZA ; 3.1 ; Crystal structure of the complex of the interaction domains of E. coli DnaB helicase and DnaC helicase loader 5OCQ ; 1.7 ; Crystal structure of the complex of the kappa-carrageenase from Pseudoalteromonas carrageenovora with an oligotetrasaccharide of kappa-carrageenan 7AMS ; 2.419 ; Crystal structure of the complex of the KFN mutant of HuJovi-1 Fab with human TRBC2 7AMR ; 1.949 ; Crystal structure of the complex of the KFN mutant of Jovi-1 Fab with human TRBC1 7TXW ; 2.17 ; Crystal structure of the complex of the malaria sexual stage protein and vaccine target Pfs25 with the Fab fragment of a transmission blocking antibody 1G2 1JWS ; 2.6 ; Crystal Structure of the Complex of the MHC Class II Molecule HLA-DR1 (HA peptide 306-318) with the Superantigen SEC3 Variant 3B1 1JWU ; 2.3 ; Crystal Structure of the Complex of the MHC Class II Molecule HLA-DR1 (HA peptide 306-318) with the superantigen SEC3 Variant 3B2 1JWM ; 2.7 ; Crystal Structure of the Complex of the MHC Class II Molecule HLA-DR1(HA peptide 306-318) with the Superantigen SEC3 4CF6 ; 2.694 ; Crystal structure of the complex of the P187S variant of human NAD(P) H:quinone oxidoreductase with Cibacron blue at 2.7 A resolution 4CET ; 2.2 ; Crystal structure of the complex of the P187S variant of human NAD(P) H:quinone oxidoreductase with dicoumarol at 2.2 A resolution 1OBZ ; 1.7 ; Crystal structure of the complex of the PDZ tandem of syntenin with an interleukin 5 receptor alpha peptide. 5XE9 ; 3.101 ; Crystal Structure of the Complex of the Peptidase Domain of Streptococcus mutans ComA with a Small Molecule Inhibitor. 7A6O ; 2.117 ; Crystal Structure of the Complex of the Recombinant Von Willebrand Factor AIM-A1 domain and VHH81 at 2.1 Angstrom resolution 1SQ0 ; 2.6 ; Crystal Structure of the Complex of the Wild-type Von Willebrand Factor A1 domain and Glycoprotein Ib alpha at 2.6 Angstrom Resolution 4KJX ; 2.1 ; Crystal Structure of the complex of three phase partition treated lipase from Thermomyces lanuginosa with Lauric acid and P-nitrobenzaldehyde (PNB) at 2.1 resolution 5GS0 ; 3.275 ; Crystal structure of the complex of TLR3 and bi-specific diabody 1QD2 ; 1.86 ; CRYSTAL STRUCTURE OF THE COMPLEX OF TRICHOSANTHIN WITH ADENINE, OBTAINED FROM TRICHOSANTHIN COMPLEXED WITH THE DINUCLEOTIDE APG 3U5N ; 1.95 ; Crystal structure of the complex of TRIM33 PHD-Bromo and H3(1-20)K9me3K14ac histone peptide 3U5O ; 2.7 ; Crystal structure of the complex of TRIM33 PHD-Bromo and H3(1-22)K9me3K14acK18ac histone peptide 3U5P ; 2.8 ; Crystal structure of the complex of TRIM33 PHD-Bromo and H3(1-28)K9me3K14acK18acK23ac histone peptide 5Z1M ; 1.87 ; Crystal structure of the complex of trimeric Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with citrate ion at 1.87 A resolution 3IBA ; 2.4 ; Crystal structure of the complex of Trypanosoma cruzi farnesyl diphosphate synthase with zoledronate, IPP and Mg2+ 4O0O ; 2.59 ; Crystal structure of the complex of type 1 Ribosome inactivating protein from Momordica balsamina with 5-fluorouracil at 2.59 A resolution 4HOA ; 2.0 ; Crystal structure of the complex of type 1 ribosome inactivating protein from Momordica Balsamina with B-D-galactopyranosyl-(1-4)-D-glucose at 2.0 A resolution 5ILW ; 1.98 ; Crystal structure of the complex of type 1 Ribosome inactivating protein from Momordica balsamina with Uridine at 1.97 Angstrom resolution 3MY6 ; 2.65 ; Crystal Structure of the complex of type 1 ribosome inactivating protein with 7-methylguanine at 2.65 A resolution 3V14 ; 1.7 ; Crystal structure of the complex of type I Ribosome inactivating protein complexed with Trehalose at 1.70 A resolution 3SJ6 ; 1.6 ; Crystal Structure of the complex of type I ribosome inactivating protein from momordica balsamina with 5-(hydroxymethyl)oxalane-2,3,4-triol at 1.6 A resolution 4K2Z ; 1.8 ; Crystal structure of the complex of type I Ribosome inactivating protein from Momordica balsamina with Methylethylamine at 1.80 A resolution 4F9N ; 2.65 ; Crystal structure of the complex of type I Ribosome inactivating protein from Momordica balsamina with N7-methylated guanine at 2.65 A resolution 4O8E ; 2.0 ; Crystal structure of the complex of type I ribosome inactivating protein from Momordica balsamina with uridine triphosphate at 2.0 A resolution 4EMF ; 1.77 ; Crystal structure of the complex of type I Ribosome inactivating protein in complex with 7n-methyl-8-hydroguanosine-5-p-diphosphate at 1.77 A 3U6T ; 1.85 ; Crystal structure of the complex of type I Ribosome inactivating protein in complex with Kanamycin at 1.85 A 3U8F ; 1.8 ; Crystal structure of the complex of type I Ribosome inactivating protein in complex with Mycolic acid at 1.8 A resolution 3Q4P ; 1.8 ; Crystal structure of the complex of type I ribosome inactivating protein with 7n-methyl -8-hydroguanosine-5-p-diphosphate at 1.8 A resolution 3NFM ; 2.5 ; Crystal Structure of the complex of type I ribosome inactivating protein with fructose at 2.5A resolution 3N31 ; 2.11 ; Crystal Structure of the complex of type I ribosome inactivating protein with fucose at 2.1A resolution 3N5D ; 1.9 ; Crystal structure of the complex of type I ribosome inactivating protein with glucose at 1.9A resolution 3N1N ; 2.23 ; Crystal structure of the complex of type I ribosome inactivating protein with guanine at 2.2A resolution 3N2D ; 2.22 ; Crystal Structure of the Complex of type I Ribosome inactivating protein with hexapeptide Ser-Asp-Asp-Asp-Met-Gly at 2.2 A resolution 4DWM ; 1.62 ; Crystal structure of the complex of type I Ribosome inactivating protein with N-acetylglucosamine at 1.62 A resolution 3N1D ; 1.7 ; Crystal structure of the complex of type I ribosome inactivating protein with ribose at 1.7A resolution 3RL9 ; 1.9 ; Crystal Structure of the complex of type I RIP with the hydrolyzed product of dATP, adenine at 1.9 A resolution 5YDB ; 1.76 ; Crystal structure of the complex of type II dehydroquinate dehydratase from Acinetobacter baumannii with dehydroquinic acid at 1.76 Angstrom resolution 4GLD ; 1.69 ; Crystal Structure of the complex of type II phospholipase A2 with a designed peptide inhibitor Phe - Leu - Ala - Tyr - Lys at 1.69 A resolution 1I3O ; 2.7 ; CRYSTAL STRUCTURE OF THE COMPLEX OF XIAP-BIR2 AND CASPASE 3 3M7S ; 2.4 ; Crystal structure of the complex of xylanase GH-11 and alpha amylase inhibitor protein with cellobiose at 2.4 A resolution 3OIH ; 1.87 ; Crystal Structure of the complex of xylanase-alpha-amylase inhibitor Protein (XAIP-I) with trehalose at 1.87 A resolution 5HYK ; 1.83 ; Crystal structure of the complex PPARalpha/AL26-29 5HZC ; 2.0 ; Crystal structure of the complex PPARgamma/AL26-29 3BC1 ; 1.8 ; Crystal Structure of the complex Rab27a-Slp2a 6Y7M ; 1.9 ; Crystal structure of the complex resulting from the reaction between the SARS-CoV main protease and tert-butyl (1-((S)-3-cyclohexyl-1-(((S)-4-(cyclopropylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)amino)-1-oxopropan-2-yl)-2-oxo-1,2-dihydropyridin-3-yl)carbamate 2I6M ; 1.9 ; Crystal structure of the complexes of the archaeal sulfolobus PTP-fold phosphatase with Tungstate 6J67 ; 2.05 ; Crystal structure of the compound 34 in a complex with TRF2 6TJI ; 2.2 ; Crystal structure of the computationally designed Cake10 protein 6TJB ; 2.3 ; Crystal structure of the computationally designed Cake2 protein 6TJC ; 1.9 ; Crystal structure of the computationally designed Cake3 protein 6TJD ; 2.1 ; Crystal structure of the computationally designed Cake4 protein 6TJE ; 3.15 ; Crystal structure of the computationally designed Cake5 protein 6TJF ; 2.4 ; Crystal structure of the computationally designed Cake6 protein 6TJG ; 1.8 ; Crystal structure of the computationally designed Cake8 protein 6TJH ; 1.43 ; Crystal structure of the computationally designed Cake9 protein 7AYE ; 2.95 ; Crystal structure of the computationally designed chemically disruptable heterodimer LD6-MDM2 6G6Q ; 2.5 ; Crystal structure of the computationally designed Ika4 protein 6G6O ; 2.05 ; Crystal structure of the computationally designed Ika8 protein: crystal packing No.1 in P63 6G6P ; 2.4 ; Crystal structure of the computationally designed Ika8 protein: crystal packing No.2 in P63 7DWW ; 1.802 ; Crystal structure of the computationally designed msDPBB_sym2 protein 4HOP ; 2.29 ; Crystal structure of the computationally designed NNOS-Syntrophin complex 3WW7 ; 1.697 ; Crystal structure of the computationally designed Pizza2 protein 3WWB ; 1.7 ; Crystal structure of the computationally designed Pizza2-SR protein 3WWF ; 1.601 ; Crystal structure of the computationally designed Pizza2-SR protein 3WW8 ; 1.402 ; Crystal structure of the computationally designed Pizza3 protein 3WW9 ; 1.33 ; Crystal structure of the computationally designed Pizza6 protein 3WWA ; 1.988 ; Crystal structure of the computationally designed Pizza7 protein after heat treatment 7DVC ; 1.705 ; Crystal structure of the computationally designed reDPBB_sym1 protein 7DVF ; 1.209 ; Crystal structure of the computationally designed reDPBB_sym2 protein 7DVH ; 1.698 ; Crystal structure of the computationally designed reDPBB_sym4 protein 7ONA ; 1.45 ; Crystal structure of the computationally designed SAKe6AC protein 7ON6 ; 1.35 ; Crystal structure of the computationally designed SAKe6AE protein 7ON8 ; 1.5 ; Crystal structure of the computationally designed SAKe6AR protein 7ONC ; 1.49 ; Crystal structure of the computationally designed SAKe6BE protein 7OP4 ; 1.52 ; Crystal structure of the computationally designed SAKe6BE-3HH protein 7OPV ; 1.95 ; Crystal structure of the computationally designed SAKe6BE-3HH protein, alternative packing 7ONG ; 1.95 ; Crystal structure of the computationally designed SAKe6BE-L1 protein 7ON7 ; 1.95 ; Crystal structure of the computationally designed SAKe6BE-L2 protein 7ONH ; 1.65 ; Crystal structure of the computationally designed SAKe6BE-L3 protein 7AWZ ; 1.6 ; Crystal structure of the computationally designed Scone-E protein 7AX0 ; 2.2 ; Crystal structure of the computationally designed Scone-E protein co-crystallized with STA form a 7AX2 ; 2.1 ; Crystal structure of the computationally designed Scone-E protein co-crystallized with STA, form b 7AWY ; 1.5 ; Crystal structure of the computationally designed Scone-R protein 4JBC ; 2.005 ; Crystal Structure of the computationally designed serine hydrolase 3mmj_2, Northeast Structural Genomics Consortium (NESG) Target OR318 4K0C ; 3.002 ; Crystal Structure of the computationally designed serine hydrolase. Northeast Structural Genomics Consortium (NESG) Target OR317 6G6N ; 2.001 ; Crystal structure of the computationally designed Tako8 protein in C2 6G6M ; 1.7 ; Crystal structure of the computationally designed Tako8 protein in P42212 4P6L ; 2.803 ; Crystal Structure of the Computationally Designed Transmembrane Metallotransporter in Octyl Glucoside 4P6K ; 2.704 ; Crystal Structure of the Computationally Designed Transmembrane Metallotransporter with 4-bromophenylalanine in Lipidic Cubic Phase 4P6J ; 2.8 ; Crystal Structure of the Computationally Designed Transmembrane Metallotransporter with 4-bromophenylalanine in Octyl Glucoside 7UYI ; 3.0 ; Crystal structure of the computationally optimized broadly reactive H1 influenza hemagglutinin P1 6OU1 ; 1.878 ; Crystal Structure of the Computationally-derived 21-Variant of the Myocilin Olfactomedin Domain 2RLC ; 1.8 ; Crystal Structure of the Conjugated Bile Acid Hydrolase from Clostridium perfringens in Complex with Reaction Products Glycine and Cholate 3C0B ; 2.4 ; Crystal structure of the conserved archaeal protein Q6M145. Northeast Structural Genomics Consortium target MrR63 2VXG ; 1.9 ; Crystal structure of the conserved C-terminal region of Ge-1 3NFQ ; 1.85 ; Crystal structure of the conserved central domain of yeast Spn1/Iws1 1EP5 ; 2.3 ; CRYSTAL STRUCTURE OF THE CONSERVED CORE DOMAIN OF VENEZUALAN EQUINE ENCEPHALITIS CAPSID PROTEIN 1EP6 ; 2.45 ; CRYSTAL STRUCTURE OF THE CONSERVED CORE DOMAIN OF VENEZUALAN EQUINE ENCEPHALITIS CAPSID PROTEIN 4XAL ; 1.869 ; Crystal structure of the conserved core domain of VP22 from HSV-1 1F3L ; 2.03 ; CRYSTAL STRUCTURE OF THE CONSERVED CORE OF PROTEIN ARGININE METHYLTRANSFERASE PRMT3 1DUH ; 2.7 ; CRYSTAL STRUCTURE OF THE CONSERVED DOMAIN IV OF E. COLI 4.5S RNA 3M1C ; 3.0 ; Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL 2GSC ; 2.45 ; Crystal Structure of the Conserved Hypothetical Cytosolic Protein Xcc0516 from Xanthomonas campestris 1WDE ; 2.0 ; Crystal structure of the conserved hypothetical protein APE0931 from Aeropyrum pernix K1 4EZB ; 2.1 ; CRYSTAL STRUCTURE OF the Conserved hypothetical protein from Sinorhizobium meliloti 1021 4IWG ; 2.472 ; Crystal Structure of the Conserved Hypothetical Protein MJ0927 from Methanocaldococcus jannaschii (in C2221 form) 4IWM ; 2.7 ; Crystal Structure of the Conserved Hypothetical Protein MJ0927 from Methanocaldococcus jannaschii (in P21 form) 1TD6 ; 2.5 ; Crystal structure of the conserved hypothetical protein MP506/MPN330 (gi: 1674200)from Mycoplasma pneumoniae 2JEK ; 1.38 ; Crystal structure of the conserved hypothetical protein Rv1873 from Mycobacterium tuberculosis at 1.38 A 2ASF ; 1.6 ; Crystal structure of the conserved hypothetical protein Rv2074 from Mycobacterium tuberculosis 1.6 A 1WEK ; 2.2 ; Crystal structure of the conserved hypothetical protein TT1465 from Thermus thermophilus HB8 2CU5 ; 1.84 ; Crystal Structure Of The Conserved Hypothetical Protein TT1486 From Thermus Thermophilus HB8 1V8D ; 2.16 ; Crystal structure of the conserved hypothetical protein TT1679 from Thermus thermophilus 1J3M ; 2.0 ; Crystal structure of the conserved hypothetical protein TT1751 from Thermus thermophilus HB8 1WEH ; 1.8 ; Crystal structure of the conserved hypothetical protein TT1887 from Thermus thermophilus HB8 1VGG ; 1.75 ; Crystal Structure of the Conserved Hypothetical Protein TTHA1091 from Thermus Thermophilus HB8 1YZH ; 2.02 ; Crystal Structure of the Conserved Hypothetical Protein, Methyltransferase from Streptococcus pneumoniae TIGR4 5AON ; 1.646 ; Crystal structure of the conserved N-terminal domain of Pex14 from Trypanosoma brucei 3ESL ; 1.74 ; Crystal structure of the conserved N-terminal domain of the mitotic checkpoint component BUB1 3FF5 ; 1.8 ; Crystal structure of the conserved N-terminal domain of the peroxisomal matrix-protein-import receptor, Pex14p 1T57 ; 2.3 ; Crystal Structure of the Conserved Protein MTH1675 from Methanobacterium thermoautotrophicum 3CEX ; 2.0 ; Crystal structure of the conserved protein of locus EF_3021 from Enterococcus faecalis 2FDO ; 2.4 ; Crystal Structure of the Conserved Protein of Unknown Function AF2331 from Archaeoglobus fulgidus DSM 4304 Reveals a New Type of Alpha/Beta Fold 2FSQ ; 1.4 ; Crystal Structure of the Conserved Protein of Unknown Function ATU0111 from Agrobacterium tumefaciens str. C58 2FIU ; 2.0 ; Crystal Structure of the Conserved Protein of Unknown Function ATU0297 from Agrobacterium tumefaciens 2GUK ; 1.91 ; Crystal Structure of the Conserved Protein of Unknown Function from Porphyromonas gingivalis 1YLL ; 1.64 ; Crystal Structure of the Conserved Protein of Unknown Function PA5104 from Pseudomonas aeruginosa PAO1 3C5O ; 2.2 ; Crystal structure of the conserved protein of unknown function RPA1785 from Rhodopseudomonas palustris 1UDX ; 2.07 ; Crystal structure of the conserved protein TT1381 from Thermus thermophilus HB8 1UAN ; 2.0 ; Crystal structure of the conserved protein TT1542 from Thermus thermophilus HB8 4BIH ; 2.459 ; Crystal structure of the conserved staphylococcal antigen 1A, Csa1A 4BIG ; 2.274 ; Crystal structure of the conserved staphylococcal antigen 1B, Csa1B 1QB2 ; 2.1 ; CRYSTAL STRUCTURE OF THE CONSERVED SUBDOMAIN OF HUMAN PROTEIN SRP54M AT 2.1A RESOLUTION: EVIDENCE FOR THE MECHANISM OF SIGNAL PEPTIDE BINDING 2X72 ; 3.0 ; CRYSTAL STRUCTURE OF THE CONSTITUTIVELY ACTIVE E113Q,D2C,D282C RHODOPSIN MUTANT WITH BOUND GALPHACT PEPTIDE. 8OMV ; 4.16 ; Crystal structure of the constitutively active S117E/S181E mutant of human IKK2 4D10 ; 3.8 ; Crystal structure of the COP9 signalosome 4D18 ; 4.08 ; Crystal structure of the COP9 signalosome 4WSN ; 5.5 ; Crystal structure of the COP9 signalosome, a P1 crystal form 3FRY ; 2.0 ; Crystal structure of the CopA C-terminal metal binding domain 1PD1 ; 2.6 ; Crystal structure of the COPII coat subunit, Sec24, complexed with a peptide containing the DxE cargo sorting signal of yeast Sys1 protein 1PCX ; 2.5 ; Crystal structure of the COPII coat subunit, Sec24, complexed with a peptide from the SNARE protein Bet1 1PD0 ; 2.6 ; Crystal structure of the COPII coat subunit, Sec24, complexed with a peptide from the SNARE protein Sed5 (yeast syntaxin-5) 1QUP ; 1.8 ; CRYSTAL STRUCTURE OF THE COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE 7OG7 ; 1.85 ; Crystal structure of the copper chaperone NosL from Shewanella denitrificans 5C0U ; 1.87 ; Crystal structure of the copper-bound form of MerB mutant D99S 2ZWG ; 1.32 ; Crystal structure of the copper-bound tyrosinase in complex with a caddie protein from streptomyces castaneoglobisporus obtained by soaking the deoxy-form crystal in dioxygen-saturated solution for 12 hours 2ZWE ; 1.32 ; Crystal structure of the copper-bound tyrosinase in complex with a caddie protein from streptomyces castaneoglobisporus obtained by soaking the deoxy-form crystal in dioxygen-saturated solution for 40 minutes 2ZWD ; 1.35 ; Crystal structure of the copper-bound tyrosinase in complex with a caddie protein from streptomyces castaneoglobisporus obtained by soaking the deoxy-form crystal in dioxygen-saturated solution for 5 minutes 2ZWF ; 1.4 ; Crystal structure of the copper-bound tyrosinase in complex with a caddie protein from streptomyces castaneoglobisporus obtained by soaking the deoxy-form crystal in dioxygen-saturated solution for 80 minutes 1WXC ; 1.2 ; Crystal Structure of the copper-free Streptomyces castaneoglobisporus tyrosinase complexed with a caddie protein 1WX5 ; 2.02 ; Crystal Structure of the copper-free Streptomyces castaneoglobisporus tyrosinase complexed with a caddie protein in the monoclinic crystal 4M1P ; 2.564 ; Crystal structure of the copper-sensing repressor CsoR with Cu(I) from Geobacillus thermodenitrificans NG80-2 2BBJ ; 3.9 ; Crystal structure of the CorA Mg2+ transporter 2HN2 ; 3.7 ; Crystal structure of the CorA Mg2+ transporter homologue from T. maritima in complex with divalent cations 2P3H ; 1.8 ; Crystal structure of the CorC_HlyC domain of a putative Corynebacterium glutamicum hemolysin 5W2G ; 1.8 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase 6M8D ; 2.0 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with diosmetin 5W2H ; 1.9 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with Ins(1,4,5)P3 and ADP 6M8C ; 1.8 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with isorhamnetin 6M8B ; 1.8 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with kaempferol 6M8A ; 1.75 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with luteolin 6M88 ; 1.9 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with myricetin 6M89 ; 1.85 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with quercetin 6M8E ; 2.0 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase in complex with rhamnetin 5W2I ; 1.6 ; Crystal structure of the core catalytic domain of human inositol phosphate multikinase soaked with C4-analogue of PtdIns(4,5)P2 and ADP 5UHK ; 2.97 ; Crystal structure of the core catalytic domain of Human O-GlcNAcase 5UHP ; 2.79 ; Crystal structure of the core catalytic domain of human O-GlcNAcase 6PM9 ; 2.86 ; Crystal structure of the core catalytic domain of human O-GlcNAcase bound to MK-8719 5UHO ; 3.21 ; Crystal structure of the core catalytic domain of human O-GlcNAcase complexed with PUGNAc 5UHL ; 3.14 ; Crystal structure of the core catalytic domain of human O-GlcNAcase complexed with Thiamet G 6BYF ; 2.35 ; Crystal structure of the core catalytic domain of PP-IP phosphatase SIW14 from S. cerevisiae in complex with citrate 6UIH ; 2.826 ; Crystal structure of the core domain from the GST-like protein GDAP1 6LAF ; 3.001 ; Crystal structure of the core domain of Amuc_1100 from Akkermansia muciniphila 6UV2 ; 1.894 ; Crystal structure of the core domain of RNA helicase DDX17 with RNA pri-125a-oligo1 6UV3 ; 1.597 ; Crystal structure of the core domain of RNA helicase DDX17 with RNA pri-125a-oligo2 6UV4 ; 1.7 ; Crystal structure of the core domain of RNA helicase DDX17 with RNA pri-18a-oligo1 1Z21 ; 1.499 ; Crystal structure of the core domain of Yersinia pestis virulence factor YopR 1V9D ; 2.6 ; Crystal structure of the core FH2 domain of mouse mDia1 1KG2 ; 1.2 ; Crystal structure of the core fragment of MutY from E.coli at 1.2A resolution 1KG3 ; 1.55 ; Crystal structure of the core fragment of MutY from E.coli at 1.55A resolution 2XB2 ; 3.4 ; Crystal structure of the core Mago-Y14-eIF4AIII-Barentsz-UPF3b assembly shows how the EJC is bridged to the NMD machinery 4WWX ; 3.2001 ; Crystal structure of the core RAG1/2 recombinase 7VUK ; 3.38 ; Crystal Structure of the core region of Thermus thermophilus MutS2 complexed with ADP. 7VUF ; 3.11 ; Crystal Structure of the core region of Thermus thermophilus MutS2. 3WZN ; 1.3 ; Crystal structure of the core streptavidin mutant V21 (Y22S/N23D/S27D/Y83S/R84K/E101D/R103K/E116N) complexed with biotin at 1.3 A resolution 3WZO ; 1.5 ; Crystal structure of the core streptavidin mutant V21 (Y22S/N23D/S27D/Y83S/R84K/E101D/R103K/E116N) complexed with biotin long tail (BTNtail) at 1.5 A resolution 3WZP ; 1.2 ; Crystal structure of the core streptavidin mutant V21 (Y22S/N23D/S27D/Y83S/R84K/E101D/R103K/E116N) complexed with iminobiotin long tail (IMNtail) at 1.2 A resolution 3X00 ; 1.3 ; Crystal structure of the core streptavidin mutant V212 (Y22S/N23D/S27D/S45N/Y83S/R84K/E101D/R103K/E116N) complexed with bis iminobiotin long tail (Bis-IMNtail) at 1.3 A resolution 3WZQ ; 1.7 ; Crystal structure of the core streptavidin mutant V212 (Y22S/N23D/S27D/S45N/Y83S/R84K/E101D/R103K/E116N) complexed with iminobiotin long tail (IMNtail) at 1.7 A resolution 1TZY ; 1.9 ; Crystal Structure of the Core-Histone Octamer to 1.90 Angstrom Resolution 6E81 ; 2.721 ; Crystal structure of the Corn aptamer in complex with ThT 6E84 ; 2.901 ; Crystal structure of the Corn aptamer in complex with TO 6E80 ; 2.901 ; Crystal structure of the Corn aptamer in unliganded state 6E82 ; 3.101 ; Crystal structure of the Corn aptamer mutant A14U in complex with ThT 5BJP ; 2.51 ; Crystal structure of the Corn RNA aptamer in complex with DFHO, iridium hexammine soak 5BJO ; 2.35 ; Crystal structure of the Corn RNA aptamer in complex with DFHO, site-specific 5-iodo-U 8OWI ; 2.14 ; Crystal structure of the corona-targeting domain of CENP-E 4Q89 ; 2.31 ; Crystal Structure of the CotA native enzyme 8F2E ; 2.43 ; Crystal Structure of the CoV-Y domain of SARS-CoV-2 Nonstructural Protein 3 4B55 ; 2.7 ; Crystal Structure of the Covalent Adduct Formed between Mycobacterium marinum Aryalamine N-acetyltransferase and Phenyl vinyl ketone a derivative of Piperidinols 3CG5 ; 1.7 ; Crystal Structure of the Covalent Adduct Formed between TB B-lactamase and Clavulanate 6EI1 ; 1.732 ; Crystal structure of the covalent complex between deubiquitinase ZUFSP (ZUP1) and Ubiquitin-PA 3BRM ; 2.29 ; Crystal structure of the covalent complex between the Bacillus subtilis glutaminase YbgJ and 5-oxo-L-norleucine formed by reaction of the protein with 6-diazo-5-oxo-L-norleucine 7OJE ; 2.05 ; Crystal structure of the covalent complex between Tribolium castaneum deubiquitinase ZUP and Ubiquitin-PA 4EST ; 1.78 ; CRYSTAL STRUCTURE OF THE COVALENT COMPLEX FORMED BY A PEPTIDYL ALPHA,ALPHA-DIFLUORO-BETA-KETO AMIDE WITH PORCINE PANCREATIC ELASTASE AT 1.78-ANGSTROMS RESOLUTION 2ZOX ; 1.9 ; Crystal Structure of the Covalent Intermediate of Human Cytosolic beta-Glucosidase 3VKK ; 2.0 ; Crystal Structure Of The Covalent Intermediate Of Human Cytosolic Beta-Glucosidase-mannose complex 3LB8 ; 2.6 ; Crystal structure of the covalent putidaredoxin reductase-putidaredoxin complex 5JYX ; 2.74 ; Crystal structure of the covalent thioimide intermediate of the archaeosine synthase QueF-Like 4F8B ; 2.502 ; Crystal Structure of the Covalent Thioimide Intermediate of Unimodular Nitrile Reductase QueF 7L5P ; 2.14 ; Crystal structure of the covalently bonded complex of rilzabrutinib with BTK 6PWS ; 1.0 ; Crystal structure of the cow C-type carbohydrate-recognition domain of CD23 in the presence of alpha-methyl mannoside 6PWR ; 1.2 ; Crystal structure of the cow C-type carbohydrate-recognition domain of CD23 in the presence of GlcNAc-beta1-2-Man 6PWT ; 2.701 ; Crystal structure of the cow C-type carbohydrate-recognition domain of CD23 in the presence of GlcNAc2Man3 oligosaccharide 5Y6Z ; 2.5 ; Crystal structure of the coxsackievirus A16 polymerase elongation complex 1WNR ; 2.9 ; Crystal structure of the Cpn10 from Thermus thermophilus HB8 4QN0 ; 2.74 ; Crystal structure of the CPS-6 mutant Q130K 3UI2 ; 3.178 ; Crystal structure of the cpSRP54 tail bound to cpSRP43 4RMO ; 2.2 ; Crystal Structure of the CptIN Type III Toxin-Antitoxin System from Eubacterium rectale 2Z4H ; 2.8 ; Crystal structure of the Cpx pathway activator NlpE from Escherichia coli 2Z4I ; 2.6 ; Crystal structure of the Cpx pathway activator NlpE from Escherichia coli 4V0K ; 1.438 ; Crystal structure of the CrARL6DN in the GDP bound form 4V0L ; 2.197 ; Crystal structure of the CrARL6DN in the GTP bound form 6H64 ; 1.8 ; Crystal structure of the CRD-SAT 6YIJ ; 2.2 ; Crystal structure of the CREBBP bromodomain in complex with a benzo-diazepine ligand 6YIM ; 1.23 ; Crystal structure of the CREBBP bromodomain in complex with a benzo-diazepine ligand 6YIK ; 1.7 ; Crystal structure of the CREBBP bromodomain in complex with a tetrahydroquinoxaline ligand 6YIL ; 1.22 ; Crystal structure of the CREBBP bromodomain in complex with a tetrahydroquinoxaline ligand 3THG ; 1.88 ; Crystal structure of the creosote Rubisco activase C-domain 7A0J ; 1.95 ; Crystal structure of the CRINKLY WD40 ectodomain from the Arabidopsis thaliana receptor kinase ACR4 4DZD ; 1.999 ; Crystal structure of the CRISPR-associated protein Cas6e from Escherichia coli str. K-12 5WTI ; 2.682 ; Crystal structure of the CRISPR-associated protein in complex with crRNA and DNA 3QYF ; 1.9 ; Crystal structure of the CRISPR-associated protein SSO1393 from Sulfolobus solfataricus 3X1L ; 2.096 ; Crystal Structure of the CRISPR-Cas RNA Silencing Cmr Complex Bound to a Target Analog 3NC1 ; 3.35 ; Crystal structure of the CRM1-RanGTP complex 7DZN ; 2.63 ; Crystal Structure of the cross-restricted T18A TCR and HLAB4201 bound to HIV-1 Gag TL9 peptide 7DZM ; 2.25 ; Crystal Structure of the cross-restricted T18A TCR and HLAB8101 bound to HIV-1 Gag TL9 peptide 7T8O ; 2.71 ; Crystal Structure of the Crp/Fnr Family Transcriptional Regulator from Listeria monocytogenes 5ZK1 ; 3.05 ; Crystal Structure of the CRTC2(SeMet)-CREB-CRE complex 5ZKO ; 3.05 ; Crystal structure of the CRTC2-CREB-CRE complex 4YL8 ; 1.5 ; Crystal structure of the Crumbs/Moesin complex 6OF7 ; 3.11 ; Crystal structure of the CRY1-PER2 complex 4NKB ; 2.3 ; Crystal Structure of the cryptic polo box (CPB)of ZYG-1 6N46 ; 3.708 ; Crystal structure of the cryptic polo box domain of a human activated Plk4 6N45 ; 2.64 ; Crystal structure of the cryptic polo box domain of human activated Plk4 variant 1 4N9J ; 2.601 ; Crystal structure of the cryptic polo box domain of human Plk4 5FON ; 2.7 ; Crystal structure of the Cryptosporidium muris cytosolic leucyl-tRNA synthetase editing domain (apo structure) 5FOL ; 1.77 ; Crystal structure of the Cryptosporidium muris cytosolic leucyl-tRNA synthetase editing domain complex with a post-transfer editing analogue of isoeucine (Ile2AA) 5FOM ; 2.1 ; Crystal structure of the Cryptosporidium muris cytosolic leucyl-tRNA synthetase editing domain complex with the adduct AMP-AN6426 7D5G ; 1.6 ; Crystal structure of the CsCE with ligand to have a insight into the catalytic mechanism 6T2W ; 1.7 ; Crystal structure of the CSF1R kinase domain with a dihydropurinone inhibitor (compound 4) 6GPE ; 2.2 ; Crystal Structure of the CsiD Glutarate Hydroxylase 6HL8 ; 2.4 ; Crystal Structure of the CsiD Glutarate Hydroxylase in complex with Glutarate 6GPN ; 2.2 ; Crystal Structure of the CsiD Glutarate Hydroxylase in complex with N-Oxalylglycine 6HL9 ; 2.3 ; Crystal Structure of the CsiD Glutarate Hydroxylase in complex with Succinate 2FO1 ; 3.12 ; Crystal Structure of the CSL-Notch-Mastermind ternary complex bound to DNA 8JBB ; 1.81 ; Crystal Structure of the Csm6 from Thermus thermophilus HB8 in complex with A2>p 8JBC ; 2.41 ; Crystal Structure of the Csm6 K137A mutant from Thermus thermophilus HB8 in its apo form 8JH1 ; 2.89 ; Crystal Structure of the Csm6 Y161A mutant from Thermus thermophilus HB8 in complex with cyclic-tetraadenylate (cA4) 6FQ0 ; 2.5 ; Crystal structure of the CsuC-CsuA/B chaperone-subunit preassembly complex of the archaic chaperone-usher Csu pili of Acinetobacter baumannii 6FQA ; 2.85 ; Crystal structure of the CsuC-CsuA/B chaperone-subunit preassembly complex of the archaic chaperone-usher Csu pili of Acinetobacter baumannii 2XLJ ; 2.6 ; Crystal structure of the Csy4-crRNA complex, hexagonal form 2XLI ; 2.33 ; Crystal structure of the Csy4-crRNA complex, monoclinic form 2XLK ; 1.805 ; Crystal structure of the Csy4-crRNA complex, orthorhombic form 4AL5 ; 2.0 ; Crystal structure of the Csy4-crRNA product complex 4AL7 ; 2.32 ; Crystal structure of the Csy4-minimal crRNA complex 7XGB ; 2.7 ; Crystal structure of the ctcP from Streptomyces aureofaciens 5CD9 ; 2.102 ; Crystal structure of the CTD of Drosophila Oskar protein 5OKC ; 2.3 ; Crystal structure of the Ctf18-1-8 module from Ctf18-RFC 5OKI ; 4.5 ; Crystal structure of the Ctf18-1-8 module from Ctf18-RFC in complex with a 63 kDa fragment of DNA Polymerase epsilon 3ZXU ; 3.7 ; Crystal structure of the Ctf19-Mcm21 kinetochore heterodimer from yeast 1I85 ; 3.2 ; CRYSTAL STRUCTURE OF THE CTLA-4/B7-2 COMPLEX 2BE9 ; 2.6 ; Crystal structure of the CTP-liganded (T-State) aspartate transcarbamoylase from the extremely thermophilic archaeon Sulfolobus acidocaldarius 5A6S ; 1.9 ; Crystal structure of the CTP1L endolysin reveals how its activity is regulated by a secondary translation product 4C2F ; 2.4 ; Crystal structure of the CtpB R168A mutant present in an active conformation 4C2H ; 1.95 ; Crystal structure of the CtpB(V118Y) mutant 7DKH ; 2.9 ; Crystal structure of the Ctr9/Paf1/Cdc73/Rtf1 quaternary complex 1Q05 ; 2.2 ; Crystal structure of the Cu(I) form of E. coli CueR, a copper efflux regulator 1N63 ; 1.21 ; Crystal Structure of the Cu,Mo-CO Dehydrogenase (CODH); Carbon monoxide reduced state 1N60 ; 1.19 ; Crystal Structure of the Cu,Mo-CO Dehydrogenase (CODH); Cyanide-inactivated Form 1N61 ; 1.3 ; Crystal Structure of the Cu,Mo-CO Dehydrogenase (CODH); Dithionite reduced state 1N5W ; 1.5 ; Crystal Structure of the Cu,Mo-CO Dehydrogenase (CODH); Oxidized form 4DYX ; 1.85 ; Crystal Structure of the Cu-adduct of Human H-Ferritin variant 4His-delta C-star 4DYY ; 1.9 ; Crystal Structure of the Cu-adduct of Human H-Ferritin variant MIC1 4DZ0 ; 2.5 ; Crystal structure of the Cu-adduct of human H-Ferritin variant MIC1 labeled with a dansyl fluorophore 3HNL ; 2.2 ; Crystal structure of the Cu-induced dimer of the engineered cyt cb562 variant RIDC-1 3CE1 ; 1.2 ; Crystal Structure of the Cu/Zn Superoxide Dismutase from Cryptococcus liquefaciens Strain N6 1NZI ; 1.5 ; Crystal Structure of the CUB1-EGF Interaction Domain of Complement Protease C1s 1NT0 ; 2.7 ; Crystal structure of the CUB1-EGF-CUB2 region of MASP2 6ZZN ; 1.5 ; Crystal structure of the cubic catalytic core of the Mycobacterium tuberculosis branched-chain alphaketoacid acyltransferase component (E2b). 4G3O ; 1.6 ; Crystal structure of the CUE domain of the E3 ubiquitin ligase AMFR (gp78) 3NNH ; 2.7501 ; Crystal Structure of the CUGBP1 RRM1 with GUUGUUUUGUUU RNA 5N4W ; 3.9 ; Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex 5CYL ; 2.77 ; Crystal structure of the CupB6 tip adhesin from Pseudomonas aeruginosa 7Z3G ; 2.1 ; Crystal structure of the cupredoxin AcoP from Acidithiobacillus ferrooxidans, H166A mutant 7Z3I ; 1.82 ; Crystal structure of the cupredoxin AcoP from Acidithiobacillus ferrooxidans, M171A mutant 7Z3F ; 1.7 ; Crystal structure of the cupredoxin AcoP from Acidithiobacillus ferrooxidans, oxidized form 7Z3B ; 1.65 ; Crystal structure of the cupredoxin AcoP from Acidithiobacillus ferrooxidans, reduced form 4O65 ; 1.796 ; Crystal structure of the cupredoxin domain of amoB from Nitrosocaldus yellowstonii 5KP5 ; 2.1 ; Crystal Structure of the Curacin Biosynthetic Pathway HMG Synthase 5KP8 ; 1.9 ; Crystal Structure of the Curacin Biosynthetic Pathway HMG Synthase in Complex with Acetyl Donor-ACP 5KP6 ; 2.05 ; Crystal Structure of the Curacin Biosynthetic Pathway HMG Synthase in Complex with Apo Donor-ACP 5KP7 ; 1.6 ; Crystal Structure of the Curacin Biosynthetic Pathway HMG Synthase in Complex with Holo Donor-ACP 3NE5 ; 2.898 ; Crystal structure of the CusBA heavy-metal efflux complex from Escherichia coli 4DNR ; 3.68 ; Crystal structure of the CusBA heavy-metal efflux complex from Escherichia coli, E716F mutant 4DNT ; 3.1 ; Crystal structure of the CusBA heavy-metal efflux complex from Escherichia coli, mutant 4DOP ; 4.2 ; Crystal structure of the CusBA heavy-metal efflux complex from Escherichia coli, R mutant 4Z0R ; 1.75 ; Crystal Structure of the CW domain of ZCWPW2 mutant F78R in complex with histone H3 peptide 3OE0 ; 2.9 ; Crystal structure of the CXCR4 chemokine receptor in complex with a cyclic peptide antagonist CVX15 3OE6 ; 3.2 ; Crystal structure of the CXCR4 chemokine receptor in complex with a small molecule antagonist IT1t in I222 spacegroup 3OE8 ; 3.1 ; Crystal structure of the CXCR4 chemokine receptor in complex with a small molecule antagonist IT1t in P1 spacegroup 4BBQ ; 2.24 ; Crystal structure of the CXXC and PHD domain of Human Lysine-specific Demethylase 2A (KDM2A)(FBXL11) 5J2O ; 1.5 ; Crystal structure of the cyan fluorescence protein Cerulean S175G mutant 5B82 ; 2.0 ; Crystal structure of the cyanobacterial heme-protein Tll0287 1R22 ; 2.3 ; Crystal structure of the cyanobacterial metallothionein repressor SmtB (C14S/C61S/C121S mutant) in the Zn2alpha5-form 1R1T ; 1.7 ; Crystal structure of the cyanobacterial metallothionein repressor SmtB in the apo-form 1R23 ; 2.0 ; Crystal structure of the cyanobacterial metallothionein repressor SmtB in the Zn1-form (one Zn(II) per dimer) 1K66 ; 1.75 ; Crystal Structure of the Cyanobacterial Phytochrome Response Regulator, RcpB 5CXM ; 1.7 ; Crystal structure of the cyanobacterial plasma membrane Rieske protein PetC3 from Synechocystis PCC 6803 3W2Z ; 1.8 ; Crystal structure of the cyanobacterial protein 2E1N ; 1.8 ; Crystal structure of the Cyanobacterium circadian clock modifier Pex 6SYG ; 1.5 ; Crystal structure of the Cyclic Nucleotide-Binding Homology Domain of the human KCNH2 channel 6P3W ; 2.54 ; Crystal structure of the Cyclin A-CDK2-ORC1 complex 1QYQ ; 1.8 ; Crystal Structure of the cyclized S65G Y66G GFP variant 5WJP ; 1.57 ; Crystal structure of the cyclohexadienyl dehydratase-like solute-binding protein SAR11_1068 from Candidatus Pelagibacter ubique. 1C5F ; 2.47 ; CRYSTAL STRUCTURE OF THE CYCLOPHILIN-LIKE DOMAIN FROM BRUGIA MALAYI COMPLEXED WITH CYCLOSPORIN A 1ZKC ; 1.65 ; Crystal Structure of the cyclophiln_RING domain of human peptidylprolyl isomerase (cyclophilin)-like 2 isoform b 3E4H ; 1.8 ; Crystal structure of the cyclotide varv F 7W97 ; 1.4 ; Crystal Structure of the CYP102A1 (P450BM3) Heme Domain with N-Hexadecanoyl-L-Homoserine 8HKJ ; 2.8 ; Crystal structure of the CYP102A5 haem Domain isolated from Bacillus cereus 8HGD ; 1.53 ; Crystal structure of the CYP153A mutant V456A from Marinobacter aquaeolei 8HGT ; 2.06 ; Crystal structure of the CYP153A mutant V456A from Marinobacter aquaeolei 8HGE ; 1.53 ; Crystal structure of the CYP153A mutant V456A from Marinobacter aquaeolei in complex with 12-hydroxydodecanoic acid 8HGB ; 1.54 ; Crystal structure of the CYP199A4 mutant F182G in complex with 3-hydroxy-4-methoxybenzoic acid 8HGC ; 1.72 ; Crystal structure of the CYP199A4 mutant F182T in complex with 4-methoxybenzoic acid 6JDD ; 2.6 ; Crystal structure of the cypemycin decarboxylase CypD. 6XFT ; 1.78 ; Crystal Structure of the Cys-NO Modified YopH Tyrosine Phosphatase 6ZUI ; 2.20008 ; Crystal structure of the Cys-Ser mutant of the cpYFP-based biosensor for hypochlorous acid 5XTW ; 3.2 ; Crystal structure of the CysR-CTLD2 fragment of human MR at acidic pH 6INV ; 3.3 ; Crystal structure of the CysR-CTLD2 fragment of human MR at acidic pH (pH 4.0) 6INO ; 3.054 ; Crystal structure of the CysR-CTLD2 fragment of human MR at acidic pH (pH 4.6) 6INU ; 2.65 ; Crystal structure of the CysR-CTLD2 fragment of human MR at acidic pH (pH 4.6) 6IOE ; 2.9 ; Crystal structure of the CysR-CTLD2 fragment of human MR at basic pH (pH 8.5) 8HBC ; 3.35 ; Crystal structure of the CysR-CTLD3 fragment of human DEC205 8K8H ; 2.79 ; Crystal structure of the CysR-CTLD3 fragment of human DEC205 6INN ; 3.001 ; Crystal structure of the CysR-CTLD3 fragment of human MR at acidic pH (pH 5.6) 5XTS ; 2.0 ; Crystal structure of the CysR-CTLD3 fragment of human MR at basic/neutral pH 6QB2 ; 2.5 ; Crystal structure of the cystatin-based engineered protein scaffold SQT-1C 2QO5 ; 1.5 ; Crystal structure of the cysteine 91 threonine mutant of zebrafish liver bile acid-binding protein complexed with cholic acid 5VCG ; 2.2 ; Crystal structure of the cysteine depleted CYP3A4 bound to bromoergocryptine 5VCD ; 1.95 ; Crystal structure of the cysteine depleted CYP3A4 bound to glycerol 5VCE ; 2.2 ; Crystal structure of the cysteine depleted CYP3A4 bound to ritonavir 5FT5 ; 2.384 ; Crystal structure of the cysteine desulfurase CsdA (persulfurated) from Escherichia coli at 2.384 Angstroem resolution 5FT6 ; 2.049 ; Crystal structure of the cysteine desulfurase CsdA (S-sulfonic acid) from Escherichia coli at 2.050 Angstroem resolution 5FT4 ; 1.996 ; Crystal structure of the cysteine desulfurase CsdA from Escherichia coli at 1.996 Angstroem resolution 5J8Q ; 1.702 ; Crystal Structure of the Cysteine Desulfurase SufS of Bacillus subtilis 1NL6 ; 2.8 ; Crystal Structure Of The Cysteine Protease Human Cathepsin K In Complex With A Covalent Azepanone Inhibitor 1NLJ ; 2.4 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT AZEPANONE INHIBITOR 1AU2 ; 2.6 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT PROPANONE INHIBITOR 1AU3 ; 2.5 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT PYRROLIDINONE INHIBITOR 1AU4 ; 2.3 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT PYRROLIDINONE INHIBITOR 1AU0 ; 2.6 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH A COVALENT SYMMETRIC DIACYLAMINOMETHYL KETONE INHIBITOR 1ATK ; 2.2 ; CRYSTAL STRUCTURE OF THE CYSTEINE PROTEASE HUMAN CATHEPSIN K IN COMPLEX WITH THE COVALENT INHIBITOR E-64 1U9V ; 2.2 ; Crystal Structure of the Cysteine Protease Human Cathepsin K in Complex with the Covalent Inhibitor NVP-ABE854 1U9W ; 2.3 ; Crystal Structure of the Cysteine Protease Human Cathepsin K in Complex with the Covalent Inhibitor NVP-ABI491 1U9X ; 2.1 ; Crystal Structure of the Cysteine Protease Human Cathepsin K in Complex with the Covalent Inhibitor NVP-ABJ688 3M86 ; 1.65 ; Crystal structure of the cysteine protease inhibitor, EhICP2, from Entamoeba histolytica 3M88 ; 1.9 ; Crystal structure of the cysteine protease inhibitor, EhICP2, from Entamoeba histolytica 1DQG ; 1.7 ; CRYSTAL STRUCTURE OF THE CYSTEINE RICH DOMAIN OF MANNOSE RECEPTOR 1DQO ; 2.2 ; Crystal structure of the cysteine rich domain of mannose receptor complexed with Acetylgalactosamine-4-sulfate 5BPB ; 2.2 ; Crystal structure of the cysteine-rich domain of human Frizzled 4 - Crystal Form I 5BPQ ; 2.4 ; Crystal structure of the cysteine-rich domain of human Frizzled 4 - Crystal Form II 1FWV ; 2.2 ; CRYSTAL STRUCTURE OF THE CYSTEINE-RICH DOMAIN OF MANNOSE RECEPTOR COMPLEXED WITH 3-SO4-LEWIS(A) 1FWU ; 1.9 ; CRYSTAL STRUCTURE OF THE CYSTEINE-RICH DOMAIN OF MANNOSE RECEPTOR COMPLEXED WITH 3-SO4-LEWIS(X) 1IJY ; 1.35 ; CRYSTAL STRUCTURE OF THE CYSTEINE-RICH DOMAIN OF MOUSE FRIZZLED 8 (MFZ8) 1IJX ; 1.9 ; CRYSTAL STRUCTURE OF THE CYSTEINE-RICH DOMAIN OF SECRETED FRIZZLED-RELATED PROTEIN 3 (SFRP-3;FZB) 8OIH ; 1.86 ; Crystal structure of the cysteine-rich Gallus gallus urate oxidase in complex with the 8-azaxanthine inhibitor under oxidising conditions (space group C 2 2 21) 8OIW ; 1.89 ; Crystal structure of the cysteine-rich Gallus gallus urate oxidase in complex with the 8-azaxanthine inhibitor under oxidising conditions (space group P 21 21 21) 8OFK ; 1.713 ; Crystal structure of the cysteine-rich Gallus gallus urate oxidase in complex with the 8-azaxanthine inhibitor under reducing conditions (space group C 2 2 21) 8OH8 ; 2.12 ; Crystal structure of the cysteine-rich Gallus gallus urate oxidase in complex with the 8-azaxanthine inhibitor under reducing conditions (space group P 21 21 21) 1ELQ ; 1.8 ; CRYSTAL STRUCTURE OF THE CYSTINE C-S LYASE C-DES 3B8F ; 1.9 ; Crystal structure of the cytidine deaminase from Bacillus anthracis 5YLY ; 1.76 ; Crystal structure of the cytochrome b5 reductase domain of Ulva prolifera nitrate reductase 2E74 ; 3.0 ; Crystal Structure of the Cytochrome b6f Complex from M.laminosus 4H13 ; 3.07 ; Crystal Structure of the Cytochrome b6f Complex from Mastigocladus laminosus with TDS 2ZT9 ; 3.0 ; Crystal Structure of the Cytochrome b6f Complex from Nostoc sp. PCC 7120 2E75 ; 3.55 ; Crystal Structure of the Cytochrome b6f Complex with 2-nonyl-4-hydroxyquinoline N-oxide (NQNO) from M.laminosus 2E76 ; 3.41 ; Crystal Structure of the Cytochrome b6f Complex with tridecyl-stigmatellin (TDS) from M.laminosus 1YNR ; 2.0 ; Crystal structure of the cytochrome c-552 from Hydrogenobacter thermophilus at 2.0 resolution 2D0S ; 2.2 ; Crystal structure of the Cytochrome C552 from moderate thermophilic bacterium, hydrogenophilus thermoluteolus 3CXV ; 1.7 ; Crystal structure of the Cytochrome P450 CYP121 A233G mutant from Mycobacterium tuberculosis 3CXY ; 1.45 ; Crystal structure of the cytochrome P450 CYP121 P346L mutant from M. tuberculosis 3CY1 ; 1.75 ; Crystal structure of the cytochrome P450 CYP121 S279A mutant from M. tuberculosis 8SPC ; 1.871 ; Crystal structure of the cytochrome P450 enzyme RufO 4L36 ; 2.104 ; Crystal structure of the cytochrome P450 enzyme TxtE 3P3X ; 2.3 ; Crystal Structure of the Cytochrome P450 Monooxygenase AurH (nterm-AurH-I) from Streptomyces Thioluteus 3P3O ; 1.54 ; Crystal Structure of the Cytochrome P450 Monooxygenase AurH (ntermII) from Streptomyces Thioluteus 3P3L ; 2.1 ; Crystal Structure of the Cytochrome P450 monooxygenase AurH (wildtype) from Streptomyces Thioluteus 3P3Z ; 2.3 ; Crystal Structure of the Cytochrome P450 Monooxygenase AurH from Streptomyces Thioluteus in Complex with Ancymidol 2CP4 ; 2.1 ; CRYSTAL STRUCTURE OF THE CYTOCHROME P450-CAM ACTIVE SITE MUTANT THR252ALA 3CP4 ; 2.3 ; CRYSTAL STRUCTURE OF THE CYTOCHROME P450-CAM ACTIVE SITE MUTANT THR252ALA 4CP4 ; 2.1 ; CRYSTAL STRUCTURE OF THE CYTOCHROME P450-CAM ACTIVE SITE MUTANT THR252ALA 3UA1 ; 2.15 ; Crystal structure of the cytochrome P4503A4-bromoergocryptine complex 4AKR ; 2.2 ; Crystal Structure of the cytoplasmic actin capping protein Cap32_34 from Dictyostelium discoideum 6H3P ; 2.7 ; Crystal structure of the cytoplasmic chorismate mutase from Zea mays 5M0J ; 2.8 ; Crystal structure of the cytoplasmic complex with She2p, She3p, and the ASH1 mRNA E3-localization element 1XAW ; 1.45 ; crystal structure of the cytoplasmic distal C-terminal domain of occludin 2CH7 ; 2.5 ; Crystal structure of the cytoplasmic domain of a bacterial chemoreceptor from Thermotoga maritima 3G40 ; 1.9 ; Crystal structure of the cytoplasmic domain of a prokaryotic cation chloride cotransporter 3VHJ ; 1.9 ; Crystal structure of the cytoplasmic domain of BfpC 6CH3 ; 2.68 ; Crystal structure of the cytoplasmic domain of FlhA and FliS-FliC complex 6CH2 ; 2.7 ; Crystal structure of the cytoplasmic domain of FlhA and FliT-FliD complex 6CH1 ; 1.9 ; Crystal structure of the cytoplasmic domain of FlhA in monomeric form 3B1S ; 2.55 ; Crystal structure of the cytoplasmic domain of FlhB from Aquifex aeolicus 6Z0W ; 2.1 ; Crystal structure of the cytoplasmic domain of FlhB from Shewanella putrefaciens 1N9P ; 1.8 ; Crystal Structure of the Cytoplasmic Domain of G-protein Activated Inward Rectifier Potassium Channel 1 2E4F ; 2.302 ; Crystal Structure of the Cytoplasmic Domain of G-Protein-Gated Inward Rectifier Potassium Channel Kir3.2 3VSQ ; 2.0 ; Crystal Structure of the Cytoplasmic Domain of G-Protein-Gated Inward Rectifier Potassium Channel Kir3.2 E236R Mutant in the presence of ethanol 3AGW ; 2.2 ; Crystal Structure of the Cytoplasmic Domain of G-Protein-Gated Inward Rectifier Potassium Channel Kir3.2 in the absence of Na+ 1HYN ; 2.6 ; CRYSTAL STRUCTURE OF THE CYTOPLASMIC DOMAIN OF HUMAN ERYTHROCYTE BAND-3 PROTEIN 3HM6 ; 2.402 ; Crystal structure of the cytoplasmic domain of human plexin B1 2VT1 ; 2.0 ; Crystal structure of the cytoplasmic domain of Spa40, the specificity switch for the Shigella flexneri Type III Secretion System 3MDY ; 2.05 ; Crystal structure of the cytoplasmic domain of the bone morphogenetic protein receptor type-1B (BMPR1B) in complex with FKBP12 and LDN-193189 2D4Z ; 3.1 ; Crystal structure of the cytoplasmic domain of the chloride channel ClC-0 2PFI ; 1.6 ; Crystal structure of the cytoplasmic domain of the human chloride channel ClC-Ka 5COS ; 2.019 ; Crystal Structure of the Cytoplasmic Domain of the Pseudomonas putida Anti-sigma Factor PupR 5CAM ; 2.171 ; Crystal Structure of the Cytoplasmic Domain of the Pseudomonas putida Anti-sigma Factor PupR (SeMet) 1B6C ; 2.6 ; CRYSTAL STRUCTURE OF THE CYTOPLASMIC DOMAIN OF THE TYPE I TGF-BETA RECEPTOR IN COMPLEX WITH FKBP12 4ECL ; 2.017 ; Crystal structure of the cytoplasmic domain of vancomycin resistance serine racemase VanTg 2JLH ; 1.53 ; Crystal Structure of the Cytoplasmic domain of Yersinia Pestis YscU N263A mutant 2JLJ ; 1.3 ; Crystal Structure of the cytoplasmic domain of Yersinia pestis YscU N263A P264A mutant 3QMZ ; 6.0 ; Crystal structure of the cytoplasmic dynein heavy chain motor domain 3RRK ; 2.64 ; Crystal structure of the cytoplasmic N-terminal domain of subunit I, homolog of subunit a, of V-ATPase 4A0E ; 2.042 ; Crystal structure of the cytoplasmic N-terminal domain of Yersinia pestis YscD 3LBS ; 2.15 ; Crystal structure of the cytoplasmic tail of (pro)renin receptor as a MBP fusion (Maltose-bound form) 3LC8 ; 2.0 ; Crystal structure of the cytoplasmic tail of (pro)renin receptor as a MBP fusion (Maltose-free form) 3G3O ; 2.1 ; Crystal structure of the cytoplasmic tunnel domain in yeast Vtc2p 3MIX ; 2.3 ; Crystal structure of the cytosolic domain of B. subtilis FlhA 3QNU ; 2.8 ; Crystal structure of the cytosolic domain of human atlastin-1 in complex with GDP, hexagonal form 3QOF ; 2.802 ; Crystal structure of the cytosolic domain of human atlastin-1 in complex with GDP, orthorhombic form 6N7E ; 3.5 ; Crystal structure of the cytosolic domain of human CNNM2 in complex with AMP-PNP and Mg2+ 6MN6 ; 3.36 ; Crystal structure of the cytosolic domain of human CNNM3 4NXT ; 2.12 ; Crystal structure of the cytosolic domain of human MiD51 4NXU ; 2.3 ; Crystal structure of the cytosolic domain of human MiD51 4NXV ; 2.3 ; Crystal structure of the cytosolic domain of human MiD51 4NXW ; 2.55 ; Crystal structure of the cytosolic domain of human MiD51 4NXX ; 2.55 ; Crystal structure of the cytosolic domain of human MiD51 5X9B ; 2.7 ; Crystal structure of the cytosolic domain of human MiD51 5X9C ; 1.85 ; Crystal structure of the cytosolic domain of human MiD51 4OAF ; 2.2 ; Crystal structure of the cytosolic domain of mouse MiD51 4OAG ; 2.0 ; Crystal structure of the cytosolic domain of mouse MiD51 bound to ADP 4OAI ; 2.0 ; Crystal structure of the cytosolic domain of mouse MiD51 dimer mutant 4OAH ; 2.0 ; Crystal structure of the cytosolic domain of mouse MiD51 H201A mutant 2ZZT ; 2.842 ; Crystal structure of the cytosolic domain of the cation diffusion facilitator family protein 5N77 ; 2.8 ; Crystal structure of the cytosolic domain of the CorA magnesium channel from Escherichia coli in complex with magnesium 5N78 ; 2.85 ; Crystal structure of the cytosolic domain of the CorA Mg2+ channel from Escherichia coli in complex with magnesium and cobalt hexammine 5X9G ; 3.0 ; Crystal structure of the cytosolic domain of the Mg2+ channel MgtE in complex with ATP 7MP8 ; 3.0 ; Crystal structure of the cytosolic domain of Tribolium castaneum PINK1 in the non-phosphorylated state 7MP9 ; 2.8 ; Crystal structure of the cytosolic domain of Tribolium castaneum PINK1 phosphorylated at Ser205 in complex with ADP analog 2BDE ; 2.9 ; Crystal Structure of the cytosolic IMP-GMP specific 5'-nucleotidase (lpg0095) from Legionella pneumophila, Northeast Structural Genomics Target LgR1 1RH1 ; 2.5 ; crystal structure of the cytotoxic bacterial protein colicin B at 2.5 A resolution 6OSU ; 2.44 ; Crystal Structure of the D-alanyl-D-alanine carboxypeptidase DacD from Francisella tularensis 2H6E ; 1.8 ; Crystal structure of the D-arabinose dehydrogenase from Sulfolobus solfataricus 5T47 ; 2.2 ; Crystal structure of the D. melanogaster eIF4E-eIF4G complex 5T48 ; 2.19 ; Crystal structure of the D. melanogaster eIF4E-eIF4G complex without lateral contact 4NK7 ; 3.233 ; Crystal Structure of the D. melanogaster Plk4 cryptic polo box (CPB) 6XQK ; 2.56 ; Crystal structure of the D/D domain of PKA from S. cerevisiae 4JJH ; 2.25 ; Crystal structure of the D1 domain from human Nectin-4 extracellular fragment [PSI-NYSGRC-005624] 2QEP ; 2.5 ; Crystal structure of the D1 domain of PTPRN2 (IA2beta) 1CZQ ; 1.5 ; CRYSTAL STRUCTURE OF THE D10-P1/IQN17 COMPLEX: A D-PEPTIDE INHIBITOR OF HIV-1 ENTRY BOUND TO THE GP41 COILED-COIL POCKET. 2Q3I ; 1.5 ; Crystal structure of the D10-P3/IQN17 complex: a D-peptide inhibitor of HIV-1 entry bound to the GP41 coiled-coil pocket 3K7J ; 1.9 ; Crystal structure of the D100E mutant of the Indian Hedgehog N-terminal signalling domain 6VWE ; 2.5 ; Crystal structure of the D100R multidrug binding transcriptional regulator LmrR in complex with Rhodium Bis-diphosphine Complex 5N4H ; 1.701 ; Crystal structure of the D109N mutant of the mouse alpha-Dystroglycan N-terminal region 6YBY ; 1.8 ; Crystal structure of the D116N mutant of the light-driven sodium pump KR2 in the monomeric form, pH 4.6 6YBZ ; 2.35 ; Crystal structure of the D116N mutant of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 3B3T ; 1.17 ; Crystal structure of the D118N mutant of the aminopeptidase from Vibrio proteolyticus 5TNS ; 1.75 ; Crystal structure of the D129S mutant of the CFTR inhibitory factor Cif containing 1,2-Epoxycyclohexane 1SWV ; 2.3 ; Crystal structure of the D12A mutant of phosphonoacetaldehyde hydrolase complexed with magnesium 1GOI ; 1.45 ; Crystal structure of the D140N mutant of chitinase B from Serratia marcescens at 1.45 A resolution 5SYJ ; 1.88 ; Crystal structure of the D141A variant of B. pseudomallei KatGin complex with isoniazid 5KSF ; 1.75 ; Crystal structure of the D141A variant of the catalase-peroxidase from B. pseudomallei treated with acetate 5KQ3 ; 1.85 ; Crystal structure of the D141A/Q233E variant of catalase-peroxidase from B. pseudomallei 5V4O ; 1.95 ; Crystal structure of the D141A/Q233E/N240D variant of catalase-peroxidase from B. pseudomallei 5V53 ; 1.7 ; Crystal structure of the D141A/Q233E/N240D variant of catalase-peroxidase from B. pseudomallei with acetate bound 5SX2 ; 2.15 ; Crystal structure of the D141E mutant of B. pseudomallei KatG at pH 8.0. 6CEK ; 1.8 ; Crystal structure of the D141N variant of catalase-peroxidase from B. pseudomallei 6CFQ ; 1.72 ; Crystal structure of the D141N variant of catalase-peroxidase from B. pseudomallei with INH bound 1S08 ; 2.1 ; Crystal Structure of the D147N Mutant of 7,8-Diaminopelargonic Acid Synthase 3PPW ; 1.9 ; Crystal structure of the D1596A mutant of an engineered VWF A2 domain (N1493C and C1670S) 3PPY ; 2.0 ; Crystal structure of the D1596A/N1602A double mutant of an engineered VWF A2 domain (N1493C and C1670S) 5V3Z ; 1.881 ; Crystal Structure of the D1607N mutant form of Thioesterase domain of Mtb Pks13 1P7Y ; 2.4 ; Crystal structure of the D181A variant of catalase HPII from E. coli 1P81 ; 1.81 ; Crystal structure of the D181E variant of catalase HPII from E. coli 1P80 ; 1.65 ; Crystal structure of the D181Q variant of catalase HPII from E. coli 1P7Z ; 2.21 ; Crystal structure of the D181S variant of catalase HPII from E. coli 5LUC ; 1.8 ; Crystal structure of the D183N variant of human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) at 1.8 Angstrom; internal aldimine with PLP in the active site 5OFY ; 2.8 ; Crystal structure of the D183N variant of human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) at pH 9.0. 2.8 Ang; internal aldimine with PLP in the active site 1B34 ; 2.5 ; CRYSTAL STRUCTURE OF THE D1D2 SUB-COMPLEX FROM THE HUMAN SNRNP CORE DOMAIN 1P15 ; 2.0 ; Crystal structure of the D2 domain of RPTPa 1EJR ; 2.0 ; CRYSTAL STRUCTURE OF THE D221A VARIANT OF KLEBSIELLA AEROGENES UREASE 1LO5 ; 3.2 ; Crystal structure of the D227A variant of Staphylococcal enterotoxin A in complex with human MHC class II 4DI9 ; 1.35 ; CRYSTAL STRUCTURE OF THE D248A mutant of 2-PYRONE-4,6-DICARBOXYLIC ACID HYDROLASE FROM SPHINGOMONAS PAUCIMOBILIS complexed with substrate at pH 6.5 4DI8 ; 1.81 ; CRYSTAL STRUCTURE OF THE D248A mutant of 2-PYRONE-4,6-DICARBOXYLIC ACID HYDROLASE FROM SPHINGOMONAS PAUCIMOBILIS complexed with substrate at pH 8.5 4DIA ; 2.0 ; CRYSTAL STRUCTURE OF THE D248N mutant of 2-PYRONE-4,6-DICARBOXYLIC ACID HYDROLASE FROM SPHINGOMONAS PAUCIMOBILIS complexed with substrate at pH 4.6 5TR2 ; 2.5 ; Crystal structure of the D263G missense variant of human PGM1 5JN5 ; 1.75 ; Crystal structure of the D263Y missense variant of human PGM1 1X09 ; 1.87 ; Crystal structure of the D26A mutant UPPs in complex with magnesium and isopentenyl pyrophosphate 2VHV ; 2.8 ; Crystal structure of the D270A mutant of L-alanine dehydrogenase from Mycobacterium tuberculosis in complex with NADH. 6OU0 ; 1.799 ; Crystal Structure of the D380A/D478S Variant of the Myocilin Olfactomedin Domain 3R77 ; 1.9 ; Crystal structure of the D38A mutant of isochorismatase PhzD from Pseudomonas fluorescens 2-79 in complex with 2-amino-2-desoxyisochorismate ADIC 4RMR ; 1.529 ; Crystal structure of the D38N Beta-2 Microglobulin mutant 1D3B ; 2.0 ; CRYSTAL STRUCTURE OF THE D3B SUBCOMPLEX OF THE HUMAN CORE SNRNP DOMAIN AT 2.0A RESOLUTION 5J5Z ; 1.84 ; Crystal structure of the D444V disease-causing mutant of the human dihydrolipoamide dehydrogenase 6OU2 ; 1.963 ; Crystal Structure of the D478N Variant of the Myocilin Olfactomedin Domain 6OU3 ; 1.796 ; Crystal Structure of the D478S Variant of the Myocilin Olfactomedin Domain 1GMZ ; 2.4 ; Crystal structure of the D49 phospholipase A2 piratoxin III from Bothrops pirajai. 2XJB ; 2.3 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with deoxyguanosine monophosphate and deoxyadenosine triphosphate 2XJC ; 2.0 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with guanosine monophosphate and diadenosine tetraphosphate 2XJD ; 2.0 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with inorganic phosphate and deoxyadenosine triphosphate 2XCV ; 2.3 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with inosine monophosphate and 2,3-bisphosphoglycerate 2XCW ; 1.9 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with inosine monophosphate and ATP 2XJE ; 2.3 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with uridine 5'-monophosphate and adenosine triphosphate 2XJF ; 2.1 ; Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II with a covalently modified Asn52 4RMS ; 1.7 ; Crystal structure of the D53N Beta-2 Microglobulin mutant 2VUH ; 2.5 ; Crystal structure of the D55E mutant of the HupR receiver domain 1S2U ; 2.0 ; Crystal structure of the D58A phosphoenolpyruvate mutase mutant protein 4RMQ ; 1.461 ; Crystal structure of the D59N Beta-2 Microglobulin mutant 1OQG ; 1.9 ; Crystal structure of the D63E mutant of the N-lobe human transferrin 4I9L ; 2.6 ; Crystal structure of the D714A mutant of RB69 DNA polymerase 4FTE ; 3.5 ; Crystal structure of the D75N mutant capsid of Flock House virus 4RMW ; 1.4 ; Crystal structure of the D76A Beta-2 Microglobulin mutant 4RMU ; 1.4 ; Crystal structure of the D76E Beta-2 Microglobulin mutant 4RMV ; 1.463 ; Crystal structure of the D76H Beta-2 Microglobulin mutant 4FXL ; 1.4 ; Crystal structure of the D76N Beta-2 Microglobulin mutant 3GDR ; 1.9 ; Crystal structure of the D91N mutant of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae 3GDT ; 1.6 ; Crystal structure of the D91N mutant of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae complexed with 6-azauridine 5'-monophosphate 3VBN ; 2.5 ; Crystal Structure of the D94A mutant of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP and Coenzyme A 3VBP ; 2.3 ; Crystal Structure of the D94N mutant of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP and Coenzyme A 2WOE ; 1.9 ; Crystal Structure of the D97N variant of dinitrogenase reductase- activating glycohydrolase (DRAG) from Rhodospirillum rubrum in complex with ADP-ribose 4RMT ; 1.242 ; Crystal structure of the D98N Beta-2 Microglobulin mutant 1SBX ; 1.65 ; Crystal structure of the Dachshund-homology domain of human SKI 7BJI ; 2.58 ; Crystal structure of the Danio rerio centrosomal protein Cep135 coiled-coil fragment 64-190 3WOJ ; 2.2 ; Crystal structure of the DAP BII 4Y06 ; 2.18 ; Crystal structure of the DAP BII (G675R) dipeptide complex 3WOI ; 2.1 ; Crystal structure of the DAP BII (S657A) 3WOK ; 1.95 ; Crystal structure of the DAP BII (Space) 3WOL ; 1.74 ; Crystal structure of the DAP BII dipeptide complex I 3WOM ; 1.86 ; Crystal structure of the DAP BII dipeptide complex II 3WON ; 1.75 ; Crystal structure of the DAP BII dipeptide complex III 3WOO ; 1.8 ; Crystal structure of the DAP BII hexapeptide complex I 3WOP ; 1.95 ; Crystal structure of the DAP BII hexapeptide complex II 3WOQ ; 1.82 ; Crystal structure of the DAP BII hexapeptide complex III 3WOR ; 2.1 ; Crystal structure of the DAP BII octapeptide complex 4WO1 ; 2.14 ; Crystal structure of the DAP12 transmembrane domain in lipid cubic phase 4WOL ; 1.77 ; Crystal Structure of the DAP12 transmembrane domain in lipidic cubic phase 6E20 ; 2.0 ; Crystal structure of the Dario rerio galectin-1-L2 1XMZ ; 1.38 ; Crystal structure of the dark state of kindling fluorescent protein kfp from anemonia sulcata 5AKP ; 3.25 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP from Xanthomonas campestris bound to BV chromophore 6PL0 ; 2.96 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP from Xanthomonas campestris in the Pr state bound to BV chromophore 5UYR ; 3.45 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP mutant D199A from Xanthomonas campestris 6NDO ; 3.58 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP mutant L193N from Xanthomonas campestris 6NDP ; 3.89 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP mutant L193Q from Xanthomonas campestris 7L59 ; 2.68 ; Crystal structure of the dark-adapted full-length bacteriophytochrome XccBphP-G454E variant from Xanthomonas campestris in the Pfr state 5H76 ; 2.6 ; Crystal structure of the DARPin-Protein A fusion protein 3UUS ; 5.65 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex 4ERM ; 3.95 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex at 4 Angstroms resolution 5CNU ; 3.4 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex bound to ADP and dGTP at 3.40 Angstroms resolution 5CNS ; 2.975 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex bound to CDP and dATP at 2.97 Angstroms resolution 5CNV ; 3.2 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex bound to GDP and TTP at 3.20 Angstroms resolution 5CNT ; 3.25 ; Crystal structure of the dATP inhibited E. coli class Ia ribonucleotide reductase complex bound to UDP and dATP at 3.25 Angstroms resolution 2NLM ; 2.05 ; Crystal structure of the DB 911- D(CGCGAATTCGCG)2 complex at 2.05 A resolution. 4AH1 ; 1.42 ; CRYSTAL STRUCTURE OF THE DB 921-D(CGCAAATTTGCG)2 COMPLEX AT 1.42 A RESOLUTION 4AH0 ; 1.2 ; CRYSTAL STRUCTURE OF THE DB 985-D(CGCAAATTTGCG)2 COMPLEX AT 1.20 A RESOLUTION 4AGZ ; 1.25 ; CRYSTAL STRUCTURE OF THE DB 985-D(CGCGAATTCGCG)2 COMPLEX AT 1.25 A RESOLUTION. 3OIE ; 1.9 ; Crystal structure of the DB1880-D(CGCGAATTCGCG)2 complex 3U0U ; 1.24 ; Crystal structure of the DB1883-D(CGCGAATTCGCG)2 complex at 1.24 A resolution 2I2I ; 1.63 ; Crystal structure of the DB293-D(CGCGAATTCGCG)2 complex. 2B0K ; 1.64 ; Crystal structure of the DB921-D(CGCGAATTCGCG)2 complex. 4HTO ; 2.8068 ; Crystal structure of the DBD domain of human DNA ligase IV Apo form 4HTP ; 2.2502 ; Crystal structure of the DBD domain of human DNA ligase IV bound to Artemis peptide 5MR7 ; 2.5 ; Crystal structure of the DBD domain of human Grhl2 1LB1 ; 2.81 ; Crystal Structure of the Dbl and Pleckstrin homology domains of Dbs in complex with RhoA 5N7E ; 1.647 ; Crystal structure of the Dbl-homology domain of Bcr-Abl in complex with monobody Mb(Bcr-DH_4). 3CML ; 1.9 ; Crystal Structure of the DBL3x domain of the Plasmodium falcipurum VAR2CSA protein 4P1T ; 2.9 ; Crystal structure of the DBL3X-DBL4epsilon double domain from the extracellular part of VAR2CSA PfEMP1 from Plasmodium falciparum 8BW8 ; 2.1 ; Crystal structure of the dCNK-SAM-CRIC-PDZ/dHYP-SAM complex 1W79 ; 1.8 ; Crystal structure of the DD-transpeptidase-carboxypeptidase from Actinomadura R39 1W8Q ; 2.85 ; Crystal Structure of the DD-Transpeptidase-carboxypeptidase from Actinomadura R39 2B5N ; 2.8 ; Crystal Structure of the DDB1 BPB Domain 2HYE ; 3.1 ; Crystal Structure of the DDB1-Cul4A-Rbx1-SV5V Complex 2WUH ; 1.6 ; Crystal structure of the DDR2 discoidin domain bound to a triple- helical collagen peptide 5GVR ; 1.5 ; Crystal structure of the DDX41 DEAD domain in an apo closed form 5GVS ; 2.2 ; Crystal structure of the DDX41 DEAD domain in an apo open form 5H1Y ; 2.26 ; Crystal structure of the DDX41 DEAD domain in complex with SO42- and Mg2+ 7RDH ; 2.75 ; Crystal structure of the de novo designed binding protein H3mb in complex with the 1968 influenza A virus hemagglutinin 3R2X ; 3.1 ; Crystal structure of the de novo designed binding protein HB36.3 in complex the the 1918 influenza virus hemagglutinin 4G4M ; 1.48 ; Crystal structure of the de novo designed fluorinated peptide alpha4F3(6-13) 3TWF ; 1.54 ; Crystal structure of the de novo designed fluorinated peptide alpha4F3a 3TWG ; 1.72 ; Crystal structure of the de novo designed fluorinated peptide alpha4F3af3d 4G3B ; 1.19 ; Crystal structure of the de novo designed fluorinated peptide alpha4F3d 3TWE ; 1.36 ; Crystal Structure of the de novo designed peptide alpha4H 4G4L ; 1.54 ; Crystal structure of the de novo designed peptide alpha4tbA6 7AH0 ; 1.91 ; Crystal structure of the de novo designed two-heme binding protein, 4D2 5JG9 ; 2.09 ; Crystal structure of the de novo mini protein gEHEE_06 5LNB ; 2.3 ; Crystal structure of the de-sumoylating protease 7LJK ; 1.81 ; Crystal structure of the deacylation deficient KPC-2 F72Y mutant 1S2M ; 2.1 ; Crystal Structure of the DEAD box protein Dhh1p 5ZBZ ; 1.3086 ; Crystal structure of the DEAD domain of Human eIF4A with sanguinarine 3BOR ; 1.85 ; Crystal structure of the DEADc domain of human translation initiation factor 4A-2 6ZM2 ; 2.1 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with ADP-BeF3 and ssRNA 6RM8 ; 1.95 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with Spp2 and ADP 6RM9 ; 1.85 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with Spp2 and ADP 6RMA ; 2.1 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with Spp2 and ADP 6RMB ; 2.5 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with Spp2 and ADP 6RMC ; 2.6 ; Crystal structure of the DEAH-box ATPase Prp2 in complex with Spp2 and ADP 6FA9 ; 2.6 ; CRYSTAL STRUCTURE OF THE DEAH-BOX HELICASE PRP2 6FA5 ; 2.303 ; CRYSTAL STRUCTURE OF THE DEAH-BOX HELICASE PRP2 IN COMPLEX WITH ADP 6FAA ; 1.97 ; CRYSTAL STRUCTURE OF THE DEAH-BOX HELICASE PRP2 IN COMPLEX WITH ADP 6FAC ; 2.05 ; CRYSTAL STRUCTURE OF THE DEAH-BOX HELICASE PRP2 IN COMPLEX WITH ADP 5YM9 ; 2.5 ; Crystal Structure of the Deamidase from Legionella pneumophila 3F5U ; 2.0 ; Crystal structure of the death associated protein kinase in complex with AMPPNP and Mg2+ 6OHI ; 2.27 ; Crystal Structure of the Debrominase Bmp8 (Apo) 6OHJ ; 3.19 ; Crystal Structure of the Debrominase Bmp8 C82A in Complex with 2,3,4-tribromopyrrole 3HQE ; 2.94 ; Crystal Structure of the decamer CGGGCGCCCG forming a Holliday junction 3TCI ; 2.421 ; Crystal structure of the decameric sequence d(CGGGCGCCCG) as Z type duplex 5MZW ; 1.52 ; Crystal structure of the decarboxylase AibA/AibB 5N00 ; 1.9 ; Crystal structure of the decarboxylase AibA/AibB C56A variant 5N01 ; 1.95 ; Crystal structure of the decarboxylase AibA/AibB C56N variant 5N02 ; 1.9 ; Crystal structure of the decarboxylase AibA/AibB C56S variant 5N03 ; 2.1 ; Crystal structure of the decarboxylase AibA/AibB C56V variant 5MZZ ; 2.3 ; Crystal structure of the decarboxylase AibA/AibB in complex with 3-methylglutaconate 5MZX ; 2.0 ; Crystal structure of the decarboxylase AibA/AibB in complex with 4'-diphospho pantetheine 5MZY ; 1.6 ; Crystal structure of the decarboxylase AibA/AibB in complex with a possible transition state analog 8PNK ; 2.2 ; Crystal structure of the Ded1p RecA1 domain 3UM9 ; 2.19 ; Crystal Structure of the Defluorinating L-2-Haloacid Dehalogenase Bpro0530 3UMG ; 2.25 ; Crystal Structure of the Defluorinating L-2-Haloacid Dehalogenase Rha0230 2DTS ; 2.2 ; Crystal Structure of the Defucosylated Fc Fragment from Human Immunoglobulin G1 3DJD ; 1.75 ; Crystal structure of the deglycating enzyme fructosamine oxidase from Aspergillus fumigatus (Amadoriase II) 3DJE ; 1.6 ; Crystal structure of the deglycating enzyme fructosamine oxidase from Aspergillus fumigatus (Amadoriase II) in complex with FSA 3OTP ; 3.76 ; Crystal structure of the DegP dodecamer with a model substrate 6JJK ; 3.6 ; Crystal structure of the DegP dodecamer with a modulator 6JJL ; 4.2 ; Crystal structure of the DegP dodecamer with a modulator 6JJO ; 4.157 ; Crystal structure of the DegP dodecamer with a modulator 2R3Y ; 2.5 ; Crystal structure of the DegS protease in complex with the YWF activating peptide 1SOT ; 2.3 ; Crystal Structure of the DegS stress sensor 4LN9 ; 1.82 ; Crystal structure of the dehydratase domain from the terminal module of the rifamycin polyketide synthase 5HST ; 2.1 ; Crystal structure of the dehydratase domain of MlnB from Bacillus amyloliquefaciens 5IL5 ; 2.91 ; Crystal structure of the dehydratase domain of MlnD from Bacillus amyloliquefaciens 5IL6 ; 1.9 ; Crystal structure of the dehydratase domain of RzxB from Pseudomonas fluorescens 3K6J ; 2.2 ; Crystal structure of the dehydrogenase part of multifuctional enzyme 1 from C.elegans 5OJG ; 1.9 ; Crystal structure of the dehydrogenase/reductase SDR family member 4 (DHRS4) from Caenorhabditis elegans 5OJI ; 1.6 ; Crystal structure of the dehydrogenase/reductase SDR family member 4 (DHRS4) from Caenorhabditis elegans 6C3I ; 2.95013 ; Crystal structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter G45R mutant in an inward occluded state 6D91 ; 2.356 ; Crystal structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter in the outward-open, apo conformation 1A5T ; 2.2 ; CRYSTAL STRUCTURE OF THE DELTA PRIME SUBUNIT OF THE CLAMP-LOADER COMPLEX OF ESCHERICHIA COLI DNA POLYMERASE III 5ZWP ; 1.4 ; Crystal structure of the delta-class glutathione transferase from Musca domestica 4IDM ; 2.5 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis 4IDS ; 2.04 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis 4JDC ; 1.6 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis 4LEM ; 2.27 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis 4IHI ; 2.25 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis bound with NAD 4NS3 ; 2.38 ; Crystal structure of the Delta-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis bound with NAD and cobalamin 1FY8 ; 1.7 ; CRYSTAL STRUCTURE OF THE DELTAILE16VAL17 RAT ANIONIC TRYPSINOGEN-BPTI COMPLEX 1OK8 ; 2.0 ; Crystal structure of the dengue 2 virus envelope glycoprotein in the postfusion conformation 1OAN ; 2.75 ; Crystal structure of the dengue 2 virus envelope protein 1OKE ; 2.4 ; Crystal structure of the dengue 2 virus envelope protein in complex with n-octyl-beta-D-glucoside 1UZG ; 3.5 ; CRYSTAL STRUCTURE OF THE DENGUE TYPE 3 VIRUS ENVELOPE PROTEIN 2XBM ; 2.9 ; Crystal structure of the dengue virus methyltransferase bound to a 5'- capped octameric RNA 3UZQ ; 1.6 ; Crystal structure of the dengue virus serotype 1 envelope protein domain III in complex with the variable domains of Mab 4E11 3UZV ; 2.1 ; Crystal structure of the dengue virus serotype 2 envelope protein domain III in complex with the variable domains of Mab 4E11 3UZE ; 2.04 ; Crystal structure of the dengue virus serotype 3 envelope protein domain III in complex with the variable domains of Mab 4E11 3UYP ; 2.0 ; Crystal structure of the dengue virus serotype 4 envelope protein domain III in complex with the variable domains of Mab 4E11 6MS4 ; 2.001 ; Crystal structure of the DENR-MCT-1 complex 3WCO ; 2.4 ; Crystal structure of the depentamerized mutant of N-terminal truncated selenocysteine synthase SelA 3WCN ; 3.35 ; Crystal structure of the depentamerized mutant of selenocysteine synthase SelA 4JN9 ; 1.9 ; Crystal structure of the DepH 4JNA ; 2.0 ; Crystal structure of the DepH complex with dimethyl-FK228 3VW0 ; 2.6 ; Crystal Structure of The Dequalinum-bound Form of RamR (Transcriptional Regulator of TetR Family) From Salmonella Typhimurium 3WRA ; 2.1 ; Crystal structure of the desB-Gallate complex exposed to Aerobic Atomosphere 6Z3X ; 1.74 ; Crystal structure of the designed antibody DesAb-anti-HSA-P1 4EEF ; 2.704 ; Crystal structure of the designed inhibitor protein F-HB80.4 in complex with the 1918 influenza virus hemagglutinin. 6CSO ; 3.2 ; Crystal structure of the designed light-gated anion channel iC++ at pH6.5 6CSN ; 2.9 ; Crystal structure of the designed light-gated anion channel iC++ at pH8.5 6N4N ; 2.29 ; Crystal structure of the designed protein DNCR2/danoprevir/NS3a complex 7SSJ ; 2.52 ; Crystal structure of the DesK-DesR complex in the phosphatase state 5IUK ; 2.9 ; Crystal structure of the DesK-DesR complex in the phosphotransfer state with high Mg2+ (150 mM) 5IUL ; 3.153 ; Crystal structure of the DesK-DesR complex in the phosphotransfer state with high Mg2+ (150 mM) and BeF3 5IUJ ; 3.2 ; Crystal structure of the DesK-DesR complex in the phosphotransfer state with low Mg2+ (20 mM) 7SSI ; 3.41 ; CRYSTAL STRUCTURE OF THE DESK:DESR-Q10A COMPLEX IN THE PHOSPHOTRANSFER STATE 3ME1 ; 3.862 ; Crystal Structure of the Desulfovibro vulgaris Urea Transporter in the P3(1) Space Group at 3.86 6UPS ; 2.0 ; Crystal structure of the deubiquitylase domain from the Orientia tsutsugamushi protein OTT_1962 (OtDUB) 3LE4 ; 1.701 ; Crystal structure of the DGCR8 dimerization domain 4ZWE ; 2.81 ; Crystal structure of the dGTP-bound catalytic core of SAMHD1 T592V mutant 3MPX ; 2.8 ; Crystal structure of the DH and PH-1 domains of human FGD5 4GYV ; 2.9 ; Crystal structure of the DH domain of FARP2 1XD4 ; 3.64 ; Crystal structure of the DH-PH-cat module of Son of Sevenless (SOS) 4H6Y ; 4.09 ; Crystal structure of the DH-PH-PH domain of FARP1 4GZU ; 3.2 ; Crystal structure of the DH-PH-PH domain of FARP2 1TXD ; 2.13 ; Crystal Structure of the DH/PH domains of Leukemia-associated RhoGEF 1X86 ; 3.22 ; Crystal Structure of the DH/PH domains of Leukemia-associated RhoGEF in complex with RhoA 3ODO ; 2.9 ; Crystal Structure of the DH/PH Domains of p115-RhoGEF 3P6A ; 2.5 ; Crystal Structure of the DH/PH domains of p115-RhoGEF (R399E mutant) 1RJ2 ; 3.0 ; Crystal structure of the DH/PH fragment of Dbs without bound GTPase 1KZ7 ; 2.4 ; Crystal Structure of the DH/PH Fragment of Murine Dbs in Complex with the Placental Isoform of Human Cdc42 3T06 ; 2.84 ; Crystal Structure of the DH/PH fragment of PDZRHOGEF with N-terminal regulatory elements in complex with Human RhoA 5UIX ; 2.501 ; Crystal Structure of the DH576 CD4bs Fab (unliganded) from the RV305 HIV Vaccine Trial 8I5F ; 2.8 ; Crystal structure of the DHR-2 domain of DOCK10 in complex with Cdc42 (T17N mutant) 8I5W ; 2.432 ; Crystal structure of the DHR-2 domain of DOCK10 in complex with Rac1 3B13 ; 3.006 ; Crystal structure of the DHR-2 domain of DOCK2 in complex with Rac1 (T17N mutant) 6AJ4 ; 3.256 ; Crystal structure of the DHR-2 domain of DOCK7 in complex with Cdc42 3VHL ; 2.085 ; Crystal structure of the DHR-2 domain of DOCK8 in complex with Cdc42 (T17N mutant) 6TKY ; 2.55 ; Crystal structure of the DHR2 domain of DOCK10 in complex with CDC42 6TKZ ; 2.64 ; Crystal structure of the DHR2 domain of DOCK10 in complex with CDC42 6TM1 ; 3.71 ; Crystal structure of the DHR2 domain of DOCK10 in complex with RAC3 4XRW ; 1.79 ; Crystal structure of the di-domain ARO/CYC BexL from the BE-7585A biosynthetic pathway 4XRT ; 1.952 ; Crystal structure of the di-domain ARO/CYC StfQ from the steffimycin biosynthetic pathway 2C1V ; 1.2 ; CRYSTAL STRUCTURE OF THE DI-HAEM CYTOCHROME C PEROXIDASE FROM PARACOCCUS PANTOTROPHUS - Mixed VALENCE FORM 2C1U ; 1.95 ; CRYSTAL STRUCTURE OF THE DI-HAEM CYTOCHROME C PEROXIDASE FROM PARACOCCUS PANTOTROPHUS - OXIDISED FORM 1EB7 ; 2.4 ; Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa 2VHD ; 2.3 ; Crystal Structure Of The Di-Haem Cytochrome C Peroxidase From Pseudomonas aeruginosa - Mixed Valence Form 1GYO ; 1.2 ; Crystal structure of the di-tetraheme cytochrome c3 from Desulfovibrio gigas at 1.2 Angstrom resolution 3F9O ; 2.03 ; Crystal Structure of the Di-Zinc Carbapenemase CphA from Aeromonas Hydrophila 2WHG ; 1.9 ; Crystal Structure of the Di-Zinc Metallo-beta-lactamase VIM-4 from Pseudomonas aeruginosa 2DFJ ; 2.72 ; Crystal Structure of the Diadenosine Tetraphosphate Hydrolase from Shigella flexneri 2a 5HS8 ; 2.0 ; Crystal structure of the diamide-treated YodB from B. subtilis 7L5K ; 1.86 ; Crystal structure of the DiB-RM protein 7L5L ; 2.01 ; Crystal structure of the DiB-RM protein 7L5M ; 2.33 ; Crystal Structure of the DiB-RM-split Protein 4WYQ ; 3.2 ; Crystal structure of the Dicer-TRBP interface 4L7X ; 1.35 ; Crystal structure of the DIDO PHD finger in complex with H3K4me3 6YMN ; 2.05 ; Crystal structure of the Diels Alderase AbmU from Streptomyces koyangensis 1YKV ; 3.3 ; Crystal structure of the Diels-Alder ribozyme complexed with the product of the reaction between N-pentylmaleimide and covalently attached 9-hydroxymethylanthracene 4H54 ; 3.9 ; Crystal structure of the diguanylate cyclase DgcZ 6NX0 ; 1.54 ; Crystal structure of the diheme peroxidase BthA from Burkholderia thailandensis E264 6V59 ; 1.593 ; Crystal structure of the diheme peroxidase BthA Y463M variant from Burkholderia thailandensis E264 2F60 ; 1.55 ; Crystal Structure of the Dihydrolipoamide Dehydrogenase (E3)-Binding Domain of Human E3-Binding Protein 5YNZ ; 2.774 ; Crystal structure of the dihydroorotase domain (K1556A) of human CAD 4C6E ; 1.263 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 5.5 4C6D ; 1.298 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 6.0 4C6F ; 1.261 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 6.5 4C6I ; 1.35 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 7.0 4C6J ; 1.299 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 7.5 4C6K ; 1.478 ; Crystal structure of the dihydroorotase domain of human CAD bound to substrate at pH 8.0 4C6L ; 1.55 ; Crystal structure of the dihydroorotase domain of human CAD bound to the inhibitor fluoroorotate at pH 6.0 4C6M ; 1.62 ; Crystal structure of the dihydroorotase domain of human CAD bound to the inhibitor fluoroorotate at pH 7.0 4C6Q ; 1.659 ; Crystal structure of the dihydroorotase domain of human CAD C1613S mutant bound to substrate at pH 7.0 4C6O ; 1.65 ; Crystal structure of the dihydroorotase domain of human CAD C1613S mutant in apo-form at pH 6.0 4C6P ; 1.518 ; Crystal structure of the dihydroorotase domain of human CAD C1613S mutant in apo-form at pH 7.0 4C6N ; 1.899 ; Crystal structure of the dihydroorotase domain of human CAD E1637T mutant bound to substrate at pH 6.0 4BY3 ; 1.73 ; Crystal structure of the dihydroorotase domain of human CAD in apo- form obtained recombinantly from E. coli. 4C6C ; 1.451 ; Crystal structure of the dihydroorotase domain of human CAD in apo- form obtained recombinantly from HEK293 cells. 4C6B ; 1.656 ; Crystal structure of the dihydroorotase domain of human CAD with incomplete active site, obtained recombinantly from E. coli. 1UN9 ; 3.1 ; Crystal structure of the dihydroxyacetone kinase from C. freundii in complex with AMP-PNP and Mg2+ 1UOD ; 1.9 ; Crystal structure of the dihydroxyacetone kinase from E. coli in complex with dihydroxyacetone-phosphate 1UOE ; 2.0 ; Crystal structure of the dihydroxyacetone kinase from E. coli in complex with glyceraldehyde 1UN8 ; 2.5 ; Crystal structure of the dihydroxyacetone kinase of C. freundii (native form) 8H7A ; 1.92 ; Crystal structure of the dimer form KAT6A WH domain with its bound double stranded DNA 3GQ2 ; 2.18 ; Crystal Structure of the Dimer of the p115 Tether Globular Head Domain 7PU4 ; 1.69 ; Crystal structure of the dimer RBP-N and RBP-Trunc from Thermotoga maritima Ribose Binding Protein 5FEG ; 2.802 ; Crystal structure of the dimeric allergen profilin (Hev b 8) 3HNK ; 2.1 ; Crystal structure of the dimeric assembly of the cyt cb562 variant RIDC-1 2YH9 ; 1.8 ; Crystal structure of the dimeric BamE from E. coli 6MY5 ; 1.73 ; Crystal structure of the dimeric bH1-Fab variant [HC-Y33W,HC-D98F,HC-G99M,LC-S30bR] 6MXS ; 1.95 ; Crystal structure of the dimeric bH1-Fab variant [HC-Y33W,HC-D98F,HC-G99M] 6MY4 ; 1.69 ; Crystal structure of the dimeric bH1-Fab variant [HC-Y33W,HC-D98M,HC-G99M,LC-S30bR] 6MXR ; 2.04 ; Crystal structure of the dimeric bH1-Fab variant [HC-Y33W,HC-D98M,HC-G99M] 7XRC ; 1.89 ; Crystal Structure of the dimeric Brn2 (Pou3f2) POU domain bound to palindromic MORE DNA 7R3T ; 2.109 ; Crystal structure of the Dimeric C-terminal Big_2-CBM56 domains from Paenibacillus illinoisensis (Bacillus circulans IAM1165) beta-1,3-glucanase H 1IHR ; 1.55 ; Crystal structure of the dimeric C-terminal domain of TonB 4H22 ; 2.89 ; Crystal structure of the dimeric coiled-coil domain of the cytosolic nucleic acid sensor LRRFIP1 7V98 ; 2.35 ; Crystal Structure of the Dimeric EcHsp60 2Z9O ; 3.14 ; Crystal structure of the dimeric form of RepE in complex with the repE operator DNA 4JU5 ; 2.28 ; Crystal structure of the dimeric form of the bb' domains of human protein disulfide isomerase 5ZF6 ; 2.796 ; Crystal structure of the dimeric human PNPase 4AEQ ; 1.892 ; Crystal structure of the dimeric immunity protein Cmi solved by direct methods (Arcimboldo) 7PV1 ; 2.497 ; Crystal structure of the dimeric mitofilin domain of Mic60 in complex with the CHCH domain of Mic19 2XSD ; 2.049 ; Crystal Structure of the dimeric Oct-6 (Pou3f1) POU domain bound to palindromic MORE DNA 1XKU ; 2.15 ; Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan 2BNX ; 2.4 ; Crystal structure of the dimeric regulatory domain of mouse diaphaneous-related formin (DRF), mDia1 1RPY ; 2.3 ; CRYSTAL STRUCTURE OF THE DIMERIC SH2 DOMAIN OF APS 1N1C ; 2.4 ; Crystal Structure Of The Dimeric TorD Chaperone From Shewanella Massilia 1R3M ; 2.2 ; Crystal structure of the dimeric unswapped form of bovine seminal ribonuclease 4N3D ; 1.34 ; Crystal structure of the dimeric variant EGFP-K162Q in P61 space group 1ZV1 ; 1.6 ; Crystal structure of the dimerization domain of doublesex protein from D. melanogaster 6RNQ ; 1.95 ; Crystal structure of the dimerization domain of Gemin5 at 1.95 A 6RNS ; 2.69 ; Crystal structure of the dimerization domain of Gemin5 at 2.7 A 4J8C ; 1.1 ; Crystal structure of the dimerization domain of Hsc70-interacting protein 1UFI ; 1.65 ; Crystal structure of the dimerization domain of human CENP-B 3CNK ; 1.65 ; Crystal Structure of the dimerization domain of human filamin A 4E1P ; 1.728 ; Crystal structure of the dimerization domain of Lsr2 from Mycobacterium tuberculosis in the P 1 21 1 space group 4E1R ; 2.041 ; Crystal structure of the dimerization domain of Lsr2 from Mycobacterium tuberculosis in the P 31 2 1 space group 4ZMK ; 1.5 ; Crystal structure of the dimerization domain of S. pombe Taz1 7EQB ; 2.103 ; Crystal structure of the dimerization domain of ZEN-4 3JV4 ; 3.15 ; Crystal structure of the dimerization domains p50 and RelB 3JV6 ; 2.78 ; Crystal structure of the dimerization domains p52 and RelB 3JV5 ; 2.65 ; Crystal structure of the dimerization domains p52 homodimer 2D2Q ; 2.8 ; Crystal structure of the dimerized radixin FERM domain 3I4Z ; 1.76 ; Crystal structure of the dimethylallyl tryptophan synthase FgaPT2 from Aspergillus fumigatus 3I4X ; 2.1 ; Crystal structure of the dimethylallyl tryptophan synthase FgaPT2 from Aspergillus fumigatus in complex with Trp and DMSPP 3RHY ; 2.18 ; Crystal structure of the dimethylarginine dimethylaminohydrolase adduct with 4-chloro-2-hydroxymethylpyridine 6DGE ; 1.91 ; Crystal structure of the dimethylarginine dimethylaminohydrolase adduct with N5-(1-imino-2-chloroethyl)-L-lysine 3BPB ; 2.81 ; Crystal structure of the dimethylarginine dimethylaminohydrolase H162G adduct with S-methyl-L-thiocitrulline 5TG0 ; 1.44 ; Crystal structure of the dimethylsulfoniopropionate (DMSP) lyase DddK complexed with iron and zinc 5TFZ ; 2.2 ; Crystal structure of the dimethylsulfoniopropionate (DMSP) lyase DddK complexed with nickel and diacrylate 2WOC ; 2.2 ; Crystal Structure of the dinitrogenase reductase-activating glycohydrolase (DRAG) from Rhodospirillum rubrum 2WOD ; 2.25 ; Crystal Structure of the dinitrogenase reductase-activating glycohydrolase (DRAG) from Rhodospirillum rubrum in complex with ADP- ribsoyllysine 1EGV ; 1.75 ; CRYSTAL STRUCTURE OF THE DIOL DEHYDRATASE-ADENINYLPENTYLCOBALAMIN COMPLEX FROM KLEBSELLA OXYTOCA UNDER THE ILLUMINATED CONDITION. 1EEX ; 1.7 ; CRYSTAL STRUCTURE OF THE DIOL DEHYDRATASE-ADENINYLPENTYLCOBALAMIN COMPLEX FROM KLEBSIELLA OXYTOCA 1V8X ; 1.85 ; Crystal Structure of the Dioxygen-bound Heme Oxygenase from Corynebacterium diphtheriae 8JKK ; 2.3 ; Crystal Structure of the dioxygenase CcTet from Coprinopsis cinerea bound to 12bp 5-methylcytosine (5mC) containing duplex DNA 7W5P ; 2.3 ; Crystal Structure of the dioxygenase CcTet from Coprinopsis cinereain bound to 12bp N6-methyldeoxyadenine (6mA) containing duplex DNA 7VPN ; 2.6 ; Crystal Structure of the dioxygenase CcTet from Coprinopsis cinereain in complex with Mn(II) and N-Oxalylglycine 3LMM ; 3.0 ; Crystal Structure of the DIP2311 protein from Corynebacterium diphtheriae, Northeast Structural Genomics Consortium Target CdR35 3MCU ; 2.303 ; Crystal structure of the dipicolinate synthase chain B from Bacillus cereus. Northeast Structural Genomics Consortium Target BcR215. 1NTV ; 1.5 ; Crystal Structure of the Disabled-1 (Dab1) PTB domain-ApoER2 peptide complex 6O5O ; 1.75 ; Crystal Structure of the Disabled-2 (Dab2) Dab Homology Domain in Complex with Peptide STA02 6OVF ; 1.95 ; Crystal Structure of the Disabled-2 (Dab2) Dab Homology Domain in Complex with Peptide STA03 1ZGP ; 1.9 ; Crystal Structure of the Discosoma Red Fluorescent Protein (DsRed) Variant K70M 1ZGQ ; 1.9 ; Crystal Structure of the Discosoma Red Fluorescent Protein (DsRed) Variant Q66M 6I4P ; 1.6 ; Crystal structure of the disease-causing G194C mutant of the human dihydrolipoamide dehydrogenase 6I4U ; 1.84 ; Crystal structure of the disease-causing G426E mutant of the human dihydrolipoamide dehydrogenase 7PSC ; 2.436 ; Crystal structure of the disease-causing I358T mutant of the human dihydrolipoamide dehydrogenase 6I4T ; 1.823 ; Crystal structure of the disease-causing I445M mutant of the human dihydrolipoamide dehydrogenase 6I4Z ; 2.342 ; Crystal structure of the disease-causing P453L mutant of the human dihydrolipoamide dehydrogenase 6I4S ; 1.75 ; Crystal structure of the disease-causing R447G mutant of the human dihydrolipoamide dehydrogenase 6I4R ; 1.439 ; Crystal structure of the disease-causing R460G mutant of the human dihydrolipoamide dehydrogenase at 1.44 Angstrom resolution 7XCC ; 1.75 ; Crystal Structure of the Disease-Specific Protein of Rice Stripe Virus 7XCD ; 1.71 ; Crystal Structure of the Disease-Specific Protein of Rice Stripe Virus 1J2L ; 1.7 ; Crystal structure of the disintegrin, trimestatin 1V57 ; 2.0 ; Crystal Structure of the Disulfide Bond Isomerase DsbG 6TDR ; 1.75 ; Crystal structure of the disulfide engineered HLA-A0201 molecule devoid of peptide (annealed) 6TDP ; 1.4 ; Crystal structure of the disulfide engineered HLA-A0201 molecule in complex with one GL dipeptide in the A pocket. 6TDQ ; 1.6 ; Crystal structure of the disulfide engineered HLA-A0201 molecule in complex with one GM dipeptide in the A pocket and one GM dipeptide in the F pocket. 6TDO ; 1.65 ; Crystal structure of the disulfide engineered HLA-A0201 molecule in complex with one GM dipeptide in the A pocket. 6TDS ; 1.7 ; Crystal structure of the disulfide engineered HLA-A0201 molecule without peptide bound after NaCl wash 6XRJ ; 3.15 ; Crystal structure of the disulfide linked DH717.1 Fab dimer, derived from a macaque HIV-1 vaccine-induced Env glycan-reactive neutralizing antibody B cell lineage 4OCF ; 1.979 ; Crystal structure of the disulfide oxidoreductase DsbA (S30XXC33) active site mutant from Proteus mirabilis 4OCE ; 1.768 ; Crystal structure of the disulfide oxidoreductase DsbA from Proteus mirabilis 8AJJ ; 2.4 ; Crystal structure of the disulfide reductase MerA from Staphylococcus aureus 1VRS ; 2.85 ; Crystal structure of the disulfide-linked complex between the N-terminal and C-terminal domain of the electron transfer catalyst DsbD 1Z5Y ; 1.94 ; Crystal Structure Of The Disulfide-Linked Complex Between The N-Terminal Domain Of The Electron Transfer Catalyst DsbD and The Cytochrome c Biogenesis Protein CcmG 4UWQ ; 3.28 ; Crystal structure of the disulfide-linked complex of the thiosulfodyrolase SoxB with the carrier-protein SoxYZ from Thermus thermophilus 1EZL ; 2.0 ; CRYSTAL STRUCTURE OF THE DISULPHIDE BOND-DEFICIENT AZURIN MUTANT C3A/C26A: HOW IMPORTANT IS THE S-S BOND FOR FOLDING AND STABILITY? 4DVD ; 3.0 ; Crystal structure of the disulphide linked knotted homodimer of Psu 3KUQ ; 2.3 ; Crystal structure of the DLC1 RhoGAP domain 2NO2 ; 2.8 ; Crystal structure of the DLLRKN-containing coiled-coil domain of Huntingtin-interacting protein 1 4YJ0 ; 3.814 ; Crystal structure of the DM domain of human DMRT1 bound to 25mer target DNA 3DX9 ; 2.75 ; Crystal Structure of the DM1 TCR at 2.75A 3DXA ; 3.5 ; Crystal Structure of the DM1 TCR in complex with HLA-B*4405 and decamer EBV antigen 3CSP ; 1.7 ; Crystal structure of the DM2 mutant of myelin oligodendrocyte glycoprotein 6VGD ; 4.2 ; Crystal structure of the DNA binding domain (DBD) of human FLI1 and the complex of the DBD of human Runx2 with core binding factor beta (Cbfb), in complex with 16mer DNA CAGAGGATGTGGCTTC 4LDV ; 1.45 ; Crystal structure of the DNA binding domain of A. thailana auxin response factor 1 4LDX ; 2.9 ; Crystal structure of the DNA binding domain of arabidopsis thaliana auxin response factor 1 (ARF1) in complex with protomor-like sequence ER7 6YCQ ; 1.65 ; Crystal structure of the DNA binding domain of Arabidopsis thaliana Auxin Response Factor 1 (AtARF1) in complex with High Affinity DNA 4LDW ; 2.67 ; Crystal structure of the DNA Binding Domain of arabidopsis thaliana auxin response factor 1, P21 structure 4LDU ; 2.15 ; Crystal structure of the DNA binding domain of Arabidopsis thaliana auxin response factor 5 3RJP ; 1.5 ; Crystal structure of the DNA binding domain of CovR from Streptococcus pyogenes 4UHT ; 1.15 ; Crystal structure of the DNA binding domain of CpxR from E. coli 2FU4 ; 1.8 ; Crystal Structure of the DNA binding domain of E.coli FUR (Ferric Uptake Regulator) 6EXT ; 1.5 ; Crystal structure of the DNA binding domain of fission yeast Sap1 6EXU ; 1.409 ; Crystal structure of the DNA binding domain of fission yeast Sap1 3L2C ; 1.868 ; Crystal Structure of the DNA Binding Domain of FOXO4 Bound to DNA 2CMP ; 1.58 ; crystal structure of the DNA binding domain of G1P SMALL TERMINASE SUBUNIT from bacteriophage SF6 2XWC ; 1.82 ; Crystal structure of the DNA binding domain of human TP73 refined at 1.8 A resolution 7JSL ; 4.51 ; Crystal structure of the DNA binding domain of human transcription factor ERF in the oxidized form, in complex with double-stranded DNA ACCGGAAGTG 7JSA ; 2.85 ; Crystal structure of the DNA binding domain of human transcription factor ERF in the reduced form, in complex with double-stranded DNA ACCGGAAGTG 5E8G ; 2.7 ; Crystal structure of the DNA binding domain of human transcription factor FLI1 6VG2 ; 3.9 ; Crystal structure of the DNA binding domain of human transcription factor FLI1 in complex with 16-mer DNA CAGAGGATGTGGCTTC 5E8I ; 3.45 ; Crystal structure of the DNA binding domain of human transcription factor FLI1 in complex with a 10-mer DNA ACCGGAAGTG 1R71 ; 2.2 ; Crystal Structure of the DNA binding domain of KorB in complex with the operator DNA 6SDG ; 2.96 ; Crystal structure of the DNA binding domain of M. polymorpha Auxin Response Factor 2 (MpARF2) in complex with High Affinity DNA 8OJ1 ; 2.57 ; Crystal structure of the DNA binding domain of M. polymorpha Auxin Response Factor 2 (MpARF2) in complex with High Affinity DNA 5JDK ; 0.998 ; Crystal structure of the DNA binding domain of Sap1 in fission yeast S.pombe 6S6H ; 2.4 ; Crystal structure of the DNA binding domain of the chromosome-partitioning protein ParB complexed to the centromeric parS site 4LDY ; 2.3 ; Crystal structure of the DNA binding domain of the G245A mutant of arabidopsis thaliana auxin reponse factor 1 2HTS ; 1.83 ; CRYSTAL STRUCTURE OF THE DNA BINDING DOMAIN OF THE HEAT SHOCK TRANSCRIPTION FACTOR 5JVT ; 3.1 ; Crystal structure of the DNA binding domain of transcription factor FLI1 in complex with an 11-mer DNA GACCGGAAGTG 6VG8 ; 4.31 ; Crystal structure of the DNA binding domains of human FLI1 and Runx2 in complex with 16-mer DNA CAGAGGATGTGGCTTC 6VGG ; 4.31 ; Crystal structure of the DNA binding domains of human transcription factor ERG, human Runx2 bound to core binding factor beta (Cbfb), and mithramycin, in complex with 16mer DNA CAGAGGATGTGGCTTC 6VGE ; 4.25 ; Crystal structure of the DNA binding domains of human transcription factor ERG, human Runx2 bound to core binding factor beta (Cbfb), in complex with 16mer DNA CAGAGGATGTGGCTTC 4WT0 ; 1.8 ; Crystal structure of the DNA binding domains of LiaRD191N from E. faecalis 4WSZ ; 1.769 ; Crystal structure of the DNA binding domains of wild type LiaR from E. faecalis 2YPR ; 2.64 ; Crystal structure of the DNA binding ETS domain of human protein FEV 3ZP5 ; 2.0 ; Crystal structure of the DNA binding ETS domain of the human protein FEV in complex with DNA 6K2J ; 2.4 ; Crystal Structure of the DNA Complex of C. crescentus GapR 238D ; 2.0 ; CRYSTAL STRUCTURE OF THE DNA DECAMER D(AGG(BR)CATGCCT): COMPARISON WITH D(AGGCATGCCT) AND IMPLICATIONS FOR COBALT HEXAMMINE BINDING TO DNA 261D ; 2.4 ; CRYSTAL STRUCTURE OF THE DNA DECAMER D(CGCAATTGCG) COMPLEXED WITH THE MINOR GROOVE BINDING DRUG NETROPSIN 3VJZ ; 1.8 ; Crystal structure of the DNA mimic protein DMP19 1BGT ; 2.2 ; CRYSTAL STRUCTURE OF THE DNA MODIFYING ENZYME BETA-GLUCOSYLTRANSFERASE IN THE PRESENCE AND ABSENCE OF THE SUBSTRATE URIDINE DIPHOSPHOGLUCOSE 1BGU ; 2.2 ; CRYSTAL STRUCTURE OF THE DNA MODIFYING ENZYME BETA-GLUCOSYLTRANSFERASE IN THE PRESENCE AND ABSENCE OF THE SUBSTRATE URIDINE DIPHOSPHOGLUCOSE 2BGT ; 2.2 ; CRYSTAL STRUCTURE OF THE DNA MODIFYING ENZYME BETA-GLUCOSYLTRANSFERASE IN THE PRESENCE AND ABSENCE OF THE SUBSTRATE URIDINE DIPHOSPHOGLUCOSE 2BGU ; 2.2 ; CRYSTAL STRUCTURE OF THE DNA MODIFYING ENZYME BETA-GLUCOSYLTRANSFERASE IN THE PRESENCE AND ABSENCE OF THE SUBSTRATE URIDINE DIPHOSPHOGLUCOSE 1C4O ; 1.5 ; CRYSTAL STRUCTURE OF THE DNA NUCLEOTIDE EXCISION REPAIR ENZYME UVRB FROM THERMUS THERMOPHILUS 6AP4 ; 2.95 ; Crystal structure of the DNA polymerase III subunit beta from Acinetobacter baumannii 6AMQ ; 2.67 ; Crystal structure of the DNA polymerase III subunit beta from Enterobacter cloacae 6AMS ; 2.39 ; Crystal structure of the DNA polymerase III subunit beta from Pseudomonas aeruginosa 5IIO ; 2.08 ; Crystal structure of the DNA polymerase lambda binary complex 7UI4 ; 2.51 ; Crystal structure of the DNA preQ0 insertase DpdA 2OQ4 ; 2.6 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli (E2Q) in complex with AP-site containing DNA substrate 6FBU ; 2.0 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli (E2Q) in complex with AP-site containing DNA substrate 2OPF ; 1.85 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli (R252A) in complex with AP-site containing DNA substrate 2EA0 ; 1.4 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli in complex with AP-site containing DNA substrate 1Q3C ; 2.3 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli: The E2A mutant at 2.3 resolution. 1Q3B ; 2.05 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli: The R252A mutant at 2.05 resolution. 1Q39 ; 2.8 ; Crystal structure of the DNA repair enzyme endonuclease-VIII (Nei) from E. coli: The WT enzyme at 2.8 resolution. 2J6V ; 1.55 ; Crystal structure of the DNA repair enzyme UV Damage Endonuclease 1D9X ; 2.6 ; CRYSTAL STRUCTURE OF THE DNA REPAIR PROTEIN UVRB 1D9Z ; 3.15 ; CRYSTAL STRUCTURE OF THE DNA REPAIR PROTEIN UVRB IN COMPLEX WITH ATP 1T5L ; 2.6 ; Crystal structure of the DNA repair protein UvrB point mutant Y96A revealing a novel fold for domain 2 3W6V ; 2.95 ; Crystal structure of the DNA-binding domain of AdpA, the global transcriptional factor, in complex with a target DNA 7CX5 ; 1.07 ; Crystal structure of the DNA-binding domain of Bacillus subtilis CssR 2EWT ; 1.81 ; Crystal structure of the DNA-binding domain of BldD 3VW4 ; 2.7 ; Crystal structure of the DNA-binding domain of ColE2-P9 Rep in complex with the replication origin 3V6P ; 2.401 ; Crystal structure of the DNA-binding domain of dHax3, a TAL effector 6K5X ; 2.086 ; Crystal Structure of the DNA-Binding Domain of GapR 4B4C ; 1.62 ; Crystal structure of the DNA-binding domain of human CHD1. 4BNC ; 2.9 ; Crystal structure of the DNA-binding domain of human ETV1 complexed with DNA 4AVP ; 1.82 ; Crystal structure of the DNA-binding domain of human ETV1. 5YHU ; 1.85 ; Crystal structure of the DNA-binding domain of human myelin-gene regulatory factor 5ZHU ; 2.202 ; Crystal structure of the DNA-binding domain of human myelin-gene regulatory factor 2XWR ; 1.68 ; Crystal structure of the DNA-binding domain of human p53 with extended N terminus 6LAE ; 2.81 ; Crystal structure of the DNA-binding domain of human XPA in complex with DNA 1I3J ; 2.2 ; CRYSTAL STRUCTURE OF THE DNA-BINDING DOMAIN OF INTRON ENDONUCLEASE I-TEVI WITH ITS SUBSTRATE 1T2T ; 2.5 ; Crystal structure of the DNA-binding domain of intron endonuclease I-TevI with operator site 1HF0 ; 2.7 ; Crystal structure of the DNA-binding domain of Oct-1 bound to DNA as a dimer 2PMU ; 1.779 ; Crystal structure of the DNA-binding domain of PhoP 1R9W ; 1.8 ; Crystal Structure of the DNA-binding domain of the human papillomavirus type 18 (HPV-18) replication initiation protein E1 7TRV ; 1.8 ; Crystal Structure of the DNA-Binding Domain of the LysR family Transcriptional Regulator YfbA from Yersinia pestis 6Y93 ; 2.23 ; Crystal structure of the DNA-binding domain of the Nucleoid Occlusion Factor (Noc) complexed to the Noc-binding site (NBS) 1F08 ; 1.9 ; CRYSTAL STRUCTURE OF THE DNA-BINDING DOMAIN OF THE REPLICATION INITIATION PROTEIN E1 FROM PAPILLOMAVIRUS 4QWQ ; 2.501 ; Crystal structure of the DNA-binding domain of the response regulator SaeR from Staphylococcus aureus 7E92 ; 1.8 ; Crystal structure of the DNA-binding domain of the response regulator VbrR from Vibrio parahaemolyticus 1J75 ; 1.85 ; Crystal Structure of the DNA-Binding Domain Zalpha of DLM-1 Bound to Z-DNA 4U0Y ; 1.91 ; Crystal structure of the DNA-binding domains of YvoA in complex with palindromic operator DNA 7QVB ; 2.5 ; Crystal structure of the DNA-binding protein DdrC from Deinococcus radiodurans 7BM2 ; 2.29 ; Crystal structure of the DNA-binding protein RemA from Geobacillus thermodenitrificans 1R7J ; 1.47 ; Crystal structure of the DNA-binding protein Sso10a from Sulfolobus solfataricus 8B6E ; 1.2 ; crystal structure of the DNA-binding short chromatophore-targeted protein sCTP-23166 from Paulinella chromatophora 7L6L ; 1.75 ; Crystal Structure of the DNA-binding Transcriptional Repressor DeoR from Escherichia coli str. K-12 3V6T ; 1.85 ; Crystal structure of the DNA-bound dHax3, a TAL effector, at 1.85 angstrom 6CFN ; 2.5 ; Crystal Structure of the DNA-free Glucocorticoid Receptor DNA Binding Domain 2VYF ; 3.6 ; Crystal Structure of the DnaC 3EC2 ; 2.7 ; Crystal structure of the DnaC helicase loader 3ECC ; 2.7 ; Crystal structure of the DnaC helicase loader in complex with ADP-BeF3 2VYE ; 4.1 ; Crystal Structure of the DnaC-ssDNA complex 2W58 ; 2.5 ; Crystal Structure of the DnaI 4R5J ; 2.361 ; Crystal structure of the DnaK C-terminus (Dnak-SBD-A) 4R5K ; 1.7469 ; Crystal structure of the DnaK C-terminus (Dnak-SBD-B) 4R5L ; 2.9701 ; Crystal structure of the DnaK C-terminus (Dnak-SBD-C) 4R5G ; 3.4501 ; Crystal structure of the DnaK C-terminus with the inhibitor PET-16 4R5I ; 1.9702 ; Crystal structure of the DnaK C-terminus with the substrate peptide NRLLLTG 3A1A ; 2.3 ; Crystal Structure of the DNMT3A ADD domain 8BA5 ; 1.45 ; Crystal structure of the DNMT3A ADD domain 3A1B ; 2.292 ; Crystal structure of the DNMT3A ADD domain in complex with histone H3 7W1F ; 2.9 ; Crystal structure of the dNTP triphosphohydrolase PA1124 from Pseudomonas aeruginosa 7CLX ; 1.5 ; Crystal structure of the DOCK8 DHR-1 domain 2CHP ; 2.0 ; Crystal structure of the dodecameric ferritin MrgA from B. subtilis 168 7DRU ; 2.5 ; Crystal Structure of the Dog Lipocalin Allergen Can f 1 3L4R ; 1.45 ; Crystal structure of the dog lipocalin allergen Can f 2 and implications for cross-reactivity to the cat allergen Fel d 4 5X7Y ; 2.35 ; Crystal Structure of the Dog Lipocalin Allergen Can f 6 6FKR ; 3.2 ; Crystal structure of the dolphin proline-rich antimicrobial peptide Tur1A bound to the Thermus thermophilus 70S ribosome 2R6H ; 2.95 ; Crystal structure of the domain comprising the NAD binding and the FAD binding regions of the NADH:ubiquinone oxidoreductase, Na translocating, F subunit from Porphyromonas gingivalis 2P7J ; 2.25 ; Crystal structure of the domain of putative sensory box/GGDEF family protein from Vibrio parahaemolyticus 4YMR ; 2.4 ; Crystal structure of the domain swapped PXB/TPR domain of mouse SNX21 3OP8 ; 1.9 ; Crystal structure of the domain V from beta2-glycoprotein I 6JSD ; 2.042 ; Crystal structure of the domain-swapped dimer H434A variant of the C-terminal domain of HtaA from Corynebacterium glutamicum 4ZR2 ; 1.8024 ; Crystal Structure of the Domain-Swapped Dimer K40L:Q108K:Y60W mutant of Human Cellular Retinol Binding Protein II 4ZH9 ; 2.66 ; Crystal Structure of the Domain-Swapped Dimer Wild-Type of Human Cellular Retinol Binding Protein II 4ZH6 ; 1.5497 ; Crystal Structure of the Domain-Swapped Dimer Y60L mutant of Human Cellular Retinol Binding Protein II 6SIB ; 1.9 ; Crystal structure of the domain-swapped N-lobe dimer of drosophila Arc 2 7D7X ; 2.631 ; Crystal Structure of the Domain1 of NAD+ Riboswitch with adenosine diphosphate (ADP) 7D7Y ; 2.8 ; Crystal Structure of the Domain1 of NAD+ Riboswitch with adenosine triphosphate (ATP) 7D7W ; 2.391 ; Crystal Structure of the Domain1 of NAD+ Riboswitch with nicotinamide adenine dinucleotide (NAD+) 7D7V ; 2.8 ; Crystal Structure of the Domain1 of NAD+ Riboswitch with nicotinamide adenine dinucleotide (NAD+) and U1A protein 7D7Z ; 2.6 ; Crystal Structure of the Domain1 of NAD+ Riboswitch with nicotinamide adenine dinucleotide (NAD+), soaked in Mn2+ 7D81 ; 2.1 ; Crystal Structure of the Domain2 of NAD+ Riboswitch with nicotinamide adenine dinucleotide (NAD+) 7D82 ; 2.489 ; Crystal Structure of the Domain2 of NAD+ Riboswitch with nicotinamide adenine dinucleotide (NAD+), soaked in Mn2+ 3LO5 ; 2.568 ; Crystal Structure of the dominant negative S17N mutant of Ras 1EQF ; 2.1 ; CRYSTAL STRUCTURE OF THE DOUBLE BROMODOMAIN MODULE FROM HUMAN TAFII250 6U81 ; 2.34 ; Crystal Structure of the Double Homeodomain of DUX4 in Complex with a DNA aptamer 6U82 ; 3.21 ; Crystal Structure of the Double Homeodomain of DUX4 in Complex with a DNA aptamer containing bulge and loop 6E8C ; 2.12 ; Crystal structure of the double homeodomain of DUX4 in complex with DNA 5NAV ; 2.3 ; Crystal structure of the double mutant (Cys211Ser/Cys292Ser) 6-phospho-b-D-glucosidase from Lactobacillus plantarum 6DD3 ; 1.98 ; Crystal structure of the double mutant (D52N/D407A) of NT5C2-537X in the active state 6DDY ; 1.803 ; Crystal structure of the double mutant (D52N/K359Q) of NT5C2-537X in the active state, Northeast Structural Genomics Target 6DDX ; 2.901 ; Crystal structure of the double mutant (D52N/L375F) of NT5C2-537X in the active state, Northeast Structural Genomics Target 6DE2 ; 2.1 ; Crystal structure of the double mutant (D52N/L375F) of the full-length NT5C2 in the active state 6DDZ ; 1.97 ; Crystal structure of the double mutant (D52N/R238W) of NT5C2-537X in the active state, Northeast Structural Genomics Target 6DDH ; 2.35 ; Crystal structure of the double mutant (D52N/R367Q) of NT5C2-537X in the active state, Northeast Structural Genomics Target 6DDB ; 2.8 ; Crystal structure of the double mutant (D52N/R367Q) of NT5C2-537X in the basal state, Northeast Structural Genomics Consortium Target 6DDK ; 2.5 ; Crystal structure of the double mutant (D52N/R367Q) of the full-length NT5C2 in the basal state 6DE3 ; 3.06 ; Crystal structure of the double mutant (R39Q/D52N) of the full-length NT5C2 in the active state 6DDQ ; 2.31 ; Crystal structure of the double mutant (R39Q/D52N) of the full-length NT5C2 in the basal state 4MJX ; 1.4 ; Crystal structure of the double mutant (S112A, H303A) of B.anthracis mycrocine immunity protein (MccF) 4JVO ; 1.3 ; Crystal structure of the double mutant (S112A, H303A) of B.anthracis mycrocine immunity protein (MccF) with alanyl sulfamoyl adenylates 4MI1 ; 1.4 ; Crystal structure of the double mutant (S112A, H303A) of B.anthracis mycrocine immunity protein (MccF) with aspartyl sulfamoyl adenylates 1GR7 ; 1.8 ; Crystal structure of the double mutant Cys3Ser/Ser100Pro from Pseudomonas Aeruginosa at 1.8 A resolution 3BQV ; 1.5 ; Crystal Structure of the double mutant D44A D45A Plastocyanin from Phormidium laminosum 3KOF ; 1.9 ; Crystal structure of the double mutant F178Y/R181E of E.coli transaldolase B 6Y2V ; 2.0 ; Crystal structure of the double mutant L13R I16K of Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) 6EFU ; 2.2 ; Crystal structure of the double mutant L167W / P172L of the beta-glucosidase from Trichoderma harzianum 5HPF ; 2.309 ; Crystal Structure of the Double Mutant of PobR Transcription Factor Inducer Binding Domain from Acinetobacter 5HPI ; 2.963 ; Crystal Structure of the Double Mutant of PobR Transcription Factor Inducer Binding Domain-3-Hydroxy Benzoic Acid complex from Acinetobacter 1XTM ; 1.6 ; Crystal structure of the double mutant Y88H-P104H of a SOD-like protein from Bacillus subtilis. 2C2J ; 2.05 ; Crystal Structure Of The Dps92 From Deinococcus Radiodurans 7U1Z ; 3.18 ; Crystal structure of the DRBD and CROPs of TcdA 7L4N ; 2.247 ; Crystal structure of the DRM2 (C397R)-CCG DNA complex 7L4F ; 2.55 ; Crystal structure of the DRM2-CAT DNA complex 7L4K ; 2.61 ; Crystal structure of the DRM2-CCG DNA complex 7L4M ; 2.805 ; Crystal structure of the DRM2-CCT DNA complex 8T1U ; 2.91 ; Crystal structure of the DRM2-CTA DNA complex 7L4H ; 2.56 ; Crystal structure of the DRM2-CTG DNA complex 7L4C ; 2.11 ; Crystal structure of the DRM2-CTT DNA complex 4LW3 ; 2.0 ; Crystal structure of the Drosophila beta1,4galactosyltransferase7 catalytic domain D211N single mutant enzyme complex with manganese and UDP-galactose 5EHS ; 1.749 ; Crystal structure of the Drosophila CG3822 KaiR1D ligand binding domain complex with D-AP5 5DTB ; 1.843 ; Crystal structure of the Drosophila CG3822 KaiR1D ligand binding domain complex with glutamate 5EHM ; 1.281 ; Crystal structure of the Drosophila CG3822 KaiR1D ligand binding domain complex with NMDA 3LTG ; 3.4 ; Crystal structure of the Drosophila Epidermal Growth Factor Receptor ectodomain complexed with a low affinity Spitz mutant 3LTF ; 3.2 ; Crystal Structure of the Drosophila Epidermal Growth Factor Receptor ectodomain in complex with Spitz 5DT6 ; 1.598 ; Crystal structure of the Drosophila GluR1A ligand binding domain complex with glutamate 5ICT ; 1.68 ; Crystal structure of the Drosophila GluR1A ligand binding domain Y792T mutant complex with glutamate 1M0U ; 1.75 ; Crystal Structure of the Drosophila Glutathione S-transferase-2 in Complex with Glutathione 2FP3 ; 2.5 ; Crystal structure of the Drosophila initiator caspase Dronc 3PXN ; 2.6 ; Crystal structure of the Drosophila kinesin family member Kin10/NOD in complex with divalent manganese and ADP 3DC4 ; 1.9 ; Crystal structure of the Drosophila kinesin family member NOD in complex with ADP 3DCB ; 2.5 ; Crystal structure of the Drosophila kinesin family member NOD in complex with AMPPNP 1OO0 ; 1.85 ; Crystal structure of the Drosophila Mago nashi-Y14 complex 4KG0 ; 2.1 ; Crystal structure of the drosophila melanogaster neuralized-nhr1 domain 6E4Q ; 2.799 ; Crystal Structure of the Drosophila Melanogaster Polypeptide N-Acetylgalactosaminyl Transferase PGANT9A in Complex with UDP and Mn2+ 6E4R ; 2.061 ; Crystal Structure of the Drosophila Melanogaster Polypeptide N-Acetylgalactosaminyl Transferase PGANT9B 6F4H ; 2.0 ; Crystal structure of the Drosophila melanogaster SNF/U1-SL2 complex 3P9Y ; 2.1 ; Crystal structure of the Drosophila melanogaster Ssu72-pCTD complex 3UV0 ; 1.9 ; Crystal structure of the drosophila MU2 FHA domain 1S2J ; 2.2 ; Crystal structure of the Drosophila pattern-recognition receptor PGRP-SA 5KLA ; 1.14 ; Crystal structure of the drosophila Pumilio RNA-binding domain in complex with hunchback RNA 5CQQ ; 3.1 ; Crystal structure of the Drosophila Zeste DNA binding domain in complex with DNA 4M4K ; 2.2 ; Crystal structure of the Drosphila beta,14galactosyltransferase 7 mutant D211N complex with manganese, UDP-Gal and xylobiose 1WP1 ; 2.56 ; Crystal structure of the drug-discharge outer membrane protein, OprM 1DSB ; 2.0 ; CRYSTAL STRUCTURE OF THE DSBA PROTEIN REQUIRED FOR DISULPHIDE BOND FORMATION IN VIVO 8B02 ; 1.676 ; Crystal structure of the dsRBD domain of tRNA-dihydrouridine(20) synthase from Amphimedon queenslandica 8G22 ; 1.0 ; Crystal Structure of the dTDP-4-dehydrorhamnose Reductase from Streptococcus pneumoniae. 2CU6 ; 2.0 ; Crystal Structure Of The dTDP-4-keto-L-rhamnose reductase-related Protein From Thermus Thermophilus HB8 7N7A ; 1.8 ; crystal structure of the dTDP-Qui3N N-formyltransferase from Helicobacter canadensis, apo form 6JO0 ; 1.651 ; Crystal structure of the DTS-motif rhodopsin from Phaeocystis globosa virus 12T 8PYR ; 2.15 ; Crystal structure of the dual T-loop phosphorylated Cdk7/CycH/Mat1 complex 4J40 ; 2.99 ; Crystal structure of the dual-domain GGDEF-EAL module of FimX from Pseudomonas aeruginosa 2ZNR ; 1.2 ; Crystal structure of the DUB domain of human AMSH-LP 7FIU ; 1.84 ; Crystal structure of the DUB domain of Wolbachia cytoplasmic incompatibility factor CidB from wMel 2BA2 ; 1.8 ; Crystal structure of the DUF16 domain of MPN010 from Mycoplasma pneumoniae 8IEV ; 2.08 ; Crystal structure of the DUF2891 family protein CJ0554 from Campylobacter jejuni in space group C2 8IEU ; 2.3 ; Crystal structure of the DUF2891 family protein CJ0554 from Campylobacter jejuni in space group P41212 3EOP ; 2.3 ; Crystal Structure of the DUF55 domain of human thymocyte nuclear protein 1 2OIY ; 1.6 ; Crystal structure of the duplex form of the HIV-1(LAI) RNA dimerization initiation site 2OJ0 ; 2.6 ; Crystal structure of the duplex form of the HIV-1(LAI) RNA dimerization initiation site MN soaked 5ZJL ; 1.7 ; Crystal Structure of the dust mite allergen Der f 23 from Dermatophagoides farinae 4ZCE ; 1.55 ; Crystal Structure of the dust mite allergen Der p 23 from Dermatophagoides pteronyssinus 5Y5P ; 2.03 ; Crystal structure of the dUTPase of white spot syndrome virus in complex with dU,PPi and Mg2+ 5Y5O ; 2.4 ; Crystal structure of the dUTPase of white spot syndrome virus in the apo state 4RFX ; 2.9 ; Crystal Structure of the Dynactin DCTN1 Fragment involved in Dynein Interaction 3L43 ; 2.27 ; Crystal structure of the dynamin 3 GTPase domain bound with GDP 1JWY ; 2.3 ; CRYSTAL STRUCTURE OF THE DYNAMIN A GTPASE DOMAIN COMPLEXED WITH GDP, DETERMINED AS MYOSIN FUSION 5A3F ; 3.7 ; Crystal structure of the dynamin tetramer 4W7G ; 2.1 ; Crystal Structure of the Dynein Light Intermediate Chain's Conserved Domain 4W8F ; 3.541 ; Crystal structure of the dynein motor domain in the AMPPNP-bound state 7W86 ; 1.8 ; Crystal structure of the DYW domain of DYW1 5MV2 ; 2.1 ; Crystal structure of the E protein of the Japanese encephalitis live attenuated vaccine virus 5MV1 ; 2.25 ; Crystal structure of the E protein of the Japanese encephalitis virulent virus 1F6J ; 2.25 ; CRYSTAL STRUCTURE OF THE E-DNA HEXAMER GGCGBR5CC 1F6I ; 2.2 ; CRYSTAL STRUCTURE OF THE E-DNA HEXAMER GGCGM5CC 4V6C ; 3.19 ; Crystal structure of the E. coli 70S ribosome in an intermediate state of ratcheting 4V6D ; 3.814 ; Crystal structure of the E. coli 70S ribosome in an intermediate state of ratcheting 4V6E ; 3.712 ; Crystal structure of the E. coli 70S ribosome in an intermediate state of ratcheting 3U33 ; 2.8 ; Crystal Structure of the E. coli adaptive response protein AidB in the space group P3(2) 2NS1 ; 1.962 ; Crystal structure of the e. coli ammonia channel AMTB complexed with the signal transduction protein GLNK 1FCO ; 2.2 ; CRYSTAL STRUCTURE OF THE E. COLI AMPC BETA-LACTAMASE COVALENTLY ACYLATED WITH THE INHIBITORY BETA-LACTAM, MOXALACTAM 1I5Q ; 1.83 ; CRYSTAL STRUCTURE OF THE E. COLI AMPC BETA-LACTAMASE MUTANT N152A COVALENTLY ACYLATED WITH THE INHIBITORY BETA-LACTAM, MOXALACTAM 1FCN ; 2.35 ; Crystal Structure of the E. Coli AMPC Beta-Lactamase Mutant Q120L/Y150E Covalently Acylated with the Substrate Beta-Lactam LORACARBEF 1C0A ; 2.4 ; CRYSTAL STRUCTURE OF THE E. COLI ASPARTYL-TRNA SYNTHETASE : TRNAASP : ASPARTYL-ADENYLATE COMPLEX 1IL2 ; 2.6 ; Crystal Structure of the E. coli Aspartyl-tRNA Synthetase:Yeast tRNAasp:aspartyl-Adenylate Complex 3TGO ; 2.9 ; Crystal structure of the E. coli BamCD complex 3PWE ; 2.199 ; Crystal structure of the E. coli beta clamp mutant R103C, I305C, C260S, C333S at 2.2A resolution 4DJM ; 2.52 ; Crystal structure of the E. coli chaperone DraB 3GLI ; 3.5 ; Crystal Structure of the E. coli clamp loader bound to Primer-Template DNA and Psi Peptide 3GLH ; 3.891 ; Crystal Structure of the E. coli clamp loader bound to Psi Peptide 4TVX ; 3.24 ; Crystal structure of the E. coli CRISPR RNA-guided surveillance complex, Cascade 4Q2U ; 1.8 ; Crystal structure of the E. coli DinJ-YafQ toxin-antitoxin complex 1RYA ; 1.3 ; Crystal Structure of the E. coli GDP-mannose mannosyl hydrolase in complex with GDP and MG 1LDF ; 2.1 ; CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL FACILITATOR (GLPF) MUTATION W48F, F200T 1FX8 ; 2.2 ; CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL FACILITATOR (GLPF) WITH SUBSTRATE GLYCEROL 1LDA ; 2.8 ; CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL FACILITATOR (GLPF) WITHOUT SUBSTRATE GLYCEROL 1LDI ; 2.7 ; CRYSTAL STRUCTURE OF THE E. COLI GLYCEROL FACILITATOR (GLPF) WITHOUT SUBSTRATE GLYCEROL 1TF1 ; 1.8 ; Crystal Structure of the E. coli Glyoxylate Regulatory Protein Ligand Binding Domain 5D55 ; 2.0 ; Crystal structure of the E. coli Hda pilus minor tip subunit, HdaB 3EZH ; 1.7 ; Crystal Structure of the E. coli Histidine Kinase NarX Sensor Domain in Complex with Nitrate 3EZI ; 1.7 ; Crystal Structure of the E. coli Histidine Kinase NarX Sensor Domain without Ligand 3I9W ; 2.7 ; Crystal structure of the E. coli histidine kinase sensor TorS sensor domain 1MUL ; 2.3 ; Crystal structure of the E. coli HU alpha2 protein 4P3V ; 1.25 ; Crystal structure of the E. coli HU beta2 protein 3CDJ ; 2.8 ; Crystal structure of the E. coli KH/S1 domain truncated PNPase 8GAL ; 1.8 ; Crystal Structure of the E. coli LptA in complex with Murgantia histrionica Thanatin 8C8F ; 1.15 ; Crystal structure of the E. coli maltodextrin-binding protein 1IX9 ; 0.9 ; Crystal Structure of the E. coli Manganase(III) superoxide dismutase mutant Y174F at 0.90 angstroms resolution. 1I0H ; 1.35 ; CRYSTAL STRUCTURE OF THE E. COLI MANGANESE SUPEROXIDE DISMUTASE MUTANT Y174F AT 1.35 ANGSTROMS RESOLUTION. 1IXB ; 0.9 ; CRYSTAL STRUCTURE OF THE E. COLI MANGANESE(II) SUPEROXIDE DISMUTASE MUTANT Y174F AT 0.90 ANGSTROMS RESOLUTION. 4BIN ; 2.49 ; Crystal structure of the E. coli N-acetylmuramoyl-L-alanine amidase AmiC 2Y1B ; 2.0 ; Crystal structure of the E. coli outer membrane lipoprotein RcsF 1ZMR ; 2.4 ; Crystal Structure of the E. coli Phosphoglycerate Kinase 8Q2C ; 3.21 ; Crystal structure of the E. coli PqiC Lipoprotein 8Q2D ; 2.08 ; Crystal structure of the E. coli PqiC Lipoprotein residues 17-187 1K8W ; 1.85 ; Crystal structure of the E. coli pseudouridine synthase TruB bound to a T stem-loop RNA 3MKN ; 2.0 ; Crystal structure of the E. coli pyrimidine nucleosidase YeiK bound to a competitive inhibitor 3MKM ; 2.2 ; Crystal structure of the E. coli pyrimidine nucleoside hydrolase YeiK (Apo-form) 3B9X ; 2.3 ; Crystal structure of the E. coli pyrimidine nucleoside hydrolase YeiK in complex with inosine 4WWW ; 3.1 ; Crystal structure of the E. coli ribosome bound to CEM-101 4V7T ; 3.1942 ; Crystal structure of the E. coli ribosome bound to chloramphenicol. 4V7V ; 3.2891 ; Crystal structure of the E. coli ribosome bound to clindamycin. 4U26 ; 2.8 ; Crystal structure of the E. coli ribosome bound to dalfopristin and quinupristin. 4U24 ; 2.9 ; Crystal structure of the E. coli ribosome bound to dalfopristin. 4V7U ; 3.1 ; Crystal structure of the E. coli ribosome bound to erythromycin. 4U27 ; 2.8 ; Crystal structure of the E. coli ribosome bound to flopristin and linopristin. 4U20 ; 2.9 ; Crystal structure of the E. coli ribosome bound to flopristin. 4U1V ; 3.0 ; Crystal structure of the E. coli ribosome bound to linopristin. 4WF1 ; 3.09 ; Crystal structure of the E. coli ribosome bound to negamycin. 4U1U ; 2.95 ; Crystal structure of the E. coli ribosome bound to quinupristin. 4V7S ; 3.2547 ; Crystal structure of the E. coli ribosome bound to telithromycin. 4U25 ; 2.9 ; Crystal structure of the E. coli ribosome bound to virginiamycin M1. 1D5Y ; 2.7 ; CRYSTAL STRUCTURE OF THE E. COLI ROB TRANSCRIPTION FACTOR IN COMPLEX WITH DNA 2WP9 ; 2.7 ; Crystal structure of the E. coli succinate:quinone oxidoreductase (SQR) SdhB His207Thr mutant 2WU2 ; 2.5 ; Crystal structure of the E. coli succinate:quinone oxidoreductase (SQR) SdhC His84Met mutant 2WU5 ; 2.803 ; Crystal structure of the E. coli succinate:quinone oxidoreductase (SQR) SdhD His71Met mutant 2WS3 ; 3.2 ; Crystal structure of the E. coli succinate:quinone oxidoreductase (SQR) SdhD Tyr83Phe mutant 7TZU ; 2.87 ; Crystal structure of the E. coli thiM riboswitch bound to 1-(4-(piperazin-1-yl)pyridin-3-yl)-N-(quinoxalin-6-ylmethyl)methanamine (linked compound 38) 7TZR ; 2.7 ; Crystal structure of the E. coli thiM riboswitch bound to N-methyl-1-(quinoxalin-6-yl)methanamine (compound 16) 4NYB ; 3.1 ; Crystal structure of the E. coli thiM riboswitch in complex with (4-(1,2,3-thiadiazol-4-yl)phenyl)methanamine 4NYA ; 2.65 ; Crystal structure of the E. coli thiM riboswitch in complex with 5-(azidomethyl)-2-methylpyrimidin-4-amine 4NYD ; 2.9 ; Crystal structure of the E. coli thiM riboswitch in complex with hypoxanthine 7TZT ; 2.96 ; Crystal structure of the E. coli thiM riboswitch in complex with N1,N1-dimethyl-N2-(quinoxalin-6-ylmethyl)ethane-1,2-diamine (linked compound 37) 7TZS ; 2.21 ; Crystal structure of the E. coli thiM riboswitch in complex with quinoxalin-6-ylmethanamine (compound 17) 4NYG ; 3.05 ; Crystal structure of the E. coli thiM riboswitch in complex with thiamine 7TDC ; 2.46 ; Crystal structure of the E. coli thiM riboswitch in complex with thiamine bisphosphonate, calcium ions 7TDB ; 2.56 ; Crystal structure of the E. coli thiM riboswitch in complex with thiamine bisphosphonate, manganese ions 3K0J ; 3.1 ; Crystal structure of the E. coli ThiM riboswitch in complex with thiamine pyrophosphate and the U1A crystallization module 7TDA ; 2.25 ; Crystal structure of the E. coli thiM riboswitch in complex with thiamine pyrophosphate, manganese ions 4NYC ; 3.15 ; Crystal structure of the E. coli thiM riboswitch in complex with thieno[2,3-b]pyrazin-7-amine 1CRZ ; 1.95 ; CRYSTAL STRUCTURE OF THE E. COLI TOLB PROTEIN 6WA8 ; 3.3 ; Crystal structure of the E. coli transcription termination factor Rho 7X2R ; 4.4 ; Crystal structure of the E. coli transcription termination factor Rho 7B0W ; 1.75 ; Crystal structure of the E. coli type 1 pilus assembly inhibitor FimI bound to FimC 5IQN ; 1.0 ; Crystal structure of the E. coli type 1 pilus subunit FimG (engineered variant with substitution Q134E; N-terminal FimG residues 1-12 truncated) in complex with the donor strand peptide DsF_SRIRIRGYVR 5IQM ; 1.5 ; Crystal structure of the E. coli type 1 pilus subunit FimG (engineered variant with substitution Q134E; N-terminal FimG residues 1-12 truncated) in complex with the donor strand peptide DsF_T4R-T6R-D13N 5IQO ; 1.302 ; Crystal structure of the E. coli type 1 pilus subunit FimG (engineered variant with substitutions Q134E and S138E; N-terminal FimG residues 1-12 truncated) in complex with the donor strand peptide DsF_T4R-T6R-D13N 2ITM ; 2.1 ; Crystal structure of the E. coli xylulose kinase complexed with xylulose 1FCM ; 2.46 ; CRYSTAL STRUCTURE OF THE E.COLI AMPC BETA-LACTAMASE MUTANT Q120L/Y150E COVALENTLY ACYLATED WITH THE INHIBITORY BETA-LACTAM, CLOXACILLIN 2GZW ; 2.21 ; Crystal structure of the E.coli CRP-cAMP complex 3BY8 ; 1.45 ; Crystal Structure of the E.coli DcuS Sensor Domain 4LRX ; 3.25 ; Crystal Structure of the E.coli DhaR(N)-DhaK complex 4LRY ; 2.83 ; Crystal Structure of the E.coli DhaR(N)-DhaK(T79L) complex 4LRZ ; 2.32 ; Crystal Structure of the E.coli DhaR(N)-DhaL complex 1Y79 ; 2.0 ; Crystal Structure of the E.coli Dipeptidyl Carboxypeptidase Dcp in Complex with a Peptidic Inhibitor 1T3W ; 2.8 ; Crystal Structure of the E.coli DnaG C-terminal domain (residues 434 to 581) 1EUM ; 2.05 ; CRYSTAL STRUCTURE OF THE E.COLI FERRITIN ECFTNA 3O7P ; 3.196 ; Crystal structure of the E.coli Fucose:proton symporter, FucP (N162A) 6HPB ; 2.28 ; Crystal structure of the E.coli HicAB toxin-antitoxin complex 4CQN ; 2.5 ; Crystal structure of the E.coli LeuRS-tRNA complex with the non- cognate isoleucyl adenylate analogue 1F4L ; 1.85 ; CRYSTAL STRUCTURE OF THE E.COLI METHIONYL-TRNA SYNTHETASE COMPLEXED WITH METHIONINE 3BQ8 ; 2.5 ; Crystal Structure of the E.coli PhoQ Sensor Domain 1XDP ; 2.5 ; Crystal Structure of the E.coli Polyphosphate Kinase in complex with AMPPNP 1SB7 ; 2.2 ; Crystal structure of the E.coli pseudouridine synthase TruD 1Q8F ; 1.7 ; Crystal Structure of the E.coli pyrimidine nucleoside hydrolase yeiK 3G5I ; 2.1 ; Crystal Structure of the E.coli RihA pyrimidine nucleosidase bound to a iminoribitol-based inhibitor 1IU3 ; 3.0 ; CRYSTAL STRUCTURE OF THE E.COLI SEQA PROTEIN COMPLEXED WITH HEMIMETHYLATED DNA 1J3E ; 2.5 ; Crystal Structure of the E.coli SeqA protein complexed with N6-methyladenine- guanine mismatch DNA 1C8U ; 1.9 ; CRYSTAL STRUCTURE OF THE E.COLI THIOESTERASE II, A HOMOLOGUE OF THE HUMAN NEF-BINDING ENZYME 2W89 ; 2.0 ; Crystal structure of the E.coli tRNAArg aminoacyl stem issoacceptor RR-1660 at 2.0 Angstroem resolution 7S2Z ; 2.35 ; Crystal structure of the E100A mutant TIR domain from the grapevine disease resistance protein RUN1 bound to NAD 1LSJ ; 2.5 ; Crystal Structure of the E110Q Mutant of L-3-Hydroxyacyl-CoA Dehydrogenase in Complex with NAD 4L1Q ; 1.92 ; Crystal Structure of the E113Q-MauG/pre-Methylamine Dehydrogenase Complex 4L3H ; 1.79 ; Crystal Structure of the E113Q-MauG/pre-Methylamine Dehydrogenase Complex After Treatment with Hydrogen Peroxide 4L3G ; 2.05 ; Crystal Structure of the E113Q-MauG/pre-Methylamine Dehydrogenase Complex Aged 120 Days 1L5Z ; 2.0 ; CRYSTAL STRUCTURE OF THE E121K SUBSTITUTION OF THE RECEIVER DOMAIN OF SINORHIZOBIUM MELILOTI DCTD 2H2U ; 2.4 ; Crystal structure of the E130Y mutant of human soluble calcium-activated nucleotidase (SCAN) with calcium ion 3K7I ; 1.438 ; Crystal structure of the E131K mutant of the Indian Hedgehog N-terminal signalling domain 6ADC ; 3.055 ; Crystal structure of the E148A mutant CLC-ec1 in the presence of 50mM bromoacetate 6AD7 ; 2.95 ; Crystal structure of the E148D mutant CLC-ec1 in 20 mM bromide 6ADA ; 3.153 ; Crystal structure of the E148D mutant CLC-ec1 in 200mM bromide 6AD8 ; 3.3 ; Crystal structure of the E148D mutant CLC-ec1 in 50 mM bromide 6K5I ; 3.022 ; Crystal structure of the E148D/R147A/F317A mutant CLC-ec1 in the presence of 20 mM NaBr 6K5A ; 3.162 ; Crystal structure of the E148D/R147A/F317A mutant in presence of 200 mM NaBr 6ADB ; 2.692 ; Crystal structure of the E148N mutant CLC-ec1 in 20mM bromide 6K5D ; 3.203 ; Crystal structure of the E148N mutant CLC-ec1 in presence of 200 mM NaBr 2EXY ; 3.1 ; Crystal structure of the E148Q Mutant of EcClC, Fab complexed in absence of bound ions 5TNM ; 1.7 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted (R)-1,2-Epoxyoctane hydrolysis intermediate 5TNQ ; 1.5 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted (R)-Styrene oxide hydrolysis intermediate 5TNL ; 1.8 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted (S)-1,2-Epoxyhexane hydrolysis intermediate 5TNN ; 1.95 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted (S)-1,2-Epoxyoctane hydrolysis intermediate 5TND ; 1.55 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 1,2-Epoxycyclohexane hydrolysis intermediate 5TNK ; 1.65 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 1,2-Epoxyoctane hydrolysis intermediate 5JYC ; 2.0 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 14,15-EET hydrolysis intermediate 5TNG ; 1.75 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 14,15-EpETE hydrolysis intermediate 5TNR ; 1.8 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 16,17-EpDPE hydrolysis intermediate 5TNH ; 2.1 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 17,18-EpETE hydrolysis intermediate 5TNF ; 1.75 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 19,20-EpDPE hydrolysis intermediate 5TNJ ; 1.65 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted 4-Vinyl-1-cyclohexene 1,2-epoxide hydrolysis intermediate 5TNE ; 1.75 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted cis-Stilbene Oxide hydrolysis intermediate 5TNI ; 1.8 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted S-Styrene oxide hydrolysis intermediate 5TNP ; 1.85 ; Crystal structure of the E153Q mutant of the CFTR inhibitory factor Cif containing the adducted Styrene oxide hydrolysis intermediate 8GHY ; 1.8 ; Crystal Structure of the E154D mutant CelD Cellulase from the Anaerobic Fungus Piromyces finnis in the complex with cellotriose. 1KG7 ; 1.5 ; Crystal Structure of the E161A mutant of E.coli MutY (core fragment) 2OFJ ; 2.3 ; Crystal structure of the E190A mutant of o-succinylbenzoate synthase from Escherichia coli 2WPB ; 2.05 ; Crystal structure of the E192N mutant of E. Coli N-acetylneuraminic acid lyase in complex with pyruvate and the inhibitor (2R,3R)-2,3,4- trihydroxy-N,N-dipropylbutanamide in space group P21 crystal form I 2WKJ ; 1.45 ; Crystal structure of the E192N mutant of E. Coli N-acetylneuraminic acid lyase in complex with pyruvate at 1.45A resolution in space group P212121 5SXX ; 1.7 ; Crystal structure of the E198A variant of Burkholderia pseudomallei catalase-peroxidase KatG with INH 5SXW ; 1.6 ; Crystal structure of the E198A variant of catalase-peroxidase KatG of Burkholderia pseudomallei 1BY9 ; 2.2 ; CRYSTAL STRUCTURE OF THE E2 DNA-BINDING DOMAIN FROM HUMAN PAPILLOMAVIRUS TYPE-16: IMPLICATIONS FOR ITS DNA BINDING-SITE SELECTION MECHANISM 3Q7L ; 2.2 ; Crystal structure of the E2 domain of amyloid precursor-like protein 1 3QMK ; 2.21 ; Crystal structure of the E2 domain of APLP1 in complex with heparin hexasaccharide 3FGO ; 2.5 ; Crystal Structure of the E2 magnesium fluoride complex of the (SR) Ca2+-ATPase with bound CPA and AMPPCP 1Q2X ; 2.05 ; Crystal Structure of the E243D Mutant of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae bound with substrate aspartate semialdehyde 6MOY ; 2.5 ; Crystal structure of the E257A mutant of BlMan5B in complex with GlcNAc (co-crystallization) 6MP7 ; 1.75 ; Crystal structure of the E257A mutant of BlMan5B in complex with GlcNAc (soaking) 8A0H ; 1.73 ; Crystal structure of the E25A mutant of the Orange Carotenoid Protein X from Gloeobacter kilaueensis JS1 complexed with echinenone 2GFT ; 2.3 ; Crystal structure of the E263A nucleophile mutant of Bacillus licheniformis endo-beta-1,4-galactanase in complex with galactotriose 2HLP ; 2.59 ; CRYSTAL STRUCTURE OF THE E267R MUTANT OF A HALOPHILIC MALATE DEHYDROGENASE IN THE APO FORM 4RSN ; 2.701 ; Crystal structure of the E267V mutant of cytochrome P450 BM3 3GJC ; 2.8 ; Crystal Structure of the E290S mutant of LeuT with bound OG 2HS6 ; 1.9 ; Crystal structure of the E291K mutant of 12-oxophytodienoate reductase 3 (OPR3) from tomato 5TUU ; 2.251 ; Crystal structure of the E2F4-DP1 coiled coil and marked-box domains 5TUV ; 2.9 ; Crystal structure of the E2F5-DP1-p107 ternary complex 8B5W ; 1.8 ; Crystal structure of the E3 module from UBR4 4FO9 ; 2.39 ; Crystal structure of the E3 SUMO Ligase PIAS2 8QNI ; 2.483 ; Crystal structure of the E3 ubiquitin ligase Cbl-b with an allosteric inhibitor (benzodiazepine compound 25) 8QNG ; 2.197 ; Crystal structure of the E3 ubiquitin ligase Cbl-b with an allosteric inhibitor (benzodiazepine HTS hit compound 1) 8QNH ; 2.001 ; Crystal structure of the E3 ubiquitin ligase Cbl-b with an allosteric inhibitor (WO2020264398 Ex23) 5MIY ; 1.717 ; Crystal structure of the E3 ubiquitin ligase RavN from Legionella pneumophila 5ZMV ; 3.3 ; Crystal structure of the E309A mutant of SR Ca2+-ATPase in E2(TG) 5ZMW ; 2.5 ; Crystal structure of the E309Q mutant of SR Ca2+-ATPase in E2(TG) 7ZD9 ; 1.89 ; Crystal structure of the E352T mutant of S-adenosyl-L-homocysteine hydrolase from Synechocystis sp. PCC 6803 cocrystallized with adenosine in the presence of Rb+ cations 8CZ9 ; 1.65 ; Crystal Structure of the E372K LNK SH2 Domain mutant in Complex with a JAK2 pY813 Phosphopeptide 4WXS ; 1.9 ; Crystal Structure of the E396D SNP Variant of the Myocilin Olfactomedin Domain 5FMH ; 1.8 ; Crystal structure of the E405K mutant of human apoptosis inducing factor 1WBH ; 1.55 ; Crystal structure of the E45N mutant from KDPG aldolase from Escherichia coli 4FDC ; 2.4 ; Crystal structure of the E493V mutant of human apoptosis inducing factor (AIF) 6M4F ; 2.2 ; Crystal structure of the E496A mutant of HsBglA 6M55 ; 3.0 ; Crystal structure of the E496A mutant of HsBglA in complex with 4-galactosyllactose 5I4N ; 1.54 ; Crystal Structure of the E596A V617F Mutant JAK2 Pseudokinase Domain Bound to Mg-ATP 3RHJ ; 1.89 ; Crystal structure of the E673A mutant of the C-terminal domain of RAT 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE in complex with co-purified NADP 3RHL ; 2.0 ; Crystal structure of the E673A/C707A double mutant of the C-Terminal domain of RAT 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE in complex with co-purified NADP 3RHM ; 2.38 ; Crystal structure of the E673Q mutant oF C-Terminal domain of 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE 3RHO ; 2.26 ; Crystal structure of the E673Q MUTANT OF C-Terminal domain of 10'FORMYLTETRAHYDROFOLATE DEHYDROGENASE in complex with NADP 1UJZ ; 2.1 ; Crystal structure of the E7_C/Im7_C complex; a computationally designed interface between the colicin E7 DNase and the Im7 Immunity protein 2ERH ; 2.0 ; Crystal Structure of the E7_G/Im7_G complex; a designed interface between the colicin E7 DNAse and the Im7 immunity protein 1FSJ ; 1.8 ; CRYSTAL STRUCTURE OF THE E9 DNASE DOMAIN 2GZJ ; 1.6 ; Crystal Structure of the E9 DNase Domain with a Mutant Immunity Protein IM9 (D51A) 2GZI ; 1.7 ; Crystal Structure of the E9 DNase Domain with a Mutant Immunity Protein IM9 (V34A) 2GZF ; 1.75 ; Crystal structure of the E9 DNase domain with a mutant immunity protein IM9 (Y54F) 2GZE ; 1.8 ; Crystal structure of the E9 DNase domain with a mutant immunity protein IM9 (Y55A) 2GZG ; 1.7 ; Crystal Structure of the E9 DNase Domain with a Mutant Immunity Protein IM9 (Y55F) 1FR2 ; 1.6 ; CRYSTAL STRUCTURE OF THE E9 DNASE DOMAIN WITH A MUTANT IMMUNITY PROTEIN IM9(E41A) 3K7H ; 1.5 ; Crystal structure of the E95K mutant of the Indian Hedgehog N-terminal signalling domain 4KIE ; 1.7 ; Crystal structure of the EAL domain of c-di-GMP specific phosphodiesterase YahA 4LYK ; 2.4 ; Crystal structure of the EAL domain of c-di-GMP specific phosphodiesterase YahA in complex with activating cofactor Mg++ 4LJ3 ; 1.7 ; Crystal structure of the EAL domain of c-di-GMP specific phosphodiesterase YahA in complex with substrate c-di-GMP and Ca++ 5YRP ; 2.99 ; Crystal structure of the EAL domain of Mycobacterium smegmatis DcpA 2NPS ; 2.5 ; Crystal Structure of the Early Endosomal SNARE Complex 2DRY ; 1.8 ; Crystal structure of the earthworm lectin C-terminal domain mutant 2DS0 ; 1.8 ; Crystal structure of the earthworm lectin C-terminal domain mutant in complex with 6'-sialyllactose 2DRZ ; 2.19 ; Crystal structure of the earthworm lectin C-terminal domain mutant in complex with lactose 2ZQO ; 1.8 ; Crystal structure of the earthworm R-type lectin C-half in complex with GalNAc 2ZQN ; 1.9 ; Crystal structure of the earthworm R-type lectin C-half in complex with Lactose 1TXQ ; 1.8 ; Crystal structure of the EB1 C-terminal domain complexed with the CAP-Gly domain of p150Glued 4E61 ; 2.45 ; Crystal structure of the EB1-like motif of Bim1p 1EBO ; 3.0 ; CRYSTAL STRUCTURE OF THE EBOLA VIRUS MEMBRANE-FUSION SUBUNIT, GP2, FROM THE ENVELOPE GLYCOPROTEIN ECTODOMAIN 3C7T ; 1.76 ; Crystal structure of the ecdysone phosphate phosphatase, EPPase, from Bombix mori in complex with tungstate 3IXP ; 2.85 ; Crystal structure of the ecdysone receptor bound to BYI08346 2Q2X ; 2.0 ; Crystal Structure of the ECH2 decarboxylase domain of CurF from Lyngbya majuscula 2Q34 ; 1.85 ; Crystal Structure of the ECH2 decarboxylase domain of CurF from Lyngbya majuscula, rhombohedral crystal form 3GLF ; 3.388 ; Crystal Structure of the Ecoli Clamp Loader Bound to Primer-Template DNA 3N7P ; 2.8 ; Crystal structure of the ectodomain complex of the CGRP receptor, a Class-B GPCR, reveals the site of drug antagonism 3N7R ; 2.9 ; Crystal structure of the ectodomain complex of the CGRP receptor, a Class-B GPCR, reveals the site of drug antagonism 3N7S ; 2.1 ; Crystal structure of the ectodomain complex of the CGRP receptor, a Class-B GPCR, reveals the site of drug antagonism 4EBY ; 1.65 ; Crystal structure of the ectodomain of a receptor like kinase 4EBZ ; 1.792 ; Crystal structure of the ectodomain of a receptor like kinase 3X0G ; 1.899 ; Crystal structure of the ectodomain of African green monkey CD81 large extracellular loop (agmCD81-LEL) 4JNT ; 4.09 ; Crystal structure of the ectodomain of Bovine viral diarrhea virus 1 E2 envelope protein 1Z6I ; 2.5 ; Crystal structure of the ectodomain of Drosophila transmembrane receptor PGRP-LCa 3X0E ; 1.844 ; Crystal structure of the ectodomain of human CD81 large extracellular loop (hCD81-LEL) 1CX8 ; 3.2 ; CRYSTAL STRUCTURE OF THE ECTODOMAIN OF HUMAN TRANSFERRIN RECEPTOR 2NSU ; 27.0 ; Crystal structure of the ectodomain of human transferrin receptor fitted into a cryo-EM reconstruction of canine parvovirus and feline transferrin receptor complex 1FJR ; 2.3 ; CRYSTAL STRUCTURE OF THE ECTODOMAIN OF METHUSELAH 3X0F ; 1.471 ; Crystal structure of the ectodomain of mouse CD81 large extracellular loop (mCD81-LEL) 8PAG ; 3.5 ; Crystal structure of the ectodomain of Norway rat pestivirus E2 glycoprotein 7VS7 ; 2.015 ; Crystal structure of the ectodomain of OsCERK1 in complex with chitin hexamer 8HQA ; 3.2 ; Crystal structure of the ectodomain of the MlaD protein from Escherichia coli in the resting state 5BXX ; 2.0 ; Crystal structure of the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis 3FXB ; 2.9 ; Crystal structure of the ectoine-binding protein UehA 2AJG ; 2.0 ; Crystal structure of the editing domain of E. coli leucyl-tRNA synthetase 2AJI ; 3.2 ; Crystal structure of the editing domain of E. coli leucyl-tRNA synthetase complexes with isoleucine 2AJH ; 2.4 ; Crystal structure of the editing domain of E. coli leucyl-tRNA synthetase complexes with methionine 1TJE ; 1.5 ; Crystal structure of the editing domain of threonyl-tRNA synthetase 1TKG ; 1.5 ; Crystal structure of the editing domain of threonyl-tRNA synthetase complexed with an analog of seryladenylate 1TKE ; 1.46 ; Crystal structure of the editing domain of threonyl-tRNA synthetase complexed with serine 1TKY ; 1.48 ; Crystal structure of the editing domain of threonyl-tRNA synthetase complexed with seryl-3'-aminoadenosine 1Y2Q ; 1.95 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi 2HL2 ; 2.6 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with an analog of seryladenylate 3PD5 ; 2.29 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with an analog of threonyl-adenylate 3PD4 ; 2.4 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with glycyl-3'-aminoadenosine 2HKZ ; 2.1 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with L-serine 2HL0 ; 1.86 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with seryl-3'-aminoadenosine 2HL1 ; 2.25 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with seryl-3'-aminoadenosine 3PD2 ; 1.86 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with seryl-3'-aminoadenosine 3PD3 ; 1.86 ; Crystal structure of the editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi in complex with threonyl-3'-aminoadenosine 1PK0 ; 3.3 ; Crystal Structure of the EF3-CaM complexed with PMEApp 2EFK ; 2.3 ; Crystal structure of the EFC domain of Cdc42-interacting protein 4 2EFL ; 2.61 ; Crystal structure of the EFC domain of formin-binding protein 17 3ABH ; 2.0 ; Crystal structure of the EFC/F-BAR domain of human PACSIN2/Syndapin II (2.0 A) 3ACO ; 2.7 ; Crystal structure of the EFC/F-BAR domain of human PACSIN2/Syndapin II (2.7 A) 7AD5 ; 2.14 ; Crystal structure of the effector AvrLm5-9 from Leptosphaeria maculans 7B76 ; 2.7 ; Crystal structure of the effector AvrLm5-9 from Leptosphaeria maculans 2H9B ; 1.8 ; Crystal structure of the effector binding domain of a BenM variant (BenM R156H/T157S) 2H99 ; 1.85 ; Crystal structure of the effector binding domain of a BenM variant (R156H,T157S) 3GLB ; 2.8 ; Crystal structure of the effector binding domain of a CATM variant (R156H) 2H98 ; 1.8 ; Crystal structure of the effector binding domain of a CatM variant, CatM(V158M) 5VVH ; 2.5 ; Crystal Structure of the Effector Binding Domain of LysR-type Transcriptional Regulator, OccR from Agrobacterium tumefaciens 2R2O ; 2.0 ; Crystal structure of the effector domain of human Plexin B1 3F8L ; 1.9 ; Crystal Structure of the Effector Domain of PhnF from Mycobacterium smegmatis 2REX ; 2.3 ; Crystal structure of the effector domain of PLXNB1 bound with Rnd1 GTPase 5DIL ; 2.01 ; Crystal structure of the effector domain of the NS1 protein from influenza virus B 3D3O ; 2.46 ; Crystal structure of the effector domain of the putative transcriptional regulator IclR from Acinetobacter sp. ADP1 5XN7 ; 2.7 ; Crystal structure of the effector domain RID of Vibrio vulnificus MARTX toxin 6ZUQ ; 1.94 ; Crystal structure of the effector Ecp11-1 from Fulvia fulva 6ZUS ; 1.62 ; Crystal structure of the effector Ecp11-1 from Fulvia fulva 4KL0 ; 1.598 ; Crystal structure of the effector protein XOO4466 6WES ; 1.36 ; Crystal structure of the effector SnTox3 from Parastagonospora nodorum 4JUR ; 2.5 ; Crystal structure of the effector Tae4 from Salmonella typhimurium in complex with the immunity Tai4 from Enterobacter cloacae 4ZSI ; 1.652 ; Crystal structure of the effector-binding domain of DasR (DasR-EBD) in complex with glucosamine-6-phosphate 4ZSK ; 1.85 ; Crystal structure of the effector-binding domain of DasR (DasR-EBD) in complex with N-acetylglucosamine-6-phosphate 4QBA ; 2.21 ; Crystal structure of the effector-binding domain of S. aureus CcpE 5Z49 ; 2.148 ; Crystal structure of the effector-binding domain of Synechococcus elongatus CmpR in complex with ribulose-1,5-bisphosphate 8H3Z ; 2.35 ; Crystal structure of the effector-binding domain of the LysR-type trasncription factor NtcB from Anabaena PCC 7120 4NSO ; 2.4 ; Crystal structure of the effector-immunity protein complex 7CLT ; 2.07381 ; Crystal structure of the EFhd1/Swiprosin-2, a mitochondrial actin-binding protein 3GOP ; 2.8 ; Crystal structure of the EGF receptor juxtamembrane and kinase domains 5UGA ; 1.82 ; Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with 4-(4-{[2-{[(3S)-1-acetylpyrrolidin-3-yl]amino}-9-(propan-2-yl)-9H-purin-6-yl]amino}phenyl)-1-methylpiperazin-1-ium 5UG8 ; 1.46 ; Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(1-methyl-1H-pyrazol-4-yl)amino]-9-(propan-2-yl)-9H-purin-2-yl}pyrrolidin-3-yl]propanamide 5UG9 ; 1.33 ; Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(3-methoxy-1-methyl-1H-pyrazol-4-yl)amino]-9-(propan-2-yl)-9H-purin-2-yl}pyrrolidin-3-yl]propanamide 5UGC ; 1.58 ; Crystal structure of the EGFR kinase domain (L858R, T790M, V948R) in complex with a covalent inhibitor N-[(3R,4R)-4-fluoro-1-{6-[(3-methoxy-1-methyl-1H-pyrazol-4-yl)amino]-9-methyl-9H-purin-2-yl}pyrrolidin-3-yl]propanamide 5UGB ; 2.53 ; Crystal structure of the EGFR kinase domain in complex with 4-(4-{[2-{[(3S)-1-acetylpyrrolidin-3-yl]amino}-9-(propan-2-yl)-9H-purin-6-yl]amino}phenyl)-1-methylpiperazin-1-ium 5CNN ; 1.9 ; Crystal structure of the EGFR kinase domain mutant I682Q 5CNO ; 1.55 ; Crystal structure of the EGFR kinase domain mutant V924R 3FIA ; 1.45 ; Crystal structure of the EH 1 domain from human intersectin-1 protein. Northeast Structural Genomics Consortium target HR3646e. 1Q46 ; 2.86 ; crystal structure of the eIF2 alpha subunit from saccharomyces cerevisia 4U1C ; 3.5 ; Crystal structure of the eIF3a/eIF3c PCI-domain heterodimer 4U1E ; 2.0 ; Crystal structure of the eIF3b-CTD/eIF3i/eIF3g-NTD translation initiation complex 2ZU6 ; 2.8 ; crystal structure of the eIF4A-PDCD4 complex 6FC2 ; 1.92 ; Crystal structure of the eIF4E-Eap1p complex from Saccharomyces cerevisiae 6FC1 ; 1.35 ; Crystal structure of the eIF4E-Eap1p complex from Saccharomyces cerevisiae in the cap-bound state 6FC0 ; 1.293 ; Crystal structure of the eIF4E-eIF4G complex from Chaetomium thermophilum 6FBZ ; 1.496 ; Crystal structure of the eIF4E-eIF4G complex from Chaetomium thermophilum in the cap-bound state 6FC3 ; 1.75 ; Crystal structure of the eIF4E-p20 complex from Saccharomyces cerevisiae 6ZT0 ; 2.02 ; Crystal structure of the Eiger TNF domain/Grindelwald extracellular domain complex 6ZZB ; 1.322 ; Crystal structure of the Eimeria tenella surface antigen protein SAG19 2DE5 ; 1.9 ; Crystal structure of the electron transfer complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 3W9C ; 2.5 ; Crystal structure of the electron transfer complex of cytochrome p450cam with putidaredoxin 2V3B ; 2.45 ; Crystal structure of the electron transfer complex rubredoxin - rubredoxin reductase from Pseudomonas aeruginosa. 3FET ; 2.05 ; Crystal Structure of the Electron Transfer Flavoprotein Subunit Alpha related Protein Ta0212 from Thermoplasma acidophilum 4PW9 ; 2.49 ; Crystal structure of the electron-transfer complex formed between a sulfite dehydrogenase and a c-type cytochrome from Sinorhizobium meliloti 5B1J ; 3.0 ; Crystal structure of the electron-transfer complex of copper nitrite reductase with a cupredoxin 8IJ9 ; 2.04 ; Crystal structure of the ELKS1/Rab6B complex 2VSZ ; 2.3 ; Crystal Structure of the ELMO1 PH domain 7LY7 ; 3.8 ; Crystal structure of the elongation module of the bacillamide NRPS, BmdB, in complex with the oxidase BmdC 4A8J ; 2.1 ; Crystal Structure of the Elongator subcomplex Elp456 1NTG ; 2.21 ; Crystal Structure of the EMAP II-like Cytokine Released from human tyrosyl-tRNA Synthetase 1E7Z ; 2.05 ; Crystal structure of the EMAP2/RNA binding domain of the p43 protein from human aminoacyl-tRNA synthetase complex 1FL0 ; 1.5 ; CRYSTAL STRUCTURE OF THE EMAP2/RNA-BINDING DOMAIN OF THE P43 PROTEIN FROM HUMAN AMINOACYL-TRNA SYNTHETASE COMPLEX 5F1W ; 2.161 ; Crystal structure of the enantiomer of a macrocyclic peptide containing fragments from alpha synuclein 36-55 5LJF ; 1.7344 ; Crystal structure of the endo-1,4-glucanase RBcel1 E135A with cellotriose 4M24 ; 1.386 ; Crystal structure of the endo-1,4-glucanase, RBcel1, in complex with cellobiose 3O5S ; 2.2 ; Crystal Structure of the endo-beta-1,3-1,4 glucanase from Bacillus subtilis (strain 168) 5HNN ; 1.63 ; Crystal structure of the endo-beta-1,4-glucanase (Xac0030) from Xanthomonas axonopodis pv. citri with the triple mutation His174Trp, Tyr211Ala and Lys227Arg. 5HOS ; 1.6 ; Crystal structure of the endo-beta-1,4-glucanase Xac0029 from Xanthomonas axonopodis pv. citri 3CIV ; 1.9 ; Crystal structure of the endo-beta-1,4-mannanase from Alicyclobacillus acidocaldarius 4QDN ; 1.7 ; Crystal Structure of the endo-beta-N-acetylglucosaminidase from Thermotoga maritima 5GKP ; 2.3 ; Crystal structure of the EndoG worm homologue CPS-6 H148A/F122A in complex with DNA 3ISM ; 2.2 ; Crystal structure of the EndoG/EndoGI complex: Mechanism of EndoG inhibition 7P6G ; 1.49 ; Crystal structure of the endoglucanase RBcel1 E135Q 7P6H ; 1.73 ; Crystal structure of the endoglucanase RBcel1 E135Q in complex with cellotriose 7P6I ; 1.47 ; Crystal structure of the endoglucanase RBcel1 Y201F 5FML ; 1.7 ; Crystal structure of the endonuclease from the PA subunit of influenza B virus bound to the PB2 subunit NLS peptide 3GOC ; 1.6 ; Crystal structure of the Endonuclease V (SAV1684) from Streptomyces avermitilis. Northeast Structural Genomics Consortium Target SvR196 3G6S ; 2.5 ; Crystal structure of the endonuclease/exonuclease/phosphatase (BVU_0621) from Bacteroides vulgatus. Northeast Structural Genomics Consortium Target BvR56D 3GA2 ; 2.1 ; Crystal structure of the Endonuclease_V (BSU36170) from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR624 2D4C ; 2.4 ; Crystal structure of the endophilin BAR domain mutant 1L8J ; 2.0 ; Crystal Structure of the Endothelial Protein C Receptor and Bound Phospholipid Molecule 1LQV ; 1.6 ; Crystal structure of the Endothelial protein C receptor with phospholipid in the groove in complex with Gla domain of protein C. 3P22 ; 2.501 ; Crystal structure of the ENE, a viral RNA stability element, in complex with A9 RNA 3D6E ; 2.4 ; Crystal structure of the engineered 1,3-1,4-beta-glucanase protein from Bacillus licheniformis 6S6E ; 2.001 ; Crystal structure of the engineered ancestor of haloalkane dehalogenases and Renilla luciferase (AncHLD-RLuc I161_F162PinsL) 1U0A ; 1.64 ; Crystal structure of the engineered beta-1,3-1,4-endoglucanase H(A16-M) in complex with beta-glucan tetrasaccharide 5LOC ; 2.04 ; Crystal structure of the engineered D-Amino Acid Dehydrogenase (DAADH) 5LOA ; 1.84 ; Crystal structure of the engineered D-Amino Acid Dehydrogenase (DAADH) bound to NADP+ 3U0L ; 1.25 ; Crystal structure of the engineered fluorescent protein mRuby, crystal form 1, pH 4.5 3U0M ; 1.65 ; Crystal structure of the engineered fluorescent protein mRuby, crystal form 1, pH 8.5 3U0N ; 1.6 ; Crystal structure of the engineered fluorescent protein mRuby, crystal form 2 4DXC ; 2.3 ; Crystal structure of the engineered MBP TEM-1 fusion protein RG13, C2 space group 3ET9 ; 2.8 ; Crystal structure of the engineered neutralizing antibody 1H 3ESV ; 2.0 ; Crystal structure of the engineered neutralizing antibody M18 3ETB ; 3.8 ; Crystal structure of the engineered neutralizing antibody M18 complexed with anthrax protective antigen domain 4 5YKH ; 2.457 ; Crystal structure of the engineered nine-repeat PUF domain 5YKI ; 2.25 ; Crystal structure of the engineered nine-repeat PUF domain in complex with cognate 9nt-RNA 8SO5 ; 2.35 ; Crystal structure of the engineered quorum quenching acylase MacQ variant M1 - acylated form 7SO0 ; 1.74 ; Crystal Structure of the Engineered Tick Evasin EVA-P974(F31A) Complexed to Human Chemokine CCL2 2XUA ; 1.9 ; Crystal structure of the enol-lactonase from Burkholderia xenovorans LB400 4FQD ; 2.5 ; Crystal structure of the enolpyruvyl transferase NikO from Streptomyces tendae 4CW5 ; 2.3 ; Crystal structure of the enoyl reductase domain of DfnA from Bacillus amyloliquefaciens 3C8D ; 1.8 ; Crystal structure of the enterobactin esterase FES from Shigella flexneri in the presence of 2,3-Di-hydroxy-N-benzoyl-glycine 3C8H ; 2.48 ; Crystal structure of the enterobactin esterase FES from Shigella flexneri in the presence of 2,3-Di-hydroxy-N-benzoyl-serine 3C87 ; 2.17 ; Crystal structure of the enterobactin esterase FES from Shigella flexneri in the presence of enterobactin 3IPR ; 2.5 ; Crystal structure of the Enterococcus faecalis gluconate specific EIIA phosphotransferase system component 3TB5 ; 2.3 ; Crystal Structure of the Enterococcus faecalis Methionine aminopeptidase apo form 6LSG ; 2.14 ; Crystal structure of the enterovirus 71 polymerase elongation complex (C0S6M form) 7W9S ; 2.53 ; Crystal structure of the enterovirus 71 polymerase elongation complex (C1S3 form) 6LSH ; 2.231 ; Crystal structure of the enterovirus 71 polymerase elongation complex (C2S6M form) 6LSF ; 2.152 ; Crystal structure of the enterovirus 71 polymerase elongation complex (C2S6RA/C2S6RB form) 6LSE ; 2.25 ; Crystal structure of the enterovirus 71 polymerase elongation complex (C3S6A/C3S6B form) 5UCC ; 1.83 ; Crystal structure of the ENTH domain of ENT2 from Candida albicans 1EDU ; 1.8 ; CRYSTAL STRUCTURE OF THE ENTH DOMAIN OF RAT EPSIN 1 7A0K ; 2.7 ; Crystal structure of the entire ectodomain from the Physcomitrella patens receptor kinase CR4 4HEA ; 3.3027 ; Crystal structure of the entire respiratory complex I from Thermus thermophilus 6Y5W ; 2.55 ; Crystal structure of the envelope glycoprotein complex of Andes virus in a near postfusion conformation 6Y62 ; 2.2 ; Crystal structure of the envelope glycoprotein complex of Maporal virus in a prefusion conformation 7QQB ; 2.6 ; Crystal structure of the envelope glycoprotein complex of Puumala virus in complex with the scFv fragment of the broadly neutralizing human antibody ADI-42898 3UAJ ; 3.232 ; Crystal structure of the envelope glycoprotein ectodomain from dengue virus serotype 4 in complex with the fab fragment of the chimpanzee monoclonal antibody 5H2 6Y5F ; 3.2 ; Crystal structure of the envelope glycoprotein prefusion complex of Andes virus - Mutant H953F 8EHU ; 1.1 ; Crystal structure of the environmental CRH-1 class A carbapenemase at 1.1 Angstrom resolution 5XGA ; 1.951 ; Crystal structure of the EnvZ periplasmic domain with CHAPS 2J3V ; 2.11 ; Crystal structure of the enzymatic component C2-I of the C2-toxin from Clostridium botulinum at pH 3.0 2J3X ; 1.75 ; Crystal structure of the enzymatic component C2-I of the C2-toxin from Clostridium botulinum at pH 3.0 (mut-S361R) 2J3Z ; 2.3 ; Crystal structure of the enzymatic component C2-I of the C2-toxin from Clostridium botulinum at pH 6.1 1GIQ ; 1.8 ; Crystal Structure of the Enzymatic Componet of Iota-Toxin from Clostridium Perfringens with NADH 1GIR ; 2.1 ; CRYSTAL STRUCTURE OF THE ENZYMATIC COMPONET OF IOTA-TOXIN FROM CLOSTRIDIUM PERFRINGENS WITH NADPH 2VO9 ; 1.8 ; CRYSTAL STRUCTURE OF THE ENZYMATICALLY ACTIVE DOMAIN OF THE LISTERIA MONOCYTOGENES BACTERIOPHAGE 500 ENDOLYSIN PLY500 3ESF ; 2.01 ; Crystal Structure of the enzyme Fe-superoxide dismutase TbSODB2 from Trypanosoma brucei 1H8U ; 1.8 ; Crystal Structure of the Eosinophil Major Basic Protein at 1.8A: An Atypical Lectin with a Paradigm Shift in Specificity 7KJA ; 1.75 ; Crystal structure of the EphA2 intracellular KD-SAM domains 7KJB ; 2.8 ; Crystal structure of the EphA2 S897E/S901E mutant intracellular KD-SAM domains 7KJC ; 2.3 ; Crystal structure of the EphA2 S901E mutant intracellular KD-SAM domains 5JR2 ; 1.75 ; Crystal structure of the EphA4 LBD in complex with APYd3 peptide inhibitor 2WO1 ; 1.85 ; Crystal Structure of the EphA4 Ligand Binding Domain 2WO3 ; 2.35 ; Crystal Structure of the EphA4-ephrinA2 complex 2WO2 ; 2.45 ; Crystal Structure of the EphA4-ephrinB2 complex 7S7K ; 3.15 ; Crystal structure of the EphB2 extracellular domain 2HEN ; 2.6 ; Crystal Structure of the EphB2 Receptor Kinase domain in complex with ADP 1KGY ; 2.7 ; Crystal Structure of the EphB2-ephrinB2 complex 5WB8 ; 3.0 ; Crystal structure of the epidermal growth factor receptor extracellular region in complex with epigen 5WB7 ; 2.941 ; Crystal structure of the epidermal growth factor receptor extracellular region in complex with epiregulin 7LFS ; 3.5 ; Crystal structure of the epidermal growth factor receptor extracellular region with A265V mutation in complex with epiregulin 7LFR ; 3.2 ; Crystal structure of the epidermal growth factor receptor extracellular region with R84K mutation in complex with epiregulin crystallized with spermine 7LEN ; 2.9 ; Crystal structure of the epidermal growth factor receptor extracellular region with R84K mutation in complex with epiregulin crystallized with trehalose 5EQU ; 2.2 ; Crystal structure of the epimerase SnoN in complex with Fe3+, alpha ketoglutarate and nogalamycin RO 5ERL ; 2.85 ; Crystal structure of the epimerase SnoN in complex with Ni2+, succinate and nogalamycin RO 2XHG ; 1.5 ; Crystal Structure of the Epimerization Domain from the Initiation Module of Tyrocidine Biosynthesis 6TA8 ; 2.4 ; Crystal structure of the epimerization domain from the third module of tyrocidine synthetase B, TycB3(E) 6L30 ; 2.8 ; Crystal structure of the epithelial cell transforming 2 (ECT2) 5GQ0 ; 2.31 ; Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana 1EYH ; 1.56 ; CRYSTAL STRUCTURE OF THE EPSIN N-TERMINAL HOMOLOGY (ENTH) DOMAIN AT 1.56 ANGSTROM RESOLUTION 3PHF ; 3.58 ; Crystal Structure of the Epstein-Barr virus gH and gL complex 7NX5 ; 2.5 ; Crystal structure of the Epstein-Barr Virus protein ZEBRA (BZLF1, Zta) bound to a methylated DNA duplex 1TZQ ; 2.3 ; Crystal structure of the equinatoxin II 8-69 double cysteine mutant 2P15 ; 1.94 ; Crystal structure of the ER alpha ligand binding domain with the agonist ortho-trifluoromethylphenylvinyl estradiol 7RS8 ; 1.64 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-16 7RS0 ; 1.67 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-18 7RRX ; 1.78 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-19 7RRY ; 1.87 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-20 7RS1 ; 1.59 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-21 7RS2 ; 1.72 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-23 7RS9 ; 1.7 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-25 7RS3 ; 1.84 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-29 7RRZ ; 1.83 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-30 7RS7 ; 1.58 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-30 7RS4 ; 1.78 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S, L536S) in complex with DMERI-8 5TN9 ; 2.253 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S,L536S) in Complex with the OBHS-BSC, 4-bromophenyl (1R,2R,4S)-5-(4-hydroxyphenyl)-6-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonate 5TNB ; 2.08 ; Crystal Structure of the ER-alpha Ligand-binding Domain (L372S,L536S) in Complex with the OBHS-BSC, 4-bromophenyl (1R,2R,4S)-6-(4-(2-(dimethylamino)ethoxy)phenyl)-5-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonate 5EGV ; 2.863 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex the 3,4-diaryl-furan derivative 3-chloranyl-4-[4-(2-chloranyl-4-oxidanyl-phenyl)furan-3-yl]phenol 5TLL ; 2.423 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with (E)-2-chloro-4'-hydroxy-4-((hydroxyiminio)methyl)-[1,1'-biphenyl]-3-olate 5TN7 ; 2.238 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with (E)-3'-fluoro-4'-hydroxy-3-((hydroxyiminio)methyl)-[1,1'-biphenyl]-4-olate 5TN8 ; 2.652 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with (E)-4'-hydroxy-3-((hydroxyiminio)methyl)-[1,1'-biphenyl]-4-olate 5TLG ; 2.228 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with (E)-4,4''-dihydroxy-3'-((hydroxyiminio)methyl)-[1,1':2',1''-terphenyl]-4'-olate 5KRH ; 2.243 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 16-benzylidene estrone 5KRI ; 2.247 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 16b-benzyl 17b-estradiol 5TM3 ; 2.194 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 2,3-bis(2-chloro-4-hydroxyphenyl)thiophene 1-oxide 5TM2 ; 2.603 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 2,5-bis(2-chloro-4-hydroxyphenyl)thiophene 1-oxide 5TM1 ; 2.231 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 2,5-bis(2-fluoro-4-hydroxyphenyl)thiophene 1-oxide 5TLY ; 2.143 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 3,4-bis(2-fluoro-4-hydroxyphenyl)thiophene 1,1-dioxide 5TLX ; 2.103 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 3,4-bis(4-hydroxyphenyl)thiophene 1,1-dioxide 5TLM ; 2.497 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 4,4',4''-(thiophene-2,3,5-triyl)triphenol 5TMT ; 2.051 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 4,4'-((1,3-dihydro-2H-inden-2-ylidene)methylene)diphenol 5KRK ; 2.391 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 4,4'-((5-bromo-2,3-dihydro-1H-inden-1-ylidene)methylene)diphenol 5TMU ; 2.429 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 4,4'-(cycloheptylidenemethylene)diphenol 5TLV ; 2.323 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with 4,4'-(thiophene-2,3-diyl)bis(3-fluorophenol) 4ZNH ; 1.933 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 2-Fluoro-substituted OBHS derivative 4ZNV ; 1.771 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 2-Methoxy-substituted OBHS derivative 4ZNU ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 2-Methyl-substituted OBHS derivative 4ZNT ; 1.903 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 3-Bromo-substituted OBHS derivative 4ZNS ; 1.86 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 3-Fluoro-substituted OBHS derivative 4ZNW ; 2.31 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with a 4-Bromo-substituted OBHS derivative 5TLO ; 2.28 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with a Squaric Acid-linked Dimeric Estrogen 5KRJ ; 2.7 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an a-naphthyl Substituted OBHS derivative 5KCT ; 1.6 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-ethyl, 4-chlorobenzyl OBHS-N derivative 5KCF ; 2.07 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-ethyl, 4-methoxybenzyl OBHS-N derivative 5KCU ; 2.03 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-ethyl, alpha-naphthyl OBHS-N derivative 5KCD ; 1.82 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-methyl Substituted OBHS-N derivative 5KCE ; 1.847 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-methyl, 2-chlorobenzyl OBHS-N derivative 5KD9 ; 1.78 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-trifluoroethyl 4-chlorobenzyl OBHS-N derivative 5KCW ; 1.905 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with an N-trifluoroethyl OBHS-N derivative 5KR9 ; 2.25 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with Coumestrol 5KRA ; 2.401 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with DDT and DDE 4ZN7 ; 1.934 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with Diethylstilbestrol 5TLT ; 1.903 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with octane-1,8-diyl bis(2,3-bis(4-hydroxyphenyl)pentanoate) 5KCC ; 2.386 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with Oxabicyclic Heptene Sulfonamide (OBHS-N) 4ZN9 ; 2.215 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with Oxabicyclic Heptene Sulfonate (OBHS) 5U2D ; 1.86 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in complex with Oxabicyclic Heptene Sulfonate (OBHS) 5KRM ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the A-CD ring estrogen, (1S,7aS)-5-(2,5-difluoro-4-hydroxyphenyl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-ol 5KRL ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the A-CD ring estrogen, (1S,7aS)-5-(2-chloro-4-hydroxyphenyl)-7a-methyl-2,3,3a,4,7,7a-hexahydro-1H-inden-1-ol 5TN5 ; 1.892 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the AC-ring estrogen, (1S,3aS,5S,7aS)-5-(4-hydroxyphenyl)-7a-methyloctahydro-1H-inden-1-ol 5TN4 ; 1.857 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the ACD-ring estrogen, (S)-5-(4-hydroxy-3,5-dimethylphenyl)-2,3-dihydro-1H-inden-1-ol 5TMQ ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Arene Core OBHS derivative, 4-bromophenyl 4,4''-dihydroxy-[1,1':2',1''-terphenyl]-4'-sulfonate 5TMO ; 2.172 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Arene Core OBHS derivative, phenyl 4,4''-dihydroxy-[1,1':2',1''-terphenyl]-4'-sulfonate 5TLF ; 2.204 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Constrained WAY Derivative, 4-(2-(3-methylbut-2-en-1-yl)-7-(trifluoromethyl)-2H-indazol-3-yl)benzene-1,3-diol 5TMS ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Cyclofenil-ASC derivative, ethyl (E)-3-(4-(bicyclo[3.3.1]nonan-9-ylidene(4-hydroxyphenyl)methyl)phenyl)acrylate 5TMR ; 2.296 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Cyclofenil-ASC derivative, ethyl (E)-3-(4-(cyclohexylidene(4-hydroxyphenyl)methyl)phenyl)acrylate 5KRF ; 2.193 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Dynamic WAY derivative, 1a 5TN3 ; 2.543 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the estradiol derivative, (8S,9S,13S,14S)-17-((4-isopropylphenyl)amino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-ol 5TMZ ; 2.207 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the estradiol derivative, (8S,9S,13S,14S,17S)-16-(3-methoxybenzyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol 5TN1 ; 2.055 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the estradiol derivative, (8S,9S,13S,14S,E)-17-((4-isopropylphenyl)imino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-ol 5EIT ; 2.68 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the imidazopyridine derivative 2-(4-hydroxyphenyl)-3-(trifluoromethyl)imidazo[1,2-a]pyridin-6-ol 5EI1 ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the imidazopyridine derivative 2-(4-hydroxyphenyl)-3-iodanyl-imidazo[1,2-a]pyridin-6-ol 5KRO ; 2.1 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Methyl(phenyl)amino-substituted Estrogen, (8R,9S,13S,14S,17S)-13-methyl-17-(methyl(phenyl)amino)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-ol 5TMV ; 2.38 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS analog, 4-iodophenyl (1S,2R,4S)-5,6-bis(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonate 5TMW ; 2.286 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS derivative, 4-acetamidophenyl (1S,2R,4S)-5,6-bis(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonate 5TM9 ; 2.5 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC Analog, (E)-3-(4-((1R,4S,6R)-6-((3-chlorophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenyl)acrylic acid 5TMM ; 2.2 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC analog, (E)-6-(4-((1R,4S,6R)-6-((4-bromophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenyl)hex-5-enoic acid 5TM4 ; 2.25 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC Analog, 5-(4-((1R,4S,6R)-6-((3-chlorophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenoxy)pentanoic acid 5TML ; 2.25 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC compound, (E)-6-(4-((1R,4S,6R)-6-((3-chlorophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenyl)hex-5-enoic acid 5TM5 ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC compound, 5-(4-((1R,4S,6R)-6-((4-bromophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenoxy)pentanoic acid 5TM6 ; 2.542 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC compound, 6-(4-((1R,4S,6R)-6-((4-bromophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenoxy)hexanoic acid 5TM7 ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC compound, 7-(4-((1R,4S,6R)-6-((3-chlorophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenoxy)heptanoic acid 5TM8 ; 1.99 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-ASC compound, 7-(4-((1R,4S,6R)-6-((4-bromophenoxy)sulfonyl)-3-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-2-en-2-yl)phenoxy)heptanoic acid 5TLP ; 2.08 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the OBHS-BSC Analog, 3-fluorophenyl (1R,2R,4S)-5-(4-hydroxyphenyl)-6-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonate and 3-methyl-6-phenyl-3H-imidazo[4,5-b]pyridin-2-amine 5TLU ; 2.223 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the PEG-linked Dimeric Estrogen, EE2-(eg)6-EE2-amine 5TLD ; 2.375 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the phenylamino-substituted estrogen, (8R,9S,13S,14S,17S)-13-methyl-17-(phenylamino)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-ol 5U2B ; 2.22 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the phenylamino-substituted estrogen, (8R,9S,13S,14S,17S)-13-methyl-17-(phenylamino)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-ol, without a coactivator peptide 5TN6 ; 2.091 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with the Spiro BC-estradiol, (1S,1'S,3a'S,7a'S)-7a'-methyl-1',2,2',3,3',3a',4',6',7',7a'-decahydro-1,5'-spirobi[indene]-1',5-diol 5KRC ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain (Y537S) in Complex with Zearalenone 5DWE ; 1.92 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a 2-Chloro-substituted Triaryl-imine analog 4,4'-[(2-chlorophenyl)carbonimidoyl]diphenol 5DVS ; 2.28 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a 2-Methyl-substituted Triaryl-imine 4,4'-[(2-methylphenyl)carbonimidoyl]diphenol 5DKS ; 2.6 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a 2-naphthylamino-substituted, ethyl, triaryl-ethylene derivative 4,4'-{2-[3-(naphthalen-1-ylamino)phenyl]but-1-ene-1,1-diyl}diphenol 5DKB ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a 3-methylphenylamino-substituted ethyl triaryl-ethylene derivative 4,4'-(2-{3-[(3-methylphenyl)amino]phenyl}but-1-ene-1,1-diyl)diphenol 5DKE ; 2.6 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a 3-naphthyl-substituted, methyl, cis-diaryl-ethylene compound 4,4'-[2-(naphthalen-2-yl)prop-1-ene-1,1-diyl]diphenol 5DP0 ; 2.382 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a 4-fluorophenylamino-substituted triaryl-ethylene derivative 4,4'-(2-{3-[(4-fluorophenyl)amino]phenyl}ethene-1,1-diyl)diphenol 5DMF ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a 4-fluorophenylamino-substituted, methyl triaryl-ethylene derivative 4,4'-(2-{3-[(4-fluorophenyl)amino]phenyl}prop-1-ene-1,1-diyl)diphenol 5DRM ; 2.241 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a dichloro-substituted, 2,5-diarylthiophene-core ligand 4,4'-thiene-2,5-diylbis(3-chlorophenol) 5DU5 ; 2.195 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a dichloro-substituted, 3,4-diarylthiophene dioxide core ligand 5DRJ ; 2.07 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a dichloro-substituted, 3-methyl 2,5-diarylthiophene-core ligand 4,4'-(3-methylthiene-2,5-diyl)bis(3-chlorophenol) 5DID ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a difluoro-substituted A-CD ring estrogen derivative (1S,3aR,5S,7aS)-5-(2,3-difluoro-4-hydroxyphenyl)-7a-methyloctahydro-1H-inden-1-ol 5DTV ; 2.295 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a dimethyl-substituted, 3,4-diarylthiophene dioxide core ligand 5DMC ; 2.403 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a nitrile-substituted triaryl-ethylene derivative 3,3-bis(4-hydroxyphenyl)-2-phenylprop-2-enenitrile 5DUE ; 2.09 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a para-Hydroxyl-substituted, Sulfoxide-bridged Oxabicyclic Heptene Sulfonate (SOBHS)-2 Analog 4-hydroxyphenyl (1S,2S,4S,5S,6R,7S)-5,6-bis(4-hydroxy-2-methylphenyl)-7-thiabicyclo[2.2.1]heptane-2-sulfonate 7-oxide 5DK9 ; 2.28 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a phenylamino-substituted ethyl triaryl-ethylene derivative 4,4'-{2-[3-(phenylamino)phenyl]but-1-ene-1,1-diyl}diphenol 5DL4 ; 2.1 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a phenylamino-substituted, methyl, triaryl-ethylene derivative 4,4'-{2-[3-(phenylamino)phenyl]prop-1-ene-1,1-diyl}diphenol 5DWI ; 2.43 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a Resorcinyl 2-Chloro-substituted Diaryl-imine analog 4-[(E)-[(2-chlorophenyl)imino](4-hydroxyphenyl)methyl]benzene-1,3-diol 5DWJ ; 2.001 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a Resorcinyl 4-Fluoro-substituted Diaryl-imine analog 4-[(E)-[(4-fluorophenyl)imino](4-hydroxyphenyl)methyl]benzene-1,3-diol 5DUG ; 2.252 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a Sulfoxide-bridged Oxabicyclic Heptene Sulfonate (SOBHS)-2 analog phenyl (1S,2S,4S,7S)-5,6-bis(4-hydroxy-2-methylphenyl)-7-thiabicyclo[2.2.1]hept-5-ene-2-sulfonate 7-oxide 5DUH ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a Sulfoxide-bridged Oxabicyclic Heptene Sulfonate (SOBHS)-3 analog phenyl (1S,2S,4S,7S)-5,6-bis(4-hydroxy-3-methylphenyl)-7-thiabicyclo[2.2.1]hept-5-ene-2-sulfonate 7-oxide 5DKG ; 2.15 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a t-butyl-substituted, methyl, triaryl-ethylene derivative 4,4'-[2-(4-tert-butylphenyl)prop-1-ene-1,1-diyl]diphenol 5DLR ; 2.26 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a triaryl-ethylene compound 4,4'-(2-phenylethene-1,1-diyl)diphenol 5DVV ; 2.505 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with a Triaryl-imine analog 4,4'-(phenylcarbonimidoyl)diphenol 5DIE ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a trifluoro-substituted A-CD ring estrogen derivative (1S,3aR,5S,7aS)-7a-methyl-5-(2,3,5-trifluoro-4-hydroxyphenyl)octahydro-1H-inden-1-ol 5DIG ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with a trifluoromethyl-substituted A-CD ring estrogen derivative (1S,3aR,5S,7aS)-5-[4-hydroxy-2-(trifluoromethyl)phenyl]-7a-methyloctahydro-1H-inden-1-ol 5DI7 ; 2.241 ; Crystal Structure of the ER-alpha Ligand-binding Domain in complex with an methyl-substituted A-CD ring estrogen derivative (1S,3aR,5S,7aS)-5-(4-hydroxy-2-methylphenyl)-7a-methyloctahydro-1H-inden-1-ol 5DXM ; 2.37 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 3-[(E)-(1s,5s)-bicyclo[3.3.1]non-9-ylidene(4-hydroxyphenyl)methyl]phenol 5DYB ; 2.27 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-(3,4-dihydronaphthalen-2(1H)-ylidenemethanediyl)diphenol 5DXQ ; 2.4 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-[(1s,5s)-bicyclo[3.3.1]non-9-ylidenemethanediyl]diphenol 5DZ1 ; 2.2 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-[(4-ethylcyclohexylidene)methanediyl]diphenol 5DZ0 ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-[(4-methylcyclohexylidene)methanediyl]diphenol 5EHJ ; 2.5 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-[(4aR,8aR)-octahydronaphthalen-2(1H)-ylidenemethanediyl]diphenol 5DXK ; 2.226 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-[(9s)-bicyclo[3.3.1]non-9-ylmethanediyl]diphenol 5DXR ; 2.28 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3R)-3-methylcyclohexylidene]methanediyl}diphenol 5E14 ; 2.22 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3R)-3-phenylcyclohexylidene]methanediyl}diphenol 5DZI ; 1.9 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3S)-3-(2-hydroxyethyl)cyclohexylidene]methanediyl}diphenol 5E0W ; 2.0 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3S)-3-(4-hydroxyphenyl)cyclohexylidene]methanediyl}diphenol 5E0X ; 2.014 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3S)-3-(4-methoxyphenyl)cyclohexylidene]methanediyl}diphenol 5DYD ; 2.485 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3S)-3-(methylsulfanyl)cyclohexylidene]methanediyl}diphenol 5DY8 ; 2.031 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[(3S)-3-ethylcyclohexylidene]methanediyl}diphenol 5DZH ; 2.11 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[4-(2-hydroxyethyl)cyclohexylidene]methanediyl}diphenol 5E15 ; 2.1 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[4-(2-hydroxyethyl)cyclohexylidene]methanediyl}diphenol 5DZ3 ; 2.15 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4,4'-{[4-(fluoromethyl)cyclohexylidene]methanediyl}diphenol 5DXP ; 2.201 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative 4-[(E)-(1s,5s)-bicyclo[3.3.1]non-9-ylidene(phenyl)methyl]phenol 5E1C ; 1.98 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative dimethyl {(1S)-3-[bis(4-hydroxyphenyl)methylidene]cyclohexyl}propanedioate 5E19 ; 2.24 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Cyclofenil Derivative methyl {4-[bis(4-hydroxyphenyl)methylidene]cyclohexyl}acetate 5DWG ; 2.3 ; Crystal Structure of the ER-alpha Ligand-binding Domain in Complex with the Triaryl-substituted Imine Analog, 4-{(E)-(4-hydroxyphenyl)[(2-methylphenyl)imino]methyl}benzene-1,3-diol 5EM2 ; 2.67 ; Crystal structure of the Erb1-Ytm1 complex 3LMG ; 2.8 ; Crystal structure of the ERBB3 kinase domain in complex with AMP-PNP 3BCE ; 2.5 ; Crystal structure of the ErbB4 kinase 3BBT ; 2.8 ; crystal structure of the ErbB4 kinase in complex with lapatinib 3BBW ; 4.0 ; crystal structure of the ErbB4 kinase in its inactive conformation 4G6N ; 2.0 ; Crystal Structure of the ERK2 4G6O ; 2.2 ; Crystal Structure of the ERK2 4FV6 ; 2.5 ; Crystal Structure of the ERK2 complexed with E57 4FV8 ; 2.0 ; Crystal Structure of the ERK2 complexed with E63 4FV9 ; 2.11 ; Crystal Structure of the ERK2 complexed with E71 4FUX ; 2.2 ; Crystal Structure of the ERK2 complexed with E75 4FV7 ; 1.9 ; Crystal Structure of the ERK2 complexed with E94 4FUY ; 2.0 ; Crystal Structure of the ERK2 complexed with EK2 4FV0 ; 2.1 ; Crystal Structure of the ERK2 complexed with EK3 4FV1 ; 1.99 ; Crystal Structure of the ERK2 complexed with EK4 4FV2 ; 2.0 ; Crystal Structure of the ERK2 complexed with EK5 4FV3 ; 2.2 ; Crystal Structure of the ERK2 complexed with EK6 4FV4 ; 2.5 ; Crystal Structure of the ERK2 complexed with EK7 4FV5 ; 2.4 ; Crystal Structure of the ERK2 complexed with EK9 4IC7 ; 2.6 ; Crystal structure of the ERK5 kinase domain in complex with an MKK5 binding fragment 5HQP ; 2.6 ; Crystal structure of the ERp44-peroxiredoxin 4 complex 3M6B ; 1.3 ; Crystal Structure of the Ertapenem Pre-isomerized Covalent Adduct with TB B-lactamase 3LBX ; 2.8 ; Crystal Structure of the Erythrocyte Spectrin Tetramerization Domain Complex 4Z8N ; 2.124 ; Crystal structure of the erythrocyte-binding domain from Plasmodium vivax reticulocyte-binding protein 2a (PvRBP2a) 5W53 ; 1.71 ; Crystal structure of the erythrocyte-binding domain from Plasmodium vivax reticulocyte-binding protein 2b (PvRBP2b) 3EL6 ; 1.85 ; Crystal Structure of the Erythromycin Dehydratase 7CCZ ; 1.79 ; Crystal structure of the ES2 intermediate form of human hydroxymethylbilane synthase 7Y6C ; 1.4 ; Crystal structure of the EscE/EsaG/EsaH complex 7Y6B ; 1.8 ; Crystal structure of the EscE/EsaH complex 4PTY ; 2.1 ; Crystal structure of the Escherichia coli alkanesulfonate FMN reductase SsuE in apo form 4PTZ ; 1.9007 ; Crystal structure of the Escherichia coli alkanesulfonate FMN reductase SsuE in FMN-bound form 4PU0 ; 2.3018 ; Crystal structure of the Escherichia coli alkanesulfonate FMN reductase SsuE in FMNH2-bound form 1F48 ; 2.3 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI ARSENITE-TRANSLOCATING ATPASE 1II0 ; 2.4 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI ARSENITE-TRANSLOCATING ATPASE 1II9 ; 2.6 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI ARSENITE-TRANSLOCATING ATPASE IN COMPLEX WITH AMP-PNP 1IHU ; 2.15 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI ARSENITE-TRANSLOCATING ATPASE IN COMPLEX WITH MG-ADP-ALF3 6CVL ; 2.953 ; Crystal structure of the Escherichia coli ATPgS-bound MetNI methionine ABC transporter in complex with its MetQ binding protein 1BXI ; 2.05 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI COLICIN E9 DNASE DOMAIN WITH ITS COGNATE IMMUNITY PROTEIN IM9 5DFK ; 2.4 ; Crystal Structure of the Escherichia coli Common Pilus Chaperone, EcpB 1JSX ; 2.4 ; Crystal Structure of the Escherichia coli Glucose-Inhibited Division Protein B (GidB) 4ISA ; 1.8 ; Crystal Structure of the Escherichia coli LpxC/BB-78485 complex 4IS9 ; 2.13 ; Crystal Structure of the Escherichia coli LpxC/L-161,240 complex 3P3G ; 1.65 ; Crystal Structure of the Escherichia coli LpxC/LPC-009 complex 3PS1 ; 1.85 ; Crystal structure of the Escherichia Coli LPXC/LPC-011 complex 3PS2 ; 2.3 ; Crystal structure of the Escherichia Coli LPXC/LPC-012 complex 3PS3 ; 2.1 ; Crystal structure of the Escherichia Coli LPXC/LPC-053 complex 4MQY ; 2.005 ; Crystal Structure of the Escherichia coli LpxC/LPC-138 complex 5NHI ; 2.6 ; Crystal structure of the Escherichia coli N-terminal domain of DsbD (nDsbD) without the cap-loop region 2RF7 ; 2.04 ; Crystal structure of the escherichia coli nrfa mutant Q263E 6GFL ; 2.48 ; Crystal structure of the Escherichia coli nucleosidase PpnN (apo form) 6GFM ; 2.77 ; Crystal structure of the Escherichia coli nucleosidase PpnN (pppGpp-form) 2P7V ; 2.6 ; Crystal structure of the Escherichia coli regulator of sigma 70, Rsd, in complex with sigma 70 domain 4 3LTI ; 1.6 ; Crystal structure of the Escherichia coli RNA polymerase beta subunit beta2-betai4 domains 1JYH ; 1.8 ; Crystal Structure of the Escherichia coli SbmC protein (AKA Gyrase Inhibitory Protein GyrI, AKA YeeB) 1KAG ; 2.05 ; Crystal Structure of the Escherichia coli Shikimate Kinase I (AroK) 6E8E ; 2.25 ; Crystal structure of the Escherichia coli sliding clamp-MutL complex. 7AB5 ; 2.9 ; Crystal structure of the Escherichia coli toxin-antitoxin system HipBST (HipT D233Q) 7AB3 ; 2.4 ; Crystal structure of the Escherichia coli toxin-antitoxin system HipBST (HipT S57A) 7AB4 ; 3.34 ; Crystal structure of the Escherichia coli toxin-antitoxin system HipBST (HipT S59A) 3BRQ ; 2.0 ; Crystal structure of the Escherichia coli transcriptional repressor ascG 3EFP ; 2.01 ; Crystal structure of the Escherichia coli twin arginine leader peptide binding protein DmsD in a monomeric form 1VBM ; 2.7 ; Crystal structure of the Escherichia coli tyrosyl-tRNA synthetase complexed with Tyr-AMS 1Y0G ; 2.2 ; CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI YCEI PROTEIN, STRUCTURAL GENOMICS 3C03 ; 1.9 ; Crystal structure of the EscU C-terminal domain with P263A mutation,space group P 1 21 1 7JPJ ; 2.78 ; Crystal Structure of the essential dimeric LYSA from Phaeodactylum tricornutum 1OKJ ; 2.28 ; crystal structure of the essential E. coli YeaZ protein by MAD method using the gadolinium complex ""DOTMA"" 2QUQ ; 2.8 ; Crystal Structure of the Essential Inner Kinetochore Protein Cep3p 4QVH ; 1.75 ; Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein 4CGK ; 2.55 ; Crystal structure of the essential protein PcsB from Streptococcus pneumoniae 6RNX ; 2.84 ; Crystal structure of the essential repressor DdrO from radiation-resistant Deinococcus bacteria (Deinococcus deserti) 5CML ; 1.56 ; Crystal structure of the Esterase domain from Rhodothermus marinus Rmar_1206 protein 4FLE ; 2.1 ; Crystal structure of the esterase YqiA (YE3661) from Yersinia enterocolitica, Northeast Structural Genomics Consortium Target YeR85 2QGT ; 2.15 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed to an Ether Estradiol Compound 2QXM ; 2.3 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed to Burned Meat Compound PhIP 2QGW ; 2.39 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed with a Chloro-Indazole Compound 2QR9 ; 2.0 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed with an Oxabicyclic Derivative Compound 2QH6 ; 2.7 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed with an Oxabicyclic diarylethylene Compound 2QSE ; 1.85 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain complexed with Burned Meat Compound 4-OH-PhIP 2QZO ; 1.72 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Complexed with WAY-169916 2QA8 ; 1.85 ; Crystal Structure of the Estrogen Receptor Alpha Ligand Binding Domain Mutant 537S Complexed with Genistein 4IWF ; 1.932 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Oxime-derivative 4IWC ; 2.24 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with a Dynamic Thiophene-derivative 4PPS ; 1.929 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with an A-CD ring estrogen derivative 4IU7 ; 2.29 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Constrained WAY-derivative, 2b 4IV4 ; 2.3 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Constrained WAY-derivative, 5b 4IVW ; 2.06 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Constrained WAY-derivative, 6b 4IW6 ; 1.98 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Constrained WAY-derivative, 7b 4IUI ; 2.3 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Dynamic WAY derivative, 4a 4IV2 ; 2.14 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Dynamic WAY-derivative, 5a 4IVY ; 1.95 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Dynamic WAY-derivative, 7a 4IW8 ; 2.0375 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Dynamic WAY-derivative, 9a 4PPP ; 2.686 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Fluoro-Resveratrol 4PP6 ; 2.201 ; Crystal Structure of the Estrogen Receptor alpha Ligand-binding Domain in Complex with Resveratrol 7E2E ; 2.7 ; Crystal structure of the Estrogen-Related Receptor alpha (ERRalpha) ligand-binding domain (LBD) in complex with an agonist DS45500853 and a PGC-1alpha peptide 4IJY ; 2.6 ; Crystal Structure of the ETEC Secreted Protein CofJ 2HD3 ; 2.4 ; Crystal Structure of the Ethanolamine Utilization Protein EutN from Escherichia coli, NESG Target ER316 6KO7 ; 1.7 ; Crystal structure of the Ethidium bound RamR determined with XtaLAB Synergy 2ZOZ ; 1.95 ; Crystal structure of the ethidium-bound form of the multi-drug binding transcriptional repressor CgmR 7B1S ; 0.992 ; Crystal structure of the ethyl-coenzyme M reductase from Candidatus Ethanoperedens thermophilum at 0.994-A resolution 7B2C ; 1.8 ; Crystal structure of the ethyl-coenzyme M reductase from Candidatus Ethanoperedens thermophilum gassed with xenon 4BQA ; 2.5 ; Crystal structure of the ETS domain of human ETS2 in complex with DNA 4UNO ; 1.95 ; Crystal structure of the ETS domain of human ETV5 in complex with DNA 2NNY ; 2.58 ; Crystal structure of the Ets1 dimer DNA complex. 3WU1 ; 2.4 ; Crystal structure of the ETS1-RUNX1-DNA ternary complex 1OG1 ; 2.0 ; CRYSTAL STRUCTURE OF THE EUCARYOTIC MONO-ADP-RIBOSYLTRANSFERASE ART2.2 IN COMPLEX WITH TAD 1OG4 ; 2.6 ; Crystal Structure of the Eucaryotic Mono-ADP-Ribosyltransferase ART2.2 Mutant E189A in Complex with NADH 1GXY ; 1.71 ; crystal structure of the eucaryotic mono-ADP-ribosyltransferase ART2.2; CRYSTAL FORM A (P21) 1GY0 ; 2.08 ; crystal structure of the eucaryotic mono-ADP-ribosyltransferase ART2.2; CRYSTAL FORM C (P3121) 4V5O ; 3.93 ; CRYSTAL STRUCTURE OF THE EUKARYOTIC 40S RIBOSOMAL SUBUNIT IN COMPLEX WITH INITIATION FACTOR 1. 1SXJ ; 2.85 ; Crystal Structure of the Eukaryotic Clamp Loader (Replication Factor C, RFC) Bound to the DNA Sliding Clamp (Proliferating Cell Nuclear Antigen, PCNA) 7EDN ; 2.6 ; Crystal structure of the eukaryotic decoding site in complex with Ag(I) 1PLQ ; 2.3 ; CRYSTAL STRUCTURE OF THE EUKARYOTIC DNA POLYMERASE PROCESSIVITY FACTOR PCNA 1PLR ; 3.0 ; CRYSTAL STRUCTURE OF THE EUKARYOTIC DNA POLYMERASE PROCESSIVITY FACTOR PCNA 3WJ9 ; 2.506 ; Crystal structure of the eukaryotic initiation factor 2A0U ; 2.1 ; Crystal structure of the eukaryotic initiation factor 2B from Leishmania major at 2.1 A resolution 1OG3 ; 2.6 ; Crystal structure of the eukaryotic mono-ADP-ribosyltransferase ART2.2 mutant E189I in complex with NAD 1GXZ ; 2.1 ; crystal structure of the eukaryotic mono-ADP-ribosyltransferase ART2.2; Crystal form B (P212121) 4XGC ; 3.5 ; Crystal structure of the eukaryotic origin recognition complex 7EDM ; 2.81 ; Crystal structure of the eukaryotic ribosomal decoding site in complex with G418 and Hg(II) 5MB9 ; 3.2 ; Crystal structure of the eukaryotic ribosome associated complex (RAC), a unique Hsp70/Hsp40 pair 3JYC ; 3.11 ; Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Angstrom resolution 5B04 ; 2.994 ; Crystal structure of the eukaryotic translation initiation factor 2B from Schizosaccharomyces pombe 4U6I ; 2.1 ; Crystal Structure of the EutL Microcompartment Shell Protein from Clostridium Perfringens Bound to Vitamin B12 4JGK ; 1.883 ; Crystal Structure of the evolved variant of the computationally designed serine hydrolase, Northeast Structural Genomics Consortium (NESG) Target OR275 4JLL ; 1.36 ; Crystal Structure of the evolved variant of the computationally designed serine hydrolase, OSH55.4_H1 covalently bound with FP-alkyne, Northeast Structural Genomics Consortium (NESG) Target OR273 4JVV ; 2.288 ; Crystal structure of the evolved variant of the computationally designed serine hydrolase, OSH55.4_H1, covalently bound with diisopropyl fluorophosphate (DFP), Northeast Structural Genomics Consortium (NESG) Target OR273 2EC8 ; 3.0 ; Crystal structure of the exctracellular domain of the receptor tyrosine kinase, Kit 2D2S ; 2.85 ; Crystal Structure of the Exo84p C-terminal Domains 1KFI ; 2.4 ; Crystal Structure of the Exocytosis-Sensitive Phosphoprotein, pp63/Parafusin (phosphoglucomutase) from Paramecium 4BE3 ; 1.75 ; crystal structure of the exolytic PL7 alginate lyase AlyA5 from Zobellia galactanivorans 4WBQ ; 2.693 ; Crystal structure of the exonuclease domain of QIP (QDE-2 interacting protein) solved by native-SAD phasing. 3CER ; 2.4 ; Crystal structure of the exopolyphosphatase-like protein Q8G5J2. Northeast Structural Genomics Consortium target BlR13 7TUV ; 2.225 ; Crystal structure of the exoribonucleolytic module of T. brucei RRP44 3GHM ; 2.6 ; Crystal structure of the exosite-containing fragment of human ADAMTS13 (form-1) 3GHN ; 2.8 ; Crystal structure of the exosite-containing fragment of human ADAMTS13 (form-2) 3VN4 ; 2.8 ; Crystal structure of the exosite-containing fragment of human ADAMTS13 (P475S mutant) 4ZUA ; 2.5 ; Crystal structure of the ExsA regulatory domain 3KXY ; 2.804 ; Crystal Structure of the ExsC-ExsE Complex 5VQG ; 2.6 ; Crystal structure of the extended Tudor domain from BmPAPI 5VY1 ; 3.05 ; Crystal structure of the extended Tudor domain from BmPAPI 5VQH ; 2.4 ; Crystal structure of the extended Tudor domain from BmPAPI in complex with sDMA 5J39 ; 1.95 ; Crystal Structure of the extended TUDOR domain from TDRD2 4YIN ; 2.3 ; Crystal structure of the extended-spectrum beta-lactamase OXA-145 7CIN ; 1.79006 ; Crystal structure of the extended-spectrum class C beta-lactamase AmpC BER with the ordered R2 loop 3OAI ; 2.1 ; Crystal structure of the extra-cellular domain of human myelin protein zero 1N26 ; 2.4 ; Crystal Structure of the extra-cellular domains of Human Interleukin-6 Receptor alpha chain 3IGQ ; 2.3 ; Crystal structure of the extracellular domain of a bacterial pentameric ligand-gated ion channel 1FNL ; 1.8 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF A HUMAN FCGRIII 5FJV ; 3.2 ; Crystal structure of the extracellular domain of alpha2 nicotinic acetylcholine receptor in pentameric assembly 2GUM ; 2.1 ; Crystal structure of the extracellular domain of glycoprotein B from Herpes Simplex Virus type I 5CXF ; 3.602 ; Crystal structure of the extracellular domain of glycoprotein B from Human Cytomegalovirus 5FBK ; 2.1 ; Crystal structure of the extracellular domain of human calcium sensing receptor 5FBH ; 2.7 ; Crystal structure of the extracellular domain of human calcium sensing receptor with bound Gd3+ 1JCZ ; 1.55 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF HUMAN CARBONIC ANHYDRASE XII 1JD0 ; 1.5 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF HUMAN CARBONIC ANHYDRASE XII COMPLEXED WITH ACETAZOLAMIDE 2EF1 ; 2.4 ; Crystal structure of the extracellular domain of human CD38 3EHS ; 2.76 ; Crystal structure of the extracellular domain of human corticotropin releasing factor receptor type 1 (CRFR1) 3EHT ; 3.4 ; Crystal structure of the extracellular domain of human corticotropin releasing factor receptor type 1 (CRFR1) in complex with CRF 3EHU ; 1.96 ; Crystal structure of the extracellular domain of human corticotropin releasing factor receptor type 1 (CRFR1) in complex with CRF 4MS4 ; 1.9 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the agonist baclofen 4MQF ; 2.22 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist 2-hydroxysaclofen 4MR8 ; 2.15 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist CGP35348 4MS1 ; 2.25 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist CGP46381 4MR7 ; 2.15 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist CGP54626 4MRM ; 2.86 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist phaclofen 4MR9 ; 2.35 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the antagonist SCH50911 4MS3 ; 2.5 ; Crystal structure of the extracellular domain of human GABA(B) receptor bound to the endogenous agonist GABA 4F11 ; 2.38 ; Crystal structure of the extracellular domain of human GABA(B) receptor GBR2 4F12 ; 3.02 ; Crystal structure of the extracellular domain of human GABA(B) receptor GBR2 4MQE ; 2.35 ; Crystal structure of the extracellular domain of human GABA(B) receptor in the apo form 2QKH ; 1.9 ; Crystal structure of the extracellular domain of human GIP receptor in complex with the hormone GIP 2XDG ; 1.95 ; Crystal structure of the extracellular domain of human growth hormone releasing hormone receptor. 3RRQ ; 2.1 ; Crystal structure of the extracellular domain of human PD-1 2YX8 ; 2.4 ; Crystal structure of the extracellular domain of human RAMP1 3AQE ; 2.0 ; Crystal structure of the extracellular domain of human RAMP2 2X57 ; 2.1 ; Crystal structure of the extracellular domain of human Vasoactive intestinal polypeptide receptor 2 2E9W ; 3.5 ; Crystal structure of the extracellular domain of Kit in complex with stem cell factor (SCF) 1IQA ; 2.2 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF MOUSE RANK LIGAND 6KD5 ; 2.6 ; Crystal structure of the extracellular domain of MSPL/TMPRSS13 in complex with dec-RVKR-cmk inhibitor 1RJ5 ; 2.81 ; Crystal Structure of the Extracellular Domain of Murine Carbonic Anhydrase XIV 1RJ6 ; 2.9 ; Crystal Structure of the Extracellular Domain of Murine Carbonic Anhydrase XIV in Complex with Acetazolamide 1NPU ; 2.0 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF MURINE PD-1 3BL8 ; 3.3 ; Crystal structure of the extracellular domain of neuroligin 2A from mouse 5F9Q ; 2.044 ; Crystal structure of the extracellular domain of noncanonic ABC-type transporter YknZ from Gram-positive bacteria 5A9D ; 2.1 ; Crystal structure of the extracellular domain of PepT1 5A9H ; 2.06 ; Crystal structure of the extracellular domain of PepT2 5A9I ; 2.84 ; Crystal structure of the extracellular domain of PepT2 4ESQ ; 1.7 ; Crystal structure of the extracellular domain of PknH from Mycobacterium tuberculosis 5IS1 ; 1.998 ; Crystal structure of the extracellular domain of sensor histidine kinase YycG from Staphylococcus aureus at 2.0 Angstrom resolution 3QWQ ; 2.75 ; Crystal structure of the extracellular domain of the epidermal growth factor receptor in complex with an adnectin 4D01 ; 1.795 ; Crystal Structure of the Extracellular Domain of the Human Alpha9 Nicotinic Acetylcholine Receptor 4UXU ; 1.71 ; Crystal Structure of the Extracellular Domain of the Human Alpha9 Nicotinic Acetylcholine Receptor In Complex with Methyllycaconitine 3H3G ; 1.94 ; Crystal structure of the extracellular domain of the human parathyroid hormone receptor (PTH1R) in complex with parathyroid hormone-related protein (PTHrP) 2QC1 ; 1.94 ; Crystal structure of the extracellular domain of the nicotinic acetylcholine receptor 1 subunit bound to alpha-bungarotoxin at 1.9 A resolution 3LI8 ; 1.75 ; Crystal Structure of the extracellular domain of the putative histidine kinase mmHK1S-Z2 3LI9 ; 1.7 ; Crystal Structure of the extracellular domain of the putative histidine kinase mmHK1S-Z2 3LIA ; 1.99 ; Crystal Structure of the extracellular domain of the putative histidine kinase mmHK1S-Z2 3LIB ; 2.99 ; Crystal Structure of the extracellular domain of the putative histidine kinase mmHK1S-Z3 3LIF ; 2.7 ; Crystal Structure of the extracellular domain of the putative histidine kinase rpHK1S-Z16 3LIC ; 2.3 ; Crystal Structure of the extracellular domain of the putative histidine kinase soHK1S-Z6 3LID ; 1.76 ; Crystal Structure of the extracellular domain of the putative histidine kinase vpHK1S-Z8 3LIE ; 2.59 ; Crystal Structure of the extracellular domain of the putative histidine kinase vpHK1S-Z8 3V9F ; 3.3 ; Crystal Structure of the extracellular domain of the putative hybrid two component system BT3049 from B. thetaiotaomicron 3VA6 ; 2.8 ; Crystal Structure of the extracellular domain of the putative hybrid two component system BT4673 from B. thetaiotaomicron 3OTT ; 2.3 ; Crystal Structure of the extracellular domain of the putative one component system BT4673 from B. thetaiotaomicron 1BTE ; 1.5 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF THE TYPE II ACTIVIN RECEPTOR 2HLQ ; 1.45 ; Crystal Structure of the Extracellular Domain of the Type II BMP Receptor 2HLR ; 1.2 ; Crystal Structure of the Extracellular Domain of the Type II BMP Receptor 4X82 ; 2.76 ; Crystal Structure of the Extracellular Domain of ZIP4 3JZ7 ; 2.19 ; Crystal structure of the extracellular domains of coxsackie & adenovirus receptor from mouse (mCAR) 8HC0 ; 2.9 ; Crystal structure of the extracellular domains of GPR110 3BIX ; 1.8 ; Crystal structure of the extracellular esterase domain of Neuroligin-1 1UCT ; 2.1 ; Crystal structure of the extracellular fragment of Fc alpha Receptor I (CD89) 5EH1 ; 1.8 ; Crystal structure of the extracellular part of receptor 2 of human interferon gamma 1PC3 ; 2.16 ; Crystal structure of the extracellular phosphate ABC transport receptor (PstS-1) and immunodominant antigen of M. tuberculosis. 3B5H ; 2.8 ; Crystal structure of the extracellular portion of HAb18G/CD147 4YWZ ; 1.7 ; Crystal structure of the extracellular receptor domain of the essential sensor kinase WalK from Staphylococcus aureus 1N8Y ; 2.4 ; Crystal structure of the extracellular region of rat HER2 3B2V ; 3.3 ; Crystal structure of the extracellular region of the epidermal growth factor receptor in complex with the Fab fragment of IMC-11F8 2E4X ; 2.75 ; Crystal structure of the extracellular region of the group II metabotropic glutamate receptor complexed with 1S,3R-ACPD 2E4W ; 2.4 ; Crystal structure of the extracellular region of the group II metabotropic glutamate receptor complexed with 1S,3S-ACPD 2E4Y ; 3.4 ; Crystal structure of the extracellular region of the group II metabotropic glutamate receptor complexed with 2R,4R-APDC 2E4V ; 2.4 ; Crystal structure of the extracellular region of the group II metabotropic glutamate receptor complexed with DCG-IV 2E4U ; 2.35 ; Crystal structure of the extracellular region of the group II metabotropic glutamate receptor complexed with L-glutamate 1HNF ; 2.5 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR REGION OF THE HUMAN CELL ADHESION MOLECULE CD2 AT 2.5 ANGSTROMS RESOLUTION 1Z8G ; 1.55 ; Crystal structure of the extracellular region of the transmembrane serine protease hepsin with covalently bound preferred substrate. 1M1X ; 3.3 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR SEGMENT OF INTEGRIN ALPHA VBETA3 BOUND TO MN2+ 1JV2 ; 3.1 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR SEGMENT OF INTEGRIN ALPHAVBETA3 1L5G ; 3.2 ; CRYSTAL STRUCTURE OF THE EXTRACELLULAR SEGMENT OF INTEGRIN AVB3 IN COMPLEX WITH AN ARG-GLY-ASP LIGAND 1R85 ; 1.45 ; Crystal structure of the extracellular xylanase from Geobacillus stearothermophilus T-6 (XT6): The WT enzyme (monoclinic form) at 1.45A resolution 1R87 ; 1.67 ; Crystal structure of the extracellular xylanase from Geobacillus stearothermophilus T-6 (XT6, monoclinic form): The complex of the WT enzyme with xylopentaose at 1.67A resolution 1R86 ; 1.8 ; Crystal structure of the extracellular xylanase from Geobacillus stearothermophilus T-6 (XT6, monoclinic form): The E159A/E265A mutant at 1.8A resolution 4CZN ; 1.199 ; Crystal structure of the extralong fungal manganese peroxidase from Ceriporiopsis subvermispora 4CZQ ; 1.198 ; Crystal structure of the extralong fungal manganese peroxidase from Ceriporiopsis subvermispora in complex with cadmium 4CZR ; 1.984 ; Crystal structure of the extralong fungal manganese peroxidase from Ceriporiopsis subvermispora in complex with cadmium (anomalous data) 4CZO ; 1.199 ; Crystal structure of the extralong fungal manganese peroxidase from Ceriporiopsis subvermispora in complex with manganese 4CZP ; 1.898 ; Crystal structure of the extralong fungal manganese peroxidase from ceriporiopsis subvermispora in complex with manganese (anomalous data) 5OJH ; 1.55 ; Crystal structure of the extramembrane domain of the cellulose biosynthetic protein BcsG from Salmonella typhimurium 5OLT ; 1.45 ; Crystal structure of the extramembrane domain of the cellulose biosynthetic protein BcsG from Salmonella typhimurium 2FC3 ; 1.56 ; Crystal structure of the extremely thermostable Aeropyrum pernix L7Ae multifunctional protein 4MI5 ; 2.0 ; Crystal structure of the EZH2 SET domain 2Q7T ; 2.42 ; Crystal Structure of the F plasmid TraI Relaxase Domain with the Scissile Thymidine Base 2Q7U ; 3.0 ; Crystal Structure of the F plasmid TraI Relaxase Domain with the Scissile Thymidine Base and Imidodiphosphate 5ES7 ; 2.805 ; Crystal structure of the F-A domains of the LgrA initiation module soaked with FON, AMPcPP, and valine. 7AAN ; 2.14 ; Crystal structure of the F-BAR domain of PSTIPIP1 7AAM ; 2.15 ; Crystal structure of the F-BAR domain of PSTIPIP1 bound to the CTH domain of the phosphatase LYP 7AAL ; 1.97 ; Crystal structure of the F-BAR domain of PSTIPIP1, G258A mutant 4BEM ; 2.1 ; Crystal structure of the F-type ATP synthase c-ring from Acetobacterium woodii. 2QE7 ; 3.06 ; Crystal structure of the f1-atpase from the thermoalkaliphilic bacterium bacillus sp. ta2.a1 3IN0 ; 2.35 ; Crystal structure of the F114P/M121Q variant of Pseudomonas aeruginosa azurin in the Cu(II) state 2ANI ; 2.0 ; Crystal structure of the F127Y mutant of Ribonucleotide Reductase R2 from Chlamydia trachomatis 3F9F ; 2.3 ; Crystal Structure of the F140A mutant of SARS-Coronovirus 3C-like Protease at pH 6.0 3F9G ; 2.6 ; Crystal Structure of the F140A mutant of SARS-Coronovirus 3C-like Protease at pH 6.5 3F9H ; 2.9 ; Crystal Structure of the F140A mutant of SARS-Coronovirus 3C-like Protease at pH 7.6 2FRS ; 1.51 ; Crystal structure of the f15w mutant of apo-cellular retinoic acid binding protein type ii at 1.51 angstroms resolution 3TYX ; 2.04 ; Crystal structure of the F177S mutant of mycrocine immunity protein (MccF) with AMP 7Z97 ; 1.46 ; Crystal structure of the F191M variant of Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with 6-bromoindole 7ZCA ; 1.68 ; Crystal structure of the F191M/F201A variant of Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with benzyl phenyl sulfoxide 6CPH ; 1.7 ; Crystal structure of the F24 TCR 7N05 ; 1.7 ; Crystal structure of the F240 antibody fragment bound to the HIV-1 gp41 immunodominant region 5UM4 ; 2.5 ; Crystal structure of the F255A mutant Kir3.1 cytoplasmic pore domain 5V45 ; 1.91 ; Crystal structure of the F270M, K291M, L318M mutant of SR1 domain of human sacsin 4O7Q ; 1.82 ; Crystal Structure of the F27G AIM2 Pyrin Domain Mutant and Similarities of its Self-association to DED/DED Interactions 6VMW ; 1.99 ; Crystal structure of the F316A mutant of GoxA soaked with glycine 8AJS ; 1.68 ; Crystal structure of the F324A mutant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa cocrystallized with adenosine in the presence of K+ cations 8STX ; 2.4 ; Crystal structure of the F337A mutation of Trypanosoma cruzi glucokinase in the apo form (open conformation) 7S2P ; 2.35 ; Crystal structure of the F337L mutation of Trypanosoma cruzi glucokinase in complex with inhibitor CBZ-GlcN 7S2N ; 1.75 ; Crystal structure of the F337L mutation of Trypanosoma cruzi glucokinase in the apo form (open conformation) 5VY2 ; 2.3 ; Crystal structure of the F36A mutant of HsNUDT16 3P3F ; 2.3 ; Crystal structure of the F36A mutant of the fluoroacetyl-CoA-specific thioesterase FlK 3P3I ; 2.0 ; Crystal structure of the F36A mutant of the fluoroacetyl-CoA-specific thioesterase FlK in complex with fluoroacetate and CoA 5C04 ; 1.45 ; Crystal structure of the F37H mutant AhpE from Mycobacterium tuberculosis 4WEI ; 2.3 ; Crystal structure of the F4 fimbrial adhesin FaeG in complex with lactose 6FHM ; 2.39 ; Crystal structure of the F47E mutant of the lipoprotein localization factor, LolA 4IC3 ; 1.783 ; Crystal structure of the F495L mutant XIAP RING domain 3NNG ; 2.177 ; Crystal structure of the F5/8 type C domain of Q5LFR2_BACFN protein from Bacteroides fragilis. Northeast Structural Genomics Consortium Target BfR258E 1T7Q ; 1.8 ; Crystal structure of the F565A mutant of murine carnitine acetyltransferase in complex with carnitine and CoA 5WJI ; 2.3 ; Crystal structure of the F61S mutant of HsNUDT16 3HGO ; 2.3 ; Crystal structure of the F74Y/H244Y OPR3 double mutant from tomato 2EXV ; 1.86 ; Crystal structure of the F7A mutant of the cytochrome c551 from Pseudomonas aeruginosa 3DGD ; 1.383 ; Crystal structure of the F87M/L110M mutant of human transthyretin at pH 4.6 3DID ; 1.78 ; Crystal structure of the F87M/L110M mutant of human transthyretin at pH 4.6 soaked 3GPS ; 1.78 ; Crystal structure of the F87M/L110M mutant of human transthyretin at pH 5.5 3GRB ; 1.75 ; Crystal structure of the F87M/L110M mutant of human transthyretin at pH 6.5 3GRG ; 1.9 ; Crystal structure of the F87M/L110M mutant of human transthyretin at pH 7.5 2HNW ; 2.9 ; Crystal Structure of the F91STOP mutant of des1-6 Bovine Neurophysin-I, unliganded state 2VFF ; 1.7 ; Crystal structure of the F96H mutant of Plasmodium falciparum triosephosphate isomerase 2VFG ; 1.95 ; Crystal structure of the F96H mutant of Plasmodium falciparum triosephosphate isomerase with 3-phosphoglycerate bound at the dimer interface 2VFD ; 1.4 ; Crystal structure of the F96S mutant of Plasmodium falciparum triosephosphate isomerase 2VFH ; 2.0 ; Crystal structure of the F96W mutant of Plasmodium falciparum triosephosphate isomerase complexed with 3-phosphoglycerate 6JGJ ; 0.78 ; Crystal structure of the F99S/M153T/V163A/E222Q variant of GFP at 0.78 A 6JGH ; 0.94 ; Crystal structure of the F99S/M153T/V163A/T203I variant of GFP at 0.94 A 7CJ2 ; 2.7 ; Crystal structure of the Fab antibody complexed with human YKL-40 4RRP ; 2.79 ; Crystal Structure of the Fab complexed with antigen Asf1p, Northeast Structural Genomics Consortium (NESG) Target PdR16 2XA8 ; 2.42 ; Crystal structure of the Fab domain of omalizumab at 2.41A 5NBW ; 2.4 ; Crystal structure of the Fab fragment 22F12 in complex with 3-hydroxybenzo[a]pyrene 8FAB ; 1.8 ; CRYSTAL STRUCTURE OF THE FAB FRAGMENT FROM THE HUMAN MYELOMA IMMUNOGLOBULIN IGG HIL AT 1.8 ANGSTROMS RESOLUTION 1YY8 ; 2.0 ; Crystal structure of the Fab fragment from the monoclonal antibody cetuximab/Erbitux/IMC-C225 4ISV ; 1.497 ; Crystal structure of the Fab FRAGMENT OF 1C2, A MONOCLONAL ANTIBODY SPECIFIC FOR POLY-GLUTAMINE 4JJ5 ; 2.445 ; CRYSTAL STRUCTURE OF THE Fab FRAGMENT OF 1C2, A MONOCLONAL ANTIBODY SPECIFIC for POLY-GLUTAMINE 4DCQ ; 1.94 ; Crystal Structure of the Fab Fragment of 3B5H10, an Antibody-Specific for Extended Polyglutamine Repeats (orthorhombic form) 5AZ2 ; 1.603 ; Crystal structure of the Fab fragment of 9E5, a murine monoclonal antibody specific for human epiregulin 6ZEC ; 1.65 ; Crystal Structure of the Fab Fragment of a Glycosylated Lymphoma Antibody 7ARN ; 1.57 ; Crystal Structure of the Fab Fragment of a Glycosylated Lymphoma Antibody 1QLR ; 2.83 ; CRYSTAL STRUCTURE OF THE FAB FRAGMENT OF A HUMAN MONOCLONAL IgM COLD AGGLUTININ 6L8T ; 1.766 ; Crystal structure of the Fab fragment of a humanized HBV therapeutic antibody 2DDQ ; 2.35 ; Crystal Structure of the Fab fragment of a R310 antibody complexed with (R)-HNE-histidine adduct 4OD2 ; 3.2 ; Crystal structure of the Fab fragment of an anti-DR5 antibody bound to DR5 3D69 ; 3.77 ; Crystal Structure of the Fab Fragment of an Anti-Factor IX Antibody 10C12 5B6F ; 2.1 ; Crystal structure of the Fab fragment of an anti-Leukotriene C4 monoclonal antibody complexed with LTC4 3GIZ ; 2.2 ; Crystal structure of the Fab fragment of anti-CD20 antibody Ofatumumab 2Z91 ; 2.6 ; Crystal structure of the Fab fragment of anti-ciguatoxin antibody 10C9 2Z92 ; 2.3 ; Crystal structure of the Fab fragment of anti-ciguatoxin antibody 10C9 in complex with CTX3C_ABCDE 5WTG ; 2.907 ; Crystal structure of the Fab fragment of anti-HAV antibody R10 5TDN ; 1.63 ; Crystal structure of the Fab fragment of anti-HER2 antibody 4D5 with redesigned heavy and light chain interfaces 5TDO ; 1.61 ; Crystal structure of the Fab fragment of anti-HER2 antibody 4D5 with redesigned heavy and light chain interfaces 5TDP ; 1.716 ; Crystal structure of the Fab fragment of anti-HER2 antibody 4D5 with redesigned heavy and light chain interfaces 4Z0B ; 3.2 ; Crystal Structure of the Fab Fragment of Anti-ofloxacin Antibody and Exploration Its Receptor Binding Site 5X5X ; 1.9 ; Crystal structure of the Fab fragment of anti-osteocalcin C-terminal peptide antibody KTM219 6UGU ; 2.2 ; Crystal structure of the Fab fragment of anti-TNFa antibody infliximab (Remicade) in a C-centered orthorhombic crystal form, Lot C 6UGV ; 2.4 ; Crystal structure of the Fab fragment of anti-TNFa antibody infliximab (Remicade) in a I-centered orthorhombic crystal form, Lot C 3WII ; 1.6 ; Crystal structure of the Fab fragment of B2212A, a murine monoclonal antibody specific for the third fibronectin domain (Fn3) of human ROBO1. 6A76 ; 1.5 ; Crystal structure of the Fab fragment of B5209B, a murine monoclonal antibody specific for the fifth immunoglobulin domain (Ig5) of human ROBO1 1MIE ; 1.95 ; Crystal Structure Of The Fab Fragment of Esterolytic Antibody MS5-393 5YUP ; 1.81 ; Crystal Structure of the Fab fragment of FVIIa antibody mAb4F5 6W4W ; 1.77 ; Crystal Structure of the Fab fragment of humanized 5c8 antibody 6BJZ ; 1.45 ; Crystal Structure of the Fab fragment of humanized 5c8 antibody containing the fluorescent non-canonical amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine at pH 5.5 6W5A ; 1.75 ; Crystal Structure of the Fab fragment of humanized 5c8 antibody containing the fluorescent non-canonical amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine at pH 9.7 6W9G ; 1.82 ; Crystal Structure of the Fab fragment of humanized 5c8 antibody containing the fluorescent non-canonical amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine in complex with CD40L at pH 6.8 6JC2 ; 2.65 ; Crystal structure of the Fab fragment of ipilimumab 4R97 ; 2.2 ; Crystal structure of the Fab fragment of KKO 6LKT ; 1.8 ; Crystal structure of the Fab fragment of murine monoclonal antibody KH-1 against Human herpesvirus 6B 6LTG ; 1.63 ; Crystal structure of the Fab fragment of murine monoclonal antibody OHV-3 against Human herpesvirus 6B 6B3S ; 2.8 ; Crystal structure of the Fab fragment of necitumumab (Fab11F8) in complex with domain III from a cetuximab resistant variant of EGFR (sEGFRd3-S468R) 3GKW ; 2.5 ; Crystal structure of the Fab fragment of Nimotuzumab. An anti-epidermal growth factor receptor antibody 6UGS ; 1.95 ; Crystal structure of the Fab fragment of PF06438179/GP1111 an infliximab biosimilar in a C-centered orthorhombic crystal form, Lot A 6UGT ; 2.15 ; Crystal structure of the Fab fragment of PF06438179/GP1111 an infliximab biosimilar in a I-centered orthorhombic crystal form, Lot A 2XKN ; 1.4 ; Crystal structure of the Fab fragment of the anti-EGFR antibody 7A7 6O3J ; 3.416 ; Crystal structure of the Fab fragment of the human HIV-1 neutralizing antibody PGZL1 in complex with its MPER peptide epitope (region 671-683 of HIV-1 gp41) and phosphatidic acid (06:0 PA) 6O3G ; 3.645 ; Crystal structure of the Fab fragment of the human HIV-1 neutralizing antibody PGZL1 in complex with its MPER peptide epitope (region 671-683 of HIV-1 gp41). 6O3U ; 3.105 ; Crystal structure of the Fab fragment of the human HIV-1 neutralizing antibody PGZL1.H4K3 in complex with 06:0 PA 6O3L ; 1.98 ; Crystal structure of the Fab fragment of the human HIV-1 neutralizing antibody PGZL1.H4K3 in complex with its MPER peptide epitope (region 671-683 of HIV-1 gp41). 3N9G ; 1.434 ; Crystal structure of the Fab fragment of the human neutralizing anti-West Nile Virus MAb CR4354 1FH5 ; 2.9 ; CRYSTAL STRUCTURE OF THE FAB FRAGMENT OF THE MONOCLONAL ANTIBODY MAK33 1IQW ; 2.5 ; CRYSTAL STRUCTURE OF THE FAB FRAGMENT OF THE MOUSE ANTI-HUMAN FAS ANTIBODY HFE7A 3IU3 ; 2.9 ; Crystal structure of the Fab fragment of therapeutic antibody Basiliximab in complex with IL-2Ra (CD25) ectodomain 3NFP ; 2.86 ; Crystal structure of the Fab fragment of therapeutic antibody daclizumab in complex with IL-2Ra (CD25) ectodomain 2HKH ; 2.1 ; Crystal structure of the Fab M75 6WGB ; 1.99 ; Crystal structure of the fab portion of dupilumab 4CNI ; 2.2 ; Crystal structure of the Fab portion of Olokizumab in complex with IL- 6 5ZMJ ; 1.81 ; Crystal structure of the Fab region of a neutralizing fully human antibody against GM-CSF 1TZH ; 2.6 ; Crystal Structure of the Fab YADS1 Complexed with h-VEGF 1TZI ; 2.8 ; Crystal Structure of the Fab YADS2 Complexed with h-VEGF 4QWW ; 2.7 ; Crystal structure of the Fab410-BfAChE complex 1FIA ; 2.0 ; CRYSTAL STRUCTURE OF THE FACTOR FOR INVERSION STIMULATION FIS AT 2.0 ANGSTROMS RESOLUTION 2P3F ; 3.1 ; Crystal structure of the factor Xa/NAP5 complex 8OS5 ; 3.4 ; Crystal structure of the Factor XII heavy chain reveals an interlocking dimer with a FnII to kringle domain interaction 3GWN ; 1.78 ; Crystal structure of the FAD binding domain from mimivirus sulfhydryl oxidase R596 4DQK ; 2.4 ; Crystal structure of the FAD binding domain of cytochrome P450 BM3 4DQL ; 2.15 ; Crystal structure of the FAD binding domain of cytochrome P450 BM3 in complex with NADP+ 5EZ7 ; 2.4 ; Crystal structure of the FAD dependent oxidoreductase PA4991 from Pseudomonas aeruginosa 2QTL ; 1.9 ; Crystal Structure of the FAD-containing FNR-like Module of Human Methionine Synthase Reductase 2GJ3 ; 1.04 ; Crystal structure of the FAD-containing PAS domain of the protein NifL from Azotobacter vinelandii. 3R3M ; 3.0 ; Crystal structure of the FAF1 UBX domain 6CB0 ; 1.97 ; Crystal Structure of the FAK FERM domain 6W38 ; 4.48 ; Crystal structure of the FAM46C/Plk4 complex 6W3J ; 4.385 ; Crystal structure of the FAM46C/Plk4/Cep192 complex 4NPR ; 2.5 ; Crystal Structure of the Family 12 Xyloglucanase from Aspergillus niveus 6HHM ; 1.23 ; Crystal structure of the family S1_7 ulvan-specific sulfatase FA22070 from Formosa agariphila 5O67 ; 2.84 ; Crystal structure of the FapF polypeptide transporter - F103A mutant 3RCP ; 1.9 ; Crystal structure of the FAPP1 pleckstrin homology domain 3EZQ ; 2.73 ; Crystal Structure of the Fas/FADD Death Domain Complex 1K40 ; 2.25 ; crystal structure of the FAT domain of focal adhesion kinase 3LFM ; 2.5 ; Crystal structure of the fat mass and obesity associated (FTO) protein reveals basis for its substrate specificity 1U7N ; 2.26 ; Crystal Structure of the fatty acid/phospholipid synthesis protein PlsX from Enterococcus faecalis V583 6UGY ; 2.1 ; Crystal structure of the Fc fragment of anti-TNFa antibody infliximab (Remicade) in a primative orthorhombic crystal form, Lot C 6UGW ; 2.0 ; Crystal structure of the Fc fragment of PF06438179/GP1111 an infliximab biosimilar in a C-centered orthorhombic crystal form, Lot A 6UGX ; 2.1 ; Crystal structure of the Fc fragment of PF06438179/GP1111 an infliximab biosimilar in a primative orthorhombic crystal form, Lot A 6F6J ; 2.0 ; Crystal structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO1 with Fe(II)/succinate/(3S)-3-hydroxy-L-lysine 6F9P ; 2.4 ; Crystal structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase KDO5 with Re(II) 7QTG ; 2.695 ; Crystal Structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase PlaO1 7QTE ; 1.81 ; Crystal Structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase PlaO1 in complex with cobalt and succinate 7QTD ; 1.75 ; Crystal Structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase PlaO1 in complex with iron and alpha-ketoglutarate 7QTF ; 1.55 ; Crystal Structure of the Fe(II)/alpha-ketoglutarate dependent dioxygenase PlaO1 in complex with sodium succinate 3PVJ ; 1.85 ; Crystal structure of the Fe(II)/alpha-ketoglutarate dependent taurine dioxygenase from Pseudomonas putida KT2440 3V15 ; 2.6 ; Crystal structure of the Fe(II)/alpha-ketoglutarate dependent taurine dioxygenase from Pseudomonas putida KT2440 3V17 ; 2.57 ; Crystal structure of the Fe(II)/alpha-ketoglutarate dependent taurine dioxygenase from Pseudomonas putida KT2440 3LGB ; 1.54 ; Crystal Structure of the Fe-S Domain of the yeast DNA primase 2JD7 ; 2.8 ; Crystal Structure of the Fe-soaked Ferritin from the Hyperthermophilic Archaeal Anaerobe Pyrococcus furiosus 3ENI ; 2.2 ; Crystal structure of the Fenna-Matthews-Olson Protein from Chlorobaculum Tepidum 7BYJ ; 2.49 ; Crystal structure of the FERM domain of FRMPD4 4RMA ; 1.75 ; Crystal structure of the FERM domain of human ezrin 1H4R ; 1.8 ; Crystal Structure of the FERM domain of Merlin, the Neurofibromatosis 2 Tumor Suppressor Protein. 6D2K ; 1.55 ; Crystal structure of the FERM domain of mouse FARP2 6D2Q ; 2.99 ; Crystal structure of the FERM domain of zebrafish FARP1 6D21 ; 1.999 ; Crystal structure of the FERM domain of zebrafish FARP2 4Z32 ; 3.04 ; Crystal Structure of the FERM-SH2 Domains of Jak2 1RGV ; 2.9 ; Crystal Structure of the Ferredoxin from Thauera aromatica 1FXR ; 2.3 ; CRYSTAL STRUCTURE OF THE FERREDOXIN I FROM DESULFOVIBRIO AFRICANUS AT 2.3 ANGSTROMS RESOLUTION 2YVJ ; 1.9 ; Crystal structure of the ferredoxin-ferredoxin reductase (BPHA3-BPHA4)complex 1JB9 ; 1.7 ; Crystal Structure of The Ferredoxin:NADP+ Reductase From Maize Root AT 1.7 Angstroms 3LVB ; 1.7 ; Crystal structure of the Ferredoxin:NADP+ reductase from maize root at 1.7 angstroms - Test Set Withheld 6GI0 ; 2.0 ; Crystal structure of the ferric enterobactin esterase (PfeE) from Pseudomonas aeruginosa 6GI5 ; 3.11 ; Crystal structure of the ferric enterobactin esterase (PfeE) from Pseudomonas aeruginosa in complex with the tris-catechol vector 6GI2 ; 1.49 ; Crystal structure of the ferric enterobactin esterase (pfeE) mutant(S157A) from Pseudomonas aeruginosa in complex with Tris-catechol vector 6GI1 ; 1.66 ; Crystal structure of the ferric enterobactin esterase (pfeE) mutant(S157A) from Pseudomonas aeruginosa in presence of enterobactin 5M9B ; 2.12 ; Crystal structure of the ferric enterobactin receptor (PfeA) from Pseudomonas aeruginosa 5NR2 ; 2.78 ; Crystal structure of the ferric enterobactin receptor (PfeA) from Pseudomonas aeruginosa in complex with azotochelin 7OBW ; 2.66 ; Crystal structure of the ferric enterobactin receptor (PfeA) from Pseudomonas aeruginosa in complex with TCV-L6 5NC3 ; 2.57 ; Crystal structure of the ferric enterobactin receptor (PfeA) from Pseudomonas aeruginosa in complex with the tris-catechol vector 6Z33 ; 2.711 ; Crystal structure of the ferric enterobactin receptor (PfeA) in complex with BCV 6Y47 ; 3.04 ; Crystal structure of the ferric enterobactin receptor (PfeA) in complex with BCV-L5 6Z2N ; 3.029 ; Crystal structure of the ferric enterobactin receptor (PfeA) in complex with BCV-L6 5NC4 ; 2.8 ; Crystal structure of the ferric enterobactin receptor (PfeA) in complex with protochelin from Pseudomonas aeruginosa 6YY5 ; 2.717 ; Crystal structure of the ferric enterobactin receptor (PfeA) in complex with TCV_L5 5OUT ; 2.9 ; CRYSTAL STRUCTURE OF THE FERRIC ENTEROBACTIN RECEPTOR (PFEA) MUTANT (G324V) FROM PSEUDOMONAS AERUGINOSA 5MZS ; 2.67 ; Crystal structure of the ferric enterobactin receptor (PfeA) mutant (R480A_Q482A) from Pseudomonas aeruginosa 6Q5E ; 2.7 ; Crystal structure of the ferric enterobactin receptor from Pseudomonas aeruginosa (PfeA) in complex with enterobactin 6I2J ; 2.96 ; Crystal structure of the ferric enterobactin receptor mutant (Q482A) from Pseudomonas aeruginosa (PfeA) in complex with enterobactin 6R1F ; 3.11 ; Crystal structure of the ferric enterobactin receptor mutant R480A from Pseudomonas aeruginosa (PfeA) in complex with enterobactin 8GEX ; 2.55 ; Crystal structure of the ferric enterobactin transporter (XusB) from Bacteroides thetaiotaomicron 2Z6T ; 1.2 ; Crystal structure of the ferric peroxo myoglobin 2IAH ; 2.73 ; Crystal structure of the ferripyoverdine receptor of the outer membrane of Pseudomonas aeruginosa bound to ferripyoverdine. 1LSW ; 2.2 ; Crystal structure of the ferrous BjFixL heme domain 1T87 ; 1.8 ; Crystal Structure of the Ferrous CO-bound Cytochrome P450cam (C334A) 1T85 ; 1.8 ; Crystal Structure of the Ferrous CO-bound Cytochrome P450cam Mutant (L358P/C334A) 1T88 ; 1.9 ; Crystal Structure of the Ferrous Cytochrome P450cam (C334A) 1T86 ; 1.9 ; Crystal Structure of the Ferrous Cytochrome P450cam Mutant (L358P/C334A) 2ZNY ; 2.59 ; Crystal structure of the FFRP 3EUU ; 2.34 ; Crystal structure of the FGFR2 D2 domain 4WV1 ; 2.362 ; Crystal structure of the FGFR2 D2 domain in complex with Fab 2B.1.3 5A8I ; 1.75 ; Crystal structure of the FHA domain of ArnA from Sulfolobus acidocaldarius 3GQS ; 2.2 ; Crystal structure of the FHA domain of CT664 protein from Chlamydia trachomatis 6A8W ; 1.844 ; Crystal structure of the FHA domain of Far9 2G1L ; 2.602 ; Crystal structure of the FHA domain of human kinesin family member C 2BRF ; 1.4 ; Crystal Structure of the FHA Domain of Human Polynucleotide Kinase 3' Phosphatase 1YJM ; 2.2 ; Crystal structure of the FHA domain of mouse polynucleotide kinase in complex with an XRCC4-derived phosphopeptide. 2PIE ; 1.35 ; Crystal structure of the FHA domain of RNF8 in complex with its optimal phosphopeptide 1LGQ ; 2.1 ; Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein 1LGP ; 2.0 ; Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein complexed with tungstate 3OUN ; 2.705 ; Crystal structure of the FhaA FHA domain complexed with the intracellular domain of Rv3910 3HXP ; 3.2 ; Crystal structure of the FhuD fold-family BSU3320, a periplasmic binding protein component of a Fep/Fec-like ferrichrome ABC transporter from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR577 3G9Q ; 2.6 ; Crystal structure of the FhuD fold-family BSU3320, a periplasmic binding protein component of a Fep/Fec-like ferrichrome ABC transporter from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR577A 4UMI ; 1.33 ; Crystal structure of the fiber head domain of the Atadenovirus snake adenovirus 1, native, F23 crystal form 4D1F ; 2.7 ; Crystal structure of the fiber head domain of the Atadenovirus snake adenovirus 1, native, first P212121 crystal form 4D0V ; 1.7 ; Crystal structure of the fiber head domain of the Atadenovirus snake adenovirus 1, native, I213 crystal form 4D1G ; 1.9 ; Crystal structure of the fiber head domain of the Atadenovirus snake adenovirus 1, native, second P212121 crystal form 4D0U ; 1.6 ; Crystal structure of the fiber head domain of the Atadenovirus snake adenovirus 1, selenomethionine-derivative 3LN9 ; 1.8 ; Crystal structure of the fibril-specific B10 antibody fragment 3MQL ; 3.004 ; Crystal structure of the fibronectin 6FnI1-2FnII7FnI fragment 3EJH ; 2.1 ; Crystal Structure of the Fibronectin 8-9FnI Domain Pair in Complex with a Type-I Collagen Peptide 4XI8 ; 2.95 ; Crystal Structure of the FIC domain of Bep5 protein (VirB-translocated Bartonella effector protein) from Bartonella clarridgeiae 5HRX ; 1.73 ; Crystal structure of the fifth bromodomain of human PB1 in complex with 1-butylisochromeno[3,4-c]pyrazol-5(2H)-one) compound 5HRV ; 1.7 ; Crystal structure of the fifth bromodomain of human PB1 in complex with 1-ethylisochromeno[3,4-c]pyrazol-5(2H)-one) compound 5HRW ; 1.8 ; Crystal structure of the fifth bromodomain of human PB1 in complex with 1-propylisochromeno[3,4-c]pyrazol-5(2H)-one) compound 5E7D ; 1.87 ; Crystal Structure of the fifth bromodomain of human PB1 in complex with a hydroxyphenyl ligand 5FH6 ; 2.3 ; Crystal structure of the fifth bromodomain of human PB1 in complex with compound 10 5FH7 ; 1.47 ; Crystal structure of the fifth bromodomain of human PB1 in complex with compound 18 5FH8 ; 1.55 ; Crystal structure of the fifth bromodomain of human PB1 in complex with compound 28 4Y03 ; 1.94 ; Crystal Structure of the fifth bromodomain of human PB1 in complex with salicylic acid 3G0J ; 1.78 ; Crystal Structure of the fifth Bromodomain of Human Poly-bromodomain containing protein 1 (PB1) 4Q0N ; 1.78 ; Crystal Structure of the fifth bromodomain of Human Poly-bromodomain containing protein 1 (PB1) in complex with a hydroxyphenyl-propenone ligand 4Q0O ; 1.83 ; Crystal Structure of the fifth bromodomain of Human Poly-bromodomain containing protein 1 (PB1) in complex with a hydroxyphenyl-propenone ligand 3MB4 ; 1.66 ; Crystal Structure of the fifth Bromodomain of Human Poly-bromodomain containing protein 1 (PB1) with NMP 5II1 ; 2.02 ; Crystal Structure of the fifth bromodomain of human polybromo (PB1) in complex with 1-methylisochromeno[3,4-c]pyrazol-5(3H)-one 5II2 ; 2.1 ; Crystal Structure of the fifth bromodomain of human polybromo (PB1) in complex with 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one 5IID ; 2.4 ; Crystal Structure of the fifth bromodomain of human polybromo (PB1) in complex with 2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one 6ZS3 ; 1.67 ; Crystal structure of the fifth bromodomain of human protein polybromo-1 in complex with 2-(6-amino-5-(piperazin-1-yl)pyridazin-3-yl)phenol 6ZS4 ; 2.0 ; Crystal structure of the fifth bromodomain of human protein polybromo-1 in complex with tert-butyl 4-[3-amino-6-(2-hydroxyphenyl)pyridazin-4-yl]piperazine-1-carboxylate 6A77 ; 2.0 ; Crystal structure of the fifth immunoglobulin domain (Ig5) of human Robo1 in complex with the Fab fragment of murine monoclonal antibody B5209B 6A79 ; 2.31 ; Crystal structure of the fifth immunoglobulin domain (Ig5) of human Robo1 in complex with the mutant scFv fragment (P103A) of murine monoclonal antibody B5209B 6A78 ; 2.1 ; Crystal structure of the fifth immunoglobulin domain (Ig5) of human Robo1 in complex with the scFv fragment of murine monoclonal antibody B5209B 1QU0 ; 2.35 ; CRYSTAL STRUCTURE OF THE FIFTH LAMININ G-LIKE MODULE OF THE MOUSE LAMININ ALPHA2 CHAIN 6EW1 ; 2.30701 ; Crystal structure of the Filamin A Ig-like domains 3-5 mutant P637Q 2JF1 ; 2.2 ; CRYSTAL STRUCTURE OF THE FILAMIN A REPEAT 21 COMPLEXED WITH THE INTEGRIN BETA2 CYTOPLASMIC TAIL PEPTIDE 2BRQ ; 2.1 ; Crystal structure of the filamin A repeat 21 complexed with the integrin beta7 cytoplasmic tail peptide 2W0P ; 1.9 ; Crystal structure of the filamin A repeat 21 complexed with the migfilin peptide 2VCO ; 2.1 ; Crystal structure of the fimbrial adhesin FimH in complex with its high-mannose epitope 5DHM ; 1.9 ; Crystal structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis 3OHN ; 3.011 ; Crystal structure of the FimD translocation domain 3RFZ ; 2.8 ; Crystal structure of the FimD usher bound to its cognate FimC:FimH substrate 4J3O ; 3.8 ; Crystal structure of the FimD usher traversed by the pilus tip complex assembly composed of FimC:FimF:FimG:FimH 4XOC ; 1.42 ; Crystal structure of the FimH lectin domain from E.coli F18 in complex with heptyl alpha-D-mannopyrannoside 6GTW ; 2.5 ; Crystal structure of the FimH lectin domain from E.coli F18 in complex with trimannose 4XO8 ; 1.698 ; Crystal structure of the FimH lectin domain from E.coli K12 in complex with heptyl alpha-D-mannopyrannoside 5JCQ ; 1.602 ; Crystal structure of the FimH lectin domain from E.coli K12 in complex with methyl alpha-D-mannopyrannoside in spacegroup P21 5JCR ; 1.701 ; Crystal structure of the FimH lectin domain from E.coli K12 in complex with methyl alpha-D-mannopyrannoside in spacegroup P212121 6GTX ; 2.5 ; Crystal structure of the FimH lectin domain from E.coli K12 in complex with the dimannoside Man(alpha1-2)Man 6GTY ; 1.9 ; Crystal structure of the FimH lectin domain from E.coli K12 in complex with the dimannoside Man(alpha1-6)Man 5MUC ; 2.6 ; Crystal structure of the FimH lectin domain in complex with 1,5-Anhydromannitol 7P6R ; 1.9 ; Crystal structure of the FimH-binding decoy module of human glycoprotein 2 (GP2) (crystal form I) 7P6S ; 1.35 ; Crystal structure of the FimH-binding decoy module of human glycoprotein 2 (GP2) (crystal form II) 7P6T ; 1.4 ; Crystal structure of the FimH-binding decoy module of human glycoprotein 2 (GP2) (crystal form III) 4AFY ; 2.01 ; Crystal structure of the FimX EAL domain in complex with reaction product pGpG 6GMA ; 3.2 ; Crystal structure of the FIP200 C-terminal region 1AKS ; 1.8 ; CRYSTAL STRUCTURE OF THE FIRST ACTIVE AUTOLYSATE FORM OF THE PORCINE ALPHA TRYPSIN 2IBB ; 2.4 ; Crystal Structure of the First and Second FNIII Domains of Ihog 4CIT ; 1.8 ; Crystal structure of the first bacterial vanadium dependant iodoperoxidase 4USZ ; 2.0 ; Crystal structure of the first bacterial vanadium dependant iodoperoxidase 7LAI ; 1.85 ; Crystal structure of the first bromodomain (BD1) of human BRD2 bound to BI2536 7LAH ; 1.6 ; Crystal structure of the first bromodomain (BD1) of human BRD2 bound to bromosporine 7LAU ; 2.4 ; Crystal structure of the first bromodomain (BD1) of human BRD2 bound to ERK5-IN-1 7LAJ ; 1.854 ; Crystal structure of the first bromodomain (BD1) of human BRD2 bound to Ro3280 7LAK ; 1.831 ; Crystal structure of the first bromodomain (BD1) of human BRD2 bound to volasertib 7LAZ ; 2.302 ; Crystal structure of the first bromodomain (BD1) of human BRD3 bound to ERK5-IN-1 7LAY ; 1.45 ; Crystal structure of the first bromodomain (BD1) of human BRD3 bound to SG3-179 7LA9 ; 2.2 ; Crystal structure of the first bromodomain (BD1) of human BRD4 (BRD4-1) in complex with bivalent inhibitor NC-III-49-1 6V1K ; 1.75 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to BI7273 6V1L ; 2.1 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to BI9564 6V0U ; 1.4 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to bromosporine 7K6G ; 1.7 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to ERK5-IN-1 7MR5 ; 1.82 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to GXH-II-052 7MR7 ; 1.4 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to GXH-II-075 7MR8 ; 1.2 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to GXH-II-076 7MR6 ; 1.85 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to GXH-II-082 7MR9 ; 1.19 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to NC-II-153 7MRA ; 1.16 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to NC-II-259 7MRB ; 1.2 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to NC-III-53 6V1U ; 1.73 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to TP-472 7K6H ; 1.5 ; Crystal structure of the first bromodomain (BD1) of human BRD4 bound to XMD8-92 7L9M ; 1.45 ; Crystal structure of the first bromodomain (BD1) of human BRD4 in complex with bivalent inhibitor GXH-II-083 7REL ; 1.55 ; Crystal structure of the first bromodomain (BD1) of human BRD4 in complex with dual BRD4-JAK2 inhibitor MA9-060 7REK ; 1.2 ; Crystal structure of the first bromodomain (BD1) of human BRD4 in complex with dual BRD4-JAK2 inhibitor MA9-086 8EAD ; 1.65 ; Crystal structure of the first bromodomain (BD1) of human BRD4 in complex with dual BRD4-JAK2 inhibitor MA9-177 7REM ; 1.8 ; Crystal structure of the first bromodomain (BD1) of human BRD4 in complex with dual BRD4-JAK2 inhibitor PN1-050 7L73 ; 1.46 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to ERK5-IN-1 7MRC ; 1.55 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to GXH-II-052 7MRD ; 1.39 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to GXH-II-082 8CZA ; 2.96 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to GXH-IV-075 7LEM ; 1.89 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to LRRK2-IN-1 7MRG ; 1.99 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to NC-II-153 7MRH ; 1.98 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to NC-II-259 7BJY ; 2.22 ; Crystal structure of the first bromodomain (BD1) of human BRDT bound to Ro3280 7FH2 ; 2.492 ; Crystal structure of the first bromodomain of BRD4 in complex with 16D10 6IN1 ; 1.5 ; Crystal structure of the first bromodomain of BRD4 in complex with 18-Crown-6 6YIN ; 1.53 ; Crystal structure of the first bromodomain of BRD4 in complex with a benzo-diazepine ligand 6S25 ; 1.1 ; Crystal Structure of the first bromodomain of BRD4 in complex with a benzodiazepine ligand 7AJN ; 1.48 ; Crystal Structure of the first bromodomain of BRD4 in complex with a BzD ligand 5E0R ; 1.352 ; Crystal Structure of the first bromodomain of BRD4 in complex with AYC 4PCI ; 1.25 ; Crystal Structure of the first bromodomain of BRD4 in complex with B16 5HCL ; 1.5 ; Crystal Structure of the first bromodomain of BRD4 in complex with DMA 4IOR ; 1.4 ; Crystal Structure of the first bromodomain of BRD4 in complex with DMSO 4IOO ; 1.25 ; Crystal Structure of the first bromodomain of BRD4 in complex with N-methyltrimethylacetamide 4IOQ ; 1.5 ; Crystal Structure of the first bromodomain of BRD4 in complex with pyrrolidin-2-one 6I7X ; 1.2 ; Crystal Structure of the first bromodomain of BRD4 in complex with RT53 6I7Y ; 1.0 ; Crystal Structure of the first bromodomain of BRD4 in complex with RT56 4QZS ; 1.45 ; Crystal structure of the first bromodomain of human 3-fluoro tyrosine-labeled brd4 in complex with jq1 2YEK ; 1.98 ; Crystal Structure of the First Bromodomain of Human Brd2 with the inhibitor GSK525762 (IBET) 2YDW ; 1.9 ; Crystal Structure of the First Bromodomain of Human Brd2 with the inhibitor GW841819X 3S91 ; 2.06 ; Crystal Structure of the first bromodomain of human BRD3 in complex with the inhibitor JQ1 5HM0 ; 1.395 ; Crystal structure of the first bromodomain of human BRD4 bound to benzoisoxazoloazepine 3 4Z1Q ; 1.399 ; Crystal structure of the first bromodomain of human BRD4 bound to benzotriazolo-diazepine scaffold 5HLS ; 2.182 ; Crystal structure of the first bromodomain of human BRD4 bound to CPI-0610 6SE4 ; 1.38 ; Crystal Structure of the first bromodomain of human BRD4 in complex with (+)-JD1, an Organometallic BET Bromodomain Inhibitor 5S9Q ; 1.85 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH 2-(3,5-dimethyl-1,2-oxazol-4-yl)-7-(2-hydroxypropan-2-yl)-9-[(S)-(oxan-4-yl)(phenyl)methyl]-9H-carbazole-4-carboxamide 7MCE ; 1.76 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH 2-{(7P)-7-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-8-fluoro-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-3-yl}propan-2-ol 7MCF ; 2.19 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH 2-{3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-6-fluoro-5-[(S)-(3-fluoropyridin-2-yl)(oxan-4-yl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol 6AFR ; 1.998 ; Crystal Structure of the first bromodomain of human BRD4 in complex with 5-((4-fluoro-1H-imidazol-1-yl)methyl)quinolin-8-ol 5S9P ; 2.1 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH 9-benzyl-2-(3,5-dimethyl-1,2-oxazol-4-yl)-7-(2-hydroxypropan-2-yl)-9H-carbazole-4-carboxamide 4XY9 ; 1.83 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 2-amine-9H-purine ligand 4XYA ; 2.05 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 2-amine-9H-purine ligand 4MEO ; 1.72 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 2-methyl-quinoline ligand 3SVG ; 1.68 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 4J0R ; 1.72 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 4J0S ; 1.84 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 6FSY ; 1.34 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 6FT3 ; 1.28 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 6FT4 ; 1.34 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3,5-dimethylisoxazol ligand 4MEP ; 1.85 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 3-chloro-pyridone ligand 4MEN ; 1.81 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 5-methyl-triazolopyrimidine ligand 4MEQ ; 1.77 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a 5-methyl-triazolopyrimidine ligand 3U5L ; 1.39 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a benzo-triazepine ligand (BzT-7) 5NNC ; 2.22 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H3K9ac/K14ac) 5NND ; 1.82 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H3K9ac/K14ac) 3UVX ; 1.91 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K12acK16ac) 3UVY ; 2.02 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K16acK20ac) 3UVW ; 1.37 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K5acK8ac) 3UW9 ; 2.3 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated histone 4 peptide (H4K8acK12ac) 5NNE ; 1.15 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a diacetylated TOP2A peptide (K1201ac/K1204ac) 3SVF ; 1.975 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a dihydro-quinazolin ligand 5KDH ; 1.5 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH A DIHYDROPYRIDOPYRIMIDINE SCAFFOLD INHIBITOR 4GPJ ; 1.6 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a isoxazolylbenzimidazole ligand 4WIV ; 1.56 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a novel inhibitor UMB32 (N-TERT-BUTYL-2-[4-(3,5-DIMETHYL-1,2-OXAZOL-4-YL) PHENYL]IMIDAZO[1,2-A]PYRAZIN-3-AMINE) 4HBV ; 1.63 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazolin ligand 4HBX ; 1.62 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazolin ligand 4HBY ; 1.59 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazolin ligand 4HBW ; 1.69 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazoline ligand 4MR4 ; 1.66 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazolinone ligand (RVX-208) 4MR3 ; 1.68 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a quinazolinone ligand (RVX-OH) 5N2M ; 1.54 ; Crystal structure of the first bromodomain of human BRD4 in complex with a tetrahydroquinoline analogue 4NQM ; 1.58 ; Crystal Structure of the first bromodomain of human BRD4 in complex with a triazolo-phthalazine ligand 3U5J ; 1.6 ; Crystal Structure of the first bromodomain of human BRD4 in complex with Alprazolam 6G0O ; 1.4 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated ATRX peptide (K1030ac/K1033ac) 5NNF ; 1.15 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated BAZ1B peptide (K221ac) 6G0P ; 1.3 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated E2F1 peptide (K117ac/K120ac) 6G0Q ; 1.4 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated GATA1 peptide (K312ac/K315ac) 6G0R ; 1.25 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated POLR2A peptide (K775ac/K778ac) 6G0S ; 1.48 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated SIRT7 peptide (K272ac/K275ac) 5NNG ; 1.2 ; Crystal Structure of the first bromodomain of human BRD4 in complex with an acetylated SRPK1 peptide (K585ac) 4NR8 ; 1.635 ; Crystal structure of the first bromodomain of human BRD4 in complex with an isoxazolyl-benzimidazole ligand 5COI ; 1.62 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CP5 ; 1.79 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CPE ; 1.62 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CQT ; 1.6 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CRM ; 1.99 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CRZ ; 2.12 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CS8 ; 1.62 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CTL ; 2.51 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5CY9 ; 1.55 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5D0C ; 1.49 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 5DX4 ; 2.3 ; Crystal Structure of the first bromodomain of human BRD4 in complex with benzo[cd]indol-2(1H)-one ligand 4O74 ; 1.45 ; Crystal structure of the first bromodomain of human BRD4 in complex with BI 2536 5S9R ; 1.85 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH BMS-986158, 2-{3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol 7UZN ; 1.685 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH BMT-206059 AKA 2-{(3M)-3-(1,4-DIMETHYL-1H-1,2,3-TRIAZOL-5-YL)-8-FLUORO-5-[(S)-(OXAN-4-YL)(PHENYL)METHYL]-5H-PYRIDO[3,2-b]INDOL-7-YL}PROPAN-2-OL, TRIPLY DEUTERATED ON THE 4-METHYL GROUP 5IGK ; 1.7 ; Crystal structure of the first bromodomain of human BRD4 in complex with bromosporine (BSP) 4PCE ; 1.293 ; Crystal Structure of the first bromodomain of human BRD4 in complex with compound B13 6LG6 ; 1.98 ; Crystal Structure of the first bromodomain of human BRD4 in complex with compound BDF-1021 6LG4 ; 1.85 ; crystal structure of the first bromodomain of human BRD4 in complex with compound BDF-1024 6LG5 ; 1.83 ; Crystal Structure of the first bromodomain of human BRD4 in complex with compound BDF-1038 6LG7 ; 1.83 ; Crystal Structure of the first bromodomain of human BRD4 in complex with compound BDF-2030 6LG8 ; 1.58 ; crystal structure of the first bromodomain of human BRD4 in complex with compound BDF-2138 6LG9 ; 1.81 ; crystal structure of the first bromodomain of human BRD4 in complex with compound BDF-2143 6ZED ; 1.08 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX with compound F1 6ZEL ; 1.12 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX with compound F5 6ZF9 ; 1.2 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX with compound SSR4 5ULA ; 1.5 ; Crystal Structure of the First Bromodomain of Human BRD4 in Complex With Cyclic Vinylogous Amide Inhibitor MS402 5KJ0 ; 1.51 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH DB-1-264-2 4O70 ; 1.55 ; Crystal structure of the first bromodomain of human BRD4 in complex with DINACICLIB 4O71 ; 1.36 ; Crystal structure of the first bromodomain of human BRD4 in complex with FLAVOPIRIDOL 4O75 ; 1.55 ; Crystal structure of the first bromodomain of human BRD4 in complex with FOSTAMATINIB 4O78 ; 1.34 ; Crystal structure of the first bromodomain of human BRD4 in complex with GW612286X 6MH1 ; 1.6 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH HU-10, A 1,4,5-Trisubstituted Imidazole Analogue 3ZYU ; 1.5 ; Crystal Structure of the first bromodomain of human BRD4 in complex with I-BET151(GSK1210151A) 3P5O ; 1.6 ; Crystal Structure of the First Bromodomain of Human Brd4 in complex with IBET inhibitor 5TI3 ; 1.703 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 17503468 5TI7 ; 1.65 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 17528462 5TI2 ; 1.65 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 7635936 5TI4 ; 1.62 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 8841871 5TI5 ; 1.83 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 8841880 5TI6 ; 1.704 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR 8841881 7LH8 ; 1.75 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH INHIBITOR JJ-II-131 5VBO ; 1.3 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH LRRK2-IN-1 5F5Z ; 1.76 ; Crystal structure of the first bromodomain of human BRD4 in complex with MA2-014 5F61 ; 1.45 ; Crystal structure of the first bromodomain of human BRD4 in complex with MA4-022-1 5F62 ; 1.35 ; Crystal structure of the first bromodomain of human BRD4 in complex with MA4-022-2 3U5K ; 1.8 ; Crystal Structure of the first bromodomain of human BRD4 in complex with Midazolam 4NUE ; 1.3 ; Crystal structure of the first bromodomain of human BRD4 in complex with MS267 inhibitor 4F3I ; 1.4 ; Crystal structure of the first bromodomain of human BRD4 in complex with MS417 inhibitor 4NUC ; 1.4 ; Crystal structure of the first bromodomain of human BRD4 in complex with MS435 inhibitor 4NUD ; 1.2 ; Crystal structure of the first bromodomain of human BRD4 in complex with MS436 inhibitor 4O72 ; 1.4 ; Crystal structure of the first bromodomain of human BRD4 in complex with NU7441 4QB3 ; 0.94 ; Crystal structure of the first bromodomain of human BRD4 in complex with Olinone 5FBX ; 1.85 ; Crystal structure of the first bromodomain of human BRD4 in complex with PNZ5 isoxazole inhibitor 5VBP ; 1.83 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH RO3280 4O77 ; 2.0 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB 202190 4O7F ; 1.8 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB-251527 4O7B ; 1.5 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB-284847-BT 4O7A ; 1.34 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB-409514 4O7E ; 1.85 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB-610251-B 4O7C ; 1.55 ; Crystal structure of the first bromodomain of human BRD4 in complex with SB-614067-R 5F60 ; 1.35 ; Crystal structure of the first bromodomain of human BRD4 in complex with SG3-014 5F63 ; 1.45 ; Crystal structure of the first bromodomain of human BRD4 in complex with SG3-179 7RN2 ; 1.05 ; Crystal structure of the first bromodomain of human BRD4 in complex with SJ001010551-2 7RMD ; 1.18 ; Crystal structure of the first bromodomain of human BRD4 in complex with SJ001011461-1 6MH7 ; 1.74 ; Crystal structure of the first bromodomain of human BRD4 in complex with SKT-68, a 1,4,5-trisubstituted imidazole analogue 4O76 ; 1.7 ; Crystal structure of the first bromodomain of human BRD4 in complex with TG101209 4PS5 ; 1.4 ; Crystal structure of the first bromodomain of human BRD4 in complex with TG101348 8P9F ; 1.3 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB161 8P9G ; 1.1 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB390 8P9H ; 1.19 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB437 8P9I ; 1.23 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB462 8P9J ; 1.42 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB500 8P9K ; 1.25 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB503 8P9L ; 1.29 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual BET/HDAC inhibitor NB512 6YQO ; 1.07 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual inhibitor TW12 6YQP ; 1.25 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual inhibitor TW22 6YQN ; 1.05 ; Crystal structure of the first bromodomain of human BRD4 in complex with the dual inhibitor TW9 6Q3Y ; 1.2 ; Crystal structure of the first bromodomain of human BRD4 in complex with the inhibitor 16i 6Q3Z ; 2.0 ; Crystal structure of the first bromodomain of human BRD4 in complex with the inhibitor 16k 8WY3 ; 2.78 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor 21 8WY7 ; 2.83 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor 22 8WXY ; 2.87 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor 23 7V2J ; 2.24 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor 33 4OGI ; 1.73 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor BI-2536 3MXF ; 1.6 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JQ1 6CD4 ; 1.23 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG046 6CIS ; 1.51 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG047 5W55 ; 1.354 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG048 6CJ2 ; 1.47 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG056 6CIY ; 1.68 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG069 6CJ1 ; 1.53 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor JWG071 4E96 ; 1.92 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor PFi-1 7WL4 ; 1.82 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor SLP-50 4OGJ ; 1.65 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor TG-101348 5WA5 ; 1.172 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor XMD11-50 6CD5 ; 1.58 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor XMD17-26 7YL2 ; 1.62 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor Y07004 7WKY ; 2.83 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor Y13153 7WJS ; 2.73 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor Y13157 7V1U ; 1.82 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor ZJ12 6UWU ; 2.0 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor ZL0516 6U0D ; 1.43 ; Crystal Structure of the first bromodomain of human BRD4 in complex with the inhibitor ZL0590 8Q34 ; 1.48 ; Crystal structure of the first bromodomain of human BRD4 in complex with the ligand ZZ001229a 5V67 ; 1.78 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRD4 IN COMPLEX WITH Volasertib 8CKF ; 1.88 ; Crystal Structure of the first bromodomain of human BRD4 L94C variant in complex with racemic 3,5-dimethylisoxazol ligand 6WVX ; 1.55 ; Crystal structure of the first bromodomain of human BRD4 with benzodiazepine inhibitor 4Z1S ; 1.06 ; Crystal structure of the first bromodomain of human BRD4 with benzotriazolo-diazepine scaffold 2YEL ; 1.65 ; Crystal Structure of the First Bromodomain of Human Brd4 with the inhibitor GW841819X 5VBQ ; 1.65 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRDT IN COMPLEX WITH BI2536 7UBO ; 1.82 ; Crystal Structure of the first bromodomain of human BRDT in complex with the inhibitor CCD-956 4FLP ; 2.23 ; Crystal Structure of the first bromodomain of human BRDT in complex with the inhibitor JQ1 5VBR ; 1.9 ; CRYSTAL STRUCTURE OF THE FIRST BROMODOMAIN OF HUMAN BRDT IN COMPLEX WITH Volasertib 3IU5 ; 1.63 ; Crystal structure of the first bromodomain of human poly-bromodomain containing protein 1 (PB1) 4EF0 ; 1.5 ; Crystal Structure of the first catalytic domain of protein disulfide isomerase P5 1ZVS ; 2.8 ; Crystal structure of the first class MHC mamu and Tat-Tl8 complex 1NTY ; 1.7 ; Crystal structure of the first DH/PH domain of Trio to 1.7 A 3LLH ; 2.14 ; Crystal structure of the first dsRBD of TAR RNA-binding protein 2 2HAZ ; 1.7 ; Crystal structure of the first fibronectin domain of human NCAM1 2E3V ; 1.95 ; Crystal structure of the first fibronectin type III domain of neural cell adhesion molecule splicing isoform from human muscle culture lambda-4.4 2IC2 ; 1.3 ; Crystal Structure of the First FNIII Domain of Ihog 3RPM ; 2.1 ; Crystal structure of the first GH20 domain of a novel Beta-N-acetyl-hexosaminidase StrH from Streptococcus pneumoniae R6 3ZYW ; 1.84 ; Crystal structure of the first glutaredoxin domain of human glutaredoxin 3 (GLRX3) 2OQ0 ; 2.0 ; Crystal Structure of the First HIN-200 Domain of Interferon-Inducible Protein 16 4CEM ; 2.6 ; Crystal structure of the first MIF4G domain of human nonsense mediated decay factor UPF2 1JBK ; 1.8 ; Crystal Structure of the First Nucelotide Binding Domain of ClpB 3V4Y ; 2.098 ; Crystal Structure of the first Nuclear PP1 holoenzyme 2P65 ; 1.7 ; Crystal Structure of the first nucleotide binding domain of chaperone ClpB1, putative, (Pv089580) from Plasmodium Vivax 3IFZ ; 2.7 ; crystal structure of the first part of the Mycobacterium tuberculosis DNA gyrase reaction core: the breakage and reunion domain at 2.7 A resolution 2W4F ; 1.3 ; CRYSTAL STRUCTURE OF THE FIRST PDZ DOMAIN OF HUMAN SCRIB1 3QIK ; 2.285 ; Crystal structure of the first PDZ domain of PREX1 3GBW ; 1.32 ; Crystal structure of the first PHR domain of the Mouse Myc-binding protein 2 (MYCBP-2) 3LA4 ; 2.05 ; Crystal structure of the first plant urease from Jack bean (Canavalia ensiformis) 3WWH ; 1.65 ; Crystal structure of the first R-stereoselective -transaminase identified from Arthrobacter sp. KNK168 (FERM-BP-5228) 1R3O ; 1.9 ; Crystal structure of the first RNA duplex in L-conformation at 1.9A resolution 3R27 ; 2.04 ; Crystal structure of the first RRM domain of heterogeneous nuclear ribonucleoprotein L (HnRNP L) 6SXW ; 2.751 ; Crystal structure of the first RRM domain of human Zinc finger protein 638 (ZNF638) 5YQI ; 1.6 ; Crystal structure of the first StARkin domain of Lam2 5YQJ ; 1.5 ; Crystal structure of the first StARkin domain of Lam4 6CAY ; 2.0 ; Crystal structure of the first StART-like domain of Ysp2p/Lam2p in its apo and ergosterol-bound state. 1JI3 ; 2.2 ; CRYSTAL STRUCTURE OF THE FIRST THERMOSTABLE BACTERIAL LIPASE FROM BACILLUS STEAROTHERMOPHILUS 5JKI ; 2.25 ; Crystal structure of the first transmembrane PAP2 type phosphatidylglycerolphosphate phosphatase from Bacillus subtilis 3SD4 ; 1.928 ; Crystal structure of the first Tudor domain of human PHF20 5ES6 ; 2.46 ; Crystal structure of the first two domains of the initiation module of LgrA 3MD3 ; 2.7 ; Crystal Structure of the First Two RRM Domains of Yeast Poly(U) Binding Protein (Pub1) 4PYZ ; 2.84 ; Crystal structure of the first two Ubl domains of Deubiquitylase USP7 4REX ; 1.6 ; Crystal structure of the first WW domain of human YAP2 isoform 8J0H ; 3.383 ; Crystal structure of the fission yeast Rex1BD protein(C4H3.06) 3NI6 ; 1.42 ; Crystal structure of the FK506 binding domain of Plasmodium vivax FKBP35 4ITZ ; 1.65 ; Crystal structure of the FK506 binding domain of Plasmodium vivax FKBP35 in complex with a tetrapeptide substrate 3IHZ ; 1.67 ; Crystal structure of the FK506 binding domain of Plasmodium vivax FKBP35 in complex with FK506 3EY6 ; 1.05 ; Crystal structure of the FK506-binding domain of human FKBP38 2VN1 ; 2.35 ; Crystal structure of the FK506-binding domain of Plasmodium falciparum FKBP35 in complex with FK506 4QT2 ; 1.44 ; Crystal Structure of the FK506-Binding Domain of Plasmodium Falciparum FKBP35 in complex with Rapamycin 5U9A ; 2.7 ; Crystal structure of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) 5U9J ; 2.1 ; Crystal structure of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) complexed with geranyl geranyl pyrophoshate 5U9I ; 2.3 ; Crystal structure of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) complexed with S-farnesyl-L-cysteine methyl ester 5DMD ; 1.45 ; Crystal structure of the flagellar assembly factor FliW 5JAK ; 1.801 ; Crystal structure of the flagellar assembly factor FliW 5H5V ; 3.0 ; Crystal structure of the flagellar cap protein FliD D1-D2-D3 domains from Escherichia coli 5H5W ; 2.15 ; Crystal structure of the flagellar cap protein FliD D2-D3 domains from Escherichia coli 5H5T ; 2.5 ; Crystal structure of the flagellar cap protein FliD D2-D3 domains from Salmonella Typhimurium 5XLK ; 3.05 ; Crystal structure of the flagellar cap protein FliD D2-D3 domains from Serratia marcescens in Space group I422 5XLJ ; 1.9 ; Crystal structure of the flagellar cap protein flid D2-D3 domains from serratia marcescens in Space group P432 6KTY ; 1.99 ; Crystal structure of the flagellar cap protein FliD from Bdellovibrio bacteriovorus 6IWY ; 2.6 ; Crystal structure of the flagellar cap protein FliD from Helicobacter pylori 7X1K ; 2.39 ; Crystal structure of the flagellar expression regulator DegU from Listeria monocytogenes 7EH9 ; 2.2 ; Crystal structure of the flagellar hook cap fragment from Salmonella enterica serovar Typhimurium 7EHA ; 3.3 ; Crystal structure of the flagellar hook cap from Salmonella enterica serovar Typhimurium 7C7Z ; 3.06 ; Crystal structure of the flagellar junction protein FlgL from Legionella pneumophila 2DPY ; 2.4 ; Crystal structure of the flagellar type III ATPase FliI 5MAW ; 1.5 ; Crystal structure of the flagellin-FliS complex from Bacillus subtilis 6GOW ; 2.1 ; Crystal structure of the flagellin-FliS complex from Bacillus subtilis crystallized in spacegroup P22121 1KDG ; 1.5 ; Crystal structure of the flavin domain of cellobiose dehydrogenase 6V43 ; 1.77 ; Crystal structure of the flavin oxygenase with cofactor and substrate bound involved in folate catabolism 6V42 ; 1.45 ; Crystal structure of the flavin oxygenase with cofactor bound involved in folate catabolism 3C96 ; 1.9 ; Crystal structure of the flavin-containing monooxygenase phzS from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium target PaR240 6U0S ; 2.52 ; Crystal structure of the flavin-dependent monooxygenase PieE in complex with FAD and substrate 1D4E ; 2.8 ; CRYSTAL STRUCTURE OF THE FLAVOCYTOCHROME C FUMARATE REDUCTASE OF SHEWANELLA PUTREFACIENS STRAIN MR-1 COMPLEXED WITH FUMARATE 2Q9U ; 1.9 ; Crystal structure of the flavodiiron protein from Giardia intestinalis 3HLY ; 2.403 ; Crystal Structure of the Flavodoxin-like domain from Synechococcus sp Q5MZP6_SYNP6 protein. Northeast Structural Genomics Consortium Target SnR135d. 4EH1 ; 2.2 ; Crystal Structure of the Flavohem-like-FAD/NAD Binding Domain of Nitric Oxide Dioxygenase from Vibrio cholerae O1 biovar El Tor 1CQX ; 1.75 ; Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1.75 A resolution 7XP7 ; 1.95 ; Crystal Structure of the Flavoprotein ColB1 Catalyzing Assembly Line-Tethered Cysteine Dehydrogenation 7OUC ; 1.75 ; Crystal structure of the flavoprotein monooxygenase GrhO5 from griseorhodin A biosynthesis 7OUJ ; 1.573 ; Crystal structure of the flavoprotein monooxygenase RubL from rubromycin biosynthesis 6EBQ ; 1.95 ; Crystal Structure of the Flavoprotein NrdI from Aerococcus urinae in Oxidized Form 4BJM ; 2.6 ; Crystal structure of the flax-rust effector avrM 4BJN ; 2.9 ; Crystal structure of the flax-rust effector AvrM-A 5VJJ ; 2.52 ; Crystal structure of the flax-rust effector AvrP 8H5V ; 2.0 ; Crystal structure of the FleQ domain of Vibrio cholerae FlrA 5XW7 ; 3.272 ; Crystal structure of the flexible tandem repeat domain of bacterial cellulose synthase subunit C 8J56 ; 3.5 ; Crystal structure of the FlhDC complex from Cupriavidus necator 6IL3 ; 2.5 ; Crystal structure of the FLT3 kinase bound to a small molecule inhibitor 5X02 ; 2.401 ; Crystal structure of the FLT3 kinase domain bound to the inhibitor FF-10101 4XUF ; 3.2 ; Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220) 1ETE ; 2.2 ; CRYSTAL STRUCTURE OF THE FLT3 LIGAND 3B12 ; 1.2 ; Crystal Structure of the Fluoroacetate Dehalogenase D104 mutant from Burkholderia sp. FA1 in complex with fluoroacetate 5T4T ; 1.511 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn - Apo No Halide 3R40 ; 1.05 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/apo 3R3X ; 1.8 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Bromoacetate 3R3W ; 1.6 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Chloroacetate 5K3B ; 1.58 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Chloroacetate - Cocrystallized 3R3V ; 1.5 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Fluoroacetate 5SWN ; 1.541 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Fluoroacetate - Cocrystallized 5K3E ; 1.54 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Asp110Asn/Glycolate - Cocrystallized 3R41 ; 1.05 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - His280Asn/apo 3R3Y ; 1.15 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - His280Asn/Fluoroacetate 5K3A ; 1.511 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - His280Asn/Fluoroacetate - Cocrystallized - Both Protomers Reacted with Ligand 5K3F ; 1.54 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - His280Asn/Fluoroacetate - Cocrystallized - Single Protomer Reacted with Ligand 6QKS ; 1.6 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Tyr219Phe - Apo 6QKU ; 1.511 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Tyr219Phe - Chloroacetate soaked 2hr 6QKT ; 1.512 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Tyr219Phe - Fluoroacetate soaked 24hr - Glycolate bound 6QKW ; 1.512 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - Tyr219Phe - Fluoroacetate soaked 2hr 5K3C ; 1.541 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - WT/5-Fluorotryptophan 3R3U ; 1.6 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - WT/apo 5K3D ; 1.45 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - WT/Apo - No Halide 3R3Z ; 1.7 ; Crystal Structure of the Fluoroacetate Dehalogenase RPA1163 - WT/Glycolate 3P2S ; 1.95 ; Crystal structure of the fluoroacetyl-CoA-specific thioesterase FlK in an open conformation 3P2R ; 2.46 ; Crystal structure of the fluoroacetyl-CoA-specific thioesterase FlK in complex with fluoroacetate 3P2Q ; 1.85 ; Crystal structure of the fluoroacetyl-CoA-specific thioesterase, FlK 6DN1 ; 3.03 ; CRYSTAL STRUCTURE OF THE FMN RIBOSWITCH BOUND TO BRX1151 SPLIT RNA 6DN2 ; 2.88 ; CRYSTAL STRUCTURE OF THE FMN RIBOSWITCH BOUND TO BRX1354 SPLIT RNA 6DN3 ; 2.8 ; CRYSTAL STRUCTURE OF THE FMN RIBOSWITCH BOUND TO BRX1555 SPLIT RNA 3F2Q ; 2.95 ; Crystal structure of the FMN riboswitch bound to FMN 3F2W ; 3.45 ; Crystal structure of the FMn riboswitch bound to FMN, Ba2+ soak. 3F30 ; 3.15 ; Crystal structure of the FMN riboswitch bound to FMN, cobalt hexammine soak. 3F2X ; 3.11 ; Crystal structure of the FMN riboswitch bound to FMN, Cs+ soak. 3F2T ; 3.0 ; Crystal structure of the FMN riboswitch bound to FMN, iridium hexamine soak. 3F2Y ; 3.2 ; Crystal structure of the FMN riboswitch bound to FMN, Mn2+ soak. 3F4E ; 3.05 ; Crystal structure of the FMN riboswitch bound to FMN, split RNA. 3F4G ; 3.01 ; Crystal structure of the FMN riboswitch bound to riboflavin. 3F4H ; 3.0 ; Crystal structure of the FMN riboswitch bound to roseoflavin 1B1C ; 1.93 ; CRYSTAL STRUCTURE OF THE FMN-BINDING DOMAIN OF HUMAN CYTOCHROME P450 REDUCTASE AT 1.93A RESOLUTION 2WZV ; 1.75 ; Crystal structure of the FMN-dependent nitroreductase NfnB from Mycobacterium smegmatis 2WZW ; 1.8 ; Crystal structure of the FMN-dependent nitroreductase NfnB from Mycobacterium smegmatis in complex with NADPH 4C76 ; 1.96 ; Crystal Structure of the FMN-reductase Msue from Pseudomonas putida KT2440. 6X3A ; 1.77 ; Crystal structure of the FN4-FN6 domains of human PTPRD 4BQC ; 3.2 ; Crystal structure of the FN5 and FN6 domains of NEO1 bound to SOS 4BQ9 ; 2.91 ; Crystal structure of the FN5 and FN6 domains of NEO1, form 1 4BQB ; 2.7 ; Crystal structure of the FN5 and FN6 domains of NEO1, form 2 6X38 ; 1.3 ; Crystal structure of the FN5 domain of Drosophila Lar 6X39 ; 1.7 ; Crystal structure of the FN5 domain of Mouse Lar 3LPW ; 1.65 ; Crystal structure of the FnIII-tandem A77-A78 from the A-band of titin 8BNQ ; 2.3 ; Crystal structure of the FnIII-tandem A84-A86 from the A-band of titin 3GM2 ; 2.71 ; Crystal Structure of the Focal Adhesion Targeting (FAT) Domain of Pyk2 3GM3 ; 2.6 ; Crystal Structure of the Focal Adhesion Targeting (FAT) Domain of Pyk2 3GM1 ; 2.95 ; Crystal Structure of the Focal Adhesion Targeting (FAT) Domain of Pyk2 in Complex with Paxillin LD4 Motif-Derived Peptides 1K04 ; 1.95 ; Crystal Structure of the Focal Adhesion Targeting Domain of Focal Adhesion Kinase 1K05 ; 2.9 ; Crystal structure of the Focal Adhesion Targeting Domain of Focal Adhesion Kinase 7PVH ; 2.0 ; Crystal structure of the folded domain of PorN 3WVL ; 3.788 ; Crystal structure of the football-shaped GroEL-GroES complex (GroEL: GroES2:ATP14) from Escherichia coli 4PKO ; 3.84 ; Crystal structure of the Football-shaped GroEL-GroES2-(ADPBeFx)14 complex 4PKN ; 3.66 ; Crystal structure of the football-shaped GroEL-GroES2-(ADPBeFx)14 complex containing substrate Rubisco 5XFL ; 2.45 ; Crystal structure of the force-sensing device region of alpha N-catenin 7RJ3 ; 1.68 ; Crystal Structure of the Forkhead Associated (FHA) Domain of the Glycogen Accumulation Regulator (GarA) from Mycobacterium tuberculosis 5OCN ; 2.7 ; Crystal structure of the forkhead domain of human FOXN1 6EL8 ; 1.61 ; Crystal structure of the Forkhead domain of human FOXN1 in complex with DNA 4EAH ; 3.4 ; Crystal structure of the formin homology 2 domain of FMNL3 bound to actin 4QQ8 ; 2.88 ; Crystal structure of the formolase FLS in space group P 43 21 2 4QPZ ; 3.0 ; Crystal structure of the formolase FLS_v2 in space group P 21 6CI2 ; 1.96 ; Crystal structure of the formyltransferase PseJ from Anoxybacillus kamchatkensis 6CI5 ; 2.00003 ; Crystal structure of the formyltransferase PseJ from Anoxybacillus kamchatkensis in complex with UDP-4,6-dideoxy-4-formamido-L-AltNAc and tetrahydrofolate 6CI4 ; 1.82407 ; Crystal structure of the formyltransferase PseJ from Anoxybacillus kamchatkensis soaked with UDP-4-amino-4,6-dideoxy-L-AltNAc 6EDK ; 1.8 ; Crystal structure of the formyltransferase PseJ from Anoxybacillus kamchatkensis with N10-formyltetrahydrofolate 1LQP ; 1.19 ; CRYSTAL STRUCTURE OF THE FOSFOMYCIN RESISTANCE PROTEIN (FOSA) CONTAINING BOUND SUBSTRATE 1NKI ; 0.95 ; CRYSTAL STRUCTURE OF THE FOSFOMYCIN RESISTANCE PROTEIN A (FOSA) CONTAINING BOUND PHOSPHONOFORMATE 1NPB ; 2.5 ; Crystal structure of the fosfomycin resistance protein from transposon Tn2921 6AED ; 3.797 ; Crystal Structure of the four Ig-like domain of LILRB2(LIR2/ILT4/CD85d) 6AEE ; 3.303 ; Crystal structure of the four Ig-like domains of LILRB1 complexed with HLA-G 3H6Z ; 2.8 ; Crystal Structure of the Four MBT Repeats of Drosophila melanogaster Sfmbt in Complex with Peptide RHR (me)K VLR 5XWX ; 1.55 ; Crystal structure of the four N-terminal immunoglogulin domains of Sidekick-1 protein 5XX0 ; 2.4 ; Crystal structure of the four N-terminal immunoglogulin domains of Sidekick-2 protein 2RKY ; 1.8 ; Crystal structure of the fourth and fifth fibronectin F1 modules in complex with a fragment of staphylococcus aureus fnbpa-1 2RL0 ; 2.0 ; Crystal structure of the fourth and fifth fibronectin F1 modules in complex with a fragment of staphylococcus aureus fnbpa-5 3TLP ; 2.13 ; Crystal structure of the fourth bromodomain of human poly-bromodomain containing protein 1 (PB1) 4WTX ; 1.5 ; Crystal structure of the fourth FnIII domain of integrin beta4 2VSP ; 2.41 ; Crystal structure of the fourth PDZ domain of PDZ domain-containing protein 1 4FZ2 ; 2.252 ; Crystal structure of the fourth type of archaeal tRNA splicing endonuclease from Candidatus Micrarchaeum acidiphilum ARMAN-2 6P7A ; 3.081 ; CRYSTAL STRUCTURE OF THE FOWLPOX VIRUS HOLLIDAY JUNCTION RESOLVASE 4L9C ; 2.1 ; Crystal structure of the FP domain of human F-box protein Fbxo7 (native) 4L9H ; 2.0 ; Crystal structure of the FP domain of human F-box protein Fbxo7(SeMet) 4OUH ; 2.0 ; Crystal structure of the FP domain of Human PI31 Proteasome Inhibitor 6RU3 ; 1.26 ; Crystal structure of the FP specific nanobody hFPNb1 6Y3X ; 3.4 ; Crystal structure of the Francisella novicida lysine decarboxylase LdcF 3NRC ; 2.101 ; Crystal Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD+ and triclosan 1W7Z ; 1.67 ; Crystal structure of the free (uncomplexed) Ecballium elaterium trypsin inhibitor (EETI-II) 2I9A ; 1.9 ; Crystal structure of the free aminoterminal fragment of urokinase type plasminogen activator (ATF) 6Y2E ; 1.75 ; Crystal structure of the free enzyme of the SARS-CoV-2 (2019-nCoV) main protease 4MNA ; 3.998 ; Crystal structure of the free FLS2 ectodomains 1MPU ; 2.5 ; Crystal Structure of the free human NKG2D immunoreceptor 1KEK ; 1.9 ; Crystal Structure of the Free Radical Intermediate of Pyruvate:Ferredoxin Oxidoreductase 2C3O ; 2.7 ; CRYSTAL STRUCTURE OF THE FREE RADICAL INTERMEDIATE OF PYRUVATE:FERREDOXIN OXIDOREDUCTASE FROM Desulfovibrio africanus 2C3P ; 2.33 ; CRYSTAL STRUCTURE OF THE FREE RADICAL INTERMEDIATE OF PYRUVATE:FERREDOXIN OXIDOREDUCTASE FROM Desulfovibrio africanus 2UZA ; 2.42 ; CRYSTAL STRUCTURE OF THE FREE RADICAL INTERMEDIATE OF PYRUVATE:FERREDOXIN OXIDOREDUCTASE FROM DESULFOVIBRIO AFRICANUS 7RON ; 1.68 ; Crystal structure of the Friedel-Crafts alkylating enzyme CylK from Cylindospermum licheniforme 3HKL ; 2.1 ; Crystal Structure of the Frizzled-like Cysteine-rich Domain of MuSK 2R8T ; 2.3 ; Crystal structure of the fructose 1,6-bisphosphatase GlpX from E.coli in the complex with fructose 1,6-bisphosphate 2R48 ; 1.8 ; Crystal structure of the fructose specific IIB subunit of PTS system from Bacillus subtilis subsp. subtilis str. 168 3BIG ; 1.85 ; Crystal structure of the fructose-1,6-bisphosphatase GlpX from E.coli in complex with inorganic phosphate 1IXZ ; 2.2 ; Crystal structure of the FtsH ATPase domain from Thermus thermophilus 1IY2 ; 3.2 ; Crystal structure of the FtsH ATPase domain from Thermus thermophilus 1IY1 ; 2.8 ; Crystal structure of the FtsH ATPase domain with ADP from Thermus thermophilus 1IY0 ; 2.95 ; Crystal structure of the FtsH ATPase domain with AMP-PNP from Thermus thermophilus 2DI4 ; 2.79 ; Crystal structure of the FtsH protease domain 4A34 ; 2.5 ; Crystal structure of the fucose mutarotase in complex with L-fucose from Streptococcus pneumoniae 3AVE ; 2.0 ; Crystal Structure of the Fucosylated Fc Fragment from Human Immunoglobulin G1 4C2S ; 2.48 ; Crystal structure of the fucosylgalactoside alpha N- acetylgalactosaminyltransferase (GTA P156L mutant) in complex with UDP and deoxy-H-antigen acceptor 3ZGF ; 1.701 ; Crystal structure of the Fucosylgalactoside alpha N- acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with in complex with NPE caged UDP-Gal (P2(1)2(1)2(1) space group) 3ZGG ; 1.9 ; Crystal structure of the Fucosylgalactoside alpha N- acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with NPE caged UDP-Gal (C222(1) space group) 3IOH ; 1.25 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) 3IOI ; 1.45 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-Gal derived inhibitor (1GW) 3V0L ; 1.75 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-Gal derived inhibitor (2GW) 3V0P ; 1.9 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-Gal derived inhibitor (4GW) and H-antigen acceptor 3V0M ; 1.68 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-Gal derived inhibitor (5GW) and H-antigen acceptor 3V0N ; 1.75 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-GalNAc derived inhibitor (3GW and 4GW) 3V0O ; 1.65 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with a novel UDP-GalNAc derived inhibitor (4GW) and H-antigen acceptor 3U0Y ; 1.6 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with compound 382 and UDP 3IOJ ; 1.651 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with UDP 3V0Q ; 1.8 ; Crystal structure of the Fucosylgalactoside alpha N-acetylgalactosaminyltransferase (GTA, cisAB mutant L266G, G268A) in complex with UDP and H-antigen acceptor 4HC7 ; 2.65 ; Crystal structure of the full DNA binding domain of GATA3-complex 2 3L5H ; 3.6 ; Crystal structure of the full ectodomain of human gp130: New insights into the molecular assembly of receptor complexes 2VEP ; 1.8 ; Crystal Structure Of The Full Length Bifunctional Enzyme Pria 3ER0 ; 3.35 ; Crystal structure of the full length eIF5A from Saccharomyces cerevisiae 2O5P ; 2.77 ; Crystal structure of the full length ferric pyoverdine outer membrane receptor FpvA of Pseudomonas aeruginosa in its apo form 3CVR ; 2.8 ; Crystal structure of the full length IpaH3 5XHB ; 1.9 ; Crystal structure of the full length of NisI in a lipid free form, the nisin immunity protein, from Lactococcus lactis 5DYE ; 3.5 ; CRYSTAL STRUCTURE OF THE FULL LENGTH S156E MUTANT OF HUMAN AQUAPORIN 5 3T1B ; 2.7 ; Crystal structure of the full-length AphB N100E variant 3KVN ; 2.499 ; Crystal structure of the full-length autotransporter EstA from Pseudomonas aeruginosa 8GMB ; 3.4 ; Crystal structure of the full-length Bruton's tyrosine kinase (PH-TH domain not visible) 5I8L ; 2.801 ; Crystal structure of the full-length cell wall-binding module of Cpl7 mutant R223A 8OFW ; 3.8 ; Crystal structure of the full-length dihydroorotate dehydrogenase from Mycobacterium tuberculosis 5NA2 ; 1.67 ; Crystal structure of the full-length Feline Immunodeficiency Virus capsid protein unveils original features 4X4W ; 1.9 ; Crystal structure of the full-length human mitochondrial CCA-adding enzyme 3PS5 ; 3.1 ; Crystal structure of the full-length Human Protein Tyrosine Phosphatase SHP-1 4LP5 ; 3.8 ; Crystal structure of the full-length human RAGE extracellular domain (VC1C2 fragment) 4K6M ; 2.6 ; Crystal Structure of the full-length Japanese encephalitis virus NS5 3FNJ ; 2.7 ; Crystal structure of the full-length lp_1913 protein from Lactobacillus plantarum, Northeast Structural Genomics Consortium Target LpR140 4IC9 ; 2.0 ; Crystal structure of the full-length matrix subunit (p15) of the Feline Immunodeficiency Virus (FIV) Gag polyprotein 5C3P ; 2.1 ; Crystal structure of the full-length Neurospora crassa T7H in complex with alpha-KG 5C3S ; 2.15 ; Crystal structure of the full-length Neurospora crassa T7H in complex with alpha-KG and 5-formyluracil (5fU) 5C3R ; 2.35 ; Crystal structure of the full-length Neurospora crassa T7H in complex with alpha-KG and 5-hydroxymethyluracil (5hmU) 5C3Q ; 2.05 ; Crystal structure of the full-length Neurospora crassa T7H in complex with alpha-KG and thymine (T) 4LDZ ; 2.31 ; Crystal structure of the full-length response regulator DesR in the active state 7R5N ; 3.45 ; Crystal structure of the full-length short LOV protein PF5-LOV from Pseudomonas fluorescens (dark state) 7YX0 ; 1.6 ; Crystal structure of the full-length short LOV protein SBW25-LOV from Pseudomonas fluorescens (light state) 2PF4 ; 3.1 ; Crystal structure of the full-length simian virus 40 small t antigen complexed with the protein phosphatase 2A Aalpha subunit 3ZQQ ; 4.0 ; Crystal structure of the full-length small terminase from a SPP1-like bacteriophage 2W48 ; 3.2 ; Crystal structure of the Full-length Sorbitol Operon Regulator SorC from Klebsiella pneumoniae 3FWL ; 3.086 ; Crystal Structure of the Full-Length Transglycosylase PBP1b from Escherichia coli 3VMA ; 2.161 ; Crystal Structure of the Full-Length Transglycosylase PBP1b from Escherichia coli 3EXA ; 2.3 ; Crystal structure of the full-length tRNA isopentenylpyrophosphate transferase (BH2366) from Bacillus halodurans, Northeast Structural Genomics Consortium target BhR41. 6NO7 ; 3.55 ; Crystal Structure of the full-length wild-type PKA RIa Holoenzyme 5M2X ; 4.991 ; Crystal structure of the full-length Zika virus NS5 protein (Human isolate Z1106033) 5M2Z ; 4.8 ; Crystal structure of the full-length Zika virus NS5 protein (Human isolate Z1106033) 6I7P ; 3.975 ; Crystal structure of the full-length Zika virus NS5 protein (Human isolate Z1106033) 1L3P ; 1.98 ; CRYSTAL STRUCTURE OF THE FUNCTIONAL DOMAIN OF THE MAJOR GRASS POLLEN ALLERGEN Phl p 5b 1DVK ; 2.15 ; CRYSTAL STRUCTURE OF THE FUNCTIONAL DOMAIN OF THE SPLICING FACTOR PRP18 3IEY ; 2.11 ; Crystal Structure of the functional Nanoarchaeum equitans tRNA splicing endonuclease 6ZRW ; 1.35 ; Crystal structure of the fungal lectin CML1 1ARP ; 1.9 ; Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 angstroms resolution: structural comparisons with the lignin and cytochrome C peroxidases 1I9W ; 3.0 ; CRYSTAL STRUCTURE OF THE FUSION GLYCOPROTEIN E1 FROM SEMLIKI FOREST VIRUS 5C2K ; 1.42 ; Crystal structure of the fusion protein linked by RhoA and the GAP domain of MgcRacGAP 1WZ1 ; 1.85 ; Crystal structure of the Fv fragment complexed with dansyl-lysine 2GSG ; 2.1 ; Crystal structure of the Fv fragment of a monoclonal antibody specific for poly-glutamine 1XXF ; 2.6 ; Crystal Structure of the FXIa Catalytic Domain in Complex with Ecotin Mutant (EcotinP) 1XX9 ; 2.2 ; Crystal Structure of the FXIa Catalytic Domain in Complex with EcotinM84R 1XXD ; 2.91 ; Crystal Structure of the FXIa Catalytic Domain in Complex with mutated Ecotin 7A2M ; 1.5 ; Crystal structure of the Fyn SH3 domain A95S-D99T mutant in C21 space group 7A2N ; 1.4 ; Crystal structure of the Fyn SH3 domain A95S-D99T mutant in space group P21 7A2J ; 1.5 ; Crystal structure of the Fyn SH3 domain in space group C21 at pH 7.5 7A2K ; 1.5 ; Crystal structure of the Fyn SH3 domain in space group P1 at pH 7.5 7A2U ; 1.7 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T at pH 4.5 7A2Q ; 0.94 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 3.0 with PEG 7A2T ; 1.22 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 4.0 7A2O ; 0.94 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 4.5 7A2S ; 1.02 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 5.0 7A2P ; 0.9 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 5.0 with PEG 7A2R ; 1.05 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant at pH 6.0 7A2W ; 0.99 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant in complex with VSL12 at pH 3.0 7A2Y ; 0.97 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant in complex with VSL12 at pH 4.0 7A2X ; 0.92 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant in complex with VSL12 at pH 5.0 7A2Z ; 1.14 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E121L-R123H mutant in complex with VSL12 at pH 6.0 7A2V ; 1.81 ; Crystal structure of the Fyn SH3 domain L112V-S114N-S115T-E129Q at pH 4.0 7A2L ; 1.9 ; Crystal structure of the Fyn SH3 domain mutant E129Q in space group C21 at pH 4.0 4ZNX ; 2.1 ; Crystal structure of the Fyn-SH3 domain in complex with the high affinity peptide APP12 3T7L ; 1.09 ; Crystal structure of the FYVE domain of endofin (ZFYVE16) at 1.1A resolution 2XTZ ; 2.34 ; Crystal structure of the G alpha protein AtGPA1 from Arabidopsis thaliana 6VKJ ; 2.105 ; Crystal structure of the G domain of human guanylate-binding protein 2 (hGBP2) in complex with GDP 3D7M ; 2.9 ; Crystal Structure of the G Protein Fast-Exchange Double Mutant I56C/Q333C 3SYC ; 3.41 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) D228N mutant 3SYO ; 3.54 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with sodium 3SYA ; 2.98 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with sodium and PIP2 4KFM ; 3.45 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with the beta-gamma G protein subunits 3SYP ; 3.12 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) R201A mutant 3SYQ ; 3.44 ; Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) R201A mutant in complex with PIP2 1QN5 ; 1.93 ; Crystal structure of the G(-26) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 6PNK ; 2.39 ; Crystal structure of the G-quadruplex formed by (GGGTT)3GGG in complex with N-methylmesoporphryin IX 6P45 ; 2.339 ; Crystal structure of the G-quadruplex formed by (TGGGT)4 in complex with N-methylmesoporphryin IX 2VVG ; 1.6 ; Crystal Structure of the G.intestinalis Kinesin 2 GiKIN2a Motor Domain 4F1M ; 2.04 ; Crystal Structure of the G1179S Roco4 Kinase Domain bound to AppCp from D. discoideum. 5F9C ; 2.5 ; Crystal structure of the G121R mutant of human phosphoglucomutase 1 1OBI ; 2.2 ; Crystal structure of the G130A mutant of Malonamidase E2 from Bradyrhizobium japonicum 3WWI ; 2.27 ; Crystal structure of the G136F mutant of the first R-stereoselective -transaminase identified from Arthrobacter sp. KNK168 (FERM-BP-5228) 1Y94 ; 2.2 ; Crystal structure of the G16S/N17T/P19A/S20A/N67D Variant Of Bovine seminal Ribonuclease 2APW ; 2.0 ; Crystal Structure of the G17E/A52V/S54N/K66E/E80V/L81S/T87S/G96V variant of the murine T cell receptor V beta 8.2 domain 2APX ; 1.8 ; Crystal Structure of the G17E/A52V/S54N/K66E/Q72H/E80V/L81S/T87S/G96V variant of the murine T cell receptor V beta 8.2 domain 2APV ; 1.9 ; Crystal Structure of the G17E/A52V/S54N/Q72H/E80V/L81S/T87S/G96V variant of the murine T cell receptor V beta 8.2 domain 2APT ; 2.0 ; Crystal Structure of the G17E/S54N/K66E/Q72H/E80V/L81S/T87S/G96V variant of the murine T cell receptor V beta 8.2 domain 3PVE ; 1.4 ; Crystal structure of the G2 domain of Agrin from Mus Musculus 3UMS ; 2.343 ; Crystal structure of the G202A mutant of human G-alpha-i1 3UMR ; 2.04 ; Crystal structure of the G202D mutant of human G-alpha-i1 3MUM ; 2.9 ; Crystal Structure of the G20A mutant c-di-GMP riboswith bound to c-di-GMP 3MUV ; 3.2 ; Crystal Structure of the G20A/C92U mutant c-di-GMP riboswith bound to c-di-AMP 3MUT ; 3.0 ; Crystal Structure of the G20A/C92U mutant c-di-GMP riboswith bound to c-di-GMP 6DMM ; 1.67 ; Crystal structure of the G23A mutant of human alpha defensin HNP4. 2WGY ; 1.5 ; Crystal structure of the G243A mutant of CYP130 from M. tuberculosis 5FS7 ; 1.85 ; Crystal structure of the G262S mutant of human apoptosis inducing factor 7DJ1 ; 3.528 ; Crystal structure of the G26C mutant of LeuT 7DJ2 ; 2.4 ; Crystal structure of the G26C/E290S mutant of LeuT 7DJC ; 2.701 ; Crystal structure of the G26C/Q250A mutant of LeuT 5HSH ; 2.65 ; Crystal structure of the G291R mutant of human phosphoglucomutase 1 2WBN ; 1.9 ; Crystal structure of the g2p (large terminase) nuclease domain from the bacteriophage SPP1 2WC9 ; 2.5 ; Crystal structure of the g2p (large terminase) nuclease domain from the bacteriophage SPP1 with bound Mn 5FS8 ; 1.4 ; Crystal structure of the G308E mutant of human apoptosis inducing factor 5FS9 ; 1.75 ; Crystal structure of the G338E mutant of human apoptosis inducing factor 3G8T ; 3.0 ; Crystal structure of the G33A mutant Bacillus anthracis glmS ribozyme bound to GlcN6P 6EJH ; 1.71 ; Crystal structure of the G343C mutant of Candida albicans Mep2 1M6V ; 2.1 ; Crystal Structure of the G359F (small subunit) Point Mutant of Carbamoyl Phosphate Synthetase 7S77 ; 2.8 ; Crystal structure of the G391V variant of human PGM-1 8TH7 ; 2.88 ; Crystal Structure of the G3BP1 NTF2-like domain bound to the Caprin1 peptide 7SUO ; 2.35 ; Crystal Structure of the G3BP1 NTF2-like domain bound to the IDR1 of SARS-CoV-2 nucleocapsid protein 8TH1 ; 1.8 ; Crystal Structure of the G3BP1 NTF2-like domain bound to the IDR1 of SARS-CoV-2 nucleocapsid protein D3L mutant 8TH5 ; 2.62 ; Crystal Structure of the G3BP1 NTF2-like domain bound to the IDR1 of SARS-CoV-2 nucleocapsid protein P13L mutant 8TH6 ; 2.34 ; Crystal Structure of the G3BP1 NTF2-like domain bound to USP10 peptide 5DRV ; 2.75 ; Crystal structure of the G3BP2 NTF2-like domain in complex with a peptide 2A7N ; 1.8 ; Crystal Structure of the G81A mutant of the Active Chimera of (S)-Mandelate Dehydrogenase 2A85 ; 2.5 ; Crystal Structure of the G81A mutant of the Active Chimera of (S)-Mandelate Dehydrogenase in complex with its substrate 2-hydroxyoctanoate 2A7P ; 2.2 ; Crystal Structure of the G81A mutant of the Active Chimera of (S)-Mandelate Dehydrogenase in complex with its substrate 3-indolelactate 2D03 ; 1.97 ; Crystal structure of the G91S mutant of the NNA7 Fab 1TF0 ; 2.7 ; Crystal structure of the GA module complexed with human serum albumin 2J5Y ; 1.4 ; Crystal structure of the GA module from F.magna 5AUK ; 1.62 ; Crystal structure of the Ga-substituted Ferredoxin 1KJT ; 2.0 ; Crystal Structure of the GABA(A) Receptor Associated Protein, GABARAP 6HB9 ; 1.3 ; Crystal structure of the GABARAP in complex with the UBA5 LIR motif 3CI6 ; 1.55 ; Crystal structure of the GAF domain from Acinetobacter phosphoenolpyruvate-protein phosphotransferase 3CIT ; 1.9 ; Crystal structure of the GAF domain of a putative sensor histidine kinase from Pseudomonas syringae pv. tomato 2QYB ; 2.4 ; Crystal structure of the GAF domain region of putative membrane protein from Geobacter sulfurreducens PCA 4DLO ; 2.3 ; Crystal structure of the GAIN and HormR domains of brain angiogenesis inhibitor 3 (BAI3) 4DLQ ; 1.85 ; Crystal structure of the GAIN and HormR domains of CIRL 1/Latrophilin 1 (CL1) 1Z45 ; 1.85 ; Crystal structure of the gal10 fusion protein galactose mutarotase/UDP-galactose 4-epimerase from Saccharomyces cerevisiae complexed with NAD, UDP-glucose, and galactose 3FTT ; 1.6 ; Crystal Structure of the galactoside O-acetyltransferase from Staphylococcus aureus 3V4E ; 1.95 ; Crystal Structure of the galactoside O-acetyltransferase in complex with CoA 3AP5 ; 1.92 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain 3APB ; 1.95 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain in complex with iodide 3AP9 ; 1.33 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain in complex with Lacto-N-fucopentaose III 3AP4 ; 2.33 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain in complex with lactose 3AP6 ; 1.58 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain in complex with lactose 3'-sulfate 3AP7 ; 1.53 ; Crystal structure of the galectin-8 N-terminal carbohydrate recognition domain in complex with lactose sialic acid 1LUR ; 1.85 ; Crystal Structure of the GalM/aldose Epimerase Homologue from C. elegans, Northeast Structural Genomics Target WR66 6EGS ; 2.7 ; Crystal structure of the GalNAc-T2 F104S mutant in complex with UDP-GalNAc 5ZWL ; 1.98 ; Crystal structure of the gamma - epsilon complex of photosynthetic cyanobacterial F1-ATPase 3OUP ; 1.65 ; Crystal structure of the gamma-carbonic anhydrase W19N mutant from Methanosarcina thermophila 2AF7 ; 2.81 ; Crystal structure of the gamma-carboxymuconolactone decarboxylase from Methanobacterium thermoautotrophicum. Northeast Structural Genomics Consortium target TT747. 4OTU ; 3.022 ; Crystal structure of the gamma-glutamyltranspeptidase from Bacillus licheniformis in complex with L-Glutamate 4OTT ; 2.98 ; Crystal structure of the gamma-glutamyltranspeptidase from Bacillus licheniformis. 4R12 ; 1.95 ; Crystal structure of the gamma-secretase component Nicastrin 3MJ6 ; 2.19 ; Crystal structure of the gammadelta T cell costimulatory receptor Junctional Adhesion Molecule-Like Protein, JAML 3W6R ; 1.9 ; Crystal structure of the GAP domain of human MgcRacGAP 3WPQ ; 1.84 ; crystal structure of the GAP domain of MgcRacGAP(S387A) 3WPS ; 2.7 ; crystal structure of the GAP domain of MgcRacGAP(S387D) 2IQJ ; 1.9 ; Crystal structure of the GAP domain of SMAP1L (LOC64744) stromal membrane-associated protein 1-like 1HE9 ; 2.4 ; Crystal structure of the GAP domain of the Pseudomonas aeruginosa ExoS toxin 3FAY ; 2.2 ; Crystal structure of the GAP-related domain of IQGAP1 6L5D ; 2.55 ; Crystal structure of the gas vesicle protein GvpF from Anabaena sp. PCC7120 4MCE ; 2.205 ; Crystal structure of the Gas5 GRE Mimic 4MCF ; 1.899 ; Crystal structure of the Gas5 GRE Mimic 6IKN ; 3.0 ; Crystal structure of the GAS7 F-BAR domain 7W48 ; 3.5 ; Crystal structure of the gastric proton pump complexed with PF-03716556 5YLV ; 2.79978 ; Crystal structure of the gastric proton pump complexed with SCH28080 7W49 ; 3.1 ; Crystal structure of the gastric proton pump complexed with soraprazan 7W47 ; 3.0 ; Crystal structure of the gastric proton pump complexed with tegoprazan 5YLU ; 2.79989 ; Crystal structure of the gastric proton pump complexed with vonoprazan 7EFL ; 3.4 ; Crystal structure of the gastric proton pump K791S in (BYK)E2BeF state 7EFM ; 3.2 ; Crystal structure of the gastric proton pump K791S/E820D/Y340N in (BYK)E2BeF state 7EFN ; 3.2 ; Crystal structure of the gastric proton pump K791S/E820D/Y340N/E936V in (BYK)E2BeF state 4WIN ; 2.6 ; Crystal structure of the GATase domain from Plasmodium falciparum GMP synthetase 6GS2 ; 2.04 ; Crystal Structure of the GatD/MurT Enzyme Complex from Staphylococcus aureus 6H5E ; 2.139 ; Crystal Structure of the GatD/MurT Enzyme Complex from Staphylococcus aureus with bound AMPPNP 7AS7 ; 2.65 ; Crystal structure of the GCD-associated TGFBIp mutant R124H 7A4T ; 2.124 ; Crystal structure of the GCN coiled-coil in complex with nanobody Nb39 2FIW ; 2.35 ; Crystal Structure of the GCN5-Related N-acetyltransferase: Aminotransferase, Class-II from Rhodopseudomonas palustris 3EVS ; 2.1 ; Crystal structure of the GDF-5:BMP receptor IB complex. 5JHW ; 2.35 ; Crystal Structure of the GDF11:Follistatin 288 complex 5C1S ; 3.1 ; Crystal structure of the GDP-bound fast hydrolyzing mutant (V71A/K73Q) of EhRabX3 from Entamoeba histolytica 1XJ0 ; 1.7 ; Crystal Structure of the GDP-bound form of the RasG60A mutant 3SFV ; 1.73 ; Crystal structure of the GDP-bound Rab1a S25N mutant in complex with the coiled-coil domain of LidA from Legionella pneumophila 8DB5 ; 1.9 ; Crystal structure of the GDP-D-glycero-4-keto-d-lyxo-heptose-3,5-epimerase from Campylobacter jejuni, serotype HS:15 8DCO ; 1.9 ; Crystal structure of the GDP-D-glycero-4-keto-D-lyxo-heptose-3,5-epimerase from Campylobacter jejuni, serotype HS:42 8DCL ; 1.55 ; Crystal structure of the GDP-D-glycero-4-keto-D-lyxo-heptose-3-epimerase from campylobacter jejuni, serotype HS:23/36 8DAK ; 1.5 ; Crystal structure of the GDP-D-glycero-4-keto-d-lyxo-heptose-3-epimerase from Campylobacter jejuni, serotype HS:3 1N7G ; 2.2 ; Crystal Structure of the GDP-mannose 4,6-dehydratase ternary complex with NADPH and GDP-rhamnose. 8GR2 ; 1.65 ; Crystal structure of the GDSL-family esterase CJ0610C from Campylobacter jejuni 3N6O ; 2.5 ; Crystal structure of the GEF and P4M domain of DrrA/SidM from Legionella pneumophila 3JZ9 ; 1.8 ; Crystal structure of the GEF domain of DrrA/SidM from Legionella pneumophila 6KO9 ; 2.2 ; Crystal structure of the Gefitinib Intermediate 1 bound RamR determined with XtaLAB Synergy 5XJT ; 2.92 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2 in Complex with SmD1(1-82)/D2.R61A/F/E/G from Human 5XJQ ; 3.28 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2 in Complex with SmD1(1-82)/D2/F/E/G from Human 5XJL ; 2.5 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2 in Complex with SmD1/D2/F/E/G from Human 5XJU ; 2.58 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2dN39 in Complex with SmD1(1-82)/D2.R61A/F/E/G from Human 5XJS ; 3.38 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2dN39 in Complex with SmD1(1-82)/D2/F/E from Human 5XJR ; 3.12 ; Crystal Structure of the Gemin2-binding domain of SMN, Gemin2dN39 in Complex with SmD1(1-82)/D2/F/E/G from Human 1Y96 ; 2.002 ; crystal structure of the Gemin6/Gemin7 heterodimer from the human SMN complex 2XC8 ; 2.35 ; Crystal structure of the gene 22 product of the Bacillus subtilis SPP1 phage 3U34 ; 2.8 ; Crystal structure of the general stress FMN/FAD binding protein from the phytopathogen Xanthomonas citri 3U35 ; 2.5 ; Crystal structure of the general stress FMN/FAD binding protein from the phytopathogen Xanthomonas citri 3F2V ; 2.0 ; Crystal structure of the general stress protein 14 (TDE0354) in complex with FMN from Treponema denticola, Northeast Structural Genomics Consortium Target TdR58. 3EC6 ; 1.6 ; Crystal structure of the General Stress Protein 26 from Bacillus anthracis str. Sterne 2AFS ; 2.22 ; Crystal structure of the genetic mutant R54W of human glutaminyl cyclase 5UKG ; 2.36 ; Crystal Structure of the genetically encoded calcium indicator K-GECO 3U0K ; 2.1 ; Crystal Structure of the genetically encoded calcium indicator RCaMP 4I2Y ; 2.2 ; Crystal Structure of the genetically encoded calcium indicator RGECO1 6XU4 ; 3.18 ; Crystal structure of the genetically-encoded FGCaMP calcium indicator in its calcium-bound state 5MWC ; 2.45 ; Crystal structure of the genetically-encoded green calcium indicator NTnC in its calcium bound state 2OGS ; 2.02 ; Crystal Structure of the GEOBACILLUS STEAROTHERMOPHILUS Carboxylesterase EST55 at pH 6.2 2OGT ; 1.58 ; Crystal Structure of the Geobacillus Stearothermophilus Carboxylesterase EST55 at pH 6.8 7WWH ; 1.92 ; Crystal structure of the Geobacillus thermoglucosidasius feruloyl esterase GthFAE 3N54 ; 2.3 ; Crystal Structure of the GerBC protein 4O8W ; 2.293 ; Crystal Structure of the GerD spore germination protein 6O42 ; 2.6 ; Crystal structure of the germline PGZL1 (PGZL1_gVmDmJ) Fab in complex with MPER peptide epitope. 6ZMU ; 1.95 ; Crystal structure of the germline-specific thioredoxin protein Deadhead (Thioredoxin-1) from Drospohila melanogaster, P43212 4JPK ; 2.4 ; Crystal structure of the germline-targeting HIV-1 gp120 engineered outer domain eOD-GT6 in complex with a putative VRC01 germline precursor Fab 4JPJ ; 2.5 ; Crystal structure of the germline-targeting HIV-1 gp120 engineered outer domain, eOD-GT6 5IDL ; 2.9 ; Crystal structure of the germline-targeting HIV-1 gp120 engineered outer domain, eOD-GT8 4GOG ; 1.1 ; Crystal structure of the GES-1 imipenem acyl-enzyme complex 3VEJ ; 1.23 ; Crystal structure of the Get5 carboxyl domain from S. cerevisiae 4GOC ; 2.4 ; Crystal structure of the Get5 ubiquitin-like domain 6TCE ; 2.92 ; Crystal structure of the GGCT site-bound MH1 domain of Smad5 containing a GGGS insertion in the Loop1 3IGN ; 1.83 ; Crystal Structure of the GGDEF domain from Marinobacter aquaeolei diguanylate cyclase complexed with c-di-GMP - Northeast Structural Genomics Consortium Target MqR89a 6TTS ; 2.5 ; Crystal structure of the GGDEF domain of DgcB from Caulobacter crescentus in complex with c-di-GMP 4IOB ; 2.78 ; Crystal structure of the GGDEF domain of PA1120 (YfiN or TpbB) from Pseudomonas aeruginosa at 2.7 Ang. 3HVW ; 1.7 ; Crystal Structure of the GGDEF domain of the PA2567 protein from Pseudomonas aeruginosa, Northeast Structural Genomics Consortium Target PaR365C 5DT7 ; 2.15 ; Crystal structure of the GH1 beta-glucosidase from Exiguobacterium antarcticum B7 in space group C2221 5DT5 ; 2.24 ; Crystal structure of the GH1 beta-glucosidase from Exiguobacterium antarcticum B7 in space group P21 7ZSZ ; 1.5 ; Crystal structure of the GH11 domain of a multidomain xylanase from the hindgut metagenome of Trinervitermes trinervoides 7MKR ; 1.5 ; Crystal structure of the GH12 domain from Acidothermus cellulolyticus GuxA 7MKS ; 1.85 ; Crystal structure of the GH12 domain from Acidothermus cellulolyticus GuxA bound to cellobiose 6XYZ ; 1.63 ; Crystal structure of the GH18 chitinase ChiB from the chitin utilization locus of Flavobacterium johnsoniae 6BYC ; 1.897 ; Crystal structure of the GH2 exo-beta-mannanase from Xanthomonas axonopodis pv. citri 6BYE ; 2.126 ; Crystal structure of the GH2 exo-beta-mannanase from Xanthomonas axonopodis pv. citri in complex with mannose 6D2X ; 1.72 ; Crystal structure of the GH26 domain from PbGH26-GH5A endo-beta-mannanase/endo-beta-glucanase from Prevotella bryantii 7KMP ; 1.556 ; Crystal structure of the GH31 alpha-xylosidase (Xac1773) from Xanthomonas citri 7KNC ; 1.873 ; Crystal structure of the GH31 alpha-xylosidase (Xac1773) from Xanthomonas citri 7KMO ; 1.753 ; Crystal structure of the GH35 beta-galactosidase (Xac1772) from Xanthomonas citri in complex with galactose 6UQJ ; 1.707 ; Crystal structure of the GH39 enzyme from Xanthomonas axonopodis pv. citri 6MS2 ; 2.494 ; Crystal structure of the GH43 BlXynB protein from Bacillus licheniformis 6MS3 ; 1.95 ; Crystal structure of the GH43 protein BlXynB mutant (K247S) from Bacillus licheniformis 6XN1 ; 1.8 ; Crystal structure of the GH43_1 enzyme from Xanthomonas citri complexed with xylose 6XN2 ; 1.652 ; Crystal structure of the GH43_1 enzyme from Xanthomonas citri complexed with xylotriose 4NF7 ; 2.111 ; Crystal structure of the GH5 family catalytic domain of Endo-1,4-beta-glucanase Cel5C from Butyrivibrio proteoclasticus. 6D25 ; 1.91 ; Crystal structure of the GH51 arabinofuranosidase from Xanthomonas axonopodis pv. citri 7KN8 ; 1.95 ; Crystal structure of the GH74 xyloglucanase from Xanthomonas campestris (Xcc1752) 7KMQ ; 2.045 ; Crystal structure of the GH95 alpha-L-1,2-fucosidase (Xac1774) from Xanthomonas citri 4UFC ; 2.81 ; Crystal structure of the GH95 enzyme BACOVA_03438 2CUL ; 1.65 ; Crystal structure of the GidA-related protein from Thermus thermophilus HB8 1YD6 ; 2.0 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Bacillus caldotenax 1YCZ ; 1.8 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima 1YD1 ; 1.8 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima bound to its catalytic divalent cation: magnesium 1YD0 ; 1.5 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima bound to its catalytic divalent cation: manganese 1YD5 ; 1.8 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima: Point mutant N88A bound to its catalytic divalent cation 1YD2 ; 1.6 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima: Point mutant Y19F bound to the catalytic divalent cation 1YD4 ; 1.9 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima: Point mutant Y29F bound to its catalytic divalent cation 1YD3 ; 1.6 ; Crystal structure of the GIY-YIG N-terminal endonuclease domain of UvrC from Thermotoga maritima: Point mutant Y43F bound to its catalytic divalent cation 3K6T ; 2.04 ; Crystal structure of the GLD-1 homodimerization domain from Caenorhabditis elegans at 2.04 A resolution 3KBL ; 2.28 ; Crystal structure of the GLD-1 homodimerization domain from Caenorhabditis elegans N169A mutant at 2.28 A resolution 8H17 ; 2.15 ; Crystal structure of the Globin domain of Thermosynechococcus elongatus BP-1 3POS ; 1.65 ; Crystal structure of the globular domain of human calreticulin 3POW ; 1.55 ; Crystal structure of the globular domain of human calreticulin 5LK5 ; 2.3 ; Crystal structure of the globular domain of human calreticulin mutant D71K 1G6W ; 2.5 ; CRYSTAL STRUCTURE OF THE GLOBULAR REGION OF THE PRION PROTEIN URE2 FROM THE YEAST SACCAROMYCES CEREVISIAE 1G6Y ; 2.8 ; CRYSTAL STRUCTURE OF THE GLOBULAR REGION OF THE PRION PROTEIN URE2 FROM YEAST SACCHAROMYCES CEREVISIAE 3MMI ; 2.3 ; Crystal structure of the globular tail of Myo4p 6GB1 ; 2.73 ; Crystal structure of the GLP1 receptor ECD with Peptide 11 6X01 ; 3.65 ; Crystal structure of the GltPh V216C-A391C mutant cross-linked in outward-facing state 6WZB ; 3.45 ; Crystal structure of the GltPh V216C-G388C mutant cross-linked with divalent mercury 5FTI ; 1.35 ; Crystal structure of the GluA2 K738M-T744K LBD in complex with glutamate (lithium form) 5FTH ; 2.9 ; Crystal structure of the GluA2 K738M-T744K LBD in complex with glutamate (zinc form) 5NS9 ; 1.44 ; Crystal structure of the GluA2 LBD (L483Y-N754S-L758V) in complex with glutamate 5JEI ; 1.229 ; Crystal structure of the GluA2 LBD in complex with FW 5BUU ; 2.07 ; Crystal structure of the GluA2 ligand-binding domain (L483Y-N754S) in complex with glutamate and BPAM-321 at 2.07 A resolution 5FHM ; 1.55 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with (S)-2-Amino-3-(5-(2-(3-(aminomethyl)benzyl)-2H-tetrazol-5-yl)-3-hydroxyisoxazol-4-yl)propanoic acid at resolution 1.55 A resolution 5FHO ; 2.3 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with (S)-2-Amino-3-(5-(2-(3-chlorobenzyl)-2H-tetrazol-5-yl)-3-hydroxyisoxazol-4-yl)propanoic acid at 2.3 A resolution 5FHN ; 1.6 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with (S)-2-Amino-3-(5-(2-(3-methylbenzyl)-2H-tetrazol-5-yl)-3-hydroxyisoxazol-4-yl)propanoic acid at 1.6 A resolution 5NG9 ; 1.15 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with agonist CIP-AS at 1.15 A resolution. 5NIH ; 1.3 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with agonist LM-12b at 1.3 A resolution. 5OEW ; 2.0 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with glutamate and positive allosteric modulator BPAM538 4G8M ; 2.05 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the agonist CBG-IV at 2.05A resolution 4IGT ; 1.24 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the agonist ZA302 at 1.24A resolution 4ISU ; 2.3 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the antagonist (2R)-IKM-159 at 2.3A resolution. 5CBS ; 1.801 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the antagonist (R)-2-amino-3-(3'-hydroxybiphenyl-3-yl)propanoic acid at 1.8A resolution 3TZA ; 1.9 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the antagonist (S)-2-amino-3-(2-(2-carboxyethyl)-5-chloro-4-nitrophenyl)propionic acid at 1.9A resolution 5CBR ; 1.996 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the antagonist (S)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)propanoic acid at 2.0A resolution 6FAZ ; 1.4 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J) in complex with the positive allosteric modulator TDPAM01 at 1.4 A resolution. 4N07 ; 1.87 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and BPAM-344 at 1.87 A resolution 3TDJ ; 1.95 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and BPAM-97 at 1.95 A resolution 4U4S ; 1.9 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and BPAM25 at 1.90 A resolution. 4U4X ; 1.56 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and BPAM37 at 1.56 A resolution. 4IY5 ; 2.0 ; Crystal structure of the glua2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and CX516 at 2.0 A resolution 3TKD ; 1.45 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and cyclothiazide at 1.45 A resolution 4IY6 ; 1.72 ; Crystal structure of the GLUA2 ligand-binding domain (S1S2J-L483Y-N754S) in complex with glutamate and ME-CX516 at 1.72 A resolution 5ELV ; 1.92 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L504-N775) in complex with glutamate and BPAM-521 at 1.92 A resolution 5O9A ; 1.78 ; Crystal structure of the GluA2 ligand-binding domain (S1S2J-L504Y-N775S) in complex with glutamate and BPAM121 at 1.78 A resolution 4O3C ; 1.5 ; Crystal structure of the GLUA2 ligand-binding domain in complex with L-aspartate at 1.50 A resolution 4O3A ; 1.8 ; Crystal structure of the glua2 ligand-binding domain in complex with L-aspartate at 1.80 a resolution 5ZG0 ; 1.58 ; Crystal structure of the GluA2o LBD in complex with glutamate and Compound-1 5ZG1 ; 1.32 ; Crystal structure of the GluA2o LBD in complex with glutamate and Compound-2 5YBF ; 1.5 ; Crystal structure of the GluA2o LBD in complex with glutamate and HBT1 5YBG ; 1.52 ; Crystal structure of the GluA2o LBD in complex with glutamate and LY451395 5ZG3 ; 1.65 ; Crystal structure of the GluA2o LBD in complex with glutamate and TAK-137 7F3O ; 1.44 ; Crystal structure of the GluA2o LBD in complex with glutamate and TAK-653 5ZG2 ; 1.25 ; Crystal structure of the GluA2o LBD in complex with ZK200775 and Compound-2 3KEI ; 1.9 ; Crystal Structure of the GluA4 Ligand-Binding domain L651V mutant in complex with glutamate 3KFM ; 2.2 ; Crystal Structure of the GluA4 Ligand-Binding domain L651V mutant in complex with kainate 4MDD ; 2.4 ; Crystal Structure of the Glucocorticoid Receptor Bound to a Non-steroidal Antagonist Reveals Repositioning and Partial Disordering of Activation Function Helix 12 4LSJ ; 2.35 ; Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Bound to a Dibenzoxapine Sulfonamide 8HQQ ; 1.86 ; Crystal structure of the glucose-binding protein SAR11_0769 from ""Candidatus Pelagibacter ubique"" HTCC1062 bound to glucose 3KL0 ; 1.64 ; Crystal structure of the glucuronoxylan xylanohydrolase XynC from Bacillus subtilis 4DLD ; 2.0 ; Crystal structure of the GluK1 ligand-binding domain (S1S2) in complex with the antagonist (S)-2-amino-3-(2-(2-carboxyethyl)-5-chloro-4-nitrophenyl)propionic acid at 2.0 A resolution 5MFW ; 2.1 ; Crystal structure of the GluK1 ligand-binding domain in complex with kainate and BPAM-121 at 2.10 A resolution 5MFQ ; 1.9 ; Crystal structure of the GluK1 ligand-binding domain in complex with kainate and BPAM-344 at 1.90 A resolution 5MFV ; 2.181 ; Crystal structure of the GluK1 ligand-binding domain in complex with kainate and BPAM-521 at 2.18 A resolution 2XXW ; 2.3 ; Crystal structure of the GluK2 (GluR6) D776K LBD dimer in complex with glutamate 2XXX ; 2.098 ; Crystal structure of the GluK2 (GluR6) D776K LBD dimer in complex with glutamate (P21 21 21) 2XXY ; 3.0 ; Crystal structure of the GluK2 (GluR6) D776K LBD dimer in complex with kainate 2XXU ; 1.5 ; Crystal structure of the GluK2 (GluR6) M770K LBD dimer in complex with glutamate 2XXV ; 1.7 ; Crystal structure of the GluK2 (GluR6) M770K LBD dimer in complex with kainate 2XXR ; 1.6 ; Crystal structure of the GluK2 (GluR6) wild-type LBD dimer in complex with glutamate 2XXT ; 1.9 ; Crystal structure of the GluK2 (GluR6) wild-type LBD dimer in complex with kainate 4BDL ; 1.75 ; Crystal structure of the GluK2 K531A LBD dimer in complex with glutamate 4BDM ; 3.4 ; Crystal structure of the GluK2 K531A LBD dimer in complex with kainate 4BDN ; 2.5 ; Crystal structure of the GluK2 K531A-T779G LBD dimer in complex with glutamate 4BDO ; 2.55 ; Crystal structure of the GluK2 K531A-T779G LBD dimer in complex with kainate 4BDQ ; 1.9 ; Crystal structure of the GluK2 R775A LBD dimer in complex with glutamate 4BDR ; 1.65 ; Crystal structure of the GluK2 R775A LBD dimer in complex with kainate 3QLU ; 2.906 ; Crystal structure of the GluK2/GluK5 (GluR6/KA2) ATD dimer assembly 3QLV ; 3.94 ; Crystal structure of the GluK2/GluK5 (GluR6/KA2) ATD tetramer assembly 5CMM ; 1.271 ; Crystal structure of the GluK2EM LBD dimer assembly complex with 2S,4R-4-methylglutamate 5CMK ; 1.801 ; Crystal structure of the GluK2EM LBD dimer assembly complex with glutamate and LY466195 3OLZ ; 2.75 ; Crystal structure of the GluK3 (GluR7) ATD dimer at 2.75 Angstrom resolution 3U94 ; 1.962 ; Crystal structure of the GluK3 ligand binding domain complex with glutamate and zinc: P21212 form 3U93 ; 1.881 ; Crystal structure of the GluK3 ligand binding domain complex with glutamate and zinc: P2221 form 3U92 ; 1.9 ; Crystal structure of the GluK3 ligand binding domain complex with kainate and zinc: P2221 form 6JMV ; 1.832 ; Crystal structure of the GluK3 ligand binding domain complex with SYM and zinc 4NWC ; 2.012 ; Crystal structure of the GluK3 ligand-binding domain (S1S2) in complex with the agonist (2S,4R)-4-(3-Methoxy-3-oxopropyl)glutamic acid at 2.01 A resolution. 3OM0 ; 1.401 ; Crystal structure of the GluK5 (KA2) ATD crystallographic dimer at 1.4 Angstrom resolution 3OM1 ; 1.677 ; Crystal structure of the GluK5 (KA2) ATD dimer at 1.7 Angstrom Resolution 3Q41 ; 3.4 ; Crystal structure of the GluN1 N-terminal domain (NTD) 1II5 ; 1.6 ; CRYSTAL STRUCTURE OF THE GLUR0 LIGAND BINDING CORE COMPLEX WITH L-GLUTAMATE 2PYY ; 2.1 ; Crystal Structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with (L)-glutamate 2GFE ; 1.54 ; Crystal structure of the GluR2 A476E S673D Ligand Binding Core Mutant at 1.54 Angstroms Resolution 3B7D ; 2.5 ; Crystal structure of the GLUR2 ligand binding core (HS1S2J) in complex with CNQX at 2.5 A resolution 1FTK ; 1.6 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2I) IN COMPLEX WITH KAINATE AT 1.6 A RESOLUTION 1FTM ; 1.7 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH AMPA AT 1.7 RESOLUTION 1MXU ; 1.8 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) in complex with bromo-willardiine (Control for the crystal titration experiments) 1MQH ; 1.8 ; Crystal Structure of the GluR2 Ligand Binding Core (S1S2J) in Complex with Bromo-Willardiine at 1.8 Angstroms Resolution 2AL5 ; 1.65 ; Crystal structure of the GluR2 ligand binding core (S1S2J) in complex with fluoro-willardiine and aniracetam 1MQI ; 1.35 ; Crystal Structure of the GluR2 Ligand Binding Core (S1S2J) in Complex with Fluoro-Willardiine at 1.35 Angstroms Resolution 3BKI ; 1.87 ; Crystal Structure of the GluR2 ligand binding core (S1S2J) in complex with FQX at 1.87 Angstroms 1FTJ ; 1.9 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH GLUTAMATE AT 1.9 RESOLUTION 1MQG ; 2.15 ; Crystal Structure of the GluR2 Ligand Binding Core (S1S2J) in Complex with Iodo-Willardiine at 2.15 Angstroms Resolution 1FW0 ; 1.9 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH KAINATE AT 2.0 A RESOLUTION 2AL4 ; 1.7 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH quisqualate and CX614. 1MM6 ; 2.15 ; crystal structure of the GluR2 ligand binding core (S1S2J) in complex with quisqualate in a non zinc crystal form at 2.15 angstroms resolution 1MM7 ; 1.65 ; Crystal Structure of the GluR2 Ligand Binding Core (S1S2J) in Complex with Quisqualate in a Zinc Crystal Form at 1.65 Angstroms Resolution 1FTL ; 1.8 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH THE ANTAGONIST DNQX AT 1.8 A RESOLUTION 1MQJ ; 1.65 ; Crystal structure of the GluR2 ligand binding core (S1S2J) in complex with willardiine at 1.65 angstroms resolution 1FTO ; 2.0 ; CRYSTAL STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN THE APO STATE AT 2.0 A RESOLUTION 1P1Q ; 2.0 ; Crystal structure of the GluR2 ligand binding core (S1S2J) L650T mutant in complex with AMPA 3B6Q ; 2.0 ; Crystal Structure of the GLUR2 Ligand Binding Core (S1S2J) Mutant T686A in Complex with Glutamate at 2.0 Resolution 3B6T ; 2.1 ; Crystal Structure of the GLUR2 Ligand Binding Core (S1S2J) T686A Mutant in Complex with Quisqualate at 2.1 Resolution 3B6W ; 1.7 ; Crystal Structure of the GLUR2 Ligand Binding Core (S1S2J) T686S Mutant in Complex with Glutamate at 1.7 Resolution 4U2R ; 1.4114 ; Crystal structure of the GLUR2 ligand binding core (S1S2J, flip variant) in the apo state 2ANJ ; 2.1 ; Crystal Structure of the Glur2 Ligand Binding Core (S1S2J-Y450W) Mutant in Complex With the Partial Agonist Kainic Acid at 2.1 A Resolution 1LBB ; 2.1 ; Crystal structure of the GluR2 ligand binding domain mutant (S1S2J-N754D) in complex with kainate at 2.1 A resolution 1P1U ; 2.0 ; Crystal structure of the GluR2 ligand-binding core (S1S2J) L650T mutant in complex with AMPA (ammonium sulfate crystal form) 1P1O ; 1.6 ; Crystal structure of the GluR2 ligand-binding core (S1S2J) mutant L650T in complex with quisqualate 1P1W ; 1.8 ; Crystal structure of the GluR2 ligand-binding core (S1S2J) with the L483Y and L650T mutations and in complex with AMPA 3H5V ; 2.33 ; Crystal structure of the GluR2-ATD 3H5W ; 2.686 ; Crystal structure of the GluR2-ATD in space group P212121 without solvent 2UXA ; 2.38 ; Crystal structure of the GluR2-flip ligand binding domain, r/g unedited. 3EPE ; 1.85 ; Crystal Structure of the GluR4 Ligand-Binding domain in complex with glutamate 3EN3 ; 2.43 ; Crystal Structure of the GluR4 Ligand-Binding domain in complex with kainate 2QS4 ; 1.58 ; Crystal structure of the GluR5 ligand binding core dimer in complex with LY466195 at 1.58 Angstroms resolution 2QS1 ; 1.8 ; Crystal structure of the GluR5 ligand binding core dimer in complex with UBP315 at 1.80 Angstroms resolution 2QS3 ; 1.76 ; Crystal structure of the GluR5 ligand binding core dimer in complex with UBP316 at 1.76 Angstroms resolution 2QS2 ; 1.8 ; Crystal structure of the GluR5 ligand binding core dimer in complex with UBP318 at 1.80 Angstroms resolution 2F36 ; 2.11 ; Crystal Structure of the GluR5 Ligand Binding Core Dimer with Glutamate At 2.1 Angstroms Resolution 2F34 ; 1.74 ; Crystal Structure of the GluR5 Ligand Binding Core Dimer with UBP310 At 1.74 Angstroms Resolution 1TXF ; 2.1 ; CRYSTAL STRUCTURE OF THE GLUR5 LIGAND BINDING CORE IN COMPLEX WITH GLUTAMATE AT 2.1 ANGSTROM RESOLUTION 2F35 ; 1.87 ; Crystal Structure of the GluR5 Ligand Binding Core with UBP302 At 1.87 Angstroms Resolution 3H6G ; 2.697 ; Crystal structure of the GluR6 amino terminal domain dimer assembly 3H6H ; 2.901 ; Crystal structure of the GluR6 amino terminal domain dimer assembly MPD form 2I0C ; 2.25 ; Crystal structure of the GluR6 ligand binding core dimer crosslinked by disulfide bonds between Y490C and L752C at 2.25 Angstroms Resolution 2I0B ; 1.96 ; Crystal structure of the GluR6 ligand binding core ELKQ mutant dimer at 1.96 Angstroms Resolution 1SD3 ; 1.8 ; Crystal structure of the GLUR6 ligand binding core in complex with 2S,4R-4-methylglutamate at 1.8 Angstrom resolution 1S7Y ; 1.75 ; Crystal structure of the GluR6 ligand binding core in complex with glutamate at 1.75 A resolution orthorhombic form 1TT1 ; 1.93 ; CRYSTAL STRUCTURE OF THE GLUR6 LIGAND BINDING CORE IN COMPLEX WITH KAINATE 1.93 A RESOLUTION 1S9T ; 1.8 ; Crystal structure of the GLUR6 ligand binding core in complex with quisqualate at 1.8A resolution 3G3I ; 1.371 ; Crystal structure of the GluR6 ligand binding domain dimer I442H K494E I749L Q753K mutant with glutamate and NaCl at 1.37 Angstrom resolution 3G3K ; 1.24 ; Crystal structure of the GluR6 ligand binding domain dimer I442H K494E K665R I749L Q753K E757Q mutant with glutamate and NaCl at 1.24 Angstrom resolution 3G3J ; 1.321 ; Crystal structure of the GluR6 ligand binding domain dimer I442H K494E K665R I749L Q753K mutant with glutamate and NaCl at 1.32 Angstrom resolution 3G3H ; 1.5 ; Crystal structure of the GluR6 ligand binding domain dimer K665R I749L Q753K mutant with glutamate and NaCl at 1.5 Angstrom resolution 3G3G ; 1.303 ; Crystal structure of the GluR6 ligand binding domain dimer K665R mutant with glutamate and NaCl at 1.3 Angstrom resolution 3G3F ; 1.377 ; Crystal structure of the GluR6 ligand binding domain dimer with glutamate and NaCl at 1.38 Angstrom resolution 2GZM ; 1.99 ; Crystal Structure of the Glutamate Racemase from Bacillus anthracis 6R7R ; 2.8 ; Crystal structure of the glutamate transporter homologue GltTk in complex with D-aspartate 3FKY ; 2.95 ; Crystal structure of the glutamine synthetase Gln1deltaN18 from the yeast Saccharomyces cerevisiae 3AL0 ; 3.368 ; Crystal structure of the glutamine transamidosome from Thermotoga maritima in the glutamylation state. 3MBR ; 1.44 ; Crystal Structure of the Glutaminyl Cyclase from Xanthomonas campestris 2HZ7 ; 2.3 ; Crystal structure of the Glutaminyl-tRNA synthetase from Deinococcus radiodurans 4A91 ; 1.75 ; Crystal structure of the glutamyl-queuosine tRNAAsp synthetase from E. coli complexed with L-glutamate 7TBS ; 1.96 ; Crystal Structure of the Glutaredoxin 2 from Francisella tularensis 1T1V ; 1.6 ; Crystal Structure of the Glutaredoxin-like Protein SH3BGRL3 at 1.6 A resolution 7PWE ; 2.077 ; Crystal structure of the glutaredoxin/ferredoxin disulfide reductase fusion protein from Desulfotalea psychrophila Lsv54 1GHD ; 2.4 ; Crystal structure of the glutaryl-7-aminocephalosporanic acid acylase by mad phasing 4Q5Q ; 1.931 ; Crystal Structure of the Glutathione S-transferase Der p 8 4Q5F ; 2.448 ; Crystal Structure of the Glutathione S-transferase from Ascaris lumbricoides 6J3F ; 2.5 ; Crystal structure of the glutathione S-transferase, CsGST63524, of Ceriporiopsis subvermispora in complex with glutathione 6J3H ; 2.19 ; Crystal structure of the glutathione S-transferase, CsGST83044, of Ceriporiopsis subvermispora in complex with glutathione 4F03 ; 1.8 ; Crystal structure of the glutathione transferase GTE1 from Phanerochaete chrysosporium 4G19 ; 2.0 ; Crystal structure of the glutathione transferase GTE1 from Phanerochaete chrysosporium in complex with glutathione 3CSI ; 1.9 ; Crystal Structure of the Glutathione Transferase Pi allelic variant*C, I104V/A113V, in complex with the Chlorambucil-Glutathione Conjugate 3DD3 ; 2.25 ; Crystal Structure of the Glutathione Transferase Pi enzyme in complex with the bifunctional inhibitor, Etharapta 3DGQ ; 1.6 ; Crystal structure of the glutathione transferase PI enzyme in complex with the bifunctional inhibitor, etharapta 1ZGN ; 2.1 ; Crystal Structure of the Glutathione Transferase Pi in Complex with Dinitrosyl-diglutathionyl Iron Complex 4F0B ; 1.45 ; Crystal structure of the glutathione transferase URE2P1 from Phanerochaete chrysosporium. 4F0C ; 1.901 ; Crystal structure of the glutathione transferase URE2P5 from Phanerochaete chrysosporium 4ZBD ; 1.12 ; Crystal structure of the glutathione transferase URE2P6 from Phanerochaete chrysosporium in complex with glutathione reduced by X-ray irradiation at 100K 4ZB8 ; 2.0 ; Crystal structure of the glutathione transferase URE2P6 from Phanerochaete chrysosporium in complex with oxidized glutathione. 4ZBB ; 1.8 ; Crystal structure of the glutathione transferase URE2P8 from Phanerochaete chrysosporium complexed with glutathionyl-S-dinitrobenzene. 4ZBA ; 1.501 ; Crystal structure of the glutathione transferase URE2P8 from Phanerochaete chrysosporium with oxidized glutathione. 4ZB9 ; 2.403 ; Crystal structure of the glutathione transferase URE2P8 from Phanerochaete chrysosporium, with one glutathione disulfide bound per dimer. 1X6M ; 2.35 ; Crystal structure of the glutathione-dependent formaldehyde-activating enzyme (Gfa) 3PPU ; 2.3 ; Crystal structure of the glutathione-S-transferase Xi from Phanerochaete chrysosporium 4Q5N ; 2.55 ; Crystal structure of the gluthatione S-transferase Blo t 8 3IXL ; 1.45 ; Crystal structure of the Gly74Cys-Cys188Ser mutant of arylmalonate decarboxylase in the liganded form 2DPN ; 2.8 ; Crystal Structure of the glycerol kinase from Thermus thermophilus HB8 1PW4 ; 3.3 ; Crystal Structure of the Glycerol-3-Phosphate Transporter from E.Coli 2QO6 ; 1.9 ; Crystal structure of the glycine 55 arginine mutant of zebrafish liver bile acid-binding protein complexed with cholic acid 2FTS ; 2.41 ; Crystal structure of the glycine receptor-gephyrin complex 3OWI ; 2.845 ; Crystal structure of the glycine riboswitch bound to glycine 3OWW ; 2.802 ; Crystal structure of the glycine riboswitch bound to glycine 2F3S ; 1.96 ; Crystal Structure of the glycogen phosphorylase B / ethyl-N-(beta-D-glucopyranosyl)oxamate complex 2F3Q ; 1.96 ; Crystal structure of the glycogen phosphorylase B / methyl-N-(beta-D-glucopyranosyl)oxamate complex 2F3U ; 1.93 ; Crystal Structure of the glycogen phosphorylase B / N-(beta-D-glucopyranosyl)-N'-cyclopropyl oxalamide complex 2F3P ; 1.94 ; Crystal Structure of the glycogen phosphorylase B / N-(beta-D-glucopyranosyl)oxamic acid complex 1RZU ; 2.3 ; Crystal structure of the glycogen synthase from A. tumefaciens in complex with ADP 1RZV ; 2.3 ; Crystal structure of the glycogen synthase from Agrobacterium tumefaciens (non-complexed form) 4EEC ; 2.7 ; Crystal Structure of the glycopeptide antibiotic sulfotransferase StaL complexed with A3P and desulfo-A47934. 3G2M ; 2.0 ; Crystal Structure of the Glycopeptide N-methyltransferase MtfA 3G2P ; 2.95 ; Crystal Structure of the Glycopeptide N-methyltransferase MtfA complexed with (S)-adenosyl-L-homocysteine (SAH) 3G2O ; 2.1 ; Crystal Structure of the Glycopeptide N-methyltransferase MtfA complexed with (S)-adenosyl-L-methionine (SAM) 3G2Q ; 2.18 ; Crystal Structure of the Glycopeptide N-methyltransferase MtfA complexed with sinefungin 5EH4 ; 2.81 ; Crystal Structure of the Glycophorin A Transmembrane Dimer in Lipidic Cubic Phase 5EH6 ; 1.918 ; Crystal Structure of the Glycophorin A Transmembrane Monomer in Lipidic Cubic Phase 4DVL ; 2.75 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with 2'-3'-cyclo-UMP 4DVN ; 2.38 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with 2'-UMP 4DW3 ; 2.35 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with 5'-CMP 4DW4 ; 2.23 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with 5'-UMP 4DW5 ; 2.21 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with a non-cleavable CpU dinucleotide 4DWC ; 2.89 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 in complex with Zn ions 4DVK ; 2.21 ; Crystal structure of the glycoprotein Erns from the pestivirus BVDV-1 strain NCP-7 5OU7 ; 1.9 ; Crystal structure of the Glycoprotein VI loop truncation mutant PAVS-PAPYKN 8U01 ; 3.0 ; Crystal Structure of the Glycoside Hydrolase Family 2 TIM Barrel-domain Containing Protein from Phocaeicola plebeius 6JHP ; 2.559 ; Crystal structure of the glycoside hydrolase family 36 alpha-galactosidase from Paecilomyces thermophila 3LV4 ; 1.695 ; Crystal structure of the glycoside hydrolase, family 43 YxiA protein from Bacillus licheniformis. Northeast Structural Genomics Consortium Target BiR14. 1P4K ; 1.9 ; CRYSTAL STRUCTURE OF THE GLYCOSYLASPARAGINASE PRECURSOR D151N MUTANT 1P4V ; 1.9 ; CRYSTAL STRUCTURE OF THE GLYCOSYLASPARAGINASE PRECURSOR D151N MUTANT WITH GLYCINE 3LJQ ; 1.9 ; Crystal Structure of the Glycosylasparaginase T152C apo-precursor 1QUB ; 2.7 ; CRYSTAL STRUCTURE OF THE GLYCOSYLATED FIVE-DOMAIN HUMAN BETA2-GLYCOPROTEIN I PURIFIED FROM BLOOD PLASMA 3MBO ; 3.307 ; Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate 5GVV ; 1.95 ; Crystal structure of the glycosyltransferase GlyE in Streptococcus pneumoniae TIGR4 4AMB ; 2.62 ; Crystal structure of the glycosyltransferase SnogD from Streptomyces nogalater 4AMG ; 2.59 ; Crystal structure of the glycosyltransferase SnogD from Streptomyces nogalater 4AN4 ; 2.7 ; Crystal structure of the glycosyltransferase SnogD from Streptomyces nogalater 5CA3 ; 1.8 ; Crystal structure of the glycosynthase mutant D324N of Escherichia coli GH63 glycosidase in complex with glucose and lactose 5GW7 ; 2.2 ; Crystal structure of the glycosynthase mutant E727A of Escherichia coli GH63 glycosidase in complex with glucose and lactose 5Z5E ; 2.098 ; Crystal structure of the Glycyl-tRNA synthetase (GlyRS) in Nanoarchaeum equitans 1SS4 ; 1.84 ; Crystal Structure of the Glyoxalase Family Protein APC24694 from Bacillus cereus 1JXM ; 2.0 ; CRYSTAL STRUCTURE OF THE GMP BOUND SH3-HOOK-GK FRAGMENT OF PSD-95 2DPL ; 1.43 ; Crystal Structure of the GMP synthase from Pyrococcus horikoshii OT3 4WIM ; 3.6 ; Crystal Structure of the GMP Synthetase from Plasmodium falciparum 2XC6 ; 1.83 ; Crystal structure of the GNA 3'-CTC(Br)UAGAG-2' 2WNA ; 0.97 ; Crystal structure of the GNA 3'-G(Br)CGCGC-2' 4NXY ; 1.449 ; Crystal Structure of the GNAT domain of S. lividans PAT 2WV0 ; 2.4 ; Crystal structure of the GntR-HutC family member YvoA from Bacillus subtilis 6ON4 ; 2.1 ; Crystal structure of the GntR-type sialoregulator NanR from Escherichia coli, in complex with sialic acid 1ZBV ; 3.21 ; Crystal Structure of the goat signalling protein (SPG-40) complexed with a designed peptide Trp-Pro-Trp at 3.2A resolution 1ZU8 ; 3.05 ; Crystal structure of the goat signalling protein with a bound trisaccharide reveals that Trp78 reduces the carbohydrate binding site to half 5TDQ ; 2.493 ; Crystal Structure of the GOLD domain of ACBD3 4KQA ; 2.603 ; Crystal structure of the golgi casein kinase 4KQB ; 3.045 ; crystal structure of the Golgi casein kinase with Mn/ADP bound 6S6N ; 1.1 ; Crystal structure of the Gorilla LL37(17-29) antimicrobial peptide 5KG9 ; 2.3 ; Crystal structure of the gp120 v2 antibody RE505-22 Fab from IGH- and IGK-humanized mouse 4N21 ; 1.99 ; Crystal structure of the GP2 Core Domain from the California Academy of Science Virus 4N23 ; 2.0 ; Crystal structure of the GP2 Core Domain from the California Academy of Science Virus, monoclinic symmetry 8S9I ; 3.53 ; Crystal structure of the gp32 C-terminal peptide/Dda/dT8 8GME ; 4.98 ; Crystal structure of the gp32-Dda-dT17 complex 6F45 ; 1.70356 ; Crystal structure of the gp37-gp38 adhesin tip complex of the bacteriophage S16 long tail fiber 3TW5 ; 2.95 ; Crystal structure of the GP42 transglutaminase from Phytophthora sojae 1XCM ; 1.84 ; Crystal structure of the GppNHp-bound H-Ras G60A mutant 7R58 ; 1.902 ; Crystal structure of the GPVI-glenzocimab complex 2X2J ; 2.35 ; Crystal structure of the Gracilariopsis lemaneiformis alpha- 1,4-glucan lyase with deoxynojirimycin 2X2H ; 2.06 ; Crystal structure of the Gracilariopsis lemaneiformis alpha-1,4- glucan lyase 4AMX ; 2.1 ; CRYSTAL STRUCTURE OF THE GRACILARIOPSIS LEMANEIFORMIS ALPHA-1,4- GLUCAN LYASE Covalent Intermediate Complex with 5-fluoro-glucosyl- fluoride 4AMW ; 1.9 ; CRYSTAL STRUCTURE OF THE GRACILARIOPSIS LEMANEIFORMIS ALPHA-1,4- GLUCAN LYASE Covalent Intermediate Complex with 5-fluoro-idosyl- fluoride 2X2I ; 2.6 ; Crystal structure of the Gracilariopsis lemaneiformis alpha-1,4- glucan lyase with acarbose 7C31 ; 1.3 ; Crystal structure of the grapevine defensin VvK1 4EDJ ; 1.901 ; Crystal structure of the GRASP55 GRASP Domain with a phosphomimetic mutation (S189D) 4REY ; 1.96 ; Crystal Structure of the GRASP65-GM130 C-terminal peptide complex 2AUH ; 3.2 ; Crystal structure of the Grb14 BPS region in complex with the insulin receptor tyrosine kinase 4K81 ; 2.4 ; Crystal structure of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras 2AUG ; 2.3 ; Crystal structure of the Grb14 SH2 domain 3N7Y ; 2.02 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a 20-Membered Macrocyclic Ligand Having the Sequence pYVNV 3N84 ; 2.0 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a 23-Membered Macrocyclic Ligand Having the Sequence pYVNVP 3IMJ ; 2.02 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Cyclopropyl-constrained Ac-pTyr-Ile-Asn-NH2 Tripeptide Mimic 3IN7 ; 2.0 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Cyclopropyl-constrained Ac-pY-Q-N-NH2 Tripeptide Mimic 3IN8 ; 1.7 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Flexible Ac-pTyr-Ile-Asn-NH2 Tripeptide Mimic 3KFJ ; 2.02 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Flexible Ac-pY-E-N-NH2 Tripeptide Mimic 3IMD ; 2.0 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Flexible Ac-pY-Q-N-NH2 Tripeptide Mimic 3OV1 ; 1.6 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a pYXN-Derived Tripeptide 3OVE ; 1.82 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a pYXN-Derived Tripeptide 3S8N ; 1.71 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a pYXN-Derived Tripeptide 3S8O ; 1.85 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a pYXN-Derived Tripeptide 6WO2 ; 2.0 ; Crystal Structure of the Grb2 SH2 Domain in Complex with a Tripeptide: Ac-pY-Ac6c-N-isohexyl 6WM1 ; 1.8 ; Crystal structure of the Grb2 SH2 domain in complex with a tripeptide: Ac-pY-Ac6c-N-phenylpropyl 3N8M ; 2.0 ; Crystal Structure of the Grb2 SH2 Domain in Complex with An Acyclic Ligand Having the Sequence pYVNVP 1F0B ; 2.1 ; CRYSTAL STRUCTURE OF THE GREEN FLUORESCENT PROTEIN (GFP) VARIANT YFP-H148Q 1F09 ; 2.14 ; CRYSTAL STRUCTURE OF THE GREEN FLUORESCENT PROTEIN (GFP) VARIANT YFP-H148Q WITH TWO BOUND IODIDES 5WJ2 ; 2.409 ; Crystal structure of the green fluorescent protein Clover 4RYS ; 1.18 ; Crystal structure of the green fluorescent rotein NowGFP (the variant of cyan Cerulean) at pH 4.8 4RTC ; 1.35 ; Crystal structure of the green fluorescent variant, nowGFP, of the cyan Cerulean at pH 9.0 6ZSY ; 0.926 ; Crystal structure of the Grindelwald extracellular domain complex 6ZSZ ; 1.92 ; Crystal structure of the Grindelwald extracellular domain complex 5OPW ; 3.19 ; Crystal structure of the GroEL mutant A109C 5OPX ; 3.64 ; Crystal structure of the GroEL mutant A109C in complex with GroES and ADP BeF2 1IW6 ; 2.3 ; Crystal Structure of the Ground State of Bacteriorhodopsin 7Z09 ; 1.05 ; Crystal structure of the ground state of bacteriorhodopsin at 1.05 Angstrom resolution 7Z0A ; 1.22 ; Crystal structure of the ground state of bacteriorhodopsin at 1.22 Angstrom resolution 3FAW ; 2.1 ; Crystal Structure of the Group B Streptococcus Pullulanase SAP 5W74 ; 3.65 ; Crystal Structure of the Group II Chaperonin from Methanococcus Maripaludis D386ADeltaLid Mutant in the Open, ADP-Bound State 5W79 ; 3.122 ; Crystal Structure of the Group II Chaperonin from Methanococcus Maripaludis, Cysteine-less mutant in the Apo State 5V3T ; 1.899 ; Crystal Structure of the Group II Truncated Hemoglobin from Bacillus Anthracis 5V3U ; 2.5 ; Crystal Structure of the Group II Truncated Hemoglobin from Bacillus Anthracis: Trp90Leu mutant 5V3V ; 2.14 ; Crystal Structure of the Group II Truncated Hemoglobin from Bacillus Anthracis: Tyr26Ala Mutant 4KAX ; 1.85 ; Crystal structure of the Grp1 PH domain in complex with Arf6-GTP 5IUC ; 1.253 ; Crystal structure of the GspB siglec domain with sialyl T antigen bound 1NHY ; 3.0 ; Crystal Structure of the GST-like Domain of Elongation Factor 1-gamma from Saccharomyces cerevisiae. 4GX1 ; 2.8 ; Crystal structure of the GsuK bound to ADP 4GX0 ; 2.601 ; Crystal structure of the GsuK L97D mutant 4GVL ; 3.0 ; Crystal Structure of the GsuK RCK domain 4DMV ; 1.5 ; Crystal structure of the GT domain of Clostridium difficile Toxin A 4DMW ; 2.5 ; Crystal structure of the GT domain of Clostridium difficile toxin A (TcdA) in complex with UDP and Manganese 2DBY ; 1.76 ; Crystal structure of the GTP-binding protein YchF in complexed with GDP 1SVI ; 1.95 ; Crystal Structure of the GTP-binding protein YsxC complexed with GDP 1ZW6 ; 1.5 ; Crystal Structure of the GTP-bound form of RasQ61G 3TKL ; 2.183 ; Crystal structure of the GTP-bound Rab1a in complex with the coiled-coil domain of LidA from Legionella pneumophila 5C1T ; 2.801 ; Crystal structure of the GTP-bound wild type EhRabX3 from Entamoeba histolytica 4ZWG ; 2.3 ; Crystal structure of the GTP-dATP-bound catalytic core of SAMHD1 phosphomimetic T592E mutant 4H5I ; 1.36 ; Crystal Structure of the Guanine Nucleotide Exchange Factor Sec12 (P1 form) 4H5J ; 2.601 ; Crystal Structure of the Guanine Nucleotide Exchange Factor Sec12 (P64 form) 3GAO ; 1.9 ; Crystal structure of the guanine riboswitch bound to xanthine. 3GES ; 2.15 ; Crystal structure of the guanine riboswitch C74U mutant bound to 6-O-methylguanine 6SIR ; 1.7 ; Crystal structure of the guanylate cyclase domain of RhGC from Catenaria anguillulae in complex with GTP 1KGD ; 1.314 ; Crystal Structure of the Guanylate Kinase-like Domain of Human CASK 2W01 ; 2.31 ; Crystal structure of the guanylyl cyclase Cya2 3DLB ; 2.7 ; Crystal structure of the guide-strand-containing Argonaute protein silencing complex 3DLH ; 3.0 ; Crystal structure of the guide-strand-containing Argonaute protein silencing complex 3DWF ; 2.2 ; Crystal Structure of the Guinea Pig 11beta-Hydroxysteroid Dehydrogenase Type 1 Mutant F278E 4R8K ; 2.2 ; Crystal structure of the guinea pig L-asparaginase 1 catalytic domain 6ITU ; 2.17 ; Crystal Structure of the GULP1 PTB domain-APP peptide complex 3FMA ; 2.5 ; Crystal structure of the GYF domain of Smy2 in complex with a proline-rich peptide from BBP/ScSF1 2O09 ; 2.1 ; Crystal structure of the H-NOX domain from Nostoc sp. PCC 7120 2O0G ; 2.51 ; Crystal structure of the H-NOX domain from Nostoc sp. PCC 7120 complexed to CO 2O0C ; 2.6 ; Crystal structure of the H-NOX domain from Nostoc sp. PCC 7120 complexed to NO 4A01 ; 2.35 ; Crystal Structure of the H-Translocating Pyrophosphatase 1G3K ; 1.9 ; CRYSTAL STRUCTURE OF THE H. INFLUENZAE PROTEASE HSLV AT 1.9 A RESOLUTION 6ZN8 ; 3.211 ; Crystal structure of the H. influenzae VapXD toxin-antitoxin complex 3PG7 ; 2.189 ; Crystal structure of the H. sapiens NF1 SEC-PH domain (del1750 mutant) 3N1T ; 1.716 ; Crystal structure of the H101A mutant ecHint GMP complex 8APY ; 2.34 ; Crystal structure of the H12A variant of the KDEL receptor bound to sybody 1HQG ; 2.0 ; CRYSTAL STRUCTURE OF THE H141C ARGINASE VARIANT COMPLEXED WITH PRODUCTS ORNITHINE AND UREA 1EJS ; 2.0 ; Crystal Structure of the H219N Variant of Klebsiella Aerogenes Urease 1EJT ; 2.0 ; CRYSTAL STRUCTURE OF THE H219Q VARIANT OF KLEBSIELLA AEROGENES UREASE 4GHM ; 1.618 ; Crystal Structure of the H233A mutant of 7-cyano-7-deazaguanine reductase, QueF from Vibrio cholerae complexed with preQ0 5W6Z ; 2.61 ; Crystal structure of the H24W mutant of HsNUDT16 5LWX ; 1.49 ; Crystal structure of the H253D mutant of McoG from Aspergillus niger 3V1N ; 1.59 ; Crystal Structure of the H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, after exposure to its substrate HOPDA 3V1K ; 2.13 ; Crystal Structure of the H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400. 5YVR ; 1.896 ; Crystal Structure of the H277A mutant of ADH/D1, an archaeal halo-thermophilic Red Sea brine pool alcohol dehydrogenase 1PQU ; 1.92 ; Crystal Structure of the H277N Mutant of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae Bound with NADP, S-methyl cysteine sulfoxide and cacodylate 3JQQ ; 2.2 ; Crystal structure of the H286K mutant of Ferredoxin-NADP+ reductase from Plasmodium falciparum in complex with 2'P-AMP 3JQR ; 2.3 ; Crystal structure of the H286L mutant of Ferredoxin-NADP+ reductase from Plasmodium falciparum 3JQP ; 3.0 ; Crystal structure of the H286L mutant of Ferredoxin-NADP+ reductase from Plasmodium falciparum with 2'P-AMP 4L8C ; 2.8 ; Crystal structure of the H2Db in complex with the NP-N3D peptide 4L8D ; 1.9 ; Crystal structure of the H2Db in complex with the NP-N5D peptide 4L8B ; 2.2 ; Crystal structure of the H2Db in complex with the NP-N5H peptide 6YC1 ; 2.2 ; Crystal structure of the H30A mutant of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 6RFA ; 2.2 ; Crystal structure of the H30K mutant of the light-driven sodium pump KR2 in the monomeric form, pH 8.0 1EJU ; 2.0 ; CRYSTAL STRUCTURE OF THE H320N VARIANT OF KLEBSIELLA AEROGENES UREASE 1EJV ; 2.4 ; CRYSTAL STRUCTURE OF THE H320Q VARIANT OF KLEBSIELLA AEROGENES UREASE 8AJT ; 1.499 ; Crystal structure of the H323A mutant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa cocrystallized with adenosine in the presence of K+ cations 6Y45 ; 1.68 ; Crystal Structure of the H33A variant of RsrR 5KQN ; 1.75 ; Crystal structure of the H381S variant of catalase-peroxidase from B. pseudomallei 2RJV ; 1.45 ; Crystal structure of the H41Y mutant of villin headpiece, P 21 21 21 space group 7XL5 ; 2.604 ; Crystal structure of the H42T/A85G/I86A mutant of a nadp-dependent alcohol dehydrogenase 6JSC ; 1.4 ; Crystal structure of the H434A variant of the C-terminal domain of HtaA from Corynebacterium glutamicum 4UDR ; 1.6 ; Crystal structure of the H467A mutant of 5-hydroxymethylfurfural oxidase (HMFO) 2NNX ; 2.3 ; Crystal Structure of the H46R, H48Q double mutant of human [Cu-Zn] Superoxide Dismutase 1N28 ; 1.5 ; Crystal structure of the H48Q mutant of human group IIA phospholipase A2 4O9G ; 1.9 ; Crystal structure of the H51N mutant of the 3,4-ketoisomerase QdtA from Thermoanaerobacterium thermosaccharolyticum in complex with TDP-4-keto-6-deoxyglucose 6VL7 ; 2.14 ; Crystal structure of the H583C mutant of GoxA soaked with glycine 3ZHQ ; 2.5 ; Crystal structure of the H747A mutant of the SucA domain of Mycobacterium smegmatis KGD 3ZHR ; 2.1 ; Crystal structure of the H747A mutant of the SucA domain of Mycobacterium smegmatis KGD showing the active site lid closed 6VMV ; 2.2 ; Crystal structure of the H767A mutant of GoxA soaked with glycine 5FUQ ; 2.04 ; CRYSTAL STRUCTURE OF THE H80R VARIANT OF NQO1 BOUND TO DICOUMAROL 2VVR ; 2.1 ; Crystal structure of the H99N mutant of ribose-5-phosphate isomerase B from E. coli soaked with ribose 5-phosphate 2E3B ; 1.3 ; Crystal structure of the HA-bound form of Arthromyces ramosus peroxidase at 1.3 Angstroms resolution 3QQI ; 1.65 ; Crystal structure of the HA1 receptor binding domain of H2 hemagglutinin 1S94 ; 3.34 ; Crystal structure of the Habc domain of neuronal syntaxin from the squid Loligo pealei 4BSA ; 2.3 ; Crystal Structure of the Haemagglutinin (with Asn-133 Glycosylation) from an H7N9 Influenza Virus Isolated from Humans 6TVD ; 2.7 ; Crystal structure of the haemagglutinin from a H10N7 seal influenza virus isolated in Germany in complex with avian receptor analogue, 3'-SLN 6TVF ; 2.6 ; Crystal structure of the haemagglutinin from a H10N7 seal influenza virus isolated in Germany in complex with human receptor analogue, 6'-SLN 6TVC ; 1.84 ; Crystal structure of the haemagglutinin from a transmissible H10N7 seal influenza virus isolated in Netherland 6TVA ; 1.74 ; Crystal structure of the haemagglutinin from a transmissible H10N7 seal influenza virus isolated in Netherland in complex with avian receptor analogue, 3'-SLN 6TVB ; 1.65 ; Crystal structure of the haemagglutinin from a transmissible H10N7 seal influenza virus isolated in Netherland in complex with human receptor analogue 6'-SLN 4BH2 ; 2.12 ; Crystal Structure of the Haemagglutinin from a Transmissible Mutant H5 Influenza Virus 6TVR ; 2.63 ; Crystal structure of the haemagglutinin mutant (Gln226Leu) from an H10N7 seal influenza virus isolated in Germany 6TVS ; 1.9 ; Crystal structure of the haemagglutinin mutant (Gln226Leu) from an H10N7 seal influenza virus isolated in Germany in complex with avian receptor analogue 3'-SLN 6TWV ; 2.55 ; Crystal structure of the haemagglutinin mutant (Gln226Leu) from an H10N7 seal influenza virus isolated in Germany with human receptor analogue, 6'SLN 6TJW ; 2.31 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Del228) from an H10N7 seal influenza virus isolated in Germany 6TXO ; 2.4 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Del228) from an H10N7 seal influenza virus isolated in Germany in complex with avian receptor analogue 3'-SLN 6TVT ; 2.2 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Del228) from an H10N7 seal influenza virus isolated in Germany in complex with human receptor analogue 6'-SLN 6TWH ; 2.68 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Gly228Ser) from an H10N7 seal influenza virus isolated in Germany 6TWI ; 2.27 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Gly228Ser) from an H10N7 seal influenza virus isolated in Germany in complex with avian receptor analogue 3'-SLN 6TY1 ; 3.2 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Gly228Ser) from an H10N7 seal influenza virus isolated in Germany in complex with human receptor analogue 6'-SLN 6TWS ; 2.0 ; Crystal structure of the haemagglutinin mutant (Gln226Leu, Gly228Ser) from an H10N7 seal influenza virus isolated in Germany with 2mM EDTA 1SR4 ; 2.0 ; Crystal Structure of the Haemophilus ducreyi cytolethal distending toxin 2O6A ; 1.8 ; Crystal structure of the Haemophilus influenzae E57A mutant FbpA 3SYJ ; 2.2 ; Crystal structure of the Haemophilus influenzae Hap adhesin 3I2U ; 2.8 ; Crystal structure of the haiprin ribozyme with a 2',5'-linked substrate and N1-deazaadenosine at position A10 3I2Q ; 2.9 ; Crystal structure of the hairpin ribozyme with 2'OMe substrate strand and N1-deazaadenosine at position A9 3I2R ; 2.8 ; Crystal structure of the hairpin ribozyme with a 2',5'-linked substrate with N1-deazaadenosine at position A9 3I2S ; 2.75 ; Crystal structure of the hairpin ribozyme with a 2'OMe substrate and N1-deazaadenosine at position A10 1PWZ ; 2.5 ; Crystal structure of the haloalcohol dehalogenase HheC complexed with (R)-styrene oxide and chloride 1PWX ; 1.8 ; Crystal structure of the haloalcohol dehalogenase HheC complexed with bromide 1PX0 ; 1.9 ; Crystal structure of the haloalcohol dehalogenase HheC complexed with the haloalcohol mimic (R)-1-para-nitro-phenyl-2-azido-ethanol 3IFV ; 2.0 ; Crystal structure of the Haloferax volcanii proliferating cell nuclear antigen 7QY3 ; 2.72 ; Crystal structure of the halohydrin dehalogenase HheG D114C mutant cross-linked with BMOE 6I9V ; 2.8 ; Crystal structure of the halohydrin dehalogenase HheG T123G mutant 6I9W ; 1.55 ; Crystal structure of the halohydrin dehalogenase HheG T123G mutant 6I9U ; 2.4 ; Crystal structure of the halohydrin dehalogenase HheG T123W mutant 4KAA ; 2.276 ; Crystal structure of the halotag2 protein at the resolution 2.3A, Northeast Structural Genomics Consortium (NESG) target OR150 7EMS ; 1.85 ; Crystal Structure of the HasAp L85A Mutant Capturing Iron Tetraphenylporphyrin 7EMT ; 1.8 ; Crystal Structure of the HasAp V37G Mutant Capturing Iron Tetraphenylporphyrin 7EMV ; 1.45 ; Crystal Structure of the HasAp V37G Mutant Capturing Iron-5,10,15-Triphenylporphyrin 7EMU ; 1.35 ; Crystal Structure of the HasAp V37G Mutant Capturing Manganese Tetraphenylporphyrin 7EMW ; 1.12 ; Crystal Structure of the HasAp V37G/K59Q Mutant Capturing Iron Tetraphenylporphyrin 4E6H ; 2.3 ; CRYSTAL STRUCTURE OF THE HAT domain of k. lactis RNA14 5JJX ; 2.0 ; Crystal structure of the HAT domain of sart3 5JJW ; 3.01 ; Crystal structure of the HAT domain of sart3 in complex with USP15 DUSP-UBL domain 2RC4 ; 3.0 ; Crystal Structure of the HAT domain of the human MOZ protein 2OND ; 2.8 ; Crystal Structure of the HAT-C domain of murine CstF-77 3LQB ; 1.1 ; Crystal structure of the hatching enzyme ZHE1 from the zebrafish Danio rerio 5IKU ; 1.9 ; Crystal structure of the Hathewaya histolytica ColG tandem collagen-binding domain s3as3b in the presence of calcium at 1.9 Angstrom resolution 2CXY ; 1.6 ; Crystal structure of the hBAF250b AT-rich interaction domain (ARID) 2EH9 ; 2.0 ; Crystal structure of the HBAF250B at-rich interaction domain (ARID) 5E0I ; 1.95 ; Crystal structure of the HBV capsid Y132A mutant (VCID 8772) in complex with NVR10-001E2 at 1.95A resolution 8PMU ; 1.75 ; Crystal structure of the HC7 apo form 8PN3 ; 1.44 ; Crystal structure of the HC7-Glu200Ala mutant complexed to a tetraglycopeptide. 8PN5 ; 1.72 ; Crystal structure of the HC7-Glu200Ala mutant complexed to a triglycopeptide 6H23 ; 3.089 ; Crystal structure of the hClpP Y118A mutant with an activating small molecule 7LYV ; 1.9 ; Crystal structure of the HCMV pentamer-specific antibody 1-103 7M1C ; 2.1 ; Crystal structure of the HCMV pentamer-specific antibody 1-32 7LYW ; 2.51 ; Crystal structure of the HCMV pentamer-specific antibody 2-25 7KBA ; 2.8 ; Crystal structure of the HCMV pentamer-specific Fab 2-18 3T4B ; 3.55 ; Crystal Structure of the HCV IRES pseudoknot domain 3RAU ; 1.95 ; Crystal structure of the HD-PTP Bro1 domain 6HXY ; 2.9 ; Crystal structure of the head and coiled-coil domains of zebrafish CCDC61 6HXV ; 1.97 ; Crystal structure of the head and coiled-coil domains of zebrafish CCDC61 (F129E/D130A) 6HXT ; 2.55 ; Crystal structure of the head domain of human CCDC61 1LKT ; 2.6 ; CRYSTAL STRUCTURE OF THE HEAD-BINDING DOMAIN OF PHAGE P22 TAILSPIKE PROTEIN 2Z5I ; 2.1 ; Crystal structure of the head-to-tail junction of tropomyosin 2Z5H ; 2.89 ; Crystal structure of the head-to-tail junction of tropomyosin complexed with a fragment of TnT 1YU5 ; 1.4 ; Crystal Structure of the Headpiece Domain of Chicken Villin 2RJX ; 1.7 ; Crystal structure of the headpiece domain of chicken villin, P61 space group 4Y07 ; 2.507 ; Crystal structure of the HECT domain of human WWP2 3TUG ; 2.27 ; Crystal structure of the HECT domain of ITCH E3 ubiquitin ligase 3DKM ; 1.6 ; Crystal structure of the HECTD1 CPH domain 6XJ7 ; 1.85 ; Crystal structure of the helical cell shape determining protein Pgp2 (K307A mutant) from Campylobacter jejuni 6XJ6 ; 1.497 ; Crystal structure of the helical cell shape determining protein Pgp2 from Campylobacter jejuni 4W8C ; 1.7568 ; Crystal structure of the helical domain deleted form MsrA from Clostridium oremlandii 4ZMI ; 2.3 ; Crystal structure of the Helical domain of S. pombe Taz1 6K5S ; 1.904 ; Crystal structure of the Helical domain of S. pombe Tbf1 2RB4 ; 2.8 ; Crystal structure of the Helicase domain of human DDX25 RNA helicase 5A9F ; 3.2 ; Crystal structure of the Helicase domain of human DNA polymerase theta in complex with ADP 5AGA ; 2.9 ; Crystal structure of the Helicase domain of human DNA polymerase theta in complex with AMPPNP 5A9J ; 3.55 ; Crystal structure of the Helicase domain of human DNA polymerase theta, apo-form 1CR2 ; 2.3 ; CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DATP 1CR4 ; 2.5 ; CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTDP 1CR1 ; 2.3 ; CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE 4 PROTEIN OF BACTERIOPHAGE T7: COMPLEX WITH DTTP 1CR0 ; 2.3 ; CRYSTAL STRUCTURE OF THE HELICASE DOMAIN OF THE GENE4 PROTEIN OF BACTERIOPHAGE T7 1G6O ; 2.5 ; CRYSTAL STRUCTURE OF THE HELICOBACTER PYLORI ATPASE, HP0525, IN COMPLEX WITH ADP 4DVY ; 3.3 ; Crystal structure of the Helicobacter pylori CagA oncoprotein 4DVZ ; 3.19 ; Crystal structure of the Helicobacter pylori CagA oncoprotein 2PD3 ; 2.5 ; Crystal Structure of the Helicobacter pylori Enoyl-Acyl Carrier Protein Reductase in Complex with Hydroxydiphenyl Ether Compounds, Triclosan and Diclosan 2PD4 ; 2.3 ; Crystal Structure of the Helicobacter pylori Enoyl-Acyl Carrier Protein Reductase in Complex with Hydroxydiphenyl Ether Compounds, Triclosan and Diclosan 4P54 ; 1.65 ; Crystal Structure of the Helicobacter pylori MTAN-D198N mutant with 5'-methylthioadenosine in the active site. 4OY3 ; 1.2 ; Crystal Structure of the Helicobacter pylori MTAN-D198N mutant with S-Adenosylhomocysteine in the active site 2QV3 ; 2.401 ; Crystal Structure of the Helicobacter pylori Vacuolating Toxin p55 Domain 4LXV ; 3.0 ; Crystal Structure of the Hemagglutinin from a H1N1pdm A/WASHINGTON/5/2011 virus 4KDQ ; 2.604 ; Crystal structure of the hemagglutinin of A/Xinjiang/1/2006 virus 4KDM ; 2.496 ; Crystal structure of the hemagglutinin of ferret-transmissible H5N1 virus 4KDN ; 2.483 ; Crystal structure of the hemagglutinin of ferret-transmissible H5N1 virus in complex with avian receptor analog LSTa 4KDO ; 2.396 ; Crystal structure of the hemagglutinin of ferret-transmissible H5N1 virus in complex with human receptor analog LSTc 6CPB ; 1.155 ; Crystal structure of the heme domain of CooA from Carboxydothermus hydrogenoformans 3KS0 ; 2.7 ; Crystal structure of the heme domain of flavocytochrome b2 in complex with Fab B2B4 3I8R ; 1.5 ; Crystal structure of the heme oxygenase from Corynebacterium diphtheriae (HmuO) in complex with heme binding ditiothreitol (DTT) 1V9Y ; 1.32 ; Crystal Structure of the heme PAS sensor domain of Ec DOS (ferric form) 1V9Z ; 1.9 ; Crystal Structure of the heme PAS sensor domain of Ec DOS (Ferrous Form) 1VB6 ; 1.56 ; Crystal Structure of the heme PAS sensor domain of Ec DOS (oxygen-bound form) 7W81 ; 1.8 ; Crystal structure of the heme-bound form of the linker-NEAT3 region of IsdH from Staphylococcus aureus 2O6P ; 1.5 ; Crystal Structure of the heme-IsdC complex 3FHH ; 2.6 ; Crystal structure of the heme/hemoglobin outer membrane transporter ShuA from Shigella dysenteriae 1W3F ; 2.58 ; Crystal structure of the hemolytic lectin from the mushroom Laetiporus sulphureus complexed with N-acetyllactosamine in the gamma motif 8KI0 ; 1.45 ; Crystal structure of the hemophore HasA from Pseudomonas protegens Pf-5 capturing Fe-tetraphenylporphyrin 1DK0 ; 1.77 ; CRYSTAL STRUCTURE OF THE HEMOPHORE HASA FROM SERRATIA MARCESCENS CRYSTAL FORM P2(1), PH8 1DKH ; 3.2 ; CRYSTAL STRUCTURE OF THE HEMOPHORE HASA, PH 6.5 7YRK ; 0.92 ; Crystal structure of the hen egg lysozyme-2-oxidobenzylidene-threoninato-copper (II) complex 6CMG ; 2.7 ; Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody m102.3 6CMI ; 2.72 ; Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody m102.3 1JMO ; 2.2 ; Crystal Structure of the Heparin Cofactor II-S195A Thrombin Complex 5TWM ; 1.97 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS GENOTYPE 2A STRAIN JFH1 L30S NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 5-[3-(tert-butylcarbamoyl)phenyl]-6-(ethylamino)-2-(4-fluorophenyl)-N-methylfuro[2,3-b]pyridine-3-carboxamide 5QJ1 ; 2.17 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS GENOTYPE 2A STRAIN JFH1 L30S NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 6-(ethylamino)-2-(4-fluorophenyl)-5-(3-{[1-(5-fluoropyrimidin-2-yl)cyclopropyl]carbamoyl}-4-methoxyphenyl)-N-methyl-1-benzofuran-3-carboxamide 5QJ0 ; 2.08 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS GENOTYPE 2A STRAIN JFH1 NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 6-[ethyl(methylsulfonyl)amino]-2-(4-fluorophenyl)-N-methyl-5-(3-{[1-(pyrimidin-2-yl)cyclopropyl]carbamoyl}phenyl)-1-benzofuran-3-carboxamide 1W3C ; 2.3 ; Crystal structure of the Hepatitis C Virus NS3 Protease in complex with a peptidomimetic inhibitor 5TWN ; 3.04 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA- DEPENDENT RNA POLYMERASE IN COMPLEX WITH 5-[3-(tert-butylcarbamoyl)phenyl]-6-(ethylamino)-2-(4-fluorophenyl)-N-methylfuro[2,3-b]pyridine-3-carboxamide 5TRK ; 2.06 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA- DEPENDENT RNA POLYMERASE IN COMPLEX WITH N-{3-[(benzenecarbonyl)amino]-4-[(4-chlorophenyl)methoxy]benzene-1-carbonyl}glycine 5PZO ; 2.8 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE C316N IN COMPLEX WITH 2-(4-FLUOROPHENYL)-N-METHYL-5-[3-({2-METHYL-1-OXO-1-[(1,3,4-THIADIAZOL-2-YL)AMINO]PROPAN-2-YL}CARBAMOYL)PHENYL]-1-BENZOFURAN-3-CARBOXAMIDE 3Q0Z ; 2.29 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with (2E)-3-(4-{[(1-{[(13-cyclohexyl-6-oxo-6,7-dihydro-5h-indolo[1,2-d][1,4]benzodiazepin-10-yl)carbonyl]amino}cyclopentyl)carbonyl]amino}phenyl)prop-2-enoic acid 3QGD ; 2.6 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with (2E)-3-(4-{[(1-{[(13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[1,2-d][1,4]benzodiazepin-10-yl)carbonyl]amino}cyclopentyl)carbonyl]amino}phenyl)prop-2-enoic acid and (2R)-4-(2,6-dimethoxypyrimidin-4-yl)-1-[(4-ethylphenyl)sulfonyl]-N-(4-methoxybenzyl)piperazine-2-carboxamide 3QGE ; 3.0 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with (2E)-3-(4-{[(1-{[(13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[1,2-d][1,4]benzodiazepin-10-yl)carbonyl]amino}cyclopentyl)carbonyl]amino}phenyl)prop-2-enoic acid and (2R)-4-(2,6-dimethoxypyrimidin-4-yl)-N-(4-methoxybenzyl)-1-{[4-(trifluoromethoxy)phenyl]sulfonyl}piperazine-2-carboxamide 3QGF ; 2.45 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with (2E)-3-(4-{[(1-{[(13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[1,2-d][1,4]benzodiazepin-10-yl)carbonyl]amino}cyclopentyl)carbonyl]amino}phenyl)prop-2-enoic acid and (2R)-4-(6-chloropyridazin-3-yl)-N-(4-methoxybenzyl)-1-{[4-(trifluoromethoxy)phenyl]sulfonyl}piperazine-2-carboxamide 3QGG ; 3.22 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with (2E)-3-(4-{[(1-{[(13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[1,2-d][1,4]benzodiazepin-10-yl)carbonyl]amino}cyclopentyl)carbonyl]amino}phenyl)prop-2-enoic acid and N-cyclopropyl-6-[(3R)-3-{[4-(trifluoromethoxy)benzyl]carbamoyl}-4-{[4-(trifluoromethoxy)phenyl]sulfonyl}piperazin-1-yl]pyridazine-3-carboxamide 4NLD ; 2.75 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase complex with BMS-791325 also known as (1aR,12bS)-8-cyclohexyl-n-(dimethylsulfamoyl)-11-methoxy-1a-{[(1R,5S)-3-methyl-3,8-diazabicyclo[3.2.1]oct-8-yl]carbonyl}-1,1a,2,12b-tetrahydrocyclopropa[d]indolo[2,1-a][2]benzazepine-5-carboxamide and 2-(4-fluorophenyl)-n-methyl-6-[(methylsulfonyl)amino]-5-(propan-2-yloxy)-1-benzofuran-3-carboxamide 3QGH ; 2.14 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase genotype 1a complex with N-cyclopropyl-6-[(3R)-3-{[4-(trifluoromethoxy)benzyl]carbamoyl}-4-{[4-(trifluoromethoxy)phenyl]sulfonyl}piperazin-1-yl]pyridazine-3-carboxamide 3QGI ; 1.8 ; Crystal structure of the hepatitis C virus NS5B RNA-dependent RNA polymerase genotype 1a complex with N-[(2S)-butan-2-yl]-6-[(3R)-3-{[4-(trifluoromethoxy)benzyl]carbamoyl}-4-{[4-(trifluoromethoxy)phenyl]sulfonyl}piperazin-1-yl]pyridazine-3-carboxamide 5PZK ; 2.2 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 2-(4-FLUOROPHENYL)-N-METHYL-6-[(METHYLSULFONYL)AMINO]-5-(PROPAN-2-YLOXY)-1-BENZOFURAN-3-CARBOXAMIDE 5PZL ; 2.06 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 2-({3-[1-(2-CYCLOPROPYLETHYL)-6-FLUORO-4-HYDROXY-2-OXO-1,2-DIHYDROQUINOLIN-3-YL]-1,1-DIOXO-1,4-DIHYDRO-1LAMBDA~6~,2,4-BENZOTHIADIAZIN-7-YL}OXY)ACETAMIDE 5TRH ; 2.7 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 2-[(benzenecarbonyl)amino]-3-[(4-chlorophenyl)methoxy]benzoic acid 5TRJ ; 2.57 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 2-{[2-(carboxymethoxy)benzene-1-carbonyl]amino}-3-[(4-chlorophenyl)methoxy]benzoic acid 5TRI ; 2.3 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 3-[(4-chlorophenyl)methoxy]-2-(1-oxo-1,3-dihydro-2H-isoindol-2-yl)benzoic acid 5PZM ; 2.54 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 3-[2-(4-FLUOROPHENYL)-3-(METHYLCARBAMOYL)-1-BENZOFURAN-5-YL]BENZOIC ACID 5PZP ; 2.95 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 4-FLUORO-2-(4-FLUOROPHENYL)-N-METHYL-5-(2-METHYL-5-{[1-(PYRIMIDIN-2-YL)CYCLOPROPYL]CARBAMOYL}PHENYL)-1-BENZOFURAN-3-CARBOXAMIDE (BMS-929075) 5PZN ; 2.25 ; CRYSTAL STRUCTURE OF THE HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE IN COMPLEX WITH 5-[3-(TERT-BUTYLCARBAMOYL)PHENYL]-2-(4-FLUOROPHENYL)-N-METHYL-1-BENZOFURAN-3-CARBOXAMIDE 1VBY ; 2.9 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Precursor, with C75U mutaion, and Mn2+ bound 1VBZ ; 2.8 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Precursor, with C75U mutaion, in Ba2+ solution 1SJF ; 2.75 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Precursor, with C75U mutaion, in Cobalt Hexammine solution 1VBX ; 2.7 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Precursor, with C75U mutaion, in EDTA solution 1VC0 ; 2.5 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Precursor, with C75U mutaion, in Imidazole and Sr2+ solution 1VC6 ; 2.8 ; Crystal Structure of the Hepatitis Delta Virus Gemonic Ribozyme Product with C75U Mutaion, cleaved in Imidazole and Mg2+ solutions 3HAG ; 3.5 ; Crystal structure of the Hepatitis E Virus-like Particle 3O10 ; 1.9 ; Crystal structure of the HEPN domain from human sacsin 7V9R ; 3.5 ; Crystal Structure of the heptameric EcHsp60 2HVL ; 2.4 ; Crystal structure of the HePTP catalytic domain C270S mutant 2QDP ; 2.72 ; Crystal structure of the HePTP catalytic domain C270S mutant crystallized in ammonium acetate 2QDM ; 2.05 ; Crystal structure of the HePTP catalytic domain C270S/D236A/Q314A mutant 2QDC ; 2.0 ; Crystal structure of the HePTP catalytic domain D236A mutant 4D2I ; 2.841 ; Crystal structure of the HerA hexameric DNA translocase from Sulfolobus solfataricus bound to AMP-PNP 1JMA ; 2.65 ; CRYSTAL STRUCTURE OF THE HERPES SIMPLEX VIRUS GLYCOPROTEIN D BOUND TO THE CELLULAR RECEPTOR HVEA/HVEM 2GV9 ; 2.68 ; Crystal structure of the Herpes Simplex virus type 1 DNA polymerase 8ONW ; 2.29 ; Crystal structure of the hetero-dimeric complex from Archaeoglobus fulgidus PRC1 and PRC2 domains 4ZRY ; 3.30013 ; Crystal structure of the heterocomplex between coil 2B domains of human intermediate filament proteins keratin 1 (KRT1) and keratin 10 (KRT10) 6UUI ; 2.069 ; Crystal structure of the heterocomplex between coil 2B domains of wild-type keratin 1 (KRT1) and keratin 10 (KRT10) containing mutation Cys401Ala 6E2J ; 2.386 ; Crystal structure of the heterocomplex between human keratin 1 coil 1B containing S233L mutation and wild-type human keratin 10 coil 1B 7BGG ; 1.04 ; Crystal structure of the heterocyclic toxin methyltransferase from Mycobacterium tuberculosis 7NOY ; 1.8 ; Crystal structure of the heterocyclic toxin methyltransferase from Mycobacterium tuberculosis in complex with substrate 1-hydroxyquinolin-4(1H)-one 7NMK ; 1.204 ; Crystal structure of the heterocyclic toxin methyltransferase from Mycobacterium tuberculosis with bound methylation product 1-methoxyquinolin-4(1H)-one 7NDM ; 1.35 ; Crystal structure of the heterocyclic toxin methyltransferase from Mycobacterium tuberculosis with bound substrate 4-hydroxyisoquinolin-1(2H)-one 5MKK ; 2.7 ; Crystal structure of the heterodimeric ABC transporter TmrAB, a homolog of the antigen translocation complex TAP 4NI2 ; 1.9 ; Crystal structure of the heterodimeric catalytic domain of wild-type human soluble guanylate cyclase 4F3L ; 2.268 ; Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex 2GTP ; 2.55 ; Crystal structure of the heterodimeric complex of human RGS1 and activated Gi alpha 1 2IHB ; 2.71 ; Crystal structure of the heterodimeric complex of human RGS10 and activated Gi alpha 3 2IK8 ; 2.71 ; Crystal structure of the heterodimeric complex of human RGS16 and activated Gi alpha 1 2ODE ; 1.9 ; Crystal structure of the heterodimeric complex of human RGS8 and activated Gi alpha 3 1FQK ; 2.3 ; CRYSTAL STRUCTURE OF THE HETERODIMERIC COMPLEX OF THE RGS DOMAIN OF RGS9, AND THE GT/I1 CHIMERA ALPHA SUBUNIT [(RGS9)-(GT/I1ALPHA)-(GDP)-(ALF4-)-(MG2+)] 1R0O ; 2.24 ; Crystal Structure of the Heterodimeric Ecdysone Receptor DNA-binding Complex 5LDD ; 2.496 ; Crystal structure of the heterodimeric GEF Mon1-Ccz1 in complex with Ypt7 4ZPR ; 3.902 ; Crystal Structure of the Heterodimeric HIF-1a:ARNT Complex with HRE DNA 6E3U ; 2.85 ; Crystal Structure of the Heterodimeric HIF-2 Complex with Agonist M1001 6E3S ; 3.0 ; Crystal Structure of the Heterodimeric HIF-2 Complex with Antagonist PT2385 6E3T ; 3.0 ; Crystal Structure of the Heterodimeric HIF-2 Complex with Antagonist T1001 7W80 ; 2.754 ; Crystal Structure of the Heterodimeric HIF-2 in Complex with Antagonist Belzutifan 4ZP4 ; 2.355 ; Crystal Structure of the Heterodimeric HIF-2a:ARNT Complex 4ZPK ; 3.6 ; Crystal Structure of the Heterodimeric HIF-2a:ARNT Complex with HRE DNA 4ZPH ; 2.8 ; Crystal Structure of the Heterodimeric HIF-2a:ARNT Complex with Proflavine 4ZQD ; 2.87 ; Crystal Structure of the Heterodimeric HIF-2a:ARNT Complex with the Benzoxadiazole Antagonist 0X3 7V7L ; 2.3 ; Crystal Structure of the Heterodimeric HIF-3a:ARNT Complex 7V7W ; 2.507 ; Crystal Structure of the Heterodimeric HIF-3a:ARNT Complex with oleoylethanolamide (OEA) 7ZSC ; 3.85 ; Crystal structure of the heterodimeric human C-P4H-II with truncated alpha subunit (C-P4H-II delta281) 1OGY ; 3.2 ; Crystal structure of the heterodimeric nitrate reductase from Rhodobacter sphaeroides 5SY5 ; 3.201 ; Crystal Structure of the Heterodimeric NPAS1-ARNT Complex 5SY7 ; 4.2 ; Crystal Structure of the Heterodimeric NPAS3-ARNT Complex with HRE DNA 3ER8 ; 3.18 ; Crystal structure of the heterodimeric vaccinia virus mRNA polyadenylate polymerase complex with two fragments of RNA 3ER9 ; 2.06 ; Crystal structure of the heterodimeric vaccinia virus mRNA polyadenylate polymerase complex with UU and 3'-deoxy ATP 3ERC ; 3.21 ; Crystal structure of the heterodimeric vaccinia virus mRNA polyadenylate polymerase with three fragments of RNA and 3'-deoxy ATP 2GA9 ; 2.3 ; Crystal Structure of the Heterodimeric Vaccinia Virus Polyadenylate Polymerase with Bound ATP-gamma-S 3PH0 ; 2.4 ; Crystal structure of the heteromolecular chaperone, AscE-AscG, from the type III secretion system in Aeromonas hydrophila 4GYP ; 2.1 ; Crystal structure of the heterotetrameric complex of GlucD and GlucDRP from E. coli K-12 MG1655 (EFI TARGET EFI-506058) 2QLV ; 2.6 ; Crystal structure of the heterotrimer core of the S. cerevisiae AMPK homolog SNF1 4BWS ; 2.5 ; Crystal structure of the heterotrimer of PQBP1, U5-15kD and U5-52kD. 1FQJ ; 2.02 ; CRYSTAL STRUCTURE OF THE HETEROTRIMERIC COMPLEX OF THE RGS DOMAIN OF RGS9, THE GAMMA SUBUNIT OF PHOSPHODIESTERASE AND THE GT/I1 CHIMERA ALPHA SUBUNIT [(RGS9)-(PDEGAMMA)-(GT/I1ALPHA)-(GDP)-(ALF4-)-(MG2+)] 4DL0 ; 2.905 ; Crystal Structure of the heterotrimeric EGChead Peripheral Stalk Complex of the Yeast Vacuolar ATPase 4EFA ; 2.8163 ; Crystal Structure of the Heterotrimeric EGChead Peripheral Stalk Complex of the Yeast Vacuolar ATPase - second conformation 5MC9 ; 2.13 ; Crystal structure of the heterotrimeric integrin-binding region of laminin-111 2ERJ ; 3.0 ; Crystal structure of the heterotrimeric interleukin-2 receptor in complex with interleukin-2 2IX2 ; 2.2 ; Crystal structure of the heterotrimeric PCNA from Sulfolobus solfataricus 5OF3 ; 2.906 ; Crystal structure of the heterotrimeric PriSLX primase from S. solfataricus. 5OFN ; 3.005 ; Crystal structure of the heterotrimeric PriSLX primase from S. solfataricus. 3IKO ; 3.2 ; Crystal structure of the heterotrimeric Sec13-Nup145C-Nup84 nucleoporin complex 3WTP ; 2.67 ; Crystal Structure of the heterotypic nucleosome containing human CENP-A and H3.3 1FY9 ; 2.2 ; CRYSTAL STRUCTURE OF THE HEXA-SUBSTITUTED MUTANT OF THE MOLECULAR CHAPERONIN GROEL APICAL DOMAIN 1FYA ; 2.2 ; CRYSTAL STRUCTURE OF THE HEXA-SUBSTITUTED MUTANT OF THE MOLECULAR CHAPERONIN GROEL APICAL DOMAIN 7RUR ; 1.8 ; Crystal structure of the hexadecameric form of Rv3208A 2YMK ; 2.49 ; Crystal structure of the hexameric anti-microbial peptide channel dermcidin 2W37 ; 2.1 ; CRYSTAL STRUCTURE OF THE HEXAMERIC CATABOLIC ORNITHINE TRANSCARBAMYLASE FROM Lactobacillus hilgardii 1P9M ; 3.65 ; Crystal structure of the hexameric human IL-6/IL-6 alpha receptor/gp130 complex 4D8V ; 2.35 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis at pH 4.2 4DA0 ; 2.95 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with 2'-deoxyguanosine 4DAN ; 2.56 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with 2-fluoroadenosine 4DAE ; 2.35 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with 6-chloroguanosine 4DA8 ; 2.6 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with 8-bromoguanosine 4DA7 ; 2.05 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with aciclovir 4DAO ; 2.22 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with adenine 4D9H ; 1.91 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with adenosine 4DA6 ; 1.7 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with ganciclovir 4DAB ; 1.85 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with hypoxanthine 4DAR ; 3.15 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in complex with tubercidin 4D98 ; 1.7 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in space group H32 at pH 7.5 4D8Y ; 1.61 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in space group P212121 at pH 5.6 4D8X ; 2.65 ; Crystal structure of the hexameric purine nucleoside phosphorylase from Bacillus subtilis in space group P6322 at pH 4.6 1G8Y ; 2.4 ; CRYSTAL STRUCTURE OF THE HEXAMERIC REPLICATIVE HELICASE REPA OF PLASMID RSF1010 5WMF ; 1.9 ; Crystal structure of the Hexameric Ring of Epstein-Barr Virus Nuclear Antigen-1, EBNA1 5DM5 ; 2.7 ; Crystal structure of the hexameric thioesterase y2039 from Yersinia pestis 3ECT ; 2.51 ; Crystal Structure of the Hexapeptide-Repeat Containing-Acetyltransferase VCA0836 from Vibrio cholerae 3VU3 ; 2.85 ; Crystal structure of the Hfq and catalase HPII complex 1HK9 ; 2.15 ; Crystal structure of the Hfq protein from Escherichia coli 1HMY ; 2.5 ; CRYSTAL STRUCTURE OF THE HHAI DNA METHYLTRANSFERASE COMPLEXED WITH S-ADENOSYL-L-METHIONINE 6FDD ; 1.75 ; Crystal Structure of the HHD2 Domain of Whirlin 6FDE ; 1.85 ; Crystal Structure of the HHD2 Domain of Whirlin : 3-helix conformation 6HPC ; 2.26 ; Crystal structure of the HicB antitoxin from E. coli 5J9I ; 1.797 ; Crystal structure of the HigA2 antitoxin C-terminal domain 8A0W ; 2.334 ; Crystal structure of the HigA2 antitoxin in complex with operator DNA 7AWK ; 1.91 ; Crystal structure of the HigB1 toxin mutant K95A from Mycobacterium tuberculosis (Rv1955) 5JA8 ; 2.49 ; Crystal structure of the HigB2 toxin in complex with Nb2 5JA9 ; 1.849 ; Crystal structure of the HigB2 toxin in complex with Nb6 5MJE ; 2.599 ; Crystal structure of the HigB2 toxin in complex with Nb8 8A0X ; 3.296 ; Crystal structure of the HigB2-HigA2 tetramer in complex with operator DNA 5JAA ; 2.993 ; Crystal structure of the HigBA2 toxin-antitoxin complex 3N23 ; 4.6 ; Crystal structure of the high affinity complex between ouabain and the E2P form of the sodium-potassium pump 4GHI ; 1.5 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains in complex with a benzoxadiazole antagonist 4XT2 ; 1.698 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains in complex with a tetrazole-containing antagonist 4GS9 ; 1.72 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains in complex with an inactive benzoxadiazole antagonist 3H7W ; 1.65 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains with the artificial ligand THS017 3H82 ; 1.5 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains with the artificial ligand THS020 3F1O ; 1.598 ; Crystal structure of the high affinity heterodimer of HIF2 alpha and ARNT C-terminal PAS domains, with an internally-bound artificial ligand 7Q9U ; 2.238 ; Crystal structure of the high affinity KRas mutant PDE6D complex 3W9R ; 1.9 ; Crystal structure of the high-affinity abscisic acid receptor PYL9/RCAR9 bound to ABA 6M97 ; 3.03 ; Crystal structure of the high-affinity copper transporter Ctr1 6M98 ; 3.21 ; Crystal structure of the high-affinity copper transporter Ctr1 in complex with Cu(I) 1G1O ; 2.3 ; CRYSTAL STRUCTURE OF THE HIGHLY AMYLOIDOGENIC TRANSTHYRETIN MUTANT TTR G53S/E54D/L55S 2QEL ; 2.29 ; Crystal structure of the highly amyloidogenic transthyretin mutant TTR G53S/E54D/L55S- heated protein 1LNT ; 1.7 ; Crystal Structure of the Highly Conserved RNA Internal Loop of SRP 100D ; 1.9 ; CRYSTAL STRUCTURE OF THE HIGHLY DISTORTED CHIMERIC DECAMER R(C)D(CGGCGCCG)R(G)-SPERMINE COMPLEX-SPERMINE BINDING TO PHOSPHATE ONLY AND MINOR GROOVE TERTIARY BASE-PAIRING 5V6N ; 3.355 ; Crystal Structure of the highly open channel-stabilized mutant C27S + K33C + I9'A + N21'C of GLIC under reducing conditions. 5V6O ; 3.121 ; Crystal Structure of the highly open channel-stabilized mutant G-2'I + I9'A of GLIC 2WMM ; 2.3 ; Crystal structure of the hinge domain of MukB 8EZR ; 1.95 ; Crystal structure of the HipS(Lp)-HipT(Lp) complex from Legionella pneumophila, native protein 8EZS ; 2.47 ; Crystal structure of the HipS(Lp)-HipT(Lp) complex from Legionella pneumophila, Sel-met protein 5MK3 ; 2.0 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro 1 domain (CHMP4C peptide complex structure) 5MJZ ; 1.867 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro1 domain (Apo structure) 5MK1 ; 2.5 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro1 domain (CHMP4A peptide complex structure) 5MK2 ; 1.7 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro1 domain (CHMP4B peptide complex structure) 5MK0 ; 1.765 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro1 domain (Endofin peptide complex) 5MJY ; 2.25 ; Crystal structure of the His Domain Protein Tyrosine Phosphatase (HD-PTP/PTPN23) Bro1 domain (SARA complex structure) 3FLC ; 1.85 ; Crystal structure of the His-tagged H232R mutant of glycerol kinase from Enterococcus casseliflavus with glycerol 1KWB ; 2.0 ; Crystal structure of the His145Ala mutant of 2,3-dihydroxybipheny dioxygenase (BphC) 2H1W ; 2.6 ; Crystal structure of the His183Ala mutant variant of Bacillus subtilis ferrochelatase 2Q3J ; 2.39 ; Crystal structure of the His183Ala variant of Bacillus subtilis ferrochelatase in complex with N-Methyl Mesoporphyrin 2AC4 ; 2.1 ; Crystal structure of the His183Cys mutant variant of Bacillus subtilis Ferrochelatase 4K9M ; 1.15 ; Crystal Structure of the His281Asn mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4K9L ; 1.649 ; Crystal Structure of the His281Thr mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4K9K ; 1.301 ; Crystal Structure of the His281Tyr mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4K9P ; 2.244 ; Crystal Structure of the His281Tyr/Ala460Ile Double Mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4JU9 ; 1.124 ; Crystal Structure of the His70Leu mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4JU8 ; 1.251 ; Crystal Structure of the His70Phe mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4JUA ; 1.15 ; Crystal Structure of the His70Ser mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4JUB ; 1.901 ; Crystal Structure of the His70Thr mutant of Benzoylformate Decarboxylase from Pseudomonas putida 8F71 ; 3.19 ; Crystal structure of the histidine kinase domain of bacteriophytochrome RpBphP2 6JIS ; 1.82 ; Crystal structure of the histidine racemase CntK in cobalt and nickel transporter system of staphylococcus aureus 1ROC ; 1.5 ; Crystal structure of the histone deposition protein Asf1 1Q9C ; 3.21 ; Crystal Structure of the Histone domain of Son of Sevenless 3KSY ; 3.178 ; Crystal structure of the Histone domain, DH-PH unit, and catalytic unit of the Ras activator Son of Sevenless (SOS) 1F1E ; 1.37 ; CRYSTAL STRUCTURE OF THE HISTONE FROM METHANOPYRUS KANDLERI 1B67 ; 1.48 ; CRYSTAL STRUCTURE OF THE HISTONE HMFA FROM METHANOTHERMUS FERVIDUS 1HTA ; 1.55 ; CRYSTAL STRUCTURE OF THE HISTONE HMFA FROM METHANOTHERMUS FERVIDUS 1A7W ; 1.55 ; CRYSTAL STRUCTURE OF THE HISTONE HMFB FROM METHANOTHERMUS FERVIDUS 1H3I ; 2.1 ; Crystal structure of the Histone Methyltransferase SET7/9 4QOZ ; 2.304 ; Crystal structure of the histone mRNA stem-loop, stem-loop binding protein (phosphorylated), and 3'hExo ternary complex 1HQ3 ; 2.15 ; CRYSTAL STRUCTURE OF THE HISTONE-CORE-OCTAMER IN KCL/PHOSPHATE 6V2F ; 2.0 ; Crystal structure of the HIV capsid hexamer bound to the small molecule long-acting inhibitor, GS-6207 2OT5 ; 1.8 ; Crystal structure of the HIV gp41 core with the enfuvirtide resistance mutation N43D 3DCG ; 2.4 ; Crystal Structure of the HIV Vif BC-box in Complex with Human ElonginB and ElonginC 4TVP ; 3.1 ; Crystal Structure of the HIV-1 BG505 SOSIP.664 Env Trimer Ectodomain, Comprising Atomic-Level Definition of Pre-Fusion gp120 and gp41, in Complex with Human Antibodies PGT122 and 35O22 3D0L ; 2.35 ; Crystal structure of the HIV-1 broadly neutralizing antibody 2F5 in complex with the gp41 FP-MPER Hyb3K construct 514GIGALFLGFLGAAGS528KK-Ahx-655KNEQELLELDKWASLWN671 3DRQ ; 2.0 ; Crystal structure of the HIV-1 broadly neutralizing antibody 2F5 in complex with the gp41 FP-MPER Hyb3K construct 514GIGALFLGFLGAAGS528KK-Ahx-655KNEQELLELDKWASLWN671 soaked in PEG/2-propanol solution 3DRT ; 3.3 ; Crystal structure of the HIV-1 broadly neutralizing antibody 2F5 in complex with the gp41 scrambledFP-MPER scrHyb3K construct GIGAFGLLGFLAAGSKK-Ahx-K656NEQELLELDKWASLWN671 3EGS ; 3.6 ; Crystal structure of the HIV-1 broadly neutralizing antibody 2F5 in complex with the gp41 scrambledFP-MPER scrHyb3K construct GIGAFGLLGFLAAGSKK-Ahx-K656NEQELLELDKWASLWN671 soaked in ammonium sulfate 2XV6 ; 1.89 ; Crystal structure of the HIV-1 capsid protein C-terminal domain (146- 220) in complex with a camelid VHH. 2XT1 ; 1.32 ; Crystal structure of the HIV-1 capsid protein C-terminal domain (146- 231) in complex with a camelid VHH. 2XXM ; 1.65 ; Crystal structure of the HIV-1 capsid protein C-terminal domain in complex with a camelid VHH and the CAI peptide. 3DRO ; 3.9 ; Crystal structure of the HIV-1 Cross Neutralizing Antibody 2F5 in complex with gp41 Peptide ELLELDKWASLWN grown in ammonium sulfate 3IDI ; 2.1 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 Fab' fragment in complex with gp41 Peptide ALDKWNQ 3IDM ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 Fab' fragment in complex with gp41 Peptide analog ELD(Nrg)WAS 3IDJ ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 Fab' fragment in complex with gp41 Peptide analog ELD(Orn)WAS 3IDN ; 2.25 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 Fab' fragment in complex with gp41 Peptide analog ELD(Paf)WAS 1U8H ; 2.1 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ALDKWAS 3IDG ; 1.86 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ALDKWD 1U92 ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide Analog E-[Dap]-DKWQS (cyclic) 1U91 ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide Analog ENDKW-[Dap]-S (cyclic) 1U93 ; 2.37 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide Analog EQDKW-[Dap]-S (cyclic) 1U8L ; 2.6 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide DLDRWAS 1U8P ; 3.23 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ECDKWCS 1U95 ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDHWAS 1U8N ; 2.56 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKFAS 1U8O ; 3.02 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKHAS 1U8J ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKWAG 1U8I ; 2.0 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKWAN 2PW2 ; 2.55 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKWKSL 2PW1 ; 2.6 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKWNSL 1U8M ; 2.4 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELDKYAS 1U8Q ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELEKWAS 2P8L ; 2.44 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELLELDKWASLWN 2P8M ; 2.7 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide ELLELDKWASLWN in new crystal form 1U8K ; 2.24 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide LELDKWASL 2P8P ; 2.7 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide LELDKWASLW[N-Ac] 3D0V ; 2.05 ; Crystal structure of the HIV-1 Cross Neutralizing Monoclonal Antibody 2F5 in complex with gp41 Peptide LLELDKWASLW 462D ; 2.3 ; CRYSTAL STRUCTURE OF THE HIV-1 GENOMIC RNA DIMERIZATION INITIATION SITE 4B50 ; 1.3 ; Crystal structure of the HIV-1 gp41 MPER-specific llama VHH 2H10 1EXQ ; 1.6 ; CRYSTAL STRUCTURE OF THE HIV-1 INTEGRASE CATALYTIC CORE DOMAIN 4OJR ; 1.82 ; Crystal Structure of the HIV-1 Integrase catalytic domain with GSK1264 3L3U ; 1.4 ; Crystal structure of the HIV-1 integrase core domain to 1.4A 2XI1 ; 3.5 ; Crystal structure of the HIV-1 Nef sequenced from a patient's sample 4NGH ; 2.68 ; Crystal structure of the HIV-1 neutralizing antibody 4E10 Fab fragment in complex with a hydrocarbon-stapled peptide containing the 4e10 epitope on gp41 and a tethered phosphate moiety. 4NHC ; 2.912 ; Crystal structure of the HIV-1 neutralizing antibody 4E10 Fab fragment in complex with a hydrocarbon-stapled peptide containing the 4e10 epitope on gp41. 2CMR ; 2.0 ; Crystal structure of the HIV-1 neutralizing antibody D5 Fab bound to the gp41 inner-core mimetic 5-helix 3LPH ; 2.5 ; Crystal structure of the HIV-1 Rev dimer 3NBZ ; 2.8 ; Crystal structure of the HIV-1 Rev NES-CRM1-RanGTP nuclear export complex (crystal I) 3NC0 ; 2.9 ; Crystal structure of the HIV-1 Rev NES-CRM1-RanGTP nuclear export complex (crystal II) 3IS9 ; 2.55 ; Crystal structure of the HIV-1 reverse transcriptase (RT) in complex with the alkenyldiarylmethane (ADAM) Non-nucleoside RT Inhibitor dimethyl 3,3'-(6-methoxy-6-oxohex-1-ene-1,1-diyl)bis(5-cyano-6-methoxybenzoate). 3ITH ; 2.8 ; Crystal structure of the HIV-1 reverse transcriptase bound to a 6-vinylpyrimidine inhibitor 4IOU ; 2.751 ; Crystal structure of the HIV-1 Vif binding, catalytically active domain of APOBEC3F 3NZ8 ; 2.7 ; Crystal structure of the HIV-2 neutralizing Fab fragment 7C8 2XRA ; 2.3 ; crystal structure of the HK20 Fab in complex with a gp41 mimetic 5- Helix 6Z6D ; 2.2 ; Crystal structure of the HK97 bacteriophage large terminase 6Z6E ; 1.4 ; Crystal structure of the HK97 bacteriophage small terminase 3SKO ; 1.6 ; Crystal structure of the HLA-B8-A66-FLR, mutant A66 of the HLA B8 3SKM ; 1.8 ; Crystal structure of the HLA-B8FLRGRAYVL, mutant G8V of the FLR peptide 7F09 ; 2.6 ; Crystal structure of the HLH-Lz domain of human TFE3 5BNH ; 1.7 ; Crystal structure of the HLTF HIRAN domain with a ssDNA fragment 2WV1 ; 2.3 ; CRYSTAL STRUCTURE OF THE HLYIIR MUTANT PROTEIN WITH RESIDUES 169-186 SUBSTITUTED BY A LINKER CONTAINING TWO THROMBIN SITES 2JK3 ; 2.2 ; CRYSTAL STRUCTURE OF THE HLYIIR MUTANT PROTEIN WITH RESIDUES 169-186 SUBSTITUTED BY GSSGSSG LINKER 2JJ7 ; 2.1 ; Crystal structure of the HlyIIR mutant protein with residues 170-185 substituted by alanine 6L34 ; 1.996 ; Crystal structure of the HMG domain of human FACT complex subunit SSRP1 7M5W ; 2.95 ; Crystal structure of the HMG-C1 domain of human capicua bound to DNA 1YDN ; 2.3 ; Crystal Structure of the HMG-CoA Lyase from Brucella melitensis, Northeast Structural Genomics Target LR35. 4E44 ; 2.1 ; Crystal structure of the hMHF1/hMHF2 Histone-Fold Tetramer 4E45 ; 2.0 ; Crystal structure of the hMHF1/hMHF2 Histone-Fold Tetramer in Complex with Fanconi Anemia Associated Helicase hFANCM 3MOO ; 1.71 ; Crystal structure of the HmuO, heme oxygenase from Corynebacterium diphtheriae, in complex with azide-bound verdoheme 2ODL ; 1.92 ; Crystal structure of the HMW1 secretion domain from Haemophilus influenzae 5CO8 ; 2.4 ; Crystal structure of the Holliday junction-resolving enzyme GEN1 (WT) in complex with product DNA and Mg2+ ion 5CNQ ; 2.602 ; Crystal structure of the Holliday junction-resolving enzyme GEN1 (WT) in complex with product DNA, Mg2+ and Mn2+ ions 5U6G ; 2.6 ; Crystal Structure of the holo Domain-Swapped Dimer mutant Q108K:K40D Human Cellular Retinol Binding Protein II bound with all trans retinal 5JH2 ; 1.72 ; Crystal structure of the holo form of AKR4C7 from maize 2E7P ; 2.1 ; Crystal structure of the holo form of glutaredoxin C1 from populus tremula x tremuloides 3RHC ; 2.4 ; Crystal structure of the holo form of glutaredoxin C5 from Arabidopsis thaliana 7CCX ; 1.84 ; Crystal structure of the holo form of human hydroxymethylbilane synthase 8KI1 ; 1.9 ; Crystal structure of the holo form of the hemophore HasA from Pseudomonas protegens Pf-5 2W2L ; 2.5 ; Crystal structure of the holo forms of Rhodotorula graminis D- mandelate dehydrogenase at 2.5A. 4AH3 ; 1.57 ; Crystal structure of the holo omega-transaminase from Chromobacterium violaceum 6MLB ; 2.15 ; Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:K40L:T51F mutant of human cellular retinol binding protein II 6E6L ; 2.08 ; Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:K40L:T51F:Y60A mutant of human cellular retinol binding protein II 6E7M ; 2.7 ; Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:T51D:A28C mutant of human Cellular Retinol Binding Protein II 6MCU ; 2.572 ; Crystal structure of the holo retinal-bound domain-swapped dimer Q108K:T51D:A28H mutant of human Cellular Retinol Binding Protein II 7PDI ; 1.69 ; Crystal structure of the holo-acyl carrier protein (holo-AcpP) from Pseudomonas putida KT2440. Produced as an apo/holo mixture. 3GWM ; 1.7 ; Crystal structure of the holo-[Acyl-Carrier-Protein] Synthase (ACPS) from Mycobacterium smegmatis 3H7Q ; 2.25 ; Crystal structure of the holo-[Acyl-Carrier-Protein] Synthase (ACPS) from Mycobacterium tuberculosis 3N6R ; 3.2 ; CRYSTAL STRUCTURE OF the holoenzyme of PROPIONYL-COA CARBOXYLASE (PCC) 1MIJ ; 2.05 ; Crystal Structure of the Homeo-prospero Domain of D. melanogaster Prospero 3K2A ; 1.95 ; Crystal structure of the homeobox domain of human homeobox protein Meis2 8EJO ; 2.67 ; Crystal structure of the homeodomain of Platypus sDUX in complex with DNA 8EJP ; 2.174 ; Crystal structure of the homeodomain of Platypus sDUX in complex with DNA containing 5-Bromouracil 1DDV ; 1.9 ; CRYSTAL STRUCTURE OF THE HOMER EVH1 DOMAIN WITH BOUND MGLUR PEPTIDE 5A77 ; 2.5 ; Crystal structure of the homing endonuclease I-CvuI in complex with I- CreI target (C1221) in the presence of 2 mM Mg revealing DNA cleaved 5A78 ; 2.5 ; Crystal structure of the homing endonuclease I-CvuI in complex with I- CreI target (C1221) in the presence of 2 mM Mg revealing DNA not cleaved 5A72 ; 2.6 ; Crystal structure of the homing endonuclease I-CvuI in complex with its target (Sro1.3) in the presence of 2 mM Ca 5A74 ; 2.5 ; Crystal structure of the homing endonuclease I-CvuI in complex with its target (Sro1.3) in the presence of 2 mM Mn 1M5X ; 2.25 ; Crystal structure of the homing endonuclease I-MsoI bound to its DNA substrate 2FQN ; 2.3 ; Crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site 2G5K ; 2.8 ; Crystal Structure of the Homo sapiens Cytoplasmic Ribosomal Decoding Site complexed with Apramycin 2O3V ; 2.8 ; Crystal Structure of the Homo sapiens Cytoplasmic Ribosomal Decoding Site complexed with paromamine derivative NB33 5XZ1 ; 3.008 ; Crystal structure of the Homo Sapiens cytoplasmic ribosomal decoding site in complex with G418 5Z71 ; 2.5 ; Crystal structure of the Homo Sapiens cytoplasmic ribosomal decoding site in complex with G418 (P21212 form) 2O3Y ; 2.7 ; Crystal Structure of the Homo sapiens Cytoplasmic Ribosomal Decoding Site in Presence of Paromamine Derivative NB30 2O3W ; 2.8 ; Crystal Structure of the Homo sapiens Cytoplasmic Ribosomal Decoding Site in presence of paromomycin 3BNN ; 2.0 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site 3BNP ; 2.7 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site (A1555G Mutant) 3BNS ; 1.9 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site (A1555G mutant, Br-derivative) 3BNO ; 2.35 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site (Br-derivative) 3BNR ; 2.1 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site in the presence of nonspecifically bound paromomycin (A1555G mutant, Br-derivative) 3BNQ ; 2.0 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site in the Presence of SrCl2 (A1555G mutant, Br-derivative) 3BNT ; 2.3 ; Crystal Structure of the Homo sapiens Mitochondrial Ribosomal Decoding Site in the Presence of [Co(NH3)6]Cl3 (A1555G mutant, Br-derivative) 7MW1 ; 3.4 ; Crystal structure of the Homo sapiens NUP93-NUP53 complex (NUP93 residues 174-819; NUP53 residues 84-150) 5DMN ; 2.892 ; Crystal Structure of the Homocysteine Methyltransferase MmuM from Escherichia coli, Apo form 5DMM ; 1.779 ; Crystal Structure of the Homocysteine Methyltransferase MmuM from Escherichia coli, Metallated form 5DML ; 2.452 ; Crystal Structure of the Homocysteine Methyltransferase MmuM from Escherichia coli, Oxidized form 8DPA ; 1.84 ; Crystal structure of the homodimeric AvrM14-B Nudix hydrolase effector from Melampsora lini 1OZ0 ; 2.5 ; CRYSTAL STRUCTURE OF THE HOMODIMERIC BIFUNCTIONAL TRANSFORMYLASE AND CYCLOHYDROLASE ENZYME AVIAN ATIC IN COMPLEX WITH A MULTISUBSTRATE ADDUCT INHIBITOR BETA-DADF. 1M9N ; 1.93 ; CRYSTAL STRUCTURE OF THE HOMODIMERIC BIFUNCTIONAL TRANSFORMYLASE AND CYCLOHYDROLASE ENZYME AVIAN ATIC IN COMPLEX WITH AICAR AND XMP AT 1.93 ANGSTROMS. 2WTY ; 2.9 ; Crystal structure of the homodimeric MafB in complex with the T-MARE binding site 8P5S ; 2.459 ; Crystal structure of the homohexameric 2-oxoglutarate dehydrogenase OdhA from Corynebacterium glutamicum 2PPQ ; 2.0 ; Crystal structure of the homoserine kinase from Agrobacterium tumefaciens 4PLP ; 1.49 ; Crystal Structure of the Homospermidine Synthase (HSS) from Blastochloris viridis in Complex with NAD 4XQ9 ; 1.6 ; Crystal Structure of the Homospermidine Synthase (HSS) from Blastochloris viridis in Complex with NAD 4XQC ; 1.27 ; Crystal Structure of the Homospermidine Synthase (HSS) from Blastochloris viridis in Complex with NAD and 1,3-diaminopropane. 4XR4 ; 1.626 ; Crystal Structure of the Homospermidine Synthase (HSS) from Blastochloris viridis in Complex with NAD and Agmatine 4TVB ; 1.689 ; Crystal Structure of the Homospermidine Synthase (HSS) from Blastochloris viridis in Complex with NAD, Putrescine and sym-Homospermidine 6Y87 ; 2.15 ; Crystal Structure of the Homospermidine Synthase (HSS) from Pseudomonas aeruginosa in Complex with NAD and PUT 6S6G ; 1.6 ; Crystal Structure of the Homospermidine Synthase (HSS) variant E117Q from Blastochloris viridis in Complex with NAD 6S49 ; 1.69 ; Crystal Structure of the Homospermidine Synthase (HSS) variant E210A from Blastochloris viridis in Complex with NAD 6S3X ; 1.72 ; Crystal Structure of the Homospermidine Synthase (HSS) variant E210Q from Blastochloris viridis in Complex with NAD 4XQG ; 1.417 ; Crystal Structure of the Homospermidine Synthase (HSS) variant E237Q from Blastochloris viridis in Complex with NAD. 4XQE ; 1.3 ; Crystal Structure of the Homospermidine Synthase (HSS) variant H296S from Blastochloris viridis in Complex with NAD and Agmatine 4XRG ; 1.3 ; Crystal Structure of the Homospermidine Synthase (HSS) variant H296S from Blastochloris viridis in Complex with NAD, Putrescine and Agmatine 6S65 ; 1.75 ; Crystal Structure of the Homospermidine Synthase (HSS) variant N135F from Blastochloris viridis in Complex with NAD 6S72 ; 1.87 ; Crystal Structure of the Homospermidine Synthase (HSS) variant W229A from Blastochloris viridis in Complex with NAD and PUT 6SEP ; 2.2 ; Crystal Structure of the Homospermidine Synthase (HSS) variant W229E from Blastochloris viridis in Complex with NAD 6S4D ; 1.8 ; Crystal Structure of the Homospermidine Synthase (HSS) variant W229F from Blastochloris viridis in Complex with NAD 2PH5 ; 2.5 ; Crystal structure of the homospermidine synthase hss from Legionella pneumophila in complex with NAD, Northeast Structural Genomics Target LgR54 1RER ; 3.2 ; Crystal structure of the homotrimer of fusion glycoprotein E1 from Semliki Forest Virus. 4YNL ; 2.1 ; Crystal structure of the hood domain of Anabaena HetR in complex with the hexapeptide ERGSGR derived from PatS 6AW2 ; 2.68 ; Crystal structure of the HopQ-CEACAM1 complex 6AW3 ; 2.66 ; Crystal structure of the HopQ-CEACAM3 L44Q complex 6AVZ ; 2.05 ; Crystal structure of the HopQ-CEACAM3 WT complex 8OEK ; 2.22 ; Crystal structure of the HormR-GAIN domains of adhesion GPCR ADGRB2 (BAI2) in the uncleaved state 6VC0 ; 2.746 ; Crystal structure of the horse MLKL pseudokinase domain 2D4E ; 2.1 ; Crystal Structure of the HpcC from Thermus Thermophilus HB8 1WZO ; 1.9 ; Crystal Structure of the HpcE from Thermus Thermophilus HB8 1J7J ; 2.3 ; Crystal Structure of the HPRT from Salmonella typhimurium 1F9F ; 1.9 ; CRYSTAL STRUCTURE OF THE HPV-18 E2 DNA-BINDING DOMAIN 4XR8 ; 2.25 ; Crystal structure of the HPV16 E6/E6AP/p53 ternary complex at 2.25 A resolution 7AX8 ; 2.15 ; Crystal structure of the hPXR-LBD in apo form (P43212 SG) 7AXH ; 2.55 ; Crystal structure of the hPXR-LBD in complex with alpha-zearalanol 7AX9 ; 2.25 ; Crystal structure of the hPXR-LBD in complex with cis-chlordane 7AXA ; 2.26 ; Crystal structure of the hPXR-LBD in complex with clotrimazole 7AXB ; 2.55 ; Crystal structure of the hPXR-LBD in complex with endosulfan 7AXI ; 2.15 ; Crystal structure of the hPXR-LBD in complex with estradiol and cis-chlordane 7AXJ ; 2.3 ; Crystal structure of the hPXR-LBD in complex with estradiol and clotrimazole 7AXK ; 2.0 ; Crystal structure of the hPXR-LBD in complex with estradiol and endosulfan 7AXL ; 2.5 ; Crystal structure of the hPXR-LBD in complex with estradiol and heptachlor endo-epoxide 7AXC ; 2.05 ; Crystal structure of the hPXR-LBD in complex with ferutinine 7AXD ; 2.65 ; Crystal structure of the hPXR-LBD in complex with fipronil 7AXE ; 1.9 ; Crystal structure of the hPXR-LBD in complex with oxadiazon 7AXF ; 2.45 ; Crystal structure of the hPXR-LBD in complex with pretilachlor 4X1F ; 2.0 ; Crystal structure of the hPXR-LBD in complex with the synthetic estrogen 17alpha-ethinylestradiol 4X1G ; 2.25 ; Crystal structure of the hPXR-LBD in complex with the synthetic estrogen 17alpha-ethinylestradiol and the pesticide trans-nonachlor 7AXG ; 2.7 ; Crystal structure of the hPXR-LBD in complex with tributyltin 4XAO ; 2.58 ; Crystal structure of the hPXR-LBD obtained in presence of the pesticide trans-nonachlor 6BK4 ; 1.8 ; Crystal structure of the HR-1 domain of Drosophila caprin in the P212121 space group 4WBE ; 2.05 ; Crystal structure of the HR-1 domain of human caprin-1 in the C121 space group 4WBP ; 2.5 ; Crystal structure of the HR-1 domain of human caprin-1 in the P3121 space group 2E1E ; 2.3 ; Crystal structure of the HRDC Domain of Human Werner Syndrome Protein, WRN 2E1F ; 2.0 ; Crystal structure of the HRDC Domain of Human Werner Syndrome Protein, WRN 7WKZ ; 2.992 ; Crystal structure of the HSA complex with mycophenolate and aripiprazole 7WLF ; 2.4 ; Crystal structure of the HSA Fe complex 3AFF ; 2.0 ; Crystal structure of the HsaA monooxygenase from M. tuberculosis 3AFE ; 2.5 ; Crystal structure of the HsaA monooxygenase from M.tuberculosis 2ZYQ ; 2.0 ; Crystal structure of the HsaC extradiol dioxygenase from M. tuberculosis 2ZI8 ; 2.2 ; Crystal structure of the HsaC extradiol dioxygenase from M. tuberculosis in complex with 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (DHSA) 3DXF ; 2.2 ; Crystal structure of the HSCARG R37A mutant 3E5M ; 2.7 ; Crystal structure of the HSCARG Y81A mutant 2W00 ; 2.6 ; Crystal structure of the HsdR subunit of the EcoR124I restriction enzyme in complex with ATP 6H2J ; 2.6 ; Crystal structure of the HsdR subunit of the EcoR124I restriction enzyme with the C-terminal domain 1G3I ; 3.41 ; CRYSTAL STRUCTURE OF THE HSLUV PROTEASE-CHAPERONE COMPLEX 5W6X ; 2.1 ; Crystal structure of the HsNUDT16 in complex with Mg+2 and ADP-ribose 5U2L ; 1.6555 ; Crystal structure of the Hsp104 N-terminal domain from Candida albicans 5U2U ; 2.541 ; Crystal structure of the Hsp104 N-terminal domain from Saccharomyces cerevisiae 1I7F ; 2.7 ; CRYSTAL STRUCTURE OF THE HSP33 DOMAIN WITH CONSTITUTIVE CHAPERONE ACTIVITY 8OXU ; 2.94 ; Crystal Structure of the Hsp90-LA1011 Complex 3GLA ; 1.64 ; Crystal Structure of the hspA from Xanthomonas axonopodis 3GT6 ; 2.15 ; Crystal Structure of the hspA from Xanthomonas axonopodis 3GUF ; 2.28 ; Crystal Structure of the hspA from Xanthomonas axonopodis 1XQR ; 2.1 ; Crystal structure of the HspBP1 core domain 1XQS ; 2.9 ; Crystal structure of the HspBP1 core domain complexed with the fragment of Hsp70 ATPase domain 4IFS ; 1.93 ; Crystal structure of the hSSRP1 Middle domain 7BCA ; 2.8 ; Crystal structure of the HTH DNA binding protein ArdK from R388 plasmid bound to a direct-repeat DNA element 7BCB ; 2.8 ; Crystal structure of the HTH DNA binding protein ArdK from R388 plasmid bound to IR3 DNA 7BBQ ; 3.0 ; Crystal structure of the HTH DNA binding protein ArdK from R388 plasmid. Apo form. 2PZD ; 2.75 ; Crystal Structure of the HtrA2/Omi PDZ Domain Bound to a Phage-Derived Ligand (WTMFWV) 2P3W ; 1.7 ; Crystal Structure of the HtrA3 PDZ Domain Bound to a Phage-Derived Ligand (FGRWV) 2J2I ; 1.9 ; Crystal Structure of the humab PIM1 in complex with LY333531 6SY1 ; 1.87 ; Crystal structure of the human 2-oxoadipate dehydrogenase DHTKD1 (E1) 2W2I ; 2.1 ; Crystal structure of the human 2-oxoglutarate oxygenase LOC390245 5VYC ; 6.0 ; Crystal structure of the human 40S ribosomal subunit in complex with DENR-MCT-1. 5NVN ; 1.9 ; Crystal structure of the human 4EHP-4E-BP1 complex 5NVK ; 2.9 ; Crystal structure of the human 4EHP-GIGYF1 complex 5NVL ; 2.3 ; Crystal structure of the human 4EHP-GIGYF2 complex 5NVM ; 2.0 ; Crystal structure of the human 4EHP-GIGYF2 complex lacking the auxiliary sequences 3GDQ ; 1.8 ; Crystal structure of the human 70kDa heat shock protein 1-like ATPase domain in complex with ADP and inorganic phosphate 3JXU ; 2.14 ; Crystal structure of the human 70kDa heat shock protein 1A (Hsp70-1) ATPase domain in complex with ADP and inorganic phosphate 3I33 ; 1.3 ; Crystal structure of the human 70kDa heat shock protein 2 (Hsp70-2) ATPase domain in complex with ADP and inorganic phosphate 3IUC ; 2.4 ; Crystal structure of the human 70kDa heat shock protein 5 (BiP/GRP78) ATPase domain in complex with ADP 3FE1 ; 2.2 ; Crystal structure of the human 70kDa heat shock protein 6 (Hsp70B') ATPase domain in complex with ADP and inorganic phosphate 1EBM ; 2.1 ; CRYSTAL STRUCTURE OF THE HUMAN 8-OXOGUANINE GLYCOSYLASE (HOGG1) BOUND TO A SUBSTRATE OLIGONUCLEOTIDE 5AN4 ; 1.6 ; Crystal structure of the human 8-oxoguanine glycosylase (OGG1) processed with the CrystalDirect automated mounting and cryo-cooling technology 1EWN ; 2.1 ; CRYSTAL STRUCTURE OF THE HUMAN AAG DNA REPAIR GLYCOSYLASE COMPLEXED WITH 1,N6-ETHENOADENINE-DNA 1F4R ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN AAG DNA REPAIR GLYCOSYLASE COMPLEXED WITH 1,N6-ETHENOADENINE-DNA 1F6O ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN AAG DNA REPAIR GLYCOSYLASE COMPLEXED WITH DNA 1FJ2 ; 1.5 ; Crystal structure of the human acyl protein thioesterase 1 at 1.5 A resolution 5UEN ; 3.2 ; Crystal structure of the human adenosine A1 receptor A1AR-bRIL in complex with the covalent antagonist DU172 at 3.2A resolution 8WDT ; 3.34 ; Crystal structure of the human adenosine A2A receptor in complex with photoresponsive ligand photoNECA(blue) 7RTG ; 2.591 ; Crystal Structure of the Human Adenosine Deaminase 1 3EXV ; 1.45 ; Crystal structure of the human Adenovirus type 11 fiber knob 3F0Y ; 1.8 ; Crystal structure of the human Adenovirus type 14 fiber knob 3L88 ; 2.5 ; Crystal structure of the human Adenovirus type 21 fiber knob 3EXW ; 1.75 ; Crystal structure of the human Adenovirus type 7 fiber knob 6KS0 ; 2.79 ; Crystal structure of the human adiponectin receptor 1 6KRZ ; 3.05 ; Crystal structure of the human adiponectin receptor 1 D208A mutant 6KS1 ; 2.4 ; Crystal structure of the human adiponectin receptor 2 1E0F ; 3.1 ; Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor 7B6W ; 2.873 ; Crystal structure of the human alpha1B adrenergic receptor in complex with inverse agonist (+)-cyclazosin 1XOW ; 1.8 ; Crystal structure of the human androgen receptor ligand binding domain bound with an androgen receptor NH2-terminal peptide, AR20-30, and R1881 1XQ3 ; 2.25 ; Crystal structure of the human androgen receptor ligand binding domain bound with R1881 2AO6 ; 1.89 ; Crystal structure of the human androgen receptor ligand binding domain bound with TIF2(iii) 740-753 peptide and R1881 2OZ7 ; 1.8 ; Crystal structure of the human androgen receptor T877A mutant ligand-binding domain with cyproterone acetate 4NJ8 ; 1.6 ; Crystal structure of the human ANKS3 SAM Domain L52A mutant 4NL9 ; 1.5 ; Crystal structure of the human Anks3-SAM/Anks6-SAM heterodimer 3PH9 ; 1.83 ; Crystal structure of the human anterior gradient protein 3 3KMN ; 1.8 ; Crystal Structure of the Human Apo GST Pi C47S/Y108V Double Mutant 3VM8 ; 3.0 ; Crystal structure of the human APOBEC3C having HIV-1 Vif-binding interface 3VOW ; 2.15 ; Crystal Structure of the Human APOBEC3C having HIV-1 Vif-binding Interface 6TN7 ; 1.67 ; Crystal structure of the human Arc C-lobe 6TNQ ; 1.3 ; Crystal structure of the human Arc N-lobe bound to repeat 4 from GKAP 6TQ0 ; 1.95 ; Crystal structure of the human Arc N-lobe bound to repeat peptide 5 from GKAP 6TNO ; 1.9 ; Crystal structure of the human Arc N-lobe bound to stargazin 1K62 ; 2.65 ; Crystal Structure of the Human Argininosuccinate Lyase Q286R Mutant 5EWN ; 2.602 ; Crystal structure of the human astrovirus 1 capsid protein core domain at 2.6 A resolution 5EWO ; 0.95 ; Crystal structure of the human astrovirus 1 capsid protein spike domain at 0.95-A resolution 5KOU ; 1.867 ; Crystal structure of the human astrovirus 2 capsid protein spike domain at 1.87-A resolution 5KOV ; 3.245 ; Crystal structure of the human astrovirus 2 capsid protein spike in complex with a single chain variable fragment of an astrovirus neutralizing antibody at 3.24-A resolution 5I30 ; 1.9 ; Crystal structure of the human astrovirus 2 neutralizing monoclonal antibody PL-2 Fab fragment at 1.9 A resolution 5W1N ; 1.348 ; Crystal structure of the human astrovirus 2 Oxford serotype capsid protein spike at 1.35-A resolution 7UZT ; 1.86 ; Crystal structure of the human astrovirus MLB1 capsid protein spike domain at 1.86-A resolution 7RK2 ; 2.65 ; Crystal structure of the human astrovirus serotype 8 capsid spike in complex with scFv 2D9, an astrovirus-neutralizing antibody, at 2.65-A resolution 7RK1 ; 2.05 ; Crystal structure of the human astrovirus serotype 8 capsid spike in complex with scFv 3E8, an astrovirus-neutralizing antibody, at 2.05-A resolution 2ZJJ ; 2.2 ; Crystal structure of the human BACE1 catalytic domain in complex with 4-(4-fluoro-benzyl)-piperazine-2-carboxylic acid (2-mercapto-ethyl)-amide 2ZJK ; 3.0 ; Crystal structure of the human BACE1 catalytic domain in complex with 4-(4-fluoro-benzyl)-piperazine-2-carboxylic acid(3-mercapto-propyl)-amide 2ZJH ; 2.6 ; Crystal structure of the human BACE1 catalytic domain in complex with N-(1-benzyl-piperidin-4-yl)-4-mercapto-butyramide 2ZJI ; 2.3 ; Crystal structure of the human BACE1 catalytic domain in complex with N-[1-(2,6-dimethoxy-benzyl)-piperidin-4-yl]-4-mercapto-butyramide 2ZJL ; 2.1 ; Crystal structure of the human BACE1 catalytic domain in complex with N-[1-(5-bromo-2,3-dimethoxy-benzyl)-piperidin-4-yl]-4-mercapto-butyramide 2ZJN ; 2.7 ; Crystal structure of the human BACE1 catalytic domain in complex with N-[1-(5-chloro-2-isopropoxy-3-methoxy-benzyl)-piperidin-4-yl]-2-(2-methyl-4-sulfamoyl-phenoxy)-acetamide 2ZJM ; 1.9 ; Crystal structure of the human BACE1 catalytic domain in complex with N-[1-(5-chloro-2-isopropoxy-3-methoxy-benzyl)-piperidin-4-yl]-2-(4-sulfamoyl-phenoxy)-acetamide 3OHU ; 2.1 ; Crystal structure of the human Bach2 POZ domain, form I 3OHV ; 2.2 ; Crystal structure of the human Bach2 POZ domain, form II 2Z9T ; 1.8 ; Crystal structure of the human beta-2 microglobulin mutant W60G 2VRF ; 2.0 ; CRYSTAL STRUCTURE OF THE HUMAN BETA-2-SYNTROPHIN PDZ DOMAIN 3NY9 ; 2.84 ; Crystal structure of the human beta2 adrenergic receptor in complex with a novel inverse agonist 3NY8 ; 2.84 ; Crystal structure of the human beta2 adrenergic receptor in complex with the inverse agonist ICI 118,551 3NYA ; 3.16 ; Crystal structure of the human beta2 adrenergic receptor in complex with the neutral antagonist alprenolol 2R4R ; 3.4 ; Crystal structure of the human beta2 adrenoceptor 2R4S ; 3.4 ; Crystal structure of the human beta2 adrenoceptor 1XA6 ; 3.2 ; Crystal Structure of the Human Beta2-Chimaerin 6V5A ; 2.0 ; Crystal structure of the human BK channel gating ring L390P mutant 3MT5 ; 3.0 ; Crystal Structure of the Human BK Gating Apparatus 3FB2 ; 2.3 ; Crystal structure of the human brain alpha spectrin repeats 15 and 16. Northeast Structural Genomics Consortium target HR5563a. 5S9O ; 2.49 ; CRYSTAL STRUCTURE OF THE HUMAN BRD2 BD1 BROMODOMAIN IN COMPLEX WITH 9-(cyclopropylmethyl)-7-[(2R,6S)-2,6-dimethylmorpholine-4-carbonyl]-3-(3,5-dimethyl-1,2-oxazol-4-yl)-9H-carbazole-1-carboxamide 3AQA ; 2.3 ; Crystal structure of the human BRD2 BD1 bromodomain in complex with a BRD2-interactive compound, BIC1 6DDI ; 1.5 ; Crystal Structure of the human BRD2 BD1 bromodomain in complex with a Tetrahydroquinoline analogue 6DDJ ; 1.05 ; Crystal Structure of the human BRD2 BD2 bromodimain in complex with a Tetrahydroquinoline analogue 2E3K ; 2.3 ; Crystal structure of the human Brd2 second bromodomain in complexed with the acetylated histone H4 peptide 8B96 ; 1.338 ; Crystal structure of the human BRD4-BD1 bromodomain in complex with the inhibitor CRCM5464 8B98 ; 1.495 ; Crystal structure of the human BRD4-BD1 bromodomain in complex with the inhibitor CRCM5483 3MAZ ; 1.9 ; Crystal Structure of the Human BRDG1/STAP-1 SH2 Domain in Complex with the NTAL pTyr136 Peptide 5NU3 ; 1.75 ; Crystal structure of the human bromodomain of CREBBP bound to the inhibitor XDM-CBP 5NRW ; 1.7 ; Crystal structure of the human bromodomain of CREBBP bound to the inhibitor XDM4 5NU5 ; 1.6 ; Crystal structure of the human bromodomain of EP300 bound to the inhibitor XDM-CBP 6EKQ ; 1.65 ; Crystal structure of the human BRPF1 bromodomain complexed with BZ054 in space group C2 5C89 ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with 917 4QYL ; 1.8 ; Crystal Structure of the human BRPF1 bromodomain in complex with a histone H2AK5ac peptide 4QYD ; 1.94 ; Crystal Structure of the human BRPF1 bromodomain in complex with a histone H4K12ac peptide 5C7N ; 1.75 ; Crystal structure of the human BRPF1 bromodomain in complex with Bromosporine 5O5A ; 1.6 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ032 5O5F ; 1.302 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ038 5O55 ; 1.45 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ047 5O5H ; 1.85 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ053 5OWA ; 1.95 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ054 5O4T ; 1.5 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ061 5MWZ ; 1.25 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ073 5MWH ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ089 5MWG ; 1.5 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ091 5OV8 ; 1.8 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ097 5O4S ; 1.75 ; Crystal structure of the human BRPF1 bromodomain in complex with BZ135 5OWB ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with DSPBP1004 5OWE ; 1.7 ; Crystal structure of the human BRPF1 bromodomain in complex with DSPBP1010 5C85 ; 1.7 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED1 5EPS ; 1.47 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED10 5EPR ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED11 5EQ1 ; 1.55 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED12 5ETB ; 1.33 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED13 5ETD ; 1.4 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED14 5EV9 ; 1.45 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED15 5EVA ; 1.45 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED16 5EWC ; 1.75 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED17 5EWD ; 1.58 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED18 5EWH ; 1.63 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED19 5C87 ; 1.55 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED2 5EWV ; 1.67 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED20 5EWW ; 1.73 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED21 5DY7 ; 1.69 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED4 5DYA ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED5 5DYC ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED6 5E3D ; 1.71 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED7 5E3G ; 1.65 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED8 5EM3 ; 1.4 ; Crystal structure of the human BRPF1 bromodomain in complex with SEED9 5D7X ; 1.35 ; Crystal structure of the human BRPF1 bromodomain in complex with XZ08 4P6Z ; 3.0 ; Crystal structure of the human BST2 cytoplasmic domain and the HIV-1 Vpu cytoplasmic domain bound to the clathrin adaptor protein complex 1 (AP1) core 3B84 ; 1.74 ; Crystal structure of the human BTB domain of the Krueppel related Zinc Finger Protein 3 (HKR3) 3P08 ; 2.3 ; Crystal structure of the human BTK kinase domain 2AW2 ; 2.8 ; Crystal structure of the human BTLA-HVEM complex 4F80 ; 1.944 ; Crystal Structure of the human BTN3A1 ectodomain 4F9P ; 3.519 ; Crystal Structure of the Human BTN3A1 Ectodomain in Complex with the 103.2 Single Chain Antibody 4F9L ; 3.1404 ; Crystal Structure of the Human BTN3A1 Ectodomain in Complex with the 20.1 Single Chain Antibody 6XLQ ; 3.0 ; Crystal Structure of the Human BTN3A1 Ectodomain in Complex with the CTX-2026 Fab 4F8Q ; 2.3789 ; Crystal Structure of the Human BTN3A2 Ectodomain 4F8T ; 2.382 ; Crystal Structure of the Human BTN3A3 Ectodomain 6F7B ; 2.0 ; Crystal structure of the human Bub1 kinase domain in complex with BAY 1816032 1K8F ; 2.8 ; CRYSTAL STRUCTURE OF THE HUMAN C-TERMINAL CAP1-ADENYLYL CYCLASE ASSOCIATED PROTEIN 4HW5 ; 2.25 ; Crystal Structure of the Human C3a anaphylatoxin 4HWJ ; 2.6 ; Crystal Structure of the Human C3a desArg anaphylatoxin 4UU9 ; 2.12 ; Crystal structure of the human c5a in complex with MEDI7814 a neutralising antibody 4P39 ; 2.401 ; Crystal structure of the human C5aR antagonist C5a-A8 2O3H ; 1.9 ; Crystal structure of the human C65A Ape 5II0 ; 2.097 ; Crystal structure of the human calcitonin receptor ectodomain in complex with a truncated salmon calcitonin analogue 5IG3 ; 2.75 ; Crystal structure of the human CaMKII-alpha hub 6CD6 ; 2.2 ; Crystal Structure of the Human CAMKK1A in complex with GSK650394 6CCF ; 2.1 ; Crystal Structure of the Human CAMKK1A in complex with Hesperadin 5UY6 ; 1.7 ; Crystal Structure of the Human CAMKK2B 5UYJ ; 1.6 ; Crystal Structure of the Human CAMKK2B 5VT1 ; 1.9 ; Crystal Structure of the Human CAMKK2B bound to a thiadiazinone benzamide inhibitor 6BKU ; 2.0 ; Crystal Structure of the Human CAMKK2B bound to GSK650394 6BRC ; 2.2 ; Crystal Structure of the Human CAMKK2B in complex with AP26113-analog (ALK-IN-1) 6BQQ ; 1.8 ; Crystal Structure of the Human CAMKK2B in complex with BI2526 6BLE ; 1.9 ; Crystal Structure of the Human CAMKK2B in complex with CP673451 6BQP ; 1.95 ; Crystal Structure of the Human CAMKK2B in complex with Crenolanib 6BQL ; 2.0 ; Crystal Structure of the Human CAMKK2B in complex with TAE-226 5TGZ ; 2.8 ; Crystal Structure of the Human Cannabinoid Receptor CB1 6IRV ; 2.7 ; Crystal structure of the human cap-specific adenosine methyltransferase 6IRW ; 2.9 ; Crystal structure of the human cap-specific adenosine methyltransferase bound to SAH 2HD6 ; 1.8 ; Crystal structure of the human carbonic anhydrase II in complex with a hypoxia-activatable sulfonamide. 3CAJ ; 1.8 ; Crystal structure of the human carbonic anhydrase II in complex with ethoxzolamide 3T5U ; 1.75 ; Crystal structure of the human carbonic anhydrase II in complex with N-hydroxy benzenesulfonamide 3T5Z ; 1.65 ; Crystal structure of the human carbonic anhydrase II in complex with N-methoxy-benzenesulfonamide 3BET ; 1.85 ; Crystal structure of the human carbonic anhydrase II in complex with STX 641 at 1.85 angstroms resolution 2HOC ; 2.1 ; Crystal structure of the human carbonic anhydrase II in complex with the 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide inhibitor 2HNC ; 1.55 ; Crystal structure of the human carbonic anhydrase II in complex with the 5-amino-1,3,4-thiadiazole-2-sulfonamide inhibitor. 2W2J ; 1.6 ; Crystal structure of the human carbonic anhydrase related protein VIII 3CZV ; 2.0 ; Crystal structure of the human carbonic anhydrase XIII in complex with acetazolamide 5OM9 ; 1.8 ; Crystal structure of the human CARBOXYPEPTIDASE A1 in complex with a thiirane mechanism-based inhibitor 4UEE ; 2.27 ; Crystal structure of the human CARBOXYPEPTIDASE A1 in complex with the PHOSPHINIC INHIBITOR Acetyl-Leu-Ala-Y(PO2CH2)-homoPhe-OH 4UEZ ; 2.29 ; Crystal structure of the human CARBOXYPEPTIDASE A1 in complex with the PHOSPHINIC INHIBITOR Acetyl-Leu-Phe-Y(PO2CH2)-Phe-OH 6I6Z ; 1.72 ; Crystal structure of the human CARBOXYPEPTIDASE A1 in complex with the PHOSPHINIC INHIBITOR Acetyl-Tyr-Ala-Y(PO2CH2)-homoPhe-OH 2NSM ; 2.1 ; Crystal structure of the human carboxypeptidase N (Kininase I) catalytic domain 1SC4 ; 2.1 ; Crystal structure of the human caspase-1 C285A mutant after removal of malonate 1SC3 ; 1.8 ; Crystal structure of the human caspase-1 C285A mutant in complex with malonate 5XRA ; 2.8 ; Crystal structure of the human CB1 in complex with agonist AM11542 5XR8 ; 2.95 ; Crystal structure of the human CB1 in complex with agonist AM841 5LWE ; 2.8 ; Crystal structure of the human CC chemokine receptor type 9 (CCR9) in complex with vercirnon 1IMJ ; 2.2 ; CRYSTAL STRUCTURE OF THE HUMAN CCG1/TAFII250-INTERACTING FACTOR B (CIB) 7AX1 ; 3.3 ; Crystal structure of the human CCR4-CAF1 complex 2H2R ; 1.5 ; Crystal structure of the human CD23 Lectin domain, apo form 1JL4 ; 4.3 ; CRYSTAL STRUCTURE OF THE HUMAN CD4 N-TERMINAL TWO DOMAIN FRAGMENT COMPLEXED TO A CLASS II MHC MOLECULE 4CXA ; 3.15 ; Crystal structure of the human CDK12-cyclin K complex bound to AMPPNP 4UN0 ; 3.15 ; Crystal structure of the human CDK12-cyclinK complex 5ACB ; 2.7 ; Crystal Structure of the Human Cdk12-Cyclink Complex 2C68 ; 1.95 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C69 ; 2.1 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6I ; 1.8 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6K ; 1.9 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6L ; 2.3 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6M ; 1.9 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6O ; 2.1 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 2C6T ; 2.61 ; Crystal structure of the human CDK2 complexed with the triazolopyrimidine inhibitor 1BUH ; 2.6 ; CRYSTAL STRUCTURE OF THE HUMAN CDK2 KINASE COMPLEX WITH CELL CYCLE-REGULATORY PROTEIN CKSHS1 8P4Z ; 2.75 ; Crystal structure of the human CDK7 kinase domain in complex with LDC4297 4AGU ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN CDKL1 KINASE DOMAIN 4AAA ; 1.53 ; Crystal structure of the human CDKL2 kinase domain 4BBM ; 2.0 ; CRYSTAL STRUCTURE OF THE HUMAN CDKL2 KINASE DOMAIN WITH BOUND TCS 2312 3ZDU ; 2.2 ; Crystal structure of the human CDKL3 kinase domain 4BGQ ; 2.0 ; Crystal structure of the human CDKL5 kinase domain 8CIE ; 2.2 ; Crystal structure of the human CDKL5 kinase domain with compound YL-354 4QXW ; 2.04 ; Crystal structure of the human CEACAM1 membrane distal amino terminal (N)-domain 6N8R ; 1.91 ; Crystal structure of the human cell polarity protein Lethal Giant Larvae 2 (Lgl2). aPKC phosphorylated, crystal form 2. 6N8S ; 3.9 ; Crystal structure of the human cell polarity protein Lethal Giant Larvae 2 (Lgl2). aPKC phosphorylated, crystal form 3. 6N8P ; 3.193 ; Crystal structure of the human cell polarity protein Lethal Giant Larvae 2 (Lgl2). Unphosphorylated, crystal form 1. 6N8Q ; 2.2 ; Crystal structure of the human cell polarity protein Lethal Giant Larvae 2 (Lgl2). Unphosphorylated, crystal form 2. 7F1T ; 2.6 ; Crystal structure of the human chemokine receptor CCR5 in complex with MIP-1a 6EFK ; 1.5 ; Crystal structure of the human CHIP TPR domain in complex with a 5mer acetylated HSP70 peptide 6NSV ; 1.305 ; Crystal structure of the human CHIP TPR domain in complex with a 5mer acetylated optimized peptide 8FYU ; 1.84839 ; Crystal structure of the human CHIP-TPR domain in complex with a 10mer acetylated tau peptide 8GCK ; 1.36824 ; Crystal structure of the human CHIP-TPR domain in complex with a 6mer acetylated tau peptide 4KP0 ; 2.8 ; Crystal Structure of the human Chymase with TJK002 1DLH ; 2.8 ; CRYSTAL STRUCTURE OF THE HUMAN CLASS II MHC PROTEIN HLA-DR1 COMPLEXED WITH AN INFLUENZA VIRUS PEPTIDE 3VPP ; 1.642 ; Crystal Structure of the Human CLEC9A C-type Lectin-Like Domain 2WU6 ; 1.92 ; Crystal Structure of the Human CLK3 in complex with DKI 2WU7 ; 2.25 ; Crystal Structure of the Human CLK3 in complex with V25 2PKT ; 1.5 ; Crystal structure of the human CLP-36 (PDLIM1) bound to the C-terminal peptide of human alpha-actinin-1 6D1U ; 2.05 ; Crystal structure of the human CLR:RAMP1 extracellular domain heterodimer in complex with adrenomedullin 2/intermedin 5V6Y ; 2.8 ; Crystal structure of the human CLR:RAMP1 extracellular domain heterodimer with bound high-affinity and altered selectivity adrenomedullin variant 6V2E ; 1.83 ; Crystal structure of the human CLR:RAMP2 extracellular domain heterodimer with bound high-affinity adrenomedullin S45R/K46L/S48G/Q50W variant 3NGQ ; 1.8 ; Crystal structure of the human CNOT6L nuclease domain 3NGN ; 2.4 ; Crystal structure of the human CNOT6L nuclease domain in complex with AMP 3NGO ; 2.2 ; Crystal structure of the human CNOT6L nuclease domain in complex with poly(A) DNA 1EJF ; 2.49 ; CRYSTAL STRUCTURE OF THE HUMAN CO-CHAPERONE P23 2Y4T ; 3.0 ; Crystal structure of the human co-chaperone P58(IPK) 3N3F ; 2.005 ; Crystal Structure of the Human Collagen XV Trimerization Domain: A Potent Trimerizing Unit Common to Multiplexin Collagens 3UF2 ; 2.75 ; Crystal structure of the human Colony-Stimulating Factor 1 (hCSF-1) cytokine 3UEZ ; 3.414 ; Crystal structure of the human Colony-Stimulating Factor 1 (hCSF-1) cytokine in complex with the viral receptor BARF1 4ADF ; 4.4 ; CRYSTAL STRUCTURE OF THE HUMAN COLONY-STIMULATING FACTOR 1 (hCSF-1) CYTOKINE IN COMPLEX WITH THE VIRAL RECEPTOR BARF1 6ODD ; 2.0 ; Crystal structure of the human complex ACP-ISD11 6ZBK ; 1.49 ; Crystal structure of the human complex between RPAP3 and TRBP 4U4P ; 1.89 ; Crystal structure of the human condensin SMC hinge domain heterodimer with short coiled coils 8D41 ; 2.0 ; Crystal structure of the human COPB2 WD-domain in complex with OICR-6254 8D30 ; 2.4 ; Crystal structure of the human COPB2 WD-domains 3EH1 ; 1.8 ; Crystal structure of the human COPII-coat protein Sec24b 3EH2 ; 2.35 ; Crystal structure of the human COPII-coat protein Sec24c 5ZUV ; 2.21 ; Crystal Structure of the Human Coronavirus 229E HR1 motif in complex with pan-CoVs inhibitor EK1 6ATK ; 3.505 ; Crystal structure of the human coronavirus 229E spike protein receptor binding domain in complex with human aminopeptidase N 5ZVK ; 3.31 ; Crystal Structure of the Human Coronavirus MERS HR1 motif in complex with pan-CoVs inhibitor EK1 5ZVM ; 3.3 ; Crystal Structure of the Human Coronavirus SARS HR1 motif in complex with pan-CoVs inhibitor EK1 3CJW ; 1.48 ; Crystal structure of the human COUP-TFII ligand binding domain 6F9N ; 2.5 ; CRYSTAL STRUCTURE OF THE HUMAN CPSF160-WDR33 COMPLEX 3AQF ; 2.6 ; Crystal structure of the human CRLR/RAMP2 extracellular complex 1PTZ ; 1.8 ; Crystal structure of the human CU, Zn Superoxide Dismutase, Familial Amyotrophic Lateral Sclerosis (FALS) Mutant H43R 4O38 ; 2.097 ; Crystal structure of the human cyclin G associated kinase (GAK) 6RZ8 ; 2.7 ; Crystal structure of the human cysteinyl leukotriene receptor 2 in complex with ONO-2080365 6RZ6 ; 2.43 ; Crystal structure of the human cysteinyl leukotriene receptor 2 in complex with ONO-2570366 (C2221 space group) 6RZ7 ; 2.43 ; Crystal structure of the human cysteinyl leukotriene receptor 2 in complex with ONO-2570366 (F222 space group) 6RZ9 ; 2.73 ; Crystal structure of the human cysteinyl leukotriene receptor 2 in complex with ONO-2770372 7RL2 ; 2.23 ; Crystal Structure of the Human Cytochrome P450 2C9*8 (CYP2C9*8) Genetic Variant in Complex with the Drug Losartan 1T6L ; 1.85 ; Crystal Structure of the Human Cytomegalovirus DNA Polymerase Subunit, UL44 5DOB ; 2.47 ; Crystal structure of the Human Cytomegalovirus Nuclear Egress Complex (NEC) 1IM3 ; 2.2 ; Crystal Structure of the human cytomegalovirus protein US2 bound to the MHC class I molecule HLA-A2/tax 5D5N ; 2.44 ; Crystal Structure of the Human Cytomegalovirus pUL50-pUL53 Complex 5DOE ; 3.0 ; Crystal structure of the Human Cytomegalovirus UL53 (residues 72-292) 5DOC ; 1.94 ; Crystal structure of the Human Cytomegalovirus UL53 subunit of the NEC 4CKR ; 2.2 ; Crystal structure of the human DDR1 kinase domain in complex with DDR1-IN-1 4BKJ ; 1.7 ; Crystal structure of the human DDR1 kinase domain in complex with imatinib 6SH7 ; 2.21 ; Crystal structure of the human DEAH-helicase DHX15 in complex with the NKRF G-patch 6SH6 ; 1.85 ; Crystal structure of the human DEAH-helicase DHX15 in complex with the NKRF G-patch bound to ADP 2YBR ; 2.55 ; Crystal structure of the human derived single chain antibody fragment (scFv) 9004G in complex with Cn2 toxin from the scorpion Centruroides noxius Hoffmann 2YC1 ; 1.9 ; Crystal structure of the human derived single chain antibody fragment (scFv) 9004G in complex with Cn2 toxin from the scorpion Centruroides noxius Hoffmann 5NHG ; 2.27 ; Crystal structure of the human dihydrolipoamide dehydrogenase 6I4Q ; 1.75 ; Crystal structure of the human dihydrolipoamide dehydrogenase at 1.75 Angstrom resolution 8GW0 ; 1.64 ; Crystal structure of the human dihydroorotase domain in complex with malic acid 8GVZ ; 1.97 ; Crystal structure of the human dihydroorotase domain in complex with the anticancer drug 5-fluorouracil 3W9Y ; 2.2 ; Crystal structure of the human DLG1 guanylate kinase domain 1V5W ; 3.2 ; Crystal structure of the human Dmc1 protein 2ZJB ; 3.5 ; Crystal structure of the human Dmc1-M200V polymorphic variant 8QHR ; 1.65 ; Crystal structure of the human DNPH1 glycosyl-enzyme intermediate 2V76 ; 1.6 ; Crystal structure of the human dok1 PTB domain 5VDC ; 1.6 ; Crystal structure of the human DPF2 tandem PHD finger domain 3G36 ; 1.2 ; Crystal structure of the human DPY-30-like C-terminal domain 6D66 ; 2.226 ; Crystal structure of the human dual specificity 1 catalytic domain (C258S) as a maltose binding protein fusion in complex with the designed AR protein mbp3_16 6D67 ; 2.55 ; Crystal structure of the human dual specificity phosphatase 1 catalytic domain (C258S) as a maltose binding protein fusion (maltose bound form) in complex with the designed AR protein mbp3_16 6D65 ; 2.348 ; Crystal structure of the human dual specificity phosphatase 1 catalytic domain (C258S) as a maltose binding protein fusion in complex with the designed AR protein off7 2VX3 ; 2.4 ; Crystal structure of the human dual specificity tyrosine- phosphorylation-regulated kinase 1A 7O7K ; 1.82 ; Crystal structure of the human DYRK1A kinase domain bound to abemaciclib 3EVX ; 2.54 ; Crystal structure of the human E2-like ubiquitin-fold modifier conjugating enzyme 1 (Ufc1). Northeast Structural Genomics Consortium target HR41 1YIB ; 1.8 ; Crystal Structure of the Human EB1 C-terminal Dimerization Domain 1YIG ; 2.0 ; Crystal Structure of the Human EB1 C-terminal Dimerization Domain 5F4Q ; 1.8 ; Crystal structure of the human egg surface protein Juno 5ZC9 ; 2.0 ; Crystal structure of the human eIF4A1-ATP analog-RocA-polypurine RNA complex 3U7X ; 2.1 ; Crystal structure of the human eIF4E-4EBP1 peptide complex without cap 5T46 ; 1.53 ; Crystal structure of the human eIF4E-eIF4G complex 3SE6 ; 3.08 ; Crystal structure of the human Endoplasmic Reticulum Aminopeptidase 2 4JBS ; 2.789 ; Crystal structure of the human Endoplasmic Reticulum Aminopeptidase 2 in complex with PHOSPHINIC PSEUDOTRIPEPTIDE inhibitor. 4E36 ; 3.22 ; Crystal structure of the human Endoplasmic Reticulum Aminopeptidase 2 variant N392K 4BK4 ; 3.65 ; crystal structure of the human EphA4 ectodomain 4BKA ; 5.3 ; crystal structure of the human EphA4 ectodomain in complex with human ephrin A5 4BK5 ; 4.0 ; crystal structure of the human EphA4 ectodomain in complex with human ephrin A5 (amine-methylated sample) 4BKF ; 4.65 ; crystal structure of the human EphA4 ectodomain in complex with human ephrinB3 3FL7 ; 2.5 ; Crystal structure of the human ephrin A2 ectodomain 3MBW ; 2.81 ; Crystal structure of the human ephrin A2 LBD and CRD domains in complex with ephrin A1 3CZU ; 2.65 ; Crystal structure of the human ephrin A2- ephrin A1 complex 2A1U ; 2.11 ; Crystal structure of the human ETF E165betaA mutant 5EWI ; 1.5996 ; Crystal Structure of the Human Fab VRC38.01, an HIV-1 V1V2-Directed Neutralizing Antibody Isolated from Donor N90 5VGJ ; 3.456 ; Crystal Structure of the Human Fab VRC38.01, an HIV-1 V1V2-Directed Neutralizing Antibody Isolated from Donor N90, bound to a scaffolded WITO V1V2 domain 4XZU ; 2.61 ; Crystal Structure of the Human Factor VIII C2 Domain in Complex with Murine 3E6 Inhibitory Antibody 4IE4 ; 2.5048 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with 5-carboxy-8-hydroxyquinoline (IOX1) 4QHO ; 2.37 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with CCO10 4IE7 ; 2.6004 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with citrate and rhein (RHN) 4IDZ ; 2.46 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with N-oxalylglycine (NOG) 4IE6 ; 2.5036 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 4IE5 ; 1.95 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with N-[(3-hydroxypyridin-2-yl)carbonyl]glycine (MD6) 4IE0 ; 2.53 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with pyridine-2,4-dicarboxylate (2,4-PDCA) 7E8Z ; 2.55 ; Crystal structure of the human fat mass and obesity associated protein (FTO) in complex with SS81 3TJM ; 1.48 ; Crystal Structure of the Human Fatty Acid Synthase Thioesterase Domain with an Activate Site-Specific Polyunsaturated Fatty Acyl Adduct 3D8D ; 2.2 ; Crystal structure of the human Fe65-PTB1 domain 3D8E ; 2.8 ; Crystal structure of the human Fe65-PTB1 domain (trigonal crystal form) 3D8F ; 2.7 ; Crystal structure of the human Fe65-PTB1 domain with bound phosphate (trigonal crystal form) 1UL1 ; 2.9 ; Crystal structure of the human FEN1-PCNA complex 2J3S ; 2.5 ; Crystal structure of the human filamin A Ig domains 19 to 21 4P3W ; 2.0 ; Crystal structure of the human filamin A Ig-like domains 20-21 in complex with migfilin peptide 4M9P ; 1.72 ; Crystal structure of the human filamin A Ig-like domains 3-5 5DCP ; 2.49 ; Crystal structure of the human filamin B Ig-like domains 16-17 6LW5 ; 2.8 ; Crystal structure of the human formyl peptide receptor 2 in complex with WKYMVm 7YZE ; 1.99 ; Crystal structure of the human FoxA2 bound to the TGTTTACT site (forkhead motif GTAAACA) 7YZF ; 2.18 ; Crystal structure of the human FoxA2 bound to the TGTTTATT site (forkhead motif ATAAACA) 7YZB ; 1.47 ; Crystal structure of the human FoxH1 bound to the TGTGGATT site 6NCE ; 2.598 ; Crystal structure of the human FOXN3 DNA binding domain in complex with a forkhead DNA sequence 6NCM ; 2.704 ; Crystal structure of the human FOXN3 DNA binding domain in complex with a forkhead-like (FHL) DNA sequence 2UZK ; 2.7 ; Crystal structure of the human FOXO3a-DBD bound to DNA 6XAT ; 2.2 ; Crystal structure of the human FoxP4 DNA binding Domain 6TKV ; 1.95 ; Crystal structure of the human FUT8 in complex with GDP and a biantennary complex N-glycan 3UA6 ; 1.85 ; Crystal Structure of the Human Fyn SH3 domain 3UA7 ; 1.5 ; Crystal Structure of the Human Fyn SH3 domain in complex with a peptide from the Hepatitis C virus NS5A-protein 4EIK ; 1.6 ; Crystal Structure of the Human Fyn SH3 domain in complex with the synthetic peptide VSL12 3H0F ; 2.61 ; Crystal structure of the human Fyn SH3 R96W mutant 1KJR ; 1.55 ; Crystal Structure of the human galectin-3 CRD in complex with a 3'-derivative of N-Acetyllactosamine 4YM1 ; 2.0 ; Crystal structure of the human galectin-4 C-terminal carbohydrate recognition domain in complex with 2'-fucosyllactose 4YLZ ; 2.1 ; Crystal structure of the human galectin-4 C-terminal carbohydrate recognition domain in complex with lacto-N-neotetraose (LNnT) 4YM0 ; 2.3 ; Crystal structure of the human galectin-4 C-terminal carbohydrate recognition domain in complex with lacto-N-tetraose (LNT) 4YM3 ; 1.89 ; Crystal structure of the human galectin-4 C-terminal carbohydrate recognition domain in complex with lactose 4YM2 ; 2.1 ; Crystal structure of the human galectin-4 C-terminal carbohydrate recognition domain in complex with lactose-3'-sulfate 5DUX ; 1.85 ; Crystal structure of the human galectin-4 N-terminal carbohydrate recognition domain in complex with 2'-fucosyllactose 5DUU ; 2.0 ; Crystal structure of the human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol 5DUV ; 1.9 ; Crystal structure of the human galectin-4 N-terminal carbohydrate recognition domain in complex with lactose 5DUW ; 1.7 ; Crystal structure of the human galectin-4 N-terminal carbohydrate recognition domain in complex with lactose-3'-sulfate 6H0B ; 1.8 ; Crystal structure of the human GalNAc-T4 in complex with UDP, manganese and the diglycopeptide 6. 6AO4 ; 2.901 ; Crystal structure of the human gasdermin D C-terminal domain 6J3P ; 1.598 ; Crystal structure of the human GCN5 bromodomain in complex with compound (R,R)-36n 2D9Q ; 2.8 ; Crystal Structure of the Human GCSF-Receptor Signaling Complex 7Q6J ; 2.2 ; Crystal structure of the human GDAP1 CMT2 mutant-H123R 7Q6K ; 3.41 ; Crystal structure of the human GDAP1 CMT2 mutant-R120W 1NAF ; 2.8 ; Crystal structure of the human GGA1 GAT domain 1OXZ ; 2.8 ; Crystal Structure of the Human GGA1 GAT domain 4HJ0 ; 3.0 ; Crystal structure of the human GIPr ECD in complex with Gipg013 Fab at 3-A resolution 6A9P ; 2.51 ; Crystal structure of the human glial fibrillary acidic protein 1B domain 5EE7 ; 2.5 ; Crystal structure of the human glucagon receptor (GCGR) in complex with the antagonist MK-0893 4PYP ; 3.166 ; Crystal structure of the human glucose transporter GLUT1 6G2U ; 2.93429 ; Crystal structure of the human glutamate dehydrogenase 2 (hGDH2) 3FVK ; 1.5 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with 8-deoxy-neodysiherbaine A in space group P1 3FVO ; 1.5 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with 8-epi-neodysiherbaine A in space group P1 3FVN ; 1.5 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with 9-deoxy-neodysiherbaine A in space group P1 3FV1 ; 1.5 ; Crystal Structure of the human glutamate receptor, GluR5, ligand-binding core in complex with dysiherbaine in space group P1 3FUZ ; 1.65 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with L-glutamate in space group P1 3FVG ; 1.5 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with MSVIII-19 in space group P1 3FV2 ; 1.5 ; Crystal structure of the human glutamate receptor, GluR5, ligand-binding core in complex with neodysiherbaine A in space group P1 2ZEL ; 1.97 ; Crystal structure of the human glutaminyl cyclase mutant D248A at 1.97 angstrom resolution 2ZEM ; 2.18 ; Crystal structure of the human glutaminyl cyclase mutant D248Q at 2.18 angstrom resolution 2ZEN ; 1.78 ; Crystal structure of the human glutaminyl cyclase mutant D305A at 1.78 angstrom resolution 2ZEO ; 1.66 ; Crystal structure of the human glutaminyl cyclase mutant D305E at 1.66 angstrom resolution 2ZEF ; 1.67 ; Crystal structure of the human glutaminyl cyclase mutant E201D at 1.67 angstrom resolution 2ZEG ; 2.08 ; Crystal structure of the human glutaminyl cyclase mutant E201L at 2.08 angstrom resolution 2ZEH ; 1.8 ; Crystal structure of the human glutaminyl cyclase mutant E201Q at 1.8 angstrom resolution 2ZEP ; 2.1 ; Crystal structure of the human glutaminyl cyclase mutant H319L at 2.1 angstrom resolution 2ZED ; 1.7 ; Crystal structure of the human glutaminyl cyclase mutant S160A at 1.7 angstrom resolution 2ZEE ; 1.99 ; Crystal structure of the human glutaminyl cyclase mutant S160G at 1.99 angstrom resolution 2WUL ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN GLUTAREDOXIN 5 WITH BOUND GLUTATHIONE IN AN FES CLUSTER 3ZW5 ; 1.6 ; Crystal structure of the human Glyoxalase domain-containing protein 5 3KM6 ; 2.1 ; Crystal Structure of the Human GST Pi C47S/Y108V Double Mutant in Complex with the Ethacrynic Acid-Glutathione Conjugate 3KMO ; 2.6 ; Crystal Structure of the Human GST Pi C47S/Y108V Double Mutant in Complex with the Ethacrynic Acid-Glutathione Conjugate (Grown in the Absence of the Reducing Agent DTT) 4HBN ; 2.6 ; Crystal structure of the human HCN4 channel C-terminus carrying the S672R mutation 4G93 ; 4.2 ; CRYSTAL STRUCTURE OF THE HUMAN HEPATITIS B VIRUS T = 4 CAPSID, ADYW STRAIN, in COMPLEX WITH THE PHENYLPROPENAMIDE ASSEMBLY ACCELERATOR AT-130 1F2Q ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN HIGH-AFFINITY IGE RECEPTOR 2WFT ; 2.8 ; Crystal structure of the human HIP ectodomain 7O7I ; 2.5 ; Crystal structure of the human HIPK3 kinase domain 7O7J ; 2.81 ; Crystal structure of the human HIPK3 kinase domain bound to abemaciclib 5W6M ; 3.696 ; Crystal structure of the human histidyl-tRNA synthetase mutant D175E 3CI9 ; 1.8 ; Crystal Structure of the human HSBP1 7NDX ; 2.541 ; Crystal structure of the human HSP40 DNAJB1-CTDs in complex with a peptide of NudC 2E8A ; 1.77 ; Crystal structure of the human Hsp70 ATPase domain in complex with AMP-PNP 2E88 ; 1.8 ; Crystal structure of the human Hsp70 ATPase domain in the apo form 4HY6 ; 1.649 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ1 4LWE ; 1.5 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ2 4LWF ; 1.75 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ3 4LWG ; 1.599 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ4 4LWH ; 1.7 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ5 5XRB ; 1.65 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ5 4LWI ; 1.7 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ6 5CF0 ; 1.8 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FJ6 5XRD ; 1.3 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor FS7 5XRE ; 1.497 ; Crystal Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor JX1 1EFH ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN HYDROXYSTEROID SULFOTRANSFERASE IN THE PRESENCE OF PAP 8OJS ; 2.75 ; Crystal structure of the human IgD Fab - structure Fab1 8OJT ; 1.55 ; Crystal structure of the human IgD Fab - structure Fab2 8OJU ; 1.45 ; Crystal structure of the human IgD Fab - structure Fab3 8OJV ; 2.1 ; Crystal structure of the human IgD Fab - structure Fab4 5LGK ; 3.5 ; Crystal structure of the human IgE-Fc bound to its B cell receptor derCD23 4EZM ; 3.1 ; Crystal structure of the human IgE-Fc(epsilon)3-4 bound to its B cell receptor derCD23 1H3X ; 2.44 ; CRYSTAL STRUCTURE OF THE HUMAN IGG1 FC-FRAGMENT,GLYCOFORM (G0F)2 1H3V ; 3.1 ; CRYSTAL STRUCTURE OF THE HUMAN IGG1 FC-FRAGMENT,GLYCOFORM (G2F)2,SG P212121 1H3U ; 2.4 ; CRYSTAL STRUCTURE OF THE HUMAN IGG1 FC-FRAGMENT,GLYCOFORM (M3N2F)2 1H3T ; 2.4 ; Crystal structure of the human igg1 fc-fragment,glycoform (mn2f)2 6HGA ; 2.6 ; Crystal Structure of the human IL-17RC D2-D3-D4 domains in complex with an anti-APP tag Fab 6HG4 ; 3.32 ; Crystal Structure of the human IL-17RC ECD in complex with human IL-17F 6HG9 ; 3.62 ; Crystal Structure of the human IL-17RC ECD in complex with human IL-17F, Crystal form II 6VHI ; 2.46 ; Crystal structure of the human ILRUN Fw domain 2AXN ; 2.1 ; Crystal structure of the human inducible form 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 6SN1 ; 2.54 ; Crystal structure of the human INTS13-INTS14 complex 2WJW ; 1.8 ; Crystal structure of the human ionotropic glutamate receptor GluR2 ATD region at 1.8 A resolution 2WJX ; 4.1 ; Crystal structure of the human ionotropic glutamate receptor GluR2 ATD region at 4.1 A resolution 2XXZ ; 1.8 ; Crystal structure of the human JMJD3 jumonji domain 8A46 ; 1.323 ; Crystal structure of the human Kelch domain of Keap1 in complex with compound S217879 2GRY ; 2.35 ; Crystal structure of the human KIF2 motor domain in complex with ADP 3NWN ; 2.0 ; Crystal structure of the human KIF9 motor domain in complex with ADP 1B6U ; 3.0 ; CRYSTAL STRUCTURE OF THE HUMAN KILLER CELL INHIBITORY RECEPTOR (KIR2DL3) SPECIFIC FOR HLA-CW3 RELATED ALLELES 3P23 ; 2.7 ; Crystal structure of the Human kinase and RNase domains in complex with ADP 5LSK ; 3.502 ; CRYSTAL STRUCTURE OF THE HUMAN KINETOCHORE MIS12-CENP-C COMPLEX 5LSJ ; 3.25 ; CRYSTAL STRUCTURE OF THE HUMAN KINETOCHORE MIS12-CENP-C delta-HEAD2 COMPLEX 6EQT ; 2.735 ; CRYSTAL STRUCTURE OF THE HUMAN KINETOCHORE PROTEIN CENP-N 4AP2 ; 2.8 ; Crystal structure of the human KLHL11-Cul3 complex at 2.8A resolution 4APF ; 3.1 ; Crystal structure of the human KLHL11-Cul3 complex at 3.1A resolution 4CHB ; 1.56 ; Crystal structure of the human KLHL2 Kelch domain in complex with a WNK4 peptide 5NKP ; 2.8 ; Crystal structure of the human KLHL3 Kelch domain in complex with a WNK3 peptide 4CH9 ; 1.84 ; Crystal structure of the human KLHL3 Kelch domain in complex with a WNK4 peptide 4O0D ; 1.95 ; Crystal structure of the human L-asparaginase protein T168S mutant 4O0E ; 1.71 ; Crystal structure of the human L-asparaginase protein T186V mutant 4O0F ; 1.92 ; Crystal structure of the human L-asparaginase protein T219A mutant 4O0G ; 2.1 ; Crystal structure of the human L-asparaginase protein T219V mutant 3BCH ; 2.15 ; Crystal Structure of the Human Laminin Receptor Precursor 7Z3Q ; 3.617 ; Crystal structure of the human leptin:LepR-CRH2 encounter complex to 3.6 A resolution. 3KGR ; 1.8 ; Crystal structure of the human leukocyte-associated Ig-like receptor-1 (LAIR-1) 7K15 ; 2.88 ; Crystal structure of the Human Leukotriene B4 Receptor 1 in Complex with Selective Antagonist MK-D-046 3S95 ; 1.65 ; Crystal structure of the human LIMK1 kinase domain in complex with staurosporine 4TPT ; 2.6 ; Crystal Structure of the Human LIMK2 Kinase Domain In Complex With a Non-ATP Competitive Inhibitor 4A4I ; 1.95 ; Crystal structure of the human Lin28b cold shock domain 2XST ; 1.63 ; Crystal Structure of the Human Lipocalin 15 2WWP ; 2.0 ; Crystal structure of the human lipocalin-type prostaglandin D synthase 1UPV ; 2.1 ; Crystal structure of the human Liver X receptor beta ligand binding domain in complex with a synthetic agonist 1UPW ; 2.4 ; Crystal structure of the human Liver X receptor beta ligand binding domain in complex with a synthetic agonist 6S6M ; 1.35 ; Crystal structure of the human LL37(17-29) antimicrobial peptide 7NPQ ; 1.5 ; Crystal structure of the human LL37(17-29) I24C mutant antimicrobial peptide 3H2X ; 2.2 ; Crystal Structure of The Human Lymphoid Tyrosine Phosphatase Catalytic Domain 6NMW ; 1.199 ; Crystal structure of the human Lyn SH3 domain 4AKM ; 2.687 ; Crystal structure of the human lysosome-associated membrane protein LAMP-3 (aka DC-LAMP) 5LXF ; 2.0 ; Crystal structure of the human Macrophage Colony Stimulating Factor M- CSF_C31S variant 2WA0 ; 2.3 ; Crystal structure of the human MAGEA4 1SZB ; 2.5 ; Crystal structure of the human MBL-associated protein 19 (MAp19) 3UMZ ; 1.65 ; Crystal Structure of the human MDC1 FHA Domain 3UNM ; 1.8 ; Crystal Structure of The Human MDC1 FHA Domain 4LP7 ; 2.83 ; Crystal structure of the human metapneumovirus matrix protein 4BXT ; 3.13 ; Crystal structure of the human metapneumovirus phosphoprotein tetramerization domain 8H0N ; 1.8 ; Crystal structure of the human METTL1-WDR4 complex 6TTP ; 2.0 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 1/Adenosine (DHU_M3M_023) 7O0P ; 2.7 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 10 (ADO_AD_022) 7O0Q ; 2.49 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 12 (ADO_AD_066) 7O2H ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 13 (ADO_AD_091) 7O0R ; 2.3 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 15 (ADO_AE_026) 7O27 ; 2.4 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 17 (ADO_AE_005) 7O28 ; 2.47 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 19 (ADO_AE_009) 6TTT ; 2.3 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 2 (ASI_M3M_140) 7O29 ; 2.75 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 20 (ADO_AD_044) 7O2E ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 21 (ADO_AD_089) 7O2F ; 2.1 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 22 (UZH2) 6TTV ; 2.14 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 3 (ASI_M3M_138) 6TTW ; 2.2 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 4 (ASI_M3M_047) 7O08 ; 2.0 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 5 (ADO_AB_075) 6TTX ; 2.0 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 5 (ASI_M3M_051) 7O09 ; 1.8 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 7 (ADO_AC_074) 7O0L ; 1.9 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 8 (ADO_AC_093) 6TU1 ; 2.31 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 8 (ASI_M3M_091) 7O0M ; 2.39 ; Crystal structure of the human METTL3-METTL14 complex bound to Compound 9 (ADO_AD_023) 5L6D ; 1.852 ; Crystal structure of the human METTL3-METTL14 complex bound to SAH 5L6E ; 1.901 ; Crystal structure of the human METTL3-METTL14 complex bound to SAM 6Y4G ; 1.9 ; Crystal structure of the human METTL3-METTL14 complex bound to Sinefungin 7NHG ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex with compound ASI_M3M_041 7NHJ ; 2.16 ; Crystal structure of the human METTL3-METTL14 complex with compound DHU_M3M_154 7O2X ; 2.8 ; Crystal structure of the human METTL3-METTL14 complex with compound T180 7ACD ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex with compound T30 (UZH1a) 7NHH ; 2.1 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ002 7NHI ; 1.85 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ004 7NHV ; 1.91 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ016 7OED ; 2.0 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ019a 7OEE ; 2.7 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ019b 7NI7 ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ031 7OEF ; 2.03 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ038 7NI8 ; 2.2 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ040a 7OEG ; 2.79 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ040b 7NI9 ; 2.2 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ058 7NIA ; 2.3 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ059a 7OEH ; 2.01 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ059b 7NID ; 2.3 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ078 7OEI ; 2.48 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ083 7OEJ ; 2.3 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ090 7OEK ; 1.9 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ091 7OQL ; 2.5 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ094 7OEL ; 1.86 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ097 7OQO ; 3.35 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ111 7OQP ; 2.0 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ113 7OEM ; 2.2 ; Crystal structure of the human METTL3-METTL14 complex with compound UOZ120 8PW9 ; 2.3 ; Crystal structure of the human METTL3-METTL14 in complex with a bisubstrate analogue (BA1) 8PW8 ; 2.3 ; Crystal structure of the human METTL3-METTL14 in complex with a bisubstrate analogue (BA2) 8PWA ; 2.1 ; Crystal structure of the human METTL3-METTL14 in complex with a bisubstrate analogue (BA4) 8PWB ; 2.5 ; Crystal structure of the human METTL3-METTL14 in complex with a bisubstrate analogue (BA6) 7ZEJ ; 1.79 ; Crystal structure of the human MGC45594 gene product in complex with celecoxib. 2WEK ; 1.9 ; Crystal structure of the human MGC45594 gene product in complex with diclofenac 2X7H ; 1.6 ; Crystal structure of the human MGC45594 gene product in complex with fenoprofen 2X1H ; 1.75 ; Crystal structure of the human MGC45594 gene product in complex with raloxifene 1EXU ; 2.7 ; CRYSTAL STRUCTURE OF THE HUMAN MHC-RELATED FC RECEPTOR 2ABI ; 2.33 ; Crystal structure of the human mineralocorticoid receptor ligand-binding domain bound to deoxycorticosterone 1Y9R ; 1.96 ; Crystal structure of the human mineralocorticoid receptor ligand-binding domain bound to deoxycorticosterone and harboring the S810L mutation responsible for a severe form of hypertension 1YA3 ; 2.34 ; Crystal structure of the human mineralocorticoid receptor ligand-binding domain bound to progesterone and harboring the S810L mutation responsible for a severe form of hypertension 6D71 ; 1.71808 ; Crystal Structure of the Human Miro1 N-terminal GTPase bound to GTP 1U5B ; 1.83 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1X7W ; 1.73 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1X7X ; 2.1 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1X7Y ; 1.57 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1X7Z ; 1.72 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1X80 ; 2.0 ; Crystal structure of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 4PJ1 ; 3.15 ; Crystal structure of the human mitochondrial chaperonin symmetrical 'football' complex 5WGB ; 2.75 ; Crystal Structure of the Human mitochondrial Cysteine Desulfurase in complex with ISD11 and E. coli ACP1 protein at 2.75A 5WKP ; 3.15 ; Crystal Structure of the Human mitochondrial Cysteine Desulfurase in complex with ISD11 and Iron-Sulfur Cluster Scaffold Protein ISCU1, and E. coli ACP1 protein at 3.15A 5WLW ; 3.317 ; Crystal Structure of the Human Mitochondrial Cysteine Desulfurase with active Cysteine Loop within ISCU1 active site, coordinating Zn ion. Complexed with human ISD11 and E. coli ACP1 at 3.3A. 6I3Y ; 2.98 ; Crystal structure of the human mitochondrial PRELID1K58V-TRIAP1 complex with PS 7TZB ; 2.95 ; Crystal structure of the human mitochondrial seryl-tRNA synthetase (mt SerRS) bound with a seryl-adenylate analogue 3MBL ; 2.6 ; Crystal Structure of the human mitogen-activated protein kinase kinase 1 (MEK 1) in complex with ligand and MgADP 3PP1 ; 2.7 ; Crystal Structure of the Human Mitogen-activated protein kinase kinase 1 (MEK 1) in complex with ligand and MgATP 4M67 ; 1.9 ; Crystal structure of the human MLKL kinase-like domain 4MWI ; 1.7 ; Crystal structure of the human MLKL pseudokinase domain 6O5Z ; 2.285 ; Crystal Structure of the human MLKL pseudokinase domain bound to compound 2 6BWK ; 2.79 ; Crystal structure of the human MLKL pseudokinase domain T357E/S358E mutant 4KBO ; 2.8 ; Crystal structure of the human Mortalin (GRP75) ATPase domain in the apo form 4OH8 ; 2.281 ; Crystal Structure of the human MST1-RASSF5 SARAH heterodimer 4OH9 ; 1.699 ; Crystal Structure of the human MST2 SARAH homodimer 4FZV ; 1.9996 ; Crystal structure of the human MTERF4:NSUN4:SAM ternary complex 1Q8M ; 2.6 ; Crystal structure of the human myeloid cell activating receptor TREM-1 6T3O ; 1.8 ; Crystal structure of the human myomesin domain 10 4XWH ; 2.32 ; Crystal structure of the human N-acetyl-alpha-glucosaminidase 3GA1 ; 2.1 ; Crystal Structure of the Human Nac1 POZ Domain 1M4K ; 2.3 ; Crystal structure of the human natural killer cell activator receptor KIR2DS2 (CD158j) 1IM9 ; 2.8 ; Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1 bound to its MHC ligand HLA-Cw4 7OBP ; 1.8 ; Crystal structure of the human NCOA7-AS TLDc domain 8G0P ; 2.0 ; Crystal structure of the human Ndc80:Nuf2 loop region 6POL ; 1.8 ; Crystal structure of the human NELL1 EGF1-3-Robo3 FN1 complex 5OJK ; 2.55 ; Crystal structure of the human neuroligin 1 cholinesterase domain containing spliced sequence B (SSB) (NL1(-A+B)) 6YPE ; 1.45 ; Crystal structure of the human neuronal pentraxin 1 (NP1) pentraxin (PTX) domain. 5UVG ; 1.849 ; Crystal structure of the human neutral sphingomyelinase 2 (nSMase2) catalytic domain with insertion deleted and calcium bound 7LSE ; 2.35 ; Crystal structure of the human neutralizing antibody Fab fragment T025 bound to TBEV EDIII (Far Eastern Subtype) 7LSG ; 1.86 ; Crystal structure of the human neutralizing antibody Fab fragment T025 bound to TBEV EDIII (Siberian Subtype) 7LSF ; 2.24 ; Crystal structure of the human neutralizing antibody Fab fragment T025 bound to TBEV EDIII (Western Subtype) 6J20 ; 2.7 ; Crystal structure of the human NK1 substance P receptor 6J21 ; 3.2 ; Crystal structure of the human NK1 substance P receptor 6E59 ; 3.4 ; Crystal structure of the human NK1 tachykinin receptor 7BSO ; 2.08 ; Crystal structure of the human NLRP9 pyrin domain 1YYH ; 1.901 ; Crystal structure of the human Notch 1 ankyrin domain 3L95 ; 2.19 ; Crystal structure of the human Notch1 Negative Regulatory Region (NRR) bound to the fab fragment of an antagonist antibody 3CON ; 1.649 ; Crystal structure of the human NRAS GTPase bound with GDP 4AW6 ; 3.4 ; Crystal structure of the human nuclear membrane zinc metalloprotease ZMPSTE24 (FACE1) 2YPT ; 3.8 ; Crystal structure of the human nuclear membrane zinc metalloprotease ZMPSTE24 mutant (E336A) in complex with a synthetic CSIM tetrapeptide from the C-terminus of prelamin A 8PYW ; 1.553 ; Crystal structure of the human Nucleoside-diphosphate kinase B domain bound to compound diphosphate form of AT-9052-Sp. 5Y0C ; 2.087 ; Crystal Structure of the human nucleosome at 2.09 angstrom resolution 4YM5 ; 4.005 ; Crystal structure of the human nucleosome containing 6-4PP (inside) 4YM6 ; 3.514 ; Crystal structure of the human nucleosome containing 6-4PP (outside) 6JOU ; 2.17 ; Crystal structure of the human nucleosome containing H2A.Z.1 S42R 5Y0D ; 1.99 ; Crystal Structure of the human nucleosome containing the H2B E76K mutant 6JR0 ; 2.5 ; Crystal structure of the human nucleosome phased with 12 selenium atoms 6JR1 ; 2.4 ; Crystal structure of the human nucleosome phased with 16 selenium atoms 6X7V ; 2.3 ; Crystal Structure of the Human Nudix Hydrolase Nudt16 6X7U ; 2.7 ; Crystal Structure of the Human Nudix Hydrolase Nudt16 in complex with FAD 4JQ5 ; 2.195 ; Crystal structure of the human Nup49CCS2+3* coiled-coil segment 4JO9 ; 2.499 ; Crystal structure of the human Nup49CCS2+3* Nup57CCS3* complex 1:2 stoichiometry 4JO7 ; 1.752 ; Crystal structure of the human Nup49CCS2+3* Nup57CCS3* complex with 2:2 stoichiometry 4JNV ; 1.85 ; Crystal structure of the human Nup57CCS3* coiled-coil segment, space group C2 4JNU ; 1.445 ; Crystal structure of the human Nup57CCS3* coiled-coil segment, space group P21 3V3E ; 2.06 ; Crystal Structure of the Human Nur77 Ligand-binding Domain 6S4M ; 2.4 ; Crystal structure of the human organic anion transporter MFSD10 (TETRAN) 4S0V ; 2.5 ; Crystal structure of the human OX2 orexin receptor bound to the insomnia drug Suvorexant 7XRR ; 2.89 ; Crystal structure of the human OX2R bound to the insomnia drug lemborexant. 6TPK ; 3.2 ; Crystal structure of the human oxytocin receptor 2BVA ; 2.3 ; Crystal structure of the human P21-activated kinase 4 2J0I ; 1.6 ; CRYSTAL STRUCTURE OF THE HUMAN P21-ACTIVATED KINASE 4 4APP ; 2.2 ; Crystal Structure of the Human p21-Activated Kinase 4 in Complex with (S)-N-(5-(3-benzyl-1-methylpiperazine-4-carbonyl)-6,6-dimethyl-1,4,5, 6-tetrahydropyrrolo(3,4-c)pyrazol-3-yl)-3-phenoxybenzamide 2CDZ ; 2.3 ; CRYSTAL STRUCTURE OF THE HUMAN P21-ACTIVATED KINASE 4 IN COMPLEX WITH CGP74514A 2X4Z ; 2.1 ; Crystal Structure of the Human p21-Activated Kinase 4 in Complex with PF-03758309 2F57 ; 1.8 ; Crystal Structure Of The Human P21-Activated Kinase 5 2C30 ; 1.6 ; Crystal Structure Of The Human P21-Activated Kinase 6 1UOL ; 1.9 ; Crystal structure of the human p53 core domain mutant M133L/V203A/N239Y/N268D at 1.9 A resolution. 8UQR ; 1.22 ; Crystal structure of the human p53 tetramerization domain 3ZY1 ; 2.15 ; Crystal structure of the human p63 tetramerization domain 2WQI ; 1.7 ; Crystal structure of the human p73 tetramerization domain 4AV1 ; 3.1 ; Crystal structure of the human PARP-1 DNA binding domain in complex with DNA 6PAX ; 2.5 ; CRYSTAL STRUCTURE OF THE HUMAN PAX-6 PAIRED DOMAIN-DNA COMPLEX REVEALS A GENERAL MODEL FOR PAX PROTEIN-DNA INTERACTIONS 6J3O ; 2.11 ; Crystal structure of the human PCAF bromodomain in complex with compound 12 8GDY ; 2.05 ; Crystal structure of the human PDI first domain with 9 mutations 3KIJ ; 1.8 ; Crystal structure of the human PDI-peroxidase 2HXP ; 1.83 ; Crystal Structure of the human phosphatase (DUSP9) 2YY2 ; 2.8 ; Crystal structure of the human Phosphodiesterase 9A catalytic domain complexed with IBMX 8A5W ; 2.78 ; Crystal structure of the human phosphoserine aminotransferase (PSAT) in complex with O-phosphoserine 8A5V ; 2.46 ; Crystal structure of the human phosposerine aminotransferase (PSAT) 2BZH ; 1.9 ; CRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH A RUTHENIUM ORGANOMETALLIC LIGAND RU1 2BZI ; 1.9 ; CRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH A RUTHENIUM ORGANOMETALLIC LIGAND RU2 2BZJ ; 2.05 ; CRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH A RUTHENIUM ORGANOMETALLIC LIGAND RU3 2BZK ; 2.45 ; CRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH AMPPNP AND PIMTIDE 3BWF ; 2.35 ; Crystal structure of the human Pim1 in complex with an osmium compound 1XWS ; 1.8 ; Crystal Structure of the human PIM1 kinase domain 2IWI ; 2.8 ; CRYSTAL STRUCTURE OF THE HUMAN PIM2 IN COMPLEX WITH A RUTHENIUM ORGANOMETALLIC LIGAND RU1 5ZKQ ; 2.9 ; Crystal structure of the human platelet-activating factor receptor in complex with ABT-491 5ZKP ; 2.81 ; Crystal structure of the human platelet-activating factor receptor in complex with SR 27417 2W3O ; 1.85 ; Crystal structure of the human PNKP FHA domain in complex with an XRCC1-derived phosphopeptide 5D4K ; 2.599 ; Crystal structure of the human polymeric Ig receptor (pIgR) ectodomain 1KKQ ; 3.0 ; Crystal structure of the human PPAR-alpha ligand-binding domain in complex with an antagonist GW6471 and a SMRT corepressor motif 4XLD ; 2.45 ; Crystal structure of the human PPARg-LBD/rosiglitazone complex obtained by dry co-crystallization and in situ diffraction 1M13 ; 2.15 ; Crystal Structure of the Human Pregane X Receptor Ligand Binding Domain in Complex with Hyperforin, a Constituent of St. John's Wort 2O9I ; 2.8 ; Crystal Structure of the Human Pregnane X Receptor LBD in complex with an SRC-1 coactivator peptide and T0901317 1I4M ; 2.0 ; Crystal structure of the human prion protein reveals a mechanism for oligomerization 4GQB ; 2.06 ; Crystal Structure of the human PRMT5:MEP50 Complex 6RLL ; 2.22 ; CRYSTAL STRUCTURE OF THE HUMAN PRMT5:MEP50 COMPLEX with JNJ44064146 6RLQ ; 2.53 ; CRYSTAL STRUCTURE OF THE HUMAN PRMT5:MEP50 COMPLEX with JNJ45031882 7BO7 ; 2.83 ; CRYSTAL STRUCTURE OF THE HUMAN PRMT5:MEP50 COMPLEX with JNJB44355437 3D90 ; 2.26 ; Crystal structure of the human progesterone receptor ligand-binding domain bound to levonorgestrel 7OBM ; 3.1 ; Crystal structure of the human Prolyl Endopeptidase-Like protein short form (residues 90-727) 6AK3 ; 2.9 ; Crystal structure of the human prostaglandin E receptor EP3 bound to prostaglandin E2 5YHL ; 4.2 ; Crystal structure of the human prostaglandin E receptor EP4 in complex with Fab and an antagonist Br-derivative 5YWY ; 3.2 ; Crystal structure of the human prostaglandin E receptor EP4 in complex with Fab and ONO-AE3-208 2BZL ; 1.65 ; CRYSTAL STRUCTURE OF THE HUMAN PROTEIN TYROSINE PHOSPHATASE N14 AT 1. 65 A RESOLUTION 6H8R ; 1.66 ; CRYSTAL STRUCTURE OF THE HUMAN PROTEIN TYROSINE PHOSPHATASE PTPN5 (STEP) IN COMPLEX WITH COMPOUND 2 2BIJ ; 2.05 ; Crystal structure of the human protein tyrosine phosphatase PTPN5 (STEP, striatum enriched enriched Phosphatase) 2BV5 ; 1.8 ; CRYSTAL STRUCTURE OF THE HUMAN PROTEIN TYROSINE PHOSPHATASE PTPN5 AT 1.8A RESOLUTION 2VPH ; 1.9 ; Crystal structure of the human protein tyrosine phosphatase, non- receptor type 4, PDZ domain 2A3K ; 2.55 ; Crystal Structure of the Human Protein Tyrosine Phosphatase, PTPN7 (HePTP, Hematopoietic Protein Tyrosine Phosphatase) 4IQY ; 1.55 ; Crystal structure of the human protein-proximal ADP-ribosyl-hydrolase MacroD2 8CCT ; 2.9 ; Crystal structure of the human PXR ligand-binding domain in complex with 2,2'-dichloro bisphenol A 8CH8 ; 2.15 ; Crystal structure of the human PXR ligand-binding domain in complex with liranaftate 8CF9 ; 2.0 ; Crystal structure of the human PXR ligand-binding domain in complex with sclareol 1NRL ; 2.0 ; Crystal Structure of the human PXR-LBD in complex with an SRC-1 coactivator peptide and SR12813 4NY9 ; 2.8 ; Crystal Structure Of the Human PXR-LBD In Complex With N-{(2R)-1-[(4S)-4-(4-chlorophenyl)-4-hydroxy-3,3-dimethylpiperidin-1-yl]-3-methyl-1-oxobutan-2-yl}-3-hydroxy-3-methylbutanamide 2XB1 ; 1.9 ; Crystal structure of the human Pygo2 PHD finger in complex with the B9L HD1 domain 8DL3 ; 2.26 ; Crystal structure of the human queuine salvage enzyme DUF2419, complexed with queuine 7UGK ; 1.78 ; Crystal structure of the human queuine salvage enzyme DUF2419, wild-type apo form 2C2H ; 1.85 ; CRYSTAL STRUCTURE OF THE HUMAN RAC3 IN COMPLEX WITH GDP 4AOW ; 2.45 ; Crystal structure of the human Rack1 protein at a resolution of 2.45 angstrom 1KN0 ; 2.85 ; Crystal Structure of the human Rad52 protein 3A1J ; 2.5 ; Crystal structure of the human Rad9-Hus1-Rad1 complex 3GGR ; 3.2 ; Crystal Structure of the Human Rad9-Hus1-Rad1 complex 6J8Y ; 2.4 ; Crystal structure of the human RAD9-HUS1-RAD1-RHINO complex 8WU8 ; 2.81 ; Crystal structure of the human RAD9-RAD1(F64A/M256A/F266A)-HUS1-RHINO(88-99) complex 3G65 ; 2.9 ; Crystal Structure of the Human Rad9-Rad1-Hus1 DNA Damage Checkpoint Complex 8GNN ; 2.119 ; Crystal structure of the human RAD9-RAD1-HUS1-RAD17 complex 4P2Y ; 2.3 ; Crystal structure of the human RAGE ectodomain (fragment VC1C2) in complex with mouse S100A6 4YBH ; 2.4 ; Crystal structure of the human RAGE ectodomain (VC1C2 fragment) in complex with human S100A6 4LP4 ; 2.4 ; Crystal structure of the human RAGE VC1 fragment in space group P62 5IQQ ; 2.52 ; Crystal structure of the human RBM7 RRM domain 2GJT ; 2.15 ; Crystal structure of the human receptor phosphatase PTPRO 2OOQ ; 1.8 ; Crystal Structure of the Human Receptor Phosphatase PTPRT 5LST ; 2.75 ; Crystal structure of the human RecQL4 helicase. 3CBQ ; 1.82 ; Crystal structure of the human REM2 GTPase with bound GDP 3GQQ ; 1.945 ; Crystal structure of the human retinal protein 4 (unc-119 homolog A). Northeast Structural Genomics Consortium target HR3066a 2BX6 ; 2.1 ; Crystal Structure of the human Retinitis Pigmentosa protein 2 (RP2) 2QS9 ; 1.72 ; Crystal structure of the human retinoblastoma-binding protein 9 (RBBP-9). NESG target HR2978 4CN7 ; 2.34 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to an idealized DR1 Response Element 4CN3 ; 2.35 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to the Human Gde1SpA Response Element 6FBR ; 2.1 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to the Human MEp DR1 Response Element, pH 4.2 6FBQ ; 1.6 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to the Human MEp DR1 Response Element, pH 7.0 4CN5 ; 2.0 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to the Human Nr1d1 Response Element 4CN2 ; 2.069 ; Crystal Structure of the Human Retinoid X Receptor DNA-Binding Domain Bound to the Human Ramp2 Response Element 4UHY ; 3.2 ; Crystal structure of the human RGMA-BMP2 complex 4UHZ ; 2.85 ; Crystal structure of the human RGMB-BMP2 complex, crystal form 1 4UI0 ; 2.8 ; Crystal structure of the human RGMB-BMP2 complex, crystal form 2 4UI1 ; 2.35 ; Crystal structure of the human RGMC-BMP2 complex 3HD6 ; 2.1 ; Crystal Structure of the Human Rhesus Glycoprotein RhCG 1FTN ; 2.1 ; CRYSTAL STRUCTURE OF THE HUMAN RHOA/GDP COMPLEX 2GCN ; 1.85 ; Crystal structure of the human RhoC-GDP complex 2GCO ; 1.4 ; Crystal structure of the human RhoC-GppNHp complex 2GCP ; 2.15 ; Crystal structure of the human RhoC-GSP complex 2WNT ; 2.4 ; Crystal Structure of the Human Ribosomal protein S6 kinase 2C46 ; 1.6 ; CRYSTAL STRUCTURE OF THE HUMAN RNA guanylyltransferase and 5'- phosphatase 5AYG ; 2.6 ; Crystal Structure of the Human ROR gamma Ligand Binding Domain With 3g 1S0X ; 2.2 ; Crystal structure of the human RORalpha ligand binding domain in complex with cholesterol sulfate at 2.2A 6GXZ ; 2.965 ; Crystal structure of the human RPAP3(TPR2)-PIH1D1(CS) complex 3SAF ; 2.5 ; Crystal structure of the human RRP6 catalytic domain with D313N mutation in the active site 3SAG ; 2.7 ; Crystal structure of the human RRP6 catalytic domain with D313N mutation in the active site 3SAH ; 2.65 ; Crystal structure of the human RRP6 catalytic domain with Y436A mutation in the catalytic site 1FBY ; 2.25 ; CRYSTAL STRUCTURE OF THE HUMAN RXR ALPHA LIGAND BINDING DOMAIN BOUND TO 9-CIS RETINOIC ACID 2ZXZ ; 3.0 ; Crystal structure of the human RXR alpha ligand binding domain bound to a synthetic agonist compound and a coactivator peptide 2ZY0 ; 2.9 ; Crystal structure of the human RXR alpha ligand binding domain bound to a synthetic agonist compound and a coactivator peptide 1MV9 ; 1.9 ; Crystal Structure of the human RXR alpha ligand binding domain bound to the eicosanoid DHA (Docosa Hexaenoic Acid) and a coactivator peptide 1MVC ; 1.9 ; Crystal structure of the human RXR alpha ligand binding domain bound to the synthetic agonist compound BMS 649 and a coactivator peptide 6XWH ; 2.1 ; Crystal Structure of the Human RXR DNA-Binding Domain Homodimer Bound to the Human Hoxb13 DR0 Response Element 6XWG ; 2.4 ; Crystal Structure of the Human RXR/RAR DNA-Binding Domain Heterodimer Bound to the Human RARb2 DR5 Response Element 6SW5 ; 2.35 ; Crystal structure of the human S-adenosylmethionine synthetase 1 (ligand-free form) 8SWA ; 1.999 ; Crystal structure of the human S-adenosylmethionine synthetase 1 in complex with SAM and PPNP 2OBV ; 2.05 ; Crystal structure of the human S-adenosylmethionine synthetase 1 in complex with the product 6MS1 ; 1.35 ; Crystal structure of the human Scribble PDZ1 domain bound to the PDZ-binding motif of APC 2NUP ; 2.8 ; Crystal Structure of the human Sec23a/24a heterodimer, complexed with the SNARE protein Sec22b 2NUT ; 2.3 ; Crystal Structure of the human Sec23a/24a heterodimer, complexed with the SNARE protein Sec22b 5AEK ; 3.0 ; Crystal structure of the human SENP2 C548S in complex with the human SUMO1 K48M F66W 3EAY ; 2.4 ; Crystal structure of the human SENP7 catalytic domain 2BUJ ; 2.6 ; Crystal structure of the human Serine-threonine Kinase 16 in complex with staurosporine 4L87 ; 2.897 ; Crystal structure of the human seryl-tRNA synthetase in complex with Ser-SA at 2.9 Angstrom resolution 5IFE ; 3.1 ; Crystal structure of the human SF3b core complex 1U6T ; 1.9 ; Crystal structure of the human SH3 binding glutamic-rich protein like 2F24 ; 1.76 ; Crystal Structure of the Human Sialidase Neu2 E111Q Mutant 2F25 ; 1.95 ; Crystal Structure of the Human Sialidase Neu2 E111Q Mutant in Complex with DANA Inhibitor 2F26 ; 1.58 ; Crystal Structure of the Human Sialidase Neu2 E111Q-Q112E Double Mutant 2F27 ; 2.15 ; Crystal Structure of the Human Sialidase Neu2 E111Q-Q112E Double Mutant in Complex with DANA Inhibitor 2F13 ; 2.26 ; Crystal Structure of the Human Sialidase Neu2 in Complex with 2',3'- dihydroxypropyl ether mimetic Inhibitor 2F12 ; 2.27 ; Crystal Structure of the Human Sialidase Neu2 in Complex with 3- hydroxypropyl ether mimetic Inhibitor 2F11 ; 2.57 ; Crystal Structure of the Human Sialidase Neu2 in Complex with isobutyl ether mimetic Inhibitor 2F10 ; 2.9 ; Crystal Structure of the Human Sialidase Neu2 in Complex with Peramivir inhibitor 2F0Z ; 2.8 ; Crystal Structure of the Human Sialidase Neu2 in Complex with Zanamivir inhibitor 2F28 ; 1.67 ; Crystal Structure of the Human Sialidase Neu2 Q116E Mutant 2F29 ; 2.921 ; Crystal Structure of the Human Sialidase Neu2 Q116E Mutant in Complex with DANA Inhibitor 1YWT ; 2.4 ; Crystal structure of the human sigma isoform of 14-3-3 in complex with a mode-1 phosphopeptide 4RJF ; 2.0072 ; Crystal structure of the human sliding clamp at 2.0 angstrom resolution 8FR5 ; 1.33 ; Crystal structure of the Human Smacovirus 1 Rep domain 2HHL ; 2.1 ; Crystal structure of the human small CTD phosphatase 3 isoform 1 2G3Y ; 2.4 ; Crystal structure of the human small GTPase GEM 3APM ; 2.5 ; Crystal structure of the human SNP PAD4 protein 7SR1 ; 2.4 ; Crystal structure of the human SNX25 regulator of G-protein signalling (RGS) domain 7SR2 ; 2.42 ; Crystal structure of the human SNX25 regulator of G-protein signalling (RGS) domain 5IV4 ; 1.79 ; Crystal structure of the human soluble adenylyl cyclase in complex with the allosteric inhibitor LRE1 5F4E ; 2.4 ; Crystal structure of the human sperm Izumo1 and egg Juno complex 5F4T ; 3.083 ; Crystal structure of the human sperm Izumo1 residues 22-254 5F4V ; 2.9 ; Crystal structure of the human sperm Izumo1 residues 22-268 7TA2 ; 2.25 ; Crystal structure of the human sperm-expressed surface protein SPACA6 2YLF ; 2.05 ; Crystal structure of the human Spir-1 KIND domain 2YLE ; 1.8 ; Crystal structure of the human Spir-1 KIND FSI domain in complex with the FSI peptide 7PJH ; 2.35 ; Crystal structure of the human spliceosomal maturation factor AAR2 bound to the RNAse H domain of PRPF8 4J8Z ; 2.42 ; Crystal Structure of the Human SPOP BTB Domain 4HS2 ; 1.53 ; Crystal Structure of the Human SPOP C-terminal Domain 3VJ8 ; 1.52 ; Crystal structure of the human squalene synthase 3VJ9 ; 1.52 ; Crystal structure of the human squalene synthase 3VJA ; 1.76 ; Crystal structure of the human squalene synthase 3VJB ; 2.05 ; Crystal structure of the human squalene synthase 3LEE ; 3.2 ; Crystal structure of the human squalene synthase complexed with BPH-652 3WEJ ; 2.0 ; Crystal structure of the human squalene synthase F288A mutant in complex with presqualene pyrophosphate 3WEK ; 1.85 ; Crystal structure of the human squalene synthase F288L mutant in complex with presqualene pyrophosphate 3WEF ; 2.35 ; Crystal structure of the human squalene synthase in complex with farnesyl thiopyrophosphate 3WEG ; 1.75 ; Crystal structure of the human squalene synthase in complex with farnesyl thiopyrophosphate and magnesium ion 3WEH ; 1.87 ; Crystal structure of the human squalene synthase in complex with presqualene pyrophosphate 3VJC ; 1.89 ; Crystal structure of the human squalene synthase in complex with zaragozic acid A 3WEI ; 1.79 ; Crystal structure of the human squalene synthase Y73A mutant in complex with presqualene pyrophosphate 3KTV ; 3.8 ; Crystal structure of the human SRP19/S-domain SRP RNA complex 5DO7 ; 3.93 ; Crystal Structure of the Human Sterol Transporter ABCG5/ABCG8 3O2S ; 2.5 ; Crystal structure of the human symplekin-Ssu72 complex 3O2Q ; 2.4 ; Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex 8F0L ; 1.81 ; Crystal Structure of the Human T cell Receptor CD3(EPSILON) N-Terminal Peptide Complexed with ADI-26906 FAB 1H3O ; 2.3 ; Crystal Structure of the Human TAF4-TAF12 (TAFII135-TAFII20) Complex 6F3T ; 2.5 ; Crystal structure of the human TAF5-TAF6-TAF9 complex 5JU5 ; 2.5 ; Crystal structure of the human Tankyrase 1 (TNKS) SAM domain (D1055R), crystal form 1 5JTI ; 2.9 ; Crystal structure of the human Tankyrase 1 (TNKS) SAM domain (D1055R), crystal form 2 5JRT ; 1.53 ; Crystal structure of the human Tankyrase 2 (TNKS2) SAM domain (DH902/924RE) 2Y1H ; 2.5 ; Crystal structure of the human TatD-domain protein 3 (TATDN3) 4HL4 ; 2.2 ; Crystal structure of the human TBC1D20 RabGAP domain 4JOI ; 2.05 ; Crystal structure of the human telomeric Stn1-Ten1 complex 5GPY ; 2.1 ; Crystal structure of the human TFIIE complex 1YDL ; 2.3 ; Crystal Structure of the Human TFIIH, Northeast Structural Genomics Target HR2045. 1KTZ ; 2.15 ; Crystal Structure of the Human TGF-beta Type II Receptor Extracellular Domain in Complex with TGF-beta3 6H42 ; 2.45 ; crystal structure of the human TGT catalytic subunit QTRT1 6H45 ; 2.4 ; crystal structure of the human TGT catalytic subunit QTRT1 in complex with queuine 3QFA ; 2.2 ; Crystal structure of the human thioredoxin reductase-thioredoxin complex 3QFB ; 2.6 ; Crystal structure of the human thioredoxin reductase-thioredoxin complex 3QDZ ; 2.8 ; Crystal structure of the human thrombin mutant D102N in complex with the extracellular fragment of human PAR4. 6IIV ; 3.0 ; Crystal structure of the human thromboxane A2 receptor bound to daltroban 6IIU ; 2.5 ; Crystal structure of the human thromboxane A2 receptor bound to ramatroban 6R2E ; 2.55 ; Crystal structure of the human thymidylate synthase (hTS) interface variant Q62R 6DHB ; 1.7 ; Crystal structure of the human TIM-3 with bound Calcium 5XYF ; 2.202 ; Crystal structure of the human TIN2-TPP1-TRF2 telomeric complex 6NIG ; 2.35 ; Crystal structure of the human TLR2-Diprovocim complex 2Z65 ; 2.7 ; Crystal structure of the human TLR4 TV3 hybrid-MD-2-Eritoran complex 3FXI ; 3.1 ; Crystal structure of the human TLR4-human MD-2-E.coli LPS Ra complex 4CGY ; 2.85 ; Crystal structure of the human topoisomerase III alpha-RMI1 complex 4CHT ; 3.25 ; Crystal structure of the human topoisomerase III alpha-RMI1 complex with bound calcium ion 7XV9 ; 1.599 ; Crystal structure of the Human TR4 DNA-Binding Domain 7XV8 ; 3.199 ; Crystal structure of the Human TR4 DNA-Binding Domain Homodimer Bound to DR1 Response Element 7XV6 ; 2.3 ; Crystal structure of the Human TR4 DNA-Binding Domain with C-terminal extension (DBD-CTE) Homodimer Bound to DR1 Response Element 7XVA ; 1.856 ; Crystal structure of the Human TR4 Ligand Binding Domain in complex with the JAZF1 corepressor fragment 2C62 ; 1.74 ; Crystal Structure of the Human Transcription Cofactor PC4 in Complex with Single-Stranded DNA 3H7H ; 1.55 ; Crystal structure of the human transcription elongation factor DSIF, hSpt4/hSpt5 (176-273) 2XZZ ; 2.3 ; Crystal structure of the human transglutaminase 1 beta-barrel domain 6FLN ; 3.6 ; Crystal structure of the human TRIM25 coiled-coil and PRYSPRY domains 6FLM ; 2.009 ; Crystal structure of the human TRIM25 PRYSPRY domain 7UW7 ; 1.17 ; Crystal structure of the Human TRIP12 WWE domain (isoform 2) in complex with ADP 8TRE ; 1.4 ; Crystal structure of the Human TRIP12 WWE domain (isoform 2) in complex with ATP 4DX1 ; 2.85 ; Crystal structure of the human TRPV4 ankyrin repeat domain 4DX2 ; 2.95 ; Crystal structure of the human TRPV4 ankyrin repeat domain 2PF5 ; 1.9 ; Crystal Structure of the Human TSG-6 Link Module 6N6O ; 2.6 ; Crystal structure of the human TTK in complex with an inhibitor 5YOY ; 2.727 ; Crystal structure of the human tumor necrosis factor in complex with golimumab Fv 3UM7 ; 3.31 ; Crystal structure of the human two pore domain K+ ion channel TRAAK (K2P4.1) 3UKM ; 3.4 ; Crystal structure of the human two pore domain potassium ion channel K2P1 (TWIK-1) 6RV2 ; 3.0 ; Crystal structure of the human two pore domain potassium ion channel TASK-1 (K2P3.1) in a closed conformation 6RV3 ; 2.9 ; Crystal structure of the human two pore domain potassium ion channel TASK-1 (K2P3.1) in a closed conformation with a bound inhibitor BAY 1000493 6RV4 ; 3.1 ; Crystal structure of the human two pore domain potassium ion channel TASK-1 (K2P3.1) in a closed conformation with a bound inhibitor BAY 2341237 4PO6 ; 1.99 ; Crystal structure of the human TYK2 FERM and SH2 domains with an IFNAR1 intracellular peptide 3B7O ; 1.6 ; Crystal structure of the human tyrosine phosphatase SHP2 (PTPN11) with an accessible active site 2H4V ; 1.55 ; Crystal Structure of the Human Tyrosine Receptor Phosphatase Gamma 2PBN ; 1.7 ; Crystal structure of the human tyrosine receptor phosphate gamma 2HY3 ; 2.6 ; Crystal structure of the human tyrosine receptor phosphate gamma in complex with vanadate 5THL ; 1.6 ; Crystal structure of the human tyrosyl-tRNA synthetase mutant G41R 3TGD ; 1.8 ; Crystal structure of the human ubiquitin-conjugating enzyme (E2) UbcH5b 5TDC ; 1.607 ; Crystal structure of the human UBR-box domain from UBR1 in complex with monomethylated arginine peptide. 5TDB ; 1.101 ; Crystal structure of the human UBR-box domain from UBR2 in complex with asymmetrically double methylated arginine peptide 1TEV ; 2.1 ; Crystal structure of the human UMP/CMP kinase in open conformation 4MEL ; 2.899 ; Crystal Structure of the human USP11 DUSP-UBL domains 6CNX ; 2.0 ; Crystal Structure of the Human vaccinia-related kinase 1 (VRK1) bound to an N-propynyl-N-isopentyl-dihydropteridin inhibitor 6BP0 ; 1.9 ; Crystal Structure of the Human vaccinia-related kinase 1 bound to (R)-2-phenylaminopteridinone inhibitor 5UKF ; 2.4 ; Crystal Structure of the Human Vaccinia-related Kinase 1 Bound to an Oxindole Inhibitor 6BRU ; 1.8 ; Crystal Structure of the Human vaccinia-related kinase bound to a (S)-2-phenylaminopteridinone inhibitor 6BU6 ; 1.8 ; Crystal Structure of the Human vaccinia-related kinase bound to a bis-difluorophenol-aminopyridine inhibitor 6DD4 ; 2.1 ; Crystal Structure of the Human vaccinia-related kinase bound to a N,N-dipropyl-dihydropteridine inhibitor 6CMM ; 2.1 ; Crystal Structure of the Human vaccinia-related kinase bound to a N,N-dipropynyl-dihydropteridine inhibitor 6NPN ; 2.2 ; Crystal Structure of the Human vaccinia-related kinase bound to a N,N-dipropynyl-dihydropteridine-3-hydroxyindazole inhibitor 6CSW ; 2.25 ; Crystal Structure of the Human vaccinia-related kinase bound to a N-methyl-N-propyl-dihydropteridine inhibitor 6CQH ; 2.15 ; Crystal Structure of the Human vaccinia-related kinase bound to a N-propynyl-N-ethyl-dihydropteridine inhibitor 6BTW ; 1.9 ; Crystal Structure of the Human vaccinia-related kinase bound to a phenyl-pteridinone inhibitor 6CFM ; 2.45 ; Crystal Structure of the Human vaccinia-related kinase bound to a propynyl-pteridinone inhibitor 5UVF ; 2.0 ; Crystal Structure of the Human vaccinia-related kinase bound to BI-D1870 3A78 ; 1.9 ; Crystal structure of the human VDR ligand binding domain bound to the natural metabolite 1alpha,25-dihydroxy-3-epi-vitamin D3 3A3Z ; 1.72 ; Crystal structure of the human VDR ligand binding domain bound to the synthetic agonist compound 2alpha-methyl-AMCR277A(C23S) 3A40 ; 1.45 ; Crystal structure of the human VDR ligand binding domain bound to the synthetic agonist compound 2alpha-methyl-AMCR277B(C23R) 7OBF ; 2.699 ; Crystal structure of the human VH antibody domain HEL4 3A2I ; 3.27 ; Crystal structure of the human vitamin D receptor (H305F) ligand binding domain complexed with TEI-9647 3A2J ; 2.7 ; Crystal structure of the human vitamin D receptor (H305F/H397F) ligand binding domain complexed with TEI-9647 5YSY ; 2.0 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with (1R,2R,3R)-5-[(E)-2-{(1R,3aS,7aR)-1-[(R)-6-hydroxy-6-methylheptan-2-yl]-7a-methyl-2,3,3a,6,7,7a-hexahydro-1H-inden-4-yl}vinyl]-2-(3-hydroxypropyl)cyclohex-4-ene-1,3-diol 5YT2 ; 2.0 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with (1R,2S,3R)-5-[(E)-2-{(1R,3aS,7aR)-1-[(R)-6-hydroxy-6-methylheptan-2-yl]-7a-methyl-2,3,3a,6,7,7a-hexahydro-1H-inden-4-yl}vinyl]-2-(3-hydroxypropyl)cyclohex-4-ene-1,3-diol 5GT4 ; 1.83 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with (1R,2S,3R,5Z,7E,14beta,17alpha)-2-cyanopropoxy-9,10-secocholesta-5,7,10-triene-1,3,25-triol 8IQT ; 1.745 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with (23R)-F-25(OH)D3 3WWR ; 3.18 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 1-((((1S,2R,6R,Z)-2,6-dihydroxy-4-((E)-2-((1R,3aS,7aR)-1-((R)-6-hydroxy-6-methylheptan-2-yl)-7a-methylhexahydro-1H-inden-4(2H)-ylidene)ethylidene)-3-methylenecyclohexyl)oxy)methyl)cyclopropanecarbonitrile 3AX8 ; 2.6 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 15alpha-methoxy-1alpha,25-dihydroxyvitamin D3 4ITF ; 2.84 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 1alpha,25-Dihydroxy-2alpha-[2-(1H-tetrazole-1-yl)ethyl]vitamin D3 4ITE ; 2.49 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 1alpha,25-Dihydroxy-2alpha-[2-(2H-tetrazol-2-yl)ethyl]vitamin D3 8IQN ; 1.639 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 24,24-F2-25(OH)D3 3VHW ; 2.43 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 4-MP 3X31 ; 2.11 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 7,8-cis-14-epi-1a,25-Dihydroxy-19-norvitamin D3 3X36 ; 1.93 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with 7,8-cis-1a,25-Dihydroxy-19-norvitamin D3 3AUQ ; 2.64 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with Yne-diene type analog of active 14-epi-2alpha-methyl-19-norvitamin D3 3AUR ; 2.21 ; Crystal structure of the human vitamin D receptor ligand binding domain complexed with Yne-diene type analog of active 14-epi-2beta-methyl-19-norvitamin D3 3HTU ; 2.0 ; Crystal structure of the human VPS25-VPS20 subcomplex 2DWR ; 2.5 ; Crystal structure of the human Wa rotavirus VP8* carbohydrate-recognising domain 3APN ; 2.7 ; Crystal structure of the human wild-type PAD4 protein 6FBK ; 1.743 ; Crystal structure of the human WNK2 CCT-like 1 domain in complex with a WNK1 RFXV peptide 6ELM ; 1.14 ; Crystal structure of the human WNK2 CCT1 domain 3RWR ; 3.943 ; Crystal structure of the human XRCC4-XLF complex 1P27 ; 2.0 ; Crystal Structure of the Human Y14/Magoh complex 6K6U ; 2.27 ; Crystal structure of the human YTHDC2 YTH domain 5MKW ; 2.0 ; Crystal structure of the human ZRANB3 HNH domain 1S3R ; 2.6 ; Crystal structure of the human-specific toxin intermedilysin 3QCT ; 2.1493 ; Crystal structure of the humanized apo LT3015 anti-lysophosphatidic acid antibody Fab fragment 3TV5 ; 2.8 ; Crystal Structure of the humanized carboxyltransferase domain of yeast Acetyl-coA caroxylase in complex with compound 1 3TZ3 ; 2.7 ; Crystal Structure of the humanized carboxyltransferase domain of yeast Acetyl-coA caroxylase in complex with compound 2 3TVU ; 2.4 ; Crystal Structure of the humanized carboxyltransferase domain of yeast Acetyl-coA caroxylase in complex with compound 3 3TVW ; 2.8 ; Crystal Structure of the humanized carboxyltransferase domain of yeast Acetyl-coA caroxylase in complex with compound 4 8GKK ; 1.75 ; Crystal Structure of the Humanized MUC16 Specific Antibody huAR9.6 8GKL ; 2.6 ; Crystal Structure of the Humanized MUC16 Specific Antibody huAR9.6 3AAZ ; 2.2 ; Crystal structure of the humanized recombinant Fab fragment of a murine; antibody 3I00 ; 2.3 ; Crystal Structure of the huntingtin interacting protein 1 coiled coil domain 3AWJ ; 2.2 ; Crystal structure of the Huperzia serrata polyketide synthase 1 complexed with CoA-SH 2VUI ; 2.9 ; Crystal structure of the HupR receiver domain in inhibitory phospho- state 1WPU ; 1.48 ; Crystal Structure of the HutP antitermination complex bound to a single stranded region of hut mRNA 3BOY ; 1.7 ; Crystal structure of the HutP antitermination complex bound to the HUT mRNA 4ELK ; 2.1 ; Crystal structure of the Hy19.3 type II NKT TCR 6QSG ; 1.15 ; Crystal structure of the hybrid bioinorganic complex of Pizza6S and Keggin (STA) 6QSH ; 2.5 ; Crystal structure of the hybrid bioinorganic complex of Pizza6S linked by the 1:2 Ce-substituted Keggin 6V9K ; 1.9 ; CRYSTAL STRUCTURE OF THE HYBRID C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FORMED BY HYBRIDIZING THE SCAFFOLD OF THE ESCHERICHIA COLI ENZYME WITH THE ACTIVE SITE LOOPS FROM THE THERMOANAEROBACTER TENGCONGENSIS ENZYME 6VBJ ; 2.0 ; CRYSTAL STRUCTURE OF THE HYBRID C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FORMED BY HYBRIDIZING THE SCAFFOLD OF THE THERMOANAEROBACTER TENGCONGENSIS ENZYME WITH THE ACTIVE SITE LOOPS FROM THE ESCHERICHIA COLI ENZYME 4V8O ; 3.8 ; Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3 2E85 ; 1.7 ; Crystal Structure of the Hydrogenase 3 Maturation protease 3D3R ; 1.85 ; Crystal structure of the hydrogenase assembly chaperone HypC/HupF family protein from Shewanella oneidensis MR-1 7KCT ; 2.02 ; Crystal Structure of the Hydrogenobacter thermophilus 2-Oxoglutarate Carboxylase (OGC) Biotin Carboxylase (BC) Domain Dimer in Complex with Adenosine 5'-Diphosphate Magnesium Salt (MgADP), Adenosine 5'-Diphosphate (ADP, and Bicarbonate Anion (Hydrogen Carbonate/HCO3-) 4TT8 ; 2.301 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (wild-type) complex with 10-formyl-5,8-dideazafolate 4R8V ; 2.197 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (wild-type) complex with formate 4QPD ; 2.1 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (wild-type) complex with tetrahydrofolate 4TS4 ; 1.75 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (wild-type) from zebrafish 4TTS ; 2.0 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (Y200A) complex with 10-formyl-5,8-dideazafolate 4QPC ; 1.902 ; Crystal structure of the hydrolase domain of 10-formyltetrahydrofolate dehydrogenase (Y200A) from zebrafish 2BW0 ; 1.7 ; Crystal Structure of the hydrolase domain of Human 10-Formyltetrahydrofolate 2 dehydrogenase 6IGU ; 2.11 ; Crystal structure of the hydrolytic antibody Fab 9C10 2FUG ; 3.3 ; Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus 3I9V ; 3.1 ; Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, oxidized, 2 mol/ASU 3IAS ; 3.15 ; Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, oxidized, 4 mol/ASU, re-refined to 3.15 angstrom resolution 3IAM ; 3.1 ; Crystal structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus, reduced, 2 mol/ASU, with bound NADH 6W1G ; 1.14 ; Crystal structure of the hydroxyglutarate synthase from Pseudomonas putida 6W1K ; 1.85 ; Crystal structure of the hydroxyglutarate synthase in complex with 2-oxoadipate from Oryza sativa 6W1H ; 1.42 ; Crystal structure of the hydroxyglutarate synthase in complex with 2-oxoadipate from Pseudomonas putida 1TV2 ; 2.0 ; Crystal structure of the hydroxylamine MtmB complex 2AHL ; 1.6 ; Crystal structure of the hydroxylamine-induced deoxy-form of the copper-bound Streptomyces castaneoglobisporus tyrosinase in complex with a caddie protein 5XW2 ; 1.298 ; Crystal structure of the Hydroxylase HmtN in C 1 2 1 crystal form 1JU2 ; 1.47 ; Crystal structure of the hydroxynitrile lyase from almond 5YXY ; 3.299 ; Crystal structure of the HyhL-HypA complex (form I) 5YY0 ; 3.243 ; Crystal structure of the HyhL-HypA complex (form II) 5AUP ; 3.102 ; Crystal structure of the HypAB complex 5AUN ; 1.63 ; Crystal structure of the HypAB-Ni complex 5AUO ; 1.8 ; Crystal structure of the HypAB-Ni complex (AMPPCP) 3VYR ; 2.55 ; Crystal structure of the HypC-HypD complex 3VYT ; 2.25 ; Crystal structure of the HypC-HypD-HypE complex (form I inward) 3VYS ; 2.35 ; Crystal structure of the HypC-HypD-HypE complex (form I) 3VYU ; 2.75 ; Crystal structure of the HypC-HypD-HypE complex (form II) 3WJP ; 1.533 ; Crystal structure of the HypE CA form 3WJQ ; 1.645 ; Crystal structure of the HypE CN form 4KE2 ; 1.8 ; Crystal structure of the hyperactive Type I antifreeze from winter flounder 1UDV ; 1.85 ; Crystal structure of the hyperthermophilic archaeal dna-binding protein Sso10b2 at 1.85 A 4G2D ; 2.7 ; Crystal structure of the hyperthermophilic Sulfolobus islandicus PLL SisLac 3GEZ ; 2.0 ; Crystal Structure of the hypothetical egulator from Sulfolobus tokodaii 7 2IN5 ; 2.3 ; Crystal Structure of the hypothetical lipoprotein YmcC from Escherichia coli (K12), Northeast Structural Genomics target ER552. 7SUA ; 1.65 ; Crystal Structure of the Hypothetical Protein (ACX60_00475) from Acinetobacter baumannii 2QYH ; 2.6 ; Crystal structure of the hypothetical protein (gk1056) from geobacillus kaustophilus HTA426 4Z8Z ; 2.55 ; Crystal structure of the hypothetical protein from Ruminiclostridium thermocellum ATCC 27405 2NMU ; 1.8 ; Crystal structure of the hypothetical protein from Salmonella typhimurium LT2. Northeast Structural Genomics Consortium target StR127. 1JEO ; 2.0 ; Crystal Structure of the Hypothetical Protein MJ1247 from Methanococcus jannaschii at 2.0 A Resolution Infers a Molecular Function of 3-Hexulose-6-Phosphate isomerase. 2X3G ; 1.8 ; Crystal Structure of the hypothetical protein ORF119 from Sulfolobus islandicus rod-shaped virus 1 2X5R ; 2.0 ; Crystal Structure of the hypothetical protein ORF126 from Pyrobaculum spherical virus 2X3O ; 2.9 ; Crystal Structure of the Hypothetical Protein PA0856 from Pseudomonas aeruginosa 7AL6 ; 2.1 ; Crystal structure of the hypothetical protein PA1622 from Pseudomonas aeruginosa PAO1 4AVR ; 1.08 ; Crystal structure of the hypothetical protein Pa4485 from Pseudomonas aeruginosa 2XU2 ; 2.3 ; Crystal Structure of the hypothetical protein PA4511 from Pseudomonas aeruginosa 2X4H ; 2.3 ; Crystal Structure of the hypothetical protein SSo2273 from Sulfolobus solfataricus 2EJX ; 1.79 ; Crystal structure of the hypothetical protein STK_08120 from Sulfolobus tokodaii 4Q37 ; 3.19 ; Crystal structure of the hypothetical protein TM0182 Thermotoga maritima, N-terminal domain. 1WN9 ; 1.58 ; Crystal structure of the hypothetical protein TT1805 from Thermus thermophillus HB8 1WNA ; 1.58 ; Crystal structure of the hypothetical protein TT1805 from Thermus thermophillus HB8 2E67 ; 2.9 ; Crystal structure of the hypothetical protein TTHB029 from Thermus thermophilus HB8 2YR2 ; 2.01 ; Crystal Structure of the Hypothetical regulator from Sulfolobus tokodaii 2EB7 ; 1.8 ; Crystal structure of the hypothetical regulator from Sulfolobus tokodaii 7 3GF2 ; 1.8 ; Crystal structure of the hypothetical regulator ST1710 complexed with sodium salicylate 2EQA ; 1.8 ; Crystal Structure of the hypothetical Sua5 protein from Sulfolobus tokodaii 3AB8 ; 1.7 ; Crystal Structure of the Hypothetical Tandem-type Universal Stress Protein TTHA0350 complexed with ATPs. 3AB7 ; 2.52 ; Crystal Structure of the Hypothetical Tandem-type Universal Stress Protein TTHA0350 from Thermus thermophilus HB8 1ZXJ ; 2.8 ; Crystal structure of the hypthetical Mycoplasma protein, MPN555 2GTC ; 2.3 ; Crystal structure of the hypthetical protein from Bacillus cereus (ATCC 14579). Northeast structural genomics Target BcR11 2YKT ; 2.11 ; Crystal structure of the I-BAR domain of IRSp53 (BAIAP2) in complex with an EHEC derived Tir peptide 6FB8 ; 2.45 ; Crystal Structure of the I-CreI Homing Endonuclease D75N variant in complex with an altered version of its target DNA at 5NNN region in the presence of Magnesium 6FB9 ; 2.95 ; Crystal Structure of the I-CreI Homing Endonuclease D75N variant in complex with an altered version of its target DNA at 5NNN region in the presence of Manganese 6FB7 ; 2.689 ; Crystal Structure of the I-CreI Homing Endonuclease D75N variant in complex with its target DNA in the presence of Manganese 4LQ0 ; 2.68 ; Crystal structure of the I-LtrWI LAGLIDADG homing endonuclease bound to target DNA. 4LOX ; 1.98 ; Crystal structure of the I-SmaMI LAGLIDADG homing endonuclease bound to cleaved DNA 5V46 ; 1.8 ; Crystal structure of the I113M, F270M, K291M, L308M mutant of SR1 domain of human sacsin 1YDK ; 1.95 ; Crystal structure of the I219A mutant of human glutathione transferase A1-1 with S-hexylglutathione 1L9Q ; 1.7 ; CRYSTAL STRUCTURE OF THE I257L VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIS S-6 1L9R ; 1.78 ; CRYSTAL STRUCTURE OF THE I257M VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIS S-6 1L9S ; 1.78 ; CRYSTAL STRUCTURE OF THE I257T VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIS S-6 1L9T ; 1.75 ; CRYSTAL STRUCTURE OF THE I257V VARIANT OF THE COPPER-CONTAINING NITRITE REDUCTASE FROM ALCALIGENES FAECALIS S-6 7ZYT ; 2.892 ; Crystal structure of the I318T pathogenic variant of the human dihydrolipoamide dehydrogenase 3HF2 ; 2.2 ; Crystal structure of the I401P mutant of cytochrome P450 BM3 7VIV ; 2.0 ; Crystal structure of the I73R from African Swine Fever Virus 3ZFB ; 1.86 ; Crystal structure of the I75A mutant of human class alpha glutathione transferase in the apo form 5CF2 ; 3.0 ; Crystal Structure of the I80Y/L114V/I116V mutant of LEH 3KVF ; 2.8 ; Crystal structure of the I93M mutant of ubiquitin carboxy terminal hydrolase L1 bound to ubiquitin vinylmethylester 3IRT ; 2.799 ; Crystal Structure of the I93M Mutant of Ubiquitin Carboxy-terminal Hydrolase L1 2FPF ; 3.0 ; Crystal structure of the ib1 sh3 dimer at low resolution 8BVL ; 2.24 ; Crystal structure of the IBR-RING2 domain of HOIL-1 2CA1 ; 2.6 ; Crystal structure of the IBV coronavirus nucleocapsid 4EYY ; 2.4 ; Crystal Structure of the IcmR-IcmQ complex from Legionella pneumophila 5XNB ; 2.594 ; Crystal structure of the IcmS-IcmW-DotL complex of the Legionella type IVb secretion system 3ML3 ; 2.0 ; Crystal structure of the IcsA autochaperone region 1QZ1 ; 2.0 ; Crystal Structure of the Ig 1-2-3 fragment of NCAM 3WUZ ; 1.3 ; Crystal structure of the Ig V-set domain of human paired immunoglobulin-like type 2 receptor alpha 4HWU ; 2.903 ; Crystal structure of the Ig-C2 type 1 domain from mouse Fibroblast growth factor receptor 2 (FGFR2) [NYSGRC-005912] 4JGJ ; 2.6508 ; Crystal structure of the Ig-like D1 domain from mouse Carcinoembryogenic antigen-related cell adhesion molecule 15 (CEACAM15) [PSI-NYSGRC-005691] 4DIX ; 1.7 ; Crystal structure of the Ig-PH domain of actin-binding protein SCAB1 3MTR ; 1.8 ; Crystal structure of the Ig5-FN1 tandem of human NCAM 3H9Y ; 2.23 ; Crystal structure of the IgE-Fc3-4 domains 3H9Z ; 2.45 ; Crystal structure of the IgE-Fc3-4 domains 3HA0 ; 2.8 ; Crystal structure of the IgE-Fc3-4 domains 4C83 ; 2.69 ; Crystal Structure of the IgG2a LPT3 in complex with an 8-sugar inner core analogue of Neisseria meningitidis 3BBR ; 2.25 ; Crystal structure of the iGluR2 ligand binding core (S1S2J-N775S) in complex with a dimeric positive modulator as well as glutamate at 2.25 A resolution 3H6T ; 2.25 ; Crystal structure of the iGluR2 ligand-binding core (S1S2J-N754S) in complex with glutamate and cyclothiazide at 2.25 A resolution 3H6U ; 1.85 ; Crystal structure of the iGluR2 ligand-binding core (S1S2J-N754S) in complex with glutamate and NS1493 at 1.85 A resolution 3H6V ; 2.1 ; Crystal structure of the iGluR2 ligand-binding core (S1S2J-N754S) in complex with glutamate and NS5206 at 2.10 A resolution 3H6W ; 1.49 ; Crystal structure of the iGluR2 ligand-binding core (S1S2J-N754S) in complex with glutamate and NS5217 at 1.50 A resolution 1NRZ ; 1.75 ; Crystal structure of the IIBSor domain of the sorbose permease from Klebsiella pneumoniae solved to 1.75A resolution 2Z3Q ; 1.85 ; Crystal structure of the IL-15/IL-15Ra complex 2Z3R ; 2.0 ; Crystal structure of the IL-15/IL-15Ra complex 3WO4 ; 3.1 ; Crystal structure of the IL-18 signaling ternary complex 3DLQ ; 1.9 ; Crystal structure of the IL-22/IL-22R1 complex 3BPO ; 3.0 ; Crystal structure of the IL13-IL4R-IL13Ra ternary complex 3BPL ; 2.93 ; Crystal structure of the IL4-IL4R-Common Gamma ternary complex 3BPN ; 3.02 ; Crystal structure of the IL4-IL4R-IL13Ra ternary complex 7WD4 ; 1.75 ; Crystal structure of the Ilheus virus helicase: implications for enzyme function and drug design 6MIB ; 1.8 ; Crystal structure of the ILK ATP-binding deficient mutant (L207W)/alpha-parvin core complex 3KMU ; 1.8 ; Crystal structure of the ILK/alpha-parvin core complex (apo) 3KMW ; 2.0 ; Crystal structure of the ILK/alpha-parvin core complex (MgATP) 3REP ; 1.8 ; Crystal structure of the ILK/alpha-parvin core complex (MnATP) 3WFX ; 1.94 ; Crystal Structure of the Imidazole-Bound Form of the HGbRL's Globin Domain 2GOK ; 1.87 ; Crystal structure of the imidazolonepropionase from Agrobacterium tumefaciens at 1.87 A resolution 6RQA ; 2.56 ; Crystal structure of the iminosuccinate reductase of Paracoccus denitrificans in complex with NAD+ 1BT5 ; 1.8 ; CRYSTAL STRUCTURE OF THE IMIPENEM INHIBITED TEM-1 BETA-LACTAMASE FROM ESCHERICHIA COLI 3N40 ; 2.17 ; Crystal structure of the immature envelope glycoprotein complex of Chikungunya virus. 7YR9 ; 1.7 ; Crystal structure of the immature form of TtPetA 4WID ; 2.31 ; Crystal structure of the immediate-early 1 protein (IE1) at 2.31 angstrom (tetragonal form after crystal dehydration) 7T8I ; 2.1 ; Crystal structure of the ImmR transcriptional regulator DNA-binding domain of Bacillus subtilis 4NSR ; 2.795 ; Crystal structure of the Immunity protein 3R0N ; 1.3 ; Crystal Structure of the Immunoglobulin variable domain of Nectin-2 4HZA ; 1.7 ; Crystal Structure of the Immunoglobulin variable domain of Nectin-2 in monoclinic form 3UCR ; 2.627 ; Crystal structure of the immunoreceptor TIGIT IgV domain 3UDW ; 2.903 ; Crystal structure of the immunoreceptor TIGIT in complex with Poliovirus receptor (PVR/CD155/necl-5) D1 domain 5WXM ; 2.304 ; Crystal structure of the Imp3 and Mpp10 complex 5O9E ; 1.884 ; Crystal structure of the Imp4-Mpp10 complex from Chaetomium thermophilum 1IQ1 ; 2.8 ; CRYSTAL STRUCTURE OF THE IMPORTIN-ALPHA(44-54)-IMPORTIN-ALPHA(70-529) COMPLEX 4J4Z ; 1.26 ; Crystal structure of the improved variant of the evolved serine hydrolase, OSH55.4_H1.2, bond with sulfate ion in the active site, Northeast Structural Genomics Consortium (NESG) Target OR301 8P6G ; 1.95 ; Crystal structure of the improved version of the Genetically Encoded Green Calcium Indicator YTnC2-5 4MGM ; 3.2 ; Crystal structure of the in vitro transcribed G. kaustophilus tRNA-Gly 8W7N ; 3.6 ; Crystal structure of the in-cell Cry1Aa purified from Bacillus thuringiensis 4RGE ; 2.89 ; Crystal structure of the in-line aligned env22 twister ribozyme 4RGF ; 3.2008 ; Crystal structure of the in-line aligned env22 twister ribozyme soaked with Mn2+ 3LMI ; 2.2 ; Crystal Structure of the Inactive Alpha-kinase Domain of Myosin Heavy Chain Kinase A (D766A) complex with ATP 4ZS4 ; 2.4 ; Crystal Structure of the Inactive Alpha-kinase Domain of Myosin-II Heavy Chain Kinase A (D756A) Complexed with ATP 1HZG ; 1.86 ; CRYSTAL STRUCTURE OF THE INACTIVE C866S MUTANT OF THE CATALYTIC DOMAIN OF E. COLI CYTOTOXIC NECROTIZING FACTOR 1 1H49 ; 1.9 ; CRYSTAL STRUCTURE OF THE INACTIVE DOUBLE MUTANT OF THE MAIZE BETA-GLUCOSIDASE ZMGLU1-E191D-F198V IN COMPLEX WITH DIMBOA-GLUCOSIDE 2GS7 ; 2.6 ; Crystal Structure of the inactive EGFR kinase domain in complex with AMP-PNP 3GT8 ; 2.955 ; Crystal structure of the inactive EGFR kinase domain in complex with AMP-PNP 4HJO ; 2.75 ; Crystal structure of the inactive EGFR tyrosine kinase domain with erlotinib 5AJO ; 1.48 ; Crystal structure of the inactive form of GalNAc-T2 in complex with the glycopeptide MUC5AC-3,13 5AJN ; 1.67 ; Crystal structure of the inactive form of GalNAc-T2 in complex with the glycopeptide MUC5AC-Cys13 5K5T ; 3.1 ; Crystal structure of the inactive form of human calcium-sensing receptor extracellular domain 5TOV ; 1.9 ; Crystal structure of the inactive form of S-adenosyl-L-homocysteine hydrolase from Thermotoga maritima in binary complex with NADH 5TOW ; 1.75 ; Crystal structure of the inactive form of S-adenosyl-L-homocysteine hydrolase from Thermotoga maritima in ternary complex with NADH and Adenosine 4ISL ; 2.29 ; Crystal Structure of the inactive Matriptase in complex with its inhibitor HAI-1 1E4L ; 2.2 ; Crystal structure of the inactive mutant Monocot (Maize ZMGlu1) beta-glucosidase ZM Glu191Asp 1E55 ; 2.0 ; Crystal structure of the inactive mutant Monocot (Maize ZMGlu1) beta-glucosidase ZMGluE191D in complex with the competitive inhibitor dhurrin 1E4N ; 2.1 ; Crystal structure of the inactive mutant Monocot (Maize ZMGlu1) beta-glucosidase ZMGluE191D in complex with the natural aglycone DIMBOA 1E56 ; 2.1 ; Crystal structure of the inactive mutant Monocot (Maize ZMGlu1) beta-glucosidase ZMGluE191D in complex with the natural substrate DIMBOA-beta-D-glucoside 4ELJ ; 2.7 ; Crystal structure of the inactive retinoblastoma protein phosphorylated at T373 2F9R ; 1.85 ; Crystal structure of the inactive state of the Smase I, a sphingomyelinase D from Loxosceles laeta venom 4GT5 ; 2.398 ; Crystal structure of the inactive TrkA kinase domain 6EGF ; 2.61 ; Crystal structure of the inactive unphosphorylated IRAK4 kinase domain bound to AMP-PNP 3K7G ; 1.5 ; Crystal structure of the Indian Hedgehog N-terminal signalling domain 4YLA ; 1.4 ; Crystal structure of the indole prenyltransferase MpnD complexed with indolactam V and DMSPP 4YL7 ; 1.601 ; Crystal structure of the indole prenyltransferase MpnD from Marinactinospora thermotolerans 4YZK ; 1.95 ; Crystal structure of the indole prenyltransferase TleC apo structure 4YZL ; 2.096 ; Crystal structure of the indole prenyltransferase TleC complexed with indolactam V and DMSPP 4PK5 ; 2.79 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with Amg-1 7M63 ; 3.1 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with IACS-70099 7M7D ; 2.6 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with IACS-8968 4PK6 ; 3.45 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with imidazothiazole derivative 5XE1 ; 3.2 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with INCB14943 5EK2 ; 2.68 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with NLG919 analogue 5EK3 ; 2.209 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with NLG919 analogue 5EK4 ; 2.64 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with NLG919 analogue 5ETW ; 2.7 ; Crystal structure of the indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with NLG919 analogue 7B1O ; 2.58 ; Crystal structure of the indoleamine 2,3-dioxygenase 1 (IDO1) in complex with compound 22 6E40 ; 2.306 ; Crystal structure of the indoleamine 2,3-dioxygenase 1 (IDO1) in complexed with ferric heme and Epacadostat 1IIZ ; 2.4 ; Crystal Structure of the Induced Antibacterial Protein from Tasar Silkworm, Antheraea mylitta 5T96 ; 2.0 ; Crystal structure of the infectious salmon anemia virus (ISAV) HE viral receptor complex 5T9Y ; 1.8 ; Crystal structure of the infectious salmon anemia virus (ISAV) hemagglutinin-esterase protein 4EWC ; 2.7 ; Crystal Structure of the Infectious Salmon Anemia Virus Nucleoprotein 5WFM ; 2.251 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 10e (SRI-30024) 5WFW ; 2.292 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 10j (SRI-30026) 5WEI ; 2.25 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 7a (SRI-29770) 5WFZ ; 2.35 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 8e (SRI-30049) 5WG9 ; 2.3 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 9b (SRI-30101) 5WF3 ; 2.251 ; Crystal structure of the influenza virus PA endonuclease (E119D mutant) in complex with inhibitor 9k (SRI-30023) 5WEF ; 2.0 ; Crystal structure of the influenza virus PA endonuclease (F105S mutant) in complex with inhibitor 7a (SRI-29770) 5WE7 ; 2.12 ; Crystal structure of the influenza virus PA endonuclease in complex with an inhibitor - SRI-29782 5WA6 ; 2.25 ; Crystal structure of the influenza virus PA endonuclease in complex with an inhibitor - SRI-30007 5W92 ; 2.3 ; Crystal structure of the influenza virus PA endonuclease in complex with an inhibitor - SRI-30049 5WEB ; 2.254 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 10e (SRI-30024) 5WAP ; 2.201 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 10i (SRI-30025) 5WB3 ; 2.203 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 10j (SRI-30026) 5WDW ; 2.3 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 10k (SRI-30027) 5WCS ; 2.525 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 6b (SRI-29789) 5WCT ; 2.3 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 6c (SRI-29775) 5WDN ; 2.1 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 6d (SRI-29680) 5W3I ; 1.95 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 6e (SRI-29685) 5W44 ; 2.1 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 7a (SRI-29770) 5WE9 ; 1.804 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 7b (SRI-29731) 5W7U ; 2.2 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 8f (SRI-29928) 5WA7 ; 2.204 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 9b (SRI-30101) 5WDC ; 2.1 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 9e (SRI-29843) 5W73 ; 2.202 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 9f (SRI-29835) 5W9G ; 2.1 ; Crystal structure of the influenza virus PA endonuclease in complex with inhibitor 9k (SRI-30023) 3S7O ; 1.24 ; Crystal Structure of the Infrared Fluorescent D207H variant of Deinococcus Bacteriophytochrome chromophore binding domain at 1.24 angstrom resolution 3S7P ; 1.722 ; Crystal Structure of the Infrared Fluorescent D207H variant of Deinococcus Bacteriophytochrome chromophore binding domain at 1.72 angstrom resolution 2QIC ; 2.1 ; Crystal Structure of the ING1 PHD Finger in complex with a Histone H3K4ME3 peptide 3C6W ; 1.75 ; Crystal structure of the ING5 PHD finger in complex with H3K4me3 peptide 5VRL ; 2.65 ; CRYSTAL STRUCTURE OF THE INHA FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH AN12855, EBSI 4333. 5VRM ; 2.5 ; CRYSTAL STRUCTURE OF THE INHA FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH AN12855, EBSI 4333. 5VRN ; 2.55 ; CRYSTAL STRUCTURE OF THE INHA FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH AN12855, EBSI 4333. 5W07 ; 2.65 ; CRYSTAL STRUCTURE OF THE INHA FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH AN12855, EBSI 4333. 4QXM ; 2.196 ; Crystal structure of the InhA:GSK_SB713 complex 5NQ6 ; 2.4 ; Crystal structure of the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE from Escherichia coli at 2.40 Angstrom Resolution 3EKP ; 2.15 ; Crystal Structure of the inhibitor Amprenavir (APV) in complex with a multi-drug resistant HIV-1 protease variant (L10I/G48V/I54V/V64I/V82A)Refer: FLAP+ in citation 3EKW ; 1.6 ; Crystal structure of the inhibitor Atazanavir (ATV) in complex with a multi-drug resistance HIV-1 protease variant (L10I/G48V/I54V/V64I/V82A) Refer: FLAP+ in citation. 3EKT ; 1.97 ; Crystal Structure of the inhibitor Darunavir (DRV) in complex with a multi-drug resistant HIV-1 protease variant (L10F/G48V/I54V/V64I/V82A) (Refer: FLAP+ in citation.) 3EL0 ; 2.0 ; Crystal structure of the inhibitor Nelfinavir (NFV) in complex with a multi-drug resistant HIV-1 protease variant (L10I/G48V/I54V/V64I/V82A) (Refer: FLAP+ in citation) 4DF6 ; 2.29 ; Crystal Structure of the inhibitor NXL104 Covalent Adduct with TB B-lactamase 1FJS ; 1.92 ; CRYSTAL STRUCTURE OF THE INHIBITOR ZK-807834 (CI-1031) COMPLEXED WITH FACTOR XA 6NVB ; 1.636 ; Crystal structure of the inhibitor-free form of the serine protease kallikrein-4 1WPL ; 2.8 ; Crystal structure of the inhibitory form of rat GTP cyclohydrolase I/GFRP complex 5ES5 ; 2.8 ; Crystal structure of the initiation module of LgrA in the ""open"" and ""closed "" adenylation states 5ES8 ; 2.547 ; Crystal structure of the initiation module of LgrA in the thiolation state 5FCU ; 1.85 ; CRYSTAL STRUCTURE OF THE INNER DOMAIN OF CLADE A/E HIV-1 GP120 IN COMPLEX WITH THE ADCC-POTENT RHESUS MACAQUE ANTIBODY JR4 1UDE ; 2.66 ; Crystal structure of the Inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 4MYA ; 1.8997 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase with an Internal Deletion of the CBS Domain from Bacillus anthracis str. Ames complexed with inhibitor A110 4MY9 ; 2.5893 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase with an Internal Deletion of the CBS Domain from Bacillus anthracis str. Ames complexed with inhibitor C91 4QM1 ; 2.7964 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase with an Internal Deletion of the CBS Domain from Bacillus anthracis str. Ames complexed with inhibitor D67 4MY8 ; 2.2924 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase with an Internal Deletion of the CBS Domain from Bacillus anthracis str. Ames complexed with inhibitor Q21 4MYX ; 2.701 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase, with a Internal Deletion of CBS Domain from Bacillus anthracis str. Ame complexed with P32 4MY1 ; 2.5997 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase, with a Internal Deletion of CBS Domain from Bacillus anthracis str. Ames complexed with P68 4MZ1 ; 2.3991 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase, with a Internal Deletion of CBS Domain from Campylobacter jejuni complexed with inhibitor compound P12 4MJM ; 2.2544 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase, with a Short Internal Deletion of CBS Domain from Bacillus anthracis str. Ames 4MZ8 ; 2.5004 ; Crystal Structure of the Inosine 5'-monophosphate Dehydrogenase, with an Internal Deletion of CBS Domain from Campylobacter jejuni complexed with inhibitor compound C91 1N4K ; 2.2 ; Crystal structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with IP3 3UJ0 ; 3.6 ; Crystal structure of the inositol 1,4,5-trisphosphate receptor with ligand bound form. 8OMI ; 1.77 ; Crystal structure of the inositol hexakisphosphate kinase EhIP6KA M85 variant in complex with ATP and Mg2+ 6V2U ; 3.78 ; Crystal structure of the insect cell-expressed WT-BRAF kinase in complex with Dabrafenib 1BIH ; 3.1 ; CRYSTAL STRUCTURE OF THE INSECT IMMUNE PROTEIN HEMOLIN: A NEW DOMAIN ARRANGEMENT WITH IMPLICATIONS FOR HOMOPHILIC ADHESION 1JI6 ; 2.4 ; CRYSTAL STRUCTURE OF THE INSECTICIDAL BACTERIAL DEL ENDOTOXIN CRY3Bb1 BACILLUS THURINGIENSIS 5I62 ; 2.001 ; Crystal structure of the insertion loop deletion mutant of the RNA-dependent RNA polymerase of a human picorbirnavirus 1GAG ; 2.7 ; CRYSTAL STRUCTURE OF THE INSULIN RECEPTOR KINASE IN COMPLEX WITH A BISUBSTRATE INHIBITOR 3BU3 ; 1.65 ; Crystal structure of the insulin receptor kinase in complex with IRS2 KRLB peptide 3BU5 ; 2.1 ; Crystal structure of the insulin receptor kinase in complex with IRS2 KRLB peptide and ATP 3BU6 ; 1.95 ; Crystal structure of the insulin receptor kinase in complex with IRS2 KRLB phosphopeptide 1RQQ ; 2.6 ; Crystal Structure of the Insulin Receptor Kinase in Complex with the SH2 Domain of APS 3D94 ; 2.3 ; Crystal structure of the insulin-like growth factor-1 receptor kinase in complex with PQIP 4IX7 ; 1.581 ; Crystal Structure of the insv-BEN domain complexed to its DNA target site 3CW2 ; 2.8 ; Crystal structure of the intact archaeal translation initiation factor 2 from Sulfolobus solfataricus . 5CWS ; 3.77 ; Crystal structure of the intact Chaetomium thermophilum Nsp1-Nup49-Nup57 channel nucleoporin heterotrimer bound to its Nic96 nuclear pore complex attachment site 4FXE ; 2.7503 ; Crystal structure of the intact E. coli RelBE toxin-antitoxin complex 1HZH ; 2.7 ; CRYSTAL STRUCTURE OF THE INTACT HUMAN IGG B12 WITH BROAD AND POTENT ACTIVITY AGAINST PRIMARY HIV-1 ISOLATES: A TEMPLATE FOR HIV VACCINE DESIGN 7EEW ; 2.896 ; Crystal structure of the intact MTase from Vibrio vulnificus YJ016 in complex with the DNA-mimicking Ocr protein and the S-adenosyl-L-homocysteine (SAH) 4BRR ; 2.44 ; Crystal structure of the integral membrane diacylglycerol kinase - delta 7.79 3ZE5 ; 3.101 ; Crystal structure of the integral membrane diacylglycerol kinase - delta4 3ZE3 ; 2.05 ; Crystal structure of the integral membrane diacylglycerol kinase - delta7 4CK0 ; 2.924 ; Crystal structure of the integral membrane diacylglycerol kinase - form 2 3ZE4 ; 3.702 ; Crystal structure of the integral membrane diacylglycerol kinase - wild-type 4CJZ ; 3.25 ; Crystal structure of the integral membrane diacylglycerol kinase DgkA- 9.9, delta 4 4BRB ; 2.55 ; Crystal structure of the integral membrane enzyme DgkA-ref, delta 7 1LWS ; 3.5 ; Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence 1LWT ; 3.2 ; Crystal structure of the intein homing endonuclease PI-SceI bound to its substrate DNA (Ca2+ free) 1XU9 ; 1.55 ; Crystal Structure of the Interface Closed Conformation of 11b-hydroxysteroid dehydrogenase isozyme 1 1XU7 ; 1.8 ; Crystal Structure of the Interface Open Conformation of Tetrameric 11b-HSD1 1ILR ; 2.1 ; CRYSTAL STRUCTURE OF THE INTERLEUKIN-1 RECEPTOR ANTAGONIST 2B8X ; 1.7 ; Crystal structure of the interleukin-4 variant F82D 2B91 ; 2.0 ; Crystal structure of the interleukin-4 variant F82DR85A 2B8Z ; 2.5 ; Crystal structure of the interleukin-4 variant R85A 2D48 ; 1.65 ; Crystal structure of the Interleukin-4 variant T13D 2B8Y ; 1.8 ; Crystal structure of the interleukin-4 variant T13DF82D 2B90 ; 2.1 ; Crystal structure of the interleukin-4 variant T13DR85A 1MJN ; 1.3 ; Crystal Structure of the intermediate affinity aL I domain mutant 5U9L ; 2.516 ; Crystal structure of the intermembrane space region of the plastid division protein PARC6 6W2H ; 1.6 ; Crystal Structure of the Internal UBA Domain of HHR23A 7PVZ ; 2.0 ; Crystal structure of the intertwined dimer of the c-Src SH3 domain E93V-S94A-R95S-T96G mutant 7PVW ; 1.5 ; Crystal structure of the intertwined dimer of the c-Src SH3 domain E93V-S94A-R95S-T96G-N112G-N113Y-T114N-E115H mutant 6XVO ; 1.7 ; Crystal structure of the intertwined dimer of the c-Src SH3 domain without ATCUN motif 4OMM ; 1.9 ; Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant N113S 4OMN ; 1.5 ; Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant Q128E 4OMP ; 2.0 ; Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant Q128K 4OML ; 1.6 ; Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant Q128R 4OMQ ; 2.0 ; Crystal structure of the intertwined dimer of the c-Src tyrosine kinase SH3 domain mutant S94A 4Y92 ; 2.1 ; Crystal structure of the intertwined form of the Src tyrosine kinase SH3 domain E97T-Q128R mutant 5I11 ; 1.95 ; Crystal structure of the intertwined form of the Src tyrosine kinase SH3 domain T114S-Q128R mutant 4RTU ; 2.453 ; Crystal structure of the intertwined form of the Src tyrosine kinase SH3 domain T96G/Q128R mutant 3DXE ; 2.0 ; Crystal structure of the intracellular domain of human APP (T668A mutant) in complex with Fe65-PTB2 3DXD ; 2.2 ; Crystal structure of the intracellular domain of human APP (T668E mutant) in complex with Fe65-PTB2 3DXC ; 2.1 ; Crystal structure of the intracellular domain of human APP in complex with Fe65-PTB2 3SUA ; 4.39 ; Crystal structure of the intracellular domain of Plexin-B1 in complex with Rac1 3OTV ; 3.094 ; Crystal structure of the intracellular domain of Rv3910 from Mycobacterium tuberculosis 4X3F ; 2.9 ; Crystal structure of the intracellular domain of the M. tuberculosis Ser/Thr kinase PknA 4X4A ; 1.71 ; Crystal structure of the intramolecular trans-sialidase from Ruminococcus gnavus in complex with 2,7-Anhydro-Neu5Ac 4X47 ; 2.0 ; Crystal structure of the intramolecular trans-sialidase from Ruminococcus gnavus in complex with Neu5Ac2en 4X49 ; 2.01 ; Crystal structure of the intramolecular trans-sialidase from Ruminococcus gnavus in complex with oseltamivir carboxylate 4X6K ; 1.94 ; Crystal structure of the intramolecular trans-sialidase from Ruminococcus gnavus in complex with Siastatin B 6BNF ; 2.33 ; Crystal structure of the intrinsic colistin resistance enzyme ICR(Mc) from Moraxella catarrhalis, catalytic domain, mono-zinc complex 6BNE ; 2.61 ; Crystal structure of the intrinsic colistin resistance enzyme ICR(Mc) from Moraxella catarrhalis, catalytic domain, phosphate-bound complex 6BNC ; 1.5 ; Crystal structure of the intrinsic colistin resistance enzyme ICR(Mc) from Moraxella catarrhalis, catalytic domain, Thr315Ala mutant di-zinc and PEG complex 6BND ; 1.66 ; Crystal structure of the intrinsic colistin resistance enzyme ICR(Mc) from Moraxella catarrhalis, catalytic domain, Thr315Ala mutant mono-zinc and phosphoethanolamine complex 4JA0 ; 2.8 ; Crystal structure of the invertebrate bi-functional purine biosynthesis enzyme PAICS at 2.8 A resolution 6EYU ; 2.5 ; Crystal structure of the inward H(+) pump xenorhodopsin 7C5V ; 2.65 ; Crystal structure of the iota-carbonic anhydrase from cyanobacterium complexed with bicarbonate 7C5W ; 2.3 ; Crystal structure of the iota-carbonic anhydrase from cyanobacterium complexed with iodide 7C5X ; 2.55 ; Crystal structure of the iota-carbonic anhydrase from eukaryotic microalga complexed with bicarbonate 7C5Y ; 2.2 ; Crystal structure of the iota-carbonic anhydrase from eukaryotic microalga complexed with iodide 7SBH ; 1.34 ; Crystal structure of the iron superoxide dismutase from Acinetobacter sp. Ver3 1FX7 ; 2.0 ; CRYSTAL STRUCTURE OF THE IRON-DEPENDENT REGULATOR (IDER) FROM MYCOBACTERIUM TUBERCULOSIS 7AZQ ; 2.0 ; Crystal structure of the iron/manganese cambialistic superoxide dismutase from Rhodobacter capsulatus complex with Fe 7AZR ; 2.1 ; Crystal structure of the iron/manganese cambialistic superoxide dismutase from Rhodobacter capsulatus complex with Mn 3DTE ; 2.6 ; Crystal structure of the IRRE protein, a central regulator of DNA damage repair in deinococcaceae 3DTI ; 3.5 ; Crystal structure of the IRRE protein, a central regulator of DNA damage repair in deinococcaceae 3DTK ; 3.24 ; Crystal structure of the IRRE protein, a central regulator of DNA damage repair in deinococcaceae 2VIH ; 2.1 ; CRYSTAL STRUCTURE OF THE IS608 TRANSPOSASE IN COMPLEX WITH Left END 26-MER DNA 2VJV ; 1.9 ; Crystal structure of the IS608 transposase in complex with left end 26-mer DNA hairpin and a 6-mer DNA representing the left end cleavage site 6FI8 ; 2.598 ; Crystal structure of the IS608 transposase in complex with left end 29-mer DNA hairpin and a 6-mer DNA representing the intact target site: pre-cleavage target capture complex 2VJU ; 2.4 ; Crystal structure of the IS608 transposase in complex with the complete Right end 35-mer DNA and manganese 3TB4 ; 1.35 ; Crystal structure of the ISC domain of VibB 3TG2 ; 1.101 ; Crystal structure of the ISC domain of VibB in complex with isochorismate 3AH7 ; 1.9 ; Crystal structure of the ISC-like [2Fe-2S] ferredoxin (FdxB) from Pseudomonas putida JCM 20004 2ITE ; 1.6 ; Crystal structure of the IsdA NEAT domain from Staphylococcus aureus 2A6M ; 2.4 ; Crystal Structure of the ISHp608 Transposase 2VIC ; 2.35 ; CRYSTAL STRUCTURE OF THE ISHP608 TRANSPOSASE IN COMPLEX with Left end 26- mer DNA and manganese 2VHG ; 2.9 ; Crystal Structure of the ISHp608 Transposase in Complex with Right End 31-mer DNA 2A6O ; 2.6 ; Crystal Structure of the ISHp608 Transposase in Complex with Stem-loop DNA 5XO0 ; 1.85 ; Crystal structure of the isochorismatase domain of AngB from Vibrio anguillarum 775 5XO1 ; 2.23 ; Crystal structure of the isochorismatase domain of VabB from Vibrio anguillarum 775 1DQU ; 2.8 ; CRYSTAL STRUCTURE OF THE ISOCITRATE LYASE FROM ASPERGILLUS NIDULANS 1IGW ; 2.1 ; Crystal Structure of the Isocitrate Lyase from the A219C mutant of Escherichia coli 1ZG3 ; 2.35 ; Crystal structure of the isoflavanone 4'-O-methyltransferase complexed with SAH and 2,7,4'-trihydroxyisoflavanone 3BXZ ; 3.0 ; Crystal structure of the isolated DEAD motor domains from Escherichia coli SecA 4FXI ; 1.8003 ; Crystal structure of the isolated E. coli RelE toxin, P21 form 4FXH ; 2.4 ; Crystal structure of the isolated E. coli RelE toxin, P212121 form 3I5B ; 2.043 ; Crystal structure of the isolated GGDEF domain of WpsR from Pseudomonas aeruginosa 6ZI1 ; 2.2 ; Crystal structure of the isolated H. influenzae VapD toxin (D7N mutant) 6ZI0 ; 2.5 ; Crystal structure of the isolated H. influenzae VapD toxin (wildtype) 4B53 ; 1.8 ; Crystal structure of the isolated IgG4 CH3 domain 2OGU ; 3.23 ; Crystal structure of the isolated MthK RCK domain 3GBD ; 1.95 ; Crystal structure of the isomaltulose synthase SmuA from Protaminobacter rubrum 3GBE ; 1.7 ; Crystal structure of the isomaltulose synthase SmuA from Protaminobacter rubrum in complex with the inhibitor deoxynojirimycin 3LKK ; 2.001 ; Crystal structure of the isopentenyl phosphate kinase substrate complex 4QQ1 ; 3.33 ; Crystal structure of the isotype 1 Transferrin binding protein B (TbpB) from serogroup B Neisseria meningitidis 5BQ5 ; 2.1 ; Crystal structure of the IstB AAA+ domain bound to ADP-BeF3 3S9K ; 2.354 ; Crystal structure of the Itk SH2 domain. 7YW5 ; 2.77 ; Crystal Structure of the ITS1 processing by human ribonuclease ISG20L2 with mutation D327A 6NS9 ; 1.95 ; Crystal structure of the IVR-165 (H3N2) influenza virus hemagglutinin apo form 6NSA ; 1.95 ; Crystal structure of the IVR-165 (H3N2) influenza virus hemagglutinin in complex with 3'-SLNLN 6NSB ; 1.75 ; Crystal structure of the IVR-165 (H3N2) influenza virus hemagglutinin in complex with 6'-SLNLN 4FVP ; 2.01 ; Crystal structure of the Jak2 pseudokinase domain (apo form) 4FVQ ; 1.75 ; Crystal structure of the Jak2 pseudokinase domain (Mg-ATP-bound form) 4FVR ; 2.0 ; Crystal structure of the Jak2 pseudokinase domain mutant V617F (Mg-ATP-bound form) 4Z16 ; 2.9 ; Crystal Structure of the Jak3 Kinase Domain Covalently Bound to N-(3-(((5-chloro-2-((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)amino)methyl)phenyl)acrylamide 1YVJ ; 2.55 ; Crystal structure of the Jak3 kinase domain in complex with a staurosporine analogue 3P54 ; 2.097 ; Crystal Structure of the Japanese Encephalitis Virus Envelope Protein, strain SA-14-14-2. 4LIF ; 2.6 ; Crystal structure of the JCV large T-antigen origin binding domain 4LMD ; 1.5 ; Crystal structure of the JCV large t-antigen origin binding domain 4NBP ; 1.315 ; Crystal structure of the JCV large T-antigen origin binding domain 5HHM ; 2.5 ; Crystal Structure of the JM22 TCR in complex with HLA-A*0201 in complex with M1-F5L 5HHO ; 2.95 ; Crystal Structure of the JM22 TCR in complex with HLA-A*0201 in complex with M1-G4E 6YDV ; 2.07 ; Crystal Structure of the Jmjc Domain of Human JMJD1B in complex with FM001511a from the DSPL fragment library 2YPD ; 2.1 ; Crystal structure of the Jumonji domain of human Jumonji domain containing 1C protein 2H7H ; 2.3 ; Crystal structure of the JUN BZIP homodimer complexed with AP-1 DNA 1JNM ; 2.2 ; Crystal Structure of the Jun/CRE Complex 1IXF ; 2.6 ; Crystal Structure of the K intermediate of bacteriorhodopsin 7Z0C ; 1.53 ; Crystal structure of the K state of bacteriorhodopsin at 1.53 Angstrom resolution 7W75 ; 3.2 ; Crystal structure of the K. lactis Bre1 RBD in complex with Rad6, crystal form I 7W76 ; 3.05 ; Crystal structure of the K. lactis Bre1 RBD in complex with Rad6, crystal form II 6L8N ; 3.6 ; Crystal structure of the K. lactis Rad5 6L8O ; 3.3 ; Crystal structure of the K. lactis Rad5 (Hg-derivative) 5I8I ; 6.5 ; Crystal Structure of the K. lactis Urea Amidolyase 6WII ; 1.85 ; Crystal structure of the K. pneumoniae LpxH/JH-LPH-41 complex 3RC9 ; 1.91 ; Crystal Structure of the K102A mutant of KijD10, a 3-ketoreductase from Actinomadura kijaniata in complex with TDP-benzene and NADP 3RCB ; 2.49 ; Crystal structure of the K102E mutant of KijD10, a 3-ketoreductase from Actinomadura kijaniata in complex with TDP-benzene and NADP 3VSD ; 2.09 ; Crystal Structure of the K127A Mutant of O-Phosphoserine Sulfhydrylase Complexed with External Schiff Base of Pyridoxal 5'-Phosphate with O-Acetyl-L-Serine 3VSC ; 2.07 ; Crystal Structure of the K127A Mutant of O-Phosphoserine Sulfhydrylase Complexed with External Schiff Base of Pyridoxal 5'-Phosphate with O-Phospho-L-Serine 1PE0 ; 1.7 ; Crystal structure of the K130R mutant of human DJ-1 3SM4 ; 1.88 ; Crystal Structure of the K131A Mutant of Lambda Exonuclease in Complex with a 5'-Phosphorylated 14-mer/12-mer Duplex and Magnesium 1R6W ; 1.62 ; Crystal structure of the K133R mutant of o-Succinylbenzoate synthase (OSBS) from Escherichia coli. Complex with SHCHC 1KG4 ; 1.6 ; Crystal structure of the K142A mutant of E. coli MutY (core fragment) 1KG5 ; 1.35 ; Crystal structure of the K142Q mutant of E.coli MutY (core fragment) 1KG6 ; 1.5 ; Crystal structure of the K142R mutant of E.coli MutY (core fragment) 4F6E ; 1.6 ; Crystal Structure of the K182R, A183P mutant manganese superoxide dismutase from Sacchromyces cerevisiae 4GUN ; 1.94 ; Crystal Structure of the K184R, L185P mutant manganese superoxide dismutase from Candida albicans cytosol 3ODS ; 1.9 ; Crystal structure of the K185A mutant of the N-terminal domain of human Symplekin 1PU2 ; 2.06 ; Crystal Structure of the K246R Mutant of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae 2QJM ; 2.2 ; Crystal structure of the K271E mutant of Mannonate dehydratase from Novosphingobium aromaticivorans complexed with Mg and D-mannonate 7X5D ; 1.82 ; Crystal Structure of the K316C mutant of Human Lamin A/C Coil 2 (residues 244-340) 4N0E ; 2.1 ; Crystal structure of the K345L variant of the Gi alpha1 subunit bound to GDP 4N0D ; 1.55 ; Crystal structure of the K345L variant of the Gi alpha1 subunit bound to GTPgammaS 1LUZ ; 1.8 ; Crystal Structure of the K3L Protein From Vaccinia Virus (Wisconsin Strain) 7NX7 ; 2.3 ; Crystal structure of the K417N mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 7NX8 ; 1.95 ; Crystal structure of the K417T mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 1D6S ; 2.3 ; CRYSTAL STRUCTURE OF THE K41A MUTANT OF O-ACETYLSERINE SULFHYDRYLASE COMPLEXED IN EXTERNAL ALDIMINE LINKAGE WITH METHIONINE 4I69 ; 1.79 ; Crystal structure of the K463A mutant of the RRM domain of RNA helicase HERA from T. thermophilus 4XMI ; 1.97 ; Crystal structure of the K499G mutant of NanB sialidase from Streptococcus pneumoniae 4XMA ; 2.09 ; Crystal structure of the K499G mutant of NanB sialidase from streptococcus pneumoniae in complex with Optactin 1O9N ; 2.0 ; Crystal structure of the K62A mutant of Malonamidase E2 from Bradyrhizobium japonicum 3PAE ; 2.1 ; Crystal structure of the K84D mutant of OXA-24/40 in complex with doripenem 8H28 ; 2.06 ; Crystal structure of the K87V mutant of cytochrome c' from Shewanella benthica DB6705 3GDM ; 1.6 ; Crystal structure of the K93R mutant of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae 5WI2 ; 2.495 ; Crystal structure of the KA1 domain from human Chk1 4E0X ; 2.0 ; Crystal structure of the kainate receptor GluK1 ligand-binding domain in complex with kainate in the absence of glycerol 6F28 ; 2.4 ; Crystal structure of the kainate receptor GluK3 ligand binding domain in complex with (S)-1-[2'-Amino-2'-carboxyethyl]-6-methyl-5,7-dihydropyrrolo[3,4-d]pyrimidin-2,4(1H,3H)-dione at resolution 2.4A 6F29 ; 2.6 ; Crystal structure of the kainate receptor GluK3 ligand binding domain in complex with (S)-1-[2-Amino-2-carboxyethyl]-5,7-dihydrothieno[3,4-d]pyrimidin-2,4(1H,3H)-dione at resolution 2.6A 3S9E ; 1.6 ; Crystal structure of the kainate receptor GluK3 ligand binding domain in complex with (S)-glutamate 4MH5 ; 1.65 ; Crystal structure of the kainate receptor GluK3 ligand binding domain in complex with (S)-glutamate 4E0W ; 2.3501 ; Crystal structure of the kainate receptor GluK3 ligand binding domain in complex with kainate 4NWD ; 2.6 ; Crystal structure of the kainate receptor GluK3 ligand-binding domain in complex with the agonist (2S,4R)-4-(3-Methylamino-3-oxopropyl)glutamic acid at 2.6 A resolution 4G8N ; 2.3 ; Crystal structure of the kainate receptor GluK3 ligand-binding domain in complex with the agonist G8M 4IGR ; 2.65 ; Crystal structure of the kainate receptor GluK3 ligand-binding domain in complex with the agonist ZA302 8BSU ; 2.9 ; Crystal structure of the kainate receptor GluK3-H523A ligand binding domain in complex with kainate and the positive allosteric modulator BPAM344 at 2.9A resolution 8BST ; 2.7 ; Crystal structure of the kainate receptor GluK3-H523A ligand binding domain in complex with kainate at 2.7A resolution 5IKB ; 2.05 ; Crystal structure of the kainate receptor GluK4 ligand binding domain in complex with kainate 1YCJ ; 1.95 ; Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate 8IW0 ; 2.1 ; Crystal structure of the KANK1/liprin-beta1 complex 4CY1 ; 1.5 ; Crystal structure of the KANSL1-WDR5 complex. 4CY2 ; 2.0 ; Crystal structure of the KANSL1-WDR5-KANSL2 complex. 6QU1 ; 3.7 ; Crystal structure of the KAP1 RBCC domain in complex with the SMARCAD1 CUE1 domain at 3.7 angstrom resolution. 6H3A ; 5.505 ; Crystal structure of the KAP1 RBCC domain in complex with the SMARCAD1 CUE1 domain. 7Z36 ; 2.8 ; Crystal structure of the KAP1 tripartite motif in complex with the ZNF93 KRAB domain 5OCR ; 1.66 ; Crystal structure of the kappa-carrageenase zobellia_236 from Zobellia galactanivorans 4ZJ7 ; 2.4 ; Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p 5H2V ; 2.8 ; Crystal structure of the karyopherin Kap121p bound to the SUMO protease Ulp1p 5H2X ; 2.2 ; Crystal structure of the karyopherin Kap60p bound to the SUMO protease Ulp1p (150-172) 5H2W ; 2.5 ; Crystal structure of the karyopherin Kap60p bound to the SUMO protease Ulp1p (150-340) 7Y43 ; 1.5 ; Crystal structure of the KAT6A WH domain and its bound double stranded DNA 6D42 ; 1.75014 ; Crystal structure of the KCa3.1 C-terminal four-helix bundle (with copper) 2I2R ; 3.35 ; Crystal structure of the KChIP1/Kv4.3 T1 complex 2HVK ; 1.9 ; crystal structure of the KcsA-Fab-TBA complex in high K+ 6M8S ; 3.71 ; Crystal structure of the KCTD12 H1 domain in complex with Gbeta1gamma2 subunits 6M8R ; 3.2 ; Crystal structure of the KCTD16 BTB domain in complex with GABAB2 peptide 7OXE ; 2.283 ; Crystal structure of the KDEL receptor bound to HDEF peptide at pH 6.0 6Y7V ; 2.241 ; Crystal structure of the KDEL receptor bound to HDEL peptide at pH 6.0 7OYE ; 2.62 ; Crystal structure of the KDEL receptor bound to HDEL peptide at pH 7.0 6ZXR ; 2.31 ; Crystal structure of the KDEL receptor bound to RDEL peptide at pH 6.0 6I6J ; 2.23 ; Crystal structure of the KDEL receptor bound to synthetic nanobody. 6I6H ; 2.0 ; Crystal structure of the KDEL receptor in the peptide bound state 6I6B ; 2.59 ; Crystal structure of the KDEL receptor in the peptide free state. 5Y9X ; 1.39 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with alphaketoglutarate and coblat(II) 5YVZ ; 1.6 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with alphaketoglutarate and Fe(III) 5Y9I ; 1.901 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with Co(II) 5YKA ; 1.448 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with cobalt(II) 5Y9Y ; 1.599 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with succinate and Co(II) 5YW0 ; 1.49 ; Crystal structure of the Kdo hydroxylase KdoO, a non-heme Fe(II) alphaketoglutarate dependent dioxygenase in complex with succinate and Fe(III) 6XVJ ; 1.78 ; Crystal structure of the KDR (VEGFR2) kinase domain in complex with a type-II inhibitor 6XVK ; 1.99 ; Crystal structure of the KDR (VEGFR2) kinase domain in complex with a type-II inhibitor bearing an acrylamide 7ECA ; 2.00006 ; Crystal structure of the Keap1 complex with a peptide base on ETGE motif. 5X54 ; 2.3 ; Crystal structure of the Keap1 Kelch domain in complex with a tetrapeptide 7YEN ; 2.8 ; Crystal structure of the Keap1 Kelch domain in complex with Caffeic acid 2DYH ; 1.9 ; Crystal structure of the Keap1 protein in complexed with the N-terminal region of the Nrf2 transcription factor 3ZGC ; 2.2 ; crystal structure of the KEAP1-NEH2 complex 6TG8 ; 2.75 ; Crystal structure of the Kelch domain in complex with 11 amino acid peptide (model of the ETGE loop) 7QZQ ; 1.88 ; Crystal structure of the kelch domain of human KBTBD12 4ASC ; 1.78 ; Crystal structure of the Kelch domain of human KBTBD5 1U6D ; 1.85 ; Crystal structure of the Kelch domain of human Keap1 6ROG ; 2.16 ; Crystal Structure of the KELCH domain of human KEAP1 2VPJ ; 1.85 ; Crystal structure of the Kelch domain of human KLHL12 6TTK ; 2.383 ; Crystal structure of the kelch domain of human KLHL12 in complex with DVL1 peptide 8OIO ; 1.954 ; Crystal structure of the kelch domain of human KLHL12 in complex with PLEKHA4 peptide 6HRL ; 2.6 ; Crystal structure of the Kelch domain of human KLHL17 2XN4 ; 1.99 ; Crystal structure of the kelch domain of human KLHL2 (Mayven) 8CIA ; 3.72 ; Crystal structure of the kelch domain of human KLHL20 6GY5 ; 1.086 ; Crystal structure of the kelch domain of human KLHL20 in complex with DAPK1 peptide 3II7 ; 1.63 ; Crystal structure of the kelch domain of human KLHL7 5YY8 ; 1.979 ; Crystal structure of the Kelch domain of human NS1-BP 2FLU ; 1.5 ; Crystal Structure of the Kelch-Neh2 Complex 4OX0 ; 2.49 ; Crystal structure of the keratin-like domain from the MADS transcription factor Sepallata 3 8UJW ; 1.72 ; Crystal structure of the KETc7 antigen from Taenia solium 8EP7 ; 2.2 ; Crystal Structure of the Ketol-acid Reductoisomerase from Bacillus anthracis in complex with NADP 5X8H ; 1.85 ; Crystal structure of the ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 6IXM ; 1.601 ; Crystal structure of the ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 complexed with NAD 5GK1 ; 1.83 ; Crystal structure of the ketosynthase StlD complexed with substrate 6AVG ; 2.6 ; Crystal structure of the KFJ37 TCR-NY-ESO-1-HLA-B*07:02 complex 6AT6 ; 1.417 ; Crystal structure of the KFJ5 TCR 6AVF ; 2.028 ; Crystal structure of the KFJ5 TCR-NY-ESO-1-HLA-B*07:02 complex 5WWW ; 1.798 ; Crystal structure of the KH1 domain of human RNA-binding E3 ubiquitin-protein ligase MEX-3C complex with RNA 2QND ; 1.9 ; Crystal Structure of the KH1-KH2 domains from human Fragile X Mental Retardation Protein 5WWZ ; 2.5 ; Crystal structure of the KH2 domain of human RNA-binding E3 ubiquitin-protein ligase MEX-3C 5WWX ; 2.0 ; Crystal structure of the KH2 domain of human RNA-binding E3 ubiquitin-protein ligase MEX-3C complex with RNA 5GSZ ; 2.72 ; Crystal Structure of the KIF19A Motor Domain Complexed with Mg-ADP 2ZFM ; 2.31 ; Crystal Structure of the Kif1A Motor Domain After Mg Release 2ZFI ; 1.55 ; Crystal Structure of the Kif1A Motor Domain Before Mg Release 1VFX ; 2.55 ; Crystal Structure of the Kif1A Motor Domain Complexed With ADP-Mg-AlFx 1VFZ ; 2.24 ; Crystal Structure of the Kif1A Motor Domain Complexed With ADP-Mg-VO4 1I5S ; 2.2 ; CRYSTAL STRUCTURE OF THE KIF1A MOTOR DOMAIN COMPLEXED WITH MG-ADP 1I6I ; 2.0 ; CRYSTAL STRUCTURE OF THE KIF1A MOTOR DOMAIN COMPLEXED WITH MG-AMPPCP 1VFV ; 1.85 ; Crystal Structure of the Kif1A Motor Domain Complexed With Mg-AMPPNP 1VFW ; 2.3 ; Crystal Structure of the Kif1A Motor Domain Complexed With Mg-AMPPNP 2ZFJ ; 3.2 ; Crystal Structure of the Kif1A Motor Domain during Mg release: Mg-releasing Transition-1 2ZFK ; 3.61 ; Crystal Structure of the Kif1A Motor Domain during Mg release: Mg-releasing Transition-2 2ZFL ; 2.7 ; Crystal Structure of the Kif1A Motor Domain during Mg release: Mg-releasing Transition-3 2HEH ; 2.15 ; Crystal Structure of the KIF2C motor domain 3ZFC ; 1.8 ; Crystal Structure of the Kif4 Motor Domain Complexed With Mg-AMPPNP 3ZFD ; 1.71 ; Crystal Structure of the Kif4 Motor Domain Complexed With Mg-AMPPNP 3X2T ; 2.7 ; Crystal Structure of the KIF5C Motor Domain With ADP 3WRD ; 2.86 ; Crystal Structure of the KIF5C Motor Domain Without Any Nucleotide 5WDE ; 1.85 ; Crystal structure of the KIFC3 motor domain in complex with ADP 7WJ6 ; 2.55 ; Crystal Structure of the Kinase Domain of a Class III Lanthipeptide Synthetase CurKC 8R7G ; 2.09 ; Crystal structure of the kinase domain of ACVR1 (ALK2) with M4K2234 6UNP ; 2.3 ; Crystal structure of the kinase domain of BMPR2-D485G 3G2F ; 2.35 ; Crystal structure of the kinase domain of bone morphogenetic protein receptor type II (BMPR2) at 2.35 A resolution 8S9F ; 2.6 ; Crystal structure of the kinase domain of Bruton's Tyrosine Kinase bound to dasatinib 4OTF ; 1.95 ; Crystal structure of the kinase domain of Bruton's Tyrosine kinase with GDC0834 4Y95 ; 1.599 ; Crystal structure of the kinase domain of Bruton's tyrosine kinase with mutations in the activation loop 4CZT ; 2.3 ; Crystal structure of the kinase domain of CIPK23 4CZU ; 1.9 ; Crystal structure of the kinase domain of CIPK23 T190D mutant 4D28 ; 3.3 ; Crystal structure of the kinase domain of CIPK24/SOS2 2WEI ; 1.65 ; Crystal structure of the kinase domain of Cryptosporidium parvum calcium dependent protein kinase in complex with 3-MB-PP1 7TVD ; 2.96 ; Crystal structure of the kinase domain of EGFR exon-19 (del-747-749) mutant 4NT4 ; 2.86 ; Crystal structure of the kinase domain of Gilgamesh isoform I from Drosophila melanogaster 2AX4 ; 2.5 ; Crystal structure of the kinase domain of human 3'-phosphoadenosine 5'-phosphosulphate synthetase 2 4DBN ; 3.15 ; Crystal Structure of the Kinase domain of Human B-raf with a [1,3]thiazolo[5,4-b]pyridine derivative 6XV9 ; 3.38 ; Crystal structure of the kinase domain of human c-KIT in complex with a type-II inhibitor 6XVA ; 2.3 ; Crystal structure of the kinase domain of human c-KIT in complex with a type-II inhibitor bearing an acrylamide 6XVB ; 2.15 ; Crystal structure of the kinase domain of human c-KIT with a cyclic imidate inhibitor covalently bound to Cys788 3PP0 ; 2.25 ; Crystal Structure of the Kinase domain of Human HER2 (erbB2). 4P90 ; 2.49 ; Crystal structure of the kinase domain of human PAK1 in complex with compound 15 6ES0 ; 2.38 ; Crystal structure of the kinase domain of human RIPK2 in complex with the activation loop targeting inhibitor CS-R35 5CWZ ; 2.9 ; Crystal structure of the kinase domain of human TRAF2 and NCK-interacting protein kinase 5AX9 ; 2.4 ; Crystal structure of the kinase domain of human TRAF2 and NCK-interacting protein kinase in complex with compund 9 2X7F ; 2.8 ; Crystal structure of the kinase domain of human Traf2- and Nck- interacting Kinase with Wee1Chk1 inhibitor 3VNT ; 1.64 ; Crystal Structure of the Kinase domain of Human VEGFR2 with a [1,3]thiazolo[5,4-b]pyridine derivative 3VO3 ; 1.52 ; Crystal Structure of the Kinase domain of Human VEGFR2 with imidazo[1,2-b]pyridazine derivative 3NEY ; 2.26 ; Crystal structure of the kinase domain of MPP1/p55 3ZZW ; 2.9 ; Crystal structure of the kinase domain of ROR2 8E4T ; 1.95 ; Crystal structure of the kinase domain of RTKC8 from the choanoflagellate Monosiga brevicollis 6EIX ; 2.3 ; Crystal structure of the kinase domain of the Q207E mutant of ACVR1 (ALK2) in complex with a 2-aminopyridine inhibitor K02288 5D7A ; 2.9 ; Crystal structure of the kinase domain of TRAF2 and NCK-interacting protein kinase with NCB-0846 3H9R ; 2.35 ; Crystal structure of the kinase domain of type I activin receptor (ACVR1) in complex with FKBP12 and dorsomorphin 6CN9 ; 1.8 ; Crystal structure of the Kinase domain of WNK1 7WJ7 ; 2.55 ; Crystal Structure of the Kinase Domain with Adenosine of a Class III Lanthipeptide Synthetase CurKC 3FE3 ; 1.9 ; Crystal structure of the kinase MARK3/Par-1: T211A-S215A double mutant 7WCF ; 1.3636 ; Crystal structure of the kinase with AMP-PNP 3U06 ; 2.35 ; Crystal structure of the kinesin-14 NcdG347D 5DJN ; 2.82 ; Crystal structure of the Kinesin-3 KIF13A NC-CC1 mutant - Deletion of P390 4KR1 ; 2.5 ; Crystal structure of the kinetechore protein Iml3 from budding yeast 5LSI ; 2.002 ; CRYSTAL STRUCTURE OF THE KINETOCHORE MIS12 COMPLEX HEAD2 SUBDOMAIN CONTAINING DSN1 AND NSL1 FRAGMENTS 6YPC ; 2.9 ; Crystal structure of the kinetochore subunits H/I/K/T/W penta-complex from S. cerevisiae at 2.9 angstroms 8QOH ; 2.2 ; Crystal structure of the kinetoplastid kinetochore protein KKT14 C-terminal domain from Apiculatamorpha spiralis 8A0K ; 2.92 ; crystal structure of the kinetoplastid kinetochore protein Trypanosoma brucei KKT3 Divergent Polo-Box domain 8A0J ; 2.2 ; Crystal structure of the kinetoplastid kinetochore protein Trypanosoma congolense KKT2 divergent polo-box domain 3AT9 ; 3.3 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM barium chloride and 10 mM magnesium chloride) 3ATA ; 3.49 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM barium chloride and 10 mM Spermine) 3AT8 ; 3.3 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM barium chloride) 3ATD ; 3.01 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM Gadolinium chloride and 10 mM magnesium chloride) 3ATB ; 3.51 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM Gadolinium chloride) 3ATE ; 3.2 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 10 mM praseodymium (III) acetate) 3ATF ; 2.95 ; Crystal Structure of the Kir3.2 Cytoplasmic Domain (Na+-free crystal soaked in 200 mM Cesium chloride) 4X9U ; 2.1 ; Crystal structure of the kiwifruit allergen Act d 5 5SVH ; 2.05 ; Crystal structure of the KIX domain of CBP in complex with a MLL/c-Myb chimera 4BK0 ; 1.9 ; Crystal structure of the KIX domain of human RECQL5 (domain-swapped dimer) 5OJ8 ; 2.247 ; Crystal structure of the KLC1-TPR domain ([A1-B5] fragment) 7AI4 ; 2.795 ; Crystal structure of the KLC1-TPR domain truncated from its nonTPR region ([A1-B6]-Delta-nonTPR fragment) 8BKE ; 2.0 ; Crystal structure of the Klebsiella phage KP34p57 capsular depolymerase 6PH9 ; 1.92 ; Crystal Structure of the Klebsiella pneumoniae LpxH-lipid X complex 6PJ3 ; 2.25 ; Crystal structure of the Klebsiella pneumoniae LpxH/JH-LPH-33 complex 3ZGX ; 3.4 ; Crystal structure of the kleisin-N SMC interface in prokaryotic condensin 3VA7 ; 2.6 ; Crystal structure of the Kluyveromyces lactis Urea Carboxylase 4LEJ ; 2.402 ; Crystal Structure of the Korean pine (Pinus koraiensis) vicilin 5OHQ ; 1.098 ; Crystal structure of the KOW6-KOW7 domain of human DSIF 5OHO ; 1.601 ; Crystal structure of the KOWx-KOW4 domain of human DSIF 5UJ3 ; 1.45 ; Crystal structure of the KPC-2 beta-lactamase complexed with hydrolyzed cefotaxime 5UJ4 ; 1.4 ; Crystal structure of the KPC-2 beta-lactamase complexed with hydrolyzed faropenem 3E2K ; 2.1 ; Crystal Structure of the KPC-2 Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) 3E2L ; 1.87 ; Crystal Structure of the KPC-2 Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) 2OV5 ; 1.85 ; Crystal structure of the KPC-2 carbapenemase 8G2R ; 1.28 ; CRYSTAL STRUCTURE OF THE KPC-2 D179N VARIANT IN COMPLEX WITH AVIBACTAM 8G2T ; 1.26 ; CRYSTAL STRUCTURE OF THE KPC-2 D179N VARIANT IN COMPLEX WITH RELEBACTAM (IMINE HYDROLYSIS INTERMEDIATE) 1TPK ; 2.4 ; CRYSTAL STRUCTURE OF THE KRINGLE-2 DOMAIN OF TISSUE PLASMINOGEN ACTIVATOR AT 2.4-ANGSTROMS RESOLUTION 3U7D ; 2.49 ; Crystal structure of the KRIT1/CCM1 FERM domain in complex with the heart of glass (HEG1) cytoplasmic tail 3ZGH ; 2.0 ; Crystal structure of the KRT10-binding region domain of the pneumococcal serine rich repeat protein PsrP 3ZGI ; 2.25 ; Crystal structure of the KRT10-binding region domain of the pneumococcal serine rich repeat protein PsrP 3PSX ; 1.9 ; Crystal structure of the KT2 mutant of cytochrome P450 BM3 4D4O ; 2.897 ; Crystal Structure of the Kti11 Kti13 heterodimer Spacegroup P64 4D4P ; 2.999 ; Crystal Structure of the Kti11 Kti13 heterodimer Spacegroup P65 1JEQ ; 2.7 ; Crystal Structure of the Ku Heterodimer 1JEY ; 2.5 ; Crystal Structure of the Ku heterodimer bound to DNA 3UOU ; 2.0 ; Crystal structure of the Kunitz-type protease inhibitor ShPI-1 Lys13Leu mutant in complex with pancreatic elastase 7VVH ; 2.296 ; Crystal Structure of the Kv7.1 C-terminal Domain in Complex with Calmodulin disease mutation E140G 7VUO ; 2.679 ; Crystal Structure of the Kv7.1 C-terminal Domain in Complex with Calmodulin disease mutation F141L 7VVD ; 3.134 ; Crystal Structure of the Kv7.1 C-terminal Domain in Complex with Calmodulin disease mutation Q135P 4UMO ; 3.0 ; Crystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with Calmodulin 4V0C ; 2.86 ; Crystal Structure of the Kv7.1 proximal C-terminal Domain in Complex with Calmodulin 1UCQ ; 2.4 ; Crystal structure of the L intermediate of bacteriorhodopsin 3FWY ; 1.63 ; Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase (BchL) with MgADP bound: a homologue of the nitrogenase Fe protein 7Z0D ; 1.2 ; Crystal structure of the L state of bacteriorhodopsin at 1.20 Angstrom resolution 4LPQ ; 1.37 ; Crystal structure of the L,D-transpeptidase (residues 123-326) from Xylanimonas cellulosilytica DSM 15894 3UMC ; 2.15 ; Crystal Structure of the L-2-Haloacid Dehalogenase PA0810 3UMB ; 2.2 ; Crystal Structure of the L-2-Haloacid Dehalogenase RSc1362 5J4N ; 2.594 ; Crystal structure of the L-arginine/agmatine antiporter AdiC in complex with agmatine at 2.6 Angstroem resolution 5J4I ; 2.207 ; Crystal Structure of the L-arginine/agmatine antiporter from E. coli at 2.2 Angstroem resolution 2YLN ; 1.12 ; Crystal structure of the L-cystine solute receptor of Neisseria gonorrhoeae in the closed conformation 3ZSF ; 2.32 ; Crystal structure of the L-cystine solute receptor of Neisseria gonorrhoeae in the unliganded open conformation 6K1F ; 2.5 ; Crystal structure of the L-fucose isomerase from Raoultella sp. 6K1G ; 2.96 ; Crystal structure of the L-fucose isomerase soaked with Mn2+ from Raoultella sp. 2IRP ; 2.4 ; Crystal structure of the l-fuculose-1-phosphate aldolase (aq_1979) from aquifex aeolicus VF5 3WEU ; 1.93 ; Crystal structure of the L-Lys epsilon-oxidase from Marinomonas mediterranea 7PD1 ; 1.27 ; Crystal structure of the L-tyrosine-bound radical SAM tyrosine lyase ThiH (2-iminoacetate synthase) from Thermosinus carboxydivorans 8BZ8 ; 2.52 ; Crystal structure of the L. monocytogenes RmlT D198A variant in complex with TDP-rhamnose 8BZ5 ; 2.3 ; Crystal structure of the L. monocytogenes RmlT in complex with HEPES 8BZ7 ; 2.2 ; Crystal structure of the L. monocytogenes RmlT in complex with TDP-rhamnose 8BZ6 ; 2.4 ; Crystal structure of the L. monocytogenes RmlT in complex with UDP-glucose 7R49 ; 1.88 ; Crystal structure of the L. plantarum acyl carrier protein synthase (AcpS)in complex with D-alanyl carrier protein (DltC1) 7R27 ; 2.01 ; Crystal structure of the L. plantarum D-alanine ligase DltA 6CB3 ; 1.891 ; Crystal structure of the L.Lactis YkoY riboswitch bound to cadmium 4F1O ; 2.3 ; Crystal Structure of the L1180T mutant Roco4 Kinase Domain from D. discoideum bound to AppCp 7MFQ ; 1.95 ; crystal structure of the L136 aminotransferase from acanthamoeba polyphaga mimivirus in complex with the TDP-viosamine external aldimine 7MFP ; 1.85 ; crystal structure of the L136 aminotransferase K185A from acanthamoeba polyphaga mimivirus in the presence of the UDP-viosamine external aldimine 4RP5 ; 1.65 ; Crystal Structure of the L27 domain of Discs Large 1 (target ID NYSGRC-010766) from Drosophila melanogaster (space group P21) 4RP4 ; 1.42 ; Crystal Structure of the L27 domain of Discs Large 1 (target ID NYSGRC-010766) from Drosophila melanogaster (space group P212121) 4RP3 ; 1.36 ; Crystal Structure of the L27 Domain of Discs Large 1 (target ID NYSGRC-010766) from Drosophila melanogaster bound to a potassium ion (space group P212121) 3QLG ; 2.75 ; Crystal structure of the L317I mutant of the C-src tyrosine kinase domain complexed with dasatinib 3QLF ; 2.75 ; Crystal structure of the L317I mutant of the C-src tyrosine kinase domain complexed with pyrazolopyrimidine 5 3OF0 ; 2.7 ; crystal structure of the L317I mutant of the chicken c-Src tyrosine kinase domain 3OEZ ; 2.4 ; crystal structure of the L317I mutant of the chicken c-Src tyrosine kinase domain complexed with imatinib 5KQI ; 1.87 ; Crystal structure of the L326D variant of catalase-peroxidase from B. pseudomallei 8DWR ; 2.1 ; Crystal structure of the L333V variant of catalase-peroxidase from Mycobacterium tuberculosis 1GAO ; 2.2 ; CRYSTAL STRUCTURE OF THE L44S MUTANT OF FERREDOXIN I 7ORB ; 2.5 ; Crystal structure of the L452R mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-75 and COVOX-253 Fabs 5Y69 ; 1.85 ; Crystal structure of the L52M mutant of AcrIIA1 3WJT ; 1.55 ; Crystal structure of the L68D variant of mLolB 3WJU ; 2.5 ; Crystal structure of the L68D variant of mLolB from Escherichia coli 3WJV ; 2.4 ; Crystal structure of the L68E variant of mLolB 4XBX ; 1.53 ; Crystal Structure of the L74F/M78F/L103V/L114V/I116V/F139V/L147V mutant of LEH 4XBT ; 1.7 ; Crystal Structure of the L74F/M78F/L103V/L114V/I116V/F139V/L147V mutant of LEH complexed with (S,S)-cyclohexanediol 4XDW ; 2.05 ; Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH 4XDV ; 2.25 ; Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclohexanediol 4XBY ; 2.3 ; Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxide 5YQT ; 2.3 ; Crystal Structure of the L74F/M78V/I80V/L114F mutant of LEH complexed with cyclopentene oxide 7JID ; 1.45 ; Crystal structure of the L780 UDP-rhamnose synthase from Acanthamoeba polyphaga mimivirus 4G4E ; 2.888 ; Crystal structure of the L88A mutant of HslV from Escherichia coli 5B4Y ; 1.9 ; Crystal structure of the LA12 fragment of ApoER2 2PE5 ; 3.5 ; Crystal Structure of the Lac Repressor bound to ONPG in repressed state 1EFA ; 2.6 ; CRYSTAL STRUCTURE OF THE LAC REPRESSOR DIMER BOUND TO OPERATOR AND THE ANTI-INDUCER ONPF 2PUA ; 2.9 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUB ; 2.7 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUC ; 2.6 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUD ; 2.6 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUE ; 2.7 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUF ; 3.0 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 2PUG ; 2.7 ; CRYSTAL STRUCTURE OF THE LACI FAMILY MEMBER, PURR, BOUND TO DNA: MINOR GROOVE BINDING BY ALPHA HELICES 4ND5 ; 2.1 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum 4ND1 ; 2.15 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum complexed with cofactor (b-nicotinamide adenine dinucleotide) and inhibitor (oxamic acid) 4ND3 ; 2.05 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum complexed with substrate (l-lactic acid) and cofactor (b-nicotinamide adenine dinucleotide) 2FN7 ; 2.3 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum complexed with substrate (lactic acid) and cofactor (b-nicotinamide adenine dinucleotide) 4ND4 ; 2.2 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum complexed with substrate (pyruvic acid) and cofactor (b-nicotinamide adenine dinucleotide) 4ND2 ; 2.0 ; Crystal structure of the lactate dehydrogenase from cryptosporidium parvum complexed with substrate (pyruvic acid) and cofactor analog (3-acetylpyridine adenine dinucleotide) 8AB3 ; 2.616 ; Crystal Structure of the Lactate Dehydrogenase of Cyanobacterium Aponinum in complex with oxamate, NADH and FBP. 8AB2 ; 2.1 ; Crystal Structure of the Lactate Dehydrogenase of Cyanobacterium Aponinum in its apo form. 3PF8 ; 2.34 ; Crystal structure of the Lactobacillus johnsonii cinnamoyl esterase LJ0536 3PF9 ; 1.75 ; Crystal structure of the Lactobacillus johnsonii cinnamoyl esterase LJ0536 S106A mutant 3S2Z ; 1.76 ; Crystal structure of the Lactobacillus johnsonii cinnamoyl esterase LJ0536 S106A mutant in complex with caffeic acid 3PFB ; 1.58 ; Crystal structure of the Lactobacillus johnsonii cinnamoyl esterase LJ0536 S106A mutant in complex with ethylferulate 3QM1 ; 1.817 ; CRYSTAL STRUCTURE OF THE LACTOBACILLUS JOHNSONII CINNAMOYL ESTERASE LJ0536 S106A MUTANT IN COMPLEX WITH ETHYLFERULATE, Form II 3PFC ; 1.75 ; Crystal structure of the Lactobacillus johnsonii cinnamoyl esterase LJ0536 S106A mutant in complex with ferulic acid 3PNZ ; 1.5983 ; Crystal structure of the lactonase Lmo2620 from Listeria monocytogenes 2PAF ; 3.5 ; Crystal Structure of the Lactose Repressor bound to anti-inducer ONPF in induced state 1P7D ; 2.95 ; Crystal structure of the Lambda Integrase (residues 75-356) bound to DNA 5LM7 ; 3.35 ; Crystal structure of the lambda N-Nus factor complex 3BDN ; 3.909 ; Crystal Structure of the Lambda Repressor 1F39 ; 1.9 ; CRYSTAL STRUCTURE OF THE LAMBDA REPRESSOR C-TERMINAL DOMAIN 1KCA ; 2.91 ; Crystal Structure of the lambda Repressor C-terminal Domain Octamer 2OG0 ; 1.9 ; Crystal Structure of the Lambda Xis-DNA complex 3AZX ; 1.8 ; Crystal structure of the laminarinase catalytic domain from Thermotoga maritima MSB8 3AZY ; 1.65 ; Crystal structure of the laminarinase catalytic domain from Thermotoga maritima MSB8 3B01 ; 1.87 ; Crystal structure of the laminarinase catalytic domain from Thermotoga maritima MSB8 3B00 ; 1.74 ; Crystal structure of the laminarinase catalytic domain from Thermotoga maritima MSB8 in complex with cetyltrimethylammonium bromide 3AZZ ; 1.81 ; Crystal structure of the laminarinase catalytic domain from Thermotoga maritima MSB8 in complex with gluconolactone 3GI1 ; 2.45 ; Crystal Structure of the laminin-binding protein Lbp of Streptococcus pyogenes 3WO9 ; 2.3 ; Crystal structure of the lamprey variable lymphocyte receptor C 7V9N ; 1.9 ; Crystal structure of the lanthipeptide zinc-metallopeptidase EryP from saccharopolyspora erythraea in closed state 7V9P ; 1.8 ; Crystal structure of the lanthipeptide zinc-metallopeptidase EryP from saccharopolyspora erythraea in intermediate state 7V9Q ; 2.67 ; Crystal structure of the lanthipeptide zinc-metallopeptidase EryP from saccharopolyspora erythraea in open state 7V9O ; 1.77 ; Crystal structure of the lanthipeptide zinc-metallopeptidase EryP mutant E802R from saccharopolyspora erythraea 3KHW ; 2.1 ; Crystal structure of the large c-terminal domain of polymerase basic protein 2 from influenza virus a/mexico/indre4487/2009(h1n1) 3KC6 ; 2.05 ; Crystal structure of the large c-terminal domain of polymerase basic protein 2 from influenza virus a/viet nam/1203/2004 (h5n1) 3L56 ; 2.3 ; Crystal structure of the large c-terminal domain of polymerase basic protein 2 from influenza virus a/viet nam/1203/2004 (h5n1) 4DFP ; 2.0 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aqauticus in a ternary complex with 7-(aminopentinyl)-7-deaza-dGTP 4DFJ ; 1.9 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with 5-(aminopentinyl)-dTTP 5E41 ; 1.8 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with 5-(N-(10-hydroxydecanoyl)-aminopentenyl)-2'-deoxyuridine-triphosphate 5SZT ; 1.8 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with 7-(N-(10-hydroxydecanoyl)-aminopentenyl)-7-deaza-2'-dATP 4DF4 ; 2.2 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with 7-(N-(10-hydroxydecanoyl)-aminopentinyl)-7-deaza-2 -dATP 4DF8 ; 2.0 ; Crystal structure of the large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with aminopentinyl-7-deaza-2-dATP 3RTV ; 1.9 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in a closed ternary complex with natural primer/template DNA 5NKL ; 1.7 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in a closed ternary complex with the artificial base pair dDs-dPxTP 3SV3 ; 2.1 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in a closed ternary complex with the artificial base pair dNaM-d5SICSTP 3M8R ; 2.0 ; Crystal structure of the large fragment of DNA polymerase I from Thermus aquaticus in a closed ternary complex with trapped 4'-ethylated dTTP 3M8S ; 2.2 ; Crystal structure of the large fragment of DNA polymerase I from Thermus aquaticus in a closed ternary complex with trapped 4'-methylated dTTP 4C8K ; 2.17 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in a partially closed complex with the artificial base pair d5SICS-dNaMTP 4CCH ; 2.55 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in an open binary complex with d5SICS as templating nucleotide 3SZ2 ; 2.15 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in an open binary complex with dG as templating nucleobase 3SYZ ; 1.952 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in an open binary complex with dNaM as templating nucleobase 3SV4 ; 1.99 ; Crystal structure of the large fragment of DNA polymerase I from Thermus Aquaticus in an open binary complex with dT as templating nucleobase 4DFM ; 1.886 ; Crystal structure of the large fragment of DNA polymerase I from Thermus aquaticus in ternary complex with 5-(aminopentinyl)-2-dCTP 7JSR ; 6.27 ; Crystal structure of the large glutamate dehydrogenase composed of 180 kDa subunits from Mycobacterium smegmatis 4U67 ; 3.65 ; Crystal structure of the large ribosomal subunit (50S) of Deinococcus radiodurans containing a three residue insertion in L22 4WFN ; 3.54 ; Crystal structure of the large ribosomal subunit (50S) of Deinococcus radiodurans containing a three residue insertion in L22 in complex with erythromycin 1NKW ; 3.1 ; Crystal Structure Of The Large Ribosomal Subunit From Deinococcus Radiodurans 1FFK ; 2.4 ; CRYSTAL STRUCTURE OF THE LARGE RIBOSOMAL SUBUNIT FROM HALOARCULA MARISMORTUI AT 2.4 ANGSTROM RESOLUTION 5M1F ; 2.15 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c 5M1P ; 1.1 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c with bound Calcium 5M1O ; 1.6 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c with bound Cobalt 5M1K ; 1.2 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c with bound Magnesium 5M1N ; 1.2 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c with bound Manganese 5M1Q ; 1.45 ; Crystal structure of the large terminase nuclease from thermophilic phage G20c with bound Zinc 4IDH ; 1.69 ; Crystal Structure of the large terminase subunit gp2 of bacterial virus Sf6 4IEI ; 2.09 ; Crystal Structure of the large terminase subunit gp2 of bacterial virus Sf6 complexed with ADP 4IFE ; 3.05 ; Crystal Structure of the large terminase subunit gp2 of bacterial virus Sf6 complexed with ATP 4IEE ; 1.89 ; Crystal Structure of the large terminase subunit gp2 of bacterial virus Sf6 complexed with ATP-r-S 3IT5 ; 2.0 ; Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa 3IT7 ; 2.14 ; Crystal Structure of the LasA virulence factor from Pseudomonas aeruginosa 5OQZ ; 0.806 ; Crystal structure of the lasso peptide rubrivinodin 5JQF ; 0.85 ; Crystal structure of the lasso peptide Sphingopyxin I (SpI) 5AFB ; 2.16 ; Crystal structure of the Latrophilin3 Lectin and Olfactomedin Domains 2HC4 ; 2.2 ; Crystal structure of the LBD of VDR of Danio rerio in complex with calcitriol 8HKH ; 2.7 ; Crystal structure of the LC/A1-DARPin18 complex 3KPR ; 2.6 ; Crystal Structure of the LC13 TCR in complex with HLA B*4405 bound to EEYLKAWTF a mimotope 3KPS ; 2.7 ; Crystal Structure of the LC13 TCR in complex with HLA B*4405 bound to EEYLQAFTY a self peptide from the ABCD3 protein 3TID ; 1.65 ; Crystal structure of the LCMV derived peptide GP34 in complex with the murine mhc class I H-2 Kb 1JPF ; 2.18 ; Crystal Structure Of The LCMV Peptidic Epitope Gp276 In Complex With The Murine Class I Mhc Molecule H-2Db 1FG2 ; 2.754 ; CRYSTAL STRUCTURE OF THE LCMV PEPTIDIC EPITOPE GP33 IN COMPLEX WITH THE MURINE CLASS I MHC MOLECULE H-2DB 1JPG ; 2.2 ; Crystal Structure Of The LCMV Peptidic Epitope Np396 In Complex With The Murine Class I Mhc Molecule H-2Db 3SO6 ; 1.37 ; Crystal structure of the LDL receptor tail in complex with autosomal recessive hypercholesterolemia PTB domain 1IJQ ; 1.5 ; Crystal Structure of the LDL Receptor YWTD-EGF Domain Pair 5U7C ; 1.75 ; Crystal structure of the lead-bound form of MerB formed from diethyllead. 3ZDV ; 1.41 ; Crystal structure of the LecB lectin from Pseudomonas aeruginosa in complex with Methyl 6-(2,4,6-trimethylphenylsulfonylamido)-6-deoxy-alpha-D-mannopyranoside 5A3O ; 1.6 ; Crystal structure of the LecB lectin from Pseudomonas aeruginosa in complex with Methyl 6-(cinnamido)-6-deoxy-alpha-D-mannopyranoside at 1.6 ansgtrom 4UT5 ; 1.75 ; Crystal structure of the LecB lectin from Pseudomonas aeruginosa strain PA7 in complex with lewis a tetrasaccharide 5NWP ; 1.05 ; Crystal Structure of the Lectin Domain From the F17-like Adhesin, UclD 5VQ5 ; 1.6 ; Crystal Structure of the Lectin Domain From the F17-like Adhesin, UclD 4B4Q ; 2.0 ; Crystal Structure of the lectin domain of F18 fimbrial adhesin FedF in complex with blood group A type 1 hexasaccharide 4B4R ; 1.8 ; Crystal Structure of the lectin domain of F18 fimbrial adhesin FedF in complex with blood group B type 1 hexasaccharide 4B4P ; 1.8 ; Crystal Structure of the lectin domain of F18 fimbrial adhesin FedF. 4Z3H ; 1.5 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in complex with 4-methoxyphenyl beta-D-galabiose in space group P21 4Z3G ; 1.45 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in complex with 4-methoxyphenyl beta-D-galabiose in space group P212121 4Z3F ; 1.8 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in complex with SSEA4 in space group P21 4Z3E ; 1.8 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in complex with SSEA4 in space group P212121 4Z3J ; 2.5 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in space group P1 4Z3I ; 1.739 ; Crystal structure of the lectin domain of PapG from E. coli BI47 in spacegroup P21212 7AYN ; 1.42 ; Crystal structure of the lectin domain of the FimH variant Arg98Ala, in complex with Methyl 3-chloro-4-D-mannopyranosyloxy-3-biphenylcarboxylate 1JXN ; 2.3 ; Crystal Structure of the Lectin I from Ulex europaeus in complex with the methyl glycoside of alpha-L-fucose 5MIH ; 1.8 ; Crystal structure of the lectin LecA from Pseudomonas aeruginosa in complex with a phenyl-epoxy-galactopyranoside 4AL9 ; 1.75 ; Crystal structure of the lectin PA-IL from Pseudomonas aeruginoas in complex with melibiose 6PIR ; 1.65 ; Crystal structure of the Legionella effector protein MavE 6OMI ; 2.643 ; Crystal structure of the Legionella effector protein MavL 8IPJ ; 2.003 ; Crystal structure of the Legionella effector protein MavL with ADPR-Ub 5N6X ; 1.75 ; Crystal structure of the Legionella effector WipA 5N72 ; 1.842 ; Crystal structure of the Legionella effector WipA shorter construct 6S2X ; 1.71 ; Crystal structure of the Legionella pneumophila ChiA C-terminal domain 5CQC ; 2.985 ; Crystal structure of the legionella pneumophila effector protein RavZ 5IZV ; 2.814 ; Crystal structure of the legionella pneumophila effector protein RavZ - F222 5IO3 ; 2.74 ; Crystal structure of the legionella pneumophila effector protein RavZ - I422 5HZY ; 2.548 ; Crystal structure of the legionella pneumophila effector protein RavZ - P6322 5MS2 ; 2.47 ; Crystal structure of the Legionella pneumophila effector protein RavZ in complex with human LC3B 5MS8 ; 2.85 ; Crystal structure of the legionella pneumophila effector protein RavZ_1-487 5MS7 ; 2.8 ; Crystal structure of the legionella pneumophila effector protein RavZ_20-502 4BEP ; 3.14 ; Crystal structure of the Legionella pneumophila FIC domain-containing effector AnkX protein (apo-form) 4BET ; 2.55 ; Crystal structure of the Legionella pneumophila FIC domain-containing effector AnkX protein (inactive H229A mutant) in complex with cytidine-diphosphate-choline 4BER ; 2.6 ; Crystal structure of the Legionella pneumophila FIC domain-containing effector AnkX protein in complex with cytidine monophosphate 4BES ; 2.54 ; Crystal structure of the Legionella pneumophila FIC domain-containing effector AnkX protein in complex with cytidine monophosphate and phosphocholine 4I1M ; 2.804 ; Crystal structure of the Legionella pneumophila GAP domain of LepB 4I1O ; 2.701 ; Crystal structure of the Legionella pneumophila GAP domain of LepB in complex with Rab1b bound to GDP and BeF3 7BYK ; 2.65 ; Crystal structure of the Legionella pneumophila LegK7 effector kinase 6SJT ; 3.103 ; Crystal structure of the Legionella pneumophila type II secretion system substrate NttC 6SKW ; 2.2 ; Crystal structure of the Legionella pneumophila type II secretion system substrate NttE 6ESL ; 1.87 ; Crystal structure of the Legionella pneumoppila LapA 2P18 ; 1.8 ; Crystal structure of the Leishmania infantum glyoxalase II 2P1E ; 1.9 ; Crystal structure of the Leishmania infantum glyoxalase II with D-Lactate at the active site 4GED ; 1.84 ; Crystal Structure of the Leishmania Major Peroxidase-Cytochrome C Complex 4HZI ; 1.85 ; Crystal structure of the Leptospira interrogans ATPase subunit of an orphan ABC transporter 3BWS ; 1.99 ; Crystal structure of the leptospiral antigen Lp49 3NMD ; 2.272 ; Crystal structure of the leucine zipper domain of cGMP dependent protein kinase I beta 2PNV ; 2.1 ; Crystal Structure of the leucine zipper domain of small-conductance Ca2+-activated K+ (SKCa) channel from Rattus norvegicus 5MQ4 ; 2.7 ; Crystal Structure of the leucine zipper of human PRKCBP1 3GOZ ; 2.099 ; Crystal structure of the leucine-rich repeat-containing protein LegL7 from Legionella pneumophila. Northeast Structural Genomics Consortium target LgR148 6GZ0 ; 1.52 ; Crystal Structure of the LeuO Effector Binding Domain 6GZ1 ; 1.74 ; Crystal Structure of the LeuO Effector Binding Domain 6GZ2 ; 1.94 ; Crystal Structure of the LeuO Effector Binding Domain 5AGJ ; 2.0 ; Crystal structure of the LeuRS editing domain of Candida albicans in complex with the adduct AN2690-AMP 5AGH ; 1.81 ; Crystal structure of the LeuRS editing domain of Candida albicans Mutant K510A 5AGI ; 1.47 ; Crystal structure of the LeuRS editing domain of Candida albicans Mutant K510A in complex with the adduct formed by AN2690-AMP 5AGT ; 1.45 ; Crystal structure of the LeuRS editing domain of Mycobacterium tuberculosis in complex with the adduct (S)-3-(Aminomethyl)-4-chloro-7-ethoxybenzo[c][1,2]oxaborol-1(3H)-ol-AMP 5AGR ; 1.3 ; Crystal structure of the LeuRS editing domain of Mycobacterium tuberculosis in complex with the adduct (S)-3-(Aminomethyl)-7-ethoxybenzo[c][1,2]oxaborol-1(3H)-ol-AMP 5AGS ; 1.47 ; Crystal structure of the LeuRS editing domain of Mycobacterium tuberculosis in complex with the adduct 3-(Aminomethyl)-4-bromo-7-ethoxybenzo[c][1,2]oxaborol-1(3H)-ol-AMP 2XZ8 ; 1.94 ; CRYSTAL STRUCTURE OF THE LFW ECTODOMAIN OF THE PEPTIDOGLYCAN RECOGNITION PROTEIN LF 2XZ4 ; 1.72 ; Crystal structure of the LFZ ectodomain of the peptidoglycan recognition protein LF 2WJS ; 2.8 ; Crystal structure of the LG1-3 region of the laminin alpha2 chain 5JNF ; 2.75 ; Crystal structure of the LgrA initiation module excluding the Asub domain: F-A-delta-sub 5ES9 ; 3.77 ; Crystal structure of the LgrA initiation module in the formylation state 3WMM ; 3.008 ; Crystal structure of the LH1-RC complex from Thermochromatium tepidum in C2 form 4V8K ; 3.006 ; Crystal structure of the LH1-RC complex from Thermochromatium tepidum in P21 form 5BQN ; 2.3 ; Crystal structure of the LHn fragment of botulinum neurotoxin type D, mutant H233Y E230Q 3RBJ ; 2.3 ; Crystal Structure of the lid-mutant of Streptococcus agalactiae Sortase C1 4N73 ; 1.8662 ; Crystal structure of the ligand binding domain (LBD) of REV-ERB beta bound to Cobalt Protoporphyrin IX 1I7G ; 2.2 ; CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN FROM HUMAN PPAR-ALPHA IN COMPLEX WITH THE AGONIST AZ 242 3HFU ; 2.6 ; Crystal structure of the ligand binding domain of E. coli CynR with its specific effector azide 1TD5 ; 2.3 ; Crystal Structure of the Ligand Binding Domain of E. coli IclR. 2XHS ; 2.8 ; Crystal structure of the ligand binding domain of Fushi tarazu factor 1 of Drosophila melanogaster. 3S2V ; 2.5 ; Crystal Structure of the Ligand Binding Domain of GluK1 in Complex with an Antagonist (S)-1-(2'-Amino-2'-carboxyethyl)-3-[(2-carboxythien-3-yl)methyl]thieno[3,4-d]pyrimidin-2,4-dione at 2.5 A Resolution 3C8X ; 1.95 ; Crystal structure of the ligand binding domain of human Ephrin A2 (Epha2) receptor protein kinase 2ATH ; 2.28 ; Crystal structure of the ligand binding domain of human PPAR-gamma im complex with an agonist 2F4B ; 2.07 ; Crystal structure of the ligand binding domain of human PPAR-gamma in complex with an agonist 1I7I ; 2.35 ; CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OF HUMAN PPAR-GAMMA IN COMPLEX WITH THE AGONIST AZ 242 3P0U ; 3.0 ; Crystal Structure of the ligand binding domain of human testicular receptor 4 1G0X ; 2.1 ; CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OF LIR-1 (ILT2) 5VVI ; 2.28 ; Crystal Structure of the Ligand Binding Domain of LysR-type Transcriptional Regulator, OccR from Agrobacterium tumefaciens in the Complex with Octopine 2Q60 ; 2.9 ; Crystal structure of the ligand binding domain of polyandrocarpa misakiensis rxr in tetramer in absence of ligand 4NB6 ; 2.85 ; Crystal structure of the ligand binding domain of RORC with T0901317 2D4U ; 1.95 ; Crystal Structure of the ligand binding domain of the bacterial serine chemoreceptor Tsr 2P1U ; 2.2 ; Crystal structure of the ligand binding domain of the retinoid X receptor alpha in complex with 3-(2'-ethoxy)-tetrahydronaphtyl cinnamic acid and a fragment of the coactivator TIF-2 2P1T ; 1.8 ; Crystal structure of the ligand binding domain of the retinoid X receptor alpha in complex with 3-(2'-methoxy)-tetrahydronaphtyl cinnamic acid and a fragment of the coactivator TIF-2 2P1V ; 2.2 ; Crystal structure of the ligand binding domain of the retinoid X receptor alpha in complex with 3-(2'-propoxy)-tetrahydronaphtyl cinnamic acid and a fragment of the coactivator TIF-2 1G2N ; 1.65 ; CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OF THE ULTRASPIRACLE PROTEIN USP, THE ORTHOLOG OF RXRS IN INSECTS 2HCD ; 2.6 ; Crystal structure of the ligand binding domain of the Vitamin D nuclear receptor in complex with Gemini and a coactivator peptide 4OZR ; 2.7 ; Crystal structure of the ligand binding domains of the Bovicola ovis ecdysone receptor EcR/USP heterodimer (methylene lactam crystal) 4OZT ; 2.7 ; crystal structure of the ligand binding domains of the Bovicola ovis ecdysone receptor EcR/USP heterodimer (PonA crystal) 3UVV ; 2.95 ; Crystal Structure of the ligand binding domains of the thyroid receptor:retinoid X receptor complexed with 3,3',5 triiodo-L-thyronine and 9-cis retinoic acid 4M00 ; 2.05 ; Crystal structure of the ligand binding region of staphylococcal adhesion SraP 1XZZ ; 1.8 ; Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor 3JRR ; 1.9 ; Crystal structure of the ligand binding suppressor domain of type 3 inositol 1,4,5-trisphosphate receptor 1DRM ; 2.4 ; CRYSTAL STRUCTURE OF THE LIGAND FREE BJFIXL HEME DOMAIN 2WKY ; 2.2 ; Crystal structure of the ligand-binding core of GluR5 in complex with the agonist 4-AHCP 1VSO ; 1.85 ; Crystal Structure of the Ligand-Binding Core of iGluR5 in Complex With the Antagonist (S)-ATPO at 1.85 A resolution 2PBW ; 2.5 ; Crystal Structure of the Ligand-Binding Core of iGluR5 in Complex with the Partial agonist Domoic Acid at 2.5 A Resolution 2ZNT ; 1.6 ; Crystal structure of the ligand-binding core of the human ionotropic glutamate receptor, GluR5, in complex with a novel selective agonist, dysiherbaine 2ZNU ; 1.8 ; Crystal structure of the ligand-binding core of the human ionotropic glutamate receptor, GluR5, in complex with a novel selective agonist, neodysiherbaine A 2ZNS ; 2.0 ; Crystal structure of the ligand-binding core of the human ionotropic glutamate receptor, GluR5, in complex with glutamate 8BN2 ; 1.63 ; Crystal structure of the ligand-binding domain (LBD) of human iGluR Delta-1 (GluD1) in complex with D-Serine 8BN5 ; 1.9 ; Crystal structure of the ligand-binding domain (LBD) of human iGluR Delta-1 (GluD1) in complex with GABA 8BLJ ; 2.18 ; Crystal structure of the ligand-binding domain (LBD) of human iGluR Delta-1 (GluD1), apo state 3CNV ; 2.0 ; Crystal structure of the ligand-binding domain of a putative GntR-family transcriptional regulator from Bordetella bronchiseptica 7VPR ; 2.59 ; Crystal structure of the ligand-binding domain of C. glabrata Upc2 in complex with ergosterol 7VPU ; 2.59 ; Crystal structure of the ligand-binding domain of L. thermotolerans Upc2 in complex with ergosterol 2YZ1 ; 1.4 ; Crystal structure of the ligand-binding domain of murine SHPS-1/SIRP alpha 1NUK ; 2.9 ; CRYSTAL STRUCTURE OF THE LIGAND-BINDING DOMAIN OF THE EPHB2 RECEPTOR TYROSINE KINASE 1S9Q ; 2.2 ; crystal structure of the ligand-binding domain of the estrogen-related receptor gamma in complex with 4-hydroxytamoxifen 1VJB ; 3.2 ; crystal structure of the ligand-binding domain of the estrogen-related receptor gamma in complex with 4-hydroxytamoxifen 1TFC ; 2.4 ; CRYSTAL STRUCTURE OF THE LIGAND-BINDING DOMAIN OF THE ESTROGEN-RELATED RECEPTOR GAMMA IN COMPLEX WITH A STEROID RECEPTOR COACTIVATOR-1 PEPTIDE 1S9P ; 2.13 ; crystal structure of the ligand-binding domain of the estrogen-related receptor gamma in complex with diethylstilbestrol 1R1K ; 2.9 ; Crystal structure of the ligand-binding domains of the heterodimer EcR/USP bound to ponasterone A 1R20 ; 3.0 ; Crystal structure of the ligand-binding domains of the heterodimer EcR/USP bound to the synthetic agonist BYI06830 7BJU ; 2.85 ; Crystal structure of the ligand-binding domains of the heterodimer EcR/USP bound to the synthetic agonist BYI08346 7BJV ; 3.05 ; Crystal structure of the ligand-binding domains of the heterodimer EcR/USP bound to the synthetic agonist BYI09181 2NXX ; 2.75 ; Crystal Structure of the Ligand-Binding Domains of the T.castaneum (Coleoptera) Heterodimer EcrUSP Bound to Ponasterone A 2E4Z ; 3.3 ; Crystal structure of the ligand-binding region of the group III metabotropic glutamate receptor 3C59 ; 2.3 ; Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain 3C5T ; 2.1 ; Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain 7LCY ; 3.35 ; Crystal structure of the ligand-free ARM domain from Drosophila SARM1 4ZSB ; 2.004 ; Crystal structure of the ligand-free effector-binding domain of DasR (DasR-EBD) 6GPD ; 1.75 ; Crystal structure of the ligand-free form of domain 1 from TmArgBP 2ECR ; 1.6 ; Crystal structure of the ligand-free form of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase 6RTH ; 3.4 ; Crystal structure of the ligand-free glycosyltransferase domain from the YGT toxin 4IS5 ; 1.48 ; Crystal Structure of the ligand-free inactive Matriptase 1ZU0 ; 2.2 ; Crystal Structure of the liganded Chitin Oligasaccharide Binding Protein 4GFR ; 2.2 ; Crystal Structure of the liganded Chitin Oligasaccharide Binding Protein 2H3H ; 1.7 ; Crystal structure of the liganded form of Thermotoga maritima glucose binding protein 1VS0 ; 2.4 ; Crystal Structure of the Ligase Domain from M. tuberculosis LigD at 2.4A 6N67 ; 1.9 ; Crystal structure of the ligase domain of fungal tRNA ligase Trl1 6DT1 ; 2.75 ; Crystal structure of the ligase from bacteriophage T4 complexed with DNA intermediate 4RSU ; 2.3 ; Crystal structure of the light and hvem complex 6GRZ ; 2.1 ; Crystal structure of the light chain dimer mH6 6G8U ; 1.308 ; Crystal structure of the light chain of botulinum neurotoxin X (residues 2-427) 6G8V ; 1.45 ; Crystal structure of the light chain of botulinum neurotoxin X (residues 2-442) 4A4M ; 3.3 ; Crystal structure of the light-activated constitutively active N2C, M257Y,D282C rhodopsin mutant in complex with a peptide resembling the C-terminus of the Galpha-protein subunit (GaCT) 5B2N ; 1.581 ; Crystal structure of the light-driven chloride ion-pumping rhodopsin, ClP, from Nonlabens marinus 7ZNH ; 2.3 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the activated state at pH 8.2 at room temperature, 250-750-mks-snapshot 7ZNI ; 2.2 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the activated state at pH 8.2 at room temperature, 7.5-15-ms-snapshot 7ZNA ; 1.8 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 5.2 in the presence of sodium at 100K 7ZN8 ; 2.2 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 7.0 in the presence of sodium at 100K 7ZNC ; 1.7 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 7.6 in the absence of sodium at 100K 7ZNG ; 2.3 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 8.2 at room temperature, 500-mks-long snapshots 7ZNE ; 2.1 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 8.2 at room temperature, 7.5-ms-long snapshots 7ZMY ; 1.7 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the ground state at pH 8.2 in the presence of sodium at 100K 7ZN3 ; 1.6 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the L state at pH 8.2 in the presence of sodium at 100K 7ZNB ; 1.9 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the M state at pH 5.2 in the presence of sodium at 100K 7ZN9 ; 2.3 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the M state at pH 7.0 in the presence of sodium at 100K 7ZND ; 1.985 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the M state at pH 7.6 in the absence of sodium at 100K 7ZN0 ; 1.7 ; Crystal structure of the light-driven inward proton pump xenorhodopsin BcXeR in the M state at pH 8.2 in the presence of sodium at 100K 6GYH ; 2.0 ; Crystal structure of the light-driven proton pump Coccomyxa subellipsoidea Rhodopsin CsR 8JH0 ; 2.79 ; Crystal structure of the light-driven sodium pump IaNaR 5JRF ; 2.5 ; Crystal structure of the light-driven sodium pump KR2 bound with iodide ions 3X3B ; 2.3 ; Crystal structure of the light-driven sodium pump KR2 in acidic state 3X3C ; 2.3 ; Crystal structure of the light-driven sodium pump KR2 in neutral state 4XTL ; 1.45 ; Crystal structure of the light-driven sodium pump KR2 in the monomeric blue form, pH 4.3 6RF5 ; 2.3 ; Crystal structure of the light-driven sodium pump KR2 in the monomeric form, pH 6.0 6RF6 ; 1.8 ; Crystal structure of the light-driven sodium pump KR2 in the monomeric form, pH 8.0 6RF7 ; 2.6 ; Crystal structure of the light-driven sodium pump KR2 in the monomeric form, pH 8.9 6RF0 ; 3.0 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric ""dry"" form 6RF1 ; 2.8 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric ""wet"" form 6YC2 ; 2.5 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric form at room temperature, pH 8.0 6REZ ; 2.6 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric form, pH 5.0 6REX ; 2.7 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric form, pH 6.0 6YC3 ; 2.0 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 4XTN ; 2.2 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric red form, pH 4.9 4XTO ; 2.8 ; Crystal structure of the light-driven sodium pump KR2 in the pentameric red form, pH 5.6 6EDQ ; 2.9 ; Crystal Structure of the Light-Gated Anion Channelrhodopsin GtACR1 6Q53 ; 3.701 ; CRYSTAL STRUCTURE OF THE LIGHT-HARVESTING COMPLEX II (B800-850) FROM Ectothiorhodospira haloalkaliphila 1LGH ; 2.4 ; CRYSTAL STRUCTURE OF THE LIGHT-HARVESTING COMPLEX II (B800-850) FROM RHODOSPIRILLUM MOLISCHIANUM 3RH8 ; 2.75 ; Crystal Structure of the Light-state Dimer of Fungal Blue-Light Photoreceptor Vivid 6DXS ; 1.65 ; Crystal structure of the LigJ hydratase E284Q mutant substrate complex with (3Z)-2-keto-4-carboxy-3-hexenedioate 6DWV ; 2.2 ; Crystal structure of the LigJ Hydratase in the Apo state 6DXQ ; 2.02 ; Crystal structure of the LigJ Hydratase product complex with 4-carboxy-4-hydroxy-2-oxoadipate 7OO5 ; 1.85 ; Crystal structure of the lignin peroxidase (ApeLiP) from Agrocybe pediades 4UMG ; 1.68 ; Crystal structure of the Lin-41 filamin domain 3LD7 ; 1.547 ; Crystal structure of the Lin0431 protein from Listeria innocua, Northeast Structural Genomics Consortium Target LkR112 3K7X ; 1.889 ; Crystal structure of the Lin0763 protein from Listeria innocua. Northeast Structural Genomics Consortium Target LkR23. 3B57 ; 3.0 ; Crystal structure of the Lin1889 protein (Q92AN1) from Listeria innocua. Northeast Structural Consortium target LkR65 6IW6 ; 2.402 ; Crystal structure of the Lin28-interacting module of human TUT4 2ID5 ; 2.698 ; Crystal Structure of the Lingo-1 Ectodomain 3ODW ; 3.2 ; Crystal Structure of the Linker-DH/PH domains of p115-RhoGEF 4GW3 ; 2.0 ; Crystal Structure of the Lipase from Proteus mirabilis 6NKC ; 1.631 ; Crystal Structure of the Lipase Lip_vut1 from Goat Rumen metagenome. 6NKD ; 2.8 ; Crystal Structure of the Lipase Lip_vut3 from Goat Rumen metagenome. 6NKF ; 2.232 ; Crystal Structure of the Lipase Lip_vut4 from Goat Rumen metagenome. 6NKG ; 2.15 ; Crystal Structure of the Lipase Lip_vut5 from Goat Rumen metagenome. 8OIM ; 1.994 ; Crystal structure of the lipase SpL from Sphingomonas sp. HXN-200 1YZF ; 1.9 ; Crystal structure of the lipase/acylhydrolase from Enterococcus faecalis 4WIS ; 3.3 ; Crystal structure of the lipid scramblase nhTMEM16 in crystal form 1 3CQR ; 2.0 ; Crystal Structure of the Lipocalin domain of Violaxanthin de-epoxidase (VDE) at pH5 3CQN ; 2.0 ; Crystal Structure of the Lipocalin domain of Violaxanthin de-epoxidase (VDE) at pH7 4RHB ; 3.355 ; Crystal structure of the lipopolysaccharide assembly complex LptD-LptE from the Escherichia coli outer membrane 3GLV ; 1.99 ; Crystal structure of the lipopolysaccharide core biosynthesis protein from Thermoplasma volcanium GSS1 3PRW ; 1.8 ; Crystal structure of the lipoprotein BamB 5FQ3 ; 3.1 ; Crystal structure of the lipoprotein BT2262 from Bacteroides thetaiotaomicron 5FQ4 ; 1.9 ; Crystal structure of the lipoprotein BT2263 from Bacteroides thetaiotaomicron 3UAU ; 2.7 ; Crystal structure of the lipoprotein JlpA 1IWL ; 1.65 ; Crystal Structure of the Lipoprotein Localization Factor, LolA 1UA8 ; 1.9 ; Crystal structure of the lipoprotein localization factor, LolA 3KSN ; 1.65 ; Crystal structure of the lipoprotein localization factor, LolA 3JVC ; 2.69 ; Crystal Structure of the Lipoprotein_17 domain from Q9PRA0_UREPA protein of Ureaplasma parvum. Northeast Structural Genomics Consortium Target UuR17a. 4UOP ; 1.75 ; Crystal structure of the lipoteichoic acid synthase LtaP from Listeria monocytogenes 3TAC ; 2.2 ; Crystal Structure of the Liprin-alpha/CASK complex 3TAD ; 2.9 ; Crystal Structure of the Liprin-alpha/Liprin-beta complex 6KR4 ; 2.85 ; Crystal structure of the liprin-alpha3_SAM123/LAR_D1D2 complex 7TEN ; 3.5 ; Crystal structure of the Listeria monocytogenes GS-Met-Sox-P- ADP complex to 3.5 Angstrom 6O7C ; 1.85 ; Crystal structure of the LjCASTOR gating ring in the Ca2+ and K+ state 6O6J ; 1.6 ; Crystal structure of the LjCASTOR gating ring in the Ca2+ and Na+ condition 6O7A ; 3.3 ; Crystal structure of the LjCASTOR gating ring in the Ca2+-free state 6WW1 ; 2.05 ; Crystal structure of the LmFPPS mutant E97Y 3EW7 ; 2.73 ; Crystal structure of the Lmo0794 protein from Listeria monocytogenes. Northeast Structural Genomics Consortium target LmR162. 2XJZ ; 2.8 ; Crystal structure of the LMO2:LDB1-LID complex, C2 crystal form 2XJY ; 2.4 ; Crystal structure of the LMO2:LDB1-LID complex, P21 crystal form 7R8W ; 1.9 ; Crystal Structure of the LNK SH2 Domain in Complex with a JAK2 pY813 Phosphopeptide 7R8X ; 2.3 ; Crystal Structure of the LNK SH2 Domain in Complex with an EPOR pY454 Phosphopeptide 4Z5P ; 1.9 ; Crystal structure of the LnmA cytochrome P450 hydroxylase from the leinamycin biosynthetic pathway of Streptomyces atroolivaceus S-140 at 1.9 A resolution 4Z5Q ; 1.801 ; Crystal structure of the LnmZ cytochrome P450 hydroxylase from the leinamycin biosynthetic pathway of Streptomyces atroolivaceus S-140 at 1.8 A resolution 2REE ; 1.95 ; Crystal structure of the loading GNATL domain of CurA from Lyngbya majuscula 2REF ; 2.75 ; Crystal structure of the loading GNATL domain of CurA from Lyngbya majuscula soaked with malonyl-CoA 4FW9 ; 2.0 ; Crystal structure of the Lon-like protease MtaLonC 4FWD ; 2.03 ; Crystal structure of the Lon-like protease MtaLonC in complex with bortezomib 4FWG ; 1.99 ; Crystal structure of the Lon-like protease MtaLonC in complex with lactacystin 4FWH ; 2.19 ; Crystal structure of the Lon-like protease MtaLonC in complex with MG262 7EV6 ; 2.1 ; Crystal structure of the Lon-like protease MtaLonC with D581A mutation in complex with F-b20-Q 7EUX ; 2.25 ; Crystal structure of the Lon-like protease MtaLonC with D581A mutation in complex with substrate polypeptide 7EUY ; 2.2 ; Crystal structure of the Lon-like protease MtaLonC with D582A mutation in complex with substrate polypeptide 7EV4 ; 2.12 ; Crystal structure of the Lon-like protease MtaLonC with S582A mutation in complex with F-b20-Q 1T1L ; 2.8 ; Crystal structure of the long-chain fatty acid transporter FadL 3DWN ; 2.5 ; Crystal structure of the long-chain fatty acid transporter FadL mutant A77E/S100R 2R89 ; 3.4 ; Crystal structure of the long-chain fatty acid transporter FadL mutant delta N3 2R8A ; 3.0 ; Crystal structure of the long-chain fatty acid transporter FadL mutant delta N8 2R4O ; 3.6 ; Crystal structure of the long-chain fatty acid transporter FadL mutant delta NPA 2R88 ; 2.6 ; Crystal structure of the long-chain fatty acid transporter FadL mutant delta S3 kink 2R4P ; 2.9 ; Crystal structure of the long-chain fatty acid transporter FadL mutant G212E 2R4N ; 3.2 ; Crystal structure of the long-chain fatty acid transporter FadL mutant N33A 2R4L ; 3.3 ; Crystal structure of the long-chain fatty acid transporter FadL mutant P34A 3BW6 ; 2.5 ; Crystal structure of the longin domain of yeast Ykt6 3WI5 ; 2.4 ; Crystal structure of the Loop 7 mutant PorB from Neisseria meningitidis serogroup B 4EIL ; 2.1971 ; Crystal Structure of the loop truncated Toxoplasma gondii TS-DHFR 5A49 ; 2.098 ; Crystal structure of the LOTUS domain (aa 139-222) of Drosophila Oskar in C222 5A48 ; 2.35 ; Crystal structure of the LOTUS domain (aa 139-240) of Drosophila Oskar in P65 8IL9 ; 2.16 ; Crystal structure of the LOV1 Q122N mutant of Klebsormidium nitens phototropin 7URU ; 2.4 ; Crystal structure of the low affinity Fc gamma receptor IIIA variant in complex with the Fc of IgG1. 4D6W ; 3.6 ; Crystal Structure of the low pH conformation of Chandipura Virus glycoprotein G ectodomain 3WYQ ; 1.0 ; Crystal structure of the low-immunogenic core streptavidin mutant LISA-314 (Y22S/Y83S/R84K/E101D/R103K/E116N) at 1.0 A resolution 4P29 ; 1.95006 ; Crystal structure of the LpoA N-terminal domain from Haemophilus influenzae 3D0K ; 1.83 ; Crystal structure of the LpqC, poly(3-hydroxybutyrate) depolymerase from Bordetella parapertussis 4FW5 ; 1.99 ; Crystal Structure of the LpxC in complex with 4'-BROMO-N-[(2S,3R)-3-HYDROXY-1-(HYDROXYAMINO)-1-OXOBUTAN-2-YL]BIPHENYL-4-CARBOXAMIDE inhibitor 4FW4 ; 2.19 ; Crystal Structure of the LpxC in complex with N-[(1S,2R)-2-HYDROXY-1-(HYDROXYCARBAMOYL)PROPYL]-4-(4-PHENYLBUTA-1,3-DIYN-1-YL)BENZAMIDE inhibitor 4FW3 ; 2.35 ; Crystal Structure of the LpxC in complex with N-[(2S)-3-AMINO-1-(HYDROXYAMINO)-1-OXOPROPAN-2-YL]-4-(4-PHENYLBUTA-1,3-DIYN-1-YL)BENZAMIDE inhibitor 4FW6 ; 1.83 ; Crystal Structure of the LpxC in complex with N-[(2S,3R)-3-HYDROXY-1-(HYDROXYAMINO)-1-OXOBUTAN-2-YL]-4-(PHENYLETHYNYL)BENZAMIDE inhibitor 4FW7 ; 1.7 ; Crystal Structure of the LpxC in complex with N-[(2S,3R)-3-HYDROXY-1-(HYDROXYAMINO)-1-OXOBUTAN-2-YL]BIPHENYL-4-CARBOXAMIDE inhibitor 3CQ9 ; 2.2 ; Crystal structure of the lp_1622 protein from Lactobacillus plantarum. Northeast Structural Genomics Consortium target LpR114 3HFQ ; 1.963 ; Crystal structure of the lp_2219 protein from Lactobacillus plantarum. Northeast Structural Genomics Consortium Target LpR118. 1I1G ; 2.9 ; CRYSTAL STRUCTURE OF THE LRP-LIKE TRANSCRIPTIONAL REGULATOR FROM THE ARCHAEON PYROCOCCUS FURIOSUS 2E7W ; 1.82 ; Crystal structure of the Lrp/AsnC like transcriptional regulators from Sulfolobus tokodaii 7 6S6Q ; 2.95 ; Crystal structure of the LRR ectodomain of the plant membrane receptor kinase GASSHO1/SCHENGEN3 from Arabidopsis thaliana in complex with CASPARIAN STRIP INTEGRITY FACTOR 2. 6R1H ; 1.55 ; Crystal structure of the LRR ectodomain of the receptor kinase SOBIR1 from Arabidopsis thaliana. 6HLU ; 3.29 ; Crystal structure of the LRR-Roc-COR domain of the Chlorobium tepidum Roco protein 5TVN ; 2.9 ; Crystal structure of the LSD-bound 5-HT2B receptor 6VYP ; 4.99 ; Crystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrate 4RZM ; 2.33 ; Crystal structure of the Lsd19-lasalocid A complex 2VC8 ; 1.31 ; Crystal structure of the LSm domain of human EDC3 (enhancer of decapping 3) 6F9W ; 2.623 ; Crystal structure of the LSM domain of LSM14 in complex with a C-terminal peptide of 4E-T 3I9G ; 1.9 ; Crystal structure of the LT1009 (SONEPCIZUMAB) antibody Fab fragment in complex with sphingosine-1-phosphate 3QCU ; 1.979 ; Crystal structure of the LT3015 antibody Fab fragment in complex with lysophosphatidic acid (14:0) 3QCV ; 2.51 ; Crystal structure of the LT3015 antibody Fab fragment in complex with lysophosphatidic acid (18:2) 5HA0 ; 1.441 ; Crystal structure of the LTBP1 leukotriene d4 complex 5DV9 ; 2.4 ; Crystal structure of the Luciferase 5DWV ; 2.3 ; Crystal structure of the Luciferase complexed with substrate analogue 2B81 ; 2.5 ; Crystal Structure of the Luciferase-like Monooxygenase from Bacillus cereus 3RAO ; 2.3 ; Crystal Structure of the Luciferase-like Monooxygenase from Bacillus cereus ATCC 10987. 1JHN ; 2.9 ; Crystal Structure of the Lumenal Domain of Calnexin 4WW3 ; 2.8 ; Crystal structure of the lumi intermediate of squid rhodopsin 1UHL ; 2.9 ; Crystal structure of the LXRalfa-RXRbeta LBD heterodimer 1QPJ ; 2.2 ; CRYSTAL STRUCTURE OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH STAUROSPORINE. 3MKO ; 1.8 ; Crystal Structure of the Lymphocytic Choriomeningitis Virus Membrane Fusion Glycoprotein GP2 in its Postfusion Conformation 1YE4 ; 2.4 ; Crystal structure of the Lys-274 to Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ 1YE6 ; 2.3 ; Crystal structure of the Lys-274 to Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NADP+ 3M13 ; 2.1 ; Crystal Structure of the Lys265Arg PEG-crystallized mutant of monomeric sarcosine oxidase 3M12 ; 1.6 ; Crystal Structure of the Lys265Arg phosphate-crytsallized mutant of monomeric sarcosine oxidase 3M0O ; 1.6 ; Crystal Structure of the Lys265Met mutant of monomeric sarcosine oxidase 3ZRH ; 2.23 ; Crystal structure of the Lys29, Lys33-linkage-specific TRABID OTU deubiquitinase domain reveals an Ankyrin-repeat ubiquitin binding domain (AnkUBD) 2H1V ; 1.2 ; Crystal structure of the Lys87Ala mutant variant of Bacillus subtilis ferrochelatase 4ERJ ; 3.0 ; Crystal structure of the lysine riboswitch bound to a 6-aminocaproic acid 4ERL ; 3.0 ; Crystal structure of the lysine riboswitch bound to a lysine-glycine dipeptide 3FBX ; 2.4 ; Crystal structure of the lysosomal 66.3 kDa protein from mouse solved by S-SAD 6SWR ; 3.2 ; Crystal structure of the lysosomal potassium channel MtTMEM175 T38A mutant soaked with zinc 6SYD ; 1.1 ; Crystal structure of the lysozyme in presence of bromophenol blue at pH 5.5 6SYC ; 1.38 ; Crystal structure of the lysozyme in presence of bromophenol blue at pH 6.5 3FXQ ; 1.85 ; Crystal structure of the LysR-type transcriptional regulator TsaR 1IW9 ; 2.5 ; Crystal Structure of the M Intermediate of Bacteriorhodopsin 7Z0E ; 1.22 ; Crystal structure of the M state of bacteriorhodopsin at 1.22 Angstrom resolution 7N11 ; 2.1 ; Crystal structure of the M. abscessus LeuRS editing domain in complex with epetraborole-AMP adduct 7N12 ; 1.7 ; Crystal structure of the M. abscessus LeuRS editing domain in complex with epetraborole-AMP adduct 4PBS ; 2.011 ; Crystal structure of the M. jannaschii F9 tRNA synthetase variant bound to 4-(2-bromoisobutyramido)-phenylalanine (BibaF) 4PBR ; 1.9 ; Crystal structure of the M. jannaschii G2 tRNA synthetase variant bound to 4-(2-bromoisobutyramido)-phenylalanine (BibaF) 4PBT ; 1.9 ; Crystal structure of the M. jannaschii G2 tRNA synthetase variant bound to 4-trans-cyclooctene-amidopheylalanine (Tco-amF) 3RB9 ; 3.0 ; Crystal structure of the M. tuberculosis beta clamp 4ZDI ; 3.52 ; Crystal structure of the M. tuberculosis CTP synthase PyrG (apo form) 4ZDJ ; 1.99 ; Crystal structure of the M. tuberculosis CTP synthase PyrG in complex with two UTP molecules 4ZDK ; 3.49 ; Crystal structure of the M. tuberculosis CTP synthase PyrG in complex with UTP, AMP-PCP and oxonorleucine 2JJG ; 2.4 ; Crystal structure of the M. tuberculosis Lysine-epsilon aminotransferase (Rv3290c) complexed to an inhibitor 4BHC ; 2.8 ; CRYSTAL STRUCTURE OF THE M. TUBERCULOSIS O6-METHYLGUANINE METHYLTRANSFERASE R37L VARIANT 7DM2 ; 2.4 ; crystal structure of the M. tuberculosis phosphate ABC transport receptor PstS-1 in complex with Fab p4-170 4LVQ ; 2.3 ; Crystal structure of the M. tuberculosis phosphate binding protein PstS3 4CVY ; 2.0 ; Crystal structure of the M. tuberculosis sulfate ester dioxygenase Rv3406 in complex with iron. 6FKG ; 1.8 ; Crystal structure of the M.tuberculosis MbcT-MbcA toxin-antitoxin complex. 7DM1 ; 2.1 ; crystal structure of the M.tuberculosis phosphate ABC transport receptor PstS-1 in complex with Fab p4-36 2Y9R ; 1.9 ; Crystal structure of the M10 domain of Titin 3M3R ; 2.2 ; Crystal structure of the M113F alpha-hemolysin mutant complexed with beta-cyclodextrin 3M2L ; 2.1 ; Crystal structure of the M113F mutant of alpha-hemolysin 3M4D ; 1.9 ; Crystal structure of the M113N mutant of alpha-hemolysin 3M4E ; 2.3 ; Crystal structure of the M113N mutant of alpha-hemolysin bound to beta-cyclodextrin 1WA4 ; 2.1 ; Crystal structure of the M131F L135A EvaD double mutant 3B35 ; 1.1 ; Crystal structure of the M180A mutant of the aminopeptidase from Vibrio proteolyticus 3B3S ; 1.18 ; Crystal structure of the M180A mutant of the aminopeptidase from Vibrio proteolyticus in complex with leucine 3B3C ; 1.46 ; Crystal structure of the M180A mutant of the aminopeptidase from Vibrio proteolyticus in complex with leucine phosphonic acid 6YZD ; 1.41 ; Crystal structure of the M295A variant of Ssl1 6YO5 ; 1.5 ; Crystal structure of the M295F variant of Ssl1 6Y4A ; 1.785 ; Crystal structure of the M295I variant of Ssl1 6YZY ; 2.282 ; Crystal structure of the M295V variant of Ssl1 6YZF ; 1.684 ; Crystal structure of the M295Y variant of Ssl1 5CF1 ; 2.242 ; Crystal Structure of the M32V/M78V/I80V/L114F mutant of LEH 1XK5 ; 2.4 ; Crystal structure of the m3G-cap-binding domain of snurportin1 in complex with a m3GpppG-cap dinucleotide 4P6Y ; 2.2 ; Crystal structure of the M42 aminopeptidase TmPep1050 from Thermotoga maritima 1PF3 ; 1.5 ; Crystal Structure of the M441L mutant of the multicopper oxidase CueO 1T7O ; 2.3 ; Crystal structure of the M564G mutant of murine carnitine acetyltransferase in complex with carnitine 1T7N ; 1.9 ; Crystal structure of the M564G mutant of murine CrAT 2H0T ; 1.6 ; Crystal structure of the M69V E166A double mutant of SHV-1 b-lactamase complexed to clavulanic acid 2H0Y ; 1.7 ; Crystal structure of the M69V E166A double mutant of SHV-1 b-lactamase complexed to sulbactam 2H10 ; 1.75 ; Crystal structure of the M69V E166A double mutant of SHV-1 b-lactamase complexed to tazobactam 6SF6 ; 1.9 ; Crystal structure of the mAb 15A in complex with COMP-epitope P6 3TOW ; 1.34 ; Crystal Structure of the MABP Domain of MVB12B of Human ESCRT-I Complex 2XUQ ; 2.7 ; CRYSTAL STRUCTURE OF the MACHE-Y337A mutant in complex with soaked TZ2PA6 ANTI-SYN inhibitors 2XUP ; 2.7 ; CRYSTAL STRUCTURE OF the MACHE-Y337A mutant in complex with soaked TZ2PA6 SYN inhibitor 5HIH ; 1.66 ; Crystal structure of the macro domain in Middle-East Respiratory Syndrome Coronavirus 2XD7 ; 2.09 ; Crystal structure of the macro domain of human core histone H2A 3IID ; 1.9 ; Crystal structure of the macro domain of human histone macroH2A1.1 in complex with ADP-ribose (form A) 3IIF ; 2.1 ; Crystal structure of the macro domain of human histone macroH2A1.1 in complex with ADP-ribose (form B) 6FY5 ; 1.65 ; Crystal structure of the macro domain of human macroh2a2 2FXK ; 2.54 ; Crystal structure of the macro-domain of human core histone variant macroH2A1.1 (form A) 1ZR3 ; 1.66 ; Crystal structure of the macro-domain of human core histone variant macroH2A1.1 (form B) 1ZR5 ; 2.92 ; Crystal structure of the macro-domain of human core histone variant macroH2A1.2 7V0E ; 3.27016 ; Crystal structure of the macro-oligomeric form of DNMT3B methyltransferase domain. 1KEZ ; 2.8 ; Crystal Structure of the Macrocycle-forming Thioesterase Domain of Erythromycin Polyketide Synthase (DEBS TE) 1FD9 ; 2.41 ; CRYSTAL STRUCTURE OF THE MACROPHAGE INFECTIVITY POTENTIATOR PROTEIN (MIP) A MAJOR VIRULENCE FACTOR FROM LEGIONELLA PNEUMOPHILA 3GMH ; 3.95 ; Crystal Structure of the Mad2 Dimer 2QYF ; 2.3 ; Crystal structure of the Mad2/p31(comet)/Mad2-binding peptide ternary complex 4YBG ; 1.602 ; Crystal structure of the MAEL domain of Drosophila melanogaster Maelstrom 4EOT ; 2.855 ; Crystal structure of the MafA homodimer bound to the consensus MARE 8HHJ ; 1.5 ; Crystal structure of the MafB2-CTMGI-2B16B6/MafI2MGI-2B16B6 complex 4V0P ; 2.07 ; Crystal structure of the MAGE homology domain of human MAGE-A3 4IF4 ; 2.35 ; Crystal Structure of the Magnesium and beryllofluoride-activated VraR from Staphylococcus aureus 4Z29 ; 2.03 ; Crystal structure of the magnetobacterial protein MtxA C-terminal domain 3Q3X ; 1.9 ; Crystal structure of the main protease (3C) from human enterovirus B EV93 7ALH ; 1.65 ; Crystal structure of the main protease (3CLpro/Mpro) of SARS-CoV-2 at 1.65A resolution (spacegroup C2). 7ALI ; 1.65 ; Crystal structure of the main protease (3CLpro/Mpro) of SARS-CoV-2 at 1.65A resolution (spacegroup P2(1)). 7BB2 ; 1.6 ; Crystal structure of the main protease (3CLpro/Mpro) of SARS-CoV-2 at 1.6A resolution (spacegroup P2(1)2(1)2(1)) 2YNA ; 1.5 ; Crystal structure of the main protease of coronavirus HKU4 2YNB ; 1.96 ; Crystal structure of the main protease of coronavirus HKU4 in complex with a Michael acceptor SG85 2D3A ; 2.63 ; Crystal Structure of the Maize Glutamine Synthetase complexed with ADP and Methionine sulfoximine Phosphate 2D3C ; 3.81 ; Crystal Structure of the Maize Glutamine Synthetase complexed with ADP and Phosphinothricin Phosphate 2D3B ; 3.5 ; Crystal Structure of the Maize Glutamine Synthetase complexed with AMPPNP and Methionine sulfoximine 1HXJ ; 2.05 ; CRYSTAL STRUCTURE OF THE MAIZE ZM-P60.1 BETA-GLUCOSIDASE 6GNY ; 1.85 ; Crystal structure of the MAJIN-TERB2 heterotetrameric complex 6GNX ; 2.9 ; Crystal structure of the MAJIN-TERB2 heterotetrameric complex - selenomethionine derivative 2VZN ; 3.05 ; Crystal structure of the major allergen from fire ant venom, Sol i 3 4B9R ; 1.76 ; Crystal structure of the Major Birch Pollen Allergen Bet v 1.0101 (isoform a) nitrated in vitro with tetranitromethan. 2VVF ; 2.5 ; Crystal structure of the major capsid protein P2 from Bacteriophage PM2 2WQL ; 2.7 ; CRYSTAL STRUCTURE OF THE MAJOR CARROT ALLERGEN DAU C 1 1ZKR ; 1.64 ; Crystal structure of the major cat allergen Fel d 1 (1+2) 2BK0 ; 2.9 ; Crystal structure of the major celery allergen Api G 1 2VXQ ; 1.9 ; Crystal structure of the major grass pollen allergen Phl p 2 in complex with its specific IgE-Fab 8A0D ; 3.685 ; Crystal structure of the major guinea pig allergen Cav p 1.0101 part of the lipocalin family 2MHA ; 2.5 ; CRYSTAL STRUCTURE OF THE MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I H-2KB MOLECULE CONTAINING A SINGLE VIRAL PEPTIDE: IMPLICATIONS FOR PEPTIDE BINDING AND T-CELL RECEPTOR RECOGNITION 1EW3 ; 2.3 ; CRYSTAL STRUCTURE OF THE MAJOR HORSE ALLERGEN EQU C 1 1XKG ; 1.61 ; Crystal structure of the major house dust mite allergen Der p 1 in its pro form at 1.61 A resolution 2P9W ; 1.35 ; Crystal Structure of the Major Malassezia sympodialis Allergen Mala s 1 3B2M ; 2.22 ; Crystal Structure of the Major Pilin from Streptococcus pyogenes 3GLD ; 2.03 ; Crystal Structure of the Major Pilin from Streptococcus pyogenes E117A mutant 3GLE ; 2.19 ; Crystal Structure of the Major Pilin from Streptococcus pyogenes N168A mutant 4Z8W ; 1.98 ; Crystal Structure of the Major Plantain Pollen Allergen Pla l 1 4MNS ; 1.2 ; Crystal structure of the major pollen allergen Bet v 1-A in complex with P303 3G20 ; 1.78 ; Crystal structure of the major pseudopilin from the type 2 secretion system of enterohaemorrhagic Escherichia coli 3FU1 ; 1.9 ; Crystal structure of the major pseudopilin from the type 2 secretion system of Vibrio cholerae 3GN9 ; 1.86 ; Crystal structure of the major pseudopilin from the type 2 secretion system of Vibrio vulnificus 6AU4 ; 2.35 ; Crystal structure of the major quadruplex formed in the human c-MYC promoter 8HQU ; 2.0 ; Crystal structure of the major sperm protein domain of SCS2 from saccharomyces cerevisiae 6II0 ; 2.36 ; Crystal structure of the Makes Caterpillars Floppy (MCF)-Like effector of Vibrio vulnificus MO6-24/O 6II6 ; 2.1 ; Crystal structure of the Makes Caterpillars Floppy (MCF)-Like effector of Vibrio vulnificus MO6-24/O in complex with a human ADP-ribosylation factor 3 (ARF3) 1F1T ; 2.8 ; CRYSTAL STRUCTURE OF THE MALACHITE GREEN APTAMER COMPLEXED WITH TETRAMETHYL-ROSAMINE 4L07 ; 1.75 ; Crystal structure of the maleamate amidase Ami from Pseudomonas putida S16 4L08 ; 2.66 ; Crystal structure of the maleamate amidase Ami(C149A) in complex with maleate from Pseudomonas putida S16 4FQ7 ; 3.0 ; Crystal structure of the maleate isomerase Iso from Pseudomonas putida S16 4FQ5 ; 2.1 ; Crystal structure of the maleate isomerase Iso(C200A) from Pseudomonas putida S16 with maleate 8AYV ; 1.044 ; Crystal structure of the Malonyl-ACP Decarboxylase MadB from Pseudomonas putida 3UO8 ; 1.9 ; Crystal structure of the MALT1 paracaspase (P1 form) 3UOA ; 1.75 ; Crystal structure of the MALT1 paracaspase (P21 form) 1L5V ; 2.0 ; Crystal Structure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate 1L6I ; 2.2 ; Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose 1L5W ; 1.8 ; Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose 4KI0 ; 2.38 ; Crystal structure of the maltose-binding protein/maltose transporter complex in an outward-facing conformation bound to maltohexaose 3RLF ; 2.2 ; Crystal structure of the maltose-binding protein/maltose transporter complex in an outward-facing conformation bound to MgAMPPNP 4KHZ ; 2.9 ; Crystal structure of the maltose-binding protein/maltose transporter complex in an pre-translocation conformation bound to maltoheptaose 2C9A ; 2.7 ; Crystal structure of the MAM-Ig module of receptor protein tyrosine phosphatase mu 1R5I ; 2.6 ; Crystal structure of the MAM-MHC complex 1IRU ; 2.75 ; Crystal Structure of the mammalian 20S proteasome at 2.75 A resolution 2AR5 ; 1.8 ; Crystal structure of the mammalian C2alpha-PI3 Kinase PX-domain 3EG9 ; 3.0 ; Crystal structure of the mammalian COPII-coat protein Sec23/24 bound to the transport signal sequence of membrin 3EFO ; 2.7 ; Crystal Structure of the mammalian COPII-coat protein Sec23/24 bound to the transport signal sequence of syntaxin 5 3EGD ; 2.7 ; Crystal structure of the mammalian COPII-coat protein Sec23a/24a complexed with the SNARE protein Sec22 and bound to the transport signal sequence of vesicular stomatitis virus glycoprotein 3EGX ; 3.3 ; Crystal structure of the mammalian COPII-coat protein Sec23a/24a complexed with the SNARE protein Sec22b and bound to the transport signal sequence of the SNARE protein Bet1 2XSM ; 5.5 ; Crystal structure of the mammalian cytosolic chaperonin CCT in complex with tubulin 3VA1 ; 1.74 ; Crystal structure of the mammalian MDC1 FHA domain 3VA4 ; 1.54 ; Crystal structure of the mammalian MDC1 FHA domain complexed with CHK2 pThr68 peptide 1NQ3 ; 2.2 ; Crystal structure of the mammalian tumor associated antigen UK114 3HRS ; 2.7 ; Crystal Structure of the Manganese-activated Repressor ScaR: apo form 6C63 ; 2.90003 ; Crystal Structure of the Mango-II Fluorescent Aptamer Bound to TO1-Biotin 6C64 ; 3.00015 ; Crystal Structure of the Mango-II Fluorescent Aptamer Bound to TO3-Biotin 6C65 ; 2.80005 ; Crystal Structure of the Mango-II-A22U Fluorescent Aptamer Bound to TO1-Biotin 3X3H ; 2.88 ; Crystal Structure of the Manihot esculenta Hydroxynitrile Lyase (MeHNL) 3KP (K176P, K199P, K224P) triple mutant 3RKS ; 2.5 ; Crystal Structure of the Manihot esculenta Hydroxynitrile Lyase (MeHNL) K176P mutant 3EXZ ; 2.3 ; Crystal structure of the MaoC-like dehydratase from Rhodospirillum rubrum. Northeast Structural Genomics Consortium target RrR103a. 2OUC ; 2.2 ; Crystal structure of the MAP kinase binding domain of MKP5 3TG3 ; 2.675 ; Crystal structure of the MAPK binding domain of MKP7 4G2K ; 1.9 ; Crystal structure of the Marburg Virus GP2 ectodomain in its post-fusion conformation 5XSQ ; 2.6 ; Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide 5TOH ; 2.01 ; Crystal Structure of the Marburg Virus VP35 Oligomerization Domain I2 5TOI ; 2.19 ; Crystal Structure of the Marburg Virus VP35 Oligomerization Domain P4222 4AM1 ; 1.25 ; Crystal structure of the marine crustacean decapod shrimp (Litopenaeus vannamei) arginine kinase in the absence of substrate or ligands. 5GMT ; 1.77 ; Crystal structure of the marine PL-14 alginate lyase from Aplysia kurodai 3ZPY ; 1.43 ; Crystal structure of the marine PL7 alginate lyase AlyA1 from Zobellia galactanivorans 3HOS ; 3.5 ; Crystal structure of the mariner Mos1 paired end complex with Mg 7L1I ; 2.35 ; Crystal structure of the MarR family transcriptional regulator from Acineotobacter baumannii bound to Indole 3 acetic acid 7KYM ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Bradyrhizobium japonicum 7L19 ; 2.77 ; Crystal structure of the MarR family transcriptional regulator from Enterobacter soli strain LF7 bound to Indole 3 acetic acid 7KUA ; 1.89 ; Crystal structure of the MarR family transcriptional regulator from Pseudomonas putida bound to Indole 3 acetic acid 7KFQ ; 1.35 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to 1H-Indole-3-Carboxylic Acid 7KKI ; 1.6 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to 2,4-Dichlorophenoxyacetic acid 7KKC ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to 5-Hydroxyindoleacetic acid 7KFS ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Benzoic Acid 7KK0 ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Catechol 7KFO ; 1.3 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Indole 3 acetic acid 7KH3 ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Indole 3 propionic acid 7KIG ; 1.4 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Indole-3-butyric acid 7KJQ ; 1.35 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Picloram 7KJL ; 1.6 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus bound to Salicylic acid 7KRH ; 1.5 ; Crystal structure of the MarR family transcriptional regulator from Variovorax paradoxus with S28A and R46A mutations 3CDH ; 2.69 ; Crystal structure of the MarR family transcriptional regulator SPO1453 from Silicibacter pomeroyi DSS-3 3POE ; 1.501 ; Crystal structure of the MASP-1 CUB2 domain bound to Ca2+ 3POG ; 2.749 ; Crystal structure of the MASP-1 CUB2 domain bound to Ca2+ 3ZKC ; 3.0 ; Crystal structure of the master regulator for biofilm formation SinR in complex with DNA. 3KZ9 ; 2.1 ; Crystal structure of the master transcriptional regulator, SmcR, in Vibrio vulnificus provides insight into its DNA recognition mechanism 6H8O ; 1.15 ; Crystal structure of the Master-Rep protein nuclease domain from the Faba Bean Necrotic Yellows Virus 1YRN ; 2.5 ; CRYSTAL STRUCTURE OF THE MATA1/MATALPHA2 HOMEODOMAIN HETERODIMER BOUND TO DNA 1LE8 ; 2.3 ; Crystal Structure of the MATa1/MATalpha2-3A Heterodimer Bound to DNA Complex 4Z3N ; 2.7 ; Crystal structure of the MATE transporter ClbM 3MD2 ; 2.2 ; Crystal structure of the matrix protein 1 from influenza A virus (A/California/04/2009 (H1N1)) 1ES6 ; 2.0 ; CRYSTAL STRUCTURE OF THE MATRIX PROTEIN OF EBOLA VIRUS 3N41 ; 3.01 ; Crystal structure of the mature envelope glycoprotein complex (spontaneous cleavage) of Chikungunya virus. 3N44 ; 2.35 ; Crystal structure of the mature envelope glycoprotein complex (trypsin cleavage; Osmium soak) of Chikungunya virus. 4NOJ ; 2.8 ; Crystal structure of the mature form of asparaginyl endopeptidase (AEP)/Legumain activated at pH 3.5 4P9S ; 2.32 ; Crystal structure of the mature form of rat DMGDH 4PAA ; 2.26 ; Crystal structure of the mature form of rat DMGDH complexed with tetrahydrofolate 7ZVB ; 2.35 ; Crystal Structure of the mature form of the glutamic-class prolyl-endopeptidase neprosin at 2.35 A resolution. 2UZJ ; 1.55 ; Crystal structure of the mature streptococcal cysteine protease, mSpeB 3L4O ; 2.046 ; Crystal Structure of the MauG/pre-Methylamine Dehydrogenase Complex After Treatment with Hydrogen Peroxide 3L4M ; 2.02 ; Crystal Structure of the MauG/pre-Methylamine Dehydrogenase Complex. 4Z8M ; 2.95 ; Crystal structure of the MAVS-TRAF6 complex 4N4X ; 2.501 ; Crystal Structure of the MBP fused human SPLUNC1 (native form) 5LOF ; 2.2 ; Crystal structure of the MBP-MCL1 complex with highly selective and potent inhibitor of MCL1 1OI1 ; 1.78 ; Crystal Structure of the MBT domains of Human SCML2 6EBY ; 1.85 ; Crystal structure of the MbtH-like protein FscK bound to the interface forming region of FscH adenylation domain from Thermobifida fusca 4Y2D ; 3.05 ; Crystal structure of the mCD1d/7DW8-5/iNKTCR ternary complex 4ZAK ; 2.824 ; Crystal structure of the mCD1d/DB06-1/iNKTCR ternary complex 4Y4K ; 2.9 ; Crystal structure of the mCD1d/EF77/iNKTCR ternary complex 4Y4F ; 3.19 ; Crystal structure of the mCD1d/GCK127/iNKTCR ternary complex 4Y4H ; 3.1 ; Crystal structure of the mCD1d/GCK152/iNKTCR ternary complex 4Y16 ; 2.6 ; Crystal structure of the mCD1d/NC-aGC/iNKTCR ternary complex 6MIY ; 2.75 ; Crystal structure of the mCD1d/xxa (JJ239)/iNKTCR ternary complex 6MJJ ; 1.93 ; Crystal structure of the mCD1d/xxm (JJ290) /iNKTCR ternary complex 6MJA ; 2.35 ; Crystal structure of the mCD1d/xxo (JJ294) /iNKTCR ternary complex 6MJQ ; 3.0 ; Crystal structure of the mCD1d/xxp (JJ295) /iNKTCR ternary complex 6MIV ; 2.05 ; Crystal structure of the mCD1d/xxq (JJ300)/iNKTCR ternary complex 6MJI ; 2.3 ; Crystal structure of the mCD1d/xxs (JJ304) /iNKTCR ternary complex 6MJ6 ; 2.45 ; Crystal structure of the mCD1d/xxx (JJ166) /iNKTCR ternary complex 2NL9 ; 1.55 ; Crystal structure of the Mcl-1:Bim BH3 complex 2NLA ; 2.8 ; Crystal structure of the Mcl-1:mNoxaB BH3 complex 3TS9 ; 2.003 ; Crystal Structure of the MDA5 Helicase Insert Domain 2AZM ; 2.41 ; Crystal structure of the MDC1 brct repeat in complex with the histone tail of gamma-H2AX 2VJE ; 2.2 ; Crystal Structure of the MDM2-MDMX RING Domain Heterodimer 2VJF ; 2.3 ; Crystal Structure of the MDM2-MDMX RING Domain Heterodimer 2RKC ; 2.7 ; Crystal structure of the measles virus hemagglutinin 2ZB5 ; 3.0 ; Crystal structure of the measles virus hemagglutinin (complex-sugar-type) 2ZB6 ; 2.6 ; Crystal structure of the measles virus hemagglutinin (oligo-sugar type) 3ALZ ; 4.515 ; Crystal structure of the measles virus hemagglutinin bound to its cellular receptor SLAM (Form I) 3ALW ; 3.55 ; Crystal structure of the measles virus hemagglutinin bound to its cellular receptor SLAM (Form I, MV-H-SLAM(N102H/R108Y) fusion) 3ALX ; 3.15 ; Crystal structure of the measles virus hemagglutinin bound to its cellular receptor SLAM (MV-H(L482R)-SLAM(N102H/R108Y) fusion) 1OKS ; 1.8 ; Crystal structure of the measles virus phosphoprotein XD domain 2D45 ; 3.8 ; Crystal structure of the MecI-mecA repressor-operator complex 5X2Q ; 2.6 ; Crystal structure of the medaka fish taste receptor T1r2a-T1r3 ligand binding domains in complex with glycine 5X2N ; 2.2 ; Crystal structure of the medaka fish taste receptor T1r2a-T1r3 ligand binding domains in complex with L-alanine 5X2O ; 2.6 ; Crystal structure of the medaka fish taste receptor T1r2a-T1r3 ligand binding domains in complex with L-arginine 5X2P ; 2.608 ; Crystal structure of the medaka fish taste receptor T1r2a-T1r3 ligand binding domains in complex with L-glutamate 5X2M ; 2.206 ; Crystal structure of the medaka fish taste receptor T1r2a-T1r3 ligand binding domains in complex with L-glutamine 6HHE ; 1.516 ; Crystal structure of the medfly Odorant Binding Protein CcapOBP22/CcapOBP69a 4LDQ ; 2.496 ; Crystal Structure of the Mediator of Rho Dependent Invasion 4P37 ; 2.24 ; Crystal structure of the Megavirus polyadenylate synthase 7NYQ ; 1.6 ; Crystal structure of the Mei-P26 NHL domain 7LDG ; 2.56 ; Crystal structure of the MEILB2-BRCA2 complex 7Z8Z ; 1.5 ; Crystal structure of the MEILB2-BRME1 2:2 core complex 5YYX ; 1.684 ; Crystal Structure of the MEK1 FHA domain 5YYZ ; 1.798 ; Crystal structure of the MEK1 FHA domain in complex with the HOP1 pThr318 peptide. 6X2P ; 2.401 ; Crystal Structure of the Mek1NES peptide bound to CRM1 6W25 ; 2.75 ; Crystal structure of the Melanocortin-4 Receptor (MC4R) in complex with SHU9119 7Y9B ; 3.214 ; Crystal structure of the membrane (M) protein of a SARS-COV-2-related coronavirus 6FL0 ; 2.9 ; Crystal structure of the membrane attack complex assembly inhibitor BGA71 from Lyme disease agent Borreliella bavariensis 6FMH ; 2.8 ; Crystal structure of the membrane attack complex assembly inhibitor BGA71 from Lyme disease agent Borreliella bavariensis (Native data) 3RKO ; 3.0 ; Crystal structure of the membrane domain of respiratory complex I from E. coli at 3.0 angstrom resolution 3M9C ; 3.9 ; Crystal structure of the membrane domain of respiratory complex I from Escherichia coli 4HE8 ; 3.3 ; Crystal structure of the membrane domain of respiratory complex I from Thermus thermophilus 3H94 ; 3.84 ; Crystal structure of the membrane fusion protein CusB from Escherichia coli 3OOC ; 3.404 ; Crystal structure of the membrane fusion protein CusB from Escherichia coli 3OPO ; 3.848 ; Crystal structure of the membrane fusion protein CusB from Escherichia coli 3OW7 ; 3.78 ; Crystal structure of the membrane fusion protein CusB from Escherichia coli. 1VF7 ; 2.4 ; Crystal structure of the membrane fusion protein, MexA of the multidrug transporter 2VNS ; 2.0 ; Crystal Structure of the Membrane Proximal Oxidoreductase Domain of Human Steap3, the Dominant Ferric Reductase of the Erythroid Transferrin Cycle 2VQ3 ; 2.0 ; Crystal Structure of the Membrane Proximal Oxidoreductase Domain of Human Steap3, the Dominant Ferric Reductase of the Erythroid Transferrin Cycle 5UTK ; 2.5 ; Crystal structure of the membrane proximal three fibronectin type III (FNIII) domains of Tie2 (Tie2[FNIIIa-c]) 6Z0F ; 2.553 ; Crystal structure of the membrane pseudokinase YukC/EssB from Bacillus subtilis T7SS 5GV3 ; 2.096 ; Crystal structure of the membrane-distal domain of mouse lysosome-associated membrane protein 2 (LAMP-2) 5GV0 ; 1.5 ; Crystal structure of the membrane-proximal domain of mouse lysosome-associated membrane protein 1 (LAMP-1) 6LUS ; 1.4 ; Crystal structure of the Mengla Virus VP30 C-terminal domain 5BOB ; 1.5 ; Crystal Structure of the Meningitis Pathogen Streptococcus suis adhesion Fhb 5BOA ; 2.708 ; Crystal Structure of the Meningitis Pathogen Streptococcus suis adhesion Fhb bound to the disaccharide receptor Gb2 2YPV ; 1.8 ; Crystal structure of the Meningococcal vaccine antigen factor H binding protein in complex with a bactericidal antibody 6XZW ; 2.4 ; Crystal structure of the meningococcal vaccine antigen fHbp in complex with a cross-reactive human Fab. 5AID ; 3.4 ; Crystal structure of the Mep2 mutant delta442 from Candida albicans 5AH3 ; 2.4 ; Crystal structure of the Mep2 mutant R452D,S453D from Candida albicans 5FUF ; 2.066 ; Crystal structure of the Mep2 mutant S453D from Candida albicans 5U6C ; 2.1 ; Crystal structure of the Mer kinase domain in complex with a macrocyclic inhibitor 3F2H ; 2.0 ; Crystal structure of the mercury-bound form of MerB mutant C160S, the Organomercurial Lyase involved in a bacterial mercury resistance system 5C0T ; 1.96 ; Crystal structure of the mercury-bound form of MerB mutant D99S 5DSF ; 1.954 ; Crystal structure of the mercury-bound form of MerB mutant D99S 3F0P ; 1.64 ; Crystal structure of the mercury-bound form of MerB, the Organomercurial Lyase involved in a bacterial mercury resistance system 3F2F ; 1.98 ; Crystal structure of the mercury-bound form of MerB, the Organomercurial Lyase involved in a bacterial mercury resistance system 5C17 ; 1.24 ; Crystal structure of the mercury-bound form of MerB2 4P7I ; 2.6 ; Crystal structure of the Merlin FERM/DCAF1 complex 3VUU ; 2.093 ; Crystal structure of the merozoite surface protein MSPDBL2 from P. falciparum 3VUV ; 2.114 ; Crystal structure of the merozoite surface protein MSPDBL2 from P. falciparum bound to zinc 6WAR ; 3.4 ; Crystal structure of the MERS-CoV RBD bound by the neutralizing single-domain antibody MERS VHH-55 7M5Z ; 3.06 ; Crystal Structure of the MerTK Kinase Domain in Complex with Inhibitor MIPS15692 2AHK ; 1.71 ; Crystal structure of the met-form of the copper-bound Streptomyces castaneoglobisporus tyrosinase in complex with a caddie protein obtained by soking in cupric sulfate for 6 months 2ZMX ; 1.33 ; Crystal structure of the met1-form of the copper-bound tyrosinase in complex with a caddie protein from Streptomyces castaneoglobisporus obtained by soaking in cupric sulfate solution for 36 hours 1E30 ; 1.5 ; Crystal structure of the Met148Gln mutant of rusticyanin at 1.5 Angstrom resolution 2ZMY ; 1.45 ; Crystal structure of the met2-form of the copper-bound tyrosinase in complex with a caddie protein from Streptomyces castaneoglobisporus obtained by soaking in cupric sulfate solution for 80 hours 5D8M ; 1.95 ; Crystal structure of the metagenomic carboxyl esterase MGS0156 4F2F ; 1.5 ; Crystal structure of the metal binding domain (MBD) of the Streptococcus pneumoniae D39 Cu(I) exporting P-type ATPase CopA with Cu(I) 3EVK ; 1.85 ; Crystal structure of the metal-bound superoxide dismutase from Pyrobaculum aerophilum 3DTO ; 3.3 ; Crystal structure of the metal-dependent HD domain-containing hydrolase BH2835 from Bacillus halodurans, Northeast Structural Genomics Consortium Target BhR130. 2O1E ; 2.6 ; Crystal Structure of the Metal-dependent Lipoprotein YcdH from Bacillus subtilis, Northeast Structural Genomics Target SR583 4WLS ; 2.105 ; Crystal structure of the metal-free (repressor) form of E. Coli CUER, a copper efflux regulator, bound to COPA promoter DNA 2O96 ; 3.0 ; Crystal Structure of the Metal-Free Dimeric Human Mov34 MPN domain (residues 1-177) 2O95 ; 1.95 ; Crystal Structure of the Metal-Free Dimeric Human Mov34 MPN domain (residues 1-186) 1R1U ; 2.0 ; Crystal structure of the metal-sensing transcriptional repressor CzrA from Staphylococcus aureus in the apo-form 1R1V ; 2.3 ; Crystal structure of the metal-sensing transcriptional repressor CzrA from Staphylococcus aureus in the Zn2-form 7L52 ; 1.85 ; Crystal Structure of the Metallo Beta Lactamase L1 from Stenotrophomonas maltophilia Determined by Serial Crystallography 1KR3 ; 2.5 ; Crystal Structure of the Metallo beta-Lactamase from Bacteroides fragilis (CfiA) in Complex with the Tricyclic Inhibitor SB-236050. 4C09 ; 1.2 ; Crystal structure of the metallo-beta-lactamase BCII 4C1C ; 1.18 ; Crystal structure of the metallo-beta-lactamase BCII with D-captopril 4C1H ; 1.1 ; Crystal structure of the metallo-beta-lactamase BCII with L-captopril 1M2X ; 1.5 ; Crystal Structure of the metallo-beta-lactamase BlaB of Chryseobacterium meningosepticum in complex with the inhibitor D-captopril 6V3Q ; 2.4 ; Crystal Structure of the Metallo-beta-Lactamase FIM-1 from Pseudomonas aeruginosa in the Mono-Zinc Form 6KNS ; 2.15 ; Crystal structure of the metallo-beta-lactamase fold protein YhfI from Bacillus subtilis (space group I4122) 6KNT ; 2.5 ; Crystal structure of the metallo-beta-lactamase fold protein YhfI from Bacillus subtilis (space group P4332) 5K0W ; 2.61 ; Crystal structure of the metallo-beta-lactamase GOB-18 from Elizabethkingia meningoseptica 5EV8 ; 2.3 ; Crystal structure of the metallo-beta-lactamase IMP-1 in complex with the bisthiazolidine inhibitor D-CS319 5EWA ; 2.3 ; Crystal structure of the metallo-beta-lactamase IMP-1 in complex with the bisthiazolidine inhibitor L-VC26 4C1G ; 1.714 ; Crystal structure of the metallo-beta-lactamase IMP-1 with D-captopril 4C1F ; 2.01 ; Crystal structure of the metallo-beta-lactamase IMP-1 with L-captopril 6U0Y ; 1.7 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia 6UAC ; 1.6 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with cadmium and hydrolyzed moxolactam 6UAF ; 1.9 ; Crystal Structure of the Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the Complex with Hydrolyzed Imipnem 6UAH ; 1.98 ; Crystal Structure of the Metallo-beta-Lactamase L1 from Stenotrophomonas maltophilia in the Complex with Hydrolyzed Meropenem 6U13 ; 1.52 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with the hydrolyzed antibiotic moxalactam 6U2Z ; 2.38 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with the hydrolyzed moxalactam and two copper ions 6U2Y ; 1.5 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with the hydrolyzed moxalactam and two Ni ions 6U0Z ; 1.65 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with the hydrolyzed penicillin G 6U10 ; 1.4 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the complex with the inhibitor captopril 6UA1 ; 1.8 ; Crystal Structure of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia in the no-metal bound form 5EVB ; 1.841 ; Crystal structure of the metallo-beta-lactamase L1 in complex with the bisthiazolidine inhibitor D-CS319 5EVD ; 1.8 ; Crystal structure of the metallo-beta-lactamase L1 in complex with the bisthiazolidine inhibitor D-VC26 5EVK ; 1.627 ; Crystal structure of the metallo-beta-lactamase L1 in complex with the bisthiazolidine inhibitor L-CS319 4U4L ; 1.9 ; Crystal structure of the metallo-beta-lactamase NDM-1 in complex with a bisthiazolidine inhibitor 7AEZ ; 1.018 ; Crystal structure of the metallo-beta-lactamase NDM-7 with 407 5EW0 ; 1.3 ; Crystal structure of the metallo-beta-lactamase Sfh-I in complex with the bisthiazolidine inhibitor L-CS319 4BZ3 ; 1.294 ; Crystal structure of the metallo-beta-lactamase VIM-2 5FQC ; 1.449 ; Crystal structure of the metallo-beta-lactamase VIM-2 with 2C 4C1E ; 1.399 ; Crystal structure of the metallo-beta-lactamase VIM-2 with D-captopril 4C1D ; 1.198 ; Crystal structure of the metallo-beta-lactamase VIM-2 with L-captopril 6EW3 ; 2.14 ; Crystal structure of the metallo-beta-lactamase VIM-2 with ML302F 4FSB ; 1.88 ; Crystal structure of the metallo-beta-lactamase VIM-31 in its oxidized form at 1.88 A 4FR7 ; 1.61 ; Crystal structure of the metallo-beta-lactamase VIM-31 in its reduced form at 1.61 A 5A87 ; 1.5 ; Crystal structure of the metallo-beta-lactamase VIM-5 7AFY ; 1.105 ; Crystal structure of the metallo-beta-lactamase VIM1 with 1306 7AFX ; 1.636 ; Crystal structure of the metallo-beta-lactamase VIM2 with 139 4JIX ; 2.0 ; Crystal structure of the metallopeptidase zymogen of Methanocaldococcus jannaschii jannalysin 4JIU ; 1.15 ; Crystal structure of the metallopeptidase zymogen of Pyrococcus abyssi abylysin 6FZW ; 2.78 ; Crystal structure of the metalloproteinase enhancer PCPE-1 bound to the procollagen C propeptide trimer (long) 6FZV ; 2.7 ; Crystal structure of the metalloproteinase enhancer PCPE-1 bound to the procollagen C propeptide trimer (short) 5FDU ; 2.9 ; Crystal structure of the Metalnikowin I antimicrobial peptide bound to the Thermus thermophilus 70S ribosome 6BM6 ; 1.504 ; Crystal Structure of the MetH Reactivation Domain bound to AdoHcy 6BM5 ; 1.5 ; Crystal Structure of the MetH Reactivation Domain bound to AdoMet 6BDY ; 1.512 ; Crystal Structure of the MetH Reactivation Domain bound to Sinefungin 4RGV ; 2.45 ; Crystal structure of the Methanocaldococcus jannaschii G1PDH 4RGQ ; 2.23 ; Crystal structure of the Methanocaldococcus jannaschii G1PDH with NADPH and DHAP 2APO ; 1.95 ; Crystal Structure of the Methanococcus jannaschii Cbf5 Nop10 Complex 1RA4 ; 1.86 ; Crystal structure of the Methanococcus jannaschii L7Ae protein 1KKH ; 2.4 ; Crystal Structure of the Methanococcus jannaschii Mevalonate Kinase 1L2Q ; 1.7 ; Crystal Structure of the Methanosarcina barkeri Monomethylamine Methyltransferase (MtmB) 1NTH ; 1.55 ; Crystal structure of the methanosarcina barkeri monomethylamine methyltransferase (MTMB) 8TGE ; 2.3 ; Crystal structure of the Methanosarcina mazei glutamine synthetase in complex with GlnK1 2X5F ; 1.8 ; Crystal structure of the methicillin-resistant Staphylococcus aureus Sar2028, an aspartate_tyrosine_phenylalanine pyridoxal-5'-phosphate dependent aminotransferase 2X3F ; 1.95 ; Crystal Structure of the Methicillin-Resistant Staphylococcus aureus Sar2676, a Pantothenate Synthetase. 4YAH ; 1.6 ; Crystal Structure of the Methionine Binding Protein, MetQ 3VYQ ; 2.525 ; Crystal structure of the methyl CpG Binding Domain of MBD4 in complex with the 5mCG/TG sequence in space group P1 7B2H ; 2.12 ; Crystal structure of the methyl-coenzyme M reductase from Methanothermobacter Marburgensis derivatized with xenon 8HFP ; 1.82 ; Crystal structure of the methyl-CpG-binding domain of SETDB2 in complex with the cysteine-rich domain of C11orf46 protein 4XZN ; 1.7 ; Crystal structure of the methylated K125R/V301L AKR1B10 Holoenzyme 1U8B ; 2.1 ; Crystal structure of the methylated N-ADA/DNA complex 4XZM ; 1.75 ; Crystal structure of the methylated wild-type AKR1B10 holoenzyme 2YVE ; 1.4 ; Crystal structure of the methylene blue-bound form of the multi-drug binding transcriptional repressor CgmR 1LSX ; 2.7 ; Crystal structure of the methylimidazole-bound BjFixL heme domain 2YXB ; 1.8 ; Crystal structure of the methylmalonyl-CoA mutase alpha-subunit from Aeropyrum pernix 5WY0 ; 2.001 ; Crystal structure of the methyltranferase domain of human HEN1 in complex with AdoMet 3GU3 ; 2.3 ; Crystal Structure of the methyltransferase BC_2162 in complex with S-Adenosyl-L-Homocysteine from Bacillus cereus, Northeast Structural Genomics Consortium Target BcR20 3NUT ; 2.22 ; Crystal structure of the methyltransferase CobJ 8TDR ; 3.32 ; Crystal structure of the methyltransferase domain of DNMT3A homotetramer 8TE3 ; 3.2 ; Crystal structure of the methyltransferase domain of R882C/R676K DNMT3A homotetramer 8TE4 ; 2.65 ; Crystal structure of the methyltransferase domain of R882H/N879A DNMT3A homotetramer 8TE1 ; 2.48 ; Crystal structure of the methyltransferase domain of R882H/R676K DNMT3A homotetramer 3MER ; 2.2 ; Crystal Structure of the methyltransferase Slr1183 from Synechocystis sp. PCC 6803, Northeast Structural Genomics Consortium Target SgR145 5NFJ ; 1.96 ; Crystal structure of the methyltransferase subunit of human mitochondrial Ribonuclease P (MRPP1) bound to S-adenosyl-methionine (SAM) 1K3R ; 2.3 ; Crystal Structure of the Methyltransferase with a Knot from Methanobacterium thermoautotrophicum 7Q7Y ; 2.9 ; Crystal structure of the methyltransferase-ribozyme 1 (1-benzyl-adenosine derivative) 7Q7Z ; 3.26 ; Crystal structure of the methyltransferase-ribozyme 1 (with 1-benzylamine-adenosine) 7Q7X ; 2.8 ; Crystal structure of the methyltransferase-ribozyme 1 (with 1-methyl-adenosine) 7Q81 ; 2.85 ; Crystal structure of the methyltransferase-ribozyme 1, 2'-Selenomethyl-Uridine modified (with 1-methyl-adenosine) 7Q80 ; 3.14 ; Crystal structure of the methyltransferase-ribozyme 1, no Magnesium condition (with 1-methyl-adenosine) 7Q82 ; 2.95 ; Crystal structure of the methyltransferase-ribozyme 1, Thallium derivative (with 1-methyl-adenosine) 6W61 ; 2.0 ; Crystal Structure of the methyltransferase-stimulatory factor complex of NSP16 and NSP10 from SARS CoV-2. 8BVI ; 3.1 ; Crystal structure of the METTL9-like histidine methyltransferase from Ostreococcus tauri 6FZ0 ; 2.499 ; Crystal structure of the metY SAM V riboswitch 4HAC ; 1.92 ; Crystal Structure of the Mevalonate Kinase from an Archaeon Methanosarcina mazei 1LNW ; 2.1 ; CRYSTAL STRUCTURE OF THE MEXR REPRESSOR OF THE MEXAB-OPRM MULTIDRUG EFFLUX OPERON OF PSEUDOMONAS AERUGINOSA 1ZH4 ; 2.2 ; Crystal Structure Of The Mg+2/BeF3-Bound Receiver Domain Of Kdp Potassium Transport System Response Regulator KdpE 5X9H ; 3.598 ; Crystal structure of the Mg2+ channel MgtE in complex with ATP 4F1K ; 1.87 ; Crystal structure of the MG2+ free VWA domain of plasmodium falciparum trap protein 4F1J ; 1.73 ; Crystal structure of the MG2+ loaded VWA domain of plasmodium falciparum trap protein 1VAQ ; 2.0 ; Crystal structure of the Mg2+-(chromomycin A3)2-d(TTGGCCAA)2 complex reveals GGCC binding specificity of the drug dimer chelated by metal ion 6B8P ; 2.2 ; Crystal Structure of the Mg2+/CaM:Kv7.4 (KCNQ4) AB domain complex 6B8Q ; 2.6 ; Crystal Structure of the Mg2+/CaM:Kv7.5 (KCNQ5) AB domain complex 1FMW ; 2.15 ; CRYSTAL STRUCTURE OF THE MGATP COMPLEX FOR THE MOTOR DOMAIN OF DICTYOSTELIUM MYOSIN II 8H5E ; 2.5 ; Crystal structure of the MgtE TM domain in complex with Ca2+ ions at 2.5 angstrom resolution 6TBZ ; 1.782 ; Crystal structure of the MH1 domain of Smad5-Smad3 chimera construct bound to the GGCGC site 2IPK ; 2.3 ; Crystal Structure of the MHC Class II Molecule HLA-DR1 in Complex with the Fluorogenic Peptide, AcPKXVKQNTLKLAT (X=3-[5-(dimethylamino)-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl]-L-alanine) and the Superantigen, SEC3 Variant 3B2 3CUP ; 3.09 ; Crystal structure of the MHC class II molecule I-Ag7 in complex with the peptide GAD221-235 4TSE ; 2.057 ; Crystal Structure of the Mib Repeat Domain of Mind bomb 1 7PUZ ; 2.842 ; Crystal structure of the Mic60 coiled coil domain 8ANQ ; 2.8 ; Crystal structure of the microbial rhodopsin from Sphingomonas paucimobilis (SpaR) 5FMM ; 2.4 ; crystal structure of the mid, cap-binding, mid-link and 627 domains from avian influenza a virus polymerase PB2 subunit bound to M7GTP 5FMQ ; 3.1 ; Crystal structure of the mid, cap-binding, mid-link and 627 domains from avian influenza A virus polymerase PB2 subunit bound to M7GTP H32 crystal form 5TE8 ; 2.7 ; Crystal structure of the midazolam-bound human CYP3A4 1LKV ; 2.8 ; Crystal Structure of the Middle and C-terminal Domains of the Flagellar Rotor Protein FliG 2GQ0 ; 1.9 ; Crystal Structure of the Middle Domain of HtpG, the E. coli Hsp90 3PRY ; 2.28 ; Crystal structure of the middle domain of human HSP90-beta refined at 2.3 A resolution 3RK6 ; 2.0 ; Crystal structure of the middle domain of human Paip1 5UMU ; 1.903 ; Crystal structure of the middle double PH domain of human FACT complex subunit SPT16 5V6A ; 2.7 ; Crystal structure of the Middle East respiratory syndrome coronavirus papain-like protease bound to ubiquitin variant ME.2 5V69 ; 2.55 ; Crystal structure of the Middle East respiratory syndrome coronavirus papain-like protease bound to ubiquitin variant ME.4 1RR7 ; 2.2 ; Crystal structure of the Middle Operon Regulator protein of Bacteriophage Mu 4REZ ; 2.8 ; Crystal structure of the Middle-East respiratory syndrome coronavirus papain-like protease 4RF1 ; 2.15 ; Crystal structure of the Middle-East respiratory syndrome coronavirus papain-like protease in complex with ubiquitin (space group P63) 4RF0 ; 2.8 ; Crystal structure of the Middle-East respiratory syndrome coronavirus papain-like protease in complex with ubiquitin (space group P6522) 6OZU ; 2.4 ; Crystal structure of the MIF4G domain of Trypanosoma cruzi translation initiation factor EIF4G5 2OSE ; 2.04 ; Crystal Structure of the Mimivirus Cyclophilin 3EVO ; 1.5 ; Crystal structure of the Mimivirus NDK +Kpn mutant complexed with dTDP 3EJM ; 1.95 ; Crystal structure of the mimivirus NDK +Kpn mutant complexed with GDP 3FC9 ; 2.8 ; Crystal structure of the Mimivirus NDK +Kpn-N62L double mutant complexed with CDP 3EM1 ; 1.5 ; Crystal structure of the mimivirus NDK +Kpn-N62L double mutant complexed with dTDP 3ETM ; 1.9 ; Crystal structure of the mimivirus NDK +KPN-N62L-R107G triple mutant complexed with CDP 3EVM ; 1.8 ; Crystal structure of the Mimivirus NDK +Kpn-N62L-R107G triple mutant complexed with dCDP 3ENA ; 1.6 ; Crystal structure of the mimivirus NDK +Kpn-N62L-R107G triple mutant complexed with dGDP 3FCV ; 2.4 ; Crystal structure of the Mimivirus NDK +Kpn-N62L-R107G triple mutant complexed with dUDP 3DKD ; 1.9 ; Crystal structure of the mimivirus NDK +Kpn-N62L-R107G triple mutant complexed with GDP 3DDI ; 1.9 ; Crystal structure of the mimivirus NDK +Kpn-N62L-R107G triple mutant complexed with TDP 3EMT ; 1.6 ; Crystal structure of the mimivirus NDK +Kpn-R107G double mutant complexed with dGDP 3GP9 ; 1.8 ; Crystal structure of the Mimivirus NDK complexed with GDP 3GPA ; 2.0 ; Crystal structure of the Mimivirus NDK N62L mutant complexed with CDP 3FBF ; 2.6 ; Crystal structure of the Mimivirus NDK N62L mutant complexed with dTDP 3FCW ; 2.4 ; Crystal structure of the Mimivirus NDK N62L mutant complexed with UDP 3FBC ; 2.6 ; Crystal structure of the Mimivirus NDK N62L-R107G double mutant complexed with dTDP 3FBE ; 2.4 ; Crystal structure of the Mimivirus NDK N62L-R107G double mutant complexed with GDP 3FBB ; 2.4 ; Crystal structure of the Mimivirus NDK N62L-R107G double mutant complexed with UDP 3EVW ; 2.6 ; Crystal structure of the Mimivirus NDK R107G mutant complexed with dTDP 4WSE ; 2.84 ; Crystal structure of the Mimivirus polyadenylate synthase 4RZ2 ; 2.8 ; Crystal structure of the MinD-like ATPase FlhG 4RZ3 ; 1.9 ; Crystal structure of the MinD-like ATPase FlhG 7EQC ; 2.5 ; Crystal structure of the mini-centralspindlin complex 5ONS ; 2.14 ; Crystal structure of the minimal DENR-MCTS1 complex 6YGU ; 1.99 ; Crystal structure of the minimal Mtr4-Red1 complex (single chain) from Chaetomium thermophilum 4C5E ; 1.951 ; Crystal structure of the minimal Pho-Sfmbt complex (P21 spacegroup) 4C5H ; 3.2 ; Crystal structure of the minimal Pho-Sfmbt complex (P3121 spacegroup) 4C5G ; 2.1 ; Crystal structure of the minimal Pho-Sfmbt complex (P6122 spacegroup) 2NS6 ; 2.1 ; Crystal Structure of the Minimal Relaxase Domain of MobA from Plasmid R1162 6IRI ; 1.38 ; Crystal structure of the minor ferredoxin from Thermosynechococcus elongatus 3FT4 ; 1.9 ; Crystal Structure of the minor histocompatibility peptide HA-1Arg in complex with HLA-A2 3FT3 ; 1.95 ; Crystal Structure of the minor histocompatibility peptide HA-1His in complex with HLA-A2 3KLQ ; 1.9 ; Crystal Structure of the Minor Pilin FctB from Streptococcus pyogenes 90/306S 4DQ9 ; 1.59 ; Crystal structure of the minor pseudopilin EPSH from the type II secretion system of Vibrio cholerae 6P28 ; 1.35 ; Crystal structure of the MIR domain (aa 337-532) of the S. cerevisiae mannosyltransferase Pmt2 4GLU ; 1.9 ; Crystal structure of the mirror image form of VEGF-A 4WB2 ; 1.8 ; Crystal structure of the mirror-image L-RNA/L-DNA aptamer NOX-D20 in complex with mouse C5a complement anaphylatoxin 4WB3 ; 2.0 ; Crystal structure of the mirror-image L-RNA/L-DNA aptamer NOX-D20 in complex with mouse C5a-desArg complement anaphylatoxin 6C5W ; 3.1001 ; Crystal structure of the mitochondrial calcium uniporter 6LE5 ; 3.1 ; Crystal structure of the mitochondrial calcium uptake 1 and 2 heterodimer (MICU1-MICU2 heterodimer) in an apo state 5JH0 ; 2.18 ; Crystal structure of the mitochondrial DNA packaging protein Abf2p in complex with DNA at 2.18 Angstrom resolution 5JGH ; 2.6 ; Crystal structure of the mitochondrial DNA packaging protein Abf2p in complex with DNA at 2.6 Angstrom resolution 7TOC ; 2.43 ; Crystal Structure of the Mitochondrial Ketol-acid Reductoisomerase IlvC from Candida auris 4KB3 ; 2.93 ; Crystal structure of the mitochondrial peroxiredoxin from Leishmania braziliensis in the decameric form 4KCE ; 2.79 ; Crystal structure of the mitochondrial peroxiredoxin from Leishmania braziliensis in the dimeric form 1LCY ; 2.0 ; Crystal Structure of the Mitochondrial Serine Protease HtrA2 2FME ; 2.1 ; Crystal structure of the mitotic kinesin eg5 (ksp) in complex with mg-adp and (r)-4-(3-hydroxyphenyl)-n,n,7,8-tetramethyl-3,4-dihydroisoquinoline-2(1h)-carboxamide 2GM1 ; 2.3 ; Crystal structure of the mitotic kinesin eg5 in complex with mg-adp and n-(3-aminopropyl)-n-((3-benzyl-5-chloro-4-oxo-3,4-dihydropyrrolo[2,1-f][1,2,4]triazin-2-yl)(cyclopropyl)methyl)-4-methylbenzamide 1II6 ; 2.1 ; Crystal Structure of the Mitotic Kinesin Eg5 in Complex with Mg-ADP. 4TXO ; 2.2 ; Crystal structure of the mixed disulfide complex of thioredoxin-like TlpAs(C110S) and copper chaperone ScoIs(C74S) 4TXV ; 2.0 ; Crystal structure of the mixed disulfide intermediate between thioredoxin-like TlpAs(C110S) and subunit II of cytochrome c oxidase CoxBPD (C233S) 7U5V ; 2.59 ; Crystal structure of the Mixed Lineage Leukaemia (MLL1) SET Domain with the cofactor product S-Adenosylhomocysteine and Borealin peptide 2Q81 ; 2.1 ; Crystal Structure of the Miz-1 BTB/POZ domain 7AZW ; 2.1 ; Crystal structure of the MIZ1-BTB-domain 7AZX ; 2.25 ; Crystal structure of the MIZ1-BTB-domain in complex with a HUWE1-derived peptide 1HYE ; 1.9 ; CRYSTAL STRUCTURE OF THE MJ0490 GENE PRODUCT, THE FAMILY OF LACTATE/MALATE DEHYDROGENASE, DIMERIC STRUCTURE 7DXR ; 1.6 ; Crystal structure of the mk2h peptide homodimer. 7DXW ; 1.509 ; Crystal structure of the mk2h_deltaMIL peptide homodimer 7DXX ; 1.403 ; Crystal structure of the mk2h_deltaMILPS peptide homodimer 7DXU ; 2.314 ; Crystal structure of the mk2h_deltaP peptide homodimer 7DXV ; 2.301 ; Crystal structure of the mk2h_deltaY peptide homodimer 8HPZ ; 2.3 ; Crystal structure of the MlaD domain of the MlaD protein from Escherichia coli (Form I) 8HQ9 ; 2.7 ; Crystal structure of the MlaD domain of the MlaD protein from Escherichia coli (Form II) 7W6A ; 2.21 ; Crystal structure of the MLL1 (N3861I/Q3867L/C3882SS)-RBBP5-ASH2L complex 5F6K ; 2.411 ; Crystal structure of the MLL3-Ash2L-RbBP5 complex 4L58 ; 1.48 ; Crystal structure of the MLL5 PHD finger in complex with H3K4me3 3KUR ; 2.5 ; Crystal structure of the MLLE domain of poly(A)-binding protein 3KUS ; 1.4 ; Crystal structure of the MLLE domain of poly(A)-binding protein in complex with the binding region of Paip2 3KUT ; 1.5 ; Crystal structure of the MLLE domain of poly(A)-binding protein in complex with the binding region of Paip2 5O8M ; 1.45 ; Crystal structure of the MmI1 YTH domain 1JLK ; 2.3 ; Crystal structure of the Mn(2+)-bound form of response regulator Rcp1 3B59 ; 2.53 ; Crystal structure of the Mn(II)-bound glyoxalase from Novosphingobium aromaticivorans 4GWD ; 1.53 ; Crystal Structure of the Mn2+2,Zn2+-Human Arginase I-ABH Complex 4FCI ; 1.82 ; Crystal Structure of the Mn2+2-Human Arginase I-AGPA Complex 1N62 ; 1.09 ; Crystal Structure of the Mo,Cu-CO Dehydrogenase (CODH), n-butylisocyanide-bound state 5G2R ; 2.45 ; Crystal structure of the Mo-insertase domain Cnx1E from Arabidopsis thaliana 5G2S ; 2.838 ; Crystal structure of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with molybdate 4AWY ; 1.6 ; Crystal Structure of the Mobile Metallo-beta-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the role of Gln157 4AWZ ; 1.8 ; Crystal Structure of the Mobile Metallo-beta-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the role of Gln157 6A6S ; 1.851 ; Crystal structure of the modified fructosyl peptide oxidase from Aspergillus nidulans in complex with FSA, Seleno-methionine Derivative 6A6V ; 2.9 ; Crystal structure of the modified fructosyl peptide oxidase from Aspergillus nidulans with 7 additional mutations, in complex with FSA 6A6T ; 1.901 ; Crystal structure of the modified fructosyl peptide oxidase from Aspergillus nidulans with R61G mutation 6A6U ; 1.945 ; Crystal structure of the modified fructosyl peptide oxidase from Aspergillus nidulans with R61G mutation, in complex with FSA 6A6R ; 2.609 ; Crystal structure of the modified fructosyl peptide oxidase from Aspergillus nidulans, Seleno-methionine Derivative 2J8F ; 1.84 ; Crystal structure of the modular Cpl-1 endolysin complexed with a peptidoglycan analogue (E94Q mutant in complex with a disaccharide- pentapeptide) 2J8G ; 1.69 ; Crystal structure of the modular Cpl-1 endolysin complexed with a peptidoglycan analogue (E94Q mutant in complex with a tetrasaccharide- pentapeptide) 2IXV ; 1.96 ; Crystal structure of the modular Cpl-1 endolysin complexed with a peptidoglycan analogue (E94Q mutant) 2IXU ; 2.28 ; Crystal structure of the modular Cpl-1 endolysin complexed with a peptidoglycan analogue (wild-type endolysin) 1EF1 ; 1.9 ; CRYSTAL STRUCTURE OF THE MOESIN FERM DOMAIN/TAIL DOMAIN COMPLEX 2V7Y ; 2.37 ; Crystal structure of the molecular chaperone DnaK from Geobacillus kaustophilus HTA426 in post-ATP hydrolysis state 2HB5 ; 1.59 ; Crystal Structure of the Moloney Murine Leukemia Virus RNase H Domain 6NIO ; 1.37 ; Crystal Structure of the Molybdate Transporter Periplasmic Protein ModA from Yersinia pestis 7T50 ; 1.9 ; Crystal structure of the molybdate-binding periplasmic protein ModA from the bacteria Pseudomonsa aeruginosa in chromate-bound form 7T4Z ; 1.78 ; Crystal structure of the molybdate-binding periplasmic protein ModA from the bacteria Pseudomonsa aeruginosa in ligand-free form 7T51 ; 2.5 ; Crystal structure of the molybdate-binding periplasmic protein ModA from the bacteria Pseudomonsa aeruginosa in molybdate-bound form 7T5A ; 2.16 ; Crystal structure of the molybdate-binding periplasmic protein ModA from the bacteria Pseudomonsa aeruginosa in tungstate-bound form 2IDE ; 1.9 ; Crystal Structure of the molybdenum cofactor biosynthesis protein C (TTHA1789) from Thermus Theromophilus HB8 3JQJ ; 1.9 ; Crystal structure of the molybdenum cofactor biosynthesis protein C (TTHA1789) from Thermus Theromophilus HB8 2IIH ; 1.75 ; Crystal structure of the molybdenum cofactor biosynthesis protein C (TTHA1789) from thermus theromophilus HB8 (H32 form) 3JQK ; 1.75 ; Crystal structure of the molybdenum cofactor biosynthesis protein C (TTHA1789) from Thermus Theromophilus HB8 (H32 FORM) 1E5K ; 1.35 ; CRYSTAL STRUCTURE OF THE MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN MOBA (PROTEIN FA) FROM ESCHERICHIA COLI AT NEAR ATOMIC RESOLUTION 2BIH ; 2.6 ; crystal structure of the Molybdenum-containing nitrate reducing fragment of Pichia angusta assimilatory nitrate reductase 2IS8 ; 1.64 ; Crystal structure of the Molybdopterin biosynthesis enzyme MoaB (TTHA0341) from thermus theromophilus HB8 3MCH ; 1.64 ; Crystal structure of the molybdopterin biosynthesis enzyme MoaB (TTHA0341) from thermus theromophilus HB8 1X8G ; 1.7 ; Crystal Structure of the Mono-Zinc Carbapenemase CphA from Aeromonas Hydrophyla 2WRS ; 2.79 ; Crystal Structure of the Mono-Zinc Metallo-beta-lactamase VIM-4 from Pseudomonas aeruginosa 3SFP ; 2.27 ; Crystal Structure of the Mono-Zinc-boundform of New Delhi Metallo-beta-Lactamase-1 from Klebsiella pneumoniae 3QHT ; 2.4 ; Crystal Structure of the Monobody ySMB-1 bound to yeast SUMO 3RZW ; 2.15 ; Crystal Structure of the Monobody ySMB-9 bound to human SUMO1 4XFW ; 1.517 ; Crystal structure of the monoclinic form of alpha-carbonic anhydrase from the human pathogen Helicobacter pylori 5FDF ; 1.76 ; Crystal structure of the monoclinic form of Thermotoga maritima Acetyl Esterase TM0077 (apo structure) at 1.76 Angstrom resolution 3GRL ; 2.0 ; Crystal Structure of the Monomer of the p115 Tether Globular Head Domain 4I1Z ; 3.0 ; Crystal structure of the monomeric (V948R) form of the gefitinib/erlotinib resistant EGFR kinase domain L858R+T790M 1RU3 ; 2.2 ; Crystal Structure of the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans 5FDS ; 1.9 ; Crystal structure of the monomeric allergen profilin (Hev b 8) 8DP8 ; 2.30001 ; Crystal structure of the monomeric AvrM14-A Nudix hydrolase effector from Melampsora lini 8DP9 ; 1.76 ; Crystal structure of the monomeric AvrM14-B Nudix hydrolase effector from Melampsora lini 7JU2 ; 1.85002 ; Crystal structure of the monomeric ETV6 PNT domain 5QU1 ; 1.08 ; Crystal Structure of the monomeric human Nck SH3.1 domain, triclinic, 1.08A 1ITW ; 1.95 ; Crystal structure of the monomeric isocitrate dehydrogenase in complex with isocitrate and Mn 1J1W ; 3.2 ; Crystal Structure Of The Monomeric Isocitrate Dehydrogenase In Complex With NADP+ 2F1C ; 2.3 ; Crystal structure of the monomeric porin OmpG 8PI6 ; 2.14 ; Crystal structure of the monomeric zinc free human insulin A22K, B3E, B26E, B29R, desB30 precursor with a Ser-Glu-Asp-Trp-Trp-Arg C-peptide and a Glu-Glu-Gly-Glu-Pro-Arg N-terminal extension 4MKO ; 1.7 ; Crystal structure of the monomeric, cleaved form of the Pore-Forming Toxin Monalysin 5T77 ; 2.0 ; Crystal structure of the MOP flippase MurJ 4ZQG ; 2.5 ; Crystal structure of the Moraxella catarrhalis DOX-P Reductoisomerase in complex with NADH, fosmidomycin and magnesium 3HOT ; 3.25 ; Crystal structure of the Mos1 mariner paired end complex with Mn 5HOO ; 3.3 ; Crystal structure of the Mos1 Strand Transfer Complex 6XRX ; 1.95 ; Crystal structure of the mosquito protein AZ1 as an MBP fusion 3OC3 ; 3.1 ; Crystal structure of the Mot1 N-terminal domain in complex with TBP 4WZS ; 3.78 ; Crystal structure of the Mot1 N-terminal domain in complex with TBP and NC2 bound to a promoter DNA fragment 6NJE ; 2.2 ; Crystal structure of the motor domain of human kinesin family member 22 3B6U ; 1.8 ; Crystal structure of the motor domain of human kinesin family member 3B in complex with ADP 3B6V ; 2.7 ; Crystal structure of the motor domain of human kinesin family member 3C in complex with ADP 1T5C ; 2.5 ; Crystal structure of the motor domain of human kinetochore protein CENP-E 3GBJ ; 2.102 ; Crystal structure of the motor domain of kinesin KIF13B bound with ADP 1Q0B ; 1.9 ; Crystal structure of the motor protein KSP in complex with ADP and monastrol 1J07 ; 2.35 ; Crystal structure of the mouse acetylcholinesterase-decidium complex 1N5M ; 2.2 ; Crystal structure of the mouse acetylcholinesterase-gallamine complex 1N5R ; 2.25 ; Crystal structure of the mouse acetylcholinesterase-propidium complex 1Q84 ; 2.45 ; Crystal structure of the mouse acetylcholinesterase-TZ2PA6 anti complex 1Q83 ; 2.65 ; Crystal structure of the mouse acetylcholinesterase-TZ2PA6 syn complex 3DJ7 ; 2.8 ; Crystal structure of the mouse Aurora-A catalytic domain (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with Compound 130. 3DJ5 ; 1.8 ; Crystal structure of the mouse Aurora-A catalytic domain (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with Compound 290. 3DJ6 ; 1.7 ; Crystal structure of the mouse Aurora-A catalytic domain (Asn186->Gly, Lys240->Arg, Met302->Leu) in complex with Compound 823. 4P3A ; 1.4 ; Crystal structure of the mouse C5a anaphylatoxin 4P3B ; 2.1 ; Crystal structure of the mouse C5a-desArg anaphylatoxin 1XLS ; 2.96 ; Crystal structure of the mouse CAR/RXR LBD heterodimer bound to TCPOBOP and 9cRA and a TIF2 peptide containg the third LXXLL motifs 4QKV ; 3.0 ; Crystal structure of the mouse cavin1 HR1 domain 1GN1 ; 2.8 ; crystal structure of the mouse CCT gamma apical domain (monoclinic) 1GML ; 2.2 ; crystal structure of the mouse CCT gamma apical domain (triclinic) 5FKP ; 1.8 ; Crystal structure of the mouse CD1d in complex with the p99 peptide 3UBX ; 3.1 ; Crystal structure of the mouse CD1d-C20:2-aGalCer-L363 mAb Fab complex 3T1F ; 1.7 ; Crystal structure of the mouse CD1d-Glc-DAG-s2 complex 4ELM ; 3.48 ; Crystal structure of the mouse CD1d-lysosulfatide-Hy19.3 TCR complex 3UF5 ; 2.8 ; Crystal structure of the mouse Colony-Stimulating Factor 1 (mCSF-1) cytokine 4ADQ ; 4.5 ; CRYSTAL STRUCTURE OF THE MOUSE COLONY-STIMULATING FACTOR 1 (MCSF-1) CYTOKINE IN COMPLEX WITH THE VIRAL RECEPTOR BARF1 3L51 ; 1.506 ; Crystal Structure of the Mouse Condensin Hinge Domain 3FQI ; 2.013 ; Crystal Structure of the Mouse Dom3Z 3FQJ ; 2.623 ; Crystal Structure of the Mouse Dom3Z in Complex with GDP 6M3U ; 2.32 ; Crystal structure of the mouse endonuclease EndoG(H138A/C100A), space group C2 6M3F ; 1.96 ; Crystal structure of the mouse endonuclease EndoG(H138A/C110A), space group P212121 6M3T ; 2.38 ; Crystal structure of the mouse endonuclease EndoG(H138A/C110A), space group P41212 6LYF ; 2.8 ; Crystal structure of the mouse endonuclease EndoG(H138A/Se-Met) 3B08 ; 1.701 ; Crystal structure of the mouse HOIL1-L-NZF in complex with linear di-ubiquitin 3B0A ; 1.9 ; Crystal structure of the mouse HOIL1-L-NZF in complex with linear di-ubiquitin 7XCB ; 3.4 ; Crystal structure of the mouse interleukin-9 4OZQ ; 2.71 ; Crystal structure of the mouse Kif14 motor domain 7LTW ; 1.8 ; Crystal structure of the mouse Kirrel2 D1 homodimer 7LU6 ; 1.95 ; Crystal structure of the mouse Kirrel3 D1 homodimer 7Z3P ; 1.943 ; Crystal structure of the mouse leptin:LepR-CRH2 encounter complex to 1.95 A resolution. 7Z3R ; 2.951 ; Crystal structure of the mouse leptin:LepR-IgCRH2 complex to 2.95 A resolution. 7KIH ; 1.467 ; Crystal structure of the mouse lipin-1 M-Lip domain 7KIL ; 1.898 ; Crystal structure of the mouse lipin-1 M-Lip domain with zinc 7KIQ ; 2.523 ; Crystal structure of the mouse lipin-2 M-Lip domain 3ZYV ; 2.545 ; Crystal structure of the mouse liver Aldehyde Oxidase 3 (mAOX3) 3SGD ; 2.31 ; Crystal structure of the mouse mAb 17.2 4M68 ; 1.696 ; Crystal structure of the mouse MLKL kinase-like domain 1HU8 ; 2.7 ; CRYSTAL STRUCTURE OF THE MOUSE P53 CORE DNA-BINDING DOMAIN AT 2.7A RESOLUTION 2IOO ; 2.02 ; Crystal structure of the mouse p53 core domain 2IOI ; 1.55 ; Crystal structure of the mouse p53 core domain at 1.55 A 2HPL ; 1.8 ; Crystal structure of the mouse p97/PNGase complex 3BP5 ; 1.8 ; Crystal structure of the mouse PD-1 and PD-L2 complex 3BP6 ; 1.6 ; Crystal structure of the mouse PD-1 Mutant and PD-L2 complex 6H8S ; 1.771 ; CRYSTAL STRUCTURE OF THE MOUSE PROTEIN TYROSINE PHOSPHATASE PTPN5 (STEP) IN COMPLEX WITH COMPOUND BI-0314 2ZPY ; 2.1 ; Crystal structure of the mouse radxin FERM domain complexed with the mouse CD44 cytoplasmic peptide 3A1Q ; 2.2 ; Crystal structure of the mouse RAP80 UIMs in complex with Lys63-linked di-ubiquitin 4M66 ; 2.401 ; Crystal structure of the mouse RIP3 kinase domain 4M69 ; 2.497 ; Crystal structure of the mouse RIP3-MLKL complex 4P2I ; 1.9 ; Crystal structure of the mouse SNX19 PX domain 4P2J ; 2.4 ; Crystal structure of the mouse SNX19 PX domain with bound sulphate ion 3A9J ; 1.18 ; Crystal structure of the mouse TAB2-NZF in complex with Lys63-linked di-ubiquitin 3A9K ; 1.4 ; Crystal structure of the mouse TAB3-NZF in complex with Lys63-linked di-ubiquitin 2RFA ; 1.7 ; Crystal structure of the mouse TRPV6 ankyrin repeat domain 4ZW2 ; 1.86 ; Crystal structure of the Mouse voltage gated calcium channel beta subunit isoform 1a in complex with Alpha Interaction Domain peptide. 7WEK ; 3.21 ; Crystal structure of the mouse Wdr47 NTD in complex with the WBR motif form Camsap3. 7WEJ ; 3.09 ; Crystal structure of the mouse Wdr47 NTD. 1LOO ; 2.2 ; Crystal Structure of the Mouse-Muscle Adenylosuccinate Synthetase Ligated with GTP 4JF3 ; 1.7 ; Crystal structure of the mpmv tm retroviral fusion core 7YDW ; 2.47 ; Crystal structure of the MPND-DNA complex 1WWH ; 2.7 ; Crystal structure of the MPPN domain of mouse Nup35 2AQL ; 2.3 ; Crystal Structure of the MRG15 MRG domain 5IN1 ; 1.4 ; Crystal Structure of the MRG701 chromodomain 4XQM ; 1.625 ; Crystal structure of the MRH domain of Glucosidase II beta bound to mannose 5E9J ; 3.47 ; Crystal structure of the mRNA cap guanine-N7 methyltransferase - modular lobe (416-456) deletion 6E5U ; 3.8 ; Crystal structure of the mRNA export receptor NXF1/NXT1 in complex with influenza virus NS1 protein 1IRJ ; 2.1 ; Crystal Structure of the MRP14 complexed with CHAPS 5H75 ; 2.738 ; Crystal structure of the MrsD-Protein A fusion protein 6OQM ; 2.2 ; crystal structure of the MSH6 PWWP domain 4B7Y ; 3.25 ; Crystal structure of the MSL1-MSL2 complex 4B86 ; 3.5 ; Crystal structure of the MSL1-MSL2 complex (3.5A) 4V12 ; 1.5 ; Crystal structure of the MSMEG_6754 dehydratase from Mycobacterium smegmatis 1BQQ ; 2.75 ; CRYSTAL STRUCTURE OF THE MT1-MMP--TIMP-2 COMPLEX 1BUV ; 2.75 ; CRYSTAL STRUCTURE OF THE MT1-MMP-TIMP-2 COMPLEX 3BSF ; 2.9 ; Crystal Structure of the MTA/SAH nucleosidase 4FNB ; 1.8 ; Crystal structure of the Mtb enoyl CoA isomerase (Rv0632c) in complex with hydroxybutyrl CoA 4FN8 ; 1.831 ; Crystal structure of the Mtb enoyl CoA isomerase (Rv0632c)in complex with acetoacetyl CoA 4FND ; 1.85 ; Crystal structure of the Mtb enoyl CoA isomerase in complex with hydroxyhexanoyl CoA 4FOA ; 2.253 ; Crystal Structure of the Mtb ThyA in Complex with 5-fluoro-dUMP 7VM8 ; 3.034 ; Crystal structure of the MtDMI1 gating ring 5CRK ; 2.48 ; Crystal Structure of the MTERF1 F243A substitution bound to the termination sequence. 5CRJ ; 2.59 ; Crystal Structure of the MTERF1 F322A substitution bound to the termination sequence. 5CKY ; 2.62 ; Crystal Structure of the MTERF1 R162A substitution bound to the termination sequence. 5CO0 ; 2.65 ; Crystal Structure of the MTERF1 Y288A substitution bound to the termination sequence. 2RAQ ; 3.11 ; Crystal structure of the MTH889 protein from Methanothermobacter thermautotrophicus. Northeast Structural Genomics Consortium target TT205 3KXD ; 2.2 ; Crystal structure of the mthk rck in complex with cadmium 3MXJ ; 1.95 ; Crystal Structure of the mTREX1 Apoprotein 1EAW ; 2.93 ; Crystal structure of the MTSP1 (matriptase)-BPTI (aprotinin) complex 7XCN ; 2.7 ; Crystal structure of the MttB-MttC complex at 2.7 A resolution 4DKL ; 2.8 ; Crystal structure of the mu-opioid receptor bound to a morphinan antagonist 3LYY ; 1.9 ; Crystal structure of the MucBP domain of the adhesion protein PEPE_0118 from Pediococcus pentosaceus. Northeast Structural Genomics Consortium target id PtR41A 6BSC ; 1.303 ; Crystal structure of the Mucin-1 SEA domain 6BSB ; 1.6 ; Crystal structure of the Mucin-1 SEA domain, L1105M mutant, Selenium-derivative 3NZ3 ; 2.0 ; Crystal structure of the mucin-binding domain of Spr1345 from Streptococcus pneumoniae 1Z96 ; 1.8 ; Crystal structure of the Mud1 UBA domain 7V8P ; 2.44 ; Crystal Structure of the MukE dimer 3EUH ; 2.9 ; Crystal Structure of the MukE-MukF Complex 3RPU ; 3.6 ; Crystal structure of the MukE-MukF complex 2P3A ; 1.75 ; Crystal Structure of the multi-drug resistant mutant subtype B HIV protease complexed with TL-3 inhibitor 2P3D ; 2.8 ; Crystal Structure of the multi-drug resistant mutant subtype F HIV protease complexed with TL-3 inhibitor 1JT6 ; 2.54 ; Crystal structure of the multidrug binding protein QacR bound to dequalinium 1RPW ; 2.9 ; Crystal Structure Of The Multidrug Binding Protein Qacr Bound To The Diamidine Hexamidine 7Q34 ; 2.6 ; Crystal structure of the multidrug binding transcriptional regulator LmrR in complex squaraine dye 6DO0 ; 2.798 ; Crystal structure of the multidrug binding transcriptional regulator LmrR in complex with Rhodium Bis-diphosphine Complex 3F8B ; 2.0 ; Crystal structure of the multidrug binding transcriptional regulator LmrR in drug free state 1JTX ; 2.85 ; Crystal structure of the multidrug binding transcriptional regulator QacR bound to crystal violet 1JTY ; 2.97 ; Crystal structure of the multidrug binding transcriptional regulator QacR bound to ethidium 1JUP ; 2.95 ; Crystal structure of the multidrug binding transcriptional repressor QacR bound to malachite green 1RKW ; 2.62 ; CRYSTAL STRUCTURE OF THE MULTIDRUG BINDING TRANSCRIPTIONAL REPRESSOR QACR BOUND TO PENTAMADINE 1JUS ; 2.84 ; Crystal structure of the multidrug binding transcriptional repressor QacR bound to rhodamine 6G 1QVT ; 2.89 ; CRYSTAL STRUCTURE OF THE MULTIDRUG BINDING TRANSCRIPTIONAL REPRESSOR QACR BOUND TO THE DRUG PROFLAVINE 1JUM ; 2.98 ; Crystal structure of the multidrug binding transcriptional repressor QacR bound to the natural drug berberine 1QVU ; 2.96 ; Crystal structure of the multidrug binding transcriptional repressor QacR bound to two drugs: ethidium and proflavine 2I6W ; 3.1 ; Crystal structure of the multidrug efflux transporter AcrB 7WLS ; 2.94 ; Crystal structure of the multidrug efflux transporter BpeB from Burkholderia pseudomallei 7WLV ; 3.0 ; Crystal Structure of the Multidrug effulx transporter BpeF from Burkholderia pseudomallei. 1EZJ ; 1.9 ; CRYSTAL STRUCTURE OF THE MULTIMERIZATION DOMAIN OF THE PHOSPHOPROTEIN FROM SENDAI VIRUS 3PUJ ; 3.313 ; Crystal structure of the MUNC18-1 and SYNTAXIN4 N-Peptide complex 8TN8 ; 1.75 ; Crystal structure of the murine astrovirus capsid spike at 1.75 A 4BKM ; 2.65 ; Crystal structure of the murine AUM (phosphoglycolate phosphatase) capping domain as a fusion protein with the catalytic core domain of murine chronophin (pyridoxal phosphate phosphatase) 6I8C ; 1.92 ; Crystal structure of the murine beta-2-microglobulin. 4MRD ; 2.55 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 4MRE ; 1.58 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 4MRF ; 1.55 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 4MRG ; 1.69 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 4MRH ; 1.12 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 4NP2 ; 1.75 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 4NP3 ; 1.61 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZC ; 1.95 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 5BZE ; 1.31 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 5BZF ; 2.77 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 5BZG ; 2.19 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 5BZH ; 1.95 ; Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule 5BZI ; 1.32 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZJ ; 1.4 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZK ; 1.4 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZL ; 1.23 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZM ; 1.25 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZN ; 1.23 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZO ; 1.22 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZP ; 1.23 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZQ ; 1.2 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZR ; 1.15 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZS ; 1.5 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 5BZT ; 1.25 ; Crystal structure of the murine cd44 hyaluronan binding domain complex with a small molecule 3TBS ; 2.49 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX THE WITH LCMV-DERIVED GP33 ALTERED PEPTIDE ligand (V3P,Y4A) 4NSK ; 2.6 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH LCMV-DERIVED GP33 ALTERED PEPTIDE ligand V3P 7P0T ; 2.605 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH LCMV-DERIVED GP33 PEPTIDE with D-AMINOACID 7P0A ; 2.429 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH LCMV-DERIVED GP33 PEPTIDE with D-AMINOACID (p3P6f) 3TBW ; 2.15 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH THE LCMV-DERIVED GP33 ALTERED PEPTIDE ligand (A2G, V3P, Y4S) 3TBV ; 2.1 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH THE LCMV-DERIVED GP33 ALTERED PEPTIDE ligand (A2G,V3P,Y4A) 3TBY ; 2.5 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH THE LCMV-DERIVED GP33 ALTERED PEPTIDE ligand (V3P, Y4F) 3TBT ; 2.3 ; CRYSTAL STRUCTURE OF THE MURINE CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX H-2DB IN COMPLEX WITH THE LCMV-DERIVED GP33 ALTERED PEPTIDE ligand (V3P, Y4S) 1N5A ; 2.85 ; Crystal structure of the Murine class I Major Histocompatibility Complex of H-2DB, B2-Microglobulin, and A 9-Residue immunodominant peptide epitope gp33 derived from LCMV 1ZHB ; 2.7 ; Crystal Structure Of The Murine Class I Major Histocompatibility Complex Of H-2Db, B2-Microglobulin, and a 9-Residue Peptide Derived from rat dopamine beta-monooxigenase 1N59 ; 2.95 ; Crystal structure of the Murine class I Major Histocompatibility Complex of H-2KB, B2-Microglobulin, and A 9-Residue immunodominant peptide epitope gp33 derived from LCMV 1ES0 ; 2.6 ; CRYSTAL STRUCTURE OF THE MURINE CLASS II ALLELE I-A(G7) COMPLEXED WITH THE GLUTAMIC ACID DECARBOXYLASE (GAD65) PEPTIDE 207-220 1U58 ; 1.9 ; Crystal structure of the murine cytomegalovirus MHC-I homolog m144 4G59 ; 2.44 ; Crystal structure of the murine cytomegalovirus MHC-I homolog m152 with ligand RAE-1 gamma 6UP2 ; 1.97 ; Crystal structure of the murine DHX36 helicase 6UP4 ; 2.4 ; Crystal structure of the murine DHX36 helicase in complex with ADP 6UP3 ; 2.691 ; Crystal structure of the murine DHX36 helicase in complex with ANP 1NU2 ; 1.9 ; Crystal structure of the murine Disabled-1 (Dab1) PTB domain-ApoER2 peptide-PI-4,5P2 ternary complex 1IKO ; 1.92 ; CRYSTAL STRUCTURE OF THE MURINE EPHRIN-B2 ECTODOMAIN 6AO3 ; 1.76 ; Crystal structure of the murine gasdermin D C-terminal domain 3MC2 ; 2.4 ; Crystal Structure of the Murine Inhibitor of Carbonic Anhydrase 1ZS8 ; 3.0 ; Crystal Structure of the Murine MHC Class Ib Molecule M10.5 8GKJ ; 1.9 ; Crystal Structure of the Murine MUC16 Specific Antibody AR9.6 1JA3 ; 3.0 ; Crystal Structure of the Murine NK Cell Inhibitory Receptor Ly-49I 1HQ8 ; 1.95 ; CRYSTAL STRUCTURE OF THE MURINE NK CELL-ACTIVATING RECEPTOR NKG2D AT 1.95 A 4X2V ; 2.3 ; Crystal structure of the Murine Norovirus NS6 protease (inactive C139A mutant) with a C-terminal extension to include residue P1 prime of NS7 4X2W ; 2.7 ; Crystal structure of the Murine Norovirus NS6 protease (inactive C139A mutant) with a C-terminal extension to include residues P1 prime - P2 prime of NS7 4X2X ; 2.472 ; Crystal structure of the Murine Norovirus NS6 protease (inactive C139A mutant) with a C-terminal extension to include residues P1 prime - P4 prime of NS7 6C6Q ; 2.0 ; Crystal Structure of the Murine Norovirus VP1 P Domain in complex with the CD300lf Receptor 6E47 ; 1.95 ; Crystal Structure of the Murine Norovirus VP1 P domain in complex with the CD300lf Receptor and Glycochenodeoxycholic Acid 6E48 ; 1.801 ; Crystal Structure of the Murine Norovirus VP1 P domain in complex with the CD300lf Receptor and Lithocholic Acid 2PX2 ; 2.0 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH (Monoclinic form 1) 2PX4 ; 2.2 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH (Monoclinic form 2) 2PX5 ; 2.3 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH (Orthorhombic crystal form) 2PX8 ; 2.2 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH and 7M-GTP 2PXA ; 2.3 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH and GTPG 2PXC ; 2.8 ; Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAM and GTPA 7Q8E ; 2.90002 ; Crystal Structure of the MurT-GatD Enzyme Complex from Staphylococcus aureus COL strain 1JSS ; 2.2 ; Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4). 2ZIU ; 2.7 ; Crystal structure of the Mus81-Eme1 complex 2ZIV ; 2.7 ; Crystal structure of the Mus81-Eme1 complex 2ZIW ; 2.8 ; Crystal structure of the Mus81-Eme1 complex 2ZIX ; 3.5 ; Crystal structure of the Mus81-Eme1 complex 4DO8 ; 1.802 ; Crystal structure of the muscarinic toxin MT1 2VLW ; 1.39 ; Crystal structure of the muscarinic toxin MT7 diiodoTYR51 derivative. 1LUF ; 2.05 ; Crystal Structure of the MuSK Tyrosine Kinase: Insights into Receptor Autoregulation 3KAV ; 2.5 ; Crystal Structure of THE MUTANT (L80M) PA2107 PROTEIN from Pseudomonas aeruginosa, Northeast Structural Genomics Consortium Target PaR198 1YJ9 ; 2.8 ; Crystal Structure Of The Mutant 50S Ribosomal Subunit Of Haloarcula Marismortui Containing a three residue deletion in L22 3HUI ; 2.01 ; Crystal Structure of the mutant A105R of [2Fe-2S] Ferredoxin in the Class I CYP199A2 System from Rhodopseudomonas palustris 3ZXO ; 1.9 ; CRYSTAL STRUCTURE OF THE MUTANT ATP-BINDING DOMAIN OF MYCOBACTERIUM TUBERCULOSIS DOSS 2XVI ; 2.48 ; Crystal structure of the mutant bacterial flavin containing monooxygenase (Y207S) 2XVJ ; 2.48 ; Crystal structure of the mutant bacterial flavin containing monooxygenase in complex with indole 7Q38 ; 1.65 ; Crystal structure of the mutant bacteriorhodopsin pressurized with argon 7Q35 ; 2.0 ; Crystal structure of the mutant bacteriorhodopsin pressurized with krypton 4UP3 ; 1.44 ; Crystal structure of the mutant C140S,C286Q thioredoxin reductase from Entamoeba histolytica 2RF8 ; 2.9 ; Crystal Structure of the mutant C2A conjugated bile acid hydrolase from Clostridium perfringens 4XPR ; 2.01 ; Crystal structure of the mutant D365A of Pedobacter saltans GH31 alpha-galactosidase 4XPS ; 2.1 ; Crystal structure of the mutant D365A of Pedobacter saltans GH31 alpha-galactosidase complexed with p-nitrophenyl-alpha-galactopyranoside 1LSY ; 1.9 ; CRYSTAL STRUCTURE OF THE MUTANT D52S HEN EGG WHITE LYSOZYME WITH AN OLIGOSACCHARIDE PRODUCT 1LSZ ; 2.0 ; CRYSTAL STRUCTURE OF THE MUTANT D52S HEN EGG WHITE LYSOZYME WITH AN OLIGOSACCHARIDE PRODUCT 3G1S ; 1.4 ; Crystal structure of the mutant D70G of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3G1V ; 1.3 ; Crystal structure of the mutant D70G of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 5-fluorouridine 5'-monophosphate 3G1X ; 1.55 ; Crystal structure of the mutant D70G of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with uridine 5'-monophosphate 3G24 ; 1.5 ; Crystal structure of the mutant D70N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3G1Y ; 1.4 ; Crystal structure of the mutant D70N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with sulfate 3G22 ; 1.5 ; Crystal structure of the mutant D70N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with uridine 5'-monophosphate 4AAE ; 2.6 ; Crystal structure of the mutant D75N I-CreI in complex with an altered target (The four central bases, 2NN region, are composed by AGCG from 5' to 3') 4AAF ; 2.5 ; Crystal structure of the mutant D75N I-CreI in complex with an altered target (The four central bases, 2NN region, are composed by TGCA from 5' to 3') 4AAB ; 2.5 ; Crystal structure of the mutant D75N I-CreI in complex with its wild- type target (The four central bases, 2NN region, are composed by GTAC from 5' to 3') 4AAD ; 3.1 ; Crystal structure of the mutant D75N I-CreI in complex with its wild- type target in absence of metal ions at the active site (The four central bases, 2NN region, are composed by GTAC from 5' to 3') 4AAG ; 2.8 ; Crystal structure of the mutant D75N I-CreI in complex with its wild- type target in presence of Ca at the active site (The four central bases, 2NN region, are composed by GTAC from 5' to 3') 3V5C ; 1.53 ; Crystal structure of the mutant E234A of Galacturonate Dehydratase from GEOBACILLUS SP. complexed with Mg 3V5F ; 2.0 ; Crystal structure of the mutant E234A of Galacturonate Dehydratase from GEOBACILLUS SP. complexed with Mg 3LSB ; 1.932 ; Crystal structure of the mutant E241Q of atrazine chlorohydrolase TrzN from Arthrobacter aurescens TC1 complexed with zinc and ametrin 3LSC ; 1.64 ; Crystal structure of the mutant E241Q of atrazine chlorohydrolase TrzN from Arthrobacter aurescens TC1 complexed with zinc and atraton 7FE2 ; 1.75 ; Crystal structure of the mutant E494Q of GH92 alpha-1,2-mannosidase from Enterococcus faecalis ATCC 10100 in complex with alpha-1,2-mannobiose 2QNO ; 2.0 ; Crystal Structure of the Mutant E55Q of the Cellulase CEL48F in Complex with a Thio-Oligosaccharide 3NQA ; 1.395 ; Crystal structure of the mutant F100A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 4E0A ; 1.801 ; Crystal Structure of the mutant F44R BH1408 protein from Bacillus halodurans, Northeast Structural Genomics Consortium (NESG) Target BhR182 3NQ7 ; 1.443 ; Crystal structure of the mutant F71A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 1OG0 ; 2.7 ; CRYSTAL STRUCTURE OF THE MUTANT G226S OF THE TYROSINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE COMPLEXED WITH PHENYLALANINE AND MANGANESE 4LC8 ; 1.318 ; Crystal structure of the mutant H128N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 4LC6 ; 1.32 ; Crystal structure of the mutant H128Q of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 4LW7 ; 1.423 ; Crystal structure of the mutant H128S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 2JB0 ; 1.91 ; CRYSTAL STRUCTURE OF THE MUTANT H573A OF THE NUCLEASE DOMAIN OF COLE7 IN COMPLEX WITH IM7 2W0L ; 2.2 ; CRYSTAL STRUCTURE OF THE MUTANT H8P FROM THE RECOMBINANT VARIABLE DOMAIN 6JAL2 1V13 ; 2.0 ; CRYSTAL STRUCTURE OF THE MUTANT HIS103ALA OF THE COLICIN E9 DNASE DOMAIN IN COMPLEX WITH ZN+2 (2.0 ANGSTROMS) 5X8X ; 2.6 ; Crystal Structure of the mutant Human ROR gamma Ligand Binding Domain With Compound A. 5X8Q ; 2.2 ; Crystal Structure of the mutant Human ROR gamma Ligand Binding Domain With rockogenin. 5X8S ; 2.2 ; Crystal Structure of the mutant Human ROR gamma Ligand Binding Domain With Ursolic acid. 5X8W ; 2.3 ; Crystal Structure of the mutant Human ROR gamma Ligand Binding Domain. 3M43 ; 1.3 ; Crystal structure of the mutant I199A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LHY ; 1.4 ; Crystal structure of the mutant I199A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3LV5 ; 1.444 ; Crystal structure of the mutant I199E of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3LHU ; 1.6 ; Crystal structure of the mutant I199F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M47 ; 1.2 ; Crystal structure of the mutant I218A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LI1 ; 1.35 ; Crystal structure of the mutant I218A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3LV6 ; 1.451 ; Crystal structure of the mutant I218F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 4S1T ; 2.504 ; Crystal structure of the mutant I26A/N52A of the endoribonuclease from human coronavirus 229E 3PBU ; 1.299 ; Crystal structure of the mutant I96S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3NQC ; 1.531 ; Crystal structure of the mutant I96S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3PBV ; 1.3 ; Crystal structure of the mutant I96T of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3NQD ; 1.423 ; Crystal structure of the mutant I96T of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 2DW6 ; 2.3 ; Crystal structure of the mutant K184A of D-Tartrate Dehydratase from Bradyrhizobium japonicum complexed with Mg++ and D-tartrate 3RLU ; 1.49 ; Crystal structure of the mutant K82A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3PBW ; 1.3 ; Crystal structure of the mutant L123N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3NQE ; 1.421 ; Crystal structure of the mutant L123N of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3PBY ; 1.3 ; Crystal structure of the mutant L123S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3NQF ; 1.312 ; Crystal structure of the mutant L123S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 5GMR ; 1.8 ; Crystal structure of the mutant M3+S202W/I203F of the esterase E40 2JBG ; 2.2 ; crystal structure of the mutant N560A of the nuclease domain of ColE7 in complex with Im7 2JAZ ; 2.03 ; CRYSTAL STRUCTURE OF THE MUTANT N560D OF THE NUCLEASE DOMAIN OF COLE7 IN COMPLEX WITH IM7 4EMP ; 2.7 ; Crystal structure of the mutant of ClpP E137A from Staphylococcus aureus 2YYK ; 1.6 ; Crystal structure of the mutant of HpaB (T198I, A276G, and R466H) 2YYL ; 1.75 ; Crystal structure of the mutant of HpaB (T198I, A276G, and R466H) complexed with FAD 2YYM ; 1.7 ; Crystal structure of the mutant of HpaB (T198I, A276G, and R466H) complexed with FAD and 4-hydroxyphenylacetate 3NQ6 ; 1.494 ; Crystal structure of the mutant P180A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor 6-azaUMP 3SBF ; 1.5 ; Crystal structure of the mutant P311A of enolase superfamily member from VIBRIONALES BACTERIUM complexed with Mg and D-Arabinonate 4K2S ; 1.699 ; Crystal structure of the mutant P317A of d-mannonate dehydratase from chromohalobacter salexigens complexed with mg and d-gluconate 3PWI ; 2.2296 ; Crystal structure of the mutant P34A of D-Glucarate dehydratase from Escherichia coli complexed with product 5-keto-4-deoxy-D-Glucarate 3V1P ; 1.37 ; Crystal structure of the mutant Q185A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 4FX8 ; 1.9411 ; Crystal structure of the mutant Q185A.R203A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 4HNQ ; 2.4 ; Crystal Structure of the mutant Q97A of Vibrio cholerae CheY3 3P61 ; 1.396 ; Crystal structure of the mutant R160A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3QMR ; 1.3213 ; Crystal structure of the mutant R160A,V182A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 4GC4 ; 1.4204 ; Crystal structure of the mutant R160A.R203A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3SJ3 ; 1.26 ; Crystal structure of the mutant R160A.Y206F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3LI0 ; 1.5 ; Crystal structure of the mutant R203A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3SY5 ; 1.321 ; Crystal structure of the mutant S127A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor 6azaUMP 3SIZ ; 1.321 ; Crystal structure of the mutant S127A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3LLD ; 1.45 ; Crystal structure of the mutant S127G of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3LLF ; 1.3 ; Crystal structure of the mutant S127P of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 5GMS ; 1.7 ; Crystal structure of the mutant S202W/I203F of the esterase E40 3PWG ; 2.0 ; Crystal structure of the mutant S29G.P34A of D-Glucarate dehydratase from Escherichia coli complexed with product 5-keto-4-deoxy-D-Glucarate 3P5Y ; 1.6 ; Crystal structure of the mutant T159A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3P5Z ; 1.3 ; Crystal structure of the mutant T159S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3P60 ; 1.4 ; Crystal structure of the mutant T159V of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3QEZ ; 1.5431 ; Crystal structure of the mutant T159V,V182A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3QMS ; 1.32 ; Crystal structure of the mutant T159V,V182A,Y206F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3QF0 ; 1.34 ; Crystal structure of the mutant T159V,Y206F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 4FXR ; 1.708 ; Crystal structure of the mutant T159V.R203A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3NQG ; 1.421 ; Crystal structure of the mutant V155D of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3PC0 ; 1.298 ; Crystal structure of the mutant V155S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with 6-azauridine 5'-monophosphate 3NQM ; 1.32 ; Crystal structure of the mutant V155S of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M41 ; 1.4 ; Crystal structure of the mutant V182A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LHW ; 1.35 ; Crystal structure of the mutant V182A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M5X ; 1.4 ; Crystal structure of the mutant V182A,I199A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LTS ; 1.428 ; Crystal structure of the mutant V182A,I199A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M5Z ; 1.35 ; Crystal structure of the mutant V182A,I218A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LTY ; 1.5 ; Crystal structure of the mutant V182A,I218A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M5Y ; 1.455 ; Crystal structure of the mutant V182A,V201A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3QMT ; 1.3202 ; Crystal structure of the mutant V182A,Y206F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3LHV ; 1.35 ; Crystal structure of the mutant V182A.I199A.V201A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 4FX6 ; 1.531 ; Crystal structure of the mutant V182A.R203A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M1Z ; 1.42 ; Crystal structure of the mutant V182A.V201A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3M44 ; 1.4 ; Crystal structure of the mutant V201A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum 3LHZ ; 1.4 ; Crystal structure of the mutant V201A of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 3LHT ; 1.35 ; Crystal structure of the mutant V201F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with inhibitor BMP 1MKQ ; 1.64 ; Crystal Structure of the Mutant Variant of Cytochrome c Peroxidase in the 'Open' Uncross-linked form 3PBE ; 1.95 ; Crystal structure of the mutant W207F of human secretory glutaminyl cyclase 3RLV ; 1.421 ; Crystal structure of the mutant Y206F of orotidine 5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with the inhibitor BMP 3HPF ; 1.8 ; Crystal structure of the mutant Y90F of divergent galactarate dehydratase from Oceanobacillus iheyensis complexed with Mg and galactarate 5B0U ; 1.71 ; Crystal structure of the mutated 19 kDa protein of Oplophorus luciferase (nanoKAZ) 3VJN ; 2.34 ; Crystal structure of the mutated EGFR kinase domain (G719S/T790M) in complex with AMPPNP. 3UG2 ; 2.5 ; Crystal structure of the mutated EGFR kinase domain (G719S/T790M) in complex with gefitinib 3UG1 ; 2.75 ; Crystal structure of the mutated EGFR kinase domain (G719S/T790M) in the apo form 3BZX ; 1.6 ; Crystal structure of the mutated H265A EscU C-terminal domain 2V5G ; 2.0 ; Crystal structure of the mutated N263A YscU C-terminal domain 2W0R ; 1.55 ; Crystal structure of the mutated N263D YscU C-terminal domain 3EDT ; 2.7 ; Crystal structure of the mutated S328N hKLC2 TPR domain 1PXG ; 1.7 ; Crystal structure of the mutated tRNA-guanine transglycosylase (TGT) D280E complexed with preQ1 1OZQ ; 1.9 ; CRYSTAL STRUCTURE OF THE MUTATED TRNA-GUANINE TRANSGLYCOSYLASE (TGT)Y106F COMPLEXED WITH PREQ1 3BZY ; 1.2 ; Crystal structure of the mutated Y316D EscU C-terminal domain 2PWF ; 1.8 ; Crystal structure of the MutB D200A mutant in complex with glucose 2PWE ; 2.0 ; Crystal structure of the MutB E254Q mutant in complex with the substrate sucrose 4GIA ; 2.01 ; Crystal structure of the MUTB F164L mutant from crystals soaked with isomaltulose 4GI8 ; 1.95 ; Crystal structure of the MUTB F164L mutant from crystals soaked with the substrate sucrose 4GI9 ; 2.15 ; Crystal structure of the MUTB F164L mutant from crystals soaked with Trehalulose 4GI6 ; 2.15 ; Crystal structure of the MUTB F164L mutant in complex with glucose 4GIN ; 1.9 ; Crystal structure of the MUTB R284C mutant from crystals soaked with the inhibitor deoxynojirimycin 1X9Z ; 2.1 ; Crystal structure of the MutL C-terminal domain 1NNE ; 3.11 ; Crystal Structure of the MutS-ADPBeF3-DNA complex 3A6S ; 1.8 ; Crystal structure of the MutT protein 3A6V ; 2.0 ; Crystal structure of the MutT protein in MN(II) bound holo form 2AZW ; 1.9 ; Crystal structure of the MutT/nudix family protein from Enterococcus faecalis 2B06 ; 1.4 ; Crystal structure of the MutT/nudix family protein from Streptococcus pneumoniae 6K5U ; 2.079 ; Crystal structure of the myb domain of S. pombe Tbf1 2CJJ ; 1.9 ; Crystal Structure of the MYB domain of the RAD transcription factor from Antirrhinum majus 5T0F ; 2.4 ; Crystal structure of the Myc3 N-terminal domain [44-242] in complex with JAZ10 CMID domain [16-58] from arabidopsis 5T0Q ; 2.15 ; Crystal structure of the Myc3 N-terminal domain [44-242] in complex with JAZ10 Jas domain [166-192] from arabidopsis 6T84 ; 1.4 ; crystal structure of the mycobacterial trehalose monomycolate transport factor A, TtfA 3Q4H ; 2.7 ; Crystal structure of the Mycobacterium smegmatis EsxGH complex (MSMEG_0620-MSMEG_0621) 1SFR ; 2.7 ; Crystal Structure of the Mycobacterium tuberculosis Antigen 85A Protein 2GDN ; 1.72 ; Crystal structure of the Mycobacterium tuberculosis beta-lactamase 1P3H ; 2.8 ; Crystal Structure of the Mycobacterium tuberculosis chaperonin 10 tetradecamer 3Q0G ; 2.38 ; Crystal Structure of the Mycobacterium tuberculosis Crotonase Bound to a Reaction Intermediate Derived from Crotonyl CoA 3PZK ; 2.2303 ; Crystal Structure of the Mycobacterium tuberculosis crotonase in apo form 3Q0J ; 2.4 ; Crystal Structure of the Mycobacterium tuberculosis Crotonase in complex with the Inhibitor AcetoacetylCoA 4GZR ; 2.553 ; Crystal structure of the Mycobacterium tuberculosis H37Rv EsxOP (Rv2346c-Rv2347c) complex in space group C2221 3OGI ; 2.549 ; Crystal structure of the Mycobacterium tuberculosis H37Rv EsxOP complex (Rv2346c-Rv2347c) 3C3W ; 2.2 ; Crystal Structure of the Mycobacterium tuberculosis Hypoxic Response Regulator DosR 1ZLJ ; 2.0 ; Crystal Structure of the Mycobacterium tuberculosis Hypoxic Response Regulator DosR C-terminal Domain 3C57 ; 1.7 ; Crystal Structure of the Mycobacterium tuberculosis Hypoxic Response Regulator DosR C-terminal Domain Crystal Form II 1ZLK ; 3.1 ; Crystal Structure of the Mycobacterium tuberculosis Hypoxic Response Regulator DosR C-terminal Domain-DNA Complex 3QJA ; 1.29 ; Crystal Structure of the Mycobacterium tuberculosis Indole-3-glycerol phosphate synthase (TrpC) in apo form 5LBG ; 1.54 ; Crystal structure of the Mycobacterium tuberculosis L,D-transpeptidase-2 (LdtMt2) BC-module with faropenem-derived adduct at the active site cysteine-354 5LB1 ; 1.55 ; Crystal structure of the Mycobacterium tuberculosis L,D-transpeptidase-2 (LdtMt2) BC-module with thionitrobenzoate (TNB) adduct at the active site cysteine-354 7F8P ; 1.7 ; Crystal structure of the Mycobacterium tuberculosis L,D-transpeptidase-2 (LdtMt2) with new carbapenem drug T203 7F71 ; 1.58 ; Crystal structure of the Mycobacterium tuberculosis L,D-transpeptidase-2 (LdtMt2) with peptidoglycan sugar moiety and glutamate 5U94 ; 2.2 ; Crystal structure of the Mycobacterium tuberculosis PASTA kinase PknB in complex with the potential theraputic kinase inhibitor GSK690693. 6I2P ; 2.37 ; Crystal structure of the Mycobacterium tuberculosis PknB kinase domain (L33E mutant) in complex with its substrate GarA 3F69 ; 2.8 ; Crystal structure of the Mycobacterium tuberculosis PknB mutant kinase domain in complex with KT5720 8RCW ; 1.692 ; Crystal structure of the Mycobacterium tuberculosis regulator VirS (N-terminal fragment 4-208) in complex with the lead compound SMARt751 1TXO ; 1.95 ; Crystal structure of the Mycobacterium tuberculosis serine/threonine phosphatase PstP/Ppp at 1.95 A. 4PMR ; 1.81 ; Crystal structure of the Mycobacterium tuberculosis Tat-secreted protein Rv2525c in complex with HEPES (monoclinic crystal form II) 4PMQ ; 1.61 ; Crystal structure of the Mycobacterium tuberculosis Tat-secreted protein Rv2525c in complex with L-tartrate (orthorhombic crystal form) 4PMN ; 1.44 ; Crystal structure of the Mycobacterium tuberculosis Tat-secreted protein Rv2525c in complex with MES (monoclinic crystal form I) 4PMO ; 1.33 ; Crystal structure of the Mycobacterium tuberculosis Tat-secreted protein Rv2525c, monoclinic crystal form I 3QJ7 ; 2.504 ; Crystal Structure of the Mycobacterium tuberculosis Thymidylate synthase (ThyA) bound to dUMP 5ICJ ; 2.4 ; Crystal structure of the Mycobacterium tuberculosis transcriptional repressor EthR2 in complex with BDM41420 4I0X ; 1.956 ; Crystal structure of the Mycobacterum abscessus EsxEF (Mab_3112-Mab_3113) complex 2NSF ; 1.75 ; Crystal structure of the mycothiol-dependent maleylpyruvate isomerase 2NSG ; 2.05 ; Crystal structure of the mycothiol-dependent maleylpyruvate isomerase H52A mutant 3EA2 ; 1.95 ; Crystal Structure of the Myo-inositol bound Y247S/Y251S Mutant of Phosphatidylinositol-Specific Phospholipase C from Bacillus Thuringiensis 1HZP ; 2.1 ; Crystal Structure of the Myobacterium Tuberculosis Beta-Ketoacyl-Acyl Carrier Protein Synthase III 4WXQ ; 2.15 ; Crystal Structure of the Myocilin Olfactomedin Domain 3RBS ; 1.85 ; Crystal structure of the myomesin domains 10 and 11 2R15 ; 2.24 ; Crystal structure of the myomesin domains 12 and 13 2Y25 ; 3.5 ; Crystal structure of the myomesin domains My11-My13 2Y23 ; 2.5 ; CRYSTAL STRUCTURE OF THE MYOMESIN DOMAINS MY9-MY11 5FM5 ; 3.1 ; Crystal structure of the myomesin:obscurin-like-1 complex 5MZU ; 3.8 ; Crystal structure of the myosin chaperone UNC-45 from C. elegans (alternative conformation) 4I2W ; 3.6 ; Crystal structure of the myosin chaperone UNC-45 from C.elegans in complex with a Hsp70 peptide 4I2Z ; 2.9 ; Crystal structure of the myosin chaperone UNC-45 from C.elegans in complex with a Hsp90 peptide 3HH2 ; 2.15 ; Crystal structure of the myostatin:follistatin 288 complex 3SEK ; 2.401 ; Crystal Structure of the Myostatin:Follistatin-like 3 Complex 2AOZ ; 2.08 ; Crystal structure of the myotoxin-II from Atropoides nummifer venom 7DC3 ; 2.4 ; Crystal structure of the MyRF ICA domain 4FBR ; 1.6 ; Crystal structure of the Myxococcus Xanthus hemagglutinin (MBHA) 4FBV ; 1.76 ; Crystal structure of the Myxococcus Xanthus hemagglutinin in complex with a3,a6-mannopentaose 2JBX ; 2.73 ; Crystal Structure of the myxoma virus anti-apoptotic protein M11L 4XI6 ; 2.04 ; Crystal structure of the MZM-REP domains of Mind bomb 1 4XIB ; 2.147 ; Crystal structure of the MZM-REP domains of Mind bomb 1 in complex with fly Delta N-box peptide 4XI7 ; 2.051 ; Crystal structure of the MZM-REP domains of Mind bomb 1 in complex with Jagged1 N-box peptide 2GK2 ; 2.2 ; Crystal structure of the N terminal domain of human CEACAM1 4BMB ; 1.351 ; Crystal structure of the N terminal domain of human Galectin 8 4BME ; 2.0 ; Crystal structure of the N terminal domain of human Galectin 8, F19Y mutant 4BSX ; 2.229 ; Crystal Structure of the N terminal domain of TRIF (TIR-domain- containing adapter-inducing interferon-beta) 4C0M ; 2.8 ; Crystal Structure of the N terminal domain of wild type TRIF (TIR- domain-containing adapter-inducing interferon-beta) 1S3I ; 2.3 ; Crystal structure of the N terminal hydrolase domain of 10-formyltetrahydrofolate dehydrogenase 4ZV3 ; 3.1 ; Crystal structure of the N- and C-terminal domains of mouse acyl-CoA thioesterase 7 1BG6 ; 1.8 ; CRYSTAL STRUCTURE OF THE N-(1-D-CARBOXYLETHYL)-L-NORVALINE DEHYDROGENASE FROM ARTHROBACTER SP. STRAIN 1C 4CR7 ; 2.15 ; Crystal structure of the N-acetyl-D-mannosamine dehydrogenase with n-acetylmannosamine 4CR8 ; 2.2 ; Crystal structure of the N-acetyl-D-mannosamine dehydrogenase with NAD 4CR6 ; 1.9 ; Crystal structure of the N-acetyl-D-mannosamine dehydrogenase without substrates 1YMY ; 2.6 ; Crystal Structure of the N-Acetylglucosamine-6-phosphate deacetylase from Escherichia coli K12 1YRR ; 2.0 ; Crystal Structure Of The N-Acetylglucosamine-6-Phosphate Deacetylase From Escherichia Coli K12 at 2.0 A Resolution 3EO3 ; 2.84 ; Crystal structure of the N-acetylmannosamine kinase domain of human GNE protein 7AGO ; 1.7 ; crystal structure of the N-acetylmuramyl-L-alanine amidase, Ami1, from Mycobacterium abscessus bound to L-Alanine-D-isoglutamine 7AGM ; 1.35 ; Crystal structure of the N-acetylmuramyl-L-alanine amidase, Ami1, from Mycobacterium smegmatis 4AVM ; 1.91 ; Crystal structure of the N-BAR domain of human bridging integrator 2. 7SC3 ; 2.229 ; CRYSTAL STRUCTURE OF THE N-DOMAIN OF CARDIAC MUSCLE TROPONIN C TETHERED TO THE SWITCH REGION OF CARDIAC MUSCLE TROPONIN I (ORTHORHOMBIC FORM) 7SC2 ; 1.814 ; CRYSTAL STRUCTURE OF THE N-DOMAIN OF CARDIAC MUSCLE TROPONIN C TETHERED TO THE SWITCH REGION OF CARDIAC MUSCLE TROPONIN I (TETRAGONAL FORM) 3B09 ; 1.9 ; Crystal structure of the N-domain of FKBP22 from Shewanella sp. SIB1 1U2O ; 2.1 ; Crystal Structure Of The N-Domain Of Grp94 Lacking The Charged Domain In Complex With Neca 5LBD ; 1.5 ; Crystal structure of the N-domain of HMA6, a copper-transporting P-type ATPase 5LBK ; 1.75 ; Crystal structure of the N-domain of HMA8, a copper-transporting P-type ATPase 1QYE ; 2.1 ; Crystal Structure of the N-domain of the ER Hsp90 chaperone GRP94 in complex with 2-chlorodideoxyadenosine 1QY8 ; 1.85 ; Crystal Structure of the N-domain of the ER Hsp90 chaperone GRP94 in complex with Radicicol 6D28 ; 1.75 ; Crystal Structure of the N-domain of the ER Hsp90 chaperone GRP94 in complex with the specific ligand NECA 4L0C ; 1.65 ; Crystal structure of the N-Fopmylmaleamic acid deformylase Nfo(S94A) from Pseudomonas putida S16 7N7C ; 2.0 ; crystal structure of the N-formyltransferase HCAN_0200 from helicobacter canadensis in complex with folinic acid and dTDP-3-aminoquinovose 5VYQ ; 1.6 ; Crystal structure of the N-formyltransferase Rv3404c from mycobacterium tuberculosis in complex with YDP-Qui4N and folinic acid 7N7B ; 2.0 ; crystal structure of the N-formyltrasferase HCAN_0200 from Helicobacter canadensis on complex with folinic acid and dTDP-3-aminofucose 3WWG ; 2.2 ; Crystal structure of the N-glycan-deficient variant N448A of isopullulanase complexed with isopanose 3UAQ ; 2.9318 ; Crystal Structure of the N-lobe Domain of Lactoferrin Binding Protein B (LbpB) of Moraxella bovis 1TV3 ; 2.2 ; Crystal structure of the N-methyl-hydroxylamine MtmB complex 6VKZ ; 2.1 ; Crystal Structure of the N-prenyltransferase DabA in Complex with GSPP and Mg2+ 6VL0 ; 2.2 ; Crystal Structure of the N-prenyltransferase DabA in Complex with GSPP and Mn2+ 6VL1 ; 2.1 ; Crystal Structure of the N-prenyltransferase DabA in Complex with NGG and Mg2+ 3WIA ; 1.77 ; Crystal structure of the N-terminal 1-37 residues deleted mutant of Geobacillus copper nitrite reductase 2GHP ; 2.7 ; Crystal structure of the N-terminal 3 RNA binding domains of the yeast splicing factor Prp24 2X7B ; 1.95 ; Crystal structure of the N-terminal acetylase Ard1 from Sulfolobus solfataricus P2 1M4J ; 1.6 ; CRYSTAL STRUCTURE OF THE N-TERMINAL ADF-H DOMAIN OF MOUSE TWINFILIN ISOFORM-1 3RV1 ; 1.975 ; Crystal structure of the N-terminal and RNase III domains of K. polysporus Dcr1 E224Q mutant 4N5Q ; 1.946 ; Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 5GRO ; 2.0 ; Crystal structure of the N-terminal anticodon-binding domain of non-discriminating aspartyl-tRNA synthetase from Helicobacter pylori 1M4Z ; 2.2 ; Crystal structure of the N-terminal BAH domain of Orc1p 3N2W ; 1.45 ; Crystal structure of the N-terminal beta-aminopeptidase BapA from Sphingosinicella xenopeptidilytica 3NDV ; 1.7 ; Crystal structure of the N-terminal beta-aminopeptidase BapA in complex with ampicillin 3NFB ; 1.85 ; Crystal structure of the N-terminal beta-aminopeptidase BapA in complex with hydrolyzed ampicillin 3N33 ; 1.8 ; Crystal structure of the N-terminal beta-aminopeptidase BapA in complex with pefabloc SC (AEBSF) 4RLC ; 1.6 ; Crystal structure of the N-terminal beta-barrel domain of Pseudomonas aeruginosa OprF 5FTA ; 2.64 ; Crystal structure of the N-terminal BTB domain of human KCTD10 6RZN ; 1.907 ; Crystal structure of the N-terminal carbohydrate binding module family 48 and ferulic acid esterase from the multi-enzyme CE1-GH62-GH10 6RZO ; 1.632 ; Crystal structure of the N-terminal carbohydrate binding module family 48 and ferulic acid esterase from the multi-enzyme CE1-GH62-GH10 3BVP ; 2.1 ; Crystal Structure of the N-terminal Catalytic Domain of TP901-1 Integrase 1DEB ; 2.4 ; CRYSTAL STRUCTURE OF THE N-TERMINAL COILED COIL DOMAIN FROM APC 4CVO ; 1.85 ; Crystal structure of the N-terminal colied-coil domain of human DNA excision repair protein ERCC-6 1WPN ; 1.3 ; Crystal structure of the N-terminal core of Bacillus subtilis inorganic pyrophosphatase 4PBD ; 1.68 ; Crystal structure of the N-terminal CS domain of human Shq1 2O49 ; 2.0 ; Crystal Structure of the N-terminal CUT domain of SATB1 Bound to Matrix Attachment Region DNA 2O4A ; 1.75 ; Crystal Structure of the N-terminal CUT Domain of SATB1 Bound to Matrix Attachment Region DNA 5HAS ; 2.653 ; Crystal structure of the N-terminal DCB-HUS domain of T. terrestris Sec7 7EVT ; 2.95 ; Crystal structure of the N-terminal degron-truncated human glutamine synthetase 2IYJ ; 2.0 ; Crystal structure of the N-terminal dimer domain of E.coli DsbC 2IY2 ; 1.9 ; Crystal structure of the N-terminal dimer domain of E.coli DsbG 7BGF ; 2.802 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DIMERIC COILED COIL OF THE HUMAN CTIP PROTEIN 1OV9 ; 2.3 ; Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS protein from Vibrio cholerae 5UBE ; 2.0 ; Crystal structure of the N-terminal domain (domain 1) of RctB 5UBD ; 2.002 ; Crystal structure of the N-terminal domain (domain 1) of RctB, RctB-1-124-L48M 3DXI ; 2.04 ; Crystal structure of the N-terminal domain of a putative aldolase (BVU_2661) from Bacteroides vulgatus 3H5I ; 1.9 ; Crystal structure of the N-terminal domain of a response regulator/sensory box/GGDEF 3-domain protein from Carboxydothermus hydrogenoformans 2P5K ; 1.0 ; Crystal structure of the N-terminal domain of AhrC 3PEH ; 2.75 ; Crystal Structure of the N-terminal domain of an HSP90 from Plasmodium Falciparum, PFL1070c in the presence of a thienopyrimidine derivative 3PEJ ; 2.81 ; Crystal Structure of the N-terminal domain of an HSP90 from Plasmodium Falciparum, PFL1070c in the presence of Macbecin 3OPD ; 2.6 ; Crystal Structure of the N-terminal domain of an HSP90 from Trypanosoma Brucei, Tb10.26.1080 in the presence of a benzamide derivative 3OMU ; 2.15 ; Crystal Structure of the N-terminal domain of an HSP90 from Trypanosoma Brucei, Tb10.26.1080 in the presence of a thienopyrimidine derivative 3O6O ; 2.0 ; Crystal Structure of the N-terminal domain of an HSP90 from Trypanosoma Brucei, Tb10.26.1080 in the presence of an the inhibitor BIIB021 3TUH ; 1.8 ; Crystal Structure of the N-terminal domain of an HSP90 in the presence of an the inhibitor ganetespib 3HDG ; 2.27 ; Crystal structure of the N-terminal domain of an uncharacterized protein (WS1339) from Wolinella succinogenes 3FFL ; 2.5 ; Crystal Structure of the N-terminal Domain of Anaphase-Promoting Complex Subunit 7 6A9E ; 3.205 ; Crystal structure of the N-terminal domain of Atg2 5YBX ; 2.501 ; Crystal structure of the N-terminal domain of Bqt4 in S.pombe 2WVI ; 1.8 ; Crystal Structure of the N-terminal Domain of BubR1 6G1C ; 1.56 ; Crystal structure of the N-terminal domain of Burkholderia Pseudomallei antitoxin HicB 2QSQ ; 1.95 ; Crystal structure of the N-terminal domain of carcinoembryonic antigen (CEA) 5GUI ; 1.2 ; Crystal structure of the N-terminal Domain of Caseinolytic protease associated chaperone ClpC1 from Arabidopsis thaliana 5GKM ; 1.6 ; Crystal structure of the N-terminal Domain of Caseinolytic protease associated chaperone ClpD from Arabidopsis thaliana 4Y8A ; 1.83 ; Crystal Structure of the N-terminal domain of CEACAM6 4Y89 ; 1.47 ; Crystal structure of the N-terminal domain of CEACAM7 4Y88 ; 1.45 ; Crystal structure of the N-terminal domain of CEACAM8 7O06 ; 1.6 ; Crystal structure of the N-terminal domain of CEP164(1-109) bound to camelid nanobody 10Z 7O0S ; 1.7 ; Crystal structure of the N-terminal domain of CEP164(1-109) bound to camelid nanobody 36Z 2OQB ; 1.69 ; Crystal structure of the N-terminal domain of coactivator-associated methyltransferase 1 (CARM1) 8EI1 ; 2.89 ; Crystal structure of the N-terminal domain of CUL4B in complex with H316, a Helicon Polypeptide 8EI2 ; 2.8 ; Crystal structure of the N-terminal domain of CUL5 in complex with H314, a Helicon Polypeptide 3H9W ; 1.9 ; Crystal Structure of the N-terminal domain of Diguanylate cyclase with PAS/PAC sensor (Maqu_2914) from Marinobacter aquaeolei, Northeast Structural Genomics Consortium Target MqR66C 3NZL ; 1.199 ; Crystal Structure of the N-terminal domain of DNA-binding protein SATB1 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4435B 2R5U ; 1.9 ; Crystal structure of the N-terminal domain of DnaB helicase from Mycobacterium tuberculosis 2V79 ; 2.0 ; Crystal Structure of the N-terminal domain of DnaD from Bacillus Subtilis 2VN2 ; 2.3 ; Crystal structure of the N-terminal domain of DnaD protein from Geobacillus kaustophilus HTA426 4ARN ; 2.41 ; Crystal structure of the N-terminal domain of Drosophila Toll receptor 4ARR ; 3.0 ; Crystal structure of the N-terminal domain of Drosophila Toll receptor with the magic triangle I3C 3NKU ; 2.1 ; Crystal structure of the N-terminal domain of DrrA/SidM from Legionella pneumophila 2FPS ; 2.2 ; Crystal structure of the N-terminal domain of E.coli HisB- Apo Ca model. 2FPU ; 1.8 ; Crystal Structure of the N-terminal domain of E.coli HisB- Complex with histidinol 2FPW ; 1.75 ; Crystal Structure of the N-terminal Domain of E.coli HisB- Phosphoaspartate intermediate. 2FPX ; 1.8 ; Crystal Structure of the N-terminal Domain of E.coli HisB- Sulfate complex. 2WZ7 ; 2.48 ; Crystal structure of the N-terminal domain of E.coli YbgF 2XDJ ; 1.82 ; Crystal structure of the N-terminal domain of E.coli YbgF 4MU6 ; 2.082 ; Crystal Structure of the N-terminal domain of Effector Protein LegC3 from Legionella pneumophila 5T39 ; 1.1004 ; Crystal Structure of the N-terminal domain of EvdMO1 in the presence of SAH and D-fucose 5T38 ; 1.1502 ; Crystal Structure of the N-terminal domain of EvdMO1 with SAH bound 6PON ; 2.395 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DOMAIN OF FIBRONECTIN- BINDING PROTEIN PAVA FROM STREPTOCOCCUS PNEUMONIAE 1YWM ; 1.86 ; Crystal structure of the N-terminal domain of group B Streptococcus alpha C protein 5B52 ; 2.3 ; Crystal structure of the N-terminal domain of H-NS family protein TurB 8H8H ; 2.7 ; Crystal structure of the N-terminal domain of H-NS family protein TurB (TurB_nt50) 4FI5 ; 2.2 ; Crystal structure of the N-terminal domain of Hantaan virus strain 76-118 nucleoprotein 4G0H ; 3.6 ; Crystal structure of the N-terminal domain of Helicobacter pylori CagA protein 4INB ; 1.8 ; Crystal Structure of the N-Terminal Domain of HIV-1 Capsid in Complex With benzodiazepine Inhibitor 4E91 ; 1.7 ; Crystal Structure of the N-Terminal Domain of HIV-1 Capsid in Complex With Inhibitor BD3 4J93 ; 1.74 ; Crystal Structure of the N-Terminal Domain of HIV-1 Capsid in Complex With Inhibitor BI-1 4E92 ; 1.8 ; Crystal Structure of the N-Terminal Domain of HIV-1 Capsid in Complex With Inhibitor BM4 3L4I ; 2.2 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DOMAIN OF HSP70 (CGD2_20) FROM Cryptosporidium PARVUM IN COMPLEX WITH ADP and inorganic phosphate 3KVG ; 2.15 ; Crystal structure of the N-terminal domain of Hsp70 (cgd2_20) from Cryptosporidium parvum in complex with AMPPNP 3L6Q ; 2.29 ; Crystal structure of the N-terminal domain of HSP70 from Cryptosporidium parvum (CGD2_20) 3U67 ; 1.77 ; Crystal structure of the N-terminal domain of Hsp90 from Leishmania major(LmjF33.0312)in complex with ADP 6JS9 ; 2.0 ; Crystal structure of the N-terminal domain of HtaA from Corynebacterium glutamicum 2IOR ; 1.65 ; Crystal Structure of the N-terminal Domain of HtpG, the Escherichia coli Hsp90, Bound to ADP 1WRL ; 2.6 ; Crystal structure of the N-terminal domain of human cardiac troponin C in complex with trifluoperazine (monoclinic crystal form) 1WRK ; 2.15 ; Crystal structure of the N-terminal domain of human cardiac troponin C in complex with trifluoperazine (orthrombic crystal form) 4A64 ; 2.57 ; Crystal structure of the N-terminal domain of human Cul4B at 2.57A resolution 1N1A ; 2.4 ; Crystal Structure of the N-terminal domain of human FKBP52 4XZP ; 1.48 ; Crystal structure of the N-terminal domain of human galectin-4 7C3Y ; 1.632 ; Crystal structure of the N-terminal domain of human MdmX protein in complex with Nutlin3a 6B91 ; 1.94 ; Crystal structure of the N-terminal domain of human METTL16 6B92 ; 2.1 ; Crystal Structure of the N-terminal domain of human METTL16 in complex with SAH 3FXT ; 2.3 ; Crystal structure of the N-terminal domain of human NUDT6 4PCW ; 2.2 ; Crystal Structure of the N-terminal Domain of Human Profilaggrin at 2.2 A Resolution 1YA0 ; 2.55 ; Crystal structure of the N-terminal domain of human SMG7 3O2T ; 1.4 ; Crystal structure of the N-terminal domain of human Symplekin 3ODR ; 2.2 ; Crystal Structure of the N-terminal Domain of Human Symplekin 5MQI ; 1.847 ; Crystal structure of the N-terminal domain of human Timeless 1T6N ; 1.94 ; Crystal structure of the N-terminal domain of human UAP56 4RXX ; 2.06 ; Crystal Structure of the N-terminal Domain of Human Ubiquitin Specific Protease 38 2BTL ; 1.95 ; Crystal structure of the N-terminal domain of IBV coronavirus nucleocapsid 2BXX ; 1.85 ; Crystal structure of the N-terminal domain of IBV coronavirus nucleocapsid. Native crystal form 6RJX ; 2.35 ; Crystal structure of the N-terminal domain of Lyme disease agent Borrelia burgdorferi major virulence factor BB0323 (native data) 6RJW ; 2.85 ; Crystal structure of the N-terminal domain of Lyme disease agent Borrelia burgdorferi major virulence factor BB0323 (Se-Met data) 3NNQ ; 2.693 ; Crystal Structure of the N-terminal domain of Moloney murine leukemia virus integrase, Northeast Structural Genomics Consortium Target OR3 4NZG ; 2.152 ; Crystal Structure of the N-terminal domain of Moloney murine leukemia virus integrase, Northeast Structural Genomics Consortium Target OR3 2DYC ; 2.4 ; Crystal structure of the N-terminal domain of mouse galectin-4 1QHL ; 2.2 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DOMAIN OF MUKB AT 2.2A RESOLUTION 7FCR ; 1.4 ; Crystal structure of the N-terminal domain of mutants of Human Apolipoprotein-E (ApoE) 7FCS ; 1.6 ; Crystal structure of the N-terminal domain of mutants of Human Apolipoprotein-E (ApoE) 1XIP ; 2.5 ; Crystal Structure of the N-terminal Domain of Nup159 7MNO ; 6.73 ; Crystal structure of the N-terminal domain of NUP358/RanBP2 (residues 1-752) I656V mutant in complex with Fab fragment 7MNL ; 3.95 ; Crystal structure of the N-terminal domain of NUP358/RanBP2 (residues 1-752) in complex with Fab fragment 7MNM ; 4.7 ; Crystal structure of the N-terminal domain of NUP358/RanBP2 (residues 1-752) T585M mutant in complex with Fab fragment 7MNN ; 6.7 ; Crystal structure of the N-terminal domain of NUP358/RanBP2 (residues 1-752) T653I mutant in complex with Fab fragment 7MNJ ; 3.8 ; Crystal structure of the N-terminal domain of NUP358/RanBP2 (residues 145-673) 7MNI ; 2.0 ; Crystal structure of the N-terminal domain of NUP88 in complex with NUP98 C-terminal Autoproteolytic Domain 3EWG ; 2.04 ; Crystal structure of the N-terminal domain of NusG (NGN) from Methanocaldococcus jannaschii 1K8G ; 2.6 ; Crystal Structure of the N-terminal domain of Oxytricha nova telomere end binding protein alpha subunit both uncomplexed and complexed with telomeric ssDNA 4NAC ; 2.002 ; Crystal Structure of the N-terminal Domain of p15RS 3NRW ; 1.7 ; Crystal Structure of the N-terminal domain of Phage integrase/site-specific recombinase (tnp) from Haloarcula marismortui, Northeast Structural Genomics Consortium Target HmR208A 2H30 ; 1.6 ; Crystal structure of the N-terminal domain of PilB from Neisseria gonorrhoeae 5OE6 ; 1.67 ; Crystal structure of the N-terminal domain of PqsA in complex with 6-fluoroanthraniloyl-AMP (crystal form 1) 5OE3 ; 1.43 ; Crystal structure of the N-terminal domain of PqsA in complex with anthraniloyl-AMP (crystal form 1) 5OE4 ; 1.904 ; Crystal structure of the N-terminal domain of PqsA in complex with anthraniloyl-AMP (crystal form 2) 5OE5 ; 1.74 ; Crystal structure of the N-terminal domain of PqsA in complex with anthraniloyl-AMP (crystal form 3) 1VEC ; 2.01 ; Crystal structure of the N-terminal domain of rck/p54, a human DEAD-box protein 3WRW ; 2.71 ; Crystal structure of the N-terminal domain of resistance protein 3C3M ; 1.7 ; Crystal structure of the N-terminal domain of response regulator receiver protein from Methanoculleus marisnigri JR1 2HBB ; 1.9 ; Crystal Structure of the N-terminal Domain of Ribosomal Protein L9 (NTL9) 7Q0I ; 2.39 ; Crystal structure of the N-terminal domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-43 7VNU ; 1.95 ; Crystal structure of the N-terminal domain of SARS-CoV-2 nucleocapsid protein 6IVH ; 2.5 ; Crystal structure of the N-terminal domain of ScpA derived from Thermococcus onnurineus 7QU6 ; 2.34 ; Crystal structure of the N-terminal domain of Siglec-8 7QUI ; 3.352 ; Crystal structure of the N-terminal domain of Siglec-8 in complex with sulfonamide sialoside analogue 3X37 ; 2.35 ; Crystal structure of the N-terminal domain of Sld7 in complex with Sld3 5XGT ; 1.82 ; Crystal structure of the N-terminal domain of Staphylococcus aureus single-stranded DNA-binding protein SsbA at 1.82 angstrom resolution 3LPO ; 3.2 ; Crystal structure of the N-terminal domain of sucrase-isomaltase 7DD0 ; 2.7 ; Crystal structure of the N-terminal domain of TagH from Bacillus subtilis 3BV8 ; 1.75 ; Crystal structure of the N-terminal domain of tetrahydrodipicolinate acetyltransferase from Staphylococcus aureus 6O59 ; 2.79 ; Crystal structure of the N-terminal domain of the A subunit of the Bacillus megaterium spore germinant receptor GerK3 8SMQ ; 2.0 ; Crystal Structure of the N-terminal Domain of the Cryptic Surface Protein (CD630_25440) from Clostridium difficile. 5HD9 ; 1.941 ; Crystal Structure of the N-terminal domain of the DNA packaging ATPase from bacteriophage phi29 3QWE ; 2.4 ; Crystal structure of the N-terminal domain of the GEM interacting protein 4A4D ; 2.7 ; Crystal structure of the N-terminal domain of the Human DEAD-BOX RNA helicase DDX5 (P68) 4XTB ; 1.5 ; Crystal structure of the N-terminal domain of the human mitochondrial calcium uniporter 4XSJ ; 1.8 ; Crystal structure of the N-terminal domain of the human mitochondrial calcium uniporter fused with T4 lysozyme 2OIT ; 1.65 ; Crystal Structure of the N-terminal Domain of the Human Proto-oncogene Nup214/CAN 4OOJ ; 2.4 ; Crystal structure of the N-terminal domain of the Legionella pneumophila protein SidC at 2.4A resolution 4FWV ; 2.4 ; Crystal structure of the N-terminal domain of the Lon-like protease MtaLonC 3JSB ; 2.13 ; Crystal structure of the N-terminal domain of the Lymphocytic Choriomeningitis Virus L protein 4G7W ; 2.9 ; Crystal structure of the N-terminal domain of the minor coat protein pIII from CTXphi 4CGS ; 1.3 ; Crystal structure of the N-terminal domain of the PA subunit of Dhori virus polymerase 4CGX ; 2.7 ; Crystal structure of the N-terminal domain of the PA subunit of Thogoto virus polymerase (form 1) 4CHC ; 2.77 ; Crystal structure of the N-terminal domain of the PA subunit of Thogoto virus polymerase (form 2) 7T85 ; 2.0 ; Crystal Structure of the N-terminal Domain of the Phosphate Acetyltransferase from Escherichia coli 3LYS ; 2.8 ; Crystal Structure of the N-terminal domain of the Prophage pi2 protein 01 (integrase) from Lactococcus lactis, Northeast Structural Genomics Consortium Target KR124F 3EZJ ; 2.8 ; Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody 4E9J ; 2.03 ; Crystal structure of the N-terminal domain of the secretin XcpQ from Pseudomonas aeruginosa 4IGB ; 2.09 ; Crystal structure of the N-terminal domain of the Streptococcus gordonii adhesin Sgo0707 1HUF ; 2.0 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DOMAIN OF THE TYROSINE PHOSPHATASE YOPH FROM YERSINIA PESTIS. 6S9Y ; 1.64 ; Crystal structure of the N-terminal domain of the wild type parasitic PEX14 3VP8 ; 1.91 ; Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p 3VP9 ; 1.799 ; Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p mutant 3NWS ; 2.5 ; Crystal structure of the N-terminal domain of the yeast telomere-binding and telomerase regulatory protein Cdc13 3NWT ; 2.7 ; Crystal structure of the N-terminal domain of the yeast telomere-binding and telomerase regulatory protein Cdc13 3HCS ; 2.2 ; Crystal structure of the N-terminal domain of TRAF6 8AXJ ; 1.0 ; Crystal structure of the N-terminal domain of Trypanosoma brucei CFAP410 4GFX ; 1.6 ; Crystal structure of the N-terminal domain of TXNIP 2QY6 ; 2.0 ; Crystal structure of the N-terminal domain of UPF0209 protein yfcK from Escherichia coli O157:H7 1YZE ; 2.0 ; Crystal structure of the N-terminal domain of USP7/HAUSP. 5EZU ; 1.55 ; Crystal structure of the N-terminal domain of vaccinia virus immunomodulator A46 in complex with myristic acid. 8Q0E ; 3.15 ; Crystal Structure of the N-terminal Domain of Variant Surface Glycoprotein 545 (VSG545) of Trypanosome brucei brucei Lister 427 6KVX ; 2.85 ; Crystal structure of the N-terminal domain single mutant (D119A) of the human mitochondrial calcium uniporter fused with T4 lysozyme 5BZ6 ; 2.75 ; Crystal structure of the N-terminal domain single mutant (S92A) of the human mitochondrial calcium uniporter fused with T4 lysozyme 6JG0 ; 2.5 ; Crystal structure of the N-terminal domain single mutant (S92E) of the human mitochondrial calcium uniporter fused with T4 lysozyme 1G3P ; 1.46 ; CRYSTAL STRUCTURE OF THE N-TERMINAL DOMAINS OF BACTERIOPHAGE MINOR COAT PROTEIN G3P 4OYU ; 1.8 ; Crystal structure of the N-terminal domains of muskelin 3JYU ; 2.37 ; Crystal structure of the N-terminal domains of the ubiquitin specific peptidase 4 (USP4) 2Z13 ; 1.84 ; Crystal structure of the N-terminal DUF1126 in human EF-hand domain 2Z14 ; 1.68 ; Crystal structure of the N-terminal DUF1126 in human ef-hand domain containing 2 protein 6YIG ; 1.55 ; Crystal structure of the N-terminal EF-hand domain of Arabidopsis thaliana AtEH1/Pan1 3G9G ; 2.4 ; Crystal Structure of the N-terminal EFC/F-BAR domain of Syp1 7PLR ; 2.64 ; Crystal structure of the N-terminal endonuclease domain of La Crosse virus L-protein bound to compound Baloxavir 7OA4 ; 2.9 ; Crystal structure of the N-terminal endonuclease domain of La Crosse virus L-protein bound to compound L-742,001 4LU4 ; 2.0 ; Crystal Structure of the N-terminal Fic Domain of a Putative Cell Filamentation protein (VirB-translocated Bep effector protein) from Bartonella quintana 4N67 ; 1.55 ; Crystal Structure of the N-terminal Fic Domain of a Putative Cell Filamentation protein (VirB-translocated Bep effector protein) with bound ADP from Bartonella quintana 4M16 ; 1.85 ; Crystal Structure of the N-terminal Fic Domain of Bartonella effector protein (Bep); substrate of VirB T4SS (VirB-translocated Bep effector protein) from Bartonella sp. AR 15-3 4PY3 ; 2.35 ; Crystal Structure of the N-terminal FIC domain of Bep8 protein (VirB-translocated Bartonella effector protein) from Bartonella sp. 1-1C 3HMT ; 2.0 ; Crystal structure of the N-terminal fragment (28-126) of the human hepatocyte growth factor/scatter factor, trigonal crystal form 3HMR ; 2.0 ; Crystal structure of the N-terminal fragment (31-127) of the mouse hepatocyte growth factor/scatter factor 7CR9 ; 2.095 ; Crystal structure of the N-terminal fragment (residue 1-206) of LonA protease from Meiothermus taiwanensis 7CRA ; 1.7 ; Crystal structure of the N-terminal fragment (residue 1-291) of LonA protease from Meiothermus taiwanensis 3VGO ; 3.1 ; Crystal structure of the N-terminal fragment of Cbl-b 5KHT ; 1.4964 ; Crystal structure of the N-terminal fragment of tropomyosin isoform Tpm1.1 at 1.5 A resolution 3V44 ; 2.83 ; Crystal structure of the N-terminal fragment of zebrafish TLR5 3V47 ; 2.47 ; Crystal structure of the N-terminal fragment of zebrafish TLR5 in complex with Salmonella flagellin 1F5F ; 1.7 ; CRYSTAL STRUCTURE OF THE N-TERMINAL G-DOMAIN OF SHBG IN COMPLEX WITH ZINC 2FZ4 ; 2.4 ; Crystal Structure of the N-terminal half of Archaeoglobus Fulgidus XPB 6TRU ; 2.8 ; Crystal structure of the N-terminal half of the TFIIH subunit p52 6RNZ ; 1.35 ; Crystal structure of the N-terminal HTH DNA-binding domain of the essential repressor DdrO from radiation-resistant Deinococcus bacteria (Deinococcus deserti) 2YD4 ; 1.65 ; Crystal structure of the N-terminal Ig1-2 module of Chicken Receptor Protein Tyrosine Phosphatase Sigma 2YD1 ; 1.8 ; Crystal structure of the N-terminal Ig1-2 module of Drosophila Receptor Protein Tyrosine Phosphatase DLAR 2YD6 ; 1.35 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase Delta 2YD7 ; 1.98 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase Delta 2YD5 ; 2.2 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase LAR 2YD8 ; 2.05 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase LAR in complex with sucrose octasulphate 2YD2 ; 2.552 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase Sigma 2YD3 ; 2.3 ; Crystal structure of the N-terminal Ig1-2 module of Human Receptor Protein Tyrosine Phosphatase Sigma 2YD9 ; 2.6 ; Crystal structure of the N-terminal Ig1-3 module of Human Receptor Protein Tyrosine Phosphatase Sigma 6GY4 ; 1.986 ; Crystal structure of the N-terminal KH domain of human BICC1 2Z7Q ; 2.0 ; Crystal structure of the N-terminal kinase domain of human RSK-1 bound to AMP-PCP 2Z7S ; 2.1 ; Crystal Structure of the N-terminal Kinase Domain of Human RSK1 bound to Purvalnol A 2Z7R ; 2.0 ; Crystal Structure of the N-terminal Kinase Domain of Human RSK1 bound to Staurosporine 8EQ5 ; 1.8 ; Crystal structure of the N-terminal kinase domain of RSK2 in complex with SPRED2 (131-160) 3HYJ ; 2.6 ; Crystal structure of the N-terminal LAGLIDADG domain of DUF199/WhiA 1D2S ; 1.55 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LAMININ G-LIKE DOMAIN OF SHBG IN COMPLEX WITH DIHYDROTESTOSTERONE 3ZYO ; 3.1 ; Crystal structure of the N-terminal leucine rich repeats and immunoglobulin domain of netrin-G ligand-3 3ZYN ; 3.2 ; Crystal structure of the N-terminal leucine rich repeats of Netrin-G Ligand-3 1LHW ; 1.75 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LG-DOMAIN OF SHBG IN COMPLEX WITH 2-METHOXYESTRADIOL 1LHN ; 2.0 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LG-DOMAIN OF SHBG IN COMPLEX WITH 5ALPHA-ANDROSTANE-3BETA,17ALPHA-DIOL 1LHO ; 2.0 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LG-DOMAIN OF SHBG IN COMPLEX WITH 5ALPHA-ANDROSTANE-3BETA,17BETA-DIOL 1LHU ; 1.8 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LG-DOMAIN OF SHBG IN COMPLEX WITH ESTRADIOL 1LHV ; 2.0 ; CRYSTAL STRUCTURE OF THE N-TERMINAL LG-DOMAIN OF SHBG IN COMPLEX WITH NORGESTREL 4UZ2 ; 2.5 ; Crystal structure of the N-terminal LysM domains from the putative NlpC/P60 D,L endopeptidase from T. thermophilus 4UZ3 ; 1.75 ; Crystal structure of the N-terminal LysM domains from the putative NlpC/P60 D,L endopeptidase from T. thermophilus bound to N-acetyl-chitohexaose 2BAP ; 3.3 ; Crystal structure of the N-terminal mDia1 Armadillo Repeat Region and Dimerisation Domain in complex with the mDia1 autoregulatory domain (DAD) 4M7R ; 1.801 ; Crystal structure of the N-terminal methyltransferase-like domain of anamorsin 5J63 ; 2.5 ; Crystal Structure of the N-terminal N-formyltransferase Domain (residues 1-306) of Escherichia coli Arna in Complex with UDP-Ara4N and Folinic Acid 8ARF ; 2.8 ; Crystal structure of the N-terminal parallel dimeric coiled-coil region of the human kinetochore associated protein Spindly 2RA1 ; 2.406 ; Crystal structure of the N-terminal part of the bacterial S-layer protein SbsC 6Y7Q ; 1.39 ; Crystal Structure of the N-terminal PAS domain from the hERG3 Potassium Channel 1IHJ ; 1.8 ; Crystal Structure of the N-terminal PDZ domain of InaD in complex with a NorpA C-terminal peptide 3B79 ; 1.37 ; Crystal structure of the N-terminal peptidase C39 like domain of the toxin secretion ATP-binding protein from Vibrio parahaemolyticus 6C29 ; 1.538 ; Crystal structure of the N-terminal periplasmic domain of ScsB from Proteus mirabilis 1WRB ; 2.4 ; Crystal structure of the N-terminal RecA-like domain of DjVLGB, a pranarian Vasa-like RNA helicase 2R8R ; 2.3 ; Crystal structure of the N-terminal region (19..243) of sensor protein KdpD from Pseudomonas syringae pv. tomato str. DC3000 3F31 ; 2.3 ; Crystal Structure of the N-terminal region of AlphaII-spectrin Tetramerization Domain 3RSN ; 2.1 ; Crystal Structure of the N-terminal region of Human Ash2L 6QB5 ; 2.02 ; Crystal structure of the N-terminal region of human cohesin subunit STAG1 6RRC ; 2.37 ; Crystal structure of the N-terminal region of human cohesin subunit STAG1 in complex with RAD21 peptide 5EN8 ; 2.23 ; Crystal structure of the N-terminal region of Smu1 2JKU ; 1.5 ; Crystal structure of the N-terminal region of the biotin acceptor domain of human propionyl-CoA carboxylase 4JKQ ; 2.39 ; Crystal structure of the N-terminal region of the human ryanodine receptor 2 3BAS ; 2.3 ; Crystal structure of the N-terminal region of the scallop myosin rod, monoclinic (C2) form 3BAT ; 2.3 ; Crystal structure of the N-terminal region of the scallop myosin rod, monoclinic (P21) form 3OLC ; 2.4 ; Crystal structure of the N-terminal region of TopBP1 3DAD ; 2.3 ; Crystal structure of the N-terminal regulatory domains of the formin FHOD1 5BJR ; 2.6 ; Crystal structure of the N-terminal RRM domain from MEC-8 2HZC ; 1.47 ; Crystal structure of the N-terminal RRM of the U2AF large subunit 1KL9 ; 1.9 ; Crystal structure of the N-terminal segment of Human eukaryotic initiation factor 2alpha 2DX0 ; 2.5 ; Crystal structure of the N-terminal SH2 domain of mouse phospholipase C-gamma 2 2QR3 ; 1.8 ; Crystal structure of the N-terminal signal receiver domain of two-component system response regulator from Bacteroides fragilis 2WFR ; 1.95 ; Crystal structure of the N-terminal signalling domain of human Dhh with calcium 2WFQ ; 1.85 ; Crystal structure of the N-terminal signalling domain of human Dhh without calcium 7X8U ; 2.89 ; Crystal structure of the N-terminal Solanaceae domain of the Sw-5b NLR immune receptor 7CSX ; 2.5 ; Crystal structure of the N-terminal tandem RRM domains of RBM45 7CSZ ; 1.8 ; Crystal structure of the N-terminal tandem RRM domains of RBM45 in complex with single-stranded DNA 6X61 ; 3.2 ; Crystal structure of the N-terminal thioredoxin domain of SasA in complex with the N-terminal CI domain of KaiC from Thermosynchococcus elongatus 2XOA ; 2.5 ; Crystal Structure of the N-terminal three domains of the skeletal muscle Ryanodine Receptor (RyR1) 1WM5 ; 1.95 ; Crystal structure of the N-terminal TPR domain (1-203) of p67phox 4HP9 ; 2.12 ; Crystal structure of the N-terminal truncated PAS domain from the hERG potassium channel 3W1I ; 3.192 ; Crystal structure of the N-terminal truncated selenocysteine synthase SelA 3W1J ; 3.252 ; Crystal structure of the N-terminal truncated selenocysteine synthase SelA in complex with thiosulfate 4I96 ; 2.73 ; Crystal structure of the N-terminal two domains of the skeletal muscle ryanodine receptor (rabbit RyR1) residues 217-536 2A26 ; 1.2 ; Crystal structure of the N-terminal, dimerization domain of Siah Interacting Protein 4JFN ; 1.75 ; Crystal structure of the N-terminal, growth factor-like domain of the amyloid precursor protein bound to copper 4LD9 ; 3.306 ; Crystal structure of the N-terminally acetylated BAH domain of Sir3 bound to the nucleosome core particle 5J4F ; 1.4 ; Crystal structure of the N-terminally His6-tagged HP0902, an uncharacterized protein from Helicobacter pylori 26695 2GKR ; 1.16 ; Crystal structure of the N-terminally truncated OMTKY3-del(1-5) 5HEM ; 1.65 ; Crystal structure of the N-terminus D161Y bromodomain mutant of human BRD2 7EQ4 ; 1.25 ; Crystal Structure of the N-terminus of Nonstructural protein 1 from SARS-CoV-2 2A38 ; 2.0 ; Crystal structure of the N-Terminus of titin 5HEN ; 1.79 ; Crystal structure of the N-terminus R100L bromodomain mutant of human BRD2 5HEL ; 1.45 ; Crystal structure of the N-terminus Y153H bromodomain mutant of human BRD2 5IZ2 ; 2.02 ; Crystal structure of the N. clavipes spidroin NTD at pH 6.5 2XDY ; 2.2 ; Crystal structure of the N. crassa QDE-2 AGO MID domain 2YHA ; 1.85 ; Crystal Structure of the N. crassa QDE-2 AGO MID-PIWI Domains 2YHB ; 3.65 ; Crystal Structure of the N. crassa QDE-2 AGO MID-PIWI Domains 6DZX ; 1.678 ; Crystal structure of the N. meningitides methionine-binding protein in its D-methionine bound conformation. 6OJA ; 1.55 ; Crystal structure of the N. meningitides methionine-binding protein in its L-methionine bound conformation 6CVA ; 1.559 ; Crystal structure of the N. meningitides methionine-binding protein in its substrate-free conformation 6YT4 ; 2.4 ; Crystal structure of the N112A mutant of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 4JJD ; 1.6 ; Crystal structure of the N114A Abl-SH3 domain mutant at pH4 3EG3 ; 1.4 ; Crystal structure of the N114A mutant of ABL-SH3 domain 3EGU ; 2.25 ; Crystal structure of the N114A mutant of ABL-SH3 domain 2O88 ; 1.75 ; Crystal structure of the N114A mutant of ABL-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions 4J9D ; 1.5 ; Crystal structure of the N114A mutant of the Abl-SH3 domain complexed with the high affinity peptide P0 4J9E ; 1.4 ; Crystal structure of the N114A mutant of the Abl-SH3 domain complexed with the high affinity peptide P17 3EG2 ; 1.8 ; Crystal structure of the N114Q mutant of ABL-SH3 domain 3EG1 ; 1.85 ; Crystal structure of the N114Q mutant of ABL-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions 3EG0 ; 2.3 ; Crystal structure of the N114T mutant of ABL-SH3 domain 1EOF ; 2.38 ; CRYSTAL STRUCTURE OF THE N136A MUTANT OF A SHAKER T1 DOMAIN 1EOD ; 2.45 ; CRYSTAL STRUCTURE OF THE N136D MUTANT OF A SHAKER T1 DOMAIN 3PPX ; 1.91 ; Crystal structure of the N1602A mutant of an engineered VWF A2 domain (N1493C and C1670S) 1N29 ; 2.6 ; Crystal structure of the N1A mutant of human group IIA phospholipase A2 1M75 ; 2.3 ; Crystal Structure of the N208S Mutant of L-3-Hydroxyacyl-COA Dehydrogenase in Complex with NAD and Acetoacetyl-COA 6EJ6 ; 1.65 ; Crystal structure of the N240A mutant of Candida albicans Mep2 4FTS ; 3.2 ; Crystal structure of the N363T mutant of the Flock House virus capsid 3IN2 ; 2.6 ; Crystal structure of the N47S/M121L variant of Pseudomonas aeruginosa azurin in the Cu(II) state 7NX9 ; 2.4 ; Crystal structure of the N501Y mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 7NEG ; 2.19 ; Crystal structure of the N501Y mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-269 Fab 3QPZ ; 1.75 ; Crystal structure of the N59A mutant of the 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 7D91 ; 3.35 ; Crystal Structure of the Na+,K+-ATPase in the E2P state with bound Mg2+ (P4(3)2(1)2 symmetry) 7D93 ; 3.65 ; Crystal Structure of the Na+,K+-ATPase in the E2P state with bound Mg2+ and anthroylouabain (P2(1)2(1)2(1) symmetry) 7D92 ; 3.9 ; Crystal Structure of the Na+,K+-ATPase in the E2P state with bound Mg2+ and anthroylouabain (P4(3)2(1)2 symmetry) 7D94 ; 3.5 ; Crystal Structure of the Na+,K+-ATPase in the E2P state with bound one Mg2+ and one Rb+ in the presence of bufalin 1ZCD ; 3.45 ; Crystal structure of the Na+/H+ antiporter NhaA 7S24 ; 2.2 ; Crystal structure of the Na+/H+ antiporter NhaA at pH 6.5 4RES ; 3.408 ; Crystal structure of the Na,K-ATPase E2P-bufalin complex with bound potassium 4RET ; 4.0 ; Crystal structure of the Na,K-ATPase E2P-digoxin complex with bound magnesium 4XE5 ; 3.901 ; Crystal structure of the Na,K-ATPase from bovine 3MCE ; 2.396 ; Crystal structure of the NAC domain of alpha subunit of nascent polypeptide-associated complex(NAC) 1DHS ; 2.2 ; CRYSTAL STRUCTURE OF THE NAD COMPLEX OF HUMAN DEOXYHYPUSINE SYNTHASE 1P1I ; 2.4 ; Crystal structure of the NAD+-bound 1L-myo-inositol 1-phosphate synthase 1EE9 ; 3.0 ; CRYSTAL STRUCTURE OF THE NAD-DEPENDENT 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE FROM SACCHAROMYCES CEREVISIAE COMPLEXED WITH NAD 1PS0 ; 3.01 ; Crystal Structure of the NADP(H)-Dependent Cinnamyl Alcohol Dehydrogenase from Saccharomyces cerevisiae 1P0C ; 2.2 ; Crystal Structure of the NADP(H)-Dependent Vertebrate Alcohol Dehydrogenase (ADH8) 8HI5 ; 2.3 ; Crystal structure of the NADP+ and MSA bound C terminal domain of bi-functional malonyl-CoA reductase from Roseiflexus castenholzii 8HI6 ; 2.0 ; Crystal structure of the NADP+ and MSA bound N terminal domain of bi-functional malonyl-CoA reductase from Roseiflexus castenholzii 5XVH ; 1.57 ; Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis 1EYY ; 2.5 ; CRYSTAL STRUCTURE OF THE NADP+ DEPENDENT ALDEHYDE DEHYDROGENASE FROM VIBRIO HARVEYI. 1EZ0 ; 2.1 ; CRYSTAL STRUCTURE OF THE NADP+ DEPENDENT ALDEHYDE DEHYDROGENASE FROM VIBRIO HARVEYI. 2QTZ ; 1.9 ; Crystal Structure of the NADP+-bound FAD-containing FNR-like Module of Human Methionine Synthase Reductase 3GDF ; 2.5 ; Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum. 3GDG ; 2.3 ; Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum. 4BV9 ; 2.193 ; Crystal structure of the NADPH form of mouse Mu-crystallin. 4BVA ; 1.75 ; Crystal structure of the NADPH-T3 form of mouse Mu-crystallin. 2C4C ; 2.9 ; Crystal structure of the NADPH-treated monooxygenase domain of MICAL 2VW0 ; 2.3 ; Crystal structure of the NanB sialidase from Streptococcus pneumoniae 2VW1 ; 2.39 ; Crystal structure of the NanB sialidase from Streptococcus pneumoniae 2VW2 ; 1.7 ; Crystal structure of the NanB sialidase from Streptococcus pneumoniae 4FOY ; 1.843 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-(Benzylammonio)ethanesulfonate 4FOQ ; 1.99 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-aminoethanesulfonic acid 4FPL ; 2.1 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3,4-dichlorobenzyl)ammonio]ethanesulfonate 4FPY ; 2.18 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-Bromobenzyl)ammonio]ethanesulfonate 4FPO ; 2.591 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-chloro-4-methoxybenzyl)ammonio]ethanesulfonate 4FPF ; 2.23 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-Chlorobenzyl)ammonio]ethanesulfonate 4FPH ; 1.938 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-Fluorobenzyl)ammonio]ethanesulfonate 4FPG ; 2.576 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-Hydroxybenzyl)ammonio]ethanesulfonate 4FPJ ; 1.981 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-Methoxybenzyl)ammonio]ethanesulfonate 4FPK ; 2.4 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(3-methylbenzyl)ammonio]ethanesulfonate 4FPC ; 2.32 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(4-Chlorobenzyl)ammonio]ethanesulfonate 4FQ4 ; 1.843 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(4-Fluoro-3-methylbenzyl)ammonio]ethanesulfonate 4FPE ; 2.181 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(4-Methoxybenzyl)ammonio]ethanesulfonate 4FP3 ; 2.743 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2-[(Furan-2-ylmethyl)ammonio]sulfonate 4FP2 ; 2.05 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 2[(Cyclohexylmethyl)ammonio]sulfonate 4FOW ; 2.1 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 3-ammoniopropane-1-sulfonate 4FOV ; 2.29 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 3-Cyclohexyl-1-propylsulfonic acid 4XJU ; 1.94 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 4-acetamido-2-fluoro-3-hydroxy-6-[1,2-dihydroxyethyl]-7,8-dioxabicyclo[3.2.1]octane-1-carboxylic acid 4XJA ; 1.98 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with 5-acetamido-2,3-difluoro-3-hydroxy-6-[1,2,3-trihydroxypropyl]oxane-2-carboxylic acid 4XE9 ; 1.84 ; Crystal structure of the NanB sialidase from Streptococcus pneumoniae in complex with Optactin 4XHX ; 2.1 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with Optactin and 2-[(3-Chlorobenzyl)ammonio]ethanesulfonate 4XOG ; 2.09 ; CRYSTAL STRUCTURE OF THE NANB SIALIDASE FROM STREPTOCOCCUS PNEUMONIAE IN COMPLEX WITH Optactin and DANA 4XJ9 ; 1.98 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with Optactin at pH 5.0 in 50mM Sodium Acetate with DMSO as the cryoprotectant 4XJW ; 1.53 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with Optactin at pH 7.4 in PBS with DMSO as the cryoprotectant 4XIL ; 1.9 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with Optactin at pH 7.4 in PBS with MPD as the cryoprotectant 4XHB ; 1.88 ; Crystal structure of the NanB sialidase from streptococcus pneumoniae in complex with pentanediol and CHES 3IF0 ; 2.2 ; Crystal Structure of the Nanoarchaeum equitans tRNA splicing endonuclease structural subunit 2VI6 ; 2.6 ; Crystal Structure of the Nanog Homeodomain 2HMN ; 1.7 ; Crystal Structure of the Naphthalene 1,2-Dioxygenase F352V Mutant Bound to Anthracene. 2HML ; 1.8 ; Crystal Structure of the Naphthalene 1,2-Dioxygenase F352V Mutant Bound to Phenanthrene. 2HMJ ; 1.5 ; Crystal Structure of the Naphthalene 1,2-Dioxygenase Phe-352-Val Mutant. 2VZM ; 1.85 ; Crystal structure of the narbomycin-bound PikC D50N mutant 2UWB ; 2.0 ; Crystal structure of the Nasturtium seedling mutant xyloglucanase isoform NXG1-delta-YNIIG 2UWA ; 1.8 ; Crystal structure of the Nasturtium seedling xyloglucanase isoform NXG1 6YGC ; 2.994 ; Crystal structure of the NatC complex bound to Arl3 peptide and CoA 6YGB ; 2.451 ; Crystal structure of the NatC complex bound to CoA 6YGD ; 2.752 ; Crystal structure of the NatC complex bound to Gag peptide and CoA 7Q1K ; 1.36 ; Crystal structure of the native AA9A LPMO from Thermoascus aurantiacus 4RQN ; 2.0 ; Crystal structure of the native BICC1 SAM Domain R924E mutant 1Z9S ; 2.2 ; Crystal Structure of the native chaperone:subunit:subunit Caf1M:Caf1:Caf1 complex 1Y54 ; 2.1 ; Crystal structure of the native class C beta-lactamase from Enterobacter cloacae 908R complexed with BRL42715 1X7I ; 1.7 ; Crystal structure of the native copper homeostasis protein (cutCm) with calcium binding from Shigella flexneri 2a str. 301 2WKX ; 1.8 ; Crystal structure of the native E. coli zinc amidase AmiD 5A8N ; 2.05 ; Crystal structure of the native form of beta-glucanase SdGluc5_26A from Saccharophagus degradans 1VA0 ; 1.97 ; Crystal Structure of the Native Form of Uroporphyrin III C-methyl transferase from Thermus thermophilus 2ARO ; 2.1 ; Crystal Structure Of The Native Histone Octamer To 2.1 Angstrom Resolution, Crystalised In The Presence Of S-Nitrosoglutathione 2BRY ; 1.45 ; Crystal structure of the native monooxygenase domain of MICAL at 1.45 A resolution 3P1B ; 1.77 ; Crystal structure of the native serine acetyltransferase 1 from Entamoeba histolytica 2F3N ; 2.1 ; Crystal Structure of the native Shank SAM domain. 8OEX ; 1.07 ; Crystal structure of the native Z-DNA duplex d(CGCGCG) before soaking of CuCl2 7ZVA ; 1.8 ; Crystal Structure of the native zymogen form of the glutamic-class prolyl-endopeptidase neprosin at 1.80 A resolution. 5EV6 ; 1.984 ; Crystal structure of the native, di-zinc metallo-beta-lactamase IMP-1 4RQP ; 3.151 ; Crystal structure of the natually occurring empty particle of a clinical C4 strain EV71 6CSM ; 2.9 ; Crystal structure of the natural light-gated anion channel GtACR1 3RVY ; 2.7 ; Crystal structure of the NavAb voltage-gated sodium channel (Ile217Cys, 2.7 A) 3RVZ ; 2.8 ; Crystal structure of the NavAb voltage-gated sodium channel (Ile217Cys, 2.8 A) 3RW0 ; 2.95 ; Crystal structure of the NavAb voltage-gated sodium channel (Met221Cys, 2.95 A) 4EKW ; 3.21 ; Crystal structure of the NavAb voltage-gated sodium channel (wild-type, 3.2 A) 5VB2 ; 3.2 ; Crystal structure of the NavAb voltage-gated sodium channel in a closed conformation 5VB8 ; 2.85 ; Crystal structure of the NavAb voltage-gated sodium channel in an open state 1JFI ; 2.62 ; Crystal Structure of the NC2-TBP-DNA Ternary Complex 1OJ5 ; 2.21 ; Crystal structure of the Nco-A1 PAS-B domain bound to the STAT6 transactivation domain LXXLL motif 5Y7W ; 2.25 ; Crystal structure of the Nco-A1 PAS-B domain with YL-2 3US9 ; 2.68 ; Crystal Structure of the NCX1 Intracellular Tandem Calcium Binding Domains(CBD12) 6V3U ; 2.0 ; Crystal Structure of the NDM_FIM-1 like Metallo-beta-Lactamase from Erythrobacter litoralis in the Mono-Zinc Form 3M7F ; 2.0 ; Crystal structure of the Nedd4 C2/Grb10 SH2 complex 5JKK ; 1.6 ; Crystal structure of the negatively supercharged variant Ftn(neg) of human heavy chain ferritin 4MT1 ; 3.54 ; Crystal Structure of the Neisseria gonorrhoeae MtrD Inner Membrane Multidrug Efflux Pump 3KVD ; 2.0 ; Crystal structure of the Neisseria meningitidis Factor H binding protein, fHbp (GNA1870) at 2.0 A resolution 5EDJ ; 2.3 ; Crystal structure of the Neisseria meningitidis iron-regulated outer membrane lipoprotein FrpD 2OPE ; 2.4 ; Crystal structure of the Neisseria meningitidis minor Type IV pilin, PilX, in space group P43 6POG ; 2.755 ; Crystal structure of the NELL2 EGF1-6-Robo3 FN1 complex 2BJQ ; 1.75 ; Crystal structure of the nematode sperm cell motility protein MFP2 2BJR ; 1.8 ; Crystal structure of the nematode sperm cell motility protein MFP2B 4OWF ; 2.0 ; Crystal structure of the NEMO CoZi in complex with HOIP NZF1 domain 2CBQ ; 2.6 ; Crystal structure of the neocarzinostatin 1Tes15 mutant bound to testosterone hemisuccinate. 2CBO ; 1.7 ; Crystal structure of the neocarzinostatin 3Tes24 mutant bound to testosterone hemisuccinate. 2CBT ; 2.2 ; Crystal structure of the neocarzinostatin 4Tes1 mutant bound testosterone hemisuccinate. 1I1A ; 2.8 ; CRYSTAL STRUCTURE OF THE NEONATAL FC RECEPTOR COMPLEXED WITH A HETERODIMERIC FC 3L24 ; 2.3 ; Crystal Structure of the Nerve Agent Degrading Organophosphate Anhydrolase/Prolidase in Complex with Inhibitors 1KR7 ; 1.5 ; Crystal structure of the nerve tissue mini-hemoglobin from the nemertean worm Cerebratulus lacteus 6PZD ; 1.12 ; Crystal structure of the neuraminidase stabilization mutant Y169aH from A/Shanghai/2/2013 (H7N9) 3P7Z ; 2.65 ; Crystal structure of the Neurofibromin Sec14-PH module containing the patient derived mutation I1584V 4B4Y ; 2.3 ; crystal structure of the neuroglobin from the photosymbiotic marine acoel Symsagittifera roscoffensis 6HLO ; 2.4 ; Crystal structure of the Neurokinin 1 receptor in complex with the small molecule antagonist Aprepitant 6HLL ; 3.27 ; Crystal structure of the Neurokinin 1 receptor in complex with the small molecule antagonist CP-99,994 6HLP ; 2.2 ; Crystal structure of the Neurokinin 1 receptor in complex with the small molecule antagonist Netupitant 3BIW ; 3.5 ; Crystal structure of the Neuroligin-1/Neurexin-1beta synaptic adhesion complex 4CQ1 ; 1.69 ; Crystal structure of the neuronal isoform of PTB 1EZ3 ; 1.9 ; CRYSTAL STRUCTURE OF THE NEURONAL T-SNARE SYNTAXIN-1A 6Z4V ; 2.595 ; Crystal structure of the neurotensin receptor 1 (NTSR1-H4bmx) in complex with NTS8-13 6Z4S ; 2.707 ; Crystal structure of the neurotensin receptor 1 (NTSR1-H4bmx) in complex with the small molecule inverse agonist SR48692 6YVR ; 2.458 ; Crystal structure of the neurotensin receptor 1 in complex with the peptide full agonist NTS8-13 6ZIN ; 2.639 ; Crystal structure of the neurotensin receptor 1 in complex with the small molecule inverse agonist SR48692 6Z8N ; 2.803 ; Crystal structure of the neurotensin receptor 1 in complex with the small-molecule full agonist SRI-9829 6Z4Q ; 2.923 ; Crystal structure of the neurotensin receptor 1 in complex with the small-molecule inverse agonist SR142948A 6ZA8 ; 2.72 ; Crystal structure of the neurotensin receptor 1 in complex with the small-molecule partial agonist RTI-3a 3BUK ; 2.6 ; Crystal Structure of the Neurotrophin-3 and p75NTR Symmetrical Complex 1FPB ; 2.6 ; CRYSTAL STRUCTURE OF THE NEUTRAL FORM OF FRUCTOSE 1,6-BISPHOSPHATASE COMPLEXED WITH REGULATORY INHIBITOR FRUCTOSE 2,6-BISPHOSPHATE AT 2.6-ANGSTROMS RESOLUTION 5FBP ; 2.1 ; CRYSTAL STRUCTURE OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH THE PRODUCT FRUCTOSE 6-PHOSPHATE AT 2.1-ANGSTROMS RESOLUTION 5BK3 ; 2.8 ; Crystal structure of the neutralizing anti-circumsporozoite protein 580 antibody 6AZX ; 2.1 ; Crystal structure of the neutralizing anti-circumsporozoite protein 663 antibody 3NH7 ; 2.7 ; Crystal structure of the neutralizing Fab fragment AbD1556 bound to the BMP type I receptor IA 3MOB ; 2.6 ; Crystal structure of the neutralizing HIV antibody 2F5 Fab fragment (recombinantly produced Fab) with 11 aa gp41 MPER-derived peptide 3MOA ; 2.3 ; Crystal structure of the neutralizing HIV antibody 2F5 Fab fragment (recombinantly produced Fab) with 17 aa gp41 MPER-derived peptide 3MOD ; 2.2 ; Crystal structure of the neutralizing HIV antibody 2F5 Fab fragment (recombinantly produced IgG) with 11 aa gp41 MPER-derived peptide 7VPY ; 1.6 ; Crystal structure of the neutralizing nanobody P86 against SARS-CoV-2 8D4O ; 1.45 ; Crystal Structure of the Neutrophil Serine Protease Inhibitor Eap1 from S. aureus 6OVZ ; 2.017 ; Crystal structure of the New Delhi metallo-beta-lactamase-1 adduct with a lysine-targeted affinity label 6MH0 ; 1.65 ; Crystal Structure of the New Deli Metallo Beta Lactamase Variant 3 from Klebsiella pneumoniae 6MGZ ; 1.647 ; Crystal Structure of the New Deli Metallo Beta Lactamase Variant 4 from Klebsiella pneumoniae 6MGY ; 1.6 ; Crystal Structure of the New Deli Metallo Beta Lactamase Variant 5 from Klebsiella pneumoniae 6MGX ; 2.6 ; Crystal Structure of the New Deli Metallo Beta Lactamase Variant 6 Klebsiella pneumoniae 1USX ; 2.7 ; Crystal structure of the Newcastle disease virus hemagglutinin-neuraminidase complexed with thiosialoside 1N1J ; 1.67 ; Crystal structure of the NF-YB/NF-YC histone pair 4AT7 ; 1.902 ; Crystal structure of the NF90-NF45 dimerisation domain complex 4AT8 ; 2.692 ; Crystal structure of the NF90-NF45 dimerisation domain complex with ATP 4ATB ; 3.1 ; Crystal structure of the NF90-NF45 dimerisation domain complex with CTP 4AT9 ; 2.803 ; Crystal structure of the NF90-NF45 dimerisation domain complex with UTP 1VKX ; 2.9 ; CRYSTAL STRUCTURE OF THE NFKB P50/P65 HETERODIMER COMPLEXED TO THE IMMUNOGLOBULIN KB DNA 6D69 ; 2.601 ; Crystal Structure of the NHL Repeat Region of D. melanogaster Thin 6L76 ; 2.94 ; Crystal structure of the Ni(II)(Chro)2-d(TTGGGCCGAA/TTCGGCCCAA) complex at 2.94 angstrom resolution 1F9Z ; 1.5 ; CRYSTAL STRUCTURE OF THE NI(II)-BOUND GLYOXALASE I FROM ESCHERICHIA COLI 3HDP ; 2.06 ; Crystal structure of the NI(II)-bound Glyoxalase-I from Clostridium acetobutylicum 5UP7 ; 1.79 ; Crystal Structure of the Ni-bound Human Heavy-Chain Ferritin 122H-delta C-star variant 7JGP ; 6.42 ; Crystal Structure of the Ni-bound Human Heavy-chain variant 122H-delta C-star with 2,5-furandihyrdoxamate at 318K 7JGK ; 2.68 ; Crystal Structure of the Ni-bound Human Heavy-chain variant 122H-delta C-star with 2,5-furandihyrdoxamate collected at 100K 7JGO ; 3.08 ; Crystal Structure of the Ni-bound Human Heavy-chain variant 122H-delta C-star with 2,5-furandihyrdoxamate collected at 278K 7JGQ ; 3.01 ; Crystal Structure of the Ni-bound Human Heavy-chain variant 122H-delta C-star with 2,5-furandihyrdoxamate collected at 278K after one heating/cooling cycle 7JGM ; 2.31 ; Crystal Structure of the Ni-bound Human Heavy-chain variant 122H-delta C-star with meta-benzenedihyrdoxamate 1FRF ; 2.7 ; CRYSTAL STRUCTURE OF THE NI-FE HYDROGENASE FROM DESULFOVIBRIO FRUCTOSOVORANS 4GSV ; 1.48 ; Crystal Structure of the Ni2+2-Human Arginase I-ABH complex 2ISY ; 1.955 ; Crystal structure of the nickel-activated two-domain iron-dependent regulator (IdeR) 4RUM ; 2.6426 ; Crystal structure of the NiCo transition-metal riboswitch bound to cobalt 1IYB ; 1.5 ; Crystal Structure of the Nicotiana glutinosa Ribonuclease NW 6KUA ; 2.104 ; Crystal structure of the nicotinamidase SaPncA from Staphylococcus aureus 6EB9 ; 1.9 ; Crystal Structure of the Nipah Virus Phosphoprotein Multimerization Domain Delta 542-544 6EB8 ; 2.5 ; Crystal Structure of the Nipah Virus Phosphoprotein Multimerization Domain G519N 4N5B ; 2.2 ; Crystal structure of the Nipah virus phosphoprotein tetramerization domain 4CO6 ; 2.498 ; Crystal structure of the Nipah virus RNA free nucleoprotein- phosphoprotein complex 5A2O ; 3.71 ; Crystal structure of the nitrate transporter NRT1.1 from Arabidopsis thaliana in complex with nitrate. 5A2N ; 3.7 ; Crystal structure of the nitrate transporter NRT1.1 from Arabidopsis thaliana. 5JGP ; 2.7 ; Crystal structure of the nitrate/nitrite sensor NarQ fragment bound with iodide ions 1DP8 ; 2.5 ; CRYSTAL STRUCTURE OF THE NITRIC OXIDE BOUND FIXL HEME DOMAIN 1W8Y ; 2.4 ; Crystal structure of the nitrocefin acyl-DD-peptidase from Actinomadura R39. 1HQO ; 2.3 ; CRYSTAL STRUCTURE OF THE NITROGEN REGULATION FRAGMENT OF THE YEAST PRION PROTEIN URE2P 1XDB ; 2.8 ; Crystal Structure of the Nitrogenase Fe protein Asp129Glu 1XD8 ; 2.7 ; Crystal Structure of the Nitrogenase Fe protein Asp39Asn 1XD9 ; 2.8 ; Crystal Structure of the Nitrogenase Fe protein Asp39Asn with MgADP bound 1XCP ; 3.2 ; Crystal Structure of the Nitrogenase Fe protein Phe135Trp with MgADP bound 2WQF ; 1.35 ; Crystal Structure of the Nitroreductase CinD from Lactococcus lactis in Complex with FMN 2B67 ; 2.05 ; Crystal structure of the Nitroreductase Family Protein from Streptococcus pneumoniae TIGR4 2I7H ; 2.3 ; Crystal Structure of the Nitroreductase-like Family Protein from Bacillus cereus 3B9Y ; 1.85 ; Crystal structure of the Nitrosomonas europaea Rh protein 3B9Z ; 1.85 ; Crystal structure of the Nitrosomonas europaea Rh protein complexed with carbon dioxide 4D3C ; 2.62 ; Crystal structure of the NK1 domain of HGF in complex with anti-HGF monoclonal antibody SFN68. 3HN4 ; 2.6 ; Crystal structure of the NK2 fragment (28-289) of human hepatocyte growth factor/scatter factor 4IUA ; 3.05 ; Crystal Structure of the NK2 Fragment (31-290) of the mouse Hepatocyte Growth Factor/Scatter Factor 5VGC ; 2.6 ; Crystal structure of the NleG5-1 effector (C200A) from Escherichia coli O157:H7 str. Sakai 4EWI ; 2.28 ; Crystal structure of the NLRP4 Pyrin domain 3BBB ; 1.3 ; Crystal structure of the NM23-H2 transcription factor complex with dinucleotide d(AG) 3BBF ; 1.7 ; Crystal structure of the NM23-H2 transcription factor complex with GDP 3BID ; 2.7 ; Crystal structure of the NMB1088 protein from Neisseria meningitidis. Northeast Structural Genomics Consortium target MR91 4KCC ; 1.894 ; Crystal Structure of the NMDA Receptor GluN1 Ligand Binding Domain Apo State 4KFQ ; 2.2 ; Crystal structure of the NMDA receptor GluN1 ligand binding domain in complex with 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one 4KCD ; 1.68 ; Crystal Structure of the NMDA Receptor GluN3A Ligand Binding Domain Apo State 2E3A ; 1.3 ; Crystal structure of the NO-bound form of Arthromyces ramosus peroxidase at 1.3 Angstroms resolution 6LYC ; 1.36 ; Crystal structure of the NOD SIRPa complex with D4-2 4P91 ; 2.1 ; Crystal structure of the nogo-receptor-2 (27-330) 8OE3 ; 1.08 ; Crystal structure of the non-canonical quadruplex d(GCATGCT) before soaking 2C61 ; 1.5 ; Crystal structure of the non-catalytic B subunit of A-type ATPase from M. mazei Go1 1K8D ; 2.3 ; crystal structure of the non-classical MHC class Ib Qa-2 complexed with a self peptide 1LB8 ; 2.3 ; Crystal structure of the Non-desensitizing GluR2 ligand binding core mutant (S1S2J-L483Y) in complex with AMPA at 2.3 resolution 1LB9 ; 2.3 ; Crystal structure of the Non-desensitizing GluR2 ligand binding core mutant (S1S2J-L483Y) in complex with antagonist DNQX at 2.3 A resolution 1N9W ; 2.3 ; Crystal structure of the non-discriminating and archaeal-type aspartyl-tRNA synthetase from Thermus thermophilus 5EP9 ; 2.13 ; Crystal structure of the non-heme alpha ketoglutarate dependent epimerase SnoN from nogalamycin biosynthesis 8SDW ; 1.75 ; Crystal structure of the non-myristoylated mutant [L8K]Arf1 in complex with a GDP analogue 6OEJ ; 3.45 ; CRYSTAL STRUCTURE OF THE NON-NEUTRALIZING AND ADCC-POTENT ANTIBODY C11 IN COMPLEX WITH HIV-1 CLADE A/E GP120 5W4L ; 2.92 ; Crystal structure of the non-neutralizing and ADCC-potent C11-like antibody N12-i3 in complex with HIV-1 clade A/E gp120, the CD4 mimetic M48U1, and the antibody N5-i5. 3MNV ; 2.4 ; Crystal structure of the non-neutralizing HIV antibody 13H11 Fab fragment 3MO1 ; 1.8 ; Crystal structure of the non-neutralizing HIV antibody 13H11 Fab fragment 3MNZ ; 1.8 ; Crystal structure of the non-neutralizing HIV antibody 13H11 Fab fragment with a gp41 MPER-derived peptide bearing Ala substitutions in a helical conformation 3MNW ; 2.2 ; Crystal structure of the non-neutralizing HIV antibody 13H11 Fab fragment with a gp41 MPER-derived peptide in a helical conformation 4REW ; 4.58 ; Crystal structure of the non-phosphorylated human alpha1 beta2 gamma1 holo-AMPK complex 1KY8 ; 2.4 ; Crystal Structure of the Non-phosphorylating glyceraldehyde-3-phosphate Dehydrogenase 1JN0 ; 3.0 ; Crystal structure of the non-regulatory A4 isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP 7ARO ; 3.119 ; Crystal structure of the non-ribose partial agonist LUF5833 bound to the adenosine A2A receptor 6DGK ; 1.9 ; Crystal Structure of the Non-Structural Protein 1 (NS1) effector domain W187A mutant from the A/Brevig Mission/1/1918 (H1N1) strain of Influenza A Virus 4KW3 ; 2.7 ; Crystal structure of the non-structural protein 1 N-terminal origin-recognition/nickase domain from the emerging human bocavirus 4CW4 ; 1.349 ; Crystal structure of the noncanonical ketosynthase FabY from P. aeruginosa 7L5O ; 1.21 ; Crystal structure of the noncovalently bonded complex of rilzabrutinib with BTK 3UB0 ; 2.6 ; Crystal structure of the nonstructural protein 7 and 8 complex of Feline Coronavirus 2FYQ ; 1.5 ; Crystal Structure of the Norwalk Virus Protease 2B43 ; 2.3 ; Crystal structure of the Norwalk virus RNA dependent RNA polymerase from strain Hu/NLV/Dresden174/1997/GE 2B5D ; 2.2 ; Crystal structure of the novel alpha-amylase AmyC from Thermotoga maritima 3ES6 ; 3.23 ; Crystal structure of the novel complex formed between Zinc 2-glycoprotein (ZAG) and Prolactin inducible protein (PIP) from human seminal plasma 2G6Y ; 1.6 ; Crystal structure of the novel green fluorescent protein from marine copepod Pontellina plumata 3WI7 ; 1.7 ; Crystal Structure of the Novel Haloalkane Dehalogenase DatA from Agrobacterium tumefaciens C58 5O30 ; 2.3 ; Crystal structure of the novel halohydrin dehalogenase HheG 5ZB8 ; 2.5 ; Crystal structure of the novel lesion-specific endonuclease PfuEndoQ from Pyrococcus furiosus 4EE6 ; 1.33 ; Crystal Structure of the Novel Phenazine Prenyltransferase EpzP (methylated) 4EE8 ; 1.93 ; Crystal structure of the Novel Phenazine Prenyltransferase EpzP (wildtype) 4EE7 ; 1.67 ; Crystal Structure of the Novel Phenazine Prenyltransferase EpzP in complex with S-thiolodiphosphate (methylated) 4MER ; 2.41 ; Crystal structure of the novel protein and virulence factor sHIP (Q99XU0) from Streptococcus pyogenes 1XRV ; 2.1 ; Crystal Structure of the novel secretory signalling protein from Porcine (SPP-40) at 2.1A resolution. 2ZWN ; 1.7 ; Crystal structure of the novel two-domain type laccase from a metagenome 7XHV ; 3.996 ; Crystal Structure of the NPAS4-ARNT heterodimer in complex with DNA 7XI4 ; 4.707 ; Crystal Structure of the NPAS4-ARNT heterodimer in complex with DNA 7XI3 ; 4.274 ; Crystal Structure of the NPAS4-ARNT2 heterodimer in complex with DNA 7TAE ; 1.5 ; Crystal Structure of the NPR1-Interacting Domain of TGA3 1PBQ ; 1.9 ; CRYSTAL STRUCTURE OF THE NR1 LIGAND BINDING CORE IN COMPLEX WITH 5,7-DICHLOROKYNURENIC ACID (DCKA) AT 1.90 ANGSTROMS RESOLUTION 1Y1Z ; 1.5 ; Crystal structure of the NR1 ligand binding core in complex with ACBC 1Y1M ; 1.8 ; Crystal structure of the NR1 ligand binding core in complex with cycloleucine 1PB9 ; 1.6 ; CRYSTAL STRUCTURE OF THE NR1 LIGAND BINDING CORE IN COMPLEX WITH D-CYCLOSERINE AT 1.60 ANGSTROMS RESOLUTION 1PB8 ; 1.45 ; CRYSTAL STRUCTURE OF THE NR1 LIGAND BINDING CORE IN COMPLEX WITH D-SERINE AT 1.45 ANGSTROMS RESOLUTION 1PB7 ; 1.35 ; CRYSTAL STRUCTURE OF THE NR1 LIGAND BINDING CORE IN COMPLEX WITH GLYCINE AT 1.35 ANGSTROMS RESOLUTION 1Y20 ; 1.4 ; Crystal structure of the NR1 ligand-binding core in complex with ACPC 2A5T ; 2.0 ; Crystal Structure Of The NR1/NR2A ligand-binding cores complex 2A5S ; 1.7 ; Crystal Structure Of The NR2A Ligand Binding Core In Complex With Glutamate 2RC9 ; 1.96 ; Crystal structure of the NR3A ligand binding core complex with ACPC at 1.96 Angstrom resolution 2RC8 ; 1.45 ; Crystal structure of the NR3A ligand binding core complex with D-serine at 1.45 Angstrom resolution 2RC7 ; 1.58 ; Crystal structure of the NR3A ligand binding core complex with glycine at 1.58 Angstrom resolution 2RCB ; 1.62 ; Crystal structure of the NR3B ligand binding core complex with D-serine at 1.62 Angstrom resolution 2RCA ; 1.58 ; Crystal structure of the NR3B ligand binding core complex with glycine at 1.58 Angstrom resolution 6SW8 ; 1.933 ; Crystal structure of the NS1 (H7N1) RNA-binding domain 3P31 ; 2.45 ; Crystal structure of the NS1 effector domain from influenza A/Vietnam/1203/2004 (H5N1) virus 3P38 ; 2.76 ; Crystal structure of the NS1 effector domain W182A mutant from influenza A/Vietnam/1203/2004 (H5N1) virus 3P39 ; 3.14 ; Crystal structure of the NS1 effector domain W182A mutant from influenza A/Vietnam/1203/2004 (H5N1) virus 2VBC ; 3.15 ; Crystal structure of the NS3 protease-helicase from Dengue virus 2WV9 ; 2.75 ; Crystal Structure of the NS3 protease-helicase from Murray Valley encephalitis virus 6M40 ; 2.89 ; Crystal structure of the NS3-like helicase from Alongshan virus 3I5K ; 2.2 ; Crystal structure of the NS5B polymerase from Hepatitis C Virus (HCV) strain JFH1 4ASH ; 1.578 ; Crystal structure of the NS6 protease from murine norovirus 1 4CY3 ; 1.4 ; Crystal structure of the NSL1-WDS complex. 4CY5 ; 2.3 ; Crystal structure of the NSL1-WDS-NSL2 complex. 2XYQ ; 2.0 ; Crystal structure of the nsp16 nsp10 SARS coronavirus complex 2XYR ; 2.5 ; Crystal structure of the nsp16 nsp10 SARS coronavirus complex 2XYV ; 2.06 ; Crystal structure of the nsp16 nsp10 SARS coronavirus complex 7T9W ; 2.2 ; Crystal structure of the Nsp3 bSM (Betacoronavirus-Specific Marker) domain from SARS-CoV-2 7RQG ; 2.17 ; Crystal structure of the Nsp3 Y3 domain from SARS-CoV-2 6YHU ; 2.0 ; Crystal structure of the nsp7-nsp8 complex of SARS-CoV-2 5CD7 ; 2.502 ; Crystal structure of the NTD L199M of Drosophila Oskar protein 5CD8 ; 3.001 ; Crystal structure of the NTD of Drosophila Oskar protein 5H29 ; 2.3 ; Crystal Structure of the NTD_N/C domain of Alkylhydroperoxide Reductase AhpF from Enterococcus Faecalis (V583) 3Q90 ; 1.7 ; Crystal structure of the NTF2 domain of Ras GTPase-activating protein-binding protein 1 4FCJ ; 1.62 ; Crystal structure of the NTF2-like domain of human G3BP1 4FCM ; 2.69 ; Crystal structure of the NTF2-like domain of human G3BP1 in complex with a peptide 3UJM ; 2.741 ; Crystal structure of the NTF2-like domain of the Drosophila melanogaster Rasputin protein 8V1L ; 2.68 ; Crystal structure of the NTF2L domain of human G3BP1 in complex with small molecule 7XHG ; 2.46 ; Crystal structure of the NTF2L domain of human G3BP1 in complex with the Caprin-1 derived peptide 7XHF ; 2.68 ; Crystal structure of the NTF2L domain of human G3BP1 in complex with the USP10 derived peptide 2XU0 ; 2.06 ; Crystal structure of the NTS-DBL1(alpha-1) domain of the Plasmodium falciparum membrane protein 1 (PfEMP1) from the varO strain. 5J9Q ; 3.25 ; Crystal structure of the NuA4 core complex 5J9T ; 2.7 ; Crystal structure of the NuA4 core complex 5J9U ; 2.95 ; Crystal structure of the NuA4 core complex 5J9W ; 2.8 ; Crystal structure of the NuA4 core complex 6AN5 ; 3.512 ; Crystal Structure of The Nucelotide Binding Domain of an O-antigen polysaccharide ABC-transporter 5M0I ; 2.41 ; Crystal structure of the nuclear complex with She2p and the ASH1 mRNA E3-localization element 3GJX ; 2.5 ; Crystal Structure of the Nuclear Export Complex CRM1-Snurportin1-RanGTP 4BSN ; 4.1 ; Crystal structure of the Nuclear Export Receptor CRM1 (exportin-1) lacking the C-terminal helical extension at 4.1A 4BSM ; 4.5 ; Crystal structure of the Nuclear Export Receptor CRM1 (exportin-1) lacking the C-terminal helical extension at 4.5A 1DB1 ; 1.8 ; CRYSTAL STRUCTURE OF THE NUCLEAR RECEPTOR FOR VITAMIN D COMPLEXED TO VITAMIN D 1IE8 ; 1.52 ; Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to KH1060 1IE9 ; 1.4 ; Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to MC1288 2IVH ; 2.8 ; Crystal structure of the nuclease domain of ColE7 (H545Q mutant) in complex with an 18-bp duplex DNA 3FBD ; 2.9 ; Crystal structure of the nuclease domain of COLE7(D493Q mutant) in complex with an 18-BP duplex DNA 8GUO ; 2.59395 ; Crystal structure of the nuclease domain of EsaD in complex with EsaG from Staphylococcus aureus 7LGO ; 2.45 ; Crystal structure of the nucleic acid binding domain (NAB) of Nsp3 from SARS-CoV-2 3ZLA ; 3.2 ; Crystal structure of the nucleocapsid protein from Bunyamwera virus bound to RNA 3ZL9 ; 2.75 ; Crystal structure of the nucleocapsid protein from Schmallenberg virus 1P65 ; 2.6 ; Crystal structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus (PRRSV) 6BYG ; 1.999 ; Crystal structure of the nucleophile mutant (E575A) of the GH2 exo-beta-mannanase from Xanthomonas axonopodis pv. citri 3FMO ; 2.51 ; Crystal structure of the nucleoporin Nup214 in complex with the DEAD-box helicase Ddx19 3FMP ; 3.19 ; Crystal structure of the nucleoporin Nup214 in complex with the DEAD-box helicase Ddx19 3F3F ; 2.9 ; Crystal structure of the nucleoporin pair Nup85-Seh1, space group P21 3F3P ; 3.2 ; Crystal structure of the nucleoporin pair Nup85-Seh1, space group P21212 3F3G ; 3.75 ; Crystal structure of the nucleoporin pair Nup85-Seh1, space group P212121 4KPC ; 2.7 ; Crystal structure of the nucleoside diphosphate kinase b from Leishmania braziliensis 8CTM ; 1.73 ; Crystal structure of the nucleoside hydrolase from Leishmania donovani. 3OH8 ; 1.997 ; Crystal structure of the nucleoside-diphosphate sugar epimerase from Corynebacterium glutamicum. Northeast Structural Genomics Consortium Target CgR91 4EVW ; 1.9 ; Crystal Structure of the nucleoside-diphosphate-sugar pyrophosphorylase from Vibrio cholerae RC9. Northeast Structural Genomics Consortium (NESG) Target VcR193. 5Z23 ; 2.73 ; Crystal structure of the nucleosome containing a chimeric histone H3/CENP-A CATD 5B0Y ; 2.557 ; Crystal structure of the nucleosome containing histone H3 with the crotonylated lysine 122 5JRG ; 2.5 ; Crystal structure of the nucleosome containing the DNA with tetrahydrofuran (THF) 3X1S ; 2.805 ; Crystal structure of the nucleosome core particle 1U35 ; 3.0 ; Crystal structure of the nucleosome core particle containing the histone domain of macroH2A 3FVQ ; 1.9 ; Crystal structure of the nucleotide binding domain FbpC complexed with ATP 1ID0 ; 1.6 ; CRYSTAL STRUCTURE OF THE NUCLEOTIDE BOND CONFORMATION OF PHOQ KINASE DOMAIN 1DKG ; 2.8 ; CRYSTAL STRUCTURE OF THE NUCLEOTIDE EXCHANGE FACTOR GRPE BOUND TO THE ATPASE DOMAIN OF THE MOLECULAR CHAPERONE DNAK 1SKY ; 3.2 ; CRYSTAL STRUCTURE OF THE NUCLEOTIDE FREE ALPHA3BETA3 SUB-COMPLEX OF F1-ATPASE FROM THE THERMOPHILIC BACILLUS PS3 5X7K ; 2.65 ; Crystal structure of the nucleotide-binding domain (NBD) of LipB, a ABC transporter subunit of a type I secretion system 4FWI ; 2.892 ; Crystal structure of the nucleotide-binding domain of a dipeptide ABC transporter 3LLU ; 1.4 ; Crystal structure of the nucleotide-binding domain of Ras-related GTP-binding protein C 3VX4 ; 2.69 ; Crystal Structure of the Nucleotide-Binding Domain of S. mutans ComA, a Bifunctional ATP-binding Cassette Transporter Involved in the Quorum-sensing Pathway 3KB1 ; 2.9 ; Crystal Structure of the Nucleotide-binding protein AF_226 in complex with ADP from Archaeoglobus fulgidus, Northeast Structural Genomics Consortium Target GR157 1JX2 ; 2.3 ; CRYSTAL STRUCTURE OF THE NUCLEOTIDE-FREE DYNAMIN A GTPASE DOMAIN, DETERMINED AS MYOSIN FUSION 5ZEA ; 3.384 ; Crystal structure of the nucleotide-free mutant A3B3 3GG6 ; 2.1 ; Crystal structure of the NUDIX domain of human NUDT18 3H95 ; 1.7 ; Crystal structure of the NUDIX domain of NUDT6 1SU2 ; 1.6 ; CRYSTAL STRUCTURE OF THE NUDIX HYDROLASE DR1025 IN COMPLEX WITH ATP 3P3D ; 2.35 ; Crystal structure of the Nup53 RRM domain from Pichia guilliermondii 3EWE ; 3.5 ; Crystal Structure of the Nup85/Seh1 Complex 5E0Q ; 1.9 ; Crystal structure of the Nup98 C-terminal domain bound to nanobody TP377 2YGK ; 2.5 ; Crystal structure of the NurA nuclease from Sulfolobus solfataricus 3IMQ ; 2.5 ; Crystal structure of the NusB101-S10(delta loop) complex 6FDL ; 1.75 ; Crystal structure of the NYN domain of human MARF1 3VI0 ; 2.3 ; Crystal structure of the O intermediate of the L93A mutant of bacteriorhodopsin 3VEN ; 1.57 ; Crystal structure of the O-carbamoyltransferase TobZ 3VEX ; 1.9 ; Crystal structure of the O-carbamoyltransferase TobZ H14N variant in complex with carbamoyl adenylate intermediate 3VEW ; 2.352 ; Crystal structure of the O-carbamoyltransferase TobZ in complex with ADP 3VES ; 2.23 ; Crystal structure of the O-carbamoyltransferase TobZ in complex with AMPCPP and carbamoyl phosphate 3VER ; 2.34 ; Crystal structure of the O-carbamoyltransferase TobZ in complex with carbamoyl adenylate intermediate 3VEO ; 2.187 ; Crystal structure of the O-carbamoyltransferase TobZ in complex with carbamoyl phosphate 3VET ; 2.2 ; Crystal structure of the O-carbamoyltransferase TobZ in complex with Tobramycin, carbamoyl phosphate and ADP 3VEZ ; 2.4 ; Crystal structure of the O-carbamoyltransferase TobZ K443A variant in complex with ATP, ADP and carbamoyl phosphate 3VF2 ; 2.9 ; Crystal structure of the O-carbamoyltransferase TobZ M473I variant in complex with carbamoyl phosphate and ADP 3VF4 ; 2.4 ; Crystal structure of the O-carbamoyltransferase TobZ S530A variant in complex with carbamoyl phosphate and ADP 7XB6 ; 2.901 ; Crystal structure of the O-carbamoyltransferase VtdB in complex with carbamoyl adenylate intermediate 7YYK ; 2.6 ; Crystal structure of the O-fucosylated form of TSRs1-3 from the human thrombospondin 1 6Q4M ; 2.2 ; Crystal structure of the O-GlcNAc transferase Asn648Tyr mutation 6HP1 ; 1.9 ; Crystal Structure of the O-Methyltransferase from the trans-AT PKS multienzyme C0ZGQ3 of Brevibacillus brevis 6HP2 ; 1.9 ; Crystal Structure of the O-Methyltransferase from the trans-AT PKS multienzyme C0ZGQ3 of Brevibacillus brevis in complex with S-Adenosyl-L-homocysteine 5N5D ; 1.55 ; Crystal Structure of the O-Methyltransferase TomG from Streptomyces achromogenes involved in Tomaymycin synthesis in complex with SAM 5B36 ; 2.15 ; Crystal Structure of the O-Phosphoserine Sulfhydrylase from Aeropyrum pernix Complexed with Cysteine 6L0S ; 1.96 ; Crystal Structure of the O-Phosphoserine Sulfhydrylase from Aeropyrum pernix Complexed with L-Cysteine 6L0R ; 1.79 ; Crystal Structure of the O-Phosphoserine Sulfhydrylase from Aeropyrum pernix Complexed with O-Acetylserine 6L0P ; 1.79 ; Crystal Structure of the O-Phosphoserine Sulfhydrylase from Aeropyrum pernix Complexed with O-Phosphoserine 6L0Q ; 1.58 ; Crystal Structure of the O-Phosphoserine Sulfhydrylase from Aeropyrum pernix Complexed with O-Phosphoserine 6XYT ; 2.1 ; Crystal structure of the O-state of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 7ODH ; 1.34 ; Crystal structure of the O2-tolerant MBH-P242C from Ralstonia eutropha in its as-isolated state 7ODG ; 1.62 ; Crystal structure of the O2-tolerant MBH-P242C from Ralstonia eutropha in its reduced state 1OCT ; 3.0 ; CRYSTAL STRUCTURE OF THE OCT-1 POU DOMAIN BOUND TO AN OCTAMER SITE: DNA RECOGNITION WITH TETHERED DNA-BINDING MODULES 7RUS ; 2.87 ; Crystal structure of the octameric form of Rv3208A 4TW1 ; 2.8 ; Crystal structure of the octameric pore complex of the Staphylococcus aureus Bi-component Toxin LukGH 4N9X ; 2.503 ; Crystal Structure of the OCTAPRENYL-METHYL-METHOXY-BENZQ MOLECULE from Erwina carotovora subsp. atroseptica strain SCRI 1043 / ATCC BAA-672, Northeast Structural Genomics Consortium (NESG) Target EwR161 5ODO ; 2.64 ; Crystal Structure of the Oleate hydratase of Rhodococcus erythropolis 4XAT ; 2.113 ; Crystal structure of the olfactomedin domain from noelin/pancortin/olfactomedin-1 4RML ; 1.601 ; Crystal structure of the Olfactomedin domain of latrophilin 3 in C2221 crystal form 4RMK ; 1.606 ; Crystal structure of the Olfactomedin domain of latrophilin 3 in P65 crystal form 3FBV ; 3.2 ; Crystal structure of the oligomer formed by the kinase-ribonuclease domain of Ire1 3TPK ; 1.3 ; Crystal structure of the oligomer-specific KW1 antibody fragment 5I72 ; 2.9 ; Crystal structure of the oligomeric form of the Lassa virus matrix protein Z 4MJT ; 2.85 ; Crystal structure of the oligomeric pore-forming toxin pro-Monalysin 8IIA ; 2.09 ; Crystal structure of the oligomeric state of the extracellular domain of human myelin protein zero(MPZ/P0) 2YF2 ; 2.24 ; Crystal structure of the oligomerisation domain of C4b-binding protein from Gallus gallus 6TO9 ; 2.45 ; Crystal structure of the oligomerisation domain of the transcription factor PHOSPHATE STARVATION RESPONSE 1 from Arabidopsis (crystal form 2) 6TOC ; 1.853 ; Crystal structure of the oligomerisation domain of the transcription factor PHOSPHATE STARVATION RESPONSE 1 from Arabidopsis (crystal form 3). 6TO5 ; 2.38 ; Crystal structure of the oligomerisation domain of the transcription factor PHOSPHATE STARVATION RESPONSE 1 from Arabidopsis. 1G1I ; 2.0 ; CRYSTAL STRUCTURE OF THE OLIGOMERIZATION DOMAIN FROM ROTAVIRUS NSP4 1G1J ; 1.86 ; CRYSTAL STRUCTURE OF THE OLIGOMERIZATION DOMAIN FROM ROTAVIRUS NSP4 3CAG ; 1.9 ; Crystal structure of the oligomerization domain hexamer of the arginine repressor protein from Mycobacterium tuberculosis in complex with 9 arginines. 5Y2J ; 2.55 ; Crystal structure of the oligomerization domain of NSP4 from rotavirus strain MF66 5Y9R ; 2.2 ; Crystal structure of the oligomerization domain of NSP4 from rotavirus strain MF66 5Y2H ; 2.6 ; Crystal structure of the oligomerization domain of NSP4 from the rotavirus strain MF66 5Y2E ; 2.7 ; Crystal structure of the oligomerization domain of NSP4 from the rotavirus strain NCDV 6VAG ; 1.4 ; Crystal structure of the oligomerization domain of phosphoprotein from parainfluenza virus 5 2FQM ; 2.3 ; Crystal structure of the oligomerization domain of the phosphoprotein of vesicular stomatitis virus 6GBO ; 2.1 ; Crystal Structure of the oligomerization domain of Vp35 from Ebola virus 6GBP ; 3.49 ; Crystal Structure of the oligomerization domain of VP35 from Ebola virus, mercury derivative 6GBQ ; 2.43 ; Crystal Structure of the oligomerization domain of Vp35 from Reston virus 6GBR ; 3.15 ; Crystal Structure of the oligomerization domain of VP35 from Reston virus, mercury derivative 6TCM ; 1.85 ; Crystal structure of the omalizumab Fab - crystal form I 6TCN ; 2.3 ; Crystal structure of the omalizumab Fab - crystal form II 6TCO ; 1.8 ; Crystal structure of the omalizumab Fab Leu158Pro light chain mutant - crystal form I 6TCP ; 2.5 ; Crystal structure of the omalizumab Fab Leu158Pro light chain mutant - crystal form II 6TCQ ; 2.05 ; Crystal structure of the omalizumab Fab Ser81Arg and Gln83Arg light chain mutant 6TCR ; 1.45 ; Crystal structure of the omalizumab Fab Ser81Arg, Gln83Arg and Leu158Pro light chain mutant 6TCS ; 2.3 ; Crystal structure of the omalizumab scFv 1OME ; 2.3 ; CRYSTAL STRUCTURE OF THE OMEGA LOOP DELETION MUTANT (RESIDUES 163-178 DELETED) OF BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS PC1 4A72 ; 2.4 ; Crystal structure of the omega transaminase from Chromobacterium violaceum in a mixture of apo and PLP-bound states 4A6T ; 1.8 ; Crystal structure of the omega transaminase from Chromobacterium violaceum in complex with PLP 6S4G ; 1.67 ; Crystal structure of the omega transaminase from Chromobacterium violaceum in complex with PMP 4A6U ; 1.687 ; Crystal structure of the omega transaminase from Chromobacterium violaceum in the apo form, crystallised from PEG 3350 4A6R ; 1.349 ; Crystal structure of the omega transaminase from Chromobacterium violaceum in the apo form, crystallised from polyacrylic acid 6G4D ; 2.15 ; Crystal structure of the omega TRANSAMINASE FROM PSEUDOMONAS Jessenii in complex with PLP 6G4E ; 2.45 ; Crystal structure of the omega TRANSAMINASE FROM PSEUDOMONAS Jessenii in complex with PLP and 6-aminohexanoate (6-ACA) 6G4F ; 2.5 ; Crystal structure of the omega TRANSAMINASE FROM PSEUDOMONAS Jessenii in complex with PMP 6G4C ; 1.87 ; Crystal structure of the omega transaminase from Pseudomonas jessenii in the apo form, crystallized from ammonium phosphate 6G4B ; 1.8 ; Crystal structure of the omega transaminase from Pseudomonas jessenii in the apo form, crystallized from succinate 6RCP ; 3.231 ; Crystal structure of the OmpK36 clinical isolate ST258 from Klebsiella pneumonia 7Q3T ; 1.788 ; Crystal structure of the OmpK36 D insertion chimera from Klebsiella pneumonia 6RCK ; 2.029 ; Crystal structure of the OmpK36 GD insertion chimera from Klebsiella pneumonia 7PZF ; 1.499 ; Crystal structure of the OmpK36 TD insertion chimera from Klebsiella pneumonia 1CSO ; 1.9 ; CRYSTAL STRUCTURE OF THE OMTKY3 P1 VARIANT OMTKY3-ILE18I IN COMPLEX WITH SGPB 1CT0 ; 1.8 ; CRYSTAL STRUCTURE OF THE OMTKY3 P1 VARIANT OMTKY3-SER18I IN COMPLEX WITH SGPB 1CT2 ; 1.65 ; CRYSTAL STRUCTURE OF THE OMTKY3 P1 VARIANT OMTKY3-THR18I IN COMPLEX WITH SGPB 1CT4 ; 1.6 ; CRYSTAL STRUCTURE OF THE OMTKY3 P1 VARIANT OMTKY3-VAL18I IN COMPLEX WITH SGPB 4ZER ; 3.1 ; Crystal structure of the Onc112 antimicrobial peptide bound to the Thermus thermophilus 70S ribosome 3O5X ; 2.0 ; Crystal structure of the oncogenic tyrosine phosphatase SHP2 complexed with a salicylic acid-based small molecule inhibitor 3E3H ; 2.15 ; Crystal structure of the OP hydrolase mutant from Brevundimonas diminuta 1K24 ; 2.03 ; Crystal Structure of the OpcA Outer Membrane Adhesin/Invasin from Neisseria meningitidis 6ZPQ ; 1.85 ; Crystal structure of the open conformation of Angiotensin-1 converting enzyme N-domain. 6ZPT ; 2.8 ; Crystal structure of the open conformation of S2_S'-mutant human Angiotensin-1 converting enzyme N-domain. 3QNF ; 3.0 ; Crystal structure of the open state of human endoplasmic reticulum aminopeptidase 1 ERAP1 4MT0 ; 3.292 ; Crystal Structure of the Open State of the Neisseria gonorrhoeae MtrE Outer Membrane Channel 2VDD ; 3.3 ; Crystal Structure of the Open State of TolC Outer Membrane Component of Mutlidrug Efflux Pumps 2VDE ; 3.2 ; Crystal Structure of the Open State of TolC Outer Membrane Component of Mutlidrug Efflux Pumps 2YVH ; 2.5 ; Crystal structure of the operator-binding form of the multi-drug binding transcriptional repressor CgmR 8UQS ; 1.35 ; Crystal structure of the Opossum p53 tetramerization domain 3D5K ; 2.4 ; Crystal structure of the OprM channel in a non-symmetrical space group 4RJX ; 1.54 ; Crystal structure of the OprO mutant protein F62Y/D114Y 8PYH ; 2.2 ; Crystal structure of the Orange Carotenoid Protein 2 (OCP2) from Crinalium epipsammum PCC 9333 8PZK ; 1.8 ; Crystal structure of the Orange Carotenoid Protein 2 (OCP2) from Gloeocapsa sp. PCC 7428 3MG1 ; 1.649 ; Crystal structure of the orange carotenoid protein from cyanobacteria Synechocystis sp. PCC 6803 3MG3 ; 1.702 ; Crystal structure of the orange carotenoid protein R155L mutant from cyanobacteria synechocystis sp. PCC 6803 3MG2 ; 2.653 ; Crystal structure of the orange carotenoid protein Y44S mutant from cyanobacteria synechocystis sp. PCC 6803 6OM3 ; 3.3 ; Crystal structure of the Orc1 BAH domain in complex with a nucleosome core particle 8P7A ; 2.56 ; Crystal structure of the ORD domain of human ORP8 6TP4 ; 3.011 ; Crystal structure of the Orexin-1 receptor in complex with ACT-462206 6TQ6 ; 2.546 ; Crystal structure of the Orexin-1 receptor in complex with Compound 14 6TQ4 ; 2.299 ; Crystal structure of the Orexin-1 receptor in complex with Compound 16 6TP3 ; 3.04 ; Crystal structure of the Orexin-1 receptor in complex with daridorexant 6TOD ; 2.11 ; Crystal structure of the Orexin-1 receptor in complex with EMPA 6TP6 ; 2.338 ; Crystal structure of the Orexin-1 receptor in complex with filorexant 6TOS ; 2.13 ; Crystal structure of the Orexin-1 receptor in complex with GSK1059865 6TOT ; 2.22 ; Crystal structure of the Orexin-1 receptor in complex with lemborexant 6TQ7 ; 2.6636 ; Crystal structure of the Orexin-1 receptor in complex with SB-334867 6TQ9 ; 2.655 ; Crystal structure of the Orexin-1 receptor in complex with SB-408124 6TO7 ; 2.26 ; Crystal structure of the Orexin-1 receptor in complex with suvorexant at 2.29 A resolution 6TPG ; 2.741 ; Crystal structure of the Orexin-2 receptor in complex with EMPA at 2.74 A resolution 6TPN ; 2.608 ; Crystal structure of the Orexin-2 receptor in complex with HTL6641 at 2.61 A resolution 6TPJ ; 2.74 ; Crystal structure of the Orexin-2 receptor in complex with suvorexant at 2.76 A resolution 2GNN ; 2.3 ; Crystal Structure of the Orf Virus NZ2 Variant of VEGF-E 2X5H ; 1.8 ; Crystal structure of the ORF131 L26M L51M double mutant from Sulfolobus islandicus rudivirus 1 2X5G ; 2.0 ; Crystal structure of the ORF131L51M mutant from Sulfolobus islandicus rudivirus 1 3OO3 ; 2.2 ; Crystal Structure of the Orf6* (CYP165D3) Monooxygenase Involved in Teicoplanin Biosynthesis 8BGM ; 2.7 ; Crystal structure of the OrfX1-OrfX3 complex from the PMP1 neurotoxin gene cluster 2BJO ; 2.1 ; Crystal Structure of the Organic Hydroperoxide Resistance Protein OhrB of Bacillus subtilis 5E20 ; 1.97 ; Crystal structure of the organohalide sensing RdhR-CbdbA1625 transcriptional regulator in the 2,3-dichlorophenol bound form 5E1Z ; 1.66 ; Crystal structure of the organohalide sensing RdhR-CbdbA1625 transcriptional regulator in the 2,4-dichlorophenol bound form 5E1X ; 1.46 ; Crystal structure of the organohalide sensing RdhR-CbdbA1625 transcriptional regulator in the 3,4-dichlorophenol bound form 5E1W ; 1.392 ; Crystal structure of the organohalide sensing RdhR-CbdbA1625 transcriptional regulator in the ligand free form 6UPU ; 2.2 ; Crystal structure of the Orientia tsutsugamushi OtDUB in complex with three molecules of ubiquitin 5E3K ; 1.7 ; Crystal structure of the ornithine aminotransferase from Toxoplasma gondii ME49 in a complex with (S)-4-amino-5-fluoropentanoic acid 5DJ9 ; 1.55 ; Crystal structure of the ornithine aminotransferase from Toxoplasma gondii ME49 in a complex with gabaculine 4ZLV ; 1.8 ; Crystal structure of the ornithine aminotransferase from Toxoplasma gondii ME49 in a complex with the Schiff base between PLP and Lys286 3RUY ; 2.65 ; Crystal Structure of the Ornithine-oxo acid transaminase RocD from Bacillus anthracis 2X3L ; 2.0 ; Crystal Structure of the Orn_Lys_Arg decarboxylase family protein SAR0482 from Methicillin-resistant Staphylococcus aureus 8U0Z ; 1.399 ; CRYSTAL STRUCTURE OF THE OROTIDINE 5'-MONOPHOSPHATE DECARBOXYLASE DOMAIN OF Coffea arabica UMP SYNTHASE 3GDK ; 2.0 ; Crystal structure of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae 3GDL ; 1.65 ; Crystal structure of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae complexed with 6-azauridine 5'-monophosphate 2QCF ; 1.22 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain (Asp312Asn mutant) of human UMP synthase bound to 5-fluoro-UMP 2QCM ; 1.67 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain (Asp312Asn mutant) of human UMP synthase bound to 6-hydroxymethyl-UMP 2QCL ; 1.85 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain (Asp312Asn mutant) of human UMP synthase bound to OMP 2QCG ; 1.75 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase bound to 5-bromo-UMP 2QCH ; 1.95 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase bound to 5-iodo-UMP 2QCE ; 1.43 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase bound to sulfate, glycerol, and chloride 2QCD ; 2.03 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase bound to UMP 2QCC ; 1.85 ; Crystal structure of the orotidine-5'-monophosphate decarboxylase domain of human UMP synthase, apo form 1PK5 ; 2.4 ; Crystal structure of the orphan nuclear receptor LRH-1 1GA5 ; 2.4 ; CRYSTAL STRUCTURE OF THE ORPHAN NUCLEAR RECEPTOR REV-ERB(ALPHA) DNA-BINDING DOMAIN BOUND TO ITS COGNATE RESPONSE ELEMENT 1HLZ ; 2.8 ; CRYSTAL STRUCTURE OF THE ORPHAN NUCLEAR RECEPTOR REV-ERB(ALPHA) DNA-BINDING DOMAIN BOUND TO ITS COGNATE RESPONSE ELEMENT 3B0W ; 2.2 ; Crystal structure of the orphan nuclear receptor ROR(gamma)t ligand-binding domain in complex with digoxin 4NIE ; 2.01 ; Crystal structure of the orphan nuclear receptor ROR(gamma)t ligand-binding domain in complex with small molecule ligand 4S15 ; 1.897 ; Crystal structure of the orphan nuclear receptor RORalpha ligand-binding domain in complex with 4alpha-caboxyl, 4beta-methyl-zymosterol (4ACD8) 4S14 ; 3.542 ; Crystal structure of the orphan nuclear receptor RORgamma ligand-binding domain in complex with 4alpha-caboxyl, 4beta-methyl-zymosterol (4ACD8) 5I04 ; 2.42 ; Crystal structure of the orphan region of human endoglin/CD105 5HZW ; 4.451 ; Crystal structure of the orphan region of human endoglin/CD105 in complex with BMP9 5JIE ; 2.1374 ; Crystal structure of the Orsay virus delta protein N-terminal fragment (aa 1~66) 1Y2W ; 1.74 ; Crystal structure of the orthorhombic form of the common edible mushroom (Agaricus bisporus) lectin in complex with T-antigen and N-acetylglucosamine 5A4A ; 1.699 ; Crystal structure of the OSK domain of Drosophila Oskar 7D3Y ; 3.11 ; Crystal structure of the osPHR2-osSPX2 complex 3WKZ ; 2.001 ; Crystal Structure of the Ostrinia furnacalis Group I Chitinase catalytic domain E148Q mutant 4KSJ ; 1.6 ; Crystal structure of the OTU domain of Gumby/Fam105B at 1.6 angstrom 3ZNV ; 1.3 ; Crystal structure of the OTU domain of OTULIN at 1.3 Angstroms. 3ZNX ; 1.35 ; Crystal structure of the OTU domain of OTULIN D336A mutant 4I3S ; 2.85 ; Crystal structure of the outer domain of HIV-1 gp120 in complex with VRC-PG04 space group P21 4I3R ; 3.0 ; Crystal structure of the outer domain of HIV-1 gp120 in complex with VRC-PG04 space group P3221 6EUS ; 2.2 ; Crystal structure of the outer membrane channel DcaP of Acinetobacter baumannii 3JQO ; 2.6 ; Crystal structure of the outer membrane complex of a type IV secretion system 4LM8 ; 1.8 ; Crystal structure of the outer membrane decaheme cytochrome MtrC 3PMQ ; 3.2 ; Crystal structure of the outer membrane decaheme cytochrome MtrF 4LMH ; 2.7 ; Crystal structure of the outer membrane decaheme cytochrome OmcA 2ERV ; 2.0 ; Crystal structure of the outer membrane enzyme PagL 4NHR ; 2.34 ; Crystal structure of the outer membrane lipopolysaccharide transport protein LptE (RlpB) 4RH8 ; 2.2 ; Crystal structure of the outer membrane lipopolysaccharide transport protein LptE (RlpB) from Escherichia coli in the tetragonal crystal form 1IWN ; 2.2 ; Crystal Structure of the Outer Membrane Lipoprotein Receptor LolB Complexed with PEGMME2000 1IWM ; 1.9 ; Crystal Structure of the Outer Membrane Lipoprotein Receptor, LolB 8QXP ; 3.2 ; Crystal structure of the outer membrane porin OmpW from Klebsiella pneumoniae 1QJ8 ; 1.9 ; CRYSTAL STRUCTURE OF THE OUTER MEMBRANE PROTEIN OMPX FROM ESCHERICHIA COLI 1QJ9 ; 2.1 ; CRYSTAL STRUCTURE OF THE OUTER MEMBRANE PROTEIN OMPX FROM ESCHERICHIA COLI 2QTK ; 2.8 ; Crystal Structure of the outer membrane protein opdK from Pseudomonas aeruginosa 2ODJ ; 2.9 ; Crystal structure of the outer membrane protein OprD from Pseudomonas aeruginosa 2X27 ; 2.4 ; Crystal structure of the outer membrane protein OprG from Pseudomonas aeruginosa 1KMO ; 2.0 ; Crystal structure of the Outer Membrane Transporter FecA 1KMP ; 2.5 ; Crystal structure of the Outer Membrane Transporter FecA Complexed with Ferric Citrate 7AHK ; 2.5 ; Crystal structure of the outward-facing state of the substrate-free Na+-only bound glutamate transporter homolog GltPh 5HLH ; 3.0 ; Crystal structure of the overoxidized AbfR bound to DNA 1GZ2 ; 1.5 ; Crystal structure of the Ovocleidin-17 a major protein of the Gallus gallus eggshell calcified layer. 1EWZ ; 2.4 ; CRYSTAL STRUCTURE OF THE OXA-10 BETA-LACTAMASE FROM PSEUDOMONAS AERUGINOSA 2WKI ; 2.1 ; Crystal structure of the OXA-10 K70C mutant at pH 7.0 2X01 ; 1.9 ; CRYSTAL STRUCTURE OF THE OXA-10 S67A MUTANT AT PH 7 2WGV ; 1.8 ; Crystal structure of the OXA-10 V117T mutant at pH 6.5 inhibited by a chloride ion 2WGW ; 1.8 ; Crystal structure of the OXA-10 V117T mutant at pH 8.0 2HP9 ; 2.5 ; Crystal Structure of the OXA-10 W154A mutant at pH 6.0 2HP6 ; 2.2 ; Crystal structure of the OXA-10 W154A mutant at pH 7.5 2HPB ; 2.05 ; Crystal structure of the OXA-10 W154A mutant at pH 9.0 2HP5 ; 2.7 ; Crystal Structure of the OXA-10 W154G mutant at pH 7.0 2RL3 ; 1.9 ; Crystal structure of the OXA-10 W154H mutant at pH 7 6ZXI ; 1.85 ; Crystal Structure of the OXA-48 Carbapenem-Hydrolyzing Class D beta-Lactamase in Complex with the DBO inhibitor ANT3310 5FQ9 ; 1.5 ; Crystal structure of the OXA10 with 1C 7L5R ; 1.65 ; Crystal Structure of the Oxacillin-hydrolyzing Class D Extended-spectrum Beta-lactamase OXA-14 from Pseudomonas aeruginosa 7L5T ; 1.88 ; Crystal Structure of the Oxacillin-hydrolyzing Class D Extended-spectrum Beta-lactamase OXA-14 from Pseudomonas aeruginosa in Complex with Covalently Bound Clavulanic Acid 6KKH ; 2.64 ; Crystal structure of the oxalate bound malyl-CoA lyase from Roseiflexus castenholzii 3F3Q ; 1.76 ; Crystal structure of the oxidised form of thioredoxin 1 from saccharomyces cerevisiae 3DUI ; 2.1 ; Crystal structure of the oxidized CG-1B: an adhesion/growth-regulatory lectin from chicken 3LO8 ; 1.05 ; Crystal Structure of The Oxidized Form of Ferredoxin:NADP+ Reductase From Maize Root at 1.05 Angstroms 4JBA ; 2.5 ; Crystal Structure of the Oxidized Form of MarR from E.coli 1FRV ; 2.85 ; CRYSTAL STRUCTURE OF THE OXIDIZED FORM OF NI-FE HYDROGENASE 2FRV ; 2.54 ; CRYSTAL STRUCTURE OF THE OXIDIZED FORM OF NI-FE HYDROGENASE 1I6A ; 2.3 ; CRYSTAL STRUCTURE OF THE OXIDIZED FORM OF OXYR 3X32 ; 0.83 ; Crystal structure of the oxidized form of the solubilized domain of porcine cytochrome b5 in form 1 crystal 3X33 ; 0.93 ; Crystal structure of the oxidized form of the solubilized domain of porcine cytochrome b5 in form 2 crystal 6HSD ; 1.6 ; Crystal structure of the oxidized form of the transcription regulator RsrR 2A5W ; 2.1 ; Crystal structure of the oxidized gamma-subunit of the dissimilatory sulfite reductase (DsrC) from Archaeoglobus fulgidus 4I2T ; 1.4 ; Crystal structure of the oxidized glutaredoxin from Chlorella sorokiniana T-89 1I9T ; 1.7 ; CRYSTAL STRUCTURE OF THE OXIDIZED RNA TRIPHOSPHATASE DOMAIN OF MOUSE MRNA CAPPING ENZYME 4AWS ; 1.0 ; Crystal structure of the oxidized Shewanella Yellow Enzyme 1 (SYE1) M25L mutant 4AWU ; 1.69 ; Crystal structure of the oxidized Shewanella Yellow Enzyme 1 (SYE1) M25L mutant in complex with para-chlorophenol 1FT5 ; 1.6 ; CRYSTAL STRUCTURE OF THE OXIDIZED STATE OF CYTOCHROME C554 FROM NITROSOMONAS EUROPAEA 3HZ8 ; 1.45 ; Crystal structure of the oxidized T176V DsbA1 mutant 4WNF ; 2.9 ; Crystal structure of the oxidized TPR domain of LGN in complex with Frmpd4/Preso1 at 2.9 Angstrom resolution 3DQP ; 1.4 ; Crystal structure of the oxidoreductase ylbE from Lactococcus lactis, Northeast Structural Genomics Consortium Target KR121. 7W9J ; 1.75 ; Crystal Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 (P450BM3) Heme Domain with N-Dodecanoyl-L-Homoserine Lactone 7W9D ; 1.55 ; Crystal Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 (P450BM3) Heme Domain with N-Hexadecanoyl-L-Homoserine 2Z6S ; 1.25 ; Crystal structure of the oxy myoglobin free from X-ray-induced photoreduction 1WX4 ; 1.5 ; Crystal structure of the oxy-form of the copper-bound Streptomyces castaneoglobisporus tyrosinase complexed with a caddie protein prepared by the addition of dithiothreitol 1WX2 ; 1.8 ; Crystal Structure of the oxy-form of the copper-bound Streptomyces castaneoglobisporus tyrosinase complexed with a caddie protein prepared by the addition of hydrogenperoxide 2YYG ; 2.0 ; Crystal structure of the oxygenase component (HpaB) of 4-hydroxyphenylacetate 3-monooxygenase 2YYI ; 1.66 ; Crystal structure of the oxygenase component (HpaB) of 4-hydroxyphenylacetate 3-monooxygenase complexed with FAD 2YYJ ; 1.66 ; Crystal structure of the oxygenase component (HpaB) of 4-hydroxyphenylacetate 3-monooxygenase complexed with FAD and 4-hydroxyphenylacetate 7L4S ; 2.4 ; Crystal structure of the OxyR regulatory domain of Shewanella oneidensis MR-1, reduced form 1PHJ ; 2.5 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GG(3DR)GTTTTGGGG 1PH2 ; 3.1 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTG 1PH5 ; 2.3 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTG(3DR)GG 1PA6 ; 2.45 ; Crystal structure of the OXYTRICHA nova telomere end-binding protein complexed with noncognate ssDNA GGGGTTTTGAGG 1PH9 ; 2.5 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGAGG 1PH8 ; 2.36 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGCGG 1PH4 ; 2.3 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGGCG 1PH1 ; 2.51 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGGGGT 1PH3 ; 2.3 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGGTG 1PH7 ; 2.9 ; CRYSTAL STRUCTURE OF THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGIGG 1PH6 ; 2.1 ; Crystal Structure of THE OXYTRICHA NOVA TELOMERE END-BINDING PROTEIN COMPLEXED WITH NONCOGNATE SSDNA GGGGTTTTGTGG 1JPQ ; 1.6 ; Crystal Structure of the Oxytricha Telomeric DNA at 1.6A 2UY6 ; 2.5 ; Crystal structure of the P pilus rod subunit PapA 2UY7 ; 2.6 ; Crystal structure of the P pilus rod subunit PapA 3A1D ; 1.85 ; Crystal structure of the P- and N-domains of CopA, a copper-transporting P-type ATPase, bound with ADP-Mg 3A1C ; 1.85 ; crystal structure of the P- and N-domains of CopA, a copper-transporting P-type ATPase, bound with AMPPCP-Mg 3A1E ; 1.95 ; Crystal structure of the P- and N-domains of His462Gln mutant CopA, a copper-transporting P-type ATPase, bound with AMPPCP-Mg 1PBE ; 1.9 ; CRYSTAL STRUCTURE OF THE P-HYDROXYBENZOATE HYDROXYLASE-SUBSTRATE COMPLEX REFINED AT 1.9 ANGSTROMS RESOLUTION. ANALYSIS OF THE ENZYME-SUBSTRATE AND ENZYME-PRODUCT COMPLEXES 6VSK ; 3.12 ; Crystal structure of the P-Rex1 DEP1 domain 5FI1 ; 3.203 ; Crystal Structure of the P-Rex1 DH/PH tandem in complex with Cdc42 5FI0 ; 3.282 ; Crystal Structure of the P-Rex1 DH/PH tandem in complex with Rac1 5D27 ; 1.92 ; Crystal Structure of the P-Rex1 PH domain 5D3V ; 1.852 ; Crystal Structure of the P-Rex1 PH domain with Citrate Bound 5D3X ; 1.69 ; Crystal Structure of the P-Rex1 PH domain with Inositol-(1,3,4,5)-Tetrakisphosphate Bound 5D3Y ; 1.95 ; Crystal Structure of the P-Rex1 PH domain with Inositol-(1,3,4,5)-Tetrakisphosphate Bound 5D3W ; 1.852 ; Crystal Structure of the P-Rex1 PH domain with Sulfate Bound 6BNM ; 1.9 ; Crystal Structure of the P-Rex2 PH domain 2PO1 ; 1.94 ; Crystal structure of the P. abyssi exosome RNase PH ring complexed with a single stranded 10-mer poly(A) RNA 2PO0 ; 2.3 ; Crystal structure of the P. abyssi exosome RNase PH ring complexed with ADP in double conformation 2PO2 ; 2.41 ; Crystal structure of the P. abyssi exosome RNase PH ring complexed with CDP 2PNZ ; 2.14 ; Crystal structure of the P. abyssi exosome RNase PH ring complexed with UDP and GMP 3N9B ; 1.92 ; Crystal Structure of the P. aeruginosa LigD phosphoesterase domain 1II8 ; 3.02 ; Crystal structure of the P. furiosus Rad50 ATPase domain 3BS0 ; 2.6 ; Crystal structure of the P. putida toluene transporter TodX 1QS8 ; 2.5 ; Crystal structure of the P. vivax aspartic proteinase plasmepsin complexed with the inhibitor pepstatin A 1LNX ; 2.05 ; Crystal structure of the P.aerophilum SmAP1 heptamer in a new crystal form (C2221) 5FO4 ; 1.85 ; Crystal structure of the P.falciparum cytosolic leucyl-tRNA synthetase editing domain (space group P1) 5FOD ; 1.7 ; Crystal structure of the P.falciparum cytosolic leucyl-tRNA synthetase editing domain (space group P1) containing deletions of insertions 1 and 3 5FOC ; 1.5 ; Crystal structure of the P.falciparum cytosolic leucyl-tRNA synthetase editing domain (space group P21) 5FOF ; 2.4 ; Crystal structure of the P.knowlesi cytosolic leucyl-tRNA synthetase editing domain 3BXK ; 2.55 ; Crystal structure of the P/Q-type calcium channel (CaV2.1) IQ domain and CA2+calmodulin complex 7QIQ ; 1.85 ; CRYSTAL STRUCTURE OF THE P1 aminobutanoic acid (ABU) BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 3KH2 ; 2.71 ; Crystal structure of the P1 bacteriophage Doc toxin (F68S) in complex with the Phd antitoxin (L17M/V39A). Northeast Structural Genomics targets ER385-ER386 7QIS ; 1.83 ; CRYSTAL STRUCTURE OF THE P1 difluoroethylglycine (DfeGly) BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 1I5N ; 2.14 ; Crystal structure of the P1 domain of CheA from Salmonella typhimurium 3KYJ ; 1.4 ; Crystal structure of the P1 domain of CheA3 in complex with CheY6 from R. sphaeroides 1T7C ; 1.85 ; CRYSTAL STRUCTURE OF THE P1 GLU BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 1T8M ; 1.8 ; CRYSTAL STRUCTURE OF THE P1 HIS BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 1T8L ; 1.75 ; CRYSTAL STRUCTURE OF THE P1 MET BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 7QIR ; 1.9 ; CRYSTAL STRUCTURE OF THE P1 monofluorethylglycine(MfeGly) BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 1T8N ; 1.75 ; CRYSTAL STRUCTURE OF THE P1 THR BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 7QIT ; 1.99 ; CRYSTAL STRUCTURE OF THE P1 trifluoroethylglycine (TfeGly) BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 1T8O ; 1.7 ; CRYSTAL STRUCTURE OF THE P1 TRP BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX 3SLE ; 2.52 ; Crystal Structure of the P107C-MauG/pre-Methylamine Dehydrogenase Complex 3SJL ; 1.63 ; Crystal Structure of the P107S-MauG/pre-Methylamine Dehydrogenase Complex 3SVW ; 1.86 ; Crystal Structure of the P107V-MauG/pre-Methylamine Dehydrogenase Complex 8OW2 ; 2.57 ; Crystal structure of the p110alpha catalytic subunit from homo sapiens in complex with activator 1938 1SHZ ; 2.85 ; Crystal Structure of the p115RhoGEF rgRGS Domain in A Complex with Galpha(13):Galpha(i1) Chimera 2GKT ; 1.23 ; Crystal structure of the P14'-Ala32 variant of the N-terminally truncated OMTKY3-del(1-5) 1VEU ; 2.15 ; Crystal structure of the p14/MP1 complex at 2.15 A resolution 1Y92 ; 2.2 ; Crystal structure of the P19A/N67D Variant Of Bovine seminal Ribonuclease 3GF5 ; 2.5 ; Crystal structure of the P21 R1-R7 N-terminal domain of murine MVP 3JXB ; 1.67 ; Crystal structure of the P22 c2 repressor protein in complex with synthetic operator 9C 3JXD ; 2.1 ; Crystal structure of the P22 c2 repressor protein in complex with synthetic operator 9C in the presence of Rb+ 3JXC ; 1.9 ; Crystal structure of the P22 c2 repressor protein in complex with synthetic operator 9T in the presence of Tl+ 2R1J ; 1.53 ; Crystal Structure of the P22 c2 Repressor protein in complex with the synthetic operator 9T 5GMA ; 2.1 ; Crystal structure of the P228A variant of Thermotoga maritima acetyl esterase 4PCK ; 2.401 ; Crystal structure of the P22S mutant of N-terminal CS domain of human Shq1 6SVF ; 1.6 ; Crystal structure of the P235GK mutant of ArgBP from T. maritima 5WZY ; 2.799 ; Crystal structure of the P2X4 receptor from zebrafish in the presence of CTP at 2.8 Angstroms 7PP1 ; 2.78 ; Crystal structure of the P2Y12 receptor in complex with the inverse agonist selatogrel. 5LKT ; 2.04 ; Crystal structure of the p300 acetyltransferase catalytic core with butyryl-coenzyme A. 5LKU ; 3.5 ; Crystal structure of the p300 acetyltransferase catalytic core with coenzyme A. 5LKZ ; 2.5 ; Crystal structure of the p300 acetyltransferase catalytic core with crotonyl-coenzyme A. 5LKX ; 2.52 ; Crystal structure of the p300 acetyltransferase catalytic core with propionyl-coenzyme A. 6V8B ; 3.13 ; Crystal structure of the p300 acetyltransferase domain with AcCoA competitive inhibitor 1 6V90 ; 2.04 ; Crystal structure of the p300 acetyltransferase domain with AcCoA competitive inhibitor 12 6V8N ; 2.3 ; Crystal structure of the p300 acetyltransferase domain with AcCoA competitive inhibitor 17 6PGU ; 1.72 ; Crystal structure of the p300 acetyltransferase domain with allosteric inhibitor CPI-076 and CoA 6PF1 ; 2.32 ; Crystal structure of the p300 acetyltransferase domain with allosteric inhibitor CPI-090 and CoA 6V8K ; 1.84 ; Crystal structure of the p300 acetyltransferase domain with peptide-competitive inhibitor 2 3P57 ; 2.1921 ; Crystal structure of the p300 TAZ2 domain bound to MEF2 on DNA 2AN0 ; 2.6 ; Crystal Structure of the P332G mutant of the Bacillus subtilis NOS 2OKR ; 2.0 ; Crystal Structure of the P38a-MAPKAP kinase 2 Heterodimer 2ONL ; 4.0 ; Crystal Structure of the p38a-MAPKAP kinase 2 Heterodimer 8HOP ; 1.86 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Nap-Tyr 8HOQ ; 1.94 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Phe(4CF3)-Tyr 8HOR ; 1.95 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Phe(4CH3)-Tyr 8HOS ; 1.82 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Phe(4NO2)-Tyr 8HOO ; 1.86 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Tyr-Nap 8HON ; 2.01 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with Im-C6-Tyr-Tyr 7EGN ; 2.7 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-phenylalanine and hydroxylamine 7YJD ; 1.9 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-phenylalanine and hydroxylamine 7WDH ; 1.68 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-phenylalanine, phenol and hydroxylamine 7Y0T ; 1.89 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-phenylalanyl-L-phenylalanine 7Y0U ; 2.0 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-phenylalanyl-L-phenylalanine and hydroxylamine 7Y0S ; 2.06 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with N-imidazolyl-hexanoyl-L-tyrosyl-L-tyrosine and hydroxylamine 8HOT ; 1.96 ; Crystal structure of the P450 BM3 heme domain mutant F87A in complex with NH2-C7-Phe-Phe 8HOU ; 1.75 ; Crystal structure of the P450 BM3 heme domain mutant F87A-T268V in complex with Im-N-C4-Phe-Phe 8JC3 ; 1.82 ; Crystal structure of the P450 BM3 heme domain mutant F87A-T268V in complex with Pyd-N-C4-Phe and hydroxylamine 8JC4 ; 2.64 ; Crystal structure of the P450 BM3 heme domain mutant F87A-T268V in complex with Pyd-Pid-Phe and hydroxylamine 7YDL ; 1.58 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268I/A184V/A82T in complex with N-imidazolyl-hexanoyl-L-phenylalanine 7YJF ; 1.515 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268P/V78I in complex with N-imidazolyl-pentanoyl-L-phenylalanine and hydroxylamine 7YDD ; 1.663 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268P/V78I in complex with N-imidazolyl-pentanoyl-L-phenylalanine,propylbenzene and hydroxylamine 7YJG ; 1.684 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268V/A82C/L181M in complex with N-imidazolyl-pentanoyl-L-phenylalanine and hydroxylamine 7YFT ; 2.0 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268V/A82C/L181M in complex with N-imidazolyl-pentanoyl-L-phenylalanine, indane and hydroxylamine 7Y0P ; 1.99 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268V/A82T/I263L in complex with N-imidazolyl-hexanoyl-L-phenylalanine, p-cresol and hydroxylamine 7Y0Q ; 2.31 ; Crystal structure of the P450 BM3 heme domain mutant F87A/T268V/A82T/I263L in complex with p-toluidine 7YJE ; 1.85 ; Crystal structure of the P450 BM3 heme domain mutant F87G/T268V/A184V/A328V in complex with N-imidazolyl-hexanoyl-L-phenylalanine and acetate ion 7YD9 ; 1.748 ; Crystal structure of the P450 BM3 heme domain mutant F87G/T268V/A184V/A328V in complex with N-imidazolyl-hexanoyl-L-phenylalanine,methylbenzene and hydroxylamine 7WDI ; 2.1 ; Crystal structure of the P450 BM3 heme domain mutant F87K in complex with N-imidazolyl-hexanoyl-L-phenylalanine and hydroxylamine 7WDD ; 2.21 ; Crystal structure of the P450 BM3 heme domain mutant F87K in complex with N-imidazolyl-hexanoyl-L-phenylalanine, styrene and hydroxylamine 7WDG ; 2.07 ; Crystal structure of the P450 BM3 heme domain mutant F87L in complex with N-imidazolyl-hexanoyl-L-phenylalanine, phenol and hydroxylamine 7WDE ; 2.11 ; Crystal structure of the P450 BM3 heme domain mutant F87L in complex with N-imidazolyl-hexanoyl-L-phenylalanine, styrene and hydroxylamine 7YDC ; 1.609 ; Crystal structure of the P450 BM3 heme domain mutant F87L/T268V/V78C in complex with N-imidazolyl-pentanoyl-L-phenylalanine and hydroxylamine 7Y0R ; 2.09 ; Crystal structure of the P450 BM3 heme domain mutant F87L/V78S/A184V in complex with N-imidazolyl-hexanoyl-L-phenylalanine, p-toluidine and hydroxylamine 7YDE ; 1.789 ; Crystal structure of the P450 BM3 heme domain mutant F87T/T268V/I263V in complex with N-imidazolyl-hexanoyl-L-phenylalanine and hydroxylamine 7YJH ; 1.792 ; Crystal structure of the P450 BM3 heme domain mutant F87V/T268I in complex with N-imidazolyl-pentanoyl-L-phenylalanine and hydroxylamine 7YDB ; 1.472 ; Crystal structure of the P450 BM3 heme domain mutant F87V/T268I in complex with N-imidazolyl-pentanoyl-L-phenylalanine,ethylbenzene and hydroxylamine 7YDA ; 1.557 ; Crystal structure of the P450 BM3 heme domain mutant F87V/T268V/A184V in complex with N-imidazolyl-pentanoyl-L-phenylalanine and hydroxylamine 6MCW ; 2.4 ; Crystal structure of the P450 domain of the CYP51-ferredoxin fusion protein from Methylococcus capsulatus, complex with the detergent Anapoe-X-114 6MI0 ; 2.73 ; Crystal structure of the P450 domain of the CYP51-ferredoxin fusion protein from Methylococcus capsulatus, ligand-free state 2QBM ; 1.8 ; Crystal structure of the P450cam G248T mutant in the cyanide bound state 2QBO ; 1.9 ; Crystal structure of the P450cam G248V mutant in the cyanide bound state 1PC4 ; 1.65 ; Crystal Structure of the P50A mutant of ferredoxin I at 1.65 A Resolution 1PC5 ; 1.8 ; Crystal Structure of the P50G Mutant of Ferredoxin I at 1.8 A Resolution 8E7B ; 2.5 ; Crystal structure of the p53 (Y107H) core domain monoclinic P form 8E7A ; 1.3 ; Crystal structure of the p53 (Y107H) core domain orthorhombic P form 5G4N ; 1.35 ; Crystal structure of the p53 cancer mutant Y220C in complex with a difluorinated derivative of the small molecule stabilizer Phikan083 5G4M ; 1.38 ; Crystal structure of the p53 cancer mutant Y220C in complex with a monofluorinated derivative of the small molecule stabilizer Phikan083 5G4O ; 1.48 ; Crystal structure of the p53 cancer mutant Y220C in complex with a trifluorinated derivative of the small molecule stabilizer Phikan083 3KMD ; 2.15 ; Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer 7C44 ; 1.65 ; Crystal structure of the p53-binding domain of human MdmX protein in complex with Nutlin3a 7A4Y ; 2.157 ; Crystal structure of the P5P6 coiled-coil in complex with nanobody Nb34. 3GT2 ; 1.75 ; Crystal Structure of the P60 Domain from M. avium paratuberculosis Antigen MAP1272c 3I86 ; 2.4 ; Crystal structure of the P60 Domain from M. avium subspecies paratuberculosis antigen MAP1204 3BB6 ; 2.3 ; Crystal structure of the P64488 protein from E.coli (strain K12). Northeast Structural Genomics Consortium target ER596 1D7E ; 1.39 ; CRYSTAL STRUCTURE OF THE P65 CRYSTAL FORM OF PHOTOACTIVE YELLOW PROTEIN 1GSV ; 1.75 ; Crystal structure of the P65 crystal form of photoactive yellow protein G47S mutant 1GSX ; 1.79 ; CRYSTAL STRUCTURE OF THE P65 CRYSTAL FORM OF PHOTOACTIVE YELLOW PROTEIN G47S/G51S MUTANT 1GSW ; 1.85 ; CRYSTAL STRUCTURE OF THE P65 CRYSTAL FORM OF PHOTOACTIVE YELLOW PROTEIN G51S MUTANT 4A63 ; 2.27 ; Crystal structure of the p73-ASPP2 complex at 2.6A resolution 3QY2 ; 2.59 ; Crystal structure of the P93A monomer mutant of S. cerevisiae Cks1 2Q00 ; 2.4 ; Crystal structure of the P95883_SULSO protein from Sulfolobus solfataricus. NESG target SsR10. 6G2V ; 1.903 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 6G2W ; 2.678 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 6G2X ; 2.078 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 6G2Y ; 2.153 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 6G2Z ; 1.923 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 6G30 ; 2.418 ; Crystal structure of the p97 D2 domain in a helical split-washer conformation 3QQ7 ; 2.65 ; Crystal Structure of the p97 N-terminal domain 8HRZ ; 2.7 ; Crystal structure of the p97-N/D1 hexamer in complex with six p47-UBX domains 4EXA ; 2.8 ; Crystal structure of the PA4992, the putative aldo-keto reductase from Pseudomona aeruginosa 2O6B ; 3.21 ; Crystal structure of the PA5185 protein from Pseudomonas Aeruginosa strain PAO1- new crystal form. 2O6U ; 3.01 ; Crystal structure of the PA5185 protein from Pseudomonas Aeruginosa strain PAO1- new crystal form. 2O5U ; 1.91 ; Crystal structure of the PA5185 protein from Pseudomonas Aeruginosa strain PAO1- orthorhombic form (C222). 2O6T ; 2.55 ; Crystal structure of the PA5185 protein from Pseudomonas Aeruginosa strain PAO1- orthorhombic form (P2221). 2AV9 ; 2.4 ; Crystal Structure of the PA5185 protein from Pseudomonas Aeruginosa Strain PAO1. 5CW7 ; 2.827 ; Crystal structure of the PaaA2-ParE2 antitoxin-toxin complex 5CZE ; 3.82 ; Crystal structure of the PaaA2-ParE2 antitoxin-toxin complex 5CZF ; 2.671 ; Crystal structure of the PaaA2-ParE2 antitoxin-toxin complex 4FZW ; 2.55 ; Crystal Structure of the PaaF-PaaG Hydratase-Isomerase Complex from E.coli 2X04 ; 1.49 ; Crystal structure of the PABC-TNRC6C complex 4F02 ; 2.0 ; Crystal structure of the PABP-binding site of eIF4G in complex with RRM1-2 of PABP and poly(A) 4N1Y ; 2.605 ; Crystal Structure of the Pacific Oyster Estrogen Receptor Ligand Binding Domain 5ZHC ; 1.97 ; Crystal structure of the PadR-family transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv 5ZI8 ; 2.2 ; Crystal structure of the PadR-family transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv in complex with cadmium ion 7WH4 ; 2.8 ; Crystal structure of the PadR-family transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv in complex with Manganese ion 5ZHV ; 2.4 ; Crystal structure of the PadR-family transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv in complex with zinc ion 6JYI ; 1.92 ; Crystal structure of the PadR-like transcriptional regulator BC1756 from Bacillus cereus 5EMV ; 2.0 ; Crystal structure of the palmitoylated human TEAD2 transcription factor 5EMW ; 2.55 ; Crystal structure of the palmitoylated human TEAD3 transcription factor 3CET ; 1.8 ; Crystal structure of the pantheonate kinase-like protein Q6M145 at the resolution 1.8 A. Northeast Structural Genomics Consortium target MrR63 4P16 ; 2.5 ; Crystal structure of the papain-like protease of Middle-East Respiratory Syndrome coronavirus 6CD2 ; 3.7 ; Crystal structure of the PapC usher bound to the chaperone-adhesin PapD-PapG 1N0L ; 2.3 ; Crystal structure of the PapD chaperone (C-terminally 6x histidine-tagged) bound to the PapE pilus subunit (N-terminal-deleted) from uropathogenic E. coli 1N12 ; 1.87 ; Crystal structure of the PapE (N-terminal-deleted) pilus subunit bound to a peptide corresponding to the N-terminal extension of the PapK pilus subunit (residues 1-11) from uropathogenic E. coli 2NNU ; 1.59 ; Crystal Structure of the Papillomavirus DNA Tethering Complex E2:Brd4 5WKN ; 2.653 ; Crystal structure of the parainfluenza virus 5 nucleoprotein-phosphoprotein complex 4JRD ; 1.0 ; Crystal structure of the parallel double-stranded helix of poly(A) RNA 1Y4J ; 1.864 ; Crystal structure of the paralogue of the human formylglycine generating enzyme 6Y1M ; 2.0 ; Crystal structure of the paraoxon-modified A.17 antibody FAB fragment - L47K mutant 6Y1L ; 1.4 ; Crystal structure of the paraoxon-modified A.17 antibody FAB fragment - L47R mutant 5ADO ; 1.55 ; Crystal structure of the paraoxon-modified A.17 antibody FAB fragment - Light chain S35R mutant 6Y49 ; 1.65 ; Crystal structure of the paraoxon-modified A.17kappa antibody FAB fragment 3E1Z ; 1.86 ; Crystal structure of the parasite protesase inhibitor chagasin in complex with papain 2ZTB ; 2.38 ; Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells 6RYK ; 1.7 ; Crystal structure of the ParB-like protein PadC 1ZGR ; 2.5 ; Crystal structure of the Parkia platycephala seed lectin 5NGO ; 2.5 ; Crystal structure of the PARP domain of Arabidopsis RADICAL-INDUCED CELL DEATH1 7PLQ ; 2.13 ; Crystal structure of the PARP domain of wheat SRO1 3B33 ; 1.83 ; Crystal structure of the PAS domain of nitrogen regulation protein NR(II) from Vibrio parahaemolyticus 3MJQ ; 2.601 ; Crystal structure of the PAS domain of Q24QT8_DESHY protein from Desulfitobacterium hafniense. Northeast Structural Genomics Consortium Target DhR85c. 3KX0 ; 2.3 ; Crystal Structure of the PAS domain of Rv1364c 3LYX ; 2.0 ; Crystal structure of the PAS domain of the protein CPS_1291 from Colwellia psychrerythraea. Northeast Structural Genomics Consortium target id CsR222B 1WA9 ; 3.15 ; Crystal Structure of the PAS repeat region of the Drosophila clock protein PERIOD 5XGB ; 2.28 ; Crystal structure of the PAS-GGDEF-EAL domain of PA0861 from Pseudomonas aeruginosa 5XGE ; 3.31 ; Crystal structure of the PAS-GGDEF-EAL domain of PA0861 from Pseudomonas aeruginosa in complex with cyclic di-GMP 5XGD ; 2.8 ; Crystal structure of the PAS-GGDEF-EAL domain of PA0861 from Pseudomonas aeruginosa in complex with GTP 3SZE ; 2.5 ; Crystal structure of the passenger domain of the E. coli autotransporter EspP 6RTY ; 2.1 ; Crystal structure of the Patched ectodomain in complex with nanobody NB64 6RTX ; 1.95 ; Crystal structure of the Patched-1 (PTCH1) ectodomain 1 6RTW ; 1.9 ; Crystal structure of the Patched-1 (PTCH1) ectodomain in complex with nanobody NB64 and cholesterol-hemisuccinate 2Y5T ; 2.2 ; Crystal structure of the pathogenic autoantibody CIIC1 in complex with the triple-helical C1 peptide 2P7N ; 2.8 ; Crystal structure of the Pathogenicity island 1 effector protein from Chromobacterium violaceum. Northeast Structural Genomics Consortium (NESGC) target CvR69. 6QBF ; 3.499 ; Crystal structure of the pathological D187N variant of calcium-free human gelsolin. 6Q9Z ; 3.8 ; Crystal structure of the pathological G167R variant of calcium-free human gelsolin, 6Q9R ; 2.73 ; Crystal structure of the pathological N184K variant of calcium-free human gelsolin 1SI3 ; 2.6 ; Crystal structure of the PAZ domain of human eIF2c1 in complex with a 9-mer siRNA-like duplex 1SI2 ; 2.6 ; Crystal structure of the PAZ domain of human eIF2c1 in complex with a 9-mer siRNA-like duplex of deoxynucleotide overhang 5L9P ; 2.54 ; Crystal structure of the PBP MotA from A. tumefaciens B6 5L9L ; 1.8 ; Crystal structure of the PBP MotA from A. tumefaciens B6 in complex with glucopine 5L9G ; 1.75 ; Crystal Structure of the PBP MotA in complex with mannopine from A. tumefaciens B6 5LOM ; 1.5 ; Crystal structure of the PBP SocA from Agrobacterium tumefaciens C58 in complex with DFG at 1.5 A resolution 6TG3 ; 1.85 ; Crystal Structure of the PBP/SBP MotA in complex with glucopinic acid from A. tumefaciens B6/R10 7TAV ; 2.75 ; Crystal Structure of the PBP2_YvgL_like protein Lmo1041 from Listeria monocytogene 6Y3Z ; 3.49 ; Crystal structure of the Pby1 ATP-grasp enzyme bound to the S. cerevisiae mRNA decapping complex (Dcp1-Dcp2-Edc3) 1CM0 ; 2.3 ; CRYSTAL STRUCTURE OF THE PCAF/COENZYME-A COMPLEX 4G9Y ; 2.051 ; Crystal Structure of the PcaV transcriptional regulator from Streptomyces coelicolor 4FHT ; 2.15 ; Crystal Structure of the PcaV transcriptional regulator from Streptomyces coelicolor in complex with its natural ligand 4UR1 ; 1.649 ; Crystal structure of the PCE reductive dehalogenase from S. multivorans in complex with dibromoethene 4UR2 ; 2.096 ; Crystal structure of the PCE reductive dehalogenase from S. multivorans in complex with iodide 4UR0 ; 1.798 ; Crystal structure of the PCE reductive dehalogenase from S. multivorans in complex with trichloroethene 4UR3 ; 2.235 ; Crystal structure of the PCE reductive dehalogenase from S. multivorans P2(1) crystal form 4K51 ; 2.65 ; Crystal Structure of the PCI domain of eIF3a 8VR2 ; 1.8 ; Crystal structure of the Pcryo_0617 oxidoreductase/decarboxylase from Psychrobacter cryohalolentis K5 in the presence of NAD and UDP 8VR3 ; 2.0 ; crystal structure of the Pcryo_0618 aminotransferase from Psychrobacter cryohalolentis K5 in the presence of its internal aldimine 8VR5 ; 2.2 ; crystal structure of the Pcryo_0618 aminotransferase from Psychrobacter cryohalolentis K5 in the presence of PMP and glutamate 8VR6 ; 1.9 ; crystal structure of the Pcryo_0619 N-acetryltransferase from Psychrobacter cryohalolentis K5 in the presence of CoA-disulfide 8VRM ; 1.75 ; Crystal structure of the Pcryo_0619 N-acetyltransferase from Psychrobacter cryohalolentis K5 8VR7 ; 1.9 ; crystal structure of the Pcryo_0619 N-acetyltransferase from Psychrobacter cryohalolentis K5 int he presence of acetyl coenzyme A 3MTL ; 2.4 ; Crystal structure of the PCTAIRE1 kinase in complex with Indirubin E804 5G6V ; 2.2 ; Crystal structure of the PCTAIRE1 kinase in complex with inhibitor 3BIK ; 2.65 ; Crystal Structure of the PD-1/PD-L1 Complex 3BIS ; 2.64 ; Crystal Structure of the PD-L1 6NJJ ; 2.3 ; Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with BPN14770 6BOJ ; 1.7 ; Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with BPN5004 6NJH ; 2.15 ; Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with T-48 6NJI ; 2.45 ; Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with T-49 6F8W ; 1.601 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-18a 6F8V ; 1.85 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-18b 6F8U ; 2.1 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-20b 6F8X ; 1.95 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-26g 6FDC ; 1.45 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-32a 7AY6 ; 1.66 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-41b 7B9H ; 1.5 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-42a 6F8T ; 1.8 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-4a 6F8R ; 1.826 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-54 6F6U ; 1.828 ; Crystal structure of the PDE4D catalytic domain in complex with GEBR-7b 6AKR ; 2.326 ; Crystal structure of the PDE4D catalytic domain in complex with osthole 5WH5 ; 1.8 ; Crystal structure of the PDE4D2 catalytic domain in complex with inhibitor (R)-Zl-n-91 3BJC ; 2.0 ; Crystal structure of the PDE5A catalytic domain in complex with a novel inhibitor 3SHY ; 2.647 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 3SHZ ; 2.449 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 3SIE ; 1.93 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 4I9Z ; 2.08 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 4IA0 ; 2.17 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 4OEW ; 2.44 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 4OEX ; 2.14 ; Crystal structure of the PDE5A1 catalytic domain in complex with novel inhibitors 6A3N ; 2.6 ; Crystal structure of the PDE9 catalytic domain in complex with inhibitor 2 6LZZ ; 2.40004 ; Crystal structure of the PDE9 catalytic domain in complex with inhibitor 4a 3K3E ; 2.7 ; Crystal structure of the PDE9A catalytic domain in complex with (R)-BAY73-6691 3K3H ; 2.5 ; Crystal structure of the PDE9A catalytic domain in complex with (S)-BAY73-6691 4GH6 ; 2.7 ; Crystal structure of the PDE9A catalytic domain in complex with inhibitor 28 3CRK ; 2.3 ; Crystal structure of the PDHK2-L2 complex. 3CRL ; 2.61 ; Crystal structure of the PDHK2-L2 complex. 1W1H ; 1.45 ; Crystal Structure of the PDK1 Pleckstrin Homology (PH) domain 1W1G ; 1.45 ; Crystal Structure of the PDK1 Pleckstrin Homology (PH) domain bound to DiC4-phosphatidylinositol (3,4,5)-trisphosphate 1W1D ; 1.5 ; Crystal Structure of the PDK1 Pleckstrin Homology (PH) domain bound to Inositol (1,3,4,5)-tetrakisphosphate 1Y8N ; 2.6 ; Crystal structure of the PDK3-L2 complex 1Y8O ; 2.48 ; Crystal structure of the PDK3-L2 complex 1Y8P ; 2.63 ; Crystal structure of the PDK3-L2 complex 3CGI ; 1.8 ; Crystal structure of the PduU shell protein from the Pdu microcompartment 2H1K ; 2.42 ; Crystal structure of the Pdx1 homeodomain in complex with DNA 1TD2 ; 2.22 ; Crystal Structure of the PdxY Protein from Escherichia coli 2R3U ; 2.6 ; Crystal structure of the PDZ deletion mutant of DegS 2F5Y ; 2.39 ; Crystal Structure of the PDZ Domain from Human RGS-3 2REY ; 1.55 ; Crystal structure of the PDZ domain of human dishevelled 2 (homologous to Drosophila dsh) 6XNJ ; 1.85 ; Crystal structure of the PDZ domain of human GOPC in complex with a peptide of E. coli O157:H7 str. Sakai effector NleG8 2PNT ; 2.148 ; Crystal structure of the PDZ domain of human GRASP (GRP1) in complex with the C-terminal peptide of the metabotropic glutamate receptor type 1 2VSV ; 1.82 ; Crystal structure of the PDZ domain of human rhophilin-2 3O46 ; 1.3 ; Crystal structure of the PDZ domain of MPP7 4UU6 ; 1.8 ; CRYSTAL STRUCTURE OF THE PDZ DOMAIN OF PALS1 4UU5 ; 1.23 ; CRYSTAL STRUCTURE OF THE PDZ DOMAIN OF PALS1 IN COMPLEX WITH THE CRB PEPTIDE 3GGE ; 2.6 ; Crystal structure of the PDZ domain of PDZ domain-containing protein GIPC2 5TYT ; 2.398 ; Crystal Structure of the PDZ domain of RhoGEF bound to CXCR2 C-terminal peptide 3I1E ; 2.91 ; Crystal Structure of the PDZ domain of the SdrC-like Protein (Lin2157) from Listeria innocua, Northeast Structural Genomics Consortium Target LkR136C 3I18 ; 1.7 ; Crystal Structure of the PDZ domain of the SdrC-like protein (Lmo2051) from Listeria monocytogenes, Northeast Structural Genomics Consortium Target LmR166B 7L71 ; 0.97 ; Crystal Structure of the PDZ Domain of the Serine Peptidase HtrA from Streptococcus agalactiae. 1N99 ; 1.94 ; CRYSTAL STRUCTURE OF THE PDZ TANDEM OF HUMAN SYNTENIN 1W9Q ; 1.7 ; Crystal structure of the PDZ tandem of human syntenin in complex with TNEFAF peptide 1W9E ; 1.56 ; Crystal structure of the PDZ tandem of human syntenin in complex with TNEFYF peptide 1V1T ; 1.8 ; Crystal structure of the PDZ tandem of human syntenin in complex with TNEYKV peptide 1W9O ; 2.25 ; Crystal structure of the PDZ tandem of human syntenin in complex with TNEYYV peptide 1YBO ; 2.3 ; Crystal structure of the PDZ tandem of human syntenin with syndecan peptide 8AAK ; 2.554 ; Crystal structure of the PDZ tandem of syntenin in complex with compound 29 8AAO ; 2.469 ; Crystal structure of the PDZ tandem of syntenin in complex with compound 95 8AAP ; 2.174 ; Crystal structure of the PDZ tandem of syntenin in complex with compound SYNTi 6R9H ; 2.0 ; Crystal structure of the PDZ tandem of syntenin in complex with fragment C58 8AAI ; 2.76 ; Crystal structure of the PDZ tandem of syntenin in complex with fragment E5 6RLC ; 2.2 ; Crystal structure of the PDZ tandem of syntenin in complex with fragment F13 7W70 ; 1.15 ; Crystal structure of the PDZ-C domain fragment of Kangiella koreensis RseP orthologue 7W71 ; 3.2 ; Crystal structure of the PDZ-C domain of E. coli RseP in complex with 12C7 Fab 3TSW ; 2.847 ; crystal structure of the PDZ3-SH3-GUK core module of Human ZO-1 7F6J ; 2.1 ; Crystal structure of the PDZD8 coiled-coil domain - Rab7 complex 6A9J ; 2.7 ; Crystal structure of the PE-bound N-terminal domain of Atg2 7JMR ; 1.67 ; Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis 7JMV ; 1.57 ; Crystal structure of the pea pathogenicity protein 2 from Madurella mycetomatis complexed with 4-nitrocatechol 8G4P ; 2.25 ; Crystal structure of the peanut allergen Ara h 2 bound by two neutralizing antibodies 13T1 and 13T5 8DB4 ; 2.3 ; Crystal structure of the peanut allergen Ara h 2 bound by two neutralizing antibodies 22S1 and 13T1 2EVV ; 2.59 ; Crystal Structure of the PEBP-like Protein of Unknown Function HP0218 from Helicobacter pylori 5C1C ; 1.8 ; Crystal Structure of the Pectin Methylesterase from Aspergillus niger in Deglycosylated Form 5C1E ; 1.75 ; Crystal Structure of the Pectin Methylesterase from Aspergillus niger in Penultimately Deglycosylated Form (N-acetylglucosamine Stub at Asn84) 3OMY ; 1.3 ; Crystal structure of the pED208 TraM N-terminal domain 3ON0 ; 2.874 ; Crystal structure of the pED208 TraM-sbmA complex 4OE1 ; 2.8 ; Crystal structure of the pentatricopeptide repeat protein PPR10 (C256S/C430S/C449S) in complex with an 18-nt PSAJ rna element 4M57 ; 2.86 ; Crystal structure of the pentatricopeptide repeat protein PPR10 from maize 4M59 ; 2.46 ; Crystal structure of the pentatricopeptide repeat protein PPR10 in complex with an 18-nt psaJ RNA element 1UPR ; 2.27 ; Crystal structure of the PEPP1 pleckstrin homology domain in complex with Inositol 1,3,4,5-tetrakisphosphate 7EOH ; 1.637 ; Crystal structure of the Pepper aptamer in complex with HBC 7EOJ ; 1.77 ; Crystal structure of the Pepper aptamer in complex with HBC, cesium soak 7EOG ; 1.5 ; Crystal structure of the Pepper aptamer in complex with HBC, iridium hexammine soak 7EOI ; 1.92 ; Crystal structure of the Pepper aptamer in complex with HBC, manganese soak 7EOK ; 2.7 ; Crystal structure of the Pepper aptamer in complex with HBC485 7EOL ; 2.309 ; Crystal structure of the Pepper aptamer in complex with HBC497 7EOM ; 2.703 ; Crystal structure of the Pepper aptamer in complex with HBC508 7EON ; 2.3 ; Crystal structure of the Pepper aptamer in complex with HBC514 7EOO ; 2.23 ; Crystal structure of the Pepper aptamer in complex with HBC525 7EOP ; 1.8 ; Crystal structure of the Pepper aptamer in complex with HBC620 7ZBV ; 1.95 ; Crystal structure of the peptidase domain of collagenase G from Clostridium histolyticum in complex with a diphosphonate-based inhibitor 7Z5U ; 1.8 ; Crystal structure of the peptidase domain of collagenase G from Clostridium histolyticum in complex with a hydroxamate-based inhibitor 4AR1 ; 2.01 ; Crystal Structure of the Peptidase Domain of Collagenase H from Clostridium histolyticum at 2.01 Angstrom resolution. 5O7E ; 1.87 ; Crystal structure of the peptidase domain of collagenase H from Clostridium histolyticum in complex with N-aryl mercaptoacetamide-based inhibitor 7ZOC ; 1.91 ; Crystal structure of the peptidase domain of collagenase H from Clostridium histolyticum in complex with N-aryl-2-alkylmercaptoacetamide-based inhibitor 4ARF ; 1.77 ; CRYSTAL STRUCTURE OF THE PEPTIDASE DOMAIN OF COLLAGENASE H FROM CLOSTRIDIUM HISTOLYTICUM IN COMPLEX WITH THE PEPTIDIC INHIBITOR ISOAMYLPHOSPHONYL-GLY-PRO-ALA AT 1.77 ANGSTROM RESOLUTION. 4AR9 ; 1.69 ; Crystal structure of the peptidase domain of collagenase T from Clostridium tetani at 1.69 angstrom resolution. 4AR8 ; 2.05 ; Crystal structure of the peptidase domain of collagenase T from Clostridium tetani complexed with the peptidic inhibitor isoamyl- phosphonyl-Gly-Pro-Ala at 2.05 angstrom resolution. 3K8U ; 1.9 ; Crystal Structure of the Peptidase Domain of Streptococcus ComA, a Bi-functional ABC Transporter Involved in Quorum Sensing Pathway 5XE8 ; 3.1 ; Crystal Structure of the Peptidase Domain of Streptococcus mutans ComA 4RY2 ; 3.611 ; Crystal structure of the peptidase-containing ABC transporter PCAT1 4S0F ; 5.515 ; Crystal structure of the peptidase-containing ABC transporter PCAT1 E648Q mutant complexed with ATPgS in an occluded conformation 8AY0 ; 1.51 ; Crystal Structure of the peptide binding protein DppE from Bacillus subtilis in complex with murein tripeptide 8AZB ; 1.4 ; Crystal Structure of the peptide binding protein DppE from Bacillus subtilis in the unliganded state 8ARE ; 1.9 ; Crystal structure of the peptide binding protein, OppA, from Bacillus subtilis in complex with a PhrE-derived pentapeptide 8ARN ; 1.5 ; Crystal structure of the peptide binding protein, OppA, from Bacillus subtilis in complex with an endogenous tetrapeptide 3V2O ; 1.89 ; Crystal Structure of the Peptide Bound Complex of the Ankyrin Repeat Domains of Human ANKRA2 3V2X ; 1.85 ; Crystal Structure of the Peptide Bound Complex of the Ankyrin Repeat Domains of Human ANKRA2 3V31 ; 1.57 ; Crystal Structure of the Peptide Bound Complex of the Ankyrin Repeat Domains of Human ANKRA2 3V30 ; 1.57 ; Crystal Structure of the Peptide Bound Complex of the Ankyrin Repeat Domains of Human RFXANK 7Q0L ; 2.71 ; Crystal structure of the peptide transporter YePEPT-K314A at 2.93 A 7Q0M ; 2.54 ; Crystal structure of the peptide transporter YePEPT-K314A in complex with LZNV at 2.66 A 4BTB ; 1.899 ; CRYSTAL STRUCTURE OF THE PEPTIDE(PRO)9 BOUND COMPLEX OF N-TERMINAL DOMAIN AND PEPTIDE SUBSTRATE BINDING DOMAIN OF PROLYL-4 HYDROXYLASE (RESIDUES 1-238) TYPE I FROM HUMAN 4BT9 ; 1.9 ; CRYSTAL STRUCTURE OF THE PEPTIDE(PRO-PRO-GLY)3 BOUND COMPLEX OF N- TERMINAL DOMAIN AND PEPTIDE SUBSTRATE BINDING DOMAIN OF PROLYL-4 HYDROXYLASE (RESIDUES 1-238) TYPE I FROM HUMAN 4BTA ; 2.95 ; CRYSTAL STRUCTURE OF THE PEPTIDE(PRO-PRO-GLY)3 BOUND COMPLEX OF N- TERMINAL DOMAIN AND PEPTIDE SUBSTRATE BINDING DOMAIN OF PROLYL-4 HYDROXYLASE (RESIDUES 1-244) TYPE I FROM HUMAN 7RJJ ; 1.88 ; Crystal Structure of the Peptidoglycan Binding Domain of the Outer Membrane Protein (OmpA) from Klebsiella pneumoniae with bound D-alanine 8GLD ; 2.3 ; Crystal structure of the peptidoglycan O-acetylesterase Ape1 (amino acids 22-392) from Campylobacter jejuni 8GKD ; 1.8 ; Crystal structure of the peptidoglycan O-acetylesterase Ape1 (amino acids 41-392) from Campylobacter jejuni 5LKW ; 2.0 ; Crystal structure of the peptidoglycan-associated lipoprotein (Pal) from Burkholderia cepacia in complex with DAP 5N2C ; 1.8 ; Crystal structure of the peptidoglycan-associated lipoprotein from Burkholderia cenocepacia 4B5C ; 2.3 ; Crystal structure of the peptidoglycan-associated lipoprotein from Burkholderia pseudomallei 6QVP ; 1.9 ; Crystal structure of the peptidoglycan-binding domain of SiiA from Salmonella enterica 7L6Y ; 1.28 ; Crystal Structure of the Peptidyl-Prolyl Cis-Trans Isomerase (PpiB) from Streptococcus pyogenes. 2GW2 ; 1.8 ; Crystal structure of the peptidyl-prolyl isomerase domain of human cyclophilin G 3ERJ ; 1.8 ; Crystal structure of the peptidyl-tRNA hydrolase AF2095 from Archaeglobus fulgidis. Northeast Structural Genomics Consortium target GR4 5IVP ; 2.01 ; Crystal structure of the Peptidyl-tRNA hydrolase from Vibrio cholerae in the C121 space group at pH 6.5 6LKB ; 1.651 ; Crystal Structure of the peptidylprolyl isomerase domain of Arabidopsis thaliana CYP71. 2A2N ; 1.65 ; Crystal Structure of the peptidylprolyl isomerase domain of Human PPWD1 4P6F ; 3.6 ; Crystal structure of the peptolide 12C bound to bacterial ribosome 5CH7 ; 2.2 ; Crystal structure of the perchlorate reductase PcrAB - Phe164 gate switch intermediate - from Azospira suillum PS 5CHC ; 2.38 ; Crystal structure of the perchlorate reductase PcrAB - substrate analog SeO3 bound - from Azospira suillum PS 4YDD ; 1.86 ; Crystal structure of the perchlorate reductase PcrAB from Azospira suillum PS 5E7O ; 2.4 ; Crystal structure of the perchlorate reductase PcrAB mutant W461E of PcrA from Azospira suillum PS 3K5B ; 3.1 ; Crystal structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase 3V6I ; 2.25 ; Crystal structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase at 2.25 A resolution 4NK6 ; 2.0974 ; Crystal Structure of the periplasmic alginate epimerase AlgG 4NK8 ; 2.2924 ; Crystal Structure of the periplasmic alginate epimerase AlgG D317A mutant 4OZY ; 2.9 ; Crystal Structure of the periplasmic alginate epimerase AlgG T265N mutant 4OZZ ; 2.9 ; Crystal Structure of the periplasmic alginate epimerase AlgG T265N T268M double mutant 4OZV ; 1.642 ; Crystal Structure of the periplasmic alginate lyase AlgL 4OZW ; 1.64 ; Crystal Structure of the periplasmic alginate lyase AlgL H202A mutant 2X26 ; 1.75 ; Crystal structure of the periplasmic aliphatic sulphonate binding protein SsuA from Escherichia coli 5L9I ; 1.9 ; Crystal structure of the periplasmic binding protein MotA in complex with DFG from A. tumefaciens B6 3TEF ; 1.698 ; Crystal Structure of the Periplasmic Catecholate-Siderophore Binding Protein VctP from Vibrio Cholerae 1L4I ; 2.2 ; Crystal Structure of the Periplasmic Chaperone SfaE 1SG2 ; 2.35 ; Crystal structure of the periplasmic chaperone Skp 3LY7 ; 1.8 ; Crystal structure of the periplasmic domain of CadC 3LYA ; 2.3 ; Crystal structure of the periplasmic domain of CadC in the presence of K2ReCl6 2HL7 ; 1.7 ; Crystal structure of the periplasmic domain of CcmH from Pseudomonas aeruginosa 4G08 ; 1.801 ; Crystal structure of the periplasmic domain of InvG 4E2L ; 2.8 ; Crystal Structure of the periplasmic domain of mutant FepE LPS O-antigen chain length regulator protein 4E2H ; 2.36 ; Crystal structure of the periplasmic domain of Shigella flexneri WzzB 4W9Z ; 1.3 ; Crystal structure of the periplasmic domain of subunit II of cytochrome oxidase (CoxB) of Bradyrhizobium japonicum 6G49 ; 1.6 ; Crystal structure of the periplasmic domain of TgpA from Pseudomonas aeruginosa 6G4H ; 1.8 ; Crystal structure of the periplasmic domain of TgpA from Pseudomonas aeruginosa bound to ethylmercury 4E2C ; 2.8 ; Crystal Structure of the periplasmic domain of the chimeric LPS O-antigen chain length regulator protein 3BLC ; 2.5 ; Crystal structure of the periplasmic domain of the Escherichia Coli YIDC 5Y82 ; 2.517 ; Crystal structure of the periplasmic domain of the Thermotoga maritima YidC 3C38 ; 2.3 ; Crystal structure of the periplasmic domain of Vibrio Cholerae LuxQ 6GHU ; 2.0 ; Crystal structure of the periplasmic domain of XcpY, oP crystal form. 5N7L ; 2.501 ; Crystal structure of the periplasmic domain of XcpY, tI crystal form. 1OUO ; 2.3 ; Crystal structure of the periplasmic endonuclease Vvn 2IVK ; 2.9 ; Crystal structure of the periplasmic endonuclease Vvn complexed with a 16-bp DNA 1OUP ; 2.3 ; Crystal structure of the periplasmic endonuclease Vvn complexed with octamer double stranded DNA 2R19 ; 2.16 ; Crystal structure of the periplasmic lipopolysaccharide transport protein LptA (YhbN), orthorhombic form 2R1A ; 3.26 ; Crystal structure of the periplasmic lipopolysaccharide transport protein LptA (YhbN), trigonal form 7SA8 ; 2.5 ; Crystal Structure of the periplasmic lyase AlgL K66A Mutant 6MKU ; 1.727 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) D11A mutant from Salmonella typhimurium complexed with arginine 6MKW ; 2.32 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) D11A mutant from Salmonella typhimurium complexed with histidine 6MLA ; 1.582 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) D161A mutant from Salmonella typhimurium complexed with arginine 6ML9 ; 1.687 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) D30A mutant from Salmonella typhimurium complexed with arginine 6MLD ; 1.66 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) F52A mutant from Salmonella typhimurium 6MLE ; 1.858 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) from Salmonella typhimurium complexed with arginine 6MKX ; 2.284 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) R77A mutant from Salmonella typhimurium 6MLG ; 1.892 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) R77A mutant from Salmonella typhimurium complexed with arginine 6MLI ; 1.883 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) R77A mutant from Salmonella typhimurium complexed with histidine 6ML0 ; 1.68 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) S69A mutant from Salmonella typhimurium 6MLJ ; 1.6 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) S70A mutant from Salmonella typhimurium complexed with arginine 6MLN ; 1.721 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) S72A mutant from Salmonella typhimurium complexed with arginine 6MLV ; 2.082 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) Y14A mutant from Salmonella typhimurium 6MLO ; 1.717 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) Y14A mutant from Salmonella typhimurium complexed with arginine 6MLP ; 1.485 ; Crystal structure of the periplasmic Lysine-, Arginine-, Ornithine-binding protein (LAO) Y14A mutant from Salmonella typhimurium complexed with histidine 5MWU ; 1.8 ; Crystal structure of the periplasmic nickel-binding protein NikA from Escherichia coli in complex with Ru(bpza)(CO)2Cl 6R4Q ; 1.9 ; Crystal structure of the periplasmic nickel-binding protein NikA from Escherichia coli in complex with Ru(bpza)CO H2O Cl 2NYA ; 2.5 ; Crystal structure of the periplasmic nitrate reductase (NAP) from Escherichia coli 3ML1 ; 1.6 ; Crystal Structure of the Periplasmic Nitrate Reductase from Cupriavidus necator 2G29 ; 1.5 ; crystal structure of the periplasmic nitrate-binding protein NrtA from Synechocystis PCC 6803 5WTL ; 2.298 ; Crystal structure of the periplasmic portion of outer membrane protein A (OmpA) from Capnocytophaga gingivalis 6EYS ; 2.091 ; Crystal structure of the periplasmic pyoverdine maturation protein PvdP 3FTJ ; 1.999 ; Crystal structure of the periplasmic region of MacB from Actinobacillus actinomycetemcomitans 5C59 ; 3.0 ; Crystal structure of the periplasmic region of MacB from E. coli 4WY9 ; 1.4 ; Crystal structure of the periplasmic sensory domain of the Campylobacter jejuni chemoreceptor Tlp1 4MAG ; 1.45 ; Crystal structure of the Periplasmic Sialic Acid Binding Protein from Vibrio Cholerea 3KH9 ; 2.2 ; Crystal structure of the periplasmic soluble domain of oxidized CcmG from Pseudomonas aeruginosa 3KH7 ; 1.75 ; Crystal structure of the periplasmic soluble domain of reduced CcmG from Pseudomonas aeruginosa 3URM ; 1.801 ; Crystal structure of the periplasmic sugar binding protein ChvE 3UUG ; 1.75 ; Crystal structure of the periplasmic sugar binding protein ChvE 3D4T ; 2.05 ; Crystal structure of the periplasmic thioredoxin SoxS from Paracoccus pantotrophus (oxidized form) 3DML ; 1.9 ; Crystal structure of the periplasmic thioredoxin SoxS from Paracoccus pantotrophus (reduced form) 1IDU ; 2.24 ; CRYSTAL STRUCTURE OF THE PEROXIDE FORM OF THE VANADIUM-CONTAINING CHLOROPEROXIDASE FROM CURVULARIA INAEQUALIS 3K9S ; 1.55 ; Crystal structure of the peroxide-bound manganese superoxide dismutase. 5OVQ ; 1.8 ; Crystal Structure of the peroxiredoxin (AhpC2) from the Hyperthermophilic bacteria Aquifex aeolicus VF 7DBI ; 1.99 ; Crystal structure of the peroxisomal acyl-CoA hydrolase MpaH 6BHF ; 2.09 ; Crystal structure of the petidylprolyl cis,trans-isomerase from Helicobacter pylori 6XOD ; 2.01 ; Crystal structure of the PEX4-PEX22 protein complex from Arabidopsis thaliana 3NPH ; 1.849 ; Crystal structure of the pfam00427 domain from Synechocystis sp. PCC 6803 5MLU ; 2.8 ; Crystal structure of the PFV GAG CBS bound to a mononucleosome 3OYN ; 2.68 ; Crystal structure of the PFV N224H mutant intasome bound to magnesium and the INSTI MK2048 3OYM ; 2.02 ; Crystal structure of the PFV N224H mutant intasome bound to manganese 3OYL ; 2.54 ; Crystal structure of the PFV S217H mutant intasome bound to magnesium and the INSTI MK2048 3OYK ; 2.72 ; Crystal structure of the PFV S217H mutant intasome bound to manganese 3OYJ ; 2.68 ; Crystal structure of the PFV S217Q mutant intasome in complex with magnesium and the INSTI MK2048 3OYI ; 2.72 ; Crystal structure of the PFV S217Q mutant intasome in complex with manganese 2H0Q ; 1.82 ; Crystal Structure of the PGM domain of the Suppressor of T-Cell receptor (Sts-1) 7MYX ; 1.39 ; Crystal structure of the PH domain (R86A) of Akt1 3VIA ; 1.75 ; Crystal structure of the PH domain of Evectin-2 from human 3AJ4 ; 1.0 ; Crystal structure of the PH domain of Evectin-2 from human complexed with O-phospho-L-serine 2Y7B ; 1.9 ; Crystal structure of the PH domain of human Actin-binding protein anillin ANLN 5L81 ; 2.23 ; Crystal structure of the PH domain of murine kindlin-3 1UNR ; 1.25 ; Crystal structure of the PH domain of PKB alpha in complex with a sulfate molecule 4EMO ; 2.0 ; Crystal structure of the PH domain of SHARPIN 1U5G ; 2.1 ; Crystal Structure of the PH Domain of SKAP-Hom 1U5F ; 1.9 ; Crystal Structure of the PH Domain of SKAP-Hom with 8 Vector-derived N-terminal Residues 1U5D ; 1.7 ; Crystal Structure of the PH domain of SKAP55 1MI1 ; 2.9 ; Crystal Structure of the PH-BEACH Domain of Human Neurobeachin 1T77 ; 2.4 ; Crystal structure of the PH-BEACH domains of human LRBA/BGL 6B3Y ; 1.852 ; Crystal structure of the PH-like domain from DENND3 5YQR ; 2.402 ; Crystal structure of the PH-like domain of Lam6 1QQG ; 2.3 ; CRYSTAL STRUCTURE OF THE PH-PTB TARGETING REGION OF IRS-1 4Y94 ; 2.4 ; Crystal structure of the PH-TH module of Bruton's tyrosine kinase bound to inositol hexakisphosphate 4Y93 ; 1.695 ; Crystal structure of the PH-TH-kinase construct of Bruton's tyrosine kinase (Btk) 8S93 ; 2.1 ; Crystal structure of the PH-TH/kinase complex of Bruton's tyrosine kinase 2DRH ; 2.1 ; Crystal structure of the PH0078 protein from Pyrococcus horikoshii OT3 1X3L ; 2.1 ; Crystal structure of the PH0495 protein from pyrococccus horikoshii OT3 2DEC ; 1.7 ; Crystal Structure of the PH0510 protein from Pyrococcus horikoshii OT3 2DF8 ; 1.5 ; Crystal Structure of the PH0510 protein from Pyrococcus horikoshii OT3 in complex with beta-D-Fructopyranose-1-phosphate 2E5F ; 1.35 ; Crystal Structure of the PH0510 protein from Pyrococcus horikoshii OT3 in complex with phosphate ion 1WY1 ; 1.8 ; Crystal Structure of the PH0671 protein from Pyrococcus horikoshii OT3 2DR1 ; 1.9 ; Crystal structure of the PH1308 protein from Pyrococcus horikoshii OT3 1V77 ; 1.8 ; Crystal structure of the PH1877 protein 8BV8 ; 2.03 ; Crystal structure of the phage Mu protein Mom inactive mutant S124A 1KA8 ; 2.95 ; Crystal Structure of the Phage P4 Origin-Binding Domain 7DWM ; 2.65 ; Crystal structure of the phage VqmA-DPO complex 5TAB ; 1.25 ; Crystal Structure of the PHD Finger of PHF20 4COS ; 1.67 ; Crystal structure of the PHD-Bromo-PWWP cassette of human PRKCBP1 3K33 ; 2.4 ; Crystal structure of the Phd-Doc complex 4K9O ; 1.888 ; Crystal Structure of the Phe397Ala mutant of Benzoylformate Decarboxylase from Pseudomonas putida 7A99 ; 1.79 ; Crystal structure of the Phe57Trp mutant of the arginine-bound form of domain 1 from TmArgBP 3NMI ; 2.01 ; Crystal structure of the phenanthroline-modified cytochrome cb562 variant, MBP-Phen2 5FRU ; 1.85 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR 5FRV ; 1.9 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR in complex with 4-methylphenol (Cresol) 5FRX ; 2.4 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR in complex with 4-nitrophenol 5FS0 ; 2.4 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR with 2,4-dichlorophenol 5FRZ ; 2.1 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR with 3,4-dimethylphenol 5FRY ; 1.792 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR with 3,5-dimethylphenol 5FRW ; 2.1 ; crystal structure of the phenol-responsive sensory domain of the transcription activator PoxR with Phenol 7YKC ; 3.3 ; crystal structure of the Phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (ARO3) from Saccharomyces cerevisiae 2AGL ; 1.4 ; Crystal structure of the phenylhydrazine adduct of aromatic amine dehydrogenase from Alcaligenes faecalis 3B73 ; 2.12 ; Crystal structure of the PhiH1 repressor-like protein from Haloarcula marismortui 2FSU ; 1.7 ; Crystal Structure of the PhnH Protein from Escherichia Coli 4RCM ; 1.8 ; Crystal structure of the Pho92 YTH domain in complex with m6A 1GXQ ; 2.0 ; Crystal structure of the PhoB effector domain 1MVO ; 1.6 ; Crystal structure of the PhoP receiver domain from Bacillus subtilis 5NNY ; 1.7 ; Crystal structure of the phosphatase domain from the Legionella effector WipB 4J6O ; 1.6 ; Crystal Structure of the Phosphatase Domain of C. thermocellum (Bacterial) PnkP 2I1Y ; 2.23 ; Crystal structure of the phosphatase domain of human PTP IA-2 2FH7 ; 2.0 ; Crystal structure of the phosphatase domains of human PTP SIGMA 3EXM ; 1.65 ; Crystal structure of the phosphatase SC4828 with the non-hydrolyzable nucleotide GPCP 2I0M ; 2.4 ; Crystal structure of the phosphate transport system regulatory protein PhoU from Streptococcus pneumoniae 4WTV ; 1.9 ; Crystal structure of the phosphatidylinositol 4-kinase IIbeta 7D7P ; 2.1 ; Crystal structure of the phosphodiesterase domain of Salpingoeca rosetta rhodopsin phosphodiesterase 2XZ7 ; 1.83 ; CRYSTAL STRUCTURE OF THE PHOSPHOENOLPYRUVATE-BINDING DOMAIN OF ENZYME I IN COMPLEX WITH PHOSPHOENOLPYRUVATE FROM THE THERMOANAEROBACTER TENGCONGENSIS PEP-SUGAR PHOSPHOTRANSFERASE SYSTEM (PTS) 2BG5 ; 1.82 ; Crystal Structure of the Phosphoenolpyruvate-binding Enzyme I-Domain from the Thermoanaerobacter tengcongensis PEP: Sugar Phosphotransferase System (PTS) 3UMP ; 1.849 ; Crystal structure of the Phosphofructokinase-2 from Escherichia coli in complex with Cesium and ATP 3N1C ; 2.0 ; Crystal structure of the phosphofructokinase-2 from Escherichia coli in complex with fructose-6-phosphate 3UMO ; 1.696 ; Crystal structure of the Phosphofructokinase-2 from Escherichia coli in complex with Potassium 3UQD ; 2.14 ; Crystal structure of the Phosphofructokinase-2 from Escherichia coli in complex with substrates and products 3UQE ; 2.2 ; Crystal structure of the Phosphofructokinase-2 mutant Y23D from Escherichia coli 2YY6 ; 2.3 ; Crystal Structure of the phosphoglycolate phosphatase from Aquifex aeolicus VF5 2R7B ; 2.7 ; Crystal Structure of the Phosphoinositide-dependent Kinase-1 (PDK-1)Catalytic Domain bound to a dibenzonaphthyridine inhibitor 1EAZ ; 1.4 ; Crystal structure of the phosphoinositol (3,4)-bisphosphate binding PH domain of TAPP1 from human. 4KYI ; 3.075 ; Crystal structure of the phospholipase VipD from Legionella pneumophila in complex with the human GTPase Rab5 5UE7 ; 1.95 ; Crystal structure of the phosphomannomutase PMM1 from Candida albicans, apoenzyme state 3QUJ ; 2.2 ; Crystal structure of the phosphonate binding protein, PhnD, from Escherichia coli 6Y1N ; 2.2 ; Crystal structure of the phosphonate-modified A.5 antibody FAB fragment 1SWW ; 2.3 ; Crystal structure of the phosphonoacetaldehyde hydrolase D12A mutant complexed with magnesium and substrate phosphonoacetaldehyde 3LRT ; 1.534 ; Crystal structure of the phosphoribosyl pyrophosphate (PRPP) synthetase from Thermoplasma volcanium in complex with ADP. 3NAG ; 1.75 ; Crystal structure of the phosphoribosylpyrophosphate (PRPP) synthetase from Thermoplasma Volcanium in complex with ADP 3MBI ; 1.8 ; Crystal structure of the phosphoribosylpyrophosphate (PRPP) synthetase from Thermoplasma volcanium in complex with ADP-Mg2+ and ribose 5-phosphate 3LPN ; 1.8 ; Crystal structure of the phosphoribosylpyrophosphate (PRPP) synthetase from Thermoplasma volcanium in complex with an ATP analog (AMPCPP). 1OYP ; 2.76 ; Crystal Structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis 1OYR ; 3.1 ; Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis 1OYS ; 2.4 ; Crystal Structure of the Phosphorolytic Exoribonuclease RNase PH from Bacillus subtilis 4S2U ; 2.71 ; Crystal structure of the Phosphorybosylpyrophosphate synthetase from E. Coli 5T3O ; 2.2 ; Crystal structure of the Phosphorybosylpyrophosphate synthetase II from Thermus thermophilus 7PN0 ; 1.85 ; Crystal structure of the Phosphorybosylpyrophosphate synthetase II from Thermus thermophilus at R32 space group 3SR0 ; 1.565 ; Crystal Structure of the Phosphoryl Transfer Transition State Mimic in the Adenylate Kinase: ADP/AlF4/AMP in the active site 6ZWK ; 1.55 ; Crystal structure of the phosphorylated C-terminal tail of histone H2AX in complex with a specific nanobody (C6 gammaXbody) 2EXE ; 2.35 ; Crystal structure of the phosphorylated CLK3 1K68 ; 1.9 ; Crystal Structure of the Phosphorylated Cyanobacterial Phytochrome Response Regulator RcpA 4RER ; 4.047 ; Crystal structure of the phosphorylated human alpha1 beta2 gamma1 holo-AMPK complex bound to AMP and cyclodextrin 1SM2 ; 2.3 ; Crystal structure of the phosphorylated Interleukin-2 tyrosine kinase catalytic domain 3KYI ; 2.8 ; Crystal structure of the phosphorylated P1 domain of CheA3 in complex with CheY6 from R. sphaeroides 1ZY2 ; 3.03 ; Crystal structure of the phosphorylated receiver domain of the transcription regulator NtrC1 from Aquifex aeolicus 1U7V ; 2.7 ; Crystal Structure of the phosphorylated Smad2/Smad4 heterotrimeric complex 1U7F ; 2.6 ; Crystal Structure of the phosphorylated Smad3/Smad4 heterotrimeric complex 3K0C ; 3.3 ; Crystal structure of the phosphorylation-site double mutant S431A/T432E of the KaiC circadian clock protein 3S1A ; 3.0 ; Crystal structure of the phosphorylation-site double mutant S431E/T432E of the KaiC circadian clock protein 3K0F ; 3.0 ; Crystal structure of the phosphorylation-site double mutant T426A/T432A of the KaiC circadian clock protein 3K0A ; 3.0 ; Crystal structure of the phosphorylation-site mutant S431A of the KaiC circadian clock protein 3K09 ; 3.2 ; Crystal structure of the phosphorylation-site mutant S431D of the KaiC circadian clock protein 3K0E ; 3.2 ; Crystal structure of the phosphorylation-site mutant T426N of the KaiC circadian clock protein 3JZM ; 2.9 ; Crystal structure of the phosphorylation-site mutant T432A of the KaiC circadian clock protein 4ORK ; 2.3 ; Crystal Structure of the Phosphotransferase Domain of the Bifunctional Aminoglycoside Resistance Enzyme AAC(6')-Ie-APH(2'')-Ia 4LE6 ; 2.1 ; Crystal structure of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes 1P3R ; 2.1 ; Crystal structure of the phosphotyrosin binding domain(PTB) of mouse Disabled 1(Dab1) 1OQN ; 2.3 ; Crystal structure of the phosphotyrosine binding domain (PTB) of mouse Disabled 1 (Dab1) 1M7E ; 2.45 ; Crystal structure of the phosphotyrosine binding domain(PTB) of mouse Disabled 2(Dab2):implications for Reeling signaling 1SHA ; 1.5 ; CRYSTAL STRUCTURE OF THE PHOSPHOTYROSINE RECOGNITION DOMAIN SH2 OF V-SRC COMPLEXED WITH TYROSINE-PHOSPHORYLATED PEPTIDES 1SHB ; 2.0 ; CRYSTAL STRUCTURE OF THE PHOSPHOTYROSINE RECOGNITION DOMAIN SH2 OF V-SRC COMPLEXED WITH TYROSINE-PHOSPHORYLATED PEPTIDES 2HV6 ; 1.9 ; Crystal structure of the phosphotyrosyl phosphatase activator 1N9O ; 2.8 ; Crystal structure of the Phot-LOV1 domain from Chlamydomonas reinhardtii in illuminated state. Composite data set. 1N9N ; 2.3 ; Crystal structure of the Phot-LOV1 domain from Chlamydomonas reinhardtii in illuminated state. Data set of a single crystal. 1N9L ; 1.9 ; Crystal structure of the Phot-LOV1 domain from Chlamydomonas reinhardtii in the dark state. 1MZU ; 2.0 ; Crystal Structure of the Photoactive Yellow Protein Domain from the Sensor Histidine Kinase Ppr from Rhodospirillum centenum 1F98 ; 1.15 ; CRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT T50V 1F9I ; 1.1 ; CRYSTAL STRUCTURE OF THE PHOTOACTIVE YELLOW PROTEIN MUTANT Y42F 1KOU ; 1.16 ; Crystal Structure of the Photoactive Yellow Protein Reconstituted with Caffeic Acid at 1.16 A Resolution 4RYW ; 2.5 ; Crystal structure of the photoconverted green fluorescent protein NowGFP_conv (the variant of cyan Cerulean) at pH 7.0 4RI2 ; 2.35 ; Crystal structure of the photoprotective protein PsbS from spinach 3C2W ; 2.9 ; Crystal structure of the photosensory core domain of P. aeruginosa bacteriophytochrome PaBphP in the Pfr state 6G1Y ; 2.5 ; Crystal structure of the photosensory core module (PCM) of a bathy phytochrome from Agrobacterium fabrum in the Pfr state. 4S21 ; 3.25 ; Crystal structure of the photosensory core module of bacteriophytochrome RPA3015 from R. palustris 7L5A ; 2.95 ; Crystal structure of the photosensory module from Xanthomonas campestris bacteriophytochrome XccBphP in the Pfr state 2PKQ ; 3.6 ; Crystal structure of the photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase, complexed with NADP 5VYJ ; 3.3 ; Crystal structure of the photosynthetic phosphoenolpyruvate carboxylase isoenzyme from maize in complex with Gly 2WWE ; 1.25 ; Crystal structure of the phox homology domain of human phosphoinositide-3-kinase-C2-gamma 4BGJ ; 2.55 ; Crystal structure of the phox-homology domain of human sorting nexin 14 3NO8 ; 2.2 ; Crystal structure of the PHR domain from human BTBD2 Protein 1U3C ; 2.6 ; Crystal Structure of the PHR domain of Cryptochrome 1 from Arabidopsis thaliana 1U3D ; 2.45 ; Crystal Structure of the PHR domain of Cryptochrome 1 from Arabidopsis thaliana with AMPPNP bound 6OZA ; 3.002 ; Crystal structure of the phycocyanobilin-bound GAF domain from a cyanobacterial phytochrome 6OZB ; 1.8 ; Crystal structure of the phycoerythrobilin-bound GAF domain from a cyanobacterial phytochrome 2GFI ; 2.29 ; Crystal structure of the phytase from D. castellii at 2.3 A 5KND ; 2.888 ; Crystal structure of the Pi-bound V1 complex 2IUG ; 1.89 ; Crystal structure of the PI3-kinase p85 N-terminal SH2 domain 2IUH ; 2.0 ; Crystal structure of the PI3-kinase p85 N-terminal SH2 domain in complex with c-Kit phosphotyrosyl peptide 2IUI ; 2.4 ; Crystal structure of the PI3-kinase p85 N-terminal SH2 domain in complex with PDGFR phosphotyrosyl peptide 6BU0 ; 2.427 ; Crystal structure of the PI3KC2alpha C2 domain in complex with IP6 6BTZ ; 1.85 ; Crystal structure of the PI3KC2alpha C2 domain in space group C121 6BTY ; 1.678 ; Crystal structure of the PI3KC2alpha C2 domain in space group P41212 6BUB ; 2.604 ; Crystal structure of the PI3KC2alpha PX domain in space group P432 7EM4 ; 2.8 ; Crystal structure of the PI5P4Kbeta F205L-ITP complex 7EM5 ; 2.8 ; Crystal structure of the PI5P4Kbeta F205L-XTP complex 7EM6 ; 2.95 ; Crystal structure of the PI5P4Kbeta N203D-ITP complex 7EM7 ; 3.45 ; Crystal structure of the PI5P4Kbeta N203D-XTP complex 7EM8 ; 3.05 ; Crystal structure of the PI5P4Kbeta T201M-2a-ATP complex 7EM3 ; 3.1 ; Crystal structure of the PI5P4Kbeta-2a-ATP complex 6K4H ; 2.55 ; Crystal structure of the PI5P4Kbeta-AMPPNP complex 6K4G ; 2.7 ; Crystal structure of the PI5P4Kbeta-GMPPNP complex 7EM1 ; 2.65 ; Crystal structure of the PI5P4Kbeta-ITP complex 7EM2 ; 2.6 ; Crystal structure of the PI5P4Kbeta-XTP complex 7OCZ ; 1.82 ; Crystal Structure of the PID-3 RRM domain 7OCX ; 1.7 ; Crystal Structure of the PID-3 TOFU-6 RRM domain complex 1UA3 ; 2.01 ; Crystal structure of the pig pancreatic a-amylase complexed with malto-oligosaccharides 1WO2 ; 2.01 ; Crystal structure of the pig pancreatic alpha-amylase complexed with malto-oligosaacharides under the effect of the chloride ion 1VAH ; 2.4 ; Crystal structure of the pig pancreatic-amylase complexed with r-nitrophenyl-a-D-maltoside 7O4X ; 1.65 ; Crystal structure of the PII-like protein PotN from Lentilactobacillus hilgardii 4EO0 ; 1.61 ; crystal structure of the pilus binding domain of the filamentous phage IKe 2EWV ; 2.8 ; Crystal Structure of the Pilus Retraction Motor PilT and Bound ADP 2EWW ; 3.2 ; Crystal Structure of the Pilus Retraction Motor PilT and Bound ATP 2DOK ; 1.8 ; Crystal structure of the PIN domain of human EST1A 4MJ7 ; 2.51 ; Crystal structure of the PIN domain of Saccharomyces cerevisiae Utp23 7TFQ ; 1.75 ; Crystal Structure of the Pirin Family Protein Redox-sensitive Bicupin YhaK Bound to Copper Ion from Yersinia pestis 7TE5 ; 1.85 ; Crystal Structure of the Pirin Family Protein Redox-sensitive Bicupin YhaK from Yersinia pestis 7TG5 ; 1.72 ; Crystal Structure of the Pirin Family Protein Redox-sensitive Bicupin YhaK in the Presence of Fe Ion from Yersinia pestis 5H78 ; 2.002 ; Crystal structure of the PKA-DHR14 fusion protein 5H77 ; 3.197 ; Crystal structure of the PKA-protein A fusion protein 5XBY ; 3.25 ; Crystal structure of the PKA-Protein A fusion protein (end-to-end fusion) 2Y72 ; 1.18 ; Crystal structure of the PKD Domain of Collagenase G from Clostridium Histolyticum at 1.18 Angstrom Resolution. 4L9D ; 1.1 ; Crystal structure of the PKD1 domain from Vibrio cholerae metalloprotease PrtV 6AEM ; 1.272 ; Crystal structure of the PKD1 domain of Vibrio anguillarum Epp 3NBY ; 3.42 ; Crystal structure of the PKI NES-CRM1-RanGTP nuclear export complex 5NM9 ; 2.43 ; Crystal structure of the placozoa Trichoplax adhaerens Smad4-MH1 bound to the GGCGC site. 6B55 ; 2.5 ; Crystal structure of the Plant Defensin NaD1 complexed with phosphatidic acid 5KK4 ; 1.7 ; Crystal Structure of the Plant Defensin NsD7 bound to Phosphatidic Acid 5VYP ; 2.6 ; Crystal structure of the Plant Defensin NsD7 bound to PIP2 7ZMX ; 1.2 ; Crystal structure of the Plant Homeodomain (PHD) of human ING3 3BWD ; 1.53 ; Crystal structure of the plant Rho protein ROP5 3RIZ ; 2.523 ; Crystal structure of the plant steroid receptor BRI1 ectodomain 3H7R ; 1.4 ; Crystal structure of the plant stress-response enzyme AKR4C8 3H7U ; 1.25 ; Crystal structure of the plant stress-response enzyme AKR4C9 3I6S ; 2.5 ; Crystal Structure of the plant subtilisin-like protease SBT3 3I74 ; 2.6 ; Crystal Structure of the plant subtilisin-like protease SBT3 in complex with a chloromethylketone inhibitor 5DLY ; 1.5 ; Crystal structure of the plantazolicin methyltransferase BamL in complex with monoazolic desmethylPZN analog and SAH 4KVZ ; 1.75 ; Crystal structure of the plantazolicin methyltransferase BamL in complex with SAH 5DM0 ; 1.75 ; Crystal structure of the plantazolicin methyltransferase BamL in complex with triazolic desmethylPZN analog and SAH 5DM1 ; 1.8 ; Crystal structure of the plantazolicin methyltransferase BpumL in complex with monoazolic desmethylPZN analog and SAH 5DM4 ; 1.75 ; Crystal structure of the plantazolicin methyltransferase BpumL in complex with pentazolic desmethylPZN analog and SAH 5DM2 ; 1.5 ; Crystal structure of the plantazolicin methyltransferase BpumL in complex with triazolic desmethylPZN analog and SAH 1GVN ; 1.95 ; Crystal Structure of the Plasmid Maintenance System epsilon/zeta: Meachnism of toxin inactivation and toxin function 3L57 ; 2.293 ; Crystal Structure of the Plasmid pCU1 TraI Relaxase Domain 3UIR ; 2.777 ; Crystal structure of the plasmin-textilinin-1 complex 2BSX ; 2.0 ; Crystal structure of the Plasmodium falciparum purine nucleoside phosphorylase complexed with inosine 2VFI ; 2.25 ; Crystal structure of the Plasmodium falciparum triosephosphate isomerase in the loop closed state with 3-phosphoglycerate bound at the active site and interface 3E95 ; 2.5 ; Crystal Structure of the Plasmodium Falciparum ubiquitin conjugating enzyme complex, PfUBC13-PfUev1a 1UMR ; 2.4 ; Crystal structure of the platelet activator convulxin, a disulfide linked a4b4 cyclic tetramer from the venom of Crotalus durissus terrificus 1UPQ ; 1.48 ; Crystal structure of the pleckstrin homology (PH) domain of PEPP1 3PP2 ; 1.421 ; Crystal structure of the pleckstrin homology domain of ArhGAP27 3VOQ ; 2.0 ; Crystal structure of the pleckstrin homology domain of human Sin1, a TORC2 subunit 5MR1 ; 1.2 ; Crystal structure of the Pleckstrin homology domain of Interactor protein for cytohesin exchange factors 1 (IPCEF1) 1UNP ; 1.65 ; Crystal structure of the pleckstrin homology domain of PKB alpha 3ULB ; 1.9 ; Crystal structure of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1, a TORC2 subunit, in the P212121 crystal form 3ULC ; 2.8 ; Crystal structure of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1, a TORC2 subunit, in the P3121 crystal form 5OC7 ; 1.652 ; Crystal structure of the pleckstrin-homology domain of Bcr-Abl in complex with monobody Mb(Bcr-PH_4). 4Q28 ; 2.64 ; Crystal Structure of the Plectin 1 and 2 Repeats of the Human Periplakin. Northeast Structural Genomics Consortium (NESG) Target HR9083A 4Q58 ; 4.001 ; Crystal structure of the plectin 1a actin-binding domain/integrin beta 4 fragment complex 4Q57 ; 1.8 ; Crystal structure of the plectin 1a actin-binding domain/N-terminal domain of calmodulin complex 6QP3 ; 2.3 ; Crystal structure of the PLP-bound C-S lyase from Bacillus subtilis (strain 168) 6QP2 ; 1.6 ; Crystal structure of the PLP-bound C-S lyase from Staphylococcus hominis 6QP1 ; 1.42 ; Crystal structure of the PLP-bound C-S lyase in the external aldimine form from Staphylococcus hominis complexed with an inhibitor, L-cycloserine. 1DJE ; 1.71 ; CRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF 8-AMINO-7-OXONANOATE SYNTHASE 2C7T ; 2.1 ; CRYSTAL STRUCTURE OF THE PLP-BOUND FORM OF BTRR, A DUAL FUNCTIONAL AMINOTRANSFERASE INVOLVED IN BUTIROSIN BIOSYNTHESIS. 4ZMC ; 1.9 ; Crystal structure of the PmFTN variant E130A soaked in iron (5 min) 4ZLW ; 2.0 ; Crystal structure of the PmFTN variant E130A soaked in iron (overnight) 4ZL6 ; 1.9 ; Crystal structure of the PmFTN variant E44H soaked in iron (3 h) 4ZL5 ; 1.85 ; Crystal structure of the PmFTN variant E44H soaked in iron (45 min) 4ZKW ; 1.8 ; Crystal structure of the PmFTN variant E44Q soaked in iron (45 min) 4ZKX ; 1.8 ; Crystal structure of the PmFTN variant E44Q soaked in iron (5 min) 4ZKH ; 1.9 ; Crystal structure of the PmFTN variant E44Q soaked in iron (overnight) 6QLA ; 1.43 ; CRYSTAL STRUCTURE OF THE PMGL2 ESTERASE (point mutant 1) FROM PERMAFROST METAGENOMIC LIBRARY 6QIN ; 1.6 ; CRYSTAL STRUCTURE OF THE PMGL2 ESTERASE FROM PERMAFROST METAGENOMIC LIBRARY 2CBG ; 2.5 ; Crystal structure of the PMSF-inhibited thioesterase domain of the fengycin biosynthesis cluster 7T8N ; 2.85 ; Crystal structure of the PNAG binding module PgaA-TPR 220-359 4HQS ; 1.48 ; Crystal structure of the pneumoccocal exposed lipoprotein thioredoxin sp_0659 (Etrx1) from Streptococcus pneumoniae strain TIGR4 4HQZ ; 1.22 ; Crystal structure of the pneumoccocal exposed lipoprotein thioredoxin sp_1000 (Etrx2) from Streptococcus pneumoniae strain TIGR4 in complex with 2-hydroxyethyl disulfide 2YP6 ; 1.767 ; Crystal structure of the pneumoccocal exposed lipoprotein thioredoxin sp_1000 (Etrx2) from Streptococcus pneumoniae strain TIGR4 in complex with Cyclofos 3 TM 4PQG ; 2.0 ; Crystal structure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc 8A42 ; 1.5 ; Crystal structure of the pneumococcal Substrate-binding protein AmiA in complex with an unknown peptide 7LUG ; 1.95 ; Crystal structure of the pnRFP B30Y mutant 4MHV ; 2.45 ; Crystal structure of the PNT domain of human ETS2 2GCJ ; 2.55 ; Crystal Structure of the Pob3 middle domain 8CPN ; 1.85 ; Crystal structure of the PolB16_OarG intein variant S1A, N183A 8CPO ; 2.6 ; Crystal structure of the PolB16_OarG intein variant S1A, N183A, C111A, C165A 2IJD ; 3.4 ; Crystal Structure of the Poliovirus Precursor Protein 3CD 2IJF ; 3.0 ; Crystal Structure of the Poliovirus RNA-Dependent RNA Polymerase Fidelity Mutant 3Dpol G64S 4R0E ; 3.0 ; Crystal Structure of the Poliovirus RNA-Dependent RNA Polymerase Low-Fidelity Mutant 3Dpol H273R 6MF4 ; 1.8 ; Crystal structure of the polo-box domain of Cdc5 from budding yeast. 1RSG ; 1.9 ; Crystal structure of the polyamine oxidase Fms1 from yeast 2IQ7 ; 1.94 ; Crystal structure of the polygalacturonase from Colletotrichum lupini and its implications for the interaction with polygalacturonase-inhibiting proteins 1WUB ; 1.65 ; Crystal structure of the polyisoprenoid-binding protein, TT1927b, from Thermus thermophilus HB8 2F98 ; 2.1 ; Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. 2F99 ; 1.9 ; Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. 3AWK ; 2.0 ; Crystal structure of the polyketide synthase 1 from huperzia serrata 2IRU ; 1.65 ; Crystal Structure of the Polymerase Domain from Mycobacterium tuberculosis Ligase D 2IRY ; 1.78 ; Crystal Structure of the Polymerase Domain from Mycobacterium tuberculosis Ligase D with dGTP and Manganese. 2IRX ; 1.8 ; Crystal Structure of the Polymerase Domain from Mycobacterium tuberculosis Ligase D with GTP and Manganese. 7OQV ; 2.4 ; Crystal structure of the polymerising VEL domain of VIN3 (I575D mutant) 7O6T ; 2.02 ; Crystal structure of the polymerising VEL domain of VIN3 (R556D I575D mutant) 4WRN ; 3.2 ; Crystal structure of the polymerization region of human uromodulin/Tamm-Horsfall protein 5N1J ; 1.8 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus 5NC9 ; 2.44 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with (2S)-2,6-diamino-N-hydroxyhexanamide 5NCD ; 2.447 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with (2S)-2-amino-5-(diaminomethylideneamino)-N-hydroxypentanamide 5NC6 ; 2.8 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with (E)-N-hydroxy-3-(naphthalen-1-yl)prop-2-enamide 5NEK ; 3.057 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with acetazolamide 5N1P ; 1.448 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with N-hydroxynaphthalene-1-carboxamide 5NEL ; 2.734 ; Crystal structure of the polysaccharide deacetylase Bc1974 from Bacillus cereus in complex with ThiametG 3JQY ; 1.699 ; Crystal Structure of the polySia specific acetyltransferase NeuO 2P5R ; 2.45 ; Crystal structure of the poplar glutathione peroxidase 5 in the oxidized form 2P5Q ; 2.0 ; Crystal structure of the poplar glutathione peroxidase 5 in the reduced form 7XCA ; 2.5 ; Crystal structure of the porcine astrovirus capsid spike domain 5LRG ; 2.02 ; Crystal structure of the porcine carboxypeptidase B - Anabaenopeptin B complex 5LRJ ; 2.2 ; Crystal structure of the porcine carboxypeptidase B - Anabaenopeptin C complex 5LRK ; 2.3 ; Crystal structure of the porcine carboxypeptidase B - Anabaenopeptin F complex 2I2S ; 2.3 ; Crystal Structure of the porcine CRW-8 rotavirus VP8* carbohydrate-recognising domain 4RWO ; 2.2 ; Crystal structure of the porcine OAS1 L149R mutant in complex with dsRNA and ApCpp in the AMP donor position 1ZBC ; 2.29 ; Crystal Structure of the porcine signalling protein liganded with the peptide Trp-Pro-Trp (WPW) at 2.3 A resolution 3LIM ; 1.8 ; Crystal structure of the pore forming toxin frac from sea anemone actinia fragacea 3ZWG ; 3.0 ; Crystal structure of the pore-forming toxin FraC from Actinia fragacea (form 2) 3ZWJ ; 2.37 ; CRYSTAL STRUCTURE OF THE PORE-FORMING TOXIN FRAC FROM ACTINIA FRAGACEA (Form 3) 4MKQ ; 2.65 ; Crystal structure of the Pore-Forming Toxin Monalysin mutant deleted of the membrane-spanning domain 2R74 ; 1.9 ; Crystal Structure of the Possum Milk Whey Lipocalin Trichosurin at pH 4.6 2RA6 ; 1.5 ; Crystal Structure of the Possum Milk Whey Lipocalin Trichosurin at pH 4.6 with Bound 4-ethylphenol 2R73 ; 2.5 ; Crystal Structure of the Possum Milk Whey Lipocalin Trichosurin at pH 8.2 5IIL ; 1.96 ; Crystal structure of the post-catalytic nick complex of DNA polymerase lambda with a templating 8-oxo-dG and incorporated dA 5IIK ; 1.982 ; Crystal structure of the post-catalytic nick complex of DNA polymerase lambda with a templating 8-oxo-dG and incorporated dC 4X5V ; 2.15 ; Crystal structure of the post-catalytic nick complex of DNA polymerase lambda with a templating A and incorporated 8-oxo-dGMP 3UQ0 ; 2.14 ; Crystal structure of the post-catalytic product complex of polymerase lambda with an rAMP at the primer terminus. 3UQ2 ; 2.25 ; Crystal structure of the post-catalytic product complex of polymerase lambda with an rCMP inserted opposite a templating G and dAMP inserted opposite a templating T at the primer terminus. 3NSI ; 2.15 ; Crystal Structure of the Post-Refolded S100A3 Protein Expressed in Insect Cell 3NSK ; 1.55 ; Crystal Structure of the Post-Refolded S100A3 R51A Mutant Expressed in Insect Cell 3DUZ ; 2.95 ; Crystal structure of the postfusion form of baculovirus fusion protein GP64 6HD8 ; 2.4 ; Crystal structure of the potassium channel MtTMEM175 in complex with a Nanobody-MBP fusion protein 6HDC ; 3.4 ; Crystal structure of the potassium channel MtTMEM175 T38A variant in complex with a Nanobody-MBP fusion protein 6HDA ; 3.8 ; Crystal structure of the potassium channel MtTMEM175 with cesium 6HD9 ; 3.5 ; Crystal structure of the potassium channel MtTMEM175 with rubidium 6HDB ; 2.9 ; Crystal structure of the potassium channel MtTMEM175 with zinc 3PJZ ; 3.506 ; Crystal Structure of the Potassium Transporter TrkH from Vibrio parahaemolyticus 6RFC ; 2.0 ; Crystal structure of the potassium-pumping G263F mutant of the light-driven sodium pump KR2 in the monomeric form, pH 4.3 6RF3 ; 2.4 ; Crystal structure of the potassium-pumping G263F mutant of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 6RFB ; 2.1 ; Crystal structure of the potassium-pumping S254A mutant of the light-driven sodium pump KR2 in the monomeric form, pH 4.3 6RF4 ; 2.4 ; Crystal structure of the potassium-pumping S254A mutant of the light-driven sodium pump KR2 in the pentameric form, pH 8.0 3OBL ; 1.2 ; Crystal structure of the potent anti-HIV cyanobacterial lectin from Oscillatoria Agardhii 1TQ0 ; 2.8 ; Crystal structure of the potent anticoagulant thrombin mutant W215A/E217A in free form 1BX6 ; 2.1 ; CRYSTAL STRUCTURE OF THE POTENT NATURAL PRODUCT INHIBITOR BALANOL IN COMPLEX WITH THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE 4HIC ; 3.001 ; Crystal structure of the potential transfer protein TraK from Gram-positive conjugative plasmid pIP501 7QM2 ; 2.685 ; Crystal structure of the PP1/PTG/beta-cyclodextrin ternary complex 2IXO ; 2.6 ; CRYSTAL STRUCTURE OF THE PP2A PHOSPHATASE ACTIVATOR Ypa1 PTPA1 2IXP ; 2.8 ; Crystal structure of the Pp2A phosphatase activator Ypa1 PTPA1 in complex with model substrate 2IXN ; 2.8 ; CRYSTAL STRUCTURE OF THE PP2A PHOSPHATASE ACTIVATOR Ypa2 PTPA2 3LMP ; 1.9 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator 3V9T ; 1.65 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator 3V9V ; 1.6 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator 3V9Y ; 2.1 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator 4F9M ; 1.9 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator 3B1M ; 1.6 ; Crystal structure of the PPARgamma-LBD complexed with a cercosporamide derivative modulator Cerco-A 3HO0 ; 2.6 ; Crystal structure of the PPARgamma-LBD complexed with a new aryloxy-3phenylpropanoic acid 3HOD ; 2.1 ; Crystal structure of the PPARgamma-LBD complexed with a new aryloxy-3phenylpropanoic acid 5Z5S ; 1.8 ; Crystal structure of the PPARgamma-LBD complexed with compound 13ab 6IZM ; 1.8 ; Crystal structure of the PPARgamma-LBD complexed with compound 1l 6IZN ; 1.75 ; Crystal structure of the PPARgamma-LBD complexed with compound 3g 5Z6S ; 1.8 ; Crystal structure of the PPARgamma-LBD complexed with compound DS-6930 6GMP ; 1.35 ; CRYSTAL STRUCTURE OF THE PPIASE DOMAIN OF TBPAR42 4DT4 ; 1.35 ; Crystal structure of the PPIase-chaperone SlpA with the chaperone binding site occupied by the linker of the purification tag 2V06 ; 1.05 ; Crystal structure of the PPM Ser-Thr phosphatase MsPP from Mycobacterium smegmatis at pH 5.5 2JFS ; 1.45 ; Crystal structure of the PPM Ser-Thr phosphatase MsPP from Mycobacterium smegmatis in complex with cacodylate 2JFR ; 0.83 ; Crystal structure of the PPM Ser-Thr phosphatase MsPP from Mycobacterium smegmatis in complex with phosphate at 0.83 A resolution 2JFT ; 1.08 ; Crystal structure of the PPM Ser-Thr phosphatase MsPP from Mycobacterium smegmatis in complex with sulfate 6LVR ; 2.85 ; Crystal structure of the PPR domain of Arabidopsis thaliana protein-only RNase P 1 (PRORP1) in complex with tRNA 5WLE ; 1.952 ; Crystal structure of the PPS PHD finger in complex with H3K4me3 4C1Q ; 2.3 ; Crystal structure of the PRDM9 SET domain in complex with H3K4me2 and AdoHcy. 1NO4 ; 2.2 ; Crystal Structure of the pre-assembly scaffolding protein gp7 from the double-stranded DNA bacteriophage phi29 2H32 ; 2.7 ; Crystal structure of the pre-B cell receptor 5III ; 1.8 ; Crystal structure of the pre-catalytic ternary complex of DNA polymerase lambda with a templating 8-oxo-dG and an incoming dATP 5IIJ ; 1.724 ; Crystal structure of the pre-catalytic ternary complex of DNA polymerase lambda with a templating 8-oxo-dG and an incoming dCTP 4XA5 ; 1.9 ; Crystal structure of the pre-catalytic ternary complex of DNA polymerase lambda with a templating A and an incoming 8-oxo-dGTP 4XUS ; 2.4 ; Crystal structure of the pre-catalytic ternary complex of DNA polymerase lambda with a templating A and an incoming dTTP 4FO6 ; 2.007 ; Crystal structure of the pre-catalytic ternary complex of polymerase lambda with a dATP analog opposite a templating T and an rCMP at the primer terminus. 3UPQ ; 1.95 ; Crystal structure of the pre-catalytic ternary complex of polymerase lambda with an rATP analog opposite a templating T. 5IIM ; 1.941 ; Crystal structure of the pre-catalytic ternary extension complex of DNA polymerase lambda with an 8-oxo-dG:dA base-pair 5IIN ; 2.15 ; Crystal structure of the pre-catalytic ternary extension complex of DNA polymerase lambda with an 8-oxo-dG:dC base-pair 2HOF ; 2.4 ; Crystal structure of the pre-cleavage synaptic complex in the cre-loxp site-specific recombination 3G8S ; 3.1 ; Crystal structure of the pre-cleaved Bacillus anthracis glmS ribozyme 3T56 ; 3.42 ; Crystal structure of the pre-extrusion state of the CusBA adaptor-transporter complex 3SUC ; 2.15 ; Crystal structure of the pre-mature bacteriophage phi29 gene product 12 4RWN ; 2.0 ; Crystal structure of the pre-reactive state of porcine OAS1 4EX8 ; 2.1 ; Crystal structure of the prealnumycin C-glycosynthase AlnA 4EX9 ; 3.15 ; Crystal structure of the prealnumycin C-glycosynthase AlnA in complex with ribulose 5-phosphate 3TP1 ; 1.6 ; Crystal Structure of the precatalytic M-PMV dUTPase - substrate (dUPNPP) complex 3N5I ; 1.8 ; Crystal structure of the precursor (S250A mutant) of the N-terminal beta-aminopeptidase BapA 3EDY ; 1.85 ; Crystal Structure of the Precursor Form of Human Tripeptidyl-Peptidase 1 4PAB ; 1.85 ; Crystal structure of the precursor form of rat DMGDH complexed with tetrahydrofolate 3C5X ; 2.2 ; Crystal structure of the precursor membrane protein- envelope protein heterodimer from the dengue 2 virus at low pH 3C6E ; 2.6 ; Crystal structure of the precursor membrane protein- envelope protein heterodimer from the dengue 2 virus at neutral pH 6EPK ; 2.7 ; CRYSTAL STRUCTURE OF THE PRECURSOR MEMBRANE PROTEIN-ENVELOPE PROTEIN HETERODIMER FROM THE YELLOW FEVER VIRUS 1K3I ; 1.4 ; Crystal Structure of the Precursor of Galactose Oxidase 3CNU ; 1.9 ; Crystal structure of the predicted coding region AF_1534 from Archaeoglobus fulgidus 3CUO ; 2.0 ; Crystal structure of the predicted DNA-binding transcriptional regulator from E. coli 2ZQM ; 1.9 ; Crystal structure of the prefoldin beta subunit from Thermococcus strain KS-1 3AEI ; 1.7 ; Crystal structure of the prefoldin beta2 subunit from Thermococcus strain KS-1 5YXW ; 2.776 ; Crystal structure of the prefusion form of measles virus fusion protein 5YZC ; 2.334 ; Crystal structure of the prefusion form of measles virus fusion protein in complex with a fusion inhibitor compound (AS-48) 5YZD ; 2.636 ; Crystal structure of the prefusion form of measles virus fusion protein in complex with a fusion inhibitor peptide (FIP) 5INE ; 3.5 ; Crystal structure of the prefusion glycoprotein of LCMV 7MMN ; 3.57 ; Crystal Structure of the Prefusion RSV F Glycoprotein bound by human antibody AM14 2QNV ; 2.8 ; Crystal Structure of the Pregnane X Receptor bound to Colupulone 6F5V ; 1.7 ; Crystal structure of the prephenate aminotransferase from Arabidopsis thaliana 6F77 ; 1.794 ; Crystal structure of the prephenate aminotransferase from Rhizobium meliloti 4OYC ; 2.6 ; Crystal structure of the PrgK periplasmic domain 2 6RB4 ; 1.5 ; Crystal structure of the Pri1 subunit of human primase 6R5E ; 1.85 ; Crystal structure of the Pri1 subunit of human primase bound to 2F-ATP 6R4S ; 2.75 ; Crystal structure of the Pri1 subunit of human primase bound to ATP 6R5D ; 1.95 ; Crystal structure of the Pri1 subunit of human primase bound to dATP 6R4U ; 2.2 ; Crystal structure of the Pri1 subunit of human primase bound to fludarabine triphosphate 6R4T ; 2.35 ; Crystal structure of the Pri1 subunit of human primase bound to vidarabine triphosphate 2DWL ; 3.2 ; Crystal structure of the PriA protein complexed with oligonucleotides 2DWM ; 3.15 ; Crystal structure of the PriA protein complexed with oligonucleotides 2DWN ; 3.35 ; Crystal structure of the PriA protein complexed with oligonucleotides 2O7G ; 2.7 ; Crystal structure of the Pribnow Box recognition region of SigC from Mycobacterium tuberculosis 4NZU ; 1.2 ; Crystal structure of the primary monoclonal antibody 13PL Fab' from a multiple myeloma patient 1NUI ; 2.9 ; Crystal Structure of the primase fragment of Bacteriophage T7 primase-helicase protein 3M1M ; 1.85 ; Crystal structure of the primase-polymerase from Sulfolobus islandicus 5Z98 ; 2.2 ; Crystal Structure of the Primate APOBEC3H Dimer mediated by RNA Duplex 5W5C ; 1.85 ; Crystal structure of the primed SNARE-Complexin-Synaptotagmin-1 C2AB complex 5W5D ; 2.496 ; Crystal structure of the primed SNARE-Complexin-Synaptotagmin-1 C2B complex 1MZJ ; 2.1 ; Crystal Structure of the Priming beta-Ketosynthase from the R1128 Polyketide Biosynthetic Pathway 1ACY ; 3.0 ; CRYSTAL STRUCTURE OF THE PRINCIPAL NEUTRALIZING SITE OF HIV-1 7BOC ; 2.55 ; Crystal structure of the PRMT5 TIM barrel domain in complex with RioK1 peptide 3C0M ; 2.88 ; Crystal structure of the proaerolysin mutant Y221G 3C0N ; 2.2 ; Crystal structure of the proaerolysin mutant Y221G at 2.2 A 3C0O ; 2.5 ; Crystal structure of the proaerolysin mutant Y221G complexed with mannose-6-phosphate 3DX5 ; 2.12 ; Crystal structure of the probable 3-DHS dehydratase AsbF involved in the petrobactin synthesis from Bacillus anthracis 2O1M ; 2.0 ; Crystal structure of the probable amino-acid ABC transporter extracellular-binding protein ytmK from Bacillus subtilis. Northeast Structural Genomics Consortium target SR572 1YX2 ; 2.08 ; Crystal Structure of the Probable Aminomethyltransferase from Bacillus subtilis 3B40 ; 2.0 ; Crystal structure of the probable dipeptidase PvdM from Pseudomonas aeruginosa 8EBG ; 1.43 ; Crystal structure of the probable FhuD FeIII-dicitrate-binding domain protein FecB from Mycobacterium tuberculosis 2HOQ ; 1.7 ; Crystal structure of the probable haloacid dehalogenase (PH1655) from pyrococcus horikoshii OT3 6DRT ; 2.117 ; Crystal structure of the processivity clamp GP45 complexed with recognition peptide of ligase from bacteriophage T4 1CZD ; 2.45 ; CRYSTAL STRUCTURE OF THE PROCESSIVITY CLAMP GP45 FROM BACTERIOPHAGE T4 1JR3 ; 2.7 ; Crystal Structure of the Processivity Clamp Loader Gamma Complex of E. coli DNA Polymerase III 6VJV ; 1.59 ; Crystal structure of the Prochlorococcus phage (myovirus P-SSM2) ferredoxin at 1.6 Angstroms 1SG8 ; 2.3 ; Crystal structure of the procoagulant fast form of thrombin 3G9C ; 2.9 ; Crystal structure of the product Bacillus anthracis glmS ribozyme 3C28 ; 2.6 ; Crystal structure of the product synapse complex 4ZKT ; 3.05 ; Crystal structure of the progenitor M complex of Clostridium botulinum type E neurotoxin 3QSQ ; 1.8 ; Crystal structure of the projection domain of the human astrovirus capsid protein 3TS3 ; 1.49 ; Crystal structure of the projection domain of the turkey astrovirus capsid protein at 1.5 angstrom resolution 2O3X ; 2.9 ; Crystal Structure of the Prokaryotic Ribosomal Decoding Site Complexed with Paromamine Derivative NB30 3M9D ; 4.5 ; Crystal structure of the prokaryotic ubiquintin-like protein Pup complexed with the hexameric proteasomal ATPase Mpa which includes the amino terminal coiled coil domain and the inter domain 3M91 ; 1.8 ; Crystal structure of the prokaryotic ubiquitin-like protein (Pup) complexed with the amino terminal coiled coil of the Mycobacterium tuberculosis proteasomal ATPase Mpa 1WY2 ; 1.7 ; Crystal Structure of the Prolidase from Pyrococcus horikoshii OT3 2YYS ; 2.2 ; Crystal structure of the proline iminopeptidase-related protein TTHA1809 from Thermus thermophilus HB8 5D9E ; 0.859 ; Crystal Structure of the Proline-rich Lasso Peptide Caulosegnin II 4IRN ; 2.8 ; Crystal Structure of the Prolyl Acyl Carrier Protein Oxidase AnaB 7WAB ; 1.75 ; Crystal structure of the prolyl endoprotease, PEP, from Aspergillus niger 3B7H ; 2.0 ; Crystal structure of the prophage Lp1 protein 11 7LBU ; 2.11 ; Crystal structure of the Propionibacterium acnes surface sialidase 7LBV ; 1.7 ; Crystal structure of the Propionibacterium acnes surface sialidase in complex with Neu5Ac2en 1P8J ; 2.6 ; CRYSTAL STRUCTURE OF THE PROPROTEIN CONVERTASE FURIN 6D27 ; 2.738 ; Crystal structure of the prostaglandin D2 receptor CRTH2 with CAY10471 6D26 ; 2.798 ; Crystal structure of the prostaglandin D2 receptor CRTH2 with fevipiprant 3STJ ; 2.6 ; Crystal structure of the protease + PDZ1 domain of DegQ from Escherichia coli 6HF6 ; 2.0 ; Crystal structure of the Protease 1 (E29A,E60A,E80A) from Pyrococcus horikoshii co-crystallized with Tb-Xo4. 4C2C ; 1.9 ; Crystal structure of the protease CtpB in an active state 4C2D ; 2.7 ; Crystal structure of the protease CtpB in an active state 4C2E ; 1.8 ; Crystal structure of the protease CtpB(S309A) present in a resting state 1L1J ; 2.8 ; Crystal structure of the protease domain of an ATP-independent heat shock protease HtrA 3QW8 ; 1.6 ; Crystal structure of the protease domain of Botulinum Neurotoxin Serotype A with a peptide inhibitor CRGC 3QW7 ; 1.5 ; Crystal structure of the protease domain of Botulinum Neurotoxin Serotype A with a peptide inhibitor RRFC 3QW5 ; 1.6 ; Crystal structure of the protease domain of Botulinum Neurotoxin Serotype A with a peptide inhibitor RRGF 3QW6 ; 1.6 ; Crystal structure of the protease domain of Botulinum Neurotoxin Serotype A with a peptide inhibitor RYGC 3STI ; 2.6 ; Crystal structure of the protease domain of DegQ from Escherichia coli 7MHW ; 2.55 ; Crystal structure of the protease inhibitor U-Omp19 from Brucella abortus fused to Maltose-binding protein 2R2Y ; 1.7 ; Crystal structure of the proteasomal Rpn13 PRU-domain 5IRS ; 1.796 ; crystal structure of the proteasomal Rpn13 PRU-domain 7BR3 ; 2.79 ; Crystal structure of the protein 1 1GG3 ; 2.8 ; CRYSTAL STRUCTURE OF THE PROTEIN 4.1R MEMBRANE BINDING DOMAIN 3D01 ; 1.7 ; Crystal structure of the protein Atu1372 with unknown function from Agrobacterium tumefaciens 2Q08 ; 2.0 ; Crystal structure of the protein BH0493 from Bacillus halodurans C-125 complexed with ZN 3GVZ ; 2.8 ; Crystal structure of the protein CV2077 from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvR62 1EEJ ; 1.9 ; CRYSTAL STRUCTURE OF THE PROTEIN DISULFIDE BOND ISOMERASE, DSBC, FROM ESCHERICHIA COLI 5FID ; 1.809 ; Crystal structure of the protein elicitor MoHrip2 from Magnaporthe oryzae 4I4C ; 1.95 ; Crystal structure of the protein frsA complexed with unknown ligand 5DZL ; 3.4006 ; Crystal structure of the protein human CEACAM1 5XVU ; 3.0 ; Crystal structure of the protein kinase CK2 catalytic domain from Plasmodium falciparum bound to ATP 5N1V ; 2.52 ; Crystal structure of the protein kinase CK2 catalytic subunit in complex with pyrazolo-pyrimidine macrocyclic ligand 3HYH ; 2.2 ; Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1 1TZZ ; 1.86 ; Crystal structure of the protein L1841, unknown member of enolase superfamily from Bradyrhizobium japonicum 3NEH ; 1.642 ; Crystal structure of the protein LMO2462 from Listeria monocytogenes complexed with ZN and phosphonate mimic of dipeptide L-Leu-D-Ala 3BEY ; 2.4 ; Crystal structure of the protein O27018 from Methanobacterium thermoautotrophicum. Northeast Structural Genomics Consortium target TT217 2R41 ; 2.9 ; Crystal structure of the protein of unknown function from Enterococcus faecalis 2IGS ; 2.17 ; Crystal Structure of the Protein of Unknown Function from Pseudomonas aeruginosa 5V4D ; 1.6 ; Crystal Structure of the Protein of Unknown Function of the Conserved Rid Protein Family YyfA from Yersinia pestis 5V4F ; 3.001 ; Crystal Structure of the Protein of Unknown Function of the Conserved Rid Protein Family YyfB from Yersinia pestis 1Z0P ; 1.7 ; Crystal structure of the Protein of Unknown Function SPY1572 from Streptococcus pyogenes 7TMU ; 2.55 ; Crystal Structure of the Protein of Unknown Function YPO0625 from Yersinia pestis 3FHW ; 1.9 ; Crystal structure of the protein priB from Bordetella parapertussis. Northeast Structural Genomics Consortium target BpR162. 3DC7 ; 2.12 ; Crystal structure of the protein Q88SR8 from Lactobacillus plantarum. Northeast Structural Genomics consortium target LpR109. 3E8P ; 2.3 ; Crystal structure of the protein Q8E9M7 from Shewanella oneidensis related to thioesterase superfamily. Northeast Structural Genomics Consortium target SoR246. 4FJ4 ; 2.1 ; Crystal structure of the protein Q9HRE7 complexed with mercury from Halobacterium salinarium at the resolution 2.1A, Northeast Structural Genomics Consortium target HsR50 4DLH ; 1.9 ; Crystal Structure of the protein Q9HRE7 from Halobacterium salinarium at the resolution 1.9A, Northeast Structural Genomics Consortium (NESG) Target HsR50 2I9C ; 2.0 ; Crystal Structure of the Protein RPA1889 from Rhodopseudomonas palustris CGA009 2Q2H ; 1.65 ; Crystal structure of the protein secretion chaperone CsaA from Agrobacterium tumefaciens with a genetically fused phage-display derived peptide substrate at the N-terminus. 2Q2I ; 1.55 ; Crystal structure of the protein secretion chaperone CsaA from Agrobacterium tumefaciens. 1A6Q ; 2.0 ; CRYSTAL STRUCTURE OF THE PROTEIN SERINE/THREONINE PHOSPHATASE 2C AT 2 A RESOLUTION 2PLM ; 2.1 ; Crystal structure of the protein TM0936 from Thermotoga maritima complexed with ZN and S-inosylhomocysteine 3G7G ; 1.99 ; Crystal structure of the protein with unknown function from Clostridium acetobutylicum ATCC 824 1Q2Y ; 2.0 ; Crystal structure of the protein YJCF from Bacillus subtilis: a member of the GCN5-related N-acetyltransferase superfamily fold 3KLU ; 2.2 ; Crystal structure of the protein yqbn. northeast structural genomics consortium target sr445. 2QC7 ; 2.9 ; Crystal structure of the protein-disulfide isomerase related chaperone ERp29 6I2A ; 1.75 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Cricetulus Griseus in complex with compounds RKp153 and Fasudil 6I2B ; 1.97 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Cricetulus Griseus in complex with compounds RKp153 and RKp117 6I2C ; 1.82 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Cricetulus Griseus in complex with compounds RKp182 and Fasudil 6I2D ; 1.91 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Cricetulus Griseus in complex with compounds RKp182 and RKp117 6I2H ; 1.68 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Cricetulus Griseus in complex with compounds RKp182 and RKp190 5OUA ; 1.67 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compound RKp017 5NTJ ; 1.56 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compound RKp032 6ERU ; 2.15 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compound RKp120 6ERV ; 2.06 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp013 6ERW ; 1.89 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp013 and Fasudil 5OL3 ; 1.58 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp013 and RKp117 5OTG ; 1.73 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp013 and RKp190 6EGW ; 1.74 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp017 and RKp117 6EM6 ; 1.64 ; Crystal structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp032 and ADP 6EH2 ; 1.76 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp032 and AMP 5NW8 ; 2.086 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp032 and Fasudil 6EM7 ; 1.238 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and ADP 6ESA ; 1.307 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and AMP 6EMA ; 1.88 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and ATP 5O0E ; 1.5 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and Fasudil 5O5M ; 1.583 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and RKp117 6EH3 ; 1.95 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp120 and RKp190 5OT3 ; 2.04 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp191 and RKp117 5OUC ; 1.46 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp191 and RKp190 5OUS ; 2.21 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp193 6ERT ; 1.8 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp193 and RKp117 5OK3 ; 1.588 ; Crystal Structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with compounds RKp241 and Fasudil 6EM2 ; 1.3 ; Crystal structure of the Protein-Kinase A catalytic subunit from Criteculus Griseus in complex with Fasudil 2B0Z ; 2.7 ; Crystal structure of the protein-protein complex between F82I cytochrome c and cytochrome c peroxidase 2B10 ; 2.8 ; Crystal Structure of the Protein-Protein Complex between F82S cytochrome c and cytochrome c peroxidase 2B11 ; 2.3 ; Crystal structure of the protein-protein complex between F82W cytochrome c and cytochrome c peroxidase 2B12 ; 3.02 ; Crystal structure of the protein-protein complex between F82Y cytochrome c and cytochrome c peroxidase 3DIN ; 4.5 ; Crystal structure of the protein-translocation complex formed by the SecY channel and the SecA ATPase 4BXS ; 3.32 ; Crystal Structure of the Prothrombinase Complex from the Venom of Pseudonaja Textilis 4BXW ; 2.71 ; Crystal Structure of the Prothrombinase Complex from the Venom of Pseudonaja Textilis 6E6B ; 4.52 ; Crystal structure of the Protocadherin GammaB4 extracellular domain 3AM6 ; 3.2 ; Crystal structure of the proton pumping rhodopsin AR2 from marine alga Acetabularia acetabulum 3L2Q ; 3.25 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in apo form 3L2R ; 2.88 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium 3S3M ; 2.49 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and Dolutegravir (S/GSK1349572) 3L2U ; 3.15 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and GS9137 (Elvitegravir) 3OYA ; 2.65 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and raltegravir at 2.65 resolution 3OYG ; 2.56 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI Compound1 (CompoundG) 3OYE ; 2.74 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI Compound2 3OYD ; 2.54 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI GS9160 3OYF ; 2.51 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI L-870,810 3OYH ; 2.74 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI MK0536 3OYB ; 2.54 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI MK2048 3OYC ; 2.66 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI PICA 5MMA ; 2.55 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ379 (compound 5'g) 5FRM ; 2.58 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ384 (compound 4a) 5NO1 ; 2.6 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ407 (compound 5g) 5FRN ; 2.85 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ419 (compound 4c) 5MMB ; 2.77 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ434 (compound 6p) 7ADU ; 2.62 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ440 (compound 5j) 5FRO ; 2.67 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ446 (compound 4f) 7ADV ; 2.65 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with magnesium and the INSTI XZ447 (compound 6v) 3L2W ; 3.2 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with manganese and GS9137 (Elvitegravir) 3L2V ; 3.2 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with manganese and MK0518 (Raltegravir) 3OY9 ; 2.55 ; Crystal structure of the Prototype Foamy Virus (PFV) intasome in complex with manganese at 2.55 resolution 3S3O ; 2.55 ; Crystal structure of the Prototype Foamy Virus (PFV) N224H mutant intasome in complex with magnesium and Dolutegravir (S/GSK1349572) 3S3N ; 2.49 ; Crystal structure of the Prototype Foamy Virus (PFV) S217H mutant intasome in complex with magnesium and Dolutegravir (S/GSK1349572) 5UOP ; 2.85 ; CRYSTAL STRUCTURE OF THE PROTOTYPE FOAMY VIRUS INTASOME WITH A 2- PYRIDINONE AMINAL INHIBITOR (COMPOUND 18) 5UOQ ; 2.61 ; CRYSTAL STRUCTURE OF THE PROTOTYPE FOAMY VIRUS INTASOME WITH A 2- PYRIDINONE AMINAL INHIBITOR (COMPOUND 31) 4ZTF ; 2.7 ; Crystal Structure of the Prototype Foamy Virus Intasome with a 2-Pyridinone Aminal Inhibitor 4ZTJ ; 2.67 ; Crystal Structure of the Prototype Foamy Virus Intasome with a 2-Pyridinone Aminal Inhibitor 5Z1I ; 1.903 ; Crystal structure of the protozoal cytoplasmic ribosomal decoding site in complex with 6'-fluoro sisomicin 4GPW ; 3.0 ; Crystal structure of the protozoal cytoplasmic ribosomal decoding site in complex with 6'-hydroxysisomicin (P21212 form) 4GPX ; 2.6 ; Crystal structure of the protozoal cytoplasmic ribosomal decoding site in complex with 6'-hydroxysisomicin (P212121 form) 1W4S ; 1.55 ; Crystal structure of the proximal BAH domain of polybromo 2BAY ; 1.5 ; Crystal structure of the Prp19 U-box dimer 5F5T ; 2.55 ; Crystal structure of the Prp38-MFAP1 complex of Chaetomium thermophilum 5F5S ; 2.4 ; Crystal structure of the Prp38-MFAP1 complex of Homo sapiens 5LTK ; 3.241 ; Crystal structure of the Prp43-ADP-BeF3 complex (in hexagonal space group) 5LTJ ; 1.78 ; Crystal structure of the Prp43-ADP-BeF3 complex (in orthorhombic space group) 5LTA ; 2.621 ; Crystal structure of the Prp43-ADP-BeF3-U7-RNA complex 2XAU ; 1.9 ; Crystal structure of the Prp43p DEAH-box RNA helicase in complex with ADP 5JPT ; 2.935 ; CRYSTAL STRUCTURE OF THE PRP43P DEAH-BOX RNA HELICASE IN COMPLEX WITH CDP 2FBE ; 2.52 ; Crystal Structure of the PRYSPRY-domain 8C7I ; 2.12 ; Crystal structure of the PS2 assembly factor Psb32 from the cyanobactium Thermosyncechococcus vestitus (formerly elongatus) 5MB4 ; 2.0 ; Crystal Structure of the Psathyrella asperospora lectin PAL in complex with GlcNAc 5H2F ; 2.2 ; Crystal structure of the PsbM-deletion mutant of photosystem II 5CUK ; 2.1 ; Crystal structure of the PscP SS domain 5CUL ; 2.9 ; crystal structure of the PscU C-terminal domain 2WL7 ; 2.028 ; Crystal structure of the PSD93 PDZ1 domain 8H2C ; 2.9 ; Crystal structure of the pseudaminic acid synthase PseI from Campylobacter jejuni 2W38 ; 1.9 ; Crystal structure of the pseudaminidase from Pseudomonas aeruginosa 4HHW ; 2.0 ; Crystal structure of the Pseudomonas aeruginosa azurin, H124NO YOH122 4HIP ; 1.9 ; Crystal structure of the Pseudomonas aeruginosa azurin, H126NO YOH109 4HHG ; 1.6 ; Crystal structure of the Pseudomonas aeruginosa azurin, RuH107NO YOH109 7E3U ; 2.159 ; Crystal structure of the Pseudomonas aeruginosa dihydropyrimidinase complexed with 5-AU 6KLK ; 1.759 ; Crystal structure of the Pseudomonas aeruginosa dihydropyrimidinase complexed with 5-FU 4NQZ ; 2.604 ; Crystal Structure of the Pseudomonas aeruginosa Enoyl-Acyl Carrier Protein Reductase (FabI) in apo form 4NR0 ; 1.799 ; Crystal structure of the Pseudomonas aeruginosa Enoyl-Acyl Carrier Protein Reductase (FabI) in complex with NAD+ and triclosan 1EX9 ; 2.54 ; CRYSTAL STRUCTURE OF THE PSEUDOMONAS AERUGINOSA LIPASE COMPLEXED WITH RC-(RP,SP)-1,2-DIOCTYLCARBAMOYL-GLYCERO-3-O-OCTYLPHOSPHONATE 3P3E ; 1.28 ; Crystal Structure of the PSEUDOMONAS AERUGINOSA LpxC/LPC-009 complex 4LCF ; 1.599 ; Crystal structure of the Pseudomonas aeruginosa LPXC/LPC-014 complex 5DRQ ; 1.63 ; Crystal structure of the Pseudomonas aeruginosa LpxC/LPC-040 complex 4LCG ; 1.568 ; Crystal structure of the Pseudomonas aeruginosa LPXC/LPC-050 complex 4LCH ; 1.596 ; Crystal structure of the Pseudomonas aeruginosa LPXC/LPC-051 complex 5DRR ; 1.59 ; Crystal structure of the Pseudomonas aeruginosa LpxC/LPC-058 complex 3S2U ; 2.23 ; Crystal structure of the Pseudomonas aeruginosa MurG:UDP-GlcNAc substrate complex 6OVK ; 1.761 ; Crystal Structure of the Pseudomonas capeferrum Anti-sigma Regulator PupR C-terminal Cell-surface Signaling Domain in Complex with the Outer Membrane Transporter PupB N-terminal Signaling Domain 6OVM ; 1.6 ; Crystal Structure of the Pseudomonas capeferrum Anti-sigma Regulator PupR C-terminal Cell-surface Signaling Domain in Complex with the Outer Membrane Transporter PupB N-terminal Signaling Domain (SeMet) 4FBO ; 1.7 ; Crystal structure of the Pseudomonas fluorescens agglutinin (PFA) 5O65 ; 2.5 ; Crystal Structure of the Pseudomonas functional amyloid secretion protein FapF 5O68 ; 3.08 ; Crystal Structure of the Pseudomonas functional amyloid secretion protein FapF - R157A mutant 4RU5 ; 1.52 ; Crystal Structure of the Pseudomonas phage phi297 tailspike gp61 3BRZ ; 3.2 ; Crystal structure of the Pseudomonas putida toluene transporter TodX 4FU6 ; 2.1 ; Crystal structure of the PSIP1 PWWP domain 6GQC ; 1.4 ; Crystal Structure of the PSMalpha3 Peptide Mutant G16A Forming Cross-Alpha Amyloid-like Fibril 6GQ2 ; 1.54 ; Crystal Structure of the PSMalpha3 Peptide Mutant K12A Forming Cross-Alpha Amyloid-like Fibril 6GQ5 ; 1.5 ; Crystal Structure of the PSMalpha3 Peptide Mutant L15A Forming Cross-Alpha Amyloid-like Fibril 3H9X ; 2.51 ; Crystal Structure of the PSPTO_3016 protein from Pseudomonas syringae, Northeast Structural Genomics Consortium Target PsR293 4DT1 ; 1.899 ; Crystal structure of the Psy3-Csm2 complex 2ELA ; 2.0 ; Crystal Structure of the PTB domain of human APPL1 4XWX ; 1.87 ; Crystal structure of the PTB domain of SHC 1D5R ; 2.1 ; Crystal Structure of the PTEN Tumor Suppressor 6D4D ; 1.765 ; Crystal structure of the PTP epsilon D1 domain 6D3F ; 2.271 ; Crystal Structure of the PTP epsilon D2 domain 1NWL ; 2.4 ; Crystal structure of the PTP1B complexed with SP7343-SP7964, a pTyr mimetic 6XE8 ; 1.952 ; Crystal Structure of the PTP1B YopH WPD loop Chimera 3 apo form 6XED ; 1.795 ; Crystal Structure of the PTP1B YopH WPD loop Chimera 3 bound to tungstate 6XEA ; 1.549 ; Crystal Structure of the PTP1B YopH WPD loop Chimera 3 bound to vanadate 6XEE ; 2.501 ; Crystal Structure of the PTP1B YopH WPD loop Chimera 4 apo form 6XEG ; 2.549 ; Crystal structure of the PTP1B YopH WPD loop Chimera 4 bound to tungstate 6XEF ; 2.048 ; Crystal structure of the PTP1B YopH WPD loop Chimera 4 bound to vanadate 6ZZ4 ; 2.43 ; Crystal structure of the PTPN2 C216G mutant 4QUN ; 1.86 ; Crystal structure of the PTPN3 (PTPH1) catalytic domain C842S mutant 6T36 ; 1.86 ; Crystal structure of the PTPN3 PDZ domain bound to the HBV core protein C-terminal peptide 6HKS ; 2.19441 ; Crystal structure of the PTPN3 PDZ domain bound to the HPV16 E6 oncoprotein C-terminal peptide 8OEP ; 1.87 ; Crystal structure of the PTPN3 PDZ domain bound to the HPV18 E6 oncoprotein C-terminal peptide 8CQY ; 1.7 ; Crystal structure of the PTPN3 PDZ domain bound to the PBM TACE C-terminal peptide 3NFK ; 1.43 ; Crystal structure of the PTPN4 PDZ domain complexed with the C-terminus of a rabies virus G protein 3NFL ; 1.91 ; Crystal structure of the PTPN4 PDZ domain complexed with the C-terminus of the GluN2A NMDA receptor subunit 5EZ0 ; 2.35 ; CRYSTAL STRUCTURE OF THE PTPN4 PDZ DOMAIN COMPLEXED WITH THE PDZ BINDING MOTIF OF THE MITOGEN ACTIVATED PROTEIN KINASE P38GAMMA. 5EYZ ; 2.09 ; CRYSTAL STRUCTURE OF THE PTPN4 PDZ DOMAIN COMPLEXED WITH THE TAILORED PEPTIDE CYTO8-RETEV 2NZ6 ; 2.3 ; Crystal structure of the PTPRJ inactivating mutant C1239S 3K1S ; 2.3 ; Crystal Structure of the PTS Cellobiose Specific Enzyme IIA from Bacillus anthracis 5T3U ; 2.15 ; Crystal Structure of the PTS IIA protein associated with the fucose utilization operon from Streptococcus pneumoniae 5T5D ; 2.5 ; Crystal Structure of the PTS IIB protein associated with the fucose utilization operon from Streptococcus pneumoniae 1FCH ; 2.2 ; CRYSTAL STRUCTURE OF THE PTS1 COMPLEXED TO THE TPR REGION OF HUMAN PEX5 4JUY ; 2.4 ; Crystal structure of the PUB domain of E3 ubiquitin ligase RNF31 2HPJ ; 1.7 ; Crystal structure of the PUB domain of mouse PNGase 3GSN ; 2.8 ; Crystal structure of the public RA14 TCR in complex with the HCMV dominant NLV/HLA-A2 epitope 8AB1 ; 2.77 ; Crystal structure of the PulL-PulM C-terminal domain heterocomplex 6NY5 ; 3.002 ; Crystal structure of the PUM-HD domain of S. pombe Puf1 in complex with RNA 3Q0N ; 2.4 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO1 in complex with erk2 NRE 3Q0O ; 2.804 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO1 in complex with erk2 NRE 3Q0P ; 2.6 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO1 in complex with hunchback NRE 1M8X ; 2.2 ; CRYSTAL STRUCTURE OF THE PUMILIO-HOMOLOGY DOMAIN FROM HUMAN PUMILIO1 IN COMPLEX WITH NRE1-14 RNA 1M8W ; 2.2 ; CRYSTAL STRUCTURE OF THE PUMILIO-HOMOLOGY DOMAIN FROM HUMAN PUMILIO1 IN COMPLEX WITH NRE1-19 RNA 1M8Y ; 2.6 ; CRYSTAL STRUCTURE OF THE PUMILIO-HOMOLOGY DOMAIN FROM HUMAN PUMILIO1 IN COMPLEX WITH NRE2-10 RNA 3Q0L ; 2.503 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO1 in complex with p38alpha NREa 3Q0M ; 2.705 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO1 in complex with p38alpha NREb 3Q0S ; 2.0 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO2 in complex with erk2 NRE 3Q0Q ; 2.0 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO2 in complex with p38alpha NREa 3Q0R ; 2.0 ; Crystal structure of the PUMILIO-homology domain from Human PUMILIO2 in complex with p38alpha NREb 5KL8 ; 4.0 ; Crystal structure of the Pumilio-Nos-CyclinB RNA complex 5KL1 ; 3.701 ; Crystal structure of the Pumilio-Nos-hunchback RNA complex 1TD1 ; 1.9 ; Crystal Structure of the Purine Nucleoside Phosphorylase from Schistosoma mansoni in complex with acetate 1TCV ; 1.75 ; Crystal Structure of the Purine Nucleoside Phosphorylase from Schistosoma mansoni in complex with Non-detergent Sulfobetaine 195 and acetate 1TCU ; 2.0 ; Crystal Structure of the Purine Nucleoside Phosphorylase from Schistosoma mansoni in complex with phosphate and acetate 1O57 ; 2.2 ; CRYSTAL STRUCTURE OF THE PURINE OPERON REPRESSOR OF BACILLUS SUBTILIS 6JC6 ; 1.9 ; Crystal structure of the purple chromoprotein of Stichodactyla haddoni with a Glu-Tyr-Gly tri-peptide chromophore 1P4A ; 2.22 ; Crystal Structure of the PurR complexed with cPRPP 2EW2 ; 2.0 ; Crystal Structure of the Putative 2-Dehydropantoate 2-Reductase from Enterococcus faecalis 2NVV ; 2.7 ; Crystal Structure of the Putative Acetyl-CoA hydrolase/transferase PG1013 from Porphyromonas gingivalis, Northeast Structural Genomics Target PgR16. 3U6U ; 1.92 ; Crystal structure of the putative acetylglutamate kinase from thermus thermophilus 4E2A ; 2.0 ; Crystal Structure of the Putative acetyltransferase from Streptococcus mutans 2PDO ; 2.0 ; Crystal Structure of the Putative Acetyltransferase of GNAT Family from Shigella flexneri 1ZMB ; 2.61 ; Crystal Structure of the Putative Acetylxylan Esterase from Clostridium acetobutylicum, Northeast Structural Genomics Target CaR6 2HJ0 ; 2.7 ; Crystal Structure of the Putative Alfa Subunit of Citrate Lyase in Complex with Citrate from Streptococcus mutans, Northeast Structural Genomics Target SmR12 . 4RPC ; 2.1 ; Crystal structure of the putative alpha/beta hydrolase family protein from Desulfitobacterium hafniense 3V48 ; 2.1 ; Crystal Structure of the putative alpha/beta hydrolase RutD from E.coli 6A8S ; 2.05 ; Crystal Structure of the putative amino acid-binding periplasmic ABC transporter protein from Candidatus Liberibacter asiaticus in complex with Cysteine 1XQ4 ; 2.7 ; Crystal Structure of the Putative ApaA Protein from Bordetella pertussis, Northeast Structural Genomics Target BeR40 1ZBR ; 2.6 ; Crystal Structure of the Putative Arginine Deiminase from Porphyromonas gingivalis, Northeast Structural Genomics Target PgR3 1Y0U ; 1.6 ; Crystal Structure of the putative arsenical resistance operon repressor from Archaeoglobus fulgidus 7R6S ; 1.9 ; Crystal Structure of the Putative Bacteriophage Protein from Stenotrophomonas maltophilia 4CHE ; 1.8 ; Crystal structure of the putative cap-binding domain of the PB2 subunit of Thogoto virus polymerase 4CHF ; 3.0 ; Crystal structure of the putative cap-binding domain of the PB2 subunit of Thogoto virus polymerase (form 2) 3BQW ; 2.2 ; Crystal structure of the putative capsid protein of prophage (E.coli CFT073) 2JJ6 ; 2.0 ; Crystal structure of the putative carbohydrate recognition domain of the human galectin-related protein 1YO6 ; 2.6 ; Crystal Structure of the putative Carbonyl Reductase Sniffer of Caenorhabditis elegans 6NIQ ; 1.353 ; Crystal Structure of the Putative Class A Beta-Lactamase PenP from Rhodopseudomonas palustris 1TWD ; 1.7 ; Crystal Structure of the Putative Copper Homeostasis Protein (CutC) from Shigella flexneri, Northeast Structural Genomics Target SfR33 2BDQ ; 2.3 ; Crystal Structure of the Putative Copper Homeostasis Protein CutC from Streptococcus agalactiae, Northeast Strucural Genomics Target SaR15. 2IXD ; 1.8 ; Crystal structure of the putative deacetylase BC1534 from Bacillus cereus 2IF2 ; 3.0 ; Crystal Structure of the Putative Dephospho-CoA Kinase from Aquifex aeolicus, Northeast Structural Genomics Target QR72. 3OIX ; 2.399 ; Crystal structure of the putative dihydroorotate dehydrogenase from Streptococcus mutans 3DHN ; 2.0 ; Crystal structure of the putative epimerase Q89Z24_BACTN from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium target BtR310. 7TEM ; 1.65 ; Crystal Structure of the Putative Exported Protein YPO2471 from Yersinia pestis 7TJ1 ; 2.1 ; Crystal Structure of the Putative Fluoride Ion Transporter CrcB Bab1_1389 from Brucella abortus 2BDT ; 2.4 ; Crystal Structure of the Putative Gluconate Kinase from Bacillus halodurans, Northeast Structural Genomics Target BhR61 2EBA ; 2.21 ; Crystal structure of the putative glutaryl-CoA dehydrogenase from thermus thermophilus 1SQ4 ; 2.7 ; Crystal Structure of the Putative Glyoxylate Induced Protein from Pseudomonas aeruginosa, Northeast Structural Genomics Target PaR14 6NLR ; 2.1 ; Crystal structure of the putative histidinol phosphatase hisK from Listeria monocytogenes with trinuclear metals determined by PIXE revealing sulphate ion in active site. Based on PIXE analysis and original date from 3DCP 3DCP ; 2.1 ; Crystal structure of the putative histidinol phosphatase hisK from Listeria monocytogenes. Northeast Structural Genomics Consortium target LmR141. 7L6J ; 1.78 ; Crystal Structure of the Putative Hydrolase from Stenotrophomonas maltophilia 2V7S ; 1.96 ; Crystal structure of the putative lipoprotein LppA from Mycobacterium tuberculosis 1TZ9 ; 2.9 ; Crystal Structure of the Putative Mannonate Dehydratase from Enterococcus faecalis, Northeast Structural Genomics Target EfR41 2F9F ; 1.8 ; Crystal Structure of the Putative Mannosyl Transferase (wbaZ-1)from Archaeoglobus fulgidus, Northeast Structural Genomics Target GR29A. 1ZBS ; 2.3 ; Crystal Structure of the Putative N-acetylglucosamine Kinase (PG1100) from Porphyromonas gingivalis, Northeast Structural Genomics Target PgR18 2GSW ; 2.92 ; Crystal Structure of the Putative NADPH-dependent Azobenzene FMN-Reductase YhdA from Bacillus subtilis, Northeast Structural Genomics Target SR135 3C0D ; 2.4 ; Crystal structure of the putative nitrite reductase NADPH (small subunit) oxidoreductase protein Q87HB1. Northeast Structural Genomics Consortium target VpR162 2IFA ; 2.3 ; Crystal Structure of the PUTATIVE NITROREDUCTASE (SMU.260) IN COMPLEX WITH FMN FROM STREPTOCOCCUS MUTANS, NORTHEAST STRUCTURAL GENOMICS TARGET SMR5. 4XCM ; 2.65 ; Crystal structure of the putative NlpC/P60 D,L endopeptidase from T. thermophilus 2ISM ; 1.9 ; Crystal structure of the putative oxidoreductase (glucose dehydrogenase) (TTHA0570) from thermus theromophilus HB8 2CSG ; 2.9 ; Crystal Structure of the Putative Oxidoreductase from Salmonella typhimurium LT2 7TWE ; 2.41 ; Crystal Structure of the Putative Oxidoreductase of DUF1479-containing Protein Family YPO2976 from Yersinia pestis Bound to 2-oxo-glutaric acid 7TWC ; 1.85 ; Crystal Structure of the Putative Oxidoreductase of DUF1479-containing Protein Family YPO2976 from Yersinia pestis Bound to CAPS 1XKN ; 1.6 ; Crystal Structure of the Putative Peptidyl-arginine Deiminase from Chlorobium tepidum, NESG Target CtR21 5T1P ; 2.0 ; Crystal structure of the putative periplasmic solute-binding protein from Campylobacter jejuni 1SPV ; 2.0 ; Crystal Structure of the Putative Phosphatase of Escherichia coli, Northeast Structural Genomoics Target ER58 2RFL ; 2.35 ; Crystal structure of the putative phosphohistidine phosphatase SixA from Agrobacterium tumefaciens 4V33 ; 1.48 ; Crystal structure of the putative polysaccharide deacetylase BA0330 from bacillus anthracis 1TM0 ; 2.8 ; Crystal Structure of the putative proline racemase from Brucella melitensis, Northeast Structural Genomics Target LR31 3CNE ; 1.99 ; Crystal structure of the putative protease I from Bacteroides thetaiotaomicron 2E8B ; 1.61 ; Crystal structure of the putative protein (Aq1419) from Aquifex aeolicus VF5 2GTA ; 2.9 ; Crystal Structure of the putative pyrophosphatase YPJD from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR428. 2QQ8 ; 2.0 ; Crystal structure of the putative RabGAP domain of human TBC1 domain family member 14 2AP1 ; 1.9 ; Crystal structure of the putative regulatory protein 2GH1 ; 2.5 ; Crystal Structure of the putative SAM-dependent methyltransferase BC2162 from Bacillus cereus, Northeast Structural Genomics Target BcR20. 2FA8 ; 1.9 ; Crystal Structure of the Putative Selenoprotein W-related family Protein from Agrobacterium tumefaciens 2QZU ; 1.7 ; Crystal structure of the putative sulfatase yidJ from Bacteroides fragilis. Northeast Structural Genomics Consortium target BfR123 2GUH ; 1.52 ; Crystal Structure of the Putative TetR-family Transcriptional Regulator from Rhodococcus sp. RHA1 2HF1 ; 1.9 ; Crystal structure of the putative Tetraacyldisaccharide-1-P 4-kinase from Chromobacterium violaceum. NESG target CvR39. 1T82 ; 1.7 ; Crystal Structure of the putative thioesterase from Shewanella oneidensis, Northeast Structural Genomics Target SoR51 5V10 ; 1.9 ; Crystal structure of the putative tol-pal system-associated acyl-CoA thioesterase from Pseudomonas aeruginosa PAO1 2FSW ; 2.16 ; Crystal Structure of the Putative Transcriptional Regualator, MarR family from Porphyromonas gingivalis W83 2RA5 ; 2.4 ; Crystal structure of the putative transcriptional regulator from Streptomyces coelicolor 2DG7 ; 2.3 ; Crystal structure of the putative transcriptional regulator SCO0337 from Streptomyces coelicolor A3(2) 2DG6 ; 2.2 ; Crystal structure of the putative transcriptional regulator SCO5550 from Streptomyces coelicolor A3(2) 2DG8 ; 2.21 ; Crystal structure of the putative trasncriptional regulator SCO7518 from Streptomyces coelicolor A3(2) 1Z2Z ; 2.6 ; Crystal Structure of the Putative tRNA pseudouridine synthase D (TruD) from Methanosarcina mazei, Northeast Structural Genomics Target MaR1 2R0J ; 1.85 ; Crystal structure of the putative ubiquitin conjugating enzyme, PFE1350c, from Plasmodium falciparum 3F08 ; 2.2 ; Crystal structure of the putative uncharacterized protein Q6HG14 from Bacilllus thuringiensis. Northeast Structural Genomics Consortium target BuR153. 2BDR ; 1.6 ; Crystal Structure of the Putative Ureidoglycolate hydrolase PP4288 from Pseudomonas putida, Northeast Structural Genomics Target PpR49 1YPX ; 2.6 ; Crystal Structure of the Putative Vitamin-B12 Independent Methionine Synthase from Listeria monocytogenes, Northeast Structural Genomics Target LmR13 1Z7U ; 2.2 ; Crystal Structure of the Putitive Transcriptional Regulator of MarR Family from Enterococcus faecalis V583 3E59 ; 2.1 ; Crystal structure of the PvcA (PA2254) protein from Pseudomonas aeruginosa 3EAT ; 2.5 ; Crystal structure of the PvcB (PA2255) protein from Pseudomonas aeruginosa 1K0Z ; 2.05 ; Crystal Structure of the PvuII endonuclease with Pr3+ and SO4 ions bound in the active site at 2.05A. 3LLR ; 2.3 ; Crystal structure of the PWWP domain of Human DNA (cytosine-5-)-methyltransferase 3 alpha 5XSL ; 3.3 ; Crystal structure of the PWWP domain of human hepatoma-derived growth factor 3QBY ; 1.95 ; Crystal structure of the PWWP domain of human Hepatoma-derived growth factor 2 1KHC ; 1.8 ; Crystal Structure of the PWWP Domain of Mammalian DNA Methyltransferase Dnmt3b 7V8N ; 2.05 ; Crystal structure of the PWWP-ARID domain of ARID4A 2YPS ; 2.6 ; Crystal structure of the PX domain of human sorting nexin 3 3FOG ; 2.8 ; Crystal structure of the PX domain of sorting nexin-17 (SNX17) 4UP5 ; 1.65 ; Crystal structure of the Pygo2 PHD finger in complex with the B9L HD1 domain and a chemical fragment 4UHQ ; 1.5 ; Crystal structure of the pyocin AP41 DNase 4UHP ; 2.0 ; Crystal structure of the pyocin AP41 DNase-Immunity complex 6EYV ; 2.704 ; Crystal structure of the pyoverdine maturation protein PvdP in complex with the mock substrates L-tyrosine and zinc. 3QN1 ; 1.8 ; Crystal structure of the PYR1 Abscisic Acid receptor in complex with the HAB1 type 2C phosphatase catalytic domain 1GC0 ; 1.7 ; CRYSTAL STRUCTURE OF THE PYRIDOXAL-5'-PHOSPHATE DEPENDENT L-METHIONINE GAMMA-LYASE FROM PSEUDOMONAS PUTIDA 1GC2 ; 2.0 ; CRYSTAL STRUCTURE OF THE PYRIDOXAL-5'-PHOSPHATE DEPENDENT L-METHIONINE GAMMA-LYASE FROM PSEUDOMONAS PUTIDA 4J8L ; 1.651 ; CRYSTAL STRUCTURE OF THE PYRIDOXAL-5'-PHOSPHATE DEPENDENT protein YhfS from Escherichia coli 4KBX ; 1.599 ; Crystal structure of the pyridoxal-5'-phosphate dependent protein yhfx from escherichia coli 8AAJ ; 3.7 ; Crystal structure of the Pyrococcus abyssi RPA (apo form) 8AAS ; 3.2 ; Crystal structure of the Pyrococcus abyssi RPA trimerization core bound to poly-dT20 ssDNA 4DHV ; 1.95 ; Crystal structure of the Pyrococcus furiosus ferredoxin D14C variant containing the heterometallic [AgFe3S4] cluster 3NWC ; 1.6961 ; Crystal Structure of the Pyrococcus furiosus SMC Protein Hinge Domain 1AUG ; 2.0 ; CRYSTAL STRUCTURE OF THE PYROGLUTAMYL PEPTIDASE I FROM BACILLUS AMYLOLIQUEFACIENS 5FDV ; 2.8 ; Crystal structure of the Pyrrhocoricin antimicrobial peptide bound to the Thermus thermophilus 70S ribosome 5NMW ; 1.89 ; Crystal Structure of the pyrrolizidine alkaloid N-oxygenase from Zonocerus variegatus in complex with FAD 5NMX ; 1.6 ; Crystal Structure of the pyrrolizidine alkaloid N-oxygenase from Zonocerus variegatus in complex with FAD and NADP+ 3EXE ; 1.979 ; Crystal structure of the pyruvate dehydrogenase (E1p) component of human pyruvate dehydrogenase complex 3EXF ; 2.998 ; Crystal structure of the pyruvate dehydrogenase (E1p) component of human pyruvate dehydrogenase complex 3EXG ; 3.011 ; Crystal structure of the pyruvate dehydrogenase (E1p) component of human pyruvate dehydrogenase complex 3EXH ; 2.444 ; Crystal structure of the pyruvate dehydrogenase (E1p) component of human pyruvate dehydrogenase complex 3EXI ; 2.2 ; Crystal structure of the pyruvate dehydrogenase (E1p) component of human pyruvate dehydrogenase complex with the subunit-binding domain (SBD) of E2p, but SBD cannot be modeled into the electron density 6DU6 ; 3.513 ; Crystal structure of the pyruvate kinase (PK1) from the mosquito Aedes aegypti 3H2S ; 1.78 ; Crystal Structure of the Q03B84 Protein from Lactobacillus casei. Northeast Structural Genomics Consortium Target LcR19. 4RL6 ; 2.79 ; Crystal Structure of the Q04L03_STRP2 protein from Streptococcus pneumoniae. Northeast Structural Genomics Consortium Target SpR105 4O1Q ; 2.59 ; Crystal Structure of the Q103N-MauG/pre-Methylamine Dehydrogenase Complex 4EXZ ; 1.608 ; Crystal Structure of the Q108K:K40L Mutant of Cellular Retinol Binding Protein Type II in Complex with All-trans-Retinal at 1.7 Angstrom Resolution 4RUU ; 1.4 ; Crystal structure of the Q108K:K40L mutant of human Cellular Retinol Binding ProteinII in complex with All-trans-Retinal after 24 hour incubation at 1.4 Angstrom Resolution 5FAZ ; 1.4 ; Crystal structure of the Q108K:K40L:T51V mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal after 24 hours of incubation at 1.4 Angstrom Resolution 5F58 ; 1.54 ; Crystal structure of the Q108K:K40L:T51V:R58F mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal after 24 hours of incubation at 1.54 Angstrom Resolution 6C7Z ; 1.42 ; Crystal structure of the Q108K:K40L:T51V:R58F mutant of human Cellular Retinol Binding Protein II in complex with synthetic Ligand Julolidine 5FFH ; 1.68 ; Crystal structure of the Q108K:K40L:T51V:R58W:Y19W mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal at 1.68 Angstrom Resolution 5F6B ; 1.31 ; Crystal structure of the Q108K:K40L:T51V:R58Y:Y19W mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal at 1.3 Angstrom Resolution 5F7G ; 1.48 ; Crystal structure of the Q108K:K40L:T51V:R58Y:Y19W:Q38L mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal at 1.48 Angstrom Resolution 4EFG ; 1.58 ; Crystal Structure of the Q108K:K40L:T51V:T53C:Y19W:R58W:T29L Mutant of Cellular Retinol Binding Protein Type II in Complex with All-trans-Retinal at 1.58 Angstrom Resolution 4EDE ; 1.4 ; Crystal Structure of the Q108K:K40L:T51V:T53C:Y19W:R58W:T29L:A33W Mutant of Cellular Retinol Binding Protein Type II in Complex with All-trans-Retinal at 1.4 Angstrom Resolution 4EEJ ; 1.501 ; Crystal Structure of the Q108K:K40L:T51V:T53C:Y19W:R58W:T29L:Q4R Mutant of Cellular Retinol Binding Protein Type II in Complex with All-trans-Retinal at 1.5 Angstrom Resolution 5FEN ; 1.55 ; Crystal structure of the Q108K:K40L:T53C mutant of human Cellular Retinol Binding Protein II in complex with All-trans-Retinal after 24 hours of incubation at 1.55 Angstrom Resolution 3OEB ; 1.55 ; Crystal structure of the Q121E mutant of C.polysaccharolyticus CBM16-1 bound to mannopentaose 3OEA ; 1.35 ; Crystal structure of the Q121E mutants of C.polysaccharolyticus CBM16-1 bound to cellopentaose 4NVS ; 2.385 ; Crystal Structure of the Q18CP6_CLOD6 protein from glyoxalase family. Northeast Structural Genomics Consortium Target CfR3 1MQV ; 1.78 ; Crystal Structure of the Q1A/F32W/W72F mutant of Rhodopseudomonas palustris cytochrome c' (prime) expressed in E. coli 5KQK ; 1.75 ; Crystal structure of the Q233E/N240D variant of the catalase-peroxidase from B. pseudomallei 3IPF ; 1.988 ; Crystal structure of the Q251Q8_DESHY protein from Desulfitobacterium hafniense. Northeast Structural Genomics Consortium Target DhR8c. 3USH ; 1.692 ; Crystal Structure of the Q2S0R5 protein from Salinibacter ruber, Northeast Structural Genomics Consortium Target SrR207 3PU2 ; 2.606 ; Crystal Structure of the Q3J4M4_RHOS4 protein from Rhodobacter sphaeroides. Northeast Structural Genomics Consortium Target RhR263. 2PK7 ; 2.2 ; Crystal structure of the Q4KFT4_PSEF5 protein from Pseudomonas fluorescens. NESG target PlR1 3KKZ ; 1.677 ; Crystal structure of the Q5LES9_BACFN protein from Bacteroides fragilis. Northeast Structural Genomics Consortium Target BfR250. 2RA8 ; 1.95 ; Crystal structure of the Q64V53_BACFR protein from Bacteroides fragilis. Northeast Structural Genomics Consortium target BfR43 8AJU ; 1.645 ; Crystal structure of the Q65A mutant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa cocrystallized with adenosine in the presence of K+ cations 8AJW ; 1.819 ; Crystal structure of the Q65N mutant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa cocrystallized with adenosine in the presence of K+ cations 8AJV ; 1.9 ; Crystal structure of the Q65N mutant of S-adenosyl-L-homocysteine hydrolase from Pseudomonas aeruginosa crystallized in the presence of K+ cations 2PH0 ; 1.85 ; Crystal structure of the Q6D2T7_ERWCT protein from Erwinia carotovora. NESG target EwR41. 4INA ; 2.488 ; Crystal Structure of the Q7MSS8_WOLSU protein from Wolinella succinogenes. Northeast Structural Genomics Consortium Target WsR35 4RMM ; 2.2 ; Crystal Structure of the Q7NVP2_CHRVO protein from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvR191 6UN9 ; 2.8 ; Crystal Structure of the Q7VLF5_HAEDU protein from Haemophilus ducreyi. Northeast Structural Genomics Consortium Target Hdr25 3CPK ; 2.5 ; Crystal structure of the Q7W7N7_BORPA protein from Bordetella parapertussis. Northeast Structural Genomics Consortium target BeR31 3DKZ ; 2.4 ; Crystal structure of the Q7W9W5_BORPA protein from Bordetella parapertussis. Northeast Structural Genomics Consortium target BpR208C. 3HT4 ; 2.9 ; Crystal Structure of the Q81A77_BACCR Protein from Bacillus cereus. Northeast Structural Genomics Consortium Target BcR213 3B55 ; 2.3 ; Crystal structure of the Q81BN2_BACCR protein from Bacillus cereus. NESG target BcR135 3FGB ; 2.0 ; Crystal structure of the Q89ZH8_BACTN protein from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium target BtR289b. 3FVW ; 2.3 ; Crystal structure of the Q8DWD8_STRMU protein from Streptococcus mutans. Northeast Structural Genomics Consortium target SmR99. 3DR5 ; 2.25 ; Crystal structure of the Q8NRD3_CORGL protein from Corynebacterium glutamicum. Northeast Structural Genomics Consortium target CgR117. 3D5N ; 2.8 ; Crystal structure of the Q97W15_SULSO protein from Sulfolobus solfataricus. NESG target SsR125. 3F1T ; 2.2 ; Crystal structure of the Q9I3C8_PSEAE protein from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium target PaR319a. 4NAR ; 2.388 ; Crystal Structure of the Q9WYS3 protein from Thermotoga maritima. Northeast Structural Genomics Consortium Target VR152 4O51 ; 2.204 ; Crystal structure of the QAA variant of anti-hinge rabbit antibody 2095-2 in complex with IDES hinge peptide 4ZU5 ; 1.8 ; Crystal structure of the QdtA 3,4-Ketoisomerase from Thermoanaerobacterium thermosaccharolyticum, apo form 3FYP ; 1.85 ; Crystal structure of the quadruple mutant (N23C/C246S/D247E/P249A) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 1L1H ; 1.75 ; Crystal Structure of the Quadruplex DNA-Drug Complex 4DNN ; 2.1 ; Crystal structure of the Quaking Qua1 homodimerization domain 6ZGP ; 2.01 ; Crystal structure of the quaternary ammonium Rieske monooxygenase CntA in complex with inhibitor MMV12 (MMV020670) 6Y8S ; 1.629 ; Crystal structure of the quaternary ammonium Rieske monooxygenase CntA in complex with substrate gamma-butyrobetaine 6Y9D ; 1.97 ; Crystal structure of the quaternary ammonium Rieske monooxygenase CntA in complex with substrate L-Carnitine 5C3I ; 3.5 ; Crystal structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2 3AU9 ; 1.9 ; Crystal structure of the quaternary complex-1 of an isomerase 3AUA ; 2.15 ; Crystal structure of the quaternary complex-2 of an isomerase 2NLO ; 1.643 ; Crystal Structure of the Quinate Dehydrogenase from Corynebacterium glutamicum 3SXT ; 1.81 ; Crystal Structure of the Quinol Form of Methylamine Dehydrogenase in Complex with the Diferrous Form of MauG 4K3I ; 2.0 ; Crystal Structure of the Quinol Form of Methylamine Dehydrogenase in Complex with the Diferrous Form of MauG, C2 Space Group 3C2F ; 2.35 ; Crystal structure of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae complexed with PRPP 3C2V ; 2.29 ; Crystal structure of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae complexed with PRPP and the inhibitor phthalate 3C2O ; 2.3 ; Crystal structure of the quinolinate phosphoribosyl transferase (BNA6) from Sachharomyces cerevisiae complexed with quinolinate 3C2R ; 2.4 ; Crystal structure of the quinolinate phosphoribosyl transferase (BNA6) from Sachharomyces cerevisiae complexed with the inhibitor phthalate 3SWS ; 1.86 ; Crystal Structure of the Quinone Form of Methylamine Dehydrogenase in Complex with the Diferric Form of MauG 5HS9 ; 2.1 ; Crystal structure of the quinone-bound YodB from B. subtilis 1FLG ; 2.6 ; CRYSTAL STRUCTURE OF THE QUINOPROTEIN ETHANOL DEHYDROGENASE FROM PSEUDOMONAS AERUGINOSA 2BBK ; 1.75 ; CRYSTAL STRUCTURE OF THE QUINOPROTEIN METHYLAMINE DEHYDROGENASE FROM PARACOCCUS DENITRIFICANS AT 1.75 ANGSTROMS 5CCJ ; 1.65 ; Crystal structure of the quintuple mutant of the synaptotagmin-1 C2B domain 1UPG ; 1.8 ; Crystal structure of the quorum-sensing protein TraM from Agrobacterium tumefaciens 1US6 ; 1.65 ; Crystal structure of the quorum-sensing protein TraM from Agrobacterium tumefaciens at 1.65 Ang. resolution 3S8Q ; 2.1 ; Crystal structure of the R-M controller protein C.Esp1396I OL operator complex 4OAQ ; 1.858 ; Crystal structure of the R-specific Carbonyl Reductase from Candida parapsilosis ATCC 7330 7C2O ; 2.9 ; Crystal structure of the R-specific Carbonyl Reductase from Candida parapsilosis ATCC 7330 without DTT 6GKW ; 1.9 ; Crystal structure of the R-type bacteriocin sheath protein CD1363 from Clostridium difficile in the pre-assembled state 6GKX ; 1.5 ; Crystal structure of the R-type bacteriocin tube protein CD1364 from Clostridium difficile in the pre-assembled state 3BXL ; 2.3 ; Crystal structure of the R-type calcium channeL (CaV2.3) IQ domain and CA2+calmodulin complex 6L2N ; 2.45 ; Crystal structure of the R.PabI(Y68F-K154A)-dsDNA(GTAC-3bp-GTAC) complex 6L2O ; 2.2 ; Crystal structure of the R.PabI(Y68F-K154A)-dsDNA(GTAC-5bp-GTAC) complex 6M3L ; 2.75 ; Crystal structure of the R.PabI(Y68F-K154A)-dsDNA(nonspecific) complex 1PR3 ; 2.15 ; Crystal Structure of the R103K Mutant of Aspartate Semialdehyde dehydrogenase from Haemophilus influenzae 1OZA ; 2.06 ; Crystal Structure of the R103L Mutant of Aspartate Semialdehyde Dehydrogenase from Haemophilus influenzae 4I9S ; 2.58 ; Crystal Structure of the R111K:R132L:Y134F:T54V:R59W Mutant of the Cellular Retinoic Acid Binding Protein Type II in Complex with All-Trans Retinal at 2.58 Angstrom Resolution 4I9R ; 2.6 ; Crystal Structure of the R111K:R132L:Y134F:T54V:R59W:A32W Mutant of the Cellular Retinoic Acid Binding Protein Type II in Complex with All-Trans Retinal at 2.6 Angstrom Resolution 4M7M ; 2.571 ; Crystal structure of the R111K:R132Q:Y134F:T54V:R59W:A32W mutant of the Cellular Retinoic Acid Binding Protein Type II in complex with All-Trans Retinal at 2.57 Angstrom Resolution 4M6S ; 2.47 ; Crystal structure of the R111K:R132Y:Y134F:T54V:R59W:A32W mutant of the Cellular Retinoic Acid Binding Protein Type II in complex with All-Trans Retinal at 2.38 Angstrom Resolution 4YDB ; 2.03 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y mutant of human Cellular Retinoic Acid Binding Protein II in complex with Retinal at 2.03 angstrom -UV irradiated crystal- 3rd cycle 4YBU ; 1.924 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y mutant of human Cellular Retinoic Acid Binding ProteinII in complex with Retinal after 24 h incubation and 1 hour UV irradiation at 1.92 angstrom - 1st cycle 4YBP ; 1.831 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y mutant of human cellular retinoic acid binding proteinii with retinal after 24 hour incubation at 1.83 angstrom resolution - thermodynamic product - 1st cycle 4YCE ; 1.953 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y mutant of human cellular retinoic acid binding proteinii with retinal at 1.95 angstrom- visible light irradiated crystal for 1 hour - 2nd cycle 4YKM ; 1.58 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y:A32W:F3Q mutant of human Cellular Retinoic Acid Binding Protein II with Retinal at 1.58 angstrom resolution 4YKO ; 1.57 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Q:R59Y:A32Y:F3Q mutant of human Cellular Retinoic Acid Binding Protein II with Retinal at 1.58 angstrom resolution 4YH0 ; 2.144 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Y:R59Y mutant of human Cellular Retinoic Acid Binding Protein II in complex with Retinal at 2.14 angstrom resolution - UV irradiated crystal - 3rd cycle 4YFP ; 1.951 ; CRYSTAL STRUCTURE OF THE R111K:Y134F:T54V:R132Q:P39Y:R59Y MUTANT OF HUMAN CELLULAR RETINOIC ACID BINDING PROTEIN II WITH RETINAL AFTER 20 MINUTES INCUBATION AT 1.95 ANGSTROM RESOLUTION-Kinetic Product 4YFR ; 1.952 ; Crystal structure of the R111K:Y134F:T54V:R132Q:P39Y:R59Y mutant of human Cellular Retinoic Acid Binding Protein II with Retinal at 1.95 Angstrom Resolution - UV irradiated crystal for 30 minutes - 1st Cycle 4YGZ ; 2.06 ; CRYSTAL STRUCTURE OF THE R111K:Y134F:T54V:R132Q:P39Y:R59Y MUTANT OF HUMAN CELLULAR RETINOIC ACID BINDING PROTEIN II WITH RETINAL AT 2.06 ANGSTROM RESOLUTION - VISIBLE LIGHT IRRADIATED CRYSTAL -3RD CYCLE 4YFQ ; 1.62 ; CRYSTAL STRUCTURE OF THE R111K:Y134F:T54V:R132Q:P39Y:R59Y MUTANT OF HUMAN CELLULAR RETINOIC ACID BINDING PROTEINII WITH RETINAL AFTER 24 HOURS INCUBATION AT 1.62 ANGSTROM RESOLUTION - Thermodynamic product - 1st cycle 4XIH ; 2.25 ; Crystal structure of the R116A mutant AhpE from Mycobacterium tuberculosis 3DYJ ; 1.85 ; Crystal Structure of the R11R12 Domains of Talin 1OQH ; 2.4 ; Crystal Structure of the R124A mutant of the N-lobe human transferrin 4FNY ; 2.45 ; Crystal structure of the R1275Q anaplastic lymphoma kinase catalytic domain in complex with a benzoxazole inhibitor 4QGV ; 1.73 ; Crystal structure of the R132K:R111L mutant of Cellular Retinoic Acid Binding ProteinII complexed with a synthetic ligand (Merocyanine) at 1.73 angstrom resolution. 3CR6 ; 1.22 ; Crystal Structure of the R132K:R111L:A32E Mutant of Cellular Retinoic Acid Binding Protein Type II Complexed with C15-aldehyde (a retinal analog) at 1.22 Angstrom resolution. 3FEN ; 1.56 ; Crystal structure of the R132K:R111L:A32E mutant of cellular retinoic acid-binding protein II at 1.56 angstrom resolution 3D97 ; 1.5 ; Crystal Structure of the R132K:R111L:L121E Mutant of Apo-Cellular Retinoic Acid Binding Protein Type II At 1.50 Angstroms Resolution 2G7B ; 1.18 ; Crystal Structure of the R132K:R111L:L121E mutant of Cellular Retinoic Acid Binding Protein Type II In Complex With All-Trans-Retinal At 1.18 Angstroms Resolution 4QGX ; 1.471 ; Crystal structure of the R132K:R111L:L121E mutant of Cellular Retinoic Acid Binding ProteinII complexed with a synthetic ligand (Merocyanine) at 1.47 angstrom resolution 3F8A ; 1.95 ; Crystal Structure of the R132K:R111L:L121E:R59W Mutant of Cellular Retinoic Acid-Binding Protein Type II Complexed with C15-aldehyde (a retinal analog) at 1.95 Angstrom resolution. 3FEP ; 2.6 ; Crystal structure of the R132K:R111L:L121E:R59W-CRABPII mutant complexed with a synthetic ligand (merocyanin) at 2.60 angstrom resolution. 3FEL ; 1.85 ; Crystal structure of the R132K:R111L:T54E mutant of cellular retinoic acid-binding protein II at 1.85 angstrom resolution 3F9D ; 2.0 ; Crystal structure of the R132K:R111L:T54E mutant of cellular retinoic acid-binding protein II complexed with C15-aldehyde (a retinal analog) at 2.00 angstrom resolution 3D96 ; 1.71 ; Crystal Structure of the R132K:Y134F Mutant of Apo-Cellular Retinoic Acid Binding Protein Type II at 1.71 Angstroms Resolution 2G79 ; 1.69 ; Crystal Structure of the R132K:Y134F Mutant of Cellular Retinoic Acid Binding Protein Type II in Complex with All-Trans-Retinal at 1.69 Angstroms Resolution 2G78 ; 1.7 ; Crystal Structure of the R132K:Y134F Mutant of Cellular Retinoic Acid Binding Protein Type II in Complex with All-Trans-Retinoic Acid at 1.70 Angstroms Resolution 3FEK ; 1.51 ; Crystal structure of the R132K:Y134F:R111L:L121D:T54V mutant of cellular retinoic acid-binding protein II at 1.51 angstrom resolution 3FA6 ; 1.54 ; Crystal structure of the R132K:Y134F:R111L:L121D:T54V mutant of cellular retinoic acid-binding protein II complexed with C15-aldehyde (a retinal analog) at 1.54 angstrom resolution 3D95 ; 1.2 ; Crystal Structure of the R132K:Y134F:R111L:L121E:T54V Mutant of Apo-Cellular Retinoic Acid Binding Protein Type II at 1.20 Angstroms Resolution 3CWK ; 1.6 ; Crystal Structure of the R132K:Y134F:R111L:T54V:L121E Mutant of Cellular Retinoic Acid Binding Protein Type II in Complex with All-trans-Retinoic Acid at 1.57 Angstroms Resolution 2X30 ; 1.95 ; Crystal structure of the r139n mutant of a bifunctional enzyme pria 5A4K ; 2.093 ; Crystal structure of the R139W variant of human NAD(P)H:quinone oxidoreductase 1OBK ; 2.2 ; crystal structure of the R158Q mutant of Malonamidase E2 from Bradyrhizobium japonicum 8OIY ; 2.1 ; Crystal structure of the R15908H missense variant of titin domain Fn3-3 8DY8 ; 2.1 ; Crystal structure of the R178Q mutant of ubiquitin carboxy terminal hydrolase L1 (UCH-L1) 2O0I ; 3.1 ; crystal structure of the R185A mutant of the N-terminal domain of the Group B Streptococcus Alpha C protein 1SYY ; 1.7 ; Crystal structure of the R2 subunit of ribonucleotide reductase from Chlamydia trachomatis 6M8H ; 2.07 ; Crystal Structure of the R208Q mutant of G(i) subunit alpha-1 3M0P ; 2.6 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Crystal obtained in ammonium sulphate at pH 4. 3M0Q ; 1.75 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Crystal obtained in ammonium sulphate at pH 5. 3M0R ; 1.1 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Crystal obtained in ammonium sulphate at pH 6. 3M0S ; 1.6 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Crystal obtained in ammonium sulphate at pH 7 3M0T ; 1.7 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Crystal obtained in ammonium sulphate at pH 9. 3M0U ; 1.1 ; Crystal Structure of the R21D mutant of alpha-spectrin SH3 domain. Hexagonal crystal obtained in sodium formate at pH 6.5. 1Y28 ; 2.1 ; Crystal structure of the R220A metBJFIXL HEME domain 3CLR ; 1.9 ; Crystal structure of the R236A ETF mutant from M. methylotrophus 3CLS ; 1.65 ; Crystal structure of the R236C mutant of ETF from Methylophilus methylotrophus 3CLT ; 2.0 ; Crystal structure of the R236E mutant of Methylophilus methylotrophus ETF 3CLU ; 1.8 ; Crystal structure of the R236K mutant from Methylophilus methylotrophus ETF 7ZD8 ; 2.03 ; Crystal structure of the R24E mutant of S-adenosyl-L-homocysteine hydrolase from Synechocystis sp. PCC 6803 cocrystallized with adenosine in the presence of Rb+ cations 7ZD7 ; 1.9 ; Crystal structure of the R24E/E352T double mutant of S-adenosyl-L-homocysteine hydrolase from Synechocystis sp. PCC 6803 cocrystallized with adenosine in the presence of Rb+ cations 1S07 ; 2.42 ; Crystal Structure of the R253A Mutant of 7,8-Diaminopelargonic Acid Synthase 1S06 ; 2.2 ; Crystal Structure of the R253K Mutant of 7,8-Diaminopelargonic Acid Synthase 3S19 ; 1.5009 ; Crystal Structure of the R262L mutant of 7-cyano-7-deazaguanine reductase, QueF from Vibrio cholerae complexed with preQ0 3SHF ; 3.55 ; Crystal structure of the R265S mutant of full-length murine Apaf-1 1PS8 ; 2.4 ; Crystal Structure of the R270K Mutant of Aspartate Semialdehyde dehydrogenase from Haemophilus influenzae 1JRG ; 2.1 ; Crystal Structure of the R3 form of Pectate Lyase A, Erwinia chrysanthemi 7LQK ; 2.1 ; Crystal structure of the R375A mutant of LeuT 7LQL ; 2.6 ; Crystal structure of the R375D mutant of LeuT 1YU8 ; 1.45 ; Crystal Structure of the R37A Mutant of Villin Headpiece 1MGV ; 2.1 ; Crystal Structure of the R391A Mutant of 7,8-Diaminopelargonic Acid Synthase 7A9J ; 1.72 ; Crystal structure of the R395G mutant form of Coronafacic Acid Ligase from Pectobacterium brasiliense 5J5N ; 2.629 ; Crystal structure of the R39W mutant of Populus trichocarpa glutathione transferase PtGSTU30 in complex with glutathione 6UO6 ; 2.15 ; Crystal Structure of the R422Q missense variant of human PGM1 2ZPC ; 2.35 ; Crystal structure of the R43L mutant of LolA in the closed form 2ZPD ; 1.85 ; Crystal structure of the R43L mutant of LolA in the open form 4I68 ; 1.63 ; Crystal structure of the R444A / R449A double mutant of the HERA RNA helicase RRM domain 3NJT ; 3.5 ; Crystal structure of the R450A mutant of the membrane protein FhaC 6HG8 ; 1.76 ; Crystal structure of the R460G disease-causing mutant of the human dihydrolipoamide dehydrogenase. 1NR1 ; 3.3 ; Crystal structure of the R463A mutant of human Glutamate dehydrogenase 3GEF ; 1.5 ; Crystal structure of the R482W mutant of lamin A/C 5VG7 ; 1.95 ; Crystal Structure of the R503Q missense variant of human PGM1 5VEC ; 2.20002 ; Crystal Structure of the R515L missense variant of human PGM1 5VIN ; 2.60004 ; Crystal Structure of the R515Q missense variant of human PGM1 5VBI ; 1.75 ; Crystal Structure of the R515W missense variant of human PGM1 4AM8 ; 1.99 ; Crystal structure of the R54G mutant of putrescine transcarbamylase from Enterococcus faecalis bound to a curing guanidinium ion 6WVW ; 2.11 ; Crystal structure of the R59P-SNAP25 containing SNARE complex 7JQK ; 1.33 ; Crystal structure of the R64A mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Human Kallikrein 4 7JQO ; 1.6 ; Crystal structure of the R64D mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Human Kallikrein 4 7JRX ; 1.77 ; Crystal structure of the R64F mutant of Bauhinia Bauhinioides complexed with Bovine Chymotrypsin 7JR1 ; 2.05 ; Crystal structure of the R64F mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Bovine Trypsin 7JQV ; 2.1 ; Crystal structure of the R64F mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Human Kallikrein 4 7JR2 ; 1.851 ; Crystal structure of the R64M mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Bovine Trypsin 7JQN ; 1.5 ; Crystal structure of the R64M mutant of Bauhinia Bauhinioides Kallikrein Inhibitor complexed with Human Kallikrein 4 2X0C ; 2.0 ; Crystal Structure of the R7R8 domains of Talin 3HK0 ; 2.6 ; Crystal Structure of the RA and PH Domains of Grb10 4GN1 ; 2.4 ; Crystal Structure of the RA and PH domains of Lamellipodin 5OD8 ; 2.2 ; Crystal structure of the RA-associated mAb B2 (Fab fragment) 5ODB ; 1.53 ; Crystal structure of the RA-associated mAb D10 (chimeric Fab fragment) 4DKX ; 1.9 ; Crystal Structure of the Rab 6A'(Q72L) 1LV0 ; 2.0 ; Crystal structure of the Rab effector guanine nucleotide dissociation inhibitor (GDI) in complex with a geranylgeranyl (GG) peptide 4ZDW ; 2.9 ; Crystal structure of the Rab GTPase Sec4p mutant - S29V in complex with Sec2p and GDP 2EQB ; 2.7 ; Crystal structure of the Rab GTPase Sec4p, the Sec2p GEF domain, and phosphate complex 6S8X ; 2.29 ; Crystal structure of the Rab-binding domain of FIP2 6DJL ; 3.10001 ; Crystal structure of the Rab11 GEF SH3BP5 bound to nucleotide free Rab11A 7OPP ; 2.32 ; Crystal structure of the Rab27a fusion with Slp2a-RBDa1 effector for SF4 pocket drug targeting 4Q9U ; 4.618 ; Crystal structure of the Rab5, Rabex-5delta and Rabaptin-5C21 complex 4QXA ; 2.3 ; Crystal structure of the Rab9A-RUTBC2 RBD complex 2VUO ; 1.95 ; Crystal structure of the rabbit IgG Fc fragment 3ADO ; 1.7 ; Crystal Structure of the Rabbit L-Gulonate 3-Dehydrogenase 3ADP ; 1.85 ; Crystal Structure of the Rabbit L-Gulonate 3-Dehydrogenase (NADH Form) 1J0X ; 2.4 ; Crystal structure of the rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 3HZJ ; 2.3 ; Crystal structure of the RabGAP domain of the RABGAP1L protein 2GTT ; 3.49 ; Crystal structure of the rabies virus nucleoprotein-RNA complex 8B8V ; 2.3 ; Crystal structure of the Rabies virus RNA free nucleoprotein- phosphoprotein complex 6SR6 ; 2.5 ; Crystal structure of the RAC core with a pseudo substrate bound to Ssz1 SBD 2QSF ; 2.35 ; Crystal structure of the Rad4-Rad23 complex 3QBZ ; 2.692 ; Crystal structure of the Rad53-recognition domain of Saccharomyces cerevisiae Dbf4 2CVF ; 2.6 ; Crystal structure of the RadB recombinase 2CVH ; 2.2 ; Crystal structure of the RadB recombinase 2C3Y ; 1.93 ; CRYSTAL STRUCTURE OF THE RADICAL FORM OF PYRUVATE:FERREDOXIN OXIDOREDUCTASE FROM Desulfovibrio africanus 1GC7 ; 2.8 ; CRYSTAL STRUCTURE OF THE RADIXIN FERM DOMAIN 1GC6 ; 2.9 ; CRYSTAL STRUCTURE OF THE RADIXIN FERM DOMAIN COMPLEXED WITH INOSITOL-(1,4,5)-TRIPHOSPHATE 2YVC ; 3.2 ; Crystal structure of the Radixin FERM domain complexed with the NEP cytoplasmic tail 2D10 ; 2.5 ; Crystal structure of the Radixin FERM domain complexed with the NHERF-1 C-terminal tail peptide 2D11 ; 2.81 ; Crystal structure of the Radixin FERM domain complexed with the NHERF-2 C-terminal tail peptide 1J19 ; 2.4 ; Crystal structure of the radxin FERM domain complexed with the ICAM-2 cytoplasmic peptide 3GNA ; 2.4 ; Crystal structure of the RAG1 nonamer-binding domain with DNA 3GNB ; 3.0 ; Crystal structure of the RAG1 nonamer-binding domain with DNA 7EAG ; 2.5 ; Crystal structure of the RAGATH-18 k-turn 1ZC3 ; 2.0 ; Crystal structure of the Ral-binding domain of Exo84 in complex with the active RalA 1ZC4 ; 2.5 ; Crystal structure of the Ral-binding domain of Exo84 in complex with the active RalA 1UAD ; 2.1 ; Crystal structure of the RalA-GppNHp-Sec5 Ral-binding domain complex 3BRY ; 3.2 ; Crystal structure of the Ralstonia pickettii toluene transporter TbuX 3OAN ; 2.3 ; Crystal structure of the Ran Binding Domain From The Nuclear Complex Component Nup2 From Ashbya Gossypii 3N7C ; 2.26 ; Crystal structure of the RAN binding domain from the nuclear pore complex component NUP2 from Ashbya gossypii 4L6E ; 2.496 ; Crystal Structure of the RanBD1 fourth domain of E3 SUMO-protein ligase RanBP2. Northeast Structural Genomics Consortium (NESG) Target HR9193b 4BJT ; 1.61 ; Crystal structure of the Rap1 C-terminal domain (Rap1-RCT) in complex with the Rap1 binding module of Rif1 (Rif1-RBM) 3CZ6 ; 1.85 ; Crystal Structure of the Rap1 C-terminus 1SRQ ; 2.9 ; Crystal Structure of the Rap1GAP catalytic domain 1F3U ; 1.7 ; CRYSTAL STRUCTURE OF THE RAP30/74 INTERACTION DOMAINS OF HUMAN TFIIF 5K13 ; 1.85 ; Crystal structure of the RAR alpha ligand-binding domain in complex with an antagonist 7AOS ; 2.55 ; crystal structure of the RARalpha/RXRalpha ligand binding domain heterodimer in complex with a fragment of SRC1 coactivator 1XDK ; 2.9 ; Crystal Structure of the RARbeta/RXRalpha Ligand Binding Domain Heterodimer in Complex with 9-cis Retinoic Acid and a Fragment of the TRAP220 Coactivator 2R76 ; 2.6 ; Crystal structure of the rare lipoprotein B (SO_1173) from Shewanella oneidensis, Northeast Structural Genomics Consortium Target SoR91A 3C5H ; 1.8 ; Crystal structure of the Ras homolog domain of human GRLF1 (p190RhoGAP) 1LXD ; 2.4 ; CRYSTAL STRUCTURE OF THE RAS INTERACTING DOMAIN OF RALGDS, A GUANINE NUCLEOTIDE DISSOCIATION STIMULATOR OF RAL PROTEIN 3TCA ; 2.35 ; Crystal structure of the Ras-associating and pleckstrin-homology domains of RIAM 3KH0 ; 2.1 ; Crystal structure of the Ras-association (RA) domain of RALGDS 3IHW ; 1.92 ; Crystal structure of the Ras-like domain of CENTG3 3IEZ ; 1.5 ; Crystal structure of the RasGAP C-terminal (RGC) domain of IQGAP2 2J05 ; 1.5 ; Crystal structure of the RasGAP SH3 domain at 1.5 Angstrom resolution 2J06 ; 1.8 ; Crystal structure of the RasGAP SH3 domain at 1.8 Angstrom resolution 3G0W ; 1.95 ; Crystal structure of the rat androgen receptor ligand binding domain complex with an n-aryl-oxazolidin 2-imine inhibitor 2NW4 ; 3.0 ; Crystal Structure of the Rat Androgen Receptor Ligand Binding Domain Complex with BMS-564929 1I37 ; 2.0 ; CRYSTAL STRUCTURE OF THE RAT ANDROGEN RECEPTOR LIGAND BINDING DOMAIN COMPLEX WITH DIHYDROTESTOSTERONE 1XNN ; 2.2 ; CRYSTAL STRUCTURE OF THE RAT ANDROGEN RECEPTOR LIGAND BINDING DOMAIN T877A MUTANT COMPLEX WITH (3A-ALPHA-,4-ALPHA 7-ALPHA-,7A-ALPHA-)-3A,4,7,7A-TETRAHYDRO-2-(4-NITRO-1-NAPHTHALENYL)-4,7-ETHANO-1H-ISOINDOLE-1,3(2H)-DIONE. 1I38 ; 2.0 ; CRYSTAL STRUCTURE OF THE RAT ANDROGEN RECEPTOR LIGAND BINDING DOMAIN T877A MUTANT COMPLEX WITH DIHYDROTESTOSTERONE 2IHQ ; 2.0 ; Crystal Structure of the Rat Androgen Receptor Ligand Binding Domian Complex with an N-Aryl-Hydroxybicyclohydantoin 4IL1 ; 3.0 ; Crystal Structure of the Rat Calcineurin 6YI9 ; 1.75 ; Crystal structure of the rat cytosolic PCK1, acetylated on Lys244 3IQL ; 1.4 ; Crystal structure of the rat endophilin-A1 SH3 domain 2UUS ; 2.2 ; Crystal structure of the rat FGF1-sucrose octasulfate (SOS) complex. 3I9U ; 2.25 ; Crystal structure of the rat heme oxygenase (HO-1) in complex with heme binding dithioerythritol (DTE) 3I9T ; 2.15 ; Crystal structure of the rat heme oxygenase (HO-1) in complex with heme binding dithiothreitol (DTT) 6IBB ; 2.12 ; Crystal structure of the rat isoform of the succinate receptor SUCNR1 (GPR91) in complex with a nanobody 6VBZ ; 2.192 ; Crystal structure of the rat MLKL pseudokinase domain 4AII ; 2.66 ; Crystal structure of the rat REM2 GTPase - G domain bound to GDP 4MEM ; 2.34 ; Crystal Structure of the rat USP11 DUSP-UBL domains 1RK3 ; 2.2 ; crystal structure of the rat vitamin D receptor ligand binding domain complexed with 1,25-dihydroxyvitamin D3 and a synthetic peptide containing the NR2 box of DRIP 205 1RKH ; 2.28 ; crystal structure of the rat vitamin D receptor ligand binding domain complexed with 2AM20R and a synthetic peptide containing the NR2 box of DRIP 205 1RKG ; 1.9 ; crystal structure of the rat vitamin D receptor ligand binding domain complexed with 2MbisP and a synthetic peptide containing the NR2 box of DRIP 205 1RJK ; 1.99 ; crystal structure of the rat vitamin D receptor ligand binding domain complexed with 2MD and a synthetic peptide containing the NR2 box of DRIP 205 3A2H ; 2.5 ; Crystal structure of the rat vitamin D receptor ligand binding domain complexed with TEI-9647 and a synthetic peptide containing the NR2 box of DRIP 205 2ZFX ; 1.99 ; Crystal structure of the rat vitamin D receptor ligand binding domain complexed with YR301 and a synthetic peptide containing the NR2 box of DRIP 205 3AUN ; 1.81 ; Crystal structure of the rat vitamin D receptor ligand binding domain complexed with YR335 and a synthetic peptide containing the NR2 box of DRIP 205 1GPO ; 1.95 ; CRYSTAL STRUCTURE OF THE RATIONALLY DESIGNED ANTIBODY M41 AS A FAB FRAGMENT 7DI0 ; 1.6 ; Crystal structure of the rationally designed apDPBB_sym_79 protein 7DU7 ; 1.201 ; Crystal structure of the rationally designed mkDPBB_sym1 protein 7DU6 ; 1.6 ; Crystal structure of the rationally designed mkDPBB_sym2 protein 7DI1 ; 2.097 ; Crystal structure of the rationally designed mkDPBB_sym_86 protein 1T0H ; 1.97 ; Crystal structure of the Rattus norvegicus voltage gated calcium channel beta subunit isoform 2a 3C6A ; 1.16 ; Crystal Structure of the RB49 gp17 nuclease domain 3C6H ; 2.8 ; Crystal Structure of the RB49 gp17 nuclease domain 4EE9 ; 1.381 ; Crystal structure of the RBcel1 endo-1,4-glucanase 3NY5 ; 1.993 ; Crystal structure of the RBD domain of serine/threonine-protein kinase B-raf from Homo sapiens. Northeast Structural Genomics Consortium Target HR4694F 6PY8 ; 3.75 ; Crystal structure of the RBPJ-NOTCH1-NRARP ternary complex bound to DNA 4Z31 ; 2.5 ; Crystal structure of the RC3H2 ROQ domain in complex with stem-loop and double-stranded forms of RNA 1ID1 ; 2.4 ; CRYSTAL STRUCTURE OF THE RCK DOMAIN FROM E.COLI POTASSIUM CHANNEL 5UBF ; 2.6 ; Crystal structure of the RctB domains 2-3, RctB-155-483 8DGL ; 2.45 ; Crystal Structure of the RdfS Excisionase 3T6D ; 1.95 ; Crystal Structure of the Reaction Centre from Blastochloris viridis strain DSM 133 (ATCC 19567) substrain-08 3T6E ; 1.92 ; Crystal Structure of the Reaction Centre from Blastochloris viridis strain DSM 133 (ATCC 19567) substrain-94 1V5G ; 1.96 ; Crystal Structure of the Reaction Intermediate between Pyruvate oxidase containing FAD and TPP, and Substrate Pyruvate 1ZRM ; 2.0 ; CRYSTAL STRUCTURE OF THE REACTION INTERMEDIATE OF L-2-HALOACID DEHALOGENASE WITH 2-CHLORO-N-BUTYRATE 2VDX ; 1.84 ; Crystal Structure of the reactive loop Cleaved Corticosteroid Binding Globulin 2VDY ; 2.3 ; Crystal structure of the reactive loop cleaved Corticosteroid Binding Globulin complexed with Cortisol 2RIV ; 1.5 ; Crystal structure of the reactive loop cleaved human Thyroxine Binding Globulin 4AFX ; 2.09 ; Crystal structure of the reactive loop cleaved ZPI in I2 space group 4AJU ; 2.65 ; Crystal structure of the reactive loop cleaved ZPI in P41 space group 3RLC ; 2.9 ; Crystal structure of the read-through domain from bacteriophage Qbeta A1 protein, hexagonal crystal form 3RLK ; 1.76 ; Crystal structure of the read-through domain from bacteriophage Qbeta A1 protein, monoclinic crystal form 3AKO ; 2.1 ; Crystal Structure of the Reassembled Venus 7QWV ; 2.26 ; Crystal structure of the REC114-TOPOVIBL complex. 7DTK ; 1.849 ; Crystal structure of the RecA1 domain of RNA helicase CGH-1 in C. elegans 7DTJ ; 2.402 ; Crystal structure of the RecA2 domain of RNA helicase CGH-1 in C. elegans 7E90 ; 2.25 ; Crystal structure of the receiver domain (D51E) of the response regulator VbrR from Vibrio parahaemolyticus 1QKK ; 1.7 ; Crystal structure of the receiver domain and linker region of DctD from Sinorhizobium meliloti 7P8C ; 2.15 ; Crystal structure of the Receiver domain of A. thaliana cytokinin receptor AtCRE1 in complex with K+ 7P8D ; 1.7 ; Crystal structure of the Receiver domain of A. thaliana cytokinin receptor AtCRE1 in complex with Mg2+ 4UHJ ; 1.9 ; Crystal structure of the receiver domain of CpxR from E. coli (orthorhombic form) 4UHK ; 2.6 ; Crystal structure of the receiver domain of CpxR from E. coli (phosphorylated) 4UHS ; 5.0 ; Crystal structure of the receiver domain of CpxR from E. coli (tetragonal form) 4LE0 ; 2.27 ; Crystal structure of the receiver domain of DesR in complex with beryllofluoride and magnesium 4LE1 ; 1.951 ; Crystal structure of the receiver domain of DesR in the inactive state 6M8O ; 2.5 ; Crystal structure of the receiver domain of LytR from Staphylococcus aureus 7P8E ; 2.5 ; Crystal structure of the Receiver domain of M. truncatula cytokinin receptor MtCRE1 4D6X ; 2.11 ; Crystal structure of the receiver domain of NtrX from Brucella abortus 4D6Y ; 1.7 ; Crystal structure of the receiver domain of NtrX from Brucella abortus in complex with beryllofluoride and magnesium 1XHE ; 2.5 ; Crystal structure of the receiver domain of redox response regulator arca 7CFW ; 1.31 ; Crystal structure of the receiver domain of sensor histidine kinase PA1611 (PA1611REC) from Pseudomonas aeruginosa PAO1 with calcium ion coordinated in the active site cleft 7C1J ; 1.35 ; Crystal structure of the receiver domain of sensor histidine kinase PA1611 (PA1611REC) from Pseudomonas aeruginosa PAO1 with magnesium ion coordinated in the active site cleft 1DCF ; 2.5 ; CRYSTAL STRUCTURE OF THE RECEIVER DOMAIN OF THE ETHYLENE RECEPTOR OF ARABIDOPSIS THALIANA 3MM4 ; 2.0 ; Crystal structure of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana 3MMN ; 2.2 ; Crystal structure of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana complexed with Mg2+ 5N2N ; 2.05 ; Crystal structure of the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana complexed with Mg2+ and BeF3- 7W9H ; 2.28 ; Crystal structure of the receiver domain of the transcription regulator FleR from Pseudomonas aeruginosa 1ZGZ ; 1.8 ; Crystal Structure Of The Receiver Domain Of TMAO Respiratory System Response Regulator TorR 3AZV ; 3.1 ; Crystal structure of the receptor binding domain 3AZW ; 2.99 ; Crystal structure of the receptor binding domain 3PME ; 1.56 ; Crystal structure of the receptor binding domain of botulinum neurotoxin C/D mosaic serotype 3OGG ; 1.651 ; Crystal structure of the receptor binding domain of botulinum neurotoxin D 4F83 ; 1.7 ; Crystal structure of the receptor binding domain of botulinum neurotoxin mosaic serotype C/D with a tetraethylene glycol molecule bound on the Hcn sub-domain and a sulfate ion at the putative active site 3BOV ; 1.77 ; Crystal structure of the receptor binding domain of mouse PD-L2 3U4K ; 3.0 ; Crystal structure of the receptor binding domain of plasmid-born adhesin MrkD1P of Klebsiella pneumoniae 7NXA ; 2.5 ; Crystal structure of the receptor binding domain of SARS-CoV-2 B.1.351 variant Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 7PRZ ; 3.2 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with beta-22 Fabs 7PS0 ; 2.92 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with beta-24 Fabs 7PS1 ; 2.4 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-27 Fab 7PS2 ; 2.99 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-29 and Beta-53 Fabs 7PS4 ; 1.94 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-38 7PS7 ; 3.9 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-40 Fab 7PS6 ; 2.26 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-44 and Beta-54 Fabs 7PS5 ; 3.14 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-47 Fab 7Q0G ; 1.82 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-49 and FI-3A Fabs 7Q0H ; 3.65 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with Beta-50 and Beta-54 7PRY ; 3.1 ; Crystal structure of the receptor binding domain of SARS-CoV-2 beta variant spike glycoprotein in complex with COVOX-45 and beta-6 Fabs 8HRD ; 2.86 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Delta variant in complex with IMCAS74 Fab and W14 Fab 7WBQ ; 3.34 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Delta variant spike glycoprotein in complex with its receptor human ACE2 7XWA ; 3.36 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Omicron BA.4/5 variant spike protein in complex with its receptor ACE2 8IF2 ; 2.78 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Omicron BQ.1.1 variant spike protein in complex with its receptor ACE2 7WBP ; 3.0 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Omicron variant spike glycoprotein in complex with its receptor human ACE2 7NXC ; 3.14 ; Crystal structure of the receptor binding domain of SARS-CoV-2 P.1 variant Spike glycoprotein in complex with ACE2 7NXB ; 2.67 ; Crystal structure of the receptor binding domain of SARS-CoV-2 P.1 variant Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 7BEN ; 2.5 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in a ternary complex with COVOX-253 and COVOX-75 Fabs 7BEO ; 3.19 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in a ternary complex with COVOX-253H55L and COVOX-75 Fabs 7BEP ; 2.61 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in a ternary complex with COVOX-384 and S309 Fabs 7BEL ; 2.53 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in a ternary complex with COVOX-88 and COVOX-45 Fabs 7BEI ; 2.3 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-150 Fab 7BEJ ; 2.42 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-158 Fab (crystal form 1) 7BEK ; 2.04 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-158 Fab (crystal form 2) 7OR9 ; 2.34 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-222 and COVOX-278 Fabs 7NX6 ; 2.25 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-222 and EY6A Fabs 7NEH ; 1.77 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-269 Fab 7BEM ; 2.52 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-269 scFv 7BEH ; 2.3 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-316 Fab 7PR0 ; 2.92 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with FD-5D Fab 7PQZ ; 3.2 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with FI-3A and FD-11A Fabs 7PQY ; 3.0 ; Crystal structure of the receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with FI-3A Fab 5KWB ; 1.91 ; Crystal Structure of the Receptor Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1 (HKU1 1A-CTD, 1.9 angstrom, molecular replacement) 5GNB ; 2.3 ; Crystal Structure of the Receptor Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1 (HKU1 1A-CTD, 2.3 angstrom, native-SAD phasing) 2VVD ; 2.26 ; Crystal structure of the receptor binding domain of the spike protein P1 from bacteriophage PM2 6R5W ; 1.7 ; Crystal structure of the receptor binding protein (gp15) of Listeria phage PSA 2V5Y ; 3.1 ; Crystal structure of the receptor protein tyrosine phosphatase mu ectodomain 4L3N ; 2.13 ; Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus 1KNB ; 1.7 ; CRYSTAL STRUCTURE OF THE RECEPTOR-BINDING DOMAIN OF ADENOVIRUS TYPE 5 FIBER PROTEIN AT 1.7 ANGSTROMS RESOLUTION 5MK6 ; 1.45 ; Crystal structure of the receptor-binding domain of botulinum neurotoxin A1 (crystal form 1) 5MK7 ; 1.8 ; Crystal structure of the receptor-binding domain of botulinum neurotoxin A1 (crystal form 2) 5V38 ; 1.8 ; Crystal Structure of The Receptor-binding Domain of Botulinum Neurotoxin Type HA 5MK8 ; 1.95 ; Crystal structure of the receptor-binding domain of the FA hybrid Clostridium botulinum neurotoxin 1SG1 ; 2.4 ; Crystal Structure of the Receptor-Ligand Complex between Nerve Growth Factor and the Common Neurotrophin Receptor p75 2ATM ; 2.0 ; Crystal structure of the recombinant allergen Ves v 2 1FXW ; 2.1 ; CRYSTAL STRUCTURE OF THE RECOMBINANT ALPHA1/ALPHA2 CATALYTIC HETERODIMER OF BOVINE BRAIN PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE IB. 6ZVF ; 1.9 ; Crystal structure of the recombinant Fab fragment derived from the hybridoma M3/38 in complex with a human Galectin-3 peptide 5IR3 ; 1.7 ; Crystal structure of the recombinant highest fibrillogenic natural mutant (obtained from patient AR) derived from lambda 6 light chain variable domain 2F9O ; 2.1 ; Crystal Structure of the Recombinant Human Alpha I Tryptase Mutant D216G 2F9P ; 2.3 ; Crystal Structure of the Recombinant Human Alpha I Tryptase Mutant D216G in Complex with Leupeptin 2F9N ; 1.6 ; Crystal Structure of the Recombinant Human Alpha I Tryptase Mutant K192Q/D216G in Complex with Leupeptin 1LON ; 2.1 ; Crystal Structure of the Recombinant Mouse-Muscle Adenylosuccinate Synthetase Complexed with 6-phosphoryl-IMP, GDP and Hadacidin 1LNY ; 2.2 ; Crystal structure of the recombinant mouse-muscle adenylosuccinate synthetase complexed with 6-phosphoryl-IMP, GDP and Mg 3HG6 ; 1.7 ; Crystal Structure of the Recombinant Onconase from Rana pipiens 7WXZ ; 2.41 ; Crystal structure of the recombinant protein HR121 from the S2 protein of SARS-CoV-2 3W5B ; 3.2 ; Crystal structure of the recombinant SERCA1a (calcium pump of fast twitch skeletal muscle) in the E1.Mg2+ state 3WOU ; 0.99 ; Crystal Structure of The Recombinant Thaumatin II at 0.99 A 2W0K ; 2.35 ; Crystal structure of the recombinant variable domain 6JAL2 7YMO ; 1.8 ; Crystal structure of the recombination mediator protein RecO from Campylobacter jejuni 8K3F ; 2.603 ; Crystal structure of the recombination mediator protein RecR from Campylobacter jejuni 2X87 ; 2.0 ; Crystal Structure of the reconstituted CotA 4JCV ; 3.34 ; Crystal structure of the RecOR complex in an open conformation 8C0N ; 2.9 ; Crystal structure of the red form of the mTagFT fluorescent timer 5ZIH ; 2.6 ; Crystal structure of the red light-activated channelrhodopsin Chrimson. 6J44 ; 2.06 ; Crystal structure of the redefined DNA-binding domain of human XPA 1MI0 ; 1.85 ; Crystal Structure of the redesigned protein G variant NuG2 4G86 ; 2.387 ; Crystal structure of the redox-active cofactor DBMIB bound to the full length circadian clock protein KaiA from Synechococcus elongatus 6ON8 ; 2.395 ; Crystal Structure of the Reduced Form of Apo Domain-Swapped Dimer Q108K:T51D:A28C:L36C:F57H Mutant of Human Cellular Retinol Binding Protein II 1OAE ; 1.95 ; Crystal structure of the reduced form of cytochrome c"" from Methylophilus methylotrophus 5AVO ; 1.8 ; Crystal structure of the reduced form of homoserine dehydrogenase from Sulfolobus tokodaii. 3VB2 ; 2.6 ; Crystal Structure of the Reduced Form of MarR from E.coli 1ZNZ ; 2.5 ; Crystal Structure Of The Reduced Form Of Mycobacterium tuberculosis Guanylate Kinase In Complex With GDP 1I69 ; 2.7 ; CRYSTAL STRUCTURE OF THE REDUCED FORM OF OXYR 3X34 ; 0.76 ; Crystal structure of the reduced form of the solubilized domain of porcine cytochrome b5 in form 1 crystal 3X35 ; 0.95 ; Crystal structure of the reduced form of the solubilized domain of porcine cytochrome b5 in form 2 crystal 4I2U ; 1.3 ; Crystal structure of the reduced glutaredoxin from Chlorella sorokiniana T-89 in complex with glutathione 6MWS ; 1.22 ; crystal structure of the reduced Grx1 from Saccharomyces cerevisiae 4BUR ; 2.88 ; Crystal structure of the reduced human Apoptosis inducing factor complexed with NAD 1V58 ; 1.7 ; Crystal Structure Of the Reduced Protein Disulfide Bond Isomerase DsbG 4AWT ; 0.98 ; Crystal structure of the reduced Shewanella Yellow Enzyme 1 (SYE1) M25L mutant 5UM7 ; 1.62 ; Crystal structure of the reduced state of the thiol-disulfide reductase SdbA from Streptococcus gordonii 3GE3 ; 1.52 ; Crystal Structure of the reduced Toluene 4-Monooxygenase HD T201A mutant complex 3GD4 ; 2.24 ; Crystal structure of the reduced, NAD-bound form of murine apoptosis inducing factor 5ZYR ; 2.20001 ; Crystal structure of the reductase (C1) component of p-hydroxyphenylacetate 3-hydroxylase (HPAH) from Acinetobacter baumannii 1T1R ; 2.3 ; Crystal Structure of the Reductoisomerase Complexed with a Bisphosphonate 1T1S ; 2.4 ; Crystal Structure of the Reductoisomerase Complexed with a Bisphosphonate 4GJE ; 1.6 ; Crystal structure of the refolded amino-terminal domain of human cardiac troponin C in complex with cadmium 4R05 ; 2.1 ; Crystal structure of the refolded DENV3 methyltransferase 7RCR ; 1.6 ; Crystal Structure of the refolded Hemagglutinin head domain of Influenza A virus A/Ohio/09/2015 4LH9 ; 2.049 ; Crystal structure of the refolded hood domain (Asp256-Gly295) of HetR 8F67 ; 3.59 ; Crystal structure of the refolded Penicillin Binding Protein 5 (PBP5) of Enterococcus faecium 3RDS ; 1.5 ; Crystal structure of the refolded R7-2 streptavidin 7FIB ; 2.1 ; Crystal structure of the regulatory domain of AceR in Acinetobacter baumannii 4O1H ; 2.8 ; Crystal Structure of the regulatory domain of AmeGlnR 1O7F ; 2.5 ; CRYSTAL STRUCTURE OF THE REGULATORY DOMAIN OF EPAC2 2W4R ; 2.6 ; Crystal structure of the regulatory domain of human LGP2 2QFD ; 2.7 ; Crystal structure of the regulatory domain of human RIG-I with bound Hg 2QFB ; 3.0 ; Crystal structure of the regulatory domain of human RIG-I with bound Zn 3F6G ; 2.0 ; Crystal structure of the regulatory domain of LiCMS in complexed with isoleucine - type II 3F6H ; 2.7 ; Crystal structure of the regulatory domain of LiCMS in complexed with isoleucine - type III 6L33 ; 2.0 ; Crystal structure of the regulatory domain of MexT, a transcriptional activator in Pseudomonas aeruginosa 4O1I ; 2.8 ; Crystal Structure of the regulatory domain of MtbGlnR 5JHO ; 2.801 ; Crystal structure of the regulatory domain of the sodium driven chloride bicarbonate exchanger. 2V8Q ; 2.1 ; Crystal structure of the regulatory fragment of mammalian AMPK in complexes with AMP 2V92 ; 2.4 ; Crystal structure of the regulatory fragment of mammalian AMPK in complexes with ATP-AMP 2V9J ; 2.53 ; Crystal structure of the regulatory fragment of mammalian AMPK in complexes with Mg.ATP-AMP 1HO8 ; 2.95 ; CRYSTAL STRUCTURE OF THE REGULATORY SUBUNIT H OF THE V-TYPE ATPASE OF SACCHAROMYCES CEREVISIAE 2F1F ; 1.75 ; Crystal structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from E. coli 2DT9 ; 2.15 ; Crystal structure of the regulatory subunit of aspartate kinase from Thermus flavus 2ZHO ; 2.98 ; Crystal structure of the regulatory subunit of aspartate kinase from Thermus thermophilus (ligand free form) 1JMU ; 2.8 ; Crystal Structure of the Reovirus mu1/sigma3 Complex 1FN9 ; 1.8 ; CRYSTAL STRUCTURE OF THE REOVIRUS OUTER CAPSID PROTEIN SIGMA 3 2SPC ; 1.8 ; CRYSTAL STRUCTURE OF THE REPETITIVE SEGMENTS OF SPECTRIN 3DKY ; 3.6 ; Crystal Structure of the replication initiator protein encoded on plasmid pMV158 (RepB), tetragonal form, to 3.6 Ang resolution 3DKX ; 2.7 ; Crystal Structure of the replication initiator protein encoded on plasmid pMV158 (RepB), trigonal form, to 2.7 Ang resolution 2DPU ; 3.1 ; Crystal structure of the replication termination protein in complex with a pseudosymmetric 21mer B-site DNA 2DPD ; 3.17 ; Crystal structure of the Replication Termination Protein in complex with a pseudosymmetric B-site 1J0R ; 2.5 ; Crystal structure of the replication termination protein mutant C110S 2DQR ; 3.01 ; Crystal structure of the replication terminator protein mutant RTP.E39K.R42Q 1F4K ; 2.5 ; CRYSTAL STRUCTURE OF THE REPLICATION TERMINATOR PROTEIN/B-SITE DNA COMPLEX 1M5T ; 1.6 ; CRYSTAL STRUCTURE OF THE RESPONSE REGULATOR DIVK 1MAV ; 1.6 ; CRYSTAL STRUCTURE OF THE RESPONSE REGULATOR DIVK AT PH 6.0 IN COMPLEX WITH MN2+ 1MB0 ; 2.0 ; CRYSTAL STRUCTURE OF THE RESPONSE REGULATOR DIVK AT PH 8.0 IN COMPLEX WITH MN2+ 1MB3 ; 1.41 ; CRYSTAL STRUCTURE OF THE RESPONSE REGULATOR DIVK AT PH 8.5 IN COMPLEX WITH MG2+ 1M5U ; 1.87 ; CRYSTAL STRUCTURE OF THE RESPONSE REGULATOR DIVK. STRUCTURE AT PH 8.0 IN THE APO-FORM 3T8Y ; 1.9 ; Crystal structure of the response regulator domain of Thermotoga maritima CheB 4KNY ; 2.945 ; Crystal structure of the response regulator KdpE complexed to DNA in an active-like conformation 4G97 ; 2.05 ; Crystal structure of the response regulator PhyR from Brucella abortus 2GWR ; 2.1 ; Crystal structure of the response regulator protein mtrA from Mycobacterium Tuberculosis 1YS7 ; 1.58 ; Crystal structure of the response regulator protein prrA complexed with Mg2+ 4GVP ; 2.03 ; Crystal Structure of the Response Regulator Protein VraR from Staphylococcus aureus 3C97 ; 1.7 ; Crystal structure of the response regulator receiver domain of a signal transduction histidine kinase from Aspergillus oryzae 3SY8 ; 2.5 ; Crystal structure of the response regulator RocR 1PEY ; 2.25 ; Crystal structure of the Response Regulator Spo0F complexed with Mn2+ 2QV0 ; 2.4 ; Crystal structure of the response regulatory domain of protein mrkE from Klebsiella pneumoniae 1YS6 ; 1.77 ; Crystal structure of the response regulatory protein PrrA from Mycobacterium Tuberculosis 3FH6 ; 4.5 ; Crystal structure of the resting state maltose transporter from E. coli 4NM9 ; 1.898 ; Crystal structure of the resting state of proline utilization A (PutA) from Geobacter sulfurreducens PCA 7CFA ; 2.355 ; Crystal structure of the restriction DNA glycosylase R.CcoLI 1DMU ; 2.2 ; Crystal structure of the restriction endonuclease BglI (e.c.3.1.21.4) bound to its dna recognition sequence 1VRR ; 2.7 ; Crystal structure of the restriction endonuclease BstYI complex with DNA 3LFP ; 2.0 ; Crystal Structure of the Restriction-Modification Controller Protein C.Csp231I 3LIS ; 2.0 ; Crystal Structure of the Restriction-Modification Controller Protein C.Csp231I (Monoclinic form) 4JCX ; 2.3 ; Crystal structure of the Restriction-Modification Controller Protein C.Csp231I OL operator complex 4JQD ; 2.75 ; Crystal structure of the Restriction-Modification Controller Protein C.Csp231I OL operator complex 4JCY ; 1.8 ; Crystal structure of the Restriction-Modification Controller Protein C.Csp231I OR operator complex 3CLC ; 2.8 ; Crystal Structure of the Restriction-Modification Controller Protein C.Esp1396I Tetramer in Complex with its Natural 35 Base-Pair Operator 3RY9 ; 1.95 ; Crystal Structure of the Resurrected Ancestral Glucocorticoid Receptor 1 in complex with DOC 3EO5 ; 1.83 ; Crystal structure of the resuscitation promoting factor RpfB 2QDJ ; 2.0 ; Crystal structure of the Retinoblastoma protein N-domain provides insight into tumor suppression, ligand interaction and holoprotein architecture 1O9K ; 2.6 ; Crystal structure of the retinoblastoma tumour suppressor protein bound to E2F peptide 5LYQ ; 2.17 ; Crystal structure of the Retinoic Acid Receptor alpha in complex with a synthetic spiroketal agonist and a fragment of the TIF2 co-activator. 6SJM ; 2.52 ; Crystal structure of the Retinoic Acid Receptor alpha in complex with compound 24 (JP175) 5MKU ; 1.78 ; Crystal structure of the Retinoid X Receptor alpha in complex with synthetic honokiol derivative 4 and a fragment of the TIF2 co-activator. 5MMW ; 2.7 ; Crystal structure of the Retinoid X Receptor alpha in complex with synthetic honokiol derivative 6 and a fragment of the TIF2 co-activator. 5MK4 ; 2.0 ; Crystal structure of the Retinoid X Receptor alpha in complex with synthetic honokiol derivative 7 and a fragment of the TIF2 co-activator. 5MKJ ; 2.5 ; Crystal structure of the Retinoid X Receptor alpha in complex with synthetic honokiol derivative 9 and a fragment of the TIF2 co-activator. 5MJ5 ; 1.9 ; Crystal structure of the Retinoid X Receptor alpha in complex with synthetichonokiol derivative 3 and a fragment of the TIF2 co-activator. 3FUG ; 2.0 ; Crystal Structure of the Retinoid X Receptor Ligand Binding Domain Bound to the Synthetic Agonist 3-[4-Hydroxy-3-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-phenyl]acrylic Acid 8R02 ; 2.5 ; Crystal structure of the retromer complex VPS29/VPS35 with the ligand bis-1,3-phenyl guanylhydrazone, 2a 8R0J ; 2.4 ; Crystal structure of the retromer complex VPS29/VPS35 with the ligand bis-1,3-phenyl guanylhydrazone, 2a 3JYB ; 2.04 ; Crystal Structure of the RetS periplasmic domain 1DUQ ; 2.1 ; CRYSTAL STRUCTURE OF THE REV BINDING ELEMENT OF HIV-1 5EB6 ; 1.65008 ; Crystal Structure of the Reversibly photoswitching chromoprotein Dathail, Ground State 5EB7 ; 1.65 ; Crystal Structure of the Reversibly photoswitching chromoprotein Dathail, Metastable State 2OUG ; 2.1 ; Crystal structure of the RfaH transcription factor at 2.1A resolution 3ISU ; 1.88 ; Crystal structure of the RGC domain of IQGAP3 4BQ6 ; 2.3 ; Crystal structure of the RGMB-NEO1 complex form 1 4BQ7 ; 6.601 ; Crystal structure of the RGMB-Neo1 complex form 2 4BQ8 ; 2.8 ; Crystal structure of the RGMB-NEO1 complex form 3 4IGU ; 1.9 ; Crystal structure of the RGS domain of CG5036 1DK8 ; 1.57 ; CRYSTAL STRUCTURE OF THE RGS-HOMOLOGOUS DOMAIN OF AXIN 7Y1P ; 2.602 ; CRYSTAL STRUCTURE OF THE RGS-HOMOLOGOUS DOMAIN OF AXIN IN COMPLEX WITH LZ-22Na 1KQR ; 1.4 ; Crystal Structure of the Rhesus Rotavirus VP4 Sialic Acid Binding Domain in Complex with 2-O-methyl-alpha-D-N-acetyl neuraminic acid 2B4H ; 1.6 ; Crystal Structure of the Rhesus Rotavirus VP5 Antigen Domain Dimer 2B4I ; 2.0 ; Crystal Structure of the Rhesus Rotavirus VP5 Antigen Domain Trimer 4G9M ; 1.601 ; Crystal structure of the Rhizoctonia solani agglutinin 4G9N ; 2.2 ; Crystal structure of the Rhizoctonia solani agglutinin in complex with N'-acetyl-galactosamine 4E74 ; 1.58 ; Crystal structure of the RHO GTPASE BINDING DOMAIN of Plexin A4A 4E71 ; 2.26 ; Crystal structure of the RHO GTPASE binding domain of Plexin B2 2H7O ; 2.0 ; Crystal structure of the Rho-GTPase binding domain of YpkA 2F2U ; 2.4 ; crystal structure of the Rho-kinase kinase domain 1CC0 ; 5.0 ; CRYSTAL STRUCTURE OF THE RHOA.GDP-RHOGDI COMPLEX 8TFS ; 1.95 ; Crystal structure of the Rhodanese-like domain of Vretifemale_1082 from Volvox reticuliferus 3HIX ; 1.92 ; Crystal Structure of the Rhodanese_3 like domain from Anabaena sp Alr3790 protein. Northeast Structural Genomics Consortium Target NsR437i 3VA9 ; 2.3 ; Crystal structure of the Rhodopseudomonas palustris histidine kinase HK9 sensor domain 6FUF ; 3.117 ; Crystal structure of the rhodopsin-mini-Go complex 3EAP ; 2.3 ; Crystal structure of the RhoGAP domain of ARHGAP11A 3FK2 ; 2.8 ; Crystal structure of the RhoGAP domain of human glucocorticoid receptor DNA-binding factor 1 2XS6 ; 2.09 ; CRYSTAL STRUCTURE OF THE RHOGAP DOMAIN OF HUMAN PIK3R2 5MY3 ; 2.19 ; Crystal structure of the RhoGAP domain of Rgd1p at 2.19 Angstroms resolution 3IUG ; 1.77 ; Crystal structure of the RhoGAP domain of RICS 3EO2 ; 2.6 ; Crystal structure of the RhoGEF domain of human neuroepithelial cell-transforming gene 1 protein 7RT7 ; 2.49 ; Crystal structure of the RhsP2 C-terminal toxin domain in complex with its immunity protein, RhsI2 8BD1 ; 1.26 ; Crystal structure of the RhsPWHH-RhsPI toxin-immunity pair 5A88 ; 2.08 ; Crystal structure of the riboflavin kinase module of FAD synthetase from Corynebacterium ammoniagenes in complex with ADP 5A8A ; 1.8 ; Crystal structure of the riboflavin kinase module of FAD synthetase from Corynebacterium ammoniagenes in complex with FMN and ADP (P3 2 21) 5A89 ; 1.65 ; Crystal structure of the riboflavin kinase module of FAD synthetase from Corynebacterium ammoniagenes in complex with FMN and ADP(P 21 21 21) 1RCN ; 2.32 ; CRYSTAL STRUCTURE OF THE RIBONUCLEASE A D(APTPAPAPG) COMPLEX : DIRECT EVIDENCE FOR EXTENDED SUBSTRATE RECOGNITION 6ZDW ; 1.65 ; Crystal structure of the ribonuclease core of R3B2 1HRH ; 2.4 ; CRYSTAL STRUCTURE OF THE RIBONUCLEASE H DOMAIN OF HIV-1 REVERSE TRANSCRIPTASE 3H08 ; 1.6 ; Crystal structure of the Ribonuclease H1 from Chlorobium tepidum 1UAX ; 2.0 ; Crystal structure of the ribonuclease H2 from Pyrococcus horikoshii OT3 1UCA ; 1.48 ; Crystal structure of the Ribonuclease MC1 from bitter gourd seeds complexed with 2'-UMP 1UCC ; 1.77 ; Crystal structure of the Ribonuclease MC1 from bitter gourd seeds complexed with 3'-UMP. 8QND ; 1.9 ; Crystal structure of the ribonucleoside hydrolase C from Lactobacillus reuteri 2RCN ; 2.25 ; Crystal Structure of the Ribosomal interacting GTPase YjeQ from the Enterobacterial species Salmonella Typhimurium. 1MMS ; 2.57 ; Crystal structure of the ribosomal PROTEIN L11-RNA complex 1RIS ; 2.0 ; CRYSTAL STRUCTURE OF THE RIBOSOMAL PROTEIN S6 FROM THERMUS THERMOPHILUS 5ISV ; 1.35 ; Crystal structure of the ribosomal-protein-S18-alanine N-acetyltransferase from Escherichia coli 6EN7 ; 2.403 ; Crystal structure of the ribosome assembly factor Nsa1 4V42 ; 5.5 ; Crystal structure of the ribosome at 5.5 A resolution. 4V9H ; 2.857 ; Crystal structure of the ribosome bound to elongation factor G in the guanosine triphosphatase state 4I47 ; 2.65 ; Crystal structure of the Ribosome inactivating protein complexed with methylated guanine 3H5K ; 1.45 ; Crystal structure of the ribosome inactivating protein PDL1 2QES ; 1.24 ; Crystal structure of the ribosome inactivating protein PDL4 from P. dioica leaves in complex with adenine 3H9N ; 2.7 ; Crystal structure of the ribosome maturation factor rimm (hi0203) from h.influenzae. northeast structural genomics consortium target IR66. 1EK8 ; 2.3 ; CRYSTAL STRUCTURE OF THE RIBOSOME RECYCLING FACTOR (RRF) FROM ESCHERICHIA COLI 1JBR ; 2.15 ; Crystal Structure of the Ribotoxin Restrictocin and a 31-mer SRD RNA Inhibitor 3H2J ; 1.89 ; Crystal structure of the rice cell wall degrading esterase LipA from Xanthomonas oryzae 5C7F ; 2.7 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal domain (1-209) in complex with Arabidopsis IAA1 peptide 5C7E ; 3.1 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal domain (1-209) in complex with Arabidopsis IAA10 peptide 5C6V ; 3.1 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal domain (1-209) in complex with Arabidopsis NINJA peptide 5J9K ; 2.55 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal topless domain (1-209) in complex with rice D53 repressor EAR peptide motif 5JA5 ; 2.0 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal topless domain (1-209) L111A and L130A mutant in complex with rice D53 repressor EAR peptide motif 5JGC ; 2.08 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal topless domain (1-209) L111A, L130A, L179A and I195A mutant 5JHP ; 3.15 ; Crystal structure of the rice Topless related protein 2 (TPR2) N-terminal topless domain (1-209) L179A and I195A mutant in complex with rice D53 repressor EAR peptide motif 1NYK ; 1.31 ; Crystal Structure of the Rieske protein from Thermus thermophilus 1FQT ; 1.6 ; CRYSTAL STRUCTURE OF THE RIESKE-TYPE FERREDOXIN ASSOCIATED WITH BIPHENYL DIOXYGENASE 4BJS ; 1.94 ; Crystal structure of the Rif1 C-terminal domain (Rif1-CTD) from Saccharomyces cerevisiae 5NVR ; 3.95 ; Crystal structure of the Rif1 N-terminal domain (RIF1-NTD) from Saccharomyces cerevisiae 5NW5 ; 6.502 ; Crystal structure of the Rif1 N-terminal domain (RIF1-NTD) from Saccharomyces cerevisiae in complex with DNA 3LYF ; 1.93 ; Crystal Structure of the Rift Valley Fever Virus Nucleocapsid Protein 6ON6 ; 1.423 ; Crystal Structure of the RIG-5 IG1 homodimer 4TS6 ; 1.92 ; Crystal structure of the RIM C2A domain from Drosophila. 2BWQ ; 1.41 ; Crystal Structure of the RIM2 C2A-domain at 1.4 angstrom Resolution 3KNV ; 1.9 ; Crystal structure of the RING and first zinc finger domains of TRAF2 8CH4 ; 2.1 ; Crystal structure of the ring cleaving dioxygenase 5-nitrosalicylate 1,2-dioxygenase from Bradyrhizobium sp. 8W5A ; 1.65 ; Crystal structure of the RING domain of human XIAP 8W59 ; 1.339 ; Crystal structure of the RING domain of human XIAP treated with arsenic trioxide 3L11 ; 2.12 ; Crystal Structure of the Ring Domain of RNF168 4GB0 ; 2.6 ; Crystal Structure of the RING domain of RNF168 3FL2 ; 1.75 ; Crystal structure of the ring domain of the E3 ubiquitin-protein ligase UHRF1 4ZDT ; 2.0 ; Crystal structure of the RING finger domain of Slx1 in complex with the C-terminal domain of Slx4 7Z55 ; 1.664 ; Crystal Structure of the Ring Nuclease 0455 from Sulfolobus islandicus (Sis0455) in complex with its substrate 7Z56 ; 2.27 ; Crystal Structure of the Ring Nuclease 0455 from Sulfolobus islandicus (Sis0455) in its apo form 7PQ3 ; 2.85 ; Crystal Structure of the Ring Nuclease 0811 from Sulfolobus islandicus (Sis0811) in complex with its post-catalytic reaction product 7PQ2 ; 2.38 ; Crystal Structure of the Ring Nuclease 0811 from Sulfolobus islandicus (Sis0811) in its apo form 7PQ6 ; 2.67 ; Crystal Structure of the Ring Nuclease 0811 mutant-S12A from Sulfolobus islandicus (Sis0811) 7PQA ; 2.04 ; Crystal Structure of the Ring Nuclease 0811 mutant-S12G/K169G from Sulfolobus islandicus (Sis0811) 7YGL ; 2.5 ; Crystal Structure of the ring nuclease Sso2081 from Saccharolobus solfataricus in complex with A4>p cleavage intermediate 7YGH ; 3.11 ; Crystal Structure of the ring nuclease Sso2081 from Saccharolobus solfataricus in complex with cyclic-tetraadenylate (cA4) 7YHL ; 2.7 ; Crystal Structure of the ring nuclease Sso2081 from Saccharolobus solfataricus in complex with free phosphate 8HTW ; 2.0 ; Crystal Structure of the ring nuclease Sso2081 Y133F mutant from Saccharolobus solfataricus in its apo form 7BVW ; 2.1 ; Crystal structure of the RING-H2 domain of Arabidopsis RMR1 4R8P ; 3.2846 ; Crystal structure of the Ring1B/Bmi1/UbcH5c PRC1 ubiquitylation module bound to the nucleosome core particle 4GYG ; 2.482 ; Crystal structure of the Rio2 kinase from Chaetomium thermophilum 4GYI ; 2.2 ; Crystal structure of the Rio2 kinase-ADP/Mg2+-phosphoaspartate complex from Chaetomium thermophilum 8QA9 ; 2.7 ; Crystal structure of the RK2 plasmid encoded co-complex of the C-terminally truncated transcriptional repressor protein KorB complexed with the partner repressor protein KorA bound to OA-DNA 3SJV ; 3.1 ; Crystal structure of the RL42 TCR in complex with HLA-B8-FLR 3SKN ; 2.9 ; Crystal structure of the RL42 TCR unliganded 6ZQT ; 1.51 ; Crystal structure of the RLIP76 Ral binding domain mutant (E427H/Q433L/K440R) in complex with RalB-GMPPNP 6ZRN ; 1.482 ; Crystal structure of the RLIP76 Ral binding domain mutant (E427S/L429M/Q433L/K440R) in complex with RalB-GMPPNP 3MXN ; 1.55 ; Crystal structure of the RMI core complex 4DAY ; 3.3 ; Crystal structure of the RMI core complex with MM2 peptide from FANCM 1UTY ; 2.4 ; Crystal structure of the RNA binding domain of Bluetongue virus non-structural protein 2(NS2) 3BWT ; 2.69 ; Crystal structure of the RNA binding domain of Puf4 from Saccharomyces cerevisiae 7L3O ; 2.1 ; Crystal Structure of the RNA binding domain of Threonyl-tRNA synthetase from Cryptosporidium parvum Iowa II 2D3D ; 1.6 ; crystal structure of the RNA binding SAM domain of saccharomyces cerevisiae Vts1 3SB2 ; 2.6301 ; Crystal Structure of the RNA chaperone Hfq from Herbaspirillum seropedicae SMR1 1QUV ; 2.5 ; CRYSTAL STRUCTURE OF THE RNA DIRECTED RNA POLYMERASE OF HEPATITIS C VIRUS 1SA9 ; 2.86 ; Crystal Structure of the RNA octamer GGCGAGCC 1SAQ ; 2.7 ; Crystal Structure of the RNA octamer GIC(GA)GCC 5W33 ; 2.85 ; Crystal structure of the RNA polymerase domain (RPD) of Mycobacterium tuberculosis primase DnaG 5W35 ; 3.31 ; Crystal structure of the RNA polymerase domain (RPD) of Mycobacterium tuberculosis primase DnaG in complex with a double-stranded DNA oligomer with a 1-nucleotide overhang 5W36 ; 2.46 ; Crystal structure of the RNA polymerase domain (RPD) of Mycobacterium tuberculosis primase DnaG in complex with a double-stranded DNA oligomer with a 6-nucleotide overhang 5W34 ; 2.95 ; Crystal structure of the RNA polymerase domain (RPD) of Mycobacterium tuberculosis primase DnaG in complex with double-stranded DNA GACCGGAAGTGG 1IW7 ; 2.6 ; Crystal structure of the RNA polymerase holoenzyme from Thermus thermophilus at 2.6A resolution 2RF4 ; 3.1 ; Crystal structure of the RNA Polymerase I subcomplex A14/43 5IM0 ; 1.7 ; Crystal structure of the RNA recognition motif of mRNA decay regulator AUF1 3NS5 ; 2.598 ; Crystal structure of the RNA recognition motif of yeast eIF3b residues 76-161 2A2E ; 3.85 ; Crystal structure of the RNA subunit of Ribonuclease P. Bacterial A-type. 1I9S ; 1.65 ; CRYSTAL STRUCTURE OF THE RNA TRIPHOSPHATASE DOMAIN OF MOUSE MRNA CAPPING ENZYME 1FO1 ; 2.9 ; CRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE MRNA EXPORT FACTOR TAP 1FT8 ; 3.15 ; CRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE MRNA EXPORT FACTOR TAP 1A62 ; 1.55 ; CRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE TRANSCRIPTIONAL TERMINATOR PROTEIN RHO 5BZU ; 2.501 ; Crystal structure of the RNA-binding domain of yeast Puf5p bound to AAT2 RNA 5BZ5 ; 2.8 ; Crystal structure of the RNA-binding domain of yeast Puf5p bound to AMN1 RNA 5BZ1 ; 2.15 ; Crystal structure of the RNA-binding domain of yeast Puf5p bound to MFA2 RNA 5BYM ; 2.708 ; Crystal structure of the RNA-binding domain of yeast Puf5p bound to SMX2 RNA 5BZV ; 2.354 ; Crystal structure of the RNA-binding domain of yeast Puf5p bound to SMX2 RNA 1XR5 ; 2.8 ; Crystal Structure of the RNA-dependent RNA Polymerase 3D from human rhinovirus serotype 14 1TP7 ; 2.4 ; Crystal Structure of the RNA-dependent RNA Polymerase from Human Rhinovirus 16 5I61 ; 2.4 ; Crystal structure of the RNA-dependent RNA polymerase of a human picorbirnavirus 1CSJ ; 2.8 ; CRYSTAL STRUCTURE OF THE RNA-DEPENDENT RNA POLYMERASE OF HEPATITIS C VIRUS 5DTU ; 3.199 ; Crystal structure of the RNA-helicase Prp28 from Chaetomium thermophilum bound to ADP 5D0U ; 2.919 ; Crystal structure of the RNA-helicase Prp43 from Chaetomium thermophilum bound to ADP 404D ; 2.5 ; CRYSTAL STRUCTURE OF THE RNA/DNA HYBRID R(GAAGAGAAGC). D(GCTTCTCTTC) 4EBA ; 3.3 ; Crystal structure of the Rna14-Rna15 complex 1J1G ; 1.6 ; Crystal structure of the RNase MC1 mutant N71S in complex with 5'-GMP 1J1F ; 1.6 ; Crystal structure of the RNase MC1 mutant N71T in complex with 5'-GMP 1V9H ; 2.0 ; Crystal structure of the RNase MC1 mutant Y101A in complex with 5'-UMP 1VCZ ; 1.8 ; Crystal structure of the RNase NT in complex with 5'-GMP 1TTO ; 2.1 ; Crystal structure of the Rnase T1 variant R2 5TRB ; 1.8 ; Crystal structure of the RNF20 RING domain 3NG2 ; 1.8 ; Crystal structure of the RNF4 ring domain dimer 1YJE ; 2.4 ; Crystal structure of the rNGFI-B ligand-binding domain 6POK ; 1.796 ; Crystal structure of the Robo3 FN2-3 domains 4F0F ; 1.8 ; Crystal Structure of the Roco4 Kinase Domain bound to AppCp from D. discoideum 4F0G ; 2.0 ; Crystal Structure of the Roco4 Kinase Domain from D. discoideum 4F1T ; 2.3 ; Crystal Structure of the Roco4 Kinase Domain from D. discoideum bound to the ROCK Inhibitor H1152 1HCI ; 2.8 ; CRYSTAL STRUCTURE OF THE ROD DOMAIN OF ALPHA-ACTININ 1Z05 ; 2.0 ; Crystal structure of the ROK family transcriptional regulator, homolog of E.coli MLC protein. 4DO2 ; 1.401 ; Crystal Structure of the Rop protein mutant D30P/A31G at resolution 1.4 resolution. 3X1O ; 2.201 ; Crystal structure of the ROQ domain of human Roquin 4QIL ; 2.9 ; Crystal structure of the ROQ domain of human Roquin in complex with the Hmg19 stem-loop RNA 4QIK ; 1.9 ; Crystal structure of the ROQ domain of human Roquin in complex with the TNF23 RNA duplex 4YWQ ; 1.7 ; Crystal structure of the ROQ domain of human Roquin-1 4Z30 ; 2.71 ; Crystal structure of the ROQ domain of human Roquin-2 4ZLC ; 2.7 ; Crystal structure of the ROQ domain of human Roquin-2 4ULW ; 1.91 ; Crystal structure of the ROQ-domain of human ROQUIN1 4YPQ ; 2.32 ; Crystal structure of the ROR(gamma)t ligand binding domain in complex with 4-(1-(2-chloro-6-(trifluoromethyl)benzoyl)-1H-indazol-3-yl)benzoic acid 3KZ4 ; 3.8 ; Crystal Structure of the Rotavirus Double Layered Particle 2AEN ; 1.604 ; Crystal structure of the rotavirus strain DS-1 VP8* core 3O4Q ; 1.55 ; Crystal structure of the Rous Associated Virus Integrase catalytic domain A182T in citrate buffer pH 6.2 3O4N ; 1.8 ; Crystal structure of the Rous Associated Virus Integrase catalytic domain in MES buffer pH 6.0 5EJK ; 3.8 ; Crystal structure of the Rous sarcoma virus intasome 5KZA ; 1.86 ; Crystal structure of the Rous sarcoma virus matrix protein (aa 2-102). Space group I41 5KZB ; 3.2 ; Crystal structure of the Rous sarcoma virus matrix protein (aa 2-102). Space group I4122 5KZ9 ; 2.85 ; Crystal structure of the Rous sarcoma virus matrix protein. 3RG1 ; 2.91 ; Crystal structure of the RP105/MD-1 complex 3BH7 ; 1.9 ; Crystal structure of the RP2-Arl3 complex bound to GDP-AlF4 3BH6 ; 2.6 ; Crystal structure of the RP2-Arl3 complex bound to GppNHp 3DCA ; 3.35 ; Crystal structure of the RPA0582- protein of unknown function from Rhodopseudomonas palustris- a structural genomics target 8AA9 ; 1.8 ; Crystal structure of the Rpa1 AROD-OB-1 domains 3E23 ; 1.6 ; Crystal structure of the RPA2492 protein in complex with SAM from Rhodopseudomonas palustris, Northeast Structural Genomics Consortium Target RpR299 5A53 ; 2.401 ; Crystal Structure of the Rpf2-Rrs1 complex 4QAM ; 1.83 ; Crystal Structure of the RPGR RCC1-like domain in complex with the RPGR-interacting domain of RPGRIP1 3OPW ; 2.5 ; Crystal Structure of the Rph1 catalytic core 3OPT ; 2.2 ; Crystal structure of the Rph1 catalytic core with a-ketoglutarate 5V1Z ; 2.0 ; Crystal structure of the RPN13 PRU-RPN2 (932-953)-ubiquitin complex 4OCL ; 2.4 ; Crystal Structure of the Rpn8-Rpn11 MPN domain heterodimer, crystal form Ia 4OCM ; 1.99 ; Crystal Structure of the Rpn8-Rpn11 MPN domain heterodimer, crystal form Ib 4OCN ; 2.25 ; Crystal Structure of the Rpn8-Rpn11 MPN domain heterodimer, crystal form II 2BF0 ; 2.3 ; crystal structure of the rpr of pcf11 4C6T ; 2.65 ; Crystal structure of the RPS4 and RRS1 TIR domain heterodimer 1CSL ; 1.6 ; CRYSTAL STRUCTURE OF THE RRE HIGH AFFINITY SITE 5MKC ; 2.04 ; Crystal structure of the RrgA Jo.In complex 3MDF ; 1.85 ; Crystal structure of the RRM domain of Cyclophilin 33 3LPY ; 2.0 ; Crystal structure of the RRM domain of CyP33 3S8S ; 1.3 ; Crystal structure of the RRM domain of human SETD1A 8ILY ; 1.7 ; Crystal structure of the RRM domain of human SETD1A 8ILZ ; 1.77 ; Crystal structure of the RRM domain of human SETD1B 2XSF ; 1.7 ; Crystal structure of the RRM domain of mouse Deleted in azoospermia- like 2XS5 ; 1.6 ; Crystal structure of the RRM domain of mouse Deleted in azoospermia- like in complex with Mvh RNA, UGUUC 2XS7 ; 1.45 ; Crystal structure of the RRM domain of mouse Deleted in azoospermia- like in complex with Sycp3 RNA, UUGUUU 2XS2 ; 1.35 ; Crystal structure of the RRM domain of mouse Deleted in azoospermia-like in complex with RNA, UUGUUCUU 4I67 ; 2.33 ; Crystal structure of the RRM domain of RNA helicase HERA from T. thermophilus in complex with GGGC RNA 6NX5 ; 1.554 ; Crystal structure of the RRM domain of S. pombe Puf1 in the P21 space group 6NWW ; 2.06 ; Crystal structure of the RRM domain of S. pombe Puf1 in the P212121 space group 6KOR ; 2.602 ; Crystal structure of the RRM domain of SYNCRIP 3CTR ; 2.1 ; Crystal structure of the RRM-domain of the poly(A)-specific ribonuclease PARN bound to m7GTP 6FQ1 ; 1.31 ; Crystal structure of the RRM12 domain of IMP3 5C0Y ; 2.1 ; Crystal structure of the Rrp6 catalytic domain bound to poly(U) RNA 5WXL ; 1.9 ; Crystal structure of the Rrs1 and Rpf2 complex 2R0S ; 1.8 ; Crystal Structure of the Rsc4 tandem bromodomain 5TOJ ; 3.3 ; Crystal structure of the RSV F glycoprotein in complex with the neutralizing single-domain antibody F-VHH-4 5TOK ; 3.8 ; Crystal structure of the RSV F glycoprotein in complex with the neutralizing single-domain antibody F-VHH-L66 5TP3 ; 1.874 ; Crystal structure of the RSV-neutralizing single-domain antibody F-VHH-4 5DDZ ; 1.5 ; Crystal structure of the RTA-c10-P2 complex 2EFW ; 2.5 ; Crystal structure of the RTP:nRB complex from Bacillus subtilis 5JTD ; 1.5 ; Crystal structure of the Ru(bpy)2PhenA functionalized P450 BM3 L407C heme domain mutant in complex with DMSO. 5JQ2 ; 2.0 ; Crystal structure of the Ru(bpy)2PhenA functionalized P450 BM3 L407C heme domain mutant in complex with N-palmitoylglycine 4ADI ; 1.8 ; Crystal structure of the Rubella virus envelope glycoprotein E1 in post-fusion form (crystal form I) 4ADG ; 2.18 ; Crystal structure of the Rubella virus envelope Glycoprotein E1 in post-fusion form (crystal form II) 4ADJ ; 1.94 ; Crystal structure of the Rubella virus glycoprotein E1 in its post-fusion form crystallized in presence of 1mM of calcium acetate 4B3V ; 1.98 ; Crystal structure of the Rubella virus glycoprotein E1 in its post-fusion form crystallized in presence of 20mM of Calcium Acetate 4GIW ; 2.0 ; Crystal structure of the RUN domain of human NESCA 2DWK ; 2.0 ; Crystal structure of the RUN domain of mouse Rap2 interacting protein x 6MG7 ; 2.91 ; Crystal structure of the RV144 C1-C2 specific antibody CH54 Fab in complex with HIV-1 CLADE A/E GP120 and M48U1 6OED ; 2.461 ; CRYSTAL STRUCTURE OF THE RV144 C1-C2 SPECIFIC ANTIBODY CH55 FAB 6OFI ; 3.85 ; CRYSTAL STRUCTURE OF the RV144 C1-C2 SPECIFIC ANTIBODY CH55 FAB IN COMPLEX WITH HIV-1 CLADE A/E GP120 5I8U ; 2.0 ; Crystal Structure of the RV1700 (MT ADPRASE) E142Q mutant 6MFP ; 3.0 ; Crystal Structure of the RV305 C1-C2 specific ADCC potent antibody DH677.3 Fab in complex with HIV-1 clade A/E gp120 and M48U1 7E2K ; 2.041 ; Crystal structure of the RWD domain of human GCN2 - 1 7E2M ; 2.35 ; Crystal structure of the RWD domain of human GCN2 - 2 1QCP ; 1.8 ; CRYSTAL STRUCTURE OF THE RWJ-51084 BOVINE PANCREATIC BETA-TRYPSIN AT 1.8 A 3RQR ; 2.16 ; Crystal structure of the RYR domain of the rabbit ryanodine receptor 3EMP ; 4.0 ; Crystal Structure of the S-acetanilide modified form of C165S AhpC 4GKG ; 1.695 ; Crystal structure of the S-Helix Linker 4UIC ; 2.9 ; Crystal structure of the S-layer protein rSbsC(31-844) 4UID ; 2.8 ; Crystal structure of the S-layer protein SbsC domains 4 and 5 4UIE ; 3.1 ; Crystal structure of the S-layer protein SbsC, domains 7, 8 and 9 5EGP ; 1.5 ; Crystal structure of the S-methyltransferase TmtA 3EU0 ; 2.7 ; Crystal structure of the S-nitrosylated Cys215 of PTP1B 3MFB ; 2.2 ; Crystal Structure of the S-type Pyocin domain of ECA1669 protein from Erwinia carotovora, Northeast Structural Genomics Consortium Target EwR82C 3ROF ; 1.03 ; Crystal Structure of the S. aureus Protein Tyrosine Phosphatase PtpA 5OQQ ; 2.79 ; Crystal structure of the S. cerevisiae condensin Ycg1-Brn1 subcomplex 5OQP ; 2.98 ; Crystal structure of the S. cerevisiae condensin Ycg1-Brn1 subcomplex bound to DNA (crystal form I) 5OQO ; 3.25 ; Crystal structure of the S. cerevisiae condensin Ycg1-Brn1 subcomplex bound to DNA (crystal form II) 5OQN ; 3.15 ; Crystal structure of the S. cerevisiae condensin Ycg1-Brn1 subcomplex bound to DNA (short kleisin loop) 1XTZ ; 2.1 ; Crystal structure of the S. cerevisiae D-ribose-5-phosphate isomerase: comparison with the archeal and bacterial enzymes 4A4Z ; 2.4 ; CRYSTAL STRUCTURE OF THE S. CEREVISIAE DEXH HELICASE SKI2 BOUND TO AMPPNP 2B7M ; 3.5 ; Crystal Structure of the S. cerevisiae Exocyst Component Exo70p 6P4X ; 3.59 ; Crystal Structure of the S. cerevisiae glucokinase, Glk1 5EMX ; 1.399 ; Crystal structure of the S. cerevisiae Rtf1 histone modification domain mutant R124A R126A R128A 5E8B ; 1.62 ; Crystal structure of the S. cerevisiae Rtf1 histone modification domain mutant R126A 3TE6 ; 2.8001 ; Crystal Structure of the S. cerevisiae Sir3 AAA+ domain 4A4K ; 3.25 ; Crystal structure of the S. cerevisiae Ski2 insertion domain 4BUJ ; 3.7 ; Crystal structure of the S. cerevisiae Ski2-3-8 complex 4ZKD ; 2.181 ; Crystal structure of the S. cerevisiae Ski7 GTPase-like domain, bound to GDP and inorganic phosphate. 4ZKE ; 2.251 ; Crystal structure of the S. cerevisiae Ski7 GTPase-like domain, bound to GTP. 1QVV ; 2.35 ; Crystal structure of the S. cerevisiae YDR533c protein 1QVW ; 1.9 ; Crystal structure of the S. cerevisiae YDR533c protein 1QVZ ; 1.85 ; Crystal structure of the S. cerevisiae YDR533c protein 2WDO ; 1.56 ; Crystal structure of the S. coelicolor AcpS in complex with acetyl- CoA at 1.5 A 5OQR ; 2.61 ; Crystal structure of the S. pombe condensin Cnd3-Cnd2 subcomplex 3CB5 ; 2.05 ; Crystal Structure of the S. pombe Peptidase Homology Domain of FACT complex subunit Spt16 (form A) 3CB6 ; 1.84 ; Crystal Structure of the S. pombe Peptidase Homology Domain of FACT complex subunit Spt16 (form B) 2P51 ; 1.4 ; Crystal structure of the S. pombe Pop2p deadenylation subunit 3FQG ; 2.0 ; Crystal Structure of the S. pombe Rai1 3FQD ; 2.2 ; Crystal Structure of the S. pombe Rat1-Rai1 Complex 3L7Z ; 2.41 ; Crystal structure of the S. solfataricus archaeal exosome 6IVA ; 4.403 ; Crystal structure of the S. typhimurium oxaloacetate decarboxylase beta-gamma sub-complex 5TGA ; 3.3 ; Crystal structure of the S.cerevisiae 80S ribosome in complex with the A-site bound aminoacyl-tRNA analog ACCA-Pro 5TGM ; 3.5 ; Crystal structure of the S.cerevisiae 80S ribosome in complex with the A-site bound aminoacyl-tRNA analog ACCA-Pro 5LYB ; 3.25 ; Crystal structure of the S.cerevisiae 80S ribosome in complex with the A-site bound aminoacyl-tRNA analog ACCPmn 1GPP ; 1.35 ; Crystal structure of the S.cerevisiae Homing Endonuclease PI-SceI Domain I 7QY5 ; 2.77 ; Crystal structure of the S.pombe Ars2-Red1 complex. 5MG8 ; 2.75 ; Crystal structure of the S.pombe Smc5/6 hinge domain 7MXJ ; 1.92 ; Crystal structure of the S/T protein kinase PknG from Corynebacterium glutamicum (residues 130-433) in complex with AMP-PNP, isoform 1 7MXK ; 1.99 ; Crystal structure of the S/T protein kinase PknG from Corynebacterium glutamicum (residues 130-433) in complex with AMP-PNP, isoform 2 7MXB ; 2.2 ; Crystal structure of the S/T protein kinase PknG from Corynebacterium glutamicum in complex with AMP-PNP 4Y0X ; 1.74 ; Crystal structure of the S/T protein kinase PknG from Mycobacterium tuberculosis in complex with ADP 4Y12 ; 1.9 ; Crystal structure of the S/T protein kinase PknG from Mycobacterium tuberculosis in complex with AGS 1SMX ; 1.8 ; Crystal structure of the S1 domain of RNase E from E. coli (native) 1SN8 ; 2.0 ; Crystal structure of the S1 domain of RNase E from E. coli (Pb derivative) 6JHY ; 2.5 ; Crystal Structure of the S1 subunit N-terminal domain from DcCoV UAE-HKU23 spike protein 3I08 ; 3.2 ; Crystal structure of the S1-cleaved Notch1 Negative Regulatory Region (NRR) 7CD2 ; 2.7 ; Crystal structure of the S103F mutant of Bacillus subtilis (natto) YabJ protein. 7CD3 ; 2.1 ; Crystal structure of the S103F mutant of Bacillus subtilis (natto) YabJ protein. 7CD4 ; 2.1 ; Crystal structure of the S103F mutant of Bacillus subtilis (natto) YabJ protein. 4LYD ; 2.26 ; Crystal structure of the S105A mutant of a C-C hydrolase, DxnB2 from Sphingomonas wittichii RW1 4LYE ; 2.33 ; Crystal structure of the S105A mutant of a C-C hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with substrate HOPDA 4LXH ; 2.02 ; Crystal Structure of the S105A mutant of a carbon-carbon bond hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with 3-Cl HOPDA 4LXI ; 2.17 ; Crystal Structure of the S105A mutant of a carbon-carbon bond hydrolase, DxnB2 from Sphingomonas wittichii RW1, in complex with 5,8-diF HOPDA 2EZ0 ; 3.54 ; Crystal structure of the S107A/E148Q/Y445A mutant of EcClC, in complex with a FaB fragment 4INJ ; 2.4 ; Crystal structure of the S111A mutant of member of MccF clade from Listeria monocytogenes EGD-e with product 2RHW ; 1.57 ; Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with 3,10-Di-Fluoro HOPDA 2RHT ; 1.7 ; Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with 3-Cl HOPDA 2PUH ; 1.82 ; Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with its substrate HOPDA 3T5M ; 1.749 ; Crystal structure of the S112A mutant of mycrocine immunity protein (MccF) with AMP 2PUJ ; 1.57 ; Crystal Structure of the S112A/H265A double mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with its substrate HOPDA 3V1L ; 2.11 ; Crystal Structure of the S112A/H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400 3V1M ; 1.92 ; Crystal Structure of the S112A/H265Q mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, after exposure to its substrate HOPDA 1O9O ; 2.3 ; Crystal structure of the S131A mutant of Malonamidase E2 complexed with malonamate from Bradyrhizobium japonicum 1O9P ; 1.8 ; Crystal structure of the S131A mutant of Malonamidase E2 complexed with malonate from Bradyrhizobium japonicum 1OBL ; 2.0 ; crystal structure of the S133A mutant of Malonamidase E2 complexed with malonate from Bradyrhizobium japonicum 1LSO ; 2.6 ; Crystal Structure of the S137A mutant of L-3-Hydroxyacyl-CoA Dehydrogenase in Complex with NAD 1M76 ; 2.15 ; Crystal Structure of the S137C Mutant of L-3-HYDROXYACYL-COA Dehydrogenase in Complex with NAD and Acetoacetyl-COA 2O8M ; 2.0 ; Crystal structure of the S139A mutant of Hepatitis C Virus NS3/4A protease 3F9E ; 2.5 ; Crystal Structure of the S139A mutant of SARS-Coronovirus 3C-like Protease 4AL6 ; 2.63 ; Crystal structure of the S148ACsy4-crRNA complex 1O9Q ; 1.8 ; Crystal structure of the S155C mutant of Malonamidase E2 from Bradyrhizobium japonicum 1OCH ; 1.8 ; Crystal structure of the S155C mutant of malonamidase E2 from Bradyrhizobium japonicum 5C5X ; 2.6 ; CRYSTAL STRUCTURE OF THE S156E MUTANT OF HUMAN AQUAPORIN 5 3IFW ; 2.4 ; Crystal structure of the S18Y variant of ubiquitin carboxy terminal hydrolase L1 bound to ubiquitin vinylmethylester. 4JKJ ; 2.151 ; Crystal Structure of the S18Y Variant of Ubiquitin Carboxy-terminal Hydrolase L1 4EC5 ; 2.197 ; Crystal structure of the S210C (dimer) mutant from the N-terminal domain of the secretin XcpQ from Pseudomonas aeruginosa 2Z53 ; 1.29 ; Crystal structure of the S211A mutant of the ribosome inactivating protein PDL4 from P. dioica leaves 3K6N ; 2.0 ; Crystal structure of the S225E mutant Kir3.1 cytoplasmic pore domain 3B3V ; 1.22 ; Crystal structure of the S228A mutant of the aminopeptidase from Vibrio proteolyticus 3B3W ; 1.75 ; Crystal structure of the S228A mutant of the aminopeptidase from Vibrio proteolyticus in complex with leucine 3B7I ; 1.75 ; Crystal structure of the S228A mutant of the aminopeptidase from Vibrio proteolyticus in complex with leucine phosphonic acid 8ORL ; 1.43 ; Crystal structure of the S23226G missense variant of titin domain Fn3-56 3U1B ; 1.604 ; Crystal structure of the S238R mutant of mycrocine immunity protein (MccF) with AMP 2OIP ; 2.8 ; Crystal Structure of the S290G Active Site Mutant of TS-DHFR from Cryptosporidium hominis 5SYY ; 1.85 ; Crystal structure of the S324G variant of catalase-peroxidase from B. pseudomallei 5KSN ; 1.87 ; Crystal structure of the S324G variant of catalase-peroxidase from B. pseudomallei with INH bound 5SXT ; 1.9 ; Crystal structure of the S324T variant of Burkholderia pseudomallei KatG with isonicotinic acid hydrazide bound 5ZWT ; 2.0 ; Crystal structure of the S37A mutant of apo-acyl carrier protein from Leishmania major 4OST ; 1.996 ; Crystal structure of the S505C mutant of TAL effector dHax3 4OSW ; 2.302 ; Crystal structure of the S505E mutant of TAL effector dHax3 4OSM ; 2.454 ; Crystal structure of the S505H mutant of TAL effector dHax3 4OSR ; 1.944 ; Crystal structure of the S505K mutant of TAL effector dHax3 4OT3 ; 1.944 ; Crystal structure of the S505L mutant of TAL effector dHax3 4OSV ; 1.996 ; Crystal structure of the S505M mutant of TAL effector dHax3 4OSZ ; 2.614 ; Crystal structure of the S505P mutant of TAL effector dHax3 4OSS ; 2.397 ; Crystal structure of the S505Q mutant of TAL effector dHax3 4OSQ ; 2.256 ; Crystal structure of the S505R mutant of TAL effector dHax3 4OT0 ; 2.491 ; Crystal structure of the S505T mutant of TAL effector dHax3 4OTO ; 2.588 ; Crystal structure of the S505W mutant of TAL effector dHax3 2APB ; 1.8 ; Crystal Structure of the S54N variant of murine T cell receptor Vbeta 8.2 domain 2H3W ; 2.1 ; Crystal structure of the S554A/M564G mutant of murine carnitine acetyltransferase in complex with hexanoylcarnitine and CoA 5JOC ; 1.75 ; Crystal structure of the S61A mutant of AmpC BER 1O99 ; 2.65 ; CRYSTAL STRUCTURE OF THE S62A MUTANT OF PHOSPHOGLYCERATE MUTASE FROM BACILLUS STEAROTHERMOPHILUS COMPLEXED WITH 2-PHOSPHOGLYCERATE 6JGI ; 0.85 ; Crystal structure of the S65T/F99S/M153T/V163A variant of GFP at 0.85 A 6KL1 ; 0.851 ; Crystal structure of the S65T/F99S/M153T/V163A variant of non-deuterated GFP at pD 8.5 6KL0 ; 0.798 ; Crystal structure of the S65T/F99S/M153T/V163A variant of perdeuterated GFP at pD 7.0 6KKZ ; 0.9 ; Crystal structure of the S65T/F99S/M153T/V163A variant of perdeuterated GFP at pD 8.5 2OAX ; 2.29 ; Crystal structure of the S810L mutant mineralocorticoid receptor associated with SC9420 3VBK ; 2.2 ; Crystal Structure of the S84A mutant of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP-4-amino-4,6-dideoxyglucose and Coenzyme A 3VBL ; 1.9 ; Crystal Structure of the S84C mutant of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP-4-amino-4,6-dideoxyglucose and Coenzyme A 3VBM ; 1.9 ; Crystal Structure of the S84T mutant of AntD, an N-acyltransferase from Bacillus cereus in complex with dTDP and Coenzyme A 5ITZ ; 2.2 ; Crystal structure of the SAC domain of CPAP in a complex with Tubulin and Darpin 2XIW ; 1.5 ; Crystal structure of the Sac7d-derived IgG1-binder C3-C24S 2VK1 ; 1.71 ; Crystal structure of the Saccharomyces cerevisiae pyruvate decarboxylase variant D28A in complex with its substrate 2VK8 ; 1.42 ; Crystal structure of the Saccharomyces cerevisiae pyruvate decarboxylase variant E477Q in complex with its substrate 2W93 ; 1.6 ; Crystal structure of the Saccharomyces cerevisiae pyruvate decarboxylase variant E477Q in complex with the surrogate pyruvamide 5C2Y ; 2.6 ; Crystal structure of the Saccharomyces cerevisiae Rtr1 (regulator of transcription) 5U1T ; 2.6 ; Crystal structure of the Saccharomyces cerevisiae separase-securin complex at 2.6 angstrom resolution 5U1S ; 3.002 ; Crystal structure of the Saccharomyces cerevisiae separase-securin complex at 3.0 angstrom resolution 4ZOV ; 2.0 ; Crystal structure of the Saccharomyces cerevisiae Sqt1 4ZOX ; 1.6 ; Crystal structure of the Saccharomyces cerevisiae Sqt1 bound to the N-terminus of the ribosomal protein L10 1Q99 ; 2.11 ; Crystal structure of the Saccharomyces cerevisiae SR protein kinsae, Sky1p, complexed with the non-hydrolyzable ATP analogue, AMP-PNP 1AYZ ; 2.6 ; CRYSTAL STRUCTURE OF THE SACCHAROMYCES CEREVISIAE UBIQUITIN-CONJUGATING ENZYME RAD6 (UBC2) AT 2.6A RESOLUTION 3MGJ ; 2.703 ; Crystal structure of the Saccharop_dh_N domain of MJ1480 protein from Methanococcus jannaschii. Northeast Structural Genomics Consortium Target MjR83a. 7PVP ; 1.8 ; Crystal structure of the SAKe6BC designer protein 7Q58 ; 1.3 ; Crystal structure of the SAKe6BR designer protein 4FAH ; 2.5 ; Crystal Structure of the Salicylate 1,2-dioxygenase from Pseudoaminobacter salicylatoxidans A85H mutant 4FBF ; 2.7 ; Crystal Structure of the Salicylate 1,2-dioxygenase from Pseudoaminobacter salicylatoxidans W104Y mutant 4FAG ; 2.5 ; Crystal Structure of the Salicylate 1,2-dioxygenase from Pseudoaminobacter salicylatoxidans W104Y mutant in complex with gentisate 3SY2 ; 3.27 ; Crystal structure of the Salmonella E3 ubiquitin ligase SopA in complex with the human E2 UbcH7 7YM5 ; 3.45 ; Crystal structure of the Salmonella effector SseK1 7YM7 ; 2.2 ; Crystal structure of the Salmonella effector SseK1 F187A mutant 6EYR ; 2.2 ; Crystal structure of the salmonella effector SseK3 6EYT ; 2.21 ; Crystal structure of the Salmonella effector SseK3 in complex with UDP-GlcNAc and Manganese 2FM8 ; 2.2 ; Crystal Structure of the Salmonella Secretion Chaperone InvB in Complex with SipA 2GWM ; 1.5 ; Crystal structure of the Salmonella SpvB ATR Domain 2GWL ; 1.9 ; Crystal structure of the Salmonella SpvB ATR Domain in complex with NADH 3QPT ; 2.4 ; Crystal structure of the Salmonella transcriptional regulator SlyA 3Q5F ; 2.96 ; Crystal structure of the Salmonella transcriptional regulator SlyA in complex with DNA 3NZZ ; 1.65 ; Crystal Structure of the Salmonella Type III Secretion System Tip Protein SipD 3O00 ; 1.85 ; Crystal Structure of the Salmonella Type III Secretion System Tip Protein SipD-C244S 3GOA ; 1.7 ; Crystal structure of the Salmonella typhimurium FadA 3-ketoacyl-CoA thiolase 1G4W ; 2.2 ; CRYSTAL STRUCTURE OF THE SALMONELLA TYROSINE PHOSPHATASE AND GTPASE ACTIVATING PROTEIN SPTP 1G4U ; 2.3 ; CRYSTAL STRUCTURE OF THE SALMONELLA TYROSINE PHOSPHATASE AND GTPASE ACTIVATING PROTEIN SPTP BOUND TO RAC1 2IGT ; 1.89 ; Crystal Structure of the SAM Dependent Methyltransferase from Agrobacterium tumefaciens 6FXF ; 2.05 ; Crystal structure of the SAM domain of murine SLy1 3H2B ; 2.0 ; Crystal structure of the SAM-dependent methyltransferase cg3271 from Corynebacterium glutamicum in complex with S-adenosyl-L-homocysteine and pyrophosphate. Northeast Structural Genomics Consortium Target CgR113A 1WZN ; 1.9 ; Crystal Structure of the SAM-dependent methyltransferase from Pyrococcus horikoshii OT3 2R6Z ; 1.8 ; Crystal structure of the SAM-dependent methyltransferase NGO1261 from Neisseria gonorrhoeae, Northeast Structural Genomics Consortium Target NgR48 2YDH ; 2.9 ; Crystal structure of the SAM-I riboswitch A94G U34 G18U G19U variant in complex with SAM 6YMJ ; 2.04 ; Crystal structure of the SAM-SAH riboswitch with adenosine. 6YMK ; 2.03 ; Crystal structure of the SAM-SAH riboswitch with AMP 6YMI ; 2.5 ; Crystal structure of the SAM-SAH riboswitch with AMP. 6YML ; 2.17 ; Crystal structure of the SAM-SAH riboswitch with decarboxylated SAH 6YL5 ; 1.7 ; Crystal structure of the SAM-SAH riboswitch with SAH 6YLB ; 2.12 ; Crystal structure of the SAM-SAH riboswitch with SAM 6YMM ; 2.2 ; Crystal structure of the SAM-SAH riboswitch with SAM from space group P312 2E0Y ; 2.02 ; Crystal structure of the samarium derivative of mature gamma-glutamyltranspeptidase from Escherichia coli 6LUJ ; 1.12 ; Crystal structure of the SAMD1 SAM domain 6LUK ; 2.054 ; Crystal structure of the SAMD1 SAM domain in another crystal form 6LUI ; 1.781 ; Crystal structure of the SAMD1 WH domain and DNA complex 1OQJ ; 1.55 ; Crystal structure of the SAND domain from glucocorticoid modulatory element binding protein-1 (GMEB1) 2X7Z ; 2.0 ; Crystal Structure of the SAP97 PDZ2 I342W C378A mutant protein domain 3RFI ; 1.9 ; Crystal structure of the saposin-like domain of plant aspartic protease from Solanum tuberosum 6O2U ; 1.8 ; Crystal structure of the SARAF luminal domain 6O2W ; 2.101 ; Crystal structure of the SARAF luminal domain Cys-lock mutant dimer 6O2V ; 1.58 ; Crystal structure of the SARAF luminal domain Cys-lock mutant monomer 3DVZ ; 1.0 ; Crystal Structure of the Sarcin/Ricin Domain from E. coli 23 S rRNA 480D ; 1.5 ; CRYSTAL STRUCTURE OF THE SARCIN/RICIN DOMAIN FROM E. COLI 23 S RRNA 483D ; 1.11 ; CRYSTAL STRUCTURE OF THE SARCIN/RICIN DOMAIN FROM E. COLI 23 S RRNA 3DW4 ; 0.97 ; Crystal Structure of the Sarcin/Ricin Domain from E. COLI 23 S rRNA, U2650-OCH3 modified 3DW6 ; 1.0 ; Crystal Structure of the Sarcin/Ricin Domain from E. COLI 23 S rRNA, U2650-SECH3 modified 3DW7 ; 1.0 ; Crystal Structure of the Sarcin/Ricin Domain from E. COLI 23 S rRNA, U2656-SeCH3 modified 3DW5 ; 0.96 ; Crystal Structure of the Sarcin/Ricin Domain from E. COLI 23S rRNA, U2656-OCH3 modified 1Q9A ; 1.04 ; Crystal structure of the sarcin/ricin domain from E.coli 23S rRNA at 1.04 resolution 2G9T ; 2.1 ; Crystal structure of the SARS coronavirus nsp10 at 2.1A 5C8U ; 3.401 ; Crystal structure of the SARS coronavirus nsp14-nsp10 complex 5C8T ; 3.2 ; Crystal structure of the SARS coronavirus nsp14-nsp10 complex with functional ligand SAM 5C8S ; 3.326 ; Crystal structure of the SARS coronavirus nsp14-nsp10 complex with functional ligands SAH and GpppA 2GIB ; 1.75 ; Crystal structure of the SARS coronavirus nucleocapsid protein dimerization domain 7LFU ; 2.29 ; Crystal structure of the SARS CoV-1 Papain-like protease in complex with peptide inhibitor VIR250 7LFV ; 2.23 ; Crystal structure of the SARS CoV-1 Papain-like protease in complex with peptide inhibitor VIR251 6WUU ; 2.79 ; Crystal structure of the SARS CoV-2 Papain-like protease in complex with peptide inhibitor VIR250 6WX4 ; 1.655 ; Crystal structure of the SARS CoV-2 Papain-like protease in complex with peptide inhibitor VIR251 1WNC ; 2.8 ; Crystal structure of the SARS-CoV Spike protein fusion core 6WAQ ; 2.2 ; Crystal structure of the SARS-CoV-1 RBD bound by the cross-reactive single-domain antibody SARS VHH-72 7N44 ; 1.94 ; Crystal structure of the SARS-CoV-2 (2019-NCoV) main protease in complex with 5-(3-{3-chloro-5-[(5-methyl-1,3-thiazol-4-yl)methoxy]phenyl}-2-oxo-2H-[1,3'-bipyridin]-5-yl)pyrimidine-2,4(1H,3H)-dione (compound 13) 7L10 ; 1.63 ; CRYSTAL STRUCTURE OF THE SARS-COV-2 (2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 4 8FTL ; 2.08 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease (Mpro) in complex with inhibitor Jun89-3-C1 8DZB ; 1.85 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor 11 8DZC ; 2.2 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor 17 8D4P ; 2.04 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor Jun10-90-3-C1 8FIW ; 2.54 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor Jun10221 8FIV ; 2.51 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor Jun10541R 7RN0 ; 2.25 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor Jun9-57-3R 7RN1 ; 2.3 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor Jun9-62-2R 6XBG ; 1.45 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAW246 6XBH ; 1.6 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAW247 6XBI ; 1.7 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAW248 7LYH ; 1.9 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAWJ9-36-1 7LYI ; 1.9 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with inhibitor UAWJ9-36-3 7CUU ; 1.68 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with MG132 7KX5 ; 2.6 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with noncovalent inhibitor Jun8-76-3A 6XA4 ; 1.65 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with UAW241 6XFN ; 1.7 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with UAW243 7CUT ; 1.82 ; Crystal structure of the SARS-CoV-2 (COVID-19) main protease in complex with Z-VAD-FMK 8F4S ; 2.15 ; Crystal Structure of the SARS-CoV-2 2'-O-Methyltransferase with Compound 5a bound to the Cryptic Pocket of nsp16 8Q95 ; 1.6 ; Crystal structure of the SARS-CoV-2 BA.1 RBD with neutralizing-VHHs Ma16B06 and Ma3F05 8Q94 ; 2.5 ; Crystal structure of The SARS-COV-2 BA.2.75 RBD with neutralizing-VHHs Re32D03 and Ma3B12 7MC5 ; 1.64 ; Crystal structure of the SARS-CoV-2 ExoN-nsp10 complex 7MC6 ; 2.1 ; Crystal structure of the SARS-CoV-2 ExoN-nsp10 complex containing Mg2+ ion 7NIO ; 2.2 ; Crystal structure of the SARS-CoV-2 helicase APO form 6ZSL ; 1.94 ; Crystal structure of the SARS-CoV-2 helicase at 1.94 Angstrom resolution 7NN0 ; 3.04 ; Crystal structure of the SARS-CoV-2 helicase in complex with AMP-PNP 7NNG ; 2.38 ; Crystal structure of the SARS-CoV-2 helicase in complex with Z2327226104 7NTT ; 1.743 ; Crystal structure of the SARS-CoV-2 Main Protease 7C6S ; 1.6 ; Crystal structure of the SARS-CoV-2 main protease complexed with Boceprevir 7P51 ; 1.474 ; CRYSTAL STRUCTURE OF THE SARS-COV-2 MAIN PROTEASE COMPLEXED WITH FRAGMENT F01 7D1M ; 1.35 ; CRYSTAL STRUCTURE OF THE SARS-CoV-2 MAIN PROTEASE COMPLEXED WITH GC376 7NTQ ; 1.495 ; Crystal structure of the SARS-CoV-2 Main Protease complexed with N-(pyridin-3-ylmethyl)thioformamide 8JOP ; 2.7 ; Crystal structure of the SARS-CoV-2 main protease in complex with 11a 8I30 ; 2.0 ; Crystal structure of the SARS-CoV-2 main protease in complex with 32j 7COM ; 2.25 ; Crystal structure of the SARS-CoV-2 main protease in complex with Boceprevir (space group P212121) 8HHT ; 1.95 ; Crystal structure of the SARS-CoV-2 main protease in complex with Hit-1 7CX9 ; 1.73 ; Crystal structure of the SARS-CoV-2 main protease in complex with INZ-1 8HHU ; 2.258 ; Crystal structure of the SARS-CoV-2 main protease in complex with SY110 7C7P ; 1.74 ; Crystal structure of the SARS-CoV-2 main protease in complex with Telaprevir 7FAZ ; 2.1 ; Crystal structure of the SARS-CoV-2 main protease in complex with Y180 7C8B ; 2.2 ; Crystal structure of the SARS-CoV-2 main protease in complex with Z-VAD(OMe)-FMK 7JPY ; 1.6 ; Crystal structure of the SARS-CoV-2 main protease in its apo-form 7UU6 ; 1.85 ; Crystal structure of the SARS-CoV-2 main protease in its apo-form 7UU7 ; 2.49 ; Crystal structure of the SARS-CoV-2 main protease in its apo-form 7UU8 ; 2.5 ; Crystal structure of the SARS-CoV-2 main protease in its apo-form 7UU9 ; 2.47 ; Crystal structure of the SARS-CoV-2 main protease in its apo-form 7NTW ; 1.815 ; Crystal structure of the SARS-CoV-2 Main Protease with a Zinc ion coordinated in the active site 7NTS ; 1.477 ; Crystal structure of the SARS-CoV-2 Main Protease with oxidized C145 7ON5 ; 1.25 ; Crystal structure of the SARS-CoV-2 neutralizing nanobody Re5D06 8SK5 ; 2.011 ; Crystal structure of the SARS-CoV-2 neutralizing VHH 7A9 bound to the spike receptor binding domain 7WZO ; 2.64 ; Crystal structure of the SARS-CoV-2 nucleocapsid protein N-terminal domain in complex with Ubl1 7TOB ; 2.05 ; Crystal structure of the SARS-CoV-2 Omicron main protease (Mpro) in complex with inhibitor GC376 7MX9 ; 2.6 ; Crystal structure of the SARS-CoV-2 ORF8 accessory protein 7YBG ; 1.9 ; Crystal structure of the SARS-CoV-2 papain-like protease (C111S mutant) 7D6H ; 1.6 ; Crystal structure of the SARS-CoV-2 papain-like protease (PLPro) C112S mutant 7E35 ; 2.4 ; Crystal structure of the SARS-CoV-2 papain-like protease (PLPro) C112S mutant bound to compound S43 7CJD ; 2.501 ; Crystal structure of the SARS-CoV-2 PLpro C111S mutant 7CMD ; 2.59 ; Crystal structure of the SARS-CoV-2 PLpro with GRL0617 8Q7S ; 2.7 ; Crystal structure of the SARS-CoV-2 RBD (Wuhan) with neutralizing VHHs Ma6F06 and Re21H01 7VNB ; 2.27 ; Crystal structure of the SARS-CoV-2 RBD in complex with a human single domain antibody n3113 7CHB ; 2.4 ; Crystal structure of the SARS-CoV-2 RBD in complex with BD-236 Fab 7CHE ; 3.416 ; Crystal structure of the SARS-CoV-2 RBD in complex with BD-236 Fab and BD-368-2 Fab 7CHF ; 2.674 ; Crystal structure of the SARS-CoV-2 RBD in complex with BD-604 Fab and BD-368-2 Fab 7WBZ ; 2.42 ; Crystal structure of the SARS-Cov-2 RBD in complex with Fab 2303 7B3O ; 2.0 ; Crystal structure of the SARS-CoV-2 RBD in complex with STE90-C11 Fab 7QF0 ; 2.3 ; Crystal structure of the SARS-CoV-2 RBD in complex with the human antibody CV2.2325 7QF1 ; 2.8 ; Crystal structure of the SARS-CoV-2 RBD in complex with the human antibody CV2.6264 7QEZ ; 2.89 ; Crystal structure of the SARS-CoV-2 RBD in complex with the ultrapotent antibody CV2.1169 and CR3022 8Q93 ; 3.1 ; Crystal structure of the SARS-COV-2 RBD with neutralizing-VHHs Re30H02 and Re21D01 7OLZ ; 1.75 ; Crystal structure of the SARS-CoV-2 RBD with neutralizing-VHHs Re5D06 and Re9F06 8SGU ; 1.95 ; Crystal structure of the SARS-CoV-2 receptor binding domain 7BNV ; 2.35 ; Crystal Structure of the SARS-CoV-2 Receptor Binding Domain in Complex with Antibody ION-300 7NP1 ; 2.8 ; Crystal Structure of the SARS-CoV-2 Receptor Binding Domain in Complex with Antibody ION-360 6YLA ; 2.42 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with CR3022 Fab 6YM0 ; 4.36 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with CR3022 Fab (crystal form 1) 8FHY ; 2.53 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with neutralizing antibody WRAIR-5021 7N3I ; 2.03 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with the human neutralizing antibody Fab fragment C098 7SPP ; 1.96 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with VNAR 2C02 7SPO ; 1.92 ; Crystal structure of the SARS-CoV-2 receptor binding domain in complex with VNAR 3B4 7E86 ; 2.9 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-508 Fab 7E88 ; 3.14 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-515 Fab 7CH4 ; 3.15 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-604 Fab 7E7Y ; 2.41 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-623 Fab 7CH5 ; 2.7 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-629 Fab 7CHC ; 2.71 ; Crystal structure of the SARS-CoV-2 S RBD in complex with BD-629 Fab and BD-368-2 Fab 8BEC ; 1.7 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1375 scFV 8BG1 ; 2.88 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1511 scFV 8BG2 ; 2.1 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1580 scFV 8BG3 ; 1.9 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1610 scFV 8BG4 ; 1.6 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1611 scFV 8BG5 ; 2.05 ; Crystal structure of the SARS-CoV-2 S RBD in complex with pT1631 scFV 7JVB ; 3.287 ; Crystal structure of the SARS-CoV-2 spike receptor-binding domain (RBD) with nanobody Nb20 7M8M ; 1.78 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 11 7L12 ; 1.8 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 14 7M8Y ; 1.75 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 15 7M8N ; 1.96 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 16 7M8O ; 2.44 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 19 7L13 ; 2.17 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 21 7M8P ; 2.23 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 23 7M91 ; 1.95 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 25 7L14 ; 1.8 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 26 7M8Z ; 1.79 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 29 7L11 ; 1.8 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 5 7M90 ; 2.19 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 50 7M8X ; 1.74 ; CRYSTAL STRUCTURE OF THE SARS-COV-2(2019-NCOV) MAIN PROTEASE IN COMPLEX WITH COMPOUND 6 8GQC ; 1.35 ; Crystal structure of the SARS-unique domain (SUD) of SARS-CoV-2 (1.35 angstrom resolution) 8HBL ; 1.58 ; Crystal structure of the SARS-unique domain (SUD) of SARS-CoV-2 (1.58 angstrom resolution) 4RO5 ; 1.6 ; Crystal structure of the SAT domain from the non-reducing fungal polyketide synthase CazM 4RPM ; 1.4 ; Crystal structure of the SAT domain from the non-reducing fungal polyketide synthase CazM with bound hexanoyl 4BHX ; 1.95 ; Crystal structure of the SCAN domain from human paternally expressed gene 3 protein 3LHR ; 1.9 ; Crystal structure of the SCAN domain from Human ZNF24 4E6S ; 1.85 ; Crystal structure of the SCAN domain from mouse Zfp206 5HRJ ; 1.8 ; Crystal structure of the scavenger receptor cysteine-rich domain 5 (SRCR5) from porcine CD163 5JFB ; 2.0 ; Crystal structure of the scavenger receptor cysteine-rich domain 5 (SRCR5) from porcine CD163 5YD3 ; 1.35 ; Crystal structure of the scFv antibody 4B08 with epitope peptide 5YD5 ; 1.96 ; Crystal structure of the scFv antibody 4B08 with epitope peptide (mutation N3A) 5YD4 ; 1.35 ; Crystal structure of the scFv antibody 4B08 with epitope peptide (mutation T6A) 5YY4 ; 1.59 ; Crystal structure of the scFv antibody 4B08 with sulfated epitope peptide 4UT7 ; 1.7 ; CRYSTAL STRUCTURE OF THE SCFV FRAGMENT OF THE BROADLY NEUTRALIZING HUMAN ANTIBODY EDE2 A11 6TNP ; 3.0 ; Crystal structure of the ScFv-5E5 in complex with a Tn glycopeptide 2HKM ; 1.5 ; Crystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with phenylethylamine. 2AGY ; 1.1 ; Crystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. Monoclinic form 2AGX ; 2.2 ; Crystal structure of the Schiff base intermediate in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with tryptamine. P212121 form 3WEV ; 1.98 ; Crystal structure of the Schiff base intermediate of L-Lys epsilon-oxidase from Marinomonas mediterranea with L-Lys 7ZVS ; 3.07 ; Crystal structure of the Schistosoma mansoni VKR2 kinase domain in an active-like state (ADP-bound) 5WWL ; 2.4 ; Crystal structure of the Schizogenesis pombe kinetochore Mis12C subcomplex 5DR5 ; 1.85 ; Crystal structure of the sclerostin-neutralizing Fab AbD09097 5J8Y ; 1.98 ; Crystal structure of the Scm-SAM and Sfmbt-SAM heterodimer 1R1G ; 1.72 ; Crystal Structure of the Scorpion Toxin BmBKTtx1 3THF ; 2.6951 ; Crystal structure of the SD2 domain from Drosophila Shroom 3KF9 ; 2.6 ; Crystal structure of the SdCen/skMLCK complex 3MAL ; 1.95 ; Crystal structure of the SDF2-like protein from Arabidopsis thaliana 4ZQA ; 1.65 ; Crystal Structure of the Sds3 Dimerization Domain 2D4Q ; 2.3 ; Crystal structure of the Sec-PH domain of the human neurofibromatosis type 1 protein 4L9O ; 1.6 ; Crystal Structure of the Sec13-Sec16 blade-inserted complex from Pichia pastoris 7UR2 ; 1.89 ; Crystal structure of the Sec14 domain of the RhoGEF Kalirin 1M2O ; 2.5 ; Crystal Structure of the Sec23-Sar1 complex 5M4Y ; 2.2 ; Crystal structure of the Sec3/Sso2 complex at 2.20 angstrom resolution 5LG4 ; 2.9 ; Crystal structure of the Sec3/Sso2 complex at 2.9 angstrom resolution 4A4P ; 2.0 ; crystal structure of the Sec7 domain from human cytohesin1 1KU1 ; 1.93 ; Crystal Structure of the Sec7 Domain of Yeast GEA2 1NKT ; 2.601 ; CRYSTAL STRUCTURE OF THE SECA PROTEIN TRANSLOCATION ATPASE FROM MYCOBACTERIUM TUBERCULOSIS COMPLEX WITH ADPBS 1NL3 ; 2.8 ; CRYSTAL STRUCTURE OF THE SECA PROTEIN TRANSLOCATION ATPASE FROM MYCOBACTERIUM TUBERCULOSIS in APO FORM 1M6N ; 2.7 ; Crystal structure of the SecA translocation ATPase from Bacillus subtilis 4PZ5 ; 1.96 ; Crystal structure of the second and third fibronectin F1 modules in complex with a fragment of BBK32 from Borrelia burgdorferi 2RKZ ; 2.0 ; Crystal structure of the second and third fibronectin f1 modules in complex with a fragment of staphylococcus aureus fnbpa-1 3CAL ; 1.7 ; Crystal structure of the second and third fibronectin F1 modules in complex with a fragment of staphylococcus aureus fnbpa-5 3ZRZ ; 1.7 ; Crystal structure of the second and third fibronectin F1 modules in complex with a fragment of Streptococcus pyogenes SfbI-5 5V6C ; 2.2 ; Crystal Structure of the Second beta-Prism Domain of RbmC from V. cholerae 5V6F ; 1.5 ; Crystal Structure of the Second beta-Prism Domain of RbmC from V. cholerae bound to Mannotriose 5V6K ; 1.8 ; Crystal Structure of the Second beta-Prism Domain of RbmC from V. cholerae Bound to N-acetylglucosaminyl-beta-1,2-mannose 3L46 ; 1.482 ; Crystal structure of the second BRCT domain of epithelial cell transforming 2 (ECT2) 7L9G ; 1.36 ; Crystal structure of the second bromodomain (BD2) of human BRD2 bound to BI2536 7L6D ; 1.55 ; Crystal structure of the second bromodomain (BD2) of human BRD2 bound to bromosporine 7L9K ; 1.95 ; Crystal structure of the second bromodomain (BD2) of human BRD2 bound to LRRK2-IN-1 7L9J ; 1.85 ; Crystal structure of the second bromodomain (BD2) of human BRD2 bound to Ro3280 7L9L ; 1.55 ; Crystal structure of the second bromodomain (BD2) of human BRD3 bound to BI2536 7LB4 ; 2.004 ; Crystal structure of the second bromodomain (BD2) of human BRD3 bound to bromosporine 7LBT ; 2.7 ; Crystal structure of the second bromodomain (BD2) of human BRD3 bound to ERK5-IN-1 7L72 ; 1.5 ; Crystal structure of the second bromodomain (BD2) of human BRD3 bound to Ro3280 7KO0 ; 1.9 ; Crystal structure of the second bromodomain (BD2) of human BRD4 bound to SG3-179 7LEL ; 2.15 ; Crystal structure of the second bromodomain (BD2) of human BRDT bound to Bromosporine 7LEK ; 2.75 ; Crystal structure of the second bromodomain (BD2) of human BRDT bound to ERK5-IN-1 7LEJ ; 1.73 ; Crystal structure of the second bromodomain (BD2) of human BRDT bound to Volasertib 7JJG ; 1.6 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to ATR kinase inhibitor AZ20 7JSP ; 1.7 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to ATR kinase inhibitor AZD6738 7K1P ; 2.45 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to bromosporine 7K42 ; 1.7 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to dioxane 7K0U ; 2.52 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to PLK1 kinase inhibitor BI2536 7JTC ; 2.05 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to ZS1-322 7LB3 ; 1.9 ; Crystal structure of the second bromodomain (BD2) of human TAF1 bound to ZS1-580 5HFR ; 1.7 ; Crystal structure of the second bromodomain H395R mutant of human BRD3 6I80 ; 1.14 ; Crystal Structure of the second bromodomain of BRD2 in complex with RT53 6I81 ; 1.74 ; Crystal Structure of the second bromodomain of BRD2 in complex with RT56 8BPT ; 1.6 ; Crystal structure of the second bromodomain of BRD5 from Leishmania donovani 4MR6 ; 1.67 ; Crystal Structure of the second bromodomain of human BRD2 in complex with a quinazolinone ligand (RVX-208) 4MR5 ; 1.63 ; Crystal Structure of the second bromodomain of human BRD2 in complex with a quinazolinone ligand (RVX-OH) 5N2L ; 1.89 ; Crystal structure of the second bromodomain of human BRD2 in complex with a tetrahydroquinoline analogue 5EK9 ; 2.08 ; Crystal structure of the second bromodomain of human BRD2 in complex with a tetrahydroquinoline inhibitor 6WWB ; 1.31 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the compound 3b 8WYG ; 3.13 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor 22 3ONI ; 1.61 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor JQ1 7WNA ; 2.6 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13120 7WN5 ; 1.7 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13142 7WMU ; 1.73 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13146 7WLN ; 2.85 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13153 7WMQ ; 2.37 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13157 7WNI ; 3.12 ; Crystal Structure of the second bromodomain of human BRD2 in complex with the inhibitor Y13158 5A7C ; 1.9 ; Crystal structure of the second bromodomain of human BRD3 in complex with compound 3S92 ; 1.36 ; Crystal Structure of the second bromodomain of human BRD3 in complex with the inhibitor JQ1 6DUV ; 1.8 ; Crystal structure of the second bromodomain of human BRD4 in complex with MS417 inhibitor 2YEM ; 2.3 ; Crystal Structure of the Second Bromodomain of Human Brd4 with the inhibitor GW841819X 3Q2E ; 1.74 ; Crystal structure of the second bromodomain of human bromodomain and WD repeat-containing protein 1 isoform A (WDR9) 3HMF ; 1.63 ; Crystal Structure of the second Bromodomain of Human Poly-bromodomain containing protein 1 (PB1) 3LJW ; 1.501 ; Crystal Structure of the Second Bromodomain of Human Polybromo 8FTA ; 1.78 ; Crystal Structure of the second bromodomain of human Polybromo-1 (PB1) in complex with compound 16 5MG2 ; 1.75 ; Crystal structure of the second bromodomain of human TAF1 in complex with BAY-299 chemical probe 5IGL ; 2.1 ; Crystal structure of the second bromodomain of human TAF1L in complex with bromosporine (BSP) 3HMH ; 2.05 ; Crystal structure of the second bromodomain of human TBP-associated factor RNA polymerase 1-like (TAF1L) 3UV4 ; 1.89 ; Crystal Structure of the second bromodomain of human Transcription initiation factor TFIID subunit 1 (TAF1) 3MB3 ; 2.25 ; Crystal Structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) 5ENE ; 1.49 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with 5-Amino-2-benzyl-1,3-oxazole-4-carbonitrile (SGC - Diamond I04-1 fragment screening) 5ENH ; 1.95 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with compound-12 N11528 (SGC - Diamond I04-1 fragment screening) 5ENI ; 1.69 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with compound-13 N11537 (SGC - Diamond I04-1 fragment screening) 5ENJ ; 1.63 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with compound-14 N11530 (SGC - Diamond I04-1 fragment screening) 5ENF ; 1.37 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with fragment-4 N10142 (SGC - Diamond I04-1 fragment screening) 7BBP ; 1.99 ; Crystal Structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with H4K5acK8ac 5ENC ; 1.59 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with N-(2,6-Dichlorobenzyl)acetamide (SGC - Diamond I04-1 fragment screening) 5ENB ; 1.73 ; Crystal structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in complex with o-Tolylthiourea (SGC - Diamond I04-1 fragment screening) 7AV9 ; 1.23 ; Crystal Structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in space group C2 7AV8 ; 1.63 ; Crystal Structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in space group P21212 7BBO ; 1.32 ; Crystal Structure of the second bromodomain of Pleckstrin homology domain interacting protein (PHIP) in space group P212121 2DVV ; 1.8 ; Crystal structure of the second bromodomain of the human Brd2 protein 5HFQ ; 1.4 ; Crystal structure of the second bromodomain Q443H mutant of human BRD2 4GWR ; 1.81 ; Crystal Structure of the second catalytic domain of protein disulfide isomerase P5 6AKK ; 1.5 ; Crystal structure of the second Coiled-coil domain of SIKE1 5WW5 ; 2.04 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 100 iron atoms per dodecamer 5WW3 ; 2.05 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 24 iron atoms per dodecamer 5WW6 ; 2.04 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 240 iron atoms per dodecamer 5WW7 ; 2.05 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 360 iron atoms per dodecamer 5WW4 ; 2.05 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 48 iron atoms per dodecamer 5WW8 ; 2.04 ; Crystal structure of the second DNA-Binding protein under starvation from Mycobacterium smegmatis soaked with iron in the ratio of 480 iron atoms per dodecamer 2Z90 ; 2.4 ; Crystal Structure of the Second Dps from Mycobacterium smegmatis 6WTC ; 1.85 ; Crystal Structure of the Second Form of the Co-factor Complex of NSP7 and the C-terminal Domain of NSP8 from SARS CoV-2 2VJW ; 2.0 ; crystal structure of the second GAF domain of DevS from Mycobacterium smegmatis 2YAN ; 1.9 ; Crystal structure of the second glutaredoxin domain of human TXNL2 7JTJ ; 1.94 ; Crystal structure of the second heterocyclization domain of yersiniabactin synthetase 7JUA ; 2.35 ; Crystal structure of the second heterocyclization domain of yersiniabactin synthetase at 2.35 A resolution 3B6Y ; 2.35 ; Crystal Structure of the Second HIN-200 Domain of Interferon-Inducible Protein 16 4NOF ; 1.65 ; Crystal structure of the second Ig domain from mouse Polymeric Immunoglobulin receptor [PSI-NYSGRC-006220] 4HWN ; 2.006 ; Crystal structure of the second Ig-C2 domain of human Fc-receptor like A (FCRLA), Isoform 9 [NYSGRC-005836] 4NA1 ; 1.95 ; Crystal Structure of the second ketosynthase from the bacillaene polyketide synthase 4NA3 ; 2.89 ; Crystal Structure of the second ketosynthase from the bacillaene polyketide synthase bound to a hexanoyl substrate mimic 4NA2 ; 2.3 ; Crystal Structure of the second ketosynthase from the bacillaene polyketide synthase bound to its natural intermediate 6Y2D ; 1.9 ; Crystal structure of the second KH domain of FUBP1 2H0B ; 2.1 ; Crystal Structure of the second LNS/LG domain from Neurexin 1 alpha 4CEK ; 2.35 ; Crystal structure of the second MIF4G domain of human nonsense mediated decay factor UPF2 3M4I ; 1.95 ; Crystal structure of the second part of the Mycobacterium tuberculosis DNA gyrase reaction core: the TOPRIM domain at 1.95 A resolution 3IG0 ; 2.1 ; crystal structure of the second part of the Mycobacterium tuberculosis DNA gyrase reaction core: the TOPRIM domain at 2.1 A resolution 7XTY ; 2.1 ; Crystal Structure of the second PDZ domain from human PTPN13 in complex with APC peptide 3E17 ; 1.75 ; Crystal structure of the second PDZ domain from human Zona Occludens-2 5ZDS ; 1.8 ; Crystal structure of the second PDZ domain of Frmpd2 2VWR ; 1.3 ; Crystal structure of the second pdz domain of numb-binding protein 2 2G2L ; 2.35 ; Crystal Structure of the Second PDZ Domain of SAP97 in Complex with a GluR-A C-terminal Peptide 3HWJ ; 2.25 ; Crystal structure of the second PHR domain of Mouse Myc-binding protein 2 (MYCBP-2) 4F26 ; 2.0 ; Crystal structure of the second RRM domain of human PABPC1 a pH 9.0 4F25 ; 1.9 ; Crystal structure of the second RRM domain of human PABPC1 at pH 6.0 3MD1 ; 1.6 ; Crystal Structure of the Second RRM Domain of Yeast Poly(U)-Binding Protein (Pub1) 3HIB ; 2.0 ; Crystal structure of the second Sec63 domain of yeast Brr2 2O31 ; 1.5 ; Crystal structure of the second SH3 domain from ponsin 6GBU ; 3.44 ; Crystal structure of the second SH3 domain of FCHSD2 (SH3-2) in complex with the fourth SH3 domain of ITSN1 (SH3d) 4IIM ; 1.8 ; Crystal structure of the Second SH3 Domain of ITSN1 bound with a synthetic peptide 4IIO ; 1.7 ; Crystal Structure of the Second SH3 Domain of ITSN2 Bound with a Synthetic Peptide 6B29 ; 1.3 ; Crystal structure of the second SH3 domain of STAC3 (309-364) 5YS0 ; 2.601 ; Crystal structure of the second StARkin domain of Lam2 in complex with ergosterol 5YQP ; 1.7 ; Crystal structure of the second StARkin domain of Lam4 6BYD ; 2.195 ; Crystal structure of the second StART domain of yeast Lam4 4OEN ; 1.65 ; Crystal structure of the second substrate binding domain of a putative amino acid ABC transporter from Streptococcus pneumoniae Canada MDR_19A 2QA9 ; 1.18 ; Crystal structure of the second tetrahedral intermediates of SGPB at pH 4.2 2QAA ; 1.23 ; Crystal structure of the second tetrahedral intermediates of SGPB at pH 7.3 3P8D ; 2.0 ; Crystal structure of the second Tudor domain of human PHF20 (homodimer form) 3FNK ; 1.99 ; Crystal structure of the second type II cohesin module from the cellulosomal adaptor ScaA scaffoldin of Acetivibrio cellulolyticus 3G9Y ; 1.4 ; Crystal structure of the second zinc finger from ZRANB2/ZNF265 bound to 6 nt ssRNA sequence AGGUAA 6T9Q ; 1.15 ; Crystal structure of the second, C-terminal repeat of the DNA-binding domain of human TImeless 5J44 ; 2.912 ; Crystal structure of the Secreted Extracellular protein A (SepA) from Shigella flexneri 4KZS ; 2.7 ; Crystal structure of the secreted protein HP1454 from the human pathogen Helicobacter pylori 5WIQ ; 1.25 ; Crystal structure of the segment, GFNGGFG, from the low complexity domain of TDP-43, residues 396-402 5WKD ; 1.8 ; Crystal structure of the segment, GNNQGSN, from the low complexity domain of TDP-43, residues 300-306 5WIA ; 1.002 ; Crystal structure of the segment, GNNSYS, from the low complexity domain of TDP-43, residues 370-375 5W50 ; 1.4 ; Crystal structure of the segment, LIIKGI, from the RRM2 of TDP-43, residues 248-253 5WHN ; 1.1 ; Crystal structure of the segment, NFGAFS, from the low complexity domain of TDP-43, residues 312-317 5WHP ; 1.0 ; Crystal structure of the segment, NFGTFS, from the A315T familial variant of the low complexity domain of TDP-43, residues 312-317 6FJH ; 3.15 ; Crystal structure of the seleniated LkcE from Streptomyces rochei 3W1K ; 7.5 ; Crystal structure of the selenocysteine synthase SelA and tRNASec complex 3W1H ; 3.893 ; Crystal structure of the selenocysteine synthase SelA from Aquifex aeolicus 2HE3 ; 2.1 ; Crystal structure of the selenocysteine to cysteine mutant of human glutathionine peroxidase 2 (GPX2) 2OBI ; 1.55 ; Crystal structure of the Selenocysteine to Cysteine Mutant of human phospholipid hydroperoxide glutathione peroxidase (GPx4) 2F8A ; 1.5 ; Crystal structure of the selenocysteine to glycine mutant of human glutathione peroxidase 1 2GS3 ; 1.9 ; Crystal structure of the selenocysteine to glycine mutant of human glutathione peroxidase 4(GPX4) 8I16 ; 2.24 ; Crystal structure of the selenomethionine (SeMet)-derived Cas12g (D513A) mutant 5A8M ; 1.86 ; Crystal structure of the selenomethionine derivative of beta-glucanase SdGluc5_26A from Saccharophagus degradans 3U3L ; 1.57 ; Crystal structure of the selenomethionine derivative of tablysin-15 3MWZ ; 1.52 ; Crystal structure of the selenomethionine derivative of the L 22,47,100 M mutant of sialostatin L2 7AL5 ; 2.42 ; Crystal structure of the selenomethionine substituted hypothetical protein PA1622 from Pseudomonas aeruginosa PAO1 1B6W ; 2.05 ; CRYSTAL STRUCTURE OF THE SELENOMETHIONINE VARIANT OF HISTONE HMFB FROM METHANOTHERMUS FERVIDUS 4HE5 ; 1.15 ; Crystal structure of the selenomethionine variant of the C-terminal domain of Geobacillus thermoleovorans putative U32 peptidase 7VYX ; 3.2 ; Crystal structure of the selenomethionine(SeMet)-derived Cas12c1 (D969A) ternary complex 7EU9 ; 2.35 ; Crystal structure of the selenomethionine(SeMet)-derived Cas12i1 R-loop complex before target DNA cleavage 6MO6 ; 2.59 ; Crystal structure of the selenomethionine-substituted human sulfide:quinone oxidoreductase 5EDF ; 1.4 ; Crystal structure of the selenomethionine-substituted iron-regulated protein FrpD from Neisseria meningitidis 4WXU ; 2.092 ; Crystal Structure of the Selenomthionine Incorporated Myocilin Olfactomedin Domain E396D Variant. 5JHC ; 3.4 ; Crystal structure of the self-assembled propeptides from Ape1 7ONE ; 1.3 ; Crystal structure of the self-assembled SAKe6BE designer protein 260D ; 1.9 ; CRYSTAL STRUCTURE OF THE SELF-COMPLEMENTARY 5'-PURINE START DECAMER D(GCACGCGTGC) IN THE A-DNA CONFORMATION-PART II 279D ; 1.9 ; CRYSTAL STRUCTURE OF THE SELF-COMPLEMENTARY 5'-PURINE START DECAMER D(GCGCGCGCGC) IN THE Z-DNA CONFORMATION-PART I 1QC1 ; 2.5 ; CRYSTAL STRUCTURE OF THE SELF-FITTED B-DNA DECAMER D(CCGCCGGCGG) 4FWW ; 1.85 ; Crystal structure of the Sema-PSI extracellular domains of human RON receptor tyrosine kinase 4RQM ; 1.75 ; Crystal structure of the SeMET BICC1 SAM Domain R924E mutant 7QUZ ; 2.156 ; Crystal structure of the SeMet octameric C-terminal Big_2-CBM56 domains from Paenibacillus illinoisensis (Bacillus circulans IAM1165) beta-1,3-glucanase H 3VQW ; 2.4 ; Crystal structure of the SeMet substituted catalytic domain of pyrrolysyl-tRNA synthetase 4ZHE ; 2.5 ; Crystal structure of the SeMet substituted Topless related protein 2 (TPR2) N-terminal domain (1-209) from rice 1X8C ; 2.1 ; Crystal structure of the SeMet-derivative copper homeostasis protein (cutCm) with calcium binding from Shigella flexneri 2a str. 301 4XXK ; 2.97 ; Crystal structure of the Semet-derivative of the Bilin-binding domain of phycobilisome core-membrane linker ApcE 2YQ8 ; 2.987 ; Crystal structure of the SeMet-labeled N-terminal domain and peptide substrate binding domain of alpha subunit of prolyl-4 hydroxylase type I from human. 2V4A ; 1.93 ; Crystal structure of the SeMet-labeled prolyl-4 hydroxylase (P4H) type I from green algae Chlamydomonas reinhardtii. 2ZAG ; 3.0 ; Crystal structure of the SeMet-substituted soluble domain of STT3 from P. furiosus 2ALA ; 3.0 ; Crystal structure of the Semliki Forest Virus envelope protein E1 in its monomeric conformation. 1XA1 ; 1.8 ; Crystal structure of the sensor domain of BlaR1 from Staphylococcus aureus in its apo form 2Z69 ; 2.1 ; Crystal Structure of the sensor domain of the transcriptional regulator DNR from Pseudomonas aeruginosa 5V30 ; 3.15 ; Crystal structure of the sensor domain of the transcriptional regulator HcpR from Porphyromonas Gingivalis 6NP6 ; 2.6 ; Crystal structure of the sensor domain of the transcriptional regulator HcpR from Porphyromonas Gingivalis 7CUS ; 1.65 ; Crystal structure of the sensor domain of VbrK from Vibrio parahaemolyticus 7F2G ; 1.9 ; Crystal structure of the sensor domain of VbrK from Vibrio rotiferianus (crystal type 1) 7F2H ; 2.25 ; Crystal structure of the sensor domain of VbrK from Vibrio rotiferianus (crystal type 2) 2O3O ; 2.89 ; Crystal Structure of the sensor histidine kinase regulator YycI from Bacillus subtitlis 3MFX ; 2.4 ; Crystal Structure of the sensory box domain of the sensory-box/GGDEF protein SO_1695 from Shewanella oneidensis, Northeast Structural Genomics Consortium Target SoR288B 4XMQ ; 1.5 ; Crystal structure of the sensory domain of the Campylobacter jejuni chemoreceptor Tlp3 (CcmL) 4XMR ; 1.3 ; Crystal structure of the sensory domain of the Campylobacter jejuni chemoreceptor Tlp3 (CcmL) with isoleucine bound. 3AK8 ; 1.25 ; Crystal structure of the SEp22 dodecamer, a Dps-like protein from Salmonella enterica subsp. enterica serovar Enteritidis 3AK9 ; 1.3 ; Crystal structure of the SEp22 dodecamer, a Dps-like protein from Salmonella enterica subsp. enterica serovar Enteritidis, FE-soaked form 3WKR ; 2.803 ; Crystal structure of the SepCysS-SepCysE complex from Methanocaldococcus jannaschii 3WKS ; 3.029 ; Crystal structure of the SepCysS-SepCysE N-terminal domain complex from 3GHF ; 2.2 ; Crystal structure of the septum site-determining protein minC from Salmonella typhimurium 4JUC ; 2.303 ; Crystal Structure of the Ser26Met mutant of Benzoylformate Decarboxylase from Pseudomonas putida 4JUD ; 1.65 ; Crystal Structure of the Ser26Thr mutant of Benzoylformate Decarboxylase from Pseudomonas putida 7BT2 ; 3.00003 ; Crystal structure of the SERCA2a in the E2.ATP state 5JD8 ; 1.85 ; Crystal structure of the serine endoprotease from Yersinia pestis 3FMV ; 3.31 ; Crystal structure of the serine phosphatase of RNA polymerase II CTD (SSU72 superfamily) from Drosophila melanogaster. Monoclinic crystal form. Northeast Structural Genomics Consortium target FR253. 3FDF ; 3.2 ; Crystal structure of the serine phosphatase of RNA polymerase II CTD (SSU72 superfamily) from Drosophila melanogaster. Orthorhombic crystal form. Northeast Structural Genomics Consortium target FR253. 4IW4 ; 3.2 ; Crystal structure of the serine protease domain of MASP-3 in complex with ecotin 2OLG ; 1.7 ; Crystal structure of the serine protease domain of prophenoloxidase activating factor-I in a zymogen form 1ZYO ; 2.4 ; Crystal Structure of the Serine Protease Domain of Sesbania Mosaic Virus polyprotein 2P8E ; 1.816 ; Crystal structure of the serine/threonine phosphatase domain of human PPM1B 2BEM ; 1.55 ; Crystal structure of the Serratia marcescens chitin-binding protein CBP21 2BEN ; 1.8 ; Crystal structure of the Serratia marcescens chitin-binding protein CBP21 Y54A mutant. 3QO5 ; 2.3 ; Crystal Structure of the seryl-tRNA synthetase from Candida albicans 3QO7 ; 2.55 ; Crystal structure of the seryl-tRNA synthetase from Candida albicans 7OFL ; 1.83 ; Crystal structure of the sesquiterpene synthase Copu9 from coniophora puteana in complex with alendronate 3S8P ; 1.85 ; Crystal Structure of the SET Domain of Human Histone-Lysine N-Methyltransferase SUV420H1 In Complex With S-Adenosyl-L-Methionine 5WBV ; 2.3 ; Crystal Structure of the SET Domain of Human SUV420H1 In Complex With Inhibitor 1OZV ; 2.65 ; Crystal structure of the SET domain of LSMT bound to Lysine and AdoHcy 1P0Y ; 2.55 ; Crystal structure of the SET domain of LSMT bound to MeLysine and AdoHcy 5HT6 ; 2.093 ; Crystal structure of the SET domain of the human MLL5 methyltransferase 5TFP ; 2.0 ; Crystal Structure of the SETDB2 Amino Terminal Domain 6OKQ ; 3.2 ; Crystal structure of the SF12 Fab 4DGW ; 3.112 ; Crystal Structure of the SF3a splicing factor complex of U2 snRNP 3MEA ; 1.26 ; Crystal structure of the SGF29 in complex with H3K4me3 5AWT ; 2.702 ; Crystal structure of the SGIP1 mu homology domain in complex with an Eps15 fragment containing two DPF motifs (YDPFGGDPFKG) 5AWU ; 2.7 ; Crystal structure of the SGIP1 mu homology domain in complex with an Eps15 fragment containing two DPF motifs (YDPFKGSDPFA) 5AWS ; 2.001 ; Crystal structure of the SGIP1 mu homology domain in the P1 space group 5AWR ; 2.502 ; Crystal structure of the SGIP1 mu homology domain in the P4212 space group 2GKV ; 1.7 ; Crystal structure of the SGPB:P14'-Ala32 OMTKY3-del(1-5) complex 3ZDM ; 1.803 ; Crystal structure of the Sgt2 N domain and the Get5 UBL domain complex 3SZ7 ; 1.72 ; Crystal structure of the Sgt2 TPR domain from Aspergillus fumigatus 4GOD ; 1.4 ; Crystal structure of the SGTA homodimerization domain 4GOE ; 1.45 ; Crystal structure of the SGTA homodimerization domain with a covalent modification of a single C38 4GOF ; 1.35 ; Crystal structure of the SGTA homodimerization domain with covalent modifications to both C38 6DM4 ; 1.9 ; Crystal structure of the SH2 domain from RavO (Lpg1129) from Legionella pneumophila in complex with Homo sapiens Shc1 phospho-Tyr317 peptide 6DM3 ; 1.95 ; Crystal structure of the SH2 domain from RavO (Lpg1129) from Legionella pneumophila, apoprotein 1NRV ; 1.65 ; Crystal structure of the SH2 domain of Grb10 1OOT ; 1.39 ; Crystal structure of the SH3 domain from a S. cerevisiae hypothetical 40.4 kDa protein at 1.39 A resolution 1SSH ; 1.4 ; Crystal structure of the SH3 domain from a S. cerevisiae hypothetical 40.4 kDa protein in complex with a peptide 3RNJ ; 1.5 ; Crystal structure of the SH3 domain from IRSp53 (BAIAP2) 3O5Z ; 2.01 ; Crystal structure of the SH3 domain from p85beta subunit of phosphoinositide 3-kinase (PI3K) 1BB9 ; 2.2 ; CRYSTAL STRUCTURE OF THE SH3 DOMAIN FROM RAT AMPHIPHYSIN 2 1RUW ; 1.8 ; Crystal structure of the SH3 domain from S. cerevisiae Myo3 1SHF ; 1.9 ; CRYSTAL STRUCTURE OF THE SH3 DOMAIN IN HUMAN FYN; COMPARISON OF THE THREE-DIMENSIONAL STRUCTURES OF SH3 DOMAINS IN TYROSINE KINASES AND SPECTRIN 2DF6 ; 1.3 ; Crystal Structure of the SH3 Domain of betaPIX in Complex with a High Affinity Peptide from PAK2 2G6F ; 0.92 ; Crystal Structure of the SH3 Domain of betaPIX in Complex with a High Affinity Peptide from PAK2 4GLM ; 1.9 ; Crystal structure of the SH3 Domain of DNMBP protein [Homo sapiens] 1ZLM ; 1.07 ; Crystal structure of the SH3 domain of human osteoclast stimulating factor 5VEI ; 1.33 ; Crystal structure of the SH3 domain of human sorbin and SH3 domain-containing protein 2 3LH5 ; 2.6 ; Crystal Structure of the SH3-Guanylate kinase core domain of ZO-1 1JXO ; 2.3 ; Crystal Structure of the SH3-HOOK-GK Fragment of PSD-95 3KFV ; 2.8 ; Crystal structure of the SH3-kinase fragment of tight junction protein 3 (TJP3) in apo-form 1Q3O ; 1.8 ; Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction and a novel PDZ-PDZ dimerization 1Q3P ; 2.25 ; Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction and a novel PDZ-PDZ dimerization 5TUB ; 2.85 ; Crystal Structure of the Shark TBC1D15 GAP Domain 3HXL ; 1.9 ; Crystal Structure of the sheath tail protein (DSY3957) from Desulfitobacterium hafniense, Northeast Structural Genomics Consortium Target DhR18 3LML ; 3.3 ; Crystal Structure of the sheath tail protein Lin1278 from Listeria innocua, Northeast Structural Genomics Consortium Target LkR115 2PI6 ; 1.65 ; Crystal structure of the sheep signalling glycoprotein (SPS-40) complex with 2-methyl-2-4-pentanediol at 1.65A resolution reveals specific binding characteristics of SPS-40 5Z4V ; 1.65 ; Crystal structure of the sheep signalling glycoprotein (SPS-40) complex with 2-methyl-2-4-pentanediol at 1.65A resolution reveals specific binding characteristics of SPS-40 7QTH ; 1.9 ; Crystal structure of the Shewanella oneidensis MR1 MtrC mutant C453A 7O7G ; 1.6 ; Crystal structure of the Shewanella oneidensis MR1 MtrC mutant H561M 1RYE ; 2.3 ; Crystal Structure of the Shifted Form of the Glucose-Fructose Oxidoreductase from Zymomonas mobilis 2FOR ; 2.0 ; Crystal Structure of the Shigella flexneri Farnesyl Pyrophosphate Synthase Complex with an Isopentenyl Pyrophosphate 3PHG ; 1.57 ; Crystal structure of the Shikimate 5-Dehydrogenase (aroE) from Helicobacter pylori 7TBV ; 2.3 ; Crystal structure of the shikimate kinase + 3-dehydroquinate dehydratase + 3-dehydroshikimate dehydrogenase domains of Aro1 from Candida albicans 3HR7 ; 1.8 ; Crystal structure of the shikimate kinase-sulfate complex from Helicobacter pylori 7TVF ; 2.17 ; Crystal structure of the SHOC2-MRAS-PP1CA (SMP) complex to a resolution of 2.17 Angstrom 3E9Q ; 1.7 ; Crystal Structure of the Short Chain Dehydrogenase from Shigella flexneri 2WDZ ; 1.95 ; Crystal structure of the short chain dehydrogenase Galactitol- Dehydrogenase (GatDH) of Rhodobacter sphaeroides in complex with NAD+ and 1,2-Pentandiol 2WSB ; 1.25 ; Crystal structure of the short-chain dehydrogenase Galactitol- Dehydrogenase (GatDH) of Rhodobacter sphaeroides in complex with NAD 3LQF ; 1.8 ; Crystal structure of the short-chain dehydrogenase Galactitol-Dehydrogenase (GatDH) of Rhodobacter sphaeroides in complex with NAD and erythritol 6DKQ ; 1.5 ; Crystal structure of the Shr Hemoglobin Interacting Domain 2 8DOV ; 2.1 ; Crystal structure of the Shr Hemoglobin Interacting Domain 2 (HID2) in complex with Hemoglobin 4L2W ; 2.49 ; Crystal structure of the Shroom-Binding domain of human Rock1 3FHD ; 1.85 ; Crystal structure of the Shutoff and Exonuclease Protein from Kaposis Sarcoma Associated Herpesvirus 2G2W ; 1.8 ; Crystal Structure of the SHV D104K Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) complex 2G2U ; 1.6 ; Crystal Structure of the SHV-1 Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) complex 3C4P ; 1.75 ; Crystal Structure of the SHV-1 Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) E73M complex 3C4O ; 1.7 ; Crystal Structure of the SHV-1 Beta-lactamase/Beta-lactamase inhibitor protein (BLIP) E73M/S130K/S146M complex 3N4I ; 1.56 ; Crystal structure of the SHV-1 D104E beta-lactamase/beta-lactamase inhibitor protein (BLIP) complex 1T95 ; 1.9 ; Crystal Structure of the Shwachman-Bodian-Diamond Syndrome Protein Orthologue from Archaeoglobus fulgidus 6NJC ; 1.9 ; Crystal Structure of the Sialate O-acetylesterase from Bacteroides vulgatus 2WX9 ; 1.37 ; Crystal structure of the sialic acid binding periplasmic protein SiaP 2X61 ; 1.95 ; Crystal structure of the sialyltransferase CST-II in complex with trisaccharide acceptor and CMP 2X63 ; 2.0 ; Crystal structure of the sialyltransferase CST-II N51A in complex with CMP 2X62 ; 2.2 ; CRYSTAL STRUCTURE OF THE SIALYLTRANSFERASE CST-II Y81F IN COMPLEX WITH CMP 2C83 ; 1.9 ; CRYSTAL STRUCTURE OF THE SIALYLTRANSFERASE PM0188 2C84 ; 2.31 ; CRYSTAL STRUCTURE OF THE SIALYLTRANSFERASE PM0188 WITH CMP 2IY7 ; 1.85 ; crystal structure of the sialyltransferase PM0188 with CMP-3FNeuAc 2IY8 ; 2.5 ; Crystal structure of the sialyltransferase PM0188 with CMP-3FNeuAc and lactose 5FR8 ; 2.83 ; Crystal structure of the siderophore receptor PirA from Acinetobacter baumannii 5FP2 ; 2.97 ; Crystal structure of the siderophore receptor PirA from Pseudomonas aeruginosa 5FP1 ; 1.94 ; Crystal structure of the siderophore receptor PiuA from Acinetobacter baumannii 5FOK ; 1.9 ; Crystal structure of the siderophore receptor PiuA from Pseudomonas aeruginosa 5NEC ; 2.3 ; Crystal structure of the siderophore receptor PiuD from Pseudomonas aeruginosa 6K2L ; 2.5 ; Crystal structure of the Siderophore-interacting protein SipS from Aeromonas hydrophila 2WWX ; 1.5 ; Crystal structure of the SidM/DrrA(GEF/GDF domain)-Rab1(GTPase domain) complex 3HW2 ; 3.3 ; Crystal structure of the SifA-SKIP(PH) complex 6MFV ; 3.4 ; Crystal structure of the Signal Transduction ATPase with Numerous Domains (STAND) protein with a tetratricopeptide repeat sensor PH0952 from Pyrococcus horikoshii 3HLS ; 2.15 ; Crystal structure of the signaling helix coiled-coil doimain of the BETA-1 subunit of the soluble guanylyl cyclase 5IXV ; 2.3 ; Crystal structure of the signaling protein complex 2 5IXW ; 2.46 ; Crystal structure of the signaling protein complex 3 5IXX ; 2.35 ; Crystal structure of the signaling protein complex 4 5IXZ ; 2.4 ; Crystal structure of the signaling protein complex 5 3MUU ; 3.29 ; Crystal structure of the Sindbis virus E2-E1 heterodimer at low pH 6CBP ; 2.17 ; Crystal structure of the single chain variable fragment of the DH270.6 bnAb in complex with the Man9-V3 glycopeptide 5I0Z ; 1.9 ; Crystal structure of the single domain catalytic antibody 3D8-VH 6DDC ; 2.91 ; Crystal structure of the single mutant (D52N) of NT5C2-537X in the basal state, Northeast Structural Genomics Consortium Target 6DE0 ; 2.05 ; Crystal structure of the single mutant (D52N) of NT5C2-Q523X in the active state 6DDL ; 2.26 ; Crystal structure of the single mutant (D52N) of NT5C2-Q523X in the basal state 6DE1 ; 2.151 ; Crystal structure of the single mutant (D52N) of the full-length NT5C2 in the active state 6DDO ; 2.48 ; Crystal structure of the single mutant (D52N) of the full-length NT5C2 in the basal state 6Y2W ; 1.77 ; Crystal structure of the single mutant I16K of Low Molecular Weight Protein Tyrosine Phosphatase (LMW-PTP) 3H3B ; 2.45 ; Crystal structure of the single-chain Fv (scFv) fragment of an anti-ErbB2 antibody chA21 in complex with residues 1-192 of ErbB2 extracellular domain 1JP5 ; 2.7 ; Crystal structure of the single-chain Fv fragment 1696 in complex with the epitope peptide corresponding to N-terminus of HIV-1 protease 1SVZ ; 1.89 ; Crystal structure of the single-chain Fv fragment 1696 in complex with the epitope peptide corresponding to N-terminus of HIV-2 protease 3AFP ; 2.05 ; Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form I) 3AFQ ; 2.8 ; Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form II) 2CWA ; 1.96 ; Crystal Structure Of The Single-stranded DNA Binding Protein From Thermus Thermophilus HB8 1X3E ; 2.15 ; Crystal structure of the single-stranded DNA-binding protein from Mycobacterium smegmatis 1X3F ; 2.7 ; Crystal structure of the single-stranded DNA-binding protein from Mycobacterium SMEGMATIS 1X3G ; 3.0 ; Crystal structure of the single-stranded DNA-binding protein from Mycobacterium SMEGMATIS 1UE1 ; 2.5 ; Crystal structure of the single-stranded dna-binding protein from mycobacterium tuberculosis 1UE5 ; 2.6 ; Crystal structure of the single-stranded dna-binding protein from mycobacterium tuberculosis 1UE6 ; 2.7 ; Crystal structure of the single-stranded dna-binding protein from mycobacterium tuberculosis 1UE7 ; 3.2 ; Crystal structure of the single-stranded dna-binding protein from mycobacterium tuberculosis 7F5Y ; 1.92 ; Crystal structure of the single-stranded dna-binding protein from Mycobacterium tuberculosis- Form III 7F5Z ; 3.0 ; Crystal structure of the single-stranded dna-binding protein from Mycobacterium tuberculosis- Form III 4OK9 ; 1.91 ; Crystal structure of the single-stranded RNA binding protein HutP from Geobacillus thermodenitrificans 4OKQ ; 2.5 ; Crystal structure of the single-stranded RNA binding protein HutP from Geobacillus thermodenitrificans 3EJW ; 1.8 ; Crystal Structure of the Sinorhizobium meliloti AI-2 receptor, SmLsrB 2HJH ; 1.85 ; Crystal Structure of the Sir2 deacetylase 3TU4 ; 3.0 ; Crystal structure of the Sir3 BAH domain in complex with a nucleosome core particle. 6RRV ; 1.1 ; Crystal structure of the Sir4 H-BRCT domain 6QSZ ; 2.5 ; Crystal structure of the Sir4 H-BRCT domain in complex with Esc1 pS1450 peptide 6QTM ; 3.0 ; Crystal structure of the Sir4 H-BRCT domain in complex with Ty5 pS1095 peptide 6RR0 ; 2.18 ; Crystal structure of the Sir4 H-BRCT domain in complex with Ubp10 pT123 peptide 3HZ7 ; 2.0 ; Crystal Structure of the SirA-like protein (DSY4693) from Desulfitobacterium hafniense, Northeast Structural Genomics Consortium Target DhR2A 4CH7 ; 2.002 ; Crystal structure of the siroheme decarboxylase NirDL 4CZC ; 2.9 ; Crystal structure of the siroheme decarboxylase NirDL in co-complex with iron-uroporphyrin III analogue 6JV6 ; 2.15 ; Crystal structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subspecies spizizenii in complex with cobalt 4I5I ; 2.5 ; Crystal structure of the SIRT1 catalytic domain bound to NAD and an EX527 analog 6EXP ; 1.93 ; Crystal structure of the SIRV3 AcrID1 (gp02) anti-CRISPR protein 2EWF ; 1.84 ; Crystal structure of the site-specific DNA nickase N.BspD6I 6QNZ ; 2.45 ; Crystal structure of the site-specific DNA nickase N.BspD6I E418A Mutant 4PBX ; 3.15 ; Crystal structure of the six N-terminal domains of human receptor protein tyrosine phosphatase sigma 1Z1N ; 2.1 ; Crystal Structure of the sixteen heme cytochrome from Desulfovibrio gigas 3PD7 ; 1.26 ; Crystal Structure of the Sixth BRCT Domain of Human TopBP1 3JVE ; 1.34 ; Crystal Structure of the Sixth BRCT Domain of TopBP1 3IU6 ; 1.79 ; Crystal structure of the sixth bromodomain of human poly-bromodomain containing protein 1 (PB1) 5NRK ; 1.45 ; Crystal structure of the sixth cohesin from Acetivibrio cellulolyticus' scaffoldin B in complex with Cel5 dockerin S15I, I16N mutant 5NRM ; 1.4 ; Crystal structure of the sixth cohesin from Acetivibrio cellulolyticus' scaffoldin B in complex with Cel5 dockerin S51I, L52N mutant 4CC7 ; 1.97 ; Crystal structure of the sixth or C-terminal SH3 domain of human Tuba in complex with proline-rich peptides of N-WASP. Space group P41 1N7E ; 1.5 ; Crystal structure of the sixth PDZ domain of GRIP1 1N7F ; 1.8 ; Crystal structure of the sixth PDZ domain of GRIP1 in complex with liprin C-terminal peptide 4AJ5 ; 3.32 ; Crystal structure of the Ska core complex 6QV3 ; 2.9 ; Crystal structure of the Ski2 RNA-helicase Brr2 from Chaetomium thermophilum bound to ADP 6QV4 ; 2.8 ; Crystal structure of the Ski2 RNA-helicase Brr2 from Chaetomium thermophilum bound to ATP-gamma-S 6QWS ; 3.3 ; Crystal structure of the Ski2 RNA-helicase Brr2 from Chaetomium thermophilum in the apo state 3WSO ; 2.6 ; Crystal structure of the Skp1-FBG3 complex 5VZT ; 2.7 ; Crystal structure of the Skp1-FBXO31 complex 5VZU ; 2.7 ; Crystal structure of the Skp1-FBXO31-cyclin D1 complex 5V4B ; 2.6 ; Crystal structure of the Skp1-FBXW7-DISC1 complex 2ASS ; 3.0 ; Crystal structure of the Skp1-Skp2-Cks1 complex 3WI3 ; 2.4 ; Crystal Structure of the Sld3/Treslin domain from yeast Sld3 5CR4 ; 1.4 ; Crystal structure of the Sleeping Beauty transposase catalytic domain 8IR4 ; 1.62 ; Crystal structure of the SLF1 BRCT domain in complex with a Rad18 peptide containing pS442 8IR2 ; 1.75 ; Crystal structure of the SLF1 BRCT domain in complex with a Rad18 peptide containing pS442 and pS444 6BT4 ; 2.306 ; Crystal structure of the SLH domain of Sap from Bacillus anthracis in complex with a pyruvylated SCWP unit 2GP9 ; 1.87 ; Crystal structure of the slow form of thrombin in a self-inhibited conformation 3BEI ; 1.55 ; Crystal structure of the slow form of thrombin in a self_inhibited conformation 5O7B ; 2.281 ; CRYSTAL STRUCTURE OF THE SLR0328 TYROSINE PHOSPHATASE WZB FROM SYNECHOCYSTIS SP. PCC 6803 3HX1 ; 2.5 ; Crystal structure of the Slr1951 protein from Synechocystis sp. Northeast Structural Genomics Consortium Target SgR167A 1H64 ; 1.9 ; CRYSTAL STRUCTURE OF THE SM-RELATED PROTEIN OF P. ABYSSI: THE BIOLOGICAL UNIT IS A HEPTAMER 6ZMN ; 2.333 ; Crystal structure of the Smad3-Smad5 MH1 domain chimera bound to the GGCGC site 1YGS ; 2.1 ; CRYSTAL STRUCTURE OF THE SMAD4 TUMOR SUPPRESSOR C-TERMINAL DOMAIN 6YVC ; 1.85 ; Crystal structure of the small alarmone hydrolase (SAH) of Pseudomonas aeruginosa 5DEC ; 2.0 ; Crystal structure of the small alarmone synthetase 1 from Bacillus subtilis 5F2V ; 2.8 ; Crystal structure of the small alarmone synthethase 1 from Bacillus subtilis bound to AMPCPP 5DED ; 2.942 ; Crystal structure of the small alarmone synthethase 1 from Bacillus subtilis bound to its product pppGpp 6FGK ; 3.2 ; Crystal structure of the small alarmone synthethase 2 from Bacillus subtilis 6FGJ ; 2.251 ; Crystal structure of the small alarmone synthethase 2 from Staphylococcus aureus 6FGX ; 2.9 ; Crystal structure of the small alarmone synthethase 2 from Staphylococcus aureus bound to AMPCPP 1KAO ; 1.7 ; CRYSTAL STRUCTURE OF THE SMALL G PROTEIN RAP2A WITH GDP 2CJW ; 2.1 ; Crystal structure of the small GTPase Gem (GemDNDCaM) in complex to Mg.GDP 2ZET ; 3.0 ; Crystal structure of the small GTPase Rab27B complexed with the Slp homology domain of Slac2-a/melanophilin 3OES ; 2.301 ; Crystal structure of the small GTPase RhebL1 6HBB ; 1.2 ; Crystal Structure of the small subunit-like domain 1 of CcmM from Synechococcus elongatus (strain PCC 7942) 6HBA ; 1.65 ; Crystal Structure of the small subunit-like domain 1 of CcmM from Synechococcus elongatus (strain PCC 7942), thiol-oxidized form 6HAS ; 1.38 ; Crystal Structure of the small subunit-like domain of Rubisco activase from Nostoc sp. (strain PCC 7120) 4XVN ; 2.6 ; Crystal structure of the small terminase from thermophilic phage G20C 3ZQM ; 1.85 ; Crystal structure of the small terminase oligomerization core domain from a SPP1-like bacteriophage (crystal form 1) 3ZQN ; 2.2 ; Crystal structure of the small terminase oligomerization core domain from a SPP1-like bacteriophage (crystal form 2) 3ZQO ; 1.68 ; Crystal structure of the small terminase oligomerization core domain from a SPP1-like bacteriophage (crystal form 3) 3ZQP ; 3.0 ; Crystal structure of the small terminase oligomerization domain from a SPP1-like bacteriophage 7UQA ; 2.802 ; Crystal structure of the small Ultra-Red Fluorescent Protein (smURFP) 6KAG ; 2.601 ; Crystal structure of the SMARCB1/SMARCC2 subcomplex 1OXJ ; 1.8 ; Crystal structure of the Smaug RNA binding domain 5XEI ; 2.599 ; Crystal structure of the Smc head domain with a coiled coil and joint derived from Pyrococcus yayanosii 5XNS ; 2.01 ; Crystal structure of the Smc head domain with an extended coiled coil bound to the C-terminal domain of ScpA derived from Pyrococcus furiosus 4I99 ; 2.3 ; Crystal structure of the SmcHead bound to the C-winged helix domain of ScpA 5X3R ; 2.1 ; Crystal structure of the SmcR complexed with QStatin 2UYD ; 2.7 ; Crystal structure of the SmHasA mutant H83A 3E5C ; 2.25 ; Crystal Structure of the SMK box (SAM-III) Riboswitch with SAM 4C79 ; 2.604 ; Crystal structure of the Smoothened CRD, native 4C7A ; 2.3 ; Crystal structure of the Smoothened CRD, selenomethionine-labeled 2ZQE ; 1.7 ; Crystal structure of the Smr domain of Thermus thermophilus MutS2 5EN7 ; 2.936 ; Crystal structure of the Smu1-RED complex (native) of Caenorhabditis elegans. 5EN6 ; 3.103 ; Crystal structure of the Smu1-RED complex (SeMet) of Caenorhabditis elegans 3BX4 ; 1.7 ; Crystal structure of the snake venom toxin aggretin 6WC3 ; 3.203 ; Crystal structure of the SNARE Sec20 bound to Dsl1 complex subunit Tip20 8FTU ; 5.73 ; Crystal structure of the SNARE Use1 bound to Dsl1 complex subunits Sec39 and Dsl1, Revised Use1 structure 2PNE ; 0.98 ; Crystal Structure of the Snow Flea Antifreeze Protein 5F5U ; 2.748 ; Crystal structure of the Snu23-Prp38-MFAP1(217-258) complex of Chaetomium thermophilum 5F5V ; 3.1 ; Crystal structure of the Snu23-Prp38-MFAP1(217-296) complex of Chaetomium thermophilum 3LUI ; 1.8 ; Crystal structure of the SNX17 PX domain with bound sulphate 5ELQ ; 1.1 ; Crystal structure of the SNX27 PDZ domain bound to the C-terminal DGKzeta PDZ binding motif 5EMB ; 0.85 ; Crystal structure of the SNX27 PDZ domain bound to the C-terminal phosphorylated PTHR PDZ binding motif 4Z8J ; 0.95 ; Crystal structure of the SNX27 PDZ domain bound to the C-terminal PTHR PDZ binding motif 5EM9 ; 1.6 ; Crystal structure of the SNX27 PDZ domain bound to the phosphorylated C-terminal 5HT4(a)R PDZ binding motif 5EMA ; 1.32 ; Crystal structure of the SNX27 PDZ domain bound to the phosphorylated C-terminal LRRC3B PDZ binding motif 6N5X ; 2.051 ; Crystal structure of the SNX5 PX domain in complex with the CI-MPR (space group P212121 - Form 1) 6N5Y ; 2.26 ; Crystal structure of the SNX5 PX domain in complex with the CI-MPR (space group P212121 - Form 1) 6N5Z ; 2.45 ; Crystal structure of the SNX5 PX domain in complex with the Sema4C 2ZXE ; 2.4 ; Crystal structure of the sodium - potassium pump in the E2.2K+.Pi state 4N7W ; 1.951 ; Crystal Structure of the sodium bile acid symporter from Yersinia frederiksenii 3ZK1 ; 2.2 ; Crystal structure of the sodium binding rotor ring at pH 5.3 3ZK2 ; 2.63 ; Crystal structure of the sodium binding rotor ring at pH 8.7 5BZ2 ; 3.7 ; CRYSTAL STRUCTURE OF THE SODIUM PROTON ANTIPORTER NAPA IN INWARD-FACING CONFORMATION 4BWZ ; 2.984 ; Crystal structure of the sodium proton antiporter, NapA 2WIT ; 3.35 ; CRYSTAL STRUCTURE OF THE SODIUM-COUPLED GLYCINE BETAINE SYMPORTER BETP FROM CORYNEBACTERIUM GLUTAMICUM WITH BOUND SUBSTRATE 5A1S ; 2.5 ; Crystal structure of the sodium-dependent citrate symporter SeCitS form Salmonella enterica. 3B8E ; 3.5 ; Crystal structure of the sodium-potassium pump 3KDP ; 3.5 ; Crystal structure of the sodium-potassium pump 3A3Y ; 2.8 ; Crystal structure of the sodium-potassium pump with bound potassium and ouabain 2G8S ; 1.5 ; Crystal structure of the soluble Aldose sugar dehydrogenase (Asd) from Escherichia coli in the apo-form 6Q10 ; 1.6 ; Crystal structure of the soluble domain (residues 71-217) of a conserved hypothetical secreted protein (Rv2700 ortholog) from Mycobacterium marinum 4LSO ; 1.7 ; Crystal structure of the soluble domain of a Type IV secretion system protein VirB8 from Bartonella quintana Toulouse 1KBW ; 2.4 ; CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF ANIA FROM NEISSERIA GONORRHOEAE 2YD0 ; 2.7 ; Crystal structure of the soluble domain of human endoplasmic reticulum aminopeptidase 1 ERAP1 5NEN ; 2.901 ; Crystal structure of the soluble domain of LipC, a membrane fusion protein of a type I secretion system 4KAV ; 1.433 ; Crystal Structure of the soluble domain of Lipooligosaccharide phosphoethanolamine transferase A from Neisseria meningitidis 3CP0 ; 1.65 ; Crystal structure of the soluble domain of membrane protein implicated in regulation of membrane protease activity from Corynebacterium glutamicum 2ZAI ; 2.7 ; Crystal structure of the soluble domain of STT3 from P. furiosus 2QRR ; 1.71 ; Crystal structure of the soluble domain of the ABC transporter, ATP-binding protein from Vibrio parahaemolyticus 6C5R ; 3.09608 ; Crystal structure of the soluble domain of the mitochondrial calcium uniporter 6LV0 ; 1.998 ; Crystal structure of the soluble domain of the multiple peptide resistance factor (MprF) from Rhizobium tropici 7THW ; 2.2 ; Crystal Structure of the Soluble Domain of the Putative OmpA -Family Membrane Protein YPO0514 from Yersinia pestis 1JM1 ; 1.11 ; Crystal structure of the soluble domain of the Rieske protein II (soxF) from Sulfolobus acidocaldarius 7CU9 ; 1.55 ; Crystal structure of the soluble domain of TiME protein from Mycobacterium smegmatis 7CU8 ; 3.3 ; Crystal structure of the soluble domain of TiME protein from Mycobacterium tuberculosis 1JFU ; 1.6 ; CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF TLPA FROM BRADYRHIZOBIUM JAPONICUM 4NHF ; 2.0 ; Crystal structure of the soluble domain of TrwG Type IV secretion machinery from Bartonella grahamii 4KZ1 ; 2.55 ; Crystal structure of the soluble domain of VirB8 from Bartonella grahamii 1TNR ; 2.85 ; CRYSTAL STRUCTURE OF THE SOLUBLE HUMAN 55 KD TNF RECEPTOR-HUMAN TNF-BETA COMPLEX: IMPLICATIONS FOR TNF RECEPTOR ACTIVATION 1E4J ; 2.5 ; Crystal structure of the soluble human Fc-gamma Receptor III 2OUX ; 2.16 ; Crystal structure of the soluble part of a magnesium transporter 3AZC ; 2.0 ; Crystal structure of the soluble part of cytochrome b6f complex iron-sulfur subunit from Thermosynechococcus elongatus BP-1 1C9U ; 2.2 ; CRYSTAL STRUCTURE OF THE SOLUBLE QUINOPROTEIN GLUCOSE DEHYDROGENASE IN COMPLEX WITH PQQ 2YJP ; 2.26 ; Crystal structure of the solute receptors for L-cysteine of Neisseria gonorrhoeae 4C4M ; 1.74 ; Crystal structure of the Sonic Hedgehog-chondroitin-4-sulphate complex 4C4N ; 2.36 ; Crystal structure of the Sonic Hedgehog-heparin complex 1V02 ; 1.8 ; Crystal structure of the Sorghum bicolor dhurrinase 1 1V03 ; 2.0 ; Crystal structure of the Sorghum bicolor dhurrinase 1 1G9F ; 2.5 ; CRYSTAL STRUCTURE OF THE SOYBEAN AGGLUTININ IN A COMPLEX WITH A BIANTENNARY BLOOD GROUP ANTIGEN ANALOG 7MY4 ; 1.72 ; Crystal Structure of the SPA17 Docking and Dimerization Domain from Danio rerio 4GEQ ; 2.01 ; Crystal structure of the Spc24-Spc25/Cnn1 binding interface 7PTB ; 2.08 ; Crystal structure of the SPD-2 domain of human CEP192 1U9S ; 2.9 ; Crystal structure of the specificity domain of Ribonuclease P of the A-type 1NBS ; 3.15 ; Crystal structure of the specificity domain of Ribonuclease P RNA 1DTM ; 2.13 ; CRYSTAL STRUCTURE OF THE SPERM-WHALE MYOGLOBIN MUTANT H93G COMPLEXED WITH 4-METHYLIMIDAZOLE, METAQUO FORM 5IOJ ; 1.76 ; Crystal structure of the Sphingobium sp. TCM1 phosphotriesterase without the binuclear manganese center 5JRL ; 3.2 ; Crystal Structure of the Sphingopyxin I Lasso Peptide Isopeptidase SpI-IsoP (Native) 5JRK ; 3.0 ; Crystal Structure of the Sphingopyxin I Lasso Peptide Isopeptidase SpI-IsoP (SeMet-derived) 4F5C ; 3.2 ; Crystal structure of the spike receptor binding domain of a porcine respiratory coronavirus in complex with the pig aminopeptidase N ectodomain 3IFX ; 3.56 ; Crystal structure of the Spin-labeled KcsA mutant V48R1 1Z98 ; 2.1 ; Crystal structure of the spinach aquaporin SoPIP2;1 in a closed conformation 2B5F ; 3.9 ; Crystal structure of the spinach aquaporin SoPIP2;1 in an open conformation to 3.9 resolution 3CLL ; 2.3 ; Crystal structure of the Spinach Aquaporin SoPIP2;1 S115E mutant 3CN5 ; 2.05 ; Crystal structure of the Spinach Aquaporin SoPIP2;1 S115E, S274E mutant 3CN6 ; 2.95 ; Crystal structure of the Spinach Aquaporin SoPIP2;1 S274E mutant 1TEF ; 1.9 ; Crystal structure of the spinach plastocyanin mutants G8D/K30C/T69C and K30C/T69C- a study of the effect on crystal packing and thermostability from the introduction of a novel disulfide bond 1TEG ; 1.96 ; Crystal structure of the spinach plastocyanin mutants G8D/K30C/T69C and K30C/T69C- a study of the effect on crystal packing and thermostability from the introduction of a novel disulfide bond 4TS0 ; 2.8 ; Crystal structure of the Spinach RNA aptamer in complex with DFHBI, barium ions 4TS2 ; 2.884 ; Crystal structure of the Spinach RNA aptamer in complex with DFHBI, magnesium ions 6PNP ; 1.94 ; Crystal structure of the splice insert-free neurexin-1 LNS2 domain in complex with neurexophilin-1 3D9H ; 2.2 ; Crystal Structure of the Splice Variant of Human ASB9 (hASB9-2), an Ankyrin Repeat Protein 1E7K ; 2.9 ; Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment 1A9N ; 2.38 ; CRYSTAL STRUCTURE OF THE SPLICEOSOMAL U2B''-U2A' PROTEIN COMPLEX BOUND TO A FRAGMENT OF U2 SMALL NUCLEAR RNA 3TP2 ; 2.4 ; Crystal Structure of the Splicing Factor Cwc2 from yeast 7V6H ; 3.054 ; Crystal Structure of the SpnL 6IC8 ; 1.929 ; Crystal structure of the SPOC domain of human PHF3 in complex with RNA polymerase II CTD diheptapeptide phosphorylated on Ser2 6Q5Y ; 2.85 ; Crystal structure of the SPOC domain of human PHF3 in complex with RNA polymerase II CTD diheptapeptide phosphorylated on Ser2Ser5 6IC9 ; 1.748 ; Crystal structure of the SPOC domain of human PHF3 in complex with RNA polymerase II CTD diheptapeptide phosphorylated on Ser2Ser7 7Z27 ; 1.45 ; Crystal structure of the SPOC domain of human RBM15 7Z1K ; 1.55 ; Crystal structure of the SPOC domain of human SHARP (SPEN) in complex with RNA polymerase II CTD heptapeptide phosphorylated on Ser5 8OU1 ; 1.7 ; Crystal structure of the SPOC domain of mouse SPOCD1 5KXF ; 2.7 ; Crystal structure of the SPOC domain of the Arabidopsis flowering regulator FPA 1OW1 ; 1.8 ; Crystal structure of the SPOC domain of the human transcriptional corepressor, SHARP. 4EOZ ; 2.4 ; Crystal structure of the SPOP BTB domain complexed with the Cul3 N-terminal domain 7KPI ; 1.7 ; Crystal structure of the SPOP MATH domain 7KPK ; 1.71 ; Crystal structure of the SPOP MATH domain in complex with a fragment of Pdx1 3FYR ; 1.97 ; Crystal structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis 3PMD ; 1.76 ; Crystal structure of the sporulation inhibitor pXO1-118 from Bacillus anthracis 3PMC ; 1.49 ; Crystal structure of the sporulation inhibitor pXO2-61 from Bacillus anthracis 1X7O ; 2.37 ; Crystal structure of the SpoU Methyltransferase AviRb from Streptomyces viridochromogenes 1X7P ; 2.55 ; Crystal structure of the SpoU Methyltransferase AviRb from Streptomyces viridochromogenes in complex with the cofactor AdoMet 2X5N ; 1.3 ; Crystal Structure of the SpRpn10 VWA domain 4QT6 ; 1.64 ; Crystal structure of the SPRY domain of human HERC1 6JWM ; 1.23 ; Crystal structure of the SPRY domain of SPSB2 in complex with cR7, a potent cyclic peptide inhibitor of SPSB2-iNOS interaction 6JWN ; 1.61 ; Crystal structure of the SPRY domain of SPSB2 in complex with cR9, a cyclic peptide inhibitor of SPSB-iNOS interaction 4XW3 ; 2.0 ; Crystal structure of the SPRY domain of the human DEAD-box protein DDX1 7CCB ; 1.62 ; Crystal structure of the SPRY domain-containing protein 7 (SPRY7) 3PSF ; 2.59 ; Crystal Structure of the Spt6 core domain from Saccharomyces cerevisiae, Form Spt6(236-1259) 3PSI ; 3.3 ; Crystal Structure of the Spt6 core domain from Saccharomyces cerevisiae, Form Spt6(239-1451) 3PSK ; 2.1 ; Crystal Structure of the Spt6 Tandem SH2 Domain from Saccharomyces cerevisiae, Form Native Spt6 (1247-1451) 3PSJ ; 2.702 ; Crystal Structure of the Spt6 Tandem SH2 Domain from Saccharomyces cerevisiae, Form Se-Spt6 (1247-1451) 5IJP ; 2.75 ; Crystal structure of the SPX domain of Chaetomium thermophilum Vtc4 in complex with inositol hexakisphosphate (InsP6). 4MLS ; 1.984 ; Crystal structure of the SpyTag and SpyCatcher-deltaN1 complex 4MLI ; 2.1 ; Crystal structure of the SpyTag/SpyCatcher complex 1IWO ; 3.1 ; Crystal structure of the SR Ca2+-ATPase in the absence of Ca2+ 4XOU ; 2.8 ; Crystal structure of the SR Ca2+-ATPase in the Ca2-E1-MgAMPPCP form determined by serial femtosecond crystallography using an X-ray free-electron laser. 2AGV ; 2.4 ; Crystal structure of the SR CA2+-ATPASE with BHQ and TG 1VFP ; 2.9 ; Crystal structure of the SR CA2+-ATPase with bound AMPPCP 4YCL ; 3.25 ; Crystal structure of the SR CA2+-ATPASE with bound CPA 2EAT ; 2.9 ; Crystal structure of the SR CA2+-ATPASE with bound CPA and TG 2EAU ; 2.8 ; Crystal structure of the SR CA2+-ATPASE with bound CPA in the presence of curcumin 1WPG ; 2.3 ; Crystal structure of the SR CA2+-ATPase with MGF4 2ZBD ; 2.4 ; Crystal Structure of the SR Calcium Pump with Bound Aluminium Fluoride, ADP and Calcium 5B5M ; 3.3 ; Crystal structure of the Sr-substituted LH1-RC complex from Tch. tepidum 5V44 ; 1.56 ; Crystal structure of the SR1 domain of human sacsin 5V47 ; 1.84 ; Crystal structure of the SR1 domain of lizard sacsin 4J5X ; 2.8 ; Crystal Structure of the SR12813-bound PXR/RXRalpha LBD Heterotetramer Complex 3BI7 ; 1.7 ; Crystal structure of the SRA domain of E3 ubiquitin-protein ligase UHRF1 3OLN ; 2.3 ; Crystal structure of the SRA domain of E3 ubiquitin-protein ligase UHRF2 2ZKD ; 1.6 ; Crystal structure of the SRA domain of mouse Np95 in complex with hemi-methylated CpG DNA 2ZKE ; 2.6 ; Crystal structure of the SRA domain of mouse Np95 in complex with hemi-methylated CpG DNA 2ZKF ; 2.55 ; Crystal structure of the SRA domain of mouse Np95 in complex with hemi-methylated CpG DNA 2PB7 ; 1.9 ; Crystal Structure of the SRA domain of the human UHRF1 protein 5KO9 ; 1.5 ; Crystal Structure of the SRAP Domain of Human HMCES Protein 2HDX ; 2.35 ; Crystal structure of the Src homology-2 domain of SH2-B in complex with Jak2 pTyr813 phosphopeptide 2HDV ; 2.0 ; Crystal structure of the Src Homology-2 domain of the adapter protein SH2-B 1P13 ; 1.63 ; Crystal Structure of the Src SH2 Domain Complexed with Peptide (SDpYANFK) 4RTV ; 1.37 ; Crystal structure of the Src tyrosine kinase SH3 domain S94A/Q128R mutant in complex with the high affinity synthetic peptide APP12 4RTX ; 1.32 ; Crystal structure of the Src tyrosine kinase SH3 domain T96G/Q128R mutant 3NHN ; 2.61 ; Crystal structure of the SRC-family kinase HCK SH3-SH2-linker regulatory region 7DPX ; 2.002 ; Crystal structure of the SRCR domain of human SCARA1/CD204 7C00 ; 1.7 ; Crystal structure of the SRCR domain of human SCARA5. 6J02 ; 1.803 ; Crystal structure of the SRCR domain of mouse SCARA1 7BZZ ; 2.501 ; Crystal structure of the SRCR domain of mouse SCARA5 1LNG ; 2.3 ; Crystal Structure of the SRP19-7S.S SRP RNA Complex of M. jannaschii 3KTW ; 3.2 ; Crystal structure of the SRP19/S-domain SRP RNA complex of Sulfolobus solfataricus 2V3C ; 2.5 ; Crystal structure of the SRP54-SRP19-7S.S SRP RNA complex of M. jannaschii 5EQ2 ; 1.8 ; Crystal Structure of the SrpA Adhesin from Streptococcus sanguinis 5EQ3 ; 2.0 ; Crystal structure of the SrpA adhesin from Streptococcus sanguinis with a sialyl galactose disaccharide bound 5EQ4 ; 2.3 ; Crystal structure of the SrpA adhesin R347E mutant from Streptococcus sanguinis 6PNQ ; 1.947 ; Crystal structure of the SS2A splice insert-containing neurexin-1 LNS2 domain in complex with neurexophilin-1 3KOJ ; 1.895 ; Crystal structure of the SSB domain of Q5N255_SYNP6 protein from Synechococcus sp. Northeast Structural Genomics Consortium Target SnR59a. 6AEQ ; 2.25181 ; Crystal structure of the ssDNA-binding domain of DnaT from Salmonella enterica Serovar Typhimurium LT2 6AEP ; 1.844 ; Crystal structure of the ssDNA-binding domain of DnaT from Salmonella enterica Serovar Typhimurium LT2 at 1.84 angstrom resolution 3C4S ; 1.7 ; Crystal structure of the Ssl0352 protein from Synechocystis sp. Northeast Structural Genomics Consortium target SgR42 5D3I ; 3.2 ; Crystal structure of the SSL3-TLR2 complex 3GFM ; 2.1 ; Crystal structure of the ST1710 mutant (K91A) protein 3GFJ ; 2.2 ; Crystal structure of the ST1710 mutant (R89A) protein 3GFL ; 1.9 ; Crystal structure of the ST1710 mutant (R90A) protein 4YC2 ; 3.02 ; Crystal structure of the stabilized inner domain of clade A/E HIV-1 gp120 from E. coli in complex with the antibody A32. 4YBL ; 3.1 ; Crystal structure of the stabilized inner domain of clade A/E HIV-1 gp120 in complex with the ADCC mediating ANTI-HIV-1 antibody A32 3TT9 ; 1.55 ; Crystal structure of the stable degradation fragment of human plakophilin 2 isoform a (PKP2a) C752R variant 6UY7 ; 2.105 ; Crystal structure of the STAC3 tandem SH3 domains - P269R 6UY8 ; 1.649 ; Crystal structure of the STAC3 tandem SH3 domains - P269R, K329N 6UY9 ; 1.6 ; Crystal structure of the STAC3 tandem SH3 domains - P269R, W284S 3LMA ; 1.993 ; Crystal structure of the stage V sporulation protein AD (SpoVAD) from Bacillus licheniformis. Northeast Structural Genomics Consortium Target BiR6. 3UFA ; 1.8 ; Crystal structure of the staphylococcal serine protease SplA in complex with a specific phosphonate inhibitor 4MVN ; 1.7 ; Crystal structure of the staphylococcal serine protease SplA in complex with a specific phosphonate inhibitor 2Z8L ; 1.65 ; Crystal Structure of the Staphylococcal superantigen-like protein SSL5 at pH 4.6 complexed with sialyl Lewis X 2R61 ; 2.75 ; Crystal structure of the Staphylococcal superantigen-like protein SSL5 in complex with sialyl-Lewis X at pH 7.4 3DI1 ; 2.2 ; Crystal structure of the Staphylococcus aureus Dihydrodipicolinate synthase-pyruvate complex 3GNS ; 2.706 ; Crystal Structure of the Staphylococcus aureus Enoyl-Acyl Carrier Protein Reductase (FabI) in apo form (one molecule in AU) 3GNT ; 2.75 ; Crystal Structure of the Staphylococcus aureus Enoyl-Acyl Carrier Protein Reductase (FabI) in apo form (two molecules in AU) 3GR6 ; 2.28 ; Crystal structure of the staphylococcus aureus enoyl-acyl carrier protein reductase (fabI) in complex with NADP and triclosan 1U2W ; 1.9 ; Crystal Structure of the Staphylococcus aureus pI258 CadC 3F72 ; 2.31 ; Crystal Structure of the Staphylococcus aureus pI258 CadC Metal Binding Site 2 Mutant 4KJM ; 2.0 ; Crystal structure of the Staphylococcus aureus protein (NP_646141.1, domain 3912-4037) similar to streptococcal adhesins emb and ebhA/ebhB 5DBL ; 1.6 ; Crystal structure of the Staphylococcus aureus SasG E1-G52 Y625W mutant 4WVE ; 1.6 ; Crystal structure of the Staphylococcus aureus SasG G52-E2-G53 module 3QSZ ; 2.389 ; Crystal Structure of the STAR-related lipid transfer protein (fragment 25-204) from Xanthomonas axonopodis at the resolution 2.4A, Northeast Structural Genomics Consortium Target XaR342 4AIO ; 1.9 ; Crystal structure of the starch debranching enzyme barley limit dextrinase 4BFN ; 1.32 ; Crystal Structure of the Starch-Binding Domain from Rhizopus oryzae Glucoamylase in Complex with isomaltotetraose 4BFO ; 1.175 ; Crystal Structure of the Starch-Binding Domain from Rhizopus oryzae Glucoamylase in Complex with isomaltotriose 7C1H ; 2.3 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA 7C1R ; 1.698 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA mutant H140A/R148A in complex with C8-CoA 7C1S ; 2.586 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA mutant H140A/R148A in complex with C8-CoA and Leu-SNAC 7C1U ; 1.4 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA mutant H140V/R148A in a ""product-released"" conformation 7C1K ; 2.755 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA mutant R148A 7C1L ; 1.85 ; Crystal structure of the starter condensation domain of rhizomide synthetase RzmA mutant R148A in complex with C8-CoA 7C1P ; 2.6 ; Crystal structure of the starter condensation domain of the rhizomide synthetase RzmA mutant H140V, R148A 3LLO ; 1.57 ; Crystal structure of the STAS domain of motor protein prestin (anion transporter SLC26A5) 2E6E ; 2.5 ; Crystal structure of the stationary phase survival protein SurE from Thermus thermophilus HB8 2E6C ; 2.05 ; Crystal structure of the stationary phase survival protein SurE from Thermus thermophilus HB8 cocrystallized with manganese and AMP 2E6B ; 2.5 ; Crystal structure of the stationary phase survival protein SurE from Thermus thermophilus HB8 in complex with magnesium and tungstate 2E6G ; 2.6 ; Crystal structure of the stationary phase survival protein SurE from Thermus thermophilus HB8 in complex with phosphate 2E69 ; 2.2 ; Crystal structure of the stationary phase survival protein SurE from Thermus thermophilus HB8 in complex with sulfate 6YC4 ; 2.6 ; Crystal structure of the steady-state activated state of the light-driven sodium pump KR2 in the pentameric form at room temperature, pH 8.0 6YC0 ; 2.7 ; Crystal structure of the steady-state-SMX activated state of the light-driven sodium pump KR2 in the pentameric form at room temperature, pH 8.0 2VVE ; 1.77 ; Crystal structure of the stem and receptor binding domain of the spike protein P1 from bacteriophage PM2 3BS7 ; 1.9 ; Crystal structure of the Sterile Alpha Motif (SAM) domain of Hyphen/Aveugle 7JJ1 ; 3.0 ; Crystal structure of the sterol 14alpha-demethylase-ferredoxin (CYP51-fx) heme domain and architectural comparison to the whole fusion protein 6BYM ; 2.2 ; Crystal structure of the sterol-bound second StART domain of yeast Lam4 6MR4 ; 2.71 ; Crystal structure of the Sth1 bromodomain from S.cerevisiae 6UY1 ; 2.21 ; Crystal structure of the Sth1 bromodomain from Saccharomyces cerevisiae at 2.2 Angstrom resolution 2BBD ; 2.04 ; Crystal Structure of the STIV MCP 6ST8 ; 2.04 ; Crystal structure of the strawberry pathogenesis-related 10 (PR-10) Fra a 1.02 protein 6ST9 ; 1.97 ; Crystal structure of the strawberry pathogenesis-related 10 (PR-10) Fra a 1.02 protein, D48R mutant 6STA ; 2.19 ; Crystal structure of the strawberry pathogenesis-related 10 (PR-10) Fra a 1.02 protein, E46A D48A mutant 6STB ; 2.27 ; Crystal structure of the strawberry pathogenesis-related 10 (PR-10) Fra a 1.02 protein, Q64W mutant 4C9C ; 2.2 ; Crystal Structure of the Strawberry Pathogenesis-Related 10 (PR-10) Fra a 1E protein (Form A) 4C9I ; 3.1 ; Crystal Structure of the Strawberry Pathogenesis-Related 10 (PR-10) Fra a 1E protein (Form B) 5AMW ; 1.9 ; Crystal Structure of the Strawberry Pathogenesis-Related 10 (PR-10) Fra a 2 protein (A141F) processed with the CrystalDirect automated mounting and cryo-cooling technology 4C94 ; 3.0 ; Crystal Structure of the Strawberry Pathogenesis-Related 10 (PR-10) Fra a 3 protein in complex with Catechin 3DBN ; 2.9 ; Crystal structure of the Streptoccocus suis serotype2 D-mannonate dehydratase in complex with its substrate 4NSM ; 1.6 ; crystal structure of the streptococcal collagen-like protein 2 globular domain from invasive M3-type group A Streptococcus 1PVJ ; 3.0 ; Crystal structure of the Streptococcal pyrogenic exotoxin B (SpeB)- inhibitor complex 1TY0 ; 1.75 ; Crystal structure of the streptococcal pyrogenic exotoxin J (SPE-J) 1TY2 ; 2.0 ; Crystal structure of the streptococcal pyrogenic exotoxin J (SPE-J) 1AN8 ; 2.4 ; CRYSTAL STRUCTURE OF THE STREPTOCOCCAL SUPERANTIGEN SPE-C 3RCC ; 3.1 ; Crystal Structure of the Streptococcus agalactiae Sortase A 4F2E ; 1.449 ; Crystal structure of the Streptococcus pneumoniae D39 copper chaperone CupA with Cu(I) 1K47 ; 2.42 ; Crystal Structure of the Streptococcus pneumoniae Phosphomevalonate Kinase (PMK) 5B2S ; 2.2 ; Crystal structure of the Streptococcus pyogenes Cas9 EQR variant in complex with sgRNA and target DNA (TGAG PAM) 5B2R ; 2.0 ; Crystal structure of the Streptococcus pyogenes Cas9 VQR variant in complex with sgRNA and target DNA (TGA PAM) 5B2T ; 2.2 ; Crystal structure of the Streptococcus pyogenes Cas9 VRER variant in complex with sgRNA and target DNA (TGCG PAM) 2X5P ; 1.6 ; Crystal structure of the Streptococcus pyogenes fibronectin binding protein Fbab-B 3PNT ; 2.8 ; Crystal Structure of the Streptococcus pyogenes NAD+ glycohydrolase SPN in complex with IFS, the Immunity Factor for SPN 2WDY ; 1.4 ; Crystal structure of the Streptomyces coelicolor D111A AcpS mutant in complex with cofactor CoA at 1.4 A 2WDS ; 1.35 ; Crystal structure of the Streptomyces coelicolor H110A AcpS mutant in complex with cofactor CoA at 1.3 A 2JCA ; 1.98 ; Crystal structure of the streptomyces coelicolor holo- [Acyl-carrier-protein] Synthase (AcpS) at 2 A. 2JBZ ; 1.62 ; Crystal structure of the Streptomyces coelicolor holo-[Acyl-carrier-protein] Synthase (AcpS) in complex with coenzyme A at 1.6 A 3B6C ; 2.3 ; Crystal structure of the Streptomyces coelicolor TetR family protein ActR in complex with (S)-DNPA 3B6A ; 3.05 ; Crystal structure of the Streptomyces coelicolor TetR family protein ActR in complex with actinorhodin 3TL1 ; 1.8 ; Crystal structure of the Streptomyces coelicolor WhiE ORFVI polyketide aromatase/cyclase 1JFR ; 1.9 ; CRYSTAL STRUCTURE OF THE STREPTOMYCES EXFOLIATUS LIPASE AT 1.9A RESOLUTION: A MODEL FOR A FAMILY OF PLATELET-ACTIVATING FACTOR ACETYLHYDROLASES 1F2O ; 1.7 ; CRYSTAL STRUCTURE OF THE STREPTOMYCES GRISEUS AMINOPEPTIDASE COMPLEXED WITH L-LEUCINE 1F2P ; 1.8 ; CRYSTAL STRUCTURE OF THE STREPTOMYCES GRISEUS AMINOPEPTIDASE COMPLEXED WITH L-PHENYLALANINE 1SKF ; 2.0 ; CRYSTAL STRUCTURE OF THE STREPTOMYCES K15 DD-TRANSPEPTIDASE 4BMW ; 1.99 ; Crystal structure of the Streptomyces reticuli HbpS E78D, E81D double mutant 4PO2 ; 2.0 ; Crystal Structure of the Stress-Inducible Human Heat Shock Protein HSP70 Substrate-Binding Domain in Complex with Peptide Substrate 5CBK ; 2.462 ; Crystal structure of the strigolactone receptor ShHTL5 from Striga hermonthica 6A9D ; 2.302 ; Crystal structure of the strigolactone receptor ShHTL7 from Striga hermonthica 1CQR ; 2.0 ; CRYSTAL STRUCTURE OF THE STROMELYSIN CATALYTIC DOMAIN AT 2.0 A RESOLUTION 1HV5 ; 2.6 ; CRYSTAL STRUCTURE OF THE STROMELYSIN-3 (MMP-11) CATALYTIC DOMAIN COMPLEXED WITH A PHOSPHINIC INHIBITOR 8EHZ ; 2.06 ; Crystal structure of the STUB1 TPR domain in complex with H317, a Helicon Polypeptide 8EI0 ; 1.47 ; Crystal structure of the STUB1 TPR domain in complex with H318, a Helicon Polypeptide 7D6Q ; 1.8 ; Crystal structure of the Stx2a 7VHC ; 1.8 ; Crystal structure of the STX2a complexed with AR4A peptide 7D6R ; 1.6 ; Crystal structure of the Stx2a complexed with MMA betaAla peptide 7VHD ; 1.8 ; Crystal structure of the STX2a complexed with R4A peptide 7VHF ; 1.75 ; Crystal structure of the STX2a complexed with RRA peptide 7VHE ; 1.9 ; Crystal structure of the STX2a complexed with RRRA peptide 5SUP ; 2.6 ; Crystal structure of the Sub2-Yra1 complex in association with RNA 5NGG ; 1.18 ; Crystal structure of the subclass B3 metallo-beta-lactamase BJP-1 in complex with acetate anion 6FMO ; 3.18 ; Crystal structure of the substrate (obtusifoliol)-bound and ligand-free I105F mutant of sterol 14-alpha demethylase (CYP51) from Trypanosoma cruzi 3DPP ; 2.5 ; Crystal structure of the substrate binding domain of E. coli DnaK in complex with a long pyrrhocoricin-derived inhibitor peptide (form A) 3DPQ ; 2.6 ; Crystal structure of the substrate binding domain of E. coli DnaK in complex with a long pyrrhocoricin-derived inhibitor peptide (form B) 3DPO ; 2.1 ; Crystal structure of the substrate binding domain of E. coli DnaK in complex with a short pyrrhocoricin-derived inhibitor peptide 4E81 ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with a short apidaecin peptide 4EZP ; 1.65 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with A3-APO(residues 1 to 20) 4F00 ; 1.95 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with an apidaecin fragment from the bumblebee (residues 3 to 11) 4JWC ; 1.8 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with bovine Bac7(1-16) 4JWD ; 1.95 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with bovine Bac7(15-28) 4EZT ; 2.0 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with heliocin (residues 14 to 21) 4EZS ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with metchnikowin (residues 20 to 26) 4EZO ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with PR-39 (residues 1 to 15) 4EZU ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with PR-bombesin in space group I222 4EZV ; 2.1 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with PR-bombesin in space group P21212 4EZN ; 1.8 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with pyrrhocoricin 4HYB ; 1.7 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with pyrrhocoricin_LYZI (residues 1 to 10) 4HY9 ; 1.55 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with pyrrhocoricin_LYZZ (residues 1 to 11) 4JWE ; 1.95 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with sheep Bac7(1-21) 4JWI ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with sheep Bac7(35-43) 3QNJ ; 2.28 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the antimicrobial peptide oncocin 4EZR ; 1.9 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the C-terminal part of drosocin (residues 12 to 19) 4EZQ ; 2.0 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the C-terminal part of pyrrhocoricin (residues 12 to 20) 4EZZ ; 2.05 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the designer peptide ELPLVKI 4EZY ; 1.85 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the designer peptide NRLILTG 4EZW ; 1.8 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the designer peptide NRLLLTG 4EZX ; 1.7 ; Crystal structure of the substrate binding domain of E.coli DnaK in complex with the designer peptide NRLMLTG 6LU4 ; 2.8 ; Crystal structure of the substrate binding protein from Microbacterium hydrocarbonoxydans complexed with propylparaben 6JF1 ; 1.95 ; Crystal structure of the substrate binding protein of a methionine transporter from Streptococcus pneumoniae 4YMX ; 1.481 ; Crystal structure of the substrate binding protein of an amino acid ABC transporter 3C9H ; 1.9 ; Crystal structure of the substrate binding protein of the ABC transporter from Agrobacterium tumefaciens 7N6L ; 2.4 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide EANQQKPLLGLFADG 7JN9 ; 2.4 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide QEHTGSQLRIAAYGP 7JMM ; 2.56 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RAKNIILLSR 7N6K ; 2.55 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RALALLPLSR 7JN8 ; 3.09 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RGNTLVIVSR 7JNE ; 2.54 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RGSQLRIASR 7N6J ; 2.0 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RKQSTIALALLPLLFTPRR 7N6M ; 1.82 ; Crystal structure of the substrate-binding domain of E. coli DnaK in complex with the peptide RQKPLLGLSR 7Z8E ; 1.58 ; Crystal structure of the substrate-binding protein YejA from S. meliloti in complex with peptide fragment 7Z6F ; 1.65 ; Crystal structure of the substrate-binding protein YejA in complex with peptide fragment 7PD2 ; 1.99 ; Crystal structure of the substrate-free radical SAM tyrosine lyase ThiH (2-iminoacetate synthase) from Thermosinus carboxydivorans 1YU6 ; 1.55 ; Crystal Structure of the Subtilisin Carlsberg:OMTKY3 Complex 2P3B ; 2.1 ; Crystal Structure of the subtype B wild type HIV protease complexed with TL-3 inhibitor 2P3C ; 2.1 ; Crystal Structure of the subtype F wild type HIV protease complexed with TL-3 inhibitor 4RND ; 3.18 ; Crystal Structure of the subunit DF-assembly of the eukaryotic V-ATPase. 2YIC ; 1.96 ; Crystal structure of the SucA domain of Mycobacterium smegmatis alpha- ketoglutarate decarboxylase (triclinic form) 2XTA ; 2.2 ; Crystal structure of the SucA domain of Mycobacterium smegmatis alpha- ketoglutarate decarboxylase in complex with acetyl-CoA (triclinic form) 2YID ; 2.25 ; Crystal structure of the SucA domain of Mycobacterium smegmatis alpha- ketoglutarate decarboxylase in complex with the enamine-ThDP intermediate 2Y0P ; 2.4 ; Crystal structure of the SucA domain of Mycobacterium smegmatis alpha- ketoglutarate decarboxylase in complex with the enamine-ThDP intermediate and acetyl-CoA 6I2R ; 2.2 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD (alpha-ketoglutarate decarboxylase), mutant R802A, in complex with GarA 6I2S ; 2.4 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD (R802A) in complex with GarA, following 2-oxoglutarate soak 6R2B ; 1.96 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD after soaking with succinylphosphonate 6R2C ; 2.09 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD after soaking with succinylphosphonate phosphonoethyl ester (PESP) 6R2D ; 2.3 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD after soaking with succinylphosphonate phosphonoethyl ester, followed by temperature increase 6R29 ; 1.67 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD cocrystallized with succinylphosphonate 6R2A ; 1.7 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD cocrystallized with succinylphosphonate phosphonoethyl ester (PESP) 3ZHT ; 2.15 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD, first post-decarboxylation intermediate from 2-oxoadipate 3ZHS ; 2.1 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD, first post-decarboxylation intermediate from alpha-ketoglutarate 3ZHV ; 2.3 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD, post-decarboxylation intermediate from pyruvate (2-hydroxyethyl-ThDP) 3ZHU ; 2.3 ; Crystal structure of the SucA domain of Mycobacterium smegmatis KGD, second post-decarboxylation intermediate from 2-oxoadipate 1D4D ; 2.5 ; CRYSTAL STRUCTURE OF THE SUCCINATE COMPLEXED FORM OF THE FLAVOCYTOCHROME C FUMARATE REDUCTASE OF SHEWANELLA PUTREFACIENS STRAIN MR-1 2RAD ; 2.75 ; Crystal structure of the succinoglycan biosynthesis protein. Northeast structural Genomics Consortium target BcR135 7T1Q ; 2.25 ; Crystal Structure of the Succinyl-diaminopimelate Desuccinylase (DapE) from Acinetobacter baumannii in complex with Succinic Acid 8F8O ; 2.1 ; Crystal Structure of the Succinyl-diaminopimelate Desuccinylase (DapE) from Acinetobacter baumannii in complex with Succinic and L-Lactic Acids 1YW4 ; 2.0 ; Crystal Structure of the Succinylglutamate Desuccinylase from Chromobacterium violaceum, Northeast Structural Genomics Target CvR22. 7BBR ; 1.3 ; Crystal structure of the sugar acid binding protein DctPAm from Advenella mimigardefordensis strain DPN7T 7BCO ; 2.0 ; Crystal structure of the sugar acid binding protein DctPAm from Advenella mimigardefordensis strain DPN7T in complex with D-foconate 7BCR ; 2.0 ; Crystal structure of the sugar acid binding protein DctPAm from Advenella mimigardefordensis strain DPN7T in complex with galactonate 7BCP ; 2.0 ; Crystal structure of the sugar acid binding protein DctPAm from Advenella mimigardefordensis strain DPN7T in complex with gluconate 7BCN ; 1.7 ; Crystal structure of the sugar acid binding protein DctPAm from Advenella mimigardefordensis strain DPN7T in complex with Xylonic acid 6NDI ; 2.6 ; Crystal Structure of the Sugar Binding Domain of LacI Family Protein from Klebsiella pneumoniae 2F5T ; 1.45 ; Crystal Structure of the sugar binding domain of the archaeal transcriptional regulator TrmB 4QJB ; 2.05 ; Crystal structure of the sugar phosphatase PfHAD1 from Plasmodium falciparum 2RJ2 ; 1.7 ; Crystal Structure of the Sugar Recognizing SCF Ubiquitin Ligase at 1.7 Resolution 2XTS ; 1.33 ; Crystal Structure of the Sulfane Dehydrogenase SoxCD from Paracoccus pantotrophus 6PTK ; 1.75 ; Crystal structure of the sulfatase PsS1_NC C84A with bound sulfate ion 4PW3 ; 2.35 ; Crystal structure of the sulfite dehydrogenase SorT from Sinorhizobium meliloti 5K3X ; 1.6 ; Crystal Structure of the sulfite dehydrogenase, SorT R78K mutant from Sinorhizobium meliloti 5WA0 ; 2.1 ; Crystal Structure of the sulfite dehydrogenase, SorT R78Q mutant from Sinorhizobium meliloti 1TV4 ; 1.8 ; Crystal structure of the sulfite MtmB complex 2G3M ; 2.55 ; Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA 2G3N ; 2.55 ; Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside 6K8N ; 2.1 ; Crystal structure of the Sulfolobus solfataricus topoisomerase III 6K8O ; 2.5 ; Crystal structure of the Sulfolobus solfataricus topoisomerase III in complex with DNA 7YZU ; 1.59 ; Crystal structure of the sulfoquinovosyl binding protein SmoF complexed with SQMe 7YZS ; 1.8 ; Crystal structure of the sulfoquinovosyl binding protein SmoF complexed with sulfoquinovose 7QHV ; 2.14 ; Crystal structure of the sulfoquinovosyl binding protein SmoF complexed with sulfoquinovosyl diacylglycerol 6R15 ; 1.82 ; Crystal structure of the SUN1-KASH1 6:6 complex 6R16 ; 2.75 ; Crystal structure of the SUN1-KASH4 6:6 complex 6R2I ; 1.541 ; Crystal structure of the SUN1-KASH5 6:6 complex 7Z8Y ; 2.29 ; Crystal structure of the SUN1-KASH6 9:6 complex 8B5X ; 1.98 ; Crystal structure of the SUN1-KASH6 9:6 complex 8B46 ; 1.67 ; Crystal structure of the SUN1-KASH6 9:9 complex 6R2W ; 1.25 ; Crystal structure of the super-active FVIIa variant VYT in complex with tissue factor 3BTV ; 2.1 ; Crystal structure of the super-repressor mutant of Gal80p from Saccharomyces cerevisiae; Gal80(S0)-[G301R] 3BTU ; 2.85 ; Crystal structure of the super-repressor mutant of Gal80p from Saccharomyces cerevisiae; Gal80(S2) [E351K] 1EU3 ; 1.68 ; CRYSTAL STRUCTURE OF THE SUPERANTIGEN SMEZ-2 (ZINC BOUND) FROM STREPTOCOCCUS PYOGENES 1ET6 ; 1.9 ; CRYSTAL STRUCTURE OF THE SUPERANTIGEN SMEZ-2 FROM STREPTOCOCCUS PYOGENES 1EU4 ; 2.5 ; CRYSTAL STRUCTURE OF THE SUPERANTIGEN SPE-H (ZINC BOUND) FROM STREPTOCOCCUS PYOGENES 1ET9 ; 1.9 ; CRYSTAL STRUCTURE OF THE SUPERANTIGEN SPE-H FROM STREPTOCOCCUS PYOGENES 3VKW ; 1.9 ; Crystal Structure of the Superfamily 1 Helicase from Tomato Mosaic Virus 1Y07 ; 1.55 ; Crystal structure of the superoxide reductase from Treponema pallidum 3DSM ; 1.9 ; Crystal structure of the surface layer protein BACUNI_02894 from Bacteroides uniformis, Northeast Structural Genomics Consortium Target BtR193D. 3BJ9 ; 2.0 ; Crystal structure of the Surrogate Light Chain Variable Domain VpreBJ 5TUC ; 2.5 ; Crystal Structure of the Sus TBC1D15 GAP Domain 5FQ6 ; 2.8 ; Crystal structure of the SusCD complex BT2261-2264 from Bacteroides thetaiotaomicron 5FQ7 ; 3.4 ; Crystal structure of the SusCD complex BT2261-2264 from Bacteroides thetaiotaomicron 5FQ8 ; 2.75 ; Crystal structure of the SusCD complex BT2261-2264 from Bacteroides thetaiotaomicron 1N25 ; 2.8 ; Crystal structure of the SV40 Large T antigen helicase domain 2FUF ; 1.45 ; Crystal structure of the SV40 large T antigen origin-binding domain 4FGN ; 3.2 ; Crystal structure of the SV40 large T-antigen origin bining domain bound to Site I DNA 6TIV ; 2.38 ; Crystal structure of the SVS_A2 protein (205-DREMH-209 /205-AQDLE-209 mutant) from ancestral sequence reconstruction at 2.38 A resolution 6THU ; 2.6 ; Crystal structure of the SVS_A2 protein (A224I mutant) from ancestral sequence reconstruction at 2.6 A resolution 6TJZ ; 2.4 ; Crystal structure of the SVS_A2 protein (W156Y mutant) from ancestral sequence reconstruction at 2.4 A resolution 6TJA ; 2.27 ; Crystal structure of the SVS_A2 protein (W79F,G83L mutant) from ancestral sequence reconstruction at 2.27 A resolution 6TBD ; 2.3 ; Crystal structure of the SVS_A2 protein from ancestral sequence reconstruction at 2.30 A resolution 3BCO ; 2.25 ; Crystal Structure of The Swapped FOrm of P19A/L28Q/N67D BS-RNase 3BCP ; 2.57 ; Crystal Structure of The Swapped non covalent form of P19A/L28Q/N67D BS-RNase 3AL4 ; 2.872 ; Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus 6E1F ; 1.16 ; Crystal structure of the SWIRM domain of human histone lysine-specific demethylase LSD1 6R17 ; 2.424 ; Crystal structure of the SYCE2-TEX12 delta-Ctip 2:2 complex 6YQF ; 3.33 ; Crystal structure of the SYCE2-TEX12 delta-Ctip complex in a 4:4 assembly 6F63 ; 2.154 ; Crystal structure of the SYCP1 C-terminal back-to-back assembly 6F64 ; 2.493 ; Crystal structure of the SYCP1 C-terminal back-to-back assembly 6F5X ; 1.91 ; Crystal structure of the SYCP1 N-terminal head-to-head assembly in closed conformation 6F62 ; 2.066 ; Crystal structure of the SYCP1 N-terminal head-to-head assembly in open conformation 1XBB ; 1.57 ; Crystal structure of the syk tyrosine kinase domain with Gleevec 1XBC ; 2.0 ; Crystal structure of the syk tyrosine kinase domain with Staurosporin 3BE8 ; 2.2 ; Crystal structure of the synaptic protein neuroligin 4 3UJ3 ; 3.51 ; Crystal Structure of the synaptic tetramer of the G-Segment Invertase (Gin) 3PIO ; 3.2473 ; Crystal structure of the synergistic antibiotic pair lankamycin and lankacidin in complex with the large ribosomal subunit 3PIP ; 3.45 ; Crystal structure of the synergistic antibiotic pair lankamycin and lankacidin in complex with the large ribosomal subunit 4Z33 ; 2.45 ; Crystal structure of the syntenin PDZ1 and PDZ2 tandem in complex with the Frizzled 7 C-terminal fragment and PIP2 6AK2 ; 1.868 ; Crystal structure of the syntenin PDZ1 domain in complex with the peptide inhibitor KSL-128018 2VO1 ; 2.8 ; CRYSTAL STRUCTURE OF THE SYNTHETASE DOMAIN OF HUMAN CTP SYNTHETASE 4C7N ; 2.1 ; Crystal Structure of the synthetic peptide iM10 in complex with the coiled-coil region of MITF 4JMG ; 1.403 ; Crystal structure of the synthetic protein in complex with pY peptide 1QN4 ; 1.86 ; Crystal structure of the T(-24) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QNB ; 2.23 ; Crystal structure of the T(-25) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QN6 ; 2.1 ; Crystal structure of the T(-26) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QN7 ; 2.3 ; Crystal structure of the T(-27) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QN8 ; 2.1 ; Crystal structure of the T(-28) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 1QNA ; 1.8 ; Crystal structure of the T(-30) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. 6TRO ; 3.0 ; Crystal structure of the T-cell receptor GVY01 bound to HLA A2*01-GVYDGREHTV 6RPB ; 2.5 ; Crystal structure of the T-cell receptor NYE_S1 bound to HLA A2*01-SLLMWITQV 6RPA ; 2.56 ; Crystal structure of the T-cell receptor NYE_S2 bound to HLA A2*01-SLLMWITQV 6RP9 ; 3.12 ; Crystal structure of the T-cell receptor NYE_S3 bound to HLA A2*01-SLLMWITQV 6V3O ; 2.909 ; Crystal structure of the T-state of maize C4-phosphoenolpyruvate carboxylase in complex with citrate 6U2T ; 2.8 ; Crystal structure of the T-state of maize C4-phosphoenolpyruvate carboxylase in complex with malate 2PU1 ; 1.8 ; Crystal Structure of the T. brucei enolase complexed with Fluoro-phosphonoacetohydroxamate (FPAH) 2PTY ; 2.0 ; Crystal Structure of the T. brucei enolase complexed with PEP 2PU0 ; 1.9 ; Crystal Structure of the T. brucei enolase complexed with phosphonoacetohydroxamate (PAH), His156-in conformation 2PTZ ; 1.65 ; Crystal Structure of the T. brucei enolase complexed with phosphonoacetohydroxamate (PAH), His156-out conformation 2PTX ; 1.9 ; Crystal Structure of the T. brucei enolase complexed with sulphate in closed conformation 2PTW ; 1.9 ; Crystal Structure of the T. brucei enolase complexed with sulphate, identification of a metal binding site IV 3GX3 ; 2.7 ; Crystal structure of the T. tengcongensis SAM-I riboswitch variant U34C/A94G bound with SAH 3GX6 ; 2.8 ; Crystal structure of the T. tengcongensis SAM-I riboswitch variant U34C/A94G bound with SAM in manganese chloride 3GX7 ; 2.95 ; Crystal structure of the T. tengcongensis SAM-I riboswitch variant U34C/A94G mutant A6C/U7G/A87C/U88G bound with SAM 2V18 ; 2.59 ; Crystal structure of the T. thermophilus dodecin 2V21 ; 2.4 ; Crystal structure of the T. thermophilus dodecin in complex with prebound FMN 2V19 ; 2.59 ; Crystal structure of the T. thermophilus dodecin R45A mutant 2UX9 ; 1.4 ; Crystal structure of the T. thermophilus dodecin R65A mutant 2VYX ; 1.5 ; Crystal structure of the T. thermophilus dodecin W38F mutant 2O5I ; 2.5 ; Crystal structure of the T. thermophilus RNA polymerase elongation complex 2A6E ; 2.8 ; Crystal structure of the T. Thermophilus RNA polymerase holoenzyme 3EQL ; 2.7 ; Crystal structure of the T. Thermophilus RNA polymerase holoenzyme in complex with antibiotic myxopyronin 2A68 ; 2.5 ; Crystal structure of the T. thermophilus RNA polymerase holoenzyme in complex with antibiotic rifabutin 2A69 ; 2.5 ; Crystal structure of the T. Thermophilus RNA polymerase holoenzyme in complex with antibiotic rifapentin 2A6H ; 2.4 ; Crystal structure of the T. thermophilus RNA polymerase holoenzyme in complex with antibiotic sterptolydigin 2BE5 ; 2.4 ; Crystal structure of the T. Thermophilus RNA polymerase holoenzyme in complex with inhibitor tagetitoxin 2O5J ; 3.0 ; Crystal structure of the T. thermophilus RNAP polymerase elongation complex with the NTP substrate analog 2PPB ; 3.0 ; Crystal structure of the T. thermophilus RNAP polymerase elongation complex with the ntp substrate analog and antibiotic streptolydigin 1PP8 ; 3.05 ; crystal structure of the T. vaginalis IBP39 Initiator binding domain (IBD) bound to the alpha-SCS Inr element 1PP7 ; 2.45 ; Crystal structure of the T. vaginalis Initiator binding protein bound to the ferredoxin Inr 1WCE ; 7.0 ; Crystal structure of the T13 IBDV viral particle reveals a missing link in icosahedral viruses evolution 1OBJ ; 1.9 ; Crystal structure of the T150A mutant of Malonamidase E2 from Bradyrhizobium japonicum 1V0B ; 2.2 ; Crystal structure of the t198a mutant of pfpk5 8CCR ; 2.1 ; Crystal structure of the T19D mutant of the de novo diheme binding 4D2 4XC5 ; 2.2 ; CRYSTAL STRUCTURE OF THE T1L REOVIRUS ATTACHMENT PROTEIN SIGMA1 4GU4 ; 3.5 ; Crystal structure of the T1L reovirus attachment protein sigma1 in complex with alpha-2,3-sialyllactose 4ODB ; 3.2 ; Crystal structure of the T1L reovirus attachment protein sigma1 in complex with Junctional Adhesion Molecule-A 4GU3 ; 3.6 ; Crystal structure of the T1L reovirus attachment protein sigma1 in complex with the GM2 glycan 6GAK ; 1.43 ; Crystal structure of the T1L reovirus sigma1 coiled coil tail (chloride) 6GAJ ; 1.35 ; Crystal structure of the T1L reovirus sigma1 coiled coil tail (iodide) 6GAO ; 2.101 ; Crystal structure of the T1L reovirus sigma1 coiled coil tail and body 4WNI ; 2.3 ; Crystal structure of the T229K mutant of human GAPDH at 2.3 angstroems resolution 6AZR ; 3.628 ; Crystal structure of the T264A HK853cp-BeF3-RR468 complex 6DMQ ; 1.7 ; Crystal structure of the T27A mutant of human alpha defensin HNP4. 4ZO1 ; 3.221 ; Crystal Structure of the T3-bound TR-beta Ligand-binding Domain in complex with RXR-alpha 2V7A ; 2.5 ; Crystal structure of the T315I Abl mutant in complex with the inhibitor PHA-739358 2Z60 ; 1.95 ; Crystal Structure of the T315I Mutant of Abl kinase bound with PPY-A 5CY5 ; 3.4 ; Crystal structure of the T33-51H designed self-assembling protein tetrahedron 7S0W ; 2.5 ; Crystal structure of the T337M variant of human PGM-1 6GAP ; 2.15 ; Crystal structure of the T3D reovirus sigma1 coiled coil tail and body 3UPU ; 3.299 ; Crystal structure of the T4 Phage SF1B Helicase Dda 1REG ; 1.9 ; CRYSTAL STRUCTURE OF THE T4 REGA TRANSLATIONAL REGULATOR PROTEIN AT 1.9 ANGSTROMS RESOLUTION 7ORA ; 2.6 ; Crystal structure of the T478K mutant receptor binding domain of SARS-CoV-2 Spike glycoprotein in complex with COVOX-45 and COVOX-253 Fabs 3ZHN ; 1.4 ; Crystal structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa 5IKN ; 4.802 ; Crystal Structure of the T7 Replisome in the Absence of DNA 2J7K ; 2.9 ; Crystal structure of the T84A mutant EF-G:GDPCP complex 3RLL ; 1.7 ; Crystal structure of the T877A androgen receptor ligand binding domain in complex with (S)-N-(4-Cyano-3-(trifluoromethyl)phenyl)-3-(4-cyanonaphthalen-1-yloxy)-2-hydroxy-2-methylpropanamide 4HVU ; 0.98 ; Crystal structure of the T98D c-Src-SH3 domain mutant in complex with the high affinity peptide APP12 4HVV ; 1.1 ; Crystal structure of the T98E c-Src-SH3 domain mutant in complex with the high affinity peptide APP12 4HVW ; 0.98 ; Crystal structure of the T98E c-Src-SH3 domain mutant in complex with the high affinity peptide VSL12 3U3U ; 2.5 ; Crystal structure of the tablysin-15-leukotriene E4 complex 3CKI ; 2.3 ; Crystal structure of the TACE-N-TIMP-3 complex 3QRL ; 1.7 ; Crystal Structure of the Taf14 YEATS domain 4MTM ; 1.368 ; Crystal structure of the tail fiber gp53 from Acinetobacter baumannii bacteriophage AP22 3SPE ; 2.3996 ; Crystal structure of the tail sheath protein protease resistant fragment from bacteriophage phiKZ 3FZ2 ; 2.7 ; Crystal structure of the tail terminator protein from phage lambda (gpU-D74A) 3FZB ; 2.8 ; Crystal structure of the tail terminator protein from phage lambda (gpU-WT) 4RU4 ; 1.903 ; Crystal structure of the tailspike protein gp49 from Pseudomonas phage LKA1 4GJP ; 1.94 ; Crystal structure of the TAL effector dHax3 bound to dsDNA containing repetitive methyl-CpG 4GJR ; 1.85 ; Crystal structure of the TAL effector dHax3 bound to methylated dsDNA 4GG4 ; 2.501 ; Crystal structure of the TAL effector dHax3 bound to specific DNA-RNA hybrid 4OSH ; 2.201 ; Crystal structure of the TAL effector dHax3 with NI RVD at 2.2 angstrom resolution 4OSI ; 2.849 ; Crystal structure of the TAL effector dHax3 with NI RVD at 2.8 angstrom resolution 2QDQ ; 2.2 ; Crystal structure of the talin dimerisation domain 3IVF ; 1.94 ; Crystal structure of the talin head FERM domain 8AS9 ; 3.4 ; Crystal structure of the talin-KANK1 complex 4CI8 ; 2.6 ; Crystal structure of the tandem atypical beta-propeller domain of EML1 7WSJ ; 2.4 ; Crystal structure of the tandem B-box domain of Arabidopsis thaliana CONSTANS 7K03 ; 1.6 ; Crystal structure of the tandem bromodomain (BD1 and BD2) of human TAF1 bound to ATR kinase inhibitor AZD6738 7T36 ; 1.65 ; Crystal structure of the tandem bromodomain (BD1 and BD2) of human TAF1 bound to ZS1-322 7K27 ; 1.5 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to ATR inhibitor AZ20 7L6X ; 2.75 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to GNE-371 7K0D ; 2.2 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to mTORC1/2 inhibitor AZD3147 7LB0 ; 2.33 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to ZS1-295 7LB1 ; 1.35 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to ZS1-585 7T2I ; 1.89 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to ZS1-588 7LB2 ; 1.7 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 bound to ZS1-589 7K6F ; 1.86 ; Crystal structure of the tandem bromodomain (BD1, BD2) of human TAF1 in complex with MES (2-(N-morpholino)ethanesulfonic acid) 7N42 ; 1.9 ; Crystal structure of the tandem bromodomain of human TAF1 (TAF1-T) bound to ZS1-681 3UV5 ; 2.03 ; Crystal Structure of the tandem bromodomains of human Transcription initiation factor TFIID subunit 1 (TAF1) 7DKL ; 1.5 ; Crystal structure of the tandem DEP domains of DEPTOR 6GRE ; 1.29 ; Crystal structure of the tandem DUF26 ectodomain from the Arabidopsis thaliana cysteine-rich receptor-like protein PDLP5. 6GRF ; 1.95 ; Crystal structure of the tandem DUF26 ectodomain from the Arabidopsis thaliana cysteine-rich receptor-like protein PDLP8. 1YKD ; 1.9 ; Crystal Structure of the Tandem GAF Domains from a Cyanobacterial Adenylyl Cyclase: Novel Modes of Ligand-Binding and Dimerization 3K0W ; 2.8 ; Crystal structure of the tandem IG-like C2-type 2 domains of the human mucosa-associated lymphoid tissue lymphoma translocation protein 1 7Z67 ; 2.65 ; Crystal structure of the tandem kinase & triphosphate tunnel metalloenzyme domain module of the TTM1 protein from Arabidoposis thaliana in complex with a adenosine nucleotide analog. 7Z66 ; 2.7 ; Crystal structure of the tandem kinase & triphosphate tunnel metalloenzyme domain module of the TTM1 protein from Arabidoposis thaliana in complex with inorganic phosphate and citric acid. 1YGR ; 2.9 ; Crystal structure of the tandem phosphatase domain of RPTP CD45 1YGU ; 2.9 ; Crystal structure of the tandem phosphatase domains of RPTP CD45 with a pTyr peptide 1LAR ; 2.0 ; CRYSTAL STRUCTURE OF THE TANDEM PHOSPHATASE DOMAINS OF RPTP LAR 6FSF ; 2.2 ; Crystal structure of the tandem PX-PH-domains of Bem3 from Saccharomyces cerevisiae 6O0S ; 2.7 ; Crystal structure of the tandem SAM domains from human SARM1 1A81 ; 3.0 ; CRYSTAL STRUCTURE OF THE TANDEM SH2 DOMAIN OF THE SYK KINASE BOUND TO A DUALLY TYROSINE-PHOSPHORYLATED ITAM 4GY5 ; 2.956 ; Crystal structure of the tandem tudor domain and plant homeodomain of UHRF1 with Histone H3K9me3 3DB4 ; 2.4 ; Crystal structure of the tandem tudor domains of the E3 ubiquitin-protein ligase UHRF1 3DB3 ; 2.4 ; Crystal structure of the tandem tudor domains of the E3 ubiquitin-protein ligase UHRF1 in complex with trimethylated histone H3-K9 peptide 3ZYQ ; 1.48 ; Crystal structure of the tandem VHS and FYVE domains of Hepatocyte growth factor-regulated tyrosine kinase substrate (HGS-Hrs) at 1.48 A resolution 2A90 ; 2.15 ; Crystal Structure of the tandem WWE domain of Drosophila Deltex 1U5Q ; 2.1 ; Crystal Structure of the TAO2 Kinase Domain: Activation and Specifity of a Ste20p MAP3K 1U5R ; 2.1 ; Crystal Structure of the TAO2 Kinase Domain: Activation and Specifity of a Ste20p MAP3K 5OPI ; 3.3 ; Crystal structure of the TAPBPR-MHC I peptide editing complex 5WB4 ; 2.0 ; Crystal structure of the TarA wall teichoic acid glycosyltransferase 5WFG ; 2.9 ; Crystal structure of the TarA wall teichoic acid glycosyltransferase bound to UDP 1YB4 ; 2.4 ; Crystal Structure of the Tartronic Semialdehyde Reductase from Salmonella typhimurium LT2 6G9G ; 1.6 ; Crystal Structure of the TASNSS segment from the R4-R5 loop of the E. coli Biofilm-associated CsgA Curli protein 6TL1 ; 2.03 ; Crystal structure of the TASOR pseudo-PARP domain 6SWG ; 2.51 ; Crystal structure of the TASOR-Periphilin core complex 2GZX ; 2.2 ; Crystal Structure of the TatD deoxyribonuclease MW0446 from Staphylococcus aureus. Northeast Structural Genomics Consortium Target ZR237. 3GUW ; 3.2 ; Crystal Structure of the TatD-like Protein (AF1765) from Archaeoglobus fulgidus, Northeast Structural Genomics Consortium Target GR121 3SWT ; 2.05 ; Crystal Structure of the Taurine catabolism dioxygenase, TauD from Mycobacterium marinum 3IO2 ; 2.5 ; Crystal structure of the Taz2 domain of p300 3T92 ; 1.5 ; Crystal structure of the Taz2:C/EBPepsilon-TAD chimera protein 5HJN ; 2.501 ; Crystal structure of the TBC domain of Skywalker/TBC1D24 from Drosophila melanogaster 5HJQ ; 2.3 ; Crystal structure of the TBC domain of Skywalker/TBC1D24 from Drosophila melanogaster in complex with inositol(1,4,5)triphosphate 5T1J ; 2.947 ; Crystal Structure of the Tbox DNA binding domain of the transcription factor T-bet 2ATX ; 2.65 ; Crystal Structure of the TC10 GppNHp complex 4FQG ; 2.0 ; Crystal structure of the TCERG1 FF4-6 tandem repeat domain 6PI7 ; 2.8 ; Crystal structure of the TDRD2 extended Tudor domain in complex with an antibody fragment and the PIWIL1 peptide 8QDO ; 2.7 ; Crystal structure of the tegument protein UL82 (pp71) from Human Cytomegalovirus 8ALU ; 2.09 ; Crystal structure of the teichoic acid binding domain of SlpA, S-layer protein from Lactobacillus acidophilus (aa. 314-444) 5F1S ; 1.749 ; Crystal structure of the teleost fish polymeric Ig receptor (pIgR) ectodomain 2XVM ; 1.48 ; Crystal structure of the tellurite detoxification protein TehB from E. coli in complex with SAH 2XVA ; 1.9 ; Crystal structure of the tellurite detoxification protein TehB from E. coli in complex with sinefungin 3DL3 ; 2.3 ; Crystal structure of the tellurite resistance protein TehB. Northeast Structural Genomics Consortium target VfR98 . 4HCE ; 2.3 ; Crystal structure of the telomeric Saccharomyces cerevisiae Cdc13 OB2 domain 2B2A ; 2.22 ; Crystal Structure of the TEN domain of the Telomerase Reverse Transcriptase 1FNA ; 1.8 ; CRYSTAL STRUCTURE OF THE TENTH TYPE III CELL ADHESION MODULE OF HUMAN FIBRONECTIN 2UUD ; 2.9 ; Crystal structure of the TEPC15-Vk45.1 anti-2-phenyl-5-oxazolone NQ10- 1.12 scFv in complex with the hapten 2CJU ; 2.5 ; Crystal structure of the TEPC15-Vk45.1 anti-2-phenyl-5-oxazolone NQ16- 113.8 scFv in complex with phOxGABA 2CKF ; 1.85 ; Crystal Structure of the Terminal Component of the PAH-hydroxylating Dioxygenase from Sphingomonas sp CHY-1 1WW9 ; 1.95 ; Crystal structure of the terminal oxygenase component of carbazole 1,9a-dioxygenase, a non-heme iron oxygenase system catalyzing the novel angular dioxygenation for carbazole and dioxin 4DYC ; 1.8 ; Crystal Structure of the terminase small subunit gp1 with D19R mutation of the bacterial virus sf6 4DZJ ; 1.9 ; Crystal structure of the terminase small subunit gp1 with K59E mutation of the bacterial virus sf6 4DZP ; 1.8 ; Crystal structure of the terminase small subunit gp1 with R48A mutation of the bacterial virus sf6 4FJ0 ; 2.2 ; Crystal structure of the ternary complex between a fungal 17beta-hydroxysteroid dehydrogenase (Holo form) and 3,7-dihydroxy flavone 4FJ2 ; 2.5 ; Crystal structure of the ternary complex between a fungal 17beta-hydroxysteroid dehydrogenase (Holo form) and biochanin A 4FJ1 ; 2.3 ; Crystal Structure of the ternary complex between a fungal 17beta-hydroxysteroid dehydrogenase (Holo form) and genistein 2XN9 ; 2.3 ; Crystal structure of the ternary complex between human T cell receptor, staphylococcal enterotoxin H and human major histocompatibility complex class II 1F6F ; 2.3 ; CRYSTAL STRUCTURE OF THE TERNARY COMPLEX BETWEEN OVINE PLACENTAL LACTOGEN AND THE EXTRACELLULAR DOMAIN OF THE RAT PROLACTIN RECEPTOR 4DRW ; 3.5 ; Crystal Structure of the Ternary Complex between S100A10, an Annexin A2 N-terminal Peptide and an AHNAK Peptide 5JHH ; 2.3 ; Crystal structure of the ternary complex between the human RhoA, its inhibitor and the DH/PH domain of human ARHGEF11 6SWH ; 2.8 ; Crystal structure of the ternary complex between the type 1 pilus proteins FimC, FimI and FimA from E. coli 6LRG ; 2.41218 ; Crystal Structure of the Ternary Complex of AgrE with Ornithine and NAD+ 5AH5 ; 2.1 ; Crystal structure of the ternary complex of Agrobacterium radiobacter K84 agnB2 LeuRS-tRNA-LeuAMS 3AU8 ; 1.86 ; Crystal structure of the ternary complex of an isomerase 4OPP ; 2.3 ; Crystal structure of the ternary complex of camel peptidoglycan recognition protein PGRP-S with 11-cyclohexylundecanoic acid and N- acetylglucosamine at 2.30 A resolution 4ORV ; 2.5 ; Crystal structure of the ternary complex of camel peptidoglycan recognition protein PGRP-S with 7- phenylheptanoic acid and N- acetylglucosamine at 2.50 A resolution 4OUG ; 2.46 ; Crystal structure of the ternary complex of camel peptidoglycan recognition protein, PGRP-S with lipopolysaccharide and palmitic acid at 2.46 A resolution 1F9H ; 1.5 ; CRYSTAL STRUCTURE OF THE TERNARY COMPLEX OF E. COLI HPPK(R92A) WITH MGAMPCPP AND 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN AT 1.50 ANGSTROM RESOLUTION 1WKW ; 2.1 ; Crystal structure of the ternary complex of eIF4E-m7GpppA-4EBP1 peptide 3AM7 ; 2.2 ; Crystal structure of the ternary complex of eIF4E-M7GTP-4EBP2 peptide 1ZE3 ; 1.84 ; Crystal Structure of the Ternary Complex of FIMD (N-Terminal Domain) with FIMC and the Pilin Domain of FIMH 3BWU ; 1.76 ; Crystal structure of the ternary complex of FimD (N-Terminal Domain, FimDN) with FimC and the N-terminally truncated pilus subunit FimF (FimFt) 3MDB ; 2.952 ; Crystal structure of the ternary complex of full length centaurin alpha-1, KIF13B FHA domain, and IP4 6HSN ; 1.55 ; Crystal structure of the ternary complex of GephE-ADP-GABA(A) receptor derived peptide 6HSO ; 1.95 ; Crystal structure of the ternary complex of GephE-ADP-Glycine receptor derived peptide 6OQ4 ; 1.754 ; Crystal Structure of the Ternary Complex of KRIT1 bound to both the Rap1 GTPase and HKi1 6OQ3 ; 1.85 ; Crystal Structure of the Ternary Complex of KRIT1 bound to both the Rap1 GTPase and HKi2 6UZK ; 1.924 ; Crystal Structure of the Ternary Complex of KRIT1 bound to both the Rap1 GTPase and HKi6 4HDQ ; 1.95 ; Crystal Structure of the Ternary Complex of KRIT1 bound to both the Rap1 GTPase and the Heart of Glass (HEG1) cytoplasmic tail 2VHX ; 2.0 ; Crystal structure of the ternary complex of L-alanine dehydrogenase from Mycobacterium tuberculosis with NAD+ and pyruvate 4N8S ; 2.3 ; Crystal Structure of the ternary complex of lipase from Thermomyces lanuginosa with Ethylacetoacetate and P-nitrobenzaldehyde at 2.3 A resolution 6A89 ; 2.11 ; Crystal structure of the ternary complex of peptidoglycan recognition protein (PGRP-S) with Tartaric acid, Ribose and 2,6-DIAMINOPIMELIC ACID at 2.11 A resolution 7XFW ; 2.07 ; Crystal structure of the ternary complex of Peptidoglycan recognition protein, PGRP-S with hexanoic and tartaric acids at 2.07 A resolution. 7XFX ; 2.28 ; Crystal structure of the ternary complex of Peptidoglycan recognition protein, PGRP-S with hexanoic and tartaric acids at 2.28 A resolution. 7XFY ; 2.67 ; Crystal structure of the ternary complex of Peptidoglycan recognition protein, PGRP-S with hexanoic and tartaric acids at 2.67 A resolution. 3CBI ; 3.15 ; Crystal structure of the ternary complex of phospholipase A2 with ajmaline and anisic acid at 3.1 A resolution 8I8J ; 2.07 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Coenzyme-A and Phosphonoacetic acid at 2.07 A resolution. 8I8K ; 2.127 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Coenzyme-A and Phosphonoacetic acid at 2.13 A resolution. 8I8L ; 2.23 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Coenzyme-A and Phosphonoacetic acid at 2.23 A resolution. 8I8M ; 2.651 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Coenzyme-A and Phosphonoacetic acid at 2.65 A resolution. 8I8N ; 2.22 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Dephosphocoenzyme-A and Phosphonoacetic acid at 2.22 A resolution. 8I8O ; 2.408 ; Crystal structure of the ternary complex of Phosphopantetheine adenylyltransferase (PPAT) from Enterobacter sp. with Dephosphocoenzyme-A and Phosphonoacetic acid at 2.41 A resolution. 3GPL ; 2.5 ; Crystal structure of the ternary complex of RecD2 with DNA and ADPNP 2RUS ; 2.3 ; CRYSTAL STRUCTURE OF THE TERNARY COMPLEX OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE, MG(II), AND ACTIVATOR CO2 AT 2.3-ANGSTROMS RESOLUTION 2FDM ; 3.0 ; Crystal structure of the ternary complex of signalling glycoprotein frm sheep (SPS-40)with hexasaccharide (NAG6) and peptide Trp-Pro-Trp at 3.0A resolution 2G8Z ; 2.5 ; Crystal structure of the ternary complex of signalling protein from sheep (SPS-40) with trimer and designed peptide at 2.5A resolution 4R3N ; 1.35 ; Crystal structure of the ternary complex of sp-ASADH with NADP and 1,2,3-Benzenetricarboxylic acid 8GMH ; 2.6 ; Crystal Structure of the ternary complex of TelA-LXG, LapA3, and LapA4 4I9Q ; 2.3 ; Crystal structure of the ternary complex of the D714A mutant of RB69 DNA polymerase 4KHN ; 2.55 ; Crystal structure of the ternary complex of the D714A mutant of RB69 DNA polymerase 7B0X ; 1.7 ; Crystal structure of the ternary complex of the E. coli type 1 pilus proteins FimC, FimI and the N-terminal domain of FimD 2DLC ; 2.4 ; Crystal structure of the ternary complex of yeast tyrosyl-tRNA synthetase 5HLK ; 2.0 ; Crystal structure of the ternary EcoRV-DNA-Lu complex with cleaved DNA substrate. 5F8A ; 1.76 ; Crystal structure of the ternary EcoRV-DNA-Lu complex with uncleaved DNA substrate. Lanthanide binding to EcoRV-DNA complex inhibits cleavage. 4EN4 ; 2.15 ; Crystal Structure of the Ternary Human PL Kinase-Ginkgotoxin-MgATP Complex 3DAT ; 2.3 ; Crystal structure of the ternary MTX NADPH complex of Bacillus anthracis dihydrofolate reductase 3DAU ; 1.5 ; Crystal structure of the ternary MTX NADPH complex of Escherichia coli dihydrofolate reductase 4UI2 ; 3.15 ; Crystal structure of the ternary RGMB-BMP2-NEO1 complex 5V1Y ; 1.421 ; Crystal structure of the ternary RPN13 PRU-RPN2 (940-953)-ubiquitin complex 5N0B ; 2.6 ; Crystal structure of the tetanus neurotoxin in complex with GD1a 5N0C ; 2.6 ; Crystal structure of the tetanus neurotoxin in complex with GM1a 2QWT ; 2.3 ; Crystal structure of the TetR transcription regulatory protein from Mycobacterium vanbaalenii 3NI7 ; 2.78 ; Crystal structure of the TetR transcriptional regulator from Nitrosomonas europaea ATCC 19718 2WGB ; 2.0 ; Crystal structure of the TetR-like transcriptional regulator LfrR from Mycobacterium smegmatis 2V57 ; 1.9 ; Crystal structure of the TetR-like transcriptional regulator LfrR from Mycobacterium smegmatis in complex with proflavine 2GL2 ; 2.5 ; Crystal structure of the tetra mutant (T66G,R67G,F68G,Y69G) of bacterial adhesin FadA 3V9D ; 2.5 ; Crystal structure of the tetra-decanucleotide d(CCCCGGTACCGGGG)2 as an A-DNA duplex 4UQU ; 1.595 ; Crystal structure of the tetrachloroethene reductive dehalogenase from Sulfurospirillum multivorans 2IPP ; 2.15 ; Crystal Structure of the tetragonal form of human liver cathepsin B 1Y2X ; 2.36 ; Crystal structure of the tetragonal form of the common edible mushroom (Agaricus bisporus) lectin in complex with T-antigen and N-acetylglucosamine 1Y0R ; 1.75 ; Crystal structure of the tetrahedral aminopeptidase from P. horikoshii 3U58 ; 2.613 ; Crystal Structure of the Tetrahymena telomerase processivity factor Teb1 AB 3U4V ; 1.8 ; Crystal Structure of the Tetrahymena telomerase processivity factor Teb1 OB-A 3U4Z ; 2.3 ; Crystal Structure of the Tetrahymena telomerase processivity factor Teb1 OB-B 3U50 ; 2.5 ; Crystal Structure of the Tetrahymena telomerase processivity factor Teb1 OB-C 7XQ3 ; 1.77 ; Crystal structure of the tetramer of thioredoxin domain containing-protein of Oncomelania hupensis(OhTRP14) 6XEQ ; 3.2 ; Crystal structure of the tetrameric 6-phosphogluconate dehydrogenase from Gluconobacter oxidans 3TLR ; 2.45 ; Crystal Structure of the tetrameric Beta-2 microglobulin DIMC20 mutant 7R1N ; 2.072 ; Crystal structure of the Tetrameric C-terminal Big_2-CBM56 domains from Paenibacillus illinoisensis (Bacillus circulans IAM1165) beta-1,3-glucanase H 4BZB ; 1.83 ; Crystal structure of the tetrameric dGTP-bound SAMHD1 mutant catalytic core 4BZC ; 2.88 ; Crystal structure of the tetrameric dGTP-bound wild type SAMHD1 catalytic core 4QFX ; 2.2 ; Crystal structure of the tetrameric dGTP/dATP-bound SAMHD1 (RN206) mutant catalytic core 4QFY ; 2.1 ; Crystal structure of the tetrameric dGTP/dCTP-bound SAMHD1 (RN206) mutant catalytic core 4QFZ ; 2.3 ; Crystal structure of the tetrameric dGTP/dTTP-bound SAMHD1 (RN206) mutant catalytic core 4QG0 ; 2.3 ; Crystal structure of the tetrameric dGTP/dUTP-bound SAMHD1 (RN206) mutant catalytic core 5DBO ; 3.0 ; Crystal structure of the tetrameric eIF2B-beta2-delta2 complex from C. thermophilum 4QG1 ; 2.2 ; Crystal structure of the tetrameric GTP/dATP-bound SAMHD1 (RN206) mutant catalytic core 4QG4 ; 2.1 ; Crystal structure of the tetrameric GTP/dATP/ATP-bound SAMHD1 (H210A) mutant catalytic core 4QG2 ; 2.25 ; Crystal structure of the tetrameric GTP/dATP/ATP-bound SAMHD1 (RN206) mutant catalytic core 4L5T ; 3.405 ; Crystal structure of the tetrameric p202 HIN2 2HOI ; 2.601 ; Crystal structure of the tetrameric pre-cleavage synaptic complex in the cre-loxp site-specific recombination 4D2H ; 1.9 ; Crystal structure of the tetramerisation domain of human CtIP 7SPD ; 2.7 ; Crystal Structure of The Tetramerization Domain (29-147) From Human Voltage-gated Potassium Channel Kv2.1 in C 2 2 21 Space Group 7RE5 ; 2.5 ; Crystal Structure of The Tetramerization Domain (29-147) From Human Voltage-gated Potassium Channel Kv2.1 in P 41 21 2 Space Group 6YRQ ; 1.902 ; Crystal structure of the tetramerization domain of the glycoprotein Gn (Andes virus) at pH 4.6 6YRB ; 2.351 ; Crystal structure of the tetramerization domain of the glycoprotein Gn (Andes virus) at pH 7.5 1A68 ; 1.8 ; CRYSTAL STRUCTURE OF THE TETRAMERIZATION DOMAIN OF THE SHAKER POTASSIUM CHANNEL 1T1D ; 1.51 ; CRYSTAL STRUCTURE OF THE TETRAMERIZATION DOMAIN OF THE SHAKER POTASSIUM CHANNEL 1NN7 ; 2.1 ; Crystal Structure Of The Tetramerization Domain Of The Shal Voltage-Gated Potassium Channel 7MNK ; 1.1 ; Crystal structure of the tetramerization element of NUP358/RanBP2 (residues 805-832) 4H7X ; 2.6 ; Crystal structure of the tetratricopeptide repeat (TPR) motif of human dual specificity protein kinase Mps1 4H7Y ; 1.8 ; Crystal structure of the tetratricopeptide repeat (TPR) motif of human dual specificity protein kinase Mps1 3MA5 ; 2.8 ; Crystal structure of the tetratricopeptide repeat domain protein Q2S6C5_SALRD from Salinibacter ruber. Northeast Structural Genomics Consortium Target SrR115c. 3BZK ; 2.3 ; Crystal Structure of the Tex protein from Pseudomonas aeruginosa, crystal form 2 3BZC ; 2.27 ; Crystal Structure of the Tex protein from Pseudomonas aeruginosa, crystal form I 4PN7 ; 2.801 ; Crystal Structure of the TFIIH p34 N-terminal Domain 7NX4 ; 3.0 ; Crystal structure of the TG and EGF-like domains of ALK 6S22 ; 1.96 ; Crystal structure of the TgGalNAc-T3 in complex with UDP, manganese and FGF23c 6S24 ; 2.12 ; Crystal structure of the TgGalNAc-T3 in complex with UDP, manganese and the peptide 3 3HVZ ; 2.2 ; Crystal Structure of the TGS domain of the CLOLEP_03100 protein from Clostridium leptum, Northeast Structural Genomics Consortium Target QlR13A 3KDE ; 1.74 ; Crystal structure of the THAP domain from D. melanogaster P-element transposase in complex with its natural DNA binding site 2JKS ; 1.9 ; Crystal structure of the the bradyzoite specific antigen BSR4 from toxoplasma gondii. 2OBZ ; 1.1 ; Crystal structure of the The brominated Z-DNA duplex d(CGCG[BrU]G) 6K4J ; 2.701 ; Crystal Structure of the the CD9 3E83 ; 1.8 ; Crystal Structure of the the open NaK channel pore 3E8F ; 2.0 ; Crystal Structure of the the open NaK channel- K+/Ba2+ 3E8B ; 1.7 ; Crystal Structure of the the open NaK channel- Rb+ complex 3E8H ; 1.8 ; Crystal Structure of the the open NaK channel-K+ complex 3E89 ; 1.8 ; Crystal Structure of the the open NaK channel-low Na+ complex 3E8G ; 2.0 ; Crystal Structure of the the open NaK channel-Na+/Ca2+ complex 4G6K ; 1.9 ; Crystal structure of the therapeutic antibody binding fragment of gevokizumab in its unbound state 4G5Z ; 1.83 ; Crystal structure of the therapeutical antibody fragment of canakinumab in its unbound state 2GEB ; 1.7 ; Crystal structure of the Thermoanaerobacter tengcongensis hypoxanthine-guanine phosphoribosyltransferase L160I mutant: insights into the inhibitor design 2QI2 ; 2.9 ; Crystal structure of the Thermoplasma acidophilum Pelota protein 5M86 ; 2.4 ; Crystal Structure of the Thermoplasma acidophilum Protein Ta1207 4CSI ; 1.8 ; Crystal structure of the thermostable Cellobiohydrolase Cel7A from the fungus Humicola grisea var. thermoidea. 2D1S ; 1.3 ; Crystal structure of the thermostable Japanese Firefly Luciferase complexed with High-energy intermediate analogue 2D1Q ; 2.3 ; Crystal structure of the thermostable Japanese Firefly Luciferase complexed with MgATP 2D1R ; 1.6 ; Crystal structure of the thermostable Japanese firefly Luciferase complexed with OXYLUCIFERIN and AMP 2D1T ; 1.45 ; Crystal structure of the thermostable Japanese Firefly Luciferase red-color emission S286N mutant complexed with High-energy intermediate analogue 3KRZ ; 1.8 ; Crystal Structure of the Thermostable NADH4-bound old yellow enzyme from Thermoanaerobacter pseudethanolicus E39 3KRU ; 1.6 ; Crystal Structure of the Thermostable Old Yellow Enzyme from Thermoanaerobacter pseudethanolicus E39 1GTJ ; 1.75 ; Crystal structure of the thermostable serine-carboxyl type proteinase, kumamolisin (KSCP) - complex with Ac-Ile-Ala-Phe-cho 1GTG ; 2.3 ; Crystal structure of the thermostable serine-carboxyl type proteinase, kumamolysin (kscp) 5JIB ; 1.86 ; Crystal structure of the Thermotoga maritima acetyl esterase (TM0077) complex with a substrate analog 1MKM ; 2.2 ; CRYSTAL STRUCTURE OF THE THERMOTOGA MARITIMA ICLR 3DIL ; 1.9 ; Crystal structure of the Thermotoga maritima lysine riboswitch bound to lysine 3DIG ; 2.8 ; CRYSTAL STRUCTURE OF THE THERMOTOGA MARITIMA LYSINE RIBOSWITCH BOUND TO S-(2-aminoethyl)-L-cysteine 3DCM ; 2.0 ; Crystal structure of the Thermotoga maritima SPOUT family RNA-methyltransferase protein Tm1570 in complex with S-adenosyl-L-methionine 2Q6T ; 2.9 ; Crystal structure of the Thermus aquaticus DnaB monomer 4DR4 ; 3.969 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with codon, cognate transfer RNA anticodon stem-loop and multiple copies of paromomycin molecules bound 4DR5 ; 3.45 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with codon, crystallographically disordered cognate transfer RNA anticodon stem-loop and streptomycin bound 4DR7 ; 3.75 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with codon, crystallographically disordered near-cognate transfer RNA anticodon stem-loop mismatched at the second codon position, and streptomycin bound 4DR6 ; 3.3 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with codon, near-cognate transfer RNA anticodon stem-loop mismatched at the first codon position and streptomycin bound 7DUH ; 3.75 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N1''AC bound 7DUI ; 3.62 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N1''PyrS bound 7DUG ; 3.75 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N1''TFMS bound 7DUJ ; 3.75 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N1,3''Bz bound 7DUK ; 3.6 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N1,3''MS bound 7DUL ; 3.62 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with mRNA and cognate transfer RNA anticodon stem-loop and sisomicin derivative N3''MS bound 4DR2 ; 3.249 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with multiple copies of paromomycin molecules bound 4DR3 ; 3.348 ; Crystal structure of the Thermus thermophilus (HB8) 30S ribosomal subunit with streptomycin bound 2ZM6 ; 3.3 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit 4K0K ; 3.4 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit complexed with a serine-ASL and mRNA containing a stop codon 4DV4 ; 3.651 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, A914G 4DV5 ; 3.683 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, A914G, bound with streptomycin 4DV6 ; 3.297 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, A915G 4DV7 ; 3.294 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, A915G, bound with streptomycin 4DV2 ; 3.646 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, C912A 4DV3 ; 3.547 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, C912A, bound with streptomycin 4DUY ; 3.386 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, U13C 4DUZ ; 3.651 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, U13C, bound with streptomycin 4DV0 ; 3.853 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, U20G 4DV1 ; 3.849 ; Crystal structure of the Thermus thermophilus 30S ribosomal subunit with a 16S rRNA mutation, U20G, bound with streptomycin 4Z8C ; 2.9 ; Crystal structure of the Thermus thermophilus 70S ribosome bound to translation inhibitor oncocin 6N9F ; 3.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with a short substrate mimic ACCA-DPhe and bound to mRNA and P-site tRNA at 3.7A resolution 6N9E ; 3.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with a short substrate mimic CC-Pmn and bound to mRNA and P-site tRNA at 3.7A resolution 4W2F ; 2.4 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with amicoumacin, mRNA and three deacylated tRNAs in the A, P and E sites 8EV6 ; 2.946 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with amikacin, mRNA, and A-, P-, and E-site tRNAs 4Z3S ; 2.65 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with antibiotic A201A, mRNA and three tRNAs in the A, P and E sites at 2.65A resolution 5DOY ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with antibiotic Hygromycin A, mRNA and three tRNAs in the A, P and E sites at 2.6A resolution 7JQL ; 3.0 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with Bac7-001, mRNA, and deacylated P-site tRNA at 3.00A resolution 7JQM ; 3.05 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with Bac7-002, mRNA, and deacylated P-site tRNA at 3.05A resolution 6ND5 ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with chloramphenicol and bound to mRNA and A-, P-, and E-site tRNAs at 2.60A resolution 5J4B ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with cisplatin (co-crystallized) and bound to mRNA and A-, P- and E-site tRNAs at 2.6A resolution 5J4C ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with cisplatin (soaked) and bound to mRNA and A-, P- and E-site tRNAs at 2.8A resolution 6CFK ; 2.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with D-histidyl-CAM and bound to protein Y (YfiA) at 2.7A resolution 6OF1 ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with dirithromycin and bound to mRNA and A-, P-, and E-site tRNAs at 2.80A resolution 4WQF ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with elongation factor G and fusidic acid in the post-translocational state 4WQY ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with elongation factor G in the post-translocational state (without fusitic acid) 4WPO ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with elongation factor G in the pre-translocational state 4WQU ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with elongation factor G trapped by the antibiotic dityromycin 6ND6 ; 2.85 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with erythromycin and bound to mRNA and A-, P-, and E-site tRNAs at 2.85A resolution 6CFJ ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with histidyl-CAM and bound to mRNA and A-, P-, and E-site tRNAs at 2.8A resolution 5DOX ; 3.1 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with Hygromycin-A at 3.1A resolution 8EV7 ; 2.89 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with kanamycin, mRNA, and A-, P-, and E-site tRNAs 5W4K ; 2.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with Klebsazolicin and bound to mRNA and A-, P- and E-site tRNAs at 2.7A resolution 6CFL ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with lysyl-CAM and bound to protein Y (YfiA) at 2.6A resolution 5VP2 ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with madumycin II and bound to mRNA and A-, P- and E-site tRNAs at 2.8A resolution 5WIS ; 2.703 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with methymycin and bound to mRNA and A-, P- and E-site tRNAs at 2.7A resolution 6UO1 ; 2.95 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA (containing pseudouridine at the first position of the codon) and deacylated A-, P-, and E-site tRNAs at 2.95A resolution 7U2H ; 2.55 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Gly-NH-tRNAgly, aminoacylated P-site fMet-NH-tRNAmet, and deacylated E-site tRNAgly at 2.55A resolution 7U2I ; 2.55 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Gly-NH-tRNAgly, aminoacylated P-site fMet-NH-tRNAmet, deacylated E-site tRNAgly, and chloramphenicol at 2.55A resolution 7U2J ; 2.55 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Gly-NH-tRNAgly, peptidyl P-site fMAC-NH-tRNAmet, deacylated E-site tRNAgly, and chloramphenicol at 2.55A resolution 8CVK ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Phe-NH-tRNAphe, peptidyl P-site fMRC-NH-tRNAmet, and deacylated E-site tRNAphe at 2.50A resolution 8CVJ ; 2.4 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Phe-NH-tRNAphe, peptidyl P-site fMSEAC-NH-tRNAmet, and deacylated E-site tRNAphe at 2.40A resolution 8CVL ; 2.3 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, aminoacylated A-site Phe-NH-tRNAphe, peptidyl P-site fMTHSMRC-NH-tRNAmet, and deacylated E-site tRNAphe at 2.30A resolution 8EKB ; 2.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with mRNA, deacylated P-site tRNAmet, and thermorubin at 2.70A resolution 4W2I ; 2.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with negamycin, mRNA and three deacylated tRNAs in the A, P and E sites 6CAE ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with NOSO-95179 antibiotic and bound to mRNA and A-, P- and E-site tRNAs at 2.6A resolution 4W2H ; 2.7 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with pactamycin (co-crystallized), mRNA and deacylated tRNA in the P site 4W2G ; 2.55 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with pactamycin (soaked), mRNA and three deacylated tRNAs in the A, P and E sites 5WIT ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with pikromycin and bound to mRNA and A-, P- and E-site tRNAs at 2.6A resolution 7LH5 ; 3.27 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with plazomicin, mRNA and tRNAs 6O97 ; 2.75 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with propylamycin and bound to mRNA and A-, P-, and E-site tRNAs at 2.75A resolution 8T8B ; 2.65 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site aminoacyl-tRNA analog ACC-PMN, and P-site formyl-MAI-tripeptidyl-tRNA analog ACCA-IAMf at 2.65A resolution 8T8C ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site aminoacyl-tRNA analog ACC-PMN, and P-site formyl-MFI-tripeptidyl-tRNA analog ACCA-IFMf at 2.60A resolution 7RQB ; 2.45 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site aminoacyl-tRNA analog ACC-PMN, and P-site MAI-tripeptidyl-tRNA analog ACCA-IAM at 2.45A resolution 7RQC ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site aminoacyl-tRNA analog ACC-PMN, and P-site MFI-tripeptidyl-tRNA analog ACCA-IFM at 2.50A resolution 7RQA ; 2.4 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site aminoacyl-tRNA analog ACC-PMN, and P-site MTI-tripeptidyl-tRNA analog ACCA-ITM at 2.40A resolution 7RQE ; 2.4 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site deacylated tRNA analog CACCA, P-site MAI-tripeptidyl-tRNA analog ACCA-IAM, and chloramphenicol at 2.40A resolution 7RQD ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, A-site deacylated tRNA analog CACCA, P-site MTI-tripeptidyl-tRNA analog ACCA-ITM, and chloramphenicol at 2.50A resolution 8FC2 ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and azithromycin at 2.50A resolution 8FC1 ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and erythromycin at 2.50A resolution 8FC3 ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with protein Y, hygromycin A, and telithromycin at 2.60A resolution 6XQE ; 3.0 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with sarecycline, UAA-mRNA, and deacylated P-site tRNA at 3.00A resolution 6XQD ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with sarecycline, UUC-mRNA, and deacylated P-site tRNA at 2.80A resolution 6XHY ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with telithromycin, mRNA, aminoacylated A- and P-site tRNAs, and deacylated E-site tRNA at 2.60A resolution 7MD7 ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in complex with triphenylphosphonium analog of chloramphenicol CAM-C4-TPP and protein Y (YfiA) at 2.80A resolution 1VY5 ; 2.55 ; Crystal structure of the Thermus thermophilus 70S ribosome in the post-catalysis state of peptide bond formation containing dipeptydil-tRNA in the A site and deacylated tRNA in the P site. 1VY4 ; 2.6 ; Crystal structure of the Thermus thermophilus 70S ribosome in the pre-attack state of peptide bond formation containing acylated tRNA-substrates in the A and P sites. 1VY7 ; 2.8 ; Crystal structure of the Thermus thermophilus 70S ribosome in the pre-attack state of peptide bond formation containing short substrate-mimic Cytidine-Cytidine-Puromycin in the A site and acylated tRNA in the P site. 1VY6 ; 2.9 ; Crystal structure of the Thermus thermophilus 70S ribosome in the pre-attack state of peptide bond formation containing short substrate-mimic Cytidine-Puromycin in the A site and acylated tRNA in the P site. 6UCQ ; 3.5 ; Crystal structure of the Thermus thermophilus 70S ribosome recycling complex 4Y4P ; 2.5 ; Crystal structure of the Thermus thermophilus 70S ribosome with rRNA modifications and bound to mRNA and A-, P- and E-site tRNAs at 2.5A resolution 4Y4O ; 2.3 ; Crystal structure of the Thermus thermophilus 70S ribosome with rRNA modifications and bound to protein Y (YfiA) at 2.3A resolution 3SK9 ; 1.8 ; Crystal structure of the Thermus thermophilus cas3 HD domain 3SKD ; 2.0 ; Crystal structure of the Thermus thermophilus cas3 HD domain in the presence of Ni2+ 2CWZ ; 1.85 ; Crystal structure of the Thermus thermophilus hypothetical protein TTHA0967, a thioesterase superfamily member 3HOA ; 2.1 ; Crystal structure of the Thermus thermophilus M32 carboxypeptidase 3MLQ ; 2.91 ; Crystal structure of the Thermus thermophilus transcription-repair coupling factor RNA polymerase interacting domain with the Thermus aquaticus RNA polymerase beta1 domain 6NV6 ; 2.65 ; Crystal structure of the theta class glutathione S-transferase from the citrus canker pathogen Xanthomonas axonopodis pv. citri with glutathione bound 6NXV ; 2.75 ; Crystal structure of the theta class glutathione S-transferase from the citrus canker pathogen Xanthomonas axonopodis pv. citri, apo form 1PVD ; 2.3 ; CRYSTAL STRUCTURE OF THE THIAMIN DIPHOSPHATE DEPENDENT ENZYME PYRUVATE DECARBOXYLASE FROM THE YEAST SACCHAROMYCES CEREVISIAE AT 2.3 ANGSTROMS RESOLUTION 4NMY ; 1.896 ; Crystal Structure of the Thiamin-bound form of Substrate-binding Protein of ABC Transporter from Clostridium difficile 6HK1 ; 2.55 ; Crystal structure of the Thiazole synthase from Methanothermococcus thermolithotrophicus co-crystallized with Tb-Xo4 5D3K ; 1.7 ; Crystal structure of the thioesterase domain of deoxyerythronolide B synthase 5D3Z ; 2.1 ; Crystal structure of the thioesterase domain of deoxyerythronolide B synthase in complex with a small phosphonate inhibitor 2PX6 ; 2.3 ; Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat 2CB9 ; 1.8 ; Crystal structure of the thioesterase domain of the fengycin biosynthesis cluster 6EEZ ; 2.25 ; Crystal Structure of the thiol-disulfide exchange protein alpha-DsbA2 from Wolbachia pipientis 2WZ9 ; 1.55 ; Crystal structure of the thioredoxin domain of human TXNL2 4CCR ; 2.28 ; Crystal structure of the thioredoxin reductase apoenzyme from Entamoeba histolytica in the absence of the NADP cofactor 4A5L ; 1.66 ; Crystal structure of the thioredoxin reductase from Entamoeba histolytica 4A65 ; 1.7 ; Crystal structure of the thioredoxin reductase from Entamoeba histolytica with AuCN 4CBQ ; 1.94 ; Crystal structure of the thioredoxin reductase from Entamoeba histolytica with auranofin Au(I) bound to Cys286 4CCQ ; 1.5 ; Crystal structure of the thioredoxin reductase from Entamoeba histolytica with NADP 3EVI ; 2.7 ; Crystal structure of the thioredoxin-fold domain of human phosducin-like protein 2 3ZIJ ; 1.4 ; Crystal structure of the thioredoxin-like protein BC3987 3ZIT ; 1.18 ; Crystal structure of the thioredoxin-like protein BC3987 mutant T8A 7TKV ; 2.8 ; Crystal Structure of the Thioredox_DsbH Domain-Containing Uncharacterized Protein Bab1_2064 from Brucella abortus 4V2K ; 1.29 ; Crystal structure of the thiosulfate dehydrogenase TsdA in complex with thiosulfate 4FD9 ; 1.86 ; Crystal structure of the third beta-gamma-crystallin domain of Crybg3 (betagamma-crystallin domain-containing protein 3) from Mus musculus 3UVT ; 2.0 ; Crystal structure of the third catalytic domain of ERp46 3WIH ; 1.701 ; Crystal structure of the third fibronectin domain (Fn3) of human ROBO1 in complex with the Fab fragment of murine monoclonal antibody B2212A. 6HYF ; 1.6 ; Crystal structure of the third FNIII domain from rat beta4 integrin, a binding site for periaxin 4WTW ; 1.606 ; Crystal structure of the third FnIII domain of integrin beta4 6Y2C ; 2.0 ; Crystal structure of the third KH domain of FUBP1 1ZZK ; 0.95 ; Crystal Structure of the third KH domain of hnRNP K at 0.95A resolution 2P2R ; 1.6 ; Crystal structure of the third KH domain of human Poly(C)-Binding Protein-2 in complex with C-rich strand of human telomeric DNA 1PDR ; 2.8 ; CRYSTAL STRUCTURE OF THE THIRD PDZ DOMAIN FROM THE HUMAN HOMOLOG OF DISCS LARGE PROTEIN 5MZ7 ; 1.53 ; Crystal Structure of the third PDZ domain from the synaptic protein PSD-95 with incorporated Azidohomoalanine 3B76 ; 1.75 ; Crystal structure of the third PDZ domain of human ligand-of-numb protein-X (LNX1) in complex with the C-terminal peptide from the coxsackievirus and adenovirus receptor 3I4W ; 1.35 ; Crystal Structure of the third PDZ domain of PSD-95 3K82 ; 1.4 ; Crystal Structure of the third PDZ domain of PSD-95 6QJN ; 1.8 ; Crystal Structure of the third PDZ domain of PSD-95 protein D332G mutant: space group I4122 6QJL ; 1.043 ; Crystal Structure of the third PDZ domain of PSD-95 protein D332G mutant: space group P21 6QJK ; 1.046 ; Crystal Structure of the third PDZ domain of PSD-95 protein D332G mutant: space group P43 6QJF ; 1.5 ; Crystal Structure of the third PDZ domain of PSD-95 protein D332P mutant: space group C121, structure 1 6QJG ; 2.003 ; Crystal Structure of the third PDZ domain of PSD-95 protein D332P mutant: space group C121, structure 2 8AH6 ; 1.63 ; Crystal Structure of the third PDZ domain of PSD-95 protein in the space group P21 at pH 4.0 8AH7 ; 1.25 ; Crystal Structure of the third PDZ domain of PSD-95 protein in the space group P212121 at pH 4.0 8AH5 ; 1.25 ; Crystal Structure of the third PDZ domain of PSD-95 protein in the space group P212121 at pH 4.6 8AH4 ; 1.48 ; Crystal Structure of the third PDZ domain of PSD-95 protein in the space group P3112 at pH 4.0 8AH8 ; 1.5 ; Crystal Structure of the third PDZ domain of PSD-95 protein in the space group P3121 at pH 3.7 6QJI ; 1.5 ; Crystal Structure of the third PDZ domain of PSD-95 protein: space group P3112 6QJJ ; 1.7 ; Crystal Structure of the third PDZ domain of PSD-95 protein: space group P3221 3JXT ; 1.5 ; Crystal structure of the third PDZ domain of SAP-102 in complex with a fluorogenic peptide-based ligand 3TSV ; 1.989 ; crystal structure of the third PDZ domain of the human ZO-1 MAGUK protein 4O2W ; 2.0 ; Crystal structure of the third RCC1-like domain of HERC1 2DDU ; 2.05 ; Crystal structure of the third repeat domain of reelin 6H8M ; 1.7 ; Crystal structure of the third SRCR domain of Murine Neurotrypsin. 3UJ1 ; 2.651 ; Crystal structure of the third thioredoxin domain of human ERp46 7OC3 ; 2.25 ; Crystal structure of the third tudor domain of Qin 2RIQ ; 1.7 ; Crystal Structure of the Third Zinc-binding domain of human PARP-1 5SUQ ; 6.0 ; Crystal structure of the THO-Sub2 complex 7C2G ; 1.71 ; Crystal Structure of the Thorarchaeota 2DGel/rabbit actin complex 7C2H ; 2.352 ; Crystal Structure of the Thorarchaeota 2DGel3/rabbit actin complex 7C2F ; 2.03 ; Crystal Structure of the Thorarchaeota ProGel/rabbit actin complex 6WNU ; 1.88 ; Crystal structure of the three-domain cyclomaltodextrin glucanotransferase CldA in the monomeric form 3M9G ; 2.9 ; Crystal structure of the three-PASTA-domain of a Ser/Thr kinase from Staphylococcus aureus 8G1Y ; 1.43 ; Crystal Structure of the Threonine Synthase from Streptococcus pneumoniae in complex with Pyridoxal 5-phosphate. 1TWX ; 2.4 ; Crystal structure of the thrombin mutant D221A/D222K 1Z8I ; 2.0 ; Crystal structure of the thrombin mutant G193A bound to PPACK 1Z8J ; 2.0 ; Crystal structure of the thrombin mutant G193P bound to PPACK 1DX5 ; 2.3 ; Crystal structure of the thrombin-thrombomodulin complex 1Z78 ; 1.8 ; Crystal Structure of the Thrombospondin-1 N-terminal domain 2ERF ; 1.45 ; Crystal Structure of the Thrombospondin-1 N-terminal Domain at 1.45A Resolution 1ZA4 ; 1.9 ; Crystal Structure of the Thrombospondin-1 N-terminal Domain in Complex with Arixtra 2OUH ; 2.4 ; Crystal structure of the Thrombospondin-1 N-terminal domain in complex with fractionated Heparin DP10 1LSL ; 1.9 ; Crystal Structure of the Thrombospondin-1 Type 1 Repeats 3B5B ; 2.7 ; Crystal structure of the thymidylate synthase k48q 2VF0 ; 3.0 ; CRYSTAL STRUCTURE OF THE THYMIDYLATE SYNTHASE K48Q COMPLEXED WITH 5NO2DUMP AND BW1843U89 2VET ; 2.2 ; CRYSTAL STRUCTURE OF THE THYMIDYLATE SYNTHASE K48Q COMPLEXED WITH DUMP 1FWM ; 2.2 ; Crystal structure of the thymidylate synthase R166Q mutant 1R6G ; 3.0 ; Crystal structure of the thyroid hormone receptor beta ligand binding domain in complex with a beta selective compound 3A8N ; 4.5 ; Crystal structure of the Tiam1 PHCCEx domain 3A8P ; 2.1 ; Crystal structure of the Tiam2 PHCCEx domain 3AMU ; 3.1 ; Crystal structure of the TiaS-tRNA(Ile2)-AMPCPP-agmatine complex 3AMT ; 2.9 ; Crystal structure of the TiaS-tRNA(Ile2)-ATP complex 1ZLH ; 1.7 ; Crystal structure of the tick carboxypeptidase inhibitor in complex with bovine carboxypeptidase A 1ZLI ; 2.09 ; Crystal structure of the tick carboxypeptidase inhibitor in complex with human carboxypeptidase B 6I31 ; 1.79 ; Crystal structure of the tick chemokine-binding protein Evasin-3 6ST4 ; 1.29 ; Crystal structure of the tick chemokine-binding protein Evasin-4 (SG 1) 6STC ; 1.69 ; Crystal structure of the tick chemokine-binding protein Evasin-4 (SG 2) 6STE ; 1.79 ; Crystal structure of the tick chemokine-binding protein Evasin-4 (SG 3) 7SCS ; 1.51 ; Crystal Structure of the Tick Evasin EVA-AAM1001 Complexed to Human Chemokine CCL11 7SCT ; 1.84 ; Crystal Structure of the Tick Evasin EVA-AAM1001 Complexed to Human Chemokine CCL16 7SCV ; 2.01 ; Crystal Structure of the Tick Evasin EVA-AAM1001 Complexed to Human Chemokine CCL17 7SCU ; 1.86 ; Crystal Structure of the Tick Evasin EVA-AAM1001 Complexed to Human Chemokine CCL7 8FJ3 ; 2.07 ; Crystal Structure of the Tick Evasin EVA-AAM1001 Complexed to Human Chemokine CCL7(Y13A) 8FJ2 ; 2.07 ; Crystal Structure of the Tick Evasin EVA-AAM1001(C8) Complexed to Human Chemokine CCL17 8SKK ; 2.1 ; Crystal Structure of the Tick Evasin EVA-AAM1001(L39P) Complexed to Human Chemokine CCL17 8FK8 ; 1.96 ; Crystal Structure of the Tick Evasin EVA-AAM1001(L39P) Complexed to Human Chemokine CCL7 8FJ0 ; 2.91 ; Crystal Structure of the Tick Evasin EVA-AAM1001(Y44A) Complexed to Human Chemokine CCL2 8FK6 ; 1.74 ; Crystal Structure of the Tick Evasin EVA-AAM1001(Y44A) Complexed to Human Chemokine CCL7 8FK9 ; 2.7 ; Crystal Structure of the Tick Evasin EVA-ACA1001 Complexed to Human Chemokine CCL16 7S59 ; 2.39 ; Crystal structure of the tick evasin EVA-P974 complexed to a chimera made of human chemokines CCL7 and CCL8 7S4N ; 1.65 ; Crystal structure of the tick evasin EVA-P974 complexed to human chemokine CCL17 7S58 ; 1.82 ; Crystal Structure of the tick evasin EVA-P974 complexed to human chemokine CCL7 7BLV ; 2.099 ; Crystal structure of the tick-borne encephalitis virus NS3 helicase in complex with ADP 7NXU ; 2.1 ; Crystal structure of the tick-borne encephalitis virus NS3 helicase in complex with ADP-Pi 7BM0 ; 1.9 ; Crystal structure of the tick-borne encephalitis virus NS3 helicase in complex with AMPPNP 2CXK ; 1.85 ; Crystal structure of the TIG domain of human calmodulin-binding transcription activator 1 (CAMTA1) 2BSK ; 3.3 ; Crystal structure of the TIM9 Tim10 hexameric complex 3UK6 ; 2.95 ; Crystal Structure of the Tip48 (Tip49b) hexamer 7NAG ; 1.72 ; Crystal structure of the TIR domain from human SARM1 in complex with 1AD 7NAH ; 1.79 ; Crystal structure of the TIR domain from human SARM1 in complex with 2AD 7NAI ; 1.74 ; Crystal structure of the TIR domain from human SARM1 in complex with 3AD 7NAJ ; 1.6 ; Crystal structure of the TIR domain from human SARM1 in complex with ara-2'F-ADPR 6O0R ; 1.8 ; Crystal structure of the TIR domain from human SARM1 in complex with glycerol 6O0Q ; 1.8 ; Crystal structure of the TIR domain from human SARM1 in complex with ribose 5TEB ; 2.796 ; Crystal Structure of the TIR domain from the Arabidopsis Thaliana disease resistance protein RPP1 4C6R ; 2.05 ; Crystal structure of the TIR domain from the Arabidopsis Thaliana disease resistance protein RPS4 4C6S ; 1.751 ; Crystal structure of the TIR domain from the Arabidopsis Thaliana disease resistance protein RRS1 5TEC ; 2.2 ; Crystal structure of the TIR domain from the Arabidopsis thaliana NLR protein SNC1 3OZI ; 2.3 ; Crystal structure of the TIR domain from the flax disease resistance protein L6 7RX1 ; 1.89 ; Crystal structure of the TIR domain from the grapevine disease resistance protein RUN1 6O0W ; 1.75 ; Crystal structure of the TIR domain from the grapevine disease resistance protein RUN1 in complex with NADP+ and Bis-Tris 7RTS ; 1.74 ; Crystal structure of the TIR domain from the grapevine disease resistance protein RUN1 without the AE interface 5KU7 ; 2.3 ; Crystal structure of the TIR domain from the Muscadinia rotundifolia disease resistance protein RPV1 6O1B ; 1.67 ; Crystal structure of the TIR domain G601P mutant from human SARM1, crystal form 1 6O0V ; 2.07 ; Crystal structure of the TIR domain G601P mutant from human SARM1, crystal form 2 6O0U ; 3.03 ; Crystal structure of the TIR domain H685A mutant from human SARM1 4EO7 ; 1.449 ; Crystal structure of the TIR domain of human myeloid differentiation primary response protein 88. 1FYV ; 2.9 ; CRYSTAL STRUCTURE OF THE TIR DOMAIN OF HUMAN TLR1 7NUW ; 1.9 ; Crystal structure of the TIR domain of human TLR1 (crystallised with Zn2+ ions) 7NUX ; 2.47 ; Crystal structure of the TIR domain of human TLR1 (crystallised without ZN2+ ions) 1FYW ; 3.0 ; CRYSTAL STRUCTURE OF THE TIR DOMAIN OF HUMAN TLR2 4W8G ; 1.95 ; Crystal structure of the TIR domain of the Toll-related Receptor TRR-2 from the lower metazoan Hydra magnipapillata (crystal form I) 4W8H ; 1.14 ; Crystal structure of the TIR domain of the Toll-related Receptor TRR-2 from the lower metazoan Hydra magnipapillata (crystal form II) 4DOM ; 1.798 ; Crystal Structure of the TIR-domain of Human Myeloid Differentiation Primary Response protein (MyD88) 4O00 ; 1.853 ; Crystal structure of the Titin A-band domain A3 3KNB ; 1.4 ; Crystal structure of the titin C-terminus in complex with obscurin-like 1 8OS3 ; 1.68 ; Crystal structure of the titin domain Fn3-11 8OMW ; 1.05 ; Crystal structure of the titin domain Fn3-20 8OSD ; 1.7 ; Crystal structure of the titin domain Fn3-49 8OQ9 ; 1.65 ; Crystal structure of the titin domain Fn3-56 8OT5 ; 1.56 ; Crystal structure of the titin domain Fn3-85 8OTY ; 1.9 ; Crystal structure of the titin domain Fn3-90 1YA5 ; 2.445 ; Crystal structure of the titin domains z1z2 in complex with telethonin 4C4K ; 1.95 ; Crystal structure of the titin M10-Obscurin Ig domain 1 complex 4UOW ; 3.3 ; Crystal structure of the titin M10-Obscurin Ig domain 1 complex 2WP3 ; 1.48 ; Crystal structure of the Titin M10-Obscurin like 1 Ig complex 2WWM ; 2.3 ; Crystal structure of the Titin M10-Obscurin like 1 Ig complex in space group P1 2WWK ; 1.7 ; Crystal structure of the Titin M10-Obscurin like 1 Ig F17R mutant complex 5HEE ; 1.41 ; Crystal structure of the TK2203 protein 3MV7 ; 2.0 ; Crystal Structure of the TK3 TCR in complex with HLA-B*3501/HPVG 3MV9 ; 2.7 ; Crystal Structure of the TK3-Gln55Ala TCR in complex with HLA-B*3501/HPVG 3MV8 ; 2.1 ; Crystal Structure of the TK3-Gln55His TCR in complex with HLA-B*3501/HPVG 3RRW ; 2.5 ; Crystal structure of the TL29 protein from Arabidopsis thaliana 4ACJ ; 0.97 ; Crystal structure of the TLDC domain of Oxidation resistance protein 2 from zebrafish 6R82 ; 2.046 ; Crystal structure of the TLDc domain of Skywalker/TBC1D24 from Drosophila melanogaster 4IOH ; 2.53 ; Crystal Structure of the Tll1086 protein from Thermosynechococcus elongatus, Northeast Structural Genomics Consortium Target TeR258 2Z7X ; 2.1 ; Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide 2Z80 ; 1.8 ; Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide 2Z81 ; 1.8 ; Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide 2Z82 ; 2.6 ; Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide 1VC1 ; 2.0 ; Crystal structure of the TM1442 protein from Thermotoga maritima, a homolog of the Bacillus subtilis general stress response anti-anti-sigma factor RsbV 4OV8 ; 2.15 ; Crystal Structure of the TMH1-lock mutant of the mature form of pleurotolysin B 7BRC ; 2.06 ; Crystal structure of the TMK3 LRR domain 3GIO ; 2.4 ; Crystal structure of the TNF-alpha inducing protein (Tip alpha) from Helicobacter pylori 6GX9 ; 2.7 ; Crystal structure of the TNPO3 - CPSF6 RSLD complex 1T0F ; 1.85 ; Crystal Structure of the TnsA/TnsC(504-555) complex 1Q31 ; 2.7 ; Crystal Structure of the Tobacco Etch Virus Protease C151A mutant 6XWX ; 3.1 ; Crystal structure of the Tof1-Csm3 complex 4EO1 ; 1.8 ; crystal structure of the TolA binding domain from the filamentous phage IKe 4JML ; 2.0 ; Crystal structure of the TolB(P201C)-ColicinE9 TBE peptide(A33C) complex. 1T3G ; 2.3 ; Crystal structure of the Toll/interleukin-1 receptor (TIR) domain of human IL-1RAPL 7SZL ; 2.3 ; Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1R10 (IL-1RAPL2) 4P1B ; 2.05 ; CRYSTAL STRUCTURE OF THE TOLUENE 4-MONOOXYGENASE HYDROXYLASE-FERREDOXIN C7S E16C C84A C85A VARIANT ELECTRON-TRANSFER COMPLEX 4P1C ; 2.4 ; CRYSTAL STRUCTURE OF THE TOLUENE 4-MONOOXYGENASE HYDROXYLASE-FERREDOXIN C7S, C84A, C85A VARIANT ELECTRON-TRANSFER COMPLEX 1T0R ; 2.3 ; Crystal Structure of the Toluene/o-xylene Monooxygenase Hydroxuylase from Pseudomonas stutzeri-azide bound 4UJ0 ; 1.7 ; Crystal structure of the tomato defensin TPP3 1AHS ; 2.3 ; CRYSTAL STRUCTURE OF THE TOP DOMAIN OF AFRICAN HORSE SICKNESS VIRUS VP7 2Q2E ; 4.0 ; Crystal structure of the topoisomerase VI holoenzyme from Methanosarcina mazei 3O1J ; 2.95 ; Crystal Structure of the TorS sensor domain - TorT complex in the absence of isopropanol 3O1I ; 2.8 ; Crystal Structure of the TorS sensor domain - TorT complex in the absence of ligand 3O1H ; 3.1 ; Crystal Structure of the TorS sensor domain - TorT complex in the presence of TMAO 4I8O ; 2.104 ; Crystal structure of the toxin RnlA from Escherichia coli 7BXO ; 2.77 ; Crystal structure of the toxin-antitoxin with AMP-PNP 7NJC ; 1.38 ; Crystal structure of the Toxoplasma CPSF4 YTH-domain in complex with a 7 mer m6A-modified RNA 3BKP ; 1.8 ; Crystal structure of the Toxoplasma gondii cyclophilin, 49.m03261 3GG8 ; 2.21 ; Crystal structure of the Toxoplasma gondii Pyruvate Kinase N terminal truncated 4ECK ; 3.516 ; Crystal Structure of the Toxoplasma gondii TS-DHFR 2V84 ; 1.78 ; Crystal Structure of the Tp0655 (TpPotD) Lipoprotein of Treponema pallidum 7TBR ; 1.1 ; Crystal structure of the TPM domain from the Rhodothermus marinus protein Rhom172_1776 4YVO ; 1.45 ; Crystal Structure of the TPR Domain of Arabidopsis FLU (FLU-TPR) 3Q49 ; 1.543 ; Crystal structure of the TPR domain of CHIP complexed with Hsp70-C peptide 3Q4A ; 1.542 ; Crystal structure of the TPR domain of CHIP complexed with phosphorylated Smad1 peptide 6PX0 ; 1.55 ; Crystal structure of the TPR domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) 2VYI ; 2.4 ; Crystal Structure of the TPR domain of Human SGT 3NF1 ; 2.8 ; Crystal structure of the TPR domain of kinesin light chain 1 3ZFW ; 2.9 ; Crystal structure of the TPR domain of kinesin light chain 2 in complex with a tryptophan-acidic cargo peptide 6SWU ; 2.849 ; Crystal structure of the TPR domain of KLC1 in complex with an engineered high-affinity cargo peptide. 6FUZ ; 2.7 ; Crystal structure of the TPR domain of KLC1 in complex with the C-terminal peptide of JIP1 6FV0 ; 2.29 ; Crystal structure of the TPR domain of KLC1 in complex with the C-terminal peptide of torsinA 4WND ; 1.5 ; Crystal structure of the TPR domain of LGN in complex with Frmpd4/Preso1 at 1.5 Angstrom resolution 4WNE ; 2.0 ; Crystal structure of the TPR domain of LGN in complex with Frmpd4/Preso1 at 2.0 Angstrom resolution 4WNG ; 2.11 ; Crystal structure of the TPR domain of LGN in complex with Frmpd4/Preso1 at 2.1 Angstrom resolution 5WWM ; 2.809 ; Crystal structure of the TPR domain of Rrp5 5LYP ; 1.55 ; Crystal structure of the Tpr Domain of Sgt2. 4UM2 ; 2.1 ; Crystal structure of the TPR domain of SMG6 2XEV ; 1.57 ; Crystal structure of the TPR domain of Xanthomonas campestris ybgF 1ELW ; 1.6 ; Crystal structure of the TPR1 domain of HOP in complex with a HSC70 peptide 1ELR ; 1.9 ; Crystal structure of the TPR2A domain of HOP in complex with the HSP90 peptide MEEVD 1QSC ; 2.4 ; CRYSTAL STRUCTURE OF THE TRAF DOMAIN OF TRAF2 IN A COMPLEX WITH A PEPTIDE FROM THE CD40 RECEPTOR 4GJH ; 2.805 ; Crystal Structure of the TRAF domain of TRAF5 2F1W ; 1.65 ; Crystal structure of the TRAF-like domain of HAUSP/USP7 2F1Y ; 1.7 ; Crystal structure of the TRAF-like domain of HAUSP/USP7 bound to a MDM2 peptide 2F1X ; 2.3 ; Crystal structure of the TRAF-like domain of HAUSP/USP7 bound to a p53 peptide 3M0D ; 2.8 ; Crystal structure of the TRAF1:TRAF2:cIAP2 complex 1OPX ; 2.8 ; Crystal structure of the traffic ATPase (HP0525) of the Helicobacter pylori type IV secretion system bound by sulfate 1NLY ; 2.8 ; Crystal structure of the traffic ATPase of the Helicobacter pylori type IV secretion system in complex with ATPgammaS 3FLD ; 2.4 ; Crystal structure of the trai c-terminal domain 3VHZ ; 2.3 ; Crystal structure of the trans isomer of the L93A mutant of bacteriorhodopsin 4U3V ; 1.73 ; Crystal structure of the trans-acyltransferase polyketide synthase enoyl-isomerase 5HU7 ; 2.4 ; Crystal structure of the trans-AT PKS dehydratase domain of C0ZGQ4 from Brevibacillus brevis 3KFU ; 3.0 ; Crystal structure of the transamidosome 2P4V ; 2.6 ; Crystal structure of the transcript cleavage factor, GreB at 2.6A resolution 5CRL ; 2.8 ; Crystal Structure of the Transcription Activator Tn501 MerR in Complex with Mercury (II) 3QOQ ; 3.1 ; Crystal Structure of the Transcription Factor AmrZ in Complex with the 18 Base Pair amrZ1 Binding Site 6JYW ; 2.95 ; Crystal structure of the transcription regulator CadR N81M mutant from P. putida in complex with Cadmium(II) and DNA 3BRO ; 2.04 ; Crystal structure of the transcription regulator MarR from Oenococcus oeni PSU-1 5GPE ; 2.01 ; Crystal structure of the transcription regulator PbrR691 from Ralstonia metallidurans CH34 in complex with Lead(II) 3FD9 ; 2.6 ; Crystal Structure of the transcriptional anti-activator ExsD from Pseudomonas aeruginosa 2DI3 ; 2.05 ; Crystal structure of the transcriptional factor CGL2915 from Corynebacterium glutamicum 2DU9 ; 2.28 ; crystal structure of the transcriptional factor from C.glutamicum 2EK5 ; 2.2 ; Crystal structure of the transcriptional factor from C.glutamicum at 2.2 angstrom resolution 2QOP ; 2.55 ; Crystal structure of the transcriptional regulator AcrR from Escherichia coli 3F3X ; 1.9 ; Crystal structure of the transcriptional regulator BldR from Sulfolobus Solfataricus 6JGV ; 2.2 ; Crystal structure of the transcriptional regulator CadR from P. putida 6JGX ; 2.71 ; Crystal structure of the transcriptional regulator CadR from P. putida in complex with Cadmium(II) and DNA 6JGW ; 2.8 ; Crystal structure of the transcriptional regulator CadR from P. putida in complex with DNA 6JNI ; 2.9 ; Crystal structure of the transcriptional regulator CadR from P. putida in complex with Zinc(II) and DNA 2QCO ; 2.25 ; Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni 1U9O ; 3.3 ; Crystal structure of the transcriptional regulator EthR in a ligand bound conformation 1U9N ; 2.3 ; Crystal structure of the transcriptional regulator EthR in a ligand bound conformation opens therapeutic perspectives against tuberculosis and leprosy 7CBV ; 2.3 ; Crystal structure of the transcriptional regulator PadR from Bacillus subtilis (space group H32) 4I6Z ; 3.2 ; Crystal structure of the transcriptional regulator TM1030 with 24bp DNA oligonucleotide 3NXH ; 2.584 ; Crystal Structure of the transcriptional regulator yvhJ from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR735. 3PQJ ; 2.48 ; Crystal Structure of the transcriptional repressor BigR from Xylella fastidiosa 3PQK ; 2.09 ; Crystal Structure of the transcriptional repressor BigR from Xylella fastidiosa 2ZKZ ; 2.0 ; Crystal structure of the transcriptional repressor PagR of Bacillus anthracis 1T5O ; 1.9 ; Crystal structure of the translation initiation factor eIF-2B, subunit delta, from A. fulgidus 6HTJ ; 1.65 ; Crystal structure of the translation recovery factor Trf from Sulfolobus solfataricus 2IPC ; 2.8 ; Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer 7D7Q ; 3.5 ; Crystal structure of the transmembrane domain and linker region of Salpingoeca rosetta rhodopsin phosphodiesterase 7CJ3 ; 2.6 ; Crystal structure of the transmembrane domain of Salpingoeca rosetta rhodopsin phosphodiesterase 8VBZ ; 1.9 ; Crystal structure of the transpeptidase domain of a S310A mutant of PBP2 from Neisseria gonorrhoeae strain H041 6P56 ; 1.92 ; Crystal structure of the transpeptidase domain of a T498A mutant of PBP2 from Neisseria gonorrhoeae 4U3T ; 2.2 ; Crystal structure of the transpeptidase domain of Neisseria gonorrhoeae penicillin-binding protein 2 derived from the penicillin-resistant strain 6140 6P53 ; 1.92 ; Crystal structure of the transpeptidase domain of PBP2 from Neisseria gonorrhoeae in apo form 6VBL ; 1.93 ; Crystal structure of the transpeptidase domain of PBP2 from the Neisseria gonorrhoeae cephalosporin decreased susceptibility strain 35/02 8A1O ; 1.95 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with acrylamide analogue 8 8A1L ; 2.3 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with alpha-chloro ketone 2 8AHO ; 2.3 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with cyanamide analogue 31 8BK3 ; 2.15 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with diepoxide ketone 1 8A1K ; 1.75 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with ebsulfur analogue 15 8A1N ; 2.05 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with fumaryl amide analogue 13 8A1J ; 2.55 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with maleimide analogue 3 8A1M ; 2.3 ; Crystal structure of the transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with maleimide analogue 4 4MEE ; 3.0 ; Crystal structure of the transport unit of the autotransporter AIDA-I from Escherichia coli 3QNQ ; 3.295 ; Crystal structure of the transporter ChbC, the IIC component from the N,N'-diacetylchitobiose-specific phosphotransferase system 5IWS ; 2.551 ; Crystal structure of the transporter MalT, the EIIC domain from the maltose-specific phosphotransferase system 6V9P ; 1.93 ; Crystal structure of the transposition protein TniQ 1SOQ ; 2.1 ; Crystal structure of the transthyretin mutant A108Y/L110E solved in space group C2 1SOK ; 1.6 ; Crystal structure of the transthyretin mutant A108Y/L110E solved in space group p21212 1IJN ; 1.7 ; Crystal structure of the transthyretin mutant TTR C10A/Y114C 1IIK ; 2.0 ; CRYSTAL STRUCTURE OF THE TRANSTHYRETIN MUTANT TTR Y114C-DATA COLLECTED AT CRYO TEMPERATURE 1III ; 2.0 ; CRYSTAL STRUCTURE OF THE TRANSTHYRETIN MUTANT TTR Y114C-DATA COLLECTED AT ROOM TEMPERATURE 3BSZ ; 3.38 ; Crystal structure of the transthyretin-retinol binding protein-Fab complex 7Z5A ; 2.28 ; Crystal structure of the trapped complex of mouse Endonuclease VIII-LIKE 3 (mNEIL3) and hairpin DNA with 5'overhang 4O26 ; 3.001 ; Crystal structure of the TRBD domain of TERT and the CR4/5 of TR 8UQT ; 1.16 ; Crystal structure of the Tree Shrew p53 tetramerization domain 4GO9 ; 2.2 ; CRYSTAL STRUCTURE of the TREHALULOSE SYNTHASE MUTANT, MUTB D415N, in COMPLEX with TRIS 2PWH ; 2.0 ; Crystal structure of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45 1ZJB ; 1.8 ; Crystal structure of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45 (monoclinic form) 1ZJA ; 1.6 ; Crystal structure of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45 (triclinic form) 2PWG ; 2.2 ; Crystal Structure of the Trehalulose Synthase MutB From Pseudomonas Mesoacidophila MX-45 Complexed to the Inhibitor Castanospermine 2PWD ; 1.8 ; Crystal Structure of the Trehalulose Synthase MUTB from Pseudomonas Mesoacidophila MX-45 Complexed to the Inhibitor Deoxynojirmycin 4H8V ; 1.95 ; Crystal structure of the trehalulose synthase MUTB in complex with trehalulose 4GO8 ; 2.15 ; Crystal Structure of the TREHALULOSE SYNTHASE MUTB, MUTANT A258V, in complex with TRIS 4M7C ; 2.05 ; Crystal structure of the TRF2-binding motif of SLX4 in complex with the TRFH domain of TRF2 6KIN ; 2.527 ; Crystal structure of the tri-functional malyl-CoA lyase from Roseiflexus castenholzii 8BV7 ; 1.8 ; Crystal structure of the Trichoplax Scribble PDZ1 domain in complex with the Trichoplax phosphorylated Vangl peptide 1MTZ ; 1.8 ; Crystal Structure of the Tricorn Interacting Factor F1 1MU0 ; 2.4 ; Crystal Structure of the Tricorn Interacting Factor F1 Complex with PCK 1MT3 ; 2.0 ; Crystal Structure of the Tricorn Interacting Factor Selenomethionine-F1 1K32 ; 2.0 ; Crystal structure of the tricorn protease 1BRP ; 2.5 ; CRYSTAL STRUCTURE OF THE TRIGONAL FORM OF HUMAN PLASMA RETINOL-BINDING PROTEIN AT 2.5 ANGSTROMS RESOLUTION 1BRQ ; 2.5 ; CRYSTAL STRUCTURE OF THE TRIGONAL FORM OF HUMAN PLASMA RETINOL-BINDING PROTEIN AT 2.5 ANGSTROMS RESOLUTION 6JBM ; 2.1 ; Crystal structure of the TRIM14 PRYSPRY domain 8PD6 ; 1.3 ; Crystal structure of the TRIM58 PRY-SPRY domain in complex with TRIM-473 6UMA ; 1.6 ; Crystal structure of the TRIM7 B30.2 domain at 1.6 angstrom resolution 2GGX ; 1.9 ; Crystal structure of the trimer neck and carbohydrate recognition domain of human surfactant protein D in complex with p-nitrophenyl maltoside 3LAA ; 1.35 ; Crystal structure of the trimeric autotransporter adhesin head domain BpaA from Burkholderia pseudomallei 3LA9 ; 2.05 ; Crystal structure of the trimeric autotransporter adhesin head domain BpaA from Burkholderia pseudomallei, iodide phased 2W6B ; 2.8 ; Crystal Structure of the Trimeric beta-PIX Coiled-Coil Domain 7P4L ; 2.3 ; Crystal structure of the trimeric ectodomain of archaeal Fusexin1 (Fsx1) 7JPD ; 2.95 ; Crystal structure of the trimeric full length mature hemagglutinin from influenza A virus A/Fort Monmouth/1/1947 2RIE ; 1.6 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with 2-deoxy-L-glycero-D-manno-heptose 2RID ; 1.8 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with Allyl 7-O-carbamoyl-L-glycero-D-manno-heptopyranoside 3G83 ; 1.9 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with alpha 1,2 dimannose. 3G81 ; 1.8 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with alpha methyl mannoside 2RIA ; 1.8 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with D-glycero-D-manno-heptose 2ORK ; 1.89 ; crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with inositol-1-phosphate 2RIC ; 1.8 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with L-glycero-D-manno-heptopyranosyl-(1-3)-L-glycero-D-manno-heptopyranose 2RIB ; 1.8 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with L-glycero-D-manno-heptose 2GGU ; 1.9 ; crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with maltotriose 2OS9 ; 1.7 ; crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with myoinositol 2ORJ ; 1.8 ; crystal structure of the trimeric neck and carbohydrate recognition domain of human surfactant protein D in complex with N-acetyl mannosamine 3G84 ; 2.3 ; Crystal structure of the trimeric neck and carbohydrate recognition domain of R343V mutant of human surfactant protein D in complex with alpha 1,2 dimannose. 3CSY ; 3.4 ; Crystal structure of the trimeric prefusion Ebola virus glycoprotein in complex with a neutralizing antibody from a human survivor 1SLQ ; 3.2 ; Crystal structure of the trimeric state of the rhesus rotavirus VP4 membrane interaction domain, VP5CT 4CGB ; 2.154 ; Crystal structure of the trimerization domain of EML2 4CGC ; 2.901 ; Crystal structure of the trimerization domain of human EML4 5Y79 ; 2.2 ; Crystal structure of the triose-phosphate/phosphate translocator in complex with 3-phosphoglycerate 5Y78 ; 2.1 ; Crystal structure of the triose-phosphate/phosphate translocator in complex with inorganic phosphate 3FYO ; 1.9 ; Crystal structure of the triple mutant (N23C/D247E/P249A) of 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) from Neisseria meningitidis 7YHE ; 1.67 ; Crystal structure of the triple mutant CmnC-L136Q,S138G,D249Y in complex with alpha-KG 7YW9 ; 1.76 ; Crystal structure of the triple mutant CmnC-L136Q,S138G,D249Y in complex with alpha-KG 3I9Q ; 1.45 ; Crystal Structure of the triple mutant S19G-P20D-R21S of alpha spectrin SH3 domain 1QSU ; 1.75 ; CRYSTAL STRUCTURE OF THE TRIPLE-HELICAL COLLAGEN-LIKE PEPTIDE, (PRO-HYP-GLY)4-GLU-LYS-GLY(PRO-HYP-GLY)5 4PLX ; 3.1 ; Crystal structure of the triple-helical stability element at the 3' end of MALAT1 3SYW ; 1.57 ; Crystal Structure of the Triplet Repeat in Myotonic Dystrophy Reveals Heterogeneous 1x1 Nucleotide UU Internal Loop Conformations 3SZX ; 2.204 ; Crystal Structure of the Triplet Repeat in Myotonic Dystrophy Reveals Heterogeneous 1x1 Nucleotide UU Internal Loop Conformations 2WI8 ; 1.55 ; Crystal structure of the triscatecholate siderophore binding protein FeuA from Bacillus subtilis 2WHY ; 1.7 ; Crystal structure of the triscatecholate siderophore binding protein FeuA from Bacillus subtilis complexed with Ferri-Bacillibactin 2XUZ ; 1.9 ; Crystal structure of the triscatecholate siderophore binding protein FeuA from Bacillus subtilis complexed with Ferri-Enterobactin 2XV1 ; 2.15 ; Crystal structure of the triscatecholate siderophore binding protein FeuA from Bacillus subtilis complexed with Ferric MECAM 1T6E ; 1.7 ; Crystal Structure of the Triticum aestivum xylanase inhibitor I 1T6G ; 1.8 ; Crystal structure of the Triticum aestivum xylanase inhibitor-I in complex with aspergillus niger xylanase-I 3HD8 ; 2.39 ; Crystal structure of the Triticum aestivum xylanase inhibitor-IIA in complex with bacillus subtilis xylanase 2B42 ; 2.5 ; Crystal structure of the Triticum xylanse inhibitor-I in complex with bacillus subtilis xylanase 4J9V ; 3.051 ; Crystal Structure of the TrkA Gating ring bound to ATP-gamma-S 4J9U ; 3.8 ; Crystal Structure of the TrkH/TrkA potassium transport complex 3TL4 ; 2.3 ; Crystal Structure of the tRNA Binding Domain of Glutaminyl-tRNA Synthetase from Saccharomyces cerevisiae 5UD5 ; 2.347 ; Crystal structure of the tRNA binding domain of Pyrrolysyl-tRNA synthetase bound to tRNA(Pyl) 5V6X ; 2.76 ; Crystal structure of the tRNA binding domain of Pyrrolysyl-tRNA synthetase mutant (32A NTD) bound to tRNA(Pyl) 2CZJ ; 3.01 ; Crystal structure of the tRNA domain of tmRNA from Thermus thermophilus HB8 1P6V ; 3.2 ; Crystal structure of the tRNA domain of transfer-messenger RNA in complex with SmpB 3U02 ; 2.399 ; Crystal Structure of the tRNA modifier TiaS from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR225 1UDN ; 2.3 ; Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus 1R6L ; 1.9 ; Crystal Structure Of The tRNA Processing Enzyme Rnase pH From Pseudomonas Aeruginosa 1R6M ; 2.0 ; Crystal Structure Of The tRNA Processing Enzyme Rnase pH From Pseudomonas Aeruginosa In Complex With Phosphate 1UDS ; 2.3 ; Crystal structure of the tRNA processing enzyme RNase PH R126A mutant from Aquifex aeolicus 1UDO ; 2.3 ; Crystal structure of the tRNA processing enzyme RNase PH R86A mutant from Aquifex aeolicus 1UDQ ; 2.3 ; Crystal structure of the tRNA processing enzyme RNase PH T125A mutant from Aquifex aeolicus 1VS3 ; 2.25 ; Crystal Structure of the tRNA Pseudouridine Synthase TruA From Thermus thermophilus HB8 1A79 ; 2.28 ; CRYSTAL STRUCTURE OF THE TRNA SPLICING ENDONUCLEASE FROM METHANOCOCCUS JANNASCHII 4P5J ; 1.9912 ; Crystal structure of the tRNA-like structure from Turnip Yellow Mosaic Virus (TYMV), a tRNA mimicking RNA 3ZTE ; 2.41 ; Crystal Structure of the TRP RNA-Binding Attenuation Protein (TRAP) from Bacillus Licheniformis. 6BWM ; 3.9 ; Crystal structure of the TRPV2 ion channel 6BWJ ; 3.1 ; Crystal structure of the TRPV2 ion channel in complex with RTx 5XLN ; 1.9 ; Crystal structure of the TRS_UNE-T and 4EHP complex 6T3Z ; 1.55863 ; Crystal structure of the truncated EBV BFRF1-BFLF2 nuclear egress complex 2EG9 ; 2.8 ; Crystal structure of the truncated extracellular domain of mouse CD38 2XRH ; 1.5 ; Crystal structure of the truncated form of HP0721 6QJD ; 1.551 ; Crystal Structure of the truncated form of the third PDZ domain of PSD-95: residues 302-392 2BKM ; 1.5 ; Crystal structure of the truncated hemoglobin from Geobacillus stearothermophilus 6T3X ; 1.48 ; Crystal structure of the truncated human cytomegalovirus pUL50-pUL53 complex 1QVE ; 1.54 ; Crystal structure of the truncated K122-4 pilin from Pseudomonas aeruginosa 1IDR ; 1.9 ; CRYSTAL STRUCTURE OF THE TRUNCATED-HEMOGLOBIN-N FROM MYCOBACTERIUM TUBERCULOSIS 8FJN ; 2.1 ; Crystal Structure of the Trypanosoma brucei DOT1A histone H3K76 methyltransferase in complex with AdoHcy - C2221 space group 8FJM ; 1.9 ; Crystal Structure of the Trypanosoma brucei DOT1A histone H3K76 methyltransferase in complex with AdoHcy - P212121 space group 4I70 ; 1.6 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase 4I71 ; 1.28 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase in complex with a trypanocidal compound 4I73 ; 2.18 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase in complex with compound UAMC-00312 4I74 ; 1.68 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase in complex with compound UAMC-00312 and allosterically inhibited by a Ni2+ ion 4I72 ; 2.05 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase in complex with Immucillin A 4I75 ; 1.8 ; Crystal structure of the Trypanosoma brucei Inosine-Adenosine-Guanosine nucleoside hydrolase in complex with the NiTris metalorganic complex 3JV1 ; 2.0 ; Crystal structure of the Trypanosoma brucei p22 protein 8FX1 ; 1.8 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to (R)-SerMe-ImmH Phosphonate 8FX0 ; 1.52 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to (S)-SerMe-ImmH Phosphonate 8FWZ ; 1.65 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to Hydroxypropyl-Lin-ImmH Phosphonate 8FX3 ; 1.31 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to Immucillin-GP, showing the structure of the complete active site in its open conformation 8FX2 ; 1.54 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to Immucillin-HP 8FWY ; 1.54 ; Crystal structure of the Trypanosoma cruzi hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), isoform D, bound to the dead-end complex xanthine and pyrophosphate 4AZ1 ; 2.181 ; Crystal structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease 2OXS ; 1.32 ; Crystal Structure of the trypsin complex with benzamidine at high temperature (35 C) 2OIZ ; 1.05 ; Crystal Structure of the Tryptamine-Derived (Indol-3-Acetamide)-TTQ Adduct of Aromatic Amine Dehydrogenase 4OQO ; 2.42 ; Crystal structure of the tryptic generated iron-free C-lobe of bovine Lactoferrin at 2.42 Angstrom resolution 1YW0 ; 2.7 ; Crystal structure of the tryptophan 2,3-dioxygenase from Xanthomonas campestris. Northeast Structural Genomics Target XcR13. 1K8Y ; 1.5 ; CRYSTAL STRUCTURE OF THE TRYPTOPHAN SYNTHASE BETA-SER178PRO MUTANT COMPLEXED WITH D,L-ALPHA-GLYCEROL-3-PHOSPHATE 1K8Z ; 1.7 ; CRYSTAL STRUCTURE OF THE TRYPTOPHAN SYNTHASE BETA-SER178PRO MUTANT COMPLEXED WITH N-[1H-INDOL-3-YL-ACETYL]GLYCINE ACID 6FHG ; 1.95 ; Crystal structure of the Ts2631 endolysin from Thermus scotoductus phage with the unique N-terminal moiety responsible for peptidoglycan anchoring 3OBX ; 1.6 ; Crystal structure of the Tsg101 UEV domain in complex with a HIV-1 Gag P7A mutant peptide 3OBU ; 1.6 ; Crystal structure of the Tsg101 UEV domain in complex with a HIV-1 PTAP peptide 3OBQ ; 1.4 ; Crystal Structure of the Tsg101 UEV domain in complex with a human HRS PSAP peptide 3P9H ; 1.8 ; Crystal structure of the TSG101 UEV domain in complex with FA258 peptide 3P9G ; 1.8 ; Crystal structure of the TSG101 UEV domain in complex with FA459 peptide 7ZLX ; 2.25 ; Crystal Structure of the TSG101-UEV domain:space group P21 2XWT ; 1.9 ; CRYSTAL STRUCTURE OF THE TSH RECEPTOR IN COMPLEX WITH A BLOCKING TYPE TSHR AUTOANTIBODY 3G04 ; 2.55 ; Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody 2DCT ; 1.45 ; Crystal structure of the TT1209 from Thermus thermophilus HB8 7O3B ; 2.4 ; Crystal structure of the TTBK2-CEP164 complex bound to a camelid nanobody 5DSE ; 2.9 ; Crystal Structure of the TTC7B/Hyccin Complex 4UZZ ; 2.318 ; Crystal structure of the TtIFT52-46 complex 6DA7 ; 1.83 ; Crystal structure of the TtnD decarboxylase from the tautomycetin biosynthesis pathway of Streptomyces griseochromogenes with apo form at 1.83 A resolution (I222) 6DA9 ; 2.05 ; Crystal structure of the TtnD decarboxylase from the tautomycetin biosynthesis pathway of Streptomyces griseochromogenes with FMN bound at 2.05 A resolution 6DA6 ; 2.59 ; Crystal structure of the TtnD decarboxylase from the tautomycetin biosynthesis pathway of Streptomyces griseochromogenes, apo form at 2.6 A resolution (P212121) 4AUT ; 2.1 ; Crystal structure of the tuberculosis drug target Decaprenyl- Phosphoryl-beta-D-Ribofuranose-2-oxidoreductase (DprE1) from Mycobacterium smegmatis 6HQ9 ; 1.982 ; Crystal structure of the Tudor domain of human ERCC6-L2 2XDP ; 1.56 ; Crystal structure of the tudor domain of human JMJD2C 3PNW ; 2.05 ; Crystal Structure of the tudor domain of human TDRD3 in complex with an anti-TDRD3 FAB 3PMT ; 1.8 ; Crystal structure of the Tudor domain of human Tudor domain-containing protein 3 3O8V ; 2.5 ; Crystal Structure of the Tudor Domains from FXR1 1SM3 ; 1.95 ; CRYSTAL STRUCTURE OF THE TUMOR SPECIFIC ANTIBODY SM3 COMPLEX WITH ITS PEPTIDE EPITOPE 1JK7 ; 1.9 ; CRYSTAL STRUCTURE OF THE TUMOR-PROMOTER OKADAIC ACID BOUND TO PROTEIN PHOSPHATASE-1 2Z62 ; 1.7 ; Crystal structure of the TV3 hybrid of human TLR4 and hagfish VLRB.61 3UL7 ; 2.37 ; Crystal structure of the TV3 mutant F63W 3ULA ; 3.6 ; Crystal structure of the TV3 mutant F63W-MD-2-Eritoran complex 3UL8 ; 2.5 ; Crystal structure of the TV3 mutant V134L 2Z63 ; 2.0 ; Crystal structure of the TV8 hybrid of human TLR4 and hagfish VLRB.61 4QJH ; 3.88 ; Crystal Structure of the Twister Ribozyme with the Nucleotide 5'- to the Cleavage Site Ordered at 4.1 A Resolution 5T5A ; 2.0 ; Crystal Structure of the Twister Sister (TS) Ribozyme at 2.0 Angstrom 3TO8 ; 1.82 ; Crystal structure of the two C-terminal RRM domains of heterogeneous nuclear ribonucleoprotein L (hnRNP L) 2R57 ; 2.2 ; Crystal Structure of the two MBT repeats from Sex-Comb on Midleg (SCM) 2R58 ; 2.0 ; Crystal Structure of the two MBT repeats from Sex-Comb on Midleg (SCM) in Complex with Di-Methyl Lysine 2R5A ; 2.3 ; Crystal Structure of the two MBT repeats from Sex-Comb on Midleg (SCM) in complex with methyl lysine 2R5M ; 2.65 ; Crystal Structure of the two MBT repeats from Sex-Comb on Midleg (SCM) in complex with peptide R-(me)K-S 1EPF ; 1.85 ; CRYSTAL STRUCTURE OF THE TWO N-TERMINAL IMMUNOGLOBULIN DOMAINS OF THE NEURAL CELL ADHESION MOLECULE (NCAM) 4ED5 ; 2.0 ; Crystal structure of the two N-terminal RRM domains of HuR complexed with RNA 5KW1 ; 2.1 ; Crystal Structure of the Two Tandem RRM Domains of PUF60 Bound to a Modified AdML Pre-mRNA 3' Splice Site Analogue 5KVY ; 1.95 ; CRYSTAL STRUCTURE OF THE TWO TANDEM RRM DOMAINS OF PUF60 BOUND TO A PORTION OF AN ADML PRE-MRNA 3' SPLICE SITE ANALOG 2FBO ; 1.85 ; Crystal Structure of the Two Tandem V-type Regions of VCBP3 (v-region-containing chitin binding protein) to 1.85 A 7A73 ; 1.14 ; Crystal structure of the two-domain cyclophilinA from Anabaena sp. 2FQ1 ; 2.3 ; Crystal structure of the two-domain non-ribosomal peptide synthetase EntB containing isochorismate lyase and aryl-carrier protein domains 5EQJ ; 2.2 ; Crystal structure of the two-subunit tRNA m1A58 methyltransferase from Saccharomyces cerevisiae 5ERG ; 2.202 ; Crystal structure of the two-subunit tRNA m1A58 methyltransferase TRM6-TRM61 in complex with SAM 8S99 ; 1.71 ; Crystal structure of the TYK2 pseudokinase domain in complex with compound 11 8S98 ; 1.87 ; Crystal structure of the TYK2 pseudokinase domain in complex with compound 8 8S9A ; 1.83 ; Crystal structure of the TYK2 pseudokinase domain in complex with TAK-279 4OQE ; 2.2 ; Crystal structure of the tylM1 N,N-dimethyltransferase in complex with SAH and TDP-Fuc3NMe 4OQD ; 1.6 ; Crystal structure of the tylM1 N,N-dimethyltransferase in complex with SAH and TDP-Qui3NMe2 3CTK ; 1.8 ; Crystal structure of the type 1 RIP bouganin 4A56 ; 1.24 ; Crystal structure of the type 2 secretion system pilotin from Klebsiella Oxytoca 3SOL ; 1.9 ; Crystal structure of the type 2 secretion system pilotin GspS 2RJZ ; 2.2 ; Crystal structure of the type 4 fimbrial biogenesis protein PilO from Pseudomonas aeruginosa 6PUB ; 2.43 ; Crystal Structure of the Type B Chloramphenicol Acetyltransferase from Vibrio cholerae in the Complex with Crystal Violet 6PU9 ; 1.7 ; Crystal Structure of the Type B Chloramphenicol O-Acetyltransferase from Vibrio vulnificus 3LKD ; 2.25 ; Crystal Structure of the type I restriction-modification system methyltransferase subunit from Streptococcus thermophilus, Northeast Structural Genomics Consortium Target SuR80 7XZ3 ; 1.889 ; Crystal structure of the Type I-B CRISPR-associated protein, Csh2 from Thermobaculum terrenum 1J2Y ; 2.6 ; Crystal structure of the type II 3-dehydroquinase 3BWZ ; 1.2 ; Crystal structure of the type II cohesin module from the cellulosome of Acetivibrio cellulolyticus with an extended linker conformation 4L8L ; 1.74 ; Crystal Structure of the Type II Dehydroquinase from Pseudomonas aeruginosa 4RC9 ; 2.05 ; Crystal Structure of the type II Dehydroquinate dehydratase from Acinetobacter baumannii at 2.03A Resolution 4OGC ; 2.8 ; Crystal structure of the Type II-C Cas9 enzyme from Actinomyces naeslundii 4OGE ; 2.201 ; Crystal structure of the Type II-C Cas9 enzyme from Actinomyces naeslundii 1NH1 ; 2.2 ; Crystal Structure of the Type III Effector AvrB from Pseudomonas syringae. 6HQZ ; 1.8 ; Crystal structure of the type III effector protein AvrRpt2 from Erwinia amylovora, a C70 family cysteine protease 6K94 ; 2.26 ; Crystal structure of the type III effector XopAI from Xanthomonas axonopodis pv. citri - a 70 residue N-terminal truncation 6K93 ; 1.53 ; Crystal structure of the type III effector XopAI from Xanthomonas axonopodis pv. citri in space group P41212 6KLY ; 2.01 ; Crystal structure of the type III effector XopAI from Xanthomonas axonopodis pv. citri in space group P43212 3O6X ; 3.5 ; Crystal Structure of the type III Glutamine Synthetase from Bacteroides fragilis 2BSI ; 2.01 ; Crystal structure of the type III secretion chaperone SycT from Yersinia enterocolitica (crystal form 1) 2BSH ; 1.9 ; Crystal structure of the type III secretion chaperone SycT from Yersinia enterocolitica (crystal form 2) 6XFJ ; 1.2 ; Crystal structure of the type III secretion pilotin InvH 6XFK ; 1.85 ; Crystal structure of the type III secretion system pilotin-secretin complex InvH-InvG 1K46 ; 2.2 ; Crystal Structure of the Type III Secretory Domain of Yersinia YopH Reveals a Domain-Swapped Dimer 5JW8 ; 1.439 ; Crystal structure of the Type IV pilin subunit PilE from Neisseria meningitidis 5CVB ; 2.249 ; Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a1a1a1 of type I collagen 5CVA ; 2.098 ; Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a1a2a1 of type I collagen 5CTD ; 1.5991 ; Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a2a1a1 of type I collagen 5CTI ; 1.8994 ; Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a2a1a1 of type I collagen (native form) 3HA4 ; 2.4 ; Crystal structure of the type one membrane protein MIX1 from Leishmania 6IJE ; 1.55 ; Crystal structure of the type VI amidase immunity (Tai4) from Agrobacterium tumefaciens 4HFL ; 2.002 ; Crystal structure of the type VI effector Tae4 from Enterobacter cloacae 6IJF ; 1.9 ; Crystal structure of the type VI effector-immunity complex (Tae4-Tai4) from Agrobacterium tumefaciens 4BI8 ; 2.0 ; Crystal structure of the type VI effector-immunity complex Ssp1-Rap1a from Serratia marcescens 4HFK ; 2.1 ; Crystal structure of the type VI effector-immunity complex Tae4-Tai4 from Enterobacter cloacae 4HFF ; 2.398 ; Crystal structure of the type VI effector-immunity complex Tae4-Tai4 from Salmonella Typhimurium 4HZ9 ; 2.4 ; Crystal structure of the type VI native effector-immunity complex Tae3-Tai3 from Ralstonia pickettii 4HZB ; 2.6 ; Crystal structure of the type VI SeMet effector-immunity complex Tae3-Tai3 from Ralstonia pickettii 4WVH ; 2.1 ; Crystal structure of the Type-I signal peptidase from Staphylococcus aureus (SpsB) in complex with a substrate peptide (pep1). 4WVI ; 1.9 ; Crystal structure of the Type-I signal peptidase from Staphylococcus aureus (SpsB) in complex with a substrate peptide (pep2). 4WVJ ; 1.95 ; Crystal structure of the Type-I signal peptidase from Staphylococcus aureus (SpsB) in complex with an inhibitor peptide (pep3). 4WVG ; 2.05 ; Crystal structure of the Type-I signal peptidase from Staphylococcus aureus (SpsB). 3GOQ ; 1.6 ; Crystal structure of the Tyr13Met variant of Bacillus subtilis ferrochelatase 2AC2 ; 2.5 ; Crystal structure of the Tyr13Phe mutant variant of Bacillus subtilis Ferrochelatase with Zn(2+) bound at the active site 7RNT ; 1.9 ; CRYSTAL STRUCTURE OF THE TYR45TRP MUTANT OF RIBONUCLEASE T1 IN A COMPLEX WITH 2'-ADENYLIC ACID 6RRR ; 2.11 ; Crystal structure of the tyrosinase PvdP from Pseudomonas aeruginosa 3VRN ; 1.64 ; Crystal structure of the tyrosine kinase binding domain of Cbl-c 3VRQ ; 2.39 ; Crystal structure of the tyrosine kinase binding domain of Cbl-c (PL mutant) 3VRR ; 2.0 ; Crystal structure of the tyrosine kinase binding domain of Cbl-c (PL mutant) in complex with phospho-EGFR peptide 3VRP ; 1.52 ; Crystal structure of the tyrosine kinase binding domain of Cbl-c in complex with phospho-EGFR peptide 3VRO ; 1.8 ; Crystal structure of the tyrosine kinase binding domain of Cbl-c in complex with phospho-Src peptide 2FGI ; 2.5 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF FGF RECEPTOR 1 IN COMPLEX WITH INHIBITOR PD173074 5UGX ; 2.349 ; Crystal Structure of the Tyrosine Kinase Domain of FGF Receptor 2 Harboring a E565A/D650V double Gain-of-Function Mutation 5UHN ; 2.909 ; Crystal Structure of the Tyrosine Kinase Domain of FGF Receptor 2 harboring a N549H/E565A Double Gain-of-Function Mutation 5UI0 ; 2.05 ; Crystal Structure of the Tyrosine Kinase Domain of FGF Receptor 2 harboring an E565A/K659M Double Gain-of-Function Mutation 4QRC ; 1.901 ; Crystal Structure of the Tyrosine Kinase Domain of FGF Receptor 4 in Complex with Ponatinib 1FGK ; 2.0 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF FIBROBLAST GROWTH FACTOR RECEPTOR 1 1AGW ; 2.4 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF FIBROBLAST GROWTH FACTOR RECEPTOR 1 IN COMPLEX WITH SU4984 INHIBITOR 1FGI ; 2.5 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF FIBROBLAST GROWTH FACTOR RECEPTOR 1 IN COMPLEX WITH SU5402 INHIBITOR 1R1W ; 1.8 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF THE HEPATOCYTE GROWTH FACTOR RECEPTOR C-MET 3CTH ; 2.3 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-met in complex with a aminopyridine based inhibitor 3CTJ ; 2.5 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-met in complex with a aminopyridine based inhibitor 3L8V ; 2.4 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor C-MET in complex with a biarylamine based inhibitor 3CE3 ; 2.4 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor C-MET in complex with a Pyrrolopyridinepyridone based inhibitor 3C1X ; 2.17 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-MET in complex with a Pyrrolotriazine based inhibitor 5DG5 ; 2.6 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF THE HEPATOCYTE GROWTH FACTOR RECEPTOR C-MET IN COMPLEX WITH ALTIRATINIB ANALOG DP-4157 3F82 ; 2.5 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor C-MET in complex with N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide 1R0P ; 1.8 ; Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met in complex with the microbial alkaloid K-252a 1IRK ; 2.1 ; CRYSTAL STRUCTURE OF THE TYROSINE KINASE DOMAIN OF THE HUMAN INSULIN RECEPTOR 2WJF ; 2.22 ; Crystal structure of the tyrosine phosphatase Cps4B from Steptococcus pneumoniae TIGR4 in complex with phosphate. 2WJD ; 2.799 ; Crystal structure of the tyrosine phosphatase Cps4B from Steptococcus pneumoniae TIGR4. 2WJE ; 1.899 ; Crystal structure of the tyrosine phosphatase Cps4B from Steptococcus pneumoniae TIGR4. 4H1O ; 2.2 ; Crystal structure of the tyrosine phosphatase SHP-2 with D61G mutation 4NWG ; 2.45 ; Crystal structure of the tyrosine phosphatase SHP-2 with E139D mutation 4NWF ; 2.1 ; Crystal structure of the tyrosine phosphatase SHP-2 with N308D mutation 4H34 ; 2.7 ; Crystal structure of the tyrosine phosphatase SHP-2 with Q506P mutation 4GWF ; 2.1 ; Crystal structure of the tyrosine phosphatase SHP-2 with Y279C mutation 2WJA ; 2.5 ; Crystal structure of the tyrosine phosphatase Wzb from Escherichia coli K30 in complex with phosphate. 2WMY ; 2.211 ; Crystal structure of the tyrosine phosphatase Wzb from Escherichia coli K30 in complex with sulphate. 1OFO ; 1.86 ; Crystal Structure of the Tyrosine Regulated 3-Deoxy-D-Arabino-Heptulosonate-7-Phosphate Synthase from Saccharomyces Cerevisiae in Complex with 2-Phosphoglycolate 1OAB ; 1.9 ; CRYSTAL STRUCTURE OF THE TYROSINE REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE IN COMPLEX WITH PHOSPHOENOLPYRUVATE AND MANGANESE(II) 1OFP ; 2.1 ; CRYSTAL STRUCTURE OF THE TYROSINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE 1OFR ; 2.7 ; CRYSTAL STRUCTURE OF THE TYROSINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE COMPLEXED WITH PHENYLALANINE AND MANGANESE 1HFB ; 1.9 ; Crystal structure of the tyrosine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae complexed with phosphoenolpyruvate 1OF6 ; 2.1 ; crystal structure of the tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from saccharomyces cerevisiae complexed with tyrosine and manganese 1OFB ; 2.01 ; CRYSTAL STRUCTURE OF THE TYROSINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE IN COMPLEX WITH MANGANESE(II) 1OFQ ; 2.7 ; CRYSTAL STRUCTURE OF THE TYROSINE-REGULATED 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE SYNTHASE FROM SACCHAROMYCES CEREVISIAE IN COMPLEX WITH MANGANESE(II) 1OFA ; 2.02 ; Crystal structure of the tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from saccharomyces cerevisiae in complex with phosphoenolpyruvate and cobalt(ii) 7FG6 ; 2.8 ; Crystal structure of the Tyrosyl-tRNA synthetase (TyrRS) in Nanoarchaeum equitans 3L1Z ; 3.17 ; Crystal structure of the U-BOX domain of human E4B ubiquitin ligase in complex with UBCH5C E2 ubiquitin conjugating enzyme 3LRQ ; 2.292 ; Crystal structure of the U-box domain of human ubiquitin-protein ligase (E3), NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET HR4604D. 4FEL ; 1.6 ; Crystal structure of the U25A/A46G mutant of the xpt-pbuX guanine riboswitch aptamer domain in complex with hypoxanthine 5K1A ; 2.3 ; Crystal structure of the UAF1-USP12 complex in C2 space group 5K1B ; 3.3 ; Crystal structure of the UAF1/USP12 complex in F222 space group 5K1C ; 3.0 ; Crystal structure of the UAF1/WDR20/USP12 complex 2OOA ; 1.56 ; crystal structure of the UBA domain from Cbl-b ubiquitin ligase 2OOB ; 1.9 ; crystal structure of the UBA domain from Cbl-b ubiquitin ligase in complex with ubiquitin 2QHO ; 1.85 ; Crystal structure of the UBA domain from EDD ubiquitin ligase in complex with ubiquitin 2OO9 ; 2.1 ; crystal structure of the UBA domain from human c-Cbl ubiquitin ligase 2BWB ; 2.3 ; Crystal structure of the UBA domain of Dsk2 from S. cerevisiae 4UN2 ; 1.51 ; Crystal structure of the UBA domain of Dsk2 in complex with Ubiquitin 3B0F ; 1.4 ; Crystal structure of the UBA domain of p62 and its interaction with ubiquitin 3CMM ; 2.7 ; Crystal Structure of the Uba1-Ubiquitin Complex 7R70 ; 2.499 ; Crystal Structure of the UbArk2C fusion protein 7R71 ; 2.8 ; Crystal Structure of the UbArk2C-UbcH5b~Ub complex 3CEG ; 2.008 ; Crystal structure of the UBC domain of baculoviral IAP repeat-containing protein 6 6CYR ; 2.2 ; Crystal structure of the UBE2A variant Q93E 4LAD ; 2.3 ; Crystal Structure of the Ube2g2:RING-G2BR complex 3FSH ; 2.76 ; Crystal structure of the ubiquitin conjugating enzyme Ube2g2 bound to the G2BR domain of ubiquitin ligase gp78 4PIG ; 1.952 ; Crystal structure of the ubiquitin K11S mutant 3KUZ ; 2.3 ; Crystal structure of the ubiquitin like domain of PLXNC1 3WUP ; 1.6 ; Crystal Structure of the Ubiquitin-Binding Zinc Finger (UBZ) Domain of the Human DNA Polymerase Eta 7KAG ; 3.21 ; Crystal structure of the ubiquitin-like domain 1 (Ubl1) of Nsp3 from SARS-CoV-2 7TI9 ; 2.73 ; Crystal structure of the ubiquitin-like domain 1 (Ubl1) of Nsp3 from SARS-CoV-2, form 2 8ID2 ; 1.8 ; Crystal structure of the ubiquitin-like domain in the SF3A1 subunit of human U2 snRNP complexed with the stem-loop 4 of U1 snRNA 4EFO ; 1.769 ; Crystal structure of the ubiquitin-like domain of human TBK1 3H6N ; 2.004 ; Crystal Structure of the ubiquitin-like domain of plexin D1 2J7Q ; 1.8 ; Crystal structure of the ubiquitin-specific protease encoded by murine cytomegalovirus tegument protein M48 in complex with a ubquitin-based suicide substrate 4EEW ; 1.3 ; Crystal structure of the Ubl domain of BAG6 2BWF ; 1.15 ; Crystal structure of the UBL domain of Dsk2 from S. cerevisiae 6WAJ ; 1.9 ; Crystal structure of the UBL domain of human NLE1 4A20 ; 1.78 ; Crystal structure of the Ubl domain of Mdy2 (Get5) at 1.78A 6JL3 ; 1.303 ; Crystal Structure of the UBL domain of Plasmodium Falciparum Dsk2 5TDA ; 0.79 ; Crystal structure of the UBR-box domain from UBR2 in complex with RLWS N-degron 5X3P ; 1.999 ; Crystal structure of the UBX domain of human UBXD7 5X4L ; 2.402 ; Crystal structure of the UBX domain of human UBXD7 in complex with p97 N domain 7MZO ; 1.62 ; Crystal structure of the UcaD lectin-binding domain 7MZQ ; 1.5 ; Crystal structure of the UcaD lectin-binding domain in complex with fucose 7MZS ; 1.72 ; Crystal structure of the UcaD lectin-binding domain in complex with galactose 7MZR ; 1.78 ; Crystal structure of the UcaD lectin-binding domain in complex with glucose 3TB3 ; 2.3 ; Crystal structure of the UCH domain of UCH-L5 with 6 residues deleted 7MZP ; 2.2 ; Crystal structure of the UclD lectin-binding domain 6RTG ; 1.9 ; Crystal structure of the UDP-bound glycosyltransferase domain from the YGT toxin 4M2A ; 1.66 ; Crystal structure of the udp-glucose pyrophosphorylase from Leishmania major in the post-reactive state 2O6L ; 1.8 ; Crystal Structure of the UDP-Glucuronic Acid Binding Domain of the Human Drug Metabolizing UDP-Glucuronosyltransferase 2B7 7YF5 ; 1.527 ; Crystal Structure of the UDPGA Binding Domain of the Human Phase II Metabolizing Enzyme UDP-Glucuronosyltransferase 2B10 2Z6O ; 1.6 ; Crystal Structure of the Ufc1, Ufm1 conjugating enzyme 1 2Z6P ; 1.8 ; Crystal Structure of the Ufc1, Ufm1 conjugating enzyme 1 2PE8 ; 2.0 ; Crystal structure of the UHM domain of human SPF45 (free form) 2PEH ; 2.11 ; Crystal structure of the UHM domain of human SPF45 in complex with SF3b155-ULM5 6SJ5 ; 2.26687 ; Crystal structure of the uL14-RsfS complex from Staphylococcus aureus 4UUT ; 2.8 ; Crystal structure of the Ultrabithorax protein 3RUB ; 2.0 ; CRYSTAL STRUCTURE OF THE UNACTIVATED FORM OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE FROM TOBACCO REFINED AT 2.0-ANGSTROMS RESOLUTION 1RLC ; 2.7 ; CRYSTAL STRUCTURE OF THE UNACTIVATED RIBULOSE 1, 5-BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE COMPLEXED WITH A TRANSITION STATE ANALOG, 2-CARBOXY-D-ARABINITOL 1,5-BISPHOSPHATE 6O3D ; 1.402 ; Crystal structure of the unbound Fab fragment of the human HIV-1 neutralizing antibody PGZL1. 6O3K ; 1.451 ; Crystal structure of the unbound Fab fragment of the human HIV-1 neutralizing antibody PGZL1.H4K3 3D0X ; 2.95 ; Crystal Structure of the unbound lysine riboswitch 1M08 ; 2.1 ; Crystal structure of the unbound nuclease domain of ColE7 6O41 ; 2.465 ; Crystal structure of the unbound PGZL1 germline Fab fragment (PGZL1_gVmDmJ) 7OK7 ; 3.15 ; Crystal structure of the UNC119B ARL3 complex 2XHE ; 2.8 ; Crystal structure of the Unc18-syntaxin 1 complex from Monosiga brevicollis 1WMG ; 2.1 ; Crystal structure of the UNC5H2 death domain 3C9Q ; 1.5 ; Crystal structure of the uncharacterized human protein C8orf32 with bound peptide 3L6I ; 2.011 ; Crystal structure of the uncharacterized lipoprotein yceb from e. coli at the resolution 2.0a. northeast structural genomics consortium target er542 4JHC ; 1.85 ; Crystal structure of the uncharacterized Maf protein YceF from E. coli 4LU1 ; 1.92 ; Crystal structure of the uncharacterized Maf protein YceF from E. coli, mutant D69A 2QYZ ; 2.04 ; Crystal structure of the uncharacterized protein CTC02137 from Clostridium tetani E88 2RG4 ; 1.9 ; Crystal structure of the uncharacterized protein Q2CBJ1_9RHOB from Oceanicola granulosus HTCC2516 2QZB ; 2.1 ; Crystal structure of the uncharacterized protein yfeY from Escherichia coli 1D4C ; 2.9 ; CRYSTAL STRUCTURE OF THE UNCOMPLEXED FORM OF THE FLAVOCYTOCHROME C FUMARATE REDUCTASE OF SHEWANELLA PUTREFACIENS STRAIN MR-1 1IK7 ; 2.3 ; Crystal Structure of the Uncomplexed Pelle Death Domain 6TLY ; 1.8 ; Crystal structure of the unconventional kinetochore protein Bodo saltans KKT2 central domain 6ZPJ ; 1.9 ; Crystal structure of the unconventional kinetochore protein Leishmania mexicana KKT4 coiled coil domain 6TLX ; 2.87 ; Crystal structure of the unconventional kinetochore protein Perkinsela sp. KKT2a central domain 6ZPK ; 1.57 ; Crystal structure of the unconventional kinetochore protein Trypanosoma brucei KKT4 BRCT domain 7QRO ; 1.8 ; Crystal structure of the unconventional kinetochore protein Trypanosoma brucei KKT4 BRCT domain K543A mutant 6ZPM ; 1.9 ; Crystal structure of the unconventional kinetochore protein Trypanosoma cruzi KKT4 coiled coil domain 5PAL ; 1.54 ; CRYSTAL STRUCTURE OF THE UNIQUE PARVALBUMIN COMPONENT FROM MUSCLE OF THE LEOPARD SHARK (TRIAKIS SEMIFASCIATA). THE FIRST X-RAY STUDY OF AN ALPHA-PARVALBUMIN 2BE7 ; 2.85 ; Crystal structure of the unliganded (T-state) aspartate transcarbamoylase of the psychrophilic bacterium Moritella profunda 1ABQ ; 2.8 ; CRYSTAL STRUCTURE OF THE UNLIGANDED ABL TYROSINE KINASE SH3 DOMAIN 6CUH ; 2.01 ; Crystal structure of the unliganded BC8B TCR 6PPA ; 1.77 ; Crystal structure of the unliganded bromodomain of human BRD7 6UZF ; 1.75 ; Crystal structure of the unliganded bromodomain of human BRD9 6OVN ; 1.77 ; Crystal structure of the unliganded Clone 2 TCR 5TRP ; 2.692 ; Crystal Structure of the Unliganded DH270 Cooperating Lineage Member DH272 3I2T ; 2.7 ; Crystal structure of the unliganded Drosophila Epidermal Growth Factor Receptor ectodomain 2AYE ; 2.3 ; Crystal structure of the unliganded E2 DNA Binding Domain from HPV6a 3V5R ; 2.099 ; Crystal structure of the unliganded form of Gal3p 1YT2 ; 3.25 ; Crystal Structure of the Unliganded Form of GRP94, the ER Hsp90: Basis for Nucleotide-Induced Conformational Change, GRP94N APO CRYSTAL 1YT1 ; 2.2 ; Crystal Structure of the Unliganded Form of GRP94, the ER Hsp90: Basis for Nucleotide-Induced Conformational Change, GRP94N(DELTA)41 APO CRYSTAL 1YT0 ; 2.4 ; Crystal Structure of the Unliganded Form of GRP94, the ER Hsp90: Basis for Nucleotide-Induced Conformational Change, GRP94N(DELTA)41 APO CRYSTAL SOAKED WITH ADP 1YSZ ; 2.65 ; Crystal Structure of the Unliganded Form of GRP94, the ER Hsp90: Basis for Nucleotide-Induced Conformational Change, GRP94N(DELTA)41 APO CRYSTAL SOAKED WITH NECA 5JON ; 2.042 ; Crystal structure of the unliganded form of HCN2 CNBD 1MQK ; 1.28 ; Crystal structure of the unliganded Fv-fragment of the anti-cytochrome C oxidase antibody 7E2 5DW7 ; 3.202 ; Crystal structure of the unliganded geosmin synthase N-terminal domain from Streptomyces coelicolor 3UP1 ; 2.15 ; Crystal structure of the unliganded human interleukin-7 receptor extracellular domain 3ECM ; 1.9 ; Crystal structure of the unliganded PDE8A catalytic domain 6OVO ; 2.49 ; Crystal structure of the unliganded PG10 TCR 5WJO ; 2.5 ; Crystal structure of the unliganded PG90 TCR 3POM ; 2.5 ; Crystal Structure of the Unliganded Retinoblastoma Protein Pocket Domain 7K3O ; 1.7 ; Crystal structure of the unliganded second bromodomain (BD2) of human TAF1 7JJH ; 2.1 ; Crystal structure of the unliganded tandem bromodomain (BD1, BD2) of human TAF1 1PG5 ; 2.6 ; CRYSTAL STRUCTURE OF THE UNLIGATED (T-STATE) ASPARTATE TRANSCARBAMOYLASE FROM THE EXTREMELY THERMOPHILIC ARCHAEON SULFOLOBUS ACIDOCALDARIUS 6Y1K ; 1.65 ; Crystal structure of the unmodified A.17 antibody FAB fragment - L47R mutant 8GC1 ; 3.19 ; Crystal structure of the unmutated common ancestor (UCA) of the PC39-1 anti-HIV broadly neutralizing antibody lineage 1SNU ; 2.5 ; CRYSTAL STRUCTURE OF THE UNPHOSPHORYLATED INTERLEUKIN-2 TYROSINE KINASE CATALYTIC DOMAIN 6EGD ; 2.1 ; Crystal structure of the unphosphorylated IRAK4 kinase domain Bound to a type I inhibitor 6EGE ; 1.401 ; Crystal structure of the unphosphorylated IRAK4 kinase domain Bound to a type I inhibitor 1U46 ; 2.0 ; Crystal Structure of the Unphosphorylated Kinase Domain of the Tyrosine Kinase ACK1 4LE2 ; 2.54 ; Crystal structure of the unphosphorylated receiver domain of DesR in the active state 3B5G ; 1.9 ; Crystal Structure of the Unstable and Highly Fibrillogenic PRO7SER Mutant of the Recombinant Variable Domain 6AJL2 3BDX ; 2.3 ; Crystal structure of the unstable and highly fibrillogenic Pro7Ser mutant of the Recombinant variable domain 6AJL2 3BCM ; 2.25 ; Crystal Structure of The Unswapped Form of P19A/L28Q/N67D BS-RNase 6GS3 ; 1.45 ; Crystal Structure of the Uperin-3.5 peptide from Uperoleia mjobergii forming cross-alpha fibril 2OTA ; 2.2 ; Crystal structure of the UPF0352 protein CPS_2611 from Colwellia psychrerythraea. NESG target CsR4. 2QTI ; 2.3 ; Crystal structure of the UPF0352 protein SO_2176 from Shewanella oneidensis. NESG target SoR77. 2IYK ; 2.95 ; Crystal structure of the UPF2-interacting domain of nonsense mediated mRNA decay factor UPF1 4FZP ; 1.29 ; Crystal Structure of the uranyl binding protein complexed with uranyl 3UX4 ; 3.26 ; Crystal structure of the urea channel from the human gastric pathogen Helicobacter pylori 3K3F ; 2.3 ; Crystal Structure of the Urea Transporter from Desulfovibrio Vulgaris 3K3G ; 2.4 ; Crystal Structure of the Urea Transporter from Desulfovibrio Vulgaris Bound to 1,3-dimethylurea 6JC4 ; 2.3 ; Crystal structure of the urease accessory protein UreF from Klebsiella pneumoniae 4BQH ; 1.75 ; Crystal structure of the uridine diphosphate N-acetylglucosamine pyrophosphorylase from Trypanosoma brucei in complex with inhibitor 1Y1T ; 1.77 ; Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium at 1.77A Resolution 1SJ9 ; 2.5 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium at 2.5A resolution 1ZL2 ; 1.85 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in complex with 2,2'-anhydrouridine and phosphate ion at 1.85A resolution 2OEC ; 2.194 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in complex with 2,2'-anhydrouridine and potassium ion at 2.194A resolution 1Y1R ; 2.11 ; Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with Inhibitor and Phosphate Ion at 2.11A Resolution 2HRD ; 1.7 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in complex with thymine and phosphate ion at 1.70A resolution 2HN9 ; 2.12 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in complex with thymine and phosphate ion at 2.12A resolution 2RJ3 ; 2.51 ; Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with Uracil and Phosphate Ion at 2.49A Resolution 1Y1S ; 2.55 ; Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with Uracil and Sulfate Ion at 2.55A Resolution 2HWU ; 2.91 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in complex with uridine and phosphate ion at 2.91A resolution 1Y1Q ; 2.35 ; Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with Uridine-5p-monophosphate and Sulfate Ion at 2.35A Resolution 2HSW ; 1.99 ; Crystal structure of the uridine phosphorylase from Salmonella typhimurium in unliganded state at 1.99A resolution 4FU7 ; 2.0 ; Crystal Structure of the Urokinase 4FU8 ; 2.2 ; Crystal Structure of the Urokinase 4FU9 ; 1.6 ; Crystal Structure of the Urokinase 4FUB ; 1.9 ; Crystal Structure of the Urokinase 4FUC ; 1.72 ; Crystal Structure of the Urokinase 4FUD ; 2.0 ; Crystal Structure of the Urokinase 4FUE ; 2.0 ; Crystal Structure of the Urokinase 4FUF ; 2.0 ; Crystal Structure of the Urokinase 4FUG ; 1.8 ; Crystal Structure of the Urokinase 4FUH ; 1.6 ; Crystal Structure of the Urokinase 4FUI ; 2.0 ; Crystal Structure of the Urokinase 4FUJ ; 2.05 ; Crystal Structure of the Urokinase 3PV1 ; 2.6 ; Crystal structure of the USP15 DUSP-UBL domains 4A3O ; 2.2 ; Crystal structure of the USP15 DUSP-UBL monomer 4M5W ; 2.244 ; Crystal structure of the USP7/HAUSP catalytic domain 4M5X ; 2.187 ; Crystal structure of the USP7/HAUSP catalytic domain 3MQS ; 2.4 ; Crystal Structure of the USP7:Hdm2(PSTS) complex 3MQR ; 1.8 ; Crystal Structure of the USP7:HdmX(AHSS) complex 2FZP ; 1.87 ; Crystal structure of the USP8 interaction domain of human NRDP1 8A4O ; 1.35 ; Crystal structure of the Ustilago hordei effector protein Uvi2 4EZC ; 2.36 ; Crystal Structure of the UT-B Urea Transporter from Bos Taurus 4EZD ; 2.5 ; Crystal Structure of the UT-B Urea Transporter from Bos Taurus Bound to Selenourea 4NSX ; 2.1 ; Crystal Structure of the Utp21 tandem WD Domain 4M5D ; 1.97 ; Crystal structure of the Utp22 and Rrp7 complex from Saccharomyces cerevisiae 1RIF ; 2.0 ; Crystal structure of the UvsW helicase from Bacteriophage T4 1JMM ; 2.4 ; Crystal structure of the V-region of Streptococcus mutans antigen I/II 7NES ; 1.35 ; Crystal structure of the v-Src SH3 domain N117D-V124L mutant 7NER ; 1.55 ; Crystal structure of the v-Src SH3 domain Q128R mutant 7PVT ; 1.6 ; Crystal structure of the v-Src SH3 domain Q128R mutant in complex with the synthetic peptide VSL12 7NET ; 1.5 ; Crystal structure of the v-Src SH3 domain W95R-I96T mutant 2I4R ; 2.8 ; Crystal structure of the V-type ATP synthase subunit F from Archaeoglobus fulgidus. NESG target GR52A. 2QAI ; 2.4 ; Crystal structure of the V-type ATP synthase subunit F from Pyrococcus furiosus. NESG target PfR7. 6MLT ; 1.9 ; Crystal structure of the V. cholerae biofilm matrix protein Bap1 3BY9 ; 1.7 ; Crystal structure of the V. cholerae Histidine Kinase DctB Sensor Domain 3I9Y ; 2.16 ; Crystal structure of the V. parahaemolyticus histidine kinase sensor TorS sensor domain 5UM3 ; 1.198 ; Crystal structure of the V122L mutant of human UBR-box domain from UBR2 3PAG ; 2.25 ; Crystal structure of the V130D mutant of OXA-24/40 in complex with doripenem 1EOE ; 1.704 ; CRYSTAL STRUCTURE OF THE V135R MUTANT OF A SHAKER T1 DOMAIN 3U7C ; 0.93 ; crystal structure of the V143I mutant of human carbonic anhydrase II 5FS6 ; 1.9 ; Crystal structure of the V243L mutant of human apoptosis inducing factor 5KQH ; 1.82 ; Crystal structure of the V293D variant of catalase-peroxidase from B. pseudomallei 5NGD ; 1.9 ; Crystal structure of the V325G mutant of the bacteriophage G20C portal protein 2QST ; 2.9 ; Crystal structure of the V39C mutant of the N-terminal domain of carcinoembryonic antigen (CEA) 6F97 ; 1.9 ; Crystal structure of the V465T mutant of 5-(Hydroxymethyl)furfural Oxidase (HMFO) 3ZFL ; 1.88 ; Crystal structure of the V58A mutant of human class alpha glutathione transferase in the apo form 4L01 ; 1.9 ; Crystal structure of the V658F apo Jak1 pseudokinase domain 5N30 ; 1.8 ; Crystal structure of the V72I mutant of the mouse alpha-Dystroglycan N-terminal region 4O4X ; 2.9 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) double mutant Tyr-167-Ala and Trp-176-Ala from Haemophilus parasuis Hp5 4O3Y ; 2.6 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Arg-179-Glu from Actinobacillus pleuropneumoniae H87 4O3X ; 2.5 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Phe-171-Ala from Actinobacillus pleuropneumoniae H49 4O4U ; 2.64 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Trp-176-Ala from Haemophilus parasuis Hp5 4O49 ; 2.5 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Tyr-174-Ala from Actinobacillus pleuropneumoniae H87 4O3W ; 2.1 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Tyr-63-Ala from Actinobacillus suis H57 4O3Z ; 2.9 ; Crystal structure of the vaccine antigen Transferrin Binding Protein B (TbpB) mutant Tyr-95-Ala from Actinobacillus pleuropneumoniae H87 3TIE ; 2.25 ; Crystal structure of the vaccinia derived peptide A11R in complex with the murine MHC CLASS I H-2 KB 2GAF ; 2.4 ; Crystal Structure of the Vaccinia Polyadenylate Polymerase Heterodimer (apo form) 4OD8 ; 1.85 ; Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminus 4ODA ; 2.2 ; Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminus 2RF6 ; 1.95 ; Crystal Structure of the Vaccinia Virus Dual-Specificity Phosphatase VH1 1AXG ; 2.5 ; CRYSTAL STRUCTURE OF THE VAL203->ALA MUTANT OF LIVER ALCOHOL DEHYDROGENASE COMPLEXED WITH COFACTOR NAD AND INHIBITOR TRIFLUOROETHANOL SOLVED TO 2.5 ANGSTROM RESOLUTION 5Z7B ; 2.1 ; Crystal structure of the VanR transcription factor in complex with vanillate 1ZV5 ; 2.0 ; Crystal structure of the variable domain of the camelid heavy-chain antibody D2-L29 in complex with hen egg white lysozyme 2WD6 ; 2.3 ; Crystal structure of the Variable Domain of the Streptococcus gordonii Surface Protein SspB 7F9N ; 3.0 ; Crystal structure of the variable region of Plasmodium RIFIN #4 (PF3D7_1000500) in complex with LAIR1 7F9M ; 2.9 ; Crystal structure of the variable region of Plasmodium RIFIN #4 (PF3D7_1000500) in complex with LAIR1 (with T67L, N69S and A77T mutations) 7F9L ; 2.7 ; Crystal structure of the variable region of Plasmodium RIFIN #6 (PF3D7_1400600) in complex with LAIR1 (with T67L, N69S and A77T mutations) 7F9K ; 2.18 ; Crystal structure of the variable region of Plasmodium RIFIN #6(PF3D7_1400600) 6NVQ ; 2.1 ; Crystal structure of the VASH1-SVBP complex 7WFY ; 2.449 ; Crystal Structure of the VAV2 SH2 domain in complex with APP phosphorylated peptide 4ROJ ; 1.95 ; Crystal Structure of the VAV2 SH2 domain in complex with TXNIP phosphorylated peptide 8P0F ; 1.98 ; Crystal structure of the VCB complex with compound 1. 1S0Z ; 2.5 ; Crystal structure of the VDR LBD complexed to seocalcitol. 1TXI ; 1.9 ; Crystal structure of the vdr ligand binding domain complexed to TX522 2RL5 ; 2.65 ; Crystal structure of the VEGFR2 kinase domain in complex with a 2,3-dihydro-1,4-benzoxazine inhibitor 3VHK ; 2.49 ; Crystal structure of the VEGFR2 kinase domain in complex with a back pocket binder 3BE2 ; 1.75 ; Crystal structure of the VEGFR2 kinase domain in complex with a benzamide inhibitor 2QU5 ; 2.95 ; Crystal structure of the VEGFR2 kinase domain in complex with a benzimidazole inhibitor 3DTW ; 2.9 ; Crystal structure of the VEGFR2 kinase domain in complex with a benzisoxazole inhibitor 2QU6 ; 2.1 ; Crystal structure of the VEGFR2 kinase domain in complex with a benzoxazole inhibitor 3CPB ; 2.7 ; Crystal structure of the VEGFR2 kinase domain in complex with a bisamide inhibitor 3B8Q ; 2.75 ; Crystal structure of the VEGFR2 kinase domain in complex with a naphthamide inhibitor 3B8R ; 2.7 ; Crystal structure of the VEGFR2 kinase domain in complex with a naphthamide inhibitor 2P2I ; 2.4 ; Crystal structure of the VEGFR2 kinase domain in complex with a nicotinamide inhibitor 3U6J ; 2.15 ; Crystal structure of the VEGFR2 kinase domain in complex with a pyrazolone inhibitor 2P2H ; 1.95 ; Crystal structure of the VEGFR2 kinase domain in complex with a pyridinyl-triazine inhibitor 3CP9 ; 2.5 ; Crystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitor 3CPC ; 2.4 ; Crystal structure of the VEGFR2 kinase domain in complex with a pyridone inhibitor 3EWH ; 1.6 ; Crystal structure of the VEGFR2 kinase domain in complex with a pyridyl-pyrimidine benzimidazole inhibitor 4AG8 ; 1.95 ; CRYSTAL STRUCTURE OF THE VEGFR2 KINASE DOMAIN IN COMPLEX WITH AXITINIB (AG-013736) (N-Methyl-2-(3-((E)-2-pyridin-2-yl-vinyl)-1H- indazol-6-ylsulfanyl)-benzamide) 3EFL ; 2.2 ; Crystal structure of the VEGFR2 kinase domain in complex with motesanib 2XIR ; 1.5 ; Crystal structure of the VEGFR2 kinase domain in complex with PF- 00337210 (N,2-dimethyl-6-(7-(2-morpholinoethoxy)quinolin-4-yloxy) benzofuran-3-carboxamide) 7O6V ; 2.5 ; Crystal structure of the VEL1 VEL polymerising domain (R643A K645D I664D mutant) 6M1U ; 2.791 ; Crystal structure of the vertebrate conserved region (VCR) of human METTL16 3PMK ; 3.03 ; Crystal structure of the Vesicular Stomatitis Virus RNA free nucleoprotein/phosphoprotein complex 1QQE ; 2.9 ; CRYSTAL STRUCTURE OF THE VESICULAR TRANSPORT PROTEIN SEC17 4LN0 ; 2.896 ; Crystal structure of the VGLL4-TEAD4 complex 1ZVY ; 1.63 ; Crystal structure of the VHH D3-L11 in complex with hen egg white lysozyme 1ZVH ; 1.5 ; Crystal structure of the VHH domain D2-L24 in complex with hen egg white lysozyme 6RBB ; 2.45 ; CRYSTAL STRUCTURE OF the VhH-domain of anti-IL-17A antibody netakimab 1DVP ; 2.0 ; CRYSTAL STRUCTURE OF THE VHS AND FYVE TANDEM DOMAINS OF HRS, A PROTEIN INVOLVED IN MEMBRANE TRAFFICKING AND SIGNAL TRANSDUCTION 6IDE ; 2.51 ; Crystal structure of the Vibrio cholera VqmA-Ligand-DNA complex provides molecular mechanisms for drug design 4KSR ; 4.2 ; Crystal Structure of the Vibrio cholerae ATPase GspE Hexamer 3O44 ; 2.88 ; Crystal Structure of the Vibrio cholerae Cytolysin (HlyA) Heptameric Pore 1XEZ ; 2.3 ; Crystal Structure Of The Vibrio Cholerae Cytolysin (HlyA) Pro-Toxin With Octylglucoside Bound 2W57 ; 2.6 ; Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals structural rearrangement of the DNA-binding domains 3C30 ; 2.8 ; Crystal structure of the Vibrio Cholerae LuxQ periplasmic domain (SeMet) 7QXM ; 3.8 ; Crystal structure of the Vibrio cholerae replicative helicase (DnaB) 6T66 ; 3.9 ; Crystal structure of the Vibrio cholerae replicative helicase (DnaB) with GDP-AlF4 8A3V ; 2.9 ; Crystal structure of the Vibrio cholerae replicative helicase (VcDnaB) in complex with its loader protein (VcDciA) 3OC5 ; 2.4 ; Crystal Structure of the vibrio cholerae secreted colonization factor TcpF 4OWJ ; 2.0 ; Crystal Structure of the Vibrio vulnificus Hemolysin/Cytolysin Beta-Trefoil Lectin 4OWK ; 2.0 ; Crystal Structure of the Vibrio vulnificus Hemolysin/Cytolysin Beta-Trefoil Lectin with N-Acetyl-D-Galactosamine Bound 4OWL ; 2.1 ; Crystal Structure of the Vibrio vulnificus Hemolysin/Cytolysin Beta-Trefoil Lectin with N-Acetyl-D-Lactosamine Bound 5CAD ; 1.49 ; Crystal structure of the vicilin from Solanum melongena revealed existence of different anionic ligands in structurally similar pockets 5VF5 ; 1.49 ; Crystal structure of the vicilin from Solanum melongena, re-refinement 3WUS ; 2.54 ; Crystal Structure of the Vif-Binding Domain of Human APOBEC3F 4N9F ; 3.3 ; Crystal structure of the Vif-CBFbeta-CUL5-ElOB-ElOC pentameric complex 7OVE ; 1.92 ; Crystal structure of the VIM-2 acquired metallo-beta-Lactamase in Complex with compound 10 (JMV-7210) 7OVH ; 1.8 ; Crystal structure of the VIM-2 acquired metallo-beta-Lactamase in Complex with compound 14 (JMV-6931) 7PP0 ; 1.73 ; Crystal structure of the VIM-2 acquired metallo-beta-Lactamase in complex with compound 28 (JMV-7038) 8A4M ; 1.98 ; Crystal structure of the VIM-2 acquired metallo-beta-Lactamase in complex with compound 8 (JMV-7061) 7OVF ; 1.9 ; Crystal structure of the VIM-2 acquired metallo-beta-Lactamase in Complex with compound 8 (JMV-7207) 6YRP ; 1.95 ; Crystal Structure of the VIM-2 Acquired Metallo-beta-Lactamase in Complex with JMV-4690 (Cpd 31) 6SP7 ; 1.8 ; Crystal Structure of the VIM-2 Acquired Metallo-beta-Lactamase in Complex with Taniborbactam (VNRX-5133) 6ZGM ; 1.65 ; Crystal Structure of the VIM-2 Acquired Metallo-beta-Lactamase in Complex with the thiazolecarboxylate inhibitor ANT2681 7O6U ; 1.84 ; Crystal structure of the VIN3 VEL polymerising domain (R554A R556D mutant) 1QKR ; 1.8 ; Crystal structure of the vinculin tail and a pathway for activation 8R2C ; 1.8 ; Crystal structure of the Vint domain from Tetrahymena thermophila 6DX2 ; 1.614 ; Crystal structure of the viral OTU domain protease from Dera Ghazi Khan virus 6DX5 ; 2.224 ; Crystal structure of the viral OTU domain protease from Farallon virus 6DX1 ; 1.652 ; Crystal structure of the viral OTU domain protease from Qalyub virus 6DX3 ; 2.052 ; Crystal structure of the viral OTU domain protease from Taggert virus 7AKX ; 1.6 ; Crystal structure of the viral rhodopsin OLPVR1 in P1 space group 7AKY ; 1.4 ; Crystal structure of the viral rhodopsin OLPVR1 in P21212 space group 7AKW ; 1.96 ; Crystal structure of the viral rhodopsins chimera O1O2 1SFU ; 2.0 ; Crystal structure of the viral Zalpha domain bound to left-handed Z-DNA 4GVB ; 1.8 ; Crystal structure of the virally encoded antifungal protein, KP6, heterodimer 2GZA ; 2.6 ; Crystal structure of the VirB11 ATPase from the Brucella Suis type IV secretion system in complex with sulphate 3F6N ; 3.1 ; Crystal structure of the virion-associated protein P3 from Caulimovirus 3K4T ; 2.59 ; Crystal structure of the virion-associated protein P3 from caulimovirus 1XKP ; 1.7 ; Crystal structure of the virulence factor YopN in complex with its heterodimeric chaperone SycN-YscB 5I55 ; 1.45 ; Crystal Structure of the Virulent PSM-alpha3 Peptide Forming a Cross-alpha amyloid-like Fibril 4FSJ ; 3.5 ; Crystal structure of the virus like particle of Flock House virus 4YVS ; 3.65 ; crystal structure of the virus-like particle of a c4 strain EV71 2DJ5 ; 2.55 ; Crystal Structure of the vitamin B12 biosynthetic cobaltochelatase, CbiXS, from Archaeoglobus fulgidus 4QTN ; 2.8 ; Crystal structure of the Vitamin B3 transporter PnuC 6O5E ; 1.9 ; Crystal structure of the Vitronectin hemopexin-like domain 7RJ9 ; 1.7 ; Crystal structure of the Vitronectin hemopexin-like domain binding Calcium 7TXR ; 2.0 ; Crystal structure of the Vitronectin hemopexin-like domain binding Calcium-2 7U68 ; 2.0 ; Crystal structure of the Vitronectin hemopexin-like domain binding Sodium-2 1JVA ; 2.1 ; CRYSTAL STRUCTURE OF THE VMA1-DERIVED ENDONUCLEASE BEARING THE N AND C EXTEIN PROPEPTIDES 1UM2 ; 2.9 ; Crystal Structure of the Vma1-Derived Endonuclease with the Ligated Extein Segment 4BUM ; 2.801 ; Crystal structure of the Voltage Dependant Anion Channel 2 from zebrafish. 4DEY ; 1.95 ; Crystal structure of the Voltage Dependent Calcium Channel beta-2 Subunit in Complex With The CaV1.2 I-II Linker. 4DEX ; 2.0 ; Crystal structure of the Voltage Dependent Calcium Channel beta-2 Subunit in Complex With The CaV2.2 I-II Linker. 5FEB ; 1.35 ; Crystal structure of the Voltage-gated Sodium Channel Beta 2 subunit extracellular domain 5FDY ; 1.85 ; Crystal structure of the Voltage-gated Sodium Channel Beta 2 subunit extracellular domain, C72A/C75A mutant 4MZ2 ; 1.722 ; Crystal structure of the voltage-gated sodium channel beta 4 subunit extracellular domain 4MZ3 ; 1.741 ; Crystal structure of the voltage-gated sodium channel beta 4 subunit extracellular domain, C131W mutant 6SX7 ; 2.5 ; Crystal Structure of the Voltage-Gated Sodium Channel NavMs (F208L) (2.2 Angstrom resolution) 6SXC ; 2.5 ; Crystal structure of the Voltage-Gated Sodium Channel NavMs (F208L) in complex with 4-hydroxytamoxifen (2.5 Angstrom resolution) 6SXE ; 2.6 ; Crystal Structure of the Voltage-Gated Sodium Channel NavMs (F208L) in complex with Endoxifen (2.6 Angstrom resolution) 6Z8C ; 3.2 ; Crystal Structure of the Voltage-Gated Sodium Channel NavMs (F208L) in complex with N-desmethyltamoxifen (3.2 A resolution) 6SXF ; 2.839 ; Crystal Structure of the Voltage-Gated Sodium Channel NavMs (F208L) in complex with Tamoxifen (2.8 Angstrom resolution) 6SXG ; 2.4 ; Crystal Structure of the Voltage-Gated Sodium Channel NavMs in complex with 4-hydroxytamoxifen (2.4 Angstrom resolution) 1FNS ; 2.0 ; CRYSTAL STRUCTURE OF THE VON WILLEBRAND FACTOR (VWF) A1 DOMAIN I546V MUTANT IN COMPLEX WITH THE FUNCTION BLOCKING FAB NMC4 1OAK ; 2.2 ; CRYSTAL STRUCTURE OF THE VON WILLEBRAND FACTOR (VWF) A1 DOMAIN IN COMPLEX WITH THE FUNCTION BLOCKING NMC-4 FAB 1SHT ; 1.81 ; Crystal Structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor 1SHU ; 1.5 ; Crystal Structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor 4DMU ; 2.8 ; Crystal structure of the von Willebrand factor A3 domain in complex with a collagen III derived triple-helical peptide 1FE8 ; 2.03 ; CRYSTAL STRUCTURE OF THE VON WILLEBRAND FACTOR A3 DOMAIN IN COMPLEX WITH A FAB FRAGMENT OF IGG RU5 THAT INHIBITS COLLAGEN BINDING 1M0Z ; 1.85 ; Crystal Structure of the von Willebrand Factor Binding Domain of Glycoprotein Ib alpha 3NLC ; 2.15 ; Crystal structure of the VP0956 protein from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium Target VpR147 3U07 ; 2.083 ; Crystal Structure of the VPA0106 protein from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium Target VpR106. 4N7E ; 2.7 ; Crystal structure of the Vps10p domain of human sortilin/NTS3 in complex with AF38469 4MSL ; 2.7 ; Crystal structure of the Vps10p domain of human sortilin/NTS3 in complex with AF40431 3F6K ; 2.0 ; Crystal structure of the Vps10p domain of human sortilin/NTS3 in complex with neurotensin 5MRH ; 2.5 ; Crystal structure of the Vps10p domain of human sortilin/NTS3 in complex with Triazolone 1 5MRI ; 2.0 ; Crystal structure of the Vps10p domain of human sortilin/NTS3 in complex with Triazolone 18 1O06 ; 1.45 ; Crystal structure of the Vps27p Ubiquitin Interacting Motif (UIM) 4KMO ; 2.6 ; Crystal Structure of the Vps33-Vps16 HOPS subcomplex from Chaetomium thermophilum 2RKO ; 3.35 ; Crystal Structure of the Vps4p-dimer 3DM7 ; 2.0 ; Crystal Structure of the Vps75 Histone Chaperone 1TXU ; 2.35 ; Crystal Structure of the Vps9 Domain of Rabex-5 4R4V ; 3.07 ; Crystal structure of the VS ribozyme - G638A mutant 5V3I ; 3.293 ; Crystal structure of the VS ribozyme - wild-type C634 4R4P ; 3.07 ; Crystal Structure of the VS ribozyme-A756G mutant 2Z66 ; 1.9 ; Crystal structure of the VT3 hybrid of human TLR4 and hagfish VLRB.61 6TNJ ; 1.85 ; Crystal structure of the vWF domain of the type V pili tip protein Mfa5 from Porphyromonas gingivalis 6S4C ; 2.0 ; Crystal Structure of the vWFA2 subdomain of type VII collagen 5KT8 ; 2.0 ; Crystal structure of the W139F variant of the catalase-peroxidase from B. pseudomallei treated with isoniazid 3VLG ; 2.3 ; Crystal structure of the W150A mutant LOX-1 CTLD showing impaired OxLDL binding 5KQQ ; 1.87 ; Crystal structure of the W153F variant of catalase-peroxidase from B. pseudomallei treated 5KSG ; 1.62 ; Crystal structure of the W153F variant of catalase-peroxidase from B. pseudomallei treated with isoniazid 3SR3 ; 1.495 ; Crystal structure of the w180a mutant of microcin immunity protein mccf from Bacillus anthracis shows the active site loop in the open conformation. 6D7M ; 2.187 ; Crystal structure of the W184R/W231R Importin alpha mutant 3RN1 ; 1.93 ; Crystal Structure of the W199E-MauG/pre-Methylamine Dehydrogenase Complex 3RMZ ; 1.72 ; Crystal Structure of the W199F-MauG/pre-Methylamine Dehydrogenase Complex 3RN0 ; 1.91 ; Crystal Structure of the W199K-MauG/pre-Methylamine Dehydrogenase Complex 6CC6 ; 1.8 ; Crystal structure of the W202F variant of catalase-peroxidase from B. pseudomallei 6CDQ ; 1.92 ; Crystal structure of the W202F variant of catalase-peroxidase from B. pseudomallei with INH bound. 3EE0 ; 2.75 ; Crystal Structure of the W215A/E217A Mutant of Human Thrombin (space group P2(1)2(1)2(1)) 3EDX ; 2.4 ; Crystal structure of the W215A/E217A mutant of murine thrombin 3MMD ; 1.7 ; Crystal structure of the W241A mutant of xylanase from Geobacillus stearothermophilus T-6 (XT6) complexed with hydrolyzed xylopentaose 4DNU ; 1.764 ; Crystal structure of the W285A mutant of UVB-resistance protein UVR8 8GQE ; 2.0 ; Crystal structure of the W285A mutant of UVR8 in complex with RUP2 4DNV ; 1.999 ; Crystal structure of the W285F mutant of UVB-resistance protein UVR8 6D7N ; 2.3 ; Crystal structure of the W357R/W399R Importin alpha mutant 3RG3 ; 1.903 ; Crystal structure of the W5E mutant of human carbonic anhydrase II 3RG4 ; 1.5 ; Crystal structure of the W5F mutant of human carbonic anhydrase II 3RGE ; 2.096 ; Crystal structure of the W5H mutant of human carbonic anhydrase II 6SNU ; 2.0 ; Crystal structure of the W60C mutant of the (S)-selective transaminase from Chromobacterium violaceum 1YU7 ; 1.5 ; Crystal Structure of the W64Y mutant of Villin Headpiece 6CAW ; 1.95 ; Crystal structure of the W95F variant of catalase-peroxidase from B. pseudomallei 5BPG ; 2.14 ; Crystal structure of the water-soluble FraC purified starting from the trans-membrane pore 1GWY ; 1.71 ; Crystal structure of the water-soluble state of the pore-forming cytolysin Sticholysin II 1O71 ; 2.26 ; Crystal structure of the water-soluble state of the pore-forming cytolysin Sticholysin II complexed with glycerol 1O72 ; 2.41 ; Crystal structure of the water-soluble state of the pore-forming cytolysin Sticholysin II complexed with phosphorylcholine 5VYR ; 1.7 ; Crystal structure of the WbkC formyl transferase from Brucella melitensis 5VYS ; 2.2 ; Crystal structure of the WbkC N-formyltransferase (C47S variant) from Brucella melitensis 5VYT ; 2.2 ; Crystal structure of the WbkC N-formyltransferase (F142A variant) from Brucella melitensis 5VYU ; 2.2 ; Crystal structure of the WbkC N-formyltransferase from Brucella melitensis in complex with GDP-perosaminea and N-10-formyltetrahydrofolate 3OW8 ; 2.3 ; Crystal Structure of the WD repeat-containing protein 61 7KLJ ; 1.52 ; Crystal structure of the WD-repeat domain of human KIF21A 7SUL ; 2.4 ; Crystal structure of the WD-repeat domain of human SEC31A 8SHJ ; 2.21 ; Crystal structure of the WD-repeat domain of human WDR91 in complex with MR45279 4YHC ; 2.05 ; Crystal structure of the WD40 domain of SCAP from fission yeast 5TF2 ; 2.8 ; CRYSTAL STRUCTURE OF THE WD40 DOMAIN OF THE HUMAN PROLACTIN REGULATORY ELEMENT-BINDING PROTEIN 6CVZ ; 1.8 ; Crystal structure of the WD40-repeat of RFWD3 7SSE ; 1.62 ; Crystal structure of the WDR domain of human DCAF1 in complex with CYCA-117-70 7UFV ; 1.9 ; Crystal structure of the WDR domain of human DCAF1 in complex with OICR-6766 8F8E ; 1.55 ; Crystal structure of the WDR domain of human DCAF1 in complex with OICR-8268 compound 2I69 ; 3.11 ; Crystal structure of the West Nile virus envelope glycoprotein 3I50 ; 3.0 ; Crystal structure of the West Nile Virus envelope glycoprotein in complex with the E53 antibody Fab 2OY0 ; 2.8 ; Crystal structure of the West Nile virus methyltransferase 2IJO ; 2.3 ; Crystal Structure of the West Nile virus NS2B-NS3 protease complexed with bovine pancreatic trypsin inhibitor 2GGV ; 1.8 ; Crystal structure of the West Nile virus NS2B-NS3 protease, His51Ala mutant 3SYX ; 2.453 ; Crystal Structure of the WH1 domain from human sprouty-related, EVH1 domain-containing protein. Northeast Structural Genomics Consortium Target HR5538B. 6Q1M ; 1.24 ; Crystal structure of the wheat dwarf virus Rep domain 4V4T ; 6.46 ; Crystal structure of the whole ribosomal complex with a stop codon in the A-site. 4V4R ; 5.9 ; Crystal structure of the whole ribosomal complex. 4V4S ; 6.76 ; Crystal structure of the whole ribosomal complex. 5VC8 ; 1.8 ; Crystal structure of the WHSC1 PWWP1 domain 5X8U ; 2.0 ; Crystal Structure of the wild Human ROR gamma Ligand Binding Domain. 3O0A ; 1.77 ; Crystal structure of the wild type CP1 hydrolitic domain from Aquifex Aeolicus leucyl-trna 6NDW ; 1.725 ; Crystal structure of the wild type D2 domain (A168-T344) of the flagellar hook protein FlgE from Treponema denticola 7U9C ; 2.1 ; Crystal Structure of the wild type Escherichia coli Pyridoxal 5'-phosphate homeostasis protein (YGGS) 1D3A ; 2.94 ; CRYSTAL STRUCTURE OF THE WILD TYPE HALOPHILIC MALATE DEHYDROGENASE IN THE APO FORM 1ZO9 ; 1.7 ; Crystal Structure Of The Wild Type Heme Domain Of P450BM-3 with N-palmitoylmethionine 1VC5 ; 3.4 ; Crystal Structure of the Wild Type Hepatitis Delta Virus Gemonic Ribozyme Precursor, in EDTA solution 3EKV ; 1.75 ; Crystal structure of the wild type HIV-1 protease with the inhibitor, Amprenavir 6RD3 ; 1.98 ; Crystal structure of the wild type OmpK36 from Klebsiella pneumonia 4JF9 ; 2.33 ; Crystal structure of the wild type red fluorescent protein lanRFP (Branchiostoma Lanceolatum) 4V4A ; 9.5 ; Crystal Structure of the Wild Type Ribosome from E. Coli 70S Ribosome. 7JRN ; 2.48 ; Crystal structure of the wild type SARS-CoV-2 papain-like protease (PLPro) with inhibitor GRL0617 3H4K ; 2.55 ; Crystal structure of the wild type Thioredoxin glutatione reductase from Schistosoma mansoni in complex with auranofin 4DER ; 1.9 ; Crystal Structure of the Wild Type TTR Binding Apigenin (TTRwt:API) 4DES ; 1.75 ; Crystal Structure of the Wild Type TTR Binding Chrysin (TTRwt:CHR) 4DET ; 2.05 ; Crystal Structure of the Wild Type TTR Binding Kaempferol (TTRwt:KAE) 4DEW ; 1.899 ; Crystal Structure of the Wild Type TTR Binding Luteolin (TTRwt:LUT) 4DEU ; 1.599 ; Crystal Structure of the Wild Type TTR Binding Naringenin (TTRwt:NAR) 8SBM ; 1.47 ; Crystal structure of the wild-type Catalytic ATP-binding domain of Mtb DosS 4UP6 ; 3.801 ; Crystal structure of the wild-type diacylglycerol kinase refolded in the lipid cubic phase 3VJO ; 2.64 ; Crystal structure of the wild-type EGFR kinase domain in complex with AMPPNP. 4I23 ; 2.8 ; Crystal structure of the wild-type EGFR kinase domain in complex with dacomitinib (soaked) 3NTE ; 1.95 ; Crystal Structure of the Wild-type Full-Length HIV-1 Capsid Protein 4OJC ; 2.93 ; Crystal structure of the wild-type full-length trimeric ectodomain of the C. elegans fusion protein EFF-1 6EC0 ; 2.983 ; Crystal structure of the wild-type heterocomplex between coil 1B domains of human intermediate filament proteins keratin 1 (KRT1) and keratin 10 (KRT10) 3EKX ; 1.97 ; Crystal structure of the wild-type HIV-1 protease with the inhibitor, Nelfinavir 3E4U ; 2.1 ; Crystal Structure of the Wild-Type Human BCL6 BTB/POZ Domain 2JK1 ; 2.1 ; Crystal structure of the wild-type HupR receiver domain 7TI6 ; 2.64 ; Crystal structure of the wild-type least mutated common ancestor (LMCA) of the HIV-targeting PCT64 antibody lineage 2BIV ; 1.7 ; Crystal structure of the wild-type MBT domains of Human SCML2 3G5G ; 2.8 ; Crystal Structure of the Wild-Type Restriction-Modification Controller Protein C.Esp1396I 5KNI ; 2.5 ; Crystal Structure of the wild-type SAM domain of human Tankyrase-1 5A8G ; 1.72 ; Crystal structure of the wild-type Staphylococcus aureus N- acetylneurminic acid lyase in complex with fluoropyruvate 6I2Q ; 2.15 ; Crystal structure of the wild-type SucA domain of Mycobacterium smegmatis KGD (alpha-ketoglutarate decarboxylase), in complex with GarA 8UD6 ; 2.7 ; Crystal structure of the wild-type Thermus thermophilus 70S ribosome in complex with cresomycin, mRNA, deacylated A-site tRNAphe, aminoacylated P-site fMet-tRNAmet, and deacylated E-site tRNAphe at 2.70A resolution 7RQ8 ; 2.5 ; Crystal structure of the wild-type Thermus thermophilus 70S ribosome in complex with iboxamycin, mRNA, deacylated A- and E-site tRNAs, and aminoacylated P-site tRNA at 2.50A resolution 8G2D ; 2.7 ; Crystal structure of the wild-type Thermus thermophilus 70S ribosome in complex with tylosin, mRNA, deacylated A- and E-site tRNAphe, and deacylated P-site tRNAmet at 2.70A resolution 2GTH ; 2.7 ; crystal structure of the wildtype MHV coronavirus non-structural protein nsp15 5EJO ; 2.75 ; Crystal structure of the winged helix domain in Chromatin assembly factor 1 subunit p90 6A6I ; 2.6 ; Crystal structure of the winged-helix domain of Cockayne syndrome group B protein in complex with ubiquitin 3OA2 ; 1.5 ; Crystal structure of the WlbA (WbpB) dehydrogenase from Pseudomonas aeruginosa in complex with NAD at 1.5 angstrom resolution 3O9Z ; 1.449 ; Crystal structure of the WlbA (WbpB) dehydrogenase from Thermus thermophilus in complex with NAD and alpha-ketoglutarate at 1.45 angstrom resolution 3OA0 ; 2.0 ; Crystal structure of the WlbA (WbpB) Dehydrogenase from Thermus thermophilus in complex with NAD and UDP-GlcNAcA 3Q2K ; 2.13 ; Crystal structure of the WlbA dehydrogenase from Bordetella pertussis in complex with NADH and UDP-GlcNAcA 3Q2I ; 1.5 ; Crystal structure of the WlbA dehydrognase from Chromobactrium violaceum in complex with NADH and UDP-GlcNAcA at 1.50 A resolution 5LN5 ; 1.75 ; Crystal structure of the Wss1 E203Q mutant from S. pombe 5Y5Q ; 1.56 ; Crystal structure of the WSSV dUTPase D88N/R158E mutant in complex with dUTP 6HT7 ; 3.7 ; Crystal structure of the WT human mitochondrial chaperonin (ADP:BeF3)14 complex 6VRI ; 1.94 ; Crystal Structure of the wtBlc-split Protein 8EI4 ; 2.43 ; Crystal structure of the WWP1 HECT domain in complex with H302, a Helicon Polypeptide 8EI5 ; 2.6 ; Crystal structure of the WWP2 HECT domain in complex with H301, a Helicon Polypeptide 8EI7 ; 2.22 ; Crystal structure of the WWP2 HECT domain in complex with H304, a Helicon Polypeptide 8EI6 ; 3.62 ; Crystal structure of the WWP2 HECT domain in complex with H305, a Helicon Polypeptide 8EI8 ; 2.9 ; Crystal structure of the WWP2 HECT domain in complex with H308, a Helicon Polypeptide 4TX2 ; 2.9 ; Crystal structure of the X-domain from teicoplanin biosynthesis 3GZG ; 1.55 ; Crystal structure of the Xanthomonas axonopodis pv. citri molybdate-binding protein (ModA) mutant (K127S) 3L6V ; 2.19 ; Crystal Structure of the Xanthomonas campestris Gyrase A C-terminal Domain 7YZG ; 2.82 ; Crystal structure of the Xenopus FoxH1 bound to the TGTGGATT site 5KZV ; 1.616 ; Crystal structure of the xenopus Smoothened cysteine-rich domain (CRD) in complex with 20(S)-hydroxycholesterol 5KZY ; 2.484 ; Crystal structure of the xenopus Smoothened cysteine-rich domain (CRD) in complex with cyclopamine 5KZZ ; 1.332 ; Crystal structure of the xenopus Smoothened cysteine-rich domain (CRD) in its apo-form 1TJ6 ; 1.65 ; Crystal structure of the Xenopus tropicalis Spred1 EVH-1 domain 3P1G ; 1.5 ; Crystal Structure of the Xenotropic Murine Leukemia Virus-Related Virus (XMRV) RNase H Domain 8CDS ; 1.53 ; Crystal structure of the xhNup93-Nb4i VHH antibody 5LKB ; 1.45 ; Crystal structure of the Xi glutathione transferase ECM4 from Saccharomyces cerevisiae 5LKD ; 1.68 ; Crystal structure of the Xi glutathione transferase ECM4 from Saccharomyces cerevisiae in complex with glutathione 4IC2 ; 2.2 ; Crystal structure of the XIAP RING domain 1I4O ; 2.4 ; CRYSTAL STRUCTURE OF THE XIAP/CASPASE-7 COMPLEX 1D1Z ; 1.4 ; CRYSTAL STRUCTURE OF THE XLP PROTEIN SAP 1D4T ; 1.1 ; CRYSTAL STRUCTURE OF THE XLP PROTEIN SAP IN COMPLEX WITH A SLAM PEPTIDE 1D4W ; 1.8 ; CRYSTAL STRUCTURE OF THE XLP PROTEIN SAP IN COMPLEX WITH SLAM PHOSPHOPEPTIDE 4JGS ; 2.2 ; Crystal structure of the xmrv tm retroviral fusion core 8CDT ; 1.41 ; Crystal structure of the xNup93-Nb2t VHH antibody 6P4F ; 3.55 ; Crystal structure of the XPB-Bax1-forked DNA ternary complex 4EP6 ; 2.3 ; Crystal structure of the XplA heme domain in complex with imidazole and PEG 4FE5 ; 1.32 ; Crystal structure of the xpt-pbuX guanine riboswitch aptamer domain in complex with hypoxanthine 1G3J ; 2.1 ; CRYSTAL STRUCTURE OF THE XTCF3-CBD/BETA-CATENIN ARMADILLO REPEAT COMPLEX 7AX7 ; 2.05 ; Crystal structure of the Xyl-CE4 domain of a multidomain xylanase from the hindgut metagenome of Trinervitermes trinervoides 3MU7 ; 1.29 ; Crystal structure of the xylanase and alpha-amylase inhibitor protein (XAIP-II) from scadoxus multiflorus at 1.2 A resolution 1FHD ; 1.9 ; CRYSTAL STRUCTURE OF THE XYLANASE CEX WITH XYLOBIOSE-DERIVED IMIDAZOLE INHIBITOR 1FH7 ; 1.82 ; CRYSTAL STRUCTURE OF THE XYLANASE CEX WITH XYLOBIOSE-DERIVED INHIBITOR DEOXYNOJIRIMYCIN 1J01 ; 2.0 ; Crystal Structure Of The Xylanase Cex With Xylobiose-Derived Inhibitor Isofagomine lactam 1FH8 ; 1.95 ; CRYSTAL STRUCTURE OF THE XYLANASE CEX WITH XYLOBIOSE-DERIVED ISOFAGOMINE INHIBITOR 1FH9 ; 1.72 ; CRYSTAL STRUCTURE OF THE XYLANASE CEX WITH XYLOBIOSE-DERIVED LACTAM OXIME INHIBITOR 2GT4 ; 2.3 ; Crystal Structure of the Y103F mutant of the GDP-mannose mannosyl hydrolase in complex with GDP-mannose and MG+2 2F8F ; 2.1 ; Crystal structure of the Y10F mutant of the gluathione s-transferase from schistosoma haematobium 1YFD ; 1.9 ; Crystal structure of the Y122H mutant of ribonucleotide reductase R2 protein from E. coli 2AG9 ; 2.2 ; Crystal Structure of the Y137S mutant of GM2-Activator Protein 5C55 ; 1.7 ; Crystal structure of the Y138F mutant of C.glutamicum N-acetylneuraminic acid lyase in complex with pyruvate 1S09 ; 1.83 ; Crystal Structure of the Y144F Mutant of 7,8-Diaminopelargonic Acid Synthase 6RF9 ; 1.8 ; Crystal structure of the Y154F mutant of the light-driven sodium pump KR2 in the monomeric form, pH 8.0 1S0A ; 1.71 ; Crystal Structure of the Y17F Mutant of 7,8-Diaminopelargonic Acid Synthase 6VDG ; 2.79 ; Crystal Structure of the Y182A HisF Mutant from Thermotoga maritima 3RC7 ; 2.0 ; Crystal Structure of the Y186F mutant of KijD10, a 3-ketoreductase from Actinomadura kijaniata in complex with TDP-benzene and NADP 3OW5 ; 1.801 ; Crystal structure of the Y200A mutant of gamma carbonic anhydrase from Methanosarcina thermophila 3EA3 ; 1.78 ; Crystal Structure of the Y246S/Y247S/Y248S/Y251S Mutant of Phosphatidylinositol-Specific Phospholipase C from Bacillus Thuringiensis 3EA1 ; 1.75 ; Crystal Structure of the Y247S/Y251S Mutant of Phosphatidylinositol-Specific Phospholipase C from Bacillus Thuringiensis 3VJD ; 1.48 ; Crystal structure of the Y248A mutant of C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus 3VJE ; 2.12 ; Crystal structure of the Y248A mutant of C(30) carotenoid dehydrosqualene synthase from Staphylococcus aureus in complex with zaragozic acid A 3ORV ; 1.91 ; Crystal Structure of the Y294H-MauG/pre-Methylamine Dehydrogenase Complex 2XUD ; 2.65 ; Crystal structure of the Y337A mutant of mouse acetylcholinesterase 4E4E ; 1.88 ; Crystal Structure of the Y34F mutant of Saccharomyces cerevisiae Manganese Superoxide Dismutase 4EQR ; 1.8 ; Crystal structure of the Y361F mutant of Staphylococcus aureus CoADR 4EQW ; 1.5 ; Crystal Structure of the Y361F, Y419F Mutant of Staphylococcus aureus CoADR 2HS8 ; 1.9 ; Crystal structure of the Y364F mutant of 12-oxophytodienoate reductase 3 from tomato 3WWT ; 2.0 ; Crystal Structure of the Y3:STAT1ND complex 4EQS ; 1.5 ; Crystal structure of the Y419F mutant of Staphylococcus aureus CoADR 1O9I ; 1.33 ; Crystal structure of the Y42F mutant of manganese catalase from Lactobacillus plantarum at 1.33A resolution 7VWD ; 2.153 ; Crystal Structure of the Y53F/N55A mutant of LEH 7XEF ; 1.816 ; Crystal Structure of the Y53F/N55A mutant of LEH complexed with (R)-(1-benzyl-3-phenylpyrrolidin-3-yl)methanol 7XEE ; 1.877 ; Crystal Structure of the Y53F/N55A mutant of LEH complexed with 2-(3-phenyloxetan-3-yl)ethanamine 7VWM ; 1.98 ; Crystal Structure of the Y53F/N55A/I116V mutant of LEH 7VX2 ; 2.485 ; Crystal Structure of the Y53F/N55A/I80F/L114V/I116V mutant of LEH 1AQE ; 2.2 ; CRYSTAL STRUCTURE OF THE Y73E MUTANT OF CYTOCHROME C OF CLASS III (AMBLER) 26 KD 6VMF ; 2.24 ; Crystal structure of the Y766F mutant of GoxA soaked with glycine 3RLD ; 1.5 ; Crystal structure of the Y7I mutant of human carbonic anhydrase II 2Q35 ; 1.65 ; Crystal Structure of the Y82F variant of ECH2 decarboxylase domain of CurF from Lyngbya majuscula 7TCB ; 2.7 ; Crystal Structure of the YaeQ Family Protein VPA0551 from Vibrio parahaemolyticus 6AXJ ; 2.379 ; Crystal structure of the Yaf9 YEATS domain bound to H3K27ac 5B7W ; 2.08 ; Crystal structure of the YajQ-family protein XC_3703 from Xanthomonas campestris pv.campestris 2VZ7 ; 3.2 ; Crystal structure of the YC-17-bound PikC D50N mutant 4FIB ; 1.997 ; Crystal structure of the ydhK protein from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR518A. 3CBW ; 1.269 ; Crystal structure of the YdhT protein from Bacillus subtilis 3NZW ; 2.5 ; Crystal structure of the yeast 20S proteasome in complex with 2b 2F16 ; 2.8 ; Crystal structure of the yeast 20S proteasome in complex with bortezomib 3E47 ; 3.0 ; Crystal Structure of the Yeast 20S Proteasome in Complex with Homobelactosin C 3NZX ; 2.7 ; Crystal structure of the yeast 20S proteasome in complex with ligand 2c 3GPW ; 2.5 ; Crystal structure of the yeast 20S proteasome in complex with Salinosporamide derivatives: irreversible inhibitor ligand 3GPT ; 2.41 ; Crystal structure of the yeast 20S proteasome in complex with Salinosporamide derivatives: slow substrate ligand 3GPJ ; 2.7 ; Crystal structure of the yeast 20S proteasome in complex with syringolin B 1JD2 ; 3.0 ; Crystal Structure of the yeast 20S Proteasome:TMC-95A complex: A non-covalent Proteasome Inhibitor 1G6I ; 1.59 ; Crystal structure of the yeast alpha-1,2-mannosidase with bound 1-deoxymannojirimycin at 1.59 A resolution 1ZUU ; 0.97 ; Crystal structure of the yeast Bzz1 first SH3 domain at 0.97-A resolution 6CHG ; 2.985 ; Crystal structure of the yeast COMPASS catalytic module 2BPO ; 2.9 ; Crystal structure of the yeast CPR triple mutant: D74G, Y75F, K78A. 4W7S ; 2.542 ; Crystal structure of the yeast DEAD-box splicing factor Prp28 at 2.54 Angstroms resolution 4BRU ; 3.245 ; Crystal structure of the yeast Dhh1-Edc3 complex 4BRW ; 2.795 ; Crystal structure of the yeast Dhh1-Pat1 complex 3ED3 ; 2.0 ; Crystal Structure of the Yeast Dithiol/Disulfide Oxidoreductase Mpd1p 1F60 ; 1.67 ; CRYSTAL STRUCTURE OF THE YEAST ELONGATION FACTOR COMPLEX EEF1A:EEF1BA 3V2U ; 2.105 ; Crystal structure of the yeast GAL regulon complex of the repressor, Gal80p, and the transducer, Gal3p, with galactose and ATP 7BV5 ; 2.8 ; Crystal structure of the yeast heterodimeric ADAT2/3 3DXR ; 2.5 ; Crystal structure of the yeast inter-membrane space chaperone assembly TIM9.10 2FTX ; 1.9 ; Crystal structure of the yeast kinetochore Spc24/Spc25 globular domain 4C92 ; 2.299 ; Crystal structure of the yeast Lsm1-7 complex 4C8Q ; 3.698 ; Crystal structure of the yeast Lsm1-7-Pat1 complex 4F6O ; 1.681 ; Crystal structure of the yeast metacaspase Yca1 4F6P ; 1.619 ; Crystal structure of the yeast metacaspase Yca1 C276A mutant 1KCF ; 2.3 ; Crystal Structure of the Yeast Mitochondrial Holliday Junction Resolvase, Ydc2 4EO4 ; 2.87 ; Crystal structure of the yeast mitochondrial threonyl-tRNA synthetase (MST1) in complex with seryl sulfamoyl adenylate 4YYE ; 2.301 ; Crystal structure of the yeast mitochondrial threonyl-tRNA synthetase (MST1) in complex with the canonical tRNAThr and threonyl sulfamoyl adenylate 3UH0 ; 2.0 ; Crystal structure of the yeast mitochondrial threonyl-tRNA synthetase (MST1) in complex with threonyl sulfamoyl adenylate 3UGT ; 3.6 ; Crystal structure of the yeast mitochondrial threonyl-tRNA synthetase - orthorhombic crystal form 8G0Q ; 3.22 ; Crystal structure of the yeast Ndc80:Nuf2 head region with a bound Dam1 segment 3V8E ; 2.71 ; Crystal structure of the yeast nicotinamidase Pnc1p bound to the inhibitor nicotinaldehyde 5UAZ ; 1.753 ; Crystal structure of the yeast nucleoporin 1ID3 ; 3.1 ; CRYSTAL STRUCTURE OF THE YEAST NUCLEOSOME CORE PARTICLE REVEALS FUNDAMENTAL DIFFERENCES IN INTER-NUCLEOSOME INTERACTIONS 3FRX ; 2.13 ; Crystal Structure of the Yeast Orthologue of RACK1, Asc1. 1QSP ; 2.7 ; CRYSTAL STRUCTURE OF THE YEAST PHOSPHORELAY PROTEIN YPD1 1OCS ; 2.03 ; Crystal structure of the yeast PX-doamin protein Grd19p (sorting nexin3) complexed to phosphatidylinosytol-3-phosphate. 1OCU ; 2.3 ; Crystal structure of the yeast PX-domain protein Grd19p (sorting nexin 3) complexed to phosphatidylinosytol-3-phosphate. 3RFH ; 2.9 ; Crystal structure of the yeast RACK1 dimer in space group P21 3RFG ; 3.9 ; Crystal structure of the yeast RACK1 dimer in space group P63 4BSZ ; 2.842 ; Crystal Structure of the Yeast Ribosomal Protein Rps3 in Complex with its Chaperone Yar1 7JV7 ; 1.85055 ; Crystal Structure of the yeast RNA Pol II CTD kinase CTDK-1 complex 4BB7 ; 2.4 ; Crystal structure of the yeast Rsc2 BAH domain 3LWT ; 1.956 ; Crystal structure of the Yeast Sac1: Implications for its phosphoinositide phosphatase function 1M2V ; 2.75 ; Crystal Structure of the yeast Sec23/24 heterodimer 2E7S ; 3.0 ; Crystal structure of the yeast Sec2p GEF domain 8PFH ; 3.24 ; Crystal structure of the yeast septin complex Shs1-Cdc12-Cdc3-Cdc10 8QRY ; 1.87 ; Crystal structure of the yeast spindle body component Spc98 2GW1 ; 3.0 ; Crystal Structure of the Yeast Tom70 3R3Q ; 1.45 ; Crystal structure of the yeast Vps23 UEV domain 3R42 ; 1.866 ; Crystal structure of the yeast vps23 UEV domain in complex with a vps27 PSDP peptide 4HE4 ; 2.05 ; Crystal structure of the yellow fluorescent protein phiYFP (Phialidium sp.) 1N5B ; 2.0 ; Crystal Structure Of The Yersinia enterocolitica Molecular Chaperone Syce 4AM9 ; 2.5 ; CRYSTAL STRUCTURE OF THE YERSINIA ENTEROCOLITICA TYPE III SECRETION CHAPERONE SYCD IN COMPLEX WITH A PEPTIDE OF THE TRANSLOCATOR YOPD 2BHO ; 2.6 ; Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT 2VGY ; 2.6 ; Crystal structure of the Yersinia enterocolitica Type III Secretion Translocator Chaperone SycD (alternative dimer) 3TZF ; 2.1 ; Crystal Structure of the Yersinia pestis Dihydropteroate Synthase with Sulfonamide Drug Complex. 3TZN ; 2.083 ; Crystal Structure of the Yersinia pestis Dihydropteroate synthase. 3TYZ ; 2.07 ; Crystal Structure of the Yersinia pestis Dihydropteroate synthetase with substrate transition state complex. 1QZ0 ; 1.5 ; Crystal Structure of the Yersinia Pestis Phosphatase YopH in Complex with a Phosphotyrosyl Mimetic-Containing Hexapeptide 1TTW ; 2.38 ; Crystal structure of the Yersinia Pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2 1K6Z ; 2.0 ; Crystal Structure of the Yersinia Secretion Chaperone SycE 1ZW0 ; 1.8 ; Crystal structure of the Yersinia Type III Secretion protein YscE 1L2W ; 2.0 ; Crystal Structure of the Yersinia Virulence Effector YopE Chaperone-binding Domain in Complex with its Secretion Chaperone, SycE 1PT8 ; 2.2 ; Crystal structure of the yfdW gene product of E. coli, in complex with oxalate and acetyl-CoA 6HR1 ; 1.901 ; Crystal structure of the YFPnano fusion protein 3FIF ; 2.7 ; Crystal structure of the ygdR protein from E.coli. Northeast Structural Genomics target ER382A. 5H7D ; 2.57 ; Crystal structure of the YgjG-protein A-Zpa963-calmodulin complex 5X3F ; 3.38 ; Crystal structure of the YgjG-Protein A-Zpa963-PKA catalytic domain 3NX4 ; 1.9 ; Crystal structure of the yhdH oxidoreductase from Salmonella enterica in complex with NADP 3CFU ; 2.4 ; Crystal structure of the yjhA protein from Bacillus subtilis. Northeast Structural Genomics Consortium target SR562 1XE7 ; 1.75 ; Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly roll fold 1XE8 ; 2.8 ; Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly roll fold. 6DR9 ; 1.945 ; Crystal Structure of the YopH PTP1B Chimera 3 PTPase apo form 6DT6 ; 2.101 ; Crystal Structure of the YopH PTP1B Chimera 3 PTPase bound to vanadate 6DRB ; 2.745 ; Crystal Structure of the YopH PTP1B WPD loop Chimera 3 PTPase bound to tungstate 1FKM ; 1.9 ; CRYSTAL STRUCTURE OF THE YPT/RAB-GAP DOMAIN OF GYP1P 3NJC ; 1.693 ; Crystal structure of the yslB protein from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR460. 3EQE ; 2.82 ; Crystal structure of the YubC protein from Bacillus subtilis. Northeast Structural Genomics Consortium target SR112. 2OHW ; 1.4 ; Crystal structure of the YueI protein from Bacillus subtilis 8OEB ; 1.8 ; Crystal structure of the Z-DNA duplex d(CGCGCG) containing ordered copper(II) and soaked in hydrogen peroxide for 30 minutes, second collection at room temperature 8OE7 ; 1.25 ; Crystal structure of the Z-DNA duplex d(CGCGCG) containing ordered copper(II) and soaked in hydrogen peroxide for 5 minutes 8OE8 ; 1.3 ; Crystal structure of the Z-DNA duplex d(CGCGCG) containing ordered copper(II) and soaked in hydrogen peroxide for an hour 8OEC ; 2.1 ; Crystal structure of the Z-DNA duplex d(CGCGCG) containing ordered copper(II) and soaked in hydrogen peroxide for another 30 minutes, third collection at room temperature 8OE9 ; 1.04 ; Crystal structure of the Z-DNA duplex d(CGCGCG) soaked in copper(II) chloride and hydrogen peroxide 8OEA ; 1.5 ; Crystal structure of the Z-DNA duplex d(CGCGCG) soaked in copper(II) chloride, in preparation to hydrogen peroxide soaking, first collection at room temperature 4FS6 ; 1.3 ; Crystal structure of the Z-DNA hexamer CGCGCG at 500 mM CaCl2 4FS5 ; 1.3 ; Crystal structure of the Z-DNA hexamer CGCGCG at 500 mM MgCl2 8OEZ ; 1.64 ; Crystal structure of the Z-DNA hexamer d(CGCGCG) with Iron(II) chloride 2GXB ; 2.25 ; Crystal Structure of The Za Domain bound to Z-RNA 4IJF ; 2.506 ; Crystal structure of the Zaire ebolavirus VP35 interferon inhibitory domain K222A/R225A/K248A/K251A mutant 4IJE ; 1.899 ; Crystal structure of the Zaire ebolavirus VP35 interferon inhibitory domain R312A/K319A/R322A mutant 1QBJ ; 2.1 ; CRYSTAL STRUCTURE OF THE ZALPHA Z-DNA COMPLEX 1U59 ; 2.3 ; Crystal Structure of the ZAP-70 Kinase Domain in Complex with Staurosporine 6KLG ; 2.1 ; Crystal Structure of the Zea Mays laccase 3 6KLJ ; 1.998 ; Crystal Structure of the Zea Mays laccase 3 complexed with coniferyl 6KLI ; 1.8 ; Crystal Structure of the Zea Mays laccase 3 complexed with sinapyl 1V08 ; 1.9 ; Crystal structure of the Zea maze beta-glucosidase-1 in complex with gluco-tetrazole 5LP0 ; 1.41 ; CRYSTAL STRUCTURE OF THE ZEBRA FISH ENTH DOMAIN FROM EPSIN1 IN 1.41 ANGSTROM RESOLUTION 6IRX ; 2.0 ; Crystal structure of the zebrafish cap-specific adenosine methyltransferase 6IRY ; 1.8 ; Crystal structure of the zebrafish cap-specific adenosine methyltransferase bound to SAH 6IRZ ; 2.0 ; Crystal structure of the zebrafish cap-specific adenosine methyltransferase bound to SAH and m7G-capped RNA 6IS0 ; 1.8 ; Crystal structure of the zebrafish cap-specific adenosine methyltransferase bound to SAH and m7G-capped RNA 4QKW ; 1.7 ; Crystal structure of the zebrafish cavin4a HR1 domain 7YZ7 ; 0.98 ; Crystal structure of the zebrafish FoxH1 bound to the TGTGGATT site 7YZA ; 1.18 ; Crystal structure of the zebrafish FoxH1 bound to the TGTGTATT site 7YZD ; 2.13 ; Crystal structure of the zebrafish FoxH1 bound to the TGTTTACT site (fkh motif GTAAACA) 7YZC ; 2.17 ; Crystal structure of the zebrafish FoxH1 bound to the TGTTTATT site 6HRV ; 1.95 ; Crystal structure of the zebrafish peroxisomal SCP2-thiolase (type-1) 6HSJ ; 1.46 ; Crystal structure of the zebrafish peroxisomal SCP2-thiolase (type-1) in complex with CoA 6HSP ; 1.73 ; Crystal structure of the zebrafish peroxisomal SCP2-thiolase (type-1) in complex with CoA and octanoyl-CoA 6WLE ; 3.0 ; Crystal structure of the Zeitlupe light-state mimic G46A 6PLL ; 2.693 ; Crystal structure of the ZIG-8 IG1 homodimer 6ONB ; 1.696 ; Crystal Structure of the ZIG-8-RIG-5 IG1-IG1 heterodimer, monoclinic form 6ON9 ; 1.995 ; Crystal Structure of the ZIG-8-RIG-5 IG1-IG1 heterodimer, tetragonal form 5TFN ; 3.0 ; CRYSTAL STRUCTURE OF THE ZIKA VIRUS NS2B-NS3 PROTEASE in super-open conformation 5TFO ; 2.51 ; CRYSTAL STRUCTURE OF THE ZIKA VIRUS NS2B-NS3 PROTEASE with a deletion V76-L86 in NS2b 5VI7 ; 2.005 ; Crystal structure of the Zika virus NS3 helicase 6ADX ; 1.752 ; Crystal structure of the Zika virus NS3 helicase (ADP-Mn2+ complex, form 1) 6ADY ; 1.9 ; Crystal structure of the Zika virus NS3 helicase (ADP-Mn2+ complex, form 2) 6ADW ; 2.2 ; Crystal structure of the Zika virus NS3 helicase (apo form) 5Y4Z ; 1.3 ; Crystal structure of the Zika virus NS3 helicase complex with AMPPNP 5TXG ; 2.05 ; Crystal structure of the Zika virus NS3 helicase. 5VIM ; 2.1 ; Crystal structure of the Zika virus NS5 methyltransferase. 8TQX ; 2.09 ; Crystal structure of the Zika virus stem-loop A (SLA) bottom stem 8TSV ; 1.51 ; Crystal structure of the Zika virus stem-loop A (SLA) top stem 1X8I ; 1.9 ; Crystal Structure of the Zinc Carbapenemase CphA in Complex with the Antibiotic Biapenem 2QDS ; 1.66 ; Crystal Structure of the Zinc Carbapenemase CPHA in Complex with the Inhibitor D-Captopril 2GKL ; 1.86 ; Crystal structure of the zinc carbapenemase CPHA in complex with the inhibitor pyridine-2,4-dicarboxylate 3U9G ; 1.801 ; Crystal structure of the Zinc finger antiviral protein 1PZW ; 2.0 ; Crystal structure of the zinc finger associated domain of the Drosophila transcription factor Grauzone 2WBS ; 1.7 ; Crystal structure of the zinc finger domain of Klf4 bound to its target DNA 2WBU ; 2.5 ; CRYSTAL STRUCTURE OF THE ZINC FINGER DOMAIN OF KLF4 BOUND TO ITS TARGET DNA 4II1 ; 2.65 ; Crystal structure of the zinc finger of ZGPAT 1C7K ; 1.0 ; CRYSTAL STRUCTURE OF THE ZINC PROTEASE 1SDX ; 2.06 ; Crystal structure of the zinc saturated C-terminal half of bovine lactoferrin at 2.0 A resolution reveals two additional zinc binding sites 2GFJ ; 1.8 ; Crystal structure of the zinc-beta-lactamase L1 from stenotrophomonas maltophilia (inhibitor 1) 2GFK ; 1.9 ; Crystal structure of the zinc-beta-lactamase l1 from stenotrophomonas maltophilia (inhibitor 2) 2HB9 ; 1.75 ; Crystal Structure of the Zinc-Beta-Lactamase L1 from Stenotrophomonas Maltophilia (Inhibitor 3) 2H6A ; 1.8 ; Crystal structure of the zinc-beta-lactamase L1 from Stenotrophomonas maltophilia (mono zinc form) 3JPY ; 3.209 ; Crystal structure of the zinc-bound amino terminal domain of the NMDA receptor subunit NR2B 2F44 ; 2.4 ; Crystal Structure of the Zinc-bound Shank SAM domain 3TGN ; 2.0 ; Crystal Structure of the zinc-dependent MarR Family Transcriptional Regulator AdcR in the Zn(II)-bound State 6F4E ; 2.4 ; Crystal structure of the zinc-free catalytic domain of botulinum neurotoxin X 3E2U ; 2.6 ; Crystal structure of the zink-knuckle 2 domain of human CLIP-170 in complex with CAP-Gly domain of human dynactin-1 (p150-GLUED) 7JJA ; 1.01 ; Crystal structure of the ZinT-like domain of Streptococcus pneumoniae AdcA in the apo form 4XWF ; 1.8 ; Crystal structure of the ZMP riboswitch at 1.80 angstrom 4XW7 ; 2.5 ; Crystal structure of the ZMP riboswitch at 2.50 angstrom 1Q0A ; 2.0 ; Crystal structure of the Zn(II) form of E. coli ZntR, a zinc-sensing transcriptional regulator (space group C222) 1Q09 ; 2.5 ; Crystal structure of the Zn(II) form of E. coli ZntR, a zinc-sensing transcriptional regulator (space group I4122) 1Q08 ; 1.9 ; Crystal structure of the Zn(II) form of E. coli ZntR, a zinc-sensing transcriptional regulator, at 1.9 A resolution (space group P212121) 7LM7 ; 3.12 ; Crystal structure of the Zn(II)-bound AdcAII E280Q mutant variant of Streptococcus pneumoniae 7LM6 ; 3.367 ; Crystal structure of the Zn(II)-bound AdcAII H205L mutant variant of Streptococcus pneumoniae 7LM5 ; 2.4 ; Crystal structure of the Zn(II)-bound AdcAII H65A mutant variant of Streptococcus pneumoniae 1FA5 ; 1.8 ; CRYSTAL STRUCTURE OF THE ZN(II)-BOUND GLYOXALASE I OF ESCHERICHIA COLI 7JJ8 ; 2.03 ; Crystal structure of the Zn(II)-bound ZnuA-like domain of Streptococcus pneumoniae AdcA 6ON5 ; 1.638 ; Crystal Structure of the Zn-bound Domain-Swapped Dimer Q108K:T51D:A28C:L36C:F57H Mutant of Human Cellular Retinol Binding Protein II 7JGL ; 2.34 ; Crystal Structure of the Zn-bound Human Heavy-chain variant 122H-delta C-star with 2,5-furandihyrdoxamate collected at 100K 7JGN ; 2.07 ; Crystal Structure of the Zn-bound Human Heavy-chain variant 122H-delta C-star with meta-benzenedihyrdoxamate collected at 100K 5UP8 ; 2.631 ; Crystal Structure of the Zn-bound Human Heavy-Chain variant 122H-delta C-star with para-benzenedihydroxamate 5OJJ ; 1.85 ; Crystal structure of the Zn-bound ubiquitin-conjugating enzyme Ube2T 6LDG ; 1.98 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb 562 variant, C96I AB5 7DCL ; 2.45 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb 562 variant, C96I/A38S AB5 6LDF ; 2.35 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb 562 variant, C96K AB5 6LDE ; 2.0 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb 562 variant, C96V AB5 4U9E ; 2.8 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb562 variant, A104/57G AB3 4U9D ; 2.5 ; Crystal Structure of the Zn-directed tetramer of the engineered cyt cb562 variant, AB3 5XZI ; 2.65 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb562 variant, AB5 5XZJ ; 1.98 ; Crystal structure of the Zn-directed tetramer of the engineered cyt cb562 variant, C96T/AB5 3HNI ; 2.35 ; Crystal structure of the Zn-induced tetramer of the engineered cyt cb562 variant RIDC-1 3HNJ ; 2.0 ; Crystal structure of the Zn-induced tetramer of the engineered cyt cb562 variant RIDC-2 5L32 ; 2.1 ; Crystal structure of the Zn-RIDC1 complex bearing six interfacial disulfide bonds 3QW0 ; 1.84 ; Crystal structure of the Zn-RIDC1 complex stabilized by BMB crosslinks 3QW1 ; 2.7 ; Crystal structure of the Zn-RIDC1 complex stabilized by BMH crosslinks 3QVY ; 2.3 ; Crystal structure of the Zn-RIDC1 complex stabilized by BMOE crosslinks 3QVZ ; 2.64 ; Crystal structure of the Zn-RIDC1 complex stabilized by BMOE crosslinks cocrystallized in the presence of Cu(II) 2JD8 ; 2.8 ; Crystal Structure of the Zn-soaked Ferritin from the Hyperthermophilic Archaeal Anaerobe Pyrococcus furiosus 7YGW ; 1.72 ; Crystal structure of the Zn2+-bound EFhd1/Swiprosin-2 7YGY ; 2.6 ; Crystal structure of the Zn2+-bound EFhd2/Swiprosin-1 4GSZ ; 2.2 ; Crystal Structure of the Zn2+5-Human Arginase I-ABH Complex 7MO1 ; 1.6 ; Crystal Structure of the ZnF1 of Nucleoporin NUP153 in complex with Ran-GDP 7MO2 ; 1.65 ; Crystal Structure of the ZnF2 of Nucleoporin NUP153 in complex with Ran-GDP 7MNP ; 2.05 ; Crystal Structure of the ZnF2 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MNQ ; 2.05 ; Crystal Structure of the ZnF2 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MO3 ; 2.05 ; Crystal Structure of the ZnF3 of Nucleoporin NUP153 in complex with Ran-GDP, resolution 2.05 Angstrom 7MO4 ; 2.4 ; Crystal Structure of the ZnF3 of Nucleoporin NUP153 in complex with Ran-GDP, resolution 2.4 Angstrom 7MNR ; 1.8 ; Crystal Structure of the ZnF3 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MO5 ; 1.55 ; Crystal Structure of the ZnF4 of Nucleoporin NUP153 in complex with Ran-GDP 7MNS ; 2.1 ; Crystal Structure of the ZnF4 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MNT ; 2.45 ; Crystal Structure of the ZnF5 or ZnF6 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MNU ; 2.0 ; Crystal Structure of the ZnF7 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 7MNV ; 1.8 ; Crystal Structure of the ZnF8 of Nucleoporin NUP358/RanBP2 in complex with Ran-GDP 4OEP ; 2.35 ; Crystal structure of the ZO-1 PDZ1 domain in complex with the 7-mer Claudin1 C-terminal tail 4YYX ; 1.79 ; Crystal structure of the ZO-1 PDZ1 domain in complex with the 7-mer Claudin2 C-terminal tail 5HZV ; 2.7 ; Crystal structure of the zona pellucida module of human endoglin/CD105 5CJ3 ; 1.6499 ; Crystal structure of the zorbamycin binding protein (ZbmA) from Streptomyces flavoviridis with zorbamycin 5BUP ; 2.251 ; Crystal structure of the ZP-C domain of mouse ZP2 8RKF ; 3.2 ; Crystal structure of the ZP-N1 and ZP-N2 domains of human ZP2 (hZP2-N1N2) 5II6 ; 0.95 ; Crystal structure of the ZP-N1 domain of mouse sperm receptor ZP2 at 0.95 A resolution 8RKH ; 1.9 ; Crystal structure of the ZP-N2 and ZP-N3 domains of mouse ZP2 (mZP2-N2N3) 3AU7 ; 2.6 ; Crystal structure of the ZRD-deleted mutant of TiaS in complex with agmatine 5TSB ; 2.7 ; Crystal structure of the Zrt-/Irt-like protein from Bordetella bronchiseptica with bound Cd2+ 5TSA ; 2.4 ; Crystal structure of the Zrt-/Irt-like protein from Bordetella bronchiseptica with bound Zn2+ 6WLP ; 3.0 ; Crystal Structure of the ZTL light-state mimic G46S 7OIY ; 2.05 ; Crystal structure of the ZUFSP family member Mug105 5DJE ; 1.85 ; Crystal structure of the zuotin homology domain (ZHD) from yeast Zuo1 4IGD ; 2.5 ; Crystal structure of the zymogen catalytic region of Human MASP-1 1ZJK ; 2.18 ; Crystal structure of the zymogen catalytic region of human MASP-2 1DKI ; 1.6 ; CRYSTAL STRUCTURE OF THE ZYMOGEN FORM OF STREPTOCOCCAL PYROGENIC EXOTOXIN B ACTIVE SITE (C47S) MUTANT 7ZU8 ; 2.05 ; Crystal Structure of the zymogen form of the glutamic-class prolyl-endopeptidase neprosin at 2.05 A resolution in presence of the crystallophore Lu-Xo4. 5LYO ; 2.498 ; Crystal structure of the zymogen matriptase catalytic domain 4PNE ; 1.5 ; Crystal Structure of the [4+2]-Cyclase SpnF 5XJW ; 2.097 ; Crystal Structure of the [Co2+-(Chromomycin A3)2]-CCG repeats Complex 5YZE ; 1.87 ; Crystal structure of the [Co2+-(chromomycin A3)2]-d(CCG)3 complex 1SIZ ; 2.25 ; Crystal structure of the [Fe3S4]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus 3QQ5 ; 2.99 ; Crystal structure of the [FeFe]-hydrogenase maturation protein HydF 5XEW ; 1.751 ; Crystal structure of the [Ni2+-(chromomycin A3)2]-CCG repeats complex 1N3Z ; 1.65 ; Crystal structure of the [S-carboxyamidomethyl-Cys31, S-carboxyamidomethyl-Cys32] monomeric derivative of the bovine seminal ribonuclease in the liganded state 8D29 ; 1.81 ; Crystal structure of theophylline aptamer - apo form 8D5L ; 1.64 ; Crystal structure of theophylline aptamer in complex with TAL1 8D2B ; 1.44 ; Crystal structure of theophylline aptamer in complex with TAL2 8D2A ; 2.17 ; Crystal structure of theophylline aptamer in complex with TAL3 8D5O ; 2.7 ; Crystal structure of theophylline aptamer in complex with TAL4 8D28 ; 1.42 ; Crystal structure of theophylline aptamer in complex with theophylline 8DK7 ; 2.46 ; Crystal structure of theophylline aptamer soaked with TAL2 1YE8 ; 1.4 ; Crystal Structure of THEP1 from the hyperthermophile Aquifex aeolicus 4F33 ; 1.749 ; Crystal Structure of therapeutic antibody MORAb-009 5T6P ; 1.97 ; Crystal structure of therapeutic mAB AR20.5 in complex with MUC1 peptide 5T78 ; 2.2 ; Crystal structure of therapeutic mAB AR20.5 in complex with MUC1 peptide 7AOB ; 2.12 ; Crystal structure of Thermaerobacter marianensis malate dehydrogenase 1THM ; 1.37 ; CRYSTAL STRUCTURE OF THERMITASE AT 1.4 ANGSTROMS RESOLUTION 3W9K ; 1.8 ; Crystal structure of thermoacidophile-specific protein STK_08120 complexed with myristic acid 2D0F ; 2.08 ; Crystal Structure of Thermoactinomyces vulgaris R-47 Alpha-Amylase 1 (TVAI) Mutant D356N complexed with P2, a pullulan model oligosaccharide 2D0H ; 2.1 ; Crystal Structure of Thermoactinomyces vulgaris R-47 Alpha-Amylase 1 (TVAI) Mutant D356N/E396Q complexed with P2, a pullulan model oligosaccharide 2D0G ; 2.6 ; Crystal Structure of Thermoactinomyces vulgaris R-47 Alpha-Amylase 1 (TVAI) Mutant D356N/E396Q complexed with P5, a pullulan model oligosaccharide 1JF5 ; 3.2 ; CRYSTAL STRUCTURE OF THERMOACTINOMYCES VULGARIS R-47 ALPHA-AMYLASE 2 MUTANT F286A 3A6O ; 2.8 ; Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/acarbose complex 1VFM ; 2.9 ; Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/alpha-cyclodextrin complex 1VFO ; 2.81 ; Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/beta-cyclodextrin complex 1VB9 ; 2.2 ; Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product 1JF6 ; 3.2 ; Crystal structure of thermoactinomyces vulgaris r-47 alpha-amylase mutant F286Y 1VFU ; 3.1 ; Crystal structure of Thermoactinomyces vulgaris R-47 amylase 2/gamma-cyclodextrin complex 2IOY ; 1.9 ; Crystal structure of Thermoanaerobacter tengcongensis ribose binding protein 5BX2 ; 1.61 ; Crystal structure of Thermoanaerobacterium xylanolyticum GH116 beta-glucosidase with 2-deoxy-2-fluoroglucoside 8R06 ; 1.7 ; CRYSTAL STRUCTURE OF THERMOANAEROBACTERIUM XYLANOLYTICUM GH116 BETA-GLUCOSIDASE WITH A COVALENTLY BOUND CYCLOPHELLITOL AZIRIDINE 5BX3 ; 1.96 ; Crystal structure of Thermoanaerobacterium xylanolyticum GH116 beta-glucosidase with deoxynojirimycin 5BX4 ; 1.65 ; Crystal structure of Thermoanaerobacterium xylanolyticum GH116 beta-glucosidase with Glucoimidazole 5BX5 ; 1.85 ; Crystal structure of Thermoanaerobacterium xylanolyticum GH116 beta-glucosidase with glucose 5BVU ; 1.61 ; Crystal structure of Thermoanaerobacterium xylolyticum GH116 beta-glucosidase 3WVO ; 3.31 ; Crystal structure of Thermobifida fusca Cse1 2PFE ; 1.436 ; Crystal Structure of Thermobifida fusca Protease A (TFPA) 7CNR ; 3.39 ; Crystal structure of Thermococcus kodakaraensis aconitase X (apo-form) 7CNS ; 1.902 ; Crystal structure of Thermococcus kodakaraensis aconitase X (holo-form) 1K1Y ; 2.4 ; Crystal structure of thermococcus litoralis 4-alpha-glucanotransferase complexed with acarbose 4B8R ; 2.05 ; Crystal Structure of Thermococcus litoralis ADP-dependent Glucokinase (GK) 4B8S ; 2.58 ; Crystal Structure of Thermococcus litoralis ADP-dependent Glucokinase (GK) 5O5X ; 2.148 ; Crystal structure of Thermococcus litoralis ADP-dependent glucokinase (GK) 5O5Y ; 1.915 ; Crystal structure of Thermococcus litoralis ADP-dependent glucokinase (GK) 5O5Z ; 2.441 ; CRYSTAL STRUCTURE OF THERMOCOCCUS LITORALIS ADP-DEPENDENT GLUCOKINASE (GK) 1J3P ; 2.02 ; Crystal structure of Thermococcus litoralis phosphoglucose isomerase 1J3R ; 2.18 ; Crystal structure of Thermococcus litoralis phosphogrucose isomerase complexed with gluconate-6-phosphate 1J3Q ; 1.85 ; Crystal structure of Thermococcus litoralis phosphogrucose isomerase soaked with FeSO4 4TXD ; 1.818 ; Crystal structure of Thermofilum pendens Csc2 7DIH ; 1.5 ; Crystal structure of Thermoglobin Y29F mutant in complex with imidazole 2YY7 ; 2.061 ; Crystal structure of thermolabile L-threonine dehydrogenase from Flavobacterium frigidimaris KUC-1 6IG7 ; 1.8 ; Crystal structure of thermolysin delivered in polyacrylamide using x-ray free electron laser 3NN7 ; 2.05 ; Crystal structure of Thermolysin in complex with 2-bromoacetate 3MSA ; 1.66 ; Crystal structure of Thermolysin in complex with 3-Bromophenol 3MS3 ; 1.54 ; Crystal structure of Thermolysin in complex with Aniline 3MSN ; 1.97 ; Crystal structure of Thermolysin in complex with N-methylurea 3N21 ; 1.87 ; Crystal structure of Thermolysin in complex with S-1,2-Propandiol 3MSF ; 2.09 ; Crystal structure of Thermolysin in complex with Urea 3LS7 ; 1.98 ; Crystal structure of Thermolysin in complex with Xenon 1UE8 ; 3.0 ; Crystal Structure of Thermophilic Cytochrome P450 from Sulfolobus tokodaii 5AXG ; 1.85 ; Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus 5AXH ; 2.2 ; Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus, D312G mutant in complex with isomaltohexaose 4R1O ; 2.401 ; Crystal Structure of Thermophilic Geobacillus kaustophilus L-Arabinose isomerase 4R1Q ; 2.248 ; Crystal Structure of Thermophilic Geobacillus kaustophilus L-Arabinose isomerase in complex with L-arabitol 4R1P ; 2.297 ; Crystal Structure of Thermophilic Geobacillus kaustophilus L-Arabinose isomerase with Mn2+ 3ORW ; 2.4 ; Crystal structure of thermophilic phosphotriesterase from Geobacillus kaustophilus HTA426 6KFQ ; 1.84 ; Crystal structure of thermophilic rhodopsin from Rubrobacter xylanophilus 5AZD ; 2.8 ; Crystal structure of thermophilic rhodopsin. 3CGM ; 2.41 ; Crystal structure of thermophilic SlyD 3CGN ; 2.7 ; Crystal Structure of thermophilic SlyD 5LV9 ; 2.33 ; Crystal structure of thermophilic tryptophan halogenase (Th-Hal) enzyme from Streptomycin violaceusniger. 5LVA ; 2.53 ; Crystal structure of thermophilic tryptophan halogenase (Th-Hal) enzyme from Streptomycin violaceusniger. 1L6R ; 1.4 ; Crystal Structure of Thermoplasma acidophilum 0175 (APC0014) 1KYT ; 1.7 ; Crystal Structure of Thermoplasma acidophilum 0175 (APC014) 1NE2 ; 1.75 ; Crystal Structure of Thermoplasma acidophilum 1320 (APC5513) 6IS6 ; 2.4 ; Crystal structure of Thermoplasmatales archaeon heliorhodopsin 7U55 ; 1.97 ; Crystal structure of Thermoplasmatales archaeon heliorhodopsin at pH 4.5 7CLJ ; 2.6 ; Crystal structure of Thermoplasmatales archaeon heliorhodopsin E108D mutant 5NX2 ; 3.7 ; Crystal structure of thermostabilised full-length GLP-1R in complex with a truncated peptide agonist at 3.7 A resolution 5O9H ; 2.7 ; Crystal structure of thermostabilised human C5a anaphylatoxin chemotactic receptor 1 (C5aR) in complex with NDT9513727 7ET8 ; 1.9 ; Crystal structure of thermostable AbHpaI, a class II metal dependent pyruvate aldolase, HpaI from Acinetobacter baumannii 8HAP ; 2.2 ; Crystal structure of thermostable acetaldehyde dehydrogenase from hyperthermophilic archaeon Sulfolobus tokodaii 4NUR ; 1.761 ; Crystal structure of thermostable alkylsulfatase SdsAP from Pseudomonas sp. S9 2DPP ; 2.52 ; Crystal structure of thermostable Bacillus sp. RAPc8 nitrile hydratase 1NP2 ; 2.4 ; Crystal structure of thermostable beta-glycosidase from thermophilic eubacterium Thermus nonproteolyticus HG102 5E3X ; 2.197 ; Crystal structure of thermostable Carboxypeptidase (FisCP) from Fervidobacterium Islandicum AW-1 6A6E ; 2.09 ; Crystal structure of thermostable Cysteine desulfurase (FiSufS) from thermophilic Fervidobacterium Islandicum AW-1 3A57 ; 1.5 ; Crystal structure of Thermostable Direct Hemolysin 6A6G ; 2.49 ; Crystal structure of thermostable FiSufS-SufU complex from thermophilic Fervidobacterium Islandicum AW-1 6TB0 ; 1.95 ; Crystal structure of thermostable omega transaminase 4-fold mutant from Pseudomonas jessenii 6TB1 ; 1.85 ; Crystal structure of thermostable omega transaminase 6-fold mutant from Pseudomonas jessenii 4FMP ; 2.3 ; Crystal structure of thermostable, organic-solvent tolerant lipase from Geobacillus sp. strain ARM 4U0O ; 1.6 ; Crystal structure of Thermosynechococcus elongatus Lipoyl Synthase 2 complexed with MTA and DTT 6OZF ; 1.8 ; Crystal structure of Thermotoga maritima (Tm) Endonuclease V (D110N) in complex with a 12mer DNA containing an inosine followed by a ribo-adenosine 6OZG ; 1.93 ; Crystal structure of Thermotoga maritima (Tm) Endonuclease V (E89Q) in complex with a 12mer DNA containing an inosine followed by a ribo-adenosine 1NC7 ; 1.55 ; Crystal Structure of Thermotoga maritima 1070 6TXJ ; 2.17 ; Crystal structure of thermotoga maritima A42V E65D Ferritin 1HL8 ; 2.4 ; CRYSTAL STRUCTURE OF THERMOTOGA MARITIMA ALPHA-FUCOSIDASE 1HL9 ; 2.25 ; CRYSTAL STRUCTURE OF THERMOTOGA MARITIMA ALPHA-FUCOSIDASE IN COMPLEX WITH A MECHANISM BASED INHIBITOR 1ODU ; 2.8 ; CRYSTAL STRUCTURE OF THERMOTOGA MARITIMA ALPHA-FUCOSIDASE IN COMPLEX WITH FUCOSE 7CTM ; 1.85 ; Crystal structure of Thermotoga maritima alpha-glucuronidase (TM0752) in complex with NADH and D-glucuronic acid 3SFT ; 2.15 ; Crystal structure of Thermotoga maritima CheB methylesterase catalytic domain 5AN6 ; 2.403 ; Crystal structure of Thermotoga maritima Csm2 6TXI ; 1.759 ; Crystal structure of thermotoga maritima E65A Ferritin 6TXK ; 2.359 ; Crystal structure of thermotoga maritima E65K Ferritin 6TXL ; 2.099 ; Crystal structure of thermotoga maritima E65Q Ferritin 6TXM ; 2.198 ; Crystal structure of thermotoga maritima E65R Ferritin 3DKT ; 3.104 ; Crystal structure of Thermotoga maritima encapsulin 2X7W ; 2.36 ; Crystal structure of Thermotoga maritima endonuclease IV in the presence of cadmium and zinc 2X7V ; 2.3 ; Crystal structure of Thermotoga maritima endonuclease IV in the presence of zinc 6TXH ; 2.198 ; Crystal structure of thermotoga maritima Ferritin in apo form 6TXN ; 2.01 ; Crystal structure of thermotoga maritima Ferritin in apo form 7DL5 ; 2.3 ; Crystal structure of Thermotoga Maritima ferritin mutant at 2.3 Angstrom resolution 4M8A ; 1.502 ; Crystal Structure of Thermotoga maritima FtsH Periplasmic Domain 4Q0F ; 1.948 ; Crystal Structure of Thermotoga maritima FtsH Periplasmic domain 4JC0 ; 3.3 ; Crystal structure of Thermotoga maritima holo RimO in complex with pentasulfide, Northeast Structural Genomics Consortium Target VR77 5XUM ; 2.1 ; Crystal structure of Thermotoga maritima holo-[acyl-carrier-protein] synthase (AcpS) 5JTG ; 3.05 ; Crystal structure of Thermotoga maritima mutant D89K/D253K 5JRW ; 3.3 ; Crystal structure of Thermotoga maritima mutant D89R/D253R 2XHC ; 2.45 ; Crystal Structure of Thermotoga maritima N-utilization Substance G (NusG) 3AFH ; 2.0 ; Crystal structure of Thermotoga maritima nondiscriminating glutamyl-tRNA synthetase in complex with a glutamyl-AMP analog 3AKZ ; 2.9 ; Crystal structure of Thermotoga maritima nondiscriminating glutamyl-tRNA synthetase in complex with tRNAGln and a glutamyl-AMP analog 1SG9 ; 2.3 ; Crystal structure of Thermotoga maritima protein HEMK, an N5-glutamine methyltransferase 3HR8 ; 1.95 ; Crystal Structure of Thermotoga maritima RecA 3PQC ; 1.9 ; Crystal structure of Thermotoga maritima ribosome biogenesis GTP-binding protein EngB (YsxC/YihA) in complex with GDP 1DD5 ; 2.55 ; CRYSTAL STRUCTURE OF THERMOTOGA MARITIMA RIBOSOME RECYCLING FACTOR, RRF 1TLU ; 1.55 ; Crystal Structure of Thermotoga maritima S-adenosylmethionine decarboxylase 4AV6 ; 4.0 ; Crystal structure of Thermotoga maritima sodium pumping membrane integral pyrophosphatase at 4 A in complex with phosphate and magnesium 5LZQ ; 3.495 ; Crystal structure of Thermotoga maritima sodium pumping membrane integral pyrophosphatase in complex with imidodiphosphate and magnesium, and with bound sodium ion 5LZR ; 4.0 ; Crystal structure of Thermotoga maritima sodium pumping membrane integral pyrophosphatase in complex with tungstate and magnesium 4AV3 ; 2.6 ; Crystal structure of Thermotoga Maritima sodium pumping membrane integral pyrophosphatase with metal ions in active site 6N9A ; 2.5 ; Crystal Structure of Thermotoga maritima threonylcarbamoyladenosine biosynthesis complex TsaB2D2E2 bound to ATP and carboxy-AMP 5Y0R ; 3.11 ; Crystal structure of Thermotoga maritima TmcAL (apo, form I) 5Y0T ; 1.9 ; Crystal structure of Thermotoga maritima TmcAL bound with alpha-thio ATP(Form II) 7RK0 ; 2.28 ; Crystal structure of Thermovibrio ammonificans THI4 1KU7 ; 2.4 ; Crystal Structure of Thermus aquatics RNA Polymerase SigmaA Subunit Region 4 Bound to-35 Element DNA 5JIW ; 1.73 ; Crystal structure of Thermus aquaticus amylomaltase (GH77) in complex with a 34-meric cycloamylose 1HQM ; 3.3 ; CRYSTAL STRUCTURE OF THERMUS AQUATICUS CORE RNA POLYMERASE-INCLUDES COMPLETE STRUCTURE WITH SIDE-CHAINS (EXCEPT FOR DISORDERED REGIONS)-FURTHER REFINED FROM ORIGINAL DEPOSITION-CONTAINS ADDITIONAL SEQUENCE INFORMATION 2ETN ; 3.3 ; Crystal structure of Thermus aquaticus Gfh1 1KU2 ; 2.9 ; Crystal Structure of Thermus aquaticus RNA Polymerase Sigma Subunit Fragment Containing Regions 1.2 to 3.1 1KU3 ; 1.8 ; Crystal Structure of Thermus aquaticus RNA Polymerase Sigma Subunit Fragment, Region 4 2IE8 ; 1.8 ; Crystal structure of Thermus caldophilus phosphoglycerate kinase in the open conformation 4O93 ; 2.77 ; Crystal structure of Thermus thermophilis transhydrogeanse domain II dimer 4O9P ; 2.89 ; Crystal structure of Thermus thermophilis transhydrogeanse domain II dimer SeMet derivative 2ZWV ; 2.0 ; Crystal structure of Thermus thermophilus 16S rRNA methyltransferase RsmC (TTHA0533) 2ZUL ; 1.8 ; Crystal structure of Thermus thermophilus 16S rRNA methyltransferase RsmC (TTHA0533) in complex with cofactor S-adenosyl-L-Methionine 4V9I ; 3.3 ; Crystal structure of thermus thermophilus 70S in complex with tRNAs and mRNA containing a pseudouridine in a stop codon 1KWG ; 1.6 ; Crystal structure of Thermus thermophilus A4 beta-galactosidase 1KWK ; 2.2 ; Crystal structure of Thermus thermophilus A4 beta-galactosidase in complex with galactose 7KWD ; 2.1 ; Crystal structure of Thermus thermophilus alkaline phosphatase 5GQ9 ; 2.7 ; Crystal structure of Thermus thermophilus Argonaute in complex with g1C siDNA and DNA target 4L5G ; 2.3902 ; Crystal structure of Thermus thermophilus CarD 4XAX ; 2.404 ; Crystal structure of Thermus thermophilus CarD in complex with the Thermus aquaticus RNA polymerase beta1 domain 5C8E ; 3.89 ; Crystal structure of Thermus thermophilus CarH bound to adenosylcobalamin and a 26-bp DNA segment 4EV0 ; 2.402 ; Crystal Structure of Thermus thermophilus Catabolite Activator Protein 5FSH ; 2.301 ; Crystal structure of Thermus thermophilus Csm6 1EXM ; 1.7 ; CRYSTAL STRUCTURE OF THERMUS THERMOPHILUS ELONGATION FACTOR TU (EF-TU) IN COMPLEX WITH THE GTP ANALOGUE GPPNHP. 3ANG ; 2.25 ; Crystal structure of Thermus thermophilus FadR in complex with E. coli-derived dodecyl-CoA 3ANP ; 1.95 ; Crystal structure of Thermus thermophilus FadR, a TetR familly transcriptional repressor, in complex with lauroyl-CoA. 7ED6 ; 1.9285 ; Crystal structure of Thermus thermophilus FakA ATP-binding domain 1J09 ; 1.8 ; Crystal structure of Thermus thermophilus glutamyl-tRNA synthetase complexed with ATP and Glu 1N75 ; 1.9 ; Crystal structure of Thermus thermophilus glutamyl-tRNA synthetase complexed with ATP. 1N77 ; 2.4 ; Crystal structure of Thermus thermophilus glutamyl-tRNA synthetase complexed with tRNA(Glu) and ATP. 1N78 ; 2.1 ; Crystal structure of Thermus thermophilus glutamyl-tRNA synthetase complexed with tRNA(Glu) and glutamol-AMP. 1KH1 ; 2.3 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase 1KH2 ; 2.3 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with ATP 1J21 ; 2.2 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with ATP and citrulline 1KH3 ; 2.15 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with inhibitor 1KOR ; 1.95 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with inhibitors 1J20 ; 2.0 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with product 1J1Z ; 2.1 ; Crystal Structure of Thermus thermophilus HB8 Argininosuccinate Synthetase in complex with substrate 4F3E ; 2.4 ; Crystal Structure of Thermus thermophilus HB8 CasA 1ONL ; 2.5 ; Crystal structure of Thermus thermophilus HB8 H-protein of the glycine cleavage system 2P5U ; 2.37 ; Crystal structure of Thermus thermophilus HB8 UDP-glucose 4-epimerase complex with NAD 2P5Y ; 1.92 ; Crystal structure of Thermus thermophilus HB8 UDP-glucose 4-epimerase complex with NAD 4KJZ ; 2.8 ; Crystal Structure of Thermus Thermophilus IF2, Apo and GDP-bound Forms (2-474) 4KDF ; 2.356 ; Crystal Structure of Thermus thermophilus Malate Dehydrogenase in Complex with NAD 2D5B ; 1.8 ; Crystal Structure of Thermus Thermophilus Methionyl tRNA synthetase Y225F Mutant obtained in the presence of PEG6000 3TEH ; 2.8524 ; Crystal structure of Thermus thermophilus Phenylalanyl-tRNA synthetase complexed with L-dopa 3HFZ ; 2.9 ; Crystal structure of Thermus thermophilus Phenylalanyl-tRNA synthetase complexed with m-tyrosine 4OIO ; 3.1 ; Crystal structure of Thermus thermophilus pre-insertion substrate complex for de novo transcription initiation 5D4E ; 3.08 ; Crystal structure of Thermus thermophilus product complex for transcription initiation with 3'-dephosphate-CoA and CTP 5D4C ; 3.28 ; Crystal structure of Thermus thermophilus product complex for transcription initiation with ATP and CTP 5D4D ; 3.0 ; Crystal structure of Thermus thermophilus product complex for transcription initiation with NAD and CTP 2YWQ ; 2.64 ; Crystal structure of Thermus thermophilus Protein Y N-terminal domain 2CUW ; 2.3 ; Crystal Structure of Thermus thermophilus PurS, one of the subunits of Formylglycinamide Ribonucleotide Amidotransferase in the purine biosynthetic pathway 7MLJ ; 3.75 ; Crystal structure of Thermus thermophilus reiterative transcription complex with 4nt oligo-G RNA 7MLI ; 3.6 ; Crystal structure of Thermus thermophilus reiterative transcription complex with 5nt oligo-C RNA 1UJ4 ; 1.8 ; Crystal structure of Thermus thermophilus ribose-5-phosphate isomerase 1UJ6 ; 1.74 ; Crystal structure of Thermus thermophilus ribose-5-phosphate isomerase complexed with arabinose-5-phosphate 1UJ5 ; 2.0 ; Crystal structure of Thermus thermophilus ribose-5-phosphate isomerase complexed with ribose-5-phosphate 6ASG ; 3.8 ; Crystal structure of Thermus thermophilus RNA polymerase core enzyme 2CW0 ; 3.3 ; Crystal structure of Thermus thermophilus RNA polymerase holoenzyme at 3.3 angstroms resolution 4MQ9 ; 3.35 ; Crystal structure of Thermus thermophilus RNA polymerase holoenzyme in complex with GE23077 3DXJ ; 3.0 ; Crystal structure of thermus thermophilus rna polymerase holoenzyme in complex with the antibiotic myxopyronin 4OIR ; 3.105 ; Crystal structure of Thermus thermophilus RNA polymerase transcription initiation complex soaked with GE23077 and rifamycin SV 6BAR ; 2.908 ; Crystal structure of Thermus thermophilus Rod shape determining protein RodA (Q5SIX3_THET8) 6BAS ; 3.194 ; Crystal structure of Thermus thermophilus Rod shape determining protein RodA D255A mutant (Q5SIX3_THET8) 2CVK ; 2.0 ; Crystal Structure of Thermus thermophilus Thioredoxin 4TN8 ; 2.15 ; Crystal structure of Thermus Thermophilus thioredoxin solved by sulfur SAD using Swiss Light Source data 4G7H ; 2.9 ; Crystal structure of Thermus thermophilus transcription initiation complex 6LTS ; 3.45 ; Crystal structure of Thermus thermophilus transcription initiation complex comprising a truncated sigma finger 4G7O ; 2.993 ; Crystal structure of Thermus thermophilus transcription initiation complex containing 2 nt of RNA 4G7Z ; 3.815 ; Crystal structure of Thermus thermophilus transcription initiation complex containing 5-BrU at template-strand position +1 4OIN ; 2.8 ; Crystal structure of Thermus thermophilus transcription initiation complex soaked with GE23077 4OIQ ; 3.624 ; Crystal structure of Thermus thermophilus transcription initiation complex soaked with GE23077 and rifampicin 4OIP ; 3.4 ; Crystal structure of Thermus thermophilus transcription initiation complex soaked with GE23077, ATP, and CMPcPP 7MLB ; 3.6 ; Crystal structure of Thermus thermophilus transcription initiation complex with 5nt RNA 5X22 ; 3.35 ; Crystal structure of Thermus thermophilus transcription initiation complex with GpA and CMPcPP 5X21 ; 3.323 ; Crystal structure of Thermus thermophilus transcription initiation complex with GpA and pseudouridimycin (PUM) 4J16 ; 2.41 ; Crystal structure of Thermus thermophilus transhydrogenase heterotrimeric complex of the Alpha1 subunit dimer with the NADP binding domain (domain III) of the Beta subunit 4J1T ; 2.37 ; Crystal structure of Thermus thermophilus transhydrogenase heterotrimeric complex of the Alpha1 subunit dimer with the NADP binding domain (domain III) of the Beta subunit in P2(1) 3G5Q ; 2.102 ; Crystal structure of Thermus thermophilus TrmFO 3G5S ; 1.05 ; Crystal structure of Thermus thermophilus TrmFO in complex with glutathione 3G5R ; 1.6 ; Crystal structure of Thermus thermophilus TrmFO in complex with tetrahydrofolate 2CWW ; 2.6 ; Crystal structure of Thermus thermophilus TTHA1280, a putative SAM-dependent RNA methyltransferase, in complex with S-adenosyl-L-homocysteine 1GAX ; 2.9 ; CRYSTAL STRUCTURE OF THERMUS THERMOPHILUS VALYL-TRNA SYNTHETASE COMPLEXED WITH TRNA(VAL) AND VALYL-ADENYLATE ANALOGUE 1IVS ; 2.9 ; CRYSTAL STRUCTURE OF THERMUS THERMOPHILUS VALYL-TRNA SYNTHETASE COMPLEXED WITH TRNA(VAL) AND VALYL-ADENYLATE ANALOGUE 3SUH ; 2.65 ; Crystal structure of THF riboswitch, bound with 5-formyl-THF 3SUX ; 2.9 ; Crystal structure of THF riboswitch, bound with THF 3SUY ; 3.21 ; Crystal structure of THF riboswitch, unbound status 5AXK ; 2.29 ; Crystal structure of Thg1 like protein (TLP) 5AXL ; 2.998 ; Crystal structure of Thg1 like protein (TLP) with GTP 5AXM ; 2.21 ; Crystal structure of Thg1 like protein (TLP) with tRNA(Phe) 5AXN ; 2.703 ; Crystal structure of Thg1 like protein (TLP) with tRNA(Phe) and GDPNP 1TO9 ; 2.4 ; Crystal structure of THI-4 protein from Bacillus subtilis 1RP0 ; 1.6 ; Crystal Structure of Thi1 protein from Arabidopsis thaliana 3O63 ; 2.35 ; Crystal Structure of Thiamin Phosphate Synthase from Mycobacterium tuberculosis 3MEL ; 2.788 ; Crystal Structure of Thiamin pyrophosphokinase family protein from Enterococcus faecalis, Northeast Structural Genomics Consortium Target EfR150 3K94 ; 2.101 ; Crystal Structure of Thiamin pyrophosphokinase from Geobacillus thermodenitrificans, Northeast Structural Genomics Consortium Target GtR2 3IHK ; 3.0 ; Crystal Structure of thiamin pyrophosphokinase from S.mutans, Northeast Structural Genomics Consortium Target SmR83 3CWI ; 1.9 ; Crystal structure of thiamine biosynthesis protein (ThiS) from Geobacter metallireducens. Northeast Structural Genomics Consortium Target GmR137 1WV2 ; 2.9 ; Crystal structure of thiamine biosynthesis protein from Pseudomonas Aeruginosa 1VQV ; 2.65 ; Crystal Structure of Thiamine Monophosphate Kinase (thil) from Aquifex Aeolicus 3CEU ; 2.3 ; Crystal structure of thiamine phosphate pyrophosphorylase (BT_0647) from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium target BtR268 2GDI ; 2.05 ; Crystal structure of thiamine pyrophosphate-specific riboswitch in complex with thiamine pyrophosphate 3LM8 ; 2.6 ; Crystal Structure of Thiamine pyrophosphokinase from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR677 3MCQ ; 1.91 ; Crystal structure of Thiamine-monophosphate kinase (Mfla_0573) from METHYLOBACILLUS FLAGELLATUS KT at 1.91 A resolution 6XEP ; 1.8 ; Crystal structure of Thiamine-monophosphate kinase from Stenotrophomonas maltophilia K279a 1ESJ ; 1.8 ; CRYSTAL STRUCTURE OF THIAZOLE KINASE MUTANT (C198S) 1ESQ ; 2.5 ; CRYSTAL STRUCTURE OF THIAZOLE KINASE MUTANT (C198S) WITH ATP AND THIAZOLE PHOSPHATE. 4HCJ ; 1.12 ; Crystal Structure of ThiJ/PfpI Domain Protein from Brachyspira murdochii 3IA1 ; 1.76 ; Crystal structure of thio-disulfide isomerase from Thermus thermophilus 5KLO ; 1.79 ; Crystal structure of thioacyl intermediate in 2-aminomuconate 6-semialdehyde dehydrogenase N169A 7C7K ; 1.77 ; Crystal Structure of Thioacyl-Glyceraldehyde-3-phosphate dehydrogenase 1(GAPDH 1) from Escherichia coli at 1.77 Angstrom resolution 3LC2 ; 2.8 ; Crystal Structure of Thioacyl-Glyceraldehyde-3-phosphate dehydrogenase 1(GAPDH 1) from methicillin resistant Staphylococcus aureus MRSA252 2ESD ; 2.55 ; Crystal Structure of thioacylenzyme intermediate of an Nadp Dependent Aldehyde Dehydrogenase 3VYG ; 1.72 ; Crystal structure of Thiocyanate hydrolase mutant R136W 2CYE ; 1.9 ; Crystal structure of Thioesterase complexed with coenzyme A and Zn from Thermus thermophilus HB8 3LZ7 ; 2.191 ; Crystal Structure of thioesterase HI1161 EC3.1.2.- from Haemophilus influenzae. Orthorombic crystal form. Northeast Structural Genomics Consortium Target IR63 4QD7 ; 1.765 ; Crystal structure of Thioesterase PA1618 from Pseudomonas aeruginosa 4QD9 ; 1.767 ; Crystal structure of Thioesterase PA1618 from Pseudomonas aeruginosa in complex with benzoyl-dO-CoA 4QD8 ; 1.616 ; Crystal structure of Thioesterase PA1618 from Pseudomonas aeruginosa in complex with phenacyl-CoA 2OAF ; 2.0 ; Crystal structure of thioesterase superfamily (YP_508616.1) from Jannaschia sp. CCS1 at 2.00 A resolution 2NUJ ; 2.0 ; Crystal structure of thioesterase superfamily (YP_509914.1) from Jannaschia Sp. CCS1 at 2.00 A resolution 2CY9 ; 2.72 ; Crystal structure of thioesterase superfamily member2 from Mus musculus 2PRX ; 1.5 ; Crystal structure of Thioesterase superfamily protein (ZP_00837258.1) from Shewanella loihica PV-4 at 1.65 A resolution 4TLF ; 2.137 ; Crystal structure of Thiol dioxygenase from Pseudomonas aeruginosa 4JE1 ; 1.4 ; Crystal structure of thiol peroxidase from BURKHOLDERIA CENOCEPACIA J2315 1XVQ ; 1.75 ; Crystal structure of thiol peroxidase from Mycobacterium tuberculosis 4NMU ; 1.35 ; Crystal Structure of Thiol-disulfide Oxidoreductase from Bacillus str. 'Ames Ancestor' 3OR5 ; 1.66 ; Crystal structure of thiol:disulfide interchange protein, thioredoxin family protein from Chlorobium tepidum TLS 8GQF ; 1.8 ; Crystal structure of Thiolase 8GQM ; 1.45 ; Crystal structure of Thiolase complexed with acetyl coenzyme A 4XL4 ; 1.9 ; Crystal structure of thiolase from Clostridium acetobutylicum in complex with CoA 4WYS ; 2.1 ; Crystal structure of thiolase from Escherichia coli 8GQK ; 2.15 ; Crystal structure of Thiolase from Pseudomonas aeruginosa PAO1 4WYR ; 2.3 ; Crystal structure of thiolase mutation (V77Q,N153Y,A286K) from Clostridium acetobutylicum 7YVY ; 2.7 ; Crystal structure of thiolase PFC_04095 from Pyrococcus furiosus 8GQG ; 1.8 ; Crystal structure of Thioloase from Pseudomonas aeruginosa PAO1 1KTE ; 2.2 ; CRYSTAL STRUCTURE OF THIOLTRANSFERASE AT 2.2 ANGSTROM RESOLUTION 8H8P ; 2.5 ; Crystal structure of thiomorpholine-carboxylate dehydrogenase from Candida parapsilosis. 2GB4 ; 1.25 ; Crystal structure of Thiopurine methyltransferase (18204406) from Mus musculus at 1.35 A resolution 2BZG ; 1.58 ; Crystal structure of thiopurine S-methyltransferase. 7XAO ; 1.45 ; Crystal structure of thioredoxin 1 5JY5 ; 1.8 ; Crystal structure of Thioredoxin 1 from Cryptococcus neoformans at 1.8 Angstroms resolution 7YSI ; 1.202 ; Crystal structure of thioredoxin 2 4RUV ; 1.93 ; Crystal structure of thioredoxin 2 from Staphylococcus aureus NCTC8325 3P2A ; 2.195 ; Crystal Structure of Thioredoxin 2 from Yersinia pestis 4GRF ; 1.76 ; Crystal structure of thioredoxin domain of thiol-disulfide oxidoreductase BVU-2223 (Target EFI-501010) from Bacteroides vulgatus 5HR0 ; 1.31 ; Crystal structure of thioredoxin E101G mutant 1FAA ; 1.85 ; CRYSTAL STRUCTURE OF THIOREDOXIN F FROM SPINACH CHLOROPLAST (LONG FORM) 1F9M ; 1.86 ; CRYSTAL STRUCTURE OF THIOREDOXIN F FROM SPINACH CHLOROPLAST (SHORT FORM) 3EMX ; 2.25 ; Crystal structure of thioredoxin from Aeropyrum pernix 2TRX ; 1.68 ; CRYSTAL STRUCTURE OF THIOREDOXIN FROM ESCHERICHIA COLI AT 1.68 ANGSTROMS RESOLUTION 6BKV ; 2.35 ; Crystal structure of Thioredoxin from Helicobacter pylori (strain G27) 3HZ4 ; 2.3 ; Crystal Structure of Thioredoxin from Methanosarcina mazei 4I8B ; 2.0 ; Crystal Structure of Thioredoxin from Schistosoma Japonicum 2I4A ; 1.0 ; Crystal structure of thioredoxin from the acidophile Acetobacter aceti 1R26 ; 1.4 ; Crystal structure of thioredoxin from Trypanosoma brucei brucei 4FYU ; 2.0 ; Crystal structure of Thioredoxin from Wuchereria bancrofti at 2.0 Angstrom 5HR1 ; 2.144 ; Crystal structure of thioredoxin L107A mutant 5HR2 ; 1.2 ; Crystal structure of thioredoxin L94A mutant 1FB6 ; 2.1 ; CRYSTAL STRUCTURE OF THIOREDOXIN M FROM SPINACH CHLOROPLAST (OXIDIZED FORM) 1FB0 ; 2.26 ; CRYSTAL STRUCTURE OF THIOREDOXIN M FROM SPINACH CHLOROPLAST (REDUCED FORM) 7C65 ; 1.1 ; Crystal structure of thioredoxin m1 2H76 ; 2.25 ; Crystal Structure of Thioredoxin Mutant D10E in Hexagonal (p61) Space Group 2H75 ; 2.2 ; Crystal Structure of Thioredoxin Mutant D13E in Hexagonal (p61) Space Group 2H74 ; 2.4 ; Crystal Structure of Thioredoxin Mutant D2E in Hexagonal (p61) Space Group 2H73 ; 2.45 ; Crystal Structure of Thioredoxin Mutant D43E in Hexagonal (p61) Space Group 2H71 ; 2.2 ; Crystal Structure of Thioredoxin Mutant D47E in Hexagonal (p61) Space Group 2H70 ; 2.7 ; Crystal Structure of Thioredoxin Mutant D9E in Hexagonal (p61) Space Group 2H6Z ; 2.25 ; Crystal Structure of Thioredoxin Mutant E44D in Hexagonal (p61) Space Group 2H6Y ; 2.4 ; Crystal Structure of Thioredoxin Mutant E48D in Hexagonal (p61) Space Group 2H72 ; 2.25 ; Crystal Structure of Thioredoxin mutant E85D in Hexagonal (p61) Space Group 2FCH ; 2.6 ; Crystal Structure of Thioredoxin Mutant G74S 1ZZY ; 2.5 ; Crystal Structure of Thioredoxin Mutant L7V 2FD3 ; 2.45 ; Crystal Structure of Thioredoxin Mutant P34H 5HR3 ; 1.101 ; Crystal structure of thioredoxin N106A mutant 6X0B ; 1.702 ; Crystal Structure of Thioredoxin NaTrxh from Nicotiana alata 6G61 ; 1.8 ; Crystal structure of thioredoxin O1 from Arabidopsis thaliana in oxidized state 6G62 ; 1.5 ; Crystal structure of thioredoxin O2 from Arabidopsis thaliana in oxidized state 6A4J ; 3.4 ; Crystal structure of Thioredoxin reductase 2 from Staphylococcus aureus 7P0X ; 2.55 ; Crystal structure of Thioredoxin reductase from Brugia Malayi 7PVJ ; 3.1 ; Crystal structure of Thioredoxin Reductase from Brugia Malayi in complex with auranofin 7PUT ; 2.8 ; Crystal structure of Thioredoxin Reductase from Brugia Malayi in complex with NADP(H) 5W4C ; 2.255 ; Crystal structure of thioredoxin reductase from Cryptococcus neoformans in complex with FAD (FO conformation) 2NVK ; 2.4 ; Crystal Structure of Thioredoxin Reductase from Drosophila melanogaster 5UTH ; 1.95 ; Crystal structure of thioredoxin reductase from Mycobacterium smegmatis in complex with FAD 2ZBW ; 2.1 ; Crystal structure of thioredoxin reductase-like protein from Thermus thermophilus HB8 2CVJ ; 2.0 ; Crystal Structure of thioredoxin reductase-related protein TTHA0370 from Thermus thermophilus HB8 2YWL ; 1.6 ; Crystal structure of thioredoxin reductase-related protein TTHA0370 from Thermus thermophilus HB8 6Z7O ; 2.33 ; Crystal structure of Thioredoxin T from Drosophila melanogaster 2H6X ; 2.6 ; Crystal Structure of Thioredoxin Wild Type in Hexagonal (p61) Space Group 2PPT ; 1.92 ; Crystal structure of thioredoxin-2 5UTX ; 2.46 ; Crystal structure of thioredoxin-disulfide reductase from Vibrio vulnificus CMCP6 - apo form 5USX ; 2.603 ; Crystal structure of thioredoxin-disulfide reductase from Vibrio vulnificus CMCP6 in complex with NADP and FAD 4EUY ; 2.9 ; Crystal structure of thioredoxin-like protein BCE_0499 from Bacillus cereus ATCC 10987 3EYT ; 1.95 ; Crystal structure of Thioredoxin-like superfamily protein SPOA0173 1YT8 ; 1.9 ; Crystal Structure of Thiosulfate sulfurtransferase from Pseudomonas aeruginosa 6LEO ; 2.52 ; Crystal structure of thiosulfate transporter YeeE from Spirochaeta thermophila 6LEP ; 2.6 ; Crystal structure of thiosulfate transporter YeeE inactive mutant - C91A 4MES ; 2.0 ; Crystal structure of ThiT complexed with LMG116 4MHW ; 2.5 ; Crystal structure of ThiT with small molecule BAT-25 5CYR ; 3.504 ; Crystal structure of Thosea asigna virus RNA-dependent RNA polymerase (RdRP) complexed with ATP and ssRNA 5CX6 ; 2.1 ; Crystal structure of Thosea asigna virus RNA-dependent RNA polymerase (RdRP) complexed with CDP 4XHA ; 3.0 ; Crystal structure of Thosea asigna virus RNA-dependent RNA polymerase (RdRP) complexed with Lu3+ 2PMH ; 1.9 ; Crystal structure of Thr132Ala of ST1022 from Sulfolobus tokodaii 2EFQ ; 2.3 ; Crystal Structure of Thr134 to Ala of ST1022-Glutamine Complex from Sulfolobus tokodaii 7 2EHL ; 1.6 ; Crystal structure of Thr146 to Arg mutant of Diphthine synthase 7LM3 ; 2.7 ; Crystal Structure of Thr316Ala mutant of JAMM domain of S. pombe 6K2U ; 2.554 ; Crystal structure of Thr66 ADP-ribosylated ubiquitin 1V07 ; 1.7 ; CRYSTAL STRUCTURE OF ThrE11Val mutant of THE NERVE TISSUE MINI-HEMOGLOBIN FROM THE NEMERTEAN WORM CEREBRATULUS LACTEUS 1KLO ; 2.1 ; CRYSTAL STRUCTURE OF THREE CONSECUTIVE LAMININ-TYPE EPIDERMAL GROWTH FACTOR-LIKE (LE) MODULES OF LAMININ GAMMA1 CHAIN HARBORING THE NIDOGEN BINDING SITE 6LN0 ; 2.455 ; Crystal structure of three main domains of nonstructural protein 3 from Coronavirus 6TO1 ; 1.8 ; Crystal structure of three N-terminal domains of the type V pili tip protein Mfa5 from Porphyromonas gingivalis 6F1Q ; 2.3 ; Crystal structure of three-domain heme-Cu nitrite reductase from Ralstonia pickettii in I213 space group 2DQ4 ; 2.5 ; Crystal structure of threonine 3-dehydrogenase 2EJV ; 2.55 ; Crystal structure of threonine 3-dehydrogenase complexed with NAD+ 1M6S ; 1.8 ; Crystal Structure Of Threonine Aldolase 1JG8 ; 1.8 ; Crystal Structure of Threonine Aldolase (Low-specificity) 7W0I ; 1.75 ; Crystal structure of threonine aldolase from Mycobacterium vanbaalenii 3V7N ; 1.4 ; Crystal structure of Threonine synthase (thrC) from from Burkholderia thailandensis 2ZSJ ; 1.8 ; Crystal structure of threonine synthase from Aquifex aeolicus VF5 2C2G ; 2.61 ; Crystal structure of Threonine Synthase from Arabidopsis thaliana in complex with its cofactor pyridoxal phosphate 1VB3 ; 2.2 ; Crystal Structure of Threonine Synthase from Escherichia coli 1V7C ; 2.0 ; Crystal structure of threonine synthase from thermus thermophilus hb8 in complex with a substrate analogue 1UIM ; 2.15 ; Crystal Structure of Threonine Synthase from Thermus Thermophilus HB8, Orthorhombic Crystal Form 1UIN ; 2.25 ; Crystal Structure of Threonine Synthase from Thermus Thermophilus HB8, Trigonal Crystal Form 1KL7 ; 2.7 ; Crystal Structure of Threonine Synthase from Yeast 3C20 ; 2.7 ; Crystal Structure of Threonine-sensitive Aspartokinase from Methanococcus jannaschii with L-aspartate 7CBG ; 2.5 ; Crystal structure of threonyl-tRNA synthetase (ThrRS) from Salmonella enterica in complex with an inhibitor 7CBH ; 1.95 ; Crystal structure of threonyl-tRNA synthetase (ThrRS) from Salmonella enterica in complex with an inhibitor 7CBI ; 1.59 ; Crystal structure of threonyl-tRNA synthetase (ThrRS) from Salmonella enterica in complex with an inhibitor 6VU9 ; 2.2 ; Crystal structure of threonyl-tRNA synthetase (ThrRS) from Stenotrophomonas maltophilia K279a 1RKU ; 1.47 ; Crystal Structure of ThrH gene product of Pseudomonas Aeruginosa 3DGV ; 2.5 ; Crystal structure of thrombin activatable fibrinolysis inhibitor (TAFI) 5E8E ; 1.9 ; Crystal structure of thrombin bound to an exosite 1-specific IgA Fab 1XMN ; 1.85 ; Crystal structure of thrombin bound to heparin 6GWE ; 2.3 ; Crystal structure of Thrombin bound to P2 macrocycle 4DT7 ; 1.9 ; Crystal structure of thrombin bound to the activation domain QEDQVDPRLIDGKMTRRGDS of protein C 3BEF ; 2.2 ; Crystal structure of thrombin bound to the extracellular fragment of PAR1 1QBV ; 1.8 ; CRYSTAL STRUCTURE OF THROMBIN COMPLEXED WITH AN GUANIDINE-MIMETIC INHIBITOR 1JWT ; 2.5 ; CRYSTAL STRUCTURE OF THROMBIN IN COMPLEX WITH A NOVEL BICYCLIC LACTAM INHIBITOR 6EO8 ; 1.94 ; Crystal structure of thrombin in complex with a novel glucose-conjugated potent inhibitor 6EO9 ; 1.84 ; Crystal structure of thrombin in complex with a novel glucose-conjugated potent inhibitor 1TA2 ; 2.3 ; Crystal structure of thrombin in complex with compound 1 1TA6 ; 1.9 ; Crystal structure of thrombin in complex with compound 14b 6ZUG ; 1.8 ; Crystal Structure of Thrombin in complex with compound10 6ZUH ; 1.7 ; Crystal Structure of Thrombin in complex with compound17 6ZUN ; 1.793 ; Crystal Structure of Thrombin in complex with compound20a 6ZUU ; 1.94 ; Crystal structure of Thrombin in complex with compound30 6ZUW ; 2.0 ; Crystal Structure of Thrombin in complex with compound40 6ZUX ; 1.94 ; Crystal Structure of Thrombin in complex with compound42a 6ZV7 ; 1.94 ; Crystal Structure of Thrombin in complex with compound42b 6ZV8 ; 1.7 ; Crystal Structure of Thrombin in complex with compound51 2HWL ; 2.4 ; Crystal structure of thrombin in complex with fibrinogen gamma' peptide 3DA9 ; 1.8 ; Crystal structure of thrombin in complex with inhibitor 3C1K ; 1.84 ; Crystal structure of thrombin in complex with inhibitor 15 1MU6 ; 1.99 ; Crystal Structure of Thrombin in Complex with L-378,622 6T7H ; 2.32 ; Crystal structure of Thrombin in complex with macrocycle N14-PR4-A 8ASF ; 2.58 ; Crystal structure of Thrombin in complex with macrocycle T1 8ASE ; 2.55 ; Crystal structure of Thrombin in complex with macrocycle T3 6Z48 ; 2.27 ; Crystal structure of Thrombin in complex with macrocycle X1vE 4H6S ; 2.19 ; Crystal structure of thrombin mutant E14eA/D14lA/E18A/S195A 4RKJ ; 1.7 ; Crystal structure of thrombin mutant S195T (free form) 4RKO ; 1.84 ; Crystal structure of thrombin mutant S195T bound with PPACK 5TO3 ; 2.34 ; Crystal structure of thrombin mutant W215A/E217A fused to EGF456 of thrombomodulin via a 31-residue linker and bound to PPACK 3D66 ; 3.1 ; Crystal structure of Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) 3D67 ; 3.4 ; Crystal structure of Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) in complex with 2-guanidino-ethyl-mercaptosuccinic acid (GEMSA) 5HVG ; 3.05 ; Crystal Structure of Thrombin-activatable Fibrinolysis Inhibitor in Complex with an Inhibitory Nanobody (VHH-a204) 5HVF ; 2.85 ; Crystal Structure of Thrombin-activatable Fibrinolysis Inhibitor in Complex with an Inhibitory Nanobody (VHH-i83) 5HVH ; 3.0 ; Crystal Structure of Thrombin-activatable Fibrinolysis Inhibitor in Complex with two Inhibitory Nanobodies 5GIM ; 2.09 ; Crystal structure of thrombin-avathrin complex 3B23 ; 2.4 ; Crystal structure of thrombin-variegin complex: Insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors 2ES3 ; 1.85 ; Crystal Structure of Thrombospondin-1 N-terminal Domain in P1 Form at 1.85A Resolution 3R6B ; 2.4 ; Crystal Structure of Thrombospondin-1 TSR Domains 2 and 3 6LHX ; 2.501 ; Crystal structure of ThsA 6LHY ; 1.796 ; Crystal structure of ThsB 4OQL ; 2.1 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with dF-EdU 4OQN ; 2.3 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with EdU 4OQM ; 2.2 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with F-ARA-EdU 4JBY ; 2.0 ; Crystal structure of thymidine kinase from Herpes simplex virus type 1 in complex with F-SK78 4IVQ ; 1.9 ; Crystal structure of thymidine kinase from Herpes simplex virus type 1 in complex with IN43/5 4IVP ; 2.1 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with IN51/20 4IVR ; 2.4 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with IN52/10 4OQX ; 2.5 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with Me-ARA-EdU 3F0T ; 2.0 ; Crystal structure of thymidine kinase from Herpes simplex virus type 1 in complex with N-methyl-DHBT 3RDP ; 2.8 ; Crystal structure of thymidine kinase from herpes simplex virus type 1 in complex with N-METHYL-FHBT 4JBX ; 2.1 ; Crystal structure of thymidine kinase from Herpes simplex virus type 1 in complex with SK-78 1KI4 ; 2.34 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH 5-BROMOTHIENYLDEOXYURIDINE 1KI8 ; 2.2 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH 5-BROMOVINYLDEOXYURIDINE 1KI7 ; 2.2 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH 5-IODODEOXYURIDINE 1KI6 ; 2.37 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH A 5-IODOURACIL ANHYDROHEXITOL NUCLEOSIDE 1KIM ; 2.14 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH DEOXYTHYMIDINE 1KI2 ; 2.2 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH GANCICLOVIR 1KI3 ; 2.37 ; CRYSTAL STRUCTURE OF THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE I COMPLEXED WITH PENCICLOVIR 3E2I ; 2.01 ; Crystal structure of Thymidine Kinase from S. aureus 2B8T ; 2.0 ; Crystal structure of Thymidine Kinase from U.urealyticum in complex with thymidine 2UZ3 ; 2.5 ; Crystal Structure of Thymidine Kinase with dTTP from U. urealyticum 2PBR ; 1.96 ; Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 3V9P ; 1.9 ; Crystal structure of Thymidylate kinase from Burkholderia thailandensis 3LD9 ; 2.15 ; Crystal structure of thymidylate kinase from Ehrlichia chaffeensis at 2.15A resolution 4GSY ; 1.71 ; Crystal structure of thymidylate kinase from Staphylococcus aureus bound to inhibitor. 4F4I ; 2.45 ; Crystal structure of Thymidylate Kinase from Staphylococcus aureus in apo-form 4MQB ; 1.55 ; Crystal structure of thymidylate kinase from Staphylococcus aureus in complex with 2-(N-morpholino)ethanesulfonic acid 4EAQ ; 1.85 ; Crystal structure of Thymidylate Kinase from Staphylococcus aureus in complex with 3'-Azido-3'-Deoxythymidine-5'-Monophosphate 4DWJ ; 2.74 ; Crystal structure of Thymidylate Kinase from Staphylococcus aureus in complex with Thymidine Monophosphate 5X7J ; 1.84 ; Crystal structure of thymidylate kinase from thermus thermophilus HB8 5ZB0 ; 1.19 ; Crystal structure of thymidylate kinase in complex with ADP and TDP from thermus thermophilus HB8 5ZB4 ; 1.92 ; Crystal structure of thymidylate kinase in complex with ADP and TMP from thermus thermophilus HB8 5ZAX ; 2.36 ; Crystal structure of thymidylate kinase in complex with ADP, TDP and TMP from thermus thermophilus HB8 3HJN ; 2.1 ; Crystal structure of thymidylate kinase in complex with dTDP and ADP from Thermotoga maritima 7FGQ ; 1.91 ; Crystal structure of Thymidylate kinase with TMP and its low-resolution (SAXS) solution structure from Brugia malayi 3KGB ; 2.2 ; Crystal structure of thymidylate synthase 1/2 from Encephalitozoon cuniculi at 2.2 A resolution 1B02 ; 2.5 ; CRYSTAL STRUCTURE OF THYMIDYLATE SYNTHASE A FROM BACILLUS SUBTILIS 1O24 ; 2.0 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima at 2.0 A resolution 1O25 ; 2.4 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with dUMP at 2.4 A resolution 1O27 ; 2.3 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FAD and BrdUMP at 2.3 A resolution 1O26 ; 1.6 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FAD and dUMP at 1.6 A resolution 1O29 ; 2.0 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FAD and FdUMP at 2.0 A resolution 1O2B ; 2.45 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FAD and PO4 at 2.45 A resolution 1O2A ; 1.8 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FAD at 1.8 A resolution 1O28 ; 2.1 ; Crystal structure of Thymidylate Synthase Complementing Protein (TM0449) from Thermotoga maritima with FdUMP at 2.1 A resolution 7TA9 ; 1.5 ; Crystal Structure of thymidylate synthase from Acinetobacter baumannii 3V8H ; 1.65 ; Crystal structure of Thymidylate Synthase from Burkholderia thailandensis 4H0R ; 2.3 ; Crystal structure of thymidylate synthase from Corynebacterium glutamicum 4H0U ; 2.75 ; Crystal structure of thymidylate synthase from Corynebacterium glutamicum in complex with dUMP 6AUJ ; 1.7 ; Crystal structure of thymidylate synthase from Elizabethkingia anophelis NUHP1 1F28 ; 1.9 ; CRYSTAL STRUCTURE OF THYMIDYLATE SYNTHASE FROM PNEUMOCYSTIS CARINII BOUND TO DUMP AND BW1843U89 6K7Q ; 2.27 ; Crystal structure of thymidylate synthase from shrimp 6K7R ; 1.54 ; Crystal structure of thymidylate synthase from shrimp 6K7S ; 1.56 ; Crystal structure of thymidylate synthase from shrimp 1TIS ; 2.7 ; CRYSTAL STRUCTURE OF THYMIDYLATE SYNTHASE FROM T4 PHAGE 1AIQ ; 2.2 ; CRYSTAL STRUCTURE OF THYMIDYLATE SYNTHASE R126E MUTANT 1AJM ; 2.4 ; CRYSTAL STRUCTURE OF THYMIDYLATE SYNTHASE R126E MUTANT 3BNZ ; 2.6 ; Crystal structure of Thymidylate Synthase ternary complex with dUMP and 8A inhibitor 3IX6 ; 2.2 ; Crystal structure of Thymidylate synthase thyA from Brucella melitensis 3N3Y ; 2.307 ; Crystal structure of Thymidylate Synthase X (ThyX) from Helicobacter pylori with FAD and dUMP at 2.31A resolution 6J61 ; 2.5 ; Crystal Structure of Thymidylate Synthase, Thy1, from Thermus thermophilus having an Extra C Terminal Domain 5OX2 ; 2.24 ; Crystal structure of thymoligase, a substrate-tailored peptiligase variant 2XN5 ; 1.7 ; Crystal structure of thyroxine-binding globulin complexed with Furosemide 2XN3 ; 2.09 ; Crystal structure of thyroxine-binding globulin complexed with mefenamic acid 2XN6 ; 1.29 ; Crystal structure of thyroxine-binding globulin complexed with thyroxine-fluoresein 2XN7 ; 1.43 ; Crystal structure of thyroxine-binding globulin complexed with thyroxine-fluoresein (T405-CF) 6ELD ; 2.485 ; Crystal structure of TIA-1 RRM1 in complex with U1C 5O3J ; 2.97 ; Crystal structure of TIA-1 RRM2 in complex with RNA 4Q1Q ; 2.11 ; Crystal structure of TibC-catalyzed hyper-glycosylated TibA55-350 fragment 1D0D ; 1.62 ; CRYSTAL STRUCTURE OF TICK ANTICOAGULANT PROTEIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR 8W5Z ; 1.55 ; Crystal structure of tick tyrosylprotein sulfotransferase reveals the activation mechanism of tick anticoagulant protein madanin 7D6M ; 1.894 ; Crystal structure of tick-borne encephalitis virus methyltransferase 7D6N ; 3.168 ; Crystal structure of tick-borne encephalitis virus RNA-dependent RNA polymerase 5N06 ; 2.501 ; Crystal structure of Tie1 Fibronectin-like domain 3 6MWE ; 2.05 ; CRYSTAL STRUCTURE OF TIE2 IN COMPLEX WITH DECIPERA COMPOUND DP1919 7E72 ; 2.094 ; Crystal structure of Tie2-agonistic antibody in complex with human Tie2 Fn2-3 5F6H ; 2.66 ; Crystal Structure of Tier 2 Neutralizing Antibody DH427 from a Rhesus Macaque 5F6J ; 6.63 ; Crystal Structure of Tier 2 Neutralizing Antibody DH427 from a Rhesus Macaque in Complex with HIV-1 gp120 Core 5F6I ; 2.32 ; Crystal Structure of Tier 2 Neutralizing Antibody DH428 from a Rhesus Macaque 5M3Q ; 1.5 ; Crystal structure of Tif6 from Chaetomium thermophilum 7EPV ; 1.78 ; Crystal structure of tigecycline degrading monooxygenase Tet(X4) 8JEL ; 2.45 ; Crystal structure of TIGIT in complexed with Ociperlimab, crystal form I 8JEN ; 2.71 ; Crystal structure of TIGIT in complexed with Ociperlimab, crystal form II 8JEO ; 2.06 ; Crystal structure of TIGIT in complexed with Tiragolumab 3HJ7 ; 2.2 ; Crystal structure of TILS C-terminal domain 3A2K ; 3.65 ; Crystal structure of TilS complexed with tRNA 2E21 ; 2.7 ; Crystal structure of TilS in a complex with AMPPNP from Aquifex aeolicus. 5TQL ; 1.9 ; Crystal structure of TIM-Barrel protein HisF-C9S 3A3C ; 2.5 ; Crystal structure of TIM40/MIA40 fusing MBP, C296S and C298S mutant 2ZXT ; 3.0 ; Crystal structure of Tim40/MIA40, a disulfide relay system in mitochondria, solved as MBP fusion protein 4XHW ; 2.85 ; Crystal structure of Timeless_PAB domain in SeMet-labelled form 4XHT ; 1.651 ; Crystal structure of Timeless_PAB domain native form 7KYW ; 2.3 ; Crystal structure of timothy grass allergen Phl p 12.0101 reveals an unusual profilin dimer 3ITW ; 2.15 ; Crystal structure of TioX from Micromonospora sp. ML1 3GJ9 ; 2.8 ; crystal structure of TIP-1 in complex with c-terminal of Kir2.3 3DJ1 ; 1.8 ; crystal structure of TIP-1 wild type 3VNC ; 2.6 ; Crystal Structure of TIP-alpha N25 from Helicobacter Pylori in its natural dimeric form 2WCQ ; 1.9 ; Crystal Structure of Tip-Alpha N34 (HP0596) from Helicobacter pylori at pH4 2WCR ; 1.7 ; Crystal Structure of Tip-Alpha N34 (HP0596) from Helicobacter pylori at pH8 3F4M ; 1.696 ; Crystal structure of TIPE2 4Q9V ; 2.3 ; Crystal structure of TIPE3 5D9G ; 2.15 ; Crystal structure of TIPRL, TOR signaling pathway regulator-like, in complex with peptide 3JRN ; 2.0 ; Crystal structure of TIR domain from Arabidopsis Thaliana 4OM7 ; 2.204 ; Crystal structure of TIR domain of TLR6 8JEQ ; 1.96 ; Crystal structure of Tiragolumab 1JPS ; 1.85 ; Crystal structure of tissue factor in complex with humanized Fab D3h44 1J9C ; 2.9 ; Crystal Structure of tissue factor-factor VIIa complex 3QP3 ; 1.997 ; Crystal structure of titin domain M4, tetragonal form 6HCI ; 2.12 ; Crystal structure of titin M3 domain 5Z5A ; 1.8 ; Crystal structure of Tk-PTP in the active form 5Z5B ; 2.3 ; Crystal structure of Tk-PTP in the G95A mutant form 5Z59 ; 1.703 ; Crystal structure of Tk-PTP in the inactive form 1X1P ; 2.8 ; Crystal structure of Tk-RNase HII(1-197)-A(28-42) 2DFE ; 2.4 ; Crystal structure of Tk-RNase HII(1-200)-C 2DFF ; 2.7 ; Crystal structure of Tk-RNase HII(1-204)-C 2DFH ; 2.27 ; Crystal structure of Tk-RNase HII(1-212)-C 3N92 ; 2.89 ; Crystal structure of TK1436, a GH57 branching enzyme from hyperthermophilic archaeon Thermococcus kodakaraensis, in complex with glucose 3N98 ; 1.87 ; Crystal structure of TK1436, a GH57 branching enzyme from hyperthermophilic archaeon Thermococcus kodakaraensis, in complex with glucose and additives 4PRP ; 2.5 ; Crystal structure of TK3 TCR-HLA-B*35:01-HPVG-Q5 complex 4PRI ; 2.4 ; Crystal structure of TK3 TCR-HLA-B*35:08-HPVG complex 4PRH ; 2.5 ; Crystal structure of TK3 TCR-HLA-B*35:08-HPVG-D5 complex 7VNX ; 1.801 ; Crystal structure of TkArkI 5E7R ; 2.11 ; Crystal structure of TL10-81 bound to TAK1-TAB1 5JH6 ; 2.365 ; Crystal structure of TL10-92 bound to TAK1-TAB1 5J8I ; 2.404 ; Crystal structure of TL11-113 bound to TAK1-TAB1 5JK3 ; 2.371 ; Crystal structure of TL11-128 bound to TAK1-TAB1 2O0O ; 3.0 ; Crystal structure of TL1A 2RE9 ; 2.1 ; Crystal structure of TL1A at 2.1 A 6NVT ; 2.2 ; Crystal structure of TLA-1 extended spectrum Beta-lactamase 6NVU ; 2.5 ; Crystal structure of TLA-1 extended spectrum Beta-lactamase in complex with Clavulanic Acid 6PQ9 ; 2.191 ; Crystal Structure of TLA-1 S70G extended spectrum Beta-lactamase 6PQ8 ; 2.2 ; Crystal structure of TLA-1 S70G extended spectrum Beta-lactamase in complex with clavulanic acid 5GS8 ; 1.59 ; Crystal structure of TLA-3 extended-spectrum beta-lactamase 5GWA ; 1.59 ; Crystal structure of TLA-3 extended-spectrum beta-lactamase in a complex with avibactam 5X5G ; 2.0 ; Crystal structure of TLA-3 extended-spectrum beta-lactamase in a complex with OP0595 6J6A ; 2.353 ; Crystal structure of TldE from Thermococcus kodakarensis 7UMA ; 1.6 ; Crystal structure of Tlde1a from Salmonella Typhimurium 4OM2 ; 4.0 ; Crystal structure of TLE1 N-terminal Q-domain residues 1-156 6J82 ; 2.202 ; Crystal structure of TleB apo 6J84 ; 2.0 ; Crystal structure of TleB with hydroxyl analog 6J83 ; 1.9 ; Crystal structure of TleB with NMVT 6XZ4 ; 2.3 ; Crystal structure of TLNRD1 6XZ3 ; 2.19 ; Crystal structure of TLNRD1 4-helix bundle 4Z0C ; 2.3 ; Crystal structure of TLR13-ssRNA13 complex 3A7C ; 2.4 ; Crystal structure of TLR2-PE-DTPA complex 3A7B ; 2.53 ; Crystal structure of TLR2-Streptococcus Pneumoniae lipoteichoic acid complex 3A79 ; 2.9 ; Crystal structure of TLR2-TLR6-Pam2CSK4 complex 6LVX ; 2.77 ; Crystal structure of TLR7/Cpd-1 (SM-374527) complex 6LVY ; 2.6 ; Crystal structure of TLR7/Cpd-2 (SM-360320) complex 6LVZ ; 2.83 ; Crystal structure of TLR7/Cpd-3 (SM-394830) complex 6LW0 ; 2.6 ; Crystal structure of TLR7/Cpd-6 (DSR-139293) complex 7YTX ; 2.9 ; Crystal structure of TLR8 in complex with its antagonist 4J4M ; 1.8 ; Crystal structure of TM-1, a Trimeresurus mucrosquamatus venom metalloproteinase 3S86 ; 2.15 ; Crystal Structure of TM0159 with bound IMP 3FMS ; 2.2 ; Crystal structure of TM0439, a GntR transcriptional regulator 3RRE ; 2.15 ; Crystal Structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with ADP 3RT7 ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with ADP-glucose 3RS8 ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with ADP-ribose 3RRB ; 2.4 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with AMP 3RRF ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with ATP 3RS9 ; 2.103 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with P1,P3-Di(adenosine-5') triphosphate 3RSF ; 2.3 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with P1,P4-Di(adenosine-5') tetraphosphate 3RRJ ; 2.5 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima in complex with P1,P5-Di(adenosine-5') pentaphosphate 3RTA ; 1.95 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with Acetyl Coenzyme A 3RTB ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with Adenosine-3'-5'-Diphosphate 3RT9 ; 1.952 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with Coenzyme A 3RTG ; 2.052 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with Coenzyme A and ATP 3RTC ; 2.101 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NAD and ATP. 3RSG ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NAD. 3RSQ ; 2.054 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADH 3RTD ; 2.3 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADH and ADP. 3RSS ; 1.953 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADP 3RTE ; 2.1 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADP and ATP. 3RU3 ; 2.605 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADPH and ATP. 3RU2 ; 2.2 ; Crystal structure of tm0922, a fusion of a domain of unknown function and ADP/ATP-dependent NAD(P)H-hydrate dehydratase from Thermotoga maritima soaked with NADPH. 3DCL ; 2.25 ; Crystal structure of TM1086 3N99 ; 2.38 ; Crystal structure of TM1086 3E57 ; 1.89 ; Crystal structure of Tm1382, a putative Nudix hydrolase 1S12 ; 2.0 ; Crystal structure of TM1457 8RI0 ; 1.95 ; Crystal structure of Tm1570 domain from Calditerrivibrio nitroreducens in complex with S-adenosyl-L-methionine 5TVD ; 1.734 ; Crystal structure of Tm16 1P8C ; 2.3 ; Crystal structure of TM1620 (APC4843) from Thermotoga maritima 1H2H ; 2.6 ; Crystal structure of TM1643 3H3E ; 2.749 ; Crystal structure of Tm1679, A METAL-DEPENDENT HYDROLASE OF THE BETA-LACTAMASE SUPERFAMILY 3N0U ; 1.5 ; Crystal structure of Tm1821, the 8-oxoguanine DNA glycosylase of Thermotoga maritima 3HD0 ; 2.7 ; Crystal structure of Tm1865, an Endonuclease V from Thermotoga Maritima 6Y16 ; 1.7 ; CRYSTAL STRUCTURE OF TMARGBP DOMAIN 1 IN COMPLEX WITH THE GUANIDINIUM ION 2GWO ; 2.4 ; crystal structure of TMDP 7DYA ; 2.197 ; Crystal structure of TmFtn with calcium ions 6KBW ; 1.686 ; Crystal structure of Tmm from Myroides profundi D25 7D4K ; 1.8 ; Crystal structure of Tmm from Pelagibacter sp. strain HTCC7211 7D4N ; 1.999 ; Crystal structure of Tmm from strain HTCC7211 soaked with DMS for 20 min 7D4M ; 1.786 ; Crystal structure of Tmm from strain HTCC7211 soaked with DMS for 5 min 5X86 ; 1.19 ; Crystal structure of TMP bound thymidylate kinase from thermus thermophilus HB8 6NW5 ; 1.7 ; Crystal structure of TmPep1050 aminopeptidase with its metal cofactors 8HD8 ; 2.4 ; Crystal structure of TMPRSS2 in complex with 212-148 7Y0E ; 2.39 ; Crystal structure of TMPRSS2 in complex with Camostat 7XYD ; 2.58 ; Crystal structure of TMPRSS2 in complex with Nafamostat 7Y0F ; 2.6 ; Crystal structure of TMPRSS2 in complex with UK-371804 5KC0 ; 3.2001 ; Crystal structure of TmRibU, hexagonal crystal form 5KBW ; 2.6093 ; Crystal structure of TmRibU, the riboflavin-binding S subunit from the Thermotoga maritima ECF transporter 7CKH ; 1.79493 ; Crystal structure of TMSiPheRS 7CKG ; 2.053 ; Crystal structure of TMSiPheRS complexed with TMSiPhe 2QGQ ; 2.0 ; Crystal structure of TM_1862 from Thermotoga maritima. Northeast Structural Genomics Consortium target VR77 4RV0 ; 1.998 ; Crystal structure of TN complex 3ECP ; 2.5 ; Crystal Structure Of Tn5 Transposase Complexed With 5' Phosphorylated Transposon End DNA 1MM8 ; 2.8 ; Crystal structure of Tn5 Transposase complexed with ME DNA 1MUS ; 1.9 ; crystal structure of Tn5 transposase complexed with resolved outside end DNA 1MUH ; 2.3 ; CRYSTAL STRUCTURE OF TN5 TRANSPOSASE COMPLEXED WITH TRANSPOSON END DNA 1ZK7 ; 1.6 ; Crystal Structure of Tn501 MerA 1ZX9 ; 1.9 ; Crystal Structure of Tn501 MerA 3IT8 ; 2.8 ; Crystal structure of TNF alpha complexed with a poxvirus MHC-related TNF binding protein 4G3Y ; 2.6 ; Crystal structure of TNF-alpha in complex with Infliximab Fab fragment 2AZ5 ; 2.1 ; Crystal Structure of TNF-alpha with a small molecule inhibitor 3ALQ ; 3.0 ; Crystal structure of TNF-TNFR2 complex 3WD5 ; 3.101 ; Crystal structure of TNFalpha in complex with Adalimumab Fab fragment 6X83 ; 2.83 ; Crystal Structure of TNFalpha with fragment compound 6 6X86 ; 2.93 ; Crystal Structure of TNFalpha with indolinone compound 11 6X85 ; 2.85 ; Crystal Structure of TNFalpha with indolinone compound 9 6X81 ; 2.81 ; Crystal Structure of TNFalpha with isoquinoline compound 2 6X82 ; 2.75 ; Crystal Structure of TNFalpha with isoquinoline compound 4 7XZR ; 2.26 ; Crystal structure of TNIK-AMPPNP-thiopeptide TP15 complex 7XZQ ; 2.09 ; Crystal structure of TNIK-thiopeptide TP1 complex 8WM0 ; 2.8 ; Crystal structure of TNIK-thiopeptide wTP3 complex 4PNL ; 1.5 ; Crystal structure of TNKS-2 in complex with DR2313. 5OWT ; 2.2 ; Crystal structure of TNKS2 in complex with (5S)-5-methyl-5-[4-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl]imidazolidine-2,4-dione 5NSX ; 1.8 ; Crystal structure of TNKS2 in complex with 2-(1H-indazol-5-yl)-3,4-dihydroquinazolin-4-one 5AL3 ; 1.75 ; Crystal structure of TNKS2 in complex with 2-(2,4-dichlorophenyl)-1- methyl-1H,2H,3H,4H-pyrido(2,3-d)pyrimidin-4-one 5NWC ; 1.5 ; Crystal structure of TNKS2 in complex with 2-(2-aminophenyl)-3,4-dihydroquinazolin-4-one 5NT0 ; 1.75 ; Crystal structure of TNKS2 in complex with 2-(3-aminophenyl)-3,4-dihydroquinazolin-4-one 5NVC ; 1.6 ; Crystal structure of TNKS2 in complex with 2-(3-hydroxyphenyl)-3,4-dihydroquinazolin-4-one 5AL5 ; 2.05 ; Crystal structure of TNKS2 in complex with 2-(4-((pyridin-4-yl)methyl) piperazin-1-yl)-3,4,5,6,7,8-hexahydroquinazolin-4-one 5AL2 ; 1.9 ; Crystal structure of TNKS2 in complex with 2-(4-(propan-2-yl)phenyl)- 1H,2H,3H,4H-pyrido(2,3-d)pyrimidin-4-one 5AKW ; 2.07 ; Crystal structure of TNKS2 in complex with 2-(4-chlorophenyl)-1,2,3,4- tetrahydroquinazolin-4-one 5NVE ; 1.5 ; Crystal structure of TNKS2 in complex with 2-(4-ethoxyphenyl)-3,4-dihydroquinazolin-4-one 5AL4 ; 1.9 ; Crystal structure of TNKS2 in complex with 2-(4-methylpiperazin-1-yl)- 3,4,5,6,7,8-hexahydroquinazolin-4-one 5AKU ; 1.8 ; Crystal structure of TNKS2 in complex with 2-(4-tert-butylphenyl)-1,2, 3,4-tetrahydroquinazolin-4-one 5AL1 ; 1.75 ; Crystal structure of TNKS2 in complex with 2-(4-tert-butylphenyl)-1H, 2H,3H,4H-pyrido(2,3-d)pyrimidin-4-one 5OWS ; 1.8 ; Crystal structure of TNKS2 in complex with 2-[4-(4-methyl-2-oxoimidazolidin-4-yl)phenyl]-3,4-dihydroquinazolin-4-one 5NWD ; 1.45 ; Crystal structure of TNKS2 in complex with 2-[4-(diethylamino)phenyl]-3,4-dihydroquinazolin-4-one 5NT4 ; 1.9 ; Crystal structure of TNKS2 in complex with 2-[4-(morpholin-4-yl)phenyl]-3,4-dihydroquinazolin-4-one 5NVH ; 1.6 ; Crystal structure of TNKS2 in complex with 2-[4-(piperidin-1-yl)phenyl]-3,4-dihydroquinazolin-4-one 5NUT ; 1.6 ; Crystal structure of TNKS2 in complex with 2-[4-(propan-2-yloxy)phenyl]-3,4-dihydroquinazolin-4-one 5NVF ; 1.55 ; Crystal structure of TNKS2 in complex with 2-[4-(pyridin-2-yl)phenyl]-3,4-dihydroquinazolin-4-one 5NXE ; 1.6 ; Crystal structure of TNKS2 in complex with 2-{4-[(2-hydroxyethyl)(methyl)amino]phenyl}-1,2,3,4-tetrahydroquinazolin-4-one 5NWB ; 1.6 ; Crystal structure of TNKS2 in complex with 2-{4-[(2-hydroxyethyl)(methyl)amino]phenyl}-3,4-dihydroquinazolin-4-one 5NWG ; 1.4 ; Crystal structure of TNKS2 in complex with 7-chloro-2-{4-[(2-hydroxyethyl)(methyl)amino]phenyl}-3,4-dihydroquinazolin-4-one 5NSP ; 2.3 ; Crystal structure of TNKS2 in complex with OD334 6CLW ; 2.74 ; Crystal structure of TnmH 6CLX ; 2.73 ; Crystal structure of TnmH in complex with SAM 8E19 ; 2.03 ; Crystal structure of TnmK1 complexed with TNM H 8G5U ; 1.804 ; Crystal structure of TnmK2 complexed with TNM B 5UMQ ; 1.95 ; Crystal structure of TnmS1, an antibiotic binding protein from Streptomyces sp. CB03234 5UMW ; 2.27 ; Crystal structure of TnmS2, an antibiotic binding protein from Streptomyces sp. CB03234 5UMX ; 1.59 ; Crystal structure of TnmS3 in complex with riboflavin 5UMY ; 1.78 ; Crystal structure of TnmS3 in complex with tiancimycin 5W27 ; 1.8 ; Crystal structure of TnmS3 in complex with tiancimycin (TNM B) 6BBX ; 2.2 ; Crystal structure of TnmS3 in complex with TNM C 5UMP ; 1.08 ; Crystal structure of TnmS3, an antibiotic binding protein from Streptomyces sp. CB03234 7MBW ; 3.2 ; Crystal structure of TnsC(1-503)A225V 1P6P ; 2.5 ; Crystal Structure of Toad Liver Basic Fatty Acid-Binding Protein 4RNQ ; 2.47 ; Crystal structure of tobacco 5-epi-aristolochene synthase (TEAS) with anilinogeranyl diphosphate (AGPP) and geraniline 3MMG ; 1.7 ; Crystal structure of tobacco vein mottling virus protease 1LC4 ; 2.54 ; Crystal Structure of Tobramycin Bound to the Eubacterial 16S rRNA A Site 3BB3 ; 2.94 ; Crystal structure of Toc33 from Arabidopsis thaliana in complex with GDP and Mg2+ 3BB4 ; 2.85 ; Crystal structure of Toc33 from Arabidopsis thaliana in complex with Mg2+ and GMPPNP 3DEF ; 1.96 ; Crystal structure of Toc33 from Arabidopsis thaliana, dimerization deficient mutant R130A 3BB1 ; 2.8 ; Crystal structure of Toc34 from Pisum sativum in complex with Mg2+ and GMPPNP 3P2H ; 2.0 ; Crystal structure of TofI in a ternary complex with an inhibitor and MTA 3P2F ; 2.3 ; Crystal structure of TofI in an apo form 7MX5 ; 2.42 ; Crystal structure of TolB from Acinetobacter baumannii 4PWZ ; 1.732 ; Crystal structure of TolB protein from Yersinia pestis CO92 2HQS ; 1.5 ; Crystal structure of TolB/Pal complex 4R40 ; 2.496 ; Crystal Structure of TolB/Pal complex from Yersinia pestis. 3EDI ; 1.4 ; Crystal structure of tolloid-like protease 1 (TLL-1) protease domain 3EN1 ; 3.2 ; Crystal structure of Toluene 2,3-Dioxygenase 3DQY ; 1.2 ; Crystal structure of Toluene 2,3-Dioxygenase Ferredoxin 3EF6 ; 1.8 ; Crystal structure of Toluene 2,3-Dioxygenase Reductase 3DHG ; 1.85 ; Crystal Structure of Toluene 4-Monoxygenase Hydroxylase 4FCZ ; 2.604 ; Crystal Structure of Toluene-tolerance protein from Pseudomonas putida (strain KT2440), Northeast Structural Genomics Consortium (NESG) Target PpR99 1WRD ; 1.75 ; Crystal structure of Tom1 GAT domain in complex with ubiquitin 3FP3 ; 1.98 ; Crystal structure of Tom71 3FP2 ; 1.98 ; Crystal structure of Tom71 complexed with Hsp82 C-terminal fragment 3FP4 ; 2.14 ; Crystal structure of Tom71 complexed with Ssa1 C-terminal fragment 3CZ3 ; 3.23 ; Crystal structure of Tomato Aspermy Virus 2b in complex with siRNA 6IK7 ; 3.1 ; Crystal structure of tomato beta-galactosidase (TBG) 4 in complex with beta-1,3-galactobiose 6IK8 ; 2.8 ; Crystal structure of tomato beta-galactosidase (TBG) 4 in complex with beta-1,6-galactobiose 6IK5 ; 1.82 ; Crystal structure of tomato beta-galactosidase (TBG) 4 in complex with galactose 6IK6 ; 2.791 ; Crystal structure of Tomato beta-galactosidase (TBG) 4 with beta-1,4-galactobiose 3W5F ; 1.65 ; Crystal structure of tomato beta-galactosidase 4 3W5G ; 3.0 ; Crystal structure of tomato beta-galactosidase 4 in complex with galactose 1OYV ; 2.5 ; Crystal structure of tomato inhibitor-II in a ternary complex with subtilisin Carlsberg 3STT ; 2.24 ; Crystal Structure of tomato Methylketone Synthase I Apo form 3STW ; 2.31 ; Crystal Structure of tomato Methylketone Synthase I complexed with 2-tridecanone 3STV ; 2.2 ; Crystal Structure of tomato Methylketone Synthase I complexed with 3-hydroxyoctanoate 3STU ; 1.93 ; Crystal Structure of tomato Methylketone Synthase I complexed with methyl-3-hydroxydodecanoate 3STX ; 2.3 ; Crystal Structure of tomato Methylketone Synthase I H243A variant complexed with beta-ketoheptanoate 3STY ; 1.7 ; Crystal Structure of tomato Methylketone Synthase I T18A mutant 3HGR ; 2.3 ; Crystal structure of tomato OPR1 in complex with pHB 3HGS ; 2.0 ; Crystal structure of tomato OPR3 in complex with pHB 3RY0 ; 1.4 ; Crystal structure of TomN, a 4-Oxalocrotonate Tautomerase homologue in Tomaymycin biosynthetic pathway 4MB0 ; 1.96 ; Crystal structure of TON1374 4MB2 ; 2.19 ; Crystal structure of TON1374 in complex with ATP 3ZPJ ; 2.304 ; Crystal structure of Ton1535 from Thermococcus onnurineus NA1 2GRX ; 3.3 ; Crystal structure of TonB in complex with FhuA, E. coli outer membrane receptor for ferrichrome 4DWZ ; 2.7 ; Crystal Structure of Ton_0340 4FC5 ; 2.3 ; Crystal Structure of Ton_0340 5GL2 ; 2.03 ; Crystal structure of TON_0340 in complex with Ca 5GL3 ; 2.4 ; Crystal structure of TON_0340 in complex with Mg 5GL4 ; 2.2 ; Crystal structure of TON_0340 in complex with Mn 5GKX ; 2.01 ; Crystal structure of TON_0340, apo form 3UEB ; 1.98 ; Crystal structure of TON_0450 from Thermococcus onnurineus NA1 1QYS ; 2.5 ; Crystal structure of Top7: A computationally designed protein with a novel fold 1WMN ; 1.8 ; Crystal structure of topaquinone-containing amine oxidase activated by cobalt ion 1WMO ; 1.8 ; Crystal structure of topaquinone-containing amine oxidase activated by nickel ion 6RML ; 2.81 ; Crystal structure of TOPBP1 BRCT0,1,2 in complex with a 53BP1 phosphopeptide 6HM5 ; 2.33004 ; Crystal structure of TOPBP1 BRCT0,1,2 in complex with a RAD9 phosphopeptide 6RMM ; 3.53 ; Crystal structure of TOPBP1 BRCT4,5 in complex with a 53BP1 phosphopeptide 3UEN ; 1.9 ; Crystal structure of TopBP1 BRCT4/5 domains 3UEO ; 2.6 ; Crystal structure of TopBP1 BRCT4/5 domains in complex with a phospho-peptide 5U6K ; 2.6 ; Crystal structure of TopBP1 BRCT4/5 in complex with a BLM phosphopeptide 3AL2 ; 2.0 ; Crystal Structure of TopBP1 BRCT7/8 3AL3 ; 2.15 ; Crystal Structure of TopBP1 BRCT7/8-BACH1 peptide complex 4GFJ ; 2.91 ; Crystal structure of Topo-78, an N-terminal 78kDa fragment of topoisomerase V 5HM5 ; 2.4 ; Crystal structure of Topo-97, an N-terminal 97kDa fragment of topoisomerase V 5BOC ; 2.2 ; Crystal structure of topoisomerase ParE inhibitor 2CSD ; 2.9 ; Crystal structure of Topoisomerase V (61 kDa fragment) 2CSB ; 2.3 ; Crystal structure of Topoisomerase V from Methanopyrus kandleri (61 kDa fragment) 7AIW ; 1.9 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with (E)-10-[(3-Chloro-6,7,10,11-tetrahydro-9-methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]-N-(4-hydroxy-3-methoxybenzyl)-6-decenamide 6G1V ; 1.82 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 12-Amino-3-chloro-6,7,10,11-tetrahydro-5,9-dimethyl-7,11-methanocycloocta[b]quinolin-5-ium 6G1W ; 1.9 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 2-{1-[2-(6-Chloro-1,2,3,4-tetrahydroacridin-9-ylamino)ethyl]-1H-1,2,3-triazol-4-yl}-N-[4-(hydroxy)-3-methoxybenzyl]acetamide 7AIX ; 1.86 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 2-{1-[4-(12-Amino-3-chloro-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolin-9-yl)butyl]-1H-1,2,3-triazol-4-yl}-N-[4-hydroxy-3-methoxybenzyl]acetamide 7AIV ; 2.55 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 4-{[(3-Chloro-6,7,10,11-tetrahydro-9-methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]methyl}-N-(4-hydroxy-3-methoxybenzyl)benzamide 7AIS ; 1.75 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 6-[(3-Chloro-6,7,10,11-tetrahydro-9-methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]-N-(4-hydroxy-3-methoxybenzyl)hexanamide 7AIT ; 2.1 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 7-[(3-Chloro-6,7,10,11-tetrahydro-9-methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]-N-(4-hydroxy-3-methoxybenzyl)heptanamide 7AIU ; 1.996 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 8-[(3-Chloro-6,7,10,11-tetrahydro-9-methyl-7,11-methanocycloocta[b]quinolin-12-yl)amino]-N-(4-hydroxy-3-methoxybenzyl)octanamide 6G1U ; 1.79 ; Crystal structure of Torpedo Californica acetylcholinesterase in complex with 9-Amino-6-chloro-1,2,3,4-tetrahydro-10-methylacridin-10-ium 1ZGB ; 2.3 ; Crystal Structure of Torpedo Californica Acetylcholinesterase in Complex With an (R)-Tacrine(10)-Hupyridone Inhibitor. 1ZGC ; 2.1 ; Crystal Structure of Torpedo Californica Acetylcholinesterase in Complex With an (RS)-Tacrine(10)-Hupyridone Inhibitor. 4H5L ; 2.75 ; Crystal Structure of Toscana Virus Nucleocapsid Protein Hexamer 4FQA ; 2.1 ; Crystal structure of toxic effector Tse1 4FQB ; 2.69 ; crystal structure of toxic effector Tse1 in complex with immune protein Tsi1 3MFG ; 2.37 ; Crystal structure of Toxic Shock Syndrome Toxin 1 (TSST-1) in complex with the human T cell receptor beta chain Vbeta2.1 (EP-8) 4OHJ ; 1.28 ; Crystal structure of toxic shock syndrome toxin-1 (TSST-1) from Staphylococcus aureus 4OF1 ; 2.45 ; crystal structure of toxin from staphylococcus aureus Mu50 1PTX ; 1.3 ; CRYSTAL STRUCTURE OF TOXIN II FROM THE SCORPION ANDROCTONUS AUSTRALIS HECTOR REFINED AT 1.3 ANGSTROMS RESOLUTION 6R5M ; 1.9 ; Crystal structure of toxin MT9 from mamba venom 6J7N ; 2.294 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant D82A co-expressed with TakA from Mycobacterium tuberculosis 6J7T ; 1.903 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant D82A from Mycobacterium tuberculosis 6J7P ; 2.629 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant E146Q co-expressed with TakA from Mycobacterium tuberculosis 6J7O ; 1.9 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant E146Q from Mycobacterium tuberculosis 6J7R ; 2.299 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant S78A co-expressed with TakA from Mycobacterium tuberculosis 6J7Q ; 1.85 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) mutant S78A from Mycobacterium tuberculosis 6J7S ; 2.102 ; Crystal structure of toxin TglT (unusual type guanylyltransferase-like toxin, Rv1045) wild type protein from Mycobacterium tuberculosis 5DHL ; 2.67 ; Crystal structure of Toxin, mutant N197W 6IMF ; 2.3 ; Crystal structure of TOXIN/ANTITOXIN complex 3PKV ; 1.34 ; Crystal Structure of Toxoflavin Lyase (TflA) 3PKW ; 1.8 ; Crystal Structure of Toxoflavin Lyase (TflA) bound to Mn(II) 3PKX ; 1.5 ; Crystal Structure of Toxoflavin Lyase (TflA) bound to Mn(II) and Toxoflavin 3OUL ; 1.6 ; Crystal Structure of toxoflavin-degrading enzyme in a substrate-free form 3OUM ; 2.0 ; Crystal Structure of toxoflavin-degrading enzyme in complex with toxoflavin 7NH2 ; 1.35 ; Crystal structure of Toxoplasma CPSF4-YTH domain bound to m6A 7NG2 ; 1.23 ; Crystal structure of Toxoplasma CPSF4-YTH domain in apo form 6FND ; 2.101 ; Crystal structure of Toxoplasma gondii AKMT 4Z80 ; 1.53 ; Crystal structure of Toxoplasma gondii AMA4 DI-DII-EGF1 in complex with a 33 aa TgRON2L1 peptide 3HZT ; 2.0 ; Crystal structure of Toxoplasma gondii CDPK3, TGME49_105860 8BT6 ; 2.33 ; Crystal structure of Toxoplasma gondii glideosome-associated connector 8J67 ; 1.81 ; Crystal structure of Toxoplasma gondii M2AP 8J64 ; 2.0 ; Crystal structure of Toxoplasma gondii MIC2-M2AP complex 2JH1 ; 1.9 ; Crystal structure of Toxoplasma gondii micronemal protein 1 3F5E ; 2.0 ; Crystal structure of Toxoplasma gondii micronemal protein 1 bound to 2'F-3'SiaLacNAc1-3 3F53 ; 2.0 ; Crystal structure of Toxoplasma gondii micronemal protein 1 bound to 2F-3'SiaLacNAc 2JHD ; 2.3 ; Crystal structure of Toxoplasma gondii micronemal protein 1 bound to 3'-sialyl-N-acetyllactosamine 3F5A ; 2.0 ; Crystal structure of Toxoplasma gondii micronemal protein 1 bound to 3'SiaLacNAc1-3 2JH7 ; 2.07 ; Crystal structure of Toxoplasma gondii micronemal protein 1 bound to 6'-sialyl-N-acetyllactosamine 6BXS ; 2.1 ; Crystal structure of Toxoplasma gondii Mitochondrial Association Factor 1 A (MAF1A) 6BXT ; 2.7 ; Crystal structure of Toxoplasma gondii Mitochondrial Association Factor 1 A (MAF1A) in complex with ADPribose 6BXR ; 1.6 ; Crystal structure of Toxoplasma gondii Mitochondrial Association Factor 1 B (MAF1B) 6BXW ; 1.65 ; Crystal structure of Toxoplasma gondii Mitochondrial Association Factor 1 B (MAF1B) in complex with ADPribose 6T6Q ; 2.902 ; Crystal structure of Toxoplasma gondii Morn1 (extended conformation). 6T69 ; 2.5 ; Crystal structure of Toxoplasma gondii Morn1(V shape) 4JEP ; 3.1 ; Crystal structure of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) 4A57 ; 2.0 ; CRYSTAL STRUCTURE OF TOXOPLASMA GONDII NUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHYDROLASE 3 (NTPDASE3) 4A59 ; 2.2 ; Crystal structure of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) in complex with AMP 3BO7 ; 2.35 ; Crystal structure of Toxoplasma gondii peptidyl-prolyl cis-trans isomerase, 541.m00136 3NEC ; 1.7 ; Crystal Structure of Toxoplasma gondii Profilin 6AA0 ; 3.2 ; Crystal Structure of Toxoplasma gondii Prolyl tRNA Synthetase (TgPRS) in Apo Form 5XIQ ; 2.19 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with Halofuginone 5XIG ; 2.41 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with Inhibitor 1 5XIH ; 2.2 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with inhibitor 5 5XII ; 2.17 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with inhibitor 6 5XIJ ; 2.5 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with Inhibitor 9 5XIK ; 2.5 ; Crystal Structure of Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with tetrahydro quinazolinone febrifugine 5WA2 ; 1.591 ; Crystal structure of Toxoplasma gondii SAG3 (SRS57) 3BYV ; 1.8 ; Crystal structure of Toxoplasma gondii specific rhoptry antigen kinase domain 3ZLE ; 2.35 ; Crystal structure of Toxoplasma gondii sporozoite AMA1 3ZLD ; 3.1 ; Crystal structure of Toxoplasma gondii sporozoite AMA1 in complex with a 36 aa region of sporozoite RON2 5T0L ; 3.13 ; Crystal structure of Toxoplasma gondii TS-DHFR complexed with NADPH, dUMP, PDDF and 5-(4-(3,4-dichlorophenyl)piperazin-1-yl)pyrimidine-2,4-diamine (TRC-15) 6AOH ; 3.5 ; Crystal structure of Toxoplasma gondii TS-DHFR complexed with NADPH, dUMP, PDDF, and 5-(4-(3-(2-methoxypyrimidin-5-yl)phenyl)piperazin-1-yl)pyrimidine-2,4-diamine (TRC-2533) 6AOG ; 3.2 ; Crystal structure of Toxoplasma gondii TS-DHFR complexed with NADPH, dUMP, PDDF, and 5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine (pyrimethamine) 6AOI ; 2.97 ; Crystal structure of Toxoplasma gondii TS-DHFR complexed with NADPH, dUMP, PDDF, and 5-(4-phenylpiperazin-1-yl)-6-propylpyrimidine-2,4-diamine (TRC-2528) 3CE7 ; 1.64 ; Crystal structure of toxoplasma specific mitochondrial acyl carrier protein, 59.m03510 3GBG ; 1.9 ; Crystal Structure of ToxT from Vibrio Cholerae O395 5SUX ; 2.0 ; Crystal Structure of ToxT from Vibrio Cholerae O395 bound to (E)-4-(8-methylnaphthalen-1-yl)but-3-enoic acid 5SUW ; 2.3 ; Crystal Structure of ToxT from Vibrio Cholerae O395 bound to 3-(8-Methyl-1,2,3,4-tetrahydronaphthalen-1-yl)propanoic acid 6I1F ; 1.89 ; Crystal structure of TP domain from Chlamydia trachomatis Penicillin-Binding Protein 3 in complex with amoxicillin 6I1H ; 1.78 ; Crystal structure of TP domain from Chlamydia trachomatis Penicillin-Binding Protein 3 in complex with meropenem 6I1G ; 2.13 ; Crystal structure of TP domain from Chlamydia trachomatis Penicillin-Binding Protein 3 in complex with piperacillin 6I1I ; 1.75 ; Crystal structure of TP domain from Escherichia coli penicillin-binding protein 3 in complex with penicillin 7JP2 ; 1.38 ; Crystal structure of TP0037 from Treponema pallidum, a D-lactate dehydrogenase 8QAO ; 1.29 ; Crystal structure of TP901-1 CI-NTD89 repressor N-terminal domain 3KT1 ; 2.5 ; Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex 3KT4 ; 2.73 ; Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex 3KT7 ; 1.77 ; Crystal structure of Tpa1 from Saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex 4NHL ; 2.84 ; Crystal structure of Tpa1p from Saccharomyces cerevisiae, termination and polyadenylation protein 1, in complex with N-oxalylglycine (NOG) 4NHM ; 1.9 ; Crystal structure of Tpa1p from Saccharomyces cerevisiae, termination and polyadenylation protein 1, in complex with N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 4NHK ; 1.9 ; Crystal structure of Tpa1p from Saccharomyces cerevisiae, termination and polyadenylation protein 1, in complex with pyridine-2,4-dicarboxylic acid (2,4-PDCA) 7Q04 ; 2.281 ; Crystal structure of TPADO in a substrate-free state 7Q06 ; 1.95 ; Crystal structure of TPADO in complex with 2-OH-TPA 7Q05 ; 2.08 ; Crystal structure of TPADO in complex with TPA 7XUP ; 2.602 ; Crystal structure of TPe3.0 7XUQ ; 2.5 ; Crystal structure of Tpe3.0 complexed with N-Boc-3-alkenylindole 7NDS ; 2.4 ; Crystal structure of TphC in a closed conformation 7NDR ; 1.97 ; Crystal structure of TphC in an open conformation 7XKX ; 2.57 ; Crystal structure of Tpn2 5I2Y ; 3.0 ; Crystal Structure of TPP1 K170A 5I2X ; 3.0 ; Crystal Structure of TPP1 K170del 5D2U ; 1.8 ; Crystal structure of tPphA Variant - H39A 8FIR ; 1.95 ; Crystal structure of TpPta, a phosphotransacetylase from Treponema pallidum 3Q47 ; 1.705 ; Crystal structure of TPR domain of CHIP complexed with pseudophosphorylated Smad1 peptide 3JZB ; 2.007 ; Crystal Structure of TR-alfa bound to the selective thyromimetic TRIAC 4LNW ; 1.9 ; Crystal structure of TR-alpha bound to T3 in a second site 4LNX ; 2.05 ; Crystal structure of TR-alpha bound to T4 in a second site 3JZC ; 2.5 ; Crystal Structure of TR-beta bound to the selective thyromimetic TRIAC 4WHF ; 2.27 ; Crystal Structure of TR3 LBD in complex with 1-(3,4,5-trihydroxyphenyl)decan-1-one 4KZI ; 2.41 ; Crystal Structure of TR3 LBD in complex with DPDO 4WHG ; 2.18 ; Crystal Structure of TR3 LBD in complex with Molecule 3 4RE8 ; 2.16 ; Crystal Structure of TR3 LBD in complex with Molecule 5 4REE ; 2.37 ; Crystal Structure of TR3 LBD in complex with Molecule 6 8WUY ; 2.6 ; Crystal Structure of TR3 LBD in complex with para-positioned 3,4,5-trisubstituted benzene derivatives 4KZJ ; 2.12 ; Crystal Structure of TR3 LBD L449W Mutant 4KZM ; 2.3 ; Crystal Structure of TR3 LBD S553A Mutant 4REF ; 2.1 ; Crystal Structure of TR3 LBD_L449W in complex with Molecule 2 4S1Z ; 3.03 ; Crystal structure of TRABID NZF1 in complex with K29 linked di-Ubiquitin 1R8I ; 3.0 ; Crystal structure of TraC 2F2L ; 2.1 ; Crystal structure of tracheal cytotoxin (TCT) bound to the ectodomain complex of peptidoglycan recognition proteins LCa (PGRP-LCa) and LCx (PGRP-LCx) 6AC0 ; 1.449 ; Crystal structure of TRADD death domain GlcNAcylated by EPEC effector NleB 5E1T ; 2.8 ; Crystal structure of TRAF1 TRAF domain 3M06 ; 2.67 ; Crystal Structure of TRAF2 3M0A ; 2.61 ; Crystal structure of TRAF2:cIAP2 complex 4GHU ; 2.199 ; Crystal structure of TRAF3/Cardif 4K8U ; 2.302 ; Crystal structure of TRAF4 TRAF domain 3HCU ; 2.6 ; Crystal structure of TRAF6 in complex with Ubc13 in the C2 space group 3HCT ; 2.1 ; Crystal structure of TRAF6 in complex with Ubc13 in the P1 space group 8IMS ; 3.3 ; Crystal structure of TRAF7 coiled-coil domain 1D4V ; 2.2 ; Crystal structure of trail-DR5 complex 1DU3 ; 2.2 ; Crystal structure of TRAIL-SDR5 8AWZ ; 1.549 ; Crystal structure of Trametes versicolor glutathione transferase Omega 3S in complex with dinitrosyl glutathionyl iron complex (DNGIC) 8AX2 ; 1.62 ; Crystal structure of Trametes versicolor glutathione transferase Omega 3S in complex with glutathione and pentachloro-nitrosyl-osmate 8AX1 ; 1.65 ; Crystal structure of Trametes versicolor glutathione transferase Omega 3S in complex with hydroxy-tetranitro-nitrosyl-ruthenate 8AX0 ; 1.65 ; Crystal structure of Trametes versicolor glutathione transferase Omega 3S in complex with sodium nitroprusside 1JTZ ; 2.6 ; CRYSTAL STRUCTURE OF TRANCE/RANKL CYTOKINE. 7E5M ; 3.2 ; crystal structure of trans assembled human TROP-2 2DXA ; 1.58 ; Crystal structure of trans editing enzyme ProX from E.coli 4GGO ; 2.0 ; Crystal Structure of Trans-2-Enoyl-CoA Reductase from Treponema denticola 6R76 ; 2.4 ; Crystal structure of trans-3-Hydroxy-L-proline dehydratase from Thermococcus litoralis - open conformation 6R77 ; 2.0 ; Crystal structure of trans-3-Hydroxy-L-proline dehydratase in complex with substrate - closed conformation 3G5T ; 1.119 ; Crystal structure of trans-aconitate 3-methyltransferase from yeast 2PW0 ; 1.57 ; crystal structure of trans-aconitate bound to methylaconitate isomerase PrpF from Shewanella oneidensis 2P35 ; 1.95 ; Crystal structure of trans-aconitate methyltransferase from Agrobacterium tumefaciens 5O0T ; 2.05 ; CRYSTAL STRUCTURE OF TRANS-MEMBRANE DOMAIN OF Cylindrospermum stagnale NADPH-OXIDASE 5 (NOX5) 7DMB ; 2.1 ; Crystal structure of trans-methyltransferase CalH complex with SAH 3OPZ ; 3.4 ; Crystal structure of trans-sialidase in complex with the Fab fragment of a neutralizing monoclonal IgG antibody 1VPX ; 2.4 ; Crystal structure of Transaldolase (EC 2.2.1.2) (TM0295) from Thermotoga maritima at 2.40 A resolution 3CLM ; 1.14 ; Crystal structure of transaldolase (YP_208650.1) from Neisseria gonorrhoeae FA 1090 at 1.14 A resolution 1WX0 ; 2.27 ; Crystal structure of transaldolase from Thermus thermophilus HB8 8IOZ ; 2.33 ; Crystal structure of transaminase 7YPM ; 1.984 ; Crystal structure of transaminase CC1012 complexed with PLP and L-alanine 7YPN ; 2.049 ; Crystal structure of transaminase CC1012 mutant M9 complexed with PLP 1EXJ ; 3.0 ; CRYSTAL STRUCTURE OF TRANSCRIPTION ACTIVATOR BMRR, FROM B. SUBTILIS, BOUND TO 21 BASE PAIR BMR OPERATOR AND TPP 1EXI ; 3.12 ; CRYSTAL STRUCTURE OF TRANSCRIPTION ACTIVATOR BMRR, FROM B. SUBTILIS, BOUND TO 21 BASE PAIR BMR OPERATOR AND TPSB 2QUF ; 2.8 ; Crystal Structure of Transcription Factor AXXA-PF0095 from Pyrococcus furiosus 7FDO ; 1.752 ; Crystal structure of transcription factor CPC in complex with EGL3 1TJL ; 2.0 ; Crystal structure of transcription factor DksA from E. coli 6ABQ ; 2.3 ; Crystal structure of transcription factor from Listeria monocytogenes 6ABT ; 2.8 ; Crystal structure of transcription factor from Listeria monocytogenes 5O9J ; 2.0 ; Crystal structure of transcription factor IIB Mja mini-intein 5O9I ; 2.5 ; Crystal structure of transcription factor IIB Mvu mini-intein 1HZ4 ; 1.45 ; CRYSTAL STRUCTURE OF TRANSCRIPTION FACTOR MALT DOMAIN III 7FDM ; 2.5 ; Crystal structure of transcription factor MYB29 in complex with MYC3 2XGX ; 2.85 ; Crystal structure of transcription factor NtcA from Synechococcus elongatus (mercury derivative) 2XHK ; 2.3 ; Crystal structure of transcription factor NtcA from Synechococcus elongatus bound to 2-oxoglutarate 2QLZ ; 2.5 ; Crystal Structure of Transcription Factor PF0095 from Pyrococcus furiosus 5GZB ; 2.704 ; Crystal Structure of Transcription Factor TEAD4 in Complex with M-CAT DNA 8GYZ ; 2.06 ; Crystal structure of transcription factor TGA7 from Arabidopsis 7FDL ; 2.897 ; Crystal structure of transcription factor WER in complex with EGL3 7FDN ; 1.9 ; Crystal structure of transcription factor WER in complex with EGL3 4N9H ; 2.2 ; Crystal structure of Transcription regulation Protein CRP 4N9I ; 2.19 ; Crystal Structure of Transcription regulation protein CRP complexed with cGMP 6N8B ; 2.94 ; Crystal structure of transcription regulator AcaB from uropathogenic E. coli 2O20 ; 1.9 ; Crystal structure of transcription regulator CcpA of Lactococcus lactis 1ZYB ; 2.15 ; Crystal structure of transcription regulator from Bacteroides thetaiotaomicron VPI-5482 at 2.15 A resolution 3HUU ; 1.95 ; Crystal structure of transcription regulator like protein from Staphylococcus haemolyticus 4FC8 ; 2.5 ; Crystal structure of transcription regulator protein Rtr1 from Kluyveromyces lactis 3DEU ; 2.3 ; Crystal structure of transcription regulatory protein slyA from Salmonella typhimurium in complex with salicylate ligands 4MTN ; 2.579 ; Crystal structure of transcription termination factor NusA from Planctomyces limnophilus DSM 3776 1TYH ; 2.54 ; Crystal Structure of Transcriptional Activator tenA from Bacillus subtilis 4HAM ; 1.905 ; Crystal Structure of Transcriptional Antiterminator from Listeria monocytogenes EGD-e 3JST ; 2.1 ; Crystal structure of transcriptional coactivator/pterin dehydratase from Brucella Melitensis 5DEQ ; 1.95 ; Crystal structure of transcriptional factor AraR from Bacteroides thetaiotaomicron VPI in complex with L-arabinose 2D6Y ; 2.3 ; Crystal Structure of transcriptional factor SCO4008 from Streptomyces coelicolor A3(2) 3T6N ; 2.314 ; Crystal Structure of Transcriptional Regulator 3V6G ; 1.821 ; Crystal Structure of Transcriptional Regulator 3V78 ; 2.299 ; Crystal Structure of Transcriptional Regulator 3OIO ; 1.65 ; Crystal structure of transcriptional regulator (AraC-type DNA-binding domain-containing proteins) from Chromobacterium violaceum 3C7J ; 2.1 ; Crystal structure of transcriptional regulator (GntR family member) from Pseudomonas syringae pv. tomato str. DC3000 2ID6 ; 1.746 ; Crystal structure of transcriptional regulator (tm1030) at 1.75A resolution 1O5L ; 2.3 ; Crystal structure of Transcriptional regulator (TM1171) from Thermotoga maritima at 2.30 A resolution 1J5Y ; 2.3 ; Crystal structure of transcriptional regulator (TM1602) from Thermotoga maritima at 2.3 A resolution 4O8B ; 2.3 ; Crystal structure of transcriptional regulator BswR 5CHH ; 1.85 ; Crystal structure of transcriptional regulator CdpR from Pseudomonas aeruginosa 1ZK8 ; 2.15 ; Crystal structure of transcriptional regulator from Bacillus cereus ATCC 14579 1Z4E ; 2.0 ; Crystal structure of transcriptional regulator from Bacillus halodurans C-125 6VLI ; 2.10002 ; Crystal structure of transcriptional regulator from bacteriophage 186 6VMH ; 2.75 ; Crystal structure of transcriptional regulator from bacteriophage 186 6VPE ; 2.211 ; Crystal structure of transcriptional regulator from bacteriophage 186 3F0C ; 2.96 ; Crystal structure of transcriptional regulator from Cytophaga hutchinsonii ATCC 33406 3OP9 ; 1.898 ; Crystal structure of transcriptional regulator from Listeria innocua 2P6T ; 2.9 ; CRYSTAL STRUCTURE OF TRANSCRIPTIONAL REGULATOR NMB0573 and L-LEUCINE COMPLEX FROM NEISSERIA MENINGITIDIS 2P5V ; 1.99 ; Crystal Structure of Transcriptional Regulator NMB0573 from Neisseria Meningitidis 2P6S ; 2.8 ; Crystal Structure of Transcriptional Regulator NMB0573/L-Met Complex from Neisseria Meningitidis 3E97 ; 1.86 ; Crystal structure of transcriptional regulator of Crp/Fnr family (YP_604437.1) from DEINOCOCCUS GEOTHERMALIS DSM 11300 at 1.86 A resolution 2RGY ; 2.05 ; Crystal structure of transcriptional regulator of LacI family from Burkhoderia phymatum 3CWR ; 1.5 ; Crystal structure of transcriptional regulator of TetR family (YP_425770.1) from Rhodospirillum rubrum ATCC 11170 at 1.50 A resolution 3DCF ; 2.5 ; Crystal structure of transcriptional regulator of the TetR/AcrR family (YP_290855.1) from THERMOBIFIDA FUSCA YX-ER1 at 2.50 A resolution 1Z77 ; 2.0 ; Crystal structure of transcriptional regulator protein from Thermotoga maritima. 8I2K ; 2.303 ; Crystal structure of transcriptional regulator pvrA from Pseudomonas aeruginosa. 2QKO ; 2.35 ; Crystal structure of transcriptional regulator RHA06399 from Rhodococcus sp. RHA1 4NN1 ; 2.99 ; Crystal Structure of transcriptional regulator Rv1219c of Mycobacterium tuberculosis 2ID3 ; 1.7 ; Crystal structure of transcriptional regulator SCO5951 from Streptomyces coelicolor A3(2) 4I76 ; 2.1 ; Crystal structure of transcriptional regulator TM1030 with octanol 3TYR ; 1.699 ; Crystal structure of transcriptional regulator VanUg, Form I 3TYS ; 1.121 ; Crystal structure of transcriptional regulator VanUg, Form II 3HHH ; 2.7 ; Crystal structure of transcriptional regulator, a member of PadR family, from Enterococcus faecalis V583 2GAU ; 1.9 ; Crystal structure of transcriptional regulator, Crp/Fnr family from Porphyromonas gingivalis (APC80792), Structural genomics, MCSG 3L5Z ; 2.9 ; Crystal structure of transcriptional regulator, GntR family from Bacillus cereus 7U5Q ; 3.0 ; Crystal structure of transcriptional regulator, GntR family, from Brucella melitensis 3CJN ; 1.95 ; Crystal structure of transcriptional regulator, MarR family, from Silicibacter pomeroyi 1ZKG ; 2.3 ; Crystal structure of Transcriptional regulator, TETR family (tm1030) from Thermotoga maritima at 2.30 A resolution 1Z0X ; 2.4 ; Crystal structure of transcriptional regulator, tetR Family from Enterococcus faecalis V583 1RZR ; 2.8 ; crystal structure of transcriptional regulator-phosphoprotein-DNA complex 2TGI ; 1.8 ; CRYSTAL STRUCTURE OF TRANSFORMING GROWTH FACTOR-BETA2: AN UNUSUAL FOLD FOR THE SUPERFAMILY 1D4O ; 1.21 ; CRYSTAL STRUCTURE OF TRANSHYDROGENASE DOMAIN III AT 1.2 ANGSTROMS RESOLUTION 1XLT ; 3.1 ; Crystal structure of Transhydrogenase [(domain I)2:domain III] heterotrimer complex 6C8G ; 6.31 ; Crystal structure of Transient Receptor Potential (TRP) channel TRPV4 in the presence of barium 6C8F ; 6.5 ; Crystal structure of Transient Receptor Potential (TRP) channel TRPV4 in the presence of cesium 6C8H ; 6.5 ; Crystal structure of Transient Receptor Potential (TRP) channel TRPV4 in the presence of gadolinium 5WO7 ; 3.246 ; Crystal Structure of Transient Receptor Potential (TRP) channel TRPV6* 5WO9 ; 3.7 ; Crystal Structure of Transient Receptor Potential (TRP) channel TRPV6* in the presence of Calcium 5WOA ; 3.899 ; Crystal Structure of Transient Receptor Potential (TRP) channel TRPV6* in the presence of Gadolinium 5WO8 ; 3.4 ; Crystal Structure of Transient Receptor Potential (TRP) channel TRPV6*-Del1 5WO6 ; 3.31 ; Crystal Structure of Transient Receptor Potential (TRP) channel TRPV6cryst 5HJE ; 1.4 ; Crystal Structure of Transketolase complex with sedoheptulose-7-phoaphate from Pichia Stipitis 3M49 ; 2.0 ; Crystal Structure of Transketolase Complexed with Thiamine Diphosphate from Bacillus anthracis 5XRY ; 1.3 ; Crystal Structure of Transketolase contains cysteinesufonic acid from Pichia Stipitis 3HYL ; 2.16 ; Crystal Structure of Transketolase from Bacillus anthracis 5ND5 ; 1.74 ; Crystal structure of transketolase from Chlamydomonas reinhardtii in complex with TPP and Mg2+ 2R5N ; 1.6 ; Crystal structure of transketolase from Escherichia coli in noncovalent complex with acceptor aldose ribose 5-phosphate 8CIP ; 2.1 ; Crystal structure of transketolase from Geobacillus stearothermophilus 5I4I ; 1.06 ; Crystal Structure of Transketolase from Pichia Stipitis 5XTL ; 1.101 ; Crystal Structure of Transketolase in complex with aminopyrimidine and cysteine sulfonic acid adduct from Pichia Stipitis 5XPS ; 1.07 ; Crystal Structure of Transketolase in complex with erythrose-4-phosphate from Pichia Stipitis 5XVT ; 0.85 ; Crystal Structure of Transketolase in complex with hydroxylated TPP from Pichia Stipitis, crystal 2 5XUF ; 0.88 ; Crystal Structure of Transketolase in complex with hydroxylated TPP from Pichia Stipitis, crystal I 5XQA ; 1.14 ; Crystal Structure of Transketolase in complex with ribose-5-phosphate from Pichia Stipitis 3M34 ; 1.65 ; Crystal structure of transketolase in complex with thiamin diphosphate and calcium ion 3M6L ; 1.59 ; Crystal structure of transketolase in complex with thiamine diphosphate, ribose-5-phosphate and calcium ion 3M7I ; 1.75 ; Crystal structure of transketolase in complex with thiamine diphosphate, ribose-5-phosphate(pyranose form) and magnesium ion 5XSA ; 0.975 ; Crystal Structure of Transketolase in complex with TPP intermediate III from Pichia Stipitis 5XSB ; 0.918 ; Crystal Structure of Transketolase in complex with TPP intermediate III from Pichia Stipitis 5XSM ; 0.97 ; Crystal Structure of Transketolase in complex with TPP intermediate IV from Pichia Stipitis 5XU9 ; 1.166 ; Crystal Structure of Transketolase in complex with TPP intermediate IX and gauche form erythrose-4-phosphate from Pichia Stipitis 5XTV ; 0.931 ; Crystal Structure of Transketolase in complex with TPP intermediate V from Pichia Stipitis 5XTX ; 1.049 ; Crystal Structure of Transketolase in complex with TPP intermediate VII from Pichia Stipitis 5XT0 ; 1.15 ; Crystal Structure of Transketolase in complex with TPP intermediate VIII from Pichia Stipitis 5XT4 ; 1.06 ; Crystal Structure of Transketolase in complex with TPP intermediate VIII' from Pichia Stipitis 5XS6 ; 0.972 ; Crystal Structure of Transketolase in complex with TPP Pichia Stipitis 5XU2 ; 0.97 ; Crystal Structure of Transketolase in complex with TPP_III and fructose-6-phosphate from Pichia Stipitis 5XRV ; 1.4 ; Crystal Structure of Transketolase in complex with TPP_V and fructose-6-phosphate from Pichia Stipitis 5XQK ; 1.12 ; Crystal Structure of Transketolase in complex with xylulose-5-phosphate from Pichia Stipitis 5HGX ; 1.09 ; Crystal Structure of Transketolase mutant - H261F from Pichia Stipitis 5I51 ; 1.54 ; Crystal Structure of Transketolase mutant-R356L complex with fructose-6-phoaphate from Pichia Stipitis 5I5G ; 1.95 ; Crystal Structure of Transketolase mutant-R525L from Pichia Stipitis 5I5E ; 1.62 ; Crystal Structure of Transketolase mutants-H66/261C complex with xylulose-5-phoaphate from Pichia Stipitis 5HYV ; 1.031 ; Crystal Structure of Transketolase with ThDP from Pichia Stipitis 2YY3 ; 2.5 ; Crystal Structure of translation elongation factor EF-1 beta from Pyrococcus horikoshii 1UEB ; 1.65 ; Crystal structure of translation elongation factor P from Thermus thermophilus HB8 4AC9 ; 3.03 ; CRYSTAL STRUCTURE OF TRANSLATION ELONGATION FACTOR SELB FROM METHANOCOCCUS MARIPALUDIS IN COMPLEX WITH GDP 4ACB ; 3.34 ; CRYSTAL STRUCTURE OF TRANSLATION ELONGATION FACTOR SELB FROM METHANOCOCCUS MARIPALUDIS IN COMPLEX WITH THE GTP ANALOGUE GPPNHP 4ACA ; 3.15 ; CRYSTAL STRUCTURE OF TRANSLATION ELONGATION FACTOR SELB FROM METHANOCOCCUS MARIPALUDIS, APO FORM 3I4O ; 1.47 ; Crystal Structure of Translation Initiation Factor 1 from Mycobacterium tuberculosis 1IZ6 ; 2.0 ; Crystal Structure of Translation Initiation Factor 5A from Pyrococcus Horikoshii 2D74 ; 2.8 ; Crystal structure of translation initiation factor aIF2betagamma heterodimer 2DCU ; 3.4 ; Crystal structure of translation initiation factor aIF2betagamma heterodimer with GDP 2IDR ; 1.85 ; Crystal structure of translation initiation factor EIF4E from wheat 4QL5 ; 2.025 ; Crystal structure of translation initiation factor IF-1 from Streptococcus pneumoniae TIGR4 1TXJ ; 2.0 ; Crystal structure of translationally controlled tumour-associated protein (TCTP) from Plasmodium knowlesi 4UC2 ; 2.4 ; Crystal structure of translocator protein 18kDa (TSPO) from rhodobacter sphaeroides (A139T mutant) in P212121 space group 3EMO ; 3.0 ; Crystal structure of transmembrane Hia 973-1098 6B87 ; 2.947 ; Crystal structure of transmembrane protein TMHC2_E 6B85 ; 3.889 ; Crystal structure of transmembrane protein TMHC4_R 3MP2 ; 2.5 ; Crystal structure of transmissible gastroenteritis virus papain-like protease 1 6P55 ; 1.74 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae acylated by cefixime 6P54 ; 1.83 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae acylated by ceftriaxone 6VBC ; 1.55 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae cephalosporin-resistant strain H041 6VBD ; 1.8 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae cephalosporin-resistant strain H041 acylated by ceftriaxone 8VEP ; 2.002 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae cephalosporin-resistant strain H041 acylated by piperacillin 8VEQ ; 2.4 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae cephalosporin-resistant strain H041 in complex with azlocillin 8VEN ; 1.8 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae cephalosporin-resistant strain H041 in complex with cefoperazone 6P52 ; 1.83 ; Crystal structure of transpeptidase domain of PBP2 from Neisseria gonorrhoeae with a bound phosphate at the active site 8RI5 ; 1.415 ; Crystal structure of transplatin/B-DNA adduct obtained upon 48 h of soaking 8RI3 ; 1.4 ; Crystal structure of transplatin/B-DNA adduct obtained upon 7 days of soaking 5TQC ; 3.0 ; Crystal structure of transport factor karyopherin-beta 2 in complex with the PY-NLS of ribosomal protein L4 (RpL4) 4ZLJ ; 3.257 ; Crystal structure of transporter AcrB 4ZLN ; 3.557 ; Crystal structure of transporter AcrB deletion mutant 4ZLL ; 3.36 ; Crystal structure of transporter AcrB triple mutant 7VPW ; 3.76 ; Crystal structure of Transportin-1 in complex with BAP1 PY-NLS (residues 706-724) 4OL0 ; 2.9 ; Crystal structure of transportin-SR2, a karyopherin involved in human disease, in complex with Ran 4FQ3 ; 3.0 ; Crystal structure of transportin/FUS-NLS 2EC2 ; 2.8 ; Crystal structure of transposase from Sulfolobus tokodaii 6LND ; 2.001 ; Crystal structure of transposition protein TniQ 4WNS ; 1.399 ; Crystal structure of Transthyretin complexed with pterostilbene 1OO2 ; 1.56 ; Crystal structure of transthyretin from Sparus aurata 3B56 ; 1.55 ; Crystal structure of transthyretin in complex with 3,5-diiodosalicylic acid 6SUG ; 1.21 ; Crystal structure of transthyretin in complex with 3-deoxytolcapone, a tolcapone analogue 8HEJ ; 1.54 ; Crystal structure of Transthyretin in complex with a covalent inhibitor trans-styrylpyrazole 4WO0 ; 1.339 ; Crystal structure of transthyretin in complex with apigenin 6R68 ; 1.45 ; Crystal structure of transthyretin in complex with CHF4795, a flurbiprofen analogue 4I85 ; 1.67 ; Crystal structure of transthyretin in complex with CHF5074 at neutral pH 6R66 ; 1.3 ; Crystal structure of transthyretin in complex with CHF5075, a flurbiprofen analogue 6R67 ; 1.3 ; Crystal structure of transthyretin in complex with CHF5075, a flurbiprofen analogue 4I89 ; 1.69 ; Crystal structure of transthyretin in complex with diflunisal at acidic pH 1Y1D ; 1.7 ; Crystal structure of transthyretin in complex with iododiflunisal 3FCB ; 1.8 ; Crystal structure of transthyretin in complex with iododiflunisal-betaAlaOH 3FC8 ; 1.85 ; Crystal structure of transthyretin in complex with iododiflunisal-betaAlaOMe 5AYT ; 1.4 ; Crystal structure of transthyretin in complex with L6 4ABQ ; 1.7 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-1 4ACT ; 1.8 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-17 4AC4 ; 1.8 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-18 4ABU ; 1.86 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-2 4ABV ; 1.8 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-3 4ABW ; 1.7 ; Crystal Structure of Transthyretin in Complex With Ligand C-6 4AC2 ; 1.81 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH LIGAND C-7 1DVY ; 1.9 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN IN COMPLEX WITH N-(M-TRIFLUOROMETHYLPHENYL) PHENOXAZINE-4,6-DICARBOXYLIC ACID 5OQ0 ; 1.94 ; Crystal structure of transthyretin mutant 87-110-117 6R6I ; 1.467 ; Crystal structure of transthyretin mutant A25T in complex with CHF5074, a flurbiprofen analogue 2G3Z ; 1.9 ; Crystal structure of Transthyretin mutant I84A at low pH 2G4E ; 2.17 ; Crystal structure of transthyretin mutant I84A at neutral pH 2G3X ; 1.58 ; Crystal structure of Transthyretin mutant I84S at acidic pH 2NOY ; 1.8 ; Crystal structure of transthyretin mutant I84S at PH 7.5 8I0O ; 1.88 ; Crystal structure of Transthyretin variant A97S in monomeric form 3DK0 ; 1.87 ; Crystal structure of transthyretin variant L55P at acidic pH 3DJZ ; 1.82 ; Crystal structure of transthyretin variant L55P at neutral pH 3DJS ; 1.8 ; Crystal structure of transthyretin variant L58H at acidic pH 3DJR ; 2.02 ; CRYSTAL STRUCTURE OF TRANSTHYRETIN VARIANT L58H at neutral pH 3DO4 ; 2.4 ; Crystal structure of transthyretin variant T60A at acidic pH 3BT0 ; 1.59 ; Crystal structure of transthyretin variant V20S 3DJT ; 2.3 ; Crystal structure of transthyretin variant V30M at acidic pH 3CXF ; 2.3 ; Crystal structure of transthyretin variant Y114H 3DK2 ; 2.35 ; Crystal structure of transthyretin variant Y114H at acidic pH 4WNJ ; 1.398 ; Crystal structure of Transthyretin-quercetin complex 5XHG ; 1.76 ; Crystal structure of Trastuzumab Fab fragment bearing Ne-(o-azidobenzyloxycarbonyl)-L-lysine 5XHF ; 3.205 ; Crystal structure of Trastuzumab Fab fragment bearing p-azido-L-phenylalanine 5U91 ; 3.104 ; Crystal structure of Tre/loxLTR complex 4TVU ; 2.7 ; Crystal structure of trehalose synthase from Deinococcus radiodurans reveals a closed conformation for catalysis of the intramolecular isomerization 2X6Q ; 2.2 ; Crystal structure of trehalose synthase TreT from P.horikoshi 2X6R ; 2.2 ; Crystal structure of trehalose synthase TreT from P.horikoshi produced by soaking in trehalose 2XA1 ; 2.47 ; Crystal structure of trehalose synthase TreT from P.horikoshii (Seleno derivative) 2XA2 ; 2.5 ; Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG 2XA9 ; 2.5 ; Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG 2XMP ; 2.5 ; Crystal structure of trehalose synthase TreT mutant E326A from P. horishiki in complex with UDP 1U02 ; 1.92 ; Crystal structure of trehalose-6-phosphate phosphatase related protein 2PEG ; 1.48 ; Crystal structure of Trematomus bernacchii hemoglobin in a partial hemichrome state 4ODC ; 1.54 ; Crystal structure of Trematomus bernacchii hemoglobin in a partially cyanided state 5GGU ; 2.292 ; Crystal structure of tremelimumab Fab 3RG8 ; 1.74 ; Crystal structure of Treponema denticola PurE 3RGG ; 1.82 ; Crystal structure of Treponema denticola PurE bound to AIR 5C5D ; 1.69 ; Crystal structure of Treponema denticola PurE2-S38D 4FBG ; 3.02 ; Crystal structure of Treponema denticola trans-2-enoyl-CoA reductase in complex with NAD 5JIR ; 1.7 ; Crystal structure of Treponema pallidum protein Tp0624 5JK2 ; 2.15 ; Crystal structure of Treponema pallidum Tp0751 (Pallilysin) 4XDR ; 1.4 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, a bifunctional FMN transferase/FAD pyrophosphatase, D284A mutant, ADN bound form 4XDT ; 1.452 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, a bifunctional FMN transferase/FAD pyrophosphatase, N55Y mutant, FAD bound form 4IFW ; 2.3001 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, ADP inhibited form 4IFU ; 1.8334 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, apo form 4IFX ; 1.452 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, FAD substrate bound form 4IG1 ; 1.4318 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, Mg(II)-AMP product bound form 4IFZ ; 1.9012 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein, Mn(II)-AMP product bound form 4XDU ; 1.35 ; Crystal structure of Treponema pallidum TP0796 Flavin trafficking protein,a bifunctional FMN transferase/FAD pyrophosphatase, N55Y mutant, ADP bound form 2VR5 ; 2.8 ; Crystal structure of Trex from Sulfolobus Solfataricus in complex with acarbose intermediate and glucose 5YWT ; 1.7 ; Crystal structure of TREX1 in complex with a duplex DNA with 3' overhang 5YWU ; 3.4 ; Crystal structure of TREX1 in complex with a inosine contained dsDNA 5YWV ; 2.3 ; Crystal structure of TREX1 in complex with a inosine contained ssDNA 5YWS ; 2.0 ; Crystal structure of TREX1 in complex with a Y structured DNA 5XUP ; 2.1 ; Crystal structure of TRF1 and TERB1 3BQO ; 2.0 ; Crystal Structure of TRF1 TRFH domain and TIN2 peptide complex 3BUA ; 2.5 ; Crystal Structure of TRF2 TRFH domain and APOLLO peptide complex 3BU8 ; 2.15 ; Crystal Structure of TRF2 TRFH domain and TIN2 peptide complex 7C5D ; 2.151 ; Crystal structure of TRF2 TRFH domain in complex with a MCPH1 peptide 5WQD ; 3.0 ; Crystal structure of TRF2 TRFH in complex with an NBS1 peptide 6VPD ; 2.603 ; Crystal structure of Trgpx in apo form 3ANX ; 2.5 ; Crystal structure of triamine/agmatine aminopropyltransferase (SPEE) from thermus thermophilus, complexed with MTA 4XZS ; 2.12 ; Crystal Structure of TRIAP1-MBP fusion 5HME ; 2.151 ; Crystal structure of Triazine Hydrolase variant (P214T/Y215H) 5HMF ; 1.84 ; Crystal structure of triazine hydrolase variant (P214T/Y215H/E241Q) 5HMD ; 2.1 ; Crystal structure of triazine hydrolase variant (Y215H/E241Q) 3AC4 ; 2.7 ; Crystal structure of triazolo pyrimidine derivative bound to the kinase domain of human LCK, (auto-phosphorylated on TYR394) 3AC5 ; 2.5 ; Crystal structure of triazolo pyrimidine derivative bound to the kinase domain of human LCK, (auto-phosphorylated on TYR394) 3AD5 ; 2.0 ; Crystal structure of Triazolone derivative bound to the kinase domain of human LCK, (auto-phosphorylated on TYR394) 5YJ9 ; 2.53 ; Crystal structure of Tribolium castaneum PINK1 kinase domain in complex with AMP-PNP 5BY6 ; 1.9 ; Crystal structure of Trichinella spiralis thymidylate synthase complexed with dUMP 4IG7 ; 1.996 ; Crystal structure of Trichinella spiralis UCH37 bound to Ubiquitin vinyl methyl ester 4I6N ; 1.701 ; Crystal structure of Trichinella spiralis UCH37 catalytic domain bound to Ubiquitin vinyl methyl ester 5W0A ; 2.898 ; Crystal structure of Trichoderma harzianum endoglucanase I 3C9X ; 1.7 ; Crystal structure of Trichoderma reesei aspartic proteinase 3EMY ; 1.85 ; Crystal structure of Trichoderma reesei aspartic proteinase complexed with pepstatin A 1L5P ; 2.2 ; Crystal Structure of Trichomonas vaginalis Ferredoxin 1Z33 ; 2.7 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase 1Z39 ; 2.6 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with 2'-deoxyinosine 1Z34 ; 2.4 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with 2-fluoro-2'-deoxyadenosine 1Z35 ; 2.5 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with 2-fluoroadenosine 1Z37 ; 2.9 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with adenosine 1Z36 ; 2.6 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with formycin A 1Z38 ; 2.5 ; Crystal structure of Trichomonas vaginalis purine nucleoside phosphorylase complexed with inosine 4O50 ; 1.95 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Ala mutant (Tvag_497370) 4O4W ; 2.35 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Gly mutant (Tvag_497370) 4O53 ; 2.0 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Leu mutant (Tvag_497370) 4O54 ; 1.9 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Phe mutant (Tvag_497370) 4O57 ; 1.793 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Tyr mutant (Tvag_497370) 4O52 ; 1.95 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Ile45-Val mutant (Tvag_497370) 3QST ; 1.75 ; Crystal structure of Trichomonas vaginalis triosephosphate isomerase TVAG_096350 gene (Val-45 variant) 4O4V ; 1.23 ; Crystal Structure of Trichomonas vaginalis Triosephosphate Isomerase Tvag_497370 (Ile-45 variant) 3QSR ; 2.05 ; Crystal structure of Trichomonas vaginalis triosephosphate isomerase TVAG_497370 gene (Ile-45 variant) 4WJE ; 1.285 ; Crystal structure of Trichomonas vaginalis triosephosphate isomerase V45A at 1.3 Angstroms 6YLD ; 1.4 ; Crystal structure of Trichoplax adhaerens trBcl-2L2 bound to trBak BH3 8BP5 ; 2.13 ; Crystal structure of Trichoplax Dlg PDZ1 domain 8C1T ; 2.2 ; Crystal structure of Trichoplax Dlg PDZ1 domain in complex with Trichoplax Vangl peptide 8BQ8 ; 2.7 ; Crystal structure of Trichoplax Dlg PDZ2 domain in complex with Trichoplax Vangl peptide 8BPM ; 2.8 ; Crystal structure of Trichoplax Dlg PDZ3 domain 8BOJ ; 1.5 ; Crystal structure of Trichoplax Scribble PDZ1 domain 8BUW ; 2.85 ; Crystal structure of Trichoplax Scribble PDZ1 domain in complex with Trichoplax Vangl peptide 8BNB ; 2.11 ; Crystal structure of Trichoplax Scribble PDZ2 domain 8BP4 ; 1.15 ; Crystal structure of Trichoplax Scribble PDZ2 domain in complex with Trichoplax Vangl peptide 5A98 ; 1.816 ; Crystal structure of Trichoplusia ni CPV15 polyhedra 1Z6O ; 1.91 ; Crystal Structure of Trichoplusia ni secreted ferritin 1GGP ; 2.7 ; CRYSTAL STRUCTURE OF TRICHOSANTHES KIRILOWII LECTIN-1 AND ITS RELATION TO THE TYPE 2 RIBOSOME INACTIVATING PROTEINS 1TCS ; 1.7 ; CRYSTAL STRUCTURE OF TRICHOSANTHIN-NADPH COMPLEX AT 1.7 ANGSTROMS RESOLUTION REVEALS ACTIVE-SITE ARCHITECTURE 2RF3 ; 1.75 ; Crystal Structure of Tricyclo-DNA: An Unusual Compensatory Change of Two Adjacent Backbone Torsion Angles 2I36 ; 4.1 ; Crystal structure of trigonal crystal form of ground-state rhodopsin 1IHD ; 2.65 ; Crystal Structure of Trigonal Form of D90E Mutant of Escherichia coli Asparaginase II 6FGA ; 2.82 ; Crystal structure of TRIM21 E3 ligase, RING domain in complex with its cognate E2 conjugating enzyme UBE2E1 6S53 ; 2.8 ; Crystal structure of TRIM21 RING domain in complex with an isopeptide-linked Ube2N~ubiquitin conjugate 3O37 ; 2.0 ; Crystal structure of TRIM24 PHD-Bromo complexed with H3(1-10)K4 peptide 3O34 ; 1.9 ; Crystal structure of TRIM24 PHD-Bromo complexed with H3(13-32)K23ac peptide 3O35 ; 1.76 ; Crystal structure of TRIM24 PHD-Bromo complexed with H3(23-31)K27ac peptide 3O36 ; 1.7 ; Crystal structure of TRIM24 PHD-Bromo complexed with H4(14-19)K16ac peptide 3O33 ; 2.0 ; Crystal structure of TRIM24 PHD-Bromo in the free state 4YAB ; 1.9 ; Crystal structure of TRIM24 PHD-bromodomain complexed with 1-methyl-5-(2-methyl-1 3-thiazol-4-yl)-2 3-dihydro-1H-indol-2-one (1) 4YAD ; 1.73 ; Crystal structure of TRIM24 PHD-bromodomain complexed with 2,4-dimethoxy-N-(1-methyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)benzene-1-sulfonamide (3b) 4YAT ; 2.18 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-(1,3-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl)-4-methoxybenzene-1-sulfonamide (5b) 4YC9 ; 1.82 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-(6-{3-[4-(dimethylamino)butoxy]-5-propoxyphenoxy}-1,3-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl)-3,4-dimethoxybenzene-1-sulfonamide (8i) 4YAX ; 2.25 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-[6-(4-methoxyphenoxy)-1,3-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl]benzenesulfonamide (5g) 4YBT ; 1.82 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-{1,3-dimethyl-2-oxo-6-[3-(oxolan-3-ylmethoxy)phenoxy]-2,3-dihydro-1H-1,3-benzodiazol-5-yl}-1-methyl-1H-imidazole-4-sulfonamide (7l) 4YBS ; 1.83 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-{1,3-dimethyl-6-[3-(2-methylpropoxy)phenoxy]-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl}-1,2-dimethyl-1H-imidazole-4-sulfonamide (7g) 4YBM ; 1.46 ; Crystal structure of TRIM24 PHD-bromodomain complexed with N-{6-[3-(benzyloxy)phenoxy]-1,3-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazol-5-yl}-3,4-dimethoxybenzene-1-sulfonamide (7b) 4ZQL ; 1.79 ; Crystal structure of TRIM24 with 3,4-dimethoxy-N-(6-(4-methoxyphenoxy)-1,3-dimethyl-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)benzenesulfonamide inhibitor 8BD9 ; 3.2 ; Crystal structure of TRIM33 alpha PHD-Bromo domain in complex with 10 8BD8 ; 3.1 ; Crystal structure of TRIM33 alpha PHD-Bromo domain in complex with 8 8BDY ; 3.05 ; Crystal structure of TRIM33 alpha PHD-Bromo domain in complex with 9 3U5M ; 3.08 ; Crystal structure of TRIM33 PHD-Bromo in the free state 7ZDD ; 1.625 ; Crystal structure of TRIM33 PHD-Bromodomain isoform B in complex with H3K10ac histone peptide. 5MR8 ; 1.74 ; Crystal structure of TRIM33 PHD-Bromodomain isoform B in complex with H3K9ac histone peptide 8PD4 ; 2.714 ; Crystal structure of TRIM58 PRY-SPRY domain 7JL4 ; 1.92 ; Crystal structure of TRIM65 PSpry domain 6UMB ; 1.8 ; Crystal structure of TRIM7 B30.2 domain at 1.8 angstrom resolution 7Y3A ; 1.7 ; Crystal structure of TRIM7 bound to 2C 7Y3B ; 1.76 ; Crystal structure of TRIM7 bound to GN1 7Y3C ; 1.71 ; Crystal structure of TRIM7 bound to RACO-1 7XT2 ; 3.0 ; Crystal structure of TRIM72 2O7H ; 1.86 ; Crystal structure of trimeric coiled coil GCN4 leucine zipper 1DRG ; 2.55 ; CRYSTAL STRUCTURE OF TRIMERIC CRE RECOMBINASE-LOX COMPLEX 1F44 ; 2.05 ; CRYSTAL STRUCTURE OF TRIMERIC CRE RECOMBINASE-LOX COMPLEX 3NBT ; 2.1 ; Crystal structure of trimeric cytochrome c from horse heart 2FQL ; 3.01 ; Crystal structure of trimeric frataxin from the yeast Saccharomyces cerevisiae 3OER ; 3.2 ; Crystal structure of trimeric frataxin from the yeast saccharomyces cerevisiae, complexed with cobalt 4EC2 ; 3.002 ; Crystal structure of trimeric frataxin from the yeast Saccharomyces cerevisiae, complexed with ferrous 3OEQ ; 2.96 ; Crystal structure of trimeric frataxin from the yeast Saccharomyces cerevisiae, with full length n-terminus 4F3J ; 1.337 ; Crystal Structure of Trimeric gC1q Domain of Human C1QTNF5 associated with Late-onset Retinal Macular Degeneration 8IQ5 ; 1.38 ; Crystal structure of trimeric K2-2 TSP 8IQ9 ; 1.58 ; Crystal structure of trimeric K2-2 TSP in complex with tetrasaccharide and octasaccharide 6NXZ ; 1.75 ; Crystal structure of trimethoprim-resistant type II dihydrofolate reductase in complex with a bisbenzimidazole inhibitor 6NY0 ; 1.4 ; Crystal structure of trimethoprim-resistant type II dihydrofolate reductase in complex with a bisbenzimidazole inhibitor 4YYC ; 1.56 ; Crystal structure of trimethylamine methyltransferase from Sinorhizobium meliloti in complex with unknown ligand 7XCL ; 2.5 ; Crystal structure of trimethylamine methyltransferase MttB from Methanosarcina barkeri at 2.5 A resolution 1DKW ; 2.65 ; CRYSTAL STRUCTURE OF TRIOSE-PHOSPHATE ISOMERASE WITH MODIFIED SUBSTRATE BINDING SITE 2H6R ; 2.3 ; Crystal Structure of triosephosphate isomerase (TIM) from Methanocaldococcus jannaschii 7PEK ; 1.74 ; Crystal structure of Triosephosphate Isomerase C216A mutant from Schizosaccharomyces pombe (SpTIM C216A) 7RPN ; 1.37 ; Crystal structure of triosephosphate isomerase from Bacteroides thetaiotaomicron 3KXQ ; 1.6 ; Crystal structure of triosephosphate isomerase from bartonella henselae at 1.6A resolution 4NVT ; 2.1 ; Crystal Structure of Triosephosphate Isomerase from Brucella melitensis 4G1K ; 2.35 ; Crystal structure of triosephosphate isomerase from Burkholderia thailandensis 7R7M ; 2.0 ; Crystal structure of Triosephosphate isomerase from Candidate division Katanobacteria (WWE3) bacterium 7RGC ; 2.09 ; Crystal structure of triosephosphate isomerase from Candidatus Absconditabacteria (Sr1) bacterium 7N8U ; 1.98 ; Crystal structure of Triosephosphate isomerase from Candidatus Prometheoarchaeum syntrophicum 7R9B ; 2.2 ; Crystal structure of Triosephosphate isomerase from Candidatus Roizmanbacteria 4Y8F ; 1.54 ; Crystal structure of Triosephosphate Isomerase from Clostridium perfringens 4Y90 ; 2.1 ; Crystal structure of Triosephosphate Isomerase from Deinococcus radiodurans 1M6J ; 1.5 ; CRYSTAL STRUCTURE OF TRIOSEPHOSPHATE ISOMERASE FROM ENTAMOEBA HISTOLYTICA 5UJW ; 2.65 ; Crystal structure of triosephosphate isomerase from Francisella tularensis subsp. tularensis SCHU S4 4Y96 ; 1.581 ; Crystal structure of Triosephosphate Isomerase from Gemmata obscuriglobus 7RCQ ; 1.7 ; Crystal structure of triosephosphate isomerase from Ktedonobacter racemifer 3M9Y ; 1.9 ; Crystal structure of Triosephosphate isomerase from methicillin resistant Staphylococcus aureus at 1.9 Angstrom resolution 3UWY ; 2.4 ; Crystal structure of triosephosphate isomerase from Methicillin resistant Staphylococcus Aureus at 2.4 angstrom resolution 3GVG ; 1.55 ; Crystal structure of Triosephosphate isomerase from Mycobacterium tuberculosis 5ZFX ; 1.751 ; Crystal Structure of Triosephosphate isomerase from Opisthorchis viverrini 3TH6 ; 2.4 ; Crystal structure of Triosephosphate isomerase from Rhipicephalus (Boophilus) microplus. 6OOI ; 2.14 ; Crystal structure of triosephosphate isomerase from Schistosoma mansoni in complex with 2PG 7PEJ ; 1.79 ; Crystal structure of Triosephosphate Isomerase from Schizosaccharomyces pombe (SpTIM wt) 6W4U ; 1.7 ; Crystal structure of Triosephosphate isomerase from Stenotrophomonas maltophilia K279a 4Y9A ; 2.294 ; Crystal structure of Triosephosphate Isomerase from Streptomyces coelicolor 6OOG ; 2.02 ; Crystal structure of triosephosphate isomerase from Taenia Solium in complex with 2PG 5CSR ; 1.94 ; Crystal structure of triosephosphate isomerase from Thermoplasma acidophilium 5CSS ; 2.17 ; Crystal structure of triosephosphate isomerase from Thermoplasma acidophilum with glycerol 3-phosphate 1CI1 ; 2.0 ; CRYSTAL STRUCTURE OF TRIOSEPHOSPHATE ISOMERASE FROM TRYPANOSOMA CRUZI IN HEXANE 4HHP ; 1.5 ; Crystal structure of triosephosphate isomerase from trypanosoma cruzi, mutant e105d 7RMN ; 1.21 ; Crystal structure of triosephosphate isomerase from Verrucomicrobium spinosum 6CG9 ; 1.8 ; Crystal structure of Triosephosphate Isomerase from Zea mays (mexican corn) 5ZGA ; 1.793 ; Crystal Structure of Triosephosphate isomerase SAD deletion and N115A mutant from Opisthorchis viverrini 5ZG4 ; 1.746 ; Crystal Structure of Triosephosphate isomerase SAD deletion mutant from Opisthorchis viverrini 5ZG5 ; 1.597 ; Crystal Structure of Triosephosphate isomerase SADsubAAA mutant from Opisthorchis viverrini 5WS4 ; 3.4 ; Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii 5GKO ; 3.393 ; Crystal structure of tripartite-type ABC transporter, MacB from Acinetobacter baumannii 4WCN ; 1.75 ; Crystal Structure of Tripeptide bound Cell Shape Determinant Csd4 protein from Helicobacter pylori 3LXU ; 3.14 ; Crystal Structure of Tripeptidyl Peptidase 2 (TPP II) 7YOF ; 2.3 ; Crystal Structure of Triple mutant (D67E, A68P, I88L) of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae at 2.3 A 5D0G ; 1.6 ; Crystal structure of triple mutant (KDA to EGY) of adenylyl cyclase Ma1120 from Mycobacterium avium in complex with GTP and calcium ion 5D0H ; 2.1 ; Crystal Structure of triple mutant (KDA to EGY) of an adenylyl cyclase Ma1120 from Mycobacterium avium in complex with ATP and calcium ion 1D3R ; 1.8 ; CRYSTAL STRUCTURE OF TRIPLEX DNA 8XPC ; 1.55 ; Crystal structure of Tris-bound TsaBgl (DATA I) 8XPD ; 1.7 ; Crystal structure of Tris-bound TsaBgl (DATA II) 8XPE ; 1.95 ; Crystal structure of Tris-bound TsaBgl (DATA III) 6MCD ; 1.5 ; Crystal Structure of tris-thiolate Pb(II) complex with adjacent water in a de novo Three Stranded Coiled Coil Peptide 5GUL ; 1.73 ; Crystal structure of Tris/PPix2/Mg2+ bound form of cyclolavandulyl diphosphate synthase (CLDS) from Streptomyces sp. CL190 5WR7 ; 2.76 ; Crystal structure of Trk-A complexed with a selective inhibitor CH7057288 6DKB ; 2.68 ; Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 10b. 6J5L ; 2.3 ; Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 10e 6DKG ; 2.53 ; Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 13b. 6DKI ; 2.11 ; Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 19. 6DKW ; 2.91 ; Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 3. 7VKM ; 2.55 ; Crystal structure of TrkA (G595R) kinase domain 7VKN ; 2.7 ; Crystal structure of TrkA (G595R) kinase with repotrectinib 3C85 ; 1.9 ; Crystal structure of TrkA domain of putative glutathione-regulated potassium-efflux KefB from Vibrio parahaemolyticus 3DOC ; 2.4 ; Crystal Structure of TrkA glyceraldehyde-3-phosphate dehydrogenase from Brucella melitensis 5JFS ; 2.07 ; Crystal structure of TrkA in complex with PF-00593174 5JFV ; 1.59 ; Crystal structure of TrkA in complex with PF-05206283 5JFW ; 1.52 ; Crystal structure of TrkA in complex with PF-05247452 5JFX ; 1.63 ; Crystal structure of TrkA in complex with PF-06273340 5H3Q ; 2.1 ; Crystal Structure of TrkA kinase with ligand 6IQN ; 2.54 ; Crystal structure of TrkA kinase with ligand 7VKO ; 2.9 ; Crystal structure of TrkA kinase with repotrectinib 3FWZ ; 1.79 ; Crystal structure of TrkA-N domain of inner membrane protein ybaL from Escherichia coli 4AT3 ; 1.77 ; CRYSTAL STRUCTURE OF TRKB KINASE DOMAIN IN COMPLEX WITH CPD5N 4AT4 ; 2.36 ; CRYSTAL STRUCTURE OF TRKB KINASE DOMAIN IN COMPLEX WITH EX429 4AT5 ; 1.71 ; CRYSTAL STRUCTURE OF TRKB KINASE DOMAIN IN COMPLEX WITH GW2580 1HCF ; 2.7 ; Crystal structure of TrkB-d5 bound to neurotrophin-4/5 6KZD ; 1.708 ; Crystal structure of TRKc in complex with 3-((6-(4-aminophenyl)imidazo[1,2-a]pyrazin-3-yl)ethynyl)- N-(3-isopropyl-5-((4-methylpiperazin-1-yl)methyl)phenyl)-2- methylbenzamide 6KZC ; 2.0 ; crystal structure of TRKc in complex with 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methyl-N-(3-((4- methylpiperazin-1-yl)methyl)-5- (trifluoromethyl)phenyl)benzamide 3TLJ ; 2.2 ; Crystal structure of Trm14 from Pyrococcus furiosus in complex with S-adenosyl-L-homocysteine 3TM4 ; 1.95 ; Crystal structure of Trm14 from Pyrococcus furiosus in complex with S-adenosylmethionine 3TM5 ; 2.27 ; Crystal structure of Trm14 from Pyrococcus furiosus in complex with sinefungin 8BYH ; 2.19 ; Crystal structure of TrmD domain from Calditerrivibrio nitroreducens in complex with S-adenosyl-L-methionine 5ZHK ; 2.3 ; Crystal structure of TrmD from Mycobacterium tuberculosis in complex with active-site inhibitor 5ZHL ; 2.25 ; Crystal structure of TrmD from Mycobacterium tuberculosis in complex with active-site inhibitor 6JOF ; 2.2 ; Crystal structure of TrmD from Mycobacterium tuberculosis in complex with active-site inhibitor 5ZHJ ; 1.75 ; Crystal structure of TrmD from Mycobacterium tuberculosis in complex with S-adenosyl homocysteine (SAH) 5ZHM ; 2.76 ; Crystal structure of TrmD from Pseudomonas aeruginosa in complex with active-site inhibitor 5ZHN ; 2.65 ; Crystal structure of TrmD from Pseudomonas aeruginosa in complex with active-site inhibitor 6AFK ; 2.75 ; Crystal structure of TrmD from Pseudomonas aeruginosa in complex with active-site inhibitor 6JOE ; 2.21 ; Crystal structure of TrmD from Pseudomonas aeruginosa in complex with active-site inhibitor 7KFF ; 1.35 ; Crystal structure of TrmD tRNA (guanine-N1)-methyltransferase from Corynebacterium diphtheriae in complex with SAH 4YPW ; 2.311 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YPX ; 1.89 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YPY ; 1.9 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YPZ ; 1.84 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ0 ; 1.76 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ1 ; 2.0 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ2 ; 2.65 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ3 ; 2.49 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ4 ; 1.89 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ5 ; 1.76 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ6 ; 1.9 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ7 ; 1.8 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ8 ; 1.94 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQ9 ; 1.64 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQA ; 1.55 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQB ; 2.1 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQC ; 1.89 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQD ; 1.45 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQG ; 1.858 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQI ; 1.92 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQJ ; 1.94 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQK ; 1.83 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQL ; 2.401 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQN ; 2.2 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQO ; 1.68 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQP ; 2.601 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQQ ; 1.78 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQR ; 1.701 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQS ; 1.902 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 4YQT ; 1.6 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 5D9F ; 1.91 ; Crystal structure of TrmD, a M1G37 tRNA Methyltransferase with SAM-competitive compounds 6NVR ; 1.562 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in Apo form 6QO2 ; 1.68 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 1 (1H-Indole-5-carboxamide) 6QOG ; 1.55 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 10 (2-Amino-5-bromobenzothiazole) 6QOH ; 1.66 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 11 (2-Amino-6-chloropurine) 6QOI ; 1.86 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 12 (2-Aminobenzothiazole) 6QOJ ; 2.023 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 13 (4-Hydroxyquinazoline) 6QOK ; 1.48 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 14 (Methyl 2-aminopyridine-4-carboxylate) 6QOL ; 1.903 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 15 (6-quinoxalinamine) 6QOM ; 1.9 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 16 (2-Amino-3-nitropyridine) 6QON ; 1.81 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 17 (2H-1,3-Benzoxazine-2,4(3H)-dione) 6QOO ; 1.94 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 18 (Isoxazole-5-carbothioamide) 6QOP ; 1.912 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 19 (5-fluoroquinazolin-4-ol) 6QO3 ; 1.65 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 2 (5-Amino-3-(2-thienyl) pyrazole) 6QOQ ; 1.67 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 20 (6-Aminobenzothiazole) 6QOR ; 1.671 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 21 (2-Amino-3-nitrophenol) 6QOS ; 2.052 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 22 (Ethyl 1H-pyrazole-4-carboxylate) 6QOT ; 1.62 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 23 (3-Amino-5-(4-methoxyphenyl)pyrazole) 6QOU ; 1.56 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 24 (Indole-6-boronic acid) 6QOV ; 1.55 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 25 (6-Phenyl-3-pyridinyl)methylamine) 6QOW ; 1.53 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 26 (6-methoxybenzothiazole-2-carboxylic acid) 6QOX ; 1.74 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 27 (Methyl 2-(hydroxymethyl)-6H-thieno[2,3-b]pyrrole-5-carboxylate) 6QO4 ; 1.78 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 3 (2-(5-Isoxazolyl) phenol) 6QO6 ; 1.745 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 4 (5-Methoxybenzimidazole) 6QOA ; 1.93 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 5 (Isoxazole-5-carboxamide) 6QOC ; 1.84 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 6 (2-(1,3-oxazol-5-yl) aniline) 6QOD ; 1.852 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 7 (2-Amino-6-fluorobenzothiazole) 6QOE ; 3.06 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 8 (3-[(2-thienylthio)methyl]benzoic acid) 6QOF ; 1.76 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with Fragment 9 (Adenine) 6QQQ ; 1.85 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQR ; 1.56 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQS ; 1.76 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQT ; 1.673 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQU ; 1.59 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQV ; 1.712 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQW ; 1.8 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQX ; 2.69 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQY ; 1.49 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QQZ ; 1.702 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR0 ; 1.59 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR1 ; 1.67 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR2 ; 1.55 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR3 ; 1.614 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR4 ; 1.52 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR5 ; 1.81 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR6 ; 1.71 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR7 ; 2.03 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR8 ; 2.15 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QR9 ; 2.42 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRA ; 1.71 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRB ; 1.66 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRC ; 1.73 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRD ; 1.75 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRE ; 1.93 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRF ; 1.86 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6QRG ; 1.84 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with inhibitor 6NW6 ; 1.67 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with S-Adenosyl methionine 6NW7 ; 1.481 ; Crystal structure of TrmD, a tRNA-(N1G37) methyltransferase, from Mycobacterium abscessus in complex with S-Adenosyl-L-homocysteine 8B1N ; 2.0 ; Crystal structure of TrmD-Tm1570 from Calditerrivibrio nitroreducens in complex with S-adenosyl-L-methionine 3E5Y ; 2.4 ; Crystal structure of TrmH family RNA methyltransferase from Burkholderia pseudomallei 5GRA ; 3.005 ; Crystal structure of TrmJ from Z. mobilis ZM4 7E3T ; 2.1 ; Crystal structure of TrmL from Mycoplasma capricolum 7E3S ; 2.1 ; Crystal structure of TrmL from Shewanella oneidensis 7E3R ; 1.79 ; Crystal structure of TrmL from Vibrio vulnificus 3TMA ; 2.05 ; Crystal structure of TrmN from Thermus thermophilus 7BTZ ; 2.4 ; Crystal structure of TrmO 7BTU ; 1.91 ; Crystal structure of TrmO from P. areuginosa 7BU1 ; 2.49 ; Crystal structure of TrmO from Pseudomonas aeruginosa 5ZW3 ; 2.27 ; Crystal Structure of TrmR from B. subtilis 8K1F ; 2.4 ; Crystal Structure of TrmR from Fusobacterium nucleatum 6W14 ; 2.0 ; Crystal structure of tRNA (guanine-N(1)-)-methyltransferase from Mycobacterium smegmatis 6W15 ; 2.0 ; Crystal structure of tRNA (guanine-N(1)-)-methyltransferase with bound SAH from Mycobacterium smegmatis 3KNU ; 2.25 ; Crystal structure of tRNA (guanine-N1)-methyltransferase from Anaplasma phagocytophilum 2YVL ; 2.2 ; Crystal structure of tRNA (m1A58) methyltransferase TrmI from Aquifex aeolicus 1OY5 ; 2.6 ; Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus 4JAK ; 2.0 ; Crystal structure of tRNA (Um34/Cm34) methyltransferase TrmL from Escherichia coli 4JAL ; 2.0 ; Crystal structure of tRNA (Um34/Cm34) methyltransferase TrmL from Escherichia coli with SAH 7YW3 ; 2.5 ; Crystal structure of tRNA 2'-phosphotransferase from Homo sapiens 7YW2 ; 2.23 ; Crystal structure of tRNA 2'-phosphotransferase from Mus musculus 7YW4 ; 2.18 ; Crystal structure of tRNA 2'-phosphotransferase from Saccharomyces cerevisiae 7CPH ; 2.3 ; Crystal structure of tRNA adenosine deaminase from Bacillus subtilis 1WWR ; 1.8 ; Crystal structure of tRNA adenosine deaminase TadA from Aquifex aeolicus 1Z3A ; 2.03 ; Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli 5ZW4 ; 1.7 ; Crystal structure of tRNA bound TrmR 3D3Q ; 2.7 ; Crystal structure of tRNA delta(2)-isopentenylpyrophosphate transferase (SE0981) from Staphylococcus epidermidis. Northeast Structural Genomics Consortium target SeR100 5EHK ; 2.708 ; Crystal structure of tRNA dependent lantibiotic dehydratase MibB from Microbispora sp. 107891 4RVZ ; 2.9 ; Crystal structure of tRNA fluorescent labeling enzyme 2DUL ; 1.9 ; Crystal structure of tRNA G26 methyltransferase Trm1 in apo form from Pyrococcus horikoshii 3IEF ; 2.5 ; Crystal structure of tRNA guanine-n1-methyltransferase from Bartonella henselae using MPCS. 2QGN ; 2.4 ; Crystal structure of tRNA isopentenylpyrophosphate transferase (BH2366) from Bacillus halodurans, Northeast Structural Genomics Consortium target BhR41. 2ZM5 ; 2.55 ; Crystal structure of tRNA modification enzyme MiaA in the complex with tRNA(Phe) 2ZXU ; 2.75 ; Crystal structure of tRNA modification enzyme MiaA in the complex with tRNA(Phe) and DMASPP 1VFG ; 2.8 ; Crystal structure of tRNA nucleotidyltransferase complexed with a primer tRNA and an incoming ATP analog 4WC2 ; 2.8 ; Crystal structure of tRNA nucleotidyltransferase complexed with a primer tRNA and an incoming ATP analog 4LT8 ; 3.14 ; Crystal Structure of tRNA Proline (CGG) Bound to Codon CCC-G on the Ribosome 4LNT ; 2.94 ; Crystal Structure of tRNA Proline (CGG) Bound to Codon CCC-U on the Ribosome 4LSK ; 3.48001 ; Crystal Structure of tRNA Proline (CGG) Bound to Codon CCG-G on the Ribosome 1R3E ; 2.1 ; Crystal Structure of tRNA Pseudouridine Synthase TruB and Its RNA Complex: RNA-protein Recognition Through a Combination of Rigid Docking and Induced Fit 1R3F ; 1.85 ; Crystal Structure of tRNA Pseudouridine Synthase TruB and Its RNA Complex: RNA-protein Recognition Through a Combination of Rigid Docking and Induced Fit 2ZW9 ; 2.5 ; Crystal structure of tRNA wybutosine synthesizing enzyme TYW4 2ZWA ; 1.7 ; Crystal structure of tRNA wybutosine synthesizing enzyme TYW4 2ZZK ; 2.706 ; Crystal structure of tRNA wybutosine synthesizing enzyme TYW4 5XOX ; 3.0 ; Crystal structure of tRNA(His) guanylyltranserase from Saccharomyces cerevisiae 1UAJ ; 1.85 ; Crystal structure of tRNA(m1G37)methyltransferase: Insight into tRNA recognition 1UAK ; 2.05 ; Crystal structure of tRNA(m1G37)methyltransferase: Insight into tRNA recognition 1UAL ; 1.8 ; Crystal structure of tRNA(m1G37)methyltransferase: Insight into tRNA recognition 1UAM ; 2.2 ; Crystal structure of tRNA(m1G37)methyltransferase: Insight into tRNA recognition 2ZPA ; 2.35 ; Crystal Structure of tRNA(Met) Cytidine Acetyltransferase 4WD9 ; 2.9 ; Crystal structure of tRNA-dependent lantibiotic dehydratase NisB in complex with NisA leader peptide 4WFS ; 2.68 ; Crystal Structure of tRNA-dihydrouridine(20) synthase catalytic domain 4WFT ; 1.7 ; Crystal structure of tRNA-dihydrouridine(20) synthase dsRBD domain 1K4G ; 1.7 ; CRYSTAL STRUCTURE OF TRNA-GUANINE TRANSGLYCOSYLASE (TGT) COMPLEXED WITH 2,6-DIAMINO-8-(1H-IMIDAZOL-2-YLSULFANYLMETHYL)-3H-QUINAZOLINE-4-ONE 1K4H ; 1.8 ; CRYSTAL STRUCTURE OF TRNA-GUANINE TRANSGLYCOSYLASE (TGT) COMPLEXED WITH 2,6-Diamino-8-propylsulfanylmethyl-3H-quinazoline-4-one 1P0B ; 1.7 ; Crystal Structure Of tRNA-Guanine Transglycosylase (TGT) From Zymomonas mobilis Complexed With Archaeosine Precursor, Preq0 2QII ; 1.7 ; Crystal Structure Of tRNA-Guanine Transglycosylase (TGT) From Zymomonas mobilis Complexed With Archaeosine Precursor, Preq0 2BBF ; 1.7 ; Crystal structure of tRNA-guanine transglycosylase (TGT) from Zymomonas mobilis in complex with 6-amino-3,7-dihydro-imidazo[4,5-g]quinazolin-8-one 2CV8 ; 2.8 ; Crystal structure of tRNA-intron endonuclease from Sulfolobus tokodaii 3OCQ ; 2.05 ; crystal structure of tRNA-specific Adenosine deaminase from Salmonella enterica 4TUB ; 3.6 ; Crystal structure of tRNA-Thr bound to Codon ACC-C on the Ribosome 3ONP ; 1.9 ; Crystal Structure of tRNA/rRNA Methyltransferase SpoU from Rhodobacter sphaeroides 4KDZ ; 2.32 ; Crystal structure of tRNA/rRNA methyltransferase YibK from Escherichia coli (Target NYSGRC-012599) 1WW1 ; 2.6 ; Crystal structure of tRNase Z from Thermotoga maritima 7VNV ; 1.9 ; Crystal Structure of tRNAVal from Sulfolobus Tokodaii 7VNW ; 2.61 ; Crystal Structure of tRNAVal from Sulfolobus Tokodaii(Dephosphorylated) 6OF6 ; 3.2 ; Crystal structure of tRNA^ Ala(GGC) bound to cognate 70S A-site 6OJ2 ; 3.2 ; Crystal structure of tRNA^ Ala(GGC) bound to the near-cognate 70S A-site 6ORD ; 3.1 ; Crystal structure of tRNA^ Ala(GGC) U32-A38 bound to cognate 70S A site 6OPE ; 3.1 ; Crystal structure of tRNA^ Ala(GGC) U32-A38 bound to near-cognate 70S A site 8FON ; 3.64 ; Crystal structure of tRNA^Lys(SUU) bound to AUA codon in the ribosomal P site 8FOM ; 3.58 ; Crystal structure of tRNA^Lys(SUU) bound to UAA codon in the ribosomal P site 4MO9 ; 1.925 ; Crystal Structure of TroA-like Periplasmic Binding Protein FepB from Veillonella parvula 4MX8 ; 2.911 ; Crystal Structure of TroA-like Periplasmic Binding Protein Peripla_BP_2 from Xylanimonas cellulosilytica 1IO0 ; 1.45 ; CRYSTAL STRUCTURE OF TROPOMODULIN C-TERMINAL HALF 1C1G ; 7.0 ; CRYSTAL STRUCTURE OF TROPOMYOSIN AT 7 ANGSTROMS RESOLUTION IN THE SPERMINE-INDUCED CRYSTAL FORM 3AZD ; 0.98 ; Crystal structure of tropomyosin N-terminal fragment at 0.98A resolution 3BOM ; 1.35 ; Crystal structure of trout hemoglobin at 1.35 Angstrom resolution 1YDG ; 2.0 ; Crystal Structure of Trp repressor binding protein WrbA 1YRH ; 3.11 ; Crystal Structure Of Trp Repressor Binding Protein Wrba in complex with FMN 1TRO ; 1.9 ; CRYSTAL STRUCTURE OF TRP REPRESSOR OPERATOR COMPLEX AT ATOMIC RESOLUTION 3WO1 ; 2.3 ; Crystal structure of Trp332Ala mutant YwfE, an L-amino acid ligase, with bound ADP-Mg-Ala 4WUI ; 1.09 ; Crystal structure of TrpF from Jonesia denitrificans 7MQV ; 2.4 ; Crystal structure of truncated (ACT domain removed) prephenate dehydrogenase tyrA from Bacillus anthracis in complex with NAD 7EQR ; 2.75003 ; Crystal structure of Truncated (Delta 1-19) Chitoporin VhChiP from Vibrio harveyi in complex with chitohexaose 4IKU ; 1.3 ; Crystal structure of truncated (delta 1-89) human methionine aminopeptidase Type 1 in complex with 2-((5-chloro-6-methyl-2-(pyridin-2-yl)pyrimidin-4-yl)amino)-3-phenylpropanamide 4IKT ; 1.6 ; Crystal structure of truncated (delta 1-89) human methionine aminopeptidase Type 1 in complex with N1-(5-chloro-6-methyl-2-(pyridin-2-yl)pyrimidin-4-yl)-N2-(5-(trifluoromethyl)pyridin-2-yl)ethane-1,2-diamine 4IKS ; 1.7 ; Crystal structure of truncated (delta 1-89) human methionine aminopeptidase Type 1 in complex with N1-(5-chloro-6-methyl-2-(pyridin-2-yl)pyrimidin-4-yl)-N2-(6-(trifluoromethyl)pyridin-2-yl)ethane-1,2-diamine 2G6P ; 1.9 ; Crystal structure of truncated (delta 1-89) human methionine aminopeptidase Type 1 in complex with Pyridyl pyrimidine derivative 4OIX ; 1.55 ; Crystal structure of truncated Acylphosphatase from S. sulfataricus 4OJ1 ; 1.7 ; Crystal structure of truncated Acylphosphatase from S. sulfataricus 3RMJ ; 1.95 ; Crystal structure of truncated alpha-Isopropylmalate Synthase from Neisseria meningitidis 6HVG ; 2.8 ; Crystal Structure of Truncated Alternansucrase from Leuconostoc mesenteroides NRRL B-1355 7ZP2 ; 2.292 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum in complex with BDA-04 7ZID ; 2.55 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum in complex with BDA-14 7ZST ; 2.5 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum in complex with FLA-01 7ZCZ ; 2.45 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with bound inhibitor 1-(4-chlorophenyl)methanamine 6FBA ; 2.0 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with bound inhibitor 2,3-naphthalenediol 7ZGS ; 2.349 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with bound inhibitor 2-phenylethan-1-amine 7ZHI ; 2.946 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with bound inhibitor indole 7ZEA ; 2.448 ; Crystal Structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with bound inhibitor O-benzylhydroxylamine 6HL7 ; 2.5 ; Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum with mutated active site (R109A/K138A) and N-carbamoyl-L-phosphate bound 6WWX ; 2.2 ; Crystal structure of truncated bacteriophage hyaluronan lyase HylP in complex with unsaturated hyaluronan tetra-saccharides 4ILD ; 3.27 ; Crystal structure of truncated Bovine viral diarrhea virus 1 E2 envelope protein 4FVA ; 2.07 ; Crystal structure of truncated Caenorhabditis elegans TDP2 4J3Q ; 2.9 ; Crystal structure of truncated catechol oxidase from Aspergillus oryzae 5EKI ; 1.9 ; Crystal Structure of Truncated CCL21 4YKD ; 1.932 ; Crystal structure of truncated cerebral cavernous malformation 2 C-terminal adaptor domain 4YL6 ; 2.1 ; Crystal structure of truncated cerebral cavernous malformation 2 C-terminal adaptor domain in complex with an internal helix of mitogen-activated protein kinase kinase kinase 3 3HDF ; 1.7 ; Crystal structure of truncated endolysin R21 from phage 21 3USZ ; 2.1 ; Crystal structure of truncated exo-1,3/1,4-beta-glucanase (EXOP) from Pseudoalteromonas sp. BB1 3BFQ ; 1.34 ; Crystal structure of truncated FimG (FimGt) in complex with the donor strand peptide of FimF (DSF) 3BFW ; 1.8 ; Crystal structure of truncated FimG (FimGt) in complex with the donor strand peptide of FimF (DSF) 4ZZK ; 2.75 ; Crystal structure of truncated FlgD (monoclinic form) from the human pathogen Helicobacter pylori 5K5Y ; 2.85 ; Crystal structure of truncated FlgD (monoclinic form) from the human pathogen Helicobacter pylori (strain 26695) 4ZZF ; 2.1673 ; Crystal structure of truncated FlgD (tetragonal form) from the human pathogen Helicobacter pylori 3T49 ; 1.45 ; Crystal structure of truncated form of Staphylococcal Complement Inhibitor B (SCIN-B) at 1.5 Angstrom 3T47 ; 1.301 ; Crystal Structure of truncated form of Staphylococcal Complement Inhibitor D (SCIN-D) at 1.3 Angstrom 3T48 ; 1.5 ; Crystal Structure of truncated form of Staphylococcal Complement Inhibitor D (SCIN-D) at 1.5 Angstrom 3AQ5 ; 1.78 ; Crystal structure of truncated hemoglobin from Tetrahymena pyriformis, Fe(II)-O2 form 3AQ6 ; 1.93 ; Crystal structure of truncated hemoglobin from Tetrahymena pyriformis, Fe(III) form 3AQ8 ; 1.83 ; Crystal structure of truncated hemoglobin from Tetrahymena pyriformis, Q46E mutant, Fe(III) form 3AQ9 ; 1.74 ; Crystal structure of truncated hemoglobin from Tetrahymena pyriformis, Q50E mutant, Fe(III) form 3AQ7 ; 1.77 ; Crystal structure of truncated hemoglobin from Tetrahymena pyriformis, Y25F mutant, Fe(III) form 3FY3 ; 1.8 ; Crystal structure of truncated hemolysin A from P. mirabilis 4W8Q ; 1.428 ; Crystal structure of truncated hemolysin A from P. mirabilis at 1.4 Angstroms resolution 4W8T ; 1.539 ; Crystal structure of truncated hemolysin A Q125S from P. mirabilis at 1.5 Angstroms resolution 4W8S ; 1.511 ; Crystal structure of truncated hemolysin A Q125S/Y134S from P. mirabilis at 1.5 Angstroms resolution 1OKI ; 1.4 ; Crystal structure of truncated human beta-B1-crystallin 5MC7 ; 1.6 ; Crystal structure of Truncated Human Coatomer Protein Complex, subunit Z1 (CopZ1) 4CNS ; 2.4 ; Crystal structure of truncated human CRMP-4 4B91 ; 1.7 ; Crystal structure of truncated human CRMP-5 4B92 ; 2.9 ; Crystal structure of truncated human CRMP-5 soaked with Zn 1FT0 ; 2.6 ; CRYSTAL STRUCTURE OF TRUNCATED HUMAN RHOGDI K113A MUTANT 1FSO ; 2.0 ; CRYSTAL STRUCTURE OF TRUNCATED HUMAN RHOGDI QUADRUPLE MUTANT 1FST ; 2.7 ; CRYSTAL STRUCTURE OF TRUNCATED HUMAN RHOGDI TRIPLE MUTANT 5XQH ; 2.04 ; Crystal structure of truncated human Rogdi 2D4L ; 1.7 ; Crystal structure of truncated in C-terminal M-PMV dUTPase 4RFU ; 1.2 ; Crystal structure of truncated P-domain from Grouper nervous necrosis virus capsid protein at 1.2A 4MN6 ; 2.1 ; Crystal structure of truncated PAS domain from S. aureus YycG 4C44 ; 2.65 ; Crystal Structure of Truncated Plant Hemoglobin from Arabidopsis thaliana 6JDS ; 2.5 ; Crystal structure of truncated PRRSV nsp10 (helicase) 5B5U ; 2.61 ; Crystal structure of truncated Pyrococcus furiosus L-asparaginase with peptide 1FT3 ; 2.8 ; CRYSTAL STRUCTURE OF TRUNCATED RHOGDI K141A MUTANT 1Y5H ; 1.5 ; Crystal structure of truncated Se-Met Hypoxic Response Protein I (HRPI) 6WXA ; 2.3 ; Crystal structure of truncated Streptococcal bacteriophage hyaluronidase complexed with unsaturated hyaluronan hexa-saccharides 5ILQ ; 2.5 ; Crystal structure of truncated unliganded Aspartate Transcarbamoylase from Plasmodium falciparum 7AY0 ; 3.6 ; Crystal structure of truncated USP1-UAF1 7AY2 ; 3.2 ; Crystal structure of truncated USP1-UAF1 reacted with ubiquitin-prg 5Y4T ; 1.4 ; Crystal structure of Trx domain of Grx3 from Saccharomyces cerevisiae 6GC1 ; 2.7 ; Crystal structure of Trx-like and NHL repeat containing domains of human NHLRC2 7D6L ; 1.947 ; Crystal structure of Trx2 from D. radiodurans R1 3WZS ; 1.7 ; Crystal structure of Trx3 domain of UGGT (detergent-bound form) 3WZT ; 3.4 ; Crystal structure of Trx3 domain of UGGT (detergent-unbound form) 3APS ; 1.9 ; Crystal structure of Trx4 domain of ERdj5 5ZF2 ; 1.98 ; Crystal structure of Trxlp from Edwardsiella tarda EIB202 3FB3 ; 2.35 ; Crystal Structure of Trypanosoma Brucei Acetyltransferase, Tb11.01.2886 5TVO ; 1.481 ; Crystal structure of Trypanosoma brucei AdoMetDC-delta26 monomer 5TVM ; 2.408 ; Crystal structure of Trypanosoma brucei AdoMetDC/prozyme heterodimer 5TVF ; 2.42 ; Crystal structure of Trypanosoma brucei AdoMetDC/prozyme heterodimer in complex with inhibitor CGP 40215 6BM7 ; 2.98 ; Crystal structure of Trypanosoma brucei AdoMetDC/prozyme heterodimer in complex with pyrimidineamine inhibitor UTSAM568 3H9D ; 2.3 ; Crystal Structure of Trypanosoma brucei ATG8 7E3E ; 2.3 ; Crystal structure of Trypanosoma brucei cathepsin B R91C/T223C mutant 7E3G ; 3.86 ; Crystal structure of Trypanosoma brucei cathepsin B R91C/T223C mutant in the living cell 7E3F ; 2.35 ; Crystal structure of Trypanosoma brucei cathepsin B Y217C/S275C mutant 4DLC ; 1.759 ; Crystal Structure of Trypanosoma brucei dUTPase with dUMP, MgF3- transition state analogue, and Mg2+ 4DL8 ; 1.698 ; Crystal structure of Trypanosoma brucei dUTPase with dUMP, planar [AlF3-OPO3] transition state analogue, Mg2+, and Na+ 4DKB ; 1.831 ; Crystal Structure of Trypanosoma brucei dUTPase with dUpNp and Ca2+ 4DK4 ; 1.9 ; Crystal Structure of Trypanosoma brucei dUTPase with dUpNp, Ca2+ and Na+ 3WXI ; 2.9 ; Crystal structure of trypanosoma brucei gambiense glycerol kinase (ligand-free form) 3WXL ; 1.9 ; Crystal structure of trypanosoma brucei gambiense glycerol kinase complex with adp, mg2+, and glycerol 6J9V ; 2.4 ; Crystal structure of Trypanosoma brucei gambiense glycerol kinase complex with ADP. 6J9Q ; 2.7 ; Crystal structure of Trypanosoma brucei gambiense glycerol kinase complex with AMP-PNP. 6JAE ; 2.3 ; Crystal structure of Trypanosoma brucei gambiense glycerol kinase complex with Pi (pyrophosphatase reaction) 6JAF ; 2.9 ; Crystal structure of Trypanosoma brucei gambiense glycerol kinase complex with PPi (pyrophosphatase reaction) 3WXK ; 2.37 ; Crystal structure of trypanosoma brucei gambiense glycerol kinase in complex with glycerol 3WXJ ; 2.7 ; Crystal structure of trypanosoma brucei gambiense glycerol kinase in complex with glycerol 3-phosphate 6J9X ; 2.7 ; Crystal structure of Trypanosoma brucei gambiense glycerol kinase phosphorylated at Thr12(pyrophosphatase reaction) 6AJB ; 2.9 ; Crystal structure of Trypanosoma brucei glycosomal isocitrate dehydrogenase in complex with NADH, alpha-ketoglutarate and ca2+ 6AJ6 ; 3.2 ; Crystal structure of Trypanosoma brucei glycosomal isocitrate dehydrogenase in complex with NADP+ 6AJ8 ; 2.4 ; Crystal structure of Trypanosoma brucei glycosomal isocitrate dehydrogenase in complex with NADP+, alpha-ketoglutarate and ca2+ 6AJA ; 2.85 ; Crystal structure of Trypanosoma brucei glycosomal isocitrate dehydrogenase in complex with NADPH, alpha-ketoglutarate and ca2+ 6APU ; 1.842 ; Crystal structure of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltranferase in complex with (2-{[2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)ethyl](3-aminopropyl)amino}ethyl)phosphonic acid 6MXG ; 2.392 ; Crystal structure of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltranferase in complex with XMP 6MXC ; 1.993 ; Crystal structure of Trypanosoma brucei hypoxanthine-guanine-xanthine phosphoribosyltranferase in complex with GMP 6MXD ; 2.96 ; Crystal structure of Trypanosoma brucei hypoxanthine-guanine-xanthine phosphoribosyltranferase in complex with IMP 6MXB ; 2.192 ; Crystal structure of Trypanosoma brucei hypoxanthine-guanine-xanthine phosphoribosyltranferase in complex with XMP 5FSU ; 1.95 ; Crystal structure of Trypanosoma brucei macrodomain (crystal form 1) 5FSV ; 1.2 ; Crystal structure of Trypanosoma brucei macrodomain (crystal form 2) 5FSX ; 2.0 ; Crystal structure of Trypanosoma brucei macrodomain in complex with ADP 5FSY ; 1.7 ; Crystal structure of Trypanosoma brucei macrodomain in complex with ADP-ribose 6T4R ; 2.352 ; Crystal structure of Trypanosoma brucei Morn1 6T68 ; 2.54 ; Crystal structure of Trypanosoma brucei Morn1 3I3G ; 1.86 ; Crystal Structure of Trypanosoma brucei N-acetyltransferase (Tb11.01.2886) at 1.86A 3BJE ; 1.44 ; Crystal structure of Trypanosoma brucei nucleoside phosphorylase shows uridine phosphorylase activity 1QU4 ; 2.9 ; CRYSTAL STRUCTURE OF TRYPANOSOMA BRUCEI ORNITHINE DECARBOXYLASE 1F3T ; 2.0 ; CRYSTAL STRUCTURE OF TRYPANOSOMA BRUCEI ORNITHINE DECARBOXYLASE (ODC) COMPLEXED WITH PUTRESCINE, ODC'S REACTION PRODUCT. 6RT2 ; 1.3 ; Crystal structure of Trypanosoma Brucei PEX14 N-terminal domain in complex with small molecules designed to investigate the water envelope 5OML ; 1.5 ; Crystal structure of Trypanosoma Brucei PEX14 N-terminal domain in complex with small molecules to investigate the water envelope 3F9R ; 1.85 ; Crystal Structure of Trypanosoma Brucei phosphomannosemutase, TB.10.700.370 5KLH ; 1.646 ; Crystal Structure of Trypanosoma brucei Procyclic Specific Surface Antigen-2 4M36 ; 2.042 ; Crystal structure of Trypanosoma brucei protein arginine methyltransferase 7 4M37 ; 1.7 ; Crystal structure of Trypanosoma brucei protein arginine methyltransferase 7 complex with AdoHcy 4M38 ; 2.2 ; Crystal structure of Trypanosoma brucei protein arginine methyltransferase 7 complex with AdoHcy and histone H4 peptide 5EKU ; 2.801 ; Crystal Structure of Trypanosoma Brucei Protein Arginine Methyltransferase PRMT7 in complex with S-Adenosyl-L-homocysteine 3M4U ; 2.392 ; Crystal Structure of Trypanosoma brucei Protein Tyrosine Phosphatase TbPTP1 2XTB ; 2.8 ; Crystal Structure of Trypanosoma brucei rhodesiense Adenosine Kinase Complexed with Activator 3OTX ; 1.55 ; Crystal Structure of Trypanosoma brucei rhodesiense Adenosine Kinase Complexed with Inhibitor AP5A 5AB4 ; 1.751 ; Crystal structure of Trypanosoma brucei SCP2-thiolase like protein (TbSLP) form-I. 5AB5 ; 2.0 ; Crystal structure of Trypanosoma brucei SCP2-thiolase like protein (TbSLP) form-II. 5AB6 ; 1.9 ; Crystal structure of Trypanosoma brucei SCP2-thiolase like protein (TbSLP) in complex with acetoacetyl-CoA. 5AB7 ; 2.3 ; Crystal structure of Trypanosoma brucei SCP2-thiolase like protein (TbSLP) in complex with malonyl-CoA. 8PF3 ; 2.15 ; Crystal structure of Trypanosoma brucei trypanothione reductase in complex with 1-(3,4-dichlorobenzyl)-4-(((5-((4-fluorophenethyl)carbamoyl)furan-2-yl)methyl)(4-fluorophenyl)carbamoyl)-1-(3-phenylpropyl)piperazin-1-ium 8PF5 ; 2.42 ; Crystal structure of Trypanosoma brucei trypanothione reductase in complex with 1-(3,4-dichlorobenzyl)-4-(((5-((4-fluorophenethyl)carbamoyl)furan-2-yl)methyl)carbamoyl)-1-(3-phenylpropyl)piperazin-1-ium 8PF4 ; 1.84 ; Crystal structure of Trypanosoma brucei trypanothione reductase in complex with 4-(((5-((4-fluorophenethyl)carbamoyl)furan-2-yl)methyl)(4-fluorophenyl)carbamoyl)-1-methyl-1-(3-phenylpropyl)piperazin-1-ium 5CUY ; 2.5 ; Crystal structure of Trypanosoma brucei Vacuolar Soluble Pyrophosphatases in apo form 6Y0D ; 1.62 ; Crystal structure of Trypanosoma cruzi antigen TcSMP11.90 2J1Q ; 1.9 ; Crystal structure of Trypanosoma cruzi arginine kinase 6NP7 ; 2.16 ; Crystal structure of Trypanosoma cruzi bromodomain BDF2 (TcCLB.506553.20) 4BMM ; 2.84 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-2',3, 5'-trifluoro-(1,1'-biphenyl)-4-carboxamide 4C27 ; 1.95 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-2-fluoro-4-(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)benzamide 4BY0 ; 3.1 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-3,3'- difluoro-(1,1'-biphenyl)-4-carboxamide 4C0C ; 2.04 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-4-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-fluorobenzamide. 4UQH ; 2.43 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-4-(4-(3,4-difluorophenyl)piperazin-1-yl)-2-fluorobenzamide. 4C28 ; 2.03 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the inhibitor (R)-N-(3-(1H-indol-3-yl)-1-oxo-1-(pyridin-4-ylamino)propan-2-yl)-4-(4-(4-chlorophenyl)piperazin-1-yl)-2-fluorobenzamide. 4COH ; 2.08 ; Crystal structure of Trypanosoma cruzi CYP51 bound to the sulfonamide derivative of the 4-aminopyridyl-based inhibitor 6AJC ; 2.4 ; Crystal structure of Trypanosoma cruzi cytosolic isocitrate dehydrogenase in complex with NADP+, isocitrate and ca2+ 7MF4 ; 1.55 ; Crystal structure of Trypanosoma cruzi cytosolic Malic Enzyme 2H2Q ; 2.4 ; Crystal structure of Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate synthase 5T7O ; 1.8 ; Crystal structure of Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate Synthase in complex with (6S)-5,6,7,8-TETRAHYDROFOLATE 3W1M ; 1.9 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with 5-bromoorotate 3W1L ; 1.7 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with 5-chloroorotate 3W1P ; 2.0 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with 5-ethenyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid 3W1N ; 2.4 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with 5-iodoorotate 2E68 ; 1.38 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with dihydroorotate 2E6D ; 1.94 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with fumarate 5E93 ; 1.41 ; Crystal Structure of Trypanosoma cruzi Dihydroorotate Dehydrogenase in Complex with Neq0071 5EA9 ; 1.71 ; Crystal Structure of Trypanosoma cruzi Dihydroorotate Dehydrogenase in Complex with Neq0130 2E6A ; 1.64 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with orotate 2E6F ; 1.26 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with oxonate 2DJL ; 1.38 ; Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with succinate 4DWB ; 2.1 ; Crystal structure of Trypanosoma cruzi farnesyl diphosphate synthase in complex with [2-(n-pentylamino)ethane-1,1-diyl]bisphosphonic acid and Mg2+ 4MYL ; 1.531 ; Crystal structure of Trypanosoma cruzi Formiminoglutamase (oxidized) at pH 4.6 4MYK ; 1.518 ; Crystal structure of Trypanosoma cruzi formiminoglutamase (oxidized) with Mn2+2 at pH 8.5 4MYN ; 1.799 ; Crystal structure of Trypanosoma cruzi formiminoglutamase N114H variant with Mn2+2 4MXR ; 1.849 ; Crystal structure of Trypanosoma cruzi formiminoglutamase with Mn2+2 4MYF ; 1.799 ; Crystal structure of Trypanosoma cruzi formiminoglutamase(oxidized) with Mn2+2 at pH 6.0 5BRD ; 2.4 ; Crystal structure of Trypanosoma cruzi glucokinase in complex with inhibitor BENZ-GlcN 5BRE ; 2.5 ; Crystal structure of Trypanosoma cruzi glucokinase in complex with inhibitor CBZ-GlcN 5BRH ; 1.9 ; Crystal structure of Trypanosoma cruzi glucokinase in complex with inhibitor DBT-GlcN 5BRF ; 2.102 ; Crystal structure of Trypanosoma cruzi glucokinase in complex with inhibitor HPOP-GlcN 7S2H ; 1.8 ; Crystal structure of Trypanosoma cruzi glucokinase in the apo form (open conformation) 1QXS ; 2.75 ; CRYSTAL STRUCTURE OF Trypanosoma cruzi GLYCERALDEHYDE-3- PHOSPHATE DEHYDROGENASE COMPLEXED WITH AN ANALOGUE OF 1,3- BisPHOSPHO-D-GLYCERIC ACID 7Q1C ; 2.3 ; Crystal structure of Trypanosoma cruzi histone deacetylase DAC2 complexed with a hydroxamate inhibitor 7Q1B ; 1.75 ; Crystal structure of Trypanosoma cruzi histone deacetylase DAC2 complexed with Quisinostat 5FSZ ; 2.0 ; Crystal structure of Trypanosoma cruzi macrodomain 4DVH ; 2.23 ; Crystal structure of Trypanosoma cruzi mitochondrial iron superoxide dismutase 7OPT ; 2.02 ; Crystal structure of Trypanosoma cruzi peroxidase 7OQR ; 1.76 ; Crystal structure of Trypanosoma cruzi peroxidase 8B5V ; 1.6 ; Crystal Structure of Trypanosoma Cruzi phosphomannosemutase 3QV9 ; 2.1 ; Crystal structure of Trypanosoma cruzi pyruvate kinase(TcPYK)in complex with ponceau S. 4YV0 ; 1.95 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with (2S)-N-methyl-N-phenyl-2,3-dihydro-1,4-benzodioxine- 2-carboxamid 5B1S ; 1.58 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with 2-(2-fluorophenyl)ethanamine 4YV2 ; 2.17 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with 2-phenyl-1,2-thiazol-3(2H)-one 4YUX ; 1.6 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with 2H-1,4-benzothiazin-3-amine 5Y4P ; 2.16 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with 5-methoxy-2-(5-methyl-4,5-dihydro-1H-imidazol-2-yl)phenol 4YUZ ; 1.97 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with 5-[(4-methylbenzyl)oxy]quinazoline-2,4-diamine 4YUV ; 1.6 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with decarboxylated S-adenosylmethionine 4YUY ; 1.58 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with isoquinolin-1-amine 5Y4Q ; 2.07 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with N-(4-methoxyphenyl)quinolin-4-amine 4YV1 ; 1.85 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with quinolin-8-yl piperidine-1-carboxylate 4YUW ; 1.97 ; Crystal structure of Trypanosoma cruzi spermidine synthase in complex with trans-4-methylcyclohexylamine 3H79 ; 1.5 ; Crystal structure of Trypanosoma cruzi thioredoxin-like hypothetical protein Q4DV70 1GXF ; 2.7 ; CRYSTAL STRUCTURE OF TRYPANOSOMA CRUZI TRYPANOTHIONE REDUCTASE IN COMPLEX WITH THE INHIBITOR QUINACRINE MUSTARD 1BZL ; 2.4 ; CRYSTAL STRUCTURE OF TRYPANOSOMA CRUZI TRYPANOTHIONE REDUCTASE IN COMPLEX WITH TRYPANOTHIONE, AND THE STRUCTURE-BASED DISCOVERY OF NEW NATURAL PRODUCT INHIBITORS 5CUV ; 2.62 ; Crystal structure of Trypanosoma cruzi Vacuolar Soluble Pyrophosphatases in apo form 5CUU ; 2.96 ; Crystal structure of Trypanosoma cruzi Vacuolar Soluble Pyrophosphatases in complex with bisphosphonate inhibitor BPH-1260 2FF2 ; 2.2 ; Crystal structure of Trypanosoma vivax nucleoside hydrolase co-crystallized with ImmucillinH 3EPW ; 1.3 ; Crystal structure of Trypanosoma vivax nucleoside hydrolase in complex with the inhibitor (2R,3R,4S)-1-[(4-hydroxy-5H-pyrrolo[3,2-d]pyrimidin-7-yl)methyl]-2-(hydroxymethyl)pyrrolidin-3,4-diol 3EPX ; 1.85 ; Crystal structure of Trypanosoma vivax nucleoside hydrolase in complex with the inhibitor (2R,3R,4S)-2-(hydroxymethyl)-1-(quinolin-8-ylmethyl)pyrrolidin-3,4-diol 2FF1 ; 2.07 ; Crystal structure of Trypanosoma vivax nucleoside hydrolase soaked with ImmucillinH 7SCR ; 2.12068 ; Crystal structure of trypanosome brucei hypoxanthine-guanine-xanthine phosphoribzosyltransferase in complex with (4S,7S)-7-hydroxy-4-((guanin-9-yl)methyl)-2,5-dioxaheptan-1,7-diphosphonate 4DZW ; 3.05 ; Crystal Structure of Trypanosome cruzi farnesyl diphosphate synthase in complex with [2-(cyclohexylamino)ethane-1,1-diyl]bisphosphonic acid and Mg2+ 4DWG ; 2.01 ; Crystal structure of Trypanosome cruzi farnesyl diphosphate synthase in complex with [2-(n-heptylamino)ethane-1,1-diyl]bisphosphonic acid and Mg2+ 4E1E ; 2.65 ; Crystal structure of Trypanosome cruzi farnesyl diphosphate synthase in complex with [2-(n-hexylamino)ethane-1,1-diyl]bisphosphonic acid and Mg2+ 4DXJ ; 2.35 ; Crystal structure of Trypanosome cruzi farnesyl diphosphate synthase in complex with [2-(n-propylamino)ethane-1,1-diyl]bisphosphonic acid and Mg2+ 2X50 ; 3.3 ; Crystal structure of Trypanothione reductase from Leishmania infantum in complex with NADPH and silver 6OEY ; 2.1 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor (+)-5-{5-[1-(Pyrrolidin-1-yl)cyclohexyl]-1,3-thiazol-2-yl}-1-{[(2S)-pyrrolidin-2-yl]methyl}-1H-indole 6OEZ ; 2.5 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor (+)-N-(Cyclobutylmethyl)-3-{5-[1-(pyrrolidin-1-yl)cyclohexyl]-2-(1-{[(2S)-pyrro-lidin-2-yl]methyl}-1H-indol-5-yl)-1,3-thiazol-4-yl}prop-2-yn-1-amine 6OEX ; 2.1 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor 3-(2-{1-[2-(Piperidin-4-yl)ethyl]-1H-indol-5-yl}-5-[1-(pyrrolidin-1-yl)cyclohexyl]-1,3- thiazol-4-yl)-N-(2,2,2-trifluoroethyl)prop-2-yn-1-amine 4NEV ; 2.5 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor EP127 (5-{5-[1-(PYRROLIDIN-1-YL)CYCLOHEXYL]-1,3-THIAZOL-2-YL}-1H-INDOLE) 6BTL ; 2.797 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor RD117 1-[2-(Piperazin-1-yl)ethyl]-5-{5-[1-(pyrrolidin-1-yl)cyclohexyl]-1,3-thiazol-2-yl}-1H-indole 6BU7 ; 2.73 ; Crystal structure of Trypanothione Reductase from Trypanosoma brucei in complex with inhibitor RD130 1-[2-(Piperidin-4-yl)ethyl]-5-{5-[1-(pyrrolidin-1-yl)cyclohexyl]-1,3-thiazol-2-yl}-1H-indole 4NEW ; 2.8 ; Crystal structure of Trypanothione Reductase from Trypanosoma cruzi in complex with inhibitor EP127 (5-{5-[1-(PYRROLIDIN-1-YL)CYCLOHEXYL]-1,3-THIAZOL-2-YL}-1H-INDOLE) 4NIY ; 2.84 ; Crystal structure of trypsiligase (K60E/N143H/Y151H/D189K trypsin) complexed to YRH-ecotin (M84Y/M85R/A86H ecotin) 4NIW ; 1.31 ; Crystal structure of trypsiligase (K60E/N143H/Y151H/D189K trypsin) orthorhombic form 4NIX ; 1.3 ; Crystal structure of trypsiligase (K60E/N143H/Y151H/D189K trypsin) orthorhombic form, zinc-bound 4NIV ; 1.0 ; Crystal structure of trypsiligase (K60E/N143H/Y151H/D189K trypsin) trigonal form 4ZIQ ; 2.55 ; Crystal structure of trypsin activated alpha-2-macroglobulin from Escherichia coli. 5KUC ; 2.0 ; Crystal structure of trypsin activated Cry6Aa 7JWX ; 2.38 ; Crystal Structure of Trypsin Bound O-methyl Benzamidine 1JIR ; 2.0 ; Crystal Structure of Trypsin Complex with Amylamine in Cyclohexane 3RXP ; 1.6 ; Crystal structure of Trypsin complexed with (1,5-dimethylpyrazol-3-yl)methanamine 3RXL ; 1.7 ; Crystal structure of Trypsin complexed with (2,5-dimethyl-3-furyl)methanamine 3RXT ; 1.7 ; Crystal structure of Trypsin complexed with (3-methoxyphenyl)methanamin (F04 and F03, cocktail experiment) 3ATI ; 1.71 ; Crystal structure of trypsin complexed with (3-methoxyphenyl)methanamine 3RXD ; 1.7 ; Crystal structure of Trypsin complexed with (3-methoxyphenyl)methanamine 3RXS ; 1.74 ; Crystal structure of Trypsin complexed with (3-methoxyphenyl)methanamine (F04 and A06, cocktail experiment) 3RXO ; 1.6 ; Crystal structure of Trypsin complexed with (3-pyrrol-1-ylphenyl)methanamine 3A80 ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)-2-methylpropanoic acid (soaking 40seconds) 3A85 ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (soaking 15 seconds) 3A86 ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (soaking 30 seconds) 3A7X ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (soaking 45seconds) 3A8C ; 1.85 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (soaking with mixture of [(E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid] and [(E)-2-(4-carbamimidoylbenzylideneaminooxy)-2-methylpropanoic acid]) 3A8D ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (under aniline-free condition) 3A7Y ; 1.81 ; Crystal Structure of Trypsin complexed with (E)-4-((1-methylpiperidin-3-yloxyimino)methyl)benzimidamide (soaking 2hours) 3A7Z ; 1.8 ; Crystal Structure of Trypsin complexed with (E)-4-((1-methylpiperidin-4-yloxyimino)methyl)benzimidamide (soaking 3hours) 3A88 ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide (soaking 30 minutes) 3A89 ; 1.8 ; Crystal Structure of Trypsin complexed with (E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide (soaking 4 hours) 3A87 ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide (soaking 5 minutes) 3A81 ; 1.78 ; Crystal Structure of Trypsin complexed with (E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide (soaking 8 hours) 3A8B ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-4-((4-bromophenylimino)methyl)benzimidamide 3A7W ; 1.75 ; Crystal Structure of Trypsin complexed with (E)-4-((tetrahydro-2H-pyran-2-yloxyimino)methyl)benzimidamide (soaking 4hours) 3RXH ; 1.7 ; Crystal structure of Trypsin complexed with 2-(1H-imidazol-4-yl)ethanamine 3ATM ; 1.72 ; Crystal structure of trypsin complexed with 2-(1H-indol-3-yl)ethanamine 3RXI ; 1.6 ; Crystal structure of Trypsin complexed with 2-(1H-indol-3-yl)ethanamine 3RXC ; 1.7 ; Crystal structure of Trypsin complexed with 2-aminopyridine 3A7V ; 1.75 ; Crystal Structure of Trypsin complexed with 3-formylbenzimidamide 3RXG ; 1.7 ; Crystal structure of Trypsin complexed with 4-aminocyclohexanol 3RXF ; 1.7 ; Crystal structure of Trypsin complexed with 4-aminopyridine 3A7T ; 1.75 ; Crystal Structure of Trypsin complexed with 4-formylbenzimidamide 3A8A ; 1.4 ; Crystal Structure of Trypsin complexed with 4-formylbenzimidamide and aniline 3RXJ ; 1.7 ; Crystal structure of Trypsin complexed with 4-guanidinobenzoic acid 3RXB ; 1.7 ; Crystal structure of Trypsin complexed with 4-guanidinobutanoic acid 3RXE ; 1.7 ; Crystal structure of Trypsin complexed with benzamide 3RXQ ; 1.68 ; Crystal structure of Trypsin complexed with benzamide (F01 and F05, cocktail experiment) 3RXU ; 1.68 ; Crystal structure of Trypsin complexed with benzamide (F05 and A06, cocktail experiment) 3RXV ; 1.7 ; Crystal structure of Trypsin complexed with benzamide (F05 and F03, cocktail experiment) 3ATL ; 1.74 ; Crystal structure of trypsin complexed with benzamidine 2FTL ; 1.62 ; Crystal structure of trypsin complexed with BPTI at 100K 3ATK ; 1.74 ; Crystal structure of trypsin complexed with cycloheptanamine 3RXA ; 1.7 ; Crystal structure of Trypsin complexed with cycloheptanamine 3RXR ; 1.72 ; Crystal structure of Trypsin complexed with cycloheptanamine (F01 and F03, cocktail experiment) 3RXK ; 1.6 ; Crystal structure of Trypsin complexed with methyl 4-amino-1-methyl-pyrrolidine-2-carboxylate 3A82 ; 1.75 ; Crystal Structure of Trypsin complexed with pre-synthesized (E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid 3A83 ; 1.78 ; Crystal Structure of Trypsin complexed with pre-synthesized (E)-4-((2-nicotinoylhydrazono)methyl)benzimidamide 2FTM ; 1.65 ; Crystal structure of trypsin complexed with the BPTI variant (Tyr35->Gly) 3RXM ; 1.7 ; Crystal structure of Trypsin complexed with [2-(2-thienyl)thiazol-4-yl]methanamine 3A84 ; 1.75 ; Crystal Structure of Trypsin complexed with(E)-2-(4-carbamimidoylbenzylideneaminooxy)acetic acid (soaking 5 seconds) 1LQE ; 2.2 ; CRYSTAL STRUCTURE OF TRYPSIN IN COMPLEX WITH 79. 7VO7 ; 2.25 ; Crystal structure of trypsin in complex with Lima bean trypsin inhibitor at 2.25A resolution. 6KV2 ; 2.003 ; Crystal structure of trypsin inhibitor 1 from Senna obtusifolia 1Z7K ; 1.9 ; Crystal Structure of Trypsin- Ovomucoid turkey egg white inhibitor complex 1YF4 ; 1.98 ; Crystal Structure of trypsin-vasopressin complex 4GUX ; 1.803 ; Crystal structure of trypsin:MCoTi-II complex 8U5F ; 2.32 ; Crystal Structure of Trypsinized Clostridium perfringens Enterotoxin 2AGW ; 1.45 ; Crystal structure of tryptamine-reduced aromatic amine dehydrogenase (AADH) from Alcaligenes faecalis in complex with tryptamine 2NW7 ; 2.7 ; Crystal Structure of Tryptophan 2,3-dioxygenase (TDO) from Xanthomonas campestris in complex with ferric heme. Northeast Structural Genomics Target XcR13 2NW9 ; 1.8 ; Crystal Structure of Tryptophan 2,3-dioxygenase (TDO) from Xanthomonas campestris in complex with ferrous heme and 6-fluoro-tryptophan. Northeast Structural Genomics Target XcR13 2NW8 ; 1.6 ; Crystal Structure of Tryptophan 2,3-dioxygenase (TDO) from Xanthomonas campestris in complex with ferrous heme and tryptophan. Northeast Structural Genomics Target XcR13. 2NOX ; 2.4 ; Crystal structure of tryptophan 2,3-dioxygenase from Ralstonia metallidurans 2WET ; 2.4 ; Crystal structure of tryptophan 5-halogenase (PyrH) complex with FAD (tryptophan) 2WEU ; 1.7 ; Crystal structure of tryptophan 5-halogenase (PyrH) complex with substrate tryptophan 4Z43 ; 2.29 ; Crystal structure of Tryptophan 7-halogenase (PrnA) Mutant E450K 2PYX ; 1.5 ; Crystal structure of tryptophan halogenase (YP_750003.1) from Shewanella frigidimarina NCIMB 400 at 1.50 A resolution 5ZBD ; 1.8 ; Crystal structure of tryptophan oxidase (C395A mutant) from Chromobacterium violaceum 1UJP ; 1.34 ; Crystal Structure of Tryptophan Synthase A-Subunit From Thermus thermophilus HB8 1WXJ ; 1.7 ; Crystal Structure Of Tryptophan Synthase A-Subunit with Indole-3-propanol phosphate From Thermus Thermophilus Hb8 5KIN ; 2.45 ; Crystal structure of tryptophan synthase alpha beta complex from Streptococcus pneumoniae 5K9X ; 2.016 ; Crystal structure of Tryptophan synthase alpha chain from Legionella pneumophila subsp. pneumophila 1RD5 ; 2.02 ; Crystal structure of Tryptophan synthase alpha chain homolog BX1: a member of the chemical plant defense system 5KZM ; 2.804 ; Crystal structure of Tryptophan synthase alpha-beta chain complex from Francisella tularensis 1WQ5 ; 2.3 ; Crystal structure of tryptophan synthase alpha-subunit from Escherichia coli 1V7Y ; 2.5 ; Crystal structure of tryptophan synthase alpha-subunit from Escherichia coli at room temperature 3VND ; 2.6 ; Crystal structure of tryptophan synthase alpha-subunit from the psychrophile Shewanella frigidimarina K14-2 4HPJ ; 1.45 ; Crystal structure of Tryptophan Synthase at 1.45 A resolution in complex with 2-aminophenol quinonoid in the beta site and the F9 inhibitor in the alpha site 4HPX ; 1.65 ; Crystal structure of Tryptophan Synthase at 1.65 A resolution in complex with alpha aminoacrylate E(A-A) and benzimidazole in the beta site and the F9 inhibitor in the alpha site 1X1Q ; 2.5 ; Crystal structure of tryptophan synthase beta chain from Thermus thermophilus HB8 6V82 ; 2.424 ; Crystal structure of tryptophan synthase from Chlamydia trachomatis D/UW-3/CX 5TCJ ; 2.4 ; Crystal structure of tryptophan synthase from M. tuberculosis - aminoacrylate and BRD4592-bound form 6DWE ; 2.691 ; Crystal structure of tryptophan synthase from M. tuberculosis - aminoacrylate- and BRD0059-bound form 6UB9 ; 2.783 ; Crystal structure of tryptophan synthase from M. tuberculosis - AMINOACRYLATE- AND BRD6309-BOUND FORM 6USA ; 2.406 ; Crystal structure of tryptophan synthase from M. tuberculosis - aminoacrylate- and GSK1-bound form 6U6C ; 2.402 ; Crystal structure of tryptophan synthase from M. tuberculosis - aminoacrylate- and GSK2-bound form 5TCG ; 2.4 ; Crystal structure of tryptophan synthase from M. tuberculosis - aminoacrylate-bound form 5TCI ; 2.45 ; Crystal structure of tryptophan synthase from M. tuberculosis - BRD4592-bound form 5TCF ; 2.46 ; Crystal structure of tryptophan synthase from M. tuberculosis - ligand-free form 5TCH ; 2.35 ; Crystal structure of tryptophan synthase from M. tuberculosis - ligand-free form, TrpA-G66V mutant 6E9P ; 2.569 ; Crystal structure of tryptophan synthase from M. tuberculosis - open form with BRD0059 bound 6UAP ; 2.745 ; Crystal structure of tryptophan synthase from M. tuberculosis - open form with BRD6309 bound 1KFK ; 2.4 ; Crystal structure of Tryptophan Synthase From Salmonella Typhimurium 4XUG ; 1.65 ; Crystal structure of Tryptophan Synthase from Salmonella typhimurium in complex with 2-({[4-(Trifluoromethoxy)Phenyl]Sulfonyl}Amino)Ethyl Dihydrogen Phosphate (F9F) inhibitor in the alpha site and ammonium ion in the metal coordination site. 5CGQ ; 1.18 ; Crystal structure of Tryptophan Synthase from Salmonella typhimurium in complex with F9 ligand in the alpha-site and the product L-Tryptophan in the beta-site. 4Y6G ; 1.65 ; Crystal structure of Tryptophan Synthase from Salmonella typhimurium in complex with N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor in the alpha-site and beta-site. 4WX2 ; 1.75 ; Crystal structure of Tryptophan Synthase from Salmonella typhimurium in complex with two F6F molecules in the alpha-site and one F6F molecule in the beta-site 4KKX ; 1.77 ; Crystal structure of Tryptophan Synthase from Salmonella typhimurium with 2-aminophenol quinonoid in the beta site and the F6 inhibitor in the alpha site 7MT6 ; 1.7 ; Crystal structure of tryptophan synthase in complex with F9, Cs+, benzimidazole, pH7.8 - alpha aminoacrylate form - E(A-A)(BZI) 7MT5 ; 1.5 ; Crystal structure of tryptophan synthase in complex with F9, Cs+, pH7.8 - alpha aminoacrylate form - E(A-A) 7MT4 ; 1.4 ; Crystal structure of tryptophan Synthase in complex with F9, NH4+, pH7.8 - alpha aminoacrylate form - E(A-A) 5KMY ; 1.908 ; Crystal structure of tryptophan synthase subunit alpha from Legionella pneumophila str. Paris 6UL2 ; 1.979 ; Crystal structure of tryptophan-6-halogenase BorH complexed with L-tryptophan 6NCR ; 1.75 ; Crystal Structure of Tryptophan-tRNA ligase from Chlamydia trachomatis with bound L-tryptophan 1YIA ; 3.7 ; Crystal structure of tryptophanyl tRNA synthetase II from Deinococcus radiodurans in complex with 5-Hydroxy tryptophan. 1YID ; 2.4 ; Crystal structure of tryptophanyl tRNA synthetase II from Deinococcus radiodurans in complex with ATP. 1YI8 ; 2.1 ; Crystal structure of tryptophanyl trRNA synthetase II from Deinococcus radiodurans in complex with L-Trp 2G36 ; 2.5 ; Crystal structure of Tryptophanyl-tRNA synthetase (EC 6.1.1.2) (Tryptophan-tRNA ligase)(TrpRS) (tm0492) from THERMOTOGA MARITIMA at 2.50 A resolution 1MAU ; 2.15 ; Crystal structure of Tryptophanyl-tRNA Synthetase Complexed with ATP and Tryptophanamide in a Pre-Transition state Conformation 1M83 ; 2.2 ; Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with ATP in a Closed, Pre-transition State Conformation 1MAW ; 3.0 ; Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with ATP in an Open Conformation 1MB2 ; 2.7 ; Crystal Structure of Tryptophanyl-tRNA Synthetase Complexed with Tryptophan in an Open Conformation 7EER ; 2.0 ; Crystal structure of Tryptophanyl-tRNA synthetase from Bacillus stearothermophilus in complex with 05E6 and ATP 7CMS ; 2.2 ; Crystal structure of Tryptophanyl-tRNA synthetase from Bacillus stearothermophilus in complex with chuangxinmycin 7CKI ; 2.3 ; Crystal structure of Tryptophanyl-tRNA synthetase from Bacillus stearothermophilus in complex with chuangxinmycin and ATP 3M5W ; 2.32 ; Crystal Structure of Tryptophanyl-tRNA Synthetase from Campylobacter jejuni 3TZL ; 2.154 ; Crystal Structure of Tryptophanyl-tRNA Synthetase from Campylobacter jejuni complexed with ADP and Tryptophane 6MTK ; 2.0 ; Crystal structure of Tryptophanyl-tRNA synthetase from Elizabethkingia anophelis NUHP1 5V0I ; 1.9 ; Crystal Structure of Tryptophanyl-tRNA Synthetase from Escherichia coli Complexed with AMP and Tryptophan 3A04 ; 1.97 ; Crystal structure of tryptophanyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1 3A05 ; 2.2 ; Crystal structure of tryptophanyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1 complex with tryptophan 2YY5 ; 2.55 ; Crystal Structure of tryptophanyl-tRNA synthetase from Mycoplasma pneumoniae 2EL7 ; 2.5 ; Crystal structure of Tryptophanyl-tRNA synthetase from Thermus thermophilus 3SZ3 ; 1.5 ; Crystal structure of Tryptophanyl-tRNA synthetase from Vibrio cholerae with an endogenous tryptophan 3N9I ; 1.95 ; Crystal structure of tryptophanyl-tRNA synthetase from Yersinia pestis CO92 6PFA ; 2.79 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-((4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)methyl)benzoic acid. 6PFH ; 2.94 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-cyanophenyl)acetic acid. 6PFC ; 2.689 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-methoxyphenyl)acetic acid 6PF9 ; 2.89 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)phenyl)acetic acid. 6PFG ; 2.706 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-carbamoylbenzoic acid. 6PF8 ; 2.533 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-chlorobenzoic acid 6PFF ; 2.982 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-cyanobenzoic acid. 6PFE ; 2.812 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-methoxybenzoic acid. 6PF7 ; 2.795 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)benzoic acid 6PF6 ; 2.502 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)terephthalic acid 6PFD ; 3.324 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)terephthalic acid. 4Q0E ; 2.78 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidine-methyl-phenyl-L-glutamic acid. 6PFB ; 3.089 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 3-(2-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)phenyl)propanoic acid. 6PFI ; 2.89 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP and 3-(4-((2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)benzamido)-4-(carboxymethyl)benzoic acid. 4Q0D ; 3.449 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP, methotrexate and 2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidine-methyl-phenyl-L-glutamic acid. 6OJS ; 3.214 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, FdUMP, MTX and 2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidine-methyl-phenyl-D-glutamic acid 4KY8 ; 3.084 ; Crystal structure of TS-DHFR from Cryptosporidium hominis in complex with NADPH, methotrexate, FdUMP and 4-((2-amino-6-methyl-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-5-yl)thio)-2-chlorophenyl)-L-glutamic acid 6WEP ; 2.79 ; Crystal structure of TS-DHFR from Cryptosporidium hominis with Apo-TS site 5XCX ; 2.04 ; Crystal structure of TS2/16 Fv-clasp fragment 8SY8 ; 2.18 ; Crystal structure of TsaC 3FXU ; 1.95 ; Crystal structure of TsaR in complex with its effector p-toluenesulfonate 3FXR ; 2.5 ; Crystal structure of TsaR in complex with sulfate 4KK0 ; 2.9 ; Crystal Structure of TSC1 core domain from S. pombe 4KK1 ; 3.3 ; Crystal Structure of TSC1 core domain from S. pombe 4N80 ; 2.4 ; Crystal structure of Tse3-Tsi3 complex 4N88 ; 2.8 ; Crystal structure of Tse3-Tsi3 complex with calcium ion 4N7S ; 2.101 ; Crystal structure of Tse3-Tsi3 complex with Zinc ion 3OBS ; 1.5 ; Crystal structure of Tsg101 UEV domain 6NOI ; 1.8 ; Crystal structure of Tsn15 in apo form 6RK1 ; 1.63 ; Crystal structure of TSP1 domain from CCN3 7RDB ; 2.52 ; Crystal structure of Tspan15 large extracellular loop (Tspan15 LEL) 7RD5 ; 3.6 ; Crystal structure of Tspan15 large extracellular loop (Tspan15 LEL) in complex with 1C12 Fab 5WWN ; 2.805 ; Crystal structure of Tsr1 7CWW ; 2.0 ; Crystal structure of TsrL 5Y0E ; 2.5 ; Crystal structure of TssK 4V3I ; 1.499 ; Crystal Structure of TssL from Vibrio cholerae. 1W3M ; 1.0 ; Crystal structure of tsushimycin 6Y9L ; 4.1 ; Crystal structure of TSWV glycoprotein N ectodomain (sGn) 6Y9M ; 3.4 ; Crystal structure of TSWV glycoprotein N ectodomain (sGn) 6YA0 ; 2.86 ; Crystal structure of TSWV glycoprotein N ectodomain (Trypsin treated) 6YA2 ; 2.5 ; Crystal structure of TSWV glycoprotein N ectodomain (Trypsin treated) 2IEL ; 1.6 ; CRYSTAL STRUCTURE OF TT0030 from Thermus Thermophilus 1V9S ; 2.1 ; Crystal structure of TT0130 protein from Thermus thermophilus HB8 1ULS ; 2.4 ; Crystal structure of tt0140 from Thermus thermophilus HB8 1ULU ; 2.0 ; Crystal structure of tt0143 from Thermus thermophilus HB8 2YW9 ; 2.5 ; Crystal structure of TT0143 from Thermus thermophilus HB8 1ULT ; 2.55 ; Crystal structure of tt0168 from Thermus thermophilus HB8 1V25 ; 2.3 ; Crystal structure of tt0168 from Thermus thermophilus HB8 1V26 ; 2.5 ; Crystal structure of tt0168 from Thermus thermophilus HB8 1ULQ ; 3.0 ; Crystal structure of tt0182 from Thermus thermophilus HB8 2ZVB ; 2.0 ; Crystal structure of TT0207 from Thermus thermophilus HB8 2YXZ ; 1.9 ; Crystal structure of tt0281 from Thermus thermophilus HB8 1WLU ; 1.45 ; Crystal structure of TT0310 protein from Thermus thermophilus HB8 1WLV ; 1.9 ; Crystal structure of TT0310 protein from Thermus thermophilus HB8 1WM6 ; 2.4 ; Crystal structure of TT0310 protein from Thermus thermophilus HB8 1WN3 ; 2.1 ; Crystal structure of TT0310 protein from Thermus thermophilus HB8 2CUK ; 2.0 ; Crystal structure of TT0316 protein from Thermus thermophilus HB8 2D1Y ; 1.65 ; Crystal structure of TT0321 from Thermus thermophilus HB8 1V8H ; 1.2 ; Crystal structure of TT0351 protein from Thermus thermophilus HB8 1YYA ; 1.6 ; Crystal structure of TT0473, putative Triosephosphate Isomerase from Thermus thermophilus HB8 1X1E ; 1.76 ; Crystal Structure of TT0495 protein from Thermus thermophilus HB8 4JP2 ; 1.15 ; Crystal Structure of TT0495 protein from Thermus thermophilus HB8 4JP3 ; 1.5 ; Crystal Structure of TT0495 protein from Thermus thermophilus HB8 1ULR ; 1.3 ; Crystal structure of tt0497 from Thermus thermophilus HB8 2D1C ; 1.8 ; Crystal Structure Of TT0538 protein from Thermus thermophilus HB8 1IUH ; 2.5 ; Crystal structure of TT0787 of thermus thermophilus HB8 1UFK ; 1.9 ; Crystal structure of TT0836 1WDI ; 2.1 ; Crystal Structure Of TT0907 From Thermus Thermophilus HB8 2DEH ; 2.45 ; Crystal structure of tt0972 protein form Thermus Thermophilus with Cl(-) ions 2DEG ; 1.7 ; Crystal structure of tt0972 protein form Thermus Thermophilus with Mn2(+) ions 2CZ8 ; 1.5 ; Crystal Structure of tt0972 protein from Thermus thermophilus 2DEV ; 2.45 ; Crystal structure of tt0972 protein from Thermus Thermophilus with Cs(+) ions 2CWD ; 1.9 ; Crystal Structure of TT1001 protein from Thermus thermophilus HB8 1UFL ; 2.7 ; Crystal Structure of TT1020 from Thermus thermophilus HB8 1V3R ; 1.85 ; Crystal structure of TT1020 from Thermus thermophilus HB8 1V3S ; 1.85 ; Crystal structure of TT1020 from Thermus thermophilus HB8 1V9O ; 2.0 ; Crystal structure of TT1020 from Thermus thermophilus HB8 1VFJ ; 1.7 ; Crystal structure of TT1020 from Thermus thermophilus HB8 1UFR ; 2.6 ; Crystal Structure of TT1027 from Thermus thermophilus HB8 7C3O ; 1.89 ; Crystal structure of TT109 from CANDIDA ALBICANS 1UF9 ; 2.8 ; Crystal structure of TT1252 from Thermus thermophilus 2GS9 ; 2.6 ; Crystal structure of TT1324 from Thermus thermophilis HB8 1WD5 ; 2.0 ; Crystal structure of TT1426 from Thermus thermophilus HB8 1UFA ; 2.2 ; Crystal structure of TT1467 from Thermus thermophilus HB8 1UF3 ; 2.1 ; Crystal structure of TT1561 of thermus thermophilus HB8 2CU3 ; 1.7 ; Crystal structure of TT1568 from Thermus thermophilus HB8 1V6Z ; 2.0 ; Crystal structure of TT1573 from Thermus thermophilus 1WXW ; 2.55 ; Crystal structure of Tt1595, a putative SAM-dependent methyltransferase from Thermus thermophillus HB8 1WXX ; 1.8 ; Crystal structure of Tt1595, a putative SAM-dependent methyltransferase from Thermus thermophillus HB8 1UFO ; 1.6 ; Crystal Structure of TT1662 from Thermus thermophilus 1UFB ; 1.9 ; Crystal structure of TT1696 from Thermus thermophilus HB8 1WDJ ; 2.0 ; Crystal structure of TT1808 from Thermus thermophilus HB8 2YQY ; 2.0 ; Crystal structure of TT2238, a four-helix bundle protein 3ZJK ; 2.2 ; crystal structure of Ttb-gly F401S mutant 4BCE ; 2.0 ; crystal structure of Ttb-gly N282T mutant 7ZHN ; 1.85 ; Crystal structure of TTBK1 in complex with AMG28 7ZHQ ; 1.8 ; Crystal structure of TTBK1 in complex with compound 10 (7-009) 7ZHO ; 2.08 ; Crystal structure of TTBK1 in complex with compound 3 (7-001) 7ZHP ; 1.8 ; Crystal structure of TTBK1 in complex with compound 9 (7-005) 7Q8W ; 2.02 ; Crystal structure of TTBK1 in complex with VNG1.35 (compound 23) 7Q8V ; 2.13 ; Crystal structure of TTBK1 in complex with VNG2.73 (compound 42) 7Q8Z ; 1.57 ; Crystal structure of TTBK2 in complex with VNG1.33 (compound 27) 7Q90 ; 1.6 ; Crystal structure of TTBK2 in complex with VNG1.63 (compound 32) 7Q8Y ; 1.6 ; Crystal structure of TTBK2 in complex with VNG2.73 (compound 42) 2PL2 ; 2.5 ; Crystal structure of TTC0263: a thermophilic TPR protein in Thermus thermophilus HB27 3VV5 ; 1.9 ; Crystal structure of TTC0807 complexed with (S)-2-aminoethyl-L-cysteine (AEC) 3VVF ; 1.9 ; Crystal structure of TTC0807 complexed with Arginine 3VVE ; 2.0 ; Crystal structure of TTC0807 complexed with Lysine 3VVD ; 2.05 ; Crystal structure of TTC0807 complexed with Ornithine 6KE1 ; 3.39 ; Crystal structure of TtCas1 6KDV ; 3.11 ; Crystal structure of TtCas1-DNA complex 7YLL ; 2.60001 ; Crystal structure of TTEDbh 2XRN ; 2.9 ; Crystal structure of TtgV 2XRO ; 3.4 ; Crystal structure of TtgV in complex with its DNA operator 2CSL ; 2.5 ; Crystal structure of TTHA0137 from Thermus Thermophilus HB8 2CVL ; 1.65 ; Crystal structure of TTHA0137 from Thermus Thermophilus HB8 2CW4 ; 1.8 ; Crystal structure of TTHA0137 from Thermus Thermophilus HB8 5YTP ; 2.457 ; Crystal Structure of TTHA0139 L34A from Thermus thermophilus HB8 5YTQ ; 2.393 ; Crystal Structure of TTHA0139 L34A with Lanthanum from Thermus thermophilus HB8 3VUQ ; 2.05 ; Crystal structure of TTHA0167, a transcriptional regulator, TetR/AcrR family from Thermus thermophilus HB8 3IEM ; 2.5 ; Crystal Structure of TTHA0252 from Thermus thermophilus HB8 complexed with RNA analog 3IEL ; 2.35 ; Crystal Structure of TTHA0252 from Thermus thermophilus HB8 complexed with UMP 2DKF ; 2.8 ; Crystal Structure of TTHA0252 from Thermus thermophilus HB8, a RNA Degradation Protein of the Metallo-beta-lactamase Superfamily 4X3L ; 1.7 ; Crystal Structure of TTHA0275 from Thermus thermophilus (HB8) in complex with 5'-methylthioadenosine in space group P21212 4X3M ; 1.851 ; Crystal Structure of TTHA0275 from Thermus thermophilus (HB8) in complex with Adenosine in space group P212121 2DSY ; 1.9 ; Crystal structure of TTHA0281 from thermus thermophilus HB8 2ZIE ; 2.5 ; Crystal Structure of TTHA0409, Putatative DNA Modification Methylase from Thermus thermophilus HB8- Selenomethionine derivative 2ZIG ; 2.1 ; Crystal Structure of TTHA0409, Putative DNA Modification Methylase from Thermus thermophilus HB8 2ZIF ; 2.4 ; Crystal Structure of TTHA0409, Putative DNA Modification Methylase from Thermus thermophilus HB8- Complexed with S-Adenosyl-L-Methionine 2Z0Y ; 2.8 ; Crystal structure of TTHA0657-SAM complex 2HTM ; 2.3 ; Crystal structure of TTHA0676 from Thermus thermophilus HB8 2DJW ; 2.4 ; Crystal structure of TTHA0845 from Thermus thermophilus HB8 2D4R ; 2.4 ; Crystal structure of TTHA0849 from Thermus thermophilus HB8 3OPF ; 1.95 ; Crystal structure of TTHA0988 in space group P212121 3OEP ; 1.75 ; Crystal structure of TTHA0988 in space group P43212 3ORE ; 2.9 ; Crystal structure of TTHA0988 in space group P6522 4U00 ; 2.1 ; Crystal structure of TTHA1159 in complex with ADP 2CY2 ; 2.0 ; Crystal structure of TTHA1209 in complex with acetyl coenzyme A 2D4O ; 1.8 ; Crystal structure of TTHA1254 (I68M mutant) from Thermus thermophilus HB8 2D4P ; 1.7 ; Crystal structure of TTHA1254 (wild type) from Thermus thermophilus HB8 2ZCW ; 1.5 ; Crystal Structure of TTHA1359, a Transcriptional Regulator, CRP/FNR family from Thermus thermophilus HB8 2Z1K ; 2.3 ; Crystal Structure of Ttha1563 from Thermus thermophilus HB8 2YYB ; 2.6 ; Crystal structure of TTHA1606 from Thermus thermophilus HB8 2ZWR ; 2.2 ; Crystal structure of TTHA1623 from thermus thermophilus HB8 2ZZI ; 2.8 ; Crystal structure of TTHA1623 in a di-iron-bound form 2DT5 ; 2.16 ; Crystal Structure of TTHA1657 (AT-rich DNA-binding protein) from Thermus thermophilus HB8 2EPG ; 2.1 ; Crystal structure of TTHA1785 2ELC ; 1.55 ; Crystal structure of TTHA1842 from Thermus thermophilus HB8 2HIA ; 1.6 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2OWD ; 1.65 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2OWE ; 1.7 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P2Y ; 1.95 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P2Z ; 1.75 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P30 ; 1.85 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P6M ; 1.9 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P6O ; 1.65 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P75 ; 1.7 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P77 ; 1.9 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P78 ; 1.75 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P79 ; 1.75 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P9F ; 1.75 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P9Y ; 1.85 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2P9Z ; 1.7 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 2PA0 ; 2.3 ; Crystal structure of TTHB049 from Thermus thermophilus HB8 3B02 ; 1.92 ; Crystal structure of TTHB099, a transcriptional regulator CRP family from Thermus thermophilus HB8 2ZCA ; 1.8 ; Crystal Structure of TTHB189, a CRISPR-associated protein, Cse2 family from Thermus thermophilus HB8 7F4S ; 3.09 ; Crystal structure of TthMTA1-PteMTA9 complex 3DBQ ; 2.7 ; Crystal structure of TTK kinase domain 4ZEG ; 2.33 ; Crystal structure of TTK kinase domain in complex with a pyrazolopyrimidine inhibitor 7CLH ; 2.9 ; Crystal structure of TTK kinase domain in complex with compound 19 7CJA ; 2.49 ; Crystal structure of TTK kinase domain in complex with compound 28 7CHT ; 2.4 ; Crystal structure of TTK kinase domain in complex with compound 30 7CIL ; 2.3 ; Crystal structure of TTK kinase domain in complex with compound 7 7CHM ; 2.65 ; Crystal structure of TTK kinase domain in complex with compound 8 7CHN ; 2.4 ; Crystal structure of TTK kinase domain in complex with compound 9 4JT3 ; 2.2 ; Crystal Structure of TTK kinase domain with an inhibitor: 400740 4JS8 ; 1.94 ; Crystal structure of TTK kinase domain with an inhibitor: 401348 4O6L ; 2.38 ; Crystal Structure of TTK kinase domain with an inhibitor: 401498 (N-[(1R)-1-(2-chlorophenyl)propyl]-3-{4-[(1-methylpiperidin-4-yl)oxy]phenyl}-1H-indazole-5-carboxamide) 1WDT ; 2.2 ; Crystal structure of ttk003000868 from Thermus thermophilus HB8 1WWI ; 1.58 ; Crystal structure of ttk003001566 from Thermus Thermophilus HB8 1WWS ; 1.9 ; Crystal structure of ttk003001566 from Thermus Thermophilus HB8 1WK4 ; 2.8 ; Crystal structure of ttk003001606 1WWP ; 2.11 ; Crystal structure of ttk003001694 from Thermus Thermophilus HB8 2ZDJ ; 2.2 ; Crystal Structure of TTMA177, a Hypothetical Protein from Thermus thermophilus phage TMA 7N7V ; 1.99 ; Crystal structure of TtnM, a Fe(II)-alpha-ketoglutarate-dependent hydroxylase from the tautomycetin biosynthesis pathway in Streptomyces griseochromogenes at 2 A. 5ZG8 ; 2.4 ; Crystal Structure of TtNRS 4I87 ; 1.69 ; Crystal structure of TTR variant I84S in complex with CHF5074 at acidic pH 7Y1I ; 2.79 ; Crystal Structure of TTR-G67R 5CR1 ; 1.545 ; Crystal structure of TTR/resveratrol/T4 complex 2Y6Y ; 2.2 ; Crystal structure of TtrD from Archaeoglobus fulgidus 4YJ3 ; 3.75 ; Crystal structure of tubulin bound to compound 2 4YJ2 ; 2.6 ; Crystal structure of tubulin bound to MI-181 3MXZ ; 1.599 ; Crystal Structure of tubulin folding cofactor A from Arabidopsis thaliana 7E4P ; 2.4 ; Crystal structure of tubulin in complex with Ansamitocin P3 8AHM ; 2.42 ; Crystal structure of tubulin in complex with C(13)/C(13')-Bis-Desmethyl-Disorazole Z 7E4R ; 2.597 ; Crystal structure of tubulin in complex with D-DM1-SMe 6K9V ; 2.543 ; Crystal structure of tubulin in complex with inhibitor D64 7E4Q ; 2.501 ; Crystal structure of tubulin in complex with L-DM1-SMe 7E4Y ; 2.708 ; Crystal structure of tubulin in complex with L-DM4-SMe 7E4Z ; 2.69 ; Crystal structure of tubulin in complex with Maytansinol 7EN3 ; 2.643 ; Crystal structure of tubulin in complex with Tubulysin analogue TGL 7VMJ ; 2.9 ; Crystal structure of tubulin with 17a 7VMG ; 2.39 ; Crystal structure of tubulin with 17j 7VMK ; 2.5 ; Crystal structure of tubulin with 3 6LSN ; 2.445 ; Crystal structure of tubulin-inhibitor complex 4I4T ; 1.8 ; Crystal structure of tubulin-RB3-TTL-Zampanolide complex 4I55 ; 2.2 ; Crystal structure of tubulin-stathmin-TTL complex 4IHJ ; 2.0 ; Crystal structure of tubulin-stathmin-TTL-ADP complex 4IIJ ; 2.6 ; Crystal structure of tubulin-stathmin-TTL-apo complex 5KX5 ; 2.5 ; Crystal structure of tubulin-stathmin-TTL-Compound 11 complex 5Z4P ; 2.5 ; Crystal structure of tubulin-stathmin-TTL-Compound TCA complex 5XAF ; 2.551 ; Crystal structure of tubulin-stathmin-TTL-Compound Z1 complex 5XAG ; 2.56 ; Crystal structure of tubulin-stathmin-TTL-Compound Z2 complex 4I50 ; 2.3 ; Crystal structure of tubulin-stathmin-TTL-Epothilone A complex 4ZI7 ; 2.51 ; CRYSTAL STRUCTURE OF TUBULIN-STATHMIN-TTL-HTI286 COMPLEX 4ZHQ ; 2.55 ; Crystal structure of Tubulin-Stathmin-TTL-MMAE Complex 5LP6 ; 2.9 ; Crystal structure of Tubulin-Stathmin-TTL-Thiocolchicine Complex 4ZOL ; 2.5 ; Crystal Structure of Tubulin-Stathmin-TTL-Tubulysin M Complex 5BMV ; 2.5 ; CRYSTAL STRUCTURE OF TUBULIN-STATHMIN-TTL-Vinblastine COMPLEX 3NTK ; 1.8 ; Crystal structure of Tudor 3NTH ; 2.8 ; Crystal structure of Tudor and Aubergine [R13(me2s)] complex 3NTI ; 2.8 ; Crystal structure of Tudor and Aubergine [R15(me2s)] complex 3Q1J ; 2.35 ; Crystal structure of tudor domain 1 of human PHD finger protein 20 3QII ; 2.3 ; Crystal structure of tudor domain 2 of human PHD finger protein 20 3DLM ; 1.77 ; Crystal structure of Tudor domain of human Histone-lysine N-methyltransferase SETDB1 3S6W ; 1.78 ; Crystal structure of Tudor domain of human TDRD3 4QQ6 ; 1.75 ; Crystal Structure of tudor domain of SMN1 in complex with a small organic molecule 3UTN ; 1.9 ; Crystal structure of Tum1 protein from Saccharomyces cerevisiae 1DKO ; 2.38 ; CRYSTAL STRUCTURE OF TUNGSTATE COMPLEX OF ESCHERICHIA COLI PHYTASE AT PH 6.6 WITH TUNGSTATE BOUND AT THE ACTIVE SITE AND WITH HG2+ CATION ACTING AS AN INTERMOLECULAR BRIDGE 2AKC ; 2.3 ; Crystal structure of tungstate complex of the PhoN protein from S. typhimurium 4LHB ; 2.5 ; Crystal structure of tungsten cofactor synthesizing protein MoaB from Pyrococcus furiosus 3K8B ; 2.3 ; Crystal structure of Turkey (Meleagiris gallopova)hemoglobin at 2.3 Angstrom 1LJN ; 1.19 ; Crystal Structure of Turkey Egg Lysozyme Complex with Di-N-acetylchitobiose at 1.19A Resolution 7SGX ; 3.13 ; Crystal Structure of Turtle Cadherin-23 EC1-2 8SFU ; 1.8 ; Crystal structure of TuUGT202A2 (Tetur22g00270) in complex with naringin 8GKN ; 2.7 ; Crystal structure of TuUGT202A2 (Tetur22g00270) in complex with S-naringenin 8SFY ; 2.35 ; Crystal structure of TuUGT202A2 (Tetur22g00270) in complex with UDP-glucose 4O1S ; 2.7008 ; Crystal structure of TvoVMA intein 7ASU ; 2.23 ; Crystal structure of tWHD1 of Rpc5 subunit of human RNA Polymerase III 7ASV ; 1.55 ; Crystal structure of tWHD2 of Rpc5 subunit of human RNA Polymerase III 4HTS ; 4.0 ; Crystal Structure of Twin Arginine Translocase Receptor- TatC 4HTT ; 6.8 ; Crystal Structure of Twin Arginine Translocase Receptor- TatC in DDM 2RJO ; 2.05 ; Crystal structure of Twin-arginine translocation pathway signal protein from Burkholderia phytofirmans 4OJI ; 2.3 ; Crystal Structure of Twister Ribozyme 4QJD ; 3.1 ; Crystal Structure of Twister with the Nucleotide 5'- to the Cleavage Site Disordered at 3.1 A Resolution 3OBW ; 2.6 ; Crystal structure of two archaeal Pelotas reveal inter-domain structural plasticity 1D2P ; 2.5 ; CRYSTAL STRUCTURE OF TWO B REPEAT UNITS (B1B2) OF THE COLLAGEN BINDING PROTEIN (CNA) OF STAPHYLOCOCCUS AUREUS 1QUU ; 2.5 ; CRYSTAL STRUCTURE OF TWO CENTRAL SPECTRIN-LIKE REPEATS FROM ALPHA-ACTININ 3ILH ; 2.59 ; Crystal structure of Two component response regulator from Cytophaga hutchinsonii 8RSA ; 1.8 ; CRYSTAL STRUCTURE OF TWO COVALENT NUCLEOSIDE DERIVATIVES OF RIBONUCLEASE A 9RSA ; 1.8 ; CRYSTAL STRUCTURE OF TWO COVALENT NUCLEOSIDE DERIVATIVES OF RIBONUCLEASE A 1IHX ; 2.8 ; Crystal structure of two D-glyceraldehyde-3-phosphate dehydrogenase complexes: a case of asymmetry 6KOZ ; 2.25 ; Crystal structure of two domain M1 zinc metallopeptidase E323 mutant bound to L-Leucine amino acid 6KP0 ; 2.1 ; Crystal structure of two domain M1 zinc metallopeptidase E323A mutant bound to L-arginine 6KP1 ; 2.19 ; Crystal structure of two domain M1 zinc metallopeptidase E323A mutant bound to L-methionine amino acid 6KOY ; 2.35 ; Crystal structure of two domain M1 Zinc metallopeptidase E323A mutant bound to L-tryptophan amino acid 4QR9 ; 2.0 ; Crystal structure of two HMGB1 Box A domains cooperating to underwind and kink a DNA 2ZG2 ; 2.85 ; Crystal Structure of Two N-terminal Domains of Native Siglec-5 2ZG3 ; 3.0 ; Crystal Structure of Two N-terminal Domains of Native Siglec-5 in Complex with 3'-Sialyllactose 2ZG1 ; 2.7 ; Crystal Structure of Two N-terminal Domains of Siglec-5 in Complex with 6'-Sialyllactose 7DMN ; 2.0 ; Crystal structure of two pericyclases catalyzing [4+2] cycloaddition 7E22 ; 2.63 ; Crystal structure of two pericyclases catalyzing [4+2] cycloaddition 2E26 ; 2.0 ; Crystal structure of two repeat fragment of reelin 393D ; 2.0 ; CRYSTAL STRUCTURE OF TWO SELF-COMPLEMENTARY CHIMERIC DECAMER D(CCGG)R(C)D(GCCGG) AND D(CCGG)R(CG)D(CCGG) 394D ; 1.9 ; CRYSTAL STRUCTURE OF TWO SELF-COMPLEMENTARY CHIMERIC DECAMERS D(CCGG)R(C)D(GCCGG) AND D(CCGG)R(CG)D(CCGG) 4EGL ; 2.9 ; Crystal structure of two tandem RNA recognition motifs of Human antigen R 3P01 ; 2.65 ; Crystal structure of two-component response regulator from Nostoc sp. PCC 7120 3CZ5 ; 2.7 ; Crystal structure of two-component response regulator, LuxR family, from Aurantimonas sp. SI85-9A1 8AIP ; 2.35 ; Crystal Structure of Two-domain bacterial laccase from the actinobacterium Streptomyces carpinensis VKM Ac-1300 6THF ; 1.47 ; Crystal structure of two-domain Cu nitrite reductase from Bradyrhizobium sp. ORS 375 5LHL ; 2.0 ; Crystal Structure of Two-Domain Laccase from Streptomyces griseoflavus 6S0O ; 1.8 ; Crystal Structure of Two-Domain Laccase from Streptomyces griseoflavus produced at 0.25 mM copper sulfate in growth medium 4NB7 ; 2.55 ; Crystal Structure of Two-Domain Laccase from Streptomyces LIvidans AC1709 in complex with azide after 180 min soaking 4NAJ ; 2.6 ; Crystal Structure of Two-Domain Laccase from Streptomyces Lividans AC1709 in complex with azide after 90 min soaking 6FDJ ; 2.308 ; Crystal Structure of Two-Domain Laccase mutant H165A from Streptomyces griseoflavus with high copper ions occupancy 7PU0 ; 2.2 ; Crystal Structure of Two-Domain Laccase mutant H165A/M199G from Streptomyces griseoflavus 7PUH ; 1.3 ; Crystal Structure of Two-Domain Laccase mutant H165A/R240H from Streptomyces griseoflavus 5MKM ; 1.996 ; Crystal Structure of Two-Domain Laccase mutant H165F from Streptomyces griseoflavus 6FC7 ; 1.95 ; Crystal Structure of Two-Domain Laccase mutant H165F from Streptomyces griseoflavus with high copper ions occupancy 6RHQ ; 1.98 ; Crystal Structure of Two-Domain Laccase mutant I170A from Streptomyces griseoflavus 6RH9 ; 1.85 ; Crystal Structure of Two-Domain Laccase mutant I170F from Streptomyces griseoflavus 7PFR ; 1.75 ; Crystal Structure of Two-Domain Laccase mutant M199A from Streptomyces griseoflavus 8P9U ; 2.0 ; Crystal Structure of Two-Domain Laccase mutant M199A/D268N from Streptomyces griseoflavus 7PES ; 1.75 ; Crystal Structure of Two-Domain Laccase mutant M199G from Streptomyces griseoflavus 7PTM ; 1.85 ; Crystal Structure of Two-Domain Laccase mutant M199G/R240H from Streptomyces griseoflavus 8P9V ; 2.2 ; Crystal Structure of Two-Domain Laccase mutant M199G/R240H/D268N from Streptomyces griseoflavus 6ZIP ; 2.05 ; Crystal Structure of Two-Domain Laccase mutant R240A from Streptomyces griseoflavus 6ZIJ ; 1.6 ; Crystal Structure of Two-Domain Laccase mutant R240H from Streptomyces griseoflavus 7PEN ; 1.6 ; Crystal Structure of Two-Domain Laccase mutant Y230A from Streptomyces griseoflavus 4FW1 ; 1.86 ; Crystal structure of two-domain RSV INTEGRASE covalently linked with DNA 5KS8 ; 3.01 ; Crystal structure of two-subunit pyruvate carboxylase from Methylobacillus flagellatus 5NPF ; 1.38 ; Crystal structure of txGH116 (beta-glucosidase from Thermoanaerobacterium xylolyticum) in complex with beta Cyclophellitol Cyclosulfate probe ME594 5O0S ; 1.16 ; Crystal structure of txGH116 (beta-glucosidase from Thermoanaerobacterium xylolyticum) in complex with unreacted beta Cyclophellitol Cyclosulfate probe ME711 8I5O ; 2.3 ; Crystal structure of TxGH116 D593A acid/base mutant from Thermoanaerobacterium xylanolyticum 8I5P ; 2.35 ; Crystal structure of TxGH116 D593A acid/base mutant from Thermoanaerobacterium xylanolyticum with cellobiose 8I5Q ; 2.2 ; Crystal structure of TxGH116 D593A acid/base mutant from Thermoanaerobacterium xylanolyticum with laminaribiose 8I5R ; 1.65 ; Crystal structure of TxGH116 D593N acid/base mutant from Thermoanaerobacterium xylanolyticum 8I5S ; 1.45 ; Crystal structure of TxGH116 D593N acid/base mutant from Thermoanaerobacterium xylanolyticum with 2-deoxy-2-fluoroglucoside 8I5T ; 1.5 ; Crystal structure of TxGH116 D593N acid/base mutant from Thermoanaerobacterium xylanolyticum with cellobiose 8I5U ; 1.4 ; Crystal structure of TxGH116 D593N acid/base mutant from Thermoanaerobacterium xylanolyticum with laminaribiose 7DKS ; 1.65 ; Crystal structure of TxGH116 E441A nucleophile mutant from Thermoanaerobacterium xylanolyticum 7DKT ; 1.65 ; Crystal structure of TxGH116 E441A nucleophile mutant from Thermoanaerobacterium xylanolyticum with alpha-glucosyl fluoride 7DKU ; 1.6 ; Crystal structure of TxGH116 E441A nucleophile mutant from Thermoanaerobacterium xylanolyticum with cellobiose 7DKV ; 1.7 ; Crystal structure of TxGH116 E441A nucleophile mutant from Thermoanaerobacterium xylanolyticum with cellotriose 7DKW ; 1.78 ; Crystal structure of TxGH116 E441G nucleophile mutant from Thermoanaerobacterium xylanolyticum with autocondensation products from alpha-fluoroglucoside. 7DKX ; 1.7 ; Crystal structure of TxGH116 E441G nucleophile mutant from Thermoanaerobacterium xylanolyticum with cellobiose 7DKY ; 1.95 ; Crystal structure of TxGH116 E441G nucleophile mutant from Thermoanaerobacterium xylanolyticum with cellotriose 7W2S ; 1.85 ; Crystal structure of TxGH116 E730A mutant from Thermoanaerobacterium xylanolyticum with glucose 7W2T ; 2.15 ; Crystal structure of TxGH116 E730Q mutant from Thermoanaerobacterium xylanolyticum with glucose 8JBO ; 2.0 ; Crystal structure of TxGH116 from Thermoanaerobacterium xylanolyticum with isofagomine 7W2V ; 1.8 ; Crystal structure of TxGH116 R786A mutant from Thermoanaerobacterium xylanolyticum with glucose 7W2X ; 1.8 ; Crystal structure of TxGH116 R786K mutant from Thermoanaerobacterium xylanolyticum 7W2W ; 1.79 ; Crystal structure of TxGH116 R786K mutant from Thermoanaerobacterium xylanolyticum with glucose 4PY1 ; 2.16 ; Crystal structure of Tyk2 in complex with compound 15, 6-((2,5-dimethoxyphenyl)thio)-3-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazine 6AAM ; 1.98 ; Crystal structure of TYK2 in complex with peficitinib 7UYR ; 2.15 ; Crystal structure of TYK2 kinase domain in complex with compound 12 7UYS ; 2.15 ; Crystal structure of TYK2 kinase domain in complex with compound 16 7UYT ; 2.14 ; Crystal structure of TYK2 kinase domain in complex with compound 25 7UYU ; 2.05 ; Crystal structure of TYK2 kinase domain in complex with compound 30 6VNY ; 2.3 ; Crystal structure of TYK2 kinase with compound 10 6VNS ; 2.09 ; Crystal structure of TYK2 kinase with compound 13 6VNV ; 2.15 ; Crystal structure of TYK2 kinase with compound 14 6VNX ; 2.18 ; Crystal structure of TYK2 kinase with compound 19 6X8F ; 2.15 ; Crystal structure of TYK2 with Compound 11 6X8G ; 2.21 ; Crystal structure of TYK2 with Compound 22 6OVA ; 2.5 ; Crystal Structure of TYK2 with novel pyrrolidinone inhibitor 6M83 ; 1.3685 ; Crystal structure of TylM1 S120A bound to SAH and dTDP-phenol 6M81 ; 1.782 ; Crystal structure of TylM1 Y14F bound to SAH and dTDP-phenol 6M82 ; 1.3971 ; Crystal structure of TylM1 Y14paF bound to SAH and dTDP-phenol 6MEB ; 1.8 ; Crystal structure of Tylonycteris bat coronavirus HKU4 macrodomain in complex with nicotinamide adenine dinucleotide (NAD+) 3RHT ; 1.83 ; Crystal structure of type 1 glutamine amidotransferase (GATase1)-like protein from Planctomyces limnophilus 4IKR ; 1.78 ; Crystal structure of Type 1 human methionine aminopeptidase in complex with 2-(4-(5-chloro-6-methyl-2-(pyridin-2-yl)pyrimidin-4-yl)piperazin-1-yl)ethanol 2NQ7 ; 1.6 ; Crystal structure of type 1 human methionine aminopeptidase in complex with 3-(2,2-Dimethylpropionylamino)pyridine-2-carboxylic acid thiazole-2-ylamide 3U70 ; 2.0 ; Crystal structure of type 1 ribosome inactivating protein complexed with adenine in low ionic solvent 4Q9F ; 1.75 ; Crystal structure of type 1 ribosome inactivating protein from Momordica balsamina in complex with guanosine mono phosphate at 1.75 Angstrom resolution 4GUW ; 1.6 ; Crystal structure of type 1 Ribosome inactivating protein from Momordica balsamina with lipopolysaccharide at 1.6 Angstrom resolution 1B12 ; 1.95 ; CRYSTAL STRUCTURE OF TYPE 1 SIGNAL PEPTIDASE FROM ESCHERICHIA COLI IN COMPLEX WITH A BETA-LACTAM INHIBITOR 1VBI ; 1.8 ; Crystal structure of type 2 malate/lactate dehydrogenase from thermus thermophilus HB8 5JF1 ; 2.0 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with actinonin 5JF6 ; 1.7 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor 6b (AB47) 5JF2 ; 2.0 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor AT002 5JF3 ; 1.6 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor AT018 5JF4 ; 2.4 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor AT019 5JF5 ; 1.8 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor AT020 5JF8 ; 1.8 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor RAS358 (21) 5JF7 ; 2.1 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with inhibitor SMP289 5JF0 ; 1.6 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with tripeptide Met-Ala-Arg 5JEZ ; 1.7 ; Crystal structure of type 2 PDF from Streptococcus agalactiae in complex with tripeptide Met-Ala-Ser 5JEY ; 2.8 ; Crystal structure of type 2 PDF from Streptococcus agalactiae, crystallized in cacodylate buffer 5JEX ; 2.0 ; Crystal structure of type 2 PDF from Streptococcus agalactiae, crystallized in imidazole buffer 1IO2 ; 2.0 ; Crystal structure of type 2 ribonuclease h from hyperthermophilic archaeon, thermococcus kodakaraensis kod1 4F0W ; 1.24 ; Crystal structure of type effector Tse1 C30A mutant from Pseudomonas aeruginousa 4F0V ; 1.6 ; Crystal structure of type effector Tse1 from Pseudomonas aeruginousa 3JS3 ; 2.2 ; Crystal structure of type I 3-dehydroquinate dehydratase (aroD) from Clostridium difficile with covalent reaction intermediate 3M7W ; 1.95 ; Crystal Structure of Type I 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium LT2 in Covalent Complex with Dehydroquinate 3OEX ; 1.9 ; Crystal Structure of Type I 3-Dehydroquinate Dehydratase (aroD) from Salmonella typhimurium with close loop conformation. 2BQ4 ; 1.68 ; Crystal structure of type I cytochrome c3 from Desulfovibrio africanus 8B2A ; 1.65 ; Crystal structure of type I dehydroquinase from Salmonella typhi inhibited by an epoxide derivative 8B2B ; 1.9 ; Crystal structure of type I dehydroquinase from Salmonella typhi inhibited by an epoxide derivative 8B2C ; 1.55 ; Crystal structure of type I dehydroquinase from Salmonella typhi inhibited by an epoxide derivative 2B3L ; 1.5 ; Crystal structure of type I human methionine aminopeptidase in the apo form 5WRU ; 3.193 ; Crystal structure of type I inorganic pyrophosphatase from P falciparum 5WRT ; 2.348 ; Crystal structure of type I inorganic pyrophosphatase from Toxoplasma gondii. 4TZ7 ; 3.31 ; Crystal structure of type I phosphatidylinositol 4-phosphate 5-kinase alpha from Zebrafish 2AR0 ; 2.8 ; Crystal structure of Type I restriction enzyme EcoKI M protein (EC 2.1.1.72) (M.EcoKI) 2OKC ; 2.2 ; Crystal structure of Type I restriction enzyme StySJI M protein (NP_813429.1) from Bacteroides thetaiotaomicron VPI-5482 at 2.20 A resolution 3MRW ; 1.7 ; Crystal Structure of type I ribosome inactivating protein from Momordica balsamina at 1.7 A resolution 3MRY ; 2.0 ; Crystal Structure of type I ribosome inactivating protein from Momordica balsamina with 6-aminopurine at 2.0A resolution 3NX9 ; 1.7 ; Crystal structure of type I ribosome inactivating protein in complex with maltose at 1.7A resolution 6YES ; 4.1 ; Crystal structure of type I-D CRISPR-Cas nuclease Cas10d 6THH ; 3.48 ; Crystal structure of type I-D CRISPR-Cas nuclease Cas10d in complex with the SIRV3 AcrID1 (gp02) anti-CRISPR protein 1UAY ; 1.4 ; Crystal Structure of Type II 3-Hydroxyacyl-CoA Dehydrogenase from Thermus thermophilus HB8 7E8N ; 2.2 ; Crystal structure of Type II citrate synthase (HyCS) from Hymenobacter sp. PAMC 26554 1GU0 ; 2.0 ; CRYSTAL STRUCTURE OF TYPE II DEHYDROQUINASE FROM STREPTOMYCES COELICOLOR 1GU1 ; 1.8 ; Crystal structure of type II dehydroquinase from Streptomyces coelicolor complexed with 2,3-anhydro-quinic acid 1D0I ; 1.8 ; CRYSTAL STRUCTURE OF TYPE II DEHYDROQUINASE FROM STREPTOMYCES COELICOLOR COMPLEXED WITH PHOSPHATE IONS 4ZC1 ; 2.52 ; Crystal Structure of type II Dehydroquinate dehydratase from Acinetobacter baumannii with a different crystal form at 2.52 A Resolution 1V1J ; 2.2 ; Crystal structure of type II Dehydroquintae Dehydratase from Streptomyces coelicolor in complex with 3-fluoro 4O91 ; 2.393 ; Crystal Structure of type II inhibitor NG25 bound to TAK1-TAB1 1X0A ; 2.0 ; Crystal Structure of type II malate/lactate dehydrogenase from thermus thermophilus HB8 4QII ; 1.64 ; Crystal Structure of type II MenB from Mycobacteria tuberculosis 1WTE ; 1.9 ; Crystal structure of type II restrcition endonuclease, EcoO109I complexed with cognate DNA 1WTD ; 2.401 ; Crystal structure of type II restrcition endonuclease, EcoO109I DNA-free form 2QVS ; 2.5 ; Crystal Structure of Type IIa Holoenzyme of cAMP-dependent Protein Kinase 3V1Z ; 2.2 ; Crystal structure of Type IIF restriction endonuclease Bse634I with cognate DNA 3V20 ; 2.35 ; Crystal structure of Type IIF restriction endonuclease Bse634I with cognate DNA 3V21 ; 2.7 ; Crystal structure of Type IIF restriction endonuclease Bse634I with cognate DNA 4ABT ; 2.22 ; Crystal structure of Type IIF restriction endonuclease NgoMIV with cognate uncleaved DNA 1AME ; 1.65 ; CRYSTAL STRUCTURE OF TYPE III ANTIFREEZE PROTEIN AT 4 C 1GZI ; 1.8 ; CRYSTAL STRUCTURE OF TYPE III ANTIFREEZE PROTEIN FROM OCEAN POUT, AT 1.8 ANGSTROM RESOLUTION 4QMK ; 2.5 ; Crystal structure of type III effector protein ExoU (exoU) 5B8H ; 2.1999 ; Crystal Structure of Type III pantothenate kinase (PanK III) from Burkholderia cenocepacia complexed with pantothenate, imidodiphosphate, and AMP 4O5F ; 1.55 ; Crystal structure of Type III pantothenate kinase from Burkholderia thailandensis in complex with pantothenate and phosphate 4O8K ; 1.7 ; Crystal structure of Type III pantothenate kinase from Burkholderia thailandensis, apo structure 3VS8 ; 1.76 ; Crystal structure of type III PKS ArsC 3VS9 ; 1.99 ; Crystal structure of type III PKS ArsC mutant 7CB3 ; 2.31 ; Crystal structure of type III polyketide synthase from Mycobacterium marinum 7D41 ; 2.419 ; Crystal structure of type III polyketide synthase from Mycobacterium marinum - P 21 21 21 Space group 4YJY ; 1.86 ; Crystal structure of Type III polyketide synthase from Oryza sativa 3A12 ; 2.3 ; Crystal structure of Type III Rubisco complexed with 2-CABP 3KDN ; 2.09 ; Crystal structure of Type III Rubisco SP4 mutant complexed with 2-CABP 3A13 ; 2.34 ; Crystal structure of Type III Rubisco SP4 mutant complexed with 2-CABP and activated with Ca 3KDO ; 2.36 ; Crystal structure of Type III Rubisco SP6 mutant complexed with 2-CABP 6IFN ; 2.9 ; Crystal structure of Type III-A CRISPR Csm complex 6EKR ; 2.88 ; Crystal structure of Type IIP restriction endonuclease Kpn2I 6EK1 ; 2.601 ; Crystal structure of Type IIP restriction endonuclease PfoI 6EKO ; 2.284 ; Crystal structure of Type IIP restriction endonuclease PfoI with cognate DNA 3FHU ; 2.1 ; Crystal structure of type IV b pilin from Salmonella typhi 1T60 ; 1.5 ; Crystal structure of Type IV collagen NC1 domain from bovine lens capsule 3WX6 ; 2.7 ; Crystal structure of Type Six Secretion System protein 3VPI ; 1.5 ; Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa 3VPJ ; 2.5 ; crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa in complex with immune protein Tsi1 3WA5 ; 1.9 ; Crystal Structure of type VI peptidoglycan muramidase effector Tse3 in complex with its cognate immunity protein Tsi3 6V98 ; 1.8 ; Crystal structure of Type VI secretion system effector, TseH (VCA0285) 5ZBL ; 2.3 ; Crystal structure of type-I LOG from Corynebacterium glutamicum in complex with AMP 5ZBJ ; 1.89 ; Crystal structure of type-I LOG from Pseudomonas aeruginosa PAO1 5ZBK ; 2.3 ; Crystal structure of type-I LOG from Pseudomonas aeruginosa PAO1 in complex with AMP 3KHK ; 2.55 ; Crystal structure of type-I restriction-modification system methylation subunit (MM_0429) from Methanosarchina mazei. 1YDX ; 2.3 ; Crystal structure of Type-I restriction-modification system S subunit from M. genitalium 6Z1Y ; 2.0 ; Crystal structure of type-I ribosome-inactivating protein trichobakin (TBK) 3KIP ; 2.95 ; Crystal structure of type-II 3-dehydroquinase from C. albicans 5WQ3 ; 1.95 ; Crystal structure of type-II LOG from Corynebacterium glutamicum 5ZI9 ; 2.5 ; Crystal structure of type-II LOG from Streptomyces coelicolor A3 3KS2 ; 3.3 ; Crystal Structure of Type-III Secretion Chaperone IpgC from Shigella flexneri (residues 10-155) 4PXG ; 2.45 ; Crystal Structure of TypeII restriction Enzyme Sau3AI 7XIO ; 2.64 ; Crystal structure of TYR from Ralstonia 2Q05 ; 2.57 ; Crystal structure of tyr/ser protein phosphatase from Vaccinia virus WR 5LQ0 ; 2.9 ; Crystal structure of Tyr24 phosphorylated Annexin A2 at 2.9 A resolution 5LQ2 ; 3.4 ; Crystal structure of Tyr24 phosphorylated Annexin A2 at 3.4 A resolution 1ZL6 ; 2.4 ; Crystal structure of Tyr350Ala mutant of Clostridium botulinum neurotoxin E catalytic domain 2EFO ; 2.4 ; Crystal structure of Tyr77 to Ala of ST1022 from Sulfolobus tokodaii 7 2EFP ; 2.2 ; Crystal Structure of Tyr77 to Ala of ST1022-Glutamine Complex from Sulolobus tokodaii 7 6J2U ; 1.3 ; Crystal structure of Tyrosinase caddy protein(MelC1)with Tyrosinase (MelC2)from Streptomyces avermitilis in complex with Zinc ion 3NM8 ; 2.0 ; Crystal structure of Tyrosinase from Bacillus megaterium 3NQ0 ; 2.2 ; Crystal Structure of Tyrosinase from Bacillus megaterium crystallized in the absence of Zinc 3NTM ; 2.3 ; Crystal Structure of Tyrosinase from Bacillus megaterium crystallized in the absence of zinc, partial occupancy of CuB 4J6T ; 2.43 ; Crystal Structure of Tyrosinase from Bacillus megaterium F197A mutant 3NQ1 ; 2.3 ; Crystal Structure of Tyrosinase from Bacillus megaterium in complex with inhibitor kojic acid 4D87 ; 3.5 ; Crystal Structure of Tyrosinase from Bacillus megaterium in complex with SDS 4J6U ; 2.5 ; Crystal Structure of Tyrosinase from Bacillus megaterium N205A mutant 4J6V ; 1.9 ; Crystal Structure of Tyrosinase from Bacillus megaterium N205D mutant 3NQ5 ; 2.3 ; Crystal Structure of Tyrosinase from Bacillus megaterium R209H mutant 3NPY ; 2.192 ; Crystal Structure of Tyrosinase from Bacillus megaterium soaked in CuSO4 4HD4 ; 1.8 ; Crystal Structure of Tyrosinase from Bacillus megaterium V218F mutant 4HD6 ; 2.0 ; Crystal Structure of Tyrosinase from Bacillus megaterium V218F mutant soaked in CuSO4 4HD7 ; 2.1 ; Crystal Structure of Tyrosinase from Bacillus megaterium V218G mutant soaked in CuSO4 6EI4 ; 2.0 ; Crystal Structure of tyrosinase from Bacillus megaterium with B5N inhibitor in the active site 5I3A ; 2.2 ; Crystal Structure of tyrosinase from Bacillus megaterium with configuration A of hydroquinone inhibitor in the active site 5I3B ; 2.2 ; Crystal Structure of tyrosinase from Bacillus megaterium with configuration B of hydroquinone inhibitor in the active site 5I38 ; 2.6 ; Crystal Structure of tyrosinase from Bacillus megaterium with inhibitor kojic acid in the active site 6QXD ; 2.317 ; Crystal Structure of tyrosinase from Bacillus megaterium with JKB inhibitor in the active site. 4P6S ; 2.2 ; Crystal Structure of tyrosinase from Bacillus megaterium with L-DOPA in the active site 4P6T ; 2.5 ; Crystal Structure of tyrosinase from Bacillus megaterium with p-tyrosol in the active site 5OAE ; 2.7 ; Crystal Structure of tyrosinase from Bacillus megaterium with SVF inhibitor in the active site 4P6R ; 2.2 ; Crystal Structure of tyrosinase from Bacillus megaterium with tyrosine in the active site 8HPI ; 2.54 ; Crystal structure of Tyrosinase from Priestia megaterium 7CIT ; 1.5 ; Crystal structure of tyrosinase from Streptomyces castaneoglobisporus in complex with the caddie protein obtained by soaking in the solution containing Cu(II) and hydroxylamine for 24 h 6RRQ ; 2.7 ; Crystal structure of tyrosinase PvdP from Pseudomonas aeruginosa bound to copper 6RRP ; 2.4 ; Crystal structure of tyrosinase PvdP from Pseudomonas aeruginosa bound to copper and phenylthiourea 4IX8 ; 2.35 ; Crystal structure of Tyrosine aminotransferase from Leishmania infantum 1BW0 ; 2.5 ; CRYSTAL STRUCTURE OF TYROSINE AMINOTRANSFERASE FROM TRYPANOSOMA CRUZI 3FSL ; 2.35 ; Crystal structure of tyrosine aminotransferase tripple mutant (P181Q,R183G,A321K) from Escherichia coli at 2.35 A resolution 4QBT ; 2.1 ; Crystal structure of tyrosine bound human tyrosyl tRNA synthetase 5HSI ; 1.732 ; Crystal structure of tyrosine decarboxylase at 1.73 Angstroms resolution 6LIV ; 2.31 ; Crystal structure of Tyrosine decarboxylase in complex with PLP 5TKD ; 1.92 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH 6-[(3,5-DIMETHYLPHE NYL)AMINO]-8- (METHYLAMINO)IMIDAZO[1,2-B]PYRIDAZINE-3-CARBO XAMIDE 4WOV ; 1.8 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH BMS-066 AKA 2-METHOXY-N-({6-[3-METHYL-7-(METHYLAMINO)-3,5,8,10-TETRAAZATRICYCLO[7.3.0.0, 6]DODECA-1(9),2(6),4,7,11-PENTAEN-11-YL]PYRIDIN-2-YL}METHY L)ACETAMIDE 6NZP ; 2.35 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH COMPOUND-11 AKA 6-CYCLOPROPANEAMIDO-4-{[2-METHOXY-3-(1-METHYL-1H-1,2,4-TRI AZOL-3-YL)PHENYL]AMINO}-N-(?H?)METHYLPYRIDAZINE-3-CARBOXAMIDE 7K7Q ; 2.27 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH COMPOUND-12 AKA:6-[(cyclopropanecarbonyl)amino]-4-({3-[6-(dimethylcarbamoyl)pyridazin-3-yl]-2-methoxyphenyl}amino)-N-methylpyridazine-3-carboxamide 7K7O ; 2.82 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH COMPOUND-12 AKA:6-[(cyclopropanecarbonyl)amino]-4-{[2-methoxy-3-(pyrimidin-2-yl)phenyl]amino}-N-methylpyridazine-3-carboxamide 6NSL ; 2.15 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound-6c AKA 6-((1-(4-CYANOPHENY L)-2-OXO-1,2-DIHYDRO-3-PYRIDINYL)AMINO)-N-CYCLOPROPYL-8-(M ETHYLAMINO)IMIDAZO[1,2-B]PYRIDAZINE-3-CARBOXAMIDE 6NZR ; 2.56 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_12 AKA 4-[(2-methanesulfonylphenyl)amino]-N-(H3)methyl-6-[(pyridin-2- yl)amino]pyridazine-3-carboxamide 6NZQ ; 2.11 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_29 AKA 6-[(5-FLUORO-4-METH YLPYRIDIN-2-YL)AMINO]-4-({2-METHOXY-3-[(PYRIDIN-2-YLMETHYL )CARBAMOYL]PHENYL}AMINO)-N-METHYLPYRIDINE-3-CARBOXAMIDE 6NZH ; 2.73 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_40 AKA 6-cyclopropaneamido-4-[(2-methanesulfonylphenyl)amino]-N-methylpyridine-3-carboxamide 6NZE ; 1.96 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_5 AKA 4-[(2-CARBAMOYLPHEN YL)AMINO]-6-[(5-FLUOROPYRIDIN-2-YL)AMINO]-N-METHYLPYRIDINE -3-CARBOXAMIDE 6NZF ; 2.39 ; CRYSTAL STRUCTURE OF TYROSINE KINASE 2 JH2 (PSEUDO KINASE DOMAIN) COMPLEXED WITH Compound_5 AKA 4-[(2-CARBAMOYLPHEN YL)AMINO]-6-[(5-FLUOROPYRIDIN-2-YL)AMINO]-N-METHYLPYRIDINE -3-CARBOXAMIDE 2PVF ; 1.8 ; Crystal Structure of Tyrosine Phosphorylated Activated FGF Receptor 2 (FGFR2) Kinase Domain in Complex with ATP Analog and Substrate Peptide 6D22 ; 2.46 ; Crystal structure of Tyrosine-protein kinase receptor 6D1Y ; 1.93 ; Crystal structure of Tyrosine-protein kinase receptor in complex with 2,4-dichloro-N-(3-methyl-1-phenyl-1H-pyrazol-5-yl)benzamide Inhibitor 6D20 ; 1.94 ; Crystal structure of Tyrosine-protein kinase receptor in complex with 5-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4(3H)-one and 5-{[2,4-dichloro-5-(pyridin-2-yl)benzene-1-carbonyl]amino}-N-(2-hydroxy-2-methylpropyl)-1-phenyl-1H-pyrazole-3-carboxamide Inhibitors 6D1Z ; 1.87 ; Crystal structure of Tyrosine-protein kinase receptor in complex with 5-(4-fluorophenyl)thieno[2,3-d]pyrimidin-4(3H)-one Inhibitor 4RSS ; 1.83 ; Crystal structure of tyrosine-protein kinase SYK with an inhibitor 6BYQ ; 2.2 ; Crystal structure of Tyrosine-tRNA ligase from Helicobacter pylori G27 4HPW ; 1.998 ; Crystal structure of Tyrosine-tRNA ligase mutant complexed with unnatural amino acid 3-o-methyl-Tyrosine 6BQY ; 2.1 ; Crystal Structure of Tyrosine-tRNA Synthetase from Acinetobacter baumannii 6BQZ ; 2.3 ; Crystal Structure of Tyrosine-tRNA Synthetase from Acinetobacter baumannii with bound L-Tyrosine 2CYB ; 1.8 ; Crystal structure of Tyrosyl-tRNA Synthetase complexed with L-tyrosine from Archaeoglobus fulgidus 2CYC ; 2.2 ; Crystal structure of Tyrosyl-tRNA Synthetase complexed with L-tyrosine from Pyrococcus horikoshii 3N2Y ; 2.49 ; Crystal structure of tyrosyl-tRNA synthetase complexed with p-(2-tetrazolyl)-phenylalanine 2CYA ; 2.2 ; Crystal structure of tyrosyl-tRNA synthetase from Aeropyrum pernix 6OTJ ; 2.85 ; Crystal Structure of Tyrosyl-tRNA synthetase from Neisseria gonorrhoeae with bound L-Tyr 5YJ3 ; 2.845 ; Crystal structure of TZAP and telomeric DNA complex 4WZ0 ; 1.954 ; Crystal structure of U-box 1 of LubX / LegU2 / Lpp2887 from Legionella pneumophila str. Paris 4WZ2 ; 3.408 ; Crystal structure of U-box 2 of LubX / LegU2 / Lpp2887 from Legionella pneumophila str. Paris, Ile175Met mutant 4XI1 ; 2.983 ; Crystal structure of U-box 2 of LubX / LegU2 / Lpp2887 from Legionella pneumophila str. Paris, wild-type 3L1X ; 2.6 ; Crystal Structure of U-box Domain of Human E4B Ubiquitin Ligase 6XLW ; 1.5 ; Crystal structure of U2AF65 bound to AdML splice site sequence 4BWQ ; 2.1 ; Crystal structure of U5-15kD in a complex with PQBP1 6SVS ; 2.5 ; Crystal Structure of U:A-U-rich RNA triple helix with 11 consecutive base triples 8ENK ; 2.5 ; Crystal structure of UAP56 in complex with Tho1, the yeast homolog of human SARNP 6JB7 ; 2.1 ; Crystal structure of Ub-conjugated Ube2K C92K&K97A mutant (isopeptide linkage), 2.1 A resolution 6JB6 ; 2.7 ; Crystal structure of Ub-conjugated Ube2K C92K&K97A mutant (isopeptide linkage), 2.7 A resolution 4NNJ ; 2.4 ; Crystal structure of Uba1 in complex with ubiquitin-AMP and thioesterified ubiquitin 3ONG ; 2.3 ; Crystal structure of UBA2ufd-Ubc9: insights into E1-E2 interactions in Sumo pathways 3ONH ; 1.601 ; Crystal structure of UBA2ufd-Ubc9: insights into E1-E2 interactions in Sumo pathways 6YUB ; 2.195 ; Crystal structure of Uba4 from Chaetomium thermophilum 6YUC ; 3.15 ; Crystal structure of Uba4-Urm1 from Chaetomium thermophilum 6Z6S ; 3.153 ; Crystal structure of Uba4-Urm1 from Chaetomium thermophilum 7NVK ; 2.651 ; Crystal structure of UBA5 fragment fused to the N-terminus of UFC1 5O63 ; 1.6 ; Crystal structure of UbaLAI restriction endonuclease B3 domain domain (mutant L24M L53M L95M) with cognate DNA 8GXR ; 1.7 ; crystal structure of UBC domain of UBE2O 4JQU ; 1.81 ; Crystal structure of Ubc7p in complex with the U7BR of Cue1p 5F6V ; 1.492 ; Crystal structure of Ubc9 (K48/K49A/E54A) complexed with Fragment 1 (biphenol from fragment cocktail screen) 5F6W ; 1.699 ; Crystal structure of Ubc9 (K48/K49A/E54A) complexed with Fragment 1 (biphenol) 5F6X ; 1.56 ; Crystal structure of Ubc9 (K48/K49A/E54A) complexed with Fragment 2 (mercaptobenzoxazole from cocktail screen) 5F6Y ; 1.14 ; Crystal structure of Ubc9 (K48/K49A/E54A) complexed with Fragment 2 (mercaptobenzoxazole) 5F6D ; 1.553 ; Crystal structure of Ubc9 (K48A/K49A/E54A) complexed with Fragment 6 5F6U ; 1.552 ; Crystal Structure of Ubc9 (K48A/K49A/E54A) complexed with Fragment 8 (JSS190B146) 5D1K ; 1.78 ; Crystal Structure of UbcH5B in Complex with the RING-U5BR Fragment of AO7 5D1M ; 1.581 ; Crystal Structure of UbcH5B in Complex with the RING-U5BR Fragment of AO7 (P199A) 5D1L ; 1.618 ; Crystal Structure of UbcH5B in Complex with the RING-U5BR Fragment of AO7 (Y165A) 1X23 ; 1.85 ; Crystal structure of ubch5c 1WZV ; 2.1 ; Crystal Structure of UbcH8 1WZW ; 2.4 ; Crystal Structure of UbcH8 3H8K ; 1.8 ; Crystal structure of Ube2g2 complxed with the G2BR domain of gp78 at 1.8-A resolution 7LEW ; 1.736 ; Crystal structure of UBE2G2 in complex with the UBE2G2-binding region of AUP1 6IF1 ; 2.466 ; Crystal structure of Ube2K and K48-linked di-ubiquitin complex 5DFL ; 2.1 ; Crystal structure of Ube2K~Ubiquitin conjugate 7V8F ; 1.66 ; Crystal structure of UBE2L3 bound to HOIP RING1 domain. 7YW1 ; 3.27 ; crystal structure of UBE2O 4KDC ; 2.09 ; Crystal Structure of UBIG 5DPM ; 2.1 ; Crystal structure of UbiG mutant in complex with SAH 4KDR ; 2.003 ; Crystal Structure of UBIG/SAH complex 4II2 ; 2.2 ; Crystal structure of Ubiquitin activating enzyme 1 (Uba1) in complex with the Ub E2 Ubc4, ubiquitin, and ATP/Mg 3KW5 ; 2.83 ; Crystal structure of ubiquitin carboxy terminal hydrolase L1 bound to ubiquitin vinylmethylester 2ETL ; 2.4 ; Crystal Structure of Ubiquitin Carboxy-terminal Hydrolase L1 (UCH-L1) 1VJV ; 1.74 ; Crystal structure of Ubiquitin carboxyl-terminal hydrolase 6 (yfr010w) from Saccharomyces cerevisiae at 1.74 A resolution 7BBF ; 2.54 ; Crystal structure of ubiquitin charged Ube2N (Ube2N~Ub) in complex with Ube2V2 2H2Y ; 2.8 ; Crystal structure of ubiquitin conjugating enzyme E2 from plasmodium falciparum 3WE5 ; 1.7 ; Crystal structure of ubiquitin conjugating enzyme E2 UbcA1 from Agrocybe aegerita 2Q0V ; 2.4 ; Crystal structure of ubiquitin conjugating enzyme E2, putative, from Plasmodium falciparum 2BEP ; 1.8 ; Crystal structure of ubiquitin conjugating enzyme E2-25K 6NYA ; 2.065 ; Crystal Structure of ubiquitin E1 (Uba1) in complex with Ubc3 (Cdc34) and ubiquitin 5IA7 ; 2.0 ; Crystal structure of Ubiquitin fold modifier 1 (Ufm1) 4GU2 ; 1.35 ; Crystal structure of ubiquitin from Entamoeba histolytica to 1.35 Angstrom 4GSW ; 2.15 ; Crystal structure of ubiquitin from Entamoeba histolytica to 2.15 Angstrom 2ZCB ; 1.6 ; Crystal Structure of ubiquitin P37A/P38A 8OYP ; 2.44 ; Crystal structure of Ubiquitin specific protease 11 (USP11) in complex with a substrate mimetic 3E46 ; 1.86 ; Crystal structure of ubiquitin-conjugating enzyme E2-25kDa (Huntington interacting protein 2) M172A mutant 3F92 ; 2.23 ; Crystal structure of ubiquitin-conjugating enzyme E2-25kDa (Huntington Interacting Protein 2) M172A mutant crystallized at pH 8.5 5V0R ; 1.55 ; Crystal structure of ubiquitin-conjugating enzyme from Naegleria fowleri with modified Cys99 6MJ9 ; 1.85 ; CRYSTAL STRUCTURE OF UBIQUITIN-CONJUGATING ENZYME FROM NAEGLERIA FOWLERI, APO FORM 5XPK ; 2.274 ; Crystal structure of ubiquitin-k6mimic 6P0Q ; 1.72 ; Crystal Structure of Ubiquitin-like Domain of Human WDR12 2ZEQ ; 1.65 ; Crystal structure of ubiquitin-like domain of murine Parkin 6QLH ; 1.57 ; Crystal structure of UbiX in complex with reduced FMN and isopentyl monophosphate 4RHF ; 1.764 ; Crystal structure of UbiX mutant V47S from Colwellia psychrerythraea 34H 4RHE ; 2.003 ; Crystal structure of UbiX, an aromatic acid decarboxylase from the Colwellia psychrerythraea 34H 6M8T ; 1.67 ; Crystal structure of UbiX-like FMN prenyltransferase AF1214 from Archaeoglobus fulgidus, FMN complex 6M8U ; 2.221 ; Crystal structure of UbiX-like FMN prenyltransferase AF1214 from Archaeoglobus fulgidus, prenylated-FMN complex 6M8V ; 2.221 ; Crystal structure of UbiX-like FMN prenyltransferase MJ0101 from Methanocaldococcus jannaschii, FMN complex 8HDA ; 1.93 ; Crystal structure of Ubl1 (residues 18-111) of SARS-CoV-2 8XAB ; 1.49 ; Crystal structure of Ubl1 domain of nonstructural protein 3 of SARS-CoV-2 6P5L ; 3.296 ; Crystal Structure of Ubl123 with an EZH2 peptide 3SHQ ; 1.96 ; Crystal Structure of UBLCP1 7WUK ; 1.63 ; Crystal structure of UBR bof from PRT6 7WUL ; 1.58 ; Crystal structure of UBR bof from PRT6 (RDG pH5.5) 7WUN ; 1.53 ; Crystal structure of UBR bof from PRT6 (RSG) 7WUM ; 1.58 ; Crystal structure of UBR box from PRT6 (RDG pH 8.5) 8J9Q ; 2.18 ; Crystal structure of UBR box of UBR4 apo 8J9R ; 1.65 ; Crystal structure of UBR box of YIFS-UBR4 5VMD ; 2.202 ; Crystal structure of UBR-box from UBR6 in a domain-swapping conformation 3VHS ; 1.9 ; Crystal structure of UBZ of human WRNIP1 4UF5 ; 3.7 ; Crystal structure of UCH-L5 in complex with inhibitory fragment of INO80G 3IHR ; 2.95 ; Crystal Structure of Uch37 4WLP ; 3.102 ; Crystal structure of UCH37-NFRKB Inhibited Deubiquitylating Complex 1XD3 ; 1.45 ; Crystal structure of UCHL3-UbVME complex 6CKY ; 1.8 ; Crystal structure of UcmS2 5VWM ; 1.8 ; Crystal structure of UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase (LpxC) from Pseudomonas aeruginosa in complex with CHIR-090 inhibitor 3NKL ; 1.9 ; Crystal Structure of UDP-D-Quinovosamine 4-Dehydrogenase from Vibrio fischeri 6O87 ; 1.75 ; Crystal Structure of UDP-dependent glucosyltransferases (UGT) from Stevia rebaudiana in complex with UDP 6O88 ; 1.99 ; Crystal Structure of UDP-dependent glucosyltransferases (UGT) from Stevia rebaudiana in complex with UDP and rebaudioside A 3HDQ ; 2.36 ; Crystal structure of UDP-galactopyranose mutase (oxidized form) in complex with substrate 3HDY ; 2.4 ; Crystal Structure of UDP-galactopyranose mutase (reduced form) in complex with substrate 3UKA ; 2.64 ; CRYSTAL STRUCTURE OF UDP-galactopyranose mutase from Aspergillus fumigatus 3UKL ; 2.63 ; Crystal structure of UDP-galactopyranose mutase from Aspergillus fumigatus in complex with UDP 3UKH ; 2.3 ; Crystal structure of udp-galactopyranose mutase from Aspergillus fumigatus in complex with UDPGALP (non-reduced) 3UKF ; 2.5 ; CRYSTAL STRUCTURE OF UDP-galactopyranose mutase from Aspergillus fumigatus in complex with UDPgalp (reduced) 4XGK ; 2.652 ; Crystal structure of UDP-galactopyranose mutase from Corynebacterium diphtheriae in complex with 2-[4-(4-chlorophenyl)-7-(2-thienyl)-2-thia-5,6,8,9-tetrazabicyclo[4.3.0]nona-4,7,9-trien-3-yl]acetic 3MJ4 ; 2.65 ; Crystal structure of UDP-galactopyranose mutase in complex with phosphonate analog of UDP-galactopyranose 3HE3 ; 2.4 ; Crystal Structure of UDP-galactopyranose mutase in complex with UDP 3ICP ; 2.01 ; Crystal Structure of UDP-galactose 4-epimerase 3KO8 ; 1.8 ; Crystal Structure of UDP-galactose 4-epimerase 1LRL ; 1.8 ; Crystal Structure of UDP-Galactose 4-Epimerase Mutant Y299C Complexed with UDP-Glucose 4LIS ; 2.8 ; Crystal Structure of UDP-galactose-4-epimerase from Aspergillus nidulans 7XPP ; 2.6 ; Crystal Structure of UDP-Glc/GlcNAc 4-Epimerase with NAD 7XPO ; 1.25 ; Crystal Structure of UDP-Glc/GlcNAc 4-Epimerase with NAD/UDP-Glc 7XPQ ; 2.15 ; Crystal Structure of UDP-Glc/GlcNAc 4-Epimerase with NAD/UDP-GlcNAc 4ZHT ; 2.69 ; Crystal structure of UDP-GlcNAc 2-epimerase 6VLC ; 2.15 ; Crystal structure of UDP-GlcNAc 2-epimerase from Neisseria meningitidis bound to UDP-GlcNAc 5XVS ; 2.383 ; Crystal structure of UDP-GlcNAc 2-epimerase NeuC complexed with UDP 5ZLT ; 2.5 ; Crystal structure of UDP-GlcNAc 2-epimerase NeuC complexed with UDP 2GN8 ; 2.1 ; Crystal structure of UDP-GlcNAc inverting 4,6-dehydratase in complex with NADP and UDP 2GNA ; 2.6 ; Crystal structure of UDP-GlcNAc inverting 4,6-dehydratase in complex with NADP and UDP-Gal 2GN9 ; 2.8 ; Crystal structure of UDP-GlcNAc inverting 4,6-dehydratase in complex with NADP and UDP-Glc 2GN6 ; 2.7 ; Crystal structure of UDP-GlcNAc inverting 4,6-dehydratase in complex with NADP and UDP-GlcNAc 2GN4 ; 1.9 ; Crystal structure of UDP-GlcNAc inverting 4,6-dehydratase in complex with NADPH and UDP-GlcNAc 3EHE ; 1.87 ; Crystal structure of UDP-glucose 4 epimerase (galE-1) from Archaeoglobus fulgidus 2C20 ; 2.7 ; CRYSTAL STRUCTURE OF UDP-GLUCOSE 4-EPIMERASE 7YSY ; 2.16 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) co-crystallized with UDP-N-acetylgalactosamine from Mycobacterium tuberculosis 7YSM ; 1.87 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) co-crystallized with UDP-N-acetylglucosamine from Mycobacterium tuberculosis 7YS8 ; 2.02 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) from Mycobacterium tuberculosis 7YST ; 1.88 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) in complex with both UDP-glucose and UDP-galactose in chain B from Mycobacterium tuberculosis 7YS9 ; 1.65 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) in complex with both UDP-Glucose and UDP-Galactose in chainA from Mycobacterium tuberculosis 7YT0 ; 1.76 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) in complex with UDP-galactose from Mycobacterium tuberculosis 7YSA ; 1.95 ; Crystal Structure of UDP-glucose 4-epimerase (Rv3634c) in complex with UDP-glucose in chain A and UDP-galactose in chain B from Mycobacterium tuberculosis 4ZRM ; 1.9 ; Crystal Structure of UDP-Glucose 4-Epimerase (TM0509) from Hyperthermophilic Eubacterium Thermotoga maritima 4ZRN ; 2.0 ; Crystal Structure of UDP-Glucose 4-Epimerase (TM0509) with UDP-glucose from Hyperthermophilic Eubacterium Thermotoga Maritima 6K0G ; 1.8 ; Crystal Structure of UDP-glucose 4-epimerase from Bifidobacterium longum in complex with NAD+ and UDP 6K0I ; 1.8 ; Crystal Structure of UDP-glucose 4-epimerase from Bifidobacterium longum in complex with NAD+ and UDP-Glc 6K0H ; 2.0 ; Crystal Structure of UDP-glucose 4-epimerase from Bifidobacterium longum in complex with NAD+ and UDP-GlcNAc 4WOK ; 1.85 ; Crystal structure of UDP-glucose 4-epimerase from Brucella ovis in complex with NAD 3GG2 ; 1.7 ; Crystal structure of UDP-glucose 6-dehydrogenase from Porphyromonas gingivalis bound to product UDP-glucuronate 3PJG ; 2.7 ; Crystal structure of UDP-glucose dehydrogenase from Klebsiella pneumoniae complexed with product UDP-glucuronic acid 3GUE ; 1.92 ; Crystal Structure of UDP-glucose phosphorylase from Trypanosoma Brucei, (Tb10.389.0330) 2PA4 ; 2.0 ; Crystal structure of UDP-glucose pyrophosphorylase from Corynebacteria glutamicum in complex with magnesium and UDP-glucose 5NZM ; 2.35 ; Crystal structure of UDP-glucose pyrophosphorylase from Leishmania major in complex with murrayamine-I 5NZK ; 2.45 ; Crystal structure of UDP-glucose pyrophosphorylase from Leishmania major in complex with phenylalanine 5NZL ; 2.4 ; Crystal structure of UDP-glucose pyrophosphorylase from Leishmania major in complex with resveratrol 5WEG ; 2.0 ; Crystal Structure of UDP-glucose pyrophosphorylase from Sugarcane 8B31 ; 1.75 ; Crystal structure of UDP-glucose pyrophosphorylase from Thermocrispum agreste DSM 44070 8B6D ; 2.1 ; Crystal structure of UDP-glucose pyrophosphorylase from Thermocrispum agreste DSM 44070 in complex with UDP 8B68 ; 1.6 ; Crystal structure of UDP-glucose pyrophosphorylase from Thermocrispum agreste DSM 44070 in complex with UDP-glucose 5NZJ ; 1.95 ; Crystal structure of UDP-glucose pyrophosphorylase G45Y mutant from Leishmania major in complex with UDP-glucose 3R2W ; 3.6 ; Crystal Structure of UDP-glucose Pyrophosphorylase of Homo Sapiens 5NZI ; 2.05 ; Crystal structure of UDP-glucose pyrophosphorylase S374F mutant from Leishmania major in complex with UDP-glucose 5NZG ; 1.6 ; Crystal structure of UDP-glucose pyrophosphorylase S374W mutant from Leishmania major in complex with UDP-glucose 5NZH ; 2.9 ; Crystal structure of UDP-glucose pyrophosphorylase V402W mutant from Leishmania major 5J49 ; 1.8 ; Crystal structure of UDP-glucose pyrophosporylase / UTP-glucose-1-phosphate uridylyltransferase from Burkholderia xenovorans 7KN1 ; 1.45 ; Crystal structure of UDP-glucose-4-epimerase (galE) from Stenotrophomonas maltophila with bound NAD and formylated UDP-arabinopyranose 3WC4 ; 1.85 ; Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea 4REM ; 2.55 ; Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in complex with delphinidin 4REL ; 1.754 ; Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in complex with kaempferol 4REN ; 2.704 ; Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in complex with petunidin 4WHM ; 1.851 ; Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in complex with UDP 1IIR ; 1.8 ; Crystal Structure of UDP-glucosyltransferase GtfB 5V2K ; 2.002 ; Crystal structure of UDP-glucosyltransferase, UGT74F2 (T15A), with UDP and 2-bromobenzoic acid 5V2J ; 1.8 ; Crystal structure of UDP-glucosyltransferase, UGT74F2 (T15S), with UDP and 2-bromobenzoic acid 5U6N ; 2.001 ; Crystal structure of UDP-glucosyltransferase, UGT74F2 (T15S), with UDP and salicylic acid 5U6S ; 1.996 ; Crystal structure of UDP-glucosyltransferase, UGT74F2, with UDP and 2-bromobenzoic acid 5U6M ; 2.568 ; Crystal structure of UDP-glucosyltransferase, UGT74F2, with UDP and salicylic acid 6ZLA ; 2.2 ; Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with NAD 6ZL6 ; 1.7 ; Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP and NAD 6ZLL ; 1.85 ; Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Galacturonic acid and NAD 6ZLD ; 1.8 ; Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid and NAD 6ZLJ ; 1.7 ; Crystal Structure of UDP-Glucuronic acid 4-epimerase Y149F mutant from Bacillus cereus in complex with UDP-4-DEOXY-4-FLUORO-Glucuronic acid and NAD 5JZX ; 2.2 ; Crystal Structure of UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) from Mycobacterium tuberculosis 7ORZ ; 1.85 ; Crystal structure of UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) from Pseudomonas aeruginosa in complex with FAD and a pyrazole derivative (fragment 18) 7OSQ ; 2.07 ; Crystal structure of UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) from Pseudomonas aeruginosa in complex with FAD and a pyrazole derivative (fragment 18) 7OR2 ; 2.35 ; Crystal structure of UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) from Pseudomonas aeruginosa in complex with FAD and a pyrazole derivative (fragment 4) 2GQT ; 1.3 ; Crystal Structure of UDP-N-Acetylenolpyruvylglucosamine Reductase (MurB) from Thermus caldophilus 2GQU ; 1.6 ; Crystal Structure of UDP-N-Acetylenolpyruvylglucosamine Reductase (MurB) from Thermus caldophilus 4MO2 ; 2.0 ; Crystal Structure of UDP-N-acetylgalactopyranose mutase from Campylobacter jejuni 6WFM ; 1.95 ; Crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) from Stenotrophomonas maltophilia K279a 5BQ2 ; 1.7 ; Crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (UDP-N-acetylglucosamine enolpyruvyl transferase, EPT) from Pseudomonas aeruginosa 2YVW ; 1.81 ; Crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Aquifex aeolicus VF5 1O6C ; 2.9 ; Crystal structure of UDP-N-acetylglucosamine 2-epimerase 1V4V ; 1.8 ; Crystal Structure Of UDP-N-Acetylglucosamine 2-Epimerase From Thermus Thermophilus HB8 1J2Z ; 2.1 ; Crystal structure of UDP-N-acetylglucosamine acyltransferase 2RL1 ; 2.2 ; Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-N-acetylglucosamine 2RL2 ; 2.3 ; Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-N-acetylglucosamine and fosfomycin 5JXX ; 3.001 ; Crystal structure of UDP-N-acetylglucosamine O-acyltransferase (LpxA) from Moraxella catarrhalis RH4. 1VM8 ; 2.5 ; Crystal structure of UDP-N-acetylglucosamine pyrophosphorylase (Agx2) from Mus musculus at 2.50 A resolution 1VGV ; 2.31 ; Crystal structure of UDP-N-acetylglucosamine_2 epimerase 1J6U ; 2.3 ; Crystal structure of UDP-N-acetylmuramate-alanine ligase MurC (TM0231) from Thermotoga maritima at 2.3 A resolution 8EGM ; 2.2 ; Crystal Structure of UDP-N-acetylmuramate-L-alanine ligase (UDP-N-acetylmuramoyl-L-alanine synthetase, MurC) Pseudomonas aeruginosa in complex with compound AZ13644908 8EGN ; 1.95 ; Crystal Structure of UDP-N-acetylmuramate-L-alanine ligase (UDP-N-acetylmuramoyl-L-alanine synthetase, MurC) Pseudomonas aeruginosa in complex with ligand AZ-13643701 8EWA ; 1.85 ; Crystal Structure of UDP-N-acetylmuramate-L-alanine ligase (UDP-N-acetylmuramoyl-L-alanine synthetase, MurC) Pseudomonas aeruginosa in complex with ligand AZ-13644923 7BVA ; 2.303 ; Crystal structure of UDP-N-acetylmuramic Acid L-alanine ligase (MurC) from Mycobacterium bovis 7BVB ; 3.191 ; Crystal structure of UDP-N-acetylmuramic Acid L-alanine ligase (MurC) from Mycobacterium bovis in complex with UDP-N-acetylglucosamine 1P31 ; 1.85 ; Crystal Structure of UDP-N-acetylmuramic acid:L-alanine Ligase (MurC) from Haemophilus influenzae 1P3D ; 1.7 ; Crystal Structure of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) in Complex with UMA and ANP. 7SY9 ; 2.75 ; Crystal Structure of UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from Pseudomonas aeruginosa PAO1 7U35 ; 1.95 ; Crystal Structure of UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from Pseudomonas aeruginosa PAO1 in complex with ADP 8DP2 ; 1.6 ; Crystal Structure of UDP-N-acetylmuramoylalanine--D-glutamate ligase (MurD) from Pseudomonas aeruginosa PAO1 in complex with UMA (Uridine-5'-diphosphate-N-acetylmuramoyl-L-Alanine) 7SIR ; 1.65 ; Crystal Structure of UDP-N-acetylmuramoylalanine-D-glutamate ligase from Acinetobacter baumannii AB5075-UW 7TI7 ; 1.5 ; Crystal Structure of UDP-N-acetylmuramoylalanine-D-glutamate ligase from Acinetobacter baumannii AB5075-UW in complex with ADP 6KVL ; 1.998 ; Crystal structure of UDP-RebB-SrUGT76G1 6KVK ; 2.397 ; Crystal structure of UDP-Sm-SrUGT76G1 6KVI ; 2.598 ; Crystal structure of UDP-SrUGT76G1 4HFQ ; 1.39 ; Crystal structure of UDP-X diphosphatase 6KVJ ; 2.499 ; Crystal structure of UDPX-SrUGT76G1 7NW1 ; 1.95 ; Crystal structure of UFC1 in complex with UBA5 7NVJ ; 2.2 ; Crystal structure of UFC1 Y110A & F121A 3M63 ; 2.4 ; Crystal structure of Ufd2 in complex with the ubiquitin-like (UBL) domain of Dsk2 3M62 ; 2.4 ; Crystal structure of Ufd2 in complex with the ubiquitin-like (UBL) domain of Rad23 7W3N ; 1.6 ; Crystal structure of Ufm1 fused to UFBP1 UFIM 5HKH ; 2.55 ; Crystal structure of Ufm1 in complex with UBA5 5EJJ ; 2.8 ; Crystal structure of UfSP from C.elegans 2I5K ; 3.1 ; Crystal structure of Ugp1p 6R1B ; 2.27 ; Crystal structure of UgpB from Mycobacterium tuberculosis in complex with glycerophosphocholine 6L90 ; 2.02 ; Crystal structure of ugt transferase enzyme 6L8Z ; 2.1 ; Crystal structure of ugt transferase mutant in complex with UPG 6L8W ; 2.05 ; Crystal structure of ugt transferase mutant2 7VLB ; 3.0 ; Crystal structure of UGT109A1 from Bacillus 7Q3S ; 1.59 ; Crystal structure of UGT706F8 from Zea mays 8CGQ ; 2.04 ; Crystal structure of UGT708A6 with UDP 8HOK ; 2.15 ; crystal structure of UGT71AP2 8HOJ ; 2.9 ; Crystal structure of UGT71AP2 in complex with UDP 8INO ; 2.3 ; Crystal structure of UGT74AN3 in complex UDP and PER 8IN7 ; 1.9 ; Crystal structure of UGT74AN3-UDP 8INA ; 1.86 ; Crystal structure of UGT74AN3-UDP 8INV ; 1.85 ; Crystal structure of UGT74AN3-UDP-BUF 8INJ ; 1.76 ; Crystal structure of UGT74AN3-UDP-DIG 8IND ; 1.85 ; Crystal structure of UGT74AN3-UDP-RES 7ZER ; 1.42 ; Crystal structure of UGT85B1 from Sorghum bicolor in complex with UDP 7ZF0 ; 1.5 ; Crystal structure of UGT85B1 from Sorghum bicolor in complex with UDP and p-hydroxymandelonitrile 6M2V ; 3.0 ; Crystal structure of UHRF1 SRA complexed with fully-mCHG DNA. 6B9M ; 1.68 ; Crystal structure of UHRF1 TTD domain in complex with the polybasic region 5JUE ; 1.65 ; Crystal Structure of UIC2 Fab 7ATH ; 2.343 ; Crystal structure of UipA 7ATK ; 2.855 ; Crystal structure of UipA in complex with Uranium 2WOM ; 3.2 ; Crystal Structure of UK-453061 bound to HIV-1 Reverse Transcriptase (K103N). 2WON ; 2.8 ; Crystal Structure of UK-453061 bound to HIV-1 Reverse Transcriptase (wild-type). 6NYP ; 2.7 ; Crystal structure of UL144/BTLA complex 6QAS ; 1.75 ; Crystal structure of ULK1 in complexed with PF-03814735 8SV9 ; 2.3 ; Crystal structure of ULK1 kinase domain with inhibitor MR-2088 6YID ; 2.7 ; Crystal structure of ULK2 in complex with SBI-0206965 6QAT ; 2.77 ; Crystal structure of ULK2 in complexed with hesperadin 6QAU ; 2.48 ; Crystal structure of ULK2 in complexed with MRT67307 6QAV ; 2.05 ; Crystal structure of ULK2 in complexed with MRT68921 2VA1 ; 2.5 ; Crystal structure of UMP kinase from Ureaplasma parvum 7BIX ; 3.12 ; Crystal structure of UMPK from M. tuberculosis in complex with UDP and UTP (C2 form) 7BL7 ; 3.33 ; Crystal structure of UMPK from M. tuberculosis in complex with UDP and UTP (P21212 form) 1M7N ; 2.7 ; Crystal Structure of Unactivated APO Insulin-like Growth Factor-1 Receptor Kinase Domain 6ITT ; 2.103 ; Crystal structure of unactivated c-KIT in complex with compound 1EJ7 ; 2.45 ; CRYSTAL STRUCTURE OF UNACTIVATED TOBACCO RUBISCO WITH BOUND PHOSPHATE IONS 3WHI ; 2.4 ; Crystal structure of unautoprocessed form of IS1-inserted Pro-subtilisin E 2Z2Z ; 1.87 ; Crystal structure of unautoprocessed form of Tk-subtilisin soaked by 10mM CaCl2 5CIP ; 2.48 ; Crystal Structure of Unbound 4E10 5JOR ; 2.206 ; Crystal structure of unbound anti-glycan antibody Fab14.22 at 2.2 A 6AVN ; 2.5 ; Crystal structure of unbound anti-HIV antibody Fab PGV19 at 2.5 A 1SGZ ; 2.0 ; Crystal Structure of Unbound Beta-Secretase Catalytic Domain. 4S2P ; 1.7 ; Crystal structure of unbound OXA-48 4X1W ; 1.95 ; Crystal structure of unbound RHDVb P domain 2A5A ; 2.08 ; Crystal structure of unbound SARS coronavirus main peptidase in the space group C2 5IFA ; 1.821 ; Crystal structure of unbound VRC01c-HuGL2 Fab from an HIV-1 naive donor at 1.82 A 5O44 ; 3.14 ; Crystal structure of unbranched mixed tri-Ubiquitin chain containing K48 and K63 linkages. 6H6A ; 2.0 ; Crystal structure of UNC119 in complex with LCK peptide 7OK6 ; 1.949 ; Crystal structure of UNC119B in complex with LCK peptide 4W9R ; 2.703 ; Crystal structure of uncharacterised protein Coch_1243 from Capnocytophaga ochracea DSM 7271 5T2X ; 2.303 ; Crystal structure of Uncharacterised protein lpg1670 5COF ; 1.35 ; Crystal structure of Uncharacterised protein Q1R1X2 from Escherichia coli UTI89 2IEC ; 2.33 ; Crystal Structure of uncharacterized conserved archael protein from Methanopyrus kandleri 1Q9U ; 1.8 ; Crystal structure of uncharacterized conserved protein DUF302 from Bacillus stearothermophilus 2YZS ; 2.0 ; Crystal structure of uncharacterized conserved protein from Aquifex aeolicus 2YWI ; 1.6 ; Crystal structure of uncharacterized conserved protein from Geobacillus kaustophilus 2YYT ; 2.3 ; Crystal structure of uncharacterized conserved protein from Geobacillus kaustophilus 2YYU ; 2.2 ; Crystal structure of uncharacterized conserved protein from Geobacillus kaustophilus 2YWJ ; 1.9 ; Crystal structure of uncharacterized conserved protein from Methanocaldococcus jannaschii 2YZI ; 2.25 ; Crystal structure of uncharacterized conserved protein from Pyrococcus horikoshii 2YZQ ; 1.63 ; Crystal structure of uncharacterized conserved protein from Pyrococcus horikoshii 2YYV ; 1.65 ; Crystal structure of uncharacterized conserved protein from Thermotoga maritima 2YZO ; 1.85 ; Crystal structure of uncharacterized conserved protein from Thermotoga maritima 2ZBU ; 2.1 ; Crystal structure of uncharacterized conserved protein from Thermotoga maritima 2ZBV ; 2.05 ; Crystal structure of uncharacterized conserved protein from Thermotoga maritima 2Z06 ; 2.2 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus 2YWA ; 3.2 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2YZT ; 1.8 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2YZY ; 1.6 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2Z07 ; 2.1 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2Z08 ; 1.55 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2Z09 ; 1.65 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2Z0J ; 1.5 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 2Z3V ; 1.65 ; Crystal structure of uncharacterized conserved protein from Thermus thermophilus HB8 4PIB ; 2.0 ; Crystal Structure of Uncharacterized Conserved Protein PixA from Burkholderia thailandensis 3H8U ; 1.8 ; Crystal structure of uncharacterized conserved protein with double-stranded beta-helix domain (YP_001338853.1) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 at 1.80 A resolution 2R5X ; 2.04 ; Crystal structure of uncharacterized conserved protein YugN from Geobacillus kaustophilus HTA426 4RGP ; 2.299 ; Crystal Structure of Uncharacterized CRISPR/Cas System-associated Protein Csm6 from Streptococcus mutans 4HCF ; 1.703 ; Crystal Structure of Uncharacterized Cupredoxin-like Domain Protein Cupredoxin_1 with Copper Bound from Bacillus anthracis 5TK2 ; 1.4 ; Crystal Structure of Uncharacterized Cupredoxin-like domain protein from Bacillus anthracis 5TK4 ; 1.46 ; Crystal Structure of Uncharacterized Cupredoxin-like Domain Protein from Bacillus anthracis 3FEZ ; 2.1 ; Crystal structure of uncharacterized ferredoxin fold protein related to antibiotic biosynthesis monooxygenases (YP_014836.1) from LISTERIA MONOCYTOGENES 4b F2365 at 2.10 A resolution 4RCK ; 2.999 ; Crystal Structure of Uncharacterized Membrane Spanning Protein from Vibrio fischeri 3BV6 ; 1.8 ; Crystal structure of uncharacterized metallo protein from Vibrio cholerae with beta-lactamase like fold 2OYO ; 1.51 ; Crystal structure of Uncharacterized peroxidase-related protein (YP_604910.1) from Deinococcus geothermalis DSM 11300 at 1.51 A resolution 2PFX ; 1.7 ; Crystal structure of uncharacterized peroxidase-related protein (YP_614459.1) from Silicibacter sp. TM1040 at 1.70 A resolution 2PR7 ; 1.44 ; Crystal structure of uncharacterized protein (NP_599989.1) from Corynebacterium glutamicum ATCC 13032 Kitasato at 1.44 A resolution 2Q22 ; 2.11 ; Crystal structure of uncharacterized protein (YP_323524.1) from Anabaena variabilis ATCC 29413 at 2.11 A resolution 2Q03 ; 1.8 ; Crystal structure of uncharacterized protein (YP_563039.1) from Shewanella denitrificans OS217 at 1.80 A resolution 3RAG ; 1.8 ; Crystal Structure of Uncharacterized protein Aaci_0196 from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 2QNI ; 1.8 ; Crystal structure of uncharacterized protein Atu0299 2QPV ; 2.35 ; Crystal structure of uncharacterized protein Atu1531 2QV5 ; 1.9 ; Crystal structure of uncharacterized protein ATU2773 from Agrobacterium tumefaciens C58 5JBR ; 1.65 ; Crystal structure of uncharacterized protein Bcav_2135 from Beutenbergia cavernae 2QUP ; 2.0 ; Crystal structure of uncharacterized protein BH1478 from Bacillus halodurans 3FYF ; 2.2 ; Crystal structure of uncharacterized protein bvu_3222 from bacteroides vulgatus 3FF4 ; 2.1 ; Crystal structure of uncharacterized protein CHU_1412 3BZB ; 2.79 ; Crystal structure of uncharacterized protein CMQ451C from the primitive red alga Cyanidioschyzon merolae 3HLU ; 2.65 ; Crystal Structure of Uncharacterized Protein Conserved in Bacteria DUF2179 from Eubacterium ventriosum 3FLJ ; 2.0 ; Crystal structure of uncharacterized protein conserved in bacteria with a cystatin-like fold (YP_168589.1) from SILICIBACTER POMEROYI DSS-3 at 2.00 A resolution 3FEQ ; 2.63 ; Crystal structure of uncharacterized protein eah89906 6OSX ; 1.45 ; Crystal structure of uncharacterized protein ECL_02694 3DBY ; 2.1 ; Crystal structure of uncharacterized protein from Bacillus cereus G9241 (CSAP Target) 3GW4 ; 2.49 ; Crystal structure of uncharacterized protein from Deinococcus radiodurans. Northeast Structural Genomics Consortium Target DrR162B. 3FDI ; 2.2 ; Crystal structure of uncharacterized protein from Eubacterium ventriosum ATCC 27560. 3PES ; 1.3 ; Crystal structure of uncharacterized protein from Pseudomonas phage YuA 4IQN ; 1.75 ; Crystal structure of uncharacterized protein from Salmonella enterica subsp. enterica serovar typhimurium str. 14028s 3F42 ; 1.78 ; Crystal structure of uncharacterized protein HP0035 from Helicobacter pylori 3BVC ; 2.75 ; Crystal structure of uncharacterized protein Ism_01780 from Roseovarius nubinhibens ISM 2PW6 ; 2.27 ; Crystal structure of uncharacterized protein JW3007 from Escherichia coli K12 4LQB ; 1.72 ; Crystal structure of uncharacterized protein Kfla3161 5L0L ; 1.8 ; Crystal structure of Uncharacterized protein LPG0439 5BQ9 ; 2.2785 ; Crystal structure of uncharacterized protein lpg1496 Legionella pneumophila subsp. pneumophila 5SUJ ; 2.356 ; Crystal structure of uncharacterized protein LPG2148 from Legionella pneumophila 5L1A ; 2.4 ; Crystal structure of uncharacterized protein LPG2271 from Legionella pneumophila 3CAX ; 2.43 ; Crystal structure of uncharacterized protein PF0695 1VAJ ; 1.82 ; Crystal Structure of Uncharacterized Protein PH0010 From Pyrococcus horikoshii 3BS4 ; 1.6 ; Crystal structure of uncharacterized protein PH0321 from Pyrococcus horikoshii in complex with an unknown peptide 1V30 ; 1.4 ; Crystal Structure Of Uncharacterized Protein PH0828 From Pyrococcus horikoshii 1IXL ; 1.94 ; Crystal structure of uncharacterized protein PH1136 from Pyrococcus horikoshii 3K4I ; 1.69 ; CRYSTAL STRUCTURE OF uncharacterized protein PSPTO_3204 from Pseudomonas syringae pv. tomato str. DC3000 5COM ; 1.85 ; Crystal structure of Uncharacterized Protein Q187F5 from Clostridium difficile 630 5CQV ; 1.9 ; Crystal structure of uncharacterized protein Q8DWV2 from Streptococcus agalactiae 3C9P ; 1.96 ; Crystal structure of uncharacterized protein SP1917 1WOZ ; 1.94 ; Crystal structure of uncharacterized protein ST1454 from Sulfolobus tokodaii 1VE0 ; 2.0 ; Crystal structure of uncharacterized protein ST2072 from Sulfolobus tokodaii 1WVT ; 2.3 ; Crystal structure of uncharacterized protein ST2180 from Sulfolobus tokodaii 3RMS ; 2.133 ; Crystal structure of uncharacterized protein Svir_20580 from Saccharomonospora viridis 3RMQ ; 1.85 ; Crystal structure of uncharacterized protein Svir_20580 from Saccharomonospora viridis (V71M mutant) 3JYG ; 1.95 ; Crystal structure of uncharacterized protein WS1659 from Wolinella succinogenes 2RJB ; 2.6 ; Crystal structure of uncharacterized protein YdcJ (SF1787) from Shigella flexneri which includes domain DUF1338. Northeast Structural Genomics Consortium target SfR276 3RBY ; 2.301 ; Crystal structure of uncharacterized protein YLR301w from Saccharomycces cerevisiae 3KVP ; 2.404 ; Crystal Structure of Uncharacterized protein ymzC Precursor from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR378A 4MNU ; 1.898 ; Crystal Structure of Uncharacterized SlyA-like Transcription Regulator from Listeria monocytogenes 4ML9 ; 1.841 ; Crystal Structure of Uncharacterized TIM Barrel Protein with the Conserved Phosphate Binding Site fromSebaldella termitidis 3IRS ; 1.76 ; CRYSTAL STRUCTURE OF UNCHARACTERIZED TIM-BARREL PROTEIN BB4693 FROM Bordetella bronchiseptica 3K4W ; 1.92 ; CRYSTAL STRUCTURE OF Uncharacterized Tim-Barrel Protein Bb4693 From Bordetella Bronchiseptica 3C9G ; 2.3 ; Crystal structure of uncharacterized UPF0201 protein AF_135 4O47 ; 1.9 ; Crystal structure of uncleaved guinea pig L-asparaginase type III 1OVA ; 1.95 ; CRYSTAL STRUCTURE OF UNCLEAVED OVALBUMIN AT 1.95 ANGSTROMS RESOLUTION 8EYJ ; 1.738 ; Crystal Structure of uncleaved SARS-CoV-2 Main Protease C145S mutant in complex with Nirmatrelvir 4IHE ; 1.5 ; Crystal Structure of Uncleaved ThnT T282A 3S3U ; 1.6 ; Crystal Structure of Uncleaved ThnT T282C 4IHD ; 1.65 ; Crystal Structure of Uncleaved ThnT T282C, derivatized at the active site with EtHg 1K92 ; 1.6 ; Crystal Structure of Uncomplexed E. coli Argininosuccinate Synthetase 3IXO ; 1.7 ; Crystal Structure of uncomplexed HIV_1 Protease Subtype A 6FF8 ; 2.13 ; Crystal structure of uncomplexed Rab32 in the active GTP-bound state at 2.13 Angstrom resolution 1KW2 ; 2.15 ; CRYSTAL STRUCTURE OF UNCOMPLEXED VITAMIN D-BINDING PROTEIN 3UFK ; 2.1 ; Crystal structure of UndA complexed with Iron Nitrilotriacetate 3UFH ; 2.23 ; Crystal structure of UndA with Iron Citrate bound 1F75 ; 2.2 ; CRYSTAL STRUCTURE OF UNDECAPRENYL DIPHOSPHATE SYNTHASE FROM MICROCOCCUS LUTEUS B-P 26 1X07 ; 2.2 ; Crystal structure of undecaprenyl pyrophosphate synthase in complex with Mg and IPP 1X06 ; 1.9 ; Crystal structure of undecaprenyl pyrophosphate synthase in complex with Mg, IPP and Fspp 1V7U ; 2.35 ; Crystal structure of Undecaprenyl Pyrophosphate Synthase with farnesyl pyrophosphate 2OYT ; 2.0 ; Crystal Structure of UNG2/DNA(TM) 4Z2A ; 1.89 ; Crystal structure of unglycosylated apo human furin @1.89A 5BPM ; 1.83 ; Crystal structure of unhydrolyzed ATP bound human Hsp70 NBD double mutant E268Q+R272K. 1KLJ ; 2.44 ; Crystal structure of uninhibited factor VIIa 5TUN ; 1.62 ; Crystal structure of uninhibited human Cathepsin K at 1.62 Angstrom resolution 4WY2 ; 1.8 ; Crystal structure of universal stress protein E from Proteus mirabilis in complex with UDP-3-O-[(3R)-3-hydroxytetradecanoyl]-N-acetyl-alpha-glucosamine 2PFS ; 2.25 ; Crystal structure of universal stress protein from Nitrosomonas europaea 3TNJ ; 2.0 ; Crystal structure of universal stress protein from Nitrosomonas europaea with AMP bound 5AHW ; 2.15 ; Crystal structure of universal stress protein MSMEG_3811 in complex with cAMP 2OKQ ; 1.8 ; Crystal structure of unknown conserved ybaA protein from Shigella flexneri 4DCI ; 2.82 ; Crystal structure of unknown funciton protein from Synechococcus sp. WH 8102 5HX0 ; 1.851 ; Crystal structure of unknown function protein Dfer_1899 fromDyadobacter fermentans DSM 18053 3B48 ; 2.21 ; Crystal structure of unknown function protein EF1359 3M6J ; 1.9 ; Crystal structure of unknown function protein from Leptospirillum rubarum 3OMD ; 1.5 ; Crystal structure of unknown function protein from Leptospirillum rubarum 2QZG ; 2.09 ; Crystal structure of unknown function protein MMP1188 7M92 ; 2.35 ; Crystal structure of unknown function protein protein B9J08_000055 Candida auris 2QNG ; 1.4 ; Crystal structure of unknown function protein SAV2460 2QWV ; 2.6 ; Crystal structure of unknown function protein VCA1059 2OYZ ; 1.71 ; Crystal structure of unknown function protein VPA0057 from Vibrio parahaemolyticus (targeted domain 2-94) 2QHQ ; 1.76 ; Crystal structure of unknown function protein VPA0580 6UXT ; 1.797 ; Crystal structure of unknown function protein yfdX from Shigella flexneri 6LRF ; 2.05466 ; Crystal structure of unliganded AgrE 1T4K ; 2.5 ; Crystal Structure of Unliganded Aldolase Antibody 93F3 Fab 4KWT ; 1.86 ; Crystal structure of unliganded anabolic ornithine carbamoyltransferase from Vibrio vulnificus at 1.86 A resolution 4M61 ; 1.62 ; Crystal structure of unliganded anti-DNA Fab A52 3CGU ; 2.51 ; Crystal Structure of unliganded Argos 3R7D ; 2.196 ; Crystal Structure of Unliganded Aspartate Transcarbamoylase from Bacillus subtilis 8AMJ ; 2.02 ; Crystal structure of unliganded AUGUGGCAU duplex 3KLI ; 2.65 ; Crystal structure of unliganded AZT-resistant HIV-1 Reverse Transcriptase 3IBF ; 2.5 ; Crystal structure of unliganded caspase-7 4QF1 ; 2.4 ; Crystal structure of unliganded CH59UA, the inferred unmutated ancestor of the RV144 anti-HIV antibody lineage producing CH59 3ZNJ ; 2.1 ; Crystal structure of unliganded ClcF from R.opacus 1CP in crystal form 1. 3TH7 ; 2.1 ; Crystal structure of unliganded Co2+2-HAI (pH 7.0) 6X2O ; 2.551 ; Crystal Structure of unliganded CRM1(E571K)-Ran-RanBP1 6X2M ; 2.351 ; Crystal Structure of unliganded CRM1-Ran-RanBP1 4X1E ; 2.4 ; Crystal structure of unliganded E. coli transcriptional regulator RutR, W167A mutant 1DRA ; 1.9 ; CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING 1DRB ; 1.96 ; CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING 5DFR ; 2.3 ; CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING 7ZNZ ; 1.8 ; Crystal structure of unliganded form of FucOB, a GH95 family alpha-1,2-fucosidase from Akkermansia muciniphila 1EX6 ; 2.3 ; CRYSTAL STRUCTURE OF UNLIGANDED FORM OF GUANYLATE KINASE FROM YEAST 1ZNW ; 2.1 ; Crystal Structure Of Unliganded Form Of Mycobacterium tuberculosis Guanylate Kinase 2ANC ; 3.2 ; Crystal Structure Of Unliganded Form Of Oligomeric E.coli Guanylate Kinase 2GTY ; 1.3 ; Crystal structure of unliganded griffithsin 2Y7A ; 2.06 ; Crystal structure of unliganded GTB P156L 3TGT ; 1.9 ; Crystal structure of unliganded HIV-1 clade A/E strain 93TH057 gp120 core 3TGQ ; 3.4 ; Crystal structure of unliganded HIV-1 clade B strain YU2 gp120 core 3TGR ; 2.8 ; Crystal structure of unliganded HIV-1 clade C strain C1086 gp120 core 3TIH ; 4.0 ; Crystal structure of unliganded HIV-1 clade C strain ZM109F.PB4 gp120 core 6UTD ; 2.2 ; CRYSTAL STRUCTURE OF UNLIGANDED HIV-1 LM/HS CLADE A/E CRF01 GP120 CORE 6UTB ; 2.5 ; CRYSTAL STRUCTURE OF UNLIGANDED HIV-1 LM/HT CLADE A/E CRF01 GP120 CORE 1LY2 ; 1.8 ; Crystal structure of unliganded human CD21 SCR1-SCR2 (Complement receptor type 2) 2F7M ; 2.3 ; Crystal Structure of Unliganded Human FPPS 4XQR ; 2.15 ; Crystal structure of unliganded human FPPS at 2.15 angstrom resolution 5N9B ; 1.9 ; Crystal Structure of unliganded human IL-17RA 1LLS ; 1.8 ; CRYSTAL STRUCTURE OF UNLIGANDED MALTOSE BINDING PROTEIN WITH XENON 6YJQ ; 1.9 ; Crystal structure of unliganded MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation 6YJV ; 1.7 ; Crystal structure of unliganded MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain with a Lys329-Ile345 loop truncation, in complex with UDP-2-deoxy-2-fluoroglucose and biantennary pentasaccharide M592 6YJR ; 2.198 ; Crystal structure of unliganded MGAT5 (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase V) luminal domain. 6ZVO ; 1.371 ; Crystal structure of unliganded MLKL executioner domain 1EJD ; 1.55 ; Crystal structure of unliganded mura (type1) 1EJC ; 1.8 ; Crystal structure of unliganded mura (type2) 7QQF ; 2.43 ; Crystal structure of unliganded MYORG 2VUS ; 2.6 ; Crystal structure of unliganded NmrA-AreA zinc finger complex 3JVU ; 3.1 ; Crystal structure of unliganded P. aeruginosa PilT 7OJT ; 3.67 ; Crystal structure of unliganded PatA, a membrane associated acyltransferase from Mycobacterium smegmatis 2QYM ; 1.9 ; crystal structure of unliganded PDE4C2 3LFV ; 2.8 ; crystal structure of unliganded PDE5A GAF domain 5DVF ; 2.5 ; Crystal structure of unliganded periplasmic glucose binding protein (ppGBP) from P. putida CSV86 2CCK ; 2.21 ; CRYSTAL STRUCTURE OF UNLIGANDED S. AUREUS THYMIDYLATE KINASE 3OKM ; 2.4 ; Crystal structure of unliganded S25-39 3VYC ; 2.1 ; Crystal structure of unliganded Saccharomyces cerevisiae CRM1 (Xpo1p) 2ZKG ; 1.77 ; Crystal structure of unliganded SRA domain of mouse Np95 1NLZ ; 3.0 ; Crystal structure of unliganded traffic ATPase of the type IV secretion system of helicobacter pylori 4OJV ; 1.31 ; Crystal structure of unliganded yeast PDE1 4RJT ; 2.7 ; Crystal Structure of Unliganded, Full Length hUGDH at pH 7.0 1IM6 ; 1.74 ; CRYSTAL STRUCTURE OF UNLIGATED HPPK(R82A) FROM E.COLI AT 1.74 ANGSTROM RESOLUTION 1KBR ; 1.55 ; CRYSTAL STRUCTURE OF UNLIGATED HPPK(R92A) FROM E.COLI AT 1.55 ANGSTROM RESOLUTION 5YVY ; 3.2 ; Crystal structure of unlinked full length NS3 protein (eD4NS2BNS3) from DENV4 in closed conformation 6Y3B ; 1.59 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2110 7ZTM ; 1.45 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2128 7ZUM ; 1.75 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2130 7ZWK ; 2.0 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2162 7PGC ; 1.55 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2191 7ZV4 ; 1.69 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2195 7ZVV ; 1.75 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2196 7ZQ1 ; 1.52 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2205 7ZQF ; 1.68 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2206 7PG1 ; 1.95 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2221 7ZYS ; 1.26 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2227 8A15 ; 1.23 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2230 7O55 ; 1.95 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2231 7PFY ; 1.38 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2241 7PFQ ; 1.45 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2247 7OBV ; 1.3 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2248 8AQB ; 1.28 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2257 8AQK ; 1.2 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2258 7ZW5 ; 1.38 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2259 8AQA ; 1.35 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2260 7PFZ ; 1.45 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2267 7O2M ; 1.9 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2289 7ZPD ; 1.4 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2293 7OC2 ; 1.5 ; Crystal Structure of Unlinked NS2B-NS3 Protease from Zika Virus in Complex with Inhibitor MI-2295 7ZNO ; 1.7 ; Crystal Structure of Unlinked NS2B_NS3 Protease from Zika Virus in Complex with Boronate Inhibitor MI-2270 7ZMI ; 2.15 ; Crystal Structure of Unlinked NS2B_NS3 Protease from Zika Virus in Complex with Inhibitor MI-2113 7ZLD ; 1.61 ; Crystal Structure of Unlinked NS2B_NS3 Protease from Zika Virus in Complex with Inhibitor MI-2223 7ZLC ; 1.75 ; Crystal Structure of Unlinked NS2B_NS3 Protease from Zika Virus in Complex with Inhibitor MI-2224 8EIF ; 2.1 ; Crystal structure of unmodified Pseudomonas aeruginosa protein PA0709 4P70 ; 3.68 ; Crystal Structure of Unmodified tRNA Proline (CGG) Bound to Codon CCG on the Ribosome 5BYU ; 2.4 ; Crystal structure of unnamed thioesterase Ipg2867 from Legionella pneumophila 5DIO ; 2.6 ; Crystal structure of unnamed thioesterase lpg2867 from Legionella pneumophila, the D21A mutant 3N8V ; 3.05 ; Crystal Structure of Unoccupied Cyclooxygenase-1 6AEX ; 2.393 ; Crystal structure of unoccupied murine uPAR 3F6P ; 1.95 ; Crystal Structure of unphosphorelated receiver domain of YycF 2B1J ; 2.4 ; Crystal Structure of Unphosphorylated CheY Bound to the N-Terminus of FliM 1JPA ; 1.91 ; Crystal Structure of unphosphorylated EphB2 receptor tyrosine kinase and juxtamembrane region 6D3L ; 3.1 ; Crystal structure of unphosphorylated human PKR 6D3K ; 2.6 ; Crystal structure of unphosphorylated human PKR kinase domain in complex with ADP 4BKZ ; 2.2 ; Crystal structure of unphosphorylated Maternal Embryonic Leucine zipper Kinase (MELK) in complex with a benzodipyrazole inhibitor 4BL1 ; 2.6 ; Crystal structure of unphosphorylated Maternal Embryonic Leucine zipper Kinase (MELK) in complex with AMP-PNP 4BKY ; 1.83 ; Crystal structure of unphosphorylated Maternal Embryonic Leucine zipper Kinase (MELK) in complex with pyrrolopyrazole inhibitor 3A60 ; 2.8 ; Crystal structure of unphosphorylated p70S6K1 (Form I) 3A61 ; 3.43 ; Crystal structure of unphosphorylated p70S6K1 (Form II) 2PSQ ; 2.4 ; Crystal Structure of Unphosphorylated Unactivated Wild Type FGF Receptor 2 (FGFR2) Kinase Domain 6PB9 ; 2.109 ; Crystal structure of unsaturated fatty acid bound ToxT K231A from Vibrio cholerae strain SCE256 6P7R ; 1.8 ; Crystal structure of unsaturated fatty acid bound wild-type ToxT from Vibrio cholerae strain SCE256 2ZZR ; 1.75 ; Crystal structure of unsaturated glucuronyl hydrolase from Streptcoccus agalactiae 3ANJ ; 1.95 ; Crystal structure of unsaturated glucuronyl hydrolase from Streptcoccus agalactiae 3VXD ; 2.0 ; Crystal structure of unsaturated glucuronyl hydrolase mutant D115N from Streptcoccus agalactiae 3WUX ; 1.792 ; Crystal structure of unsaturated glucuronyl hydrolase mutant D115N/K370S from Streptococcus agalactiae 3ANI ; 2.5 ; Crystal structure of unsaturated glucuronyl hydrolase mutant D175N from Streptcoccus agalactiae 3ANK ; 2.02 ; Crystal structure of unsaturated glucuronyl hydrolase mutant D175N from Streptcoccus agalactiae complexed with dGlcA-GalNAc6S 3WIW ; 1.35 ; Crystal structure of unsaturated glucuronyl hydrolase specific for heparin 1VD5 ; 1.8 ; Crystal Structure of Unsaturated Glucuronyl Hydrolase, Responsible for the Degradation of Glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A Resolution 2D8L ; 1.7 ; Crystal Structure of Unsaturated Rhamnogalacturonyl Hydrolase in complex with dGlcA-GalNAc 3PFT ; 1.601 ; Crystal Structure of Untagged C54A Mutant Flavin Reductase (DszD) in Complex with FMN From Mycobacterium goodii 7Q2T ; 1.651 ; Crystal structure of untagged rat C2orf32 (also known as CNRIP1) in a domain-swapped conformation 7LK3 ; 1.9 ; Crystal structure of untwinned human GABARAPL2 5GSE ; 3.14 ; Crystal structure of unusual nucleosome 6DCL ; 2.497 ; Crystal structure of UP1 bound to pri-miRNA-18a terminal loop 1PO6 ; 2.1 ; Crystal Structure of UP1 Complexed With d(TAGG(6MI)TTAGGG): A Human Telomeric Repeat Containing 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine (6MI) 1U1K ; 2.0 ; Crystal Structure of UP1 Complexed With d(TTAGGGTT 7DA GGG); A Human Telomeric Repeat Containing 7-deaza-adenine 1U1L ; 2.0 ; Crystal Structure of UP1 Complexed With d(TTAGGGTT PRN GGG); A Human Telomeric Repeat Containing nebularine 1U1N ; 2.1 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTA (PRN)GG); A Human Telomeric Repeat Containing Nebularine 1U1P ; 1.9 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTA 2PR GG); A Human Telomeric Repeat Containing 2-aminopurine 1U1M ; 2.0 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTA 7GU GG); A Human Telomeric Repeat Containing 7-deaza-guanine 1U1Q ; 1.8 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTA(DI)GG); A Human Telomeric Repeat Containing Inosine 1U1R ; 1.8 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTAG(2PR)G); A Human Telomeric Repeat Containing 2-aminopurine 1PGZ ; 2.6 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTAG(6-MI)G); A Human Telomeric Repeat Containing 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine (6-MI) 1U1O ; 2.0 ; Crystal Structure of UP1 Complexed With d(TTAGGGTTAG(DI)G); A Human Telomeric Repeat Containing Inosine 6AG9 ; 1.63 ; Crystal structure of uPA in complex with 3,5-bis(azanyl)-6-(1-benzofuran-2-yl)-N-carbamimidoyl-pyrazine-2- carboxamide 6AG3 ; 2.48 ; Crystal structure of uPA in complex with 3,5-bis(azanyl)-N-carbamimidoyl-6-(2,4-dimethoxypyrimidin-5-yl)pyrazine-2-carboxamide 7VM5 ; 1.97 ; Crystal structure of uPA in complex with 4-guanidinobenzoic acid 7VM6 ; 1.79 ; Crystal structure of uPA in complex with 6-amidino-2-naphthol 5HGG ; 1.97 ; Crystal structure of uPA in complex with a camelid-derived antibody fragment 7DZD ; 2.0 ; Crystal structure of uPA in complex with cleaved camostat 7VM4 ; 2.01 ; Crystal structure of uPA in complex with nafamostat 5XG4 ; 3.0 ; Crystal structure of uPA in complex with quercetin 5WXS ; 2.3 ; Crystal structure of uPA in complex with S2444 5WXF ; 1.46 ; Crystal structure of uPA in complex with upain-2-2 5WXO ; 1.64 ; Crystal structure of uPA in complex with upain-2-2-W3A 5WXP ; 1.75 ; Crystal structure of uPA in complex with upain-2-3-W3A 5WXQ ; 1.79 ; Crystal structure of uPA in complex with upain-2-4 5WXR ; 1.75 ; Crystal structure of uPA in complex with upain-2-4-W3A 5WXT ; 2.1 ; Crystal structure of uPA-S195A in complex with S2444 6JYQ ; 1.75 ; Crystal structure of uPA_H99Y in complex with 3-azanyl-5-(azepan-1-yl)-N-carbamimidoyl-6-(furan-2-yl)pyrazine-2-carboxamide 6JYP ; 2.25 ; Crystal structure of uPA_H99Y in complex with 3-azanyl-5-(azepan-1-yl)-N-[bis(azanyl)methylidene]-6-chloranyl-pyrazine-2-carboxamide 6L04 ; 2.21 ; Crystal structure of uPA_H99Y in complex with 31F 6L05 ; 2.49 ; Crystal structure of uPA_H99Y in complex with 50F 2NV4 ; 2.2 ; Crystal structure of UPF0066 protein AF0241 in complex with S-adenosylmethionine. Northeast Structural Genomics Consortium target GR27 3BHP ; 2.01 ; Crystal structure of UPF0291 protein ynzC from Bacillus subtilis at resolution 2.0 A. Northeast Structural Genomics Consortium target SR384 3DB9 ; 2.8 ; Crystal structure of UPF0317 protein Atu3911 from Agrobacterium tumefaciens. NorthEast Strcutural Genomics target AtR186 2PIF ; 2.3 ; Crystal structure of UPF0317 protein PSPTO_5379 from Pseudomonas syringae pv. tomato. NorthEast Structural Genomics target PsR181 2OYR ; 2.0 ; Crystal Structure of UPF0341 Protein (yhiQ) from Shigella flexneri in complex with S-Adenosyl Homocysteine, Northeast Structural Genomics Target SfR275 2PGX ; 2.0 ; Crystal structure of UPF0341 protein yhiQ from E. coli, Northeast Structural Genomics Target ER585 2PKW ; 2.1 ; Crystal structure of UPF0341 protein yhiQ from Salmonella typhimurium, Northeast Structural Genomics Consortium Target StR221 2O6K ; 2.1 ; Crystal structure of UPF0346 from Staphylococcus aureus. Northeast Structural Genomics target ZR218. 2B0O ; 2.06 ; Crystal structure of UPLC1 GAP domain 4Q9O ; 2.2 ; Crystal structure of Upps + inhibitor 4Q9M ; 2.06 ; Crystal structure of UPPs in complex with FPP and an allosteric inhibitor 4YTW ; 1.4 ; Crystal structure of Ups1-Mdm35 complex 4YTX ; 3.2 ; Crystal structure of Ups1-Mdm35 complex with PA 5XLS ; 2.5 ; Crystal structure of UraA in occluded conformation 5GN2 ; 1.952 ; Crystal structure of Uracil DNA glycosylase (BdiUNG) from Bradyrhizobium diazoefficiens 5GRK ; 2.804 ; Crystal structure of Uracil DNA glycosylase -Xanthine complex from Bradyrhizobium diazoefficiens 5GNW ; 2.869 ; Crystal structure of Uracil DNA glycosylase-Uracil complex from Bradyrhizobium diazoefficiens. 2JHQ ; 1.5 ; Crystal structure of Uracil DNA-glycosylase from Vibrio cholerae 1O5O ; 2.3 ; Crystal structure of Uracil phosphoribosyltransferase (TM0721) from Thermotoga maritima at 2.30 A resolution 3QE7 ; 2.781 ; Crystal Structure of Uracil Transporter--UraA 1VK2 ; 1.9 ; Crystal structure of Uracil-DNA glycosylase (TM0511) from Thermotoga maritima at 1.90 A resolution 1OKB ; 1.9 ; crystal structure of Uracil-DNA glycosylase from Atlantic cod (Gadus morhua) 4LYL ; 1.93 ; Crystal structure of uracil-DNA glycosylase from cod (Gadus morhua) in complex with the proteinaceous inhibitor UGI 3A7N ; 1.95 ; Crystal structure of uracil-DNA glycosylase from Mycobacterium tuberculosis 2ZHX ; 3.1 ; Crystal structure of Uracil-DNA Glycosylase from Mycobacterium tuberculosis in complex with a proteinaceous inhibitor 1L9G ; 2.5 ; CRYSTAL STRUCTURE OF URACIL-DNA GLYCOSYLASE FROM T. MARITIMA 1UI0 ; 1.5 ; Crystal Structure Of Uracil-DNA Glycosylase From Thermus Thermophilus HB8 1UI1 ; 2.8 ; Crystal Structure Of Uracil-DNA Glycosylase From Thermus Thermophilus HB8 2D3Y ; 1.55 ; Crystal structure of uracil-DNA glycosylase from Thermus Thermophilus HB8 2DEM ; 1.95 ; Crystal structure of Uracil-DNA glycosylase in complex with AP:A containing DNA 2DP6 ; 1.8 ; Crystal structure of uracil-DNA glycosylase in complex with AP:C containing DNA 2DDG ; 2.1 ; Crystal structure of uracil-DNA glycosylase in complex with AP:G containing DNA 2FUB ; 2.3 ; Crystal structure of urate oxidase at 140 MPa 1J2G ; 2.2 ; Crystal structure of Urate oxidase from Bacillus SP. TB-90 co-crystallized with 8-Azaxanthine 7CUC ; 1.44 ; Crystal Structure of Urate Oxidase from Bacillus sp. TB-90 in the absence from Chloride Anion at 1.44 A resolution 7CUF ; 1.46 ; Crystal Structure of Urate Oxidase from Bacillus sp. TB-90 in the absence from Chloride Anion at 1.44 A resolution 7CUG ; 1.62 ; Crystal Structure of Urate Oxidase from Bacillus sp. TB-90 in the absence from Chloride Anion at 1.62 A resolution 5LL1 ; 2.8 ; Crystal structure of urate oxidase from zebrafish 5M98 ; 2.8 ; Crystal structure of urate oxidase from zebrafish 3GKO ; 1.6 ; Crystal structure of urate oxydase using surfactant Poloxamer 188 as a New Crystallizing Agent 3SJS ; 1.9 ; Crystal structure of URE3-binding protein from Entamoeba histolytica, (D127A,N129A) mutant, native form 3SIA ; 2.05 ; Crystal structure of URE3-binding protein, (D127A,N129A) mutant, iodide phased 3SIB ; 1.9 ; Crystal structure of URE3-binding protein, wild-type 4Q04 ; 1.9 ; Crystal structure of URE3-BP from Entomaeba histolytica without calcium 1UBP ; 1.65 ; CRYSTAL STRUCTURE OF UREASE FROM BACILLUS PASTEURII INHIBITED WITH BETA-MERCAPTOETHANOL AT 1.65 ANGSTROMS RESOLUTION 4Z42 ; 3.01 ; Crystal structure of urease from Yersinia enterocolitica 4FUR ; 2.1 ; Crystal Structure of Urease subunit gamma 2 from Brucella melitensis biovar Abortus 2308 3L9Z ; 2.08 ; Crystal Structure of UreE from Helicobacter pylori (apo form) 3NXZ ; 2.7 ; Crystal Structure of UreE from Helicobacter pylori (Cu2+ bound form) 3LA0 ; 2.86 ; Crystal Structure of UreE from Helicobacter pylori (metal of unknown identity bound) 3NY0 ; 3.09 ; Crystal Structure of UreE from Helicobacter pylori (Ni2+ bound form) 3ISL ; 2.06 ; Crystal structure of ureidoglycine-glyoxylate aminotransferase (pucG) from Bacillus subtilis 4FJS ; 2.13 ; Crystal structure of ureidoglycolate dehydrogenase enzyme in apo form 1XRH ; 2.25 ; Crystal Structure of Ureidoglycolate Dehydrogenase from Escherichia Coli 4H8A ; 1.64 ; Crystal structure of ureidoglycolate dehydrogenase in binary complex with NADH 4FJU ; 1.771 ; Crystal structure of ureidoglycolate dehydrogenase in ternary complex with NADH and glyoxylate 1YQC ; 1.709 ; Crystal Structure of Ureidoglycolate Hydrolase (AllA) from Escherichia coli O157:H7 1XSQ ; 1.6 ; Crystal structure of ureidoglycolate hydrolase from E.coli. Northeast Structural Genomics Consortium target ET81. 1VAX ; 1.99 ; Crystal Structure of Uricase from Arthrobacter globiformis 2YZE ; 1.99 ; Crystal structure of uricase from Arthrobacter globiformis 2YZD ; 2.24 ; Crystal structure of uricase from Arthrobacter globiformis in complex with 8-azaxanthin (inhibitor) 2YZC ; 1.88 ; Crystal structure of uricase from Arthrobacter globiformis in complex with allantoate 2YZB ; 1.9 ; Crystal structure of uricase from Arthrobacter globiformis in complex with uric acid (substrate) 1VAY ; 2.24 ; Crystal Structure of Uricase from Arthrobacter globiformis with inhibitor 8-azaxanthine 7M7K ; 1.89 ; Crystal structure of uridine bound to Geobacillus thermoglucosidasius pyrimidine nucleoside phosphorylase PyNP 3PNS ; 2.002 ; Crystal Structure of Uridine Phosphorylase Complexed with Uracil from Vibrio cholerae O1 biovar El Tor 4TXH ; 1.892 ; Crystal structure of uridine phosphorylase from Schistosoma mansoni in APO form 4TXN ; 2.0 ; Crystal structure of uridine phosphorylase from Schistosoma mansoni in complex with 5-fluorouracil 4TXJ ; 1.662 ; Crystal structure of uridine phosphorylase from Schistosoma mansoni in complex with thymidine 4TXM ; 1.93 ; Crystal structure of uridine phosphorylase from Schistosoma mansoni in complex with thymine 4TXL ; 1.92 ; Crystal structure of uridine phosphorylase from Schistosoma mansoni in complex with uracil 3O6V ; 1.695 ; Crystal structure of Uridine Phosphorylase from Vibrio cholerae O1 biovar El Tor 4MCH ; 1.73 ; Crystal structure of uridine phosphorylase from vibrio fischeri es114 complexed with 6-hydroxy-1-naphthoic acid, NYSGRC Target 029520. 4MCI ; 2.01 ; Crystal structure of uridine phosphorylase from vibrio fischeri es114 complexed with DMSO, NYSGRC Target 029520. 4LNH ; 2.3 ; Crystal structure of uridine phosphorylase from Vibrio fischeri ES114, NYSGRC Target 29520. 2YQC ; 1.9 ; Crystal Structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans, in the apo-like form 2YQS ; 2.3 ; Crystal structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans, in the product-binding form 2YQJ ; 2.31 ; Crystal Structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans, in the reaction-completed form 2YQH ; 2.3 ; Crystal structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans, in the substrate-binding form 2A1F ; 2.1 ; Crystal Structure of Uridylate kinase 2IJ9 ; 2.9 ; Crystal Structure of Uridylate Kinase from Archaeoglobus Fulgidus 4A7W ; 1.8 ; Crystal structure of uridylate kinase from Helicobacter pylori 4A7X ; 2.49 ; Crystal structure of uridylate kinase from Helicobacter pylori 2J4J ; 2.1 ; Crystal structure of uridylate kinase from Sulfolobus solfataricus in complex with UMP and AMPPCP to 2.1 Angstrom resolution 2J4K ; 2.2 ; Crystal structure of uridylate kinase from Sulfolobus solfataricus in complex with UMP to 2.2 Angstrom resolution 2J4L ; 2.8 ; Crystal structure of uridylate kinase from Sulfolobus solfataricus in complex with UTP to 2.8 Angstrom resolution 2QJL ; 1.44 ; Crystal structure of Urm1 2FKN ; 2.2 ; crystal structure of urocanase from bacillus subtilis 1YWH ; 2.7 ; crystal structure of urokinase plasminogen activator receptor 4OS1 ; 2.2 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK601 (bicyclic 1) 4OS2 ; 1.79 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK602 (bicyclic 1) 4OS4 ; 2.0 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK603 (bicyclic 1) 4OS5 ; 2.26 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK603 (bicyclic 2) 4OS6 ; 1.75 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK604 (bicyclic 2) 4OS7 ; 2.0 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK607 (bicyclic) 4MNW ; 1.49 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK749 4MNX ; 1.85 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK811 4MNY ; 1.7 ; Crystal structure of urokinase-type plasminogen activator (uPA) complexed with bicyclic peptide UK903 3RFT ; 1.9 ; Crystal structure of uronate dehydrogenase from Agrobacterium tumefaciens 3RFV ; 2.1 ; Crystal structure of Uronate dehydrogenase from Agrobacterium tumefaciens complexed with NADH and product 3RFX ; 1.9 ; Crystal structure of uronate dehydrogenase from Agrobacterium tumefaciens, Y136A mutant complexed with NAD 1J5S ; 2.85 ; Crystal structure of uronate isomerase (TM0064) from Thermotoga maritima at 2.85 A resolution 3HK5 ; 2.2 ; Crystal structure of uronate isomerase from Bacillus halodurans complexed with zinc and D-Arabinarate 3HK7 ; 2.2 ; Crystal structure of uronate isomerase from Bacillus halodurans complexed with zinc and D-Arabinarate, monoclinic crystal form 3HK8 ; 2.2 ; Crystal structure of uronate isomerase from Bacillus halodurans complexed with zinc and D-Arabinohydroxamate 3HKA ; 1.9 ; Crystal structure of uronate isomerase from Bacillus halodurans complexed with zinc and D-Fructuronate 3HK9 ; 2.1 ; Crystal structure of uronate isomerase from Bacillus halodurans complexed with zinc and D-Glucuronate 1V9A ; 2.0 ; Crystal structure of Uroporphyrin-III C-methyl transferase from Thermus thermophilus complexed with S-adenyl homocysteine 1VE2 ; 1.8 ; Crystal structure of uroporphyrin-III-C-methyltransferase from thermus thermophilus 4EXQ ; 1.65 ; CRYSTAL STRUCTURE of UROPORPHYRINOGEN DECARBOXYLASE (UPD) FROM BURKHOLDERIA THAILANDENSIS E264 2EJA ; 1.9 ; Crystal Structure Of Uroporphyrinogen Decarboxylase From Aquifex aeolicus 2INF ; 2.3 ; Crystal Structure of Uroporphyrinogen Decarboxylase from Bacillus subtilis 3CYV ; 2.8 ; Crystal structure of uroporphyrinogen decarboxylase from Shigella flexineri: new insights into its catalytic mechanism 6W2O ; 1.55 ; Crystal structure of uroporphyrinogen III decarboxylate (hemE) from Stenotrophomonas maltophilia 1WCW ; 1.3 ; Crystal Structure of Uroporphyrinogen III Synthase from an Extremely Thermophilic Bacterium Thermus thermophilus HB8 (Wild type, Native, Form-1 crystal) 1WD7 ; 1.6 ; Crystal Structure of Uroporphyrinogen III Synthase from an Extremely Thermophilic Bacterium Thermus thermophilus HB8 (Wild type, Native, Form-2 crystal) 3RE1 ; 2.5 ; Crystal structure of uroporphyrinogen III synthase from Pseudomonas syringae pv. tomato DC3000 3P9Z ; 2.1 ; Crystal structure of uroporphyrinogen-III synthetase from Helicobacter pylori 26695 7XS4 ; 1.846 ; Crystal structure of URT1 in complex with AAAU RNA 8HIC ; 1.6 ; Crystal structure of UrtA from Prochlorococcus marinus str. MIT 9313 in complex with urea and calcium 7S6E ; 1.973 ; Crystal structure of UrtA from Synechococcus CC9311 in complex with urea and calcium 7S6F ; 1.8 ; Crystal structure of UrtA1 from Synechococcus WH8102 in complex with urea and calcium 1IQB ; 1.9 ; Crystal Structure of Urtica dioica Agglutinin Isolectin I 1EHD ; 1.5 ; CRYSTAL STRUCTURE OF URTICA DIOICA AGGLUTININ ISOLECTIN VI 1EHH ; 1.9 ; CRYSTAL STRUCTURE OF URTICA DIOICA AGGLUTININ ISOLECTIN VI COMPLEX WITH TRI-N-ACETYLCHITOTRIOSE 3FIP ; 3.154 ; Crystal structure of Usher PapC translocation pore 6LSU ; 2.7 ; Crystal structure of Uso1-2 5CHT ; 2.8 ; Crystal structure of USP18 5CHV ; 3.005 ; Crystal structure of USP18-ISG15 complex 3V6E ; 2.1 ; Crystal Structure of USP2 and a mutant form of Ubiquitin 3V6C ; 1.7 ; Crystal Structure of USP2 in complex with mutated ubiquitin 5OHP ; 2.8 ; Crystal structure of USP30 (C77A) in complex with Lys6-linked diubiquitin 5OHK ; 2.34 ; Crystal structure of USP30 in covalent complex with ubiquitin propargylamide (high resolution) 5OHN ; 3.6 ; Crystal structure of USP30 in covalent complex with ubiquitin propargylamide (low resolution) 5TXK ; 1.84 ; CRYSTAL STRUCTURE OF USP35 C450S IN COMPLEX WITH UBIQUITIN 8ITP ; 3.0 ; Crystal structure of USP47 catalytic domain complex with ubiquitin 8ITN ; 2.6 ; Crystal structure of USP47apo catalytic domain 5KYE ; 1.97 ; Crystal structure of USP7 catalytic domain [H294E] mutant in complex with ubiquitin 5KYF ; 1.45 ; Crystal structure of USP7 catalytic domain [L299A] mutant in complex with ubiquitin 5KYD ; 1.62 ; Crystal structure of USP7 catalytic domain [V302K] mutant in complex with ubiquitin 5KYC ; 1.426 ; Crystal structure of USP7 catalytic domain [V302K] mutant in complex with ubiquitin (malonate bound) 6F5H ; 2.16 ; Crystal structure of USP7 in complex with a 4-hydroxypiperidine based inhibitor 5N9R ; 2.23 ; Crystal structure of USP7 in complex with a potent, selective and reversible small-molecule inhibitor 5N9T ; 1.73 ; Crystal structure of USP7 in complex with a potent, selective and reversible small-molecule inhibitor 8D4Z ; 2.26 ; Crystal structure of USP7 in complex with allosteric inhibitor FX1-3763 4Z97 ; 2.998 ; Crystal structure of USP7 in complex with DNMT1(K1115Q) 7XPY ; 2.35 ; Crystal structure of USP7 in complex with its inhibitor 5NGF ; 2.33 ; Crystal structure of USP7 in complex with the covalent inhibitor, FT827 5NGE ; 2.35 ; Crystal structure of USP7 in complex with the non-covalent inhibitor, FT671 5C6D ; 2.292 ; Crystal structure of USP7 in complex with UHRF1 4WPH ; 2.92 ; Crystal structure of USP7 ubiquitin-like domains in compact conformation 4WPI ; 3.4 ; Crystal structure of USP7 ubiquitin-like domains in extended conformation 5GG4 ; 3.11 ; Crystal structure of USP7 with RNF169 peptide 7VIJ ; 2.3 ; Crystal structure of USP7-HUBL domain 4JJQ ; 1.95 ; Crystal structure of usp7-ntd with an e2 enzyme 4KG9 ; 1.7 ; Crystal Structure Of USP7-NTD with MCM-BP 5C56 ; 2.685 ; Crystal structure of USP7/HAUSP in complex with ICP0 3NTN ; 2.2 ; Crystal Structure of UspA1 head and neck domain from Moraxella catarrhalis 3HMW ; 3.0 ; Crystal structure of ustekinumab FAB 3HMX ; 3.0 ; Crystal structure of ustekinumab FAB/IL-12 complex 3AHW ; 1.03 ; Crystal Structure of Ustilago sphaerogena Ribonuclease U2 complexed with adenosine 2'-monophosphate 3AGN ; 0.96 ; Crystal Structure of Ustilago sphaerogena Ribonuclease U2 Complexed with adenosine 3'-monophosphate 3AGO ; 0.99 ; Crystal Structure of Ustilago sphaerogena Ribonuclease U2 complexed with adenosine 3'-monophosphate 3AHS ; 1.32 ; Crystal Structure of Ustilago sphaerogena Ribonuclease U2B 6A0P ; 2.0 ; Crystal structure of Usutu virus envelope protein in the pre-fusion state 5VCT ; 1.9 ; Crystal structure of UTP-glucose-1-phosphate uridylyltransferase from Burkholderia ambifaria 5VE7 ; 2.3 ; Crystal structure of UTP-glucose-1-phosphate uridylyltransferase from Burkholderia ambifaria in complex with UTP 5I1F ; 2.15 ; Crystal structure of UTP-glucose-1-phosphate uridylyltransferase from Burkholderia vietnamiensis in complex with Uridine-5'-diphosphate-glucose 5YDU ; 2.646 ; Crystal structure of Utp30 5N1A ; 2.15 ; Crystal structure of Utp4 from Chaetomium thermophilum 2G80 ; 2.28 ; Crystal structure of UTR4 protein (Unknown transcript 4 protein) (yel038w) from Saccharomyces cerevisiae at 2.28 A resolution 6FUK ; 2.0 ; Crystal structure of UTX complexed with 5-carboxy-8-hydroxyquinoline 6FUL ; 1.649 ; Crystal structure of UTX complexed with 5-hydroxy-4-keto-1-methyl-picolinate 6G8F ; 2.043 ; Crystal structure of UTX complexed with GSK-J1 4NBM ; 1.61 ; Crystal structure of UVB photoreceptor UVR8 and light-induced structural changes at 180K 4NAA ; 1.67 ; Crystal structure of UVB photoreceptor UVR8 from Arabidopsis thaliana and UV-induced structural changes at 120K 4DNW ; 1.773 ; Crystal structure of UVB-resistance protein UVR8 3UX8 ; 2.1 ; Crystal structure of UvrA 3UWX ; 4.398 ; Crystal structure of UvrA-UvrB complex 3FPN ; 1.8 ; Crystal structure of UvrA-UvrB interaction domains 2VF7 ; 2.3 ; Crystal structure of UvrA2 from Deinococcus radiodurans 2VF8 ; 3.0 ; Crystal structure of UvrA2 from Deinococcus radiodurans 6O8F ; 2.81 ; Crystal structure of UvrB bound to duplex DNA 6O8E ; 2.61 ; Crystal structure of UvrB bound to duplex DNA with ADP 6O8G ; 2.64 ; Crystal structure of UvrB bound to fully duplex DNA 6O8H ; 2.39 ; Crystal structure of UvrB mutant bound to duplex DNA 2IS2 ; 3.0 ; Crystal structure of UvrD-DNA binary complex 2IS6 ; 2.2 ; Crystal structure of UvrD-DNA-ADPMgF3 ternary complex 2IS4 ; 2.6 ; Crystal structure of UvrD-DNA-ADPNP ternary complex 2IS1 ; 2.9 ; Crystal structure of UvrD-DNA-SO4 complex 3SK7 ; 1.5 ; Crystal Structure of V. cholerae SeqA 3W3A ; 3.9 ; Crystal structure of V1-ATPase at 3.9 angstrom resolution 1S1W ; 2.7 ; Crystal structure of V106A mutant HIV-1 reverse transcriptase in complex with UC-781 1S1X ; 2.8 ; Crystal structure of V108I mutant HIV-1 reverse transcriptase in complex with nevirapine 7BIG ; 1.8 ; Crystal structure of v13WRAP-T, a 7-bladed designer protein 3HPR ; 2.0 ; Crystal structure of V148G adenylate kinase from E. coli, in complex with Ap5A 4DBZ ; 2.643 ; Crystal Structure of V151L Actinorhodin Polyketide Ketoreductase with NADPH 4BN1 ; 2.499 ; Crystal structure of V174M mutant of Aurora-A kinase 1G3O ; 1.65 ; CRYSTAL STRUCTURE OF V19E MUTANT OF FERREDOXIN I 2HJO ; 1.25 ; Crystal structure of V224H design intermediate for GFP metal ion reporter 6I3A ; 1.45 ; Crystal structure of v22Pizza6-AYW, a circularly permuted designer protein 7BIF ; 1.4 ; Crystal structure of v22WRAP-T, a 7-bladed designer protein 6BNN ; 1.55 ; Crystal structure of V278E-glyoxalase I mutant from Zea mays in space group P4(1)2(1)2 6BNX ; 1.8 ; Crystal structure of V278E-glyoxalase I mutant from Zea mays in space group P6(3) 4OJ4 ; 2.3 ; Crystal structure of V290M PPARgamma mutant in complex with diclofenac 4PWE ; 1.4 ; Crystal structure of V30M mutant human transthyretin 4PWH ; 1.798 ; Crystal structure of V30M mutant human transthyretin complexed with caffeic acid 1,1-dimethylallyl ester 4PWG ; 1.798 ; Crystal structure of V30M mutant human transthyretin complexed with caffeic acid ethyl ester 4QRF ; 1.8 ; Crystal structure of V30M mutant human transthyretin complexed with caffeic acid phenethyl ester 4PWK ; 1.59 ; Crystal structure of V30M mutant human transthyretin complexed with dihydroguaiaretic acid 4PWF ; 1.6 ; Crystal structure of V30M mutant human transthyretin complexed with ferulic acid phenethyl ester 4N87 ; 1.794 ; Crystal structure of V30M mutant human transthyretin complexed with glabridin 4PWJ ; 1.55 ; Crystal structure of V30M mutant human transthyretin complexed with nordihydroguaiaretic acid 4PWI ; 1.494 ; Crystal structure of V30M mutant human transthyretin complexed with rosmarinic acid 6IMX ; 1.602 ; Crystal structure of V30M mutated transthyretin in complex with 18-Crown-6 4Y9G ; 1.89 ; Crystal structure of V30M mutated transthyretin in complex with 3-isomangostin 6IMY ; 1.501 ; Crystal structure of V30M mutated transthyretin in complex with 4'-caroboxybenzo-18-Crown-6 7DT8 ; 1.25 ; Crystal structure of V30M mutated transthyretin in complex with 4-chloro-9-oxo-9H-xanthene-2-carboxylic acid 7EJR ; 1.451 ; Crystal structure of V30M mutated transthyretin in complex with 8-chloro-9-oxo-9H-xanthene-3-carboxylic acid 4Y9B ; 1.4 ; Crystal structure of V30M mutated transthyretin in complex with alpha-mangostin 4Y9E ; 1.49 ; Crystal structure of V30M mutated transthyretin in complex with gamma-mangostin 7DT6 ; 1.3 ; Crystal structure of V30M mutated transthyretin in complex with purpurin 4Y9C ; 1.49 ; Crystal structure of V30M mutated transthyretin with bromide in complex with alpha-mangostin 4Y9F ; 1.5 ; Crystal structure of V30M mutated transthyretin with bromide in complex with gamma-mangostin 3NG5 ; 1.7 ; Crystal Structure of V30M transthyretin complexed with (-)-epigallocatechin gallate (EGCG) 8II4 ; 1.499 ; Crystal structure of V30M-TTR in complex with 6-hydroxy BBM 8II3 ; 1.399 ; Crystal structure of V30M-TTR in complex with 6-hydroxy BID 8II2 ; 1.798 ; Crystal structure of V30M-TTR in complex with BBM 8II1 ; 1.907 ; Crystal structure of V30M-TTR in complex with BID 7ERK ; 1.703 ; Crystal structure of V30M-TTR in complex with dasatinib 7ERJ ; 1.892 ; Crystal structure of V30M-TTR in complex with dichlorophen 7W9Q ; 1.599 ; Crystal structure of V30M-TTR in complex with naringenin derivative-14 7W9R ; 1.997 ; Crystal structure of V30M-TTR in complex with naringenin derivative-18 7ERI ; 1.813 ; Crystal structure of V30M-TTR in complex with triclabendazole 3FJB ; 2.0 ; Crystal structure of V31I mutant of Human acidic fibroblast growth factor 6I39 ; 1.05 ; Crystal structure of v31Pizza6-AYW, a circularly permuted designer protein 7BID ; 1.8 ; Crystal structure of v31WRAP-T, a 7-bladed designer protein 6XNW ; 1.9 ; Crystal structure of V39A mutant of human CEACAM1 1T9P ; 1.5 ; Crystal Structure of V44A, G45P Cp Rubredoxin 1T9O ; 2.0 ; Crystal Structure of V44G Cp Rubredoxin 1T9Q ; 1.8 ; Crystal Structure of V44L Cp Rubredoxin 1LQX ; 1.8 ; Crystal structure of V45E mutant of cytochrome b5 1LR6 ; 1.9 ; Crystal structure of V45Y mutant of cytochrome b5 4RWK ; 2.982 ; Crystal structure of V561M FGFR1 gatekeeper mutation (C488A, C584S, V561M) in complex with N-{3-[2-(3,5-DIMETHOXYPHENYL)ETHYL]-1H-PYRAZOL-5-YL}-4-[(3R,5S)-3,5-DIMETHYLPIPERAZIN-1-YL]BENZAMIDE (AZD4547) 4RWI ; 2.292 ; Crystal structure of V561M FGFR1 gatekeeper mutation (C488A, C584S, V561M), apo 3SVA ; 3.02 ; Crystal structure of V57D mutant of human cystatin C 6ROA ; 2.65 ; Crystal structure of V57G mutant of human cystatin C 3S67 ; 2.26 ; Crystal structure of V57P mutant of human cystatin C 4GGG ; 1.998 ; Crystal structure of V66A/L68V CzrA in the Zn(II)bound state. 6CDB ; 1.99 ; Crystal Structure of V66L CzrA in the Zn(II)bound state 5U9K ; 2.7 ; Crystal structure of V71F mutant of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) 5V35 ; 2.5 ; Crystal structure of V71F mutant of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) complexed with S-farnesyl-L-cysteine methyl ester 6TD0 ; 0.99 ; Crystal structure of vaborbactam bound to KPC-2 6KBN ; 3.2 ; Crystal structure of Vac8 (del 19-33) bound to Atg13 6KBM ; 2.902 ; Crystal structure of Vac8 bound to Atg13 7YCJ ; 2.101 ; Crystal structure of Vac8 bound to Vac17 5XJG ; 2.4 ; Crystal structure of Vac8p bound to Nvj1p 7JKS ; 3.45 ; Crystal structure of vaccine-elicited broadly neutralizing VRC01-class antibody 2411a in complex with HIV-1 gp120 core 7JKT ; 2.75 ; Crystal structure of vaccine-elicited broadly neutralizing VRC01-class antibody 2413a in complex with HIV-1 gp120 core 5TR8 ; 2.01 ; Crystal structure of vaccine-elicited pan- influenza H1N1 neutralizing murine antibody 441D6. 6URM ; 2.65 ; Crystal structure of vaccine-elicited receptor-binding site targeting antibody LPAF-a.01 in complex with Hemagglutinin H1 A/California/04/2009 6CB6 ; 1.8 ; CRYSTAL STRUCTURE OF VACCINIA VIRUS A6 N-TERMINUS (SPACE GROUP C2) 6CB7 ; 1.6 ; CRYSTAL STRUCTURE OF VACCINIA VIRUS A6 N-TERMINUS (SPACE GROUP C2) 5CYW ; 2.0 ; Crystal Structure of Vaccinia Virus C7 7T7H ; 1.78 ; Crystal structure of Vaccinia Virus decapping enzyme D9 in complex with inhibitor CP100356 7SEZ ; 1.70001 ; Crystal structure of Vaccinia Virus decapping enzyme D9 in complex with m7GDP 7SF0 ; 1.95 ; Crystal structure of Vaccinia Virus decapping enzyme D9 in complex with trinucleotide substrate 7YTT ; 1.81 ; Crystal structure of vaccinia virus G3/L5 sub-complex (SeMet-labeled, P21 space group) 7YTU ; 1.504 ; Crystal structure of vaccinia virus G3/L5 sub-complex (SeMet-labeled, P31 space group) 1YPY ; 1.51 ; Crystal Structure of Vaccinia Virus L1 protein 2I39 ; 2.2 ; Crystal structure of Vaccinia virus N1L protein 3OWG ; 2.86 ; Crystal structure of vaccinia virus Polyadenylate polymerase(vp55) 4M0S ; 2.58 ; Crystal structure of Vaccinia virus protein A46 6I2M ; 2.3 ; Crystal structure of vaccinia virus protein A55 BTB-Back domain in complex with human Cullin-3 N-terminus 2W0S ; 2.918 ; Crystal structure of vaccinia virus thymidylate kinase bound to brivudin-5'-monophosphate 2V54 ; 2.4 ; Crystal structure of vaccinia virus thymidylate kinase bound to TDP 4IRB ; 2.3 ; Crystal Structure of Vaccinia Virus Uracil DNA Glycosylase Mutant del171-172D4 3NT7 ; 2.4 ; Crystal Structure of Vaccinia Virus Uracil DNA Glycosylase R187V Mutant 2OWQ ; 2.4 ; Crystal structure of vaccinia virus uracil-DNA glycosylase 4QC9 ; 2.259 ; Crystal structure of Vaccinia virus uracil-DNA glycosylase mutant 3GD4 4QCA ; 1.9 ; Crystal structure of Vaccinia virus uracil-DNA glycosylase mutant R167AD4 6BEG ; 3.1 ; Crystal structure of VACV D13 F486A mutant 6BEF ; 3.21 ; Crystal structure of VACV D13 in complex with 3-formyl rifamycin SV 8F65 ; 2.85 ; Crystal structure of VACV D13 in complex with BBL030900 6BEC ; 2.91 ; Crystal structure of VACV D13 in complex with Rifabutin 6BED ; 2.75 ; Crystal structure of VACV D13 in complex with Rifampicin 6BEB ; 2.55 ; Crystal structure of VACV D13 in complex with Rifamycin SV 6BEH ; 3.0 ; Crystal structure of VACV D13 in complex with Rifapentine 6BEE ; 3.11 ; Crystal structure of VACV D13 in complex with Rifaximin 8F47 ; 3.1 ; Crystal structure of VACV D13 in complex with STK69439 6BEI ; 2.81 ; Crystal structure of VACV D13 in its apo (unbound) form 6FAS ; 1.9 ; Crystal structure of VAL1 B3 domain in complex with cognate DNA 1ES1 ; 2.1 ; CRYSTAL STRUCTURE OF VAL61HIS MUTANT OF TRYPSIN-SOLUBILIZED FRAGMENT OF CYTOCHROME B5 2OCI ; 1.9 ; Crystal structure of valacyclovir hydrolase complexed with a product analogue 2OCK ; 1.85 ; Crystal structure of valacyclovir hydrolase D123N mutant 2OCL ; 1.9 ; Crystal structure of valacyclovir hydrolase S122A mutant 3G7Q ; 1.8 ; Crystal structure of valine-pyruvate aminotransferase AvtA (NP_462565.1) from Salmonella typhimurium LT2 at 1.80 A resolution 3RUG ; 2.2 ; Crystal structure of Valpha10-Vbeta8.1 NKT TCR in complex with CD1d-alphaglucosylceramide (C20:2) 1WQ8 ; 1.9 ; Crystal structure of Vammin, a VEGF-F from a snake venom 3P20 ; 2.85 ; Crystal structure of vanadate bound subunit A of the A1AO ATP synthase 5LPC ; 3.1 ; Crystal structure of Vanadium-dependent Haloperoxidase from A. marina 1GHG ; 0.98 ; CRYSTAL STRUCTURE OF VANCOMYCIN AGLYCON 1SHO ; 1.09 ; CRYSTAL STRUCTURE OF VANCOMYCIN AT ATOMIC RESOLUTION 4F78 ; 1.95 ; Crystal Structure of Vancomycin Resistance D,D-dipeptidase VanXYg 4MUQ ; 1.364 ; Crystal Structure of Vancomycin Resistance D,D-dipeptidase VanXYg in complex with D-Ala-D-Ala phosphinate analog 4MUR ; 1.65 ; Crystal structure of vancomycin resistance D,D-dipeptidase/D,D-pentapeptidase VanXYc D59S mutant 4MUS ; 1.675 ; Crystal structure of vancomycin resistance D,D-dipeptidase/D,D-pentapeptidase VanXYc D59S mutant in complex with D-Ala-D-Ala phosphinate analog 4MUT ; 2.25 ; Crystal structure of vancomycin resistance D,D-dipeptidase/D,D-pentapeptidase VanXYc D59S mutant in complex with D-Alanine 4OAK ; 2.0 ; Crystal structure of vancomycin resistance D,D-dipeptidase/D,D-pentapeptidase VanXYc D59S mutant in complex with D-Alanine-D-Alanine and copper (II) 5HNM ; 2.3 ; Crystal structure of vancomycin resistance D,D-pentapeptidase VanY E175A mutant from VanB-type resistance cassette in complex with Zn(II) 5M2K ; 1.0 ; Crystal structure of vancomycin-Zn(II) complex 5M2H ; 0.95 ; Crystal structure of vancomycin-Zn(II)-citrate complex 4Q9T ; 3.0 ; Crystal structure of Vanderwaltozyma polyspora Nup133 Beta-propeller domain 4FU0 ; 2.35 ; Crystal Structure of VanG D-Ala:D-Ser Ligase from Enterococcus faecalis 6XM9 ; 1.651 ; Crystal structure of vanillin bound to Co-LSD4 from Sphingobium sp. strain SYK-6 1R44 ; 2.25 ; Crystal Structure of VanX 6F73 ; 2.22 ; Crystal structure of VAO-type flavoprotein MtVAO615 at pH 5.0 from Myceliophthora thermophila C1 6F72 ; 2.0 ; Crystal structure of VAO-type flavoprotein MtVAO615 at pH 7.5 from Myceliophthora thermophila C1 6F74 ; 2.2 ; Crystal structure of VAO-type flavoprotein MtVAO713 from Myceliophthora thermophila C1 2DW0 ; 2.15 ; Crystal structure of VAP2 from Crotalus atrox venom (Form 2-1 crystal) 2DW1 ; 2.5 ; Crystal structure of VAP2 from Crotalus atrox venom (Form 2-2 crystal) 2DW2 ; 2.7 ; Crystal structure of VAP2 from Crotalus atrox venom (Form 2-5 crystal) 6IFC ; 1.99 ; Crystal structure of VapBC from Salmonella typhimurium 4CHG ; 2.1 ; Crystal structure of VapBC15 complex from Mycobacterium tuberculosis 3ZVK ; 2.5 ; Crystal structure of VapBC2 from Rickettsia felis bound to a DNA fragment from their promoter 3CPZ ; 2.8 ; Crystal structure of VAR2CSA DBL3x domain in the presence of dodecasaccharide of CSA 5UEI ; 1.702 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) O13 (Apo) 5UF1 ; 2.03 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) O13 in complex with H-trisaccharide 5UF4 ; 2.04 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) O13 with LNnT bound 5UFD ; 1.696 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 (Apo) 3E6J ; 1.67 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 in Complex with H-trisaccharide 5UFF ; 2.137 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 with Fucose(alpha-1-2)Lactose bound 5UFB ; 1.844 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) Tn4-22 (Apo) 5UFC ; 1.888 ; Crystal Structure of Variable Lymphocyte Receptor (VLR) Tn4-22 with H-trisaccharide bound 6BXD ; 1.103 ; Crystal structure of Variable Lymphocyte Receptor 2 (VLR2) 6BXE ; 1.651 ; Crystal structure of Variable Lymphocyte Receptor 9 (VLR9) 3M18 ; 1.95 ; Crystal structure of variable lymphocyte receptor VLRA.R2.1 in complex with hen egg lysozyme 3M19 ; 1.7 ; Crystal structure of variable lymphocyte receptor VLRA.R5.1 1JZA ; 2.2 ; Crystal Structure of Variant 2 Scorpion Toxin from Centruroides sculpturatus Ewing 1JZB ; 2.81 ; Crystal Structure of Variant 2 Scorpion Toxin from Centruroides sculpturatus Ewing 4RPE ; 1.6 ; Crystal Structure of Variant G186E from Pseudomonas Aeruginosa Lipoxygenase 2 at 1.60A (C2) 2RG2 ; 1.8 ; Crystal structure of variant R18L of conjugated bile acid hydrolase from Clostridium perfringens 6Z8H ; 1.38 ; Crystal structure of Variant Surface Glycoprotein VSG13 6YGT ; 1.635 ; Crystal structure of variant T52P of the intracellular chorismate mutase from Mycobacterium tuberculosis 5NDY ; 1.949 ; crystal structure of variants 5NEZ ; 2.394 ; crystal structure of variants 5NF1 ; 2.697 ; crystal structure of variants 1OSN ; 3.2 ; Crystal structure of Varicella zoster virus thymidine kinase in complex with BVDU-MP and ADP 5AJK ; 2.55 ; Crystal structure of variola virus virulence factor F1L in complex with human Bak BH3 domain 5AJJ ; 1.75 ; Crystal structure of variola virus virulence factor F1L in complex with human Bid BH3 domain 7Z4X ; 2.05 ; Crystal structure of Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with FAD 7Z94 ; 1.74 ; Crystal structure of Variovorax paradoxus indole monooxygenase (VpIndA1) in complex with indole 3ALA ; 2.9 ; Crystal structure of vascular adhesion protein-1 in space group C2 2ERP ; 2.95 ; Crystal structure of vascular apoptosis-inducing protein-1(inhibitor-bound form) 2ERO ; 2.5 ; Crystal structure of vascular apoptosis-inducing protein-1(orthorhombic crystal form) 2ERQ ; 2.5 ; Crystal structure of vascular apoptosis-inducing protein-1(tetragonal crystal form) 6D3O ; 3.1 ; Crystal Structure of Vascular Endothelial Growth Factor (VEGF8-109) with HH4, an alpha/beta-Peptide with Irregular Secondary Structure 6V7K ; 2.5 ; Crystal Structure of Vascular Endothelial Growth Factor (VEGF8-109) with one copy of HH4, an alpha/beta-Peptide with Irregular Secondary Structure 2XV7 ; 2.9 ; Crystal structure of vascular endothelial growth factor D 2VWE ; 3.4 ; Crystal Structure of Vascular Endothelial Growth Factor-B in Complex with a Neutralizing Antibody Fab Fragment 6QBY ; 2.09 ; Crystal structure of VASH 2 in complex with SVBP 6OCG ; 1.833 ; Crystal structure of VASH1-SVBP complex bound with EpoY 6OCH ; 2.003 ; Crystal structure of VASH1-SVBP complex bound with parthenolide 6J7B ; 1.618 ; Crystal structure of VASH1-SVBP in complex with epoY 6JZE ; 2.51 ; Crystal structure of VASH2-SVBP complex with the magic triangle I3C 1KK6 ; 2.5 ; Crystal Structure of Vat(D) (Form I) 1KK5 ; 2.7 ; Crystal Structure of Vat(D) (Form II) 1KK4 ; 2.7 ; Crystal Structure of Vat(D) in Complex with Acetyl-CoA 1KHR ; 2.8 ; Crystal Structure of Vat(D) in Complex with Virginiamycin and Coenzyme A 1GCQ ; 1.68 ; CRYSTAL STRUCTURE OF VAV AND GRB2 SH3 DOMAINS 1GCP ; 2.1 ; CRYSTAL STRUCTURE OF VAV SH3 DOMAIN 4U5T ; 3.301 ; Crystal Structure of VBP Leucine Zipper with Bound Arylstibonic Acid 7E1B ; 4.587 ; Crystal structure of VbrR-DNA complex 4R5M ; 1.89 ; Crystal structure of Vc-Aspartate beta-semialdehyde-dehydrogenase with NADP and 4-Nitro-2-Phosphono-Benzoic acid 3OT1 ; 1.16 ; Crystal structure of VC2308 protein 1ZNO ; 2.0 ; Crystal Structure of VC702 from Vibrio Cholerae, Northeast Structural Genomics Consortium Target: VcP1 3KYG ; 2.1 ; Crystal structure of VCA0042 (L135R) complexed with c-di-GMP 2RDE ; 1.92 ; Crystal structure of VCA0042 complexed with c-di-GMP 1XT5 ; 1.15 ; Crystal Structure of VCBP3, domain 1, from Branchiostoma floridae 4PD5 ; 2.906 ; Crystal structure of vcCNT-7C8C bound to gemcitabine 4PD6 ; 2.08 ; Crystal structure of vcCNT-7C8C bound to uridine 7A5Q ; 1.68 ; Crystal structure of VcSiaP bound to sialic acid 8PZ7 ; 2.93 ; crystal structure of VDR complex with D-Bishomo-1a,25-dihydroxyvitamin D3 Analog 57 1KB4 ; 2.8 ; Crystal Structure of VDR DNA-binding Domain Bound to a Canonical Direct Repeat with Three Base Pair Spacer (DR3) Response Element 1KB2 ; 2.7 ; Crystal Structure of VDR DNA-binding Domain Bound to Mouse Osteopontin (SPP) Response Element 1KB6 ; 2.7 ; Crystal Structure of VDR DNA-binding Domain Bound to Rat Osteocalcin (OC) Response Element 3M7R ; 1.8 ; Crystal structure of VDR H305Q mutant 8PZ9 ; 2.74 ; Crystal structure of VDR in complex with D-Bishomo-1a,25-dihydroxyvitamin D3 Analog 55 5GIC ; 2.352 ; Crystal structure of VDR in complex with DLAM-2P 5GID ; 2.151 ; Crystal structure of VDR in complex with DLAM-4 (C2 form) 5GIE ; 2.387 ; Crystal structure of VDR in complex with DLAM-4P (P21 form) 2HAM ; 1.9 ; Crystal structure of VDR LBD complexed to 2alpha-propyl-calcitriol 2HAR ; 1.9 ; Crystal structure of VDR LBD in complex with 2 alpha-(3-hydroxy-1-propoxy) calcitriol 2HB7 ; 1.8 ; Crystal structure of VDR LBD in complex with 2alpha(3-hydroxy-1-propyl) calcitriol 2HAS ; 1.96 ; Crystal structure of VDR LBD in complex with 2alpha-(1-propoxy) calcitriol 2HB8 ; 2.0 ; Crystal structure of VDR LBD in complex with 2alpha-methyl calcitriol 1S19 ; 2.1 ; Crystal structure of VDR ligand binding domain complexed to calcipotriol. 5B41 ; 1.89 ; Crystal structure of VDR-LBD complexed with 2-methylidene-19-nor-1a,25-dihydroxyvitamin D3 5B5B ; 2.0 ; Crystal structure of VDR-LBD complexed with 2-methylidene-26,27-diphenyl-19-nor-1,25-dihydroxyvitamin D3 3WT7 ; 2.4 ; Crystal structure of VDR-LBD complexed with 22R-Butyl-2-methylidene-26,27-dimethyl-19,24-dinor-1 ,25-dihydroxyvitamin D3 3WTQ ; 2.1 ; Crystal structure of VDR-LBD complexed with 22S-butyl-2-methylidene-19-nor-1a,25-dihydroxyvitamin D3 5XPL ; 2.05 ; Crystal structure of VDR-LBD complexed with 22S-butyl-25-hydroxyphenyl-2-methylidene-19,26,27-trinor-25-oxo-1-hydroxyvitamin D3 5XPM ; 2.2 ; Crystal structure of VDR-LBD complexed with 22S-Butyl-25RS-(hydroxyphenyl)-25-methoxy-2-methylidene-19,26,27-trinor-1-hydroxyvitamin D3 5XPO ; 2.28 ; Crystal structure of VDR-LBD complexed with 25-(hydroxyphenyl)-2-methylidene-19,26,27-trinor-25-oxo-1-hydroxyvitamin D3 5XPP ; 2.85 ; Crystal structure of VDR-LBD complexed with 25RS-(Hydroxyphenyl)-2-methylidene-19,26,27-trinor-1,25-dihydroxyvitamin D3 5XPN ; 1.96 ; Crystal structure of VDR-LBD complexed with 25RS-(hydroxyphenyl)-25-methoxy-2-methylidene-19,26,27-trinor-1-hydroxyvitamin D3 5XUQ ; 2.8 ; Crystal structure of VDR-LBD complexed with an antagonist, 2-methylidene-19,26,27-trinor-22-(S)-butyl-1-hydroxy-25-oxo-25-(1H-pyrrol-2-yl)- vitamin D3 3AFR ; 2.0 ; Crystal Structure of VDR-LBD/22S-Butyl-1a,24R-dihydroxyvitamin D3 complex 5AWK ; 2.9 ; Crystal structure of VDR-LBD/partial agonist complex: 22S-ethyl analogue 5AWJ ; 2.2 ; Crystal structure of VDR-LBD/partial agonist complex: 22S-hexyl analogue 1QS1 ; 1.5 ; CRYSTAL STRUCTURE OF VEGETATIVE INSECTICIDAL PROTEIN2 (VIP2) 5K64 ; 2.44 ; Crystal structure of VEGF binding IgG1-Fc (Fcab 448) 5K65 ; 2.5 ; Crystal structure of VEGF binding IgG1-Fc (Fcab CT6) 5O4E ; 2.15 ; Crystal structure of VEGF in complex with heterodimeric Fcab JanusCT6 5T89 ; 4.0 ; Crystal structure of VEGF-A in complex with VEGFR-1 domains D1-6 2X1W ; 2.7 ; Crystal Structure of VEGF-C in Complex with Domains 2 and 3 of VEGFR2 2X1X ; 3.1 ; CRYSTAL STRUCTURE OF VEGF-C IN COMPLEX WITH DOMAINS 2 AND 3 OF VEGFR2 IN A TETRAGONAL CRYSTAL FORM 4BSK ; 4.201 ; Crystal structure of VEGF-C in complex with VEGFR-3 domains D1-2 4CL7 ; 2.0 ; Crystal structure of VEGFR-1 domain 2 in presence of Cobalt 5ABD ; 1.995 ; CRYSTAL STRUCTURE OF VEGFR-1 DOMAIN 2 IN PRESENCE OF CU 4CKV ; 2.055 ; Crystal structure of VEGFR-1 domain 2 in presence of Zn 5OYJ ; 2.38 ; Crystal structure of VEGFR-2 domains 4-5 in complex with DARPin D4b 4BSJ ; 2.5 ; Crystal structure of VEGFR-3 extracellular domains D4-5 3HNG ; 2.7 ; Crystal structure of VEGFR1 in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide 4AGC ; 2.0 ; CRYSTAL STRUCTURE OF VEGFR2 (JUXTAMEMBRANE AND KINASE DOMAINS) IN COMPLEX WITH AXITINIB (AG-013736) (N-Methyl-2-(3-((E)-2-pyridin-2-yl- vinyl)-1H-indazol-6-ylsulfanyl)-benzamide) 4ASD ; 2.03 ; Crystal Structure of VEGFR2 (Juxtamembrane and Kinase Domains) in Complex with SORAFENIB (BAY 43-9006) 4AGD ; 2.81 ; CRYSTAL STRUCTURE OF VEGFR2 (JUXTAMEMBRANE AND KINASE DOMAINS) IN COMPLEX WITH SUNITINIB (SU11248) (N-2-diethylaminoethyl)-5-((Z)-(5- fluoro-2-oxo-1H-indol-3-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3- carboxamide) 4ASE ; 1.83 ; CRYSTAL STRUCTURE OF VEGFR2 (JUXTAMEMBRANE AND KINASE DOMAINS) IN COMPLEX WITH TIVOZANIB (AV-951) 3KVQ ; 2.7 ; Crystal structure of VEGFR2 extracellular domain D7 1Y6A ; 2.1 ; Crystal structure of VEGFR2 in complex with a 2-anilino-5-aryl-oxazole inhibitor 1Y6B ; 2.1 ; Crystal structure of VEGFR2 in complex with a 2-anilino-5-aryl-oxazole inhibitor 3CJF ; 2.15 ; Crystal structure of VEGFR2 in complex with a 3,4,5-trimethoxy aniline containing pyrimidine 3CJG ; 2.25 ; Crystal structure of VEGFR2 in complex with a 3,4,5-trimethoxy aniline containing pyrimidine 2OH4 ; 2.05 ; Crystal structure of Vegfr2 with a benzimidazole-urea inhibitor 8DUF ; 1.46 ; Crystal structure of Venezuelan Equine Encephalitis alphavirus (VEEV) nonstructural protein 2 (nsp2) (K741A/K767A) protease domain 2HWK ; 2.45 ; Crystal Structure of Venezuelan Equine Encephalitis Alphavirus nsP2 Protease Domain 7DLK ; 2.1 ; Crystal Structure of veratryl alcohol bound Dye Decolorizing peroxidase from Bacillus subtilis 4U50 ; 3.2 ; Crystal structure of Verrucarin bound to the yeast 80S ribosome 2BOQ ; 1.33 ; Crystal structure of versatile peroxidase 8HS7 ; 2.0 ; Crystal structure of Vesicle-associated membrane protein-associated protein SCS2 from yeast 1LG7 ; 1.96 ; Crystal structure of Vesicular Stomatitis Virus Matrix Protein 2P4H ; 1.4 ; Crystal Structure of Vestitone Reductase from Alfalfa (Medicago sativa L.) 4YFL ; 3.387 ; Crystal structure of VH1-46 germline-derived CD4-binding site-directed antibody 1B2530 in complex with HIV-1 clade A/E 93TH057 gp120 4RWY ; 2.128 ; Crystal structure of VH1-46 germline-derived CD4-binding site-directed antibody 8ANC131 in complex with HIV-1 clade B YU2 gp120 4RX4 ; 3.45 ; Crystal structure of VH1-46 germline-derived CD4-binding site-directed antibody 8ANC134 in complex with HIV-1 clade A Q842.d12 gp120 6DBA ; 1.3 ; Crystal Structure of VHH R303 6DBF ; 1.55 ; Crystal Structure of VHH R303 in complex with InlB-LRR 6DBG ; 1.51 ; Crystal Structure of VHH R303 in complex with InlB-LRR-IR 6DBD ; 1.755 ; Crystal Structure of VHH R326 6DBE ; 1.65 ; Crystal Structure of VHH R330 6QKD ; 1.9 ; CRYSTAL STRUCTURE OF vhh-based FAB-fragment of antibody BCD-085 8EI3 ; 3.49 ; Crystal structure of VHL in complex with H313, a Helicon Polypeptide 1L5A ; 2.55 ; Crystal Structure of VibH, an NRPS Condensation Enzyme 8GSM ; 2.88 ; Crystal Structure of VibMO1 6KD0 ; 1.8 ; Crystal Structure of Vibralactone Cyclase 7YZZ ; 1.29 ; Crystal structure of Vibrio alkaline phosphatase in 0.5 M NaCl 7Z00 ; 2.6 ; Crystal structure of Vibrio alkaline phosphatase in 1.0 M KBr 7QOW ; 1.2 ; Crystal structure of Vibrio alkaline phosphatase in 1.0 M NaCl 7QP8 ; 1.7 ; Crystal structure of Vibrio alkaline phosphatase with bound HEPES 4LW9 ; 1.9 ; Crystal structure of Vibrio cholera major pseudopilin EpsG 3DP9 ; 2.3 ; Crystal structure of Vibrio cholerae 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with butylthio-DADMe-Immucillin A 4WKB ; 1.37 ; Crystal structure of Vibrio cholerae 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with methylthio-DADMe-Immucillin-A 4X24 ; 1.5 ; Crystal structure of Vibrio cholerae 5'-methylthioadenosine/S-adenosyl homocysteine nucleosidase (MTAN) complexed with methylthio-DADMe-Immucillin-A 4OXI ; 2.261 ; Crystal structure of Vibrio cholerae adenylation domain AlmE in complex with glycyl-adenosine-5'-phosphate 4KSS ; 7.58 ; Crystal Structure of Vibrio cholerae ATPase GspsE Hexamer 4XJ4 ; 1.596 ; Crystal structure of Vibrio cholerae DncV 3'-deoxy ATP bound form 4XJ5 ; 1.552 ; Crystal structure of Vibrio cholerae DncV 3'-deoxy GTP bound form 4XJ1 ; 1.77 ; Crystal structure of Vibrio cholerae DncV apo form 4TY0 ; 1.8 ; Crystal structure of Vibrio cholerae DncV cyclic AMP-GMP synthase in complex with linear intermediate 5' pppA(3',5')pG 4TXZ ; 2.8 ; Crystal structure of Vibrio cholerae DncV cyclic AMP-GMP synthase in complex with nonhydrolyzable GTP 4TXY ; 3.0001 ; Crystal structure of Vibrio cholerae DncV cyclic AMP-GMP synthase, a prokaryotic cGAS homolog 4XJ3 ; 1.65 ; Crystal structure of Vibrio cholerae DncV GTP bound form 7LUI ; 1.74 ; Crystal structure of Vibrio cholerae DsbA in complex with bile salt taurocholate 6IDS ; 2.79 ; Crystal structure of Vibrio cholerae MATE transporter VcmN D35N mutant 6IDR ; 2.502 ; Crystal structure of Vibrio cholerae MATE transporter VcmN in the bent form 6IDP ; 2.205 ; Crystal structure of Vibrio cholerae MATE transporter VcmN in the straight form 6K26 ; 1.85 ; Crystal structure of Vibrio cholerae methionine aminopeptidase 6LH7 ; 1.473 ; Crystal Structure of Vibrio cholerae Methionine Aminopeptidase with Partially Occupied Metals 7EYM ; 1.38 ; Crystal structure of Vibrio cholerae ppnP 1P9R ; 2.5 ; Crystal Structure of Vibrio cholerae putative NTPase EpsE 1P9W ; 2.7 ; Crystal Structure of Vibrio cholerae putative NTPase EpsE 4KKQ ; 2.16 ; Crystal structure of Vibrio cholerae RbmA (crystal form 1) 4KKP ; 2.5 ; Crystal structure of Vibrio cholerae RbmA (crystal form 2) 4KKR ; 2.0 ; Crystal structure of Vibrio cholerae RbmA (crystal form 3) 7DWN ; 2.32 ; Crystal structure of Vibrio fischeri DarR in complex with DNA reveals the transcriptional activation mechanism of LTTR family members 7DWO ; 2.611 ; Crystal structure of Vibrio fischeri DarR in complex with DNA reveals the transcriptional activation mechanism of LTTR family members 3B9A ; 1.8 ; Crystal structure of Vibrio harveyi chitinase A complexed with hexasaccharide 3B9D ; 1.72 ; Crystal structure of Vibrio harveyi chitinase A complexed with pentasaccharide 2HJE ; 1.7 ; Crystal structure of Vibrio harveyi LuxQ periplasmic domain 3R6M ; 3.1 ; Crystal structure of Vibrio parahaemolyticus YeaZ 1V7V ; 1.8 ; Crystal structure of Vibrio proteolyticus chitobiose phosphorylase 1V7W ; 1.6 ; Crystal structure of Vibrio proteolyticus chitobiose phosphorylase in complex with GlcNAc 1V7X ; 2.0 ; Crystal structure of Vibrio proteolyticus chitobiose phosphorylase in complex with GlcNAc and sulfate 2ISA ; 1.97 ; Crystal Structure of Vibrio salmonicida catalase 3NQX ; 1.7 ; Crystal structure of vibriolysin MCP-02 mature enzyme, a zinc metalloprotease from M4 family 2Z4T ; 2.5 ; Crystal Structure of Vibrionaceae Photobacterium sp. JT-ISH-224 2,6-sialyltransferase in a Ternary Complex with Donor Product CMP and Accepter Substrate Lactose 6L4C ; 3.191 ; Crystal structure of vicilin from Corylus avellana (Hazelnut) 6L4M ; 3.302 ; Crystal structure of vicilin from Solanum lycopersicum (tomato) 6VGV ; 1.65 ; Crystal structure of VidaL intein 6VGW ; 1.51 ; Crystal structure of VidaL intein (selenomethionine variant) 2RJY ; 1.4 ; Crystal structure of villin headpiece, P21 21 21 space group 5N5I ; 2.2 ; Crystal Structure of VIM-1 metallo-beta-lactamase in complex with hydrolysed meropenem 6DD1 ; 1.7 ; Crystal structure of VIM-2 complexed with compound 14 6DD0 ; 1.5 ; Crystal structure of VIM-2 complexed with compound 8 6TGI ; 1.6 ; Crystal structure of VIM-2 in complex with triazole-based inhibitor OP24 7YHB ; 1.43 ; Crystal structure of VIM-2 MBL in complex with (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzyl)phosphonic acid 7DUE ; 1.799 ; Crystal structure of VIM-2 MBL in complex with (R)-1-(sec-butyl)-1H-imidazole-2-carboxylic acid 7DYY ; 1.798 ; Crystal structure of VIM-2 MBL in complex with 1-((2-aminobenzo[d]thiazol-6-yl)methyl)-1H-imidazole-2-carboxylic acid 7DUY ; 1.999 ; Crystal structure of VIM-2 MBL in complex with 1-(2-(1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazole-2-carboxylic acid 7DV0 ; 1.601 ; Crystal structure of VIM-2 MBL in complex with 1-(4-(trifluoromethyl)benzyl)-1H-imidazole-2-carboxylic acid 7DV1 ; 1.966 ; Crystal structure of VIM-2 MBL in complex with 1-(4-hydroxybenzyl)-1H-imidazole-2-carboxylic acid 7DUX ; 1.981 ; Crystal structure of VIM-2 MBL in complex with 1-(but-3-en-1-yl)-1H-imidazole-2-carboxylic acid 7DYZ ; 1.902 ; Crystal structure of VIM-2 MBL in complex with 1-(but-3-en-1-yl)-4-methyl-1H-imidazole-2-carboxylic acid 7DZ0 ; 3.227 ; Crystal structure of VIM-2 MBL in complex with 1-(but-3-en-1-yl)-5-methyl-1H-imidazole-2-carboxylic acid 7DZ1 ; 2.708 ; Crystal structure of VIM-2 MBL in complex with 1-benzyl-5-methyl-1H-imidazole-2-carboxylic acid 7DUZ ; 1.6 ; Crystal structure of VIM-2 MBL in complex with 1-cyclobutyl-1H-imidazole-2-carboxylic acid 7DUB ; 1.599 ; Crystal structure of VIM-2 MBL in complex with 1-isopropyl-1H-imidazole-2-carboxylic acid 7DU1 ; 1.79 ; Crystal structure of VIM-2 MBL in complex with 1-propyl-1H-imidazole-2-carboxylic acid 7YHC ; 2.153 ; Crystal structure of VIM-2 MBL in complex with 3-(4-(3-aminophenyl)-1H-1,2,3-triazol-1-yl)phthalic acid 7YHD ; 1.696 ; Crystal structure of VIM-2 MBL in complex with 3-(4-(4-(2-aminoethoxy)phenyl)-1H-1,2,3-triazol-1-yl)phthalic acid 5YD7 ; 1.7 ; Crystal Structure OF VIM-2 Metallo-beta-lactamase 8I52 ; 1.58 ; Crystal structure of VIM-2 metallo-beta-lactamase in complex with 10-HHIA 6KXO ; 1.49 ; Crystal Structure Of VIM-2 Metallo-beta-lactamase In Complex With Inhibitor NO9 6KZN ; 1.5 ; Crystal Structure Of VIM-2 Metallo-beta-lactamase In Complex With Inhibitor X2 4PVO ; 1.48 ; Crystal Structure of VIM-2 metallo-beta-lactamase in complex with ML302 and ML302F 4PVT ; 2.0 ; Crystal Structure of VIM-2 metallo-beta-lactamase in complex with ML302F 6O5T ; 2.1 ; Crystal Structure of VIM-2 with Compound 16 7A60 ; 1.47 ; Crystal structure of VIM-2 with hydrolyzed faropenem (ring-open form) 7YRP ; 2.0 ; Crystal structure of VIM-28 metallo-beta-lactamase 7DUF ; 2.61 ; Crystal structure of VIM1 PHD finger. 3UF1 ; 2.81 ; Crystal Structure of Vimentin (fragment 144-251) from Homo sapiens, Northeast Structural Genomics Consortium Target HR4796B 5WHF ; 2.25 ; Crystal structure of vimentin coil 1B packed in a high-order filamentous form 3SSU ; 2.603 ; Crystal structure of vimentin coil1A/1B fragment 3S4R ; 2.452 ; Crystal structure of vimentin coil1A/1B fragment with a stabilizing mutation 3SWK ; 1.7 ; Crystal structure of vimentin coil1B fragment 3WMR ; 1.95 ; Crystal structure of VinJ 7F2R ; 1.95 ; Crystal structure of VinK-VinL covalent complex formed with a pantetheineamide cross-linking probe 3WV4 ; 2.15 ; Crystal structure of VinN 2BGH ; 2.6 ; Crystal structure of Vinorine Synthase 2WBQ ; 1.1 ; Crystal structure of VioC in complex with (2S,3S)-hydroxyarginine 2WBP ; 1.16 ; Crystal structure of VioC in complex with Fe(II), (2S,3S)- hydroxyarginine, and succinate 2WBO ; 1.3 ; Crystal structure of VioC in complex with L-arginine 8H0M ; 1.702 ; Crystal structure of VioD 3C4A ; 2.3 ; Crystal structure of vioD hydroxylase in complex with FAD from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvR158 8GQR ; 2.1 ; Crystal structure of VioD with FAD 2ZF3 ; 2.0 ; Crystal Structure of VioE 2ZF4 ; 2.18 ; Crystal Structure of VioE complexed with phenylpyruvic acid 1QS2 ; 2.7 ; CRYSTAL STRUCTURE OF VIP2 WITH NAD 2DUO ; 1.8 ; Crystal structure of VIP36 exoplasmic/lumenal domain, Ca2+-bound form 2DUQ ; 1.8 ; Crystal structure of VIP36 exoplasmic/lumenal domain, Ca2+/Man-bound form 2DUR ; 1.65 ; Crystal structure of VIP36 exoplasmic/lumenal domain, Ca2+/Man2-bound form 2E6V ; 2.5 ; Crystal structure of VIP36 exoplasmic/lumenal domain, Ca2+/Man3GlcNAc-bound form 2DUP ; 2.1 ; Crystal structure of VIP36 exoplasmic/lumenal domain, metal-free form 4AKF ; 2.9 ; Crystal structure of VipD from Legionella pneumophila 5VSL ; 1.972 ; Crystal structure of viperin with bound [4Fe-4S] cluster and S-adenosylhomocysteine (SAH) 5VSM ; 1.7 ; Crystal structure of viperin with bound [4Fe-4S] cluster, 5'-deoxyadenosine, and L-methionine 6WQB ; 1.75 ; Crystal structure of VipF from Legionella hackeliae in complex with acetyl-CoA 6WQC ; 2.34 ; Crystal structure of VipF from Legionella hackeliae in complex with CoA 4ZLT ; 3.0 ; Crystal structure of viral chemokine binding protein R17 in complex with CCL3 1CM9 ; 2.1 ; CRYSTAL STRUCTURE OF VIRAL MACROPHAGE INFLAMMATORY PROTEIN-II 2FHT ; 1.7 ; Crystal Structure of Viral Macrophage Inflammatory Protein-II 2FJ2 ; 2.3 ; Crystal Structure of Viral Macrophage Inflammatory Protein-II 4HDH ; 2.28 ; Crystal Structure of viral RdRp in complex with ATP 4HDG ; 2.38 ; Crystal Structure of viral RdRp in complex with GTP 6SQG ; 1.9 ; Crystal structure of viral rhodopsin OLPVRII 3VWB ; 2.416 ; Crystal structure of VirB core domain (Se-Met derivative) complexed with the cis-acting site (5-BRU modifications) upstream icsb promoter 3W3C ; 2.431 ; Crystal structure of VirB core domain complexed with the cis-acting site upstream icsb promoter 3W2A ; 2.775 ; Crystal structure of VirB core domain complexed with the cis-acting site upstream icsp promoter 2BHM ; 2.4 ; Crystal structure of VirB8 from Brucella suis 4AKZ ; 2.25 ; CRYSTAL STRUCTURE OF VIRB8 FROM BRUCELLA SUIS 4AKY ; 2.6 ; CRYSTAL STRUCTURE OF VIRB8 FROM BRUCELLA SUIS IN COMPLEX WITH INTERACTION INHIBITOR 2-(butylamino)-8-quinolinol 7PKW ; 1.835 ; Crystal structure of VIRB8-like OrfG central and C-terminal domains of Streptococcus thermophilus ICESt3 (Gram positive conjugative type IV secretion system). 6ZGN ; 1.75 ; Crystal structure of VirB8-like OrfG central domain of Streptococcus thermophilus ICESt3; a putative assembly factor of a gram positive conjugative Type IV secretion system. 1YIT ; 2.8 ; Crystal Structure Of Virginiamycin M and S Bound To The 50S Ribosomal Subunit Of Haloarcula Marismortui 4LUQ ; 1.77 ; Crystal structure of virulence effector Tse3 in complex with neutralizer Tsi3 2OZ6 ; 2.8 ; Crystal Structure of Virulence Factor Regulator from Pseudomonas aeruginosa in complex with cAMP 3HNQ ; 2.1 ; Crystal Structure of Virulence protein STM3117 from Salmonella typhimurium. Northeast Structural Genomics Consortium target id StR274 3Q5Z ; 1.9 ; Crystal structure of virulent allele ROP5B pseudokinase domain 3Q60 ; 1.72 ; Crystal structure of virulent allele ROP5B pseudokinase domain bound to ATP 2E0Z ; 3.6 ; Crystal structure of virus-like particle from Pyrococcus furiosus 7K6V ; 3.0 ; Crystal Structure of Virus-like Particles of GII.4 Norovirus Houston virus (HOV) 2RG9 ; 1.95 ; Crystal structure of viscum album mistletoe lectin I in native state at 1.95 A resolution, comparison of structure active site conformation in ricin and in viscumin 5LX5 ; 1.88 ; CRYSTAL STRUCTURE OF VISFATIN IN COMPLEX WITH SAR154782-RP. 5LX3 ; 2.1 ; CRYSTAL STRUCTURE OF VISFATIN IN COMPLEX WITH SAR154782. 2G95 ; 1.9 ; Crystal Structure of Visfatin/Pre-B Cell Colony Enhancing Factor 1/Nicotinamide Phosphoribosyltransferase 2G96 ; 2.9 ; Crystal Structure of Visfatin/Pre-B Cell Colony Enhancing Factor 1/Nicotinamide Phosphoribosyltransferase In Complex with Niconamide Mononucleotide 2G97 ; 2.9 ; Crystal Structure of Visfatin/Pre-B Cell Colony Enhancing Factor 1/Nicotinamide Phosphoribosyltransferase In Complex with the Specific Inhibitor FK-866 6MVL ; 1.61 ; Crystal structure of VISTA bound to a pH-selective antibody Fab fragment 3UGX ; 2.649 ; Crystal Structure of Visual Arrestin 3CV9 ; 1.7 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (R73A/R84A mutant) in complex with 1alpha,25-dihydroxyvitamin D3 2ZBY ; 1.6 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (R84A mutant) 5X7E ; 1.9 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (R84A mutant) in complex with 1,25-dihydroxyvitamin D2 2ZBZ ; 1.9 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (R84A mutant) in complex with 1,25-dihydroxyvitamin D3 3CV8 ; 2.0 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (R84F mutant) 2ZBX ; 1.5 ; Crystal structure of vitamin D hydroxylase cytochrome P450 105A1 (wild type) with imidazole bound 2HBH ; 2.65 ; Crystal structure of Vitamin D nuclear receptor ligand binding domain bound to a locked side-chain analog of calcitriol and SRC-1 peptide 1YNW ; 3.0 ; Crystal Structure of Vitamin D Receptor and 9-cis Retinoic Acid Receptor DNA-Binding Domains Bound to a DR3 Response Element 4YNK ; 2.3 ; Crystal structure of vitamin D receptor ligand binding domain complexed with a 19-norvitamin D compound 1VMO ; 2.2 ; CRYSTAL STRUCTURE OF VITELLINE MEMBRANE OUTER LAYER PROTEIN I (VMO-I): A FOLDING MOTIF WITH HOMOLOGOUS GREEK KEY STRUCTURES RELATED BY AN INTERNAL THREE-FOLD SYMMETRY 3VDM ; 1.98 ; Crystal Structure of VldE, the pseudo-glycosyltransferase which catalyzes non-glycosidic C-N coupling in Validamycin A biosynthesis 3VDN ; 2.55 ; Crystal Structure of VldE, the pseudo-glycosyltransferase, in complex with GDP 4F96 ; 2.152 ; Crystal Structure of VldE, the pseudo-glycosyltransferase, in complex with GDP 4F9F ; 2.807 ; Crystal Structure of VldE, the pseudo-glycosyltransferase, in complex with GDP and Trehalose 4F97 ; 2.108 ; Crystal Structure of VldE, the pseudo-glycosyltransferase, in complex with GDP and validoxylamine A 7'-phosphate 6LFD ; 1.92 ; Crystal structure of VMB-1 at pH5.5(Bis-Tris) 6LF4 ; 2.01 ; Crystal structure of VMB-1 bound to hydrolyzed meropenem 4RDY ; 2.0 ; Crystal structure of VmoLac bound to 3-oxo-C10 AHL 4RE0 ; 2.35 ; Crystal structure of VmoLac in P622 space group 4RDZ ; 1.8 ; Crystal structure of VmoLac in P64 space group 7SKZ ; 1.86 ; Crystal Structure of VN01H1 Fab in complex with SARS-CoV-2 S fusion peptide 8HGI ; 1.95 ; Crystal structure of VNAR aGFP14 in complex with GFP 2GF4 ; 2.07 ; Crystal structure of Vng1086c from Halobacterium salinarium (Halobacterium halobium). Northeast Structural Genomics Target HsR14 6TD1 ; 1.2 ; Crystal structure of VNRX-5133 (taniborbactam) bound to KPC-2 7XL0 ; 1.7 ; Crystal structure of Vobarilizumab at 1.70 Angstrom 7SIT ; 3.32 ; Crystal structure of Voltage gated potassium ion channel, Kv 1.2 chimera-3m 4G7V ; 2.5 ; Crystal structure of voltage sensing domain of Ci-VSP with fragment antibody (R217E, 2.5 A) 4G7Y ; 2.8 ; Crystal structure of voltage sensing domain of Ci-VSP with fragment antibody (R217E, 2.8 A) 4G80 ; 3.58 ; Crystal structure of voltage sensing domain of Ci-VSP with fragment antibody (WT, 3.8 A) 5YUB ; 3.40004 ; Crystal structure of voltage-gated sodium channel NavAb E32Q mutant 6P6X ; 2.75 ; Crystal structure of voltage-gated sodium channel NavAb G94C/Q150C mutant in the activated state 5YUA ; 2.80086 ; Crystal structure of voltage-gated sodium channel NavAb in high-pH condition 5YUC ; 3.40099 ; Crystal structure of voltage-gated sodium channel NavAb N49K mutant 8H9W ; 2.7 ; Crystal structure of voltage-gated sodium channel NavAb N49K mutant in calcium ion condition 8H9O ; 3.3 ; Crystal structure of voltage-gated sodium channel NavAb N49K mutant in sodium ion condition 8HA2 ; 3.3 ; Crystal structure of voltage-gated sodium channel NavAb N49K/L176G mutant in calcium ion condition 8HA1 ; 3.5 ; Crystal structure of voltage-gated sodium channel NavAb N49K/L176G mutant in sodium ion condition 8H9Y ; 3.4 ; Crystal structure of voltage-gated sodium channel NavAb N49K/L176Q mutant in calcium ion condition 8H9X ; 3.4 ; Crystal structure of voltage-gated sodium channel NavAb N49K/L176Q mutant in sodium ion condition 6P6Y ; 2.89 ; Crystal structure of voltage-gated sodium channel NavAb V100C/Q150C disulfide crosslinked mutant in the activated state 3HXO ; 2.4 ; Crystal Structure of Von Willebrand Factor (VWF) A1 Domain in Complex with DNA Aptamer ARC1172, an Inhibitor of VWF-Platelet Binding 3HXQ ; 2.694 ; Crystal Structure of Von Willebrand Factor (VWF) A1 Domain in Complex with DNA Aptamer ARC1172, an Inhibitor of VWF-Platelet Binding 1UEX ; 2.85 ; Crystal structure of von Willebrand Factor A1 domain complexed with snake venom bitiscetin 3SEO ; 2.305 ; Crystal structure of VopL C terminal domain 4N6Q ; 1.79 ; Crystal structure of VosA velvet domain 4N6R ; 2.2 ; Crystal structure of VosA-VelB-complex 2R7Q ; 2.9 ; Crystal Structure of VP1 apoenzyme of Rotavirus SA11 (C-terminal hexahistidine-tagged) 2R7O ; 3.35 ; Crystal Structure of VP1 apoenzyme of Rotavirus SA11 (N-terminal hexahistidine-tagged) 7SL5 ; 2.5 ; Crystal Structure of VP12E7 Fab in complex with SARS-CoV-2 S fusion peptide 2PNL ; 2.21 ; Crystal structure of VP4 protease from infectious pancreatic necrosis virus (IPNV) in space group P1 2PNM ; 2.3 ; Crystal Structure of VP4 protease from infectious pancreatic necrosis virus (IPNV) in space group P6122 6QGI ; 2.46 ; Crystal structure of VP5 from Haloarchaeal pleomorphic virus 2 6QGL ; 2.69 ; Crystal structure of VP5 from Haloarchaeal pleomorphic virus 6 1QHD ; 1.95 ; CRYSTAL STRUCTURE OF VP6, THE MAJOR CAPSID PROTEIN OF GROUP A ROTAVIRUS 2GJ2 ; 2.35 ; Crystal Structure of VP9 from White Spot Syndrome Virus 3VB9 ; 2.1 ; Crystal structure of VPA0735 from Vibrio parahaemolyticus in monoclinic form, NorthEast Structural Genomics target VpR109 2P3Y ; 1.8 ; Crystal structure of VPA0735 from Vibrio parahaemolyticus. NorthEast Structural Genomics target VpR109 7X4O ; 2.02 ; Crystal structure of Vps17p PX from S. cerevisiae (Space) 5XCK ; 2.2 ; Crystal structure of Vps29 double mutant (D62A/H86A) from Entamoeba histolytica 5XCJ ; 1.859 ; Crystal structure of Vps29 single mutant (D62A) from Entamoeba histolytica 5ANL ; 2.7 ; Crystal structure of VPS34 in complex with (2S)-8-((3R)-3- Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3, 4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one, processed with the CrystalDirect automated mounting and cryo-cooling technology 8RXR ; 2.06 ; Crystal structure of VPS34 in complex with inhibitor SB02024 4OYS ; 2.9 ; CRYSTAL STRUCTURE OF VPS34 IN COMPLEX WITH SAR405. 3MHV ; 3.1 ; Crystal Structure of Vps4 and Vta1 4NIQ ; 2.301 ; Crystal Structure of Vps4 MIT-Vfa1 MIM2 5FVK ; 1.658 ; Crystal structure of Vps4-Vfa1 complex from S.cerevisiae at 1.66 A resolution. 5FVL ; 1.973 ; Crystal structure of Vps4-Vps20 complex from S.cerevisiae 1XWI ; 2.8 ; Crystal Structure of VPS4B 3C9D ; 2.0 ; Crystal structure of Vps75 7VF4 ; 3.1 ; Crystal structure of Vps75 from Candida albicans 6U1Q ; 2.87 ; Crystal Structure of VpsO (VC0937) Kinase domain 7V2B ; 3.2 ; Crystal Structure of VpsR display novel dimeric architecture and c-di-GMP binding: mechanistic implications in oligomerization, ATPase activity and DNA binding. 7V2V ; 3.194 ; Crystal Structure of VpsR display novel dimeric architecture and c-di-GMP binding: mechanistic implications in oligomerization, ATPase activity and DNA binding. 7V3W ; 3.205 ; Crystal Structure of VpsR display novel dimeric architecture and c-di-GMP binding: mechanistic implications in oligomerization, ATPase activity and DNA binding. 7V4E ; 4.0 ; Crystal Structure of VpsR display novel dimeric architecture and c-di-GMP binding: mechanistic implications in oligomerization, ATPase activity and DNA binding. 6U1P ; 2.201 ; Crystal structure of VpsU (VC0916) from Vibrio cholerae 5XHX ; 2.1 ; Crystal structure of VqsR LBD domain from Pseudomonas aeruginosa 1WQ9 ; 2.0 ; Crystal structure of VR-1, a VEGF-F from a snake venom 5IES ; 2.16 ; Crystal structure of VRC01c-HuGL2 Fab from an HIV-1 naive donor in complex with with a germline-targeting gp120 engineered outer domain eOD-GT8 at 2.16 A 5IF0 ; 2.44 ; Crystal structure of VRC01c-HuGL2 Fab from an HIV-1 naive donor in complex with with a germline-targeting gp120 engineered outer domain eOD-GT8 at 2.44 A 5JOF ; 3.208 ; Crystal structure of VRC03 gHVgLV antigen-binding fragment. 6MTO ; 2.634 ; Crystal structure of VRC42.01 Fab in complex with T117-F MPER scaffold 6MTP ; 2.036 ; Crystal structure of VRC42.04 Fab in complex with gp41 peptide 6MTQ ; 2.7 ; Crystal structure of VRC42.N1 Fab in complex with T117-F MPER scaffold 6MTR ; 1.798 ; Crystal structure of VRC43.01 Fab 6MTS ; 2.437 ; Crystal structure of VRC43.03 Fab 6MTT ; 1.7 ; Crystal structure of VRC46.01 Fab in complex with gp41 peptide 4I1K ; 1.6 ; Crystal Structure of VRN1 (Residues 208-341) 3KMA ; 1.6 ; Crystal Structure of vSET under Condition A 3KMJ ; 1.85 ; Crystal structure of vSET under condition B 3KMT ; 1.78 ; Crystal structure of vSET/SAH/H3 ternary complex 4PFE ; 2.603 ; Crystal structure of vsfGFP-0 6Z8G ; 1.56 ; Crystal structure of VSG13 soaked in 0.5 M used to phase VSG13 to solve the structure. 1TD3 ; 2.37 ; Crystal structure of VSHP_BPP21 in space group C2 1TD4 ; 1.5 ; Crystal structure of VSHP_BPP21 in space group H3 with high resolution. 5I2M ; 2.4 ; CRYSTAL STRUCTURE OF VSV-INDIANA (MUDD-SUMMERS STRAIN) GLYCOPROTEIN UNDER ITS ACIDIC CONFORMATION 5Y9S ; 2.199 ; Crystal structure of VV2_1132, a LysR family transcriptional regulator 6JKZ ; 1.397 ; Crystal structure of VvPlpA from Vibrio vulnificus 6JL0 ; 2.073 ; Crystal structure of VvPlpA from Vibrio vulnificus 6JL1 ; 2.29 ; Crystal structure of VvPlpA G389D from Vibrio vulnificus 6JL2 ; 2.3 ; Crystal structure of VvPlpA G389N from Vibrio vulnificus 3GXB ; 1.9 ; Crystal structure of VWF A2 domain 6H1A ; 1.75 ; Crystal structure of VX surrogate NEMP inhibited recombinant human bile salt activated lipase 4I5O ; 4.4787 ; Crystal Structure of W-W-R ClpX Hexamer 4I34 ; 4.1218 ; Crystal Structure of W-W-W ClpX Hexamer 3N7M ; 2.6 ; Crystal structure of W1252A mutant of HCR D/C VPI 5995 3E1Q ; 2.6 ; Crystal structure of W133F variant E. coli Bacterioferritn with iron. 1WA0 ; 1.6 ; Crystal Structure Of W138H Mutant Of Alcaligenes Xylosoxidans Nitrite Reductase 1SC6 ; 2.09 ; Crystal Structure of W139G D-3-Phosphoglycerate dehydrogenase complexed with NAD+ 6QLV ; 2.391 ; Crystal structure of W200H UbiX in complex with a geranyl-FMN N5 adduct 5L2H ; 1.8013 ; Crystal Structure of W26A mutant of anti-EGFR Centyrin P54AR4-83v2 1PZT ; 1.92 ; CRYSTAL STRUCTURE OF W314A-BETA-1,4-GALACTOSYLTRANSFERASE (B4GAL-T1) CATALYTIC DOMAIN WITHOUT SUBSTRATE 6KXN ; 1.5 ; Crystal structure of W50A mutant of Chitiniphilus shinanonensis chitinase ChiL (CsChiL) complexed with N,N'-diacetylchitobiose 4OJB ; 2.0 ; Crystal structure of W741L-AR-LBD 4OK1 ; 2.09 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 4OKB ; 2.95 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 4OKT ; 2.5 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 4OKW ; 2.0 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 4OKX ; 2.1 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 4OLM ; 2.8 ; Crystal structure of W741L-AR-LBD bound with co-regulator peptide 1JF2 ; 1.72 ; Crystal Structure of W92F obelin mutant from Obelia longissima at 1.72 Angstrom resolution 3QDA ; 1.57 ; Crystal structure of W95L beta-2 microglobulin 5ZT3 ; 1.304 ; Crystal structure of WA352 from Oryza sativa 2IV7 ; 1.6 ; Crystal Structure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis 2IW1 ; 1.5 ; Crystal Structure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis 2DRE ; 2.0 ; Crystal structure of Water-soluble chlorophyll protein from lepidium virginicum at 2.00 angstrom resolution 5K19 ; 2.602 ; Crystal structure of WD repeat-containing protein 20 6PBG ; 1.72 ; Crystal structure of WD-repeat domain of human coatomer subunit Alpha (COPA) 6VYC ; 2.1 ; Crystal structure of WD-repeat domain of human WDR91 3ODT ; 1.35 ; Crystal structure of WD40 beta propeller domain of Doa1 4OZU ; 1.65 ; Crystal Structure of WD40 domain from Toxoplasma gondii coronin 3FM0 ; 1.7 ; Crystal structure of WD40 protein Ciao1 5H1J ; 2.0 ; Crystal structure of WD40 repeat domains of Gemin5 5H1K ; 1.9 ; Crystal structure of WD40 repeat domains of Gemin5 in complex with 13-nt U4 snRNA fragment 5H1L ; 2.1 ; Crystal structure of WD40 repeat domains of Gemin5 in complex with 7-nt U4 snRNA fragment 5H1M ; 2.492 ; Crystal structure of WD40 repeat domains of Gemin5 in complex with M7G 3I2N ; 1.95 ; Crystal Structure of WD40 repeats protein WDR92 7CFP ; 1.6 ; Crystal structure of WDR5 in complex with a H3Q5ser peptide 7CFQ ; 1.6 ; Crystal structure of WDR5 in complex with H3K4me3Q5ser peptide 4Y7R ; 1.898 ; Crystal structure of WDR5 in complex with MYC MbIIIb peptide 3UVK ; 1.4 ; Crystal structure of WDR5 in complex with the WDR5-interacting motif of MLL2 3UVL ; 2.2 ; Crystal structure of WDR5 in complex with the WDR5-interacting motif of MLL3 3UVM ; 1.57 ; Crystal structure of WDR5 in complex with the WDR5-interacting motif of MLL4 3UVN ; 1.792 ; Crystal structure of WDR5 in complex with the WDR5-interacting motif of SET1A 3UVO ; 2.2 ; Crystal structure of WDR5 in complex with the WDR5-interacting motif of SET1B 6WJQ ; 2.71 ; Crystal structure of WDR5 in complex with the WIN peptide of PDPK1 3MXX ; 2.05 ; Crystal structure of WDR5 mutant (S62A) 3N0D ; 2.3 ; Crystal structure of WDR5 mutant (W330F) 3N0E ; 2.5 ; Crystal structure of WDR5 mutant (W330Y) 4QQE ; 1.8 ; Crystal structure of WDR5, WD repeat domain 5 in complex with compound SGC-DS-MT-0345 6BYN ; 2.69 ; Crystal structure of WDR5-Mb(S4) monobody complex 2H13 ; 1.58 ; Crystal structure of WDR5/histone H3 complex 1XE4 ; 1.95 ; Crystal Structure of Weissella viridescens FemX (K36M) Mutant 1XF8 ; 1.9 ; Crystal Structure of Weissella viridescens FemX (Y254F) Mutant 1NE9 ; 1.7 ; Crystal Structure of Weissella viridescens FemX at 1.7 Ang Resolution 1XIX ; 2.0 ; Crystal Structure of Weissella viridescens FemX Form II 3GKR ; 1.6 ; Crystal Structure of Weissella viridescens FemX:UDP-MurNAc-hexapeptide complex 1P4N ; 1.9 ; Crystal Structure of Weissella viridescens FemX:UDP-MurNAc-pentapeptide complex 4II9 ; 1.66 ; Crystal structure of Weissella viridescens FemXVv non-ribosomal amino acid transferase in complex with a peptidyl-RNA conjugate 7Z5Y ; 1.71 ; CRYSTAL STRUCTURE OF WEISSELLA VIRIDESCENS FEMXVV NON-RIBOSOMAL AMINO ACID TRANSFERASE IN COMPLEX WITH A PEPTIDYL-XNA CONJUGATE 7Z5Z ; 1.49 ; CRYSTAL STRUCTURE OF WEISSELLA VIRIDESCENS FEMXVV NON-RIBOSOMAL AMINO ACID TRANSFERASE IN COMPLEX WITH A PEPTIDYL-XNA CONJUGATE 7Z6A ; 1.66 ; CRYSTAL STRUCTURE OF WEISSELLA VIRIDESCENS FEMXVV NON-RIBOSOMAL AMINO ACID TRANSFERASE IN COMPLEX WITH A PEPTIDYL-XNA CONJUGATE 7Z6K ; 1.6 ; CRYSTAL STRUCTURE OF WEISSELLA VIRIDESCENS FEMXVV NON-RIBOSOMAL AMINO ACID TRANSFERASE IN COMPLEX WITH A PEPTIDYL-XNA CONJUGATE 6YHR ; 2.2 ; Crystal structure of Werner syndrome helicase 8YLE ; 1.86 ; Crystal structure of Werner syndrome helicase complexed with AMP-PCP 5IDK ; 1.5 ; Crystal structure of West Nile Virus NS2B-NS3 protease in complex with a capped dipeptide boronate inhibitor 7AHY ; 2.532 ; Crystal structure of Western clawed frog MDM2 RING domain homodimer 7AHZ ; 1.82 ; Crystal structure of Western clawed frog MDM2 RING domain homodimer bound to UbcH5B-Ub 2IDV ; 2.3 ; Crystal structure of wheat C113S mutant EIF4E bound TO 7-methyl-GDP 4E1Q ; 1.251 ; Crystal structure of Wheat Cyclophilin A at 1.25 A resolution 4AML ; 1.6 ; CRYSTAL STRUCTURE OF WHEAT GERM AGGLUTININ ISOLECTIN 1 IN COMPLEX WITH GLYCOSYLURETHAN 2X52 ; 1.7 ; CRYSTAL STRUCTURE OF WHEAT GERM AGGLUTININ ISOLECTIN 3 IN COMPLEX WITH A SYNTHETIC DIVALENT CARBOHYDRATE LIGAND 5ZVL ; 2.963 ; Crystal Structure of Wheat Glutarredoxin 7XDS ; 2.06 ; Crystal structure of wheat stem rust effector AvrSr35 6Y38 ; 1.697 ; Crystal structure of Whirlin PDZ3 in complex with Myosin 15a C-terminal PDZ binding motif peptide 6Y9O ; 1.632 ; Crystal structure of Whirlin PDZ3_C-ter in complex with CASK internal PDZ binding motif peptide 6Y9P ; 3.169 ; Crystal structure of Whirlin PDZ3_C-ter in complex with Harmonin a1 C-terminal PDZ binding motif peptide 6Y9N ; 1.93 ; Crystal structure of Whirlin PDZ3_C-ter in complex with Myosin 15a C-terminal PDZ binding motif peptide 6Y9Q ; 1.315 ; Crystal structure of Whirlin PDZ3_C-ter in complex with Taperin internal PDZ binding motif peptide 7CC8 ; 2.3 ; Crystal structure of White Spot Syndrome Virus Thymidylate Synthase - Apo form 7CCA ; 2.75 ; Crystal structure of White Spot Syndrome Virus Thymidylate Synthase - ternary complex with Methotrexate and dUMP 6HJ5 ; 2.08 ; Crystal structure of Whitewater Arroyo virus GP1 glycoprotein at pH 5.6 6HJ4 ; 2.43 ; Crystal structure of Whitewater Arroyo virus GP1 glycoprotein at pH 7.5 6CEN ; 1.61 ; Crystal Structure of WHSC1L1 in Complex with Inhibitor PEP21 4RXJ ; 2.1 ; crystal structure of WHSC1L1-PWWP2 6ECS ; 2.9 ; Crystal structure of WHV core protein mutant Y132A dimer 4KOO ; 1.88 ; Crystal Structure of WHY1 from Arabidopsis thaliana 4KOP ; 1.75 ; Crystal Structure of WHY2 from Arabidopsis thaliana 4KOQ ; 1.85 ; Crystal Structure of WHY3 from Arabidopsis thaliana 2XSR ; 1.8 ; Crystal structure of wild type Acinetobacter radioresistens catechol 1,2 dioxygenase 5TJ3 ; 1.7 ; Crystal structure of wild type alkaline phosphatase PafA to 1.7A resolution 6KXR ; 2.45074 ; Crystal structure of wild type Alp1U from the biosynthesis of kinamycins 2JCO ; 2.57 ; Crystal structure of wild type alpha-1,3 Galactosyltransferase in the absence of ligands 5O87 ; 2.2 ; Crystal structure of wild type Aplysia californica AChBP in complex with nicotine 5O8T ; 2.2 ; Crystal structure of wild type Aplysia californica AChBP in complex with strychnine 3Q4C ; 3.2 ; Crystal Structure of Wild Type BRAF kinase domain in complex with organometallic inhibitor CNS292 7DP4 ; 1.5 ; Crystal structure of wild type Brugia malayi thymidylate synthase complexed with 2'-deoxyuridine monophosphate and methotrexate 6WY4 ; 1.8 ; Crystal Structure of Wild Type Class D beta-lactamase from Clostridium difficile 630 1NZB ; 3.1 ; Crystal structure of wild type Cre recombinase-loxP synapse 5GQL ; 1.78 ; Crystal structure of Wild Type Cypovirus Polyhedra 7XHR ; 1.801 ; Crystal structure of Wild Type Cypovirus Polyhedra produced by cell-free protein synthesis 7XWS ; 1.95 ; Crystal structure of Wild Type Cypovirus Polyhedra produced by cell-free protein synthesis with small volume 4XVA ; 2.66 ; Crystal structure of wild type cytochrome c peroxidase 1HY0 ; 2.2 ; CRYSTAL STRUCTURE OF WILD TYPE DUCK DELTA 1 CRYSTALLIN (EYE LENS PROTEIN) 1HY1 ; 2.3 ; CRYSTAL STRUCTURE OF WILD TYPE DUCK DELTA 2 CRYSTALLIN (EYE LENS PROTEIN) 4TS9 ; 1.77 ; Crystal structure of wild type E. Coli purine nucleoside phosphorylase with 6 FMC molecules 3N1S ; 1.45 ; Crystal structure of wild type ecHint GMP complex 7T4I ; 2.61 ; Crystal Structure of wild type EGFR in complex with TAK-788 6T8I ; 1.4 ; Crystal structure of wild type EndoBT-3987 from Bacteroides thetaiotamicron VPI-5482 2IDZ ; 2.0 ; Crystal structure of wild type Enoyl-ACP(CoA) reductase from Mycobacterium tuberculosis in complex with NADH-INH 2PTS ; 2.0 ; Crystal structure of wild type Escherichia coli adenylosuccinate lyase 4BUQ ; 2.199 ; Crystal structure of wild type FimH lectin domain in complex with heptyl alpha-D-mannopyrannoside 1ZSR ; 2.06 ; Crystal structure of wild type HIV-1 protease (BRU isolate) with a hydroxyethylamine peptidomimetic inhibitor BOC-PHE-PSI[S-CH(OH)CH2NH]-PHE-GLU-PHE-NH2 2PSU ; 1.93 ; Crystal Structure of wild type HIV-1 protease in complex with CARB-AD37 2PSV ; 1.75 ; Crystal Structure of wild type HIV-1 protease in complex with CARB-KB45 4HLA ; 1.95 ; Crystal structure of wild type HIV-1 protease in complex with darunavir 5KAO ; 1.8 ; Crystal structure of wild type HIV-1 protease in complex with GRL-10413 4I8W ; 1.96 ; Crystal structure of wild type HIV-1 protease in complex with non-peptidic inhibitor, GRL007 4I8Z ; 1.75 ; Crystal structure of wild type HIV-1 protease in complex with non-peptidic inhibitor, GRL008 3I6O ; 1.17 ; Crystal structure of wild type HIV-1 protease with macrocyclic inhibitor GRL-0216A 3H5B ; 1.29 ; Crystal structure of wild type HIV-1 protease with novel P1'-ligand GRL-02031 4XEM ; 1.278 ; Crystal Structure of wild type human AlaRS catalytic domain 4F46 ; 1.69 ; Crystal structure of wild type human CD38 in complex with NAADP and ADPRP 4QZU ; 1.5 ; Crystal Structure of wild type Human Cellular Retinol Binding Protein II (hCRBPII) bound to retinol at 11 KeV beam energy 4QZT ; 1.9 ; Crystal Structure of wild type Human Cellular Retinol Binding Protein II (hCRBPII) bound to retinol at 7 KeV beam energy 4IMN ; 2.09 ; Crystal structure of wild type human Lipocalin PGDS bound with PEG MME 2000 4IMO ; 1.88 ; Crystal structure of wild type human Lipocalin PGDS in complex with substrate analog U44069 7AYB ; 1.85 ; Crystal Structure of wild type human mitochondrial 2-Enoyl Thioester Reductase (MECR) 7PCK ; 3.2 ; CRYSTAL STRUCTURE OF WILD TYPE HUMAN PROCATHEPSIN K 4P1J ; 2.62 ; Crystal structure of wild type Hypocrea jecorina Cel7a in a hexagonal crystal form 4P1H ; 1.5 ; Crystal structure of wild type Hypocrea jecorina Cel7a in a monoclinic crystal form 6J42 ; 2.492 ; Crystal Structure of Wild Type KatB, a manganese catalase from Anabaena 1PJI ; 1.9 ; Crystal structure of wild type Lactococcus lactis FPG complexed to a 1,3 propanediol containing DNA 1PM5 ; 1.95 ; Crystal structure of wild type Lactococcus lactis Fpg complexed to a tetrahydrofuran containing DNA 3F74 ; 1.7 ; Crystal structure of wild type LFA1 I domain 3F78 ; 1.6 ; Crystal structure of wild type LFA1 I domain complexed with isoflurane 3VOE ; 2.6 ; Crystal Structure of wild type MarR (apo form) from E.coli 6JLR ; 2.901 ; Crystal structure of wild type MNK2 in complex with inhibitor 4AHP ; 2.1 ; Crystal Structure of Wild Type N-acetylneuraminic acid lyase from Staphylococcus aureus 3ZOW ; 2.35 ; Crystal Structure of Wild Type Nitrosomonas europaea Cytochrome c552 6Z2Q ; 2.347 ; Crystal structure of wild type OgpA from Akkermansia muciniphila in complex with an O-glycopeptide (GalGalNAc-TS) product 6Z2O ; 1.649 ; Crystal structure of wild type OgpA from Akkermansia muciniphila in P 21 21 21 6Z2D ; 1.899 ; Crystal structure of wild type OgpA from Akkermansia muciniphila in P 41 21 2 8P9E ; 2.25 ; Crystal structure of wild type p63-p73 heterotetramer (tetramerisation domain) in complex with darpin 1810 F11 2Z4U ; 1.1 ; Crystal structure of wild type PD-L4 from Phytolacca dioica leaves 2V5F ; 2.03 ; Crystal structure of wild type peptide-binding domain of human type I collagen prolyl 4-hydroxylase. 5YB0 ; 2.94 ; Crystal Structure of Wild Type Phosphoserine aminotransferase (PSAT) from E. histolytica 6A2K ; 2.38 ; Crystal structure of wild type Plasmodium falciparum DHFR-TS complexed with BT1, NADPH, and dUMP 6A2M ; 2.2 ; Crystal structure of wild type Plasmodium falciparum DHFR-TS complexed with BT2, NADPH, and dUMP 6A2O ; 2.35 ; Crystal structure of wild type Plasmodium falciparum DHFR-TS complexed with BT3, NADPH, and dUMP 5AOD ; 2.4 ; Crystal structure of wild type pneumolysin. 4H2A ; 1.62 ; Crystal structure of wild type protective antigen to 1.62 A (pH 7.5) 2QJP ; 2.6 ; Crystal structure of wild type rhodobacter sphaeroides with stigmatellin and antimycin inhibited 3NUG ; 1.788 ; Crystal structure of wild type tetrameric pyridoxal 4-dehydrogenase from Mesorhizobium loti 1I0A ; 2.5 ; CRYSTAL STRUCTURE OF WILD TYPE TURKEY DELTA 1 CRYSTALLIN (EYE LENS PROTEIN) 5XCH ; 2.85 ; Crystal structure of Wild type Vps29 complexed with Zn+2 from Entamoeba histolytica 5XCE ; 1.86 ; Crystal structure of Wild type Vps29 from Entamoeba histolytica 1XAE ; 2.7 ; Crystal structure of wild type yellow fluorescent protein zFP538 from Zoanthus 6DND ; 2.1 ; Crystal structure of wild-type (WT) human Glutamate oxaloacetate transaminase 1 (GOT1) 3HPQ ; 2.0 ; Crystal structure of wild-type adenylate kinase from E. coli, in complex with Ap5A 1QRX ; 1.6 ; CRYSTAL STRUCTURE OF WILD-TYPE ALPHA-LYTIC PROTEASE AT 1.6 A, PH 5.14 8ET4 ; 2.95 ; Crystal structure of wild-type arabidopsis thaliana acetohydroxyacid synthase in complex with amidosulfuron 6WJO ; 1.693 ; Crystal structure of wild-type Arginine Repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis bound to tyrosine 5IR4 ; 1.48 ; Crystal structure of wild-type bacterial lipoxygenase from Pseudomonas aeruginosa PA-LOX with space group C2221 at 1.48 A resolution 5IR5 ; 1.9 ; Crystal structure of wild-type bacterial lipoxygenase from Pseudomonas aeruginosa PA-LOX with space group P21212 at 1.9 A resolution 1FS3 ; 1.4 ; CRYSTAL STRUCTURE OF WILD-TYPE BOVINE PANCREATIC RIBONUCLEASE A 1TJR ; 2.3 ; Crystal structure of wild-type BX1 complexed with a sulfate ion 8OW3 ; 2.27 ; Crystal structure of wild-type c-MET bound by compound 2 8AN8 ; 2.394 ; Crystal structure of wild-type c-MET bound by compound 7. 7YIB ; 2.18 ; Crystal structure of wild-type Cap4 SAVED domain-containing receptor from Enterobacter cloacae 6EID ; 2.39 ; Crystal structure of wild-type Channelrhodopsin 2 3B8S ; 2.0 ; Crystal structure of wild-type chitinase A from Vibrio harveyi 7A1H ; 1.9 ; Crystal structure of wild-type CI2 6SD9 ; 2.35 ; Crystal structure of wild-type cMET bound by foretinib 6SDE ; 2.49 ; Crystal structure of wild-type cMET bound by savolitinib 4GEK ; 1.5 ; Crystal Structure of wild-type CmoA from E.coli 3WYP ; 1.3 ; Crystal structure of wild-type core streptavidin in complex with D-biotin/biotin-D-sulfoxide at 1.3 A resolution 1OUQ ; 3.2 ; Crystal structure of wild-type Cre recombinase-loxP synapse 3D7S ; 2.8 ; Crystal structure of Wild-Type E. Coli Asparate Transcarbamoylase at pH 8.5 at 2.80 A Resolution 8E9K ; 1.83 ; Crystal structure of wild-type E. coli aspartate aminotransferase bound to maleate at 278 K 8E9P ; 2.08 ; Crystal structure of wild-type E. coli aspartate aminotransferase in the ligand-free form at 278 K 8E9T ; 2.13 ; Crystal structure of wild-type E. coli aspartate aminotransferase in the ligand-free form at 303 K 3GUH ; 2.79 ; Crystal Structure of Wild-type E.coli GS in complex with ADP and DGM 2QZS ; 2.2 ; Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSb) 2R4T ; 2.258 ; Crystal Structure of Wild-type E.coli GS in Complex with ADP and Glucose(wtGSc) 2R4U ; 2.367 ; Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSd) 7EXF ; 2.17 ; Crystal structure of wild-type from Arabidopsis thaliana complexed with Galactose 6BAT ; 3.4 ; Crystal Structure of Wild-Type GltPh in complex with L-aspartate 3E76 ; 3.94 ; Crystal structure of Wild-type GroEL with bound Thallium ions 4XZD ; 1.7 ; Crystal Structure of Wild-type HasA from Yersinia pseudotuberculosis 1UC0 ; 1.85 ; Crystal structure of wild-type hen-egg white lysozyme singly labeled with 2',3'-epoxypropyl beta-glycoside of N-acetyllactosamine 3EKY ; 1.8 ; Crystal Structure of wild-type HIV protease in complex with the inhibitor, Atazanavir 3EL1 ; 1.7 ; Crystal Structure of wild-type HIV protease in complex with the inhibitor, Atazanavir 3O9G ; 1.65 ; Crystal Structure of wild-type HIV-1 Protease in complex with af53 3SA7 ; 1.5 ; Crystal structure of wild-type HIV-1 protease in complex with AF55 3O9E ; 1.5 ; Crystal Structure of wild-type HIV-1 Protease in complex with af60 3O9I ; 1.45 ; Crystal Structure of wild-type HIV-1 Protease in complex with af61 3SA9 ; 1.7 ; Crystal structure of Wild-type HIV-1 protease in complex With AF68 3SA5 ; 1.65 ; Crystal structure of wild-type HIV-1 protease in complex with AF69 3SA6 ; 1.75 ; Crystal structure of wild-type HIV-1 protease in complex with AF71 3SA4 ; 1.8 ; Crystal structure of wild-type HIV-1 protease in complex with AF72 3SAA ; 1.95 ; Crystal structure of Wild-type HIV-1 protease in complex With AF77 3SAB ; 1.5 ; Crystal structure of wild-type HIV-1 protease in complex with AF78 3SAC ; 1.5 ; Crystal structure of wild-type HIV-1 protease in complex with AF80 3SA3 ; 1.65 ; Crystal structure of wild-type HIV-1 protease in complex with AG23 4DQB ; 1.5 ; Crystal Structure of wild-type HIV-1 Protease in Complex with DRV 3SA8 ; 1.5 ; Crystal structure of wild-type HIV-1 protease in complex with KB83 3O99 ; 1.95 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd13 3O9A ; 1.9 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd14 3O9D ; 1.85 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd19 3O9C ; 1.85 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd20 3O9B ; 1.5 ; Crystal Structure of wild-type HIV-1 Protease in Complex with kd25 3O9H ; 1.7 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd26 3O9F ; 1.7 ; Crystal Structure of wild-type HIV-1 Protease in complex with kd27 4DJO ; 1.78 ; Crystal Structure of wild-type HIV-1 Protease in Complex with MKP56 4DJP ; 1.4 ; Crystal Structure of wild-type HIV-1 Protease in Complex with MKP73 4DJQ ; 1.4 ; Crystal Structure of wild-type HIV-1 Protease in Complex with MKP86 4DJR ; 1.55 ; Crystal Structure of wild-type HIV-1 Protease in Complex with MKP97 3R4B ; 1.9 ; Crystal Structure of Wild-type HIV-1 Protease in Complex With TMC310911 6BZ2 ; 1.67 ; Crystal structure of wild-type HIV-1 protease with a novel HIV-1 inhibitor GRL-14213A of 6-5-5-ring fused crown-like tetrahydropyranofuran as the P2-ligand, a cyclopropylaminobenzothiazole as the P2'-ligand and 3,5-difluorophenylmethyl as the P1-ligand 3ST5 ; 1.45 ; Crystal structure of wild-type HIV-1 protease with C3-Substituted Hexahydrocyclopentafuranyl Urethane as P2-Ligand, GRL-0489A 4DFG ; 1.23 ; Crystal Structure of Wild-type HIV-1 Protease with Cyclopentyltetrahydro- furanyl Urethanes as P2-ligand, GRL-0249A 3OK9 ; 1.27 ; Crystal structure of wild-type HIV-1 protease with new oxatricyclic designed inhibitor GRL-0519A 4KB9 ; 1.29 ; Crystal structure of wild-type HIV-1 protease with novel tricyclic P2-ligands GRL-0739A 3KLF ; 3.15 ; Crystal structure of wild-type HIV-1 Reverse Transcriptase crosslinked to a DSDNA with a bound excision product, AZTPPPPA 3AJO ; 1.52 ; Crystal structure of wild-type human ferritin H chain 5SSZ ; 1.02 ; Crystal Structure of wild-type human formylglycine generating enzyme bound to Cu(I) 3S4M ; 1.3 ; Crystal structure of wild-type human frataxin 7N36 ; 2.0 ; Crystal structure of wild-type human gamma(S)-crystallin 3TJB ; 2.38 ; Crystal structure of wild-type human peroxiredoxin IV 5EPC ; 1.85 ; Crystal structure of wild-type human phosphoglucomutase 1 6UIQ ; 2.3 ; Crystal structure of wild-type human phosphoglucomutase 1 in complex with Glucose-6-Phosphate 6CZK ; 2.001 ; Crystal structure of wild-type human pro-cathepsin H 5M4J ; 1.55 ; Crystal Structure of Wild-Type Human Prolidase with GlyPro ligand 5M4L ; 1.49 ; Crystal Structure of Wild-Type Human Prolidase with Mg ions and LeuPro ligand 5M4G ; 1.48 ; Crystal Structure of Wild-Type Human Prolidase with Mn ions 5M4Q ; 1.73 ; Crystal Structure of Wild-Type Human Prolidase with Mn ions and Pro ligand 3W3B ; 1.9 ; Crystal structure of wild-type human transthyretin 4IKI ; 2.0 ; Crystal structure of wild-type human transthyretin in complex with indomethacin 4IIZ ; 2.1 ; Crystal structure of wild-type human transthyretin in complex with lumiracoxib 4IKJ ; 2.1 ; Crystal structure of wild-type human transthyretin in complex with sulindac 4IKK ; 1.9 ; Crystal structure of wild-type human transthyretin in complex with sulindac 4IKL ; 1.9 ; Crystal structure of wild-type human transthyretin in complex with sulindac 6HNN ; 2.7 ; Crystal structure of wild-type IdmH, a putative polyketide cyclase from Streptomyces antibioticus 5UD7 ; 2.20002 ; Crystal Structure of Wild-Type Ig-like Domain 2FNS ; 1.85 ; Crystal structure of wild-type inactive (D25N) HIV-1 protease complexed with wild-type HIV-1 NC-p1 substrate. 3OEW ; 2.2 ; Crystal structure of wild-type InhA:NADH complex 1EJX ; 1.6 ; CRYSTAL STRUCTURE OF WILD-TYPE KLEBSIELLA AEROGENES UREASE AT 100K 1EJW ; 1.9 ; CRYSTAL STRUCTURE OF WILD-TYPE KLEBSIELLA AEROGENES UREASE AT 298K 6MBU ; 1.45 ; Crystal structure of wild-type KRAS (1-169) bound to GDP and Mg (Space group P3) 6OB2 ; 2.845 ; Crystal structure of wild-type KRAS (GMPPNP-bound) in complex with GAP-related domain (GRD) of neurofibromin (NF1) 6XI7 ; 1.95 ; Crystal Structure of wild-type KRAS (GMPPNP-bound) in complex with RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF1/CRAF (crystal form I) 6XHB ; 2.5 ; Crystal Structure of wild-type KRAS (GMPPNP-bound) in complex with RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF1/CRAF (crystal form II) 6MBT ; 1.45 ; Crystal structure of wild-type KRAS bound to GDP and Mg (Space group C2) 6VJJ ; 1.4 ; Crystal Structure of wild-type KRAS4b (GMPPNP-bound) in complex with RAS-binding domain (RBD) of RAF1/CRAF 6VC8 ; 2.5 ; Crystal structure of wild-type KRAS4b(1-169) in complex with GMPPNP and Mg ion 8APZ ; 1.75 ; Crystal structure of wild-type L-N-Carbamoylase from Sinorhizobium meliloti 3AUL ; 2.39 ; Crystal structure of wild-type Lys48-linked diubiquitin in an open conformation 3TPQ ; 3.45 ; Crystal structure of wild-type MAL RPEL domain in complex with five G-actins 5WGZ ; 2.041 ; Crystal Structure of Wild-type MalA', isomalbrancheamide B complex 5WGW ; 2.092 ; Crystal Structure of Wild-type MalA', malbrancheamide B complex 5WGR ; 2.362 ; Crystal Structure of Wild-type MalA', premalbrancheamide complex 5WCZ ; 1.58 ; Crystal Structure of Wild-Type MalL from Bacillus subtilis with TS analogue 1-deoxynojirimycin 8IBO ; 1.83 ; Crystal structure of Wild-Type Mycobacterium tuberculosis ClpC1 N-terminal domain in complex with Lassomycin 3X3U ; 2.09 ; Crystal structure of wild-type of E. coli CutA1 2AQ8 ; 1.92 ; Crystal structure of wild-type of Enoyl-ACP(CoA) reductase from Mycobacterium tuberculosis in complex with NADH. 4YL9 ; 2.353 ; Crystal Structure of wild-type of hsp14.1 from Sulfolobus solfatataricus P2 3U00 ; 1.65 ; Crystal structure of wild-type onconase at 1.65 A resolution 3PHN ; 1.46 ; Crystal structure of wild-type onconase with resolution 1.46 A 5VE3 ; 1.793 ; Crystal structure of wild-type persulfide dioxygenase-rhodanese fusion protein from Burkholderia phytofirmans 3QGT ; 2.3 ; Crystal structure of Wild-type PfDHFR-TS COMPLEXED WITH NADPH, dUMP AND PYRIMETHAMINE 2V5Q ; 2.3 ; CRYSTAL STRUCTURE OF WILD-TYPE PLK-1 KINASE DOMAIN IN COMPLEX WITH A SELECTIVE DARPIN 3WI4 ; 3.32 ; Crystal structure of wild-type PorB from Neisseria meningitidis serogroup B 8GOT ; 1.989 ; Crystal structure of wild-type protease 3C from Seneca Valley Virus 2BUM ; 1.8 ; Crystal Structure Of Wild-Type Protocatechuate 3,4-Dioxygenase from Acinetobacter Sp. ADP1 2BUR ; 1.8 ; Crystal Structure Of Wild-Type Protocatechuate 3,4-Dioxygenase from Acinetobacter Sp. ADP1 in Complex with 4-hydroxybenzoate 2BUQ ; 1.8 ; Crystal Structure Of Wild-Type Protocatechuate 3,4-Dioxygenase from Acinetobacter Sp. ADP1 in Complex with Catechol 4C4P ; 2.0 ; Crystal Structure of Wild-Type Rab11 Complexed to FIP2 3O79 ; 1.6 ; Crystal Structure of Wild-type Rabbit PrP 126-230 3TH5 ; 2.3 ; Crystal structure of wild-type RAC1 5TW8 ; 1.72 ; Crystal structure of wild-type S. aureus penicillin binding protein 4 (PBP4) in complex with ceftaroline 5TXI ; 1.6 ; Crystal structure of wild-type S. aureus penicillin binding protein 4 (PBP4) in complex with ceftobiprole 5TY7 ; 1.894 ; Crystal structure of wild-type S. aureus penicillin binding protein 4 (PBP4) in complex with nafcillin 3ZBG ; 1.85 ; Crystal structure of wild-type SCP2 thiolase from Leishmania mexicana at 1.85 A 4BI9 ; 2.45 ; Crystal structure of wild-type SCP2 thiolase from Trypanosoma brucei. 2IHE ; 2.1 ; Crystal structure of wild-type single-stranded DNA binding protein from Thermus aquaticus 4RHJ ; 1.8 ; Crystal structure of wild-type T. brucei arginase-like protein in a reduced form 3N4Y ; 2.4 ; Crystal structure of wild-type T. celer L30e in low ionic strength condition without precipitant 8IG1 ; 1.451 ; Crystal structure of wild-type transthyretin in complex with rafoxanide 2WSY ; 3.05 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE 1XC4 ; 2.8 ; Crystal structure of wild-type tryptophan synthase alpha-subunits from Escherichia coli 1TJP ; 1.5 ; Crystal Structure Of Wild-Type Tryptophan Synthase Complexed With 1-[(2-hydroxylphenyl)amino]3-glycerolphosphate 1A50 ; 2.3 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH 5-FLUOROINDOLE PROPANOL PHOSPHATE 1A5S ; 2.3 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH 5-FLUOROINDOLE PROPANOL PHOSPHATE AND L-SER BOUND AS AMINO ACRYLATE TO THE BETA SITE 1QOQ ; 1.8 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH INDOLE GLYCEROL PHOSPHATE 1QOP ; 1.4 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH INDOLE PROPANOL PHOSPHATE 1KFJ ; 1.8 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH L-SERINE 1K3U ; 1.7 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH N-[1H-INDOL-3-YL-ACETYL]ASPARTIC ACID 1K7E ; 2.3 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH N-[1H-INDOL-3-YL-ACETYL]GLYCINE ACID 1K7F ; 1.9 ; CRYSTAL STRUCTURE OF WILD-TYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH N-[1H-INDOL-3-YL-ACETYL]VALINE ACID 4MRQ ; 1.9 ; Crystal Structure of wild-type unphosphorylated PMM/PGM 5Y6U ; 1.5 ; Crystal structure of wild-type YabJ protein from Bacillus subtilis (natto). 4ML2 ; 1.5 ; Crystal structure of wild-type YafQ 3BDG ; 1.4 ; Crystal structure of wild-type/T155V mixed dimer of E. coli alkaline phosphatase 2ZGK ; 3.0 ; Crystal structure of wildtype AAL 2HBQ ; 1.8 ; Crystal structure of wildtype human caspase-1 in complex with 3-[2-(2-benzyloxycarbonylamino-3-methyl-butyrylamino)-propionylamino]-4-oxo-pentanoic acid (z-VAD-FMK) 2B8U ; 1.8 ; Crystal structure of wildtype human Interleukin-4 2H4P ; 1.7 ; Crystal structure of wildtype MENT in the cleaved conformation 2H4R ; 2.7 ; Crystal structure of wildtype MENT in the native conformation 7MU2 ; 1.85 ; Crystal Structure of WIPI2 in complex with W2IR of ATG16L1 7F69 ; 1.5 ; Crystal structure of WIPI2b in complex with ATG16L1 7XFR ; 1.76 ; Crystal structure of WIPI2b in complex with the second site of ATG16L1 1U36 ; 1.89 ; Crystal structure of WLAC mutant of dimerisation domain of NF-kB p50 transcription factor 4LY3 ; 1.9 ; Crystal structure of WlaRD, a sugar 3N-formyl transferase in the presence of dTPD-Qui3N, dTDP-Qui3NFo, and THF 5WDY ; 2.458 ; Crystal structure of WNK1 in complex with 1-cyclohexyl-N-({6-fluoro-1-[2-(3-methoxyphenyl)pyridin-4-yl]-1H-indol-3-yl}methyl)methanamine (compound 6) 5TF9 ; 2.5 ; Crystal structure of WNK1 in complex with Mn2+AMPPNP and WNK476 5WE8 ; 2.006 ; Crystal structure of WNK1 in complex with N-{(3R)-1-[(4-chlorophenyl)methyl]pyrrolidin-3-yl}-2-(3-methoxyphenyl)-N-methylquinoline-4-carboxamide (compound 8) 5DRB ; 1.65 ; Crystal structure of WNK1 in complex with WNK463 5O2C ; 2.4 ; Crystal structure of WNK3 kinase and CCT1 didomain in a unphosphorylated state 5O2B ; 2.038 ; Crystal structure of WNK3 kinase domain in a diphosphorylated state and in a complex with the inhibitor PP-121 5O26 ; 2.379 ; Crystal structure of WNK3 kinase domain in a diphosphorylated state and in complex with AMP-PNP/Mg2+ 5O23 ; 2.25 ; Crystal structure of WNK3 kinase domain in a monophosphorylated apo state 5O1V ; 1.723 ; Crystal structure of WNK3 kinase domain in a monophosphorylated apo state (A-loop swapped) 5O21 ; 2.06 ; Crystal structure of WNK3 kinase domain in a monophosphorylated state with chloride bound in the active site 7FIT ; 2.75 ; Crystal structure of Wolbachia cytoplasmic incompatibility factor CidA from wMel 7ESX ; 1.8 ; Crystal structure of Wolbachia cytoplasmic incompatibility factor CidA from wPip 3F4R ; 1.6 ; Crystal structure of Wolbachia pipientis alpha-DsbA1 3F4T ; 1.85 ; Crystal structure of Wolbachia pipientis alpha-DsbA1 C97A/C146A 3F4S ; 1.55 ; Crystal structure of Wolbachia pipientis alpha-DsbA1 T172V 4DYP ; 2.82 ; Crystal Structure of WSN/A Influenza Nucleoprotein with BMS-831780 Ligand Bound 4DYB ; 2.8 ; Crystal Structure of WSN/A Influenza Nucleoprotein with BMS-883559 Ligand Bound 4DYN ; 2.4 ; Crystal Structure of WSN/A Influenza Nucleoprotein with BMS-885838 Ligand Bound 4DYA ; 2.75 ; Crystal Structure of WSN/A Influenza Nucleoprotein with BMS-885986 Ligand Bound 4DYT ; 3.0 ; Crystal Structure of WSN/A Influenza Nucleoprotein with Three Mutations (E53D, Y289H, Y313V) 5XBN ; 1.761 ; crystal structure of Wss1 from saccharomyces cerevisiae 5XBV ; 1.804 ; Crystal structure of Wss1 mutant from saccharomyces cerevisiae 2ZUG ; 2.72 ; Crystal structure of WSSV ICP11 7YXC ; 2.25 ; Crystal structure of WT AncGR2-LBD bound to dexamethasone and SHP coregulator fragment 7YXD ; 2.3 ; Crystal structure of WT AncGR2-LBD bound to dexamethasone and SHP coregulator fragment 7YXN ; 2.46 ; Crystal structure of WT AncGR2-LBD bound to dexamethasone and SHP coregulator fragment 7YXO ; 2.99 ; Crystal structure of WT AncGR2-LBD bound to dexamethasone and SHP coregulator fragment 7YXP ; 3.36 ; Crystal structure of WT AncGR2-LBD WT bound to dexamethasone and SHP coregulator fragment 5DCG ; 2.01 ; Crystal Structure of WT Apo Human Glutathione Transferase Pi 7BKF ; 1.139 ; Crystal structure of WT BA3943, a CE4 family pseudoenzyme from Bacillus Anthracis 4R4L ; 2.245 ; Crystal structure of wt cGMP dependent protein kinase I alpha (PKGI alpha) leucine zipper 8EIN ; 2.7 ; Crystal structure of WT cyanophycin dipeptide hydrolase CphZ from Acinetobacter baylyi DSM587 5XKX ; 1.5 ; Crystal structure of WT DddY 4G0N ; 2.45 ; Crystal Structure of wt H-Ras-GppNHp bound to the RBD of Raf Kinase 2I4D ; 1.5 ; Crystal structure of WT HIV-1 protease with GS-8373 6VJW ; 2.02 ; Crystal structure of WT hMBD4 complexed with T:G mismatch DNA 4CNT ; 2.65 ; CRYSTAL STRUCTURE OF WT HUMAN CRMP-4 4CNU ; 2.8 ; CRYSTAL STRUCTURE OF WT HUMAN CRMP-4 from lattice translocation 4B90 ; 2.2 ; Crystal structure of WT human CRMP-5 5DDL ; 1.98 ; Crystal Structure of WT Human Glutathione Transferase Pi soaked with a metalloid then back-soaked with glutathione 1OWG ; 2.1 ; Crystal structure of WT IHF complexed with an altered H' site (T44A) 8T71 ; 1.8 ; Crystal Structure of WT KRAS4a with bound GDP and Mg ion 8T72 ; 1.6 ; Crystal structure of WT KRAS4a with bound GMPPNP and Mg ion 4FA4 ; 2.14 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 10 Days 4FA1 ; 2.18 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 130 Days. 4FA5 ; 1.94 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 20 Days 4FA9 ; 2.09 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 30 Days 4FAN ; 2.08 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 40 Days 4FAV ; 2.08 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 50 Days 4FB1 ; 2.15 ; Crystal Structure of WT MauG in Complex with Pre-Methylamine Dehydrogenase Aged 60 Days 6ZDY ; 1.45 ; Crystal structure of WT murine S100A9 bound to calcium and zinc 6KC8 ; 2.9 ; Crystal structure of WT Nme1Cas9 in complex with sgRNA and target DNA (ATATGATT PAM) in post-cleavage state 8ACM ; 2.14 ; Crystal structure of WT p38alpha 8ACO ; 2.65 ; Crystal structure of WT p38alpha 7L4J ; 2.451 ; Crystal structure of WT PPM1H phosphatase 3Q8A ; 3.129 ; Crystal structure of WT Protective Antigen (pH 5.5) 3Q8B ; 2.0 ; Crystal structure of WT Protective Antigen (pH 9.0) 5IPY ; 1.5 ; Crystal structure of WT RnTmm 1EP7 ; 2.1 ; CRYSTAL STRUCTURE OF WT THIOREDOXIN H FROM CHLAMYDOMONAS REINHARDTII 5YAC ; 3.3 ; Crystal structure of WT Trm5b from Pyrococcus abyssi 7JW5 ; 1.526 ; Crystal structure of WT-CYP199A4 in complex with 4-phenylbenzoic acid 7ERH ; 1.55 ; Crystal structure of WT-TTR in complex with bithionol 3MC4 ; 1.95 ; Crystal structure of WW/RSP5/WWP domain: bacterial transferase hexapeptide repeat: serine O-Acetyltransferase from Brucella Melitensis 4ROF ; 2.03 ; Crystal Structure of WW3 domain of ITCH in complex with TXNIP peptide 5DZD ; 1.57 ; Crystal Structure of WW4 domain of ITCH in complex with TXNIP peptide 2W8I ; 3.0 ; Crystal structure of Wza24-345. 2ZSG ; 1.65 ; Crystal structure of X-Pro aminopeptidase from Thermotoga maritima MSB8 4S2R ; 1.949 ; Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: a cytosolic enzyme with a di-nuclear active site 4S2T ; 2.15 ; Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: a cytosolic enzyme with a di-nuclear active site 6N1E ; 1.7 ; Crystal structure of X. citri phosphoglucomutase in complex with 1-methyl-glucose 6-phosphate 6MLW ; 1.9 ; Crystal structure of X. citri phosphoglucomutase in complex with 2-fluoro mannosyl-1-methyl-phosphonic acid 6MLF ; 1.75 ; Crystal structure of X. citri phosphoglucomutase in complex with 6-fluoro glucose 1-phosphate 6MNV ; 1.65 ; Crystal structure of X. citri phosphoglucomutase in complex with CH2FG1P 6MLH ; 1.65 ; Crystal structure of X. citri phosphoglucomutase in complex with GLUCOPYRANOSYL-1-METHYL-PHOSPHONIC ACID 1XOD ; 1.15 ; Crystal structure of X. tropicalis Spred1 EVH-1 domain 5UWS ; 2.401 ; Crystal Structure of X11L2 NES Peptide in complex with CRM1-Ran-RanBP1 7PHZ ; 1.66 ; Crystal structure of X77 bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 in spacegroup P2(1)2(1)2(1). 5CNX ; 2.6 ; Crystal structure of Xaa-Pro aminopeptidase from Escherichia coli K12 4R60 ; 1.83 ; Crystal Structure of Xaa-Pro dipeptidase from Xanthomonas campestris 5CIK ; 2.2 ; Crystal Structure of Xaa-Pro dipeptidase from Xanthomonas campestris in citrate condition 5FCF ; 1.85 ; Crystal Structure of Xaa-Pro dipeptidase from Xanthomonas campestris, phosphate and Mn bound 5FCH ; 1.95 ; Crystal Structure of Xaa-Pro dipeptidase from Xanthomonas campestris, phosphate and Zn bound 5GIU ; 1.61 ; Crystal structure of Xaa-Pro peptidase from Deinococcus radiodurans, metal-free active site 7KMM ; 1.899 ; Crystal structure of XAC1771, a novel carbohydrate acetylesterase from Xanthomonas citri 7KMN ; 1.8 ; Crystal structure of XAC1772, a GH35 xyloglucan-active beta-galactosidase from Xanthomonas citri 4W7V ; 1.43 ; Crystal structure of XacCel5A in complex with cellobiose 4W7U ; 1.48 ; Crystal structure of XacCel5A in the native form 1X1H ; 2.3 ; Crystal Structure of Xanthan Lyase (N194A) 1X1I ; 1.8 ; Crystal Structure of Xanthan Lyase (N194A) Complexed with a Product 1X1J ; 2.1 ; Crystal Structure of Xanthan Lyase (N194A) with a Substrate. 2E22 ; 2.4 ; Crystal structure of xanthan lyase in complex with mannose 2W3R ; 2.9 ; Crystal Structure of Xanthine Dehydrogenase (desulfo form) from Rhodobacter capsulatus in complex with hypoxanthine 2W3S ; 2.6 ; Crystal Structure of Xanthine Dehydrogenase (desulfo form) from Rhodobacter capsulatus in Complex with Xanthine 2W55 ; 3.4 ; Crystal Structure of Xanthine Dehydrogenase (E232Q variant) from Rhodobacter capsulatus in Complex with Hypoxanthine 7DQX ; 3.44 ; Crystal structure of xanthine dehydrogenase family protein 1JRO ; 2.7 ; Crystal Structure of Xanthine Dehydrogenase from Rhodobacter capsulatus 2W54 ; 3.3 ; Crystal Structure of Xanthine Dehydrogenase from Rhodobacter capsulatus in Complex with Bound Inhibitor Pterin-6-aldehyde 1JRP ; 3.0 ; Crystal Structure of Xanthine Dehydrogenase inhibited by alloxanthine from Rhodobacter capsulatus 1FO4 ; 2.1 ; CRYSTAL STRUCTURE OF XANTHINE DEHYDROGENASE ISOLATED FROM BOVINE MILK 1FIQ ; 2.5 ; CRYSTAL STRUCTURE OF XANTHINE OXIDASE FROM BOVINE MILK 3ETR ; 2.2 ; Crystal structure of xanthine oxidase in complex with lumazine 1Y0B ; 1.8 ; Crystal Structure of Xanthine Phosphoribosyltransferase from Bacillus subtilis. 7ELS ; 3.0 ; Crystal structure of xanthine riboswitch with 8-azaxanthine 7ELR ; 2.66 ; Crystal structure of xanthine riboswitch with xanthine 7ELP ; 2.79 ; Crystal structure of xanthine riboswitch with xanthine, iridium hexammine soak 7ELQ ; 2.6 ; Crystal structure of xanthine riboswitch with xanthine, manganese saok 6KP5 ; 1.1 ; crystal structure of Xanthine-guanine phosphoribosyltransferase (XGPRT) from Yersinia pestis in P21212 space group with sulphate ions in the active site 5XTK ; 1.74 ; Crystal structure of Xanthine-guanine phosphoribosyltransferase from Yersinia pestis 3ROW ; 1.8487 ; Crystal Structure of Xanthomonas campestri OleA 5ZJ0 ; 1.9 ; Crystal structure of Xanthomonas campestris FlgL (space group C2) 5ZIZ ; 2.2 ; Crystal structure of Xanthomonas campestris FlgL (space group H3) 8FA4 ; 1.699 ; Crystal structure of Xanthomonas campestris GanA beta-galactosidase 8FA5 ; 1.7 ; Crystal structure of Xanthomonas campestris GH35 beta-galactosidase 8FAA ; 2.5 ; Crystal structure of Xanthomonas campestris GH35 beta-galactosidase 5VXD ; 1.968 ; Crystal structure of Xanthomonas campestris OleA E117A 5VXE ; 1.66 ; Crystal structure of Xanthomonas campestris OleA E117A bound with Cerulenin 5VXH ; 1.84 ; Crystal structure of Xanthomonas campestris OleA E117D 5VXI ; 2.08 ; Crystal structure of Xanthomonas campestris OleA E117D bound with Cerulenin 5VXF ; 1.75 ; Crystal structure of Xanthomonas campestris OleA E117Q 5VXG ; 2.07 ; Crystal structure of Xanthomonas campestris OleA E117Q bound with Cerulenin 6B2R ; 1.77 ; Crystal structure of Xanthomonas campestris OleA H285A 6B2T ; 2.8 ; Crystal structure of Xanthomonas campestris OleA H285D 6B2S ; 2.0 ; Crystal structure of Xanthomonas campestris OleA H285N 6B2U ; 2.04 ; Crystal structure of Xanthomonas campestris OleA H285N with Cerulenin 8ORN ; 2.2 ; Crystal structure of Xanthomonas campestris pv. campestris LolA-LolB complex 7P46 ; 1.7 ; Crystal Structure of Xanthomonas campestris Tryptophan 2,3-dioxygenase (TDO) 7DFT ; 1.8 ; Crystal structure of Xanthomonas oryzae ClpP 7DFU ; 1.901 ; Crystal structure of Xanthomonas oryzae ClpP S68Y in complex with ADEP4. 6K62 ; 2.55 ; Crystal structure of Xanthomonas PcrK 7EF7 ; 1.5 ; Crystal Structure of Xanthosine monophosphate phosphatase complex with XMP 7EF6 ; 1.34 ; Crystal Structure of Xanthosine monophosphate phosphatase in the unliganded state 3ODG ; 1.64 ; crystal structure of xanthosine phosphorylase bound with xanthine from Yersinia pseudotuberculosis 6GY8 ; 2.5 ; Crystal structure of XaxA from Xenorhabdus nematophila 6GY7 ; 3.4 ; Crystal structure of XaxB from Xenorhabdus nematophil 2GU9 ; 1.4 ; Crystal structure of XC5357 from Xanthomonas campestris: A putative tetracenomycin polyketide synthesis protein adopting a novel cupin subfamily structure 2FUK ; 1.6 ; Crystal structure of XC6422 from Xanthomonas campestris: a member of a/b serine hydrolase without lid at 1.6 resolution 6K4Q ; 2.7 ; Crystal structure of xCas9 in complex with sgRNA and DNA (CGG PAM) 6K4U ; 3.2 ; Crystal structure of xCas9 in complex with sgRNA and DNA (TGA PAM) 6K4S ; 3.01 ; Crystal structure of xCas9 in complex with sgRNA and DNA (TGC PAM) 6K4P ; 2.9 ; Crystal structure of xCas9 in complex with sgRNA and DNA (TGG PAM) 6AEB ; 3.004 ; Crystal structure of xCas9 in complex with sgRNA and target DNA (AAG PAM) 6AEG ; 2.701 ; Crystal structure of xCas9 in complex with sgRNA and target DNA (GAT PAM) 7VK9 ; 2.9 ; Crystal structure of xCas9 P411T 7YQR ; 2.0 ; Crystal Structure of Xcc NAMPT and its complex with NAM 7YQQ ; 2.22 ; Crystal Structure of Xcc NAMPT and its complex with NMN 3S6K ; 2.8018 ; Crystal structure of xcNAGS 3VL8 ; 1.9 ; Crystal structure of XEG 3VLB ; 2.7 ; Crystal structure of xeg-edgp 3VL9 ; 1.2 ; Crystal structure of xeg-xyloglucan 4W87 ; 2.15 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from metagenomic library, in complex with a xyloglucan oligosaccharide 4W89 ; 2.4 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from metagenomic library, in complex with cellotriose 4W88 ; 1.58 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from ruminal metagenomic library, in complex with a xyloglucan oligosaccharide and TRIS 4W85 ; 1.92 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from ruminal metagenomic library, in complex with glucose 4W86 ; 2.64 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from ruminal metagenomic library, in complex with glucose and TRIS 4W84 ; 1.79 ; Crystal structure of XEG5A, a GH5 xyloglucan-specific endo-beta-1,4-glucanase from ruminal metagenomic library, in the native form 4W8B ; 1.15 ; Crystal structure of XEG5B, a GH5 xyloglucan-specific beta-1,4-glucanase from ruminal metagenomic library, in complex with XXLG 4W8A ; 1.72 ; Crystal structure of XEG5B, a GH5 xyloglucan-specific beta-1,4-glucanase from ruminal metagenomic library, in the native form 5CPN ; 1.8 ; Crystal structure of XenA from Pseudomonas putida in complex with an NADH mimic (mAc) 5CPO ; 1.65 ; Crystal structure of XenA from Pseudomonas putida in complex with an NADH mimic (mBu) 2UYW ; 1.7 ; Crystal structure of Xenavidin 2UZ2 ; 1.7 ; Crystal structure of Xenavidin 1VGI ; 1.9 ; Crystal structure of xenon bound rat heme-heme oxygenase-1 complex 5ZC0 ; 2.75 ; Crystal structure of Xenopus embryonic epidermal lectin in complex with Samarium ions 7FAD ; 3.204 ; Crystal structure of Xenopus GCP2-N terminal domain and Mzt2 6WCD ; 1.54 ; Crystal Structure of Xenopus laevis APE2 Catalytic Domain 5U6Z ; 2.6 ; Crystal Structure of Xenopus laevis Apex2 C-terminal Znf-GRF Domain 6A2B ; 2.8 ; Crystal Structure of Xenopus laevis MHC I complex 1U20 ; 2.1 ; Crystal Structure of Xenopus laevis nudix hydrolase nuclear SnoRNA decapping Protein X29 3EBE ; 2.3 ; Crystal structure of xenopus laevis replication initiation factor MCM10 internal domain 3K6D ; 1.8 ; Crystal structure of Xenopus laevis T-cadherin EC1 6D35 ; 3.9 ; Crystal structure of Xenopus Smoothened in complex with cholesterol 6D32 ; 3.751 ; Crystal structure of Xenopus Smoothened in complex with cyclopamine 3NR6 ; 1.97 ; Crystal structure of xenotropic murine leukemia virus-related virus (XMRV) protease 5HXY ; 2.5 ; Crystal structure of XerA recombinase 5JK0 ; 2.1 ; Crystal structure of XerH site-specific recombinase bound to difH substrate: pre-cleavage complex 5JJV ; 2.4 ; Crystal structure of XerH site-specific recombinase bound to palindromic difH substrate: post-cleavage complex 3JXS ; 1.6 ; Crystal structure of XG34, an evolved xyloglucan binding CBM 6K01 ; 2.839 ; Crystal structure of xH2A-H2B 4OXC ; 2.9 ; Crystal structure of XIAP BIR1 domain 2POI ; 1.8 ; Crystal structure of XIAP BIR1 domain (I222 form) 2QRA ; 2.5 ; Crystal structure of XIAP BIR1 domain (P21 form) 3EYL ; 3.0 ; Crystal structure of XIAP BIR3 domain in complex with a Smac-mimetic compound 3CLX ; 2.7 ; Crystal structure of XIAP BIR3 domain in complex with a Smac-mimetic compound, Smac005 3CM2 ; 2.5 ; Crystal Structure of XIAP BIR3 domain in complex with a Smac-mimetic compound, Smac010 2VSL ; 2.1 ; Crystal Structure of XIAP BIR3 with a Bivalent Smac Mimetic 3HL5 ; 1.8 ; Crystal structure of XIAP BIR3 with CS3 4HY0 ; 2.84 ; Crystal structure of XIAP BIR3 with T3256336 4J3Y ; 1.45 ; Crystal structure of XIAP-BIR2 domain 4WVS ; 2.09 ; Crystal structure of XIAP-BIR2 domain complexed with (S)-3-(4-methoxyphenyl)-2-((S)-2-((S)-1-((S)-2-((S)-2-(methylamino)propanamido)pent-4-ynoyl)pyrrolidine-2-carboxamido)-3-phenylpropanamido)propanoic acid 4WVT ; 1.96 ; Crystal structure of XIAP-BIR2 domain complexed with ligand bound 4WVU ; 2.02 ; CRYSTAL STRUCTURE OF XIAP-BIR2 DOMAIN COMPLEXED WITH LIGAND BOUND 4J44 ; 1.3 ; Crystal structure of XIAP-BIR2 domain with AIAV bound 4J48 ; 2.1 ; Crystal structure of XIAP-BIR2 domain with AMRV bound 4J45 ; 1.48 ; Crystal structure of XIAP-BIR2 domain with ATAA bound 4J46 ; 1.42 ; Crystal structure of XIAP-BIR2 domain with AVPI bound 4J47 ; 1.35 ; Crystal structure of XIAP-BIR2 domain with SVPI bound 4KJU ; 1.6 ; Crystal structure of XIAP-Bir2 with a bound benzodiazepinone inhibitor. 4KJV ; 1.7 ; Crystal structure of XIAP-Bir2 with a bound spirocyclic benzoxazepinone inhibitor. 3CM7 ; 3.1 ; Crystal Structure of XIAP-BIR3 domain in complex with Smac-mimetic compuond, Smac005 3G76 ; 3.0 ; Crystal structure of XIAP-BIR3 in complex with a bivalent compound 6EY2 ; 2.7 ; Crystal structure of XIAP-BIR3 in complex with a cIAP1-selective SM 3EMQ ; 2.73 ; Crystal structure of xilanase XynB from Paenibacillus barcelonensis complexed with an inhibitor 5YCF ; 1.938 ; Crystal structure of Xiphophorus maculatus adenylate kinase 2NWV ; 1.85 ; Crystal structure of XisI protein-like (YP_323822.1) from Anabaena Variabilis ATCC 29413 at 1.85 A resolution 5EJ3 ; 1.314 ; Crystal structure of XlnB2 1MG7 ; 1.55 ; Crystal Structure of xol-1 3E6G ; 2.8 ; Crystal structure of XometC, a cystathionine c-lyase-like protein from Xanthomonas oryzae pv.oryzae 3WYG ; 2.15 ; Crystal structure of Xpo1p-PKI-Gsp1p-GTP complex 5XOJ ; 2.2 ; Crystal structure of Xpo1p-PKI-Nup42p-Gsp1p-GTP complex 3WYF ; 2.22 ; Crystal structure of Xpo1p-Yrb2p-Gsp1p-GTP complex 6JMG ; 2.701 ; Crystal structure of xRbj 3Q4F ; 5.5 ; Crystal structure of xrcc4/xlf-cernunnos complex 2Y35 ; 3.2 ; Crystal structure of Xrn1-substrate complex 4EI5 ; 3.1 ; Crystal Structure of XV19 TCR in complex with CD1d-sulfatide C24:1 4F0A ; 3.25 ; Crystal structure of XWnt8 in complex with the cysteine-rich domain of Frizzled 8 1YRZ ; 2.0 ; Crystal structure of xylan beta-1,4-xylosidase from Bacillus Halodurans C-125 1TA3 ; 1.7 ; Crystal Structure of xylanase (GH10) in complex with inhibitor (XIP) 3NJ3 ; 1.88 ; Crystal structure of xylanase 10B from Thermotoga petrophila RKU-1 in complex with xylobiose 2DEP ; 1.8 ; Crystal Structure of xylanase B from Clostridium stercorarium F9 1V6W ; 2.0 ; Crystal Structure Of Xylanase From Streptomyces Olivaceoviridis E-86 Complexed With 2(2)-4-O-methyl-alpha-D-glucuronosyl-xylobiose 1V6U ; 2.1 ; Crystal Structure Of Xylanase From Streptomyces Olivaceoviridis E-86 Complexed With 2(2)-alpha-L-arabinofuranosyl-xylobiose 1V6V ; 2.1 ; Crystal Structure Of Xylanase From Streptomyces Olivaceoviridis E-86 Complexed With 3(2)-alpha-L-arabinofuranosyl-xylotriose 1V6X ; 2.1 ; Crystal Structure Of Xylanase From Streptomyces Olivaceoviridis E-86 Complexed With 3(3)-4-O-methyl-alpha-D-glucuronosyl-xylotriose 1ISZ ; 2.0 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with galactose 1ISY ; 2.1 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with glucose 1IT0 ; 2.0 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with lactose 1ISW ; 2.1 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with xylobiose 1ISV ; 2.1 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with xylose 1ISX ; 2.1 ; Crystal structure of xylanase from Streptomyces olivaceoviridis E-86 complexed with xylotriose 3AKP ; 1.2 ; Crystal structure of xylanase from Trichoderma longibrachiatum 3AKQ ; 0.97 ; Crystal structure of xylanase from Trichoderma longibrachiatum 3AKR ; 1.1 ; Crystal structure of xylanase from Trichoderma longibrachiatum 3AKS ; 0.97 ; Crystal structure of xylanase from Trichoderma longibrachiatum 3AKT ; 1.0 ; Crystal structure of xylanase from Trichoderma longibrachiatum 8YJJ ; 1.9 ; Crystal structure of xylanase from Trichoderma longibrachiatum 1OM0 ; 1.8 ; crystal structure of xylanase inhibitor protein (XIP-I) from wheat 3EMZ ; 2.08 ; Crystal structure of xylanase XynB from Paenibacillus barcinonensis complexed with a conduramine derivative 1ZB8 ; 2.4 ; Crystal structure of Xylella fastidiosa organic peroxide resistance protein 1ZB9 ; 1.8 ; Crystal structure of Xylella fastidiosa organic peroxide resistance protein 3IXR ; 1.6 ; Crystal Structure of Xylella fastidiosa PrxQ C47S Mutant 7DFK ; 1.4 ; Crystal structure of xylitol-bound glucose isomerase by serial millisecond crystallography 3VXC ; 1.85 ; Crystal Structure of Xylobiose-BxlE complex from Streptomyces thermoviolaceus OPC-520 6BSW ; 2.156 ; Crystal structure of Xyloglucan Xylosyltransferase 1 ternary form 6BSV ; 2.433 ; Crystal structure of Xyloglucan Xylosyltransferase binary form 6BSU ; 1.497 ; Crystal structure of xyloglucan xylosyltransferase I 4HGX ; 2.6 ; Crystal structure of xylose isomerase domain containing protein (stm4435) from salmonella typhimurium lt2 with unknown ligand 3TVA ; 2.148 ; Crystal Structure of Xylose isomerase domain protein from Planctomyces limnophilus 4OVX ; 2.253 ; Crystal structure of Xylose isomerase domain protein from Planctomyces limnophilus DSM 3776 4XKM ; 2.1 ; Crystal structure of Xylose Isomerase from an human intestinal tract microbe Bacteroides thetaiotaomicron 5NH6 ; 1.75 ; Crystal structure of xylose isomerase from Piromyces E2 Complexed with one Mg2+ ion and xylitol 5NHD ; 1.8 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with 2 Ni2+ ions and xylose 5NH4 ; 1.8 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with one Mg2+ ions and glycerol 5NH8 ; 1.86 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Ca2+ ions and xylose 5NHE ; 1.86 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Cd2+ ions and xylose 5NHC ; 1.93 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Co2+ ions and xylulose 5NHB ; 2.4 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Fe2+ ions 5NH7 ; 1.9 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Mg2+ ions and xylose 5NH9 ; 2.08 ; Crystal structure of xylose isomerase from Piromyces E2 in complex with two Mn2+ ions and xylose 5YN3 ; 2.7 ; Crystal structure of xylose isomerase from Piromyces sp. E2 5NHA ; 1.8 ; Crystal structure of xylose isomerase from Piromyces sp. E2 in complex with two Mn2+ ions and sorbitol 8YUD ; 2.81 ; Crystal structure of Xylose isomerase from Streptomyces avermitilis 1QT1 ; 1.85 ; CRYSTAL STRUCTURE OF XYLOSE ISOMERASE FROM STREPTOMYCES DIASTATICUS NO.7 M1033 AT 1.85 A RESOLUTION 4E3V ; 1.503 ; Crystal Structure of XYLOSE ISOMERASE FROM STREPTOMYCES RUBIGINOSUS Cryoprotected in Proline 5ZCM ; 1.7 ; Crystal structure of Xylose reductase from Debaryomyces nepalensis in complex with NADP-DTT adduct 3HZ6 ; 1.65 ; Crystal structure of xylulokinase from Chromobacterium violaceum 3KZB ; 2.705 ; Crystal structure of xylulokinase from Chromobacterium violaceum 8BBI ; 2.1 ; Crystal structure of Xyn11 double mutant L271S, K275H from Psedothermotoga thermarum 1F5J ; 1.8 ; CRYSTAL STRUCTURE OF XYNB, A HIGHLY THERMOSTABLE BETA-1,4-XYLANASE FROM DICTYOGLOMUS THERMOPHILUM RT46B.1, AT 1.8 A RESOLUTION 3EMC ; 2.1 ; Crystal structure of XynB, an intracellular xylanase from Paenibacillus barcinonensis 3GTN ; 2.68 ; Crystal Structure of XynC from Bacillus subtilis 168 4RUA ; 3.07 ; Crystal structure of Y-family DNA polymerase Dpo4 bypassing a MeFapy-dG adduct 4RUC ; 2.9 ; Crystal structure of Y-family DNA polymerase Dpo4 extending from a MeFapy-dG:dC pair 6SYN ; 2.63 ; Crystal structure of Y. pestis penicillin-binding protein 3 6TUD ; 3.0 ; Crystal structure of Y. pestis penicillin-binding protein 3 2Z23 ; 2.0 ; Crystal structure of Y.pestis oligo peptide binding protein OppA with tri-lysine ligand 3MII ; 2.4 ; Crystal structure of Y0R391Cp/HSP33 from Saccharomyces cerevisiae 1UKT ; 2.2 ; Crystal structure of Y100L mutant cyclodextrin glucanotransferase compexed with an acarbose 7MS8 ; 2.5 ; Crystal structure of Y103F mutant of Cg10062 with a covalent intermediate of the hydration of acetylenecarboxylic acid 3WIB ; 1.95 ; Crystal structure of Y109W Mutant Haloalkane Dehalogenase DatA from Agrobacterium tumefaciens C58 3IWV ; 1.68 ; Crystal structure of Y116T mutant of 5-HYDROXYISOURATE HYDROLASE (TRP) 3IWU ; 2.3 ; Crystal structure of Y116T/I16A double mutant of 5-hydroxyisourate hydrolase 3Q1E ; 1.95 ; Crystal structure of Y116T/I16A double mutant of 5-hydroxyisourate hydrolase in complex with T4 4MRX ; 1.718 ; Crystal Structure of Y138F obelin mutant from Obelia longissima at 1.72 Angstrom resolution 5XUN ; 2.0 ; Crystal structure of Y145F mutant of KacT 4AI5 ; 2.22 ; Crystal structure of Y16F of 3-methyladenine DNA glycosylase I (TAG) in complex with 3-methyladenine 1JKH ; 2.5 ; CRYSTAL STRUCTURE OF Y181C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH DMP-266(EFAVIRENZ) 1JLB ; 3.0 ; CRYSTAL STRUCTURE OF Y181C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH NEVIRAPINE 1JLC ; 3.0 ; CRYSTAL STRUCTURE OF Y181C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH PETT-2 1JLA ; 2.5 ; CRYSTAL STRUCTURE OF Y181C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH TNK-651 1JLE ; 2.8 ; CRYSTAL STRUCTURE OF Y188C MUTANT HIV-1 REVERSE TRANSCRIPTASE 2OPS ; 2.3 ; Crystal Structure of Y188C Mutant HIV-1 Reverse Transcriptase in Complex with GW420867X. 1JLF ; 2.6 ; CRYSTAL STRUCTURE OF Y188C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH NEVIRAPINE 1JLG ; 2.6 ; CRYSTAL STRUCTURE OF Y188C MUTANT HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH UC-781 6W2I ; 1.45 ; Crystal Structure of Y188G Variant of the Internal UBA Domain of HHR23A 6W2G ; 1.1 ; Crystal Structure of Y188G Variant of the Internal UBA Domain of HHR23A in Monoclinic Unit Cell 3EH8 ; 2.7 ; Crystal structure of Y2 I-AniI variant (F13Y/S111Y)/DNA complex with calcium 5FHR ; 1.63 ; Crystal structure of Y200L mutant of Rat Catechol-O-Methyltransferase in complex with AdoMet and 3,5-dinitrocatechol 4DC1 ; 2.82 ; Crystal Structure of Y202F Actinorhodin Polyketide Ketoreductase with NADPH 8G0O ; 2.1 ; Crystal structure of Y281F mutant of Hyaluronate lyase B from Cutibacterium acnes 3TLD ; 1.896 ; Crystal Structure of Y29F mutant of Vitreoscilla hemoglobin 3NBJ ; 1.9 ; Crystal Structure of Y305F mutant of the copper amine oxidase from Hansenula polymorpha expressed in yeast 3OEF ; 1.6 ; Crystal structure of Y323F inactive mutant of p38alpha MAP kinase 5I7M ; 1.93 ; Crystal structure of Y345F mutant of human primase p58 iron-sulfur cluster domain 5DQO ; 2.3 ; Crystal structure of Y347F mutant of human primase p58 iron-sulfur cluster domain 5BSI ; 2.0 ; Crystal structure of Y36A mutant of human macrophage migration inhibitory factor 2W7D ; 1.8 ; Crystal structure of Y51FbsSHMT internal aldimine 2W7G ; 1.92 ; Crystal structure of Y51FbsSHMT L-allo-Threonine extrnal aldimine 2W7F ; 1.67 ; Crystal structure of Y51FbsSHMT L-Ser external aldimine 2W7H ; 1.67 ; Crystal structure of Y51FbsSHMT obtained in the presence of Gly and 5- Formyl Tetrahydrofolate 2W7E ; 1.69 ; Crystal structure of Y51FbsSHMT obtained in the presence of Glycine 2VMS ; 2.15 ; Crystal structure of Y60AbsSHMT crystallized in the presence of Glycine 2VMU ; 1.84 ; Crystal structure of Y60AbsSHMT crystallized in the presence of L- allo-Thr 2VMR ; 1.7 ; Crystal structure of Y60AbsSHMT internal aldimine 2VMT ; 1.72 ; Crystal structure of Y60AbsSHMT L-Ser external aldimine 2W7J ; 1.68 ; Crystal structure of Y61AbsSHMT Glycine external aldimine 2W7I ; 2.72 ; Crystal structure of Y61AbsSHMT internal aldimine 2W7L ; 2.41 ; Crystal structure of Y61AbsSHMT L-allo-Threonine external aldimine 2W7K ; 2.42 ; Crystal structure of Y61AbsSHMT L-Serine external aldimine 2W7M ; 1.86 ; Crystal structure of Y61AbsSHMT obtained in the presence of Glycine and 5-Formyl tetrahydrofolate 4Y4S ; 1.75 ; Crystal Structure of Y75A HasA dimer from Yersinia pseudotuberculosis 5EIZ ; 1.96 ; Crystal structure of Y99A mutant of human macrophage migration inhibitory factor 6OYE ; 1.53 ; Crystal structure of Y99F mutant of human macrophage migration inhibitory factor 6OY8 ; 1.53 ; Crystal structure of Y99G mutant of human macrophage migration inhibitory factor 5DOL ; 2.7 ; Crystal structure of YabA amino-terminal domain from Bacillus subtilis 5GHU ; 1.63 ; Crystal structure of YadV chaperone at 1.63 Angstrom 3OKX ; 1.8 ; Crystal structure of YaeB-like protein from Rhodopseudomonas palustris 4V95 ; 3.2 ; Crystal structure of YAEJ bound to the 70S ribosome 2OT9 ; 1.97 ; Crystal structure of YaeQ protein from Pseudomonas syringae 3EFC ; 3.3 ; Crystal Structure of YaeT periplasmic domain 4MMJ ; 1.8 ; crystal structure of YafQ from E.coli strain BL21(DE3) 4MMG ; 1.5 ; crystal structure of YafQ mutant H87Q from E.coli 4ONV ; 2.57 ; Crystal structure of YagE, a KDG aldolase protein in complex with 2-Keto-3-deoxy gluconate 4PTN ; 1.99 ; Crystal Structure of YagE, a KDG aldolase protein in complex with Magnesium cation coordinated L-glyceraldehyde 4OE7 ; 1.99 ; Crystal structure of YagE, a KDG aldolase protein, in complex with aldol condensed product of pyruvate and glyoxal 2V8Z ; 2.2 ; Crystal Structure of YagE, a prophage protein belonging to the dihydrodipicolinic acid synthase family from E. coli K12 2V9D ; 2.15 ; Crystal Structure of YagE, a prophage protein belonging to the dihydrodipicolinic acid synthase family from E. coli K12 3N2X ; 2.2 ; Crystal structure of YagE, a prophage protein belonging to the dihydrodipicolinic acid synthase family from E. coli K12 in complex with pyruvate 3NEV ; 2.19 ; Crystal structure of YagE, a prophage protein from E. coli K12 in complex with KDGal 7DE5 ; 1.55 ; Crystal structure of yak lactoperoxidase at 1.55 A resolution. 6L2J ; 1.933 ; Crystal structure of yak lactoperoxidase at 1.93 A resolution. 6KY7 ; 2.27 ; Crystal structure of yak lactoperoxidase at 2.27 A resolution 7C74 ; 2.73 ; Crystal structure of yak lactoperoxidase using data obtained from crystals soaked in CaCl2 at 2.73 A resolution 7C73 ; 2.7 ; Crystal structure of yak lactoperoxidase using data obtained from crystals soaked in MgCl2 at 2.70 A resolution 7D52 ; 2.2 ; Crystal structure of yak lactoperoxidase with a disordered propionic group of heme moiety at 2.20 A resolution 6L5G ; 2.5 ; Crystal structure of yak lactoperoxidase with disordered heme moiety at 2.50 A resolution 7C75 ; 2.7 ; Crystal structure of yak lactoperoxidase with partially coordinated Na ion in the distal heme cavity 1SV4 ; 2.15 ; Crystal Structure of Yan-SAM 1SV0 ; 2.07 ; Crystal Structure Of Yan-SAM/Mae-SAM Complex 6JK0 ; 3.1 ; Crystal Structure of YAP1 and Dendrin complex 6JK1 ; 2.0 ; Crystal Structure of YAP1 and Dendrin complex 2 5YTX ; 1.551 ; Crystal structure of YB1 cold-shock domain in complex with UCAACU 5YTV ; 1.7 ; Crystal structure of YB1 cold-shock domain in complex with UCAUCU 5YTT ; 1.6 ; Crystal structure of YB1 cold-shock domain in complex with UCAUGU 5YTS ; 1.77 ; Crystal structure of YB1 cold-shock domain in complex with UCUUCU 1NJK ; 1.9 ; Crystal Structure of YbaW Probable Thioesterase from Escherichia coli 3LYW ; 1.9 ; Crystal structure of YbbR family protein Dhaf_0833 from Desulfitobacterium hafniense DCB-2. Northeast Structural Genomics Consortium target id DhR29B 7CFY ; 2.4051 ; Crystal Structure of YbeA CP74 W48F 7CF7 ; 1.6178 ; Crystal Structure of YbeA CP74 W72F 7CEM ; 2.4251 ; Crystal Structure of YbeA CP74 W7F 1RLM ; 1.9 ; Crystal Structure of ybiV from Escherichia coli K12 6VU7 ; 2.59 ; Crystal structure of YbjN, a putative transcription regulator from E. coli 4CLC ; 2.8 ; Crystal structure of Ybr137w protein 6KTC ; 2.008 ; Crystal structure of YBX1 CSD with m5C RNA 6KUG ; 1.4 ; Crystal structure of YBX1 CSD with RNA 3V7E ; 2.8 ; Crystal structure of YbxF bound to the SAM-I riboswitch aptamer 2C6H ; 2.35 ; Crystal structure of YC-17-bound cytochrome P450 PikC (CYP107L1) 2CA0 ; 2.85 ; Crystal structure of YC-17-bound cytochrome P450 PikC (CYP107L1) 2CD8 ; 1.7 ; Crystal structure of YC-17-bound cytochrome P450 PikC (CYP107L1) 7XBN ; 2.0 ; Crystal Structure of YC-17-bound cytochrome P450 PikC with the unnatural amino acid p-Acetyl-L-Phenylalanine incorporated at position 238 3HPE ; 2.1 ; Crystal structure of yceI (HP1286) from Helicobacter pylori 2XBG ; 1.5 ; Crystal Structure of YCF48 from Thermosynechococcus elongatus 3HZE ; 2.0 ; Crystal Structure of Ycf54 protein from Thermosynechococcus elongatus, Northeast Structural Genomics Consortium Target TeR59 1YIX ; 1.9 ; Crystal structure of YCFH, TATD homolog from Escherichia coli K12, at 1.9 A resolution 5Y6F ; 2.3 ; Crystal structure of YcgR in complex with c-di-GMP from Escherichia coli 5Y6H ; 1.774 ; Crystal structure of YcgR-N domain of YcgR from Escherichia coli 5XHU ; 2.1 ; Crystal structure of ycgT from bacillus subtilis 1JX7 ; 2.8 ; Crystal structure of ychN protein from E.coli 3OGH ; 1.65 ; Crystal structure of yciE protein from E. coli CFT073, a member of ferritine-like superfamily of diiron-containing four-helix-bundle proteins 3F1K ; 2.6 ; Crystal Structure of yciK from E. coli, an oxidoreductase, complexed with NADP+ at 2.6A resolution 5XB6 ; 2.0 ; Crystal structure of YcjY from E. Coli 6U6A ; 2.45 ; Crystal structure of Yck2 from Candida albicans in complex with kinase inhibitor GW461484A 6U69 ; 2.61 ; Crystal structure of Yck2 from Candida albicans, apoenzyme 2IEE ; 2.2 ; Crystal Structure of YCKB_BACSU from Bacillus subtilis. Northeast Structural Genomics Consortium target SR574. 1M3S ; 1.95 ; Crystal structure of YckF from Bacillus subtilis 4R2J ; 2.36 ; Crystal structure of YdaA (Universal Stress Protein E) from Salmonella typhimurium 3QD7 ; 2.3 ; Crystal structure of YdaL, a stand-alone small MutS-related protein from Escherichia coli 2PIG ; 2.38 ; Crystal structure of ydcK from Salmonella cholerae at 2.38 A resolution. Northeast Structural Genomics target SCR6 2F9C ; 2.8 ; Crystal structure of YDCK from Salmonella cholerae. NESG target SCR6 4ES4 ; 2.9 ; Crystal structure of YdiV and FlhD complex 4QYX ; 1.69 ; Crystal structure of YDR533Cp 6QK8 ; 2.917 ; Crystal structure of yeast 14-3-3 protein (Bmh1) from Saccharomyces cerevisiae with the Nha1p (yeast Na+/H+ antiporter) 14-3-3 binding motif Ser481 5LVZ ; 1.95 ; Crystal structure of yeast 14-3-3 protein from Lachancea thermotolerans 4LTC ; 2.5 ; Crystal structure of yeast 20S proteasome in complex with enone carmaphycin analogue 6 4HRC ; 2.8 ; Crystal structure of yeast 20S proteasome in complex with epoxyketone carmaphycin analogue 3 3NZJ ; 2.4 ; Crystal structure of yeast 20S proteasome in complex with ligand 2a 3DY4 ; 2.8 ; Crystal structure of yeast 20S proteasome in complex with spirolactacystin 3DY3 ; 2.81 ; Crystal structure of yeast 20S proteasome in complex with the epimer form of spirolactacystin 4HRD ; 2.8 ; Crystal structure of yeast 20S proteasome in complex with the natural product carmaphycin A 4HNP ; 2.8 ; Crystal structure of yeast 20S proteasome in complex with vinylketone carmaphycin analogue VNK1 4K6N ; 1.9 ; Crystal structure of yeast 4-amino-4-deoxychorismate lyase 1N0H ; 2.8 ; Crystal Structure of Yeast Acetohydroxyacid Synthase in Complex with a Sulfonylurea Herbicide, Chlorimuron Ethyl 1T9B ; 2.2 ; Crystal structure of yeast acetohydroxyacid synthase in complex with a sulfonylurea herbicide, chlorsulfuron 1T9D ; 2.3 ; Crystal Structure Of Yeast Acetohydroxyacid Synthase In Complex With A Sulfonylurea Herbicide, Metsulfuron methyl 1T9C ; 2.34 ; Crystal Structure Of Yeast Acetohydroxyacid Synthase In Complex With A Sulfonylurea Herbicide, Sulfometuron methyl 1T9A ; 2.59 ; Crystal structure of yeast acetohydroxyacid synthase in complex with a sulfonylurea herbicide, tribenuron methyl 5CSK ; 3.1 ; Crystal structure of yeast acetyl-CoA carboxylase, unbiotinylated 1RY2 ; 2.3 ; Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP 3RLS ; 1.7 ; Crystal structure of yeast AF-9 homolog protein Yaf9 4OE6 ; 1.951 ; Crystal Structure of Yeast ALDH4A1 4OE4 ; 2.168 ; Crystal Structure of Yeast ALDH4A1 Complexed with NAD+ 3MKQ ; 2.5 ; Crystal structure of yeast alpha/betaprime-COP subcomplex of the COPI vesicular coat 6U3W ; 2.394 ; Crystal structure of yeast alpha/epsilon-COP of the COPI vesicular coat 3MKR ; 2.6 ; Crystal structure of yeast alpha/epsilon-COP subcomplex of the COPI vesicular coat 1S4N ; 2.01 ; Crystal structure of yeast alpha1,2-mannosyltransferase Kre2p/Mnt1p 1S4O ; 2.01 ; Crystal structure of yeast alpha1,2-mannosyltransferase Kre2p/Mnt1p: binary complex with GDP/Mn 1S4P ; 2.01 ; Crystal structure of yeast alpha1,2-mannosyltransferase Kre2p/Mnt1p: ternary complex with GDP/Mn and methyl-alpha-mannoside acceptor 4R8F ; 2.5 ; Crystal structure of yeast aminopeptidase 1 (Ape1) 4I5T ; 2.3 ; Crystal structure of yeast Ap4A phosphorylase Apa2 4I5W ; 2.793 ; Crystal structure of yeast Ap4A phosphorylase Apa2 in complex with AMP 4I5V ; 2.696 ; Crystal structure of yeast Ap4A phosphorylase Apa2 in complex with Ap4A 1G6Q ; 2.9 ; CRYSTAL STRUCTURE OF YEAST ARGININE METHYLTRANSFERASE, HMT1 1F7V ; 2.9 ; CRYSTAL STRUCTURE OF YEAST ARGINYL-TRNA SYNTHETASE COMPLEXED WITH THE TRNAARG 1J70 ; 2.3 ; CRYSTAL STRUCTURE OF YEAST ATP SULFURYLASE 5M52 ; 3.4 ; Crystal structure of yeast Brr2 full-lenght in complex with Prp8 Jab1 domain 4BL0 ; 1.95 ; Crystal structure of yeast Bub3-Bub1 bound to phospho-Spc105 4DS7 ; 2.15 ; Crystal structure of yeast calmodulin bound to the C-terminal fragment of spindle pole body protein Spc110 6CPU ; 1.8 ; Crystal structure of yeast caPDE2 6CPT ; 1.9 ; crystal structure of yeast caPDE2 in complex with IBMX 6LBR ; 2.5 ; Crystal structure of yeast Cdc13 and ssDNA 6LBT ; 2.6 ; Crystal structure of yeast Cdc13 and Stn1 3MKS ; 2.6 ; Crystal Structure of yeast Cdc4/Skp1 in complex with an allosteric inhibitor SCF-I2 3V46 ; 1.549 ; Crystal Structure of Yeast Cdc73 C-Terminal Domain 5ME9 ; 2.7 ; Crystal structure of yeast Cdt1 (N terminal and middle domain), form 1. 5MEA ; 2.152 ; Crystal structure of yeast Cdt1 (N terminal and middle domain), form 2. 5MEB ; 1.8 ; Crystal structure of yeast Cdt1 C-terminal domain 5MEC ; 2.13 ; Crystal structure of yeast Cdt1 middle domain (residues 294-433) 1F18 ; 1.7 ; Crystal structure of yeast copper-zinc superoxide dismutase mutant GLY85ARG 4OBX ; 2.2 ; Crystal structure of yeast Coq5 in the apo form 4OBW ; 2.4 ; crystal structure of yeast Coq5 in the SAM bound form 3TDD ; 2.7 ; Crystal structure of yeast CP in complex with Belactosin C 3M1I ; 2.0 ; Crystal structure of yeast CRM1 (Xpo1p) in complex with yeast RanBP1 (Yrb1p) and yeast RanGTP (Gsp1pGTP) 1F1G ; 1.35 ; Crystal structure of yeast cuznsod exposed to nitric oxide 1VDN ; 1.6 ; Crystal Structure Of Yeast Cyclophilin A Complexed With ACE-Ala-Ala-Pro-Ala-7-Amino-4-Methylcoumarin 1IST ; 1.9 ; Crystal structure of yeast cyclophilin A, CPR1 2CYP ; 1.7 ; Crystal structure of yeast cytochrome C peroxidase refined at 1.7-angstroms resolution 1OX7 ; 1.43 ; Crystal structure of yeast cytosine deaminase apo-enzyme: inorganic zinc bound 8I3N ; 1.73 ; crystal structure of yeast cytosine deaminase mutant yCD-RQ 8I3O ; 2.0 ; crystal structure of yeast cytosine deaminase mutant yCD-RQ-1/8SAH 8I3P ; 1.3 ; crystal structure of yeast cytosine deaminase mutant yCD-RQ-1/8SAH in complex with (R)-4-hydroxy-3,4-dihydropyrimidin-2(1H)-one 4ZDE ; 2.1 ; Crystal structure of yeast D3,D2-enoyl-CoA isomerase F268A mutant 4FVM ; 2.3 ; Crystal structure of yeast DNA polymerase alpha 4FXD ; 3.0 ; Crystal structure of yeast DNA polymerase alpha bound to DNA/RNA 4FYD ; 3.1 ; Crystal structure of yeast DNA polymerase alpha bound to DNA/RNA and dGTP 3ETU ; 2.4 ; Crystal structure of yeast Dsl1p 1JEH ; 2.4 ; CRYSTAL STRUCTURE OF YEAST E3, LIPOAMIDE DEHYDROGENASE 1N0U ; 2.12 ; Crystal structure of yeast elongation factor 2 in complex with sordarin 3AI4 ; 1.6 ; Crystal structure of yeast enhanced green fluorescent protein - mouse polymerase iota ubiquitin binding motif fusion protein 3AI5 ; 1.4 ; Crystal structure of yeast enhanced green fluorescent protein-ubiquitin fusion protein 4ZDF ; 1.81 ; Crystal structure of yeast enoyl-CoA isomerase helix-10 deletion (ScECI2-H10) mutant 4GZC ; 1.3 ; Crystal structure of yeast Ent2 ENTH domain 4GZD ; 1.75 ; Crystal structure of yeast Ent2 ENTH domain triple mutant N112D,S114E, E118Q 5CMY ; 2.09 ; Crystal structure of yeast Ent5 N-terminal domain-native 5J08 ; 1.8 ; Crystal structure of yeast Ent5 N-terminal domain-native P21 5CMW ; 2.2 ; Crystal structure of yeast Ent5 N-terminal domain-soaked in KI 3W4Y ; 2.0 ; Crystal structure of yeast Erv1 core 3TO9 ; 2.0 ; Crystal structure of yeast Esa1 E338Q HAT domain bound to coenzyme A with active site lysine acetylated 3TO7 ; 1.9 ; Crystal structure of yeast Esa1 HAT domain bound to coenzyme A with active site lysine acetylated 3TO6 ; 2.1 ; Crystal structure of yeast Esa1 HAT domain complexed with H4K16CoA bisubstrate inhibitor 1MJA ; 2.26 ; Crystal structure of yeast Esa1 histone acetyltransferase domain complexed with acetyl coenzyme A 1FY7 ; 2.0 ; CRYSTAL STRUCTURE OF YEAST ESA1 HISTONE ACETYLTRANSFERASE DOMAIN COMPLEXED WITH COENZYME A 1MJB ; 2.5 ; Crystal structure of yeast Esa1 histone acetyltransferase E338Q mutant complexed with acetyl coenzyme A 1MJ9 ; 2.5 ; Crystal structure of yeast Esa1(C304S) mutant complexed with Coenzyme A 2WSI ; 1.9 ; Crystal structure of yeast FAD synthetase (Fad1) in complex with FAD 2UV8 ; 3.1 ; Crystal structure of yeast fatty acid synthase with stalled acyl carrier protein at 3.1 angstrom resolution 2PQR ; 1.88 ; Crystal structure of yeast Fis1 complexed with a fragment of yeast Caf4 2PQN ; 2.15 ; Crystal structure of yeast Fis1 complexed with a fragment of yeast Mdv1 3UUX ; 3.9 ; Crystal structure of yeast Fis1 in complex with Mdv1 fragment containing N-terminal extension and coiled coil domains 3KO6 ; 2.55 ; Crystal structure of yeast free methionine-R-sulfoxide reductase Ykg9 in complex with the substrate 1YCD ; 1.7 ; Crystal structure of yeast FSH1/YHR049W, a member of the serine hydrolase family 5DCA ; 2.8 ; Crystal structure of yeast full length Brr2 in complex with Prp8 Jab1 domain 5CN2 ; 2.25 ; Crystal structure of yeast GGA1_GAE domain-C2221 5CN1 ; 2.31 ; Crystal structure of yeast GGA1_GAE domain-P21 4KQM ; 2.77 ; Crystal structure of yeast glycogen synthase E169Q mutant in complex with glucose and UDP 4KQ1 ; 2.66 ; Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate 1I21 ; 2.4 ; CRYSTAL STRUCTURE OF YEAST GNA1 1I1D ; 1.8 ; CRYSTAL STRUCTURE OF YEAST GNA1 BOUND TO COA AND GLNAC-6P 1EX7 ; 1.9 ; CRYSTAL STRUCTURE OF YEAST GUANYLATE KINASE IN COMPLEX WITH GUANOSINE-5'-MONOPHOSPHATE 1F1D ; 2.1 ; Crystal structure of yeast H46C cuznsod mutant 1F1A ; 1.8 ; Crystal structure of yeast H48Q cuznsod fals mutant analog 3B8A ; 2.95 ; Crystal structure of yeast hexokinase PI in complex with glucose 1IG8 ; 2.2 ; Crystal Structure of Yeast Hexokinase PII with the correct amino acid sequence 5LSB ; 2.7 ; Crystal structure of yeast Hsh49p in complex with Cus1p binding domain. 5LSL ; 1.65 ; Crystal structure of yeast Hsh49p in complex with Cus1p binding domain. 3QFP ; 2.26 ; Crystal structure of yeast Hsp70 (Bip/Kar2) ATPase domain 3QFU ; 1.8 ; Crystal structure of Yeast Hsp70 (Bip/kar2) complexed with ADP 1CT5 ; 2.0 ; CRYSTAL STRUCTURE OF YEAST HYPOTHETICAL PROTEIN YBL036C-SELENOMET CRYSTAL 5COG ; 1.613 ; Crystal structure of Yeast IRC4 3UC9 ; 1.8 ; Crystal Structure of Yeast Irc6p - A Novel Type of Conserved Clathrin Accessory Protein 1EE4 ; 2.1 ; CRYSTAL STRUCTURE OF YEAST KARYOPHERIN (IMPORTIN) ALPHA IN A COMPLEX WITH A C-MYC NLS PEPTIDE 1UN0 ; 2.6 ; Crystal Structure of Yeast Karyopherin (Importin) alpha in complex with a Nup2p N-terminal fragment 1V59 ; 2.2 ; Crystal structure of yeast lipoamide dehydrogenase complexed with NAD+ 4PVC ; 2.0 ; Crystal structure of yeast methylglyoxal/ isovaleraldehyde reductase Gre2 4PVD ; 2.4 ; Crystal structure of yeast methylglyoxal/isovaleraldehyde reductase Gre2 complexed with NADPH 2HLD ; 2.8 ; Crystal structure of yeast mitochondrial F1-ATPase 3QUW ; 1.75 ; Crystal structure of yeast Mmf1 3L4N ; 1.5 ; Crystal structure of yeast monothiol glutaredoxin Grx6 5J3R ; 2.46 ; Crystal structure of yeast monothiol glutaredoxin Grx6 in complex with a glutathione-coordinated [2Fe-2S] cluster 4Y49 ; 3.95 ; Crystal structure of yeast N-terminal acetyltransferase (ppGpp) NatE in complex with a bisubstrate 4XNH ; 2.1 ; Crystal structure of yeast N-terminal acetyltransferase NatE (IP6) in complex with a bisubstrate 4XPD ; 2.81 ; Crystal structure of yeast N-terminal acetyltransferase NatE (ppGpp) in complex with a bisubstrate 3AFO ; 2.0 ; Crystal Structure of Yeast NADH Kinase complexed with NADH 6O3W ; 2.1 ; Crystal structure of yeast Nrd1 CID in complex with Sen1 NIM1 6O3X ; 1.994 ; Crystal structure of yeast Nrd1 CID in complex with Sen1 NIM2 6O3Y ; 2.799 ; Crystal structure of yeast Nrd1 CID in complex with Sen1 NIM3 7PL7 ; 2.6 ; Crystal structure of yeast Otu2 OTU domain 7TL2 ; 1.529 ; Crystal Structure of Yeast p58C Multi-Tyrosine Mutant 5YF412 7TL3 ; 2.066 ; Crystal Structure of Yeast p58C Multi-Tyrosine Mutant 5YF431 7TL4 ; 1.805 ; Crystal Structure of Yeast p58C Multi-Tyrosine Mutant 6YF 2OQ2 ; 2.1 ; Crystal structure of yeast PAPS reductase with PAP, a product complex 5ZUT ; 2.82 ; Crystal Structure of Yeast PCNA in Complex with N24 Peptide 6TNA ; 2.7 ; CRYSTAL STRUCTURE OF YEAST PHENYLALANINE T-RNA. I.CRYSTALLOGRAPHIC REFINEMENT 1EVV ; 2.0 ; CRYSTAL STRUCTURE OF YEAST PHENYLALANINE TRANSFER RNA AT 2.0 A RESOLUTION 4OJX ; 1.31 ; crystal structure of yeast phosphodiesterase-1 in complex with GMP 3ELS ; 1.8 ; Crystal Structure of Yeast Pml1p, Residues 51-204 4MM2 ; 1.6 ; Crystal structure of yeast primase catalytic subunit 4YHR ; 2.9502 ; Crystal Structure of Yeast Proliferating Cell Nuclear Antigen 3VLD ; 2.05 ; Crystal structure of yeast proteasome interacting protein 3VLE ; 2.41 ; Crystal structure of yeast proteasome interacting protein 3VLF ; 3.8 ; Crystal structure of yeast proteasome interacting protein 2B5E ; 2.4 ; Crystal Structure of Yeast Protein Disulfide Isomerase 3BOA ; 3.7 ; Crystal structure of yeast protein disulfide isomerase. 3E9P ; 2.1 ; Crystal Structure of Yeast Prp8, Residues 1827-2092 3E9O ; 2.0 ; Crystal Structure of Yeast Prp8, Residues 1836-2092 4DZS ; 3.14 ; Crystal structure of yeast Puf4p RNA binding domain in complex with HO-4BE mutant RNA 3O06 ; 2.35 ; Crystal Structure of yeast pyridoxal 5-phosphate synthase Snz1 3O07 ; 1.8 ; Crystal structure of yeast pyridoxal 5-phosphate synthase Snz1 complexed with substrate G3P 3O05 ; 2.2 ; Crystal Structure of Yeast Pyridoxal 5-Phosphate Synthase Snz1 Complxed with Substrate PLP 4K25 ; 2.88 ; Crystal Structure of yeast Qri7 homodimer 3CPI ; 2.3 ; Crystal structure of yeast Rab-GDI 1K83 ; 2.8 ; Crystal Structure of Yeast RNA Polymerase II Complexed with the Inhibitor Alpha Amanitin 4X6A ; 3.96 ; Crystal structure of yeast RNA polymerase II encountering oxidative Cyclopurine DNA lesions 2ALE ; 1.8 ; Crystal structure of yeast RNA splicing factor Snu13p 5T16 ; 2.783 ; Crystal structure of yeast RNase III (Rnt1p) complexed with a non-hydrolyzable RNA substrate analog 4OOG ; 2.5 ; Crystal structure of yeast RNase III (Rnt1p) complexed with the product of dsRNA processing 3VL1 ; 1.6 ; Crystal structure of yeast Rpn14 3ACP ; 2.0 ; Crystal Structure of Yeast Rpn14, a Chaperone of the 19S Regulatory Particle of the Proteasome 6J0V ; 2.314 ; Crystal Structure of Yeast Rtt107 6J0X ; 2.31 ; Crystal Structure of Yeast Rtt107 and Mms22 6J0W ; 2.4 ; Crystal Structure of Yeast Rtt107 and Nse6 6J0Y ; 1.8 ; Crystal Structure of Yeast Rtt107 and Slx4 4TU3 ; 3.187 ; Crystal structure of yeast Sac1/Vps74 complex 2B7K ; 1.8 ; Crystal Structure of Yeast Sco1 2B7J ; 2.3 ; Crystal Structure of Yeast Sco1 with Copper Bound 2PM6 ; 2.45 ; Crystal Structure of yeast Sec13/31 edge element of the COPII vesicular coat, native version 2PM7 ; 2.35 ; Crystal structure of yeast Sec13/31 edge element of the COPII vesicular coat, selenomethionine version 2PM9 ; 3.3 ; Crystal structure of yeast Sec13/31 vertex element of the COPII vesicular coat 3B7Q ; 2.03 ; Crystal Structure of Yeast Sec14 Homolog Sfh1 in Complex with Phosphatidylcholine 3B7Z ; 2.03 ; Crystal Structure of Yeast Sec14 Homolog Sfh1 in Complex with Phosphatidylcholine or Phosphatidylinositol 3B74 ; 1.9 ; Crystal Structure of Yeast Sec14 Homolog Sfh1 in Complex with Phosphatidylethanolamine 3B7N ; 1.86 ; Crystal Structure of Yeast Sec14 Homolog Sfh1 in Complex with Phosphatidylinositol 6ZZZ ; 2.54 ; Crystal structure of yeast Sec62 cytoplasmic domain 1Z9Z ; 1.95 ; Crystal structure of yeast sla1 SH3 domain 3 1N9S ; 3.5 ; Crystal structure of yeast SmF in spacegroup P43212 3BIP ; 1.94 ; Crystal structure of yeast Spt16 N-terminal Domain 3BIQ ; 1.73 ; Crystal structure of yeast Spt16 N-terminal Domain 3BIT ; 1.9 ; Crystal structure of yeast Spt16 N-terminal Domain 6LBS ; 2.6 ; Crystal structure of yeast Stn1 6LBU ; 2.0 ; Crystal structure of yeast Stn1 and Ten1 1Y14 ; 2.3 ; Crystal structure of yeast subcomplex of Rpb4 and Rpb7 4M6B ; 1.78 ; Crystal structure of yeast Swr1-Z domain in complex with H2A.Z-H2B dimer 1FIO ; 2.1 ; CRYSTAL STRUCTURE OF YEAST T-SNARE PROTEIN SSO1 2J49 ; 2.3 ; Crystal structure of yeast TAF5 N-terminal domain 1TBP ; 2.6 ; CRYSTAL STRUCTURE OF YEAST TATA-BINDING PROTEIN AND MODEL FOR INTERACTION WITH DNA 3OIP ; 2.504 ; Crystal structure of Yeast telomere protein Cdc13 OB1 3OIQ ; 2.4 ; Crystal structure of yeast telomere protein Cdc13 OB1 and the catalytic subunit of DNA polymerase alpha Pol1 3RMH ; 1.902 ; Crystal Structure of yeast telomere protein Cdc13 OB4 4Y4L ; 2.0 ; Crystal structure of yeast Thi4-C205S 1IG0 ; 1.8 ; Crystal Structure of yeast Thiamin Pyrophosphokinase 3F3R ; 1.8 ; Crystal structure of yeast Thioredoxin1-glutathione mixed disulfide complex 3TMK ; 2.0 ; CRYSTAL STRUCTURE OF YEAST THYMIDYLATE KINASE COMPLEXED WITH THE BISUBSTRATE INHIBITOR TP5A AT 2.0 A RESOLUTION: IMPLICATIONS FOR CATALYSIS AND AZT ACTIVATION 2FXT ; 3.2 ; Crystal Structure of Yeast Tim44 5IW7 ; 3.6 ; Crystal structure of yeast Tsr1, a pre-40S ribosome synthesis factor 7C06 ; 3.02 ; Crystal structure of yeast U2AF1 complex bound to 3' splice site RNA, 5'-UAGGU. 7C07 ; 3.2 ; Crystal structure of yeast U2AF1 complex bound to 5'-AAGGU RNA. 1ZX2 ; 2.1 ; Crystal Structure of Yeast UBP3-associated Protein BRE5 2PKO ; 1.8 ; Crystal structure of yeast Urm1 at 1.8 A resolution 5BW9 ; 7.0 ; Crystal Structure of Yeast V1-ATPase in the Autoinhibited Form 5D80 ; 6.202 ; Crystal Structure of Yeast V1-ATPase in the Autoinhibited Form 2ZIH ; 2.8 ; Crystal Structure of Yeast Vps74 2ZII ; 3.05 ; Crystal Structure of Yeast Vps74-N-term Truncation Variant 3ONJ ; 1.92 ; Crystal structure of yeast Vti1p_Habc domain 2C5Q ; 1.7 ; Crystal structure of yeast YER010Cp 1NJR ; 1.9 ; Crystal structure of yeast ymx7, an ADP-ribose-1''-monophosphatase 1TY8 ; 2.1 ; Crystal structure of yeast ymx7, an ADP-ribose-1''-monophosphatase, complexed with ADP 1TXZ ; 2.05 ; Crystal structure of yeast ymx7, an ADP-ribose-1''-monophosphatase, complexed with ADP-ribose 1NKQ ; 2.2 ; Crystal structure of yeast ynq8, a fumarylacetoacetate hydrolase family protein 1JZT ; 1.94 ; Crystal structure of yeast ynu0, YNL200c 1C02 ; 1.8 ; CRYSTAL STRUCTURE OF YEAST YPD1P 1W2W ; 1.75 ; Crystal structure of yeast Ypr118w, a methylthioribose-1-phosphate isomerase related to regulatory eIF2B subunits 6LS6 ; 2.2 ; Crystal Structure of YEATS domain of AF9 in complex with H3K9bz peptide 6LSD ; 2.05 ; Crystal Structure of YEATS domain of human YEATS2 in complex with H3K27bz peptide 5XNV ; 2.696 ; Crystal structure of YEATS2 YEATS bound to H3K27ac peptide 5IQL ; 2.1 ; Crystal structure of YEATS2 YEATS bound to H3K27cr peptide 7EIE ; 1.67 ; Crystal structure of YEATS2 YEATS domain 2FRX ; 2.9 ; Crystal structure of YebU, a m5C RNA methyltransferase from E.coli 1IM8 ; 2.2 ; Crystal structure of YecO from Haemophilus influenzae (HI0319), a methyltransferase with a bound S-adenosylhomocysteine 6KBU ; 2.1 ; Crystal structure of yedK 6KBS ; 1.601 ; Crystal structure of yedK in complex with ssDNA 6KBX ; 1.221 ; Crystal structure of yedK in complex with ssDNA containing abasic site 6KBZ ; 1.653 ; Crystal structure of yedK with ssDNA containing a tetrahydrofuran abasic site 6KCQ ; 1.701 ; Crystal structure of yedK with ssDNA containing an abasic site 6KIJ ; 1.58 ; Crystal structure of yedK with ssDNA containing an abasic site 1XVI ; 2.26 ; Crystal Structure of YedP, phosphatase-like domain protein from Escherichia coli K12 2H28 ; 2.1 ; Crystal structure of YeeU from E. coli. Northeast Structural Genomics target ER304 2A6Q ; 2.05 ; Crystal structure of YefM-YoeB complex 2JGR ; 2.65 ; Crystal structure of YegS in complex with ADP 3EVA ; 1.5 ; Crystal structure of yellow fever virus methyltransferase complexed with S-adenosyl-L-homocysteine 3EVB ; 1.85 ; Crystal structure of yellow fever virus methyltransferase complexed with S-adenosyl-L-homocysteine 6URV ; 2.9 ; Crystal structure of Yellow Fever Virus NS2B-NS3 protease domain 1YKS ; 1.8 ; Crystal structure of yellow fever virus NS3 helicase 6QSN ; 3.004 ; Crystal structure of Yellow fever virus polymerase NS5A 2OGR ; 1.8 ; Crystal Structure of Yellow Fluorescent Protein from Zoanthus sp. at 1.8 A Resolution 1XA9 ; 2.5 ; Crystal structure of yellow fluorescent protein zFP538 K66M green mutant 4RYV ; 1.38 ; Crystal structure of yellow lupin LLPR-10.1A protein in complex with trans-zeatin 5MXB ; 1.51 ; Crystal structure of yellow lupin LLPR-10.2B protein in complex with melatonin 5MXW ; 1.57 ; Crystal structure of yellow lupin LLPR-10.2B protein in complex with melatonin and trans-zeatin. 4Y31 ; 1.32 ; Crystal structure of yellow lupine LlPR-10.1A protein in ligand-free form 5C9Y ; 1.5 ; Crystal structure of yellow lupine LlPR-10.1A protein partially saturated with trans-zeatin 3F2E ; 1.668 ; Crystal structure of Yellowstone SIRV coat protein C-terminus 4IZK ; 2.3 ; Crystal structure of yellowtail ascites virus VP4 protease active site mutant (K674A) reveals both an acyl-enzyme complex and an empty active site 4IZJ ; 2.5 ; Crystal structure of yellowtail ascites virus VP4 protease with a wild-type active site reveals acyl-enzyme complexes and product complexes. 1JD1 ; 1.7 ; Crystal Structure of YEO7_yeast 3BCY ; 1.7 ; Crystal structure of YER067W 2PSB ; 2.1 ; Crystal structure of YerB protein from Bacillus subtilis. NorthEast Structural Genomics target SR586 5A0F ; 2.0 ; Crystal structure of Yersinia Afp18-modified RhoA 2FN0 ; 1.85 ; Crystal structure of Yersinia enterocolitica salicylate synthase (Irp9) 8SZD ; 1.25 ; Crystal structure of Yersinia pestis dihydrofolate reductase at 1.25-A resolution 8SZE ; 2.5 ; Crystal structure of Yersinia pestis dihydrofolate reductase in complex with Trimethoprim 4FCE ; 1.955 ; Crystal structure of Yersinia pestis GlmU in complex with alpha-D-glucosamine 1-phosphate (GP1) 2QX0 ; 1.8 ; Crystal Structure of Yersinia pestis HPPK (Ternary Complex) 2GFF ; 1.75 ; Crystal Structure of Yersinia pestis LsrG 6MNU ; 2.172 ; Crystal structure of Yersinia pestis UDP-glucose pyrophosphorylase 2Y2F ; 1.78 ; Crystal structure of Yersinia pestis YopH in complex with an aminooxy- containing platform compound for inhibitor design 1YPT ; 2.5 ; CRYSTAL STRUCTURE OF YERSINIA PROTEIN TYROSINE PHOSPHATASE AT 2.5 ANGSTROMS AND THE COMPLEX WITH TUNGSTATE 2I42 ; 2.2 ; Crystal structure of Yersinia protein tyrosine phosphatase complexed with vanadate, a transition state analogue 1PM4 ; 1.755 ; Crystal structure of Yersinia pseudotuberculosis-derived mitogen (YPM) 4PGW ; 3.6 ; Crystal structure of YetJ from Bacillus Subtilis at pH 6 by Pt-SAD 4PGS ; 2.5 ; Crystal structure of YetJ from Bacillus Subtilis at pH 6 by soaking 4PGU ; 3.401 ; Crystal structure of YetJ from Bacillus Subtilis at pH 7 by soaking 4PGR ; 1.95 ; Crystal structure of YetJ from Bacillus Subtilis at pH 8 4PGV ; 2.61 ; Crystal structure of YetJ from Bacillus Subtilis at pH 8 by back soaking 6NQ7 ; 2.5 ; Crystal structure of YetJ from Bacillus Subtilis crystallized in lipidic cubic phase 6NQ8 ; 3.1 ; Crystal structure of YetJ mutant from Bacillus Subtilis - D171E 6NQ9 ; 3.1 ; Crystal structure of YetJ mutant from Bacillus Subtilis - D195E 2VWS ; 1.39 ; Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12 2VWT ; 1.93 ; Crystal structure of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12 - Mg-pyruvate product complex 1Q7E ; 1.6 ; Crystal Structure of YfdW protein from E. coli 2GA8 ; 1.775 ; Crystal structure of YFH7 from Saccharomyces cerevisiae: a putative P-loop containing kinase with a circular permutation. 2GAA ; 1.95 ; Crystal structure of YFH7 from Saccharomyces cerevisiae: a putative P-loop containing kinase with a circular permutation. 4V8I ; 2.7 ; Crystal structure of YfiA bound to the 70S ribosome. 6IKJ ; 1.76 ; Crystal structure of YfiB(F48S) 6IKK ; 2.19 ; Crystal structure of YfiB(L43P) in complex with YfiR 6IKI ; 2.204 ; Crystal structure of YfiB(W55L) 7F3V ; 1.47 ; Crystal structure of YfiH with C107A mutation in complex with endogenous UDP-MurNAc 7W1G ; 1.86 ; Crystal structure of YfiH with C107A mutation in complex with UDP-MurNAc-L-Serine 1RKT ; 1.95 ; Crystal structure of yfiR, a putative transcriptional regulator from Bacillus subtilis 4ETM ; 1.6 ; Crystal structure of YfkJ from Bacillus subtilis 3D0W ; 2.0 ; Crystal structure of YflH protein from Bacillus subtilis. Northeast Structural Genomics Consortium target SR326 2EUC ; 2.5 ; Crystal structure of YfmB from Bacillus subtilis. NESG TARGET SR324 6IW1 ; 3.1 ; Crystal structure of YFV-17D sE in postfusion state 6IW4 ; 2.801 ; Crystal structure of YFV-17D sE in prefusion state 6IW5 ; 2.5 ; Crystal structure of YFV-China sE in prefusion state 6VOP ; 2.65 ; Crystal structure of YgbL, a putative aldolase/epimerase/decarboxylase from Escherichia coli 6VOQ ; 2.49 ; Crystal structure of YgbL, a putative aldolase/epimerase/decarboxylase from Klebsiella pneumoniae 1X6I ; 1.2 ; Crystal structure of ygfY from Escherichia coli 1X6J ; 2.0 ; Crystal structure of ygfY from Escherichia coli 6KZW ; 2.08 ; Crystal structure of YggS family pyridoxal phosphate-dependent enzyme PipY from Fusobacterium nucleatum 7F8E ; 2.08 ; Crystal structure of YggS from Fusobacterium nucleatum 7YGF ; 2.08 ; Crystal structure of YggS from Fusobacterium nucleatum 3N6Q ; 1.8 ; Crystal structure of YghZ from E. coli 1R6Y ; 2.2 ; Crystal structure of YgiN from Escherichia coli 1TUV ; 1.7 ; Crystal structure of YgiN in complex with menadione 4UOY ; 2.305 ; Crystal structure of YgjG in complex with Pyridoxal-5'-phosphate 4UOX ; 2.085 ; Crystal structure of YgjG in complex with Pyridoxal-5'-phosphate and putrescine 8H58 ; 2.639 ; Crystal structure of YhaJ effector binding domain 8H5A ; 2.803 ; Crystal structure of YhaJ effector binding domain (ligand-bound) 1OI4 ; 2.03 ; Crystal Structure of yhbO from Escherichia coli 2OZZ ; 2.298 ; Crystal structure of YhfZ from Shigella flexneri 1TQ5 ; 1.76 ; Crystal Structure of YhhW from Escherichia coli 1YM5 ; 2.05 ; Crystal structure of YHI9, the yeast member of the phenazine biosynthesis PhzF enzyme superfamily. 3GYG ; 2.45 ; Crystal structure of yhjK (haloacid dehalogenase-like hydrolase protein) from Bacillus subtilis 2OD7 ; 2.0 ; Crystal Structure of yHst2 bound to the intermediate analogue ADP-HPD, and and aceylated H4 peptide 2OD2 ; 2.0 ; Crystal Structure of yHst2 I117F mutant bound to carba-NAD+ and an acetylated H4 peptide 3WO6 ; 2.403 ; Crystal structure of YidC from Bacillus halodurans (form I) 3WO7 ; 3.201 ; Crystal structure of YidC from Bacillus halodurans (form II) 3WVF ; 3.2 ; Crystal structure of YidC from Escherichia coli 5Y83 ; 3.842 ; Crystal structure of YidC from Thermotoga maritima 5YHI ; 2.85 ; Crystal structure of YiiM from Escherichia coli 5YHH ; 2.0 ; Crystal structure of YiiM from Geobacillus stearothermophilus 6KQW ; 2.18 ; Crystal structure of Yijc from B. subtilis 6KQX ; 2.44 ; Crystal structure of Yijc from B. subtilis in complex with UDP 6UHX ; 2.75 ; Crystal structure of YIR035C short chain dehydrogenases/reductase from Saccharomyces cerevisiae 8SUU ; 2.26 ; Crystal structure of YisK from Bacillus subtilis in apo form 8SKY ; 2.4 ; Crystal structure of YisK from Bacillus subtilis in complex with oxalate 8SUT ; 1.93 ; Crystal structure of YisK from Bacillus subtilis in complex with reaction product 4-Hydroxy-2-oxoglutaric acid 2YV5 ; 1.9 ; Crystal structure of Yjeq from Aquifex aeolicus 1U0L ; 2.8 ; Crystal structure of YjeQ from Thermotoga maritima 1ZZM ; 1.8 ; Crystal structure of YJJV, TATD Homolog from Escherichia coli k12, at 1.8 A resolution 6CC1 ; 2.54 ; Crystal structure of ykoY-alx riboswitch chimera bound to cadmium 6CC3 ; 2.698 ; Crystal structure of ykoY-mntP riboswitch chimera bound to cadmium 2QIK ; 1.35 ; Crystal structure of YkqA from Bacillus subtilis. Northeast Structural Genomics Target SR631 4EEE ; 2.71 ; Crystal Structure of YLDV 14L IL-18 Binding Protein in Complex with Human IL-18 4EKX ; 1.75 ; Crystal Structure of YLDV 14L IL-18 Binding Protein in Complex with Human IL-18 1U41 ; 2.202 ; Crystal structure of YLGV mutant of dimerisation domain of NF-kB p50 transcription factor 1UQW ; 2.72 ; Crystal structure of yliB protein from escherichia coi 6T0Y ; 1.2 ; Crystal structure of YlmD from Geobacillus stearothermophilus 6T1B ; 1.2 ; Crystal structure of YlmD from Geobacillus stearothermophilus in complex with inosine 3HSB ; 2.2 ; Crystal structure of YmaH (Hfq) from Bacillus subtilis in complex with an RNA aptamer 3AHU ; 2.2 ; Crystal structure of YmaH (Hfq) from Bacillus subtilis in complex with an RNA aptamer. 4R2L ; 1.8 ; Crystal structure of YnaF (Universal Stress Protein F) from Salmonella typhimurium 3IPO ; 2.4 ; Crystal structure of YnjE 4OFL ; 2.7 ; Crystal structure of YntA from Yersinia pestis in complex with Ni(L-His)2 4OFO ; 3.0 ; Crystal structure of YntA from Yersinia pestis, unliganded form 2A6S ; 1.77 ; Crystal structure of YoeB under isopropanol condition 2A6R ; 2.05 ; Crystal structure of YoeB under PEG condition 7VM0 ; 1.9 ; Crystal structure of YojK from B.subtilis in complex with UDP 8H5D ; 2.5 ; Crystal structure of YojK mutant in complex with UDP 2NYG ; 2.6 ; Crystal structure of YokD protein from Bacillus subtilis 2YDU ; 1.79 ; Crystal structure of YopH in complex with 3-(1,1-dioxido-3- oxoisothiazolidin-5-yl)benzaldeyde 3BM8 ; 2.7 ; crystal structure of YopH mutant D356A complexed with irreversible inhibitor PVSN 3U96 ; 1.8 ; Crystal Structure of YopHQ357F(Catalytic Domain, Residues 163-468) in complex with pNCS 1G9U ; 2.35 ; CRYSTAL STRUCTURE OF YOPM-LEUCINE RICH EFFECTOR PROTEIN FROM YERSINIA PESTIS 8BJ6 ; 2.6 ; Crystal structure of YopR 8BJV ; 2.2 ; Crystal structure of YopR 8BPZ ; 2.2 ; Crystal structure of YopR 6U8T ; 2.39 ; Crystal structure of YopT domain of Pasteurella Multocida PfhB2-toxin 3KB2 ; 2.2 ; Crystal Structure of YorR protein in complex with phosphorylated GDP from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR256 1C03 ; 2.3 ; CRYSTAL STRUCTURE OF YPD1P (TRICLINIC FORM) 4N5C ; 3.25 ; Crystal structure of Ypp1 3CPJ ; 2.35 ; Crystal structure of Ypt31 in complex with yeast Rab-GDI 5UB8 ; 2.35 ; Crystal structure of YPT31, a Rab family GTPase from Candida albicans, in complex with GDP and Zn(II) 3RWO ; 1.7 ; Crystal structure of YPT32 in complex with GDP 3RWM ; 2.0 ; Crystal Structure of Ypt32 in Complex with GppNHp 4PHF ; 1.95 ; Crystal structure of Ypt7 covalently modified with GDP 4PHH ; 2.35 ; Crystal structure of Ypt7 covalently modified with GNP 4PHG ; 1.9 ; Crystal structure of Ypt7 covalently modified with GTP 3H2Y ; 1.8 ; Crystal structure of YqeH GTPase from Bacillus anthracis with dGDP bound 8WMY ; 1.91 ; Crystal structure of YqeK in complex with MG and ADP. 2GO8 ; 2.3 ; Crystal structure of YQJZ_BACSU FROM Bacillus subtilis. Northeast structural genomics TARGET SR435 8T9P ; 2.04 ; Crystal Structure of YR, a heterohexamer of the 4-oxalocrotonate tautomerase (4-OT) family 5NFL ; 1.903 ; Crystal structure of YrbA from Sinorhizobium meliloti in complex with cobalt. 5NFM ; 0.8 ; Crystal structure of YrbA from Sinorhizobium meliloti in complex with copper. 5NFK ; 0.98 ; Crystal structure of YrbA from Sinorhizobium meliloti in complex with nickel. 2R8E ; 1.4 ; Crystal structure of YrbI from Escherichia coli in complex with Mg 3I6B ; 2.49 ; Crystal structure of YrbI lacking the last 8 residues, in complex with Kdo and inorganic phosphate 2R8X ; 2.6 ; Crystal structure of YrbI phosphatase from Escherichia coli 2R8Y ; 1.85 ; Crystal structure of YrbI phosphatase from Escherichia coli in a complex with Ca 2R8Z ; 2.1 ; Crystal structure of YrbI phosphatase from Escherichia coli in complex with a phosphate and a calcium ion 2Q7F ; 2.49 ; Crystal structure of YrrB: a TPR protein with an unusual peptide-binding site 3UEP ; 2.25 ; Crystal structure of YscQ-C from Yersinia pseudotuberculosis 1SVW ; 2.8 ; Crystal Structure of YsxC complexed with GMPPNP 2Q83 ; 2.5 ; Crystal structure of ytaA (2635576) from Bacillus subtilis at 2.50 A resolution 4U8T ; 2.7 ; Crystal structure of YTH domain of Zygosaccharomyces rouxii MRB1 protein in complex with N6-Methyladenosine RNA 6ZD9 ; 1.51 ; Crystal structure of YTHDC1 apo purified using GST tag 8Q2X ; 1.6 ; Crystal structure of YTHDC1 in complex with Compound 10 (ZA_294) 8Q2Y ; 1.71 ; Crystal structure of YTHDC1 in complex with Compound 11 (ZA_572) 8Q31 ; 1.32 ; Crystal structure of YTHDC1 in complex with Compound 12 (ZA_341) 8Q32 ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 13 (ZA_364) 8Q33 ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 15 (ZA_343) 8Q35 ; 1.31 ; Crystal structure of YTHDC1 in complex with Compound 16 (ZA_354) 8Q37 ; 1.28 ; Crystal structure of YTHDC1 in complex with Compound 18 (ZA_312) 8Q38 ; 1.42 ; Crystal structure of YTHDC1 in complex with Compound 19 (ZA_347) 8Q39 ; 1.42 ; Crystal structure of YTHDC1 in complex with Compound 21 (ZA_515) 8Q3A ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 22 (ZA_393) 8Q3G ; 1.42 ; Crystal structure of YTHDC1 in complex with Compound 23 (ZA_385) 8Q4M ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 25 (ZA_349) 8Q4N ; 1.42 ; Crystal structure of YTHDC1 in complex with Compound 26 (ZA_513) 8Q4P ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 27 (ZA_309) 8Q4Q ; 1.4 ; Crystal structure of YTHDC1 in complex with Compound 29 (ZA_337) 8Q2Q ; 1.3 ; Crystal structure of YTHDC1 in complex with Compound 2b (YL_32) 8Q2R ; 1.6 ; Crystal structure of YTHDC1 in complex with Compound 3 (ZA_431) 8Q4R ; 1.43 ; Crystal structure of YTHDC1 in complex with Compound 30 (ZA_326) 8Q4T ; 1.51 ; Crystal structure of YTHDC1 in complex with Compound 31 (ZA_400) 8Q4U ; 1.37 ; Crystal structure of YTHDC1 in complex with Compound 36 (ZA_540b) 8Q4V ; 1.36 ; Crystal structure of YTHDC1 in complex with Compound 37 (ZA_356) 8Q2S ; 1.41 ; Crystal structure of YTHDC1 in complex with Compound 4 (ZA_232) 8Q4W ; 1.61 ; Crystal structure of YTHDC1 in complex with Compound 40 (CS_3a) 8Q2T ; 1.41 ; Crystal structure of YTHDC1 in complex with Compound 5 (ZA_236) 8Q2U ; 1.36 ; Crystal structure of YTHDC1 in complex with Compound 6 (ZA_308) 8Q2V ; 1.71 ; Crystal structure of YTHDC1 in complex with Compound 7 (ZA_560) 8Q2W ; 1.41 ; Crystal structure of YTHDC1 in complex with Compound 8 (CS_01) 6ZD3 ; 1.25 ; Crystal structure of YTHDC1 M438A mutant 6ZDA ; 1.3 ; Crystal structure of YTHDC1 M438A mutant complex with m6A 6ZD4 ; 1.4 ; Crystal structure of YTHDC1 S378A mutant 6ZD5 ; 2.3 ; Crystal structure of YTHDC1 S378A mutant complex with m6A 6ZD8 ; 1.5 ; Crystal structure of YTHDC1 T379V mutant 6ZD7 ; 1.75 ; Crystal structure of YTHDC1 T379V mutant complex with m6A 6YM2 ; 1.7 ; Crystal structure of YTHDC1 with compound ADO_AC_25 6YL8 ; 1.5 ; Crystal structure of YTHDC1 with compound DHU_DC1_011 6YNI ; 1.36 ; Crystal structure of YTHDC1 with compound DHU_DC1_036 6YKE ; 1.52 ; Crystal structure of YTHDC1 with compound DHU_DC1_038 6YNJ ; 1.5 ; Crystal structure of YTHDC1 with compound DHU_DC1_046 6YNK ; 1.3 ; Crystal structure of YTHDC1 with compound DHU_DC1_068 6YNL ; 1.5 ; Crystal structure of YTHDC1 with compound DHU_DC1_078 6YL9 ; 1.5 ; Crystal structure of YTHDC1 with compound DHU_DC1_085 6YKI ; 1.3 ; Crystal structure of YTHDC1 with compound DHU_DC1_092 6YNM ; 1.5 ; Crystal structure of YTHDC1 with compound DHU_DC1_096 6YKJ ; 1.6 ; Crystal structure of YTHDC1 with compound DHU_DC1_125 6YNN ; 1.2 ; Crystal structure of YTHDC1 with compound DHU_DC1_135 6YNO ; 1.4 ; Crystal structure of YTHDC1 with compound DHU_DC1_139 6ZCM ; 1.24 ; Crystal structure of YTHDC1 with compound DHU_DC1_180 7PJ7 ; 1.41 ; Crystal structure of YTHDC1 with compound DHU_DC1_222 7PJ8 ; 1.4 ; Crystal structure of YTHDC1 with compound DHU_DC1_225 7PJP ; 1.61 ; Crystal structure of YTHDC1 with compound DHU_DC1_226 7PJ9 ; 1.72 ; Crystal structure of YTHDC1 with compound DHU_DC1_232 6YKZ ; 1.2 ; Crystal structure of YTHDC1 with compound DHU_DC1_234 7PJA ; 1.85 ; Crystal structure of YTHDC1 with compound PSI_DC1_002 7PJB ; 1.9 ; Crystal structure of YTHDC1 with compound PSI_DC1_004 7PJQ ; 1.2 ; Crystal structure of YTHDC1 with compound T96 6YNP ; 1.1 ; Crystal structure of YTHDC1 with compound T96C1 6YL0 ; 1.2 ; Crystal structure of YTHDC1 with compound T_96 6YOQ ; 1.3 ; Crystal structure of YTHDC1 with compound VVR_DC1_002 7P87 ; 1.3 ; Crystal structure of YTHDC1 with compound YLI_DC1_001 6YM8 ; 1.5 ; Crystal structure of YTHDC1 with compound YLI_DC1_002 7P88 ; 1.5 ; Crystal structure of YTHDC1 with compound YLI_DC1_002 7P8A ; 1.7 ; Crystal structure of YTHDC1 with compound YLI_DC1_003 7P8B ; 1.2 ; Crystal structure of YTHDC1 with compound YLI_DC1_006 7P8F ; 1.5 ; Crystal structure of YTHDC1 with compound YLI_DC1_008 6SYZ ; 2.28 ; Crystal structure of YTHDC1 with fragment 1 (DHU_DC1_141) 6SZT ; 1.5 ; Crystal structure of YTHDC1 with fragment 10 (DHU_DC1_076) 6SZX ; 1.17 ; Crystal structure of YTHDC1 with fragment 11 (DHU_DC1_128) 6SZY ; 1.79 ; Crystal structure of YTHDC1 with fragment 12 (DHU_DC1_150) 6T01 ; 1.5 ; Crystal structure of YTHDC1 with fragment 13 (DHU_DC1_153) 6T0O ; 1.71 ; Crystal structure of YTHDC1 with fragment 14 (ACA_DC1_004) 6T02 ; 1.1 ; Crystal structure of YTHDC1 with fragment 15 (DHU_DC1_169) 6T03 ; 1.5 ; Crystal structure of YTHDC1 with fragment 16 (DHU_DC1_017) 6T04 ; 1.5 ; Crystal structure of YTHDC1 with fragment 17 (DHU_DC1_042) 6T05 ; 1.5 ; Crystal structure of YTHDC1 with fragment 18 (DHU_DC1_048) 6T06 ; 2.4 ; Crystal structure of YTHDC1 with fragment 19 (DHU_DC1_045) 6SZ1 ; 1.75 ; Crystal structure of YTHDC1 with fragment 2 (DHU_DC1_140) 6T07 ; 1.5 ; Crystal structure of YTHDC1 with fragment 20 (DHU_DC1_134) 6T08 ; 1.41 ; Crystal structure of YTHDC1 with fragment 21 (DHU_DC1_131) 6T0X ; 1.36 ; Crystal structure of YTHDC1 with fragment 22 (ACA_DC1_001) 6T0Z ; 1.43 ; Crystal structure of YTHDC1 with fragment 23 (ACA_DC1_005) 6T09 ; 1.75 ; Crystal structure of YTHDC1 with fragment 24 (PSI_DC1_003) 6T0A ; 2.02 ; Crystal structure of YTHDC1 with fragment 25 (PSI_DC1_005) 6T0C ; 2.03 ; Crystal structure of YTHDC1 with fragment 26 (DHU_DC1_198) 6T0D ; 1.43 ; Crystal structure of YTHDC1 with fragment 27 (DHU_DC1_256) 6T10 ; 1.48 ; Crystal structure of YTHDC1 with fragment 28 (DHU_DC1_176) 6T11 ; 1.49 ; Crystal structure of YTHDC1 with fragment 29 (DHU_DC1_218) 6SZ2 ; 1.52 ; Crystal structure of YTHDC1 with fragment 3 (DHU_DC1_149) 6T12 ; 1.46 ; Crystal structure of YTHDC1 with fragment 30 (DHU_DC1_220) 6SZ3 ; 1.28 ; Crystal structure of YTHDC1 with fragment 4 (DHU_DC1_158) 6SZ7 ; 2.31 ; Crystal structure of YTHDC1 with fragment 5 (DHU_DC1_066) 6SZ8 ; 1.47 ; Crystal structure of YTHDC1 with fragment 6 (DHU_DC1_034) 6SZL ; 1.45 ; Crystal structure of YTHDC1 with fragment 7 (DHU_DC1_021) 6SZN ; 1.47 ; Crystal structure of YTHDC1 with fragment 8 (DHU_DC1_006) 6SZR ; 1.64 ; Crystal structure of YTHDC1 with fragment 9 (DHU_DC1_107) 6ZCN ; 1.6 ; Crystal structure of YTHDC1 with m6A 4RCI ; 1.97 ; Crystal structure of YTHDF1 YTH domain 8BS4 ; 2.1 ; Crystal structure of YTHDF1 YTH domain dimer 4RCJ ; 1.6 ; Crystal structure of YTHDF1 YTH domain in complex with 5mer m6A RNA 7PCU ; 2.65 ; Crystal structure of YTHDF1 YTH domain in complex with ebselen 7QKN ; 2.15 ; Crystal structure of YTHDF1 YTH domain in complex with the ebsulfur derivative compound 7 7QL7 ; 2.3 ; Crystal structure of YTHDF1 YTH domain in complex with the ebsulfur derivative compound 9 7A1V ; 2.2 ; Crystal structure of YTHDF2 in complex with m1A 7BIK ; 2.1 ; Crystal structure of YTHDF2 in complex with m6Am 7YWB ; 1.92 ; Crystal structure of YTHDF2 in complex with N6-Methyladenine 7Z7B ; 1.8 ; Crystal structure of YTHDF2 with compound YLI_DC1_003 7Z7F ; 1.95 ; Crystal structure of YTHDF2 with compound YLI_DC1_005 7Z54 ; 1.82 ; Crystal structure of YTHDF2 with compound YLI_DC1_006 7Z5M ; 1.7 ; Crystal structure of YTHDF2 with compound YLI_DC1_008 7R5L ; 1.7 ; Crystal structure of YTHDF2 with compound YLI_DC1_015 7Z8X ; 1.96 ; Crystal structure of YTHDF2 with compound YLI_DC1_017 7Z8W ; 1.9 ; Crystal structure of YTHDF2 with compound YLI_DC1_018 7R5F ; 2.0 ; Crystal structure of YTHDF2 with compound YLI_DF_012 7Z93 ; 1.97 ; Crystal structure of YTHDF2 with compound YLI_DF_022 7Z92 ; 1.91 ; Crystal structure of YTHDF2 with compound YLI_DF_024 7YX6 ; 1.8 ; Crystal structure of YTHDF2 with compound YLI_DF_027 7Z4U ; 1.83 ; Crystal structure of YTHDF2 with compound YLI_DF_028 7R5W ; 1.75 ; Crystal structure of YTHDF2 with compound YLI_DF_029 7ZG4 ; 2.01 ; Crystal structure of YTHDF2 with compound YLI_DF_042 7YXE ; 1.85 ; Crystal structure of YTHDF2 with compound ZA_143 7Z8P ; 1.97 ; Crystal structure of YTHDF2 with compound ZA_166 7Z26 ; 1.9 ; Crystal structure of YTHDF2 YTH domain in complex with m6A RNA 8BS6 ; 1.2 ; Crystal structure of YTHDF3 disulfide mutant (closed conformation) 6ZOT ; 2.7 ; Crystal structure of YTHDF3 YTH domain in complex with m6A RNA 8BS5 ; 2.49 ; Crystal structure of YTHDF3 YTH domain open conformation 4DVR ; 2.5 ; Crystal structure of YU2 gp120 core in complex with Fab 48d and NBD-557 5LU9 ; 2.27 ; Crystal structure of YVAD-cmk bound human legumain (AEP) in complex with compound 11 5LU8 ; 1.95 ; CRYSTAL STRUCTURE OF YVAD-CMK BOUND HUMAN LEGUMAIN (AEP) IN COMPLEX WITH COMPOUND 11B 2F07 ; 2.3 ; Crystal Structure of YvdT from Bacillus subtilis 3D3F ; 2.4 ; Crystal Structure of Yvgn and cofactor NADPH from Bacillus subtilis 5M43 ; 1.646 ; Crystal structure of Yvh1 phosphatase domain from Chaetomium thermophilum 4U0V ; 2.051 ; Crystal structure of YvoA from Bacillus subtilis in complex with glucosamine-6-phosphate 4U0W ; 2.001 ; Crystal structure of YvoA from Bacillus subtilis in complex with N-acetylglucosamine-6-phosphate 3U49 ; 1.75 ; Crystal structure of YwfH, NADPH dependent reductase involved in Bacilysin biosynthesis 3U4C ; 2.03 ; Crystal structure of YwfH, NADPH dependent reductase involved in Bacilysin biosynthesis 3U4D ; 2.7 ; Crystal structure of YwfH, NADPH dependent reductase involved in Bacilysin biosynthesis 2OP8 ; 2.5 ; Crystal Structure of YwhB- Homologue of 4-Oxalocrotonate Tautomerase 1R0U ; 1.75 ; Crystal structure of ywiB protein from Bacillus subtilis 4ETI ; 1.8 ; Crystal Structure of YwlE from Bacillus subtilis 4ETN ; 1.1 ; Crystal structure of YwlE mutant from Bacillus subtilis 1Y3T ; 2.4 ; Crystal structure of YxaG, a dioxygenase from Bacillus subtilis 2ZXJ ; 1.87 ; Crystal structure of YycF DNA-binding domain from Staphylococcus aureus 6EBB ; 2.022 ; Crystal Structure of YycF homologue, crystals grown in Tris buffer 2ZWM ; 2.04 ; Crystal structure of YycF receiver domain from Bacillus subtilis 2FGT ; 2.3 ; Crystal Structure of YycH from Bacillus subtilis 5HXN ; 2.05 ; Crystal Structure of Z,Z-Farnesyl Diphosphate Synthase (D71M and E75A mutants) from the Wild Tomato Solanum habrochaites 5HXQ ; 1.95 ; Crystal Structure of Z,Z-Farnesyl Diphosphate Synthase (D71M, E75A and H103Y Mutants) Complexed with DMSPP 5HXP ; 1.95 ; Crystal Structure of Z,Z-Farnesyl Diphosphate Synthase (D71M, E75A and H103Y Mutants) Complexed with IPP 5HXT ; 2.15 ; Crystal Structure of Z,Z-Farnesyl Diphosphate Synthase (D71M, E75A and H103Y Mutants) Complexed with IPP and DMSPP 5HXO ; 2.05 ; Crystal Structure of Z,Z-Farnesyl Diphosphate Synthase with D71M, E75A and H103Y Mutants 7ATG ; 0.6 ; Crystal structure of Z-DNA in complex with putrescinium and potassium cations at ultrahigh-resolution 6AQT ; 1.05 ; Crystal Structure of Z-DNA with 6-fold Twinning_Z3A 6AQV ; 1.3 ; Crystal Structure of Z-DNA with 6-fold Twinning_Z3B 6AQW ; 1.3 ; Crystal Structure of Z-DNA with 6-fold Twinning_Z4A 6AQX ; 1.55 ; Crystal Structure of Z-DNA with 6-fold Twinning_Z4B 6BST ; 1.45 ; CRYSTAL STRUCTURE OF Z-DNA WITH UNTYPICALLY COORDINATED CA2+ ION 3PVG ; 1.5 ; Crystal structure of Z. mays CK2 alpha subunit in complex with the inhibitor 4,5,6,7-tetrabromo-1-carboxymethylbenzimidazole (K68) 1J91 ; 2.22 ; Crystal structure of Z. mays CK2 kinase alpha subunit in complex with the ATP-competitive inhibitor 4,5,6,7-tetrabromobenzotriazole 3KXH ; 1.7 ; Crystal structure of Z. mays CK2 kinase alpha subunit in complex with the inhibitor (2-dymethylammino-4,5,6,7-tetrabromobenzoimidazol-1yl-acetic acid (K66) 3KXG ; 1.7 ; Crystal structure of Z. mays CK2 kinase alpha subunit in complex with the inhibitor 3,4,5,6,7-pentabromo-1H-indazole (K64) 3KXM ; 1.75 ; Crystal structure of Z. mays CK2 kinase alpha subunit in complex with the inhibitor K74 3KXN ; 2.0 ; Crystal structure of Z. mays CK2 kinase alpha subunit in complex with the inhibitor tetraiodobenzimidazole (K88) 4RLK ; 1.24 ; Crystal structure of Z. mays CK2alpha in complex with the ATP-competitive inhibitor 4-[(E)-(fluoren-9-ylidenehydrazinylidene)-methyl] benzoate 6UTA ; 3.1 ; Crystal structure of Z004 iGL Fab in complex with ZIKV EDIII 6UTE ; 2.9 ; Crystal structure of Z032 Fab in complex with WNV EDIII 6LXK ; 3.608 ; Crystal structure of Z2B3 D102R Fab in complex with influenza virus neuraminidase from A/Serbia/NS-601/2014 (H1N1) 6LXI ; 2.5 ; Crystal structure of Z2B3 Fab in complex with influenza virus neuraminidase from A/Brevig Mission/1/1918 (H1N1) 2D40 ; 2.41 ; Crystal Structure of Z3393 from Escherichia coli O157:H7 6FP5 ; 2.0 ; Crystal structure of ZAD-domain of CG2712 protein from D.melanogaster 7PO9 ; 1.9 ; Crystal structure of ZAD-domain of M1BP protein from D.melanogaster 7POK ; 1.8 ; Crystal structure of ZAD-domain of Pita protein from D.melanogaster 7POH ; 2.85 ; Crystal structure of ZAD-domain of Serendipity-d protein from D.melanogaster 7PPP ; 2.9 ; Crystal structure of ZAD-domain of ZNF_276 protein from rabbit. 3L25 ; 2.0 ; Crystal structure of Zaire Ebola VP35 interferon inhibitory domain bound to 8 bp dsRNA 3L26 ; 2.4 ; Crystal structure of Zaire Ebola VP35 interferon inhibitory domain bound to 8 bp dsRNA 3L29 ; 1.7 ; Crystal Structure of Zaire Ebola VP35 interferon inhibitory domain K319A/R322A mutant 3L28 ; 2.4 ; Crystal structure of Zaire Ebola VP35 interferon inhibitory domain K339A mutant 3L27 ; 1.95 ; Crystal structure of Zaire Ebola VP35 interferon inhibitory domain R312A mutant 5BPV ; 1.952 ; Crystal Structure of Zaire ebolavirus VP35 RNA binding domain mutant I278A 6JUT ; 2.1 ; Crystal structure of ZAK in complex with compound 6k 6JUU ; 1.903 ; Crystal structure of ZAK in complex with compound 6r 5X5O ; 1.868 ; Crystal structure of ZAK in complex with compound D2829 7YAW ; 2.1 ; Crystal structure of ZAK in complex with compound YH-180 7YAZ ; 2.54 ; Crystal structure of ZAK in complex with compound YH-186 4KMF ; 1.7 ; Crystal structure of Zalpha domain from Carassius auratus PKZ in complex with Z-DNA 3F21 ; 2.2 ; Crystal structure of Zalpha in complex with d(CACGTG) 3F23 ; 2.7 ; Crystal structure of Zalpha in complex with d(CGGCCG) 3F22 ; 2.5 ; Crystal structure of Zalpha in complex with d(CGTACG) 7QRJ ; 1.38 ; Crystal structure of Zamilon vitis protein Zav_19 4IAG ; 1.9 ; Crystal structure of ZbmA, the zorbamycin binding protein from Streptomyces flavoviridis 6E93 ; 1.747 ; Crystal Structure of ZBTB38 C-terminal Zinc Fingers 6-9 in complex with methylated DNA 6E94 ; 1.594 ; Crystal Structure of ZBTB38 C-terminal Zinc Fingers 6-9 K1055R in complex with methylated DNA 8H9H ; 2.2 ; Crystal structure of ZBTB7A in complex with GACCC-containing sequence 7EYI ; 2.401 ; Crystal structure of ZBTB7A in complex with gamma-globin -200 sequence element with C-194A mutation 7NDK ; 2.34 ; Crystal structure of ZC3H12C PIN catalytic mutant 7NDH ; 1.94 ; Crystal structure of ZC3H12C PIN domain 7NDI ; 2.875 ; Crystal structure of ZC3H12C PIN domain with Mg2+ Ion 7NDJ ; 1.649 ; Crystal structure of ZC3H12C PIN-CCCH Zn Finger domain with RNA heptamer 6AVY ; 2.24 ; Crystal structure of Zea mays acyl-protein thioesterase 2 7TN5 ; 2.9 ; Crystal structure of Zea mays Inositol-tetrakisphosphate Kinase 1 (ITPK1) 7TN7 ; 2.25 ; Crystal structure of Zea mays Inositol-tetrakisphosphate Kinase 1 mutant (ZmITPK1 residues 18-218-Gly-Ser-Gly-Ser-Gly-248-328) 7TN3 ; 2.9 ; Crystal structure of Zea mays Inositol-tetrakisphosphate Kinase 1 mutant (ZmITPK1-F189A/H192A) 7TN6 ; 2.85 ; Crystal structure of Zea mays Inositol-tetrakisphosphate Kinase 1 mutant (ZmITPK1-H192A) 7TN8 ; 2.6 ; Crystal structure of Zea mays Inositol-tetrakisphosphate Kinase 1 mutant (ZmITPK1-H192A) in complex with InsP6 3VO1 ; 2.0 ; Crystal structure of Zea mays leaf ferredoxin-NADP+ reductase II 3VO2 ; 1.39 ; Crystal structure of Zea mays leaf ferredoxin-NADP+ reductase III 4FT2 ; 3.2 ; crystal structure of Zea mays ZMET2 in complex H3(1-15)K9me2 peptide and SAH 4FT4 ; 2.7 ; crystal structure of Zea mays ZMET2 in complex H3(1-32)K9me2 peptide and SAH 4ORD ; 1.8 ; Crystal Structure of Zebra Fish Thioesterase Superfamily Member 2 6A6J ; 2.255 ; Crystal structure of Zebra fish Y-box protein1 (YB-1) Cold-shock domain in complex with 6mer m5C RNA 4NPL ; 1.651 ; Crystal structure of Zebrafish ALKBH5 in complex with alpha-ketoglutarate 4NPM ; 1.803 ; Crystal structure of Zebrafish ALKBH5 in complex with succinic acid 2O3C ; 2.3 ; Crystal structure of zebrafish Ape 5GPQ ; 2.1 ; Crystal Structure of zebrafish ASC CARD Domain 5GPP ; 2.0 ; Crystal structure of zebrafish ASC PYD domain 4OUS ; 1.05 ; Crystal structure of zebrafish Caprin-2 C1q domain 5Y3C ; 1.96 ; Crystal structure of zebrafish Ccd1 DIX domain 3ELZ ; 2.2 ; Crystal structure of Zebrafish Ileal Bile Acid-Bindin Protein complexed with cholic acid (crystal form A). 3EM0 ; 2.2 ; Crystal structure of Zebrafish Ileal Bile Acid-Bindin Protein complexed with cholic acid (crystal form B). 4LUR ; 1.9 ; Crystal Structure of Zebrafish Interphotoreceptor Retinoid-Binding Protein (IRBP) Module 1 2QO4 ; 1.5 ; Crystal structure of zebrafish liver bile acid-binding protein complexed with cholic acid 5XSZ ; 3.2 ; Crystal structure of zebrafish lysophosphatidic acid receptor LPA6 7AH2 ; 2.872 ; Crystal structure of Zebrafish MDM2 RING domain homodimer 4KZG ; 2.9 ; Crystal structure of zebrafish MO25 5OTN ; 0.99 ; Crystal structure of zebrafish MTH1 in complex with O6-methyl-dGMP 5HZX ; 1.9 ; Crystal structure of zebrafish MTH1 in complex with TH588 7D87 ; 2.11 ; Crystal Structure of zebrafish PHF14-PZP in complex with H3(1-25) 6CN3 ; 3.351 ; Crystal structure of zebrafish Phosphatidylinositol-4-phosphate 5- kinase alpha isoform D236A 6CN2 ; 3.102 ; Crystal structure of zebrafish Phosphatidylinositol-4-phosphate 5- kinase alpha isoform D236N with bound ATP/Ca2+ 6CMW ; 3.15 ; Crystal structure of zebrafish Phosphatidylinositol-4-phosphate 5- kinase alpha isoform with bound ATP/Ca2+ 4DTE ; 1.96 ; Crystal structure of zebrafish plasminogen activator inhibitor-1 (PAI-1) 3B98 ; 2.08 ; Crystal structure of zebrafish prostacyclin synthase (cytochrome P450 8A1) 3B99 ; 2.5 ; Crystal structure of zebrafish prostacyclin synthase (cytochrome P450 8A1) in complex with substrate analog U51605 5FUB ; 1.997 ; Crystal Structure of zebrafish Protein Arginine Methyltransferase 2 catalytic domain with SAH 5G02 ; 2.451 ; Crystal Structure of zebrafish Protein Arginine Methyltransferase 2 with SFG 5IU9 ; 3.59 ; Crystal Structure of Zebrafish Protocadherin-19 EC1-4 5CO1 ; 2.51 ; Crystal Structure of Zebrafish Protocadherin-19 EC3-4 6PGW ; 3.0 ; Crystal structure of zebrafish Protocadherin-19 EC3-6 5H11 ; 2.732 ; Crystal structure of Zebrafish Sec10 4PBP ; 1.648 ; crystal structure of zebrafish short-chain pentraxin protein 4PBO ; 1.701 ; Crystal structure of zebrafish short-chain pentraxin protein without calcium ions 4UUB ; 2.9 ; Crystal structure of zebrafish Sirtuin 5 in complex with 2R-butyl- succinylated CPS1-peptide 6FLG ; 2.5 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3(S)-(naphthylthio)succinyl-CPS1 peptide 4UU8 ; 2.9 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3,3-dimethyl- succinylated CPS1-peptide 6FKY ; 2.98 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3-(benzylthio)succinyl-CPS1 peptide 6FKZ ; 3.3 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3-(phenylthio)succinyl-CPS1 peptide 4UU7 ; 3.0 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3-methyl- succinylated CPS1-peptide 4UTX ; 3.1 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3-nitro- propionylated CPS1-peptide 4UTV ; 2.4 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3-phenyl- succinylated CPS1-peptide 4UUA ; 2.8 ; Crystal structure of zebrafish Sirtuin 5 in complex with 3S-Z-amino- succinylated CPS1-peptide 4UTZ ; 3.3 ; Crystal structure of zebrafish Sirtuin 5 in complex with adipoylated CPS1-peptide 4UTR ; 2.9 ; Crystal structure of zebrafish Sirtuin 5 in complex with glutarylated CPS1-peptide 4UTN ; 3.0 ; Crystal structure of zebrafish Sirtuin 5 in complex with succinylated CPS1-peptide 5XDZ ; 1.7 ; Crystal structure of zebrafish SNX25 PX domain 7EXP ; 2.297 ; Crystal structure of zebrafish TRAP1 with AMPPNP and MitoQ 6MD5 ; 1.7 ; Crystal structure of zebrafish Vps26A 7D86 ; 1.84 ; Crystal Structure of zebrafishPHF14-PZP 7UVF ; 2.6 ; Crystal structure of ZED8 Fab complex with CD8 alpha 7XYT ; 1.5 ; Crystal structure of ZER1 bound to AFLH degron 7EP3 ; 1.513 ; Crystal structure of ZER1 bound to GAGN degron 7EP4 ; 2.07 ; Crystal structure of ZER1 bound to GFLH degron 7EP5 ; 2.02 ; Crystal structure of ZER1 bound to GKLH degron 7XYS ; 1.7 ; Crystal structure of ZER1 bound to SFLH degron 7XYU ; 2.7 ; Crystal structure of ZER1 bound to TFLH degron 3TFZ ; 2.39 ; Crystal structure of Zhui aromatase/cyclase from Streptomcyes sp. R1128 3NAR ; 2.6 ; Crystal structure of ZHX1 HD4 (zinc-fingers and homeoboxes protein 1, homeodomain 4) 3NAU ; 2.7 ; Crystal structure of ZHX2 HD2 (zinc-fingers and homeoboxes protein 2, homeodomain 2) 7YW8 ; 2.5 ; Crystal structure of zika E protein 6KK5 ; 2.03 ; Crystal structure of Zika NS2B-NS3 protease with compound 15 6KK6 ; 1.74 ; Crystal structure of Zika NS2B-NS3 protease with compound 16 6L50 ; 1.95 ; Crystal structure of Zika NS2B-NS3 protease with compound 16 6JPW ; 1.951 ; Crystal structure of Zika NS2B-NS3 protease with compound 1C 6KK2 ; 2.02 ; Crystal structure of Zika NS2B-NS3 protease with compound 2 6KK3 ; 2.05 ; Crystal structure of Zika NS2B-NS3 protease with compound 4 7DOC ; 1.904 ; Crystal structure of Zika NS2B-NS3 protease with compound 5 6L4Z ; 1.9 ; Crystal structure of Zika NS2B-NS3 protease with compound 6 6KPQ ; 2.62 ; Crystal structure of Zika NS2B-NS3 protease with compound 8 6KK4 ; 1.74 ; Crystal structure of Zika NS2B-NS3 protease with compound 9 7VLG ; 1.771 ; Crystal structure of Zika NS2B-NS3 protease with compound MI2201 7VLH ; 2.621 ; Crystal structure of Zika NS2B-NS3 protease with compound MI2219 7VLI ; 2.385 ; Crystal structure of Zika NS2B-NS3 protease with compound MI2220 5ZMS ; 1.8 ; Crystal structure of Zika NS3 protease in complex with 4-guanidinomethyl-phenylacetyl-Lys-Lys-Arg-H 5ZOB ; 2.0 ; Crystal structure of Zika NS3 protease with 4-guanidinomethyl-phenylacetyl-Arg-Arg-Arg-4-amidinobenzylamide 5ZMQ ; 1.987 ; Crystal structure of Zika NS3 protease with phenylacetyl-Lys-Lys-Arg-COOH inhibitor 7YW7 ; 2.6 ; Crystal structure of zika virus E protein 7A3U ; 3.0 ; Crystal structure of Zika virus envelope glycoprotein in complex with the divalent F(ab')2 fragment of the broadly neutralizing human antibody EDE1 C10 7A3N ; 2.1 ; Crystal structure of Zika virus envelope glycoprotein in complex with the Fab fragment of the broadly neutralizing human antibody EDE1 C10 5JHM ; 2.0 ; Crystal structure of Zika virus Envelope protein 5JHL ; 3.0 ; Crystal structure of zika virus envelope protein in complex with a flavivirus broadly-protective antibody 5T1V ; 3.1 ; Crystal structure of Zika virus NS2B-NS3 protease in apo-form. 5LC0 ; 2.7 ; Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor 5JMT ; 1.796 ; Crystal structure of Zika virus NS3 helicase 5YOF ; 1.51 ; Crystal structure of zika virus NS3 protease in complex with a dipeptide inhibitor 5YOD ; 1.9 ; Crystal structure of zika virus NS3 protease in complex with a small molecule inhibitor 5M5B ; 2.01 ; Crystal structure of Zika virus NS5 methyltransferase 5WZ1 ; 2.507 ; Crystal structure of Zika virus NS5 methyltransferase bound to S-adenosyl-L-methionine 5WZ2 ; 2.6 ; Crystal structure of Zika virus NS5 methyltransferase bound to SAM and RNA analogue (m7GpppA) 5TFR ; 3.05 ; Crystal structure of Zika Virus NS5 protein 5U04 ; 1.9 ; Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase 5WZ3 ; 1.804 ; Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase(RdRP) 7U4A ; 3.15 ; Crystal Structure of Zika virus xrRNA1 mutant 5WXB ; 1.762 ; crystal structure of ZIKV MTase in complex with SAH 5K8U ; 1.601 ; Crystal structure of ZIKV NS3 helicase in complex with ADP and Mn2+ 5K8I ; 1.694 ; Crystal structure of ZIKV NS3 helicase in complex with ATP and Mn2+ 5K8L ; 1.751 ; Crystal structure of ZIKV NS3 helicase in complex with GTP-gammar S 5K8T ; 1.848 ; Crystal structure of ZIKV NS3 helicase in complex with GTP-gammar S and an magnesium ion 5GOZ ; 2.049 ; Crystal structure of ZIKV NS5 Methyltransferase in complex with GTP and SAH 5GP1 ; 2.444 ; Crystal structure of ZIKV NS5 Methyltransferase in complex with GTP and SAH 6UX2 ; 3.01 ; Crystal structure of ZIKV RdRp in complex with STAT2 6PLK ; 2.3 ; Crystal structure of ZIKV-116 Fab in complex with ZIKV envelope DIII 5XM5 ; 1.493 ; Crystal structure of Zinc binding protein ZinT at 1.49 Angstrom from E. coli 6LM2 ; 2.13008 ; Crystal structure of Zinc binding protein ZinT from E. coli 5YXC ; 1.763 ; Crystal structure of Zinc binding protein ZinT in complex with citrate from E. coli 7DK1 ; 1.902 ; Crystal structure of Zinc bound SARS-CoV-2 main protease 7T91 ; 2.05 ; Crystal structure of Zinc finger motif 1 and 2 of GLI1 DNA binding region 6S4J ; 1.5 ; Crystal structure of zinc free A14E, B25H, B29K(N(eps)-[2-(2-[2-(2-[2-(Octadecandioyl-gamma-Glu)amino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl]), desB27, desB30 human insulin 6S4I ; 1.511 ; Crystal structure of zinc free A14E, B25H, B29K(N(eps)-[2-(2-[2-(2-[2-(Octadecandioyl-gamma-Glu)amino]ethoxy)ethoxy]acetylamino)ethoxy]ethoxy)acetyl]), desB30 human insulin 3ASE ; 1.75 ; Crystal Structure of Zinc myoglobin soaked with Ru3O cluster 1P26 ; 2.92 ; Crystal structure of zinc(II)-d(GGCGCC)2 1ZJL ; 2.0 ; Crystal structure of zinc-bound engineered maltose binding protein 6TYJ ; 1.6 ; Crystal structure of zinc-bound Hemerythrin HHE cation binding domain-containing protein (soak): Rv2633c homolog from Mycobacterium kansasii 4NUO ; 1.75 ; Crystal structure of zinc-bound Na-ASP-2 3MZ8 ; 2.7 ; Crystal Structure of Zinc-Bound Natrin From Naja atra 2EPF ; 2.3 ; Crystal Structure of Zinc-Bound Pseudecin From Pseudechis Porphyriacus 3IC1 ; 2.3 ; Crystal structure of zinc-bound succinyl-diaminopimelate desuccinylase from Haemophilus influenzae 4PPZ ; 2.0 ; Crystal structure of zinc-bound succinyl-diaminopimelate desuccinylase from Neisseria meningitidis MC58 4DT3 ; 1.8 ; Crystal structure of zinc-charged lysozyme 1FBX ; 2.8 ; CRYSTAL STRUCTURE OF ZINC-CONTAINING E.COLI GTP CYCLOHYDROLASE I 3BDH ; 1.85 ; Crystal structure of zinc-deficient wild-type E. coli alkaline phosphatase 3LMC ; 1.997 ; Crystal Structure of zinc-dependent peptidase from Methanocorpusculum labreanum (strain Z), Northeast Structural Genomics Consortium Target MuR16 1Y2G ; 1.9 ; Crystal STructure of ZipA in complex with an inhibitor 1S1S ; 2.1 ; Crystal Structure of ZipA in complex with indoloquinolizin 10b 1S1J ; 2.18 ; Crystal Structure of ZipA in complex with indoloquinolizin inhibitor 1 1Y2F ; 2.0 ; Crystal Structure of ZipA with an inhibitor 2CBN ; 2.9 ; Crystal structure of ZipD from Escherichia coli 5Y6C ; 2.398 ; Crystal structure of ZmASCH S128A mutant protein from Zymomonas mobilis 5Y6B ; 2.0 ; Crystal structure of ZmASCH Y47F mutant protein from Zymomonas mobilis 6LF6 ; 2.044 ; Crystal structure of ZmCGTa in complex with UDP 6YAP ; 1.9 ; Crystal structure of ZmCKO4a in complex with inhibitor 1-(3-Chloro-5-trifluoromethoxy-phenyl)-3-[2-(2-hydroxy-ethyl)-phenyl]-urea 6YAO ; 2.0 ; Crystal structure of ZmCKO4a in complex with inhibitor 1-[2-(2-Hydroxy-ethyl)-phenyl]-3-(3-trifluoromethoxy-phenyl)-urea 7UBU ; 2.39 ; Crystal structure of ZMET2 in complex with hemimethylated CAG DNA and a histone H3Kc9me2 peptide 7X7L ; 1.887 ; Crystal structure of ZmHPPD-Y13161 complex 7Y01 ; 2.8 ; Crystal structure of ZmMCM10 in complex with 16nt ssDNA at 2.8. Angstrom resolution 6IS9 ; 1.86 ; Crystal Structure of ZmMOC1 6IS8 ; 1.68 ; Crystal structure of ZmMoc1 D115N mutant in complex with Holliday junction 6JRG ; 2.005 ; Crystal structure of ZmMoc1 H253A mutant in complex with Holliday junction 6JRF ; 2.047 ; Crystal structure of ZmMoc1-Holliday junction Complex in the presence of Calcium 5SYT ; 2.0 ; Crystal Structure of ZMPSTE24 6BH8 ; 3.85 ; Crystal structure of ZMPSTE24 in complex with phosphoramidon 5Y1Z ; 2.676 ; Crystal structure of ZMYND8 PHD-BROMO-PWWP tandem in complex with Drebrin ADF-H domain 5C0Q ; 2.499 ; Crystal structure of Zn bound CbsA from Thermotoga neapolitana 7W8I ; 1.943 ; Crystal structure of Zn bound human Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 7W9U ; 2.163 ; Crystal Structure of Zn bound human Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 7JJ9 ; 1.58 ; Crystal structure of Zn(II)-bound AdcA from Streptococcus pneumoniae 4IXN ; 2.05 ; Crystal Structure of Zn(II)-bound E37A,C66A,C67A triple mutant YjiA GTPase 4IXM ; 2.57 ; Crystal structure of Zn(II)-bound YjiA GTPase from E. coli 7JJB ; 1.1 ; Crystal structure of Zn(II)-bound ZinT-like domain of Streptococcus pneumoniae AdcA 1K0F ; 2.5 ; Crystal structure of Zn(II)-free T. pallidum TroA 5U2O ; 1.46 ; Crystal structure of Zn-binding triple mutant of GH family 9 endoglucanase J30 5C22 ; 2.302 ; Crystal structure of Zn-bound HlyD from E. coli 5CMQ ; 1.935 ; Crystal Structure of Zn-bound Human H-Ferritin variant 122H-delta C-star 5UP9 ; 2.45 ; Crystal Structure of Zn-bound Human Heavy-Chain ferritin variant 122H-delta C-star with para-xylenedihydroxamate 2G54 ; 2.25 ; Crystal structure of Zn-bound human insulin-degrading enzyme in complex with insulin B chain 2Z45 ; 2.15 ; Crystal Structure of Zn-bound ORF134 7DNR ; 1.7 ; Crystal Structure of Zn-bound SIS Domain of Glucosamine-6-P Synthase from E. coli 5G6T ; 2.15 ; Crystal structure of Zn-containing NagZ H174A mutant from Pseudomonas aeruginosa 3BE7 ; 2.3 ; Crystal structure of Zn-dependent arginine carboxypeptidase 3DUG ; 2.62 ; Crystal structure of zn-dependent arginine carboxypeptidase complexed with zinc 5NL4 ; 1.32 ; Crystal structure of Zn1.3-E16V human ubiquitin (hUb) mutant adduct, from a solution 35 mM zinc acetate/1.3 mM E16V hUb 5NL5 ; 1.96 ; Crystal structure of Zn1.7-E16V human ubiquitin (hUb) mutant adduct, from a solution 70 mM zinc acetate/1.3 mM E16V hUb 1EWC ; 1.95 ; CRYSTAL STRUCTURE OF ZN2+ LOADED STAPHYLOCOCCAL ENTEROTOXIN H 1I4H ; 2.9 ; Crystal structure of Zn2+ soaked Staphylococcal enterotoxin A mutant H187A 2ZN8 ; 2.7 ; Crystal structure of Zn2+-bound form of ALG-2 3AAK ; 2.7 ; Crystal structure of Zn2+-bound form of des3-20ALG-2F122A 2ZRT ; 3.3 ; Crystal structure of Zn2+-bound form of des3-23ALG-2 2ZNE ; 2.2 ; Crystal structure of Zn2+-bound form of des3-23ALG-2 complexed with Alix ABS peptide 7Z6M ; 2.51 ; Crystal structure of Zn2+-transporter BbZIP in a cadmium bound state 7Z6N ; 2.57 ; Crystal structure of Zn2+-transporter BbZIP in a metal-stripped state 5NLI ; 1.53 ; Crystal structure of Zn2-E16V human ubiquitin (hUb) mutant adduct, from a solution 35 mM zinc acetate/10% v/v TFE/1.3 mM E16V hUb 4K7S ; 1.76 ; Crystal structure of Zn2-hUb (human ubiquitin) adduct from a solution 35 mM zinc acetate/1.3 mM hUb 4K7U ; 1.76 ; Crystal structure of Zn2.3-hUb (human ubiquitin) adduct from a solution 70 mM zinc acetate/1.3 mM hUb 5NLF ; 1.5 ; Crystal structure of Zn2.7-E16V human ubiquitin (hUb) mutant adduct, from a solution 100 mM zinc acetate/1.3 mM E16V hUb 5NLJ ; 1.53 ; Crystal structure of Zn3-E16V human ubiquitin (hUb) mutant adduct, from a solution 70 mM zinc acetate/20% v/v TFE/1.3 mM E16V hUb 4K7W ; 1.76 ; Crystal structure of Zn3-hUb(human ubiquitin) adduct from a solution 100 mM zinc acetate/1.3 mM hUb 5NMC ; 1.7 ; Crystal structure of Zn3-hUb(human ubiquitin) adduct from a solution 70 mM zinc acetate/20% v/v TFE/1.3 mM hUb 3LNN ; 2.796 ; Crystal structure of ZneB from Cupriavidus metallidurans 3UK3 ; 2.1 ; Crystal structure of ZNF217 bound to DNA 4IS1 ; 2.1 ; Crystal structure of ZNF217 bound to DNA 4F2J ; 2.64 ; Crystal structure of ZNF217 bound to DNA, P6522 crystal form 7YSF ; 2.4 ; Crystal structure of ZNF524 ZF1-4 in complex with telomeric DNA 3CK6 ; 1.9 ; Crystal structure of ZntB cytoplasmic domain from Vibrio parahaemolyticus RIMD 2210633 1PQ4 ; 1.9 ; Crystal structure of ZnuA 7RCJ ; 3.15 ; Crystal structure of ZnuA from Citrobacter koseri 2OSV ; 1.75 ; Crystal Structure of ZnuA from E. coli 2H3M ; 2.9 ; Crystal Structure of ZO-1 PDZ1 2H2C ; 2.0 ; Crystal Structure of ZO-1 PDZ1 Bound to a Phage-Derived Ligand (WRRTTWV) 2H2B ; 1.6 ; Crystal Structure of ZO-1 PDZ1 Bound to a Phage-Derived Ligand (WRRTTYL) 3SHU ; 2.75 ; Crystal structure of ZO-1 PDZ3 3SHW ; 2.9 ; Crystal structure of ZO-1 PDZ3-SH3-Guk supramodule complex with Connexin-45 peptide 6LOF ; 2.6 ; Crystal structure of ZsYellow soaked by Cu2+ 8JBW ; 2.65 ; Crystal structure of ZtHPPD-(+)-Usnic acid complex 3F59 ; 2.0 ; Crystal structure of ZU5-ANK, the spectrin binding region of human erythroid ankyrin 3UD1 ; 2.0 ; Crystal structure of ZU5A-ZU5B domains of human erythrocyte ankyrin 4GEL ; 1.756 ; Crystal structure of Zucchini 4GEM ; 2.206 ; Crystal structure of Zucchini (K171A) 4GEN ; 2.2 ; Crystal structure of Zucchini (monomer) 4GGJ ; 1.75 ; Crystal structure of Zucchini from mouse (mZuc / PLD6 / MitoPLD) 4GGK ; 2.1 ; Crystal structure of Zucchini from mouse (mZuc / PLD6 / MitoPLD) bound to tungstate 4RUO ; 2.805 ; Crystal structure of zVDR L337H mutant-gemini complex 4RUP ; 2.75 ; Crystal structure of zVDR L337H mutant-Gemini72 complex 4RUJ ; 2.352 ; Crystal structure of zVDR L337H mutant-VD complex 3IF8 ; 2.55 ; Crystal Structure of ZWILCH, a member of the RZZ kinetochore complex 7XYW ; 2.5 ; Crystal structure of ZYG11B bound to AFLH degron 7XYX ; 2.87 ; Crystal structure of ZYG11B bound to CFLH degron 7EP1 ; 1.852 ; Crystal structure of ZYG11B bound to GFLH degron 7EP2 ; 2.38 ; Crystal structure of ZYG11B bound to GGFN degron 7EP0 ; 2.16 ; Crystal structure of ZYG11B bound to GSTE degron 7XV7 ; 2.6 ; Crystal structure of ZYG11B bound to ORF10 peptide 7XYV ; 2.52 ; Crystal structure of ZYG11B bound to SFLH degron 3NOM ; 2.4 ; Crystal Structure of Zymomonas mobilis Glutaminyl Cyclase (monoclinic form) 3NOL ; 1.7 ; Crystal structure of Zymomonas mobilis Glutaminyl Cyclase (trigonal form) 4ZP1 ; 2.205 ; Crystal structure of Zymomonas mobilis pyruvate decarboxylase variant Glu473Ala 1P0E ; 2.4 ; CRYSTAL STRUCTURE OF ZYMOMONAS MOBILIS tRNA-GUANINE TRANSGLYCOSYLASE (TGT) COCRYSTALLISED WITH PREQ1 AT PH 5.5 1P0D ; 1.9 ; CRYSTAL STRUCTURE OF ZYMOMONAS MOBILIS tRNA-GUANINE TRANSGLYCOSYLASE (TGT) CRYSTALLISED AT PH 5.5 3LXF ; 2.3 ; Crystal Structure of [2Fe-2S] Ferredoxin Arx from Novosphingobium aromaticivorans 1FRR ; 1.8 ; CRYSTAL STRUCTURE OF [2FE-2S] FERREDOXIN I FROM EQUISETUM ARVENSE AT 1.8 ANGSTROMS RESOLUTION 7YRA ; 1.79 ; Crystal structure of [2Fe-2S]-TtPetA 1Z5T ; 1.6 ; Crystal Structure of [d(CGCGAA(Z3dU)(Z3dU)CGCG)]2, Z3dU:5-(3-aminopropyl)-2'-deoxyuridine, in presence of thallium I. 6TTL ; 2.9 ; crystal structure of [FeFe]-hydrogenase CbA5H (partial) from Clostridium beijerinckii in Hinact state 6NAC ; 1.55 ; Crystal structure of [FeFe]-hydrogenase I (CpI) solved with single pulse free electron laser data 6N6P ; 1.95 ; Crystal structure of [FeFe]-hydrogenase in the presence of 7 mM Sodium dithionite 6HAV ; 1.06 ; Crystal structure of [Fe]-hydrogenase (Hmd) from Methanococcus aeolicus in complex with FeGP and methenyl-tetrahydromethanopterin (close form A) at 1.06 A resolution 6HAE ; 1.85 ; Crystal structure of [Fe]-hydrogenase (Hmd) from Methanococcus aeolicus in complex with FeGP cofactor and methenyl-tetrahydromethanopterin (close form B) 6HAC ; 2.3 ; Crystal structure of [Fe]-hydrogenase (Hmd) holoenzyme from Methanococcus aeolicus (open form) 7RMS ; 1.1 ; Crystal structure of [I11G]cycloviolacin O2 7RMR ; 1.04 ; Crystal structure of [I11L]cycloviolacin O2 2QO3 ; 2.59 ; Crystal Structure of [KS3][AT3] didomain from module 3 of 6-deoxyerthronolide B synthase 6C9U ; 2.09 ; Crystal structure of [KS3][AT3] didomain from module 3 of 6-deoxyerthronolide B synthase in complex with antibody fragment (Fab) 3HAW ; 1.3 ; Crystal structure of [L-Ala51/51']HIV-1 protease with reduced isostere MVT-101 inhibitor 3MYR ; 2.1 ; Crystal structure of [NiFe] hydrogenase from Allochromatium vinosum in its Ni-A state 3VX3 ; 2.1 ; Crystal structure of [NiFe] hydrogenase maturation protein HypB from Thermococcus kodakarensis KOD1 2Z1D ; 2.07 ; Crystal structure of [NiFe] hydrogenase maturation protein, HypD from Thermococcus kodakaraensis 2I60 ; 2.4 ; Crystal structure of [Phe23]M47, a scorpion-toxin mimic of CD4, in complex with HIV-1 YU2 GP120 envelope glycoprotein and anti-HIV-1 antibody 17B 3K7R ; 2.28 ; Crystal structure of [TM][CuAtx1]3 4MPQ ; 1.75 ; Crystal structure of1-pyrroline-4-hydroxy-2-carboxylate deaminase from Brucella melitensis ATCC 23457 4HA2 ; 2.9 ; Crystal structure ofa phenyl alanine 91 mutant of WCI 7BXW ; 1.77629 ; Crystal structure ofF RTT109 FROM Candida albicans 3MXO ; 1.7 ; Crystal structure oh human phosphoglycerate mutase family member 5 (PGAM5) 7KSB ; 1.95 ; Crystal structure on Act c 10.0101 7ODC ; 1.6 ; CRYSTAL STRUCTURE ORNITHINE DECARBOXYLASE FROM MOUSE, TRUNCATED 37 RESIDUES FROM THE C-TERMINUS, TO 1.6 ANGSTROM RESOLUTION 6B22 ; 1.93 ; Crystal structure OXA-24 beta-lactamase complexed with WCK 4234 by co-crystallization 2EPI ; 1.7 ; Crystal Structure pf hypothetical protein MJ1052 from Methanocaldococcus jannascii (Form 2) 2D0I ; 1.95 ; Crystal Structure PH0520 protein from Pyrococcus horikoshii OT3 6CWA ; 1.77 ; CRYSTAL STRUCTURE PHGDH IN COMPLEX WITH NADH AND 3-PHOSPHOGLYCERATE AT 1.77 A RESOLUTION 1FE1 ; 3.8 ; CRYSTAL STRUCTURE PHOTOSYSTEM II 3WOG ; 2.0 ; Crystal structure plant lectin in complex with ligand 3TKM ; 1.953 ; Crystal structure PPAR delta binding GW0742 3HBN ; 1.85 ; Crystal structure PseG-UDP complex from Campylobacter jejuni 4YFD ; 3.253 ; Crystal structure PTP delta Ig1-Fn2 in complex with IL-1RAcP 3D9C ; 2.3 ; Crystal Structure PTP1B complex with aryl Seleninic acid 3EAX ; 1.9 ; Crystal structure PTP1B complex with small molecule compound LZP-6 3EB1 ; 2.4 ; Crystal structure PTP1B complex with small molecule inhibitor LZP-25 3E2R ; 1.85 ; Crystal Structure PutA86-630 Mutant Y540S Complexed with L-tetrahydro-2-furoic acid 5JQC ; 2.149 ; Crystal structure putative autolysin from Listeria monocytogenes 6SW6 ; 2.85 ; Crystal structure R264H mutant of the human S-adenosylmethionine synthetase 1 4B6I ; 1.95 ; Crystal structure Rap2b (SMA2266) from Serratia marcescens 3E2S ; 2.0 ; Crystal Structure Reduced PutA86-630 Mutant Y540S Complexed with L-proline 3E2Q ; 1.75 ; Crystal Structure Reduced PutA86-630 Mutant Y540S Complexed with trans-4-hydroxy-L-proline 4QT3 ; 1.4 ; Crystal structure resolution of Plasmodium falciparum FK506 binding domain (FKBP35) in complex with Rapamycin at 1.4A resolution 6XTL ; 1.8 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Ag:S complex 6XTN ; 1.4 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Ag:S:NO complex 6XTM ; 1.25 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Ag:S:O2 complex 6XTO ; 1.4 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Cu:S:NO complex 6XTP ; 1.8 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Cu:S:O2-1a complex 6XTQ ; 1.4 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Cu:S:O2-1b complex 6XTR ; 1.2 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Cu:S:O2-1c complex 6XTS ; 1.2 ; Crystal structure reveals non-coordinative binding of O2 to the copper center of the formylglycine-generating enzyme - FGE:Cu:S:O2-1d complex 4BJ6 ; 3.26 ; Crystal structure Rif2 in complex with the C-terminal domain of Rap1 (Rap1-RCT) 3E9F ; 1.8 ; Crystal structure short-form (residue1-113) of Eaf3 chromo domain 1COB ; 2.0 ; CRYSTAL STRUCTURE SOLUTION AND REFINEMENT OF THE SEMISYNTHETIC COBALT SUBSTITUTED BOVINE ERYTHROCYTE ENZYME SUPEROXIDE DISMUTASE AT 2.0 ANGSTROMS RESOLUTION 1OYJ ; 1.95 ; Crystal structure solution of Rice GST1 (OsGSTU1) in complex with glutathione. 3MXW ; 1.83 ; Crystal structure Sonic hedgehog bound to the 5E1 fab fragment 4ANN ; 1.05 ; Crystal Structure Staphylococcus aureus ESSB cytoplasmic fragment 3BXV ; 2.7 ; Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis 5F9P ; 2.078 ; Crystal structure study of anthrone oxidase-like protein 4FCH ; 1.3 ; Crystal Structure SusE from Bacteroides thetaiotaomicron with maltoheptaose 1T6H ; 2.01 ; Crystal Structure T4 Lysozyme incorporating an unnatural amino acid p-iodo-L-phenylalanine at position 153 1EWQ ; 2.2 ; CRYSTAL STRUCTURE TAQ MUTS COMPLEXED WITH A HETERODUPLEX DNA AT 2.2 A RESOLUTION 5DS4 ; 3.2 ; Crystal structure the Escherichia coli Cas1-Cas2 complex bound to protospacer DNA 5DS5 ; 2.951 ; Crystal structure the Escherichia coli Cas1-Cas2 complex bound to protospacer DNA and Mg 5DS6 ; 3.352 ; Crystal structure the Escherichia coli Cas1-Cas2 complex bound to protospacer DNA with splayed ends 3EO9 ; 1.8 ; Crystal structure the Fab fragment of Efalizumab 3EOA ; 2.8 ; Crystal structure the Fab fragment of Efalizumab in complex with LFA-1 I domain, Form I 3EOB ; 3.6 ; Crystal structure the Fab fragment of Efalizumab in complex with LFA-1 I domain, Form II 3C09 ; 3.2 ; Crystal structure the Fab fragment of matuzumab (Fab72000) in complex with domain III of the extracellular region of EGFR 3C08 ; 2.15 ; Crystal structure the Fab fragment of matuzumab/EMD72000 (Fab72000) 3NFS ; 2.6 ; Crystal structure the Fab fragment of therapeutic antibody daclizumab 3K3V ; 1.8 ; Crystal structure the GYF domain of S. Cerevisiae SMY2 2FPR ; 1.7 ; Crystal structure the N-terminal domain of E. coli HisB. Apo Mg model. 6EVO ; 1.55 ; Crystal structure the peptide-substrate-binding domain of human type II collagen prolyl 4-hydroxylase complexed with Pro-Pro-Gly-Pro-Arg-Gly-Pro-Pro-Gly. 6EVP ; 1.68 ; Crystal structure the peptide-substrate-binding domain of human type II collagen prolyl 4-hydroxylase complexed with Pro-Pro-Gly-Pro-Glu-Gly-Pro-Pro-Gly. 6M6V ; 3.08 ; Crystal structure the toxin-antitoxin MntA-HepT 6M6U ; 2.349 ; Crystal structure the toxin-antitoxin MntA-HpeT mutant-D39ED41E 6M6W ; 2.611 ; Crystal structure the toxin-antitoxin MntA-HpeT mutant-Y104A 1MYT ; 1.74 ; CRYSTAL STRUCTURE TO 1.74 ANGSTROMS RESOLUTION OF METMYOGLOBIN FROM YELLOWFIN TUNA (THUNNUS ALBACARES): AN EXAMPLE OF A MYOGLOBIN LACKING THE D HELIX 1MAM ; 2.45 ; CRYSTAL STRUCTURE TO 2.45 A RESOLUTION OF A MONOCLONAL FAB SPECIFIC FOR THE BRUCELLA A CELL WALL POLYSACCHARIDE ANTIGEN 4LXY ; 1.64 ; Crystal structure WlaRD, a sugar 3N-formyl transferase in the presence of dTDP and 10-N-Formyl-THF 4LXQ ; 1.4 ; Crystal structure WlaRD, a sugar 3N-formyl transferase in the presence of dTdp and 5-N-Formyl-THF 4LXX ; 1.45 ; Crystal structure WlaRD, a sugar 3N-formyl transferase in the presence of dTDP-Fuc3NFo and 5-N-Formyl-THF 4LY0 ; 1.6 ; Crystal structure WlaRD, a sugar 3N-formyl transferase in the presence of dTDP-Glc and 10-N-Formyl-THF 4LXT ; 1.4 ; Crystal structure WlaRD, a sugar 3N-formyl transferase in the presence of dTdp-Qui3N and 5-N-Formyl-THF 3OIS ; 1.65 ; Crystal Structure Xylellain, a cysteine protease from Xylella fastidiosa 3BLU ; 2.0 ; crystal structure YopH complexed with inhibitor PVS 1XAS ; 2.6 ; CRYSTAL STRUCTURE, AT 2.6 ANGSTROMS RESOLUTION, OF THE STREPTOMYCES LIVIDANS XYLANASE A, A MEMBER OF THE F FAMILY OF BETA-1,4-D-GLYCANSES 1MYK ; 2.4 ; CRYSTAL STRUCTURE, FOLDING, AND OPERATOR BINDING OF THE HYPERSTABLE ARC REPRESSOR MUTANT PL8 5DOM ; 1.69 ; Crystal structure, maturation and flocculating properties of a 2S albumin from Moringa oleifera seeds 4AUE ; 2.7 ; Crystal structure, recombinant expression and mutagenesis studies of the bifunctional catalase-phenol oxidase from Scytalidium thermophilum 4AUL ; 1.5 ; Crystal structure, recombinant expression and mutagenesis studies of the bifunctional catalase-phenol oxidase from Scytalidium thermophilum 4AUM ; 1.4 ; Crystal structure, recombinant expression and mutagenesis studies of the bifunctional catalase-phenol oxidase from Scytalidium thermophilum 4AUN ; 1.92 ; Crystal structure, recombinant expression and mutagenesis studies of the bifunctional catalase-phenol oxidase from Scytalidium thermophilum 1FRG ; 2.8 ; CRYSTAL STRUCTURE, SEQUENCE, AND EPITOPE MAPPING OF A PEPTIDE COMPLEX OF AN ANTI-INFLUENZA HA PEPTIDE ANTIBODY FAB 26(SLASH)9: FINE-TUNING ANTIBODY SPECIFICITY 1XK7 ; 1.6 ; Crystal Structure- C2 form- of Escherichia coli Crotonobetainyl-CoA: carnitine CoA transferase (CaiB) 1XK6 ; 1.85 ; Crystal Structure- P1 form- of Escherichia coli Crotonobetainyl-CoA: carnitine CoA Transferase (CaiB) 5HA9 ; 4.01 ; Crystal structure-based design and disovery of a novel PARP1 antiagonist (BL-PA10) that induces apoptosis and inhibits metastasis in triple negative breast cancer 5CNR ; 2.59 ; Crystal structure-guided design of self-assembling RNA nano triangles 6Z6C ; 1.4 ; Crystal structurel of FleA lectin in complex with a monovalent inhibitor 3OO6 ; 2.15 ; Crystal structures and biochemical characterization of the bacterial solute receptor AcbH reveal an unprecedented exclusive substrate preference for b-D-galactopyranose 3OO7 ; 2.1 ; Crystal structures and biochemical characterization of the bacterial solute receptor AcbH reveal an unprecedented exclusive substrate preference for b-D-galactopyranose 3OO8 ; 1.6 ; Crystal structures and biochemical characterization of the bacterial solute receptor AcbH reveal an unprecedented exclusive substrate preference for b-D-galactopyranose 3OO9 ; 1.76 ; Crystal structures and biochemical characterization of the bacterial solute receptor AcbH reveal an unprecedented exclusive substrate preference for b-D-galactopyranose 3OOA ; 2.04 ; Crystal structures and biochemical characterization of the bacterial solute receptor AcbH reveal an unprecedented exclusive substrate preference for b-D-galactopyranose 3A9U ; 2.4 ; Crystal structures and enzymatic mechanisms of a Populus tomentosa 4-coumarate--CoA ligase 3A9V ; 2.5 ; Crystal structures and enzymatic mechanisms of a Populus tomentosa 4-coumarate--CoA ligase 3NI2 ; 1.9 ; Crystal structures and enzymatic mechanisms of a Populus tomentosa 4-coumarate:CoA ligase 2YQU ; 1.7 ; Crystal structures and evolutionary relationship of two different lipoamide dehydrogenase(E3s) from Thermus thermophilus 3NAH ; 2.75 ; Crystal structures and functional analysis of murine norovirus RNA-dependent RNA polymerase 3NAI ; 2.56 ; Crystal structures and functional analysis of murine norovirus RNA-dependent RNA polymerase 3QID ; 2.5 ; Crystal structures and functional analysis of murine norovirus RNA-dependent RNA polymerase 5F5D ; 2.5 ; Crystal structures and Inhibition kinetics reveal a two-state catalytic mechanism with drug design implications for rhomboid proteolysis 2BSR ; 2.3 ; Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B2705 2BSS ; 2.0 ; Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B2705 2BST ; 2.1 ; Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B2705 3MFM ; 2.38 ; Crystal Structures and Mutational Analyses of Acyl-CoA Carboxylase Subunit of Streptomyces coelicolor 7K05 ; 1.85 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 7K06 ; 1.95 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 7K07 ; 2.15 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 7LPY ; 1.85 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 7LPZ ; 1.55 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 7LQ0 ; 1.6 ; Crystal structures and ribonuclease activity of the Flavivirus host factor ERI3 that is involved in viral RNA synthesis define the ERI subfamily of structure-specific 3-prime - 5-prime exoribonucleases 3BW2 ; 2.1 ; Crystal structures and site-directed mutagenesis study of nitroalkane oxidase from Streptomyces ansochromogenes 3BW3 ; 2.2 ; Crystal structures and site-directed mutagenesis study of nitroalkane oxidase from Streptomyces ansochromogenes 3BW4 ; 2.2 ; Crystal structures and site-directed mutagenesis study of nitroalkane oxidase from Streptomyces ansochromogenes 2ZD0 ; 2.5 ; Crystal structures and thermostability of mutant TRAP3 A5 (ENGINEERED TRAP) 2ZCZ ; 1.8 ; Crystal structures and thermostability of mutant TRAP3 A7 (ENGINEERED TRAP) 1Q21 ; 2.2 ; CRYSTAL STRUCTURES AT 2.2 ANGSTROMS RESOLUTION OF THE CATALYTIC DOMAINS OF NORMAL RAS PROTEIN AND AN ONCOGENIC MUTANT COMPLEXED WITH GSP 2Q21 ; 2.2 ; CRYSTAL STRUCTURES AT 2.2 ANGSTROMS RESOLUTION OF THE CATALYTIC DOMAINS OF NORMAL RAS PROTEIN AND AN ONCOGENIC MUTANT COMPLEXED WITH GSP 1SES ; 2.5 ; CRYSTAL STRUCTURES AT 2.5 ANGSTROMS RESOLUTION OF SERYL-TRNA SYNTHETASE COMPLEXED WITH TWO DIFFERENT ANALOGUES OF SERYL-ADENYLATE 1SET ; 2.55 ; CRYSTAL STRUCTURES AT 2.5 ANGSTROMS RESOLUTION OF SERYL-TRNA SYNTHETASE COMPLEXED WITH TWO DIFFERENT ANALOGUES OF SERYL-ADENYLATE 1PHO ; 3.0 ; CRYSTAL STRUCTURES EXPLAIN FUNCTIONAL PROPERTIES OF TWO E. COLI PORINS 2XRQ ; 2.4 ; Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin 2XRS ; 1.81 ; Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin 5DD0 ; 2.488 ; Crystal structures in an anti-HIV antibody lineage from immunization of Rhesus macaques 5DD1 ; 1.597 ; Crystal structures in an anti-HIV antibody lineage from immunization of Rhesus macaques 5DD3 ; 1.797 ; Crystal structures in an anti-HIV antibody lineage from immunization of Rhesus macaques 5DD5 ; 1.9 ; Crystal structures in an anti-HIV antibody lineage from immunization of Rhesus macaques 5DD6 ; 1.699 ; Crystal structures in an anti-HIV antibody lineage from immunization of Rhesus macaques 3BZ7 ; 2.0 ; Crystal Structures of (S)-(-)-Blebbistatin Analogs bound to Dictyostelium discoideum myosin II 3BZ8 ; 2.2 ; Crystal Structures of (S)-(-)-Blebbistatin Analogs bound to Dictyostelium discoideum myosin II 3BZ9 ; 2.1 ; Crystal Structures of (S)-(-)-Blebbistatin Analogs bound to Dictyostelium discoideum myosin II 7DLD ; 1.75 ; Crystal structures of (S)-carbonyl reductases from Candida parapsilosis in different oligomerization states 2AHR ; 2.15 ; Crystal Structures of 1-Pyrroline-5-Carboxylate Reductase from Human Pathogen Streptococcus pyogenes 8G93 ; 1.91 ; Crystal structures of 17-beta-hydroxysteroid dehydrogenase 13 8G9V ; 2.645 ; Crystal structures of 17-beta-hydroxysteroid dehydrogenase 13 7EUS ; 2.3 ; Crystal structures of 2-oxoglutarate dependent dioxygenase (CTB9) from Cercospora sp. JNU001 7EUT ; 2.497 ; Crystal structures of 2-oxoglutarate dependent dioxygenase (CTB9) in complex with N-oxalylglycine 7EUU ; 2.202 ; Crystal structures of 2-oxoglutarate dependent dioxygenase (CTB9) in complex with N-oxalylglycine and pre-cercosporin 5AVM ; 2.2 ; Crystal structures of 5-aminoimidazole ribonucleotide (AIR) synthetase, PurM, from Thermus thermophilus 2V7B ; 1.84 ; Crystal structures of a benzoate CoA ligase from Burkholderia xenovorans LB400 1UX5 ; 2.5 ; Crystal Structures of a Formin Homology-2 domain reveal a flexibly tethered dimer architecture 1UX4 ; 3.3 ; Crystal structures of a Formin Homology-2 domain reveal a tethered-dimer architecture 3KFE ; 3.5 ; Crystal structures of a group II chaperonin from Methanococcus maripaludis 3KFK ; 6.003 ; Crystal structures of a group II chaperonin from Methanococcus maripaludis 2AOA ; 1.99 ; Crystal structures of a high-affinity macrocyclic peptide mimetic in complex with the Grb2 SH2 domain 2AOB ; 1.8 ; Crystal structures of a high-affinity macrocyclic peptide mimetic in complex with the Grb2 SH2 domain 1RPI ; 1.86 ; Crystal structures of a Multidrug-Resistant HIV-1 Protease Reveal an Expanded Active Site Cavity 1RQ9 ; 2.6 ; Crystal structures of a Multidrug-Resistant HIV-1 Protease Reveal an Expanded Active Site Cavity 1RV7 ; 2.7 ; Crystal structures of a Multidrug-Resistant HIV-1 Protease Reveal an Expanded Active Site Cavity 1S3Q ; 2.1 ; Crystal structures of a novel open pore ferritin from the hyperthermophilic Archaeon Archaeoglobus fulgidus 1SQ3 ; 2.7 ; Crystal structures of a novel open pore ferritin from the hyperthermophilic Archaeon Archaeoglobus fulgidus. 1C2Y ; 3.3 ; CRYSTAL STRUCTURES OF A PENTAMERIC FUNGAL AND AN ICOSAHEDRAL PLANT LUMAZINE SYNTHASE REVEALS THE STRUCTURAL BASIS FOR DIFFERENCES IN ASSEMBLY 1C41 ; 3.1 ; CRYSTAL STRUCTURES OF A PENTAMERIC FUNGAL AND AN ICOSAHEDRAL PLANT LUMAZINE SYNTHASE REVEALS THE STRUCTURAL BASIS FOR DIFFERENCES IN ASSEMBLY 2HZE ; 1.8 ; Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes 2HZF ; 1.8 ; Crystal structures of a poxviral glutaredoxin in the oxidized and reduced states show redox-correlated structural changes 3QFE ; 2.35 ; Crystal structures of a putative dihydrodipicolinate synthase family protein from Coccidioides immitis 1GTA ; 2.4 ; CRYSTAL STRUCTURES OF A SCHISTOSOMAL DRUG AND VACCINE TARGET: GLUTATHIONE S-TRANSFERASE FROM SCHISTOSOMA JAPONICA AND ITS COMPLEX WITH THE LEADING ANTISCHISTOSOMAL DRUG PRAZIQUANTEL 1GTB ; 2.6 ; CRYSTAL STRUCTURES OF A SCHISTOSOMAL DRUG AND VACCINE TARGET: GLUTATHIONE S-TRANSFERASE FROM SCHISTOSOMA JAPONICA AND ITS COMPLEX WITH THE LEADING ANTISCHISTOSOMAL DRUG PRAZIQUANTEL 6GG9 ; 2.04 ; Crystal structures of a short blue light photoreceptor protein PpSB1-LOV mutant (dark state) - R61H/R66I 2HZL ; 1.4 ; Crystal structures of a sodium-alpha-keto acid binding subunit from a TRAP transporter in its closed forms 2HZK ; 1.7 ; Crystal structures of a sodium-alpha-keto acid binding subunit from a TRAP transporter in its open form 3GKZ ; 1.9 ; Crystal structures of a therapeutic single chain antibody in complex methamphetamine 7ACN ; 2.0 ; CRYSTAL STRUCTURES OF ACONITASE WITH ISOCITRATE AND NITROISOCITRATE BOUND 8ACN ; 2.0 ; CRYSTAL STRUCTURES OF ACONITASE WITH ISOCITRATE AND NITROISOCITRATE BOUND 1QB8 ; 2.0 ; CRYSTAL STRUCTURES OF ADENINE PHOSPHORIBOSYLTRANSFERASE FROM LEISHMANIA DONOVANI 1QCC ; 1.98 ; CRYSTAL STRUCTURES OF ADENINE PHOSPHORIBOSYLTRANSFERASE FROM LEISHMANIA DONOVANI 1QCD ; 2.48 ; CRYSTAL STRUCTURES OF ADENINE PHOSPHORIBOSYLTRANSFERASE FROM LEISHMANIA DONOVANI 1QB7 ; 1.5 ; CRYSTAL STRUCTURES OF ADENINE PHOSPHORIBOSYLTRANSFERASE FROM LEISHMANIA DONOVANI. 1V79 ; 2.5 ; Crystal structures of adenosine deaminase complexed with potent inhibitors 1V7A ; 2.5 ; Crystal structures of adenosine deaminase complexed with potent inhibitors 4JLD ; 1.552 ; Crystal Structures of adenylate kinase with 2 ADP's 4JLB ; 1.528 ; Crystal Structures of Adenylate kinase with 2ADP's 7C7F ; 1.7 ; Crystal structures of AKR1C3 binary complex with NADP+ 7C7G ; 1.86 ; Crystal structures of AKR1C3 ternary complex with NADP+ and the chromene derivative 2j 7C7H ; 1.86 ; Crystal structures of AKR1C3 ternary complex with NADP+ and the chromene derivative 2l 5K52 ; 2.4 ; Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 5K53 ; 1.8 ; Crystal structures of aldehyde deformylating oxygenase from Oscillatoria sp. KNUA011 1P11 ; 1.93 ; CRYSTAL STRUCTURES OF ALPHA-LYTIC PROTEASE COMPLEXES WITH IRREVERSIBLY BOUND PHOSPHONATE ESTERS 1P12 ; 1.9 ; CRYSTAL STRUCTURES OF ALPHA-LYTIC PROTEASE COMPLEXES WITH IRREVERSIBLY BOUND PHOSPHONATE ESTERS 7VW5 ; 2.3 ; Crystal structures of alphavirus nonstructural protein 4 (nsP4) reveal an intrinsically dynamic RNA-dependent RNA polymerase fold 3B3L ; 2.9 ; Crystal structures of alternatively-spliced isoforms of human ketohexokinase 2A46 ; 1.65 ; Crystal structures of amFP486, a cyan fluorescent protein from Anemonia majano, and variants 247D ; 2.8 ; CRYSTAL STRUCTURES OF AN A-FORM DUPLEX WITH SINGLE-ADENOSINE BULGES AND A CONFORMATIONAL BASIS FOR SITE SPECIFIC RNA SELF-CLEAVAGE 248D ; 1.83 ; CRYSTAL STRUCTURES OF AN A-FORM DUPLEX WITH SINGLE-ADENOSINE BULGES AND A CONFORMATIONAL BASIS FOR SITE SPECIFIC RNA SELF-CLEAVAGE 3UXW ; 2.27 ; Crystal Structures of an A-T-hook/DNA complex 2A9O ; 1.65 ; Crystal structures of an activated YycF homologue, the essential response regulator from S.pneumoniae in complex with BeF3 and the effect of pH on BeF3 binding, possible phosphate in the active site 1IGF ; 2.8 ; CRYSTAL STRUCTURES OF AN ANTIBODY TO A PEPTIDE AND ITS COMPLEX WITH PEPTIDE ANTIGEN AT 2.8 ANGSTROMS 2IGF ; 2.8 ; CRYSTAL STRUCTURES OF AN ANTIBODY TO A PEPTIDE AND ITS COMPLEX WITH PEPTIDE ANTIGEN AT 2.8 ANGSTROMS 1R8B ; 2.0 ; Crystal Structures of an Archaeal Class I CCA-Adding Enzyme and Its Nucleotide 1R8C ; 1.9 ; Crystal Structures of an Archaeal Class I CCA-Adding Enzyme and Its Nucleotide 1R89 ; 1.8 ; Crystal Structures of an Archaeal Class I CCA-Adding Enzyme and Its Nucleotide Complexes 1R8A ; 2.1 ; Crystal Structures of an Archaeal Class I CCA-Adding Enzyme and Its Nucleotide Complexes 6DLA ; 2.004 ; Crystal structures of an influenza A hemagglutinin antibody Fab CH65:7969d2 2PMK ; 1.6 ; Crystal structures of an isolated ABC-ATPase in complex with TNP-ADP 7DEV ; 3.1 ; Crystal Structures of Anthocyanin 5,3'-aromatic acyltransferase from Gentiana triflora 7DEX ; 2.5 ; Crystal Structures of Anthocyanin 5,3'-aromatic acyltransferase H174A mutant with caffeoyl-CoA 4IFJ ; 1.8 ; Crystal Structures of apo Keap1, Keap1-peptide, and Keap1-compound complexes 4IFL ; 1.8 ; Crystal Structures of apo Keap1, Keap1-peptide, and Keap1-compound complexes 4IFN ; 2.4 ; Crystal Structures of apo Keap1, Keap1-peptide, and Keap1-compound complexes 7JRR ; 2.16 ; Crystal structures of artificially designed homomeric RNA nanoarchitectures 7JRS ; 3.21 ; Crystal structures of artificially designed homomeric RNA nanoarchitectures 7JRT ; 3.07 ; Crystal structures of artificially designed homomeric RNA nanoarchitectures 4BF2 ; 2.11 ; Crystal Structures of Ask1-inhibitor Complexes 4BHN ; 2.3 ; Crystal Structures of Ask1-inhibitor Complexes 4BIB ; 2.43 ; Crystal Structures of Ask1-inhibitor Complexes 4BIC ; 2.62 ; Crystal Structures of Ask1-inhibitor Complexes 4BID ; 2.8 ; Crystal Structures of Ask1-inhibitor Complexes 4BIE ; 2.36 ; Crystal Structures of Ask1-inhibitor Complexes 7AT1 ; 2.8 ; CRYSTAL STRUCTURES OF ASPARTATE CARBAMOYLTRANSFERASE LIGATED WITH PHOSPHONOACETAMIDE, MALONATE, AND CTP OR ATP AT 2.8-ANGSTROMS RESOLUTION AND NEUTRAL P*H 8AT1 ; 2.8 ; CRYSTAL STRUCTURES OF ASPARTATE CARBAMOYLTRANSFERASE LIGATED WITH PHOSPHONOACETAMIDE, MALONATE, AND CTP OR ATP AT 2.8-ANGSTROMS RESOLUTION AND NEUTRAL P*H 3AMS ; 2.08 ; Crystal Structures of Bacillus subtilis Alkaline Phytase in Complex with Ca2+, Cd2+, Co2+, Ni2+, Mg2+ and myo-Inositol Hexasulfate 3AMR ; 1.25 ; Crystal Structures of Bacillus subtilis Alkaline Phytase in Complex with Ca2+, Co2+, Ni2+, Mg2+ and myo-Inositol Hexasulfate 1DKR ; 2.3 ; CRYSTAL STRUCTURES OF BACILLUS SUBTILIS PHOSPHORIBOSYLPYROPHOSPHATE SYNTHETASE: MOLECULAR BASIS OF ALLOSTERIC INHIBITION AND ACTIVATION. 1DKU ; 2.2 ; CRYSTAL STRUCTURES OF BACILLUS SUBTILIS PHOSPHORIBOSYLPYROPHOSPHATE SYNTHETASE: MOLECULAR BASIS OF ALLOSTERIC INHIBITION AND ACTIVATION. 4GZY ; 3.5054 ; Crystal structures of bacterial RNA Polymerase paused elongation complexes 4GZZ ; 4.2927 ; Crystal structures of bacterial RNA Polymerase paused elongation complexes 5CF3 ; 2.031 ; Crystal structures of Bbp from Staphylococcus aureus 5CFA ; 1.45 ; Crystal structures of Bbp from Staphylococcus aureus with peptide ligand 6XFI ; 2.0 ; Crystal Structures of beta-1,4-N-Acetylglucosaminyltransferase 2 (POMGNT2): Structural Basis for Inherited Muscular Dystrophies 3UYY ; 2.5 ; Crystal Structures of Branched-Chain Aminotransferase from Deinococcus radiodurans Complexes with alpha-Ketoisocaproate and L-Glutamate Suggest Its Radio-Resistance for Catalysis 3UZB ; 3.0 ; Crystal Structures of Branched-Chain Aminotransferase from Deinococcus radiodurans Complexes with alpha-Ketoisocaproate and L-Glutamate Suggest Its Radio-Resistance for Catalysis 3UZO ; 2.0 ; Crystal Structures of Branched-Chain Aminotransferase from Deinococcus radiodurans Complexes with alpha-Ketoisocaproate and L-Glutamate Suggest Its Radio-Resistance for Catalysis 6JIF ; 1.7 ; Crystal Structures of Branched-Chain Aminotransferase from Pseudomonas sp. UW4 4KU5 ; 2.17 ; Crystal Structures of C143S Xanthomonas campestris OleA with Bound Lauric Acid and Lauroyl-CoA 2REA ; 2.5 ; Crystal structures of C2ALPHA-PI3 kinase PX-domain domain indicate conformational change associated with ligand binding. 2RED ; 2.1 ; Crystal structures of C2ALPHA-PI3 kinase PX-domain domain indicate conformational change associated with ligand binding. 1M8S ; 1.9 ; Crystal Structures of Cadmium-binding Acidic Phospholipase A2 from the Venom of Agkistrodon halys pallas at 1.9 Resolution (crystal grown at pH 5.9) 1M8R ; 1.9 ; Crystal Structures of Cadmium-binding Acidic Phospholipase A2 from the Venom of Agkistrodon halys pallas at 1.9 Resolution (crystal grown at pH 7.4) 2CDR ; 1.7 ; Crystal structures of caspase-3 in complex with aza-peptide epoxide inhibitors. 2CNK ; 1.75 ; Crystal structures of caspase-3 in complex with aza-peptide epoxide inhibitors. 2CNL ; 1.67 ; Crystal structures of caspase-3 in complex with aza-peptide epoxide inhibitors. 2CNN ; 1.7 ; Crystal structures of caspase-3 in complex with aza-peptide epoxide inhibitors. 2CNO ; 1.95 ; Crystal structures of caspase-3 in complex with aza-peptide epoxide inhibitors. 2C1E ; 1.77 ; Crystal structures of caspase-3 in complex with aza-peptide Michael acceptor inhibitors. 2C2K ; 1.87 ; Crystal structures of caspase-3 in complex with aza-peptide Michael acceptor inhibitors. 2C2M ; 1.94 ; Crystal structures of caspase-3 in complex with aza-peptide Michael acceptor inhibitors. 2C2O ; 2.45 ; Crystal structures of caspase-3 in complex with aza-peptide Michael acceptor inhibitors. 3DEH ; 2.5 ; Crystal Structures of Caspase-3 with Bound Isoquinoline-1,3,4-trione Derivative Inhibitors 3DEI ; 2.8 ; Crystal Structures of Caspase-3 with Bound Isoquinoline-1,3,4-trione Derivative Inhibitors 3DEJ ; 2.6 ; Crystal Structures of Caspase-3 with Bound Isoquinoline-1,3,4-trione Derivative Inhibitors 3DEK ; 2.4 ; Crystal Structures of Caspase-3 with Bound Isoquinoline-1,3,4-trione Derivative Inhibitors 3AFB ; 1.76 ; Crystal structures of catalytic site mutants of active domain 2 of chitinase from Pyrococcus furiosus 3A4W ; 1.8 ; Crystal structures of catalytic site mutants of active domain 2 of thermostable chitinase from Pyrococcus furiosus complexed with chito-oligosaccharides 3A4X ; 1.76 ; Crystal structures of catalytic site mutants of active domain 2 of thermostable chitinase from Pyrococcus furiosus complexed with chito-oligosaccharides 1NPZ ; 2.0 ; Crystal structures of Cathepsin S inhibitor complexes 1NQC ; 1.8 ; Crystal structures of Cathepsin S inhibitor complexes 4WOQ ; 2.2 ; Crystal Structures of CdNal from Clostridium difficile in complex with ketobutyric 4WOZ ; 1.96 ; Crystal Structures of CdNal from Clostridium difficile in complex with mannosamine 4DBF ; 1.9 ; Crystal structures of Cg1458 1YII ; 1.42 ; Crystal Structures of Chicken Annexin V in Complex with Ca2+ 1YJ0 ; 2.95 ; Crystal Structures of Chicken Annexin V in Complex with Zn2+ 4QY5 ; 1.501 ; Crystal structures of chimeric beta-lactamase cTEM-19m showing different conformations 4QY6 ; 1.15 ; Crystal structures of chimeric beta-lactamase cTEM-19m showing different conformations 1B4P ; 1.7 ; CRYSTAL STRUCTURES OF CLASS MU CHIMERIC GST ISOENZYMES M1-2 AND M2-1 2CN2 ; 2.1 ; Crystal Structures of Clostridium thermocellum Xyloglucanase 2CN3 ; 1.95 ; Crystal Structures of Clostridium thermocellum Xyloglucanase 3QPS ; 2.351 ; Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni 3QQA ; 2.2 ; Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni 2D3H ; 1.22 ; Crystal structures of collagen model peptides (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 2D3F ; 1.26 ; Crystal structures of collagen model peptides (Pro-Pro-Gly)4-Pro-Hyp-Gly-(Pro-Pro-Gly)4 1V7H ; 1.25 ; Crystal Structures of Collagen Model Peptides with Pro-Hyp-Gly Sequence at 1.26 A 1V6Q ; 1.25 ; Crystal Structures of Collagen Model Peptides with Pro-Hyp-Gly Sequence at 1.3 A 1V4F ; 1.26 ; Crystal structures of collagen model peptides with pro-hyp-gly sequence at 1.3A 1ZM1 ; 2.3 ; Crystal structures of complex F. succinogenes 1,3-1,4-beta-D-glucanase and beta-1,3-1,4-cellotriose 3LZZ ; 2.5 ; Crystal structures of Cupin superfamily BbDUF985 from Branchiostoma belcheri tsingtauense in apo and GDP-bound forms 3LOI ; 2.1 ; Crystal structures of Cupin superfamily BbDUF985 from Branchiostoma belcheri tsingtauense in the apo and GDP-bound forms 4K34 ; 2.69 ; Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation 4K7K ; 2.53 ; Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation 4K7R ; 2.094 ; Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation 5NS4 ; 2.4 ; Crystal structures of Cy3 cyanine fluorophores stacked onto the end of double-stranded RNA 5NS3 ; 2.4 ; Crystal structures of Cy5 cyanine fluorophores stacked onto the end of double-stranded RNA 1ARU ; 1.6 ; CRYSTAL STRUCTURES OF CYANIDE-AND TRIIODIDE-BOUND FORMS OF ARTHROMYCES RAMOSUS PEROXIDASE AT DIFFERENT PH VALUES. PERTURBATIONS OF ACTIVE SITE RESIDUES AND THEIR IMPLICATION IN ENZYME CATALYSIS 1ARV ; 1.6 ; CRYSTAL STRUCTURES OF CYANIDE-AND TRIIODIDE-BOUND FORMS OF ARTHROMYCES RAMOSUS PEROXIDASE AT DIFFERENT PH VALUES. PERTURBATIONS OF ACTIVE SITE RESIDUES AND THEIR IMPLICATION IN ENZYME CATALYSIS 1ARW ; 1.6 ; CRYSTAL STRUCTURES OF CYANIDE-AND TRIIODIDE-BOUND FORMS OF ARTHROMYCES RAMOSUS PEROXIDASE AT DIFFERENT PH VALUES. PERTURBATIONS OF ACTIVE SITE RESIDUES AND THEIR IMPLICATION IN ENZYME CATALYSIS 1ARX ; 1.9 ; CRYSTAL STRUCTURES OF CYANIDE-AND TRIIODIDE-BOUND FORMS OF ARTHROMYCES RAMOSUS PEROXIDASE AT DIFFERENT PH VALUES. PERTURBATIONS OF ACTIVE SITE RESIDUES AND THEIR IMPLICATION IN ENZYME CATALYSIS 1ARY ; 1.9 ; CRYSTAL STRUCTURES OF CYANIDE-AND TRIIODIDE-BOUND FORMS OF ARTHROMYCES RAMOSUS PEROXIDASE AT DIFFERENT PH VALUES. PERTURBATIONS OF ACTIVE SITE RESIDUES AND THEIR IMPLICATION IN ENZYME CATALYSIS 6BUM ; 1.51 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica 6BUN ; 1.78 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica 6BUO ; 1.85 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica 6DHJ ; 3.2 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica 6CWJ ; 2.253 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica complexed with 1,3-Acetone Dicarboxylic Acid 6BUQ ; 1.88 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica complexed with barbituric acid 6BUR ; 2.18 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica complexed with barbituric acid 6BUP ; 1.88 ; Crystal structures of cyanuric acid hydrolase from Moorella thermoacetica complexed with cyanuric acid 2RMA ; 2.1 ; Crystal structures of cyclophilin A complexed with cyclosporin A and N-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin A 2RMB ; 2.1 ; Crystal structures of cyclophilin A complexed with cyclosporin A and N-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin A 4DXY ; 2.0 ; Crystal structures of CYP101D2 Y96A mutant 6C2H ; 1.49 ; Crystal Structures of Cystathionine beta-Synthase from Saccharomyces cerevisiae: the Structure of the Catalytic Core 6C2Z ; 1.37 ; Crystal Structures of Cystathionine beta-Synthase from Saccharomyces cerevisiae: the Structure of the PLP-Aminoacrylate Intermediate 6C2Q ; 2.17 ; Crystal Structures of Cystathionine beta-Synthase from Saccharomyces cerevisiae: the Structure of the PLP-L-Serine Intermediate 6C4P ; 2.3 ; Crystal Structures of Cystathionine beta-Synthase from Saccharomyces cerevisiae: the Structure of the PMP Complex 4CPP ; 2.11 ; CRYSTAL STRUCTURES OF CYTOCHROME P450-CAM COMPLEXED WITH CAMPHANE, THIOCAMPHOR, AND ADAMANTANE: FACTORS CONTROLLING P450 SUBSTRATE HYDROXYLATION 6CPP ; 1.9 ; CRYSTAL STRUCTURES OF CYTOCHROME P450-CAM COMPLEXED WITH CAMPHANE, THIOCAMPHOR, AND ADAMANTANE: FACTORS CONTROLLING P450 SUBSTRATE HYDROXYLATION 8CPP ; 2.1 ; CRYSTAL STRUCTURES OF CYTOCHROME P450-CAM COMPLEXED WITH CAMPHANE, THIOCAMPHOR, AND ADAMANTANE: FACTORS CONTROLLING P450 SUBSTRATE HYDROXYLATION 1EHE ; 1.7 ; CRYSTAL STRUCTURES OF CYTOCHROME P450NOR AND ITS MUTANTS (SER286 VAL, THR) IN THE FERRIC RESTING STATE AT CRYOGENIC TEMPERATURE: A COMPARATIVE ANALYSIS WITH MONOOXYGENASE CYTOCHROME P450S 1EHF ; 1.7 ; CRYSTAL STRUCTURES OF CYTOCHROME P450NOR AND ITS MUTANTS (SER286 VAL, THR) IN THE FERRIC RESTING STATE AT CRYOGENIC TEMPERATURE: A COMPARATIVE ANALYSIS WITH MONOOXYGENASE CYTOCHROME P450S 1EHG ; 1.7 ; CRYSTAL STRUCTURES OF CYTOCHROME P450NOR AND ITS MUTANTS (SER286 VAL, THR) IN THE FERRIC RESTING STATE AT CRYOGENIC TEMPERATURE: A COMPARATIVE ANALYSIS WITH MONOOXYGENASE CYTOCHROME P450S 319D ; 2.2 ; CRYSTAL STRUCTURES OF D(CCGGG(BR)5CCCGG)-ORTHOGONAL FORM 318D ; 2.0 ; CRYSTAL STRUCTURES OF D(CCGGGCC(BR)5CGG)-HEXAGONAL FORM 320D ; 2.15 ; CRYSTAL STRUCTURES OF D(CCGGGCCCGG)-ORTHOGONAL FORM 321D ; 2.15 ; CRYSTAL STRUCTURES OF D(CCGGGCCCGG)-ORTHOGONAL FORM 322D ; 2.5 ; CRYSTAL STRUCTURES OF D(CCGGGCCM5CGG)-HEXAGONAL FORM 323D ; 2.15 ; CRYSTAL STRUCTURES OF D(CCGGGCCM5CGG)-ORTHOGONAL FORM 324D ; 2.15 ; CRYSTAL STRUCTURES OF D(CCGGGCCM5CGG)-ORTHOGONAL FORM 325D ; 2.5 ; CRYSTAL STRUCTURES OF D(CM5CGGGCCM5CGG)-HEXAGONAL FORM 326D ; 2.15 ; CRYSTAL STRUCTURES OF D(CM5CGGGCCM5CGG)-ORTHOGONAL FORM 1R3Z ; 1.7 ; Crystal structures of d(Gm5CGm5CGCGC) and d(GCGCGm5CGm5C): Effects of methylation on alternating DNA octamers 1R41 ; 1.9 ; Crystal structures of d(Gm5CGm5CGCGC) and d(GCGCGm5CGm5C): Effects of methylation on alternating DNA octamers 327D ; 1.94 ; CRYSTAL STRUCTURES OF D(GM5CGM5CGCGCGC) 7DZ2 ; 1.55 ; Crystal structures of D-allulose 3-epimerase from Sinorhizobium fredii 7DZ6 ; 2.1 ; Crystal structures of D-allulose 3-epimerase with D-allulose from Sinorhizobium fredii 7DZ3 ; 1.88 ; Crystal structures of D-allulose 3-epimerase with D-fructose from Sinorhizobium fredii 7DZ5 ; 1.7 ; Crystal structures of D-allulose 3-epimerase with D-sorbose from Sinorhizobium fredii 7DZ4 ; 1.84 ; Crystal structures of D-allulose 3-epimerase with D-tagatose from Sinorhizobium fredii 3VNI ; 1.98 ; Crystal structures of D-Psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars 3VNK ; 2.02 ; Crystal structures of D-Psicose 3-epimerase with D-fructose from Clostridium cellulolyticum H10 3VNJ ; 2.08 ; Crystal structures of D-Psicose 3-epimerase with D-psicose from Clostridium cellulolyticum H10 3VNM ; 2.12 ; Crystal structures of D-Psicose 3-epimerase with D-sorbose from Clostridium cellulolyticum H10 3VNL ; 2.15 ; Crystal structures of D-Psicose 3-epimerase with D-tagatose from Clostridium cellulolyticum H10 4PLQ ; 2.1 ; Crystal Structures of Designed Armadillo Repeat Proteins: Implications of Construct Design and Crystallization Conditions on Overall Structure. 4PLR ; 2.1 ; Crystal Structures of Designed Armadillo Repeat Proteins: Implications of Construct Design and Crystallization Conditions on Overall Structure. 4PLS ; 2.35 ; Crystal Structures of Designed Armadillo Repeat Proteins: Implications of Construct Design and Crystallization Conditions on Overall Structure. 4GZG ; 1.49 ; Crystal structures of DHPA-CO complex 8A4Q ; 1.75 ; crystal structures of diastereomer (R,S,S)-13b (13b-H) in complex with the SARS-CoV-2 Mpro. 8A4T ; 2.5 ; crystal structures of diastereomer (S,S,S)-13b (13b-K) in complex with the SARS-CoV-2 Mpro 6A1O ; 2.49 ; Crystal structures of disordered Z-type helices 6A1Q ; 2.501 ; Crystal structures of disordered Z-type helices 4B5X ; 1.8 ; Crystal structures of divalent metal dependent pyruvate aldolase (HpaI), mutant D42A 4B5W ; 1.792 ; Crystal structures of divalent metal dependent pyruvate aldolase R70A mutant, HpaI, in complex with pyruvate 4B5V ; 2.041 ; Crystal structures of divalent metal dependent pyruvate aldolase, HpaI, in complex with 4-hydroxyl-2-ketoheptane-1,7-dioate 4B5T ; 1.923 ; Crystal structures of divalent metal dependent pyruvate aldolase, HpaI, in complex with ketobutyrate 4B5S ; 1.68 ; Crystal structures of divalent metal dependent pyruvate aldolase, HpaI, in complex with pyruvate 4B5U ; 1.913 ; Crystal structures of divalent metal dependent pyruvate aldolase, HpaI, in complex with pyruvate and succinic semialdehyde 4B29 ; 1.72 ; Crystal structures of DMSP lyases RdDddP and RnDddQII 4JZY ; 2.34 ; Crystal structures of Drosophila Cryptochrome 2FQD ; 2.4 ; Crystal Structures of E. coli Laccase CueO under different copper binding situations 2FQE ; 1.92 ; Crystal Structures of E. coli Laccase CueO under different copper binding situations 2FQF ; 2.0 ; Crystal Structures of E. coli Laccase CueO under different copper binding situations 2FQG ; 2.3 ; Crystal Structures of E. coli Laccase CueO under different copper binding situations 1U99 ; 2.6 ; Crystal Structures of E. coli RecA in a Compressed Helical Filament Form 4 5YYM ; 2.2 ; Crystal structures of E.coli arginyl-trna synthetase (argrs) in complex with substrate Arg 5B63 ; 3.0 ; Crystal structures of E.coli arginyl-tRNA synthetase (ArgRS) in complex with substrate tRNA(Arg) 5YYN ; 3.0 ; Crystal structures of E.coli arginyl-trna synthetase (argrs) in complex with substrate TRNA(Arg) 1YN3 ; 1.35 ; Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens 1YN4 ; 1.8 ; Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens 1YN5 ; 2.2 ; Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens 4R3P ; 2.905 ; Crystal structures of EGFR in complex with Mig6 4R3R ; 3.25 ; Crystal structures of EGFR in complex with Mig6 5ZH0 ; 1.08 ; Crystal Structures of Endo-beta-1,4-xylanase II 5ZF3 ; 1.2 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6JUG ; 1.19 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6JWB ; 1.15 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6JXL ; 1.3 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6JZP ; 1.12 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 6K9W ; 1.1 ; Crystal Structures of Endo-beta-1,4-xylanase II Complexed with Xylotriose 2BZZ ; 0.98 ; Crystal Structures of Eosinophil-derived Neurotoxin in Complex with the Inhibitors 5'-ATP, Ap3A, Ap4A and Ap5A 2C01 ; 1.24 ; Crystal Structures of Eosinophil-derived Neurotoxin in Complex with the Inhibitors 5'-ATP, Ap3A, Ap4A and Ap5A 2C02 ; 2.0 ; Crystal Structures of Eosinophil-derived Neurotoxin in Complex with the Inhibitors 5'-ATP, Ap3A, Ap4A and Ap5A 2C05 ; 1.86 ; Crystal Structures of Eosinophil-derived Neurotoxin in Complex with the Inhibitors 5'-ATP, Ap3A, Ap4A and Ap5A 3DFR ; 1.7 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI AND LACTOBACILLUS CASEI DIHYDROFOLATE REDUCTASE REFINED AT 1.7 ANGSTROMS RESOLUTION. I. GENERAL FEATURES AND BINDING OF METHOTREXATE 4DFR ; 1.7 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI AND LACTOBACILLUS CASEI DIHYDROFOLATE REDUCTASE REFINED AT 1.7 ANGSTROMS RESOLUTION. I. GENERAL FEATURES AND BINDING OF METHOTREXATE 1ASL ; 2.6 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI ASPARTATE AMINOTRANSFERASE IN TWO CONFORMATIONS: COMPARISON OF AN UNLIGANDED OPEN AND TWO LIGANDED CLOSED FORMS 1ASM ; 2.35 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI ASPARTATE AMINOTRANSFERASE IN TWO CONFORMATIONS: COMPARISON OF AN UNLIGANDED OPEN AND TWO LIGANDED CLOSED FORMS 1ASN ; 2.5 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI ASPARTATE AMINOTRANSFERASE IN TWO CONFORMATIONS: COMPARISON OF AN UNLIGANDED OPEN AND TWO LIGANDED CLOSED FORMS 3QN6 ; 1.79 ; Crystal Structures of Escherichia coli Aspartate Aminotransferase Reconstituted with 1-Deaza-Pyridoxal 5'-Phosphate: Internal Aldimine and Stable L-Aspartate External Aldimine 3QPG ; 1.79 ; Crystal Structures of Escherichia coli Aspartate Aminotransferase Reconstituted with 1-Deaza-Pyridoxal 5'-Phosphate: Internal Aldimine and Stable L-Aspartate External Aldimine 6DFR ; 2.4 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. THE NADP+ HOLOENZYME AND THE FOLATE(DOT)NADP+ TERNARY COMPLEX. SUBSTRATE BINDING AND A MODEL FOR THE TRANSITION STATE 7DFR ; 2.5 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. THE NADP+ HOLOENZYME AND THE FOLATE(DOT)NADP+ TERNARY COMPLEX. SUBSTRATE BINDING AND A MODEL FOR THE TRANSITION STATE 1BU6 ; 2.37 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI GLYCEROL KINASE AND THE MUTANT A65T IN AN INACTIVE TETRAMER: CONFORMATIONAL CHANGES AND IMPLICATIONS FOR ALLOSTERIC REGULATION 1GLF ; 2.62 ; CRYSTAL STRUCTURES OF ESCHERICHIA COLI GLYCEROL KINASE AND THE MUTANT A65T IN AN INACTIVE TETRAMER: CONFORMATIONAL CHANGES AND IMPLICATIONS FOR ALLOSTERIC REGULATION 3ZGL ; 1.68 ; Crystal structures of Escherichia coli IspH in complex with AMBPP a potent inhibitor of the methylerythritol phosphate pathway 3ZGN ; 1.95 ; Crystal structures of Escherichia coli IspH in complex with TMBPP a potent inhibitor of the methylerythritol phosphate pathway 5GSO ; 2.6 ; Crystal Structures of EV71 3C Protease in complex with NK-1.8k 4J1N ; 2.45 ; Crystal structures of FabI from F. tularensis in complex with novel inhibitors based on the benzimidazole scaffold 7WUA ; 1.999 ; Crystal structures of FadD32 from Corynebacterium diphtheriae 3S5H ; 1.603 ; Crystal structures of falcilysin, a M16 metalloprotease from the malaria parasite Plasmodium falciparum 3S5I ; 1.743 ; Crystal structures of falcilysin, a M16 metalloprotease from the malaria parasite Plasmodium falciparum 3S5K ; 3.2 ; Crystal structures of falcilysin, a M16 metalloprotease from the malaria parasite Plasmodium falciparum 3S5M ; 1.55 ; Crystal structures of falcilysin, a M16 metalloprotease from the malaria parasite Plasmodium falciparum 1F7D ; 1.4 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS 1F7K ; 2.2 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1F7N ; 2.2 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1F7O ; 2.2 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1F7P ; 2.3 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1F7Q ; 2.26 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1F7R ; 2.5 ; CRYSTAL STRUCTURES OF FELINE IMMUNODEFICIENCY VIRUS DUTP PYROPHOSPHATASE AND ITS NUCLEOTIDE COMPLEXES IN THREE CRYSTAL FORMS. 1CL6 ; 1.7 ; CRYSTAL STRUCTURES OF FERRIC-NO COMPLEXES OF FUNGAL NITRIC OXIDE REDUCTASE AND ITS SER286 MUTANTS AT CRYOGENIC TEMPERATURE 1CMJ ; 1.7 ; CRYSTAL STRUCTURES OF FERRIC-NO COMPLEXES OF FUNGAL NITRIC OXIDE REDUCTASE AND THEIR SER286 MUTANTS AT CRYOGENIC TEMPERATURE 1CMN ; 1.7 ; CRYSTAL STRUCTURES OF FERRIC-NO COMPLEXES OF FUNGAL NITRIC OXIDE REDUCTASE AND THEIR SER286 MUTANTS AT CRYOGENIC TEMPERATURE 4ZTT ; 1.83 ; Crystal structures of ferritin mutants reveal diferric-peroxo intermediates 5C6F ; 2.0 ; Crystal structures of ferritin mutants reveal side-on binding to diiron and end-on cleavage of oxygen 1TWN ; 2.2 ; Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage 1TWR ; 2.1 ; Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage 6VGC ; 2.37 ; Crystal Structures of FLAP bound to DG-031 6VGI ; 2.61 ; Crystal Structures of FLAP bound to MK-866 5XFV ; 1.79 ; Crystal structures of FMN-bound form of dihydroorotate dehydrogenase from Trypanosoma brucei 5XFW ; 1.6 ; Crystal structures of FMN-free form of dihydroorotate dehydrogenase from Trypanosoma brucei 3BI2 ; 2.3 ; Crystal structures of fms1 in complex with its inhibitors 3BI4 ; 2.2 ; Crystal structures of fms1 in complex with its inhibitors 3BI5 ; 2.5 ; Crystal structures of fms1 in complex with its inhibitors 6TPV ; 1.8 ; Crystal structures of FNIII domain one and two of the human leucocyte common antigen-related protein, LAR 6TPW ; 2.9 ; Crystal structures of FNIII domain one through four of the human leucocyte common antigen-related protein ( LAR) 6TPT ; 3.2 ; Crystal structures of FNIII domain three and four of the human leucocyte common antigen-related protein, LAR 6TPU ; 1.55 ; Crystal structures of FNIII domain three and four of the human leucocyte common antigen-related protein, LAR 5XT2 ; 2.652 ; Crystal structures of full-length FixJ from B. japonicum crystallized in space group P212121 3UYW ; 1.903 ; Crystal structures of globular head of 2009 pandemic H1N1 hemagglutinin 3UYX ; 1.8 ; Crystal structures of globular head of 2009 pandemic H1N1 hemagglutinin 4LZ5 ; 1.5 ; Crystal structures of GLuR2 ligand-binding-domain in complex with glutamate and positive allosteric modulators 4LZ7 ; 2.1 ; Crystal structures of GLuR2 ligand-binding-domain in complex with glutamate and positive allosteric modulators 4LZ8 ; 1.85 ; Crystal structures of GLuR2 ligand-binding-domain in complex with glutamate and positive allosteric modulators 1OR0 ; 2.0 ; Crystal Structures of Glutaryl 7-Aminocephalosporanic Acid Acylase: Insight into Autoproteolytic Activation 3S8R ; 2.5 ; Crystal Structures of Glutaryl 7-Aminocephalosporanic Acid Acylase: Insight into Autoproteolytic Activation 2ADV ; 2.244 ; Crystal Structures Of Glutaryl 7-Aminocephalosporanic Acid Acylase: mutational study of activation mechanism 3V1Y ; 1.86 ; Crystal structures of glyceraldehyde-3-phosphate dehydrogenase complexes with NAD 1HVQ ; 2.2 ; CRYSTAL STRUCTURES OF HEVAMINE, A PLANT DEFENCE PROTEIN WITH CHITINASE AND LYSOZYME ACTIVITY, AND ITS COMPLEX WITH AN INHIBITOR 2P5E ; 1.89 ; Crystal Structures of High Affinity Human T-Cell Receptors Bound to pMHC Reveal Native Diagonal Binding Geometry 2P5W ; 2.2 ; Crystal structures of high affinity human T-cell receptors bound to pMHC reveal native diagonal binding geometry 2PYE ; 2.3 ; Crystal Structures of High Affinity Human T-Cell Receptors Bound to pMHC RevealNative Diagonal Binding Geometry TCR Clone C5C1 Complexed with MHC 2PYF ; 2.2 ; Crystal Structures of High Affinity Human T-Cell Receptors Bound to pMHC RevealNative Diagonal Binding Geometry Unbound TCR Clone 5-1 3BXR ; 1.6 ; Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism 3BXS ; 1.6 ; Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism 1SDT ; 1.3 ; Crystal structures of HIV protease V82A and L90M mutants reveal changes in indinavir binding site. 1SDU ; 1.25 ; Crystal structures of HIV protease V82A and L90M mutants reveal changes in indinavir binding site. 1SDV ; 1.4 ; Crystal structures of HIV protease V82A and L90M mutants reveal changes in indinavir binding site. 2VG5 ; 2.8 ; Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors 2VG6 ; 3.01 ; Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors 2VG7 ; 2.82 ; Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors 1IDA ; 1.7 ; CRYSTAL STRUCTURES OF HIV-2 PROTEASE IN COMPLEX WITH INHIBITORS CONTAINING THE HYDROXYETHYLAMINE DIPEPTIDE ISOSTERE 1IDB ; 2.2 ; Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere 1XR8 ; 2.3 ; Crystal Structures of HLA-B*1501 in Complex with Peptides from Human UbcH6 and Epstein-Barr Virus EBNA-3 1XR9 ; 1.788 ; Crystal Structures of HLA-B*1501 in Complex with Peptides from Human UbcH6 and Epstein-Barr Virus EBNA-3 2WIW ; 1.8 ; Crystal structures of Holliday junction resolvases from Archaeoglobus fulgidus bound to DNA substrate 2WIZ ; 3.3 ; Crystal structures of Holliday junction resolvases from Archaeoglobus fulgidus bound to DNA substrate 2WJ0 ; 3.1 ; Crystal structures of Holliday junction resolvases from Archaeoglobus fulgidus bound to DNA substrate 3L9E ; 2.05 ; Crystal structures of holo and Cu-deficient Cu/ZnSOD from the silkworm Bombyx mori and the implications in Amyotrophic lateral sclerosis 3L9Y ; 1.8 ; Crystal structures of holo and Cu-deficient Cu/ZnSOD from the silkworm Bombyx mori and the implications in Amyotrophic lateral sclerosis 5NAY ; 1.8 ; Crystal structures of homooligomers of collagen type IV. alpha1NC1 5NB2 ; 2.5 ; Crystal structures of homooligomers of collagen type IV. alpha2NC1 5NB0 ; 2.7 ; Crystal structures of homooligomers of collagen type IV. alpha3NC1 5NB1 ; 2.82 ; Crystal structures of homooligomers of collagen type IV. alpha4NC1 5NAZ ; 1.85 ; Crystal structures of homooligomers of collagen type IV. alpha5NC1 5NAX ; 2.82 ; Crystal structures of homooligomers of the non-collagenous domains of collagen type IV. alpha121NC1 3FZH ; 2.0 ; Crystal Structures of Hsc70/Bag1 in Complex with Small Molecule Inhibitors 3FZK ; 2.1 ; Crystal Structures of Hsc70/Bag1 in Complex with Small Molecule Inhibitors 3FZL ; 2.2 ; Crystal Structures of Hsc70/Bag1 in Complex with Small Molecule Inhibitors 3FZM ; 2.3 ; Crystal Structures of Hsc70/Bag1 in Complex with Small Molecule Inhibitors 8G84 ; 2.467 ; Crystal structures of HSD17B13 complexes 6WET ; 2.6 ; Crystal structures of human E-NPP 1: apo 6WFJ ; 2.5 ; Crystal structures of human E-NPP 1: apo 6WEU ; 2.65 ; Crystal structures of human E-NPP 1: bound to adenosine-5'-thio-monophosphate 6WEW ; 2.73 ; Crystal structures of human E-NPP 1: bound to N-{4-[(7-methoxyquinolin-4-yl)oxy]phenyl}sulfuric diamide 6WEV ; 2.9 ; Crystal structures of human E-NPP 1: bound to N-{[1-(6,7-dimethoxy-5,8-dihydroquinazolin-4-yl)piperidin-4-yl]methyl}sulfuric diamide 1EAV ; 2.6 ; Crystal Structures of Human Gephyrin and Plant Cnx1 G domains - Comparative Analysis and Functional Implications 1YC1 ; 1.7 ; Crystal Structures of human HSP90alpha complexed with dihydroxyphenylpyrazoles 4O0S ; 2.5 ; Crystal structures of human kinase Aurora A 4O0U ; 2.6 ; Crystal structures of human kinase Aurora A 4O0W ; 2.6 ; Crystal structures of human kinase Aurora A 4AN2 ; 2.5 ; Crystal structures of human MEK1 with carboxamide-based allosteric inhibitor XL518 (GDC-0973), or related analogs. 4AN3 ; 2.1 ; Crystal structures of human MEK1 with carboxamide-based allosteric inhibitor XL518 (GDC-0973), or related analogs. 4AN9 ; 2.8 ; Crystal structures of human MEK1 with carboxamide-based allosteric inhibitor XL518 (GDC-0973), or related analogs. 4ANB ; 2.2 ; Crystal structures of human MEK1 with carboxamide-based allosteric inhibitor XL518 (GDC-0973), or related analogs. 5WS3 ; 2.3 ; Crystal structures of human orexin 2 receptor bound to the selective antagonist EMPA determined by serial femtosecond crystallography at SACLA 4L3J ; 2.1 ; Crystal structures of human p70S6K1 kinase domain 4L3L ; 2.1 ; Crystal structures of human p70S6K1 kinase domain (Zinc anomalous) 4L42 ; 2.8 ; Crystal structures of human p70S6K1-PIF 4L43 ; 3.0 ; Crystal structures of human p70S6K1-T389A (form I) 4L44 ; 2.9 ; Crystal structures of human p70S6K1-T389A (form II) 4L45 ; 2.9 ; Crystal structures of human p70S6K1-T389E 4L46 ; 3.01 ; Crystal structures of human p70S6K1-WT 5B6N ; 2.895 ; Crystal structures of human peroxiredoxin 6 in sulfinic acid state 6SNO ; 2.7 ; Crystal structures of human PGM1 isoform 2 6SNP ; 2.75 ; Crystal structures of human PGM1 isoform 2 6SNQ ; 2.7 ; Crystal structures of human PGM1 isoform 2 1ND5 ; 2.9 ; Crystal Structures of Human Prostatic Acid Phosphatase in Complex with a Phosphate Ion and alpha-Benzylaminobenzylphosphonic Acid Update the Mechanistic Picture and Offer New Insights into Inhibitor Design 1ND6 ; 2.4 ; Crystal Structures of Human Prostatic Acid Phosphatase in Complex with a Phosphate Ion and alpha-Benzylaminobenzylphosphonic Acid Update the Mechanistic Picture and Offer New Insights into Inhibitor Design 2BTZ ; 2.2 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 2BU2 ; 2.4 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 2BU5 ; 2.35 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 2BU6 ; 2.4 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 2BU7 ; 2.4 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 2BU8 ; 2.5 ; crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands 7RT9 ; 1.9 ; Crystal structures of human PYY and NPY 7RTA ; 2.6 ; Crystal structures of human PYY and NPY 5XNQ ; 2.802 ; Crystal structures of human SALM5 5XNP ; 3.729 ; Crystal structures of human SALM5 in complex with human PTPdelta 5F70 ; 1.8 ; Crystal structures of human TIM members 2QUK ; 2.8 ; Crystal structures of human tryptophanyl-tRNA synthetase in complex with ATP(putative) 2QUH ; 2.4 ; Crystal structures of human tryptophanyl-tRNA synthetase in complex with Trp 2QUJ ; 2.42 ; Crystal structures of human tryptophanyl-tRNA synthetase in complex with TrpAMP 2QUI ; 2.4 ; Crystal structures of human tryptophanyl-tRNA synthetase in complex with Tryptophanamide and ATP 6ADG ; 3.0 ; Crystal Structures of IDH1 R132H in complex with AG-881 6ADI ; 1.969 ; Crystal Structures of IDH2 R140Q in complex with AG-881 2PXY ; 2.23 ; Crystal structures of immune receptor complexes 3L0P ; 3.0 ; Crystal structures of Iron containing Adenylate kinase from Desulfovibrio gigas 3EYG ; 1.9 ; Crystal structures of JAK1 and JAK2 inhibitor complexes 3EYH ; 2.0 ; Crystal structures of JAK1 and JAK2 inhibitor complexes 3FUP ; 2.4 ; Crystal structures of JAK1 and JAK2 inhibitor complexes 3H7S ; 2.3 ; Crystal structures of K63-linked di- and tri-ubiquitin reveal a highly extended chain architecture 1G7U ; 2.8 ; CRYSTAL STRUCTURES OF KDO8P SYNTHASE IN ITS BINARY COMPLEX WITH SUBSTRATE PHOSPHOENOL PYRUVATE 1G7V ; 2.4 ; CRYSTAL STRUCTURES OF KDO8P SYNTHASE IN ITS BINARY COMPLEXES WITH THE MECHANISM-BASED INHIBITOR 1WVW ; 2.4 ; Crystal structures of kinase domain of DAP kinase in complex with small molecular inhibitors 1WVX ; 2.6 ; Crystal structures of kinase domain of DAP kinase in complex with small molecular inhibitors 1WVY ; 2.8 ; Crystal structures of kinase domain of DAP kinase in complex with small molecular inhibitors 1F9T ; 1.5 ; CRYSTAL STRUCTURES OF KINESIN MUTANTS REVEAL A SIGNALLING PATHWAY FOR ACTIVATION OF THE MOTOR ATPASE 3IGY ; 2.003 ; Crystal structures of Leishmania mexicana phosphoglycerate mutase at high cobalt concentrations 3IGZ ; 1.9 ; Crystal structures of Leishmania mexicana phosphoglycerate mutase at low cobalt concentration 3HQO ; 3.4 ; Crystal structures of Leishmania mexicana pyruvate kinase (LmPYK) in complex with ATP and Oxalate 4XPW ; 1.17 ; Crystal structures of Leu114F mutant 4LI1 ; 2.658 ; Crystal Structures of Lgr4 and its complex with R-spondin1 4LI2 ; 3.19 ; Crystal Structures of Lgr4 and its complex with R-spondin1 4EAY ; 2.35 ; Crystal structures of mannonate dehydratase from Escherichia coli strain K12 complexed with D-mannonate 7WDN ; 1.8 ; Crystal structures of MeBglD2 in complex with various saccharides 7WDO ; 2.21 ; Crystal structures of MeBglD2 in complex with various saccharides 7WDP ; 2.39 ; Crystal structures of MeBglD2 in complex with various saccharides 7WDR ; 2.0 ; Crystal structures of MeBglD2 in complex with various saccharides 7WDS ; 1.68 ; Crystal structures of MeBglD2 in complex with various saccharides 7WDV ; 1.812 ; Crystal structures of MeBglD2 in complex with various saccharides 3MDD ; 2.4 ; CRYSTAL STRUCTURES OF MEDIUM CHAIN ACYL-COA DEHYDROGENASE FROM PIG LIVER MITOCHONDRIA WITH AND WITHOUT SUBSTRATE 3MDE ; 2.4 ; CRYSTAL STRUCTURES OF MEDIUM CHAIN ACYL-COA DEHYDROGENASE FROM PIG LIVER MITOCHONDRIA WITH AND WITHOUT SUBSTRATE 3WB9 ; 1.93 ; Crystal Structures of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum 3WBB ; 1.93 ; Crystal Structures of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum 1PHD ; 1.6 ; CRYSTAL STRUCTURES OF METYRAPONE-AND PHENYLIMIDAZOLE-INHIBITED COMPLEXES OF CYTOCHROME P450-CAM 1PHE ; 1.6 ; CRYSTAL STRUCTURES OF METYRAPONE-AND PHENYLIMIDAZOLE-INHIBITED COMPLEXES OF CYTOCHROME P450-CAM 1PHF ; 1.6 ; CRYSTAL STRUCTURES OF METYRAPONE-AND PHENYLIMIDAZOLE-INHIBITED COMPLEXES OF CYTOCHROME P450-CAM 1PHG ; 1.6 ; CRYSTAL STRUCTURES OF METYRAPONE-AND PHENYLIMIDAZOLE-INHIBITED COMPLEXES OF CYTOCHROME P450-CAM 5LDT ; 2.88 ; Crystal Structures of MOMP from Campylobacter jejuni 5LDV ; 2.1 ; Crystal Structures of MOMP from Campylobacter jejuni 4YK5 ; 1.42 ; Crystal Structures of mPGES-1 Inhibitor Complexes 4YL0 ; 1.52 ; Crystal Structures of mPGES-1 Inhibitor Complexes 4YL1 ; 1.41 ; Crystal Structures of mPGES-1 Inhibitor Complexes 4YL3 ; 1.41 ; Crystal Structures of mPGES-1 Inhibitor Complexes 4EI2 ; 3.108 ; Crystal Structures of MthK RCK gating ring bound to Barium 3OQ7 ; 1.71 ; Crystal Structures of Multidrug-Resistant Clinical Isolate 769 HIV-1 Protease Variants 3OQA ; 2.25 ; Crystal Structures of Multidrug-Resistant Clinical Isolate 769 HIV-1 Protease Variants 3OQD ; 1.71 ; Crystal Structures of Multidrug-Resistant Clinical Isolate 769 HIV-1 Protease Variants 3PJ6 ; 2.25 ; Crystal Structures of Multidrug-Resistant Clinical Isolate 769 HIV-1 Protease Variants 3R0Y ; 1.65 ; Crystal Structures of Multidrug-resistant HIV-1 Protease in Complex with Mechanism-Based Aspartyl Protease Inhibitors 3R0W ; 1.7 ; Crystal Structures of Multidrug-resistant HIV-1 Protease in Complex with Mechanism-Based Aspartyl Protease Inhibitors. 1WBX ; 1.9 ; CRYSTAL STRUCTURES OF MURINE MHC CLASS I H-2 Db AND Kb MOLECULES IN COMPLEX WITH CTL EPITOPES FROM INFLUENZA A VIRUS: IMPLICATIONS FOR TCR REPERTOIRE SELECTION AND IMMUNODOMINANCE 1WBY ; 2.3 ; CRYSTAL STRUCTURES OF MURINE MHC CLASS I H-2 Db AND Kb MOLECULES IN COMPLEX WITH CTL EPITOPES FROM INFLUENZA A VIRUS: IMPLICATIONS FOR TCR REPERTOIRE SELECTION AND IMMUNODOMINANCE 1WBZ ; 2.0 ; CRYSTAL STRUCTURES OF MURINE MHC CLASS I H-2 Db AND Kb MOLECULES IN COMPLEX WITH CTL EPITOPES FROM INFLUENZA A VIRUS: IMPLICATIONS FOR TCR REPERTOIRE SELECTION AND IMMUNODOMINANCE 3UQS ; 2.0 ; Crystal structures of murine norovirus RNA-dependent RNA polymerase 3UR0 ; 2.45 ; Crystal structures of murine norovirus RNA-dependent RNA polymerase in complex with Suramin 2TRS ; 2.04 ; CRYSTAL STRUCTURES OF MUTANT (BETAK87T) TRYPTOPHAN SYNTHASE ALPHA2 BETA2 COMPLEX WITH LIGANDS BOUND TO THE ACTIVE SITES OF THE ALPHA AND BETA SUBUNITS REVEAL LIGAND-INDUCED CONFORMATIONAL CHANGES 2TSY ; 2.5 ; CRYSTAL STRUCTURES OF MUTANT (BETAK87T) TRYPTOPHAN SYNTHASE ALPHA2 BETA2 COMPLEX WITH LIGANDS BOUND TO THE ACTIVE SITES OF THE ALPHA AND BETA SUBUNITS REVEAL LIGAND-INDUCED CONFORMATIONAL CHANGES 2TYS ; 1.9 ; CRYSTAL STRUCTURES OF MUTANT (BETAK87T) TRYPTOPHAN SYNTHASE ALPHA2 BETA2 COMPLEX WITH LIGANDS BOUND TO THE ACTIVE SITES OF THE ALPHA AND BETA SUBUNITS REVEAL LIGAND-INDUCED CONFORMATIONAL CHANGES 1FQE ; 1.8 ; CRYSTAL STRUCTURES OF MUTANT (K206A) THAT ABOLISH THE DILYSINE INTERACTION IN THE N-LOBE OF HUMAN TRANSFERRIN 1FQF ; 2.1 ; CRYSTAL STRUCTURES OF MUTANT (K296A) THAT ABOLISH THE DILYSINE INTERACTION IN THE N-LOBE OF HUMAN TRANSFERRIN 2UVR ; 2.9 ; Crystal structures of mutant Dpo4 DNA polymerases with 8-oxoG containing DNA template-primer constructs 2UVU ; 2.7 ; Crystal structures of mutant Dpo4 DNA polymerases with 8-oxoG containing DNA template-primer constructs 2UVV ; 2.2 ; Crystal structures of mutant Dpo4 DNA polymerases with 8-oxoG containing DNA template-primer constructs 2UVW ; 2.09 ; Crystal structures of mutant Dpo4 DNA polymerases with 8-oxoG containing DNA template-primer constructs 2WES ; 2.5 ; Crystal structures of mutant E46Q of tryptophan 5-halogenase (PyrH) 4HK8 ; 1.151 ; Crystal Structures of Mutant Endo- -1,4-xylanase II Complexed with substrate (1.15 A) and Products (1.6 A) 4HKO ; 1.5 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II (E177Q) in the apo form 5ZH9 ; 1.15 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II (Y88F) 5ZII ; 1.3 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II (Y88F)Complexed with Xylotriose 4HK9 ; 1.55 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II Complexed with substrate (1.15 A) and Products (1.6 A) 4HKL ; 1.1 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II Complexed with substrate (1.15 A) and Products (1.6 A) 4HKW ; 1.65 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II Complexed with Substrate and Products 5ZKZ ; 1.3 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase II(Y77F) Complexed with Xylotriose 5ZIW ; 1.3 ; Crystal Structures of Mutant Endo-beta-1,4-xylanase(Y77F) 1DMM ; 1.9 ; CRYSTAL STRUCTURES OF MUTANT ENZYMES Y57F OF KETOSTEROID ISOMERASE FROM PSEUDOMONAS PUTIDA BIOTYPE B 1PXA ; 2.3 ; CRYSTAL STRUCTURES OF MUTANT PSEUDOMONAS AERUGINOSA P-HYDROXYBENZOATE HYDROXYLASE: THE TYR201PHE, TYR385PHE, AND ASN300ASP VARIANTS 1PXB ; 2.3 ; CRYSTAL STRUCTURES OF MUTANT PSEUDOMONAS AERUGINOSA P-HYDROXYBENZOATE HYDROXYLASE: THE TYR201PHE, TYR385PHE, AND ASN300ASP VARIANTS 1PXC ; 2.1 ; CRYSTAL STRUCTURES OF MUTANT PSEUDOMONAS AERUGINOSA P-HYDROXYBENZOATE HYDROXYLASE: THE TYR201PHE, TYR385PHE, AND ASN300ASP VARIANTS 1F9U ; 1.7 ; CRYSTAL STRUCTURES OF MUTANTS REVEAL A SIGNALLING PATHWAY FOR ACTIVATION OF THE KINESIN MOTOR ATPASE 1F9V ; 1.3 ; CRYSTAL STRUCTURES OF MUTANTS REVEAL A SIGNALLING PATHWAY FOR ACTIVATION OF THE KINESIN MOTOR ATPASE 1F9W ; 2.5 ; CRYSTAL STRUCTURES OF MUTANTS REVEAL A SIGNALLING PATHWAY FOR ACTIVATION OF THE KINESIN MOTOR ATPASE 4RHT ; 2.7633 ; Crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase which is a potential target for drug development against this disease 4RHU ; 2.573 ; Crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase which is a potential target for drug development against this disease 4RHY ; 2.3196 ; Crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase which is a potential target for drug development against this disease 2VOR ; 2.3 ; Crystal Structures of Mycobacterium tuberculosis Folylpolyglutamate Synthase Complexed with ADP and AMPPCP 3DHY ; 2.0 ; Crystal Structures of Mycobacterium tuberculosis S-Adenosyl-L-Homocysteine Hydrolase in Ternary Complex with Substrate and Inhibitors 4G5X ; 1.29 ; Crystal structures of N-acyl homoserine lactonase AidH 4G9E ; 1.088 ; Crystal structures of N-acyl homoserine lactonase AidH complexed with N-butanoyl homoserine 4G9G ; 1.35 ; Crystal structures of N-acyl homoserine lactonase AidH E219G mutant 4G8C ; 1.11 ; Crystal structures of N-acyl homoserine lactonase AidH E219G mutant complexed with N-hexanoyl homoserine 4G8D ; 1.35 ; Crystal structures of N-acyl homoserine lactonase AidH S102G mutant 4G8B ; 1.302 ; Crystal structures of N-acyl homoserine lactonase AidH S102G mutant complexed with N-hexanoyl homoserine lactone 7DDF ; 4.62 ; Crystal structures of Na+,K+-ATPase in complex with beryllium fluoride 7DDL ; 3.2 ; Crystal structures of Na+,K+-ATPase in complex with bufalin 7DDI ; 3.72 ; Crystal structures of Na+,K+-ATPase in complex with digitoxin 7DDH ; 3.46 ; Crystal structures of Na+,K+-ATPase in complex with digoxin 7WYS ; 3.71 ; Crystal structures of Na+,K+-ATPase in complex with istaroxime 7WYT ; 2.9 ; Crystal structures of Na+,K+-ATPase in complex with ouabain 7DDK ; 3.5 ; Crystal structures of Na+,K+-ATPase in complex with rostafuroxin 4LTD ; 2.186 ; Crystal structures of NADH:FMN oxidoreductase (EMOB) - apo form 4LTM ; 2.497 ; Crystal structures of NADH:FMN oxidoreductase (EMOB) - FMN complex 4LTN ; 1.996 ; Crystal structures of NADH:FMN oxidoreductase (EMOB) - FMN, NADH complex 1LYA ; 2.5 ; CRYSTAL STRUCTURES OF NATIVE AND INHIBITED FORMS OF HUMAN CATHEPSIN D: IMPLICATIONS FOR LYSOSOMAL TARGETING AND DRUG DESIGN 1LYB ; 2.5 ; CRYSTAL STRUCTURES OF NATIVE AND INHIBITED FORMS OF HUMAN CATHEPSIN D: IMPLICATIONS FOR LYSOSOMAL TARGETING AND DRUG DESIGN 3D12 ; 3.005 ; Crystal Structures of Nipah Virus G Attachment Glycoprotein in Complex with its Receptor Ephrin-B3 1GMN ; 2.3 ; CRYSTAL STRUCTURES OF NK1-HEPARIN COMPLEXES REVEAL THE BASIS FOR NK1 ACTIVITY AND ENABLE ENGINEERING OF POTENT AGONISTS OF THE MET RECEPTOR 1GMO ; 3.0 ; CRYSTAL STRUCTURES OF NK1-HEPARIN COMPLEXES REVEAL THE BASIS FOR NK1 ACTIVITY AND ENABLE ENGINEERING OF POTENT AGONISTS OF THE MET RECEPTOR 4N1J ; 2.6 ; Crystal structures of NLRP14 pyrin domain reveal a conformational switch mechanism, regulating its molecular interactions 4N1K ; 3.0 ; Crystal structures of NLRP14 pyrin domain reveal a conformational switch mechanism, regulating its molecular interactions 4N1L ; 1.986 ; Crystal structures of NLRP14 pyrin domain reveal a conformational switch mechanism, regulating its molecular interactions 3VUT ; 3.5 ; Crystal structures of non-phosphorylated MAP2K4 5TSN ; 2.1 ; Crystal structures of Norwalk virus polymerase bound to an RNA primer-template duplex 3AV9 ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVA ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVB ; 1.85 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVC ; 1.77 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVF ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVG ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVH ; 1.88 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVI ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVJ ; 1.7 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVK ; 1.75 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVL ; 1.88 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVM ; 1.88 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 3AVN ; 2.1 ; Crystal structures of novel allosteric peptide inhibitors of HIV integrase in the LEDGF binding site 1XD5 ; 2.0 ; Crystal structures of novel monomeric monocot mannose-binding lectins from Gastrodia elata 1XD6 ; 2.0 ; Crystal structures of novel monomeric monocot mannose-binding lectins from Gastrodia elata 1PT3 ; 2.5 ; Crystal structures of nuclease-ColE7 complexed with octamer DNA 7CB4 ; 2.04 ; Crystal structures of of BlAsnase 290D ; 2.5 ; CRYSTAL STRUCTURES OF OLIGODEOXYRIBONUCLEOTIDES CONTAINING 6'-ALPHA-METHYL AND 6'-ALPHA-HYDROXY CARBOCYCLIC THYMIDINES 291D ; 2.14 ; CRYSTAL STRUCTURES OF OLIGODEOXYRIBONUCLEOTIDES CONTAINING 6'-ALPHA-METHYL AND 6'-ALPHA-HYDROXY CARBOCYCLIC THYMIDINES 1DR4 ; 2.4 ; CRYSTAL STRUCTURES OF ORGANOMERCURIAL-ACTIVATED CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXES 1DR5 ; 2.4 ; CRYSTAL STRUCTURES OF ORGANOMERCURIAL-ACTIVATED CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXES 1DR6 ; 2.4 ; CRYSTAL STRUCTURES OF ORGANOMERCURIAL-ACTIVATED CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXES 1DR7 ; 2.4 ; CRYSTAL STRUCTURES OF ORGANOMERCURIAL-ACTIVATED CHICKEN LIVER DIHYDROFOLATE REDUCTASE COMPLEXES 1FDA ; 2.1 ; CRYSTAL STRUCTURES OF OXIDIZED AND REDUCED AZOTOBACTER VINELANDII FERREDOXIN AT PH 8 AND PH 6 1FDB ; 2.2 ; CRYSTAL STRUCTURES OF OXIDIZED AND REDUCED AZOTOBACTER VINELANDII FERREDOXIN AT PH 8 AND PH 6 5FD1 ; 1.9 ; CRYSTAL STRUCTURES OF OXIDIZED AND REDUCED AZOTOBACTER VINELANDII FERREDOXIN AT PH 8 AND PH 6 2OBR ; 2.2 ; Crystal Structures of P Domain of Norovirus VA387 2OBS ; 2.0 ; Crystal Structures of P Domain of Norovirus VA387 in Complex with Blood Group Trisaccharides type A 2OBT ; 2.0 ; Crystal Structures of P Domain of Norovirus VA387 in Complex with Blood Group Trisaccharides type B 3L13 ; 3.0 ; Crystal Structures of Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors 1GK9 ; 1.3 ; Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 1GKF ; 1.41 ; Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 1GM7 ; 1.45 ; Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 1GM8 ; 2.0 ; Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 1GM9 ; 1.8 ; Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 3A3J ; 2.15 ; Crystal structures of penicillin binding protein 5 from Haemophilus influenzae 1AYA ; 2.05 ; CRYSTAL STRUCTURES OF PEPTIDE COMPLEXES OF THE AMINO-TERMINAL SH2 DOMAIN OF THE SYP TYROSINE PHOSPHATASE 1AYB ; 3.0 ; CRYSTAL STRUCTURES OF PEPTIDE COMPLEXES OF THE AMINO-TERMINAL SH2 DOMAIN OF THE SYP TYROSINE PHOSPHATASE 1AYC ; 2.3 ; CRYSTAL STRUCTURES OF PEPTIDE COMPLEXES OF THE AMINO-TERMINAL SH2 DOMAIN OF THE SYP TYROSINE PHOSPHATASE 1AYD ; 2.2 ; CRYSTAL STRUCTURES OF PEPTIDE COMPLEXES OF THE AMINO-TERMINAL SH2 DOMAIN OF THE SYP TYROSINE PHOSPHATASE 1Q1Y ; 1.9 ; Crystal Structures of Peptide Deformylase from Staphylococcus aureus Complexed with Actinonin 3TCN ; 2.3 ; Crystal structures of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis - Form 2 grown in presence of Pentaglycine 3TD2 ; 2.5 ; Crystal structures of Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis - Form 5 6JON ; 2.34 ; Crystal structures of phage NrS-1 N300-dNTPs-Mg2+ complex provide molecular mechanisms for substrate specificity 6JOP ; 2.353 ; Crystal structures of phage NrS-1 N300-dNTPs-Mg2+ complex provide molecular mechanisms for substrate specificity 6JOQ ; 2.4 ; Crystal structures of phage NrS-1 N300-dNTPs-Mg2+ complex provide molecular mechanisms for substrate specificity 2I0U ; 2.2 ; Crystal structures of phospholipases A2 from Vipera nikolskii venom revealing Triton X-100 bound in hydrophobic channel 1AT1 ; 2.8 ; CRYSTAL STRUCTURES OF PHOSPHONOACETAMIDE LIGATED T AND PHOSPHONOACETAMIDE AND MALONATE LIGATED R STATES OF ASPARTATE CARBAMOYLTRANSFERASE AT 2.8-ANGSTROMS RESOLUTION AND NEUTRAL P*H 2AT1 ; 2.8 ; CRYSTAL STRUCTURES OF PHOSPHONOACETAMIDE LIGATED T AND PHOSPHONOACETAMIDE AND MALONATE LIGATED R STATES OF ASPARTATE CARBAMOYLTRANSFERASE AT 2.8-ANGSTROMS RESOLUTION AND NEUTRAL PH 3AT1 ; 2.8 ; CRYSTAL STRUCTURES OF PHOSPHONOACETAMIDE LIGATED T AND PHOSPHONOACETAMIDE AND MALONATE LIGATED R STATES OF ASPARTATE CARBAMOYLTRANSFERASE AT 2.8-ANGSTROMS RESOLUTION AND NEUTRAL PH 7XSV ; 2.66 ; Crystal Structures of PIM1 in Complex with Macrocyclic Compound H3 1QYC ; 2.2 ; Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases, and their relationship to isoflavone reductases 1QYD ; 2.5 ; Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases, and their relationship to isoflavone reductases 1TG5 ; 1.9 ; Crystal structures of plant 4-hydroxyphenylpyruvate dioxygenases complexed with DAS645 5EMG ; 1.06 ; Crystal structures of PNA p(GCTGCTGC)2 duplex containing T-T mismatches 3TTN ; 2.0 ; Crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa 5J0E ; 2.81 ; Crystal structures of Pribnow box consensus promoter sequence (P32) 5F26 ; 3.0 ; Crystal structures of Pribnow box consensus promoter sequence (P63) 1S1P ; 1.2 ; Crystal structures of prostaglandin D2 11-ketoreductase (AKR1C3) in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin 1S1R ; 2.0 ; Crystal structures of prostaglandin D2 11-ketoreductase (AKR1C3) in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin 1S2A ; 1.7 ; Crystal structures of prostaglandin D2 11-ketoreductase in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin 1S2C ; 1.8 ; Crystal structures of prostaglandin D2 11-ketoreductase in complex with the non-steroidal anti-inflammatory drugs flufenamic acid and indomethacin 4DY7 ; 2.8 ; Crystal structures of protease nexin-1 in complex with S195A thrombin 1XH4 ; 2.45 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XH5 ; 2.05 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XH6 ; 1.9 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XH7 ; 2.47 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XH8 ; 1.6 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XH9 ; 1.64 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1XHA ; 2.46 ; Crystal Structures of Protein Kinase B Selective Inhibitors in Complex with Protein Kinase A and Mutants 1YWV ; 2.0 ; Crystal Structures of Proto-Oncogene Kinase Pim1: a Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma 3JYL ; 2.4 ; Crystal structures of Pseudomonas syringae pv. Tomato DC3000 quinone oxidoreductase 3JYN ; 2.01 ; Crystal structures of Pseudomonas syringae pv. Tomato DC3000 quinone oxidoreductase complexed with NADPH 4JV5 ; 3.162 ; Crystal structures of pseudouridinilated stop codons with ASLs 4JYA ; 3.098 ; Crystal structures of pseudouridinilated stop codons with ASLs 2ZN7 ; 2.1 ; CRYSTAL STRUCTURES OF PTP1B-Inhibitor Complexes 5OR2 ; 2.5 ; Crystal structures of PYR1/HAB1 in complex with synthetic analogues of Abscisic Acid 5OR6 ; 2.4 ; Crystal structures of PYR1/HAB1 in complex with synthetic analogues of Abscisic Acid 4E2T ; 1.75 ; Crystal Structures of RadA intein from Pyrococcus horikoshii 4E2U ; 1.582 ; Crystal Structures of RadAmin intein from Pyrococcus horikoshii 1U8Y ; 1.55 ; CRystal structures of Ral-GppNHp and Ral-GDP reveal two novel binding sites that are also present in Ras and Rap 1U8Z ; 1.5 ; Crystal structures of Ral-GppNHp and Ral-GDP reveal two novel binding sites that are also present in Ras and Rap 1U90 ; 2.0 ; Crystal structures of Ral-GppNHp and Ral-GDP reveal two novel binding sites that are also present in Ras and Rap 1RPT ; 3.0 ; CRYSTAL STRUCTURES OF RAT ACID PHOSPHATASE COMPLEXED WITH THE TRANSITIONS STATE ANALOGS VANADATE AND MOLYBDATE: IMPLICATIONS FOR THE REACTION MECHANISM 1BRB ; 2.1 ; CRYSTAL STRUCTURES OF RAT ANIONIC TRYPSIN COMPLEXED WITH THE PROTEIN INHIBITORS APPI AND BPTI 2ZVJ ; 2.3 ; Crystal structures of rat Catechol-O-Methyltransferase complexed with coumarine-based inhibitor 3A7D ; 2.4 ; Crystal Structures of rat Catechol-O-Methyltransferase complexed with new bi-substrate type inhibitor 3VT3 ; 1.7 ; Crystal structures of rat VDR-LBD with R270L mutation 3VT4 ; 1.9 ; Crystal structures of rat VDR-LBD with R270L mutation 3VT5 ; 2.11 ; Crystal structures of rat VDR-LBD with R270L mutation 3VT7 ; 1.65 ; Crystal structures of rat VDR-LBD with W282R mutation 3VT8 ; 2.1 ; Crystal structures of rat VDR-LBD with W282R mutation 3VT9 ; 2.35 ; Crystal structures of rat VDR-LBD with W282R mutation 1CGE ; 1.9 ; CRYSTAL STRUCTURES OF RECOMBINANT 19-KDA HUMAN FIBROBLAST COLLAGENASE COMPLEXED TO ITSELF 1CGF ; 2.1 ; CRYSTAL STRUCTURES OF RECOMBINANT 19-KDA HUMAN FIBROBLAST COLLAGENASE COMPLEXED TO ITSELF 1IPK ; 2.7 ; CRYSTAL STRUCTURES OF RECOMBINANT AND NATIVE SOYBEAN BETA-CONGLYCININ BETA HOMOTRIMERS 1IPJ ; 2.7 ; CRYSTAL STRUCTURES OF RECOMBINANT AND NATIVE SOYBEAN BETA-CONGLYCININ BETA HOMOTRIMERS COMPLEXES WITH N-ACETYL-D-GLUCOSAMINE 1DHF ; 2.3 ; CRYSTAL STRUCTURES OF RECOMBINANT HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND 5-DEAZOFOLATE 2DHF ; 2.3 ; CRYSTAL STRUCTURES OF RECOMBINANT HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND 5-DEAZOFOLATE 1CPJ ; 2.2 ; CRYSTAL STRUCTURES OF RECOMBINANT RAT CATHEPSIN B AND A CATHEPSIN B-INHIBITOR COMPLEX: IMPLICATIONS FOR STRUCTURE-BASED INHIBITOR DESIGN 1CTE ; 2.1 ; CRYSTAL STRUCTURES OF RECOMBINANT RAT CATHEPSIN B AND A CATHEPSIN B-INHIBITOR COMPLEX: IMPLICATIONS FOR STRUCTURE-BASED INHIBITOR DESIGN 1THE ; 1.9 ; CRYSTAL STRUCTURES OF RECOMBINANT RAT CATHEPSIN B AND A CATHEPSIN B-INHIBITOR COMPLEX: IMPLICATIONS FOR STRUCTURE-BASED INHIBITOR DESIGN 1FUS ; 1.3 ; CRYSTAL STRUCTURES OF RIBONUCLEASE F1 OF FUSARIUM MONILIFORME IN ITS FREE FORM AND IN COMPLEX WITH 2'GMP 1FUT ; 2.0 ; CRYSTAL STRUCTURES OF RIBONUCLEASE F1 OF FUSARIUM MONILIFORME IN ITS FREE FORM AND IN COMPLEX WITH 2'GMP 1RDA ; 2.15 ; CRYSTAL STRUCTURES OF RIBONUCLEASE HI ACTIVE SITE MUTANTS FROM ESCHERICHIA COLI 1RDB ; 1.9 ; CRYSTAL STRUCTURES OF RIBONUCLEASE HI ACTIVE SITE MUTANTS FROM ESCHERICHIA COLI 1RDC ; 2.3 ; CRYSTAL STRUCTURES OF RIBONUCLEASE HI ACTIVE SITE MUTANTS FROM ESCHERICHIA COLI 1RMS ; 1.9 ; CRYSTAL STRUCTURES OF RIBONUCLEASE MS COMPLEXED WITH 3'-GUANYLIC ACID A GP*C ANALOGUE, 2'-DEOXY-2'-FLUOROGUANYLYL-3',5'-CYTIDINE 5HP8 ; 2.3 ; Crystal structures of RidA in complex with pyruvate 5HP7 ; 2.0 ; Crystal structures of RidA in the apo form 4U34 ; 1.35 ; Crystal Structures of RNA Duplexes Containing 2-thio-Uridine 4U35 ; 1.55 ; Crystal Structures of RNA Duplexes Containing 2-thio-Uridine 4ADL ; 2.2 ; Crystal structures of Rv1098c in complex with malate 2P6E ; 2.9 ; Crystal structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoyl-CoA 2P6F ; 3.1 ; Crystal structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoyl-CoA and inhibitors 2P6G ; 3.0 ; Crystal structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoyl-CoA and inhibitors 1EQ4 ; 1.8 ; CRYSTAL STRUCTURES OF SALT BRIDGE MUTANTS OF HUMAN LYSOZYME 1EQ5 ; 1.8 ; CRYSTAL STRUCTURES OF SALT BRIDGE MUTANTS OF HUMAN LYSOZYME 1EQE ; 1.8 ; CRYSTAL STRUCTURES OF SALT BRIDGE MUTANTS OF HUMAN LYSOZYME 2A5K ; 2.3 ; Crystal structures of SARS coronavirus main peptidase inhibited by an aza-peptide epoxide in space group P212121 2A5I ; 1.88 ; Crystal structures of SARS coronavirus main peptidase inhibited by an aza-peptide epoxide in the space group C2 8IHO ; 2.55 ; Crystal structures of SARS-CoV-2 papain-like protease in complex with covalent inhibitors 3S6G ; 2.6681 ; Crystal structures of Seleno-substituted mutant mmNAGS in space group P212121 1QPP ; 2.6 ; CRYSTAL STRUCTURES OF SELF CAPPING PAPD CHAPERONE HOMODIMERS 1QPX ; 2.4 ; CRYSTAL STRUCTURES OF SELF-CAPPING PAPD CHAPERONE HOMODIMERS 1GY1 ; 1.65 ; Crystal structures of Ser86Asp and Met148Leu Rusticyanin 1BYA ; 2.2 ; CRYSTAL STRUCTURES OF SOYBEAN BETA-AMYLASE REACTED WITH BETA-MALTOSE AND MALTAL: ACTIVE SITE COMPONENTS AND THEIR APPARENT ROLE IN CATALYSIS 1BYB ; 1.9 ; CRYSTAL STRUCTURES OF SOYBEAN BETA-AMYLASE REACTED WITH BETA-MALTOSE AND MALTAL: ACTIVE SITE COMPONENTS AND THEIR APPARENT ROLE IN CATALYSIS 1BYC ; 2.2 ; CRYSTAL STRUCTURES OF SOYBEAN BETA-AMYLASE REACTED WITH BETA-MALTOSE AND MALTAL: ACTIVE SITE COMPONENTS AND THEIR APPARENT ROLE IN CATALYSIS 1BYD ; 2.2 ; CRYSTAL STRUCTURES OF SOYBEAN BETA-AMYLASE REACTED WITH BETA-MALTOSE AND MALTAL: ACTIVE SITE COMPONENTS AND THEIR APPARENT ROLE IN CATALYSIS 5Y5T ; 1.8 ; Crystal structures of spleen tyrosine kinase in complex with a novel inhibitor 5Y5U ; 2.14 ; Crystal structures of spleen tyrosine kinase in complex with a novel inhibitor 6AQJ ; 1.373 ; Crystal structures of Staphylococcus aureus ketol-acid reductoisomerase in complex with two transition state analogs that have biocidal activity. 1Z28 ; 2.3 ; Crystal Structures of SULT1A2 and SULT1A1*3: Implications in the bioactivation of N-hydroxy-2-acetylamino fluorine (OH-AAF) 1Z29 ; 2.4 ; Crystal Structures of SULT1A2 and SULT1A1*3: Implications in the bioactivation of N-hydroxy-2-acetylamino fluorine (OH-AAF) 2AXH ; 2.7 ; Crystal structures of T cell receptor beta chains related to rheumatoid arthritis 2AXJ ; 2.65 ; Crystal structures of T cell receptor beta chains related to rheumatoid arthritis 1THN ; 2.5 ; Crystal Structures of the ADP and ATP bound forms of the Bacillus Anti-sigma factor SpoIIAB in complex with the Anti-anti-sigma SpoIIAA: inhibitory complex with ADP, crystal form I 1TH8 ; 2.4 ; Crystal Structures of the ADP and ATP bound forms of the Bacillus Anti-sigma factor SpoIIAB in complex with the Anti-anti-sigma SpoIIAA: inhibitory complex with ADP, crystal form II 1TID ; 2.5 ; Crystal Structures of the ADP and ATP bound forms of the Bacillus Anti-sigma factor SpoIIAB in complex with the Anti-anti-sigma SpoIIAA: Poised for phosphorylation complex with ATP, crystal form I 1TIL ; 2.7 ; Crystal Structures of the ADP and ATP bound forms of the Bacillus Anti-sigma factor SpoIIAB in complex with the Anti-anti-sigma SpoIIAA:Poised for phosphorylation complex with ATP, crystal form II 6KUX ; 2.7 ; Crystal structures of the alpha2A adrenergic receptor in complex with an antagonist RSC. 2LHM ; 1.8 ; CRYSTAL STRUCTURES OF THE APO-AND HOLOMUTANT HUMAN LYSOZYMES WITH AN INTRODUCED CA2+ BINDING SITE 3LHM ; 1.8 ; CRYSTAL STRUCTURES OF THE APO-AND HOLOMUTANT HUMAN LYSOZYMES WITH AN INTRODUCED CA2+ BINDING SITE 2CF6 ; 2.6 ; Crystal Structures of the Arabidopsis Cinnamyl Alcohol Dehydrogenases AtCAD5 2CF5 ; 2.0 ; Crystal Structures of the Arabidopsis Cinnamyl Alcohol Dehydrogenases, AtCAD5 2I6I ; 2.15 ; crystal structures of the archaeal sulfolobus PTP-fold phosphatase 2PVU ; 1.79 ; Crystal structures of the arginine-, lysine-, histidine-binding protein ArtJ from the thermophilic bacterium Geobacillus stearothermophilus 2Q2A ; 1.79 ; Crystal structures of the arginine-, lysine-, histidine-binding protein ArtJ from the thermophilic bacterium Geobacillus stearothermophilus 2Q2C ; 2.35 ; Crystal structures of the arginine-, lysine-, histidine-binding protein ArtJ from the thermophilic bacterium Geobacillus stearothermophilus 217D ; 1.7 ; CRYSTAL STRUCTURES OF THE B-FORM DNA-RNA CHIMER (5'-D(*IP*)-R(*CP*)-D(*IP*)-R(*CP*)-D(*IP*CP*IP*C)-3') COMPLEXED WITH DISTAMYCIN 216D ; 1.73 ; CRYSTAL STRUCTURES OF THE B-FORM DNA-RNA CHIMER (5'-D(*IP*)-R(*CP*)-D(*IP*CP*IP*CP*IP*C)-3') COMPLEXED WITH DISTAMYCIN 1HZ6 ; 1.7 ; CRYSTAL STRUCTURES OF THE B1 DOMAIN OF PROTEIN L FROM PEPTOSTREPTOCOCCUS MAGNUS WITH A TYROSINE TO TRYPTOPHAN SUBSTITUTION 1HZ5 ; 1.8 ; CRYSTAL STRUCTURES OF THE B1 DOMAIN OF PROTEIN L FROM PEPTOSTREPTOCOCCUS MAGNUS, WITH A TYROSINE TO TRYPTOPHAN SUBSTITUTION 4P20 ; 2.7 ; Crystal structures of the bacterial ribosomal decoding site complexed with amikacin 1ENA ; 2.15 ; CRYSTAL STRUCTURES OF THE BINARY CA2+ AND PDTP COMPLEXES AND THE TERNARY COMPLEX OF THE ASP 21->GLU MUTANT OF STAPHYLOCOCCAL NUCLEASE. IMPLICATIONS FOR CATALYSIS AND LIGAND BINDING 1ENC ; 1.95 ; CRYSTAL STRUCTURES OF THE BINARY CA2+ AND PDTP COMPLEXES AND THE TERNARY COMPLEX OF THE ASP 21->GLU MUTANT OF STAPHYLOCOCCAL NUCLEASE. IMPLICATIONS FOR CATALYSIS AND LIGAND BINDING 2ENB ; 2.05 ; CRYSTAL STRUCTURES OF THE BINARY CA2+ AND PDTP COMPLEXES AND THE TERNARY COMPLEX OF THE ASP 21->GLU MUTANT OF STAPHYLOCOCCAL NUCLEASE. IMPLICATIONS FOR CATALYSIS AND LIGAND BINDING 7SOL ; 2.25001 ; Crystal Structures of the bispecific ubiquitin/FAT10 activating enzyme, Uba6 5KHN ; 3.445 ; Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN 5KHS ; 3.758 ; Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN 1RO9 ; 2.13 ; CRYSTAL STRUCTURES OF THE CATALYTIC DOMAIN OF PHOSPHODIESTERASE 4B2B COMPLEXED WITH 8-Br-AMP 1ROR ; 2.0 ; CRYSTAL STRUCTURES OF THE CATALYTIC DOMAIN OF PHOSPHODIESTERASE 4B2B COMPLEXED WITH AMP 3P73 ; 1.32 ; Crystal Structures of the Chicken YF1*7.1 molecule 3P77 ; 1.6 ; Crystal Structures of the Chicken YF1*7.1 molecule 1C8C ; 1.45 ; CRYSTAL STRUCTURES OF THE CHROMOSOMAL PROTEINS SSO7D/SAC7D BOUND TO DNA CONTAINING T-G MISMATCHED BASE PAIRS 4FH3 ; 2.0 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity 4FHP ; 2.5 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - CaUTP bound 4FHX ; 2.7 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - H336N mutant bound to MgATP 4FHY ; 2.7 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - Mg 3'-dATP bound 4FHV ; 2.1 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - MgCTP bound 4FHW ; 2.5 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - MgGTP bound 4FH5 ; 2.3 ; Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity - MgUTP bound 1INC ; 1.94 ; CRYSTAL STRUCTURES OF THE COMPLEX OF PORCINE PANCREATIC ELASTASE WITH TWO VALINE-DERIVED BENZOXAZINONE INHIBITORS 1AV4 ; 2.2 ; CRYSTAL STRUCTURES OF THE COPPER-CONTAINING AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS IN THE HOLO-AND APO-FORMS: IMPLICATIONS FOR THE BIOGENESIS OF TOPA QUINONE 1AVK ; 2.2 ; CRYSTAL STRUCTURES OF THE COPPER-CONTAINING AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS IN THE HOLO-AND APO-FORMS: IMPLICATIONS FOR THE BIOGENESIS OF TOPA QUINONE 1AVL ; 2.8 ; CRYSTAL STRUCTURES OF THE COPPER-CONTAINING AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS IN THE HOLO-AND APO-FORMS: IMPLICATIONS FOR THE BIOGENESIS OF TOPA QUINONE 3T53 ; 3.37 ; Crystal structures of the extrusion state of the CusBA adaptor-transporter complex 1OZR ; 1.74 ; Crystal Structures of the Ferric, Ferrous and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications 1OZW ; 1.55 ; Crystal Structures of the Ferric, Ferrous and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications 1OYK ; 2.59 ; Crystal Structures of the Ferric, Ferrous, and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications 1OYL ; 1.59 ; Crystal Structures of the Ferric, Ferrous, and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications 1OZL ; 1.58 ; Crystal Structures of the Ferric, Ferrous, and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1: Catalytic Implications 1OZE ; 2.19 ; Crystal Structures of the Ferric, Ferrous, and Ferrous-NO Forms of the Asp140Ala Mutant of Human Heme Oxygenase-1:Catalytic Implications 4JN3 ; 1.69 ; Crystal structures of the first condensation domain of the CDA synthetase 4JN5 ; 2.44 ; Crystal structures of the first condensation domain of the CDA synthetase 1XJZ ; 1.88 ; Crystal Structures of the G139A, G139A-NO and G143H Mutants of Human Heme Oxygenase-1 1XK0 ; 2.18 ; Crystal Structures of the G139A, G139A-NO and G143H Mutants of Human Heme Oxygenase-1 1XK1 ; 2.08 ; Crystal Structures of the G139A, G139A-NO and G143H Mutants of Human Heme Oxygenase-1 3GIY ; 1.6 ; Crystal Structures of the G81A Mutant of the Active Chimera of (S)-Mandelate Dehydrogenase and its Complex with Two of its Substrates 3JYR ; 1.75 ; Crystal structures of the GacH receptor of Streptomyces glaucescens GLA.O in the unliganded form and in complex with acarbose and an acarbose homolog. Comparison with acarbose-loaded maltose binding protein of Salmonella typhimurium. 3JZJ ; 1.4 ; Crystal structures of the GacH receptor of Streptomyces glaucescens GLA.O in the unliganded form and in complex with acarbose and an acarbose homolog. Comparison with acarbose-loaded maltose binding protein of Salmonella typhimurium. 3K00 ; 1.55 ; Crystal structures of the GacH receptor of Streptomyces glaucescens GLA.O in the unliganded form and in complex with acarbose and an acarbose homolog. Comparison with acarbose-loaded maltose binding protein of Salmonella typhimurium. 3K01 ; 1.35 ; Crystal structures of the GacH receptor of Streptomyces glaucescens GLA.O in the unliganded form and in complex with acarbose and an acarbose homolog. Comparison with acarbose-loaded maltose binding protein of Salmonella typhimurium. 3K02 ; 1.55 ; Crystal structures of the GacH receptor of Streptomyces glaucescens GLA.O in the unliganded form and in complex with acarbose and an acarbose homolog. Comparison with acarbose-loaded maltose binding protein of Salmonella typhimurium. 6IEH ; 2.892 ; Crystal structures of the hMTR4-NRDE2 complex 1G4A ; 3.0 ; CRYSTAL STRUCTURES OF THE HSLVU PEPTIDASE-ATPASE COMPLEX REVEAL AN ATP-DEPENDENT PROTEOLYSIS MECHANISM 1G4B ; 7.0 ; CRYSTAL STRUCTURES OF THE HSLVU PEPTIDASE-ATPASE COMPLEX REVEAL AN ATP-DEPENDENT PROTEOLYSIS MECHANISM 4RSY ; 1.93 ; Crystal structures of the Human leukotriene A4 Hydrolase complex with a potential inhibitor H7 1WD0 ; 1.9 ; Crystal structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers 1WD1 ; 2.2 ; Crystal structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers 2HQT ; 1.9 ; Crystal structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA aminoacylation and nuclear export cofactor Arc1p reveal a novel function for an old fold 2HRA ; 1.9 ; Crystal structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA aminoacylation and nuclear export cofactor Arc1p reveal a novel function for an old fold 3E87 ; 2.3 ; Crystal structures of the kinase domain of AKT2 in complex with ATP-competitive inhibitors 3E88 ; 2.5 ; Crystal structures of the kinase domain of AKT2 in complex with ATP-competitive inhibitors 3E8D ; 2.7 ; Crystal structures of the kinase domain of AKT2 in complex with ATP-competitive inhibitors 3E8C ; 2.2 ; Crystal structures of the kinase domain of PKA in complex with ATP-competitive inhibitors 3E8E ; 2.0 ; Crystal structures of the kinase domain of PKA in complex with ATP-competitive inhibitors 1KFD ; 3.9 ; CRYSTAL STRUCTURES OF THE KLENOW FRAGMENT OF DNA POLYMERASE I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE 3SQ9 ; 3.1 ; Crystal Structures of the Ligand Binding Domain of a Pentameric Alpha7 Nicotinic Receptor Chimera 3SQ6 ; 2.8 ; Crystal Structures of the Ligand Binding Domain of a Pentameric Alpha7 Nicotinic Receptor Chimera with its Agonist Epibatidine 1UIV ; 1.95 ; Crystal structures of the liganded and unliganded nickel binding protein NikA from Escherichia coli (Nickel liganded form) 1UIU ; 1.85 ; Crystal structures of the liganded and unliganded nickel binding protein NikA from Escherichia coli (Nickel unliganded form) 4L4Y ; 1.9 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 4L4Z ; 2.3 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 4L50 ; 2.1 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 4L51 ; 1.9 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 4L5I ; 3.21 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 4L5J ; 2.6 ; Crystal structures of the LsrR proteins complexed with phospho-AI-2 and its two different analogs reveal distinct mechanisms for ligand recognition 2PSD ; 1.4 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 2PSE ; 2.5 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 2PSF ; 1.4 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 2PSH ; 1.79 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 2PSJ ; 1.8 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 2RH7 ; 1.5 ; Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla Reniformis 3N42 ; 3.0 ; Crystal structures of the mature envelope glycoprotein complex (furin cleavage) of Chikungunya virus. 3N43 ; 2.58 ; Crystal structures of the mature envelope glycoprotein complex (trypsin cleavage) of Chikungunya virus. 2CHS ; 1.9 ; CRYSTAL STRUCTURES OF THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS SUBTILIS AND ITS COMPLEX WITH A TRANSITION STATE ANALOG 2CHT ; 2.2 ; CRYSTAL STRUCTURES OF THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS SUBTILIS AND ITS COMPLEX WITH A TRANSITION STATE ANALOG 2AEM ; 2.8 ; Crystal Structures of the MthK RCK Domain 2AEF ; 1.7 ; Crystal Structures of the MthK RCK Domain in Ca2+ bound form 2AEJ ; 2.1 ; Crystal Structures of the MthK RCK Domain in no Ca2+ bound form 6H6D ; 2.4 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with adenovirus-derived peptide Ad10 3QUK ; 2.41 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 altered peptide ligand (Y4A) 3QUL ; 2.0 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 altered peptide ligand (Y4S) 1S7U ; 2.2 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7V ; 2.2 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7W ; 2.4 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7X ; 2.41 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 index peptide and three of its escape variants 6MP1 ; 2.211 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with the mutant TRP1-K8 peptide 6MP0 ; 2.0 ; Crystal structures of the murine class I major histocompatibility complex H-2Db in complex with the TRP1-M9 peptide 6H6H ; 2.4 ; Crystal structures of the murine class I major histocompatibility complex H-2Dbm13 in complex with adenovirus-derived peptide Ad10 1S7Q ; 1.99 ; Crystal structures of the murine class I major histocompatibility complex H-2Kb in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7R ; 2.95 ; Crystal structures of the murine class I major histocompatibility complex H-2Kb in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7S ; 1.99 ; Crystal structures of the murine class I major histocompatibility complex H-2Kb in complex with LCMV-derived gp33 index peptide and three of its escape variants 1S7T ; 2.3 ; Crystal structures of the murine class I major histocompatibility complex H-2Kb in complex with LCMV-derived gp33 index peptide and three of its escape variants 1CMK ; 2.9 ; CRYSTAL STRUCTURES OF THE MYRISTYLATED CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE REVEAL OPEN AND CLOSED CONFORMATIONS 6AIC ; 1.8 ; Crystal structures of the N-terminal domain of Staphylococcus aureus DEAD-box Cold shock RNA helicase CshA in complex with AMP 1D0E ; 3.0 ; CRYSTAL STRUCTURES OF THE N-TERMINAL FRAGMENT FROM MOLONEY MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE COMPLEXED WITH NUCLEIC ACID: FUNCTIONAL IMPLICATIONS FOR TEMPLATE-PRIMER BINDING TO THE FINGERS DOMAIN 1QAI ; 2.3 ; CRYSTAL STRUCTURES OF THE N-TERMINAL FRAGMENT FROM MOLONEY MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE COMPLEXED WITH NUCLEIC ACID: FUNCTIONAL IMPLICATIONS FOR TEMPLATE-PRIMER BINDING TO THE FINGERS DOMAIN 1QAJ ; 2.3 ; CRYSTAL STRUCTURES OF THE N-TERMINAL FRAGMENT FROM MOLONEY MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE COMPLEXED WITH NUCLEIC ACID: FUNCTIONAL IMPLICATIONS FOR TEMPLATE-PRIMER BINDING TO THE FINGERS DOMAIN 2WIA ; 2.45 ; Crystal Structures of the N-terminal Intracellular Domain of FeoB from Klebsiella Pneumoniae in Apo Form 2WIB ; 2.56 ; Crystal Structures of the N-terminal Intracellular Domain of FeoB from Klebsiella Pneumoniae in GDP binding state 2WIC ; 2.05 ; Crystal Structures of the N-terminal Intracellular Domain of FeoB from Klebsiella Pneumoniae in GMPPNP binding state 6AIB ; 1.5 ; Crystal structures of the N-terminal RecA-like domain 1 of Staphylococcus aureus DEAD-box Cold shock RNA helicase CshA 3D11 ; 2.306 ; Crystal Structures of the Nipah G Attachment Glycoprotein 1P3T ; 2.1 ; Crystal Structures of the NO-and CO-Bound Heme Oxygenase From Neisseria Meningitidis: Implications for Oxygen Activation 1P3U ; 1.75 ; Crystal Structures of the NO-and CO-Bound Heme Oxygenase From Neisseria Meningitidis: Implications for Oxygen Activation 1P3V ; 2.25 ; Crystal Structures of the NO-and CO-Bound Heme Oxygenase From Neisseria Meningitidis: Implications for Oxygen Activation 1MZ8 ; 2.0 ; CRYSTAL STRUCTURES OF THE NUCLEASE DOMAIN OF COLE7/IM7 IN COMPLEX WITH A PHOSPHATE ION AND A ZINC ION 1U54 ; 2.8 ; Crystal Structures of the Phosphorylated and Unphosphorylated Kinase Domains of the CDC42-associated Tyrosine Kinase ACK1 bound to AMP-PCP 2C81 ; 1.7 ; Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis. 3T51 ; 3.9 ; Crystal structures of the pre-extrusion and extrusion states of the CusBA adaptor-transporter complex 1IYZ ; 2.8 ; Crystal Structures of the Quinone Oxidoreductase from Thermus thermophilus HB8 and Its Complex with NADPH 1IZ0 ; 2.3 ; Crystal Structures of the Quinone Oxidoreductase from Thermus thermophilus HB8 and Its Complex with NADPH 6QF7 ; 4.0 ; Crystal structures of the recombinant beta-Factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics 1MHX ; 1.8 ; Crystal Structures of the redesigned protein G variant NuG1 3V1O ; 1.876 ; Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus 3V1Q ; 2.0 ; Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus 3V1R ; 2.8 ; Crystal structures of the reverse transcriptase-associated ribonuclease H domain of XMRV with inhibitor beta-thujaplicinol 3B5J ; 2.0 ; Crystal Structures of the S504A Mutant of an Isolated ABC-ATPase in Complex with TNP-ADP 2V6N ; 1.98 ; Crystal structures of the SARS-coronavirus main proteinase inactivated by benzotriazole compounds 5GVT ; 2.61 ; Crystal structures of the serine protease domain of murine plasma kallikrein 6A8O ; 2.77 ; Crystal structures of the serine protease domain of murine plasma kallikrein with peptide inhibitor mupain-1-16 6G8T ; 2.67 ; Crystal Structures of the Single PDZ Domains from GRASP65 and their Interaction with the Golgin GM130 6G8W ; 2.12 ; Crystal Structures of the Single PDZ Domains from GRASP65 and their Interaction with the Golgin GM130 6G8Y ; 1.4 ; Crystal Structures of the Single PDZ Domains from GRASP65 and their Interaction with the Golgin GM130 1I94 ; 3.2 ; CRYSTAL STRUCTURES OF THE SMALL RIBOSOMAL SUBUNIT WITH TETRACYCLINE, EDEINE AND IF3 3E5E ; 2.9 ; Crystal Structures of the SMK box (SAM-III) Riboswitch with SAH 3E5F ; 2.7 ; Crystal Structures of the SMK box (SAM-III) Riboswitch with Se-SAM 3U7K ; 1.9 ; Crystal structures of the Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors 3U7L ; 2.01 ; Crystal structures of the Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors 3U7M ; 2.15 ; Crystal structures of the Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors 3U7N ; 2.3 ; Crystal structures of the Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors 2HFN ; 1.8 ; Crystal Structures of the Synechocystis Photoreceptor Slr1694 Reveal Distinct Structural States Related to Signaling 2HFO ; 2.1 ; Crystal Structures of the Synechocystis Photoreceptor Slr1694 Reveal Distinct Structural States Related to Signaling 5H36 ; 3.409 ; Crystal structures of the TRIC trimeric intracellular cation channel orthologue from Rhodobacter sphaeroides 5H35 ; 2.642 ; Crystal structures of the TRIC trimeric intracellular cation channel orthologue from Sulfolobus solfataricus 1Z1W ; 2.7 ; Crystal structures of the tricorn interacting facor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations 1Z5H ; 2.3 ; Crystal structures of the Tricorn interacting Factor F3 from Thermoplasma acidophilum 5Z1Q ; 2.3 ; Crystal structures of the trimeric N-terminal domain of Ciliate Euplotes octocarinatus Centrin 2AAG ; 1.85 ; Crystal Structures of the Wild-type, Mutant-P1A and Inactivated Malonate Semialdehyde Decarboxylase: A Structural Basis for the Decarboxylase and Hydratase Activities 2AAJ ; 2.74 ; Crystal Structures of the Wild-type, Mutant-P1A and Inactivated Malonate Semialdehyde Decarboxylase: A Structural Basis for the Decarboxylase and Hydratase Activities 2AAL ; 1.65 ; Crystal Structures of the Wild-type, Mutant-P1A and Inactivated Malonate Semialdehyde Decarboxylase: A Structural Basis for the Decarboxylase and Hydratase Activities 3AMG ; 2.4 ; Crystal structures of Thermotoga maritima Cel5A in complex with Cellobiose substrate, mutant form 3AOF ; 1.288 ; Crystal structures of Thermotoga maritima Cel5A in complex with Mannotriose substrate 3AMC ; 1.4 ; Crystal structures of Thermotoga maritima Cel5A, apo form and dimer/au 3AMD ; 2.0 ; Crystal structures of Thermotoga maritima Cel5A, apo form and tetramer/au 4POM ; 1.85 ; Crystal structures of thioredoxin with mesna at 1.85A resolution 4POK ; 2.52 ; Crystal structures of thioredoxin with mesna at 2.5A resolution 4POL ; 2.8 ; Crystal structures of thioredoxin with mesna at 2.8A resolution 1A4W ; 1.8 ; CRYSTAL STRUCTURES OF THROMBIN WITH THIAZOLE-CONTAINING INHIBITORS: PROBES OF THE S1' BINDING SITE 2B1G ; 2.1 ; Crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase 2B1I ; 2.02 ; crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase 2IU0 ; 2.53 ; crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase 2IU3 ; 2.9 ; Crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase 4WF7 ; 2.21 ; Crystal structures of trehalose synthase from Deinococcus radiodurans reveal that a closed conformation is involved in the intramolecular isomerization catalysis 1MAP ; 2.4 ; CRYSTAL STRUCTURES OF TRUE ENZYMATIC REACTION INTERMEDIATES: ASPARTATE AND GLUTAMATE KETIMINES IN ASPARTATE AMINOTRANSFERASE 1MAQ ; 2.3 ; CRYSTAL STRUCTURES OF TRUE ENZYMATIC REACTION INTERMEDIATES: ASPARTATE AND GLUTAMATE KETIMINES IN ASPARTATE AMINOTRANSFERASE 2GIA ; 1.89 ; Crystal structures of trypanosoma bruciei MRP1/MRP2 2GID ; 3.35 ; Crystal structures of trypanosoma bruciei MRP1/MRP2 1THI ; 3.2 ; CRYSTAL STRUCTURES OF TWO INTENSELY SWEET PROTEINS 3MON ; 2.8 ; CRYSTAL STRUCTURES OF TWO INTENSELY SWEET PROTEINS 1KSX ; 3.2 ; Crystal Structures of Two Intermediates in the Assembly of the Papillomavirus Replication Initiation Complex 1KSY ; 3.05 ; Crystal Structures of Two Intermediates in the Assembly of the Papillomavirus Replication Initiation Complex 396D ; 1.8 ; CRYSTAL STRUCTURES OF TWO ISOMOPHOUS A-DNA DECAMERS D(GTACGCGTAC) AND D(GGCCGCGGCC) 395D ; 1.9 ; CRYSTAL STRUCTURES OF TWO ISOMORPHOUS A-DNA DECAMERS D(GTACGCGTAC) AND D(GGCCGCGGCC) 1NCB ; 2.5 ; CRYSTAL STRUCTURES OF TWO MUTANT NEURAMINIDASE-ANTIBODY COMPLEXES WITH AMINO ACID SUBSTITUTIONS IN THE INTERFACE 1NCC ; 2.5 ; CRYSTAL STRUCTURES OF TWO MUTANT NEURAMINIDASE-ANTIBODY COMPLEXES WITH AMINO ACID SUBSTITUTIONS IN THE INTERFACE 7DMO ; 2.0 ; Crystal structures of two pericyclases catalyzing [4+2] cycloadditions 4O1J ; 2.695 ; Crystal structures of two tetrameric beta-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. 4O1K ; 1.83 ; Crystal structures of two tetrameric beta-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. 1PZV ; 2.52 ; Crystal structures of two UBC (E2) enzymes of the ubiquitin-conjugating system in Caenorhabditis elegans 1Q34 ; 2.9 ; Crystal structures of two UBC (E2) enzymes of the ubiquitin-conjugating system in Caenorhabditis elegans 1UIW ; 1.5 ; Crystal Structures of Unliganded and Half-Liganded Human Hemoglobin Derivatives Cross-Linked between Lys 82beta1 and Lys 82beta2 5YVU ; 2.491 ; Crystal structures of unlinked full length NS3 from Dengue virus provide insights into dynamics of protease domain 5GPI ; 1.578 ; Crystal Structures of Unlinked NS2B-NS3 Protease from Zika Virus and Its Complex with a Reverse Peptide Inhibitor 3KGP ; 2.35 ; Crystal Structures of Urokinase-type Plasminogen Activator in Complex with 4-(Aminomethyl) Benzoic Acid and 4-(Aminomethyl-phenyl)-methanol 3KHV ; 2.35 ; Crystal Structures of Urokinase-type Plasminogen Activator in Complex with 4-(Aminomethyl) Benzoic Acid and 4-(Aminomethyl-phenyl)-methanol 3OTM ; 1.5 ; Crystal structures of wild-type gamma-carbonic anhydrase from Methanosarcina thermophila 1PBB ; 2.5 ; CRYSTAL STRUCTURES OF WILD-TYPE P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE, 2,4-DIHYDROXYBENZOATE AND 2-HYDROXY-4-AMINOBENZOATE AND OF THE TRY222ALA MUTANT, COMPLEXED WITH 2-HYDROXY-4-AMINOBENZOATE. EVIDENCE FOR A PROTON CHANNEL AND A NEW BINDING MODE OF THE FLAVIN RING 1PBC ; 2.8 ; CRYSTAL STRUCTURES OF WILD-TYPE P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE, 2,4-DIHYDROXYBENZOATE AND 2-HYDROXY-4-AMINOBENZOATE AND OF THE TRY222ALA MUTANT, COMPLEXED WITH 2-HYDROXY-4-AMINOBENZOATE. EVIDENCE FOR A PROTON CHANNEL AND A NEW BINDING MODE OF THE FLAVIN RING 1PBD ; 2.3 ; CRYSTAL STRUCTURES OF WILD-TYPE P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE, 2,4-DIHYDROXYBENZOATE AND 2-HYDROXY-4-AMINOBENZOATE AND OF THE TRY222ALA MUTANT, COMPLEXED WITH 2-HYDROXY-4-AMINOBENZOATE. EVIDENCE FOR A PROTON CHANNEL AND A NEW BINDING MODE OF THE FLAVIN RING 1PBF ; 2.7 ; CRYSTAL STRUCTURES OF WILD-TYPE P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE, 2,4-DIHYDROXYBENZOATE AND 2-HYDROXY-4-AMINOBENZOATE AND OF THE TRY222ALA MUTANT, COMPLEXED WITH 2-HYDROXY-4-AMINOBENZOATE. EVIDENCE FOR A PROTON CHANNEL AND A NEW BINDING MODE OF THE FLAVIN RING 1YHA ; 2.5 ; CRYSTAL STRUCTURES OF Y41H AND Y41F MUTANTS OF GENE V PROTEIN FROM FF PHAGE SUGGEST POSSIBLE PROTEIN-PROTEIN INTERACTIONS IN GVP-SSDNA COMPLEX 1YHB ; 2.2 ; CRYSTAL STRUCTURES OF Y41H AND Y41F MUTANTS OF GENE V PROTEIN FROM FF PHAGE SUGGEST POSSIBLE PROTEIN-PROTEIN INTERACTIONS IN GVP-SSDNA COMPLEX 2FN1 ; 2.1 ; Crystal structures of Yersinia enterocolitica salicylate synthase (Irp9) in complex with the reaction products salicylate and pyruvate 3BLT ; 2.2 ; Crystal structures of YopH complexed with PVSN and PVS, inhibitors of YopH which co-valent bind to Cys of active site 3TIO ; 1.41 ; Crystal structures of yrdA from Escherichia coli, a homologous protein of gamma-class carbonic anhydrase, show possible allosteric conformations 3TIS ; 2.3 ; Crystal structures of yrdA from Escherichia coli, a homologous protein of gamma-class carbonic anhydrases, show possible allosteric conformations 3QY6 ; 1.8 ; Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases 3QY7 ; 1.62 ; Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases 3QY8 ; 2.0 ; Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases 2XB4 ; 1.8 ; Crystal structures of zinc containing Adenylate kinase from Desulfovibrio gigas 3L0S ; 2.0 ; Crystal structures of Zinc, Cobalt and Iron containing Adenylate kinase from Gram-negative bacteria Desulfovibrio gigas 2EBF ; 1.9 ; Crystal structures reveal a thiol-protease like catalytic triad in the C-terminal region of Pasteurella multocida toxin 2EBH ; 2.4 ; Crystal structures reveal a thiol-protease like catalytic triad in the C-terminal region of Pasteurella multocida toxin 2EC5 ; 2.6 ; Crystal structures reveal a thiol-protease like catalytic triad in the C-terminal region of Pasteurella multocida toxin 5J3W ; 2.55 ; Crystal structures reveal signaling states of a short blue light photoreceptor protein PpSB1-LOV (dark state) 5J4E ; 2.67 ; Crystal structures reveal signaling states of a short blue light photoreceptor protein PpSB1-LOV (Photoexcited state) 4F1Z ; 2.3 ; Crystal structures reveal the multi-ligand binding mechanism of the Staphylococcus aureus ClfB 4F20 ; 2.502 ; Crystal structures reveal the multi-ligand binding mechanism of the Staphylococcus aureus ClfB 4F24 ; 2.509 ; Crystal structures reveal the multi-ligand binding mechanism of the Staphylococcus aureus ClfB 4F27 ; 1.917 ; Crystal structures reveal the multi-ligand binding mechanism of the Staphylococcus aureus ClfB 4YZS ; 3.14 ; Crystal structures reveal transient PERK luminal domain tetramerization in ER stress signaling 4YZY ; 3.2 ; Crystal structures reveal transient PERK luminal domain tetramerization in ER stress signaling 1IAA ; 1.9 ; CRYSTAL STRUCTURES, SPECTROSCOPIC FEATURES, AND CATALYTIC PROPERTIES OF COBALT(II), COPPER(II), NICKEL(II), AND MERCURY(II) DERIVATIVES OF THE ZINC ENDOPEPTIDASE ASTACIN. A CORRELATION OF STRUCTURE AND PROTEOLYTIC ACTIVITY 1IAB ; 1.79 ; CRYSTAL STRUCTURES, SPECTROSCOPIC FEATURES, AND CATALYTIC PROPERTIES OF COBALT(II), COPPER(II), NICKEL(II), AND MERCURY(II) DERIVATIVES OF THE ZINC ENDOPEPTIDASE ASTACIN. A CORRELATION OF STRUCTURE AND PROTEOLYTIC ACTIVITY 1IAE ; 1.83 ; CRYSTAL STRUCTURES, SPECTROSCOPIC FEATURES, AND CATALYTIC PROPERTIES OF COBALT(II), COPPER(II), NICKEL(II), AND MERCURY(II) DERIVATIVES OF THE ZINC ENDOPEPTIDASE ASTACIN. A CORRELATION OF STRUCTURE AND PROTEOLYTIC ACTIVITY 3VQJ ; 1.2 ; Crystal Structutre of Thiobacillus thioparus THI115 Carbonyl Sulfide Hydrolase 3VRK ; 1.33 ; Crystal Structutre of Thiobacillus thioparus THI115 Carbonyl Sulfide Hydrolase / Thiocyanate complex 6L5Z ; 3.05 ; Crystal strucutre of AF9 YEATS domain in complex with a cyclopeptide inhibitor 7XEX ; 3.0 ; Crystal strucutre of apoCasDinG 7XF1 ; 3.2 ; Crystal strucutre of apoCasDinG in complex with ssDNA 7XF0 ; 3.1 ; Crystal strucutre of CasDinG in complex with ATP 8FX9 ; 1.36 ; Crystal strucutre of Mycobacterium tuberculosis Mycothiol-S-transferase enzyme 7XAE ; 3.44 ; Crystal strucutre of PD-L1 and 3ONJA protein 7XAD ; 3.0 ; Crystal strucutre of PD-L1 and DBL2_02 designed protein binder 7XYQ ; 2.85 ; Crystal strucutre of PD-L1 and the computationally designed DBL1_03 protein binder 3UE1 ; 2.73 ; Crystal strucuture of Acinetobacter baumanni PBP1A in complex with MC-1 3QMF ; 2.6 ; Crystal strucuture of an inositol monophosphatase family protein (SAS2203) from Staphylococcus aureus MSSA476 8GTH ; 3.1 ; Crystal strucuture of cyt c551 from anoxygenic phototrophic bacterium Roseiflexus castenholzii 3VVX ; 2.05 ; Crystal Strucuture of RamR (Transcriptional Regurator of TetR Family) from Salmonella Typhimurium 3VW2 ; 2.34 ; Crystal Strucuture of The Berberine-bound Form of RamR (Transcriptional Regurator of TetR Family) from Salmonella Typhimurium 3VW1 ; 2.21 ; Crystal Strucuture of the Crystal Violet-Bound Form of RamR (Transcriptional Regurator of TetR Family) from Salmonella Typhimurium 3VVY ; 1.63 ; Crystal Strucuture of The Ethidium-Bound Form of RamR (Transcriptional Regurator of TetR Family) from Salmonella Typhimurium 3VVZ ; 2.51 ; Crystal Strucuture of The Rhodamine 6G-Bound Form of RamR (Transcriptional Regurator of TetR Family) from Salmonella Typhimurium 2H5J ; 2.0 ; Crystal strusture of caspase-3 with inhibitor Ac-DMQD-Cho 2H65 ; 2.3 ; Crystal strusture of caspase-3 with inhibitor Ac-VDVAD-Cho 1LQO ; 2.0 ; Crystal Strutcure of the Fosfomycin Resistance Protein A (FosA) Containing Bound Thallium Cations 6YAQ ; 1.95 ; Crystal sttructure of ZmCKO8 in complex with inhibitor 1-(3-Chloro-5-trifluoromethoxy-phenyl)-3-[2-(2-hydroxy-ethyl)-phenyl]-urea 3GCY ; 1.8 ; Crystal studies of d(CACGCG).d(CGCGTG) grown in presence of calcium chloride 3GDA ; 1.88 ; Crystal study of d(CACGCG).d(CGCGTG) grwon in presence of stannous chloride 4QGW ; 1.77 ; Crystal sturcture of the R132K:R111L:L121D mutant of Cellular Retinoic Acid Binding ProteinII complexed with a synthetic ligand (Merocyanine) at 1.77 angstrom resolution 1I7H ; 1.7 ; CRYSTAL STURCUTURE OF FDX 6IYV ; 1.5 ; Crystal sturucture of L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with ertapenem adduct 6IYW ; 1.6 ; Crystal sturucture of L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis in complex with Imipenem adduct 4O6J ; 2.3 ; Crystal sturucture of T. acidophilum IdeR 1WJX ; 1.7 ; Crystal sturucture of TT0801 from Thermus thermophilus 1MY2 ; 1.8 ; crystal titration experiment (AMPA complex control) 1MXW ; 1.9 ; crystal titration experiments (AMPA co-crystals soaked in 1 mM BrW) 1MXZ ; 1.9 ; crystal titration experiments (AMPA co-crystals soaked in 1 uM BrW) 1MXV ; 1.95 ; crystal titration experiments (AMPA co-crystals soaked in 10 mM BrW) 1MY1 ; 1.9 ; crystal titration experiments (AMPA co-crystals soaked in 10 nM BrW) 1MXY ; 1.95 ; crystal titration experiments (AMPA co-crystals soaked in 10 uM BrW) 1MY0 ; 1.9 ; crystal titration experiments (AMPA co-crystals soaked in 100 nM BrW) 1MXX ; 2.0 ; crystal titration experiments (AMPA co-crystals soaked in 100 uM BrW) 8AR9 ; 2.36 ; Crystal to structure pipeline for ambient temperature, in situ crystallography at beamline VMXi 1XEQ ; 2.1 ; Crystal tructure of RNA binding domain of influenza B virus non-structural protein 7JJV ; 1.21 ; Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice 2B92 ; 3.2 ; Crystal-structure of the N-terminal Large GTPase Domain of human Guanylate Binding protein 1 (hGBP1) in complex with GDP/AlF3 2D4H ; 2.9 ; Crystal-structure of the N-terminal large GTPase Domain of human Guanylate Binding protein 1 (hGBP1) in complex with GMP 2B8W ; 2.22 ; Crystal-structure of the N-terminal Large GTPase Domain of human Guanylate Binding protein 1 (hGBP1) in complex with GMP/AlF4 2BC9 ; 2.8 ; Crystal-structure of the N-terminal large GTPase Domain of human Guanylate Binding protein 1 (hGBP1) in complex with non-hydrolysable GTP analogue GppNHp 5CO2 ; 1.7 ; Crystalization of human zinc insulin at pH 5.5 1GD9 ; 1.8 ; CRYSTALL STRUCTURE OF PYROCOCCUS PROTEIN-A1 1D9D ; 2.18 ; CRYSTALL STRUCTURE OF THE COMPLEX OF DNA POLYMERASE I KLENOW FRAGMENT WITH SHORT DNA FRAGMENT CARRYING 2'-0-AMINOPROPYL-RNA MODIFICATIONS 5'-D(TCG)-AP(AUC)-3' 6L98 ; 1.77 ; Crystalline cast nephropathy-causing Bence-Jones protein AK: An entire immunoglobulin lambda light chain dimer 1M9P ; 2.1 ; Crystalline Human Carbonmonoxy Hemoglobin C Exhibits The R2 Quaternary State at Neutral pH In The Presence of Polyethylene Glycol: The 2.1 Angstrom Resolution Crystal Structure 1NEJ ; 2.1 ; Crystalline Human Carbonmonoxy Hemoglobin S (Liganded Sickle Cell Hemoglobin) Exhibits The R2 Quaternary State At Neutral pH In The Presence Of Polyethylene Glycol: The 2.1 Angstrom Resolution Crystal Structure 1TAR ; 2.2 ; CRYSTALLINE MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE EXISTS IN ONLY TWO CONFORMATIONS 1TAS ; 2.8 ; CRYSTALLINE MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE EXISTS IN ONLY TWO CONFORMATIONS 1TAT ; 3.0 ; CRYSTALLINE MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE EXISTS IN ONLY TWO CONFORMATIONS 6JQF ; 1.9 ; Crystallization analysis of a beta-N-acetylhexosaminidase (Am2136) from Akkermansia muciniphila 4FDM ; 1.6 ; Crystallization and 3D structure elucidation of thermostable L2 lipase from thermophilic locally isolated Bacillus sp. L2. 3QY4 ; 1.65 ; Crystallization and in situ data collection of Lysozyme using the Crystal Former 5EZ6 ; 1.8 ; Crystallization and preliminary X-ray crystallographic analysis of a small GTPase RhoA 1WBC ; 2.95 ; CRYSTALLIZATION AND PRELIMINARY X-RAY STUDIES OF PSOPHOCARPIN B1, A CHYMOTRYPSIN INHIBITOR FROM WINGED BEAN SEEDS 7QNM ; 2.73 ; Crystallization and structural analyses of ZgHAD, a L-2-haloacid dehalogenase from the marine Flavobacterium Zobellia galactanivorans 4LSW ; 1.64 ; Crystallization and Structural Analysis of 2-Hydroxyacid Dehydrogenase from Ketogulonicigenium vulgare Y25 3DMI ; 1.5 ; Crystallization and Structural Analysis of Cytochrome c6 from the Diatom Phaeodactylum tricornutum at 1.5 A resolution 1PNE ; 2.0 ; CRYSTALLIZATION AND STRUCTURE DETERMINATION OF BOVINE PROFILIN AT 2.0 ANGSTROMS RESOLUTION 5Z0Y ; 2.5 ; Crystallization and structure determination of cytoplasm serine hydroxymethyltransferase (SHMT) from Pichia pastoris 1JW1 ; 4.0 ; Crystallization and structure determination of goat lactoferrin at 4.0 resolution: A new form of packing in lactoferrins with a high solvent content in crystals 2OXO ; 2.0 ; Crystallization and structure determination of the core-binding domain of bacteriophage lambda integrase 1FXA ; 2.5 ; CRYSTALLIZATION AND STRUCTURE DETERMINATION TO 2.5-ANGSTROMS RESOLUTION OF THE OXIDIZED [2FE-2S] FERREDOXIN ISOLATED FROM ANABAENA 7120 5EKF ; 2.0 ; Crystallization and X-ray Diffraction Data Collection of Importin-alpha from Mus musculus Complexed with a XPG NLS Peptide, fragment 1 5EKG ; 2.8 ; Crystallization and X-ray Diffraction Data Collection of Importin-alpha from Mus musculus Complexed with a XPG NLS Peptide, fragment 2 1CXA ; 2.2 ; CRYSTALLIZATION AND X-RAY STRUCTURE DETERMINATION OF CYTOCHROME C2 FROM RHODOBACTER SPHAEROIDES IN THREE CRYSTAL FORMS 1CXC ; 1.6 ; CRYSTALLIZATION AND X-RAY STRUCTURE DETERMINATION OF CYTOCHROME C2 FROM RHODOBACTER SPHAEROIDES IN THREE CRYSTAL FORMS 2CXB ; 1.95 ; CRYSTALLIZATION AND X-RAY STRUCTURE DETERMINATION OF CYTOCHROME C2 FROM RHODOBACTER SPHAEROIDES IN THREE CRYSTAL FORMS 2YOR ; 2.19 ; Crystallization of a 45 kDa peroxygenase- peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron 2YP1 ; 2.31 ; Crystallization of a 45 kDa peroxygenase- peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron 5FUJ ; 1.83 ; Crystallization of a dimeric heme peroxygenase from the fungus Marasmius rotula 5FUK ; 1.55 ; Crystallization of a dimeric heme peroxygenase from the fungus Marasmius rotula 7DLH ; 1.789 ; Crystallization of Cationic Peroxidase from Proso Millet and Identification of Its Phosphatase Active Sites 7SMV ; 1.93 ; Crystallization of feline coronavirus Mpro with GC376 reveals mechanism of inhibition 7SNA ; 2.05 ; Crystallization of feline coronavirus Mpro with GC376 reveals mechanism of inhibition 2J1D ; 2.25 ; Crystallization of hDaam1 C-terminal Fragment 1DEH ; 2.2 ; CRYSTALLIZATION OF HUMAN BETA1 ALCOHOL DEHYDROGENASE (15 MG/ML) IN 50 MM SODIUM PHOSPHATE (PH 7.5), 2.0 MM NAD+ AND 1 MM 4-IODOPYRAZOLE AT 25 OC, 13% (W/V) PEG 8000 1HTB ; 2.4 ; CRYSTALLIZATION OF HUMAN BETA3 ALCOHOL DEHYDROGENASE (10 MG/ML) IN 100 MM SODIUM PHOSPHATE (PH 7.5), 7.5 MM NAD+ AND 1 MM 4-IODOPYRAZOLE AT 25 C 6BL6 ; 2.8 ; Crystallization of lipid A transporter MsbA from Salmonella typhimurium 8GN6 ; 2.1 ; Crystallization of Sialidase from Porphyromonas gingivalis 3DIQ ; 2.7 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to homoarginine 3DJ0 ; 2.5 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to L-4-oxalysine 3DIZ ; 2.85 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine in the Absence of Mg2+ 3DIM ; 2.9 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine, Cs+ Soak 3DIO ; 2.4 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine, IRIDIUM HEXAMINE SOAK 3DIX ; 2.9 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine, K+ anomalous data 3DIY ; 2.71 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine, Mn2+ soak 3DJ2 ; 2.5 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to lysine, Tl+ Soak 3DIR ; 2.9 ; Crystallization of the Thermotoga maritima lysine riboswitch bound to N6-1-iminoethyl-L-Lysine 3DIS ; 3.1 ; Crystallization of the Thermotoga maritima lysine riboswitch in free form 2HBN ; 1.55 ; Crystallization of the Tl+-form of the Oxytricha nova G-quadruplex 1MDC ; 1.75 ; CRYSTALLIZATION, STRUCTURE DETERMINATION AND LEAST-SQUARES REFINEMENT TO 1.75 ANGSTROMS RESOLUTION OF THE FATTY-ACID-BINDING PROTEIN ISOLATED FROM MANDUCA SEXTA L 5EOS ; 4.7 ; Crystallizing Strained DNA: Self-Assembly of 3D Crystals Containing a Torsionally-Stressed Component 2UYG ; 2.2 ; Crystallogaphic structure of the typeII 3-Dehydroquinase from Thermus Thermophilus 3FVL ; 1.85 ; Crystallogic studies on the Complex of Carboxypeptidase A with inhibitors using alpha-hydroxy ketone as zinc-binding group 3GWH ; 1.95 ; Crystallographic Ab Initio protein solution far below atomic resolution 1RDH ; 2.8 ; CRYSTALLOGRAPHIC ANALYSES OF AN ACTIVE HIV-1 RIBONUCLEASE H DOMAIN SHOW STRUCTURAL FEATURES THAT DISTINGUISH IT FROM THE INACTIVE FORM 1HIX ; 2.0 ; CRYSTALLOGRAPHIC ANALYSES OF FAMILY 11 ENDO-BETA-1,4-XYLANASE XYL1 FROM STREPTOMYCES SP. S38 1NHP ; 2.0 ; CRYSTALLOGRAPHIC ANALYSES OF NADH PEROXIDASE CYS42ALA AND CYS42SER MUTANTS: ACTIVE SITE STRUCTURE, MECHANISTIC IMPLICATIONS, AND AN UNUSUAL ENVIRONMENT OF ARG303 1NHQ ; 2.0 ; CRYSTALLOGRAPHIC ANALYSES OF NADH PEROXIDASE CYS42ALA AND CYS42SER MUTANTS: ACTIVE SITE STRUCTURE, MECHANISTIC IMPLICATIONS, AND AN UNUSUAL ENVIRONMENT OF ARG303 1PSS ; 3.0 ; CRYSTALLOGRAPHIC ANALYSES OF SITE-DIRECTED MUTANTS OF THE PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES 1PST ; 3.0 ; CRYSTALLOGRAPHIC ANALYSES OF SITE-DIRECTED MUTANTS OF THE PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES 1DWB ; 3.16 ; CRYSTALLOGRAPHIC ANALYSIS AT 3.0-ANGSTROMS RESOLUTION OF THE BINDING TO HUMAN THROMBIN OF FOUR ACTIVE SITE-DIRECTED INHIBITORS 1DWC ; 3.0 ; CRYSTALLOGRAPHIC ANALYSIS AT 3.0-ANGSTROMS RESOLUTION OF THE BINDING TO HUMAN THROMBIN OF FOUR ACTIVE SITE-DIRECTED INHIBITORS 1DWD ; 3.0 ; CRYSTALLOGRAPHIC ANALYSIS AT 3.0-ANGSTROMS RESOLUTION OF THE BINDING TO HUMAN THROMBIN OF FOUR ACTIVE SITE-DIRECTED INHIBITORS 1DWE ; 3.0 ; Crystallographic analysis at 3.0-Angstroms resolution of the binding to human thrombin of four active site-directed inhibitors 2OMA ; 2.15 ; Crystallographic analysis of a chemically modified triosephosphate isomerase from Trypanosoma cruzi with dithiobenzylamine (DTBA) 5HVP ; 2.0 ; CRYSTALLOGRAPHIC ANALYSIS OF A COMPLEX BETWEEN HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 PROTEASE AND ACETYL-PEPSTATIN AT 2.0-ANGSTROMS RESOLUTION 1APT ; 1.8 ; CRYSTALLOGRAPHIC ANALYSIS OF A PEPSTATIN ANALOGUE BINDING TO THE ASPARTYL PROTEINASE PENICILLOPEPSIN AT 1.8 ANGSTROMS RESOLUTION 1APU ; 1.8 ; Crystallographic analysis of a pepstatin analogue binding to the aspartyl proteinase penicillopepsin at 1.8 angstroms resolution 4KI2 ; 3.3 ; Crystallographic analysis of an RNA-polymerase sigma-subunit fragment complexed with -10 promoter element ssDNA 3IIQ ; 2.0 ; Crystallographic analysis of bacterial signal peptidase in ternary complex with Arylomycin A2 and a beta-sultam inhibitor 2V3P ; 2.9 ; Crystallographic analysis of beta-axial ligand substitutions in cobalamin bound to transcobalamin 158D ; 1.9 ; CRYSTALLOGRAPHIC ANALYSIS OF C-C-A-A-G-C-T-T-G-G AND ITS IMPLICATIONS FOR BENDING IN B-DNA 2WUV ; 2.24 ; Crystallographic analysis of counter-ion effects on subtilisin enzymatic action in acetonitrile 2WUW ; 2.23 ; Crystallographic analysis of counter-ion effects on subtilisin enzymatic action in acetonitrile (native data) 3G5F ; 1.4 ; Crystallographic analysis of cytochrome P450 cyp121 3G5H ; 1.4 ; Crystallographic analysis of cytochrome P450 cyp121 1A8K ; 2.0 ; CRYSTALLOGRAPHIC ANALYSIS OF HUMAN IMMUNODEFICIENCY VIRUS 1 PROTEASE WITH AN ANALOG OF THE CONSERVED CA-P2 SUBSTRATE: INTERACTIONS WITH FREQUENTLY OCCURRING GLUTAMIC ACID RESIDUE AT P2' POSITION OF SUBSTRATES 2WQQ ; 2.25 ; Crystallographic analysis of monomeric CstII 6K3H ; 2.179 ; Crystallographic Analysis of Nucleoside Diphosphate Kinase (NDK) from Aspergillus Flavus 1OXY ; 2.4 ; CRYSTALLOGRAPHIC ANALYSIS OF OXYGENATED AND DEOXYGENATED STATES OF ARTHROPOD HEMOCYANIN SHOWS UNUSUAL DIFFERENCES 1BRG ; 2.2 ; CRYSTALLOGRAPHIC ANALYSIS OF PHE->LEU SUBSTITUTION IN THE HYDROPHOBIC CORE OF BARNASE 1VPE ; 2.0 ; CRYSTALLOGRAPHIC ANALYSIS OF PHOSPHOGLYCERATE KINASE FROM THE HYPERTHERMOPHILIC BACTERIUM THERMOTOGA MARITIMA 4G0A ; 2.0995 ; Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5'-GG Sequence for RTPase activity 4G0J ; 3.398 ; Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5'-GG Sequence for RTPase activity 2DHC ; 2.3 ; CRYSTALLOGRAPHIC ANALYSIS OF THE CATALYTIC MECHANISM OF HALOALKANE DEHALOGENASE 2DHD ; 2.13 ; CRYSTALLOGRAPHIC ANALYSIS OF THE CATALYTIC MECHANISM OF HALOALKANE DEHALOGENASE 2DHE ; 2.13 ; CRYSTALLOGRAPHIC ANALYSIS OF THE CATALYTIC MECHANISM OF HALOALKANE DEHALOGENASE 2YPI ; 2.5 ; CRYSTALLOGRAPHIC ANALYSIS OF THE COMPLEX BETWEEN TRIOSEPHOSPHATE ISOMERASE AND 2-PHOSPHOGLYCOLATE AT 2.5-ANGSTROMS RESOLUTION. IMPLICATIONS FOR CATALYSIS 1SUX ; 2.0 ; CRYSTALLOGRAPHIC ANALYSIS OF THE COMPLEX BETWEEN TRIOSEPHOSPHATE ISOMERASE FROM TRYPANOSOMA CRUZI AND 3-(2-benzothiazolylthio)-1-propanesulfonic acid 3MND ; 2.2 ; Crystallographic analysis of the cystosolic cu/zn Superoxide dismutase from taenia solium 1GLG ; 2.0 ; CRYSTALLOGRAPHIC ANALYSIS OF THE EPIMERIC AND ANOMERIC SPECIFICITY OF THE PERIPLASMIC TRANSPORT(SLASH)CHEMOTACTIC PROTEIN RECEPTOR FOR D-GLUCOSE AND D-GALACTOSE 1J78 ; 2.31 ; Crystallographic analysis of the human vitamin D binding protein 5EST ; 2.09 ; Crystallographic analysis of the inhibition of porcine pancreatic elastase by a peptidyl boronic acid: structure of a reaction intermediate 4G51 ; 2.5 ; Crystallographic analysis of the interaction of nitric oxide with hemoglobin from Trematomus bernacchii in the T quaternary structure (fully ligated state). 1RQ3 ; 1.91 ; Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Deoxyhemoglobin, Deoxyhemoglobin 1RQ4 ; 2.11 ; Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin, HEMOGLOBIN EXPOSED TO NO UNDER AEROBIC CONDITIONS 1RQA ; 2.11 ; Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin. Beta W73E hemoglobin exposed to NO under anaerobic conditions 1RPS ; 2.11 ; Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin. Hemoglobin exposed to NO under anerobic conditions 1GLU ; 2.9 ; CRYSTALLOGRAPHIC ANALYSIS OF THE INTERACTION OF THE GLUCOCORTICOID RECEPTOR WITH DNA 1R4O ; 2.5 ; Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA 1R4R ; 3.0 ; Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA 2WLC ; 1.95 ; Crystallographic analysis of the polysialic acid O-acetyltransferase OatWY 2WLD ; 2.2 ; Crystallographic analysis of the polysialic acid O-acetyltransferase OatWY 2WLE ; 2.19 ; Crystallographic analysis of the polysialic acid O-acetyltransferase OatWY 2WLF ; 2.35 ; Crystallographic analysis of the polysialic acid O-acetyltransferase OatWY 2WLG ; 1.9 ; Crystallographic analysis of the polysialic acid O-acetyltransferase OatWY 1BIC ; 1.9 ; CRYSTALLOGRAPHIC ANALYSIS OF THR-200-> HIS HUMAN CARBONIC ANHYDRASE II AND ITS COMPLEX WITH THE SUBSTRATE, HCO3- 1APV ; 1.8 ; CRYSTALLOGRAPHIC ANALYSIS OF TRANSITION STATE MIMICS BOUND TO PENICILLOPEPSIN: DIFLUOROSTATINE-AND DIFLUOROSTATONE-CONTAINING PEPTIDES 1APW ; 1.8 ; CRYSTALLOGRAPHIC ANALYSIS OF TRANSITION STATE MIMICS BOUND TO PENICILLOPEPSIN: DIFLUOROSTATINE-AND DIFLUOROSTATONE-CONTAINING PEPTIDES 1PPK ; 1.8 ; CRYSTALLOGRAPHIC ANALYSIS OF TRANSITION STATE MIMICS BOUND TO PENICILLOPEPSIN: PHOSPHOROUS-CONTAINING PEPTIDE ANALOGUES 1PPL ; 1.7 ; CRYSTALLOGRAPHIC ANALYSIS OF TRANSITION-STATE MIMICS BOUND TO PENICILLOPEPSIN: PHOSPHORUS-CONTAINING PEPTIDE ANALOGUES 1PPM ; 1.7 ; CRYSTALLOGRAPHIC ANALYSIS OF TRANSITION-STATE MIMICS BOUND TO PENICILLOPEPSIN: PHOSPHORUS-CONTAINING PEPTIDE ANALOGUES 2FD2 ; 1.9 ; CRYSTALLOGRAPHIC ANALYSIS OF TWO SITE-DIRECTED MUTANTS OF AZOTOBACTER VINELANDII FERREDOXIN 2V3N ; 2.73 ; Crystallographic analysis of upper axial ligand substitutions in cobalamin bound to transcobalamin 2R7C ; 2.7 ; Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals an NDP kinase like activity 1TN2 ; 3.0 ; CRYSTALLOGRAPHIC AND BIOCHEMICAL INVESTIGATION OF THE LEAD(II)-CATALYZED HYDROLYSIS OF YEAST PHENYLALANINE T-RNA 1TN1 ; 3.0 ; CRYSTALLOGRAPHIC AND BIOCHEMICAL INVESTIGATION OF THE LEAD(II)-CATALYZED HYDROLYSIS OF YEAST PHENYLALANINE TRNA 4GRO ; 2.0 ; Crystallographic and biological characterization of N- and C- terminus mutants of human MIF 4GRP ; 1.27 ; Crystallographic and biological characterization of N- and C- terminus mutants of human MIF 4GRU ; 1.92 ; crystallographic and biological characterization of N- and C- terminus mutants of human MIF 1DPB ; 2.5 ; CRYSTALLOGRAPHIC AND ENZYMATIC INVESTIGATIONS ON THE ROLE OF SER558, HIS610 AND ASN614 IN THE CATALYTIC MECHANISM OF AZOTOBACTER VINELANDII DIHYDROLIPOAMIDE ACETYLTRANSFERASE (E2P) 1DPC ; 2.6 ; CRYSTALLOGRAPHIC AND ENZYMATIC INVESTIGATIONS ON THE ROLE OF SER558, HIS610 AND ASN614 IN THE CATALYTIC MECHANISM OF AZOTOBACTER VINELANDII DIHYDROLIPOAMIDE ACETYLTRANSFERASE (E2P) 1DPD ; 2.7 ; CRYSTALLOGRAPHIC AND ENZYMATIC INVESTIGATIONS ON THE ROLE OF SER558, HIS610 AND ASN614 IN THE CATALYTIC MECHANISM OF AZOTOBACTER VINELANDII DIHYDROLIPOAMIDE ACETYLTRANSFERASE (E2P) 4EUG ; 1.4 ; Crystallographic and Enzymatic Studies of an Active Site Variant H187Q of Escherichia Coli Uracil DNA Glycosylase: Crystal Structures of Mutant H187Q and its Uracil Complex 5EUG ; 1.6 ; CRYSTALLOGRAPHIC AND ENZYMATIC STUDIES OF AN ACTIVE SITE VARIANT H187Q OF ESCHERICHIA COLI URACIL DNA GLYCOSYLASE: CRYSTAL STRUCTURES OF MUTANT H187Q AND ITS URACIL COMPLEX 1EDB ; 2.01 ; CRYSTALLOGRAPHIC AND FLUORESCENCE STUDIES OF THE INTERACTION OF HALOALKANE DEHALOGENASE WITH HALIDE IONS: STUDIES WITH HALIDE COMPOUNDS REVEAL A HALIDE BINDING SITE IN THE ACTIVE SITE 1EDD ; 2.19 ; CRYSTALLOGRAPHIC AND FLUORESCENCE STUDIES OF THE INTERACTION OF HALOALKANE DEHALOGENASE WITH HALIDE IONS: STUDIES WITH HALIDE COMPOUNDS REVEAL A HALIDE BINDING SITE IN THE ACTIVE SITE 2EDA ; 2.19 ; CRYSTALLOGRAPHIC AND FLUORESCENCE STUDIES OF THE INTERACTION OF HALOALKANE DEHALOGENASE WITH HALIDE IONS: STUDIES WITH HALIDE COMPOUNDS REVEAL A HALIDE BINDING SITE IN THE ACTIVE SITE 2EDC ; 2.3 ; CRYSTALLOGRAPHIC AND FLUORESCENCE STUDIES OF THE INTERACTION OF HALOALKANE DEHALOGENASE WITH HALIDE IONS: STUDIES WITH HALIDE COMPOUNDS REVEAL A HALIDE BINDING SITE IN THE ACTIVE SITE 2IB7 ; 2.05 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2IB8 ; 1.85 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2IB9 ; 2.05 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2IBU ; 1.9 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2IBW ; 1.9 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2IBY ; 1.85 ; Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase (T2): the importance of potassium and chloride for its structure and function 2V8W ; 2.3 ; Crystallographic and mass spectrometric characterisation of eIF4E with N7-cap derivatives 2V8X ; 2.3 ; Crystallographic and mass spectrometric characterisation of eIF4E with N7-cap derivatives 2V8Y ; 2.1 ; Crystallographic and mass spectrometric characterisation of eIF4E with N7-cap derivatives 4TIM ; 2.4 ; CRYSTALLOGRAPHIC AND MOLECULAR MODELING STUDIES ON TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE: A CRITICAL ASSESSMENT OF THE PREDICTED AND OBSERVED STRUCTURES OF THE COMPLEX WITH 2-PHOSPHOGLYCERATE 3M23 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M25 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M26 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M27 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M28 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M29 ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2A ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2B ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2C ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2D ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2E ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2F ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2G ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2H ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 3M2I ; 1.4 ; Crystallographic and Single Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate 1UZ9 ; 1.6 ; Crystallographic and solution studies of N-lithocholyl insulin: a new generation of prolonged-acting insulins. 3TCO ; 1.9 ; Crystallographic and spectroscopic characterization of Sulfolobus solfataricus TrxA1 provide insights into the determinants of thioredoxin fold stability 1ZLQ ; 1.8 ; Crystallographic and spectroscopic evidence for high affinity binding of Fe EDTA (H2O)- to the periplasmic nickel transporter NikA 1SRE ; 1.78 ; CRYSTALLOGRAPHIC AND THERMODYNAMIC COMPARISON OF NATURAL AND SYNTHETIC LIGANDS BOUND TO STREPTAVIDIN 1GPY ; 2.4 ; CRYSTALLOGRAPHIC BINDING STUDIES ON THE ALLOSTERIC INHIBITOR GLUCOSE-6-PHOSPHATE TO T STATE GLYCOGEN PHOSPHORYLASE B 2X16 ; 2.13 ; Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase 2X1R ; 1.98 ; Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase 2X1S ; 1.93 ; Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase 2X1T ; 1.83 ; Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase 2X1U ; 1.84 ; Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase 2X2G ; 1.9 ; CRYSTALLOGRAPHIC BINDING STUDIES WITH AN ENGINEERED MONOMERIC VARIANT OF TRIOSEPHOSPHATE ISOMERASE 1K08 ; 2.26 ; Crystallographic Binding Study of 10 mM N-benzoyl-N'-beta-D-glucopyranosyl urea to glycogen phosphorylase b 1K06 ; 1.8 ; Crystallographic Binding Study of 100 mM N-benzoyl-N'-beta-D-glucopyranosyl urea to glycogen phosphorylase b 4ZK6 ; 1.895 ; Crystallographic Capture of Quinolinate Synthase (NadA) from Pyrococcus horikoshii in its Substrates and Product-Bound States 6NSU ; 2.15 ; Crystallographic Capture of Quinolinate Synthase (NadA) from Pyrococcus horikoshii in its Substrates and Product-Bound States 1TRZ ; 1.6 ; CRYSTALLOGRAPHIC EVIDENCE FOR DUAL COORDINATION AROUND ZINC IN THE T3R3 HUMAN INSULIN HEXAMER 1RRX ; 2.1 ; Crystallographic Evidence for Isomeric Chromophores in 3-Fluorotyrosyl-Green Fluorescent Protein 1OMP ; 1.8 ; CRYSTALLOGRAPHIC EVIDENCE OF A LARGE LIGAND-INDUCED HINGE-TWIST MOTION BETWEEN THE TWO DOMAINS OF THE MALTODEXTRIN-BINDING PROTEIN INVOLVED IN ACTIVE TRANSPORT AND CHEMOTAXIS 5AGC ; 4.0 ; Crystallographic forms of the Vps75 tetramer 1TJX ; 1.04 ; Crystallographic Identification of Ca2+ Coordination Sites in Synaptotagmin I C2B Domain 1TJM ; 1.18 ; Crystallographic Identification of Sr2+ Coordination Site in Synaptotagmin I C2B Domain 2YZ3 ; 2.3 ; Crystallographic Investigation of Inhibition Mode of the VIM-2 Metallo-beta-lactamase from Pseudomonas aeruginosa with Mercaptocarboxylate Inhibitor 2PED ; 2.95 ; Crystallographic model of 9-cis-rhodopsin 2G87 ; 2.6 ; Crystallographic model of bathorhodopsin 2HPY ; 2.8 ; Crystallographic model of lumirhodopsin 6DHZ ; 2.8 ; Crystallographic octamer of a metal-free RIDC1 variant bearing two disulfide bonded cysteines 1FC1 ; 2.9 ; CRYSTALLOGRAPHIC REFINEMENT AND ATOMIC MODELS OF A HUMAN FC FRAGMENT AND ITS COMPLEX WITH FRAGMENT B OF PROTEIN A FROM STAPHYLOCOCCUS AUREUS AT 2.9-AND 2.8-ANGSTROMS RESOLUTION 1FC2 ; 2.8 ; Crystallographic Refinement and Atomic Models of a Human FC Fragment and its Complex with Fragment B of Protein A from Staphylococcus Aureus at 2.9-and 2.8-Angstroms Resolution 1CTS ; 2.7 ; CRYSTALLOGRAPHIC REFINEMENT AND ATOMIC MODELS OF TWO DIFFERENT FORMS OF CITRATE SYNTHASE AT 2.7 AND 1.7 ANGSTROMS RESOLUTION 2CTS ; 2.0 ; CRYSTALLOGRAPHIC REFINEMENT AND ATOMIC MODELS OF TWO DIFFERENT FORMS OF CITRATE SYNTHASE AT 2.7 AND 1.7 ANGSTROMS RESOLUTION 3CTS ; 1.7 ; CRYSTALLOGRAPHIC REFINEMENT AND ATOMIC MODELS OF TWO DIFFERENT FORMS OF CITRATE SYNTHASE AT 2.7 AND 1.7 ANGSTROMS RESOLUTION 2CWG ; 2.0 ; CRYSTALLOGRAPHIC REFINEMENT AND STRUCTURE ANALYSIS OF THE COMPLEX OF WHEAT GERM AGGLUTININ WITH A BIVALENT SIALOGLYCOPEPTIDE FROM GLYCOPHORIN A 3DNI ; 2.0 ; CRYSTALLOGRAPHIC REFINEMENT AND STRUCTURE OF DNASE I AT 2 ANGSTROMS RESOLUTION 5RUB ; 1.7 ; CRYSTALLOGRAPHIC REFINEMENT AND STRUCTURE OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE FROM RHODOSPIRILLUM RUBRUM AT 1.7 ANGSTROMS RESOLUTION 1PRC ; 2.3 ; CRYSTALLOGRAPHIC REFINEMENT AT 2.3 ANGSTROMS RESOLUTION AND REFINED MODEL OF THE PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS 1TEC ; 2.2 ; CRYSTALLOGRAPHIC REFINEMENT BY INCORPORATION OF MOLECULAR DYNAMICS. THE THERMOSTABLE SERINE PROTEASE THERMITASE COMPLEXED WITH EGLIN-C 4BP2 ; 1.6 ; CRYSTALLOGRAPHIC REFINEMENT OF BOVINE PRO-PHOSPHOLIPASE A2 AT 1.6 ANGSTROMS RESOLUTION 1RBP ; 2.0 ; CRYSTALLOGRAPHIC REFINEMENT OF HUMAN SERUM RETINOL BINDING PROTEIN AT 2 ANGSTROMS RESOLUTION 2I1B ; 2.0 ; CRYSTALLOGRAPHIC REFINEMENT OF INTERLEUKIN-1 BETA AT 2.0 ANGSTROMS RESOLUTION 1OVO ; 1.9 ; CRYSTALLOGRAPHIC REFINEMENT OF JAPANESE QUAIL OVOMUCOID, A KAZAL-TYPE INHIBITOR, AND MODEL BUILDING STUDIES OF COMPLEXES WITH SERINE PROTEASES 1LGA ; 2.03 ; CRYSTALLOGRAPHIC REFINEMENT OF LIGNIN PEROXIDASE AT 2 ANGSTROMS 2AAI ; 2.5 ; Crystallographic refinement of ricin to 2.5 Angstroms 4RXN ; 1.2 ; CRYSTALLOGRAPHIC REFINEMENT OF RUBREDOXIN AT 1.2 ANGSTROMS RESOLUTION 2ACT ; 1.7 ; CRYSTALLOGRAPHIC REFINEMENT OF THE STRUCTURE OF ACTINIDIN AT 1.7 ANGSTROMS RESOLUTION BY FAST FOURIER LEAST-SQUARES METHODS 1FDL ; 2.5 ; CRYSTALLOGRAPHIC REFINEMENT OF THE THREE-DIMENSIONAL STRUCTURE OF THE FAB D1.3-LYSOZYME COMPLEX AT 2.5-ANGSTROMS RESOLUTION 1SK8 ; 1.65 ; Crystallographic snapshots of Aspergillus fumigatus phytase revealing its enzymatic dynamics 1SK9 ; 1.64 ; Crystallographic snapshots of Aspergillus fumigatus phytase revealing its enzymatic dynamics 1SKA ; 1.69 ; Crystallographic snapshots of Aspergillus fumigatus phytase revealing its enzymatic dynamics 1SKB ; 1.58 ; Crystallographic snapshots of Aspergillus fumigatus phytase revealing its enzymatic dynamics 3EPH ; 2.95 ; Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism 3EPJ ; 3.1 ; Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism 3EPK ; 3.2 ; Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism 3EPL ; 3.6 ; Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: Insight into tRNA recognition and reaction mechanism 7UX4 ; 2.23 ; Crystallographic snapshots of ternary complexes of thermophilic secondary alcohol dehydrogenase from Thermoanaerobacter pseudoethanolicus reveal the dynamics of ligand exchange and the proton relay network. 6MK3 ; 1.478 ; Crystallographic solvent mapping analysis of DMSO bound to APE1 6MKK ; 1.442 ; Crystallographic solvent mapping analysis of DMSO/Mg bound to APE1 6MKM ; 1.673 ; Crystallographic solvent mapping analysis of DMSO/Tris bound to APE1 6MKO ; 2.09 ; Crystallographic solvent mapping analysis of glycerol bound to APE1 1TLP ; 2.3 ; CRYSTALLOGRAPHIC STRUCTURAL ANALYSIS OF PHOSPHORAMIDATES AS INHIBITORS AND TRANSITION-STATE ANALOGS OF THERMOLYSIN 2TMN ; 1.6 ; CRYSTALLOGRAPHIC STRUCTURAL ANALYSIS OF PHOSPHORAMIDATES AS INHIBITORS AND TRANSITION-STATE ANALOGS OF THERMOLYSIN 5A7E ; 1.5 ; Crystallographic Structural Determination of a Trigonal Laccase from Coriolopsis Gallica (CgL) to 1.5 A resolution 3SIM ; 2.1 ; Crystallographic structure analysis of family 18 Chitinase from Crocus vernus 1PGI ; 3.5 ; CRYSTALLOGRAPHIC STRUCTURE ANALYSIS OF GLUCOSE 6-PHOSPHATE ISOMERASE AT 3.5 ANGSTROMS RESOLUTION 4GY7 ; 1.492 ; Crystallographic structure analysis of urease from Jack bean (Canavalia ensiformis) at 1.49 A Resolution 6OTY ; 2.598 ; Crystallographic Structure of (HbII-HbIII)-O2 from Lucina pectinata at pH 4.0 6OTW ; 2.447 ; Crystallographic Structure of (HbII-HbIII)-O2 from Lucina pectinata at pH 5.0 6OTX ; 2.539 ; Crystallographic Structure of (HbII-HbIII)-O2 from Lucina pectinata at pH 7.0 4AIZ ; 1.75 ; Crystallographic structure of 3mJL2 from the germinal line lambda 3 5BWI ; 1.6 ; Crystallographic structure of a bacterial heparanase 1NDR ; 3.0 ; CRYSTALLOGRAPHIC STRUCTURE OF A BLUE COPPER NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS 5BKN ; 3.0 ; Crystallographic structure of a cubic crystal form of STMV (84.5 degree rotation) grown from chloride 7M50 ; 2.31 ; Crystallographic structure of a cubic crystal form of STMV grown from ammonium sulfate 7M54 ; 3.8 ; Crystallographic structure of a cubic crystal form of STMV grown from bromide 7M3T ; 3.2 ; Crystallographic structure of a cubic crystal of STMV (80.7 degree rotation about 111) grown from chloride 5BKQ ; 3.19 ; Crystallographic structure of a cubic form of STMV grown from nitrate 4WKJ ; 2.8 ; Crystallographic Structure of a Dodecameric RNA-DNA Hybrid 1UZA ; 1.5 ; Crystallographic structure of a feruloyl esterase from Aspergillus niger 1BLS ; 2.3 ; CRYSTALLOGRAPHIC STRUCTURE OF A PHOSPHONATE DERIVATIVE OF THE ENTEROBACTER CLOACAE P99 CEPHALOSPORINASE: MECHANISTIC INTERPRETATION OF A BETA-LACTAMASE TRANSITION STATE ANALOG 1ORD ; 3.0 ; CRYSTALLOGRAPHIC STRUCTURE OF A PLP-DEPENDENT ORNITHINE DECARBOXYLASE FROM LACTOBACILLUS 30A TO 3.1 ANGSTROMS RESOLUTION 7M57 ; 4.0 ; Crystallographic structure of a primitive orthorhombic crystal form of STMV 1T0T ; 1.75 ; Crystallographic structure of a putative chlorite dismutase 1HTO ; 2.4 ; CRYSTALLOGRAPHIC STRUCTURE OF A RELAXED GLUTAMINE SYNTHETASE FROM MYCOBACTERIUM TUBERCULOSIS 2FSE ; 3.1 ; Crystallographic structure of a rheumatoid arthritis MHC susceptibility allele, HLA-DR1 (DRB1*0101), complexed with the immunodominant determinant of human type II collagen 8QIJ ; 2.073 ; Crystallographic Structure of a Salicylate Synthase from M. abscessus (Mab-SaS) 1NDS ; 2.8 ; CRYSTALLOGRAPHIC STRUCTURE OF A SUBSTRATE BOUND BLUE COPPER NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS 4AIX ; 1.8 ; Crystallographic structure of an amyloidogenic variant, 3rC34Y, of the germinal line lambda 3 4AJ0 ; 1.7 ; Crystallographic structure of an amyloidogenic variant, 3rCW, of the germinal line lambda 3 1RNA ; 2.25 ; CRYSTALLOGRAPHIC STRUCTURE OF AN RNA HELIX: [U(U-A)6A]2 1U9C ; 1.35 ; Crystallographic structure of APC35852 5CAZ ; 1.8 ; Crystallographic structure of apo human rotavirus K8 VP8* 5CA6 ; 1.9 ; Crystallographic structure of apo porcine rotavirus TFR-41 VP8* 2C2B ; 2.6 ; Crystallographic structure of Arabidopsis thaliana Threonine synthase complexed with pyridoxal phosphate and S-adenosylmethionine 3SOI ; 1.729 ; Crystallographic structure of Bacillus licheniformis beta-lactamase W210F/W229F/W251F at 1.73 angstrom resolution 4HNJ ; 2.9 ; Crystallographic structure of BCL-xL domain-swapped dimer in complex with PUMA BH3 peptide at 2.9A resolution 1URX ; 1.7 ; Crystallographic structure of beta-agarase A in complex with oligoagarose 2WME ; 2.1 ; Crystallographic structure of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa 3ZQA ; 2.45 ; CRYSTALLOGRAPHIC STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE MUTANT C286A FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH NADPH 2XDR ; 2.301 ; CRYSTALLOGRAPHIC STRUCTURE OF BETAINE ALDEHYDE DEHYDROGENASE MUTANT E252A FROM PSEUDOMONAS AERUGINOSA 6FIE ; 1.51 ; Crystallographic structure of calcium loaded Calbindin-D28K. 7WNP ; 1.72 ; Crystallographic structure of copper amine oxidase from Arthrobacter glibiformis at pD 7.4 determined by both X-ray and neutron diffraction data at 1.72 angstrom resolution. 7WNP ; 1.72 ; Crystallographic structure of copper amine oxidase from Arthrobacter glibiformis at pD 7.4 determined by both X-ray and neutron diffraction data at 1.72 angstrom resolution. 7WNO ; 1.72 ; Crystallographic structure of copper amine oxidase from Arthrobacter glibiformis at pD 7.4 determined by only neutron diffraction data. 1DAA ; 1.94 ; CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE COMPLEXED WITH PYRIDOXAL-5'-PHOSPHATE 4DAA ; 2.4 ; CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE IN PYRIDOXAL-5'-PHOSPHATE (PLP) FORM 2DAA ; 2.1 ; CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY D-CYCLOSERINE 3DAA ; 1.9 ; CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE 7UOI ; 1.6 ; Crystallographic structure of DapE from Enterococcus faecium 2H5Z ; 1.92 ; Crystallographic structure of digestive lysozyme 1 from Musca domestica bound to chitotetraose at 1.92 A resolution 1DOT ; 2.35 ; CRYSTALLOGRAPHIC STRUCTURE OF DUCK OVOTRANSFERRIN AT 2.3 ANGSTROMS RESOLUTION 3UQI ; 1.302 ; Crystallographic structure of FKBP12 from Aedes aegypti 5G52 ; 3.802 ; Crystallographic structure of full particle of Deformed Wing Virus 5UR0 ; 1.94 ; Crystallographic structure of glyceraldehyde-3-phosphate dehydrogenase from Naegleria gruberi 7JH0 ; 2.51 ; Crystallographic structure of glyceraldehyde-3-phosphate dehydrogenase from Schistosoma mansoni 2Y6Z ; 2.6 ; Crystallographic structure of GM23 an example of Catalytic migration from TIM to thiamin phosphate synthase. 2Y70 ; 2.3 ; CRYSTALLOGRAPHIC STRUCTURE OF GM23, MUTANT G89D, AN EXAMPLE OF CATALYTIC MIGRATION FROM TIM TO THIAMIN PHOSPHATE SYNTHASE. 3PI4 ; 3.17 ; Crystallographic Structure of HbII-oxy from Lucina pectinata at pH 4.0 3PI3 ; 1.95 ; Crystallographic Structure of HbII-oxy from Lucina pectinata at pH 5.0 3PI2 ; 1.85 ; Crystallographic Structure of HbII-oxy from Lucina pectinata at pH 8.0 3PI1 ; 2.002 ; Crystallographic Structure of HbII-oxy from Lucina pectinata at pH 9.0 4L5N ; 2.16 ; Crystallographic Structure of HHV-1 Uracil-DNA Glycosylase complexed with the Bacillus phage PZA inhibitor protein p56 2GJX ; 2.8 ; Crystallographic structure of human beta-Hexosaminidase A 1EKF ; 1.95 ; CRYSTALLOGRAPHIC STRUCTURE OF HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE (MITOCHONDRIAL) COMPLEXED WITH PYRIDOXAL-5'-PHOSPHATE AT 1.95 ANGSTROMS (ORTHORHOMBIC FORM) 2JG9 ; 1.9 ; Crystallographic structure of human C1q globular heads (P1) 2JG8 ; 2.05 ; Crystallographic structure of human C1q globular heads complexed to phosphatidyl-serine 2HNT ; 2.5 ; CRYSTALLOGRAPHIC STRUCTURE OF HUMAN GAMMA-THROMBIN 5CB7 ; 1.35 ; Crystallographic structure of human rotavirus K8 VP8* in complex with A-type HBGA 2F0R ; 2.26 ; Crystallographic structure of human Tsg101 UEV domain 7NLC ; 1.398 ; Crystallographic structure of human Tsg101 UEV domain in complex with a HEV ORF3 peptide 7KEM ; 1.77 ; Crystallographic structure of L,D-transpeptidase 2 from Mycobacterium tuberculosis 2VDT ; 3.2 ; Crystallographic structure of Levansucrase from Bacillus subtilis mutant S164A 1PYZ ; 1.25 ; CRYSTALLOGRAPHIC STRUCTURE OF MIMOCHROME IV 5G31 ; 2.0 ; Crystallographic structure of mutant C73S of thioredoxin from Litopenaeus vannamei 5G30 ; 1.65 ; Crystallographic structure of mutant D60S of thioredoxin from Litopenaeus vannamei 5G2Z ; 1.88 ; Crystallographic structure of mutant W31A of thioredoxin from Litopenaeus vannamei 1NGK ; 2.11 ; Crystallographic Structure of Mycobacterium tuberculosis Hemoglobin O 7SD5 ; 1.53 ; Crystallographic structure of neutralizing antibody 10-40 in complex with SARS-CoV-2 spike receptor binding domain 7L5B ; 3.18 ; Crystallographic structure of neutralizing antibody 2-15 in complex with SARS-CoV-2 spike receptor-binding Domain (RBD). 7L2C ; 3.65 ; Crystallographic structure of neutralizing antibody 2-51 in complex with SARS-CoV-2 spike N-terminal domain (NTD) 7FCQ ; 1.89 ; Crystallographic structure of neutralizing antibody P14-44 in complex with SARS-CoV-2 spike receptor-binding Domain (RBD) 4UOH ; 2.007 ; Crystallographic structure of nucleoside diphosphate kinase from Litopenaeus vannamei complexed with ADP 4UOF ; 2.102 ; Crystallographic structure of nucleoside diphosphate kinase from Litopenaeus vannamei complexed with dADP 4UOG ; 2.3 ; Crystallographic structure of nucleoside diphosphate kinase from Litopenaeus vannamei complexed with dCDP 6XUU ; 1.57 ; Crystallographic structure of oligosaccharide dehydrogenase from Pycnoporus cinnabarinus, glucose-bound form 6XUV ; 1.75 ; Crystallographic structure of oligosaccharide dehydrogenase from Pycnoporus cinnabarinus, laminaribiose-bound form 6XUT ; 1.6 ; Crystallographic structure of oligosaccharide dehydrogenase from Pycnoporus cinnabarinus, ligand-free form 7KV0 ; 2.501 ; Crystallographic structure of Paenibacillus xylanivorans GH11 3TCY ; 1.55 ; Crystallographic structure of phenylalanine hydroxylase from Chromobacterium violaceum (cPAH) bound to phenylalanine in a site distal to the active site 3TK2 ; 1.35 ; Crystallographic structure of phenylalanine hydroxylase from Chromobacterium violaceum cocrystallized with phenylalanine in a site distal to the active site 4ETL ; 1.49 ; Crystallographic structure of phenylalanine hydroxylase from Chromobacterium violaceum F258A mutation 4ESM ; 1.35 ; Crystallographic structure of phenylalanine hydroxylase from Chromobacterium violaceum Y155A mutation 2PIL ; 2.6 ; Crystallographic Structure of Phosphorylated Pilin from Neisseria: Phosphoserine Sites Modify Type IV Pilus Surface Chemistry 5F8B ; 2.54 ; Crystallographic Structure of PsoE with Co 5FHI ; 2.41 ; Crystallographic structure of PsoE without Co 1YIO ; 2.2 ; Crystallographic structure of response regulator StyR from Pseudomonas fluorescens 2PV2 ; 1.3 ; Crystallographic Structure of SurA first peptidyl-prolyl isomerase domain complexed with peptide NFTLKFWDIFRK 2PV1 ; 1.3 ; Crystallographic Structure of SurA first peptidyl-prolyl isomerase domain complexed with peptide WEYIPNV 2PV3 ; 3.39 ; Crystallographic Structure of SurA fragment lacking the second peptidyl-prolyl isomerase domain complexed with peptide NFTLKFWDIFRK 1M5Y ; 3.0 ; Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Outer Membrane Porin Folding 6OV6 ; 1.82 ; CRYSTALLOGRAPHIC STRUCTURE OF THE C24 PROTEIN FROM THE ANTARCTIC MICROORGANISM BIZIONIA ARGENTINENSIS 6HPO ; 1.67 ; Crystallographic structure of the catalytic domain of Human Phenylalanine Hydroxylase (hPAH CD) in complex with iron at 1.6 Angstrom 6VIN ; 3.04 ; Crystallographic structure of the circularly permuted human Taspase1 protein 2V64 ; 2.9 ; Crystallographic structure of the conformational dimer of the Spindle Assembly Checkpoint protein Mad2. 5BKL ; 2.94 ; Crystallographic structure of the cubic crystal form of STMV (77.9 degree rotation) grown from NaCl 6EAW ; 1.289 ; Crystallographic structure of the cyclic heptapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 21 21 21 6EAV ; 1.391 ; Crystallographic structure of the cyclic heptapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 4(1) 2(1) 2 6EAX ; 1.189 ; Crystallographic structure of the cyclic hexapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 21 21 21 6EAT ; 1.149 ; Crystallographic structure of the cyclic nonapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 21 21 21. 6E5M ; 1.612 ; Crystallographic structure of the cyclic nonapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 32 2 1 5XNX ; 3.7 ; Crystallographic structure of the enzymatically active N-terminal domain of the Rel protein from Mycobacterium tuberculosis 43C9 ; 2.2 ; CRYSTALLOGRAPHIC STRUCTURE OF THE ESTEROLYTIC AND AMIDOLYTIC 43C9 ANTIBODY 43CA ; 2.3 ; CRYSTALLOGRAPHIC STRUCTURE OF THE ESTEROLYTIC AND AMIDOLYTIC 43C9 ANTIBODY WITH BOUND P-NITROPHENOL 5AN1 ; 2.0 ; Crystallographic structure of the Glutathione S-Transferase from Litopenaeus vannamei complexed with Glutathione 4CDH ; 2.3 ; Crystallographic structure of the Human Igg1 alpha 2-6 sialilated Fc-Fragment 4UWW ; 1.44 ; Crystallographic Structure of the Intramineral Protein Struthicalcin from Struthio camelus Eggshell 1IJD ; 3.0 ; Crystallographic Structure of the LH3 Complex from Rhodopseudomonas acidophila strain 7050 4PXJ ; 2.06 ; Crystallographic structure of the LZII fragment (anti-parallel orientation) from JIP3 2QT7 ; 1.3 ; Crystallographic structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2 at 1.30 Angstroms 4HTI ; 1.954 ; Crystallographic structure of the membrane-proximal ectodomain of the human receptor-type protein-tyrosine phosphatase phogrin 4HTJ ; 2.011 ; Crystallographic structure of the membrane-proximal ectodomain of the human receptor-type protein-tyrosine phosphatase phogrin at pH 4.6 2H5Y ; 1.7 ; Crystallographic structure of the Molybdate-Binding Protein of Xanthomonas citri at 1.7 Ang resolution bound to molybdate 7M2T ; 2.71 ; Crystallographic Structure of the Monoclinic Form of Satellite Tobacco Mosaic Virus 4CAJ ; 2.191 ; Crystallographic structure of the mouse SIGN-R1 CRD domain in complex with sialic acid 1G8O ; 2.3 ; CRYSTALLOGRAPHIC STRUCTURE OF THE NATIVE BOVINE ALPHA-1,3-GALACTOSYLTRANSFERASE CATALYTIC DOMAIN 3ZHG ; 1.87 ; Crystallographic structure of the native mouse SIGN-R1 CRD domain 1NIP ; 2.9 ; CRYSTALLOGRAPHIC STRUCTURE OF THE NITROGENASE IRON PROTEIN FROM AZOTOBACTER VINELANDII 1W0H ; 1.59 ; Crystallographic structure of the nuclease domain of 3'hExo, a DEDDh family member, bound to rAMP 6EAU ; 1.18 ; Crystallographic structure of the octapeptide derived from the BTCI inhibitor bound to beta-trypsin in space group P 21 21 21. 4A1S ; 2.1 ; Crystallographic structure of the Pins:Insc complex 3MZI ; 2.304 ; Crystallographic structure of the pseudo-Signaling State of the BLUF Photoreceptor PixD (slr1694) Y8F mutant 7M3R ; 2.1 ; Crystallographic Structure of the Rhombohedral Crystal Form of STMV Grown from Bromide 7M2V ; 1.8 ; Crystallographic Structure of the Rhombohedral Crystal Form of STMV Grown from Chloride 1YC6 ; 2.9 ; Crystallographic Structure of the T=1 Particle of Brome Mosaic Virus 5G5E ; 1.8 ; Crystallographic structure of the Tau class glutathione S-transferase MiGSTU from mango Mangifera indica L. 5G5F ; 2.3 ; Crystallographic structure of the Tau class glutathione S-transferase MiGSTU in complex with reduced glutathione. 5KEJ ; 2.35 ; Crystallographic structure of the Tau class glutathione S-transferase MiGSTU in complex with S-hexyl-glutathione 3ZZX ; 1.88 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei 4AJ7 ; 2.035 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei (oxidized form). 4AJ8 ; 1.54 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei (partially reduced). 4AJ6 ; 2.0 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei (reduced form). 4V2L ; 1.65 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei: Radiation damage effect at 3.4 MGy, focused in disulfide bonds. 4V2M ; 1.841 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei: Radiation damage effect at 34 MGy, focused in disulfide bonds. 4V2N ; 2.15 ; Crystallographic structure of thioredoxin from Litopenaeus vannamei: Radiation damage effect at 85 MGy, focused in disulfide bonds 4FXU ; 1.9 ; Crystallographic structure of trimeric riboflavin synthase from Brucella abortus 4GQN ; 1.85 ; Crystallographic structure of trimeric Riboflavin Synthase from Brucella abortus in complex with 5-Nitro-6-(D-Ribitylamino)-2,4(1H,3H) Pyrimidinedione 4E0F ; 2.85 ; Crystallographic structure of trimeric Riboflavin Synthase from Brucella abortus in complex with riboflavin 4G6I ; 1.78 ; Crystallographic structure of trimeric riboflavin synthase from Brucella abortus in complex with roseoflavin 7FCP ; 2.4 ; Crystallographic structure of two neutralizing antibodies in complex with SARS-CoV-2 spike receptor-binding Domain (RBD) 7FH0 ; 3.2 ; Crystallographic structure of two neutralizing nanobodies in complex with SARS-CoV-2 spike receptor-binding Domain (RBD) 3DDL ; 1.9 ; Crystallographic Structure of Xanthorhodopsin, a Light-Driven Ion Pump with Dual Chromophore 5YUM ; 2.432 ; Crystallographic structures of IlvN.Val/Ile complexes:Conformational selectivity for feedback inhibition of AHASs 1RBC ; 2.0 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBD ; 1.7 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBE ; 1.75 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBF ; 1.8 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBG ; 1.8 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBH ; 1.7 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1RBI ; 1.8 ; CRYSTALLOGRAPHIC STRUCTURES OF RIBONUCLEASE S VARIANTS WITH NONPOLAR SUBSTITUTION AT POSITION 13: PACKING AND CAVITIES 1NRN ; 3.1 ; CRYSTALLOGRAPHIC STRUCTURES OF THROMBIN COMPLEXED WITH THROMBIN RECEPTOR PEPTIDES: EXISTENCE OF EXPECTED AND NOVEL BINDING MODES 1NRO ; 3.1 ; CRYSTALLOGRAPHIC STRUCTURES OF THROMBIN COMPLEXED WITH THROMBIN RECEPTOR PEPTIDES: EXISTENCE OF EXPECTED AND NOVEL BINDING MODES 1NRP ; 3.0 ; CRYSTALLOGRAPHIC STRUCTURES OF THROMBIN COMPLEXED WITH THROMBIN RECEPTOR PEPTIDES: EXISTENCE OF EXPECTED AND NOVEL BINDING MODES 1NRQ ; 3.5 ; CRYSTALLOGRAPHIC STRUCTURES OF THROMBIN COMPLEXED WITH THROMBIN RECEPTOR PEPTIDES: EXISTENCE OF EXPECTED AND NOVEL BINDING MODES 1NRR ; 2.4 ; Crystallographic structures of Thrombin complexed with Thrombin receptor peptides: Existence of expected and novel binding modes 1NRS ; 2.4 ; CRYSTALLOGRAPHIC STRUCTURES OF THROMBIN COMPLEXED WITH THROMBIN RECEPTOR PEPTIDES: EXISTENCE OF EXPECTED AND NOVEL BINDING MODES 2EQL ; 2.5 ; CRYSTALLOGRAPHIC STUDIES OF A CALCIUM BINDING LYSOZYME FROM EQUINE MILK AT 2.5 ANGSTROMS RESOLUTION 1HQ7 ; 2.1 ; CRYSTALLOGRAPHIC STUDIES OF A DODECAMER B-DNA D-(GCAAACGTTTGC)2 1I44 ; 2.4 ; CRYSTALLOGRAPHIC STUDIES OF AN ACTIVATION LOOP MUTANT OF THE INSULIN RECEPTOR TYROSINE KINASE 2CA2 ; 1.9 ; CRYSTALLOGRAPHIC STUDIES OF INHIBITOR BINDING SITES IN HUMAN CARBONIC ANHYDRASE II. A PENTACOORDINATED BINDING OF THE SCN-ION TO THE ZINC AT HIGH P*H 3CA2 ; 2.0 ; CRYSTALLOGRAPHIC STUDIES OF INHIBITOR BINDING SITES IN HUMAN CARBONIC ANHYDRASE II. A PENTACOORDINATED BINDING OF THE SCN-ION TO THE ZINC AT HIGH P*H 1ADB ; 2.4 ; CRYSTALLOGRAPHIC STUDIES OF ISOSTERIC NAD ANALOGUES BOUND TO ALCOHOL DEHYDROGENASE: SPECIFICITY AND SUBSTRATE BINDING IN TWO TERNARY COMPLEXES 1ADC ; 2.7 ; CRYSTALLOGRAPHIC STUDIES OF ISOSTERIC NAD ANALOGUES BOUND TO ALCOHOL DEHYDROGENASE: SPECIFICITY AND SUBSTRATE BINDING IN TWO TERNARY COMPLEXES 1P34 ; 2.7 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3A ; 3.0 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3B ; 3.0 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3F ; 2.9 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3G ; 2.7 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3I ; 2.3 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3K ; 2.9 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3L ; 2.4 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3M ; 2.9 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3O ; 2.75 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1P3P ; 2.7 ; Crystallographic Studies of Nucleosome Core Particles containing Histone 'Sin' Mutants 1CAN ; 1.9 ; CRYSTALLOGRAPHIC STUDIES OF THE BINDING OF PROTONATED AND UNPROTONATED INHIBITORS TO CARBONIC ANHYDRASE USING HYDROGEN SULPHIDE AND NITRATE ANIONS 1CAO ; 1.9 ; CRYSTALLOGRAPHIC STUDIES OF THE BINDING OF PROTONATED AND UNPROTONATED INHIBITORS TO CARBONIC ANHYDRASE USING HYDROGEN SULPHIDE AND NITRATE ANIONS 1FBC ; 2.6 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1FBD ; 2.9 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1FBE ; 3.0 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1FBF ; 2.7 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1FBG ; 3.0 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1FBH ; 2.5 ; CRYSTALLOGRAPHIC STUDIES OF THE CATALYTIC MECHANISM OF THE NEUTRAL FORM OF FRUCTOSE-1,6-BISPHOSPHATASE 1ADF ; 2.9 ; CRYSTALLOGRAPHIC STUDIES OF TWO ALCOHOL DEHYDROGENASE-BOUND ANALOGS OF THIAZOLE-4-CARBOXAMIDE ADENINE DINUCLEOTIDE (TAD), THE ACTIVE ANABOLITE OF THE ANTITUMOR AGENT TIAZOFURIN 1ADG ; 2.7 ; CRYSTALLOGRAPHIC STUDIES OF TWO ALCOHOL DEHYDROGENASE-BOUND ANALOGS OF THIAZOLE-4-CARBOXAMIDE ADENINE DINUCLEOTIDE (TAD), THE ACTIVE ANABOLITE OF THE ANTITUMOR AGENT TIAZOFURIN 1CRB ; 2.1 ; CRYSTALLOGRAPHIC STUDIES ON A FAMILY OF CELLULAR LIPOPHILIC TRANSPORT PROTEINS. REFINEMENT OF P2 MYELIN PROTEIN AND THE STRUCTURE DETERMINATION AND REFINEMENT OF CELLULAR RETINOL-BINDING PROTEIN IN COMPLEX WITH ALL-TRANS-RETINOL 1PMP ; 2.7 ; CRYSTALLOGRAPHIC STUDIES ON A FAMILY OF CELLULAR LIPOPHILIC TRANSPORT PROTEINS. REFINEMENT OF P2 MYELIN PROTEIN AND THE STRUCTURE DETERMINATION AND REFINEMENT OF CELLULAR RETINOL-BINDING PROTEIN IN COMPLEX WITH ALL-TRANS-RETINOL 1WUY ; 2.26 ; Crystallographic studies on acyl ureas, a new class of inhibitors of glycogen phosphorylase. Broad specificity of the allosteric site 1WV0 ; 2.26 ; Crystallographic studies on acyl ureas, a new class of inhibitors of glycogen phosphorylase. Broad specificity of the allosteric site 1WV1 ; 2.26 ; Crystallographic studies on acyl ureas, a new class of inhibitors of glycogenphosphorylase. Broad specificity of the allosteric site 1FEL ; 1.8 ; CRYSTALLOGRAPHIC STUDIES ON COMPLEXES BETWEEN RETINOIDS AND PLASMA RETINOL-BINDING PROTEIN 1FEM ; 1.9 ; CRYSTALLOGRAPHIC STUDIES ON COMPLEXES BETWEEN RETINOIDS AND PLASMA RETINOL-BINDING PROTEIN 1FEN ; 1.9 ; CRYSTALLOGRAPHIC STUDIES ON COMPLEXES BETWEEN RETINOIDS AND PLASMA RETINOL-BINDING PROTEIN 2FFR ; 2.03 ; Crystallographic studies on N-azido-beta-D-glucopyranosylamine, an inhibitor of glycogen phosphorylase: comparison with N-acetyl-beta-D-glucopyranosylamine 1PLJ ; 2.8 ; CRYSTALLOGRAPHIC STUDIES ON P21H-RAS USING SYNCHROTRON LAUE METHOD: IMPROVEMENT OF CRYSTAL QUALITY AND MONITORING OF THE GTPASE REACTION AT DIFFERENT TIME POINTS 1PLK ; 2.8 ; CRYSTALLOGRAPHIC STUDIES ON P21H-RAS USING SYNCHROTRON LAUE METHOD: IMPROVEMENT OF CRYSTAL QUALITY AND MONITORING OF THE GTPASE REACTION AT DIFFERENT TIME POINTS 1PLL ; 2.8 ; CRYSTALLOGRAPHIC STUDIES ON P21H-RAS USING SYNCHROTRON LAUE METHOD: IMPROVEMENT OF CRYSTAL QUALITY AND MONITORING OF THE GTPASE REACTION AT DIFFERENT TIME POINTS 1BIL ; 2.4 ; CRYSTALLOGRAPHIC STUDIES ON THE BINDING MODES OF P2-P3 BUTANEDIAMIDE RENIN INHIBITORS 1BIM ; 2.8 ; CRYSTALLOGRAPHIC STUDIES ON THE BINDING MODES OF P2-P3 BUTANEDIAMIDE RENIN INHIBITORS 1WW2 ; 1.9 ; Crystallographic studies on two bioisosteric analogues, N-acetyl-beta-D-glucopyranosylamine and N-trifluoroacetyl-beta-D-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase 1WW3 ; 1.8 ; Crystallographic studies on two bioisosteric analogues, N-acetyl-beta-D-glucopyranosylamine and N-trifluoroacetyl-beta-D-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase 1NWO ; 1.92 ; CRYSTALLOGRAPHIC STUDY OF AZURIN FROM PSEUDOMONAS PUTIDA 1NWP ; 1.6 ; CRYSTALLOGRAPHIC STUDY OF AZURIN FROM PSEUDOMONAS PUTIDA 1PGN ; 2.3 ; CRYSTALLOGRAPHIC STUDY OF COENZYME, COENZYME ANALOGUE AND SUBSTRATE BINDING IN 6-PHOSPHOGLUCONATE DEHYDROGENASE: IMPLICATIONS FOR NADP SPECIFICITY AND THE ENZYME MECHANISM 1PGO ; 2.5 ; CRYSTALLOGRAPHIC STUDY OF COENZYME, COENZYME ANALOGUE AND SUBSTRATE BINDING IN 6-PHOSPHOGLUCONATE DEHYDROGENASE: IMPLICATIONS FOR NADP SPECIFICITY AND THE ENZYME MECHANISM 1PGP ; 2.5 ; CRYSTALLOGRAPHIC STUDY OF COENZYME, COENZYME ANALOGUE AND SUBSTRATE BINDING IN 6-PHOSPHOGLUCONATE DEHYDROGENASE: IMPLICATIONS FOR NADP SPECIFICITY AND THE ENZYME MECHANISM 1PGQ ; 3.17 ; CRYSTALLOGRAPHIC STUDY OF COENZYME, COENZYME ANALOGUE AND SUBSTRATE BINDING IN 6-PHOSPHOGLUCONATE DEHYDROGENASE: IMPLICATIONS FOR NADP SPECIFICITY AND THE ENZYME MECHANISM 1LRA ; 1.9 ; CRYSTALLOGRAPHIC STUDY OF GLU 58 ALA RNASE T1(ASTERISK)2'-GUANOSINE MONOPHOSPHATE AT 1.9 ANGSTROMS RESOLUTION 4L1A ; 1.9 ; Crystallographic study of multi-drug resistant HIV-1 protease Lopinavir complex: mechanism of drug recognition and resistance 4ANK ; 1.7 ; Crystallographic study of novel transthyretin ligands exhibiting negative-cooperativity between two T4 binding sites. 1BD1 ; 1.6 ; CRYSTALLOGRAPHIC STUDY OF ONE TURN OF G/C-RICH B-DNA 2EST ; 2.5 ; Crystallographic study of the binding of a trifluoroacetyl dipeptide anilide inhibitor with elastase 4KXI ; 2.0 ; Crystallographic study of the complex of Ni(II) Schiff base complex and HEW Lysozyme 1KBI ; 2.3 ; Crystallographic Study of the Recombinant Flavin-binding Domain of Baker's Yeast Flavocytochrome b2: Comparison with the Intact Wild-type Enzyme 1KBJ ; 2.5 ; Crystallographic Study of the Recombinant Flavin-binding Domain of Baker's Yeast Flavocytochrome b2: comparison with the Intact Wild-type Enzyme 1LZ2 ; 2.8 ; CRYSTALLOGRAPHIC STUDY OF TURKEY EGG-WHITE LYSOZYME AND ITS COMPLEX WITH A DISACCHARIDE 6R27 ; 3.4 ; Crystallographic superstructure of the photosensory core module (PAS-GAF-PHY) of the bacterial phytochrome Agp1 (AtBphP1) locked in a Pr-like state 3N85 ; 3.2 ; Crystallographic trimer of HER2 extracellular regions in complex with tryptophan-rich antibody fragment 6WYU ; 1.76 ; Crystallographic trimer of metal-free TriCyt2 7JRQ ; 1.75 ; Crystallographically Characterized De Novo Designed Mn-Diphenylporphyrin Binding Protein 1TG6 ; 2.1 ; Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP 6OL2 ; 2.1 ; Crystallography of novel WNK1 and WNK3 inhibitors discovered from high-throughput-screening 6DHY ; 2.22 ; Crystallogrpahic tetramer of Zn-bound RIDC1 variant bearing two disulfide bonded cysteines 1NWN ; 2.8 ; Crystals of CO-HbI in which the structure was converted to its unligated state, and then converted back to its original CO-ligated state. 4N6S ; 2.4 ; Crystals of cross-linked stabilized and functional Phycobilisomes: only phycocyanin rods contribute to diffraction. 1ENS ; 2.8 ; CRYSTALS OF DEMETALLIZED CONCANAVALIN A SOAKED WITH COBALT HAVING A COBALT ION BOUND IN THE S1 SITE 1CES ; 2.7 ; CRYSTALS OF DEMETALLIZED CONCANAVALIN A SOAKED WITH ZINC HAVE A ZINC ION BOUND IN THE S1 SITE 2DVF ; 2.74 ; Crystals of peanut lectin grown in the presence of GAL-ALPHA-1,3-GAL-BETA-1,4-GAL 1JYM ; 2.8 ; Crystals of Peptide Deformylase from Plasmodium falciparum with Ten Subunits per Asymmetric Unit Reveal Critical Characteristics of the Active Site for Drug Design 1RQC ; 2.8 ; Crystals of peptide deformylase from Plasmodium falciparum with ten subunits per asymmetric unit reveal critical characteristics of the active site for drug design 3N5M ; 2.05 ; Crystals structure of a Bacillus anthracis aminotransferase 5K3G ; 2.859 ; Crystals structure of Acyl-CoA oxidase-1 in Caenorhabditis elegans, Apo form-I 5K3H ; 2.48 ; Crystals structure of Acyl-CoA oxidase-1 in Caenorhabditis elegans, Apo form-II 5K3J ; 2.68 ; Crystals structure of Acyl-CoA oxidase-2 in Caenorhabditis elegans bound with FAD, ascaroside-CoA, and ATP 3PYX ; 1.6 ; Crystals Structure of Aspartate beta-Semialdehyde Dehydrogenase complex with NADP and 2-aminoterephthalate 3PZB ; 2.0 ; Crystals Structure of Aspartate beta-Semialdehyde Dehydrogenase complex with NADP and D-2,3-Diaminopropionate 3Q1L ; 2.3 ; Crystals Structure of Aspartate beta-Semialdehyde Dehydrogenase from Streptococcus pneumoniae with cysteamine bound covalently to Cys 128 3Q11 ; 1.8 ; Crystals Structure of Aspartate beta-Semialdehyde Dehydrogenase from Streptococcus pneumoniae with NADP and aspartyl beta-difluorophosphonate 3PZR ; 1.75 ; Crystals structure of aspartate beta-Semialdehyde dehydrogenase from Vibrio Cholerae with NADP and product of S-carbamoyl-L-cysteine 3Q0E ; 1.8 ; Crystals Structure of Aspartate beta-Semialdehyde Dehydrogenase from Vibrio Cholerae with product of S-allyl-L-cysteine sulfoxide 6B8U ; 2.68 ; Crystals Structure of B-Raf kinase domain in complex with an Imidazopyridinyl benzamide inhibitor 5YF7 ; 2.27 ; Crystals structure of Classical swine fever virus NS5B (residues 1-672) 6AE7 ; 3.8 ; Crystals structure of Classical swine fever virus NS5B (residues 1-672, E472A mutant) 6AE5 ; 2.754 ; Crystals structure of Classical swine fever virus NS5B (residues 1-672, Y471A mutant, form 1) 6AE6 ; 3.856 ; Crystals structure of Classical swine fever virus NS5B (residues 1-672, Y471A mutant, form 2) 5YF8 ; 3.396 ; Crystals structure of Classical swine fever virus NS5B (residues 1-672, Y471A-E472A mutant) 5YF6 ; 2.1 ; Crystals structure of Classical swine fever virus NS5B (residues 1-682) 5YF5 ; 2.49 ; Crystals structure of Classical swine fever virus NS5B (residues 1-694) 6AE4 ; 2.95 ; Crystals structure of Classical swine fever virus NS5B (residues 1-694, Y471A mutant) 7EKJ ; 3.06 ; Crystals structure of classical swine fever virus NS5B (residues 91-694) 4IWV ; 2.1 ; Crystals structure of Human Glucokinase in complex with small molecule activator 3RVG ; 2.498 ; Crystals structure of Jak2 with a 1-amino-5H-pyrido[4,3-b]indol-4-carboxamide inhibitor 3G1P ; 1.4 ; Crystals structure of PhnP from E.coli K-12 2YX7 ; 2.05 ; Crystals structure of T132A mutant of St1022 from sulfolobus tokodaii 7 7KZ7 ; 1.8 ; Crystals Structure of the Mutated Protease Domain of Botulinum Neurotoxin X (X4130B1). 6WTT ; 2.15 ; Crystals Structure of the SARS-CoV-2 (COVID-19) main protease with inhibitor GC-376 3VON ; 3.15 ; Crystalstructure of the ubiquitin protease 2YXY ; 2.2 ; Crystarl structure of Hypothetical conserved protein, GK0453 6JXG ; 1.9 ; Crystasl Structure of Beta-glucosidase D2-BGL from Chaetomella Raphigera 7XPV ; 2.4 ; crysteal structure of MtdL-S228A-His soaked with GDP-Fucf and Mn 2ZMK ; 2.5 ; Crystl structure of Basic Winged bean lectin in complex with Gal-alpha-1,4-Gal-Beta-Ethylene 3TON ; 2.953 ; Crystral Structure of the C-terminal Subunit of Human Maltase-Glucoamylase 3TOP ; 2.881 ; Crystral Structure of the C-terminal Subunit of Human Maltase-Glucoamylase in Complex with Acarbose 2QLY ; 2.0 ; Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase 2QMJ ; 1.9 ; Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase in Complex with Acarbose 2RFO ; 2.6 ; Crystral Structure of the nucleoporin Nic96 7JOD ; 1.33 ; Crytsal structure of BbKI complexed with Human Kallikrein 4 4YVD ; 1.7 ; Crytsal structure of human Pleiotropic Regulator 1 (PRL1) 1PO9 ; 2.0 ; Crytsal structure of isoaspartyl dipeptidase 4LCN ; 1.8 ; Crytsal structure of NE0047 in complex with 2'-DEOXY-GUANOSINE 4LCP ; 2.0 ; Crytsal structure of NE0047 in complex with 2,6-diaminopurine 6JUV ; 3.043 ; Crytsal structure of ScpB derived from Pyrococcus yayanosii 5JIG ; 1.0 ; Crytsal structure of Wss1 from S. pombe 6CWW ; 1.851 ; Cs H-NOX mutant with unnatural amino acid 4-cyano-L-phenylalanine at site 5 2HG5 ; 2.75 ; Cs+ complex of a K channel with an amide to ester substitution in the selectivity filter 3HNT ; 1.8 ; CS-35 Fab complex with a linear, terminal oligoarabinofuranosyl tetrasaccharide from lipoarabinomannan 3HNS ; 2.0 ; CS-35 Fab Complex with Oligoarabinofuranosyl Hexasaccharide 3HNV ; 2.0 ; CS-35 Fab Complex with Oligoarabinofuranosyl Tetrasaccharide (branch part of Hexasaccharide) 6D10 ; ; CS-rosetta determined structures of the C-terminal domain of AlgF from P. aeruginosa 6CZT ; ; CS-rosetta determined structures of the N-terminal domain of AlgF from P. aeruginosa 6P6B ; ; CS-Rosetta Model of PEA-15 Death Effector Domain 6P6C ; ; CS-Rosetta Model of PEA-15 Death Effector Domain in the Complex with ERK2 7SQY ; 3.4 ; CSDaV GFP mutant 7SQZ ; 3.1 ; CSDaV wild-type 1C0N ; 2.8 ; CSDB PROTEIN, NIFS HOMOLOGUE 6WXJ ; 2.62 ; CSF1R signaling is a regulator of pathogenesis in progressive MS 6H9H ; 1.75 ; Csf5, CRISPR-Cas type IV Cas6 crRNA endonuclease 6H9I ; 2.29 ; Csf5, CRISPR-Cas type IV Cas6 crRNA endonuclease 6L7A ; 3.38 ; CsgFG complex in Curli biogenesis system 6L7C ; 3.34 ; CsgFG complex with substrate CsgAN6 peptide in Curli biogenesis system 5IVL ; 2.3 ; CshA Helicase 3BRF ; 2.47 ; CSL (Lag-1) bound to DNA with Lin-12 RAM peptide, C2221 3BRD ; 2.21 ; CSL (Lag-1) bound to DNA with Lin-12 RAM peptide, P212121 3BRG ; 2.2 ; CSL (RBP-Jk) bound to DNA 3IAG ; 2.0 ; CSL (RBP-Jk) bound to HES-1 nonconsensus site 4J2X ; 2.85 ; CSL (RBP-Jk) with corepressor KyoT2 bound to DNA 6WQU ; 2.41 ; CSL (RBPJ) bound to Notch3 RAM and DNA 5EG6 ; 2.094 ; CSL-RITA complex bound to DNA 2K37 ; ; CsmA 2G13 ; 1.61 ; CsoS1A with sulfate ion 6FF1 ; 1.3 ; CsoZ metallochaperone 6CJ8 ; ; CSP1 6COW ; ; CSP1 6OC4 ; ; CSP1-cyc(Dab6E10) 6OLD ; ; CSP1-cyc(Dap6E10) 6OBW ; ; CSP1-cyc(K6D10) 6OC2 ; ; CSP1-cyc(Orn6D10) 6COO ; ; CSP1-E1A 6V1N ; ; CSP1-E1A-cyc(Dap6E10) 6COS ; ; CSP1-f11 6COR ; ; CSP1-F11A 6COQ ; ; CSP1-K6A 6COP ; ; CSP1-R3A 6COT ; ; CSP2-d10 6COU ; ; CSP2-E1Ad10 6COV ; ; CSP2-l14 7NWW ; 3.05 ; CspA-27 cotranslational folding intermediate 1 7OIF ; 3.0 ; CspA-27 cotranslational folding intermediate 2 7OIG ; 3.2 ; CspA-27 cotranslational folding intermediate 3 7OT5 ; 2.9 ; CspA-70 cotranslational folding intermediate 1 7OII ; 3.0 ; CspA-70 cotranslational folding intermediate 2 7ZJJ ; 2.1 ; CspZ (BbCRASP-2) from Borrelia burgdorferi strain B379 7ZJK ; 2.45 ; CspZ (BbCRASP-2) from Borrelia burgdorferi strain B408 2MFH ; ; Csr/Rsm protein-RNA recognition - A molecular affinity ruler: RsmZ(36-44)/RsmE(dimer) 2:1 complex 2MFC ; ; Csr/Rsm protein-RNA recognition - A molecular affinity ruler: RsmZ(SL1)/RsmE(dimer) 2:1 complex 2MFE ; ; Csr/Rsm protein-RNA recognition - A molecular affinity ruler: RsmZ(SL2)/RsmE(dimer) 2:1 complex 2MFF ; ; Csr/Rsm protein-RNA recognition - A molecular affinity ruler: RsmZ(SL3)/RsmE(dimer) 2:1 complex 2MFG ; ; Csr/Rsm protein-RNA recognition - A molecular affinity ruler: RsmZ(SL4)/RsmE(dimer) 2:1 complex 6VJG ; 1.8 ; Csx3-I222 Crystal Form at 1.8 Angstrom Resolution 6TY2 ; 1.98 ; CT PART CRYSTAL STRUCTURE OF THE RYMV-ENCODED VIRAL RNA SILENCING SUPPRESSOR P1 7WVE ; 3.11 ; CT-mut (D523K,D524K,E527K) TLR3-poly(I:C) complex 2EYY ; ; CT10-Regulated Kinase isoform I 2EYZ ; ; CT10-Regulated Kinase isoform II 5F16 ; 1.2 ; CTA-modified hen egg-white lysozyme 1HL3 ; 3.1 ; CtBP/BARS in ternary complex with NAD(H) and PIDLSKK peptide 2HU2 ; 2.85 ; CTBP/BARS in ternary complex with NAD(H) and RRTGAPPAL peptide 1HKU ; 2.3 ; CtBP/BARS: a dual-function protein involved in transcription corepression and Golgi membrane fission 7KWM ; 2.3 ; CtBP1 (28-375) L182F/V185T - AMP 4U6Q ; 2.3 ; CtBP1 bound to inhibitor 2-(hydroxyimino)-3-phenylpropanoic acid 4LCE ; 2.38 ; CtBP1 in complex with substrate MTOB 4U6S ; 2.1 ; CtBP1 in complex with substrate phenylpyruvate 3GA0 ; 3.4 ; CtBP1/BARS Gly172->Glu mutant structure: impairing NAD(H) binding and dimerization 4LCJ ; 2.86 ; CtBP2 in complex with substrate MTOB 1ZFG ; 1.75 ; CTC Duplex B-DNA 2XQO ; 1.4 ; CtCel124: a cellulase from Clostridium thermocellum 5T0U ; 3.199 ; CTCF ZnF2-7 and DNA complex structure 3LFY ; 2.6 ; CTD of Tarocystatin in complex with papain 2GHQ ; 2.05 ; CTD-specific phosphatase Scp1 in complex with peptide C-terminal domain of RNA polymerase II 2GHT ; 1.8 ; CTD-specific phosphatase Scp1 in complex with peptide from C-terminal domain of RNA polymerase II 8BA1 ; ; CTD12-CTD12 heterodimer from CPSF73 and CPSF100 8Q9O ; 3.1 ; CTE tau intermediate amyloid (LIA-17) 8QJJ ; 3.35 ; CTE type II (tau intermediate amyloid) 8OT6 ; 2.0 ; CTE typeI tau filament from Guam ALS/PDC 8OTG ; 2.1 ; CTE typeI tau filament from Kii ALS/PDC 8OTC ; 3.2 ; CTE typeII tau filament from Guam ALS/PDC 8OTI ; 2.7 ; CTE typeIII tau filament 8OT9 ; 3.4 ; CTE typeIII tau filament from Guam ALS/PDC 7L7Q ; 3.7 ; Ctf3c with Ulp2-KIM 4AOU ; 2.5 ; CtIDH bound to NADP. The complex structures of Isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila, support a new active site locking mechanism 5GGV ; 1.998 ; CTLA-4 in complex with tremelimumab Fab 1AH1 ; ; CTLA-4, NMR, 20 STRUCTURES 8G8N ; 3.0 ; CTLA4 Fab with peptide 7SWG ; ; cTnC-TnI chimera complexed with A1 7SWI ; ; cTnC-TnI chimera complexed with A2 7SXC ; ; cTnC-TnI chimera complexed with calcium 1COZ ; 2.0 ; CTP:GLYCEROL-3-PHOSPHATE CYTIDYLYLTRANSFERASE FROM BACILLUS SUBTILIS 8HP2 ; 3.05 ; CtPDC 8HP4 ; 2.52 ; CtPDC complex 5TQR ; 2.571 ; ctPRC2 in an autoinhibited conformation bound to S-adenosylmethionine 6FH4 ; 2.49 ; CtsR C-terminal domain with bound phospho-arginine 6D7H ; 1.801 ; CTX-M-14 Apoenzyme 6D7I ; 2.001 ; CTX-M-14 Apoenzyme D233N Point Mutant 6OOJ ; 1.4 ; CTX-M-14 Beta Lactamase with Compound 14 6OOF ; 1.236 ; CTX-M-14 Beta Lactamase with Compound 20 6OOK ; 1.4 ; CTX-M-14 Beta Lactamase with Compound 3 8ELA ; 1.5 ; CTX-M-14 beta-lactamase mutant - N132A w MES 8ELB ; 1.5 ; CTX-M-14 beta-lactamase mutant- N132A 4UA6 ; 0.79 ; CTX-M-14 Class A Beta-Lactamase Apo Crystal Structure at 0.79 Angstrom Resolution 4UA9 ; 0.84 ; CTX-M-14 Class A Beta-Lactamase in Complex with a Boronic Acid Acylation Transition State Analog at Sub-Angstrom Resolution 4UA7 ; 0.89 ; CTX-M-14 Class A Beta-Lactamase in Complex with a Non-Covalent Inhibitor at Sub-Angstrom Resolution 4UAA ; 0.86 ; CTX-M-14 Class A Beta-Lactamase in Complex with a Non-Covalent Inhibitor at Sub-Angstrom Resolution 6MZ1 ; 1.0 ; CTX-M-14 Class A Beta-Lactamase in Complex with Avibactam at pH 5.3 6MZ2 ; 0.83 ; CTX-M-14 Class A Beta-Lactamase in Complex with Avibactam at pH 7.9 5U53 ; 1.4 ; CTX-M-14 E166A with acylated ceftazidime molecule 6CYK ; 1.7 ; CTX-M-14 N106S mutant 6CYN ; 1.6 ; CTX-M-14 N106S/D240G mutant 5TWD ; 1.7 ; CTX-M-14 P167S apoenzyme 5VTH ; 2.2 ; CTX-M-14 P167S:E166A mutant 5TW6 ; 1.7 ; CTX-M-14 P167S:E166A mutant with acylated ceftazidime molecule 5TWE ; 1.5 ; CTX-M-14 P167S:S70G mutant enzyme crystallized with ceftazidime 6BT6 ; 1.05 ; CTX-M-14 S237A Beta-Lactamase in Complex with a Non-Covalent Tetrazole Inhibitor 7UON ; 1.35 ; CTX-M-14 Y105W mutant 4S2I ; 1.6 ; CTX-M-15 in complex with Avibactam 5FAO ; 3.01 ; CTX-M-15 in complex with FPI-1465 5FA7 ; 1.67 ; CTX-M-15 in complex with FPI-1523 5FAP ; 2.7 ; CTX-M-15 in complex with FPI-1602 7S5S ; 1.4 ; CTX-M-15 WT in complex with BLIP WT 6BN3 ; 1.278 ; CTX-M-151 class A extended-spectrum beta-lactamase apo crystal structure at 1.3 Angstrom resolution 6BPF ; 1.318 ; CTX-M-151 class A extended-spectrum beta-lactamase crystal structure in complex with avibactam at 1.32 Angstrom resolution 6OOH ; 1.499 ; CTX-M-27 Beta Lactamase with Compound 14 6OOE ; 1.26 ; CTX-M-27 Beta Lactamase with Compound 20 6BU3 ; 1.15 ; CTX-M-27 Beta-Lactamase in Complex with a Non-Covalent Tetrazole Inhibitor 5ZB7 ; 1.63 ; CTX-M-64 apoenzyme 6J25 ; 1.2 ; CTX-M-64 beta-lactamase mutant-S130T 6J2K ; 1.44 ; CTX-M-64 beta-lactamase S130T clavulanic acid complex 6J2B ; 1.44 ; CTX-M-64 beta-lactamase S130T sulbactam complex 6ITY ; 2.14 ; CTX-M-64 sulbactam complex 5KMU ; 1.8 ; CTX-M-9 beta lactamase mutant - T165W 2P74 ; 0.88 ; CTX-M-9 class A beta-lactamase apo crystal structure at 0.88 Angstrom resolution 3G2Y ; 1.31 ; CTX-M-9 class A beta-lactamase complexed with compound 1 (GF4) 4DDY ; 1.36 ; CTX-M-9 class A beta-lactamase complexed with compound 10 4DDS ; 1.36 ; CTX-M-9 class A beta-lactamase complexed with compound 11 3G34 ; 1.31 ; CTX-M-9 class A beta-lactamase complexed with compound 11 (1CE) 4DE2 ; 1.4 ; CTX-M-9 class A beta-lactamase complexed with compound 12 3G35 ; 1.41 ; CTX-M-9 class A beta-lactamase complexed with compound 12 (F13) 4DE0 ; 1.12 ; CTX-M-9 class A beta-lactamase complexed with compound 16 4DE1 ; 1.26 ; CTX-M-9 class A beta-lactamase complexed with compound 18 3G2Z ; 1.5 ; CTX-M-9 class A beta-lactamase complexed with compound 2 (GZ2) 3G30 ; 1.8 ; CTX-M-9 class A beta-lactamase complexed with compound 3 (G30) 4DE3 ; 1.44 ; CTX-M-9 class A beta-lactamase complexed with compound 4 3G31 ; 1.7 ; CTX-M-9 class A beta-lactamase complexed with compound 4 (GF1) 3G32 ; 1.31 ; CTX-M-9 class A beta-lactamase complexed with compound 6 (3G3) 4LEN ; 1.5 ; CTX-M-9 in complex with the broad spectrum inhibitor 3-(2- carboxyvinyl)benzo(b)thiophene-2-boronic acid 3HLW ; 1.5 ; CTX-M-9 S70G in complex with cefotaxime 3Q1F ; 1.5 ; CTX-M-9 S70G in complex with hydrolyzed piperacillin 3Q07 ; 1.5 ; CTX-M-9 S70G in complex with piperacillin 8R7M ; 1.0 ; CTX-M14 in complex with boric acid and 1,2-diol boric ester 5KMT ; 1.7 ; CTX-M9 mutant L48A 3VGD ; 2.4 ; Ctystal structure of glycosyltrehalose trehalohydrolase (D252E) 2XXF ; 1.5 ; Cu metallated H254F mutant of nitrite reductase 6ZU6 ; 1.15 ; Cu nitrite reductase from Achromobacter cycloclastes: MSOX series at 170K, dose point 1 6ZUB ; 1.08 ; Cu nitrite reductase from Achromobacter cycloclastes: MSOX series at 170K, dose point 2 6ZUD ; 1.1 ; Cu nitrite reductase from Achromobacter cycloclastes: MSOX series at 170K, dose point 3 6ZUA ; 1.14 ; Cu nitrite reductase from Achromobacter cycloclastes: MSOX series at 170K, dose point 4 6ZUT ; 1.15 ; Cu nitrite reductase MSOX series at 170K, dose point 5 5OF5 ; 1.08 ; Cu nitrite reductase serial data at varying temperatures 5OF6 ; 1.08 ; Cu nitrite reductase serial data at varying temperatures 190K 0.48MGy 5OF7 ; 1.27 ; Cu nitrite reductase serial data at varying temperatures 190K 0.48MGy 5OF8 ; 1.34 ; Cu nitrite reductase serial data at varying temperatures 190K 0.48MGy 5OFD ; 1.77 ; Cu nitrite reductase serial data at varying temperatures 190K 0.48MGy 5OFE ; 1.84 ; Cu nitrite reductase serial data at varying temperatures 190K 0.48MGy 5OFC ; 1.68 ; Cu nitrite reductase serial data at varying temperatures 190K 21.65MGy 5OFF ; 1.41 ; Cu nitrite reductase serial data at varying temperatures RT 0.03MGy 5OFG ; 1.49 ; Cu nitrite reductase serial data at varying temperatures RT 0.06MGy 5OG2 ; 1.64 ; Cu nitrite reductase serial data at varying temperatures RT 0.09MGy 5OFH ; 1.58 ; Cu nitrite reductase serial data at varying temperatures RT 0.15MGy 5OG3 ; 1.7 ; Cu nitrite reductase serial data at varying temperatures RT 0.15MGy 5OG4 ; 1.76 ; Cu nitrite reductase serial data at varying temperatures RT 0.18MGy 5OG5 ; 1.82 ; Cu nitrite reductase serial data at varying temperatures RT 0.21MGy 5OG6 ; 1.85 ; Cu nitrite reductase serial data at varying temperatures RT 0.24MGy 5OGF ; 1.88 ; Cu nitrite reductase serial data at varying temperatures RT 0.27MGy 5OGG ; 1.91 ; Cu nitrite reductase serial data at varying temperatures RT 0.30MGy 6TWE ; ; Cu(I) NMR solution structure of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A 2KM0 ; ; Cu(I)-bound CopK 6WKT ; 3.4 ; Cu(I)-bound Copper Storage Protein BsCsp3 5FJE ; 1.9 ; CU(I)-CSP1 (COPPER STORAGE PROTEIN 1) FROM METHYLOSINUS TRICHOSPORIUM OB3B 5ARN ; 2.3 ; Cu(I)-CSP3 (COPPER STORAGE PROTEIN 3) FROM METHYLOSINUS 5NQM ; 1.59 ; CU(I)-CSP3 (COPPER STORAGE PROTEIN 3) FROM METHYLOSINUS 5NQN ; 1.62 ; CU(I)-CSP3 (COPPER STORAGE PROTEIN 3) FROM METHYLOSINUS 5NQO ; 1.15 ; CU(I)-CSP3 (COPPER STORAGE PROTEIN 3) FROM METHYLOSINUS 2C9P ; 2.25 ; Cu(I)Cu(II)-CopC at pH 4.5 2C9Q ; 1.6 ; Cu(I)Cu(II)-CopC at pH 7.5 6KOD ; 3.0 ; Cu(II) complex of HOCl-induced flavoprotein disulfide reductase RclA C43S mutant from Escherichia coli 6KYY ; 2.8 ; Cu(II) complex of HOCl-induced flavoprotein disulfide reductase RclA from Escherichia coli 6KZY ; 2.30057 ; Cu(II) loaded Tegillarca granosa ferritin 6L58 ; 3.90271 ; Cu(II) loaded Tegillarca granosa M-ferritin soaked with Fe(II) 3JTB ; 1.8 ; Cu(II) N47S/F114N variant of Pseudomonas Aeruginosa Azurin 3JT2 ; 2.1 ; Cu(II) N47S/M121L variant of Pseudomonas Aeruginosa azurin 6DYD ; 1.724 ; Cu(II)-bound structure of the engineered cyt cb562 variant, CH3 6DYF ; 1.1 ; Cu(II)-bound structure of the engineered cyt cb562 variant, CH3Y 6HY8 ; 1.22 ; Cu(II)-substituted Wells-Dawson binding to Hen Egg-White Lysozyme (HEWL) 6LV9 ; 1.2 ; Cu- Carbonic Anhydrase II pH 7.8 0 atm CO2 6LVA ; 1.2 ; Cu- Carbonic Anhydrase II pH 7.8 20 atm CO2 7LSJ ; 1.26 ; Cu-bound crystal structure of the engineered cyt cb562 variant, DiCyt2 - H63A, crystallized in the presence of Cu(II) 7LSL ; 1.64 ; Cu-bound crystal structure of the engineered cyt cb562 variant, DiCyt2 - H63A, crystallized in the presence of Ni(II) 7LV4 ; 1.99 ; Cu-bound crystal structure of the engineered cyt cb562 variant, DiCyt2 - H97A, crystallized in the presence of Cu(II) 7LV1 ; 1.91 ; Cu-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Cu(II) 6P16 ; 1.913 ; Cu-bound PCuAC domain from PmoF1 6P1E ; 1.605 ; Cu-bound PmoF1 PCuAC domain (dimer) 6X8X ; 2.505 ; Cu-bound structure of an engineered metal-dependent protein trimer, TriCyt1 6WZ3 ; 1.8 ; Cu-bound structure of the engineered protein trimer, TriCyt3 6PDV ; 1.23 ; Cu-Carbonic Anhydrase II, A Nitrite Reductase 1ZV2 ; 1.74 ; Cu-containing nitrite reductase 2A3T ; 1.85 ; Cu-containing nitrite reductase 6HBE ; 1.63 ; Cu-containing nitrite reductase (NirK) from Thermus scotoductus SA-01 2DWT ; 1.9 ; Cu-containing nitrite reductase at pH 6.0 with bound nitrite 2DWS ; 1.85 ; Cu-containing nitrite reductase at pH 8.4 with bound nitrite 3SES ; 1.9 ; Cu-mediated Dimer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization 3SB8 ; 2.65 ; Cu-mediated Dimer of T4 Lysozyme D61H/K65H by Synthetic Symmetrization 3SB6 ; 2.7 ; Cu-mediated Dimer of T4 Lysozyme D61H/K65H/R76H/R80H by Synthetic Symmetrization 3SB9 ; 2.45 ; Cu-mediated Dimer of T4 Lysozyme R76H/R80H by Synthetic Symmetrization 3SB7 ; 2.7 ; Cu-mediated Trimer of T4 Lysozyme D61H/K65H/R76H/R80H by Synthetic Symmetrization 1AQS ; ; CU-METALLOTHIONEIN FROM SACCHAROMYCES CEREVISIAE, NMR, 10 STRUCTURES 1AQR ; ; CU-METALLOTHIONEIN FROM SACCHAROMYCES CEREVISIAE, NMR, MINIMIZED AVERAGE STRUCTURE 6RUK ; 1.2 ; Cu-substituted alpha-Keggin bound to Proteinase K solved by MR 3PU7 ; 1.8 ; Cu-Zn Tomato Chloroplast Superoxide Dismutase 2AQQ ; 1.65 ; CU/ZN superoxid dismutate from neisseria meningitidis K91E mutant 2APS ; 1.9 ; CU/ZN SUPEROXIDE DISMUTASE FROM ACTINOBACILLUS PLEUROPNEUMONIAE 4L05 ; 1.098 ; Cu/Zn superoxide dismutase from Brucella abortus 2AQN ; 1.4 ; CU/ZN superoxide dismutase from neisseria meningitidis 2AQP ; 1.3 ; CU/ZN superoxide dismutase from neisseria meningitidis E73A mutant 2AQS ; 1.7 ; CU/ZN superoxide dismutase from neisseria meningitidis K91E, K94E double mutant 2AQR ; 1.75 ; CU/ZN superoxide dismutase from neisseria meningitidis K91Q mutant 2AQT ; 1.8 ; CU/ZN superoxide dismutase from neisseria meningitidis K91Q, K94Q double mutant 7WWT ; 1.6 ; Cu/Zn-superoxide dismutase from dog (Canis familiaris) 3E12 ; 1.7 ; Cu2+ substituted Aquifex aeolicus KDO8PS in complex with KDO8P 3E0I ; 1.703 ; Cu2+ substituted Aquifex aeolicus KDO8PS in complex with PEP 3IUD ; 2.44 ; Cu2+-bound form of Pseudomonas stutzeri L-rhamnose isomerase 3DEM ; 2.3 ; CUB1-EGF-CUB2 domain of HUMAN MASP-1/3 5CKQ ; 3.704 ; CUB1-EGF-CUB2 domains of rat MASP-1 6F1D ; 1.95 ; CUB2 domain of C1r 4MBB ; 1.849 ; Cubic crystal form of PIR1 dual specificity phosphatase core 5FYA ; 2.141 ; Cubic crystal of the native PlpD 1IER ; 2.26 ; CUBIC CRYSTAL STRUCTURE OF NATIVE HORSE SPLEEN FERRITIN 1DAT ; 2.05 ; CUBIC CRYSTAL STRUCTURE RECOMBINANT HORSE L APOFERRITIN 7QGF ; 1.203 ; Cubic Insulin SAD phasing at 14.2 keV 6LS3 ; 2.815 ; cubic-shaped crystal of TmFtn mutant-T4FY stimulated by Mg 2CBP ; 1.8 ; CUCUMBER BASIC PROTEIN, A BLUE COPPER PROTEIN 6MRL ; 3.2 ; Cucumber Leaf Spot Virus 1F15 ; 3.2 ; CUCUMBER MOSAIC VIRUS (STRAIN FNY) 1JER ; 1.6 ; CUCUMBER STELLACYANIN, CU2+, PH 7.0 5N10 ; 1.6 ; Cucurbit[8]uril and 14-3-3 based binary bivalent supramolecular-protein assembly platform 1MN3 ; 2.3 ; Cue domain of yeast Vps9p 3OD3 ; 1.1 ; CueO at 1.1 A resolution including residues in previously disordered region 3PAU ; 2.0 ; CueO in the resting oxidized state 6IM7 ; 1.97 ; CueO-12.1 multicopper oxidase 6IM8 ; 1.801 ; CueO-PM2 multicopper oxidase 6XH7 ; 3.9 ; CueR-TAC without RNA 6XH8 ; 4.1 ; CueR-transcription activation complex with RNA transcript 5W1U ; 2.5 ; Culex quinquefasciatus carboxylesterase B2 6V4C ; 1.97 ; Culex quinquefasciatus D7 long form 1- CxD7L1 in complex with ADP 2MYL ; ; Cullin3 - BTB interface: a novel target for stapled peptides 2MYM ; ; Cullin3 - BTB interface: a novel target for stapled peptides 8KHP ; 3.67 ; CULLIN3-KLHL22-RBX1 E3 ligase 1WQL ; 2.2 ; Cumene dioxygenase (cumA1A2) from Pseudomonas fluorescens IP01 1L42 ; 1.8 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 1L43 ; 1.8 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 1L44 ; 1.7 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 1L45 ; 1.7 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 1L46 ; 1.7 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 1L47 ; 1.7 ; CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY 2K38 ; ; Cupiennin 1A, NMR, minimized average structure 3RNS ; 2.07 ; Cupin 2 conserved barrel domain protein from Leptotrichia buccalis 5OVU ; 2.1 ; Cupriavidus metallidurans BPH 3OV2 ; 2.32 ; Curcumin synthase 1 from Curcuma longa 5DP2 ; 0.96 ; CurF ER cyclopropanase from curacin A biosynthetic pathway 2NA4 ; ; Curli secretion specificity factor CsgE W48A/F79A mutant 2A2B ; ; Curvacin A 6B79 ; 1.8 ; Curved pair of sheets formed from SOD1 residues 28-38 with familial mutation G37R. 6MNT ; ; CUS-3 coat protein I-domain 3EF3 ; 1.5 ; cut-1a; NCN-Pt-Pincer-Cutinase Hybrid 3ESA ; 2.0 ; cut-1b; NCN-Pt-Pincer-Cutinase Hybrid 3ESB ; 2.3 ; cut-1c; NCN-Pt-Pincer-Cutinase Hybrid 3ESC ; 1.2 ; cut-2a; NCN-Pt-Pincer-Cutinase Hybrid 3ESD ; 1.22 ; cut-2b; NCN-Pt-Pincer-Cutinase Hybrid 6YWO ; 1.9 ; CutA in complex with A3 RNA 6YWN ; 1.45 ; CutA in complex with CMPCPP 8CWO ; 2.84 ; Cutibacterium acnes 30S ribosomal subunit with Sarecycline bound, body domain only in the local refined map 8CVO ; 2.95 ; Cutibacterium acnes 30S ribosomal subunit with Sarecycline bound, head domain only in the local refined map 8CVM ; 2.66 ; Cutibacterium acnes 50S ribosomal subunit with P-site tRNA and Sarecycline bound in the local refined map 8CRX ; 2.78 ; Cutibacterium acnes 70S ribosome with mRNA, P-site tRNA and Sarecycline bound 2CUT ; 1.9 ; CUTINASE, A LIPOLYTIC ENZYME WITH A PREFORMED OXYANION HOLE 1CUU ; 1.69 ; CUTINASE, A199C MUTANT 1CUV ; 2.01 ; CUTINASE, A85F MUTANT 1CUW ; 2.7 ; CUTINASE, G82A, A85F, V184I, A185L, L189F MUTANT 1CUX ; 1.75 ; CUTINASE, L114Y MUTANT 1CUY ; 1.69 ; CUTINASE, L189F MUTANT 1CUZ ; 2.1 ; CUTINASE, L81G, L182G MUTANT 1CUA ; 1.8 ; CUTINASE, N172K MUTANT 1CUB ; 1.75 ; CUTINASE, N172K, R196D MUTANT, MONOCLINIC CRYSTAL FORM 1CUD ; 2.7 ; CUTINASE, N172K, R196D MUTANT, MONOCLINIC CRYSTAL FORM WITH THREE MOLECULES PER ASYMMETRIC UNIT 1CUC ; 1.75 ; CUTINASE, N172K, R196D MUTANT, ORTHORHOMBIC CRYSTAL FORM 1CUE ; 2.1 ; CUTINASE, Q121L MUTANT 1CUF ; 1.75 ; CUTINASE, R156L MUTANT 1CUG ; 1.75 ; CUTINASE, R17E, N172K MUTANT 1CUH ; 1.75 ; CUTINASE, R196E MUTANT 1CUI ; 2.5 ; CUTINASE, S120A MUTANT 1CUJ ; 1.6 ; CUTINASE, S120C MUTANT 7MMX ; 1.9 ; CutN from Type I Cut MCP 6XPH ; 1.8 ; CutR dimer with domain swap 6XPI ; 2.6 ; CutR flat hexamer, form 1 6XPJ ; 1.5 ; CutR flat hexamer, form 2 6XPK ; 2.8 ; CutR Screw, form 1 with 41.9 angstrom pitch 6XPL ; 3.3 ; CutR Screw, form 2 with 33.8 angstrom pitch 6S85 ; 4.2 ; Cutting state of the E. coli Mre11-Rad50 (SbcCD) head complex bound to ADP and dsDNA. 5NLT ; 1.9 ; CvAA9A 7QUW ; 1.65 ; CVB3-3Cpro in complex with inhibitor MG-78 7WL3 ; 2.95 ; CVB5 expended empty particle 7XB2 ; 2.81 ; CVB5-intermediate altered particle containing VP1/VP2/VP3 and RNA genome 8VIB ; 4.6 ; CW Flagellar Switch Complex - FliF, FliG, FliM, and FliN forming single subunit of the C-ring from Salmonella 8VKQ ; 4.6 ; CW Flagellar Switch Complex - FliF, FliG, FliM, and FliN forming the C-ring from Salmonella 8VID ; 5.9 ; CW Flagellar Switch Complex with extra density - FliF, FliG, FliM, and FliN forming single subunit of the C-ring from Salmonella 8VKR ; 5.9 ; CW Flagellar Switch Complex with extra density - FliF, FliG, FliM, and FliN forming the C-ring from Salmonella 4QQ4 ; 1.75 ; CW-type zinc finger of MORC3 in complex with the amino terminus of histone H3 4O62 ; 1.78 ; CW-type zinc finger of ZCWPW2 in complex with the amino terminus of histone H3 4Z0O ; 1.57 ; CW-type zinc finger of ZCWPW2 with F78D mutation 6LXS ; 1.58 ; CWA protein-SdrC 6YVH ; 3.19 ; CWC22-CWC27-EIF4A3 Complex 5NJL ; 1.9 ; Cwp2 from Clostridium difficile 5J72 ; 1.7 ; Cwp6 from Clostridium difficile 5J6Q ; 2.1 ; Cwp8 from Clostridium difficile 8EVI ; 2.64 ; CX3CR1 nucleosome and PU.1 complex containing disulfide bond mutations 8EVH ; 2.85 ; CX3CR1 nucleosome and wild type PU.1 complex 8EVJ ; 4.1 ; CX3CR1 nucleosome bound PU.1 and C/EBPa 3GV3 ; 1.6 ; CXCL12 (SDF) in trigonal space group 1ILP ; ; CXCR-1 N-TERMINAL PEPTIDE BOUND TO INTERLEUKIN-8 1ILQ ; ; CXCR-1 N-TERMINAL PEPTIDE BOUND TO INTERLEUKIN-8 (MINIMIZED MEAN) 1LV9 ; ; CXCR3 Binding Chemokine IP-10/CXCL10 8K2X ; 3.2 ; CXCR3-DNGi complex activated by CXCL10 8HNK ; 3.01 ; CXCR3-DNGi complex activated by CXCL11 8HNL ; 2.98 ; CXCR3-DNGi complex activated by PS372424 8HNM ; 2.94 ; CXCR3-DNGi complex activated by VUF11222 6ASB ; 2.85 ; CXXC and PHD-type zinc finger regions of FBXL19 in complex with DNA 5T3I ; 1.6 ; cyan fluorescence protein soaked with selenourea for 5 min 4Y42 ; 2.09 ; Cyanase (CynS) from Serratia proteamaculans 6B6M ; 1.91 ; Cyanase from Serratia proteamaculans 2G3H ; 1.4 ; Cyanide Binding and Heme Cavity Conformational Transitions in Drosophila melanogaster Hexa-coordinate Hemoglobin 3BA2 ; 1.8 ; Cyanide bound Chlorin substituted Myoglobin 2W3H ; 1.8 ; Cyanide bound structure of the first GAF domain of Mycobacterium tuberculosis DosS 1O76 ; 1.8 ; CYANIDE COMPLEX OF P450CAM FROM PSEUDOMONAS PUTIDA 8P4I ; 3.83 ; Cyanide dihydratase from Bacillus pumilus C1 9ER3 ; 2.8 ; Cyanide dihydratase from Bacillus pumilus C1 E155R variant with altered helical twist. 8C5I ; 3.15 ; Cyanide dihydratase from Bacillus pumilus C1 variant - Q86R,H305K,H308K,H323K 3I04 ; 2.15 ; Cyanide-bound structure of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica, cyanide-bound C-cluster 8AJ6 ; 1.5 ; cyanide-bound [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) 8AP2 ; 1.39 ; cyanide-bound [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) at 1.39 Angstrom 6FGZ ; 7.002 ; Cyanidioschyzon merolae Dnm1 (CmDnm1) 6FOS ; 4.0 ; Cyanidioschyzon merolae photosystem I 6GFO ; 2.1 ; cyanobacterial GAPDH with full-length CP12 6GG7 ; 1.32 ; cyanobacterial GAPDH with full-length CP12 6GHL ; 2.378 ; cyanobacterial GAPDH with full-length CP12 6GHR ; 2.249 ; cyanobacterial GAPDH with full-length CP12 6GFR ; 1.919 ; cyanobacterial GAPDH with NAD 6GFQ ; 1.4 ; cyanobacterial GAPDH with NAD and CP12 bound 6GFP ; 1.54 ; cyanobacterial GAPDH with NADP bound 6LU1 ; 3.2 ; Cyanobacterial PSI Monomer from T. elongatus by Single Particle CRYO-EM at 3.2 A Resolution 8URW ; 2.79 ; Cyanobacterial RNA polymerase elongation complex with NusG and CTP 8SYI ; 2.94 ; Cyanobacterial RNAP-EC 3C27 ; 2.182 ; Cyanofluorophenylacetamides as Orally Efficacious Thrombin Inhibitors 1O1I ; 2.3 ; Cyanomet hemoglobin (A-GLY-C:V1M,L29F,H58Q; B,D:V1M,L106W) 1ABY ; 2.6 ; CYANOMET RHB1.1 (RECOMBINANT HEMOGLOBIN) 2JHO ; 1.4 ; Cyanomet Sperm Whale Myoglobin at 1.4A resolution 8KEA ; 3.44 ; Cyanophage A-1(L) baseplate-initiators 7F38 ; 3.35 ; Cyanophage A-1(L) capsid asymmetric unit 8TS6 ; 3.44 ; Cyanophage A-1(L) portal 8KEE ; 3.26 ; Cyanophage A-1(L) sheath-tube 8KEC ; 3.9 ; Cyanophage A-1(L) tail fiber 7EEL ; 3.26 ; Cyanophage Pam1 capsid asymmetric unit 7EEP ; 3.75 ; Cyanophage Pam1 portal-adaptor complex 7EEQ ; 3.96 ; Cyanophage Pam1 tail machine 7EEA ; 2.671 ; Cyanophage Pam1 tailspike receptor-binding domain 7YFZ ; 3.19 ; Cyanophage Pam3 baseplate proteins 8HDT ; 3.17 ; Cyanophage Pam3 capsid asymmetric unit 7YFW ; 3.96 ; Cyanophage Pam3 fiber 7YPX ; 3.12 ; Cyanophage Pam3 fiber 8HDR ; 3.66 ; Cyanophage Pam3 neck 8HDS ; 3.57 ; Cyanophage Pam3 portal-adaptor 8HDW ; 3.0 ; Cyanophage Pam3 Sheath-tube 6ZPA ; 0.860003 ; Cyanophage S-2L HD phosphohydrolase (DatZ) bound to dA and one catalytic Zn2+ ion 6ZPB ; 1.72097 ; Cyanophage S-2L HD phosphohydrolase (DatZ) bound to dA and two catalytic Co2+ ions 6ZPC ; 1.26836 ; Cyanophage S-2L HD phosphohydrolase (DatZ) bound to dATP 7ODY ; 1.43 ; Cyanophage S-2L MazG-like pyrophosphohydrolase bound to dGDP and three catalytic Mn2+ ions per active site 6ZP9 ; 1.50002 ; Cyanophage S-2L Primase-Polymerase (PrimPol), AEP domain (PP-N190) 7ODX ; 1.69617 ; Cyanophage S-2L Succinoaminodeoxyadenylate synthetase (PurZ) bound to dGMP and dATP as an energy donor 7TXV ; 2.7 ; Cyanophycin synthetase 1 from Synechocystis sp. UTEX2470 E82Q with ATP and 16x(Asp-Arg) 7LGJ ; 2.6 ; Cyanophycin synthetase 1 from Synechocystis sp. UTEX2470 with ADPCP and 8x(Asp-Arg)-NH2 7TXU ; 2.6 ; Cyanophycin synthetase 1 from Synechocystis sp. UTEX2470 with ATP and 16x(Asp-Arg) 7LGQ ; 2.7 ; Cyanophycin synthetase 1 from Synechocystis sp. UTEX2470 with ATP and 8x(Asp-Arg)-Asn 7LGN ; 3.1 ; Cyanophycin synthetase 1 from T. morbirosei 7LGM ; 4.4 ; Cyanophycin synthetase from A. baylyi DSM587 with ATP 5MED ; 1.8 ; Cyanothece lipoxygenase 2 (CspLOX2) 5MEF ; 2.357 ; Cyanothece lipoxygenase 2 (CspLOX2) variant - L304F 5MEE ; 2.5 ; Cyanothece lipoxygenase 2 (CspLOX2) variant - L304V 1J4V ; ; CYANOVIRIN-N 3EZM ; 1.5 ; CYANOVIRIN-N 1LOM ; 1.72 ; CYANOVIRIN-N DOUBLE MUTANT P51S S52P 6X7H ; 1.25 ; Cyanovirin-N Mutation I34Y with Dimannose bound 4BVT ; 3.1 ; Cyanuric acid hydrolase: evolutionary innovation by structural concatenation 4BVQ ; 1.9 ; Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. 4BVR ; 2.58 ; Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. 4BVS ; 2.6 ; Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. 8OF7 ; 1.66 ; Cyc15 Diels Alderase 3PQV ; 2.609 ; Cyclase homolog 1THF ; 1.45 ; CYCLASE SUBUNIT OF IMIDAZOLEGLYCEROLPHOSPHATE SYNTHASE FROM THERMOTOGA MARITIMA 8F9X ; 2.32 ; Cyclase-PTE 4XAF ; 1.66 ; Cycles of destabilization and repair underlie evolutionary transitions in enzymes 4XAY ; 1.84 ; Cycles of destabilization and repair underlie evolutionary transitions in enzymes 4XAZ ; 1.55 ; Cycles of destabilization and repair underlie evolutionary transitions in enzymes 4XAG ; 1.6 ; Cycles of destabilization and repair underlie the evolution of new enzyme function 8ORK ; 1.64 ; cyclic 2,3-diphosphoglycerate synthetase from the hyperthermophilic archaeon Methanothermus fervidus 8ORU ; 2.23 ; cyclic 2,3-diphosphoglycerate synthetase from the hyperthermophilic archaeon Methanothermus fervidus bound to 2,3-diphosphoglycerate and ADP. 6A0J ; 1.6 ; Cyclic alpha-maltosyl-(1-->6)-maltose hydrolase from Arthrobacter globiformis, complex with Cyclic alpha-maltosyl-(1-->6)-maltose 6A0L ; 2.1 ; Cyclic alpha-maltosyl-(1-->6)-maltose hydrolase from Arthrobacter globiformis, complex with maltose 6A0K ; 1.94 ; Cyclic alpha-maltosyl-(1-->6)-maltose hydrolase from Arthrobacter globiformis, complex with panose 5ZXG ; 2.4 ; Cyclic alpha-maltosyl-(1-->6)-maltose hydrolase from Arthrobacter globiformis, ligand-free form 4F9E ; 2.75 ; Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING 7WG5 ; 3.89 ; Cyclic electron transport supercomplex NDH-PSI from Arabidopsis 6NFG ; 2.76 ; CYCLIC GMP-AMP SYNTHASE in complex with compound 16 inhibitor: 7-hydroxy-N-methyl-5-phenylpyrazolo[1,5-a]pyrimidine-3-carboxamide 6NFO ; 2.93 ; CYCLIC GMP-AMP SYNTHASE in complex with compound 20 inhibitor: 7-hydroxy-N-[(2S)-1-hydroxypropan-2-yl]-5-phenylpyrazolo[1,5-a]pyrimidine-3-carboxamide 1KP5 ; 2.6 ; Cyclic Green Fluorescent Protein 3WNF ; 1.45 ; Cyclic hexapeptide CKIDNC in complex with HIV-1 integrase 4Y1C ; 2.3 ; Cyclic hexapeptide cyc[NdPopPKID] in complex with HIV-1 integrase core domain 4Y1D ; 1.93 ; Cyclic hexapeptide cyc[NdPopPKID] in complex with HIV-1 integrase core domain 3WNE ; 1.7 ; Cyclic hexapeptide PKIDNG in complex with HIV-1 integrase 3WNG ; 1.75 ; Cyclic hexapeptide PKIDNp in complex with HIV-1 integrase 3WNH ; 1.5 ; Cyclic hexapeptide PKZDNv in complex with HIV-1 integrase 3ALB ; 1.85 ; Cyclic Lys48-linked tetraubiquitin 7CAP ; 1.33 ; Cyclic Lys48-linked triubiquitin 2J15 ; ; Cyclic MrIA: An exceptionally stable and potent cyclic conotoxin with a novel topological fold that targets the norepinephrine transporter. 3DN7 ; 1.8 ; Cyclic nucleotide binding regulatory protein from Cytophaga hutchinsonii. 4F8A ; 2.2 ; Cyclic nucleotide binding-homology domain from mouse EAG1 potassium channel 2P7R ; ; Cyclic pentapeptide which inhibits Hantavirus 8Q1N ; 1.843 ; Cyclic peptide binder of the WBM-site of WDR5 1BZH ; 2.1 ; Cyclic peptide inhibitor of human PTP1B 7EZW ; 2.35 ; Cyclic Peptide that Interacts with the eIF4E Capped-mRNA Binding Site 1RGR ; ; Cyclic Peptides Targeting PDZ Domains of PSD-95: Structural Basis for Enhanced Affinity and Enzymatic Stability 3HET ; 2.1 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with a cyclic beta-residue at position 10 3HEU ; 2.0 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with a cyclic beta-residue at position 13 3HEV ; 2.0 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with a cyclic beta-residue at position 19 3HEW ; 2.0 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with a cyclic beta-residue at position 22 3HEY ; 2.0 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with cyclic beta-residues at positions 1, 4, 10, 19 and 28 3HEX ; 2.8 ; Cyclic residues in alpha/beta-peptide helix bundles: GCN4-pLI side chain sequence on an (alpha-alpha-beta) backbone with cyclic beta-residues at positions 1, 4, 19 and 28 4CQ0 ; 1.45 ; Cyclic secondary sulfonamides: unusually good inhibitors of cancer- related carbonic anhydrase enzymes 7D4O ; 1.87 ; cyclic trinucleotide synthase CdnD in complex with ATP and ADP 1OKW ; 2.5 ; Cyclin A binding groove inhibitor Ac-Arg-Arg-Leu-Asn-(m-Cl-Phe)-NH2 1URC ; 2.6 ; Cyclin A binding groove inhibitor Ace-Arg-Lys-Leu-Phe-Gly 1OL2 ; 2.6 ; Cyclin A binding groove inhibitor H-Arg-Arg-Leu-Asn-(p-F-Phe)-NH2 1OKV ; 2.4 ; Cyclin A binding groove inhibitor H-Arg-Arg-Leu-Ile-Phe-NH2 1OL1 ; 2.9 ; Cyclin A binding groove inhibitor H-Cit-Cit-Leu-Ile-(p-F-Phe)-NH2 1FIN ; 2.3 ; CYCLIN A-CYCLIN-DEPENDENT KINASE 2 COMPLEX 2PK2 ; 2.67 ; Cyclin box structure of the P-TEFb subunit Cyclin T1 derived from a fusion complex with EIAV Tat 2FVD ; 1.85 ; Cyclin Dependent Kinase 2 (CDK2) with diaminopyrimidine inhibitor 1KXU ; 2.6 ; CYCLIN H, A POSITIVE REGULATORY SUBUNIT OF CDK ACTIVATING KINASE 1KE7 ; 2.0 ; CYCLIN-DEPENDENT KINASE 2 (CDK2) COMPLEXED WITH 3-{[(2,2-DIOXIDO-1,3-DIHYDRO-2-BENZOTHIEN-5-YL)AMINO]METHYLENE}-5-(1,3-OXAZOL-5-YL)-1,3-DIHYDRO-2H-INDOL-2-ONE 1KE9 ; 2.0 ; CYCLIN-DEPENDENT KINASE 2 (CDK2) COMPLEXED WITH 3-{[4-({[AMINO(IMINO)METHYL]AMINOSULFONYL)ANILINO]METHYLENE}-2-OXO-2,3-DIHYDRO-1H-INDOLE 1KE8 ; 2.0 ; CYCLIN-DEPENDENT KINASE 2 (CDK2) COMPLEXED WITH 4-{[(2-OXO-1,2-DIHYDRO-3H-INDOL-3-YLIDENE)METHYL]AMINO}-N-(1,3-THIAZOL-2-YL)BENZENESULFONAMIDE 1KE6 ; 2.0 ; CYCLIN-DEPENDENT KINASE 2 (CDK2) COMPLEXED WITH N-METHYL-{4-[2-(7-OXO-6,7-DIHYDRO-8H-[1,3]THIAZOLO[5,4-E]INDOL-8-YLIDENE)HYDRAZINO]PHENYL}METHANESULFONAMIDE 8ERD ; 1.33 ; Cyclin-free CDK2 in complex with Cpd17 8ERN ; 1.64 ; Cyclin-free CDK2 in complex with Cpd21 1YJF ; 1.35 ; Cyclized post-translational product for S65A Y66S (GFPhal) green fluorescent protein variant 1YJ2 ; 1.5 ; Cyclized, non-dehydrated post-translational product for S65A Y66S H148G GFP variant 2QT2 ; 1.31 ; Cyclized-Dehydrated Intermediate of GFP Variant Q183E in Chromophore Maturation 1FMQ ; 2.0 ; Cyclo-butyl-bis-furamidine complexed with dCGCGAATTCGCG 6MW2 ; 0.77 ; cyclo-Mle-Phe-Mle-D-Phe. D-Phe analogue of pseudoxylallemycin A. 6MW1 ; 0.77 ; cyclo-Mle-Phe-Mle-Phe. Pseudoxylallemycin A. 2LL5 ; ; Cyclo-TC1 Trp-cage 5F7S ; 2.3 ; Cycloalternan-degrading enzyme from Trueperella pyogenes 5I0F ; 1.85 ; Cycloalternan-degrading enzyme from Trueperella pyogenes in complex with covalent intermediate 5I0G ; 2.15 ; Cycloalternan-degrading enzyme from Trueperella pyogenes in complex with cycloalternan 5I0E ; 2.3 ; Cycloalternan-degrading enzyme from Trueperella pyogenes in complex with isomaltose 5I0D ; 1.77 ; Cycloalternan-forming enzyme from Listeria monocytogenes in complex with cycloalternan 5HPO ; 1.8 ; Cycloalternan-forming enzyme from Listeria monocytogenes in complex with maltopentaose 5HXM ; 1.9 ; Cycloalternan-forming enzyme from Listeria monocytogenes in complex with panose 5F7U ; 1.7 ; Cycloalternan-forming enzyme from Listeria monocytogenes in complex with pentasaccharide substrate 5GZI ; 2.17 ; Cyclodeaminase_PA 5GZJ ; 1.87 ; Cyclodeaminase_PA 5GZL ; 2.0 ; Cyclodeaminase_PA 5GZM ; 1.8 ; Cyclodeaminase_PA 1PAM ; 1.8 ; CYCLODEXTRIN GLUCANOTRANSFERASE 1CYG ; 2.5 ; CYCLODEXTRIN GLUCANOTRANSFERASE (E.C.2.4.1.19) (CGTASE) 3BMV ; 1.6 ; Cyclodextrin glycosyl transferase from Thermoanerobacterium thermosulfurigenes EM1 mutant S77P 3BMW ; 1.6 ; Cyclodextrin glycosyl transferase from Thermoanerobacterium thermosulfurigenes EM1 mutant S77P complexed with a maltoheptaose inhibitor 2CXG ; 2.5 ; CYCLODEXTRIN GLYCOSYLTRANSFERASE COMPLEXED TO THE INHIBITOR ACARBOSE 6AIJ ; 2.096 ; Cyclodextrin glycosyltransferase from Paenibacillus macerans mutant N603D 1TCM ; 2.2 ; CYCLODEXTRIN GLYCOSYLTRANSFERASE W616A MUTANT FROM BACILLUS CIRCULANS STRAIN 251 7P98 ; 2.0 ; Cyclohex-1-ene-1-carboxyl-CoA dehydrogenase in a substrate-free state 8AGN ; 1.957 ; Cyclohexane epoxide low pH soak of epoxide hydrolase from metagenomic source ch65 8AGS ; 1.61 ; Cyclohexane epoxide soak of epoxide hydrolase from metagenomic source ch65 resulting in halogenated compound in the active site 8AM3 ; 1.86 ; Cyclohexanone dehydrogenase (CDH) from Alicycliphilus denitrificans K601 - wildtype 8AM8 ; 1.85 ; Cyclohexanone dehydrogenase (CDH) from Alicycliphilus denitrificans K601 complexed with dehydrogenated substrate - W113A mutant 8AM6 ; 1.33 ; Cyclohexanone dehydrogenase (CDH) from Alicycliphilus denitrificans K601 complexed with dehydrogenated substrate cyclohex-2-en-1-one - inactive mutant (Y195F) 5M0Z ; 1.6 ; Cyclohexanone Monooxygenase from T. municipale: reduced enzyme bound to NADP+ 3UCL ; 2.36 ; Cyclohexanone-bound crystal structure of cyclohexanone monooxygenase in the Rotated conformation 7N8B ; 3.05 ; Cycloheximide bound vacant 80S structure isolated from cbf5-D95A 4I58 ; 3.0 ; Cyclohexylamine Oxidase from Brevibacterium oxydans IH-35A 4I59 ; 2.93 ; Cyclohexylamine Oxidase from Brevibacterium oxydans IH-35A complexed with cyclohexanone 1EA9 ; 3.2 ; Cyclomaltodextrinase 1H3G ; 2.1 ; Cyclomaltodextrinase from Flavobacterium sp. No. 92: from DNA sequence to protein structure 4AS0 ; 2.3 ; Cyclometalated Phthalimides as Protein Kinase Inhibitors 3PGH ; 2.5 ; CYCLOOXYGENASE-2 (PROSTAGLANDIN SYNTHASE-2) COMPLEXED WITH A NON-SELECTIVE INHIBITOR, FLURBIPROFEN 4COX ; 2.9 ; CYCLOOXYGENASE-2 (PROSTAGLANDIN SYNTHASE-2) COMPLEXED WITH A NON-SELECTIVE INHIBITOR, INDOMETHACIN 1CX2 ; 3.0 ; CYCLOOXYGENASE-2 (PROSTAGLANDIN SYNTHASE-2) COMPLEXED WITH A SELECTIVE INHIBITOR, SC-558 6COX ; 2.8 ; CYCLOOXYGENASE-2 (PROSTAGLANDIN SYNTHASE-2) COMPLEXED WITH A SELECTIVE INHIBITOR, SC-558 IN I222 SPACE GROUP 7KZL ; 1.3 ; Cyclopentane peptide nucleic acid in complex with DNA 1E8K ; 1.9 ; Cyclophilin 3 Complexed With Dipeptide Ala-Pro 2IGW ; 1.78 ; CYCLOPHILIN 3 complexed with DIPEPTIDE GLY-PRO 2IGV ; 1.67 ; CYCLOPHILIN 3 Complexed with DIPEPTIDE SER-PRO 1E3B ; 1.85 ; CYCLOPHILIN 3 FROM C.ELEGANS COMPLEXED WITH AUP(ET)3 6FK1 ; 1.299 ; Cyclophilin A 2MS4 ; ; Cyclophilin a complexed with a fragment of crk-ii 1FGL ; 1.8 ; Cyclophilin A complexed with a fragment of HIV-1 GAG protein 2CYH ; 1.64 ; CYCLOPHILIN A COMPLEXED WITH DIPEPTIDE ALA-PRO 5CYH ; 2.1 ; CYCLOPHILIN A COMPLEXED WITH DIPEPTIDE GLY-PRO 4CYH ; 2.1 ; CYCLOPHILIN A COMPLEXED WITH DIPEPTIDE HIS-PRO 3CYH ; 1.9 ; CYCLOPHILIN A COMPLEXED WITH DIPEPTIDE SER-PRO 1LOP ; 1.8 ; CYCLOPHILIN A COMPLEXED WITH SUCCINYL-ALA-PRO-ALA-P-NITROANILIDE 6GJI ; 1.6 ; Cyclophilin A complexed with the tri-vector ligand 8. 6GJL ; 1.16 ; Cyclophilin A complexed with tri-vector ligand 10. 6GJN ; 1.7 ; Cyclophilin A complexed with tri-vector ligand 15. 6GJJ ; 1.38 ; Cyclophilin A complexed with tri-vector ligand 2. 6GJM ; 1.354 ; Cyclophilin A complexed with tri-vector ligand 4. 6GJY ; 1.29 ; Cyclophilin A complexed with tri-vector ligand 5. 6GJP ; 1.94 ; Cyclophilin A complexed with tri-vector ligand 7. 6GJR ; 1.69 ; Cyclophilin A complexed with tri-vector ligand 9. 6GS6 ; 1.16 ; Cyclophilin A single mutant D66A in complex with an inhibitor. 5FJB ; 9.0 ; Cyclophilin A Stabilize HIV-1 Capsid through a Novel Non- canonical Binding Site 1CYN ; 1.85 ; CYCLOPHILIN B COMPLEXED WITH [D-(CHOLINYLESTER)SER8]-CYCLOSPORIN 1A58 ; 1.95 ; CYCLOPHILIN FROM BRUGIA MALAYI 2HQJ ; 2.0 ; Cyclophilin from Leishmania major 1XQ7 ; 2.07 ; Cyclophilin from Trypanosoma cruzi bound to cyclosporin A 1H0P ; 1.75 ; Cyclophilin_5 from C. elegans 7QOS ; 1.6 ; Cyclopropane fatty acid synthase from Aquifex aeolicous with bound ligands 6BQC ; 2.073 ; Cyclopropane fatty acid synthase from E. coli 2GJ0 ; ; Cycloviolacin O14 6Z34 ; 2.27 ; CymD monoaromatic hydrocarbon channel 4MYE ; 1.65 ; Cymosema roseum seed lectin structure complexed with X-man 8IJM ; 3.13 ; Cyo-EM structure of K794A non-gastric proton pump in Na+ bound E1AMPPCP state 8IJL ; 2.62 ; Cyo-EM structure of wildtype non-gastric proton pump in the presence of Na+, AlF and ADP 1PYC ; ; CYP1 (HAP1) DNA-BINDING DOMAIN (RESIDUES 60-100), NMR, 15 STRUCTURES 6WGW ; 1.73 ; CYP101D1 D259E Hydroxycamphor bound 8DMG ; 4.4 ; CYP102A1 in Closed Conformation 8DME ; 6.5 ; CYP102A1 in Open Conformation 7Q9E ; 1.7 ; CYP106A1 4YT3 ; 1.8 ; CYP106A2 5IKI ; 2.4 ; CYP106A2 WITH SUBSTRATE ABIETIC ACID 6RQ3 ; 1.5 ; CYP121 in complex with 2,6-dimethyl dicyclotyrosine 6RQ1 ; 1.49 ; CYP121 in complex with 2-methyl dicyclotyrosine 6RQ5 ; 1.55 ; CYP121 in complex with 3,5-dimethyl dicyclotyrosine 6RQE ; 1.37 ; CYP121 in complex with 3-acetylene dicyclotyrosine 6RQB ; 1.459 ; CYP121 in complex with 3-bromo dicyclotyrosine 6RQD ; 1.499 ; CYP121 in complex with 3-chloro dicyclotyrosine 6RQ6 ; 1.42 ; CYP121 in complex with 3-fluoro dicyclotyrosine 6RQ8 ; 1.41 ; CYP121 in complex with 3-iodo dicyclotyrosine 6RQ0 ; 1.6 ; CYP121 in complex with 3-methyl dicyclotyrosine 6RQ9 ; 1.4 ; CYP121 in complex with O-methyl dicyclotyrosine 3NC6 ; 3.1 ; CYP134A1 1-phenylimidazole bound structure 3NC7 ; 3.3 ; CYP134A1 2-phenylimidazole bound structure 3NC3 ; 2.66 ; CYP134A1 structure with a closed substrate binding loop 3NC5 ; 2.9 ; CYP134A1 structure with an open substrate binding loop 8B2P ; 1.95 ; CYP153A71 from Acinetobacter dieselolei bound to octanoic acid 5H1Z ; 3.1 ; CYP153D17 from Sphingomonas sp. PAMC 26605 6A7I ; 2.19 ; CYP154C4 from Streptomyces sp. W2061 2NNH ; 2.6 ; CYP2C8dH complexed with 2 molecules of 9-cis retinoic acid 2NNJ ; 2.28 ; CYP2C8dH complexed with felodipine 2NNI ; 2.8 ; CYP2C8dH complexed with montelukast 2VN0 ; 2.7 ; CYP2C8DH COMPLEXED WITH TROGLITAZONE 6UNL ; 2.55 ; CYP3A4 bound to an inhibitor 6UNM ; 2.83 ; CYP3A4 bound to an inhibitor 7UF9 ; 2.45 ; CYP3A4 bound to an inhibitor 7UFA ; 2.5 ; CYP3A4 bound to an inhibitor 7UFB ; 2.25 ; CYP3A4 bound to an inhibitor 8EKT ; 2.29 ; CYP51 from Acanthamoeba castellanii in complex with the tetrazole-based IND inhibitor VT-1161(VT1) 2W0B ; 1.56 ; CYP51 OF M. TUBERCULOSIS BOUND TO AN INHIBITOR 3-{[(4-METHYLPHENYL)SULFONYL]AMINO}PROPYL PYRIDIN-4-YLCARBAMATE 2W09 ; 1.57 ; CYP51 OF M. TUBERCULOSIS BOUND TO AN INHIBITOR CIS-4-METHYL-N-[(1S)-3-(METHYLSULFANYL)-1-(PYRIDIN-4-YLCARBAMOYL)PROPYL]CYCLOHEXANECARBOXAMIDE 2W0A ; 1.6 ; CYP51 of M. tuberculosis bound to an inhibitor N-[(1S)-2-METHYL-1-(PYRIDIN-4-YLCARBAMOYL)PROPYL]CYCLOHEXANECARBOXAMIDE 4BJK ; 2.67 ; CYP51 of Trypanosoma brucei bound to (S)-N-(3-(1H-indol-3-yl)-1-oxo-1- (pyridin-4-ylamino)propan-2-yl)-3,3'-difluoro-(1,1'-biphenyl)-4- carboxamide 5YLW ; 1.7 ; CYP76AH1 from Salvia miltiorrhiza 5YM3 ; 2.601 ; CYP76AH1-4pi from salvia miltiorrhiza 7CB9 ; 1.9 ; CYP76AH1/miltiradiene from Salvia miltiorrhiza 1AWR ; 1.58 ; CYPA COMPLEXED WITH HAGPIA 1AWQ ; 1.58 ; CYPA COMPLEXED WITH HAGPIA (PSEUDO-SYMMETRIC MONOMER) 1AWV ; 2.34 ; CYPA COMPLEXED WITH HVGPIA 1AWU ; 2.34 ; CYPA COMPLEXED WITH HVGPIA (PSEUDO-SYMMETRIC MONOMER) 5WC7 ; 1.43 ; CypA Mutant - I97V S99T C115S 6BTA ; 1.5 ; CypA Mutant - S99T C115S 7WZG ; 2.0 ; Cypemycin N-terminal methyltransferase CypM 1JA1 ; 1.8 ; CYPOR-Triple Mutant 1J9Z ; 2.7 ; CYPOR-W677G 1JA0 ; 2.6 ; CYPOR-W677X 5URH ; 2.5 ; CYPOR/D632A with NADP+ 7YRN ; 2.99 ; Cyro-EM structure of HCMV glycoprotein B in complex with 1B03 Fab 5BKG ; 3.8 ; Cyro-EM structure of human Glycine Receptor alpha2-beta heteromer, glycine bound, (semi)open state 5BKF ; 3.6 ; Cyro-EM structure of human Glycine Receptor alpha2-beta heteromer, Glycine bound, desensitized state 7KUY ; 3.6 ; Cyro-EM structure of human Glycine Receptor alpha2-beta heteromer, strychnine bound state 7L31 ; 3.8 ; Cyro-EM structure of human Glycine Receptor alpha2-beta heteromer, strychnine bound state, 3.8 Angstrom 8JD9 ; 2.87 ; Cyro-EM structure of the Na+/H+ antipoter SOS1 from Arabidopsis thaliana,class1 8JDA ; 3.67 ; Cyro-EM structure of the Na+/H+ antipoter SOS1 from Arabidopsis thaliana,class2 5V7U ; 1.64 ; Cyrstal structure of anti-Tau antibody CBTAU-22.1 Fab 5V7R ; 2.3 ; Cyrstal structure of anti-Tau antibody CBTAU-7.1 Fab 2Q1K ; 2.7 ; Cyrstal Structure of AscE from Aeromonas hydrophilla 2AJU ; 1.5 ; Cyrstal structure of cocaine catalytic antibody 7A1 Fab' 7AJL ; 2.37 ; Cyrstal structure of CYRI-B/Fam49B 1SOG ; 1.85 ; Cyrstal Structure of Cytochrome c Peroxidase Mutant: CcPK2M2 1STQ ; 1.82 ; Cyrstal Structure of Cytochrome c Peroxidase Mutant: CcPK2M3 3Q29 ; 2.3 ; Cyrstal structure of human alpha-synuclein (1-19) fused to maltose binding protein (MBP) 3Q26 ; 1.54 ; Cyrstal structure of human alpha-synuclein (10-42) fused to maltose binding protein (MBP) 3Q27 ; 1.302 ; Cyrstal structure of human alpha-synuclein (32-57) fused to maltose binding protein (MBP) 3Q28 ; 1.6 ; Cyrstal structure of human alpha-synuclein (58-79) fused to maltose binding protein (MBP) 1ZKF ; 2.55 ; Cyrstal Structure of Human Cyclophilin-A in Complex with suc-AGPF-pNA 1Y6Q ; 2.2 ; Cyrstal structure of MTA/AdoHcy nucleosidase complexed with MT-DADMe-ImmA 4ORE ; 2.2 ; Cyrstal structure of O-acetylserine sulfhydrylase ternary complex from Haemophilus influenzae at 2.2 A 7DZV ; 1.6 ; Cyrstal structure of PETase E186A mutant from Rhizobacter gummiphilus 7DZT ; 2.35 ; Cyrstal structure of PETase from Rhizobacter gummiphilus 7DZU ; 2.4 ; Cyrstal structure of PETase K169A mutant from Rhizobacter gummiphilus 4J51 ; 2.3 ; Cyrstal structure of protein tyrosine phosphatase Lyp catalytic domain complex with small molecular inhibitor L75N04 8JCA ; 1.65 ; Cyrstal structure of SKIP RUN domain in complex with GTP-bound Arl8b(Q75L) 4RTT ; 1.87 ; Cyrstal structure of SLIT-ROBO Rho GTPase-activating protein 2 fragment 4RUG ; 1.73 ; Cyrstal structure of SLIT-ROBO Rho GTPase-activating protein 2 fragment 3CYE ; 1.65 ; Cyrstal structure of the native 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects 3C1M ; 2.3 ; Cyrstal Structure of threonine-sensitive aspartokinase from Methanococcus jannaschii with MgAMP-PNP and L-aspartate 7BA8 ; 1.2 ; Cys-42-tethered stabilizer 10 of 14-3-3(sigma)/ERa PPI 7BA9 ; 1.48 ; Cys-42-tethered stabilizer 11 of 14-3-3(sigma)/ERa PPI 7BAA ; 1.1 ; Cys-42-tethered stabilizer 12 of 14-3-3(sigma)/ERa PPI 7BAB ; 1.3 ; Cys-42-tethered stabilizer 13 of 14-3-3(sigma)/ERa PPI 7BA3 ; 1.4 ; Cys-42-tethered stabilizer 6 of 14-3-3(sigma)/ERa PPI 7BA5 ; 1.45 ; Cys-42-tethered stabilizer 7 of 14-3-3(sigma)/ERa PPI 7BA6 ; 1.4 ; Cys-42-tethered stabilizer 8 of 14-3-3(sigma)/ERa PPI 7BA7 ; 1.45 ; Cys-42-tethered stabilizer 9 of 14-3-3(sigma)/ERa PPI 7B9M ; 1.7 ; Cys-45-tethered stabilizer 3 of 14-3-3(sigma)/ERa PPI 7B9R ; 1.15 ; Cys-45-tethered stabilizer 4 of 14-3-3(sigma)/ERa PPI 7B9T ; 1.15 ; Cys-45-tethered stabilizer 5 of 14-3-3(sigma)/ERa PPI 5LWZ ; 2.1 ; Cys-Gly dipeptidase GliJ (space group C2) 5LX0 ; 2.4 ; Cys-Gly dipeptidase GliJ (space group P3221) 5NRT ; 2.2 ; Cys-Gly dipeptidase GliJ in complex with Ca2+ 5NS2 ; 2.2 ; Cys-Gly dipeptidase GliJ in complex with Co2+ 5NS5 ; 2.2 ; Cys-Gly dipeptidase GliJ in complex with Cu2+ and Zn2+ 5NRX ; 2.35 ; Cys-Gly dipeptidase GliJ in complex with Fe2+ 5NRY ; 1.85 ; Cys-Gly dipeptidase GliJ in complex with Fe3+ 5NRZ ; 2.05 ; Cys-Gly dipeptidase GliJ in complex with Mn2+ 5NS1 ; 2.4 ; Cys-Gly dipeptidase GliJ in complex with Ni2+ 5NRU ; 2.15 ; Cys-Gly dipeptidase GliJ in complex with Zn2+ 5LX1 ; 2.7 ; Cys-Gly dipeptidase GliJ mutant D304A 5LX4 ; 1.9 ; Cys-Gly dipeptidase GliJ mutant D38H 5LX7 ; 1.95 ; Cys-Gly dipeptidase GliJ mutant D38N 4IEV ; 1.6 ; Cys-only bound Cysteine Dioxygenase at pH 8.0 in the presence of Cys 4IEW ; 1.45 ; Cys-only bound Cysteine Dioxygenase at pH 9.0 in the presence of Cys 4IER ; 1.45 ; Cys-persulfenate bound Cysteine Dioxygenase at pH 5.5 in the presence of Cys 4IES ; 1.4 ; Cys-persulfenate bound Cysteine Dioxygenase at pH 6.2 in the presence of Cys 4IET ; 1.4 ; Cys-persulfenate bound Cysteine Dioxygenase at pH 6.8 in the presence of Cys 4IEU ; 1.25 ; Cys-persulfenate bound Cysteine Dioxygenase at pH 7.0 in the presence of Cys 4IEY ; 1.63 ; Cys-persulfenate bound Cysteine Dioxygenase at pH 7.0 in the presence of Cys, home-source structure 1G3S ; 2.4 ; CYS102SER DTXR 1G3T ; 2.35 ; CYS102SER DTXR 4IEC ; 2.0 ; Cys105 covalent modification by 2-hydroxyethyl disulfide in Mycobacterium tuberculosis methionine aminopeptidase Type 1c 7X68 ; 1.8 ; CYS179 and CYS504 of CRMP2 were covalently binded by a Sesquiterpene lactone 2YNV ; 2.05 ; Cys221 oxidized, Mono zinc GIM-1 - GIM-1-Ox. Crystal structures of Pseudomonas aeruginosa GIM-1: active site plasticity in metallo-beta- lactamases 2ZVT ; 1.9 ; Cys285Ser mutant PPARgamma ligand-binding domain complexed with 15-deoxy-delta12,14-prostaglandin J2 1O04 ; 1.42 ; Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Mg2+ 1NZW ; 2.65 ; Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase complexed with NADH and Mg2+ 1YAX ; 2.4 ; Cystal structure Analysis of S.typhimurium PhoQ sensor domain with Calcium 5GXU ; 2.3 ; Cystal structure of Arabidopsis ATR2 2OG7 ; 1.66 ; Cystal structure of asparagine oxygenase in complex with Fe(II), 2S,3S-3-hydroxyasparagine and succinate 5JW6 ; 2.39 ; Cystal structure of aspartate semialdehyde dehydrogenase from Aspergillus fumigatus 5CEF ; 2.6 ; Cystal structure of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans 7XYR ; 2.0 ; Cystal Structure of Beta-glucuronidase from Bacteroides thetaiotaomicron 4N4A ; 2.35 ; Cystal structure of Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 4IM9 ; 2.46 ; Cystal structure of DnaG primase C-terminal domain from Vibrio cholerae 3BVB ; 1.3 ; Cystal structure of HIV-1 Active Site Mutant D25N and inhibitor Darunavir 3BVA ; 1.05 ; Cystal structure of HIV-1 Active Site Mutant D25N and p2-NC analog inhibitor 7CNC ; 1.6 ; cystal structure of human ERH in complex with DGCR8 4KI5 ; 2.47 ; Cystal structure of human factor VIII C2 domain in a ternary complex with murine inhbitory antibodies 3E6 and G99 5HU4 ; 2.3 ; Cystal structure of listeria monocytogenes sortase A 4GUM ; 2.33 ; Cystal structure of locked-trimer of human MIF 6PWH ; 1.749 ; Cystal structure of Myotoxin II from Bothrops moojeni co-crystallized with Varespladib (LY315920) 3JTT ; 2.8 ; Cystal structure of Rhesus macaque MHC class I:Mamu-A*02 3V7C ; 2.7 ; Cystal structure of SaBPL in complex with inhibitor 4RTA ; 2.123 ; Cystal structure of the Dpy30 for MLL/SET1 COMPASS H3K4 trimethylation 3KO1 ; 3.7 ; Cystal structure of thermosome from Acidianus tengchongensis strain S5 7O3I ; 1.5 ; Cystal structure of Zymogen Granule Protein 16 (ZG16) 7O4P ; 1.08 ; Cystal structure of Zymogen Granule Protein 16 (ZG16) 7O88 ; 1.2 ; Cystal structure of Zymogen Granule Protein 16 (ZG16) 1CL1 ; 1.83 ; CYSTATHIONINE BETA-LYASE (CBL) FROM ESCHERICHIA COLI 1CL2 ; 2.2 ; CYSTATHIONINE BETA-LYASE (CBL) FROM ESCHERICHIA COLI IN COMPLEX WITH AMINOETHOXYVINYLGLYCINE 2GQN ; 1.8 ; Cystathionine Beta-Lyase (CBL) from Escherichia Coli in complex with N-Hydrazinocarbonylmethyl-2-Nitro-Benzamide 2FQ6 ; 1.78 ; Cystathionine beta-lyase (cbl) from escherichia coli in complex with n-hydrazinocarbonylmethyl-2-trifluoromethyl-benzamide 6XWL ; 3.201 ; Cystathionine beta-synthase from Toxoplasma gondii 7XOY ; 4.25 ; Cystathionine beta-synthase of Mycobacterium tuberculosis in the presence of S-adenosylmethionine and serine. 7XOH ; 3.6 ; Cystathionine beta-synthase of Mycobacterium tuberculosis in the presence of S-adenosylmethionine. 8BIZ ; 1.891 ; Cystathionine gamma-lyase from Toxoplasma gondii in complex with cysteine 8BIU ; 1.899 ; Cystathionine gamma-lyase in complex with cystathionine 8BIV ; 2.22 ; Cystathionine gamma-lyase N360S mutant from Toxoplasma gondii 8BIX ; 1.59 ; Cystathionine gamma-lyase N360S mutant from Toxoplasma gondii in complex with cystathionine 8BIW ; 1.981 ; Cystathionine gamma-lyase N360S mutant in complex with DL-propargylglycine 1CS1 ; 1.5 ; CYSTATHIONINE GAMMA-SYNTHASE (CGS) FROM ESCHERICHIA COLI 1QGN ; 2.9 ; CYSTATHIONINE GAMMA-SYNTHASE FROM NICOTIANA TABACUM 1I41 ; 3.2 ; CYSTATHIONINE GAMMA-SYNTHASE IN COMPLEX WITH THE INHIBITOR APPA 1I48 ; 3.25 ; CYSTATHIONINE GAMMA-SYNTHASE IN COMPLEX WITH THE INHIBITOR CTCPO 1I43 ; 3.1 ; CYSTATHIONINE GAMMA-SYNTHASE IN COMPLEX WITH THE INHIBITOR PPCA 1M54 ; 2.9 ; CYSTATHIONINE-BETA SYNTHASE: REDUCED VICINAL THIOLS 7U7H ; 2.9 ; Cysteate acyl-ACP transferase from Alistipes finegoldii 2N8C ; ; Cystein knot with 2fp integrin avb6 cancer recognition site 7D5Y ; 2.2 ; Cystein protease domain from MARTX toxin 4JTO ; 2.0 ; Cysteine bound Cysteine Dioxygenase at pH 8.0 in the presence of Cys and dithionite 4Z82 ; 1.7 ; Cysteine bound rat cysteine dioxygenase C164S variant at pH 8.1 2MQ2 ; ; Cysteine Deleted Protegrin-1 (CDP-1): Anti-bacterial Activity, Outer-Membrane Disruption and Selectivity 2MQ4 ; ; Cysteine Deleted Protegrin-1 (CDP-1): Anti-bacterial Activity, Outer-Membrane Disruption and Selectivity 2MQ5 ; ; Cysteine Deleted Protegrin-1 (CDP-1): Anti-bacterial Activity, Outer-Membrane Disruption and Selectivity 4XF4 ; 1.3485 ; Cysteine dioxygenase at pH 8.0 in complex with homocysteine 4JTN ; 1.593 ; Cysteine Dioxygenase at pH 8.0 in the presence of dithionite 4XFG ; 1.401 ; cysteine dioxygenase variant - C93A at pH 6.2 with cysteine 4XF9 ; 1.3 ; cysteine dioxygenase variant - C93A at pH 8.0 in complex with homocysteine 4XFB ; 1.35 ; cysteine dioxygenase variant - C93A at pH 8.0 unliganded 4XF0 ; 1.3994 ; cysteine dioxygenase variant - C93A at pH 8.0 with cysteine 6U4L ; 1.911 ; cysteine dioxygenase variant - C93E 4XFC ; 1.351 ; cysteine dioxygenase variant - Y157F at pH 6.2 unliganded 4XFH ; 1.35 ; cysteine dioxygenase variant - Y157F at pH 6.2 with cysteine 4XFF ; 1.25 ; cysteine dioxygenase variant - Y157F at pH 6.2 with dithionite 4XFI ; 1.4 ; cysteine dioxygenase variant - Y157F at pH 6.2 with homocysteine 4XFA ; 1.65 ; cysteine dioxygenase variant - Y157F at pH 8.0 in complex with homocysteine 4XF1 ; 1.55 ; cysteine dioxygenase variant - Y157F at pH 8.0 with cysteine 4XF3 ; 1.55 ; cysteine dioxygenase variant - Y157F at pH 8.0 with cysteine and dithionite 4XEZ ; 1.2469 ; cysteine dioxygenase variant - Y157F at pH 8.0 with dithionite 2N8B ; ; Cysteine knot with integrin avb6 cancer recognition site 5JX7 ; 2.3 ; Cysteine mutant (C224A) structure of As (III) S-adenosyl methyltransferase 5WT6 ; 3.3 ; Cysteine persulfide intermediate of NifS from Helicobacter pylori 2P82 ; 2.1 ; Cysteine protease ATG4A 1IRC ; 2.17 ; CYSTEINE RICH INTESTINAL PROTEIN 1IML ; ; CYSTEINE RICH INTESTINAL PROTEIN, NMR, 48 STRUCTURES 6PU1 ; 2.28 ; Cysteine stabilized hexameric HIV-1 CA in complex with SEC24C peptide 8B9M ; 1.75 ; Cysteine Synthase from Leishmania Infantum 8B9Y ; 1.8 ; Cysteine Synthase from Trypanosoma cruzi with PLP and OAS 8B9W ; 2.75 ; Cysteine Synthase from Trypanosoma theileri with PLP bound 8QHP ; 2.8 ; Cysteine tRNA ligase homodimer 1R0W ; 2.2 ; Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain one (NBD1) apo 1R0Y ; 2.55 ; Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain one (NBD1) with ADP 1R0X ; 2.2 ; Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain one (NBD1) with ATP 1R10 ; 3.0 ; Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain one (NBD1) with ATP, I4122 space group 1CKW ; ; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR: SOLUTION STRUCTURES OF PEPTIDES BASED ON THE PHE508 REGION, THE MOST COMMON SITE OF DISEASE-CAUSING DELTA-F508 MUTATION 1CKX ; ; Cystic fibrosis transmembrane conductance regulator: Solution structures of peptides based on the Phe508 region, the most common site of disease-causing Delta-F508 mutation 1CKY ; ; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR: SOLUTION STRUCTURES OF PEPTIDES BASED ON THE PHE508 REGION, THE MOST COMMON SITE OF DISEASE-CAUSING DELTA-F508 MUTATION 1CKZ ; ; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR: SOLUTION STRUCTURES OF PEPTIDES BASED ON THE PHE508 REGION, THE MOST COMMON SITE OF DISEASE-CAUSING DELTA-F508 MUTATION 3TX3 ; 2.3 ; CysZ, a putative sulfate permease 6AMG ; 1.45 ; cyt P460 of Nitrosomonas sp. AL212 3GJA ; 2.2 ; CytC3 3GJB ; 2.2 ; CytC3 with Fe(II) and alpha-ketoglutarate 2G84 ; 1.4 ; Cytidine and deoxycytidylate deaminase zinc-binding region from Nitrosomonas europaea. 7VTF ; 2.20203 ; cytidine bound structure of Pseudouridine kinase (PUKI) from Escherichia coli strain B 7JTU ; 3.0 ; Cytidine deaminase T6S toxin from Pseudomonas syringae 1KDP ; 2.3 ; CYTIDINE MONOPHOSPHATE KINASE FROM E. COLI IN COMPLEX WITH 2'-DEOXY-CYTIDINE MONOPHOSPHATE 1KDO ; 1.9 ; CYTIDINE MONOPHOSPHATE KINASE FROM E. COLI IN COMPLEX WITH CYTIDINE MONOPHOSPHATE 1KDT ; 1.95 ; CYTIDINE MONOPHOSPHATE KINASE FROM E.COLI IN COMPLEX WITH 2',3'-DIDEOXY-CYTIDINE MONOPHOSPHATE 1KDR ; 2.25 ; CYTIDINE MONOPHOSPHATE KINASE FROM E.COLI IN COMPLEX WITH ARA-CYTIDINE MONOPHOSPHATE 2CMK ; 2.0 ; CYTIDINE MONOPHOSPHATE KINASE IN COMPLEX WITH CYTIDINE-DI-PHOSPHATE 1W97 ; 2.7 ; cyto-EpsL: the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae 1YF5 ; 2.75 ; Cyto-Epsl: The Cytoplasmic Domain Of Epsl, An Inner Membrane Component Of The Type II Secretion System Of Vibrio Cholerae 5A5I ; 2.0 ; Cytochrome 2C9 P450 inhibitor complex 5A5J ; 2.9 ; Cytochrome 2C9 P450 inhibitor complex 4B8N ; 1.95 ; Cytochrome b5 of Ostreococcus tauri virus 2 3U8P ; 2.75 ; Cytochrome b562 integral fusion with EGFP 4H0L ; 3.25 ; Cytochrome b6f Complex Crystal Structure from Mastigocladus laminosus with n-Side Inhibitor NQNO 4PV1 ; 3.0 ; Cytochrome B6F structure from M. laminosus with the quinone analog inhibitor stigmatellin 4D6U ; 4.09 ; Cytochrome bc1 bound to the 4(1H)-pyridone GSK932121 4D6T ; 3.57 ; Cytochrome bc1 bound to the 4(1H)-pyridone GW844520 5NMI ; 3.5 ; Cytochrome bc1 bound to the inhibitor MJM170 1BE3 ; 3.0 ; CYTOCHROME BC1 COMPLEX FROM BOVINE 1BGY ; 3.0 ; CYTOCHROME BC1 COMPLEX FROM BOVINE 1BCC ; 3.16 ; CYTOCHROME BC1 COMPLEX FROM CHICKEN 3H1H ; 3.16 ; Cytochrome bc1 complex from chicken 3L71 ; 2.84 ; Cytochrome BC1 complex from chicken with azoxystrobin bound 4U3F ; 3.2312 ; Cytochrome bc1 complex from chicken with designed inhibitor bound 3L74 ; 2.76 ; Cytochrome BC1 complex from chicken with famoxadone bound 3L75 ; 2.79 ; Cytochrome BC1 complex from chicken with fenamidone bound 3TGU ; 2.7 ; Cytochrome bc1 complex from chicken with pfvs-designed moa inhibitor bound 3L73 ; 3.04 ; Cytochrome BC1 complex from chicken with triazolone inhibitor 3L70 ; 2.75 ; Cytochrome BC1 complex from chicken with trifloxystrobin bound 8SMR ; 2.7 ; cytochrome bc1-cbb3 supercomplex from Pseudomonas aeruginosa 8SNH ; 2.7 ; cytochrome bc1-cbb3 supercomplex from Pseudomonas aeruginosa 7QHO ; 3.1 ; Cytochrome bcc-aa3 supercomplex (respiratory supercomplex III2/IV2) from Corynebacterium glutamicum (as isolated) 7QHM ; 2.8 ; Cytochrome bcc-aa3 supercomplex (respiratory supercomplex III2/IV2) from Corynebacterium glutamicum (stigmatellin and azide bound) 7OSE ; 3.0 ; cytochrome bd-II type oxidase with bound aurachin D 1OCD ; ; CYTOCHROME C (OXIDIZED) FROM EQUUS CABALLUS, NMR, MINIMIZED AVERAGE STRUCTURE 2FRC ; ; CYTOCHROME C (REDUCED) FROM EQUUS CABALLUS, NMR, MINIMIZED AVERAGE STRUCTURE 1I54 ; 1.5 ; CYTOCHROME C (TUNA) 2FE:1ZN MIXED-METAL PORPHYRINS 1I55 ; 2.0 ; CYTOCHROME C (TUNA) WITH 2ZN:1FE MIXED-METAL PORPHYRINS 5T8W ; 1.6 ; Cytochrome c - calixarene free 1CRC ; 2.08 ; CYTOCHROME C AT LOW IONIC STRENGTH 6RSL ; 1.988 ; Cytochrome c co-crystallized with 10 eq. sulfonato-calix[8]arene and 25 eq. spermine (dry-coating method) - structure III 6RSK ; 2.31 ; Cytochrome c co-crystallized with 20 eq. sulfonato-calix[8]arene and 15 eq. spermine - structure II 6RSJ ; 2.27 ; Cytochrome c co-crystallized with 20 eq. sulfonato-calix[8]arene and soaked with 25 eq. spermine - structure I 6RSI ; 2.48 ; cytochrome c co-crystallized with 25 eq. sulfonato-calix[8]arene - structure 0 1W2L ; 1.3 ; Cytochrome c domain of caa3 oxygen oxidoreductase 2L4D ; ; cytochrome c domain of pp3183 protein from Pseudomonas putida 3CP5 ; 1.24 ; Cytochrome c from rhodothermus marinus 6ZMQ ; 2.67 ; Cytochrome c Heme Lyase CcmF 5LYC ; 1.8 ; Cytochrome c in complex with phosphonato-calix[6]arene 6Y0J ; 2.7 ; Cytochrome c in complex with phosphonato-calix[6]arene and sulfonato-calix[8]arene 6GD6 ; 1.2 ; Cytochrome c in complex with Sulfonato-calix[8]arene, H3 form with ammonium sulfate 6GD7 ; 1.55 ; Cytochrome c in complex with Sulfonato-calix[8]arene, H3 form with PEG 6GD8 ; 2.5 ; Cytochrome c in complex with Sulfonato-calix[8]arene, P31 form 6GD9 ; 2.65 ; Cytochrome c in complex with Sulfonato-calix[8]arene, P43212 form 6GDA ; 2.8 ; Cytochrome c in complex with Sulfonato-calix[8]arene, P43212 form soaked with Spermine 1IRW ; 2.0 ; CYTOCHROME C ISOZYME 1, REDUCED, MUTANT WITH ASN 52 REPLACED BY ALA AND CYS 102 REPLACED BY THR 1IRV ; 1.9 ; CYTOCHROME C ISOZYME 1, REDUCED, MUTANT WITH ILE 75 REPLACED BY MET AND CYS 102 REPLACED BY THR 7O38 ; 3.0 ; cytochrome C kustc0562 from Kuenenia stuttgartiensis 8CE1 ; 3.47 ; Cytochrome c maturation complex CcmABCD 8CEA ; 3.94 ; Cytochrome c maturation complex CcmABCD, E154Q 8CE5 ; 3.62 ; Cytochrome c maturation complex CcmABCD, E154Q, ATP-bound 8CE8 ; 3.81 ; Cytochrome c maturation complex CcmABCDE 1QDB ; 1.9 ; CYTOCHROME C NITRITE REDUCTASE 1OAH ; 2.3 ; Cytochrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774: The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). 1FS7 ; 1.6 ; CYTOCHROME C NITRITE REDUCTASE FROM WOLINELLA SUCCINOGENES 2E81 ; 2.0 ; Cytochrome c Nitrite Reductase from Wolinella succinogenes with bound intermediate hydroxylamine 2E80 ; 1.6 ; Cytochrome c Nitrite Reductase from Wolinella succinogenes with bound substrate nitrite 1FS9 ; 2.0 ; CYTOCHROME C NITRITE REDUCTASE FROM WOLINELLA SUCCINOGENES-AZIDE COMPLEX 1FS8 ; 1.6 ; CYTOCHROME C NITRITE REDUCTASE FROM WOLINELLA SUCCINOGENES-SULFATE COMPLEX 1CZJ ; 2.16 ; CYTOCHROME C OF CLASS III (AMBLER) 26 KD 7MQZ ; 2.39 ; Cytochrome c oxidase assembly factor 7 6PW1 ; 2.1 ; Cytochrome c Oxidase delta 16 6PW0 ; 2.5 ; Cytochrome C oxidase delta 6 mutant 5WEH ; 3.45 ; Cytochrome c oxidase from Rhodobacter sphaeroides in the reduced state 6YMY ; 3.41 ; Cytochrome c oxidase from Saccharomyces cerevisiae 8C8Q ; 3.36 ; Cytochrome c oxidase from Schizosaccharomyces pombe 7AU3 ; 2.56 ; Cytochrome c oxidase structure in F-state 7AU6 ; 2.4 ; Cytochrome c oxidase structure in O-state 7ATE ; 2.4 ; Cytochrome c oxidase structure in P-state 7ATN ; 2.66 ; Cytochrome c oxidase structure in R-state 2EUO ; 1.45 ; Cytochrome c peroxidase (CCP) in complex with 1-methyl-1-lambda-5-pyridin-3-yl-amine 2EUU ; 1.45 ; Cytochrome c peroxidase (CCP) in complex with 1H-imidazol-2-ylmethanol 2EUN ; 1.7 ; Cytochrome c peroxidase (CCP) in complex with 2,4-diaminopyrimidine 2AQD ; 1.35 ; cytochrome c peroxidase (CCP) in complex with 2,5-diaminopyridine 2EUT ; 1.12 ; Cytochrome c peroxidase (CCP) in complex with 2-amino-4-picoline 2EUP ; 1.4 ; Cytochrome c peroxidase (CCP) in complex with 2-amino-5-picoline 2EUR ; 1.39 ; Cytochrome c peroxidase (CCP) in complex with 4-pyridylcarbinol 2EUS ; 1.55 ; Cytochrome c peroxidase (CCP) in complex with benzylamine 2Y5A ; 1.25 ; Cytochrome c peroxidase (CCP) W191G bound to 3-aminopyridine 3O5C ; 1.8 ; Cytochrome c Peroxidase BccP of Shewanella oneidensis 3HQ6 ; 2.0 ; Cytochrome c peroxidase from G. sulfurreducens, wild type 1DSG ; 2.56 ; CYTOCHROME C PEROXIDASE H175G MUTANT, IMIDAZOLE COMPLEX AT PH 5, ROOM TEMPERATURE. 1DSO ; 2.03 ; CYTOCHROME C PEROXIDASE H175G MUTANT, IMIDAZOLE COMPLEX AT PH 6, ROOM TEMPERATURE. 1DSP ; 2.03 ; CYTOCHROME C PEROXIDASE H175G MUTANT, IMIDAZOLE COMPLEX AT PH 7, ROOM TEMPERATURE. 1DS4 ; 2.02 ; CYTOCHROME C PEROXIDASE H175G MUTANT, IMIDAZOLE COMPLEX, PH 6, 100K 1DSE ; 2.0 ; CYTOCHROME C PEROXIDASE H175G MUTANT, IMIDAZOLE COMPLEX, WITH PHOSPHATE BOUND, PH 6, 100K 2RBV ; 1.39 ; Cytochrome C Peroxidase in complex with (1-methyl-1h-pyrrol-2-yl)-methylamine 2ANZ ; 1.75 ; cytochrome c peroxidase in complex with 2,6-diaminopyridine 2AS2 ; 1.45 ; cytochrome c peroxidase in complex with 2-iminopiperidine 2AS4 ; 1.3 ; cytochrome c peroxidase in complex with 3-fluorocatechol 2RBU ; 1.8 ; Cytochrome C Peroxidase in complex with cyclopentane-carboximidamide 2AS6 ; 1.45 ; cytochrome c peroxidase in complex with cyclopentylamine 2AS3 ; 1.4 ; cytochrome c peroxidase in complex with phenol 4A71 ; 1.61 ; cytochrome c peroxidase in complex with phenol 2AS1 ; 1.55 ; cytochrome c peroxidase in complex with thiopheneamidine 4A78 ; 2.01 ; cytochrome c peroxidase M119W in complex with guiacol 4A7M ; 1.71 ; cytochrome c peroxidase S81W mutant 1RYC ; 1.8 ; CYTOCHROME C PEROXIDASE W191G FROM SACCHAROMYCES CEREVISIAE 2RBZ ; 1.8 ; Cytochrome C Peroxidase W191G in complex 3-methoxypyridine 2RBW ; 1.5 ; Cytochrome C Peroxidase W191G in complex with 1,2-dimethyl-1h-pyridin-5-amine 2RC2 ; 1.5 ; Cytochrome C Peroxidase W191G in complex with 1-methyl-2-vinyl-pyridinium 2RC1 ; 2.49 ; Cytochrome C Peroxidase W191G in complex with 2,4,5-trimethyl-3-oxazoline 2RC0 ; 1.5 ; Cytochrome C Peroxidase W191G in complex with 2-imino-4-methylpiperdine 2RBX ; 1.5 ; Cytochrome C Peroxidase W191G in complex with pyrimidine-2,4,6-triamine. 4A6Z ; 1.61 ; Cytochrome c peroxidase with bound guaiacol 2X08 ; 2.01 ; cytochrome c peroxidase: ascorbate bound to the engineered ascorbate binding site 2X07 ; 1.86 ; cytochrome c peroxidase: engineered ascorbate binding site 2EUQ ; 1.3 ; Cytochrome c peroxydase (CCP) in complex with 3-thienylmethylamine 6HIH ; 1.6 ; Cytochrome c prime beta from Methylococcus capsulatus (Bath) 7ZVZ ; 1.68 ; Cytochrome c prime beta from Methylococcus capsulatus (Bath): Chemically Reduced Ferrous Form 6ZSK ; 1.6 ; Cytochrome c prime beta from Methylococcus capsulatus (Bath): CO complex 7ZPS ; 1.56 ; Cytochrome c prime beta from Methylococcus capsulatus (Bath): NO complex 2YL0 ; 0.95 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: AS ISOLATED L16A VARIANT AT 0.95 A RESOLUTION 2YL7 ; 0.9 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: AS ISOLATED L16G VARIANT AT 0.9 A RESOLUTION - RESTRAINT REFINEMENT 3ZTM ; 0.9 ; Cytochrome c prime from alcaligenes xylosoxidans: as isolated L16G variant at 0.9 A resolution: unrestraint refinement 2YLG ; 1.05 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: ASCORBATE AND CARBON MONOOXIDE BOUND L16A VARIANT AT 1.05 A RESOLUTION 2YL1 ; 1.03 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: CARBON MONOOXIDE BOUND L16A VARIANT AT 1.03 A RESOLUTION - Restraint refinement 3ZQY ; 1.03 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: CARBON MONOOXIDE BOUND L16A VARIANT AT 1.03 A RESOLUTION- NON-RESTRAINT REFINEMENT 2YL3 ; 1.04 ; CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: CARBON MONOOXIDE BOUND L16G VARIANT AT 1.04 A RESOLUTION - RESTRAINT REFINED 3ZTZ ; 1.05 ; Cytochrome c prime from alcaligenes xylosoxidans: carbon monooxide bound L16G variant at 1.05 A resolution: unrestraint refinement 2XL6 ; 1.07 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124A variant with bound NO 2XM4 ; 1.1 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124E variant 2XLO ; 1.24 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124E variant with bound NO 2XLV ; 1.24 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124F variant with bound NO 2XM0 ; 1.25 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124K variant 2XLE ; 1.12 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124K variant with bound NO 2XLD ; 1.4 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124Q variant 2XLW ; 1.17 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous R124Q variant with bound NO 2XLM ; 1.19 ; Cytochrome c prime from Alcaligenes xylosoxidans: Ferrous recombinant native with bound NO 4ULV ; 1.29 ; Cytochrome c prime from Shewanella frigidimarina 1CGN ; 2.15 ; CYTOCHROME C' 1CGO ; 1.8 ; CYTOCHROME C' 1RCP ; 2.0 ; CYTOCHROME C' 1E83 ; 2.05 ; Cytochrome c' from Alcaligenes xylosoxidans - oxidized structure 1E84 ; 1.9 ; Cytochrome c' from Alcaligenes xylosoxidans - reduced structure 1E86 ; 1.95 ; Cytochrome c' from Alcaligenes xylosoxidans - reduced structure with CO bound to distal side of heme 1E85 ; 1.35 ; Cytochrome c' from Alcaligenes xylosoxidans - reduced structure with NO bound to proximal side of heme 1GQA ; 1.8 ; Cytochrome c' from Rhodobacter Spheriodes 1CPQ ; 1.72 ; CYTOCHROME C' FROM RHODOPSEUDOMONAS CAPSULATA 1A7V ; 2.3 ; CYTOCHROME C' FROM RHODOPSEUDOMONAS PALUSTRIS 5GUX ; 3.3 ; Cytochrome c-dependent nitric oxide reductase (cNOR) from Pseudomonas aeruginosa in complex with xenon 7VFJ ; 3.98 ; Cytochrome c-type biogenesis protein CcmABCD 7F02 ; 3.24 ; Cytochrome c-type biogenesis protein CcmABCD from E. coli 7F03 ; 3.29 ; Cytochrome c-type biogenesis protein CcmABCD from E. coli in complex with ANP 7F04 ; 2.86 ; Cytochrome c-type biogenesis protein CcmABCD from E. coli in complex with Heme and ATP. 7VFP ; 4.03 ; Cytochrome c-type biogenesis protein CcmABCD from E. coli in complex with heme and single ATP 1C2N ; ; CYTOCHROME C2, NMR, 20 STRUCTURES 1W7O ; 1.81 ; cytochrome c3 from Desulfomicrobium baculatus 3CYR ; 1.6 ; CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ATCC 27774P 1I77 ; 1.95 ; CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ESSEX 6 2CTH ; 1.67 ; CYTOCHROME C3 FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH 1WAD ; 1.8 ; CYTOCHROME C3 WITH 4 HEME GROUPS AND ONE CALCIUM ION 1NEW ; ; Cytochrome C551.5, NMR 1FOC ; 3.0 ; Cytochrome C557: improperly folded thermus thermophilus C552 1CYI ; 1.9 ; CYTOCHROME C6 1CYJ ; 1.9 ; CYTOCHROME C6 1KIB ; 3.5 ; cytochrome c6 from Arthrospira maxima: an assembly of 24 subunits in the form of an oblate shell 6TSY ; 2.25 ; Cytochrome c6 from Thermosynechococcus elongatus in a monoclinic space group 1OS6 ; 1.45 ; Cytochrome c7 (PpcA) from Geobacter sulfurreducens 1HH5 ; 1.9 ; cytochrome c7 from Desulfuromonas acetoxidans 1AOQ ; 1.8 ; CYTOCHROME CD1 NITRITE REDUCTASE WITH SUBSTRATE AND PRODUCT BOUND 1DY7 ; 1.6 ; Cytochrome cd1 Nitrite Reductase, CO complex 1HJ3 ; 1.6 ; Cytochrome cd1 Nitrite Reductase, dioxygen complex 1QKS ; 1.28 ; CYTOCHROME CD1 NITRITE REDUCTASE, OXIDISED FORM 1HCM ; 2.5 ; Cytochrome cd1 Nitrite Reductase, oxidised from from tetragonal crystals 1E2R ; 1.59 ; CYTOCHROME CD1 NITRITE REDUCTASE, REDUCED AND CYANIDE BOUND 1AOF ; 2.0 ; CYTOCHROME CD1 NITRITE REDUCTASE, REDUCED FORM 1H9X ; 2.1 ; Cytochrome cd1 Nitrite Reductase, reduced form 1H9Y ; 2.4 ; Cytochrome cd1 Nitrite Reductase, reduced form complexed to CN 1HJ5 ; 1.46 ; Cytochrome cd1 Nitrite Reductase, reoxidised enzyme 1HJ4 ; 1.6 ; Cytochrome cd1 Nitrite Reductase, x-ray reduced dioxygen complex 1GQ1 ; 1.4 ; CYTOCHROME CD1 NITRITE REDUCTASE, Y25S mutant, OXIDISED FORM 1QN2 ; 2.01 ; cytochrome cH from Methylobacterium extorquens 2C8S ; 1.6 ; CYTOCHROME CL FROM METHYLOBACTERIUM EXTORQUENS 1D7D ; 1.9 ; CYTOCHROME DOMAIN OF CELLOBIOSE DEHYDROGENASE, HP3 FRAGMENT, PH 7.5 1PL3 ; 1.9 ; Cytochrome Domain Of Cellobiose Dehydrogenase, M65H mutant 1D7C ; 1.9 ; CYTOCHROME DOMAIN OF CELLOBIOSE DEHYDROGENASE, PH 4.6 1D7B ; 1.9 ; CYTOCHROME DOMAIN OF CELLOBIOSE DEHYDROGENASE, PH 7.5 4QI3 ; 1.4 ; Cytochrome domain of Myriococcum thermophilum cellobiose dehydrogenase, MtCYT 1CFM ; 2.0 ; CYTOCHROME F FROM CHLAMYDOMONAS REINHARDTII 1CI3 ; 1.9 ; CYTOCHROME F FROM THE B6F COMPLEX OF PHORMIDIUM LAMINOSUM 5UCW ; 1.7 ; Cytochrome P411 P-4 A82L A78V F263L amination catalyst 4H23 ; 3.3 ; Cytochrome P411BM3-CIS cyclopropanation catalyst 5W0C ; 2.001 ; Cytochrome P450 (CYP) 2C9 TCA007 Inhibitor Complex 8SPD ; 2.9 ; Cytochrome P450 (CYP) 3A4 crystallized with clotrimazole 8SG5 ; 2.8 ; Cytochrome P450 (CYP) 3A5 crystallized with clotrimazole 7DLS ; 2.06 ; Cytochrome P450 (CYP105D18) complex with papaverine 7DI3 ; 1.69 ; Cytochrome P450 (CYP105D18) W.T. 1OXA ; 2.1 ; CYTOCHROME P450 (DONOR:O2 OXIDOREDUCTASE) 6L39 ; 2.97 ; Cytochrome P450 107G1 (RapN) 6L3A ; 3.0 ; Cytochrome P450 107G1 (RapN) with everolimus 1E9X ; 2.1 ; Cytochrome P450 14 alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with 4-phenylimidazole 1EA1 ; 2.21 ; Cytochrome P450 14 alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with fluconazole 1H5Z ; 2.05 ; CYTOCHROME P450 14 ALPHA-STEROL DEMETHYLASE (CYP51) FROM MYCOBACTERIUM TUBERCULOSIS IN FERRIC LOW-SPIN STATE 7TEF ; 1.98 ; Cytochrome P450 14 alpha-sterol demethylase CYP51 from Mycobacterium marinum 3UAS ; 2.939 ; Cytochrome P450 2B4 covalently bound to the mechanism-based inactivator 9-ethynylphenanthrene 3TK3 ; 2.8001 ; Cytochrome P450 2B4 mutant L437A in complex with 4-(4-chlorophenyl)imidazole 3KOH ; 2.9 ; Cytochrome P450 2E1 with omega-imidazolyl octanoic acid 4D75 ; 2.25 ; Cytochrome P450 3A4 bound to an inhibitor 4D78 ; 2.8 ; Cytochrome P450 3A4 bound to an inhibitor 4D7D ; 2.76 ; Cytochrome P450 3A4 bound to an inhibitor 4D6Z ; 1.93 ; Cytochrome P450 3A4 bound to imidazole and an inhibitor 8GK3 ; 2.6 ; Cytochrome P450 3A7 in complex with Dehydroepiandrosterone sulfate 2UWH ; 2.8 ; Cytochrome P450 BM3 mutant in complex with palmitic acid 5E9Z ; 2.23 ; Cytochrome P450 BM3 mutant M11 4DUF ; 1.8 ; cytochrome P450 BM3h-2G9 MRI sensor bound to serotonin 4DUC ; 1.92 ; cytochrome P450 BM3h-2G9 MRI sensor, no ligand 4DUE ; 1.7 ; cytochrome P450 BM3h-2G9C6 MRI sensor bound to serotonin 4DUD ; 1.85 ; cytochrome P450 BM3h-2G9C6 MRI sensor, no ligand 4DTZ ; 1.55 ; cytochrome P450 BM3h-8C8 MRI sensor bound to dopamine 4DTW ; 1.8 ; cytochrome P450 BM3h-8C8 MRI sensor bound to serotonin 4DTY ; 1.45 ; cytochrome P450 BM3h-8C8 MRI sensor, no ligand 4DUB ; 1.7 ; cytochrome P450 BM3h-9D7 MRI sensor bound to dopamine 4DUA ; 2.0 ; cytochrome P450 BM3h-9D7 MRI sensor, no ligand 4DU2 ; 1.9 ; cytochrome P450 BM3h-B7 MRI sensor bound to dopamine 1IZO ; 2.1 ; Cytochrome P450 BS beta Complexed with Fatty Acid 5GWE ; 2.0 ; cytochrome P450 CREJ 5XJN ; 1.7 ; cytochrome P450 CREJ in complex with (4-ethylphenyl) dihydrogen phosphate 8C9I ; 2.05 ; Cytochrome P450 CYP141A1 (Rv3121) from Mycobacterium tuberculosis 8CKN ; 1.54 ; Cytochrome P450 CYP143A1 (Rv1785c) from Mycobacterium tuberculosis 7QAN ; 2.01 ; Cytochrome P450 Enzyme AbyV 7X53 ; 3.35 ; cytochrome P450 monooxygenase 8Q5J ; 1.48 ; Cytochrome P450 monooxygenase from Streptomyces scabiei (SscaCYP) 6M4P ; 2.3 ; Cytochrome P450 monooxygenase StvP2 substrate-bound structure 6M4Q ; 1.35 ; Cytochrome P450 monooxygenase StvP2 substrate-free structure 4ZFB ; 2.84 ; Cytochrome P450 pentamutant from BM3 bound to Palmitic Acid 4ZF8 ; 2.766 ; Cytochrome P450 pentamutant from BM3 with bound Metyrapone 4ZF6 ; 2.773 ; Cytochrome P450 pentamutant from BM3 with bound PEG 6FYJ ; 1.3 ; Cytochrome P450 peroxygenase CYP152K6 in complex with Myristic Acid 6T1U ; 1.5 ; Cytochrome P450 reductase from Candida tropicalis 6T1T ; 2.08 ; Cytochrome P450 reductase in complex with NADPH from Candida tropicalis 8HG9 ; 2.79 ; Cytochrome P450 steroid hydroxylase (BaCYP106A6) from Bacillus species 6F0B ; 2.8 ; Cytochrome P450 TxtC employs substrate conformational switching for sequential aliphatic and aromatic thaxtomin hydroxylation 6F0C ; 1.7 ; Cytochrome P450 TxtC employs substrate conformational switching for sequential aliphatic and aromatic thaxtomin hydroxylation 5GNL ; 1.95 ; Cytochrome P450 Vdh (CYP107BR1) F106V mutant 5GNM ; 2.7 ; Cytochrome P450 Vdh (CYP107BR1) L348M mutant 4ZFA ; 2.765 ; Cytochrome P450 wild type from BM3 with bound PEG 2WIY ; 1.49 ; Cytochrome P450 XplA heme domain P21212 6HQW ; 2.9 ; Cytochrome P450-153 from Novosphingobium aromaticivorans 6HQG ; 2.9 ; Cytochrome P450-153 from Phenylobacterium zucineum 6HQD ; 1.8 ; Cytochrome P450-153 from Pseudomonas sp. 19-rlim 1NOO ; 2.2 ; CYTOCHROME P450-CAM COMPLEXED WITH 5-EXO-HYDROXYCAMPHOR 4H24 ; 2.5 ; Cytochrome P450BM3-CIS cyclopropanation catalyst 2ZQX ; 2.37 ; Cytochrome P450BSbeta cocrystallized with heptanoic acid 2H7Q ; 1.5 ; Cytochrome P450cam complexed with imidazole 1AKD ; 1.8 ; CYTOCHROME P450CAM FROM PSEUDOMONAS PUTIDA, COMPLEXED WITH 1S-CAMPHOR 1K2O ; 1.65 ; Cytochrome P450Cam with Bound BIS(2,2'-BIPYRIDINE)-(5-METHYL-2-2'-BIPYRIDINE)-C2-ADAMANTANE RUTHENIUM (II) 6NBL ; 2.15 ; Cytochrome P450cam-putidaredoxin complex bound to camphor and cyanide 1EGY ; 2.35 ; CYTOCHROME P450ERYF WITH 9-AMINOPHENANTHRENE BOUND 5YHJ ; 2.3 ; Cytochrome P450EX alpha (CYP152N1) wild-type with myristic acid 3VM4 ; 1.94 ; Cytochrome P450SP alpha (CYP152B1) in complex with (R)-ibuprophen 3VOO ; 2.34 ; Cytochrome P450SP alpha (CYP152B1) mutant A245E 3VTJ ; 2.56 ; Cytochrome P450SP alpha (CYP152B1) mutant A245H 3AWP ; 1.8 ; Cytochrome P450SP alpha (CYP152B1) mutant F288G 3AWQ ; 1.9 ; Cytochrome P450SP alpha (CYP152B1) mutant L78F 3VNO ; 2.17 ; Cytochrome P450SP alpha (CYP152B1) mutant R241E 3AWM ; 1.65 ; Cytochrome P450SP alpha (CYP152B1) wild-type with palmitic acid 8EUH ; 2.0 ; cytochrome P450terp (cyp108A1) bound to alpha-terpineol 8EUK ; 1.98 ; cytochrome P450terp (cyp108A1) bound to ethylene glycol 8EUL ; 2.24 ; cytochrome P450terp (cyp108A1) mutant F188A bound to alpha-terpineol 6HIU ; 1.36 ; Cytochrome P460 from Methylococcus capsulatus (Bath) 2JE2 ; 1.8 ; Cytochrome P460 from Nitrosomonas europaea - probable nonphysiological oxidized form 2JE3 ; 1.8 ; Cytochrome P460 from Nitrosomonas europaea - probable physiological form 6P73 ; 1.65 ; Cytochrome-C-nitrite reductase 2WIV ; 1.9 ; Cytochrome-P450 XplA heme domain P21 1URY ; 2.4 ; cytoglobin cavities 1BC9 ; ; CYTOHESIN-1/B2-1 SEC7 DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 2B5I ; 2.3 ; cytokine receptor complex 4NN5 ; 1.898 ; Cytokine receptor complex - Crystal form 1A 4NN6 ; 2.545 ; Cytokine receptor complex - Crystal form 1B 4NN7 ; 3.775 ; Cytokine receptor complex - Crystal form 2 6RPY ; 1.97 ; Cytokine receptor-like factor 3 C-terminus residues 174-442: Hg-SAD derivative 6RPX ; 1.61 ; Cytokine receptor-like factor 3 C-terminus residues 174-442: native 6RPZ ; 1.74 ; Cytokine receptor-like factor 3 C-terminus residues 174-442: native collected with 1.7A wavelength 1INR ; 2.0 ; CYTOKINE SYNTHESIS 6EE9 ; ; Cytokine-like Peptide Stress-response Peptide-1 from Manduca Sexta 5W54 ; ; Cytokine-like Stress Response Peptide-2 in Manduca Sexta 5UWC ; 2.4 ; Cytokine-receptor complex 4KC3 ; 3.2702 ; Cytokine/receptor binary complex 1BQU ; 2.0 ; CYTOKYNE-BINDING REGION OF GP130 4UXV ; 3.961 ; Cytoplasmic domain of bacterial cell division protein EzrA 4UY3 ; 2.6 ; Cytoplasmic domain of bacterial cell division protein ezra 3AUW ; 3.56 ; Cytoplasmic domain of inward rectifier potassium channel Kir3.2 in complex with cadmium 6CV9 ; 3.8 ; Cytoplasmic domain of mTRPC6 2JA3 ; 3.05 ; Cytoplasmic Domain of the Human Chloride Transporter ClC-5 in complex with ADP 2J9L ; 2.3 ; Cytoplasmic Domain of the Human Chloride Transporter ClC-5 in complex with ATP 4NH0 ; 2.9 ; Cytoplasmic domain of the Thermomonospora curvata Type VII Secretion ATPase EccC 6D7L ; 4.0 ; Cytoplasmic domain of TRPC3 6Y4R ; 2.594 ; Cytoplasmic domain of TssL from Acinetobacter baumannii 1IAS ; 2.9 ; CYTOPLASMIC DOMAIN OF UNPHOSPHORYLATED TYPE I TGF-BETA RECEPTOR CRYSTALLIZED WITHOUT FKBP12 7NMB ; ; cytoplasmic domain of Vibrio cholerae ToxR 2KJ1 ; ; cytoplasmic domain structure of BM2 proton channel from influenza B virus 2GIX ; 2.02 ; Cytoplasmic Domain Structure of Kir2.1 containing Andersen's Mutation R218Q and Rescue Mutation T309K 8GPS ; 1.39 ; Cytoplasmic domain structure of the MgtE Mg2+ channel from Chryseobacterium hispalense 8GPV ; 1.82 ; Cytoplasmic domain structure of the MgtE Mg2+ channel from Clostridiales bacterium 7UZV ; 2.5 ; Cytoplasmic domains of Band 3-I (local refinement from consensus reconstruction of ankyrin complexes) 7Z8K ; 4.37 ; Cytoplasmic dynein (A1) bound to BICDR1 7Z8J ; 3.93 ; Cytoplasmic dynein (A2) bound to BICDR1 7Z8L ; 4.9 ; Cytoplasmic dynein light intermediate chain (B1) bound to the motor domain (A2). 8PQZ ; 5.5 ; Cytoplasmic dynein-1 A1/A2 motor domains bound to LIS1 8PR2 ; 3.8 ; Cytoplasmic dynein-1 heavy chain bound to JIP3-LZI 8PR3 ; 3.9 ; Cytoplasmic dynein-1 heavy chain bound to JIP3-RH1 7Z8G ; 3.52 ; Cytoplasmic dynein-1 motor domain 7Z8H ; 3.41 ; Cytoplasmic dynein-1 motor domain AAA1, AAA2, and AAA3 subunits 8PQW ; 4.2 ; Cytoplasmic dynein-1 motor domain bound to dynactin-p150glued and LIS1 8PQY ; 3.8 ; Cytoplasmic dynein-1 motor domain bound to LIS1 8PQV ; 4.0 ; Cytoplasmic dynein-1 motor domain in post-powerstroke state 8PR0 ; 9.4 ; Cytoplasmic dynein-A heavy chain bound to dynactin-p150glued and IC-LC tower 8PR1 ; 8.2 ; Cytoplasmic dynein-B heavy chain bound to IC-LC tower 3SOZ ; 2.6 ; Cytoplasmic Protein STM1381 from Salmonella typhimurium LT2 2GK3 ; 2.25 ; Cytoplasmic Protein STM3548 from Salmonella typhimurium 7SC5 ; 3.88 ; Cytoplasmic tail deleted HIV Env trimer in nanodisc 7SD3 ; 3.67 ; Cytoplasmic tail deleted HIV-1 Env bound with three 4E10 Fabs 4W68 ; 2.0 ; Cytoplasmically Produced Homodimeric Single Domain Antibody (sdAb) C22A/C99V variant against Staphylococcal enterotoxin B (SEB) 1U47 ; 2.0 ; cytosine-8-Oxoguanine base pair at the polymerase active site 1NK6 ; 2.1 ; CYTOSINE-CYTOSINE MISMATCH AT THE POLYMERASE ACTIVE SITE 7MHT ; 2.87 ; CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI/DNA COMPLEX 8MHT ; 2.76 ; CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI/DNA COMPLEX 9MHT ; 2.39 ; CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI/DNA COMPLEX 1NJZ ; 2.0 ; CYTOSINE-THYMINE MISMATCH AT THE POLYMERASE ACTIVE SITE 4KX5 ; 1.9 ; Cytosolic 5'-nucleotidase III complexed with cytidine 5'-monophosphate 8DJR ; 1.46 ; Cytosolic ascorbate peroxidase from Sorghum bicolor 8DJU ; 1.5 ; Cytosolic ascorbate peroxidase from Sorghum bicolor - bicyclic dehydroascorbic acid complex 8DJX ; 1.34 ; Cytosolic ascorbate peroxidase from Sorghum bicolor - Compound II 8DJT ; 1.16 ; Cytosolic ascorbate peroxidase from Sorghum bicolor - four ascorbates complex 8DJW ; 1.8 ; Cytosolic ascorbate peroxidase from Sorghum bicolor - hydroperoxo complex 8DJS ; 1.19 ; Cytosolic ascorbate peroxidase from Sorghum bicolor - one ascorbate complex 8FF6 ; 2.49 ; Cytosolic ascorbate peroxidase mutant from Panicum virgatum 8FF7 ; 2.194 ; Cytosolic ascorbate peroxidase mutant from Panicum virgatum- ascorbate complex 7NPT ; 3.27 ; Cytosolic bridge of an intact ESX-5 inner membrane complex 6EI0 ; 1.34 ; Cytosolic copper storage protein Csp from Streptomyces lividans: apo form 6EK9 ; 1.5 ; Cytosolic copper storage protein Csp from Streptomyces lividans: Cu loaded form 5HFG ; 1.823 ; Cytosolic disulfide reductase DsbM from Pseudomonas aeruginosa 5HFI ; 1.801 ; Cytosolic disulfide reductase DsbM from Pseudomonas aeruginosa with GSH 1NZN ; 2.0 ; Cytosolic domain of the human mitchondrial fission protein Fis1 adopts a TPR fold 2HES ; 1.7 ; Cytosolic Iron-sulphur Assembly Protein- 1 5NUF ; 1.8 ; Cytosolic Malate Dehydrogenase 1 5NUE ; 1.35 ; Cytosolic Malate Dehydrogenase 1 (peroxide-treated) 5NQ4 ; ; Cytotoxin-1 in DPC-micelle 1A5P ; 1.6 ; C[40,95]A VARIANT OF BOVINE PANCREATIC RIBONUCLEASE A 3DT5 ; 1.94 ; C_terminal domain of protein of unknown function AF_0924 from Archaeoglobus fulgidus. 2P64 ; 2.5 ; D domain of b-TrCP 2MN0 ; ; D loop of tRNA(Met) 7T6Y ; 2.3 ; d((CGA)5TGA) parallel-stranded homo-duplex 4M94 ; 2.14 ; d(ATCCGTTATAACGGAT) complexed with Moloney Murine Leukemia virus reverse transcriptase catalytic fragment 4M95 ; 1.72 ; d(ATCCGTTATAACGGAT)complexed with Moloney Murine Leukemia virus reverse transcriptase catalytic fragment 2R2R ; 2.1 ; d(ATTAGTTATAACTAAT) complexed with MMLV RT catalytic fragment 2R2T ; 2.0 ; d(ATTTAGTTAACTAAAT) complexed with MMLV RT catalytic fragment 8Q5Q ; ; d(ATTTC)3 dimeric structure 7ZQM ; 1.41 ; d(CGCGCG)2 Z-DNA AT 3000 BARS (300 MPa) 7ZQN ; 1.41 ; d(CGCGCG)2 Z-DNA AT 5400 BARS (540 MPa) 7ZQO ; 1.8 ; d(CGCGCG)2 Z-DNA AT 7150 BARS (715 MPa) 7ZQL ; 2.55 ; d(CGCGTTAACGCG)2 B-DODECAMER AT 3100 BARS (310 MPa) 2GB9 ; 1.7 ; d(CGTACG)2 crosslinked bis-acridine complex 1ZTW ; 1.8 ; d(CTTAATTCGAATTAAG) complexed with Moloney Murine Leukemia Virus Reverse Transcriptase catalytic fragment 2FJW ; 1.95 ; d(CTTGAATGCATTCAAG) in complex with MMLV RT catalytic fragment 7SB8 ; 1.317 ; d(GA(CGA)5) parallel-stranded homo-duplex 3T86 ; 1.9 ; d(GCATGCT) + calcium 1R2O ; 2.38 ; d(GCATGCT) + Ni2+ 432D ; 1.89 ; D(GGCCAATTGG) COMPLEXED WITH DAPI 2PL8 ; 1.65 ; D(GTATACC) under hydrostatic pressure of 1.04 GPa 2PLB ; 1.6 ; D(GTATACC) under hydrostatic pressure of 1.39 GPa 4R8J ; 1.21 ; d(TCGGCGCCGA) with lambda-[Ru(TAP)2(dppz)]2+ soaked in D2O 2PKV ; 1.6 ; D-(GGTATACC) ambient pressure 2PL4 ; 1.65 ; D-(GGTATACC) under 0.55 GPa hydrostatic pressure 2PLO ; 1.4 ; D-(GTATACC) low temperature (100K) 5MH5 ; 1.4 ; D-2-hydroxyacid dehydrogenases (D2-HDH) from Haloferax mediterranei in complex with 2-keto-hexanoic acid and NADP+ (1.4 A resolution) 5MH6 ; 1.35 ; D-2-hydroxyacid dehydrogenases (D2-HDH) from Haloferax mediterranei in complex with 2-ketohexanoic acid and NAD+ (1.35 A resolution) 5MHA ; 1.57 ; D-2-hydroxyacid dehydrogenases (D2-HDH) from Haloferax mediterranei in complex with a mixture of 2-ketohexanoic acid and 2-hydroxyhexanoic acid, and NADPH (1.57 A resolution) 3V4Z ; 2.69 ; D-alanine--D-alanine ligase from Yersinia pestis 1EHI ; 2.38 ; D-ALANINE:D-LACTATE LIGASE (LMDDL2) OF VANCOMYCIN-RESISTANT LEUCONOSTOC MESENTEROIDES 8I31 ; 2.28 ; D-alanyl carrier protein 8I32 ; 2.1 ; D-alanyl carrier protein mutant-S36A 6O93 ; 2.178 ; D-alanyl transferase DltD from Enterococcus faecalis 6PFX ; 1.5 ; D-alanyl transferase DltD from Enterococcus faecium 1E4E ; 2.5 ; D-alanyl-D-lacate ligase 1C0P ; 1.2 ; D-AMINO ACIC OXIDASE IN COMPLEX WITH D-ALANINE AND A PARTIALLY OCCUPIED BIATOMIC SPECIES 1AN9 ; 2.5 ; D-AMINO ACID OXIDASE COMPLEX WITH O-AMINOBENZOATE 1KIF ; 2.6 ; D-AMINO ACID OXIDASE FROM PIG KIDNEY 1C0L ; 1.73 ; D-AMINO ACID OXIDASE: STRUCTURE OF SUBSTRATE COMPLEXES AT VERY HIGH RESOLUTION REVEAL THE CHEMICAL REACTTION MECHANISM OF FLAVIN DEHYDROGENATION 4NBI ; 1.86 ; D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with D-tyrosyl-3'-aminoadenosine at 1.86 Angstrom resolution 4NBJ ; 2.2 ; D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with D-tyrosyl-3'-aminoadenosine at 2.20 Angstrom resolution 5J61 ; 2.1 ; D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with glycyl-3'-aminoadenosine at 2.10 Angstrom resolution 8E92 ; 3.96 ; D-cycloserine and glutamate bound Human GluN1a-GluN2C NMDA receptor in intact conformation 8E98 ; 3.75 ; D-cycloserine and glutamate bound Human GluN1a-GluN2C NMDA receptor in nanodisc - intact conformation 8E93 ; 3.71 ; D-cycloserine and glutamate bound Human GluN1a-GluN2C NMDA receptor in splayed conformation 5I0R ; 1.35 ; D-cysteine bound C93A mutant of Cysteine Dioxygenase at pH 8 4D96 ; 2.09 ; D-Cysteine desulfhydrase from Salmonella typhimurium complexed with 1-amino-1-carboxycyclopropane (ACC) 4D9F ; 2.61 ; D-Cysteine desulfhydrase from Salmonella typhimurium complexed with D-cycloserine (DCS) 4D9E ; 2.47 ; D-Cysteine desulfhydrase from Salmonella typhimurium complexed with L-cycloserine (LCS) 1DPT ; 1.54 ; D-DOPACHROME TAUTOMERASE 3KER ; 2.78 ; D-Dopachrome tautomerase (D-DT)/ macrophage migration inhibitory factor 2 (MIF2) complexed with inhibitor 4-IPP 3KAN ; 1.13 ; D-dopachrome tautomerase (D-DT)/macrophage migration inhibitory factor 2 (MIF2) complexed with inhibitor 4-IPP 3OET ; 2.36 ; D-Erythronate-4-Phosphate Dehydrogenase complexed with NAD 5IHE ; 2.5 ; D-family DNA polymerase - DP1 subunit (3'-5' proof-reading exonuclease) 6HMF ; 2.6 ; D-family DNA polymerase - DP1 subunit (3'-5' proof-reading exonuclease) H451 proof-reading deficient variant 5IJL ; 2.19 ; D-family DNA polymerase - DP2 subunit (catalytic subunit) 3ROJ ; 2.3 ; D-fructose 1,6-bisphosphatase class 2/sedoheptulose 1,7-bisphosphatase of Synechocystis sp. PCC 6803 3RPL ; 2.4 ; D-fructose 1,6-bisphosphatase class 2/sedoheptulose 1,7-bisphosphatase of Synechocystis sp. PCC 6803 in complex with FRUCTOSE-1,6-BISPHOSPHATE 6CKG ; 2.0 ; D-glycerate 3-kinase from Cryptococcus neoformans var. grubii serotype A (H99 / ATCC 208821 / CBS 10515 / FGSC 9487) 1GKP ; 1.295 ; D-Hydantoinase (Dihydropyrimidinase) from Thermus sp. in space group C2221 1GKQ ; 2.6 ; D-Hydantoinase (Dihydropyrimidinase) from Thermus sp. in space group P212121 2DLD ; 2.7 ; D-LACTATE DEHYDROGENASE COMPLEXED WITH NADH AND OXAMATE 7NZP ; 1.345 ; D-lyxose isomerase from the hyperthermophilic archaeon Thermofilum sp complexed with D-fructose 7NZQ ; 1.57 ; D-lyxose isomerase from the hyperthermophilic archaeon Thermofilum sp complexed with D-mannose 7NZO ; 1.67 ; D-lyxose isomerasefrom the hyperthermophilic archaeon Thermofilum sp 3MGN ; 1.4 ; D-Peptide inhibitor PIE71 in complex with IQN17 8OIK ; 1.62 ; D-PHAT domain (NTD) of human SAMD4A 1NZQ ; 2.18 ; D-Phe-Pro-Arg-Type Thrombin Inhibitor 7LSP ; ; D-Phenylseptin - The second residue of PHE of the peptide is a D-amino acid 7LL8 ; 2.31 ; D-Protein RFX-V1 Bound to the VEGFR1 Domain 2 Site on VEGF-A 7LL9 ; 2.9 ; D-Protein RFX-V2 Bound to the VEGFR1 Domain 3 Site on VEGF-A 1URP ; 2.3 ; D-RIBOSE-BINDING PROTEIN FROM ESCHERICHIA COLI 1RPX ; 2.3 ; D-RIBULOSE-5-PHOSPHATE 3-EPIMERASE FROM SOLANUM TUBEROSUM CHLOROPLASTS 3LBM ; 1.48 ; D-sialic acid aldolase 3LBC ; 1.85 ; D-sialic acid aldolase complexed with L-arabinose 3WQG ; 1.55 ; D-threo-3-hydroxyaspartate dehydratase C353A mutant in the metal-free form 3WQC ; 1.5 ; D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23 3WQE ; 1.6 ; D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23 complexed with D-allothreonine 3WQD ; 1.5 ; D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23 complexed with D-erythro-3-hydroxyaspartate 3WQF ; 2.3 ; D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23 in the metal-free form 4PB3 ; 1.7 ; D-threo-3-hydroxyaspartate dehydratase H351A mutant 4PB4 ; 1.8 ; D-threo-3-hydroxyaspartate dehydratase H351A mutant complexed with 2-amino maleic acid 4PB5 ; 1.9 ; D-threo-3-hydroxyaspartate dehydratase H351A mutant complexed with L-erythro-3-hydroxyaspartate 1JKE ; 1.55 ; D-Tyr tRNATyr deacylase from Escherichia coli 3KO5 ; 2.09 ; D-Tyr-tRNA(Tyr) deacylase from Plasmodium falciparum in complex with ADP 3LMV ; 2.833 ; D-Tyr-tRNA(Tyr) Deacylase from plasmodium falciparum in complex with hepes 3KO3 ; 2.8 ; D-tyrosyl-tRNA(Tyr) deacylase from Plasmodium falciparum incomplex with ADP, obtained through soaking native enzyme crystal with the ATP 3CWH ; 2.2 ; D-xylose Isomerase in complex with linear product, per-deuterated xylulose 7QUP ; 3.8 ; D. melanogaster 13-protofilament microtubule 7QUC ; 3.2 ; D. melanogaster alpha/beta tubulin heterodimer in the GDP form 7QUD ; 3.47 ; D. melanogaster alpha/beta tubulin heterodimer in the GTP form 6RAW ; 3.7 ; D. melanogaster CMG-DNA, State 1A 6RAX ; 3.99 ; D. melanogaster CMG-DNA, State 1B 6RAY ; 4.28 ; D. melanogaster CMG-DNA, State 2A 6RAZ ; 4.46 ; D. melanogaster CMG-DNA, State 2B 6S8R ; 2.41 ; D. melanogaster RNA helicase Me31B in complex with GIGYF 2RHF ; 1.1 ; D. radiodurans RecQ HRDC domain 3 8DEJ ; 2.86 ; D. vulgaris type I-C Cascade bound to dsDNA target 6TPL ; 1.8 ; D0-D1 domain of Intimin 6TQD ; 1.48 ; D00-D0 domain of Intimin 7R7U ; 4.3 ; D1 and D2 domain structure of the p97(R155H)-p47 complex 7NGP ; 15.0 ; D1-state of wild type human mitochondrial LONP1 protease 1KIY ; 2.4 ; D100E trichodiene synthase 1KIZ ; 2.6 ; D100E trichodiene synthase complexed with pyrophosphate 1YYT ; 2.9 ; D100E Trichodiene Synthase: Complex With Mg, Pyrophosphate, and (4R)-7-azabisabolene 1YYU ; 2.95 ; D100E Trichodiene Synthase: Complex With Mg, Pyrophosphate, and (4S)-7-azabisabolene 6P7C ; 2.76 ; D104A/S128A S. typhimurium siroheme synthase 6ULU ; 2.76 ; D104A/S128A S. typhimurium siroheme synthase 6P7D ; 2.4 ; D104N S. typhimurium siroheme synthase 1JL1 ; 1.3 ; D10A E. coli ribonuclease HI 6I03 ; 1.02 ; D10N variant of beta-phosphoglucomutase from Lactococcus lactis complexed with tetrafluoroaluminate and beta-G6P to 1.02 A 5OJZ ; 1.3 ; D10N variant of beta-phosphoglucomutase from Lactococcus lactis inhibited by a beryllium triflouride phosphoenzyme analogue to 1.3A resolution. 5OK1 ; 1.86 ; D10N variant of beta-phosphoglucomutase from Lactococcus lactis trapped with native beta-glucose 1,6-bisphosphate intermediate to 1.9A resolution. 5L3L ; ; D11 bound IGF-II 5L3N ; ; D11 bound [N29, S39_PQ]-IGF-II 5L3M ; ; D11 bound [S39_PQ]-IGF-II 3ZDN ; 2.55 ; D11-C mutant of monoamine oxidase from Aspergillus niger 3NJK ; 1.5 ; D116A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis, at pH5.5 3NJL ; 1.75 ; D116A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis, at pH7.5 1WNV ; 1.85 ; D136A mutant of Heme Oxygenase from Corynebacterium diphtheriae (HmuO) 1WNX ; 1.85 ; D136E mutant of Heme Oxygenase from Corynebacterium diphtheriae (HmuO) 1WNW ; 1.7 ; D136N mutant of Heme Oxygenase from Corynebacterium diphtheriae (HmuO) 1B0T ; 2.1 ; D15K/K84D MUTANT OF AZOTOBACTER VINELANDII FDI 6HDG ; 1.15 ; D170N variant of beta-phosphoglucomutase from Lactococcus lactis complexed with beta-G1P in a closed conformer to 1.2 A. 6HDF ; 1.4 ; D170N variant of beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 1.4 A. 3C1U ; 1.33 ; D192N mutant of Rhamnogalacturonan acetylesterase 1QQM ; 1.9 ; D199S MUTANT OF BOVINE 70 KILODALTON HEAT SHOCK PROTEIN 1D3L ; 3.25 ; D1D2-ICAM-1 FULLY GLYCOSYLATED, VARIATION OF D1-D2 INTERDOMAIN ANGLE IN DIFFERENT CRYSTAL STRUCTURES. 3S8W ; 2.6 ; D2 domain of human IFNAR2 1D2N ; 1.75 ; D2 DOMAIN OF N-ETHYLMALEIMIDE-SENSITIVE FUSION PROTEIN 1NSF ; 1.9 ; D2 HEXAMERIZATION DOMAIN OF N-ETHYLMALEIMIDE SENSITIVE FACTOR (NSF) 4OZG ; 3.0 ; D2 protein complex 2ZD2 ; 1.8 ; D202K mutant of P. denitrificans Atp12p 1QQN ; 1.9 ; D206S MUTANT OF BOVINE 70 KILODALTON HEAT SHOCK PROTEIN 1QTZ ; 2.0 ; D20C MUTANT OF T4 LYSOZYME 1QT5 ; 1.8 ; D20E MUTANT STRUCTURE OF T4 LYSOZYME 2YHK ; 1.91 ; D214A mutant of tyrosine phenol-lyase from Citrobacter freundii 1BJG ; 2.3 ; D221(169)N MUTANT DOES NOT PROMOTE OPENING OF THE COFACTOR IMIDAZOLIDINE RING 1DNA ; 2.2 ; D221(169)N MUTANT DOES NOT PROMOTE OPENING OF THE COFACTOR IMIDAZOLIDINE RING 1C9Z ; 2.4 ; D232-CGTACG 1KY5 ; 2.8 ; D244E mutant S-Adenosylhomocysteine hydrolase refined with noncrystallographic restraints 1XLM ; 2.4 ; D254E, D256E MUTANT OF D-XYLOSE ISOMERASE COMPLEXED WITH AL3 AND XYLITOL 6PR3 ; 1.96 ; D262A/S128A S. typhimurium siroheme synthase 6PR4 ; 2.24 ; D262N/S128A S. typhimurium siroheme synthase 2OUI ; 1.77 ; D275P mutant of alcohol dehydrogenase from protozoa Entamoeba histolytica 6MR8 ; 1.897 ; D276G DNA polymerase beta substrate complex with templating adenine and incoming Fapy-dGTP analog 6DIC ; 1.992 ; D276G DNA polymerase beta substrate complex with templating cytosine and incoming Fapy-dGTP analog 5FO0 ; 2.51 ; D298E mutant of FAD synthetase from Corynebacterium ammoniagenes 8IMK ; 2.48 ; D3-D4, D1-D2, D'3-D'4, D'1-D'2 cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster C) 5WKF ; 2.95 ; D30 TCR in complex with HLA-A*11:01-GTS1 5WKH ; 3.2 ; D30 TCR in complex with HLA-A*11:01-GTS3 3WNO ; 1.9 ; D308A mutant of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase complexed with cycloisomaltooctaose 3WNM ; 2.25 ; D308A mutant of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase complexed with isomaltoheptaose 3WNL ; 2.6 ; D308A mutant of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase complexed with isomaltohexaose 3WNN ; 2.25 ; D308A mutant of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase complexed with isomaltooctaose 3WNP ; 2.8 ; D308A, F268V, D469Y, A513V, and Y515S quintuple mutant of Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase complexed with isomaltoundecaose 7DT9 ; 1.89 ; D30N HIV Protease in complex with Saquinavir 6C8Y ; 1.942 ; D30N HIV-1 protease in complex with a phenylboronic acid (P2') analog of darunavir 8ESY ; 1.35 ; D30N mutant HIV protease in complex with benzoxaborolone analog of darunavir 4Q5M ; 1.795 ; D30N tethered HIV-1 protease dimer/saquinavir complex 3EWU ; 1.6 ; D312N mutant of human orotidyl-5'-monophosphate decarboxylase in complex with 6-acetyl-UMP, covalent adduct 3EX6 ; 1.3 ; D312N mutant of human orotidyl-5'-monophosphate decarboxylase in complex with 6-azido-UMP, covalent adduct 3EWW ; 1.1 ; D312N mutant of human orotidyl-5'-monophosphate decarboxylase in complex with 6-cyano-UMP, covalent adduct 7BA2 ; 3.0 ; D319A mutant of the PilB minor pilin from Streptococcus sanguinis 5IMH ; 2.471 ; D31P mutant of C69-family cysteine dipeptidase from Lactobacillus farciminis 7DVB ; 2.05 ; D335N variant of Bt4394 in complex with 6SO3-NAG-oxazoline intermediate 3DFN ; 1.86 ; D33N mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 3DFQ ; 1.82 ; D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 1N11 ; 2.7 ; D34 REGION OF HUMAN ANKYRIN-R AND LINKER 6D8G ; 3.0 ; D341A D367A calcium binding mutant of Bacteroides uniformis beta-glucuronidase 2 3PVI ; 1.59 ; D34G MUTANT OF PVUII ENDONUCLEASE COMPLEXED WITH COGNATE DNA SHOWS THAT ASP34 IS DIRECTLY INVOLVED IN DNA RECOGNITION AND INDIRECTLY INVOLVED IN CATALYSIS 3NJH ; 1.94 ; D37A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis. 8HAY ; 2.74 ; d4-bound btDPP4 1OC5 ; 1.7 ; D405N mutant of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS in complex with methyl-cellobiosyl-4-deoxy-4-thio-beta-D-cellobioside 1OC7 ; 1.11 ; D405N mutant of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS in complex with methyl-tetrathio-alpha-d-cellopentoside at 1.1 angstrom resolution 4MML ; 1.801 ; D40A Hfq from Pseudomonas aeruginosa 3FBM ; 3.1 ; D431N Mutant VP2 Protein of Infectious Bursal Disease Virus; Derived T=1 Particles 6AH7 ; 2.38 ; D45W/H226G mutant of marine bacterial prolidase 8HWA ; 3.7 ; D5 ATP-ADP-Apo-ssDNA IS1 8HWB ; 3.9 ; D5 ATP-ADP-Apo-ssDNA IS2 8HWG ; 3.0 ; D5 ATPrS-ADP-ssDNA form 3OJP ; 1.81 ; D52N Mutant of Hen Egg White Lysozyme (HEWL) 3NA4 ; 1.9 ; D53P beta-2 microglobulin mutant 1DSN ; 2.05 ; D60S N-TERMINAL LOBE HUMAN LACTOFERRIN 1BA2 ; 2.1 ; D67R MUTANT OF D-RIBOSE-BINDING PROTEIN FROM ESCHERICHIA COLI 6MTF ; 1.92 ; D7 protein from Phlebotomus duboscqi, native 3CAU ; 4.2 ; D7 symmetrized structure of unliganded GroEL at 4.2 Angstrom resolution by cryoEM 3GTX ; 1.62 ; D71G/E101G mutant in organophosphorus hydrolase from Deinococcus radiodurans 3GTH ; 1.98 ; D71G/E101G/M234I mutant in organophosphorus hydrolase from Deinococcus radiodurans 3GTI ; 2.42 ; D71G/E101G/M234L mutant in organophosphorus hydrolase from Deinococcus radiodurans 3GTF ; 1.98 ; D71G/E101G/V235L mutant in organophosphorus hydrolase from Deinococcus radiodurans 2BVU ; 2.5 ; D83R mutant of Asaris suum major sperm protein (MSP) 5X8D ; 2.26 ; D90L mutant of thermus thermophilus HB8 thymidylate kinase 1GY5 ; 2.3 ; D92N,D94N double point mutant of human Nuclear Transport Factor 2 (NTF2) 1AKU ; 1.9 ; D95A HYDROQUINONE FLAVODOXIN MUTANT FROM D. VULGARIS 1AKQ ; 1.9 ; D95A OXIDIZED FLAVODOXIN MUTANT FROM D. VULGARIS 1AKV ; 2.0 ; D95A SEMIQUINONE FLAVODOXIN MUTANT FROM D. VULGARIS 1C7E ; 2.25 ; D95E HYDROQUINONE FLAVODOXIN MUTANT FROM D. VULGARIS 1C7F ; 2.0 ; D95E OXIDIZED FLAVODOXIN MUTANT FROM D. VULGARIS 3UB3 ; 2.75 ; D96N variant of TIR domain of Mal/TIRAP 3LGK ; 1.892 ; D99N Epi-isozizaene synthase 2BCM ; 1.48 ; DaaE adhesin 8AFU ; 1.99 ; DaArgC - N-acetyl-gamma-glutamyl-phosphate Reductase of Denitrovibrio acetiphilus 8AFV ; 2.19 ; DaArgC3 - Engineered Formyl Phosphate Reductase with 3 substitutions (S178V, G182V, L233I) 6T2J ; 1.7 ; dAb3 6SC6 ; 2.25 ; dAb3/HOIP-RBR apo structure 6SC9 ; 2.47 ; dAb3/HOIP-RBR-HOIPIN-8 6SC5 ; 2.1 ; dAb3/HOIP-RBR-Ligand2 6SC7 ; 2.56 ; dAb3/HOIP-RBR-Ligand3 6SC8 ; 2.106 ; dAb3/HOIP-RBR-Ligand4 4YHN ; 2.31 ; Dabigatran Reversal Agent 8E0T ; 1.94 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with DAHP Oxime in unbound:(bound)2:other conformations 8E0S ; 1.65 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with DAHP Oxime in unbound:(bound)2:unbound conformations 8E0Y ; 2.01 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with DAHP oxime, Pr(III), and Pi in unbound:(bound)2:other Conformations 8E0V ; 2.3 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with Mn(II), PEP, and Pi in unbound:(bound)2:other Conformations 8E0X ; 1.97 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with Mn(II), PEP, and Pi in unbound:(bound)2:other Conformations 8E0U ; 2.42 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase complexed with Sulfate in unbound:(bound)2:other conformations 5CKS ; 2.1181 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase in complex with DAHP Oxime. 8E0Z ; 2.4 ; DAHP (3-deoxy-D-arabinoheptulosonate-7-phosphate) Synthase unbound:(bound)2:unbound Conformations 7RUD ; 2.8 ; DAHP synthase complex with trifluoropyruvate oxime 7RUE ; 2.5 ; DAHP synthase complexed with trifluoropyruvate semicarbazone 5HUC ; 2.45 ; DAHP synthase from Corynebacterium glutamicum 5HUE ; 2.65 ; DAHP synthase from Corynebacterium glutamicum in complex with tryptophan 5CKV ; 2.787 ; DAHP synthase from Mycobacterium tuberculosis, fully inhibited by tyrosine, phenylalanine, and tryptophan 6FHP ; 1.703 ; DAIP in complex with a C-terminal fragment of thermolysin 2NMV ; 2.95 ; Damage detection by the UvrABC pathway: Crystal structure of UvrB bound to fluorescein-adducted DNA 6ZAS ; 1.3 ; Damage-free as-isolated copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) determined by serial femtosecond rotation crystallography 6ZAU ; 1.3 ; Damage-free nitrite-bound copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) determined by serial femtosecond rotation crystallography 6ZAW ; 1.3 ; Damage-free NO-bound copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) determined by serial femtosecond rotation crystallography 7SA4 ; 2.55 ; Damaged 70S ribosome with PrfH bound 4E54 ; 2.85 ; Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair 4E5Z ; 3.22 ; Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair 8EFQ ; 3.3 ; DAMGO-bound mu-opioid receptor-Gi complex 6V4I ; ; DanD 6EWL ; 1.4 ; Danio rerio CEP120 first C2 domain (C2A) 5UGV ; 2.25 ; DapB from Mycobacterium tuberculosis 7LGP ; 1.91 ; DapE enzyme from Shigella flexneri 1XT7 ; ; Daptomycin NMR Structure 6YJ7 ; 1.64 ; DarB fom B. subtilis in complex with AMP 6YJA ; 1.7 ; DarB fom B. subtilis in complex with c-di-AMP 6YJ9 ; 1.5 ; DarB in complex with 3'3'cGAMP 6YJ8 ; 1.84 ; DarB-APO 6S7Y ; 2.3 ; dARC1 capsid domain dimer, hexagonal form at 2.3 Angstrom 6S7X ; 1.7 ; dARC1 capsid domain dimer, orthorhombic form at 1.7 Angstrom 7VIW ; 1.74 ; Dark adapted MmCPDII during oxidized to semiquinone TR-SFX studies 6P58 ; 1.499 ; Dark and Steady State-Illuminated Crystal Structure of Cyanobacteriochrome Receptor PixJ at 150K 2XDQ ; 2.4 ; Dark Operative Protochlorophyllide Oxidoreductase (ChlN-ChlB)2 Complex 8C31 ; 1.8 ; Dark state 1.8 Angstrom crystal structure of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under aerobic condition 8C73 ; 1.7 ; Dark state 1.8 Angstrom crystal structure of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under aerobic condition form ll 8C35 ; 2.1 ; Dark state 2.1 Angstrom crystal structure of H132A variant of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH 8C32 ; 2.2 ; Dark state 2.2 Angstrom crystal structure of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under anaerobic condition 7ZBC ; 1.8 ; Dark state crystal structure of bovine rhodopsin in Lipidic Cubic Phase (SACLA) 7ZBE ; 1.8 ; Dark state crystal structure of bovine rhodopsin in Lipidic Cubic Phase (SwissFEL) 8C3I ; 2.1 ; Dark state of PAS-GAF fragment from Deinococcus radiodurans phytochrome 7CRJ ; 1.65 ; Dark State Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 7ZCM ; 2.85 ; Dark state structure of Sensory Rhodopsin II in complex with HtrII solved by room temperature serial synchrotron crystallography 7PNC ; 2.2 ; Dark state structure of Sensory Rhodopsin II solved by serial millisecond crystallography 2IYG ; 2.3 ; Dark state structure of the BLUF domain of the rhodobacterial protein AppA 7AV4 ; 1.936 ; Dark state structure of the C432S mutant of Fatty Acid Photodecarboxylase (FAP) 2POX ; 1.946 ; Dark state structure of the reversibly switchable fluorescent protein Dronpa 6PTX ; 1.65 ; Dark, 100K, PCM Myxobacterial Phytochrome, P2, Wild Type, 7YC7 ; 1.95 ; Dark, fully reduced structure of the MmCPDII-DNA complex as produced at SwissFEL 6PU2 ; 2.2 ; Dark, Mutant H275T , 100K, PCM Myxobacterial Phytochrome, P2 6PTQ ; 2.1 ; Dark, Room Temperature, PCM Myxobacterial Phytochrome, P2, Wild Type 6GUX ; 1.3 ; Dark-adapted structure of Archaerhodopsin-3 at 100K 6S63 ; 1.85 ; Dark-adapted structure of Archaerhodopsin-3 obtained from LCP crystals using a thin-film sandwich at room temperature 6UYK ; 2.6 ; Dark-operative protochlorophyllide oxidoreductase in the nucleotide-free form. 4HH0 ; 2.6 ; Dark-state structure of AppA C20S without the Cys-rich region from Rb. sphaeroides 4HH1 ; 3.501 ; Dark-state structure of AppA wild-type without the Cys-rich region from Rb. sphaeroides 4J88 ; 2.08 ; Dark-state structure of sfGFP containing the unnatural amino acid p-azido-phenylalanine at residue 66 7RHD ; 1.9 ; darkmRuby M94T/F96Y mutant at pH 7.5 7DNE ; 1.9 ; DARPin 5m3_D12 in complex with V3-IY (MN) crown mimetic 7DNG ; 1.42 ; DARPin 63_B7 in complex with linear V3-crown (MN) peptide 7DNF ; 1.78 ; DARPin 63_B7 in complex with V3-IY (MN) crown mimetic 4DUI ; 1.16 ; DARPIN D1 binding to tubulin beta chain (not in complex) 6SA6 ; 1.6 ; DARPin-Armadillo fusion A5 6SA7 ; 3.3 ; DARPin-Armadillo fusion C8long83 5AQ7 ; 2.1 ; DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography 5AQ8 ; 1.62 ; DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography 5AQ9 ; 1.86 ; DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography 5AQA ; 2.6 ; DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography 5AQB ; 1.37 ; DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography 5FIN ; 2.34 ; DARPins as a new tool for experimental phasing in protein crystallography 5FIO ; 2.1 ; DARPins as a new tool for experimental phasing in protein crystallography 7BHE ; 2.297 ; DARPin_D5/Her3 domain 4 complex, monoclinic crystals 7BHF ; 1.997 ; DARPin_D5/Her3 domain 4 complex, orthorhombic crystals 3SO9 ; 2.87 ; Darunavir in Complex with a Human Immunodeficiency Virus Type 1 Protease Variant 7KTY ; 2.0 ; Data clustering and dynamics of chymotrypsinogen average structure 7KU2 ; 2.185 ; Data clustering and dynamics of chymotrypsinogen clulster 140 (structure) 7KTZ ; 2.0 ; Data clustering and dynamics of chymotrypsinogen cluster 131 (purple) structure 7KU0 ; 2.02 ; Data clustering and dynamics of chymotrypsinogen cluster 138 (yellow) structure 7KU1 ; 2.39 ; Data clustering and dynamics of chymotrypsinogen cluster 139 (green) structure 7KU3 ; 2.0 ; Data clustering and dynamics of chymotrypsinogen cluster 141 (cyan) structure 7WNR ; ; Data-driven HADDOCK model of mycobacterial nMazE6-operator DNA complex 2KAE ; ; data-driven model of MED1:DNA complex 1OWM ; 2.3 ; DATA1:DNA photolyase / received X-rays dose 1.2 exp15 photons/mm2 1OWN ; 2.3 ; DATA3:DNA photolyase / received X-rays dose 4.8 exp15 photons/mm2 1OWO ; 2.3 ; DATA4:photoreduced DNA photolyase / received X-rays dose 1.2 exp15 photons/mm2 1OWP ; 2.3 ; DATA6:photoreduced DNA pholyase / received X-rays dose 4.8 exp15 photons/mm2 2KZS ; ; DAXX helical bundle (DHB) domain 2KZU ; ; DAXX helical bundle (DHB) domain / Rassf1C complex 1LUL ; 3.3 ; DB58, A LEGUME LECTIN FROM DOLICHOS BIFLORUS 4HYK ; 2.802 ; Dbh Ternary Complex (substrates partially disordered) 1DBH ; 2.3 ; DBL AND PLECKSTRIN HOMOLOGY DOMAINS FROM HSOS1 1BY1 ; ; DBL homology domain from beta-PIX 5K78 ; 2.64 ; Dbr1 in complex with 16-mer branched RNA 8DZK ; 2.1 ; Dbr1 in complex with 5-mer cleavage product 5K77 ; 2.17 ; Dbr1 in complex with 7-mer branched RNA 4PEG ; 2.0 ; Dbr1 in complex with guanosine-5'-monophosphate 4PEF ; 1.96 ; Dbr1 in complex with sulfate 4PEI ; 1.95 ; Dbr1 in complex with synthetic branched RNA analog 4PEH ; 2.1 ; Dbr1 in complex with synthetic linear RNA 1KZG ; 2.6 ; DbsCdc42(Y889F) 1VP9 ; 1.95 ; DC26 MUTANT OF VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYLHOMOCYSTEINE 1P39 ; 2.0 ; DC26 MUTANT OF VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYLHOMOCYSTEINE AND M7G(5')PPPG 1V39 ; 1.8 ; DC26 MUTANT OF VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYLHOMOCYSTEINE AND M7G(5')PPPG 2VP3 ; 1.95 ; DC26 MUTANT OF VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYLHOMOCYSTEINE AND M7G(5')PPPG 1B5E ; 1.6 ; DCMP HYDROXYMETHYLASE FROM T4 1B5D ; 2.2 ; DCMP Hydroxymethylase from T4 (Intact) 1B49 ; 2.3 ; DCMP HYDROXYMETHYLASE FROM T4 (PHOSPHATE-BOUND) 6B5Q ; 2.16 ; DCN1 bound to 38 6XOM ; 2.1 ; DCN1 bound to 8 6XOL ; 2.39 ; DCN1 bound to DI-1548 6XOO ; 2.06 ; DCN1 bound to DI-1859 5UFI ; 2.58 ; DCN1 bound to DI-591 6XOP ; 2.07 ; DCN1 bound to inhibitor 10 6XON ; 2.8 ; DCN1 bound to inhibitor 9 6XOQ ; 2.07 ; DCN1 covalently bound to inhibitor 4 4GAO ; 3.28 ; DCNL complex with N-terminally acetylated NEDD8 E2 peptide 4GBA ; 2.4 ; DCNL complex with N-terminally acetylated NEDD8 E2 peptide 1DCO ; 2.3 ; DCOH, A BIFUNCTIONAL PROTEIN-BINDING TRANSCRIPTIONAL COACTIVATOR 1DCP ; 2.3 ; DCOH, A BIFUNCTIONAL PROTEIN-BINDING TRANSCRIPTIONAL COACTIVATOR, COMPLEXED WITH BIOPTERIN 1USM ; 1.2 ; DCOH, A BIFUNCTIONAL PROTEIN-BINDING TRANSCRIPTIONAL COACTIVATOR, PRO9LEU MUTANT 1USO ; 1.3 ; DCOH, A BIFUNCTIONAL PROTEIN-BINDING TRANSCRIPTIONAL COACTIVATOR, PRO9LEU MUTANT 4QDE ; 2.9 ; Dcps in complex with covalent inhibitor 4QEB ; 3.21 ; Dcps in complex with covalent inhibitor targeting Tyrosine 4QDV ; 2.8 ; Dcps in complex with covalent ligand 4ZMU ; 2.502 ; Dcsbis, a diguanylate cyclase from Pseudomonas aeruginosa 1XS1 ; 1.8 ; dCTP deaminase from Escherichia coli in complex with dUTP 1XS4 ; 2.53 ; dCTP deaminase from Escherichia coli- E138A mutant enzyme in complex with dCTP 1XS6 ; 2.0 ; dCTP deaminase from Escherichia coli. E138A mutant enzyme in complex with dUTP 4XJC ; 2.35 ; dCTP deaminase-dUTPase from Bacillus halodurans 2HXB ; 2.55 ; dCTP deaminase-dUTPase from Methanocaldococcus jannaschii 2N97 ; ; DD homodimer 1H70 ; 1.8 ; DDAH FROM PSEUDOMONAS AERUGINOSA. C249S MUTANT COMPLEXED WITH CITRULLINE 2JAI ; 2.3 ; DDAH1 complexed with citrulline 2JAJ ; 2.0 ; DDAH1 complexed with L-257 7ANI ; 1.3 ; DdahB, GDP-mannoheptose C3,5 epimerase from Campylobacter jejuni 7ANJ ; 2.35 ; DdahB, GDP-mannoheptose C3,5 epimerase from Campylobacter jejuni complexed to GDP-mannose 7D4J ; 2.09 ; ddATP complex of cyclic trinucleotide synthase CdnD 1QSY ; 2.3 ; DDATP-Trapped closed ternary complex of the large fragment of DNA Polymerase I from thermus aquaticus 2HVI ; 1.98 ; ddCTP:G pair in the polymerase active site (0 position) 2HVH ; 2.492 ; ddCTP:O6MeG pair in the polymerase active site (0 position) 2N62 ; ; ddFLN5+110 1QSS ; 2.3 ; DDGTP-TRAPPED CLOSED TERNARY COMPLEX OF THE LARGE FRAGMENT OF DNA POLYMERASE I FROM THERMUS AQUATICUS 7ANH ; 2.08 ; DdhaC 8EVX ; 1.55 ; DdlA from Pseudomonas aeruginosa PAO1 in complex with ADP and phosphorylated D-cycloserine 8EVW ; 1.22 ; DdlA from Pseudomonas aeruginosa PAO1 in complex with ATP and D-ala-D-ala 8EVZ ; 2.45 ; DdlB from Pseudomonas aeruginosa PAO1 in complex with ADP and phosphorylated D-cycloserine 8EVY ; 2.35 ; DdlB from Pseudomonas aeruginosa PAO1 in complex with ATP and D-ala-D-ala 6BSD ; 2.606 ; DDR1 bound to Dasatinib 6BRJ ; 2.231 ; DDR1 bound to VX-680 6Y23 ; 2.58 ; DDR1 kinase autoinhibited by its juxtamembrane region 6FIQ ; 1.79 ; DDR1, 1-(1H-indazole-5-carbonyl)-5'-methoxy-1'-[2-oxo-2-[(2S)-2-(trifluoromethyl)pyrrolidin-1-yl]ethyl]spiro[piperidine-4,3'-pyrrolo[3,2-b]pyridine]-2'-one, 1.790A, P212121, Rfree=23.8% 6FIO ; 1.99 ; DDR1, 2-[1'-(1H-indazole-5-carbonyl)-4-methyl-2-oxospiro[indole-3,4'-piperidine]-1-yl]-N-(2,2,2-trifluoroethyl)acetamide, 1.990A, P6522, Rfree=27.7% 5SAW ; 1.601 ; DDR1, 2-[3-(2-pyridin-3-ylethynyl)phenyl]-N-[3-(trifluoromethyl)phenyl]acetamide, 1.601A, P212121, Rfree=22.6% 5SAX ; 1.902 ; DDR1, 2-[3-(2-pyridin-3-ylethynyl)phenyl]-N-[3-(trifluoromethyl)phenyl]acetamide, 1.902A, second P212121 form, Rfree=25.4%, second form 6FEX ; 1.291 ; DDR1, 2-[4-bromo-2-oxo-1'-(1H-pyrazolo[4,3-b]pyridine-5-carbonyl)spiro[indole-3,4'-piperidine]-1-yl]-N-(2,2,2-trifluoroethyl)acetamide, 1.291A, P212121, Rfree=17.4% 6FEW ; 1.44 ; DDR1, 2-[8-(1H-indazole-5-carbonyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-3-yl]-N-methylacetamide, 1.440A, P1211, Rfree=24.1% 6FIL ; 1.73 ; DDR1, 2-[8-(1H-indazole-5-carbonyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-3-yl]-N-methylacetamide, 1.730A, P212121, Rfree=24.5% 5SB2 ; 1.6 ; DDR1, 3-chloro-N-[(1R,2S)-2-phenylcyclopropyl]-5-(1H-pyrrolo[2,3-b]pyridin-5-yloxymethyl)benzamide, 1.600A, P212121, Rfree=23.2% 5SAZ ; 1.8 ; DDR1, 3-chloro-N-[4-chloro-3-(1H-pyrrolo[2,3-b]pyridin-5-ylcarbamoyl)phenyl]-4-(2-hydroxyethylamino)benzamide, 1.802A, P212121, Rfree=22.2% 6FIN ; 1.67 ; DDR1, 3-[(3-cyclopropyl-1,2,4-oxadiazol-5-yl)methyl]-8-(1H-indazole-5-carbonyl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one, 1.670A, P1211, Rfree=22.8% 5SAU ; 1.8 ; DDR1, 3-[2-(6-aminopyridin-3-yl)ethynyl]-N-[3-(trifluoromethyl)phenyl]benzamide, 1.800A, P212121, Rfree=23.1% 5SB1 ; 1.53 ; DDR1, 4-chloro-N-[(3S,4R)-4-phenylpyrrolidin-3-yl]-3-(1H-pyrrolo[2,3-b]pyridin-5-yloxymethyl)benzamide, 1.530A, P212121, Rfree=21.4% 5SAV ; 1.76 ; DDR1, N-[2-[3-(2-aminopyrimidin-5-yl)oxyphenyl]ethyl]-3-(trifluoromethoxy)benzamide, 1.760A, P212121, Rfree=23.5% 5SAY ; 2.19 ; DDR1, N-[2-[3-(2-aminopyrimidin-5-yl)oxyphenyl]ethyl]-3-(trifluoromethoxy)benzamide, 2.190A, P1211, Rfree=27.7% 5SB0 ; 1.97 ; DDR1, N-[[2-(2-pyridin-3-yloxyethyl)cyclohexyl]methyl]-3-(trifluoromethoxy)benzamide, 1.970A, P212121, Rfree=25.6% 1QTM ; 2.3 ; DDTTP-TRAPPED CLOSED TERNARY COMPLEX OF THE LARGE FRAGMENT OF DNA POLYMERASE I FROM THERMUS AQUATICUS 2HHW ; 1.88 ; ddTTP:O6-methyl-guanine pair in the polymerase active site, in the closed conformation 3LY5 ; 2.8 ; DDX18 dead-domain 2JGN ; 1.91 ; DDX3 helicase domain 7LIU ; 3.001 ; DDX3X bound to ATP analog and remodeled RNA:DNA hybrid 4CT5 ; 3.0 ; DDX6 4X8I ; 2.5 ; de novo crystal structure of the Pyrococcus Furiosus TET3 aminopeptidase 5F72 ; 1.85 ; De novo design and crystallographic validation of antibodies targeting a pre-selected epitope 7VQV ; 1.53 ; de novo design based on 1r26 7VU4 ; 1.7 ; de novo design based on 1r26 8HDU ; 2.71 ; De novo design cavitated protein without predefined topology 8HDV ; 2.65 ; De novo design cavitated protein without predefined topology 8JPA ; 2.3 ; De novo design cavitated protein without predefined topology 6D0T ; 1.63 ; De novo design of a fluorescence-activating beta barrel - BB1 6DMP ; ; De Novo Design of a Protein Heterodimer with Specificity Mediated by Hydrogen Bond Networks 5WOC ; ; De Novo Design of Covalently Constrained Meso-size Protein Scaffolds with Unique Tertiary Structures 5WOD ; ; De Novo Design of Covalently Constrained Meso-size Protein Scaffolds with Unique Tertiary Structures 8GJG ; 1.95 ; De novo design of high-affinity protein binders to bioactive helical peptides 8GJI ; 1.81 ; De novo design of high-affinity protein binders to bioactive helical peptides 8T5E ; 3.0 ; De novo design of high-affinity protein binders to bioactive helical peptides 8T5F ; 1.99 ; De novo design of high-affinity protein binders to bioactive helical peptides 6MPW ; 2.5 ; De Novo Design of membrane protein--mini-eVgL membrane protein, C2221 form-1 6MQ2 ; 2.5 ; De Novo Design of membrane protein--mini-eVgL membrane protein, C2221 form-2 8GL3 ; 2.3 ; De novo design of monomeric helical bundles for pH-controlled membrane lysis 5V2G ; ; De Novo Design of Novel Covalent Constrained Meso-size Peptide Scaffolds with Unique Tertiary Structures 5V2O ; 1.2 ; De Novo Design of Novel Covalent Constrained Meso-size Peptide Scaffolds with Unique Tertiary Structures 5WLL ; 1.9 ; De Novo Design of Polynuclear Transition Metal Clusters in Helix Bundles-4DH1 5WLM ; 1.95 ; De Novo Design of Polynuclear Transition Metal Clusters in Helix Bundles-4DH2 5WLJ ; 1.6 ; De Novo Design of Polynuclear Transition Metal Clusters in Helix Bundles-4EH1 5WLK ; 1.8 ; De Novo Design of Polynuclear Transition Metal Clusters in Helix Bundles-4EH2 5IZS ; 2.36 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J0H ; 1.64 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J0I ; 2.202 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J0J ; 2.256 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J0K ; 1.54 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J0L ; 2.63 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J10 ; 2.02 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J2L ; 1.96 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 5J73 ; 2.56 ; De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity 6X9Z ; 2.05 ; De novo design of transmembrane beta-barrels 7DKO ; 2.6 ; De novo design protein AM2M 7FBB ; 2.307 ; De novo design protein D12 with MBP tag 7FBC ; 1.85 ; De novo design protein D22 with MBP tag 7FBD ; 2.85 ; De novo design protein D53 with MBP tag 7DKK ; 2.1 ; De novo design protein XM2H 7A8S ; 1.58 ; de novo designed ba8-barrel sTIM11 with an alpha-helical extension 7VQL ; 1.75 ; de novo designed based on 1r26 7UNH ; 2.4 ; De novo designed chlorophyll dimer protein in apo state, SP2 7UNJ ; 2.0 ; De novo designed chlorophyll dimer protein with Zn pheophorbide a methyl ester matching geometry of purple bacterial special pair, SP1-ZnPPaM 7UNI ; 2.5 ; De novo designed chlorophyll dimer protein with Zn pheophorbide a methyl ester, SP2-ZnPPaM 8OYV ; 2.79 ; De novo designed Claudin fold CLF_4 7Q1Q ; 1.0 ; De novo designed homo-dimeric antiparallel helices Homomer-S 6N9H ; 1.039 ; De novo designed homo-trimeric amantadine-binding protein 6NAF ; 2.5 ; De novo designed homo-trimeric amantadine-binding protein 6NAF ; 1.923 ; De novo designed homo-trimeric amantadine-binding protein 8FLX ; 4.5 ; De novo designed homotrimer; the fusion product of BGL17 and DHR59 8EK4 ; 2.35 ; De novo designed ice-binding proteins from twist-constrained helices 6VFJ ; 5.35 ; De novo designed icosahedral nanoparticle I53_dn5 6W90 ; 1.5 ; De novo designed NTF2 fold protein NT-9 6VFI ; 4.54 ; De novo designed octahedral nanoparticle O43_dn18 1PBZ ; ; DE NOVO DESIGNED PEPTIDE-METALLOPORPHYRIN COMPLEX, SOLUTION STRUCTURE 7VTY ; 2.5 ; de novo designed protein 8JU8 ; 1.85 ; de novo designed protein 6YWC ; 2.85 ; De novo designed protein 4E1H_95 in complex with 101F antibody 6YWD ; 3.2 ; De novo designed protein 4H_01 in complex with Mota antibody 7VQW ; 2.45 ; de novo designed protein based on 1r26 6NUK ; 1.92 ; De novo designed protein Ferredog-Diesel 6MRR ; 1.18 ; De novo designed protein Foldit1 6MSP ; ; De novo Designed Protein Foldit3 6WI5 ; 1.83 ; De novo designed protein Foldit4 7DGU ; 1.75 ; De novo designed protein H4A1R 7DGW ; 1.35 ; De novo designed protein H4A2S 7DGY ; 1.8 ; De novo designed protein H4C2R 1LQ7 ; ; De Novo Designed Protein Model of Radical Enzymes 6MRS ; 1.541 ; De novo designed protein Peak6 6W9Y ; 2.55 ; De novo designed receptor transmembrane domains enhance CAR-T cytotoxicity and attenuate cytokine release 6W9Z ; 2.7 ; De novo designed receptor transmembrane domains enhance CAR-T cytotoxicity and attenuate cytokine release 6WA0 ; 3.484 ; De novo designed receptor transmembrane domains enhance CAR-T cytotoxicity and attenuate cytokine release 8OYW ; 1.5 ; De novo designed rhomboid protease-like fold RPF_9 6VGB ; ; De novo designed Rossmann fold protein ROS2_36830 6VG7 ; ; De novo designed Rossmann fold protein ROS2_49223 6VGA ; ; De novo designed Rossmann fold protein ROS2_835 8OYX ; 2.11 ; De novo designed soluble GPCR-like fold GLF_18 8OYY ; 1.85 ; De novo designed soluble GPCR-like fold GLF_32 6VFH ; 3.86 ; De novo designed tetrahedral nanoparticle T33_dn10 6VFK ; 4.25 ; De novo designed tetrahedral nanoparticle T33_dn10 displaying 4 copies of BG505-SOSIP trimer on the surface 6VL6 ; 4.6 ; De novo designed tetrahedral nanoparticle T33_dn2 presenting BG505 SOSIP trimers 8OYS ; 1.34 ; De novo designed TIM barrel fold TBF_24 7RMY ; 3.17 ; De Novo designed tunable protein pockets, D_3-337 7JH6 ; 3.5 ; De novo designed two-domain di-Zn(II) and porphyrin-binding protein 2XYY ; 3.8 ; De Novo model of Bacteriophage P22 procapsid coat protein 2XYZ ; 4.0 ; De Novo model of Bacteriophage P22 virion coat protein 4GN0 ; 1.75 ; De novo phasing of a Hamp-complex using an improved Arcimboldo method 8D9P ; 1.9 ; De Novo Photosynthetic Reaction Center Protein Equipped with Heme B and Mn(II) cations 5VJT ; 1.45 ; De Novo Photosynthetic Reaction Center Protein Equipped with Heme B and Zn(II) cations 5VJS ; 2.0 ; De Novo Photosynthetic Reaction Center Protein Equipped with Heme B, a synthetic Zn porphyrin, and Zn(II) cations 8D9O ; 1.78 ; De Novo Photosynthetic Reaction Center Protein in Apo-State 5VJU ; 2.08 ; De Novo Photosynthetic Reaction Center Protein Variant Equipped with His-Tyr H-bond, Heme B, and Cd(II) ions 6VTW ; 2.6 ; De novo protein design enables the precise induction of RSV-neutralizing antibodies 8AH9 ; 1.747 ; De novo retro-aldolase RAbetaB-16.1 8BL3 ; 2.8 ; De novo single-chain immunoglobulin dimer scIg12 8BL6 ; 2.8 ; De novo single-chain immunoglobulin dimer scIg12+EF3a 5FOZ ; 2.4 ; De novo structure of the binary mosquito larvicide BinAB at pH 10 5FOY ; 2.25 ; De novo structure of the binary mosquito larvicide BinAB at pH 7 7SKP ; 2.5 ; De novo synthetic protein DIG14 (tetragonal space group) 7SKO ; 2.05 ; De novo synthetic protein DIG8-CC (orthogonal space group) 7SKN ; 2.3 ; De novo synthetic protein DIG8-CC (tetragonal space group) 5U9U ; 1.69 ; De Novo Three-stranded Coiled Coil Peptide Containing a Tris-thiolate Site Engineered by D-Cysteine Ligands 6WXO ; 1.41 ; De novo TIM barrel-ferredoxin fold fusion homodimer with 2-histidine 2-glutamate centre TFD-HE 6WXP ; 2.5 ; De novo TIM barrel-ferredoxin fold fusion homodimer with 4-glutamate centre TFD-EE 8WAT ; 2.82 ; De novo transcribing complex 10 (TC10), the early elongation complex with Pol II positioned 10nt downstream of TSS 8WAU ; 2.78 ; De novo transcribing complex 11 (TC11), the early elongation complex with Pol II positioned 11nt downstream of TSS 8WAV ; 2.72 ; De novo transcribing complex 12 (TC12), the early elongation complex with Pol II positioned 12nt downstream of TSS 8WAW ; 3.02 ; De novo transcribing complex 13 (TC13), the early elongation complex with Pol II positioned 13nt downstream of TSS 8WAX ; 2.75 ; De novo transcribing complex 14 (TC14), the early elongation complex with Pol II positioned 14nt downstream of TSS 8WAY ; 2.85 ; De novo transcribing complex 15 (TC15), the early elongation complex with Pol II positioned 15nt downstream of TSS 8WAZ ; 2.76 ; De novo transcribing complex 16 (TC16), the early elongation complex with Pol II positioned 16nt downstream of TSS 8WB0 ; 2.94 ; De novo transcribing complex 17 (TC17), the early elongation complex with Pol II positioned 17nt downstream of TSS 7FB8 ; ; De Novo-Designed and Disulfide-Bridged Peptide Heterodimer - hd1 7FBA ; ; De Novo-Designed and Disulfide-Bridged Peptide Heterodimer - hd2 6Z35 ; ; De-novo Maquette 2 protein with buried ion-pair 2AGA ; ; De-ubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain 1W2N ; 2.7 ; Deacetoxycephalosporin C synthase (with a N-terminal his-tag) in complex with Fe(II) and ampicillin 1W2O ; 3.0 ; Deacetoxycephalosporin C synthase (with a N-terminal his-tag) in complex with Fe(II) and deacetoxycephalosporin C 1W2A ; 2.51 ; Deacetoxycephalosporin C synthase (with his-tag) complexed with Fe(II) and ethylene glycol 1UNB ; 1.5 ; Deacetoxycephalosporin C synthase complexed with 2-oxoglutarate and ampicillin 1UOB ; 1.7 ; Deacetoxycephalosporin C synthase complexed with 2-oxoglutarate and penicillin G 2JB8 ; 1.53 ; Deacetoxycephalosporin C synthase complexed with 5-hydroxy-4-keto valeric acid 1UOG ; 1.7 ; Deacetoxycephalosporin C synthase complexed with deacetoxycephalosporin C 1RXF ; 1.5 ; DEACETOXYCEPHALOSPORIN C SYNTHASE COMPLEXED WITH FE(II) 1RXG ; 1.5 ; DEACETOXYCEPHALOSPORIN C SYNTHASE COMPLEXED WITH FE(II) AND 2-OXOGLUTARATE 1UOF ; 1.6 ; Deacetoxycephalosporin C synthase complexed with Penicillin G 1UO9 ; 1.5 ; Deacetoxycephalosporin C synthase complexed with succinate 1DCS ; 1.3 ; DEACETOXYCEPHALOSPORIN C SYNTHASE FROM S. CLAVULIGERUS 6O2R ; 3.3 ; Deacetylated Microtubules 6O2S ; 4.0 ; Deacetylated Microtubules 4ACP ; 2.49 ; Deactivation of human IgG1 Fc by endoglycosidase treatment 6ZKS ; 3.1 ; Deactive complex I, open1 6ZKT ; 2.8 ; Deactive complex I, open2 6ZKU ; 3.0 ; Deactive complex I, open3 6ZKV ; 2.9 ; Deactive complex I, open4 7W31 ; 3.1 ; Deactive state CI from DQ-NADH dataset, Subclass 1 7W32 ; 2.9 ; Deactive state CI from DQ-NADH dataset, Subclass 2 7W35 ; 3.0 ; Deactive state CI from DQ-NADH dataset, Subclass 3 7W4J ; 3.2 ; Deactive state CI from Q1-NADH dataset, Subclass 1 7W4K ; 3.2 ; Deactive state CI from Q1-NADH dataset, Subclass 2 7W4L ; 3.1 ; Deactive state CI from Q1-NADH dataset, Subclass 3 7W4M ; 3.3 ; Deactive state CI from Q1-NADH dataset, Subclass 4 7W4N ; 3.0 ; Deactive state CI from Q1-NADH dataset, Subclass 5 7W4Q ; 3.3 ; Deactive state CI from Q1-NADH dataset, Subclass 6 7W00 ; 3.5 ; Deactive state CI from Q10 dataset, Subclass 1 7W0H ; 3.4 ; Deactive state CI from Q10 dataset, Subclass 2 7W1O ; 3.5 ; Deactive state CI from Q10-NADH dataset, Subclass 1 7W1P ; 3.1 ; Deactive state CI from Q10-NADH dataset, Subclass 2 7W2K ; 2.9 ; Deactive state CI from Rotenone-NADH dataset, Subclass 1 7W2L ; 3.0 ; Deactive state CI from Rotenone-NADH dataset, Subclass 2 7V2K ; 2.7 ; Deactive state complex I from DQ-NADH dataset 7V30 ; 2.7 ; Deactive state complex I from Q1-NADH dataset 7V2D ; 3.3 ; Deactive state complex I from Q10 dataset 7V2F ; 3.1 ; Deactive state complex I from Q10-NADH dataset 7V32 ; 3.2 ; Deactive state complex I from rotenone dataset 7V3M ; 2.9 ; Deactive state complex I from rotenone-NADH dataset 7PLI ; 2.5 ; DEAD-box helicase DbpA bound to single stranded RNA and ADP/BeF3 7PMQ ; 3.22 ; DEAD-box helicase DbpA in the active conformation bound to a hairpin loop RNA and ADP/BeF3 7PMM ; 3.0 ; DEAD-box helicase DbpA in the active conformation bound to a ss/dsRNA junction and ADP/BeF3 4TYN ; 2.959 ; DEAD-box helicase Mss116 bound to ssDNA and ADP-BeF 4TYW ; 2.197 ; DEAD-box helicase Mss116 bound to ssRNA and ADP-BeF 4TYY ; 2.74 ; DEAD-box helicase Mss116 bound to ssRNA and CDP-BeF 4TZ0 ; 2.35 ; DEAD-box helicase Mss116 bound to ssRNA and GDP-BeF 4TZ6 ; 3.209 ; DEAD-box helicase Mss116 bound to ssRNA and UDP-BeF 5GI4 ; 2.244 ; DEAD-box RNA helicase 5GJU ; 1.6 ; DEAD-box RNA helicase 4PXA ; 3.2 ; DEAD-box RNA helicase DDX3X Cancer-associated mutant D354V 4PX9 ; 2.31 ; DEAD-box RNA helicase DDX3X Domain 1 with N-terminal ATP-binding Loop 2IGU ; ; Deamidated analogue of ImI Conotoxin 1DY5 ; 0.87 ; Deamidated derivative of bovine pancreatic ribonuclease 7B7Z ; 1.7 ; DeAMPylation complex of monomeric FICD and AMPylated BiP (state 1) 7B80 ; 1.87 ; DeAMPylation complex of monomeric FICD and AMPylated BiP (state 2) 2XZS ; 2.0 ; Death associated protein kinase 1 residues 1-312 1P4F ; 1.9 ; DEATH ASSOCIATED PROTEIN KINASE CATALYTIC DOMAIN WITH BOUND INHIBITOR FRAGMENT 1E3Y ; ; Death domain from human FADD/MORT1 1E41 ; ; Death domain from human FADD/MORT1 1FAD ; ; DEATH DOMAIN OF FAS-ASSOCIATED DEATH DOMAIN PROTEIN, RESIDUES 89-183 1NGR ; ; DEATH DOMAIN OF P75 LOW AFFINITY NEUROTROPHIN RECEPTOR, RESIDUES 334-418, NMR, 20 STRUCTURES 6FHA ; 2.3 ; Death-associated Protein Kinase 1 (DAPK1) catalytic and auto-regulatory domains with S289A and S308A mutations 6FHB ; 1.75 ; Death-associated Protein Kinase 1 (DAPK1) catalytic and auto-regulatory domains with S289A and S308E mutations 6QMO ; 1.87 ; Death-associated Protein Kinase 1 (DAPK1) catalytic and auto-regulatory domains with S289E and S308A mutations 6QN4 ; 2.5 ; Death-associated Protein Kinase 1 (DAPK1) catalytic and auto-regulatory domains with S289E and S308E mutations 2VHA ; 1.0 ; DEBP 4HQH ; 1.8 ; Decamer Fluoro Carbocyclic LNA (R-F-cLNA) crystal structure 1A9B ; 3.2 ; DECAMER-LIKE CONFORMATION OF A NANO-PEPTIDE BOUND TO HLA-B3501 DUE TO NONSTANDARD POSITIONING OF THE C-TERMINUS 1A9E ; 2.5 ; DECAMER-LIKE CONFORMATION OF A NANO-PEPTIDE BOUND TO HLA-B3501 DUE TO NONSTANDARD POSITIONING OF THE C-TERMINUS 2A3X ; 3.0 ; Decameric crystal structure of human serum amyloid P-component bound to Bis-1,2-{[(Z)-2carboxy- 2-methyl-1,3-dioxane]- 5-yloxycarbonyl}-piperazine 1LGN ; 2.8 ; DECAMERIC DAMP COMPLEX OF HUMAN SERUM AMYLOID P COMPONENT 4K2J ; 2.05 ; Decameric ring structure of KSHV (HHV-8) latency-associated nuclear antigen (LANA) DNA binding domain 2A3W ; 2.2 ; Decameric structure of human serum amyloid P-component bound to Bis-1,2-{[(Z)-2-carboxy-2-methyl-1,3-dioxane]-5-yloxycarbamoyl}-ethane 2HEX ; 2.1 ; DECAMERS OBSERVED IN THE CRYSTALS OF BOVINE PANCREATIC TRYPSIN INHIBITOR 1HH3 ; 1.0 ; Decaplanin first P21-Form 1HHA ; 1.9 ; Decaplanin first P6122-Form 1HHF ; 1.47 ; Decaplanin second P6122-Form 1C5B ; 2.1 ; DECARBOXYLASE CATALYTIC ANTIBODY 21D8 UNLIGANDED FORM 1C5C ; 1.61 ; DECARBOXYLASE CATALYTIC ANTIBODY 21D8-HAPTEN COMPLEX 1OK1 ; 2.6 ; Decay accelerating factor (cd55) : the structure of an intact human complement regulator. 1OJV ; 2.3 ; Decay accelerating factor (CD55): the structure of an intact human complement regulator. 1OJW ; 2.3 ; Decay accelerating factor (CD55): the structure of an intact human complement regulator. 1OJY ; 2.6 ; Decay accelerating factor (cd55): the structure of an intact human complement regulator. 1OK2 ; 2.5 ; Decay accelerating factor (CD55): the structure of an intact human complement regulator. 1OK3 ; 2.2 ; Decay accelerating factor (cd55): the structure of an intact human complement regulator. 1OK9 ; 3.0 ; Decay accelerating factor (CD55): The structure of an intact human complement regulator. 4ON9 ; 2.71 ; DECH box helicase domain 4KP4 ; 3.0 ; Deciphering cis-trans directionality and visualizing autophosphorylation in histidine kinases. 1IC2 ; 2.0 ; DECIPHERING THE DESIGN OF THE TROPOMYOSIN MOLECULE 5BNL ; 2.0 ; Deciphering the Mechanism of Carbonic Anhydrase Inhibition with Coumarins and Thiocoumarins 6ZRE ; 2.8 ; Deciphering the role of the channel constrictions in the opening mechanism of MexAB-OprM efflux pump from Pseudomonas aeruginosa 7AKZ ; 3.2 ; Deciphering the role of the channel constrictions in the opening mechanism of MexAB-OprM efflux pump from Pseudomonas aeruginosa 6V4B ; 1.75 ; DeCLIC N-terminal Domain 34-202 1MVR ; 12.8 ; Decoding Center & Peptidyl transferase center from the X-ray structure of the Thermus thermophilus 70S ribosome, aligned to the low resolution Cryo-EM map of E.coli 70S Ribosome 2VP7 ; 1.65 ; Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex 2VPB ; 1.59 ; Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex 2VPD ; 2.77 ; Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex 2VPE ; 1.7 ; Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex 2VPG ; 1.6 ; Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex 5YAN ; 1.77 ; Deconstructing the Salt-Bridge Network of a Computationally Designed Collagen Heterotrimer 2CL8 ; 2.8 ; Dectin-1 in complex with beta-glucan 4CR2 ; 7.7 ; Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome 4CR3 ; 9.3 ; Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome 4CR4 ; 8.8 ; Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome 8VEC ; 2.0 ; Deep Mutational Scanning of SARS-CoV-2 PLpro 8XHO ; 2.5 ; Deep sea bacterial PET plastic hydrolase MtCut with mutation S178C 8JX6 ; 2.1 ; Deep-Sea Helicase 9 (DSH9) 4H2L ; 1.779 ; Deer mouse hemoglobin in hydrated format 5KER ; 2.202 ; Deer mouse recombinant hemoglobin from high altitude species 4UF1 ; 2.3 ; Deerpox virus DPV022 in complex with Bak BH3 4UF2 ; 3.0 ; Deerpox virus DPV022 in complex with Bax BH3 4UF3 ; 2.7 ; Deerpox virus DPV022 in complex with Bim BH3 1B8W ; ; DEFENSIN-LIKE PEPTIDE 1 334D ; 1.8 ; DEFINING GC-SPECIFICITY IN THE MINOR GROOVE: SIDE-BY-SIDE BINDING OF THE DI-IMIDAZOLE LEXITROPSIN TO C-A-T-G-G-C-C-A-T-G 6ID4 ; 2.4 ; Defining the structural basis for human alloantibody binding to human leukocyte antigen allele HLA-A*11:01 1VJM ; 2.3 ; Deformation of helix C in the low-temperature L-intermediate of bacteriorhodopsin 5JYK ; 2.297 ; Deg9 crystal under 289K 5ILA ; 3.001 ; Deg9 protease domain 1JTO ; 2.5 ; Degenerate interfaces in antigen-antibody complexes 1JTP ; 1.9 ; Degenerate interfaces in antigen-antibody complexes 1JTT ; 2.1 ; Degenerate interfaces in antigen-antibody complexes 6JW3 ; 3.1 ; Degenerate RVD RG forms a distinct loop conformation 6JW4 ; 3.09 ; Degenerate RVD RG forms a distinct loop conformation 1HHZ ; 0.99 ; Deglucobalhimycin in complex with cell wall pentapeptide 1HHY ; 0.89 ; Deglucobalhimycin in complex with D-Ala-D-Ala 5O0K ; 2.3 ; Deglycosylated Nogo Receptor with native disulfide structure 5O0Q ; 2.5 ; Deglycosylated Nogo Receptor with native disulfide structure 5O0R ; 2.5 ; Deglycosylated Nogo Receptor with native disulfide structure 5O0L ; 2.511 ; Deglycosylated Nogo Receptor with native disulfide structure 2 5O0M ; 1.9 ; Deglycosylated Nogo Receptor with native disulfide structure 3 5O0N ; 2.5 ; Deglycosylated Nogo Receptor with native disulfide structure 4 5O0O ; 2.2 ; Deglycosylated Nogo Receptor with native disulfide structure 5 5O0P ; 2.0 ; Deglycosylated Nogo Receptor with native disulfide structure 6 4A8D ; 28.0 ; DegP dodecamer with bound OMP 2XT0 ; 1.9 ; Dehalogenase DPpA from Plesiocystis pacifica SIR-I 6A41 ; 1.97 ; Dehalogenation enzyme 5V5R ; 1.2 ; Dehaloperoxidase A I9L mutant 1EWA ; 2.5 ; Dehaloperoxidase and 4-iodophenol 6I7F ; 1.85 ; Dehaloperoxidase B from Amphitrite ornata - complex with 2,4-dichlorophenol 6I6G ; 1.85 ; Dehaloperoxidase B from Amphitrite ornata - complex with 5-bromoindole 5K1L ; 1.08 ; Dehaloperoxidase B from Amphitrite ornata: benzimidazole complex 5LLZ ; 1.14 ; Dehaloperoxidase B from Amphitrite ornata: benzotriazole complex 5LKV ; 1.08 ; Dehaloperoxidase B from Amphitrite ornata: imidazole complex 5LK9 ; 1.12 ; Dehaloperoxidase B from Amphitrite ornata: indazole complex 8DOI ; 1.93 ; Dehaloperoxidase B in complex with 2,2'-Biphenol 8DOJ ; 1.3 ; Dehaloperoxidase B in complex with 3,3'-Biphenol 6CKE ; 1.37 ; Dehaloperoxidase B in complex with 4-Br-guaiacol 6CRE ; 1.58 ; Dehaloperoxidase B in complex with 5-Br-ortho-guaiacol 6CO5 ; 1.686 ; Dehaloperoxidase B in complex with 6-Br-ortho-guaiacol 8DOG ; 1.48 ; Dehaloperoxidase B in complex with Bisphenol E 8DOH ; 1.75 ; Dehaloperoxidase B in complex with Bisphenol F 6CH6 ; 1.7 ; Dehaloperoxidase B in complex with substrate 2,4-dimethoxyphenol 6ONX ; 1.7 ; Dehaloperoxidase B in complex with substrate 4-Br-cresol 6ONK ; 1.5 ; Dehaloperoxidase B in complex with substrate 4-Cl-cresol 6ONR ; 1.35 ; Dehaloperoxidase B in complex with substrate 4-methyl-cresol 6CH5 ; 1.65 ; Dehaloperoxidase B in complex with substrate 4-Nitroguaiacol 6OO1 ; 1.602 ; Dehaloperoxidase B in complex with substrate o-cresol 6OO6 ; 2.1 ; Dehaloperoxidase B in complex with substrate p-cresol 5CHR ; 1.98 ; Dehaloperoxidase B in complex with substrate p-nitrocatechol 5CHQ ; 1.87 ; Dehaloperoxidase B in complex with substrate p-nitrophenol 6OO8 ; 1.8 ; Dehaloperoxidase B in complex with substrate pentachlorophenol 6ONZ ; 1.8 ; Dehaloperoxidase B in complex with substtrate 4-nitro-cresol 5V5Q ; 1.961 ; Dehaloperoxidase B L9I mutant 5VLX ; 1.8 ; Dehaloperoxidase B mutant F21W 5VTS ; 1.571 ; Dehaloperoxidase B Y28F mutant 5VTT ; 1.903 ; Dehaloperoxidase B Y38F mutant 4JAC ; 1.934 ; Dehaloperoxidase-Hemoglobin T56S 6ONG ; 1.42 ; Dehaloperoxidate B in complex with substrate 4-F-cresol 8FZQ ; 4.3 ; Dehosphorylated, ATP-bound human cystic fibrosis transmembrane conductance regulator (CFTR) 5BP2 ; 1.75 ; Dehydratase domain (DH) of a mycocerosic acid synthase-like (MAS-like) PKS, crystal form 1 5BP3 ; 1.45 ; Dehydratase domain (DH) of a mycocerosic acid synthase-like (MAS-like) PKS, crystal form 2 3KG6 ; 2.7 ; Dehydratase domain from CurF module of Curacin polyketide synthase 3KG7 ; 2.77 ; Dehydratase domain from CurH module of Curacin polyketide synthase 3KG8 ; 2.45 ; Dehydratase domain from CurJ module of Curacin polyketide synthase 3KG9 ; 1.7 ; Dehydratase domain from CurK module of Curacin polyketide synthase 7ZMF ; 2.21 ; Dehydratase domain of module 3 from Brevibacillus Brevis orphan BGC11 4OOC ; 2.7 ; Dehydratase domain of the polyketide PpsC from Mycobacterium tuberculosis 6M7Y ; 2.794 ; Dehydratase, NisB, bound to a non-eliminable substrate analog 1OS3 ; 1.95 ; Dehydrated T6 human insulin at 100 K 1OS4 ; 2.25 ; Dehydrated T6 human insulin at 295 K 4LTG ; 1.18 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 74% relative humidity (2/7) 4LTI ; 1.41 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 74% relative humidity (4/7) 4LTK ; 1.45 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 74% relative humidity (6/7) 4LTH ; 1.6 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 97% relative humidity (3/7) 4LTJ ; 1.8 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 97% relative humidity (5/7) 4LTL ; 2.07 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 97% relative humidity (7/7) 4LTF ; 1.5 ; Dehydration/Rehydration of a Nucleic Acid system containing a Polypyridyl Ruthenium Complex at 97% relative humidity(1/7) 6NDT ; 1.424 ; Dehydroalanine intermediate of the FlgE D2 domain 5D9W ; 1.6897 ; Dehydroascorbate reductase (OsDHAR) complexed with ASA 5N9U ; ; Dehydroascorbate reductase 3A from Populus trichocarpa complexed with GSH. 5D9X ; 1.68 ; Dehydroascorbate reductase complexed with GSH 4QI5 ; 2.4 ; Dehydrogenase domain of Myriococcum thermophilum cellobiose dehydrogenase with bound cellobionolactam, MtDH 4QI4 ; 2.7 ; Dehydrogenase domain of Myriococcum thermophilum cellobiose dehydrogenase, MtDH 7E5Z ; 3.6 ; Dehydrogenase holoenzyme 5SWV ; 2.65 ; Dehydroquinate dehydratase and shikimate dehydrogenase from S. pombe AroM 5SWU ; 2.1 ; Dehydroquinate dehydratase from A. fumigatus AroM 8CKA ; 2.52 ; Deinococcus radidurans HPI S-layer 4Q0H ; 1.157 ; Deinococcus radiodurans BphP PAS-GAF 4Q0I ; 1.744 ; Deinococcus radiodurans BphP PAS-GAF D207A mutant 7Z9D ; 1.88 ; Deinococcus radiodurans BphP PAS-GAF H260A mutant 7Z9E ; 1.48 ; Deinococcus radiodurans BphP PAS-GAF H260A/Y263F mutant 6FTD ; 1.4 ; Deinococcus radiodurans BphP PAS-GAF H290T mutant 5NFX ; 1.34 ; Deinococcus radiodurans BphP PAS-GAF Y263F mutant 5NWN ; 3.6 ; Deinococcus radiodurans BphP PAS-GAF-PHY Y263F mutant, dark 5NM3 ; 3.3 ; Deinococcus radiodurans BphP PAS-GAF-PHY Y263F mutant, pre-illuminated 4Q0J ; 2.747 ; Deinococcus radiodurans BphP photosensory module 4TRT ; 2.0 ; Deinococcus radiodurans DNA polymerase III subunit beta 2XQC ; 1.9 ; DEINOCOCCUS RADIODURANS ISDRA2 TRANSPOSASE COMPLEXED WITH LEFT END RECOGNITION AND CLEAVAGE SITE AND ZN 2XM3 ; 2.3 ; Deinococcus radiodurans ISDra2 Transposase Left end DNA complex 2XMA ; 2.3 ; DEINOCOCCUS RADIODURANS ISDRA2 TRANSPOSASE RIGHT END DNA COMPLEX 2XO6 ; 1.9 ; DEINOCOCCUS RADIODURANS ISDRA2 TRANSPOSASE Y132F MUTANT COMPLEXED WITH LEFT END RECOGNITION AND CLEAVAGE SITE 1XP8 ; 2.5 ; Deinococcus radiodurans RecA in complex with ATP-gamma-S 8B0Q ; 1.8 ; Deinococcus radiodurans UvrC C-terminal half 5JEU ; 0.97 ; del-[Ru(phen)2(dppz)]2+ bound to d(TCGGCGCCGA) with Ba2+ 5JEV ; 0.99 ; del-[Ru(phen)2(dppz]2+ bound to d(TCGGCGCCGA) with Cobalt hexammine 2UYA ; 2.0 ; DEL162-163 mutant of Bacillus subtilis Oxalate Decarboxylase OxdC 2Z2B ; 1.85 ; Deletion 107-116 mutant of dihydroorotase from E. coli 1NVJ ; 2.15 ; Deletion Mutant (Delta 141) of Molybdopterin Synthase 4CGT ; 2.6 ; DELETION MUTANT DELTA(145-150), F151D OF CYCLODEXTRIN GLYCOSYLTRANSFERASE 1OOZ ; 2.1 ; Deletion mutant of SUCCINYL-COA:3-KETOACID COA TRANSFERASE FROM PIG HEART 1OPE ; 2.5 ; Deletion mutant of SUCCINYL-COA:3-KETOACID COA TRANSFERASE FROM PIG HEART 1B21 ; 2.0 ; DELETION OF A BURIED SALT BRIDGE IN BARNASE 1B2Z ; 2.03 ; DELETION OF A BURIED SALT BRIDGE IN BARNASE 1B20 ; 1.7 ; DELETION OF A BURIED SALT-BRIDGE IN BARNASE 5K94 ; 2.1 ; Deletion-Insertion Chimera of MBP with the Preprotein Cross-Linking Domain of the SecA ATPase 2K7V ; ; Deletions in a surface loop divert the folding of a protein domain into a metastable dimeric form 6JYT ; 2.8 ; Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis 7TOV ; 3.16 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; consensus state D2 7TP7 ; 3.48 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D11 state 7TP8 ; 3.4 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D12 state 7TP9 ; 3.48 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D13 state 7TPA ; 3.6 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D14 state 7TPC ; 3.91 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D15 state 7TPE ; 4.0 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D16 state 7TPF ; 3.4 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 1-RBD-up conformation; Subclassification D17 state 7TPH ; 3.58 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 2-RBD-up conformation - D3 7TOU ; 3.24 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; consensus state D1 7TP2 ; 3.72 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D10 state 7TOX ; 3.62 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D5 state 7TOY ; 3.53 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D6 state 7TOZ ; 4.07 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D7 state 7TP0 ; 3.57 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D8 state 7TP1 ; 3.81 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the 3-RBD-down conformation; Subclassification D9 state 7TPL ; 3.87 ; Delta (B.1.617.2) SARS-CoV-2 variant spike protein (S-GSAS-Delta) in the M1 conformation, D4 3EIN ; 1.126 ; Delta class GST 7ZJL ; 2.6 ; Delta SARS-CoV-2 spike protein in complex with REGN10987 Fab homologue. 7WG9 ; 3.5 ; Delta Spike Trimer(1 RBD Up) 7WG8 ; 3.9 ; Delta Spike Trimer(3 RBD Down) 7VHH ; 3.8 ; Delta variant of SARS-CoV-2 Spike protein 1U81 ; ; Delta-17 Human ADP Ribosylation Factor 1 Complexed with GDP 2GDJ ; 2.5 ; Delta-62 RADA recombinase in complex with AMP-PNP and magnesium 1VTX ; ; DELTA-ATRACOTOXIN-HV1 (VERSUTOXIN) FROM HADRONYCHE VERSUTA, NMR, 20 STRUCTURES 1CBY ; 2.6 ; DELTA-ENDOTOXIN 7PTY ; 4.63 ; Delta-latroinsectotoxin dimer 6GFK ; 2.3 ; delta-N METTL16 MTase domain 1E5I ; 2.1 ; DELTA-R306 DEACETOXYCEPHALOSPORIN C SYNTHASE COMPLEXED WITH IRON AND 2-OXOGLUTARATE. 1E5H ; 1.96 ; DELTA-R307A DEACETOXYCEPHALOSPORIN C SYNTHASE COMPLEXED WITH SUCCINATE AND CARBON DIOXIDE 8CII ; 2.7 ; Delta-RBD complex with BA.2-07 fab, SARS1-34 fab and C1 nanobody 1DTC ; ; DELTA-TOXIN AND ANALOGUES AS PEPTIDE MODELS FOR PROTEIN ION CHANNELS 2DTB ; ; DELTA-TOXIN AND ANALOGUES AS PEPTIDE MODELS FOR PROTEIN ION CHANNELS 1FD6 ; ; DELTA0: A COMPUTATIONALLY DESIGNED CORE VARIANT OF THE B1 DOMAIN OF STREPTOCOCCAL PROTEIN G 1FCL ; ; DELTA1.5: A COMPUTATIONALLY DESIGNED CORE VARIANT OF THE B1 DOMAIN OF STREPTOCOCCAL PROTEIN G 6SKJ ; 2.8 ; DeltaC2 C-terminal truncation of HsNMT1 in complex with MyrCoA and GNCFSKPR substrates 6SK8 ; 1.87 ; DeltaC3 C-terminal truncation of HsNMT1 in complex with MyrCoA and GDCFSKPR substrates 7EMK ; 2.3 ; Dendrorhynchus zhejiangensis ferritin 4CCT ; 4.5 ; Dengue 1 cryo-EM reconstruction 5EC8 ; 1.714 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND COMPOUND BF175 4CTK ; 1.53 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND FRAGMENT 2A4 4CTJ ; 1.47 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND FRAGMENT 3A9 5EIF ; 1.5 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND FRAGMENT NB2C3 5EIW ; 1.611 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND FRAGMENT NB3C2 5E9Q ; 1.79 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND MOLECULE BF174 5EHI ; 1.303 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND MOLECULE BF287 5EHG ; 2.02 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYL METHIONINE AND MOLECULE BF341 5EKX ; 1.76 ; DENGUE 3 NS5 METHYLTRANSFERASE BOUND TO S-ADENOSYLMETHIONINE AND FRAGMENT NB2E11 3P97 ; 1.7 ; Dengue 3 NS5 Methyltransferase bound to the substrate S-Adenosyl methionine 5JJS ; 1.65 ; Dengue 3 NS5 protein with compound 27 5JJR ; 1.99 ; Dengue 3 NS5 protein with compound 29 1L9K ; 2.4 ; dengue methyltransferase 3P8Z ; 1.7 ; Dengue Methyltransferase bound to a SAM-based inhibitor 4R8S ; 1.48 ; Dengue serotype 3 methyltransferase bound to Sinefungin 4HHJ ; 1.79 ; Dengue serotype 3 RNA-dependent RNA polymerase 5HMX ; 2.4 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to compound 10 5HMY ; 2.1 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to compound 15 5HMZ ; 1.99 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to compound 23 5I3P ; 2.45 ; DENGUE SEROTYPE 3 RNA-DEPENDENT RNA POLYMERASE BOUND TO COMPOUND 27 5I3Q ; 1.88 ; DENGUE SEROTYPE 3 RNA-DEPENDENT RNA POLYMERASE BOUND TO COMPOUND 29 5HN0 ; 2.05 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to compound 4 5HMW ; 2.15 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to compound 5 5F41 ; 2.0 ; DENGUE SEROTYPE 3 RNA-DEPENDENT RNA POLYMERASE BOUND TO FD-83-KI26 5F3T ; 2.05 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to JF-31-MG46 3VWS ; 2.1 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to NITD-107 6XD0 ; 2.012 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to NITD-434 6XD1 ; 1.954 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to NITD-640 5F3Z ; 2.0 ; Dengue serotype 3 RNA-dependent RNA polymerase bound to PC-79-SH52 4O6B ; 3.0005 ; Dengue Type2 Virus Non-structural protein 1 (NS1) Form 1 crystal 5XC7 ; 2.1 ; Dengue Virus 4 NS3 Helicase D290A mutant 2JLS ; 2.23 ; Dengue virus 4 NS3 helicase in complex with ADP 2JLR ; 2.0 ; Dengue virus 4 NS3 helicase in complex with AMPPNP 2JLU ; 2.04 ; Dengue virus 4 NS3 helicase in complex with ssRNA 2JLZ ; 2.2 ; Dengue virus 4 NS3 helicase in complex with ssRNA and ADP 2JLY ; 2.4 ; Dengue virus 4 NS3 helicase in complex with ssRNA and ADP-Phosphate 2JLX ; 2.2 ; Dengue virus 4 NS3 helicase in complex with ssRNA and ADP-Vanadate 2JLV ; 1.9 ; Dengue virus 4 NS3 helicase in complex with ssRNA and AMPPNP 5XC6 ; 2.9 ; Dengue Virus 4 NS3 Helicase in complex with SSRNA SLA12 2JLW ; 2.6 ; Dengue virus 4 NS3 helicase in complex with ssRNA2 2JLQ ; 1.67 ; Dengue virus 4 NS3 helicase structure, apo enzyme. 4V0R ; 2.4 ; DENGUE VIRUS FULL LENGTH NS5 COMPLEXED WITH GTP AND SAH 4V0Q ; 2.3 ; Dengue Virus Full Length NS5 Complexed with SAH 5DTO ; 2.603 ; Dengue virus full length NS5 complexed with viral Cap 0-RNA and SAH 5ZQK ; 2.3 ; Dengue Virus Non Structural Protein 5 4OIG ; 2.69 ; Dengue Virus Non-structural Protein NS1 4M9F ; 2.7 ; Dengue virus NS2B-NS3 protease A125C variant at pH 8.5 2FOM ; 1.5 ; Dengue Virus NS2B/NS3 Protease 2J7U ; 1.85 ; Dengue virus NS5 RNA dependent RNA polymerase domain 2J7W ; 2.6 ; Dengue virus NS5 RNA dependent RNA polymerase domain complexed with 3' dGTP 3U1I ; 2.3 ; Dengue virus protease covalently bound to a peptide 4C11 ; 2.6 ; Dengue virus RNA dependent RNA polymerase with residues from the NS5 linker region 2BHR ; 2.8 ; Dengue virus RNA helicase 2BMF ; 2.41 ; Dengue virus RNA helicase at 2.4A 7LYF ; 3.4 ; Dengue virus RNA promoter stem-loop A fused with tRNA-scaffold 4R8R ; 1.46 ; Dengue virus serotype 3 methyltransferase without a bound S-adenosyl methionine 6H80 ; 2.3 ; Dengue-RdRp3-inhibitor complex co-crystallisation 6H9R ; 2.4 ; Dengue-RdRp3-inhibitor complex soaking 6VG5 ; 1.5 ; DengueV-2 Capsid ST148 inhibitor Complex 6VSO ; 3.001 ; DengueV-2 Capsid Structure 2H5F ; 1.9 ; Denmotoxin: A the three-finger toxin from colubrid snake Boiga dendrophila with bird-specific activity 3KYV ; 1.1 ; Denovo X-ray crystal structure determination of H-labeled perdeuterated rubredoxin at 100K 7P12 ; 1.69 ; DeNovoTIM13-SB, a de novo designed TIM barrel with a salt-bridge cluster 7OSV ; 1.66 ; DeNovoTIM6-SB, a de novo designed TIM barrel with a salt-bridge cluster (crystal form 1) 7OT8 ; 2.22 ; DeNovoTIM6-SB, a de novo designed TIM barrel with a salt-bridge cluster (crystal form 2) 7K7H ; 3.0 ; Density-fitted Model Structure of Antibody Variable Domains of TyTx1 in Complex with PltB pentamer of Typhoid Toxin 6VX4 ; 3.12 ; Density-fitted Model Structure of Antibody Variable Domains of TyTx11 in Complex with Typhoid Toxin 7K7I ; 3.13 ; Density-fitted Model Structure of Antibody Variable Domains of TyTx4 in Complex with PltB pentamer of Typhoid Toxin 6WEQ ; 3.2 ; DENV1 NS1 in complex with neutralizing 2B7 Fab fragment 7K4L ; ; DENV1 SLA bottom stem RNA (DenvBS) 7UMC ; ; DENV1 SLA RNA (DenvSLATL) 7UMD ; ; DENV1 SLA three-way junction RNA (DenvSLAsh) 7UME ; ; DENV1 SLA top stemloop RNA (DenvTSL) 6WER ; 3.96 ; DENV2 NS1 in complex with neutralizing 2B7 Fab fragment 7K93 ; 2.89 ; DENV2 NS1 in complex with neutralizing 2B7 single chain Fab variable region (scFv) 7V3J ; 4.9 ; DENV2:F(ab')2-local 7V3F ; 3.1 ; DENV2_NGC_Fab_C10 28degree (1Fab:3E) 7V3G ; 3.3 ; DENV2_NGC_Fab_C10 28degrees (2Fab:3E) 7V3H ; 3.6 ; DENV2_NGC_Fab_C10 28degrees (3Fab:3E) 7V3I ; 4.4 ; DENV2_NGC_Fab_C10 4degrees (3Fab:3E) 8BCR ; 1.9 ; DENV3 Methyltransferase in complexed with AT-9010 and SAH 4R9N ; 1.869 ; DeoR family transcriptional regulator from Listeria monocytogenes. 1GBU ; 1.8 ; DEOXY (BETA-(C93A,C112G)) HUMAN HEMOGLOBIN 1CG5 ; 1.6 ; DEOXY FORM HEMOGLOBIN FROM DASYATIS AKAJEI 1GCV ; 2.0 ; DEOXY FORM HEMOGLOBIN FROM MUSTELUS GRISEUS 5UT8 ; 1.78 ; Deoxy form of sperm whale myoglobin H64A 5UTC ; 1.8 ; Deoxy form of sperm whale myoglobin V68A/I107Y 1LFL ; 2.7 ; DEOXY HEMOGLOBIN (90% RELATIVE HUMIDITY) 1O1O ; 1.8 ; Deoxy hemoglobin (A,C:V1M,V62L; B,D:V1M,V67L) 1O1K ; 2.0 ; Deoxy hemoglobin (A,C:V1M; B,D:V1M,V67W) 1O1J ; 1.9 ; Deoxy hemoglobin (A-GLY-C:V1M,L29F,H58Q; B,D:V1M,L106W) 1O1L ; 1.8 ; Deoxy hemoglobin (A-GLY-C:V1M,L29W,H58Q; B,D:V1M) 1O1P ; 1.8 ; Deoxy hemoglobin (A-GLY-C:V1M; B,D:V1M,C93A,N108K) 1O1M ; 1.85 ; Deoxy hemoglobin (A-GLYGLYGLY-C:V1M,L29F,H58Q B,D:V1M,V67W) 1O1N ; 1.8 ; Deoxy hemoglobin (A-GLYGLYGLY-C:V1M,L29W; B,D:V1M) 1A3N ; 1.8 ; DEOXY HUMAN HEMOGLOBIN 1C7B ; 1.803 ; DEOXY RHB1.0 (RECOMBINANT HEMOGLOBIN) 1ABW ; 2.0 ; DEOXY RHB1.1 (RECOMBINANT HEMOGLOBIN) 1C7C ; 1.8 ; DEOXY RHB1.1 (RECOMBINANT HEMOGLOBIN) 1C7D ; 1.8 ; DEOXY RHB1.2 (RECOMBINANT HEMOGLOBIN) 2AWC ; 2.2 ; deoxy-DcrH-Hr 1IBE ; 1.8 ; DEOXY-HAEMOGLOBIN TRAPPED IN THE HIGH-AFFINITY (R) STATE 1A6N ; 1.15 ; DEOXY-MYOGLOBIN, ATOMIC RESOLUTION 1I2L ; 2.3 ; DEOXYCHORISMATE LYASE FROM ESCHERICHIA COLI WITH INHIBITOR 4L7Y ; 1.8 ; Deoxygenated Hb in complex with the allosteric effectors, IRL2500 and 2,3-DPG 1QI8 ; 1.8 ; DEOXYGENATED STRUCTURE OF A DISTAL POCKET HEMOGLOBIN MUTANT 2W72 ; 1.07 ; DEOXYGENATED STRUCTURE OF A DISTAL SITE HEMOGLOBIN MUTANT PLUS XE 4XDS ; 3.354 ; Deoxyguanosinetriphosphate Triphosphohydrolase from Escherichia coli with Nickel 4X9E ; 3.1 ; DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHOHYDROLASE from Escherichia coli with two DNA effector molecules 6FM0 ; 1.7 ; Deoxyguanylosuccinate synthase (DgsS) and ATP structure at 1.7 Angstrom resolution 6TNH ; 2.21 ; Deoxyguanylosuccinate synthase (DgsS) quaternary structure with AMPPcP, dGMP, Asp, Magnesium at 2.21 Angstrom resolution 6FKO ; 2.1 ; Deoxyguanylosuccinate synthase (DgsS) quaternary structure with ATP, dGMP, hadacidin at 2.1 Angstrom resolution 6FM1 ; 2.35 ; Deoxyguanylosuccinate synthase (DgsS) quaternary structure with ATPanddGMP at 2.3 Angstrom resolution 6FLF ; 1.33 ; Deoxyguanylosuccinate synthase (DgsS) structure at 1.33 Angstrom resolution. 6FM3 ; 1.95 ; Deoxyguanylosuccinate synthase (DgsS) structure with ADP at 1.9 Angstrom resolution 6RM2 ; 2.5 ; Deoxyguanylosuccinate synthase (DgsS) structure with ATP, IMP, Magnesium 5KDQ ; 2.15 ; Deoxyhemoglobin in Complex with an Aryloxyalkanoic acid 4ROL ; 1.7 ; Deoxyhemoglobin in complex with imidazolylacryloyl derivatives 4ROM ; 1.9 ; Deoxyhemoglobin in complex with imidazolylacryloyl derivatives 3WCP ; 1.94 ; Deoxyhemoglobin SH-drug complex 1GLI ; 2.5 ; DEOXYHEMOGLOBIN T38W (ALPHA CHAINS), V1G (ALPHA AND BETA CHAINS) 1RLZ ; 2.15 ; Deoxyhypusine synthase holoenzyme in its high ionic strength, low pH crystal form 1ROZ ; 2.21 ; Deoxyhypusine synthase holoenzyme in its low ionic strength, high pH crystal form 1RQD ; 3.0 ; deoxyhypusine synthase holoenzyme in its low ionic strength, high pH crystal form with the inhibitor GC7 bound in the active site 1DEK ; 2.0 ; DEOXYNUCLEOSIDE MONOPHOSPHATE KINASE COMPLEXED WITH DEOXY-GMP 1DEL ; 2.2 ; DEOXYNUCLEOSIDE MONOPHOSPHATE KINASE COMPLEXED WITH DEOXY-GMP AND AMP 8CI9 ; 1.41 ; Deoxypodophyllotoxin Synthase in complex with Tris 6L25 ; 1.85 ; Deoxyribonuclease from Staphylococcus aureus 6YBH ; 2.4 ; Deoxyribonucleoside Kinase 2A4A ; 1.84 ; Deoxyribose-phosphate aldolase from P. yoelii 1DUD ; 2.3 ; DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEOTIDE HYDROLASE (D-UTPASE) COMPLEXED WITH THE SUBSTRATE ANALOGUE DEOXYURIDINE 5'-DIPHOSPHATE (D-UDP) 1DUP ; 1.9 ; DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEOTIDO HYDROLASE (D-UTPASE) 7KWL ; ; Deoxyuridine in DNA Structure: Solution Structure of [d(CGUGAATTCGCG)]2 7BFS ; ; deoxyxylose nucleic acid hairpin 7BFX ; ; deoxyxylose nucleic acid hairpin 4ZO4 ; 2.57 ; Dephospho-CoA kinase from Campylobacter jejuni. 1JJV ; 2.0 ; DEPHOSPHO-COA KINASE IN COMPLEX WITH ATP 8EJ1 ; 6.9 ; Dephosphorylated human delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) 5UAR ; 3.73 ; Dephosphorylated, ATP-free cystic fibrosis transmembrane conductance regulator (CFTR) from zebrafish 5UAK ; 3.87 ; Dephosphorylated, ATP-free human cystic fibrosis transmembrane conductance regulator (CFTR) 2I61 ; 1.2 ; Depressant anti-insect neurotoxin, LqhIT2 from Leiurus quinquestriatus hebraeus 4FPD ; 2.65 ; Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway 7PED ; 1.93 ; DEPTOR DEP domain tandem (DEPt) 1AHM ; ; DER F 2, THE MAJOR MITE ALLERGEN FROM DERMATOPHAGOIDES FARINAE, NMR, 10 STRUCTURES 1AHK ; ; DER F 2, THE MAJOR MITE ALLERGEN FROM DERMATOPHAGOIDES FARINAE, NMR, MINIMIZED AVERAGE STRUCTURE 2PM1 ; 1.6 ; Derivative of human alpha-defensin 1 (HNP1) 5TX4 ; 1.876 ; Derivative of mouse TGF-beta2, with a deletion of residues 52-71 and K25R, R26K, L51R, A74K, C77S, L89V, I92V, K94R T95K, I98V single amino acid substitutions, bound to human TGF-beta type II receptor ectodomain residues 15-130 3OJO ; 2.5 ; Derivative structure of the UDP-N-acetyl-mannosamine dehydrogenase Cap5O from S. aureus 1JK4 ; 2.3 ; DES 1-6 BOVINE NEUROPHYSIN II COMPLEX WITH VASOPRESSIN 7JP3 ; 1.95 ; Des-B29,B30-insulin 2LJ5 ; ; Description of the Structural fluctuations of proteins from structure-based calculations of Residual dipolar couplings 7QHH ; 3.6 ; Desensitized state of GluA1/2 AMPA receptor in complex with TARP-gamma 8 (TMD-LBD) 5VOE ; 2.0 ; DesGla-XaS195A Bound to Aptamer 11F7t 5VOF ; 2.25 ; DesGla-XaS195A Bound to Aptamer 11F7t and Rivaroxaban 1DEI ; 1.6 ; DESHEPTAPEPTIDE (B24-B30) INSULIN 3FEI ; 2.4 ; Design and biological evaluation of novel, balanced dual PPARa/g agonists 3FEJ ; 2.01 ; Design and biological evaluation of novel, balanced dual PPARa/g agonists 6KH0 ; 2.0 ; Design and crystal structure of protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes 6KH1 ; 2.4 ; Design and crystal structure of protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes 6KH3 ; 2.3 ; Design and crystal structure of protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes 6KH4 ; 2.302 ; Design and crystal structure of protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes 6KH5 ; 2.294 ; Design and crystal structure of protein MOFs with ferritin nanocages as linkers and nickel clusters as nodes 2BVX ; 3.2 ; Design and Discovery of Novel, Potent Thrombin Inhibitors with a Solubilizing Cationic P1-P2-Linker 2BXT ; 1.83 ; Design and Discovery of Novel, Potent Thrombin Inhibitors with a Solubilizing Cationic P1-P2-Linker 2BXU ; 2.8 ; Design and Discovery of Novel, Potent Thrombin Inhibitors with a Solubilizing Cationic P1-P2-Linker 3O9L ; 2.4 ; Design and optimisation of new piperidines as renin inhibitors 5K7K ; 2.3 ; Design and Optimization of Biaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7: Discovery of Clinical Candidate PF-05089771 3OAD ; 2.17 ; Design and optimization of new piperidines as renin inhibitors 3OAG ; 2.3 ; Design and optimization of new piperidines as renin inhibitors 3G6Z ; 2.0 ; Design and Preparation of Potent, Non-Peptidic, Bioavailable Renin Inhibitors 3G70 ; 2.0 ; Design and Preparation of Potent, Non-Peptidic, Bioavailable Renin Inhibitors 3G72 ; 1.9 ; Design and Preparation of Potent, Non-Peptidic, Bioavailable Renin Inhibitors 3QTF ; 1.5703 ; Design and SAR of macrocyclic Hsp90 inhibitors with increased metabolic stability and potent cell-proliferation activity 1L77 ; 2.05 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 1L79 ; 1.9 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 1L80 ; 1.8 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 1L81 ; 2.0 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 1L82 ; 2.1 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 2L78 ; 2.0 ; DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME 4KIJ ; 2.8 ; Design and structural analysis of aromatic inhibitors of type II dehydroquinase dehydratase from Mycobacterium tuberculosis - compound 35c [3,4-dihydroxy-5-(3-nitrophenoxy)benzoic acid] 4KI7 ; 2.8 ; Design and structural analysis of aromatic inhibitors of type II dehydroquinase from Mycobacterium tuberculosis - compound 41c [3-hydroxy-5-(3-nitrophenoxy)benzoic acid] 4KIU ; 2.4 ; Design and structural analysis of aromatic inhibitors of type II dehydroquinate dehydratase from Mycobacterium tuberculosis - compound 49d [5-[(3-nitrobenzyl)oxy]benzene-1,3-dicarboxylic acid] 4KIW ; 2.57 ; Design and structural analysis of aromatic inhibitors of type II dehydroquinate dehydratase from Mycobacterium tuberculosis - compound 49e [5-[(3-nitrobenzyl)amino]benzene-1,3-dicarboxylic acid] 4FA6 ; 2.7 ; Design and Synthesis of a Novel Pyrrolidinyl Pyrido Pyrimidinone Derivative as a Potent Inhibitor of PI3Ka and mTOR 4FAD ; 2.7 ; Design and Synthesis of a Novel Pyrrolidinyl Pyrido Pyrimidinone Derivative as a Potent Inhibitor of PI3Ka and mTOR 3PTG ; 2.43 ; Design and Synthesis of a Novel, Orally Efficacious Tri-substituted Thiophene Based JNK Inhibitor 5TQ4 ; 2.3 ; Design and Synthesis of a pan-JAK Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin 5TQ5 ; 2.3 ; Design and Synthesis of a pan-JAK Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin 5TQ6 ; 2.06 ; Design and Synthesis of a pan-JAK Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin 5TQ7 ; 2.1 ; Design and Synthesis of a pan-JAK Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin 5TQ8 ; 1.59 ; Design and Synthesis of a pan-JAK Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin 5TQ3 ; 2.69 ; Design and Synthesis of a pan-JAK kinase inhibitor clinical candidate (PF-06263276) suitable for the treatment of inflammatory diseases of the lungs and skin 4B00 ; 1.83 ; Design and Synthesis of BACE1 Inhibitors with In Vivo Brain Reduction of beta-Amyloid Peptides (COMPOUND (R)-41) 4AZY ; 1.79 ; Design and Synthesis of BACE1 Inhibitors with In Vivo Brain Reduction of beta-Amyloid Peptides (COMPOUND 10) 3RTP ; 2.4 ; Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration 1BIW ; 2.5 ; DESIGN AND SYNTHESIS OF CONFORMATIONALLY-CONSTRAINED MMP INHIBITORS 3OXI ; 2.2 ; Design and Synthesis of Disubstituted Thiophene and Thiazole Based Inhibitors of JNK for the Treatment of Neurodegenerative Diseases 4WHZ ; 1.79 ; Design and Synthesis of Highly Potent and Isoform Selective JNK3 Inhibitors: SAR Studies on Aminopyrazole Derivatives 3QI1 ; 2.3 ; Design and synthesis of hydroxyethylamine (hea) BACE-1 inhibitors: prime side chromane-containing inhibitors 9LDB ; 2.2 ; DESIGN AND SYNTHESIS OF NEW ENZYMES BASED ON THE LACTATE DEHYDROGENASE FRAMEWORK 9LDT ; 2.0 ; DESIGN AND SYNTHESIS OF NEW ENZYMES BASED ON THE LACTATE DEHYDROGENASE FRAMEWORK 2Q6B ; 2.0 ; Design and synthesis of novel, conformationally restricted HMG-COA reductase inhibitors 2Q6C ; 2.0 ; Design and synthesis of novel, conformationally restricted HMG-COA reductase inhibitors 3ZPS ; 1.55 ; Design and Synthesis of P1-P3 Macrocyclic Tertiary Alcohol Comprising HIV-1 Protease Inhibitors 3ZPT ; 1.54 ; Design and Synthesis of P1-P3 Macrocyclic Tertiary Alcohol Comprising HIV-1 Protease Inhibitors 3ZPU ; 1.8 ; Design and Synthesis of P1-P3 Macrocyclic Tertiary Alcohol Comprising HIV-1 Protease Inhibitors 3IVH ; 1.8 ; Design and Synthesis of Potent BACE-1 Inhibitors with Cellular Activity: Structure-Activity Relationship of P1 Substituents 3IVI ; 2.2 ; Design and Synthesis of Potent BACE-1 Inhibitors with Cellular Activity: Structure-Activity Relationship of P1 Substituents 4EWO ; 1.8 ; Design and synthesis of potent hydroxyethylamine (hea) bace-1 inhibitors 4EXG ; 1.8 ; Design and synthesis of potent hydroxyethylamine (hea) bace-1 inhibitors 2Q1L ; 2.05 ; Design and Synthesis of Pyrrole-based, Hepatoselective HMG-CoA Reductase Inhibitors 4I0D ; 1.91 ; Design and Synthesis of Thiophene Dihydroisoquinolins as Novel BACE-1 Inhibitors 4I0E ; 1.7 ; Design and Synthesis of Thiophene Dihydroisoquinolins as Novel BACE-1 Inhibitors 4I0F ; 1.8 ; Design and Synthesis of Thiophene Dihydroisoquinolins as Novel BACE-1 Inhibitors 4I0G ; 1.78 ; Design and Synthesis of Thiophene Dihydroisoquinolins as Novel BACE-1 Inhibitors 4I12 ; 1.78 ; Design and synthesis of thiophene dihydroisoquinolins as novel BACE-1 inhibitors 4I1C ; 2.0 ; Design and synthesis of thiophene dihydroisoquinolins as novel BACE-1 inhibitors 3RFJ ; 1.78 ; Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering 3RFS ; 1.7 ; Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering 2N07 ; ; Design of a Highly Stable Disulfide-Deleted Mutant of Analgesic Cyclic alpha-Conotoxin Vc1.1 5VAV ; ; Design of a novel cyclic peptide that alleviates symptoms in a murine model of inflammatory bowel disease 6B17 ; 1.25 ; Design of a short thermally stable alpha-helix embedded in a macrocycle 6ANF ; ; Design of a short thermo-stable alpha-helix embedded in a macrocycle 8I4O ; 3.1 ; Design of a split green fluorescent protein for sensing and tracking an beta-amyloid 2I9M ; ; Design of a-helix based on conformationally restricted libraries 8FG6 ; 2.3 ; Design of amyloidogenic peptide traps 2JZQ ; ; Design of an Active Ultra-Stable Single-Chain Insulin Analog 20 Structures 3FQ9 ; 1.35 ; Design of an insulin analog with enhanced receptor-binding selectivity. Rationale, structure, and therapeutic implications 2I9O ; ; Design of bivalent miniprotein consisting of two independent elements, a b-hairpin peptide and a-helix peptide, tethered by eight glycines 2I9N ; ; Design of bivalent miniprotein consisting of two independent elements, a b-hairpin peptide and a-helix peptide, tethered by four glycines 2EIO ; 2.6 ; Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts 2EIQ ; 1.9 ; Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts 2EIR ; 2.5 ; Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts 8E55 ; 3.85 ; Design of Diverse Asymmetric Pockets in de novo Homo-oligomeric Proteins 1GG8 ; 2.31 ; DESIGN OF INHIBITORS OF GLYCOGEN PHOSPHORYLASE: A STUDY OF ALPHA-AND BETA-C-GLUCOSIDES AND 1-THIO-BETA-D-GLUCOSE COMPOUNDS 4B1F ; 2.05 ; Design of Inhibitors of Helicobacter pylori Glutamate Racemase as Selective Antibacterial Agents: Incorporation of Imidazoles onto a Core Pyrazolopyrimidinedione Scaffold to Improve Bioavailabilty 1VL3 ; ; DESIGN OF NEW MIMOCHROMES WITH UNIQUE TOPOLOGY 1MHW ; 1.9 ; Design of non-covalent inhibitors of human cathepsin L. From the 96-residue proregion to optimized tripeptides 6U3I ; 2.9 ; Design of organo-peptides as bipartite PCSK9 antagonists 1EOJ ; 2.1 ; Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures 1EOL ; 2.1 ; Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures 4FGA ; 2.3 ; Design of peptide inhibitors of group II phospholipase A2: Crystal structure of the complex of phospholipsae A2 with a designed tripeptide, Ala- Tyr- Lys at 2.3 A resolution 4GFY ; 2.7 ; Design of peptide inhibitors of phospholipase A2: crystal Structure of phospholipase A2 complexed with a designed tetrapeptide Val - Ilu- Ala - Lys at 2.7 A resolution 1TG4 ; 1.7 ; Design of specific inhibitors of groupII phospholipase A2(PLA2): Crystal structure of the complex formed between russells viper PLA2 and designed peptide Phe-Leu-Ala-Tyr-Lys at 1.7A resolution 1SQZ ; 1.2 ; Design of specific inhibitors of Phopholipase A2: Crystal structure of the complex formed between Group II Phopholipase A2 and a designed peptide Dehydro-Ile-Ala-Arg-Ser at 1.2A resolution 1JQ8 ; 2.0 ; Design of specific inhibitors of phospholipase A2: Crystal structure of a complex formed between phospholipase A2 from Daboia russelli pulchella and a designed pentapeptide Leu-Ala-Ile-Tyr-Ser at 2.0 resolution 2DO2 ; 2.6 ; Design of specific inhibitors of phospholipase A2: Crystal structure of the complex formed between a group II Cys 49 phospholipase A2 and a designed pentapeptide Ala-Leu-Ala-Ser-Lys at 2.6A resolution 1T37 ; 2.6 ; Design of specific inhibitors of phospholipase A2: Crystal structure of the complex formed between group I phospholipase A2 and a designed pentapeptide Leu-Ala-Ile-Tyr-Ser at 2.6A resolution 2RD4 ; 2.97 ; Design of specific inhibitors of Phospholipase A2: Crystal structure of the complex of phospholipase A2 with pentapeptide Leu-Val-Phe-Phe-Ala at 2.9 A resolution 2FNX ; 2.7 ; Design of Specific Peptide Inhibitors of Phospholipase A2 (PLA2): Crystal Structure of the Complex of PLA2 with a Highly Potent Peptide Val-Ile-Ala-Lys at 2.7A Resolution 2GNS ; 2.3 ; Design of specific peptide inhibitors of phospholipase A2: Crystal structure of the complex formed between a group II phospholipase A2 and a designed pentapeptide Ala- Leu- Val- Tyr- Lys at 2.3 A resolution 1NA0 ; 1.6 ; Design of Stable alpha-Helical Arrays from an Idealized TPR Motif 1NA3 ; 1.55 ; Design of Stable alpha-Helical Arrays from an Idealized TPR Motif 1NO9 ; 1.9 ; Design of weakly basic thrombin inhibitors incorporating novel P1 binding functions: molecular and X-ray crystallographic studies. 9HVP ; 2.8 ; Design, activity and 2.8 Angstroms crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease 3OGT ; 1.75 ; Design, Chemical synthesis, Functional characterization and Crystal structure of the sidechain analogue of 1,25-dihydroxyvitamin D3. 2LTN ; 1.7 ; DESIGN, EXPRESSION, AND CRYSTALLIZATION OF RECOMBINANT LECTIN FROM THE GARDEN PEA (PISUM SATIVUM) 7VUN ; 2.701 ; Design, modification, evaluation and cocrystal studies of novel phthalimides regulating PD-1/PD-L1 interaction 3UXE ; 1.5 ; Design, Synthesis and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors for Quinone Reductase 2 3UXH ; 1.53 ; Design, Synthesis and Biological Evaluation of Potetent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2 5IIS ; 2.1 ; Design, synthesis and structure activity relationship of potent pan-PIM kinase inhibitors derived from the pyridyl-amide scaffold 1E26 ; 2.0 ; Design, Synthesis and X-ray Crystal Structure of a Potent Dual Inhibitor of Thymidylate Synthase and Dihydrofolate Reductase as an Antitumor Agent. 4CBT ; 3.03 ; Design, synthesis, and biological evaluation of potent and selective Class IIa HDAC inhibitors as a potential therapy for Huntington's disease 4CBY ; 2.72 ; Design, synthesis, and biological evaluation of potent and selective Class IIa HDAC inhibitors as a potential therapy for Huntington's disease 3R21 ; 2.9 ; Design, synthesis, and biological evaluation of pyrazolopyridine-sulfonamides as potent multiple-mitotic kinase (MMK) inhibitors (Part I) 3R22 ; 2.9 ; Design, synthesis, and biological evaluation of pyrazolopyridine-sulfonamides as potent multiple-mitotic kinase (MMK) inhibitors (Part I) 2GYI ; 1.6 ; DESIGN, SYNTHESIS, AND CHARACTERIZATION OF A POTENT XYLOSE ISOMERASE INHIBITOR, D-THREONOHYDROXAMIC ACID, AND HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHIC STRUCTURE OF THE ENZYME-INHIBITOR COMPLEX 5UUU ; 2.7 ; Design, Synthesis, and Evaluation of the First Selective and Potent G-protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure 5UVC ; 2.65 ; Design, Synthesis, and Evaluation of the First Selective and Potent G-protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure 1FKG ; 2.0 ; DESIGN, SYNTHESIS, AND KINETIC EVALUATION OF HIGH-AFFINITY FKBP LIGANDS, AND THE X-RAY CRYSTAL STRUCTURES OF THEIR COMPLEXES WITH FKBP12 1FKH ; 1.95 ; DESIGN, SYNTHESIS, AND KINETIC EVALUATION OF HIGH-AFFINITY FKBP LIGANDS, AND THE X-RAY CRYSTAL STRUCTURES OF THEIR COMPLEXES WITH FKBP12 1FKI ; 2.2 ; DESIGN, SYNTHESIS, AND KINETIC EVALUATION OF HIGH-AFFINITY FKBP LIGANDS, AND THE X-RAY CRYSTAL STRUCTURES OF THEIR COMPLEXES WITH FKBP12 6V8C ; 1.9 ; Design, Synthesis, and Mechanism of Fluorine-substituted Cyclohexene Analogues of GAMA-Aminobutyric Acid (GABA) as Selective Ornithine Aminotransferase Inactivators 6V8D ; 2.25 ; Design, Synthesis, and Mechanism of Fluorine-substituted Cyclohexene Analogues of GAMA-Aminobutyric Acid (GABA) as Selective Ornithine Aminotransferase Inactivators 1QF4 ; 2.2 ; DESIGN, SYNTHESIS, AND X-RAY CRYSTAL STRUCTURE OF AN ENZYME BOUND BISUBSTRATE HYBRID INHIBITOR OF ADENYLOSUCCINATE SYNTHETASE 1QF5 ; 2.0 ; DESIGN, SYNTHESIS, AND X-RAY CRYSTAL STRUCTURE OF AN ENZYME BOUND BISUBSTRATE HYBRID INHIBITOR OF ADENYLOSUCCINATE SYNTHETASE 3GHC ; 1.3 ; Design, Synthesis, and X-ray Crystal Structure of Classical and Nonclassical 2-amino-4-oxo-5-substituted-6-thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agenst 6D1L ; 1.4 ; Design, synthesis, and X-ray of selenides bearing benzenesulfonamide moiety with neuropathic pain modulating effects 6D1M ; 1.21 ; Design, synthesis, and X-ray of selenides bearing benzenesulfonamide moiety with neuropathic pain modulating effects 3NU0 ; 1.35 ; Design, Synthesis, Biological Evaluation and X-ray Crystal Structure of Novel Classical 6,5,6-TricyclicBenzo[4,5]thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors 3NTZ ; 1.35 ; Design, Synthesis, Biological Evaluation and X-ray Crystal Structures of Novel Classical 6,5,6-tricyclicbenzo[4,5]thieno[2,3-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors 8ENJ ; 2.81 ; Design, synthesis, biological evaluation, and X-ray crystallography of diarylpyrazole derivatives possessing terminal arylsulfonamide moieties as anti-proliferative agents targeting c-Jun N-terminal kinase (JNK) 3TKC ; 1.75 ; Design, Synthesis, Evaluation and Structure of Vitamin D Analogues with Furan Side Chains 5URC ; 1.85 ; Design, Synthesis, Functional and Biological Evaluation of Ether and Ester Derivatives of the Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease 6CEH ; 1.43 ; Design, Synthesis, X-ray and Biological Activities of Selenides Bearing the Benzenesulfonamide Moiety as New Class of Agents for Prevention of Diabetic Cerebrovascular Pathology 5OP1 ; 2.284 ; Designed Ankyrin Repeat Protein (DARPin) A4 in complex with Lysozyme 3NOC ; 2.7 ; Designed ankyrin repeat protein (DARPin) binders to AcrB: Plasticity of the Interface 3NOG ; 3.34 ; Designed ankyrin repeat protein (DARPin) Binders to AcrB: Plasticity of the Interface 5OOV ; 1.365 ; Designed Ankyrin Repeat Protein (DARPin) ETVD-1 in complex with Lysozyme 5OP3 ; 1.359 ; Designed Ankyrin Repeat Protein (DARPin) NDNH-1 selected by directed evolution against Lysozyme 5OOY ; 1.72 ; Designed Ankyrin Repeat Protein (DARPin) VHAH-1 in complex with Lysozyme 5OOU ; 2.104 ; Designed Ankyrin Repeat Protein (DARPin) YTRL-1 selected by directed evolution against Lysozyme 5OOS ; 2.26 ; Designed Ankyrin Repeat Protein (DARPin) YTRL-2 selected by directed evolution against Lysozyme 5MFL ; 2.5 ; Designed armadillo repeat protein (KR)5_GS10_YIIIM6AII 4DB6 ; 1.8 ; Designed Armadillo repeat protein (YIIIM3AII) 4DB9 ; 2.4 ; Designed Armadillo repeat protein (YIIIM3AIII) 4DBA ; 2.4 ; Designed Armadillo repeat protein (YIIM3AII) 2RU5 ; ; Designed Armadillo Repeat Protein Fragment (MAII) 6S9O ; 3.17 ; Designed Armadillo Repeat protein internal Lock1 fused to target peptide KRKRKLKFKR 6S9P ; 2.8 ; Designed Armadillo Repeat protein internal Lock2 fused to target peptide KRKAKITWKR 6S9L ; 2.1 ; Designed Armadillo Repeat protein Lock1 bound to (KR)4KLSF target 6S9M ; 2.0 ; Designed Armadillo Repeat protein Lock2 fused to target peptide KRKRKAKITW 6S9N ; 2.1 ; Designed Armadillo Repeat protein Lock2 fused to target peptide KRKRKAKLSF 7QNP ; 1.586 ; Designed Armadillo repeat protein N(A4)M4C(AII) co-crystallized with hen egg white lysozyme 5MFM ; 2.3 ; Designed armadillo repeat protein peptide fusion YIIIM6AII_GS11_(KR)5 2RU4 ; ; Designed Armadillo Repeat Protein Self-ASsembled Complex (YIIM2-MAII) 4V3Q ; 1.8 ; Designed armadillo repeat protein with 4 internal repeats, 2nd generation C-cap and 3rd generation N-cap. 4V3O ; 2.0 ; Designed armadillo repeat protein with 5 internal repeats, 2nd generation C-cap and 3rd generation N-cap. 4V3R ; 1.95 ; Designed armadillo repeat protein with 5 internal repeats, 2nd generation C-cap and 3rd generation N-cap. 5MFB ; 2.3 ; Designed armadillo repeat protein YIII(Dq)4CqI 5MFK ; 2.3 ; Designed armadillo repeat protein YIII(Dq.V1)4CPAF in complex with peptide (KR)4 5MFI ; 1.45 ; Designed armadillo repeat protein YIII(Dq.V2)4CqI in complex with peptide (KR)4 5MFJ ; 1.53 ; Designed armadillo repeat protein YIII(Dq.V2)4CqI in complex with peptide (KR)5 5MFD ; 2.3 ; Designed armadillo repeat protein YIIIM''6AII in complex with pD_(KR)5 5MFO ; 1.3 ; Designed armadillo repeat protein YIIIM3AIII 5MFN ; 2.8 ; Designed armadillo repeat protein YIIIM5AII 5MFC ; 2.4 ; Designed armadillo repeat protein YIIIM5AII in complex with (KR)4-GFP 5MFE ; 1.95 ; Designed armadillo repeat protein YIIIM5AII in complex with (RR)4 peptide 5AEI ; 1.83 ; Designed Armadillo repeat protein YIIIM5AII in complex with peptide (KR)5 5MFG ; 1.901 ; Designed armadillo repeat protein YIIIM5AII in complex with peptide (RR)4 5MFF ; 1.9 ; Designed armadillo repeat protein YIIIM5AII in complex with peptide (RR)5 5MFH ; 2.0 ; Designed armadillo repeat protein YIIIM5AII in complex with peptide (RR)5 4DB8 ; 2.5 ; Designed Armadillo-repeat Protein 5K67 ; 1.7 ; Designed Artificial Cupredoxins 5K68 ; 1.4 ; Designed Artificial Cupredoxins 5L3Y ; 1.7 ; Designed Artificial Cupredoxins 5WBC ; 1.72 ; Designed Artificial Cupredoxins - WT 7F1H ; 1.14 ; Designed enzyme RA61 M48K/I72D mutant: form I 7F1I ; 1.4 ; Designed enzyme RA61 M48K/I72D mutant: form II 7F1J ; 1.6 ; Designed enzyme RA61 M48K/I72D mutant: form III 7F1K ; 1.05 ; Designed enzyme RA61 M48K/I72D mutant: form IV 7F1L ; 1.7 ; Designed enzyme RA61 M48K/I72D mutant: form V 7UD6 ; 2.59 ; Designed Enzyme SH3-588 (Catechol O-methyltransferase catalytic domain and Src homology 3 binding domain fusion) 2MJ9 ; ; Designed Exendin-4 analogues 7XX4 ; 2.43 ; designed glycosyltransferase 1Y4C ; 1.9 ; Designed Helical Protein fusion MBP 1UTS ; ; Designed HIV-1 TAR Binding Ligand 2LR2 ; ; Designed IgG and lanthanide binding probe for solution NMR, MRI and luminescence microscopy 5KUX ; 1.8 ; Designed influenza hemagglutinin binding protein HSB.2 8ETQ ; 2.42 ; Designed pentafoil knot protein folded into a trefoil knot 7UDY ; 2.4 ; Designed pentameric channel QLLL 7UDV ; 2.4 ; Designed pentameric proton channel LLQL 7UDZ ; 2.48 ; Designed pentameric proton channel LQLL 7UDX ; 2.99 ; Designed pentameric proton channel QLQL 7UDW ; 3.0 ; Designed pentameric proton channel QQLL 1BYZ ; 0.9 ; DESIGNED PEPTIDE ALPHA-1, P1 FORM 3AL1 ; 0.75 ; DESIGNED PEPTIDE ALPHA-1, RACEMIC P1BAR FORM 5YKQ ; ; Designed peptide CAY1 from Odorrana andersonii skin secretion 8GN5 ; 4.02 ; Designed pH-responsive P22 VLP 4HX9 ; 2.68 ; Designed Phosphodeoxyribosyltransferase 1VJQ ; 2.098 ; Designed protein based on backbone conformation of procarboxypeptidase-A (1AYE) with sidechains chosen for maximal predicted stability. 6DLC ; 3.261 ; Designed protein DHD1:234_A, Designed protein DHD1:234_B 5YXI ; ; Designed protein dRafX6 3UXA ; 2.5 ; Designed protein KE59 R1 7/10H 3UXD ; 1.8 ; Designed protein KE59 R1 7/10H with dichlorobenzotriazole (DBT) 3UY7 ; 1.45 ; Designed protein KE59 R1 7/10H with G130S mutation 3UZ5 ; 1.9 ; Designed protein KE59 R13 3/11H 3UZJ ; 1.69 ; Designed protein KE59 R13 3/11H with benzotriazole 3UY8 ; 2.41 ; Designed protein KE59 R5_11/5F 3UYC ; 2.2 ; Designed protein KE59 R8_2/7A 6NE1 ; 3.011 ; Designed repeat protein in complex with Fz4 6NE2 ; 1.299 ; Designed repeat protein in complex with Fz7 6NDZ ; 2.264 ; Designed repeat protein in complex with Fz8 6NE4 ; 1.648 ; Designed repeat protein specifically in complex with Fz7CRD 7RA9 ; 2.2 ; Designed StabIL-2 seq1 7RAA ; 2.69 ; Designed StabIL-2 seq15 7L85 ; 2.9 ; Designed tetrahedral nanoparticle T33-31 presenting BG505 SOSIP trimers 3KD7 ; 2.85 ; Designed TPR module (CTPR390) in complex with its peptide-ligand (Hsp90 peptide) 5FZQ ; 2.148 ; Designed TPR Protein M4N 5FZR ; 2.045 ; Designed TPR Protein M4N delta C (CF I) 5FZS ; 1.652 ; Designed TPR Protein M4N delta C (CF II) 7SQ3 ; 2.453 ; Designed trefoil knot protein, variant 1 7SQ4 ; 1.493 ; Designed trefoil knot protein, variant 2 7SQ5 ; 2.205 ; Designed trefoil knot protein, variant 3 1COI ; 2.1 ; DESIGNED TRIMERIC COILED COIL-VALD 5JQZ ; 3.83 ; Designed two-ring homotetramer at 3.8A resolution 6Y07 ; ; Designing a Granulopoietic Protein by Topological Rescaffolding 1: Sohair 5W6W ; 3.06 ; Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications 5TPR ; 1.7 ; Desmethyl-4-deoxygadusol synthase from Anabaena variabilis (Ava_3858) with NAD+ and Zn2+ bound 1DDL ; 2.7 ; DESMODIUM YELLOW MOTTLE TYMOVIRUS 2CEU ; 1.8 ; Despentapeptide insulin in acetic acid (pH 2) 1AK7 ; ; DESTRIN, NMR, 20 STRUCTURES 1AK6 ; ; DESTRIN, NMR, MINIMIZED AVERAGE STRUCTURE 1DFX ; 1.9 ; DESULFOFERRODOXIN FROM DESULFOVIBRIO DESULFURICANS, ATCC 27774 1DCD ; 2.0 ; DESULFOREDOXIN COMPLEXED WITH CD2+ 3F6R ; 2.0 ; Desulfovibrio desulfuricans (ATCC 29577) oxidized flavodoxin 3F6S ; 2.502 ; Desulfovibrio desulfuricans (ATCC 29577) oxidized flavodoxin alternate conformers 3F90 ; 2.5 ; Desulfovibrio desulfuricans (ATCC 29577) semiquinone flavodoxin 8BJ7 ; 1.04 ; Desulfovibrio desulfuricans FeFe Hydrogenase C178A mutant in Hinact-like state 8BJ8 ; 1.01 ; Desulfovibrio desulfuricans FeFe Hydrogenase C178A mutant in Htrans-like state 1MJI ; 2.5 ; DETAILED ANALYSIS OF RNA-PROTEIN INTERACTIONS WITHIN THE BACTERIAL RIBOSOMAL PROTEIN L5/5S RRNA COMPLEX 3KSA ; 3.3 ; Detailed structural insight into the DNA cleavage complex of type IIA topoisomerases (cleaved form) 3KSB ; 3.5 ; Detailed structural insight into the DNA cleavage complex of type IIA topoisomerases (re-sealed form) 3K9F ; 2.9 ; Detailed structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases 1UKJ ; 1.8 ; Detailed structure of L-Methionine-Lyase from Pseudomonas putida 1DK1 ; 2.8 ; DETAILED VIEW OF A KEY ELEMENT OF THE RIBOSOME ASSEMBLY: CRYSTAL STRUCTURE OF THE S15-RRNA COMPLEX 4IFV ; 2.05 ; Detecting Allosteric Sites of HIV-1 Reverse Transcriptase by X-Ray Crystallographic Fragment Screening 2XRE ; 2.45 ; Detection of cobalt in previously unassigned human SENP1 structure 2ALU ; 2.09 ; Detection of new binding site in the C-terminal lobe of lactoferrin:Crystal structure of the complex formed between bovine lactoferrin and a tetrasaccharide at 2.1A resolution 7UWP ; 1.95 ; Detergent-bound CYP51 from Acanthamoeba castellanii 1CER ; 2.5 ; DETERMINANTS OF ENZYME THERMOSTABILITY OBSERVED IN THE MOLECULAR STRUCTURE OF THERMUS AQUATICUS D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE AT 2.5 ANGSTROMS RESOLUTION 4LKV ; 3.5109 ; Determinants of lipid substrate and membrane binding for the tetraacyldisaccharide-1-phosphate 4 -kinase LpxK 1BMD ; 1.9 ; DETERMINANTS OF PROTEIN THERMOSTABILITY OBSERVED IN THE 1.9 ANGSTROMS CRYSTAL STRUCTURE OF MALATE DEHYDROGENASE FROM THE THERMOPHILIC BACTERIUM THERMUS FLAVUS 7KCI ; 1.95 ; DETERMINANTS OF REPRESSOR/OPERATOR RECOGNITION FROM THE STRUCTURE OF THE TRP OPERATOR BINDING SITE 2SOD ; 2.0 ; DETERMINATION AND ANALYSIS OF THE 2 ANGSTROM STRUCTURE OF COPPER, ZINC SUPEROXIDE DISMUTASE 1SAR ; 1.8 ; DETERMINATION AND RESTRAINED LEAST-SQUARES REFINEMENT OF THE CRYSTAL STRUCTURES OF RIBONUCLEASE SA AND ITS COMPLEX WITH 3'-GUANYLIC ACID AT 1.8 ANGSTROMS RESOLUTION 2SAR ; 1.8 ; DETERMINATION AND RESTRAINED LEAST-SQUARES REFINEMENT OF THE CRYSTAL STRUCTURES OF RIBONUCLEASE SA AND ITS COMPLEX WITH 3'-GUANYLIC ACID AT 1.8 ANGSTROMS RESOLUTION 344D ; 1.46 ; DETERMINATION BY MAD-DM OF THE STRUCTURE OF THE DNA DUPLEX D(ACGTACG(5-BRU))2 AT 1.46A AND 100K 1NCV ; ; DETERMINATION CC-CHEMOKINE MCP-3, NMR, 7 STRUCTURES 1PIT ; ; DETERMINATION OF A HIGH-QUALITY NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF THE BOVINE PANCREATIC TRYPSIN INHIBITOR AND COMPARISON WITH THREE CRYSTAL STRUCTURES 2K0P ; ; Determination of a Protein Structure in the Solid State from NMR Chemical Shifts 1DYA ; 1.9 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYB ; 1.75 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYC ; 2.1 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYD ; 2.1 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYE ; 1.8 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYF ; 1.9 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1DYG ; 2.1 ; DETERMINATION OF ALPHA-HELIX PROPENSITY WITHIN THE CONTEXT OF A FOLDED PROTEIN: SITES 44 AND 131 IN BACTERIOPHAGE T4 LYSOZYME 1Q7O ; ; Determination of f-MLF-OH Peptide Structure with solid-state magic-angle spinning NMR Spectroscopy 1BUB ; ; DETERMINATION OF INTERNUCLEAR ANGLES OF DNA USING PARAMAGNETIC ASSISTED MAGNETIC ALIGNMENT 1ATY ; ; DETERMINATION OF LOCAL PROTEIN STRUCTURE BY SPIN LABEL DIFFERENCE 2D NMR: THE REGION NEIGHBORING ASP61 OF SUBUNIT C OF THE F1FO ATP SYNTHASE 4BR3 ; 2.2 ; Determination of potential scaffolds for human choline kinase alpha 1 by chemical deconvolution studies 2NVH ; 1.53 ; Determination of Solvent Content in Cavities in Interleukin-1 Using Experimentally-Phased Electron Density 2AIT ; ; DETERMINATION OF THE COMPLETE THREE-DIMENSIONAL STRUCTURE OF THE ALPHA-AMYLASE INHIBITOR TENDAMISTAT IN AQUEOUS SOLUTION BY NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY 1CTI ; ; DETERMINATION OF THE COMPLETE THREE-DIMENSIONAL STRUCTURE OF THE TRYPSIN INHIBITOR FROM SQUASH SEEDS IN AQUEOUS SOLUTION BY NUCLEAR MAGNETIC RESONANCE AND A COMBINATION OF DISTANCE GEOMETRY AND DYNAMICAL SIMULATED ANNEALING 2CTI ; ; DETERMINATION OF THE COMPLETE THREE-DIMENSIONAL STRUCTURE OF THE TRYPSIN INHIBITOR FROM SQUASH SEEDS IN AQUEOUS SOLUTION BY NUCLEAR MAGNETIC RESONANCE AND A COMBINATION OF DISTANCE GEOMETRY AND DYNAMICAL SIMULATED ANNEALING 3PL1 ; 2.2 ; Determination of the crystal structure of the pyrazinamidase from M.tuberculosis : a structure-function analysis for prediction resistance to pyrazinamide. 4R7G ; 2.9 ; Determination of the formylglycinamide ribonucleotide amidotransferase ammonia pathway by combining 3D-RISM theory with experiment 1AHD ; ; DETERMINATION OF THE NMR SOLUTION STRUCTURE OF AN ANTENNAPEDIA HOMEODOMAIN-DNA COMPLEX 3CYS ; ; DETERMINATION OF THE NMR SOLUTION STRUCTURE OF THE CYCLOPHILIN A-CYCLOSPORIN A COMPLEX 2CCX ; ; DETERMINATION OF THE NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF CARDIOTOXIN CTX IIB FROM NAJA MOSSAMBICA MOSSAMBICA 1PRA ; ; DETERMINATION OF THE NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN (RESIDUES 1 TO 69) OF THE 434 REPRESSOR AND COMPARISON WITH THE X-RAY CRYSTAL STRUCTURE 1ADR ; ; DETERMINATION OF THE NUCLEAR MAGNETIC RESONANCE STRUCTURE OF THE DNA-BINDING DOMAIN OF THE P22 C2 REPRESSOR (1-76) IN SOLUTION AND COMPARISON WITH THE DNA-BINDING DOMAIN OF THE 434 REPRESSOR 1CTA ; ; DETERMINATION OF THE SOLUTION STRUCTURE OF A SYNTHETIC TWO-SITE CALCIUM-BINDING HOMODIMERIC PROTEIN DOMAIN BY NMR SPECTROSCOPY 1CTD ; ; DETERMINATION OF THE SOLUTION STRUCTURE OF A SYNTHETIC TWO-SITE CALCIUM-BINDING HOMODIMERIC PROTEIN DOMAIN BY NMR SPECTROSCOPY 1CLB ; ; Determination of the solution structure of apo calbindin D9K by nmr spectroscopy 1GNA ; ; DETERMINATION OF THE SOLUTION STRUCTURE OF THE PEPTIDE HORMONE GUANYLIN: OBSERVATION OF A NOVEL FORM OF TOPOLOGICAL STEREOISOMERISM 1GNB ; ; DETERMINATION OF THE SOLUTION STRUCTURE OF THE PEPTIDE HORMONE GUANYLIN: OBSERVATION OF A NOVEL FORM OF TOPOLOGICAL STEREOISOMERISM 2IGG ; ; DETERMINATION OF THE SOLUTION STRUCTURES OF DOMAINS II AND III OF PROTEIN G FROM STREPTOCOCCUS BY 1H NMR 2IGH ; ; DETERMINATION OF THE SOLUTION STRUCTURES OF DOMAINS II AND III OF PROTEIN G FROM STREPTOCOCCUS BY 1H NMR 8BBQ ; 1.43 ; Determination of the structure of active tyrosinase from bacterium Verrucomicrobium spinosum 8BBR ; 1.64 ; Determination of the structure of active tyrosinase from bacterium Verrucomicrobium spinosum 1PPO ; 1.8 ; DETERMINATION OF THE STRUCTURE OF PAPAYA PROTEASE OMEGA 1RES ; ; DETERMINATION OF THE STRUCTURE OF THE DNA BINDING DOMAIN OF GAMMA DELTA RESOLVASE IN SOLUTION 1RET ; ; DETERMINATION OF THE STRUCTURE OF THE DNA BINDING DOMAIN OF GAMMA DELTA RESOLVASE IN SOLUTION 1BK8 ; ; DETERMINATION OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF AESCULUS HIPPOCASTANUM ANTIMICROBIAL PROTEIN 1 (AH-AMP1) BY 1H NMR, 25 STRUCTURES 1AYJ ; ; DETERMINATION OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF RAPHANUS SATIVUS ANTIFUNGAL PROTEIN 1 (RS-AFP1) BY 1H NMR, 20 STRUCTURES 1BDS ; ; DETERMINATION OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE ANTIHYPERTENSIVE AND ANTIVIRAL PROTEIN BDS-I FROM THE SEA ANEMONE ANEMONIA SULCATA. A STUDY USING NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING 2BDS ; ; DETERMINATION OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE ANTIHYPERTENSIVE AND ANTIVIRAL PROTEIN BDS-I FROM THE SEA ANEMONE ANEMONIA SULCATA. A STUDY USING NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING 2L7S ; ; Determination of the three-dimensional structure of adrenomedullin, a first step towards the analysis of its interactions with receptors and small molecules 1MTX ; ; DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF MARGATOXIN BY 1H, 13C, 15N TRIPLE-RESONANCE NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1SCY ; ; DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF SCYLLATOXIN BY 1H NUCLEAR MAGNETIC RESONANCE 1HOM ; ; DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF THE ANTENNAPEDIA HOMEODOMAIN FROM DROSOPHILA IN SOLUTION BY 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1CBH ; ; DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF THE C-TERMINAL DOMAIN OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI. A STUDY USING NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING 2CBH ; ; DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF THE C-TERMINAL DOMAIN OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI. A STUDY USING NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING 2OEH ; ; Determination of the Three-dimensional Structure of the Mrf2-DNA Complex Using Paramagnetic Spin Labeling 1CAU ; 2.3 ; DETERMINATION OF THREE CRYSTAL STRUCTURES OF CANAVALIN BY MOLECULAR REPLACEMENT 1CAW ; 2.6 ; DETERMINATION OF THREE CRYSTAL STRUCTURES OF CANAVALIN BY MOLECULAR REPLACEMENT 1CAX ; 2.6 ; DETERMINATION OF THREE CRYSTAL STRUCTURES OF CANAVALIN BY MOLECULAR REPLACEMENT 4B0Y ; 3.5 ; Determination of X-ray Structure of human SOUL by Molecular Replacement 4XS7 ; 2.4 ; Determining the Molecular Basis for Starter Unit Selection During Daunorubicin Biosynthesis 4XS9 ; 2.002 ; Determining the Molecular Basis for Starter Unit Selection During Daunorubicin Biosynthesis 4XSA ; 2.204 ; Determining the Molecular Basis for Starter Unit Selection During Daunorubicin Biosynthesis 4XSB ; 2.203 ; Determining the Molecular Basis for Starter Unit Selection During Daunorubicin Biosynthesis 5TT4 ; 2.5 ; Determining the Molecular Basis For Starter Unit Selection During Daunorubicin Biosynthesis 5A6M ; 1.17 ; Determining the specificities of the catalytic site from the very high resolution structure of the thermostable glucuronoxylan endo-Beta-1, 4-xylanase, CtXyn30A, from Clostridium thermocellum with a xylotetraose bound 1DAE ; 1.7 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH 3-(1-AMINOETHYL) NONANEDIOIC ACID 1DAH ; 1.64 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH 7,8-DIAMINO-NONANOIC ACID, 5'-ADENOSYL-METHYLENE-TRIPHOSPHATE, AND MANGANESE 1DAI ; 1.64 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH 7-(CARBOXYAMINO)-8-AMINO-NONANOIC ACID 1DAG ; 1.64 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH 7-(CARBOXYAMINO)-8-AMINO-NONANOIC ACID AND 5'-ADENOSYL-METHYLENE-TRIPHOSPHATE 1DAF ; 1.7 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH 7-(CARBOXYAMINO)-8-AMINO-NONANOIC ACID, ADP, AND CALCIUM 1DAD ; 1.6 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH ADP 1BS1 ; 1.8 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH DETHIOBIOTIN, ADP , INORGANIC PHOSPHATE AND MAGNESIUM 1DAM ; 1.8 ; DETHIOBIOTIN SYNTHETASE COMPLEXED WITH DETHIOBIOTIN, ADP, INORGANIC PHOSPHATE AND MAGNESIUM 1DAK ; 1.6 ; DETHIOBIOTIN SYNTHETASE FROM ESCHERICHIA COLI, COMPLEX REACTION INTERMEDIATE ADP AND MIXED ANHYDRIDE 1A82 ; 1.8 ; DETHIOBIOTIN SYNTHETASE FROM ESCHERICHIA COLI, COMPLEX WITH SUBSTRATES ATP AND DIAMINOPELARGONIC ACID 1UCH ; 1.8 ; DEUBIQUITINATING ENZYME UCH-L3 (HUMAN) AT 1.8 ANGSTROM RESOLUTION 1ZIQ ; 1.72 ; Deuterated gammaE crystallin in D2O solvent 1ZIR ; 1.36 ; Deuterated gammaE crystallin in H2O solvent 1EB6 ; 1.0 ; Deuterolysin from Aspergillus oryzae 6FYZ ; 2.15 ; Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor 4LMQ ; 2.773 ; Development and Preclinical Characterization of a Humanized Antibody Targeting CXCL12 3CB9 ; 1.31 ; Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments 3CBE ; 1.488 ; Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments 3CD1 ; 1.312 ; Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments 3CD9 ; 1.502 ; Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments 5C0N ; 3.0 ; Development of a monoclonal antibody targeting secreted aP2 to treat diabetes and fatty liver disease 4ZAE ; 1.86 ; Development of a novel class of potent and selective FIXa inhibitors 5EGM ; 1.841 ; Development of a novel tricyclic class of potent and selective FIXa inhibitors 4AJM ; 2.4 ; Development of a plate-based optical biosensor methodology to identify PDE10 fragment inhibitors 5D8J ; 3.0 ; Development of a therapeutic monoclonal antibody targeting secreted aP2 to treat type 2 diabetes. 6GOU ; 2.9 ; Development of Alkyl Glycerone Phosphate Synthase Inhibitors: Complex with Inhibitor 2I 7T3F ; 1.28 ; Development of BRD4 inhibitors as arsenicals antidotes 3D62 ; 2.7 ; Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CLpro 4X6H ; 1.0 ; Development of N-(Functionalized benzoyl)-homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. 4X6I ; 1.87 ; Development of N-(Functionalized benzoyl)-homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. 4X6J ; 1.59 ; Development of N-(Functionalized benzoyl)-homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. 6K5O ; 1.8 ; Development of Novel Lithocholic Acid Derivatives as Vitamin D Receptor Agonists 4FHH ; 2.33 ; Development of synthetically accessible non-secosteroidal hybrid molecules combining vitamin D receptor agonism and histone deacetylase inhibition 4FHI ; 2.4 ; Development of synthetically accessible non-secosteroidal hybrid molecules combining vitamin D receptor agonism and histone deacetylase inhibition 1OGM ; 1.8 ; Dex49A from Penicillium minioluteum 1OGO ; 1.65 ; Dex49A from Penicillium minioluteum complex with isomaltose 6NZS ; 1.4 ; Dextranase AoDex KQ11 8PUR ; 1.85 ; DexyHemoglobin structure from serial synchrotron crystallography with fixed target 7YE0 ; 2.75 ; DF-SFX MmCPDII-DNA complex: steady state oxidized complex 7U49 ; 1.72 ; DFC-CTX-M-15 3MFN ; 2.02 ; Dfer_2879 protein of unknown function from Dyadobacter fermentans 7BVS ; 2.85 ; DfgA-DfgB complex apo 7EXB ; 2.4 ; DfgA-DfgB complex apo 2.4 angstrom 2RCE ; 2.35 ; DFP modified DegS delta PDZ 3LH3 ; 2.35 ; DFP modified DegS delta PDZ 1CI9 ; 1.8 ; DFP-INHIBITED ESTERASE ESTB FROM BURKHOLDERIA GLADIOLI 3O4P ; 0.85 ; DFPase at 0.85 Angstrom resolution (H atoms included) 7REG ; 1.77 ; DfrA1 complexed with NADPH and 4'-chloro-3'-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl)-[1,1'-biphenyl]-4-carboxamide (UCP1228) 7RGJ ; 1.44 ; DfrA1 complexed with NADPH and 5-(3-(7-(4-(aminomethyl)phenyl)benzo[d][1,3]dioxol-5-yl)but-1-yn-1-yl)-6-ethylpyrimidine-2,4-diamine (UCP1223) 7RGO ; 1.92 ; DfrA5 complexed with NADPH and 4'-chloro-3'-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl)-[1,1'-biphenyl]-4-carboxamide (UCP1228) 7RGK ; 2.19 ; DfrA5 complexed with NADPH and 5-(3-(7-(4-(aminomethyl)phenyl)benzo[d][1,3]dioxol-5-yl)but-1-yn-1-yl)-6-ethylpyrimidine-2,4-diamine (UCP1223) 8AH3 ; 1.4 ; DG04279 glycoside hydrolase family 172 6PX7 ; ; Dg12a in Weaponisation 'on the fly': Convergent recruitment of knottin and defensin scaffolds as neurotoxins in the venom of assassin fly Dolopus genitalis (Diptera: Asilidae) 6PX8 ; ; Dg3b in Weaponisation 'on the fly': Convergent recruitment of knottin and defensin scaffolds as neurotoxins in the venom of assassin fly Dolopus genitalis (Diptera: Asilidae) 5D6I ; 3.091 ; DgkA - CIM 7DVM ; ; DgkA structure in E.coli lipid bilayer 7BVR ; 2.6 ; DgpB-DgpC complex apo 7EXZ ; 2.5 ; DgpB-DgpC complex apo 2.5 angstrom 7M0O ; 1.62 ; DGT-28 EPSPS 6E6E ; 2.15 ; DGY-06-116, a novel and selective covalent inhibitor of SRC kinase 6VTU ; 2.61 ; DH717.1 Fab monomer in complex with man9 glycan 8H4L ; 3.07 ; DHA-bound FFAR4 in complex with Gq 8H4I ; 3.06 ; DHA-bound FFAR4 in complex with Gs 4YMZ ; 1.87 ; DHAP bound Leptospira Interrogans Triosephosphate Isomerase (LiTIM) 6DLM ; 1.753 ; DHD127 6DKM ; 2.38 ; DHD131 6DMA ; 3.363 ; DHD15_closed 6DM9 ; 2.25 ; DHD15_extended 6E9Z ; 3.4 ; DHF119 filament 6E9Y ; 4.3 ; DHF38 filament 6E9R ; 5.9 ; DHF46 filament 6E9T ; 5.4 ; DHF58 filament 6E9V ; 6.9 ; DHF79 filament 6E9X ; 7.8 ; DHF91 filament 1ZDR ; 2.0 ; DHFR from Bacillus Stearothermophilus 2RK2 ; 1.9 ; DHFR R-67 complexed with NADP 2RK1 ; 1.26 ; DHFR R67 Complexed with NADP and dihydrofolate 7FQ7 ; 1.1 ; DHFR:NADP+:FOL complex (crystal 1, pass 1, 295 K) 7FQ8 ; 1.21 ; DHFR:NADP+:FOL complex (crystal 1, pass 2, 310 K) 7FQ9 ; 1.11 ; DHFR:NADP+:FOL complex (crystal 1, pass 3, 295 K) 7FQA ; 1.08 ; DHFR:NADP+:FOL complex (crystal 1, pass 4, 280 K) 7FQB ; 1.14 ; DHFR:NADP+:FOL complex (crystal 1, pass 5, 295 K) 7FQC ; 1.18 ; DHFR:NADP+:FOL complex (crystal 2, pass 1, 295 K) 7FQD ; 1.17 ; DHFR:NADP+:FOL complex (crystal 2, pass 2, 280 K) 7FQE ; 1.18 ; DHFR:NADP+:FOL complex (crystal 2, pass 3, 295 K) 7FQF ; 1.23 ; DHFR:NADP+:FOL complex (crystal 2, pass 4, 310 K) 7FQG ; 1.19 ; DHFR:NADP+:FOL complex (crystal 2, pass 5, 295 K) 5SSS ; 1.14 ; DHFR:NADP+:FOL complex at 270 K (crystal 1) 5SST ; 1.07 ; DHFR:NADP+:FOL complex at 270 K (crystal 2) 5SSU ; 1.12 ; DHFR:NADP+:FOL complex at 270 K (crystal 3) 5SSV ; 1.08 ; DHFR:NADP+:FOL complex at 270 K (crystal 4) 5SSW ; 1.06 ; DHFR:NADP+:FOL complex at 270 K (multi-crystal) 7FPL ; 1.17 ; DHFR:NADP+:FOL complex at 280 K (crystal 1) 7FPM ; 1.04 ; DHFR:NADP+:FOL complex at 280 K (crystal 2) 7FPN ; 1.04 ; DHFR:NADP+:FOL complex at 280 K (crystal 3) 7FPO ; 1.06 ; DHFR:NADP+:FOL complex at 280 K (crystal 4) 7FPP ; 1.03 ; DHFR:NADP+:FOL complex at 280 K (crystal 5) 7FPQ ; 1.03 ; DHFR:NADP+:FOL complex at 280 K (multi-crystal) 7FPR ; 1.07 ; DHFR:NADP+:FOL complex at 290 K (crystal 1) 7FPS ; 1.26 ; DHFR:NADP+:FOL complex at 290 K (crystal 2) 7FPT ; 1.07 ; DHFR:NADP+:FOL complex at 290 K (crystal 3) 7FPU ; 1.05 ; DHFR:NADP+:FOL complex at 290 K (crystal 4) 7FPV ; 1.04 ; DHFR:NADP+:FOL complex at 290 K (crystal 5) 7FPW ; 1.04 ; DHFR:NADP+:FOL complex at 290 K (multi-crystal) 7FPX ; 1.06 ; DHFR:NADP+:FOL complex at 300 K (crystal 1) 7FPY ; 1.12 ; DHFR:NADP+:FOL complex at 300 K (crystal 2) 7FPZ ; 1.32 ; DHFR:NADP+:FOL complex at 300 K (crystal 3) 7FQ0 ; 1.15 ; DHFR:NADP+:FOL complex at 300 K (crystal 4) 7FQ1 ; 1.18 ; DHFR:NADP+:FOL complex at 300 K (crystal 5) 7FQ2 ; 1.07 ; DHFR:NADP+:FOL complex at 300 K (multi-crystal) 7FQ3 ; 1.3 ; DHFR:NADP+:FOL complex at 310 K (crystal 1) 7FQ4 ; 1.33 ; DHFR:NADP+:FOL complex at 310 K (crystal 2) 7FQ5 ; 1.35 ; DHFR:NADP+:FOL complex at 310 K (crystal 3) 7FQ6 ; 1.29 ; DHFR:NADP+:FOL complex at 310 K (multi-crystal) 1U68 ; 2.4 ; DHNA 7,8 DIHYDRONEOPTERIN COMPLEX 1RSI ; 2.2 ; DHNA complex with 2-Amino-5-bromo-3-hydroxy-6-phenylpyrimidine 1RRI ; 2.0 ; DHNA complex with 3-(5-amino-7-hydroxy-[1,2,3] triazolo [4,5-d]pyrimidin-2-yl)-benzoic acid 1RSD ; 2.5 ; DHNA complex with 3-(5-Amino-7-hydroxy-[1,2,3]triazolo[4,5-d]pyrimidin-2-yl)-N-[2-(2-hydroxymethyl-phenylsulfanyl)-benzyl]-benzamide 1RS2 ; 2.31 ; DHNA complex with 8-Amino-1,3-dimethyl-3,7-dihydropurine-2,6-dione 1RRY ; 2.7 ; DHNA complexed with 2-amino-4-hydroxy-5-carboxyethylpyrimidine 1RRW ; 2.21 ; DHNA complexed with 9-methylguanine 1RS4 ; 2.7 ; DHNA, 7,8-Dihydroneopterin Aldolase complexed with 3-(5-Amino-7-hydroxy-[1,2,3]triazolo[4,5-d]pyrimidin-2-yl)-N-(3,5-dichlorobenzyl)-benzamide 5KSW ; 2.47 ; DHODB-I74D mutant 8DHF ; 1.78 ; DHODH IN COMPLEX WITH LIGAND 11 7K2U ; 1.73 ; DHODH IN COMPLEX WITH LIGAND 13 8DHG ; 1.85 ; DHODH IN COMPLEX WITH LIGAND 19 8DHH ; 2.02 ; DHODH IN COMPLEX WITH LIGAND 29 7LZO ; 1.93 ; DHP B in complex with 2,4-Dibromophenol substrate 7LZK ; 1.49 ; DHP B in complex with 2,4-Dichlorophenol substrate 7LZN ; 1.95 ; DHP B in complex with 2,4-Dichlorophenol substrate 7M0F ; 1.48 ; DHP B in complex with 4-bromophenol ligand 7M0H ; 1.91 ; DHP B in complex with 4-chlorophenol ligand 5UKY ; 2.02 ; DHp domain of PhoR of M. tuberculosis - native data 5UKV ; 1.9 ; DHp domain of PhoR of M. tuberculosis - SeMet 5B1N ; 1.33 ; DHp domain structure of EnvZ from Escherichia coli 5B1O ; 2.3 ; DHp domain structure of EnvZ P248A mutant 4JYQ ; 1.8 ; DHP-CO crystal structure 6MHA ; 1.497 ; dHP1 Chromodomain Y24W variant bound to histone H3 peptide containing trimethyllysine 3OU2 ; 1.5 ; DhpI-SAH complex structure 3OU6 ; 2.3 ; DhpI-SAM complex 3OU7 ; 2.3 ; DhpI-SAM-HEP complex 7MQJ ; 2.23 ; Dhr1 Helicase Core 5VHE ; 3.793 ; DHX36 in complex with the c-Myc G-quadruplex 5VHA ; 2.227 ; DHX36 with an N-terminal truncation 5VHD ; 2.55 ; DHX36 with an N-terminal truncation bound to ADP-AlF4 5VHC ; 2.49 ; DHX36 with an N-terminal truncation bound to ADP-BeF3 1RZ6 ; 2.2 ; Di-haem Cytochrome c Peroxidase, Form IN 1RZ5 ; 2.4 ; Di-haem Cytochrome c Peroxidase, Form OUT 1NML ; 2.2 ; Di-haemic Cytochrome c Peroxidase from Pseudomonas nautica 617, form IN (pH 4.0) 2LHX ; ; Di-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 2LHY ; ; Di-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 2LHZ ; ; Di-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 7NDY ; 1.44 ; Di-phosphorylated Barrier-to-Autointegration Factor (BAF) in complex with LEM domain of Emerin 6QKA ; 2.1 ; Di-tert-butyl Polysulfide inhibited sulfur oxygenase reductase 5N58 ; 1.957 ; di-Zinc VIM-5 metallo-beta-lactamase in complex with (1-chloro-4-hydroxyisoquinoline-3-carbonyl)-D-tryptophan (Compound 1) 8OLN ; 3.3 ; DI1 Abeta fibril from tg-SwDI mouse 8OLG ; 4.2 ; DI2 Abeta fibril from tg-SwDI mouse 8OLQ ; 4.0 ; DI3 Abeta fibril from tg-SwDI mouse 2GYP ; 1.4 ; Diabetes mellitus due to a frustrated Schellman motif in HNF-1a 1XW7 ; 2.3 ; Diabetes-Associated Mutations in Human Insulin: Crystal Structure and Photo-Cross-Linking Studies of A-Chain Variant Insulin Wakayama 5FCS ; 2.01 ; Diabody 4Y5V ; 2.604 ; Diabody 305 complex with EpoR 4Y5X ; 3.15 ; Diabody 305 complex with EpoR 4Y5Y ; 2.85 ; Diabody 330 complex with EpoR 6VUG ; 3.0 ; Diabody bound to a Reverse Transcriptase Aptamer Complex 5DWK ; 2.601 ; Diacylglycerol Kinase solved by multi crystal multi orientation native SAD 7L8N ; 1.94 ; Diadenylate cyclase with AMP from Streptococcus mutans 1DKA ; 2.6 ; DIALKYLGLYCINE DECARBOXYLASE STRUCTURE: BIFUNCTIONAL ACTIVE SITE AND ALKALI METAL BINDING SITES 2DKB ; 2.1 ; DIALKYLGLYCINE DECARBOXYLASE STRUCTURE: BIFUNCTIONAL ACTIVE SITE AND ALKALI METAL BINDING SITES 6QKM ; 2.102 ; Diallyl trisulfide inhibited sulfur oxygenase reductase 4NGW ; 1.37 ; Dialyzed HEW lysozyme batch crystallized in 0.5 M YbCl3 and collected at 100 K 4NGY ; 1.35 ; Dialyzed HEW lysozyme batch crystallized in 0.75 M YbCl3 and collected at 100 K 4NGJ ; 1.1 ; Dialyzed HEW lysozyme batch crystallized in 1.0 M RbCl and collected at 100 K 4NG8 ; 1.09 ; Dialyzed HEW lysozyme batch crystallized in 1.9 M CsCl and collected at 100 K. 3UBP ; 2.0 ; DIAMIDOPHOSPHATE INHIBITED BACILLUS PASTEURII UREASE 6SLK ; 2.2 ; Diaminobutyrate acetyltransferase EctA from Paenibacillus lautus 6SK1 ; 1.5 ; Diaminobutyrate acetyltransferase EctA from Paenibacillus lautus in complex with coenzyme A 6SJY ; 2.2 ; Diaminobutyrate acetyltransferase EctA from Paenibacillus lautus in complex with its product ADABA 6SL8 ; 1.53 ; Diaminobutyrate acetyltransferase EctA from Paenibacillus lautus in complex with its substrate L-2,4-diaminobutyric acid (DAB) 6SLL ; 1.2 ; Diaminobutyrate acetyltransferase EctA from Paenibacillus lautus in complex with its substrate L-2,4-diaminobutyric acid (DAB) and coenzyme A 1BWZ ; 2.72 ; DIAMINOPIMELATE EPIMERASE FROM HEMOPHILUS INFLUENZAE 2HMV ; 2.2 ; Diamond-shaped octameric ring structure of an RCK domain with ADP bound 2HMU ; 2.25 ; Diamond-shaped octameric ring structure of an RCK domain with ATP bound 2HMT ; 2.2 ; Diamond-shaped octameric ring structure of an RCK domain with NADH bound 4J91 ; 2.93 ; Diamond-shaped octameric structure of KtrA with ADP bound 1Y59 ; 1.2 ; Dianhydrosugar-based benzamidine, factor Xa specific inhibitor in complex with bovine trypsin mutant 1Y5A ; 1.4 ; Dianhydrosugar-based benzamidine, factor Xa specific inhibitor in complex with bovine trypsin mutant 1Y5B ; 1.65 ; Dianhydrosugar-based benzamidine, factor Xa specific inhibitor in complex with bovine trypsin mutant 1Y5U ; 1.6 ; Dianhydrosugar-based benzamidine, factor Xa specific inhibitor in complex with bovine trypsin mutant 7FFC ; 2.61 ; Diarylpentanoid-producing polyketide synthase (A210E mutant) 7FFI ; 2.4 ; Diarylpentanoid-producing polyketide synthase (F340W mutant) 7FFG ; 2.3 ; Diarylpentanoid-producing polyketide synthase (N199F mutant) 7FFH ; 2.2 ; Diarylpentanoid-producing polyketide synthase (N199L mutant) 7FFA ; 1.98 ; Diarylpentanoid-producing polyketide synthase from Aquilaria sinensis 4IA1 ; 2.44 ; Diastereotopic and Deuterium Effects in Gemini 4IA2 ; 2.95 ; Diastereotopic and Deuterium Effects in Gemini 4IA3 ; 2.7 ; Diastereotopic and Deuterium Effects in Gemini 4IA7 ; 2.7 ; Diastereotopic and Deuterium Effects in Gemini 5VFD ; 1.93 ; Diazabicyclooctenone ETX2514 bound to Class D beta lactamase OXA-24 from A. baumannii 7NKU ; 3.4 ; diazaborine bound Drg1(AFG2) 8IFD ; 2.59 ; Dibekacin-added human 80S ribosome 8IFB ; 2.43 ; Dibekacin-bound E.coli 70S ribosome in the PURE system 5MTX ; 1.8 ; Dibenzooxepinone inhibitor 12b in complex with p38 MAPK 5MTY ; 2.31 ; Dibenzosuberone inhibitor 8e in complex with p38 MAPK 4NXL ; 2.3 ; Dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis 2KOU ; ; DICER LIKE protein 7W0C ; 3.93 ; Dicer2-Loqs-PD-dsRNA complex at early-translocation state 7W0B ; 3.33 ; Dicer2-LoqsPD complex at apo status 7W0D ; 4.18 ; Dicer2-LoqsPD-dsRNA complex at mid-translocation state 3SOK ; 2.3 ; Dichelobacter nodosus pilin FimA 2DAU ; ; DICKERSON-DREW DNA DODECAMER, NMR, MINIMIZED AVERAGE STRUCTURE 6PAE ; 1.6 ; Dickeya chrysanthemi complex with L-Asp at pH 5.6 4PJK ; 2.15 ; Dicty myosin II R238E.E459R mutant (with ADP.Pi) in the Pi release state 4ZZQ ; 2.1 ; Dictyostelium discoideum cellobiohydrolase Cel7A apo structure 5F9K ; 2.179 ; Dictyostelium discoideum dUTPase at 2.2 Angstrom 7ODZ ; 1.6 ; Dictyostelium discoideum dye decolorizing peroxidase DyPA in complex with an activated form of oxygen and veratryl alcohol 7O9L ; 1.85 ; Dictyostelium discoideum dye decolorizing peroxidase DyPA in complex with cyanide. 7WN9 ; 2.3 ; Dictyostelium discoideum Lactate dehydrogenase (DicLDHA) 8GRV ; 2.9 ; Dictyostelium discoideum Lactate dehydrogenase (DicLDHA)with NAD 1W9K ; 2.05 ; Dictyostelium discoideum Myosin II motor domain S456E with bound MgADP-BeFx 1D0X ; 2.0 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH M-NITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE. 1D1C ; 2.3 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH N-METHYL-O-NITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE. 1D1A ; 2.0 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH O,P-DINITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE. 1D1B ; 2.0 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH O,P-DINITROPHENYL AMINOPROPYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE. 1D0Y ; 2.0 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH O-NITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM FLUORIDE. 1D0Z ; 2.0 ; DICTYOSTELIUM MYOSIN S1DC (MOTOR DOMAIN FRAGMENT) COMPLEXED WITH P-NITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE. 4ZZP ; 2.7 ; Dictyostelium purpureum cellobiohydrolase Cel7A apo structure 3GYE ; 2.0 ; Didydroorotate dehydrogenase from Leishmania major 6E6Y ; 1.6 ; Dieckmann cyclase, NcmC 6E6T ; 1.6 ; Dieckmann cyclase, NcmC, bound to cerulenin 1A4J ; 2.1 ; DIELS ALDER CATALYTIC ANTIBODY GERMLINE PRECURSOR 1A4K ; 2.4 ; DIELS ALDER CATALYTIC ANTIBODY WITH TRANSITION STATE ANALOGUE 7Z6P ; 1.56 ; Diels-Alderase AbyU mutant - Y76F 1DIN ; 1.8 ; DIENELACTONE HYDROLASE AT 2.8 ANGSTROMS 1DCI ; 1.5 ; DIENOYL-COA ISOMERASE 4L7H ; 1.85 ; Diethylaminosulfur Trifluoride-Mediated Intramolecular Cyclization of 2-hydroxy-benzylureas to Fused Bicyclic Aminooxazoline Compounds and Evaluation of Their Biochemical Activity Against Beta-Secretase-1 (BACE-1) 4L7J ; 1.651 ; Diethylaminosulfur Trifluoride-Mediated Intramolecular Cyclization of 2-hydroxy-benzylureas to Fused Bicyclic Aminooxazoline Compounds and Evaluation of Their Biochemical Activity Against Beta-Secretase-1 (BACE-1) 4L7G ; 1.38 ; Diethylaminosulfur Trifluoride-Mediated Intramolecular Cyclization of 2-hydroxy-benzylureas to Fused Bicyclic Aminooxazoline Compounds and Evaluation of Their Biochemical Activity Against Beta-Secretase-1 (BACE1) 4GXN ; 2.2 ; Diethylphosphonate Inhibited Structure of the Proteus mirabilis Lipase 1XLW ; 2.1 ; Diethylphosphorylated Butyrylcholinesterase (Nonaged) Obtained By Reaction With Echothiophate 7O8D ; 1.12 ; diFe-sulerythrin oxidised by H2O2 7O8A ; 1.21 ; diFe-sulerythrin reduced with Na-dithionite 3QYT ; 2.8 ; Diferric bound human serum transferrin 1N04 ; 2.8 ; Diferric chicken serum transferrin at 2.8 A resolution. 3I5J ; 1.9 ; Diferric Resting State Toluene 4-Monooxygenase HD complex 5O8B ; 1.7 ; Difference-refined excited-state structure of rsEGFP2 1ps following 400nm-laser irradiation of the off-state. 7R36 ; 2.2 ; Difference-refined structure of fatty acid photodecarboxylase 2 microsecond following 400-nm laser irradiation of the dark-state determined by SFX 7R33 ; 2.0 ; Difference-refined structure of fatty acid photodecarboxylase 20 ps following 400-nm laser irradiation of the dark-state determined by SFX 7R35 ; 2.0 ; Difference-refined structure of fatty acid photodecarboxylase 300 ns following 400-nm laser irradiation of the dark-state determined by SFX 7R34 ; 2.0 ; Difference-refined structure of fatty acid photodecarboxylase 900 ps following 400-nm laser irradiation of the dark-state determined by SFX 6T3A ; 1.85 ; Difference-refined structure of rsEGFP2 10 ns following 400-nm laser irradiation of the off-state determined by SFX 1N9U ; ; Differences and Similarities in Solution Structures of Angiotensin I & II: Implication for Structure-Function Relationship 1N9V ; ; Differences and Similarities in Solution Structures of Angiotensin I & II: Implication for Structure-Function Relationship. 7Z2R ; 2.574 ; Differences between the GluD1 and GluD2 receptors revealed by GluD1 X-ray crystallography, binding studies and molecular dynamics 1HUG ; 2.0 ; Differences in anionic inhibition of Human Carbonic Anhydrase I revealed from the structures of iodide and gold cyanide inhibitor complexes 1HUH ; 2.2 ; DIFFERENCES IN ANIONIC INHIBITION OF HUMAN CARBONIC ANHYDRASE I REVEALED FROM THE STRUCTURES OF IODIDE AND GOLD CYANIDE INHIBITOR COMPLEXES 2JOW ; ; Differences in the electrostatic surfaces of the type III secretion needle proteins 2SPT ; 2.5 ; DIFFERENCES IN THE METAL ION STRUCTURE BETWEEN SR-AND CA-PROTHROMBIN FRAGMENT 1 4JEQ ; 2.303 ; Different Contribution of Conserved Amino Acids to the Global Properties of Homologous Enzymes 1HSB ; 1.9 ; DIFFERENT LENGTH PEPTIDES BIND TO HLA-AW68 SIMILARLY AT THEIR ENDS BUT BULGE OUT IN THE MIDDLE 4J89 ; 2.1 ; Different photochemical events of a genetically encoded aryl azide define and modulate GFP fluorescence 3ERY ; 1.95 ; Different thermodynamic binding mechanisms and peptide fine specificities associated with a panel of structurally similar high-affinity T cell receptors 4RE2 ; 2.0 ; Different transition state conformations for the hydrolysis of beta-mannosides and beta-glucosides in the rice Os7BGlu26 family GH1 beta-mannosidase/beta-glucosidase 4RE3 ; 2.55 ; Different transition state conformations for the hydrolysis of beta-mannosides and beta-glucosides in the rice Os7BGlu26 family GH1 beta-mannosidase/beta-glucosidase 4RE4 ; 2.29 ; Different transition state conformations for the hydrolysis of beta-mannosides and beta-glucosides in the rice Os7BGlu26 family GH1 beta-mannosidase/beta-glucosidase 2C5N ; 2.1 ; Differential Binding Of Inhibitors To Active And Inactive Cdk2 Provides Insights For Drug Design 2C5O ; 2.1 ; Differential Binding Of Inhibitors To Active And Inactive Cdk2 Provides Insights For Drug Design 2C5V ; 2.9 ; Differential Binding Of Inhibitors To Active And Inactive Cdk2 Provides Insights For Drug Design 2C5X ; 2.9 ; Differential Binding Of Inhibitors To Active And Inactive Cdk2 Provides Insights For Drug Design 2C5Y ; 2.25 ; DIFFERENTIAL BINDING OF INHIBITORS TO ACTIVE AND INACTIVE CDK2 PROVIDES INSIGHTS FOR DRUG DESIGN 4AZ5 ; 1.73 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZ6 ; 1.36 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZ7 ; 1.7 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZB ; 2.1 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZC ; 2.09 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZG ; 2.4 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZH ; 2.22 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 4AZI ; 1.98 ; Differential inhibition of the tandem GH20 catalytic modules in the pneumococcal exo-beta-D-N-acetylglucosaminidase, StrH 2VA0 ; 2.602 ; Differential regulation of the xylan degrading apparatus of Cellvibrio japonicus by a novel two component system 1BPM ; 2.9 ; DIFFERENTIATION AND IDENTIFICATION OF THE TWO CATALYTIC METAL BINDING SITES IN BOVINE LENS LEUCINE AMINOPEPTIDASE BY X-RAY CRYSTALLOGRAPHY 1BPN ; 2.9 ; DIFFERENTIATION AND IDENTIFICATION OF THE TWO CATALYTIC METAL BINDING SITES IN BOVINE LENS LEUCINE AMINOPEPTIDASE BY X-RAY CRYSTALLOGRAPHY 6SHG ; 3.35051 ; Diffraction data for RoAb13 crystal co-crystallised with PIYDIN and its RoAb13 structure 4TW9 ; 2.4 ; Difluoro-dioxolo-benzoimidazol-benzamides as potent inhibitors of CK1delta and epsilon with nanomolar inhibitory activity on cancer cell proliferation 6QJ7 ; 1.69 ; Difluorophenyl diacylhydrazides: Potent inhibitors of Serum- and Glucocorticoid-inducible Kinase 1 (SGK1) 7V1W ; 1.86 ; Difructose dianhydride I synthase/hydrolase (alphaFFase1) from Bifidobacterium dentium in complex with beta-D-arabinofuranose 7V1X ; 1.76 ; Difructose dianhydride I synthase/hydrolase (alphaFFase1) from Bifidobacterium dentium in complex with beta-D-fructofuranose 7V1V ; 1.96 ; Difructose dianhydride I synthase/hydrolase (alphaFFase1) from Bifidobacterium dentium, ligand-free form 6ZXC ; 2.8 ; Diguanylate cyclase DgcR (I-site mutant) in activated state 6ZXB ; 2.2 ; Diguanylate cyclase DgcR (I-site mutant) in native state 6ZXM ; 3.3 ; Diguanylate cyclase DgcR in complex with c-di-GMP 3TVK ; 1.8 ; Diguanylate cyclase domain of DgcZ 6N1P ; 6.35 ; Dihedral oligomeric complex of GyrA N-terminal fragment with DNA, solved by cryoEM in C2 symmetry 6N1Q ; 5.16 ; Dihedral oligomeric complex of GyrA N-terminal fragment, solved by cryoEM in D2 symmetry 2FW5 ; 2.0 ; Diheme cytochrome c from Rhodobacter sphaeroides 7ZS0 ; 1.75 ; Diheme cytochrome c Kustd1711 from Kuenenia stuttgartiensis 7ZS1 ; 1.7 ; Diheme cytochrome c Kustd1711 from Kuenenia stuttgartiensis, M292C mutant 7ZS2 ; 1.12 ; Diheme cytochrome c Kustd1711 from Kuenenia stuttgartiensis, M292H mutant 3OA8 ; 1.77 ; Diheme SoxAX 3OCD ; 2.25 ; Diheme SoxAX - C236M mutant 6MM9 ; 5.97 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1 6MMK ; 6.08 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MML ; 7.14 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMP ; 6.88 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 0.1 millimolar EDTA, and at pH 8.0 6MMN ; 7.51 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 8.0 6MMG ; 6.23 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar EDTA, and at pH 7.4 6MMR ; 5.13 ; Diheteromeric NMDA receptor GluN1/GluN2A in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, 3 millimolar EDTA, and at pH 7.4 6MMA ; 6.31 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1 6MMM ; 6.84 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended-1' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMH ; 8.21 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Extended-2' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4 6MMI ; 8.93 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Splayed-Open' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4 6MMB ; 12.7 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Super-Splayed' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 6.1 6MMJ ; 16.5 ; Diheteromeric NMDA receptor GluN1/GluN2A in the 'Super-Splayed' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar zinc chloride, and at pH 7.4 6RTD ; 2.36 ; Dihydro-heme d1 dehydrogenase NirN in complex with DHE 6RTE ; 1.94 ; Dihydro-heme d1 dehydrogenase NirN in complex with DHE 1C3V ; 2.39 ; DIHYDRODIPICOLINATE REDUCTASE FROM MYCOBACTERIUM TUBERCULOSIS COMPLEXED WITH NADPH AND PDC 5Z2D ; 1.8 ; Dihydrodipicolinate reductase from Paenisporosarcina sp. TG-14 5KT0 ; 2.83 ; Dihydrodipicolinate reductase from the industrial and evolutionarily important cyanobacteria Anabaena variabilis. 1DHP ; 2.3 ; DIHYDRODIPICOLINATE SYNTHASE 7KXG ; 2.28 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni with pyruvate bound in the active site and L-histidine bound at the allosteric site 7KWP ; 2.26 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni with pyruvate bound in the active site and L-lysine bound at the allosteric site in C2221 space group 7KXH ; 1.94 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site in C2221 space group 7L4B ; 2.42 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni with pyruvate bound in the active site in P1211 space group 7KN2 ; 2.53 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88A mutant with pyruvate bound in the active site 7KN9 ; 2.07 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88A mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KNZ ; 2.28 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88A mutant with pyruvate bound in the active site and R,R-bislysine at the allosteric site 7KO1 ; 2.5 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88D mutant with pyruvate bound in the active site 7KO3 ; 2.22 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88D mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KOC ; 2.06 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88Q mutant with pyruvate bound in the active site 7KPC ; 1.76 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88Q mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KPE ; 2.06 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, E88Q mutant with pyruvate bound in the active site and R,R-bislysine at the allosteric site 7KR8 ; 2.12 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56A mutant with pyruvate bound in the active site 7KR7 ; 2.22 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56A mutant with pyruvate bound in the active site and L-lysine at the allosteric site 7KTO ; 2.13 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56A mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 7KU6 ; 2.81 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56N mutant with pyruvate bound in the active site 7KUZ ; 2.25 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56N mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KWF ; 2.82 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56N mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 7KG5 ; 1.95 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56W mutant with pyruvate bound in the active site 7KG9 ; 2.06 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56W mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KH4 ; 1.75 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H56W mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 7KLQ ; 2.5 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59A mutant with pyruvate bound in the active site 7KLS ; 2.59 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59A mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KM0 ; 2.6 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59A mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 7KEL ; 2.1 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59K mutant with pyruvate bound in the active site 7KG2 ; 1.89 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59K mutant with pyruvate bound in the active site and L-histidine bound at the allosteric site 7LBD ; 1.99 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59K mutant with pyruvate bound in the active site in C2221 space group 7KLT ; 1.97 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59N mutant with pyruvate bound in the active site 7KLY ; 1.67 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59N mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KM1 ; 1.84 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, H59N mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 6TZU ; 1.8 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84A mutant with pyruvate bound in the active site 7KK1 ; 1.77 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84A mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KKD ; 1.6 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84A mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 6U01 ; 1.87 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84D mutant with pyruvate bound in the active site 7KKG ; 1.64 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84D mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site 7KKT ; 1.71 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, N84D mutant with pyruvate bound in the active site and R,R-bislysine bound at the allosteric site 7LCF ; 2.69 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, with pyruvate bound in the active site and L-lysine bound at the allosteric site in C121 space group 7KX1 ; 2.04 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, Y110F mutant with pyruvate bound in the active in C2221 space group 7KZ2 ; 1.9 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, Y110F mutant with pyruvate bound in the active site and L-lysine bound at the allosteric site in C2221 space group 7M06 ; 2.7 ; Dihydrodipicolinate synthase (DHDPS) from C.jejuni, Y110F mutant with R,R-bislysine bound at the allosteric site at 2.7 Angstrom 2A6N ; 1.94 ; Dihydrodipicolinate synthase (E. coli)- mutant R138A 2A6L ; 2.05 ; Dihydrodipicolinate synthase (E. coli)- mutant R138H 3I7R ; 2.1 ; Dihydrodipicolinate synthase - K161R 7LVL ; 2.01 ; Dihydrodipicolinate synthase bound with allosteric inhibitor (S)-lysine from Candidatus Liberibacter solanacearum 2ATS ; 1.9 ; Dihydrodipicolinate synthase co-crystallised with (S)-lysine 4LY8 ; 1.7 ; dihydrodipicolinate synthase from C. jejuni with pyruvate bound to the active site 4M19 ; 2.0 ; dihydrodipicolinate synthase from C. jejuni with pyruvate bound to the active site and Lysine bound to allosteric site 7KWN ; 2.24 ; Dihydrodipicolinate synthase from C. jejuni with pyruvate bound to the active site in C2221 space group 4R53 ; 2.0 ; dihydrodipicolinate synthase from C. jejuni with vacant active site and vacant allosteric site 4MLR ; 2.2 ; dihydrodipicolinate synthase from C. jejuni, Y110F mutation with pyruvate and Lysine 4MLJ ; 2.3 ; dihydrodipicolinate synthase from C. jejuni, Y110F mutation with pyruvate bound to the active site 3G0S ; 1.85 ; Dihydrodipicolinate synthase from Salmonella typhimurium LT2 4ICN ; 2.5 ; Dihydrodipicolinate synthase from shewanella benthica 4HNN ; 2.4 ; Dihydrodipicolinate Synthase from the common grapevine with pyruvate and lysine 5KTL ; 1.92 ; Dihydrodipicolinate synthase from the industrial and evolutionarily important cyanobacteria Anabaena variabilis. 3I7Q ; 2.0 ; Dihydrodipicolinate synthase mutant - K161A 3I7S ; 2.3 ; Dihydrodipicolinate synthase mutant - K161A - with the substrate pyruvate bound in the active site. 7JZ7 ; 1.74 ; Dihydrodipicolinate synthase mutant S48F 7JZ8 ; 1.82 ; Dihydrodipicolinate synthase mutant S48F with lysine in the allosteric site 7JZG ; 1.82 ; Dihydrodipicolinate synthase mutant S48F with lysine in the allosteric site and pyruvate in the catalytic site 7JZF ; 1.82 ; Dihydrodipicolinate synthase mutant S48F with pyruvate in the catalytic site 7JZE ; 2.0 ; Dihydrodipicolinate synthase mutant S48W 7JZD ; 1.91 ; Dihydrodipicolinate synthase mutation S48W with Lysine in the allosteric site 4I7U ; 1.55 ; Dihydrodipicolinate Synthase of Agrobacterium tumefaciens 7JZA ; 1.82 ; Dihydrodipicolinate synthase S48F mutant with lysine in the allosteric site, and pyruvate and succinic semi-aldehyde in the catalytic site 7JZ9 ; 1.82 ; Dihydrodipicolinate synthase S48F with pyruvate and succinic semi-aldehyde 7JZC ; 2.07 ; Dihydrodipicolinate synthase S48W mutant with lysine in the allosteric site, and pyruvate in the catalytic site 7JZB ; 1.93 ; Dihydrodipicolinate synthase S48W with lysine in the allosteric site, and pyruvate and succinic semi-aldehyde 7LOY ; 2.4 ; Dihydrodipicolinate synthase with pyruvate from Candidatus Liberibacter solanacearum 8GEK ; 1.93 ; Dihydrodipicolinate synthase with pyruvate from Candidatus Liberibacter solanacearum 1VDR ; 2.55 ; DIHYDROFOLATE REDUCTASE 6DRS ; 1.997 ; Dihydrofolate Reductase (DHFR) of Aspergillus flavus in complex with a small molecule inhibitor 6DTC ; 2.0 ; Dihydrofolate Reductase (DHFR) of Aspergillus flavus in complex with a small molecule inhibitor 1DIS ; ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEX WITH BRODIMOPRIM-4,6-DICARBOXYLATE 1DIU ; ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEX WITH BRODIMOPRIM-4,6-DICARBOXYLATE 1RX5 ; 2.3 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH 5,10-DIDEAZATETRAHYDROFOLATE 1RX4 ; 2.2 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH 5,10-DIDEAZATETRAHYDROFOLATE AND 2'-MONOPHOSPHOADENOSINE 5'-DIPHOSPHORIBOSE 1RX6 ; 2.0 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH 5,10-DIDEAZATETRAHYDROFOLATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (REDUCED FORM) 1RX3 ; 2.2 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (REDUCED FORM) 1RX9 ; 1.9 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RX1 ; 2.0 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (REDUCED FORM) 1RX2 ; 1.8 ; DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH WITH FOLATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RC4 ; 1.9 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH 5,10-DIDEAZATETRAHYDROFOLATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RD7 ; 2.6 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE 1RE7 ; 2.6 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE 8UCX ; 1.57 ; Dihydrofolate Reductase Complexed with Folate 1RX8 ; 2.8 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND 2'-MONOPHOSPHOADENOSINE 5'-DIPHOSPHORIBOSE 1RA8 ; 1.8 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND 2-MONOPHOSPHOADENOSINE 5'-DIPHOSPHORIBOSE 1RA2 ; 1.6 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RB2 ; 2.1 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RG7 ; 2.0 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE 1DRE ; 2.6 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RA3 ; 1.8 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RB3 ; 2.3 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RH3 ; 2.4 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (REDUCED FORM) 1AO8 ; ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE, NMR, 21 STRUCTURES 1RA9 ; 1.55 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM) 1RA1 ; 1.9 ; DIHYDROFOLATE REDUCTASE COMPLEXED WITH NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (REDUCED FORM) 4M7U ; 2.1014 ; Dihydrofolate reductase from Enterococcus faecalis complexed with NADP(H) 4M7V ; 2.3 ; Dihydrofolate reductase from Enterococcus faecalis complexed with NADP(H)and RAB-propyl 2CIG ; 1.9 ; Dihydrofolate reductase from Mycobacterium tuberculosis inhibited by the acyclic 4R isomer of INH-NADP a derivative of the prodrug isoniazid. 1CZ3 ; 2.1 ; DIHYDROFOLATE REDUCTASE FROM THERMOTOGA MARITIMA 1D1G ; 2.1 ; DIHYDROFOLATE REDUCTASE FROM THERMOTOGA MARITIMA 1DG8 ; 2.0 ; DIHYDROFOLATE REDUCTASE OF MYCOBACTERIUM TUBERCULOSIS COMPLEXED WITH NADPH 1DG7 ; 1.8 ; DIHYDROFOLATE REDUCTASE OF MYCOBACTERIUM TUBERCULOSIS COMPLEXED WITH NADPH AND 4-BROMO WR99210 1DF7 ; 1.7 ; DIHYDROFOLATE REDUCTASE OF MYCOBACTERIUM TUBERCULOSIS COMPLEXED WITH NADPH AND METHOTREXATE 1DG5 ; 2.0 ; DIHYDROFOLATE REDUCTASE OF MYCOBACTERIUM TUBERCULOSIS COMPLEXED WITH NADPH AND TRIMETHOPRIM 7XH2 ; 2.8 ; Dihydrofolate Reductase-like Protein SacH in safracin biosynthesis 7XH4 ; 2.2 ; Dihydrofolate Reductase-like Protein SacH in safracin biosynthesis complex with safracin A 5U8U ; 1.35 ; Dihydrolipoamide dehydrogenase (LpdG) from Pseudomonas aeruginosa 5U8V ; 1.45 ; Dihydrolipoamide dehydrogenase (LpdG) from Pseudomonas aeruginosa bound to NAD+ 5U8W ; 1.79 ; Dihydrolipoamide dehydrogenase (LpdG) from Pseudomonas aeruginosa bound to NADH 1EBD ; 2.6 ; DIHYDROLIPOAMIDE DEHYDROGENASE COMPLEXED WITH THE BINDING DOMAIN OF THE DIHYDROLIPOAMIDE ACETYLASE 1DXL ; 3.15 ; Dihydrolipoamide dehydrogenase of glycine decarboxylase from Pisum Sativum 4JDR ; 2.5 ; Dihydrolipoamide dehydrogenase of pyruvate dehydrogenase from escherichia coli 4JQ9 ; 2.17 ; Dihydrolipoyl dehydrogenase of Escherichia coli pyruvate dehydrogenase complex 1B5S ; 4.4 ; DIHYDROLIPOYL TRANSACETYLASE (E.C.2.3.1.12) CATALYTIC DOMAIN (RESIDUES 184-425) FROM BACILLUS STEAROTHERMOPHILUS 6ZLM ; 4.3 ; Dihydrolipoyllysine-residue acetyltransferase component of fungal pyruvate dehydrogenase complex with protein X bound 7SU7 ; 2.09 ; Dihydroneopterin aldolase (DHNA) from Yersinia pestis co-crystallized with product 6OJO ; 1.886 ; Dihydroneopterin aldolase (DHNA) from Yersinia pestis co-crystallized with pterine 7SU8 ; 2.65 ; DIHYDRONEOPTERIN ALDOLASE (DHNA) FROM YERSINIA PESTIS with alkylated Cys50 CO-CRYSTALLIZED with 7,8-dihydroneopterin 7SU6 ; 2.15 ; DIHYDRONEOPTERIN ALDOLASE (DHNA) Lys98Ala FROM YERSINIA PESTIS CO-CRYSTALLIZED with 7,8-dihydroneopterin 7SU4 ; 1.78 ; Dihydroneopterin aldolase (DHNA) Tyr53Phe from Yersinia pestis co-crystallized with 7,8-dihydroneopterin 3R2E ; 2.15 ; Dihydroneopterin aldolase/dihydroneopterin triphosphate 2'-epimerase from Yersinia pestis. 6GDE ; 2.45 ; DIHYDROOROTASE FROM AQUIFEX AEOLICUS STANDARD (P,T) 6GDD ; 2.6 ; DIHYDROOROTASE FROM AQUIFEX AEOLICUS UNDER 1200 BAR OF HYDROSTATIC PRESSURE 6GDF ; 2.5 ; DIHYDROOROTASE FROM AQUIFEX AEOLICUS UNDER 600 BAR OF HYDROSTATIC PRESSURE 3MPG ; 2.6 ; Dihydroorotase from Bacillus anthracis 4YIW ; 2.45 ; DIHYDROOROTASE FROM BACILLUS ANTHRACIS WITH SUBSTRATE BOUND 1XGE ; 1.9 ; Dihydroorotase from Escherichia coli: Loop Movement and Cooperativity between subunits 7UOF ; 1.9 ; Dihydroorotase from M. jannaschii 2B4G ; 1.95 ; dihydroorotate dehydrogenase 3U2O ; 2.18 ; Dihydroorotate Dehydrogenase (DHODH) crystal structure in complex with small molecule inhibitor 1DOR ; 2.0 ; DIHYDROOROTATE DEHYDROGENASE A FROM LACTOCOCCUS LACTIS 2DOR ; 2.0 ; DIHYDROOROTATE DEHYDROGENASE A FROM LACTOCOCCUS LACTIS COMPLEXED WITH OROTATE 4WZH ; 2.12 ; Dihydroorotate dehydrogenase from Leishmania Viannia braziliensis 8B1V ; 1.882 ; Dihydroprecondylocarpine acetate synthase 2 from Tabernanthe iboga 8B26 ; 2.42 ; Dihydroprecondylocarpine acetate synthase 2 from Tabernanthe iboga 8B25 ; 2.24 ; Dihydroprecondylocarpine acetate synthase 2 from Tabernanthe iboga - stemmadenine acetate bound structure 8B27 ; 2.45 ; Dihydroprecondylocarpine acetate synthase from Catharanthus roseus 2VEF ; 1.8 ; Dihydropteroate synthase from Streptococcus pneumoniae 2VEG ; 2.4 ; Dihydropteroate synthase from Streptococcus pneumoniae: complex with 6-hydroxymethyl-7,8-dihydropterin monophosphate 6OFW ; 1.96 ; Dihydropteroate synthase from Xanthomonas albilineans in complex with 7,8-dihydropteroate 3TYC ; 2.303 ; Dihydropteroate Synthase in complex with DHP+ 3TYE ; 2.3 ; Dihydropteroate Synthase in complex with DHP-STZ 3TYB ; 2.6 ; Dihydropteroate Synthase in complex with pHBA and DHP+ 3TYD ; 2.5 ; Dihydropteroate Synthase in complex with PPi and DHP+ 3TYA ; 2.611 ; Dihydropteroate Synthase in complex with product 1AD1 ; 2.2 ; DIHYDROPTEROATE SYNTHETASE (APO FORM) FROM STAPHYLOCOCCUS AUREUS 1AD4 ; 2.4 ; DIHYDROPTEROATE SYNTHETASE COMPLEXED WITH OH-CH2-PTERIN-PYROPHOSPHATE FROM STAPHYLOCOCCUS AUREUS 1TWS ; 2.0 ; Dihydropteroate Synthetase From Bacillus anthracis 1TX2 ; 1.83 ; Dihydropteroate Synthetase, With Bound Inhibitor MANIC, From Bacillus anthracis 1TX0 ; 2.15 ; Dihydropteroate Synthetase, With Bound Product Analogue Pteroic Acid, From Bacillus anthracis 1TWZ ; 2.75 ; Dihydropteroate Synthetase, With Bound Substrate Analogue PtP, From Bacillus anthracis 1TWW ; 2.5 ; Dihydropteroate Synthetase, With Bound Substrate Analogue PtPP, From Bacillus anthracis 7M32 ; 1.82 ; Dihydropyrimidine Dehydrogenase (DPD) C671A Mutant Soaked with Uracil and NADPH Anaerobically 8F5W ; 1.97 ; Dihydropyrimidine Dehydrogenase (DPD) C671S Mutant Soaked with Dihydrothymine and NADPH Quasi-Anaerobically 8F61 ; 2.14 ; Dihydropyrimidine Dehydrogenase (DPD) C671S Mutant Soaked with Dihydrothymine Quasi-Anaerobically 7M31 ; 1.69 ; Dihydropyrimidine Dehydrogenase (DPD) C671S Mutant Soaked with Thymine and NADPH Anaerobically 8F6N ; 2.12 ; Dihydropyrimidine Dehydrogenase (DPD) C671S Mutant Soaked with Thymine Quasi-Anaerobically 1H7W ; 1.9 ; Dihydropyrimidine dehydrogenase (DPD) from pig 1GTE ; 1.65 ; DIHYDROPYRIMIDINE DEHYDROGENASE (DPD) FROM PIG, BINARY COMPLEX WITH 5-IODOURACIL 1H7X ; 2.01 ; Dihydropyrimidine dehydrogenase (DPD) from pig, ternary complex of a mutant enzyme (C671A), NADPH and 5-fluorouracil 1GTH ; 2.25 ; DIHYDROPYRIMIDINE DEHYDROGENASE (DPD) FROM PIG, TERNARY COMPLEX WITH NADPH AND 5-IODOURACIL 1GT8 ; 3.3 ; DIHYDROPYRIMIDINE DEHYDROGENASE (DPD) FROM PIG, TERNARY COMPLEX WITH NADPH AND URACIL-4-ACETIC ACID 2IU5 ; 1.6 ; Dihydroxyacetone kinase operon activator DhaS 2IU4 ; 1.96 ; Dihydroxyacetone kinase operon co-activator Dha-DhaQ 3MHG ; 1.92 ; Dihydroxyacetone phosphate carbanion intermediate in tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes 2QUT ; 1.88 ; Dihydroxyacetone phosphate enamine intermediate in fructose-1,6-bisphosphate aldolase from rabbit muscle 3DFO ; 1.94 ; Dihydroxyacetone phosphate Schiff base and enamine intermediates in D33N mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 3DFS ; 2.03 ; Dihydroxyacetone phosphate Schiff base intermediate in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 2QUU ; 1.98 ; Dihydroxyacetone phosphate Schiff base intermediate in mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 8IMU ; 1.93 ; Dihydroxyacid dehydratase (DHAD) mutant-V497F 3EKO ; 1.55 ; Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone 3EKR ; 2.0 ; Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone 3HLH ; 1.8 ; Diisopropyl fluorophosphatase (DFPase), active site mutants 3HLI ; 1.4 ; diisopropyl fluorophosphatase (DFPase), active site mutants 3LI3 ; 1.66 ; Diisopropyl fluorophosphatase (DFPase), D121E mutant 3LI5 ; 1.36 ; Diisopropyl fluorophosphatase (DFPase), E21Q,N120D,N175D,D229N mutant 3LI4 ; 1.35 ; Diisopropyl fluorophosphatase (DFPase), N120D,N175D,D229N mutant 6Y5I ; 5.5 ; Dilated form 1 of X-31 Influenza Haemagglutinin at pH 5 (State II) 6Y5J ; 5.6 ; Dilated form 2 of X-31 Influenza Haemagglutinin at pH 5 (State III) 7WWO ; 2.17 ; Dimer form of hypothetical protein TTHA1873 from Thermus thermophilus 5XLL ; 2.201 ; Dimer form of M. tuberculosis PknI sensor domain 1FYR ; 2.4 ; DIMER FORMATION THROUGH DOMAIN SWAPPING IN THE CRYSTAL STRUCTURE OF THE GRB2-SH2 AC-PYVNV COMPLEX 1JU1 ; ; Dimer Initiation Sequence of HIV-1Lai Genomic RNA: NMR Solution Structure of the Extended Duplex 4OSD ; 1.96 ; Dimer of a C-terminal fragment of phage T4 gp5 beta-helix 8F4N ; 2.95 ; Dimer of aminoglycoside efflux pump AcrD 8F56 ; 2.98 ; Dimer of aminoglycoside efflux pump AcrD treated with gentamicin 1FLM ; 1.3 ; DIMER OF FMN-BINDING PROTEIN FROM DESULFOVIBRIO VULGARIS (MIYAZAKI F) 5TEO ; 2.046 ; Dimer of HIV-1 Gag CTD-SP1 fragment 6VFF ; 2.8 ; Dimer of Human Adenosine Deaminase Acting on dsRNA (ADAR2) mutant E488Q bound to dsRNA sequence derived from human GLI1 gene 4M6F ; 4.99 ; Dimer of the G-Segment Invertase bound to a DNA substrate 6EHO ; 3.5 ; Dimer of the Sortilin Vps10p domain at low pH 5B21 ; 2.24 ; Dimer structure of murine Nectin-1 D1 5B22 ; 2.58 ; Dimer structure of murine Nectin-3 D1D2 7VT0 ; 3.4 ; Dimer structure of SORLA 5NMT ; 2.3 ; Dimer structure of Sortilin ectodomain crystal form 1, 2.3A 5NNI ; 3.21 ; Dimer structure of Sortilin ectodomain crystal form 2, 3.2 Angstrom 5NNJ ; 4.0 ; Dimer structure of Sortilin ectodomain crystal form 3, 4.0 Angstrom 2XJ9 ; 2.8 ; Dimer Structure of the bacterial cell division regulator MipZ 6FV7 ; 3.7 ; Dimer structure of the MATE family multidrug resistance transporter Aq_128 from Aquifex aeolicus in the outward-facing state 6FV8 ; 3.0 ; Dimer structure of the MATE family multidrug resistance transporter Aq_128 from Aquifex aeolicus in the outward-facing state 6NZN ; ; Dimer-of-dimer amyloid fibril structure of glucagon 7MFF ; 3.89 ; Dimeric (BRAF)2:(14-3-3)2 complex bound to SB590885 Inhibitor 2ZYA ; 1.6 ; Dimeric 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate 3FWN ; 1.5 ; Dimeric 6-phosphogluconate dehydrogenase complexed with 6-phosphogluconate and 2'-monophosphoadenosine-5'-diphosphate 2ZYD ; 1.5 ; Dimeric 6-phosphogluconate dehydrogenase complexed with glucose 4AEA ; 1.94 ; Dimeric alpha-cobratoxin X-ray structure: Localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors 3S84 ; 2.4 ; Dimeric apoA-IV 3X15 ; 1.6 ; Dimeric Aquifex aeolicus cytochrome c555 2XR1 ; 2.59 ; DIMERIC ARCHAEAL CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR WITH N-TERMINAL KH DOMAINS (KH-CPSF) FROM METHANOSARCINA MAZEI 6HUN ; 1.802 ; Dimeric Archeal Rubisco from Hyperthermus butylicus 4W7Y ; 2.5 ; Dimeric BAP29 vDED with disulfide bonds in crystal contacts 1XCD ; 2.31 ; Dimeric bovine tissue-extracted decorin, crystal form 1 1XEC ; 2.3 ; Dimeric bovine tissue-extracted decorin, crystal form 2 8EZ9 ; 5.67 ; Dimeric complex of DNA-PKcs 4X9Z ; 1.5 ; Dimeric conotoxin alphaD-GeXXA 3CZ2 ; 2.5 ; Dimeric crystal structure of a pheromone binding protein from Apis mellifera at pH 7.0 3CYZ ; 1.8 ; Dimeric crystal structure of a pheromone binding protein from Apis mellifera in complex with 9-keto-2(E)-decenoic acid at pH 7.0 3CZ0 ; 1.7 ; Dimeric crystal structure of a pheromone binding protein from Apis mellifera in complex with the n-butyl benzene sulfonamide at pH 7.0 3CZ1 ; 1.5 ; Dimeric crystal structure of a pheromone binding protein from Apis mellifera in complex with the n-butyl benzene sulfonamide at pH 7.0 3D78 ; 1.6 ; Dimeric crystal structure of a pheromone binding protein mutant D35N, from apis mellifera, at pH 7.0 5UA0 ; 2.3 ; Dimeric crystal structure of HTPA reductase from arabidopsis thaliana 5ZB3 ; 3.506 ; Dimeric crystal structure of ORF57 from KSHV 1DS5 ; 3.16 ; DIMERIC CRYSTAL STRUCTURE OF THE ALPHA SUBUNIT IN COMPLEX WITH TWO BETA PEPTIDES MIMICKING THE ARCHITECTURE OF THE TETRAMERIC PROTEIN KINASE CK2 HOLOENZYME. 5YBA ; 2.062 ; Dimeric Cyclophilin from T.vaginalis in complex with Myb1 peptide 6MOJ ; 2.431 ; Dimeric DARPin A_angle_R5 complex with EpoR 6MOK ; 5.101 ; Dimeric DARPin A_distance_R7 complex with EpoR 6MOI ; 2.065 ; Dimeric DARPin C_angle_R5 complex with EpoR 6MOG ; 1.21 ; Dimeric DARPin C_R3 6MOH ; 3.2 ; Dimeric DARPin C_R3 complex with EpoR 2POQ ; 2.59 ; Dimeric Dihydrodiol Dehydrogenase complexed with inhibitor, Isoascorbic acid 1JVC ; ; Dimeric DNA Quadruplex Containing Major Groove-Aligned A.T.A.T and G.C.G.C Tetrads Stabilized by Inter-Subunit Watson-Crick A:T and G:C Pairs 6OTR ; 3.12 ; Dimeric E.coli YoeB bound to Thermus thermophilus 70S post-cleavage (AAU) 6OXI ; 3.495 ; Dimeric E.coli YoeB bound to Thermus thermophilus 70S post-cleavage (UAA) 6OXA ; 3.25 ; Dimeric E.coli YoeB bound to Thermus thermophilus 70S pre-cleavage (AAU) 7COH ; 1.3 ; Dimeric Form of Bovine Heart Cytochrome c Oxidase in the Fully Oxidized State 3NVA ; 2.504 ; Dimeric form of CTP synthase from Sulfolobus solfataricus 8FVJ ; 3.54 ; Dimeric form of HIV-1 Vif in complex with human CBF-beta, ELOB, ELOC, and CUL5 8SL4 ; 7.0 ; Dimeric form of human adenylyl cyclase 5 4QKH ; 1.8 ; Dimeric form of human LLT1, a ligand for NKR-P1 4QKI ; 1.8 ; Dimeric form of human LLT1, a ligand for NKR-P1 7OYG ; 5.5 ; Dimeric form of SARS-CoV-2 RNA-dependent RNA polymerase 1ITV ; 1.95 ; Dimeric form of the haemopexin domain of MMP9 6WA1 ; ; Dimeric form of the trans-stabilized Hemolysin II C-terminal domain 7XFV ; ; Dimeric G-quadruplex DNA Formed in the Proximal Promoter of VEGFR-2 7XH3 ; ; Dimeric G-quadruplex DNA Formed in the Proximal Promoter of VEGFR-2 3WUI ; 1.8 ; Dimeric horse cytochrome c formed by refolding from molten globule state 3WC8 ; 1.8 ; Dimeric horse cytochrome c obtained by refolding with desalting method 3VM9 ; 1.05 ; Dimeric horse myoglobin 4EDF ; 2.08 ; Dimeric hUGDH, K94E 2KYO ; ; Dimeric human ckit-2 proto-oncogene promoter quadruplex DNA NMR, 10 structures 8FZK ; 2.1 ; Dimeric human importin alpha subunit 6IZE ; 2.29 ; Dimeric human TCTP 3VYM ; 2.0 ; Dimeric Hydrogenobacter thermophilus cytochrome c552 4ZID ; 1.8 ; Dimeric Hydrogenobacter thermophilus cytochrome c552 obtained from Escherichia coli 7ZYX ; ; Dimeric i-motif from 2'Farabinocytidine-modified TC5 7JG1 ; 3.3 ; Dimeric Immunoglobin A (dIgA) 3T11 ; 2.22 ; Dimeric inhibitor of HIV-1 protease. 6LTF ; 1.61 ; Dimeric isocitrate dehydrogenase from Xanthomonas campestris pv. campestris 8004 6M3S ; 2.3 ; Dimeric isocitrate dehydrogenase from Xanthomonas campestris pv. campestris 8004 1Y8D ; ; Dimeric parallel-stranded tetraplex with 3+1 5' G-tetrad interface, single-residue chain reversal loops and GAG triad in the context of A(GGGG) pentad 7O01 ; 17.1 ; Dimeric Photosystem I of a temperature sensitive mutant Chlamydomonas reinhardtii 2LXV ; ; Dimeric pil-e g-quadruplex dna from neisseria gonorrhoeae, NMR 11 structures 4V07 ; 2.1 ; Dimeric pseudorabies virus protease pUL26N at 2.1 A resolution 7ZQ9 ; 2.74 ; Dimeric PSI of Chlamydomonas reinhardtii at 2.74 A resolution (symmetry expanded) 7ZQD ; 2.97 ; Dimeric PSI of Chlamydomonas reinhardtii at 2.97 A resolution 1P7N ; 2.6 ; Dimeric Rous Sarcoma virus Capsid protein structure with an upstream 25-amino acid residue extension of C-terminal of Gag p10 protein 4FMM ; 2.34 ; Dimeric Sec14 family homolog 3 from Saccharomyces cerevisiae presents some novel features of structure that lead to a surprising ""dimer-monomer"" state change induced by substrate binding 6K7C ; 1.15 ; Dimeric Shewanella violacea cytochrome c5 1EU6 ; ; DIMERIC SOLUTION STRUCTURE OF THE CYCLIC OCTAMER CD(CATTCATT) 1N96 ; ; DIMERIC SOLUTION STRUCTURE OF THE CYCLIC OCTAMER CD(CGCTCATT) 1EU2 ; ; DIMERIC SOLUTION STRUCTURE OF THE CYCLIC OCTAMER CD(TGCTCGCT) 2HK4 ; ; Dimeric solution structure of the cyclic octamer d(CCGTCCGT) 2K97 ; ; Dimeric solution structure of the cyclic octamer d(pCGCTCCGT) 2K8Z ; ; Dimeric solution structure of the DNA loop d(TCGTTGCT) 2K90 ; ; Dimeric solution structure of the DNA loop d(TGCTTCGT) 3I32 ; 2.8 ; Dimeric structure of a Hera helicase fragment including the C-terminal RecA domain, the dimerization domain, and the RNA binding domain 3TIF ; 1.7995 ; Dimeric structure of a post-hydrolysis state of the ATP-binding cassette MJ0796 bound to ADP and Pi 7Y7U ; 1.89 ; Dimeric structure of a Quorum-Quenching metallo-hydrolase, LrsL 6P2J ; 3.0 ; Dimeric structure of ACAT1 4JUP ; 3.2 ; Dimeric structure of CARMA1 CARD 2WK4 ; 2.98 ; Dimeric structure of D347G D348G mutant of the sapporovirus RNA dependent RNA polymerase 2Y4P ; 2.65 ; Dimeric structure of DAPK-1 catalytic domain 3ZXT ; 2.65 ; Dimeric structure of DAPK-1 catalytic domain in complex with AMPPCP- Mg 1IZ3 ; 2.8 ; Dimeric structure of FIH (Factor inhibiting HIF) 7XBL ; 2.0 ; Dimeric structure of human galectin-7 in complex with three glycerol 7XAC ; 1.8 ; Dimeric structure of human galectin-7 in complex with two glycerol 6OJE ; 1.95 ; Dimeric structure of LRRK2 GTPase domain 6OJF ; 1.6 ; Dimeric structure of LRRK2 GTPase domain 6KLH ; 3.7 ; Dimeric structure of Machupo virus polymerase bound to vRNA promoter 1L2T ; 1.9 ; Dimeric Structure of MJ0796, a Bacterial ABC Transporter Cassette 3FN3 ; 2.7 ; Dimeric Structure of PD-L1 1X9V ; ; Dimeric structure of the C-terminal domain of Vpr 7AHF ; 2.15 ; Dimeric structure of the catalytic domain of the human ubiquitin-conjugating enzyme UBE2S L114E varaiant 1F5W ; 1.7 ; DIMERIC STRUCTURE OF THE COXSACKIE VIRUS AND ADENOVIRUS RECEPTOR D1 DOMAIN 1EAJ ; 1.35 ; DIMERIC STRUCTURE OF THE COXSACKIE VIRUS AND ADENOVIRUS RECEPTOR D1 DOMAIN AT 1.35 ANGSTROM RESOLUTION 2MRZ ; ; Dimeric structure of the Human A-box 3L2J ; 3.24 ; Dimeric structure of the ligand-free extracellular domain of the human parathyroid hormone receptor (PTH1R) 4GS3 ; 1.09 ; Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tencongensis solved ab initio 1KIX ; 2.7 ; Dimeric Structure of the O. nova Telomere End Binding Protein Alpha Subunit with Bound ssDNA 2LOH ; ; Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment 4UPI ; 1.25 ; Dimeric sulfatase SpAS1 from Silicibacter pomeroyi 4UPL ; 1.805 ; Dimeric sulfatase SpAS2 from Silicibacter pomeroyi 8KGE ; 3.8 ; Dimeric tail tube protein gpVs of bacteriophage lambda 8R1G ; 3.99 ; Dimeric ternary structure of E6AP-E6-p53 1AFO ; ; DIMERIC TRANSMEMBRANE DOMAIN OF HUMAN GLYCOPHORIN A, NMR, 20 STRUCTURES 1H6O ; 2.9 ; Dimerisation domain from human TRF1 1H6P ; 2.2 ; Dimeristion domain from human TRF2 2F42 ; 2.5 ; dimerization and U-box domains of Zebrafish C-terminal of HSP70 interacting protein 5J97 ; 2.55 ; Dimerization domain of cytoplasmic activation/proliferation-associated protein-2 (caprin-2) 1TFE ; 1.7 ; DIMERIZATION DOMAIN OF EF-TS FROM T. THERMOPHILUS 1G2Z ; 1.15 ; DIMERIZATION DOMAIN OF HNF-1ALPHA WITH A LEU 13 SELENOMETHIONINE SUBSTITUTION 2VPV ; 2.7 ; Dimerization Domain of Mif2p 6FXA ; 1.5 ; Dimerization domain of TP901-1 CI repressor 3RYL ; 3.1 ; Dimerization domain of Vibrio parahemolyticus VopL 6S9S ; 2.2 ; Dimerization domain of Xenopus laevis LDB1 in complex with darpin 10 6S9T ; 2.05 ; Dimerization domain of Xenopus laevis LDB1 in complex with darpin 3 5IRT ; ; Dimerization interface of the noncrystalline HIV-1 capsid protein lattice from solid state NMR spectroscopy of tubular assemblies 2J3E ; 3.2 ; Dimerization is important for the GTPase activity of chloroplast translocon components atToc33 and psToc159 1EI1 ; 2.3 ; DIMERIZATION OF E. COLI DNA GYRASE B PROVIDES A STRUCTURAL MECHANISM FOR ACTIVATING THE ATPASE CATALYTIC CENTER 5CQR ; 3.015 ; Dimerization of Elp1 is essential for Elongator complex assembly 5CQS ; 2.7 ; Dimerization of Elp1 is essential for Elongator complex assembly 1QFH ; 2.2 ; DIMERIZATION OF GELATION FACTOR FROM DICTYOSTELIUM DISCOIDEUM: CRYSTAL STRUCTURE OF ROD DOMAINS 5 AND 6 3GGQ ; 2.0 ; Dimerization of Hepatitis E Virus Capsid Protein E2s Domain is Essential for Virus-Host Interaction 1V05 ; 1.43 ; Dimerization of human Filamin C: crystal structure of the domain 24 7BQF ; 1.70038 ; Dimerization of SAV1 WW tandem 1DP4 ; 2.0 ; DIMERIZED HORMONE BINDING DOMAIN OF THE ATRIAL NATRIURETIC PEPTIDE RECEPTOR 5UNE ; 2.9001 ; Dimerized Structure Gives Further Insight Into the Function of the Novel RNA Gene: HAR1 6QJC ; 1.7 ; Dimethyl disulfide inhibited sulfur oxygenase reductase 5O1S ; 1.9 ; Dimethyl fumarate is an allosteric covalent inhibitor of the p90 ribosomal S6 kinases 1MNY ; ; Dimethyl propionate ester heme-containing cytochrome b5 7P2H ; 2.15 ; Dimethylated fusion protein of RSL and mussel adhesion peptide (Mefp) in complex with cucurbit[7]uril, H3 sheet assembly 7P2I ; 1.489 ; Dimethylated fusion protein of RSL and nucleoporin peptide (Nup) in complex with cucurbit[7]uril, F432 cage assembly 7P2J ; 1.98 ; Dimethylated fusion protein of RSL and trimeric coiled coil (4dzn) in complex with cucurbit[7]uril, H3 sheet assembly 6S99 ; 2.649 ; Dimethylated fusion protein of RSL and trimeric coiled coil in complex with cucurbit[7]uril 8CF7 ; 1.14 ; Dimethylated RSL-R5 in complex with cucurbit[7]uril, C121 sheet assembly 8CF6 ; 1.34 ; Dimethylated RSL-R5 in complex with cucurbit[7]uril, F432 cage assembly 7W8J ; 2.5 ; Dimethylformamidase, 2x(A2B2) 7O91 ; 1.1 ; diMn-sulerythrin 7O93 ; 1.17 ; diMn-sulerythrin 7O99 ; 1.24 ; diMn-sulerythrin 7O9E ; 1.25 ; diNi-sulerythrin 7O9C ; 1.6 ; diNi-sulerythrin treated by hydrogen perxoide 8UX7 ; 2.2 ; Dioclea megacarpa lectin (DmegA) complexed with X-Man 5YSH ; 1.9 ; Diol dehydratase - alpha/T172A mutant complexed with AdoCbl, aerobically-prepared crystal 7XRK ; 2.3 ; Diol dehydratase complexed with AdoMeCbl 7XRL ; 1.75 ; Diol dehydratase complexed with AdoMeCbl and 1,2-propanediol 5YRV ; 1.55 ; Diol dehydratase, AdoCbl/1,2-propanediol, anaerobically-prepared crystal 5YRT ; 1.7 ; Diol dehydratase, AdoCbl/substrate-free, anaerobically-prepared crystal 1DIO ; 2.2 ; DIOL DEHYDRATASE-CYANOCOBALAMIN COMPLEX FROM KLEBSIELLA OXYTOCA 1Y66 ; 1.65 ; Dioxane contributes to the altered conformation and oligomerization state of a designed engrailed homeodomain variant 7OLR ; 2.1 ; Dioxygenase AsqJ in complex with 2 and alpha-ketoglutarate 7OLT ; 1.5 ; Dioxygenase AsqJ in complex with 2 and Tris 7OLK ; 1.7 ; Dioxygenase AsqJ in complex with 2b and Tris 7OLP ; 1.55 ; Dioxygenase AsqJ mutant (V72I) in complex with 2 and alpha-ketoglutarate 7OLQ ; 2.05 ; Dioxygenase AsqJ mutant (V72I) in complex with 2 and Tris 7OLO ; 2.0 ; Dioxygenase AsqJ mutant (V72I) in complex with 2b and glycerol 7OLL ; 1.9 ; Dioxygenase AsqJ mutant (V72I) in complex with 2b and Tris 7OLM ; 1.75 ; Dioxygenase AsqJ mutant (V72I) in complex with 2b-O-O and Tris 3V7B ; 1.743 ; Dip2269 protein from corynebacterium diphtheriae 2QJR ; 2.2 ; dipepdyl peptidase IV in complex with inhibitor PZF 2HOW ; 2.4 ; Dipeptidase (PH0974) from Pyrococcus horikoshii OT3 7ZC2 ; 2.72 ; Dipeptide and tripeptide Permease C (DtpC) 1DPP ; 3.2 ; DIPEPTIDE BINDING PROTEIN COMPLEX WITH GLYCYL-L-LEUCINE 6RNG ; 2.15 ; Dipeptide Gly-Pro binds to a glycolytic enzyme fructose bisphosphate aldolase 6RS1 ; 1.9 ; Dipeptide Gly-Pro binds to a glycolytic enzyme fructose bisphosphate aldolase 2WHZ ; 1.75 ; Dipeptide Inhibitors of Thermolysin 2WI0 ; 1.95 ; Dipeptide Inhibitors of Thermolysin 1MS6 ; 1.9 ; Dipeptide Nitrile Inhibitor Bound to Cathepsin S. 1DPE ; 2.0 ; DIPEPTIDE-BINDING PROTEIN 1JQP ; 2.4 ; dipeptidyl peptidase I (cathepsin C), a tetrameric cysteine protease of the papain family 6WOH ; 1.7 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 1,5-di-methylenebisphosphonate inositol tetrakisphosphate (1,5-PCP-IP4) 6WO9 ; 2.0 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 1-diphosphoinositol pentakisphosphate (1-IP7) and Mg 6WOI ; 1.5 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 1-Diphosphoinositol pentakisphosphate, Mg, and Fluoride ion, presoaked with 1,5-IP8, Mg and Fluoride for 30 seconds 6WOA ; 1.5 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 2-Diphosphoinositol pentakisphosphate (2-IP7), Mg, and Fluoride ion 7TN4 ; 1.85 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 3-diphosphoinositol 1,2,4,5-tetrakisphosphate (3-PP-IP4), Mg and Fluoride ion 6WOB ; 1.45 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 4-diphosphoinositol pentakisphosphate (4-IP7), Mg, and Fluoride ion 8G9C ; 1.4 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5- difluoromethylenebisphosphonate inositol pentakisphosphate (5-PCF2P-IP5), an analogue of 5-InsP7 8G9D ; 1.6 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5- phosphonodifluoroacetamide inositol pentakisphosphate (5-PCF2Am-InsP5), an analogue of 5-InsP7 6WO8 ; 1.7 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5-diphosphoinositol 1,3,4,6-tetrakisphosphate (5-PP-IP4), Mg, and Fluoride ion 6WO7 ; 1.4 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5-Diphosphoinositol pentakisphosphate (5-IP7), Mg, and Fluoride ion 6WOC ; 1.35 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5-diphosphoinositol pentakisphosphate and Mg, presoaked with 5-IP7, Mg and Fluoride, soaking 1min in the absence of Fluoride. 6WOG ; 1.5 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with 5-methylenebisphosphonate inositol pentakisphosphate (5-PCP-IP5) 6WOE ; 1.4 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with inositol hexakisphosphate and Mg, presoaked with 5-IP7, Mg and Fluoride, soaking 10min in the absence of Fluoride. 6WOF ; 1.6 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with inositol hexakisphosphate and Mg, presoaked with 5-IP7, Mg and Fluoride, soaking 20min in the absence of Fluoride. 6WOD ; 1.35 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with inositol hexakisphosphate and Mg, presoaked with 5-IP7, Mg and Fluoride, soaking 2min in the absence of Fluoride. 8TF9 ; 1.55 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with myo-5-IP7, produced upon myo-IP6 phosphorylation by TvI 8TFA ; 1.4 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with myo-5-PP-IP4, produced upon myo-(2OH)-IP5 phosphorylation by TvIPK 8T98 ; 1.3 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with Scyllo-3-PP-(1,2,4,5)IP4, Mg, and Fluoride ion 8T99 ; 1.5 ; Diphosphoinositol polyphosphate phosphohydrolase 1 (DIPP1/NUDT3) in complex with Scyllo-L-1,4-[PP]2-(2,3)IP2, Mg, and Fluoride ion 4Z7C ; 2.2 ; Diphosphomevalonate decarboxylase from the Sulfolobus solfataricus, space group h32 4Z7Y ; 2.7 ; diphosphomevalonate decarboxylase from the Sulfolobus solfataricus, space group P21 2TDX ; 2.4 ; DIPHTHERIA TOX REPRESSOR (C102D MUTANT) COMPLEXED WITH NICKEL 1F5T ; 3.0 ; DIPHTHERIA TOX REPRESSOR (C102D MUTANT) COMPLEXED WITH NICKEL AND DTXR CONSENSUS BINDING SEQUENCE 1DDN ; 3.0 ; DIPHTHERIA TOX REPRESSOR (C102D MUTANT)/TOX DNA OPERATOR COMPLEX 1TOX ; 2.3 ; DIPHTHERIA TOXIN DIMER COMPLEXED WITH NAD 5Z2E ; 1.8 ; Dipicolinate bound Dihydrodipicolinate reductase from Paenisporosarcina sp. TG-14 7BKX ; 2.35 ; Diploptera punctata inspired lipocalin-like Milk protein expressed in Saccharomyces cerevisiae 2JSV ; ; Dipole tensor-based refinement for atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR spectroscopy 7DMC ; 2.34 ; Dipyridamole binds to the N-terminal domain of human Hsp90A 2FB4 ; 1.9 ; DIR PRIMAERSTRUKTUR DES KRISTALLISIERBAREN MONOKLONALEN IMMUNOGLOBULINS IGG1 KOL. II. AMINOSAEURESEQUENZ DER L-KETTE, LAMBDA-TYP, SUBGRUPPE I (GERMAN) 2IG2 ; 3.0 ; DIR PRIMAERSTRUKTUR DES KRISTALLISIERBAREN MONOKLONALEN IMMUNOGLOBULINS IGG1 KOL. II. AMINOSAEURESEQUENZ DER L-KETTE, LAMBDA-TYP, SUBGRUPPE I (GERMAN) 6D74 ; ; Direct Activation of the Executioner Domain of MLKL by a Select Repertoire of Inositol Phosphates 1C57 ; 2.4 ; DIRECT DETERMINATION OF THE POSITIONS OF DEUTERIUM ATOMS OF BOUND WATER IN CONCANAVALIN A BY NEUTRON LAUE CRYSTALLOGRAPHY 1CCM ; ; DIRECT NOE REFINEMENT OF CRAMBIN FROM 2D NMR DATA USING A SLOW-COOLING ANNEALING PROTOCOL 1CCN ; ; DIRECT NOE REFINEMENT OF CRAMBIN FROM 2D NMR DATA USING A SLOW-COOLING ANNEALING PROTOCOL 1KGK ; 1.0 ; Direct Observation of a Cytosine Analog that Forms Five Hydrogen Bonds to Guanosine; Guanyl G-Clamp 5G18 ; 1.1 ; Direct Observation of Active-site Protonation States in a Class A beta lactamase with a monobactam substrate 1YPA ; 2.0 ; DIRECT OBSERVATION OF BETTER HYDRATION AT THE N-TERMINUS OF AN ALPHA-HELIX WITH GLYCINE RATHER THAN ALANINE AS N-CAP 1YPB ; 2.0 ; DIRECT OBSERVATION OF BETTER HYDRATION AT THE N-TERMINUS OF AN ALPHA-HELIX WITH GLYCINE RATHER THAN ALANINE AS N-CAP 1YPC ; 1.7 ; DIRECT OBSERVATION OF BETTER HYDRATION AT THE N-TERMINUS OF AN ALPHA-HELIX WITH GLYCINE RATHER THAN ALANINE AS N-CAP 5X2R ; 2.7 ; Direct Observation of Conformational Population Shifts in Hemoglobin: Crystal Structure of Half-Liganded Hemoglobin after Adding 10 mM phosphate pH 6.9. 5X2S ; 2.39 ; Direct Observation of Conformational Population Shifts in Hemoglobin: Crystal Structure of Half-Liganded Hemoglobin after Adding 4 mM bezafibrate pH 6.5. 5X2T ; 2.64 ; Direct Observation of Conformational Population Shifts in Hemoglobin: Crystal Structure of Half-Liganded Hemoglobin after Adding 4 mM bezafibrate pH 7.2. 5X2U ; 2.53 ; Direct Observation of Conformational Population Shifts in Hemoglobin: Crystal Structure of Half-Liganded Hemoglobin after Adding 80 mM phosphate pH 6.7. 1J3Z ; 1.6 ; Direct observation of photolysis-induced tertiary structural changes in human haemoglobin; Crystal structure of alpha(Fe-CO)-beta(Ni) hemoglobin (laser unphotolysed) 1J41 ; 1.45 ; Direct observation of photolysis-induced tertiary structural changes in human haemoglobin; Crystal structure of alpha(Ni)-beta(Fe) hemoglobin (laser photolysed) 1J40 ; 1.45 ; Direct observation of photolysis-induced tertiary structural changes in human haemoglobin; Crystal structure of alpha(Ni)-beta(Fe-CO) hemoglobin (laser unphotolysed) 1J3Y ; 1.55 ; Direct observation of photolysis-induced tertiary structural changes in human hemoglobin; Crystal structure of alpha(Fe)-beta(Ni) hemoglobin (laser photolysed) 223D ; 1.7 ; DIRECT OBSERVATION OF TWO BASE-PAIRING MODES OF A CYTOSINE-THYMINE ANALOGUE WITH GUANINE IN A DNA Z-FORM DUPLEX: SIGNIFICANCE FOR BASE ANALOGUE MUTAGENESIS 4WHW ; 1.345 ; Direct photocapture of bromodomains using tropolone chemical probes 1ESA ; 1.65 ; DIRECT STRUCTURE OBSERVATION OF AN ACYL-ENZYME INTERMEDIATE IN THE HYDROLYSIS OF AN ESTER SUBSTRATE BY ELASTASE 1ESB ; 2.3 ; DIRECT STRUCTURE OBSERVATION OF AN ACYL-ENZYME INTERMEDIATE IN THE HYDROLYSIS OF AN ESTER SUBSTRATE BY ELASTASE 4CRY ; 1.61 ; Direct visualisation of strain-induced protein post-translational modification 4CS0 ; 2.1 ; Direct visualisation of strain-induced protein post-translational modification 4CRZ ; 1.7 ; Direct visualisation of strain-induced protein prost-translational modification 5OXU ; 1.47 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita 6EKX ; 1.13 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with 1-naphthol (I) 6EKY ; 1.23 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with 1-naphthol (II) 5OXT ; 1.42 ; DIRECT-EVOLUTIONED UNSPECIFIC PEROXYGENASE FROM AGROCYBE AEGERITA, IN COMPLEX WITH ACETATE 5OY2 ; 1.36 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with DMP 5OY1 ; 1.43 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with DMSO 6EKW ; 1.43 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with naphthalene 6EKZ ; 1.08 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with propranolol 6EL0 ; 1.65 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with styrene 6EL4 ; 1.53 ; Direct-evolutioned unspecific peroxygenase from Agrocybe aegerita, in complex with veratryl alcohol 3IJ7 ; 2.0 ; Directed 'in situ' Elongation as a Strategy to Characterize the Covalent Glycosyl-Enzyme Catalytic Intermediate of Human Pancreatic a-Amylase 3IJ8 ; 1.43 ; Directed 'in situ' Elongation as a Strategy to Characterize the Covalent Glycosyl-Enzyme Catalytic Intermediate of Human Pancreatic a-Amylase 3IJ9 ; 1.85 ; Directed 'in situ' Elongation as a Strategy to Characterize the Covalent Glycosyl-Enzyme Catalytic Intermediate of Human Pancreatic a-Amylase 4JXI ; 2.29 ; Directed evolution and rational design of a de novo designed esterase toward improved catalysis. Northeast Structural Genomics Consortium (NESG) Target OR184 4P62 ; 1.89 ; Directed evolution of a B3 metallo-beta-lactamase AIM-1 6U18 ; 2.0 ; Directed evolution of a biosensor selective for the macrolide antibiotic clarithromycin 3CBD ; 2.65 ; Directed Evolution of cytochrome P450 BM3, to octane monoxygenase 139-3 2F54 ; 2.7 ; Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity 2F53 ; 2.1 ; Directed Evolution of Human T-cell Receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without apparent cross-reactivity 5KQT ; 1.99 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KQU ; 2.62 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KQW ; 2.23 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KR3 ; 1.95 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KR4 ; 2.0 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KR5 ; 2.1 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 5KR6 ; 1.99 ; Directed Evolution of Transaminases By Ancestral Reconstruction. Using Old Proteins for New Chemistries 4Z08 ; 1.8 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 1 KE07 design 5D32 ; 2.1 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 11 round 6 5D33 ; 1.59 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 12 round 7 5D37 ; 2.04 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 16 round 7 5D38 ; 1.427 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 17 round 7-2 6C7H ; 2.43 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 18 Design Trp50Ala mutant 6C7M ; 1.45 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 19 round 5 6C7T ; 1.83 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 20 round 5 6DKV ; 1.89 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 21 round 5 6C7V ; 1.64 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 22 round 5 6C8B ; 1.61 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 23 round 6 6CAI ; 1.82 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 24 round 7 6DC1 ; 2.68 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 25 round 7 6CT3 ; 1.9 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 27 round 7-2 6DNJ ; 1.65 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 28 round 5 5D2T ; 1.87 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 3 Wild Type 5D2V ; 2.02 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 4 Wild Type 5D2W ; 1.66 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 5 Wild Type 5D2X ; 1.76 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 6 Round5 5D2Y ; 1.984 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 7 Round 5 5D30 ; 1.69 ; Directed evolutionary changes in Kemp Eliminase KE07 - Crystal 9 Round 5 5JQJ ; 1.67 ; Directed evolutionary changes in MBL super family - NDM-1 Round 10 crystal-1 5K4M ; 1.98 ; Directed evolutionary changes in MBL super family - NDM-1 Round 10 crystal-3 6BM9 ; 2.19 ; Directed evolutionary changes in MBL super family - VIM-2 Round 10 2ORF ; 1.85 ; Directing Macromolecular Conformation Through Halogen Bonds 2ORG ; 2.0 ; Directing Macromolecular Conformation Through Halogen Bonds 2ORH ; 1.9 ; Directing Macromolecular Conformation Through Halogen Bonds 3ERZ ; 3.056 ; Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein. Mercury Ions on the Three-Fold Channel 3ES3 ; 2.795 ; Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein. The Complex with Gold ions. Ferritin H8-H9x Mutant 8OQC ; 1.5 ; Dirhodium tetraacetate/ribonuclease A adduct in the P3221 space group (1 h soaking) 8OQD ; 1.54 ; Dirhodium tetraacetate/ribonuclease A adduct in the P3221 space group (1 h soaking) 8OQE ; 1.5 ; Dirhodium tetraacetate/ribonuclease A adduct in the P3221 space group (6 h soaking) 5Y4M ; 1.31 ; Discoidin domain of human CASPR2 2XMY ; 1.9 ; Discovery and Characterisation of 2-Anilino-4-(thiazol-5-yl) pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents 2XNB ; 1.85 ; Discovery and Characterisation of 2-Anilino-4-(thiazol-5-yl) pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents 6I8S ; 2.9 ; Discovery and characterisation of an antibody that selectively modulates the inhibitory activity of plasminogen activator inhibitor-1 3PYY ; 1.85 ; Discovery and Characterization of a Cell-Permeable, Small-molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site 7YPD ; 1.27 ; Discovery and characterization of a new carbonyl reductase from Rhodotorula toluroides reducing fluoroketones, and X-ray analysis of the variant by rational engineering 5FIP ; 1.88 ; Discovery and characterization of a novel thermostable and highly halotolerant GH5 cellulase from an Icelandic hot spring isolate 6FAO ; 1.88 ; Discovery and characterization of a thermostable GH6 endoglucanase from a compost metagenome 5AIH ; 1.42 ; Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. CH55-sample-Native 5AII ; 1.47 ; Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. CH55-sample-PEG complex 5AIG ; 1.16 ; Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. Tomsk-sample- Valpromide complex 5AIF ; 1.26 ; Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries. Tomsk-sample-Native 3LDX ; 2.246 ; Discovery and Clinical Evaluation of RWJ-671818, a Thrombin Inhibitor with an Oxyguanidine P1 Motif 8STG ; 3.79 ; Discovery and clinical validation of RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations 8JBA ; 2.6 ; Discovery and Crystallography Study of Novel Oxadiazole Analogs as Small Molecule PD-1/PD-L1 inhibitors 7QH1 ; 2.74 ; Discovery and development of a novel inhaled antivirulence therapy for the treatment of Pseudomonas aeruginosa infections in patients with chronic respiratory disease 2JNR ; ; Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide 4F08 ; 2.82 ; Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2 4F09 ; 2.4 ; Discovery and Optimization of C-2 Methyl Imidazo-pyrrolopyridines as Potent and Orally Bioavailable JAK1 Inhibitors with Selectivity over JAK2 4AJW ; 2.8 ; Discovery and Optimization of New Benzimidazole- and Benzoxazole-Pyrimidone Selective PI3KBeta Inhibitors for the Treatment of Phosphatase and TENsin homologue (PTEN)-Deficient Cancers 4BFR ; 2.8 ; Discovery and Optimization of Pyrimidone Indoline Amide PI3Kbeta Inhibitors for the Treatment of Phosphatase and TENsin homologue (PTEN)-Deficient Cancers 6U5M ; 1.8 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U5Y ; 1.532 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U6W ; 1.2 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U80 ; 1.55 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U8B ; 1.261 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U8L ; 1.57 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 6U8O ; 1.6 ; Discovery and optimization of salicyclic acid-derived sulfonamide inhibitors of the WDR5:MYC protein-protein interaction 5IS5 ; 2.85 ; Discovery and Pharmacological Characterization of Novel Quinazoline-based PI3K delta-selective Inhibitors 7SQM ; 1.78 ; Discovery and Preclinical Pharmacology of INE963, A Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cure in Uncomplicated Malaria 3EMG ; 2.6 ; Discovery and SAR of novel 4-thiazolyl-2-phenylaminopyrimidines as potent inhibitors of spleen tyrosine kinase (SYK) 5XE5 ; 2.17 ; Discovery and structural analysis of a phloretin hydrolase from the opportunistic pathogen Mycobacterium abscessus 5XEY ; 1.82 ; Discovery and structural analysis of a phloretin hydrolase from the opportunistic pathogen Mycobacterium abscessus 3P2N ; 1.95 ; Discovery and structural characterization of a new glycoside hydrolase family abundant in coastal waters that was annotated as 'hypothetical protein' 5K5E ; 2.8 ; Discovery and Structure-Activity Relationships of a Highly Selective Butyrylcholinesterase Inhibitor by Structure-Based Virtual Screening 6UCS ; 1.85 ; Discovery and Structure-Based optimization of potent and selective WDR5 inhibitors containing a dihydroisoquinolinone bicyclic core 6JKE ; 1.5 ; Discovery and the crystal structure of NS5 in complex with the N-terminal bromodomain of BRD2. 4UWF ; 2.99 ; Discovery of (2S)-8-((3R)-3-Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one: a Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors 4UWG ; 2.7 ; Discovery of (2S)-8-((3R)-3-Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one: a Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors 4UWH ; 1.93 ; Discovery of (2S)-8-((3R)-3-Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one: a Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors 4UWK ; 2.83 ; Discovery of (2S)-8-((3R)-3-Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one: a Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors 4UWL ; 2.8 ; Discovery of (2S)-8-((3R)-3-Methylmorpholin-4-yl)-1-(3-methyl-2-oxo- butyl)-2-(trifluoromethyl)-3,4-dihydro-2H-pyrimido(1,2-a)pyrimidin-6- one: a Novel Potent and Selective Inhibitor of Vps34 for the Treatment of Solid Tumors 8UV0 ; 1.55 ; Discovery of (4-Pyrazolyl)-2-Aminopyrimidines as Potent and Selective Inhibitors of Cyclin-Dependent Kinase 2 3L16 ; 2.9 ; Discovery of (thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer 3L17 ; 3.0 ; Discovery of (thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer 5KE0 ; 1.68 ; Discovery of 1-1H-Pyrazolo 4,3-c pyridine-6-yl urea Inhibitors of Extracellular Signal Regulated Kinase ERK for the Treatment of Cancers 4RCH ; 2.3 ; Discovery of 2-Pyridyl Ureas as Glucokinase Activators 2GU8 ; 2.2 ; Discovery of 2-Pyrimidyl-5-Amidothiophenes as Novel and Potent Inhibitors for AKT: Synthesis and SAR Studies 6CPW ; 1.85 ; Discovery of 3(S)-thiomethyl pyrrolidine ERK inhibitors for oncology 5DGZ ; 2.502 ; Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors 3JXW ; 2.8 ; Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as Potent, Highly Selective and Orally Bioavailable Pim Kinases Inhibitors 3JY0 ; 2.4 ; Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as Potent, Highly Selective and Orally Bioavailable Pim Kinases Inhibitors 3JYA ; 2.1 ; Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as Potent, Highly Selective and Orally Bioavailable Pim Kinases Inhibitors 4O6E ; 1.95 ; Discovery of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine Inhibitors of Erk2 4N00 ; 1.8 ; Discovery of 7-THP chromans: BACE1 inhibitors that reduce A-beta in the CNS 3K5K ; 1.7 ; Discovery of a 2,4-Diamino-7-aminoalkoxy-quinazoline as a Potent Inhibitor of Histone Lysine Methyltransferase, G9a 5GXO ; 2.3 ; Discovery of a compound that activates SIRT3 to deacetylate Manganese Superoxide Dismutase 6LLC ; 2.501 ; Discovery of A Dual Inhibitor of NQO1 and GSTP1 for Treating Malignant Glioblastoma 6LLX ; 1.581 ; Discovery of A Dual Inhibitor of NQO1 and GSTP1 for Treating Malignant Glioblastoma 5VQJ ; 1.761 ; Discovery of a first GH11 exo-1,4-beta-xylanase from a diverse microbial sugar cane bagasse composting community 5V8O ; 3.1 ; Discovery of a high affinity inhibitor of cGAS 6NAO ; 3.23 ; Discovery of a high affinity inhibitor of cGAS 6D8E ; 2.537 ; Discovery of a Highly Potent and Broadly Effective EGFR and HER2 Exon 20 Insertion Mutant Inhibitor 7U8H ; 1.702 ; Discovery of a KRAS G12V Inhibitor in vivo Tool Compound starting from an HSQC-NMR based Fragment Hit 3R92 ; 1.5801 ; Discovery of a macrocyclic o-aminobenzamide Hsp90 inhibitor with heterocyclic tether that shows extended biomarker activity and in vivo efficacy in a mouse xenograft model. 5WHR ; 2.28 ; Discovery of a novel and selective IDO-1 inhibitor PF-06840003 and its characterization as a potential clinical candidate. 5LN2 ; 1.58 ; Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument 2X8D ; 1.9 ; Discovery of a Novel Class of triazolones as Checkpoint Kinase Inhibitors - Hit to Lead Exploration 2X8E ; 2.5 ; Discovery of a Novel Class of triazolones as Checkpoint Kinase Inhibitors - Hit to Lead Exploration 2X8I ; 1.92 ; Discovery of a Novel Class of triazolones as Checkpoint Kinase Inhibitors - Hit to Lead Exploration 2FLB ; 1.95 ; Discovery of a Novel Hydroxy Pyrazole Based Factor IXa Inhibitor 5G3M ; 1.85 ; Discovery of a novel secreted phospholipase A2 (sPLA2) inhibitor. 5G3N ; 1.8 ; Discovery of a novel secreted phospholipase A2 (sPLA2) inhibitor. 4KM3 ; 3.2 ; Discovery of a novel structural motif in methionine aminopeptidase from Streptococci with possible post-translational modification 6P5M ; 2.65 ; Discovery of a Novel, Highly Potent, and Selective Thieno[3,2-d]pyrimidinone-Based Cdc7 inhibitor with a Quinuclidine Moiety (TAK-931) as an Orally Active Investigational Anti-Tumor Agent 6P5P ; 3.3 ; Discovery of a Novel, Highly Potent, and Selective Thieno[3,2-d]pyrimidinone-Based Cdc7 inhibitor with a Quinuclidine Moiety (TAK-931) as an Orally Active Investigational Anti-Tumor Agent 3RWP ; 1.92 ; Discovery of a Novel, Potent and Selective Inhibitor of 3-Phosphoinositide Dependent Kinase (PDK1) 3RWQ ; 2.55 ; Discovery of a Novel, Potent and Selective Inhibitor of 3-Phosphoinositide Dependent Kinase (PDK1) 3ZIM ; 2.85 ; Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kalpha 4QVX ; 2.1 ; Discovery of a Potent and Selective BCL-XL Inhibitor That Demonstrates Thrombocytopenia and Inhibits Tumor Growth in Vivo 5BQH ; 1.601 ; Discovery of a Potent and Selective mPGES-1 Inhibitor for the Treatment of Pain 5BQI ; 1.88 ; Discovery of a Potent and Selective mPGES-1 Inhibitor for the Treatment of Pain 5U9D ; 1.33 ; Discovery of a potent BTK inhibitor with a novel binding mode using parallel selections with a DNA-encoded chemical library 5T9U ; 2.301 ; Discovery of a Potent Cyclophilin Inhibitor (Compound 3) based on Structural Simplification of Sanglifehrin A 5T9W ; 2.0 ; Discovery of a Potent Cyclophilin Inhibitor (Compound 5) based on Structural Simplification of Sanglifehrin A 5T9Z ; 1.4 ; Discovery of a Potent Cyclophilin Inhibitor (Compound 6) based on Structural Simplification of Sanglifehrin A 5TA2 ; 1.48 ; Discovery of a Potent Cyclophilin Inhibitor (Compound 7) based on Structural Simplification of Sanglifehrin A 5TA4 ; 1.5 ; Discovery of a Potent Cyclophilin Inhibitor (Compound 8) based on Structural Simplification of Sanglifehrin A 4BBX ; 2.5 ; Discovery of a potent, selective and orally active PDE10A inhibitor for the treatment of schizophrenia 3V5Q ; 2.2001 ; Discovery of a selective TRK Inhibitor with efficacy in rodent cancer tumor models 4AGW ; 2.6 ; Discovery of a small molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases 3RKZ ; 1.5693 ; Discovery of a stable macrocyclic o-aminobenzamide Hsp90 inhibitor capable of significantly decreasing tumor volume in a mouse xenograft model. 5J6D ; 1.9 ; Discovery of acyl guanidine tryptophan hydroxylase-1 inhibitors 6N9P ; 2.23 ; Discovery of affinity-based probes for Btk occupancy assay 3H0B ; 2.7 ; Discovery of aminoheterocycles as a novel beta-secretase inhibitor class 4B6E ; 2.46 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B6F ; 2.89 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B71 ; 2.5 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B73 ; 2.5 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B74 ; 2.18 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B75 ; 2.53 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 4B76 ; 2.14 ; Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function 7RN5 ; 2.28 ; Discovery of an Anion-Dependent Farnesyltransferase Inhibitor from a Phenotypic Screen 7RNI ; 1.978 ; Discovery of an Anion-Dependent Farnesyltransferase Inhibitor from a Phenotypic Screen 4MZ4 ; 1.63 ; Discovery of an Irreversible HCV NS5B Polymerase Inhibitor 7NQQ ; 1.943 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 7NQW ; 1.775 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 7NR3 ; 1.897 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 7NR5 ; 1.766 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 7NR8 ; 1.627 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 7NR9 ; 1.906 ; Discovery of ASTX029, a clinical candidate which modulates the phosphorylation and catalytic activity of ERK1/2 3BM9 ; 1.6 ; Discovery of Benzisoxazoles as Potent Inhibitors of Chaperone Hsp90 3BMY ; 1.6 ; Discovery of Benzisoxazoles as Potent Inhibitors of Chaperone Hsp90 4X2I ; 1.2 ; Discovery of benzotriazolo diazepines as orally-active inhibitors of BET bromodomains: Crystal structure of BRD4 with CPI-13 7D5L ; 2.15 ; Discovery of BMS-986144, a Third Generation, Pan Genotype NS3/4A Protease Inhibitor for the Treatment of Hepatitis C Virus Infection 3KSQ ; 2.1 ; Discovery of C-Imidazole Azaheptapyridine FPT Inhibitors 5O83 ; 2.9 ; Discovery of CDZ173 (leniolisib), Representing a Structurally Novel Class of PI3K Delta-Selective Inhibitors 2XP3 ; 2.0 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP4 ; 1.8 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP5 ; 1.9 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP6 ; 1.9 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP7 ; 2.0 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP8 ; 2.1 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XP9 ; 1.9 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XPA ; 1.9 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 2XPB ; 2.0 ; DISCOVERY OF CELL-ACTIVE PHENYL-IMIDAZOLE PIN1 INHIBITORS BY STRUCTURE-GUIDED FRAGMENT EVOLUTION 3ODK ; 2.3 ; Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution 2YDI ; 1.6 ; Discovery of Checkpoint Kinase Inhibitor AZD7762 by Structure Based Design and Optimization of Thiophene Carboxamide Ureas 2YDJ ; 1.85 ; Discovery of Checkpoint Kinase Inhibitor AZD7762 by Structure Based Design and Optimization of Thiophene Carboxamide Ureas 2YDK ; 1.9 ; Discovery of Checkpoint Kinase Inhibitor AZD7762 by Structure Based Design and Optimization of Thiophene Carboxamide Ureas 5VP0 ; 2.2 ; Discovery of Clinical Candidate N-{(1S)-1-[3-Fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915), A Highly Potent, Selective, and Brain-Penetrating Phosphodiesterase 2A Inhibitor for the Treatment of Cognitive Disorders 5VP1 ; 1.86 ; Discovery of Clinical Candidate N-{(1S)-1-[3-Fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915), A Highly Potent, Selective, and Brain-Penetrating Phosphodiesterase 2A Inhibitor for the Treatment of Cognitive Disorders 4X1I ; 3.11 ; Discovery of cytotoxic Dolastatin 10 analogs with N-terminal modifications 4X1K ; 3.5 ; Discovery of cytotoxic Dolastatin 10 analogs with N-terminal modifications 4X1Y ; 3.19 ; Discovery of cytotoxic Dolastatin 10 analogs with N-terminal modifications 4X20 ; 3.5 ; Discovery of cytotoxic Dolastatin 10 analogs with N-terminal modifications 4ZYC ; 1.95 ; Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53-MDM2 interaction with a distinct binding mode: Hdm2 (MDM2) complexed with cpd5 3OW3 ; 1.9 ; Discovery of dihydrothieno- and dihydrofuropyrimidines as potent pan Akt inhibitors 3OW4 ; 2.6 ; Discovery of dihydrothieno- and dihydrofuropyrimidines as potent pan Akt inhibitors 4NCG ; 2.58 ; Discovery of Doravirine, an orally bioavailable non-nucleoside reverse transcriptase inhibitor potent against a wide range of resistant mutant HIV viruses 7FGT ; ; Discovery of DS15060524; Gene targeting chimera (GeneTAC) for the treatment of Friedreich's Ataxia (FRDA) 4C66 ; 1.87 ; Discovery of Epigenetic Regulator I-BET762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the BET Bromodomains 4C67 ; 1.55 ; Discovery of Epigenetic Regulator I-BET762: Lead Optimization to Afford a Clinical Candidate Inhibitor of the BET Bromodomains 6UJH ; 1.493 ; Discovery of fragment-inspired heterocyclic benzenesulfonamides as inhibitors of the WDR5-MYC interaction 6UJJ ; 1.731 ; Discovery of fragment-inspired heterocyclic benzenesulfonamides as inhibitors of the WDR5-MYC interaction 6UJL ; 1.599 ; Discovery of fragment-inspired heterocyclic benzenesulfonamides as inhibitors of the WDR5-MYC interaction 6UIF ; 1.603 ; Discovery of fragment-inspired heterocyclic benzenesulfonmides as inhibitors of the WDR5-MYC interaction 6UIK ; 1.6 ; Discovery of fragment-inspired heterocyclic benzenesulfonmides as inhibitors of the WDR5-MYC interaction 6UJ4 ; 1.53 ; Discovery of fragment-inspired heterocyclic benzenesulfonmides as inhibitors of the WDR5-MYC interaction 6UOZ ; 1.532 ; Discovery of fragment-inspired heterocyclic benzenesulfonmides as inhibitors of the WDR5-MYC interaction 7DV6 ; 2.39 ; Discovery of Functionally Selective Transforming Growth Factor beta Type II Receptor (TGF-beta RII) Inhibitors as Anti-Fibrosis Agents 3TL5 ; 2.788 ; Discovery of GDC-0980: a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor for the Treatment of Cancer 4CZS ; 1.73 ; Discovery of Glycomimetic Ligands via Genetically-encoded Library of Phage displaying Mannose-peptides 6X5J ; 2.513 ; Discovery of Hydroxy Pyrimidine Factor IXa Inhibitors 6X5L ; 2.246 ; Discovery of Hydroxy Pyrimidine Factor IXa Inhibitors 6X5P ; 1.997 ; Discovery of Hydroxy Pyrimidine Factor IXa Inhibitors 5IU2 ; 2.7 ; Discovery of imidazoquinolines as a novel class of potent, selective and in vivo efficacious COT kinase inhibitors 5FI4 ; 2.5 ; Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model 8ATB ; 2.35 ; Discovery of IRAK4 Inhibitor 16 8ATL ; 2.464 ; Discovery of IRAK4 Inhibitor 23 8ATN ; 2.171 ; Discovery of IRAK4 Inhibitor 38 8BR6 ; 2.167 ; Discovery of IRAK4 Inhibitor 40 8BR5 ; 2.7 ; Discovery of IRAK4 Inhibitor 41 8BR7 ; 2.119 ; Discovery of IRAK4 Inhibitors BAY1834845 and BAY1830839 7QPF ; 1.7 ; Discovery of Lu AF11167, a Phosphodiesterase 10A inhibitor clinical candidate 7QPM ; 2.4 ; Discovery of Lu AF11167, a Phosphodiesterase 10A inhibitor clinical candidate 7QPQ ; 2.2 ; Discovery of Lu AF11167, a Phosphodiesterase 10A inhibitor clinical candidate 7QPV ; 2.3 ; Discovery of Lu AF11167, a Phosphodiesterase 10A inhibitor clinical candidate 7QQ4 ; 2.45 ; Discovery of Lu AF11167, a Phosphodiesterase 10A inhibitor clinical candidate 6U06 ; 1.96 ; Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking 6U09 ; 1.79 ; Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking 6ZJZ ; 2.489 ; Discovery of M5049: a novel selective TLR7/8 inhibitor for treatment of autoimmunity 8DI4 ; 2.016 ; Discovery of MK-8189, a highly potent and selective PDE10A inhibitor for the treatment of schizophrenia 6DCG ; 1.45 ; Discovery of MK-8353: An Orally Bioavailable Dual Mechanism ERK Inhibitor for Oncology 5U6I ; 1.69 ; Discovery of MLi-2, an Orally Available and Selective LRRK2 Inhibitor that Reduces Brain Kinase Activity 5J87 ; 1.59 ; Discovery of N-(3-(5-((3-acrylamido-4-(morpholine-4-carbonyl)phenyl)amino)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-2-methylphenyl)-4-(tert-butyl)benzamide (CHMFL-BTK-01) as a Highly Selective Irreversible BTK Kinase Inhibitor 4MDS ; 1.598 ; Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and non-covalent nanomolar inhibitors with an induced-fit binding 3S85 ; 2.8 ; Discovery of New HIV Protease Inhibitors with Potential for Convenient Dosing and Reduced Side Effects: A-790742 and A-792611. 5LAY ; 2.71 ; Discovery of New Natural-product-inspired Spiro-oxindole Compounds as Orally Active Inhibitors of the MDM2-p53 Interaction: HDM2 (MDM2) IN COMPLEX WITH COMPOUND 6g 5G3J ; 2.4 ; Discovery of New Selective Glucocorticoid Receptor Agonist Leads 5WEX ; 1.26 ; Discovery of new selenoureido analogs of 4-(4-fluorophenylureido) benzenesulfonamides as carbonic anhydrase inhibitors 2X5O ; 1.46 ; Discovery of Novel 5-Benzylidenerhodanine- and 5-Benzylidene- thiazolidine-2,4-dione Inhibitors of MurD Ligase 5HKM ; 2.1 ; DISCOVERY OF NOVEL 7-AZAINDOLES AS PDK1 INHIBITORS 5HNG ; 3.01 ; DISCOVERY OF NOVEL 7-AZAINDOLES AS PDK1 INHIBITORS 5HO7 ; 3.0 ; DISCOVERY OF NOVEL 7-AZAINDOLES AS PDK1 INHIBITORS 5HO8 ; 2.7 ; DISCOVERY OF NOVEL 7-AZAINDOLES AS PDK1 INHIBITORS 3V01 ; 2.705 ; Discovery of Novel Allosteric MEK Inhibitors Possessing Classical and Non-classical Bidentate Ser212 Interactions. 3V04 ; 2.7 ; Discovery of Novel Allosteric MEK Inhibitors Possessing Classical and Non-classical Bidentate Ser212 Interactions. 5TNO ; 1.54 ; Discovery of novel aminobenzisoxazole derivatives as orally available factor IXa inhibitors 5TNT ; 1.4 ; Discovery of novel aminobenzisoxazole derivatives as orally available factor IXa inhibitors 3PDF ; 1.85 ; Discovery of Novel Cyanamide-Based Inhibitors of Cathepsin C 2F9B ; 2.54 ; Discovery of Novel Heterocyclic Factor VIIa Inhibitors 3HQW ; 1.7 ; Discovery of novel inhibitors of PDE10A 3HQY ; 2.0 ; Discovery of novel inhibitors of PDE10A 3HQZ ; 1.7 ; Discovery of novel inhibitors of PDE10A 3HR1 ; 1.53 ; Discovery of novel inhibitors of PDE10A 4XIP ; 1.7 ; Discovery of novel oxazepine and diazepine carboxamides as two new classes of heat shock protein 90 inhibitors 4XIQ ; 1.84 ; Discovery of novel oxazepine and diazepine carboxamides as two new classes of heat shock protein 90 inhibitors 4XIR ; 1.7 ; Discovery of novel oxazepine and diazepine carboxamides as two new classes of heat shock protein 90 inhibitors 4XIT ; 1.86 ; Discovery of novel oxazepine and diazepine carboxamides as two new classes of heat shock protein 90 inhibitors 8K5N ; 2.2 ; Discovery of Novel PD-L1 Inhibitors That Induce Dimerization and Degradation of PD-L1 Based on Fragment Coupling Strategy 6L3X ; 2.3054 ; Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo 6L40 ; 2.209 ; Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo 7DY7 ; 2.42 ; Discovery of Novel Small-molecule Inhibitors of PD-1/PD-L1 Axis that Promotes PD-L1 Internalization and Degradation 3ARA ; 1.7 ; Discovery of Novel Uracil Derivatives as Potent Human dUTPase Inhibitors 4QYY ; 1.65 ; Discovery of Novel, Dual Mechanism ERK Inhibitors by Affinity Selection Screening of an Inactive Kinase State 5I4V ; 2.61 ; Discovery of novel, orally efficacious Liver X Receptor (LXR) beta agonists 4ZYI ; 1.67 ; Discovery of NVP-CGM097 - a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors: Hdm2 (MDM2) complexed with cpd2 4ZYF ; 1.8 ; Discovery of NVP-CGM097 - a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors: Hdm2 (MDM2) complexed with NVP-CGM097 4B6L ; 1.9 ; Discovery of Oral Polo-Like Kinase (PLK) Inhibitors with Enhanced Selectivity Profile using Residue Targeted Drug Design 3UI7 ; 2.28 ; Discovery of orally active pyrazoloquinoline as a potent PDE10 inhibitor for the management of schizophrenia 5LWP ; 2.4 ; Discovery of phenoxyindazoles and phenylthioindazoles as RORg inverse agonists 6D9X ; 1.83 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 6DAI ; 1.63 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 6DAK ; 1.6 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 6DAR ; 1.88 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 6DAS ; 1.8 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 6E1Y ; 1.219 ; Discovery of Potent 2-Aryl-6,7-Dihydro-5HPyrrolo[ 1,2-a]imidazoles as WDR5 WIN-site Inhibitors Using Fragment-Based Methods and Structure-Based Design 4LTS ; 1.692 ; Discovery of Potent and Efficacious Cyanoguanidine-containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors 4LWW ; 1.641 ; Discovery of Potent and Efficacious Cyanoguanidine-containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors 4JNM ; 2.2 ; Discovery of Potent and Efficacious Urea-containing Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors with Reduced CYP2C9 Inhibition Properties 3V6R ; 2.6 ; Discovery of potent and selective covalent inhibitors of JNK 3V6S ; 2.97 ; Discovery of potent and selective covalent inhibitors of JNK 6K1S ; 2.6 ; Discovery of Potent and Selective Covalent Protein Arginine Methyltransferase (PRMT5) Inhibitors 4HW2 ; 2.8 ; Discovery of potent Mcl-1 inhibitors using fragment-based methods and structure-based design 4HW3 ; 2.4 ; Discovery of potent Mcl-1 inhibitors using fragment-based methods and structure-based design 4HW4 ; 1.53 ; Discovery of potent Mcl-1 inhibitors using fragment-based methods and structure-based design 6NE5 ; 1.85 ; Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors that Demonstrate in vivo Activity in Mouse Xenograft Models of Human Cancer 5IEZ ; 2.6 ; Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) inhibitors using Structure-Based Design 5IF4 ; 2.392 ; Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) inhibitors using Structure-Based Design 7UAS ; 1.808 ; Discovery of Potent Orally Bioavailable WD Repeat Domain 5 (WDR5) Inhibitors Using a Pharmacophore-Based Optimization 1BQO ; 2.3 ; DISCOVERY OF POTENT, ACHIRAL MATRIX METALLOPROTEINASE INHIBITORS 2H96 ; 3.0 ; Discovery of Potent, Highly Selective, and Orally Bioavailable Pyridine Carboxamide C-jun NH2-terminal Kinase Inhibitors 2HVX ; 2.6 ; Discovery of Potent, Orally Active, Nonpeptide Inhibitors of Human Mast Cell Chymase by Using Structure-Based Drug Design 6K9U ; 2.35 ; Discovery of Pyrazolo[1,5-a]pyrimidine Derivative as a Highly Selective PDE10A Inhibitor 4MBI ; 2.3 ; Discovery of Pyrazolo[1,5a]pyrimidine-based Pim1 Inhibitors 4MBL ; 2.6 ; Discovery of Pyrazolo[1,5a]pyrimidine-based Pim1 Inhibitors 4UVH ; 1.89 ; Discovery of pyrimidine isoxazoles InhA in complex with compound 10 4UVG ; 1.92 ; Discovery of pyrimidine isoxazoles InhA in complex with compound 15 4UVI ; 1.73 ; Discovery of pyrimidine isoxazoles InhA in complex with compound 23 4UVD ; 1.82 ; Discovery of pyrimidine isoxazoles InhA in complex with compound 6 4UVE ; 1.99 ; Discovery of pyrimidine isoxazoles InhA in complex with compound 9 3UFL ; 1.9 ; Discovery of Pyrrolidine-based b-Secretase Inhibitors: Lead Advancement through Conformational Design for Maintenance of Ligand Binding Efficiency 7WO1 ; 2.15 ; Discovery of SARS-CoV-2 3CLpro peptidomimetic inhibitors through H41-specific protein-ligand interactions 6VRV ; 1.74 ; Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model 4HEJ ; 2.0 ; Discovery of Selective and Potent Inhibitors of Gram-positive Bacterial Thymidylate Kinase (TMK): Compund 16 4HDC ; 2.05 ; Discovery of Selective and Potent Inhibitors of Gram-positive Bacterial Thymidylate Kinase (TMK: Compound 41) 7X6T ; 1.44 ; Discovery of Selective BRD4 BD1 Inhibitor Based on [1,2,4] triazolo [4,3-b] pyridazine Scaffold 7M40 ; 1.88 ; Discovery of small molecule antagonists of human Retinoblastoma Binding Protein 4 (RBBP4) 5OCG ; 1.48 ; Discovery of small molecules binding to KRAS via high affinity antibody fragment competition method. 5OCO ; 1.66 ; Discovery of small molecules binding to KRAS via high affinity antibody fragment competition method. 5OCT ; 2.07 ; Discovery of small molecules binding to KRAS via high affinity antibody fragment competition method. 4EPT ; 2.0 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-mediated Activation 4EPV ; 1.35 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-mediated Activation 4EPW ; 1.7 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-mediated Activation 4EPX ; 1.76 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-mediated Activation 4EPY ; 1.801 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-mediated Activation 4EPR ; 2.0 ; Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation. 7LJE ; 2.607 ; Discovery of Spirohydantoins as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases 5KOQ ; 2.7 ; Discovery of TAK-272: A Novel, Potent and Orally Active Renin In-hibitor 5KOS ; 2.41 ; Discovery of TAK-272: A Novel, Potent and Orally Active Renin In-hibitor 5KOT ; 2.1 ; Discovery of TAK-272: A Novel, Potent and Orally Active Renin In-hibitor 5TR6 ; 1.93 ; Discovery of TAK-659, an Orally Available Investigational Inhibitor of Spleen Tyrosine Kinase (SYK) 5TT7 ; 1.77 ; Discovery of TAK-659, an Orally Available Investigational Inhibitor of Spleen Tyrosine Kinase (SYK) 3KL6 ; 1.45 ; Discovery of Tetrahydropyrimidin-2(1H)-one derivative TAK-442: A potent, selective and orally active factor Xa inhibitor 8RIJ ; 1.96 ; Discovery of the first orally bioavailable ADAMTS7 inhibitor BAY-9835 2OBQ ; 2.5 ; Discovery of the HCV NS3/4A Protease Inhibitor SCH503034. Key Steps in Structure-Based Optimization 3ML8 ; 2.7 ; Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04691502 through Structure Based Drug Design 3ML9 ; 2.55 ; Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04691502 through Structure Based Drug Design 8CAR ; 2.68 ; Discovery of the lanthipeptide Curvocidin and structural insights into its trifunctional synthetase CuvL 8CAV ; 2.87 ; Discovery of the lanthipeptide Curvocidin and structural insights into its trifunctional synthetase CuvL 6IVX ; 2.35 ; Discovery of the Second Generation ROR gamma Inhibitors Composed of an Azole Scaffold. 4J6I ; 2.9 ; Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase beta isoform 4YTC ; 2.16 ; Discovery of VX-509 (Decernotinib): A Potent and Selective Janus kinase (JAK) 3 Inhibitor for the Treatment of Autoimmune Disease 4YTI ; 2.52 ; Discovery of VX-509 (Decernotinib): A Potent and Selective Janus kinase (JAK) 3 Inhibitor for the Treatment of Autoimmune Disease 4YTF ; 1.78 ; Discovery of VX-509 (Decernotinib): A Potent and Selective Janus kinase (JAK) 3 Inhibitor for the Treatment of Autoimmune Diseases 4YTH ; 2.04 ; Discovery of VX-509 (Decernotinib): A Potent and Selective Janus kinase (JAK) 3 Inhibitor for the Treatment of Autoimmune Diseases 3FLI ; 2.0 ; Discovery of XL335, a Highly Potent, Selective and Orally-Active Agonist of the Farnesoid X Receptor (FXR) 5NES ; 1.606 ; Discovery, crystal structures and atomic force microscopy study of thioether ligated D,L-cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa 5NEY ; 1.55 ; Discovery, crystal structures and atomic force microscopy study of thioether ligated D,L-cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa 5NF0 ; 1.271 ; Discovery, crystal structures and atomic force microscopy study of thioether ligated D,L-cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa 2AB9 ; ; Discovery, structural determination and processing of the precursor protein that produces the cyclic trypsin inhibitor SFTI-1 5FLF ; 2.58 ; DISEASE LINKED MUTATION IN FGFR 3BIR ; 1.8 ; DISECTING HISTIDINE INTERACTIONS IN RIBONUCLEASE T1 BY ASN AND GLN SUBSTITUTIONS 5BIR ; 2.0 ; DISECTING HISTIDINE INTERACTIONS IN RIBONUCLEASE T1 USING ASN AND GLN MUTATIONS 3FY5 ; 2.4 ; Dishevelled PDZ domain homodimer 464D ; 1.23 ; DISORDER AND TWIN REFINEMENT OF RNA HEPTAMER DOUBLE HELIX 466D ; 1.16 ; DISORDER AND TWIN REFINEMENT OF RNA HEPTAMER DOUBLE HELIX 6E1Z ; 1.1 ; Displacement of WDR5 from chromatin by a pharmacological WIN site inhibitor with picomolar affinity 6E22 ; 1.6 ; Displacement of WDR5 from chromatin by a pharmacological WIN site inhibitor with picomolar affinity 6E23 ; 1.66 ; Displacement of WDR5 from chromatin by a pharmacological WIN site inhibitor with picomolar affinity 5JR8 ; 2.65 ; Disposal of Iron by a Mutant form of Siderocalin NGAL 5CSY ; 2.05 ; Disproportionating enzyme 1 from Arabidopsis - acarbose soak 5CSU ; 2.53 ; Disproportionating enzyme 1 from Arabidopsis - acarviostatin soak 5CPQ ; 2.13 ; Disproportionating enzyme 1 from Arabidopsis - apo form 5CPT ; 2.3 ; Disproportionating enzyme 1 from Arabidopsis - beta cyclodextrin soak 5CQ1 ; 2.3 ; Disproportionating enzyme 1 from Arabidopsis - cycloamylose soak 5CPS ; 1.8 ; Disproportionating enzyme 1 from Arabidopsis - maltotriose soak 6B1I ; 2.3 ; Disrupted hydrogen bond network impairs ATPase activity in an Hsc70 cysteine mutant 6B1M ; 1.9 ; Disrupted hydrogen bond network impairs ATPase activity in an Hsc70 cysteine mutant 6B1N ; 1.8 ; Disrupted hydrogen bond network impairs ATPase activity in an Hsc70 cysteine mutant 3K74 ; 1.95 ; Disruption of protein dynamics by an allosteric effector antibody 1O5A ; 1.68 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5B ; 1.85 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5C ; 1.63 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5D ; 2.05 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5E ; 1.75 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5F ; 1.78 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1O5G ; 1.75 ; Dissecting and Designing Inhibitor Selectivity Determinants at the S1 site Using an Artificial Ala190 Protease (Ala190 uPA) 1HV0 ; 1.6 ; DISSECTING ELECTROSTATIC INTERACTIONS AND THE PH-DEPENDENT ACTIVITY OF A FAMILY 11 GLYCOSIDASE 1HV1 ; 1.8 ; DISSECTING ELECTROSTATIC INTERACTIONS AND THE PH-DEPENDENT ACTIVITY OF A FAMILY 11 GLYCOSIDASE 3J28 ; 12.9 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J29 ; 14.0 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2A ; 13.1 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2B ; 13.6 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2C ; 13.2 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2D ; 18.7 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2E ; 15.3 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2F ; 17.6 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2G ; 16.5 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 3J2H ; 18.8 ; Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM 2AB4 ; 2.4 ; Dissecting the Roles of a Strictly Conserved Tyrosine in Substrate Recognition and Catalysis by Pseudouridine 55 Synthase 5HD7 ; 1.69 ; Dissecting Therapeutic Resistance to ERK Inhibition Rat Mutant SCH772984 in complex with (3R)-1-(2-oxo-2-{4-[4-(pyrimidin-2-yl)phenyl]piperazin-1-yl}ethyl)-N-[3-(pyridin-4-yl)-2H-indazol-5-yl]pyrrolidine-3-carboxamide 5HD4 ; 1.45 ; Dissecting Therapeutic Resistance to ERK Inhibition Rat Wild Type SCH772984 in complex with (3R)-1-(2-oxo-2-{4-[4-(pyrimidin-2-yl)phenyl]piperazin-1-yl}ethyl)-N-[3-(pyridin-4-yl)-2H-indazol-5-yl]pyrrolidine-3-carboxamide 1LYE ; 1.8 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 1LYF ; 1.8 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 1LYG ; 1.8 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 1LYH ; 1.7 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 1LYI ; 2.0 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 1LYJ ; 1.8 ; DISSECTION OF HELIX CAPPING IN T4 LYSOZYME BY STRUCTURAL AND THERMODYNAMIC ANALYSIS OF SIX AMINO ACID SUBSTITUTIONS AT THR 59 2BO4 ; 1.95 ; Dissection of mannosylglycerate synthase: an archetypal mannosyltransferase 2BO6 ; 2.45 ; DISSECTION OF MANNOSYLGLYCERATE SYNTHASE: AN ARCHETYPAL MANNOSYLTRANSFERASE 2BO7 ; 2.95 ; DISSECTION OF MANNOSYLGLYCERATE SYNTHASE: AN ARCHETYPAL MANNOSYLTRANSFERASE 2BO8 ; 2.8 ; DISSECTION OF MANNOSYLGLYCERATE SYNTHASE: AN ARCHETYPAL MANNOSYLTRANSFERASE 1LZA ; 1.6 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1LZB ; 1.5 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1LZC ; 1.8 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1LZD ; 1.8 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1LZE ; 1.8 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1LZG ; 1.8 ; DISSECTION OF PROTEIN-CARBOHYDRATE INTERACTIONS IN MUTANT HEN EGG-WHITE LYSOZYME COMPLEXES AND THEIR HYDROLYTIC ACTIVITY 1TAY ; 1.7 ; DISSECTION OF THE FUNCTIONAL ROLE OF STRUCTURAL ELEMENTS OF TYROSINE-63 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME 1TBY ; 1.77 ; DISSECTION OF THE FUNCTIONAL ROLE OF STRUCTURAL ELEMENTS OF TYROSINE-63 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME 1TCY ; 1.7 ; DISSECTION OF THE FUNCTIONAL ROLE OF STRUCTURAL ELEMENTS OF TYROSINE-63 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME 1TDY ; 1.7 ; DISSECTION OF THE FUNCTIONAL ROLE OF STRUCTURAL ELEMENTS OF TYROSINE-63 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME 2NAP ; 1.9 ; DISSIMILATORY NITRATE REDUCTASE (NAP) FROM DESULFOVIBRIO DESULFURICANS 3MM7 ; 1.9 ; Dissimilatory sulfite reductase carbon monoxide complex 3MM6 ; 1.9 ; Dissimilatory sulfite reductase cyanide complex 3MMB ; 2.3 ; Dissimilatory sulfite reductase in complex with the endproduct sulfide 3MM5 ; 1.8 ; Dissimilatory sulfite reductase in complex with the substrate sulfite 3MM8 ; 2.28 ; Dissimilatory sulfite reductase nitrate complex 3MM9 ; 2.1 ; Dissimilatory sulfite reductase nitrite complex 3MMA ; 2.3 ; Dissimilatory sulfite reductase phosphate complex 7R10 ; 4.0 ; Dissociated S1 domain of Alpha Variant SARS-CoV-2 Spike bound to ACE2 7R0Z ; 3.5 ; Dissociated S1 domain of Alpha Variant SARS-CoV-2 Spike bound to ACE2 (Non-Uniform Refinement) 7R11 ; 3.5 ; Dissociated S1 domain of Beta Variant SARS-CoV-2 Spike bound to ACE2 (Non-Uniform Refinement) 7R12 ; 3.3 ; Dissociated S1 domain of Mink Variant SARS-CoV-2 Spike bound to ACE2 (Non-Uniform Refinement) 7A91 ; 3.6 ; Dissociated S1 domain of SARS-CoV-2 Spike bound to ACE2 (Non-Uniform Refinement) 7A92 ; 4.2 ; Dissociated S1 domain of SARS-CoV-2 Spike bound to ACE2 (Unmasked Refinement) 5OI2 ; 2.2 ; Dissociation of biochemical and antiretroviral activities of Integrase-LEDGF Allosteric Inhibitors revealed by resistance of A125 polymorphic HIV-1 5OI3 ; 2.3 ; Dissociation of biochemical and antiretroviral activities of Integrase-LEDGF Allosteric Inhibitors revealed by resistance of A125 polymorphic HIV-1 5OI5 ; 2.4 ; Dissociation of biochemical and antiretroviral activities of Integrase-LEDGF Allosteric Inhibitors revealed by resistance of A125 polymorphic HIV-1 5OI8 ; 2.35 ; Dissociation of biochemical and antiretroviral activities of Integrase-LEDGF Allosteric Inhibitors revealed by resistance of A125 polymorphic HIV-1 5OIA ; 2.2 ; Dissociation of biochemical and antiretroviral activities of Integrase-LEDGF Allosteric Inhibitors revealed by resistance of A125 polymorphic HIV-1 2QFE ; 1.45 ; Distal C2-Like Domain of Human Calpain-7 4ATJ ; 2.5 ; DISTAL HEME POCKET MUTANT (H42E) OF RECOMBINANT HORSERADISH PEROXIDASE IN COMPLEX WITH BENZHYDROXAMIC ACID 1KZM ; 2.0 ; Distal Heme Pocket Mutant (R38S/H42E) of Recombinant Horseradish Peroxidase C (HRP C). 1YCA ; 2.9 ; DISTAL POCKET POLARITY IN LIGAND BINDING TO MYOGLOBIN: DEOXY AND CARBONMONOXY FORMS OF A THREONINE68 (E11) MUTANT INVESTIGATED BY X-RAY CRYSTALLOGRAPHY AND INFRARED SPECTROSCOPY 1YCB ; 2.1 ; DISTAL POCKET POLARITY IN LIGAND BINDING TO MYOGLOBIN: DEOXY AND CARBONMONOXY FORMS OF A THREONINE68 (E11) MUTANT INVESTIGATED BY X-RAY CRYSTALLOGRAPHY AND INFRARED SPECTROSCOPY 1MYJ ; 1.9 ; DISTAL POLARITY IN LIGAND BINDING TO MYOGLOBIN: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF A THREONINE68(E11) MUTANT 4JRC ; 2.673 ; Distal Stem I region from G. kaustophilus glyQS T box RNA 2W8D ; 2.35 ; Distinct and essential morphogenic functions for wall- and lipo- teichoic acids in Bacillus subtilis 6XR8 ; 2.9 ; Distinct conformational states of SARS-CoV-2 spike protein 6XRA ; 3.0 ; Distinct conformational states of SARS-CoV-2 spike protein 2GJD ; 1.75 ; Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress 6M2C ; 2.702 ; Distinct mechanism of MUL1-RING domain simultaneously recruiting E2 enzyme and the substrate p53-TAD domain 1MMM ; 2.2 ; DISTINCT METAL ENVIRONMENT IN IRON-SUBSTITUTED MANGANESE SUPEROXIDE DISMUTASE PROVIDES A STRUCTURAL BASIS OF METAL SPECIFICITY 3EL3 ; 3.3 ; Distinct Monooxygenase and Farnesene Synthase Active Sites in Cytochrome P450 170A1 3FX8 ; 2.44 ; Distinct recognition of three-way DNA junctions by a thioester variant of a metallo-supramolecular cylinder ('helicate') 3I1D ; 2.5 ; Distinct recognition of three-way DNA junctions by the two enantiomers of a metallo-supramolecular cylinder ('helicate') 4NNU ; 2.81 ; Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation 4NOD ; 2.897 ; Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation 2LZ6 ; ; Distinct ubiquitin binding modes exhibited by sh3 domains: molecular determinants and functional implications 2MCN ; ; Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications 5AGZ ; 1.2 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AH6 ; 1.5 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AH7 ; 1.55 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AH8 ; 1.26 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AH9 ; 1.44 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AHA ; 1.35 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AHB ; 1.5 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5AHC ; 1.5 ; Disubstituted bis-THF moieties as new P2 ligands in non-peptidal HIV- 1 Protease Inhibitors (II) 5L6N ; 1.627 ; Disulfated madanin-thrombin complex 6FX4 ; 2.5 ; Disulfide between E3 HECT ligase Smurf2 and Ubiquitin G76C 6FYH ; 2.906 ; Disulfide between ubiquitin G76C and the E3 HECT ligase Huwe1 4EDI ; 1.998 ; Disulfide bonded EutL from Clostridium perfringens 3OJW ; 2.2 ; Disulfide crosslinked cytochrome P450 reductase inactive 3OJX ; 2.5 ; Disulfide crosslinked cytochrome P450 reductase inactive 1MJV ; 2.1 ; DISULFIDE DEFICIENT MUTANT OF VASCULAR ENDOTHELIAL GROWTH FACTOR A (C51A and C60A) 1MKG ; 2.5 ; DISULFIDE DEFICIENT MUTANT OF VASCULAR ENDOTHELIAL GROWTH FACTOR A (C57A and C102A) 1MKK ; 1.32 ; Disulfide deficient mutant of vascular endothelial growth factor A (C61A and C104A) 1LK0 ; 1.6 ; Disulfide intermediate of C89L Arsenate reductase from pI258 4ML1 ; 1.978 ; Disulfide isomerase (DsbP) from multidrug resistance IncA/C transferable plasmid in oxidized state (P212121 space group) 4ML6 ; 2.3 ; Disulfide isomerase from multidrug resistance IncA/C conjugative plasmid in reduced state 4MLY ; 2.207 ; Disulfide isomerase from multidrug resistance IncA/C related integrative and conjugative elements in oxidized state (P21 space group) 4XRO ; 2.01 ; Disulfide stabilized HIV-1 CA hexamer 4mut (S41A, Q67H, V165I, L172I) 4XRQ ; 1.95 ; Disulfide stabilized HIV-1 CA hexamer 4mut (S41A, Q67H, V165I, L172I) in complex with PF-3450074 7RMJ ; 2.27 ; Disulfide stabilized HIV-1 CA hexamer in complex with capsid inhibitor (S)-N-(1-(3-(4-chloro-3-(methylsulfonamido)-1-(2,2,2-trifluoroethyl)-1H-indazol-7-yl)-6-(3-methyl-3-(methylsulfonyl)but-1-yn-1-yl)pyridin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-(3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazol-1-yl)acetamide 7SNN ; 2.37 ; Disulfide stabilized HIV-1 CA hexamer in complex with capsid inhibitor N-(1-(3-(4-chloro-1-methyl-3-(methylsulfonamido)-1H-indazol-7-yl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-(3-(difluoromethyl)-5,6-dihydrocyclopenta[c]pyrazol-1(4H)-yl)acetamide 7SNL ; 2.39 ; Disulfide stabilized HIV-1 CA hexamer in complex with capsid inhibitor N-(1-(3-(4-chloro-1-methyl-3-(methylsulfonamido)-1H-indazol-7-yl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)-2-(3,5-difluorophenyl)ethyl)-2-(3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazol-1-yl)acetamide 4QNB ; 1.996 ; Disulfide stabilized HIV-1 CA hexamer in complex with PHENYL-L-PHENYLALANINAMIDE inhibitor 7KJP ; 3.86 ; Disulfide Stabilized Norovirus GI.1 VLP Shell Region 4M5T ; 2.0 ; Disulfide trapped human alphaB crystallin core domain in complex with C-terminal peptide 5XBD ; ; Disulfide-constrained Wound Healing Peptide Derived from Pereskia bleo 1AR2 ; 2.8 ; DISULFIDE-FREE IMMUNOGLOBULIN FRAGMENT 6AI5 ; 1.81 ; Disulfide-free, Zn-directed tetramer of the engineered cyt cb562 variant, C96T/A104AB3 2OJ1 ; 2.3 ; Disulfide-linked dimer of azurin N42C/M64E double mutant 6ZD0 ; 4.6 ; Disulfide-locked early prepore intermedilysin-CD59 7TV5 ; ; Disulfide-rich venom peptide lasiocepsin: P20A mutant 8TY6 ; 3.3 ; Disulfide-stabilized HIV-1 CA hexamer in complex with PQBP1 Nt 1ZDC ; ; DISULFIDE-STABILIZED MINI PROTEIN A DOMAIN, Z34C, NMR, 24 STRUCTURES 1ZDD ; ; DISULFIDE-STABILIZED MINI PROTEIN A DOMAIN, Z34C, NMR, MINIMIZED MEAN STRUCTURE 2N65 ; ; Disulphide linked homodimer of designed antimicrobial peptide VG16KRKP 3SBB ; 1.434 ; Disulphide-mediated Tetramer of T4 Lysozyme R76C/R80C by Synthetic Symmetrization 1B0Q ; ; DITHIOL ALPHA MELANOTROPIN PEPTIDE CYCLIZED VIA RHENIUM METAL COORDINATION 7C10 ; 2.806 ; Dithiol cGrx1 7ZXZ ; 1.45 ; dithiol-ligand bound to streptavidin 4U2L ; 1.337 ; Dithionite reduced cholesterol in complex with sulfite 2DMR ; 2.8 ; DITHIONITE REDUCED DMSO REDUCTASE FROM RHODOBACTER CAPSULATUS 1PIM ; 2.0 ; DITHIONITE REDUCED E. COLI RIBONUCLEOTIDE REDUCTASE R2 SUBUNIT, D84E MUTANT 4X9N ; 2.499 ; Dithionite reduced L-alpha-Glycerophosphate Oxidase from Mycoplasma pneumoniae with FAD bound 6N4L ; 1.13 ; Dithionite-reduced ADP-bound form of the nitrogenase Fe-protein from A. vinelandii 6N4K ; 1.756 ; Dithionite-reduced nucleotide-free form of the nitrogenase Fe-protein from A. vinelandii 1NZA ; 1.7 ; Divalent cation tolerance protein (Cut A1) from thermus thermophilus HB8 1XK8 ; 2.7 ; Divalent cation tolerant protein CUTA from Homo sapiens O60888 1F21 ; 1.4 ; DIVALENT METAL COFACTOR BINDING IN THE KINETIC FOLDING TRAJECTORY OF E. COLI RIBONUCLEASE HI 1UT5 ; 2.75 ; Divalent metal ions (manganese) bound to T5 5'-exonuclease 1UT8 ; 2.75 ; Divalent metal ions (zinc) bound to T5 5'-exonuclease 3R4C ; 1.82 ; Divergence of Structure and Function Among Phosphatases of the Haloalkanoate (HAD) Enzyme Superfamily: Analysis of BT1666 from Bacteroides thetaiotaomicron 1UET ; 2.0 ; Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure 1UEU ; 2.0 ; Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure 1UEV ; 2.7 ; Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure 4IS8 ; 2.78 ; Divergent sequence tunes ligand sensitivity in phospholipid-regulated hormone receptors 3AZR ; 1.71 ; Diverse Substrates Recognition Mechanism Revealed by Thermotoga maritima Cel5A Structures in Complex with Cellobiose 3AZT ; 1.8 ; Diverse Substrates Recognition Mechanism Revealed by Thermotoga maritima Cel5A Structures in Complex with Cellotetraose 3AZS ; 1.69 ; Diverse Substrates Recognition Mechanism Revealed by Thermotoga maritima Cel5A Structures in Complex with Mannotriose 3IGL ; 1.8 ; Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs (p53-DNA complex 1) 3IGK ; 1.7 ; Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs (p53-DNA complex 2) 3KZ8 ; 1.91 ; Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs (p53-DNA complex 3) 4UET ; ; Diversity in the structures and ligand binding sites among the fatty acid and retinol binding proteins of nematodes revealed by Na-FAR-1 from Necator americanus 6MRA ; 1.7 ; Diversity in the type II Natural Killer T cell receptor repertoire and antigen specificity leads to differing CD1d docking strategies 6MSS ; 3.0 ; Diversity in the type II Natural Killer T cell receptor repertoire and antigen specificity leads to differing CD1d docking strategies 4HXD ; 2.85 ; Diversity of ubiquitin and ISG15 specificity amongst nairoviruses viral ovarian tumor domain proteases 151D ; 1.4 ; DIVERSITY OF WATER RING SIZE AT DNA INTERFACES: HYDRATION AND DYNAMICS OF DNA-ANTHRACYCLINE COMPLEXES 152D ; 1.4 ; DIVERSITY OF WATER RING SIZE AT DNA INTERFACES: HYDRATION AND DYNAMICS OF DNA-ANTHRACYCLINE COMPLEXES 2WUJ ; 1.4 ; DivIVA N-terminal domain 2WUK ; 1.9 ; DivIVA N-terminal domain, F17A mutant 4WIP ; 2.691 ; DIX domain of human Dvl2 5J6U ; ; DIY G-Quadruplexes: Solution Structure of d(GGGGTTTGGGGTTTTGGGGAAGGGG) in sodium 5J05 ; ; DIY G-Quadruplexes: Solution structure of d(GGGTTTGGGTTTTGGGAGGG) in sodium 5J4W ; ; DIY G-Quadruplexes: Solution structure of d(GGTTTGGTTTTGGTTGG) in sodium 5J4P ; ; DIY G-Quadruplexes: Solution structure of d(GGTTTGGTTTTGGTTTGG) in sodium 2R1U ; 1.5 ; DJ-1 activation by catechol quinone modification 6AF5 ; 1.65 ; DJ-1 after backsoaking 6AFB ; 1.6 ; DJ-1 C106S incubated with isatin 6AF7 ; 1.3 ; DJ-1 C106S unbound 4BTE ; 1.38 ; DJ-1 Cu(I) complex 6AFH ; 1.65 ; DJ-1 with compound 10 6AFI ; 1.65 ; DJ-1 with compound 11 6AFJ ; 1.48 ; DJ-1 with compound 13 6AFL ; 1.6 ; DJ-1 with compound 15 6AFC ; 1.45 ; DJ-1 with compound 4 6AFD ; 1.48 ; DJ-1 with compound 6 6AFE ; 1.5 ; DJ-1 with compound 7 6AFF ; 1.6 ; DJ-1 with compound 8 6AFG ; 1.5 ; DJ-1 with compound 9 6AFA ; 1.65 ; DJ-1 with isatin (low concentration) 6AF9 ; 1.39 ; DJ-1 with isatin bound (high concentration) 5VO1 ; 2.45 ; DLK in complex with compound 10 (5-(1-isopropyl-5-(3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl)-1H-pyrazol-3-yl)-3-(trifluoromethyl)pyridin-2-amine) 5CEQ ; 1.911 ; DLK in complex with inhibitor 2-((1-cyclopentyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrazol-3-yl)amino)isonicotinonitrile 5CEO ; 2.28 ; DLK in complex with inhibitor 2-((6-(3,3-difluoropyrrolidin-1-yl)-4-(1-(oxetan-3-yl)piperidin-4-yl)pyridin-2-yl)amino)isonicotinonitrile 5VO2 ; 2.96 ; DLK in complex with inhibitor 5-(1-isopropyl-5-(1-(oxetan-3-yl)piperidin-4-yl)-1H-pyrazol-3-yl)-3-(trifluoromethyl)pyridin-2-amine (compound 7) 5CEP ; 1.99 ; DLK in complex with inhibitor N-(1-isopropyl-5-(piperidin-4-yl)-1H-pyrazol-3-yl)-4-(trifluoromethyl)pyridin-2-amine 6XF8 ; 6.5 ; DLP 5 fold 1JI5 ; 2.5 ; Dlp-1 from bacillus anthracis 1JIG ; 1.46 ; Dlp-2 from Bacillus anthracis 5NBJ ; 1.266 ; DLS Tetragonal - ReHEWL 8HF1 ; 3.7 ; DmDcr-2/R2D2/LoqsPD with 19bp-dsRNA in Trimer state 8HF0 ; 3.72 ; DmDcr-2/R2D2/LoqsPD with 50bp-dsRNA in Dimer state 7W0E ; 4.03 ; dmDicer2-LoqsPD-dsRNA Active-dicing status 7W0A ; 3.12 ; dmDicer2-LoqsPD-dsRNA Dimer status 7W0F ; 4.55 ; dmDicer2-LoqsPD-dsRNA Post-dicing status 6IY8 ; 3.42 ; DmpR-phenol complex of Pseudomonas putida 1H5N ; 2.0 ; DMSO REDUCTASE MODIFIED BY THE PRESENCE OF DMS AND AIR 2EYA ; ; DMSO refined solution structure of crambin in acetone/water 2EYC ; ; DMSO refined solution structure of crambin in dpc micelles 7CM9 ; 2.249 ; DMSP lyase DddX 3TFH ; 2.1 ; DMSP-dependent demethylase from P. ubique - apo 3TFJ ; 1.6 ; DMSP-dependent demethylase from P. ubique - with cofactor THF 3TFI ; 1.6 ; DMSP-dependent demethylase from P. ubique - with substrate DMSP 5Y72 ; 1.65 ; DMSPP Bound AmbP3 7W8W ; 1.8 ; DMSPP- and 5-Me-Trp-bound 6-dimethylallyl tryptophan synthase, IptA 7W8X ; 1.45 ; DMSPP- and 6-Me-Trp-bound dimethylallyl tryptophan synthase, IptA 7W8Y ; 1.39 ; DMSPP- and Naplha-Me-Trp-bound 6-dimethylallyl tryptophan synthase, IptA 7W8V ; 1.61 ; DMSPP- and Trp-bound 6-dimethylallyl tryptophan synthase, IptA 1ZHU ; ; DNA (5'-D(*CP*AP*AP*TP*GP*CP*AP*AP*TP*G)-3'), NMR, 10 STRUCTURES 127D ; 2.0 ; DNA (5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3') COMPLEXED WITH HOECHST 33258 129D ; 2.25 ; DNA (5'-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3') COMPLEXED WITH HOECHST 33342 1RME ; ; DNA (5'-D(MCYP*CP*TP*CP*C)-3') tetramer, NMR, 1 structure 1DCT ; 2.8 ; DNA (CYTOSINE-5) METHYLASE FROM HAEIII COVALENTLY BOUND TO DNA 2LAR ; ; DNA / RNA Hybrid containing a central stereo specific Rp borano phosphate linkage 2LB4 ; ; DNA / RNA Hybrid containing a central stereo specific Sp borano phosphate linkage 5TGP ; 1.6 ; DNA 8mer containing two 2SeT modifications 2BQ3 ; 2.0 ; DNA Adduct Bypass Polymerization by Sulfolobus solfataricus Dpo4. Analysis and Crystal Structures of Multiple Base-Pair Substitution and Frameshift Products with the Adduct 1,N2-Ethenoguanine 2BQR ; 2.37 ; DNA Adduct Bypass Polymerization by Sulfolobus solfataricus Dpo4. Analysis and Crystal Structures of Multiple Base-Pair Substitution and Frameshift Products with the Adduct 1,N2-Ethenoguanine 2BQU ; 2.5 ; DNA Adduct Bypass Polymerization by Sulfolobus solfataricus Dpo4. Analysis and Crystal Structures of Multiple Base-Pair Substitution and Frameshift Products with the Adduct 1,N2-Ethenoguanine 2BR0 ; 2.17 ; DNA Adduct Bypass Polymerization by Sulfolobus solfataricus Dpo4. Analysis and Crystal Structures of Multiple Base-Pair Substitution and Frameshift Products with the Adduct 1,N2-Ethenoguanine 229D ; ; DNA ANALOG OF YEAST TRANSFER RNA PHE ANTICODON DOMAIN WITH MODIFIED BASES 5-METHYL CYTOSINE AND 1-METHYL GUANINE 1ILC ; 2.2 ; DNA Bending by an Adenine-Thymine Tract and Its Role in Gene Regulation. 3MX4 ; 2.5 ; DNA binding and cleavage by the GIY-YIG endonuclease R.Eco29KI inactive variant E142Q 3NIC ; 2.8 ; DNA binding and cleavage by the GIY-YIG endonuclease R.Eco29kI inactive variant Y49F 1U3E ; 2.92 ; DNA binding and cleavage by the HNH homing endonuclease I-HmuI 4HCA ; 2.8 ; DNA binding by GATA transcription factor-complex 1 4HC9 ; 1.6 ; DNA binding by GATA transcription factor-complex 3 5JU7 ; 2.05 ; DNA BINDING DOMAIN OF E.COLI CADC 3MLO ; 3.01 ; DNA binding domain of Early B-cell Factor 1 (Ebf1) bound to DNA (Crystal form I) 3MLN ; 2.4 ; DNA binding domain of Early B-cell Factor 1 (Ebf1) bound to DNA (crystal form II) 7D9K ; 2.9 ; DNA binding domain of human DNA Ligase IV - Wild type 7D9Y ; 2.76 ; DNA binding domain of human DNA Ligase IV mutant - A3V 8BBM ; 1.95 ; DNA binding domain of J-DNA Binding Protein 1 (JBP1) 6QEC ; 1.9 ; DNA binding domain of LUX ARRYTHMO in complex with DNA 3SQI ; 2.8245 ; DNA binding domain of Ndc10 7PC1 ; 1.9 ; DNA binding domain of partition protein StbA of plasmid R388 3SSC ; 2.1 ; DNA binding domain of restriction endonuclease bound to DNA 3SSD ; 2.2 ; DNA binding domain of restriction endonuclease bound to DNA 3SSE ; 2.7 ; DNA binding domain of restriction endonuclease bound to DNA 6GCE ; 1.6 ; DNA binding domain of restriction endonuclease McrBC in complex with 5-formylcytosine DNA 6GCD ; 1.8 ; DNA binding domain of restriction endonuclease McrBC in complex with 5-hydroxymethylcytosine DNA 6GCF ; 1.55 ; DNA binding domain of restriction endonuclease McrBC in complex with N4-methylcytosine DNA 4ZC3 ; 1.4 ; DNA binding domain of small terminase SF6 phage 1KAF ; 1.6 ; DNA Binding Domain Of The Phage T4 Transcription Factor MotA (AA105-211) 3G8U ; 1.9 ; DNA binding domain:GilZ 16bp complex-5 4KPY ; 2.406 ; DNA binding protein and DNA complex structure 6GDR ; 2.33 ; DNA binding with a minimal scaffold: Structure-function analysis of Lig E DNA ligases 6LTY ; 3.28 ; DNA bound antitoxin HigA3 2K1N ; ; DNA bound structure of the N-terminal domain of AbrB 7WWV ; 3.2 ; DNA bound-ICP1 Csy complex 7XP3 ; 3.25 ; DNA complex form of ORESARA1(ANAC092) NAC Domain 1LQ1 ; 2.3 ; DNA Complexed Structure of the Key Transcription Factor Initiating Development in Sporulation Bacteria 2M3P ; ; DNA containing a cluster of 8-oxo-guanine and abasic site lesion: alpha anomer 2M43 ; ; DNA containing a cluster of 8-oxo-guanine and abasic site lesion: alpha anomer (AP6, 8OG 14) 2M3Y ; ; DNA containing a cluster of 8-oxo-guanine and abasic site lesion: beta anomer 2M44 ; ; DNA containing a cluster of 8-oxo-guanine and abasic site lesion: beta anomer (6AP, 8OG14) 2M40 ; ; DNA containing a cluster of 8-oxo-guanine and THF lesion 6QJO ; 1.8 ; DNA containing both right- and left-handed parallel-stranded G-quadruplexes 7EAY ; 2.5 ; DNA containing Cu(II)-mediated 4-N-carboxymethylcytosine base pairs 8S9N ; 1.89 ; DNA cytosine-N4 methyltransferase (residues 61-324) from the Bdelloid rotifer Adineta vaga - C2 crystal form 8S9O ; 1.94 ; DNA cytosine-N4 methyltransferase (residues 61-324) from the Bdelloid rotifer Adineta vaga - P1 crystal form 8S9M ; 1.49 ; DNA cytosine-N4 methyltransferase (residues 79-324) from the Bdelloid rotifer Adineta vaga 1QKG ; ; DNA DECAMER DUPLEX CONTAINING T-T DEWAR PHOTOPRODUCT 1CFL ; ; DNA DECAMER DUPLEX CONTAINING T5-T6 PHOTOADDUCT 1QL5 ; ; DNA DECAMER DUPLEX CONTAINING T5-T6 PHOTOADDUCT 1CW9 ; 1.55 ; DNA DECAMER WITH AN ENGINEERED CROSSLINK IN THE MINOR GROOVE 154D ; 2.5 ; DNA DISTORTION IN BIS-INTERCALATED COMPLEXES 1D44 ; 2.0 ; DNA DODECAMER C-G-C-G-A-A-T-T-C-G-C-G/HOECHST 33258 COMPLEX: 0 DEGREES C, PIPERAZINE DOWN 1D43 ; 2.0 ; DNA DODECAMER C-G-C-G-A-A-T-T-C-G-C-G/HOECHST 33258 COMPLEX: 0 DEGREES C, PIPERAZINE UP 1D46 ; 2.0 ; DNA DODECAMER C-G-C-G-A-A-T-T-C-G-C-G/HOECHST 33258 COMPLEX:-100 DEGREES C, PIPERAZINE DOWN 1D45 ; 1.9 ; DNA DODECAMER C-G-C-G-A-A-T-T-C-G-C-G/HOECHST 33258 COMPLEX:-25 DEGREES C, PIPERAZINE DOWN 4GLH ; 1.662 ; DNA dodecamer containing 5-hydroxymethyl cytosine 4GLC ; 1.831 ; DNA dodecamer containing 5-hydroxymethyl-cytosine 4HLI ; 1.99 ; DNA dodecamer containing 5-hydroxymethyl-cytosine 4GLG ; 1.72 ; DNA dodecamer containing 5-methyl cytosine 4NZV ; 1.901 ; DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities 4O24 ; 2.3 ; DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities 4O43 ; 2.4 ; DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities 4O4K ; 2.1 ; DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities 4O5G ; 2.301 ; DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities 1WAN ; ; DNA DTA TRIPLEX, NMR, 7 STRUCTURES 7YGO ; 2.403 ; DNA duplex containing 5OHU-Hg(II)-T base pairs 7YGP ; 1.997 ; DNA duplex containing 5OHU-T base pairs 1AXP ; ; DNA DUPLEX CONTAINING A PURINE-RICH STRAND, NMR, 6 STRUCTURES 5HQF ; ; DNA duplex containing a ribonolactone lesion 5HQQ ; ; DNA duplex containing a ribonolactone lesion 7EDV ; 2.01 ; DNA duplex containing C-G-Au-C base triple 2LZV ; ; DNA duplex containing mispair-aligned O4U-heptylene-O4U interstrand cross-link 2LZW ; ; DNA duplex containing mispair-aligned O6G-heptylene-O6G interstrand cross-link 7EDW ; 2.0 ; DNA duplex containing T-T base pairs in complex with Au(III) 4RHD ; 1.7 ; DNA Duplex with Novel ZP Base Pair 7B72 ; ; DNA duplex with phosphoryl guanidine moiety, Rp-diastereomer 104D ; ; DNA DUPLEXES FLANKED BY HYBRID DUPLEXES: THE SOLUTION STRUCTURE OF CHIMERIC JUNCTIONS IN 8V6I ; 14.06 ; DNA elongation complex (configuration 1) of Xenopus laevis DNA polymerase alpha-primase 8V6J ; 11.11 ; DNA elongation complex (configuration 2) of Xenopus laevis DNA polymerase alpha-primase 1JB7 ; 1.86 ; DNA G-Quartets in a 1.86 A Resolution Structure of an Oxytricha nova Telomeric Protein-DNA Complex 8DVY ; 2.36 ; DNA glycosylase MutY variant N146S in complex with DNA containing d(8-oxo-G) paired with an enzyme-generated abasic site product (AP) and crystalized with calcium acetate 8DW7 ; 1.96 ; DNA glycosylase MutY variant N146S in complex with DNA containing the transition state analog 1N paired with d(8-oxo-G) 4KTN ; 1.69 ; Dna gyrase atp binding domain of enterococcus faecalis in complex with a small molecule inhibitor ((3S)-1-[2-(PYRIDO[2,3-B]PYRAZIN-7-YLSULFANYL)-9H-PYRIMIDO[4,5-B]INDOL-4-YL]PYRROLIDIN-3-AMINE) 4KSG ; 1.75 ; Dna gyrase atp binding domain of enterococcus faecalis in complex with a small molecule inhibitor (4-[(1S,5R,6R)-6-AMINO-1-METHYL-3-AZABICYCLO[3.2.0]HEPT-3-YL]-6-FLUORO-N-METHYL-2-[(2-METHYLPYRIMIDIN-5-YL)OXY]-9H-PYRIMIDO[4,5-B]INDOL-8-AMINE) 4KSH ; 1.7 ; Dna gyrase atp binding domain of enterococcus faecalis in complex with a small molecule inhibitor (7-({4-[(3R)-3-AMINOPYRROLIDIN-1-YL]-5-CHLORO-6-ETHYL-7H-PYRROLO[2,3-D]PYRIMIDIN-2-YL}SULFANYL)-1,5-NAPHTHYRIDIN-1(4H)-OL) 7MVS ; 2.60137 ; DNA gyrase complexed with uncleaved DNA and Compound 7 to 2.6A resolution 6IUE ; 1.901 ; DNA helical wire containing Hg(II) 122D ; 1.7 ; DNA HELIX STRUCTURE AND REFINEMENT ALGORITHM: COMPARISON OF MODELS FOR D(CCAGGCM==5==CTGG) DERIVED FROM NUCLSQ, TNT, AND X-PLOR 123D ; 1.7 ; DNA HELIX STRUCTURE AND REFINEMENT ALGORITHM: COMPARISON OF MODELS FOR D(CCAGGCM==5==CTGG) DERIVED FROM NUCLSQ, TNT, AND X-PLOR 4GQD ; 1.94 ; DNA Holliday junction stabilized by chlorine halogen bond. 4GSG ; 2.0 ; DNA Holliday junction stabilized by chlorine halogen bond. Cl1J construct of related reference. 4GSI ; 2.38 ; DNA Holliday junction stabilized by fluorine halogen bond. F2J construct of related reference. 4GS2 ; 1.9 ; DNA Holliday junction stabilized by iodine halogen bond. I1J construct in related reference. 4GRE ; 1.7 ; DNA holliday junction stabilized by iodine halogen bond. I2J Construct of related reference 8V6G ; 11.16 ; DNA initiation complex (configuration 1) of Xenopus laevis DNA polymerase alpha-primase 8V6H ; 11.11 ; DNA initiation complex (configuration 2) of Xenopus laevis DNA polymerase alpha-primase 8G9L ; 3.3 ; DNA initiation subcomplex of Xenopus laevis DNA polymerase alpha-primase 4GLW ; 2.0 ; DNA ligase A in complex with inhibitor 4GLX ; 1.9 ; DNA ligase A in complex with inhibitor 4EQ5 ; 2.85 ; DNA ligase from the archaeon Thermococcus sibiricus 3RR5 ; 3.018 ; DNA ligase from the archaeon Thermococcus sp. 1519 8OYR ; 2.21 ; DNA Major Groove Binding by lambda-[Ru(phen)2(phi)]2+ 2PV0 ; 3.3 ; DNA methyltransferase 3 like protein (DNMT3L) 6K0W ; 2.65 ; DNA methyltransferase in complex with sinefungin 8QHM ; 3.0 ; DNA mimic Foldamer with sticky ends 6J37 ; ; DNA minidumbbell structure of two CTTG repeats 459D ; 2.3 ; DNA MINOR-GROOVE RECOGNITION OF A TRIS-BENZIMIDAZOLE DRUG 458D ; 2.3 ; DNA MINOR-GROOVE RECOGNITION OF A TRIS-BENZIMIDAZOLE DRUG BY A NON-SELF-COMPLEMENTARY AT-RICH SEQUENCE 1AZO ; 1.7 ; DNA MISMATCH REPAIR PROTEIN MUTH FROM E. COLI 2AZO ; 2.3 ; DNA MISMATCH REPAIR PROTEIN MUTH FROM E. COLI 6RMN ; 2.2 ; DNA mismatch repair proteins MLH1 and MLH3 6SHX ; 2.4 ; DNA mismatch repair proteins MLH1 and MLH3 6SNS ; 2.6 ; DNA mismatch repair proteins MLH1 and MLH3 6SNV ; 2.5 ; DNA mismatch repair proteins MLH1 and MLH3 7KUL ; 1.64 ; DNA modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 4OC8 ; 2.884 ; DNA modification-dependent restriction endonuclease AspBHI 6PBD ; 2.343 ; DNA N6-Adenine Methyltransferase CcrM In Complex with Double-Stranded DNA Oligonucleotide Containing Its Recognition Sequence GAATC 4H5A ; 1.42 ; DNA octamer D (GTseGTACAC) partially crosslinked with platinum 4FP6 ; 1.28 ; DNA octamer d(gtggccac) with 2'-se modification 4I1G ; 1.25 ; dna octamer d(GTseGTACAC) partially crosslinked with two platinums 2DZ7 ; 1.6 ; DNA Octaplex Formation with an I-Motif of A-Quartets: The Revised Crystal Structure of d(GCGAAAGC) 2RRR ; ; DNA oligomer containing ethylene cross-linked cyclic 2'-deoxyuridylate dimer 2RRQ ; ; DNA oligomer containing propylene cross-linked cyclic 2'-deoxyuridylate dimer 7ARE ; 7.4 ; DNA origami pointer object v2 7BHO ; 36.44 ; DNA origami signpost designed model 1KTQ ; 2.5 ; DNA POLYMERASE 5LEW ; 2.8 ; DNA polymerase 1NOY ; 2.2 ; DNA POLYMERASE (E.C.2.7.7.7)/DNA COMPLEX 9ICY ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA (NON GAPPED DNA ONLY) 9ICN ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2',3'-DIDEOXYCYTIDINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DDCTP AND MGCL2 9ICS ; 2.9 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2',3'-DIDEOXYCYTIDINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DDCTP AND MNCL2 9ICA ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYADENOSINE-5'-O-(1-THIOTRIPHOSPHATE), SOAKED IN THE PRESENCE OF DATP(ALPHA)S AND MNCL2 9ICB ; 3.2 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYADENOSINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DATP AND COCL2 9ICC ; 3.1 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYADENOSINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DATP AND CRCL3 9ICF ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYADENOSINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DATP AND ZNCL2 9ICV ; 2.7 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYADENOSINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DATP AND ZNCL2 9ICR ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYCYTIDINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DCTP AND MNCL2 9ICT ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + 2'-DEOXYGUANOSINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DGTP AND MNCL2 8ICJ ; 3.2 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + THYMIDINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DTTP AND MGCL2 8ICY ; 3.1 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX + THYMIDINE-5'-TRIPHOSPHATE, SOAKED IN THE PRESENCE OF DTTP AND MNCL2 9ICK ; 2.7 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ARTIFICIAL MOTHER LIQUOR 7ICE ; 2.8 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF CACL2 7ICG ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF CDCL2 7ICH ; 2.9 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF COCL2 9ICO ; 2.9 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF DTTP AND MGCL2 7ICK ; 2.9 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF MGCL2 1ZQR ; 3.7 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF NICL2 7ICN ; 2.8 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF NICL2 9ICL ; 2.8 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF PYROPHOSPHATE AND MNCL2 7ICO ; 3.3 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ZNCL2 7ICQ ; 2.9 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ZNCL2 7ICR ; 3.0 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ZNCL2 7ICS ; 2.8 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ZNCL2 7ICT ; 2.8 ; DNA POLYMERASE BETA (E.C.2.7.7.7)/DNA COMPLEX, SOAKED IN THE PRESENCE OF ZNCL2 AND MGCL2 9ICJ ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA 8ICC ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA (NO 5'-PHOSPHATE) 1ZQG ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF A SODIUM-FREE ARTIFICIAL MOTHER LIQUOR AT PH 6.5 1ZQH ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF A SODIUM-FREE ARTIFICIAL MOTHER LIQUOR AT PH 7.5 8ICB ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF ARTIFICIAL MOTHER LIQUOR 8ICN ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF ATP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICO ; 2.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF AZT-TP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 1ZQN ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF BACL2 (15 MILLIMOLAR) AND NACL (15 MILLIMOLAR) 1ZQB ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF BACL2 (150 MILLIMOLAR) 1ZQC ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CACL2 (15 MILLIMOLAR) 1ZQJ ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CACL2 (15 MILLIMOLAR) AND MGCL2 (15 MILLIMOLAR) 1ZQO ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CACL2 (15 MILLIMOLAR) AND NACL (15 MILLIMOLAR) 1ZQD ; 3.5 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CACL2 (150 MILLIMOLAR) 1ZQE ; 3.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CRCL3 (SATURATED SOLUTION) 1ZQF ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CSCL (150 MILLIMOLAR) 1ZQT ; 3.4 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (0.01 MILLIMOLAR) AND ZNCL2 (0.02 MILLIMOLAR) 8ICA ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND CACL2 (5 MILLIMOLAR) 8ICE ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND CDCL2 (1 MILLIMOLAR) 9ICE ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND CUCL2 (0.1 MILLIMOLAR) 8ICG ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND MGCL2 (5 MILLIMOLAR) 8ICP ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICR ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICL ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND NICL2 (5 MILLIMOLAR) 8ICK ; 2.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR), MGCL2 (5 MILLIMOLAR), AND MNCL2 (5 MILLIMOLAR) 8ICM ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR), MNCL2 (5 MILLIMOLAR), AND AMMONIUM SULFATE (75 MILLIMOLAR) 8ICF ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (10 MILLIMOLAR) AND MGCL2 (50 MILLIMOLAR) 8ICH ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DCTP (1 MILLIMOLAR) AND MGCL2 (5 MILLIMOLAR) 8ICS ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DCTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICT ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DCTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 9ICG ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DCTP (1 MILLIMOLAR) AND ZNCL2 (1 MILLIMOLAR) 8ICU ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DDATP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICI ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DGTP (1 MILLIMOLAR) AND MGCL2 (5 MILLIMOLAR) 8ICV ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DGTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 9ICH ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DGTP (1 MILLIMOLAR) AND ZNCL2 (1 MILLIMOLAR) 8ICW ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DTTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 8ICX ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DTTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 9ICI ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DTTP (1 MILLIMOLAR) AND ZNCL2 (1 MILLIMOLAR) 1ZQI ; 2.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF KCL (150 MILLIMOLAR) 1ZQA ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF KCL (150 MILLIMOLAR) AT PH 7.5 1ZQK ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF KCL (75 MILLIMOLAR) AND MGCL2 (75 MILLIMOLAR) 1ZQP ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF KCL (75 MILLIMOLAR) AND NACL (75 MILLIMOLAR) 1ZQM ; 3.2 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (15 MILLIMOLAR) 1ZQL ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (15 MILLIMOLAR) AND MGCL2 (15 MILLIMOLAR) 1ZQQ ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (15 MILLIMOLAR) AND NACL (15 MILLIMOLAR) 8ICQ ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF OF DATP (0.1 MILLIMOLAR) AND MNCL2 (0.5 MILLIMOLAR) 8ICZ ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF OF DATP (1 MILLIMOLAR), MNCL2 (5 MILLIMOLAR), AND LITHIUM SULFATE (75 MILLIMOLAR) 1ZQS ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SEVEN BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF TLCL (0.5 MILLIMOLAR) 9ICX ; 2.6 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA (NON GAPPED DNA ONLY) 9ICW ; 2.6 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; NATIVE STRUCTURE 7ICU ; 3.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CDCL2 (0.1 MILLIMOLAR) 7ICF ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CDCL2 (0.1 MILLIMOLAR) (FOUR-DAY SOAK) 7ICI ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CRCL3 (0.1 MILLIMOLAR) 7ICJ ; 3.5 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF CUCL2 (0.1 MILLIMOLAR) 9ICQ ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DATP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 9ICU ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF DTTP (1 MILLIMOLAR) AND MNCL2 (5 MILLIMOLAR) 7ICL ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (0.1 MILLIMOLAR) 7ICV ; 2.8 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (0.1 MILLIMOLAR) AND IN THE ABSENCE OF NACL 7ICM ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF MNCL2 (1.0 MILLIMOLAR) 9ICP ; 3.1 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF PYROPHOSPHATE (1 MILLIMOLAR) AND MGCL2 (5 MILLIMOLAR) 7ICP ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DNA; SOAKED IN THE PRESENCE OF ZNCL2 (0.01 MILLIMOLAR) 9ICM ; 2.9 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7) COMPLEXED WITH SIX BASE PAIRS OF DOUBLE STRANDED DNA (NO 5'-PHOSPHATE) 1ZQU ; 2.6 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF ARTIFICIAL MOTHER LIQUOR 1ZQV ; 2.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF CACL2 (150 MILLIMOLAR) 1ZQW ; 2.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF CSCL (150 MILLIMOLAR) 1ZQX ; 2.5 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF KCL (150 MILLIMOLAR) 1ZQY ; 2.3 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF MGCL2 (50 MILLIMOLAR) 1NOM ; 3.0 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF MNCL2 (5 MILLIMOLAR) 1ZQZ ; 2.7 ; DNA POLYMERASE BETA (POL B) (E.C.2.7.7.7), 31-KD DOMAIN; SOAKED IN THE PRESENCE OF MNCL2 (50 MILLIMOLAR) 5V1G ; 1.798 ; DNA polymerase beta binary complex with 8-oxoG at the primer terminus 5V1H ; 1.946 ; DNA polymerase beta binary complex with 8-oxoG:A at the primer terminus 5BOM ; 2.0002 ; DNA polymerase beta binary complex with a templating 5ClC 4UB3 ; 2.06 ; DNA polymerase beta closed product complex with a templating cytosine and 8-oxodGMP, 60 s 5UGP ; 1.955 ; DNA polymerase beta complex with a 1nt gap and dCMPPNP 5U8G ; 2.166 ; DNA Polymerase Beta crystallized in PEG 400 4M9G ; 2.01 ; DNA Polymerase Beta E295K Binary Complex 4M9N ; 2.275 ; DNA Polymerase Beta E295K Soaked with dATP 4M9L ; 2.091 ; DNA Polymerase Beta E295K Soaked with dCTP 4M9H ; 2.394 ; DNA Polymerase Beta E295K Soaked with dTTP 4M9J ; 2.038 ; DNA Polymerase Beta E295K Soaked with dUMPNPP 4PPX ; 2.08 ; DNA Polymerase Beta E295K with Spiroiminodihydantoin in Templating Position 5U8H ; 2.155 ; DNA Polymerase Beta G231D crystallized in PEG 400 6BTE ; 2.2 ; DNA Polymerase Beta I260Q Binary Complex 6BTF ; 1.75 ; DNA Polymerase Beta I260Q Ternary Complex 5UGN ; 1.997 ; DNA polymerase beta imidodiphosphate reactant complex 4KLO ; 1.845 ; DNA polymerase beta matched nick complex with Mg2+ and PPi, 30 min 4KLM ; 1.747 ; DNA polymerase beta matched product complex with Mg2+, 11 h 4KLG ; 1.701 ; DNA polymerase beta matched product complex with Mg2+, 40 s 4KLL ; 1.841 ; DNA polymerase beta matched product complex with Mg2+, 45 min 4KLJ ; 1.799 ; DNA polymerase beta matched product complex with Mg2+, 5 min 4KLI ; 1.597 ; DNA polymerase beta matched product complex with Mg2+, 90 s 4KLH ; 1.876 ; DNA polymerase beta matched product complex with Mn2+, 40 s 4KLE ; 1.97 ; DNA polymerase beta matched reactant complex with Mg2+, 10 s 4KLF ; 1.85 ; DNA polymerase beta matched reactant complex with Mg2+, 20 s 4KLD ; 1.916 ; DNA polymerase beta matched substrate complex with Ca2+, 0 s 4KLU ; 1.97 ; DNA polymerase beta mismatched product complex with Mn2+, 15 h 4KLT ; 1.979 ; DNA polymerase beta mismatched product complex with Mn2+, 30 min 4KLS ; 1.978 ; DNA polymerase beta mismatched reactant complex with Mn2+, 10 min 4LVS ; 2.002 ; DNA polymerase beta mismatched substrate complex with Mn2+, 2.5 min 3RH5 ; 2.096 ; DNA Polymerase Beta Mutant (Y271) with a dideoxy-terminated primer with an incoming deoxynucleotide (dCTP) 3RH6 ; 2.048 ; DNA Polymerase Beta Mutant (Y271) with a dideoxy-terminated primer with an incoming ribonucleotide (rCTP) 3OGU ; 1.845 ; DNA Polymerase beta mutant 5P20 complexed with 6bp of DNA 5UGO ; 1.897 ; DNA polymerase beta nick complex with imidodiphosphate 5V1J ; 2.616 ; DNA polymerase beta open product complex with 8-oxoG:C and inserted dCTP 5V1O ; 1.801 ; DNA polymerase beta product complex with 8-oxoG:A and inserted dCTP 4UB1 ; 2.341 ; DNA polymerase beta product complex with a templating adenine and 8-oxodGMP, 90 s 4UAY ; 1.984 ; DNA polymerase beta product complex with a templating adenine and inserted 8-oxodGMP, 40 s 4UB2 ; 2.51 ; DNA polymerase beta product complex with a templating cytosine and 8-oxodGMP, 120 s 5U9H ; 1.85 ; DNA polymerase beta product complex with inserted Sp-isomer of dCTP-alpha-S 5V1R ; 2.077 ; DNA polymerase beta reactant complex with 8-oxoG:C at the primer terminus and incoming dCTP 4UAZ ; 1.88 ; DNA polymerase beta reactant complex with a templating adenine and incoming 8-oxodGTP, 20 s 4UBB ; 1.9 ; DNA polymerase beta reactant complex with a templating cytosine and incoming 8-oxodGTP, 40 s 5U8I ; 2.45 ; DNA Polymerase Beta S229L crystallized in PEG 400 5V1F ; 2.181 ; DNA polymerase beta substrate complex with 8-oxoG at the primer terminus and incoming dCTP 5V1N ; 2.005 ; DNA polymerase beta substrate complex with 8-oxoG:A at the primer terminus and incoming dCTP 5VEZ ; 2.039 ; DNA polymerase beta substrate complex with 8-oxoG:A at the primer terminus and incoming dCTP analog 5V1P ; 1.991 ; DNA polymerase beta substrate complex with 8-oxoG:C at the primer terminus and incoming dCTP analog 4UAW ; 1.9 ; DNA polymerase beta substrate complex with a templating adenine and incoming 8-oxodGTP, 0 s 4UBC ; 2.0 ; DNA polymerase beta substrate complex with a templating cytosine and incoming 8-oxodGTP, 0 s 4UB4 ; 1.954 ; DNA polymerase beta substrate complex with a templating cytosine and incoming dGTP, 0 s 4UB5 ; 2.15 ; DNA polymerase beta substrate complex with a templating cytosine, incoming 8-oxodGTP, and Mn2+, 5 s 5WNY ; 2.1 ; DNA polymerase beta substrate complex with incoming 5-FdUTP 5WNZ ; 2.2 ; DNA polymerase beta substrate complex with incoming 5-FodCTP 5WO0 ; 1.6 ; DNA polymerase beta substrate complex with incoming 5-FodUTP 5WNX ; 2.55 ; DNA polymerase beta substrate complex with incoming 6-TdGTP 6MR7 ; 2.144 ; DNA polymerase beta substrate complex with templating adenine and incoming Fapy-dGTP analog 6DIA ; 1.969 ; DNA polymerase beta substrate complex with templating cytosine and incoming Fapy-dGTP analog 5BPC ; 2.0 ; DNA polymerase beta ternary complex with a templating 5ClC and incoming dATP analog 5BOL ; 1.981 ; DNA polymerase beta ternary complex with a templating 5ClC and incoming dGTP analog 5V1I ; 2.035 ; DNA polymerase beta ternary product complex with 8-oxoG:C and inserted dCTP 2I9G ; 2.1 ; DNA Polymerase Beta with a Benzo[c]phenanthrene diol epoxide adducted guanine base 3RH4 ; 1.918 ; DNA Polymerase Beta with a dideoxy-terminated primer with an incoming ribonucleotide (rCTP) 3LK9 ; 2.5 ; DNA polymerase beta with a gapped DNA substrate and dTMP(CF2)P(CF2)P 2FMS ; 2.0 ; DNA Polymerase beta with a gapped DNA substrate and dUMPNPP with magnesium in the catalytic site 3C2K ; 2.4 ; DNA POLYMERASE BETA with a gapped DNA substrate and DUMPNPP with Manganese in the active site 3GDX ; 2.2 ; Dna polymerase beta with a gapped DND substrate and dTMP(CF2)PP 2FMP ; 1.65 ; DNA Polymerase beta with a terminated gapped DNA substrate and ddCTP with sodium in the catalytic site 4NY8 ; 2.246 ; DNA polymerase beta with O6mG in the template base opposite to incoming non-hydrolyzable CTP with manganese in the active site 4NXZ ; 2.557 ; DNA polymerase beta with O6mG in the template base opposite to incoming non-hydrolyzable TTP with manganese in the active site 1BPX ; 2.4 ; DNA POLYMERASE BETA/DNA COMPLEX 3O59 ; 2.2 ; DNA polymerase D large subunit DP2(1-300) from Pyrococcus horikoshii 3MFI ; 1.76 ; DNA Polymerase Eta in Complex With a cis-syn Thymidine Dimer 2WTF ; 2.5 ; DNA polymerase eta in complex with the cis-diammineplatinum (II) 1,3- GTG intrastrand cross-link 3MFH ; 2.0 ; DNA Polymerase Eta in Complex With Undamaged DNA 1WAF ; 3.2 ; DNA POLYMERASE FROM BACTERIOPHAGE RB69 1WAJ ; 2.8 ; DNA POLYMERASE FROM BACTERIOPHAGE RB69 7PU7 ; 2.9 ; DNA polymerase from M. tuberculosis 1QHT ; 2.1 ; DNA POLYMERASE FROM THERMOCOCCUS SP. 9ON-7 ARCHAEON 1KFS ; 2.1 ; DNA POLYMERASE I KLENOW FRAGMENT (E.C.2.7.7.7) MUTANT/DNA COMPLEX 1KLN ; 3.2 ; DNA POLYMERASE I KLENOW FRAGMENT (E.C.2.7.7.7) MUTANT/DNA COMPLEX 1KRP ; 2.2 ; DNA polymerase I Klenow fragment (E.C.2.7.7.7) mutant/DNA complex 1KSP ; 2.3 ; DNA polymerase I Klenow fragment (E.C.2.7.7.7) mutant/DNA complex 4F2R ; 1.63 ; DNA Polymerase I Large Fragment complex 3 4F2S ; 1.651 ; DNA Polymerase I Large Fragment complex 4 4F3O ; 1.57 ; DNA Polymerase I Large Fragment Complex 5 4F4K ; 1.6 ; DNA Polymerase I Large Fragment Complex 6 6UR4 ; 2.25 ; DNA polymerase I Large Fragment from Bacillus stearothermophilus with DNA template and 3'-amino primer 6UR2 ; 2.27 ; DNA polymerase I Large Fragment from Bacillus stearothermophilus with DNA template and primer containing an N3'-> P5' linkage 6US5 ; 2.25 ; DNA polymerase I Large Fragment from Bacillus stearothermophilus with DNA template, 3'-amino primer, dGpNHpp analog, and Mn2+ 6UR9 ; 2.1 ; DNA polymerase I Large Fragment from Bacillus stearothermophilus with DNA template, dideoxy primer, 3'-amino-ddGTP (nGTP), and Ca2+ 3BDP ; 1.9 ; DNA POLYMERASE I/DNA COMPLEX 5YUR ; 2.035 ; DNA polymerase IV - DNA ternary complex 1 6IG1 ; 1.97 ; DNA polymerase IV - DNA ternary complex 10 5YUZ ; 1.83 ; DNA polymerase IV - DNA ternary complex 11 5YV0 ; 2.09 ; DNA polymerase IV - DNA ternary complex 12 5YV1 ; 2.09 ; DNA polymerase IV - DNA ternary complex 13 5YV2 ; 1.9 ; DNA polymerase IV - DNA ternary complex 14 5YUS ; 1.94 ; DNA polymerase IV - DNA ternary complex 2 5YUT ; 2.15 ; DNA polymerase IV - DNA ternary complex 3 5YUU ; 1.892 ; DNA polymerase IV - DNA ternary complex 4 5YUV ; 2.06 ; DNA polymerase IV - DNA ternary complex 5 5YUW ; 2.124 ; DNA polymerase IV - DNA ternary complex 6 5YV3 ; 2.03 ; DNA polymerase IV - DNA ternary complex 7 5YUX ; 2.04 ; DNA polymerase IV - DNA ternary complex 8 5YUY ; 1.74 ; DNA polymerase IV - DNA ternary complex 9 5ZLV ; 2.35 ; DNA polymerase IV - DNA ternary complex with 50mM MgCl2 5YYD ; 2.05 ; DNA polymerase IV - ternary complex 15 5YYE ; 2.325 ; DNA polymerase IV - ternary complex 16 5T14 ; 3.0 ; DNA polymerase kappa extending beyond a bulky major benzo[a]pyrene adduct 7UN7 ; 2.04 ; DNA Polymerase lambda in complex with a 1nt microhomology substrate 2BCR ; 1.75 ; DNA polymerase lambda in complex with a DNA duplex containing an unpaired Damp 2BCU ; 2.2 ; DNA polymerase lambda in complex with a DNA duplex containing an unpaired Damp and a T:T mismatch 2BCS ; 2.2 ; DNA polymerase lambda in complex with a DNA duplex containing an unpaired Dcmp 2BCQ ; 1.65 ; DNA polymerase lambda in complex with a DNA duplex containing an unpaired Dtmp 3MDA ; 2.031 ; DNA polymerase lambda in complex with araC 3MDC ; 1.999 ; DNA polymerase lambda in complex with dFdCTP 2PFP ; 2.1 ; DNA Polymerase lambda in complex with DNA and dCTP 2PFO ; 2.0 ; DNA Polymerase lambda in complex with DNA and dUPNPP 2BCV ; 2.0 ; DNA polymerase lambda in complex with Dttp and a DNA duplex containing an unpaired Dtmp 7M4D ; 1.817 ; DNA Polymerase Lambda, dCTP:At Ca2+ Ground State Ternary Complex 7M4F ; 1.947 ; DNA Polymerase Lambda, dCTP:At Mg2+ Product State Ternary Complex, 300 min 7M4G ; 1.88 ; DNA Polymerase Lambda, dCTP:At Mg2+ Product State Ternary Complex, 960 min 7M4E ; 1.903 ; DNA Polymerase Lambda, dCTP:At Mg2+ Reaction State Ternary Complex, 120 min 7M4I ; 2.005 ; DNA Polymerase Lambda, dCTP:At Mn2+ Product State Ternary Complex, 420 min 7M4J ; 2.377 ; DNA Polymerase Lambda, dCTP:At Mn2+ Product State Ternary Complex, 960 min 7M4H ; 1.923 ; DNA Polymerase Lambda, dCTP:At Mn2+ Reaction State Ternary Complex, 225 min 7M43 ; 1.978 ; DNA Polymerase Lambda, TTP:At Ca2+ Ground State Ternary Complex 7M46 ; 1.92 ; DNA Polymerase Lambda, TTP:At Mg2+ Product State Ternary Complex, 5 min 7M47 ; 1.648 ; DNA Polymerase Lambda, TTP:At Mg2+ Product State Ternary Complex, 60 min 7M48 ; 1.93 ; DNA Polymerase Lambda, TTP:At Mg2+ Product State Ternary Complex, 960 min 7M45 ; 1.889 ; DNA Polymerase Lambda, TTP:At Mg2+ Reaction State Ternary Complex, 120 sec 7M44 ; 1.901 ; DNA Polymerase Lambda, TTP:At Mg2+ Reaction State Ternary Complex, 90 sec 7M4A ; 1.868 ; DNA Polymerase Lambda, TTP:At Mn2+ Product State Ternary Complex, 20 min 7M4B ; 1.66 ; DNA Polymerase Lambda, TTP:At Mn2+ Product State Ternary Complex, 60 min 7M4C ; 1.95 ; DNA Polymerase Lambda, TTP:At Mn2+ Product State Ternary Complex, 960 min 7M49 ; 1.6 ; DNA Polymerase Lambda, TTP:At Mn2+ Reaction State Ternary Complex, 5 min 7M4K ; 1.719 ; DNA Polymerase Lambda, TTPaS:At Ca2+ Ground State Ternary Complex 7M4L ; 1.701 ; DNA Polymerase Lambda, TTPaS:At Mn2+ Product State Ternary Complex, 60 min 7KTK ; 1.419 ; DNA Polymerase Mu (K438D), 8-oxodGTP:Ct Ground State Ternary Complex, 50 mM Mg2+ (90min) 7KTJ ; 1.452 ; DNA Polymerase Mu (K438D), 8-oxodGTP:Ct Pre-Catalytic Ground State Ternary Complex, 20 mM Ca2+ (120min) 7KTL ; 1.421 ; DNA Polymerase Mu (K438D), 8-oxodGTP:Ct Product State Ternary Complex, 50 mM Mn2+ (90min) 7KTM ; 1.528 ; DNA Polymerase Mu (K438D), 8-oxodGTP:Ct Reaction State Ternary Complex, 50 mM Mn2+ (30min) 5TXX ; 1.948 ; DNA Polymerase Mu Pre-Catalytic Ground State Ternary Complex, Ca2+ 5TYF ; 1.971 ; DNA Polymerase Mu Product Complex, 10 mM Mg2+ (270 min) 5TYE ; 2.047 ; DNA Polymerase Mu Product Complex, 10 mM Mg2+ (60 min) 5TYG ; 1.726 ; DNA Polymerase Mu Product Complex, 10 mM Mg2+ (960 min) 5TYX ; 1.948 ; DNA Polymerase Mu Product Complex, Mn2+ (15 min) 5TYY ; 1.931 ; DNA Polymerase Mu Product Complex, Mn2+ (60 min) 5TYZ ; 1.977 ; DNA Polymerase Mu Product Complex, Mn2+ (960 min) 5TYD ; 1.899 ; DNA Polymerase Mu Reactant Complex, 10 mM Mg2+ (45 min) 5TXZ ; 1.651 ; DNA Polymerase Mu Reactant Complex, 100mM Mg2+ (15 min) 5TYC ; 2.101 ; DNA Polymerase Mu Reactant Complex, 10mM Mg2+ (15 min) 5TYB ; 1.848 ; DNA Polymerase Mu Reactant Complex, 10mM Mg2+ (7.5 min) 5TYW ; 1.88 ; DNA Polymerase Mu Reactant Complex, Mn2+ (10 min) 5TYU ; 2.048 ; DNA Polymerase Mu Reactant Complex, Mn2+ (4 min) 5TYV ; 1.93 ; DNA Polymerase Mu Reactant Complex, Mn2+ (7.5 min) 6VF7 ; 1.871 ; DNA Polymerase Mu, 8-oxodGTP:At Ground State Ternary Complex, 50 mM Mn2+ (15 min) 7KT3 ; 1.879 ; DNA Polymerase Mu, 8-oxodGTP:At Pre-Catalytic Ground State Ternary Complex, 20 mM Ca2+ (120min) 7KTN ; 1.33 ; DNA Polymerase Mu, 8-oxodGTP:At Product State Ternary Complex, 10 mM Mg2+ (2160min) 7KT5 ; 1.46 ; DNA Polymerase Mu, 8-oxodGTP:At Product State Ternary Complex, 10 mM Mn2+ (120min) 7KT6 ; 1.87 ; DNA Polymerase Mu, 8-oxodGTP:At Product State Ternary Complex, 10 mM Mn2+ (960min) 7KT8 ; 1.701 ; DNA Polymerase Mu, 8-oxodGTP:At Product State Ternary Complex, 50 mM Mg2+ (180min) 7KT9 ; 1.482 ; DNA Polymerase Mu, 8-oxodGTP:At Product State Ternary Complex, 50 mM Mg2+ (960min) 7KT4 ; 1.922 ; DNA Polymerase Mu, 8-oxodGTP:At Reaction State Ternary Complex, 10 mM Mn2+ (30min) 7KT7 ; 1.76 ; DNA Polymerase Mu, 8-oxodGTP:At Reaction State Ternary Complex, 50 mM Mg2+ (60min) 7KTA ; 1.844 ; DNA Polymerase Mu, 8-oxodGTP:Ct Pre-Catalytic Ground State Ternary Complex, 20 mM Ca2+ (120min) 7KTH ; 1.476 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 10 mM Mg2+ (2160min) 7KTC ; 1.653 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 10 mM Mn2+ (120min) 7KTD ; 1.551 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 10 mM Mn2+ (960min) 7KTI ; 1.57 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 20 uM Mn2+ (120min) 7KTF ; 1.489 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 50 mM Mg2+ (180min) 7KTG ; 1.445 ; DNA Polymerase Mu, 8-oxodGTP:Ct Product State Ternary Complex, 50 mM Mg2+ (960min) 7KTB ; 1.576 ; DNA Polymerase Mu, 8-oxodGTP:Ct Reaction State Ternary Complex, 10 mM Mn2+ (40min) 7KTE ; 1.479 ; DNA Polymerase Mu, 8-oxodGTP:Ct Reaction State Ternary Complex, 50 mM Mg2+ (90min) 6VF3 ; 1.521 ; DNA Polymerase Mu, 8-oxorGTP:At Ground State Ternary Complex, 50 mM Mn2+ (15 min) 6VEZ ; 1.875 ; DNA Polymerase Mu, 8-oxorGTP:At Pre-Catalytic Ternary Complex, 20 mM Ca2+ (60 min) 6VF1 ; 1.68 ; DNA Polymerase Mu, 8-oxorGTP:At Product State Ternary Complex, 50 mM Mg2+ (120 min) 6VF2 ; 1.6 ; DNA Polymerase Mu, 8-oxorGTP:At Product State Ternary Complex, 50 mM Mg2+ (960 min) 6VF5 ; 1.6 ; DNA Polymerase Mu, 8-oxorGTP:At Product State Ternary Complex, 50 mM Mn2+ (120 min) 6VF6 ; 1.69 ; DNA Polymerase Mu, 8-oxorGTP:At Product State Ternary Complex, 50 mM Mn2+ (960 min) 6VF0 ; 1.58 ; DNA Polymerase Mu, 8-oxorGTP:At Reaction State Ternary Complex, 50 mM Mg2+ (30 min) 6VF4 ; 1.75 ; DNA Polymerase Mu, 8-oxorGTP:At Reaction State Ternary Complex, 50 mM Mn2+ (30 min) 6VFA ; 1.76 ; DNA Polymerase Mu, 8-oxorGTP:Ct Ground State Ternary Complex, 50 mM Mn2+ (15 min) 6VF8 ; 1.7 ; DNA Polymerase Mu, 8-oxorGTP:Ct Pre-Catalytic Ternary Complex, 20 mM Ca2+ (120 min) 6VFC ; 1.59 ; DNA Polymerase Mu, 8-oxorGTP:Ct Product State Ternary Complex, 50 mM Mn2+ (2160 min) 6VFB ; 1.55 ; DNA Polymerase Mu, 8-oxorGTP:Ct Reaction State Ternary Complex, 50 mM Mn2+ (960 min) 6VF9 ; 1.56 ; DNA Polymerase Mu, 8-oxorGTP:Ct Ternary Complex, 50 mM Mg2+ (2160 min) 7KT0 ; 1.36 ; DNA Polymerase Mu, dGTP:At Ground State Ternary Complex, 50 mM Mg2+ (60min) 7KSZ ; 1.417 ; DNA Polymerase Mu, dGTP:At Pre-Catalytic Ground State Ternary Complex, 10 mM Ca2+ (960min) 7KT2 ; 1.499 ; DNA Polymerase Mu, dGTP:At Product State Ternary Complex, 50 mM Mn2+ (225min) 7KT1 ; 1.665 ; DNA Polymerase Mu, dGTP:At Reaction State Ternary Complex, 50 mM Mn2+ (180min) 7KSS ; 1.503 ; DNA Polymerase Mu, dGTP:Ct Pre-Catalytic Ground State Ternary Complex, 10 mM Ca2+ (20min) 7KSX ; 1.57 ; DNA Polymerase Mu, dGTP:Ct Product State Ternary Complex, 10 mM Mg2+ (30min) 7KSY ; 1.577 ; DNA Polymerase Mu, dGTP:Ct Product State Ternary Complex, 10 mM Mg2+ (960min) 7KSU ; 1.65 ; DNA Polymerase Mu, dGTP:Ct Product State Ternary Complex, 10 mM Mn2+ (4min) 7KSV ; 1.64 ; DNA Polymerase Mu, dGTP:Ct Product State Ternary Complex, 10 mM Mn2+ (960min) 7KSW ; 1.49 ; DNA Polymerase Mu, dGTP:Ct Reaction State Ternary Complex, 10 mM Mg2+ (10min) 7KST ; 1.599 ; DNA Polymerase Mu, dGTP:Ct Reaction State Ternary Complex, 10 mM Mn2+ (2min) 3F2C ; 2.5 ; DNA Polymerase PolC from Geobacillus kaustophilus complex with DNA, dGTP and Mn 3F2B ; 2.39 ; DNA Polymerase PolC from Geobacillus kaustophilus complex with DNA, dGTP, Mg and Zn 3F2D ; 2.51 ; DNA Polymerase PolC from Geobacillus kaustophilus complex with DNA, dGTP, Mn and Zn 6FVL ; 1.975 ; DNA polymerase sliding clamp from Escherichia coli with bound P7 peptide 7AZE ; 1.82 ; DNA polymerase sliding clamp from Escherichia coli with peptide 18 bound 7AZD ; 2.19 ; DNA polymerase sliding clamp from Escherichia coli with peptide 20 bound 7AZC ; 1.77 ; DNA polymerase sliding clamp from Escherichia coli with peptide 22 bound 7AZK ; 2.05 ; DNA polymerase sliding clamp from Escherichia coli with peptide 35 bound 7AZ6 ; 1.93 ; DNA polymerase sliding clamp from Escherichia coli with peptide 36 bound 7AZ7 ; 1.65 ; DNA polymerase sliding clamp from Escherichia coli with peptide 37 bound 7AZL ; 2.42 ; DNA polymerase sliding clamp from Escherichia coli with peptide 38 bound 7AZG ; 2.92 ; DNA polymerase sliding clamp from Escherichia coli with peptide 4 bound 7AZ8 ; 1.61 ; DNA polymerase sliding clamp from Escherichia coli with peptide 43 bound 7AZ5 ; 1.87 ; DNA polymerase sliding clamp from Escherichia coli with peptide 47 bound 7AZF ; 1.93 ; DNA polymerase sliding clamp from Escherichia coli with peptide 8 bound 6FVN ; 3.142 ; DNA polymerase sliding clamp from Mycobacterium tuberculosis with bound P7 peptide 3AU2 ; 1.4 ; DNA polymerase X from Thermus thermophilus HB8 complexed with Ca-dGTP 3AUO ; 2.7 ; DNA polymerase X from Thermus thermophilus HB8 ternary complex with 1-nt gapped DNA and ddGTP 3AU6 ; 3.3 ; DNA polymerase X from Thermus thermophilus HB8 ternary complex with primer/template DNA and ddGTP 3SPZ ; 2.43 ; DNA Polymerase(L415A/L561A/S565G/Y567A) Ternary Complex with dUpCpp Opposite dA (Ca2+) 3SQ0 ; 2.0 ; DNA Polymerase(L561A/S565G/Y567A) Ternary Complex with dUpNpp Opposite dA (Mn2+) 4Q45 ; 2.176 ; DNA Polymerase- damaged DNA complex 1JRE ; 2.65 ; DNA PROTECTION AND BINDING BY E. COLI DPS PROTEIN 1JTS ; 2.6 ; DNA PROTECTION AND BINDING BY E. COLI DPS PROTEIN 1L8H ; 3.2 ; DNA PROTECTION AND BINDING BY E. COLI DPS PROTEIN 1L8I ; 3.0 ; Dna Protection and Binding by E. Coli DPS Protein 7EAQ ; 2.39 ; DNA quadruplex composed of i-motif and Z-DNA 1A6H ; ; DNA QUADRUPLEX CONTAINING GCGC TETRAD, NMR, 4 STRUCTURES 1AFF ; ; DNA QUADRUPLEX CONTAINING GGGG TETRADS AND (T.A).A TRIADS, NMR, 8 STRUCTURES 1PAR ; 2.6 ; DNA RECOGNITION BY BETA-SHEETS IN THE ARC REPRESSOR-OPERATOR CRYSTAL STRUCTURE 1D66 ; 2.7 ; DNA RECOGNITION BY GAL4: STRUCTURE OF A PROTEIN/DNA COMPLEX 1HCP ; ; DNA RECOGNITION BY THE OESTROGEN RECEPTOR: FROM SOLUTION TO THE CRYSTAL 4RZL ; 2.1 ; DNA recognition domain of the cytosine modification-dependent restriction endonuclease LpnPI 1LJM ; 2.5 ; DNA recognition is mediated by conformational transition and by DNA bending 2VA8 ; 2.3 ; DNA Repair Helicase Hel308 8FAK ; 3.22 ; DNA replication fork binding triggers structural changes in the PriA DNA helicase that regulate the PriA-PriB replication restart pathway in E. coli 5GHR ; 2.509 ; DNA replication protein 5GHS ; 2.591 ; DNA replication protein 5GHT ; 2.795 ; DNA replication protein 5X06 ; 3.237 ; DNA replication regulation protein 4YS5 ; 1.65 ; DNA sequence containing 2'-Se-dC modification 2LIB ; ; DNA sequence context conceals alpha anomeric lesion 3KUY ; 2.9 ; DNA Stretching in the Nucleosome Facilitates Alkylation by an Intercalating Antitumor Agent 4KBD ; ; DNA STRUCTURE OF A MUTATED KB SITE 6BWY ; 2.9 ; DNA substrate selection by APOBEC3G 3G6V ; 2.2 ; DNA synthesis across an abasic lesion by human DNA polymerase-iota 5H6K ; 1.8 ; DNA targeting ADP-ribosyltransferase Pierisin-1 5H6M ; 1.9 ; DNA targeting ADP-ribosyltransferase Pierisin-1 5H6J ; 1.9 ; DNA targeting ADP-ribosyltransferase Pierisin-1 in complex with beta-NAD+ 5H6L ; 2.1 ; DNA targeting ADP-ribosyltransferase Pierisin-1 in complex with beta-NAD+ 5H6N ; 1.8 ; DNA targeting ADP-ribosyltransferase Pierisin-1, autoinhibitory form 6Z01 ; 1.9 ; DNA Topoisomerase 6Z03 ; 2.2 ; DNA Topoisomerase 1BWG ; ; DNA TRIPLEX WITH 5' AND 3' JUNCTIONS, NMR, 10 STRUCTURES 1FZS ; ; DNA WITH PYRENE PAIRED AT ABASIC SITE 1FZL ; ; DNA WITH PYRENE PAIRED AT ABASIC SITES 2NBJ ; ; DNA-archeal MC1 protein complex structure by NMR 8CMP ; 1.06 ; DNA-binding bacterial histone protein HBB from Bdellovibrio bacteriovorus 2BBY ; ; DNA-BINDING DOMAIN FROM HUMAN RAP30, NMR, 30 STRUCTURES 1BBY ; ; DNA-BINDING DOMAIN FROM HUMAN RAP30, NMR, MINIMIZED AVERAGE 2XB0 ; 2.0 ; DNA-binding domain from Saccharomyces cerevisiae chromatin- remodelling protein Chd1 7PC6 ; 1.92 ; DNA-binding domain of a p53 homolog from the hydrothermal vent annelid Alvinella pompejana 7OYK ; 2.101 ; DNA-binding domain of CggR in complex with the DNA operator 7BHY ; 2.3 ; DNA-binding domain of DeoR in complex with the DNA operator 1DHM ; ; DNA-BINDING DOMAIN OF E2 FROM HUMAN PAPILLOMAVIRUS-31, NMR, MINIMIZED AVERAGE STRUCTURE 1FLI ; ; DNA-BINDING DOMAIN OF FLI-1 7S03 ; 2.37 ; DNA-binding domain of human SETMAR in complex with Hsmar1 terminal inverted repeat (TIR) DNA 1BA5 ; ; DNA-BINDING DOMAIN OF HUMAN TELOMERIC PROTEIN, HTRF1, NMR, 18 STRUCTURES 1BM8 ; 1.71 ; DNA-BINDING DOMAIN OF MBP1 1IGN ; 2.25 ; DNA-BINDING DOMAIN OF RAP1 IN COMPLEX WITH TELOMERIC DNA SITE 2M9H ; ; DNA-binding domain of T. brucei telomeric protein tbTRF 1CIT ; 2.7 ; DNA-BINDING MECHANISM OF THE MONOMERIC ORPHAN NUCLEAR RECEPTOR NGFI-B 1CLD ; ; DNA-binding protein 3RHI ; 2.48 ; DNA-binding protein HU from Bacillus anthracis 1HUU ; 2.0 ; DNA-BINDING PROTEIN HU FROM BACILLUS STEAROTHERMOPHILUS 1DBQ ; 2.2 ; DNA-BINDING REGULATORY PROTEIN 3LHQ ; 1.56 ; DNA-binding transcriptional repressor AcrR from Salmonella typhimurium. 3ZQL ; 2.99 ; DNA-bound form of TetR-like repressor SimR 6GVQ ; ; DNA-bound pRN1 helix bundle domain with ATP and magnesium in the interaction buffer 7KWK ; 1.37 ; DNA-DB1879 complex: The DNA sequence 5'-CGCGAATTCGCG-3' presents a binding site for the heterocyclic small molecule (DB1879). 7KU4 ; 1.6 ; DNA-DB818 complex: The DNA sequence 5'-CGCGAATTCGCG-3' presents a binding site for the heterocyclic small molecule (DB818). 1DA0 ; 1.5 ; DNA-DRUG INTERACTIONS: THE CRYSTAL STRUCTURE OF D(CGATCG) COMPLEXED WITH DAUNOMYCIN 1VTI ; 1.7 ; DNA-DRUG INTERACTIONS: THE CRYSTAL STRUCTURES OF D(TGATCA) COMPLEXED WITH DAUNOMYCIN 1VTH ; 1.6 ; DNA-DRUG INTERACTIONS: THE CRYSTAL STRUCTURES OF D(TGTACA) COMPLEXED WITH DAUNOMYCIN 224D ; 1.4 ; DNA-DRUG REFINEMENT: A COMPARISON OF THE PROGRAMS NUCLSQ, PROLSQ, SHELXL93 AND X-PLOR, USING THE LOW TEMPERATURE D(TGATCA)-NOGALAMYCIN STRUCTURE 245D ; 1.4 ; DNA-DRUG REFINEMENT: A COMPARISON OF THE PROGRAMS NUCLSQ, PROLSQ, SHELXL93 AND X-PLOR, USING THE LOW TEMPERATURE D(TGATCA)-NOGALAMYCIN STRUCTURE 8EWV ; 3.4 ; DNA-encoded library (DEL)-enabled discovery of proximity inducing small molecules 8OM5 ; 3.52 ; DNA-free open form of MutSbeta 8DUO ; 5.7 ; DNA-free T4 Bacteriophage gp41 hexamer 6WBO ; 2.65 ; DNA-Ligase from Thermococcus gammatolerans 1D17 ; 2.0 ; DNA-NOGALAMYCIN INTERACTIONS 182D ; 1.8 ; DNA-NOGALAMYCIN INTERACTIONS: THE CRYSTAL STRUCTURE OF D(TGATCA) COMPLEXED WITH NOGALAMYCIN 7SGL ; 3.0 ; DNA-PK complex of DNA end processing 7Z87 ; 2.91 ; DNA-PK in the active state 7Z88 ; 3.33 ; DNA-PK in the intermediate state 8BH3 ; 4.55 ; DNA-PK Ku80 mediated dimer bound to PAXX 8BHY ; 5.33 ; DNA-PK Ku80 mediated dimer bound to PAXX and XLF 8BHV ; 4.51 ; DNA-PK XLF mediated dimer bound to PAXX 7OTP ; 3.4 ; DNA-PKcs in complex with ATPgammaS-Mg 7OTW ; 2.99 ; DNA-PKcs in complex with AZD7648 7OTY ; 2.96 ; DNA-PKcs in complex with M3814 7OTV ; 3.24 ; DNA-PKcs in complex with wortmannin 8CIY ; 1.54 ; DNA-polymerase sliding clamp (DnaN) from Escherichia coli in complex with Cyclohexyl-Griselimycin. 8CIX ; 1.76 ; DNA-polymerase sliding clamp (DnaN) from Escherichia coli in complex with Griselimycin. 8CIZ ; 2.27 ; DNA-polymerase sliding clamp (DnaN) from Escherichia coli in complex with Mycoplanecin A. 6NUA ; 1.64 ; DNA-protein crosslink between E. coli YedK and ssDNA containing an abasic site 6FFR ; ; DNA-RNA Hybrid Quadruplex with Flipped Tetrad 8OMO ; 3.43 ; DNA-unbound MutSbeta-ATP complex (bent clamp form) 8OMQ ; 3.11 ; DNA-unbound MutSbeta-ATP complex (straight clamp form) 1OO7 ; ; DNA.RNA HYBRID DUPLEX CONTAINING A 5-PROPYNE DNA STRAND AND PURINE-RICH RNA STRAND, NMR, 4 STRUCTURES 6RR9 ; 3.432 ; DNA/RNA binding protein 7Q3Z ; 1.85 ; DNA/RNA binding protein 219D ; ; DNA/RNA HYBRID DUPLEX (5'-D(*GP*CP*TP*AP*TP*AP*APS*TP*GP*G)-3')(DOT) (5'-R(*CP*CP*AP*UP*UP*AP*UP*AP*GP*C)-3') WITH A PHOSPHOROTHIOATE MOIETY 1DRR ; ; DNA/RNA HYBRID DUPLEX CONTAINING A PURINE-RICH DNA STRAND, NMR, 10 STRUCTURES 1RRD ; ; DNA/RNA HYBRID DUPLEX CONTAINING A PURINE-RICH RNA STRAND, NMR, 10 STRUCTURES 2E0G ; ; DnaA N-terminal domain 1Z8S ; ; DnaB binding domain of DnaG (P16) from Bacillus stearothermophilus (residues 452-597) 6CBR ; 1.5 ; DnaG Primase C-terminal domain complex with SSB C-terminal peptide 6CBS ; 1.85 ; DnaG Primase C-terminal domain complex with SSB C-terminal peptide 6CBT ; 2.1 ; DnaG Primase C-terminal domain complex with SSB C-terminal peptide 1IUR ; ; DnaJ domain of human KIAA0730 protein 6Z5N ; ; DnaJB1 JD-GF 2DNJ ; 2.0 ; DNASE I-INDUCED DNA CONFORMATION. 2 ANGSTROMS STRUCTURE OF A DNASE I-OCTAMER COMPLEX 2RU8 ; ; DnaT C-terminal domain 7X9D ; 3.08 ; DNMT3B in complex with harmine 2PVC ; 3.69 ; DNMT3L recognizes unmethylated histone H3 lysine 4 7F59 ; 4.2 ; DNQX-bound GluK2-1xNeto2 complex 7F56 ; 4.1 ; DNQX-bound GluK2-1xNeto2 complex, with asymmetric LBD 7F5A ; 6.4 ; DNQX-bound GluK2-2xNeto2 complex 7OY1 ; 2.39 ; DnrK mutant RTCR 1UTB ; 2.59 ; DntR from Burkholderia sp. strain DNT 1UTH ; 2.2 ; DntR from Burkholderia sp. strain DNT in complex with Thiocyanate 2Y7R ; 2.99 ; DntR Inducer Binding Domain 2Y7W ; 2.89 ; DntR Inducer Binding Domain 2Y84 ; 2.8 ; DntR Inducer Binding Domain 2Y7K ; 1.95 ; DntR Inducer Binding Domain in Complex with Salicylate. Monoclinic crystal form 2Y7P ; 1.85 ; DntR Inducer Binding Domain in Complex with Salicylate. Trigonal crystal form 2NMB ; ; DNUMB PTB DOMAIN COMPLEXED WITH A PHOSPHOTYROSINE PEPTIDE, NMR, ENSEMBLE OF STRUCTURES. 1PVX ; 1.59 ; DO-1,4-BETA-XYLANASE, ROOM TEMPERATURE, PH 4.5 7AVC ; 1.2 ; DoBi scaffold based on PIH1D1 N-terminal domain 8I5V ; 1.726 ; DOCK10 mutant L1903Y complexed with Rac1 6AJL ; 3.23 ; DOCK7 mutant I1836Y complexed with Cdc42 2N1A ; ; Docked structure between SUMO1 and ZZ-domain from CBP 2H9R ; ; Docking and dimerization domain (D/D) of the regulatory subunit of the Type II-alpha cAMP-dependent protein kinase A associated with a Peptide derived from an A-kinase anchoring protein (AKAP) 2DRN ; ; Docking and dimerization domain (D/D) of the Type II-alpha regulatory subunity of protein kinase A (PKA) in complex with a peptide from an A-kinase anchoring protein 2GPH ; 1.9 ; Docking motif interactions in the MAP kinase ERK2 2FVO ; 12.8 ; Docking of the modified RF1 X-ray structure into the Low Resolution Cryo-EM map of E.coli 70S Ribosome bound with RF1 1MI6 ; 12.8 ; Docking of the modified RF2 X-ray structure into the Low Resolution Cryo-EM map of RF2 E.coli 70S Ribosome 2O0F ; 15.5 ; Docking of the modified RF3 X-ray structure into cryo-EM map of E.coli 70S ribosome bound with RF3 4U3C ; 3.98 ; Docking Site of Maltohexaose in the Mtb GlgE 2WQT ; 2.8 ; Dodecahedral assembly of MhpD 4AQQ ; 4.75 ; Dodecahedron formed of penton base protein from adenovirus Ad3 4AR2 ; 3.8 ; Dodecahedron formed of penton base protein from adenovirus Ad3 6I4O ; ; Dodecamer DNA containing the synthetic base pair P-Z 6I4N ; ; Dodecamer DNA containing the synthetic base pair P-Z in complex with a pyrrole-imidazole polyamide 4P4X ; 1.898 ; Dodecamer formed by a macrocyclic peptide derived from beta-2-microglobulin (63-69) - (ORN)YLL(PHI)YTE(ORN)KVA(MLE)AVK 4P4W ; 1.498 ; Dodecamer formed by a macrocyclic peptide derived from beta-2-microglobulin (63-69) - (ORN)YLL(PHI)YTE(ORN)KVA(MVA)AVK 4QC7 ; 1.9 ; Dodecamer structure of 5-formylcytosine containing DNA 2ZY2 ; 3.3 ; dodecameric L-aspartate beta-decarboxylase 2ZY3 ; 2.5 ; dodecameric L-aspartate beta-decarboxylase 2ZY4 ; 2.0 ; dodecameric L-aspartate beta-decarboxylase 5ZS6 ; 2.81191 ; Dodecameric structure of a small Heat Shock Protein from Mycobacterium marinum M: Form-2 4JLY ; 2.882 ; Dodecameric structure of spermidine N-acetyltransferase from Vibrio cholerae 4YGO ; 2.5 ; Dodecameric structure of spermidine N-acetyltransferase from Vibrio cholerae in intermediate state 4JJX ; 2.83 ; Dodecameric structure of spermidine N-acetyltransferase SpeG from Vibrio cholerae O1 biovar eltor 7KM2 ; 2.19 ; Dodecameric Structure of the Chlamydia trachomatis Flavin Prenyltransferase UbiX Ortholog CT220 with FMN 7KM3 ; 2.26 ; Dodecameric Structure of the Chlamydia trachomatis Flavin Prenyltransferase UbiX Ortholog CT220 with FMN and DMAP 6RI3 ; 2.4 ; Dodecin from Streptomyces davaonensis 2W0D ; 2.0 ; Does a Fast Nuclear Magnetic Resonance Spectroscopy- and X-Ray Crystallography Hybrid Approach Provide Reliable Structural Information of Ligand-Protein Complexes? A Case Study of Metalloproteinases. 2BTM ; 2.4 ; DOES THE HIS12-LYS13 PAIR PLAY A ROLE IN THE ADAPTATION OF THERMOPHILIC TIMS TO HIGH TEMPERATURES? 7DH5 ; 3.16 ; Dog beta3 adrenergic receptor bound to mirabegron in complex with a miniGs heterotrimer 8SZR ; 2.97 ; Dog DHX9 bound to ADP 1RP1 ; 2.1 ; DOG PANCREATIC LIPASE RELATED PROTEIN 1 1LU2 ; 2.8 ; DOLICHOS BIFLORUS SEED LECTIN IN COMPLEX WITH THE BLOOD GROUP A TRISACCHARIDE 5MM1 ; 2.6 ; Dolichyl phosphate mannose synthase in complex with GDP and dolichyl phosphate mannose 5MLZ ; 2.0 ; Dolichyl phosphate mannose synthase in complex with GDP and Mg2+ 5MM0 ; 2.3 ; Dolichyl phosphate mannose synthase in complex with GDP-mannose and Mn2+ (donor complex) 2MFI ; ; Domain 1 of E. coli ribosomal protein S1 7RAW ; 2.1 ; Domain 1 of Starch adherence system protein 20 (Sas20) from Ruminococcus bromii 7RFT ; 1.53 ; Domain 1 of Starch adherence system protein 20 (Sas20) from Ruminococcus bromii with maltotriose 2MFL ; ; Domain 2 of E. coli ribosomal protein S1 8AQ9 ; ; Domain 2 of zinc-loaded Caenorhabditis elegans MTL-1 8C27 ; 2.63 ; Domain 3 of Group B Streptococcus pilus protein as scaffold for the display of foreign epitopes 1EGJ ; 2.8 ; DOMAIN 4 OF THE BETA COMMON CHAIN IN COMPLEX WITH AN ANTIBODY 5JR0 ; ; Domain 4 Segment 6 of voltage-gated sodium channel Nav1.4 1AD6 ; 2.3 ; DOMAIN A OF HUMAN RETINOBLASTOMA TUMOR SUPPRESSOR 2JVN ; ; Domain C of human PARP-1 6RCC ; 1.43 ; Domain C P140 Mycoplasma genitalium 5I2T ; 2.543 ; Domain characterization of the WD protein Pwp2 and their relevance in ribosome biogenesis 1AMA ; 2.3 ; DOMAIN CLOSURE IN MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE 1H4U ; 2.2 ; Domain G2 of mouse nidogen-1 6FN8 ; 1.55 ; Domain II of the HUMAN COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE at 1.55 A resolution 6FOL ; 2.55 ; Domain II of the human copper chaperone in complex with human Cu,Zn superoxide dismutase 7SGT ; ; Domain III (EDIII) of the POWV E glycoprotein 1AER ; 2.3 ; DOMAIN III OF PSEUDOMONAS AERUGINOSA EXOTOXIN COMPLEXED WITH BETA-TAD 1DMA ; 2.5 ; DOMAIN III OF PSEUDOMONAS AERUGINOSA EXOTOXIN COMPLEXED WITH NICOTINAMIDE AND AMP 2LQ8 ; ; Domain interaction in Thermotoga maritima NusG 2I7A ; 1.8 ; Domain IV of Human Calpain 13 1MNF ; 3.0 ; Domain motions in GroEL upon binding of an oligopeptide 4PHR ; 1.34 ; Domain of unknown function 1792 (DUF1792) with manganese 3JAB ; 11.0 ; Domain organization and conformational plasticity of the G protein effector, PDE6 3JBQ ; 11.0 ; Domain Organization and Conformational Plasticity of the G Protein Effector, PDE6 3FFZ ; 2.65 ; Domain organization in Clostridium butulinum neurotoxin type E is unique: Its implication in faster translocation 2HF2 ; 1.9 ; Domain shifting confirms monomeric structure of Escherichia sugar phosphatase SUPH 5O2Z ; 1.7 ; Domain swap dimer of the G167R variant of gelsolin second domain 5QU5 ; 1.11 ; Domain Swap in the first SH3 domain of human Nck1 5FEA ; 2.6 ; Domain Swapped Bromodomain from Leishmania donovani 5XFU ; 2.611 ; Domain swapped dimer crystal structure of loop1 deletion mutant in Single-chain Monellin 5YCU ; 2.32 ; Domain swapped dimer of engineered hairpin loop1 mutant in Single-chain Monellin 6L4N ; 2.431 ; Domain swapped dimer of Monellin loop1 mutant with QVPAG motif 6TGK ; 1.3 ; Domain swapped E6AP C-lobe dimer 3MQ6 ; 2.0 ; Domain swapped SgrAI with DNA and calcium bound 1HT9 ; 1.76 ; DOMAIN SWAPPING EF-HANDS 4HDD ; 1.35 ; Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease 3DIE ; 1.85 ; Domain swapping of Staphylococcus Aureus thioredoxin W28A mutant 1HZU ; 2.7 ; DOMAIN SWING UPON HIS TO ALA MUTATION IN NITRITE REDUCTASE OF PSEUDOMONAS AERUGINOSA 1HZV ; 2.83 ; DOMAIN SWING UPON HIS TO ALA MUTATION IN NITRITE REDUCTASE OF PSEUDOMONAS AERUGINOSA 3QOP ; 1.96 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 3RDI ; 2.95 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 3ROU ; 2.1 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 3RPQ ; 2.61 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 3RYP ; 1.6 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 3RYR ; 2.7 ; Domain-domain flexibility leads to allostery within the camp receptor protein (CRP) 8HNJ ; 2.03 ; Domain-stabilized glutamine-binding protein 6L1V ; 2.25 ; Domain-swapped Alcaligenes xylosoxidans azurin dimer 1L5B ; 2.0 ; DOMAIN-SWAPPED CYANOVIRIN-N DIMER 5AWI ; 1.85 ; Domain-swapped cytochrome cb562 dimer 1H8X ; 2.0 ; Domain-swapped Dimer of a Human Pancreatic Ribonuclease Variant 6Q2C ; 1.8 ; Domain-swapped dimer of Acanthamoeba castellanii CYP51 5SUZ ; 1.84 ; Domain-swapped dimer of human Dishevelled2 DEP domain: C-centered monoclinic crystal form crystallised from monomeric fraction 5SUY ; 1.88 ; Domain-swapped dimer of human Dishevelled2 DEP domain: monoclinic crystal form crystallised from dimeric fraction 5LNP ; 1.99 ; Domain-swapped dimer of human Dishevelled2 DEP domain: monoclinic crystal form crystallised from monomeric fraction 3X39 ; 1.5 ; Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551 2NLU ; ; Domain-Swapped Dimer of the PWWP Module of Human Hepatoma-derived Growth Factor 5JUI ; 2.1 ; domain-swapped dimer of the the KRT10-binding region (BR) of PsrP 6LAY ; 3.001 ; Domain-swapped dimer structure of a Single-chain Monellin loop1-delta4-QVVAG mutant 1DZ3 ; 1.65 ; DOMAIN-SWAPPING IN THE SPORULATION RESPONSE REGULATOR SPO0A 1PN6 ; 10.8 ; Domain-wise fitting of the crystal structure of T.thermophilus EF-G into the low resolution map of the release complex.Puromycin.EFG.GDPNP of E.coli 70S ribosome. 1A7L ; 2.9 ; DOMINANT B-CELL EPITOPE FROM THE PRES2 REGION OF HEPATITIS B VIRUS IN THE FORM OF AN INSERTED PEPTIDE SEGMENT IN MALTODEXTRIN-BINDING PROTEIN 2N18 ; ; Dominant form of the low-affinity complex of yeast cytochrome c and cytochrome c peroxidase 1PQN ; ; dominant negative human hDim1 (hDim1 1-128) 8GC2 ; 4.1 ; Domoate-bound GluK2 kainate receptor in partially-open conformation 1 8GC4 ; 3.93 ; Domoate-bound GluK2 kainate receptor in partially-open conformation 3 8GC5 ; 3.93 ; Domoate-bound GluK2 kainate receptors in non-active conformation 8GC3 ; 3.8 ; Domote-bound GluK2 kainate receptors in partially-open conformation 2 1ECG ; 2.3 ; DON INACTIVATED ESCHERICHIA COLI GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE 3GEA ; 1.699 ; Donor strand complemented FaeG monomer of F4 variant ad 4WE2 ; 1.5 ; Donor strand complemented FaeG of F4ab fimbriae 3GGH ; 1.639 ; Donor strand complemented FaeG of F4ad fimbriae 3HLR ; 2.3 ; Donor strand complemented FaeG of F4ad fimbriae 2R1T ; 1.7 ; dopamine quinone conjugation to DJ-1 8IRR ; 3.2 ; Dopamine Receptor D1R-Gs-Rotigotine complex 8IRS ; 3.0 ; Dopamine Receptor D2R-Gi-Rotigotine complex 7CMV ; 2.7 ; Dopamine Receptor D3R-Gi-PD128907 complex 7CMU ; 3.0 ; Dopamine Receptor D3R-Gi-Pramipexole complex 8IRT ; 2.7 ; Dopamine Receptor D3R-Gi-Rotigotine complex 8IRU ; 3.2 ; Dopamine Receptor D4R-Gi-Rotigotine complex 8IRV ; 3.1 ; Dopamine Receptor D5R-Gs-Rotigotine complex 8Y0W ; 3.4 ; dormant ribosome with eIF5A, eEF2 and SERBP1 8Y0X ; 3.3 ; Dormant ribosome with SERBP1 8Y0U ; 3.59 ; dormant ribosome with STM1 1BVO ; 2.7 ; DORSAL HOMOLOGUE GAMBIF1 BOUND TO DNA 4YNR ; 1.92 ; DosS GAFA Domain Reduced CO Bound Crystal Structure 4YOF ; 1.9 ; DosS GAFA Domain Reduced Nitric Oxide Bound Crystal Structure 6O96 ; 3.5 ; Dot1L bound to the H2BK120 Ubiquitinated nucleosome 3QOX ; 2.3 ; DOT1L structure in complex with SAH 3QOW ; 2.1 ; DOT1L Structure in complex with SAM 5FR1 ; 2.75 ; Double acetylated RhoGDI-alpha in complex with RhoA-GDP 5WBF ; 2.19 ; Double CACHE (dCACHE) sensing domain of TlpC chemoreceptor from Helicobacter pylori 1OF8 ; 1.5 ; double complex of the tyrosine sensitive DAHP Synthase from S. cerevisiae with Co2+, PEP and the E4P analogoue G3P 6ENO ; 1.635 ; Double cubane cluster oxidoreductase 7EY3 ; 2.04 ; Double cysteine mutations in T1 lipase 7VHL ; 3.9 ; Double deletion S-2P trimer(1 Up) 7VHM ; 3.2 ; Double deletion S-2P trimer(3 down) 2J4M ; ; Double dockerin from Piromyces equi Cel45A 2J4N ; ; Double dockerin from Piromyces equi Cel45A 5YCW ; 2.285 ; Double domain swapped dimer of engineered hairpin loop1 and loop3 mutant in Single-chain Monellin 1CGC ; 2.2 ; DOUBLE HELIX CONFORMATION GROOVE DIMENSIONS AND LIGAND BINDING POTENTIAL OF A G/C-STRETCH IN B-DNA 2D57 ; 3.2 ; Double layered 2D crystal structure of AQUAPORIN-4 (AQP4M23) at 3.2 a resolution by electron crystallography 8HMW ; ; Double methyl modification on guanosine promotes unusual structural distortion and conformational transition in Z-DNA 3UM6 ; 2.65 ; Double mutant (A16V+S108T) Plasmodium falciparum DHFR-TS (T9/94) complexed with cycloguanil, NADPH and dUMP 3UM5 ; 2.4 ; Double mutant (A16V+S108T) Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS-T9/94) complexed with pyrimethamine, NADPH, and dUMP 1J3J ; 2.3 ; Double mutant (C59R+S108N) Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with pyrimethamine, NADPH, and dUMP 8C87 ; 2.45 ; Double mutant A(L172)C/L(L246)C structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 8C5X ; 2.6 ; Double mutant A(L37)C/S(L99)C structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 8C6K ; 2.86 ; Double mutant A(L53)C/I(L64)C structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 8C88 ; 2.75 ; Double mutant G(M19)C/T(L214)C structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 4ZGJ ; 2.0 ; Double Mutant H80A/H81A of Fe-Type Nitrile Hydratase from Comamonas testosteroni Ni1 4ZGE ; 2.8 ; Double Mutant H80W/H81W of Fe-Type Nitrile Hydratase from Comamonas testosteroni Ni1 8C3F ; 2.6 ; Double mutant I(L177)H/F(M197)H structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 2BXJ ; 2.4 ; Double Mutant of the Ribosomal Protein S6 1PYY ; 2.42 ; Double mutant PBP2x T338A/M339F from Streptococcus pneumoniae strain R6 at 2.4 A resolution 7F3Z ; 2.6 ; Double mutant Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS-K1, C59R+S108N) complexed with Trimethoprim (TOP), NADPH and dUMP 8C7C ; 2.6 ; Double mutant V(M84)C/A(L278)C structure of Photosynthetic Reaction Center From Cereibacter sphaeroides strain RV 2UYE ; 2.2 ; Double mutant Y110S,F111V DntR from Burkholderia sp. strain DNT in complex with thiocyanate 6M2O ; 1.57 ; Double mutant(H333A/I334A) crystal structure of benzoate coenzyme A ligase 7DH4 ; 2.41 ; Double mutant- V493I-V507M coiled coil domain of Trypanosoma brucei coronin 7N84 ; 11.6 ; Double nuclear outer ring from the isolated yeast NPC 8TIE ; 8.1 ; Double nuclear outer ring of Nup84-complexes from the yeast NPC 3JD6 ; 4.1 ; Double octamer structure of retinoschisin, a cell-cell adhesion protein of the retina 2D3G ; 1.7 ; Double sided ubiquitin binding of Hrs-UIM 3EIK ; 1.9 ; double stranded DNA binding protein 1STU ; ; DOUBLE STRANDED RNA BINDING DOMAIN 2GFA ; 2.1 ; double tudor domain complex structure 2GF7 ; 2.2 ; Double tudor domain structure 2WQW ; 2.24 ; DOUBLE-DISULFIDE CROSS-LINKED CRYSTAL DIMER of the Listeria monocytogenes InlB internalin domain 4WW4 ; 2.94 ; Double-heterohexameric rings of full-length Rvb1(ADP)/Rvb2(ADP) 5FM7 ; 2.901 ; Double-heterohexameric rings of full-length Rvb1(ADP)Rvb2(ADP) 5FM6 ; 2.997 ; Double-heterohexameric rings of full-length Rvb1(ADP)Rvb2(apo) 4WVY ; 3.64 ; Double-heterohexameric rings of full-length Rvb1(ATP)/Rvb2(apo) 8BZU ; ; Double-ion dependent DNA quadruplex structure formed by C.elegans telomeric sequence 8BU8 ; 6.56 ; Double-motif Single-stranded Paranemic Crossover RNA Triangle (2PXT) 8OOU ; 2.9 ; Double-ring nucleocapsid of the Respiratory Syncytial Virus 6U08 ; 2.491 ; Double-stranded DNA-specific cytidine deaminase type VI secretion system effector and cognate immunity complex from Burkholderia cenocepacia 4ES1 ; 1.1 ; Double-stranded Endonuclease Activity in B. halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein 4ES2 ; 1.299 ; Double-stranded Endonuclease Activity in B. halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein 4ES3 ; 1.704 ; Double-stranded Endonuclease Activity in B. halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein 1UIL ; ; Double-stranded RNA-binding motif of Hypothetical protein BAB28848 2NSK ; 1.5 ; Doubled Modified Selenium DNA 6VH7 ; 3.8 ; Doublet Tau Fibril from Corticobasal Degeneration Human Brain Tissue 3BQD ; 2.5 ; Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol 6BGL ; 3.4 ; Doubly PafE-capped 20S core particle in Mycobacterium tuberculosis 7XUH ; 2.76 ; Down-regulated in adenoma in complex with TQR1122 7TLA ; 3.13 ; Down-state locked rS2d SARS-CoV-2 spike ectodomain in the RBD-down conformation, State 1 7TLB ; 3.06 ; Down-state locked rS2d SARS-CoV-2 spike ectodomain in the RBD-down conformation, State 2 7TLC ; 2.83 ; Down-state locked, S2 stabilized rS2d-HexaPro SARS-CoV-2 spike ectodomain in the RBD-down conformation, State 1 7TLD ; 2.89 ; Down-state locked, S2 stabilized rS2d-HexaPro SARS-CoV-2 spike ectodomain in the RBD-down conformation, State 2 1KZZ ; 3.5 ; DOWNSTREAM REGULATOR TANK BINDS TO THE CD40 RECOGNITION SITE ON TRAF3 1L0A ; 2.9 ; DOWNSTREAM REGULATOR TANK BINDS TO THE CD40 RECOGNITION SITE ON TRAF3 7B8R ; 2.1 ; Doxycycline bound structure of bacterial efflux pump. 3X0R ; 1.15 ; DP ribose pyrophosphatase from Thermus thermophilus HB8 in E'-state at reaction time of 30 min 7DG9 ; 1.602 ; DPBB domain of VCP-like ATPase from Aeropyrum pernix 7DG7 ; 1.604 ; DPBB domain of VCP-like ATPase from Methanopyrus kandleri 7DBO ; 1.9 ; DPBB domain of VCP-like ATPase from Thermoplasma acidophilum 2I1D ; ; DPC micelle-bound NMR structures of Tritrp1 2I1E ; ; DPC micelle-bound NMR structures of Tritrp2 2I1F ; ; DPC micelle-bound NMR structures of Tritrp3 2I1G ; ; DPC micelle-bound NMR structures of Tritrp5 2I1H ; ; DPC micelle-bound NMR structures of Tritrp7 2I1I ; ; DPC micelle-bound NMR structures of Tritrp8 5I3L ; 1.85 ; DPF3b in complex with H3K14ac peptide 8UAO ; 3.6 ; DpHF18 filament 8UBG ; 3.5 ; DpHF19 filament 8UB3 ; 3.3 ; DpHF7 filament 4AOV ; 1.93 ; DpIDH-NADP. The complex structures of Isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila, support a new active site locking mechanism 7LZJ ; 2.7 ; DpK2 bacteriophage tail spike depolymerase 2DPM ; 1.8 ; DPNM DNA ADENINE METHYLTRANSFERASE FROM STREPTOCCOCUS PNEUMONIAE COMPLEXED WITH S-ADENOSYLMETHIONINE 1S9F ; 2.0 ; DPO with AT matched 3RB3 ; 2.8 ; Dpo4 extension ternary complex with 3'-terminal primer A base opposite the 1-methylguanine (m1g) lesion 3RB6 ; 2.7 ; Dpo4 extension ternary complex with 3'-terminal primer A base opposite the 3-methylcytosine (m3c) lesion 3RAQ ; 2.25 ; Dpo4 extension ternary complex with 3'-terminal primer C base opposite the 1-methylguanine (MG1) lesion 3RBD ; 2.502 ; Dpo4 extension ternary complex with 3'-terminal primer C base opposite the 3-methylcytosine (m3c) lesion 3RB0 ; 3.225 ; Dpo4 extension ternary complex with 3'-terminal primer G base opposite the 1-methylguanine (M1G) lesion 3RB4 ; 2.805 ; Dpo4 extension ternary complex with 3'-terminal primer G base opposite the 3-methylcytosine (m3c) lesion 3RAX ; 1.891 ; Dpo4 extension ternary complex with 3'-terminal primer T base opposite the 1-methylguanine (M1G) lesion 3RBE ; 2.8 ; Dpo4 extension ternary complex with 3'-terminal primer t base opposite the 3-methylcytosine (m3c) lesion 3KHH ; 2.7 ; Dpo4 extension ternary complex with a C base opposite the 2-aminofluorene-guanine [AF]G lesion 3GII ; 2.6 ; Dpo4 extension ternary complex with disordered A opposite an oxoG in anti conformation 3KHG ; 2.96 ; Dpo4 extension ternary complex with misinserted A opposite the 2-aminofluorene-guanine [AF]G lesion 3GIM ; 2.7 ; Dpo4 extension ternary complex with oxoG(anti)-G(syn) pair 3GIL ; 2.71 ; Dpo4 extension ternary complex with oxoG(anti)-T(anti) pair 3GIJ ; 2.4 ; Dpo4 extension ternary complex with oxoG(syn)-A(anti) and oxoG(anti)-A(syn) pairs 3GIK ; 2.9 ; Dpo4 extension ternary complex with the oxoG(anti)-C(anti) pair 4FBU ; 2.6 ; Dpo4 polymerase pre-insertion binary complex with the N-(deoxyguanosin-8-yl)-1-aminopyrene lesion 3KHL ; 2.1 ; Dpo4 post-extension ternary complex with misinserted A opposite the 2-aminofluorene-guanine [AF]G lesion 3KHR ; 2.01 ; Dpo4 post-extension ternary complex with the correct C opposite the 2-aminofluorene-guanine [AF]G lesion 4FBT ; 2.0 ; Dpo4 post-insertion complex with the N-(deoxyguanosin-8-yl)-1-aminopyrene lesion 1S97 ; 2.4 ; DPO4 with GT mismatch 3PR5 ; 2.4 ; Dpo4 Y12A mutant incorporating ADP opposite template dT 3PR4 ; 2.65 ; Dpo4 Y12A mutant incorporating dADP opposite template dT 6RN6 ; 2.4 ; DPP1 in complex with inhibitor 6RN7 ; 1.66 ; DPP1 in complex with inhibitor 6RN9 ; 1.9 ; DPP1 in complex with inhibitor 6RNE ; 1.65 ; DPP1 in complex with inhibitor 6RNI ; 1.54 ; DPP1 in complex with inhibitor 4N8E ; 2.3 ; DPP4 complexed with compound 12a 4N8D ; 1.65 ; DPP4 complexed with syn-7aa 6EOS ; 3.1 ; DPP8 - Apo, space group 19 6EOO ; 2.5 ; DPP8 - Apo, space group 20 6EOT ; 3.5 ; DPP8 - SLRFLYEG, space group 19 6EOP ; 2.4 ; DPP8 - SLRFLYEG, space group 20 6QZW ; 3.2 ; DPP8 bound to a dipeptide (MP) from the N-terminus of BRCA2 7SVO ; 2.58 ; DPP8 IN COMPLEX WITH LIGAND ICeD-1 7SVM ; 2.69 ; DPP8 IN COMPLEX WITH LIGAND ICeD-2 6EOR ; 2.9 ; DPP9 - 1G244 6EOQ ; 3.0 ; DPP9 - Apo 6QZV ; 3.0 ; DPP9 bound to a dipeptide (MP) from the N-terminus of BRCA2 7SVN ; 2.78 ; DPP9 IN COMPLEX WITH LIGAND ICeD-1 7SVL ; 2.46 ; DPP9 IN COMPLEX WITH LIGAND ICeD-2 2C2F ; 1.61 ; Dps from Deinococcus radiodurans 2C2U ; 1.1 ; Dps from Deinococcus radiodurans 5HJH ; 1.88 ; Dps4 from Nostoc punctiforme in complex with Fe ions 5I4J ; 2.394 ; Dps4 from Nostoc punctiforme in complex with Zn ions 4CY9 ; 1.78 ; DpsA14 from Streptomyces coelicolor 4CYA ; 1.86 ; DpsA15 from Streptomyces coelicolor 4CYB ; 1.78 ; DpsC from Streptomyces coelicolor 5UQD ; 1.798 ; DPY-21 in complex with Fe(II) and alpha-Ketoglutarate 6U3M ; 1.9 ; DQ2-P.fluor-alpha1a 7KEI ; 1.75 ; DQA1*01:02/DQB1*06:02 in complex with a hemagglutinin peptide from the H1N1 pandemic flu virus. 7N19 ; 2.38 ; DR3 in complex with Aspergillus nidulans NAD-dependent histone deacetylase hst4 peptide 1UT1 ; 1.7 ; DraE adhesin from Escherichia Coli 2JKL ; 1.9 ; DraE Adhesin in complex with Bromamphenicol 2JKJ ; 2.3 ; DraE Adhesin in complex with Chloramphenicol Succinate 2W5P ; 1.9 ; DraE Adhesin in complex with Chloramphenicol Succinate (monoclinic form) 2JKN ; 1.9 ; DraE Adhesin in complex with Chloramphenicol Succinate (trigonal form) 2QZV ; 9.0 ; Draft Crystal Structure of the Vault Shell at 9 Angstroms Resolution 6N8U ; 1.96 ; DRAFT model of Schistosoma japonicum Glutathione S-transferase expression tag 3ST2 ; 1.9 ; Dreiklang - equilibrium state 3ST3 ; 1.702 ; Dreiklang - off state 3ST4 ; 2.0 ; Dreiklang - on state 7V6E ; 3.0 ; DREP3 7CJY ; 2.2 ; Drimenol synthase from Persicaria hydropiper 7XQZ ; 2.0 ; Drimenyl diphosphate synthase D303A from Streptomyces showdoensis in complex with 2-fluorofarnesyl diphosphate (2F-FPP) and Mg2+ 7XRA ; 1.95 ; Drimenyl diphosphate synthase D303A from Streptomyces showdoensis in complex with farnesyl diphosphate (FPP) and Mg2+ 7XRU ; 2.5 ; Drimenyl diphosphate synthase D303E from Streptomyces showdoensis in complex with 2-fluorofarnesyl diphosphate (2F-FPP) and Mg2+ 7XR7 ; 1.63 ; Drimenyl diphosphate synthase D303E from Streptomyces showdoensis in complex with farnesyl diphosphate (FPP) and Mg2+ 7XQ4 ; 1.58 ; Drimenyl diphosphate synthase from Streptomyces showdoensis (apo) 7S9V ; 3.3 ; DrmAB:ADP 2KHX ; ; Drosha double-stranded RNA binding motif 2NA2 ; ; DROSHA QUAD MUTANT DOUBLE-STRANDED RNA BINDING COMPETENT 6LXE ; 4.2 ; DROSHA-DGCR8 complex 4CA7 ; 1.82 ; Drosophila Angiotensin converting enzyme (AnCE) in complex with a phosphinic tripeptide FI 4CA8 ; 1.99 ; Drosophila Angiotensin converting enzyme (AnCE) in complex with a phosphinic tripeptide FII 5ONB ; 3.0 ; Drosophila Bag-of-marbles CBM peptide bound to human CAF40 5ONA ; 2.7 ; Drosophila Bag-of-marbles CBM peptide bound to human CAF40-CNOT1 5HU3 ; 1.885 ; Drosophila CaMKII-D136N in complex with a phosphorylated fragment of the Eag potassium channel and Mg2+/ADP 5FG8 ; 1.955 ; Drosophila CaMKII-wt in complex with a fragment of the Eag potassium channel and Mg2+/ADP 5H9B ; 2.25 ; Drosophila CaMKII-wt in complex with a fragment of the Eag potassium channel and Mg2+/AMPPN 6BUA ; 7.1 ; Drosophila Dicer-2 apo homology model (helicase, Platform-PAZ, RNaseIII domains) 6BU9 ; 6.8 ; Drosophila Dicer-2 bound to blunt dsRNA 6TIS ; 2.3 ; DROSOPHILA GDP-TUBULIN 6TIZ ; 2.197 ; DROSOPHILA GDP-TUBULIN Y222F MUTANT 6TIY ; 2.293 ; DROSOPHILA GMPCPP-TUBULIN 6TIU ; 3.571 ; DROSOPHILA GTP-TUBULIN Y222F MUTANT 3P7J ; 2.3 ; Drosophila HP1a chromo shadow domain 2WB2 ; 2.95 ; Drosophila Melanogaster (6-4) Photolyase Bound To double stranded Dna containing a T(6-4)C Photolesion 3CVU ; 2.0 ; Drosophila melanogaster (6-4) photolyase bound to ds DNA with a T-T (6-4) photolesion 3CVV ; 2.1 ; Drosophila melanogaster (6-4) photolyase bound to ds DNA with a T-T (6-4) photolesion and F0 cofactor 3CVY ; 2.7 ; Drosophila melanogaster (6-4) photolyase bound to repaired ds DNA 3CVW ; 3.2 ; Drosophila melanogaster (6-4) photolyase H365N mutant bound to ds DNA with a T-T (6-4) photolesion and cofactor F0 3CVX ; 3.2 ; Drosophila melanogaster (6-4) photolyase H369M mutant bound to ds DNA with a T-T (6-4) photolesion 7PX0 ; 2.2 ; Drosophila melanogaster Aldehyde Oxidase 1 7MFW ; 2.104 ; Drosophila melanogaster Canoe PDZ domain in complex with Echinoid C-terminal region 6XWT ; 3.47 ; drosophila melanogaster CENP-A/H4 bound to N-terminal CAL1 fragment 6O2K ; 1.81 ; Drosophila melanogaster CENP-C cupin domain 8B9Z ; 3.28 ; Drosophila melanogaster complex I in the Active state (Dm1) 8BA0 ; 3.68 ; Drosophila melanogaster complex I in the Twisted state (Dm2) 5F68 ; 1.23 ; Drosophila Melanogaster Cycle W398A PAS-B with Bound Ethylene Glycol 5F69 ; 1.374 ; Drosophila Melanogaster Cycle W398A PAS-B with Bound Glycerol 5F6A ; 1.93 ; Drosophila Melanogaster Cycle W398A PAS-B with Empty Pocket 2VPP ; 2.2 ; Drosophila melanogaster deoxyribonucleoside kinase successfully activates gemcitabine in transduced cancer cell lines 1LPV ; ; DROSOPHILA MELANOGASTER DOUBLESEX (DSX), NMR, 18 STRUCTURES 2BK9 ; 1.2 ; Drosophila Melanogaster globin 8EXW ; 2.5 ; Drosophila melanogaster indirect flight muscle myosin II (subfragment-1) 8CLS ; 4.0 ; Drosophila melanogaster insulin receptor ectodomain in complex with DILP5 7YXJ ; 2.45 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and 2,4-PDCA 7YXG ; 1.641 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and 2OG 7YXK ; 2.43 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and N-oxalyl-D-alanine (NODA) 7YXL ; 2.2 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and N-oxalyl-D-phenylalanine (NOFD) 7YXI ; 2.1 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and N-oxalylglycine (NOG) 7YXH ; 2.3 ; Drosophila melanogaster JMJD7 (dmJMJD7) in complex with Mn and succinate 7CFB ; 2.1 ; Drosophila melanogaster Krimper eTud1 apo structure 7CFC ; 2.4 ; Drosophila melanogaster Krimper eTud1-Ago3 complex 7CFD ; 2.704 ; Drosophila melanogaster Krimper eTud2-AubR15me2 complex 7KYD ; 2.5 ; Drosophila melanogaster long-chain fatty-acyl-CoA synthetase CG6178 4Y5J ; 2.303 ; Drosophila melanogaster Mini spindles TOG3 6XU8 ; 3.0 ; Drosophila melanogaster Ovary 80S ribosome 4RKE ; 2.0006 ; Drosophila melanogaster Rab2 bound to GMPPNP 4RKF ; 1.5 ; Drosophila melanogaster Rab3 bound to GMPPNP 8C7G ; 3.2 ; Drosophila melanogaster Rab7 GEF complex Mon1-Ccz1-Bulli 7UW8 ; 2.5 ; Drosophila melanogaster setdb1-tuor domain 7UVE ; 2.3 ; Drosophila melanogaster setdb1-tuor domain with peptide H3K9me2K14ac 6XU6 ; 3.5 ; Drosophila melanogaster Testis 80S ribosome 6XU7 ; 4.9 ; Drosophila melanogaster Testis polysome ribosome 7B6H ; 5.4 ; Drosophila melanogaster TRAPP C11 subunits region 1 to 718 7B6E ; 4.5 ; Drosophila melanogaster TRAPP C8 subunits region 355 to 661 7B6D ; 4.27 ; Drosophila melanogaster TRAPPCore (C1, C2, C2L, C3a/b, C4, C5, C6 subunits) 7B6R ; 5.8 ; Drosophila melanogaster TRAPPIII partial complex: core plus C8 and C11 attached region 8AK3 ; 1.9 ; Drosophila melanogaster UNC89 Protein Kinase 1 in complex with ADP 8AK2 ; 1.75 ; Drosophila melanogaster UNC89 Protein Kinase Domain 1 (apo) 3M9Q ; 1.29 ; Drosophila MSL3 chromodomain 4WXJ ; 2.002 ; Drosophila muscle GluRIIB complex with glutamate 5FU7 ; 3.1 ; drosophila nanos NBR peptide bound to the NOT module of the human CCR4-NOT complex 3DCO ; 11.0 ; Drosophila NOD (3DC4) and Bovine Tubulin (1JFF) Docked into the 11-Angstrom Cryo-EM Map of Nucleotide-Free NOD Complexed to the Microtubule 6HOM ; 2.1 ; Drosophila NOT4 CBM peptide bound to human CAF40 6HON ; 2.2 ; Drosophila NOT4 CBM peptide bound to human CAF40 2PYO ; 2.43 ; Drosophila nucleosome core 2NQB ; 2.3 ; Drosophila Nucleosome Structure 2GTE ; 1.4 ; Drosophila OBP LUSH bound to attractant pheromone 11-cis-vaccenyl acetate 2QDI ; 2.0 ; Drosophila OBP LUSH D118A mutation 6S9F ; 1.969 ; Drosophila OTK, extracellular domains 3-5 6P5A ; 3.6 ; Drosophila P element transposase strand transfer complex 6PE2 ; 4.0 ; Drosophila P element transposase strand transfer complex 7F5T ; 4.1 ; Drosophila P5CS filament with glutamate 7F5U ; 4.1 ; Drosophila P5CS filament with glutamate and ATPgammaS 7F5V ; 3.6 ; Drosophila P5CS filament with glutamate, ATP, and NADPH 1SXR ; 1.56 ; Drosophila Peptidoglycan Recognition Protein (PGRP)-SA 7NSY ; 1.4 ; Drosophila PGRP-LB C160S mutant 7NSX ; 1.9 ; Drosophila PGRP-LB wild-type 7NSZ ; 1.3 ; Drosophila PGRP-LB Y78F mutant 7NT0 ; 1.8 ; Drosophila PGRP-LB Y78F mutant in complex with tracheal cytotoxin (TCT) 6FKM ; 2.96 ; Drosophila Plexin A in complex with Semaphorin 1b 6FKN ; 4.801 ; Drosophila Plexin A in complex with Semaphorin 1b 1R18 ; 2.2 ; Drosophila protein isoaspartyl methyltransferase with S-adenosyl-L-homocysteine 3H3D ; 2.3 ; Drosophila Pumilio RNA binding domain (Puf domain) 2VRA ; 3.2 ; Drosophila Robo IG1-2 (monoclinic form) 2VR9 ; 3.2 ; Drosophila Robo IG1-2 (tetragonal form) 6QP9 ; 3.6 ; Drosophila Semaphorin 1a, extracellular domains 1-2 6FKK ; 2.78 ; Drosophila Semaphorin 1b, extracellular domains 1-2 6QP7 ; 1.96 ; Drosophila Semaphorin 2a 6QP8 ; 2.33 ; Drosophila Semaphorin 2b 8OIJ ; 2.0 ; Drosophila Smaug-Smoothened complex 4TUX ; 3.08 ; drosophila stem-loop binding protein complexed with histone mRNA stem-loop 4TUW ; 2.902 ; drosophila stem-loop binding protein complexed with histone mRNA stem-loop, phospho mimic of TPNK and C-terminal region 4TV0 ; 2.601 ; Drosophila stem-loop binding protein complexed with histone mRNA stem-loop, Selenomethionine derivative 1TAF ; 2.0 ; DROSOPHILA TBP ASSOCIATED FACTORS DTAFII42/DTAFII62 HETEROTETRAMER 1XW9 ; 2.3 ; Drosophila thioredoxin, oxidized, P21 1XWC ; 2.3 ; Drosophila thioredoxin, reduced, P6522 6Y6E ; 2.02 ; drosophila Unr CSD456 7VNA ; 2.597 ; drosophlia AHR PAS-B domain 7VNH ; 2.402 ; drosophlia AHR PAS-B domain bound by the antagonist alpha-naphthoflavone 1XWA ; 2.2 ; Drospohila thioredoxin, oxidized, P41212 1XWB ; 2.2 ; Drospohila thioredoxin, oxidized, P42212 1CTR ; 2.45 ; DRUG BINDING BY CALMODULIN: CRYSTAL STRUCTURE OF A CALMODULIN-TRIFLUOPERAZINE COMPLEX 8CLH ; 2.5 ; Drug cocktail (Colchicine, Epothilone A, Peloruside, Ansamitocin P3, Vinblastine) bound to tubulin (T2R-TTL) complex 2J8S ; 2.54 ; Drug Export Pathway of Multidrug Exporter AcrB Revealed by DARPin Inhibitors 3LOK ; 2.48 ; Drug resistant cSrc kinase domain in complex with covalent inhibitor PD168393 3F3W ; 2.6 ; Drug resistant cSrc kinase domain in complex with inhibitor RL45 (Type II) 7MAR ; 1.7 ; Drug Resistant HIV-1 Protease (L10F, M46I, I47V, I50V, F53L, L63P, I72V, G73S, V82I, I85V) in Complex with DRV 7MAS ; 1.5 ; Drug Resistant HIV-1 Protease (L10F, M46I, I50V, F53L, L63P, G73S) in Complex with DRV 7MAQ ; 1.93 ; Drug Resistant HIV-1 Protease (L10F, V32I, L33F, K45I, A71V, V82I, I84V) in Complex with DRV 7MAP ; 1.951 ; Drug Resistant HIV-1 Protease (L10I, V32I, L33F, K45I, M46I, I50V, A71V, V82I, I84V) in Complex with DRV 166D ; 2.2 ; DRUG-DNA MINOR GROOVE RECOGNITION: CRYSTAL STRUCTURE OF GAMMA-OXAPENTAMIDINE COMPLEXED WITH D(CGCGAATTCGCG)2 7RIT ; 5.2 ; Drug-free A. baumannii MsbA 1D32 ; 1.7 ; DRUG-INDUCED DNA REPAIR: X-RAY STRUCTURE OF A DNA-DITERCALINIUM COMPLEX 1AZM ; 2.0 ; DRUG-PROTEIN INTERACTIONS: STRUCTURE OF SULFONAMIDE DRUG COMPLEXED WITH HUMAN CARBONIC ANHYDRASE I 1BZM ; 2.0 ; DRUG-PROTEIN INTERACTIONS: STRUCTURE OF SULFONAMIDE DRUG COMPLEXED WITH HUMAN CARBONIC ANHYDRASE I 1CZM ; 2.0 ; DRUG-PROTEIN INTERACTIONS: STRUCTURE OF SULFONAMIDE DRUG COMPLEXED WITH HUMAN CARBONIC ANHYDRASE I 3FGD ; 1.33 ; Drugscore FP: Thermoylsin in complex with fragment. 1AC1 ; 2.0 ; DSBA MUTANT H32L 1ACV ; 1.9 ; DSBA MUTANT H32S 1BQ7 ; 2.8 ; DSBA MUTANT P151A, ROLE OF THE CIS-PROLINE IN THE ACTIVE SITE OF DSBA 3DKS ; 1.9 ; DsbA substrate complex 2L0M ; ; DsbB2 peptide structure in 100% TFE 2L0L ; ; DsbB2 peptide structure in 70% TFE 2L0O ; ; DsbB3 peptide structure in 100% TFE 2L0N ; ; DsbB3 peptide structure in 70% TFE 1JZO ; 1.92 ; DsbC C101S 1G0T ; 2.6 ; DSBC MUTANT C101S 1JZD ; 2.3 ; DsbC-DsbDalpha complex 2JU5 ; ; DsbH Oxidoreductase 8T1K ; 3.14 ; DSBU crosslinked nNOS-CaM oxygenase homodimer 5ZCR ; 2.4 ; DSM5389 glycosyltrehalose synthase 1A1F ; 2.1 ; DSNR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GACC SITE) 1A1G ; 1.9 ; DSNR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GCGT SITE) 4X8W ; 2.647 ; dsRBD3 of Loquacious 5MUU ; 4.0 ; dsRNA bacteriophage phi6 nucleocapsid 6SX2 ; 1.9 ; dsRNA recognition by R38AK41A mutant of H7N1 NS1 RNA Binding Domain 8HIP ; 2.77 ; dsRNA transporter 8HKE ; 3.71 ; dsRNA transporter 4NIN ; 1.402 ; DSVISLS segment 101-107 from Human Superoxide Dismutase 2JZ1 ; ; DSX_long 2JZ0 ; ; DSX_short 7WDW ; 2.39 ; DsyB in complex with SAH and MTHB 7WDQ ; 2.35 ; DsyB in complex with SAM 3KO9 ; 2.75 ; DTD from Plasmodium falciparum in complex with D-Arginine 3KOB ; 2.99 ; DTD from Plasmodium falciparum in complex with D-Glutamic acid 3KOC ; 2.91 ; DTD from Plasmodium falciparum in complex with D-Histidine 3KO7 ; 2.21 ; DTD from Plasmodium falciparum in complex with D-Lysine 3KOD ; 3.0 ; DTD from Plasmodium falciparum in complex with D-Serine 4LXU ; 1.4 ; dTdp-Fuc3N and 5-N-Formyl-THF 1BXK ; 1.9 ; DTDP-GLUCOSE 4,6-DEHYDRATASE FROM E. COLI 1H7L ; 1.98 ; dTDP-MAGNESIUM COMPLEX OF SPSA FROM BACILLUS SUBTILIS 1H7Q ; 2.0 ; dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS 7PVI ; 1.434 ; dTDP-sugar epimerase 7PWB ; 1.87 ; dTDP-sugar epimerase from Coxiella burnetii in complex with dTDP 5XAI ; 2.0 ; dTMP bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 8B18 ; 2.3 ; DtpB-Nb132-AF 8B19 ; 2.45 ; DtpB-Nb132-AFA 8B1A ; 2.15 ; DtpB-Nb132-AI 8B1B ; 2.8 ; DtpB-Nb132-AL 8B1C ; 2.56 ; DtpB-Nb132-ALA 8B1D ; 2.3 ; DtpB-Nb132-APF 8B1E ; 2.47 ; DtpB-Nb132-AQ 8B1F ; 2.35 ; DtpB-Nb132-AV 8B1G ; 2.5 ; DtpB-Nb132-AW 8B17 ; 2.5 ; DtpB-Nb132-AWA 8B1H ; 2.6 ; DtpB-Nb132-KV 8B1I ; 2.55 ; DtpB-Nb132-MS 8B1K ; 2.8 ; DtpB-Nb132-NV 8B1J ; 2.67 ; DtpB-Nb132-SL 7B24 ; 2.05 ; DtxR-like iron-dependent regulator IdeR (P39G variant) complexed with cobalt and its consensus DNA-binding sequence 7B25 ; 2.34 ; DtxR-like iron-dependent regulator IdeR (Q43A variant) complexed with cobalt and its consensus DNA-binding sequence 7B1V ; 2.04 ; DtxR-like iron-dependent regulator IdeR complexed with cobalt 7B1Y ; 2.12 ; DtxR-like iron-dependent regulator IdeR complexed with cobalt and its consensus DNA-binding sequence 7B23 ; 2.15 ; DtxR-like iron-dependent regulator IdeR complexed with cobalt and the SACE_2689 promoter DNA-binding sequence 7B20 ; 2.18 ; DtxR-like iron-dependent regulator IdeR complexed with iron and its consensus DNA-binding sequence 4TQ8 ; 1.52 ; Dual binding mode for 3-(9H-fluoren-9-ylideneaminooxy)propanoic acid binding to Human transthyretin (TTR) 2BXV ; 2.15 ; Dual binding mode of a novel series of DHODH inhibitors 2FPT ; 2.4 ; Dual Binding Mode of a Novel Series of DHODH inhibitors 2FPV ; 1.8 ; Dual binding mode of a novel series of DHODH inhibitors 2FPY ; 2.0 ; Dual binding mode of a novel series of DHODH inhibitors 1SZM ; 2.5 ; DUAL BINDING MODE OF BISINDOLYLMALEIMIDE 2 TO PROTEIN KINASE A (PKA) 2EWA ; 2.1 ; Dual binding mode of pyridinylimidazole to MAP kinase p38 2FQI ; 1.95 ; dual binding modes of a novel series of DHODH inhibitors 6T3J ; 3.05 ; Dual Epitope Targeting by Anti-DR5 Antibodies 4LH4 ; 1.8 ; Dual inhibition of HIV-1 replication by Integrase-LEDGF allosteric inhibitors is predominant at post-integration stage during virus production rather than at integration 4LH5 ; 2.19 ; Dual inhibition of HIV-1 replication by Integrase-LEDGF allosteric inhibitors is predominant at post-integration stage during virus production rather than at integration 6B2P ; 3.01 ; Dual Inhibition of the Essential Protein Kinases A and B in Mycobacterium tuberculosis 6B2Q ; 2.88 ; Dual Inhibition of the Essential Protein Kinases A and B in Mycobacterium tuberculosis 2A4O ; 1.55 ; Dual modes of modification of Hepatitis A virus 3C protease by a serine derived beta-lactone: selective crytstallization and high resolution structure of the His102 adduct 2CXV ; 1.4 ; Dual Modes of Modification of Hepatitis A Virus 3C Protease by a Serine-Derived betaLactone: Selective Crystallization and High-resolution Structure of the His-102 Adduct 8EV1 ; 1.83 ; Dual Modulators 8EV2 ; 2.01 ; Dual Modulators 3BE1 ; 2.9 ; Dual specific bH1 Fab in complex with the extracellular domain of HER2/ErbB-2 3BDY ; 2.6 ; Dual specific bH1 Fab in complex with VEGF 6QHO ; 2.7 ; Dual specificity mitogen-activated protein kinase kinase 7 in complex with pyrazolopyrimidine 1a 7NCY ; 2.0 ; Dual specificity phosphatase from Sulfolobales Beppu filamentous virus 3 4ZFF ; 2.75 ; Dual-acting Fab 5A12 in complex with VEGF 1PYN ; 2.2 ; DUAL-SITE POTENT, SELECTIVE PROTEIN TYROSINE PHOSPHATASE 1B INHIBITOR USING A LINKED FRAGMENT STRATEGY AND A MALONATE HEAD ON THE FIRST SITE 4ZFG ; 2.27 ; Dual-specificity Fab 5A12 in complex with Angiopoietin 2 2Y1O ; 1.49 ; Dual-target Inhibitor of MurD and MurE Ligases: Design, Synthesis and Binding Mode Studies 1QMU ; 2.7 ; Duck carboxypeptidase D domain II 1H8L ; 2.6 ; Duck Carboxypeptidase D Domain II in complex with GEMSA 6YGH ; 3.7 ; Duck hepatitis B virus capsid 6YGI ; 3.0 ; Duck hepatitis B virus capsid Mutant R124E_delta78-122 6YXR ; 3.4 ; Dunaliella Minimal Photosystem I 6QPH ; 3.4 ; Dunaliella minimal PSI complex 6SL5 ; 2.84 ; Dunaliella Photosystem I Supercomplex 6WGL ; 2.82 ; Dupilumab fab with Crystal Kappa design complexed with human IL-4 receptor 2O80 ; ; Duplex DNA containing an abasic site with an opposite dC (alpha anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 2O82 ; ; Duplex DNA containing an abasic site with an opposite dC (beta anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 2O7W ; ; Duplex DNA containing an abasic site with an opposite G (alpha anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 2O7X ; ; Duplex DNA containing an abasic site with an opposite G (beta anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 2O7Y ; ; Duplex DNA containing an abasic site with an opposite T (alpha anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 2O7Z ; ; Duplex DNA containing an abasic site with an opposite T (beta anomer) in 5'-G_AC-3' (10 structure ensemble and averaged structure) 3RZG ; 1.62 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 3RZH ; 2.25 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 3RZJ ; 2.5 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 3RZK ; 2.78 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 3RZL ; 2.6 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 3RZM ; 3.06 ; Duplex Interrogation by a Direct DNA Repair Protein in the Search of Damage 1AG3 ; ; DUPLEX OLIGODEOXYNUCLEOTIDE CONTAINING PROPANODEOXYGUANOSINE OPPOSITE A TWO-BASE DELETION, NMR, MINIMIZED AVERAGE STRUCTURE 7QTN ; 1.2 ; Duplex RNA containing Xanthosine-Cytosine base pairs 7QUA ; 1.0 ; Duplex RNA containing Xanthosine-Cytosine base pairs 410D ; 1.6 ; DUPLEX [5'-D(GCGTA+TACGC)]2 WITH INCORPORATED 2'-O-ETHOXYMETHYLENE RIBONUCLEOSIDE 411D ; 1.93 ; DUPLEX [5'-D(GCGTA+TACGC)]2 WITH INCORPORATED 2'-O-METHOXYETHYL RIBONUCLEOSIDE 412D ; 1.65 ; DUPLEX [5'-D(GCGTA+TACGC)]2 WITH INCORPORATED 2'-O-METHYL-[TRI(OXYETHYL)] RIBONUCLEOSIDE 8DUT ; 7.4 ; Duplex-G-quadruplex-duplex (DGD) class_1 1P56 ; 1.8 ; Duplication-extension of Helix A of T4 lysozyme 7PWJ ; 1.944 ; dUTPase from human in complex with Stl 7PWX ; 2.75 ; dUTPase from M. tuberculosis in complex with Stl 4GV8 ; 2.1 ; DUTPase from phage phi11 of S.aureus: visualization of the species-specific insert 8HRV ; 2.0 ; dutpase of helicobacter pylori 26695 7WG1 ; 2.19 ; DVAA-KlAte1 7WG4 ; 1.51 ; DVAA-KlAte1 7BZX ; 4.0 ; DXPS 6I8Q ; 1.74 ; Dye type peroxidase Aa from Streptomyces lividans: 117.6 kGy structure 6I8J ; 1.9 ; Dye type peroxidase Aa from Streptomyces lividans: 131.2 kGy structure 6I91 ; 1.78 ; Dye type peroxidase Aa from Streptomyces lividans: 156.8 kGy structure 6Q31 ; 1.78 ; Dye type peroxidase Aa from Streptomyces lividans: 156.8 kGy structure 6I8K ; 1.98 ; Dye type peroxidase Aa from Streptomyces lividans: 164 kGy structure 6Q34 ; 1.82 ; Dye type peroxidase Aa from Streptomyces lividans: 196 kGy structure 6Q3D ; 1.93 ; Dye type peroxidase Aa from Streptomyces lividans: 235.2 kGy structure 6Q3E ; 2.03 ; Dye type peroxidase Aa from Streptomyces lividans: 274.4 kGy structure 6I7Z ; 1.78 ; Dye type peroxidase Aa from Streptomyces lividans: 32.8 kGy structure 6IBN ; 2.18 ; Dye type peroxidase Aa from Streptomyces lividans: 32.8 kGy structure 6I8O ; 1.7 ; Dye type peroxidase Aa from Streptomyces lividans: 39.2kGy structure 6I8E ; 1.78 ; Dye type peroxidase Aa from Streptomyces lividans: 65.6 kGy structure 6I8P ; 1.73 ; Dye type peroxidase Aa from Streptomyces lividans: 78.4 kGy structure 6I8I ; 1.83 ; Dye type peroxidase Aa from Streptomyces lividans: 98.4 kGy structure 6I7C ; 1.88 ; Dye type peroxidase Aa from Streptomyces lividans: imidazole complex 6TB8 ; 1.8 ; Dye Type Peroxidase Aa from Streptomyces lividans: spectroscopically-validated ferric state 3AFV ; 1.4 ; Dye-decolorizing peroxidase (DyP) at 1.4 A resolution 3VXJ ; 1.39 ; Dye-decolorizing peroxidase (DyP) complex with 2,6-dimethoxyphenol 3VXI ; 1.5 ; Dye-decolorizing peroxidase (DyP) complex with ascorbic acid 3MM1 ; 1.42 ; Dye-decolorizing peroxidase (DyP) D171N 3MM3 ; 1.4 ; Dye-decolorizing peroxidase (DyP) D171N in complex with cyanide 3MM2 ; 1.45 ; Dye-decolorizing peroxidase (DyP) in complex with cyanide 5DE0 ; 2.24 ; Dye-decolorizing protein from V. cholerae 6YR4 ; 1.85 ; Dye-type peroxidase DtpB in the ferryl state: Spectroscopically Validated composite structure 8PR4 ; 3.5 ; Dynactin pointed end bound to JIP3 2N1T ; ; Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution 7B3K ; ; Dynamic complex between all-D-enantiomeric peptide D3 with L723P mutant of amyloid precursor protein (APP) 672-726 fragment (amyloid beta 1-55) 7B3J ; ; Dynamic complex between all-D-enantiomeric peptide D3 with wild-type amyloid precursor protein 672-726 fragment (amyloid beta 1-55) 3OFS ; 2.2 ; Dynamic conformations of the CD38-mediated NAD cyclization captured using multi-copy crystallography 3K6M ; 1.5 ; Dynamic domains of Succinyl-CoA:3-ketoacid-coenzyme A transferase from pig heart. 2KU1 ; ; Dynamic Regulation of Archaeal Proteasome Gate Opening as Studied by TROSY-NMR 2KU2 ; ; Dynamic Regulation of Archaeal Proteasome Gate Opening as Studied by TROSY-NMR 3KFY ; 2.08 ; Dynamic switching and partial occupancies of a small molecule inhibitor complex of DHFR 5FNC ; 2.2 ; Dynamic Undocking and the Quasi-Bound State as tools for Drug Design 5FND ; 2.0 ; Dynamic Undocking and the Quasi-Bound State as tools for Drug Design 5FNF ; 2.1 ; Dynamic Undocking and the Quasi-Bound State as tools for Drug Design 1MFS ; ; DYNAMICAL BEHAVIOR OF THE HIV-1 NUCLEOCAPSID PROTEIN; NMR, 30 STRUCTURES 2KJJ ; ; Dynamics of insulin probed by 1H-NMR amide proton exchange anomalous flexibility of the receptor-binding surface 7W9A ; 2.12 ; Dynamics of lipid displacement inside the hydrophobic cavity of a non-specific lipid transfer protein from Solanum melongena 2DYN ; 2.3 ; DYNAMIN (PLECKSTRIN HOMOLOGY DOMAIN) (DYNPH) 2X2F ; 2.0 ; Dynamin 1 GTPase dimer, short axis form 3ZYC ; 2.2 ; DYNAMIN 1 GTPASE GED FUSION DIMER COMPLEXED WITH GMPPCP 5D3Q ; 1.7 ; Dynamin 1 GTPase-BSE fusion dimer complexed with GDP 2X2E ; 2.0 ; Dynamin GTPase dimer, long axis form 1YGT ; 1.7 ; Dynein Light Chain TcTex-1 6F1Y ; 3.4 ; Dynein light intermediate chain region of the dynein tail/dynactin/BICDR1 complex 4AI6 ; 3.4 ; Dynein Motor Domain - ADP complex 4AKH ; 3.6 ; Dynein Motor Domain - AMPPNP complex 4AKG ; 3.3 ; Dynein Motor Domain - ATP complex 4AKI ; 3.7 ; Dynein Motor Domain - LuAc derivative 4D07 ; 1.85 ; DYNLL2 dynein light chain binds to an extended, unstructured linear motif of myosin 5a tail 6V04 ; 1.5 ; DynU16 crystal structure, a putative protein in the dynemicin biosynthetic locus 8CK9 ; 1.6 ; DyP-type peroxidase from Thermobifida halotolerans 5AG0 ; 1.75 ; DyP-type peroxidase of Auricularia auricula-judae (AauDyPI) crystallized at pH 6.5 5AG1 ; 1.85 ; DyP-type peroxidase of Auricularia auricula-judae (AauDyPI) with meso- nitrated heme 4G2C ; 2.25 ; DyP2 from Amycolatopsis sp. ATCC 39116 3QNR ; 2.25 ; DyPB from Rhodococcus jostii RHA1, crystal form 1 3QNS ; 1.4 ; DyPB from Rhodococcus jostii RHA1, crystal form 2 4HOV ; 2.2 ; DypB N246A in complex with manganese 6UWY ; 2.95 ; DYRK1A bound to a harmine derivative 7ZH8 ; 2.3 ; DYRK1a in Complex with a Bromo-Triazolo-Pyridine 5A4Q ; 2.37 ; DYRK1A IN COMPLEX WITH CHLORO BENZOTHIAZOLE FRAGMENT 5A4L ; 2.73 ; DYRK1A IN COMPLEX WITH FLUORO BENZOTHIAZOLE FRAGMENT 6EIJ ; 2.42 ; DYRK1A in complex with HG-8-60-1 5A3X ; 2.26 ; DYRK1A in complex with hydroxy benzothiazole fragment 6EIS ; 2.36 ; DYRK1A in complex with JWC-055 6EIV ; 2.68 ; DYRK1A in complex with JWD-065 5A4E ; 2.68 ; DYRK1A in complex with methoxy benzothiazole fragment 5A4T ; 2.15 ; DYRK1A IN COMPLEX WITH NITRILE BENZOTHIAZOLE FRAGMENT 5A54 ; 2.63 ; DYRK1A IN COMPLEX WITH NITRO BENZOTHIAZOLE FRAGMENT 6EIQ ; 2.3 ; DYRK1A in complex with XMD14-124 6EIR ; 2.4 ; DYRK1A in complex with XMD15-27-2 6EJ4 ; 2.88 ; DYRK1A in complex with XMD7-112 6EIF ; 2.22 ; DYRK1A in complex with XMD7-117 6EIL ; 2.465 ; DYRK1A in complex with XMD8-49 6EIP ; 2.56 ; DYRK1A in complex with XMD8-62e 6UIP ; 3.7 ; DYRK1A Kinase Domain in Complex with a 6-azaindole Derivative, GNF2133. 6YF8 ; 3.198 ; DYRK1A with PST001 8BAO ; 2.06 ; Dysgonamonadaceae bacterium CRISPR ancillary nuclease 2 5LOV ; 2.4 ; DZ-2384 tubulin complex 6SAR ; 2.18 ; E coli BepA/YfgC 4XKU ; 1.78 ; E coli BFR variant Y114F 4XKT ; 1.82 ; E coli BFR variant Y149F 2GMS ; 1.8 ; E coli GDP-4-keto-6-deoxy-D-mannose-3-dehydratase with bound hydrated PLP 5KNV ; 2.861 ; E coli hypoxanthine guanine phosphoribosyltransferase in complexed with 9-[(N-Phosphonoethyl-N-phosphonobutyl)-2-aminoethyl]-hypoxanthine 5KNS ; 2.792 ; E coli hypoxanthine guanine phosphoribosyltransferase in complexed with 9-[(N-phosphonoethyl-N-phosphonoethoxyethyl)-2-aminoethyl]hypoxanthine 5LRY ; 1.4 ; E coli [NiFe] Hydrogenase Hyd-1 mutant E28D 8FVB ; 2.03 ; E coli. CTP synthase in complex with CTP 8FVE ; 2.4 ; E coli. CTP synthase in complex with CTP (potassium malonate + 100 mM MgCl2) 8SBR ; 2.59 ; E coli. CTP synthase in complex with CTP (sodium malonate + 20 mM MgCl2) 8FV6 ; 2.25 ; E coli. CTP synthase in complex with dF-dCTP 8FVD ; 2.38 ; E coli. CTP synthase in complex with dF-dCTP (potassium malonate + 100 mM MgCl2) 8FVC ; 2.281 ; E coli. CTP synthase in complex with dF-dCTP (potassium malonate + 5 mM MgCl2) 8FV8 ; 2.05 ; E coli. CTP synthase in complex with dF-dCTP + ADP 8FV7 ; 2.08 ; E coli. CTP synthase in complex with dF-dCTP + ATP 8FVA ; 2.4 ; E coli. CTP synthase in complex with F-araCTP 8FV9 ; 1.991 ; E coli. CTP synthase in complex with F-dCTP 3DU2 ; 3.1 ; E(L212)A mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 3DU3 ; 2.8 ; E(L212)A, D(L213)A, A(M249)Y triple mutant structure of photosynthetic reaction center 3DUQ ; 2.7 ; E(L212)A, D(L213)A, N(M5)D triple mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 3DTS ; 3.1 ; E(L212)A, D(L213)A, R(M233)L triple mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 1K6N ; 3.1 ; E(L212)A,D(L213)A Double Mutant Structure of Photosynthetic Reaction Center from Rhodobacter Sphaeroides 3DSY ; 3.0 ; E(L212)Q mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 3DTR ; 3.1 ; E(L212)Q, L(L227)F double mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 3DTA ; 3.2 ; E(L212)Q, N(M44)D double mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 1Q1P ; 3.2 ; E-Cadherin activation 1EDH ; 2.0 ; E-CADHERIN DOMAINS 1 AND 2 IN COMPLEX WITH CALCIUM 1MOW ; 2.4 ; E-DreI 1NOQ ; ; e-motif structure 4C16 ; 1.93 ; E-selectin lectin, EGF-like and two SCR domains complexed with glycomimetic antagonist 6EYI ; 2.04 ; E-selectin lectin, EGF-like and two SCR domains complexed with glycomimetic ligand BW69669 6EYJ ; 2.2 ; E-selectin lectin, EGF-like and two SCR domains complexed with glycomimetic ligand NV354 6EYK ; 2.21 ; E-selectin lectin, EGF-like and two SCR domains complexed with glycomimetic ligand NV355 4CSY ; 2.41 ; E-selectin lectin, EGF-like and two SCR domains complexed with Sialyl Lewis X 4E7F ; 2.15 ; E. cloacae C115D MurA in complex with UDP 4E7E ; 2.3 ; E. cloacae C115D MurA in complex with UDP-glucose 3V4T ; 2.5 ; E. cloacae C115D MURA liganded with UNAG 4E7G ; 1.6 ; E. cloacae C115D/R120A MurA in the unliganded state 3LTH ; 1.75 ; E. cloacae MurA dead-end complex with UNAG and fosfomycin 3SWI ; 2.8 ; E. Cloacae MurA in complex with Enolpyruvyl-UDP-N-acetylgalactosamine and covalent adduct of PEP with CYS115 3SWQ ; 1.83 ; E. Cloacae MurA in complex with Enolpyruvyl-UNAG 4E7D ; 2.5 ; E. cloacae MurA in complex with UDP 4E7B ; 2.0 ; E. cloacae MurA in complex with UDP-glucose 3SU9 ; 2.2 ; E. Cloacae MURA in complex with UDP-N-acetylmuramic acid and covalent adduct of PEP with Cys115 3UPK ; 2.0 ; E. cloacae MURA in complex with UNAG 4E7C ; 2.1 ; E. cloacae MurA in complex with UTP 3SWA ; 1.9 ; E. Cloacae MurA R120A complex with UNAG and covalent adduct of PEP with CYS115 4V41 ; 2.5 ; E. COLI (LAC Z) BETA-GALACTOSIDASE (NCS CONSTRAINED MONOMER-MONOCLINIC) 1HN1 ; 3.0 ; E. COLI (LAC Z) BETA-GALACTOSIDASE (ORTHORHOMBIC) 3IAP ; 2.0 ; E. coli (lacZ) beta-galactosidase (E416Q) 3IAQ ; 2.7 ; E. coli (lacz) beta-galactosidase (E416V) 1JZ8 ; 1.5 ; E. COLI (lacZ) BETA-GALACTOSIDASE (E537Q) IN COMPLEX WITH ALLOLACTOSE 1JYN ; 1.8 ; E. COLI (lacZ) BETA-GALACTOSIDASE (E537Q) IN COMPLEX WITH LACTOSE 1JYV ; 1.75 ; E. COLI (lacZ) BETA-GALACTOSIDASE (E537Q) IN COMPLEX WITH ONPG 1JYW ; 1.55 ; E. COLI (lacZ) BETA-GALACTOSIDASE (E537Q) IN COMPLEX WITH PNPG 1PX3 ; 1.6 ; E. COLI (LACZ) BETA-GALACTOSIDASE (G794A) 1PX4 ; 1.6 ; E. COLI (LACZ) BETA-GALACTOSIDASE (G794A) WITH IPTG BOUND 4DUV ; 2.1 ; E. coli (lacZ) beta-galactosidase (G974A) 2-deoxy-galactosyl-enzyme and bis-Tris complex 4DUW ; 2.2 ; E. coli (lacZ) beta-galactosidase (G974A) in complex with allolactose 3DYM ; 2.05 ; E. coli (lacZ) beta-galactosidase (H418E) 3DYP ; 1.75 ; E. coli (lacZ) beta-galactosidase (H418N) 3DYO ; 1.8 ; E. coli (lacZ) beta-galactosidase (H418N) in complex with IPTG 3I3E ; 2.1 ; E. COLI (lacZ) BETA-GALACTOSIDASE (M542A) 3I3D ; 2.2 ; E. COLI (lacZ) BETA-GALACTOSIDASE (M542A) IN COMPLEX WITH IPTG 3VD3 ; 2.8 ; E. coli (lacZ) beta-galactosidase (N460D) 3VD4 ; 2.0 ; E. coli (lacZ) beta-galactosidase (N460D) in complex with IPTG 3VD5 ; 2.7 ; E. coli (lacZ) beta-galactosidase (N460S) 3VD7 ; 2.87 ; E. coli (lacZ) beta-galactosidase (N460S) in complex with galactotetrazole 3VD9 ; 2.05 ; E. coli (lacZ) beta-galactosidase (N460S) in complex with IPTG 4DUX ; 2.3 ; E. coli (lacZ) beta-galactosidase (N460S) in complex with L-ribose 3VDA ; 2.5 ; E. coli (lacZ) beta-galactosidase (N460T) 3CZJ ; 2.05 ; E. COLI (lacZ) BETA-GALACTOSIDASE (N460T) IN COMPLEX WITH D-GALCTOPYRANOSYL-1-ONE 3VDB ; 2.05 ; E. coli (lacZ) beta-galactosidase (N460T) in complex with galactonolactone 3VDC ; 2.55 ; E. coli (lacZ) beta-galactosidase (N460T) in complex with IPTG 1F4A ; 2.8 ; E. COLI (LACZ) BETA-GALACTOSIDASE (NCS CONSTRAINED MONOMER-ORTHORHOMBIC) 1F4H ; 2.8 ; E. COLI (LACZ) BETA-GALACTOSIDASE (ORTHORHOMBIC) 3MUY ; 2.5 ; E. coli (lacZ) beta-galactosidase (R599A) 3MV0 ; 2.2 ; E. COLI (lacZ) BETA-GALACTOSIDASE (R599A) IN COMPLEX WITH D-GALCTOPYRANOSYL-1-ONE 3SEP ; 2.05 ; E. coli (lacZ) beta-galactosidase (S796A) 3T09 ; 1.75 ; E. coli (LacZ) beta-galactosidase (S796A) galactonolactone complex 3T08 ; 2.0 ; E. coli (LacZ) beta-galactosidase (S796A) IPTG complex 3T2O ; 1.85 ; E. coli (lacZ) beta-galactosidase (S796D) 3T2Q ; 2.4 ; E. coli (lacZ) beta-galactosidase (S796D) in complex with galactonolactone 3T2P ; 2.6 ; E. coli (lacZ) beta-galactosidase (S796D) in complex with IPTG 3T0A ; 1.9 ; E. coli (LacZ) beta-galactosidase (S796T) 3T0B ; 2.4 ; E. coli (LacZ) beta-galactosidase (S796T) IPTG complex 4V44 ; 2.7 ; E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH 2-F-LACTOSE 1JZ5 ; 1.8 ; E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH D-GALCTOPYRANOSYL-1-ON 1JZ6 ; 2.1 ; E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH GALACTO-TETRAZOLE 1JZ7 ; 1.5 ; E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH GALACTOSE 1JYX ; 1.75 ; E. COLI (lacZ) BETA-GALACTOSIDASE IN COMPLEX WITH IPTG 1JZ3 ; 1.75 ; E. COLI (lacZ) BETA-GALACTOSIDASE-TRAPPED 2-DEOXY-GALACTOSYL ENZYME INTERMEDIATE 1JZ4 ; 2.1 ; E. COLI (lacZ) BETA-GALACTOSIDASE-TRAPPED 2-DEOXY-GALACTOSYL-ENZYME INTERMEDIATE (Low Bis-Tris) 4V45 ; 2.6 ; E. COLI (lacZ) BETA-GALACTOSIDASE-TRAPPED 2-F-GALACTOSYL-ENZYME INTERMEDIATE 1JZ2 ; 2.1 ; E. COLI (lacZ) BETA-GALACTOSIDASE-TRAPPED 2-F-GALACTOSYL-ENZYME INTERMEDIATE (ORTHORHOMBIC) 2JGD ; 2.6 ; E. COLI 2-oxoglutarate dehydrogenase (E1o) 4WWL ; 2.23 ; E. coli 5'-nucleotidase mutant I521C labeled with MTSL (intermediate form) 6XZ7 ; 2.1 ; E. coli 50S ribosomal subunit in complex with dirithromycin, fMet-Phe-tRNA(Phe) and deacylated tRNA(iMet). 8E44 ; 2.53 ; E. coli 50S ribosome bound to antibiotic analog SLC09 8E45 ; 2.3 ; E. coli 50S ribosome bound to antibiotic analog SLC17 8E46 ; 2.32 ; E. coli 50S ribosome bound to antibiotic analog SLC21 8E47 ; 2.32 ; E. coli 50S ribosome bound to antibiotic analog SLC26 8E48 ; 2.27 ; E. coli 50S ribosome bound to antibiotic analog SLC30 8E49 ; 2.05 ; E. coli 50S ribosome bound to antibiotic analog SLC31 6PCH ; 2.9 ; E. coli 50S ribosome bound to compound 21 6PCS ; 2.8 ; E. coli 50S ribosome bound to compound 40e 6PCR ; 2.5 ; E. coli 50S ribosome bound to compound 40o 6PC8 ; 2.9 ; E. coli 50S ribosome bound to compound 40q 6PCT ; 2.8 ; E. coli 50S ribosome bound to compound 41q 6PC7 ; 2.5 ; E. coli 50S ribosome bound to compound 46 6PC6 ; 2.5 ; E. coli 50S ribosome bound to compound 47 8E35 ; 2.27 ; E. coli 50S ribosome bound to compound SAB002 8E30 ; 1.91 ; E. coli 50S ribosome bound to compound streptogramin A analog 3142 8E36 ; 2.38 ; E. coli 50S ribosome bound to compound streptogramin A analog 3146 8E43 ; 2.09 ; E. coli 50S ribosome bound to compound streptogramin A analog 3336 8E33 ; 2.23 ; E. coli 50S ribosome bound to compound streptogramin analog SAB001 8E32 ; 2.35 ; E. coli 50S ribosome bound to compound streptogramin analogs SA1 and SB1 6PC5 ; 2.7 ; E. coli 50S ribosome bound to compounds 46 and VS1 6WYV ; 2.75 ; E. coli 50S ribosome bound to compounds 47 and VS1 8E3L ; 2.35 ; E. coli 50S ribosome bound to D-linker solithromycin conjugate 8E3M ; 2.25 ; E. coli 50S ribosome bound to L-linker solithromycin conjugate 8E3O ; 1.99 ; E. coli 50S ribosome bound to solithromycin and VM1 8E42 ; 2.29 ; E. coli 50S ribosome bound to tiamulin and azithromycin 8E41 ; 2.13 ; E. coli 50S ribosome bound to tiamulin and VS1 6PCQ ; 2.6 ; E. coli 50S ribosome bound to VM2 7ODE ; 2.84 ; E. coli 50S ribosome LiCl core particle 5ZZM ; 8.1 ; E. coli 50S subunit bound HflX protein in presence of ATP (AMP-PNP) and GTP (GMP-PNP) analogs. 6U48 ; 2.87 ; E. coli 50S with phazolicin (PHZ) bound in exit tunnel 5ETP ; 1.05 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.05 angstrom resolution 5ETO ; 1.07 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.07 angstrom resolution 5ETK ; 1.09 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.09 angstrom resolution 5ETN ; 1.4 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.40 angstrom resolution 5ETM ; 1.46 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.46 angstrom resolution 5ETL ; 1.82 ; E. coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.82 angstrom resolution 7B5K ; 2.9 ; E. coli 70S containing suppressor tRNA in the A-site stabilized by a Negamycin analogue and P-site tRNA-nascent chain. 6HRM ; 2.96 ; E. coli 70S d2d8 stapled ribosome 8AYE ; 1.96 ; E. coli 70S ribosome bound to thermorubin and fMet-tRNA 8HTZ ; 2.4 ; E. coli 70S ribosome complexed with H. marismortui tRNA_Ile2 bearing agm2C34 in classical state 8HU1 ; 2.69 ; E. coli 70S ribosome complexed with tRNA_Ile2 bearing L34 and ct6A37 in classical state 8HSP ; 2.32 ; E. coli 70S ribosome complexed with tRNA_Ile2 bearing L34 and t6A37 in classical state 6XZA ; 2.66 ; E. coli 70S ribosome in complex with dirithromycin, and deacylated tRNA(iMet) (focused classification). 6XZB ; 2.54 ; E. coli 70S ribosome in complex with dirithromycin, fMet-Phe-tRNA(Phe) and deacylated tRNA(iMet) (focused classification). 8EIU ; 2.24 ; E. coli 70S ribosome with A-loop mutations U2554C and U2555C 8FTO ; 1.85 ; E. coli 70S ribosome with an improved MS2 tag inserted in H98 7TOS ; 2.9 ; E. coli 70S ribosomes bound with the ALS/FTD-associated dipeptide repeat protein PR20 4V7A ; 9.0 ; E. coli 70S-fMetVal-tRNAVal post-translocation complex (post4) 4V75 ; 12.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in classic post-translocation state (post1) 4V6Y ; 12.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in classic pre-translocation state (pre1a) 4V6Z ; 12.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in classic pre-translocation state (pre1b) 4V72 ; 13.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in hybrid pre-translocation state (pre4) 4V73 ; 15.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in hybrid pre-translocation state (pre5a) 4V76 ; 17.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate post-translocation state (post2a) 4V77 ; 17.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate post-translocation state (post2b) 4V78 ; 20.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate post-translocation state (post3a) 4V79 ; 15.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate post-translocation state (post3b) 4V71 ; 20.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate pre-translocation state (pre2) 4V70 ; 17.0 ; E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in intermediate pre-translocation state (pre3) 6ZTL ; 3.5 ; E. coli 70S-RNAP expressome complex in collided state bound to NusG 6ZTM ; 3.3 ; E. coli 70S-RNAP expressome complex in collided state without NusG 6ZTJ ; 3.4 ; E. coli 70S-RNAP expressome complex in NusG-coupled state (38 nt intervening mRNA) 6ZTN ; 3.9 ; E. coli 70S-RNAP expressome complex in NusG-coupled state (42 nt intervening mRNA) 6ZTO ; 3.0 ; E. coli 70S-RNAP expressome complex in uncoupled state 1 6ZU1 ; 3.0 ; E. coli 70S-RNAP expressome complex in uncoupled state 2 6ZTP ; 3.0 ; E. coli 70S-RNAP expressome complex in uncoupled state 6 8CRG ; 1.49 ; E. coli adenylate kinase in complex with two ADP molecules as a result of enzymatic AP4A hydrolysis 6TNM ; 2.95 ; E. coli aerobic trifunctional enzyme subunit-alpha 7LBA ; 2.2 ; E. coli Agmatinase 5TPQ ; 2.45 ; E. coli alkaline phosphatase D101A, D153A, R166S, E322A, K328A mutant 5C66 ; 2.03 ; E. Coli Alkaline Phosphatase in complex with tungstate 1KH7 ; 2.4 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153GD330N) 1KH9 ; 2.5 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153GD330N) COMPLEX WITH PHOSPHATE 1KHK ; 2.5 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153HD330N) 1KHL ; 2.5 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153HD330N) COMPLEX WITH PHOSPHATE 1KHJ ; 2.3 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153HD330N) MIMIC OF THE TRANSITION STATES WITH ALUMINIUM FLUORIDE 1KHN ; 2.6 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D153HD330N) ZINC FORM 1KH4 ; 2.4 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D330N) IN COMPLEX WITH PHOSPHATE 1KH5 ; 2.0 ; E. COLI ALKALINE PHOSPHATASE MUTANT (D330N) MIMIC OF THE TRANSITION STATES WITH ALUMINIUM FLUORIDE 1ELX ; 2.6 ; E. COLI ALKALINE PHOSPHATASE MUTANT (S102A) 1ELY ; 2.8 ; E. COLI ALKALINE PHOSPHATASE MUTANT (S102C) 1ELZ ; 2.8 ; E. COLI ALKALINE PHOSPHATASE MUTANT (S102G) 3CMR ; 2.05 ; E. coli alkaline phosphatase mutant R166S in complex with phosphate 4KM4 ; 2.8 ; E. coli alkaline phosphatase mutant S102G/R166S in complex with inorganic phosphate 3TG0 ; 1.2 ; E. coli alkaline phosphatase with bound inorganic phosphate 1GYT ; 2.5 ; E. coli Aminopeptidase A (PepA) 6G8B ; 2.374 ; E. coli Aminopeptidase N solved by Native SAD from a dataset collected in 60 second with JUNGFRAU detector 2BHA ; 2.4 ; E. coli Aminopeptidase P in complex with substrate 6YSV ; 2.7 ; E. coli anaerobic trifunctional enzyme subunit-alpha 6YSW ; 2.82 ; E. coli anaerobic trifunctional enzyme subunit-alpha in complex with coenzyme A 8QBT ; 2.2 ; E. coli ApdP-stalled ribosomal complex 8FTN ; 2.8 ; E. coli ArnA dehydrogenase domain mutant - N492A 4FYW ; 2.1 ; E. coli Aspartate Transcarbamoylase complexed with CTP 4FYY ; 1.9395 ; E. coli Aspartate Transcarbamoylase Complexed with CTP, UTP, and Mg2+ 4FYX ; 2.0889 ; E. coli Aspartate Transcarbamoylase complexed with dCTP, UTP, and Mg2+ 2IPO ; 2.6 ; E. coli Aspartate Transcarbamoylase complexed with N-phosphonacetyl-L-asparagine 1SKU ; 2.6 ; E. coli Aspartate Transcarbamylase 240's Loop Mutant (K244N) 6KJ9 ; 2.5 ; E. coli ATCase catalytic subunit mutant - G128/130A 6KJ7 ; 2.839 ; E. coli ATCase catalytic subunit mutant - G166P 6KJA ; 3.064 ; E. coli ATCase holoenzyme mutant - G128/130A (catalytic chain) 6KJ8 ; 3.011 ; E. coli ATCase holoenzyme mutant - G166P (catalytic chain) 6OQR ; 3.1 ; E. coli ATP Synthase ADP State 1a 6VWK ; 3.3 ; E. coli ATP Synthase ADP Sub-state 3a Fo Focussed 8DBP ; 3.6 ; E. coli ATP synthase imaged in 10mM MgATP State1 ""half-up 8DBQ ; 4.0 ; E. coli ATP synthase imaged in 10mM MgATP State1 ""half-up"" Fo classified 8DBT ; 3.1 ; E. coli ATP synthase imaged in 10mM MgATP State2 ""down 8DBU ; 3.4 ; E. coli ATP synthase imaged in 10mM MgATP State2 ""down"" Fo classified 8DBR ; 3.2 ; E. coli ATP synthase imaged in 10mM MgATP State2 ""half-up 8DBS ; 3.5 ; E. coli ATP synthase imaged in 10mM MgATP State2 ""half-up"" Fo classified 8DBV ; 3.7 ; E. coli ATP synthase imaged in 10mM MgATP State3 ""down 8DBW ; 4.1 ; E. coli ATP synthase imaged in 10mM MgATP State3 ""down"" Fo classified 6OQS ; 3.3 ; E. coli ATP synthase State 1b 6OQT ; 3.1 ; E. coli ATP synthase State 1c 6OQU ; 3.2 ; E. coli ATP synthase State 1d 6PQV ; 3.3 ; E. coli ATP Synthase State 1e 6WNQ ; 3.4 ; E. coli ATP Synthase State 2a 6OQV ; 3.3 ; E. coli ATP Synthase State 2b 6OQW ; 3.1 ; E. coli ATP synthase State 3a 6WNR ; 3.3 ; E. coli ATP synthase State 3b 2HTN ; 2.5 ; E. coli bacterioferritin in its as-isolated form 8BVQ ; 3.3 ; E. coli BAM complex (BamABCDE) bound to darobactin B 7R1W ; 3.6 ; E. coli BAM complex (BamABCDE) bound to dynobactin A 5LJO ; 4.9 ; E. coli BAM complex (BamABCDE) by cryoEM 8BWC ; 3.5 ; E. coli BAM complex (BamABCDE) wild-type 3F1V ; 1.77 ; E. coli Beta Sliding Clamp, 148-153 Ala Mutant 1DP0 ; 1.7 ; E. COLI BETA-GALACTOSIDASE AT 1.7 ANGSTROM 1MKA ; 2.0 ; E. COLI BETA-HYDROXYDECANOYL THIOL ESTER DEHYDRASE MODIFIED BY ITS CLASSIC MECHANISM-BASED INACTIVATOR, 3-DECYNOYL-N-ACETYL CYSTEAMINE 2BUI ; 2.4 ; E. COLI BETA-KETOACYL (ACYL CARRIER PROTEIN) SYNTHASE I IN COMPLEX WITH OCTANOIC ACID, 120K 2BUH ; 1.9 ; E. COLI BETA-KETOACYL (ACYL CARRIER PROTEIN) SYNTHASE I, 120 K 1H4F ; 2.0 ; E. COLI BETA-KETOACYL [ACYL CARRIER PROTEIN] SYNTHASE I K328R 6X7R ; 1.35 ; E. coli beta-ketoacyl-[acyl carrier protein] synthase III (FabH) in complex with oxa(dethia)-coenzyme A 8D1U ; 1.302 ; E. coli beta-ketoacyl-[acyl carrier protein] synthase III (FabH) with an acetylated cysteine and in complex with oxa(dethia)-Coenzyme A 4XKS ; 1.57 ; E. coli BFR variant Y45F 2IOB ; 2.2 ; E. coli Bifunctional glutathionylspermidine synthetase/amidase Apo protein 2IO9 ; 2.2 ; E. coli Bifunctional glutathionylspermidine synthetase/amidase Incomplex with Mg2+ ,GSH and ADP 2IO8 ; 2.1 ; E. coli Bifunctional glutathionylspermidine synthetase/amidase Incomplex with Mg2+ and ADP 2IOA ; 2.8 ; E. coli Bifunctional glutathionylspermidine synthetase/amidase Incomplex with Mg2+ and ADP and phosphinate inhibitor 2IO7 ; 2.7 ; E. coli Bifunctional glutathionylspermidine synthetase/amidase Incomplex with Mg2+ and AMPPNP 7Z18 ; 1.98 ; E. coli C-P lyase bound to a PhnK ABC dimer and ATP 7Z17 ; 2.57 ; E. coli C-P lyase bound to a PhnK ABC dimer in an open conformation 7Z15 ; 1.93 ; E. coli C-P lyase bound to a PhnK/PhnL dual ABC dimer and ADP + Pi 7Z19 ; 2.57 ; E. coli C-P lyase bound to a single PhnK ABC domain 7Z16 ; 2.09 ; E. coli C-P lyase bound to PhnK/PhnL dual ABC dimer with AMPPNP and PhnK E171Q mutation 8BAR ; 1.63 ; E. coli C7 DarT1 in complex with ADP-ribosylated ssDNA and nicotinamide 8BAS ; 1.92 ; E. coli C7 DarT1 in complex with carba-NAD and DNA 8BAQ ; 2.0 ; E. coli C7 DarT1 in complex with NAD+ 4FT8 ; 1.966 ; E. coli Catabolite Activator Protein with Cobalt and Sulfate Ligands 5VHU ; 1.8 ; E. coli CFT073 c3406 5UQI ; 1.62 ; E. coli CFT073 c3406 in complex with A5P 5VHT ; 2.0 ; E. coli chorismate mutase with orthogonal interface containing p-benzoyl phenylalanine 8GJ3 ; 2.8 ; E. coli clamp loader on primed template DNA 8GIY ; 3.7 ; E. coli clamp loader with closed clamp 8GJ2 ; 2.6 ; E. coli clamp loader with closed clamp on primed template DNA 8GIZ ; 2.7 ; E. coli clamp loader with open clamp 8GJ0 ; 2.9 ; E. coli clamp loader with open clamp on primed template DNA (form 1) 8GJ1 ; 3.0 ; E. coli clamp loader with open clamp on primed template DNA (form 2) 3O2H ; 1.7 ; E. coli ClpS in complex with a Leu N-end rule peptide 3O2B ; 2.05 ; E. coli ClpS in complex with a Phe N-end rule peptide 2W0Q ; 2.48 ; E. coli copper amine oxidase in complex with Xenon 6S1K ; 8.38 ; E. coli Core Signaling Unit, carrying QQQQ receptor mutation 8ENQ ; 3.6 ; E. coli CsgA fibril (218-pixel box size) 2Y2T ; 2.3 ; E. coli CsgC in reduced form 5U6R ; 5.7 ; E. coli CTP synthase CC mutant filament (product-bound) 2XSK ; 1.7 ; E. coli curli protein CsgC - SeCys 6O10 ; 2.0 ; E. coli cysteine desulfurase SufS 6O11 ; 1.84 ; E. coli cysteine desulfurase SufS C364A with a Cys-aldimine intermediate 6MRI ; 2.62 ; E. coli cysteine desulfurase SufS E250A with a cysteine persulfide intermediate 6MRH ; 2.02 ; E. coli cysteine desulfurase SufS E96A with a cysteine persulfide intermediate 6O12 ; 2.05 ; E. coli cysteine desulfurase SufS H123A 6O13 ; 2.203 ; E. coli cysteine desulfurase SufS H123A with a Cys-ketimine intermediate 6MR6 ; 2.019 ; E. coli cysteine desulfurase SufS H55A with a cysteine persulfide intermediate 7RUJ ; 2.5 ; E. coli cysteine desulfurase SufS N99A 7RW3 ; 2.3 ; E. coli cysteine desulfurase SufS N99D 7RRN ; 2.3 ; E. coli cysteine desulfurase SufS R56A 6MRE ; 2.5 ; E. coli cysteine desulfurase SufS R92A with a cysteine persulfide intermediate 6MR2 ; 2.404 ; E. coli cysteine desulfurase SufS with a cysteine persulfide intermediate 6UY5 ; 1.501 ; E. coli cysteine desulfurase SufS with a spontaneously rotated beta-hairpin 1B23 ; 2.6 ; E. coli cysteinyl-tRNA and T. aquaticus elongation factor EF-TU:GTP ternary complex 7N9Z ; 2.19 ; E. coli cytochrome bo3 in MSP nanodisc 8F6C ; 3.46 ; E. coli cytochrome bo3 ubiquinol oxidase dimer 8F68 ; 3.15 ; E. coli cytochrome bo3 ubiquinol oxidase monomer 6E9N ; 2.915 ; E. coli D-galactonate:proton symporter in the inward open form 6E9O ; 3.501 ; E. coli D-galactonate:proton symporter mutant E133Q in the outward substrate-bound form 7LVC ; 1.7 ; E. coli DHFR by Native Mn,P,S-SAD at Room Temperature 6MTH ; 1.35 ; E. coli DHFR complex modeled with three ligand states 6MT8 ; 1.35 ; E. coli DHFR complex modeled with two ligand states 6MR9 ; 1.35 ; E. coli DHFR complex with a reaction intermediate 6CQA ; 2.2 ; E. coli DHFR complex with inhibitor AMPQD 8DAI ; 1.14 ; E. coli DHFR complex with NADP+ and 10-methylfolate 8G50 ; 1.7 ; E. coli DHFR complex with NADP+ and folate: EF-X excited state model by Laue diffraction (electric field along b axis; 8-fold extrapolation of structure factor differences) 8G4Z ; 1.7 ; E. coli DHFR complex with NADP+ and folate: EF-X off model by Laue diffraction (no electric field) 6CW7 ; 1.03 ; E. coli DHFR product complex with (6S)-5,6,7,8-TETRAHYDROFOLATE 6CXK ; 1.108 ; E. coli DHFR substrate complex with Dihydrofolate 6CYV ; 1.3 ; E. coli DHFR ternary complex with NADP and dihydrofolate 3DU0 ; 2.0 ; E. coli dihydrodipicolinate synthase with first substrate, pyruvate, bound in active site 7MQP ; 2.1 ; E. coli dihydrofolate reductase complexed with 4'-chloro-3'-(4-(2,4-diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl)-[1,1'-biphenyl]-4-carboxamide (UCP1228) 7REB ; 1.91 ; E. coli dihydrofolate reductase complexed with 5-(3-(7-(4-(aminomethyl)phenyl)benzo[d][1,3]dioxol-5-yl)but-1-yn-1-yl)-6-ethylpyrimidine-2,4-diamine (UCP1223) 7T6H ; 2.42 ; E. coli dihydroorotate dehydrogenase 7T5Y ; 2.62 ; E. coli dihydroorotate dehydrogenase bound to the inhibitor HMNQ 7T5K ; 2.25 ; E. coli dihydroorotate dehydrogenase bound to the inhibitor HQNO 7T6C ; 2.53 ; E. coli dihydroorotate dehydrogenase bound to the ubiquinone surrogate DCIP 5U0V ; 1.7 ; E. coli dihydropteroate synthase complexed with 6-methylamino-5-nitrosoisocytosine 5U0W ; 1.968 ; E. coli dihydropteroate synthase complexed with 9-methylguanine 5U0Z ; 2.29 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative 5V79 ; 2.25 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 2-((2-amino-9-methyl-6-oxo-6,9-dihydro-1H-purin-8-yl)thio)-N-phenylacetamide 5V7A ; 2.35 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 2-((2-amino-9-methyl-6-oxo-6,9-dihydro-1H-purin-8-yl)thio)acetic acid 5U13 ; 1.951 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 2-amino-8-{[2-(4-methoxyphenyl)-2-oxoethyl]sulfanyl}-1,7-dihydro-6H-purin-6-one 5U12 ; 1.839 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 2-azanyl-8-[(2-fluorophenyl)methylsulfanyl]-1,9-dihydropurin-6-one 5U11 ; 1.994 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 2-[(2-amino-6-oxo-6,9-dihydro-1H-purin-8-yl)sulfanyl]-N-methylacetamide 5U14 ; 1.953 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: 4-{2-[(2-amino-6-oxo-6,9-dihydro-1H-purin-8-yl)sulfanyl]ethyl}benzene-1-sulfonamide 5U0Y ; 1.88 ; E. coli dihydropteroate synthase complexed with an 8-mercaptoguanine derivative: [(2-amino-6-oxo-6,9-dihydro-1H-purin-8-yl)sulfanyl]acetic acid 5U10 ; 2.04 ; E. coli dihydropteroate synthase complexed with pteroic acid 4YCO ; 2.1 ; E. coli dihydrouridine synthase C (DusC) in complex with tRNAPhe 4YCP ; 2.55 ; E. coli dihydrouridine synthase C (DusC) in complex with tRNATrp 6RKU ; 4.0 ; E. coli DNA Gyrase - DNA binding and cleavage domain in State 1 6RKS ; 4.0 ; E. coli DNA Gyrase - DNA binding and cleavage domain in State 1 without TOPRIM insertion 6RKV ; 4.6 ; E. coli DNA Gyrase - DNA binding and cleavage domain in State 2 5MMP ; 2.05 ; E. coli DNA Gyrase B 24 kDa ATPase domain in complex with 1-ethyl-3-[5-pyridin-4-yl-8-(pyridin-3-ylamino)-isoquinolin-3-yl]-urea 5MMN ; 1.9 ; E. coli DNA Gyrase B 24 kDa ATPase domain in complex with 1-ethyl-3-[8-methyl-5-(2-methyl-pyridin-4-yl)-isoquinolin-3-yl]-urea 5MMO ; 1.81 ; E. coli DNA Gyrase B 24 kDa ATPase domain in complex with [3-(3-ethyl-ureido)-5-(pyridin-4-yl)-isoquinolin-8-yl-methyl]-carbamic acid prop-2-ynyl ester 8QDX ; 3.0 ; E. coli DNA gyrase bound to a DNA crossover 8QQS ; 2.9 ; E. coli DNA gyrase bound to a linear part of a DNA minicircle 1BDX ; 6.0 ; E. COLI DNA HELICASE RUVA WITH BOUND DNA HOLLIDAY JUNCTION, ALPHA CARBONS AND PHOSPHATE ATOMS ONLY 1MMI ; 1.848 ; E. COLI DNA POLYMERASE BETA SUBUNIT 8SY7 ; 2.65 ; E. coli DNA-directed RNA polymerase transcription elongation complex bound the unnatural dB-STP base pair in the active site 8SY6 ; 3.28 ; E. coli DNA-directed RNA polymerase transcription elongation complex bound the unnatural dB-UTP base pair in the active site 8SY5 ; 2.7 ; E. coli DNA-directed RNA polymerase transcription elongation complex bound the unnatural dS-BTP base pair in the active site 8TXO ; 3.1 ; E. coli DNA-directed RNA polymerase transcription elongation complex bound to the unnatural dZ-PTP base pair in the active site 7T21 ; 5.4 ; E. coli DnaB bound to ssDNA and ADP-AlF4 7T20 ; 4.7 ; E. coli DnaB bound to ssDNA and AMPPNP 7T22 ; 4.2 ; E. coli DnaB bound to three DnaG C-terminal domains, ssDNA, ADP and AlF4 7T23 ; 4.2 ; E. coli DnaB bound to two DnaG C-terminal domains, ssDNA, ADP and AlF4 6QEL ; 3.9 ; E. coli DnaBC apo complex 6QEM ; 3.4 ; E. coli DnaBC complex bound to ssDNA 8SXX ; 3.6 ; E. coli dodecamer SIR2 5JFZ ; 2.4 ; E. coli EcFicT in complex with EcFicA mutant E28G 5JFF ; 2.0 ; E. coli EcFicT mutant G55R in complex with EcFicA 8FR3 ; 2.23 ; E. coli EF-Tu in complex with KKL-55 2BVN ; 2.3 ; E. coli EF-Tu:GDPNP in complex with the antibiotic enacyloxin IIa 1OB2 ; 3.35 ; E. coli elongation factor EF-Tu complexed with the antibiotic kirromycin, a GTP analog, and Phe-tRNA 1I30 ; 2.4 ; E. Coli Enoyl Reductase +NAD+SB385826 1I2Z ; 2.8 ; E. COLI ENOYL REDUCTASE IN COMPLEX WITH NAD AND BRL-12654 1MFP ; 2.33 ; E. coli Enoyl Reductase in complex with NAD and SB611113 1D8A ; 2.2 ; E. COLI ENOYL REDUCTASE/NAD+/TRICLOSAN COMPLEX 3FJX ; 1.75 ; E. coli EPSP synthase (T97I) liganded with S3P 3FJZ ; 1.7 ; E. coli EPSP synthase (T97I) liganded with S3P and glyphosate 3FK0 ; 1.7 ; E. coli EPSP synthase (TIPS mutation) liganded with S3P 3FK1 ; 1.7 ; E. coli EPSP synthase (TIPS mutation) liganded with S3P and glyphosate 2QFQ ; 1.5 ; E. coli EPSP synthase Pro101Leu liganded with S3P 2PQ9 ; 1.6 ; E. coli EPSPS liganded with (R)-difluoromethyl tetrahedral reaction intermediate analog 8TXR ; 3.8 ; E. coli ExoVII(H238A) 5MY1 ; 7.6 ; E. coli expressome 1ZPL ; 1.7 ; E. coli F17a-G lectin domain complex with GlcNAc(beta1-O)Me 2BSC ; 1.4 ; E. coli F17a-G lectin domain complex with N-acetylglucosamine, high- resolution structure 2BSB ; 2.4 ; E. coli F17e-G lectin domain complex with N-acetylglucosamine 5LNE ; 2.2 ; E. coli F9 pilus adhesin FmlH bound to the Thomsen-Friedenreich (TF) antigen 5BNM ; 1.7 ; E. coli FabH with Small Molecule Inhibitor 1 5BNR ; 1.89 ; E. coli Fabh with small molecule inhibitor 2 5BNS ; 2.2 ; E. coli Fabh with small molecule inhibitor 2 3PF1 ; 2.7 ; E. coli FadL Asp348Ala mutant 1QFG ; 2.5 ; E. COLI FERRIC HYDROXAMATE RECEPTOR (FHUA) 1QFF ; 2.7 ; E. COLI FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) IN COMPLEX WITH BOUND FERRICHROME-IRON 1AHN ; 2.6 ; E. COLI FLAVODOXIN AT 2.6 ANGSTROMS RESOLUTION 5O28 ; 1.89 ; E. coli FolD apo 5O22 ; 2.1 ; E. coli FolD in complex with carolacton 2QVR ; 2.18 ; E. coli Fructose-1,6-bisphosphatase: Citrate, Fru-2,6-P2, and Mg2+ bound 7Q6D ; 2.8 ; E. coli FtsA 1-405 ATP 3 Ni 2J5P ; ; E. coli FtsK gamma domain 2IUS ; 2.7 ; E. coli FtsK motor domain 6OS7 ; 1.36 ; E. coli fumarase mutant - R126A 6P3C ; 1.459 ; E. coli fumarase mutant - T187A 2OI5 ; 2.25 ; E. coli GlmU- Complex with UDP-GlcNAc and Acetyl-CoA 2OI6 ; 2.2 ; E. coli GlmU- Complex with UDP-GlcNAc, CoA and GlcN-1-PO4 2OI7 ; 2.54 ; E. coli GlmU- Complex with UDP-GlcNAc, desulpho-CoA and GlcNAc-1-PO4 1ECQ ; 2.0 ; E. COLI GLUCARATE DEHYDRATASE BOUND TO 4-DEOXYGLUCARATE 1EC8 ; 1.9 ; E. COLI GLUCARATE DEHYDRATASE BOUND TO PRODUCT 2,3-DIHYDROXY-5-OXO-HEXANEDIOATE 1EC9 ; 2.0 ; E. COLI GLUCARATE DEHYDRATASE BOUND TO XYLAROHYDROXAMATE 1EC7 ; 1.9 ; E. COLI GLUCARATE DEHYDRATASE NATIVE ENZYME 2VF4 ; 2.95 ; E. coli glucosamine-6-P synthase 2J6H ; 2.35 ; E. coli glucosamine-6-P synthase in complex with glucose-6P and 5-oxo- L-norleucine 3A30 ; 2.2 ; E. coli Gsp amidase C59 acetate modification 3A2Y ; 1.95 ; E. coli Gsp amidase C59A complexed with Gsp 3A2Z ; 1.5 ; E. coli Gsp amidase Cys59 sulfenic acid 6OHB ; 2.3 ; E. coli Guanine Deaminase 6OHC ; 2.3 ; E. coli Guanine Deaminase 4PRV ; 2.0 ; E. coli GyrB 43-kDa N-terminal fragment in complex with ADP 4PRX ; 1.8 ; E. coli GyrB 43-kDa N-terminal fragment in complex with ADP+Pi 4PU9 ; 2.4 ; E. coli GyrB 43-kDa N-terminal fragment in complex with ADP-BeF3 7DQS ; 1.85 ; E. coli GyrB ATPase domain in complex with 2-chlorophenol 7DQH ; 1.91 ; E. coli GyrB ATPase domain in complex with 2-hydroxybenzamide 7DQJ ; 1.92 ; E. coli GyrB ATPase domain in complex with 3,4-Dihydroxyacetophenone 7DQL ; 1.93 ; E. coli GyrB ATPase domain in complex with 4-chlorobenzene-1,2-diol 7DQW ; 1.88 ; E. coli GyrB ATPase domain in complex with 4-chlorophenol 7DOR ; 1.89 ; E. coli GyrB ATPase domain in complex with 4-nitropheno 7DQI ; 1.91 ; E. coli GyrB ATPase domain in complex with Esculetin 7DQF ; 1.8 ; E. coli GyrB ATPase domain in complex with methyl 2,4-dihydroxybenzoate 7DPR ; 1.75 ; E. coli GyrB ATPase domain in complex with methyl 3,4-dihydroxybenzoate 7DQU ; 1.88 ; E. coli GyrB ATPase domain in complex with methyl 4-hydroxybenzoate 7DPS ; 2.26 ; E. coli GyrB ATPase domain in complex with Methyl 4-hydroxycinnamate 7DQM ; 1.78 ; E. coli GyrB ATPase domain in complex with Naringenin 2H1F ; 2.4 ; E. coli heptosyltransferase WaaC with ADP 2H1H ; 2.4 ; E. coli heptosyltransferase WaaC with ADP-2-deoxy-2-fluoro heptose 2GT1 ; 1.9 ; E. coli heptosyltransferase WaaC. 1D8L ; 2.5 ; E. COLI HOLLIDAY JUNCTION BINDING PROTEIN RUVA NH2 REGION LACKING DOMAIN III 5KNR ; 2.864 ; E. coli HPRT in complexed with 9-[(N-phosphonoethyl-N-phosphonoethoxyethyl)-2-aminoethyl]-guanine 5JRD ; 1.2 ; E. coli Hydrogenase-1 variant P508A 6EHQ ; 2.2 ; E. coli Hydrogenase-2 (as isolated form). 6EN9 ; 1.5 ; E. coli Hydrogenase-2 (hydrogen reduced form) 6EHS ; 1.5 ; E. coli Hydrogenase-2 chemically reduced structure 3BUL ; 2.3 ; E. coli I690C/G743C MetH C-terminal fragment (649-1227) 3CW5 ; 3.1 ; E. coli Initiator tRNA 3CW6 ; 3.3 ; E. coli Initiator tRNA 4CHU ; 2.489 ; E. coli IscR-DNA complex 1YQN ; 3.11 ; E. coli ispF double mutant 3ULK ; 2.3 ; E. coli Ketol-acid reductoisomerase in complex with NADPH and Mg2+ 6PA3 ; 1.65 ; E. coli L-asparaginase II double mutant (T89V,K162T) in complex with L-Asn at pH 7.0 6PA4 ; 1.85 ; E. coli L-asparaginase II double mutant (T89V,K162T) in complex with L-Asp at pH 7.0 6PAC ; 1.6 ; E. coli L-asparaginase II in complex with L-Asp at pH 5.6 6PAB ; 1.73 ; E. coli L-asparaginase II in complex with L-Asp at pH 7.0 6PA2 ; 1.9 ; E. coli L-asparaginase II mutant (K162M) in complex with L-Asp at pH 5.6 6PA9 ; 1.88 ; E. coli L-asparaginase II mutant (T12V) in complex with L-Asn at pH 7.0 6PAA ; 1.85 ; E. coli L-asparaginase II mutant (T12V) in complex with L-Asp at pH 5.5 8ECD ; 1.62 ; E. coli L-asparaginase II mutant (V27T) in complex with L-Asp 8ECE ; 1.86 ; E. coli L-asparaginase II mutant (V27T) in complex with L-Glu 1KNP ; 2.6 ; E. coli L-aspartate oxidase: mutant R386L in complex with succinate 4D7Z ; 1.9 ; E. coli L-aspartate-alpha-decarboxylase mutant N72Q to a resolution of 1.9 Angstroms 5BR4 ; 0.91 ; E. coli lactaldehyde reductase (FucO) M185C mutant 6B88 ; 2.407 ; E. coli LepB in complex with GNE0775 ((4S,7S,10S)-10-((S)-4-amino-2-(2-(4-(tert-butyl)phenyl)-4-methylpyrimidine-5-carboxamido)-N-methylbutanamido)-16,26-bis(2-aminoethoxy)-N-(2-iminoethyl)-7-methyl-6,9-dioxo-5,8-diaza-1,2(1,3)-dibenzenacyclodecaphane-4-carboxamide) 2MHK ; ; E. coli LpoA N-terminal domain 6B8B ; 1.95 ; E. coli LptB in complex with ADP and a novobiocin derivative 6B89 ; 2.0 ; E. coli LptB in complex with ADP and novobiocin 5WLY ; 2.0 ; E. coli LpxH- 8 mutations 2PJJ ; 2.46 ; E. coli lytic transglycosylase MltA-D308A in apo-1 form 2PIC ; 2.25 ; E. coli lytic transglycosylase MltA-D308A in apo-2 form 5KKA ; 1.75 ; E. coli malate dehydrogenase with the inhibitor 6DHNAD 1OCX ; 2.15 ; E. coli maltose-O-acetyltransferase 5CKF ; 2.8 ; E. coli MazF E24A form I 5CKH ; 2.449 ; E. coli MazF E24A form IIb 5CKD ; 1.698 ; E. coli MazF E24A form III 5CK9 ; 1.898 ; E. coli MazF form I 5CKB ; 2.799 ; E. coli MazF form II 5CO7 ; 3.489 ; E. coli MazF form III 5CR2 ; 2.9 ; E. coli MazF in complex with single strand DNA substrate analog 5CQX ; 1.63 ; E. coli MazF mutant E24A in complex with MazE residues 68-82 form I 5CQY ; 2.481 ; E. coli MazF mutant E24A in complex with MazE residues 68-82 form II 4P9F ; 2.099 ; E. coli McbR/YncC 1K7Y ; 3.0 ; E. coli MetH C-terminal fragment (649-1227) 6IZ7 ; 11.8 ; E. coli methionine aminopeptidase crystal structure fitted into the cryo-EM density map of E. coli 70S ribosome in complex with methionine aminopeptidase 2P9A ; 1.6 ; E. coli methionine aminopeptidase dimetalated with inhibitor YE6 4PNC ; 1.54 ; E. COLI METHIONINE AMINOPEPTIDASE IN COMPLEX WITH INHIBITOR 7-METHOXY-2-METHYLEN-3,4-DIHYDRONAPHTHALEN-1(2H)-ONE 2GU4 ; 1.8 ; E. coli methionine aminopeptidase in complex with NleP, 1: 0.5, di-metalated 2GU5 ; 1.6 ; E. coli methionine aminopeptidase in complex with NleP, 1: 1, di-metalated 2GU6 ; 1.7 ; E. coli methionine aminopeptidase in complex with NleP, 1: 2, di-metalated 1YVM ; 1.6 ; E. coli Methionine Aminopeptidase in complex with thiabendazole 2Q94 ; 1.63 ; E. coli methionine aminopeptidase Mn-form with inhibitor A04 2Q95 ; 1.7 ; E. coli methionine aminopeptidase Mn-form with inhibitor A05 2Q96 ; 1.6 ; E. coli methionine aminopeptidase Mn-form with inhibitor A18 2Q93 ; 1.6 ; E. coli methionine aminopeptidase Mn-form with inhibitor B21 2Q92 ; 1.9 ; E. coli methionine aminopeptidase Mn-form with inhibitor B23 2P99 ; 1.8 ; E. coli methionine aminopeptidase monometalated with inhibitor YE6 2P98 ; 1.7 ; E. coli methionine aminopeptidase monometalated with inhibitor YE7 2GU7 ; 2.0 ; E. coli methionine aminopeptidase unliganded, 1:0.5 3D27 ; 2.2 ; E. coli methionine aminopeptidase with Fe inhibitor W29 1C21 ; 1.8 ; E. COLI METHIONINE AMINOPEPTIDASE: METHIONINE COMPLEX 1C24 ; 1.7 ; E. COLI METHIONINE AMINOPEPTIDASE: METHIONINE PHOSPHINATE COMPLEX 1C23 ; 2.0 ; E. COLI METHIONINE AMINOPEPTIDASE: METHIONINE PHOSPHONATE COMPLEX 1C22 ; 1.75 ; E. COLI METHIONINE AMINOPEPTIDASE: TRIFLUOROMETHIONINE COMPLEX 1C27 ; 1.95 ; E. COLI METHIONINE AMINOPEPTIDASE:NORLEUCINE PHOSPHONATE COMPLEX 1ZP3 ; 1.85 ; E. coli Methylenetetrahydrofolate Reductase (oxidized) 6GRI ; 2.7 ; E. coli Microcin synthetase McbBCD complex 6GOS ; 2.1 ; E. coli Microcin synthetase McbBCD complex with pro-MccB17 bound 6GRG ; 2.35 ; E. coli Microcin synthetase McbBCD complex with pro-MccB17, ADP and phosphate bound 6GRH ; 1.85 ; E. coli Microcin synthetase McbBCD complex with truncated pro-MccB17 bound 5NJC ; 1.35 ; E. coli Microcin-processing metalloprotease TldD/E (TldD E263A mutant) with hexapeptide bound 5NJF ; 1.42 ; E. coli Microcin-processing metalloprotease TldD/E (TldD H262A mutant) with pentapeptide bound 5NJB ; 1.5 ; E. coli Microcin-processing metalloprotease TldD/E with actinonin bound 5NJA ; 1.4 ; E. coli Microcin-processing metalloprotease TldD/E with angiotensin analogue bound 5NJ9 ; 1.25 ; E. coli Microcin-processing metalloprotease TldD/E with DRVY angiotensin fragment bound 5NJ5 ; 1.9 ; E. coli Microcin-processing metalloprotease TldD/E with phosphate bound 7MEW ; 3.9 ; E. coli MsbA in complex with G247 6BPP ; 2.92 ; E. coli MsbA in complex with LPS and inhibitor G092 7SEL ; 2.978 ; E. coli MsbA in complex with LPS and inhibitor G7090 (compound 3) 6BPL ; 2.908 ; E. coli MsbA in complex with LPS and inhibitor G907 3SWD ; 2.5 ; E. coli MurA in complex with UDP-N-acetylmuramic acid and covalent adduct of PEP with Cys115 6UU8 ; 4.4 ; E. coli mutant sigma-S transcription initiation complex with a 7-nt RNA (""Fresh"" mutant crystal soaked with GTP, UTP, and CTP for 30 minutes) 6UU9 ; 5.4 ; E. coli mutant sigma-S transcription initiation complex with an 8-nt RNA (""Fresh"" mutant crystal soaked with GTP, UTP, CTP, and ddATP for 30 minutes) 7AWT ; 2.73 ; E. coli NADH quinone oxidoreductase hydrophilic arm 7Q0O ; 0.96 ; E. coli NfsA 7Z0W ; 2.06 ; E. coli NfsA bound to NADP+ 7NNX ; 1.7 ; E. coli NfsA with 1,4-benzoquinone 7NIY ; 1.03 ; E. coli NfsA with FMN 8AJX ; 1.25 ; E. coli NfsA with Fumarate 7NMP ; 1.25 ; E. coli NfsA with hydroquinone 7NB9 ; 1.09 ; E. coli NfsA with nitrofurantoin 8C5P ; 1.69 ; E. coli NfsB mutant N71S T41L with acetate 8CCV ; 2.2 ; E. coli NfsB mutant T41LN71S with nicotinate 8OG3 ; 2.09 ; E. coli NfsB triple mutant T41L/N71S/F124T bound to citrate 8C5F ; 1.6 ; E. coli NfsB-T41Q/N71S/F124T mutant bound to acetate 8C5E ; 1.65 ; E. coli NfsB-T41Q/N71S/F124T mutant bound to nicotinic acid 8CJ0 ; 1.99 ; E. coli NfsB-T41Q/N71S/F124T/M127V mutant bound to nicotinate 1KMJ ; 2.0 ; E. coli NifS/CsdB protein at 2.0A with the cysteine persulfide intermediate (residue CSS). 1KMK ; 2.2 ; E. coli NifS/CsdB protein at 2.20A with the cysteine perselenide intermediate (residue CSZ). 3OD2 ; 2.6 ; E. coli NikR soaked with excess nickel ions 3L1T ; 2.3 ; E. coli NrfA sulfite ocmplex 3ZBE ; ; E. coli O157 ParE2-associated antitoxin 2 (PaaA2) 2J7L ; 2.6 ; E. coli P Pilus chaperone PapD in complex with a pilus biogenesis inhibitor, pilicide 2c 2XG4 ; 2.4 ; E. coli P pilus chaperone-subunit complex PapD-PapH bound to pilus biogenesis inhibitor, pilicide 2c 2XG5 ; 2.0 ; E. coli P pilus chaperone-subunit complex PapD-PapH bound to pilus biogenesis inhibitor, pilicide 5d 5HL9 ; 2.7 ; E. coli PBP1b in complex with acyl-ampicillin and moenomycin 5HLB ; 2.42 ; E. coli PBP1b in complex with acyl-aztreonam and moenomycin 5HLD ; 2.31 ; E. coli PBP1b in complex with acyl-CENTA and moenomycin 5HLA ; 2.36 ; E. coli PBP1b in complex with acyl-cephalexin and moenomycin 5FGZ ; 2.85 ; E. coli PBP1b in complex with FPI-1465 6IY7 ; 10.5 ; E. coli peptide deformylase crystal structure fitted into the cryo-EM density map of E. coli 70S ribosome in complex with peptide deformylase 7N3J ; 2.0 ; E. coli peptidyl-prolyl cis-trans isomerase, mutant Phe27CF3-Tyr/Phe98CF3-Tyr 7RFD ; 1.35 ; E. coli peptidyl-prolyl cis-trans isomerase, mutant Phe4Ala Phe27CF3-Phe/Phe98CF3-Phe 1K2V ; 1.97 ; E. COLI PERIPLASMIC PROTEIN FHUD COMPLEXED WITH DESFERAL 6BY1 ; 3.94 ; E. coli pH03H9 complex 2PXZ ; 2.23 ; E. coli phosphoenolpyruvate carboxykinase (PEPCK) complexed with ATP, Mg2+, Mn2+, carbon dioxide and oxaloacetate 6AT4 ; 1.332 ; E. coli phosphoenolpyruvate carboxykinase bound to thiosulfate 6AT2 ; 1.444 ; E. coli phosphoenolpyruvate carboxykinase G209N mutant bound to thiosulfate 6ASM ; 1.55 ; E. coli phosphoenolpyruvate carboxykinase G209S K212C mutant bound to thiosulfate 6ASI ; 1.789 ; E. coli phosphoenolpyruvate carboxykinase G209S mutant bound to methanesulfonate 6ASN ; 1.549 ; E. coli phosphoenolpyruvate carboxykinase K212I F216V mutant bound to methanesulfonate 6V2L ; 1.7 ; E. coli Phosphoenolpyruvate carboxykinase S250A 6AT3 ; 1.455 ; E. coli phosphoenolpyruvate carboxykinase Y207F mutant bound to thiosulfate and oxaloacetate 8Q72 ; 4.17 ; E. coli plasmid-borne JetABCD(E248A) core in a cleavage-competent state 7OE0 ; 2.69 ; E. coli pre-30S delta rbfA ribosomal subunit class F 6DCR ; 1.978 ; E. coli PriA helicase winged helix domain deletion protein 1TXY ; 2.0 ; E. coli PriB 6ASV ; 2.21 ; E. coli PRPP Synthetase 2NSL ; 2.0 ; E. coli PurE H45N mutant complexed with CAIR 2NSJ ; 2.31 ; E. coli PurE H45Q mutant complexed with CAIR 2NSH ; 1.8 ; E. coli PurE H45Q mutant complexed with nitro-AIR 1L8A ; 1.85 ; E. COLI PYRUVATE DEHYDROGENASE 2IEA ; 1.85 ; E. coli pyruvate dehydrogenase 3LPL ; 2.1 ; E. coli pyruvate dehydrogenase complex E1 component E571A mutant 3LQ4 ; 1.98 ; E. coli pyruvate dehydrogenase complex E1 E235A mutant with high TDP concentration 3LQ2 ; 1.96 ; E. coli pyruvate dehydrogenase complex E1 E235A mutant with low TDP concentration 2G67 ; 2.32 ; E. Coli Pyruvate Dehydrogenase E1 Component (Apoenzyme) 2QTC ; 1.77 ; E. coli Pyruvate dehydrogenase E1 component E401K mutant with phosphonolactylthiamin diphosphate 2QTA ; 1.85 ; E. coli Pyruvate dehydrogenase E1 component E401K mutant with thiamin diphosphate 2G28 ; 1.85 ; E. Coli Pyruvate Dehydrogenase H407A variant Phosphonolactylthiamin Diphosphate Complex 1RP7 ; 2.09 ; E. COLI PYRUVATE DEHYDROGENASE INHIBITOR COMPLEX 2G25 ; 2.1 ; E. Coli Pyruvate Dehydrogenase Phosphonolactylthiamin Diphosphate Complex 8EDQ ; 2.88 ; E. coli pyruvate kinase (PykF) I264F 8EDR ; 2.64 ; E. coli pyruvate kinase (PykF) P70Q 8EDT ; 2.09 ; E. coli Pyruvate kinase (PykF) T462I 5VPN ; 4.2232 ; E. coli Quinol fumarate reductase FrdA E245Q mutation 2B76 ; 3.3 ; E. coli Quinol fumarate reductase FrdA E49Q mutation 3CIR ; 3.65 ; E. coli Quinol fumarate reductase FrdA T234A mutation 1KF6 ; 2.7 ; E. coli Quinol-Fumarate Reductase with Bound Inhibitor HQNO 1XMV ; 1.9 ; E. coli RecA in complex with MgADP 1XMS ; 2.1 ; E. coli RecA in complex with MnAMP-PNP 3Q8D ; 2.3 ; E. coli RecO complex with SSB C-terminus 1WUD ; 2.2 ; E. coli RecQ HRDC domain 6BOK ; 3.55 ; E. coli release factor 1 (containing deletion 302-304) bound to the 70S ribosome 5J4D ; 3.1 ; E. coli release factor 1 bound to the 70S ribosome in response to a pseudouridylated stop codon 1UAA ; 3.0 ; E. COLI REP HELICASE/DNA COMPLEX 1RKD ; 1.84 ; E. COLI RIBOKINASE COMPLEXED WITH RIBOSE AND ADP 1RK2 ; 2.25 ; E. COLI RIBOKINASE COMPLEXED WITH RIBOSE AND ADP, SOLVED IN SPACE GROUP P212121 1RKS ; 2.4 ; E. COLI RIBOKINASE IN COMPLEX WITH D-RIBOSE 1KVA ; 1.8 ; E. COLI RIBONUCLEASE HI D134A MUTANT 1KVB ; 1.9 ; E. COLI RIBONUCLEASE HI D134H MUTANT 1KVC ; 1.9 ; E. COLI RIBONUCLEASE HI D134N MUTANT 7VSE ; 2.08 ; E. coli Ribonuclease HI in complex one Zn2+ (His124 N-epsilon binding) 7VSC ; 1.83 ; E. coli Ribonuclease HI in complex with one Mg2+ (1) 7VSD ; 1.7 ; E. coli Ribonuclease HI in complex with one Mg2+ (2) 7VSB ; 1.84 ; E. coli Ribonuclease HI in complex with one Zn2+ (His124 N-delta binding) 7VSA ; 1.76 ; E. coli Ribonuclease HI in complex with two Mg2+ 3N4M ; 2.987 ; E. coli RNA polymerase alpha subunit C-terminal domain in complex with CAP and DNA 5CIZ ; 5.0098 ; E. coli RNA polymerase alpha subunit CTD in complex with CAP and DNA: A(5)-tract binding site for alpha CTD 5TBZ ; 7.0 ; E. Coli RNA Polymerase complexed with NusG 8PBL ; 2.87 ; E. coli RNA polymerase elongation complex stalled at thymine dimer lesion 6WMU ; 3.18 ; E. coli RNAPs70-SspA-gadA DNA complex 2PQY ; 2.3 ; E. coli RNase 1 (in vitro refolded with DsbA only) 2PQX ; 1.42 ; E. coli RNase 1 (in vivo folded) 7SP3 ; 1.6 ; E. coli RppH bound to Ap4A 4S2V ; 1.7 ; E. coli RppH structure, KI soak 7LNN ; 2.5 ; E. coli S-adenosyl methionine transferase co-crystallized with guanosine-5'-imidotriphosphate 1JKJ ; 2.35 ; E. coli SCS 6UU2 ; 4.404 ; E. coli sigma-S transcription initiation complex with 3-nt RNA (""Old"" crystal soaked with GTP and ATP for 30 minutes) 6UU4 ; 4.305 ; E. coli sigma-S transcription initiation complex with a 3-nt RNA (""old"" crystal soaked with GTP and dinucleotide GpA for 30 minutes) 6UUC ; 4.096 ; E. coli sigma-S transcription initiation complex with a 3-nt RNA and a mismatching ATP (""Fresh"" crystal soaked with ATP for 2 hours) 6UU0 ; 3.9 ; E. coli sigma-S transcription initiation complex with a 3-nt RNA and a mismatching GTP (""Fresh"" crystal soaked with GTP for 1 hour) 6UTW ; 3.854 ; E. coli sigma-S transcription initiation complex with a 4-nt RNA (""Fresh"" crystal) 6UU1 ; 4.097 ; E. coli sigma-S transcription initiation complex with a 4-nt RNA and a CTP (""Fresh"" crystal soaked with CTP, GTP, and ddTTP for 30 minutes) 6UU3 ; 4.002 ; E. coli sigma-S transcription initiation complex with a 4-nt RNA and a CTP (""Old"" crystal soaked with GTP, ATP, CTP, and ddTTP for 30 minutes) 6UU6 ; 4.201 ; E. coli sigma-S transcription initiation complex with a 4-nt RNA and a UTP (""Old"" crystal soaked with UTP, ddCTP, and dinucleotide ApG for 30 minutes) 6UTZ ; 3.803 ; E. coli sigma-S transcription initiation complex with a 6-nt RNA (""Fresh"" crystal soaked with CTP and UTP for 30 minutes) 6UTV ; 3.45 ; E. coli sigma-S transcription initiation complex with a 6-nt RNA (""Fresh"" crystal soaked with CTP, UTP, GTP, and ddATP for 150 seconds) 6UU5 ; 5.403 ; E. coli sigma-S transcription initiation complex with a 6-nt RNA (""Old"" crystal soaked with GTP, UTP, CTP, and dinucleotide GpA for 30 minutes) 6UU7 ; 4.4 ; E. coli sigma-S transcription initiation complex with a 6-nt RNA and an NTP (""Old"" crystal soaked with UTP, CTP, ddGTP, and dinucleotide ApG for 30 minutes) 6UUA ; 4.002 ; E. coli sigma-S transcription initiation complex with a mismatching CTP (""Fresh"" crystal soaked with CTP for 2 hours) 6UTY ; 4.15 ; E. coli sigma-S transcription initiation complex with a mismatching CTP (""Old"" crystal soaked with CTP for 30 minutes) 6UUB ; 3.955 ; E. coli sigma-S transcription initiation complex with a mismatching UTP (""Fresh"" crystal soaked with UTP for 2 hours) 6UTX ; 4.05 ; E. coli sigma-S transcription initiation complex with an empty bubble (""Old"" crystal) 8SUW ; 3.15 ; E. coli SIR2-HerA complex (dodecamer SIR2 bound 4 protomers of HerA) 8SUB ; 2.89 ; E. coli SIR2-HerA complex (dodecamer SIR2 pentamer HerA) 8SU9 ; 2.83 ; E. coli SIR2-HerA complex (hexamer HerA bound with dodecamer Sir2) 8UAF ; 3.18 ; E. coli Sir2_HerA complex (12:6) bound with NAD+ 8UAE ; 3.25 ; E. coli Sir2_HerA complex (12:6) with ATPgamaS 4PNV ; 1.86 ; E. coli sliding clamp apo-crystal in P21 space group with larger cell dimensions 4PNU ; 1.9 ; E. coli sliding clamp in complex with (R)-6-bromo-9-(2-((R)-1-carboxy-2-phenylethylamino)-2-oxoethyl)-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylic acid 4PNW ; 2.0 ; E. coli sliding clamp in complex with (R)-6-bromo-9-(2-((S)-1-carboxy-2-phenylethylamino)-2-oxoethyl)-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylic acid 4OVH ; 2.25 ; E. coli sliding clamp in complex with (R)-6-bromo-9-(2-(carboxymethylamino)-2-oxoethyl)-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylic acid 4N9A ; 1.9 ; E. coli sliding clamp in complex with (R)-6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxylic acid 4OVF ; 2.05 ; E. coli sliding clamp in complex with (R)-6-chloro-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylic acid 4OVG ; 1.9 ; E. coli sliding clamp in complex with (R)-9-(2-amino-2-oxoethyl)-6-chloro-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylic acid 4MJP ; 1.855 ; E. coli sliding clamp in complex with (R)-Vedaprofen 4K3K ; 1.85 ; E. Coli sliding clamp in complex with (S)-2-(4-methylpentanamido)-3-phenylpropanoic acid 4MJR ; 1.62 ; E. coli sliding clamp in complex with (S)-Carprofen 4N94 ; 1.73 ; E. coli sliding clamp in complex with 3,4-difluorobenzamide 4N98 ; 1.7 ; E. coli sliding clamp in complex with 4'-fluorobiphenyl-4-carboxylic acid 4N95 ; 1.8 ; E. coli sliding clamp in complex with 5-chloroindoline-2,3-dione 4N97 ; 1.97 ; E. coli sliding clamp in complex with 5-nitroindole 4N99 ; 2.3 ; E. coli sliding clamp in complex with 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-7-carboxylic acid 4N96 ; 1.7 ; E. coli sliding clamp in complex with 6-nitroindazole 4K3L ; 1.5 ; E. coli sliding clamp in complex with AcLF dipeptide 4K3O ; 2.0 ; E. coli sliding clamp in complex with AcQADLF 4K3P ; 2.15 ; E. coli sliding clamp in complex with AcQLALF 4K3Q ; 1.85 ; E. coli sliding clamp in complex with AcQLDAF 4K3R ; 1.86 ; E. coli sliding clamp in complex with AcQLDLA 4MJQ ; 1.73 ; E. coli sliding clamp in complex with Bromfenac 4K3S ; 1.75 ; E. coli sliding clamp in P1 crystal space group 2WDV ; 3.2 ; E. coli succinate:quinone oxidoreductase (SQR) with an empty quinone- binding pocket 2WDQ ; 2.4 ; E. coli succinate:quinone oxidoreductase (SQR) with carboxin bound 2WDR ; 3.2 ; E. coli succinate:quinone oxidoreductase (SQR) with pentachlorophenol bound 6FH8 ; 1.64 ; E. coli surface display of streptavidin for directed evolution of an allylic deallocase 6LFB ; 1.99 ; E. coli Thioesterase I mutant DG 6LFC ; 2.7 ; E. coli Thioesterase I mutant DG 1U8U ; 2.08 ; E. coli Thioesterase I/Protease I/Lysophospholiase L1 in complexed with octanoic acid 1J00 ; 2.0 ; E. coli Thioesterase I/Protease I/Lysophospholipase L1 in complexed with diethyl phosphono moiety 4HUA ; 1.1 ; E. coli thioredoxin variant with (4R)-FluoroPro76 as single proline residue 4HU9 ; 1.55 ; E. coli thioredoxin variant with (4S)-FluoroPro76 as single proline residue 4HU7 ; 1.4 ; E. coli thioredoxin variant with Pro76 as single proline residue 1TJS ; 2.2 ; E. COLI THYMIDYLATE SYNTHASE 2FTQ ; 1.81 ; E. coli thymidylate synthase at 1.8 A resolution 1JUT ; 2.7 ; E. coli Thymidylate Synthase Bound to dUMP and LY338529, A Pyrrolo(2,3-d)pyrimidine-based Antifolate 3BGX ; 1.93 ; E. coli Thymidylate Synthase C146S mutant complexed with dTMP and MTF 3B9H ; 2.49 ; E. coli thymidylate synthase complexed with 5-NITRO-2'-DEOXY URIDINE 1AOB ; 2.1 ; E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH DDURD 1BID ; 2.2 ; E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH DUMP 1BDU ; 2.1 ; E. COLI THYMIDYLATE SYNTHASE COMPLEXED WITH DURD 1JTU ; 2.2 ; E. coli Thymidylate Synthase in a Complex with dUMP and LY338913, A Polyglutamylated Pyrrolo(2,3-d)pyrimidine-based Antifolate 1SYN ; 2.0 ; E. COLI THYMIDYLATE SYNTHASE IN COMPLEX WITH BW1843U89 AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1AN5 ; 2.6 ; E. COLI THYMIDYLATE SYNTHASE IN COMPLEX WITH CB3717 1DDU ; 2.1 ; E. COLI THYMIDYLATE SYNTHASE IN COMPLEX WITH CB3717 AND 2',5'-DIDEOXYURIDINE (DDURD) 1TDU ; 2.1 ; E. COLI THYMIDYLATE SYNTHASE IN COMPLEX WITH CB3717 AND 2'-DEOXYURIDINE (DURD) 1AXW ; 1.7 ; E. COLI THYMIDYLATE SYNTHASE IN COMPLEX WITH METHOTREXATE (MTX) AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1TRG ; 1.9 ; E. COLI THYMIDYLATE SYNTHASE IN SYMMETRIC COMPLEX WITH CB3717 AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1KCE ; 2.0 ; E. COLI THYMIDYLATE SYNTHASE MUTANT E58Q IN COMPLEX WITH CB3717 AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1ZPR ; 2.5 ; E. COLI THYMIDYLATE SYNTHASE MUTANT E58Q IN COMPLEX WITH CB3717 AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 6CDZ ; 2.4 ; E. coli thymidylate synthase mutant I264Am 1BQ2 ; 2.2 ; E. COLI THYMIDYLATE SYNTHASE MUTANT N177A 1BQ1 ; 2.5 ; E. COLI THYMIDYLATE SYNTHASE MUTANT N177A IN COMPLEX WITH CB3717 AND 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 3BFI ; 2.2 ; E. Coli Thymidylate Synthase Y209M mutant complexed with 5-nitro-dUMP 4GEV ; 1.3 ; E. coli thymidylate synthase Y209W variant in complex with substrate and a cofactor analog 2FTN ; 1.6 ; E. coli thymidylate synthase Y94F mutant 4YLO ; 6.0 ; E. coli Transcription Initiation Complex - 16-bp spacer and 4-nt RNA 4YLP ; 5.5 ; E. coli Transcription Initiation Complex - 16-bp spacer and 5-nt RNA 4YLN ; 5.5 ; E. coli Transcription Initiation Complex - 17-bp spacer and 4-nt RNA 4XK4 ; 2.27 ; E. coli transcriptional regulator RUTR with dihydrouracil 3SSX ; 1.5801 ; E. coli trp aporeporessor L75F mutant 3SSW ; 1.6693 ; E. coli trp aporepressor 2OZ9 ; 1.65 ; E. coli TRP holorepressor, orthorhombic crystal form 1ZT9 ; 2.0 ; E. coli trp repressor, tetragonal crystal form 8I1Z ; 1.8 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment 8I27 ; 1.95 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment at the dimerization interface 8I2A ; 2.35 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment at the dimerization interface 8I2C ; 2.07 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment at the dimerization interface 8I2J ; 2.65 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment at the dimerization interface 8I2L ; 1.95 ; E. coli tryptophanyl-tRNA synthetase bound with a chemical fragment at the dimerization interface 1JTQ ; 2.5 ; E. coli TS Complex with dUMP and the Pyrrolo(2,3-d)pyrimidine-based Antifolate LY341770 3BHR ; 1.9 ; E. coli TS complexed with 5-NO2dUMP and tetrahydrofolate at 1.9 A resolution (space group 152) 2A9W ; 1.65 ; E. coli TS complexed with dUMP and inhibitor GA9 7JX1 ; 1.82 ; E. coli TSase complex with a bi-substrate reaction intermediate analog 7JXF ; 1.5 ; E. coli TSase complex with a bi-substrate reaction intermediate diastereomer analog 2E99 ; 2.0 ; E. coli undecaprenyl pyrophosphate synthase in complex with BPH-608 2E9A ; 2.1 ; E. coli undecaprenyl pyrophosphate synthase in complex with BPH-628 2E98 ; 1.9 ; E. coli undecaprenyl pyrophosphate synthase in complex with BPH-629 2E9C ; 2.05 ; E. coli undecaprenyl pyrophosphate synthase in complex with BPH-675 2E9D ; 2.5 ; E. coli undecaprenyl pyrophosphate synthase in complex with BPH-676 1UEH ; 1.73 ; E. coli undecaprenyl pyrophosphate synthase in complex with Triton X-100, magnesium and sulfate 1RXS ; 2.8 ; E. coli uridine phosphorylase: 2'-deoxyuridine phosphate complex 1RXC ; 2.35 ; E. COLI uridine phosphorylase: 5-fluorouracil ribose-1-phosphate complex 1RXU ; 3.1 ; E. coli uridine phosphorylase: thymidine phosphate complex 1RXY ; 1.7 ; E. coli uridine phosphorylase: type-B native 8BFN ; 3.52 ; E. coli Wadjet JetABC dimer of dimers 8AS8 ; 3.0 ; E. coli Wadjet JetABC monomer 4WQ4 ; 2.33 ; E. coli YgjD(E12A)-YeaZ heterodimer in complex with ATP 8GEO ; 2.89 ; E. eligens beta-glucuronidase bound to 3-OH-desloratidine-glucuronide 8GEQ ; 2.75 ; E. eligens beta-glucuronidase bound to ceritinib-glucuronide 8GER ; 2.4 ; E. eligens beta-glucuronidase bound to norquetiapine-glucuronide 8GEN ; 2.94 ; E. eligens beta-glucuronidase bound to UNC10201652-glucuronide 5XVO ; 3.1 ; E. fae Cas1-Cas2/prespacer/target ternary complex revealing DNA sampling and half-integration states 5XVP ; 3.0 ; E. fae Cas1-Cas2/prespacer/target ternary complex revealing the fully integrated states 7P7Q ; 2.4 ; E. faecalis 70S ribosome bound by PoxtA-EQ2, high-resolution combined volume 7P7U ; 3.1 ; E. faecalis 70S ribosome with P-tRNA, state IV 7TB0 ; 1.65 ; E. faecium MurAA in complex with fosfomycin and UNAG 8D84 ; 2.65 ; E. faecium MurAA in complex with UDP-N-acetylmuramic acid (UNAM) and a covalent adduct of PEP with Cys119 5XVN ; 3.25 ; E. far Cas1-Cas2/prespacer binary complex 3E1F ; 3.0 ; E.Coli (lacZ) beta-galactosidase (H418E) in complex with galactose 3I3B ; 2.2 ; E.coli (lacz) Beta-Galactosidase (M542A) in Complex with D-Galactopyranosyl-1-on 3MV1 ; 2.2 ; E.Coli (lacZ) beta-galactosidase (R599A) in complex with Guanidinium 3MUZ ; 1.9 ; E.Coli (lacZ) beta-galactosidase (R599A) in complex with IPTG 3T0D ; 1.93 ; E.coli (lacZ) beta-galactosidase (S796T) in complex with galactonolactone 5NQI ; 0.851 ; E.coli 16S rRNA Sarcin-Ricin Loop containing a 5-hydroxymethylcytosine modification 4Y27 ; 0.998 ; E.coli 23S Sarcin-Ricil Loop, modified with a 2-Me on G2661 and a methylphosphonate on A2662 4V5H ; 5.8 ; E.Coli 70s Ribosome Stalled During Translation Of Tnac Leader Peptide. 5VWQ ; 1.8 ; E.coli Aspartate aminotransferase-(1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP) 5VWR ; 1.72 ; E.coli Aspartate aminotransferase-(1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP)-alpha-ketoglutarate 7BTK ; 2.7 ; E.coli beta-galactosidase (E537Q) in complex with fluorescent probe KSA01 7BRS ; 2.67 ; E.coli beta-galactosidase (E537Q) in complex with fluorescent probe KSA02 6KUZ ; 2.83 ; E.coli beta-galactosidase (E537Q) in complex with fluorescent probe KSL01 1E58 ; 1.25 ; E.coli cofactor-dependent phosphoglycerate mutase 1E59 ; 1.3 ; E.coli cofactor-dependent phosphoglycerate mutase complexed with vanadate 4AZ4 ; 1.8 ; E.coli deformylase with Co(II) and hydrosulfide 7OI0 ; 2.76 ; E.coli delta rbfA pre-30S ribosomal subunit class D 3CW0 ; 2.4 ; E.coli DmsD 7TTV ; 1.99 ; E.coli DsbA in complex with 4-phenyl-2-(3-phenylpropyl)thiazole-5-carboxylic acid 6PVY ; 1.74 ; E.coli DsbA in complex with benzofuran compound 26 ([6-(3-methoxyphenoxy)-1-benzofuran-3-yl]acetic acid) 6PVZ ; 1.99 ; E.coli DsbA in complex with benzofuran compound 28 ((6-benzyl-1-benzofuran-3-yl)acetic acid) 8DN0 ; 1.57 ; E.coli DsbA in complex with N-(2-fluorophenyl)-5-methylisoxazole-3-carboxamide 6WVF ; 2.9 ; E.coli DsbB C104S with ubiquinone 2QFU ; 1.6 ; E.coli EPSP synthase Pro101Leu liganded with S3P and glyphosate 2QFS ; 1.55 ; E.coli EPSP synthase Pro101Ser liganded with S3P 2QFT ; 1.55 ; E.coli EPSP synthase Pro101Ser liganded with S3P and glyphosate 1W7K ; 2.1 ; E.coli FolC in complex with ADP, without folate substrate 1W78 ; 1.82 ; E.coli FolC in complex with DHPP and ADP 1DB3 ; 2.3 ; E.COLI GDP-MANNOSE 4,6-DEHYDRATASE 4AA7 ; 2.0 ; E.coli GlmU in complex with an antibacterial inhibitor 5F5J ; 2.4 ; E.coli GlpG Y205F mutant complexed with aldehyde inhibitor in DMPC/CHAPSO bicelle 5F5K ; 2.4 ; E.Coli GlpG Y205F mutant complexed with aldehyde inhibitor in DMPC/CHAPSO bicelle 4AMV ; 2.05 ; E.COLI GLUCOSAMINE-6P SYNTHASE IN COMPLEX WITH FRUCTOSE-6P 8JZJ ; 1.99 ; E.coli Glyceraldehyde-3-phosphate dehydrogenase structure under cryoprotect condition of ammonium sulfate 7Z9M ; 3.3 ; E.coli gyrase holocomplex with 217 bp DNA and Albi-1 (site AA) 7Z9K ; 3.25 ; E.coli gyrase holocomplex with 217 bp DNA and Albi-1 (site TG) 7Z9G ; 3.25 ; E.coli gyrase holocomplex with 217 bp DNA and Albi-2 7Z9C ; 3.06 ; E.coli gyrase holocomplex with 217 bp DNA and albicidin 7P2X ; 1.6 ; E.coli GyrB24 with inhibitor KOB20 (EBL2583) 7P2M ; 1.16 ; E.coli GyrB24 with inhibitor LMD43 (EBL2560) 7P2W ; 1.65 ; E.coli GyrB24 with inhibitor LMD92 (EBL2682) 7P2N ; 1.16 ; E.coli GyrB24 with inhibitor LSJ38 (EBL2684) 1QOY ; 2.0 ; E.coli Hemolysin E (HlyE, ClyA, SheA) 4QVD ; 1.972 ; E.coli Hfq in complex with RNA Ads 4QVC ; 1.99 ; E.coli Hfq in complex with RNA Aus 1PVF ; 1.78 ; E.coli IPP isomerase in complex with diphosphate 1S98 ; 2.3 ; E.coli IscA crystal structure to 2.3 A 2BYY ; 2.2 ; E.coli KAS I H298E Mutation 6P9P ; 2.0 ; E.coli LpxA in complex with Compound 1 6P9Q ; 1.7 ; E.coli LpxA in complex with UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and Compound 2 6P9R ; 1.75 ; E.coli LpxA in complex with UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and Compound 6 6P9S ; 1.7 ; E.coli LpxA in complex with UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and Compound 7 6P9T ; 1.75 ; E.coli LpxA in complex with UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and Compound 8 6P83 ; 1.7 ; E.coli LpxD in complex with compound 1o 6P84 ; 1.7 ; E.coli LpxD in complex with compound 2o 6P85 ; 1.9 ; E.coli LpxD in complex with compound 3 6P86 ; 1.8 ; E.coli LpxD in complex with compound 4.1 6P87 ; 1.9 ; E.coli LpxD in complex with compound 5 6P88 ; 1.7 ; E.coli LpxD in complex with compound 6 6P89 ; 1.4 ; E.coli LpxD in complex with compound 7 6P8A ; 1.8 ; E.coli LpxD in complex with compound 8.1 6P8B ; 2.0 ; E.coli LpxD in complex with peptide FITC-RJPXD33 6KA1 ; 1.543 ; E.coli Malate dehydrogenase 5CKE ; 2.311 ; E.coli MazF E24A form IIa 2MAT ; 1.9 ; E.COLI METHIONINE AMINOPEPTIDASE AT 1.9 ANGSTROM RESOLUTION 4MAT ; 2.0 ; E.COLI METHIONINE AMINOPEPTIDASE HIS79ALA MUTANT 3MAT ; 2.0 ; E.COLI METHIONINE AMINOPEPTIDASE TRANSITION-STATE INHIBITOR COMPLEX 1NG9 ; 2.6 ; E.coli MutS R697A: an ATPase-asymmetry mutant 1WXF ; 2.3 ; E.coli NAD Synthetase 1WXE ; 1.9 ; E.coli NAD Synthetase, AMP 1WXI ; 1.7 ; E.coli NAD Synthetase, AMP.PP 1WXG ; 1.9 ; E.coli NAD Synthetase, DND 1WXH ; 1.9 ; E.coli NAD Synthetase, NAD 2J4U ; 2.99 ; E.coli OmpC - camel Lactoferrin complex 8OFE ; 1.4 ; E.coli Peptide Deformylase with bound inhibitor 7XMU ; 2.3 ; E.coli phosphoribosylpyrophosphate (PRPP) synthetase type A filament bound with ADP, Pi and R5P 7XMV ; 2.6 ; E.coli phosphoribosylpyrophosphate (PRPP) synthetase type A(AMP/ADP) filament bound with ADP, AMP and R5P 7XN3 ; 2.9 ; E.coli phosphoribosylpyrophosphate (PRPP) synthetase type B filament bound with Pi 2AI8 ; 1.7 ; E.coli Polypeptide Deformylase complexed with SB-485343 1EQN ; 2.9 ; E.COLI PRIMASE CATALYTIC CORE 4NTN ; 1.99 ; E.coli QueD, SeMet protein, 2A resolution 2PKX ; 2.54 ; E.coli response regulator PhoP receiver domain 6DNC ; 3.7 ; E.coli RF1 bound to E.coli 70S ribosome in response to UAU sense A-site codon 7M8E ; 3.4 ; E.coli RNAP-RapA elongation complex 2Z70 ; 1.7 ; E.coli RNase 1 in complex with d(CGCGATCGCG) 7UO0 ; 3.4 ; E.coli RNaseP Holoenzyme with Mg2+ 7UO1 ; 3.2 ; E.coli RNaseP Holoenzyme with Mg2+ 7UO2 ; 3.1 ; E.coli RNaseP Holoenzyme with Mg2+ 7UO5 ; 3.1 ; E.coli RNaseP Holoenzyme with Mg2+ 1C7Y ; 3.1 ; E.COLI RUVA-HOLLIDAY JUNCTION COMPLEX 6FI7 ; ; E.coli Sigma factor S (RpoS) Region 4 4K3M ; 1.85 ; E.coli sliding clamp in complex with AcALDLF peptide 1IVN ; 1.9 ; E.coli Thioesterase I/Protease I/Lysophospholiase L1 3BHL ; 1.4 ; E.coli thymidylate synthase complexes with 5-NO2dUMP and tetrahydrofolate at 1.4 A resolution 6RJC ; 1.05 ; E.coli transketolase apoenzyme 8WA7 ; 1.63 ; E.coli transketolase soaked with donor ketose D-fructose 6YE6 ; 1.56 ; E.coli's Putrescine receptor PotF complexed with Agmatine 6YE7 ; 1.6 ; E.coli's Putrescine receptor PotF complexed with Cadaverine 6YE0 ; 1.63 ; E.coli's Putrescine receptor PotF complexed with Putrescine 6YE8 ; 1.5 ; E.coli's Putrescine receptor PotF complexed with Spermidine 6YEC ; 2.09 ; E.coli's Putrescine receptor PotF complexed with Spermine 6YEB ; 1.97 ; E.coli's Putrescine receptor PotF in its closed apo state 6YED ; 2.18 ; E.coli's Putrescine receptor PotF in its open apo state 7OYY ; 1.36 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutation S247D in complex with spermidine 7OYV ; 1.9 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D F88A S247D in complex with spermidine 7OYT ; 1.6 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D F88L in complex with spermidine 7OYW ; 1.28 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D F88L S247D in complex with spermidine 7OYU ; 1.95 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D Y87S F88Y in complex with spermidine 7OYX ; 1.37 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D Y87S F88Y S247D in complex with spermidine 7OYS ; 1.57 ; E.coli's putrescine receptor variant PotF/D (4JDF) with mutations E39D Y87S in complex with spermidine 7OYZ ; 1.49 ; E.coli's putrescine receptor variant PotF/D in complex with spermidine 4I42 ; 1.848 ; E.coli. 1,4-dihydroxy-2-naphthoyl coenzyme A synthase (ecMenB) in complex with 1-hydroxy-2-naphthoyl-CoA 3BCX ; 2.4 ; E1 Dehydrase 3BB8 ; 2.35 ; E1 Dehydrase H220K Mutant 6H77 ; 2.1 ; E1 enzyme for ubiquitin like protein activation in complex with UBL 6H78 ; 2.7 ; E1 enzyme for ubiquitin like protein activation. 4H1W ; 3.1 ; E1 structure of the (SR) Ca2+-ATPase in complex with Sarcolipin 5CBE ; 2.4 ; E10 in complex with CXCL13 1QUG ; 1.9 ; E108V MUTANT OF T4 LYSOZYME 2QQC ; 2.0 ; E109Q mutant of Pyruvoyl-dependent Arginine Decarboxylase from Methanococcus jannashii 7R6Y ; 2.25 ; E117K mutant pyruvate kinase from rabbit muscle 5VQN ; 2.002 ; E119D mutant of 2009 H1N1 PA Endonuclease in complex with RO-7 1QT6 ; 1.9 ; E11H Mutant of T4 Lysozyme 1QT7 ; 1.8 ; E11N Mutant of T4 Lysozyme 3A6J ; 2.0 ; E122Q mutant creatininase complexed with creatine 3A6L ; 2.0 ; E122Q mutant creatininase, Zn-Zn type 7NE4 ; 2.717 ; E125A mutant of oligopeptidase B from S. proteomaculans with modified hinge region 4RRL ; 1.965 ; E129A mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA 4RRM ; 1.55 ; E129A mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA 3VGU ; 2.3 ; E134A mutant nucleoside diphosphate kinase derived from Halomonas sp. 593 3VGV ; 2.5 ; E134A mutant nucleoside diphosphate kinase derived from Halomonas sp. 593 3AMQ ; 1.8 ; E134C-Cellobiose co-crystal of cellulase 12A from thermotoga maritima 3AMN ; 1.47 ; E134C-Cellobiose complex of cellulase 12A from thermotoga maritima 3AMP ; 1.78 ; E134C-Cellotetraose complex of cellulase 12A from thermotoga maritima 2V9X ; 2.2 ; E138D variant of Escherichia coli dCTP deaminase in complex with dUTP 3AWH ; 1.6 ; E13K mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3A6R ; 1.2 ; E13Q mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3AMF ; 1.6 ; E13R mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3A6Q ; 1.4 ; E13T mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 8SG4 ; 3.11 ; E1435Q Ycf1 mutant in dephosphorylated state 7M68 ; 4.04 ; E1435Q Ycf1 mutant in inward-facing narrow conformation 7M69 ; 3.42 ; E1435Q Ycf1 mutant in inward-facing wide conformation 2UY9 ; 3.1 ; E162A mutant of Bacillus subtilis Oxalate Decarboxylase OxdC 5KSC ; 2.1 ; E166A/R274N/R276N Toho-1 Beta-lactamase aztreonam acyl-enzyme intermediate 3ESY ; 2.39 ; E16KE61K Flavodoxin from Anabaena 3ESX ; 2.31 ; E16KE61KD126KD150K Flavodoxin from Anabaena 1QQO ; 1.9 ; E175S MUTANT OF BOVINE 70 KILODALTON HEAT SHOCK PROTEIN 7TGP ; 1.4 ; E176T/Y188G variant of the internal UBA Domain of HHR23A 5DAA ; 2.9 ; E177K MUTANT OF D-AMINO ACID AMINOTRANSFERASE COMPLEXED WITH PYRIDOXAMINE-5'-PHOSPHATE 1G2W ; 2.0 ; E177S MUTANT OF THE PYRIDOXAL-5'-PHOSPHATE ENZYME D-AMINO ACID AMINOTRANSFERASE 4X88 ; 3.5 ; E178D Selectivity filter mutant of NavMS voltage-gated pore 3K3T ; 1.75 ; E185A mutant of peptidoglycan hydrolase from Sphingomonas sp. A1 4JEY ; 1.55 ; E198A mutant of N-acetylornithine aminotransferase from Salmonella typhimurium 3PRN ; 1.9 ; E1M, A104W MUTANT OF RH. BLASTICA PORIN 1BH3 ; 2.19 ; E1M, A116K MUTANT OF RH. BLASTICA PORIN 7PRN ; 2.25 ; E1M, D97A, E99A MUTANT OF RH. BLASTICA PORIN 6PRN ; 2.04 ; E1M, K50A, R52A MUTANT OF RH. BLASTICA PORIN 8PRN ; 2.3 ; E1M, K50A, R52A, D97A, E99A MUTANT OF RH. BLASTICA PORIN 5PRN ; 2.0 ; E1M, Y96W, S119W MUTANT OF RH. BLASTICA PORIN 2LQ7 ; ; E2 binding surface on Uba3 beta-grasp domain undergoes a conformational transition 6ZLO ; 2.9 ; E2 core of the fungal Pyruvate dehydrogenase complex with asymmetric interior PX30 component 1JJH ; 2.5 ; E2 DNA-binding Domain from Bovine Papillomavirus Type 1 1DBD ; ; E2 DNA-BINDING DOMAIN FROM PAPILLOMAVIRUS BPV-1 7W7W ; 3.2 ; E2 Pi of SERCA2b 7OJX ; 2.4 ; E2 UBE2K covalently linked to donor Ub, acceptor di-Ub, and RING E3 primed for K48-linked Ub chain synthesis 2E2C ; 2.0 ; E2-C, AN UBIQUITIN CONJUGATING ENZYME REQUIRED FOR THE DESTRUCTION OF MITOTIC CYCLINS 2K4D ; ; E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity 3FN1 ; 2.5 ; E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. 5JNE ; 2.85 ; E2-SUMO-Siz1 E3-SUMO-PCNA complex 5LJP ; 1.1 ; E20K/I59A/E72K/I92A/D126K/A142V FLAVODOXIN FROM ANABAENA 6SXR ; 1.64 ; E221Q mutant of GH54 a-l-arabinofuranosidase soaked with 4-nitrophenyl a-l-arabinofuranoside 2GDU ; 2.1 ; E232Q mutant of sucrose phosphorylase from BIFIDOBACTERIUM ADOLESCENTIS in complex with sucrose 2JJH ; 2.7 ; E243 mutant of M. tuberculosis Rv3290C 1E5N ; 3.2 ; E246C mutant of P fluorescens subsp. cellulosa xylanase A in complex with xylopentaose 4N8K ; 2.0 ; E249A mutant, RipA structure 4N8L ; 2.817 ; E249D mutant, RipA structure 3ZUG ; 2.05 ; E268D mutant of FAD synthetase from Corynebacterium ammoniagenes 6A8T ; 2.1 ; E269A mutant of highly active EfBSH 2PBO ; 1.85 ; E27Q mutant of EXO-B-(1,3)-Glucanase from Candida Albicans at 1.85 A 1PI3 ; 1.2 ; E28Q mutant Benzoylformate Decarboxylase From Pseudomonas Putida 2PC8 ; 1.8 ; E292Q mutant of EXO-B-(1,3)-Glucanase from Candida Albicans in complex with two separately bound glucopyranoside units at 1.8 A 3JVZ ; 3.3 ; E2~Ubiquitin-HECT 3JW0 ; 3.1 ; E2~Ubiquitin-HECT 5CH3 ; 1.71 ; E3 alpha-esterase-7 carboxylesterase 5CH5 ; 1.53 ; E3 alpha-esterase-7 carboxylesterase 7OVX ; 1.7 ; E3 RING ligase binding domain 7OW2 ; 2.17 ; E3 RING ligase binding domain with peptide 4WHV ; 8.3 ; E3 ubiquitin-protein ligase RNF8 in complex with Ubiquitin-conjugating enzyme E2 N and Polyubiquitin-B 7CMK ; 3.4 ; E30 E-particle in complex with 6C5 7C80 ; 3.7 ; E30 F-particle in complex with 4B10 7C81 ; 3.1 ; E30 F-particle in complex with 6C5 7C9W ; 3.6 ; E30 F-particle in complex with CD55 7C9V ; 3.3 ; E30 F-particle in complex with FcRn 5FO1 ; 2.45 ; E301A mutant of FAD synthetase from Corynebacterium ammoniagenes 1KQ7 ; 2.6 ; E315Q Mutant Form of Fumarase C from E.coli 8ANX ; 1.2 ; E329A Mutant Thermogutta terrifontis endoglucanase catalytic domain with C-linker from glycoside hydrolase family 5 (TtEnd5A-CDC-E329A) 4KLA ; 2.6 ; E343D variant of human ferrochelatase 4KLC ; 2.4 ; E343D/F110A Double mutant of human ferrochelatase 4KLR ; 2.18 ; E343Q variant of human ferrochelatase 3OK0 ; 1.82 ; E35A Mutant of Hen Egg White Lysozyme (HEWL) 8FY1 ; 2.56 ; E3:PROTAC:target ternary complex structure (VCB/753b/BCL-2) 8FY0 ; 2.94 ; E3:PROTAC:target ternary complex structure (VCB/753b/BCL-xL) 8FY2 ; 2.98 ; E3:PROTAC:target ternary complex structure (VCB/WH244/BCL-2) 4J8Y ; 1.7 ; E3_5 DARPin D77S mutant 4J7W ; 1.6 ; E3_5 DARPin L86A mutant 7WX0 ; 1.4 ; E40K variant of Cu/Zn-superoxide dismutase from dog (Canis familiaris) 7WX1 ; 1.65 ; E40K/M117L variant of Cu/Zn-superoxide dismutase from dog (Canis familiaris) 7XYL ; 2.099 ; E426Q-glycine-glycylthricin complex 1BYP ; 1.75 ; E43K,D44K DOUBLE MUTANT PLASTOCYANIN FROM SILENE 6B2J ; 2.21 ; E45A mutant of HIV-1 capsid protein (other crystal form) 6B2I ; 2.5 ; E45A mutant of the HIV-1 capsid protein 6B2K ; 2.0 ; E45A/R132T mutant of HIV-1 capsid protein 5IWE ; 1.71 ; E45Q mutant of phenazine biosynthesis protein PhzF in complex with (5R,6R)-6-azaniumyl-5-ethoxycyclohexa-1,3-diene-1-carboxylate 1OTA ; 1.1 ; E46Q MUTANT OF PHOTOACTIVE YELLOW PROTEIN, P63 AT 295K 1OTE ; 1.4 ; E46Q MUTANT OF PHOTOACTIVE YELLOW PROTEIN, P65 AT 110K 1OTI ; 1.4 ; E46Q MUTANT OF PHOTOACTIVE YELLOW PROTEIN, P65 AT 295K 5KDP ; 1.9 ; E491A mutant of choline TMA-lyase 5FAV ; 1.6 ; E491Q mutant of choline TMA-lyase 6AJQ ; 1.342 ; E52Q mutant form of Uracil DNA glycosylase X from Mycobacterium smegmatis. 6K1L ; 2.46 ; E53A mutant of a putative cystathionine gamma-lyase 1RIJ ; ; E6-bind Trp-cage (E6apn1) 1RIK ; ; E6-binding zinc finger (E6apc1) 1RIM ; ; E6-binding zinc finger (E6apc2) 4N8H ; 2.4 ; E61V mutant, RipA structure 2Y3H ; 1.892 ; E63Q mutant of Cupriavidus metallidurans CH34 CnrXs 2VXN ; 0.82 ; E65Q-TIM complexed with phosphoglycolohydroxamate at 0.82 A resolution 3U78 ; 2.689 ; E67-2 selectively inhibits KIAA1718, a human histone H3 lysine 9 Jumonji demethylase 3ZXC ; 1.4 ; E69 deletion mutant single insulin-like growth factor binding domain protein (SIBD-1) from Cupiennius salei 5JDP ; ; E73V mutant of the human voltage-dependent anion channel 1RV4 ; 2.95 ; E75L MUTANT OF RABBIT CYTOSOLIC SERINE HYDROXYMETHYLTRANSFERASE 1RV3 ; 2.4 ; E75L MUTANT OF RABBIT CYTOSOLIC SERINE HYDROXYMETHYLTRANSFERASE, COMPLEX WITH GLYCINE 1RVU ; 2.5 ; E75Q MUTANT OF RABBIT CYTOSOLIC SERINE HYDROXYMETHYLTRANSFERASE 1RVY ; 2.9 ; E75Q MUTANT OF RABBIT CYTOSOLIC SERINE HYDROXYMETHYLTRANSFERASE, COMPLEX WITH GLYCINE 1OH3 ; 1.5 ; E78R mutant of a carbohydrate binding module family 29 3O31 ; 1.7 ; E81Q mutant of MtNAS in complex with a reaction intermediate 6QMV ; 1.87 ; E87D sulfur oxygenase reductase 4ZRQ ; 2.6 ; E88 deletion mutant of CD320 in complex with TC2 2YGA ; 2.37 ; E88G-N92L Mutant of N-Term HSP90 complexed with Geldanamycin 2YGE ; 1.956 ; E88G-N92L Mutant of N-Term HSP90 complexed with Geldanamycin 2AR3 ; 2.2 ; E90A mutant structure of PlyL 4YO5 ; 3.35 ; EAEC T6SS TssA-Cterminus 8IHM ; 3.58 ; Eaf3 CHD domain bound to the nucleosome 8EP1 ; 5.4 ; Eag Kv channel with voltage sensor in the down conformation 8EP0 ; 4.9 ; Eag Kv channel with voltage sensor in the intermediate conformation 8EOW ; 3.9 ; Eag Kv channel with voltage sensor in the up conformation 6XRF ; 2.56 ; EagT6 Tse6 NT complex 3S83 ; 1.34 ; EAL domain of phosphodiesterase PdeA 3U2E ; 2.32 ; EAL domain of phosphodiesterase PdeA in complex with 5'-pGpG and Mg++ 4HJF ; 1.75 ; EAL domain of phosphodiesterase PdeA in complex with c-di-GMP and Ca++ 3MLP ; 2.8 ; Early B-cell Factor 1 (Ebf1) bound to DNA 3MUJ ; 1.92 ; Early B-cell factor 3 (EBF3) IPT/TIG and dimerization helices 8Q62 ; 3.72 ; Early closed conformation of the g-tubulin ring complex 6Y7C ; 3.8 ; Early cytoplasmic yeast pre-40S particle (purified with Tsr1 as bait) 1ADU ; 3.0 ; EARLY E2A DNA-BINDING PROTEIN 1ADV ; 3.2 ; EARLY E2A DNA-BINDING PROTEIN 1T18 ; 1.6 ; Early intermediate IE1 from time-resolved crystallography of the E46Q mutant of PYP 1T19 ; 1.6 ; Early intermediate IE2 from time-resolved crystallography of the E46Q mutant of PYP 6TPS ; 3.54 ; early intermediate RNA Polymerase I Pre-initiation complex - eiPIC 7ZKQ ; 3.15 ; Early Pp module assembly intermediate of complex I 8BEK ; 2.86 ; Early transcription elongation state of influenza A/H7N9 backtracked polymerase with singly incoporated T1106 at the U +1 position 7R0E ; 2.51 ; Early transcription elongation state of influenza A/H7N9 polymerase backtracked due to double incoproation of nucleotide analogue T1106 and with singly incoporated T1106 at the +1 position 8BF5 ; 2.96 ; Early transcription elongation state of influenza A/H7N9 polymerase stalled with incoming GTP analogue 7R1F ; 2.58 ; Early transcription elongation state of influenza B polymerase backtracked due to double incoproation of nucleotide analogue T1106 8BE0 ; 2.34 ; Early transcription elongation state of influenza B/Mem polymerase backtracked due to double incoproation of nucleotide analogue T1106 and with singly incoporated T1106 at the C +1 position 8BDR ; 2.7 ; Early transcription elongation state of influenza B/Mem polymerase backtracked due to double incoproation of nucleotide analogue T1106 and with singly incoporated T1106 at the U +1 position 5WXK ; 1.801 ; EarP bound with domain I of EF-P 5XVR ; 1.63 ; EarP bound with dTDP-rhamnose (co-crystal) 5WXI ; 2.0 ; EarP bound with dTDP-rhamnose (soaked) 8UFA ; 2.86 ; Eastern equine encephalitis virus (PE-6) VLP (asymmetric unit) 8UFB ; 3.89 ; Eastern equine encephalitis virus (PE-6) VLP in complex with full-length VLDLR (asymmetric unit) 8UFC ; 3.09 ; Eastern equine encephalitis virus (PE-6) VLP in complex with VLDLR LA(1-2) (asymmetric unit) 7YNL ; 2.6 ; EB-bound alpha-synuclein fibrils 7OLG ; ; EB1 bound to MACF peptide 3TQ7 ; 2.3 ; EB1c/EB3c heterodimer in complex with the CAP-Gly domain of P150glued 1B3T ; 2.2 ; EBNA-1 NUCLEAR PROTEIN/DNA COMPLEX 7U1T ; 3.3 ; EBNA1 DNA binding domain (401-641) binds to half Dyad Symmetry element 8DLF ; 3.23 ; EBNA1 DNA binding domain (DBD) (458-617)+2 repeats of family repeat (FR) region 7K7R ; 2.5 ; EBNA1 peptide AA386-405 with Fab MS39p2w174 6C54 ; 5.8 ; Ebola nucleoprotein nucleocapsid-like assembly and the asymmetric unit 6OZ9 ; 3.462 ; Ebola virus glycoprotein in complex with EBOV-520 Fab 7KEX ; 4.25 ; Ebola virus GP (mucin deleted, Makona strain) bound to antibody Fab EBOV-293 7KF9 ; 4.4 ; Ebola virus GP (mucin deleted, Makona strain) bound to antibody Fab EBOV-296 and EBOV-515 7KFH ; 3.8 ; Ebola virus GP (mucin deleted, Makona strain) bound to antibody Fab EBOV-437 7KFB ; 3.9 ; Ebola virus GP (mucin deleted, Makona strain) bound to antibody Fab EBOV-442 6DZL ; 4.14 ; Ebola virus Makona variant GP (mucin-deleted) in complex with pan-ebolavirus human antibody ADI-15878 Fab 1H2C ; 1.6 ; Ebola virus matrix protein VP40 N-terminal domain in complex with RNA (High-resolution VP40[55-194] variant). 1H2D ; 2.6 ; Ebola virus matrix protein VP40 N-terminal domain in complex with RNA (Low-resolution VP40[31-212] variant). 6NUT ; 3.1 ; Ebola virus nucleoprotein - RNA complex 4ZTA ; 2.4 ; Ebola virus nucleoprotein bound to VP35 chaperoning peptide I212121 4ZTI ; 2.4 ; Ebola virus nucleoprotein bound to VP35 chaperoning peptide P212121 4ZTG ; 2.8 ; Ebola virus nucleoprotein bound to VP35 chaperoning peptide P22121 5Z9W ; 3.6 ; Ebola virus nucleoprotein-RNA complex 4U2X ; 3.153 ; Ebola virus VP24 in complex with Karyopherin alpha 5 C-terminus 4M0Q ; 1.921 ; Ebola virus VP24 structure 5T3T ; 2.2 ; Ebola virus VP30 CTD bound to nucleoprotein 4IBB ; 1.752 ; Ebola virus VP35 bound to small molecule 4IBC ; 1.745 ; Ebola virus VP35 bound to small molecule 4IBD ; 1.84 ; Ebola virus VP35 bound to small molecule 4IBE ; 1.95 ; Ebola virus VP35 bound to small molecule 4IBF ; 2.291 ; Ebola virus VP35 bound to small molecule 4IBG ; 1.413 ; Ebola virus VP35 bound to small molecule 4IBI ; 1.473 ; Ebola virus VP35 bound to small molecule 4IBJ ; 1.54 ; Ebola virus VP35 bound to small molecule 4IBK ; 1.85 ; Ebola virus VP35 bound to small molecule 7K5D ; 1.78 ; Ebola virus VP40 octameric ring generated by a DNA oligonucleotide 7K5L ; 1.38 ; Ebola virus VP40 octameric ring generated by an RNA oligonucleotide 4R0R ; 2.15 ; Ebolavirus GP Prehairpin Intermediate Mimic 7M8L ; 3.9 ; EBOV GP bound to rEBOV-442 and rEBOV-515 Fabs 5KEL ; 4.3 ; EBOV GP in complex with variable Fab domains of IgGs c2G4 and c13C6 5KEN ; 4.3 ; EBOV GP in complex with variable Fab domains of IgGs c4G7 and c13C6 6PCI ; 4.12 ; EBOV GPdMuc (Makona) in complex with rEBOV-520 and rEBOV-548 Fabs 6UYE ; 3.96 ; EBOV GPdMuc Makona bound to rEBOV-548 Fab 5KEM ; 5.5 ; EBOV sGP in complex with variable Fab domains of IgGs c13C6 and BDBV91 1HWN ; 2.8 ; EBULIN COMPLEXED WITH GALACTOSE, TRIGONAL CRYSTAL FORM 1HWO ; 2.9 ; EBULIN COMPLEXED WITH LACTOSE, TRIGONAL CRYSTAL FORM 1HWP ; 3.1 ; EBULIN COMPLEXED WITH PTEROIC ACID, TRIGONAL CRYSTAL FORM 1HWM ; 2.8 ; EBULIN,ORTHORHOMBIC CRYSTAL FORM MODEL 2WE2 ; 1.5 ; EBV dUTPase double mutant Gly78Asp-Asp131Ser with dUMP 2WE3 ; 2.0 ; EBV dUTPase inactive mutant deleted of motif V 2WE1 ; 1.8 ; EBV dUTPase mutant Asp131Asn with bound dUMP 2WE0 ; 2.01 ; EBV dUTPase mutant Cys4Ser 7T7I ; 3.97 ; EBV nuclear egress complex 6LQN ; 1.60002 ; EBV tegument protein BBRF2 6LQO ; 3.09113 ; EBV tegument protein BBRF2/BSRF1 complex 2N4C ; ; EC-NMR Structure of Agrobacterium tumefaciens Atu1203 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target AtT10 2N4D ; ; EC-NMR Structure of Agrobacterium tumefaciens Atu1203 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target AtT10 2N4F ; ; EC-NMR Structure of Arabidopsis thaliana At2g32350 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target AR3433A 2N49 ; ; EC-NMR Structure of Erwinia carotovora ECA1580 N-terminal Domain Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target EwR156A 2N45 ; ; EC-NMR Structure of Escherichia coli Maltose-binding protein Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data with a second set of RDC data simulated for an alternative alignment tensor. Northeast Structural Genomics Consortium target ER690 2N44 ; ; EC-NMR Structure of Escherichia coli Maltose-binding protein Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target ER690 2N48 ; ; EC-NMR Structure of Escherichia coli YiaD Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target ER553 2N42 ; ; EC-NMR Structure of Human H-RasT35S mutant protein Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data 2N46 ; ; EC-NMR Structure of Human H-RasT35S mutant protein Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data 2N4A ; ; EC-NMR Structure of Ralstonia metallidurans Rmet_5065 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target CrR115 2N4B ; ; EC-NMR Structure of Ralstonia metallidurans Rmet_5065 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target CrR115 2N47 ; ; EC-NMR Structure of Synechocystis sp. PCC 6803 Slr1183 Determined by Combining Evolutionary Couplings (EC) and Sparse NMR Data. Northeast Structural Genomics Consortium target SgR145 6NXC ; 1.74 ; ECAI(T162A) MUTANT IN COMPLEX WITH CITRATE AT PH 4 6NXB ; 1.75 ; ECAII IN COMPLEX WITH CITRATE AT PH 7 6NXA ; 1.93 ; ECAII(D90T,K162T) MUTANT AT PH 7 6NX6 ; 2.15 ; ECAII(D90T,K162T) MUTANT IN COMPLEX WITH CITRATE AT PH 5 6NX7 ; 2.15 ; ECAII(D90T,K162T) MUTANT IN COMPLEX WITH CITRATE AT PH 5.6 6NX8 ; 1.85 ; ECAII(D90T,K162T) MUTANT IN COMPLEX WITH CITRATE AT PH 6.2 6NX9 ; 1.97 ; ECAII(D90T,K162T) MUTANT IN COMPLEX WITH CITRATE AT PH 7 6PA8 ; 1.9 ; ECAII(T89V,K162T) MUTANT IN COMPLEX WITH L-ASN AT PH 7.0 6PA6 ; 2.12 ; ECAII(T89V,K162T) MUTANT IN COMPLEX WITH L-ASN AT PH 8.3 in space group C2 6PA5 ; 2.0 ; ECAII(T89V,K162T) MUTANT IN COMPLEX WITH L-ASN AT PH 8.3 IN SPACE GROUP P2(1) 7B7J ; 1.66 ; EccD5 ubiqutin like domain from Mycobacterium xenopi 8I9O ; 2.9 ; ecCTPS filament bound with CTP, NADH, DON 4X5F ; 1.7 ; ecDHFR complexed with folate and NADP+ at 0.1 MPa 4X5G ; 1.9 ; ecDHFR complexed with folate and NADP+ at 270 MPa 4X5H ; 1.9 ; ecDHFR complexed with folate and NADP+ at 500 MPa 4X5I ; 1.8 ; ecDHFR complexed with folate and NADP+ at 660 MPa 4X5J ; 1.85 ; ecDHFR complexed with folate and NADP+ at 750 MPa 4Z0M ; 1.97 ; EchA5 Mycobacterium tuberculosis 5W1J ; 2.7 ; Echinococcus granulosus thioredoxin glutathione reductas (egTGR) 5W1L ; 2.88 ; Echinococcus granulosus thioredoxin glutathione reductas (egTGR) with Gold 1XVN ; 1.5 ; echinomycin (ACGTACGT)2 complex 1XVR ; 1.4 ; echinomycin (CGTACG)2 complex 1PFE ; 1.1 ; Echinomycin-(gcgtacgc)2 complex 2ECH ; ; ECHISTATIN-THE REFINED STRUCTURE OF A DISINTEGRIN IN SOLUTION BY 1H NMR 7XXG ; 3.37 ; Echo 18 at pH5.5 7XXJ ; 3.33 ; Echo 18 incubated with FcRn at pH5.5 1EV1 ; 3.55 ; ECHOVIRUS 1 6RJF ; 3.5 ; Echovirus 1 intact particle 1H8T ; 2.9 ; Echovirus 11 6HBH ; 3.36 ; Echovirus 18 A-particle 6HBJ ; 3.16 ; Echovirus 18 empty particle 6HBG ; 3.16 ; Echovirus 18 native particle 6HBK ; 3.8 ; Echovirus 18 Open particle without one pentamer 6HBL ; 3.7 ; Echovirus 18 Open particle without three pentamers 6HHT ; 4.05 ; Echovirus 18 Open particle without two pentamers 7C9X ; 3.4 ; Echovirus 3 F-particle 7C9T ; 2.9 ; Echovirus 30 A-particle 7C9U ; 3.4 ; Echovirus 30 E-particle 7C9S ; 2.9 ; Echovirus 30 F-particle 8GSC ; 3.4 ; Echovirus3 A-particle in complex with 6D10 Fab 8GSE ; 3.7 ; Echovirus3 capsid protein in complex with 6D10 Fab (upright) 7EAI ; 3.8 ; Echovirus3 empty compacted particle 7EAH ; 3.1 ; Echovirus3 empty expanded particle 7EAJ ; 4.1 ; Echovirus3 empty expanded particle in complex with 5G3 fab 8GSF ; 3.6 ; Echovirus3 empty particle in complex with 6D10 Fab (sideling) 7EAK ; 3.9 ; Echovirus3 full particle in complex with 5G3 fab 8GSD ; 3.1 ; Echovirus3 full particle in complex with 6D10 Fab 6YF6 ; 2.0 ; EclA C-terminal domain; sugar-binding protein 6YGQ ; 1.9 ; EclA N-terminal domain; PllA-like lectin 5EJ5 ; 2.3 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 1.5 h 5EJ4 ; 1.773 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 15 min 5EJ9 ; 1.72 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 2 min and isochorismate for 13 min 5EJA ; 1.6 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 2 min and soaked with isochorismate for 7 min 5EJ7 ; 1.56 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 21 s 5EJ6 ; 2.243 ; EcMenD-ThDP-Mn2+ complex soaked with 2-ketoglutarate for 2min then soaked with isochorismate for 2 min 5EJ8 ; 1.34 ; EcMenD-ThDP-Mn2+ complex structure soaked with 2-ketoglutarate for 2 min 7UW5 ; 3.84 ; EcMscK G924S mutant in a closed conformation 7UX1 ; 3.48 ; EcMscK in an Open Conformation 2EWN ; 2.8 ; Ecoli Biotin Repressor with co-repressor analog 5I5H ; 1.65 ; Ecoli global domain 245-586 6YD9 ; 1.6 ; Ecoli GyrB24 with inhibitor 16a 7BTR ; 4.54 ; EcoR124I-ArdA in the Restriction-Alleviation State 7BTO ; 3.97 ; EcoR124I-ArdA in the Translocation State 7BTQ ; 4.54 ; EcoR124I-DNA in the Restriction-Alleviation State 7BTP ; 4.01 ; EcoR124I-Ocr in Restriction-Alleviation State 7BST ; 4.37 ; EcoR124I-Ocr in the Intermediate State 1EON ; 1.6 ; ECORV BOUND TO 3'-S-PHOSPHOROTHIOLATE DNA AND CA2+ 1EOO ; 2.16 ; ECORV BOUND TO COGNATE DNA 1EOP ; 2.6 ; ECORV BOUND TO COGNATE DNA 1SX8 ; 2.15 ; EcoRV bound to cognate DNA and Mn2+ 1EO4 ; 1.9 ; ECORV BOUND TO MN2+ AND COGNATE DNA CONTAINING A 3'S SUBSTITION AT THE CLEAVAGE SITE 1BGB ; 2.0 ; ECORV ENDONUCLEASE COMPLEX WITH 5'-CGGGATATCCC DNA 1AZ3 ; 2.4 ; ECORV ENDONUCLEASE, UNLIGANDED, FORM B 1AZ4 ; 2.4 ; ECORV ENDONUCLEASE, UNLIGANDED, FORM B, T93A MUTANT 1AZ0 ; 2.0 ; ECORV ENDONUCLEASE/DNA COMPLEX 2GE5 ; 2.4 ; EcoRV Restriction Endonuclease C-terminal deletion mutant/GATATC/Ca2+ 2B0D ; 2.0 ; EcoRV Restriction Endonuclease/GAATTC/Ca2+ 2B0E ; 1.9 ; EcoRV Restriction Endonuclease/GAAUTC/Ca2+ 1BSS ; 2.15 ; ECORV-T93A/DNA/CA2+ 7E8R ; 1.9 ; EcoT38I restriction endonuclease 7EDB ; 2.39 ; EcoT38I restriction endonuclease complexed with DNA 1EZU ; 2.4 ; ECOTIN Y69F, D70P BOUND TO D102N TRYPSIN 3UE5 ; 2.76 ; ECP-cleaved Actin in complex with Spir domain D 4Z9D ; 1.8 ; EcPltA 4Z9C ; 2.35 ; EcPltAB Oxidized 1ECI ; ; ECTATOMIN (WATER SOLUTION, NMR 20 STRUCTURES) 5FUU ; 4.19 ; Ectodomain of cleaved wild type JR-FL EnvdCT trimer in complex with PGT151 Fab 6DCQ ; 3.1 ; Ectodomain of full length, wild type HIV-1 glycoprotein clone PC64M18C043 in complex with PGT151 Fab 8DFP ; 3.17 ; Ectodomain of full-length KIT(DupA502,Y503)-SCF dimers 8DFQ ; 3.96 ; Ectodomain of full-length KIT(T417I,delta418-419)-SCF dimers 8DFM ; 3.45 ; Ectodomain of full-length wild-type KIT-SCF dimers 1FCG ; 2.0 ; ECTODOMAIN OF HUMAN FC GAMMA RECEPTOR, FCGRIIA 6Y5H ; 3.0 ; Ectodomain of X-31 Haemagglutinin at pH 5 (State I) 6Y5G ; 3.0 ; Ectodomain of X-31 Haemagglutinin at pH 8 7X77 ; 2.2 ; Ectodomain structure of per os infectivity factor 5 1GKS ; ; ECTOTHIORHODOSPIRA HALOPHILA CYTOCHROME C551 (REDUCED), NMR, 37 STRUCTURES 7WVF ; 3.91 ; ectoTLR3-mAb12-poly(I:C) complex 7WV5 ; 3.1 ; ectoTLR3-poly(I:C) 7WV4 ; 3.35 ; ectoTLR3-poly(I:C) cluster 6T5K ; 1.33 ; ECV-1 from Echinicola vietnamensis. Environmental metallo-beta-lactamases exhibit high enzymatic activity under zinc deprivation 3UTC ; 1.9 ; Ec_IspH in complex with (E)-4-hydroxybut-3-enyl diphosphate 3UV6 ; 1.7 ; Ec_IspH in complex with 4-hydroxybutyl diphosphate (1301) 3UWM ; 1.8 ; Ec_IspH in complex with 4-oxobutyl diphosphate (1302) 3UTD ; 1.7 ; Ec_IspH in complex with 4-oxopentyl diphosphate 3UV3 ; 1.6 ; Ec_IspH in complex with but-2-ynyl diphosphate (1086) 3UV7 ; 1.6 ; Ec_IspH in complex with buta-2,3-dienyl diphosphate (1300) 6RXA ; 1.44 ; EDDS lyase variant D290M/Y320M with bound formate 6RX8 ; 1.92 ; EDDS lyase variant D290M/Y320M with bound fumarate 6ZVH ; 2.9 ; EDF1-ribosome complex 8FAM ; 1.95 ; Edited Octopus bimaculoides Synaptotagmin 1 C2A (I248V) at room temperature 4RRF ; 1.7 ; Editing domain of threonyl-tRNA synthetase from Methanococcus jannaschii with L-Ser3AA 4RRG ; 1.93 ; Editing domain of threonyl-tRNA synthetase from Methanococcus jannaschii with L-Thr3AA 6SSO ; 1.211 ; EDN mutant L45H 7XEY ; 2.29 ; EDS1-PAD4 complexed with pRib-ADP 5DQP ; 2.146 ; EDTA monooxygenase (EmoA) from Chelativorans sp. BNC1 2CE7 ; 2.44 ; EDTA treated 2WO0 ; 2.6 ; EDTA treated E. coli copper amine oxidase 2WOF ; 2.25 ; EDTA treated E. coli copper amine oxidase 2GNT ; 2.02 ; EDTA treated P. angolensis lectin (PAL) remetallized with calcium (1 hour treatment) 3SW3 ; 2.35 ; EDTA-free crystal structure of the mutant C221D of carbapenemase CphA from Aeromonas hydrophila 2GNB ; 2.27 ; EDTA-treated (2 weeks) P. angolensis lectin 3WSH ; 2.8 ; EDTA-treated, oxidized HcgD from Methanocaldococcus jannaschii 3WSI ; 2.3 ; EDTA-treated, reduced HcgD from Methanocaldococcus jannaschii 1JOC ; 2.2 ; EEA1 homodimer of C-terminal FYVE domain bound to inositol 1,3-diphosphate 6YVI ; 2.26 ; EED in complex with a cyano-benzofuran 6SFC ; 2.0 ; EED in complex with a methyl-thiazole 6SFB ; 1.52 ; EED in complex with a triazolopyrimidine 6YVJ ; 1.84 ; EED in complex with a triazolopyrimidine 5GSA ; 2.49 ; EED in complex with an allosteric PRC2 inhibitor 5H14 ; 1.9 ; EED in complex with an allosteric PRC2 inhibitor EED666 7P3C ; 1.61 ; EED in complex with compound 4 7P3G ; 2.39 ; EED in complex with compound 4 7P3J ; 1.93 ; EED in complex with compound 4 5H25 ; 2.88 ; EED in complex with PRC2 allosteric inhibitor compound 11 7QK4 ; 1.602 ; EED in complex with PRC2 allosteric inhibitor compound 22 (MAK683) 7QJG ; 1.8 ; EED in complex with PRC2 allosteric inhibitor compound 6 7QJU ; 1.8 ; EED in complex with PRC2 allosteric inhibitor compound 7 5H24 ; 2.5 ; EED in complex with PRC2 allosteric inhibitor compound 8 5H19 ; 1.9 ; EED in complex with PRC2 allosteric inhibitor EED162 5H17 ; 2.3 ; EED in complex with PRC2 allosteric inhibitor EED210 5H13 ; 1.9 ; EED in complex with PRC2 allosteric inhibitor EED396 5H15 ; 2.27 ; EED in complex with PRC2 allosteric inhibitor EED709 3JZH ; 2.05 ; EED-H3K79me3 3JPX ; 2.05 ; EED: A Novel Histone Trimethyllysine Binder Within The EED-EZH2 Polycomb Complex 6ODF ; 5.8 ; EEEV glycoproteins bound with heparan sulfate 8EOD ; ; EEVD:Sis1-81 (J domain) bound conformation 2PMY ; 2.3 ; EF-hand domain of human RASEF 6TS3 ; 1.28 ; EF-hands 3 and 4 of alpha-actinin in complex with CaMKII regulatory segment 1H8B ; ; EF-hands 3,4 from alpha-actinin / Z-repeat 7 from titin 4G5G ; 2.3 ; ef-tu (Escherichia coli) complexed with nvp-ldu796 3U6B ; 2.12 ; Ef-tu (escherichia coli) in complex with nvp-ldi028 3U6K ; 2.45 ; Ef-tu (escherichia coli) in complex with nvp-ldk733 3U2Q ; 2.7 ; EF-Tu (Escherichia coli) in complex with NVP-LFF571 5JBQ ; 2.006 ; EF-TU (ESCHERICHIA COLI) IN COMPLEX WITH THIOMURACIN ANALOG 2C77 ; 1.6 ; EF-Tu complexed with a GTP analog and the antibiotic GE2270 A 2C78 ; 1.4 ; EF-Tu complexed with a GTP analog and the antibiotic pulvomycin 1AIP ; 3.0 ; EF-TU EF-TS COMPLEX FROM THERMUS THERMOPHILUS 1QZD ; 10.0 ; EF-Tu.kirromycin coordinates fitted into the cryo-EM map of EF-Tu ternary complex (GDP.Kirromycin) bound 70S ribosome 1D26 ; 2.12 ; EFFECT OF A SINGLE 3'-METHYLENE PHOSPHONATE LINKAGE ON THE CONFORMATION OF AN A-DNA OCTAMER DOUBLE HELIX 1XQK ; 1.95 ; Effect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine Racemase 1XQL ; 1.8 ; Effect of a Y265F Mutant on the Transamination Based Cycloserine Inactivation of Alanine Racemase 1YKX ; 1.9 ; Effect of alcohols on protein hydration 1YKY ; 1.9 ; Effect of alcohols on protein hydration 1YKZ ; 1.8 ; Effect of alcohols on protein hydration 1YL0 ; 1.9 ; Effect of alcohols on protein hydration 1YL1 ; 1.9 ; Effect of alcohols on protein hydration 1Z55 ; 1.9 ; Effect of alcohols on protein hydration 6CCP ; 2.2 ; EFFECT OF ARGININE-48 REPLACEMENT ON THE REACTION BETWEEN CYTOCHROME C PEROXIDASE AND HYDROGEN PEROXIDE 7CCP ; 2.2 ; EFFECT OF ARGININE-48 REPLACEMENT ON THE REACTION BETWEEN CYTOCHROME C PEROXIDASE AND HYDROGEN PEROXIDE 3A34 ; 1.65 ; Effect of Ariginine on lysozyme 3EMS ; 1.651 ; Effect of Ariginine on lysozyme 329D ; 2.7 ; EFFECT OF CYTOSINE METHYLATION ON DNA-DNA RECOGNITION AT CPG STEPS 1YX9 ; 3.0 ; Effect of Dimethyl Sulphoxide on the crystal structure of Porcine Pepsin 240D ; 2.0 ; EFFECT OF END BASE STEPS ON DNA FORM: CRYSTAL STRUCTURE OF THE A-DNA DECAMER D(CCGGGCCCGG) 3CYW ; 1.4 ; Effect of Flap Mutations on Structure of HIV-1 Protease and Inhibition by Saquinavir and Darunavir 5ZU2 ; 2.441 ; Effect of mutation (R554A) on FAD modification in Aspergillus oryzae RIB40formate oxidase 5ZU3 ; 2.4 ; Effect of mutation (R554K) on FAD modification in Aspergillus oryzae RIB40formate oxidase 1P4Y ; 1.7 ; Effect of Sequence on the Conformational Geometry of DNA Holliday Junctions 1P4Z ; 2.0 ; Effect of Sequence on the Conformational Geometry of DNA Holliday Junctions 1P54 ; 1.9 ; Effect of Sequence on the Conformational Geometry of DNA Holliday Junctions 1T9N ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TB0 ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TBT ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TE3 ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TEQ ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TEU ; 2.0 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TG3 ; 1.8 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TG9 ; 1.9 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1TH9 ; 1.63 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 1THK ; 1.8 ; Effect of Shuttle Location and pH Environment on H+ Transfer in Human Carbonic Anhydrase II 3V2J ; 1.699 ; Effect of Sucrose and Glycerol as Cryoprotectans, on the Inhibition of Human Carbonic Anhydrase II 3V2M ; 1.471 ; Effect of Sucrose and Glycerol as Cryoprotectans, on the Inhibition of Human Carbonic Anhydrase II 3M3U ; 2.35 ; Effect of temperature on tryptophan fluorescence in lysozyme crystals 1BEK ; 2.2 ; EFFECT OF UNNATURAL HEME SUBSTITUTION ON KINETICS OF ELECTRON TRANSFER IN CYTOCHROME C PEROXIDASE 1BEP ; 2.2 ; EFFECT OF UNNATURAL HEME SUBSTITUTION ON KINETICS OF ELECTRON TRANSFER IN CYTOCHROME C PEROXIDASE 1BJ9 ; 2.2 ; EFFECT OF UNNATURAL HEME SUBSTITUTION ON KINETICS OF ELECTRON TRANSFER IN CYTOCHROME C PEROXIDASE 2F97 ; 2.2 ; Effector Binding Domain of BenM (crystals generated from high pH conditions) 7YHJ ; 3.237 ; Effector binding domain of LysR-Type transcription factor LrhA from E. coli 3ONM ; 2.4 ; Effector binding Domain of LysR-Type transcription factor RovM from Y. pseudotuberculosis 5TED ; 1.889 ; Effector binding domain of QuiR in complex with shikimate 3N6T ; 1.85 ; Effector binding domain of TsaR 3N6U ; 1.87 ; Effector binding domain of TsaR in complex with its inducer p-toluenesulfonate 3O9T ; 2.2 ; Effector domain from influenza A/PR/8/34 NS1 3OA9 ; 2.9 ; Effector domain of influenza A/Duck/Albany/76 NS1 3O9S ; 2.48 ; Effector domain of influenza A/PR/8/34 NS1 3O9U ; 3.2 ; Effector domain of influenza A/PR/8/34 NS1 3O9Q ; 2.5 ; Effector domain of NS1 from A/PR/8/34 containing a W187A mutation 3O9R ; 2.0 ; Effector domain of NS1 from influenza A/PR/8/34 containing a W187A mutation 3RVC ; 1.8 ; Effector domain of NS1 from influenza A/PR/8/34 containing a W187A mutation 6H56 ; 3.2 ; Effector domain of Pseudomonas aeruginosa VgrG2b 1DNF ; 1.5 ; EFFECTS OF 5-FLUOROURACIL/GUANINE WOBBLE BASE PAIRS IN Z-DNA. MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGFG) 2CYM ; 2.0 ; EFFECTS OF AMINO ACID SUBSTITUTION ON THREE-DIMENSIONAL STRUCTURE: AN X-RAY ANALYSIS OF CYTOCHROME C3 FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH AT 2 ANGSTROMS RESOLUTION 1BX3 ; 2.3 ; EFFECTS OF COMMONLY USED CRYOPROTECTANTS ON GLYCOGEN PHOSPHORYLASE ACTIVITY AND STRUCTURE 1S02 ; 1.9 ; EFFECTS OF ENGINEERED SALT BRIDGES ON THE STABILITY OF SUBTILISIN BPN' 1BKU ; ; EFFECTS OF GLYCOSYLATION ON THE STRUCTURE AND DYNAMICS OF EEL CALCITONIN, NMR, 10 STRUCTURES 3CJZ ; 1.8 ; Effects of N2,N2-dimethylguanosine on RNA structure and stability: crystal structure of an RNA duplex with tandem m22G:A pairs 1FB9 ; ; EFFECTS OF S-SULFONATION ON THE SOLUTION STRUCTURE OF SALMON CALCITONIN 1RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 2RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 3RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 4RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 5RAT ; 1.5 ; Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 TO 320 K 6RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 7RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 8RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 9RAT ; 1.5 ; EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-RAY CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K 6C93 ; 2.674 ; Effects of the E310A Mutation of Cytochrome P450 4B1 (CYP4B1) on n-Octane binding and Heme Ruffling 6LKS ; 3.24 ; Effects of zinc ion on oligomerization and pH stability of influenza virus hemagglutinin 2L6S ; ; Efficacy of an HIV-1 entry inhibitor targeting the GP41 fusion peptide 2L6T ; ; Efficacy of an HIV-1 entry inhibitor targeting the GP41 fusion peptide 2C22 ; 2.56 ; Efficient and High Fidelity Incorporation of dCTP Opposite 7,8- Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4 2C28 ; 2.27 ; Efficient and High Fidelity Incorporation of dCTP Opposite 7,8- Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4 2C2D ; 2.57 ; Efficient and High Fidelity Incorporation of dCTP Opposite 7,8- Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4 2C2E ; 2.61 ; Efficient and High Fidelity Incorporation of dCTP Opposite 7,8- Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4 2C2R ; 2.55 ; Efficient and High Fidelity Incorporation of dCTP Opposite 7,8- Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4 5JQ1 ; 1.83 ; Efficient targeting of the asialoglycoprotein receptor by polyvalent display of a compact galactosamine mimic 5JPV ; 1.9 ; Efficient targeting of the asialoglycoprotein receptor by polyvalent display of a compact galactoseamine mimic 2PIS ; 2.8 ; Efforts toward Expansion of the Genetic Alphabet: Structure and Replication of Unnatural Base Pairs 5XNG ; ; EFK17A structure in Microgel MAA60 5XRX ; ; EFK17DA structure in Microgel MAA60 3ZCW ; 1.691 ; Eg5 - New allosteric binding site 4AS7 ; 2.4 ; Eg5 complex 1 5ZO9 ; 2.7 ; Eg5 motor domain in complex with STLC-type inhibitor PVEI0021 (C2 type) 5ZO8 ; 2.2 ; Eg5 motor domain in complex with STLC-type inhibitor PVEI0021 (P21 type) 4ZHI ; 2.3 ; Eg5 motor domain mutant E162S 4ZCA ; 2.3 ; Eg5 motor domain mutant Y231F 4BXN ; 2.793 ; Eg5(WT) complex 4A1Z ; 2.8 ; Eg5-1 4A28 ; 2.55 ; Eg5-2 4B7B ; 2.5 ; Eg5-3 6G6Y ; 1.8 ; Eg5-inhibitor complex 6G6Z ; 2.8 ; Eg5-inhibitor complex 6HKX ; 2.8 ; Eg5-inhibitor complex 6HKY ; 2.75 ; Eg5-inhibitor complex 2KV4 ; ; EGF 2BOU ; 1.9 ; EGF Domains 1,2,5 of human EMR2, a 7-TM immune system molecule, in complex with barium. 2BO2 ; 2.6 ; EGF Domains 1,2,5 of human EMR2, a 7-TM immune system molecule, in complex with calcium. 2BOX ; 2.5 ; EGF Domains 1,2,5 of human EMR2, a 7-TM immune system molecule, in complex with strontium. 6YLQ ; 1.65 ; EGFP in neutral pH, Directionality of Optical Properties of Fluorescent Proteins 5N9O ; 1.53 ; EGFP(enhanced green fluorescent protein) mutant - L232H 6YLP ; 1.55 ; EGFP_in_Acidic_env Directionality of Optical Properties of Fluorescent Proteins 5HG9 ; 2.15 ; EGFR (L858R, T790M, V948R) in complex with 1-[(3R,4R)-3-[({2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)methyl]-4-(trifluoromethyl)pyrrolidin-1-yl]prop-2-en-1-one 5HG7 ; 1.85 ; EGFR (L858R, T790M, V948R) in complex with 1-{(3R,4R)-3-[5-Chloro-2-(1-methyl-1H-pyrazol-4-ylamino)-7H-pyrrolo[2,3-d]pyrimidin-4-yloxymethyl]-4-methoxy-pyrrolidin-1-yl}propenone (PF-06459988) 5HG8 ; 1.42 ; EGFR (L858R, T790M, V948R) in complex with N-[3-({2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)phenyl]prop-2-enamide 5HG5 ; 1.52 ; EGFR (L858R, T790M, V948R) in complex with N-{3-[(2-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy]phenyl}prop-2-enamide 7LTX ; 2.3 ; EGFR (T790M/V948R) in complex with quinazolinone allosteric inhibitor 7LG8 ; 2.93 ; EGFR (T79M/V948R) in complex with naquotinib and an allosteric inhibitor 4LRM ; 3.526 ; EGFR D770_N771insNPG in complex with PD168393 6P8Q ; 1.9 ; EGFR in complex with a dihydrodibenzodiazepinone allosteric inhibitor. 7U9A ; 2.6 ; EGFR in complex with a macrocyclic inhibitor 7K1I ; 3.202 ; EGFR kinase (L858R/V948R) in complex with allosteric inhibitor JBJ-09-063 5EDP ; 2.9 ; EGFR kinase (T790M/L858R) apo 4RJ7 ; 2.55 ; EGFR kinase (T790M/L858R) with inhibitor compound 1 5EDQ ; 2.8 ; EGFR kinase (T790M/L858R) with inhibitor compound 15: ~{N}-(7-chloranyl-1~{H}-indazol-3-yl)-7,7-dimethyl-2-(1~{H}-pyrazol-4-yl)-5~{H}-furo[3,4-d]pyrimidin-4-amine 5EDR ; 2.6 ; EGFR kinase (T790M/L858R) with inhibitor compound 27: ~{N}-(1~{H}-indazol-3-yl)-7,7-dimethyl-2-(2-methylpyrazol-3-yl)-5~{H}-furo[3,4-d]pyrimidin-4-amine 4RJ6 ; 2.7 ; EGFR kinase (T790M/L858R) with inhibitor compound 4 4RJ5 ; 3.1 ; EGFR kinase (T790M/L858R) with inhibitor compound 5 4RJ4 ; 2.78 ; EGFR kinase (T790M/L858R) with inhibitor compound 6 4RJ8 ; 2.5 ; EGFR kinase (T790M/L858R) with inhibitor compound 8 7JXQ ; 1.83 ; EGFR kinase (T790M/V948R) in complex with allosteric inhibitor JBJ-09-063 7JXL ; 2.4 ; EGFR kinase (T790M/V948R) in complex with AZ5104 7JXM ; 2.192 ; EGFR kinase (T790M/V948R) in complex with osimertinib and EAI045 7JXP ; 2.16 ; EGFR kinase (T790M/V948R) in complex with osimertinib and JBJ-04-125-02 7JXW ; 2.5 ; EGFR kinase (T790M/V948R) in complex with osimertinib and JBJ-09-063 7JXI ; 3.0 ; EGFR kinase (T790M/V948R) in complex with PF-06747775 7JXK ; 3.1 ; EGFR kinase (T790M/V948R) in complex with PF-06747775 and JBJ-04-125-02 8A2B ; 1.69 ; EGFR kinase domain (L858R/V948R) in complex with 2-(6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-1-yl)-2-[6-[2-[4-[[4-(hydroxymethyl)-1-piperidyl]methyl]phenyl]ethynyl]-1-oxo-4-(trifluoromethyl)isoindolin-2-yl]-N-thiazol-2-yl-acetamide 8A2D ; 1.11 ; EGFR kinase domain (L858R/V948R) in complex with 2-[4-(difluoromethyl)-6-[2-[4-[[4-(hydroxymethyl)-1-piperidyl]methyl]phenyl]ethynyl]-7-methyl-indazol-2-yl]-2-spiro[6,7-dihydropyrrolo[1,2-c]imidazole-5,1'-cyclopropane]-1-yl-N-thiazol-2-yl-acetamide 1XKK ; 2.4 ; EGFR kinase domain complexed with a quinazoline inhibitor- GW572016 3LZB ; 2.7 ; EGFR kinase domain complexed with an imidazo[2,1-b]thiazole inhibitor 3W33 ; 1.7 ; EGFR kinase domain complexed with compound 19b 3W32 ; 1.8 ; EGFR kinase domain complexed with compound 20a 3POZ ; 1.5 ; EGFR Kinase domain complexed with tak-285 8A27 ; 1.07 ; EGFR kinase domain in complex with 2-(6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-1-yl)-2-[6-[2-[4-[[4-(hydroxymethyl)-1-piperidyl]methyl]phenyl]ethynyl]-1-oxo-4-(trifluoromethyl)isoindolin-2-yl]-N-thiazol-2-yl-acetamide 8A2A ; 1.43 ; EGFR kinase domain in complex with 2-(6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-1-yl)-2-[6-[2-[4-[[4-(hydroxymethyl)-1-piperidyl]methyl]phenyl]ethynyl]-1-oxo-4-(trifluoromethyl)isoindolin-2-yl]-N-thiazol-2-yl-acetamide (form 2) 5FEQ ; 3.4 ; EGFR KINASE DOMAIN IN COMPLEX WITH A COVALENT AMINOBENZIMIDAZOLE 5FED ; 2.651 ; EGFR kinase domain in complex with a covalent aminobenzimidazole inhibitor. 5D41 ; 2.31 ; EGFR kinase domain in complex with mutant selective allosteric inhibitor 5HCZ ; 2.62 ; EGFR kinase domain mutant ""TMLR"" with 3-azetidinyl azaindazole compound 21 5HCY ; 2.46 ; EGFR kinase domain mutant ""TMLR"" with 3-carboxamide azaindole compound 13 5HIC ; 2.6 ; EGFR kinase domain mutant ""TMLR"" with a imidazopyridinyl-aminopyrimidine inhibitor 5HIB ; 2.85 ; EGFR kinase domain mutant ""TMLR"" with a pyrazolopyrimidine inhibitor 5HCX ; 2.6 ; EGFR kinase domain mutant ""TMLR"" with azabenzimidazole compound 7 5C8K ; 3.0 ; EGFR kinase domain mutant ""TMLR"" with compound 1 5C8M ; 2.9 ; EGFR kinase domain mutant ""TMLR"" with compound 17 5C8N ; 2.401 ; EGFR kinase domain mutant ""TMLR"" with compound 23 5CAL ; 2.7 ; EGFR kinase domain mutant ""TMLR"" with compound 24 5CAN ; 2.8 ; EGFR kinase domain mutant ""TMLR"" with compound 27 8HY7 ; 2.91 ; EGFR kinase domain mutant ""TMLR"" with compound 28f 5CAO ; 2.6 ; EGFR kinase domain mutant ""TMLR"" with compound 29 5CAP ; 2.4 ; EGFR kinase domain mutant ""TMLR"" with compound 30 5CAQ ; 2.5 ; EGFR kinase domain mutant ""TMLR"" with compound 33 5CAS ; 2.1 ; EGFR kinase domain mutant ""TMLR"" with compound 41a 5CAU ; 2.25 ; EGFR kinase domain mutant ""TMLR"" with compound 41b 5EM7 ; 2.81 ; EGFR kinase domain mutant ""TMLR"" with pyridone compound 13: 4-[(2-methoxyphenyl)amino]-~{N}-[4-(4-methylpiperazin-1-yl)phenyl]-2-oxidanylidene-1~{H}-pyridine-3-carboxamide 5EM6 ; 2.78 ; EGFR kinase domain mutant ""TMLR"" with pyridone compound 19: 4-[(2-azanylpyrimidin-4-yl)amino]-~{N}-[4-(4-methylpiperazin-1-yl)phenyl]-2-oxidanylidene-1~{H}-pyridine-3-carboxamide 5EM5 ; 2.65 ; EGFR kinase domain mutant ""TMLR"" with pyridone compound 2: 4-[2-(4-chlorophenyl)ethylamino]-~{N}-[4-(4-methylpiperazin-1-yl)phenyl]-2-oxidanylidene-1~{H}-pyridine-3-carboxamide 5Y25 ; 3.102 ; EGFR kinase domain mutant (T790M/L858R) with covalent ligand NS-062 5FEE ; 2.7 ; EGFR kinase domain T790M mutant in complex with a covalent aminobenzimidazole inhibitor. 3W2P ; 2.05 ; EGFR Kinase domain T790M/L858R mutant with compound 2 3W2R ; 2.05 ; EGFR Kinase domain T790M/L858R mutant with compound 4 3W2Q ; 2.2 ; EGFR kinase domain T790M/L858R mutant with HKI-272 3W2O ; 2.35 ; EGFR Kinase domain T790M/L858R Mutant with TAK-285 5CAV ; 2.73 ; EGFR kinase domain with compound 41a 3W2S ; 1.9 ; EGFR kinase domain with compound4 5EM8 ; 2.8 ; EGFR kinase domain with pyridone compound 13: 4-[(2-methoxyphenyl)amino]-~{N}-[4-(4-methylpiperazin-1-yl)phenyl]-2-oxidanylidene-1~{H}-pyridine-3-carboxamide 7U99 ; 2.5 ; EGFR kinase in complex with a macrocyclic inhibitor 8F1Z ; 2.4 ; EGFR kinase in complex with Bayer #33 8F1X ; 2.3 ; EGFR kinase in complex with mobocertinib (TAK-788) 8F1Y ; 2.75 ; EGFR kinase in complex with poziotinib 8TJL ; 2.7 ; EGFR kinase in complex with pyrazolopyrimidine covalent inhibitor 8F1H ; 2.8 ; EGFR kinase in complex with TAS6417 (CLN-081) 4LQM ; 2.5 ; EGFR L858R in complex with PD168393 5CZI ; 2.6 ; EGFR L858R MUTANT IN COMPLEX WITH A SHC PEPTIDE SUBSTRATE 5CZH ; 2.8 ; EGFR L858R MUTANT IN COMPLEX WITH AN OPTIMAL PEPTIDE SUBSTRATE 4LL0 ; 4.0 ; EGFR L858R/T790M in complex with PD168393 7K1H ; 2.602 ; EGFR L858R/V948R in complex with osimertinib and allosteric inhibitor JBJ-09-063 6JRX ; 2.201 ; EGFR T790M/C797S in complex with compound 6i 2M20 ; ; EGFR transmembrane - juxtamembrane (TM-JM) segment in bicelles: MD guided NMR refined structure. 6DUK ; 2.2 ; EGFR with an allosteric inhibitor 8WD4 ; 2.55 ; EGFR(L858R/T790/C797S) in complex with compound 5j 7U98 ; 3.42 ; EGFR(T790M/V948R) in complex with a macrocyclic inhibitor 6XL4 ; 2.06 ; EGFR(T790M/V948R) in complex with AZD9291 and DDC4002 8FV3 ; 2.1 ; EGFR(T790M/V948R) in complex with compound 1 (LN4503) 8FV4 ; 2.2 ; EGFR(T790M/V948R) in complex with compound 2 (LN5993) 7UKW ; 2.6 ; EGFR(T790M/V948R) in complex with Lazertinib (YH25448) 6V6K ; 2.2 ; EGFR(T790M/V948R) in complex with LN2057 6V5N ; 2.4 ; EGFR(T790M/V948R) in complex with LN2084 6V6O ; 2.1 ; EGFR(T790M/V948R) in complex with LN2380 6V5P ; 2.3 ; EGFR(T790M/V948R) in complex with LN2725 6V66 ; 1.79 ; EGFR(T790M/V948R) in complex with LN2899 6WXN ; 1.76 ; EGFR(T790M/V948R) in complex with LN3844 8EME ; 3.32 ; EGFR(T790M/V948R) in complex with ZNL-0056 8GB4 ; 2.59 ; EGFR(T790M/V948R) kinase in complex with benzimidazole allosteric inhibitor 8F1W ; 3.2 ; EGFR(T790M/V948R) kinase in complex with poziotinib 4LI5 ; 2.64 ; EGFR-K IN COMPLEX WITH N-[3-[[5-chloro-4-(1H-indol-3-yl)pyrimidin-2-yl]amino]-4-methoxy-phenyl] Prop-2-enamide 6S9B ; 3.25 ; EGFR-KINASE IN COMPLEX WITH COMPOUND 1 6S9C ; 2.73 ; EGFR-KINASE IN COMPLEX WITH COMPOUND 5 6S9D ; 2.67 ; EGFR-KINASE IN COMPLEX WITH COMPOUND 6 5J9Z ; 2.5 ; EGFR-T790M in complex with pyrazolopyrimidine inhibitor 1a 5J9Y ; 2.8 ; EGFR-T790M in complex with pyrazolopyrimidine inhibitor 1b 4X9J ; 1.412 ; EGR-1 with Doubly Methylated DNA 4R2D ; 2.088 ; Egr1/Zif268 zinc fingers in complex with formylated DNA 4R2C ; 1.89 ; Egr1/Zif268 zinc fingers in complex with hydroxymethylated DNA 4R2A ; 1.591 ; Egr1/Zif268 zinc fingers in complex with methylated DNA 6QKJ ; 2.2 ; EgtB from Chloracidobacterium thermophilum, a type II sulfoxide synthase in complex with N,N,N-trimethyl-histidine 1DUC ; 2.05 ; EIAV DUTPASE DUDP/STRONTIUM COMPLEX 1DUN ; 1.9 ; EIAV DUTPASE NATIVE 2FMB ; 1.8 ; EIAV PROTEASE COMPLEXED WITH AN INHIBITOR LP-130 1FMB ; 1.8 ; EIAV PROTEASE COMPLEXED WITH THE INHIBITOR HBY-793 6K71 ; 4.3 ; eIF2 - eIF2B complex 6K72 ; 4.6 ; eIF2(aP) - eIF2B complex 6JLY ; 3.5 ; eIF2a - eIF2B complex 7D46 ; 4.0 ; eIF2B apo 7D45 ; 3.8 ; eIF2B-eIF2(aP), aP1 complex 7D44 ; 4.0 ; eIF2B-eIF2(aP), aP2 complex 7D43 ; 4.3 ; eIF2B-eIF2(aP), aPg complex 7F64 ; 2.42 ; eIF2B-SFSV NSs 7VLK ; 2.27 ; eIF2B-SFSV NSs C2-imposed 7F66 ; 2.76 ; eIF2B-SFSV NSs-1-eIF2 7F67 ; 3.59 ; eIF2B-SFSV NSs-2-eIF2 6I7T ; 4.61 ; eIF2B:eIF2 complex 6I3M ; 3.93 ; eIF2B:eIF2 complex, phosphorylated on eIF2 alpha serine 52. 1S0U ; 2.4 ; eIF2gamma apo 5K1H ; 4.9 ; eIF3b relocated to the intersubunit face to interact with eIF1 and below the eIF2 ternary-complex. from the structure of a partial yeast 48S preinitiation complex in closed conformation. 5BXV ; 2.1 ; eIF4E complex 7D6Y ; 1.668 ; eIF4E in Complex with a Disulphide-Free Autonomous VH Domain 7XTP ; 1.828 ; eIF4E in Complex with a Disulphide-Free Autonomous VH Domain 1EJH ; 2.2 ; EIF4E/EIF4G PEPTIDE/7-METHYL-GDP 7OW7 ; 2.4 ; EIF6-bound large subunit of the human ribosome 2LBO ; ; Eimeria tenella microneme protein 3 MAR_B domain 8IN3 ; 1.15 ; Eisenia hydrolysis-enhancing protein from Aplysia kurodai 8IN4 ; 1.4 ; Eisenia hydrolysis-enhancing protein from Aplysia kurodai 8IN6 ; 1.9 ; Eisenia hydrolysis-enhancing protein from Aplysia kurodai complex with tannic acid 3JBS ; 2.9 ; eL6 protein from yeast 60S ribosomal subunit 1O2G ; 1.58 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2H ; 1.77 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2I ; 1.5 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2J ; 1.65 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2K ; 1.63 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2L ; 1.68 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2M ; 1.69 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2N ; 1.5 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2O ; 1.63 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2P ; 1.47 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2Q ; 1.5 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2R ; 1.45 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2S ; 1.65 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2T ; 1.62 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2U ; 1.41 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2V ; 1.5 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2W ; 1.38 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2X ; 1.46 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2Y ; 1.45 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O2Z ; 1.65 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O30 ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O31 ; 1.66 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O32 ; 1.78 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O33 ; 1.46 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O34 ; 1.5 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O35 ; 1.41 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O36 ; 1.7 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O37 ; 1.45 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O38 ; 1.38 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O39 ; 1.59 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3A ; 2.0 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3B ; 1.75 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3C ; 1.64 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3D ; 1.33 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3E ; 1.64 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3F ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3G ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3H ; 1.53 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3I ; 1.51 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3J ; 1.4 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3K ; 1.43 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3L ; 1.4 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3M ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3N ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3O ; 1.55 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 1O3P ; 1.81 ; Elaborate Manifold of Short Hydrogen Bond Arrays Mediating Binding of Active Site-Directed Serine Protease Inhibitors 6Q8S ; 1.8 ; Elastase (PPE) under 2 kbar of argon 2BLQ ; 1.33 ; Elastase After A High Dose X-Ray ""Burn"" 2BLO ; 1.33 ; Elastase before a high dose x-ray ""burn"" 1U4G ; 1.4 ; Elastase of Pseudomonas aeruginosa with an inhibitor 7KOE ; 2.9 ; Electron bifurcating flavoprotein Fix/EtfABCX 7Q4V ; 4.7 ; Electron bifurcating hydrogenase - HydABC from A. woodii 5VU2 ; 6.8 ; Electron cryo-microscopy of ""immature"" Chikungunya VLP 3JBM ; 3.9 ; Electron cryo-microscopy of a virus-like particle of orange-spotted grouper nervous necrosis virus 5AEF ; 5.0 ; Electron cryo-microscopy of an Abeta(1-42)amyloid fibril 3J9B ; 4.3 ; Electron cryo-microscopy of an RNA polymerase 4UQ8 ; 4.95 ; Electron cryo-microscopy of bovine Complex I 6NK7 ; 4.99 ; Electron Cryo-Microscopy of Chikungunya in Complex with Mouse Mxra8 Receptor 3J2W ; 5.0 ; Electron cryo-microscopy of Chikungunya virus 5ANY ; 16.9 ; Electron cryo-microscopy of chikungunya virus in complex with neutralizing antibody Fab CHK265 6NK5 ; 4.16 ; Electron Cryo-Microscopy Of Chikungunya VLP 6NK6 ; 4.06 ; Electron Cryo-Microscopy Of Chikungunya VLP in complex with mouse Mxra8 receptor 3J2Y ; 14.9 ; Electron Cryo-microscopy of Chikungunya VLP in complex with neutralizing antibody Fab 9.8B 3J30 ; 16.0 ; Electron Cryo-microscopy of Chikungunya VLP in complex with neutralizing antibody Fab CHK152 3J2Z ; 16.9 ; Electron Cryo-microscopy of Chikungunya VLP in complex with neutralizing antibody Fab m10 3J2X ; 15.6 ; Electron Cryo-microscopy of Chikungunya VLP in complex with neutralizing antibody Fab m242 5A33 ; 3.04 ; Electron cryo-microscopy of Cowpea Mosaic Virus (CPMV) empty virus like particle (eVLP) 5A32 ; 3.44 ; Electron cryo-microscopy of Cowpea Mosaic Virus containing RNA-1 (CPMVb) 3J82 ; 7.7 ; Electron cryo-microscopy of DNGR-1 in complex with F-actin 4CI0 ; 3.36 ; Electron cryo-microscopy of F420-reducing NiFe hydrogenase Frh 5FN1 ; 3.9 ; Electron cryo-microscopy of filamentous flexible virus PepMV (Pepino Mosaic Virus) 3J7E ; 13.6 ; Electron cryo-microscopy of human papillomavirus 16 and H16.V5 Fab fragments 3J7G ; 13.6 ; Electron cryo-microscopy of human papillomavirus 16 and H16.V5 Fab fragments 3J6R ; 9.1 ; Electron cryo-microscopy of Human Papillomavirus Type 16 capsid 4UPB ; 11.0 ; Electron cryo-microscopy of the complex formed between the hexameric ATPase RavA and the decameric inducible decarboxylase LdcI 6O85 ; 3.03 ; Electron cryo-microscopy of the eukaryotic translation initiation factor 2B bound to eukaryotic translation initiation factor 2 from Homo sapiens 6O9Z ; 3.03 ; Electron cryo-microscopy of the eukaryotic translation initiation factor 2B bound to eukaryotic translation initiation factor 2 from Homo sapiens 6O81 ; 3.21 ; Electron cryo-microscopy of the eukaryotic translation initiation factor 2B bound to translation initiation factor 2 from Homo sapiens 6CAJ ; 2.8 ; Electron cryo-microscopy of the eukaryotic translation initiation factor 2B from Homo sapiens 7L7G ; 3.0 ; Electron cryo-microscopy of the eukaryotic translation initiation factor 2B from Homo sapiens (updated model of PDB ID: 6CAJ) 3JC1 ; 4.0 ; Electron cryo-microscopy of the IST1-CHMP1B ESCRT-III copolymer 4UOM ; 17.0 ; Electron Cryo-microscopy of Venezuelan Equine Encephalitis Virus TC- 83 in complex with neutralizing antibody Fab F5 4UOK ; 18.0 ; Electron Cryo-microscopy of Venezuelan Equine Encephalitis Virus TC-83 in complex with neutralizing antibody Fab 3B4C-4 3J8G ; 5.0 ; Electron cryo-microscopy structure of EngA bound with the 50S ribosomal subunit 5XWY ; 3.2 ; Electron cryo-microscopy structure of LbuCas13a-crRNA binary complex 4UF8 ; 10.9 ; Electron cryo-microscopy structure of PB1-p62 filaments 4UF9 ; 10.3 ; Electron cryo-microscopy structure of PB1-p62 type T filaments 6G1K ; 3.6 ; Electron cryo-microscopy structure of the canonical TRPC4 ion channel 6U5V ; 2.8 ; Electron cryomicroscopy Structure of C. albicans FAS in the Apo state 6U5W ; 3.3 ; Electron cryomicroscopy structure of C. albicans FAS in the KS-stalled state 6U5T ; 2.9 ; Electron cryomicroscopy Structure of S. cerevisiae FAS in the Apo state 6U5U ; 2.8 ; Electron cryomicroscopy Structure of S. cerevisiae FAS in the KS-stalled state 7DI8 ; 3.2 ; Electron crystallographic structure of Catalase using a direct electron detector at 300 kV 3DWW ; 3.5 ; Electron crystallographic structure of human microsomal prostaglandin E synthase 1 2B6O ; 1.9 ; Electron crystallographic structure of lens Aquaporin-0 (AQP0) (lens MIP) at 1.9A resolution, in a closed pore state 3M9I ; 2.5 ; Electron crystallographic structure of lens Aquaporin-0 (AQP0) (lens MIP) in E. coli polar lipids 7VI4 ; 0.95 ; Electron crystallographic structure of TIA-1 prion-like domain, A381T mutant 7VI5 ; 1.761 ; Electron crystallographic structure of TIA-1 prion-like domain, wild type sequence 3ZEE ; 6.1 ; Electron cyro-microscopy helical reconstruction of Par-3 N terminal domain 2SGA ; 1.5 ; ELECTRON DENSITY CALCULATIONS AS AN EXTENSION OF PROTEIN STRUCTURE REFINEMENT. STREPTOMYCES GRISEUS PROTEASE AT 1.5 ANGSTROMS RESOLUTION 4UQ6 ; 12.8 ; Electron density map of GluA2em in complex with LY451646 and glutamate 4UQK ; 16.4 ; Electron density map of GluA2em in complex with quisqualate and LY451646 4UQQ ; 7.6 ; Electron density map of GluK2 desensitized state in complex with 2S,4R-4-methylglutamate 3J4P ; 4.8 ; Electron Microscopy Analysis of a Disaccharide Analog complex Reveals Receptor Interactions of Adeno-Associated Virus 3CRE ; 17.0 ; Electron Microscopy model of the Saf Pilus- Type A 3CRF ; 17.0 ; Electron Microscopy model of the Saf Pilus- Type B 1U74 ; 2.4 ; Electron Transfer Complex between cytochrome C and cytochrome C peroxidase 1U75 ; 2.55 ; Electron Transfer Complex between Horse Heart Cytochrome c and Zinc-Porphyrin Substituted Cytochrome c Peroxidase 5IY5 ; 2.0 ; Electron transfer complex of cytochrome c and cytochrome c oxidase at 2.0 angstrom resolution 3O1Y ; 1.75 ; Electron transfer complexes: Experimental mapping of the redox-dependent cytochrome c electrostatic surface 3O20 ; 1.9 ; Electron transfer complexes:experimental mapping of the Redox-dependent Cytochrome C electrostatic surface 1EFP ; 2.6 ; ELECTRON TRANSFER FLAVOPROTEIN (ETF) FROM PARACOCCUS DENITRIFICANS 4KPU ; 1.6 ; Electron transferring flavoprotein of Acidaminococcus fermentans: Towards a mechanism of flavin-based electron bifurcation 4L1F ; 1.79 ; Electron transferring flavoprotein of Acidaminococcus fermentans: Towards a mechanism of flavin-based electron bifurcation 4L2I ; 1.45 ; Electron transferring flavoprotein of Acidaminococcus fermentans: Towards a mechanism of flavin-based electron bifurcation 3YPI ; 2.8 ; ELECTROPHILIC CATALYSIS IN TRIOSEPHOSPHASE ISOMERASE: THE ROLE OF HISTIDINE-95 8AO6 ; 1.811 ; electrophilic inhibitor (7) of ERK2 5VIE ; 2.6 ; Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase 5VIF ; 2.25 ; Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase 1C2B ; 4.5 ; ELECTROPHORUS ELECTRICUS ACETYLCHOLINESTERASE 1C2O ; 4.2 ; ELECTROPHORUS ELECTRICUS ACETYLCHOLINESTERASE 4P68 ; 2.26 ; Electrostatics of Active Site Microenvironments for E. coli DHFR 4P66 ; 1.84 ; Electrostatics of Active Site Microenvironments of E. coli DHFR 7DDU ; 1.9 ; Elephant seal myoglobin esMb 8D65 ; 3.47 ; ELIC apo in 2:1:1 POPC:POPE:POPG nanodisc 8D63 ; 3.14 ; ELIC apo in POPC nanodisc 4Z90 ; 3.0 ; ELIC bound with the anesthetic isoflurane in the resting state 4Z91 ; 3.3915 ; ELIC cocrystallized with isofluorane in a desensitized state 8D66 ; 3.14 ; ELIC with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc 8D64 ; 3.14 ; ELIC with cysteamine in POPC nanodisc 8F33 ; 3.28 ; ELIC with Propylamine in saposin nanodiscs with 2:1:1 POPC:POPE:POPG 8F32 ; 3.71 ; ELIC with Propylamine in SMA nanodiscs with 2:1:1 POPC:POPE:POPG 8F34 ; 3.12 ; ELIC with Propylamine in spMSP1D1 nanodiscs with 2:1:1 POPC:POPE:POPG 8TWZ ; 3.17 ; ELIC with Propylamine in spNW15 nanodiscs with 2:1:1 POPC:POPE:POPG 4YEU ; 4.6 ; ELIC-GLIC chimera in the resting conformation 6V03 ; 3.3 ; ELIC-propylammonium complex in POPC-only nanodiscs 8D67 ; 3.3 ; ELIC3 with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc 8VUW ; 3.19 ; ELIC5 with cysteamine in 2:1:1 POPC:POPE:POPG nanodisc in open conformation 8TWV ; 3.4 ; ELIC5 with Propylamine in spNW15 nanodiscs with 2:1:1 POPC:POPE:POPG 1ZW7 ; ; Elimination of the C-cap in Ubiquitin Structure, Dynamics and Thermodynamic Consequences 1XYW ; ; elk prion protein 1DUX ; 2.1 ; ELK-1/DNA STRUCTURE REVEALS HOW RESIDUES DISTAL FROM DNA-BINDING SURFACE AFFECT DNA-RECOGNITION 7R21 ; 3.1 ; elongated Cascade complex from type I-A CRISPR-Cas system 7R2K ; 3.3 ; elongated Cascade complex from type I-A CRISPR-Cas system 6FON ; 3.05 ; Elongated conformer of the human copper chaperone for SOD1 complexed with human SOD1 6DS9 ; 1.34 ; Elongated version of a de novo designed three helix bundle structure (GRa3D) 7N1P ; 2.33 ; Elongating 70S ribosome complex in a classical pre-translocation (PRE-C) conformation 7N2C ; 2.72 ; Elongating 70S ribosome complex in a fusidic acid-stalled intermediate state of translocation bound to EF-G(GDP) (INT2) 7N2U ; 2.53 ; Elongating 70S ribosome complex in a hybrid-H1 pre-translocation (PRE-H1) conformation 7N30 ; 2.66 ; Elongating 70S ribosome complex in a hybrid-H2* pre-translocation (PRE-H2*) conformation 7N31 ; 2.69 ; Elongating 70S ribosome complex in a post-translocation (POST) conformation 7N2V ; 2.54 ; Elongating 70S ribosome complex in a spectinomycin-stalled intermediate state of translocation bound to EF-G in an active, GTP conformation (INT1) 8BGH ; 2.88 ; Elongating E. coli 70S ribosome containing acylated tRNA(iMet) in the P-site and AAA mRNA codon in the A-site after uncompleted di-peptide formation 8BGE ; 2.11 ; Elongating E. coli 70S ribosome containing acylated tRNA(iMet) in the P-site and AAm6A mRNA codon in the A-site after uncompleted di-peptide formation 8BHL ; 2.21 ; Elongating E. coli 70S ribosome containing acylated tRNA(iMet) in the P-site and Am6AA mRNA codon in the A-site after uncompleted di-peptide formation 8BHP ; 2.37 ; Elongating E. coli 70S ribosome containing acylated tRNA(iMet) in the P-site and m6AAA mRNA codon in the A-site after uncompleted di-peptide formation 8BF7 ; 2.33 ; Elongating E. coli 70S ribosome containing deacylated tRNA(iMet) in the P-site and AAA mRNA codon with cognate dipeptidyl-tRNA(Lys) in the A-site 8BH4 ; 2.62 ; Elongating E. coli 70S ribosome containing deacylated tRNA(iMet) in the P-site and AAm6A mRNA codon with cognate dipeptidyl-tRNA(Lys) in the A-site 8BHJ ; 2.81 ; Elongating E. coli 70S ribosome containing deacylated tRNA(iMet) in the P-site and Am6AA mRNA codon with cognate dipeptidyl-tRNA(Lys) in the A-site 8BHN ; 2.85 ; Elongating E. coli 70S ribosome containing deacylated tRNA(iMet) in the P-site and m6AAA mRNA codon with cognate dipeptidyl-tRNA(Lys) in the A-site 4BY7 ; 3.15 ; elongating RNA Polymerase II-Bye1 TLD complex 4BY1 ; 3.6 ; elongating RNA Polymerase II-Bye1 TLD complex soaked with AMPCPP 2R93 ; 4.0 ; Elongation complex of RNA polymerase II with a hepatitis delta virus-derived RNA stem loop 2R92 ; 3.8 ; Elongation complex of RNA polymerase II with artificial RdRP scaffold 4V6F ; 3.1 ; Elongation complex of the 70S ribosome with three tRNAs and mRNA. 2IW3 ; 2.4 ; Elongation Factor 3 in complex with ADP 1EFU ; 2.5 ; ELONGATION FACTOR COMPLEX EF-TU/EF-TS FROM ESCHERICHIA COLI 4FN5 ; 2.9 ; ELONGATION FACTOR G 1 (PSEUDOMONAS AERUGINOSA) IN COMPLEX WITH Argyrin B 1DAR ; 2.4 ; ELONGATION FACTOR G IN COMPLEX WITH GDP 1ELO ; 2.8 ; ELONGATION FACTOR G WITHOUT NUCLEOTIDE 5OT7 ; 3.8 ; Elongation factor G-ribosome complex captures in the absence of inhibitors. 6S8Z ; 2.2 ; Elongation Factor P from Corynebacterium glutamicum 1ENW ; ; ELONGATION FACTOR TFIIS DOMAIN II 1HA3 ; 2.0 ; ELONGATION FACTOR TU IN COMPLEX WITH aurodox 4PC7 ; 3.6003 ; Elongation factor Tu:Ts complex in a near GTP conformation. 4PC2 ; 2.1999 ; Elongation factor Tu:Ts complex with a bound GDP 4PC1 ; 1.95 ; Elongation Factor Tu:Ts complex with a bound phosphate 4PC6 ; 2.2 ; Elongation factor Tu:Ts complex with bound GDPNP 4PC3 ; 1.8313 ; Elongation factor Tu:Ts complex with partially bound GDP 6QK7 ; 3.3 ; Elongator catalytic subcomplex Elp123 lobe 1FA4 ; ; ELUCIDATION OF THE PARAMAGNETIC RELAXATION OF HETERONUCLEI AND PROTONS IN CU(II) PLASTOCYANIN FROM ANABAENA VARIABILIS 1KAL ; ; ELUCIDATION OF THE PRIMARY AND THREE-DIMENSIONAL STRUCTURE OF THE UTEROTONIC POLYPEPTIDE KALATA B1 1CHV ; ; ELUCIDATION OF THE SOLUTION STRUCTURE OF CARDIOTOXIN ANALOGUE V FROM THE TAIWAN COBRA (NAJA NAJA ATRA) VENOM 4PXI ; 3.2 ; Elucidation of the Structural and Functional Mechanism of Action of the TetR Family Protein, CprB from S. coelicolor A3(2) 4KE4 ; 2.012 ; Elucidation of the structure and reaction mechanism of Sorghum bicolor hydroxycinnamoyltransferase and its structural relationship to other CoA-dependent transferases and synthases 2Y2W ; 2.5 ; Elucidation of the substrate specificity and protein structure of AbfB, a family 51 alpha-L-arabinofuranosidase from Bifidobacterium longum. 4QEC ; 1.9 ; ElxO with NADP Bound 4QED ; 1.85 ; ElxO Y152F with NADPH Bound 5MG3 ; 14.0 ; EM fitted model of bacterial holo-translocon 6QD7 ; 3.1 ; EM structure of a EBOV-GP bound to 3T0331 neutralizing antibody 6QD8 ; 3.3 ; EM structure of a EBOV-GP bound to 4M0368 neutralizing antibody 6MYX ; 6.0 ; EM structure of Bacillus subtilis ribonucleotide reductase inhibited double-helical filament of NrdE alpha subunit with dATP 6MW3 ; 4.65 ; EM structure of Bacillus subtilis ribonucleotide reductase inhibited filament composed of NrdE alpha subunit and NrdF beta subunit with dATP 6WKW ; 3.6 ; EM structure of CtBP2 with a minimal dehydrogenase domain of CtBP2 7YQC ; 2.82 ; EM structure of human PA28gamma 7YQD ; 3.4 ; EM structure of human PA28gamma (wild-type) 6U2J ; 2.37 ; EM structure of MPEG-1 (L425K, alpha conformation) soluble pre-pore complex 6U2K ; 2.93 ; EM structure of MPEG-1 (L425K, alpha conformation) soluble pre-pore complex 6U2L ; 2.83 ; EM structure of MPEG-1 (L425K, beta conformation) soluble pre-pore complex 6U2W ; 3.63 ; EM structure of MPEG-1(L425K) pre-pore complex bound to liposome 6U23 ; 3.49 ; EM structure of MPEG-1(w.t.) soluble pre-pore 5AKA ; 5.7 ; EM structure of ribosome-SRP-FtsY complex in closed state 7NDC ; 4.1 ; EM structure of SARS-CoV-2 Spike glycoprotein (all RBD down) in complex with COVOX-159 7NDA ; 3.3 ; EM structure of SARS-CoV-2 Spike glycoprotein (all RBD down) in complex with COVOX-253H55L Fab 7NDD ; 4.2 ; EM structure of SARS-CoV-2 Spike glycoprotein (one RBD up) in complex with COVOX-159 7ND9 ; 2.8 ; EM structure of SARS-CoV-2 Spike glycoprotein (one RBD up) in complex with COVOX-253H55L Fab 7ND5 ; 3.4 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-150 Fab 7NDB ; 4.6 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-253H165L Fab 7ND7 ; 3.6 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-316 Fab 7ND8 ; 3.5 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-384 Fab 7ND3 ; 3.7 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-40 Fab 7ND6 ; 7.3 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-40 Fab 7ND4 ; 3.6 ; EM structure of SARS-CoV-2 Spike glycoprotein in complex with COVOX-88 Fab 6N4C ; 17.0 ; EM structure of the DNA wrapping in bacterial open transcription initiation complex 3J04 ; 20.0 ; EM structure of the heavy meromyosin subfragment of Chick smooth muscle Myosin with regulatory light chain in phosphorylated state 5H0S ; 3.3 ; EM Structure of VP1A and VP1B 7YR5 ; 3.63 ; Embigin facilitates monocarboxylate transporter 1 localization to plasma membrane and transition to a decoupling state 2BRS ; 2.2 ; EMBP Heparin complex 2JOX ; ; Embryonic Neural Inducing Factor Churchill is not a DNA-Binding Zinc Finger Protein: Solution Structure Reveals a Solvent-Exposed beta-Sheet and Zinc Binuclear Cluster 7PBE ; 3.0 ; Emergence of immune escape at dominant SARS-CoV-2 killer T-cell epitope 4BF7 ; 2.001 ; Emericilla nidulans endo-beta-1,4-galactanase 6ZYG ; ; Emfourin (M4in) from Serratia proteamaculans, M4 family peptidase inhibitor 5FAI ; 1.8 ; EMG1 N1-Specific Pseudouridine Methyltransferase 8RBS ; 18.0 ; Emiliania huxleyi virus 201 (EhV-201) asymmetrical unit of capsid proteins predicted by AlphaFold2 fitted into the cryo-EM density of EhV-201 virion composite map. 8RBT ; 12.0 ; Emiliania huxleyi virus 201 (EhV-201) capsid proteins predicted by AlphaFold2 fitted into a cryo-EM density map of the EhV-201 virion capsid. 7PXH ; 2.59 ; Emodepside-bound Drosophila Slo channel 1KVF ; ; EMP-18 Erythropoietin Receptor Agonist Peptide 8CAZ ; 2.11 ; empty 30S head 6V12 ; 3.08 ; Empty AAV8 particles 6V1T ; 3.39 ; Empty AAVrh.39 particle 8G5V ; 3.0 ; Empty capsid of Hepatitis B virus 7QWX ; 2.9 ; Empty capsid of Saccharomyces cerevisiae virus L-BCLa 3J2J ; 9.54 ; Empty coxsackievirus A9 capsid 8GHS ; 4.0 ; Empty HBV Cp183 capsid with importin-beta, subparticle reconstruction at 2-fold location 3KJE ; 2.3 ; Empty state of CooC1 3B62 ; 4.4 ; EmrE multidrug transporter in complex with P4P, P21 crystal form 3B5D ; 3.8 ; EmrE multidrug transporter in complex with TPP, C2 crystal form 3B61 ; 4.5 ; EmrE multidrug transporter, apo crystal form 7JK8 ; ; EmrE S64V mutant bound to tetra(4-fluorophenyl)phosphonium at pH 5.8 7SFQ ; ; EmrE S64V Mutant Bound to tetra(4-fluorophenyl)phosphonium at pH 8.0 7LXE ; 1.88 ; ENAH EVH1 domain bound to peptide from ABI1 7LXF ; 1.65 ; ENAH EVH1 domain bound to peptide from protein PCARE 5NC7 ; 2.7 ; ENAH EVH1 in complex with Ac-WPPPPTEDEL-NH2 5N9P ; 1.8 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PP-[ProM-1]-NH2 5N9C ; 1.16 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PP-[ProM-1]-OH 5ND0 ; 1.45 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PP-[ProM-1]-TEDEL-NH2 5NBX ; 1.65 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PP-[ProM-9]-OH 5N91 ; 1.49 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PPPP-OH 6XVT ; 1.4 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PPPPTEDDL-NH2 6XXR ; 1.48 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PPPPTEDEA-NH2 5NC2 ; 1.58 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-PPPPTEDEL-NH2 5NAJ ; 1.46 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-1]-[ProM-1]-OH 5NCP ; 1.65 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-12]-OH 5NDU ; 1.42 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-12]-OMe 5NEG ; 1.29 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-13]-OEt 6RCF ; 1.1 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-15]-OH 6RCJ ; 1.35 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-15]-OMe 7A5M ; 0.78 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-17]-OMe 7AKI ; 1.36 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-1]-NH2 6RD2 ; 1.0 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-1]-TEDEL-NH2 5NBF ; 1.15 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-3]-OH 5NCF ; 1.4 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-4]-OH 5NCG ; 1.02 ; ENAH EVH1 in complex with Ac-[2-Cl-F]-[ProM-2]-[ProM-9]-OH 4MY6 ; 1.7 ; EnaH-EVH1 in complex with peptidomimetic low-molecular weight inhibitor Ac-[2-Cl-F]-[ProM-2]-[ProM-1]-OH 2C1O ; 2.75 ; ENAIIHis Fab fragment in the free form 1EXA ; 1.59 ; ENANTIOMER DISCRIMINATION ILLUSTRATED BY CRYSTAL STRUCTURES OF THE HUMAN RETINOIC ACID RECEPTOR HRARGAMMA LIGAND BINDING DOMAIN: THE COMPLEX WITH THE ACTIVE R-ENANTIOMER BMS270394. 1EXX ; 1.67 ; ENANTIOMER DISCRIMINATION ILLUSTRATED BY CRYSTAL STRUCTURES OF THE HUMAN RETINOIC ACID RECEPTOR HRARGAMMA LIGAND BINDING DOMAIN: THE COMPLEX WITH THE INACTIVE S-ENANTIOMER BMS270395. 5UR9 ; 2.198 ; Enantiomer-Specific Binding of the Potent Antinociceptive Agent SBFI-26 to Anandamide transporters FABP5 5URA ; 1.85002 ; Enantiomer-Specific Binding of the Potent Antinociceptive Agent SBFI-26 to Anandamide transporters FABP7 3QLB ; 3.26 ; Enantiopyochelin outer membrane TonB-dependent transporter from Pseudomonas fluorescens bound to the ferri-enantiopyochelin 6NJ8 ; 3.85 ; Encapsulin iron storage compartment from Quasibacillus thermotolerans 1Z3C ; 2.2 ; Encephalitozooan cuniculi mRNA Cap (Guanine-N7) Methyltransferasein complexed with AzoAdoMet 2HV9 ; 2.6 ; Encephalitozoon cuniculi mRNA Cap (Guanine-N7) Methyltransferase in complex with sinefungin 7O9W ; 3.5 ; Encequidar-bound human P-glycoprotein in complex with UIC2-Fab 7V06 ; ; Encoded Conformational Dynamics of the HIV Splice Site A3 Regulatory Locus: Implications for differential binding of hnRNP Splicing Auxiliary Factors 4COD ; 2.4 ; Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA 2CL2 ; 1.35 ; Endo-1,3(4)-beta-glucanase from Phanerochaete chrysosporium, solved using native sulfur SAD, exhibiting intact heptasaccharide glycosylation 3ATG ; 1.66 ; endo-1,3-beta-glucanase from Cellulosimicrobium cellulans 8YA6 ; 1.92 ; endo-1,3-fucanase Fun168A 8YA7 ; 1.99 ; endo-1,3-fucanase Fun168A,complex with fucotetraose 1NLR ; 1.75 ; ENDO-1,4-BETA-GLUCANASE CELB2, CELLULASE, NATIVE STRUCTURE 1BK1 ; 2.0 ; ENDO-1,4-BETA-XYLANASE C 1XYF ; 1.9 ; ENDO-1,4-BETA-XYLANASE FROM STREPTOMYCES OLIVACEOVIRIDIS 1REF ; 1.8 ; ENDO-1,4-BETA-XYLANASE II COMPLEX WITH 2,3-EPOXYPROPYL-BETA-D-XYLOSIDE 1REE ; 1.6 ; ENDO-1,4-BETA-XYLANASE II COMPLEX WITH 3,4-EPOXYBUTYL-BETA-D-XYLOSIDE 1RED ; 1.6 ; ENDO-1,4-BETA-XYLANASE II COMPLEX WITH 4,5-EPOXYPENTYL-BETA-D-XYLOSIDE 1YNA ; 1.55 ; ENDO-1,4-BETA-XYLANASE, ROOM TEMPERATURE, PH 4.0 8IC1 ; 1.8 ; endo-alpha-D-arabinanase EndoMA1 D51N mutant from Microbacterium arabinogalactanolyticum in complex with arabinooligosaccharides 8HHV ; 1.6 ; endo-alpha-D-arabinanase EndoMA1 from Microbacterium arabinogalactanolyticum 3ECQ ; 2.9 ; Endo-alpha-N-acetylgalactosaminidase from Streptococcus pneumoniae: SeMet structure 5GZH ; 1.8 ; Endo-beta-1,2-glucanase from Chitinophaga pinensis - ligand free form 5GZK ; 1.7 ; Endo-beta-1,2-glucanase from Chitinophaga pinensis - sophorotriose and glucose complex 1C8Y ; 2.0 ; Endo-Beta-N-Acetylglucosaminidase H, D130A Mutant 1C8X ; 2.0 ; Endo-Beta-N-Acetylglucosaminidase H, D130E Mutant 1C3F ; 2.1 ; Endo-Beta-N-Acetylglucosaminidase H, D130N Mutant 1C93 ; 2.1 ; Endo-Beta-N-Acetylglucosaminidase H, D130N/E132Q Double Mutant 1C92 ; 2.1 ; Endo-Beta-N-Acetylglucosaminidase H, E132A Mutant 1C91 ; 2.1 ; Endo-Beta-N-Acetylglucosaminidase H, E132D 1C90 ; 2.1 ; Endo-Beta-N-Acetylglucosaminidase H, E132Q Mutant 8AN0 ; 2.41 ; Endo-D-arabinofuranase AraH2 from Mycobacterium tuberculosis 6DLH ; 2.2 ; Endo-fucoidan hydrolase MfFcnA4 from glycoside hydrolase family 107 6DMS ; 2.85 ; Endo-fucoidan hydrolase MfFcnA4_H294Q from glycoside hydrolase family 107 6DNS ; 2.24 ; Endo-fucoidan hydrolase MfFcnA9 from glycoside hydrolase family 107 6M8N ; 1.55 ; Endo-fucoidan hydrolase P5AFcnA from glycoside hydrolase family 107 4XZW ; 1.5 ; Endo-glucanase chimera C10 4XZB ; 1.62 ; endo-glucanase GsCelA P1 2OSW ; 1.6 ; Endo-glycoceramidase II from Rhodococcus sp. 2OYL ; 1.8 ; Endo-glycoceramidase II from Rhodococcus sp.: cellobiose-like imidazole complex 2OYK ; 1.5 ; Endo-glycoceramidase II from Rhodococcus sp.: cellobiose-like isofagomine complex 2OYM ; 1.86 ; Endo-glycoceramidase II from Rhodococcus sp.: five-membered iminocyclitol complex 2OSX ; 1.1 ; Endo-glycoceramidase II from Rhodococcus sp.: Ganglioside GM3 Complex 2OSY ; 2.1 ; Endo-glycoceramidase II from Rhodococcus sp.: Lactosyl-Enzyme Intermediate 6R3U ; 1.9 ; Endo-levanase BT1760 mutant E221A from Bacteroides thetaiotaomicron complexed with levantetraose 7B7A ; 1.3 ; ENDO-POLYGALACTURONASE FROM ARABIDOPSIS THALIANA 1CZF ; 1.68 ; ENDO-POLYGALACTURONASE II FROM ASPERGILLUS NIGER 1TF4 ; 1.9 ; ENDO/EXOCELLULASE FROM THERMOMONOSPORA 1JS4 ; 2.0 ; ENDO/EXOCELLULASE:CELLOBIOSE FROM THERMOMONOSPORA 4TF4 ; 2.0 ; ENDO/EXOCELLULASE:CELLOPENTAOSE FROM THERMOMONOSPORA 3TF4 ; 2.2 ; ENDO/EXOCELLULASE:CELLOTRIOSE FROM THERMOMONOSPORA 5AO5 ; 2.48 ; Endo180 D1-4, monoclinic form 5AO6 ; 3.36 ; Endo180 D1-4, trigonal form 1VRX ; 2.4 ; Endocellulase e1 from acidothermus cellulolyticus mutant y245g 6R70 ; 3.5 ; Endogeneous native human 20S proteasome 7UOM ; 3.8 ; Endogenous dihydrolipoamide acetyltransferase (E2) core of pyruvate dehydrogenase complex from bovine kidney 7UOL ; 3.5 ; Endogenous dihydrolipoamide succinyltransferase (E2) core of 2-oxoglutarate dehydrogenase complex from bovine kidney 8UC0 ; 2.42 ; Endogenous ligand bound FLVCR1 6SA9 ; 1.8 ; Endogenous Retrovirus HML2 Capsid NTD 8IRM ; 2.6 ; Endogenous substrate adenine bound state of Arabidopsis AZG1 at pH 5.5 3UTZ ; 2.18 ; Endogenous-like inhibitory antibodies targeting activated metalloproteinase motifs show therapeutic potential 6KDD ; 1.92 ; endoglucanase 1CEM ; 1.65 ; ENDOGLUCANASE A (CELA) CATALYTIC CORE, RESIDUES 33-395 1IS9 ; 1.03 ; Endoglucanase A from Clostridium thermocellum at atomic resolution 1H0B ; 1.8 ; Endoglucanase cel12A from Rhodothermus marinus 1W3K ; 1.2 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN COMPLEX WITH CELLOBIO DERIVED-TETRAHYDROOXAZINE 1W3L ; 1.04 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN COMPLEX WITH CELLOTRI DERIVED-TETRAHYDROOXAZINE 1HF6 ; 1.15 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN THE ORTHORHOMBIC CRYSTAL FORM IN COMPLEX WITH CELLOTRIOSE 1QI2 ; 1.75 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN THE TETRAGONAL CRYSTAL FORM IN COMPLEX WITH 2',4'-DINITROPHENYL 2-DEOXY-2-FLUORO-B-D-CELLOTRIOSIDE 1QI0 ; 2.1 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN THE TETRAGONAL CRYSTAL FORM IN COMPLEX WITH CELLOBIOSE 1E5J ; 1.85 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS IN THE TETRAGONAL CRYSTAL FORM IN COMPLEX WITH METHYL-4II-S-ALPHA-CELLOBIOSYL-4II-THIO-BETA-CELLOBIOSIDE 1A3H ; 1.57 ; ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHERANS AT 1.6A RESOLUTION 1H2J ; 1.15 ; ENDOGLUCANASE CEL5A IN COMPLEX WITH UNHYDROLYSED AND COVALENTLY LINKED 2,4-DINITROPHENYL-2-DEOXY-2-FLUORO-CELLOBIOSIDE AT 1.15 A RESOLUTION 1TVP ; 1.6 ; Endoglucanase cel5G from Pseudoalteromonas haloplanktis in complex with cellobiose 1DYS ; 1.6 ; Endoglucanase CEL6B from Humicola insolens 1HD5 ; 1.66 ; Endoglucanase from Humicola insolens AT 1.7A resolution 2OVW ; 2.3 ; ENDOGLUCANASE I COMPLEXED WITH CELLOBIOSE 4OVW ; 2.3 ; ENDOGLUCANASE I COMPLEXED WITH EPOXYBUTYL CELLOBIOSE 1OVW ; 2.7 ; ENDOGLUCANASE I COMPLEXED WITH NON-HYDROLYSABLE SUBSTRATE ANALOGUE 1EG1 ; 3.6 ; ENDOGLUCANASE I FROM TRICHODERMA REESEI 3OVW ; 2.3 ; ENDOGLUCANASE I NATIVE STRUCTURE 2ENG ; 1.5 ; ENDOGLUCANASE V 8A49 ; 3.45 ; Endoglycosidase S in complex with IgG1 Fc 3HMC ; 1.44 ; Endolysin from Bacillus anthracis 7Q47 ; 1.6 ; Endolysin from bacteriophage Enc34, catalytic domain 7M5I ; 1.71 ; Endolysin from Escherichia coli O157:H7 phage FAHEc1 7RUM ; 2.99 ; Endolysin from Escherichia coli O157:H7 phage FTEbC1, LysT84 6ILU ; 1.601 ; Endolysin LysPBC5 CBD 6SRT ; 1.21 ; Endolysine N-acetylmuramoyl-L-alanine amidase LysCS from Clostridium intestinale URNW 1VYB ; 1.8 ; Endonuclease domain of human LINE1 ORF2p 1WDU ; 2.4 ; Endonuclease domain of TRAS1, a telomere-specific non-LTR retrotransposon 5FDD ; 2.506 ; Endonuclease inhibitor 1 bound to influenza strain H1N1 polymerase acidic subunit N-terminal region at pH 7.0 5I13 ; 2.151 ; Endonuclease inhibitor 2 bound to influenza strain H1N1 polymerase acidic subunit N-terminal region at pH 7.0 5FDG ; 2.1 ; Endonuclease inhibitor 3 bound to influenza strain H1N1 polymerase acidic subunit N-terminal region at pH 7.0 4ZHZ ; 2.5 ; Endonuclease inhibitor bound to influenza strain H1N1 polymerase acidic subunit N-terminal region with expelling one of the metal ions in the active site 4ZI0 ; 1.802 ; Endonuclease inhibitor bound to influenza strain H1N1 polymerase acidic subunit N-terminal region without a chelation to the metal ions in the active site 5OMT ; 1.35 ; Endonuclease NucB 7YZO ; 3.4 ; Endonuclease state of the E. coli Mre11-Rad50 (SbcCD) head complex bound to ADP and dsDNA 7Z03 ; 3.7 ; Endonuclease state of the E. coli Mre11-Rad50 (SbcCD) head complex bound to ADP and extended dsDNA 1E7D ; 2.8 ; Endonuclease VII (ENDOVII) Ffrom Phage T4 1EN7 ; 2.4 ; ENDONUCLEASE VII (ENDOVII) FROM PHAGE T4 1E7L ; 1.32 ; Endonuclease VII (EndoVII) N62D mutant from phage T4 3TEB ; 2.99 ; endonuclease/exonuclease/phosphatase family protein from Leptotrichia buccalis C-1013-b 6UP6 ; 9.0 ; Endophilin B1 helical scaffold 6UPN ; 10.0 ; Endophilin B1 helical scaffold 7NSK ; 3.1 ; Endoplasmic reticulum aminopeptidase 2 complexed with a hydroxamic ligand 7NUP ; 3.1 ; Endoplasmic reticulum aminopeptidase 2 complexed with a mixed hydroxamic and sulfonyl ligand 2M66 ; ; Endoplasmic reticulum protein 29 (ERp29) C-terminal domain: 3D Protein Fold Determination from Backbone Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites 6O6I ; ; Endoplasmic reticulum protein 29 (ERp29) C-terminal domain: Structure Determination from Backbone Amide Pseudocontact Shifts Generated by Double-histidine Cobalt Tags 1SEN ; 1.199 ; Endoplasmic reticulum protein Rp19 O95881 1HG8 ; 1.73 ; Endopolygalacturonase from the phytopathogenic fungus Fusarium moniliforme 1K5C ; 0.96 ; Endopolygalacturonase I from Stereum purpureum at 0.96 A resolution 1KCC ; 1.0 ; Endopolygalacturonase I from Stereum purpureum complexed with a galacturonate at 1.00 A resolution. 1KCD ; 1.15 ; Endopolygalacturonase I from Stereum purpureum complexed with two galacturonate at 1.15 A resolution. 5XE2 ; 2.01 ; Endoribonuclease from Mycobacterial species 5XE3 ; 2.3 ; Endoribonuclease in complex with its cognate antitoxin from Mycobacterial species 1V0E ; 1.9 ; Endosialidase of Bacteriophage K1F 1V0F ; 2.55 ; Endosialidase of Bacteriophage K1F in complex with oligomeric alpha-2,8-sialic acid 1KOE ; 1.5 ; ENDOSTATIN 1EPO ; 2.0 ; ENDOTHIA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN) COMPLEXED WITH CP-81,282 (MOR PHE NLE CHF NME) 1EPP ; 1.9 ; ENDOTHIA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN) COMPLEXED WITH PD-130,693 (MAS PHE LYS+MTF STA MBA) 1EPQ ; 1.9 ; ENDOTHIA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN) COMPLEXED WITH PD-133,450 (SOT PHE GLY+SCC GCL) 1EPR ; 2.3 ; ENDOTHIA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN) COMPLEXED WITH PD-135,040 7QLU ; 1.41 ; Endothiapepsin apo at 100K 7QLY ; 1.79 ; Endothiapepsin apo at 298K 1GVT ; 0.98 ; Endothiapepsin complex with CP-80,794 1GVU ; 0.94 ; Endothiapepsin complex with H189 1E5O ; 2.05 ; Endothiapepsin complex with inhibitor DB2 1GVW ; 1.0 ; Endothiapepsin complex with PD-130,328 1E80 ; 2.05 ; Endothiapepsin complex with renin inhibitor MERCK-KGAA-EMD56133 1E82 ; 2.05 ; Endothiapepsin complex with renin inhibitor MERCK-KGAA-EMD59601 1E81 ; 2.05 ; Endothiapepsin complex with renin inhibitor MERCK-KGAA-EMD61395 1GVX ; 1.0 ; Endothiapepsin complexed with H256 4LP9 ; 1.35 ; Endothiapepsin complexed with Phe-reduced-Tyr peptide. 7QLW ; 1.41 ; Endothiapepsin in 10% DMSO at 100 K 7QM0 ; 1.79 ; Endothiapepsin in 10% DMSO at 298 K 7QLX ; 1.39 ; Endothiapepsin in 20% DMSO at 100 K 7QM1 ; 1.79 ; Endothiapepsin in 20% DMSO at 298 K 7QLV ; 1.41 ; Endothiapepsin in 5% DMSO at 100 K 7QLZ ; 1.79 ; Endothiapepsin in 5% DMSO at 298 K 6RSV ; 1.1 ; Endothiapepsin in complex with 017 4LBT ; 1.251 ; Endothiapepsin in complex with 100mM acylhydrazone inhibitor 4KUP ; 1.311 ; Endothiapepsin in complex with 20mM acylhydrazone inhibitor 4LHH ; 1.73 ; Endothiapepsin in complex with 2mM acylhydrazone inhibitor 5LWR ; 1.249 ; Endothiapepsin in complex with a derivative of fragment 177 3PB5 ; 1.9 ; Endothiapepsin in complex with a fragment 3PBD ; 1.7 ; Endothiapepsin in complex with a fragment 3PBZ ; 1.48 ; Endothiapepsin in complex with a fragment 3PCW ; 1.25 ; Endothiapepsin in complex with a fragment 3PGI ; 1.9 ; Endothiapepsin in complex with a fragment 3PI0 ; 1.64 ; Endothiapepsin in complex with a fragment 3PLD ; 1.4 ; Endothiapepsin in complex with a fragment 3PLL ; 1.73 ; Endothiapepsin in complex with a fragment 3PM4 ; 1.68 ; Endothiapepsin in complex with a fragment 3PMU ; 1.43 ; Endothiapepsin in complex with a fragment 3PMY ; 1.38 ; Endothiapepsin in complex with a fragment 2JJI ; 1.57 ; Endothiapepsin in complex with a gem-diol inhibitor. 2JJJ ; 1.0 ; Endothiapepsin in complex with a gem-diol inhibitor. 3T7P ; 1.35 ; Endothiapepsin in complex with a hydrazide derivative 5LWT ; 1.069 ; Endothiapepsin in complex with a methoxylated derivative of fragment 177 3Q6Y ; 1.351 ; Endothiapepsin in complex with a pyrrolidine based inhibitor 3T6I ; 1.32 ; Endothiapepsin in complex with an azepin derivative 3PSY ; 1.43 ; Endothiapepsin in complex with an inhibitor based on the Gewald reaction 3T7Q ; 1.3 ; Endothiapepsin in complex with an inhibitor based on the Gewald reaction 3T7X ; 1.27 ; Endothiapepsin in complex with an inhibitor based on the Gewald reaction 3PCZ ; 1.5 ; Endothiapepsin in complex with benzamidine 5HCT ; 1.36 ; Endothiapepsin in complex with biacylhydrazone 5IS4 ; 1.368 ; Endothiapepsin in complex with chiral brominated primary amine fragment 5ISJ ; 1.651 ; Endothiapepsin in complex with chiral chlorinated primary amine fragment 6RON ; 1.15 ; Endothiapepsin in complex with compound 046 5SAR ; 0.98 ; Endothiapepsin in complex with compound FU290-1 5SAS ; 1.17 ; Endothiapepsin in complex with compound FU290-2 5SAK ; 1.1 ; Endothiapepsin in complex with compound FU5-1 5SAL ; 1.0 ; Endothiapepsin in complex with compound FU5-2 5SAM ; 1.2 ; Endothiapepsin in complex with compound FU5-3 5SAN ; 0.94 ; Endothiapepsin in complex with compound FU5-4 5SAO ; 1.0 ; Endothiapepsin in complex with compound FU58-1 5SAP ; 1.04 ; Endothiapepsin in complex with compound FU58-2 5SAQ ; 1.02 ; Endothiapepsin in complex with compound FU58-3 5SAT ; 1.4 ; Endothiapepsin in complex with compound FU66-1 7QM9 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 1) 7QMI ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 10) 7QMJ ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 11) 7QMK ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 12) 7QML ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 13) 7QMM ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 14) 7QMN ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 15) 7QMO ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 16) 7QMP ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 17) 7QMQ ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 18) 7QMA ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 2) 7QMB ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 3) 7QMC ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 4) 7QMD ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 5) 7QME ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 6) 7QMF ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 7) 7QMG ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 8) 7QMH ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping down structure 9) 7QMR ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 1) 7QN0 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 10) 7QN1 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 11) 7QN2 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 12) 7QN3 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 13) 7QN4 ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 14) 7QMS ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 2) 7QMT ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 3) 7QMU ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 4) 7QMV ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 5) 7QMW ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 6) 7QMX ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 7) 7QMY ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 8) 7QMZ ; 1.79 ; Endothiapepsin in complex with compound TL00150 at room-temperature (temperature ramping up structure 9) 7QM5 ; 1.79 ; Endothiapepsin in complex with compound TL00150 in 10% DMSO at 298 K 7QM6 ; 1.81 ; Endothiapepsin in complex with compound TL00150 in 15% DMSO at 298 K 7QM7 ; 1.79 ; Endothiapepsin in complex with compound TL00150 in 20% DMSO at 298 K 7QM8 ; 1.79 ; Endothiapepsin in complex with compound TL00150 in 40% DMSO at 298 K 7QM3 ; 1.79 ; Endothiapepsin in complex with compound TL00150 in 5% DMSO at 298 K 7QM4 ; 1.79 ; Endothiapepsin in complex with compound TL00150 in 8% DMSO at 298 K 5ISK ; 1.14 ; Endothiapepsin in complex with fluorinated primary amine fragment 4Y37 ; 1.69 ; Endothiapepsin in complex with fragement 305 4Y3M ; 1.55 ; Endothiapepsin in complex with fragment 103 4Y3Q ; 1.17 ; Endothiapepsin in complex with fragment 109 4Y41 ; 1.403 ; Endothiapepsin in complex with fragment 112 4Y4T ; 1.301 ; Endothiapepsin in complex with fragment 114 4Y4W ; 1.451 ; Endothiapepsin in complex with fragment 125 4Y4E ; 1.3 ; Endothiapepsin in complex with fragment 131 4Y4U ; 1.754 ; Endothiapepsin in complex with fragment 14 5J25 ; 1.24 ; Endothiapepsin in complex with fragment 158 4Y47 ; 1.19 ; Endothiapepsin in complex with fragment 162 4Y44 ; 1.24 ; Endothiapepsin in complex with fragment 164 4Y3P ; 1.55 ; Endothiapepsin in complex with fragment 17 4Y3X ; 1.25 ; Endothiapepsin in complex with fragment 171 5LWS ; 1.03 ; Endothiapepsin in complex with fragment 177 and a derivative thereof 4Y3A ; 1.17 ; Endothiapepsin in complex with fragment 181 4Y3H ; 1.23 ; Endothiapepsin in complex with fragment 189 5DR0 ; 1.4 ; Endothiapepsin in complex with fragment 203 4Y3L ; 1.16 ; Endothiapepsin in complex with fragment 205 4Y5A ; 1.45 ; Endothiapepsin in complex with fragment 206 4Y3T ; 1.42 ; Endothiapepsin in complex with fragment 207 5DQ5 ; 1.47 ; Endothiapepsin in complex with fragment 209 4YCK ; 1.07 ; Endothiapepsin in complex with fragment 211 4YCT ; 1.13 ; Endothiapepsin in complex with fragment 216 4YCY ; 1.699 ; Endothiapepsin in complex with fragment 218 4YD3 ; 1.248 ; Endothiapepsin in complex with fragment 224 4YD4 ; 1.27 ; Endothiapepsin in complex with fragment 227 5DR4 ; 1.5 ; Endothiapepsin in complex with fragment 231 4YD5 ; 1.209 ; Endothiapepsin in complex with fragment 236 4YD6 ; 1.298 ; Endothiapepsin in complex with fragment 240 4YD7 ; 1.419 ; Endothiapepsin in complex with fragment 255 4Y58 ; 1.17 ; Endothiapepsin in complex with fragment 260 4Y5B ; 1.24 ; Endothiapepsin in complex with fragment 261 4Y3S ; 1.1 ; Endothiapepsin in complex with fragment 266 4Y5C ; 1.19 ; Endothiapepsin in complex with fragment 267 4Y5E ; 1.116 ; Endothiapepsin in complex with fragment 268 4Y5G ; 1.47 ; Endothiapepsin in complex with fragment 272 4Y3N ; 1.34 ; Endothiapepsin in complex with fragment 273 4Y5K ; 1.439 ; Endothiapepsin in complex with fragment 274 5DR1 ; 1.45 ; Endothiapepsin in complex with fragment 278 4Y3G ; 1.13 ; Endothiapepsin in complex with fragment 285 4Y4A ; 1.278 ; Endothiapepsin in complex with fragment 286 4Y35 ; 1.457 ; Endothiapepsin in complex with fragment 290 4Y45 ; 1.06 ; Endothiapepsin in complex with fragment 291 4Y3R ; 1.13 ; Endothiapepsin in complex with fragment 306 5DPZ ; 1.328 ; Endothiapepsin in complex with fragment 31 5DR7 ; 1.234 ; Endothiapepsin in complex with fragment 311 4Y3D ; 1.482 ; Endothiapepsin in complex with fragment 321 4Y4B ; 1.108 ; Endothiapepsin in complex with fragment 323 4Y5M ; 1.28 ; Endothiapepsin in complex with fragment 328 5DR8 ; 1.47 ; Endothiapepsin in complex with fragment 330 5DR3 ; 1.24 ; Endothiapepsin in complex with fragment 333 4Y5N ; 1.29 ; Endothiapepsin in complex with fragment 337 4Y5P ; 1.229 ; Endothiapepsin in complex with fragment 338 5DQ1 ; 1.489 ; Endothiapepsin in complex with fragment 34 4Y3W ; 1.58 ; Endothiapepsin in complex with fragment 35 4Y36 ; 1.59 ; Endothiapepsin in complex with fragment 4 4Y3Z ; 1.12 ; Endothiapepsin in complex with fragment 41 4Y43 ; 1.48 ; Endothiapepsin in complex with fragment 42 5DQ2 ; 1.514 ; Endothiapepsin in complex with fragment 48 4Y3E ; 1.25 ; Endothiapepsin in complex with fragment 5 4Y4X ; 1.67 ; Endothiapepsin in complex with fragment 51 4Y51 ; 1.603 ; Endothiapepsin in complex with fragment 52 4Y53 ; 1.62 ; Endothiapepsin in complex with fragment 54 4Y54 ; 1.61 ; Endothiapepsin in complex with fragment 56 4Y56 ; 1.63 ; Endothiapepsin in complex with fragment 58 4Y57 ; 1.49 ; Endothiapepsin in complex with fragment 63 5DQ4 ; 1.15 ; Endothiapepsin in complex with fragment 66 4Y4Z ; 1.48 ; Endothiapepsin in complex with fragment 73 4Y39 ; 1.2 ; Endothiapepsin in complex with fragment 75 4Y3F ; 1.4 ; Endothiapepsin in complex with fragment 78 4Y50 ; 1.32 ; Endothiapepsin in complex with fragment 81 4Y38 ; 1.1 ; Endothiapepsin in complex with fragment B29 4Y3J ; 1.31 ; Endothiapepsin in complex with fragment B30 4ZE6 ; 1.17 ; Endothiapepsin in complex with fragment B39 4Y3Y ; 1.346 ; Endothiapepsin in complex with fragment B42 4Y48 ; 1.249 ; Endothiapepsin in complex with fragment B50 4Y4D ; 1.269 ; Endothiapepsin in complex with fragment B51 4Y4G ; 1.439 ; Endothiapepsin in complex with fragment B53 4ZEA ; 1.2 ; Endothiapepsin in complex with fragment B91 4Y4J ; 1.03 ; Endothiapepsin in complex with fragment B97 3WZ6 ; 1.404 ; Endothiapepsin in complex with Gewald reaction-derived inhibitor (5) 3WZ7 ; 1.9 ; Endothiapepsin in complex with Gewald reaction-derived inhibitor (6) 3WZ8 ; 1.45 ; Endothiapepsin in complex with Gewald reaction-derived inhibitor (8) 5HCO ; 1.17 ; Endothiapepsin in complex with hydrazide 5OG7 ; 1.823 ; Endothiapepsin in complex with hydrazide fragment 6SCV ; 1.7 ; Endothiapepsin in complex with ligand 69 7QLT ; 1.39 ; Endothiapepsin in complex with ligand TL00150 in 10% DMSO at 100K 3PRS ; 1.38 ; Endothiapepsin in complex with ritonavir 3PWW ; 1.22 ; Endothiapepsin in complex with saquinavir 4LAP ; 1.12 ; Endothiapepsin in complex with thiophen-based inhibitor SAP114 4L6B ; 1.37 ; Endothiapepsin in complex with thiophen-based inhibitor SAP128 4Y5L ; 0.99 ; Endothiapepsin in its apo form 1OD1 ; 1.37 ; Endothiapepsin PD135,040 complex 7BKV ; 1.24 ; Endothiapepsin structure obtained at 100K with fragment AC39729 bound 7BKW ; 1.43 ; Endothiapepsin structure obtained at 100K with fragment BTB09871 bound 7BKU ; 1.4 ; Endothiapepsin structure obtained at 100K with fragment JFD03909 bound 7BKZ ; 1.9 ; Endothiapepsin structure obtained at 298K after a soaking with fragment AC39729 from a dataset collected with JUNGFRAU detector 7NKW ; 2.27 ; Endothiapepsin structure obtained at 298K after a soaking with fragment JFD03909 from a dataset collected with JUNGFRAU detector 7BKR ; 2.1 ; Endothiapepsin structure obtained at 298K and 40 mM DMSO from a dataset collected with JUNGFRAU detector 7BKY ; 1.9 ; Endothiapepsin structure obtained at 298K with fragment BTB09871 bound from a dataset collected with JUNGFRAU detector 5OJE ; 1.579 ; Endothiapepsin with Ligand VSK-B24 3URI ; 2.1 ; Endothiapepsin-DB5 complex. 3URL ; 2.0 ; Endothiapepsin-DB6 complex. 4JME ; 1.7 ; Enduracididine biosynthesis enzyme MppR complexed with 2-keto-enduracididine 4JMC ; 1.72 ; Enduracididine biosynthesis enzyme MppR complexed with pyruvate 4JMD ; 1.67 ; Enduracididine biosynthesis enzyme MppR complexed with the condensation product of pyruvate and imidazole 4-carboxaldehyde 4JM3 ; 1.85 ; Enduracididine Biosynthesis Enzyme MppR with HEPES Buffer Bound 5OCS ; 1.7 ; Ene-reductase (ER/OYE) from Ralstonia (Cupriavidus) metallidurans 1NKO ; 1.45 ; Energetic and structural basis of sialylated oligosaccharide recognition by the natural killer cell inhibitory receptor p75/AIRM1 or Siglec-7 7KOT ; 1.74 ; Energetic and structural effects of the Tanford transition on the ligand recognition of bovine Beta-lactoglobulin 7KP5 ; 2.4 ; Energetic and structural effects of the Tanford transition on the ligand recognition of bovine Beta-lactoglobulin 7UMH ; 2.6 ; Energetic robustness to large scale structural dynamics in a photosynthetic supercomplex 1QHE ; 2.0 ; ENERGETICS OF A HYDROGEN BOND (CHARGED AND NEUTRAL) AND OF A CATION-PI INTERACTION IN APOFLAVODOXIN 3J6E ; 4.7 ; Energy minimized average structure of Microtubules stabilized by GmpCpp 6QEV ; 2.7 ; EngBF DARPin Fusion 4b B6 6SH9 ; 2.4 ; EngBF DARPin Fusion 4b D12 6QFK ; 2.0 ; EngBF DARPin Fusion 4b G10 6QEP ; 2.6 ; EngBF DARPin Fusion 4b H14 6QFO ; 2.3 ; EngBF DARPin Fusion 9b 3G124 3ZZS ; 1.49 ; Engineered 12-subunit Bacillus stearothermophilus trp RNA-binding attenuation protein (TRAP) 3ZZQ ; 1.75 ; Engineered 12-subunit Bacillus subtilis trp RNA-binding attenuation protein (TRAP) 5L86 ; 1.9 ; engineered ascorbate peroxidise 1AXK ; 2.1 ; ENGINEERED BACILLUS BIFUNCTIONAL ENZYME GLUXYN-1 1BXM ; 2.15 ; ENGINEERED BETA-CRYPTOGEIN COMPLEXED WITH ERGOSTEROL 6XVE ; 2.15 ; Engineered beta-lactoglobulin: variant F105L 6RWQ ; 2.05 ; Engineered beta-lactoglobulin: variant F105L in complex with myristic acid 5NUM ; 2.3 ; Engineered beta-lactoglobulin: variant F105L-L39A in complex with chlorpromazine (LG-LA-CLP) 5NUN ; 1.95 ; Engineered beta-lactoglobulin: variant F105L-L39A-M107F in complex with chlorpromazine (LG-LAF-CLP) 6QPD ; 2.0 ; Engineered beta-lactoglobulin: variant I56F 5NUJ ; 2.6 ; Engineered beta-lactoglobulin: variant I56F-L39A in complex with chlorpromazine (LG-FA-CLP) 5NUK ; 1.7 ; Engineered beta-lactoglobulin: variant I56F-L39A-M107F in complex with chlorpromazine (LG-FAF-CLP) 6QI7 ; 2.5 ; Engineered beta-lactoglobulin: variant L39Y in complex with endogenous ligand 6QPE ; 2.2 ; Engineered beta-lactoglobulin: variant L58F 6RWP ; 2.1 ; Engineered beta-lactoglobulin: variant L58F in complex with myristic acid 6RYT ; 2.1 ; Engineered beta-lactoglobulin: variant M107L 6RWR ; 2.1 ; Engineered beta-lactoglobulin: variant M107L in complex with myristic acid 6WK3 ; 2.45 ; Engineered carbene transferase RmaNOD Q52V, putative nitric oxide dioxygenase from Rhodothermus marinus 4ZWZ ; 1.62 ; Engineered Carbonic Anhydrase IX mimic in complex with a glucosyl sulfamate inhibitor 4ZX1 ; 1.501 ; Engineered Carbonic Anhydrase IX mimic in complex with a glucosyl sulfamate inhibitor 4ZWX ; 1.696 ; Engineered Carbonic Anhydrase IX mimic in complex with glucosyl sulfamate inhibitor 2I3R ; 1.85 ; Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta 2HC1 ; 1.3 ; Engineered catalytic domain of protein tyrosine phosphatase HPTPbeta. 5DPN ; 1.606 ; Engineered CBM X-2 L110F in complex with branched carbohydrate XXXG. 5DPN ; 1.6 ; Engineered CBM X-2 L110F in complex with branched carbohydrate XXXG. 5ZL9 ; 2.6 ; Engineered chitinase, SmChiAB-FYSFV 6Y7T ; 2.5 ; Engineered conjugation of lysine-specific molecular tweezers with ExoS derived peptidic inhibitor enhance affinity towards target protein 14-3-3 through ditopic binding 6CUN ; 1.29 ; Engineered Cytochrome c from Rhodothermus marinus (Rma TDE) bound to carbene intermediate (1-ethoxy-1-oxopropan-2-ylidene) 6CUK ; 1.47 ; Engineered Cytochrome c from Rhodothermus marinus, Rma TDE 4J8T ; 2.05 ; Engineered Digoxigenin binder DIG10.2 4J9A ; 3.2 ; Engineered Digoxigenin binder DIG10.3 5BVB ; 2.06 ; Engineered Digoxigenin binder DIG5.1a 7M2W ; 3.0 ; Engineered disulfide cross-linked closed conformation of the Yeast gamma-TuRC(SS) 4POY ; 1.5 ; Engineered Dual Specific VHH antibody 4PPT ; 1.5 ; Engineered Dual Specific VHH Antibody in Complex with a Nickel (II) Ion 4PIP ; 1.8 ; Engineered EgtD variant EgtD-M252V,E282A in complex with tryptophan and SAH 8RVJ ; 3.1 ; Engineered Encapsulin P3P4 2I9K ; 2.65 ; Engineered Extrahelical Base Destabilization Enhances Sequence Discrimination of DNA Methyltransferase M.HhaI 6OEL ; 3.1 ; Engineered Fab bound to IL-4 receptor 4X0K ; 2.04 ; Engineered Fab fragment specific for EYMPME (EE) peptide 6C4U ; 2.6 ; Engineered FHA with Myc-pTBD peptide 6K1M ; 2.32 ; Engineered form of a putative cystathionine gamma-lyase 6Y4J ; 1.38 ; Engineered Fructosyl Peptide Oxidase 8BLZ ; 1.7 ; Engineered Fructosyl Peptide Oxidase - D02 mutant 8BLX ; 1.71 ; Engineered Fructosyl Peptide Oxidase - X02A mutant 8BJY ; 1.475 ; Engineered Fructosyl Peptide Oxidase - X02B mutant 8BMU ; 1.6 ; Engineered Fructosyl Peptide Oxidase - X04 mutant 8EYZ ; 2.99 ; Engineered glutamine binding protein bound to GLN and a cobaloxime ligand 8PN7 ; 2.03 ; Engineered glycolyl-CoA carboxylase (G20R variant) with bound CoA 8PN8 ; 2.31 ; Engineered glycolyl-CoA carboxylase (L100N variant) with bound CoA 6YBQ ; 1.96 ; Engineered glycolyl-CoA carboxylase (quintuple mutant) with bound CoA 6GVS ; 2.579 ; Engineered glycolyl-CoA reductase comprising 8 mutations with bound NADP+ 5YCT ; 1.851 ; Engineered hairpin loop3 mutant monomer in Single-chain Monellin 7EOY ; 3.6 ; Engineered Hepatitis B virus core antigen T=3 7EP6 ; 3.86 ; Engineered Hepatitis B virus core antigen T=4 7FDJ ; 4.4 ; Engineered Hepatitis B virus core antigen with short linker T=4 3SSK ; 1.361 ; Engineered high-affinity halide-binding protein derived from YFP: bromide complex 3SSH ; 1.277 ; Engineered high-affinity halide-binding protein derived from YFP: chloride complex 3SS0 ; 1.492 ; Engineered high-affinity halide-binding protein derived from YFP: fluoride complex 3SRY ; 1.159 ; Engineered high-affinity halide-binding protein derived from YFP: halide-free 3SSL ; 1.449 ; Engineered high-affinity halide-binding protein derived from YFP: iodide complex 1N3W ; 2.6 ; Engineered High-Affinity Maltose-Binding Protein 1NL5 ; 2.1 ; Engineered High-affinity Maltose-Binding Protein 6HSV ; 2.45 ; Engineered higher-order assembly of Cholera Toxin B subunits via the addition of C-terminal parallel coiled-coiled domains 6CUV ; 2.26 ; Engineered Holo TrpB from Pyrococcus furiosus, PfTrpB7E6 6CUT ; 1.77 ; Engineered Holo TrpB from Pyrococcus furiosus, PfTrpB7E6 with (2S,3S)-isopropylserine bound as the external aldimine 8EGY ; 2.05 ; Engineered holo tyrosine synthase (TmTyrS1) derived from T. maritima TrpB 5EIG ; 2.7 ; Engineered human cystathionine gamma lyase (E59T, E339V) to deplet cysteine 8FCY ; 3.4 ; Engineered human dynein motor domain in microtubule-bound state 8FD6 ; 2.9 ; Engineered human dynein motor domain in the microtubule-unbound state in the buffer containing ATP-Vi 8FDT ; 3.2 ; Engineered human dynein motor domain in the microtubule-unbound state with LIS1 complex in the buffer containing ATP-Vi 8FDU ; 3.3 ; Engineered human dynein motor domain in the microtubule-unbound state with LIS1 complex in the buffer containing ATP-Vi (local refined on AAA3-AAA5 and LIS1) 6Q3K ; 1.5 ; Engineered Human HLA_A2 MHC Class I molecule in complex with NV9 peptide 6Q3S ; 2.5 ; Engineered Human HLA_A2 MHC Class I molecule in complex with TCR and SV9 peptide 5V43 ; 2.32 ; Engineered human IgG Fc domain aglyco801 5V4E ; 3.216 ; Engineered human IgG Fc domain glyco801 (Fc801) 1LK3 ; 1.91 ; ENGINEERED HUMAN INTERLEUKIN-10 MONOMER COMPLEXED TO 9D7 FAB FRAGMENT 4IAW ; 2.4 ; Engineered human lipocalin 2 (C26) in complex with Y-DTPA 4IAX ; 1.9 ; Engineered human lipocalin 2 (CL31) in complex with Y-DTPA 3BX7 ; 2.1 ; Engineered Human Lipocalin 2 (LCN2) in Complex with the Extracellular Domain of Human CTLA-4 3BX8 ; 2.0 ; Engineered Human Lipocalin 2 (LCN2), apo-form 3DSZ ; 2.0 ; Engineered human lipocalin 2 in complex with Y-DTPA 3DTQ ; 2.5 ; Engineered human lipocalin 2 with specificity for Y-DTPA, apo-form 7ZMZ ; 3.2 ; Engineered Interleukin 2 bound to CD25 receptor 5E4E ; 3.0 ; Engineered Interleukin-13 bound to receptor 6Z2C ; 1.8 ; Engineered lipocalin C3A5 in complex with a transition state analog 1KXO ; 1.8 ; ENGINEERED LIPOCALIN DIGA16 : APO-FORM 1LKE ; 1.9 ; ENGINEERED LIPOCALIN DIGA16 IN COMPLEX WITH DIGOXIGENIN 1N0S ; 2.0 ; ENGINEERED LIPOCALIN FLUA IN COMPLEX WITH FLUORESCEIN 3SVE ; 1.492 ; Engineered low-affinity halide-binding protein derived from YFP: bromide complex 3SST ; 1.403 ; Engineered low-affinity halide-binding protein derived from YFP: chloride complex 3SSV ; 1.861 ; Engineered low-affinity halide-binding protein derived from YFP: fluoride complex 3SSP ; 1.628 ; Engineered low-affinity halide-binding protein derived from YFP: halide-free 3SSY ; 1.769 ; Engineered low-affinity halide-binding protein derived from YFP: iodide complex 4UM1 ; 2.83 ; Engineered Ls-AChBP with alpha4-alpha4 binding pocket in complex with NS3573 4UM3 ; 2.703 ; Engineered Ls-AChBP with alpha4-alpha4 binding pocket in complex with NS3920 3SVD ; 1.78 ; Engineered medium-affinity halide-binding protein derived from YFP: bromide complex 3SVC ; 1.31 ; Engineered medium-affinity halide-binding protein derived from YFP: chloride complex 3SVB ; 1.3 ; Engineered medium-affinity halide-binding protein derived from YFP: fluoride complex 3ST0 ; 1.19 ; Engineered medium-affinity halide-binding protein derived from YFP: halide-free 3SV5 ; 1.53 ; Engineered medium-affinity halide-binding protein derived from YFP: iodide complex 8C3E ; 2.1 ; Engineered mini-protein LCB2 (blocking ligand of SARS-Cov-2 spike protein) 8CMV ; 1.28 ; Engineered PETase enzyme from LCC - C09 mutant 7P85 ; 1.47 ; Engineered phosphotriesterase BdPTE 10-2-C3(C59V/C227V) in complex with ethyl-4-methylbenzylphosphonate 7MKV ; 2.25 ; Engineered PLP-dependent decarboxylative aldolase from Aspergillus flavus, UstD2.0, bound as the internal aldimine 7ZFM ; 1.711 ; Engineered Protein Targeting the Zika Viral Envelope Fusion Loop 2HC2 ; 1.4 ; Engineered protein tyrosine phosphatase beta catalytic domain 3C72 ; 2.3 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor 3HXF ; 1.9 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor (compound 32) 3HXE ; 1.95 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor (compound 37) 3HXB ; 2.25 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor (compound 6) 3HXC ; 1.95 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor (compound 8) 3HXD ; 1.95 ; Engineered RabGGTase in complex with a peptidomimetic inhibitor (compound 9) 4GTT ; 2.05 ; Engineered RabGGTase in complex with BMS analogue 12 4GTV ; 1.95 ; Engineered RabGGTase in complex with BMS analogue 13 4GTS ; 2.45 ; Engineered RabGGTase in complex with BMS analogue 16 8EK5 ; 2.11 ; Engineered scFv 10LH bound to PHOX2B/HLA-A24:02 6P79 ; 1.583 ; Engineered single chain antibody C9+C14 ScFv 6M8F ; 1.1 ; Engineered sperm whale myoglobin-based carbene transferase 7SLI ; 2.0 ; Engineered sperm whale myoglobin-based carbene transferase MbBTIC-C2 7SLH ; 1.15 ; Engineered sperm whale myoglobin-based carbene transferase MbBTIC-C3 6QW4 ; 2.1 ; Engineered streptavidin variant (ACGR) in complex with the Strep-tag II peptide 6QBB ; 1.52 ; Engineered streptavidin variant (ENAGY) in complex with the Strep-tag II peptide 6SOS ; 2.2 ; Engineered streptavidin variant (ENAGY) in complex with the Twin-Strep-tag peptide 6QSY ; 1.7 ; Engineered streptavidin variant (H--WY) in complex with the Strep-tag II peptide 6SOK ; 1.96 ; Engineered streptavidin variant (VTAR) in complex with the Twin-Strep-tag peptide 6TIP ; 2.1 ; Engineered streptavidin variant (YNAFM) in complex with the Strep-tag II peptide 3Q7J ; 2.91 ; Engineered Thermoplasma Acidophilum F3 factor mimics human aminopeptidase N (APN) as a target for anticancer drug development 4P08 ; 2.341 ; Engineered thermostable dimeric cocaine esterase 6CUZ ; 1.75 ; Engineered TrpB from Pyrococcus furiosus, PfTrpB7E6 with (2S,3R)-ethylserine bound as the amino-acrylate 6AM7 ; 1.47 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9 6AM8 ; 1.83 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9 with Trp bound as E(Aex2) 5VM5 ; 1.67 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9, with Ser bound 6AM9 ; 2.09 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9, with Ser-bound in a predominantly closed state. 7ROF ; 2.39 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9-H275E with L-Trp non-covalently bound 7RNP ; 2.25 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB2B9_H275E with 4-Cl-Trp non-covalently bound 6AMC ; 1.93 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB4D11 6AMH ; 1.63 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB4D11 with Ser bound as E(Aex1) 6AMI ; 1.97 ; Engineered tryptophan synthase b-subunit from Pyrococcus furiosus, PfTrpB4D11 with Trp non-covalently bound 6VZR ; 2.6 ; Engineered TTLL6 bound to the initiation analog 6VZQ ; 3.08 ; Engineered TTLL6 mutant bound to alpha-elongation analog 6VZS ; 2.66 ; Engineered TTLL6 mutant bound to gamma-elongation analog 8EGZ ; 1.9 ; Engineered tyrosine synthase (TmTyrS1) derived from T. maritima TrpB with Ser bound as the amino-acrylate intermediate 8EH1 ; 2.0 ; Engineered tyrosine synthase (TmTyrS1) derived from T. maritima TrpB with Ser bound as the amino-acrylate intermediate and complexed with 4-hydroxyquinoline 8EH0 ; 1.7 ; Engineered tyrosine synthase (TmTyrS1) derived from T. maritima TrpB with Ser bound as the amino-acrylate intermediate and complexed with quinoline N-oxide 4OUD ; 2.65 ; Engineered tyrosyl-tRNA synthetase with the nonstandard amino acid L-4,4-biphenylalanine 5T2N ; 2.079 ; Engineered variant of I-OnuI meganuclease targeting the Anopheles AGAP007280 gene; harbors 38 point mutations relative to wild-type I-OnuI 5T2O ; 2.801 ; Engineered variant of I-OnuI meganuclease targeting the Anopheles AGAP011377 gene; harbors 53 point mutations relative to wild-type I-OnuI 5THG ; 3.106 ; Engineered variant of I-OnuI meganuclease targeting the HIV CCR5 gene; harbors 43 point mutations relative to wild-type I-OnuI 5T8D ; 2.15 ; Engineered variant of I-OnuI meganuclease targeting the HIV integrase gene; harbors 47 point mutations relative to wild-type I-OnuI 5T2H ; 2.517 ; Engineered variant of I-OnuI meganuclease targeting the Human TCRa gene; harbors 43 point mutations relative to wild-type I-OnuI 6UWK ; 2.533 ; Engineered variant of I-OnuI meganuclease with improved stability and fully altered specificity targeting human chromosome 11 trans integration site 6UVW ; 2.551 ; Engineered variant of I-OnuI meganuclease with improved thermostability 6UWG ; 2.22 ; Engineered variant of I-OnuI meganuclease with improved thermostability and E178D mutation at catalytic site 6UW0 ; 2.72 ; Engineered variant of I-OnuI meganuclease with improved thermostability and fully altered specificity targeting cholera toxin A subunit 4AW4 ; 1.93 ; Engineered variant of Listeria monocytogenes InlB internalin domain with an additional leucine rich repeat inserted 3KX9 ; 2.101 ; Engineering a closed form of the Archaeoglobus fulgidus ferritin by site directed mutagenesis 1A7B ; 3.1 ; ENGINEERING A MISFOLDED FORM OF CD2 1A64 ; 2.0 ; ENGINEERING A MISFOLDED FORM OF RAT CD2 1SYC ; 1.8 ; ENGINEERING ALTERNATIVE BETA-TURN TYPES IN STAPHYLOCOCCAL NUCLEASE 1SYD ; 1.7 ; ENGINEERING ALTERNATIVE BETA-TURN TYPES IN STAPHYLOCOCCAL NUCLEASE 1SYE ; 1.8 ; ENGINEERING ALTERNATIVE BETA-TURN TYPES IN STAPHYLOCOCCAL NUCLEASE 1SYF ; 1.8 ; ENGINEERING ALTERNATIVE BETA-TURN TYPES IN STAPHYLOCOCCAL NUCLEASE 1SYG ; 1.9 ; ENGINEERING ALTERNATIVE BETA-TURN TYPES IN STAPHYLOCOCCAL NUCLEASE 3E2N ; 1.3 ; Engineering ascorbate peroxidase activity into cytochrome c peroxidase 1KRJ ; 2.0 ; Engineering Calcium-binding site into Cytochrome c Peroxidase (CcP) 8EP8 ; 2.45 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPB ; 2.61 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPD ; 2.42 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPE ; 2.45 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPF ; 2.61 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPG ; 2.15 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8EPI ; 2.55 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8F40 ; 2.45 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 8F42 ; 2.55 ; Engineering Crystals with Tunable Symmetries from 14- or 16-Base-Long DNA Strands 7D8B ; 2.46 ; Engineering Disulphide-Free Autonomous Antibody VH Domains to modulate intracellular pathways 3Q3F ; 2.169 ; Engineering Domain-Swapped Binding Interfaces by Mutually Exclusive Folding: Insertion of Ubiquitin into position 103 of Barnase 3CMS ; 2.0 ; ENGINEERING ENZYME SUB-SITE SPECIFICITY: PREPARATION, KINETIC CHARACTERIZATION AND X-RAY ANALYSIS AT 2.0-ANGSTROMS RESOLUTION OF VAL111PHE SITE-MUTATED CALF CHYMOSIN 1GJ6 ; 1.5 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJ7 ; 1.5 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJ8 ; 1.64 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJ9 ; 1.8 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJA ; 1.56 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJB ; 1.9 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJC ; 1.73 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1GJD ; 1.75 ; ENGINEERING INHIBITORS HIGHLY SELECTIVE FOR THE S1 SITES OF SER190 TRYPSIN-LIKE SERINE PROTEASE DRUG TARGETS 1A6P ; 2.08 ; ENGINEERING OF A MISFOLDED FORM OF CD2 3T1G ; 2.35 ; Engineering of organophosphate hydrolase by computational design and directed evolution 5LO2 ; ; Engineering protein stability with atomic precision in a monomeric miniprotein 5LO3 ; ; Engineering protein stability with atomic precision in a monomeric miniprotein 5LO4 ; ; Engineering protein stability with atomic precision in a monomeric miniprotein 3ZXJ ; 1.85 ; Engineering the active site of a GH43 glycoside hydrolase generates a biotechnologically significant enzyme that displays both endo- xylanase and exo-arabinofuranosidase activity 3ZXK ; 1.44 ; Engineering the active site of a GH43 glycoside hydrolase generates a biotechnologically significant enzyme that displays both endo- xylanase and exo-arabinofuranosidase activity 3ZXL ; 1.871 ; Engineering the active site of a GH43 glycoside hydrolase generates a biotechnologically significant enzyme that displays both endo- xylanase and exo-arabinofuranosidase activity 2XH7 ; 1.8 ; Engineering the enolase active site pocket: Crystal structure of the D321A mutant of yeast enolase 1 2XH4 ; 1.7 ; Engineering the enolase active site pocket: Crystal structure of the S39A D321A mutant of yeast enolase 1 2XH2 ; 1.8 ; Engineering the enolase active site pocket: Crystal structure of the S39N D321A mutant of yeast enolase 1 2XGZ ; 1.8 ; Engineering the enolase active site pocket: Crystal structure of the S39N D321R mutant of yeast enolase 1 2XH0 ; 1.7 ; Engineering the enolase active site pocket: Crystal structure of the S39N Q167K D321R mutant of yeast enolase 1 4CA2 ; 2.1 ; ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE II 6CA2 ; 2.5 ; ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE II 7CA2 ; 2.4 ; ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE II 8CA2 ; 2.4 ; ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE II 9CA2 ; 2.8 ; ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE II 2I5X ; 1.7 ; Engineering the PTPbeta catalytic domain with improved crystallization properties 5D8I ; 2.05 ; Engineering the Species-Specificity of an Inhibitory Antibody Targeting a Modulator of Tumor Stroma 1YQA ; ; Engineering the structural stability and functional properties of the GI domain into the intrinsically unfolded GII domain of the yeast linker histone Hho1p 5M7Q ; 1.8 ; Engineering the Thermostability of Nanobodies - NbD2 1HVA ; 2.3 ; ENGINEERING THE ZINC BINDING SITE OF HUMAN CARBONIC ANHYDRASE II: STRUCTURE OF THE HIS-94-> CYS APOENZYME IN A NEW CRYSTALLINE FORM 3HDD ; 2.2 ; ENGRAILED HOMEODOMAIN DNA COMPLEX 2P81 ; ; Engrailed homeodomain helix-turn-helix motif 1DU0 ; 2.0 ; ENGRAILED HOMEODOMAIN Q50A VARIANT DNA COMPLEX 2HDD ; 1.9 ; ENGRAILED HOMEODOMAIN Q50K VARIANT DNA COMPLEX 3P2P ; 2.1 ; ENHANCED ACTIVITY AND ALTERED SPECIFICITY OF PHOSPHOLIPASE A2 BY DELETION OF A SURFACE LOOP 1S6Z ; 1.5 ; Enhanced Green Fluorescent Protein Containing the Y66L Substitution 2FO4 ; 2.7 ; Enhanced MHC class I binding and immune responses through anchor modification of the non-canonical tumor associated MUC1-8 peptide 1L19 ; 1.7 ; ENHANCED PROTEIN THERMOSTABILITY FROM DESIGNED MUTATIONS THAT INTERACT WITH ALPHA-HELIX DIPOLES 1L20 ; 1.85 ; ENHANCED PROTEIN THERMOSTABILITY FROM DESIGNED MUTATIONS THAT INTERACT WITH ALPHA-HELIX DIPOLES 1L23 ; 1.7 ; ENHANCED PROTEIN THERMOSTABILITY FROM SITE-DIRECTED MUTATIONS THAT DECREASE THE ENTROPY OF UNFOLDING 1L24 ; 1.7 ; ENHANCED PROTEIN THERMOSTABILITY FROM SITE-DIRECTED MUTATIONS THAT DECREASE THE ENTROPY OF UNFOLDING 5DY6 ; 2.66 ; Enhanced superfolder GFP with DBCO at 148 1CNM ; 2.2 ; ENHANCEMENT OF CATALYTIC EFFICIENCY OF PROTEINASE K THROUGH EXPOSURE TO ANHYDROUS ORGANIC SOLVENT AT 70 DEGREES CELSIUS 1EGQ ; 1.55 ; ENHANCEMENT OF ENZYME ACTIVITY THROUGH THREE-PHASE PARTITIONING: CRYSTAL STRUCTURE OF A MODIFIED SERINE PROTEINASE AT 1.5 A RESOLUTION 189L ; 2.5 ; ENHANCEMENT OF PROTEIN STABILITY BY THE COMBINATION OF POINT MUTATIONS IN T4 LYSOZYME IS ADDITIVE 4FHB ; 2.8 ; Enhancing DHFR catalysis by binding of an allosteric regulator nanobody (Nb179) 1RWE ; 1.8 ; Enhancing the activity of insulin at receptor edge: crystal structure and photo-cross-linking of A8 analogues 2K91 ; ; Enhancing the activity of insulin by stereospecific unfolding 2K9R ; ; Enhancing the activity of insulin by stereospecific unfolding 2W68 ; 2.5 ; ENHANCING THE RECEPTOR AFFINITY OF THE SIALIC ACID-BINDING DOMAIN OF VIBRIO CHOLERAE SIALIDASE THROUGH MULTIVALENCY 3KQ6 ; 1.9 ; Enhancing the Therapeutic Properties of a Protein by a Designed Zinc-Binding Site, Structural principles of a novel long-acting insulin analog 5J9S ; 2.702 ; ENL YEATS in complex with histone H3 acetylation at K27 1E9I ; 2.48 ; Enolase from E.coli 5OHG ; 1.997 ; enolase in complex with RNase E 1NAW ; 2.0 ; ENOLPYRUVYL TRANSFERASE 2NSD ; 1.9 ; Enoyl acyl carrier protein reductase InhA in complex with N-(4-methylbenzoyl)-4-benzylpiperidine 1H0K ; 2.11 ; Enoyl thioester reductase 2 1GU7 ; 1.7 ; Enoyl thioester reductase from Candida tropicalis 1GUF ; 2.25 ; Enoyl thioester reductase from Candida tropicalis 4BKO ; 1.9 ; Enoyl-ACP reducatase FabV from Burkholderia pseudomallei (apo) 4BKU ; 1.841 ; Enoyl-ACP reductase FabI from Burkholderia pseudomallei with cofactor NADH and inhibitor PT155 3LT4 ; 2.25 ; Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant PB4 3LSY ; 2.85 ; Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant T0 3LT0 ; 1.96 ; Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant T1 3LT1 ; 2.2 ; Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant T2 3LT2 ; 2.5 ; Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan variant T3 4BKQ ; 2.3 ; Enoyl-ACP reductase from Yersinia pestis (wildtype)with cofactor NADH 4BKR ; 1.798 ; Enoyl-ACP reductase from Yersinia pestis (wildtype, removed Histag) with cofactor NADH 4W82 ; 1.7 ; Enoyl-acyl carrier protein-reductase domain from human fatty acid synthase 4W9N ; 1.84 ; Enoyl-acyl carrier protein-reductase domain from human fatty acid synthase complexed with triclosan 6OWE ; 1.72 ; Enoyl-CoA carboxylases/reductases in complex with ethylmalonyl CoA 6LVP ; 2.69 ; Enoyl-CoA hydratase (HyECH) from Hymenobacter sp. PAMC 26628 2DUB ; 2.4 ; ENOYL-COA HYDRATASE COMPLEXED WITH OCTANOYL-COA 6IJK ; 2.0 ; Enoyl-CoA hydratase/isomerase family protein from Cupriavidus necator H16 6LVO ; 2.36 ; Enoyl-CoA isomerase (BoECI) from Bosea sp. PAMC 26642 8C00 ; 2.9 ; Enp1TAP-S21_A population of yeast small ribosomal subunit precursors depleted of rpS21/eS21 8C01 ; 2.7 ; Enp1TAP_A population of yeast small ribosomal subunit precursors 4PTH ; 0.85 ; Ensemble model for Escherichia coli dihydrofolate reductase at 100K 4PTJ ; 1.05 ; Ensemble model for Escherichia coli dihydrofolate reductase at 277K 1MPE ; ; Ensemble of 20 structures of the tetrameric mutant of the B1 domain of streptococcal protein G 1Q10 ; ; Ensemble of 40 Structures of the Dimeric Mutant of the B1 Domain of Streptococcal Protein G 1OV2 ; ; Ensemble of the solution structures of domain one of receptor associated protein 2JXM ; ; Ensemble of twenty structures of the Prochlorothrix hollandica plastocyanin- cytochrome f complex 4QA9 ; 1.56 ; Ensemble refinement of an epoxide hydrolase from Streptomyces carzinostaticus subsp. neocarzinostaticus. 4XQ2 ; 2.1 ; Ensemble refinement of cystathione gamma lyase (CalE6) D7G from Micromonospora echinospora 4Q29 ; 1.349 ; Ensemble Refinement of plu4264 protein from Photorhabdus luminescens 4M83 ; 1.698 ; Ensemble refinement of protein crystal structure (2IYF) of macrolide glycosyltransferases OleD complexed with UDP and Erythromycin A 4M7P ; 1.77 ; Ensemble refinement of protein crystal structure of macrolide glycosyltransferases OleD 2Q52 ; 1.38 ; Ensemble refinement of the crystal structure of a glycolipid transfer-like protein from Galdieria sulphuraria 2Q4O ; 1.95 ; Ensemble refinement of the crystal structure of a lysine decarboxylase-like protein from Arabidopsis thaliana gene At2g37210 2Q4D ; 2.152 ; Ensemble refinement of the crystal structure of a lysine decarboxylase-like protein from Arabidopsis thaliana gene At5g11950 2Q4U ; 2.1 ; Ensemble refinement of the crystal structure of an EF-hand protein from Danio rerio Dr.36843 2Q4H ; 1.834 ; Ensemble refinement of the crystal structure of GALT-like protein from Arabidopsis thaliana At5g18200 2Q4L ; 2.3 ; Ensemble refinement of the crystal structure of GALT-like protein from Arabidopsis thaliana At5g18200 2Q4N ; 1.32 ; Ensemble refinement of the crystal structure of protein from Arabidopsis thaliana At1g79260 2Q4M ; 1.7 ; Ensemble refinement of the crystal structure of protein from Arabidopsis thaliana At5g01750 2Q4P ; 2.32 ; Ensemble refinement of the crystal structure of protein from Mus musculus Mm.29898 2Q4F ; 2.0 ; Ensemble refinement of the crystal structure of putative histidine-containing phosphotransfer protein from rice, Ak104879 5EJU ; 1.65 ; Ensemble refinement of the Crystal Structure of the Reversibly photoswitching chromoprotein Dathail, Ground State 2Q53 ; 2.01 ; Ensemble refinement of the crystal structure of uncharacterized protein loc79017 from Homo sapiens 4TYV ; 1.75 ; Ensemble refinement of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with glucose 4TZ5 ; 1.75 ; Ensemble refinement of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminarihexaose 4TZ3 ; 1.9 ; Ensemble refinement of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminaritetraose 4TZ1 ; 1.5 ; Ensemble refinement of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminaritriose 2Q3O ; 2.0 ; Ensemble refinement of the protein crystal structure of 12-oxo-phytodienoate reductase isoform 3 2Q4T ; 2.35 ; Ensemble refinement of the protein crystal structure of a cytosolic 5'-nucleotidase III from Mus musculus Mm.158936 2Q50 ; 2.45 ; Ensemble refinement of the protein crystal structure of a glyoxylate/hydroxypyruvate reductase from Homo sapiens 2Q47 ; 3.3 ; Ensemble refinement of the protein crystal structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana gene At1g05000 2Q4I ; 1.71 ; Ensemble refinement of the protein crystal structure of allene oxide cyclase from Arabidopsis thaliana At3g25770 2Q3M ; 1.9 ; Ensemble refinement of the protein crystal structure of an Arabidopsis thaliana putative steroid sulphotransferase 2Q51 ; 2.8 ; Ensemble refinement of the protein crystal structure of an aspartoacylase from Homo sapiens 2Q4Z ; 1.8 ; Ensemble refinement of the protein crystal structure of an aspartoacylase from Rattus norvegicus 2Q4C ; 2.508 ; Ensemble refinement of the protein crystal structure of annexin from Arabidopsis thaliana gene At1g35720 2Q3Q ; 2.1 ; Ensemble refinement of the protein crystal structure of At1g24000 from Arabidopsis thaliana 2Q3R ; 2.0 ; Ensemble refinement of the protein crystal structure of At1g76680 from Arabidopsis thaliana 2Q4Y ; 2.06 ; Ensemble refinement of the protein crystal structure of At1g77540-coenzyme A complex 2Q3P ; 1.9 ; Ensemble refinement of the protein crystal structure of At3g17210 from Arabidopsis thaliana 2Q4S ; 1.75 ; Ensemble refinement of the protein crystal structure of cysteine dioxygenase type I from Mus musculus Mm.241056 2Q4W ; 1.7 ; Ensemble refinement of the protein crystal structure of cytokinin oxidase/dehydrogenase (CKX) from Arabidopsis thaliana At5g21482 2Q44 ; 1.15 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At1g77540 2Q40 ; 1.7 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At2g17340 2Q49 ; 2.19 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At2g19940 2Q3V ; 1.8 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At2g34160 2Q4J ; 1.863 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At3g03250, a putative UDP-glucose pyrophosphorylase 2Q4X ; 2.1 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At3g16990 2Q4A ; 2.39 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At3g21360 2Q3T ; 1.6 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At3g22680 2Q4E ; 2.49 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At4g09670 2Q46 ; 1.8 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At5g02240 2Q3S ; 2.1 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At5g06450 2Q3U ; 1.53 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At5g08170, agmatine iminohydrolase 2Q48 ; 1.8 ; Ensemble refinement of the protein crystal structure of gene product from Arabidopsis thaliana At5g48480 2Q4K ; 2.5 ; Ensemble refinement of the protein crystal structure of gene product from Homo sapiens Hs.433573 2Q4Q ; 2.59 ; Ensemble refinement of the protein crystal structure of gene product from Homo sapiens Hs.95870 2Q42 ; 1.742 ; Ensemble refinement of the protein crystal structure of glyoxalase II from Arabidopsis thaliana gene At2g31350 2RGZ ; 2.61 ; Ensemble refinement of the protein crystal structure of human heme oxygenase-2 C127A (HO-2) with bound heme 2Q4R ; 2.09 ; Ensemble refinement of the protein crystal structure of human phosphomannomutase 2 (PMM2) 2Q4G ; 1.954 ; Ensemble refinement of the protein crystal structure of human ribonuclease inhibitor complexed with ribonuclease I 2Q43 ; 2.0 ; Ensemble refinement of the protein crystal structure of IAA-aminoacid hydrolase from Arabidopsis thaliana gene At5g56660 2Q45 ; 2.1 ; Ensemble refinement of the protein crystal structure of putative tropinone reductase from Arabidopsis thaliana gene At1g07440 2Q4B ; 2.096 ; Ensemble refinement of the protein crystal structure of selenomethionyl gene product from Arabidopsis thaliana At5g02240 in space group P21212 2Q41 ; 2.7 ; Ensemble refinement of the protein crystal structure of spermidine synthase from Arabidopsis thaliana gene At1g23820 2Q3W ; 1.48 ; Ensemble refinement of the protein crystal structure of the cys84ala cys85ala double mutant of the [2Fe-2S] ferredoxin subunit of toluene-4-monooxygenase from Pseudomonas mendocina KR1 2Q4V ; 1.842 ; Ensemble refinement of the protein crystal structure of thialysine n-acetyltransferase (SSAT2) from Homo sapiens 7MHL ; 1.55 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 100 K 7MHM ; 1.5302 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 240 K 7MHN ; 2.1908 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 277 K 7MHO ; 1.88 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 298 K 7MHP ; 2.0005 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 298 K at high humidity 7MHQ ; 1.9601 ; Ensemble refinement structure of SARS-CoV-2 main protease (Mpro) at 310 K 2N5T ; ; Ensemble solution structure of the phosphoenolpyruvate-Enzyme I complex from the bacterial phosphotransferase system 2N2K ; ; Ensemble structure of the closed state of Lys63-linked diubiquitin in the absence of a ligand 1JOQ ; ; Ensemble structures for Staphylococcal nuclease-H124L in ternary complex with Ca2+ and thymidine-3',5'-bisphosphate 1JOR ; ; Ensemble structures for unligated Staphylococcal nuclease-H124L 2K7A ; ; Ensemble Structures of the binary complex between the SH3 and SH2 domain of interleukin-2 tyrosine kinase. 8R8J ; 1.4 ; Ensemble-refined carboxymyoglobin photolysis power titration, 101 mJ/cm2 8R8G ; 1.4 ; Ensemble-refined carboxymyoglobin photolysis power titration, 18 mJ/cm2 8R8H ; 1.4 ; Ensemble-refined carboxymyoglobin photolysis power titration, 31 mJ/cm2 8R8I ; 1.4 ; Ensemble-refined carboxymyoglobin photolysis power titration, 56 mJ/cm2 8R8F ; 1.4 ; Ensemble-refined carboxymyoglobin photolysis power titration, 6 mJ/cm2 5BP8 ; 1.8 ; ent-Copalyl diphosphate synthase from Streptomyces platensis 3M4Q ; 3.0 ; Entamoeba histolytica asparaginyl-tRNA synthetase (AsnRS) 3M4P ; 2.83 ; Entamoeba histolytica asparaginyl-tRNA synthetase (AsnRS) in complex with asparaginyl-adenylate 8IW2 ; 1.75 ; Entamoeba histolytica Pyruvate kinase 4CW9 ; 1.84 ; Entamoeba histolytica thiredoxin C34S mutant 4YO3 ; 3.37 ; Enteroaggregative Escherichia Coli TssA N-terminal fragment 1Q2Q ; 1.4 ; Enterobacter cloacae GC1 class C beta-lactamase complexed with penem WAY185229 1RGZ ; 1.37 ; Enterobacter cloacae GC1 Class C beta-Lactamase Complexed with Transition-State Analog of Cefotaxime 3NX2 ; 2.01 ; Enterobacter sp. Px6-4 Ferulic Acid Decarboxylase in complex with substrate analogues 4KU0 ; 1.15 ; Enterobacteria phage T4 gp5.4 PAAR repeat protein in complex with T4 gp5 beta-helix fragment 2GZR ; 2.3 ; Enterobactin and Salmochelin Hydrolase IroE 2GZS ; 1.4 ; Enterobactin Hydolase IroE Complex with DFP 2M5Z ; ; Enterocin 7A 2M60 ; ; Enterocin 7B 6Z9L ; 3.063 ; Enterococcal PrgA 6ORI ; 1.4 ; Enterococcal surface protein, partial N-terminal region 1R59 ; 2.5 ; Enterococcus casseliflavus glycerol kinase 1XUP ; 2.75 ; ENTEROCOCCUS CASSELIFLAVUS GLYCEROL KINASE COMPLEXED WITH GLYCEROL 3D7E ; 2.03 ; Enterococcus casseliflavus glycerol kinase mutant HIS232ALA complexed with glycerol 7OCY ; 4.25 ; Enterococcus faecalis EfrCD in complex with a nanobody 5NV5 ; 2.4 ; Enterococcus faecalis FIC protein 6ERB ; 2.2 ; Enterococcus faecalis FIC protein (H111A) in complex with sulfate. 5NWF ; 2.6 ; Enterococcus faecalis FIC protein (H111A). 6EP2 ; 2.15 ; Enterococcus faecalis FIC protein in complex with ADP and calcium ion. 6EP5 ; 1.928 ; Enterococcus faecalis FIC protein in complex with ADP. 6EP0 ; 2.35 ; Enterococcus faecalis FIC protein in complex with AMP and calcium ion. 6ER8 ; 2.292 ; Enterococcus faecalis FIC protein in complex with phosphate. 7F7Q ; 1.42 ; Enterococcus faecalis GH31 alpha-N-acetylgalactosaminidase D455A in complex with p-nitrophenyl alpha-N-acetylgalactosaminide 7F7R ; 1.63 ; Enterococcus faecalis GH31 alpha-N-acetylgalactosaminidase D455N in complex with Tn antigen 6BSQ ; 1.8 ; Enterococcus faecalis Penicillin Binding Protein 4 (PBP4) 5J7W ; 2.5 ; Enterococcus faecalis thymidylate synthase complex with methotrexate 6TUG ; 2.42 ; Enterococcus italicus Csm6 bound to cyclic hexa-2'-fluoro-hexa-dAMP 2LNH ; ; Enterohaemorrhagic E. coli (EHEC) exploits a tryptophan switch to hijack host F-actin assembly 2M7A ; ; Enteropathogenic Escherichia coli 0111:H- str. 11128 ORF EC0111_1119 similar to bacteriophage lambda ea8.5 6ZOV ; 2.19 ; ENTEROPEPTIDASE IN COMPLEX WITH COMPOUND 6 7DA6 ; 2.2 ; Enterovirus 71 2A Protease mutant- C110A in complex with peptide inhibitor 5F8G ; 2.78 ; Enterovirus 71 Polymerase Elongation Complex (C1S1 Form) 5F8H ; 2.45 ; Enterovirus 71 Polymerase Elongation Complex (C1S1/2 Form) 5F8I ; 2.503 ; Enterovirus 71 Polymerase Elongation Complex (C1S2/3 Form) 5F8J ; 2.675 ; Enterovirus 71 Polymerase Elongation Complex (C1S4 Form) 5F8L ; 2.812 ; Enterovirus 71 Polymerase Elongation Complex (C3S1 Form) 5F8M ; 2.83 ; Enterovirus 71 Polymerase Elongation Complex (C3S4/5 Form) 5F8N ; 2.484 ; Enterovirus 71 Polymerase Elongation Complex (C3S6 Form) 6WDS ; 2.9 ; Enterovirus D68 in complex with human monoclonal antibody EV68-159 6WDT ; 3.1 ; Enterovirus D68 in complex with human monoclonal antibody EV68-228 5JA1 ; 3.0 ; EntF, a Terminal Nonribosomal Peptide Synthetase Module Bound to the MbtH-Like Protein YbdZ 5JA2 ; 3.0 ; EntF, a Terminal Nonribosomal Peptide Synthetase Module Bound to the non-Native MbtH-Like Protein PA2412 1LZ4 ; 1.8 ; ENTHALPIC DESTABILIZATION OF A MUTANT HUMAN LYSOZYME LACKING A DISULFIDE BRIDGE BETWEEN CYSTEINE-77 AND CYSTEINE-95 5LNK ; 3.9 ; Entire ovine respiratory complex I 1NHT ; 2.5 ; ENTRAPMENT OF 6-THIOPHOSPHORYL-IMP IN THE ACTIVE SITE OF CRYSTALLINE ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI DATA COLLECTED AT 100K 1KSZ ; 2.8 ; ENTRAPMENT OF 6-THIOPHOSPHORYL-IMP IN THE ACTIVE SITE OF CRYSTALLINE ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI, DATA COLLECTED AT 298K 1GEQ ; 2.0 ; Entropic stabilization of the tryptophan synthase A-subunit from a hyperthermophile, pyrococcus furiosus: X-ray analysis and calorimetry 6TPI ; 2.1 ; EnvC bound to the FtsX periplasmic domain 1SVB ; 1.9 ; ENVELOPE GLYCOPROTEIN FROM TICK-BORNE ENCEPHALITIS VIRUS 5CAY ; 3.0 ; Envelope glycoprotein gp120 core from HIV type 2 bound to the first two domains of human soluble CD4 receptor 7A4A ; 3.76 ; Envelope glycprotein of endogenous retrovirus Y032 (Atlas virus) from the human hookworm Ancylostoma ceylanicum 7DDA ; 2.51 ; Envelope protein VP37 a crystal structure from White Spot Syndrome Virus 7RWL ; 3.14 ; Envelope-associated Adeno-associated virus serotype 2 2VUJ ; 1.8 ; Environmentally isolated GH11 xylanase 4DHX ; 2.1 ; ENY2:GANP complex 2P6Z ; 1.93 ; Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana pipiens Oocytes 2P7S ; 1.8 ; Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana pipiens Oocytes 1W8M ; 1.65 ; Enzymatic and Structural Characterisation of Non Peptide Ligand Cyclophilin Complexes 1W8L ; 1.8 ; Enzymatic and structural characterization of non peptide ligand cyclophilin complexes 1W8V ; 1.7 ; Enzymatic and structural characterization of non peptide ligand cyclophilin complexes 5YFE ; 1.39 ; Enzymatic and structural characterization of the poly (ethylene terephthalate) hydrolase PETase from I. sakaiensis 2MH1 ; ; Enzymatic cyclisation of kalata B1 using sortase A 1CHM ; 1.9 ; ENZYMATIC MECHANISM OF CREATINE AMIDINOHYDROLASE AS DEDUCED FROM CRYSTAL STRUCTURES 8FUN ; 2.24 ; Enzymatically Active, Mn/Fe Metallated Form of AibH1H2 8QMK ; 1.3 ; Enzymatically-produced complex-B bound TmHydE structure 1SCA ; 2.0 ; ENZYME CRYSTAL STRUCTURE IN A NEAT ORGANIC SOLVENT 1SCB ; 2.3 ; ENZYME CRYSTAL STRUCTURE IN A NEAT ORGANIC SOLVENT 3DNK ; 2.84 ; Enzyme deglycosylated Human IgG1 Fc fragment 1E2A ; 2.3 ; ENZYME IIA FROM THE LACTOSE SPECIFIC PTS FROM LACTOCOCCUS LACTIS 7AHR ; 2.21 ; Enzyme of biosynthetic pathway 7AN5 ; 1.91 ; Enzyme of biosynthetic pathway 7AN6 ; 1.91 ; Enzyme of biosynthetic pathway 7AN7 ; 1.81 ; Enzyme of biosynthetic pathway 7AN8 ; 2.01 ; Enzyme of biosynthetic pathway 7AN9 ; 2.11 ; Enzyme of biosynthetic pathway 7YWC ; 1.917 ; Enzyme of biosynthetic pathway 1IXO ; 2.3 ; Enzyme-analogue substrate complex of Pyridoxine 5'-Phosphate Synthase 1P5D ; 1.6 ; Enzyme-ligand complex of P. aeruginosa PMM/PGM 1P5G ; 1.61 ; Enzyme-ligand complex of P. aeruginosa PMM/PGM 1PCJ ; 2.0 ; Enzyme-ligand complex of P. aeruginosa PMM/PGM 1PCM ; 1.9 ; Enzyme-ligand complex of P. aeruginosa PMM/PGM 1IXP ; 2.3 ; Enzyme-phosphate Complex of Pyridoxine 5'-Phosphate synthase 1IXQ ; 2.3 ; Enzyme-Phosphate2 Complex of Pyridoxine 5'-Phosphate synthase 1QH9 ; 2.5 ; ENZYME-PRODUCT COMPLEX OF L-2-HALOACID DEHALOGENASE 5FLI ; 2.15 ; enzyme-substrate complex of Ni-quercetinase 1IXN ; 2.3 ; Enzyme-Substrate Complex of Pyridoxine 5'-Phosphate Synthase 5JXY ; 1.71 ; Enzyme-substrate complex of TDG catalytic domain bound to a G/U analog 3MS8 ; 1.7 ; Enzyme-Substrate interactions of IXT6, the intracellular xylanase of G. stearothermophilus. 3MSD ; 1.58 ; Enzyme-Substrate interactions of IXT6, the intracellular xylanase of G. stearothermophilus. 3MSG ; 1.5 ; Enzyme-Substrate interactions of IXT6, the intracellular xylanase of G. stearothermophilus. 3MUA ; 1.5 ; Enzyme-Substrate interactions of IXT6, the intracellular xylanase of G. stearothermophilus. 3MUI ; 1.8 ; Enzyme-Substrate interactions of IXT6, the intracellular xylanase of G. stearothermophilus. 1HCB ; 1.6 ; ENZYME-SUBSTRATE INTERACTIONS: STRUCTURE OF HUMAN CARBONIC ANHYDRASE I COMPLEXED WITH BICARBONATE 5FLJ ; 1.818 ; enzyme-substrate-dioxygen complex of Ni-quercetinase 1ZUX ; 1.85 ; EosFP Fluorescent Protein- Green Form 1HI4 ; 1.8 ; Eosinophil-derived Neurotoxin (EDN) - Adenosien-3'-5'-Diphosphate Complex 1HI3 ; 1.8 ; Eosinophil-derived Neurotoxin (EDN) - Adenosine 2'-5'-Diphosphate Complex 1HI5 ; 1.8 ; Eosinophil-derived Neurotoxin (EDN) - Adenosine-5'-Diphosphate Complex 1HI2 ; 1.6 ; Eosinophil-derived Neurotoxin (EDN) - Sulphate Complex 7DAE ; 2.394 ; EPB in complex with tubulin 5RZQ ; 1.88 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z100642432 5RYR ; 1.87 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z104584152 5RZ3 ; 1.74 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1259341037 5RZ8 ; 1.66 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1263714198 5RZK ; 1.84 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1266823232 5RZG ; 1.7 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z133729708 5RYO ; 1.58 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z136583524 5RYV ; 1.69 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1373430305 5RZL ; 1.71 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1492796719 5RZ0 ; 1.74 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1497321453 5RYU ; 1.63 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1545196403 5RYN ; 1.88 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1545312521 5RZZ ; 1.76 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1551999220 5RYS ; 1.75 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1593306637 5RZS ; 1.69 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1703168683 5RZN ; 1.83 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1745658474 5RYP ; 1.63 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z1929757385 5RZD ; 1.81 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z198194394 5RZY ; 1.75 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z219104216 5RYX ; 1.63 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2234920345 5RZW ; 1.62 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2574937229 5RZB ; 1.59 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z271004858 5RZ1 ; 1.62 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z27682767 5RZE ; 1.69 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434786 5S00 ; 1.77 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434793 5RZX ; 1.74 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434814 5RZM ; 1.71 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434815 5RYW ; 1.66 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434829 5RZ5 ; 1.63 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434851 5RYZ ; 1.61 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434868 5RZH ; 1.88 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434890 5RZ4 ; 1.61 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434909 5RZO ; 1.97 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434925 5RZJ ; 1.68 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434938 5RZ6 ; 1.64 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z2856434944 5RZC ; 1.75 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z300245038 5RYM ; 1.64 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z31217395 5RZV ; 1.75 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z31504642 5RZU ; 1.66 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z32400357 5RZP ; 1.7 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z33546965 5RZI ; 2.09 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z48852953 5RZR ; 1.78 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z53825177 5RYT ; 1.72 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z54226006 5RZF ; 1.76 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z57040482 5RYY ; 1.69 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z57257264 5RYQ ; 1.64 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z57258487 5RZ7 ; 1.76 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z57472297 5RZ2 ; 1.77 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z68277692 5RZA ; 1.89 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z729352906 5RZT ; 1.79 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z763030030 5RZ9 ; 1.79 ; EPB41L3 PanDDA analysis group deposition -- Crystal Structure of the FERM domain of human EPB41L3 in complex with Z943693514 7DAD ; 2.85 ; EPD in complex with tubulin 2K9Y ; ; EphA2 dimeric structure in the lipidic bicelle at pH 5.0 6NK0 ; 1.53 ; EphA2 LBD in complex with bA-WLA-Yam peptide 6NK2 ; 2.2 ; EphA2 LBD in complex with bA-WLA-YRPK bio peptide 6NK1 ; 1.55 ; EphA2 LBD in complex with bA-WLA-YRPKbio peptide 6NKP ; 2.033 ; EphA2 LBD in complex with bA-WLA-YSKbio peptide 6NJZ ; 1.9 ; EphA2 LBD in complex with YSA-GSGSK-bio peptide 2KSO ; ; EphA2:SHIP2 SAM:SAM complex 4M4R ; 3.13 ; Epha4 ectodomain complex with ephrin a5 1SHW ; 2.2 ; EphB2 / EphrinA5 Complex Structure 2QBX ; 2.3 ; EphB2/SNEW Antagonistic Peptide Complex 5L6O ; 1.88 ; EphB3 kinase domain covalently bound to an irreversible inhibitor (compound 3) 5L6P ; 2.26 ; EphB3 kinase domain covalently bound to an irreversible inhibitor (compound 6) 2VWU ; 2.0 ; ephB4 kinase domain inhibitor complex 2VWV ; 1.9 ; ephB4 kinase domain inhibitor complex 2VWW ; 1.9 ; ephB4 kinase domain inhibitor complex 2VWX ; 1.65 ; ephB4 kinase domain inhibitor complex 2VWY ; 1.65 ; ephB4 kinase domain inhibitor complex 2VWZ ; 1.65 ; ephB4 kinase domain inhibitor complex 2VX0 ; 2.1 ; ephB4 kinase domain inhibitor complex 2VX1 ; 1.65 ; ephB4 kinase domain inhibitor complex 2X9F ; 1.75 ; ephB4 kinase domain inhibitor complex 2XVD ; 1.7 ; ephB4 kinase domain inhibitor complex 2YN8 ; 2.11 ; ephB4 kinase domain inhibitor complex 4BB4 ; 1.65 ; ephB4 kinase domain inhibitor complex 7K7J ; 3.004 ; EphB6 receptor ectodomain 8JWS ; 2.0 ; ePHD domain of PHD Finger Protein 7 (PHF7) 1SHX ; 2.1 ; Ephrin A5 ligand structure 2F01 ; 0.85 ; Epi-biotin complex with core streptavidin 2GH7 ; 1.0 ; Epi-biotin complex with core streptavidin 3KBK ; 1.9 ; Epi-isozizaene synthase complexed with Hg 3KB9 ; 1.598 ; Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 1G5Q ; 2.57 ; EPID H67N COMPLEXED WITH SUBSTRATE PEPTIDE DSYTC 1FGD ; ; EPIDERMAL GROWTH FACTOR (EGF) SUBDOMAIN OF HUMAN THROMBOMODULIN (NMR, 11 STRUCTURES) 1FGE ; ; EPIDERMAL GROWTH FACTOR (EGF) SUBDOMAIN OF HUMAN THROMBOMODULIN (NMR, 14 STRUCTURES) 1M17 ; 2.6 ; Epidermal Growth Factor Receptor tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib 2K2T ; ; Epidermal growth Factor-like domain 2 from Toxoplasma gondii Microneme protein 6 1EDM ; 1.5 ; EPIDERMAL GROWTH FACTOR-LIKE DOMAIN FROM HUMAN FACTOR IX 6SIF ; 1.69 ; Epidermicin antimicrobial protein from Staphylococcus epidermidis 6SIG ; 1.58 ; Epidermicin antimicrobial protein from Staphylococcus epidermidis 3QJG ; 2.04 ; Epidermin biosynthesis protein EpiD from Staphylococcus aureus 1AGJ ; 1.7 ; EPIDERMOLYTIC TOXIN A FROM STAPHYLOCOCCUS AUREUS 1BTW ; 1.7 ; Episelection: novel KI ~nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface 1BTX ; 1.7 ; Episelection: Novel Ki ~Nanomolar Inhibitors of Serine Proteases Selected by Binding or Chemistry on an Enzyme Surface 1BTZ ; 2.0 ; Episelection: novel KI ~nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface 3RFN ; 1.8 ; Epitope backbone grafting by computational design for improved presentation of linear epitopes on scaffold proteins 3RHU ; 2.8 ; Epitope backbone grafting by computational design for improved presentation of linear epitopes on scaffold proteins 3RI0 ; 2.25 ; Epitope backbone grafting by computational design for improved presentation of linear epitopes on scaffold proteins 3RIJ ; 2.3 ; Epitope backbone grafting by computational design for improved presentation of linear epitopes on scaffold proteins 3PP3 ; 2.508 ; Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for the type I / type II distinction of anti- CD20 antibodies 3PP4 ; 1.6 ; Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for the type I / type II distinction of anti- CD20 antibodies 7T72 ; 3.177 ; Epitope-based selection of SARS-CoV-2 neutralizing antibodies from convalescent patients 7YUE ; 2.35 ; Epitope-directed anti-SARS CoV 2 scFv engineered against the key spike protein region. 1KVG ; ; EPO-3 beta Hairpin Peptide 8CLG ; 2.8 ; Epothilone A and Colchicine bound to tubulin (T2R-TTL) complex 1Q5D ; 1.93 ; Epothilone B-bound Cytochrome P450epoK 7AC0 ; 2.177 ; Epoxide hydrolase CorEH without ligand 6UNW ; 2.21 ; Epoxide hydrolase from an endophytic Streptomyces 8HGU ; 1.94 ; Epoxide hydrolase from Bosea sp. PAMC 26642 8HM5 ; 2.43 ; Epoxide hydrolase from Caballeronia sordidicola PAMC 26510 1R1B ; ; EPRS SECOND REPEATED ELEMENT, NMR, MINIMIZED AVERAGE STRUCTURE 1I0C ; 2.0 ; EPS8 SH3 CLOSED MONOMER 1I07 ; 1.8 ; EPS8 SH3 DOMAIN INTERTWINED DIMER 7TZK ; 1.43 ; EPS8 SH3 Domain with NleH1 PxxDY Motif 2E5Y ; 1.92 ; Epsilon subunit and ATP complex of F1F0-ATP synthase from the Thermophilic Bacillus PS3 1AQT ; 2.3 ; EPSILON SUBUNIT OF F1F0-ATP SYNTHASE FROM ESCHERICHIA COLI 4RG4 ; 2.51 ; Epsilon-caprolactone-bound crystal structure of cyclohexanone monooxygenase in the Loose conformation 4RG3 ; 1.94 ; Epsilon-caprolactone-bound crystal structure of cyclohexanone monooxygenase in the Tight conformation 1H0A ; 1.7 ; Epsin ENTH bound to Ins(1,4,5)P3 1Q36 ; 1.6 ; EPSP synthase (Asp313Ala) liganded with tetrahedral reaction intermediate 5BS5 ; 2.49 ; EPSP synthase from Acinetobacter baumannii 2AA9 ; 1.5 ; EPSP synthase liganded with shikimate 2AAY ; 1.55 ; EPSP synthase liganded with shikimate and glyphosate 1X8T ; 1.9 ; EPSPS liganded with the (R)-phosphonate analog of the tetrahedral reaction intermediate 1X8R ; 1.5 ; EPSPS liganded with the (S)-phosphonate analog of the tetrahedral reaction intermediate 2BSY ; 1.5 ; Epstein Barr Virus dUTPase 2BT1 ; 2.7 ; Epstein Barr Virus dUTPase in complex with a,b-imino dUTP 2H6O ; 3.5 ; Epstein Barr Virus Major Envelope Glycoprotein 1VHI ; 2.5 ; EPSTEIN BARR VIRUS NUCLEAR ANTIGEN-1 DNA-BINDING DOMAIN, RESIDUES 470-607 2W45 ; 3.0 ; Epstein-Barr virus alkaline nuclease 2W4B ; 3.5 ; Epstein-Barr virus alkaline nuclease D203S mutant 7P9W ; 2.0001 ; Epstein-Barr virus encoded apoptosis regulator BHRF1 in complex with Puma BH3 7P33 ; 2.78543 ; Epstein-Barr virus encoded Bcl-2 homolog BHRF-1 in complex with Bid BH3 peptide 1O6E ; 2.3 ; Epstein-Barr virus protease 7WLP ; 2.29 ; Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses 2J8X ; 2.3 ; Epstein-Barr virus uracil-DNA glycosylase in complex with Ugi from PBS-2 5SZX ; 2.251 ; Epstein-Barr virus Zta DNA binding domain homodimer in complex with methylated DNA 7BR7 ; 4.3 ; Epstein-Barr virus, C1 portal-proximal penton vertex, CATC binding 7BQT ; 4.8 ; Epstein-Barr virus, C12 portal dodecamer 7BR8 ; 3.8 ; Epstein-Barr virus, C5 penton vertex, CATC absent. 7BQX ; 4.2 ; Epstein-Barr virus, C5 portal vertex 7BSI ; 4.1 ; Epstein-Barr virus, one asymmetric unit structure of the icosahedral tegumented capsid 7JSX ; 2.06 ; EPYC1(106-135) peptide-bound Rubisco 7JFO ; 2.13 ; EPYC1(49-72)-bound Rubisco 7JQA ; 1.53 ; EQADH-NADH-4-BROMOBENZYL ALCOHOL, P21 7K35 ; 1.2 ; EQADH-NADH-4-METHYLBENZYL ALCOHOL, p21 6XT2 ; 1.55 ; EQADH-NADH-HEPTAFLUOROBUTANOL, P21 3G6G ; 2.31 ; Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations 6ZLK ; 1.5 ; Equilibrium Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid/UDP-Galacturonic acid and NAD 2V93 ; ; EQUILLIBRIUM MIXTURE OF OPEN AND PARTIALLY-CLOSED SPECIES IN THE APO STATE OF MALTODEXTRIN-BINDING PROTEIN BY PARAMAGNETIC RELAXATION ENHANCEMENT NMR 1IAZ ; 1.9 ; EQUINATOXIN II 4IUM ; 1.45 ; Equine arteritis virus papain-like protease 2 (PLP2) covalently bound to ubiquitin 2WFF ; 4.0 ; Equine Rhinitis A Virus 2WS9 ; 3.0 ; Equine Rhinitis A Virus at Low pH 2XBO ; 4.0 ; Equine Rhinitis A Virus in Complex with its Sialic Acid Receptor 3MDJ ; 2.95 ; ER Aminopeptidase, ERAP1, Bound to the Zinc Aminopeptidase Inhibitor, Bestatin 7NEL ; 1.45 ; ER-PRS*(+) (Y537S) in complex with estradiol and SRC-2 coactivator peptide 7NFB ; 1.33 ; ER-PRS*(+) (Y537S) in complex with genistein and SRC-2 coactivator peptide 7NDO ; 1.6 ; ER-PRS*(-) (L536S, L372R) in complex with raloxifene 1QKD ; 1.49 ; ERABUTOXIN 1QKE ; 1.5 ; ERABUTOXIN 7MWC ; 3.0 ; ERAP1 binds peptide C-terminus of a LPF sequence (AAAAFKARKF) 7MWB ; 3.2 ; ERAP1 binds peptide C-terminus of a SPF sequence (FKARKF) 6MGQ ; 2.92 ; ERAP1 in the open conformation bound to 10mer phosphinic inhibitor DG014 6EA4 ; 2.45 ; ERAP2 bound to Aryl Sulfonamide Uncompetitive Inhibitor 8CF8 ; 2.2 ; Eravacycline bound to the 30S head 6SQ0 ; 1.77 ; ERa_L536S (L536S/C381S/C471S,C530S) in complex with a bridged tetracyclic indole (compound 8) 6SUO ; 1.74 ; ERa_L536S (L536S/C381S/C471S,C530S) in complex with a tricyclic indole (compound 6) 2JWA ; ; ErbB2 transmembrane segment dimer spatial structure 2R4B ; 2.4 ; ErbB4 kinase domain complexed with a thienopyrimidine inhibitor 1N7T ; ; ERBIN PDZ domain bound to a phage-derived peptide 8QFL ; 1.75 ; Ergothioneine dioxygenase from Thermocatellispora tengchongensis in complex with iron 8QFM ; 1.9 ; Ergothioneine dioxygenase from Thermocatellispora tengchongensis in complex with manganese 8QFN ; 1.75 ; Ergothioneine dioxygenase from Thermocatellispora tengchongensis in complex with manganese and in presence of catalase aerobic 8QFP ; 2.2 ; Ergothioneine dioxygenase from Thermocatellispora tengchongensis in complex with manganese and in presence of catalase anaerobic 8QFQ ; 2.1 ; Ergothioneine dioxygenase, variant H147A, from Thermocatellispora tengchongensis in complex with manganese 8QFO ; 2.05 ; Ergothioneine dioxygenase, variant Y149F, from Thermocatellispora tengchongensis in complex with manganese 6FNR ; 1.83 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with chlorohistidine 6FNS ; 1.85 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with morpholinohistidine 6FNQ ; 1.75 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with N,N,N-trimethylhistidine (hercynine) 4PIN ; 1.9 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with N,N-dimethylhistidine 4PIO ; 1.506 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with N,N-dimethylhistidine and SAH 6FNT ; 1.9 ; Ergothioneine-biosynthetic methyltransferase EgtD in complex with pyrrolidinohistidine 4PIM ; 1.75 ; Ergothioneine-biosynthetic methyltransferase EgtD, apo form 4ZFK ; 1.82 ; Ergothioneine-biosynthetic Ntn hydrolase EgtC with glutamine 4ZFJ ; 1.75 ; Ergothioneine-biosynthetic Ntn hydrolase EgtC, apo form 4ZFL ; 1.7 ; Ergothioneine-biosynthetic Ntn hydrolase variant EgtC_C2A with natural substrate 4X8E ; 1.6 ; Ergothioneine-biosynthetic sulfoxide synthase EgtB in complex with N,N,N-trimethyl-histidine 4X8D ; 1.98 ; Ergothioneine-biosynthetic sulfoxide synthase EgtB in complex with N,N-dimethyl-histidine and gamma-glutamyl-cysteine 4X8B ; 1.7 ; Ergothioneine-biosynthetic sulfoxide synthase EgtB, apo form 4F5D ; 3.0 ; ERIS/STING in complex with ligand 4S34 ; 2.5 ; ERK2 (I84A) in complex with AMP-PNP 5BUI ; 2.12 ; ERK2 complexed with 2-pyridiyl tetrahydroazaindazole 5BUJ ; 1.85 ; ERK2 complexed with a N-H tetrahydroazaindazole 5BUE ; 2.4 ; ERK2 complexed with N-benzylpyridone tetrahydroazaindazole 4S30 ; 2.0 ; ERK2 intrinsically active mutant (I84A) 4S2Z ; 1.48 ; ERK2 Intrinsically active mutant R65S 6RFP ; 1.74 ; ERK2 MAP kinase with mutations at Helix-G 6RFO ; 1.7 ; ERK2 MAP kinase with the activation loop of p38alpha 6Q7K ; 1.84 ; ERK2 mini-fragment binding 6Q7S ; 1.73 ; ERK2 mini-fragment binding 6Q7T ; 1.6 ; ERK2 mini-fragment binding 6QA1 ; 1.58 ; ERK2 mini-fragment binding 6QA3 ; 1.57 ; ERK2 mini-fragment binding 6QA4 ; 1.6 ; ERK2 mini-fragment binding 6QAG ; 2.07 ; ERK2 mini-fragment binding 6QAH ; 1.58 ; ERK2 mini-fragment binding 6QAL ; 1.57 ; ERK2 mini-fragment binding 6QAQ ; 1.58 ; ERK2 mini-fragment binding 6QAW ; 1.84 ; ERK2 mini-fragment binding 4S33 ; 1.48 ; ERK2 R65S mutant complexed with AMP-PNP 6GJB ; 1.82 ; Erk2 signalling protein 6GJD ; 1.58 ; Erk2 signalling protein 5O7I ; 2.38 ; ERK5 in complex with a pyrrole inhibitor 7PUS ; 2.59 ; ERK5 in complex with Pyrrole Carboxamide scaffold 5BYY ; 2.79 ; ERK5 IN COMPLEX WITH SMALL MOLECULE 5BYZ ; 1.65 ; ERK5 in complex with small molecule 6V5D ; ; EROS3 RDC and NOE Derived Ubiquitin Ensemble 4BF3 ; 2.37 ; ErpC, a member of the complement regulator acquiring family of surface proteins from Borrelia burgdorfei, possesses an architecture previously unseen in this protein family. 5JZE ; 2.47 ; Erve virus viral OTU domain protease in complex with mouse ISG15 5FR7 ; 1.95 ; Erwinia amylovora AmyR amylovoran repressor, a member of the YbjN protein family 5F52 ; 1.63 ; Erwinia chrysanthemi L-asparaginase + Aspartic acid 5HW0 ; 1.702 ; Erwinia chrysanthemi L-asparaginase + Glutamic acid 5I48 ; 1.5 ; Erwinia chrysanthemi L-asparaginase A31I + E63Q mutation + Aspartic acid 5I4B ; 1.6 ; Erwinia chrysanthemi L-asparaginase E63Q +S254N mutation + L-Aspartic acid 5I3Z ; 2.05 ; Erwinia chrysanthemi L-asparaginase E63Q mutation + Aspartic acid 1AXY ; 1.95 ; ERYTHRINA CORALLODENDRON LECTIN 1AXZ ; 1.95 ; ERYTHRINA CORALLODENDRON LECTIN IN COMPLEX WITH D-GALACTOSE 1AX1 ; 1.95 ; ERYTHRINA CORALLODENDRON LECTIN IN COMPLEX WITH LACTOSE 1AX2 ; 1.95 ; ERYTHRINA CORALLODENDRON LECTIN IN COMPLEX WITH N-ACETYLLACTOSAMINE 1AX0 ; 1.9 ; ERYTHRINA CORALLODENDRON LECTIN IN COMPLEX WITH N-ACTYLGALACTOSAMINE 3N3H ; 2.0 ; Erythrina corallodendron lectin mutant (Y106G) in complex with citrate 3N36 ; 2.3 ; Erythrina corallodendron lectin mutant (Y106G) in complex with Galactose 3N35 ; 2.0 ; Erythrina corallodendron lectin mutant (Y106G) with N-Acetylgalactosamine 1UZZ ; 2.13 ; Erythrina cristagalli bound to N-linked oligosaccharide and lactose 1V00 ; 1.7 ; Erythrina cristagalli lectin 1UZY ; 2.0 ; Erythrina crystagalli lectin 4R3A ; 2.92 ; Erythrobacter litoralis EL346 blue-light activated histidine kinase 7UZE ; 2.4 ; Erythrocyte ankyrin-1 complex class 2 local refinement of AQP1 (C4 symmetry applied) 6ZOC ; 2.89 ; Erythromycin binding to the access pocket of AcrB-G616P L protomer and 3-formylrifamycin SV binding to the access pocket of AcrB-G616P T protomer 8FFS ; 2.96 ; Erythromycin bound Klebsiella pneumoniae AcrB multidrug efflux pump 6XCQ ; 2.0 ; Erythromycin esterase EreC, mutant H289N in its closed conformation 6XCS ; 2.4 ; Erythromycin esterase mutant EreC H289N in its open conformation 6S0Z ; 2.3 ; Erythromycin Resistant Staphylococcus aureus 50S ribosome (delta R88 A89 uL22) in complex with erythromycin. 6S12 ; 3.2 ; Erythromycin Resistant Staphylococcus aureus 50S ribosome (delta R88 A89 uL22). 6S0X ; 2.425 ; Erythromycin Resistant Staphylococcus aureus 70S ribosome (delta R88 A89 uL22) in complex with erythromycin. 6S13 ; 3.58 ; Erythromycin Resistant Staphylococcus aureus 70S ribosome (delta R88 A89 uL22). 7Q4K ; 3.0 ; Erythromycin-stalled Escherichia coli 70S ribosome with streptococcal MsrDL nascent chain 1CN4 ; 2.8 ; ERYTHROPOIETIN COMPLEXED WITH EXTRACELLULAR DOMAINS OF ERYTHROPOIETIN RECEPTOR 3OPR ; 1.65 ; ESBL R164H mutant of SHV-1 beta-lactamase complexed to SA2-13 3OPL ; 1.8 ; ESBL R164H mutant SHV-1 beta-lactamase 3OPH ; 1.34 ; ESBL R164S mutant of SHV-1 beta-lactamase 3OPP ; 1.8 ; ESBL R164S mutant of SHV-1 beta-lactamase complexed with SA2-13 6E9E ; 3.4 ; EsCas13d-crRNA binary complex 6E9F ; 3.3 ; EsCas13d-crRNA-target RNA ternary complex 2AAC ; 1.6 ; ESCHERCHIA COLI GENE REGULATORY PROTEIN ARAC COMPLEXED WITH D-FUCOSE 5VT0 ; 3.78 ; Escherichia coli 6S RNA derivative in complex with Escherichia coli RNA polymerase sigma70-holoenzyme 8EKC ; 2.7 ; Escherichia coli 70S ribosome bound to thermorubin, deacylated P-site tRNAfMet and aminoacylated A-site Phe-tRNA 6TQM ; 3.8 ; Escherichia coli AdhE structure in its compact conformation 6TQH ; 3.4 ; Escherichia coli AdhE structure in its extended conformation 6R8U ; 3.0 ; Escherichia coli AGPase in complex with AMP. 6SI8 ; 3.4 ; Escherichia coli AGPase in complex with AMP. 6SHQ ; 3.2 ; Escherichia coli AGPase in complex with AMP. Symmetry C2 6R8B ; 3.1 ; Escherichia coli AGPase in complex with FBP. 6SHJ ; 3.2 ; Escherichia coli AGPase in complex with FBP. Symmetry applied C2 6SHN ; 3.3 ; Escherichia coli AGPase in complex with FBP. Symmetry C1 5MNI ; 3.09 ; Escherichia coli AGPase mutant R130A apo form 4RTD ; 3.65 ; Escherichia coli alpha-2-macroglobulin activated by porcine elastase 8BNR ; 10.3 ; Escherichia coli anaerobic fatty acid beta oxidation trifunctional enzyme (anEcTFE) octameric complex 8BNU ; 3.55 ; Escherichia coli anaerobic fatty acid beta oxidation trifunctional enzyme (anEcTFE) tetrameric complex 8BRJ ; 4.08 ; Escherichia coli anaerobic fatty acid beta oxidation trifunctional enzyme (anEcTFE) trimeric complex 3OT7 ; 1.901 ; Escherichia coli apo-manganese superoxide dismutase 3E2C ; 1.8 ; Escherichia coli Bacterioferritin Mutant E128R/E135R 6P8K ; 1.7 ; Escherichia coli Bacterioferritin Substituted with Zinc Protoporphyrin IX 6P8L ; 2.1 ; Escherichia coli Bacterioferritin Substituted with Zinc Protoporphyrin IX (Zn Absorption Edge X-ray Data) 1MKB ; 2.0 ; ESCHERICHIA COLI BETA-HYDROXYDECANOYL THIOL ESTER DEHYDRASE AT PH 5 AND 21 DEGREES C 6Z9H ; 1.72 ; Escherichia coli D-2-deoxyribose-5-phosphate aldolase - C47V/G204A/S239D mutant 6Z9J ; 1.5 ; Escherichia coli D-2-deoxyribose-5-phosphate aldolase - N21K mutant 6Z9I ; 1.86 ; Escherichia coli D-2-deoxyribose-5-phosphate aldolase - N21K mutant complex with reaction products 8UW0 ; 0.93 ; Escherichia coli DHFR bound to NADP+ and folate, 17.2 MGy dose 1DRV ; 2.2 ; ESCHERICHIA COLI DHPR/ACNADH COMPLEX 1DRU ; 2.2 ; ESCHERICHIA COLI DHPR/NADH COMPLEX 1DRW ; 2.2 ; ESCHERICHIA COLI DHPR/NHDH COMPLEX 1ARZ ; 2.6 ; ESCHERICHIA COLI DIHYDRODIPICOLINATE REDUCTASE IN COMPLEX WITH NADH AND 2,6 PYRIDINE DICARBOXYLATE 1F76 ; 2.5 ; ESCHERICHIA COLI DIHYDROOROTATE DEHYDROGENASE 5L3J ; 2.83 ; ESCHERICHIA COLI DNA GYRASE B IN COMPLEX WITH BENZOTHIAZOLE-BASED INHIBITOR 6GCM ; 2.45 ; Escherichia coli DPS 8OUC ; 1.37 ; Escherichia coli DPS 4CTI ; 2.847 ; Escherichia coli EnvZ histidine kinase catalytic part fused to Archaeoglobus fulgidus Af1503 HAMP domain 1D8S ; 4.4 ; ESCHERICHIA COLI F1 ATPASE 1ZK5 ; 1.4 ; Escherichia coli F17fG lectin domain complex with N-acetylglucosamine 1QKC ; 3.1 ; ESCHERICHIA COLI FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) IN COMPLEX DELTA TWO-ALBOMYCIN 7O9G ; 2.8 ; Escherichia coli Ffh in complex with ppGpp 7O9I ; 2.49 ; Escherichia coli Ffh in complex with pppGpp 4V0B ; 2.55 ; Escherichia coli FtsH hexameric N-domain 7O9H ; 2.4 ; Escherichia coli FtsY in complex with pppGpp 8GZY ; 2.6 ; Escherichia coli FtsZ complexed with monobody (P21) 8GZX ; 1.84 ; Escherichia coli FtsZ complexed with monobody (P212121) 1GMX ; 1.1 ; Escherichia coli GlpE sulfurtransferase 1GN0 ; 1.8 ; Escherichia coli GlpE sulfurtransferase soaked with KCN 1ECF ; 2.0 ; ESCHERICHIA COLI GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE 1ECJ ; 2.5 ; ESCHERICHIA COLI GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE COMPLEXED WITH 2 AMP PER TETRAMER 1ECB ; 2.7 ; ESCHERICHIA COLI GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE COMPLEXED WITH 2 GMP, 1 MG PER SUBUNIT 1ECC ; 2.4 ; ESCHERICHIA COLI GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE COMPLEXED WITH MN-CPRPP AND 5-OXO-NORLEUCINE 1BWF ; 3.0 ; ESCHERICHIA COLI GLYCEROL KINASE MUTANT WITH BOUND ATP ANALOG SHOWING SUBSTANTIAL DOMAIN MOTION 1GLJ ; 3.0 ; ESCHERICHIA COLI GLYCEROL KINASE MUTANT WITH BOUND ATP ANALOG SHOWING SUBSTANTIAL DOMAIN MOTION 1GLL ; 3.0 ; ESCHERICHIA COLI GLYCEROL KINASE MUTANT WITH BOUND ATP ANALOG SHOWING SUBSTANTIAL DOMAIN MOTION 1GPM ; 2.2 ; ESCHERICHIA COLI GMP SYNTHETASE COMPLEXED WITH AMP AND PYROPHOSPHATE 6AYI ; 2.09 ; Escherichia coli GusR 1TII ; 2.25 ; ESCHERICHIA COLI HEAT LABILE ENTEROTOXIN TYPE IIB 1QB5 ; 1.9 ; ESCHERICHIA COLI HEAT LABILE ENTEROTOXIN TYPE IIB B-PENTAMER 1QCB ; 2.2 ; ESCHERICHIA COLI HEAT LABILE ENTEROTOXIN TYPE IIB B-PENTAMER 8GW2 ; 2.71 ; Escherichia Coli Heat Labile Enterotoxin Type IIB B-Pentamer Circular Permutant CP13-14 8H2R ; 2.9 ; Escherichia Coli Heat Labile Enterotoxin Type IIB B-Pentamer Circular Permutant CP52-53 5G3L ; 1.72 ; ESCHERICHIA COLI HEAT LABILE ENTEROTOXIN TYPE IIB B-PENTAMER COMPLEXED WITH SIALYLATED SUGAR 5UK7 ; 3.0 ; Escherichia coli Hfq bound to dsDNA 4PNO ; 0.97 ; Escherichia coli Hfq-RNA complex at 0.97 A Resolution 2XZR ; 2.8 ; Escherichia coli Immunoglobulin-binding protein EibD 391-438 FUSED TO GCN4 ADAPTORS 3W7U ; 1.99 ; Escherichia coli K12 YgjK complexed with galactose 3W7S ; 1.9 ; Escherichia coli K12 YgjK complexed with glucose 3W7T ; 1.5 ; Escherichia coli K12 YgjK complexed with mannose 1YRL ; 2.6 ; Escherichia coli ketol-acid reductoisomerase 1YON ; 1.95 ; Escherichia coli ketopantoate reductase in complex with 2-monophosphoadenosine-5'-diphosphate 6MGC ; 1.35 ; Escherichia coli KpsC, N-terminal domain 5TT5 ; 1.552 ; Escherichia coli LigA (K115M) in complex with NAD+ 8BRW ; 1.73 ; Escherichia coli methionyl-tRNA synthetase mutant L13C,I297C 8BRX ; 1.54 ; Escherichia coli methionyl-tRNA synthetase mutant L13C,I297C complexed with beta-3-methionine 8BRU ; 1.55 ; Escherichia coli methionyl-tRNA synthetase mutant L13M,I297C 8BRV ; 1.53 ; Escherichia coli methionyl-tRNA synthetase mutant L13M,I297C complexed with beta3-methionine. 1B5T ; 2.5 ; ESCHERICHIA COLI METHYLENETETRAHYDROFOLATE REDUCTASE 1ZRQ ; 2.2 ; Escherichia coli Methylenetetrahydrofolate Reductase (reduced) complexed with NADH, pH 6.0 1ZPT ; 1.95 ; Escherichia coli Methylenetetrahydrofolate Reductase (reduced) complexed with NADH, pH 7.25 2F00 ; 2.5 ; Escherichia coli MurC 2HUR ; 1.62 ; Escherichia coli nucleoside diphosphate kinase 8IOX ; 2.95 ; Escherichia coli OpgD mutant-D388N 8IP1 ; 2.06 ; Escherichia coli OpgD mutant-D388N with beta-1,2-glucan 8IP2 ; 1.81 ; Escherichia coli OpgG mutant-D361N with beta-1,2-glucan 8PKL ; 3.09 ; Escherichia coli paused disome complex (leading 70S non-rotated closed PRE state) 8RCL ; 3.49 ; Escherichia coli paused disome complex (Non-rotated disome interface class 1) 8RCM ; 3.59 ; Escherichia coli paused disome complex (Non-rotated disome interface class 2) 8R3V ; 3.28 ; Escherichia coli paused disome complex (non-rotated disome interface) 8PEG ; 3.3 ; Escherichia coli paused disome complex (queueing 70S non-rotated closed PRE state) 8RCS ; 4.46 ; Escherichia coli paused disome complex (Rotated disome interface class 1) 8RCT ; 5.32 ; Escherichia coli paused disome complex (Rotated disome interface class 2) 5G5G ; 1.7 ; Escherichia coli Periplasmic Aldehyde Oxidase 5G5H ; 2.3 ; Escherichia coli Periplasmic Aldehyde Oxidase R440H mutant 8FXT ; 1.53 ; Escherichia coli periplasmic Glucose-Binding Protein glucose complex: Acrylodan conjugate attached at W183C 7Z2T ; 1.41 ; Escherichia coli periplasmic phytase AppA D304A mutant, complex with myo-inositol hexakissulfate 7Z32 ; 1.85 ; Escherichia coli periplasmic phytase AppA D304A mutant, phosphohistidine intermediate 7Z2W ; 1.42 ; Escherichia coli periplasmic phytase AppA D304A,T305E mutant, complex with myo-inositol hexakissulfate 7Z3V ; 2.6 ; Escherichia coli periplasmic phytase AppA D304E mutant, complex with myo-inositol hexakissulfate 7Z2Y ; 1.86 ; Escherichia coli periplasmic phytase AppA T305E mutant, complex with myo-inositol hexakissulfate 7Z2S ; 1.72 ; Escherichia coli periplasmic phytase AppA, complex with myo-inositol hexakissulfate 7Z1J ; 1.85 ; Escherichia coli periplasmic phytase AppA, complex with phosphate 3VUS ; 1.65 ; Escherichia coli PgaB N-terminal domain 2PNH ; 2.25 ; Escherichia coli PriB E39A variant 1PR5 ; 2.5 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with 7-deazaadenosine and Phosphate/Sulfate 1PR4 ; 2.4 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with 9-beta-D-ribofuranosyl-6-methylthiopurine and Phosphate/Sulfate 1PR6 ; 2.1 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with 9-beta-D-xylofuranosyladenine and Phosphate/Sulfate 1PR2 ; 2.3 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with 9-beta-D-[2-deoxyribofuranosyl]-6-methylpurine and Phosphate/Sulfate 1PR1 ; 2.3 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with Formycin B and Phosphate/Sulfate 1PR0 ; 2.2 ; Escherichia coli Purine Nucleoside Phosphorylase Complexed with Inosine and Phosphate/Sulfate 1YQQ ; 2.6 ; Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene 1YQU ; 3.1 ; Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene 1YR3 ; 3.2 ; Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene 1QHM ; 2.8 ; ESCHERICHIA COLI PYRUVATE FORMATE LYASE LARGE DOMAIN 8EDS ; 2.1 ; Escherichia coli pyruvate kinase (PykF) P70Q 8EU4 ; 2.1 ; Escherichia coli pyruvate kinase A301S 8EQ3 ; 2.01 ; Escherichia coli pyruvate kinase A301T 8EQ1 ; 2.32 ; Escherichia coli pyruvate kinase D127N 8EQ0 ; 2.62 ; Escherichia coli pyruvate kinase G381A 6AWF ; 3.35 ; Escherichia coli quinol:fumarate reductase crystallized without dicarboxylate 6Y2R ; 3.89 ; Escherichia coli R255A RnlA endoribonuclease (single alanine mutant of RnlA) 6Y2S ; 3.79 ; Escherichia coli R318A RnlA endoribonuclease (single alanine mutant of RnlA) 3REC ; ; ESCHERICHIA COLI RECA PROTEIN-BOUND DNA, NMR, 1 STRUCTURE 2ARC ; 1.5 ; ESCHERICHIA COLI REGULATORY PROTEIN ARAC COMPLEXED WITH L-ARABINOSE 1ECR ; 2.7 ; ESCHERICHIA COLI REPLICATION TERMINATOR PROTEIN (TUS) COMPLEXED WITH DNA 4XR1 ; 2.4 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With DNA- AG/AT mismatch. 4XR0 ; 2.8 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With DNA- G/T mismatch. 4XR3 ; 2.7 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With DNA- GC(6) swapped. 2EWJ ; 2.7 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With DNA- Locked form 2I06 ; 2.2 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With DNA- Locked form 2I05 ; 2.6 ; Escherichia Coli Replication Terminator Protein (Tus) Complexed With TerA DNA 4XR2 ; 2.35 ; Escherichia Coli Replication Terminator Protein (Tus) H114A mutant Complexed With DNA- TerA lock. 8E70 ; 4.1 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, dC75 rut mimic RNA, Mg-ADP-BeF3, and NusG; Rho hexamer part 8E6Z ; 4.1 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, dC75 rut mimic RNA, Mg-ADP-BeF3, and NusG; TEC part 8E6W ; 4.27 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, lambda-tR1 rut RNA, Mg-ADP-BeF3, and NusG; Rho part 8E6X ; 4.27 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, lambda-tR1 rut RNA, Mg-ADP-BeF3, and NusG; TEC part 8E3H ; 6.5 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, Mg-ADP-BeF3, and NusG; Rho hexamer part 8E3F ; 6.5 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 18 nt long RNA spacer, Mg-ADP-BeF3, and NusG; TEC part 8E5L ; 4.2 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 21 nt long RNA spacer, Mg-ADP-BeF3, and NusG; Rho hexamer part 8E5K ; 4.2 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 21 nt long RNA spacer, Mg-ADP-BeF3, and NusG; TEC part 8E5P ; 4.4 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 24 nt long RNA spacer, Mg-ADP-BeF3, and NusG; Rho hexamer part 8E5O ; 4.4 ; Escherichia coli Rho-dependent transcription pre-termination complex containing 24 nt long RNA spacer, Mg-ADP-BeF3, and NusG; TEC part 7MKQ ; 4.8 ; Escherichia coli RNA polymerase and RapA binary complex 7MKN ; 3.3 ; Escherichia coli RNA polymerase and RapA elongation complex 5UAH ; 4.1 ; Escherichia coli RNA polymerase and Rifampin complex, RpoB D516V mutant 5UAL ; 3.887 ; Escherichia coli RNA polymerase and Rifampin complex, RpoB S531L mutant 5UAC ; 3.8 ; Escherichia coli RNA polymerase and Rifampin complex, wild-type 7KHC ; 4.14 ; Escherichia coli RNA polymerase and rrnBP1 promoter closed complex 7KHI ; 3.62 ; Escherichia coli RNA polymerase and rrnBP1 promoter complex with DksA/ppGpp 7KHB ; 3.53 ; Escherichia coli RNA polymerase and rrnBP1 promoter open complex 7KHE ; 3.58 ; Escherichia coli RNA polymerase and rrnBP1 promoter pre-open complex with DksA/ppGpp 6VJS ; 4.02 ; Escherichia coli RNA polymerase and ureidothiophene-2-carboxylic acid complex 6PSQ ; 3.4 ; Escherichia coli RNA polymerase closed complex (TRPc) with TraR and rpsT P2 promoter 7MKP ; 3.41 ; Escherichia coli RNA polymerase core enzyme 7MKO ; 3.15 ; Escherichia coli RNA polymerase elongation complex 4YFX ; 3.844 ; Escherichia coli RNA polymerase in complex with Myxopyronin B 4YFN ; 3.817 ; Escherichia coli RNA polymerase in complex with squaramide compound 14 (N-[3,4-dioxo-2-(4-{[4-(trifluoromethyl)benzyl]amino}piperidin-1-yl)cyclobut-1-en-1-yl]-3,5-dimethyl-1,2-oxazole-4-sulfonamide) 4YFK ; 3.571 ; Escherichia coli RNA polymerase in complex with squaramide compound 8. 5UAG ; 3.399 ; Escherichia coli RNA polymerase mutant - RpoB D516V 6PSV ; 3.5 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TpreRPo) with TraR and rpsT P2 promoter 6PSR ; 3.4 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TRPi1) with TraR and rpsT P2 promoter 6PSS ; 3.5 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TRPi1.5a) with TraR and mutant rpsT P2 promoter 6PST ; 3.0 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TRPi1.5b) with TraR and mutant rpsT P2 promoter 6PSU ; 3.9 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TRPi2) with TraR and rpsT P2 promoter 6PSW ; 3.7 ; Escherichia coli RNA polymerase promoter unwinding intermediate (TRPo) with TraR and rpsT P2 promoter 5UAQ ; 3.6 ; Escherichia coli RNA polymerase RpoB H526Y mutant 5UAJ ; 3.915 ; Escherichia coli RNA polymerase RpoB S531L mutant 6N62 ; 3.803 ; Escherichia coli RNA polymerase sigma70-holoenzyme bound to upstream fork promoter DNA 6N61 ; 3.253 ; Escherichia coli RNA polymerase sigma70-holoenzyme bound to upstream fork promoter DNA and Capistruin 6N60 ; 3.68 ; Escherichia coli RNA polymerase sigma70-holoenzyme bound to upstream fork promoter DNA and Microcin J25 (MccJ25) 2ID0 ; 2.35 ; Escherichia coli RNase II 6Y2Q ; 2.99 ; Escherichia coli RnlA endoribonuclease 6Y2P ; 2.64 ; Escherichia coli RnlA-RnlB Toxin-Antitoxin System. 7TH0 ; 1.9 ; Escherichia coli RpnA-S 6CUX ; 4.104 ; Escherichia coli RpoB S531L mutant RNA polymerase holoenzyme in complex with Kanglemycin A 1CUK ; 1.9 ; ESCHERICHIA COLI RUVA PROTEIN AT PH 4.9 AND ROOM TEMPERATURE 2FSF ; 2.0 ; Escherichia coli SecA, the preprotein translocase dimeric ATPase 7N4E ; 3.8 ; Escherichia coli sigma 70-dependent paused transcription elongation complex 6FQD ; 2.10001 ; Escherichia Coli Signal Recognition Particle Receptor FtsY NGdN1 3HVV ; 1.75 ; Escherichia coli Thiol peroxidase (Tpx) peroxidatic cysteine to serine mutant (C61S) 3HVX ; 2.12 ; Escherichia coli Thiol peroxidase (Tpx) resolving cysteine to serine mutant (C95S) with an intermolecular disulfide bond 3HVS ; 1.8 ; Escherichia coli Thiol peroxidase (Tpx) wild type disulfide form 3I43 ; 2.8 ; Escherichia coli Thiol peroxidase (Tpx) wild type disulfide form 3CWN ; 1.4 ; Escherichia coli transaldolase b mutant f178y 6XIJ ; 8.0 ; Escherichia coli transcription-translation complex A (TTC-A) containing an 24 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6VYS ; 3.7 ; Escherichia coli transcription-translation complex A1 (TTC-A1) containing a 21 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6VYQ ; 3.7 ; Escherichia coli transcription-translation complex A1 (TTC-A1) containing an 15 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6VYR ; 3.8 ; Escherichia coli transcription-translation complex A1 (TTC-A1) containing an 18 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6VZJ ; 4.1 ; Escherichia coli transcription-translation complex A1 (TTC-A1) containing mRNA with a 15 nt long spacer, fMet-tRNAs at E-site and P-site, and lacking transcription factor NusG 6VYT ; 14.0 ; Escherichia coli transcription-translation complex A2 (TTC-A2) containing a 15 nt long mRNA spacer, NusG, and fMet-tRNAs at P-site and E-site 6XII ; 7.0 ; Escherichia coli transcription-translation complex B (TTC-B) containing an 24 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6XDR ; 4.7 ; Escherichia coli transcription-translation complex B (TTC-B) containing an 27 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6XGF ; 5.0 ; Escherichia coli transcription-translation complex B (TTC-B) containing an 30 nt long mRNA spacer, NusG, and fMet-tRNAs at E-site and P-site 6VZ7 ; 7.0 ; Escherichia coli transcription-translation complex C1 (TTC-C1) containing a 27 nt long mRNA spacer, NusG, and fMet-tRNAs at P-site and E-site 6VYU ; 7.0 ; Escherichia coli transcription-translation complex C2 (TTC-C2) containing a 27 nt long mRNA spacer 6VYW ; 7.0 ; Escherichia coli transcription-translation complex C3 (TTC-C3) containing mRNA with a 27 nt long spacer, NusG, and fMet-tRNAs at E-site and P-site 6VYX ; 9.9 ; Escherichia coli transcription-translation complex C4 (TTC-C4) containing mRNA with a 21 nt long spacer, transcription factor NusG, and fMet-tRNAs at P-site and E-site 6VYY ; 9.9 ; Escherichia coli transcription-translation complex C5 (TTC-C5) containing mRNA with a 21 nt long spacer, NusG, and fMet-tRNAs at E-site and P-site 6VYZ ; 9.9 ; Escherichia coli transcription-translation complex C6 (TTC-C6) containing mRNA with a 21 nt long spacer, NusA, and fMet-tRNAs at E-site and P-site 6VZ2 ; 10.0 ; Escherichia coli transcription-translation complex D1 (TTC-D1) containing mRNA with a 27 nt long spacer, NusG, and fMet-tRNAs at E-site and P-site 6VZ3 ; 8.9 ; Escherichia coli transcription-translation complex D2 (TTC-D2) containing mRNA with a 27 nt long spacer 6VZ5 ; 8.9 ; Escherichia coli transcription-translation complex D3 (TTC-D3) containing mRNA with a 21 nt long spacer, NusG, and fMet-tRNAs at E-site and P-site 6TJ9 ; 0.95 ; Escherichia coli transketolase in complex with cofactor analog 2'-methoxythiamine and substrate xylulose 5-phosphate 6TJ8 ; 0.921 ; Escherichia coli transketolase in complex with cofactor analog 2'-methoxythiamine diphosphate 6P24 ; 2.12 ; Escherichia coli tRNA synthetase 6P26 ; 3.16 ; Escherichia coli tRNA synthetase in complex with compound 1 6OZ5 ; 2.5 ; Escherichia coli tRNA synthetase in complex with compound 3 4W4H ; 2.89 ; Escherichia coli tryptophanase in holo form 7R5Q ; 1.9 ; Escherichia coli type II Asparaginase N24S mutant in complex with GLU 7R57 ; 1.4 ; Escherichia coli type II Asparaginase N24S mutant in its apo form 7P9C ; 1.6 ; Escherichia coli type II L-asparaginase 1WQ3 ; 2.0 ; Escherichia coli tyrosyl-tRNA synthetase mutant complexed with 3-iodo-L-tyrosine 1WQ4 ; 2.0 ; Escherichia coli tyrosyl-tRNA synthetase mutant complexed with L-tyrosine 1VBN ; 2.7 ; Escherichia coli tyrosyl-tRNA synthetase mutant complexed with Tyr-AMS 1LQJ ; 3.35 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE 1EUI ; 3.2 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE COMPLEX WITH URACIL-DNA GLYCOSYLASE INHIBITOR PROTEIN 1LQG ; 2.9 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE COMPLEX WITH URACIL-DNA GLYCOSYLASE INHIBITOR PROTEIN 1LQM ; 3.2 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE COMPLEX WITH URACIL-DNA GLYCOSYLASE INHIBITOR PROTEIN 2UUG ; 2.6 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE:INHIBITOR COMPLEX WITH H187D MUTANT UDG AND WILD-TYPE UGI 1UUG ; 2.4 ; ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE:INHIBITOR COMPLEX WITH WILD-TYPE UDG AND WILD-TYPE UGI 2G8X ; 1.83 ; Escherichia coli Y209W apoprotein 1WNB ; 2.2 ; Escherichia coli YdcW gene product is a medium-chain aldehyde dehydrogenase (complexed with nadh and betaine aldehyde) 1WND ; 2.1 ; Escherichia coli YdcW gene product is a medium-chain aldehyde dehydrogenase as determined by kinetics and crystal structure 7BHA ; 2.19 ; Escherichia coli YtfE 7BE8 ; 2.02 ; Escherichia coli YtfE (Mn) 7BHC ; 1.87 ; Escherichia coli YtfE E125L 7BHB ; 2.36 ; Escherichia coli YtfE E159L 7OYI ; 1.86 ; Escherichia coli YtfE_E159L(MN) 1ICM ; 1.5 ; ESCHERICHIA COLI-DERIVED RAT INTESTINAL FATTY ACID BINDING PROTEIN WITH BOUND MYRISTATE AT 1.5 A RESOLUTION AND I-FABPARG106-->GLN WITH BOUND OLEATE AT 1.74 A RESOLUTION 1ICN ; 1.74 ; ESCHERICHIA COLI-DERIVED RAT INTESTINAL FATTY ACID BINDING PROTEIN WITH BOUND MYRISTATE AT 1.5 A RESOLUTION AND I-FABPARG106-->GLN WITH BOUND OLEATE AT 1.74 A RESOLUTION 5XGU ; 1.846 ; Escherichia coli. RNase R 2CAZ ; 3.6 ; ESCRT-I core 5XDJ ; ; Esculentin-1a(1-21)NH2 4WJY ; 2.15 ; Esherichia coli nitrite reductase NrfA H264N 8Q7Y ; 2.6 ; ESIBD structure of beta-galactosidase 1PIK ; ; ESPERAMICIN A1-DNA COMPLEX, NMR, 4 STRUCTURES 4FMA ; 2.15 ; EspG structure 4FMC ; 2.8 ; EspG-Rab1 complex 4FMD ; 3.05 ; EspG-Rab1 complex structure at 3.05 A 4FME ; 4.1 ; EspG-Rab1-Arf6 complex 7VKI ; 1.65 ; ESRP1 qRRM2 in complex with 12mer-RNA 7WRN ; 1.85 ; ESRP1 RNaseH-qRRM1 tandem domain 4LYA ; 2.45 ; EssC (ATPases 2 and 3) from Geobacillus thermodenitrificans (SeMet) 2WTM ; 1.6 ; Est1E from Butyrivibrio proteoclasticus 6Q44 ; ; Est3 telomerase subunit in the yeast Hansenula polymorpha 5EGN ; 2.636 ; Est816 as an N-Acyl homoserine lactone degrading enzyme 2W79 ; 1.85 ; Establishing wild-type levels of catalytic activity on natural and artificial (ba)8-barrel protein scaffolds 7ATL ; 2.478 ; EstCE1, a hydrolase with promiscuous acyltransferase activity 5H3H ; 1.9 ; Esterase (EaEST) from Exiguobacterium antarcticum 7C2C ; 1.55 ; Esterase AlinE4 mutant, D162A 7C84 ; 1.552 ; Esterase AlinE4 mutant, D162A 7C2D ; 1.75 ; Esterase AlinE4 mutant-S13A 7C85 ; 1.75 ; Esterase AlinE4 mutant-S13A 7C29 ; 2.18 ; Esterase CrmE10 mutant-D178A 4C1B ; 2.501 ; Esterase domain of the ZfL2-1 ORF1 protein from the zebrafish ZfL2-1 retrotransposon 6Y9K ; 2.298 ; Esterase EST8 with transacylase activity 1CI8 ; 2.0 ; ESTERASE ESTB FROM BURKHOLDERIA GLADIOLI: AN ESTERASE WITH (BETA)-LACTAMASE FOLD. 4C87 ; 2.65 ; Esterase LpEst1 from Lactobacillus plantarum WCFS1 4C88 ; 2.65 ; Esterase LpEst1 from Lactobacillus plantarum: native structure 5THM ; 2.15 ; Esterase-6 from Drosophila melanogaster 8HEA ; 1.74 ; Esterase2 (EaEst2) from Exiguobacterium antarcticum 6FCJ ; 2.49 ; Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations 6EI5 ; 2.2 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6EL5 ; 1.67 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6ELN ; 1.6 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6ELO ; 1.8 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6ELP ; 1.85 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6EY8 ; 2.16 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6EY9 ; 2.0 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6EYA ; 2.1 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6EYB ; 1.9 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 6F1N ; 2.09 ; Estimation of relative drug-target residence times by random acceleration molecular dynamics simulation 8IK1 ; 2.35 ; EstL5 in complex of PMSF 1X8V ; 1.55 ; Estriol-bound and ligand-free structures of sterol 14alpha-demethylase (CYP51) 3OS8 ; 2.031 ; Estrogen Receptor 3OS9 ; 2.303 ; Estrogen Receptor 3OSA ; 2.296 ; Estrogen Receptor 5GTR ; 2.804 ; estrogen receptor alpha in complex with a stabilized peptide antagonist 6 7QVJ ; 1.68 ; ESTROGEN RECEPTOR ALPHA IN COMPLEX WITH COMPOUND 29 2BJ4 ; 2.0 ; ESTROGEN RECEPTOR ALPHA LBD IN COMPLEX WITH A PHAGE-DISPLAY DERIVED PEPTIDE ANTAGONIST 2JF9 ; 2.1 ; ESTROGEN RECEPTOR ALPHA LBD IN COMPLEX WITH A TAMOXIFEN-SPECIFIC PEPTIDE ANTAGONIST 2JFA ; 2.55 ; ESTROGEN RECEPTOR ALPHA LBD IN COMPLEX WITH AN AFFINITY-SELECTED COREPRESSOR PEPTIDE 7YMK ; 2.25 ; Estrogen Receptor Alpha Ligand Binding Domain C381S C417S Y537S Mutant in Complex with an Covalent Selective Estrogen Receptor Degrader 29c and GRIP Peptide 5W9C ; 1.802 ; Estrogen Receptor Alpha Ligand Binding Domain C381S, C417S, C530S in Complex with 4-hydroxytamoxifen 5W9D ; 1.6464 ; Estrogen Receptor Alpha Ligand Binding Domain C381S, C417S, C530S Mutant in Complex with Endoxifen 8DUB ; 1.84 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with ((1'-(4-((1-ethylpyrrolidin-3-yl)methyl)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DVB ; 2.19 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (1'-(4-((1-butylpyrrolidin-3-yl)methoxy)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DU6 ; 2.1 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (1'-(4-((1-ethylazetidin-3-yl)oxy)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUC ; 1.7 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (1'-(4-(2-(1-ethylpyrrolidin-3-yl)ethoxy)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUI ; 2.04 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (1'-(4-(2-(dimethylamino)ethoxy)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUS ; 1.9 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (1'-(4-(2-(ethylamino)ethoxy)phenyl)-6'-hydroxy-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 5T97 ; 3.0 ; ESTROGEN RECEPTOR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH (2E)-3-(4-{(1R)-6-hydroxy-1-methyl-2-[4-(propan-2 -yl)phenyl]-1,2,3,4- tetrahydroisoquinolin-1-yl}phenyl)prop-2-enoic acid 5T92 ; 2.22 ; ESTROGEN RECEPTOR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH (2E)-3-{4-[(1R)-2-(4-fluorophenyl)-6-hydroxy-1-methy l-1,2,3,4- tetrahydroisoquinolin-1-yl]phenyl}prop-2-enoic acid 8DV5 ; 1.85 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-((1-pentylpyrrolidin-3-yl)methoxy)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DV8 ; 1.7 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-((2-(1-propylpyrrolidin-3-yl)ethyl)thio)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUH ; 1.9 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-(2-((R)-2-methylpyrrolidin-1-yl)ethoxy)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUG ; 2.2 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-(2-((S)-3-methylpyrrolidin-1-yl)ethoxy)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUD ; 1.81 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-(2-(1-propylpyrrolidin-3-yl)ethoxy)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DV7 ; 1.59 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-(2-(1-propylpyrrolidin-3-yl)ethyl)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DUK ; 1.7 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6'-hydroxy-1'-(4-(2-(methylamino)ethoxy)phenyl)-1',4'-dihydro-2'H-spiro[cyclopropane-1,3'-isoquinolin]-2'-yl)(phenyl)methanone 8DU8 ; 1.47 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6-hydroxy-1-(4-((1-propylazetidin-3-yl)oxy)phenyl)-3,4-dihydroisoquinolin-2(1H)-yl)(phenyl)methanone 8DU9 ; 2.5 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with (6-hydroxy-1-(4-(2-(piperidin-1-yl)ethoxy)phenyl)-3,4-dihydroisoquinolin-2(1H)-yl)(phenyl)methanone 7R62 ; 1.5 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with a Desmethyl ICI164,384 Derivative 7UJM ; 1.8 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with a Methylated Lasofoxifene Derivative That Increases Receptor Resonance Time in the Nucleus of Breast Cancer Cells 7UJF ; 1.7 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with a Methylated Lasofoxifene Derivative with Selective Estrogen Receptor Degrader Properties 7N9O ; 2.0 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Aliphatic SERD S-C10(15) 4XI3 ; 2.491 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Bazedoxifene 5WGQ ; 2.3 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Estradiol and SRC2-BCP1 5WGD ; 1.8 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Estradiol and SRC2-LP1 6VJD ; 1.8 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Lasofoxifene 6B0F ; 2.86 ; ESTROGEN RECEPTOR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH LSZ102 5UFX ; 1.5503 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with OP1074 5UFW ; 1.583 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with OP1154 6C42 ; 1.997 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with OP1156 7TE7 ; 1.85 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with RAD1901 7KBS ; 1.834 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with Raloxifene 7UJO ; 1.449 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with RU39411 6VPF ; 1.6 ; Estrogen Receptor Alpha Ligand Binding Domain in Complex with the Selective Estrogen Receptor Modulator Clomiphene 7T2X ; 2.6 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with 2-chloro-4-((4-hydroxybenzyl)amino)-5-phenylthieno[2,3-d]pyrimidin-6-ol and GRIP Peptide 7SFO ; 1.9 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with 3-(((2-chloro-5-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methyl)phenol and GRIP Peptide 7RKE ; 1.55 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with 4-(((2-chloro-5-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methyl)phenol and GRIP Peptide 6V87 ; 2.4 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with 4-Hydroxytamoxifen 7UJ8 ; 2.385 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with 4-Hydroxytamoxifen 6V8T ; 2.1 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with LSZ102 7JHD ; 2.402 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S in Complex with TTC-352 and GRIP Peptide 7RNM ; 1.9 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with 2-(2-Chloro-5-phenylthieno[2,3-d]pyrimidin-4-yl)isoindolin-5-ol and GRIP Peptide 6D0F ; 2.5 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with 3OHTPE and GRIP Peptide 7UJY ; 1.7 ; Estrogen receptor alpha ligand binding domain Y537S mutant in complex with a methylated lasofoxifene derivative that enhances estrogen receptor alpha nuclear resonance time 7UJW ; 2.6 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with a Methylated Lasofoxifene Derivative that Possesses Selective Estrogen Receptor Degrader Activities 7Y8G ; 2.14 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with an Inhibitor 30a and GRIP Peptide 7Y8F ; 2.22 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with an Inhibitor 30o and GRIP Peptide 6CBZ ; 1.65 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Estradiol and GRIP Peptide 5T1Z ; 2.102 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Ethoxytriphenylethylene and GRIP Peptide 6VGH ; 2.1 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant In Complex with Lasofoxifene 7UJ7 ; 1.68 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with RU39411 6PIT ; 2.25 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with SRC2 Stapled Peptide 41A and Estradiol 5DXB ; 2.08 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Stapled Peptide SRC2-P1 and Estradiol 5DX3 ; 2.0903 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Stapled Peptide SRC2-P3 and Estradiol 5DXE ; 1.5 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Stapled Peptide SRC2-P4 and Estradiol 5DXG ; 1.86 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Stapled Peptide SRC2-P5 5HYR ; 2.271 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Stapled Peptide SRC2-SP2 and Estradiol 6CZN ; 2.5 ; Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutant in Complex with Z2OHTPE and a glucocorticoid receptor-interacting protein 1 NR box II peptide 2R6W ; 2.0 ; Estrogen receptor alpha ligand-binding domain complexed to a SERM 1A52 ; 2.8 ; ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN COMPLEXED TO ESTRADIOL 2Q70 ; 1.95 ; Estrogen receptor alpha ligand-binding domain complxed to a benzopyran ligand 2QE4 ; 2.4 ; Estrogen receptor alpha ligand-binding domain in complex with a benzopyran agonist 2R6Y ; 2.0 ; Estrogen receptor alpha ligand-binding domain in complex with a SERM 6CHZ ; 1.68 ; Estrogen Receptor Alpha Y537S bound to antagonist H3B-9224. 6CHW ; 1.89 ; Estrogen Receptor Alpha Y537S covalently bound to antagonist H3B-5942. 2JJ3 ; 2.28 ; Estrogen receptor beta ligand binding domain in complex with a Benzopyran agonist 2QTU ; 2.53 ; Estrogen receptor beta ligand-binding domain complexed to a benzopyran ligand 2Z4B ; 2.34 ; Estrogen receptor beta ligand-binding domain complexed to a benzopyran ligand 1NDE ; 3.0 ; Estrogen Receptor beta with Selective Triazine Modulator 4J24 ; 2.1 ; Estrogen Receptor in complex with proline-flanked LXXLL peptides 4J26 ; 2.3 ; Estrogen Receptor in complex with proline-flanked LXXLL peptides 6SBO ; 1.48 ; Estrogen receptor mutant L536S 1LO1 ; ; ESTROGEN RELATED RECEPTOR 2 DNA BINDING DOMAIN IN COMPLEX WITH DNA 3K6P ; 1.996 ; Estrogen Related Receptor alpha in Complex with an Ether Based Ligand 2P7Z ; 2.5 ; Estrogen Related Receptor Gamma in complex with 4-hydroxy-tamoxifen 2GP7 ; 2.45 ; Estrogen Related Receptor-gamma ligand binding domain 2GPU ; 1.7 ; Estrogen Related Receptor-gamma ligand binding domain complexed with 4-hydroxy-tamoxifen 2GPV ; 2.85 ; Estrogen Related Receptor-gamma ligand binding domain complexed with 4-hydroxy-tamoxifen and a SMRT peptide 2GPP ; 2.6 ; Estrogen Related Receptor-gamma ligand binding domain complexed with a RIP140 peptide and synthetic ligand GSK4716 2GPO ; 1.95 ; Estrogen Related Receptor-gamma ligand binding domain complexed with a synthetic peptide from RIP140 1AQU ; 1.6 ; ESTROGEN SULFOTRANSFERASE WITH BOUND INACTIVE COFACTOR PAP AND 17-BETA ESTRADIOL 1BO6 ; 2.1 ; ESTROGEN SULFOTRANSFERASE WITH INACTIVE COFACTOR PAP AND VANADATE 1AQY ; 1.75 ; ESTROGEN SULFOTRANSFERASE WITH PAP 6LIT ; 2.0 ; Estrogen-related receptor beta(ERR2) in complex with BPA 6LN4 ; 2.61 ; Estrogen-related receptor beta(ERR2) in complex with PGC1a-2a 1IOL ; 2.3 ; ESTROGENIC 17-BETA HYDROXYSTEROID DEHYDROGENASE COMPLEXED 17-BETA-ESTRADIOL 3DHE ; 2.3 ; ESTROGENIC 17-BETA HYDROXYSTEROID DEHYDROGENASE COMPLEXED DEHYDROEPIANDROSTERONE 1DHT ; 2.24 ; ESTROGENIC 17-BETA HYDROXYSTEROID DEHYDROGENASE COMPLEXED DIHYDROTESTOSTERONE 4LWS ; 2.0 ; EsxA : EsxB (SeMet) hetero-dimer from Thermomonospora curvata 8XGR ; 3.2 ; ETB-eGt complex bound to endothelin-1 8IY5 ; 2.8 ; ETB-Gi complex bound to endothelin-1 8IY6 ; 3.13 ; ETB-Gi complex bound to Endotheline-1, focused on receptor 6XIU ; 3.0 ; ETEC Rns bound to a potential inhibitor, decanoic acid 2ALC ; ; ETHANOL REGULON TRANSCRIPTIONAL ACTIVATOR DNA-BINDING DOMAIN FROM ASPERGILLUS NIDULANS 3ALC ; ; ETHANOL REGULON TRANSCRIPTIONAL ACTIVATOR DNA-BINDING DOMAIN FROM ASPERGILLUS NIDULANS 7XRM ; 2.13 ; Ethanolamine ammonia-lyase complexed with AdoMeCbl 7XRN ; 2.07 ; Ethanolamine ammonia-lyase complexed with AdoMeCbl in the presence of substrate 5YSR ; 2.05 ; Ethanolamine ammonia-lyase, AdoCbl/2-amino-1-propanol 5YSN ; 2.001 ; Ethanolamine ammonia-lyase, AdoCbl/substrate-free 3I71 ; 2.1 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutK C-terminal domain 3I82 ; 2.31 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutL Closed Form 3I87 ; 2.3 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutL Open Form 3I6P ; 2.1 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutM 3I96 ; 1.65 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutS 3IA0 ; 2.5 ; Ethanolamine Utilization Microcompartment Shell Subunit, EutS-G39V mutant 2Z9H ; 2.71 ; Ethanolamine utilization protein, EutN 8UBX ; 2.5 ; Ethanolamine-bound FLVCR1 5AE3 ; 2.18 ; Ether Lipid-Generating Enzyme AGPS in complex with antimycin A 5ADZ ; 2.2 ; Ether Lipid-Generating Enzyme AGPS in complex with inhibitor 1a 5AE2 ; 2.0 ; Ether Lipid-Generating Enzyme AGPS in complex with inhibitor 1e 5AE1 ; 2.1 ; Ether Lipid-Generating Enzyme AGPS in complex with inhibitor ZINC69435460 4O7U ; 2.4 ; Etherocomplex of Enteroccocus faecalis thymidylate synthase with 5-hydroxymethilene-6-hydrofolic acid and the phtalimidic inhibitor SS7 3SDG ; 1.87 ; Ethionamide Boosters Part 2: Combining Bioisosteric Replacement and Structure-Based Drug Design to Solve Pharmacokinetic Issues in a Series of Potent 1,2,4-Oxadiazole EthR Inhibitors. 3SFI ; 2.31 ; Ethionamide Boosters Part 2: Combining Bioisosteric Replacement and Structure-Based Drug Design to Solve Pharmacokinetic Issues in a Series of Potent 1,2,4-Oxadiazole EthR Inhibitors. 5NIM ; 1.5 ; EthR complex 5NIO ; 1.4 ; EthR complex 5NIZ ; 1.95 ; EthR complex 5NJ0 ; 2.1 ; EthR complex 3G1O ; 1.85 ; EthR from Mycobacterium tuberculosis in complex with compound BDM14500 3G1L ; 1.7 ; EthR from Mycobacterium tuberculosis in complex with compound BDM14744 3O8G ; 1.9 ; EthR from Mycobacterium tuberculosis in complex with compound BDM14801 3O8H ; 1.9 ; EthR from Mycobacterium tuberculosis in complex with compound BDM14950 3Q0V ; 1.95 ; ETHR From mycobacterium tuberculosis in complex with compound bdm31369 3Q0U ; 1.7 ; EthR from Mycobacterium tuberculosis in complex with compound BDM31379 3G1M ; 1.7 ; EthR from Mycobacterium tuberculosis in complex with compound BDM31381 3Q0W ; 1.6 ; ETHR From mycobacterium tuberculosis in complex with compound BDM33066 3Q3S ; 2.0 ; EthR from Mycobacterium tuberculosis in complex with compound BDM5683 6R1P ; 1.8 ; EthR ligand complex 6R1S ; 1.8 ; EthR ligand complex 6HRW ; 2.45 ; EthR2 in complex with compound 1 (BDM14272) 6HRX ; 1.87 ; EthR2 in complex with compound 2 (BDM72201) 6HRY ; 1.84 ; EthR2 in complex with compound 3 (BDM72719) 6HS2 ; 1.87 ; EthR2 in complex with compound 31 (BDM76150) 6HRZ ; 1.57 ; EthR2 in complex with compound 4 (BDM72170) 6HS0 ; 1.45 ; EthR2 in complex with compound 5 (BDM71847) 6HS1 ; 1.69 ; EthR2 in complex with compound 9 (BDM76060) 5N7O ; 2.3 ; EthR2 in complex with SMARt-420 compound 2IVF ; 1.88 ; Ethylbenzene dehydrogenase from Aromatoleum aromaticum 6VP5 ; 1.97 ; Ethylene forming enzyme (EFE) D191E variant in complex with Fe(II), L-arginine, and 2OG 6VP4 ; 1.83 ; Ethylene forming enzyme (EFE) in complex with Fe(II), L-arginine, and 2OG 8UC2 ; 1.6 ; Ethylene forming enzyme (EFE) R171A variant in complex with nickel and Benzoic acid 5V2U ; 2.058 ; Ethylene forming enzyme apo form 5LSQ ; 1.55 ; Ethylene Forming Enzyme from Pseudomonas syringae pv. phaseolicola - I222 crystal form 5MOF ; 1.45 ; Ethylene Forming Enzyme from Pseudomonas syringae pv. phaseolicola - I222 crystal form in complex with manganese and 2-oxoglutarate 5LUN ; 1.08 ; Ethylene Forming Enzyme from Pseudomonas syringae pv. phaseolicola - P1 ultra-high resolution crystal form in complex with iron, N-oxalylglycine and arginine 5V2X ; 1.847 ; Ethylene forming enzyme in complex with manganese and 2-oxoglutarate 5V31 ; 2.45 ; Ethylene forming enzyme in complex with manganese and L-arginine 5V32 ; 1.486 ; Ethylene forming enzyme in complex with manganese and malic acid 5V2T ; 1.227 ; Ethylene forming enzyme in complex with manganese and tartrate 5V2Z ; 1.23 ; Ethylene forming enzyme in complex with manganese, 2-oxoadipic acid and L-arginine 5VKB ; 1.139 ; Ethylene forming enzyme in complex with manganese, 2-oxoglutarate and argininamide 6CBA ; 1.13 ; Ethylene forming enzyme in complex with manganese, 2-oxoglutarate and canavanine 5V2Y ; 1.428 ; Ethylene forming enzyme in complex with manganese, 2-oxoglutarate and L-arginine 5VKA ; 1.169 ; Ethylene forming enzyme in complex with manganese, 2-oxoglutarate and N-omega-hydroxy-L-arginine 5V34 ; 1.48 ; Ethylene forming enzyme in complex with manganese, malic acid and L-arginine 5V2V ; 3.04 ; Ethylene forming enzyme in complex with nickel 6CF3 ; 1.12 ; Ethylene forming enzyme Y306A variant in complex with manganese and 2-oxoglutarate 3FC4 ; 1.79 ; Ethylene glycol inhibited form of Aldehyde oxidoreductase from Desulfovibrio gigas 4APY ; 2.0 ; Ethylene glycol-bound form of P450 CYP125A3 from Mycobacterium smegmatis 1XLV ; 2.247 ; Ethylphosphorylated Butyrylcholinesterase (Aged) Obtained By Reaction With Echothiophate 1GVJ ; 1.53 ; ETS-1 DNA BINDING AND AUTOINHIBITORY DOMAINS 2JV3 ; ; Ets-1 PNT domain (29-138) NMR structure ensemble 1K79 ; 2.4 ; Ets-1(331-440)+GGAA duplex 1K7A ; 2.8 ; Ets-1(331-440)+GGAG duplex 3MFK ; 3.0 ; Ets1 complex with stromelysin-1 promoter DNA 3RI4 ; 3.0 ; Ets1 cooperative binding to widely separated sites on promoter DNA 6DA1 ; 2.00013 ; ETS1 in complex with synthetic SRR mimic 6DAT ; 2.35003 ; ETS1 in complex with synthetic SRR mimic 3J5S ; 7.5 ; EttA binds to ribosome exit site and regulates translation by restricting ribosome and tRNA dynamics 8E66 ; 2.35 ; ETV6 H396Y variant bound to DNA containing the sequence GGAA 8E67 ; 2.3 ; ETV6 H396Y variant bound to DNA containing the sequence GGAT 2HPI ; 3.0 ; Eubacterial and Eukaryotic Replicative DNA Polymerases are not Homologous: X-ray Structure of DNA Polymerase III 2HPM ; 3.7 ; Eubacterial and Eukaryotic Replicative DNA Polymerases are not Homologous: X-ray Structure of DNA Polymerase III 6BJW ; 3.0 ; Eubacterium eligens Beta-glucuronidase 6D4O ; 2.9 ; Eubacterium eligens beta-glucuronidase bound to an amoxapine-glucuronide conjugate 6BJQ ; 2.7 ; Eubacterium eligens beta-glucuronidase bound to glucuronic acid 6BO6 ; 2.801 ; Eubacterium eligens beta-glucuronidase bound to UNC4917 glucuronic acid conjugate 7JJN ; 2.25 ; Eubacterium rectale Amy13B (EUR_01860) 7BUX ; 2.2 ; Eucommia ulmoides FPS1 7BUW ; 3.3 ; Eucommia ulmoides TPT3 mutant -C94Y/A95F 7BUU ; 3.0 ; Eucommia ulmoides TPT3, crystal form 1 7BUV ; 3.3 ; Eucommia ulmoides TPT3, crystal form 2 8BAP ; 2.3 ; Eugenol Oxidase (EUGO) from Rhodococcus jostii RHA1, eightfold mutant active on propanol syringol 8BAM ; 1.65 ; Eugenol Oxidase (EUGO) from Rhodococcus jostii RHA1, tenfold mutant active on propanol syringol 7YWU ; 2.8 ; Eugenol oxidase from rhodococcus jostii: mutant S81H, A423M, H434Y, S394V, I445D, S518P 7YWV ; 2.4 ; Eugenol oxidase from rhodococcus jostii: mutant S81H, D151E, A423M, H434Y, S394V, Q425S, I445D, S518P 3B7B ; 2.99 ; EuHMT1 (Glp) Ankyrin Repeat Domain (Structure 1) 3B95 ; 2.99 ; EuHMT1 (Glp) Ankyrin Repeat Domain (Structure 2) 3UMV ; 1.705 ; Eukaryotic Class II CPD photolyase structure reveals a basis for improved UV-tolerance in plants 1FYO ; ; EUKARYOTIC DECODING REGION A-SITE RNA 1FYP ; ; EUKARYOTIC DECODING REGION A-SITE RNA-PAROMOMYCIN COMPLEX 4U0Z ; 2.95 ; Eukaryotic Fic Domain containing protein with bound APCPP 6EZO ; 4.1 ; Eukaryotic initiation factor EIF2B in complex with ISRIB 6GRD ; 2.66 ; eukaryotic junction-resolving enzyme GEN-1 binding with Cesium 6GRB ; 2.4 ; eukaryotic junction-resolving enzyme GEN-1 binding with Potassium 6GRC ; 2.452 ; eukaryotic junction-resolving enzyme GEN-1 binding with Sodium 6WQ1 ; 2.295 ; Eukaryotic LanCL2 protein 5GOX ; 2.405 ; Eukaryotic Rad50 Functions as A Rod-shaped Dimer 3K4X ; 2.98 ; Eukaryotic Sliding Clamp PCNA Bound to DNA 8TQO ; 3.1 ; Eukaryotic translation initiation factor 2B tetramer 8TQZ ; 2.9 ; Eukaryotic translation initiation factor 2B with a mutation (L516A) in the delta subunit 1EIF ; 1.9 ; EUKARYOTIC TRANSLATION INITIATION FACTOR 5A FROM METHANOCOCCUS JANNASCHII 2EIF ; 1.8 ; Eukaryotic translation initiation factor 5A from Methanococcus jannaschii 2LT8 ; ; Eurocin solution structure 6FKW ; 1.4 ; Europium-containing methanol dehydrogenase 4UA8 ; 1.54 ; EUR_01830 (maltotriose-binding protein) complexed with maltotriose 4UAC ; 1.6 ; EUR_01830 with acarbose 4E4R ; 1.44 ; EutD phosphotransacetylase from Staphylococcus aureus 4FDZ ; 1.802 ; EutL from Clostridium perfringens, Crystallized Under Reducing Conditions 6UH6 ; 2.98 ; EV-A71 strain 11316 complexed with MADAL compound 22 6UH7 ; 2.87 ; EV-A71 strain 11316 complexed with MADAL compound 30 6DIZ ; 3.59 ; EV-A71 strain 11316 complexed with tryptophan dendrimer MADAL_0385 7QUB ; 2.07 ; EV-A71-3Cpro in complex with inhibitor MG78 7ECY ; 3.6 ; EV-D68 in complex with 2H12 Fab (State 3) 7EBZ ; 3.09 ; EV-D68 in complex with 2H12 Fab (state S1) 7EBR ; 3.6 ; EV-D68 in complex with 2H12 Fab (state S2) 7EC5 ; 2.89 ; EV-D68 in complex with 8F12 Fab 7L8H ; 1.95 ; EV68 3C protease (3Cpro) in Complex with Rupintrivir 7WFX ; 1.95 ; EVAA-KlAte1 7WG2 ; 1.76 ; EVAA-KlAte1 4DD2 ; 1.55 ; EVAL processed HEWL, carboplatin aqueous glycerol 4DD3 ; 1.7 ; EVAL processed HEWL, carboplatin aqueous paratone 4DD7 ; 1.6 ; EVAL processed HEWL, carboplatin DMSO glycerol 4DD9 ; 1.6 ; EVAL processed HEWL, carboplatin DMSO paratone 4DD0 ; 1.7 ; EVAL processed HEWL, cisplatin aqueous glycerol 4DD1 ; 1.7 ; EVAL processed HEWL, cisplatin aqueous paratone 4DDC ; 1.8 ; EVAL processed HEWL, cisplatin DMSO NAG silicone oil 4DDB ; 3.0 ; EVAL processed HEWL, cisplatin DMSO paratone pH 6.5 4DDA ; 2.48 ; EVAL processed HEWL, NAG 4DRO ; 1.1 ; EVALUATION OF SYNTHETIC FK506 ANALOGS AS LIGANDS FOR FKBP51 AND FKBP52: COMPLEX OF FKBP51 WITH (1R)-3-(3,4-dimethoxyphenyl)-1-phenylpropyl (2S)-1-{[(1R,2S)-2-ethyl-1-hydroxycyclohexyl](oxo)acetyl}piperidine-2-carboxylate 4DRK ; 1.5 ; EVALUATION OF SYNTHETIC FK506 ANALOGS AS LIGANDS FOR FKBP51 AND FKBP52: COMPLEX OF FKBP51 WITH {3-[(1R)-3-(3,4-dimethoxyphenyl)-1-({[(2S)-1-(3,3-dimethyl-2-oxopentanoyl)piperidin-2-yl]carbonyl}oxy)propyl]phenoxy}acetic acid 4DRM ; 1.48 ; EVALUATION OF SYNTHETIC FK506 ANALOGS AS LIGANDS FOR FKBP51 AND FKBP52: COMPLEX OF FKBP51 WITH {3-[(1R)-3-(3,4-dimethoxyphenyl)-1-({[(2S)-1-{[(1S,2R)-2-ethyl-1-hydroxycyclohexyl](oxo)acetyl}piperidin-2-yl]carbonyl}oxy)propyl]phenoxy}acetic acid 4DRN ; 1.069 ; EVALUATION OF SYNTHETIC FK506 ANALOGS AS LIGANDS FOR FKBP51 AND FKBP52: COMPLEX OF FKBP51 WITH {3-[(1R)-3-(3,4-dimethoxyphenyl)-1-({[(2S)-1-{[(1S,2R)-2-ethyl-1-hydroxycyclohexyl](oxo)acetyl}piperidin-2-yl]carbonyl}oxy)propyl]phenoxy}acetic acid 4DRP ; 1.8 ; Evaluation of Synthetic FK506 Analogs as Ligands for the FK506-Binding Proteins 51 and 52: Complex of FKBP51 with 2-(3-((R)-3-(3,4-dimethoxyphenyl)-1-((S)-1-(2-((1R,2S)-2-ethyl-1-hydroxy-cyclohexyl)-2-oxoacetyl)piperidine-2-carbonyloxy)propyl)phenoxy)acetic acid from cocrystallization 3F8V ; 1.08 ; Evaulaution at Atomic Resolution of the Role of Strain in Destabilizing the Temperature Sensitive T4 Lysozyme Mutant Arg96-->His 3F9L ; 1.19 ; Evaulaution at Atomic Resolution of the Role of Strain in Destabilizing the Temperature Sensitive T4 Lysozyme Mutant Arg96-->His 3FA0 ; 1.09 ; Evaulaution at Atomic Resolution of the Role of Strain in Destabilizing the Temperature Sensitive T4 Lysozyme Mutant Arg96-->His 3FAD ; 1.2 ; Evaulaution at Atomic Resolution of the Role of Strain in Destabilizing the Temperature Sensitive T4 Lysozyme Mutant Arg96-->His 1JGG ; 2.0 ; Even-skipped Homeodomain Complexed to AT-rich DNA 8CAM ; 1.86 ; Evernimicin bound to the 50S subunit 1QC6 ; 2.6 ; EVH1 domain from ENA/VASP-like protein in complex with ACTA peptide 1EVH ; 1.8 ; EVH1 DOMAIN FROM MURINE ENABLED IN COMPLEX WITH ACTA PEPTIDE 1I7A ; 2.24 ; EVH1 DOMAIN FROM MURINE HOMER 2B/VESL 2 4EPK ; 2.6009 ; Evidence for a Dual Role of an Active Site Histidine in alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde Decarboxylase 4ERA ; 2.398 ; Evidence for a Dual Role of an Active Site Histidine in alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde Decarboxylase 4ERG ; 2.789 ; Evidence for a Dual Role of an Active Site Histidine in alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde Decarboxylase 4ERI ; 2.0006 ; Evidence for a Dual Role of an Active Site Histidine in alpha-Amino-beta-Carboxymuconate-epsilon-Semialdehyde Decarboxylase 2Y6P ; 2.1 ; Evidence for a Two-Metal-Ion-Mechanism in the Kdo- Cytidylyltransferase KdsB 1WPD ; ; Evidence for domain-specific recognition of SK and Kv channels by MTX and HsTx1 scorpion toxins 3R33 ; 2.09 ; Evidence for dynamic motion in proteins as a mechanism for ligand dissociation 1T93 ; 1.62 ; Evidence for Multiple Substrate Recognition and Molecular Mechanism of C-C reaction by Cytochrome P450 CYP158A2 from Streptomyces Coelicolor A3(2) 1PLG ; 2.8 ; EVIDENCE FOR THE EXTENDED HELICAL NATURE OF POLYSACCHARIDE EPITOPES. THE 2.8 ANGSTROMS RESOLUTION STRUCTURE AND THERMODYNAMICS OF LIGAND BINDING OF AN ANTIGEN BINDING FRAGMENT SPECIFIC FOR ALPHA-(2->8)-POLYSIALIC ACID 1CLA ; 2.34 ; EVIDENCE FOR TRANSITION-STATE STABILIZATION BY SERINE-148 IN THE CATALYTIC MECHANISM OF CHLORAMPHENICOL ACETYLTRANSFERASE 1BZ5 ; 2.58 ; EVIDENCE OF A COMMON DECAMER IN THREE CRYSTAL STRUCTURES OF BPTI, CRYSTALLIZE FROM THIOCYANATE, CHLORIDE OR SULFATE 1B0C ; 2.8 ; EVIDENCE OF A COMMON DECAMER IN THREE CRYSTAL STRUCTURES OF BPTI, CRYSTALLIZED FROM THIOCYANATE, CHLORIDE OR SULFATE 4S3M ; 2.6 ; Evidence of kinetic cooperativity in dimeric Ketopantoate Reductase from Staphylococcus aureus 4YCA ; 1.81 ; Evidence of Kinetic Cooperativity in dimeric Ketopantoate Reductase from Staphylococcus aureus 2MTW ; ; Evidence supporting the hypothesis that specifically modifying a malaria peptide to fit into HLA-DR 1*03 molecules induces antibody production and protection 4C90 ; 2.65 ; Evidence that GH115 alpha-glucuronidase activity is dependent on conformational flexibility 4C91 ; 2.14 ; Evidence that GH115 alpha-glucuronidase activity is dependent on conformational flexibility 1R5V ; 2.5 ; Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T-cell activation 1R5W ; 2.9 ; Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T-cell activation 1ML3 ; 2.5 ; Evidences for a flip-flop catalytic mechanism of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase, from its crystal structure in complex with reacted irreversible inhibitor 2-(2-phosphono-ethyl)-acrylic acid 4-nitro-phenyl ester 7UI5 ; ; Evolution avoids a pathological stabilizing interaction in the immune protein S100A9 6NW4 ; 3.0 ; Evolution of a computationally designed Kemp eliminase 2P4I ; 2.5 ; Evolution of a highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor 7LQ3 ; 2.55 ; Evolution of a sigma-(c-di-GMP)-antisigma switch 2FL9 ; 17.0 ; Evolution of bacteriophage tails: Structure of T4 gene product 10 3C2T ; 3.0 ; Evolution of chlorella virus dUTPase 3C3I ; 3.0 ; Evolution of chlorella virus dUTPase 3CA9 ; 3.0 ; Evolution of chlorella virus dUTPase 2FM7 ; 2.8 ; Evolution of Enzymatic Activity in the Tautomerase Superfamily: Mechanistic and Structural Consequences of the L8R Mutation in 4-Oxalocrotonate Tautomerase 1HDF ; 2.35 ; Evolution of the eye lens beta-gamma-crystallin domain fold 2X82 ; 2.6 ; Evolutionary basis of HIV restriction by the antiretroviral TRIMCyp 2X83 ; 1.7 ; Evolutionary basis of HIV restriction by the antiretroviral TRIMCyp 6RM3 ; 3.4 ; Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome 2LKB ; ; Evolutionary diversification of Mesobuthus alpha-scorpion toxins affecting sodium channels 5KNN ; 2.68 ; Evolutionary gain of alanine mischarging to non-cognate tRNAs with a G4:U69 base pair 4MB8 ; 2.4009 ; Evolutionary history and metabolic insights of ancient mammalian uricases 3IIO ; 2.25 ; Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series 3IIP ; 2.3 ; Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series 3IIV ; 1.8 ; Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series 7PNA ; 1.9 ; Evolved unspecific peroxygenase with A77L mutation in complex with 12-methoxylauric acid 7PN5 ; 1.82 ; Evolved unspecific peroxygenase with A77L mutation in complex with hexane 7PN9 ; 1.85 ; Evolved unspecific peroxygenase with A77L mutation in complex with lauric acid 7PN6 ; 1.5 ; Evolved unspecific peroxygenase with A77L mutation in complex with myristic acid 7PN4 ; 2.05 ; Evolved unspecific peroxygenase with A77L mutation in complex with naphthalene 7PN7 ; 1.65 ; Evolved unspecific peroxygenase with A77L mutation in complex with palmitoleic acid 7PN8 ; 1.5 ; Evolved unspecific peroxygenase with A77L mutation in complex with tetradecane 3QI8 ; 3.2 ; Evolved variant of cytochrome P450 (BM3, CYP102A1) 8HFB ; 2.24 ; Evolved variant of quercetin 2,4-dioxygenase from Bacillus subtilis 6PWD ; 2.47 ; Ewingella americana HopBF1 kinase 6PWG ; 1.89 ; Ewingella americana HopBF1 kinase bound to AMP-PNP 7SJQ ; 2.0 ; Ex silico engineering of cystine-dense peptides yielding a potent bispecific T-cell engager 8P8R ; 1.42 ; Ex vivo Ym1 crystal structure 8P8T ; 1.71 ; Ex vivo Ym2 crystal structure 7S1M ; 2.41 ; Ex4-D-Ala bound to the glucagon-like peptide-1 receptor/g protein complex (conformer 1) 7S3I ; 2.51 ; Ex4-D-Ala bound to the glucagon-like peptide-1 receptor/g protein complex (conformer 2) 6TYI ; 3.3 ; ExbB-ExbD complex in MSP1E3D1 nanodisc 5J1O ; ; Excited state (Bound-like) sampled during RDC restrained Replica-averaged Metadynamics (RAM) simulations of the HIV-1 TAR complexed with cyclic peptide mimetic of Tat 1ILX ; 3.8 ; Excited State Dynamics in Photosystem II Revised. New Insights from the X-ray Structure. 6GDZ ; ; exendin-4 based dual GLP-1/glucagon receptor agonist 6GE2 ; ; exendin-4 based dual GLP-1/glucagon receptor agonist 5NIQ ; ; exendin-4 variant with dual GLP-1 / glucagon receptor activity 7LLL ; 3.7 ; Exendin-4-bound Glucagon-Like Peptide-1 (GLP-1) Receptor in complex with Gs protein 1EXF ; 2.1 ; EXFOLIATIVE TOXIN A 3TU1 ; 1.603 ; Exhaustive Fluorine Scanning towards Potent p53-MDM2 Antagonist 8IC8 ; 2.42 ; Exo-alpha-D-arabinofuranosidase from Microbacterium arabinogalactanolyticum 1EQP ; 1.9 ; EXO-B-(1,3)-GLUCANASE FROM CANDIDA ALBICANS 1CZ1 ; 1.85 ; EXO-B-(1,3)-GLUCANASE FROM CANDIDA ALBICANS AT 1.85 A RESOLUTION 1EQC ; 1.85 ; EXO-B-(1,3)-GLUCANASE FROM CANDIDA ALBICANS IN COMPLEX WITH CASTANOSPERMINE AT 1.85 A 2PB1 ; 1.9 ; Exo-B-(1,3)-Glucanase from Candida Albicans in complex with unhydrolysed and covalently linked 2,4-dinitrophenyl-2-deoxy-2-fluoro-B-D-glucopyranoside at 1.9 A 6ZB8 ; 1.35 ; Exo-beta-1,3-glucanase from moose rumen microbiome, active site mutant E167Q/E295Q 6ZB9 ; 2.5 ; Exo-beta-1,3-glucanase from moose rumen microbiome, wild type 7BOB ; 2.2 ; Exo-beta-1,4-mannosidase Op5Man5 from Opitutaceae bacterium strain TAV5 8IC6 ; 1.75 ; exo-beta-D-arabinanase ExoMA2 from Microbacterium arabinogalactanolyticum in complex with Tris 8IC7 ; 1.35 ; exo-beta-D-arabinofuranosidase ExoMA2 from Microbacterium arabinogalactanolyticum in complex with beta-D-arabinofuranose 6JOW ; 1.75 ; Exo-beta-D-glucosaminidase from Pyrococcus furiosus 1UUQ ; 1.5 ; Exo-mannosidase from Cellvibrio mixtus 7ODJ ; 1.3 ; Exo-mannosidase from Cellvibrio mixtus bound to N-alkyl mannocyclophellitol aziridine 6GN0 ; 3.24 ; Exoenzyme S from Pseudomonas aeruginosa in complex with human 14-3-3 protein beta, tetrameric crystal form 6GN8 ; 2.34 ; Exoenzyme S from Pseudomonas aeruginosa in complex with human 14-3-3 protein beta, trimeric crystal form 6GNK ; 2.55 ; Exoenzyme S from Pseudomonas aeruginosa in complex with human 14-3-3 protein beta, trimeric crystal form bound to Carba-NAD 6GNJ ; 3.24 ; Exoenzyme S from Pseudomonas aeruginosa in complex with human 14-3-3 protein beta, trimeric crystal form in complex with STO1101 6GNN ; 3.79 ; Exoenzyme T from Pseudomonas aeruginosa in complex with human 14-3-3 protein beta, tetrameric crystal form bound to STO1101 3C94 ; 2.7 ; ExoI/SSB-Ct complex 7R6N ; 4.1 ; Exon-free state of the Tetrahymena group I intron, symmetry-expanded monomer from a synthetic trimeric construct 3Q7B ; 2.0 ; Exonuclease domain of Lassa virus nucleoprotein 3Q7C ; 1.5 ; Exonuclease domain of Lassa virus nucleoprotein bound to manganese 5FIS ; 1.6 ; Exonuclease domain-containing 1 (Exd1) in the Gd bound conformation 5FIQ ; 2.4 ; Exonuclease domain-containing 1 (Exd1) in the native conformation 3C95 ; 1.7 ; Exonuclease I (apo) 1AKO ; 1.7 ; EXONUCLEASE III FROM ESCHERICHIA COLI 5J8N ; 1.44 ; Exonuclease III homologue Mm3148 from Methanosarcina mazei 4FZY ; 2.5 ; Exonuclease X in complex with 12bp blunt-ended dsDNA 4FZX ; 2.3 ; Exonuclease X in complex with 3' overhanging duplex DNA 4FZZ ; 2.8 ; Exonuclease X in complex with 5' overhanging duplex DNA 8OG1 ; 1.58 ; Exostosin-like 3 apo enzyme 8OG4 ; 2.1 ; Exostosin-like 3 UDP complex 8BR0 ; 2.218 ; ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo MARTX toxin (residue Q3455 to L3863) in complex with 3'deoxyCTP and two manganese cations bound to Latrunculin-B-ADP-Mn-actin 8BJJ ; 1.699 ; ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo MARTX toxin, bound to ATP-Mg-actin, human profilin 1 and a sulfate ion 8BO1 ; 2.501 ; ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo MARTX toxin, bound to Latrunculin-B-ATP-Mg-actin, and 3'-DEOXYADENOSINE-5'-TRIPHOSPHATE and 2 Mg ions 8BR1 ; 2.044 ; ExoY Nucleotidyl Cyclase domain from Vibrio nigripulchritudo MARTX toxin, bound to Latrunculin-B-ATP-Mg-actin, and 3'-DEOXYADENOSINE-5'-TRIPHOSPHATE and 2 Mg ions 6RPL ; 3.85 ; Expanded bat circovirus with DNA VLP 8AW6 ; 3.5 ; Expanded Coxsackievirus A9 after 0.01% faf-BSA treatment 8AXX ; 3.3 ; Expanded Coxsackievirus A9 after treatment with endosomal ionic buffer 5KWL ; 4.8 ; expanded poliovirus in complex with VHH 10E 5KTZ ; 4.3 ; expanded poliovirus in complex with VHH 12B 5KU0 ; 5.3 ; expanded poliovirus in complex with VHH 17B 5KU2 ; 5.3 ; expanded poliovirus in complex with VHH 7A 3UVF ; 3.0 ; Expanding LAGALIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space 5F2B ; 1.7 ; Expanding Nature's Catalytic Repertoire -Directed Evolution of an Artificial Metalloenzyme for In Vivo Metathesis 5IRA ; 1.5 ; Expanding Nature's Catalytic Repertoire -Directed Evolution of an Artificial Metalloenzyme for In Vivo Metathesis 6V94 ; 1.8 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9F ; 1.849 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9J ; 1.76 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9L ; 1.698 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9M ; 1.648 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9N ; 1.648 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 6V9O ; 1.799 ; Expanding the Chemical Landscape of SOS1 Activators Using Fragment Based Methods 1OXD ; 1.15 ; Expansion of the Genetic Code Enables Design of a Novel ""Gold"" Class of Green Fluorescent Proteins 1OXE ; 1.15 ; Expansion of the Genetic Code Enables Design of a Novel ""Gold"" Class of Green Fluorescent Proteins 1OXF ; 1.69 ; Expansion of the Genetic Code Enables Design of a Novel ""Gold"" Class of Green Fluorescent Proteins 1ODZ ; 1.4 ; Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides 5M9W ; 1.21 ; Experimental MAD phased structure of thermolysin in complex with inhibitor JC65. 1XDV ; 4.1 ; Experimentally Phased Structure of Human the Son of Sevenless protein at 4.1 Ang. 5JAH ; 2.06 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAL ; 2.06 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAN ; 2.12 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAO ; 2.06 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAP ; 2.46 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAR ; 2.11 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAS ; 2.06 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAT ; 2.04 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 5JAU ; 1.95 ; Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered Through X-Ray Fragment Screening 3VBQ ; 1.85 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VBT ; 2.23 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VBV ; 2.08 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VBW ; 2.48 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VBX ; 2.03 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VBY ; 2.27 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 3VC4 ; 2.23 ; Exploitation of hydrogen bonding constraints and flat hydrophobic energy landscapes in Pim-1 kinase needle screening and inhibitor design 8G9S ; 3.4 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 8G9T ; 3.6 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 8G9U ; 3.0 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 8GAF ; 3.64 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 8GAM ; 3.46 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 8GAN ; 3.26 ; Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications 5T31 ; 2.85 ; Exploiting an Asp-Glu switch in Glycogen Synthase Kinase 3 to design paralog selective inhibitors for use in acute myeloid leukemia 4DRQ ; 1.0 ; Exploration of Pipecolate Sulfonamides as Binders of the FK506-Binding Proteins 51 and 52: Complex of FKBP51 with 2-(3-((R)-1-((S)-1-(3,5-dichlorophenylsulfonyl)piperidine-2-carbonyloxy)-3-(3,4-dimethoxy -phenyl)propyl)phenoxy)acetic acid 3HEZ ; 2.0 ; Exploring backbone pattern in alpha/beta-peptide helix bundles: The GCN4-pLI side chain sequence on different (alpha-alpha-alpha-beta) backbones 6ATL ; 1.8 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATM ; 2.09 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATN ; 1.76 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATS ; 1.9 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATU ; 2.4 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATW ; 1.53 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6ATY ; 1.8 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AU7 ; 1.9 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AUP ; 1.95 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AV8 ; 1.89 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AVA ; 2.2 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AVC ; 1.88 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 6AVD ; 1.8 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 7SOH ; 1.81 ; Exploring Cystine Dense Peptide Space to Open a Unique Molecular Toolbox 3BC3 ; 2.2 ; Exploring inhibitor binding at the S subsites of cathepsin L 5I4X ; 1.607 ; Exploring onset of lysozyme denaturation by urea - soak period 2 hours 5I54 ; 1.608 ; Exploring onset of lysozyme denaturation by urea - soak period 4 hours 5I53 ; 1.608 ; Exploring onset of lysozyme denaturation by urea - soak period 7 hours 5I4Y ; 1.607 ; Exploring onset of lysozyme denaturation by urea: soak period 10 hours. 4LIN ; 2.7 ; Exploring the atomic structure and conformational flexibility of a 320 angstrom long engineered viral fiber using X-ray crystallography 1WVJ ; 1.75 ; Exploring the GluR2 ligand-binding core in complex with the bicyclic AMPA analogue (S)-4-AHCP 8B5D ; 2.0 ; Exploring the ligand binding and conformational dynamics of receptor domain 1 of the ABC transporter GlnPQ 8B5E ; 1.6 ; Exploring the ligand binding and conformational dynamics of receptor domain 1 of the ABC transporter GlnPQ 5I4W ; 1.6 ; Exploring the onset of lysozyme denaturation by urea 2ZDA ; 1.73 ; Exploring Thrombin S1 pocket 2ZDV ; 1.72 ; Exploring Thrombin S1 pocket 2ZF0 ; 2.2 ; Exploring Thrombin S1 Pocket 2ZFF ; 1.47 ; Exploring Thrombin S1-pocket 2ZFQ ; 1.8 ; Exploring thrombin S3 pocket 2ZFR ; 1.85 ; Exploring thrombin S3 pocket 2ZG0 ; 1.75 ; Exploring thrombin S3 pocket 2ZHE ; 2.1 ; Exploring thrombin S3 pocket 2ZHF ; 1.98 ; Exploring thrombin S3 pocket 2ZHW ; 2.02 ; Exploring thrombin S3 pocket 2ZDK ; 1.67 ; Exploring Trypsin S3 Pocket 2ZDL ; 1.8 ; Exploring trypsin S3 pocket 2ZDM ; 1.93 ; Exploring trypsin S3 pocket 2ZDN ; 1.98 ; Exploring trypsin S3 pocket 2ZFS ; 1.51 ; Exploring trypsin S3 pocket 2ZFT ; 1.76 ; Exploring trypsin S3 pocket 2ZHD ; 1.94 ; Exploring trypsin S3 pocket 2ZQ1 ; 1.68 ; Exploring trypsin S3 pocket 2ZQ2 ; 1.4 ; Exploring trypsin S3 pocket 6RWY ; 5.11 ; Export apparatus core and inner rod of the Shigella type 3 secretion system 3QVD ; 2.0 ; Exposure of rubrerythrin from Pyrococcus furiosus to peroxide, fifteen second time point. 2LA1 ; ; Expression in Pichia pastoris and backbone dynamics of dendroaspin, a three finger toxin 6S9Z ; 0.95 ; Expression tag modified N-terminus of human Carbonic Anhydrase II covalently linked to fragment 5WUG ; 2.216 ; Expression, characterization and crystal structure of a novel beta-glucosidase from Paenibacillus barengoltzii 5WVP ; 2.294 ; Expression, characterization and crystal structure of a novel beta-glucosidase from Paenibacillus barengoltzii 1TDR ; 2.5 ; EXPRESSION, CHARACTERIZATION, AND CRYSTALLOGRAPHIC ANALYSIS OF TELLUROMETHIONYL DIHYDROFOLATE REDUCTASE 2ANY ; 1.4 ; Expression, Crystallization and the Three-dimensional Structure of the Catalytic Domain of Human Plasma Kallikrein: Implications for Structure-Based Design of Protease Inhibitors 2ANW ; 1.85 ; Expression, crystallization and three-dimensional structure of the catalytic domain of human plasma kallikrein: Implications for structure-based design of protease inhibitors 4JB4 ; 2.39 ; Expression, Purification, Characterization, and Solution NMR Study of Highly Deuterated Yeast Cytochrome c Peroxidase with Enhanced Solubility 3HGF ; 4.0 ; Expression, purification, spectroscopical and crystallographical studies of segments of the nucleotide binding domain of the reticulocyte binding protein Py235 of Plasmodium yoelii 7S5U ; 4.41 ; Extended bipolar assembly domain of kinesin-5 minifilament 5O2X ; 0.95 ; Extended catalytic domain of H. jecorina LPMO9A a.k.a EG4 5O2W ; 2.0 ; Extended catalytic domain of Hypocrea jecorina LPMO 9A. 7S67 ; 3.8 ; Extended conformation of daytime state KaiC 7S66 ; 2.8 ; Extended conformation of nighttime state KaiC 8CPY ; 3.9 ; Extended cowpea chlorotic mottle virus 6BUS ; 1.9 ; Extended E2 DNA-binding domain of the Bovine Papillomavirus-1 7QGQ ; ; Extended H/L (SLPH/SLPL) complex from C. difficile (CD630 strain) fit into R20291 S-layer negative stain map 6K2C ; 2.703 ; Extended Hect domain of UBE3C E3 Ligase 6ZYA ; 3.5 ; Extended human uromodulin filament core at 3.5 A resolution 4C0H ; 2.7 ; Extended interface between Pcf11p and Clp1p and structural basis for ATP loss in Gly135Arg point mutant 6Y5K ; 4.2 ; Extended Intermediate form of X-31 Influenza Haemagglutinin at pH 5 (State IV) 6RQR ; 2.2 ; Extended NHERF1 PDZ2 domain in complex with the PDZ-binding motif of CFTR 8OEJ ; 8.0 ; Extended RPA-DNA nucleoprotein filament 6URT ; 3.27 ; Extended Sensor Paddles with Bound Lipids Revealed in Mechanosensitive Channel YnaI 1PD7 ; ; Extended SID of Mad1 bound to the PAH2 domain of mSin3B 2KEM ; ; Extended structure of citidine deaminase domain of APOBEC3G 6S8S ; 2.21 ; Extended structure of the human DDX6 C-terminal domain in complex with an EDC3 FDF peptide 2CJX ; 1.7 ; Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis 2CJY ; 1.67 ; Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis 2DKO ; 1.06 ; Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis 2WAC ; 2.1 ; Extended Tudor domain of Drosophila Melanogaster Tudor-SN (p100) 4NPJ ; 2.101 ; Extended-Synaptotagmin 2, C2A- and C2B-domains 4NPK ; 2.552 ; Extended-Synaptotagmin 2, C2A- and C2B-domains, calcium bound 4P42 ; 2.44 ; Extended-Synaptotagmin 2, SMP - C2A - C2B Domains 1NMQ ; 2.4 ; Extendend Tethering: In Situ Assembly of Inhibitors 2O2W ; ; Extending powder diffraction to proteins: structure solution of the second SH3 domain from ponsin 2MZU ; ; Extending the eNOE data set of large proteins by evaluation of NOEs with unresolved diagonals 1ROQ ; ; Extending the Family of UNCG-like Tetraloop Motifs: NMR Structure of a CACG Tetraloop from Coxsackievirus B3 5FUO ; 3.6 ; Extending the half-life of a Fab fragment through generation of a humanised anti-Human Serum Albumin (HSA) Fv domain: an investigation into the correlation between affinity and serum half-life 5FUZ ; 2.68 ; Extending the half-life of a Fab fragment through generation of a humanised anti-Human Serum Albumin (HSA) Fv domain: an investigation into the correlation between affinity and serum half-life 1U48 ; 2.1 ; Extension of a cytosine-8-oxoguanine base pair 1U4B ; 1.6 ; Extension of an adenine-8oxoguanine mismatch 241D ; 1.85 ; EXTENSION OF THE FOUR-STRANDED INTERCALATED CYTOSINE MOTIF BY ADENINE.ADENINE BASE PAIRING IN THE CRYSTAL STRUCTURE OF D(CCCAAT) 5FHJ ; 1.68 ; Extensive amphimorphism in DNA: Three stable conformations for the decadeoxynucleotide d(GCATGCATGC) 5FHL ; 1.791 ; Extensive amphimorphism in DNA: Three stable conformations for the decadeoxynucleotide d(GCATGCATGC) 4C3U ; 2.29 ; Extensive counter-ion interactions with subtilisin in aqueous medium, Cs derivative 4C3V ; 2.26 ; Extensive counter-ion interactions with subtilisin in aqueous medium, no Cs soak 5B61 ; 3.115 ; Extra-superfolder GFP 6TJ2 ; 1.32 ; Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to Tobacco Salicylic Acid Binding Protein 2 8CTG ; 3.8 ; Extracellular architecture of an engineered canonical Wnt signaling ternary complex 8W7P ; 1.8 ; Extracellular domain of a sensor histidine kinase 2ICC ; 1.2 ; Extracellular Domain of CRIg 5OTT ; 1.92 ; Extracellular domain of GLP-1 receptor in complex with exendin-4 variant Gly2Hcs/Thr5Hcs 5OTV ; 2.0 ; Extracellular domain of GLP-1 receptor in complex with GLP-1 variant Ala8Cyc/Thr11Hcs 5OTX ; 2.0 ; Extracellular domain of GLP-1 receptor in complex with GLP-1 variant Ala8Cys/Thr11Cys 5OTW ; 2.1 ; Extracellular domain of GLP-1 receptor in complex with GLP-1 variant Ala8Hcs/Thr11Cys 5OTU ; 1.8 ; Extracellular domain of GLP-1 receptor in complex with GLP-1 variant Ala8Hcs/Thr11Hcs 5MJ0 ; 3.2 ; Extracellular domain of human CD83 - cubic crystal form 5MJ1 ; 1.8 ; Extracellular domain of human CD83 - rhombohedral crystal form 5MJ2 ; 1.98 ; Extracellular domain of human CD83 - rhombohedral crystal form after UV-RIP (S-SAD data) 5MIX ; 1.701 ; Extracellular domain of human CD83 - trigonal crystal form 1P57 ; 1.75 ; Extracellular domain of human hepsin 1TFH ; 2.4 ; EXTRACELLULAR DOMAIN OF HUMAN TISSUE FACTOR 1RWI ; 1.8 ; Extracellular domain of Mycobacterium tuberculosis PknD 1RWL ; 1.9 ; Extracellular domain of Mycobacterium tuberculosis PknD 1EXT ; 1.85 ; EXTRACELLULAR DOMAIN OF THE 55KDA TUMOR NECROSIS FACTOR RECEPTOR. CRYSTALLIZED AT PH3.7 IN P 21 21 21. 1N7D ; 3.7 ; Extracellular domain of the LDL receptor 4XJJ ; 1.4 ; Extracellular domain of type II Transforming Growth Factor Beta receptor in complex with 2-(2-Hydroxyethyl)NDSB-201 4P7U ; 1.502 ; Extracellular domain of type II Transforming Growth Factor Beta receptor in complex with NDSB-201 4QQV ; 3.45 ; Extracellular domains of mouse IL-3 beta receptor 2XGR ; 1.7 ; extracellular endonuclease 6O06 ; 3.6 ; Extracellular factors prime enterovirus particles for uncoating 5ERE ; 2.0 ; Extracellular ligand binding receptor from Desulfohalobium retbaense DSM5692 4K90 ; 1.8 ; Extracellular metalloproteinase from Aspergillus 2XH3 ; 2.49 ; extracellular nuclease 4NZL ; 1.85 ; Extracellular proteins of Staphylococcus aureus inhibit the neutrophil serine proteases 1BOY ; 2.2 ; EXTRACELLULAR REGION OF HUMAN TISSUE FACTOR 5KVM ; 2.449 ; Extracellular region of mouse GPR56/ADGRG1 in complex with FN3 monobody 1OLL ; 1.93 ; Extracellular region of the human receptor NKp46 4OVJ ; 1.65 ; Extracellular solute-binding protein family 1 from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 5A2E ; 3.15 ; Extracellular SRCR domains of human CD6 4PUD ; 2.01 ; Extracellulr Xylanase from Geobacillus stearothermophilus: E159Q mutant, with xylopentaose in active site 4PUE ; 2.2 ; Extracellulr Xylanase from Geobacillus stearothermophilus: E159Q mutant, with xylotetraose in active site 1M6P ; 1.8 ; EXTRACYTOPLASMIC DOMAIN OF BOVINE CATION-DEPENDENT MANNOSE 6-PHOSPHATE RECEPTOR 1XI6 ; 2.8 ; Extragenic suppressor from Pyrococcus furiosus Pfu-1862794-001 6GAU ; 3.3 ; Extremely 'open' clamp structure of DNA gyrase: role of the Corynebacteriales GyrB specific insert 6GAV ; 2.6 ; Extremely 'open' clamp structure of DNA gyrase: role of the Corynebacteriales GyrB specific insert 4BNR ; 2.0 ; Extremely stable complex of crayfish trypsin with bovine trypsin inhibitor 6RPV ; ; Extremely stable monomeric variant of human cystatin C with single amino acid substitution 2JLD ; 2.35 ; Extremely Tight Binding of Ruthenium Complex to Glycogen Synthase Kinase 3 6ZQO ; 2.2 ; EYFP mutant - F165G 1P4D ; 2.6 ; F factor TraI Relaxase Domain 2A0I ; 2.72 ; F Factor TraI Relaxase Domain bound to F oriT Single-stranded DNA 7P0Q ; 1.73 ; F(M197)H mutant structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV by fixed-target serial synchrotron crystallography (100K, 26keV) 7P17 ; 2.22 ; F(M197)H mutant structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV by fixed-target serial synchrotron crystallography (room temperature, 12keV) 7P2C ; 2.04 ; F(M197)H mutant structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV by fixed-target serial synchrotron crystallography (room temperature, 26keV) 7OD5 ; 2.1 ; F(M197)H mutant structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV LSP crystallization 8C4E ; 2.6 ; F-actin decorated by SipA426-685 8C4C ; 2.7 ; F-actin decorated by SipA497-669 6KLN ; 3.4 ; F-actin of cardiac thin filament in high-calcium state 6KLL ; 3.0 ; F-actin of cardiac thin filament in low-calcium state 7BT7 ; 3.8 ; F-actin-ADP complex structure 6M5G ; 3.6 ; F-actin-Utrophin complex 4DYL ; 2.18 ; F-BAR domain of human FES tyrosine kinase 6BRT ; 2.393 ; F-box protein CTH with hydrolase 6BRP ; 2.39 ; F-box protein form 2 8GRE ; 2.3 ; F-box protein in complex with skp1(FL) and substrate 6NM5 ; 6.2 ; F-pilus/MS2 Maturation protein complex 1SZL ; ; F-spondin TSR domain 1 1VEX ; ; F-spondin TSR domain 4 6WLM ; 7.4 ; F. nucleatum glycine riboswitch with glycine models, 7.4 Angstrom resolution 6WMR ; 3.46 ; F. tularensis RNAPs70-(MglA-SspA)-iglA DNA complex 6WMT ; 4.43 ; F. tularensis RNAPs70-(MglA-SspA)-ppGpp-PigR-iglA DNA complex 6WMP ; 2.98 ; F. tularensis RNAPs70-iglA DNA complex 7XKO ; 3.4 ; F1 domain of epsilon C-terminal domain deleted FoF1 from Bacillus PS3,state1,nucleotide depeleted 7XKP ; 3.0 ; F1 domain of epsilon C-terminal domain deleted FoF1 from Bacillus PS3,state1,unisite condition 8HH7 ; 2.5 ; F1 domain of FoF1-ATPase from Bacillus PS3, 81 degrees, lowATP 8HH9 ; 3.6 ; F1 domain of FoF1-ATPase from Bacillus PS3, 90 degrees, low ATP 8HH4 ; 3.1 ; F1 domain of FoF1-ATPase from Bacillus PS3,101 degrees, highATP 8HH5 ; 2.9 ; F1 domain of FoF1-ATPase from Bacillus PS3,120 degrees,highATP 8HHA ; 3.4 ; F1 domain of FoF1-ATPase from Bacillus PS3,120 degrees,lowATP 8HH3 ; 4.3 ; F1 domain of FoF1-ATPase from Bacillus PS3,90 degrees,highATP 8HHC ; 3.3 ; F1 domain of FoF1-ATPase from Bacillus PS3,post-hyd',lowATP 8HH2 ; 3.0 ; F1 domain of FoF1-ATPase from Bacillus PS3,post-hyd,highATP 8HH8 ; 2.8 ; F1 domain of FoF1-ATPase from Bacillus PS3,post-hyd,lowATP 8HH6 ; 2.9 ; F1 domain of FoF1-ATPase from Bacillus PS3,step waiting,highATP 8HHB ; 3.5 ; F1 domain of FoF1-ATPase from Bacillus PS3,step waiting,lowATP 7XKQ ; 3.3 ; F1 domain of FoF1-ATPase with the down form of epsilon subunit from Bacillus PS3 7XKR ; 2.6 ; F1 domain of FoF1-ATPase with the up form of epsilon subunit from Bacillus PS3 8HUG ; 2.15 ; F1 in complex with CRM1-Ran-RanBP1 6Q45 ; 3.6 ; F1-ATPase from Fusobacterium nucleatum 6FOC ; 4.0 ; F1-ATPase from Mycobacterium smegmatis 4ASU ; 2.6 ; F1-ATPase in which all three catalytic sites contain bound nucleotide, with magnesium ion released in the Empty site 7YRY ; 3.0 ; F1-ATPase of Acinetobacter baumannii 1TPG ; ; F1-G MODULE PAIR RESIDUES 1-91 (C83S) OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (T-PA) (NMR, 298K, PH2.95, REPRESENTATIVE STRUCTURE) 1NT5 ; ; F1-Gramicidin A in Sodium Dodecyl Sulfate Micelles (NMR) 1NT6 ; ; F1-Gramicidin C In Sodium Dodecyl Sulfate Micelles (NMR) 7MRV ; 1.57 ; F100A mutant structure of MIF2 (D-DT) 6EH7 ; 1.89 ; F11 Human T-Cell Receptor specific for influenza virus haaemagglutinin epitope PKYVKQNTLKLAT carried by Human Leukocyte Antigen HLA-DR0101 6EH6 ; 1.78 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FR9 ; 1.62 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FRA ; 1.73 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FRB ; 1.75 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FRC ; 1.59 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUM ; 1.76 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUN ; 1.58 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUO ; 1.7 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUP ; 1.72 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUQ ; 1.6 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 6FUR ; 1.73 ; F11 T-Cell Receptor Recognising PKYVKQNTLKLAT Peptide Presented by HLA-DR*0101 2QD2 ; 2.2 ; F110A variant of human ferrochelatase with protoheme bound 1F11 ; 3.0 ; F124 FAB FRAGMENT FROM A MONOCLONAL ANTI-PRES2 ANTIBODY 3O6A ; 2.0 ; F144Y/F258Y Double Mutant of Exo-beta-1,3-glucanase from Candida albicans at 2 A 1O9Z ; 1.75 ; F17-aG lectin domain from Escherichia coli (ligand free) 1O9V ; 1.75 ; F17-aG lectin domain from Escherichia coli in complex with a selenium carbohydrate derivative 1O9W ; 1.65 ; F17-aG lectin domain from Escherichia coli in complex with N-acetyl-glucosamine 3MPN ; 2.25 ; F177R1 mutant of LeuT 3F6J ; 1.75 ; F17a-G lectin domain with bound GlcNAc(beta1-3)Gal 3F64 ; 1.95 ; F17a-G lectin domain with bound GlcNAc(beta1-O)paranitrophenyl ligand 3FFO ; 2.1 ; F17b-G lectin domain with bound GlcNAc(beta1-2)man 4K0O ; 2.15 ; F17b-G lectin domain with bound GlcNAc(beta1-3)Gal 6FSL ; 2.5 ; F194W mutant of the dye-decolorizing peroxidase (DYP) from Pleurotus ostreatus 6FSK ; 1.56 ; F194Y mutant of the Dye-decolorizing peroxidase (DYP) from Pleurotus ostreatus 3LG5 ; 1.641 ; F198A Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 8SU4 ; 1.43 ; F198S epi-Isozizaene Synthase: complex with 3 Mg2+, inorganic pyrophosphate, and benzyl triethyl ammonium cation 8SU5 ; 1.48 ; F198T epi-Isozizaene Synthase: complex with 3 Mg2+, inorganic pyrophosphate, and benzyl triethyl ammonium cation 7P2Y ; 3.1 ; F1Fo-ATP synthase from Acinetobacter baumannii (state 1) 7P3N ; 4.6 ; F1Fo-ATP synthase from Acinetobacter baumannii (state 2) 7P3W ; 4.3 ; F1Fo-ATP synthase from Acinetobacter baumannii (state 3) 5FNZ ; 2.52 ; F206W mutant of FAD synthetase from Corynebacterium ammoniagenes 3AGC ; 2.0 ; F218V mutant of the substrate-bound red chlorophyll catabolite reductase from Arabidopsis thaliana 3AGB ; 2.2 ; F218V mutant of the substrate-free form of red chlorophyll catabolite reductase from Arabidopsis thaliana 1P8I ; 1.86 ; F219L BACTERIORHODOPSIN MUTANT 3N9K ; 1.7 ; F229A/E292S Double Mutant of Exo-beta-1,3-glucanase from Candida albicans in Complex with Laminaritriose at 1.7 A 7ZKV ; 2.066 ; F231A variant of the CODH/ACS complex of C. hydrogenoformans 3LNM ; 2.9 ; F233W mutant of the Kv2.1 paddle-Kv1.2 chimera channel 4Q74 ; 2.19 ; F241A Fc 2PF0 ; 1.9 ; F258I mutant of EXO-B-(1,3)-GLUCANASE FROM CANDIDA ALBICANS at 1.9 A 7SMJ ; 1.58 ; F2N structure, protein design with deep learning 7XXP ; 2.052 ; F316A-glycine-streptothricin F complex 5KJE ; 1.26 ; F322L horse liver alcohol dehydrogenase complexed with NAD+ and pentafluorobenzyl alcohol 7ZS4 ; 1.75 ; F32V Cytochrome c prime beta from Methylococcus capsulatus (Bath) 7ZSV ; 1.74 ; F32V Cytochrome c prime beta from Methylococcus capsulatus (Bath) Chemically Reduced Ferrous Form 7ZSX ; 1.77 ; F32V Cytochrome c prime beta from Methylococcus capsulatus (Bath): CO Complex 7ZSW ; 1.94 ; F32V Cytochrome c prime beta from Methylococcus capsulatus (Bath): NO Complex 4F4D ; 1.8 ; F337R variant of human ferrochelatase 4FWY ; 1.8 ; F33Y CuB myoglobin (F33Y L29H F43H sperm whale myoglobin) with copper bound 1P0V ; 2.05 ; F393A mutant heme domain of flavocytochrome P450 BM3 1P0W ; 2.0 ; F393W mutant heme domain of flavocytochrome P450 BM3 1P0X ; 2.0 ; F393Y mutant heme domain of flavocytochrome P450 BM3 6LZU ; 1.9 ; F411A mutant of chitin-specific solute binding protein from Vibrio harveyi co-crystalized with chitobiose. 4XOQ ; 2.05 ; F420 complex of coenzyme F420:L-glutamate ligase (FbiB) from Mycobacterium tuberculosis (C-terminal domain) 7ULE ; 1.7 ; F420-1/GDP complex of F420-gamma glutamyl ligase (CofE) from Archaeoglobus fulgidus 8G8P ; 1.83 ; F420-2/GTP(GDP) complex of F420-gamma glutamyl ligase (CofE) from Archaeoglobus fulgidus 5LXE ; 1.47 ; F420-dependent glucose-6-phosphate dehydrogenase from Rhodococcus jostii RHA1 1RHC ; 1.8 ; F420-dependent secondary alcohol dehydrogenase in complex with an F420-acetone adduct 5N2I ; 1.8 ; F420:NADPH oxidoreductase from Thermobifida fusca with NADP+ bound 6LZV ; 2.2 ; F437A mutant of chitin-specific solute binding protein from Vibrio harveyi co-crystalized with chitobiose. 2YCP ; 2.0 ; F448H mutant of tyrosine phenol-lyase from Citrobacter freundii in complex with quinonoid intermediate formed with 3-fluoro-L-tyrosine 4Z44 ; 2.204 ; F454K Mutant of Tryptophan 7-halogenase PrnA 1IZR ; 1.5 ; F46A mutant of bovine pancreatic ribonuclease A 1IZP ; 1.5 ; F46L mutant of bovine pancreatic ribonuclease A 1IZQ ; 1.8 ; F46V mutant of bovine pancreatic ribonuclease A 8CJC ; 2.22 ; F515A variant of the CODH/ACS complex of C. hydrogenoformans 3QXD ; 2.302 ; F54C HLA-DR1 bound with CLIP peptide 6MSF ; 2.8 ; F6 APTAMER MS2 COAT PROTEIN COMPLEX 6VVN ; 1.39 ; F6 fused 4-OT wild type asymmetric trimer 4N8J ; 2.01 ; F60M mutant, RipA structure 7ZRW ; 1.96 ; F61V Cytochrome c prime beta from Methylococcus capsulatus (Bath) 7ZRX ; 2.04 ; F61V Cytochrome c prime beta from Methylococcus capsulatus (Bath) Chemically Reduced Ferrous State 7ZTI ; 2.09 ; F61V Cytochrome c prime beta from Methylococcus capsulatus (Bath): CO Complex 7ZQZ ; 1.68 ; F61V Cytochrome c prime beta from Methylococcus capsulatus (Bath): NO complex 4FDK ; 2.1 ; F78L Tt H-NOX 8HLZ ; 3.5 ; F8-A22-E4 complex of MPXV in hexameric form 8HM0 ; 3.1 ; F8-A22-E4 complex of MPXV in trimeric form 3M6E ; 2.65 ; F80A mutant of the Urea Transporter from Desulfovibrio Vulgaris 2VLQ ; 1.6 ; F86A mutant of E9 DNase domain in complex with Im9 6ARO ; 1.2 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with 8-hydroxyquinoline beta-galactoside 6ARN ; 1.25 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with o-methoxyphenyl beta-galactoside (OMPG) 6AOY ; 1.8 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with o-nitrophenyl beta-galactoside (ONPG) 6ARM ; 1.5 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with o-nitrophenyl beta-galactoside (ONPG) 6AS8 ; 2.101 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with ortho-biphenyl-2'-carboxyl N-acetyl-beta-galactosaminoside 6AOX ; 2.1 ; F9 pilus adhesin FmlH lectin domain from E. coli UTI89 co-crystallized with TF antigen 6MAQ ; 1.31 ; F9 Pilus Adhesin FmlH Lectin Domain from E. coli UTI89 in Complex with Galactoside 2'-{[(2S,3R,4R,5R,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-nitro-[1,1'-biphenyl]-3-carboxylic acid 6MAP ; 1.08 ; F9 Pilus Adhesin FmlH Lectin Domain from E. coli UTI89 in Complex with Galactoside 5-nitro-2'-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-[1,1'-biphenyl]-3-carboxylic acid 6MAW ; 1.75 ; F9 Pilus Adhesin FmlH Lectin Domain from E. coli UTI89 in Complex with Galactoside N-[(2S,3R,4R,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-{[S-methyl-6-(trifluoromethyl)-[1,1'-biphenyl]-3'-yl]oxy}oxan-3-yl]acetamide 2CO5 ; 2.2 ; F93 FROM STIV, a winged-helix DNA-binding protein 8E7U ; 1.19 ; F93A Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8ECT ; 1.6 ; F93AL57A Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8ECS ; 1.2 ; F93G Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8ECU ; 1.3 ; F93S Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 8EE3 ; 1.55 ; F93Y Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 6AXN ; 1.9 ; F95C Epi-isozizaene synthase 4LZ3 ; 2.095 ; F95H Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 4LTZ ; 2.448 ; F95M Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 6AX9 ; 2.403 ; F95N Epi-isozizaene synthase 6OFV ; 1.91 ; F95Q Epi-isozizaene synthase 8SU3 ; 1.29 ; F95S epi-Isozizaene Synthase: complex with 3 Mg2+, inorganic pyrophosphate, and benzyl triethyl ammonium cation 8V3K ; 1.47 ; F95S-F198S epi-Isozizaene Synthase: complex with 3 Mg2+, inorganic pyrophosphate, and benzyl triethyl ammonium cation 6AXM ; 1.8 ; F95Y Epi-isozizaene synthase 4Z0S ; 2.39 ; F96A Mutant of Plasmodium Falciparum Triosephosphate Isomerase 8SU1 ; 1.37 ; F96H epi-Isozizaene Synthase: complex with 3 Mg2+ and pamidronate 8SU2 ; 1.33 ; F96H epi-Isozizaene Synthase: complex with 3 Mg2+ and risedronate 7KJG ; 1.3 ; F96M epi-isozizaene synthase: complex with 3 Mg2+ and BTAC 7KJD ; 1.5 ; F96M epi-isozizaene synthase: complex with 3 Mg2+ and risedronate 6AXO ; 2.1 ; F96S Epi-isozizaene synthase 7KJE ; 1.6 ; F96S epi-isozizaene synthase: complex with 3 Mg2+ and neridronate 4YWI ; 1.85 ; F96S/L167V Double mutant of Plasmodium Falciparum Triosephosphate Isomerase 4Z0J ; 2.07 ; F96S/S73A Double mutant of Plasmodium Falciparum Triosephosphate Isomerase 4YXG ; 1.9 ; F96Y Mutant of Plasmodium Falciparum Triosephosphate Isomerase 6HU4 ; 2.64 ; F97L Hepatitis B core protein capsid 2AV0 ; 1.5 ; F97L with CO bound 2AV3 ; 1.7 ; F97L- no ligand 2AUR ; 2.3 ; F97V (no ligand bound) 2KQU ; ; F98N apoflavodoxin from Anabaena PCC 7119 3M09 ; 2.009 ; F98Y TMP-resistant Dihydrofolate Reductase from Staphylococcus aureus with inhibitor RAB1 6MRG ; 2.77 ; FAAH bound to non covalent inhibitor 1S5I ; 2.7 ; Fab (LNKB-2) of monoclonal antibody to Human Interleukin-2, crystal structure 1F8T ; 2.2 ; FAB (LNKB-2) OF MONOCLONAL ANTIBODY, CRYSTAL STRUCTURE 6M87 ; 2.609 ; Fab 10A6 in complex with MPTS 8FAX ; 2.1 ; Fab 1249A8-MERS Stem Helix Complex 7LFA ; 1.857 ; Fab 3B6 bound to ApoL1 NTD 5MVZ ; 2.15 ; Fab 4AB007 bound to Interleukin-1-beta 7LF7 ; 2.026 ; Fab 6D12 bound to ApoL1 NTD 7LF8 ; 2.15 ; Fab 6D12 bound to ApoL2 NTD 7OX3 ; 1.7 ; Fab 6D3: hIL-9 complex 7OX2 ; 3.34 ; Fab 6E2: hIL-9 complex 7LFD ; 2.157 ; Fab 7D6 bound to ApoL1 BH3 like peptide 7LFB ; 1.913 ; Fab 7D6 bound to ApoL1 NTD 7OX1 ; 2.49 ; Fab 7D6: hIL-9 complex 1EMT ; 2.25 ; FAB ANTIBODY FRAGMENT OF AN C60 ANTIFULLERENE ANTIBODY 6WIO ; 2.17 ; Fab antigen complex 6WIR ; 2.96 ; Fab antigen complex 8CWK ; 2.368 ; Fab arm of antibodies 4G1-C2 and 10G4 bound to CoV-2 receptor binding domain (RBD) 8CWI ; 1.873 ; Fab arm of antibody 10G4 bound to CoV-2 receptor binding domain (RBD) 8DXT ; 2.25 ; Fab arm of antibody GAR12 bound to the receptor binding domain of SARS-CoV-2. 8CWJ ; 2.449 ; Fab arms of antibodies 4C12-B12 and CR3022 bound to pangolin receptor binding domain (pRBD) 8DXU ; 2.728 ; Fab arms of antibodies GAR03 and 10G4 bound to the receptor binding domain of SARS-CoV-2 in a 1:1:1 complex. 4R7N ; 3.45 ; Fab C2E3 6H06 ; 2.63 ; FAB CBTAU-22.1 IN COMPLEX WITH TAU PEPTIDE V1088-5 7JWP ; 3.0 ; Fab CJ11 in complex IL-18 peptide liberated by Caspase cleavage 7JWQ ; 2.001 ; Fab CJ11 in complex IL-1beta peptide liberated by Caspase cleavage 5OB5 ; 1.65 ; fAb complex with GroBeta. AbVance: increasing our knowledge of antibody structural space to enable faster and better decision-making in antibody drug discovery. 4OCX ; 2.39 ; Fab complex with methotrexate 1RVF ; 4.0 ; FAB COMPLEXED WITH INTACT HUMAN RHINOVIRUS 6H0E ; 1.95 ; FAB dmCBTAU-22.1 IN COMPLEX WITH TAU PEPTIDE V1088-23 1QBL ; 2.26 ; FAB E8 (FABE8A) X-RAY STRUCTURE AT 2.26 ANGSTROM RESOLUTION 1QBM ; 2.37 ; FAB E8B ANTIBODY, X-RAY STRUCTURE AT 2.37 ANGSTROMS RESOLUTION 2OK0 ; 1.89 ; Fab ED10-DNA complex 4OCY ; 2.79 ; Fab for methotrexate (unbound apo) 1YUH ; 3.0 ; FAB FRAGMENT 1A3R ; 2.1 ; FAB FRAGMENT (ANTIBODY 8F5) COMPLEXED WITH PEPTIDE FROM HUMAN RHINOVIRUS (SEROTYPE 2) VIRAL CAPSID PROTEIN VP2 (RESIDUES 156-170) 1QKZ ; 1.95 ; Fab fragment (MN14C11.6) in complex with a peptide antigen derived from Neisseria meningitidis P1.7 serosubtype antigen and domain II from Streptococcal protein G 7S4G ; 2.2 ; Fab fragment bound to the Cter peptide of Ly6G6D 6PLH ; 1.6 ; FAB fragment complexed with C-mannosylated tryptophan peptide 3X3G ; 2.51 ; Fab fragment from anti TRAIL-R2 Human Agonist Antibody KMTR2 1BZ7 ; 2.5 ; FAB FRAGMENT FROM MURINE ASCITES 2JB5 ; 2.8 ; Fab fragment in complex with small molecule hapten, crystal form-1 2JB6 ; 2.85 ; Fab fragment in complex with small molecule hapten, crystal form-2 4ONG ; 2.2 ; Fab fragment of 3D6 in complex with amyloid beta 1-40 4ONF ; 2.0 ; Fab fragment of 3D6 in complex with amyloid beta 1-7 4YR6 ; 2.38 ; Fab fragment of 5G6 in complex with epitope peptide 1A5F ; 2.8 ; FAB FRAGMENT OF A MONOCLONAL ANTI-E-SELECTIN ANTIBODY 6HX4 ; 2.95 ; Fab fragment of a native monomer-selective antibody in complex with alpha-1-antitrypsin 1NLD ; 2.9 ; FAB FRAGMENT OF A NEUTRALIZING ANTIBODY DIRECTED AGAINST AN EPITOPE OF GP41 FROM HIV-1 6GXX ; 1.85 ; Fab fragment of an antibody selective for alpha-1-antitrypsin in the native conformation 6I1O ; 1.93 ; Fab fragment of an antibody selective for wild-type alpha-1-antitrypsin 6I3Z ; 3.1 ; Fab fragment of an antibody selective for wild-type alpha-1-antitrypsin in complex with its antigen 6QU9 ; 1.9 ; Fab fragment of an antibody that inhibits polymerisation of alpha-1-antitrypsin 6NEX ; 2.15 ; Fab fragment of anti-cocaine antibody h2E2 6NFN ; 2.63 ; Fab fragment of anti-cocaine antibody h2E2 bound to benzoylecgonine 6WK4 ; 2.1 ; Fab Fragment of Anti-human LAG3 antibody (13E2) 6WKM ; 2.1 ; Fab Fragment of Anti-human LAG3 antibody (22D2) 6WJU ; 3.1 ; Fab Fragment of Anti-human LAG3 antibody (4A10) 6WKL ; 1.89 ; Fab Fragment of Anti-human LAG3 antibody (BAP050) 6H3H ; 1.92 ; Fab fragment of antibody against fullerene C60 4AMK ; 2.05 ; Fab fragment of antiporphrin antibody 13g10 4AT6 ; 2.549 ; Fab fragment of antiporphyrin antibody 14H7 5AZE ; 2.2 ; Fab fragment of calcium-dependent antigen binding antibody, 6RL#9 1Y18 ; 2.8 ; Fab fragment of catalytic elimination antibody 34E4 E(H50)D mutant in complex with hapten 5CGY ; 2.07 ; Fab fragment of Chikungunya virus neutralizing human monoclonal antibody 4J21 4POZ ; 1.75 ; Fab fragment of Der p 1 specific antibody 10B9 1AD0 ; 2.5 ; FAB FRAGMENT OF ENGINEERED HUMAN MONOCLONAL ANTIBODY A5B7 4KTD ; 2.0 ; Fab fragment of HIV vaccine-elicited CD4bs-directed antibody, GE136, from non-human primate 4KTE ; 1.8 ; Fab fragment of HIV vaccine-elicited CD4bs-directed antibody, GE148, from non-human primate 4Q2Z ; 1.93 ; Fab fragment of HIV vaccine-elicited CD4bs-directed antibody, GE356, from a non-human primate 8V7O ; 3.57 ; Fab fragment of human mAb #58 in complex with computationally optimized broadly reactive H1 influenza hemagglutinin X6 2HWZ ; 1.8 ; Fab fragment of Humanized anti-viral antibody MEDI-493 (Synagis TM) 1A6T ; 2.7 ; FAB FRAGMENT OF MAB1-IA MONOCLONAL ANTIBODY TO HUMAN RHINOVIRUS 14 NIM-IA SITE 1F90 ; 2.6 ; FAB FRAGMENT OF MONOCLONAL ANTIBODY (LNKB-2) AGAINST HUMAN INTERLEUKIN-2 IN COMPLEX WITH ANTIGENIC PEPTIDE 4WCY ; 2.0 ; Fab fragment of mouse AZ130 monoclonal antibody 1EJO ; 2.3 ; FAB FRAGMENT OF NEUTRALISING MONOCLONAL ANTIBODY 4C4 COMPLEXED WITH G-H LOOP FROM FMDV. 2BMK ; 2.3 ; Fab fragment of PLP-dependent catalytic antibody 15A9 in complex with phosphopyridoxyl-D-alanine 1WC7 ; 2.33 ; FAB FRAGMENT OF PLP-DEPENDENT CATALYTIC ANTIBODY 15A9 IN COMPLEX WITH PHOSPHOPYRIDOXYL-L-ALANINE 6ELE ; 1.78 ; FAB Fragment. AbVance: Increasing our knowledge of antibody structural space to enable faster and better decision making in antibody drug discovery 6ELJ ; 1.9 ; FAB Fragment. AbVance: Increasing our knowledge of antibody structural space to enable faster and better decision making in antibody drug discovery 6ELL ; 1.9 ; FAB Fragment. AbVance: Increasing our knowledge of antibody structural space to enable faster and better decision making in antibody drug discovery 6EMJ ; 2.3 ; FAB Fragment. AbVance: Increasing our knowledge of antibody structural space to enable faster and better decision making in antibody drug discovery 5CHN ; 2.047 ; Fab fragments of chikungunya virus neutralizing human monoclonal antibody 5M16 8TFP ; 1.78 ; Fab from C10-S66K antibody in complex with carfentanil 8TFQ ; 1.8 ; Fab from C10-S66K antibody in complex with fentanyl 8T0O ; 2.3 ; Fab from mAb RB2AT_87 1R24 ; 3.1 ; FAB FROM MURINE IGG3 KAPPA 7B0B ; 2.98 ; Fab HbnC3t1p1_C6 bound to SARS-CoV-2 RBD 4R7D ; 2.753 ; Fab Hu 15C1 7YZJ ; 2.6 ; FAB IN COMPLEX WITH ANTIGENIC PEPTIDE OF INTERLEUKIN-2 1SEQ ; 1.78 ; Fab MNAC13 7JVD ; 2.3 ; Fab of 5.6 monoclonal mouse IgG1 co-crystallized with the trisaccharide form of serotype 3 pneumococcal capsular polysaccharide 6CT7 ; 1.903 ; Fab of anti-a-synuclein antibody BIIB054 in complex with acetylated a-synuclein peptide (1-10) 6TXZ ; 3.06 ; FAB PART OF M6903 IN COMPLEX WITH HUMAN TIM3 6WG8 ; 1.36 ; Fab portion of dupilumab with Crystal Kappa design 6WGK ; 1.62 ; Fab portion of dupilumab with Crystal Kappa design and intrachain disulfide 6WGJ ; 1.9 ; Fab portion of dupilumab with Crystal Kappa design and no interchain disulfide 8AWL ; 1.62 ; Fab RVFV-268 8G2O ; 1.7 ; Fab structure - Anti-ApoE-7C11 antibody 4F57 ; 1.7 ; Fab structure of a neutralizing antibody L1 from an early subtype A HIV-1 infected patient 4F58 ; 2.488 ; Fab structure of a neutralizing antibody L3 from an early subtype A HIV-1 infected patient 4OAW ; 2.8 ; Fab structure of anti-HIV gp120 V2 mAb 2158 5UBY ; 2.6 ; Fab structure of anti-HIV-1 gp120 mAb 1A8 4D9L ; 2.485 ; Fab structure of anti-HIV-1 gp120 V2 mAb 697 4EBQ ; 1.6 ; Fab structure of anti-Vaccinia virus D8L antigen mouse IgG2a LA5 4Z95 ; 1.79 ; Fab structure of antibody S1-15 in complex with ssDNA DNA, 5'-5(dT)-p-3' 4Z8F ; 1.75 ; Fab structure of antibody S1-15 in complex with ssDNA DNA, 5'-p5(dT)p-3' 6W73 ; 2.8 ; Fab Structure of CD4 Binding Site (CD4bs) Huamn Monoclonal Antibody HmAb64 5UBZ ; 2.75 ; Fab structure of HIV gp120 specific mAb 1E12 4ODV ; 2.15 ; Fab Structure of lipid A-specific antibody A6 in complex with lipid A carbohydrate backbone 4ODT ; 1.95 ; Fab Structure of lipid A-specific antibody S1-15 in complex with lipid A carbohydrate backbone 4ZTP ; 1.63 ; Fab structure of rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region 3V0V ; 2.13 ; Fab WN1 222-5 unliganded 7E6P ; 2.5 ; Fab-amyloid beta fragment complex 8H8Q ; 2.5 ; Fab-amyloid beta fragment complex at neutral pH 3U0T ; 2.5 ; Fab-antibody complex 2C1P ; 2.0 ; Fab-fragment of enantioselective antibody complexed with finrozole 5OBF ; 1.92 ; fAb. AbVance: increasing our knowledge of antibody structural space to enable faster and better decision-making in antibody drug discovery. 6DC9 ; 2.999 ; Fab/epitope complex of human chimeric monoclonal antibody h4E6 targeting a phosphorylated tau epitope. 6DCA ; 2.599 ; Fab/epitope complex of mouse monoclonal antibody 6B2 targeting a non-phosphorylated tau epitope. 6DC8 ; 1.799 ; Fab/epitope complex of mouse monoclonal antibody 8B2 targeting a non-phosphorylated tau epitope. 6BB4 ; 2.099 ; Fab/epitope complex of mouse monoclonal antibody C5.2 targeting a phospho-tau epitope. 4ZTO ; 2.3 ; Fab/epitope complex structure of rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region 7WPV ; 2.46 ; Fab14 - a SARS-CoV2 RBD neutralising antibody 7RXL ; 1.823 ; Fab1488 in complex with the C-terminal alpha-TSR domain of P. falciparum 7RXP ; 1.761 ; Fab1512 in complex with the C-terminal alpha-TSR domain of P. falciparum 7RXI ; 2.15 ; Fab234 in complex with the C-terminal alpha-TSR domain of P. falciparum 7RXJ ; 2.345 ; Fab236 in complex with the C-terminal alpha-TSR domain of P. falciparum 7S0X ; 2.8 ; Fab352 in complex with the C-terminal alphaTSR domain of P. falciparum 6UC5 ; 1.75 ; Fab397 in complex with NPNA peptide 5DYO ; 2.36 ; Fab43.1 complex with flourescein 6S44 ; 3.19 ; Faba bean necrotic stunt virus (FBNSV) 7DZE ; 1.55 ; Fabp ground state captured by XFELs 7DZK ; 1.54 ; Fabp protein after hv 7DZJ ; 1.63 ; Fabp protein before hv 5HZ6 ; 1.14 ; FABP4 in complex with 6-Chloro-2-isopropyl-4-(3-isopropyl-phenyl)-quinoline-3-carboxylic acid 5HZ8 ; 1.12 ; FABP4_3 in complex with 6,8-Dichloro-4-phenyl-2-piperidin-1-yl-quinoline-3-carboxylic acid 5HZ5 ; 1.4 ; FABP5 in complex with 6-Chloro-4-phenyl-2-piperidin-1-yl-3-(1H-tetrazol-5-yl)-quinoline 8IVF ; 2.6 ; FABP7 complexed with 25-HC 8IVL ; 2.7 ; FABP7 complexed with Cholesterol 1D35 ; 1.3 ; FACILE FORMATION OF A CROSSLINKED ADDUCT BETWEEN DNA AND THE DAUNORUBICIN DERIVATIVE MAR70 MEDIATED BY FORMALDEHYDE: MOLECULAR STRUCTURE OF THE MAR70-D(CGTNACG) COVALENT ADDUC 1D36 ; 1.5 ; FACILE FORMATION OF A CROSSLINKED ADDUCT BETWEEN DNA AND THE DAUNORUBICIN DERIVATIVE MAR70 MEDIATED BY FORMALDEHYDE: MOLECULAR STRUCTURE OF THE MAR70-D(CGTNACG) COVALENT ADDUC 1DLE ; 2.1 ; FACTOR B SERINE PROTEASE DOMAIN 1DFP ; 2.4 ; FACTOR D INHIBITED BY DIISOPROPYL FLUOROPHOSPHATE 7KE1 ; 1.5 ; Factor H enhancing human antibody fragment (Fab) to meningococcal Factor H binding protein 7KET ; 2.0 ; Factor H enhancing human antibody fragment (Fab) to meningococcal Factor H binding protein 7LCV ; 1.7 ; Factor H enhancing human antibody fragment (Fab) to meningococcal Factor H binding protein 5OP6 ; 2.45 ; Factor Inhibiting HIF (FIH) in complex with zinc and GSK128863 5OP8 ; 2.3 ; Factor Inhibiting HIF (FIH) in complex with zinc and Molidustat 5OPC ; 2.3 ; Factor Inhibiting HIF (FIH) in complex with zinc and Vadadustat 6HL5 ; 1.98 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and ASPP1(932-954) 6HKP ; 1.9 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and ASPP2 (970-992) 6HL6 ; 1.97 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and iASPP(670-693) 6HC8 ; 1.9 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and TRPA1 (313-339) 6HA6 ; 1.98 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and TRPV3 (220-246) 6H9J ; 1.83 ; Factor Inhibiting HIF (FIH) in complex with zinc, NOG and TRPV3 (229-255) 2XUM ; 2.2 ; FACTOR INHIBITING HIF (FIH) Q239H MUTANT IN COMPLEX WITH ZN(II), NOG AND ASP-SUBSTRATE PEPTIDE (20-MER) 5JWK ; 2.3 ; Factor Inhibiting HIF D201E in Complex with Fe, and Alpha-Ketoglutarate 5JWL ; 2.4 ; Factor Inhibiting HIF D201E in Complex with Zn, and Alpha-Ketoglutarate 4Z2W ; 2.5 ; Factor Inhibiting HIF in Complex with Fe, and Alpha-Ketoglutarate 1H2N ; 2.84 ; Factor Inhibiting HIF-1 alpha 2ILM ; 2.3 ; Factor Inhibiting HIF-1 Alpha D201A Mutant in Complex with FE(II), Alpha-Ketoglutarate and HIF-1 Alpha 35mer 3D8C ; 2.1 ; Factor inhibiting HIF-1 alpha D201G mutant in complex with ZN(II), alpha-ketoglutarate and HIF-1 alpha 19mer 8IHZ ; 2.22 ; FACTOR INHIBITING HIF-1 ALPHA in complex with (5-(1-(3-(4-chlorophenyl)propyl)-1H-1,2,3-triazol-4-yl)-3-hydroxypicolinoyl)glycine 8II0 ; 2.04 ; FACTOR INHIBITING HIF-1 ALPHA in complex with (5-(3-(3-chlorophenyl)isoxazol-5-yl)-3-hydroxypicolinoyl)glycine 3KCY ; 2.59 ; Factor inhibiting HIF-1 alpha in complex with 8-hydroxyquinoline 4BIO ; 2.45 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH 8-HYDROXYQUINOLINE-5- CARBOXYLIC ACID 3KCX ; 2.6 ; Factor inhibiting HIF-1 alpha in complex with Clioquinol 6RUJ ; 2.42 ; Factor inhibiting HIF-1 alpha in complex with consensus ankyrin repeat domain-(d)3-hydroxy-Leu peptide 4NR1 ; 2.68 ; Factor inhibiting HIF-1 alpha in complex with consensus ankyrin repeat domain-(d)allyl-GLY peptide 4JAA ; 2.39 ; Factor inhibiting HIF-1 alpha in complex with consensus ankyrin repeat domain-(d)LEU peptide 4B7E ; 2.5 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH CONSENSUS ANKYRIN REPEAT DOMAIN-LEU PEPTIDE (20-MER) 4B7K ; 2.39 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH CONSENSUS ANKYRIN REPEAT DOMAIN-SER PEPTIDE (20-MER) 4AI8 ; 2.4 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH DAMINOZIDE 1H2K ; 2.15 ; Factor Inhibiting HIF-1 alpha in complex with HIF-1 alpha fragment peptide 1H2L ; 2.25 ; Factor Inhibiting HIF-1 alpha in complex with HIF-1 alpha fragment peptide 1H2M ; 2.5 ; Factor Inhibiting HIF-1 alpha in complex with HIF-1 alpha fragment peptide 1YCI ; 2.7 ; Factor inhibiting HIF-1 alpha in complex with N-(carboxycarbonyl)-D-phenylalanine 3P3N ; 2.4 ; Factor inhibiting HIF-1 Alpha in complex with Notch 1 fragment mouse notch (1930-1949) peptide 3P3P ; 2.6 ; Factor inhibiting HIF-1 Alpha in complex with Notch 1 fragment mouse notch (1997-2016) peptide 2YC0 ; 2.15 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH R-2-HYDROXYGLUTARATE 2YDE ; 2.28 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH S-2-HYDROXYGLUTARATE 2Y0I ; 2.28 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH TANKYRASE-2 (TNKS2) FRAGMENT PEPTIDE (21-MER) 7A1K ; 1.99 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II) AND 3-((9,9-dimethyl-9H-fluoren-2-yl)methyl)-2-oxoglutarate 7A1J ; 1.9 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II) AND 3-(3-phenylpropyl)-2-oxoglutarate 7A1L ; 2.29 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II) AND 3-methyl-2-oxoglutarate 7A1M ; 2.18 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II) AND 3-propyl-2-oxoglutarate 7A1Q ; 1.75 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II), 3-(carboxycarbonyl)cyclopentane-1-carboxylic acid, AND CONSENSUS ANKYRIN REPEAT DOMAIN (20-MER) 7A1N ; 2.01 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II), 3-methyl-2-oxoglutarate, AND CONSENSUS ANKYRIN REPEAT DOMAIN (20-MER) 7A1S ; 2.01 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II), 3-methyl-2-oxoglutarate, AND TANKYRASE-2 (TNKS2) FRAGMENT PEPTIDE (21-MER) 7A1O ; 2.21 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II), 4-ethyl-2-oxoglutarate, AND CONSENSUS ANKYRIN REPEAT DOMAIN (20-MER) 7A1P ; 1.76 ; FACTOR INHIBITING HIF-1 ALPHA IN COMPLEX WITH ZN(II), 4-propyl-2-oxoglutarate, AND CONSENSUS ANKYRIN REPEAT DOMAIN (20-MER) 2WA3 ; 2.5 ; FACTOR INHIBITING HIF-1 ALPHA WITH 2-(3-hydroxyphenyl)-2-oxoacetic acid 2CGO ; 2.3 ; FACTOR INHIBITING HIF-1 ALPHA with fumarate 2WA4 ; 2.5 ; FACTOR INHIBITING HIF-1 ALPHA WITH N,3-dihydroxybenzamide 2W0X ; 2.12 ; FACTOR INHIBITING HIF-1 ALPHA WITH PYRIDINE 2,4 DICARBOXYLIC ACID 2CGN ; 2.4 ; FACTOR INHIBITING HIF-1 ALPHA with succinate 2WPI ; 1.99 ; factor IXa superactive double mutant 2WPM ; 2.0 ; factor IXa superactive mutant, EGR-CMK inhibited 2WPH ; 1.5 ; factor IXa superactive triple mutant 2WPL ; 1.82 ; factor IXa superactive triple mutant, EDTA-soaked 2WPK ; 2.21 ; factor IXa superactive triple mutant, ethylene glycol-soaked 2WPJ ; 1.6 ; factor IXa superactive triple mutant, NaCl-soaked 8CN9 ; 3.4 ; Factor VII binding Fab of the bispecific antibody HMB-001 in complex with Factor VII 5TQF ; 1.85 ; Factor VIIa in complex with the inhibitor (11R)-11-[(1-aminoisoquinolin-6-yl)amino]-16-(cyclopropylsulfonyl)-13-methyl-2,13-diazatricyclo[13.3.1.1~6,10~]icosa-1(19),6(20),7,9,15,17-hexaene-3,12-dione 4NG9 ; 2.2 ; Factor viia in complex with the inhibitor (2R)-2-[(1-aminoisoquinolin-6-yl)amino]-2-[3-ethoxy-4-(propan-2-yloxy)phenyl]-n-(3-sulfamoylbenzyl)ethanamide 4NGA ; 2.15 ; Factor viia in complex with the inhibitor (2R)-2-[(1-aminoisoquinolin-6-yl)amino]-2-[3-ethoxy-4-(propan-2-yloxy)phenyl]-N-[2-(propan-2-ylsulfonyl)benzyl]ethanamide 4ZXY ; 2.06 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR (2R)-2-[(1-aminoisoquinolin-6-yl)amino]-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6(21),7,9,16,19-hexaene-3,12-dione 5L30 ; 1.73 ; Factor VIIa in complex with the inhibitor (2R,15R)-2-[(1-aminoisoquinolin-6-yl)amino]-4,15,17-trimethyl-7-[1-(1H-tetrazol-5-yl)cyclopropyl]-13-oxa-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6(21),7,9,16,19-hexaene-3,12-dione 5I46 ; 2.06 ; Factor VIIA in complex with the inhibitor (2R,15R)-2-[(1-aminoisoquinolin-6-yl)amino]-8-fluoro-7-hydroxy-4,15,17-trimethyl-13-oxa-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6(21),7,9,16,19-hexaene-3,12-dione 5TQE ; 1.9 ; Factor VIIa in complex with the inhibitor (5R)-5-[(1-aminoisoquinolin-6-yl)amino]-19-(cyclopropylsulfonyl)-3-methyl-13-oxa-3,15-diazatricyclo[14.3.1.1~6,10~]henicosa-1(20),6(21),7,9,16,18-hexaene-4,14-dione 5TQG ; 1.9 ; Factor VIIa in complex with the inhibitor (5R,11R)-11-[(1-amino-4-fluoroisoquinolin-6-yl)amino]-16-(cyclopropylsulfonyl)-7-(2,2-difluoroethoxy)-5,13-dimethyl-2,13-diazatricyclo[13.3.1.1~6,10~]icosa-1(19),6(20),7,9,15,17-hexaene-3,12-dione 4X8V ; 2.5 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR (methyl {3-[(2R)-1-{(2R)-2-(3,4-dimethoxyphenyl)-2-[(1-oxo-1,2,3,4-tetrahydroisoquinolin-7-yl)amino]acetyl}pyrrolidin-2-yl]-4-(propan-2-ylsulfonyl)phenyl}carbamate) 5L2Z ; 1.79 ; Factor VIIa in complex with the inhibitor 1-[(2R,15R)-2-[(1-amino-4-fluoroisoquinolin-6-yl)amino]-4,15,17-trimethyl-3,12-dioxo-13-oxa-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6(21),7,9,16,19-hexaen-7-yl]cyclohexane-1-carboxylic acid 5L2Y ; 1.82 ; Factor VIIa in complex with the inhibitor 1-[(2R,15R)-2-[(1-amino-4-fluoroisoquinolin-6-yl)amino]-4,15,20-trimethyl-3,12-dioxo-13-oxa-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6,8,10(21),16,19-hexaen-7-yl] cyclobutane-1-carboxylic acid 4YT7 ; 2.3 ; Factor VIIa in complex with the inhibitor 2-(2-{(R)-[(4-carbamimidoylphenyl)amino][5-ethoxy-2-fluoro-3-(propan-2-yloxy)phenyl]methyl}-1H-imidazol-4-yl)benzamide 4NA9 ; 2.24 ; Factor VIIa in complex with the inhibitor 3'-amino-5'-[(2s,4r)-6-carbamimidoyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl]biphenyl-2-carboxylic acid 5U6J ; 2.3 ; Factor VIIa in complex with the inhibitor 3-{[(2R)-17-ethyl-4-methyl-3,12-dioxo-7-[(propan-2-yl)sulfonyl]-13-oxa-4,11-diazatricyclo[14.2.2.1~6,10~]henicosa-1(18),6(21),7,9,16,19-hexaen-2-yl]amino}benzamide 4X8S ; 2.1 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR 4-BROMO-2-METHOXYPHENOL 4YT6 ; 2.07 ; Factor VIIa in complex with the inhibitor 4-{[(R)-[5-ethoxy-2-fluoro-3-(propan-2-yloxy)phenyl](4-phenyl-1H-imidazol-2-yl)methyl]amino}benzenecarboximidamide 4X8U ; 2.1 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR 5-CHLORO-1H-INDOLE-2-CARBOXYLIC ACID 4X8T ; 2.2 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR 7-chloro-3,4-dihydroisoquinolin-1(2H)-one 4ZXX ; 2.6 ; FACTOR VIIA IN COMPLEX WITH THE INHIBITOR N-{3-[(2R)-1-{(2R)-2-[(1-aminoisoquinolin-6-yl)amino]-2-phenylacetyl}pyrrolidin-2-yl]-4-(propan-2-ylsulfonyl)phenyl}acetamide 2B7D ; 2.24 ; Factor VIIa Inhibitors: Chemical Optimization, Preclinical Pharmacokinetics, Pharmacodynamics, and Efficacy in a Baboon Thrombosis Model 7KBT ; 4.15 ; Factor VIII in complex with the anti-C2 domain antibody, G99 3HNB ; 1.15 ; Factor VIII Trp2313-His2315 segment is involved in membrane binding as shown by crystal structure of complex between factor VIII C2 domain and an inhibitor 3HNY ; 1.07 ; Factor VIII Trp2313-His2315 segment is involved in membrane binding as shown by crystal structure of complex between factor VIII C2 domain and an inhibitor 3HOB ; 2.07 ; Factor VIII Trp2313-His2315 segment is involved in membrane binding as shown by crystal structure of complex between factor VIII C2 domain and an inhibitor 2BOK ; 1.64 ; Factor Xa - cation 2JKH ; 1.25 ; Factor Xa - cation inhibitor complex 2Y5F ; 1.29 ; FACTOR XA - CATION INHIBITOR COMPLEX 2Y5G ; 1.29 ; FACTOR XA - CATION INHIBITOR COMPLEX 2Y5H ; 1.33 ; FACTOR XA - CATION INHIBITOR COMPLEX 4ZH8 ; 1.8 ; Factor Xa complex with GTC000006 4Y6D ; 1.55 ; Factor Xa complex with GTC000101 4ZHA ; 1.86 ; Factor Xa complex with GTC000102 4Y71 ; 1.8 ; Factor Xa complex with GTC000398 4Y76 ; 2.0 ; Factor Xa complex with GTC000401 4Y79 ; 2.1 ; Factor Xa complex with GTC000406 4Y7A ; 1.99 ; Factor Xa complex with GTC000422 4Y7B ; 1.79 ; Factor Xa complex with GTC000441 1XKA ; 2.3 ; FACTOR XA COMPLEXED WITH A SYNTHETIC INHIBITOR FX-2212A,(2S)-(3'-AMIDINO-3-BIPHENYLYL)-5-(4-PYRIDYLAMINO)PENTANOIC ACID 1XKB ; 2.4 ; FACTOR XA COMPLEXED WITH A SYNTHETIC INHIBITOR FX-2212A,(2S)-(3'-AMIDINO-3-BIPHENYLYL)-5-(4-PYRIDYLAMINO)PENTANOIC ACID 3LIW ; 2.22 ; Factor XA in complex with (R)-2-(1-ADAMANTYLCARBAMOYLAMINO)-3-(3-CARBAMIDOYL-PHENYL)-N-PHENETHYL-PROPIONIC ACID AMIDE 3IIT ; 1.8 ; Factor XA in complex with a cis-1,2-diaminocyclohexane derivative 3Q3K ; 2.0 ; Factor Xa in complex with a phenylenediamine derivative 4A7I ; 2.4 ; Factor Xa in complex with a potent 2-amino-ethane sulfonamide inhibitor 2XBV ; 1.66 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XBW ; 1.72 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XBX ; 1.85 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XBY ; 2.02 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XC0 ; 2.05 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XC4 ; 1.67 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2XC5 ; 1.7 ; Factor Xa in complex with a pyrrolidine-3,4-dicarboxylic acid inhibitor 2W26 ; 2.08 ; Factor Xa in complex with BAY59-7939 3TK5 ; 2.2 ; Factor Xa in complex with D102-4380 3TK6 ; 1.8 ; factor Xa in complex with D46-5241 4BTT ; 2.59 ; factor Xa in complex with the dual thrombin-FXa inhibitor 31. 4BTU ; 2.37 ; Factor Xa in complex with the dual thrombin-FXa inhibitor 57. 4BTI ; 2.3 ; factor Xa in complex with the dual thrombin-FXa inhibitor 58. 2EI6 ; 2.3 ; FACTOR XA IN COMPLEX WITH THE INHIBITOR (-)-cis-N1-[(5-Chloroindol-2-yl)carbonyl]-N2-[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]-1,2-cyclohexanediamine 2EI8 ; 2.1 ; FACTOR XA IN COMPLEX WITH THE INHIBITOR (1S,2R,4S)-N1-[(5-chloroindol-2-yl)carbonyl]-4-(N,N-dimethylcarbamoyl)-N2-[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]-1,2-cyclohexanediamine 3FFG ; 1.54 ; Factor XA in complex with the inhibitor (R)-6-(2'-((3- HYDROXYPYRROLIDIN-1-YL)METHYL)BIPHENYL-4-YL)-1-(3-(5-OXO-4,5-DIHYDRO-1H-1,2,4-TRIAZOL-3-YL)PHENYL)-3-(TRIFLUOROMETHYL)-5,6-DIHYDRO-1H-PYRAZOLO[3,4-C]PYRIDIN- 7(4H)-ONE 1Z6E ; 1.8 ; Factor XA in complex with the inhibitor 1-(3'-amino-1,2-benzisoxazol-5'-yl)-n-(4-(2'-((dimethylamino)methyl)-1h-imidazol-1-yl)-2-fluorophenyl)-3-(trifluoromethyl)-1h-pyrazole-5-carboxamide (razaxaban; DPC906; BMS-561389) 3KQD ; 2.75 ; Factor xa in complex with the inhibitor 1-(3-(5-oxo-4,5- dihydro-1h-1,2,4-triazol-3-yl)phenyl)-6-(2'-(pyrrolidin-1- ylmethyl)biphenyl-4-yl)-3-(trifluoromethyl)-5,6-dihydro- 1h-pyrazolo[3,4-c]pyridin-7(4h)-one 2FZZ ; 2.2 ; Factor Xa in complex with the inhibitor 1-(3-amino-1,2-benzisoxazol-5-yl)-6-(2'-(((3r)-3-hydroxy-1-pyrrolidinyl)methyl)-4-biphenylyl)-3-(trifluoromethyl)-1,4,5,6-tetrahydro-7h-pyrazolo[3,4-c]pyridin-7-one 3CS7 ; 2.2 ; FACTOR XA IN COMPLEX WITH THE INHIBITOR 1-(4-methoxyphenyl)-6-(4-(1-(pyrrolidin-1-ylmethyl)cyclopropyl)phenyl)-3-(trifluoromethyl)-5,6-dihydro-1H-pyrazolo[3,4-c]pyridin-7(4H)-one 3M37 ; 1.9 ; Factor XA in complex with the inhibitor 1-[2-(aminomethyl)phenyl]-N-(3-fluoro-2'-sulfamoylbiphenyl-4-yl)-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC602) 3M36 ; 2.15 ; Factor XA in complex with the inhibitor 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'-(methylsulfonyl)biphenyl-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423) 1V3X ; 2.2 ; Factor Xa in complex with the inhibitor 1-[6-methyl-4,5,6,7-tetrahydrothiazolo(5,4-c)pyridin-2-yl] carbonyl-2-carbamoyl-4-(6-chloronaphth-2-ylsulphonyl)piperazine 2D1J ; 2.2 ; Factor Xa in complex with the inhibitor 2-[[4-[(5-chloroindol-2-yl)sulfonyl]piperazin-1-yl] carbonyl]thieno[3,2-b]pyridine n-oxide 2G00 ; 2.1 ; Factor Xa in complex with the inhibitor 3-(6-(2'-((dimethylamino)methyl)-4-biphenylyl)-7-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridin-1-yl)benzamide 2P94 ; 1.8 ; Factor xa in complex with the inhibitor 3-chloro-N-((1R,2S)-2-(4-(2-oxopyridin-1(2H)-yl)benzamido)cyclohexyl)-1H-indole-6-carboxamide 3KQE ; 2.35 ; Factor xa in complex with the inhibitor 3-methyl-1-(3-(5- oxo-4,5-dihydro-1h-1,2,4-triazol-3-yl)phenyl)-6-(2'- (pyrrolidin-1-ylmethyl)biphenyl-4-yl)-5,6-dihydro-1h- pyrazolo[3,4-c]pyridin-7(4h)-one 1WU1 ; 2.3 ; Factor Xa in complex with the inhibitor 4-[(5-chloroindol-2-yl)sulfonyl]-2-(2-methylpropyl)-1-[[5-(pyridin-4-yl) pyrimidin-2-yl]carbonyl]piperazine 2P95 ; 2.2 ; Factor xa in complex with the inhibitor 5-chloro-N-((1R,2S)-2-(4-(2-oxopyridin-1(2H)-YL)benzamido) cyclopentyl)thiophene-2-carboxamide 2P93 ; 1.9 ; Factor xa in complex with the inhibitor 5-chloro-N-(2-(4-(2-oxopyridin-1(2H)-yl)benzamido)ethyl)thiophene-2-carboxamide 3KQC ; 2.2 ; Factor xa in complex with the inhibitor 6-(2'- (methylsulfonyl)biphenyl-4-yl)-1-(3-(5-oxo-4,5-dihydro-1h- 1,2,4-triazol-3-yl)phenyl)-3-(trifluoromethyl)-5,6- dihydro-1h-pyrazolo[3,4-c]pyridin-7(4h)-one 2P16 ; 2.3 ; Factor Xa in Complex with the Inhibitor APIXABAN (BMS-562247) AKA 1-(4-METHOXYPHENYL)-7-OXO-6-(4-(2-OXO-1-PIPERIDINYL)PHENYL)-4,5,6,7-TETRAHYDRO-1H-PYRAZOLO[3, 4-C]PYRIDINE-3-CARBOXAMIDE 3CEN ; 1.6 ; Factor XA in complex with the inhibitor N-(2-(((5-chloro-2-pyridinyl) amino)sulfonyl)phenyl)-4-(2-oxo-1(2H)-pyridinyl)benzamide 3KQB ; 2.25 ; Factor xa in complex with the inhibitor n-(3-fluoro-2'- (methylsulfonyl)biphenyl-4-yl)-1-(3-(5-oxo-4,5-dihydro-1h- 1,2,4-triazol-3-yl)phenyl)-3-(trifluoromethyl)-1h- pyrazole-5-carboxamide 2EI7 ; 2.3 ; FACTOR XA IN COMPLEX WITH THE INHIBITOR trans-N1-[(5-Chloroindol-2-yl)carbonyl]-N2-[(5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)carbonyl]-1,2-cyclohexanediamine 2PR3 ; 1.5 ; Factor XA inhibitor 1G2L ; 1.9 ; FACTOR XA INHIBITOR COMPLEX 1G2M ; 3.02 ; FACTOR XA INHIBITOR COMPLEX 2UWP ; 1.75 ; Factor Xa inhibitor complex 1MTS ; 1.9 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1MTU ; 1.9 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1MTV ; 1.9 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1MTW ; 1.9 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1QL7 ; 2.1 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1QL8 ; 3.0 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH BOVINE TRYPSIN 1V2K ; 2.0 ; Factor XA specific Inhibitor in complex with bovine trypsin variant X(triple.Glu)bT.D2 1J17 ; 2.0 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH RAT TRYPSIN MUTANT X99/175/190RT 1QL9 ; 2.3 ; FACTOR XA SPECIFIC INHIBITOR IN COMPLEX WITH RAT TRYPSIN MUTANT X99RT 7QOT ; 3.24 ; Factor XI and Plasma Kallikrein apple domain structures reveals different kininogen bound complexes 7QOX ; 2.32 ; Factor XI and Plasma Kallikrein apple domain structures reveals different kininogen bound complexes 1ZLR ; 2.5 ; Factor XI catalytic domain complexed with 2-guanidino-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl nicotinate 1ZPZ ; 2.5 ; Factor XI catalytic domain complexed with N-((R)-1-(4-bromophenyl)ethyl)urea-Asn-Val-Arg-alpha-ketothiazole 1ZRK ; 2.3 ; Factor XI complexed with 3-hydroxypropyl 3-(7-amidinonaphthalene-1-carboxamido)benzenesulfonate 1ZSL ; 2.05 ; Factor XI complexed with a pyrimidinone inhibitor 5EXN ; 1.49 ; FACTOR XIA (C500S [C122S]) IN COMPLEX WITH THE INHIBITOR methyl ~{N}-[4-[2-[(1~{S})-1-[[(~{E})-3-[5-chloranyl-2-(1,2,3,4-tetrazol-1-yl)phenyl]prop-2-enoyl]amino]-2-phenyl-ethyl]pyridin-4-yl]phenyl]carbamate 4X6P ; 1.93 ; FACTOR XIA (PICHIA PASTORIS; C500S [C122S]) IN COMPLEX WITH THE INHIBITOR (2E)-N-{(1S)-1-[4-(3-amino-1H-indazol-6-yl)-1H-imidazol-2-yl]-2-phenylethyl}-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enamide 7MBO ; 0.924 ; FACTOR XIA (PICHIA PASTORIS; C500S [C122S]) IN COMPLEX WITH THE INHIBITOR Milvexian (BMS-986177), IUPAC NAME:(6R,10S)-10-{4-[5-chloro-2-(4-chloro-1H-1,2,3-triazol-1-yl)phenyl]-6- oxopyrimidin-1(6H)-yl}-1-(difluoromethyl)-6-methyl-1,4,7,8,9,10-hexahydro-15,11- (metheno)pyrazolo[4,3-b][1,7]diazacyclotetradecin-5(6H)-one 3SOR ; 1.8 ; Factor XIa in complex with a clorophenyl-tetrazole inhibitor 6VLV ; 1.72 ; Factor XIa in complex with compound 11 7V0Z ; 1.8 ; Factor XIa in Complex with Compound 2a 7V10 ; 1.798 ; Factor XIa in Complex with Compound 2d 7V11 ; 1.472 ; Factor XIa in Complex with Compound 2e 7V12 ; 1.631 ; Factor XIa in Complex with Compound 2f 7V13 ; 1.589 ; Factor XIa in Complex with Compound 2g 7V14 ; 1.697 ; Factor XIa in Complex with Compound 2h 7V15 ; 1.679 ; Factor XIa in Complex with Compound 2i 7V16 ; 1.505 ; Factor XIa in Complex with Compound 2j 7V17 ; 1.522 ; Factor XIa in Complex with Compound 2k 7V18 ; 1.732 ; Factor XIa in Complex with Compound 3f 6VLU ; 1.6 ; Factor XIa in complex with compound 7 5TKS ; 1.55 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR ((15S)-18-CHLORO- 15-(((2E)-3-(5-CHLORO-2-(1H-TETRAZOL-1-YL)PHENYL)-2- PROPENOYL)AMINO)-17,19-DIAZATRICYCLO[14.2.1.0~2,7~]NONADECA-1(18),2,4,6,16(19)-PENTAEN-5-YL)CARBAMATE 4Y8Z ; 2.2 ; Factor XIa in complex with the inhibitor (2E)-N-[(1S)-1-[5-chloro-4-(4-hydroxy-2-oxo-1,2-dihydroquinolin-6-yl)-1H-imidazol-2-yl]-3-(4-methylpiperazin-1-yl)-3-oxopropyl]-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enamide 4TY7 ; 2.09 ; Factor XIa in complex with the inhibitor (2S)-6-amino-N-{(1S)-1-[4-(3-amino-2H-indazol-6-yl)-5-chloro-1H-imidazol-2-yl]-2-phenylethyl}-2-ethylhexanamide 4X6M ; 2.4 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 1-{(1S)-1-[4-(3-amino-1H-indazol-6-yl)-5-chloro-1H-imidazol-2-yl]-2-phenylethyl}-3-[2-(aminomethyl)-5-chlorobenzyl]urea 4X6N ; 2.1 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 1-{(1S)-1-[4-(3-amino-1H-indazol-6-yl)-5-chloro-1H-imidazol-2-yl]-2-phenylethyl}-3-[5-chloro-2-(1H-tetrazol-1-yl)benzyl]urea 4NA7 ; 2.8 ; Factor XIA in complex with the inhibitor 3'-[(2S,4R)-6-carbamimidoyl-4-methyl-4-phenyl-1,2,3,4-tetrahydroquinolin-2-yl]-4-carbamoyl-5'-[(3-methylbutanoyl)amino]biphenyl-2-carboxylic acid 5EXL ; 2.3 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 4-(aminomethyl)-~{N}-[(1~{S})-1-[4-(3-oxidanyl-1~{H}-indazol-5-yl)pyridin-2-yl]-2-phenyl-ethyl]cyclohexane-1-carboxamide 5E2O ; 2.08 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 4-[(N-{(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}-L-phenylalanyl)amino]benzoic acid 5QCL ; 2.11 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 4-[[(1~{S})-2-[(~{E})-3-[5-chloranyl-2-(1,2,3,4-tetrazol-1-yl)phenyl]prop-2-enoyl]-3,4-dihydro-1~{H}-isoquinolin-1-yl]carbonylamino]benzoic acid 5QCN ; 2.3 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 4-[[(1~{S})-2-[(~{E})-3-[5-chloranyl-2-(1,2,3,4-tetrazol-1-yl)phenyl]prop-2-enoyl]-5-[(3~{S})-3-ethoxycarbonylpiperidin-1-yl]carbonyl-3,4-dihydro-1~{H}-isoquinolin-1-yl]carbonylamino]benzoic acid 5QCK ; 2.64 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR 4-[[(2~{S},3~{R})-1-[(~{E})-3-[5-chloranyl-2-(1,2,3,4-tetrazol-1-yl)phenyl]prop-2-enoyl]-3-phenyl-pyrrolidin-2-yl]carbonylamino]benzoic acid 4TY6 ; 1.85 ; Factor XIa in complex with the inhibitor 4-{2-[(1S)-1-({[trans-4-(aminomethyl)cyclohexyl]carbonyl}amino)-2-phenylethyl]-1H-imidazol-4-yl}benzamide 4NA8 ; 2.3 ; Factor XIa in complex with the inhibitor 5-aminocarbonyl-2-[3-[(2s,4r)-6-carbamimidoyl-4-methyl-4-phenyl-2,3-dihydro-1h-quinolin-2-yl]phenyl]benzoic acid 5QTX ; 2.07 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR ethyl (2R,7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-14-[(methoxycarbonyl)amino]-1,2,3,4,5,6,7,9-octahydro-11,8-(azeno)-1,9-benzodiazacyclotridecine-2-carboxylate 5QTY ; 1.89 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR ethyl (2R,7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-15-[(methoxycarbonyl)amino]-2,3,4,5,6,7-hexahydro-1H-12,8-(metheno)-1,9-benzodiazacyclotetradecine-2-carboxylate 6W50 ; 1.95 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR METHYL ((10R,14S)- 14-(4-(3-CHLORO-2,6-DIFLUOROPHENYL)-6-OXO-3,6-DIHYDRO- 1(2H)-PYRIDINYL)-10-METHYL-9-OXO-8,16- DIAZATRICYCLO[13.3.1.0~2,7~]NONADECA-1(19),2,4,6,15,17- HEXAEN-5-YL)CARBAMATE 5TKT ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR METHYL ((12E,15S)-15-(((2E)-3-(5-CHLORO-2-(1H-TETRAZOL-1-YL)PHENYL)-2-PROPENOYL)AMINO)-9-OXO-8,17,19-TRIAZATRICYCLO[14.2.1.0~2,7~]NONADECA-1(18),2,4,6,12,16(19)-HEXAEN-5-YL)CARBAMATE 5TKU ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR METHYL ((15S)-15-(((2E)-3-(5-CHLORO-2-(1H-TETRAZOL-1-YL)PHENYL)-2-PROPENOYL)AMINO)-9-OXO-8,17,19-TRIAZATRICYCLO[14.2.1.0~2,7~]NONADECA-1(18),2,4,6,16(19)-PENTAEN-5-YL)CARBAMATE 5QTW ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl (2R,7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-14-[(methoxycarbonyl)amino]-2,3,4,5,6,7-hexahydro-1H-8,11-epimino-1,9-benzodiazacyclotridecine-2-carboxylate 4Y8X ; 1.9 ; Factor XIa in complex with the inhibitor methyl (4-{4-chloro-2-[(1S)-1-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-2-phenylethyl]-1H-imidazol-5-yl}phenyl)carbamate 4Y8Y ; 2.6 ; Factor XIa in complex with the inhibitor methyl (4-{4-chloro-2-[(1S)-1-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-3-(morpholin-4-yl)-3-oxopropyl]-1H-imidazol-5-yl}phenyl)carbamate 4X6O ; 2.1 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl (4-{4-chloro-2-[(1S)-1-({3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]propanoyl}amino)-2-phenylethyl]-1H-imidazol-5-yl}phenyl)carbamate 6C0S ; 2.35 ; Factor XIA in complex with the inhibitor methyl (4-{6-[(1S)-2-[(3R)-1-acetylpiperidin-3-yl]-1-({(2E)-3-[5-chloro-2- (1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)ethyl]-3-chloropyridazin-4-yl}phenyl) carbamate 5WB6 ; 2.35 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(11S)-11-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-6-fluoro-2-oxo-1,3,4,10,11,13-hexahydro-2H-5,9:15,12-di(azeno)-1,13-benzodiazacycloheptadecin-18-yl]carbamate 5QTV ; 2.2 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(2R,7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-2-(trifluoromethyl)-2,3,4,5,6,7-hexahydro-1H-8,11-epimino-1,9-benzodiazacyclotridecin-14-yl]carbamate 5Q0G ; 2.6 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(3R,7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-3-ethyl-2-oxo-1,2,3,4,5,6,7,9-octahydro-11,8-(azeno)-1,9-benzodiazacyclotridecin-14-yl]carbamate 5QTU ; 2.53 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(3R,7S)-7-{[1-(3-chloro-2-fluorophenyl)-5-methyl-1H-imidazole-4-carbonyl]amino}-3-methyl-2-oxo-2,3,4,5,6,7-hexahydro-1H-12,8-(metheno)-1,9-benzodiazacyclotetradecin-15-yl]carbamate 5QTT ; 2.23 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(3R,7S)-7-{[5-amino-1-(3-chloro-2-fluorophenyl)-1H-pyrazole-4-carbonyl]amino}-3-methyl-2-oxo-2,3,4,5,6,7-hexahydro-1H-12,8-(metheno)-1,9-benzodiazacyclotetradecin-15-yl]carbamate 5Q0H ; 2.5 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(4R,5E,8S)-11-chloro-8-[(2,6-difluoro-4-methylbenzene-1-carbonyl)amino]-4-methyl-2-oxo-1,3,4,7,8,10-hexahydro-2H-12,9-(azeno)-1,10-benzodiazacyclotetradecin-15-yl]carbamate 5Q0F ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(4R,5E,8S)-8-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-4-methyl-2-oxo-1,3,4,7,8,10-hexahydro-2H-12,9-(azeno)-1,10-benzodiazacyclotetradecin-15-yl]carbamate 5Q0E ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(4S,8S)-8-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-4-methyl-2-oxo-1,3,4,5,6,7,8,10-octahydro-2H-12,9-(azeno)-1,10-benzodiazacyclotetradecin-15-yl]carbamate 5QQP ; 2.08 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(5E,8S)-8-[(4S)-4-(3-chlorophenyl)-2-oxopiperidin-1-yl]-2-oxo-1,3,4,7,8,10-hexahydro-2H-12,9-(azeno)-1,10-benzodiazacyclotetradecin-15-yl]carbamate 5QQO ; 2.0 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(5E,8S)-8-[(6R)-6-(3-chlorophenyl)-2-oxo-1,3-oxazinan-3-yl]-2-oxo-1,3,4,7,8,10-hexahydro-2H-12,9-(azeno)-1,10-benzodiazacyclotetradecin-15-yl]carbamate 5Q0D ; 2.12 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl [(7S)-7-({(2E)-3-[5-chloro-2-(1H-tetrazol-1-yl)phenyl]prop-2-enoyl}amino)-2-oxo-1,2,3,4,5,6,7,9-octahydro-11,8-(azeno)-1,9-benzodiazacyclotridecin-14-yl]carbamate 5EXM ; 2.09 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl ~{N}-[4-[2-[(1~{S})-1-[[4-(aminomethyl)cyclohexyl]carbonylamino]-2-phenyl-ethyl]pyridin-4-yl]phenyl]carbamate 5QCM ; 2.2 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR methyl ~{N}-[4-[[(1~{S})-2-[(~{E})-3-[3-chloranyl-2-fluoranyl-6-(1,2,3,4-tetrazol-1-yl)phenyl]prop-2-enoyl]-3,4-dihydro-1~{H}-isoquinolin-1-yl]carbonylamino]phenyl]carbamate 5E2P ; 2.11 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR N-[(1S)-1-benzyl-2-[2-[5-chloro-2-(tetrazol-1-yl)phenyl]ethylamino]-2-oxo-ethyl]-4-hydroxy-2-oxo-1H-quinoline-6-carboxamide 4WXI ; 2.6 ; FACTOR XIA IN COMPLEX WITH THE INHIBITOR trans-N-{(1S)-1-[4-(3-amino-2H-indazol-6-yl)pyridin-2-yl]-2-phenylethyl}-4-(aminomethyl)cyclohexanecarboxamide 7PRJ ; 1.2 ; Factor XII Fibronectin type II (FXII FnII) domain 7PRK ; 1.64 ; Factor XII Fibronectin type II (FXII FnII) domain 8K73 ; 2.02 ; Factor-inhibiting hypoxia-inducible factor in complex with Zn(II) and 2-(3-hydroxy-2-((1-(phenylsulfonyl)pyrrolidine-3-carbonyl)imino)-2,3-dihydrothiazol-4-yl)acetic acid 8K71 ; 2.23 ; Factor-inhibiting hypoxia-inducible factor in complex with Zn(II) and 2-(3-hydroxy-2-((2-((naphthalen-2-ylmethyl)sulfonyl)acetyl)imino)-2,3-dihydrothiazol-4-yl)acetic acid 8K72 ; 2.45 ; Factor-inhibiting hypoxia-inducible factor in complex with Zn(II) and 2-(3-hydroxy-2-((3-(phenylsulfonamido)propanoyl)imino)-2,3-dihydrothiazol-4-yl)acetic acid 1W7X ; 1.8 ; Factor7 - 413 complex 1W8B ; 3.0 ; Factor7 - 413 complex 258D ; 1.58 ; FACTORS AFFECTING SEQUENCE SELECTIVITY ON NOGALAMYCIN INTERCALATION: THE CRYSTAL STRUCTURE OF D(TGTACA)-NOGALAMYCIN 1TVC ; ; FAD and NADH binding domain of methane monooxygenase reductase from Methylococcus capsulatus (Bath) 3PND ; 2.75 ; FAD binding by ApbE protein from Salmonella enterica: a new class of FAD binding proteins 5ZW2 ; 1.803 ; FAD complex of PigA 7LO1 ; 2.09 ; FAD-dependent monooxygenase AfoD from A. nidulans 8AQ8 ; 1.95 ; FAD-dependent monooxygenase from Stenotrophomonas maltophilia 6NES ; 1.75 ; FAD-dependent monooxygenase TropB from T. stipitatus 6NEU ; 2.3 ; FAD-dependent monooxygenase TropB from T. stipitatus R206Q variant 6NET ; 2.25 ; FAD-dependent monooxygenase TropB from T. stipitatus substrate complex 6NEV ; 2.303 ; FAD-dependent monooxygenase TropB from T. stipitatus Y239F Variant 6ZE2 ; 1.31 ; FAD-dependent oxidoreductase from Chaetomium thermophilum 6ZE3 ; 2.22 ; FAD-dependent oxidoreductase from Chaetomium thermophilum in complex with fragment (4-methoxycarbonylphenyl)methylazanium 6ZE5 ; 1.82 ; FAD-dependent oxidoreductase from Chaetomium thermophilum in complex with fragment 2-(1H-indol-3-yl)-N-[(1-methyl-1H-pyrrol-2-yl)methyl]ethanamine 6ZE6 ; 1.26 ; FAD-dependent oxidoreductase from Chaetomium thermophilum in complex with fragment 4-nitrocatechol 6ZE4 ; 1.6 ; FAD-dependent oxidoreductase from Chaetomium thermophilum in complex with fragment 4-oxo-N-[(1S)-1-(pyridin-3-yl)ethyl]-4-(thiophen-2-yl)butanamide 7VZS ; 1.8 ; FAD-dpendent Glucose Dehydrogenase complexed with an inhibitor at pH7.56 7VZP ; 1.2 ; FAD-dpendent Glucose Dehydrogenase from Aspergillus oryzae 8BGR ; 1.8 ; FAD-independent Methylene-Tetrahydrofolate Reductase from Mycobacterium hassiacum 4LDK ; 2.04 ; FAD-linked sulfhydryl oxidase ALR mutation 5ZW7 ; 1.3 ; FAD-PigA complex at 1.3 A 1A1Z ; ; FADD DEATH EFFECTOR DOMAIN, F25G MUTANT, NMR MINIMIZED AVERAGE STRUCTURE 1A1W ; ; FADD DEATH EFFECTOR DOMAIN, F25Y MUTANT, NMR MINIMIZED AVERAGE STRUCTURE 1E2X ; 2.0 ; FadR, fatty acid responsive transcription factor from E. coli 1H9T ; 3.25 ; FADR, FATTY ACID RESPONSIVE TRANSCRIPTION FACTOR FROM E. COLI IN COMPLEX WITH FADB OPERATOR 1H9G ; 2.1 ; FadR, FATTY ACID RESPONSIVE TRANSCRIPTION FACTOR FROM E. COLI, in complex with myristoyl-CoA 4P96 ; 2.2 ; FadR, Fatty Acid Responsive Transcription Factor from Vibrio cholerae 4P9U ; 3.208 ; FadR, Fatty Acid Responsive Transcription Factor from Vibrio cholerae, in Complex with DNA 4PDK ; 2.8 ; FadR, Fatty Acid Responsive Transcription Factor from Vibrio cholerae, in Complex with oleoyl-CoA 1HW2 ; 3.25 ; FADR-DNA COMPLEX: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM IN ECHERICHIA COLI 8P4X ; 2.57 ; FAD_ox bound dark state structure of PdLCry 6ED2 ; 2.3 ; Faecalibacterium prausnitzii beta-glucuronidase 6U7I ; 2.7 ; Faecalibacterium prausnitzii Beta-glucuronidase 3GFU ; 1.991 ; FaeE-FaeG chaperone-major pilin complex of F4 ac 5/95 fimbriae 3GEW ; 2.0 ; FaeE-FaeG chaperone-major pilin complex of F4 ad fimbriae 2J6G ; 1.55 ; FaeG from F4ac ETEC strain 5_95, produced in tobacco plant chloroplast 2J6R ; 1.9 ; FaeG from F4ac ETEC strain GIS26, produced in tobacco plant chloroplast 7PI4 ; 2.24 ; FAK Protac GSK215 in complex with FAK and pVHL:ElonginC:ElonginB 6TY3 ; 6.32 ; FAK structure from single particle analysis of 2D crystals 6TY4 ; 5.96 ; FAK structure with AMP-PNP from single particle analysis of 2D crystals 6DJY ; 3.9 ; Fako virus 4WSF ; 1.501 ; Falafel EVH1 domain bound to CENP-C FIM 7VPE ; 1.62 ; Falcilysin in complex with A1 7DI7 ; 1.82 ; Falcilysin in complex with chloroquine 7DIA ; 1.55 ; Falcilysin in complex with mefloquine 7DIJ ; 1.9 ; Falcilysin in complex with MK-4815 8HO4 ; 1.96 ; Falcilysin in complex with MMV000848 8HO5 ; 2.003 ; Falcilysin in complex with MMV665806 8EQB ; 6.5 ; FAM46C/BCCIPalpha/Nanobody complex 1AZV ; 1.9 ; FAMILIAL ALS MUTANT G37R CUZNSOD (HUMAN) 4B3K ; 2.6 ; Family 1 6-phospho-beta-D glycosidase from Streptococcus pyogenes 4B3L ; 2.51 ; Family 1 6-phospho-beta-D glycosidase from Streptococcus pyogenes 1OD0 ; 2.11 ; Family 1 b-glucosidase from Thermotoga maritima 1OIF ; 2.12 ; Family 1 b-glucosidase from Thermotoga maritima 1OIM ; 2.15 ; Family 1 b-glucosidase from Thermotoga maritima 1OIN ; 2.15 ; Family 1 b-glucosidase from Thermotoga maritima 1UZ1 ; 2.0 ; Family 1 b-glucosidase from Thermotoga maritima in complex with isofagomine lactam 1W3J ; 2.0 ; Family 1 b-glucosidase from Thermotoga maritima in complex with tetrahydrooxazine 2MWK ; ; Family 1 Carbohydrate-Binding Module from Trichoderma reesei Cel7A with O-mannose residues at Thr1, Ser3, and Ser14 1GXM ; 1.32 ; Family 10 polysaccharide lyase from Cellvibrio cellulosa 1GXN ; 1.5 ; Family 10 polysaccharide lyase from Cellvibrio cellulosa 2CNC ; 2.4 ; Family 10 xylanase 6R31 ; 2.6 ; Family 11 Carbohydrate-Binding Module from Clostridium thermocellum in complex with beta-1,3-1,4-mixed-linked tetrasaccharide 6R3M ; 1.45 ; Family 11 Carbohydrate-Binding Module from Clostridium thermocellum in complex with beta-1,3-1,4-mixed-linked tetrasaccharide 1V0A ; 1.98 ; Family 11 Carbohydrate-Binding Module of cellulosomal cellulase Lic26A-Cel5E of Clostridium thermocellum 1IGO ; 2.2 ; Family 11 xylanase 2JEN ; 1.4 ; Family 12 xyloglucanase from Bacillus licheniformis in complex with ligand 7TAA ; 1.98 ; FAMILY 13 ALPHA AMYLASE IN COMPLEX WITH ACARBOSE 2ZEW ; 1.4 ; Family 16 Cabohydrate Binding Domain Module 1 2ZEX ; 1.2 ; Family 16 carbohydrate binding module 2ZEY ; 2.2 ; Family 16 carbohydrate binding module 2ZEZ ; 1.9 ; Family 16 Carbohydrate Binding Module-2 5A29 ; 1.9 ; Family 2 Pectate Lyase from Vibrio vulnificus 2C24 ; 2.27 ; FAMILY 30 CARBOHYDRATE-BINDING MODULE OF CELLULOSOMAL CELLULASE CEL9D- CEL44B OF CLOSTRIDIUM THERMOCELLUM 2WZ8 ; 1.5 ; Family 35 carbohydrate binding module from Clostridium thermocellum 2JG0 ; 1.5 ; Family 37 trehalase from Escherichia coli in complex with 1- thiatrehazolin 2JJB ; 1.9 ; Family 37 trehalase from Escherichia coli in complex with casuarine-6- O-alpha-glucopyranose 2JF4 ; 2.2 ; Family 37 trehalase from Escherichia coli in complex with validoxylamine 4B96 ; 1.911 ; Family 3b carbohydrate-binding module from the biomass sensoring system of Clostridium clariflavum 2CC0 ; 1.6 ; Family 4 carbohydrate esterase from Streptomyces lividans in complex with acetate 4ZBX ; 1.7 ; Family 4 uracil-DNA glycosylase from Sulfolobus tokodaii (free form, X-ray wavelength=0.9000) 4ZBZ ; 1.9 ; Family 4 uracil-DNA glycosylase from Sulfolobus tokodaii (free form, X-ray wavelength=1.5418) 4ZBY ; 1.7 ; Family 4 uracil-DNA glycosylase from Sulfolobus tokodaii (uracil complex form) 2V38 ; 1.5 ; Family 5 endoglucanase Cel5A from Bacillus agaradhaerens in complex with cellobio-derived noeuromycin 2JEQ ; 1.94 ; Family 5 xyloglucanase from Paenibacillus pabuli in complex with ligand 2VNG ; 1.4 ; Family 51 carbohydrate binding module from a family 98 glycoside hydrolase produced by Clostridium perfringens in complex with blood group A-trisaccharide ligand. 2VNO ; 1.45 ; Family 51 carbohydrate binding module from a family 98 glycoside hydrolase produced by Clostridium perfringens in complex with blood group B-trisaccharide ligand. 2VNR ; 1.55 ; Family 51 carbohydrate binding module from a family 98 glycoside hydrolase produced by Clostridium perfringens. 2V5C ; 2.1 ; Family 84 glycoside hydrolase from Clostridium perfringens, 2.1 Angstrom structure 2VCC ; 2.0 ; Family 89 Glycoside Hydrolase from Clostridium perfringens 2VC9 ; 2.36 ; Family 89 Glycoside Hydrolase from Clostridium perfringens in complex with 2-acetamido-1,2-dideoxynojirmycin 2VCA ; 2.05 ; Family 89 glycoside hydrolase from Clostridium perfringens in complex with beta-N-acetyl-D-glucosamine 2VCB ; 2.2 ; Family 89 Glycoside Hydrolase from Clostridium perfringens in complex with PUGNAc 1I8U ; 1.9 ; FAMILY 9 CARBOHYDRATE-BINDING MODULE FROM THERMOTOGA MARITIMA XYLANASE 10A 1I82 ; 1.9 ; FAMILY 9 CARBOHYDRATE-BINDING MODULE FROM THERMOTOGA MARITIMA XYLANASE 10A WITH CELLOBIOSE 1I8A ; 1.9 ; FAMILY 9 CARBOHYDRATE-BINDING MODULE FROM THERMOTOGA MARITIMA XYLANASE 10A WITH GLUCOSE 6Y9T ; 2.78 ; Family GH13_31 enzyme 1RH9 ; 1.5 ; Family GH5 endo-beta-mannanase from Lycopersicon esculentum (tomato) 1KX7 ; ; Family of 30 conformers of a mono-heme ferrocytochrome c from Shewanella putrefaciens solved by NMR 1N65 ; ; FAMILY OF NMR SOLUTION STRUCTURES OF CA CE CALBINDIN D9K IN DENATURATING CONDITIONS 1KQV ; ; Family of NMR Solution Structures of Ca Ln Calbindin D9K 4RIC ; 2.8 ; FAN1 Nuclease bound to 5' hydroxyl (dT-dT) single flap DNA 4RIA ; 3.0 ; FAN1 Nuclease bound to 5' phosphorylated nicked DNA 4RI8 ; 2.9 ; FAN1 Nuclease bound to 5' phosphorylated p(dG)/3'(dT-dT-dT-dT) double flap DNA 4RIB ; 3.25 ; FAN1 Nuclease bound to 5' phosphorylated p(dT) single flap DNA 4RI9 ; 2.9 ; FAN1 Nuclease bound to 5' phosphorylated p(dT)/3'(dT-dT-dT-dT-dT-dT-dT-dT) double flap DNA 7KUO ; 2.281 ; FANA modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 6VAD ; 3.3 ; Fanconi Anemia ID complex 7ZW0 ; 2.4 ; FAP-80S Complex - Rotated state 6XHH ; 1.5 ; Far-red absorbing dark state of JSC1_58120g3 with bound 18-1, 18-2 dihydrobiliverdin IXa (DHBV), the native chromophore precursor 6XHG ; 2.3 ; Far-red absorbing dark state of JSC1_58120g3 with bound biliverdin IXa (BV) 8HW1 ; 3.13 ; Far-red light-harvesting complex of Antarctic alga Prasiola crispa 8THV ; ; FARFAR-NMR ensemble of HIV-1 TAR with apical loop capturing ground and excited conformational states 8HD3 ; 2.29 ; Farnesoid X Receptor Agonists_FXR fused with a HD3 peptide 1X81 ; 3.5 ; Farnesyl transferase structure of Jansen compound 5FR2 ; 3.35 ; Farnesylated RhoA-GDP in complex with RhoGDI-alpha, lysine acetylated at K178 1N9A ; 3.2 ; Farnesyltransferase complex with tetrahydropyridine inhibitors 1DDF ; ; FAS DEATH DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 2LTC ; ; Fas1-4, R555W 5WT7 ; ; FAS1-IV domain of Human Periostin 1KU6 ; 2.5 ; Fasciculin 2-Mouse Acetylcholinesterase Complex 1MAH ; 3.2 ; FASCICULIN2-MOUSE ACETYLCHOLINESTERASE COMPLEX 7ZAU ; 2.2 ; Fascin-1 in complex with Nb 3E11 5FWZ ; 2.3 ; Fasciola hepatica calcium binding protein FhCaBP2: Structure of the dynein light chain-like domain. P41212 mercury derivative. 5FX0 ; 2.3 ; Fasciola hepatica calcium binding protein FhCaBP2: Structure of the dynein light chain-like domain. P6422 native. 2FHE ; 2.3 ; FASCIOLA HEPATICA GLUTATHIONE S-TRANSFERASE ISOFORM 1 IN COMPLEX WITH GLUTATHIONE 2WB9 ; 1.59 ; Fasciola hepatica sigma class GST 2WDU ; 1.62 ; Fasciola hepatica sigma class GST 8FWD ; 3.67 ; Fast and versatile sequence- independent protein docking for nanomaterials design using RPXDock 1SFQ ; 1.91 ; Fast form of thrombin mutant R(77a)A bound to PPACK 7AV6 ; 1.5 ; FAST in a domain-swapped dimer form 2VAE ; 1.64 ; Fast maturing red fluorescent protein, DsRed.T4 6SKY ; 2.8 ; FAT and kinase domain of CtTel1 2L6H ; ; Fat domain of focal adhesion kinase tethered to LD4 motif of paxillin via GGS linker 2L6G ; ; FAT-LD2 Double labeled construct with free LD4 peptide 4N03 ; 1.15 ; Fatty acid ABC transporter substrate-binding protein from Thermomonospora curvata 6KVR ; 2.2 ; Fatty acid amide hydrolase 4XCP ; 2.14 ; Fatty Acid and Retinol binding protein Na-FAR-1 from Necator americanus 1WDK ; 2.5 ; fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi, form I (native2) 1WDM ; 3.8 ; fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi, form I (native3) 1WDL ; 3.5 ; fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi, form II (native4) 2D3T ; 3.4 ; Fatty Acid beta-oxidation multienzyme complex from Pseudomonas Fragi, Form V 2DT8 ; 1.48 ; Fatty Acid Binding of a DegV family Protein from Thermus thermophilus 3PL5 ; 2.04 ; Fatty acid binding protein 2FLJ ; ; Fatty acid binding protein from locust flight muscle in complex with oleate 5DIC ; 1.185 ; Fatty acid binding protein OBP56a from the oral disk of the blowfly Phormia regina 6TA1 ; 3.1 ; Fatty acid synthase of S. cerevisiae 5GGE ; 1.861 ; Fatty Acid-Binding Protein in Brain Tissue of Drosophila melanogaster 5U0M ; 3.075 ; Fatty aldehyde dehydrogenase from Marinobacter aquaeolei VT8 and cofactor complex 5J7O ; 2.37 ; Faustovirus major capsid protein 5J7U ; 2.44 ; Faustovirus major capsid protein 5J7V ; 15.5 ; Faustovirus major capsid protein 2B7Y ; 3.0 ; Fava Bean Lectin-Glucose Complex 2MWB ; ; FBP28 WW2 mutant W457F 1E0L ; ; FBP28WW domain from Mus musculus 2RM0 ; ; FBP28WW2 domain in complex with a PPPLIPPPP peptide 2RLY ; ; FBP28WW2 domain in complex with PTPPPLPP peptide 2JUP ; ; FBP28WW2 domain in complex with the PPLIPPPP peptide 6WNX ; 2.5 ; FBXW11-SKP1 in complex with a pSer33/pSer37 Beta-Catenin peptide 5WAV ; 2.6 ; Fc AbVance: Increasing our knowledge of antibody structural space to enable faster and better decision-making in antibody drug discovery. 5NSG ; 2.22 ; Fc DEDE homodimer variant 5NSC ; 2.3 ; Fc DEKK heterodimer variant 5DVL ; 1.9 ; Fc Design 20.8.37 A chain homodimer Y349S/T366M/K370Y/K409V 5DVM ; 2.95 ; Fc Design 20.8.37 B chain homodimer E357D/S364R/Y407A 5DVK ; 2.6 ; Fc Design 7.7 B chain homodimer T366V/K409I 4ZNC ; 2.28 ; Fc fragment of human IgG in complex with the C domain of staphylococcal protein A mutant - Q9W 5VGP ; 2.116 ; Fc fragment of human IgG1 antibody, from NIST mAb 1DN2 ; 2.7 ; FC FRAGMENT OF HUMAN IGG1 IN COMPLEX WITH AN ENGINEERED 13 RESIDUE PEPTIDE DCAWHLGELVWCT-NH2 3D6G ; 2.3 ; Fc fragment of IgG1 (Herceptin) with protein-A mimetic peptide dendrimer ligand. 1L6X ; 1.65 ; FC FRAGMENT OF RITUXIMAB BOUND TO A MINIMIZED VERSION OF THE B-DOMAIN FROM PROTEIN A CALLED Z34C 5DJ0 ; 2.28 ; Fc Heterodimer Design 11.2 Y349S/K370Y + E357D/S364Q 5DJX ; 2.25 ; Fc Heterodimer Design 2.9 L368M/K370E + E357A/S364G 5DJY ; 2.15 ; Fc Heterodimer Design 20.8 Y349S/T366V/K370Y/K409V + E357D/S364Q/Y407A 5DK0 ; 2.3 ; Fc Heterodimer Design 20.8.34 Y349S/T366M/K370Y/K409V + E356G/E357D/S364Q/Y407A 5DJD ; 2.3 ; Fc Heterodimer Design 5.1 T366V + Y407F 5DJ6 ; 2.0 ; Fc Heterodimer Design 6.1 F405W/Y407A + T366M 5DJ2 ; 2.56 ; Fc Heterodimer Design 7.4 Y407A + T366V/K409V 5DJ8 ; 2.4 ; Fc Heterodimer Design 7.7 D399M/Y407A + T366V/K409I 5DJZ ; 1.9 ; Fc Heterodimer Design 7.8 D399M/Y407A + T366V/K409V 5DJC ; 2.1 ; Fc Heterodimer Design 8.1 L368V/Y407A + T366V/K409F 5DJA ; 2.9 ; Fc Heterodimer Design 9.1 Y407M + T366I 5DK2 ; 2.6 ; Fc Heterodimer E356K/D399K + K392D/K409D 6FGO ; 2.5 ; Fc in complex with engineered calcium binding domain Z 5DVN ; 2.5 ; Fc K392D/K409D homodimer 5DVO ; 2.5 ; Fc K392D/K409D homodimer 5DI8 ; 1.9 ; Fc Knob-Hole Heterodimer T366W + T366S/L368A/Y407V 5Y56 ; 2.653 ; Fc mutant (K392D/K409D/D399K) 2RGS ; 2.13 ; FC-fragment of monoclonal antibody IGG2B from Mus musculus 8BZF ; 1.53 ; FC-J acetonide stabilizer of 14-3-3 and ERalpha 5WAW ; 2.25 ; FcAbVance: Increasing our knowledge of antibody structural space to enable faster and better decision-making in antibody drug discovery 8QCI ; 2.2 ; FCGBP D10 Assembly Segment 5JP2 ; 2.4 ; Fcho1 Mu homology domain (Danio Rerio) with bound Eps15 peptide 7OHI ; 1.41 ; FCHO1-peptide-AP2 alpha ear complex 2V0O ; 2.3 ; FCHO2 F-BAR domain 8BPF ; 3.5 ; FcMR binding at subunit Fcu1 of IgM pentamer 8BPG ; 3.1 ; FcMR binding at subunit Fcu3 of IgM pentamer 8J0D ; 3.19 ; FCP heterodimer, Lhca2, and Lhcf5 together as the M1 side binds to the PSII core in the diatom Thalassiosira pseudonana 1FDM ; ; FD MAJOR COAT PROTEIN IN SDS MICELLES, NMR, 20 STRUCTURES 8UGC ; 4.0 ; FD15: Flat repeat helix-turn-helix-turn protein 4E9L ; 1.9 ; FdeC, a Novel Broadly Conserved Escherichia coli Adhesin Eliciting Protection against Urinary Tract Infections 5KTC ; 1.8 ; FdhC with bound products: Coenzyme A and 3-[(R)-3-hydroxybutanoylamino]-3,6-dideoxy-d-galactose 5KTD ; 1.9 ; FdhC with bound products: Coenzyme A and dTDP-3-amino-3,6-dideoxy-d-glucose 4XPI ; 1.97 ; Fe protein independent substrate reduction by nitrogenase variants altered in intramolecular electron transfer 7O1T ; 1.5 ; Fe(CO)2CNCl species bound [HydE from T. Maritima 6L56 ; 1.85301 ; Fe(II) loaded Tegillarca granosa ferritin 6DY4 ; 1.9 ; Fe(II)-bound structure of the engineered cyt cb562 variant, CH2E 6DYE ; 2.25 ; Fe(II)-bound structure of the engineered cyt cb562 variant, CH3 6DYG ; 1.49 ; Fe(II)-bound structure of the engineered cyt cb562 variant, CH3Y 3SCG ; 3.0 ; Fe(II)-HppE with R-HPP 3SCF ; 2.85 ; Fe(II)-HppE with S-HPP and NO 5ZM2 ; 2.5 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AndA 5ZM3 ; 2.25 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AndA with preandiloid B 5ZM4 ; 1.95 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AndA with preandiloid C 5DAP ; 1.7 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ 5DAQ ; 1.7 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ in complex with 4-Methoxycyclopeptin 5DAV ; 1.8 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ in complex with 4-Methoxydehydrocyclopeptin 5DAW ; 1.6 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ in complex with cyclopeptin 5DAX ; 1.7 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ in complex with demethylated cyclopeptin 5OA4 ; 1.55 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ_V72I mutant in complex with 4-methoxycyclopeptin (1) 5OA7 ; 1.65 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ_V72I mutant in complex with cyclopeptin (1b) 5OA8 ; 1.75 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ_V72I mutant in complex with demethylated cyclopeptin (1d) 6EOZ ; 1.55 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AsqJ_V72K mutant in complex with cyclopeptin (1b) 5YBL ; 2.108 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase AusE 5YBM ; 2.115 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA 5YBN ; 2.104 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA in complex with (alpha)ketoglutarate 5YBO ; 2.204 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA in complex with preaustinoid A1 5YBS ; 2.3 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA-V150L/A232S in complex with berkeleyone A 5YBP ; 2.312 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA-V150L/A232S in complex with preaustinoid A1 5YBQ ; 2.25 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA-V150L/A232S in complex with preaustinoid A2 5YBR ; 2.261 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA-V150L/A232S in complex with preaustinoid A3 5YBT ; 2.35 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase PrhA-V150L/A232S/M241V in complex with berkeleyone A 7EYR ; 2.12 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase SptF apo 7EYT ; 2.1 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase SptF with andilesin C and NOG 7EYW ; 2.1 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase SptF with terretonin C 7EYU ; 2.05 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase SptF-N65T mutant with andiconin D 7VBR ; 2.1 ; Fe(II)/(alpha)ketoglutarate-dependent dioxygenase TlxI 8A82 ; 2.05 ; Fe(II)/aKG-dependent halogenase OocPQ 8FUO ; 2.43 ; Fe-bound AibH1H2 6WZ0 ; 1.7 ; Fe-bound structure of an engineered metal-dependent protein trimer, TriCyt2 4XET ; 1.3 ; Fe-Cl bound Y157F CDO at pH ~7.0 in the presence of azide 2VP1 ; 2.7 ; Fe-FutA2 from Synechocystis PCC6803 1FEH ; 1.8 ; FE-ONLY HYDROGENASE FROM CLOSTRIDIUM PASTEURIANUM 6G2G ; 2.57 ; Fe-S assembly Cfd1 7KUG ; 1.55 ; Fe-S cluster-bound transcription activator WhiB7 in complex with the SigmaAr4-RNAP Beta flap tip chimera 2C6R ; 2.1 ; FE-SOAKED CRYSTAL STRUCTURE OF THE DPS92 FROM DEINOCOCCUS RADIODURANS 1COJ ; 1.9 ; FE-SOD FROM AQUIFEX PYROPHILUS, A HYPERTHERMOPHILIC BACTERIUM 1VZ4 ; 2.5 ; Fe-Succinate Complex of AtsK 2CZ7 ; 1.8 ; Fe-type NHase photo-activated for 75min at 105K 2VC0 ; 2.5 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Leucine 2VC1 ; 2.75 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Methionine 2VBW ; 2.2 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Phenylalanine 2VBX ; 2.75 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Phenylalanine 2VBZ ; 2.8 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Tryptophan 2VBY ; 2.8 ; Feast or famine regulatory protein (Rv3291c)from M. tuberculosis complexed with L-Tyrosine 2CSE ; 7.0 ; Features of Reovirus Outer-Capsid Protein mu1 Revealed by Electron and Image Reconstruction of the virion at 7.0-A Resolution 7CTC ; 2.0 ; FECH - inhibitor complex 1 7CT7 ; 2.0 ; FECH - inhibitor complex 2 8XV9 ; 3.8 ; Fedratinib-bound human SLC19A3 2LGS ; 2.8 ; FEEDBACK INHIBITION OF FULLY UNADENYLYLATED GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM BY GLYCINE, ALANINE, AND SERINE 6SG2 ; 1.65 ; FeFe Hydrogenase from Desulfovibrio desulfuricans in Hinact state 1W7R ; 1.4 ; Feglymycin P64 crystal form 1W7Q ; 1.1 ; Feglymycin P65 crystal form 6GEM ; 3.462 ; FeII-Dependent Halogenase Wi-WelO15 6GSH ; 3.0 ; Feline Calicivirus Strain F9 6GSI ; 3.75 ; Feline Calicivirus Strain F9 bound to a soluble ectodomain fragment of feline junctional adhesion molecule A - leading to assembly of a portal structure at a unique three-fold axis. 4PB6 ; 8.0 ; Feline calicivirus VP1 T=1 virus-like particle 6WTJ ; 1.9 ; Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication 6WTK ; 2.0 ; Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication 6WTM ; 1.85 ; Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication 1C8E ; 3.0 ; FELINE PANLEUKOPENIA VIRUS EMPTY CAPSID STRUCTURE 1C8F ; 3.0 ; FELINE PANLEUKOPENIA VIRUS EMPTY CAPSID STRUCTURE 1C8G ; 3.0 ; FELINE PANLEUKOPENIA VIRUS EMPTY CAPSID STRUCTURE 3G7X ; 1.55 ; Female-specific histamine-binding protein 2, D24R mutant 3GAQ ; 2.25 ; Female-specific Histamine-Binding Protein, D24R Mutant 1L5H ; 2.3 ; FeMo-cofactor Deficient Nitrogenase MoFe Protein 5HDC ; 1.6 ; Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein: 100 fs to 400 fs Structure 5HD5 ; 1.6 ; Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein: 200 ns time delay photo-activated (light) structure 5HDS ; 1.6 ; Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein: 3 ps Structure 5HDD ; 1.6 ; Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein: 800 fs to 1200 fs Structure 5HD3 ; 1.6 ; Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein: Dark structure of photoactive yellow protein 6XYG ; 1.5 ; Femtosecond structure of bovine trypsin at room temperature 6TK2 ; 2.5 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: 1ms structure of KR2 with extrapolated, light and dark datasets 6TK4 ; 2.25 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: 1ns+16ns structure of KR2 with extrapolated, light and dark datasets 6TK1 ; 2.5 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: 20ms structure of KR2 with extrapolated, light and dark datasets 6TK3 ; 2.25 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: 30us+150us structure of KR2 with extrapolated, light and dark datasets 6TK5 ; 2.25 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: 800fs+2ps structure of KR2 with extrapolated, light and dark datasets 6TK7 ; 1.6 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: Dark structure in acidic conditions 6TK6 ; 1.6 ; Femtosecond to millisecond structural changes in a light-driven sodium pump: Dark structure in neutral conditions with attached light datasets at 800fs, 2ps, 100ps, 1ns, 16ns, 1us, 30us, 150us, 1ms and 20ms 3PCQ ; 8.984 ; Femtosecond X-ray protein Nanocrystallography 1B43 ; 2.0 ; FEN-1 FROM P. FURIOSUS 8JLQ ; 2.84 ; Fenoldopam-bound hTAAR1-Gs protein complex 8EF5 ; 3.3 ; Fentanyl-bound mu-opioid receptor-Gi complex 7WQU ; 4.202 ; FeoC from Klebsiella pneumoniae 4XJ2 ; 1.8 ; FerA - NADH:FMN oxidoreductase from Paracoccus denitrificans in complex with FMN 3U7R ; 1.4 ; FerB - flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from Paracoccus denitrificans 2HE7 ; 2.0 ; FERM domain of EPB41L3 (DAL-1) 2AL6 ; 2.35 ; FERM domain of Focal Adhesion Kinase 5BOK ; 2.4 ; Ferredoxin component of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2 2Z8Q ; 1.7 ; ferredoxin from Pyrococcus furiosus, D14C variant 6KV0 ; 1.4 ; Ferredoxin I from C. reinhardtii, high X-ray dose 6KUM ; 1.4 ; Ferredoxin I from C. reinhardtii, low X-ray dose 6JO2 ; 1.55 ; Ferredoxin I from Thermosynechococcus elongatus 5H57 ; 2.5 ; Ferredoxin III from maize root 1QOA ; 1.7 ; FERREDOXIN MUTATION C49S 1QOB ; 1.8 ; FERREDOXIN MUTATION D62K 1QOF ; 1.8 ; FERREDOXIN MUTATION Q70K 1QOG ; 1.8 ; FERREDOXIN MUTATION S47A 5VJ7 ; 2.55 ; Ferredoxin NADP Oxidoreductase (Xfn) 4C43 ; 1.7 ; FERREDOXIN NADP REDUCTASE MUTANT WITH GLU 103 REPLACED BY TYR, TYR 104 REPLACED BY PHE, SER 109 REPLACED BY PHE AND GLY 110 REPLACED BY PRO (E103Y-Y104F-S109F-G110P) 3GCE ; 2.0 ; Ferredoxin of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 1F3P ; 2.4 ; FERREDOXIN REDUCTASE (BPHA4)-NADH COMPLEX 1A8P ; 2.0 ; FERREDOXIN REDUCTASE FROM AZOTOBACTER VINELANDII 7C3A ; 2.6 ; Ferredoxin reductase in carbazole 1,9a-dioxygenase 7C3B ; 2.4 ; Ferredoxin reductase in carbazole 1,9a-dioxygenase (FAD apo form) 1E9M ; 2.07 ; Ferredoxin VI from Rhodobacter Capsulatus 1AWD ; 1.4 ; FERREDOXIN [2FE-2S] OXIDIZED FORM FROM CHLORELLA FUSCA 5C2U ; 1.55 ; Ferredoxin-like domain of nucleoporin Nup54 bound to a nanobody 2B5O ; 2.499 ; ferredoxin-NADP reductase 3CRZ ; 1.9 ; Ferredoxin-NADP Reductase 3ZC3 ; 2.3 ; FERREDOXIN-NADP REDUCTASE (MUTATION S80A) COMPLEXED WITH NADP BY COCRYSTALLIZATION 1W34 ; 1.73 ; FERREDOXIN-NADP REDUCTASE (MUTATION: Y 303 S) 2BSA ; 1.92 ; Ferredoxin-Nadp Reductase (Mutation: Y 303 S) complexed with NADP 1W87 ; 3.0 ; FERREDOXIN-NADP REDUCTASE (MUTATION: Y 303 W) COMPLEXED WITH NADP BY COCRYSTALLIZATION 2VZL ; 1.93 ; FERREDOXIN-NADP REDUCTASE (MUTATIONS: T155G, A160T, L263P AND Y303S) COMPLEXED WITH NAD BY COCRYSTALLIZATION 3ZBT ; 1.92 ; Ferredoxin-NADP Reductase Mutant with SER 59 Replaced by ALA (S59A) 3ZBU ; 1.89 ; Ferredoxin-NADP Reductase Mutant with SER 80 Replaced by ALA (S80A) 2X3U ; 1.93 ; Ferredoxin-NADP reductase mutant with Tyr 303 replaced by Phe (Y303F) 4BPR ; 2.0 ; FERREDOXIN-NADP REDUCTASE MUTANT WITH TYR 79 REPLACED BY PHE (Y79F) 4K1X ; 1.7 ; Ferredoxin-NADP(H) Reductase mutant with Ala 266 replaced by Tyr (A266Y) and residues 267-272 deleted. 1B2R ; 1.8 ; FERREDOXIN-NADP+ REDUCTASE (MUTATION: E 301 A) 1W35 ; 1.9 ; FERREDOXIN-NADP+ REDUCTASE (MUTATION: Y 303 W) 1GJR ; 2.1 ; Ferredoxin-NADP+ Reductase complexed with NADP+ by COCRYSTALLIZATION 5H59 ; 1.65 ; Ferredoxin-NADP+ reductase from maize root 2OK8 ; 2.4 ; Ferredoxin-NADP+ reductase from Plasmodium falciparum 2OK7 ; 2.7 ; Ferredoxin-NADP+ reductase from Plasmodium falciparum with 2'P-AMP 2BMW ; 1.5 ; Ferredoxin: NADP+ Reductase Mutant With Thr 155 Replaced By Gly, Ala 160 Replaced By Thr, Leu 263 Replaced By Pro, Arg 264 Replaced By Pro and Gly 265 Replaced by Pro (T155G-A160T-L263P-R264P-G265P) 2VYQ ; 1.9 ; FERREDOXIN:NADP REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR, LEU 263 REPLACED BY PRO AND TYR 303 REPLACED BY SER (T155G-A160T-L263P-Y303S) 1FRQ ; 1.95 ; FERREDOXIN:NADP+ OXIDOREDUCTASE (FERREDOXIN REDUCTASE) MUTANT E312A 1BX0 ; 1.9 ; Ferredoxin:nadp+ oxidoreductase (ferredoxin reductase) mutant e312l 1BX1 ; 1.9 ; FERREDOXIN:NADP+ OXIDOREDUCTASE (FERREDOXIN REDUCTASE) MUTANT E312Q 1BJK ; 2.3 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH ARG 264 REPLACED BY GLU (R264E) 1OGJ ; 1.64 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH LEU 263 REPLACED BY PRO (L263P) 1QH0 ; 1.93 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH LEU 76 MUTATED BY ASP AND LEU 78 MUTATED BY ASP 1QGZ ; 2.3 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH LEU 78 REPLACED BY ASP (L78D) 1E62 ; 2.3 ; Ferredoxin:NADP+ reductase mutant with Lys 75 replaced by Arg (K75R) 1E64 ; 2.3 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH LYS 75 REPLACED BY GLN (K75Q) 1QGY ; 1.7 ; Ferredoxin:NADP+ reductase mutant with Lys 75 replaced by Glu (K75E) 1E63 ; 2.3 ; Ferredoxin:NADP+ Reductase Mutant with LYS 75 Replaced by SER (K75S) 1BQE ; 2.45 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY (T155G) 1OGI ; 1.64 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY AND ALA 160 REPLACED BY THR (T155G-A160T) 1H42 ; 2.15 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR AND LEU 263 REPLACED BY PRO (T155G-A160T-L263P) 1H85 ; 2.3 ; FERREDOXIN:NADP+ REDUCTASE MUTANT WITH VAL 136 REPLACED BY LEU (V136L) 1Y4T ; 1.8 ; Ferric binding protein from Campylobacter jejuni 4ELO ; 1.914 ; Ferric binding protein in apo form 1 4ELP ; 2.07 ; Ferric binding protein in apo form 2 4ELQ ; 1.893 ; Ferric binding protein with carbonate 4ELR ; 2.502 ; Ferric binding protein with iron and carbonate 3FWF ; 1.83 ; Ferric camphor bound cytochrome P450cam containing a Selenocysteine as the 5th heme ligand, monoclinic crystal form 3FWJ ; 1.9 ; Ferric camphor bound Cytochrome P450cam containing a selenocysteine as the 5th heme ligand, orthorombic crystal form 3FWI ; 2.4 ; Ferric camphor bound Cytochrome P450cam containing a selenocysteine as the 5th heme ligand, tetragonal crystal form 3FWG ; 1.55 ; Ferric camphor bound Cytochrome P450cam, Arg365Leu, Glu366Gln, monoclinic crystal form 6GZW ; 1.41 ; Ferric DtpA from Streptomyces lividans 1FEP ; 2.4 ; FERRIC ENTEROBACTIN RECEPTOR 3LR7 ; 1.6 ; Ferric horse heart myoglobin, nitrite adduct 3HC9 ; 2.0 ; Ferric Horse Heart Myoglobin; H64V mutant 3HEP ; 1.95 ; Ferric Horse Heart Myoglobin; H64V Mutant, Nitrite Modified 3HEN ; 1.9 ; Ferric Horse Heart Myoglobin; H64V/V67R Mutant 3HEO ; 2.0 ; Ferric Horse Heart Myoglobin; H64V/V67R mutant, Nitrite Modified 1W4W ; 1.55 ; Ferric horseradish peroxidase C1A in complex with formate 1QJQ ; 2.95 ; FERRIC HYDROXAMATE RECEPTOR FROM ESCHERICHIA COLI (FHUA) 2FCP ; 2.5 ; FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) FROM E.COLI 1FCP ; 2.7 ; FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) FROM E.COLI IN COMPLEX WITH BOUND FERRICHROME-IRON 1MOH ; 1.9 ; FERRIC MONOMERIC HEMOGLOBIN I (HB I) 6H5Z ; 1.8 ; Ferric murine neuroglobin F106A mutant 6H6I ; 1.6 ; Ferric murine neuroglobin Gly-loop mutant 6RA6 ; 2.3 ; Ferric murine neuroglobin Gly-loop44-47/F106A mutant 1DZ4 ; 1.6 ; ferric p450cam from pseudomonas putida 3P5Q ; 2.0 ; Ferric R-state human aquomethemoglobin 1FSL ; 2.3 ; FERRIC SOYBEAN LEGHEMOGLOBIN COMPLEXED WITH NICOTINATE 1MZB ; 1.8 ; Ferric uptake regulator 1MRP ; 1.6 ; FERRIC-BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE 8C4L ; 1.86 ; Ferric-siderophore reduction in Shewanella biscestrii: Structural and functional characterization of SbiSIP reveals unforeseen specificity 4B8Y ; 1.9 ; Ferrichrome-bound FhuD2 1AXQ ; 2.1 ; FERRICYANIDE OXIDIZED FDI 1Z4A ; 2.3 ; Ferritin from T. maritima 6IPO ; 2.998 ; Ferritin mutant C90A/C102A/C130A/D144C 8IQX ; 2.5 ; ferritin mutant-P156H 7XRG ; 1.9 ; ferritin nanocage assembly with nickel ion 6JOB ; 2.93 ; Ferritin variant with ""GMG"" motif 5U1A ; 2.0 ; Ferritin with Gc MtrE loop 1 inserted at His34 5U1B ; 2.81 ; Ferritin with Gc MtrE loop2 inserted at the N-terminus 1AK1 ; 1.9 ; FERROCHELATASE FROM BACILLUS SUBTILIS 2J19 ; 1.75 ; Ferrous Chloroperoxidase (high dose data set) 1Z8P ; 1.85 ; Ferrous dioxygen complex of the A245S cytochrome P450eryF 1Z8Q ; 2.0 ; Ferrous dioxygen complex of the A245T cytochrome P450eryF 1Z8O ; 1.7 ; Ferrous dioxygen complex of the wild-type cytochrome P450eryF 1W4Y ; 1.6 ; Ferrous horseradish peroxidase C1A in complex with carbon monoxide 5JP7 ; 1.26 ; Ferrous Leu 16 Val mutant of cytochrome c prime from Alcaligenes xylosoxidans 2NX0 ; 0.95 ; Ferrous nitrosyl blackfin tuna myoglobin 1DZ6 ; 1.9 ; ferrous p450cam from pseudomonas putida 2WTN ; 2.1 ; Ferulic Acid bound to Est1E from Butyrivibrio proteoclasticus 4S13 ; 2.348 ; Ferulic Acid Decarboxylase (FDC1) 4UU3 ; 1.15 ; Ferulic acid decarboxylase from Enterobacter sp. 4UU2 ; 1.49 ; Ferulic acid decarboxylase from Enterobacter sp., single mutant 5YAL ; 1.5 ; Ferulic acid esterase from Streptomyces cinnamoneus at 1.5 A resolution 5YAE ; 2.4 ; Ferulic acid esterase from Streptomyces cinnamoneus at 2.4 A resolution 7Z2V ; 1.45 ; Ferulic acid esterase variant S114A from Lactobacillus buchneri 1GKK ; 1.6 ; Feruloyl esterase domain of XynY from clostridium thermocellum 4BAG ; 1.9 ; Feruloyl Esterase Domain of XYNY from Clostridium thermocellum after exposure to 266nm UV laser 4H35 ; 1.9 ; Feruloyl Esterase Domain of XYNY from Clostridium thermocellum before exposure to 266nm UV laser 1UWC ; 1.08 ; Feruloyl esterase from Aspergillus niger 7XRH ; 2.3 ; Feruloyl esterase from Lactobacillus acidophilus 7XRI ; 2.19 ; Feruloyl esterase mutant -S106A 7XWV ; 1.81 ; Feruloyl-CoA hydratase/lyase complexed with Vanillin and Coenzyme A 7XWC ; 1.986 ; Feruloyl-CoA hydratase/lyase from Sphingomonas paucimobilis SYK-6 1JT1 ; 1.78 ; FEZ-1 metallo-beta-lactamase from Legionella gormanii modelled with D-captopril 5W90 ; 1.78 ; FEZ-1 metallo-beta-lactamase from Legionella gormanii modelled with unknown ligand 1L9Y ; 2.01 ; FEZ-1-Y228A, A Mutant of the Metallo-beta-lactamase from Legionella gormanii 2LKS ; ; Ff11-60 6WAC ; 2.9 ; FF248-249AA PCNA mutant defective in BIR 3B4Y ; 1.95 ; FGD1 (Rv0407) from Mycobacterium tuberculosis 2K4A ; ; FGF-1-C2A binary complex structure: a key component in the fibroblast growthfactor non-classical pathway 2KI4 ; ; FGF1-S100A13 complex structure: key component in non-classical path way of FGF1 3C4F ; 2.07 ; FGFR TYROSINE KINASE DOMAIN IN COMPLEX WITH 3-(3-methoxybenzyl)-7-azaindole 5ZV2 ; 2.86 ; FGFR-1 in complex with ligand lenvatinib 4UWY ; 2.305 ; FGFR1 Apo structure 6NVL ; 2.7 ; FGFR1 complex with N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methylphenyl)acrylamide 4V05 ; 2.57 ; FGFR1 in complex with AZD4547. 5A46 ; 2.63 ; FGFR1 in complex with dovitinib 4V01 ; 2.33 ; FGFR1 in complex with ponatinib (co-crystallisation). 4V04 ; 2.12 ; FGFR1 in complex with ponatinib. 6C19 ; 2.12 ; FGFR1 kinase complex with inhibitor SN36985 6C18 ; 2.3 ; FGFR1 kinase complex with inhibitor SN37115 6C1C ; 2.15 ; FGFR1 kinase complex with inhibitor SN37116 6C1B ; 2.0 ; FGFR1 kinase complex with inhibitor SN37118 7OZF ; 1.82 ; FGFR1 kinase domain (residues 458-765) with mutations C488A, C584S in complex with 19. 7OZD ; 1.82 ; FGFR1 kinase domain (residues 458-765) with mutations C488A, C584S in complex with 34. 7OZB ; 1.71 ; FGFR1 kinase domain (residues 458-765) with mutations C488A, C584S in complex with 38. 5UQ0 ; 2.3 ; FGFR1 kinase domain complex with fragment 2,2-dimethyl-2,3-dihydrobenzofuran-7-carboxamide 5UR1 ; 2.2 ; FGFR1 kinase domain complex with SN37333 in reversible binding mode 6C1O ; 2.29 ; FGFR1 kinase domain complexed with FIIN-1 8XLO ; 2.36 ; FGFR1 kinase domain with a dual-warhead covalent inhibitor CXF-007 8JMZ ; 1.988 ; FGFR1 kinase domain with sulfatinib 5A4C ; 2.09 ; FGFR1 ligand complex 5AM7 ; 1.957 ; FGFR1 mutant with an inhibitor 8H75 ; 3.75 ; FGFR2 in complex with YJ001 1OEC ; 2.4 ; FGFr2 kinase domain 7OZY ; 2.28 ; FGFR2 kinase domain (residues 461-763) in complex with 38. 8U1F ; 3.33 ; FGFR2 Kinase Domain Bound to Irreversible Inhibitor Cmpd 10 8SWE ; 2.24 ; FGFR2 Kinase Domain Bound to Reversible Inhibitor Cmpd 3 8E1X ; 2.68 ; FGFR2 kinase domain in complex with a Pyrazolo[1,5-a]pyrimidine analog (Compound 29) 3GRW ; 2.1 ; FGFR3 in complex with a Fab 2LZL ; ; FGFR3tm 7DTZ ; 2.01 ; FGFR4 complex with a covalent inhibitor 6NVK ; 2.3 ; FGFR4 complex with BLU-554, N-((3S,4S)-3-((6-(2,6-dichloro-3,5-dimethoxyphenyl)quinazolin-2-yl)amino)tetrahydro-2H-pyran-4-yl)acrylamide 6NVJ ; 2.3 ; FGFR4 complex with N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-fluorophenyl)acrylamide 6NVH ; 1.9 ; FGFR4 complex with N-(2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-3-methylphenyl)acrylamide 6NVG ; 1.99 ; FGFR4 complex with N-(3,5-dichloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)phenyl)acrylamide 6NVI ; 2.117 ; FGFR4 complex with N-(3-chloro-2-((5-((2,6-dichloro-3,5-dimethoxybenzyl)oxy)pyrimidin-2-yl)amino)-5-fluorophenyl)acrylamide 6J6Y ; 2.15 ; FGFR4 D2 - Fab complex 4UXQ ; 1.85 ; FGFR4 in complex with Ponatinib 8XLQ ; 1.95 ; FGFR4 kinase domain with a dual-warhead covalent inhibitor CXF-007 7JT9 ; 1.93 ; Fgr SH3 domain crystal structure 7N8R ; 1.2 ; FGTGFG segment from the Nucleoporin p54, residues 63-68 7SCG ; 3.0 ; FH210 bound Mu Opioid Receptor-Gi Protein Complex 1GXC ; 2.7 ; FHA domain from human Chk2 kinase in complex with a synthetic phosphopeptide 2JPE ; ; FHA domain of NIPP1 7SA6 ; 2.9 ; fHbp mutant 2416 bound to Fab JAR5 1FIT ; 1.85 ; FHIT (FRAGILE HISTIDINE TRIAD PROTEIN) 2FIT ; 1.9 ; FHIT (FRAGILE HISTIDINE TRIAD PROTEIN) 3FIT ; 2.4 ; FHIT (FRAGILE HISTIDINE TRIAD PROTEIN) IN COMPLEX WITH ADENOSINE/SULFATE AMP ANALOG 4FIT ; 2.5 ; FHIT-APO 5FIT ; 2.3 ; FHIT-SUBSTRATE ANALOG 6FIT ; 2.6 ; FHIT-TRANSITION STATE ANALOG 1BY3 ; 2.74 ; FHUA FROM E. COLI 4CU4 ; 2.3 ; FhuA from E. coli in complex with the lasso peptide microcin J25 (MccJ25) 1BY5 ; 2.6 ; FHUA FROM E. COLI, WITH ITS LIGAND FERRICHROME 1FI1 ; 2.9 ; FhuA in complex with lipopolysaccharide and rifamycin CGP4832 1K7S ; 2.6 ; FhuD complexed with albomycin-delta 2 8JOU ; 4.1 ; Fiber I and fiber-tail-adaptor of phage GP4 7QVI ; 3.0 ; Fiber-forming RubisCO derived from ancestral sequence reconstruction and rational engineering 8JMW ; 2.9 ; Fibril form of serine peptidase Vpr 5VSG ; 1.1 ; Fibrils of the super helical repeat peptide, SHR-FF, grown at elevated temperature 1N73 ; 2.9 ; Fibrin D-Dimer, Lamprey complexed with the PEPTIDE LIGAND: GLY-HIS-ARG-PRO-AMIDE 4KTY ; 1.98 ; Fibrin-stabilizing factor with a bound ligand 2FFD ; 2.89 ; Fibrinogen Fragment D with ""A"" knob peptide mimic GPRVVE 6Y41 ; 1.79 ; Fibrinogen-like globe domain of human ANGPTL2 6Y43 ; 1.6 ; Fibrinogen-like globe domain of human ANGPTL6 6QNV ; 1.4 ; Fibrinogen-like globe domain of Human Tenascin-C 1AA0 ; 2.2 ; FIBRITIN DELETION MUTANT E (BACTERIOPHAGE T4) 1AVY ; 1.85 ; FIBRITIN DELETION MUTANT M (BACTERIOPHAGE T4) 5EW8 ; 1.63 ; FIBROBLAST GROWTH FACTOR RECEPTOR 1 IN COMPLEX WITH JNJ-4275693 4UWC ; 1.96 ; Fibroblast growth factor receptor 1 kinase in complex with JK-P3 4UWB ; 2.31 ; Fibroblast growth factor receptor 1 kinase in complex with JK-P5 5NUD ; 2.5 ; FIBROBLAST GROWTH FACTOR RECEPTOR 4 KINASE DOMAIN (449-753) IN COMPLEX WITH IRREVERSIBLE LIGAND CGA159527 5NWZ ; 2.37 ; FIBROBLAST GROWTH FACTOR RECEPTOR 4 KINASE DOMAIN (449-753) IN COMPLEX WITH IRREVERSIBLE LIGAND CGA159527 3M7P ; 2.5 ; Fibronectin fragment 5EU0 ; 1.6 ; FIC domain of Bep1 from Bartonella rochalimae in complex with BiaA 5CGL ; 2.35 ; Fic protein from Neisseria meningitidis (NmFic) mutant E102R in dimeric form 5CKL ; 0.99 ; Fic protein from Neisseria meningitidis (NmFic) mutant E156R in dimeric form 5CMT ; 0.99 ; Fic protein from Neisseria meningitidis (NmFic) mutant E156R Y183F in dimeric form 3S6A ; 2.2 ; Fic protein from NEISSERIA MENINGITIDIS in complex with AMPPNP 3SE5 ; 1.7 ; Fic protein from NEISSERIA MENINGITIDIS mutant delta8 in complex with AMPPNP 3ZLM ; 2.0 ; Fic protein from Neisseria meningitidis mutant E186G in complex with AMPPNP 3SN9 ; 3.03 ; Fic protein from NEISSERIA MENINGITIDIS mutant S182A/E186A in complex with AMPPNP 3ZEC ; 2.2 ; Fic protein from SHEWANELLA ONEIDENSIS (E73G mutant) in complex with AMPPNP 3ZCN ; 1.7 ; Fic protein from SHEWANELLA ONEIDENSIS in complex with ATP 5JJ7 ; 3.749 ; Fic-1 (aa134 - 508 E274G) from C. elegans 5JJ6 ; 2.907 ; Fic-1 (aa134 - 508) from C. elegans 4YYQ ; 1.594 ; Ficin A 4YYR ; 1.349 ; Ficin B crystal form I 4YYS ; 1.35 ; Ficin B crystal form II 4YYU ; 1.177 ; Ficin C crystal form I 4YYW ; 1.446 ; Ficin D2 4YYV ; 1.902 ; Ficin isoform C crystal form II 1EF3 ; 2.8 ; FIDARESTAT BOUND TO HUMAN ALDOSE REDUCTASE 1AZZ ; 2.3 ; FIDDLER CRAB COLLAGENASE COMPLEXED TO ECOTIN 2AGO ; 2.85 ; Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis 2AGP ; 2.9 ; Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis 2AGQ ; 2.1 ; Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis 1JN3 ; 2.35 ; FIDELITY PROPERTIES AND STRUCTURE OF M282L MUTATOR MUTANT OF DNA POLYMERASE: SUBTLE STRUCTURAL CHANGES INFLUENCE THE MECHANISM OF NUCLEOTIDE DISCRIMINATION 4LYU ; 1.75 ; Fifteen minutes iron loaded frog M ferritin 4MN9 ; 1.15 ; Fifteen minutes iron loaded frog M ferritin mutant H54Q 4OYN ; 1.43 ; Fifteen minutes iron loaded human H ferritin 6IAF ; 1.35 ; Fifteen minutes iron loaded Rana Catesbeiana H' ferritin variant H54N 1ADX ; ; FIFTH EGF-LIKE DOMAIN OF THROMBOMODULIN (TMEGF5), NMR, 14 STRUCTURES 2ADX ; ; FIFTH EGF-LIKE DOMAIN OF THROMBOMODULIN (TMEGF5), NMR, MINIMIZED AVERAGE STRUCTURE 8IMB ; 2.9 ; Filament interface structure of GAC with phosphate 6G2I ; 5.9 ; Filament of acetyl-CoA carboxylase and BRCT domains of BRCA1 (ACC-BRCT) at 5.9 A resolution 6G2H ; 4.6 ; Filament of acetyl-CoA carboxylase and BRCT domains of BRCA1 (ACC-BRCT) core at 4.6 A resolution 4HYY ; 2.603 ; Filament of octameric rings of DMC1 recombinase from Homo sapiens 8IMA ; 2.9 ; Filament structure of GAC with phosphate 7LRG ; 6.1 ; Filamentous actin decorated with human cardiac myosin binding protein C C2 domain 8CCN ; 3.5 ; Filamentous actin II from Plasmodium falciparum 5HBD ; 1.65 ; Filamentous Assembly of Green Fluorescent Protein Supported by a C-terminal fusion of 18-residues, viewed in space group C2 5HW9 ; 3.0 ; Filamentous Assembly of Green Fluorescent Protein Supported by a C-terminal fusion of 18-residues, viewed in space group P21 5HGE ; 1.863 ; Filamentous Assembly of Green Fluorescent Protein Supported by a C-terminal fusion of 18-residues, viewed in space group P212121 6AS9 ; 1.75 ; Filamentous Assembly of Green Fluorescent Protein Supported by a C-terminal fusion of 18-residues, viewed in space group P212121 form 2 1HGV ; 2.4 ; Filamentous Bacteriophage PH75 1HGZ ; 2.4 ; Filamentous Bacteriophage PH75 1HH0 ; 2.4 ; Filamentous Bacteriophage PH75 3J1R ; 7.5 ; Filaments from Ignicoccus hospitalis Show Diversity of Packing in Proteins Containing N-terminal Type IV Pilin Helices 2WFN ; 3.2 ; Filamin A actin binding domain 2K7P ; ; Filamin A Ig-like domains 16-17 2K7Q ; ; Filamin A Ig-like domains 18-19 7SC4 ; 1.85 ; filamin complex-1 7SFT ; ; Filamin complex-2 3V69 ; 2.2 ; Filia-N crystal structure 6KMF ; 3.6 ; FimA type V pilus from P.gingivalis 5NKT ; 1.5 ; FimA wt from E. coli 5LP9 ; 0.886266 ; FimA wt from S. flexneri 1KIU ; 3.0 ; FimH adhesin Q133N mutant-FimC chaperone complex with methyl-alpha-D-mannose 1TR7 ; 2.1 ; FimH adhesin receptor binding domain from uropathogenic E. coli 1KLF ; 2.79 ; FIMH ADHESIN-FIMC CHAPERONE COMPLEX WITH D-MANNOSE 7BHD ; 1.4 ; FimH in complex with alpha1,6 core-fucosylated oligomannose-3, crystallized in the trigonal space group 8BXY ; 1.45 ; FimH in complex with alpha1,6 core-fucosylated oligomannose-3, crystallized in the trigonal space group 4ATT ; 1.251 ; FimH lectin domain co-crystal with a alpha-D-mannoside O-linked to a propynyl para methoxy phenyl 4AV4 ; 1.9 ; FimH lectin domain co-crystal with a alpha-D-mannoside O-linked to a propynyl pyridine 4AUJ ; 1.527 ; FimH lectin domain co-crystal with a alpha-D-mannoside O-linked to para hydroxypropargyl phenyl 8BVD ; 2.995 ; FimH lectin domain in complex with mannose C-linked to quinoline 7QUO ; 3.0 ; FimH lectin domain in complex with oligomannose-6 8BY3 ; 3.186 ; FimH lectin domain in complex with oligomannose-6 8G4U ; 2.9 ; Final ketosynthase+acyltransferase of the erythromycin modular polyketide synthase 4EKH ; 1.75 ; Final Thaumatin Structure for Radiation Damage Experiment at 100 K 4EKT ; 1.75 ; Final Thaumatin Structure for Radiation Damage Experiment at 180 K 4EL3 ; 1.95 ; Final Thaumatin Structure for Radiation Damage Experiment at 240 K 4EKA ; 1.55 ; Final Thaumatin Structure for Radiation Damage Experiment at 25 K 4ELA ; 2.0 ; Final Thaumatin Structure for Radiation Damage Experiment at 300 K 4EPB ; 1.75 ; Final Urease Structure for Radiation Damage Experiment at 100 K 4EPE ; 2.05 ; Final Urease Structure for Radiation Damage Experiment at 300 K 1PBP ; 1.9 ; FINE TUNING OF THE SPECIFICITY OF THE PERIPLASMIC PHOSPHATE TRANSPORT RECEPTOR: SITE-DIRECTED MUTAGENESIS, LIGAND BINDING, AND CRYSTALLOGRAPHIC STUDIES 3PSL ; 1.7 ; Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3 based peptide mimetic 3GED ; 1.698 ; Fingerprint and Structural Analysis of a Apo SCOR enzyme from Clostridium thermocellum 3GEG ; 2.102 ; Fingerprint and Structural Analysis of a SCOR enzyme with its bound cofactor from Clostridium thermocellum 1LCI ; 2.0 ; FIREFLY LUCIFERASE 3IEP ; 2.1 ; Firefly luciferase apo structure (P41 form) 3IER ; 2.05 ; Firefly luciferase apo structure (P41 form) with PEG 400 bound 1BA3 ; 2.2 ; FIREFLY LUCIFERASE IN COMPLEX WITH BROMOFORM 3IES ; 2.0 ; Firefly luciferase inhibitor complex 8U66 ; 2.21 ; Firmicutes Rubisco 2V9Q ; 2.5 ; First and second Ig domains from human Robo1 2V9R ; 2.0 ; First and second Ig domains from human Robo1 (Form 2) 6OXB ; 1.86 ; First bromo-adjacent homology (BAH) domain of human Polybromo-1 (PBRM1) 5N16 ; 1.76 ; First Bromodomain (BD1) from Candida albicans Bdf1 bound to a dibenzothiazepinone (compound 1) 5N17 ; 1.6 ; First Bromodomain (BD1) from Candida albicans Bdf1 bound to a dibenzothiazepinone (compound 3) 5N15 ; 2.37 ; First Bromodomain (BD1) from Candida albicans Bdf1 in the unbound form 5TCM ; 2.2 ; First Bromodomain from Leishmania donovani LdBPK.091320 complexed with BI-2536 5D24 ; 1.65 ; First bromodomain of BRD4 bound to inhibitor XD26 5D25 ; 1.7 ; First bromodomain of BRD4 bound to inhibitor XD27 5D26 ; 1.82 ; First bromodomain of BRD4 bound to inhibitor XD28 5D3H ; 1.7 ; First bromodomain of BRD4 bound to inhibitor XD29 5D3J ; 1.7 ; First bromodomain of BRD4 bound to inhibitor XD33 5D3L ; 1.5 ; First bromodomain of BRD4 bound to inhibitor XD35 5D3N ; 2.15 ; First bromodomain of BRD4 bound to inhibitor XD40 5D3P ; 1.95 ; First bromodomain of BRD4 bound to inhibitor XD41 5D3R ; 2.2 ; First bromodomain of BRD4 bound to inhibitor XD42 5D3S ; 1.75 ; First bromodomain of BRD4 bound to inhibitor XD44 5D3T ; 1.93 ; First bromodomain of BRD4 bound to inhibitor XD47 7UGF ; 1.45 ; First bromodomain of BRD4 liganded with BMS-536924 8FVK ; 1.53 ; First bromodomain of BRD4 liganded with CCS-1477 7UTY ; 1.55 ; First bromodomain of BRD4 liganded with compound 2c 7UUU ; 1.52 ; First bromodomain of BRDT liganded with compound 2c 2FWS ; ; First Ca2+ binding domain of the Na,Ca-exchanger (NCX1) 7UVG ; 1.77 ; First cohesin of Sca5 from Ruminococcus bromii 5DU9 ; 1.6 ; First condensation domain of the calcium-dependent antibiotic synthetase in complex with substrate analogue 2a 5DUA ; 1.9 ; First condensation domain of the calcium-dependent antibiotic synthetase in complex with substrate analogue 3a 4PPO ; 1.73 ; First Crystal Structure for an Oxaliplatin-Protein Complex 1Q6V ; 1.86 ; First crystal structure of a C49 monomer PLA2 from the venom of Daboia russelli pulchella at 1.8 A resolution 2QZ6 ; 2.26 ; First crystal structure of a psychrophile class C beta-lactamase 3P59 ; 2.1793 ; First Crystal Structure of a RNA Nanosquare 4CE5 ; 1.63 ; First crystal structure of an (R)-selective omega-transaminase from Aspergillus terreus 3RWK ; 2.1 ; First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. 3SC7 ; 1.5 ; First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. 5I82 ; 2.35 ; First Crystal Structure of E.coli Based Recombinant Diphtheria Toxin Mutant CRM197 6R3R ; 1.65 ; First crystal structure of endo-levanase BT1760 from Bacteroides thetaiotaomicron 6S6R ; 1.58001 ; First crystal structure of parasitic PEX14 in complex with a fragment molecule 1H-indole-7-carboxylic acid 6FO5 ; 0.95 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR #17 5EIS ; 1.6 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR 3-(4-Chlorobenzyl)-7-ethyl-3,7-dihydropurine-2,6-dione 5EGU ; 2.21 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR 3-Butyl-8-(6-butyl-5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-ylsulfanylmethyl)-7-ethyl-3,7-dihydropurine-2,6-dione 5DLZ ; 1.7 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR 4-[(1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)oxy]-N-({1-[(3-methylphe methyl]piperidin-4-yl}methyl)butanamide 5EI4 ; 1.05 ; First domain of human bromodomain BRD4 in complex with inhibitor 8-(5-Amino-1H-[1,2,4]triazol-3-ylsulfanylmethyl)-3-(4-chlorobenzyl)-7-ethyl-3,7-dihydropurine-2,6-dione 6FNX ; 1.19 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR F1 5DLX ; 1.9 ; FIRST DOMAIN OF HUMAN BROMODOMAIN BRD4 IN COMPLEX WITH INHIBITOR N-{3-[4-(3-chlorophenyl)piperazin-1-yl]propyl}-1-{3-methyl-[1,2,4]triazolo[4,3-b]pyridazin-6-yl}piperidine-4-carboxamide 2B7E ; ; First FF domain of Prp40 Yeast Protein 6GZ8 ; 1.0 ; First GerMN domain of the sporulation protein GerM from Bacillus subtilis 3NJW ; 0.86 ; First High Resolution Crystal Structure of a Lasso Peptide 1V40 ; 1.9 ; First Inhibitor Complex Structure of Human Hematopoietic Prostaglandin D Synthase 7EDO ; 2.7 ; First insight into marsupial MHC I peptide presentation: immune features of lower mammals paralleled with bats 8PPO ; 2.0 ; First Intermediate Amyloid (FIA) - Tau 3F7Q ; 1.75 ; First pair of Fibronectin type III domains and part of the connecting segment of the integrin beta4 3F7R ; 2.036 ; First pair of Fibronectin type III domains and part of the connecting segment of the integrin beta4 2KQB ; ; First PBZ domain of human APLF protein 2KQD ; ; First PBZ domain of human APLF protein in complex with ribofuranosyladenosine 1G9O ; 1.5 ; FIRST PDZ DOMAIN OF THE HUMAN NA+/H+ EXCHANGER REGULATORY FACTOR 1FU2 ; ; FIRST PROTEIN STRUCTURE DETERMINED FROM X-RAY POWDER DIFFRACTION DATA 1FUB ; ; FIRST PROTEIN STRUCTURE DETERMINED FROM X-RAY POWDER DIFFRACTION DATA 7NZC ; 1.111 ; First SH3 domain of POSH (Plenty of SH3 Domains protein) 7RCC ; 2.45 ; First stage engineered variant of I-OnuI after initial reassembly 1SLP ; ; FIRST STEM LOOP OF THE SL1 RNA FROM CAENORHABDITIS ELEGANS, NMR, 16 STRUCTURES 1SLO ; ; FIRST STEM LOOP OF THE SL1 RNA FROM CAENORHABDITIS ELEGANS, NMR, MINIMIZED AVERAGE STRUCTURE 1KPM ; 1.8 ; First Structural Evidence of a Specific Inhibition of Phospholipase A2 by Vitamin E and its Implications in Inflammation: Crystal Structure of the Complex Formed between Phospholipase A2 and Vitamin E at 1.8 A Resolution. 3ERH ; 2.4 ; First structural evidence of substrate specificity in mammalian peroxidases: Crystal structures of substrate complexes with lactoperoxidases from two different species 3ERI ; 2.5 ; First structural evidence of substrate specificity in mammalian peroxidases: Crystal structures of substrate complexes with lactoperoxidases from two different species 1FV0 ; 1.7 ; FIRST STRUCTURAL EVIDENCE OF THE INHIBITION OF PHOSPHOLIPASE A2 BY ARISTOLOCHIC ACID: CRYSTAL STRUCTURE OF A COMPLEX FORMED BETWEEN PHOSPHOLIPASE A2 AND ARISTOLOCHIC ACID 4O8A ; 2.0 ; First structure of a proline utilization A proline dehydrogenase domain 1IAG ; 2.0 ; FIRST STRUCTURE OF A SNAKE VENOM METALLOPROTEINASE: A PROTOTYPE FOR MATRIX METALLOPROTEINASES(SLASH)COLLAGENASES 4CGV ; 2.54 ; First TPR of Spaghetti (RPAP3) bound to HSP90 peptide SRMEEVD 2X2U ; 2.0 ; First two Cadherin-like domains from Human RET 6H7X ; 2.892 ; First X-ray structure of full-length human RuvB-Like 2. 4RBY ; 1.19 ; First X-ray structure of RNA containing guanosine phosphorodithioate 7ND1 ; ; First-in-class small molecule inhibitors of Polycomb Repressive Complex 1 (PRC1) RING domain 3V4J ; 2.04 ; First-In-Class Small Molecule Inhibitors of the Single-strand DNA Cytosine Deaminase APOBEC3G 3V4K ; 1.38 ; First-In-Class Small Molecule Inhibitors of the Single-strand DNA Cytosine Deaminase APOBEC3G 6GST ; 2.2 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 6GSU ; 1.85 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 6GSV ; 1.75 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 6GSW ; 1.85 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 6GSX ; 1.91 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 6GSY ; 2.2 ; FIRST-SPHERE AND SECOND-SPHERE ELECTROSTATIC EFFECTS IN THE ACTIVE SITE OF A CLASS MU GLUTATHIONE TRANSFERASE 7YA9 ; 1.7 ; Fis1 (Mitochondrial fission 1 protein) 2I2Q ; 1.72 ; Fission Yeast cofilin 2R6P ; 24.0 ; Fit of E protein and Fab 1A1D-2 into 24 angstrom resolution cryoEM map of Fab complexed with dengue 2 virus. 2BGY ; 9.0 ; Fit of the x-ray structure of the baterial flagellar hook fragment flge31 into an EM map from the hook of Caulobacter crescentus. 5ZUF ; 6.8 ; Fit R10 Fab coordinates into the cryo-EM of EV71 in complex with A9 5ZUD ; 4.9 ; Fit R10 Fab coordinates into the cryo-EM of EV71 in complex with D6 2BSQ ; 3.0 ; FitAB bound to DNA 3J0J ; 9.7 ; Fitted atomic models of Thermus thermophilus V-ATPase subunits into cryo-EM map 2C7D ; 8.7 ; Fitted coordinates for GroEL-ADP7-GroES Cryo-EM complex (EMD-1181) 2C7C ; 7.7 ; FITTED COORDINATES FOR GROEL-ATP7-GROES CRYO-EM COMPLEX (EMD-1180) 4V93 ; 8.1 ; Fitted coordinates for Lumbricus terrestris hemoglobin cryo-EM complex (EMD-2627) 8D87 ; 27.2 ; Fitted crystal structure of the homotrimer of fusion glycoprotein E1 from SFV into subtomogram averaged CHIKV E1 glycoprotein density 2YBB ; 19.0 ; Fitted model for bovine mitochondrial supercomplex I1III2IV1 by single particle cryo-EM (EMD-1876) 6UT7 ; 4.26 ; Fitted model for the tetradecameric assembly of Thermococcus gammatolerans McrB AAA+ hexamers with bound McrC 4A82 ; 9.0 ; Fitted model of staphylococcus aureus sav1866 model ABC transporter in the human cystic fibrosis transmembrane conductance regulator volume map EMD-1966. 2P8Y ; 11.7 ; Fitted structure of ADPR-eEF2 in the 80S:ADPR-eEF2:GDP:sordarin cryo-EM reconstruction 2P8X ; 9.7 ; Fitted structure of ADPR-eEF2 in the 80S:ADPR-eEF2:GDPNP cryo-EM reconstruction 2P8Z ; 8.9 ; Fitted structure of ADPR-eEF2 in the 80S:ADPR-eEF2:GDPNP:sordarin cryo-EM reconstruction 2P8W ; 11.3 ; Fitted structure of eEF2 in the 80S:eEF2:GDPNP cryo-EM reconstruction 5KHE ; 35.0 ; Fitted structure of rubella virus capsid protein 5KHF ; 35.0 ; Fitted structure of rubella virus capsid protein 2QZD ; 14.0 ; Fitted structure of SCR4 of DAF into cryoEM density 1EG0 ; 11.5 ; FITTING OF COMPONENTS WITH KNOWN STRUCTURE INTO AN 11.5 A CRYO-EM MAP OF THE E.COLI 70S RIBOSOME 1LS2 ; 16.8 ; Fitting of EF-Tu and tRNA in the Low Resolution Cryo-EM Map of an EF-Tu Ternary Complex (GDP and Kirromycin) Bound to E. coli 70S Ribosome 3J93 ; 8.8 ; Fitting of Fab into the cryoEM density map of EV71 procapsid in complex with Fab22A12 1PDF ; 12.0 ; Fitting of gp11 crystal structure into 3D cryo-EM reconstruction of bacteriophage T4 baseplate-tail tube complex 3FOI ; 16.0 ; Fitting of gp18M crystal structure into 3D cryo-EM reconstruction of bacteriophage T4 contracted tail 3FOH ; 15.0 ; Fitting of gp18M crystal structure into 3D cryo-EM reconstruction of bacteriophage T4 extended tail 1PDJ ; 12.0 ; Fitting of gp27 into cryoEM reconstruction of bacteriophage T4 baseplate 1PDL ; 12.0 ; Fitting of gp5 in the cryoEM reconstruction of the bacteriophage T4 baseplate 1PDM ; 12.0 ; Fitting of gp8 structure into the cryoEM reconstruction of the bacteriophage T4 baseplate 1TJA ; 16.0 ; Fitting of gp8, gp9, and gp11 into the cryo-EM reconstruction of the bacteriophage T4 contracted tail 1PDP ; 12.0 ; Fitting of gp9 structure into the bacteriophage T4 baseplate cryoEM reconstruction 2AGN ; 15.0 ; Fitting of hepatitis C virus internal ribosome entry site domains into the 15 A Cryo-EM map of a HCV IRES-80S ribosome (H. sapiens) complex 2WFS ; 12.0 ; Fitting of influenza virus NP structure into the 9-fold symmetryzed cryoEM reconstruction of an active RNP particle. 1JQS ; 18.0 ; Fitting of L11 protein and elongation factor G (domain G' and V) in the cryo-em map of E. coli 70S ribosome bound with EF-G and GMPPCP, a nonhydrolysable GTP analog 1JQM ; 18.0 ; Fitting of L11 protein and elongation factor G (EF-G) in the cryo-em map of e. coli 70S ribosome bound with EF-G, GDP and fusidic acid 1JQT ; 18.0 ; Fitting of L11 protein in the low resolution cryo-EM map of E.coli 70S ribosome 4BX4 ; 8.7 ; Fitting of the bacteriophage Phi8 P1 capsid protein into cryo-EM density 3J0H ; 18.0 ; Fitting of the bacteriophage phiKZ gp29PR structure into the cryo-EM density map of the phiKZ extended tail sheath 1PDI ; 12.0 ; Fitting of the C-terminal part of the short tail fibers into the cryo-EM reconstruction of T4 baseplate 3DNY ; 12.6 ; Fitting of the eEF2 crystal structure into the cryo-EM density map of the eEF2.80S.AlF4-.GDP complex 2FL8 ; 12.0 ; Fitting of the gp10 trimer structure into the cryoEM map of the bacteriophage T4 baseplate in the hexagonal conformation. 3H3W ; 12.0 ; Fitting of the gp6 crystal structure into 3D cryo-EM reconstruction of bacteriophage T4 dome-shaped baseplate 3H3Y ; 16.0 ; Fitting of the gp6 crystal structure into 3D cryo-EM reconstruction of bacteriophage T4 star-shaped baseplate 1ZKU ; 15.0 ; Fitting of the gp9 structure in the EM density of bacteriophage T4 extended tail 2XQL ; 19.5 ; Fitting of the H2A-H2B histones in the electron microscopy map of the complex Nucleoplasmin:H2A-H2B histones (1:5). 3J0I ; 19.0 ; Fitting of the phiKZ gp29PR structure into the cryo-EM density map of the phiKZ polysheath 3ZBI ; 8.5 ; Fitting result in the O-layer of the subnanometer structure of the bacterial pKM101 type IV secretion system core complex digested with elastase 3ZBJ ; 8.5 ; Fitting results in the I-layer of the subnanometer structure of the bacterial pKM101 type IV secretion system core complex digested with elastase 1MJ1 ; 13.0 ; FITTING THE TERNARY COMPLEX OF EF-Tu/tRNA/GTP AND RIBOSOMAL PROTEINS INTO A 13 A CRYO-EM MAP OF THE COLI 70S RIBOSOME 1DUT ; 1.9 ; FIV DUTP PYROPHOSPHATASE 4FIV ; 1.8 ; FIV PROTEASE COMPLEXED WITH AN INHIBITOR LP-130 1GVV ; 1.05 ; Five Atomic Resolution Structures of Endothiapepsin Inhibitor Complexes; implications for the Aspartic Proteinase Mechanism 4LYX ; 1.23 ; five minutes iron loaded frog M ferritin 4ZJK ; 1.56 ; FIVE MINUTES IRON LOADED HUMAN H FERRITIN 5J93 ; 1.1 ; Five minutes iron loaded Rana Catesbeiana H' ferritin variant E57A/E136A/D140A 2RDK ; 1.35 ; Five site mutated Cyanovirin-N with Mannose dimer bound 1QHP ; 1.7 ; FIVE-DOMAIN ALPHA-AMYLASE FROM BACILLUS STEAROTHERMOPHILUS, MALTOSE COMPLEX 1QHO ; 1.7 ; FIVE-DOMAIN ALPHA-AMYLASE FROM BACILLUS STEAROTHERMOPHILUS, MALTOSE/ACARBOSE COMPLEX 2GLI ; 2.6 ; FIVE-FINGER GLI/DNA COMPLEX 1AJL ; ; FIVE-NUCLEOTIDE BULGE LOOP FROM TETRAHYMENA THERMOPHILA GROUP I INTRON 1AJT ; ; FIVE-NUCLEOTIDE BULGE LOOP FROM TETRAHYMENA THERMOPHILA GROUP I INTRON, NMR, 1 STRUCTURE 7ASX ; 1.8 ; Fixed-target serial femtosecond crystallography using in cellulo grown Neurospora crassa HEX-1 microcrystals. (Chip 1) 7ASI ; 1.704 ; Fixed-target serial femtosecond crystallography using in cellulo grown Neurospora crassa HEX-1 microcrystals. (Chips 1+2) 5J5U ; 2.3 ; Fjoh_4561 chitin-binding protein 1FKD ; 1.72 ; FK-506 BINDING PROTEIN: THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX WITH THE ANTAGONIST L-685,818 2FKE ; 1.72 ; FK-506-BINDING PROTEIN: THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX WITH THE ANTAGONIST L-685,818 3O5L ; 1.3 ; Fk1 domain mutant A19T of FKBP51, crystal form I 3O5M ; 1.6 ; Fk1 domain mutant A19T of FKBP51, crystal form II 3O5O ; 1.15 ; Fk1 domain mutant A19T of FKBP51, crystal form III 3O5P ; 1.0 ; Fk1 domain mutant A19T of FKBP51, crystal form IV 3O5Q ; 0.96 ; Fk1 domain mutant A19T of FKBP51, crystal form IV, in presence of DMSO 3O5G ; 2.0 ; Fk1 domain of FKBP51, crystal form I 3O5I ; 1.8 ; Fk1 domain of FKBP51, crystal form II 3O5J ; 1.7 ; Fk1 domain of FKBP51, crystal form III 3O5E ; 1.6 ; Fk1 domain of FKBP51, crystal form VI 3O5F ; 1.65 ; Fk1 domain of FKBP51, crystal form VII 3O5K ; 2.7 ; Fk1 domain of FKBP51, crystal form VIII 1QPL ; 2.9 ; FK506 BINDING PROTEIN (12 KDA, HUMAN) COMPLEX WITH L-707,587 1QPF ; 2.5 ; FK506 BINDING PROTEIN (12 KDA, HUMAN) COMPLEX WITH L-709,858 1J4R ; 1.8 ; FK506 BINDING PROTEIN COMPLEXED WITH FKB-001 1BKF ; 1.6 ; FK506 BINDING PROTEIN FKBP MUTANT R42K/H87V COMPLEX WITH IMMUNOSUPPRESSANT FK506 1EYM ; 2.0 ; FK506 BINDING PROTEIN MUTANT, HOMODIMERIC COMPLEX 2PBC ; 1.8 ; FK506-binding protein 2 2DG4 ; 1.7 ; FK506-binding protein mutant WF59 complexed with Rapamycin 2DG9 ; 1.7 ; FK506-binding protein mutant WL59 complexed with Rapamycin 1R2J ; 2.1 ; FkbI for Biosynthesis of Methoxymalonyl Extender Unit of Fk520 Polyketide Immunosuppresant 1D7J ; 1.85 ; FKBP COMPLEXED WITH 4-HYDROXY-2-BUTANONE 1D7H ; 1.9 ; FKBP COMPLEXED WITH DMSO 1D7I ; 1.9 ; FKBP COMPLEXED WITH METHYL METHYLSULFINYLMETHYL SULFIDE (DSS) 1BL4 ; 1.9 ; FKBP MUTANT F36V COMPLEXED WITH REMODELED SYNTHETIC LIGAND 1AUE ; 2.33 ; FKBP-RAPAMYCIN BINDING DOMAIN (FRB) OF THE FKBP-RAPAMYCIN ASSOCIATED PROTEIN 8PDF ; 1.2 ; FKBP12 in complex with PROTAC 6a2 6YF3 ; 1.0 ; FKBP12 in complex with the BMP potentiator compound 10 at 1.00A resolution 6YF2 ; 1.03 ; FKBP12 in complex with the BMP potentiator compound 6 at 1.03A resolution 6YF1 ; 1.12 ; FKBP12 in complex with the BMP potentiator compound 8 at 1.12A resolution 6YF0 ; 1.55 ; FKBP12 in complex with the BMP potentiator compound 9 at 1.55 A resolution 7U8D ; 1.39 ; FKBP12 mutant V55G bound to Rapa*-3Z 1A7X ; 2.0 ; FKBP12-FK1012 COMPLEX 8ER6 ; 2.81 ; FKBP12-FRB in Complex with Compound 11 8ER7 ; 3.07 ; FKBP12-FRB in Complex with Compound 12 4NNR ; 1.98 ; FKBP13-FK506 Complex 8ETI ; 3.7 ; Fkbp39 associated 60S nascent ribosome State 1 8ETJ ; 3.2 ; Fkbp39 associated 60S nascent ribosome State 2 8ETG ; 3.4 ; Fkbp39 associated 60S nascent ribosome State 3 8ETC ; 3.1 ; Fkbp39 associated nascent 60S ribosome State 4 8PJA ; 1.6 ; FKBP51FK1 F67E/K58 (i, i+9) in complex with SAFit1 8PJ8 ; 1.5 ; FKBP51FK1 F67E/K60Orn (i, i+7) in complex with SAFit1 5XMM ; 2.9 ; FLA-E*01801-167W/S 3CS1 ; 2.0 ; Flagellar Calcium-binding Protein (FCaBP) from T. cruzi 1ORJ ; 2.25 ; FLAGELLAR EXPORT CHAPERONE 1ORY ; 2.45 ; FLAGELLAR EXPORT CHAPERONE IN COMPLEX WITH ITS COGNATE BINDING PARTNER 8JMV ; 2.9 ; Flagellar fibrils from Bacillus amyloliquefaciens 6NQW ; 1.9 ; Flagellar protein FcpA from Leptospira biflexa - hexagonal form 6NQY ; 2.5 ; Flagellar protein FcpA from Leptospira biflexa / ab-centered monoclinic form 6NQX ; 2.95 ; Flagellar protein FcpA from Leptospira biflexa / primitive monoclinic form 6NQZ ; 2.58 ; Flagellar protein FcpB from Leptospira interrogans 5YUD ; 4.28 ; Flagellin derivative in complex with the NLR protein NAIP5 4YDS ; 2.3 ; FlaH from Sulfolobus acidocaldarius with ATP and Mg-Ion 5K97 ; 2.102 ; Flap endonuclease 1 (FEN1) D233N with cleaved product fragment and Sm3+ 5UM9 ; 2.805 ; Flap endonuclease 1 (FEN1) D86N with 5'-flap substrate DNA and Sm3+ 5KSE ; 2.105 ; Flap endonuclease 1 (FEN1) R100A with 5'-flap substrate DNA and Sm3+ 1A76 ; 2.0 ; FLAP ENDONUCLEASE-1 FROM METHANOCOCCUS JANNASCHII 1A77 ; 2.0 ; FLAP ENDONUCLEASE-1 FROM METHANOCOCCUS JANNASCHII 8FEV ; 2.21 ; Flavanone 4-Reductase from Sorghum bicolor-NADP(H) and dihydroquercetin complex 8FEU ; 2.12 ; Flavanone 4-Reductase from Sorghum bicolor-NADP(H) and naringenin complex 8FET ; 2.202 ; Flavanone 4-Reductase from Sorghum bicolor-NADP(H) complex 8FEW ; 2.02 ; Flavanone 4-Reductase from Sorghum bicolor-naringenin complex 6I20 ; 1.37 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 6I21 ; 1.5 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 6I22 ; 1.66 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 6I23 ; 2.0 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 6I24 ; 1.43 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 6I25 ; 1.97 ; Flavin Analogue Sheds Light on Light-Oxygen-Voltage Domain Mechanism 8CQS ; 1.7 ; Flavin mononucleotide-dependent nitroreductase B.thetaiotaomicron (BT_0217) 8CQT ; 2.2 ; Flavin mononucleotide-dependent nitroreductase B.thetaiotaomicron (BT_1316) 8CQU ; 1.8 ; Flavin mononucleotide-dependent nitroreductase B.thetaiotaomicron (BT_1680) 8CQV ; 1.7 ; Flavin mononucleotide-dependent nitroreductase B.thetaiotaomicron (BT_3392) 4C5O ; 2.6 ; Flavin monooxygenase from Stenotrophomonas maltophilia. Q193R H194T mutant 1RZ0 ; 2.2 ; Flavin reductase PheA2 in native state 6NXI ; 1.61 ; Flavin Transferase ApbE from Vibrio cholerae 6NXJ ; 1.92 ; Flavin Transferase ApbE from Vibrio cholerae, H257G mutant 5Z8T ; 2.33 ; Flavin-containing monooxygenase 4A9W ; 2.72 ; Flavin-containing monooxygenase from Stenotrophomonas maltophilia 5IOR ; 1.95 ; Flavin-dependent thymidylate synthase in complex with FAD and 2'-deoxyuridine-5'-monosulfate 5IOQ ; 1.93 ; Flavin-dependent thymidylate synthase in complex with FAD and deoxyuridine 5IOT ; 2.0 ; Flavin-dependent thymidylate synthase R174A variant in complex with FAD and dUMP 5IOS ; 1.9 ; Flavin-dependent thymidylate synthase R90A variant in complex with FAD and deoxyuridine monophosphate 5JFE ; 2.03 ; Flavin-dependent thymidylate synthase with H2-dUMP 6H43 ; 2.2 ; Flavin-dependent Tryptophan 6-halogenase Thal 8AD8 ; 2.95 ; Flavin-dependent tryptophan 6-halogenase Thal in complex with a D-Trp-Ser dipeptide 8AD7 ; 2.33 ; Flavin-dependent tryptophan 6-halogenase Thal in complex with D-Trp 6SLS ; 2.32 ; Flavin-dependent tryptophan 6-halogenase Thal in complex with FAD 6H44 ; 2.55 ; Flavin-dependent Tryptophan 6-halogenase Thal in complex with tryptophan 6SLT ; 2.7 ; Flavin-dependent tryptophan 6-halogenase Thal in complex with tryptophan and FAD 7AQU ; 1.63 ; Flavin-dependent tryptophan halogenase Thal: N-terminally His-tagged form of quintuple mutant (NHis-Thal-RebH5) 7AQV ; 1.84 ; Flavin-dependent tryptophan halogenase Thal: N-terminally His-tagged form of quintuple mutant (NHis-Thal-RebH5) 6KET ; 1.6 ; Flavin-utilizing Monooxygenase (OX) Domain of Hybrid Polyketide/Non-Ribosomal Peptide Synthetase 3G4C ; 2.05 ; Flavine dependant thymidylate syntahse S88C mutant 5NJU ; 2.1 ; Flavivirus NS5 domain 5NJV ; 2.0 ; Flavivirus NS5 domain 4DIK ; 1.75 ; Flavo Di-iron protein H90A mutant from Thermotoga maritima 5V8S ; 1.41 ; Flavo di-iron protein H90D mutant from Thermotoga maritima 4DIL ; 2.0 ; Flavo Di-iron protein H90N mutant from Thermotoga maritima 8A06 ; 4.0 ; Flavobacterium infecting lipid-containing phage FLiP penton protein 6DQW ; 2.6 ; Flavobacterium johnsoniae class Id ribonucleotide reductase alpha subuint 6JR6 ; 2.0 ; Flavobacterium johnsoniae GH31 dextranase, FjDex31A 6JR7 ; 1.75 ; Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose 6JR8 ; 1.8 ; Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose 1QCW ; 2.75 ; Flavocytochrome B2, ARG289LYS mutant 1QJD ; 1.8 ; Flavocytochrome C3 from Shewanella frigidimarina 1E39 ; 1.8 ; Flavocytochrome C3 from Shewanella frigidimarina histidine 365 mutated to alanine 1Y0P ; 1.5 ; Flavocytochrome c3 with mesaconate bound 5LLD ; 2.651 ; Flavodiiron core of Escherichia coli flavorubredoxin in the reduced form. 1OFV ; 1.7 ; FLAVODOXIN FROM ANACYSTIS NIDULANS: REFINEMENT OF TWO FORMS OF THE OXIDIZED PROTEIN 3KAQ ; 2.25 ; Flavodoxin from D. desulfuricans (semireduced form) 3KAP ; 2.05 ; Flavodoxin from Desulfovibrio desulfuricans ATCC 27774 (oxidized form) 1FUE ; 2.4 ; FLAVODOXIN FROM HELICOBACTER PYLORI 2W5U ; 2.62 ; Flavodoxin from Helicobacter pylori in complex with the C3 inhibitor 1WSB ; 1.8 ; Flavodoxin mutant- S64C 1FDR ; 1.7 ; FLAVODOXIN REDUCTASE FROM E. COLI 1AG9 ; 1.8 ; FLAVODOXINS THAT ARE REQUIRED FOR ENZYME ACTIVATION: THE STRUCTURE OF OXIDIZED FLAVODOXIN FROM ESCHERICHIA COLI AT 1.8 ANGSTROMS RESOLUTION. 7D38 ; 2.649 ; flavone reductase 7D3A ; 2.552 ; flavone reductase 7D3B ; 2.25 ; flavone reductase 6G87 ; 2.92 ; Flavonoid-responsive Regulator FrrA 6G8H ; 2.6 ; Flavonoid-responsive Regulator FrrA in complex with (R,S)-Naringenin 6G8G ; 2.6 ; Flavonoid-responsive Regulator FrrA in complex with Genistein 1C8K ; 1.76 ; FLAVOPIRIDOL INHIBITS GLYCOGEN PHOSPHORYLASE BY BINDING AT THE INHIBITOR SITE 1E1Y ; 2.23 ; Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site 1GFZ ; 2.3 ; FLAVOPIRIDOL INHIBITS GLYCOGEN PHOSPHORYLASE BY BINDING AT THE INHIBITOR SITE 1FVP ; 2.7 ; FLAVOPROTEIN 390 2D5M ; 1.05 ; Flavoredoxin of Desulfovibrio vulgaris (Miyazaki F) 6ZEP ; 1.61 ; Flavourzyme Leucine Aminopeptidase A proenzyme 4WXM ; 2.3 ; FleQ REC domain from Pseudomonas aeruginosa PAO1 2E2D ; 2.0 ; Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2 1WRP ; 2.2 ; FLEXIBILITY OF THE DNA-BINDING DOMAINS OF TRP REPRESSOR 3WRP ; 1.8 ; FLEXIBILITY OF THE DNA-BINDING DOMAINS OF TRP REPRESSOR 2MEZ ; ; Flexible anchoring of archaeal MBF1 on ribosomes suggests role as recruitment factor 6IZB ; 1.899 ; Flexible loop truncated human TCTP 6NDV ; 1.502 ; FlgE D2 domain K336A mutant 5WRH ; 7.4 ; FlgG structure based on the CryoEM map of the bacterial flagellar polyrod 8FTX ; ; FlgN-FliJ fusion complex 4YXB ; 2.56 ; FliM(SPOA)::FliN fusion protein 1M3V ; ; FLIN4: Fusion of the LIM binding domain of Ldb1 and the N-terminal LIM domain of LMO4 5OAC ; 4.0 ; FLiP major capsid protein 8FTW ; ; FliT-FliJ fusion complex 6G4A ; ; FLN5 (full length) 4AHY ; 1.7 ; Flo5A cocrystallized with 3 mM GdAc3 4AHW ; 1.5 ; Flo5A showing a heptanuclear gadolinium cluster on its surface 4AI1 ; 1.8 ; Flo5A showing a heptanuclear gadolinium cluster on its surface after 19 min of soaking 4AI2 ; 1.79 ; Flo5A showing a heptanuclear gadolinium cluster on its surface after 41 min of soaking 4AHZ ; 1.9 ; Flo5A showing a heptanuclear gadolinium cluster on its surface after 60 min of soaking 4AI3 ; 1.9 ; Flo5A showing a heptanuclear gadolinium cluster on its surface after 60 min of soaking 4AI0 ; 1.8 ; Flo5A showing a heptanuclear gadolinium cluster on its surface after 9 min of soaking 4AHX ; 1.6 ; Flo5A showing a trinuclear gadolinium cluster on its surface 2AZ0 ; 2.6 ; Flock House virus B2-dsRNA Complex (P212121) 2AZ2 ; 2.6 ; Flock House virus B2-dsRNA Complex (P4122) 1WKP ; 2.6 ; Flowering locus t (ft) from arabidopsis thaliana 1FLO ; 2.65 ; FLP Recombinase-Holliday Junction Complex I 1P4E ; 2.7 ; Flpe W330F mutant-DNA Holliday Junction Complex 1M6X ; 2.8 ; Flpe-Holliday Junction Complex 7D39 ; 2.198 ; FLR-apo 4V2D ; 2.5 ; FLRT2 LRR domain 4V2E ; 2.5 ; FLRT3 LRR domain 5CMN ; 3.605 ; FLRT3 LRR domain in complex with LPHN3 Olfactomedin domain 4NBE ; 2.1 ; Fluorene-bound oxygenase with Phe275 replaced by Trp and ferredoxin complex of carbazole 1,9a-dioxygenase (form2) 5T3K ; 2.142 ; Fluorescence detection of RNA-ligand binding and crystal structure determination of ribosomal decoding site RNA using a heavy atom containing fluorescent ribonucleoside 2A53 ; 1.45 ; fluorescent protein asFP595, A143S, off-state 2A54 ; 1.45 ; fluorescent protein asFP595, A143S, on-state, 1min irradiation 2A56 ; 1.9 ; fluorescent protein asFP595, A143S, on-state, 5min irradiation 2A52 ; 1.7 ; fluorescent protein asFP595, S158V, on-state 2A50 ; 1.3 ; fluorescent protein asFP595, wt, off-state 5BQL ; 2.39 ; Fluorescent protein cyOFP 2BTJ ; 2.0 ; Fluorescent Protein EosFP - red form 6AA7 ; 1.8 ; Fluorescent protein from Acropora digitifera 2WIS ; 2.35 ; Fluorescent protein KillerRed in the bleached state 2WIQ ; 2.0 ; Fluorescent protein KillerRed in the native state 2WHS ; 2.1 ; Fluorescent Protein mKeima at pH 3.8 2WHT ; 1.9 ; Fluorescent Protein mKeima at pH 5.6 2WHU ; 2.65 ; Fluorescent Protein mKeima at pH 8.0 7KKA ; 2.5 ; Fluoride channel Fluc-Ec2 mutant S81A with bromide 7KK9 ; 3.1 ; Fluoride channel Fluc-Ec2 mutant S81A/T82A with bromide 7KKB ; 2.9 ; Fluoride channel Fluc-Ec2 mutant S81C with bromide 7KK8 ; 2.7 ; Fluoride channel Fluc-Ec2 mutant S81T with bromide 7KKR ; 3.11 ; Fluoride channel Fluc-Ec2 wild-type with bromide 2AKM ; 1.92 ; Fluoride Inhibition of Enolase: Crystal Structure of the Inhibitory Complex 2AKZ ; 1.36 ; Fluoride Inhibition of Enolase: Crystal Structure of the Inhibitory Complex 1NEL ; 2.6 ; FLUORIDE INHIBITION OF YEAST ENOLASE: CRYSTAL STRUCTURE OF THE ENOLASE-MG2+-F--PI COMPLEX AT 2.6-ANGSTROMS RESOLUTION 1E6A ; 1.9 ; Fluoride-inhibited substrate complex of Saccharomyces cerevisiae inorganic pyrophosphatase 5LMZ ; 2.55 ; Fluorinase from Streptomyces sp. MA37 4CQJ ; 2.44 ; Fluorinase substrate flexibility enables last step aqueous and ambient 18F fluorination of a RGD peptide for positron emission tomography 6ZAM ; 1.55 ; Fluorine labeled IPNS S55C in complex with Fe and ACV under anaerobic conditions. 5HSU ; 1.46 ; Fluorine substituted 5-methyl-6-(2',4'-difluoromethoxyphenythio)thieno[2,3-d]pyrimidine-2,4-diamine 5HSR ; 1.21 ; Fluorine substituted 5-methyl-6-(3',4'-difluoromethoxyphenythio)thieno[2,3-d]pyrimidine-2,4-diamine 5HQZ ; 1.46 ; Fluorine substituted 5-methyl-6-(4'-trifluoromethoxyphenythio)thieno[2,3-d]pyrimidine-2,4-diamine 3NJ4 ; 2.5 ; Fluoro-neplanocin A in Human S-Adenosylhomocysteine Hydrolase 7A43 ; 1.75 ; Fluoroacetate Dehalogenase measured by serial femtosecond crystallography 7A42 ; 1.75 ; Fluoroacetate Dehalogenase measured by serial synchrotron crystallography 6MUH ; 1.8 ; Fluoroacetate dehalogenase, room temperature structure solved by serial 1 degree oscillation crystallography 6MUY ; 1.8 ; Fluoroacetate dehalogenase, room temperature structure solved by serial 3 degree oscillation crystallography 6MZZ ; 1.8 ; Fluoroacetate dehalogenase, room temperature structure, using first 1 degree of total 3 degree oscillation 6N00 ; 1.9 ; Fluoroacetate dehalogenase, room temperature structure, using last 1 degree of total 3 degree oscillation and 144 kGy dose 3RYX ; 1.6 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RYY ; 1.16 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RYZ ; 1.37 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RZ0 ; 1.798 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RZ1 ; 1.51 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RZ5 ; 1.65 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RZ7 ; 1.8 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 3RZ8 ; 1.7 ; Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the Hydrophobic Wall of Carbonic Anhydrase 5J75 ; 2.0 ; Fluorogen Activating Protein AM2.2 in complex with ML342 5J74 ; 2.7 ; Fluorogen activating protein AM2.2 in complex with TO1-2p 6UBO ; 1.58 ; Fluorogen Activating Protein Dib1 3T0W ; 1.501 ; Fluorogen activating protein M8VL in complex with dimethylindole red 3T0X ; 1.96 ; Fluorogen Activating Protein M8VLA4(S55P) in complex with dimethylindole red 3RT6 ; 2.836 ; Fluorowillardiine bound to the ligand binding domain of GluA3 6H0C ; 1.592 ; Flv1 flavodiiron core from Synechocystis sp. PCC6803 8D7F ; 2.62 ; FlvF from Aspergillus flavus in complex with Bis-Tris 7URV ; 3.05 ; FMC63 scFv in complex with soluble CD19 8HBG ; 3.6 ; FMDV (A/TUR/14/98) in complex with M678F 8HBI ; 2.9 ; FMDV (A/TUR/14/98) in complex with M688F 6S2L ; 2.3 ; FMDV 3D polymerase crystallized in presence of (F)uridylylated VPg peptide 8C1N ; 1.7 ; FMDV 3D polymerase in complex with 3B1 protein solved in P212121 space group 8C2P ; 1.85 ; FMDV 3D polymerase in complex with 3B3 5OYI ; 8.2 ; FMDV A10 dissociated pentamer 7DST ; 3.1 ; FMDV capsid in complex with M170 Nab 1QMY ; 1.9 ; FMDV LEADER PROTEASE (LBSHORT-C51A-C133S) 6FFA ; 1.5 ; FMDV Leader protease bound to substrate ISG15 8USM ; 1.63 ; FmlH Lectin Domain UTI89 - AM4085 4XOO ; 2.1 ; FMN complex of coenzyme F420:L-glutamate ligase (FbiB) from Mycobacterium tuberculosis (C-terminal domain) 7KGZ ; 2.4 ; FMN-binding beta-glucuronidase from Roseburia hominis 1AXJ ; ; FMN-BINDING PROTEIN FROM DESULFOVIBRIO VULGARIS (MIYAZAKI F), NMR, 20 STRUCTURES 7EG5 ; 1.96 ; FMN-bound form of YviC from Lactococcus lactis subsp. lactis Il1403 5J62 ; 2.15 ; FMN-dependent Nitroreductase (CDR20291_0684) from Clostridium difficile R20291 5J6C ; 2.096 ; FMN-dependent Nitroreductase (CDR20291_0767) from Clostridium difficile R20291 7F2U ; 1.984 ; FmnB complexed with ADP 7ESC ; 2.201 ; FmnB complexed with AMP 7ESB ; 1.7 ; FmnB complexed with ATP 3EOJ ; 1.3 ; Fmo protein from Prosthecochloris Aestuarii 2K AT 1.3A Resolution 4BCL ; 1.9 ; FMO protein from Prosthecochloris aestuarii 2K at Room Temperature 8ON7 ; 2.5 ; FMRFa-bound Malacoceros FaNaC1 in lipid nanodiscs 8ONA ; 3.0 ; FMRFa-bound Malacoceros FaNaC1 in lipid nanodiscs in presence of diminazene 4QVZ ; 3.195 ; FMRP N-terminal domain 4QW2 ; 2.989 ; FMRP N-terminal domain (R138Q) 7ZAL ; 2.732 ; FNIP family proteins from Cafeteria roenbergensis virus (CroV): leucine-rich repeats with novel structural features 6J9L ; 1.78 ; FnoBH+AcrIIC2 3MHP ; 1.7 ; FNR-recruitment to the thylakoid 4FC4 ; 2.4 ; FNT family ion channel 6ZA9 ; 3.76 ; Fo domain of Ovine ATP synthase 2AEH ; 2.53 ; Focal adhesion kinase 1 4D4R ; 1.55 ; Focal Adhesion Kinase catalytic domain 4D4S ; 2.0 ; Focal Adhesion Kinase catalytic domain 4D4V ; 2.1 ; Focal Adhesion Kinase catalytic domain 4D4Y ; 1.8 ; Focal Adhesion Kinase catalytic domain 4D55 ; 2.3 ; Focal Adhesion Kinase catalytic domain 4D5H ; 1.75 ; Focal Adhesion Kinase catalytic domain 4D5K ; 1.75 ; Focal Adhesion Kinase catalytic domain 4GU9 ; 2.4 ; Focal adhesion kinase catalytic domain in complex with (2-Fluoro-phenyl)-(1H-pyrazolo[3,4-d]pyrimidin-4-yl)-amine 4KAO ; 2.39 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH 1-(5-tert-Butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-(4-pyridin-3- yl-phenyl)-urea 4K9Y ; 2.0 ; FOCAL ADHESION KINASE Catalytic domain in complex with 1-[4-(6-Amino-purin-9-yl)-phenyl]-3-(5-tert-butyl-2-p-tolyl-2H-pyrazol-3-yl)-urea 4KAB ; 2.71 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH 3-Methyl-1,4-dihydro-pyrazolo[4,5-c]pyrazole 6YVY ; 1.918 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH 4-{[4-{[(1R,2R)-2-(dimethylamino)cyclopentyl]amino}-5-(trifluoromethyl)pyrimidin-2-yl]amino}-N-methylbenzenesulfonamide 6YVS ; 1.81 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH 5-{4-[(Pyridin-3-ylmethyl)-amino]-5-trifluoromethyl-pyrimidin-2-ylamino}-1,3-dihydro-indol-2-one 6YOJ ; 1.361 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH 6-[4-(3-Methanesulfonyl-benzylamino)-5-trifluoromethyl-pyrimidin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one 4BRX ; 2.05 ; Focal Adhesion Kinase catalytic domain in complex with a diarylamino- 1,3,5-triazine inhibitor 4C7T ; 2.05 ; Focal Adhesion Kinase catalytic domain in complex with a diarylamino- 1,3,5-triazine inhibitor 2JKK ; 2.0 ; Focal Adhesion Kinase catalytic domain in complex with bis-anilino pyrimidine inhibitor 2JKM ; 2.31 ; Focal Adhesion Kinase catalytic domain in complex with bis-anilino pyrimidine inhibitor 2JKO ; 1.65 ; Focal Adhesion Kinase catalytic domain in complex with bis-anilino pyrimidine inhibitor 2JKQ ; 2.6 ; Focal Adhesion Kinase catalytic domain in complex with bis-anilino pyrimidine inhibitor 4D58 ; 1.95 ; Focal Adhesion Kinase catalytic domain in complex with bis-anilino pyrimidine inhibitor 6GCR ; 2.3 ; Focal Adhesion Kinase catalytic domain in complex with irreversible inhibitor 6GCW ; 2.0 ; Focal Adhesion Kinase catalytic domain in complex with irreversible inhibitor 6GCX ; 1.553 ; Focal Adhesion Kinase catalytic domain in complex with irreversible inhibitor 6YR9 ; 1.925 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH N-Methyl-N-(2-{[2-(2-oxo-2,3-dihydro-1H-indol-5-ylamino)-5-trifluoromethyl-pyrimidin-4-ylamino]-methyl}-phenyl)-methanesulfonamide 6YQ1 ; 1.784 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH N-Methyl-N-(3-{[2-(2-oxo-1,2,3,4-tetrahydro-quinolin-6-ylamino)-5-trifluoromethyl-pyrimidin-4-ylamino]-methyl}-pyridin-2-yl)-methanesulfonamide 6YT6 ; 1.537 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH N-Methyl-N-(3-{[2-(2-oxo-2,3-dihydro-1H-indol-5-ylamino)-pyrimidin-4-ylamino]-methyl}-pyridin-2-yl)-methanesulfonamide 6YXV ; 2.298 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH N-Methyl-N-{3-[(2-phenylamino-5-trifluoromethyl-pyrimidin-4-ylamino)-methyl]-pyridin-2-yl}-methanesulfonamide 4GU6 ; 1.95 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH N-{3-[(5-Cyano-2-phenyl-1H-pyrrolo[2,3-b]pyridin-4-ylamino)- methyl]-pyridin-2-yl}-N-methyl-methanesulfonamide 3PXK ; 1.79 ; FOCAL ADHESION KINASE CATALYTIC DOMAIN IN COMPLEX WITH Pyrrolo[2,3-d]thiazole 6OG3 ; 4.1 ; Focus classification structure of the hyperactive ClpB mutant K476C, bound to casein, NTD-trimer 6OG2 ; 4.1 ; Focus classification structure of the hyperactive ClpB mutant K476C, bound to casein, post-state 6OG1 ; 3.3 ; Focus classification structure of the hyperactive ClpB mutant K476C, bound to casein, pre-state 8BV5 ; 3.54 ; Focus refinement of soluble domain of Adenylyl cyclase 8 bound to stimulatory G protein, Forskolin, ATPalphaS, and Ca2+/Calmodulin in lipid nanodisc conditions 7PDD ; 4.2 ; Focus refinement of soluble domain of Adenylyl cyclase 9 in complex with DARPin C4 and MANT-GTP 7PDF ; 3.8 ; focus refinement of soluble domain of adenylyl cyclase 9 in complex with Gs protein alpha subunit and MANT-GTP 8DTB ; 3.14 ; Focus/local refined map in C1 of signal subtracted RyR1 particles in complex with ImperaCalcin 8DRP ; 2.84 ; Focus/local refined map in C4 of signal subtracted RyR1 particles 8C1B ; 3.8 ; Focused map for structure of IgE bound to the ectodomain of FceRIa 8ES4 ; 3.3 ; Focused reconstruction of HRP29 tail 8JPF ; 3.02 ; Focused refiment structure of NTSR1 in NTSR1-GRK2-Galpha(q) complexes 6YJ5 ; 3.5 ; Focused refinement cryo-EM structure of the yeast mitochondrial complex I sub-stoichiometric sulfur transferase subunit 7VIA ; 3.88 ; Focused refinement of asymmetric unit of bacteriophage lambda procapsid at 3.88 Angstrom 8JPE ; 2.91 ; Focused refinement structure of Galpha(q) in NTSR1-GRK2-Galpha(q) complexes 8JPD ; 2.81 ; Focused refinement structure of GRK2 in NTSR1-GRK2-Galpha(q) complexes 6Q16 ; 4.1 ; Focussed refinement of InvGN0N1:PrgHK:SpaPQR:PrgIJ from Salmonella SPI-1 injectisome NC-base 6PEM ; 3.5 ; Focussed refinement of InvGN0N1:SpaPQR:PrgHK from Salmonella SPI-1 injectisome NC-base 6PEP ; 3.8 ; Focussed refinement of InvGN0N1:SpaPQR:PrgIJ from the Salmonella SPI-1 injectisome needle complex 8HH1 ; 2.9 ; FoF1-ATPase from Bacillus PS3, 81 degrees, highATP 5D3M ; 3.303 ; Folate ECF transporter: AMPPNP bound state 5JSZ ; 3.004 ; Folate ECF transporter: apo state 1CO1 ; ; FOLD OF THE CBFA 5O2A ; 1.9 ; FolD Q98H 8QNJ ; ; Folded alpha helical de novo proteins from Apilactobacillus kunkeei 8QNT ; ; Folded alpha helical de novo proteins from Apilactobacillus kunkeei 8QNV ; ; Folded alpha helical de novo proteins from Apilactobacillus kunkeei 7OGT ; 5.5 ; Folded elbow of cohesin 1NSO ; ; Folded monomer of protease from Mason-Pfizer monkey virus 6BY7 ; 7.5 ; Folding DNA into a lipid-conjugated nano-barrel for controlled reconstitution of membrane proteins 5M6S ; 4.8 ; folding intermediate of spectrin R16 2L2P ; ; Folding Intermediate of the Fyn SH3 A39V/N53P/V55L from NMR Relaxation Dispersion Experiments 6ZH5 ; 2.7 ; Folding of an iron binding peptide in response to sedimentation is resolved using ferritin as a nano-reactor 6ZLG ; 3.0 ; Folding of an iron binding peptide in response to sedimentation is resolved using ferritin as a nano-reactor 6ZLQ ; 3.3 ; Folding of an iron binding peptide in response to sedimentation is resolved using ferritin as a nano-reactor 2J5A ; 2.3 ; Folding of S6 structures with divergent amino-acid composition: pathway flexibility within partly overlapping foldons 2KAZ ; ; Folding topology of a bimolecular DNA quadruplex containing a stable mini-hairpin motif within the connecting loop 2WW7 ; 1.06 ; foldon containing beta-turn mimic 2WW6 ; 0.98 ; foldon containing D-amino acids in turn positions 4NCU ; 1.11 ; Foldon domain wild type 4NCW ; 1.3 ; foldon domain wild type C-conjugate 4NCV ; 1.2 ; Foldon domain wild type N-conjugate 8I2H ; 6.0 ; Follicle stimulating hormone receptor 3GJN ; 2.48 ; Following evolutionary paths to high affinity and selectivity protein-protein interactions using Colicin7 and Immunity proteins 3GKL ; 2.2 ; Following evolutionary paths to high affinity and selectivity protein-protein interactions using Colicin7 and Immunity proteins 1N15 ; 2.9 ; FOLLOWING THE C HEME REDUCTION IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 1N50 ; 2.9 ; FOLLOWING THE C HEME REDUCTION IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 1N90 ; 2.9 ; FOLLOWING THE C HEME REDUCTION IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 1FGS ; 2.4 ; FOLYLPOLYGLUTAMATE SYNTHETASE FROM LACTOBACILLUS CASEI 7D3R ; 3.49 ; FOOT AND MOUTH DISEASE VIRUS A/WH/CHA/09-BOUND THE SINGLE CHAIN FRAGME ANTIBODY R50 7D3K ; 3.9 ; FOOT AND MOUTH DISEASE VIRUS O/TIBET/99-BOUND THE SINGLE CHAIN FRAGMEN ANTIBODY B77 7EO0 ; 3.75 ; FOOT AND MOUTH DISEASE VIRUS O/TIBET/99-BOUND THE SINGLE CHAIN FRAGMEN ANTIBODY C4 7D3L ; 3.68 ; FOOT AND MOUTH DISEASE VIRUS O/TIBET/99-BOUND THE SINGLE CHAIN FRAGMEN ANTIBODY F145 7D3M ; 3.94 ; FOOT AND MOUTH DISEASE VIRUS O/TIBET/99-BOUND THE SINGLE CHAIN FRAGMEN ANTIBODY R50 1WNE ; 3.0 ; Foot and Mouth Disease Virus RNA-dependent RNA polymerase in complex with a template-primer RNA 2F8E ; 2.9 ; Foot and Mouth Disease Virus RNA-dependent RNA polymerase in complex with uridylylated VPg protein 2D7S ; 3.0 ; Foot and Mouth Disease Virus RNA-dependent RNA polymerase in complex with VPg protein 5GAM ; 3.7 ; Foot region of the yeast spliceosomal U4/U6.U5 tri-snRNP 1ZBE ; 3.0 ; Foot-and Mouth Disease Virus Serotype A1061 2E9R ; 2.81 ; Foot-and-mouth disease virus RNA-dependent RNA polymerase in complex with a template-primer RNA and with ribavirin 2E9Z ; 3.0 ; Foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA, ATP and UTP 2E9T ; 2.6 ; Foot-and-mouth disease virus RNA-polymerase RNA dependent in complex with a template-primer RNA and 5F-UTP 1ZBA ; 2.0 ; Foot-and-Mouth Disease virus serotype A1061 complexed with oligosaccharide receptor. 1QQP ; 1.9 ; FOOT-AND-MOUTH DISEASE VIRUS/ OLIGOSACCHARIDE RECEPTOR COMPLEX. 1U09 ; 1.91 ; Footand Mouth Disease Virus RNA-dependent RNA polymerase 3V19 ; 2.0 ; Forestalling insulin fibrillation by insertion of a chiral clamp mechanism-based application of protein engineering to global health 3V1G ; 2.2 ; Forestalling insulin fibrillation by insertion of a chiral clamp mechanism-based application of protein engineering to global health 2ZVC ; 2.0 ; Form 2 structure (C2221) of TT0207 from Thermus thermophilus HB8 1D33 ; 1.5 ; Formaldehyde cross-links daunorubicin and DNA efficiently: HPLC and X-RAY diffraction studies 2D34 ; 1.4 ; FORMALDEHYDE CROSS-LINKS DAUNORUBICIN AND DNA EFFICIENTLY: HPLC AND X-RAY DIFFRACTION STUDIES 1B25 ; 1.85 ; FORMALDEHYDE FERREDOXIN OXIDOREDUCTASE FROM PYROCOCCUS FURIOSUS 1B4N ; 2.4 ; FORMALDEHYDE FERREDOXIN OXIDOREDUCTASE FROM PYROCOCCUS FURIOSUS, COMPLEXED WITH GLUTARATE 8PVM ; 1.38 ; formaldehyde-inhibited [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant C299D 8QM3 ; 1.53 ; formaldehyde-inhibited [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) 5LCY ; 2.19 ; Formaldehyde-Responsive Regulator FrmR E64H variant from Salmonella enterica serovar Typhimurium 2PP8 ; 1.5 ; Formate bound to oxidized wild type AfNiR 3Q7K ; 2.8 ; Formate Channel FocA from Salmonella typhimurium 2W3U ; 1.96 ; formate complex of the Ni-Form of E.coli deformylase 7XQW ; 2.83 ; Formate dehydrogenase (FDH) from Methylobacterium extorquens AM1 (MeFDH1) 7BKC ; 3.0 ; Formate dehydrogenase - heterodisulfide reductase - formylmethanofuran dehydrogenase complex from Methanospirillum hungatei (dimeric, composite structure) 7BKD ; 3.0 ; Formate dehydrogenase - heterodisulfide reductase - formylmethanofuran dehydrogenase complex from Methanospirillum hungatei (heterodislfide reductase core and mobile arm in conformational state 1, composite structure) 7BKE ; 2.8 ; Formate dehydrogenase - heterodisulfide reductase - formylmethanofuran dehydrogenase complex from Methanospirillum hungatei (heterodisulfide reductase core and mobile arm in conformational state 2, composite structure) 7BKB ; 3.5 ; Formate dehydrogenase - heterodisulfide reductase - formylmethanofuran dehydrogenase complex from Methanospirillum hungatei (hexameric, composite structure) 6VW8 ; 2.3 ; Formate Dehydrogenase FdsABG subcomplex FdsBG from C. necator 6VW7 ; 2.0 ; Formate Dehydrogenase FdsABG subcomplex FdsBG from C. necator - NADH bound 7YA4 ; 1.8 ; Formate dehydrogenase from Novosphingobium sp. AP12 with NAD and Azide 7YA3 ; 3.0 ; Formate dehydrogenase from Novosphingobium sp. AP12 with NADP and Azide 7QZ1 ; 2.1 ; Formate dehydrogenase from Starkeya novella 8J3P ; 2.3 ; Formate dehydrogenase mutant from from Candida dubliniensis M4 complexed with NADP+ 1KQF ; 1.6 ; FORMATE DEHYDROGENASE N FROM E. COLI 1KQG ; 2.8 ; FORMATE DEHYDROGENASE N FROM E. COLI 8J3O ; 2.65 ; Formate dehydrogenase wild-type enzyme from Candida dubliniensis complexed with NADH 7C11 ; 2.815 ; Formate--tetrahydrofolate ligase from Methylobacterium extorquens CM4 strain 7XZN ; 2.04 ; Formate-tetrahydrofolate ligase from Peptostreptococcus anaerobius 7XZO ; 2.31 ; Formate-tetrahydrofolate ligase in complex with ATP 7XZP ; 2.56 ; Formate-tetrahydrofolate ligase in complex with berberine 385D ; 1.6 ; FORMATION OF A NEW COMPOUND IN THE CRYSTAL STRUCTURE OF CYANOMORPHOLINODOXORUBICIN COMPLEXED WITH D(CGATCG) 1I6Q ; 2.7 ; Formation of a protein intermediate and its trapping by the simultaneous crystallization process: Crystal structure of an iron-saturated intermediate in the FE3+ binding pathway of camel lactoferrin at 2.7 resolution 1H6N ; 2.11 ; Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity 1H7K ; 2.4 ; Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity 2ARG ; ; FORMATION OF AN AMINO ACID BINDING POCKET THROUGH ADAPTIVE ZIPPERING-UP OF A LARGE DNA HAIRPIN LOOP, NMR, 9 STRUCTURES 3J47 ; 7.4 ; Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid 1CP4 ; 1.9 ; FORMATION, CRYSTAL STRUCTURE, AND REARRANGEMENT OF A CYTOCHROME P450-CAM IRON-PHENYL COMPLEX 8HZB ; 3.2 ; Formed alpha-synuclein fibrils after incubation with heparin for 1 hour (Hep-remod-1) 8HZC ; 3.2 ; Formed alpha-synuclein fibrils after incubation with heparin for 1 hour (Hep-remod-2) 8HZS ; 3.3 ; Formed alpha-synuclein fibrils after incubation with heparin for 3 days (Hep-remod-3) 8VG3 ; ; Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure 3UJN ; 2.98 ; Formyl Glycinamide Ribonucleotide Amidotransferase from Salmonella Typhimurium : Role of the ATP complexation and glutaminase domain in catalytic coupling 3UGJ ; 1.78 ; Formyl Glycinamide ribonucletide amidotransferase from Salmonella Typhimurum: Role of the ATP complexation and glutaminase domain in catalytic coupling 1T3Z ; 2.3 ; Formyl-CoA Tranferase mutant Asp169 to Ser 1P5R ; 2.5 ; Formyl-CoA Transferase in complex with Coenzyme A 1T4C ; 2.61 ; Formyl-CoA Transferase in complex with Oxalyl-CoA 1VGQ ; 2.13 ; Formyl-CoA transferase mutant Asp169 to Ala 1VGR ; 2.1 ; Formyl-CoA transferase mutant Asp169 to Glu 2VJN ; 2.0 ; Formyl-CoA transferase mutant variant G260A 2VJO ; 2.2 ; Formyl-CoA transferase mutant variant Q17A with aspartyl-CoA thioester intermediates and oxalate 2VJP ; 1.95 ; Formyl-CoA transferase mutant variant W48F 2VJQ ; 1.8 ; Formyl-CoA transferase mutant variant W48Q 2VJL ; 2.0 ; Formyl-CoA transferase with aspartyl-CoA thioester intermediate derived from formyl-CoA 2VJK ; 1.97 ; Formyl-CoA transferase with aspartyl-CoA thioester intermediate derived from oxalyl-CoA 2VJM ; 1.89 ; Formyl-CoA transferase with aspartyl-formyl anhydide intermediate 3UBM ; 1.992 ; Formyl-CoA:oxalate CoA-transferase from Acetobacter aceti 6JFO ; 1.6 ; Formyl-Met-Ala-Ser bound crystal structure of class II peptide deformylase from methicillin resistant Staphylococcus aureus 4NT8 ; 2.2 ; Formyl-methionine-alanine complex structure of peptide deformylase from Xanthomoonas oryzae pv. oryzae 3UMM ; 3.2 ; Formylglycinamide ribonucleotide amidotransferase from Salmonella typhimurium: Role of the ATP complexation and glutaminase domain in catalytic coupling 6MUJ ; 2.249 ; Formylglycine generating enzyme bound to copper 2AFT ; 1.66 ; Formylglycine generating enzyme C336S mutant 2AIJ ; 1.55 ; Formylglycine generating enzyme C336S mutant covalently bound to substrate peptide CTPSR 2AIK ; 1.73 ; Formylglycine generating enzyme C336S mutant covalently bound to substrate peptide LCTPSRA 2AFY ; 1.49 ; Formylglycine generating enzyme C341S mutant 2Q17 ; 2.1 ; Formylglycine Generating Enzyme from Streptomyces coelicolor 5NXL ; 1.66 ; Formylglycine generating enzyme from T. curvata in complex with Ag(I) 5NYY ; 1.28 ; Formylglycine generating enzyme from T. curvata in complex with Cd(II) 1M5H ; 2.0 ; Formylmethanofuran:tetrahydromethanopterin formyltransferase from Archaeoglobus fulgidus 1FTR ; 1.7 ; FORMYLMETHANOFURAN:TETRAHYDROMETHANOPTERIN FORMYLTRANSFERASE FROM METHANOPYRUS KANDLERI 1M5S ; 1.85 ; Formylmethanofuran:tetrahydromethanopterin fromyltransferase from Methanosarcina barkeri 8AOZ ; 1.9 ; ForT Mutant L24A 8AP0 ; 1.6 ; ForT Mutant T138V 6YQQ ; 2.5 ; ForT-PRPP complex 1TN4 ; 1.95 ; FOUR CALCIUM TNC 2TN4 ; 2.0 ; FOUR CALCIUM TNC 7ZUR ; 1.6 ; Four carbons pendant pyridine derivative of the natural alkaloid Berberine as Human Telomeric G-quadruplex Binder 1QU7 ; 2.6 ; FOUR HELICAL-BUNDLE STRUCTURE OF THE CYTOPLASMIC DOMAIN OF A SERINE CHEMOTAXIS RECEPTOR 1HAQ ; ; FOUR MODELS OF HUMAN FACTOR H DETERMINED BY SOLUTION SCATTERING CURVE-FITTING AND HOMOLOGY MODELLING 8ASI ; 2.9 ; Four subunit cytochrome b-c1 complex from Rhodobacter sphaeroides in native nanodiscs - consensus refinement in the b-b conformation 8ASJ ; 3.75 ; Four subunit cytochrome b-c1 complex from Rhodobacter sphaeroides in native nanodiscs - focussed refinement in the b-c conformation 2JST ; ; Four-Alpha-Helix Bundle with Designed Anesthetic Binding Pockets II: Halothane Effects on Structure and Dynamics 6TYH ; 1.60002 ; Four-Disulfide Insulin Analog A22/B22 6G7M ; 1.71 ; Four-site variant (Y222C, C197S, C432S, C433S) of E. coli hydrogenase-2 1ZF2 ; 1.95 ; Four-stranded DNA Holliday Junction (CCC) 1FBR ; ; FOURTH AND FIFTH FIBRONECTIN TYPE I MODULE PAIR 1ZAQ ; ; FOURTH EGF-LIKE DOMAIN OF THROMBOMODULIN, NMR, 12 STRUCTURES 1AW0 ; ; FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES 2AW0 ; ; FOURTH METAL-BINDING DOMAIN OF THE MENKES COPPER-TRANSPORTING ATPASE, NMR, 20 STRUCTURES 7NZD ; 1.45 ; Fourth SH3 domain of POSH (Plenty of SH3 Domains protein) 7RCF ; 2.233 ; Fourth stage reengineered variant of I-OnuI with stability enhancing substitutions 2GDL ; ; Fowlicidin-2: NMR structure of antimicrobial peptide 5ZA2 ; 1.503 ; Fox-4 beta-lactamase complexed with avibactam 5MAB ; 2.436 ; FoxE P3121 crystal structure of Rhodopseudomonas ferrooxidans SW2 putative iron oxidase 5MVO ; 2.668 ; FoxE P43212 crystal structure of Rhodopseudomonas ferrooxidans SW2 putative iron oxidase 8BZM ; 2.69 ; FOXK1-ELF1-heterodimer bound to DNA 4WK8 ; 3.4006 ; FOXP3 forms a domain-swapped dimer to bridge DNA 8SRP ; 3.7 ; FoxP3 forms Ladder-like multimer to bridge TTTG repeats 8SRO ; 3.3 ; FoxP3 tetramer on TTTG repeats 8D47 ; 2.0 ; fp.006 Fab in complex with SARS-CoV-2 Fusion Peptide 1JBV ; 1.95 ; FPGS-AMPPCP complex 1JBW ; 1.85 ; FPGS-AMPPCP-folate complex 8S9J ; 2.25 ; FphA, Staphylococcus aureus fluorophosphonate-binding serine hydrolases A, apo form 8G48 ; 1.95 ; FphE, Staphylococcus aureus fluorophosphonate-binding serine hydrolases E, dimeric apo form 8G49 ; 1.6 ; FphE, Staphylococcus aureus fluorophosphonate-binding serine hydrolases E, Oxadiazolone compound 3 bound 8T88 ; 1.54 ; FphE, Staphylococcus aureus fluorophosphonate-binding serine hydrolases E, Oxadiazolone JJ004 bound 8T87 ; 1.62 ; FphE, Staphylococcus aureus fluorophosphonate-binding serine hydrolases E, unbound dimer crystal form 1 6VH9 ; 1.71 ; FphF, Staphylococcus aureus fluorophosphonate-binding serine hydrolases F, apo form 6VHD ; 1.98 ; FphF, Staphylococcus aureus fluorophosphonate-binding serine hydrolases F, KT129 bound 6VHE ; 1.94 ; FphF, Staphylococcus aureus fluorophosphonate-binding serine hydrolases F, KT130 bound 6WCX ; 2.89 ; FphF, Staphylococcus aureus fluorophosphonate-binding serine hydrolases F, substrate bound 8FTP ; 1.37 ; FphH, Staphylococcus aureus fluorophosphonate-binding serine hydrolases H, apo form 8G0N ; 1.14 ; FphI, Staphylococcus aureus fluorophosphonate-binding serine hydrolases I, apo form 4BF8 ; ; Fpr4 PPI domain 2C7G ; 1.8 ; FprA from Mycobacterium tuberculosis: His57Gln mutant 1FRB ; 1.7 ; FR-1 PROTEIN/NADPH/ZOPOLRESTAT COMPLEX 7KRI ; 1.58 ; FR6-bound SARS-CoV-2 Nsp9 RNA-replicase 5GWF ; 1.55 ; FraC with GlcNAc(6S) bound 8PIF ; 1.782 ; Fragment 12 in complex with KLHDC2 5MB3 ; 1.049 ; Fragment 333 at a concentration of 50mM in complex with Endothiapepsin 6S40 ; 1.9 ; Fragment AZ-001 binding at the p53pT387/14-3-3 sigma interface and additional sites 6RWI ; 1.65 ; Fragment AZ-002 binding at the p53pT387/14-3-3 sigma interface 6RL3 ; 1.3 ; Fragment AZ-003 binding at the p53pT387/14-3-3 sigma interface 6RHC ; 1.2 ; Fragment AZ-003 binding at the TAZpS89/14-3-3 sigma interface 6S9Q ; 1.69 ; Fragment AZ-004 binding at a primary and secondary site in a p53pT387/14-3-3 complex 6SLW ; 2.0 ; Fragment AZ-004 binding at the TAZpS89/14-3-3 sigma interface 6RX2 ; 1.82 ; Fragment AZ-005 binding at the p53pT387/14-3-3 sigma interface 6R5L ; 1.884 ; Fragment AZ-006 binding at the p53pT387/14-3-3 sigma interface 6RJQ ; 1.885 ; Fragment AZ-006 binding at the TAZpS89/14-3-3 sigma interface 6RWH ; 1.68 ; Fragment AZ-007 binding at a primary and secondary binding site of the the p53pT387/14-3-3 sigma complex 6RWS ; 1.53 ; Fragment AZ-009 binding at the p53pT387/14-3-3 sigma interface 6RWU ; 1.46 ; Fragment AZ-010 binding at the p53pT387/14-3-3 sigma interface 6SLX ; 1.80005 ; Fragment AZ-010 binding at the TAZpS89/14-3-3 sigma interface 6SIP ; 1.60045 ; Fragment AZ-011 binding at the p53pT387/14-3-3 sigma interface 6SIQ ; 1.60121 ; Fragment AZ-012 binding at the p53pT387/14-3-3 sigma interface 6SLV ; 1.9 ; Fragment AZ-013 binding at the p53pT387/14-3-3 sigma interface 6RK8 ; 1.602 ; Fragment AZ-014 binding at the p53pT387/14-3-3 sigma interface 6RJZ ; 1.58 ; Fragment AZ-015 binding at the p53pT387/14-3-3 sigma interface 6RM5 ; 1.884 ; Fragment AZ-016 binding at the p53pT387/14-3-3 sigma interface 6SIO ; 1.60418 ; Fragment AZ-017 binding at the p53pT387/14-3-3 sigma interface 6S39 ; 1.88 ; Fragment AZ-018 binding at the p53pT387/14-3-3 sigma interface 6RJL ; 1.28 ; Fragment AZ-018 binding at the TAZpS89/14-3-3 sigma interface 6S3C ; 2.0 ; Fragment AZ-019 binding at the p53pT387/14-3-3 sigma interface 6RP6 ; 1.885 ; Fragment AZ-019 binding at the TAZpS89/14-3-3 sigma interface 6SIN ; 1.64 ; Fragment AZ-020 binding at the p53pT387/14-3-3 sigma interface 6RKK ; 1.88 ; Fragment AZ-021 binding at the p53pT387/14-3-3 sigma interface 6RKM ; 1.88 ; Fragment AZ-022 binding at the p53pT387/14-3-3 sigma interface 6RKI ; 1.88 ; Fragment AZ-023 binding at the p53pT387/14-3-3 sigma interface 6RL6 ; 1.6 ; Fragment AZ-024 binding at the p53pT387/14-3-3 sigma interface 6RL4 ; 1.6 ; Fragment AZ-025 binding at the p53pT387/14-3-3 sigma interface 6RM7 ; 1.6 ; Fragment AZ-026 binding at the p53pT387/14-3-3 sigma interface 2MD2 ; ; Fragment based approach and binding behavior of LFampinB with Lipopolysaccharide: biophysical aspects 2MD4 ; ; Fragment based approach and binding behavior of LFampinB with Lipopolysaccharide: biophysical aspects 2MD1 ; ; Fragment based approach and binding behavior of LFampinB with Lipopolysaccharide:biophysical aspects 2MD3 ; ; Fragment based approach and binding behavior of LFampinB with Lipopolysaccharide:biophysical aspects 3MSK ; 2.0 ; Fragment Based Discovery and Optimisation of BACE-1 Inhibitors 3MSL ; 2.4 ; Fragment Based Discovery and Optimisation of BACE-1 Inhibitors 3S2O ; 2.6 ; Fragment based discovery and optimisation of bace-1 inhibitors 3ZW3 ; 2.8 ; Fragment based discovery of a novel and selective PI3 Kinase inhibitor 3E62 ; 1.922 ; Fragment based discovery of JAK-2 inhibitors 3E63 ; 1.9 ; Fragment based discovery of JAK-2 inhibitors 3E64 ; 1.8 ; Fragment based discovery of JAK-2 inhibitors 1WBU ; 1.9 ; Fragment based lead discovery using crystallography 1WBN ; 2.4 ; fragment based p38 inhibitors 1WBO ; 2.16 ; fragment based p38 inhibitors 6Y8M ; 1.9 ; Fragment bikinin bound to Interleukin 1 beta 4UCO ; 2.5 ; Fragment bound to H.influenza NAD dependent DNA ligase 4UCR ; 2.15 ; Fragment bound to H.influenza NAD dependent DNA ligase 4UCS ; 1.9 ; Fragment bound to H.influenza NAD dependent DNA ligase 4UCT ; 2.1 ; Fragment bound to H.influenza NAD dependent DNA ligase 4UCU ; 2.1 ; Fragment bound to H.influenza NAD dependent DNA ligase 4UCV ; 2.6 ; Fragment bound to H.influenza NAD dependent DNA ligase 3ZVV ; 2.5 ; Fragment Bound to PI3Kinase gamma 6H6Q ; 2.63 ; Fragment Derived XIAP inhibitor 6H6R ; 2.03 ; Fragment Derived XIAP inhibitor 1N8E ; 4.5 ; Fragment Double-D from Human Fibrin 2Y56 ; 3.59 ; Fragment growing induces conformational changes in acetylcholine- binding protein: A structural and thermodynamic analysis - (Compound 3) 2Y57 ; 3.3 ; Fragment growing induces conformational changes in acetylcholine- binding protein: A structural and thermodynamic analysis - (Compound 4) 2Y58 ; 3.25 ; Fragment growing induces conformational changes in acetylcholine- binding protein: A structural and thermodynamic analysis - (Compound 6) 2Y54 ; 3.65 ; Fragment growing induces conformational changes in acetylcholine- binding protein: A structural and thermodynamic analysis - (Fragment 1) 6SPL ; 1.38 ; Fragment KCL615 in complex with MAP kinase p38-alpha 6SP9 ; 1.22 ; Fragment KCL802 in complex with MAP kinase p38-alpha 6Y81 ; 1.54 ; Fragment KCL_1088 in complex with MAP kinase p38-alpha 6Y7W ; 1.39 ; Fragment KCL_1337 in complex with MAP kinase p38-alpha 6Y85 ; 1.58 ; Fragment KCL_1410 in complex with MAP kinase p38-alpha 6Y7X ; 1.45 ; Fragment KCL_771 in complex with MAP kinase p38-alpha 6Y82 ; 1.44 ; Fragment KCL_804 in complex with MAP kinase p38-alpha 6Y7Z ; 1.35 ; Fragment KCL_914 in complex with MAP kinase p38-alpha 6Y80 ; 1.24 ; Fragment KCL_916 in complex with MAP kinase p38-alpha 6Y8I ; 1.46 ; Fragment KCL_I013 in complex with IL-1-beta 6YCW ; 1.34 ; Fragment KCL_K767 in complex with MAP kinase p38-alpha 6YCU ; 1.35 ; Fragment KCL_K777 in complex with MAP kinase p38-alpha 6SOT ; 1.54 ; Fragment N11290a in complex with MAP kinase p38-alpha 6SO2 ; 1.6 ; Fragment N13460a in complex with MAP kinase p38-alpha 6SOU ; 1.5 ; Fragment N13565a in complex with MAP kinase p38-alpha 6SO1 ; 1.66 ; Fragment N13569a in complex with MAP kinase p38-alpha 6SOI ; 1.55 ; Fragment N13788a in complex with MAP kinase p38-alpha 6SOD ; 1.87 ; Fragment N14056a in complex with MAP kinase p38-alpha 5UNA ; 2.55 ; Fragment of 7SK snRNA methylphosphate capping enzyme 6EDF ; 1.4 ; Fragment of a tyrosine-protein kinase 1G5G ; 3.3 ; FRAGMENT OF FUSION PROTEIN FROM NEWCASTLE DISEASE VIRUS 6CCT ; 2.4 ; Fragment of GID4 in complex with a short peptide 6MFA ; 1.754 ; Fragment of human fibronectin containing the 4th-7th type III domains 1FNF ; 2.0 ; FRAGMENT OF HUMAN FIBRONECTIN ENCOMPASSING TYPE-III REPEATS 7 THROUGH 10 6NLY ; 2.307 ; Fragment of human mitochondrial Alanyl-tRNA Synthetase C-Ala domain 4E1H ; 1.4 ; Fragment of human prion protein 4E1I ; 2.03 ; Fragment of human prion protein 5JEQ ; 1.9 ; Fragment of nitrate/nitrite sensor histidine kinase NarQ (R50K) in symmetric apo state 6YUE ; 2.4 ; Fragment of nitrate/nitrite sensor histidine kinase NarQ (R50S variant) 5JEF ; 2.42 ; Fragment of nitrate/nitrite sensor histidine kinase NarQ (WT) in asymmetric holo state 5IJI ; 1.94 ; Fragment of nitrate/nitrite sensor histidine kinase NarQ (WT) in symmetric holo state 7SAF ; 2.45 ; Fragment of streptococcal M87 protein fused to GCN4 adaptor 7SAY ; 2.1 ; Fragment of streptococcal M87 protein fused to GCN4 adaptor in complex with human cathelicidin 6H8F ; 1.78 ; Fragment of the C-terminal domain of the TssA component of the type VI secretion system from Burkholderia cenocepacia 3B8P ; 3.1 ; Fragment of WzzB, Polysaccharide Co-polymerase from Salmonella Typhimurium 6SO4 ; 1.51 ; Fragment RZ132 in complex with MAP kinase p38-alpha 8C6P ; 1.1 ; Fragment screening hit I bound to endothiapepsin 8C6Q ; 1.25 ; Fragment screening hit II bound to endothiapepsin 8C6S ; 1.1 ; Fragment screening hit III bound to endothiapepsin 8C6T ; 1.15 ; Fragment screening hit IV bound to endothiapepsin 3M2Z ; 1.7 ; Fragment tethered to Carbonic Anhydrase II H64C mutant 3M5T ; 1.95 ; Fragment tethered to Carbonic Anhydrase II H64C mutant 6S97 ; 1.953 ; Fragment transplantation onto a hyperstable ancestor of haloalkane dehalogenases and Renilla luciferase (Anc-FT) 3AO1 ; 1.9 ; Fragment-based approach to the design of ligands targeting a novel site in HIV-1 integrase 3AO2 ; 1.8 ; Fragment-based approach to the design of ligands targeting a novel site on HIV-1 integrase 3AO3 ; 1.9 ; Fragment-based approach to the design of ligands targeting a novel site on HIV-1 integrase 3AO4 ; 1.95 ; Fragment-based approach to the design of ligands targeting a novel site on HIV-1 integrase 3AO5 ; 1.8 ; Fragment-based approach to the design of ligands targeting a novel site on HIV-1 integrase 3OVN ; 1.95 ; Fragment-based approach to the design of ligands targeting a novel site on HIV-1 integrase 4N9B ; 2.859 ; Fragment-based Design of 3-Aminopyridine-derived Amides as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4N9C ; 1.751 ; Fragment-based Design of 3-Aminopyridine-derived Amides as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4N9D ; 1.701 ; Fragment-based Design of 3-Aminopyridine-derived Amides as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4N9E ; 1.72 ; Fragment-based Design of 3-Aminopyridine-derived Amides as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 3OMO ; 2.21 ; Fragment-Based Design of novel Estrogen Receptor Ligands 3OMP ; 2.05 ; Fragment-Based Design of novel Estrogen Receptor Ligands 3OMQ ; 1.97 ; Fragment-Based Design of novel Estrogen Receptor Ligands 4CC5 ; 1.88 ; Fragment-Based Discovery of 6 Azaindazoles As Inhibitors of Bacterial DNA Ligase 4CC6 ; 2.01 ; Fragment-Based Discovery of 6 Azaindazoles As Inhibitors of Bacterial DNA Ligase 5L3A ; 1.98 ; Fragment-based discovery of 6-arylindazole JAK inhibitors 6G8X ; 1.76 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G91 ; 1.8 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G92 ; 1.99 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G93 ; 1.67 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G97 ; 1.9 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9A ; 1.91 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9D ; 1.8 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9H ; 1.73 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9J ; 1.98 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9K ; 1.94 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9M ; 1.86 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6G9N ; 1.76 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6GDM ; 1.91 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6GDQ ; 1.86 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 6GE0 ; 1.82 ; Fragment-based discovery of a highly potent, orally bioavailable inhibitor which modulates the phosphorylation and catalytic activity of ERK1/2 7N5O ; 1.25 ; Fragment-Based Discovery of a Novel Bruton's Tyrosine Kinase Inhibitor 7N5R ; 1.55 ; Fragment-Based Discovery of a Novel Bruton's Tyrosine Kinase Inhibitor 7N5X ; 1.6 ; Fragment-Based Discovery of a Novel Bruton's Tyrosine Kinase Inhibitor 4LUO ; 1.54 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4LUV ; 1.4 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4LUZ ; 1.9 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4LW1 ; 1.631 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4LWC ; 1.61 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4O0A ; 1.2 ; Fragment-Based Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions 4Z3V ; 1.6 ; Fragment-Based Discovery of a Small Molecule Reversible Inhibitor of Bruton's Tyrosine Kinase 6NCN ; 1.82 ; Fragment-based Discovery of an apoE4 Stabilizer 6NCO ; 1.707 ; Fragment-based Discovery of an apoE4 Stabilizer 4K8A ; 2.91 ; Fragment-based discovery of Focal Adhesion Kinase Inhibitors 2VIN ; 1.9 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 2VIO ; 1.8 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 2VIP ; 1.72 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 2VIQ ; 2.0 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 2VIV ; 1.72 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 2VIW ; 2.05 ; Fragment-Based Discovery of Mexiletine Derivatives as Orally Bioavailable Inhibitors of Urokinase-Type Plasminogen Activator 5BVK ; 2.29 ; Fragment-based discovery of potent and selective DDR1/2 inhibitors 5BVN ; 2.21 ; Fragment-based discovery of potent and selective DDR1/2 inhibitors 5BVO ; 1.98 ; Fragment-based discovery of potent and selective DDR1/2 inhibitors 5BVW ; 1.94 ; Fragment-based discovery of potent and selective DDR1/2 inhibitors 4IJH ; 1.498 ; Fragment-based Discovery of Protein-Protein Interaction Inhibitors of Replication Protein A 4IJL ; 1.7 ; Fragment-based Discovery of Protein-Protein Interaction Inhibitors of Replication Protein A 6TPD ; 1.99 ; Fragment-based discovery of pyrazolopyridones as JAK1 inhibitors with excellent subtype selectivity 6TPE ; 2.87 ; Fragment-based discovery of pyrazolopyridones as JAK1 inhibitors with excellent subtype selectivity 6TPF ; 2.31 ; Fragment-based discovery of pyrazolopyridones as JAK1 inhibitors with excellent subtype selectivity 2W1H ; 2.15 ; Fragment-Based Discovery of the Pyrazol-4-yl urea (AT9283), a Multi- targeted Kinase Inhibitor with Potent Aurora Kinase Activity 7N5Y ; 1.85 ; Fragment-Based Drug Design of a Novel, Covalent Bruton's Tyrosine Kinase Inhibitor 5YAV ; 1.989 ; Fragment-based Drug Discovery of inhibitors to block PDEdelta-RAS protein-protein interaction 5YAW ; 2.027 ; Fragment-based Drug Discovery of inhibitors to block PDEdelta-RAS protein-protein interaction 5C3H ; 2.65 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 1 5C7D ; 2.25 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 17 5C7C ; 2.32 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 18 5C0L ; 2.6 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 2 5C84 ; 2.36 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 20 5C83 ; 2.33 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 21 5C0K ; 2.2 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 3 5C3K ; 2.02 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 4 5C7B ; 2.68 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 5 5C7A ; 2.36 ; Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Compound 7 4LV9 ; 1.807 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4LVA ; 1.55 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4LVB ; 1.836 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4LVD ; 1.75 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4LVF ; 1.5 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4LVG ; 1.702 ; Fragment-based Identification of Amides Derived From trans-2-(Pyridin-3-yl)cyclopropanecarboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 5LYY ; 2.17 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ2 ; 2.1 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ4 ; 2.07 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ5 ; 2.05 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ7 ; 2.1 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ8 ; 2.11 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 5LZ9 ; 2.06 ; Fragment-based inhibitors of Lipoprotein associated Phospholipase A2 7DXL ; 3.146 ; Fragment-based Lead Discovery of Indazole-based Compounds as AXL Kinase Inhibitors 4BDA ; 2.6 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDB ; 2.5 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDC ; 3.0 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDD ; 2.67 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDE ; 2.55 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDF ; 2.7 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDG ; 2.84 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDH ; 2.7 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDI ; 2.32 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDJ ; 3.01 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 4BDK ; 3.3 ; Fragment-based screening identifies a new area for inhibitor binding to checkpoint kinase 2 (CHK2) 5AQF ; 1.88 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQG ; 2.24 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQH ; 2.0 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQI ; 1.98 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQJ ; 1.96 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQK ; 2.09 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQL ; 1.69 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQM ; 1.63 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQN ; 2.45 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQO ; 2.12 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQP ; 2.08 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQQ ; 2.72 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQR ; 1.91 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQS ; 2.0 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQT ; 1.9 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQU ; 1.92 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQV ; 1.75 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQW ; 1.53 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQX ; 2.12 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 5AQY ; 1.56 ; Fragment-based screening of HSP70 sheds light on the functional role of ATP-binding site residues 4TYL ; 1.85 ; Fragment-Based Screening of the Bromodomain of ATAD2 4TZ2 ; 1.7 ; Fragment-Based Screening of the Bromodomain of ATAD2 8BWX ; 1.6 ; Fragment-linked stabilizer for 14-3-3 and ERa (1075298) 8BYF ; 1.65 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1047455) 8BYG ; 1.7 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1047648) 8BXI ; 1.2 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074361) 8BYO ; 1.2 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074361) 8BX3 ; 1.2 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074372) 8BWJ ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074386) 8BX0 ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074388) 8BX4 ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074392) 8BWZ ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074393) 8BYY ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074395) 8BXM ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074397) 8BYB ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074398) 8BXN ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1074399) 8BXO ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075287) 8BY9 ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075292) 8BXS ; 1.6 ; Fragment-linked stabilizer for ERa - 14-3-3 interaction (1075293) 8BXQ ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075296) 8C0K ; 1.4 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075302) 8BYE ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075313) 8BYC ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (1075316) 8BYZ ; 1.4 ; fragment-linked stabilizer for ERa - 14-3-3 interaction (AZ210) 8BYD ; 1.6 ; fragment-linked stabilizer for ERa - 14-3-3 interactions (1075288) 4AB8 ; 1.6 ; Fragments bound to bovine trypsin for the SAMPL challenge 4AB9 ; 1.2 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABA ; 1.25 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABB ; 1.25 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABD ; 1.25 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABE ; 1.3 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABF ; 1.3 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABG ; 1.52 ; Fragments bound to bovine trypsin for the SAMPL challenge 4ABH ; 1.25 ; Fragments bound to bovine trypsin for the SAMPL challenge 3VQ4 ; 1.9 ; Fragments bound to HIV-1 integrase 5DVA ; 2.50004 ; Fragments bound to the OXA-48 beta-lactamase: Compound 1 5DTK ; 1.6 ; Fragments bound to the OXA-48 beta-lactamase: Compound 17 5DTS ; 1.94016 ; Fragments bound to the OXA-48 beta-lactamase: Compound 2 5DTT ; 2.10001 ; Fragments bound to the OXA-48 beta-lactamase: Compound 3 6SOV ; 1.31 ; Fragments KCL_615 and KCL_802 in complex with MAP kinase p38-alpha 6Y7Y ; 1.51 ; Fragments KCL_771 and KCL_802 in complex with MAP kinase p38-alpha 3SOJ ; 1.0 ; Francisella tularensis pilin PilE 4HS5 ; 1.45 ; Frataxin from Psychromonas ingrahamii as a model to study stability modulation within CyaY protein family 6B58 ; 2.611 ; FrdA-SdhE assembly intermediate 7PAU ; 8.3 ; free 50S in complex with ribosome recycling factor in untreated Mycoplasma pneumoniae cells 7PAT ; 9.2 ; free 50S in untreated Mycoplasma pneumoniae cells 2X25 ; 1.2 ; Free acetyl-CypA orthorhombic form 2X2A ; 1.4 ; Free acetyl-CypA trigonal form 1HKL ; 2.68 ; FREE AND LIGANDED FORM OF AN ESTEROLYTIC CATALYTIC ANTIBODY 1EOV ; 2.3 ; FREE ASPARTYL-TRNA SYNTHETASE (ASPRS) (E.C. 6.1.1.12) FROM YEAST 2LKC ; ; Free B.st IF2-G2 1OAQ ; 1.5 ; Free conformation Ab1 of the IgE SPE-7 1OCW ; 2.0 ; Free conformation Ab2 of the IgE SPE-7 5OCZ ; ; Free DNA_hairpin polyamides studies 7ZEV ; ; Free form of extended Cyp33-RRM 4Q1O ; 1.75 ; Free form of TvNiR, high dose data set 4Q0T ; 1.7 ; Free form of TvNiR, low dose data set 4Q17 ; 1.75 ; Free form of TvNiR, middle dose data set 4MYV ; 1.801 ; Free HSV-2 gD structure 1Z7G ; 1.9 ; Free human HGPRT 4EZ4 ; 2.99 ; free KDM6B structure 5M3M ; 4.0 ; Free monomeric RNA polymerase I at 4.0A resolution 3DMV ; 1.65 ; Free of ligand binding in the hydrophobic cavity of T4 lysozyme L99A mutant 1BHH ; 1.9 ; FREE P56LCK SH2 DOMAIN 5X0G ; 1.9 ; Free serine kinase (E30A mutant) in complex with ADP 5X0F ; 1.76 ; Free serine kinase (E30A mutant) in complex with AMP 5X0E ; 2.0 ; Free serine kinase (E30A mutant) in complex with phosphoserine and AMP 5X0K ; 1.65 ; Free serine kinase (E30Q mutant) in complex with AMP 5X0J ; 1.43 ; Free serine kinase (E30Q mutant) in complex with phosphoserine and AMP 5X0B ; 1.75 ; Free serine kinase in complex with AMP 5FLH ; 1.802 ; Free state of Ni-quercetinase 3QXU ; 1.8 ; Free Structure of an Anti-Methotrexate CDR1-3 Graft VHH Antibody 3QXW ; 1.85 ; Free structure of an anti-methotrexate CDR1-4 Graft VHH Antibody 5XO4 ; ; Free Thanatin at 298K 8IL1 ; ; Free Thanatin IM14 8IL2 ; ; Free Thanatin PM15 5XO5 ; ; Free Thanatin Y10A M21A 2Z5J ; 3.4 ; Free Transportin 1 8X40 ; ; Free VF16 in aqueous solution 3IQN ; 2.7 ; Free-state structural transitions of the SAM-I riboswitch 4BB5 ; 2.2 ; Free-Wilson and Structural Approaches to Co-optimising Human and Rodent Isoform Potency for 11b-Hydroxysteroid Dehydrogenase Type 1 11b-HSD1 Inhibitors 4BB6 ; 2.55 ; Free-Wilson and Structural Approaches to Co-optimising Human and Rodent Isoform Potency for 11b-Hydroxysteroid Dehydrogenase Type 1 11b-HSD1 Inhibitors 5O4M ; 2.1 ; Fresh crystals of HcgC from Methanococcus maripaludis cocrystallized with SAH and pyridinol 7FH6 ; 1.55 ; Friedel-Crafts alkylation enzyme CylK 7FH8 ; 1.32 ; Friedel-Crafts alkylation enzyme CylK mutant H391A 7FH7 ; 1.42 ; Friedel-Crafts alkylation enzyme CylK mutant Y37F 1AOL ; 2.0 ; FRIEND MURINE LEUKEMIA VIRUS RECEPTOR-BINDING DOMAIN 7VCO ; 1.6 ; Frischella perrara beta-fructofuranosidase 7VCP ; 2.0 ; Frischella perrara beta-fructofuranosidase in complex with fructose 7X8T ; 2.51 ; Frizzled 10 CRD in complex with hB9L9.3 Fab 7X8P ; 2.24 ; Frizzled 2 CRD in complex with pF7_A5 Fab 7X8Q ; 2.65 ; Frizzled-10 CRD in complex with F10_A9 Fab 5UN6 ; 3.2 ; Frizzled-8 complex with designed surrogate Wnt agonist, A1 dataset 5UN5 ; 2.994 ; Frizzled-8 complex with designed surrogate Wnt agonist, crystal form 1 6TFM ; 2.343 ; Frizzled8 CRD 8X0T ; 2.5 ; Frizzled8 CRD in complex with pF8_AC3 Fab 8GLR ; 1.83 ; FrlB - Deglycase for 6-phosphofructose lysine 6LXX ; 2.4 ; Frog EPDR1 with an Ir atom 4MY7 ; 1.48 ; frog M ferritin iron-loaded under anaerobic environment 4MKU ; 1.3 ; Frog M ferritin mutant H54Q 3KA4 ; 1.4 ; Frog M-ferritin with cobalt 4LPN ; 1.66 ; Frog M-ferritin with cobalt, D127E mutant 3KA3 ; 1.4 ; Frog M-ferritin with magnesium 4LPM ; 1.65 ; Frog M-ferritin with magnesium, D127E mutant 3SHX ; 1.35 ; Frog M-ferritin with magnesium, L134P mutant 3SE1 ; 1.65 ; Frog M-ferritin with magnesium, R72D mutant 3SH6 ; 1.4 ; Frog M-ferritin, D122R mutant, with magnesium 3KA6 ; 1.4 ; Frog M-ferritin, EED mutant, with cobalt 3KA9 ; 1.45 ; Frog M-ferritin, EEH mutant, with cobalt 3KA8 ; 1.35 ; Frog M-ferritin, EQH mutant, with cobalt 4K5C ; 1.7 ; From DARPins to LoopDARPins: Novel LoopDARPin Design Allows the Selection of Low Picomolar Binders in a Single Round of Ribosome Display 5NJ4 ; 2.4 ; From macrocrystals to microcrystals: a strategy for membrane protein serial crystallography 5O4C ; 2.8 ; From macrocrystals to microcrystals: a strategy for membrane protein serial crystallography 5O64 ; 3.3 ; From macrocrystals to microcrystals: a strategy for membrane protein serial crystallography 3U48 ; 2.2 ; From soil to structure: a novel dimeric family 3-beta-glucosidase isolated from compost using metagenomic analysis 3U4A ; 2.196 ; From soil to structure: a novel dimeric family 3-beta-glucosidase isolated from compost using metagenomic analysis 2QHA ; 1.45 ; From Structure to Function: Insights into the Catalytic Substrate Specificity and Thermostability Displayed by Bacillus subtilis mannanase BCman 6Z8I ; 2.62 ; Fructo-oligosaccharide transporter BT 1762-63 6Z9A ; 3.1 ; Fructo-oligosaccharide transporter BT 1762-63 6ZAZ ; 2.69 ; Fructo-oligosaccharide transporter BT 1762-63 1QO5 ; 2.5 ; Fructose 1,6-bisphosphate Aldolase from Human Liver Tissue 1FDJ ; 2.1 ; FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM RABBIT LIVER 1ADO ; 1.9 ; FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM RABBIT MUSCLE 1EWD ; 2.464 ; FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM RABBIT MUSCLE 1EWE ; 2.6 ; Fructose 1,6-Bisphosphate Aldolase from Rabbit Muscle 1EX5 ; 2.2 ; FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM RABBIT MUSCLE 3B8D ; 2.0 ; Fructose 1,6-bisphosphate aldolase from rabbit muscle 2X7X ; 2.64 ; Fructose binding periplasmic domain of hybrid two component system BT1754 1UXD ; ; Fructose repressor DNA-binding domain, NMR, 34 structures 1UXC ; ; FRUCTOSE REPRESSOR DNA-BINDING DOMAIN, NMR, MINIMIZED STRUCTURE 1FPI ; 2.3 ; FRUCTOSE-1,6-BISPHOSPHATASE (D-FRUCTOSE-1,6-BISPHOSPHATE 1-PHOSPHOHYDROLASE) COMPLEXED WITH AMP, 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND POTASSIUM IONS (100 MM) 1FPL ; 2.3 ; FRUCTOSE-1,6-BISPHOSPHATASE (D-FRUCTOSE-1,6-BISPHOSPHATE 1-PHOSPHOHYDROLASE) COMPLEXED WITH AMP, 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND THALLIUM IONS (10 MM) 1FPJ ; 2.2 ; FRUCTOSE-1,6-BISPHOSPHATASE (D-FRUCTOSE-1,6-BISPHOSPHATE 1-PHOSPHOHYDROLASE) COMPLEXED WITH AMP, 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE, THALLIUM (10 MM) AND LITHIUM IONS (10 MM) 1FPK ; 3.0 ; FRUCTOSE-1,6-BISPHOSPHATASE (D-FRUCTOSE-1,6-BISPHOSPHATE 1-PHOSPHOHYDROLASE) COMPLEXED WITH THALLIUM IONS (10 MM) 1FJ6 ; 2.5 ; FRUCTOSE-1,6-BISPHOSPHATASE (MUTANT Y57W) PRODUCT/ZN COMPLEX (R-STATE) 1FJ9 ; 2.5 ; FRUCTOSE-1,6-BISPHOSPHATASE (MUTANT Y57W) PRODUCTS/ZN/AMP COMPLEX (T-STATE) 1EYJ ; 2.28 ; FRUCTOSE-1,6-BISPHOSPHATASE COMPLEX WITH AMP, MAGNESIUM, FRUCTOSE-6-PHOSPHATE AND PHOSPHATE (T-STATE) 1NV7 ; 2.15 ; Fructose-1,6-Bisphosphatase Complex With AMP, Magnesium, Fructose-6-Phosphate, Phosphate and Thallium (20 mM) 1EYK ; 2.23 ; FRUCTOSE-1,6-BISPHOSPHATASE COMPLEX WITH AMP, ZINC, FRUCTOSE-6-PHOSPHATE AND PHOSPHATE (T-STATE) 1NUZ ; 1.9 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate and Phosphate 1EYI ; 2.32 ; FRUCTOSE-1,6-BISPHOSPHATASE COMPLEX WITH MAGNESIUM, FRUCTOSE-6-PHOSPHATE AND PHOSPHATE (R-STATE) 1NUW ; 1.3 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate and Phosphate at pH 9.6 1NUY ; 1.3 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, and Phosphate 1NV0 ; 1.8 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate and 1 mM Thallium 1NUX ; 1.6 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate and inhibitory concentrations of Potassium (200mM) 1NV3 ; 2.0 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate and Thallium (100 mM) 1NV2 ; 2.1 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate and Thallium (20 mM) 1NV1 ; 1.9 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate and Thallium (5 mM) 1NV4 ; 1.9 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate, EDTA and Thallium (1 mM) 1NV6 ; 2.15 ; Fructose-1,6-Bisphosphatase Complex With Magnesium, Fructose-6-Phosphate, Phosphate, EDTA and Thallium (20 mM) 1NV5 ; 1.9 ; Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate, Phosphate, EDTA and Thallium (5 mM) 1Q9D ; 2.35 ; Fructose-1,6-bisphosphatase Complexed with a New Allosteric Site Inhibitor (I-State) 1CNQ ; 2.27 ; FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH FRUCTOSE-6-PHOSPHATE AND ZINC IONS 2JJK ; 2.0 ; FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE -1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH A DUAL BINDING AMP SITE INHIBITOR 2VT5 ; 2.2 ; FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE -1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH A DUAL BINDING AMP SITE INHIBITOR 1FTA ; 2.3 ; FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE, 1-PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH THE ALLOSTERIC INHIBITOR AMP 2WBB ; 2.22 ; FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE-1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH AN AMP SITE INHIBITOR 2WBD ; 2.4 ; FRUCTOSE-1,6-BISPHOSPHATASE(D-FRUCTOSE-1,6-BISPHOSPHATE-1- PHOSPHOHYDROLASE) (E.C.3.1.3.11) COMPLEXED WITH AN AMP SITE INHIBITOR 1J4E ; 2.65 ; FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE COVALENTLY BOUND TO THE SUBSTRATE DIHYDROXYACETONE PHOSPHATE 2QAP ; 1.59 ; Fructose-1,6-bisphosphate aldolase from Leishmania mexicana 2QDH ; 1.9 ; Fructose-1,6-bisphosphate aldolase from Leishmania mexicana in complex with mannitol-1,6-bisphosphate, a competitive inhibitor 1A5C ; 3.0 ; FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE FROM PLASMODIUM FALCIPARUM 1ZAH ; 1.8 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle 2OT0 ; 2.05 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein 1ZAJ ; 1.89 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with mannitol-1,6-bisphosphate, a competitive inhibitor 2OT1 ; 2.05 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with naphthol AS-E phosphate, a competitive inhibitor 1ZAL ; 1.89 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with partially disordered tagatose-1,6-bisphosphate, a weak competitive inhibitor 5TLW ; 2.29 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with the inhibitor 1-phosphate-benzene 4-bisphosphonate 5TLH ; 2.204 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with the inhibitor 2-naphthol 6-bisphosphonate 5TLE ; 1.576 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with the inhibitor 2-phosphate-naphthalene 6-bisphosphonate 5TLZ ; 1.97 ; Fructose-1,6-bisphosphate aldolase from rabbit muscle in complex with the inhibitor naphthalene 2,6-bisphosphate 5F4X ; 1.84 ; Fructose-1,6-bisphosphate aldolase K229M mutant from rabbit muscle 3T2C ; 1.3 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, DHAP-bound form 3T2E ; 1.66 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, F6P-bound form 3T2D ; 1.36 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, FBP-bound form 3T2B ; 1.52 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, ligand free 3T2F ; 1.9 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, soaked with EDTA and DHAP 3T2G ; 3.0 ; Fructose-1,6-bisphosphate aldolase/phosphatase from Thermoproteus neutrophilus, Y229F variant with DHAP 2QDG ; 2.2 ; Fructose-1,6-bisphosphate Schiff base intermediate in FBP aldolase from Leishmania mexicana 1ZAI ; 1.76 ; Fructose-1,6-bisphosphate Schiff base intermediate in FBP aldolase from rabbit muscle 1L6W ; 1.93 ; Fructose-6-phosphate aldolase 7QXF ; 2.62 ; Fructose-6-phosphate aldolase (FSA) mutant R134V, S166G, with covalently bound active site ligand 4S1F ; 2.242 ; Fructose-6-phosphate aldolase A from E.coli soaked in acetylacetone 4RXG ; 2.154 ; Fructose-6-phosphate aldolase Q59E from E.coli 4RZ4 ; 1.75 ; Fructose-6-phosphate aldolase Q59E Y131F from E.coli 4RXF ; 2.4 ; Fructose-6-phosphate aldolase Y131F from E.coli 4MOZ ; 2.15 ; Fructose-bisphosphate aldolase from Slackia heliotrinireducens DSM 20476 7EFS ; 2.5 ; Fructose-bisphosphate aldolase in Artemisia sieversiana pollen 5TQZ ; 1.6 ; Frutapin complexed with alpha-D-glucose 5M6O ; 1.7 ; Frutapin complexed with alpha-D-mannose 5KRP ; 1.58 ; Frutapin, a lectin from Artocarpus incisa: Cloning, Expressing and Structural Analysis. 4FBY ; 6.56 ; fs X-ray diffraction of Photosystem II 8I2G ; 2.8 ; FSHR-Follicle stimulating hormone-compound 716340-Gs complex 4GTM ; 2.2 ; FTase in complex with BMS analogue 11 4GTQ ; 2.6 ; FTase in complex with BMS analogue 12 4GTR ; 2.2 ; FTase in complex with BMS analogue 13 4GTO ; 2.15 ; FTase in complex with BMS analogue 14 4GTP ; 2.75 ; FTase in complex with BMS analogue 16 7MGT ; 1.54 ; Ftp from Treponema pallidum bound to an ADP-like inhibitor 7R5E ; 2.2 ; FtrA-P19 from Rubrivivax gelatinosus in complex with copper and magnesium (X1) 7R5G ; 2.2 ; FtrA-P19 from Rubrivivax gelatinosus in complex with copper and magnesium (X2) 7R3S ; 1.79 ; FtrA/P19 of Rubrivivax gelatinosus in complex with Ni 1E4F ; 1.9 ; FtsA (apo form) from Thermotoga maritima 1E4G ; 2.6 ; FtsA (ATP-bound form) from Thermotoga maritima 6Z4W ; 1.36 ; FtsE structure from Streptococcus pneumoniae in complex with ADP (space group P 1) 6Z63 ; 1.57 ; FtsE structure from Streptococus pneumoniae in complex with ADP at 1.57 A resolution (spacegroup P 21) 6Z67 ; 2.4 ; FtsE structure of Streptococcus pneumoniae in complex with AMPPNP at 2.4 A resolution 1EIZ ; 1.7 ; FTSJ RNA METHYLTRANSFERASE COMPLEXED WITH S-ADENOSYLMETHIONINE 1EJ0 ; 1.5 ; FTSJ RNA METHYLTRANSFERASE COMPLEXED WITH S-ADENOSYLMETHIONINE, MERCURY DERIVATIVE 6T8B ; 3.65 ; FtsK motor domain with dsDNA, translocating state 6DLX ; 1.848 ; FtsY-NG domain bound to fragment 3. 6N5I ; 1.498 ; FtsY-NG high-resolution 6N5J ; 1.37 ; FtsY-NG high-resolution 6N6N ; 1.877 ; FtsY-NG high-resolution 6NC1 ; 1.598 ; FtsY-NG high-resolution 6NC4 ; 1.6 ; FtsY-NG high-resolution 6N9B ; 1.219 ; FtsY-NG ultra high-resolution 2VAM ; 2.5 ; FtsZ B. subtilis 1W59 ; 2.7 ; FtsZ dimer, empty (M. jannaschii) 1W5B ; 2.2 ; FtsZ dimer, GTP soak (M. jannaschii) 1W5A ; 2.4 ; FtsZ dimer, MgGTP soak (M. jannaschii) 2VAP ; 1.7 ; FtsZ GDP M. jannaschii 1W58 ; 2.5 ; FtsZ GMPCPP soak I213 (M. jannaschii) 2VAW ; 2.9 ; FtsZ Pseudomonas aeruginosa GDP 1W5E ; 3.0 ; FtsZ W319Y mutant, P1 (M. jannaschii) 1W5F ; 2.0 ; FtsZ, T7 mutated, domain swapped (T. maritima) 6SI9 ; 1.9 ; FtsZ-refold 6D3I ; 3.196 ; ftv7 dioxygenase with 2,4-D bound 7YUD ; 2.98 ; FTY720p-bound human SPNS2 6D1O ; 2.7 ; FT_5 dioxygenase apoenzyme 6D3J ; 3.0 ; FT_T dioxygenase holoenzyme 6D3H ; 2.03 ; FT_T dioxygenase with bound dichlorprop 6D3M ; 2.03 ; FT_T dioxygenase with bound quizalofop 1K12 ; 1.9 ; Fucose Binding lectin 6ZFC ; 1.65 ; Fucose-binding lectin from Burkholderia ambifaria (BamBL) in complex with a fucosyl derivative 6X7J ; 0.97 ; fucose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 6GY9 ; 1.83 ; Fucose-functionalized precision glycomacromolecules targeting human norovirus capsid protein 1IUB ; 2.31 ; Fucose-specific lectin from Aleuria aurantia (Hg-derivative form) 1IUC ; 2.24 ; Fucose-specific lectin from Aleuria aurantia with three ligands 8ANR ; 1.62 ; Fucosylated alternate chirality linear peptide FHP30 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.6 Angstrom resolution. 6Y0W ; 2.06 ; Fucosylated antimicrobial linear peptide cFucRH46D in complex with the fucose binding lectin LecB from Pseudomonas aeruginosa at 2.1 Angstrom resolution 6Y0X ; 2.425 ; Fucosylated antimicrobial peptide SB6 in complex with the lectin LecRSL from Ralstonia solanacearum at 2.4 Angstrom resolution 6Y0U ; 1.489 ; Fucosylated Bicyclic peptide bp71 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.5 Angstrom resolution 6Y0V ; 1.98 ; Fucosylated bicyclic peptide bp71 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.7 Angstrom resolution 7NEW ; 2.02 ; Fucosylated heterochiral linear peptide Fdln69 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 2.0 Angstrom resolution 7NEF ; 1.51 ; Fucosylated linear peptide Fln65 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.5 Angstrom resolution 8AOO ; 1.18 ; Fucosylated mixed-chirality linear peptide FHP31 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.2 Angstrom resolution. 8AN9 ; 1.273 ; Fucosylated mixed-chirality linear peptide FHP5 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.3 Angstrom resolution. 8ANO ; 1.29 ; Fucosylated mixed-chirality linear peptide FHP8 bound to the fucose binding lectin LecB PA-IIL from Pseudomonas aeruginosa at 1.3 Angstrom resolution. 2LYG ; ; Fuc_TBA 7NFT ; 3.14 ; Fujian capbinding domain in complex with Nb8208 7NFQ ; 1.68 ; Fujian capmidlink domain in complex with Nb8193 7NFR ; 1.88 ; Fujian capmidlink domain in complex with Nb8194 8A9U ; 3.1 ; Full AAV3B-VP1KO virion 7QWZ ; 3.7 ; Full capsid of Saccharomyces cerevisiae virus L-BCLa 8OOI ; 2.61 ; Full composite cryo-EM map of p97/VCP in ADP.Pi state 7CGV ; 2.38 ; Full consensus L-threonine 3-dehydrogenase, FcTDH-IIYM (NAD+ bound form) 6V55 ; 2.38 ; Full extracellular region of zebrafish Gpr126/Adgrg6 7MI9 ; 3.89 ; Full integration complex of Cas1/Cas2 from Cas4-containing system 7M6N ; 2.61 ; Full length alpha1 Glycine receptor in presence of 0.1mM Glycine 7M6O ; 2.84 ; Full length alpha1 Glycine receptor in presence of 0.1mM Glycine and 32uM Tetrahydrocannabinol 7M6P ; 3.28 ; Full length alpha1 Glycine receptor in presence of 1mM Glycine 7M6Q ; 2.91 ; Full length alpha1 Glycine receptor in presence of 1mM Glycine and 32uM Tetrahydrocannabinol State 1 7M6R ; 3.57 ; Full length alpha1 Glycine receptor in presence of 1mM Glycine and 32uM Tetrahydrocannabinol State 2 7M6S ; 3.61 ; Full length alpha1 Glycine receptor in presence of 1mM Glycine and 32uM Tetrahydrocannabinol State 3 7M6M ; 3.09 ; Full length alpha1 Glycine receptor in presence of 32uM Tetrahydrocannabinol 2WTR ; 2.9 ; Full length Arrestin2 6LJ3 ; 2.0 ; full length ASFV dUTPase in complex with alpha,beta-iminodUTP and magnesium ion 3LJ5 ; 7.497 ; Full Length Bacteriophage P22 Portal Protein 8HDF ; 2.24 ; Full length crystal structure of mycobacterium tuberculosis FadD23 in complex with ANP and PLM 6G4G ; 2.8 ; Full length ectodomain of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3) including the SMB domains but with a partially disordered active site structure 6QKZ ; 6.3 ; Full length GluA1/2-gamma8 complex 4U1Y ; 3.8999 ; Full length GluA2-FW-(R,R)-2b complex 4U1W ; 3.25 ; Full length GluA2-kainate-(R,R)-2b complex crystal form A 4U1X ; 3.301 ; Full length GluA2-kainate-(R,R)-2b complex crystal form B 6UBS ; 3.33 ; Full length Glycine receptor reconstituted in lipid nanodisc in Apo/Resting conformation 6UBT ; 3.55 ; Full length Glycine receptor reconstituted in lipid nanodisc in Gly-bound desensitized conformation 6VM0 ; 3.14 ; Full length Glycine receptor reconstituted in lipid nanodisc in Gly/IVM-conformation (State-1) 6VM2 ; 3.34 ; Full length Glycine receptor reconstituted in lipid nanodisc in Gly/IVM-conformation (State-2) 6VM3 ; 3.07 ; Full length Glycine receptor reconstituted in lipid nanodisc in Gly/IVM-conformation (State-3) 6UD3 ; 3.5 ; Full length Glycine receptor reconstituted in lipid nanodisc in Gly/PTX-bound open/blocked conformation 6OLP ; 4.2 ; Full length HIV-1 Env AMC011 in complex with PGT151 Fab 7DF8 ; 3.03 ; full length hNPC1L1-Apo 6C4K ; 2.65 ; Full length hUGDH with A104L substitution in the absence of ligand 7XF5 ; 3.9 ; Full length human CLC-2 channel in apo state 5NVU ; 15.0 ; Full length human cytoplasmic dynein-1 in the phi-particle conformation 6O1G ; 2.2 ; Full length human plasma kallikrein with inhibitor 8GCD ; 2.97 ; Full length Integrin AlphaIIbBeta3 in inactive state 2JQF ; ; Full Length Leader Protease of Foot and Mouth Disease Virus C51A Mutant 6PH4 ; 3.25 ; Full length LOV-PAS-HK construct from the LOV-HK sensory protein from Brucella abortus (light-adapted, construct 15-489) 6SX5 ; 2.2 ; Full length Mutant Open-form Sodium Channel NavMs 6YZ2 ; 2.2 ; Full length Open-form Sodium Channel NavMs F208L 6YZ0 ; 2.3 ; Full length Open-form Sodium Channel NavMs F208L in complex with Cannabidiol (CBD) 5HVD ; 2.6 ; Full length Open-form Sodium Channel NavMs I218C 6QZZ ; 1.85 ; full length OphA V404E in complex with SAH 6QZY ; 1.61 ; full length OphA V406P in complex with SAH 3EJC ; 1.85 ; Full length Receptor Binding Protein from Lactococcal phage TP901-1 7MSW ; 3.76 ; Full length SARS-CoV-2 Nsp2 4ZR0 ; 3.8 ; Full length scs7p (only hydroxylase domain visible) 3PC2 ; 1.8 ; Full length structure of cystathionine beta-synthase from Drosophila 3PC3 ; 1.55 ; Full length structure of cystathionine beta-synthase from Drosophila in complex with aminoacrylate 3PC4 ; 1.7 ; Full length structure of cystathionine beta-synthase from Drosophila in complex with serine 8BJD ; 2.4 ; Full length structure of LpMIP with bound inhibitor JK095 2Y1V ; 2.39 ; Full length structure of RrgB Pilus protein from Streptococcus pneumoniae 8BJC ; 1.71 ; Full length structure of the apo-state LpMIP. 8BK4 ; 1.34 ; Full length structure of the apo-state LpMIP. 2PY4 ; 1.49 ; Full length structure of the Mycobacterium tuberculosis dUTPase complexed with magnesium and alpha,beta-imido-dUTP. 4CGQ ; 2.0 ; Full length Tah1 bound to HSP90 peptide SRMEEVD 4CGU ; 2.11 ; Full length Tah1 bound to yeast PIH1 and HSP90 peptide SRMEEVD 5HVX ; 2.45 ; Full length Wild-Type Open-form Sodium Channel NavMs 1LUG ; 0.95 ; Full Matrix Error Analysis of Carbonic Anhydrase 1LUQ ; 0.96 ; Full Matrix Error Analysis of Streptavidin 8AGD ; 3.5 ; Full SDBC and SOD assembly 1FSD ; ; FULL SEQUENCE DESIGN 1 (FSD-1) OF BETA BETA ALPHA MOTIF, NMR, 41 STRUCTURES 1FSV ; ; FULL SEQUENCE DESIGN 1 (FSD-1) OF BETA BETA ALPHA MOTIF, NMR, MINIMIZED AVERAGE STRUCTURE 6XV2 ; ; Full structure of RYMV P1 protein, derived from crystallographic and NMR data. 3J7L ; 3.8 ; Full virus map of brome mosaic virus 6DG7 ; 3.32 ; Full-length 5-HT3A receptor in a serotonin-bound conformation- State 1 6DG8 ; 3.89 ; Full-length 5-HT3A receptor in a serotonin-bound conformation- State 2 4U2Q ; 3.5247 ; Full-length AMPA subtype ionotropic glutamate receptor GluA2 in complex with partial agonist kainate 4U2P ; 3.2386 ; Full-length AMPA subtype ionotropic glutamate receptor GluA2 in the apo state 8E40 ; 3.57 ; Full-length APOBEC3G in complex with HIV-1 Vif, CBF-beta, and fork RNA 1R8Q ; 1.86 ; FULL-LENGTH ARF1-GDP-MG IN COMPLEX WITH BREFELDIN A AND A SEC7 DOMAIN 6RBG ; 3.0 ; full-length bacterial polysaccharide co-polymerase 8BHW ; 3.2 ; Full-length bacterial polysaccharide co-polymerase WzzE from E. coli. C4 symmetry 8P3O ; 2.9 ; Full-length bacterial polysaccharide co-polymerase WzzE mutant R267A from E. coli. C4 symmetry 8P3P ; 2.5 ; Full-length bacterial polysaccharide co-polymerase WzzE mutant R267E from E. coli. C4 symmetry 3WPU ; 1.6 ; Full-length beta-fructofuranosidase from Microbacterium saccharophilum K-1 4FXQ ; 1.9599 ; Full-length Certhrax toxin from Bacillus cereus in complex with Inhibitor P6 2Q5T ; 2.1 ; Full-length Cholix toxin from Vibrio Cholerae 3Q9O ; 1.793 ; Full-length Cholix toxin from Vibrio cholerae in complex with NAD 7PFP ; 6.1 ; Full-length cryo-EM structure of the native human uromodulin (UMOD)/Tamm-Horsfall protein (THP) filament 8HD4 ; 2.68 ; Full-length crystal structure of mycobacterium tuberculosis FadD23 in complex with AMPC16 7UDI ; 2.24 ; Full-length dimer of DNA-Damage Response Protein C from Deinococcus radiodurans 8U0G ; 4.28 ; Full-length dimer of DNA-Damage Response Protein C from Deinococcus radiodurans - Crystal form xMJ7124 8DWS ; 3.73 ; Full-length E47K SPOP 3ZD4 ; 2.2 ; Full-Length Hammerhead Ribozyme with G12A substitution at the general base position 2OEU ; 2.0 ; Full-length hammerhead ribozyme with Mn(II) bound 4A92 ; 2.73 ; Full-length HCV NS3-4A protease-helicase in complex with a macrocyclic protease inhibitor. 6XLC ; 3.66 ; Full-length Hsc82 bound to AMPPNP 6XLD ; 3.66 ; Full-length Hsc82 in complex with Aha1 CTD in the presence of AMPPNP 6XLF ; 3.15 ; Full-length Hsc82 in complex with Aha1 in the presence of AMP-PNP 6XLE ; 2.74 ; Full-length Hsc82 in complex with two Aha1 CTD in the presence of AMP-PNP 6XLG ; 2.71 ; Full-length Hsc82 in complex with two Aha1 CTD in the presence of ATPgammaS 4IGG ; 3.66 ; Full-length human alpha-catenin crystal structure 3SOA ; 3.5501 ; Full-length human CaMKII 8USO ; 2.3 ; Full-length human CaMKII delta holoenzyme 6WTH ; 3.06 ; Full-length human ENaC ECD 7KCL ; 3.14 ; Full-length human mitochondrial Hsp90 (TRAP1) in complex with SdhB in the presence of AMP-PNP 7KCM ; 3.43 ; Full-length human mitochondrial Hsp90 (TRAP1) in complex with SdhB in the presence of AMP-PNP 7KLV ; 3.1 ; Full-length human mitochondrial Hsp90 (TRAP1) SpyCatcher/SpyTag-SdhB heterodimer in the presence of AMP-PNP 6XG6 ; 3.2 ; Full-length human mitochondrial Hsp90 (TRAP1) with ADP-BeF3 7KCK ; 3.26 ; Full-length human mitochondrial Hsp90 (TRAP1) with AMP-PNP 4FIE ; 3.11 ; Full-length human PAK4 6N1K ; 3.057 ; Full-length human phenylalanine hydroxylase (PAH) in the resting state 6DJR ; 5.8 ; Full-length human TRPC3 in GDN 7SL7 ; 3.1 ; Full-length insulin receptor bound with both site 1 binding deficient mutant insulin (A-V3E) and site 2 binding deficient mutant insulin (A-L13R) 7SL1 ; 3.4 ; Full-length insulin receptor bound with site 1 binding deficient mutant insulin (A-V3E) 7SL2 ; 3.6 ; Full-length insulin receptor bound with site 2 binding deficient mutant insulin (A-L13R) -- asymmetric conformation 7SL3 ; 3.4 ; Full-length insulin receptor bound with site 2 binding deficient mutant insulin (A-L13R) -- symmetric conformation 7SL4 ; 5.0 ; Full-length insulin receptor bound with site 2 binding deficient mutant insulin (B-L17R) -- asymmetric conformation 7SL6 ; 3.7 ; Full-length insulin receptor bound with site 2 binding deficient mutant insulin (B-L17R) -- symmetric conformation 7STI ; 4.9 ; Full-length insulin receptor bound with unsaturated insulin WT (1 insulin bound) asymmetric conformation 7STH ; 3.5 ; Full-length insulin receptor bound with unsaturated insulin WT (2 insulin bound) symmetric conformation 7STJ ; 4.4 ; Full-length insulin receptor bound with unsaturated insulin WT (2 insulins bound) asymmetric conformation (Conformation 1) 7STK ; 4.0 ; Full-length insulin receptor bound with unsaturated insulin WT (2 insulins bound) asymmetric conformation (Conformation 2) 6XTU ; 2.52 ; FULL-LENGTH LTTR LYSG FROM CORYNEBACTERIUM GLUTAMICUM 6XTV ; 3.3 ; FULL-LENGTH LTTR LYSG FROM CORYNEBACTERIUM GLUTAMICUM WITH BOUND EFFECTOR ARG 6VDE ; 2.713 ; Full-length M. smegmatis Pol1 2M67 ; ; Full-length mercury transporter protein MerF in lipid bilayer membranes 8SSC ; 2.75 ; Full-Length Methionine synthase from Thermus thermophilus HB8 8FSZ ; 3.79 ; Full-length mouse 5-HT3A receptor in complex with ALB148471, open-like 8FRW ; 2.92 ; Full-length mouse 5-HT3A receptor in complex with ALB148471, pre-activated 8FSB ; 2.75 ; Full-length mouse 5-HT3A receptor in complex with serotonin, open-like 8FRZ ; 2.75 ; Full-length mouse 5-HT3A receptor in complex with serotonin, pre-activated 8FSP ; 3.79 ; Full-length mouse 5-HT3A receptor in complex with SMP100, open-like 8FRX ; 2.7 ; Full-length mouse 5-HT3A receptor in complex with SMP100, pre-activated 6OLY ; 3.112 ; Full-length MthK channel at 3.1 angstrom resolution 5GS6 ; 2.852 ; Full-length NS1 structure of Zika virus from 2015 Brazil strain 4X6G ; 2.0 ; Full-length OxyR C199D from pseudomonas aeruginosa 8TUA ; 4.1 ; Full-length P-Rex1 in complex with inositol 1,3,4,5-tetrakisphosphate (IP4) 1OQW ; 2.0 ; Full-Length PAK Pilin from Pseudomonas aeruginosa 2PI2 ; 2.0 ; Full-length Replication protein A subunits RPA14 and RPA32 6OR5 ; 4.0 ; Full-length S. pombe Mdn1 in the presence of AMPPNP (ring region) 6OR6 ; 5.3 ; Full-length S. pombe Mdn1 in the presence of AMPPNP (tail region) 6ORB ; 7.7 ; Full-length S. pombe Mdn1 in the presence of ATP and Rbin-1 7MDE ; 2.7 ; Full-length S95A ClbP 7MDF ; 2.3 ; Full-length S95A ClbP bound to N-acyl-D-asparagine analog 7CM5 ; 2.6 ; Full-length Sarm1 in a self-inhibited state 2MWG ; ; Full-Length Solution Structure Of YtvA, a LOV-Photoreceptor Protein and Regulator of Bacterial Stress Response 5YDW ; 3.3 ; Full-length structure of HypT from Salmonella typhimuriuma (hypochlorite-specific LysR-type transcriptional regulator) 7A2G ; 4.1 ; Full-length structure of the substrate-free tyrosine hydroxylase (apo-TH). 3SZP ; 2.202 ; Full-length structure of the Vibrio cholerae virulence activator, AphB, a member of the LTTR protein family 2XC1 ; 1.65 ; Full-length Tailspike Protein Mutant Y108W of Bacteriophage P22 7N9Y ; 4.8 ; Full-length TcdB and CSPG4 (401-560) complex 7JM3 ; 3.4 ; Full-length three-dimensional structure of the influenza A virus M1 protein and its organization into a matrix layer 8DWV ; 3.6 ; Full-length wild type SPOP 7MDC ; 2.7 ; Full-length wildtype ClbP inhibited by hexanoyl-D-asparagine boronic acid 2NAM ; ; Full-length WT SOD1 in DPC MICELLE 1JSF ; 1.15 ; FULL-MATRIX LEAST-SQUARES REFINEMENT OF HUMAN LYSOZYME 1JSE ; 1.12 ; FULL-MATRIX LEAST-SQUARES REFINEMENT OF TURKEY LYSOZYME 2P6J ; ; Full-sequence computational design and solution structure of a thermostable protein variant 5OBT ; 1.5 ; Fully activated A. thaliana legumain isoform gamma in complex with Ac-YVAD-CMK 2DCP ; ; Fully automated NMR structure determination of the ENTH-VHS domain AT3G16270 from Arabidopsis thaliana 2DCQ ; ; Fully automated NMR structure determination of the rhodanese homology domain At4g01050(175-295) from Arabidopsis thaliana 2DCR ; ; Fully automated solution structure determination of the Fes SH2 domain 5K7X ; 2.803 ; Fully ligated Adenylosuccinate Synthetase from Pyrococcus horikoshii OT3 with GTP, IMP and Hadacidin 2GCQ ; 2.0 ; Fully ligated E.Coli Adenylosuccinate Synthetase with GTP, 2'-deoxy-IMP and Hadacidin 3PZA ; 1.85 ; Fully Reduced (All-ferrous) Pyrococcus rubrerythrin after a 10 second exposure to peroxide. 1YV1 ; 1.5 ; Fully reduced state of nigerythrin (all ferrous) 1JJ2 ; 2.4 ; Fully Refined Crystal Structure of the Haloarcula marismortui Large Ribosomal Subunit at 2.4 Angstrom Resolution 6ZXL ; 4.2 ; Fully-loaded anthrax lethal toxin in its heptameric pre-pore state and PA7LF(2+1A) arrangement 6ZXK ; 3.8 ; Fully-loaded anthrax lethal toxin in its heptameric pre-pore state and PA7LF(2+1B) arrangement 6ZXJ ; 3.5 ; Fully-loaded anthrax lethal toxin in its heptameric pre-pore state, in which the third lethal factor is masked out (PA7LF3-masked) 1FUO ; 1.98 ; FUMARASE C WITH BOUND CITRATE 1FUR ; 1.95 ; FUMARASE MUTANT H188N WITH BOUND SUBSTRATE L-MALATE AT PUTATIVE ACTIVATOR SITE 1FUQ ; 2.0 ; FUMARASE WITH BOUND 3-TRIMETHYLSILYLSUCCINIC ACID 1FUP ; 2.3 ; FUMARASE WITH BOUND PYROMELLITIC ACID 8SBS ; 1.91 ; Fumarate C - R126A in (3-(N-morpholino)propanesulfonic acid) at pH 7.5 5F92 ; 1.859 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate 5F91 ; 1.998 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator (N-(5-(azepan-1-ylsulfonyl)-2-methoxyphenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide) 6S88 ; 1.59 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(2-Methoxy-5-((1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)sulfonyl)phenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide 6S7K ; 1.55 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(2-Methoxy-5-(N-methylsulfamoyl)phenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide 6S7S ; 1.7 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(2-Methoxy-5-(N-phenylsulfamoyl)phenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide 6S7Z ; 1.85 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(5-((3,4-Dihydroisoquinolin-2(1H)-yl)sulfonyl)-2-methoxyphenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide 6S7U ; 1.48 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(5-(Azepan-1-ylsulfonyl)-2-methoxyphenyl)-2-(1H-indol-3-yl)acetamide 6S7W ; 1.44 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(5-(Azepan-1-ylsulfonyl)-2-methoxyphenyl)-2-(quinolin-4-yl)acetamide 6S43 ; 1.42 ; Fumarate hydratase of Mycobacterium tuberculosis in complex with formate and allosteric modulator N-(5-(Azocan-1-ylsulfonyl)-2-methoxyphenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl)acetamide 5ZYN ; 1.75 ; Fumarate reductase 6IYM ; 2.1 ; Fumarylacetoacetate hydrolase (EaFAH) from psychrophilic Exiguobacterium antarcticum 2IZ5 ; 2.29 ; FUNCTION AND STRUCTURE OF THE MOLYBDENUM COFACTOR CARRIER PROTEIN MCP FROM CHLAMYDOMONAS REINHARDTII 7XL7 ; 1.85 ; Function And Structure Research of Salmonella typhimurium Unknown Functional Protein MicN 2ZUM ; 1.95 ; Functional Analysis of Hyperthermophilic Endocellulase from the Archaeon Pyrococcus horikoshii 2ZUN ; 2.0 ; Functional Analysis of Hyperthermophilic Endocellulase from the Archaeon Pyrococcus horikoshii 3AXX ; 1.9 ; Functional analysis of hyperthermophilic endocellulase from the Archaeon Pyrococcus horikoshii 2XOG ; 1.72 ; Functional and Structural Analyses of N-Acylsulfonamide-Linked Dinucleoside Inhibitors of Ribonuclease A 2XOI ; 1.72 ; Functional and Structural Analyses of N-Acylsulfonamide-Linked Dinucleoside Inhibitors of Ribonuclease A 2J89 ; 1.7 ; Functional and structural aspects of poplar cytosolic and plastidial type A methionine sulfoxide reductases 2EJ4 ; ; Functional and structural basis of nuclear localization signal in ZIC3 zinc finger domain: a role of conserved tryptophan residue in the zinc finger domain 5Z9S ; 2.3 ; Functional and Structural Characterization of a beta-Glucosidase Involved in Saponin Metabolism from Intestinal Bacteria 3CBG ; 2.0 ; Functional and Structural Characterization of a Cationdependent O-Methyltransferase from the Cyanobacterium Synechocystis Sp. Strain PCC 6803 5UM2 ; 1.14 ; Functional and structural characterization of a Sulfate-binding protein (Sbp) from Xanthomonas citri 7YQB ; 1.704 ; Functional and Structural Characterization of Norovirus GII.6 in Recognizing Histo-blood Group Antigens 7YQG ; 1.698 ; Functional and Structural Characterization of Norovirus GII.6 in Recognizing Histo-blood Group Antigens 4COK ; 1.69 ; Functional and Structural Characterization of Pyruvate decarboxylase from Gluconoacetobacter diazotrophicus 5GJ6 ; 2.388 ; Functional and structural characterization of P[19] rotavirus VP8* interaction with histo-blood group antigens 5YMT ; 2.199 ; Functional and structural characterization of P[19] rotavirus VP8* interaction with histo-blood group antigens 5YMU ; 1.8 ; Functional and structural characterization of P[19] rotavirus VP8* interaction with histo-blood group antigens 7PCA ; 1.05 ; Functional and structural characterization of redox sensitive superfolder green fluorescent protein and variants 7PCZ ; 1.35 ; Functional and structural characterization of redox sensitive superfolder green fluorescent protein and variants 7PD0 ; 2.0 ; Functional and structural characterization of redox sensitive superfolder green fluorescent protein and variants 2AS9 ; 1.7 ; Functional and structural characterization of Spl proteases from staphylococcus aureus 6KJH ; 1.68 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 6KJJ ; 2.492 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 6KJP ; 2.06 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 6KJQ ; 2.35 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 6KJR ; 2.361 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 6KJT ; 2.113 ; Functional and structural insights into the unusual oxyanion hole-like geometry in macrolactin acyltransferase selective for dicarboxylic acyl donors 3ZH0 ; 2.0 ; Functional and structural role of the N-terminal extension in Methanosarcina acetivorans protoglobin 4J1V ; 1.95 ; Functional and structural studies of MOBKL1B, a Salvador/Warts/Hippo tumor suppressor pathway, in HCV replication 2RGK ; 2.5 ; Functional annotation of Escherichia coli yihS-encoded protein 2ZBL ; 1.6 ; Functional annotation of Salmonella enterica yihS-encoded protein 2R17 ; 2.8 ; Functional architecture of the retromer cargo-recognition complex 5M99 ; 1.96 ; Functional Characterization and Crystal Structure of Thermostable Amylase from Thermotoga petrophila, reveals High Thermostability and an Archaic form of Dimerization 2HO1 ; 2.0 ; Functional Characterization of Pseudomonas Aeruginosa pilF 4P97 ; 1.86 ; Functional conservation despite structural divergence in ligand-responsive RNA switches 4PHY ; 3.1 ; Functional conservation despite structural divergence in ligand-responsive RNA switches 8GM4 ; 2.12 ; Functional construct of the Eukaryotic elongation factor 2 kinase bound to an ATP-competitive inhibitor 8GM5 ; 2.12 ; Functional construct of the Eukaryotic elongation factor 2 kinase bound to Calmodulin, ADP and to the A-484954 inhibitor and showing two conformations for the 498-520 loop 3BZ5 ; 2.7 ; Functional domain of InlJ from Listeria monocytogenes includes a cysteine ladder 2ANP ; 1.9 ; Functional Glutamate 151 to Histidine mutant of the aminopeptidase from Aeromonas Proteolytica. 4EP7 ; 2.2805 ; Functional implications from the Cid1 poly(U) polymerase crystal structure 4I1B ; 2.0 ; FUNCTIONAL IMPLICATIONS OF INTERLEUKIN-1BETA BASED ON THE THREE-DIMENSIONAL STRUCTURE 6PV6 ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots 7JMG ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots - Frame 22 - State 2 (S2) 7JMI ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots - Frame 29 - State 3 (S3) 7JMH ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots - Frame 35 - State 4 (S4) 7JMJ ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots - Frame 37 - State 5 (S5) 7JMF ; 4.5 ; Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots - Frame 42 - State 6 (S6) 2C70 ; 2.06 ; Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins 2C72 ; 2.0 ; Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins 2C73 ; 2.2 ; Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins 2C75 ; 1.7 ; Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins 2C76 ; 1.7 ; Functional Role of the Aromatic Cage in Human Monoamine Oxidase B: Structures and Catalytic Properties of Tyr435 Mutant Proteins 3HSU ; 1.69 ; Functional roles of the 6-s-cysteinyl, 8 alpha-N1-histidyl FAD in Glucooligosaccharide Oxidase from Acremonium strictum 8IX7 ; 1.7 ; Functional significance of serine 13 in the active site of rice Phi-class glutathione S-transferase F3. 3U8B ; 2.299 ; Functionally selective inhibition of Group IIA phospholipase A2 reveals a role for vimentin in regulating arachidonic acid metabolism 3U8D ; 1.805 ; Functionally selective inhibition of Group IIA phospholipase A2 reveals a role for vimentin in regulating arachidonic acid metabolism 3U8H ; 2.3 ; Functionally selective inhibition of Group IIA phospholipase A2 reveals a role for vimentin in regulating arachidonic acid metabolism 3U8I ; 1.1 ; Functionally selective inhibition of Group IIA phospholipase A2 reveals a role for vimentin in regulating arachidonic acid metabolism 3VN3 ; 0.95 ; Fungal antifreeze protein exerts hyperactivity by constructing an inequable beta-helix 7WDM ; 2.123 ; Fungal immunomodulatory protein FIP-gmi 7WDL ; 1.903 ; Fungal immunomodulatory protein FIP-nha 8GO6 ; 2.813 ; Fungal immunomodulatory protein FIP-nha N39A 8GO7 ; 2.303 ; Fungal immunomodulatory protein FIP-nha N5+39A 8GO5 ; 2.809 ; Fungal immunomodulatory protein FIP-nha WT 2R0H ; 1.9 ; Fungal lectin CGL3 in complex with chitotriose (chitotetraose) 8GJ5 ; 2.3 ; fungal pcna and peptidomimetic 4M8B ; 2.61 ; Fungal Protein 6T2H ; 1.41 ; Furano[2,3-d]prymidine amides as Notum inhibitors 6T2K ; 1.38 ; Furano[2,3-d]prymidine amides as Notum inhibitors 7R1A ; 3.9 ; Furin Cleaved Alpha Variant SARS-CoV-2 Spike in complex with 3 ACE2 6ZGI ; 2.9 ; Furin Cleaved Spike Protein of SARS-CoV-2 in Closed Conformation 6ZGH ; 6.8 ; Furin Cleaved Spike Protein of SARS-CoV-2 in Intermediate Conformation 6ZGG ; 3.8 ; Furin Cleaved Spike Protein of SARS-CoV-2 with One RBD Erect 7VHJ ; 4.2 ; Furin Site deletion of SARS-CoV-2 spike 3PSB ; 3.4 ; Furo[2,3-c]pyridine-based Indanone Oximes as Potent and Selective B-Raf Inhibitors 4TNA ; 2.5 ; FURTHER REFINEMENT OF THE STRUCTURE OF YEAST T-RNA-PHE 4BL4 ; 4.06 ; Further structural insights into the binding of complement factor H by complement regulator acquiring surface protein 1, CspA (BbCRASP-1), of Borrelia burgdorferi. 3EY4 ; 3.0 ; Further studies with the 2-amino-1,3-thiazol-4(5H)-one class of 11-hydroxysteroid dehydrogenase type 1 (11-HSD1) inhibitors: Reducing pregnane X receptor (PXR) activity and exploring activity in a monkey pharmacodynamic model 7QFY ; 1.62 ; Fusarium oxysporum M36 protease without the propeptide 1FN8 ; 0.81 ; FUSARIUM OXYSPORUM TRYPSIN AT ATOMIC RESOLUTION 1FY4 ; 0.81 ; FUSARIUM OXYSPORUM TRYPSIN AT ATOMIC RESOLUTION 1FY5 ; 0.81 ; Fusarium oxysporum trypsin at atomic resolution 1GDN ; 0.81 ; FUSARIUM OXYSPORUM TRYPSIN AT ATOMIC RESOLUTION 1GDQ ; 0.93 ; FUSARIUM OXYSPORUM TRYPSIN AT ATOMIC RESOLUTION 1GDU ; 1.07 ; FUSARIUM OXYSPORUM TRYPSIN AT ATOMIC RESOLUTION 1XZK ; 2.01 ; FUSARIUM SOLANI CUTINASE COMPLEX WITH DI(ISOPROPYL)PHOSPHATE 1XZL ; 1.69 ; FUSARIUM SOLANI CUTINASE COMPLEX WITH N-HEXYLPHOSPHONATE ETHYL ESTER 1XZM ; 1.75 ; FUSARIUM SOLANI CUTINASE COMPLEX WITH N-UNDECYL O-METHYL CHLORO PHOSPHONATE ESTER 1CUS ; 1.25 ; FUSARIUM SOLANI CUTINASE IS A LIPOLYTIC ENZYME WITH A CATALYTIC SERINE ACCESSIBLE TO SOLVENT 1XZA ; 1.8 ; FUSARIUM SOLANI CUTINASE MUTANT WITH SER 129 REPLACED BY CYS 1XZB ; 1.75 ; FUSARIUM SOLANI CUTINASE MUTANT WITH SER 129 REPLACED BY CYS COMPLEX WITH MERCURY ACETATE 1XZC ; 1.75 ; FUSARIUM SOLANI CUTINASE MUTANT WITH SER 129 REPLACED BY CYS COMPLEX WITH PARA-SULFUROUSPHENYL MERCURY 1XZD ; 2.7 ; FUSARIUM SOLANI CUTINASE MUTANT WITH SER 213 REPLACED BY CYS 1XZE ; 1.75 ; FUSARIUM SOLANI CUTINASE MUTANT WITH SER 92 REPLACED BY CYS 1XZI ; 1.69 ; FUSARIUM SOLANI CUTINASE MUTANT WITH THR 119 REPLACED BY HIS 1XZF ; 1.69 ; FUSARIUM SOLANI CUTINASE MUTANT WITH THR 144 REPLACED BY CYS 1XZJ ; 1.69 ; FUSARIUM SOLANI CUTINASE MUTANT WITH THR 38 REPLACED BY PHE 1XZG ; 1.69 ; FUSARIUM SOLANI CUTINASE MUTANT WITH THR 45 REPLACED BY ALA 1XZH ; 1.69 ; FUSARIUM SOLANI CUTINASE MUTANT WITH THR 80 REPLACED BY PRO 6KC0 ; 2.295 ; fused To-MtbCsm1 with 2ATP 6KBD ; 3.0 ; fused To-MtbCsm1 with 2dATP 6WZS ; 3.23 ; Fusibacterium ulcerans ZTP riboswitch bound to m-1-pyridinyl AICA 6WZR ; 3.2 ; Fusibacterium ulcerans ZTP riboswitch bound to p-1-pyridinyl AICA 6ZOD ; 2.85 ; Fusidic acid binding to the allosteric deep transmembrane domain binding pocket, TM7/TM8 groove, and TM1/TM2 groove of the fully induced AcrB T protomer 6ZO5 ; 2.5 ; Fusidic acid binding to the TM1/TM2 groove of AcrB-G619P_G621P 6ZOF ; 3.3 ; Fusidic acid binding to the TM7/TM8 groove of AcrB-F380A T protomer 5JMN ; 2.5 ; Fusidic acid bound AcrB 6Q4O ; 2.8 ; Fusidic acid bound AcrB_I27A 6Q4P ; 2.8 ; Fusidic acid bound AcrB_N298A 6Q4N ; 2.8 ; Fusidic acid bound AcrB_V340A 7B8S ; 2.3 ; Fusidic acid bound structure of bacterial efflux pump. 4ADN ; 1.65 ; Fusidic acid resistance protein FusB 4ADO ; 2.3 ; Fusidic acid resistance protein FusB 2KNY ; ; Fusion construct of CR17 from LRP-1 and ApoE residues 130-149 7R3E ; 3.46 ; Fusion construct of PqsE and RhlR in complex with the synthetic antagonist mBTL 5VAW ; 1.69 ; Fusion of Maltose-binding Protein and PilA from Acinetobacter baumannii AB5075 5IHJ ; 2.2 ; Fusion of Maltose-binding Protein and PilA from Acinetobacter baumannii BIDMC57 5CFV ; 1.8 ; Fusion of Maltose-binding Protein and PilA from Acinetobacter nosocomialis M2 7BG0 ; 2.89 ; Fusion of MBP and the backbone of the long-acting amylin analog AM833. 1TOL ; 1.85 ; FUSION OF N-TERMINAL DOMAIN OF THE MINOR COAT PROTEIN FROM GENE III IN PHAGE M13, AND C-TERMINAL DOMAIN OF E. COLI PROTEIN-TOLA 4XEV ; 2.0073 ; Fusion of Pyk2-FAT domain with Leupaxin LD1 motif, complexed with Leupaxin LD4 peptide 7MY8 ; ; Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles 6J7I ; 3.3 ; Fusion protein of heme oxygenase-1 and NADPH cytochrome P450 reductase (15aa) 6J7A ; 3.269 ; Fusion protein of heme oxygenase-1 and NADPH cytochrome P450 reductase (17aa) 6J79 ; 3.331 ; Fusion protein of heme oxygenase-1 and NADPH-cytochrome P450 reductase (13aa) 5COC ; 2.6691 ; Fusion protein of human calmodulin and B4 domain of protein A from staphylococcal aureus 5CBO ; 2.802 ; Fusion protein of mbp3-16 and B4 domain of protein A from staphylococcal aureus 5CBN ; 2.3 ; Fusion protein of mbp3-16 and B4 domain of protein A from staphylococcal aureus with chemical cross-linker EY-CBS 6F37 ; 2.2 ; Fusion protein of RSL and trimeric coiled coil 5EWX ; 2.6 ; Fusion protein of T4 lysozyme and B4 domain of protein A from staphylococcal aureus with chemical cross-linker EY-CBS 6DBS ; 2.602 ; Fusion surface structure, function, and dynamics of gamete fusogen HAP2 2N35 ; ; Fusion to a Highly Stable Consensus Albumin Binding Domain Allows for Tunable Pharmacokinetics 5BTP ; 2.816 ; Fusobacterium ulcerans ZTP riboswitch bound to ZMP 2PT1 ; 2.0 ; FutA1 Synechocystis PCC 6803 1A7P ; 2.01 ; FV FRAGMENT OF MOUSE MONOCLONAL ANTIBODY D1.3 (BALB/C, IGG1, K) ENGINEERED MUTANT PRO95L->SER ON VARIANT CHAIN L GLU81->ASP AND CHAIN H LEU312->VAL 1A7Q ; 2.0 ; FV FRAGMENT OF MOUSE MONOCLONAL ANTIBODY D1.3 (BALB/C, IGG1, K) HIGH AFFINITY EXPRESSED VARIANT CONTAINING SER26L->GLY, ILE29L->THR, GLU81L->ASP, THR97L->SER, PRO240H->LEU, ASP258H->ALA, LYS281H->GLU, ASN283H->ASP AND LEU312H->VAL 1A7O ; 2.0 ; FV FRAGMENT OF MOUSE MONOCLONAL ANTIBODY D1.3 (BALB/C, IGG1, K) R96L DELETION MUTANT ON VARIANT FOR CHAIN L GLU81->ASP AND CHAIN H LEU312->VAL 1A7R ; 2.01 ; FV FRAGMENT OF MOUSE MONOCLONAL ANTIBODY D1.3 (BALB/C, IGG1, K) VARIANT CHAIN L GLU81->ASP 1A7N ; 2.01 ; FV FRAGMENT OF MOUSE MONOCLONAL ANTIBODY D1.3 (BALB/C, IGG1, K) VARIANT FOR CHAIN L GLU81->ASP AND CHAIN H LEU312->VAL 1OAR ; 2.23 ; Fv IgE SPE-7 in complex with Alizarin Red 4RZC ; 2.723 ; Fv M6P-1 in complex with mannose-6-phosphate 1KIR ; 2.0 ; FV MUTANT Y(A 50)S (VL DOMAIN) OF MOUSE MONOCLONAL ANTIBODY D1.3 COMPLEXED WITH HEN EGG WHITE LYSOZYME 1KIQ ; 1.85 ; FV MUTANT Y(B 101)F (VH DOMAIN) OF MOUSE MONOCLONAL ANTIBODY D1.3 COMPLEXED WITH HEN EGG WHITE LYSOZYME 1KIP ; 2.1 ; FV MUTANT Y(B 32)A (VH DOMAIN) OF MOUSE MONOCLONAL ANTIBODY D1.3 COMPLEXED WITH HEN EGG WHITE LYSOZYME 1OAX ; 2.67 ; Fv Structure of the IgE SPE-7 in complex with acenaphthenequinone 1OAU ; 1.8 ; Fv Structure of the IgE SPE-7 in complex with DNP-Ser (immunising hapten) 2J8L ; ; FXI Apple 4 domain loop-out conformation 6AOD ; 1.8 ; FXIa antibody complex 7FBP ; 1.99 ; FXIIa-cMCoFx1 complex 5MHL ; 2.4 ; FXIIIa in complex with the inhibitor Mi0621 5MHM ; 2.12 ; FXIIIa in complex with the inhibitor ZED1630 5MHN ; 2.48 ; FXIIIa in complex with the inhibitor ZED2360 5MHO ; 2.92 ; FXIIIa in complex with the inhibitor ZED2369 3P89 ; 2.3 ; FXR bound to a quinolinecarboxylic acid 3P88 ; 2.95 ; FXR bound to isoquinolinecarboxylic acid 5YXJ ; 2.62 ; FXR ligand binding domain 4QE8 ; 2.62 ; FXR with DM175 and NCoA-2 peptide 3HC6 ; 3.2 ; FXR with SRC1 and GSK088 3RVF ; 3.1 ; FXR with SRC1 and GSK2034 3RUU ; 2.502 ; FXR with SRC1 and GSK237 3RUT ; 3.0 ; FXR with SRC1 and GSK359 3DCU ; 2.95 ; FXR with SRC1 and GSK8062 3HC5 ; 2.6 ; FXR with SRC1 and GSK826 3DCT ; 2.5 ; FXR with SRC1 and GW4064 6A5W ; 2.88 ; FXR-LBD with HNC143 and SRC1 6A5X ; 2.6 ; FXR-LBD with HNC180 and SRC1 8DDG ; 0.9 ; FYF peptide forms a standard beta-sheet 4E0L ; 1.7 ; FYLLYYT segment from human Beta 2 Microglobulin (62-68) displayed on 54-membered macrocycle scaffold 2MRK ; ; Fyn SH2 domain in complex with the natural inhibitory phosphotyrosine peptide 6IPZ ; 1.576 ; Fyn SH3 domain R96W mutant, crystallized with 18-crown-6 1WFK ; ; FYVE domain of FYVE domain containing 19 protein from Mus musculus 8JHC ; 3.3 ; FZD3 in inactive state 8JHI ; 3.2 ; FZD3-Gs complex 8JHB ; 3.3 ; FZD6 Gs complex 8JH7 ; 3.2 ; FZD6 in inactive state 7EVW ; 3.22 ; Fzd7 -Gs complex 5NR1 ; 2.004 ; FzlA from C. crescentus 1GP2 ; 2.3 ; G PROTEIN HETEROTRIMER GI_ALPHA_1 BETA_1 GAMMA_2 WITH GDP BOUND 1GG2 ; 2.4 ; G PROTEIN HETEROTRIMER MUTANT GI_ALPHA_1(G203A) BETA_1 GAMMA_2 WITH GDP BOUND 1A13 ; ; G PROTEIN-BOUND CONFORMATION OF MASTOPARAN-X, NMR, 14 STRUCTURES 1YM7 ; 4.5 ; G Protein-Coupled Receptor Kinase 2 (GRK2) 4PNK ; 2.56 ; G protein-coupled receptor kinase 2 in complex with GSK180736A 7TD9 ; 1.61 ; G-059 bound to the SMARCA4 (BRG1) Bromodomain 1OQX ; 2.6 ; G-2 glycovariant of human IgG Fc bound to minimized version of Protein A called Z34C 7TAB ; 1.16 ; G-925 bound to the SMARCA4 (BRG1) Bromodomain 6K3Y ; ; G-quadruplex complex with cyclic dinucleotide 3'-3' cGAMP 6K3X ; ; G-quadruplex complex with linear dinucleotide d(AG) 5LIG ; ; G-Quadruplex formed at the 5'-end of NHEIII_1 Element in human c-MYC promoter bound to triangulenium based fluorescence probe DAOTA-M2 5MTA ; ; G-quadruplex formed within promoters of Plasmodium falciparum B var genes 5MTG ; ; G-quadruplex formed within promoters of Plasmodium falciparum B var genes - form I 5O4D ; ; G-quadruplex of Human papillomavirus type 52 6JCD ; ; G-quadruplex peripheral knot 2JWQ ; ; G-quadruplex recognition by quinacridines: a SAR, NMR and Biological study 2LBY ; ; G-quadruplex structure formed at the 5'-end of NHEIII_1 element in human c-MYC promoter 2F8U ; ; G-quadruplex structure formed in human Bcl-2 promoter, hybrid form 7SXP ; 2.9 ; G-quadruplex structure formed in the NRAS mRNA with a G8U substitution 2N3M ; ; G-quadruplex structure of an anti-proliferative DNA sequence 5OPH ; ; G-quadruplex structure of DNA oligonucleotide containing GGGGCC repeats linked to ALS and FTD 7OQT ; ; G-quadruplex structure of the C. elegans telomeric repeat: A two tetrads basket type conformation stabilised by a Hoogsteen C-T base-pair 8PSI ; ; G-quadruplex with a 1-nt V-shaped loop from a G-rich sequence with five G-runs 6ZRM ; ; G-quadruplex with a G-A bulge 7ATZ ; ; G-quadruplex with V-shaped loop from the first repeat of KCNN4 minisatellite 2N60 ; ; G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad water complex and implication for small-molecule binding 1Y27 ; 2.4 ; G-riboswitch-guanine complex 2M53 ; ; G-rich VEGF aptamer with LNA modifications 2MKM ; ; G-triplex structure and formation propensity 2MKO ; ; G-triplex structure and formation propensity 7UVK ; 3.28 ; G. haemolysans IgA1 protease 1D91 ; 2.1 ; G.T BASE PAIRS IN A DNA HELIX. THE CRYSTAL STRUCTURE OF D(G-G-G-G-T-C-C-C) 4G6D ; 1.9971 ; G1 ORF67 / Staphyloccus aureus sigmaA domain 4 complex 4G8X ; 3.001 ; G1 ORF67 / Staphyloccus aureus sigmaA domain 4 complex 4G94 ; 1.9971 ; G1 ORF67 / Staphyloccus aureus sigmaA domain 4 complex 1IP5 ; 1.8 ; G105A HUMAN LYSOZYME 3QPL ; 3.2 ; G106W mutant of EthR from Mycobacterium tuberculosis 7U2F ; 2.2 ; G116F Pseudomonas aeruginosa azurin 2XMD ; 2.3 ; G117H mutant of human butyrylcholinesterase in complex with echothiophate 2XMC ; 2.4 ; G117H mutant of human butyrylcholinesterase in complex with fluoride anion 2XMB ; 2.1 ; G117H mutant of human butyrylcholinesterase in complex with sulfate 2XMG ; 2.7 ; G117H mutant of human butyrylcholinesterase in complex with VX 1IP6 ; 1.8 ; G127A HUMAN LYSOZYME 1IP7 ; 1.9 ; G129A HUMAN LYSOZYME 1A4R ; 2.5 ; G12V MUTANT OF HUMAN PLACENTAL CDC42 GTPASE IN THE GDP FORM 5BV8 ; 1.59 ; G1324S mutation in von Willebrand Factor A1 domain 1NG8 ; ; G15-Gramicidin A in Sodium Dodecyl Sulfate Micelles (NMR) 7LD6 ; 1.3 ; G150A Pseudomonas fluorescens isocyanide hydratase (G150A-1) at 274K, Phenix-refined 7LD7 ; 1.25 ; G150A Pseudomonas fluorescens isocyanide hydratase (G150A-2) at 274K, Phenix-refined 7LDB ; 1.35 ; G150A Pseudomonas fluorescens isocyanide hydratase (G150A-3) at 274K, Phenix-refined 7LDM ; 1.15 ; G150T Pseudomonas fluorescens isocyanide hydratase (G150T-1) at 274K, Phenix-refined 7LDI ; 1.2 ; G150T Pseudomonas fluorescens isocyanide hydratase (G150T-2) at 274K, Phenix-refined 7LDO ; 1.1 ; G150T Pseudomonas fluorescens isocyanide hydratase (G150T-3) at 274K, Phenix-refined 1GN6 ; 2.9 ; G152A mutant of Mycobacterium tuberculosis iron-superoxide dismutase. 5CT8 ; 1.29 ; G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 0% [BMIM][Cl] 5CTA ; 1.24 ; G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 10% [BMIM][Cl] 5CUR ; 1.302 ; G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 20% [BMIM][Cl] 5CT9 ; 1.4 ; G158E/K44E/R57E/Y49E Bacillus subtilis lipase A with 5% [BMIM][Cl] 5KJ1 ; 1.2 ; G173A horse liver alcohol dehydrogenase complexed with NAD+ and pentafluorobenzyl alcohol 3OV3 ; 2.5 ; G211F mutant of curcumin synthase 1 from Curcuma longa 4IHM ; 1.29 ; G215S, A251G, T257A, D260G, T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris 4IK2 ; 1.4 ; G215S, A251G, T257A, D260G, T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris with N-BOC-L-Leu 4IAV ; 1.35 ; G215S, A251G, T257A, D260G, T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris with N-Sulfamoyl-L-phenylalanine 4RNU ; 2.677 ; G303 Circular Permutation of Old Yellow Enzyme 4RNV ; 2.473 ; G303 Circular Permutation of Old Yellow Enzyme with the Inhibitor p-Hydroxybenzaldehyde 5MIU ; 3.5 ; G307E variant of Murine Apoptosis Inducing Factor (oxidized state) 5MIV ; 3.1 ; G307E variant of murine Apoptosis Inducing Factor in complex with NAD+ 1ZXH ; ; G311 mutant protein 7SWN ; 4.3 ; G32A4 Fab in complex with SARS-CoV-2 Spike 6P (RBD local reconstruction) 7SWP ; 3.8 ; G32Q4 Fab in complex with SARS-CoV-2 Spike 6P (RBD local reconstruction) 1IP1 ; 1.8 ; G37A HUMAN LYSOZYME 4CYR ; 1.72 ; G4 mutant of PAS, arylsulfatase from Pseudomonas Aeruginosa 4CXU ; 2.03 ; G4 mutant of PAS, arylsulfatase from Pseudomonas Aeruginosa, in complex with 3-Br-Phenolphenylphosphonate 4CXS ; 2.3 ; G4 mutant of PAS, arylsulfatase from Pseudomonas aeruginosa, in complex with Phenylphosphonic acid 8FYH ; 3.4 ; G4 RNA-mediated PRC2 dimer 2AVJ ; 2.39 ; G4(Br)UTTG4 dimeric quadruplex 1IP2 ; 1.8 ; G48A HUMAN LYSOZYME 1A9M ; 2.3 ; G48H MUTANT OF HIV-1 PROTEASE IN COMPLEX WITH A PEPTIDIC INHIBITOR U-89360E 2AVH ; 1.5 ; G4T3G4 dimeric quadruplex structure 1RDF ; 2.8 ; G50P mutant of phosphonoacetaldehyde hydrolase in complex with substrate analogue vinyl sulfonate 2GC5 ; 1.85 ; G51S mutant of L. casei FPGS 2GCB ; 2.3 ; G51S/S52T double mutant of L. casei FPGS 3FC5 ; 2.59 ; G586S mutant nNOSoxy 8HQ5 ; 2.25 ; G6 in complex with CRM1-Ran-RanBP1 4CYS ; 1.88 ; G6 mutant of PAS, arylsulfatase from Pseudomonas Aeruginosa, in complex with Phenylphosphonic acid 1AKR ; 1.58 ; G61A OXIDIZED FLAVODOXIN MUTANT 1AKW ; 1.75 ; G61L OXIDIZED FLAVODOXIN MUTANT 1AKT ; 1.8 ; G61N OXIDIZED FLAVODOXIN MUTANT 1AZL ; 1.8 ; G61V FLAVODOXIN MUTANT FROM DESULFOVIBRIO VULGARIS 3KMS ; 2.2 ; G62S mutant of foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA trigonal structure 3KMQ ; 2.11 ; G62S mutant of foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA, tetragonal structure 1IP3 ; 1.8 ; G68A HUMAN LYSOZYME 5SUK ; 2.88 ; G6P bound activated state of yeast glycogen synthase 2 5AJ9 ; 2.0 ; G7 mutant of PAS, arylsulfatase from Pseudomonas Aeruginosa 1IP4 ; 1.8 ; G72A HUMAN LYSOZYME 6ZPP ; 1.5 ; g7941: a virulence factor from Drechmaria coniospora 4CXK ; 1.86 ; G9 mutant of PAS, arylsulfatase from Pseudomonas Aeruginosa 7T8F ; 1.4 ; G93A mutant of human SOD1 bound with Ebselen in P21 space group 7T8H ; 1.5 ; G93A mutant of human SOD1 bound with MR6-26-2 in P21 space group 7T8G ; 1.35 ; G93A mutant of human SOD1 bound with MR6-8-2 in P21 space group 7T8E ; 1.4 ; G93A mutant of human SOD1 in P21 space group 2WZ6 ; 1.55 ; G93A SOD1 mutant complexed with Quinazoline. 6CK4 ; 3.097 ; G96A mutant of the PRPP riboswitch from T. mathranii bound to ppGpp 3FPD ; 2.4 ; G9a-like protein lysine methyltransferase inhibition by BIX-01294 1MUG ; 1.8 ; G:T/U MISMATCH-SPECIFIC DNA GLYCOSYLASE FROM E.COLI 7BL0 ; ; GA attached to an i-motif clip at 3'-end 7BI0 ; ; GA repetition with i-motif clip at 5'-end 2MH8 ; ; GA-79-MBP cs-rosetta structures 1CFW ; 1.9 ; GA-SUBSTITUTED DESULFOREDOXIN 7PV2 ; 3.2 ; GA1 bacteriophage portal protein 2LHC ; ; Ga98 solution structure 1ZIF ; ; GAAA RNA TETRALOOP, NMR, 10 STRUCTURES 2I7E ; ; GAAA tetralooop receptor complex with associated cobalt hexammine. 2I7Z ; ; GAAA tetraloop receptor complex with associated manganese ions. 6J2V ; 1.9 ; GABA aminotransferase from Corynebacterium glutamicum 1GNU ; 1.75 ; GABA(A) receptor associated protein GABARAP 8BHG ; 2.39 ; GABA-A receptor a5 heteromer - a5V2 - Bretazenil 8BGI ; 2.56 ; GABA-A receptor a5 homomer - a5V1 - Flumazenil 8BEJ ; 3.24 ; GABA-A receptor a5 homomer - a5V3 - APO 8BHA ; 2.67 ; GABA-A receptor a5 homomer - a5V3 - Basmisanil - HR 8BHK ; 3.3 ; GABA-A receptor a5 homomer - a5V3 - Diazepam 8BHM ; 2.95 ; GABA-A receptor a5 homomer - a5V3 - DMCM 8BHO ; 2.93 ; GABA-A receptor a5 homomer - a5V3 - L655708 8BHB ; 2.54 ; GABA-A receptor a5 homomer - a5V3 - RO154513 8BHS ; 3.24 ; GABA-A receptor a5 homomer - a5V3 - RO4938581 8BHI ; 2.67 ; GABA-A receptor a5 homomer - a5V3 - RO5211223 8BHR ; 3.38 ; GABA-A receptor a5 homomer - a5V3 - RO7015738 8BHQ ; 3.3 ; GABA-A receptor a5 homomer - a5V3 - RO7172670 7PC0 ; 3.0 ; GABA-A receptor bound by a-Cobratoxin 4Y0I ; 1.662 ; GABA-aminotransferase inactivated by conformationally-restricted inactivator 4ATQ ; 2.75 ; GABA-transaminase A1R958 in complex with external aldimine PLP-GABA adduct 3FQA ; 2.35 ; Gabaculien complex of gabaculine resistant GSAM version 3FQ7 ; 2.15 ; Gabaculine complex of GSAM 8AFI ; 2.66 ; GABARAP in complex with LIR motif of HsATG3 5LXH ; 1.58 ; GABARAP-L1 ATG4B LIR Complex 5LXI ; 1.44 ; GABARAP-L1 ATG4B LIR Complex 3WIM ; 2.6 ; GABARAP-LIR peptide complex 2L8J ; ; GABARAPL-1 NBR1-LIR complex structure 2JUO ; ; GABPa OST domain 1ZF7 ; 1.05 ; GAC Duplex B-DNA 7Z8N ; 2.64 ; GacS histidine kinase from Pseudomonas aeruginosa 4TWS ; 1.45 ; Gadolinium Derivative of Tetragonal Hen Egg-White Lysozyme at 1.45 A Resolution 1H87 ; 1.72 ; Gadolinium derivative of tetragonal Hen Egg-White Lysozyme at 1.7 A resolution 6RQ7 ; 2.69 ; Gadolinium MRI contrast compound binding in human plasma glycoprotein afamin - resurrection of highly anisotropic data 5N35 ; 2.24 ; Gadolinium phased PBP2 (SSO6202) at 2.2 Ang 5GJH ; 1.2 ; Gads SH2 domain/CD28-derived peptide complex 1OIO ; 1.7 ; GafD (F17c-type) Fimbrial adhesin from Escherichia coli 7NDU ; 2.9 ; Gag:02 TCR in complex with HLA-E featuring a non-natural amino acid 7NDQ ; 2.551 ; Gag:02 TCR in complex with HLA-E. 1ZIG ; ; GAGA RNA TETRALOOP, NMR, 10 STRUCTURES 8J82 ; 1.69 ; GaHNL-12gen (artificial S-hydroxynitrile lyase generated by GAOptimizer) 8WY4 ; 2.81 ; GajA tetramer with ATP 8J4T ; 3.6 ; GajA-GajB complex 1AW6 ; ; GAL4 (CD), NMR, 24 STRUCTURES 1A6R ; 2.05 ; GAL6 (YEAST BLEOMYCIN HYDROLASE) MUTANT C73A 3GCB ; 1.87 ; GAL6 (YEAST BLEOMYCIN HYDROLASE) MUTANT C73A/DELTAK454 1GCB ; 2.2 ; GAL6, YEAST BLEOMYCIN HYDROLASE DNA-BINDING PROTEASE (THIOL) 6EON ; 1.75 ; Galactanase BT0290 4UEK ; 1.9 ; Galactitol-1-phosphate 5-dehydrogenase from E. coli with Tris within the active site. 2EID ; 2.2 ; Galactose Oxidase W290G mutant 2JKX ; 1.84 ; Galactose oxidase. MatGO. Copper free, expressed in Pichia Pastoris. 2BZD ; 2.0 ; Galactose recognition by the carbohydrate-binding module of a bacterial sialidase. 6BFM ; 1.488 ; Galactose-binding Lectin from Mytilus californianus, Isoform1 6XAC ; 1.22 ; Galactose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 3UK9 ; 3.11 ; Galactose-specific lectin from Dolichos lablab 3UJQ ; 2.06 ; Galactose-specific lectin from Dolichos lablab in complex with galactose 3UL2 ; 2.5 ; Galactose-specific lectin from Dolichos lablab in P6522 space group 3UJO ; 2.0 ; Galactose-specific seed lectin from Dolichos lablab in complex with adenine and galactose 2YFN ; 1.45 ; galactosidase domain of alpha-galactosidase-sucrose kinase, AgaSK 2YFO ; 1.35 ; GALACTOSIDASE DOMAIN OF ALPHA-GALACTOSIDASE-SUCROSE KINASE, AGASK, in complex with galactose 1KRR ; 2.5 ; Galactoside Acetyltransferase in Complex with Acetyl-Coenzyme A 1KRV ; 2.8 ; Galactoside Acetyltransferase in Complex with CoA and PNP-beta-Gal 1KQA ; 3.2 ; GALACTOSIDE ACETYLTRANSFERASE IN COMPLEX WITH COENZYME A 1KRU ; 2.8 ; Galactoside Acetyltransferase in Complex with IPTG and Coenzyme A 8ATE ; 1.92 ; Galacturonic acid oxidase from Citrus sinensis 5OLP ; 2.0 ; Galacturonidase 7WQ3 ; 2.7 ; Galanin-bound galanin receptor 1 in complex with Gi 7WQ4 ; 2.6 ; Galanin-bound galanin receptor 2 in complex with Gq 2PH9 ; 2.88 ; Galanthamine bound to an ACh-binding Protein 3WMW ; 2.25 ; GalE-like L-Threonine dehydrogenase from Cupriavidus necator (apo form) 3WMX ; 2.5 ; GalE-like L-Threonine dehydrogenase from Cupriavidus necator (holo form) 2WSU ; 1.9 ; Galectin domain of porcine adenovirus type 4 NADC-1 isolate fibre 2WT1 ; 1.9 ; Galectin domain of porcine adenovirus type 4 NADC-1 isolate fibre complexed with lacto-N-neo-tetraose 2WSV ; 2.0 ; Galectin domain of porcine adenovirus type 4 NADC-1 isolate fibre complexed with lactose 2WT0 ; 1.91 ; Galectin domain of porcine adenovirus type 4 NADC-1 isolate fibre complexed with N-acetyl-lactosamine 2WT2 ; 2.5 ; Galectin domain of porcine adenovirus type 4 NADC-1 isolate fibre complexed with tri(N-acetyl-lactosamine) 2KM2 ; ; Galectin-1 dimer 7NML ; 1.43 ; Galectin-1 in complex with 4-Amino-6-chloro-1,3-benzenedisulfonamide 4Q27 ; 1.2 ; Galectin-1 in Complex with a Click-Activated N-Acetyllactosamine 4Q2F ; 1.4 ; Galectin-1 in Complex with Ligand AN020 4Q1R ; 1.47 ; Galectin-1 in Complex with Ligand AN027 5MWX ; 1.29 ; Galectin-1 in Complex with Ligand JB60 5MWT ; 1.711 ; Galectin-1 in Complex with Ligand JB97 8B0Z ; 1.23 ; Galectin-1 in Complex with Ligand JM171 8B0W ; 1.53 ; Galectin-1 in Complex with Ligand MG49 4Q1P ; 1.46 ; Galectin-1 in Complex with Ligand NB169 7LTA ; 1.53 ; Galectin-1 in complex with Trehalose 6QRN ; 1.4 ; Galectin-10 complexed with ribose 5YT4 ; 2.0 ; Galectin-10 variant H53A soaked in glycerol for 5 minutes 5XRG ; 1.55 ; Galectin-10/Charcot-Leyden crystal protein crystal structure 5XRH ; 1.55 ; Galectin-10/Charcot-Leyden crystal protein crystal structure 5XRK ; 1.7 ; Galectin-10/Charcot-Leyden crystal protein variant C57A crystal structure 5XRJ ; 1.9 ; Galectin-10/Charcot-Leyden crystal protein variant H53A crystal structure 5XRN ; 1.6 ; Galectin-10/Charcot-Leyden crystal protein variant K73A crystal structure 5XRL ; 2.004 ; Galectin-10/Charcot-Leyden crystal protein variant N65A crystal structure 5XRO ; 1.6 ; Galectin-10/Charcot-Leyden crystal protein variant Q74A crystal structure 5XRP ; 2.001 ; Galectin-10/Charcot-Leyden crystal protein variant Q75A 5XRM ; 1.998 ; Galectin-10/Charcot-Leyden crystal protein variant W72A crystal structure 5XRI ; 1.68 ; Galectin-10/Charcot-Leyden crystal protein-C29A crystal structure 6KJW ; 1.36 ; Galectin-13 variant C136S 6KJY ; 1.5 ; Galectin-13 variant C136S/C138S 6KJX ; 1.53 ; Galectin-13 variant C138S 5XG7 ; 1.55 ; Galectin-13/Placental Protein 13 crystal structure 5XG8 ; 1.55 ; Galectin-13/Placental Protein 13 variant R53H crystal structure 5Y03 ; 2.12 ; Galectin-13/Placental Protein 13 variant R53H crystal structure 6FK2 ; 1.01 ; Galectin-3 carbohydrate recognition domain in complex with lactitol 4JC1 ; 1.5 ; Galectin-3 carbohydrate recognition domain in complex with thiodigalactoside 8PPN ; 1.8 ; Galectin-3 carbohydrate recognition domain in complex with thiodigalactoside at 1.8 resolution 4JCK ; 1.15 ; Galectin-3 carbohydrate recognition domain in complex with thioditaloside 6KXA ; 1.23 ; Galectin-3 CRD binds to GalA dimer 6KXB ; 1.5 ; Galectin-3 CRD binds to GalA trimer 8OJM ; 1.8 ; Galectin-3 in complex with 2,6-anhydro-3-deoxy-3-S-(beta-D-galactopyranosyl)-3-thio-D-glycero-D-galacto-heptonamide 8OJK ; 1.8 ; Galectin-3 in complex with 2,6-anhydro-3-deoxy-3-S-(beta-D-galactopyranosyl)-3-thio-D-glycero-L-altro-heptonamide 8OJO ; 1.8 ; Galectin-3 in complex with 2,6-Anhydro-5-S-(beta-D-galactopyranosyl)-5-thio-D-altritol 8OJI ; 1.75 ; Galectin-3 in complex with Methyl 2,6-anhydro-3-deoxy-3-S-(b-D-galactopyranosyl)-3-thio-D-glycero-L-altro-heptonate 6QGF ; 1.34 ; Galectin-3C in complex with a pair of enantiomeric ligands: R enantiomer 6QGE ; 1.16 ; Galectin-3C in complex with a pair of enantiomeric ligands: S enantiomer 8PBF ; 1.14 ; Galectin-3C in complex with a triazolesulfane derivative 8PF9 ; 1.09 ; Galectin-3C in complex with a triazolesulfane derivative 8PFF ; 1.08 ; Galectin-3C in complex with a triazolesulfone derivative 4BLI ; 1.08 ; Galectin-3c in complex with Bisamido-thiogalactoside derivate 1 4BLJ ; 1.2 ; Galectin-3c in complex with Bisamido-thiogalactoside derivate 2 4BM8 ; 0.96 ; Galectin-3c in complex with Bisamido-thiogalactoside derivate 3 5IUQ ; 1.121 ; Galectin-3c in complex with Bisamido-thiogalactoside derivative 4 5ODY ; 1.149 ; Galectin-3C in complex with dithiogalactoside derivative 6QLN ; 1.0 ; Galectin-3C in complex with fluoroaryl triazole monothiogalactoside derivative 2 6QLQ ; 1.079 ; Galectin-3C in complex with fluoroaryltriazole monothiogalactoside derivative 4 6QLR ; 0.97 ; Galectin-3C in complex with fluoroaryltriazole monothiogalactoside derivative 5 6QLS ; 1.047 ; Galectin-3C in complex with fluoroaryltriazole monothiogalactoside derivative 6 6QLT ; 1.15 ; Galectin-3C in complex with fluoroaryltriazole monothiogalactoside derivative-7 6QLU ; 1.1 ; Galectin-3C in complex with fluoroaryltriazole monothiogalactoside derivative-8 6RZG ; 1.015 ; Galectin-3C in complex with meta-fluoroaryltriazole galactopyranosyl 1-thio-D-glucopyranoside derivative 6RZF ; 1.016 ; Galectin-3C in complex with ortho-fluoroaryltriazole galactopyranosyl 1-thio-D-glucopyranoside derivative 6RZH ; 0.947 ; Galectin-3C in complex with para-fluoroaryltriazole galactopyranosyl 1-thio-D-glucopyranoside derivative 6QLO ; 1.18 ; Galectin-3C in complex with substituted fluoroaryltriazole monothiogalactoside derivative 1 6I74 ; 0.959 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative 1 6I75 ; 1.171 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative 2 6QLP ; 1.081 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative 3 6I78 ; 1.15 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative 5 6I76 ; 1.2 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative-3 6I77 ; 1.219 ; Galectin-3C in complex with substituted polyfluoroaryl monothiogalactoside derivative-4 5OAX ; 1.2 ; Galectin-3c in complex with thiogalactoside derivate 6RZI ; 1.095 ; Galectin-3C in complex with trifluoroaryltriazole monothiogalactoside derivative:1(Hydrogen) 6RZJ ; 1.097 ; Galectin-3C in complex with trifluoroaryltriazole monothiogalactoside derivative:2(Fluorine) 6RZK ; 1.046 ; Galectin-3C in complex with trifluoroaryltriazole monothiogalactoside derivative:3(Chlorine) 6RZL ; 1.045 ; Galectin-3C in complex with trifluoroaryltriazole monothiogalactoside derivative:4(Bromine) 6RZM ; 1.345 ; Galectin-3C in complex with trifluoroaryltriazole monothiogalactoside derivative:5(Iodine) 5T7T ; 1.96 ; Galectin-8 N terminal domain in complex with LNT 5VWG ; 2.1 ; Galectin-8 N terminal domain in complex with Methyl 3-O-[1-carboxyethyl]-beta-D-galactopyranoside 8CM8 ; 1.22 ; Galectin-8 N-terminal carbohydrate recognition domain in complex with 4-(bromophenyl)phthalazinone D-galactal ligand 7P1M ; 1.52 ; Galectin-8 N-terminal carbohydrate recognition domain in complex with benzimidazole D-galactal ligand 7AEN ; 1.6 ; Galectin-8 N-terminal carbohydrate recognition domain in complex with methyl 3-O-((7-carboxy)quinolin-2-yl)-methoxy)-beta-D-galactopyranoside 7P11 ; 2.1 ; Galectin-8 N-terminal carbohydrate recognition domain in complex with quinoline D-galactal ligand 5GZD ; 1.19 ; Galectin-8 N-terminal domain carbohydrate recognition domain 5GZE ; 1.32 ; Galectin-8 N-terminal domain carbohydrate recognition domain 5GZF ; 2.002 ; Galectin-8 N-terminal domain carbohydrate recognition domain 5GZG ; 1.997 ; Galectin-8 N-terminal domain carbohydrate recognition domain 6Z6Y ; 1.34 ; Galectin-8 N-terminal domain in complex with a sulfatide mimicking a sphingolipid 3VKO ; 2.08 ; Galectin-8 N-terminal domain in complex with sialyllactosamine 3VKN ; 1.98 ; Galectin-8 N-terminal domain in free form 6W4Z ; 1.59 ; Galectin-8N terminal domain in complex with Methyl 3-O-[3-O-benzyloxy]-malonyl-beta-D-galactopyranoside 5IT6 ; 1.547 ; Galectin-related protein: an integral member of the network of chicken galectins 8E3T ; 2.2 ; Gallium-reconstituted nitrogenase MoFeP mutant S188A from Azotobacter vinelandii after IDS oxidation 1R0F ; 1.6 ; Gallium-substituted rubredoxin 4X38 ; 2.12 ; Gallus interleukin-1 beta mutant - E118A 4X3A ; 1.75 ; gallus interleukin-1 beta mutant - R140A 4X39 ; 1.61 ; Gallus interleukin-1 beta mutant - T117A 4X37 ; 1.63 ; Gallus interleukin-1 mutant - E118K 4D0Z ; 2.2 ; GalNAc-T2 crystal soaked with UDP-5SGalNAc, mEA2 and manganese (Higher resolution dataset) 4D11 ; 2.85 ; GalNAc-T2 crystal soaked with UDP-5SGalNAc, mEA2 peptide and manganese (Lower resolution dataset) 4D0T ; 2.45 ; GalNAc-T2 crystal soaked with UDP-GalNAc, EA2 peptide and manganese 6NQT ; 3.05 ; GalNac-T2 soaked with UDP-sugar 6MHF ; 2.0 ; Galphai3 co-crystallized with GIV/Girdin 6MHE ; 2.2 ; Galphai3 co-crystallized with KB752 4BCX ; 2.0 ; gamma 2 adaptin EAR domain crystal structure 2YMT ; 1.802 ; gamma 2 adaptin EAR domain crystal structure with phage peptide GEEWGPWV 3ZHF ; 1.7 ; gamma 2 adaptin EAR domain crystal structure with preS1 site1 peptide NPDWDFN 1DSL ; 1.55 ; GAMMA B CRYSTALLIN C-TERMINAL DOMAIN 1GAM ; 2.6 ; GAMMA B CRYSTALLIN TRUNCATED C-TERMINAL DOMAIN 1HL7 ; 1.73 ; Gamma lactamase from an Aureobacterium species in complex with 3a,4,7,7a-tetrahydro-benzo [1,3] dioxol-2-one 2WKN ; 2.08 ; gamma lactamase from Delftia acidovorans 1A7H ; 2.56 ; GAMMA S CRYSTALLIN C-TERMINAL DOMAIN 4M0L ; 2.6 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus complexed with GDP 4RJL ; 1.6401 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus complexed with GDPCP 6I5M ; 2.4 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus in complex with GDP and formate ion 4M4S ; 2.251 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus in complex with GDP and formate ion mimic aIF2gamma*GDP*Pi complex (a formate ion substitutes for Pi) 4M53 ; 2.0 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus in complex with GDPCP 4M2L ; 2.149 ; Gamma subunit of the translation initiation factor 2 from Sulfolobus solfataricus in nucleotide-free form 7NJE ; 3.0 ; gamma(S)-crystallin 9-site deamidation mutant grown inside HARE serial crystallography chip 1GYU ; 1.81 ; Gamma-adaptin appendage domain from clathrin adaptor AP1 1GYW ; 2.4 ; Gamma-adaptin appendage domain from clathrin adaptor AP1 A753D mutant 1GYV ; 1.71 ; Gamma-adaptin appendage domain from clathrin adaptor AP1, L762E mutant 4Y0D ; 2.19 ; Gamma-aminobutyric acid aminotransferase inactivated by (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (CPP-115) 4Y0H ; 1.63 ; Gamma-aminobutyric acid aminotransferase inactivated by (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (CPP-115) 8D9V ; 9.4 ; gamma-Arf1 homodimeric interface within AP-1, Arf1, Nef lattice on narrow membrane tubes 8D4D ; 9.6 ; gamma-Arf1 mediated dimeric assembly of AP-1, Arf1, Nef complex within lattice on MHC-I lipopeptide incorporated narrow membrane tubes 8D4G ; 11.6 ; gamma-Arf1 mediated dimeric assembly of AP-1, Arf1, Nef complex within lattice on MHC-I lipopeptide incorporated wide(r) membrane tubes 6SC4 ; 2.6 ; Gamma-Carbonic Anhydrase from the Haloarchaeon Halobacterium sp. 4VGC ; 2.1 ; GAMMA-CHYMOTRYPSIN D-NAPHTHYL-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 2VGC ; 1.8 ; GAMMA-CHYMOTRYPSIN D-PARA-CHLORO-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 8GCH ; 1.6 ; GAMMA-CHYMOTRYPSIN IS A COMPLEX OF ALPHA-CHYMOTRYPSIN WITH ITS OWN AUTOLYSIS PRODUCTS 3VGC ; 1.67 ; GAMMA-CHYMOTRYPSIN L-NAPHTHYL-1-ACETAMIDO BORONIC ACID ACID INHIBITOR COMPLEX 1VGC ; 1.9 ; GAMMA-CHYMOTRYPSIN L-PARA-CHLORO-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 1ELP ; 1.95 ; GAMMA-D CRYSTALLIN STRUCTURE AT 1.95 A RESOLUTION 2RBH ; 2.1 ; Gamma-glutamyl cyclotransferase 3CRY ; 1.7 ; Gamma-glutamyl cyclotransferase 5ZJG ; 1.702 ; Gamma-glutamyltranspeptidase from Pseudomonas nitroreducens complexed with Gly-Gly 7D9E ; 1.5 ; Gamma-glutamyltranspeptidase from Pseudomonas nitroreducens complexed with L-DON 7D9W ; 1.9 ; Gamma-glutamyltranspeptidase from Pseudomonas nitroreducens complexed with L-DON 6FD8 ; 2.1 ; Gamma-s crystallin dimer 5DSZ ; 2.5 ; Gamma-subunit of the translation initiation factor 2 from S. solfataricus 3I1F ; 2.5 ; Gamma-subunit of the translation initiation factor 2 from S. solfataricus in complex with Gpp(CH2)p 6ZPD ; 2.24 ; gamma-tocopherol transfer protein 1A5D ; 2.3 ; GAMMAE CRYSTALLIN FROM RAT LENS 1A45 ; 2.3 ; GAMMAF CRYSTALLIN FROM BOVINE LENS 1HA4 ; 2.4 ; GammaS crystallin C terminal domain from Homo Sapiens 2P57 ; 1.8 ; GAP domain of ZNF289, an ID1-regulated zinc finger protein 7PGQ ; 3.5 ; GAP-SecPH region of human neurofibromin isoform 2 in closed conformation. 3TGH ; 1.7 ; GAP50 the anchor in the inner membrane complex of Plasmodium 1IHY ; 3.0 ; GAPDH complexed with ADP-ribose 6IEP ; 2.6 ; GAPDH of Streptococcus agalactiae 6YND ; 1.525 ; GAPDH purified from the supernatant of HEK293F cells: crystal form 1 of 4. 6YNE ; 1.853 ; GAPDH purified from the supernatant of HEK293F cells: crystal form 2 of 4. 6YNF ; 2.394 ; GAPDH purified from the supernatant of HEK293F cells: crystal form 3 of 4. 6YNH ; 2.621 ; GAPDH purified from the supernatant of HEK293F cells: crystal form 4 of 4 6GVE ; 3.9 ; GAPDH-CP12-PRK complex 2ID2 ; 2.5 ; GAPN T244S mutant X-ray structure at 2.5 A 4AIW ; 1.5 ; GAPR-1 with bound inositol hexakisphosphate 4J2C ; 1.801 ; GARP-SNARE Interaction 7JFY ; 2.10056 ; GAS41 YEATS domain in complex with 5 6VFE ; 3.9 ; Gasdermin D pore 5TIB ; 2.6 ; Gasdermin-B C-terminal domain containing the polymorphism residues Arg299:Ser306 fused to maltose binding protein 5TJ4 ; 3.5 ; Gasdermin-B C-terminal domain containing the polymorphism residues Gly299:Pro306 fused to maltose binding protein 5TJ2 ; 2.8 ; Gasdermin-B C-terminal domain containing the polymorphism residues Gly299:Ser306 fused to maltose binding protein 1NWM ; 2.4 ; GAT domain of human GGA1 4AQ9 ; 6.2 ; Gating movement in acetylcholine receptor analysed by time- resolved electron cryo-microscopy (open class) 4AQ5 ; 6.2 ; Gating movement in acetylcholine receptor analysed by time-resolved electron cryo-microscopy (closed class) 7T3C ; 4.0 ; GATOR1-RAG-RAGULATOR - Dual Complex 7T3B ; 3.9 ; GATOR1-RAG-RAGULATOR - GAP Complex 7T3A ; 4.0 ; GATOR1-RAG-RAGULATOR - Inhibitory Complex 8U2C ; 2.5 ; Gaussian mixture model based single particle refinement - ABC transporter (inhibitor-bound ABCG2 from EMPIAR-10374) 8U28 ; 3.1 ; Gaussian mixture model based single particle refinement - SARS (SARS-CoV-2 Spike Proteins on intact virions from EMPIAR-10492) 8U26 ; 2.5 ; Gaussian Mixture Models based single particle refinement - GPCR (Substance P bound to active human neurokinin 1 receptor in complex with miniGs399 from EMPIAR-10786) 6PQA ; 1.46 ; GAVVGG segment 119-124 from human prion 7QTS ; ; GB1 in mammalian cells, 10 uM 7QTR ; ; GB1 in mammalian cells, 50 uM 5Z4B ; ; GB1 structure determination in living eukaryotic cells by in-cell NMR spectroscopy 1P7E ; ; GB3 solution structure obtained by refinement of X-ray structure with dipolar couplings 1P7F ; ; GB3 solution structure obtained by refinement of X-ray structure with dipolar couplings 2OED ; ; GB3 solution structure obtained by refinement of X-ray structure with dipolar couplings 2LHD ; ; GB98 solution structure 2LHG ; ; GB98-T25I solution structure 2LHE ; ; Gb98-T25I,L20A 3SY3 ; 2.14 ; GBAA_1210 protein, a putative adenylate cyclase, from Bacillus anthracis 3TJ7 ; 2.1 ; GBAA_1210 protein, a putative adenylate cyclase, from Bacillus anthracis in complex with AMP 2ON8 ; 1.35 ; Gbeta1 stabilization by in vitro evolution and computational design 2ONQ ; 1.7 ; Gbeta1 stabilization by in vitro evolution and computational design 8Q4L ; 5.12 ; GBP1 bound by 14-3-3sigma 8FX4 ; 3.9 ; GC-C-Hsp90-Cdc37 regulatory complex 1ONH ; 1.38 ; GC1 beta-lactamase with a penem inhibitor 1ZFE ; 2.5 ; GCA Duplex B-DNA 1ZIH ; ; GCAA RNA TETRALOOP, NMR, 10 STRUCTURES 1QYK ; 1.4 ; GCATGCT + Barium 1QZL ; 2.85 ; GCATGCT + Cobalt 1QYL ; 1.0 ; GCATGCT + Vanadium 1MF5 ; 1.1 ; GCATGCT Quadruplex 7ZIE ; 2.9 ; Gcf1p, multimerizes and bridges the mitochondrial DNA from Candida albicans by a specific mechanism. 8FU6 ; 2.9 ; GCGR-Gs complex in the presence of RAMP2 6WPW ; 3.1 ; GCGR-Gs signaling complex bound to a designed glucagon derivative 7QQ6 ; 2.8 ; GCN2 (EIF2ALPHA KINASE 4, E2AK4) IN COMPLEX WITH COMPOUND 1 (dovitinib) 7QWK ; 2.3 ; GCN2 (EIF2ALPHA KINASE 4, E2AK4) IN COMPLEX WITH COMPOUND 2 2DGC ; 2.2 ; GCN4 BASIC DOMAIN, LEUCINE ZIPPER COMPLEXED WITH ATF/CREB SITE DNA 1GCL ; 2.1 ; GCN4 LEUCINE ZIPPER CORE MUTANT P-LI 1GCM ; 1.8 ; GCN4 LEUCINE ZIPPER CORE MUTANT P-LI 4DMD ; 2.0 ; GCN4 leucine zipper domain in a dimeric oligomerization state 4DME ; 2.2 ; GCN4 leucine zipper domain in a trimeric oligomerization state 2WPY ; 1.75 ; GCN4 leucine zipper mutant with one VxxNxxx motif coordinating chloride 2WQ1 ; 1.08 ; GCN4 leucine zipper mutant with three IxxNTxx motifs coordinating bromide 2WQ0 ; 1.12 ; GCN4 leucine zipper mutant with three IxxNTxx motifs coordinating chloride 2WQ3 ; 1.22 ; GCN4 leucine zipper mutant with three IxxNTxx motifs coordinating chloride and nitrate 2WQ2 ; 1.36 ; GCN4 leucine zipper mutant with three IxxNTxx motifs coordinating iodide 2WPZ ; 1.25 ; GCN4 leucine zipper mutant with two VxxNxxx motifs coordinating chloride 3M48 ; 1.451 ; GCN4 Leucine Zipper Peptide Mutant 2AHP ; 2.0 ; GCN4 leucine zipper, mutation of Lys15 to epsilon-azido-Lys 6O2E ; 1.896 ; GCN4 with asparagine at position 18 6O2F ; 1.8 ; GCN4 with NPEG4 at position 18 1SWI ; 2.6 ; GCN4-LEUCINE ZIPPER CORE MUTANT AS N16A COMPLEXED WITH BENZENE 3K7Z ; 1.9 ; GCN4-Leucine zipper core mutant as N16A trigonal automatic solution 1ZII ; 1.8 ; GCN4-LEUCINE ZIPPER CORE MUTANT ASN16ABA IN THE DIMERIC STATE 1ZIJ ; 2.0 ; GCN4-LEUCINE ZIPPER CORE MUTANT ASN16ABA IN THE TRIMERIC STATE 1ZIL ; 2.25 ; GCN4-LEUCINE ZIPPER CORE MUTANT ASN16GLN IN THE DIMERIC STATE 1ZIM ; 2.0 ; GCN4-LEUCINE ZIPPER CORE MUTANT ASN16GLN IN THE TRIMERIC STATE 1ZIK ; 1.8 ; GCN4-LEUCINE ZIPPER CORE MUTANT ASN16LYS IN THE DIMERIC STATE 4NJ1 ; 2.0 ; GCN4-p1 double Val9, 23 to Ile mutant 6XNL ; 2.2 ; GCN4-p1 Peptide Trimer with iodo-phenylalanine residue at position 16 (IPF-F16) 6XNE ; 1.96 ; GCN4-p1 Peptide Trimer with p-methylphenylalanine residue at position 16 (me-F16) 6XNF ; 2.0 ; GCN4-p1 Peptide Trimer with Tetrafluoroiodophenylalanine residue at position 16 (TFI-F16) 6XNM ; 2.25 ; GCN4-p1 Peptide Trimer with tyrosine residue at position 16 4NIZ ; 2.0 ; GCN4-p1 single Val9 to aminobutyric acid mutant 4NJ0 ; 1.9 ; GCN4-p1 single Val9 to Ile mutant 4NJ2 ; 2.2 ; GCN4-p1 triple Val9, 23,30 to Ile mutant 4TL1 ; 1.8 ; GCN4-p1 with mutation to 1-Aminocyclohexanecarboxylic acid at residue 10 1IJ1 ; 1.86 ; GCN4-pVLT Coiled-coil Trimer with Threonine at the d(12) Position 1IJ3 ; 1.8 ; GCN4-pVSL Coiled-coil trimer with Serine at the a(16) position 1IJ2 ; 1.7 ; GCN4-pVTL Coiled-coil Trimer with Threonine at the a(16) position 5IIV ; ; GCN4p pH 1.5 4HJD ; 1.7 ; GCN4pLI derivative with alpha/beta/acyclic-gamma amino acid substitution pattern 4HJB ; 1.25 ; GCN4pLI derivative with alpha/beta/cyclic-gamma amino acid substitution pattern 4IUS ; 1.3 ; GCN5-related N-acetyltransferase from Kribbella flavida. 8OSP ; 1.95 ; GCN5-related N-Acetyltransferase from Lactobacillus curiae 5KRB ; 2.101 ; GCNF DNA Binding Domain - Oct4 DR0 Complex 1ZF5 ; 0.99 ; GCT duplex B-DNA 7MSA ; 2.24 ; GDC-9545 in complex with estrogen receptor alpha 1E6U ; 1.45 ; GDP 4-keto-6-deoxy-D-mannose epimerase reductase 1E7S ; 1.5 ; GDP 4-keto-6-deoxy-D-mannose epimerase reductase K140R 1E7Q ; 1.6 ; GDP 4-keto-6-deoxy-D-mannose epimerase reductase S107A 1E7R ; 1.6 ; GDP 4-keto-6-deoxy-D-mannose epimerase reductase Y136E 1AS3 ; 2.4 ; GDP BOUND G42V GIA1 6JFK ; 1.997 ; GDP bound Mitofusin2 (MFN2) 2C03 ; 1.24 ; GDP COMPLEX OF SRP GTPASE FFH NG DOMAIN 1AS2 ; 2.8 ; GDP+PI BOUND G42V GIA1 8JGD ; 1.60037 ; GDP-bound KRAS G12C in complex with YK-8S 7EW9 ; 2.13 ; GDP-bound KRAS G12D in complex with TH-Z816 7EWA ; 2.25 ; GDP-bound KRAS G12D in complex with TH-Z827 7EWB ; 1.99 ; GDP-bound KRAS G12D in complex with TH-Z835 8JHL ; 2.10004 ; GDP-bound KRAS G12D in complex with YK-8S 6MS9 ; 1.49 ; GDP-bound KRAS P34R mutant 1Z0F ; 2.15 ; GDP-Bound Rab14 GTPase 1Z0I ; 2.33 ; GDP-Bound Rab21 GTPase 1Z22 ; 2.06 ; GDP-Bound Rab23 GTPase crystallized in C222(1) space group 1Z2A ; 1.9 ; GDP-Bound Rab23 GTPase crystallized in P2(1)2(1)2(1) space group 1Z0A ; 2.12 ; GDP-Bound Rab2A GTPase 1Z0D ; 2.2 ; GDP-Bound Rab5c GTPase 1VG1 ; 1.9 ; GDP-Bound Rab7 4P4T ; 2.3 ; GDP-bound stalkless-MxA 8R9R ; 2.42 ; GDP-bound state of S. putrefaciens FlhF 3CNO ; 2.3 ; GDP-bound structue of TM YlqF 1KY3 ; 1.35 ; GDP-BOUND YPT7P AT 1.35 A RESOLUTION 4KWE ; 2.91 ; GDP-bound, double-stranded, curved FtsZ protofilament structure 1GFS ; 2.2 ; GDP-FUCOSE SYNTHETASE FROM E. COLI 1FXS ; 2.3 ; GDP-FUCOSE SYNTHETASE FROM ESCHERICHIA COLI COMPLEX WITH NADP 1BSV ; 2.2 ; GDP-FUCOSE SYNTHETASE FROM ESCHERICHIA COLI COMPLEX WITH NADPH 2I8U ; 1.4 ; GDP-mannose mannosyl hydrolase-calcium-GDP product complex 2I8T ; 1.3 ; GDP-mannose mannosyl hydrolase-calcium-GDP-mannose complex 2C5E ; 1.7 ; gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), k217a, with gdp-alpha-d-mannose bound in the active site. 2C59 ; 2.0 ; gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), with gdp-alpha-d-mannose and gdp-beta-l-galactose bound in the active site. 2C54 ; 1.5 ; gdp-mannose-3', 5' -epimerase (arabidopsis thaliana),k178r, with gdp-beta-l-gulose and gdp-4-keto-beta-l-gulose bound in active site. 2C5A ; 1.4 ; GDP-mannose-3', 5' -epimerase (Arabidopsis thaliana),Y174F, with GDP-beta-L-galactose bound in the active site 5XXV ; 6.46 ; GDP-microtubule complexed with KIF5C in AMPPNP state 5XXW ; 6.0 ; GDP-microtubule complexed with KIF5C in ATP state 5XXT ; 5.35 ; GDP-microtubule complexed with nucleotide-free KIF5C 3DR7 ; 1.7 ; GDP-perosamine synthase from Caulobacter crescentus with bound GDP-3-deoxyperosamine 3DR4 ; 1.6 ; GDP-perosamine synthase K186A mutant from Caulobacter crescentus with bound sugar ligand 3RYI ; 2.4 ; GDP-Tubulin: rb3 stathmin-like domain complex 2CNW ; 2.39 ; GDPALF4 complex of the SRP GTPases Ffh and FtsY 7E0V ; 1.65 ; GDPD from Pyrococcus furiosus DSM 3638 7E2B ; 1.85 ; GDPD mutant complex from Pyrococcus furiosus DSM 3638 7E2A ; 2.08 ; GDPD mutant from Pyrococcus furiosus DSM 3638 7UT4 ; 3.9 ; Gea2 closed/closed conformation (composite structure) 7URR ; 4.7 ; Gea2 closed/open conformation (composite structure) 7UTH ; 3.9 ; Gea2 open/open conformation (composite structure) 7URO ; 4.2 ; Gea2-Arf1 activation intermediate complex (composite structure) 7JWE ; 2.55 ; Gedatolisib bound to the PI3Kg catalytic subunit p110 gamma 3TW8 ; 2.1 ; GEF domain of DENND 1B in complex with Rab GTPase Rab35 6H7E ; 2.3 ; GEF regulatory domain 8A3N ; 2.0 ; Geissoschizine synthase from Catharanthus roseus - binary complex with NADP+ 1CK7 ; 2.8 ; GELATINASE A (FULL-LENGTH) 1YET ; 1.9 ; GELDANAMYCIN BOUND TO THE HSP90 GELDANAMYCIN-BINDING DOMAIN 1NPH ; 3.0 ; Gelsolin Domains 4-6 in Active, Actin Free Conformation Identifies Sites of Regulatory Calcium Ions 1H1V ; 2.99 ; gelsolin G4-G6/actin complex 2X1O ; 1.34 ; Gelsolin Nanobody 2X1P ; 1.1 ; Gelsolin Nanobody 2X1Q ; 1.06 ; Gelsolin Nanobody 4S10 ; 2.614 ; Gelsolin nanobody shielding mutant plasma gelsolin from furin proteolysis 4S11 ; 1.998 ; Gelsolin nanobody shielding mutant plasma gelsolin from furin proteolysis 5THA ; 1.8 ; Gemin5 WD40 repeats in complex with a guanosyl moiety 1VJI ; 2.003 ; Gene Product of At1g76680 from Arabidopsis thaliana 1Q4R ; 1.9 ; Gene Product of At3g17210 from Arabidopsis Thaliana 1GVP ; 1.6 ; GENE V PROTEIN (SINGLE-STRANDED DNA BINDING PROTEIN) 1VQB ; 1.8 ; GENE V PROTEIN (SINGLE-STRANDED DNA BINDING PROTEIN) 1VQG ; 1.82 ; GENE V PROTEIN MUTANT WITH ILE 47 REPLACED BY LEU 47 (I47L) 1VQH ; 1.8 ; GENE V PROTEIN MUTANT WITH ILE 47 REPLACED BY MET 47 (I47M) 1VQI ; 1.8 ; GENE V PROTEIN MUTANT WITH ILE 47 REPLACED BY VAL 47 (I47V) 1VQA ; 1.8 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ALA 35 AND ILE 47 REPLACED BY LEU 47 (V35A, I47L) 1VQJ ; 1.8 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ILE 35 (V35I) 1VQD ; 1.82 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ILE 35 AND ILE 47 REPLACED BY LEU 47 (V35I, I47L) 1VQE ; 1.8 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ILE 35 AND ILE 47 REPLACED BY MET 47 (V35I, I47M) 1VQC ; 1.8 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ILE 35 AND ILE 47 REPLACED BY PHE 47 (V35I, I47F) 1VQF ; 1.8 ; GENE V PROTEIN MUTANT WITH VAL 35 REPLACED BY ILE 35 AND ILE 47 REPLACED BY VAL 47 (V35I, I47V) 7BHG ; 2.09 ; Gene-engineered variant of FusionRed with Trp based chromophore - 2.1A 2NNT ; ; General structural motifs of amyloid protofilaments 2HEO ; 1.7 ; General Structure-Based Approach to the Design of Protein Ligands: Application to the Design of Kv1.2 Potassium Channel Blockers. 7ML3 ; 7.6 ; General transcription factor TFIIH (weak binding) 220L ; 1.85 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 222L ; 1.9 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 223L ; 1.9 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 225L ; 1.9 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 226L ; 1.8 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 227L ; 2.0 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 228L ; 1.9 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 229L ; 1.8 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 252L ; 2.1 ; GENERATING LIGAND BINDING SITES IN T4 LYSOZYME USING DEFICIENCY-CREATING SUBSTITUTIONS 4K7P ; 2.95 ; Generation and Characterization of a Unique Reagent that Recognizes a Panel of Recombinant Human Monoclonal Antibody Therapeutics in the Presence of Endogenous Human IgG 5ZPW ; 2.199 ; Generation of a long-acting fusion inhibitor against HIV-1 3O4L ; 2.54 ; Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus 7UEL ; 1.9 ; Genetic and structural basis for the human anti-alpha-galactosyl antibody response 7UEN ; 1.55 ; Genetic and structural basis of the human anti-alpha-galactosyl antibody response 4BJU ; 2.35 ; Genetic and structural validation of Aspergillus fumigatus N- acetylphosphoglucosamine mutase as an antifungal target 6GMI ; 1.6 ; Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in E. coli's Periplasm. 3FCA ; 2.149 ; Genetic Incorporation of a Metal-ion Chelating Amino Acid into proteins as biophysical probe 8OSI ; 2.42 ; Genetically encoded green ratiometric calcium indicator FNCaMP in calcium-bound state 7YV3 ; 2.0 ; genetically encoded pH sensor Lime at pH10 7YV5 ; 2.85 ; genetically encoded pH sensor Lime at pH6 4ZIN ; 1.67 ; Genetically encoded Phenyl Azide Photochemistry Drive Positive and Negative Functional Modulation of a Red Fluorescent Protein 4ZAO ; 1.8 ; Genetically engineered Carbonic anhydrase IX 4M2V ; 1.718 ; Genetically engineered Carbonic Anhydrase IX in complex with Brinzolamide 4M2W ; 1.658 ; Genetically engineered Carbonic Anhydrase IX in complex with Dorzolamide 3JA5 ; 12.0 ; Genome and RdRp structure within the capsid of no-transcribing cypovirus 6V10 ; 3.77 ; genome-containing AAV8 particles 6V1G ; 2.98 ; Genome-containing AAVrh.10 6V1Z ; 3.58 ; genome-containing AAVrh.39 particles 7UEM ; 2.314 ; Genomic and structural basis for the human anti-alpha-galactosyl antibody response 8SYP ; 2.6 ; Genomic CX3CR1 nucleosome 8F4R ; 3.06 ; Gentamicin bound aminoglycoside efflux pump AcrD 8CGU ; 1.89 ; Gentamicin bound to the 30S body 1BYJ ; ; GENTAMICIN C1A A-SITE COMPLEX 2W8Z ; 2.3 ; Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase with bound 6- phosphogluconate 2W90 ; 2.2 ; Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase with bound 6- phosphogluconate 5T2K ; 1.8 ; Geobacillus stearothermophilus HemQ with Manganese-Coproporphyrin III 3ZBH ; 1.94 ; Geobacillus thermodenitrificans EsxA crystal form I 4C1O ; 1.7 ; Geobacillus thermoglucosidasius GH family 52 xylosidase 4C1P ; 2.634 ; Geobacillus thermoglucosidasius GH family 52 xylosidase 7CHU ; 2.008 ; Geobacillus virus E2 - ORF18 8BAT ; 2.3 ; Geobacter lovleyi NADAR 8G9J ; 2.5 ; Geometrically programmable nanomaterial construction using regularized protein building blocks 8G9K ; 2.48 ; Geometrically programmable nanomaterial construction using regularized protein building blocks 8GA6 ; 2.5 ; Geometrically programmable nanomaterial construction using regularized protein building blocks 8GA7 ; 2.93 ; Geometrically programmable nanomaterial construction using regularized protein building blocks 1PPC ; 1.8 ; GEOMETRY OF BINDING OF THE BENZAMIDINE-AND ARGININE-BASED INHIBITORS N-ALPHA-(2-NAPHTHYL-SULPHONYL-GLYCYL)-DL-P-AMIDINOPHENYLALANYL-PIPERIDINE (NAPAP) AND (2R,4R)-4-METHYL-1-[N-ALPHA-(3-METHYL-1,2,3,4-TETRAHYDRO-8-QUINOLINESULPHONYL)-L-ARGINYL]-2-PIPERIDINE CARBOXYLIC ACID (MQPA) TO HUMAN ALPHA-THROMBIN: X-RAY CRYSTALLOGRAPHIC DETERMINATION OF THE NAPAP-TRYPSIN COMPLEX AND MODELING OF NAPAP-THROMBIN AND MQPA-THROMBIN 1PPH ; 1.9 ; GEOMETRY OF BINDING OF THE NALPHA-TOSYLATED PIPERIDIDES OF M-AMIDINO-, P-AMIDINO-AND P-GUANIDINO PHENYLALANINE TO THROMBIN AND TRYPSIN: X-RAY CRYSTAL STRUCTURES OF THEIR TRYPSIN COMPLEXES AND MODELING OF THEIR THROMBIN COMPLEXES 1UMP ; 2.13 ; GEOMETRY OF TRITERPENE CONVERSION TO PENTACARBOCYCLIC HOPENE 5DZ2 ; 2.111 ; Geosmin synthase from Streptomyces coelicolor N-terminal domain complexed with three Mg2+ ions and alendronic acid 4ZZV ; 1.37 ; Geotrichum candidum Cel7A apo structure at 1.4A 5AMP ; 2.12 ; Geotrichum candidum Cel7A apo structure at 2.1A 4ZZW ; 1.5 ; Geotrichum candidum Cel7A structure complex with cellobiose at 1.5A 4ZZU ; 1.44 ; Geotrichum candidum Cel7A structure complex with thio-linked cellotetraose at 1.4A 4ZZT ; 1.56 ; Geotrichum candidum Cel7A structure complex with thio-linked cellotriose at 1.56A 4TK3 ; 2.7 ; Geph E in complex with a GABA receptor alpha3 derived double mutant peptide in spacegroup P21212 4TK1 ; 2.7 ; Geph E in complex with a GABA receptor alpha3 subunit derived peptide in space group P21212 4TK2 ; 4.1 ; Geph E in complex with a GABA receptor alpha3 subunit derived peptide in space group P61 4TK4 ; 3.601 ; GephE in complex with a GABA receptor alpha3 subunit derived double mutant peptide in space group P61 5ERR ; 1.65 ; GephE in complex with Mg(2+) - ADP 5ERS ; 1.7 ; GephE in complex with Mg(2+) - AMP 5ERT ; 2.0 ; GephE in complex with Mn(2+) - ADP 4U91 ; 2.0 ; GephE in complex with Para-Phenyl crosslinked Glycine receptor beta subunit derived dimeric peptide 4U90 ; 2.0 ; GephE in complex with PEG crosslinked GABA receptor alpha3 subunit derived dimeric peptide 5ERQ ; 1.55 ; Gephyrin E domain at 1.55 angstrom resolution 7FBH ; 2.1 ; geranyl pyrophosphate C6-methyltransferase BezA 7FBO ; 2.56 ; geranyl pyrophosphate C6-methyltransferase BezA binding with S-adenosylhomocysteine 2J1O ; 2.0 ; Geranylgeranyl diphosphate synthase from Sinapis alba 2J1P ; 1.8 ; Geranylgeranyl diphosphate synthase from Sinapis alba in complex with GGPP 2DH4 ; 1.98 ; Geranylgeranyl pyrophosphate synthase 5JFQ ; 2.51 ; Geranylgeranyl Pyrophosphate Synthetase from archaeon Geoglobus acetivorans 3ATQ ; 1.85 ; Geranylgeranyl Reductase (GGR) from Sulfolobus acidocaldarius 3ATR ; 1.8 ; Geranylgeranyl Reductase (GGR) from Sulfolobus acidocaldarius co-crystallized with its ligand 3V7I ; 2.9 ; Germicidin synthase (Gcs) from Streptomyces coelicolor, a type III polyketide synthase 1N7M ; 1.8 ; Germline 7G12 with N-methylmesoporphyrin 3F12 ; 2.95 ; Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus 6MZJ ; 4.8 ; Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer, 2 Fabs bound, sharpened map 6MYY ; 3.8 ; Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer, 3 Fabs bound, sharpened map 3HG1 ; 3.0 ; Germline-governed recognition of a cancer epitope by an immunodominant human T cell receptor 2QPN ; 1.1 ; GES-1 beta-lactamase 3NI9 ; 2.0 ; GES-2 carbapenemase apo form 3NIA ; 1.65 ; GES-2 carbapenemase tazobactam complex 4QU3 ; 1.402 ; GES-2 ertapenem acyl-enzyme complex 8V9G ; 1.62 ; GES-5-meropenem complex 8V9H ; 1.5 ; GES-5-NA-1-157 complex 7SQ0 ; 3.7 ; Get3 bound to ADP and the transmembrane domain of the tail-anchored protein Bos1 7SPY ; 2.23 ; Get3 bound to ATP from G. intestinalis in the closed form 3IO3 ; 1.8 ; GEt3 with ADP from D. Hansenii in Closed form 6QZU ; 2.0 ; Getah virus macro domain 6R0R ; 1.45 ; Getah virus macro domain in complex with ADPr covalently bond to Cys34 6R0P ; 1.6 ; Getah virus macro domain in complex with ADPr in double open conformation 6R0T ; 1.85 ; Getah virus macro domain in complex with ADPr in open conformation 6R0F ; 2.05 ; Getah virus macro domain in complex with ADPr, pose 1 6R0G ; 1.7 ; Getah virus macro domain in complex with ADPr, pose 2 6BZM ; 0.9 ; GFGNFGTS from low-complexity/FG repeat domain of Nup98, residues 116-123 2KMK ; ; Gfi-1 Zinc Fingers 3-5 complexed with DNA 4XGY ; 1.494 ; GFP based antibody (fluorobody) 5HZO ; 2.49 ; GFP mutant S205G 7V0V ; ; GFP Nanobody NMR Structure 5MSE ; 1.66 ; GFP nuclear transport receptor mimic 3B8 2AWM ; 1.7 ; GFP R96A chromophore maturation recovery mutant R96A Q183R 2AWK ; 1.15 ; GFP R96M mature chromophore 2AWJ ; 1.6 ; GFP R96M pre-cyclized intermediate in chromophore formation 7CD7 ; 1.704 ; GFP-40/GFPuv complex, Form I 7CD8 ; 2.0 ; GFP-40/GFPuv complex, Form II 5MA6 ; 2.3 ; GFP-binding DARPin 3G124nc 5MA8 ; 2.35 ; GFP-binding DARPin 3G124nc 5MAD ; 1.53 ; GFP-binding DARPin 3G61 5MA5 ; 1.85 ; GFP-binding DARPin fusion gc_K11 5MA4 ; 1.4 ; GFP-binding DARPin fusion gc_K7 5MA3 ; 1.7 ; GFP-binding DARPin fusion gc_R11 5MA9 ; 1.57 ; GFP-binding DARPin fusion gc_R11 5MAK ; 2.5 ; GFP-binding DARPin fusion gc_R7 6FWW ; 1.131 ; GFP/KKK. A redesigned GFP with improved solubility 2QLE ; 1.59 ; GFP/S205V mutant 6HUT ; 1.29 ; GFP8 - a stabilized variant of cycle-3 GFP 6WMW ; 2.91 ; GFRAL receptor bound with two antibody Fabs (3P10, 25M22) 1ZFA ; 1.56 ; GGA Duplex A-DNA 6QEU ; ; Gga-AvBD11 (Avian beta-defensin 11 from Gallus gallus) 1JUQ ; 2.2 ; GGA3 VHS domain complexed with C-terminal peptide from cation-dependent Mannose 6-phosphate receptor 1JPL ; 2.4 ; GGA3 VHS domain complexed with C-terminal peptide from cation-independent mannose 6-phosphate receptor 1ZFB ; 1.65 ; GGC Duplex B-DNA 4ZMM ; 2.503 ; GGDEF domain of Dcsbis complexed with c-di-GMP 1ZF9 ; 1.38 ; GGG Duplex A-DNA 4IZQ ; 2.04 ; GGGCATGCCC in the A-DNA Form 4JEJ ; 1.52 ; GGGPS from Flavobacterium johnsoniae 4MM1 ; 2.8004 ; GGGPS from Methanothermobacter thermautotrophicus 1ZF8 ; 1.48 ; GGT Duplex A-DNA 3PPD ; 1.5 ; GGVLVN segment from Human Prostatic Acid Phosphatase Residues 260-265, involved in Semen-Derived Enhancer of Viral Infection 7K3Y ; 1.1 ; GGYAGAS segment 52-58 from Keratin-8 7EZO ; 2.80006 ; GH10 domain of bifunctional endoxylanase and arabinofuranosidase of Bi0569 6Q8M ; 1.42 ; GH10 endo-xylanase 6Q8N ; 1.76 ; GH10 endo-xylanase in complex with xylobiose epoxide inhibitor 7PXQ ; 2.3 ; GH115 alpha-1,2-glucuronidase D303A 7PUG ; 2.66 ; GH115 alpha-1,2-glucuronidase in complex with xylopentaose 6G1G ; 1.04 ; GH124 cellulase from Ruminiclostridium thermocellum in complex with Mn and cellotriose 6G1I ; 0.99 ; GH124 cellulase from Ruminiclostridium thermocellum in complex with Mn and fructosylated cellopentaose 7EXW ; 2.2 ; GH127 beta-L-arabinofuranosidase HypBA1 covalently complexed with alpha-L-arabinofuranosylamide 7BZL ; 2.3 ; GH127 beta-L-arabinofuranosidase HypBA1 covalently complexed with beta-L-arabinofuranose-configured cyclophellitol 7DIF ; 1.75 ; GH127 beta-L-arabinofuranosidase HypBA1 covalently complexed with beta-L-arabinofuranose-configured cyclophellitol at 1.75-angstrom resolution 7EXV ; 2.6 ; GH127 beta-L-arabinofuranosidase HypBA1 covalently complexed with beta-L-arabinofuranoylamide 7EXU ; 2.3 ; GH127 beta-L-arabinofuranosidase HypBA1 E322Q mutant complexed with p-nitrophenyl beta-L-arabinofuranoside 6YQH ; 1.41 ; GH146 beta-L-arabinofuranosidase bound to covalent inhibitor 8QF8 ; 2.4 ; GH146 beta-L-arabinofuranosidase from Bacteroides thetaioatomicron in complex with beta-l-arabinofurano cyclophellitol aziridine 8XBD ; 2.4 ; GH18 family chitinase from cold seep metagenome 7VQM ; 2.4 ; GH2 beta-galacturonate AqGalA in complex with galacturonide 5A6J ; 1.94 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae 5A6K ; 2.1 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with Gal-NGT 5A69 ; 2.2 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with Gal-PUGNAc 5AC4 ; 2.08 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with GalNAc 5AC5 ; 1.84 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with GlcNAc 5A6A ; 2.69 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with NGT 5A6B ; 1.77 ; GH20C, Beta-hexosaminidase from Streptococcus pneumoniae in complex with PUGNAc 8B2S ; 1.94 ; GH24 family muramidase from Trichophaea saccata with an SH3-like cell wall binding domain 6Q7I ; 1.48 ; GH3 exo-beta-xylosidase (XlnD) 6Q7J ; 2.14 ; GH3 exo-beta-xylosidase (XlnD) in complex with xylobiose aziridine activity based probe 6AVH ; 3.011 ; GH3.15 acyl acid amido synthetase 6M76 ; 1.4 ; GH31 alpha-N-acetylgalactosaminidase from Enterococcus faecalis 6M77 ; 1.9 ; GH31 alpha-N-acetylgalactosaminidase from Enterococcus faecalis in complex with N-acetylgalactosamine 5XB7 ; 2.0 ; GH42 alpha-L-arabinopyranosidase from Bifidobacterium animalis subsp. lactis Bl-04 7ERL ; 1.8933 ; GH43 domain of bifunctional endoxylanase and arabinofuranosidase of Bi0569 6B7K ; 2.55 ; GH43 Endo-Arabinanase from Bacillus licheniformis 5OYC ; 1.6 ; GH5 endo-xyloglucanase from Cellvibrio japonicus 5OYD ; 2.1 ; GH5 endo-xyloglucanase from Cellvibrio japonicus 5OYE ; 1.9 ; GH5 endo-xyloglucanase from Cellvibrio japonicus 3AYR ; 2.0 ; GH5 endoglucanase EglA from a ruminal fungus 3AYS ; 2.2 ; GH5 endoglucanase from a ruminal fungus in complex with cellotriose 6XSO ; 1.5 ; GH5-4 broad specificity endoglucanase from an uncultured bacterium 6XRK ; 1.419 ; GH5-4 broad specificity endoglucanase from an uncultured bovine rumen ciliate 6WQY ; 1.05 ; GH5-4 broad specificity endoglucanase from Bacteroides salanitronis 6Q1I ; 1.35 ; GH5-4 broad specificity endoglucanase from Clostrdium longisporum 6PZ7 ; 1.25 ; GH5-4 broad specificity endoglucanase from Clostridium acetobutylicum 6UI3 ; 1.3 ; GH5-4 broad specificity endoglucanase from Clostridum cellulovorans 6MQ4 ; 1.4 ; GH5-4 broad specificity endoglucanase from Hungateiclostridium cellulolyticum 6WQP ; 1.6 ; GH5-4 broad specificity endoglucanase from Ruminococcus champanellensis 6WQV ; 1.45 ; GH5-4 broad specificity endoglucanase from Ruminococcus champanellensis with bound cellotriose 6XSU ; 1.41 ; GH5-4 broad specificity endoglucanase from Ruminococcus flavefaciens 6SXV ; 1.402 ; GH51 a-l-arabinofuranosidase soaked with aziridine inhibitor 6SXU ; 1.398 ; GH51 a-l-arabinofuranosidase soaked with cyclic sulfate inhibitor 6SXT ; 1.466 ; GH54 a-l-arabinofuranosidase soaked with aziridine inhibitor 6SXS ; 1.859 ; GH54 a-l-arabinofuranosidase soaked with cyclic sulfate inhibitor 5JX5 ; 1.8 ; GH6 Orpinomyces sp. Y102 enzyme 6IDW ; 2.78 ; GH6 Orpinomyces sp. Y102 enzyme 8H97 ; 2.194 ; GH86 agarase Aga86A_Wa 4UF7 ; 1.7 ; Ghanaian henipavirus (Gh-M74a) attachment glycoprotein in complex with human ephrinB2 4XI5 ; 3.9 ; gHgL of varicella-zoster virus in complex with human neutralizing antibodies 4XHJ ; 3.156 ; gHgL of Varicella-zoster virus in complex with human neutralizing antibodies. 6QUJ ; 1.68 ; GHK tagged GFP variant 6QUI ; 1.94 ; GHK tagged GFP variant at 17Kev 6QUH ; 1.5 ; GHK tagged GFP variant crystal form II at 1.34A wavelength 6QUG ; 2.7 ; GHK tagged MBP-Nup98(1-29) 2LLZ ; ; GhoS (YjdK) monomer 7F9Y ; 2.9 ; ghrelin-bound ghrelin receptor in complex with Gq 7F9Z ; 3.2 ; GHRP-6-bound ghrelin receptor in complex with Gq 8KFX ; 2.96 ; Gi bound CCR8 complex with nonpeptide agonist LMD-009 8KFY ; 3.06 ; Gi bound CCR8 complex with nonpeptide agonist ZK 756326 8KFZ ; 3.3 ; Gi bound CCR8 in ligand free state 8F7S ; 3.0 ; Gi bound delta-opioid receptor in complex with deltorphin 8F7W ; 3.19 ; Gi bound kappa-opioid receptor in complex with dynorphin 8F7Q ; 3.22 ; Gi bound mu-opioid receptor in complex with beta-endorphin 8F7R ; 3.28 ; Gi bound mu-opioid receptor in complex with endomorphin 8F7X ; 3.28 ; Gi bound nociceptin receptor in complex with nociceptin peptide 8HSC ; 3.22 ; Gi bound Orphan GPR20 complex with Fab046 in ligand-free state 8HS3 ; 3.14 ; Gi bound orphan GPR20 in ligand-free state 1BOF ; 2.2 ; GI-ALPHA-1 BOUND TO GDP AND MAGNESIUM 3FFB ; 2.57 ; Gi-alpha-1 mutant in GDP bound form 1CIP ; 1.5 ; GI-ALPHA-1 SUBUNIT OF GUANINE NUCLEOTIDE-BINDING PROTEIN COMPLEXED WITH A GTP ANALOGUE 6H6Z ; 2.085 ; GI.1 human norovirus protruding domain in complex with Nano-62 6H70 ; 1.83 ; GI.1 human norovirus protruding domain in complex with Nano-62 and 2-fucosyllactose (2FL) 6H6Y ; 1.58 ; GI.1 human norovirus protruding domain in complex with Nano-7 6H71 ; 2.313 ; GI.1 human norovirus protruding domain in complex with Nano-94 6H72 ; 2.3 ; GI.1 human norovirus protruding domain in complex with Nano-94 and 2-fucosyllactose (2FL) 7DC6 ; 2.68 ; Giant panda MHC class I complexes 3O85 ; 1.806 ; Giardia lamblia 15.5kD RNA binding protein 3IAL ; 2.2 ; Giardia lamblia Prolyl-tRNA synthetase in complex with prolyl-adenylate 8BSI ; 3.4 ; Giardia ribosome chimeric hybrid-like GDP+Pi bound state (B1) 8BR8 ; 3.35 ; Giardia ribosome in POST-T state (A1) 8BRM ; 3.33 ; Giardia ribosome in POST-T state, no E-site tRNA (A6) 8BSJ ; 6.49 ; Giardia Ribosome in PRE-T Classical State (C) 8BTD ; 4.9 ; Giardia Ribosome in PRE-T Hybrid State (D1) 8BTR ; 3.25 ; Giardia Ribosome in PRE-T Hybrid State (D2) 7WUG ; 3.3 ; GID subcomplex: Gid12 bound Substrate Receptor Scaffolding module 6CDG ; 1.6 ; GID4 fragment in complex with a peptide 6CD9 ; 1.55 ; GID4 in complex with a peptide 6CDC ; 1.75 ; GID4 in complex with a tetrapeptide 7U3E ; 1.852 ; GID4 in complex with compound 1 7U3I ; 1.991 ; GID4 in complex with compound 16 7U3F ; 2.3 ; GID4 in complex with compound 4 7U3G ; 2.244 ; GID4 in complex with compound 67 7U3H ; 1.798 ; GID4 in complex with compound 7 7U3J ; 1.642 ; GID4 in complex with compound 88 7U3K ; 2.198 ; GID4 in complex with compound 89 7U3L ; 2.295 ; GID4 in complex with compound 91 6WZX ; 1.75 ; GID4 in complex with IGLWKS peptide 6WZZ ; 1.6 ; GID4 in complex with VGLWKS peptide 6GVZ ; 1.54 ; GII.1 human norovirus protruding domain in complex with glycochenodeoxycholate (GCDCA) 6GW0 ; 1.4 ; GII.1 human norovirus protruding domain in complex with taurochenodeoxycholate (TCDCA) 6GW1 ; 1.9 ; GII.10 human norovirus protruding domain in complex with glycochenodeoxycholate (GCDCA) 6GW2 ; 2.05 ; GII.10 human norovirus protruding domain in complex with taurochenodeoxycholate (TCDCA) 5O04 ; 2.3 ; GII.10 Vietnam 026 norovirus protruding domain in complex with Nanobody Nano-26 and Nano-85 5O05 ; 2.0 ; GII.10 Vietnam 026 norovirus protruding domain in complex with Nanobody Nano-42 5OMM ; 1.7 ; GII.10 Vietnam 026 protruding domain in complex with Nanobody Nano-14 5OMN ; 2.682 ; GII.10 Vietnam 026 protruding domain in complex with Nanobody Nano-27 5O03 ; 2.194 ; GII.10 Vietnam 026 protruding domain in complex with Nanobody Nano-32 6JYN ; 1.599 ; GII.13/21 noroviruses recognize glycans with a terminal beta-galactose via an unconventional glycan binding site 6JYO ; 1.502 ; GII.13/21 noroviruses recognize glycans with a terminal beta-galactose via an unconventional glycan binding site 6JYR ; 1.501 ; GII.13/21 noroviruses recognize glycans with a terminal beta-galactose via an unconventional glycan binding site 6JYS ; 1.697 ; GII.13/21 noroviruses recognize glycans with a terminal beta-galactose via an unconventional glycan binding site 5O02 ; 1.72 ; GII.17 Kawasaki323 protruding domain in complex with Nanobody Nano-4 6GW4 ; 2.295 ; GII.19 human norovirus protruding domain in complex with glycochenodeoxycholate (GCDCA) 2YNW ; 1.7 ; GIM-1-2Mol native. Crystal structures of Pseudomonas aeruginosa GIM- 1: active site plasticity in metallo-beta-lactamases 2YNT ; 1.598 ; GIM-1-3Mol native. Crystal structures of Pseudomonas aeruginosa GIM- 1: active site plasticity in metallo-beta-lactamases 2ML7 ; ; Ginsentides: Characterization, Structure and Application of a New Class of Highly Stable Cystine Knot Peptides in Ginseng 2L4T ; ; GIP/Glutaminase L peptide complex 2OTL ; 2.7 ; Girodazole bound to the large subunit of Haloarcula marismortui 7F5X ; 3.5 ; GK domain of Drosophila P5CS filament with glutamate 7WX4 ; 3.4 ; GK domain of Drosophila P5CS filament with glutamate and ATPgammaS 7WX3 ; 3.1 ; GK domain of Drosophila P5CS filament with glutamate, ATP, and NADPH 5CH9 ; 1.9 ; Gkap mutant B12 4OP2 ; 2.24 ; GKRP bound to AMG-0471 and Sorbitol-6-Phosphate 4OP1 ; 2.39 ; GKRP bound to AMG0556 and Sorbitol-6-Phosphate 1T2X ; 2.3 ; Glactose oxidase C383S mutant identified by directed evolution 2W39 ; 1.1 ; Glc(beta-1-3)Glc disaccharide in -1 and -2 sites of Laminarinase 16A from Phanerochaete chrysosporium 6DTE ; 1.929 ; GlcNAc-inspired cyclophellitol bound to NagZ 2WB5 ; 2.31 ; GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation 1UPS ; 1.82 ; GlcNAc[alpha]1-4Gal releasing endo-[beta]-galactosidase from Clostridium perfringens 5LGW ; 1.95 ; GlgE isoform 1 from Streptomyces coelicolor D394A mutant co-crystallised with maltodextrin 4CN1 ; 2.55 ; GlgE isoform 1 from Streptomyces coelicolor D394A mutant with maltose- 1-phosphate bound 5CVS ; 2.3 ; GlgE isoform 1 from Streptomyces coelicolor E423A mutant soaked in maltoheptaose 5LGV ; 2.5 ; GlgE isoform 1 from Streptomyces coelicolor E423A mutant soaked in maltooctaose 4CN4 ; 2.4 ; GlgE isoform 1 from Streptomyces coelicolor E423A mutant with 2-deoxy- 2-fluoro-beta-maltosyl modification 4CN6 ; 2.29 ; GlgE isoform 1 from Streptomyces coelicolor E423A mutant with maltose bound 3ZT6 ; 2.19 ; GlgE isoform 1 from Streptomyces coelicolor with alpha-cyclodextrin and maltose bound 3ZST ; 2.3 ; GlgE isoform 1 from Streptomyces coelicolor with alpha-cyclodextrin bound 3ZT7 ; 2.5 ; GlgE isoform 1 from Streptomyces coelicolor with beta-cyclodextrin and maltose bound 3ZT5 ; 2.09 ; GlgE isoform 1 from Streptomyces coelicolor with maltose bound 7W2A ; 1.6 ; gliadinase Bga1903 1AGQ ; 1.9 ; GLIAL CELL-DERIVED NEUROTROPHIC FACTOR FROM RAT 4LML ; 3.8 ; GLIC double mutant I9'A T25'A 4LMJ ; 3.44 ; GLIC Liganded-closed-channel Conformation, Mutant T25'A 4LMK ; 3.22 ; GLIC Liganded-closed-channel Conformation, Mutant Y27'A 6F11 ; 2.95 ; GLIC mutant D86A 6F0Z ; 2.5 ; GLIC mutant D88N 6F10 ; 2.85 ; GLIC mutant D88N 6F12 ; 3.2 ; GLIC mutant E181A 6F0I ; 3.0 ; GLIC mutant E26A 6F0J ; 3.15 ; GLIC mutant E26A 6F0U ; 2.35 ; GLIC mutant E35A 6F0M ; 2.65 ; GLIC mutant E35Q 6F13 ; 2.7 ; GLIC mutant E75A 6F0N ; 3.2 ; GLIC mutant E82A 6F0R ; 2.5 ; GLIC mutant E82Q 6F0V ; 2.85 ; GLIC mutant E82Q 6F15 ; 2.85 ; GLIC mutant H127Q 6F16 ; 2.6 ; GLIC mutant H277Q 6ZGK ; 3.6 ; GLIC pentameric ligand-gated ion channel, pH 3 6ZGJ ; 3.4 ; GLIC pentameric ligand-gated ion channel, pH 5 6ZGD ; 4.1 ; GLIC pentameric ligand-gated ion channel, pH 7 5OSA ; 2.75 ; GLIC-GABAAR alpha1 chimera crystallized at pH4.6 5OSC ; 3.1 ; GLIC-GABAAR alpha1 chimera crystallized in complex with pregnenolone sulfate at pH 4.5 5OSB ; 3.8 ; GLIC-GABAAR alpha1 chimera crystallized in complex with THDOC at pH4.5 5IUX ; 2.6 ; GLIC-V135C bimane labelled X-ray structure 5J5T ; 2.85 ; GLK co-crystal structure with aminopyrrolopyrimidine inhibitor 4E1K ; 2.0 ; GlmU in complex with a Quinazoline Compound 3TWD ; 1.9 ; glmuC1 in complex with an antibacterial inhibitor 3SGQ ; 1.8 ; GLN 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 10.7 2SGQ ; 1.8 ; GLN 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 6.5 1Q5T ; 1.9 ; Gln48 PLA2 separated from Vipoxin from the venom of Vipera ammodytes meridionalis. 6H20 ; 1.4 ; GlnH bound to Asn, Mycobacterium tuberculosis 6H1U ; 1.68 ; GlnH bound to Asp, Mycobacterium tuberculosis 6H2T ; 1.67 ; GlnH bound to Glu, Mycobacterium tuberculosis 1GNK ; 2.0 ; GLNK, A SIGNAL PROTEIN FROM E. COLI 2GNK ; 2.0 ; GLNK, A SIGNAL PROTEIN FROM E. COLI 7P52 ; 1.20002 ; GlnK1 from Methanocaldococcus jannaschii with Mg-ATP and 2-oxoglutarate at a resolution of 1.2 A 7P4V ; 1.94 ; GlnK1 from Methanothermococcus thermolithotrophicus with dADP at a resolution of 1.94 A 3NCP ; 2.35 ; GlnK2 from Archaeoglobus fulgidus 3NCQ ; 1.24 ; GlnK2 from Archaeoglobus fulgidus, ATP complex 3NCR ; 1.44 ; GlnK2 from Archaeoglubus fulgidus, ADP complex 4OZJ ; 1.45 ; GlnK2 from Haloferax mediterranei complexed with ADP 4OZL ; 1.4942 ; GlnK2 from Haloferax mediterranei complexed with AMP 4OZN ; 2.6 ; GlnK2 from Haloferax mediterranei complexed with ATP 7P50 ; 1.16 ; GlnK2 from Methanothermococcus thermolithotrophicus in complex with Mg-ATP and 2-oxoglutarate at a resolution of 1.16 A 7P4Y ; 2.3 ; GlnK2 from Methanothermococcus thermolithotrophicus in the apo state at a resolution of 2.3 A 1EZO ; ; GLOBAL FOLD OF MALTODEXTRIN BINDING PROTEIN COMPLEXED WITH BETA-CYCLODEXTRIN 1EZP ; ; GLOBAL FOLD OF MALTODEXTRIN BINDING PROTEIN COMPLEXED WITH BETA-CYCLODEXTRIN USING PEPTIDE ORIENTATIONS FROM DIPOLAR COUPLINGS 2M3K ; ; Global fold of the type IV pilin ComP from Neisseria meningitidis 8DUJ ; 3.7 ; Global map in C1 of RyR1 particles in complex with ImperaCalcin 8OPJ ; 2.99 ; Global refinement of cubic assembly from truncated PVY coat protein with K176C mutation 5YWJ ; 2.102 ; Global regulatory element SarX 6K8E ; 2.002 ; Global regulatory element SarX 1O8T ; ; Global Structure and Dynamics of Human Apolipoprotein CII in Complex with Micelles: Evidence for increased mobility of the helix involved in the activation of lipoprotein lipase 2W31 ; 1.5 ; globin domain of Geobacter sulfurreducens globin-coupled sensor 5OHE ; 1.85 ; Globin sensor domain of AfGcHK (FeIII form) in complex with cyanide 5OHF ; 1.8 ; Globin sensor domain of AfGcHK (FeIII form) in complex with cyanide, partially reduced 6OTD ; 1.8 ; Globin sensor domain of AfGcHK in monomeric form, with imidazole 4BJA ; 1.65 ; Globin-like protein Glb-12 from C.elegans 6HAT ; 1.856 ; Globular domain of herpesvirus saimiri ORF57 5HCA ; 2.15 ; Globular Domain of the Entamoeba histolytica calreticulin in complex with glucose 5HCB ; 2.9 ; Globular Domain of the Entamoeba histolytica calreticulin in complex with glucose 8XVF ; 2.76 ; Globular domain of Trichinella spiralis calreticulin 5HBA ; 2.05 ; Globular Domain of Zebrafish Complement 1qA protein 7P66 ; 3.0 ; Globular glial tauopathy type 1 tau filament 7P67 ; 3.1 ; Globular glial tauopathy type 2 tau filament 7P68 ; 2.9 ; Globular glial tauopathy type 3 tau filament 6Z6V ; 2.19 ; Globular head of C1q in complex with the nanobody C1qNb75 1PK6 ; 1.85 ; Globular Head of the Complement System Protein C1q 2W3C ; 2.22 ; Globular head region of the human general vesicular transport factor p115 6F7A ; 6.0 ; Gloeobacter Ligand-gated Ion Channel (GLIC) closed state crystallized in an ultra-swollen lipidic mesophase 3DCN ; 1.9 ; Glomerella cingulata apo cutinase 3DD5 ; 2.6 ; Glomerella cingulata E600-cutinase complex 3DEA ; 2.3 ; Glomerella cingulata PETFP-cutinase complex 3SW9 ; 3.05 ; GLP (G9a-like protein) SET domain in complex with Dnmt3aK44me0 peptide 3SWC ; 2.332 ; GLP (G9a-like protein) SET domain in complex with Dnmt3aK44me2 peptide 6MBP ; 1.947 ; GLP Methyltransferase with Inhibitor EML741- P3121 Crystal Form 6MBO ; 1.591 ; GLP Methyltransferase with Inhibitor EML741-P212121 Crystal Form 6X18 ; 2.1 ; GLP-1 peptide hormone bound to Glucagon-Like peptide-1 (GLP-1) Receptor 7S15 ; 3.8 ; GLP-1 receptor bound with Pfizer small molecule agonist 7C2E ; 4.2 ; GLP-1R-Gs complex structure with a small molecule full agonist 7VFR ; 1.56 ; GltA N83K mutant from Bifidobacterium infantis JCM 1222 complexed with lacto-N-tetraose 6UWL ; 3.62 ; GltPh in complex with L-aspartate and sodium ions in intermediate outward-facing state 6UWF ; 3.08 ; GltPh in complex with L-aspartate and sodium ions in outward-facing state 7RCP ; 2.2 ; GltPh mutant (S279E/D405N) in complex with aspartate and sodium ions 6V8G ; 3.38 ; GltPh mutant - Y204L A345V V366A 2SGE ; 1.8 ; GLU 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 10.7 1SGE ; 1.8 ; GLU 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 6.5 2BS3 ; 2.19 ; GLU C180 -> GLN VARIANT QUINOL:FUMARATE REDUCTASE FROM WOLINELLA SUCCINOGENES 2BS4 ; 2.76 ; GLU C180 -> ILE VARIANT QUINOL:FUMARATE REDUCTASE FROMWOLINELLA SUCCINOGENES 6T6V ; 4.5 ; Glu-494-Ala inactive monomer of a quinol dependent Nitric Oxide Reductase (qNOR) from Alcaligenes xylosoxidans 1FWZ ; 2.3 ; GLU20ALA DTXR 1ZP4 ; 1.85 ; Glu28Gln mutant of E. coli Methylenetetrahydrofolate Reductase (oxidized) complex with Methyltetrahydrofolate 3S1D ; 1.75 ; Glu381Ser mutant of maize cytokinin oxidase/dehydrogenase complexed with N6-isopentenyladenosine 2BWY ; 2.4 ; Glu383Ala Escherichia coli Aminopeptidase P 2V3Z ; 1.56 ; Glu383Ala Escherichia coli aminopeptidase P in complex with substrate 6QKC ; 4.4 ; GluA1/2 In complex with auxiliary subunit gamma-8 5WEK ; 4.6 ; GluA2 bound to antagonist ZK and GSG1L in digitonin, state 1 5WEL ; 4.4 ; GluA2 bound to antagonist ZK and GSG1L in digitonin, state 2 5WEM ; 6.1 ; GluA2 bound to GSG1L in digitonin, state 1 5WEN ; 6.8 ; GluA2 bound to GSG1L in digitonin, state 2 8FPS ; 2.38 ; GluA2 flip Q isoform N619K mutant of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg/N619K) 8FP9 ; 2.44 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg) 8FPG ; 2.32 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100uM CNQX (Closed-CaNaMg) 8FQF ; 2.29 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 150mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na260) 8FP4 ; 2.4 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 500mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na610) 8FQB ; 2.36 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 10mM CaCl2, 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Ca10) 8FQ5 ; 2.34 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Na110) 8FQ1 ; 5.59 ; GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 150mM CaCl2, 330uM CTZ, and 100mM L-glutamate (Open-Ca150) 6PEQ ; 2.97 ; GluA2 in complex with its auxiliary subunit CNIH3 - map LBD-TMD-C3 - with antagonist ZK200775 -without NTD 6UD8 ; 3.2 ; GluA2 in complex with its auxiliary subunit CNIH3 - with antagonist ZK200775 6UCB ; 3.28 ; GluA2 in complex with its auxiliary subunit CNIH3 - with antagonist ZK200775, LBD, TMD, CNIH3, and lipids 6UD4 ; 3.3 ; GluA2 in complex with its auxiliary subunit CNIH3 in AS map II - (LBD-TMD-C3(AS) II)- with antagonist ZK200775, without NTD 6FQG ; 2.34139 ; GluA2(flop) G724C ligand binding core dimer bound to L-Glutamate (Form A) at 2.34 Angstrom resolution 6FQI ; 2.91001 ; GluA2(flop) G724C ligand binding core dimer bound to L-Glutamate (Form B) at 2.91 Angstrom resolution 6FQJ ; 2.50002 ; GluA2(flop) G724C ligand binding core dimer bound to ZK200775 at 2.50 Angstrom resolution 6FQH ; 1.7594 ; GluA2(flop) S729C ligand binding core dimer bound to NBQX at 1.76 Angstrom resolution 6FQK ; 1.9801 ; GluA2(flop) S729C ligand binding core dimer bound to ZK200775 at 1.98 Angstrom resolution 5VHW ; 7.8 ; GluA2-0xGSG1L bound to ZK 5VHX ; 8.3 ; GluA2-1xGSG1L bound to ZK 5VHZ ; 8.4 ; GluA2-2xGSG1L bound to L-Quisqualate 5VHY ; 4.6 ; GluA2-2xGSG1L bound to ZK 4L17 ; 2.8 ; GluA2-L483Y-A665C ligand-binding domain in complex with the antagonist DNQX 4U22 ; 1.4409 ; GluA2flip sLBD complexed with FW and (R,R)-2b crystal form D 4U21 ; 1.3908 ; GluA2flip sLBD complexed with FW and (R,R)-2b crystal form E 4U23 ; 1.6734 ; GluA2flip sLBD complexed with FW and (R,R)-2b crystal form F 4U1O ; 1.8501 ; GluA2flip sLBD complexed with kainate and (R,R)-2b crystal form C 4U1Z ; 1.9401 ; GluA2flip sLBD complexed with kainate and (R,R)-2b crystal form D 7XM8 ; 3.9 ; Glucagon amyloid fibril 6CAM ; 1.75 ; Glucan Binding Protein C of Streptococcus mutans Mediates both Sucrose-Independent and Sucrose-Dependent Adherence 1JDF ; 2.0 ; Glucarate Dehydratase from E.coli N341D mutant 1JCT ; 2.75 ; Glucarate Dehydratase, N341L mutant Orthorhombic Form 2FBA ; 1.1 ; Glucoamylase from Saccharomycopsis fibuligera at atomic resolution 1ACZ ; ; GLUCOAMYLASE, GRANULAR STARCH-BINDING DOMAIN COMPLEX WITH CYCLODEXTRIN, NMR, 5 STRUCTURES 1AC0 ; ; GLUCOAMYLASE, GRANULAR STARCH-BINDING DOMAIN COMPLEX WITH CYCLODEXTRIN, NMR, MINIMIZED AVERAGE STRUCTURE 1KUL ; ; GLUCOAMYLASE, GRANULAR STARCH-BINDING DOMAIN, NMR, 5 STRUCTURES 1KUM ; ; GLUCOAMYLASE, GRANULAR STARCH-BINDING DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 1GAH ; 2.0 ; GLUCOAMYLASE-471 COMPLEXED WITH ACARBOSE 1GAI ; 1.7 ; GLUCOAMYLASE-471 COMPLEXED WITH D-GLUCO-DIHYDROACARBOSE 6Q1N ; 2.526 ; Glucocerebrosidase in complex with pharmacological chaperone IMX8 6Q1P ; 2.796 ; Glucocerebrosidase in complex with pharmacological chaperone norIMX8 6BSE ; 2.35 ; Glucocorticoid receptor bound to high cooperativity monomer sequence 5E6C ; 2.2 ; Glucocorticoid receptor DNA binding domain - CCL2 NF-kB response element complex 5E6D ; 2.4 ; Glucocorticoid receptor DNA binding domain - ICAM1 NF-kB response element complex 5VA7 ; 2.153 ; Glucocorticoid Receptor DNA Binding Domain - IL11 AP-1 recognition element Complex 5E69 ; 1.85 ; Glucocorticoid receptor DNA binding domain - IL8 NF-kB response element complex 5E6A ; 2.197 ; Glucocorticoid receptor DNA binding domain - PLAU NF-kB response element complex 5E6B ; 2.25 ; Glucocorticoid receptor DNA binding domain - RELB NF-kB response element complex 5VA0 ; 2.295 ; Glucocorticoid Receptor DNA Binding Domain in complex with AP-1 response element from VCAM-1 Promoter 6X6E ; 2.0 ; Glucocorticoid Receptor DNA binding domain in complex with methylated precursor for a modern recognition element (methylated pre-GBS) 6X6D ; 2.48 ; Glucocorticoid Receptor DNA binding domain in complex with unmodified precursor for a modern recognition element (pre-GBS) 5NFT ; 2.3 ; Glucocorticoid Receptor in complex with AZD5423 6EL9 ; 2.19 ; Glucocorticoid Receptor in complex with AZD9567 5NFP ; 2.1 ; Glucocorticoid Receptor in complex with budesonide 6DXK ; 3.05 ; Glucocorticoid Receptor in complex with Compound 11 6EL7 ; 2.18 ; Glucocorticoid Receptor in complex with compound 31 6EL6 ; 2.4 ; Glucocorticoid Receptor in complex with compound 4 3E7C ; 2.15 ; Glucocorticoid Receptor LBD bound to GSK866 1LAT ; 1.9 ; GLUCOCORTICOID RECEPTOR MUTANT/DNA COMPLEX 3K22 ; 2.1 ; Glucocorticoid Receptor with Bound alaninamide 10 with TIF2 peptide 3K23 ; 3.0 ; Glucocorticoid Receptor with Bound D-prolinamide 11 3BD8 ; 2.1 ; Glucogen Phosphorylase complex with 1(-D-glucopyranosyl) cytosine 3BCU ; 2.03 ; Glucogen Phosphorylase complex with thymidine 3S41 ; 2.18 ; Glucokinase in complex with activator and glucose 3VEV ; 1.8 ; Glucokinase in complex with an activator and glucose 3VF6 ; 1.86 ; Glucokinase in complex with glucose and activator 3VEY ; 2.25 ; glucokinase in complex with glucose and ATPgS 6O08 ; 1.798 ; Gluconobacter Ene-Reductase (GluER) 8FW1 ; 1.5 ; Gluconobacter Ene-Reductase (GluER) mutant - PagER 6MYW ; 1.157 ; Gluconobacter Ene-Reductase (GluER) mutant - T36A 4CTM ; 1.95 ; Glucopyranosylidene-spiro-iminothiazolidinone, a New Bicyclic Ring System: Synthesis, Derivatization, and Evaluation as Glycogen Phosphorylase Inhibitors by Enzyme Kinetic and Crystallographic Methods 4CTN ; 2.1 ; Glucopyranosylidene-spiro-iminothiazolidinone, a New Bicyclic Ring System: Synthesis, Derivatization, and Evaluation as Glycogen Phosphorylase Inhibitors by Enzyme Kinetic and Crystallographic Methods 4CTO ; 1.9 ; Glucopyranosylidene-spiro-iminothiazolidinone, a New Bicyclic Ring System: Synthesis, Derivatization, and Evaluation as Glycogen Phosphorylase Inhibitors by Enzyme Kinetic and Crystallographic Methods 7LQM ; 2.3 ; Glucosamie-6-phosphate Deaminase from Pasturella multocida 1HOT ; 2.4 ; GLUCOSAMINE 6-PHOSPHATE DEAMINASE COMPLEXED WITH THE ALLOSTERIC ACTIVATOR N-ACETYL-GLUCOSAMINE-6-PHOSPHATE 1FQO ; 2.2 ; GLUCOSAMINE 6-PHOSPHATE DEAMINASE COMPLEXED WITH THE SUBSTRATE OF THE REVERSE REACTION FRUCTOSE 6-PHOSPHATE (OPEN FORM) 1JXA ; 3.1 ; GLUCOSAMINE 6-PHOSPHATE SYNTHASE WITH GLUCOSE 6-PHOSPHATE 6HWJ ; 1.979 ; Glucosamine kinase (crystal form A) 6HWK ; 2.688 ; Glucosamine kinase (crystal form B) 6HWL ; 2.148 ; Glucosamine kinase in complex with glucosamine, ADP and inorganic phosphate 2WU1 ; 2.2 ; Glucosamine-6-Phosphate Deaminase Complexed with the Allosteric Activator N-Acetyl-Glucoamine-6-Phosphate both in the Active and Allosteric sites. 1FRZ ; 2.2 ; GLUCOSAMINE-6-PHOSPHATE DEAMINASE FROM E.COLI, R CONFORMER. COMPLEXED WITH THE ALLOSTERIC ACTIVATOR N-ACETYL-GLUCOSAMINE-6-PHOSPHATE AT 2.2 A RESOLUTION 1CD5 ; 2.3 ; GLUCOSAMINE-6-PHOSPHATE DEAMINASE FROM E.COLI, T CONFORMER 1FSF ; 1.9 ; GLUCOSAMINE-6-PHOSPHATE DEAMINASE FROM E.COLI, T CONFORMER, AT 1.9A RESOLUTION 1FS6 ; 2.2 ; GLUCOSAMINE-6-PHOSPHATE DEAMINASE FROM E.COLI, T CONFORMER, AT 2.2A RESOLUTION 7LQN ; 3.0 ; Glucosamine-6-phosphate Deaminase from H. influenzae 2VF5 ; 2.9 ; Glucosamine-6-phosphate synthase in complex with glucosamine-6- phosphate 1DPG ; 2.0 ; GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM LEUCONOSTOC MESENTEROIDES 2N9H ; ; Glucose as a nuclease mimic in DNA 2N9F ; ; Glucose as non natural nucleobase 7CGZ ; 1.94 ; glucose dehydrogenase 1OAD ; 1.5 ; Glucose isomerase from Streptomyces rubiginosus in P21212 crystal form 7BJZ ; 2.13 ; GLUCOSE ISOMERASE S171W in H32 4W4Q ; 2.0 ; Glucose isomerase structure determined by serial femtosecond crystallography at SACLA 1CF3 ; 1.9 ; GLUCOSE OXIDASE FROM APERGILLUS NIGER 1GPE ; 1.8 ; GLUCOSE OXIDASE FROM PENICILLIUM AMAGASAKIENSE 5NIT ; 1.87 ; Glucose oxidase mutant A2 5NIW ; 1.8 ; Glucose oxydase mutant A2 1IBA ; ; GLUCOSE PERMEASE (DOMAIN IIB), NMR, 11 STRUCTURES 2GPR ; 2.5 ; GLUCOSE PERMEASE IIA FROM MYCOPLASMA CAPRICOLUM 6D23 ; 2.85 ; GLUCOSE-6-P DEHYDROGENASE (APO FORM) FROM TRYPANOSOMA CRUZI 8FUY ; 2.45 ; Glucose-6-phosphate 1-dehydrogenase (G6PDH) from Crithidia fasciculata (citrate bound) 8U2W ; 2.35 ; Glucose-6-phosphate 1-dehydrogenase (G6PDH) from Crithidia fasciculata (NADP bound) 7SEI ; 3.65 ; Glucose-6-phosphate 1-dehydrogenase (K403Q) 7SEH ; 2.9 ; Glucose-6-phosphate 1-dehydrogenase (K403QdLtL) 3NB0 ; 2.406 ; Glucose-6-Phosphate activated form of Yeast Glycogen Synthase 7E6H ; 2.7 ; glucose-6-phosphate dehydrogenase from Kluyveromyces lactis 7E6I ; 2.39 ; Glucose-6-phosphate dehydrogenase in complex with its substrate glucose-6-phosphate 3Q7I ; 1.54 ; Glucose-6-phosphate isomerase from Francisella tularensis complexed with 6-phosphogluconic acid. 3M5P ; 1.65 ; Glucose-6-phosphate isomerase from Francisella tularensis complexed with fructose-6-phosphate. 3Q88 ; 1.7 ; Glucose-6-phosphate isomerase from Francisella tularensis complexed with ribose 1,5-bisphosphate. 3LJK ; 1.48 ; Glucose-6-phosphate isomerase from Francisella tularensis. 1OFG ; 2.7 ; GLUCOSE-FRUCTOSE OXIDOREDUCTASE 2QW1 ; 1.7 ; Glucose/galactose binding protein bound to 3-O-methyl D-glucose 4KQ2 ; 2.95 ; Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase 1BGG ; 2.3 ; GLUCOSIDASE A FROM BACILLUS POLYMYXA COMPLEXED WITH GLUCONATE 7XGX ; 2.39 ; Glucosyltransferase 3PIC ; 1.9 ; Glucuronoyl Esterase catalytic domain (Cip2_GE) from Hypocrea jecorina 6GRW ; 1.5 ; Glucuronoyl Esterase from Opitutus terrae (Au derivative) 6GU8 ; 2.01808 ; Glucuronoyl Esterase from Solibacter usitatus 6GRY ; 2.00034 ; Glucuronoyl Esterase from Solibacter usitatus. 8VCN ; 1.47 ; GluER mutant - W66F F269Y Q293T F68Y T36E P263L 7YSV ; 8.01 ; GluK1-1a extracellular domain captured in SYM2081 bound desensitized state 7YSJ ; 5.2 ; GluK1-1a in nanodisc captured in SYM2081 bound desensitized state 8GPR ; 8.2 ; GluK1-1a receptor captured in the desensitized state 7KS0 ; 5.3 ; GluK2/K5 with 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) 7KS3 ; 5.8 ; GluK2/K5 with L-Glu 5KUF ; 3.8 ; GluK2EM with 2S,4R-4-methylglutamate 5KUH ; 11.6 ; GluK2EM with LY466195 7VM2 ; 5.9 ; GluK3 D759G mutant receptor complex with UBP310 and spermine 6KZM ; 9.6 ; GluK3 receptor complex with kainate 6L6F ; 10.6 ; GluK3 receptor complex with UBP301 6JFZ ; 7.6 ; GluK3 receptor complex with UBP310 6JFY ; 7.4 ; GluK3 receptor trapped in Desensitized state 6CNA ; 4.6 ; GluN1-GluN2B NMDA receptors with exon 5 5FXG ; 6.8 ; GLUN1B-GLUN2B NMDA RECEPTOR IN ACTIVE CONFORMATION 6WHT ; 4.39 ; GluN1b-GluN2B NMDA receptor in active conformation at 4.4 angstrom resolution 6WI1 ; 3.62 ; GluN1b-GluN2B NMDA receptor in active conformation stabilized by inter-GluN1b-GluN2B subunit cross-linking 6WHY ; 4.03 ; GluN1b-GluN2B NMDA receptor in complex with GluN1 antagonist L689,560, class 1 6WI0 ; 4.27 ; GluN1b-GluN2B NMDA receptor in complex with GluN1 antagonist L689,560, class 2 6WHW ; 4.09 ; GluN1b-GluN2B NMDA receptor in complex with GluN2B antagonist SDZ 220-040, class 1 6WHX ; 4.09 ; GluN1b-GluN2B NMDA receptor in complex with GluN2B antagonist SDZ 220-040, class 2 6WHU ; 3.93 ; GluN1b-GluN2B NMDA receptor in complex with SDZ 220-040 and L689,560, class 1 6WHV ; 4.05 ; GluN1b-GluN2B NMDA receptor in complex with SDZ 220-040 and L689,560, class 2 6WHS ; 4.0 ; GluN1b-GluN2B NMDA receptor in non-active 1 conformation at 3.95 angstrom resolution 6WHR ; 3.99 ; GluN1b-GluN2B NMDA receptor in non-active 2 conformation at 4 angstrom resolution 5FXH ; 5.0 ; GluN1b-GluN2B NMDA receptor in non-active-1 conformation 5FXI ; 6.4 ; GluN1b-GluN2B NMDA receptor structure in non-active-2 conformation 5FXJ ; 6.25 ; GluN1b-GluN2B NMDA receptor structure-Class X 5FXK ; 6.4 ; GluN1b-GluN2B NMDA receptor structure-Class Y 4JWX ; 1.5 ; GluN2A ligand-binding core in complex with propyl-NHP5G 4JWY ; 2.0 ; GluN2D ligand-binding core in complex with propyl-NHP5G 1IIT ; 1.9 ; GLUR0 LIGAND BINDING CORE COMPLEX WITH L-SERINE 1IIW ; 1.9 ; GLUR0 LIGAND BINDING CORE: CLOSED-CLEFT LIGAND-FREE STRUCTURE 1P1N ; 1.6 ; GluR2 Ligand Binding Core (S1S2J) Mutant L650T in Complex with Kainate 3GF7 ; 2.4 ; Glutaconyl-coA decarboxylase A subunit from Clostridium symbiosum apoprotein 3GLM ; 2.5 ; Glutaconyl-coA decarboxylase A subunit from Clostridium symbiosum co-crystallized with crotonyl-coA 3GF3 ; 1.75 ; Glutaconyl-coA decarboxylase A subunit from Clostridium symbiosum co-crystallized with glutaconyl-coA 3GMA ; 2.6 ; Glutaconyl-coA decarboxylase A subunit from Clostridium symbiosum co-crystallized with glutaryl-CoA 2J5T ; 2.9 ; Glutamate 5-kinase from Escherichia coli complexed with glutamate 2J5V ; 2.5 ; GLUTAMATE 5-KINASE FROM ESCHERICHIA COLI COMPLEXED WITH GLUTAMYL-5-PHOSPHATE AND PYROGLUTAMIC ACID 3T93 ; 1.907 ; Glutamate bound to a double cysteine mutant (A452C/S652C) of the ligand binding domain of GluA2 3T9X ; 1.823 ; Glutamate bound to a double cysteine mutant (V484C/E657C) of the ligand binding domain of GluA2 4F3B ; 1.818 ; Glutamate bound to the D655A mutant of the ligand binding domain of GluA3 1AUP ; 2.5 ; GLUTAMATE DEHYDROGENASE 1B26 ; 3.0 ; GLUTAMATE DEHYDROGENASE 1BGV ; 1.9 ; GLUTAMATE DEHYDROGENASE 1HRD ; 1.96 ; GLUTAMATE DEHYDROGENASE 7UZM ; 3.24 ; Glutamate dehydrogenase 1 from human liver 3ETG ; 2.5 ; Glutamate dehydrogenase complexed with GW5074 5GUD ; 1.68 ; Glutamate dehydrogenase from Corynebacterium glutamicum (alpha-iminoglutarate/NADP+ complex) 4FCC ; 2.0 ; Glutamate dehydrogenase from E. coli 1BVU ; 2.5 ; GLUTAMATE DEHYDROGENASE FROM THERMOCOCCUS LITORALIS 1EUZ ; 2.25 ; GLUTAMATE DEHYDROGENASE FROM THERMOCOCCUS PROFUNDUS IN THE UNLIGATED STATE 3JD0 ; 3.47 ; Glutamate dehydrogenase in complex with GTP 3JD4 ; 3.4 ; Glutamate dehydrogenase in complex with NADH and GTP, closed conformation 3JD3 ; 3.6 ; Glutamate dehydrogenase in complex with NADH and GTP, open conformation 3JD1 ; 3.3 ; Glutamate dehydrogenase in complex with NADH, closed conformation 3JD2 ; 3.3 ; Glutamate dehydrogenase in complex with NADH, open conformation 1B1A ; ; GLUTAMATE MUTASE (B12-BINDING SUBUNIT), NMR, MINIMIZED AVERAGE STRUCTURE 1BE1 ; ; GLUTAMATE MUTASE (B12-BINDING SUBUNIT), NMR, MINIMIZED AVERAGE STRUCTURE 1CB7 ; 2.0 ; GLUTAMATE MUTASE FROM CLOSTRIDIUM COCHLEARIUM RECONSTITUTED WITH METHYL-COBALAMIN 1I9C ; 1.9 ; GLUTAMATE MUTASE FROM CLOSTRIDIUM COCHLEARIUM: COMPLEX WITH ADENOSYLCOBALAMIN AND SUBSTRATE 2VVT ; 1.65 ; Glutamate Racemase (MurI) from E. faecalis in complex with a 9-Benzyl Purine inhibitor 5IJW ; 1.76 ; Glutamate Racemase (MurI) from Mycobacterium smegmatis with bound D-glutamate, 1.8 Angstrom resolution, X-ray diffraction 1B73 ; 2.3 ; GLUTAMATE RACEMASE FROM AQUIFEX PYROPHILUS 1B74 ; 2.3 ; GLUTAMATE RACEMASE FROM AQUIFEX PYROPHILUS 5HJ7 ; 2.3 ; Glutamate Racemase Mycobacterium tuberculosis (MurI) with bound D-glutamate, 2.3 Angstrom resolution, X-ray diffraction 1OFE ; 2.45 ; Glutamate Synthase from Synechocystis sp in complex with 2-Oxoglutarate and L-DON at 2.45 Angstrom resolution 1OFD ; 2.0 ; Glutamate Synthase from Synechocystis sp in complex with 2-Oxoglutarate at 2.0 Angstrom resolution 7MFM ; 2.42 ; Glutamate synthase, glutamate dehydrogenase counter-enzyme complex 7MFT ; 3.9 ; Glutamate synthase, glutamate dehydrogenase counter-enzyme complex (GudB6-GltA6-GltB6) 6ZGB ; 3.2 ; glutamate transporter homologue Glttk in complex with a photo cage compound 5JTY ; 2.72 ; Glutamate- and DCKA-bound GluN1/GluN2A agonist binding domains with MPX-007 5I57 ; 1.7 ; Glutamate- and glycine-bound GluN1/GluN2A agonist binding domains 5I59 ; 2.25 ; Glutamate- and glycine-bound GluN1/GluN2A agonist binding domains with MPX 007 5I58 ; 2.52 ; GLUTAMATE- AND GLYCINE-BOUND GLUN1/GLUN2A AGONIST BINDING DOMAINS WITH MPX-004 2CFB ; 2.85 ; Glutamate-1-semialdehyde 2,1-Aminomutase from Thermosynechococcus elongatus 1XFF ; 1.8 ; Glutaminase domain of glucosamine 6-phosphate synthase complexed with glutamate 1XFG ; 1.85 ; Glutaminase domain of glucosamine 6-phosphate synthase complexed with l-glu hydroxamate 2ABW ; 1.62 ; Glutaminase subunit of the plasmodial PLP synthase (Vitamin B6 biosynthesis) 4PGA ; 1.7 ; GLUTAMINASE-ASPARAGINASE FROM PSEUDOMONAS 7A 1GGG ; 2.3 ; GLUTAMINE BINDING PROTEIN OPEN LIGAND-FREE STRUCTURE 1AO0 ; 2.8 ; GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE (PRPP) AMIDOTRANSFERASE FROM B. SUBTILIS COMPLEXED WITH ADP AND GMP 7CPR ; 2.12 ; glutamine synthetase from Drosophila 8OON ; 2.43 ; Glutamine synthetase from Methanothermococcus thermolithotrophicus at a resolution of 2.43 A 8OOQ ; 2.91 ; Glutamine synthetase from Methanothermococcus thermolithotrophicus in complex with 2-oxoglutarate and Mg at 2.91 A resolution 8OOO ; 2.149 ; Glutamine synthetase from Methanothermococcus thermolithotrophicus in complex with 2-oxoglutarate and MgATP at 2.15 A resolution 8OOL ; 1.65 ; Glutamine synthetase from Methanothermococcus thermolithotrophicus with TbXo4 at a resolution of 1.65 A 8OOW ; 2.64 ; Glutamine synthetase from Methermicoccus shengliensis at a resolution of 2.64 A 8OOX ; 3.09 ; Glutamine synthetase from Methermicoccus shengliensis at a resolution of 3.09 A 8OOZ ; 2.7 ; Glutamine synthetase from Methermicoccus shengliensis in complex with MgATP at 2.7 A resolution 8FBP ; 2.8 ; Glutamine synthetase from Pseudomonas aeruginosa, filament double-unit in compressed conformation 7U6O ; 3.2 ; Glutamine Synthetase Type III from Ostreococcus tauri 1WDN ; 1.94 ; GLUTAMINE-BINDING PROTEIN 1ZJW ; 2.5 ; Glutaminyl-tRNA synthetase complexed to glutamine and 2'deoxy A76 glutamine tRNA 1EUY ; 2.6 ; GLUTAMINYL-TRNA SYNTHETASE COMPLEXED WITH A TRNA MUTANT AND AN ACTIVE SITE INHIBITOR 1QTQ ; 2.25 ; GLUTAMINYL-TRNA SYNTHETASE COMPLEXED WITH TRNA AND AN AMINO ACID ANALOG 2RD2 ; 2.6 ; Glutaminyl-tRNA synthetase mutant C229R with bound analog 5'-O-[N-(L-GLUTAMINYL)-SULFAMOYL]ADENOSINE 2RE8 ; 2.6 ; Glutaminyl-tRNA synthetase mutant C229R with bound analog 5'-O-[N-(L-GLUTAMYL)-SULFAMOYL]ADENOSINE 1QRT ; 2.7 ; GLUTAMINYL-TRNA SYNTHETASE MUTANT D235G COMPLEXED WITH GLUTAMINE TRANSFER RNA 1QRS ; 2.6 ; GLUTAMINYL-TRNA SYNTHETASE MUTANT D235N COMPLEXED WITH GLUTAMINE TRANSFER RNA 1QRU ; 3.0 ; GLUTAMINYL-TRNA SYNTHETASE MUTANT I129T COMPLEXED WITH GLUTAMINE TRANSFER RNA 1P3C ; 1.5 ; Glutamyl endopeptidase from Bacillus intermedius 1GPJ ; 1.95 ; Glutamyl-tRNA Reductase from Methanopyrus kandleri 1G59 ; 2.4 ; GLUTAMYL-TRNA SYNTHETASE COMPLEXED WITH TRNA(GLU). 8I9I ; 3.3 ; Glutamyl-tRNA synthetase from Escherichia Coli bound to Glutamate and Zinc 7WAI ; 2.105 ; Glutamyl-tRNA synthetase from Plasmodium falciparum (PfERS) 7WAJ ; 2.254 ; Glutamyl-tRNA synthetase from Plasmodium falciparum (PfERS) complexed with ATP and Co 7WAK ; 2.782 ; Glutamyl-tRNA synthetase from Plasmodium falciparum (PfERS) in complex with ADP 7WAL ; 2.29 ; Glutamyl-tRNA synthetase from Plasmodium falciparum (PfERS) in complex with Co 7WAO ; 2.582 ; Glutamyl-tRNA synthetase from Plasmodium falciparum (PfERS) in complex with Mn 2CUZ ; 1.98 ; Glutamyl-tRNA synthetase from Thermus thermophilus in complex with L-glutamate 2CV2 ; 2.69 ; Glutamyl-tRNA synthetase from Thermus thermophilus in complex with tRNA(Glu) and an enzyme inhibitor, Glu-AMS 2CV0 ; 2.4 ; Glutamyl-tRNA synthetase from Thermus thermophilus in complex with tRNA(Glu) and L-glutamate 2CV1 ; 2.41 ; Glutamyl-tRNA synthetase from Thermus thermophilus in complex with tRNA(Glu), ATP, and an analog of L-glutamate: a quaternary complex 6EC7 ; 2.15 ; Glutamylation domain, TbtB, from thiomuracin biosynthesis 6EC8 ; 2.148 ; Glutamylation domain, TbtB, from thiomuracin biosynthesis bound to 5'-phosphodesmethylglutamycin 2X3T ; 2.749 ; Glutaraldehyde-crosslinked wheat germ agglutinin isolectin 1 crystal soaked with a synthetic glycopeptide 6CRQ ; 4.2 ; Glutaraldehyde-treated BG505 SOSIP.664 Env in complex with PGV04 Fab 3D4M ; 2.05 ; Glutaredoxin 2 oxidized structure 1FOV ; ; GLUTAREDOXIN 3 FROM ESCHERICHIA COLI IN THE FULLY OXIDIZED FORM 2JAC ; 2.02 ; Glutaredoxin Grx1p C30S mutant from yeast 1QFN ; ; GLUTAREDOXIN-1-RIBONUCLEOTIDE REDUCTASE B1 MIXED DISULFIDE BOND 2AE3 ; 2.4 ; Glutaryl 7-Aminocephalosporanic Acid Acylase: mutational study of activation mechanism 2AE4 ; 2.3 ; Glutaryl 7-Aminocephalosporanic Acid Acylase: mutational study of activation mechanism 2AE5 ; 2.24 ; Glutaryl 7-Aminocephalosporanic Acid Acylase: mutational study of activation mechanism 2R9Z ; 2.1 ; Glutathione amide reductase from Chromatium gracile 2RM5 ; ; Glutathione peroxidase-type tryparedoxin peroxidase, oxidized form 3DWV ; 1.41 ; Glutathione peroxidase-type tryparedoxin peroxidase, oxidized form 2RM6 ; ; Glutathione peroxidase-type tryparedoxin peroxidase, reduced form 6DU7 ; 2.56 ; Glutathione reductase from Streptococcus pneumoniae 1R5A ; 2.5 ; Glutathione S-transferase 1V2A ; 2.15 ; Glutathione S-transferase 1-6 from Anopheles dirus species B 7XBA ; 2.83 ; Glutathione S-transferase bound with a covalent inhibitor 5J41 ; 1.19035 ; Glutathione S-transferase bound with hydrolyzed Piperlongumine 11GS ; 2.3 ; Glutathione s-transferase complexed with ethacrynic acid-glutathione conjugate (form ii) 12GS ; 2.1 ; GLUTATHIONE S-TRANSFERASE COMPLEXED WITH S-NONYL-GLUTATHIONE 13GS ; 1.9 ; GLUTATHIONE S-TRANSFERASE COMPLEXED WITH SULFASALAZINE 4PNF ; 2.11 ; Glutathione S-Transferase from Drosophila melanogaster - isozyme E6 4PNG ; 1.53 ; Glutathione S-transferase from Drosophila melanogaster - isozyme E7 2GSQ ; 2.2 ; GLUTATHIONE S-TRANSFERASE FROM SQUID DIGESTIVE GLAND COMPLEXED WITH S-(3-IODOBENZYL)GLUTATHIONE 1B8X ; 2.7 ; GLUTATHIONE S-TRANSFERASE FUSED WITH THE NUCLEAR MATRIX TARGETING SIGNAL OF THE TRANSCRIPTION FACTOR AML-1 1BYE ; 2.8 ; GLUTATHIONE S-TRANSFERASE I FROM MAIS IN COMPLEX WITH ATRAZINE GLUTATHIONE CONJUGATE 1AQW ; 1.8 ; GLUTATHIONE S-TRANSFERASE IN COMPLEX WITH GLUTATHIONE 1BX9 ; 2.6 ; GLUTATHIONE S-TRANSFERASE IN COMPLEX WITH HERBICIDE 1AQX ; 2.0 ; GLUTATHIONE S-TRANSFERASE IN COMPLEX WITH MEISENHEIMER COMPLEX 1AQV ; 1.94 ; GLUTATHIONE S-TRANSFERASE IN COMPLEX WITH P-BROMOBENZYLGLUTATHIONE 6MHB ; 2.75 ; Glutathione S-Transferase Omega 1 bound to covalent inhibitor 18 6MHC ; 2.0 ; Glutathione S-Transferase Omega 1 bound to covalent inhibitor 37 6MHD ; 2.16 ; Glutathione S-Transferase Omega 1 bound to covalent inhibitor 44 4YQM ; 2.38 ; Glutathione S-transferase Omega 1 bound to covalent inhibitor C1-27 4YQU ; 1.94 ; Glutathione S-transferase Omega 1 bound to covalent inhibitor C1-31 4YQV ; 2.06 ; Glutathione S-transferase Omega 1 bound to covalent inhibitor C4-10 17GS ; 1.9 ; GLUTATHIONE S-TRANSFERASE P1-1 19GS ; 1.9 ; Glutathione s-transferase p1-1 14GS ; 2.8 ; GLUTATHIONE S-TRANSFERASE P1-1 APO FORM 1 16GS ; 1.9 ; GLUTATHIONE S-TRANSFERASE P1-1 APO FORM 3 18GS ; 1.9 ; GLUTATHIONE S-TRANSFERASE P1-1 COMPLEXED WITH 1-(S-GLUTATHIONYL)-2,4-DINITROBENZENE 20GS ; 2.45 ; GLUTATHIONE S-TRANSFERASE P1-1 COMPLEXED WITH CIBACRON BLUE 5O84 ; 1.88 ; Glutathione S-transferase Tau 23 (partially oxidized) 3AY8 ; 2.1 ; Glutathione S-transferase unclassified 2 from Bombyx mori 1BAY ; 2.0 ; GLUTATHIONE S-TRANSFERASE YFYF CYS 47-CARBOXYMETHYLATED CLASS PI, FREE ENZYME 1GSY ; 2.44 ; GLUTATHIONE S-TRANSFERASE YFYF, CLASS PI, COMPLEXED WITH GLUTATHIONE 1FHE ; 3.0 ; GLUTATHIONE TRANSFERASE (FH47) FROM FASCIOLA HEPATICA 1LJR ; 3.2 ; GLUTATHIONE TRANSFERASE (HGST T2-2) FROM HUMAN 3LJR ; 3.3 ; GLUTATHIONE TRANSFERASE (THETA CLASS) FROM HUMAN IN COMPLEX WITH THE GLUTATHIONE CONJUGATE OF 1-MENAPHTHYL SULFATE 1GSE ; 2.0 ; GLUTATHIONE TRANSFERASE A1-1 COMPLEXED WITH AN ETHACRYNIC ACID GLUTATHIONE CONJUGATE (MUTANT R15K) 1GSF ; 2.7 ; GLUTATHIONE TRANSFERASE A1-1 COMPLEXED WITH ETHACRYNIC ACID 1GSD ; 2.5 ; GLUTATHIONE TRANSFERASE A1-1 IN UNLIGANDED FORM 2VCT ; 2.1 ; Glutathione transferase A2-2 in complex with delta-4-andostrene-3-17- dione 2WJU ; 2.3 ; Glutathione transferase A2-2 in complex with glutathione 2VCV ; 1.8 ; Glutathione transferase A3-3 in complex with glutathione and delta-4- androstene-3-17-dione 2LJR ; 3.2 ; GLUTATHIONE TRANSFERASE APO-FORM FROM HUMAN 4YH2 ; 1.72 ; Glutathione Transferase E6 from Drosophila melanogaster 2VO4 ; 1.75 ; Glutathione transferase from Glycine max 1EEM ; 2.0 ; GLUTATHIONE TRANSFERASE FROM HOMO SAPIENS 1PMT ; 2.5 ; GLUTATHIONE TRANSFERASE FROM PROTEUS MIRABILIS 2PMT ; 2.7 ; GLUTATHIONE TRANSFERASE FROM PROTEUS MIRABILIS 1KBN ; 2.0 ; Glutathione transferase mutant 1MTC ; 2.2 ; GLUTATHIONE TRANSFERASE MUTANT Y115F 1EOH ; 2.5 ; GLUTATHIONE TRANSFERASE P1-1 8C5D ; 1.28 ; Glutathione transferase P1-1 from Mus musculus 5G5A ; 1.95 ; Glutathione transferase U25 from Arabidopsis thaliana in complex with glutathione disulfide 1FW1 ; 1.9 ; Glutathione transferase zeta/maleylacetoacetate isomerase 1TW9 ; 1.71 ; Glutathione Transferase-2, apo form, from the nematode Heligmosomoides polygyrus 5LOL ; 2.3 ; Glutathione-bound Dehydroascorbate Reductase 2 of Arabidopsis thaliana 3LVW ; 2.5 ; Glutathione-inhibited ScGCL 2X64 ; 2.3 ; GLUTATHIONE-S-TRANSFERASE FROM XYLELLA FASTIDIOSA 7NC3 ; 1.65 ; Glutathione-S-transferase GliG (space group P212121) 7NC2 ; 1.7 ; Glutathione-S-transferase GliG (space group P3221) 7NC6 ; 2.1 ; Glutathione-S-transferase GliG in complex with cyclo[L-Phe-L-Ser]-bis-glutathione-adduct 7NC5 ; 1.95 ; Glutathione-S-transferase GliG in complex with reduced glutathione 7NCM ; 1.7 ; Glutathione-S-transferase GliG mutant E82A 7NCL ; 2.0 ; Glutathione-S-transferase GliG mutant E82Q 7NCB ; 1.85 ; Glutathione-S-transferase GliG mutant H26A 7NC9 ; 2.55 ; Glutathione-S-transferase GliG mutant H26N 7NCP ; 2.05 ; Glutathione-S-transferase GliG mutant K127A 7NCT ; 2.65 ; Glutathione-S-transferase GliG mutant K127G 7NCU ; 1.5 ; Glutathione-S-transferase GliG mutant K127G in complex with oxidized glutathione 7NCO ; 1.7 ; Glutathione-S-transferase GliG mutant K127R 7NCE ; 2.0 ; Glutathione-S-transferase GliG mutant N27A 7NCD ; 2.05 ; Glutathione-S-transferase GliG mutant N27D 7NC8 ; 2.2 ; Glutathione-S-transferase GliG mutant S24A 7NCN ; 1.9 ; Glutathione-S-transferase GliG mutant S83A 7NC1 ; 2.6 ; Glutathione-S-transferase GliG with partially disordered active site 4FQU ; 3.0 ; Glutathionyl-Hydroquinone Reductase PcpF of Sphingobium chlorophenolicum 4G0I ; 2.05 ; Glutathionyl-Hydroquinone Reductase, YqjG of Escherichia coli 4G0K ; 2.557 ; Glutathionyl-hydroquinone reductase, YqjG, of E.coli complexed with GS-menadione 4G0L ; 2.62 ; Glutathionyl-hydroquinone Reductase, YqjG, of E.coli complexed with GSH 5GJJ ; ; Glutathionylated hHsp70 SBD 3O98 ; 2.8 ; Glutathionylspermidine synthetase/amidase C59A complex with ADP and Gsp 4CYD ; 1.82 ; GlxR bound to cAMP 1SGQ ; 1.9 ; GLY 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B 4K1T ; 1.6 ; Gly-Ser-SplB protease from Staphylococcus aureus at 1.60 A resolution 4K1S ; 1.96 ; Gly-Ser-SplB protease from Staphylococcus aureus at 1.96 A resolution 2W29 ; 4.1 ; Gly102Thr mutant of Rv3291c 1JPK ; 2.2 ; Gly156Asp mutant of Human UroD, human uroporphyrinogen III decarboxylase 6Q3U ; 1.64 ; Gly52Ala mutant of arginine-bound ArgBP from T. maritima 5V6J ; 1.18 ; Glycan binding protein Y3 from mushroom Coprinus comatus possesses anti-leukemic activity 5V6I ; 1.7 ; Glycan binding protein Y3 from mushroom Coprinus comatus possesses anti-leukemic activity - Pt derivative 2WQ8 ; 2.19 ; Glycan labelling using engineered variants of galactose oxidase obtained by directed evolution 5SZS ; 3.4 ; Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy 6BFU ; 3.5 ; Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections 8F7T ; 4.1 ; Glycan-Base ConC Env Trimer 1CI5 ; ; GLYCAN-FREE MUTANT ADHESION DOMAIN OF HUMAN CD58 (LFA-3) 5HY8 ; 2.3 ; Glycation restrains allosteric transition in hemoglobin: The molecular basis of oxidative stress under hyperglycemic conditions in diabetes 1HBG ; 1.5 ; GLYCERA DIBRANCHIATA HEMOGLOBIN. STRUCTURE AND REFINEMENT AT 1.5 ANGSTROMS RESOLUTION 2HBG ; 1.5 ; GLYCERA DIBRANCHIATA HEMOGLOBIN. STRUCTURE AND REFINEMENT AT 1.5 ANGSTROMS RESOLUTION 1B7G ; 2.05 ; GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE 7BEX ; 2.054 ; Glyceraldehyde 3-phosphate dehydrogenase from Campylobacter jejeuni - ADP complex 7BEW ; 2.25 ; Glyceraldehyde 3-phosphate dehydrogenase from Campylobacter jejeuni - NAD(P) complex 6M61 ; 1.8245 ; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with inhibitor heptelidic acid 6IOJ ; 2.29 ; Glyceraldehyde-3-phosphate dehydrogenase A (apo-form) 1DBV ; 2.5 ; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH ASP 32 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NAD+ 2DBV ; 2.2 ; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH ASP 32 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NADP+ 1NPT ; 2.18 ; Glyceraldehyde-3-Phosphate Dehydrogenase Mutant With Cys 149 replaced by Ala complexed with NAD+ 1NQA ; 2.2 ; Glyceraldehyde-3-Phosphate Dehydrogenase Mutant With Cys 149 Replaced By Ala Complexed With Nad+ and D-Glyceraldehyde-3-Phosphate 1NQ5 ; 2.11 ; Glyceraldehyde-3-Phosphate Dehydrogenase Mutant With Cys 149 Replaced By Ser Complexed With Nad+ 1NQO ; 2.01 ; Glyceraldehyde-3-Phosphate Dehydrogenase Mutant With Cys 149 Replaced By Ser Complexed With Nad+ and D-Glyceraldehyde-3-Phosphate 3DBV ; 2.45 ; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH LEU 33 REPLACED BY THR, THR 34 REPLACED BY GLY, ASP 36 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NAD+ 4DBV ; 2.5 ; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH LEU 33 REPLACED BY THR, THR 34 REPLACED BY GLY, ASP 36 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NADP+ 1TO6 ; 2.5 ; Glycerate kinase from Neisseria meningitidis (serogroup A) 1R9D ; 1.8 ; Glycerol bound form of the B12-independent glycerol dehydratase from Clostridium butyricum 5IKZ ; 2.8 ; Glycerol bound structure of Obc1, a bifunctional enzyme for quorum sensing-dependent oxalogenesis 1NBW ; 2.4 ; Glycerol dehydratase reactivase 1IWP ; 2.1 ; Glycerol Dehydratase-cyanocobalamin Complex of Klebsiella pneumoniae 3FAH ; 1.72 ; Glycerol inhibited form of Aldehyde oxidoreductase from Desulfovibrio gigas 6K76 ; 3.05 ; Glycerol kinase form Thermococcus kodakarensis, complex structure with substrate. 6K78 ; 2.301 ; Glycerol kinase form Thermococcus kodakarensis, complex structure with substrate. 6K79 ; 2.19 ; Glycerol kinase form Thermococcus kodakarensis, complex structure with substrate. 3H45 ; 2.65 ; Glycerol Kinase H232E with Ethylene Glycol 3H46 ; 1.75 ; Glycerol Kinase H232E with Glycerol 3H3O ; 2.3 ; Glycerol Kinase H232R with Ethylene Glycol 3H3N ; 1.73 ; Glycerol Kinase H232R with Glycerol 4JIC ; 1.6 ; Glycerol Trinitrate Reductase NerA from Agrobacterium radiobacter 1N1D ; 2.0 ; Glycerol-3-phosphate cytidylyltransferase complexed with CDP-glycerol 4OI5 ; 1.3 ; Glycerol-free structure of thermolysin in complex with ubtln58 2DXL ; 3.0 ; Glycerophosphodiesterase from Enterobacter aerogenes 2DXN ; 2.92 ; Glycerophosphodiesterase from Enterobacter aerogenes 1GSO ; 1.6 ; GLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE (GAR-SYN) FROM E. COLI. 1PQF ; 2.0 ; Glycine 24 to Serine mutation of aspartate decarboxylase 7SAA ; 2.97 ; Glycine and glutamate bound GluN1a-GluN2B NMDA receptors in non-active 1 conformation at 2.97 Angstrom resolution 8E96 ; 3.38 ; Glycine and glutamate bound Human GluN1a-GluN2D NMDA receptor 3ATN ; 1.17 ; Glycine ethyl ester shielding on the aromatic surfaces of lysozyme: Implication for suppression of protein aggregation 3ATO ; 1.17 ; Glycine ethyl ester shielding on the aromatic surfaces of lysozyme: Implication for suppression of protein aggregation 4TOP ; 2.351 ; Glycine max glutathione transferase 6J48 ; 1.201 ; Glycine mutation on single layer beta-sheet of OspAsm1 3L2E ; 2.6 ; Glycocyamine kinase, alpha-beta heterodimer from marine worm Namalycastis sp. 3L2D ; 2.4 ; Glycocyamine kinase, beta-beta homodimer from marine worm Namalycastis sp. 4V7N ; 2.3 ; Glycocyamine kinase, beta-beta homodimer from marine worm Namalycastis sp., with transition state analog Mg(II)-ADP-NO3-glycocyamine. 1Z6P ; 2.4 ; Glycogen phosphorylase AMP site inhibitor complex 2QRP ; 1.86 ; Glycogen Phosphorylase b in complex with (1R)-3'-(2-naphthyl)-spiro[1,5-anhydro-D-glucitol-1,5'-isoxazoline] 2QRG ; 1.85 ; Glycogen Phosphorylase b in complex with (1R)-3'-(4-methoxyphenyl)-spiro[1,5-anhydro-D-glucitol-1,5'-isoxazoline] 2QRQ ; 1.8 ; Glycogen Phosphorylase b in complex with (1R)-3'-(4-methylphenyl)-spiro[1,5-anhydro-D-glucitol-1,5'-isoxazoline] 2QRM ; 1.9 ; Glycogen Phosphorylase b in complex with (1R)-3'-(4-nitrophenyl)-spiro[1,5-anhydro-D-glucitol-1,5'-isoxazoline] 2QRH ; 1.83 ; Glycogen Phosphorylase b in complex with (1R)-3'-phenylspiro[1,5-anhydro-D-glucitol-1,5'-isoxazoline] 6QA8 ; 2.35 ; Glycogen Phosphorylase b in complex with 28 6QA7 ; 2.36 ; Glycogen Phosphorylase b in complex with 29 5O54 ; 2.45 ; Glycogen Phosphorylase b in complex with 29a 5O56 ; 2.45 ; Glycogen Phosphorylase b in complex with 29b 6R0H ; 2.5 ; Glycogen Phosphorylase b in complex with 3 3SYM ; 2.4 ; Glycogen Phosphorylase b in complex with 3 -C-(hydroxymethyl)-beta-D-glucopyranonucleoside of 5-fluorouracil 6QA6 ; 2.4 ; Glycogen Phosphorylase b in complex with 30 5O50 ; 1.9 ; Glycogen Phosphorylase b in complex with 33a 5O52 ; 1.9 ; Glycogen Phosphorylase b in complex with 33b 6R0I ; 2.4 ; Glycogen Phosphorylase b in complex with 4 2QN1 ; 2.401 ; Glycogen Phosphorylase b in complex with asiatic acid 3BCR ; 2.14 ; Glycogen Phosphorylase b in complex with AZT 3SYR ; 2.4 ; Glycogen phosphorylase b in complex with beta-D-glucopyranonucleoside 5-fluorouracil 3T3G ; 2.4 ; Glycogen Phosphorylase b in complex with GlcBrU 3T3I ; 2.65 ; Glycogen Phosphorylase b in complex with GlcCF3U 3T3E ; 2.15 ; Glycogen phosphorylase b in complex with GlcClU 3T3H ; 2.6 ; Glycogen Phosphorylase b in complex with GlcIU 3T3D ; 2.5 ; Glycogen phosphorylase b in complex with GlcU 1UZU ; 2.3 ; Glycogen Phosphorylase b in complex with indirubin-5'-sulphonate 2QN2 ; 2.698 ; Glycogen Phosphorylase b in complex with Maslinic Acid 2QN7 ; 1.83 ; Glycogen Phosphorylase b in complex with N-4-hydroxybenzoyl-N'-4-beta-D-glucopyranosyl urea 2QN8 ; 1.9 ; Glycogen Phosphorylase b in complex with N-4-nitrobenzoyl-N'-beta-D-glucopyranosyl urea 2QLN ; 2.15 ; Glycogen Phosphorylase b in complex with N-4-phenylbenzoyl-N'-beta-D-glucopyranosyl urea 2QNB ; 1.8 ; Glycogen Phosphorylase b in complex with N-benzoyl-N'-beta-D-glucopyranosyl urea 6YVE ; 2.1 ; Glycogen phosphorylase b in complex with pelargonidin 3-O-beta-D-glucoside 3EBO ; 1.9 ; Glycogen Phosphorylase b/Chrysin complex 3EBP ; 2.0 ; Glycogen Phosphorylase b/flavopiridol complex 1GPB ; 1.9 ; GLYCOGEN PHOSPHORYLASE B: DESCRIPTION OF THE PROTEIN STRUCTURE 3BDA ; 2.0 ; Glycogen Phosphorylase complex with 1(-D-glucopyranosyl) cyanuric acid 3BD7 ; 1.9 ; Glycogen Phosphorylase complex with 1(-D-glucopyranosyl) thymine 3BCS ; 2.0 ; Glycogen Phosphorylase complex with 1(-D-glucopyranosyl) uracil 3BD6 ; 2.0 ; Glycogen Phosphorylase complex with 1(-D-ribofuranosyl) cyanuric acid 3NP7 ; 2.05 ; Glycogen phosphorylase complexed with 2,5-dihydroxy-3-(beta-D-glucopyranosyl)-chlorobenzene and 2,5-dihydroxy-4-(beta-D-glucopyranosyl)-chlorobenzene 3NPA ; 1.969 ; Glycogen phosphorylase complexed with 2,5-dihydroxy-4-(beta-D-glucopyranosyl)-bromo-benzene 3MS7 ; 1.95 ; Glycogen phosphorylase complexed with 2-chlorobenzaldehyde-4-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl) thiosemicarbazone 3MSC ; 1.951 ; Glycogen phosphorylase complexed with 2-nitrobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3NP9 ; 1.999 ; Glycogen phosphorylase complexed with 3-(beta-D-glucopyranosyl)-2-hydroxy-5-methoxy-chlorobenzene 3MTA ; 2.23 ; Glycogen phosphorylase complexed with 3-bromobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MTB ; 1.95 ; Glycogen phosphorylase complexed with 3-chlorobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MRV ; 1.94 ; Glycogen phosphorylase complexed with 3-hydroxybenzaldehyde-4-(beta-D-glucopyranosyl) thiosemicarbazone 3MT7 ; 2.0 ; Glycogen phosphorylase complexed with 4-bromobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MT8 ; 2.0 ; Glycogen phosphorylase complexed with 4-chlorobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MQF ; 1.951 ; Glycogen phosphorylase complexed with 4-fluorobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MTD ; 2.096 ; Glycogen phosphorylase complexed with 4-hydroxybenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MRX ; 1.95 ; Glycogen phosphorylase complexed with 4-methoxybenzaldehyde-4-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-thiosemicarbazone 3MS2 ; 2.1 ; Glycogen phosphorylase complexed with 4-methylbenzaldehyde-4-(beta-D-glucopyranosyl) thiosemicarbazone 3MT9 ; 2.05 ; Glycogen phosphorylase complexed with 4-nitrobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 3MRT ; 1.98 ; Glycogen phosphorylase complexed with 4-pyridinecarboxaldehyde-4-(beta-D-glucopyranosyl) thiosemicarbazone 3MS4 ; 2.07 ; Glycogen phosphorylase complexed with 4-trifluoromethylbenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone 5MCB ; 1.95 ; Glycogen phosphorylase in complex with chlorogenic acid. 5OX0 ; 1.9 ; Glycogen Phosphorylase in complex with CK898 5OX4 ; 1.8 ; Glycogen Phosphorylase in complex with CK900 4YUA ; 2.0 ; Glycogen phosphorylase in complex with ellagic acid 2QLM ; 2.1 ; Glycogen phosphorylase in complex with FN67 4Z5X ; 2.1 ; Glycogen phosphorylase in complex with gallic acid 5OX1 ; 1.85 ; Glycogen Phosphorylase in complex with JLH270 5OWZ ; 1.85 ; Glycogen Phosphorylase in complex with KS172 5OWY ; 1.9 ; Glycogen Phosphorylase in complex with KS252 2QN9 ; 2.0 ; Glycogen Phosphorylase in complex with N-4-aminobenzoyl-N'-beta-D-glucopyranosyl urea 2QN3 ; 1.96 ; Glycogen Phosphorylase in complex with N-4-chlorobenzoyl-N-beta-D-glucopyranosyl urea 5OX3 ; 1.9 ; Glycogen Phosphorylase in complex with SzB102v 2ATI ; 1.9 ; Glycogen Phosphorylase Inhibitors 3E3O ; 2.6 ; Glycogen phosphorylase R state-IMP complex 1Z6Q ; 2.03 ; Glycogen phosphorylase with inhibitor in the AMP site 3O3C ; 3.512 ; Glycogen synthase basal state UDP complex 5VNC ; 2.98 ; Glycogen synthase in complex with UDP and glucosamine 1UV5 ; 2.8 ; GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH 6-BROMOINDIRUBIN-3'-OXIME 1O9U ; 2.4 ; GLYCOGEN SYNTHASE KINASE 3 BETA COMPLEXED WITH AXIN PEPTIDE 3ZDI ; 2.645 ; Glycogen Synthase Kinase 3 Beta complexed with Axin Peptide and Inhibitor 7d 4B7T ; 2.772 ; Glycogen Synthase Kinase 3 Beta complexed with Axin Peptide and Leucettine L4 5KPK ; 2.4 ; Glycogen Synthase Kinase 3 beta Complexed with BRD0209 5KPL ; 2.6 ; Glycogen Synthase Kinase 3 beta Complexed with BRD0705 5KPM ; 2.69 ; Glycogen Synthase Kinase 3 beta Complexed with BRD3731 1H8F ; 2.8 ; Glycogen Synthase Kinase 3 beta. 3F88 ; 2.6 ; glycogen synthase Kinase 3beta inhibitor complex 3E3P ; 2.0 ; Glycogen synthase kinase from Leishmania major 6H0U ; 2.3 ; Glycogen synthase kinase-3 beta (GSK3) complex with a covalent [1,2,4]triazolo[1,5-a][1,3,5]triazine inhibitor 1GNG ; 2.6 ; Glycogen synthase kinase-3 beta (GSK3) complex with FRATtide peptide 6TCU ; 2.14 ; Glycogen synthase kinase-3 beta (GSK3b) in complex with ligand 1 1R0E ; 2.25 ; Glycogen synthase kinase-3 beta in complex with 3-indolyl-4-arylmaleimide inhibitor 2OW3 ; 2.8 ; Glycogen synthase kinase-3 beta in complex with bis-(indole)maleimide pyridinophane inhibitor 2F15 ; 2.0 ; Glycogen-Binding Domain Of The Amp-Activated Protein Kinase beta2 Subunit 4HSI ; 3.101 ; Glycoprotein B from Herpes simplex virus type 1, A504P/R505G/Q507G/N511G mutant, low-pH 4L1R ; 3.0255 ; Glycoprotein B from Herpes Simplex Virus type 1, A549T Rate-of-Entry mutant, low-pH 3NWF ; 3.0 ; Glycoprotein B from Herpes simplex virus type 1, low-pH 3NWA ; 2.2629 ; Glycoprotein B from Herpes simplex virus type 1, W174R mutant, low-pH 3NW8 ; 2.75915 ; Glycoprotein B from Herpes simplex virus type 1, Y179S mutant, high-pH 3NWD ; 2.8803 ; Glycoprotein B from Herpes simplex virus type 1, Y179S mutant, low-pH 3REZ ; 2.35 ; glycoprotein GPIb variant 5Z3C ; 1.6 ; Glycosidase E178A 5Z3E ; 1.1 ; Glycosidase E335A 5Z3F ; 1.1 ; Glycosidase E335A in complex with glucose 5Z3D ; 1.25 ; Glycosidase F290Y 7C27 ; 1.91 ; Glycosidase F290Y at pH4.5 7C24 ; 1.71 ; Glycosidase F290Y at pH8.0 5Z3A ; 1.401 ; Glycosidase Wild Type 7C26 ; 1.803 ; Glycosidase Wild Type at pH4.5 7C25 ; 1.505 ; Glycosidase Wild Type at pH8.0 5Z3B ; 1.25 ; Glycosidase Y48F 5GSL ; 2.6 ; Glycoside hydrolase A 5GSM ; 1.27 ; Glycoside hydrolase B with product 5MVH ; 1.8 ; Glycoside Hydrolase BACCELL_00856 5MUM ; 1.8 ; Glycoside Hydrolase BACINT_00347 5MUK ; 1.49 ; Glycoside Hydrolase BT3686 5MUL ; 1.39 ; Glycoside Hydrolase BT3686 bound to Glucuronic Acid 5MQM ; 2.11 ; Glycoside hydrolase BT_0986 5MQN ; 1.9 ; Glycoside hydrolase BT_0986 5MWK ; 2.0 ; Glycoside hydrolase BT_0986 5MT2 ; 1.41 ; Glycoside hydrolase BT_0996 5MUI ; 1.77 ; Glycoside hydrolase BT_0996 5MQP ; 2.0 ; Glycoside hydrolase BT_1002 5MQO ; 2.5 ; Glycoside hydrolase BT_1003 5MSY ; 2.3 ; Glycoside hydrolase BT_1012 5MSX ; 2.1 ; Glycoside hydrolase BT_3662 6T2B ; 2.13 ; Glycoside hydrolase family 109 from Akkermansia muciniphila in complex with GalNAc and NAD+. 6K9D ; 1.505 ; glycoside hydrolase family 12 (GH12) englucanase 2VN4 ; 1.85 ; Glycoside Hydrolase Family 15 Glucoamylase from Hypocrea jecorina 2VN7 ; 1.9 ; Glycoside Hydrolase Family 15 Glucoamylase from Hypocrea jecorina 7KR6 ; 1.56 ; Glycoside hydrolase family 16 endo-glucanase from Bacteroides ovatus in complex with G4G3G-2F-DNP 6VHO ; 2.148 ; Glycoside hydrolase family 16 endo-glucanase from Bacteroides ovatus in complex with G4G4G3G-NHCOCH2Br 4LYR ; 2.5 ; Glycoside Hydrolase Family 5 Mannosidase from Rhizomucor miehei, E301A mutant 8JHH ; 2.4 ; Glycoside hydrolase family 55 endo-beta-1,3-glucanase from Microdochium nivale 4C1S ; 2.1 ; Glycoside hydrolase family 76 (mannosidase) Bt3792 from Bacteroides thetaiotaomicron VPI-5482 2X1I ; 2.36 ; glycoside hydrolase family 77 4-alpha-glucanotransferase from thermus brockianus 6FOP ; 1.4 ; Glycoside hydrolase family 81 from Clostridium thermocellum (CtLam81A), Mutant E515A 5E97 ; 1.63 ; Glycoside Hydrolase ligand structure 1 5NGW ; 2.4 ; Glycoside hydrolase-like protein 7Q1L ; 3.0 ; Glycosilated Human Serum Apo-tranferrin 1A7K ; 2.8 ; GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE IN A MONOCLINIC CRYSTAL FORM 4Q88 ; 1.73 ; Glycosyl hydrolase family 88 from Bacteroides vulgatus 4ZN2 ; 2.0 ; Glycosyl hydrolase from Pseudomonas aeruginosa 8DWF ; 2.6 ; Glycosylase MutY variant E43S in complex with DNA containing d(8-oxo-G) paired with substrate adenine 8DW4 ; 2.49 ; Glycosylase MutY variant N146S in complex with DNA containing d(8-oxo-G) paired with an abasic site product (AP) generated by the enzyme in crystals by removal of calcium 8DW0 ; 1.68 ; Glycosylase MutY variant N146S in complex with DNA containing d(8-oxo-G) paired with an enzyme-generated abasic site (AP) product and crystallized with sodium acetate 8DVP ; 1.54 ; Glycosylase MutY variant N146S in complex with DNA containing d(8-oxo-G) paired with substrate purine 1AYY ; 2.32 ; GLYCOSYLASPARAGINASE 6TBR ; 1.7 ; Glycosylated AA13 Lytic polysaccharide monooxygenase from Aspergillus oryzae in P1 space group 6OMN ; 2.68 ; Glycosylated BMP2 homodimer 1BYV ; ; GLYCOSYLATED EEL CALCITONIN 1BZB ; ; GLYCOSYLATED EEL CALCITONIN 6EAQ ; 2.22 ; Glycosylated FCGR3B / CD16b in complex with afucosylated IgG1 Fc 4QKJ ; 2.75 ; Glycosylated form of human LLT1, a ligand for NKR-P1, in this structure forming hexamers 6YSC ; 2.05 ; GLYCOSYLATED KNOB-HOLE/DUMMY FC FRAGMENT 5HYE ; 1.89 ; Glycosylated Knob-Knob Fc fragment (P212121) 5HYF ; 1.8 ; Glycosylated Knob-Knob Fc fragment (P6122) 6YT7 ; 1.55 ; GLYCOSYLATED KNOB/DUMMY-HOLE FC FRAGMENT 6YTB ; 1.65 ; GLYCOSYLATED KNOB/DUMMY-HOLE/DUMMY FC FRAGMENT 8AV5 ; 1.62 ; Glycosylated PaDa-I mutant of Unspecific Peroxygenase from Agrocybe aegerita 3FUQ ; 2.1 ; Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F 6SOZ ; 3.42 ; Glycosylated Trypanosoma brucei transferrin receptor in complex with human transferrin 5HYI ; 2.9 ; Glycosylated, disulfide-linked Hole-Hole Fc fragment 5HY9 ; 2.7 ; Glycosylated, disulfide-linked Knob-into-Hole Fc fragment 6OYC ; 2.351 ; Glycosylation Associate Protein (Gap123) complex from Streptococcus agalactiae 7OIH ; 2.603 ; Glycosylation in the crystal structure of neutrophil myeloperoxidase 7W0Z ; 2.1 ; Glycosyltranferase UGT74AN2 1BPL ; 2.2 ; GLYCOSYLTRANSFERASE 7W11 ; 2.45 ; glycosyltransferase 7W1B ; 2.15 ; Glycosyltransferase 7W1H ; 2.15 ; glycosyltransferase 1LZ0 ; 1.8 ; Glycosyltransferase A 1LZI ; 1.35 ; Glycosyltransferase A + UDP + H antigen acceptor 1R7V ; 2.09 ; Glycosyltransferase A in complex with 3-amino-acceptor analog inhibitor 1R7Y ; 1.75 ; Glycosyltransferase A in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate 1R81 ; 1.75 ; Glycosyltransferase A in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate-N-acetyl-galactose 1R7T ; 2.09 ; Glycosyltransferase A in complex with 3-deoxy-acceptor analog inhibitor 1LZ7 ; 1.65 ; Glycosyltransferase B 1LZJ ; 1.32 ; Glycosyltransferase B + UDP + H antigen acceptor 1R7X ; 1.97 ; Glycosyltransferase B in complex with 3-amino-acceptor analog inhibitor 1R80 ; 1.65 ; Glycosyltransferase B in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate 1R82 ; 1.55 ; Glycosyltransferase B in complex with 3-amino-acceptor analog inhibitor, and uridine diphosphate-galactose 1R7U ; 1.61 ; Glycosyltransferase B in complex with 3-deoxy-acceptor analog inhibitor 4W6Q ; 2.7 ; Glycosyltransferase C from Streptococcus agalactiae 7ES1 ; 1.66 ; glycosyltransferase in complex with UDP and ST 7ERX ; 1.92 ; Glycosyltransferase in complex with UDP and STB 5N7Z ; 1.81 ; glycosyltransferase in LPS biosynthesis 5N80 ; 1.92 ; glycosyltransferase LPS biosynthesis in complex with UDP 8WRJ ; 1.85 ; glycosyltransferase UGT74AN3 8WRK ; 2.03 ; glycosyltransferase UGT74AN3 4XYW ; 2.2 ; Glycosyltransferases WbnH 7Y3P ; 2.34 ; Glycos_trans_3N domain-containing protein-YbiB 1GEC ; 2.1 ; GLYCYL ENDOPEPTIDASE-COMPLEX WITH BENZYLOXYCARBONYL-LEUCINE-VALINE-GLYCINE-METHYLENE COVALENTLY BOUND TO CYSTEINE 25 1B76 ; 3.4 ; GLYCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH ATP 1GGM ; 3.4 ; GLYCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH GLYCYL-ADENYLATE 4KR2 ; 3.292 ; Glycyl-tRNA synthetase in complex with tRNA-Gly 4KR3 ; 3.235 ; Glycyl-tRNA synthetase mutant E71G in complex with tRNA-Gly 2LBJ ; ; Glycyl-tRNA(GCC) anticodon stem-loop from Bacillus subtilis 2LBK ; ; Glycyl-tRNA(UCC)1B anticodon stem-loop from Staphylococcus epidermidis 1MI4 ; 1.7 ; Glyphosate insensitive G96A mutant EPSP synthase liganded with shikimate-3-phosphate 2JDD ; 1.6 ; Glyphosate N-acetyltransferase bound to acetyl COA and 3-phosphoglycerate 2JDC ; 1.6 ; Glyphosate N-acetyltransferase bound to oxidized COA and sulfate 2K8X ; ; GlyTM1b(1-19)zip: A Chimeric Peptide Model of the N-Terminus of a Rat Short Alpha-Tropomyosin with the N-Terminus Encoded by Exon 1b in Complex with TM9d(252-284), a Peptide Model Containing the C Terminus of Alpha-Tropomyosin Encoded by Exon 9d 1IHQ ; ; GLYTM1BZIP: A CHIMERIC PEPTIDE MODEL OF THE N-TERMINUS OF A RAT SHORT ALPHA TROPOMYOSIN WITH THE N-TERMINUS ENCODED BY EXON 1B 4L6T ; 1.859 ; GM1 bound form of the ECX AB5 holotoxin 1PU5 ; 1.9 ; GM2-activator Protein crystal structure 1PUB ; 2.51 ; GM2-activator Protein crystal structure 7CQN ; 1.962 ; GmaS in complex with AMPPCP 7CQQ ; 2.295 ; GmaS in complex with AMPPNP and MetSox 7CQW ; 2.297 ; GmaS/ADP complex-Conformation 1 7CQX ; 2.301 ; GmaS/ADP complex-Conformation 2 7CQU ; 2.06 ; GmaS/ADP/MetSox-P complex 5LTZ ; 1.67 ; GmhA_mutant Q175E 4H1V ; 2.3 ; GMP-PNP bound dynamin-1-like protein GTPase-GED fusion 7DMZ ; 4.3 ; GMPCPP microtubule complex 8IXA ; 4.2 ; GMPCPP-Alpha1A/Beta2A-microtubule decorated with kinesin non-seam region 8IXB ; 4.2 ; GMPCPP-Alpha1A/Beta2A-microtubule decorated with kinesin seam region 8IXD ; 4.4 ; GMPCPP-Alpha1C/Beta2A-microtubule decorated with kinesin non-seam region 8IXE ; 4.4 ; GMPCPP-Alpha1C/Beta2A-microtubule decorated with kinesin seam region 8IXF ; 4.4 ; GMPCPP-Alpha4A/Beta2A-microtubule decorated with kinesin non-seam region 8IXG ; 4.4 ; GMPCPP-Alpha4A/Beta2A-microtubule decorated with kinesin seam region 5XXX ; 6.43 ; GMPCPP-microtubule complexed with nucleotide-free KIF5C 3RYH ; 2.8 ; GMPCPP-Tubulin: RB3 Stathmin-like domain complex 2C04 ; 1.15 ; GMPPCP complex of SRP GTPase Ffh NG Domain at ultra-high resolution 4P4S ; 3.3 ; GMPPCP-bound stalkless-MxA 1JPJ ; 2.3 ; GMPPNP Complex of SRP GTPase NG Domain 1JPN ; 1.9 ; GMPPNP Complex of SRP GTPase NG Domain 2J7P ; 1.97 ; GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY 2OMM ; 2.0 ; GNNQQNY peptide corresponding to residues 7-13 of yeast prion sup35 7EI5 ; 2.9 ; GNRA tetraloop receptor motif composed of RNA and DNA 7EI6 ; 2.9 ; GNRA tetraloop receptor motif composed of RNA and DNA 4R1H ; 1.76 ; GntR family transcriptional regulator from Listeria monocytogenes 2EVY ; ; GNYA tetranucleotide loops found in poliovirus oriL by in vivo SELEX (un)expectedly form a YNMG-like structure 6WPQ ; 1.1 ; GNYNVF from hnRNPA2-low complexity domain segment, residues 286-291, D290V variant 4Y0S ; 1.9 ; Goat beta-lactoglobulin complex with pramocaine (GLG-PRM) 7LWC ; 3.0 ; Goat beta-lactoglobulin mutant Q59A 8DES ; 2.6 ; Gokushovirus EC6098 4Y2I ; 2.0 ; Gold ion bound to GolB 8FJK ; 3.3 ; Golden Shiner Reovirus Core Polar Vertex 8FJL ; 3.27 ; Golden Shiner Reovirus Core Tropical Vertex 1HTY ; 1.4 ; GOLGI ALPHA-MANNOSIDASE II 6RPC ; 1.69 ; GOLGI ALPHA-MANNOSIDASE II 6RRH ; 2.07 ; GOLGI ALPHA-MANNOSIDASE II 3CZS ; 1.3 ; Golgi alpha-mannosidase II (D204A nucleophile mutant) 3CZN ; 1.4 ; Golgi alpha-mannosidase II (D204A nucleophile mutant) in complex with GnMan5Gn 2OW6 ; 1.19 ; Golgi alpha-mannosidase II complex with (1r,5s,6s,7r,8s)-1-thioniabicyclo[4.3.0]nonan-5,7,8-triol chloride 2OW7 ; 1.77 ; Golgi alpha-mannosidase II complex with (1R,6S,7R,8S)-1-thioniabicyclo[4.3.0]nonan-7,8-diol chloride 2F18 ; 1.3 ; GOLGI ALPHA-MANNOSIDASE II complex with (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-phenylethyl]amino}methyl)pyrrolidine-3,4-diol 2F1A ; 1.45 ; GOLGI ALPHA-MANNOSIDASE II COMPLEX WITH (2R,3R,4S)-2-({[(1S)-2-hydroxy-1-phenylethyl]amino}methyl)pyrrolidine-3,4-diol 2F1B ; 1.45 ; GOLGI ALPHA-MANNOSIDASE II COMPLEX WITH (2R,3R,4S,5R)-2-({[(1R)-2-hydroxy-1-phenylethyl]amino}methyl)-5-methylpyrrolidine-3,4-diol 1R34 ; 1.95 ; Golgi alpha-mannosidase II complex with 5-thio-D-mannopyranosylamidinium salt 1R33 ; 1.8 ; Golgi alpha-mannosidase II complex with 5-thio-D-mannopyranosylamine 2F7Q ; 1.85 ; Golgi alpha-mannosidase II complex with aminocyclopentitetrol 2FYV ; 1.9 ; Golgi alpha-mannosidase II complex with an amino-salacinol carboxylate analog 2F7R ; 1.35 ; Golgi alpha-mannosidase II complex with benzyl-aminocyclopentitetrol 2F7P ; 1.28 ; Golgi alpha-mannosidase II complex with benzyl-mannostatin A 6RQZ ; 1.53 ; GOLGI ALPHA-MANNOSIDASE II complex with Manno-epi-cyclophellitol aziridine 2F7O ; 1.43 ; Golgi alpha-mannosidase II complex with mannostatin A 2ALW ; 1.86 ; Golgi alpha-mannosidase II complex with Noeuromycin 1QWN ; 1.2 ; GOLGI ALPHA-MANNOSIDASE II Covalent Intermediate Complex with 5-fluoro-gulosyl-fluoride 3BUQ ; 2.01 ; Golgi alpha-mannosidase II D204A catalytic nucleophile mutant with bound mannose. 3BUP ; 2.03 ; Golgi alpha-mannosidase II D341N acid-base catalyst mutant with bound mannose 1QX1 ; 1.3 ; Golgi alpha-mannosidase II D341N mutant complex with 2-F-mannosyl-F 1QWU ; 2.03 ; Golgi alpha-mannosidase II D341N mutant complex with 5-F-guloside 6RRW ; 2.15 ; GOLGI ALPHA-MANNOSIDASE II in complex with (2R,3R,4R,5S)-1-(5-{[4-(3,4-Dihydro-2H-1,5-benzodioxepin-7-yl)benzyl]oxy}pentyl)-2-(hydroxymethyl)-3,4,5-piperidinetriol 6RRY ; 1.86 ; GOLGI ALPHA-MANNOSIDASE II in complex with (2S,3R)-2-(Hydroxymethyl)-1,2,3,6-tetrahydro-3-pyridinol 6RRX ; 1.84 ; GOLGI ALPHA-MANNOSIDASE II in complex with (2S,3R)-2-(Hydroxymethyl)-3-piperidinol 6RS0 ; 1.8 ; GOLGI ALPHA-MANNOSIDASE II in complex with (2S,3S,4R,5R)-1-(2-(Benzyloxy)ethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol 6RRU ; 1.9 ; GOLGI ALPHA-MANNOSIDASE II in complex with (5R,6R,7S,8S)-5,6,7,8-tetrahydro-5-(hydroxymethyl)-3-(3-phenylpropyl)imidazo[1,2-a]pyridine-6,7,8-triol 6RRJ ; 1.95 ; GOLGI ALPHA-MANNOSIDASE II in complex with 5-(Adamantan-1yl-methoxy)-pentyl 2,5-dideoxy-2,5-imino-D-talo-hexonamide 3EJQ ; 1.45 ; Golgi alpha-Mannosidase II in complex with 5-substitued swainsonine analog: (5R)-5-[2'-oxo-2'-(4-methylphenyl)ethyl]-swainsonine 3EJR ; 1.27 ; Golgi alpha-Mannosidase II in complex with 5-substitued swainsonine analog: (5R)-5-[2'-oxo-2'-(4-tert-butylphenyl)ethyl]-swainsonine 3EJP ; 1.32 ; Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog: (5R)-5-[2'-oxo-2'-(phenyl)ethyl]-swainsonine 3EJS ; 1.35 ; Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog: (5S)-5-[2'-(4-tert-butylphenyl)ethyl]-swainsonine 3EJT ; 1.35 ; Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog:(5R)-5-[2'-(4-tert-butylphenyl)ethyl]-swainsonine 3EJU ; 1.32 ; Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog:(5S)-5-[2'-oxo-2'-(4-tert-butylphenyl)ethyl]-swainsonine 1TQT ; 1.9 ; Golgi alpha-Mannosidase II In Complex With A Diastereomer of Salacinol 1TQW ; 1.2 ; Golgi alpha-Mannosidase II In Complex With A Diastereomer of Seleno-Salacinol 1HXK ; 1.5 ; GOLGI ALPHA-MANNOSIDASE II IN COMPLEX WITH DEOXYMANNOJIRIMICIN 1PS3 ; 1.8 ; Golgi alpha-mannosidase II in complex with kifunensine 3DX0 ; 1.7 ; Golgi alpha-Mannosidase II in complex with Mannostatin A at pH 5.75 3DX4 ; 1.38 ; Golgi alpha-Mannosidase II in complex with Mannostatin analog (1R,2R,3R,4S,5R)-4-amino-5-methoxycyclopentane-1,2,3-triol 3DX3 ; 1.42 ; Golgi alpha-Mannosidase II in complex with Mannostatin analog (1R,2R,3S,4R,5R)-5-aminocyclopentane-1,2,3,4-tetraol 3DX1 ; 1.21 ; Golgi alpha-Mannosidase II in complex with Mannostatin analog (1S,2S,3R,4R)-4-aminocyclopentane-1,2,3-triol 6RRN ; 1.59 ; GOLGI ALPHA-MANNOSIDASE II in complex with pentyl 2,5-dideoxy-2,5-imino-D-talo-hexonamide 1TQS ; 1.3 ; Golgi alpha-Mannosidase II In Complex With Salacinol 1TQV ; 2.03 ; Golgi alpha-Mannosidase II In Complex With Seleno-Salacinol (Blintol) 1HWW ; 1.87 ; GOLGI ALPHA-MANNOSIDASE II IN COMPLEX WITH SWAINSONINE 1TQU ; 2.03 ; Golgi alpha-Mannosidase II In Complex With The Salacinol Analog Ghavamiol 3BUB ; 1.38 ; Golgi alpha-mannosidase II with an empty active site 3DDG ; 1.74 ; GOLGI MANNOSIDASE II complex with (3R,4R,5R)-3,4-Dihydroxy-5-({[(1R)-2-hydroxy-1 phenylethyl]amino}methyl) methylpyrrolidin-2-one 3DDF ; 1.2 ; GOLGI MANNOSIDASE II complex with (3R,4R,5R)-3,4-Dihydroxy-5-({[(1R)-2-hydroxy-1 phenylethyl]amino}methyl) pyrrolidin-2-one 3D52 ; 1.6 ; GOLGI MANNOSIDASE II complex with an N-aryl carbamate derivative of gluco-hydroxyiminolactam 3D51 ; 1.43 ; GOLGI MANNOSIDASE II complex with gluco-hydroxyiminolactam 3D4Z ; 1.39 ; GOLGI MANNOSIDASE II complex with gluco-imidazole 3D4Y ; 1.52 ; GOLGI MANNOSIDASE II complex with mannoimidazole 3DX2 ; 1.4 ; Golgi mannosidase II complex with MANNOSTATIN B 3D50 ; 1.79 ; GOLGI MANNOSIDASE II complex with N-octyl-6-epi-valienamine 3CV5 ; 1.6 ; GOLGI MANNOSIDASE II D204A catalytic nucleophile mutant complex with 3alpha,6alpha-mannopentaose 3BVX ; 1.1 ; GOLGI MANNOSIDASE II D204A catalytic nucleophile mutant complex with Methyl (2-deoxy-2-acetamido-beta-D-glucopyranosyl)-(1->2)-(alpha-D-mannopyranosyl)- (1->3)-[(alpha-D-mannopyranosyl)-(1->6)-(alpha-D-mannopyranosyl)-(1->6)]-beta-D-mannopyranoside 3BVW ; 1.2 ; GOLGI MANNOSIDASE II D204A catalytic nucleophile mutant complex with Methyl (2-deoxy-2-acetamido-beta-D-glucopyranosyl)-(1->2)-ALPHA-D-mannopyranosyl- (1->3)-[ALPHA-D-mannopyranosyl-(1->6)-6-thio-alpha-D-mannopyranosyl- (1->6)]-BETA-D-mannopyranoside 3BVT ; 1.3 ; GOLGI MANNOSIDASE II D204A catalytic nucleophile mutant complex with Methyl (alpha-D-mannopyranosyl)-(1->3)-S-alpha-D-mannopyranoside 3BVV ; 1.3 ; Golgi mannosidase II D204A catalytic nucleophile mutant complex with METHYL ALPHA-D-MANNOPYRANOSYL-(1->3)-[6-THIO-ALPHA-D-MANNOPYRANOSYL-(1->6)]-BETA-D-MANNOPYRANOSIDE 3BVU ; 1.12 ; GOLGI MANNOSIDASE II D204A catalytic nucleophile mutant complex with Methyl(alpha-D-mannopyranosyl)-(1->3)-S-[(alpha-D-mannopyranosyl)-(1->6)]-alpha-D-mannopyranoside 3BUI ; 1.25 ; Golgi mannosidase II D204A catalytic nucleophile mutant complex with Tris 3BUD ; 1.85 ; Golgi mannosidase II D204A catalytic nucleophile mutant with an empty active site 4D5M ; 0.85 ; Gonadotropin-releasing hormone agonist 8ECK ; 2.6 ; Gordonia phage Cozz 8EB4 ; 2.6 ; Gordonia phage Ziko 7LNK ; 2.76 ; Gorilla Bocavirus 1 Capsid 7SQV ; 2.3 ; Goslar chimallin C1 localized reconstruction 7SQU ; 2.6 ; Goslar chimallin C4 tetramer localized reconstruction 7SQT ; 4.0 ; Goslar chimallin cubic (O, 24mer) assembly 5NSJ ; 2.249 ; GP1 receptor-binding domain from Whitewater Arroyo mammarenavirus 2KCA ; ; GP16 1G31 ; 2.3 ; GP31 CO-CHAPERONIN FROM BACTERIOPHAGE T4 6FTK ; ; Gp36-MPER 6YSE ; ; Gp4 from the Pseudomonas phage LUZ24 3P7K ; 2.3 ; GP41 peptide 5HFL ; 2.294 ; Gp41-targeting HIV-1 fusion inhibitors with helical Ile-Asp-Leu tail 5HFM ; 2.298 ; Gp41-targeting HIV-1 fusion inhibitors with hook-like Ile-Asp-Leu tail 1E0K ; 3.3 ; gp4d helicase from phage T7 1E0J ; 3.0 ; gp4d helicase from phage T7 ADPNP complex 5LGM ; ; Gp5.7 mutant L42A 4Y9V ; 0.9 ; Gp54 tailspike of Acinetobacter baumannii bacteriophage AP22 in complex with A. baumannii capsular saccharide 7Z4W ; 2.7 ; gp6/gp15/gp16 connector complex of bacteriophage SPP1 2LVP ; ; gp78CUE domain bound to the distal ubiquitin of K48-linked diubiquitin 2LVQ ; ; gp78CUE domain bound to the proximal ubiquitin of K48-linked diubiquitin 7BOU ; 3.6 ; GP8 of Mature Bacteriophage T7 8H2M ; 3.08 ; gp96 RNA polymerase from P23-45 phage (crystal 1) 8H2N ; 4.41 ; gp96 RNA polymerase from P23-45 phage (crystal 2) 7T62 ; 21.0 ; GPC2 HEP CT3 complex 7ZA1 ; 4.1 ; GPC3-Unc5D octamer structure and role in cell migration 7ZA2 ; 4.6 ; GPC3-Unc5D octamer structure and role in cell migration 7ZA3 ; 4.0 ; GPC3-Unc5D octamer structure and role in cell migration 7ZAV ; 2.9 ; GPC3-Unc5D octamer structure and role in cell migration 7ZAW ; 2.58 ; GPC3-Unc5D octamer structure and role in cell migration 6U1N ; 4.0 ; GPCR-Beta arrestin structure in lipid bilayer 1TX9 ; 3.31 ; gpd prior to capsid assembly 6MBF ; 1.543 ; GphF Dehydratase 1 6MBG ; 1.852 ; GphF Dehydratase P1711L variant for improved crystallization 6MBH ; 1.7 ; GphF DH1 P1711L, L1744P variant: An isomerase-inactive variant of GphF DH1 6MFC ; 2.589 ; GphF GNAT-like decarboxylase 6MFD ; 2.794 ; GphF GNAT-like decarboxylase in complex with isobutyryl-CoA 7ZHF ; 1.8 ; GPN-loop GTPase from Sulfolobus acidocaldarius closed state (GppNHp) 7ZHK ; 2.4 ; GPN-loop GTPase from Sulfolobus acidocaldarius open state (GDP) 5HCI ; 2.3 ; GPN-loop GTPase Npa3 in complex with GDP 5HCN ; 2.2 ; GPN-loop GTPase Npa3 in complex with GMPPCP 1NAY ; 2.6 ; GPP-Foldon:X-ray structure 1YZK ; 2.0 ; GppNHp bound Rab11 GTPase 1YZT ; 2.05 ; GppNHp-Bound Rab21 GTPase at 2.05 A Resolution 1YZU ; 2.5 ; GppNHp-Bound Rab21 GTPase at 2.50 A Resolution 1Z08 ; 1.8 ; GppNHp-Bound Rab21 Q53G mutant GTPase 1YVD ; 1.93 ; GppNHp-Bound Rab22 GTPase 1Z06 ; 1.81 ; GppNHp-Bound Rab33 GTPase 3RAB ; 2.0 ; GPPNHP-BOUND RAB3A AT 2.0 A RESOLUTION 1YU9 ; 2.07 ; GppNHp-Bound Rab4A 1Z07 ; 1.81 ; GppNHp-Bound Rab5c G55Q mutant GTPase 1YZQ ; 1.78 ; GppNHp-Bound Rab6 GTPase 1VG8 ; 1.7 ; GPPNHP-Bound Rab7 1YZL ; 1.85 ; GppNHp-Bound Rab9 GTPase 1YZN ; 2.06 ; GppNHp-Bound Ypt1p GTPase 1EK0 ; 1.48 ; GPPNHP-BOUND YPT51 AT 1.48 A RESOLUTION 1KY2 ; 1.6 ; GPPNHP-BOUND YPT7P AT 1.6 A RESOLUTION 8SX5 ; 1.95 ; GpppA dinucleotide binding to RNA CU template 8SWO ; 1.64 ; GpppA dinucleotide ligand binding to RNA UC template 7WXG ; 4.2 ; GPR domain closed form of Drosophila P5CS filament with glutamate, ATP, and NADPH 7WXF ; 3.6 ; GPR domain of Drosophila P5CS filament with glutamate 7WXI ; 4.2 ; GPR domain of Drosophila P5CS filament with glutamate and ATPgammaS 7WXH ; 4.3 ; GPR domain open form of Drosophila P5CS filament with glutamate, ATP, and NADPH 7WZ7 ; 2.83 ; GPR110/G12 complex 7WY0 ; 2.83 ; GPR110/G13 complex 7X2V ; 3.09 ; GPR110/Gi complex 7WXU ; 2.85 ; GPR110/Gq complex 7WXW ; 2.84 ; GPR110/Gs complex 7EQ1 ; 3.3 ; GPR114-Gs-scFv16 complex 7XZ6 ; 2.8 ; GPR119-Gs-APD668 complex 7XZ5 ; 3.1 ; GPR119-Gs-LPC complex 8SMV ; 2.74 ; GPR161 Gs heterotrimer 8HJ2 ; 3.8 ; GPR21 wt with G15 complex 8HJ0 ; 3.12 ; GPR21(m5) and G15 complex 8HJ1 ; 3.27 ; GPR21(wt) and Gs complex 8U8F ; 3.49 ; GPR3 Orphan G-coupled Protein Receptor in complex with Dominant Negative Gs. 8WW2 ; 2.79 ; GPR3/Gs complex 5TZY ; 3.22 ; GPR40 in complex with AgoPAM AP8 and partial agonist MK-8666 5TZR ; 2.2 ; GPR40 in complex with partial agonist MK-8666 8HMP ; 2.77 ; GPR52 with Gs and c17 7SF8 ; 2.7 ; GPR56 (ADGRG1) 7TM domain bound to tethered agonist in complex with G protein heterotrimer 4UG1 ; 1.6 ; GpsB N-terminal domain 8J9N ; 3.5 ; Gq bound FZD1 in ligand-free state 7ALZ ; 1.67 ; GqqA- a novel type of quorum quenching acylases 7AM0 ; 2.5 ; GqqA- a novel type of quorum quenching acylases 7LUZ ; 1.101 ; GQTVTK segment from the Nucleoprotein of SARS-CoV-2, residues 243-248 4HN5 ; 1.902 ; GR DNA Binding Domain - TSLP nGRE Complex 4HN6 ; 2.549 ; GR DNA Binding Domain R460D/D462R - TSLP nGRE Complex 3G9I ; 1.85 ; GR DNA Binding domain: Pal complex-35 3FYL ; 1.63 ; GR DNA binding domain:CGT complex 3G6Q ; 2.26 ; GR DNA binding domain:FKBP5 binding site complex-9 3G6P ; 1.985 ; GR DNA binding domain:FKBP5 complex, 18bp 3G6R ; 2.3 ; GR DNA binding domain:FKBP5 complex-52, 18bp 3G8X ; 2.05 ; GR DNA binding domain:GilZ 16bp complex-65 3G99 ; 1.81 ; GR DNA binding domain:Pal complex-9 3G9J ; 2.32 ; GR DNA binding domain:Pal, 18bp complex-36 3G9P ; 1.652 ; GR DNA binding domain:Sgk 16bp complex-7 3G6U ; 1.9 ; GR DNA-binding domain:FKBP5 16bp complex-49 3G97 ; 2.08 ; GR DNA-binding domain:GilZ 16bp complex-9 3G9M ; 1.61 ; GR DNA-binding domain:Sgk 16bp complex-44 3G9O ; 1.65 ; GR DNA-binding domain:Sgk 16bp complex-9 3G6T ; 1.9 ; GR gamma DNA-binding domain:FKBP5 16bp complex-34 4UDD ; 1.8 ; GR in complex with desisobutyrylciclesonide 4UDC ; 2.5 ; GR in complex with dexamethasone 8DZR ; 2.61 ; GR89,696 bound Kappa Opioid Receptor in complex with gustducin 8DZS ; 2.65 ; GR89,696 bound Kappa Opioid Receptor in complex with Gz 3MWM ; 2.4 ; Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur 6J49 ; 1.6 ; Grafting VLADV sequence into OspAsm1 1NRM ; ; Gramicidin A in Dodecyl Phosphocholine Micelles (NMR) 1NRU ; ; Gramicidin A in Dodecyl Phosphocholine Micelles in the Presence of Excess Na+ (NMR) 1MAG ; ; GRAMICIDIN A IN HYDRATED DMPC BILAYERS, SOLID STATE NMR 1JNO ; ; Gramicidin A in Sodium Dodecyl Sulfate Micelles (NMR) 1AV2 ; 1.4 ; Gramicidin A/CsCl complex, active as a dimer 1MIC ; ; GRAMICIDIN A: LEFT-HANDED PARALLEL DOUBLE HELICAL FORM IN METHANOL IN THE PRESENCE OF CACL2, NMR, 20 STRUCTURES 1JO3 ; ; Gramicidin B in Sodium Dodecyl Sulfate Micelles (NMR) 1JO4 ; ; Gramicidin C in Sodium Dodecyl Sulfate Micelles (NMR) 1C4D ; 2.0 ; GRAMICIDIN CSCL COMPLEX 2IZQ ; 0.8 ; Gramicidin D complex with KI 3L8L ; 1.25 ; Gramicidin D complex with sodium iodide 1BDW ; 1.7 ; GRAMICIDIN D FROM BACILLUS BREVIS (ACTIVE FORM) 1ALZ ; 0.86 ; GRAMICIDIN D FROM BACILLUS BREVIS (ETHANOL SOLVATE) 1W5U ; 1.14 ; GRAMICIDIN D FROM BACILLUS BREVIS (ETHANOL SOLVATE) 1ALX ; 1.2 ; GRAMICIDIN D FROM BACILLUS BREVIS (METHANOL SOLVATE) 1AL4 ; 1.13 ; GRAMICIDIN D FROM BACILLUS BREVIS (N-PROPANOL SOLVATE) 1GMK ; 2.5 ; GRAMICIDIN/KSCN COMPLEX 8D8N ; 3.6 ; gRAMP non-match PFS target RNA 8D9I ; 3.62 ; gRAMP non-matching PFS-with Mg 8D9E ; 3.76 ; gRAMP-match PFS target 8D9F ; 2.71 ; gRAMP-TPR-CHAT (Craspase) 8D9H ; 3.6 ; gRAMP-TPR-CHAT match PFS target RNA(Craspase) 8D9G ; 2.57 ; gRAMP-TPR-CHAT Non match PFS target RNA(Craspase) 6GNF ; 2.2 ; Granule Bound Starch Synthase from Cyanobacterium sp. CLg1 bound to acarbose and ADP 6GNG ; 2.95 ; Granule Bound Starch Synthase I from Cyanophora paradoxa bound to acarbose and ADP 4GYR ; 2.8 ; Granulibacter bethesdensis allophanate hydrolase apo 4GYS ; 2.201 ; Granulibacter bethesdensis allophanate hydrolase co-crystallized with malonate 4XYG ; 1.7 ; GRANULICELLA M. FORMATE DEHYDROGENASE (FDH) 4XYE ; 1.8 ; GRANULICELLA M. FORMATE DEHYDROGENASE (FDH) IN COMPLEX WITH NAD(+) 4XYB ; 1.38 ; GRANULICELLA M. FORMATE DEHYDROGENASE (FDH) IN COMPLEX WITH NADP(+) AND NaN3 6S2O ; 1.6 ; Granulovirus occlusion bodies by serial electron diffraction 1L9L ; 0.92 ; GRANULYSIN FROM HUMAN CYTOLYTIC T LYMPHOCYTES 4V5W ; 3.7 ; Grapevine Fanleaf virus 7X45 ; 2.26 ; Grass carp interferon gamma related 7CJN ; 2.66 ; grass carp interleukin-2 7D9M ; 2.66 ; grass carp interleukin-2 1FAW ; 3.09 ; GRAYLAG GOOSE HEMOGLOBIN (OXY FORM) 1GRI ; 3.1 ; GRB2 4P9Z ; 1.8 ; Grb2 SH2 complexed with a pTyr-Ac6c-Asn tripeptide 4P9V ; 1.64 ; Grb2 SH2 complexed with a pTyr-Ac6cN-Asn tripeptide 6ICH ; 2.0 ; Grb2 SH2 domain in domain swapped dimer form 6ICG ; 1.15 ; Grb2 SH2 domain in phosphopeptide free form 7MPH ; 2.0 ; GRB2 SH2 Domain with Compound 7 3WA4 ; 1.35 ; Grb2 SH2 domain/CD28-derived peptide complex 2VVK ; 1.6 ; Grb2 SH3C (1) 2VWF ; 1.58 ; Grb2 SH3C (2) 2W0Z ; 1.7 ; Grb2 SH3C (3) 1BM2 ; 2.1 ; GRB2-SH2 DOMAIN IN COMPLEX WITH CYCLO-[N-ALPHA-ACETYL-L-THI ALYSYL-O-PHOSPHOTYROSYL-VALYL-ASPARAGYL-VALYL-PROLYL] (PKF273-791) 1BMB ; 1.8 ; GRB2-SH2 DOMAIN IN COMPLEX WITH KPFY*VNVEF (PKF270-974) 4X6S ; 2.55 ; Grb7 SH2 domain with phosphotyrosine mimetic inhibitor peptide 5TYI ; 2.15 ; Grb7 SH2 with bicyclic peptide containing pY mimetic 5EEL ; 2.47 ; Grb7 SH2 with bicyclic peptide inhibitor 5D0J ; 2.6 ; Grb7 SH2 with inhibitor peptide 3PQZ ; 2.413 ; Grb7 SH2 with peptide 5EEQ ; 1.6 ; Grb7 SH2 with the G7-B1 bicyclic peptide inhibitor 7MP3 ; 2.55 ; Grb7-SH2 domain in complex with bicyclic peptide B8 5U1Q ; 2.1 ; Grb7-SH2 with bicyclic peptide inhibitor 5U06 ; 2.1 ; Grb7-SH2 with bicyclic peptide inhibitor containing a pY mimetic 1GRJ ; 2.2 ; GREA TRANSCRIPT CLEAVAGE FACTOR FROM ESCHERICHIA COLI 3ZGB ; 2.71 ; Greater efficiency of photosynthetic carbon fixation due to single amino acid substitution 3ZGE ; 2.49 ; Greater efficiency of photosynthetic carbon fixation due to single amino acid substitution 8G4E ; 2.98 ; Green Fluorescence Protein imaged on a cryo-EM imaging scaffold 1EMG ; 2.0 ; GREEN FLUORESCENT PROTEIN (65-67 REPLACED BY CRO, S65T SUBSTITUTION, Q80R) 1EMB ; 2.13 ; GREEN FLUORESCENT PROTEIN (GFP) FROM AEQUOREA VICTORIA, GLN 80 REPLACED WITH ARG 3K1K ; 2.15 ; Green fluorescent protein bound to enhancer nanobody 3G9A ; 1.614 ; Green fluorescent protein bound to minimizer nanobody 4P1Q ; 1.5 ; GREEN FLUORESCENT PROTEIN E222H VARIANT 7LG4 ; 1.81 ; Green fluorescent protein from Aequorea macrodactyla - amacGFP 1EMA ; 1.9 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA 1EMC ; 2.3 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 1EME ; 2.5 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 1EMF ; 2.4 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 1EMK ; 2.1 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 1EML ; 2.3 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 1EMM ; 2.3 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 2EMD ; 2.0 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 2EMN ; 2.3 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 2EMO ; 2.6 ; GREEN FLUORESCENT PROTEIN FROM AEQUOREA VICTORIA, MUTANT 2HPW ; 1.55 ; Green fluorescent protein from Clytia gregaria 7DIG ; 2.6 ; Green fluorescent protein from Dendronephthya sp. SSAL-2002 2H9W ; 1.82 ; Green fluorescent protein ground states: the influence of a second protonation site near the chromophore 5WTS ; 3.004 ; Green fluorescent protein linked MTide-02 inhibitor in complex with mdm2 1B9C ; 2.4 ; Green Fluorescent Protein Mutant F99S, M153T and V163A 1C4F ; 2.25 ; GREEN FLUORESCENT PROTEIN S65T AT PH 4.6 6IR7 ; 1.277 ; Green fluorescent protein variant GFPuv with the modification to 6-hydroxynorleucine at the C-terminus 6IR6 ; 1.642 ; Green fluorescent protein variant GFPuv with the native lysine residue at the C-terminus 2QRF ; 1.5 ; Green Fluorescent Protein: Cyclized-only Intermediate of Chromophore Maturation in the Q183E variant 6BHO ; ; Green Light-Absorbing State of NpR6012g4, a Red/Green Cyanobacteriochrome 2M7V ; ; Green Light-Absorbing State of TePixJ, an Active Cyanobacteriochrome Domain 2G2R ; 2.75 ; Green-fluorescent antibody 11G10 in complex with its hapten (nitro-stilbene derivative) 3VIC ; 2.2 ; Green-fluorescent variant of the non-fluorescent chromoprotein Rtms5 3VK1 ; 2.2 ; Green-fluorescent variant of the non-fluorescent chromoprotein Rtms5 7P2F ; 2.5 ; Green-type copper-nitrite reductase from Sinorhizobium meliloti 2011 5DRG ; 1.14 ; Green/cyan WasCFP at pH 10.0 5DQM ; 1.3 ; Green/cyan WasCFP at pH 2.0 5DQB ; 1.25 ; Green/cyan WasCFP at pH 8.0 5DRF ; 1.14 ; Green/cyan WasCFP-pH5.5 at pH 5.5 5NCH ; 1.819 ; GriE apo form 5NCI ; 1.755 ; GriE in complex with cobalt, alpha-ketoglutarate and l-leucine 5NCJ ; 1.529 ; GriE in complex with manganese, succinate and (2S,4R)-5-hydroxyleucine 7RIB ; 2.1 ; Griffithsin mutant Y28F/Y68F/Y110F 7RKG ; 2.2 ; Griffithsin mutant Y28W 7RID ; 2.3 ; Griffithsin variant Y28A 7RIA ; 1.8 ; Griffithsin variant Y28A/Y68A/Y110A 7RIC ; 1.95 ; Griffithsin variant Y28W/Y68W/Y110W 7RKI ; 2.09 ; Griffithsin-S10Y/S42Y/S88Y 5NLZ ; 1.149 ; GRIFIN (Crystallisation pH: 4.2) 6E1L ; ; GRN3Ala 1LA1 ; 2.06 ; Gro-EL Fragment (Apical Domain) Comprising Residues 188-379 1SS8 ; 2.7 ; GroEL 1KID ; 1.7 ; GROEL (HSP60 CLASS) FRAGMENT (APICAL DOMAIN) COMPRISING RESIDUES 191-376, MUTANT WITH ALA 262 REPLACED WITH LEU AND ILE 267 REPLACED WITH MET 1JON ; 2.5 ; GROEL (HSP60 CLASS) FRAGMENT COMPRISING RESIDUES 191-345 2YNJ ; 8.4 ; GroEL at sub-nanometer resolution by Constrained Single Particle Tomography 6KFV ; 3.22 ; GroEL from Xanthomonas oryzae pv. oryzae 5W0S ; 3.5 ; GroEL using cryoEM 8S32 ; 2.45 ; GroEL with bound GroTAC peptide 2CGT ; 8.2 ; GROEL-ADP-gp31 COMPLEX 1PF9 ; 2.993 ; GroEL-GroES-ADP 1SX4 ; 3.0 ; GroEL-GroES-ADP7 1SX3 ; 2.0 ; GroEL14-(ATPgammaS)14 8BKZ ; 2.3 ; GroEL:GroES-ATP complex under continuous turnover conditions 6EPF ; 11.8 ; Ground state 26S proteasome (GS1) 6EPC ; 12.3 ; Ground state 26S proteasome (GS2) 5QT3 ; 1.95 ; Ground state model of human erythroid-specific 5'-aminolevulinate synthase, ALAS2 - SGC Diamond Xchem fragment screening 4MD2 ; 1.73 ; Ground state of bacteriorhodopsin from Halobacterium salinarum 2JAF ; 1.7 ; Ground state of halorhodopsin T203V 5J0M ; ; Ground state sampled during RDC restrained Replica-averaged Metadynamics (RAM) simulations of the HIV-1 TAR complexed with cyclic peptide mimetic of Tat 6S6C ; 1.07 ; Ground state structure of Archaerhodopsin-3 at 100K 6GUZ ; 1.9 ; Ground state structure of Archaerhodopsin-3 obtained from LCP crystals using a thin-film sandwich at room temperature 2JDI ; 1.9 ; Ground state structure of F1-ATPase from bovine heart mitochondria (Bovine F1-ATPase crystallised in the absence of azide) 5QKB ; 1.58 ; Ground-state model of NUDT5 and corresponding apo datasets for PanDDA analysis 8DG4 ; 3.12 ; Group A streptococcus Enolase K252A, K255A, K434A, K435A mutant 4WPG ; 1.1 ; Group A Streptococcus GacA is an essential dTDP-4-dehydrorhamnose reductase (RmlD) 4G1H ; 1.8 ; Group B Streptococcus Pilus Island 1 Sortase C2 5QNI ; 1.967 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_1) 5QNJ ; 1.863 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_10) 5QNK ; 1.898 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_11) 5QNL ; 1.752 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_12) 5QNM ; 1.863 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_13) 5QNN ; 1.787 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_14) 5QNO ; 1.953 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_15) 5QNP ; 1.67 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_16) 5QNQ ; 1.669 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_17) 5QNR ; 1.752 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_18) 5QNS ; 1.785 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_19) 5QNT ; 1.747 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_2) 5QNU ; 1.862 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_20) 5QNV ; 1.75 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_21) 5QNW ; 1.883 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_22) 5QNX ; 1.677 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_23) 5QNY ; 1.595 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_24) 5QNZ ; 1.792 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_25) 5QO0 ; 1.832 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_26) 5QO1 ; 1.843 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_28) 5QO2 ; 1.637 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_3) 5QO3 ; 1.728 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_31) 5QO4 ; 1.78 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_32) 5QO5 ; 1.769 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_34) 5QO6 ; 1.794 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_36) 5QO7 ; 1.968 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_37) 5QO8 ; 1.728 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_38) 5QO9 ; 1.59 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_4) 5QOA ; 1.979 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_40) 5QOB ; 1.698 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_5) 5QOC ; 1.67 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_50) 5QOD ; 1.908 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_6) 5QOE ; 1.67 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_7) 5QOF ; 1.637 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_8) 5QOG ; 1.787 ; Group deposition of apo datasets for PANDDA analysis - Crystal Structure of apo EcDsbA after initial refinement (apo_dataset_9) 5QKD ; 2.113 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A10_1) 5QKE ; 2.117 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A11_1) 5QKF ; 2.141 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A12_1) 5QKC ; 2.146 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A1_1) 5QKH ; 2.654 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A2_1) 5QKI ; 2.304 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A2_2) 5QKG ; 1.897 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A2_3) 5QKJ ; 2.129 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A3_1) 5QKL ; 2.697 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A4_1) 5QKK ; 2.075 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A4_2) 5QKM ; 2.487 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A5_1) 5QKN ; 1.896 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A5_2) 5QKO ; 2.004 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A6_1) 5QKQ ; 2.423 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A7_1) 5QKR ; 2.502 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A7_2) 5QKP ; 1.881 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A7_3) 5QKS ; 2.118 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A8_1) 5QKT ; 1.896 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure A9_1) 5QKX ; 2.005 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B10_1) 5QKW ; 1.969 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B10_2) 5QKY ; 2.416 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B12_1) 5QKZ ; 2.381 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B12_2) 5QKU ; 2.306 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B1_1) 5QKV ; 2.14 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B1_2) 5QL0 ; 2.045 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B2_1) 5QL1 ; 2.137 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B3_1) 5QL2 ; 2.111 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B4_1) 5QL3 ; 1.962 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B5_1) 5QL4 ; 2.006 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B6_1) 5QL5 ; 2.138 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B6_2) 5QL6 ; 2.081 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B7_1) 5QL7 ; 2.15 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B8_1) 5QL8 ; 2.302 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B9_1) 5QL9 ; 2.151 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure B9_2) 5QLB ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C10_1) 5QLC ; 2.214 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C11_1) 5QLD ; 2.125 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C12_1) 5QLA ; 1.864 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C1_1) 5QLE ; 1.954 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C2_1) 5QLG ; 2.48 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C3_1) 5QLF ; 2.003 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C3_2) 5QLH ; 1.887 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C4_1) 5QLI ; 2.043 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C5_1) 5QLJ ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C6_1) 5QLK ; 1.993 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C7_1) 5QLL ; 1.96 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C8_1) 5QLM ; 2.07 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure C9_1) 5QLN ; 2.409 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure COMU_1) 5QLR ; 1.972 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D10_1) 5QLS ; 2.007 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D11_1) 5QLT ; 2.402 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D12_1) 5QLP ; 2.521 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D1_1) 5QLQ ; 1.866 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D1_2) 5QLO ; 2.366 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D1_3) 5QLV ; 2.341 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D2_1) 5QLU ; 2.197 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D2_2) 5QLW ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D3_1) 5QLX ; 1.896 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D4_1) 5QLY ; 2.175 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D5_1) 5QLZ ; 1.996 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D6_1) 5QM0 ; 1.917 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D7_1) 5QM1 ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D8_1) 5QM2 ; 1.919 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure D9_1) 5QM4 ; 2.007 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E10_1) 5QM5 ; 2.008 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E11_1) 5QM6 ; 2.298 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E12_1) 5QM3 ; 1.982 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E1_1) 5QM7 ; 2.037 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E2_1) 5QM8 ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E3_1) 5QM9 ; 1.962 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E4_1) 5QMA ; 2.136 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E5_1) 5QMB ; 1.897 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E7_1) 5QMC ; 1.887 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E8_1) 5QMD ; 1.972 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure E9_1) 5QME ; 1.83 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure EDC_1) 5QMG ; 2.109 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F10_1) 5QMH ; 2.079 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F11_1) 5QMJ ; 2.304 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F12_1) 5QMI ; 1.671 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F12_2) 5QMF ; 2.005 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F1_1) 5QMK ; 1.836 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F2_1) 5QML ; 2.195 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F3_1) 5QMM ; 1.961 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F4_1) 5QMN ; 1.976 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F5_1) 5QMO ; 2.052 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F6_1) 5QMP ; 2.005 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F7_1) 5QMQ ; 1.897 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F8_1) 5QMR ; 2.004 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure F9_1) 5QMT ; 2.043 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G10_1) 5QMU ; 2.043 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G11_1) 5QMV ; 1.907 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G12_1) 5QMS ; 2.047 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G1_1) 5QMW ; 1.959 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G2_1) 5QMX ; 1.918 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G3_1) 5QMY ; 2.217 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G4_1) 5QMZ ; 2.084 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G5_1) 5QN2 ; 2.3 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G6_1) 5QN0 ; 2.007 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G6_2) 5QN1 ; 2.199 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G6_3) 5QN3 ; 2.137 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G7_1) 5QN4 ; 2.373 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G8_1) 5QN5 ; 1.891 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G8_2) 5QN6 ; 1.897 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure G9_1) 5QN7 ; 2.136 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H1_1) 5QN8 ; 1.868 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H2_1) 5QN9 ; 1.938 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H3_1) 5QNA ; 2.139 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H4_1) 5QNB ; 1.907 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H5_1) 5QNC ; 2.14 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H6_1) 5QNE ; 2.394 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H7_1) 5QND ; 1.899 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H7_2) 5QNF ; 1.96 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure H9_1) 5QNG ; 1.897 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure HATU_1) 5QNH ; 2.211 ; Group deposition of library data - Crystal Structure of EcDsbA after initial refinement with no ligand modelled (structure Phaux_1) 7GG3 ; 1.42 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with AAR-RCN-748c104b-1 (Mpro-x12080) 7GLP ; 1.917 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ADA-UCB-6c2cb422-1 (Mpro-P2005) 7GDD ; 1.34 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ADA-UCB-6c2cb422-1 (Mpro-x10959) 7GE7 ; 1.51 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ADA-UCB-6c2cb422-3 (Mpro-x11354) 7GD7 ; 1.509 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ADA-UNI-f8e79267-2 (Mpro-x10889) 7GBU ; 1.559 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ADA-UNI-f8e79267-5 (Mpro-x10421) 7GET ; 1.919 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-0c2c77e1-1 (Mpro-x11507) 7GNU ; 1.48 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-133e7cd9-2 (Mpro-P3074) 7GLW ; 1.587 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-1cbc2fae-1 (Mpro-P2036) 7GN7 ; 2.349 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-1cbc2fae-2 (Mpro-P2381) 7GNA ; 2.093 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-4483ae88-4 (Mpro-P2415) 7GG6 ; 1.599 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-477dc5b7-2 (Mpro-x12171) 7GMJ ; 1.84 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-477dc5b7-4 (Mpro-P2197) 7GK9 ; 2.02 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-477dc5b7-5 (Mpro-P0811) 7GLU ; 1.627 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6479a3a9-2 (Mpro-P2028) 7GHQ ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-64a710fa-1 (Mpro-P0016) 7GGK ; 1.73 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-64a710fa-1 (Mpro-x12661) 7GEZ ; 1.34 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6747fa38-1 (Mpro-x11541) 7GGE ; 1.63 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6d04362c-1 (Mpro-x12419) 7GGF ; 1.831 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6d04362c-2 (Mpro-x12423) 7GLC ; 1.954 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6f6ae286-3 (Mpro-P1858) 7GM4 ; 1.751 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-6f6ae286-5 (Mpro-P2080) 7GIN ; 1.858 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-869ac754-1 (Mpro-P0114) 7GG5 ; 1.509 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-87c86d55-1 (Mpro-x12143) 7GHW ; 1.58 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-8b8a49e1-4 (Mpro-P0026) 7GGO ; 1.687 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-8b8a49e1-4 (Mpro-x12682) 7GBS ; 1.54 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-95b75b4d-1 (Mpro-x10417) 7GBK ; 1.5 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-95b75b4d-2 (Mpro-x10359) 7GCC ; 1.61 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-95b75b4d-4 (Mpro-x10566) 7GF1 ; 1.881 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-95b75b4d-5 (Mpro-x11543) 7GGY ; 2.17 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-966f8da6-2 (Mpro-x12717) 7GKC ; 1.94 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-9c80c481-1 (Mpro-P0845) 7GM7 ; 1.844 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-a577c8a2-1 (Mpro-P2099) 7GFJ ; 1.59 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c0c213c9-1 (Mpro-x11757) 7GDO ; 1.756 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c0c213c9-14 (Mpro-x11164) 7GJ9 ; 2.09 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c3a96089-4 (Mpro-P0186) 7GD4 ; 1.749 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c59291d4-2 (Mpro-x10871) 7GD3 ; 1.751 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c59291d4-3 (Mpro-x10870) 7GCZ ; 1.512 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c59291d4-4 (Mpro-x10820) 7GCY ; 1.618 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-c59291d4-5 (Mpro-x10812) 7GG8 ; 1.58 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-cd485364-2 (Mpro-x12202) 7GH0 ; 1.69 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-ce760d3f-4 (Mpro-x12723) 7GHR ; 1.655 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-ce760d3f-8 (Mpro-P0017) 7GGL ; 2.218 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-ce760d3f-8 (Mpro-x12674) 7GD5 ; 1.809 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-d2866bdf-1 (Mpro-x10876) 7GKM ; 1.95 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-e0fe77e5-13 (Mpro-P0950) 7GNK ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-ecbed2ba-12 (Mpro-P2730) 7GEV ; 1.542 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-f13221e1-4 (Mpro-x11513) 7GJP ; 1.967 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-POS-fe871b40-11 (Mpro-P0626) 7GJL ; 2.17 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-3735e77e-1 (Mpro-P0600) 7GIM ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-3735e77e-2 (Mpro-P0111) 7GKH ; 1.99 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-8d415491-1 (Mpro-P0884) 7GKD ; 2.243 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-8d415491-3 (Mpro-P0850) 7GKF ; 1.85 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-8d415491-6 (Mpro-P0872) 7GJG ; 1.99 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ALP-UNI-8e43a71e-8 (Mpro-P0238) 7GG9 ; 1.54 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ANT-DIA-62e4526e-1 (Mpro-x12204) 7GBA ; 1.699 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ANT-OPE-d972fbad-1 (Mpro-x10296) 7GCS ; 1.618 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-18 (Mpro-x10733) 7GD0 ; 1.649 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-23 (Mpro-x10834) 7GCU ; 1.541 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-25 (Mpro-x10787) 7GD2 ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-3 (Mpro-x10862) 7GD6 ; 1.551 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-38 (Mpro-x10888) 7GCN ; 1.62 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-41 (Mpro-x10679) 7GCK ; 1.4 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-48 (Mpro-x10638) 7GD1 ; 1.52 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-58 (Mpro-x10856) 7GCL ; 1.829 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-0f94fc3d-59 (Mpro-x10645) 7GHF ; 1.66 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-4e090d3a-47 (Mpro-x3305) 7GHD ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BAR-COM-4e090d3a-57 (Mpro-x3298) 7GJC ; 1.932 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-BAS-c2bc0d80-6 (Mpro-P0207) 7GK0 ; 1.96 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-BAS-c2bc0d80-7 (Mpro-P0765) 7GAY ; 1.3 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-031a96cc-8 (Mpro-x10022) 7GH9 ; 1.57 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-362d364a-10 (Mpro-x2971) 7GHP ; 1.54 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-4f474d93-1 (Mpro-P0012) 7GGJ ; 1.801 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-4f474d93-1 (Mpro-x12659) 7GCO ; 1.59 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-7e92b6ca-1 (Mpro-x10700) 7GE8 ; 1.799 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-7e92b6ca-16 (Mpro-x11366) 7GBT ; 1.25 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-7e92b6ca-2 (Mpro-x10419) 7GBR ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-7e92b6ca-4 (Mpro-x10403) 7GEF ; 1.18 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-93268d01-11 (Mpro-x11428) 7GC2 ; 1.731 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-93268d01-13 (Mpro-x10484) 7GEE ; 1.29 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-93268d01-5 (Mpro-x11427) 7GCE ; 1.39 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-93268d01-7 (Mpro-x10598) 7GEB ; 1.391 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-93268d01-8 (Mpro-x11417) 7GHY ; 1.62 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-c852c98b-10 (Mpro-P0031) 7GGT ; 1.82 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-c852c98b-10 (Mpro-x12698) 7GIQ ; 1.916 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-c852c98b-5 (Mpro-P0124) 7GJH ; 1.92 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BEN-DND-f2e727cd-5 (Mpro-P0240) 7GIY ; 2.04 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BRU-CON-c4e3408a-1 (Mpro-P0145) 7GCT ; 1.857 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BRU-LEF-c49414a7-1 (Mpro-x10756) 7GI5 ; 2.0 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BRU-THA-92256091-17 (Mpro-P0053) 7GDW ; 1.667 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with BRU-THA-a358fbdd-2 (Mpro-x11233) 7GG7 ; 1.51 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with CHO-MSK-00c5269a-2 (Mpro-x12177) 7GFG ; 1.8 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with CHO-MSK-6e55470f-5 (Mpro-x11723) 7GBB ; 1.737 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAN-LON-a5fc619e-3 (Mpro-x10306) 7GHA ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAN-LON-a5fc619e-8 (Mpro-x3077) 7GHI ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAN-PUR-6788a628-2 (Mpro-x3333) 7GH8 ; 1.52 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAR-DIA-23aa0b97-13 (Mpro-x2964) 7GDG ; 1.811 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAR-DIA-23aa0b97-14 (Mpro-x10996) 7GB4 ; 1.865 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAR-DIA-23aa0b97-6 (Mpro-x10178) 7GHK ; 1.52 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAR-DIA-eace69ff-36 (Mpro-x3351) 7GHG ; 1.45 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAV-CRI-3edb475e-4 (Mpro-x3324) 7GB3 ; 1.379 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DAV-CRI-3edb475e-6 (Mpro-x10172) 7GAZ ; 1.753 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DUN-NEW-f8ce3686-14 (Mpro-x10049) 7GD9 ; 1.621 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DUN-NEW-f8ce3686-23 (Mpro-x10899) 7GC5 ; 1.57 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with DUN-NEW-f8ce3686-24 (Mpro-x10506) 7GDE ; 1.501 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-12 (Mpro-x10976) 7GEM ; 1.32 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-15 (Mpro-x11485) 7GDJ ; 1.769 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-16 (Mpro-x11013) 7GC4 ; 1.736 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-18 (Mpro-x10494) 7GB5 ; 1.261 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-2 (Mpro-x10201) 7GDK ; 1.735 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-21 (Mpro-x11025) 7GF3 ; 1.628 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-5 (Mpro-x11557) 7GF5 ; 1.37 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0da5ad92-7 (Mpro-x11562) 7GHX ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0e5afe9d-1 (Mpro-P0030) 7GGS ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0e5afe9d-1 (Mpro-x12696) 7GI1 ; 1.625 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0e5afe9d-3 (Mpro-P0038) 7GGU ; 2.29 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-0e5afe9d-3 (Mpro-x12699) 7GL5 ; 1.678 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-10fcb19e-1 (Mpro-P1661) 7GJ4 ; 2.128 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-5d232de5-1 (Mpro-P0160) 7GIZ ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-5d232de5-4 (Mpro-P0148) 7GJ5 ; 2.13 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-5d232de5-5 (Mpro-P0171) 7GK5 ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-5d232de5-7 (Mpro-P0793) 7GKA ; 2.06 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-5d232de5-8 (Mpro-P0816) 7GJ2 ; 1.87 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-70ae9412-1 (Mpro-P0154) 7GJ0 ; 1.81 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-70ae9412-2 (Mpro-P0151) 7GIR ; 2.18 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-971238d3-1 (Mpro-P0125) 7GI2 ; 1.61 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-971238d3-5 (Mpro-P0039) 7GGX ; 1.85 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-971238d3-5 (Mpro-x12716) 7GNI ; 1.644 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-b1ef7fe3-1 (Mpro-P2660) 7GJT ; 2.12 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-ba1ac7b9-11 (Mpro-P0642) 7GK2 ; 2.01 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-ba1ac7b9-13 (Mpro-P0772) 7GKJ ; 1.76 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-ba1ac7b9-19 (Mpro-P0904) 7GK7 ; 2.18 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-ba1ac7b9-21 (Mpro-P0805) 7GNB ; 1.671 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDG-MED-ee636701-1 (Mpro-P2468) 7GH4 ; 2.27 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-00c1612e-1 (Mpro-x12777) 7GLB ; 1.95 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-015fb6b4-2 (Mpro-P1835) 7GEH ; 1.23 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-06d94977-2 (Mpro-x11432) 7GDN ; 1.351 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-0e996074-1 (Mpro-x11159) 7GN9 ; 2.155 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-12c4873b-2 (Mpro-P2402) 7GMO ; 1.855 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-12c4873b-5 (Mpro-P2206) 7GL3 ; 1.751 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-1981ceba-2 (Mpro-P1624) 7GL4 ; 1.868 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-1981ceba-3 (Mpro-P1638) 7GL2 ; 1.808 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-1981ceba-4 (Mpro-P1623) 7GKG ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-2f867453-1 (Mpro-P0878) 7GJN ; 2.06 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-37aac4bd-4 (Mpro-P0602) 7GGZ ; 1.46 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-3c65e9ce-2 (Mpro-x12719) 7GH3 ; 1.901 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-3c65e9ce-4 (Mpro-x12740) 7GN4 ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-43f8f7d6-4 (Mpro-P2291) 7GN0 ; 1.806 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-43f8f7d6-6 (Mpro-P2256) 7GDI ; 1.8 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-49816e9b-1 (Mpro-x11011) 7GBH ; 1.581 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-49816e9b-2 (Mpro-x10334) 7GLL ; 1.905 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-4fff0a85-1 (Mpro-P1988) 7GLJ ; 1.814 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-4fff0a85-3 (Mpro-P1983) 7GEU ; 1.4 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-50fe53e8-1 (Mpro-x11508) 7GEO ; 1.499 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-50fe53e8-3 (Mpro-x11493) 7GKN ; 1.92 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-611d11e7-4 (Mpro-P0978) 7GE2 ; 1.67 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-6af13d92-1 (Mpro-x11313) 7GE0 ; 1.701 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-6af13d92-2 (Mpro-x11276) 7GE1 ; 1.936 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-6af13d92-3 (Mpro-x11294) 7GL7 ; 1.851 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-6bf93aa8-1 (Mpro-P1783) 7GNG ; 1.769 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-705e09b8-1 (Mpro-P2607) 7GLK ; 1.744 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-76744c27-4 (Mpro-P1986) 7GM8 ; 1.73 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-7889e8da-3 (Mpro-P2101) 7GM6 ; 1.87 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-7889e8da-5 (Mpro-P2090) 7GMV ; 1.899 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-8bb691af-4 (Mpro-P2222) 7GN1 ; 1.903 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-8bb691af-6 (Mpro-P2263) 7GNC ; 1.683 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-8bb691af-8 (Mpro-P2487) 7GJF ; 1.96 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-8c98ee63-2 (Mpro-P0224) 7GI0 ; 1.58 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-92e193ae-1 (Mpro-P0034) 7GGQ ; 1.811 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-92e193ae-1 (Mpro-x12692) 7GN5 ; 1.863 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-968bafd9-1 (Mpro-P2295) 7GNJ ; 1.45 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-976a33d5-1 (Mpro-P2724) 7GK1 ; 1.937 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-9e38fd34-1 (Mpro-P0766) 7GEG ; 1.729 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-a364e151-1 (Mpro-x11431) 7GMS ; 1.897 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-be9e6f63-3 (Mpro-P2215) 7GMZ ; 1.617 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-c3ea9889-6 (Mpro-P2243) 7GJI ; 1.59 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-d08626de-3 (Mpro-P0243) 7GJM ; 1.92 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-e4b030d8-11 (Mpro-P0601) 7GGA ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-e4b030d8-13 (Mpro-x12207) 7GN2 ; 1.735 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-e69ed63d-1 (Mpro-P2273) 7GMY ; 1.838 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with EDJ-MED-e69ed63d-13 (Mpro-P2242) 7GE5 ; 1.641 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-5b47150d-6 (Mpro-x11339) 7GFC ; 2.23 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-a0b0dbcb-4 (Mpro-x11616) 7GFZ ; 1.43 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-a0b0dbcb-8 (Mpro-x12025) 7GG1 ; 1.481 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-a0b0dbcb-9 (Mpro-x12064) 7GHM ; 1.69 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-ce40166b-17 (Mpro-P0008) 7GGN ; 1.928 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-d6de1f3c-1 (Mpro-x12679) 7GHS ; 1.659 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-d6de1f3c-2 (Mpro-P0018) 7GGG ; 1.74 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ERI-UCB-d6de1f3c-2 (Mpro-x12582) 7GHC ; 1.48 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with GAB-REV-70cc3ca5-13 (Mpro-x3108) 7GHL ; 1.41 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with GAB-REV-70cc3ca5-18 (Mpro-x3366) 7GAX ; 1.71 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with GAB-REV-70cc3ca5-4 (Mpro-x10019) 7GHB ; 1.56 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with GAB-REV-70cc3ca5-8 (Mpro-x3080) 7GD8 ; 1.64 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-119787ef-1 (Mpro-x10898) 7GG4 ; 1.572 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-52b62a6f-11 (Mpro-x12136) 7GE6 ; 1.62 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-a3ef7265-18 (Mpro-x11346) 7GBE ; 1.224 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-a3ef7265-20 (Mpro-x10324) 7GDF ; 1.959 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-a3ef7265-23 (Mpro-x10995) 7GBI ; 1.291 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-a3ef7265-3 (Mpro-x10338) 7GEL ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-cedd89ab-1 (Mpro-x11475) 7GED ; 1.479 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-cedd89ab-2 (Mpro-x11426) 7GC3 ; 1.56 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAG-UCB-cedd89ab-4 (Mpro-x10488) 7GLO ; 1.927 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-5a013bed-2 (Mpro-P2001) 7GBX ; 1.91 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-5a013bed-2 (Mpro-x10466) 7GCF ; 1.419 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-5a013bed-4 (Mpro-x10604) 7GBG ; 1.461 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-1 (Mpro-x10329) 7GBP ; 1.7 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-10 (Mpro-x10395) 7GB9 ; 1.4 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-11 (Mpro-x10248) 7GE9 ; 1.49 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-12 (Mpro-x11368) 7GCB ; 1.608 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-13 (Mpro-x10565) 7GB8 ; 1.957 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-14 (Mpro-x10247) 7GDL ; 1.864 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-15 (Mpro-x11041) 7GC8 ; 1.801 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-18 (Mpro-x10535) 7GEA ; 1.831 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-2 (Mpro-x11372) 7GBO ; 1.619 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-20 (Mpro-x10392) 7GCG ; 1.887 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-21 (Mpro-x10606) 7GBV ; 1.67 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-22 (Mpro-x10422) 7GBQ ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-23 (Mpro-x10396) 7GBM ; 1.8 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-3 (Mpro-x10377) 7GBW ; 1.559 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-8 (Mpro-x10423) 7GBF ; 1.769 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JAN-GHE-83b26c96-9 (Mpro-x10327) 7GKK ; 1.8 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JIN-POS-6dc588a4-6 (Mpro-P0906) 7GB6 ; 1.84 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JOR-UNI-2fc98d0b-12 (Mpro-x10236) 7GB7 ; 1.55 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with JOR-UNI-2fc98d0b-6 (Mpro-x10237) 7GJW ; 2.456 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with KAD-UNI-80f122c8-2 (Mpro-P0743) 7GDC ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-0a73fcb8-7 (Mpro-x10942) 7GJZ ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-9739a092-6 (Mpro-P0764) 7GJJ ; 1.75 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-9739a092-9 (Mpro-P0394) 7GDH ; 1.891 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NEU-c8f11034-6 (Mpro-x11001) 7GDQ ; 1.721 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-30067bb9-15 (Mpro-x11204) 7GDS ; 1.46 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-30067bb9-18 (Mpro-x11212) 7GDR ; 1.661 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-30067bb9-2 (Mpro-x11208) 7GDY ; 1.611 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-30067bb9-6 (Mpro-x11258) 7GDX ; 1.839 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-30067bb9-7 (Mpro-x11254) 7GFY ; 1.55 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with LOR-NOR-c954e7ad-4 (Mpro-x12010) 7GDT ; 1.509 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAK-UNK-0d6072ac-20 (Mpro-x11223) 7GFT ; 1.639 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAR-UCB-f313ec4d-2 (Mpro-x11813) 7GFS ; 1.679 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAR-UCB-f313ec4d-6 (Mpro-x11812) 7GFK ; 1.5 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-044491d2-1 (Mpro-x11764) 7GGC ; 1.936 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-044491d2-3 (Mpro-x12321) 7GGB ; 1.381 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-044491d2-7 (Mpro-x12300) 7GI3 ; 2.1 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-090737b9-1 (Mpro-P0041) 7GH2 ; 1.62 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-090737b9-1 (Mpro-x12735) 7GGI ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-14ad9fe9-1 (Mpro-x12640) 7GFX ; 1.55 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-199e2e7c-1 (Mpro-x12000) 7GM9 ; 1.826 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-1bed62cf-3 (Mpro-P2113) 7GEN ; 1.529 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-1e5f28a7-1 (Mpro-x11488) 7GIK ; 2.09 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-1f3f1a6f-1 (Mpro-P0098) 7GH1 ; 1.52 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2bb0cf2b-1 (Mpro-x12731) 7GGW ; 1.92 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2bb0cf2b-2 (Mpro-x12715) 7GFV ; 1.73 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2db6411e-2 (Mpro-x11852) 7GM1 ; 1.939 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2e8b2191-10 (Mpro-P2072) 7GLX ; 1.494 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2e8b2191-11 (Mpro-P2039) 7GM2 ; 1.891 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-2e8b2191-12 (Mpro-P2074) 7GFA ; 1.971 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-3b92565d-1 (Mpro-x11609) 7GJD ; 1.79 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-3b97339c-2 (Mpro-P0208) 7GJX ; 2.06 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-3ccb8ef6-1 (Mpro-P0744) 7GKS ; 1.809 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-11 (Mpro-P1062) 7GLT ; 1.863 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-12 (Mpro-P2017) 7GKQ ; 2.07 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-18 (Mpro-P1010) 7GKR ; 2.02 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-2 (Mpro-P1015) 7GKV ; 1.876 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-23 (Mpro-P1090) 7GKX ; 1.866 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-28 (Mpro-P1202) 7GKP ; 1.794 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-3 (Mpro-P1007) 7GKO ; 2.05 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-30 (Mpro-P0996) 7GKU ; 1.866 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-4223bc15-40 (Mpro-P1079) 7GNS ; 1.617 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-50a80394-1 (Mpro-P3050) 7GNT ; 1.561 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-50a80394-2 (Mpro-P3054) 7GBZ ; 1.529 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-11 (Mpro-x10474) 7GF4 ; 1.561 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-17 (Mpro-x11560) 7GCA ; 1.771 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-18 (Mpro-x10559) 7GCJ ; 1.34 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-19 (Mpro-x10626) 7GC0 ; 1.579 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-21 (Mpro-x10476) 7GC9 ; 1.771 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-22 (Mpro-x10555) 7GCD ; 1.811 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-23 (Mpro-x10575) 7GCX ; 1.75 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-24 (Mpro-x10801) 7GC1 ; 1.59 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-25 (Mpro-x10478) 7GCI ; 1.541 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-27 (Mpro-x10610) 7GBJ ; 1.549 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-32 (Mpro-x10355) 7GC7 ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-39 (Mpro-x10525) 7GBY ; 1.608 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-590ac91e-5 (Mpro-x10473) 7GLE ; 1.984 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-13 (Mpro-P1889) 7GLZ ; 1.678 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-14 (Mpro-P2067) 7GLD ; 1.78 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-15 (Mpro-P1879) 7GLN ; 1.836 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-16 (Mpro-P1991) 7GMC ; 1.819 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-17 (Mpro-P2147) 7GLG ; 1.673 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-18 (Mpro-P1980) 7GM5 ; 1.709 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-2 (Mpro-P2089) 7GLM ; 1.906 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-21 (Mpro-P1990) 7GLF ; 1.67 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-22 (Mpro-P1978) 7GLY ; 1.805 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5cd9ea36-23 (Mpro-P2057) 7GFF ; 1.745 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5d20d11c-1 (Mpro-x11708) 7GIJ ; 1.9 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5d65ec79-1 (Mpro-P0097) 7GJB ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-5d65ec79-2 (Mpro-P0188) 7GFE ; 1.65 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-6344a35d-1 (Mpro-x11642) 7GI7 ; 1.74 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-6c284e65-1 (Mpro-P0057) 7GMA ; 1.865 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-7174c657-5 (Mpro-P2141) 7GMD ; 1.937 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-7174c657-6 (Mpro-P2176) 7GJQ ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-78e1d523-1 (Mpro-P0627) 7GL1 ; 1.709 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-8293a91a-8 (Mpro-P1507) 7GNH ; 1.785 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-853c0ffa-9 (Mpro-P2649) 7GL6 ; 1.721 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-8695a11f-1 (Mpro-P1701) 7GLA ; 1.684 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-86c60949-2 (Mpro-P1812) 7GG2 ; 1.721 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-8a69d52e-7 (Mpro-x12073) 7GMQ ; 1.859 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-13 (Mpro-P2210) 7GMN ; 2.195 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-14 (Mpro-P2205) 7GMT ; 1.738 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-19 (Mpro-P2218) 7GMI ; 2.01 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-2 (Mpro-P2185) 7GMM ; 1.842 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-20 (Mpro-P2204) 7GMX ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-21 (Mpro-P2229) 7GMU ; 1.737 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-22 (Mpro-P2219) 7GML ; 1.912 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-28 (Mpro-P2203) 7GMB ; 2.207 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-31 (Mpro-P2144) 7GMH ; 1.848 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-37 (Mpro-P2183) 7GME ; 1.846 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-38 (Mpro-P2177) 7GMP ; 2.083 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-90fd5f68-7 (Mpro-P2207) 7GH6 ; 1.57 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-916-2 (Mpro-x2910) 7GHE ; 2.168 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-916a2c5a-4 (Mpro-x3303) 7GJV ; 2.09 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-932d1078-3 (Mpro-P0661) 7GDB ; 1.701 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-968e8d9c-1 (Mpro-x10906) 7GKB ; 1.96 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-96f51285-5 (Mpro-P0831) 7GJO ; 2.2 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-a13804f0-3 (Mpro-P0607) 7GL0 ; 1.821 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-a13804f0-4 (Mpro-P1477) 7GLV ; 1.716 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-a54ce14d-2 (Mpro-P2031) 7GLI ; 1.839 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-af1eef35-2 (Mpro-P1982) 7GKZ ; 1.808 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-afb6844f-1 (Mpro-P1474) 7GHV ; 1.63 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-afd4d4fd-2 (Mpro-P0025) 7GGM ; 1.839 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-afd4d4fd-2 (Mpro-x12677) 7GFB ; 1.609 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-b3e365b9-1 (Mpro-x11612) 7GFQ ; 1.551 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-b3e365b9-3 (Mpro-x11809) 7GGD ; 1.48 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-b5746674-38 (Mpro-x12350) 7GF0 ; 1.579 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bb423b95-1 (Mpro-x11542) 7GEW ; 1.461 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bb423b95-2 (Mpro-x11530) 7GES ; 1.47 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bb423b95-7 (Mpro-x11501) 7GFU ; 1.6 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bbbbc21a-3 (Mpro-x11831) 7GLS ; 1.731 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bfb445d4-2 (Mpro-P2011) 7GFL ; 1.771 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bfb445d4-2 (Mpro-x11789) 7GM0 ; 1.76 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-bfd29aac-1 (Mpro-P2070) 7GB0 ; 1.423 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-c0143b99-1 (Mpro-x10082) 7GM3 ; 2.02 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-c20a539d-4 (Mpro-P2075) 7GN8 ; 1.903 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-c7726e07-5 (Mpro-P2385) 7GGR ; 1.87 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-c7771779-1 (Mpro-x12695) 7GDZ ; 1.839 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-c9973a83-1 (Mpro-x11271) 7GL8 ; 1.637 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-dc2604c4-1 (Mpro-P1788) 7GK8 ; 2.2 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-dd3ad2b5-2 (Mpro-P0808) 7GKE ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-dd3ad2b5-3 (Mpro-P0851) 7GIV ; 2.198 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-de59a476-2 (Mpro-P0135) 7GJA ; 2.097 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-de59a476-4 (Mpro-P0187) 7GMW ; 1.826 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e119ab4f-1 (Mpro-P2224) 7GMG ; 1.81 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e119ab4f-2 (Mpro-P2182) 7GMF ; 1.805 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e119ab4f-3 (Mpro-P2178) 7GN6 ; 2.44 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e119ab4f-5 (Mpro-P2358) 7GAW ; 1.812 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e194df51-1 (SARS2_MproA-x0862) 7GNR ; 1.819 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e48723dc-2 (Mpro-P3038) 7GJE ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e69ad64a-2 (Mpro-P0213) 7GKW ; 1.911 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e6dd326d-6 (Mpro-P1200) 7GKT ; 1.839 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e6dd326d-8 (Mpro-P1073) 7GJR ; 2.25 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e9e99895-11 (Mpro-P0630) 7GJY ; 2.177 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e9e99895-13 (Mpro-P0747) 7GJS ; 2.0 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e9e99895-2 (Mpro-P0640) 7GJU ; 1.94 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-e9e99895-6 (Mpro-P0655) 7GHN ; 1.73 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f2460aef-1 (Mpro-P0009) 7GF6 ; 1.45 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f42f3716-6 (Mpro-x11564) 7GAV ; 1.77 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f7918075-2 (SARS2_MproA-x0854) 7GER ; 1.711 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f7918075-5 (Mpro-x11499) 7GFH ; 1.46 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f7918075-8 (Mpro-x11742) 7GIW ; 2.45 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-f9802937-7 (Mpro-P0141) 7GFW ; 1.569 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fa06b69f-6 (Mpro-x11894) 7GK6 ; 1.98 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fb82b63d-1 (Mpro-P0800) 7GK3 ; 2.19 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fb82b63d-3 (Mpro-P0776) 7GIO ; 2.035 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fce787c2-3 (Mpro-P0121) 7GJ6 ; 2.03 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fce787c2-4 (Mpro-P0178) 7GIT ; 2.06 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fce787c2-5 (Mpro-P0129) 7GJ8 ; 2.003 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MAT-POS-fce787c2-6 (Mpro-P0185) 7GB2 ; 1.5 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MED-COV-4280ac29-25 (Mpro-x10155) 7GLR ; 1.788 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-08cd9c58-1 (Mpro-P2010) 7GF2 ; 1.38 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-08cd9c58-1 (Mpro-x11548) 7GI8 ; 1.8 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-45817b9b-1 (Mpro-P0060) 7GEX ; 1.989 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-66895286-1 (Mpro-x11532) 7GEY ; 1.341 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-66895286-3 (Mpro-x11540) 7GHZ ; 1.666 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-91acba05-6 (Mpro-P0033) 7GGV ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIC-UNK-91acba05-6 (Mpro-x12710) 7GNF ; 1.69 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIK-ENA-5d9157e9-5 (Mpro-P2606) 7GNE ; 1.739 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIK-ENA-5d9157e9-6 (Mpro-P2605) 7GND ; 1.655 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with MIK-UNK-78dbf1b8-1 (Mpro-P2601) 7GCW ; 1.58 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NAU-LAT-445f63e5-6 (Mpro-x10800) 7GCP ; 1.56 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NAU-LAT-64f4b287-5 (Mpro-x10710) 7GDP ; 1.821 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NAU-LAT-8502cac5-2 (Mpro-x11186) 7GDV ; 1.907 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NAU-LAT-8502cac5-6 (Mpro-x11231) 7GCM ; 1.571 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-THE-c331be7a-2 (Mpro-x10678) 7GC6 ; 1.69 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-THE-c331be7a-6 (Mpro-x10513) 7GNL ; 1.681 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-1 (Mpro-P2757) 7GNM ; 1.75 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-2 (Mpro-P2761) 7GNN ; 1.81 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-3 (Mpro-P2775) 7GNO ; 1.661 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-4 (Mpro-P2838) 7GNP ; 1.55 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-5 (Mpro-P2889) 7GNQ ; 1.531 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with NIR-WEI-dcc3321b-6 (Mpro-P2916) 7GDU ; 1.63 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-SGC-a8a902d9-1 (Mpro-x11225) 7GFM ; 1.7 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-1901c25b-1 (Mpro-x11790) 7GJ3 ; 1.924 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-29afea89-2 (Mpro-P0157) 7GFR ; 1.46 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-3c72d439-1 (Mpro-x11810) 7GFN ; 1.641 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-7374c256-2 (Mpro-x11797) 7GN3 ; 2.012 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-7fb4f80a-1 (Mpro-P2284) 7GMR ; 1.837 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-7fb4f80a-2 (Mpro-P2214) 7GLQ ; 2.063 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-8df914d1-2 (Mpro-P2007) 7GEI ; 1.69 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-8df914d1-2 (Mpro-x11454) 7GEK ; 1.41 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-8df914d1-4 (Mpro-x11473) 7GLH ; 1.906 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-b38839dc-1 (Mpro-P1981) 7GK4 ; 2.23 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-bb7ffe78-1 (Mpro-P0777) 7GEJ ; 1.742 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-c9c1e0d8-2 (Mpro-x11458) 7GHT ; 1.79 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-c9c1e0d8-3 (Mpro-P0019) 7GGH ; 1.675 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-c9c1e0d8-3 (Mpro-x12587) 7GHO ; 1.861 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-c9c1e0d8-4 (Mpro-P0010) 7GMK ; 1.845 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-d899bab6-1 (Mpro-P2201) 7GG0 ; 1.512 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with PET-UNK-e44ffd04-1 (Mpro-x12026) 7GBL ; 2.16 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-MED-2de63afb-1 (Mpro-x10371) 7GBN ; 1.944 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-MED-2de63afb-14 (Mpro-x10387) 7GBD ; 1.78 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-MED-2de63afb-2 (Mpro-x10322) 7GIU ; 2.0 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-05e671eb-10 (Mpro-P0130) 7GID ; 1.9 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-1 (Mpro-P0066) 7GIB ; 1.68 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-10 (Mpro-P0064) 7GIG ; 1.94 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-12 (Mpro-P0074) 7GIC ; 1.92 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-13 (Mpro-P0065) 7GIH ; 1.63 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-16 (Mpro-P0075) 7GIE ; 2.17 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-17 (Mpro-P0068) 7GI9 ; 1.91 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-26 (Mpro-P0061) 7GIS ; 1.838 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-30 (Mpro-P0126) 7GIA ; 2.04 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-33 (Mpro-P0063) 7GIL ; 2.07 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-6 (Mpro-P0108) 7GIF ; 1.68 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-2d450e86-7 (Mpro-P0069) 7GI6 ; 1.694 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-4aa06b95-1 (Mpro-P0056) 7GJK ; 2.1 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-4aa06b95-7 (Mpro-P0578) 7GFP ; 1.769 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-6b94ceba-5 (Mpro-x11801) 7GII ; 2.12 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-8416115c-13 (Mpro-P0091) 7GIP ; 2.05 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RAL-THA-8416115c-5 (Mpro-P0122) 7GFO ; 1.5 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with ROB-IMP-e811baff-1 (Mpro-x11798) 7GKY ; 1.969 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RUB-POS-1325a9ea-14 (Mpro-P1470) 7GKI ; 2.0 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with RUB-POS-1325a9ea-4 (Mpro-P0887) 7GKL ; 1.93 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with SAM-UNK-2684b532-12 (Mpro-P0925) 7GHJ ; 1.526 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with SIM-SYN-f15aaa3a-1 (Mpro-x3348) 7GB1 ; 1.289 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with STE-KUL-2e0d2e88-2 (Mpro-x10150) 7GF8 ; 1.43 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TAT-ENA-80bfd3e5-37 (Mpro-x11587) 7GF9 ; 1.97 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TAT-ENA-80bfd3e5-4 (Mpro-x11590) 7GF7 ; 1.941 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TAT-ENA-80bfd3e5-7 (Mpro-x11579) 7GHH ; 1.56 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TOB-UNK-c2aba166-1 (Mpro-x3325) 7GBC ; 1.655 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-1 (Mpro-x10314) 7GCQ ; 1.693 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-2 (Mpro-x10723) 7GDA ; 1.709 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-3 (Mpro-x10900) 7GI4 ; 1.72 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-7 (Mpro-P0045) 7GCV ; 1.964 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-7 (Mpro-x10789) 7GFD ; 1.851 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-2eddb1ff-8 (Mpro-x11641) 7GH5 ; 1.66 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-714-12 (Mpro-x2908) 7GH7 ; 1.67 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-714-22 (Mpro-x2912) 7GDM ; 1.52 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-714a760b-16 (Mpro-x11044) 7GE4 ; 1.302 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-714a760b-19 (Mpro-x11318) 7GE3 ; 1.27 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with TRY-UNI-714a760b-3 (Mpro-x11317) 7GEC ; 1.25 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-00f2c2b3-7 (Mpro-x11424) 7GEQ ; 2.057 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-1dbca3b4-15 (Mpro-x11498) 7GHU ; 1.638 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-29506327-1 (Mpro-P0022) 7GGP ; 1.902 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-29506327-1 (Mpro-x12686) 7GL9 ; 1.944 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-50c39ae8-2 (Mpro-P1800) 7GJ7 ; 1.88 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UCB-50c39ae8-7 (Mpro-P0179) 7GJ1 ; 1.95 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UNK-82501c2c-1 (Mpro-P0153) 7GIX ; 2.07 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with VLA-UNK-cf7facf1-1 (Mpro-P0143) 7GCR ; 1.67 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with WAR-XCH-72a8c209-5 (Mpro-x10728) 7GFI ; 1.6 ; Group deposition SARS-CoV-2 main protease in complex with inhibitors from the COVID Moonshot -- Crystal Structure of SARS-CoV-2 main protease in complex with WIL-MOD-03b86a88-6 (Mpro-x11743) 2EX5 ; 2.2 ; Group I Intron-encoded Homing Endonuclease I-CeuI Complexed With DNA 1AF5 ; 3.0 ; GROUP I MOBILE INTRON ENDONUCLEASE 1BP7 ; 3.0 ; GROUP I MOBILE INTRON ENDONUCLEASE I-CREI COMPLEXED WITH HOMING SITE DNA 6D8M ; 3.7 ; Group I self-splicing intron P4-P6 domain mutant A125U/G126U 6D8O ; 2.80112 ; Group I self-splicing intron P4-P6 domain mutant A230U 6D8N ; 3.95427 ; Group I self-splicing intron P4-P6 domain mutant G134A/U185AA 6BJX ; 3.14 ; Group I self-splicing intron P4-P6 domain mutant U131A (with isopropanol soaking) 6D8L ; 3.14022 ; Group I self-splicing intron P4-P6 domain mutant U131A (without isopropanol soaking) 2XYK ; 2.1 ; Group II 2-on-2 Hemoglobin from the Plant Pathogen Agrobacterium tumefaciens 5VZ3 ; 1.97 ; Growth Factor Crystal Structure at 1.97 Angstrom Resolution 1CJ1 ; 3.0 ; GROWTH FACTOR RECEPTOR BINDING PROTEIN SH2 DOMAIN (HUMAN) COMPLEXED WITH A PHOSPHOTYROSYL DERIVATIVE 1ZFP ; 1.8 ; GROWTH FACTOR RECEPTOR BINDING PROTEIN SH2 DOMAIN COMPLEXED WITH A PHOSPHOTYROSYL PENTAPEPTIDE 1QG1 ; ; GROWTH FACTOR RECEPTOR BINDING PROTEIN SH2 DOMAIN COMPLEXED WITH AN SHC-DERIVED PEPTIDE 8DGO ; 2.3 ; Growth Factor Receptor-Bound Protein 2 (Grb2) bound to phosphorylated PEAK3 (pY24) peptide 1IO6 ; ; GROWTH FACTOR RECEPTOR-BOUND PROTEIN 2 (GRB2) C-TERMINAL SH3 DOMAIN COMPLEXED WITH A LIGAND PEPTIDE (NMR, MINIMIZED MEAN STRUCTURE) 2GH0 ; 1.92 ; Growth factor/receptor complex 1BQF ; ; GROWTH-BLOCKING PEPTIDE (GBP) FROM PSEUDALETIA SEPARATA 1FGZ ; 2.05 ; GRP1 PH DOMAIN (UNLIGANDED) 1FGY ; 1.5 ; GRP1 PH DOMAIN WITH INS(1,3,4,5)P4 2GFD ; 2.3 ; GRP94 in complex with the novel HSP90 Inhibitor Radamide 2FYP ; 1.95 ; GRP94 in complex with the novel HSP90 Inhibitor Radester amine 6CYI ; 1.75658 ; Grp94 N-domain bound to NEOCA 2EXL ; 2.35 ; GRP94 N-terminal Domain bound to geldanamycin 2ESA ; 1.9 ; GRP94 n-terminal domain bound to geldanamycin: effects of mutants 168-169 KS-AA 4I7A ; 3.2 ; GrpN pentameric microcompartment shell protein from Rhodospirillum rubrum 4M8X ; 2.05 ; GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits HIV PR Mutants with Amino Acid Insertions 4M8Y ; 2.22 ; GS-8374, a Novel Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits HIV PR Mutants with Amino Acid Insertions 1AZT ; 2.3 ; GS-ALPHA COMPLEXED WITH GTP-GAMMA-S 2PBJ ; 2.8 ; GSH-heme bound microsomal prostaglandin E synthase 7K9Y ; 3.2 ; GsI-IIC RT Template-Switching Complex (twinned) 1Q3W ; 2.3 ; GSK-3 Beta complexed with Alsterpaullone 1PYX ; 2.4 ; GSK-3 Beta complexed with AMP-PNP 1Q41 ; 2.1 ; GSK-3 Beta complexed with Indirubin-3'-monoxime 1Q4L ; 2.77 ; GSK-3 Beta complexed with Inhibitor I-5 1Q3D ; 2.2 ; GSK-3 Beta complexed with Staurosporine 4IQ6 ; 3.12 ; Gsk-3beta with inhibitor 6-chloro-N-cyclohexyl-4-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyridin-2-amine 8J1B ; 3.72 ; GSK101 and Ruthenium Red bound state of mTRPV4 8J1F ; 3.62 ; GSK101 bound state of mTRPV4 7B6F ; 2.05 ; GSK3-beta in complex with compound (S)-5c 5LD8 ; 2.13 ; GSK3011724A cocrystallised with Mycobacterium tuberculosis H37Rv KasA 4ACC ; 2.21 ; GSK3b in complex with inhibitor 4ACD ; 2.6 ; GSK3b in complex with inhibitor 4ACG ; 2.6 ; GSK3b in complex with inhibitor 4ACH ; 2.6 ; GSK3b in complex with inhibitor 5OY4 ; 3.2 ; GSK3beta complex with N-(6-(3,4-dihydroxyphenyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)acetamide 3GB2 ; 2.4 ; GSK3beta inhibitor complex 3QC5 ; 1.4 ; GspB 3QC6 ; 1.9 ; GspB 6EFA ; 1.6 ; GspB Siglec + Unique domains 6EF7 ; 1.03 ; GspB Siglec domain 6EF9 ; 1.3 ; GspB Siglec domain 6EFB ; 1.9 ; GspB Siglec domain 7LV2 ; 1.301 ; GSQASS segment from the Nucleoprotein of SARS-CoV-2, residues 179-184 7ZA5 ; 1.87 ; GSTF sh101 mutant 7ZA4 ; 2.05 ; GSTF sh155 mutant 6TK8 ; 2.78 ; GSTF1 F122T variant from Alopecurus myosuroides 6TJS ; 1.53 ; GSTF1 from Alopecurus myosuroides 6TNL ; 1.95 ; GSTF1 from Alopecurus myosuroides 7OBO ; 2.3 ; GSTF1 from Alopecurus myosuroides 6TO3 ; 2.798 ; GSTF1 from Alopecurus myosuroides - covalently modified 8E8P ; 2.281 ; GSTZ1A 4GX5 ; 3.7 ; GsuK Channel 4GX2 ; 3.2 ; GsuK channel bound to NAD 1VTT ; 1.0 ; GT Wobble Base-Pairing in Z-DNA at 1.0 Angstrom Atomic Resolution: The Crystal Structure of d(CGCGTG) 5CMF ; 1.95 ; GTA mutant with mercury - E303A 5CMH ; 1.61 ; GTA mutant with mercury - E303D 5CMJ ; 1.73 ; GTA mutant with mercury - E303Q 5CMG ; 1.83 ; GTA mutant with mercury- E303C 5CMI ; 1.85 ; GTA mutant without mercury - E303D 2PGV ; 1.79 ; GTB C209A 2PGY ; 2.39 ; GTB C209A, no Hg 5CQL ; 1.69 ; GTB mutant with mercury - E303A 5CQM ; 1.65 ; GTB mutant with mercury - E303C 5CQO ; 1.69 ; GTB mutant with mercury - E303D 5CQP ; 1.83 ; GTB mutant with mercury - E303Q 5CQN ; 1.61 ; GTB mutant without mercury - E303C 8QUA ; 2.0 ; GTP binding protein YsxC from Staphylococcus aureus 7ULD ; 1.3 ; GTP complex of F420-gamma glutamyl ligase (CofE) from Archaeoglobus fulgidus 1GTP ; 3.0 ; GTP CYCLOHYDROLASE I 1A9C ; 2.9 ; GTP CYCLOHYDROLASE I (C110S MUTANT) IN COMPLEX WITH GTP 1A8R ; 2.1 ; GTP CYCLOHYDROLASE I (H112S MUTANT) IN COMPLEX WITH GTP 2QV6 ; 2.0 ; GTP cyclohydrolase III from M. jannaschii (MJ0145) complexed with GTP and metal ions 8G6C ; 2.82 ; GTP Cyclohydrolase-IB with manganese 8G8V ; 2.03 ; GTP Cyclohydrolase-IB with sodium 3CNN ; 2.3 ; GTP-bound structure of TM YlqF 5ZUE ; 2.7 ; GTP-bound, double-stranded, curved FtsZ protofilament structure 1AS0 ; 2.0 ; GTP-GAMMA-S BOUND G42V GIA1 6XRU ; 1.4 ; GTP-specific succinyl-CoA synthetase complexed with desulfo-coenzyme A, magnesium ions and succinates 7JMK ; 2.5 ; GTP-specific succinyl-CoA synthetase complexed with Mg-GDP in space group P32 7JFP ; 2.55 ; GTP-specific succinyl-CoA synthetase complexed with Mg-GDP, phosphohistidine loop pointing towards nucleotide binding site 7JJ0 ; 2.25 ; GTP-specific succinyl-CoA synthetase complexed with Mg-GMPPCP 7JKR ; 2.64 ; GTP-specific succinyl-CoA synthetase complexed with Mg-GMPPNP, phosphohistidine loop pointing towards nucleotide binding site 4DRX ; 2.22 ; GTP-Tubulin in complex with a DARPIN 3RYF ; 2.52 ; GTP-Tubulin: RB3 Stathmin-like domain complex 4YQF ; 2.73 ; GTPase domain of Human Septin 9 4KV9 ; 1.93 ; GTPase domain of Septin 10 from Schistosoma mansoni in complex with GDP 4KVA ; 2.14 ; GTPase domain of Septin 10 from Schistosoma mansoni in complex with GTP 5CYP ; 2.893 ; GTPase domain of Septin 9 in complex with GTP-gamma-S 7OGE ; 2.1 ; GTPase HRAS mutant D33K under 200 MPa pressure 7OGF ; 1.8 ; GTPase HRAS mutant D33K under 900 MPa pressure 7OGD ; 1.95 ; GTPase HRAS mutant D33K under ambient pressure 7OGA ; 1.9 ; GTPase HRAS under 200 MPa pressure 7OGB ; 1.85 ; GTPase HRAS under 500 MPa pressure 7OGC ; 1.7 ; GTPase HRAS under 650 MPa pressure 7OG9 ; 1.75 ; GTPase HRAS under ambient pressure 7QSC ; 1.91 ; GTPase IN COMPLEX WITH GDP.MGF3- 2BMJ ; 2.1 ; GTPase like domain of Centaurin Gamma 1 (Human) 2IWR ; 1.5 ; Gtpase Like Domain Of Centaurin Gamma 1 (Human) 1TAD ; 1.7 ; GTPASE MECHANISM OF GPROTEINS FROM THE 1.7-ANGSTROM CRYSTAL STRUCTURE OF TRANSDUCIN ALPHA-GDP-ALF4- 1RGP ; 2.0 ; GTPASE-ACTIVATION DOMAIN FROM RHOGAP 7YSR ; 4.3 ; GTPgammaS MT decorated with kinesin 7YSQ ; 6.8 ; GTPgammaS Tube decorated with kinesin 1MSY ; 1.41 ; GUAA tetraloop mutant of Sarcin/Ricin domain from E. Coli 23 S rRNA 5VJ9 ; 1.57 ; Guanidine-II riboswitch P2 hairpin dimer from Pseudomonas aeruginosa 5VJB ; 2.1 ; Guanidine-II riboswitch P2 hairpin dimer with 5-bromoU substitution from Pseudomonas aeruginosa 2JUK ; ; guanidino neomycin B recognition of an HIV-1 RNA helix 1P1B ; 2.8 ; Guanidinoacetate methyltransferase 1XCL ; 2.0 ; Guanidinoacetate methyltransferase containing S-adenosylhomocysteine and guanidine 1XCJ ; 2.0 ; Guanidinoacetate methyltransferase containing S-adenosylhomocysteine and guanidinoacetate 1P1C ; 2.5 ; Guanidinoacetate Methyltransferase with Gd ion 2AH4 ; 1.13 ; guanidinobenzoyl-trypsin acyl-enzyme at 1.13 A resolution 1D5T ; 1.04 ; GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR, ALPHA-ISOFORM 1GND ; 1.81 ; GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR, ALPHA-ISOFORM 1KI1 ; 2.3 ; Guanine Nucleotide Exchange Region of Intersectin in Complex with Cdc42 2EET ; 1.95 ; Guanine Riboswitch A21G, U75C mutant bound to hypoxanthine 3GOG ; 2.1 ; Guanine riboswitch A21G,U75C mutant bound to 6-chloroguanine 2EES ; 1.75 ; Guanine riboswitch A21U, U75A mutant bound to hypoxanthine 3GER ; 1.7 ; Guanine riboswitch bound to 6-chloroguanine 6UC8 ; 1.898 ; Guanine riboswitch bound to 8-aminoguanine 6UC9 ; 1.941 ; Guanine riboswitch bound to O6-cyclohexylmethyl guanine 2B57 ; 2.15 ; Guanine Riboswitch C74U mutant bound to 2,6-diaminopurine 3GOT ; 1.95 ; Guanine riboswitch C74U mutant bound to 2-fluoroadenine. 2EEU ; 1.95 ; Guanine riboswitch U22A, A52U mutant bound to hypoxanthine 2EEV ; 1.95 ; Guanine riboswitch U22C, A52G mutant bound to hypoxanthine 2EEW ; 2.25 ; Guanine Riboswitch U47C mutant bound to hypoxanthine 1NK7 ; 1.9 ; GUANINE-ADENINE MISMATCH AT THE POLYMERASE ACTIVE SITE 1NK4 ; 1.6 ; GUANINE-GUANINE MISMATCH AT THE POLYMERASE ACTIVE SITE 6SYK ; ; Guanine-rich oligonucleotide with 5'- and 3'-GC ends form G-quadruplex with A(GGGG)A hexad, GCGC- and G-quartets and two symmetric GG and AA base pair 6SX6 ; ; Guanine-rich oligonucleotide with 5'-GC end form G-quadruplex with A(GGGG)A hexad, GCGC- and G-quartets and two symmetric GG and AA base pairs 5ZJ4 ; 1.49739 ; Guanine-specific ADP-ribosyltransferase 5ZJ5 ; 1.56811 ; Guanine-specific ADP-ribosyltransferase with NADH and GDP 1NJW ; 1.9 ; GUANINE-THYMINE MISMATCH AT THE POLYMERASE ACTIVE SITE 150D ; 2.25 ; GUANINE.1,N6-ETHENOADENINE BASE-PAIRS IN THE CRYSTAL STRUCTURE OF D(CGCGAATT(EDA)GCG) 7MO6 ; 2.3 ; Guanosine Monophosphate Synthase from Aspergillus fumigatus Af293 2VDW ; 2.7 ; Guanosine N7 methyl-transferase sub-complex (D1-D12) of the vaccinia virus mRNA capping enzyme 3UAT ; 2.7 ; Guanylate Kinase Domains of the MAGUK Family Scaffold Proteins as Specific Phospho-Protein Binding Modules 1Z8F ; 2.5 ; Guanylate Kinase Double Mutant A58C, T157C from Mycobacterium tuberculosis (Rv1389) 3WV9 ; 2.75 ; Guanylylpyridinol (GP)- and ATP-bound HcgE from Methanothermobacter marburgensis 3WVC ; 2.0 ; Guanylylpyridinol (GP)-bound HcgF from Methanocaldococcus jannaschii 8HZZ ; 2.2 ; GuApiGT (UGT79B74) 8GHP ; 3.52 ; GUCY2C-ECD bound to anti-GUCY2C-scFv antibody 8GHO ; 1.6 ; GUCY2C-peptide bound to anti-GUCY2C-scFv antibody 3LZ6 ; 1.84 ; Guinea Pig 11beta hydroxysteroid dehydrogenase with PF-877423 6PKU ; 1.949 ; Guinea pig N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) catalytic domain (C51S C221S) in complex with N-acetyl-alpha-D-glucosamine (alpha-GlcNAc) and mannose 6-phosphate (M6P) 6PKY ; 3.0 ; Guinea pig N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) catalytic domain auto-inhibited by pro-peptide 6DY2 ; 2.706 ; Guinea pig N-acylethanolamine-hydrolyzing acid amidase (NAAA) covalently bound to beta-lactam inhibitor ARN726 4KSL ; 2.83 ; Gumby/Fam105B in complex with linear di-ubiquitin 4KSK ; 2.4 ; Gumby/Fam105B in complex with ubiquitin 1C4E ; ; GURMARIN FROM GYMNEMA SYLVESTRE 1GUR ; ; GURMARIN, A SWEET TASTE-SUPPRESSING POLYPEPTIDE, NMR, 10 STRUCTURES 6UST ; 2.6 ; Gut microbial sulfatase from Hungatella hathewayi 3ZIN ; 2.0 ; Gu_alpha_helicase 4NIP ; 1.9 ; GVIGIAQ segment 147-153 from Human Superoxide Dismutase 4NIO ; 1.3 ; GVTGIAQ segment 147-153 from Human Superoxide Dismutase with I149T mutation associated with a familial form of amyotrophic lateral sclerosis 8H4K ; 3.1 ; GW9508-bound FFAR4 in complex with Gq 5C2G ; 2.597 ; GWS1B RubisCO: Form II RubisCO derived from uncultivated Gallionellacea species (CABP-bound). 5C2C ; 2.09 ; GWS1B RubisCO: Form II RubisCO derived from uncultivated Gallionellacea species (unliganded form) 3JTS ; 2.801 ; GY9-Mamu-A*02-hb2m 1GYF ; ; GYF DOMAIN FROM HUMAN CD2BP2 PROTEIN 3NHC ; 1.57 ; GYMLGS segment 127-132 from human prion with M129 6BXX ; 1.1 ; GYNGFG from low-complexity domain of hnRNPA1, residues 243-248 6UM9 ; ; Gypsy Moth Pheromone-binding protein 1 (LdisPBP1) NMR Structure at pH 4.5 1AM2 ; 2.2 ; GYRA INTEIN FROM MYCOBACTERIUM XENOPI 4ZVI ; 2.2 ; GYRASE B IN COMPLEX WITH 4,5-DIBROMOPYRROLAMIDE-BASED INHIBITOR 3NHD ; 1.92 ; GYVLGS segment 127-132 from human prion with V129 6AP5 ; ; H, 13C, and 15N Chemical Shift Assignments and structure of Thioredoxin from Mycobacterium thermoresistibile ATCC 19527 and NCTC 10409 3CC5 ; 1.91 ; H-2Db complex with human gp100 3CCH ; 2.6 ; H-2Db complex with murine gp100 2GHG ; 3.5 ; h-CHK1 complexed with A431994 8GEW ; 0.973 ; H-FABP crystal soaked in a bromo palmitic acid solution 2J64 ; 2.2 ; H-ficolin 2J60 ; 1.8 ; H-ficolin complexed to D-fucose 2J5Z ; 1.73 ; H-ficolin complexed to galactose 2GA2 ; 1.95 ; h-MetAP2 complexed with A193400 1YW7 ; 1.85 ; h-MetAP2 complexed with A444148 1YW8 ; 2.65 ; h-MetAP2 complexed with A751277 2EA2 ; 2.5 ; h-MetAP2 complexed with A773812 2EA4 ; 2.35 ; h-MetAP2 complexed with A797859 1YW9 ; 1.64 ; h-MetAP2 complexed with A849519 1HNR ; ; H-NS (DNA-BINDING DOMAIN) 1HNS ; ; H-NS (DNA-BINDING DOMAIN) 1NI8 ; ; H-NS dimerization motif 7JR6 ; 1.88 ; H-PDGS complexed with a 2-phenylimidazo[1,2-a]pyridine-6-carboxamide inhibitors 7JR8 ; 1.13 ; H-PDGS complexed with a 2-phenylimidazo[1,2-a]pyridine-6-carboxamide inhibitors 6W8H ; 1.97 ; H-PGDS complexed with inhibitor 1Y 1P2S ; 2.45 ; H-Ras 166 in 50% 2,2,2 triflouroethanol 1P2V ; 2.3 ; H-RAS 166 in 60 % 1,6 hexanediol 1P2T ; 2.0 ; H-Ras 166 in Aqueous mother liqour, RT 5WDO ; 1.65 ; H-Ras bound to GMP-PNP at 277K 1CLU ; 1.7 ; H-RAS COMPLEXED WITH DIAMINOBENZOPHENONE-BETA,GAMMA-IMIDO-GTP 1RVD ; 1.9 ; H-RAS COMPLEXED WITH DIAMINOBENZOPHENONE-BETA,GAMMA-IMIDO-GTP 3RRY ; 1.6 ; H-Ras crosslinked control, soaked in aqueous solution: one of 10 in MSCS set 1P2U ; 2.0 ; H-Ras in 50% isopropanol 3RRZ ; 1.6 ; H-Ras in 70% glycerol: one of 10 in MSCS set 5WDQ ; 1.25 ; H-Ras mutant L120A bound to GMP-PNP at 100K 5WDP ; 1.35 ; H-Ras mutant L120A bound to GMP-PNP at 277K 1JAH ; 1.8 ; H-RAS P21 PROTEIN MUTANT G12P, COMPLEXED WITH GUANOSINE-5'-[BETA,GAMMA-METHYLENE] TRIPHOSPHATE AND MAGNESIUM 1JAI ; 1.8 ; H-RAS P21 PROTEIN MUTANT G12P, COMPLEXED WITH GUANOSINE-5'-[BETA,GAMMA-METHYLENE] TRIPHOSPHATE AND MANGANESE 4DLR ; 1.319 ; H-Ras PEG 400/Ca(OAc)2, ordered off 3V4F ; 1.391 ; H-Ras PEG 400/CaCl2, ordered off 7DPH ; 1.54 ; H-Ras Q61H in complex with GppNHp (state 1) after structural transition by humidity control 7DPJ ; 1.976 ; H-Ras Q61L in complex with GppNHp (state 1) after structural transition by humidity control 4DLU ; 1.6 ; H-Ras Set 1 Ca(OAc)2, on 4DLS ; 1.819 ; H-Ras Set 1 CaCl2 'Mixed' 4DLX ; 1.731 ; H-Ras Set 1 CaCl2/DTE, ordered off 4DLT ; 1.699 ; H-Ras Set 2 Ca(OAc)2, on 4DLZ ; 1.662 ; H-Ras Set 2 Ca(OAc)2/DTE, ordered off 4DLW ; 1.72 ; H-Ras Set 2 Ca(OAc)2/DTT, on 4DLV ; 1.572 ; H-Ras Set 2 CaCl2/DTT, ordered off 3RSO ; 1.6 ; H-Ras soaked in 20% S,R,S-bisfuranol: 1 of 10 in MSCS set 3RS2 ; 1.836 ; H-Ras soaked in 50% 2,2,2-trifluoroethanol: one of 10 in MSCS set 3RS7 ; 1.7 ; H-Ras soaked in 50% isopropanol: 1 of 10 in MSCS set 3RS5 ; 1.68 ; H-Ras soaked in 55% dimethylformamide: 1 of 10 in MSCS set 3RS4 ; 1.7 ; H-Ras soaked in 60% 1,6-hexanediol: 1 of 10 in MSCS set 3RSL ; 1.7 ; H-Ras soaked in 90% R,S,R-bisfuranol: one of 10 in MSCS set 3RS0 ; 1.4 ; H-Ras soaked in neat cyclopentanol: one of 10 in MSCS set 3RS3 ; 1.52 ; H-Ras soaked in neat hexane: 1 of 10 in MSCS set 3L8Z ; 1.44 ; H-Ras wildtype new crystal form 5B30 ; 1.6 ; H-Ras WT in complex with GppNHp (state 1) after structural transition by humidity control 5B2Z ; 1.56 ; H-Ras WT in complex with GppNHp (state 2*) before structural transition by humidity control 4XVQ ; 1.887 ; H-Ras Y137E 4XVR ; 2.031 ; H-Ras Y137F 3OIV ; 1.837 ; H-RasG12V with allosteric switch in the ""off"" state 3OIW ; 1.3 ; H-RasG12V with allosteric switch in the ""on"" state 3OIU ; 1.32 ; H-RasQ61L with allosteric switch in the ""on"" state 6Q5Z ; ; H-Vc7.2, H-superfamily conotoxin 2VXA ; 2.6 ; H. halophila dodecin in complex with riboflavin 4WAJ ; 2.7 ; H. influenzae beta-carbonic anhydase variant P48S/A49P 4WAK ; 2.49 ; H. influenzae beta-carbonic anhydrase variant W39V/G41A 4WAM ; 2.2 ; H. influenzae beta-carbonic anhydrase variant W39V/G41A/P48S/A49P 3E1V ; 2.8 ; H. influenzae beta-carbonic anhydrase, variant D44N 3E1W ; 2.6 ; H. influenzae beta-carbonic anhydrase, variant D44N in 100 mM sodium bicarbonate 3E3G ; 2.3 ; H. influenzae beta-carbonic anhydrase, variant G41A 3E3I ; 2.0 ; H. influenzae beta-carbonic anhydrase, variant G41A with 100 mM bicarbonate 3E2X ; 2.55 ; H. influenzae beta-carbonic anhydrase, variant V47A 3E31 ; 2.95 ; H. influenzae beta-carbonic anhydrase, variant V47A 3E3F ; 2.3 ; H. influenzae beta-carbonic anhydrase, variant V47A with 100 mM bicarbonate 3E24 ; 2.301 ; H. influenzae beta-carbonic anhydrase, variant W39F 3E28 ; 2.5 ; H. influenzae beta-carbonic anhydrase, variant Y181F 3E2A ; 2.301 ; H. influenzae beta-carbonic anhydrase, variant Y181F with 100 mM bicarbonate 3E2W ; 2.296 ; H. influenzae beta-carbonic anhydrase, variant Y181F with 1M bicarbonate 7SMK ; 1.98 ; H. neapolitanus carboxysomal rubisco/CsoSCA-peptide (1-50)complex 7SNV ; 2.07 ; H. neapolitanus carboxysomal rubisco/CsoSCA-peptide (1-50)complex 2C4V ; 2.5 ; H. pylori type II DHQase in complex with citrate 1L3Q ; ; H. rufescens abalone shell Lustrin A consensus repeat, FPGKNVNCTSGE, pH 7.4, 1-H NMR structure 2VX9 ; 1.65 ; H. salinarum dodecin E45A mutant 7QGE ; 2.27 ; H. SAPIENS CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6,7,8-TETRABROMOBENZOTRIAZOLE (TBBt) AT PH 8.5 7QGC ; 2.55 ; H. SAPIENS CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6-DIBROMOBENZOTRIAZOLE AT PH 5.5 7QGB ; 2.58 ; H. SAPIENS CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6-DIBROMOBENZOTRIAZOLE AT PH 6.5 7QGD ; 2.3 ; H. SAPIENS CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6-DIBROMOBENZOTRIAZOLE AT PH 8.5 7PLO ; 2.8 ; H. sapiens replisome-CUL2/LRR1 complex 4MCB ; 1.94 ; H.influenzae TrmD in complex with N-(4-{[(1H-IMIDAZOL-2-YLMETHYL)AMINO]METHYL}BENZYL)-4-OXO-3,4-DIHYDROTHIENO[2,3-D]PYRIMIDINE-5-CARBOXAMIDE 5G4Q ; 2.3 ; H.pylori Beta clamp in complex with 5-chloroisatin 5G48 ; 2.28 ; H.pylori Beta clamp in complex with Diflunisal 2C57 ; 3.1 ; H.pylori type II dehydroquinase in complex with FA1 2X98 ; 1.7 ; H.SALINARUM ALKALINE PHOSPHATASE 6K8G ; 2.0 ; H/D exchanged Hen egg-white lysozyme 6K8G ; 2.0 ; H/D exchanged Hen egg-white lysozyme 7FG8 ; 2.0 ; H/D exchanged Hen egg-white lysozyme denatured in acidic conditions and refolded in solution 7FG8 ; 2.0 ; H/D exchanged Hen egg-white lysozyme denatured in acidic conditions and refolded in solution 7FGU ; 2.3 ; H/D exchanged Hen egg-white lysozyme denatured in basic conditions and refolded in solution 7FGU ; 2.0 ; H/D exchanged Hen egg-white lysozyme denatured in basic conditions and refolded in solution 7FGV ; 2.0 ; H/D exchanged Hen egg-white lysozyme denatured in heat condition and refolded in solution 7FGV ; 2.0 ; H/D exchanged Hen egg-white lysozyme denatured in heat condition and refolded in solution 4Y0J ; 2.0 ; H/D exchanged human carbonic anhydrase II pH 6 room temperature neutron crystal structure. 7ACY ; 2.55 ; H/L (SLPH/SLPL) complex from C. difficile (CD630 strain) 7ACX ; 2.65 ; H/L (SLPH/SLPL) complex from C. difficile (R7404 strain) 8TPA ; 3.0 ; H1 hemagglutinin (NC99) in complex with medial-junction-targeting Fab 2-2-1G06 8TP5 ; 2.9 ; H1 hemagglutinin (NC99) in complex with RBS-targeting Fab 1-1-1E04 8TP3 ; 3.6 ; H1 hemagglutinin (NC99) in complex with RBS-targeting Fab 1-1-1F05 7UMM ; 3.36 ; H1 Solomon Islands 2006 hemagglutinin in complex with Ab109 7UMN ; 3.6 ; H1 Solomon Islands 2006 hemagglutinin in complex with Ab36 8AAG ; 10.0 ; H1-bound palindromic nucleosome, state 1 7KBF ; 4.42 ; H1.8 bound nucleosome isolated from metaphase chromosome in Xenopus egg extract (oligo fraction) 7E9D ; 1.89 ; H102A mutant of IRG1 from bacillus 8IIF ; 1.65 ; H109A mutant of uracil DNA glycosylase X 8IIH ; 2.13 ; H109C mutant of uracil DNA glycosylase X 8IIJ ; 1.83 ; H109G mutant of uracil DNA glycosylase X 8IIM ; 1.6 ; H109K mutant of uracil DNA glycosylase X 8IIO ; 1.67 ; H109Q mutant of uracil DNA glycosylase X 6AJS ; 1.632 ; H109S mutant form of Uracil DNA glycosylase X. 6YZ5 ; 1.8 ; H11-D4 complex with SARS-CoV-2 RBD 6YZ7 ; 3.3 ; H11-D4, SARS-CoV-2 RBD, CR3022 ternary complex 6Z2M ; 2.71 ; H11-D4, SARS-CoV-2 RBD, CR3022 ternary complex 6ZHD ; 3.7 ; H11-H4 bound to Spike 6ZBP ; 1.85 ; H11-H4 complex with SARS-CoV-2 1C9X ; 1.8 ; H119A VARIANT OF RIBONUCLEASE A 1H9N ; 1.85 ; H119N CARBONIC ANHYDRASE II 1H9Q ; 2.2 ; H119Q CARBONIC ANHYDRASE II 1C9V ; 1.7 ; H12A VARIANT OF RIBONUCLEASE A 1TS3 ; 2.0 ; H135A MUTANT OF TOXIC SHOCK SYNDROME TOXIN-1 FROM S. AUREUS 1TBJ ; 2.8 ; H141A mutant of rat liver arginase I 1TA1 ; 2.5 ; H141C mutant of rat liver arginase I 1TBH ; 2.7 ; H141D mutant of rat liver arginase I 1TBL ; 3.1 ; H141N mutant of rat liver arginase I 3AHH ; 2.1 ; H142A mutant of Phosphoketolase from Bifidobacterium Breve complexed with acetyl thiamine diphosphate 1GN4 ; 2.5 ; H145E mutant of Mycobacterium tuberculosis iron-superoxide dismutase. 1GN3 ; 4.0 ; H145Q mutant of Mycobacterium tuberculosis iron-superoxide dismutase. 5BXZ ; 2.6 ; H17 Bat Influenza NS1 RNA Binding Domain 5BY1 ; 1.751 ; H18 Bat Influenza NS1 RNA Binding Domain 3P74 ; 1.2 ; H181N mutant of pentaerythritol tetranitrate reductase containing a C-terminal His8-tag 3P82 ; 2.2 ; H184N mutant of pentaerythritol tetranitrate reductase containing bound acetate ion 3LGV ; 2.734 ; H198P mutant of the DegS-deltaPDZ protease 3LGW ; 2.5 ; H198P/T167V double mutant of DegS-deltaPDZ protease 6YEM ; 2.5 ; H1N1 2009 PA Endonuclease in complex with Quambalarine B 4B7J ; 2.417 ; H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis 4B7M ; 2.5 ; H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis 4B7N ; 2.84 ; H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis 4B7Q ; 2.728 ; H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis 4B7R ; 1.9 ; H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis 8TP9 ; 3.1 ; H2 hemagglutinin (A/Singapore/1/1957) in complex with medial-junction-targeting Fab 2-2-1G06 8TP2 ; 3.1 ; H2 hemagglutinin (A/Singapore/1/1957) in complex with RBS-targeting 1-1-1F05 8TP4 ; 3.3 ; H2 hemagglutinin (A/Singapore/1/1957) in complex with RBS-targeting Fab 1-1-1E04 8TP6 ; 3.1 ; H2 hemagglutinin (A/Singapore/1/1957) in complex with RBS-targeting Fab 4-1-1E02 8TP7 ; 2.8 ; H2 hemagglutinin (A/Singapore/1/1957) in complex with Sa-targeting Fab 4-1-1G03 6L9K ; 1.8 ; H2-Ld a1a2 complexed with A5 peptide 6L9N ; 2.6 ; H2-Ld complexed with A5 peptide 6L9M ; 2.6 ; H2-Ld complexed with AH1 peptide 3UQY ; 1.47 ; H2-reduced structure of E. coli hydrogenase-1 8BM3 ; 3.5 ; H207A mutant of E. coli PgpB, a PAP2 type phosphatidyl glycerol phosphate and C55-PP phosphatase, in complex with farnesyl pyrophosphate 7L78 ; 2.4 ; H235C variant of Yeast Ferrochelatase 3AQI ; 1.7 ; H240A variant of human ferrochelatase 1HSE ; 2.2 ; H253M N TERMINAL LOBE OF HUMAN LACTOFERRIN 3VXQ ; 2.0 ; H27-14 TCR specific for HLA-A24-Nef134-10 3X1F ; 1.35 ; H294M mutant of copper-containing nitrite reductase from Geobacillus thermodenitrificans 3X1G ; 1.3 ; H294M mutant of copper-containing nitrite reductase from Geobacillus thermodenitrificans showing two coordination geometries at the T2Cu site 8G6Q ; 3.41 ; H2AK119ub-modified nucleosome ubiquitin position 1 8G6S ; 3.47 ; H2AK119ub-modified nucleosome ubiquitin position 2 8G6G ; 2.93 ; H2BK120ub+H3K79me2-modified nucleosome ubiquitin position 5 8G6H ; 3.06 ; H2BK120ub+H3K79me2-modified nucleosome ubiquitin position 6 6L49 ; 18.9 ; H3-CA-H3 tri-nucleosome with the 22 base-pair linker DNA 6L4A ; 12.3 ; H3-H3-H3 tri-nucleosome with the 22 base-pair linker DNA 6QZM ; 1.6 ; H30 MnSOD-3 Mutant I 6S0D ; 1.52 ; H30 MnSOD-3 Mutant II 6QZN ; 1.64 ; H30 MnSOD-3 Mutant III 2WVM ; 2.977 ; H309A mutant of Mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 in complex with GDP-alpha-D-Mannose and Mg(II) 3AHI ; 2.1 ; H320A mutant of Phosphoketolase from Bifidobacterium Breve complexed with acetyl thiamine diphosphate 8BDU ; 2.471 ; H33 variant of DoBi scaffold based on PIH1D1 N-terminal domain 8PEO ; 2.69 ; H3K36me2 nucleosome-LEDGF/p75 PWWP domain complex 8PEP ; 3.33 ; H3K36me2 nucleosome-LEDGF/p75 PWWP domain complex - pose 2 8PC5 ; 3.02 ; H3K36me3 nucleosome-LEDGF/p75 PWWP domain complex 8PC6 ; 3.04 ; H3K36me3 nucleosome-LEDGF/p75 PWWP domain complex - pose 2 8UIQ ; 2.17 ; H47Q NicC with 2-mercaptopyridine ligand 8UIV ; 1.511 ; H47Q NicC with bound FAD 1B4T ; 1.8 ; H48C YEAST CU(II)/ZN SUPEROXIDE DISMUTASE ROOM TEMPERATURE (298K) STRUCTURE 4CQW ; 2.3 ; H5 (tyTy) Del133/Ile155Thr Mutant Haemagglutinin in Complex with Avian Receptor Analogue 3'SLN 4CQY ; 2.05 ; H5 (tyTy) Del133/Ile155Thr Mutant Haemagglutinin in Complex with Avian Receptor Analogue LSTa 4CQX ; 2.3 ; H5 (tyTy) Del133/Ile155Thr Mutant Haemagglutinin in Complex with Human Receptor Analogue 6'SLN 4BH1 ; 2.15 ; H5 (tyTy) Influenza Virus Haemagglutinin in Complex with Avian Receptor Analogue 3'-SLN 4BH0 ; 2.36 ; H5 (tyTy) Influenza Virus Haemagglutinin in Complex with Human Receptor Analogue 6'-SLN 4CQS ; 2.55 ; H5 (VN1194) Asn186Lys Mutant Haemagglutinin in Complex with Avian Receptor Analogue 3'SLN 5AJM ; 2.45 ; H5 (VN1194) Asn186Lys Mutant Haemagglutinin in Complex with Avian Receptor Analogue 3'SLN 4CQU ; 2.48 ; H5 (VN1194) Asn186Lys Mutant Haemagglutinin in Complex with Human Receptor Analogue 6'SLN 4BGY ; 2.68 ; H5 (VN1194) Influenza Virus Haemagglutinin in Complex with Avian Receptor Analogue 3'-SLN 4BGX ; 2.48 ; H5 (VN1194) Influenza Virus Haemagglutinin in Complex with Human Receptor Analogue 6'-SLN 4CQQ ; 2.55 ; H5 (VN1194) Ser227Asn/Gln196Arg Mutant Haemagglutinin in Complex with Avian Receptor Analogue 3'SLN 4CQR ; 2.45 ; H5 (VN1194) Ser227Asn/Gln196Arg Mutant Haemagglutinin in Complex with Human Receptor Analogue 6'SLN 3ZNK ; 2.71 ; H5 Haemagglutinin in Complex with 6-O-Sulfo-2,3-Sialyllactosamine (Sulfated 3'SLN) 3ZNL ; 2.5 ; H5 Haemagglutinin in Complex with 6-O-Sulfo-Sialyl-Lewis X (Sulfated Lewis X) 3ZNM ; 2.4 ; H5 Haemagglutinin in Complex with Sialyl-Lewis X 4GSD ; 2.251 ; H5.3 Fab Structure 3AHJ ; 2.1 ; H553A mutant of Phosphoketolase from Bifidobacterium Breve 3BK9 ; 2.15 ; H55A mutant of tryptophan 2,3-dioxygenase from Xanthomonas campestris 3E08 ; 1.9 ; H55S mutant Xanthomonas campestris tryptophan 2,3-dioxygenase 3M4G ; 2.05 ; H57A HFQ from Pseudomonas Aeruginosa 3INZ ; 1.7 ; H57T Hfq from Pseudomonas aeruginosa 1P2E ; 2.2 ; H61A mutant of flavocytochrome c3 1P2H ; 2.1 ; H61M mutant of flavocytochrome c3 3AHG ; 1.9 ; H64A mutant of Phosphoketolase from Bifidobacterium Breve complexed with a tricyclic ring form of thiamine diphosphate 5ILM ; 1.7 ; H64A sperm whale myoglobin with a Fe-chlorophenyl moiety 5ILE ; 1.77 ; H64A sperm whale myoglobin with a Fe-tolyl moiety 8F9I ; 1.8 ; H64A swMb-EtNO adduct 8F9N ; 1.8 ; H64A swMb-iPrNO adduct 8F9H ; 1.75 ; H64A swMb-MeNO adduct 8F9J ; 1.75 ; H64A swMb-PrNO adduct 8FB0 ; 1.76 ; H64Q Myoglobin in complex with acetamide 5ILR ; 1.87 ; H64Q sperm whale myoglobin with a Fe-chlorophenyl moiety 5ILP ; 1.88 ; H64Q sperm whale myoglobin with a Fe-tolyl moiety 1BJE ; 1.8 ; H64T VARIANT OF MYOGLOBIN (HORSE HEART) RECOMBINANT WILD-TYPE COMPLEXED WITH AZIDE 6MLM ; 3.5 ; H7 HA0 in complex with Fv from H7.5 IgG 1TI8 ; 3.0 ; H7 Haemagglutinin 2X1J ; 1.9 ; H71A mutant of the antibiotic resistance protein NimA from Deinococcus radiodurans 2X1K ; 1.55 ; H71S mutant of the antibiotic resistance protein NimA from Deinococcus radiodurans 4BSI ; 2.62 ; H7N3 Avian Influenza Virus Haemagglutinin in Complex with Avian Receptor Analogue 3'-SLN 4BSH ; 2.25 ; H7N3 Avian Influenza Virus Haemagglutinin in Complex with Human Receptor Analogue 6'-SLN 1AUW ; 2.5 ; H91N DELTA 2 CRYSTALLIN FROM DUCK 7ZXL ; 1.2 ; H93A Mutant of Recombinant CODH-II 2H4N ; 1.9 ; H94N CARBONIC ANHYDRASE II COMPLEXED WITH ACETAZOLAMIDE 1H4N ; 2.0 ; H94N CARBONIC ANHYDRASE II COMPLEXED WITH TRIS 7ZXC ; 1.696 ; H96D Mutant of Recombinant CODH-II 1S89 ; 2.22 ; H98N Mutant of Methylglyoxal Synthase from E. coli complexed with Phosphoglycolic Acid 1S8A ; 2.2 ; H98Q Mutant of Methylglyoxal Synthase from E. coli complexed with Phosphoglycolic Acid 2O6M ; 2.3 ; H98Q mutant of the homing endonuclease I-PPOI complexed with DNA 3AJ6 ; 1.48 ; HA1 (HA33) mutant F179I of botulinum type C progenitor toxin complexed with N-acetylgalactosamine, bound at site II 3AJ5 ; 1.8 ; HA1 (HA33) subcomponent of botulinum type C progenitor toxin complexed with N-acetylgalactosamine, bound at site II 3AH4 ; 1.78 ; HA1 subcomponent of botulinum type C progenitor toxin complexed with galactose 3AH2 ; 1.7 ; HA1 subcomponent of botulinum type C progenitor toxin complexed with N-acetylgalactosamine 3AH1 ; 2.2 ; HA1 subcomponent of botulinum type C progenitor toxin complexed with N-acetylneuramic acid 6EH8 ; 2.51 ; HA1.7 Human T-Cell Receptor specific for Influenza virus epitope PKYVKQNTLKLAT presented by Human Leukocyte Antigen HLA-DR0101 6EH9 ; 2.49 ; HA1.7 Human T-Cell Receptor specific for Influenza virus epitope PKYVKQNTLKLAT presented by Human Leukocyte Antigen HLA-DR0101 6FR6 ; 2.98 ; HA1.7 Human T-Cell Receptor specific for Influenza virus epitope PKYVKQNTLKLAT presented by Human Leukocyte Antigen HLA-DR0101 6FR7 ; 2.31 ; HA1.7 Human T-Cell Receptor specific for Influenza virus epitope PKYVKQNTLKLAT presented by Human Leukocyte Antigen HLA-DR0101 6FR8 ; 2.38 ; HA1.7 Human T-Cell Receptor specific for Influenza virus epitope PKYVKQNTLKLAT presented by Human Leukocyte Antigen HLA-DR0101 6FR5 ; 1.37 ; HA1.7 TCR Study of CDR Loop Flexibility 4GKZ ; 2.39 ; HA1.7, a MHC class II restricted TCR specific for haemagglutinin 4LO1 ; 2.254 ; HA17-HA33-Gal 4LO2 ; 2.254 ; HA17-HA33-Lac 4LO3 ; 2.249 ; HA17-HA33-LacNac 2ZS6 ; 2.6 ; HA3 subcomponent of botulinum type C progenitor toxin 2ZOE ; 2.6 ; HA3 subcomponent of Clostridium botulinum type C progenitor toxin, complex with N-acetylneuramic acid 4LO8 ; 2.4 ; HA70(D3)-HA17 4LO7 ; 3.73 ; HA70(D3)-HA17-HA33 4LO5 ; 2.7 ; HA70-alpha2,3-SiaLC 4LO6 ; 2.3 ; HA70-alpha2,6-SiaLC 8Q0N ; 4.2 ; HACE1 in complex with RAC1 Q61L 1YMQ ; 1.9 ; HAD Superfamily Phosphotransferase Substrate Diversification: Structure and Function Analysis of the HAD Subclass IIB Sugar Phosphatase BT4131 7AGG ; 3.3 ; HAd7 knob in complex with 2 EC2-EC3 modules of DSG-2 7AGF ; 3.1 ; HAd7 knob in complex with 3 EC2-EC3 modules of DSG-2 2LBU ; ; HADDOCK calculated model of Congo red bound to the HET-s amyloid 2MUS ; ; HADDOCK calculated model of LIN5001 bound to the HET-s amyloid 2K7F ; ; HADDOCK calculated model of the complex between the BRCT region of RFC p140 and dsDNA 2L65 ; ; HADDOCK calculated model of the complex of the resistance protein CalC and Calicheamicin-Gamma 2MTZ ; ; Haddock model of Bacillus subtilis L,D-transpeptidase in complex with a peptidoglycan hexamuropeptide 2N0S ; ; HADDOCK model of ferredoxin and [FeFe] hydrogenase complex 2L6Y ; ; haddock model of GATA1NF:Lmo2LIM2-Ldb1LID 2L6Z ; ; haddock model of GATA1NF:Lmo2LIM2-Ldb1LID with FOG 5Y95 ; ; Haddock model of mSIN3B PAH1 domain 2MF8 ; ; HADDOCK model of MyT1 F4F5 - DNA complex 6TT8 ; ; Haddock model of NDM-1/morin complex 6TTC ; ; Haddock model of NDM-1/myricetin complex 6TTA ; ; Haddock model of NDM-1/quercetin complex 2FYL ; ; Haddock model of the complex between double module of LRP, CR56, and first domain of receptor associated protein, RAP-d1. 2LJY ; ; Haddock model structure of the N-terminal domain dimer of HPV16 E6 2HV1 ; ; HADDOCK structure of ARNT PAS-B Homodimer 2M1C ; ; HADDOCK structure of GtYybT PAS Homodimer 2A24 ; ; HADDOCK Structure of HIF-2a/ARNT PAS-B Heterodimer 2LL4 ; ; HADDOCK structure of TgMIC4-A5/lacto-N-biose complex, based on NOE-derived distance restraints 6CW4 ; ; HADDOCK structure of the Rous sarcoma virus matrix protein (M-domain) in complex with inositol 1,3,5-trisphosphate 6CV8 ; ; HADDOCK structure of the Rous sarcoma virus matrix protein (M-domain) in complex with inositol 1,4,5-trisphosphate 6CUS ; ; HADDOCK structure of the Rous sarcoma virus matrix protein (M-domain) in complex with myo-inositol hexakisphosphate 2KGX ; ; HADDOCK structure of the talin F3 domain in complex with talin 1655-1822 2K3S ; ; HADDOCK-derived structure of the CH-domain of the smoothelin-like 1 complexed with the C-domain of apocalmodulin 6NZX ; 1.9 ; Hadesarchaea YNP_N21 cytochrome b5 domain protein (KUO41884.1) 6YBA ; 4.0 ; HAdV-F41 Capsid 6MNJ ; 2.2 ; Hadza microbial sialidase Hz136 4BH4 ; 1.9 ; Haemagglutinin from a Transmissible Mutant H5 Influenza Virus in Complex with Avian Receptor Analogue 3'-SLN 4BH3 ; 2.0 ; Haemagglutinin from a Transmissible Mutant H5 Influenza Virus in Complex with Human Receptor Analogue 6'-SLN 2YPG ; 2.85 ; Haemagglutinin of 1968 Human H3N2 Virus in Complex with Human Receptor Analogue LSTc 2YP2 ; 1.9 ; Haemagglutinin of 2004 Human H3N2 Virus 2YP5 ; 1.79 ; Haemagglutinin of 2004 Human H3N2 Virus in Complex with Avian Receptor Analogue 3SLN 2YP3 ; 1.88 ; Haemagglutinin of 2004 Human H3N2 Virus in Complex with Human Receptor Analogue 6SLN 2YP4 ; 1.85 ; Haemagglutinin of 2004 Human H3N2 Virus in Complex with Human Receptor Analogue LSTc 2YP7 ; 1.85 ; Haemagglutinin of 2005 Human H3N2 Virus 2YP9 ; 1.79 ; Haemagglutinin of 2005 Human H3N2 Virus in Complex with Avian Receptor Analogue 3SLN 2YP8 ; 1.8 ; Haemagglutinin of 2005 Human H3N2 Virus in Complex with Human Receptor Analogue 6SLN 4D00 ; 2.5 ; Haemagglutinin of H10N8 Influenza Virus Isolated from Humans in Complex with Human Receptor Analogue 6'SLN 1PBX ; 2.5 ; HAEMOGLOBIN OF THE ANTARCTIC FISH PAGOTHENIA BERNACCHII: AMINO ACID SEQUENCE, OXYGEN EQUILIBRIA AND CRYSTAL STRUCTURE OF ITS CARBONMONOXY DERIVATIVE 4KRI ; 1.72 ; Haemonchus contortus Phospholethanolamine N-methyltransferase 2 in complex with phosphomonomethylethanolamine and S-adenosylhomocysteine 6ROW ; 4.5 ; Haemonchus galactose containing glycoprotein complex 2A8C ; 2.3 ; Haemophilus influenzae beta-carbonic anhydrase 2A8D ; 2.2 ; Haemophilus influenzae beta-carbonic anhydrase complexed with bicarbonate 3OD7 ; 1.801 ; Haemophilus influenzae ferric binding protein A -Iron Loaded 3ODB ; 1.62 ; Haemophilus influenzae ferric binding protein A -Iron Loaded -open Conformation 1D9V ; 1.75 ; HAEMOPHILUS INFLUENZAE FERRIC-BINDING PROTEIN APO FORM 5VAT ; 2.6 ; Haemophilus influenzae LpoA: Monoclinic form (Mon2) with 2 molecules per a.u. 3SWE ; 2.2 ; Haemophilus influenzae MurA in complex with UDP-N-acetylmuramic acid and covalent adduct of PEP with Cys117 8GLO ; 1.937 ; Haemophilus parainfluenzae Holo HphA 4ARS ; 1.9 ; Hafnia Alvei phytase apo form 4ARO ; 1.59 ; Hafnia Alvei phytase in complex with myo-inositol hexakis sulphate 4ARU ; 1.45 ; Hafnia Alvei phytase in complex with tartrate 1IT3 ; 2.1 ; Hagfish CO ligand hemoglobin 1IT2 ; 1.6 ; Hagfish deoxy hemoglobin 8BM4 ; ; Hairpin adopted by modified oligonucleotide A32_mod found in the promoter of AUTS2 gene. 8BM6 ; ; Hairpin adopted by oligonucleotide A36 found in the promoter of AUTS2 gene 8BM7 ; ; Hairpin adopted by oligonucleotide A38 found in the promoter of AUTS2 gene. 5ZE2 ; 3.3 ; Hairpin Complex, RAG1/2-hairpin 12RSS/23RSS complex in 5mM Mn2+ for 2 min at 4'C 5ZE1 ; 3.0 ; Hairpin Forming Complex, RAG1/2-Nicked 12RSS/23RSS complex in 2mM Mn2+ for 10 min at 4'C 5ZDZ ; 2.8 ; Hairpin Forming Complex, RAG1/2-Nicked 12RSS/23RSS complex in Ca2+ 5ZE0 ; 2.75 ; Hairpin Forming Complex, RAG1/2-Nicked(with Dideoxy) 12RSS/23RSS complex in Mg2+ 2HGF ; ; HAIRPIN LOOP CONTAINING DOMAIN OF HEPATOCYTE GROWTH FACTOR, NMR, MINIMIZED AVERAGE STRUCTURE 1BJH ; ; HAIRPIN LOOPS CONSISTING OF SINGLE ADENINE RESIDUES CLOSED BY SHEARED A(DOT)A AND G(DOT)G PAIRS FORMED BY THE DNA TRIPLETS AAA AND GAG: SOLUTION STRUCTURE OF THE D(GTACAAAGTAC) HAIRPIN, NMR, 16 STRUCTURES 7RQ5 ; ; Hairpin near 3'-Splice Site of Influenza A Segment 7 Bound to 5-nt Oligonucleotide 1JBF ; ; Hairpin Peptide that Inhibits IgE Activity by Binding to the High Affinity IgE Receptor 4DKZ ; 1.8 ; Hairpin structure of a DNA dodecamer containing North-methanocarba-2'-deoxythymidine 1ATV ; ; HAIRPIN WITH AGAA TETRALOOP, NMR, 4 STRUCTURES 1ATW ; ; HAIRPIN WITH AGAU TETRALOOP, NMR, 3 STRUCTURES 7YZP ; 4.0 ; Hairpin-bound state of the E. coli Mre11-Rad50 (SbcCD) head complex bound to ADP and a DNA hairpin 1HVW ; ; HAIRPINLESS MUTANT OF OMEGA-ATRACOTOXIN-HV1A 5C0I ; 1.53 ; HAL-A02 carrying RQFGPDFPTI 7U6I ; 2.05 ; HalB with glycine and succinate 7U6J ; 1.9 ; HalB with lysine and succinate 7U6H ; 2.0 ; HalD with ornithine and alpha-ketoglutarate 7MIB ; 5.8 ; Half integration complex of Cas4/Cas1/Cas2 with Cas4 still on the Non-PAM side 1T3P ; 1.6 ; Half-sandwich arene ruthenium(II)-enzyme complex 7PKY ; 7.9 ; Half-vault structure 7JY4 ; 2.42 ; hALK in complex with ((1S,2S)-1-(2,4-difluorophenyl)-2-(2-(3-methyl-1H-pyrazol-5-yl)-4-(trifluoromethyl)phenoxy)cyclopropyl)methanamine 7JYR ; 2.32 ; hALK in complex with 1-[(1R,2R)-1-(2,4-difluorophenyl)-2-[2-(5-methyl-1H-pyrazol-3-yl)-4-(trifluoromethyl)phenoxy]cyclopropyl]methanamine 7JYS ; 2.22 ; hALK in complex with 3-(3-chlorophenyl)-5-methyl-1H-pyrazole 7JYT ; 2.0 ; hALK in complex with 3-(3-methyl-1H-pyrazol-5-yl)pyridine 6EDL ; 2.799 ; hALK in complex with compound 1 (S)-N-(1-(2,4-difluorophenyl)ethyl)-3-(3-methyl-1H-pyrazol-5-yl)imidazo[1,2-b]pyridazin-6-amine 6E0R ; 2.303 ; hALK in complex with compound 7 N-((1S)-1-(5-fluoropyridin-2-yl)ethyl)-1-(5-methyl-1H-pyrazol-3-yl)-3-(oxetan-3-ylsulfonyl)-1H-pyrrolo[2,3-b]pyridin-6-amine 6EBW ; 2.455 ; hALK in complex with compound 9 (6-(((1S)-1-(5-Fluoropyridin-2-yl)ethyl)amino)-1-(3-methyl-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridin-3-yl)(morpholin-4-yl)methanone 4AXN ; 1.68 ; Hallmarks of processive and non-processive glycoside hydrolases revealed from computational and crystallographic studies of the Serratia marcescens chitinases 8D04 ; 2.11 ; Hallucinated C2 protein assembly HALC2_062 8D05 ; 2.51 ; Hallucinated C2 protein assembly HALC2_065 8D03 ; 1.75 ; Hallucinated C2 protein assembly HALC2_068 8D06 ; 3.4 ; Hallucinated C3 protein assembly HALC3_104 8D07 ; 2.09 ; Hallucinated C3 protein assembly HALC3_109 8D08 ; 3.3 ; Hallucinated C4 protein assembly HALC4_135 8D09 ; 1.9 ; Hallucinated C4 protein assembly HALC4_136 4BRZ ; 1.67 ; Haloalkane dehalogenase 1BE0 ; 1.96 ; HALOALKANE DEHALOGENASE AT PH 5.0 CONTAINING ACETIC ACID 1B6G ; 1.15 ; HALOALKANE DEHALOGENASE AT PH 5.0 CONTAINING CHLORIDE 4WCV ; 1.69 ; Haloalkane dehalogenase DhaA mutant from Rhodococcus rhodochrous (T148L+G171Q+A172V+C176G) 4MJ3 ; 1.7 ; Haloalkane dehalogenase DmrA from Mycobacterium rhodesiae JS60 5MXP ; 1.45 ; Haloalkane dehalogenase DmxA from Marinobacter sp. ELB17 possessing a unique catalytic residue 3QNM ; 1.7 ; Haloalkane Dehalogenase Family Member from Bacteroides thetaiotaomicron of Unknown Function 1BN6 ; 1.5 ; HALOALKANE DEHALOGENASE FROM A RHODOCOCCUS SPECIES 1BN7 ; 1.5 ; HALOALKANE DEHALOGENASE FROM A RHODOCOCCUS SPECIES 1HDE ; 2.7 ; HALOALKANE DEHALOGENASE MUTANT WITH PHE 172 REPLACED WITH TRP 1BEE ; 2.6 ; HALOALKANE DEHALOGENASE MUTANT WITH TRP 175 REPLACED BY TYR 1BEZ ; 2.1 ; HALOALKANE DEHALOGENASE MUTANT WITH TRP 175 REPLACED BY TYR AT PH 5 1CIJ ; 2.3 ; HALOALKANE DEHALOGENASE SOAKED WITH HIGH CONCENTRATION OF BROMIDE 4C6H ; 1.61 ; Haloalkane dehalogenase with 1-hexanol 3U1T ; 2.2 ; Haloalkane Dehalogenase, DmmA, of marine microbial origin 2VWQ ; 2.1 ; Haloferax mediterranei glucose dehydrogenase in complex with NADP and Zn. 2VWG ; 2.0 ; Haloferax mediterranei glucose dehydrogenase in complex with NADP, Zn and gluconolactone. 2VWH ; 2.03 ; Haloferax mediterranei glucose dehydrogenase in complex with NADP, Zn and glucose. 2VWP ; 2.01 ; Haloferax mediterranei glucose dehydrogenase in complex with NADPH and Zn. 5TAO ; 2.1 ; Haloferax volcanii Malate Synthase Lead(II) complex 3OYX ; 2.51 ; Haloferax volcanii Malate Synthase Magnesium/Glyoxylate Complex 3PUG ; 2.7 ; Haloferax volcanii Malate Synthase Native at 3mM Glyoxylate 3OYZ ; 1.95 ; Haloferax volcanii Malate Synthase Pyruvate/Acetyl-CoA Ternary Complex 3NNJ ; 2.601 ; Halogenase domain from CurA module (apo Hal) 3NNL ; 2.883 ; Halogenase domain from CurA module (crystal form III) 3NNM ; 2.69 ; Halogenase domain from CurA module (crystal form IV) 3NNF ; 2.201 ; Halogenase domain from CurA module with Fe, chloride, and alpha-ketoglutarate 8AGP ; 1.49 ; Halogenated product of limonene epoxide turnover by epoxide hydrolase from metagenomic source ch65 4IXW ; 2.47 ; Halohydrin dehalogenase (HheC) bound to ethyl (2S)-oxiran-2-ylacetate 4Z9F ; 1.75 ; Halohydrin hydrogen-halide-lyase, HheA 4ZD6 ; 1.6 ; Halohydrin hydrogen-halide-lyase, HheB 4ZU3 ; 2.2 ; Halohydrin hydrogen-halide-lyases, HheB 6LUQ ; 3.1 ; Haloperidol bound D2 dopamine receptor structure inspired discovery of subtype selective ligands 8Q90 ; 2.0 ; Halophilic Lrp transcription factor 5AHY ; 2.15 ; Halorhodopsin from Halobacterium salinarum in a new rhombohedral crystal form 1E12 ; 1.8 ; Halorhodopsin, a light-driven chloride pump 7OND ; 1.45 ; HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridine Dye 7OO4 ; 2.1 ; HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridine Dye 7ZBA ; 1.23 ; HaloTag with Me-TRaQ-G ligand 7ZBD ; 1.68 ; HaloTag with TRaQ-G ligand 7ZBB ; 1.95 ; HaloTag with TRaQ-G-ctrl ligand 2KUH ; ; Halothane binds to druggable sites in calcium-calmodulin: Solution structure of halothane-CaM C-terminal domain 2KUG ; ; Halothane binds to druggable sites in calcium-calmodulin: Solution Structure of halothane-CaM N-terminal domain 4PTW ; 2.0 ; Halothermothrix orenii beta-glucosidase A, 2-deoxy-2-fluoro-glucose complex 4PTX ; 1.8 ; Halothermothrix orenii beta-glucosidase A, glucose complex 4PTV ; 1.85 ; Halothermothrix orenii beta-glucosidase A, thiocellobiose complex 6QPA ; 2.1 ; Halothiobacillus neapolitanus sulfur oxygenase reductase 2QUW ; 2.2 ; Hammerhead Ribozyme G12A mutant after cleavage 2QUS ; 2.4 ; Hammerhead Ribozyme G12A mutant pre-cleavage 1Q29 ; 3.0 ; Hammerhead Ribozyme with 5'-5' G-G linkage: Conformational change experiment 2RDL ; 2.5 ; Hamster Chymase 2 1D2D ; ; Hamster EprS second repeated element. NMR, 5 structures 6E14 ; 4.0 ; Handover mechanism of the growing pilus by the bacterial outer membrane usher FimD 6E15 ; 5.1 ; Handover mechanism of the growing pilus by the bacterial outer membrane usher FimD 3SXX ; 1.27 ; Hansenula polymorpha copper amine oxidase-1 in complex with Co(II) 3T0U ; 1.9 ; Hansenula polymorpha copper amine oxidase-1 in complex with Cu(I) 3SX1 ; 1.73 ; Hansenula polymorpha copper amine oxidase-1 in its apo form 7NRH ; 19.0 ; Hantaan virus glycoprotein (Gn) in complex with Fab fragment HTN-Gn1. 7O9S ; 2.7 ; Hantaan virus Gn in complex with Fab nnHTN-Gn2 5IZE ; 1.7 ; Hantaan virus L protein cap-snatching endonuclease 8C4T ; 3.23 ; Hantaan virus polymerase bound to its 5' viral RNA 8QHD ; 3.6 ; Hantaan virus polymerase in hexameric state 8C4V ; 3.14 ; Hantaan virus polymerase in replication elongation state 8C4U ; 3.36 ; Hantaan virus polymerase in replication pre-initiation state 7S0K ; 2.3 ; HAP2 from Cyanidioschyzon merolae 5Y7C ; 2.003 ; Hapalindole A and DMSPP Bound AmbP3 5Y84 ; 2.0 ; Hapalindole U and DMSPP Bound AmbP3 6M3B ; 2.2 ; hAPC-c25k23 Fab complex 6M3C ; 3.7 ; hAPC-h1573 Fab complex 6Y39 ; 2.3 ; HapE-P88L mutant CCAAT-binding complex from Aspergillus nidulans with cycA DNA 7XY0 ; 2.43 ; HapR Double mutant Y76F, F171C 7XXS ; 2.25 ; HapR mutant I141V 7XXO ; 2.487 ; HapR Native in CHES buffer pH 9.5 7XYI ; 2.47 ; HapR Quadruple mutant Y76F, L97I, I141V, F171C 7XXT ; 2.501 ; HapR Quadruple mutant, bound to IMTVC-212 7XXN ; 2.45 ; HapR Quadruple mutant, bound to Qstatin 7XY5 ; 2.37 ; HapR_Double Mutant with CHES buffer 7Y4J ; 2.69 ; HapR_Triple mutant Y76F, L97I, F171C 6L6I ; 3.24 ; hASIC1a co-crystallized with Mamb-1 6L6N ; 2.86 ; hASIC1a co-crystallized with Nafamostat 6L6P ; 3.08 ; hASIC2a co-crystallized with Mamb-1 1YGH ; 1.9 ; HAT DOMAIN OF GCN5 FROM SACCHAROMYCES CEREVISIAE 6JQ6 ; 2.626 ; Hatchet Ribozyme Structure soaking with Ir(NH3)6+ 5A97 ; 2.7 ; Hazara virus nucleocapsid protain 8C3Y ; 3.8 ; HB3VAR03 apo headstructure (PfEMP1 A) 8C44 ; 3.2 ; HB3VAR03 apo headstructure (PfEMP1 A) complexed with EPCR 2NP2 ; 3.02 ; Hbb-DNA complex 7PZI ; 2.9 ; HBc-F97L (premature secretion phenotype) in complex with Triton X-100 7PZ9 ; 2.8 ; HBc-F97L premature secretion phenotype 7PZL ; 2.8 ; HBc-F97L premature secretion phenotype 7PZM ; 2.9 ; HBc-P5T in complex with X-100 7PZK ; 3.1 ; HBc-WT in complex with Triton X-100 8D1I ; 1.82 ; hBest1 1uM Ca2+ (Ca2+-bound) closed state 8D1J ; 2.05 ; hBest1 5mM Ca2+ (Ca2+-bound) closed state 8D1L ; 2.12 ; hBest1 Ca2+-bound partially open aperture state 8D1K ; 2.28 ; hBest1 Ca2+-bound partially open neck state 8D1M ; 3.11 ; hBest1 Ca2+-unbound closed state 8D1O ; 2.44 ; hBest1_345 Ca2+-bound open state 8D1E ; 1.78 ; hBest2 1uM Ca2+ (Ca2+-bound) closed state 8D1F ; 1.82 ; hBest2 5mM Ca2+ (Ca2+-bound) closed state 8D1G ; 2.07 ; hBest2 Ca2+-bound open state 8D1H ; 1.94 ; hBest2 Ca2+-unbound closed state 3UGY ; 2.1 ; HBI (F80Y) CO bound 3UHN ; 2.0 ; HBI (F80Y) deoxy 2AUQ ; 1.8 ; HbI (F97V) CO bound 3UHI ; 2.5 ; HBI (K96R) CO bound 3UHK ; 2.0 ; HBI (K96R) without ligand bound 3UGZ ; 1.65 ; HBI (L36A) CO bound 3UHQ ; 1.95 ; HBI (L36A) deoxy 3UH5 ; 2.1 ; HBI (L36F) CO bound 3UHR ; 1.9 ; HBI (L36F) deoxy 3UHG ; 1.8 ; HBI (L36M) CO bound 3UHS ; 2.1 ; HBI (L36M) deoxy 3UH3 ; 1.8 ; HBI (L36V) CO bound 3UHT ; 2.0 ; HBI (L36V) deoxy 3UHH ; 1.5 ; HBI (M37A) CO bound 3UHU ; 2.1 ; HBI (M37A) deoxy 3UHE ; 2.6 ; HBI (M37V,L73I) CO bound 3UHV ; 1.75 ; HBI (M37V,L73I) deoxy 3UHD ; 1.6 ; HBI (N100A) CO bound 3UHX ; 1.7 ; HBI (N100A) deoxy 3UHC ; 1.6 ; HBI (N79A) CO bound 3UHW ; 2.05 ; HBI (N79A) deoxy 3UHB ; 1.6 ; HBI (R104K) CO bound 3UHY ; 2.2 ; HBI (R104K) deoxy 3UH6 ; 2.25 ; HBI (T72A) CO bound 3UHZ ; 2.0 ; HBI (T72A) deoxy 3UH7 ; 1.8 ; HBI (T72G) CO bound 3UI0 ; 1.8 ; HBI (T72G) deoxy 6MAJ ; 2.139 ; HBO1 is required for the maintenance of leukaemia stem cells 6MAK ; 2.13 ; HBO1 is required for the maintenance of leukaemia stem cells 5Y1A ; 1.8 ; HBP35 of Porphyromonas gingivalis 7S76 ; 2.5 ; HBV CAPSID Y132A WITH COMPOUND 10b AT 2.5A RESOLUTION 6W0K ; 4.6 ; HBV D78S mutant capsid 7ABL ; 3.2 ; HBV pgRNA T=4 NCP icosahedral symmetry 6UI6 ; 3.53 ; HBV T=3 149C3A 6UI7 ; 3.65 ; HBV T=4 149C3A 6VZP ; 3.6 ; HBV wild type capsid 6DMX ; 2.8 ; HBZ56 in complex with KIX and c-Myb 6DNQ ; 2.35 ; HBZ77 in complex with KIX and c-Myb 1NB4 ; 2.0 ; HC-J4 RNA polymerase apo-form 1NB7 ; 2.9 ; HC-J4 RNA polymerase complexed with short RNA template strand 1NB6 ; 2.6 ; HC-J4 RNA polymerase complexed with UTP 6WLO ; 11.0 ; hc16 ligase models, 11.0 Angstrom resolution 6WLN ; 10.0 ; hc16 ligase product models, 10.0 Angstrom resolution 3UYN ; 2.6 ; HCA 3 3UYQ ; 1.7 ; HCA 3 4DZ7 ; 1.491 ; hCA II in complex with novel sulfonamide inhibitors Set D 4DZ9 ; 1.491 ; hCA II in complex with novel sulfonamide inhibitors Set D 3R17 ; 1.7 ; hCarbonic anhydrase II bound to N-(2-fluoro.4-sulfamoylphenyl)-2-(thiophen-2-yl) acetamide 8IFU ; 2.37 ; HcCCR in NaCl 6EDC ; 2.712 ; hcGAS-16bp dsDNA complex 3WB1 ; 2.4 ; HcgB from Methanocaldococcus jannaschii 3WB0 ; 1.91 ; HcgB from Methanocaldococcus jannaschii in complex with light-decomposed FeGP cofactor of [Fe]-hydrogenase 3WB2 ; 2.44 ; HcgB from Methanocaldococcus jannaschii in complex with the guanylyl-pyridinol product in a model reaction of [Fe]-hydrogenase cofactor biosynthesis 5D5Q ; 2.5 ; HcgB from Methanocaldococcus jannaschii with the pyridinol derived from FeGP cofactor of [Fe]-hydrogenase 5D5P ; 1.7 ; HcgB from Methanococcus maripaludis 5D5O ; 2.7 ; HcgC from Methanocaldococcus jannaschii 5O4J ; 1.7 ; HcgC from Methanococcus maripaludis cocrystallized with SAH and pyridinol 5O4H ; 1.75 ; HcgC from Methanococcus maripaludis cocrystallized with SAM and pyridinol 5D4V ; 1.6 ; HcgC with SAH and a guanylylpyridinol (GP) derivative 3WV7 ; 1.6 ; HcgE from Methanothermobacter marburgensis 3WVB ; 1.7 ; HcgF from Methanocaldococcus jannaschii 2HK5 ; 2.0 ; Hck Kinase in Complex with Lck targetted Inhibitor PG-1009247 8QXX ; 1.9 ; HCMV DNA polymerase processivity factor UL44 phosphorylated NLS 410-433 bound to mouse importin alpha 2 8QXW ; 2.0 ; HCMV DNA polymerase processivity factor UL44 unphosphorylated NLS 410-433 bound to mouse importin alpha 2 5IXA ; 2.684 ; HCMV DNA polymerase processivity subunit UL44 at neutral pH and low salt 5IWD ; 2.56 ; HCMV DNA polymerase subunit UL44 complex with a small molecule 8TEA ; 3.4 ; HCMV Pentamer in complex with CS2pt1p2_A10L Fab and CS3pt1p4_C1L Fab 7KDD ; 3.5 ; HCMV postfusion gB in complex with SM5-1 Fab 7KDP ; 3.6 ; HCMV prefusion gB in complex with fusion inhibitor WAY-174865 1JQ7 ; 3.0 ; HCMV protease dimer-interface mutant, S225Y complexed to Inhibitor BILC 408 2WPO ; 2.7 ; HCMV protease inhibitor complex 8TCO ; 2.8 ; HCMV Trimer in complex with CS2it1p2_F7K Fab and CS4tt1p1_E3K Fab 8FU4 ; 1.6 ; HCMV US11 peptide binding to HLA-A*02:01 5KHK ; 2.07 ; HCN2 CNBD in complex with 2-aminopurine riboside-3', 5'-cyclic monophosphate (2-NH2-cPuMP) 5KHG ; 2.241 ; HCN2 CNBD in complex with cytidine-3', 5'-cyclic monophosphate (cCMP) 5KHH ; 1.77 ; HCN2 CNBD in complex with inosine-3', 5'-cyclic monophosphate (cIMP) 5KHI ; 2.1 ; HCN2 CNBD in complex with purine riboside-3', 5'-cyclic monophosphate (cPuMP) 5KHJ ; 2.01 ; HCN2 CNBD in complex with uridine-3', 5'-cyclic monophosphate (cUMP) 3BPZ ; 1.65 ; HCN2-I 443-460 E502K in the presence of cAMP 3FFQ ; 2.4 ; HCN2I 443-640 apo-state 1Q43 ; 2.0 ; HCN2I 443-640 in the presence of cAMP, selenomethionine derivative 1Q5O ; 2.3 ; HCN2J 443-645 in the presence of cAMP, selenomethionine derivative 1Q3E ; 1.9 ; HCN2J 443-645 in the presence of cGMP 4KL1 ; 2.7 ; HCN4 CNBD in complex with cGMP 3EWQ ; 2.1 ; HCov-229E Nsp3 ADRP domain 6U7E ; 3.0 ; HCoV-229E RBD Class III in complex with human APN 6U7F ; 2.75 ; HCoV-229E RBD Class IV in complex with human APN 6U7G ; 2.35 ; HCoV-229E RBD Class V in complex with human APN 4W64 ; 1.55 ; Hcp1 protein from Acinetobacter baumannii AB0057 2A4R ; 2.4 ; HCV NS3 Protease Domain with a Ketoamide Inhibitor Covalently bound. 3KN2 ; 2.3 ; HCV NS3 Protease Domain with ketoamide inhibitor 2F9U ; 2.6 ; HCV NS3 protease domain with NS4a peptide and a ketoamide inhibitor with a P2 norborane 2F9V ; 2.6 ; HCV NS3 protease domain with NS4a peptide and a ketoamide inhibitor with P1 and P2 cyclopropylalannines 3KNX ; 2.65 ; HCV NS3 protease domain with P1-P3 macrocyclic ketoamide inhibitor 1A1R ; 2.5 ; HCV NS3 PROTEASE DOMAIN:NS4A PEPTIDE COMPLEX 2A4Q ; 2.45 ; HCV NS3 protease with NS4a peptide and a covalently bound macrocyclic ketoamide compound. 2FM2 ; 2.7 ; HCV NS3-4A protease domain complexed with a ketoamide inhibitor, SCH446211 2GVF ; 2.5 ; HCV NS3-4A protease domain complexed with a macrocyclic ketoamide inhibitor, SCH419021 3LOX ; 2.65 ; HCV NS3-4a protease domain with a ketoamide inhibitor derivative of Boceprevir bound 3LON ; 2.2 ; HCV NS3-4a protease domain with ketoamide inhibitor narlaprevir 3OYP ; 2.76 ; HCV NS3/4A in complex with ligand 3 6VDN ; 2.15 ; HCV NS3/4A protease A156T mutant 6VDL ; 1.95 ; HCV NS3/4A protease A156T mutant in complex with glecaprevir 6VDO ; 2.11 ; HCV NS3/4A protease A156T, D168E double mutant 6VDM ; 1.9 ; HCV NS3/4A protease A156T, D168E double mutant in complex with glecaprevir 6P6M ; 2.201 ; HCV NS3/4A protease domain of genotype 1a C159 in complex with glecaprevir 6P6O ; 2.002 ; HCV NS3/4A protease domain of genotype 1a D168E in complex with glecaprevir 6P6L ; 1.728 ; HCV NS3/4A protease domain of genotype 1a in complex with glecaprevir 6P6R ; 1.749 ; HCV NS3/4A protease domain of genotype 1a3a chimera in complex with glecaprevir 6P6Q ; 3.5 ; HCV NS3/4A protease domain of genotype 1a3a chimera in complex with grazoprevir 6P6S ; 2.0 ; HCV NS3/4A protease domain of genotype 3a in complex with glecaprevir 6P6T ; 2.3 ; HCV NS3/4A protease domain of genotype 4a in complex with glecaprevir 6P6Z ; 2.294 ; HCV NS3/4A protease domain of genotype 4a with an extended linker in complex with glecaprevir 6P6V ; 2.0 ; HCV NS3/4A protease domain of genotype 5a in complex with glecaprevir 4U01 ; 2.8 ; HCV NS3/4A serine protease in complex with 6570 3KEE ; 2.4 ; HCV NS3/NS4A complexed with Non-covalent macrocyclic compound TMC435 6MVO ; 1.95 ; HCV NS5B 1A Y316 bound to Compound 49 6MVK ; 2.3 ; HCV NS5B 1b N316 bound to Compound 18 6MVP ; 2.0 ; HCV NS5B 1b N316 bound to Compound 18 6MVQ ; 2.14 ; HCV NS5B 1b N316 bound to Compound 31 2HWH ; 2.3 ; HCV NS5B allosteric inhibitor complex 2HWI ; 2.0 ; HCV NS5B allosteric inhibitor complex 3HKW ; 1.55 ; HCV NS5B genotype 1a in complex with 1,5 benzodiazepine inhibitor 6 4KHR ; 2.45 ; HCV NS5B GT1A C316Y with GSK5852 4KHM ; 1.7 ; HCV NS5B GT1A with GSK5852 4KAI ; 2.3 ; HCV NS5B GT1B N316 with GSK5852A 4KB7 ; 1.85 ; HCV NS5B GT1B N316Y with CMPD 32 4KBI ; 2.06 ; HCV NS5B GT1B N316Y with CMPD 4 4KE5 ; 2.11 ; HCV NS5B GT1B N316Y with GSK5852 4EAW ; 2.0 ; HCV NS5B in complex with IDX375 5CZB ; 1.96 ; HCV NS5B IN COMPLEX WITH LIGAND IDX17119-5 4DRU ; 2.1 ; HCV NS5B in complex with macrocyclic INDOLE INHIBITOR 3HHK ; 1.7 ; HCV NS5b polymerase complex with a substituted benzothiadizine 2YOJ ; 1.76 ; HCV NS5B polymerase complexed with pyridonylindole compound 3HKY ; 1.9 ; HCV NS5B polymerase genotype 1b in complex with 1,5 benzodiazepine 6 3GOL ; 2.85 ; HCV NS5b polymerase in complex with 1,5 benzodiazepine inhibitor (R)-11d 3GNV ; 2.75 ; HCV NS5B polymerase in complex with 1,5 benzodiazepine inhibitor 1b 3GNW ; 2.39 ; HCV NS5B polymerase in complex with 1,5 benzodiazepine inhibitor 4c 4EO6 ; 1.791 ; HCV NS5B polymerase inhibitors: Tri-substituted acylhydrazines as tertiary amide bioisosteres 4EO8 ; 1.798 ; HCV NS5B polymerase inhibitors: Tri-substituted acylhydrazines as tertiary amide bioisosteres 4OOW ; 2.57 ; HCV NS5B polymerase with a fragment of quercetagetin 5W2E ; 2.8 ; HCV NS5B RNA-dependent RNA polymerase in complex with non-nucleoside inhibitor MK-8876 3PHE ; 2.2 ; HCV NS5B with a bound quinolone inhibitor 3CSO ; 2.71 ; HCV Polymerase in complex with a 1,5 Benzodiazepine inhibitor 2XI2 ; 1.8 ; HCV-H77 NS5B Apo Polymerase 2XI3 ; 1.7 ; HCV-H77 NS5B Polymerase Complexed With GTP 2XHU ; 2.287 ; HCV-J4 NS5B Polymerase Orthorhombic Crystal Form 2XHV ; 1.9 ; HCV-J4 NS5B Polymerase Point Mutant Orthorhombic Crystal Form 2XHW ; 2.66 ; HCV-J4 NS5B Polymerase Trigonal Crystal Form 2XWH ; 1.8 ; HCV-J6 NS5B polymerase structure at 1.8 Angstrom 4ADP ; 1.902 ; HCV-J6 NS5B POLYMERASE V405I MUTANT 4AEP ; 1.8 ; HCV-JFH1 NS5B POLYMERASE STRUCTURE AT 1.8 ANGSTROM 2XXD ; 1.881 ; HCV-JFH1 NS5B polymerase structure at 1.9 angstrom 4AEX ; 2.41 ; HCV-JFH1 NS5B POLYMERASE STRUCTURE AT 2.4 ANGSTROM in a primitive orthorhombic space group 2XYM ; 1.774 ; HCV-JFH1 NS5B T385A mutant 5YOX ; 2.61 ; HD domain-containing protein YGK1(YGL101W) 6Z6H ; 8.55 ; HDAC-DC 6Z6F ; 3.11 ; HDAC-PC 6Z6P ; 4.43 ; HDAC-PC-Nuc 6Z6O ; 3.8 ; HDAC-TC 5ICN ; 3.3 ; HDAC1:MTA1 in complex with inositol-6-phosphate and a novel peptide inhibitor based on histone H4 7ZZS ; 1.88 ; HDAC2 complexed with an inhibitory ligand 7ZZO ; 2.0 ; HDAC2 in complex with an inhibitor 7ZZR ; 2.168 ; HDAC2 in complex with inhibitory ligand 5IWG ; 1.66 ; HDAC2 WITH LIGAND BRD4884 5IX0 ; 1.72 ; HDAC2 WITH LIGAND BRD7232 8CJ7 ; 1.51 ; HDAC6 selective degraded (difluoromethyl)-1,3,4-oxadiazole substrate inhibitor 7ZYU ; 2.43 ; HDAC6 ZnF domain inhibitor - DARPin (Designed Ankyrin repeat protein) F10 3ZNR ; 2.4 ; HDAC7 bound with inhibitor TMP269 3ZNS ; 2.45 ; HDAC7 bound with TFMO inhibitor tmp942 5FCW ; 1.979 ; HDAC8 Complexed with a Hydroxamic Acid 1P84 ; 2.5 ; HDBT inhibited Yeast Cytochrome bc1 Complex 5K57 ; ; HDD domain from human Ddi2 1BG8 ; 2.2 ; HDEA FROM ESCHERICHIA COLI 3N0H ; 1.92 ; hDHFR double mutant Q35S/N64F Trimethoprim Binary Complex 4G95 ; 1.35 ; hDHFR-OAG binary complex 8CN1 ; 2.09 ; hDLG1-PDZ1 in complex with a TAX1 peptide from HTLV-1 8CN3 ; 2.71 ; hDLG1-PDZ2 in complex with a TAX1 peptide from HTLV-1 6Q9H ; 2.0 ; HDM2 (17-111, WILD TYPE) COMPLEXED WITH COMPOUND 11 AT 2.0A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 6Q96 ; 1.8 ; HDM2 (17-111, WILD TYPE) COMPLEXED WITH COMPOUND 12 AT 1.8A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 5OC8 ; 1.56 ; HDM2 (17-111, WILD TYPE) COMPLEXED WITH NVP-HDM201 AT 1.56A 6Q9O ; 1.21 ; HDM2 (17-111, WILDTYPE) COMPLEXED WITH COMPOUND 10 AT 1.21A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 6Q9L ; 1.13 ; HDM2 (17-111, WILDTYPE) COMPLEXED WITH COMPOUND 9 AT 1.13A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 5HMH ; 1.79 ; HDM2 in complex with a 3,3-Disubstituted Piperidine 5HMI ; 1.74 ; HDM2 in complex with a 3,3-Disubstituted Piperidine 5HMK ; 2.17 ; HDM2 in complex with a 3,3-Disubstituted Piperidine 2AXI ; 1.4 ; HDM2 in complex with a beta-hairpin 7NA1 ; 2.3 ; HDM2 in complex with compound 2 7NA2 ; 1.86 ; HDM2 in complex with compound 56 7NA3 ; 2.21 ; HDM2 in complex with compound 62 7NA4 ; 1.84 ; HDM2 in complex with compound 63 6Q9U ; 2.4 ; HDMX (14-111; C17S) COMPLEXED WITH COMPOUND 12 AT 2.4A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 6Q9Q ; 2.1 ; HDMX (14-111; C17S) COMPLEXED WITH COMPOUND 13 AT 2.1A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 6Q9S ; 2.4 ; HDMX (14-111; C17S) COMPLEXED WITH COMPOUND 14 AT 2.4A: Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 6Q9Y ; 1.2 ; HDMX (14-111; C17S) COMPLEXED WITH COMPOUND 16 AT 1.20A; Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 4Q0W ; 2.1 ; he catalytic core of Rad2 in complex with DNA substrate (complex II) 6X3E ; 3.42 ; hEAAT3-Asymmetric-1o2i 6X3F ; 3.03 ; hEAAT3-IFS-Apo 6X2L ; 2.85 ; hEAAT3-IFS-Na 6X2Z ; 3.03 ; hEAAT3-OFS-Asp 6BL5 ; 1.69 ; Head decoration protein from the hyperthermophilic phage P74-26 2WST ; 3.2 ; Head domain of porcine adenovirus type 4 NADC-1 isolate fibre 6SG9 ; 3.1 ; Head domain of the mt-SSU assemblosome from Trypanosoma brucei 8HME ; 4.2 ; head module state 1 of Tetrahymena IFT-A 8HMF ; 4.6 ; head module state 2 of Tetrahymena IFT-A 7S0Q ; 3.7 ; Head region of a complex of IGF-I with the ectodomain of a hybrid insulin receptor / type 1 insulin-like growth factor receptor 7U6D ; 5.03 ; Head region of insulin receptor ectodomain (A-isoform) bound to the non-insulin agonist IM459 7U6E ; 3.0 ; Head region of insulin receptor ectodomain (A-isoform) bound to the non-insulin agonist IM462 6VWI ; 3.7 ; Head region of the closed conformation of the human type 1 insulin-like growth factor receptor ectodomain in complex with human insulin-like growth factor II. 6VWG ; 3.21 ; Head region of the open conformation of the human type 1 insulin-like growth factor receptor ectodomain in complex with human insulin-like growth factor II. 5GAO ; 4.2 ; Head region of the yeast spliceosomal U4/U6.U5 tri-snRNP 6YVD ; 7.6 ; Head segment of the S.cerevisiae condensin holocomplex in presence of ATP 6XP5 ; 4.2 ; Head-Middle module of Mediator 1QMS ; ; Head-to-Tail Dimer of Calicheamicin gamma-1-I Oligosaccharide Bound to DNA Duplex, NMR, 9 Structures 8OPH ; 2.93 ; Head-to-tail double ring assembly from truncated PVY coat protein 2VKY ; 2.05 ; Headbinding Domain of Phage P22 Tailspike C-Terminally Fused to Isoleucine Zipper pIIGCN4 (Chimera I) 5J7E ; 1.9 ; hEAG PAS domain 1DM9 ; 2.0 ; HEAT SHOCK PROTEIN 15 KD 3W1Z ; 2.401 ; Heat shock protein 16.0 from Schizosaccharomyces pombe 4WV5 ; 2.04 ; HEAT SHOCK PROTEIN 70 SUBSTRATE BINDING DOMAIN 4WV7 ; 2.42 ; HEAT SHOCK PROTEIN 70 SUBSTRATE BINDING DOMAIN WITH COVALENTLY LINKED NOVOLACTONE 4YKQ ; 1.91 ; Heat Shock Protein 90 Bound to CS301 4YKR ; 1.61 ; Heat Shock Protein 90 Bound to CS302 4YKT ; 1.85 ; Heat Shock Protein 90 Bound to CS307 4YKU ; 1.7 ; Heat Shock Protein 90 Bound to CS311 4YKW ; 1.85 ; Heat Shock Protein 90 Bound to CS312 4YKX ; 1.8 ; Heat Shock Protein 90 Bound to CS318 4YKY ; 1.78 ; Heat Shock Protein 90 Bound to CS319 4YKZ ; 1.85 ; Heat Shock Protein 90 Bound to CS320 3HSF ; ; HEAT SHOCK TRANSCRIPTION FACTOR (HSF) 1FBU ; 2.0 ; HEAT SHOCK TRANSCRIPTION FACTOR DNA BINDING DOMAIN 1FBS ; 2.0 ; HEAT SHOCK TRANSCRIPTION FACTOR DNA BINDING DOMAIN CONTAINING THE P237A MUTATION 1FBQ ; 2.0 ; HEAT SHOCK TRANSCRIPTION FACTOR DNA BINDING DOMAIN CONTAINING THE P237K MUTATION 3HTS ; 1.75 ; HEAT SHOCK TRANSCRIPTION FACTOR/DNA COMPLEX 1LTI ; 2.13 ; HEAT-LABILE ENTEROTOXIN (LT-I) COMPLEX WITH T-ANTIGEN 1EEF ; 1.8 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER COMPLEXED WITH BOUND LIGAND PEPG 1DJR ; 1.3 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER COMPLEXED WITH M-CARBOXYPHENYL-ALPHA-D-GALACTOSE 1LT6 ; 2.2 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER COMPLEXED WITH METANITROPHENYLGALACTOSIDE 1PZI ; 1.99 ; Heat-Labile Enterotoxin B-Pentamer Complexed With Nitrophenyl Galactoside 2a 1EFI ; 1.6 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER COMPLEXED WITH PARA-AMINOPHENYL-ALPHA-D-GALACTOPYRANOSIDE 1LT5 ; 1.7 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER COMPLEXED WITH THIODIGALACTOSIDE 1FD7 ; 1.8 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER WITH BOUND LIGAND BMSC001 1JQY ; 2.14 ; HEAT-LABILE ENTEROTOXIN B-PENTAMER WITH LIGAND BMSC-0010 1LT3 ; 2.0 ; HEAT-LABILE ENTEROTOXIN DOUBLE MUTANT N40C/G166C 4FP5 ; 1.4 ; Heat-labile enterotoxin ILT-IIbB5 S74A mutant 4FO2 ; 1.5 ; Heat-labile enterotoxin LT-IIb-B5(T13I) mutant 1LT4 ; 2.0 ; HEAT-LABILE ENTEROTOXIN MUTANT S63K 1BA0 ; 1.9 ; HEAT-SHOCK COGNATE 70KD PROTEIN 44KD ATPASE N-TERMINAL 1NGE 3 1BA1 ; 1.7 ; HEAT-SHOCK COGNATE 70KD PROTEIN 44KD ATPASE N-TERMINAL MUTANT WITH CYS 17 REPLACED BY LYS 2GKI ; 2.88 ; Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity 7KE3 ; 2.2 ; Heavy chain ferritin with C-terminal EBNA1 epitope 7KE5 ; 2.8 ; Heavy chain ferritin with N-terminal EBNA1 epitope 3JAX ; 23.0 ; Heavy meromyosin from Schistosoma mansoni muscle thick filament by negative stain EM 5A6P ; 2.1 ; Heavy metal associated domain of NLR-type immune receptor Pikp1 from rice (Oryza sativa) 6JX5 ; 2.402 ; Hect domain of AREL1 3SJU ; 2.4 ; Hedamycin Polyketide Ketoreductase bound to NADPH 6TYY ; 1.36 ; Hedgehog autoprocessing mutant D46H 7K65 ; 3.4 ; Hedgehog receptor Patched (PTCH1) in complex with conformation selective nanobody TI23 4MC0 ; 2.7 ; Hedycaryol apo 4MC8 ; 1.9 ; Hedycaryol synthase in complex with HEPES 4MC3 ; 1.5 ; Hedycaryol synthase in complex with Nerolidol 5E62 ; 2.203 ; HEF-mut with Tr323 complex 7WHF ; 2.1 ; Heimdallarchaeota gelsolin (2DGel) bound to rabbit actin 6YRR ; ; Heimdallarchaeota profilin 7M18 ; 3.38 ; HeLa-tubulin in complex with cryptophycin 1 7LXB ; 3.26 ; HeLa-tubulin in complex with cryptophycin 52 1XCE ; ; Helica Structure of DNA by Design: The T(GGGG)T Hexad Alignment 8D13 ; 2.43 ; Helical ADP-F-actin 8D14 ; 2.51 ; Helical ADP-Pi-F-actin 7AOY ; 13.0 ; Helical arrangement of Bunyamwera virus nucleocapsid protein within a native ribonucleoprotein 5LOY ; 2.5 ; Helical Assembly of a Designed Anbu Protein 5LOX ; 2.9 ; Helical Assembly of the Anbu Complex from Pseudomonas aeruginosa 6N2P ; 4.0 ; Helical assembly of the CARD9 CARD 3L4H ; 1.8 ; Helical box domain and second WW domain of the human E3 ubiquitin-protein ligase HECW1 8QX5 ; 1.9 ; Helical Carotenoid Protein 4 (HCP4) from Anabaena with bound Canthaxanthin 3HD7 ; 3.4 ; HELICAL EXTENSION OF THE NEURONAL SNARE COMPLEX INTO THE MEMBRANE, spacegroup C 1 2 1 3IPD ; 4.8 ; Helical extension of the neuronal SNARE complex into the membrane, spacegroup I 21 21 21 5JZC ; 4.2 ; helical filament 7JK9 ; 3.1 ; Helical filaments of plant light-dependent protochlorophyllide oxidoreductase (LPOR) bound to NADPH, Pchlide, and membrane 6RSQ ; 2.37 ; Helical folded domain of mouse CAP1 2L2R ; ; Helical hairpin structure of a novel antimicrobial peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli) 2KNS ; ; Helical Hairpin Structure of Pardaxin in Lipopolysaccharide Micelles: Studied by NMR Spectroscopy 2K98 ; ; Helical hairpin structure of potent antimicrobial peptide MSI-594 in the presence of Lipopolysaccharide micelle 1DLB ; 2.0 ; HELICAL INTERACTIONS IN THE HIV-1 GP41 CORE REVEALS STRUCTURAL BASIS FOR THE INHIBITORY ACTIVITY OF GP41 PEPTIDES 3J4S ; 6.8 ; Helical Model of TubZ-Bt four-stranded filament 3J4T ; 10.8 ; Helical model of TubZ-Bt two-stranded filament 6I3N ; 3.1 ; Helical MyD88 death domain filament 4CKG ; 15.0 ; Helical reconstruction of ACAP1(BAR-PH domain) decorated membrane tubules by cryo-electron microscopy 4CKH ; 17.0 ; Helical reconstruction of ACAP1(BAR-PH domain) decorated membrane tubules by cryo-electron microscopy 6GK2 ; 4.9 ; Helical reconstruction of BCL10 CARD and MALT1 DEATH DOMAIN complex 7C2S ; 10.4 ; Helical reconstruction of Dengue virus serotype 3 complexed with Fab C10 6Z5L ; 3.8 ; Helical reconstruction of influenza A virus M1 in complex with nucleic acid. 8EFH ; 3.3 ; Helical reconstruction of the human cardiac actin-tropomyosin-myosin complex in complex with ADP-Mg2+ 8EFI ; 3.4 ; Helical reconstruction of the human cardiac actin-tropomyosin-myosin complex in the rigor form 8ENC ; 3.6 ; Helical reconstruction of the human cardiac actin-tropomyosin-myosin loop 4 7G mutant complex 8Q6T ; 18.0 ; Helical reconstruction of the relaxed thick filament from FIB milled left ventricular mouse myofibrils 6OFE ; 3.61 ; Helical reconstruction of Type III Secretion System Needle filament mutant-PrgI S49A 7C2T ; 9.4 ; Helical reconstruction of Zika virus complexed with Fab C10 3U0R ; 2.5 ; Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules 3V6A ; 2.6 ; Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules 6I2N ; 3.3 ; Helical RNA-bound Hantaan virus nucleocapsid 8DDY ; 2.89 ; Helical rods of far-red light-absorbing allophycocyanin in Synechococcus sp. 8BI4 ; 4.3 ; Helical shell of CCMV capsid protein on DNA origami 6HB-2k 8BTP ; 2.75 ; Helical structure of BcThsA in complex with 1''-3'gc(etheno)ADPR 8BTO ; 2.96 ; Helical structure of BcThsA in complex with 1''-3'gcADPR 5H3D ; 14.0 ; Helical structure of membrane tubules decorated by ACAP1 (BARPH doamin) protein by cryo-electron microscopy and MD simulation 1BDE ; ; HELICAL STRUCTURE OF POLYPEPTIDES FROM THE C-TERMINAL HALF OF HIV-1 VPR, NMR, 20 STRUCTURES 7ABK ; 3.6 ; Helical structure of PspA 7P3R ; 3.65 ; Helical structure of the toxin MakA from Vibrio cholera 3HCL ; 2.59 ; Helical superstructures in a DNA oligonucleotide crystal 5Z51 ; 1.583 ; Helicase binding domain of primase from Mycobacterium tuberculosis 6TUN ; 2.07 ; Helicase domain complex 3OIY ; 2.35 ; Helicase domain of reverse gyrase from Thermotoga maritima 3P4X ; 2.41 ; Helicase domain of reverse gyrase from Thermotoga maritima 3P4Y ; 3.2 ; Helicase domain of reverse gyrase from Thermotoga maritima - P2 form 2PJR ; 2.9 ; HELICASE PRODUCT COMPLEX 5MZN ; 1.787 ; Helicase Sen1 3PJR ; 3.3 ; HELICASE SUBSTRATE COMPLEX 1OUV ; 2.0 ; Helicobacter cysteine rich protein C (HcpC) 7S9Z ; 4.14 ; Helicobacter Hepaticus CcsBA Closed Conformation 7S9Y ; 3.56 ; Helicobacter Hepaticus CcsBA Open Conformation 7ZQT ; 2.7 ; Helicobacter pylori adhesin BabA bound to neutralising human antibody. 6GBG ; 2.8 ; Helicobacter pylori adhesin HopQ type I bound to the N-terminal domain of human CEACAM1 6GBH ; 2.59 ; Helicobacter pylori adhesin HopQ type II bound to the N-terminal domain of human CEACAM1 6BGE ; 2.9 ; HELICOBACTER PYLORI ATPASE, HP0525, IN COMPLEX WITH 1G2 COMPOUND 3IEC ; 2.2 ; Helicobacter pylori CagA Inhibits PAR1/MARK Family Kinases by Mimicking Host Substrates 2A9E ; 1.76 ; Helicobacter pylori catalase compound I 1KLX ; 1.95 ; Helicobacter pylori cysteine rich protein B (hcpB) 2DYU ; 1.75 ; Helicobacter pylori formamidase AmiF contains a fine-tuned cysteine-glutamate-lysine catalytic triad 2DYV ; 2.0 ; Helicobacter pylori formamidase AmiF contains a fine-tuned cysteine-glutamate-lysine catalytic triad 2E2K ; 2.5 ; Helicobacter pylori formamidase AmiF contains a fine-tuned cysteine-glutamate-lysine catalytic triad 2E2L ; 2.29 ; Helicobacter pylori formamidase AmiF contains a fine-tuned cysteine-glutamate-lysine catalytic triad 3NM4 ; 1.7 ; Helicobacter pylori MTAN 3NM6 ; 1.602 ; Helicobacter pylori MTAN complexed with adenine and tris 3NM5 ; 1.8 ; Helicobacter pylori MTAN complexed with Formycin A 4OJT ; 1.5 ; Helicobacter pylori MTAN complexed with S-ribosylhomocysteine and adenine 2FN6 ; 2.483 ; Helicobacter pylori PseC, aminotransferase involved in the biosynthesis of pseudoaminic acid 7PCR ; 2.75 ; Helicobacter pylori RNase J 6F93 ; 2.8 ; Helicobacter pylori serine hydroxymethyl transferase in apo form 2Q0L ; 1.45 ; Helicobacter pylori thioredoxin reductase reduced by sodium dithionite in complex with NADP+ 6QSU ; 2.4 ; Helicobacter pylori urease with BME bound in the active site 6ZJA ; 2.0 ; Helicobacter pylori urease with inhibitor bound in the active site 6NYF ; 3.2 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 1 (OA-1) 6NYG ; 3.9 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 2a (OA-2a) 6NYJ ; 3.2 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 2b (OA-2b) 6NYL ; 3.7 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 2c (OA-2c) 6NYM ; 3.6 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 2d (OA-2d) 6NYN ; 3.5 ; Helicobacter pylori Vacuolating Cytotoxin A Oligomeric Assembly 2e (OA-2e) 7KL6 ; 1.97 ; Helicobacter pylori Xanthine-Guanine-Hypoxanthine Phosphoribosyltransferase 7KL7 ; 1.47 ; Helicobacter pylori Xanthine-Guanine-Hypoxanthine Phosphoribosyltransferase 7VW9 ; 2.05 ; Helicoverpa armigera pheromone-binding protein PBP1 at pH 5.5 7VW8 ; 1.3 ; Helicoverpa armigera pheromone-binding protein PBP1 at pH 7.5 7VWA ; 2.1 ; Helicoverpa armigera pheromone-binding protein PBP1 with Z-9-hexadecenal 7LCC ; 3.66 ; Helitron transposase bound to LTS 1WTT ; ; HELIX 45 (16S RRNA) FROM B. STEAROTHERMOPHILUS, NMR, 11 STRUCTURES 1WTS ; ; HELIX 45 (16S RRNA) FROM B. STEAROTHERMOPHILUS, NMR, MINIMIZED AVERAGE STRUCTURE 1FDF ; ; HELIX 7 BOVINE RHODOPSIN 2OXJ ; 2.0 ; Helix Bundle Quaternary Structure from alpha/beta-Peptide Foldamers: GCN4-p1 with beta-residues at b and f heptad positions. 2OXK ; 2.0 ; Helix Bundle Quaternary Structure from alpha/beta-Peptide Foldamers: GCN4-pLI with beta-residues at b and f heptad positions. 1NUB ; 2.8 ; HELIX C DELETION MUTANT OF BM-40 FS-EC DOMAIN PAIR 1CE9 ; 1.8 ; HELIX CAPPING IN THE GCN4 LEUCINE ZIPPER 1ANA ; 2.0 ; HELIX GEOMETRY AND HYDRATION IN AN A-DNA TETRAMER. IC-C-G-G 3DNB ; 1.3 ; HELIX GEOMETRY, HYDRATION, AND G.A MISMATCH IN A B-DNA DECAMER 1VRZ ; 1.05 ; Helix turn helix motif 1EM7 ; 2.0 ; HELIX VARIANT OF THE B1 DOMAIN FROM STREPTOCOCCAL PROTEIN G 6MGM ; 1.791 ; Helix-Loop-helix motif of mouse DNA-binding protein inhibitor ID-1 6U2U ; 1.5 ; Helix-Loop-helix motif of mouse DNA-binding protein inhibitor ID-1 1PCG ; 2.7 ; Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions 7DKJ ; 3.7 ; Hemagglutinin Influenza A virus (A/Okuda/1957(H2N2) bound with a neutralizing antibody 1HA0 ; 2.8 ; HEMAGGLUTININ PRECURSOR HA0 5E5W ; 2.4 ; Hemagglutinin-esterase-fusion mutant structure of influenza D virus 5E64 ; 2.4 ; Hemagglutinin-esterase-fusion protein structure of influenza D virus 7JL6 ; 2.1 ; Heme binding to SrrB PAS domain plays a role in redox regulation of S. aureus SrrAB two-component system 6TV2 ; 1.561 ; Heme d1 biosynthesis associated Protein NirF 6TV9 ; 1.893 ; Heme d1 biosynthesis associated Protein NirF in complex with dihydro-heme d1 7P6L ; 2.33 ; Heme domain of CYP505A30, a fungal hydroxylase from Myceliophthora thermophila, bound to dodecanoic acid 7W7D ; 3.4 ; Heme exporter HrtBA in complex with heme 7W78 ; 2.884 ; Heme exporter HrtBA in complex with Mg-AMPPNP 7W79 ; 3.1 ; Heme exporter HrtBA in complex with Mn-AMPPNP 7W7B ; 3.0 ; Heme exporter HrtBA in complex with protoporphyrin IX containing manganese(III), high resolution data 7W7A ; 3.204 ; Heme exporter in complex with Mn-containing protoporphyrin IX, Mn-anomalous data 7W7C ; 2.8 ; Heme exporter in the unliganded form 3ATJ ; 2.2 ; HEME LIGAND MUTANT OF RECOMBINANT HORSERADISH PEROXIDASE IN COMPLEX WITH BENZHYDROXAMIC ACID 2FC1 ; 2.0 ; Heme NO Complex in NOS 6EHA ; 2.0 ; Heme oxygenase 1 in complex with inhibitor 7DVV ; 2.49 ; Heme sensor protein PefR from Streptococcus agalactiae bound to operator DNA (28-mer) 1B2V ; 1.9 ; HEME-BINDING PROTEIN A 8WB2 ; 1.9 ; Heme-bound Arabidopsis thaliana temperature-induced lipocalin 8G64 ; 1.6 ; Heme-bound flavodoxin FldH from Fusobacterium nucleatum 6G5A ; 1.483 ; Heme-carbene complex in myoglobin H64V/V68A containing an N-methylhistidine as the proximal ligand, 1.48 angstrom resolution 6G5B ; 1.6 ; Heme-carbene complex in myoglobin H64V/V68A containing an N-methylhistidine as the proximal ligand, 1.6 angstrom resolution 8QZF ; 1.8 ; Heme-domain BM3 mutant T268E 8QZE ; 1.87 ; Heme-domain BM3 variant 21B3_F87V-A328F 8DEN ; 1.69 ; Heme-Free Cytochrome Variant ApoCyt 1UVY ; 2.4 ; HEME-LIGAND TUNNELING IN GROUP I TRUNCATED HEMOGLOBINS 1UVX ; 2.45 ; Heme-ligand tunneling on group I truncated hemoglobins 2FBZ ; 2.1 ; Heme-No complex in a bacterial Nitric Oxide Synthase 1BVB ; 2.6 ; HEME-PACKING MOTIFS REVEALED BY THE CRYSTAL STRUCTURE OF CYTOCHROME C554 FROM NITROSOMONAS EUROPAEA 3DWJ ; 2.75 ; Heme-proximal W188H mutant of inducible nitric oxide synthase 3AGT ; 1.4 ; Hemerythrin-like domain of DcrH (met) 3AGU ; 1.805 ; Hemerythrin-like domain of DcrH (semimet-R) 3WAQ ; 1.8 ; Hemerythrin-like domain of DcrH I119E mutant (met) 3WHN ; 1.9 ; Hemerythrin-like domain of DcrH I119H mutant (met) 1JRS ; 1.8 ; HEMIACETAL COMPLEX BETWEEN LEUPEPTIN AND TRYPSIN 1JRT ; 1.7 ; HEMIACETAL COMPLEX BETWEEN LEUPEPTIN AND TRYPSIN 7XQI ; 3.7 ; Hemichannel-focused structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE nanodiscs (FIN conformation) 7XQG ; 3.8 ; Hemichannel-focused structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE nanodiscs (GCN conformation) 7XQH ; 3.8 ; Hemichannel-focused structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE nanodiscs (GCN-TM1i conformation) 7XQJ ; 4.0 ; Hemichannel-focused structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE nanodiscs (PLN conformation) 1Z5X ; 3.07 ; hemipteran ecdysone receptor ligand-binding domain complexed with ponasterone A 1NV9 ; 2.356 ; HemK, apo structure 1DE4 ; 2.8 ; HEMOCHROMATOSIS PROTEIN HFE COMPLEXED WITH TRANSFERRIN RECEPTOR 8TNV ; 1.5 ; Hemocyanin Functional Unit CCHB-g of Concholepas concholepas 1BZ1 ; 1.59 ; HEMOGLOBIN (ALPHA + MET) VARIANT 1BZZ ; 1.59 ; HEMOGLOBIN (ALPHA V1M) MUTANT 2VYW ; 1.8 ; Hemoglobin (Hb2) from trematode Fasciola hepatica 1A0U ; 2.14 ; HEMOGLOBIN (VAL BETA1 MET) MUTANT 1A0Z ; 2.0 ; HEMOGLOBIN (VAL BETA1 MET) MUTANT 1A01 ; 1.8 ; HEMOGLOBIN (VAL BETA1 MET, TRP BETA37 ALA) MUTANT 1A00 ; 2.0 ; HEMOGLOBIN (VAL BETA1 MET, TRP BETA37 TYR) MUTANT 1BZ0 ; 1.5 ; HEMOGLOBIN A (HUMAN, DEOXY, HIGH SALT) 1X9F ; 2.6 ; Hemoglobin Dodecamer from Lumbricus Erythrocruorin 2B7H ; 2.2 ; Hemoglobin from Cerdocyon thous, a canidae from Brazil, at 2.2 Angstroms resolution 1EBT ; 1.9 ; HEMOGLOBIN I FROM THE CLAM LUCINA PECTINATA BOUND WITH CYANIDE 1B0B ; 1.43 ; HEMOGLOBIN I FROM THE CLAM LUCINA PECTINATA, CYANIDE COMPLEX AT 100 KELVIN 3AK5 ; 2.2 ; Hemoglobin protease (Hbp) passenger missing domain-2 6R2O ; 2.46 ; Hemoglobin structure from serial crystallography with a 3D-printed nozzle. 1BAB ; 1.5 ; HEMOGLOBIN THIONVILLE: AN ALPHA-CHAIN VARIANT WITH A SUBSTITUTION OF A GLUTAMATE FOR VALINE AT NA-1 AND HAVING AN ACETYLATED METHIONINE NH2 TERMINUS 1W3G ; 2.68 ; Hemolytic lectin from the mushroom Laetiporus sulphureus complexed with two N-acetyllactosamine molecules. 3C7X ; 1.7 ; Hemopexin-like domain of matrix metalloproteinase 14 4DTG ; 1.8 ; Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model 7VGO ; 1.2 ; Hen egg lysozyme 6P4D ; 1.05 ; Hen egg lysozyme (HEL) containing three point mutations (HEL3x): R21Q, R73E, and D101R 5FEK ; 1.8 ; Hen egg lysozyme at room temperature solved from 3600 diffraction images acquired by ultrasonic acoustic levitation method and processed by CrystFEL 5FEL ; 1.8 ; Hen egg lysozyme at room temperature solved from dataset acquired by oscillation method 5FDJ ; 1.8 ; Hen egg lysozyme at room temperature solved from datasets acquired by ultrasonic acoustic levitation method and processed by CrystFEL 7VGP ; 1.91 ; Hen egg lysozyme refolded after denaturation at acidic pH 8YA1 ; 1.57 ; HEN EGG WHITE LYSOZYME 7NKF ; 1.7 ; Hen egg white lysozyme (HEWL) Grown inside (Not centrifuged) HARE serial crystallography chip. 7NJF ; 1.7 ; Hen egg white lysozyme (HEWL) grown inside HARE serial crystallography chip 8B3L ; 1.71 ; Hen Egg White Lysozyme 2s in situ crystallization 8B3T ; 1.78 ; Hen Egg White Lysozyme 4s in situ crystallization 8B3U ; 1.71 ; Hen Egg White Lysozyme 6s in situ crystallization 8B3V ; 1.74 ; Hen Egg White Lysozyme 8s in situ crystallization 5KXK ; 1.198 ; Hen Egg White Lysozyme at 100K, Data set 1 5KXL ; 1.198 ; Hen Egg White Lysozyme at 100K, Data set 2 5KXM ; 1.198 ; Hen Egg White Lysozyme at 100K, Data set 3 5KXN ; 1.198 ; Hen Egg White Lysozyme at 100K, Data set 4 5KXO ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 1 5KY1 ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 10 5KXP ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 2 5KXR ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 3 5KXS ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 4 5KXT ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 5 5KXW ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 6 5KXX ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 7 5KXY ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 8 5KXZ ; 1.2 ; Hen Egg White Lysozyme at 278K, Data set 9 7L84 ; 1.7 ; Hen Egg White Lysozyme by Native S-SAD at Room Temperature 5LVG ; 2.0 ; Hen Egg White Lysozyme co-crystallized with cis-Ru(DMSO)4Cl2 5LVH ; 1.55 ; Hen Egg White Lysozyme co-crystallized with trans-Ru(DMSO)4Cl2 5LVJ ; 1.6 ; Hen Egg White Lysozyme co-crystallized with [H2Ind][trans-RuCl4(DMSO)(HInd)] 5LVI ; 1.7 ; Hen Egg White Lysozyme co-crystallized with [HIsq][trans-RuCl4(DMSO)(Isq)] 6CIW ; 1.42 ; Hen Egg White Lysozyme Cocrystallized with 1,3-Di(2-pyridyl)propane 8RT3 ; 1.09 ; Hen Egg White Lysozyme Crystallized with Bioassembler in Space Microgravity Conditions 8RT2 ; 0.8 ; Hen Egg White Lysozyme Crystallized with Bioassembler on Earth 3KAM ; 1.59 ; Hen Egg White Lysozyme Derivatized with rhenium(I) diaquatricarbonyl cation 2WAR ; 1.8 ; Hen Egg White Lysozyme E35Q chitopentaose complex 5APC ; 1.7 ; Hen Egg White Lysozyme illuminated with 0.4THz radiation 6TVL ; 1.395 ; Hen Egg White Lysozyme in complex with a ""half sandwich""-type Ru(II) coordination compound 7KH5 ; 1.295 ; Hen Egg White Lysozyme in complex with tetrabromoterephthalic acid 1FLQ ; 1.801 ; HEN EGG WHITE LYSOZYME MUTANT WITH ALANINE SUBSTITUTED FOR GLYCINE 1FLU ; 1.785 ; HEN EGG WHITE LYSOZYME MUTANT WITH ALANINE SUBSTITUTED FOR GLYCINE 1FLW ; 1.812 ; HEN EGG WHITE LYSOZYME MUTANT WITH ALANINE SUBSTITUTED FOR GLYCINE 1FLY ; 1.833 ; HEN EGG WHITE LYSOZYME MUTANT WITH ALANINE SUBSTITUTED FOR GLYCINE 1FN5 ; 1.78 ; HEN EGG WHITE LYSOZYME MUTANT WITH ALANINE SUBSTITUTED FOR GLYCINE 5GWB ; 2.001 ; Hen Egg White Lysozyme native crystals soaked for 2 hours in precipitant solution containing 1 M guanidine hydrochloride and 25% glycerol, before data collection 1LKS ; 1.1 ; HEN EGG WHITE LYSOZYME NITRATE 5APD ; 1.7 ; Hen Egg White Lysozyme not illuminated with 0.4THz radiation 5APF ; 1.7 ; Hen Egg White Lysozyme reference dataset even frames 5APE ; 1.7 ; Hen Egg White Lysozyme reference dataset odd frames 8RNV ; 1.08 ; Hen Egg White Lysozyme soaked with cis-Ru(DMSO)4Cl2 8RNW ; 1.12 ; Hen Egg White Lysozyme soaked with trans-Ru(DMSO)4Cl2 8RNY ; 1.02 ; Hen Egg White Lysozyme soaked with with [H2Ind][trans-RuCl4(DMSO)(HInd)] 8RNX ; 1.25 ; Hen Egg White Lysozyme soaked with [HIsq][trans-RuCl4(DMSO)(Isq)] 1AT6 ; 1.8 ; HEN EGG WHITE LYSOZYME WITH A ISOASPARTATE RESIDUE 1AT5 ; 1.8 ; HEN EGG WHITE LYSOZYME WITH A SUCCINIMIDE RESIDUE 5B5J ; 1.26 ; Hen egg white lysozyme with boron tracedrug UTX-97 1A2Y ; 1.5 ; HEN EGG WHITE LYSOZYME, D18A MUTANT, IN COMPLEX WITH MOUSE MONOCLONAL ANTIBODY D1.3 5MYY ; 1.1 ; Hen Egg-White Lysozyme (HEWL) cocrystallized in the presence of Cadmium sulphate 8BQQ ; 1.57 ; Hen Egg-White Lysozyme (HEWL) complexed with amine-functionalised Anderson-Evans polyoxometalate 8BQR ; 2.32 ; Hen Egg-White Lysozyme (HEWL) complexed with biotin-functionalised Anderson-Evans polyoxometalate 5FHW ; 1.52 ; Hen Egg-White Lysozyme (HEWL) complexed with Hf(IV)-substituted Wells Dawson-type polyoxometalate 8BQP ; 1.24 ; Hen Egg-White Lysozyme (HEWL) complexed with methyl-functionalised Anderson-Evans polyoxometalate 8BQT ; 1.47 ; Hen Egg-White Lysozyme (HEWL) complexed with two methyl-functionalised Anderson-Evans polyoxometalates 4XYY ; 1.38 ; Hen Egg-White Lysozyme (HEWL) complexed with Zr(IV)-substituted Keggin-type polyoxometalate 6APM ; 2.05 ; Hen egg-white lysozyme (WT), solved with serial millisecond crystallography using synchrotron radiation 6S2N ; 1.8 ; Hen egg-white lysozyme by serial electron diffraction 6BRE ; 1.86 ; Hen Egg-White Lysozyme cocrystallized with Cadmium sulphate using CuKalpha source. 3RZ4 ; 1.8 ; Hen egg-white lysozyme in HEPES buffer at pH 7.5 5B59 ; 2.0 ; Hen egg-white lysozyme modified with a keto-ABNO. 4N5R ; 2.1 ; Hen egg-white lysozyme phased using free-electron laser data 5YIN ; 1.66 ; Hen egg-white lysozyme precipitant-free orthorhombic form 5OER ; 1.9 ; Hen egg-white lysozyme refined against 5000 9 keV diffraction patterns 5T3F ; 1.45 ; hen egg-white lysozyme soaked with selenourea for 10 min 8JQV ; 1.83 ; Hen egg-white lysozyme solved from 1D fixed target delivery system 4ET8 ; 1.9 ; Hen egg-white lysozyme solved from 40 fs free-electron laser pulse data 4ET9 ; 1.9 ; Hen egg-white lysozyme solved from 5 fs free-electron laser pulse data 4RLM ; 1.9 ; Hen egg-white lysozyme solved from serial crystallography at a synchrotron source, data processed with CrystFEL 4RLN ; 2.17 ; Hen egg-white lysozyme solved from serial crystallography at a synchrotron source, data processed with nXDS 4BS7 ; 1.701 ; Hen egg-white lysozyme structure determined at room temperature by in- situ diffraction and SAD phasing in ChipX 3ZEK ; 1.43 ; Hen egg-white lysozyme structure determined at room temperature by in- situ diffraction in ChipX 6H0L ; 1.9 ; Hen egg-white lysozyme structure determined with data from the EuXFEL, 9.22 keV photon energy 6H0K ; 2.2 ; Hen egg-white lysozyme structure determined with data from the EuXFEL, the first MHz free electron laser, 7.47 keV photon energy 4RW1 ; 1.9 ; Hen egg-white lysozyme structure from a spent-beam experiment at LCLS: original beam 4RW2 ; 2.3 ; Hen egg-white lysozyme structure from a spent-beam experiment at LCLS: refocused beam 4BAP ; 1.207 ; Hen egg-white lysozyme structure in complex with the europium tris- hydroxyethylcholinetriazoledipicolinate complex at 1.21 A resolution. 4BAF ; 1.507 ; Hen egg-white lysozyme structure in complex with the europium tris- hydroxyethyltriazoledipicolinate complex at 1.51 A resolution. 4BAD ; 1.35 ; Hen egg-white lysozyme structure in complex with the europium tris- hydroxymethyltriazoledipicolinate complex at 1.35 A resolution. 7RYD ; 1.18 ; Hen egg-white lysozyme with ionic liquid butylammonium nitrate 1 mol% 7RZ1 ; 2.046 ; Hen egg-white lysozyme with ionic liquid ethanolammonium formate 14.4 mol% 7RZ2 ; 1.07 ; Hen egg-white lysozyme with ionic liquid ethanolammonium formate 4 mol% 7RZ0 ; 1.38 ; Hen egg-white lysozyme with ionic liquid ethanolammonium formate 6.7 mol% 7RYK ; 1.76 ; Hen egg-white lysozyme with ionic liquid ethanolammonium nitrate 1 mol% 7JMU ; 1.2 ; Hen egg-white lysozyme with ionic liquid ethylammonium nitrate 7RXY ; 1.6 ; Hen egg-white lysozyme with ionic liquid ethylammonium nitrate 5 mol% 1UCO ; 2.0 ; HEN EGG-WHITE LYSOZYME, LOW HUMIDITY FORM 2B5Z ; 1.6 ; Hen lysozyme chemically glycosylated 8DZ7 ; 1.34 ; Hen lysozyme in orthorhombic space group at ambient temperature - diffuse scattering dataset 8DYZ ; 1.272 ; Hen lysozyme in tetragonal space group at ambient temperature - diffuse scattering dataset 6O2H ; 1.212 ; Hen lysozyme in triclinic space group at ambient temperature - diffuse scattering dataset 4I8S ; 2.0 ; Hen Lysozyme protein crystallization via standard hanging drop vapor diffusion 5JO7 ; 2.15 ; Henbane premnaspirodiene synthase (HPS), also known as Henbane vetispiradiene synthase (HVS) from Hyoscyamus muticus 2X9M ; 2.9 ; Hendra virus attachment glycoprotein 2VSK ; 3.3 ; Hendra virus attachment glycoprotein in complex with human cell surface receptor ephrinB2 7SYY ; 2.74 ; Hendra virus G protein head domain in complex with cross-neutralizing murine antibody hAH1.3 7SYZ ; 2.86 ; Hendra virus G protein head domain in complex with cross-neutralizing murine antibody hAH1.3 4HEO ; 1.65 ; Hendra virus Phosphoprotein C terminal domain 6BW1 ; 2.2 ; Hendra virus W protein C-terminus in complex with Importin alpha 1 6BW9 ; 1.6 ; Hendra virus W protein C-terminus in complex with Importin alpha 3 crystal form 1 6BWA ; 2.2 ; Hendra virus W protein C-terminus in complex with Importin alpha 3 crystal form 2 6BWB ; 2.3 ; Hendra virus W protein C-terminus in complex with Importin alpha 3 crystal form 3 6W0L ; 2.3 ; Henipavirus W protein interacts with 14-3-3 to modulate host gene expression 1KMX ; ; Heparin-binding Domain from Vascular Endothelial Growth Factor 1VGH ; ; HEPARIN-BINDING DOMAIN FROM VASCULAR ENDOTHELIAL GROWTH FACTOR, NMR, 20 STRUCTURES 2VGH ; ; HEPARIN-BINDING DOMAIN FROM VASCULAR ENDOTHELIAL GROWTH FACTOR, NMR, MINIMIZED AVERAGE STRUCTURE 7V4A ; 3.2 ; Heparin-induced alpha-synuclein fibrils polymorph 1 7V4B ; 3.1 ; Heparin-induced alpha-synuclein fibrils polymorph 3 7V4C ; 3.3 ; Heparin-induced alpha-synuclein fibrils polymorph 4 1AXM ; 3.0 ; HEPARIN-LINKED BIOLOGICALLY-ACTIVE DIMER OF FIBROBLAST GROWTH FACTOR 2AXM ; 3.0 ; HEPARIN-LINKED BIOLOGICALLY-ACTIVE DIMER OF FIBROBLAST GROWTH FACTOR 7V4D ; 3.5 ; Heparin-remodelled alpha-synuclein fibrils 5JMF ; 1.854 ; Heparinase III-BT4657 gene product 5JMD ; 2.4 ; Heparinase III-BT4657 gene product, Methylated Lysines 3E7J ; 2.1 ; HeparinaseII H202A/Y257A double mutant complexed with a heparan sulfate tetrasaccharide substrate 1HAV ; 2.0 ; HEPATITIS A VIRUS 3C PROTEINASE 2QIJ ; 8.9 ; Hepatitis B Capsid Protein with an N-terminal extension modelled into 8.9 A data. 8GBU ; 2.5 ; Hepatitis B capsid Y132A mutant with compound AB-506 7OD6 ; 3.0 ; Hepatitis B core protein + GSLLGRMKGA 7OD7 ; 2.8 ; Hepatitis B core protein + SLLGRM 7OCO ; 3.2 ; Hepatitis B core protein -low secretion phenotype L60V 7OCW ; 3.2 ; Hepatitis B core protein -low secretion phenotype P5T 7OEV ; 3.1 ; Hepatitis B core protein mutant F97L with bound GSLLGRMKGA 7OEW ; 2.9 ; Hepatitis B core protein mutant F97L with bound MHRSLLGRMKGA 7OD8 ; 3.0 ; Hepatitis B core Protein mutant L60V + GSLLGRMKGA 7OEN ; 3.2 ; Hepatitis B core protein mutant P5T with bound GSLLGRMKGA 7OD4 ; 2.8 ; Hepatitis B core protein. 6CWT ; 3.151 ; Hepatitis B core-antigen in complex with Fab e21 6CWD ; 3.33 ; Hepatitis B core-antigen in complex with scFv e13 6CVK ; 2.38 ; Hepatitis B e-antigen in complex with scFv e13 8G8Y ; 3.8 ; Hepatitis B virus capsid bound to importin alpha1 8G6V ; 3.4 ; Hepatitis B virus capsid bound to importin alpha1/beta heterodimer 8BER ; 4.0 ; Hepatitis B virus core antigen (HBc) with the insertion of four external domains of the influenza A M2 protein (HBc/4M2e) with T=3 topology 8BDZ ; 3.13 ; Hepatitis B virus core antigen (HBc) with the insertion of four external domains of the influenza A M2 protein (HBc/4M2e) with T=4 topology 5GMZ ; 1.7 ; Hepatitis B virus core protein Y132A mutant in complex with 4-methyl heteroaryldihydropyrimidine 5WRE ; 1.946 ; Hepatitis B virus core protein Y132A mutant in complex with heteroaryldihydropyrimidine (HAP_R01) 8I71 ; 1.6 ; Hepatitis B virus core protein Y132A mutant in complex with Linvencorvir (RG7907), a Hepatitis B Virus (HBV) Core Protein Allosteric Modulator (CpAM) 5T2P ; 1.693 ; Hepatitis B virus core protein Y132A mutant in complex with sulfamoylbenzamide (SBA_R01) 8KHU ; 2.0 ; Hepatitis B virus core protein Y132A mutant in complex with THPP derivatives 48 5WTW ; 2.623 ; Hepatitis B virus core protein Y132A mutant in P 41 21 2 Space Group 6TIK ; 3.4 ; Hepatitis B virus core shell--virus-like particle with NadA epitope 2A4G ; 2.5 ; Hepatitis C Protease NS3-4A serine protease with Ketoamide Inhibitor SCH225724 Bound 1A1V ; 2.2 ; HEPATITIS C VIRUS NS3 HELICASE DOMAIN COMPLEXED WITH SINGLE STRANDED SDNA 1A1Q ; 2.4 ; HEPATITIS C VIRUS NS3 PROTEINASE 2AX1 ; 2.1 ; Hepatitis C Virus NS5b RNA Polymerase in complex with a covalent inhibitor (5ee) 2AWZ ; 2.15 ; Hepatitis C Virus NS5b RNA Polymerase in complex with a covalent inhibitor (5h) 2AX0 ; 2.0 ; Hepatitis C Virus NS5b RNA Polymerase in complex with a covalent inhibitor (5x) 1C2P ; 1.9 ; HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE 1YVF ; 2.5 ; Hepatitis C virus NS5B RNA-dependent RNA polymerase complex with inhibitor PHA-00729145 1Z4U ; 2.8 ; hepatitis C virus NS5B RNA-dependent RNA polymerase complex with inhibitor PHA-00799585 1YUY ; 1.9 ; HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE GENOTYPE 2a 1YV2 ; 2.5 ; Hepatitis C virus NS5B RNA-dependent RNA Polymerase genotype 2a 3FQK ; 2.2 ; Hepatitis C virus polymerase NS5B (BK 1-570) with HCV-796 inhibitor 3G86 ; 2.2 ; Hepatitis C virus polymerase NS5B (BK 1-570) with thiazine inhibitor 3MF5 ; 2.0 ; Hepatitis C virus polymerase NS5B (BK) with amide bioisostere thumb site inhibitor 4IH5 ; 1.9 ; Hepatitis C Virus polymerase NS5B (BK) with fragment-based compounds 4IH6 ; 2.2 ; Hepatitis C Virus polymerase NS5B (BK) with fragment-based compounds 4IH7 ; 2.3 ; Hepatitis C Virus polymerase NS5B (BK) with fragment-based compounds 3FQL ; 1.8 ; Hepatitis C virus polymerase NS5B (CON1 1-570) with HCV-796 inhibitor 4MIB ; 2.3 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with Compound 48 (N-({(3S)-1-[6-tert-butyl-5-methoxy-8-(2-oxo-1,2-dihydropyridin-3-yl)quinolin-3-yl]pyrrolidin-3-yl}methyl)methanesulfonamide) 4MK9 ; 2.05 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with inhibitor 12 (N-{2-[3-tert-butyl-2-methoxy-5-(2-oxo-1,2-dihydropyridin-3-yl)phenyl]-1,3-benzoxazol-5-yl}methanesulfonamide) 4MKA ; 2.05 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with inhibitor 13 (N-{2-[3-tert-butyl-2-methoxy-5-(2-oxo-1,2-dihydropyridin-3-yl)phenyl]-1,3-benzoxazol-5-yl}methanesulfonamide) 4MKB ; 1.9 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with inhibitor 14 (N-(4-{(E)-2-[3-tert-butyl-2-methoxy-5-(3-oxo-2,3-dihydropyridazin-4-yl)phenyl]ethenyl}phenyl)methanesulfonamide) 4MK7 ; 2.8 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with inhibitor 2 (3-(3-tert-butyl-4-methoxyphenyl)pyridin-2(1H)-one) 4MK8 ; 2.09 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with inhibitor 4 (N-(4-{2-[3-tert-butyl-2-methoxy-5-(2-oxo-1,2-dihydropyridin-3-yl)phenyl]ethyl}phenyl)methanesulfonamide) 4MIA ; 2.8 ; Hepatitis C Virus polymerase NS5B genotype 1b (BK) in complex with RG7109 (N-{4-[6-tert-butyl-5-methoxy-8-(6-methoxy-2-oxo-2,5-dihydropyridin-3-yl)quinolin-3-yl]phenyl}methanesulfonamide) 6W4G ; 1.95 ; Hepatitis C virus polymerase NS5B with RO inhibitor for SAR studies 3H5S ; 2.0 ; Hepatitis C virus polymerase NS5B with saccharin inhibitor 3H5U ; 1.95 ; Hepatitis C virus polymerase NS5B with saccharin inhibitor 1 3H59 ; 2.1 ; Hepatitis C virus polymerase NS5B with thiazine inhibitor 2 1YVX ; 2.0 ; Hepatitis C Virus RNA Polymerase Genotype 2a In Complex With Non- Nucleoside Analogue Inhibitor 1YVZ ; 2.2 ; Hepatitis C Virus RNA Polymerase Genotype 2a In Complex With Non- Nucleoside Analogue Inhibitor 1GX5 ; 1.7 ; Hepatitis C Virus RNA Polymerase in Complex with GTP and Manganese 1NHU ; 2.0 ; Hepatitis C virus RNA polymerase in complex with non-nucleoside analogue inhibitor 1NHV ; 2.9 ; Hepatitis C virus RNA polymerase in complex with non-nucleoside analogue inhibitor 1GX6 ; 1.85 ; Hepatitis C Virus RNA polymerase in complex with UTP and manganese 2GIR ; 1.9 ; Hepatitis C virus RNA-dependent RNA polymerase NS5B with NNI-1 inhibitor 2GIQ ; 1.65 ; Hepatitis C virus RNA-dependent RNA polymerase NS5B with NNI-2 inhibitor 2OIH ; 2.4 ; Hepatitis Delta Virus gemonic ribozyme precursor with C75U mutation and bound to monovalent cation Tl+ 1SJ3 ; 2.2 ; Hepatitis Delta Virus Gemonic Ribozyme Precursor, with Mg2+ Bound 2OJ3 ; 2.9 ; Hepatitis Delta Virus ribozyme precursor structure, with C75U mutation, bound to Tl+ and cobalt hexammine (Co(NH3)63+) 3RKC ; 1.79 ; Hepatitis E Virus Capsid Protein E2s Domain (genotype IV) 3RKD ; 1.9 ; Hepatitis E Virus E2s domain (Genotype I) in complex with a neutralizing antibody 4PLK ; 4.0 ; Hepatitis E Virus E2s domain (Genotype I) in complex with a neutralizing antibody 8G12 4PLJ ; 2.3 ; Hepatitis E Virus E2s domain (Genotype IV) in complex with a neutralizing antibody 8G12 2ZTN ; 3.56 ; Hepatitis E virus ORF2 (Genotype 3) 4HS8 ; 2.6 ; Hepatitus C envelope glycoprotein E2 fragment 412-423 with humanized and affinity-matured antibody hu5B3.v3 4HS6 ; 1.53 ; Hepatitus C envelope glycoprotein E2 fragment 412-423 with humanized and affinity-matured antibody MRCT10.v362 4AVX ; 1.68 ; Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate (Hgs-Hrs) bound to an IP2 compound at 1.68 A Resolution 1IC8 ; 2.6 ; HEPATOCYTE NUCLEAR FACTOR 1A BOUND TO DNA : MODY3 GENE PRODUCT 2H8R ; 3.2 ; Hepatocyte Nuclear Factor 1b bound to DNA: MODY5 Gene Product 1LV2 ; 2.7 ; Hepatocyte Nuclear Factor 4 is a Transcription Factor that Constitutively Binds Fatty Acids 3BGL ; 2.225 ; Hepatoselectivity of Statins: Design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors 3H0T ; 1.89 ; Hepcidin-Fab complex 4B0F ; 2.8 ; Heptameric core complex structure of C4b-binding (C4BP) protein from human 1JBM ; 1.85 ; Heptameric crystal structure of Mth649, an Sm-like archaeal protein from Methanobacterium thermautotrophicum 3J83 ; 30.0 ; Heptameric EspB Rosetta model guided by EM density 7T8C ; 4.5 ; Heptameric Human Twinkle Helicase Clinical Variant W315L 5LU7 ; 1.92 ; Heptose isomerase GmhA mutant - D61A 5LU6 ; 1.67 ; Heptose isomerase mutant - H64Q 2GP0 ; 2.05 ; HePTP Catalytic Domain (residues 44-339), S225D mutant 4ICZ ; 1.9 ; HER2 1221/1222 phosphorylation regulated by PTPN9 3MZW ; 2.9 ; HER2 extracelluar region with affinity matured 3-helix affibody ZHER2:342 7PCD ; 1.77 ; HER2 IN COMPLEX WITH A COVALENT INHIBITOR 5O4G ; 3.0 ; HER2 in complex with Fab MF3958 7JXH ; 3.27 ; HER2 in complex with JBJ-08-178-01 3RCD ; 3.21 ; HER2 Kinase Domain Complexed with TAK-285 6ZQK ; 2.2 ; HER2-binding scFv-Fab fusion 841 4P59 ; 3.4 ; HER3 extracellular domain in complex with Fab fragment of MOR09825 5O4O ; 3.4 ; HER3 in complex with Fab MF3178 5O7P ; 4.5 ; HER3 in complex with Fab MF3178 6OP9 ; 2.501 ; HER3 pseudokinase domain bound to bosutinib 3I31 ; 1.8 ; Hera helicase RNA binding domain is an RRM fold 5MAO ; 1.35 ; HERA HELICASE RNA BINDING DOMAIN with TNCS in P212121 2GXQ ; 1.2 ; HERA N-terminal domain in complex with AMP, crystal form 1 2GXS ; 1.66 ; HERA N-terminal domain in complex with AMP, crystal form 2 2GXU ; 1.67 ; HERA N-terminal domain in complex with orthophosphate, crystal form 1 7KBP ; 2.3 ; Herceptin Diabody with R83T, E85C Mutations 1HAE ; ; HEREGULIN-ALPHA EPIDERMAL GROWTH FACTOR-LIKE DOMAIN, NMR, 20 STRUCTURES 1HAF ; ; HEREGULIN-ALPHA EPIDERMAL GROWTH FACTOR-LIKE DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 8IOB ; 3.9 ; Herg1a-herg1b closed state 1 8IO5 ; 3.8 ; Herg1a-herg1b closed state 2 8IO4 ; 3.5 ; Herg1a-herg1b open state 4D1Q ; 3.4 ; Hermes transposase bound to its terminal inverted repeat 6DX0 ; 2.9 ; Hermes transposase deletion dimer complex with (A/T) DNA 6DWW ; 2.851 ; Hermes transposase deletion dimer complex with (A/T) DNA and Mn2+ 6DWZ ; 3.2 ; Hermes transposase deletion dimer complex with (C/G) DNA 6DWY ; 3.2 ; Hermes transposase deletion dimer complex with (C/G) DNA and Ca2+ 2KI5 ; 1.9 ; HERPES SIMPLEX TYPE-1 THYMIDINE KINASE IN COMPLEX WITH THE DRUG ACICLOVIR AT 1.9A RESOLUTION 3SKU ; 4.0 ; Herpes simplex virus glycoprotein D bound to the human receptor nectin-1 6ODM ; 4.3 ; Herpes simplex virus type 1 (HSV-1) portal vertex-adjacent capsid/CATC, asymmetric unit 6OD7 ; 5.6 ; Herpes simplex virus type 1 (HSV-1) pUL6 portal protein, dodecameric complex 8BQ1 ; 2.32 ; Herpes simplex virus type 1 protease 1AT3 ; 2.5 ; HERPES SIMPLEX VIRUS TYPE II PROTEASE 1QHI ; 1.9 ; HERPES SIMPLEX VIRUS TYPE-I THYMIDINE KINASE COMPLEXED WITH A NOVEL NON-SUBSTRATE INHIBITOR, 9-(4-HYDROXYBUTYL)-N2-PHENYLGUANINE 8C9M ; 3.2 ; HERV-K Gag immature lattice 6Z0L ; 2.33 ; Het-N2 - De novo designed three-helix heterodimer with Cysteine at the N2 position of the alpha-helix 7BEY ; 1.5 ; Het-N2-SO3- - De novo designed three-helix heterodimer with Cysteine S-sulfate at the N2 position of the alpha-helix 6Z0M ; 1.45 ; Het-Ncap - De novo designed three-helix heterodimer with Cysteine at the Ncap position of the alpha-helix 5VTE ; 2.023 ; Hetero antiparallel coiled coil hexamer formed by de novo peptides 1PK1 ; 1.8 ; Hetero SAM domain structure of Ph and Scm. 5XX6 ; 1.31 ; Hetero-micro-seeding: Crystal structure of BPTI-[5,55]C14GA38I variant using micro-seeds from -C14GA38G variant 5XX7 ; 1.38 ; Hetero-micro-seeding: Crystal structure of BPTI-[5,55]C14GA38I variant using micro-seeds from -C14GA38I variant 5XX8 ; 1.3 ; Hetero-micro-seeding: Crystal structure of BPTI-[555]C14GA38I variant using micro-seeds from -C14GA38L variant 7DN1 ; 1.74 ; Hetero-oligomers of SCR-SCR2 crystal structure with NADPH 1RSO ; ; Hetero-tetrameric L27 (Lin-2, Lin-7) domain complexes as organization platforms of supra-molecular assemblies 3TNU ; 3.005 ; Heterocomplex of coil 2B domains of human intermediate filament proteins, keratin 5 (KRT5) and keratin 14 (KRT14) 4V1T ; 2.14 ; Heterocyclase in complex with substrate and Cofactor 4V1U ; 2.86 ; Heterocyclase in complex with substrate and Cofactor 4V1V ; 3.01 ; Heterocyclase in complex with substrate and Cofactor 1G05 ; 2.45 ; HETEROCYCLE-BASED MMP INHIBITOR WITH P2'SUBSTITUENTS 1U9H ; 2.17 ; Heterocyclic Peptide Backbone Modification in GCN4-pLI Based Coiled Coils: Replacement of E(22)L(23) 1U9F ; 2.2 ; Heterocyclic Peptide Backbone Modification in GCN4-pLI Based Coiled Coils: Replacement of K(15)L(16) 1U9G ; 2.2 ; Heterocyclic Peptide Backbone Modification in GCN4-pLI Based Coiled Coils: Replacement of K(8)L(9) 2AG3 ; 2.0 ; Heterocyclic Peptide Backbone Modification in Gcn4-pLI Based Coiled Coils: Substitution of the K(15)-L(16) amide with a triazole 1JK9 ; 2.9 ; Heterodimer between H48F-ySOD1 and yCCS 2L9B ; ; Heterodimer between Rna14p monkeytail domain and Rna15p hinge domain of the yeast CF IA complex 5XED ; 1.55 ; Heterodimer constructed from M61A PA cyt c551-HT cyt c552 and HT cyt c552-PA cyt c551 chimeric proteins 5XEC ; 1.1 ; Heterodimer constructed from PA cyt c551-HT cyt c552 and HT cyt c552-PA cyt c551 chimeric proteins 5XN6 ; 3.598 ; Heterodimer crystal structure of geranylgeranyl diphosphate synthases 1 with GGPPS Recruiting Protein(OsGRP) from Oryza sativa 8ALO ; 3.002 ; Heterodimer formation of sensory domains of Vibrio cholerae regulators ToxR and ToxS 7RHZ ; 4.48 ; Heterodimer of Cre recombinase mutants D33A/A36V/R192A and R72E/L115D/R119D in complex with loxP DNA. 4WV6 ; 1.75 ; Heterodimer of Importin alpha 1 with nuclear localization signal of TAF8 1OEY ; 2.0 ; Heterodimer of p40phox and p67phox PB1 domains from human NADPH oxidase 4WV4 ; 1.909 ; Heterodimer of TAF8/TAF10 8G18 ; 2.85 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-108 6E7W ; 2.67 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-115 6E7U ; 2.27 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-31 6E7R ; 2.1 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-4 6E7S ; 2.72 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-5 6E7T ; 2.31 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-6 6E7V ; 2.6 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-88 6E7X ; 2.58 ; Heterodimer of the GluN1b-GluN2B NMDA receptor amino-terminal domains bound to allosteric inhibitor 93-97 7VBQ ; 1.95 ; Heterodimer structure of Fe(II)/(alpha)ketoglutarate-dependent dioxygenase TlxIJ 6RAI ; 2.9 ; Heterodimeric ABC exporter TmrAB in ATP-bound outward-facing occluded conformation 6RAH ; 2.8 ; Heterodimeric ABC exporter TmrAB in ATP-bound outward-facing open conformation 6RAF ; 3.8 ; Heterodimeric ABC exporter TmrAB in inward-facing narrow conformation under turnover conditions 6RAN ; 4.2 ; Heterodimeric ABC exporter TmrAB in inward-facing wide conformation 6RAG ; 4.2 ; Heterodimeric ABC exporter TmrAB in inward-facing wide conformation under turnover conditions 6RAK ; 3.3 ; Heterodimeric ABC exporter TmrAB in vanadate trapped outward-facing occluded conformation 6RAJ ; 3.5 ; Heterodimeric ABC exporter TmrAB in vanadate trapped outward-facing open conformation 6RAL ; 3.5 ; Heterodimeric ABC exporter TmrAB under turnover conditions in asymmetric unlocked return conformation 6RAM ; 3.8 ; Heterodimeric ABC exporter TmrAB under turnover conditions in asymmetric unlocked return conformation with wider opened intracellular gate 8FPF ; 3.27 ; Heterodimeric ABC transporter BmrCD in the inward-facing conformation bound to ATP: BmrCD_IF-ATP 8T3K ; 3.33 ; Heterodimeric ABC transporter BmrCD in the inward-facing conformation bound to ATP: BmrCD_IF-ATP2 8SZC ; 3.06 ; Heterodimeric ABC transporter BmrCD in the inward-facing conformation bound to substrate and ATP: BmrCD_IF-1HT/ATP 8FMV ; 3.34 ; Heterodimeric ABC transporter BmrCD in the inward-facing conformation bound to substrate and ATP: BmrCD_IF-2HT/ATP 8T1P ; 2.96 ; Heterodimeric ABC transporter BmrCD in the occluded conformation bound to ADPVi: BmrCD_OC-ADPVi 8FHK ; 2.9 ; Heterodimeric ABC transporter BmrCD in the occluded conformation bound to ATP: BmrCD_OC-ATP 2KS1 ; ; Heterodimeric association of Transmembrane domains of ErbB1 and ErbB2 receptors Enabling Kinase Activation 4PAS ; 1.62 ; Heterodimeric coiled-coil structure of human GABA(B) receptor 8OK9 ; 2.5 ; Heterodimeric complex of Archaeoglobus fulgidus Argonaute protein Af1318 (AfAgo) with DNA and AfAgo-N protein containing N-L1-L2 domains 7S7Q ; 2.85 ; Heterodimeric complex of Pf12 and Pf41 of Plasmodium falciparum 4XRS ; 3.5 ; Heterodimeric complex of transcription factors MEIS1 and DLX3 on specific DNA 4BSV ; 1.75 ; Heterodimeric Fc Antibody Azymetric Variant 1 4BSW ; 2.15 ; Heterodimeric Fc Antibody Azymetric Variant 2 7TTZ ; 2.35 ; Heterodimeric IgA Fc in complex with Staphylococcus aureus protein SSL7 7OVO ; 2.1 ; Heterodimeric murine tRNA-guanine transglycosylase in complex with queuine 7OWZ ; 2.6 ; Heterodimeric murine tRNA-guanine transglycosylase in complex with queuine and in the presence of Anderson-Evans type (TEW) and Strandberg type polyoxometalate (POM) 7OVS ; 2.6 ; Heterodimeric murine tRNA-guanine transglycosylase in the presence of Anderson-Evans type (TEW) and Strandberg type polyoxometalate (POM) 3WYO ; 2.0 ; Heterodimeric myoglobin formed by domain swapping 5TTH ; 3.2 ; Heterodimeric SpyCatcher/SpyTag-fused zebrafish TRAP1 in ATP/ADP-hybrid state 4NIF ; 2.15 ; Heterodimeric structure of ERK2 and RSK1 1ZT2 ; 3.33 ; Heterodimeric structure of the core primase. 7B2I ; 1.65 ; Heterodimeric tRNA-Guanine Transglycosylase from mouse 7OV9 ; 1.9 ; Heterodimeric tRNA-Guanine Transglycosylase from mouse, apo-structure 6DTK ; 2.0 ; Heterodimers of FALS mutant SOD enzyme 5ODC ; 2.3 ; Heterodisulfide reductase / [NiFe]-hydrogenase complex from Methanothermococcus thermolithotrophicus at 2.3 A resolution 5ODI ; 2.4 ; Heterodisulfide reductase / [NiFe]-hydrogenase complex from Methanothermococcus thermolithotrophicus cocrystallized with CoM-SH 5ODQ ; 2.15 ; Heterodisulfide reductase / [NiFe]-hydrogenase complex from Methanothermococcus thermolithotrophicus soaked with bromoethanesulfonate. 5ODR ; 2.2 ; Heterodisulfide reductase / [NiFe]-hydrogenase complex from Methanothermococcus thermolithotrophicus soaked with heterodisulfide for 2 minutes. 5ODH ; 2.2 ; Heterodisulfide reductase / [NiFe]-hydrogenase complex from Methanothermococcus thermolithotrophicus soaked with heterodisulfide for 3.5 minutes 1K1H ; ; HETERODUPLEX OF CHIRALLY PURE METHYLPHOSPHONATE/DNA DUPLEX 1K1R ; ; HETERODUPLEX OF CHIRALLY PURE R-METHYLPHOSPHONATE/DNA DUPLEX 4WC8 ; 1.908 ; Heterogeneous dodecamer formed from macrocycles containing a sequence from beta-2-microglobulin(63-69). 1TXP ; ; Heterogeneous Nuclear Ribonucleoprotein (hnRNP) C Oligomerization Domain Tetramer 1HD0 ; ; HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN D0 (HNRNP D0 RBD1), NMR 1HD1 ; ; HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN D0 (HNRNP D0 RBD1), NMR 7ZUG ; 1.075 ; Heterogeneous nuclear ribonucleoprotein H1, qRRM2 domain 5US3 ; ; Heterogeneous-backbone Foldamer Mimic of the Sp1-3 Zinc Finger 6E5H ; ; Heterogeneous-Backbone Mimics of a Designed Disulfide-Rich Protein: Aib turn 6E5K ; ; Heterogeneous-Backbone Mimics of a Designed Disulfide-Rich Protein: Aib turn, Aib helix, N-methyl hairpin 6E5J ; ; Heterogeneous-Backbone Mimics of a Designed Disulfide-Rich Protein: Aib turn, beta3 helix, N-methyl hairpin 6E5I ; ; Heterogeneous-Backbone Mimics of a Designed Disulfide-Rich Protein: Orn turn 7RAP ; ; Heterogeneous-backbone proteomimetic analogue of the disulfide-rich venom peptide lasiocepsin 7TV7 ; ; Heterogeneous-backbone proteomimetic analogue of the disulfide-rich venom peptide lasiocepsin: beta-3-Lys modified loop 7TV8 ; ; Heterogeneous-backbone proteomimetic analogue of the disulfide-rich venom peptide lasiocepsin: D-Ala modified loop 7TV6 ; ; Heterogeneous-backbone proteomimetic analogue of the disulfide-rich venom peptide lasiocepsin: native loop 8FUL ; 2.29 ; Heterologous AibH1H2 purified from Lysogeny broth 8ARC ; 2.1 ; Heterologous Complex of Aeromonas hydrophila Type III secretion substrate AscX with Photorhabdus luminescens subsp. laumondii LscY 8ARA ; 2.3 ; Heterologous Complex of Aeromonas hydrophila Type III secretion substrate AscX with Yersinia enterocolitica chaperone YscY 8ARB ; 2.63 ; Heterologous Complex of shortened Aeromonas hydrophila Type III secretion substrate AscX with Yersinia enterocolitica chaperone YscY 6LID ; 2.7 ; Heteromeric amino acid transporter b0,+AT-rBAT complex 6LI9 ; 2.3 ; Heteromeric amino acid transporter b0,+AT-rBAT complex bound with Arginine 8HLA ; 2.81 ; Heteromeric ring comprised of peroxiredoxin from Thermococcus kodakaraensis (TkPrx) F42C/C46S/C205S/C211S mutant modified with 2-(bromoacetyl)naphthalene (Naph@TkPrx*F42C) and TkPrx C46S/F76C/C205S/C211S mutant modified with 2-(bromoacetyl)naphthalene (Naph@TkPrx*F76C) (Naph@(MIX|3:3)) 6HYG ; 2.31 ; Heteromeric tandem IgG4/IgG1 Fc 5L1C ; ; Heteronuclear Solution Structure of Chlorotoxin 1XOF ; 1.95 ; Heterooligomeric Beta Beta Alpha Miniprotein 3HE5 ; 1.75 ; Heterospecific coiled-coil pair SYNZIP2:SYNZIP1 3HE4 ; 2.46 ; Heterospecific coiled-coil pair SYNZIP5:SYNZIP6 2GAG ; 1.85 ; Heteroteterameric sarcosine: structure of a diflavin metaloenzyme at 1.85 a resolution 7YCS ; 1.79 ; Heterotetramer of Antitoxin PrpA together with Toxin PrpT from Pseudoalteromonas rubra 7YCU ; 1.79 ; Heterotetramer of Antitoxin PrpA together with Toxin PrpT from Pseudoalteromonas rubra 8B69 ; 3.07 ; Heterotetramer of K-Ras4B(G12V) and Rgl2(RBD) 2YFW ; 2.6 ; Heterotetramer structure of Kluyveromyces lactis Cse4,H4 4NUV ; 2.6 ; Heterotetramer structure of Region II from Plasmodium vivax Duffy Binding Protein (PvDBP) bound to the ectodomain of the Duffy Antigen Receptor for Chemokines (DARC) 7EIV ; 2.68 ; heterotetrameric glycyl-tRNA synthetase from Escherichia coli 6GZC ; 2.0 ; heterotetrameric katanin p60:p80 complex 3AD7 ; 2.2 ; Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 in complex with methylthio acetate 3AD8 ; 2.2 ; Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 in complex with pyrrole 2-carboxylate 3ADA ; 2.2 ; Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 in complex with sulfite 3AD9 ; 2.3 ; Heterotetrameric Sarcosine Oxidase from Corynebacterium sp. U-96 sarcosine-reduced form 2GAH ; 2.0 ; Heterotetrameric sarcosine: structure of a diflavin metaloenzyme at 1.85 a resolution 6YUP ; 2.9 ; Heterotetrameric structure of the rBAT-b(0,+)AT1 complex 4NUU ; 1.95 ; Heterotrimer structure of Region II from Plasmodium vivax Duffy Binding Protein (PvDBP) bound to the ectodomain of the Duffy Antigen Receptor for Chemokines (DARC) 1GOT ; 2.0 ; HETEROTRIMERIC COMPLEX OF A GT-ALPHA/GI-ALPHA CHIMERA AND THE GT-BETA-GAMMA SUBUNITS 1A0R ; 2.8 ; HETEROTRIMERIC COMPLEX OF PHOSDUCIN/TRANSDUCIN BETA-GAMMA 5KDO ; 1.9 ; Heterotrimeric complex of the 4 alanine insertion variant of the Gi alpha1 subunit and the Gbeta1-Ggamma1 6CRK ; 2.0 ; Heterotrimeric G-protein in complex with an antibody fragment 2KW3 ; ; Heterotrimeric interaction between RFX5 and RFXAP 2HII ; 2.79 ; heterotrimeric PCNA sliding clamp 2HIK ; 3.3 ; heterotrimeric PCNA sliding clamp 8E0O ; 2.1 ; Heterotrimeric variant of tcTRP9, hetBGL03-15-18 5H83 ; 2.25 ; HETEROYOHIMBINE SYNTHASE HYS FROM CATHARANTHUS ROSEUS - APO FORM 5FI5 ; 2.25 ; HETEROYOHIMBINE SYNTHASE THAS1 FROM CATHARANTHUS ROSEUS - APO FORM 5FI3 ; 1.05 ; HETEROYOHIMBINE SYNTHASE THAS1 FROM CATHARANTHUS ROSEUS - COMPLEX WITH NADP+ 5H82 ; 2.05 ; HETEROYOHIMBINE SYNTHASE THAS2 FROM CATHARANTHUS ROSEUS - APO FORM 5H81 ; 2.1 ; HETEROYOHIMBINE SYNTHASE THAS2 FROM CATHARANTHUS ROSEUS - COMPLEX WITH NADP+ 4WP4 ; 1.43 ; Hev b 6.02 (hevein) extracted from surgical gloves 7BV0 ; 1.801 ; HEV-C E2s 1LLO ; 1.85 ; HEVAMINE A (A PLANT ENDOCHITINASE/LYSOZYME) COMPLEXED WITH ALLOSAMIDIN 2HVM ; 1.8 ; HEVAMINE A AT 1.8 ANGSTROM RESOLUTION 1KR1 ; 2.0 ; Hevamine Mutant D125A/E127A in Complex with Tetra-NAG 1KQY ; 1.92 ; Hevamine Mutant D125A/E127A/Y183F in Complex with Penta-NAG 1KQZ ; 1.92 ; Hevamine Mutant D125A/E127A/Y183F in Complex with Tetra-NAG 1KR0 ; 1.92 ; Hevamine Mutant D125A/Y183F in Complex with Tetra-NAG 2LB7 ; ; Hevein-type Antifungal Peptide with a Unique 10-Cysteine Motif 1HEV ; ; HEVEIN: THE NMR ASSIGNMENT AND AN ASSESSMENT OF SOLUTION-STATE FOLDING FOR THE AGGLUTININ-TOXIN MOTIF 4IAS ; 2.6 ; HEW Lysozyme by langmuir- blodgett modified vapour diffusion 4IAT ; 2.0 ; HEW Lysozyme by langmuir- blodgett modified vapour diffusion 7A70 ; 1.8 ; HEW lysozyme in complex with Ti(OH)4 6Q8R ; 1.7 ; HEW Lysozyme under 2 kbar of argon 1LPI ; 2.0 ; HEW LYSOZYME: TRP...NA CATION-PI INTERACTION 2BLY ; 1.4 ; HEWL after a high dose x-ray ""burn"" 2VB1 ; 0.65 ; HEWL at 0.65 angstrom resolution 2BLX ; 1.4 ; HEWL before a high dose x-ray ""burn"" 4LT1 ; 2.3 ; HEWL co-crystallised with Carboplatin in non-NaCl conditions: crystal 1 processed using the XDS software package 3TXD ; 1.53 ; HEWL co-crystallization with carboplatin in aqueous media with glycerol as the cryoprotectant 3TXE ; 1.7 ; HEWL co-crystallization with carboplatin in aqueous media with paratone as the cryoprotectant 3TXH ; 1.69 ; HEWL co-crystallization with carboplatin in DMSO media with glycerol as the cryoprotectant 3TXI ; 1.6 ; HEWL co-crystallization with carboplatin in DMSO media with paratone as the cryoprotectant 3TXB ; 1.59 ; HEWL co-crystallization with cisplatin in aqueous media with glycerol as the cryoprotectant 3TXF ; 1.69 ; HEWL co-crystallization with cisplatin in DMSO media with glycerol as the cryoprotectant 3TXG ; 1.7 ; HEWL co-crystallization with cisplatin in DMSO media with paratone as the cryoprotectant 3TXK ; 3.0 ; HEWL co-crystallization with cisplatin in DMSO media with paratone as the cryoprotectant at pH 6.5 3TXJ ; 2.48 ; HEWL co-crystallization with NAG with silicone oil as the cryoprotectant 4LT0 ; 2.1 ; HEWL co-crystallized with Carboplatin in non-NaCl conditions: crystal 1 processed using the EVAL software package 4LT2 ; 2.0 ; HEWL co-crystallized with Carboplatin in non-NaCl conditions: crystal 2 processed using the EVAL software package 4LT3 ; 2.0 ; HEWL co-crystallized with Carboplatin in non-NaCl conditions: crystal 2 processed using the XDS software package 6A4Q ; 1.75 ; HEWL crystals soaked in 2.5M GuHCl for 110 minutes 6A4O ; 1.75 ; HEWL crystals soaked in 2.5M GuHCl for 20 minutes 6A4P ; 1.76 ; HEWL crystals soaked in 2.5M GuHCl for 40 minutes 6A4N ; 1.75 ; HEWL crystals soaked in 2.5M GuHCl for 8 minutes 7BMR ; 1.78 ; HEWL in cesium chloride (0.25 M CsCl in protein buffer and 1.71 M CsCl in cryo protectant) 7BMP ; 1.9 ; HEWL in cesium chloride (0.25 M CsCl in protein buffer and cryo protectant). 7BMO ; 1.9 ; HEWL in cesium chloride (0.25 M CsCl in protein buffer) 7BMS ; 1.75 ; HEWL in cesium chloride (1.5 M CsCl in crystallization condition and cryo protectant) 7BMQ ; 1.79 ; HEWL in cesium chloride (1.71 M CsCl in cryo protectant) 7BMT ; 1.47 ; HEWL in sodium chloride 6QWW ; 1.35 ; HEWL lysozyme, crystallized from CuCl2 solution 6QWZ ; 1.35 ; HEWL lysozyme, crystallized from KCl solution 6QX0 ; 1.35 ; HEWL lysozyme, crystallized from LiCl solution 6QWY ; 1.35 ; HEWL lysozyme, crystallized from NaCl solution 6QWX ; 1.35 ; HEWL lysozyme, crystallized from NiCl2 solution 8C5K ; 2.16 ; HEX-1 (in cellulo, in situ) crystallized and diffracted in High Five cells. Growth and SX data collection at 296 K on CrystalDirect plates 7NJH ; 2.5 ; HEX1 (in cellulo) grown inside HARE serial crystallography chip 7NJI ; 2.3 ; HEX1 (in cellulo) loaded on HARE serial crystallography chip 2WX5 ; 2.63 ; Hexa-coordination of a bacteriochlorophyll cofactor in the Rhodobacter sphaeroides reaction centre 6LR1 ; 2.5 ; Hexachlorobenzene Monooxygenase (HcbA1) from Nocardioides sp. strain PD653 7CZA ; 3.21 ; Hexachlorobenzene monooxygenase (HcbA1) from Nocardioides sp. strain PD653 complexed with FMN 1GWS ; 2.4 ; hexadecaheme high molecular weight cytochrome Hmc from Desulfovibrio vulgaris Hildenborough 7URZ ; 3.45 ; Hexadecameric hub domain of CaMKII beta 3DMZ ; 2.0 ; Hexafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 3QLA ; 1.6 ; Hexagonal complex structure of ATRX ADD bound to H3K9me3 peptide 2UV1 ; 2.6 ; Hexagonal crystal form of GamS from bacteriophage lambda. 3ZTQ ; 2.1 ; Hexagonal crystal form P61 of the Aquifex aeolicus nucleoside diphosphate kinase 3C17 ; 1.95 ; Hexagonal Crystal Structure of Precursor E. coli Isoaspartyl Peptidase/l-Asparaginase (ECAIII) with Active-site T179A mutation 3D1D ; 2.6 ; Hexagonal crystal structure of Tas3 C-terminal alpha motif 4R0N ; 2.0 ; Hexagonal form of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis 3ZTS ; 2.3 ; Hexagonal form P6122 of the Aquifex aeolicus nucleoside diphosphate kinase (FINAL STAGE OF RADIATION DAMAGE) 3ZTR ; 2.3 ; Hexagonal form P6122 of the Aquifex aeolicus nucleoside diphosphate kinase (FIRST STAGE OF RADIATION DAMAGE) 3BQB ; 2.7 ; Hexagonal kristal form of 2-keto-3-deoxyarabinonate dehydratase 3DL2 ; 2.1 ; Hexagonal structure of the LDH domain of Human Ubiquitin-conjugating Enzyme E2-like Isoform A 6D5O ; 2.00005 ; Hexagonal thermolysin (295 K) in the presence of 50% DMF 6D5N ; 2.00004 ; Hexagonal thermolysin (295) in the presence of 50% xylose 6D5P ; 3.00011 ; Hexagonal thermolysin cryocooled to 100 K with 20% xylose as cryoprotectant 6D5Q ; 2.00016 ; Hexagonal thermolysin cryocooled to 100 K with 30% xylose as cryoprotectant 6D5U ; 2.0001 ; Hexagonal thermolysin cryocooled to 100 K with 50% methanol as cryoprotectant 6D5S ; 2.00004 ; Hexagonal thermolysin cryocooled to 100 K with 50% MPD as cryoprotectant 6D5T ; 2.00004 ; Hexagonal thermolysin cryocooled to 100 K with 50% MPD as cryoprotectant 6D5R ; 2.00002 ; Hexagonal thermolysin cryocooled to 100 K with 50% xylose as cryoprotectant 4X0S ; 2.032 ; Hexamer formed by a macrocycle containing a sequence from beta-2-microglobulin (63-69). 4P4V ; 1.97 ; Hexamer formed by a macrocyclic peptide derived from beta-2-microglobulin (63-69) - (ORN)YLL(PHI)YTE(ORN)KVA(MAA)AVK 4P4Y ; 1.509 ; Hexamer formed by a macrocyclic peptide derived from beta-2-microglobulin (63-69) - (ORN)YLL(PHI)YTE(ORN)KVT(MAA)TVK 7SNQ ; 2.81 ; Hexamer HIV-1 CA in complex with CPSF6 peptide and IP6 ligand 4U0B ; 2.8 ; Hexamer HIV-1 CA in complex with CPSF6 peptide, P212121 crystal form 6VWS ; 6.08 ; Hexamer of Helical HIV capsid by RASTR method 6ECO ; 4.2 ; Hexamer-2-Foldon HIV-1 capsid platform 3CR8 ; 2.95 ; Hexameric APS kinase from Thiobacillus denitrificans 6PIH ; 6.6 ; Hexameric ArnA cryo-EM structure 7O41 ; 7.6 ; Hexameric composite model of the Inner Membrane Complex (IMC) with the Arches from the fully-assembled R388 type IV secretion system determined by cryo-EM. 4IDX ; 3.21 ; hexameric crystal structure of Schmallenberg virus nucleoprotein 4LF1 ; 2.38 ; Hexameric Form II RuBisCO from Rhodopseudomonas palustris, activated and complexed with 2-CABP 4LF2 ; 2.38 ; Hexameric Form II RuBisCO from Rhodopseudomonas palustris, activated and complexed with sulfate and magnesium 7T13 ; 3.15 ; Hexameric HIV-1 (M-group) CA Q50Y mutant 7QDF ; 2.304 ; Hexameric HIV-1 (M-group) CA R120 mutant 8D3B ; 3.3 ; Hexameric HIV-1 (M-group) Q50Y/R120 mutant 7T12 ; 3.0 ; Hexameric HIV-1 (O-group) CA 5JPA ; 1.7 ; Hexameric HIV-1 CA H12Y mutant 4U0F ; 2.22 ; Hexameric HIV-1 CA in Complex with BI-2 4U0A ; 2.05 ; Hexameric HIV-1 CA in complex with CPSF6 peptide, P6 crystal form 5HGM ; 2.04 ; Hexameric HIV-1 CA in complex with dATP 8QUI ; 1.69 ; Hexameric HIV-1 CA in complex with DDD00024969 8QUH ; 1.55 ; Hexameric HIV-1 CA in complex with DDD00057456 8QUB ; 1.63 ; Hexameric HIV-1 CA in complex with DDD00074110 8QUX ; 2.3 ; Hexameric HIV-1 CA in complex with DDD00100333 8QUK ; 1.38 ; Hexameric HIV-1 CA in complex with DDD00100439 8QUJ ; 1.63 ; Hexameric HIV-1 CA in complex with DDD00100452 8QUL ; 1.67 ; Hexameric HIV-1 CA in complex with DDD00100555 8QUW ; 2.02 ; Hexameric HIV-1 CA in complex with DDD01044153 8QUY ; 1.88 ; Hexameric HIV-1 CA in complex with DDD01728501 8QV4 ; 2.7 ; Hexameric HIV-1 CA in complex with DDD01728503 8QV1 ; 2.2 ; Hexameric HIV-1 CA in complex with DDD01728505 8QV9 ; 1.76 ; Hexameric HIV-1 CA in complex with DDD01829021 8QVA ; 2.0 ; Hexameric HIV-1 CA in complex with DDD01829894 5HGP ; 1.95 ; Hexameric HIV-1 CA in complex with hexacarboxybenzene 4U0D ; 3.0 ; Hexameric HIV-1 CA in complex with Nup153 peptide, P212121 crystal form 4U0C ; 1.77 ; Hexameric HIV-1 CA in complex with Nup153 peptide, P6 crystal form 4U0E ; 2.043 ; Hexameric HIV-1 CA in complex with PF3450074 5HGO ; 2.0 ; Hexameric HIV-1 CA R18G mutant 5HGN ; 1.9 ; Hexameric HIV-1 CA, apo form 5HGL ; 3.1 ; Hexameric HIV-1 CA, open conformation 8BTB ; 14.0 ; Hexameric human IgG3 Fc complex 1OLO ; 2.55 ; Hexameric Replicative DNA Helicase RepA from Plasmid RSF1010 - Cubic Crystal Structure 8IGW ; 4.2 ; Hexameric Ring Complex of Engineered V1-ATPase bound to 4 ADPs: A3(De)3_(ADP)3cat,1non-cat, Hexameric Ring Complex of Engineered V1-ATPase bound to 5 ADPs: A3(De)3_(ADP)3cat,2non-cat 8IGV ; 3.15 ; Hexameric Ring Complex of Engineered V1-ATPase bound to 5 ADPs: A3(De)3_(ADP-Pi)1cat(ADP)2cat,2non-cat 7COQ ; 3.44 ; Hexameric Ring Complex of Engineered V1-ATPase bound to AMP-PNP: A3(De)3_(ANP)1cat 8IGU ; 2.77 ; Hexameric Ring Complex of Engineered V1-ATPase: A3(De)3_empty 4DC9 ; 2.6 ; Hexameric ring of Methanococcus voltae RadA 4J4R ; 1.9 ; Hexameric SFTSVN 7T15 ; 2.05 ; Hexameric SIVcpz CA 7T14 ; 2.25 ; Hexameric SIVmac CA 5E7S ; 3.03 ; Hexameric structure of a LonA protease domain in active state 5ZL1 ; 3.2 ; Hexameric structure of copper-containing nitrite reductase of an anammox organism KSU-1 6L8D ; 2.91 ; Hexameric structure of the ATPase subunit of magnesium chelatase 2NZM ; 1.8 ; Hexasaccharide I bound to Bacillus subtilis pectate lyase 1BDG ; 2.6 ; HEXOKINASE FROM SCHISTOSOMA MANSONI COMPLEXED WITH GLUCOSE 6RSW ; 1.95 ; HFD domain of mouse CAP1 bound to the pointed end of G-actin 1A6Z ; 2.6 ; HFE (HUMAN) HEMOCHROMATOSIS PROTEIN 8P91 ; 1.4 ; Hfq from Chromobacterium haemolyticum; a P6 space group monomer 6XYJ ; 2.772 ; Hfq from E.coli with inserted long loop L4 sequence 4J6Y ; 2.1405 ; Hfq from Pseudomonas aeruginosa crystallized in GTP presence 6BDG ; 1.964 ; HFQ monomer in spacegroup p6 at 1.93 angstrom resolution 1U1T ; 1.9 ; Hfq protein from Pseudomonas aeruginosa. High-salt crystals 1U1S ; 1.6 ; Hfq protein from Pseudomonas aeruginosa. Low-salt crystals 8BVJ ; 4.5 ; Hfq-Crc-estA translation repression complex 3HCN ; 1.6 ; Hg and protoporphyrin bound Human Ferrochelatase 1QML ; 3.0 ; Hg complex of yeast 5-aminolaevulinic acid dehydratase 2YAW ; 2.499 ; HG INHIBITED SULFUR OXYGENASE REDUCTASE 1DHG ; 2.5 ; HG-SUBSTITUTED DESULFOREDOXIN 6NUG ; ; hGRNA4-28_3s 2MW2 ; ; Hha-H-NS46 charge zipper complex 2C7R ; 1.9 ; HhaI DNA methyltransferase (T250G mutant) complex with oligonucleotide containing 2-aminopurine as a target base (GPGC:GMGC) and SAH 2C7O ; 1.9 ; HhaI DNA methyltransferase complex with 13mer oligonucleotide containing 2-aminopurine adjacent to the target base (PCGC:GMGC) and SAH 2C7P ; 1.7 ; HhaI DNA methyltransferase complex with oligonucleotide containing 2- aminopurine opposite to the target base (GCGC:GMPC) and SAH 2C7Q ; 1.85 ; HhaI DNA methyltransferase complex with oligonucleotide containing 2- aminopurine outside the recognition sequence (paired with G) and SAH 2UYC ; 2.0 ; HhaI DNA methyltransferase R163N mutant complex with 13mer GCGC-GMGC oligonucleotide and SAH 2UZ4 ; 2.1 ; HhaI DNA methyltransferase R165N mutant complex with 13mer GCGC-GMGC oligonucleotide and SAH 2UYH ; 2.63 ; HhaI DNA methyltransferase S87Q-Q237S mutant complex with 13mer GCGC- GMGC oligonucleotide and SAH 6UKF ; 1.0 ; HhaI endonuclease in Complex with DNA at 1 Angstrom Resolution 6UKG ; 1.16 ; HhaI endonuclease in Complex With DNA in space group P21 (pH 4.2) 6UKI ; 2.7 ; HhaI endonuclease in Complex with DNA in space group P212121 (pH 6.0) 6UKH ; 2.82 ; HhaI endonuclease in Complex with DNA in space group P41212 (pH 6.0) 6UKE ; 1.62 ; HhaI endonuclease in Complex with Iodine-Labelled DNA 1SKM ; 2.2 ; HhaI methyltransferase in complex with DNA containing an abasic south carbocyclic sugar at its target site 5UDH ; 3.24 ; HHARI/ARIH1-UBCH7~Ubiquitin 6UJO ; 2.25 ; HHAT L75F Neoantigen Peptide KQWLVWLFL Presented by HLA-A206 6UJQ ; 2.55 ; HHAT Wild Type Peptide KQWLVWLLL Presented by HLA-A206 5I8K ; 1.771 ; HHH1 Fab fragment 7PGM ; 2.7 ; HHIP-C in complex with heparin 7PGL ; 2.63 ; HHIP-N, the N-terminal domain of the Hedgehog-Interacting Protein (HHIP), apo-form 7PGK ; 2.75 ; HHIP-N, the N-terminal domain of the Hedgehog-Interacting Protein (HHIP), in complex with glycosaminoglycan mimic SOS 7PGN ; 2.4 ; HHP-C in complex with glycosaminoglycan mimic SOS 1QZE ; ; HHR23a protein structure based on residual dipolar coupling data 2APN ; ; hi1723 solution structure 2GR8 ; 2.0 ; Hia 1022-1098 2GR7 ; 2.3 ; Hia 992-1098 5ND9 ; 3.7 ; Hibernating ribosome from Staphylococcus aureus (Rotated state) 5ND8 ; 3.7 ; Hibernating ribosome from Staphylococcus aureus (Unrotated state) 3PDM ; 3.5 ; Hibiscus Latent Singapore virus 7TXC ; 3.04 ; HIC2 zinc finger domain in complex with the DNA binding motif-2 of the BCL11A enhancer 4P78 ; 2.12 ; HicA3 and HicB3 toxin-antitoxin complex 6YOZ ; 1.88 ; HiCel7B labelled with b-1,4-glucosyl cyclophellitol 6YP1 ; 1.2 ; HiCel7B unliganded 6XH5 ; 3.32 ; Hierarchical design of multi-scale protein complexes by combinatorial assembly of oligomeric helical bundle and repeat protein building blocks 6XI6 ; 2.69 ; Hierarchical design of multi-scale protein complexes by combinatorial assembly of oligomeric helical bundle and repeat protein building blocks 5L9V ; 1.829 ; HIF prolyl hydroxylase 2 (PHD2-R281C/P317C) cross-linked to HIF-1alpha NODD-L397C/D412C and N-oxalylglycine (NOG) (complex-1) 5LAS ; 2.1 ; HIF prolyl hydroxylase 2 (PHD2-R281C/P317C/R396T) cross-linked to HIF-1alpha NODD-L397C/D412C and N-oxalylglycine (NOG) (complex-3) 5LA9 ; 2.813 ; HIF prolyl hydroxylase 2 (PHD2-R281C/V314C) cross-linked to HIF-1alpha NODD-L397C/D412C and N-oxalylglycine (NOG) (complex-2) 4UWD ; 1.721 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) D315E VARIANT in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 5L9B ; 1.95 ; HIF PROLYL HYDROXYLASE 2 (PHD2/ EGLN1) IN COMPLEX WITH 2-OXOGLUTARATE (2OG) AND HIF-1ALPHA CODD (556-574) 6YW1 ; 1.46 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with 2OG and RaPID-derived silent allosteric cyclic peptide 3C (14-mer) 6ST3 ; 2.426 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with 4-hydroxy-N-(4-phenoxybenzyl)-2-(1H-pyrazol-1-yl)pyrimidine-5-carboxamide 6QGV ; 1.4 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with a Spiro[4.5]decanone inhibitor (JPHM-2-167) 6YVX ; 1.8 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with bicyclic BB-287 6YW2 ; 2.14 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with bicyclic FG2216 and RaPID-derived cyclic peptide 3C (14-mer) 6YVZ ; 1.91 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with bicyclic JLS-367 5OX5 ; 2.251 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with CCT6, a GSK1278863-related compound 4BQY ; 1.53 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with Fe(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]alanine 6YVT ; 2.847 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with MD-253 4BQW ; 1.79 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with Mn(II) and 2-(4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)acetic acid 4BQX ; 1.79 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 6YVW ; 1.97 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with monocyclic BB-328 6YW3 ; 2.279 ; HIF PROLYL HYDROXYLASE 2 (PHD2/ EGLN1) in complex with N-Oxalyl Glycine (NOG), HIF-1ALPHA CODD (556-574) and a RaPID-derived cyclic peptide 3C (14-mer) 5L9R ; 1.81 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with N-oxalylglycine (NOG) 6YW4 ; 1.528 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with N-oxalylglycine (NOG) and a RaPID-derived silent allosteric cyclic peptide 3C (14-mer) 5OX6 ; 1.99 ; HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with Vadadustat 5LBE ; 1.749 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) G294E variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/FG2216) 5LBC ; 1.816 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) I280V/R281L/I292V variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/FG2216) 6ZBO ; 1.79 ; HIF Prolyl Hydroxylase 2 (PHD2/EGLN1) in Complex with 1-(6-morpholinopyrimidin-4-yl)-4-(1H-1,2,3-triazol-1-yl)-1H-pyrazol-5-ol (Molidustat) 7Q5X ; 1.21 ; HIF PROLYL HYDROXYLASE 2 (PHD2/EGLN1) IN COMPLEX WITH 2-OXOGLUTARATE (2OG) AND HIF-2 ALPHA CODD (523-542) 5A3U ; 3.3 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) in complex with 6-(5-oxo-4-(1H- 1,2,3-triazol-1-yl)-2,5-dihydro-1H-pyrazol-1-yl)nicotinic acid 7Q5V ; 1.17 ; HIF PROLYL HYDROXYLASE 2 (PHD2/EGLN1) IN COMPLEX WITH N-OXALYLGLYCINE (NOG) AND HIF-2 ALPHA CODD (523-542) 6ZBN ; 2.01 ; HIF Prolyl Hydroxylase 2 (PHD2/EGLN1) in complex with tert-butyl 6-(5-hydroxy-4-(1H-1,2,3-triazol-1-yl)-1H-pyrazol-1-yl)nicotinate (IOX4) 5LBF ; 1.8995 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) K293K/G294E variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/FG2216) 5LAT ; 1.9 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) P317R variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 5LB6 ; 1.7 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) R371H variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 5LBB ; 1.7 ; HIF prolyl hydroxylase 2 (PHD2/EGLN1) R396T variant in complex with Mn(II) and N-[(1-chloro-4-hydroxyisoquinolin-3-yl)carbonyl]glycine (IOX3/UN9) 2MO5 ; ; hIFABP-oleate complex 2MJI ; ; HIFABP_Ketorolac_complex 6JQ4 ; 2.0 ; HIGA Escherichia coli-K12 4JFH ; 2.4 ; High Affinity alpha24-beta17 T Cell Receptor for A2 HLA-Melanoma peptide complex 3J1T ; 9.7 ; High affinity dynein microtubule binding domain - tubulin complex 1UZV ; 1.0 ; High affinity fucose binding of Pseudomonas aeruginosa lectin II: 1.0 A crystal structure of the complex 1RPQ ; 3.0 ; High Affinity IgE Receptor (alpha chain) Complexed with Tight-Binding E131 'zeta' Peptide from Phage Display 3UTU ; 1.55 ; High affinity inhibitor of human thrombin 8G0I ; 2.2 ; High Affinity nanobodies against GFP 3VTG ; 1.34 ; High choriolytic enzyme 1 (HCE-1), a hatching enzyme zinc-protease from Oryzias latipes (Medaka fish) 6WVM ; 3.3 ; High curvature lateral interaction within a 13-protofilament, Taxol stabilized microtubule 2LS7 ; ; High Definition Solution Structure of PED/PEA-15 Death Effector Domain 5LH3 ; 1.64 ; High dose Thaumatin - 0-40 ms. 5LMH ; 1.96 ; High dose Thaumatin - 160-200 ms. 5LH6 ; 2.16 ; High dose Thaumatin - 360-400 ms. 5LH5 ; 1.69 ; High dose Thaumatin - 40-80 ms. 5LH7 ; 2.28 ; High dose Thaumatin - 760-800 ms. 4FON ; 1.05 ; High Energy Remote SAD structure solution of Proteinase K from the 37.8 keV Tellurium K edge 1W6Z ; 1.65 ; High Energy Tetragonal Lysozyme X-ray Structure 2KK5 ; ; High Fidelity Base Pairing at the 3'-Terminus 6DRC ; 3.92 ; High IP3 Ca2+ human type 3 1,4,5-inositol trisphosphate receptor 1TIO ; 1.93 ; HIGH PACKING DENSITY FORM OF BOVINE BETA-TRYPSIN IN CYCLOHEXANE 3H8F ; 2.2 ; High pH native structure of leucine aminopeptidase from Pseudomonas putida 4GEY ; 2.7 ; High pH structure of Pseudomonas putida OprB 2P4M ; 1.8 ; High pH structure of Rtms5 H146S variant 3BQC ; 1.5 ; High pH-value crystal structure of emodin in complex with the catalytic subunit of protein kinase CK2 1NEH ; ; HIGH POTENTIAL IRON-SULFUR PROTEIN 3HW7 ; 2.0 ; High pressure (0.57 GPa) crystal structure of bovine copper, zinc superoxide dismutase at 2.0 angstroms 2OQN ; 1.9 ; High Pressure Cryocooling of Capillary Sample Cryoprotection and Diffraction Phasing at Long Wavelengths 2OQU ; 1.8 ; High Pressure Cryocooling of Capillary Sample Cryoprotection and Diffraction Phasing at Long Wavelengths 5O6N ; 1.35 ; High pressure flash cooled concanavalin A 5O6Q ; 1.45 ; High pressure flash cooled hen egg white lysozyme 4WLD ; 1.54 ; High pressure protein crystallography of hen egg white lysozyme at 0.1 MPa 4WLT ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 190 MPa 4WLX ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 280 MPa 4WLY ; 1.62 ; High pressure protein crystallography of hen egg white lysozyme at 380 MPa 4WM1 ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 500 MPa 4WM2 ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 600 MPa 4WM3 ; 1.55 ; High pressure protein crystallography of hen egg white lysozyme at 710 MPa 4WM4 ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 800 MPa 4WM5 ; 1.6 ; High pressure protein crystallography of hen egg white lysozyme at 890 MPa 4WM6 ; 1.85 ; High pressure protein crystallography of hen egg white lysozyme at 950 MPa 4XEN ; 1.55 ; High pressure protein crystallography of hen egg white lysozyme in complex with Tetra-N-acetylchitotetraose at 920 MPa 2OE4 ; 2.1 ; High Pressure Psuedo Wild Type T4 Lysozyme 6QRH ; 2.152 ; High pressure structure of bovine insulin (100 MPa) 6QRK ; 2.102 ; High pressure structure of bovine insulin (200 MPa) 6QQG ; 2.149 ; High pressure structure of bovine insulin (60 MPa) 3I7X ; 2.6 ; High pressure structure of I106A RNase A variant (0.35 GPa) 3I7Y ; 2.4 ; High pressure structure of I106A variant of RNase A (0.48 GPa) 3I7W ; 2.35 ; High pressure structure of wild-type RNase A (0.67 GPa) 3EOX ; 2.61 ; High quality structure of cleaved PAI-1-stab 4L57 ; 1.08 ; High resolutin structure of human cytosolic 5'(3')-deoxyribonucleotidase 4AZS ; 2.15 ; High resolution (2.2 A) crystal structure of WbdD. 2LEU ; ; HIGH RESOLUTION 1H NMR STUDY OF LEUCOCIN A IN 90% AQUEOUS TRIFLUOROETHANOL (TFE) (0.1% TFA), 18 STRUCTURES 3LEU ; ; HIGH RESOLUTION 1H NMR STUDY OF LEUCOCIN A IN DODECYLPHOSPHOCHOLINE MICELLES, 19 STRUCTURES (1:40 RATIO OF LEUCOCIN A:DPC) (0.1% TFA) 2WTG ; 1.5 ; High resolution 3D structure of C.elegans globin-like protein GLB-1 440D ; 1.1 ; HIGH RESOLUTION A-DNA CRYSTAL STRYCTURES OF D(AGGGGCCCCT): AN A-DNA MODEL OF POLY(DG).POLY(DC) 441D ; 1.5 ; HIGH RESOLUTION A-DNA CRYSTAL STRYCTURES OF D(AGGGGCCCCT): AN A-DNA MODEL OF POLY(DG).POLY(DC) 2YOB ; 1.9 ; High resolution AGXT_M structure 6PEA ; 1.36 ; High Resolution Apo Carbonic Anhydrase II 6SL9 ; 1.27 ; High resolution apo structure of isomerase PaaG 6LQH ; 2.94 ; High resolution architecture of curli complex 5NB3 ; 1.38 ; High resolution C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM at pH 7.5 7XNX ; 2.7 ; High resolution cry-EM structure of the human 80S ribosome from SNORD127+/+ Kasumi-1 cells 7XNY ; 2.5 ; High resolution cry-EM structure of the human 80S ribosome from SNORD127+/- Kasumi-1 cells 7KZF ; 3.1 ; High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility 5KEP ; 4.3 ; High resolution cryo-EM maps of Human Papillomavirus 16 reveal L2 location and heparin-induced conformational changes 5KEQ ; 4.3 ; High resolution cryo-EM maps of Human papillomavirus 16 reveal L2 location and heparin-induced conformational changes 6PJ6 ; 2.2 ; High resolution cryo-EM structure of E.coli 50S 6YL3 ; 1.98 ; High resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica 6X9O ; 2.6 ; High resolution cryoEM structure of huntingtin in complex with HAP40 1ME4 ; 1.2 ; High Resolution Crystal Structure Analysis Of Cruzain non-covalently Bound To A Hydroxymethyl Ketone Inhibitor (I) 1ME3 ; 1.2 ; High Resolution Crystal Structure Analysis Of Cruzain non-covalently Bound To A Hydroxymethyl Ketone Inhibitor (II) 6X44 ; 2.19734 ; High Resolution Crystal Structure Analysis of SERA5 proenzyme from plasmodium falciparum 6X42 ; 1.2 ; High Resolution Crystal Structure Analysis of SERA5E from plasmodium falciparum 3D5Y ; 1.22 ; High resolution crystal structure of 1,5-alpha-arabinanase catalytic mutant (AbnBE201A) 3CU9 ; 1.06 ; High resolution crystal structure of 1,5-alpha-L-arabinanase from Geobacillus Stearothermophilus 3F0D ; 1.2 ; High resolution crystal structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphatase synthase from Burkholderia pseudomallei 5VEJ ; 1.301 ; High resolution crystal structure of a fluoride-inhibited organo-phosphate-degrading metallohydrolase 2Z79 ; 1.3 ; High resolution crystal structure of a glycoside hydrolase family 11 xylanase of Bacillus subtilis 3BQX ; 1.4 ; High resolution crystal structure of a glyoxalase-related enzyme from Fulvimarina pelagi 4TSV ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF A HUMAN TNF-ALPHA MUTANT 5TSW ; 2.5 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF A HUMAN TNF-ALPHA MUTANT 6THT ; 1.14 ; High resolution crystal structure of a Leaf-branch compost cutinase quintuple variant 1B4K ; 1.67 ; High resolution crystal structure of a MG2-dependent 5-aminolevulinic acid dehydratase 6EQE ; 0.92 ; High resolution crystal structure of a polyethylene terephthalate degrading hydrolase from Ideonella sakaiensis 1GT9 ; 1.38 ; High resolution crystal structure of a thermostable serine-carboxyl type proteinase, kumamolisin (kscp) 1TUX ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF A THERMOSTABLE XYLANASE FROM THERMOASCUS AURANTIACUS 5TOQ ; 1.2 ; High resolution crystal structure of AAT 1PW9 ; 1.6 ; High resolution crystal structure of an active recombinant fragment of human lung surfactant protein D 1PWB ; 1.4 ; High resolution crystal structure of an active recombinant fragment of human lung surfactant protein D with maltose 6KRB ; 2.375 ; High resolution crystal structure of an Acylphosphatase protein cage 1XDN ; 1.2 ; High resolution crystal structure of an editosome enzyme from trypanosoma brucei: RNA editing ligase 1 1I71 ; 1.45 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF APOLIPOPROTEIN(A) KRINGLE IV TYPE 7: INSIGHTS INTO LIGAND BINDING 3C9A ; 1.6 ; High Resolution Crystal Structure of Argos bound to the EGF domain of Spitz 3S9X ; 1.35 ; High resolution crystal structure of ASCH domain from Lactobacillus crispatus JV V101 3BH4 ; 1.4 ; High resolution crystal structure of Bacillus amyloliquefaciens alpha-amylase 5XLU ; 1.45 ; High Resolution Crystal Structure of Bacillus Licheniformis Gamma Glutamyl Transpeptidase with Acivicin 4BPH ; 1.8 ; High resolution crystal structure of Bacillus subtilis DltC 4BPF ; 1.01 ; High resolution crystal structure of Bacillus subtilis DltC S36A 4ATE ; 1.1 ; High resolution crystal structure of beta-porphyranase A from Zobellia galactanivorans 4AO1 ; 1.58 ; High resolution crystal structure of bovine pancreatic ribonuclease crystallized using ionic liquid 7NQ6 ; 1.5 ; High resolution crystal structure of C-terminal domain (residues 715-866) of Nucleoporin-98 4IQB ; 1.13 ; High Resolution Crystal Structure of C.elegans Thymidylate Synthase 3AXJ ; 2.1 ; High resolution crystal structure of C3PO 1TLO ; 1.9 ; High resolution crystal structure of calpain I protease core in complex with E64 1TL9 ; 1.8 ; High resolution crystal structure of calpain I protease core in complex with leupeptin 4W5Z ; 1.32 ; High resolution crystal structure of catalytic domain of Chitinase 60 from psychrophilic bacteria Moritella marina. 2J1E ; 2.4 ; High Resolution Crystal Structure of CBM32 from a N-acetyl-beta- hexosaminidase in complex with lacNAc 6ZXT ; 1.4 ; High resolution crystal structure of chloroplastic ribose-5-phosphate isomerase from Chlamydomonas reinhardtii 1R6B ; 2.25 ; High resolution crystal structure of ClpA 3WA2 ; 1.08 ; High resolution crystal structure of copper amine oxidase from arthrobacter globiformis 6L8S ; 1.58 ; High resolution crystal structure of crustacean hemocyanin. 3HD3 ; 1.75 ; High resolution crystal structure of cruzain bound to the vinyl sulfone inhibitor SMDC-256047 3LA1 ; 1.29 ; High resolution crystal structure of CyPet mutant A167I 3VTT ; 1.7 ; High Resolution crystal structure of Dengue 3 Envelope protein domain III (ED3) 1G9V ; 1.85 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF DEOXY HEMOGLOBIN COMPLEXED WITH A POTENT ALLOSTERIC EFFECTOR 8B3X ; 1.531 ; High resolution crystal structure of dimeric SUDV VP40 4HNO ; 0.9194 ; High resolution crystal structure of DNA Apurinic/apyrimidinic (AP) endonuclease IV Nfo from Thermatoga maritima 2V33 ; 1.55 ; High resolution crystal structure of domain III of E1 fusion glycoprotein of Semliki Forest Virus 1EP0 ; 1.5 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF DTDP-6-DEOXY-D-XYLO-4-HEXULOSE 3,5-EPIMERASE FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 8AII ; 1.82 ; High Resolution Crystal Structure of Enterococcus faecium Nicotinate Nucleotide Adenylyltransferase Complexed with Adenine 2NQH ; 1.1 ; High Resolution crystal structure of Escherichia coli endonuclease IV (Endo IV) E261Q mutant 2NQ9 ; 1.45 ; High resolution crystal structure of Escherichia coli endonuclease IV (Endo IV) Y72A mutant bound to damaged DNA 1XEN ; 1.85 ; High Resolution Crystal Structure of Escherichia coli Iron- Peptide Deformylase Bound To Formate 1XEM ; 1.76 ; High Resolution Crystal Structure of Escherichia coli Zinc- Peptide Deformylase bound to formate 7R5I ; 1.08 ; High resolution Crystal structure of ExsFA, a Bacillus cereus spore exosporium protein 4ZKA ; 1.8 ; High Resolution Crystal Structure of Fox1 RRM 3VWI ; 1.7 ; High resolution crystal structure of FraC in the monomeric form 6CQP ; 1.446 ; High resolution crystal structure of FtsY-NG domain of E. coli 6CS8 ; 1.749 ; High resolution crystal structure of FtsY-NG domain of E. coli 6CVD ; 1.78 ; High resolution crystal structure of FtsY-NG domain of E. coli bound to fragment 1 5DVI ; 1.25 ; High resolution crystal Structure of glucose complexed periplasmic glucose binding protein (ppGBP) from P. putida CSV86 4HHL ; 1.73 ; High resolution crystal structure of Glucose Isomerase from Streptomyces sp. SK 7XZG ; 1.879 ; High resolution crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase from Candida albicans complexed with NAD+ 7DY4 ; 1.3 ; High resolution crystal structure of hemoglobin M Boston. 7DY3 ; 1.4 ; High resolution crystal structure of hemoglobin M Iwate. 3O1C ; 1.08 ; High resolution crystal structure of histidine triad nucleotide-binding protein 1 (Hint1) C38A mutant from rabbit complexed with Adenosine 3O1X ; 1.08 ; High resolution crystal structure of histidine triad nucleotide-binding protein 1 (Hint1) C84A mutant from rabbit complexed with adenosine 3O1Z ; 1.3 ; High resolution crystal structure of histidine triad nucleotide-binding protein 1 (Hint1) double cysteine mutant from rabbit 3BVN ; 2.55 ; High resolution crystal structure of HLA-B*1402 in complex with the latent membrane protein 2 peptide (LMP2) of Epstein-Barr virus 2RH1 ; 2.4 ; High resolution crystal structure of human B2-adrenergic G protein-coupled receptor. 5YXK ; 1.9 ; High resolution crystal structure of Human B7-2 IgV domain in P21 space group 1HKM ; 2.55 ; High resolution crystal structure of human chitinase in complex with demethylallosamidin 6SZP ; 1.76 ; High resolution crystal structure of human DDAH-1 in complex with N-(4-Aminobutyl)-N'-(2-Methoxyethyl)guanidine 4IGH ; 1.3 ; High resolution crystal structure of human dihydroorotate dehydrogenase bound with 4-quinoline carboxylic acid analog 4OQV ; 1.23 ; High resolution crystal structure of human dihydroorotate dehydrogenase bound with DSM338 (N-[3,5-difluoro-4-(trifluoromethyl)phenyl]-5-methyl-2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine) 6JBU ; 1.849 ; High resolution crystal structure of human FLRT3 LRR domain in complex with mouse CIRL3 Olfactomedin like domain 4WLH ; 1.28 ; High resolution crystal structure of human kynurenine aminotransferase-I bound to PLP cofactor 4WLJ ; 1.54 ; High resolution crystal structure of human kynurenine aminotransferase-I in complex with aminooxyacetate 7XTX ; 1.28 ; High resolution crystal structure of human macrophage migration inhibitory factor in complex with methotrexate 7O63 ; 1.16 ; High resolution crystal structure of human mitochondrial ferritin (hMTF) 7VO6 ; 1.71 ; High resolution crystal structure of human PSMD10 (Gankyrin) 1WMS ; 1.25 ; High resolution crystal structure of human Rab9 GTPase: a novel antiviral drug target 4YDM ; 1.25 ; High resolution crystal structure of human transthyretin bound to ligand and conjugates of 3-(5-(3,5-dichloro-4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)phenyl fluorosulfate 4YDN ; 1.35 ; High resolution crystal structure of human transthyretin bound to ligand and conjugates of 4-(5-(3,5-dichloro-4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)phenyl fluorosulfate 6E7E ; 1.12 ; High resolution crystal structure of IncA soluble domain 1PEW ; 1.6 ; High Resolution Crystal Structure of Jto2, a mutant of the non-amyloidogenic Lamba6 Light Chain, Jto 1OGX ; 2.0 ; High Resolution Crystal Structure Of Ketosteroid Isomerase Mutant D40N(D38N, Ti Numbering) from Pseudomonas putida Complexed With Equilenin At 2.0 A Resolution. 6THS ; 1.1 ; High resolution crystal structure of Leaf-branch cutinase S165A variant 2CB8 ; 1.4 ; High resolution crystal structure of liganded human L-ACBP 7FDS ; 1.258 ; High resolution crystal structure of LpqH from Mycobacterium tuberculosis 5E68 ; 1.58 ; High resolution crystal structure of LuxS - Quorum sensor molecular complex from Salmonella typhi at 1.58 Angstroms 7CM8 ; 1.9 ; High resolution crystal structure of M92A mutant of O-acetyl-L-serine sulfhydrylase from Haemophilus influenzae 1GCY ; 1.6 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF MALTOTETRAOSE-FORMING EXO-AMYLASE 1YYD ; 1.45 ; High Resolution Crystal Structure of Manganese Peroxidase 3FHR ; 1.9 ; High resolution crystal structure of mitogen-activated protein kinase-activated protein kinase 3 (MK3)-inhibitor complex 3FXW ; 2.0 ; High resolution crystal structure of mitogen-activated protein kinase-activated protein kinase 3/inhibitor 2 complex 6WBJ ; 1.651 ; High resolution crystal structure of mRECK(CC4) in fusion with engineered MBP 1MD6 ; 1.6 ; High resolution crystal structure of murine IL-1F5 reveals unique loop conformation for specificity 1T1G ; 1.18 ; High Resolution Crystal Structure of Mutant E23A of Kumamolisin, a sedolisin type proteinase (previously called Kumamolysin or KSCP) 1T1I ; 1.28 ; High Resolution Crystal Structure of Mutant W129A of Kumamolisin, a Sedolisin Type Proteinase (previously called Kumamolysin or KSCP) 6SPT ; 1.2 ; High resolution crystal structure of N-terminal domain of PEX14 from Trypanosoma brucei in complex with the fist compound with sub-micromolar trypanocidal activity 3BZQ ; 1.4 ; High resolution crystal structure of Nitrogen Regulatory Protein (Rv2919c) of Mycobacterium tuberculosis 3HB3 ; 2.25 ; High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase 6FJ3 ; 2.5 ; High resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. 1XF6 ; 1.1 ; High resolution crystal structure of phycoerythrin 545 from the marine cryptophyte rhodomonas CS24 1XG0 ; 0.97 ; High resolution crystal structure of phycoerythrin 545 from the marine cryptophyte rhodomonas CS24 1GS3 ; 2.1 ; High resolution crystal structure of PI delta-5-3-Ketosteroid Isomerase mutants Y30F/Y55F/Y115F/D38N (Y32F/Y57F/Y119F/D40N, PI numbering)complexed with equilenin at 2.1 A resolution 3P9V ; 1.78 ; High Resolution Crystal Structure of protein Maqu_3174 from Marinobacter aquaeolei, Northeast Structural Genomics Consortium Target MqR197 6K8M ; 1.45 ; High resolution crystal structure of proteinase K with thiourea 2V6U ; 1.6 ; High resolution crystal structure of pterin-4a-carbinolamine dehydratase from Toxoplasma gondii 7KP2 ; 1.03 ; High Resolution Crystal Structure of Putative Pterin Binding Protein (PruR) from Vibrio cholerae O1 biovar El Tor str. N16961 in Complex with Neopterin 7KOM ; 0.99 ; High Resolution Crystal Structure of Putative Pterin Binding Protein PruR (VV2_1280) from Vibrio vulnificus CMCP6 4IUZ ; 1.6 ; High resolution crystal structure of racemic ester insulin 3SGZ ; 1.35 ; High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chiorophenyl)sulfanyl]-1, 2, 3-thiadiazole. 4U5Q ; 1.811 ; High resolution crystal structure of reductase (R) domain of nonribosomal peptide synthetase from Mycobacterium tuberculosis 4Z2O ; 1.17 ; High resolution crystal structure of short hoefavidin-hoef-peptide complex 7VDN ; 0.93 ; High resolution crystal structure of Sperm Whale Myoglobin in the carbonmonoxy form 6GID ; 1.9 ; High resolution crystal structure of substrate-free human neprilysin 2F2Q ; 1.45 ; High resolution crystal structure of T4 lysozyme mutant L20R63/A liganded to guanidinium ion 4DYQ ; 1.502 ; High resolution crystal structure of terminase small subunit gp1 of the bacterial virus sf6 160D ; 1.65 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE A-DNA DECAMER D(CCCGGCCGGG): NOVEL INTERMOLECULAR BASE-PAIRED G*(G.C) TRIPLETS 2VPA ; 1.2 ; High resolution crystal structure of the antibiotic resistance protein NimA from Deinococcus radiodurans 1QG5 ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE BOVINE BETA-LACTOGLOBULIN (ISOFORM A) 1B8E ; 1.95 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE BOVINE BETA-LACTOGLOBULIN (ISOFORMS A AND B) IN ORTHOROMBIC SPACE GROUP 5OAV ; 0.95 ; High resolution crystal structure of the c-Src-SH3 domain mutant E93V in complex with the high affinity synthetic peptide APP12: monoclinic crystal 2FWG ; 1.1 ; high resolution crystal structure of the C-terminal domain of the electron transfer catalyst DsbD (photoreduced form) 2FWF ; 1.3 ; high resolution crystal structure of the C-terminal domain of the electron transfer catalyst DsbD (reduced form) 3B8Z ; 1.4 ; High Resolution Crystal Structure of the Catalytic Domain of ADAMTS-5 (Aggrecanase-2) 1MJJ ; 2.1 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE COMPLEX OF THE FAB FRAGMENT OF ESTEROLYTIC ANTIBODY MS6-12 AND A TRANSITION-STATE ANALOG 2DQT ; 1.8 ; High resolution crystal structure of the complex of the hydrolytic antibody Fab 6D9 and a transition-state analog 1ZGO ; 1.4 ; High Resolution Crystal Structure of the Discosoma Red Fluorescent Protein (DsRed) 7KPO ; 1.28 ; High Resolution Crystal Structure of the DNA-binding Domain from the Sensor Histidine Kinase ChiS from Vibrio cholerae 3CA7 ; 1.5 ; High Resolution Crystal Structure of the EGF domain of Spitz 2RDZ ; 1.74 ; High Resolution Crystal Structure of the Escherichia coli Cytochrome c Nitrite Reductase. 1MJ8 ; 1.75 ; High Resolution Crystal Structure Of The Fab Fragment of The Esterolytic Antibody MS6-126 1DLF ; 1.45 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE FV FRAGMENT FROM AN ANTI-DANSYL SWITCH VARIANT ANTIBODY IGG2A(S) CRYSTALLIZED AT PH 5.25 2DLF ; 1.55 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE FV FRAGMENT FROM AN ANTI-DANSYL SWITCH VARIANT ANTIBODY IGG2A(S) CRYSTALLIZED AT PH 6.75 6CHX ; 1.4 ; High Resolution Crystal Structure of the Hemagglutinin H1 Head Domain of Influenza A virus Solomon Islands 3MVC ; 1.401 ; High resolution crystal structure of the heme domain of GLB-6 from C. elegans 4CSR ; 1.5 ; High resolution crystal structure of the histone fold dimer (NF-YB)-(NF-YC) 2CKK ; 1.45 ; High resolution crystal structure of the human kin17 C-terminal domain containing a kow motif 1H1W ; 2.0 ; High resolution crystal structure of the human PDK1 catalytic domain 1T1E ; 1.18 ; High Resolution Crystal Structure of the Intact Pro-Kumamolisin, a Sedolisin Type Proteinase (previously called Kumamolysin or KSCP) 5MX9 ; 1.12 ; High resolution crystal structure of the MCR-2 catalytic domain 1KPV ; 1.71 ; High resolution crystal structure of the MHC class I complex H-2Kb/SEV9 1KPU ; 1.5 ; High resolution crystal structure of the MHC class I complex H-2Kb/VSV8 4AY0 ; 1.52 ; High resolution crystal structure of the monomeric subunit-free Caf1M chaperone 4MZD ; 1.1 ; High resolution crystal structure of the nisin leader peptidase NisP from Lactococcus lactis 4E2B ; 1.269 ; High resolution crystal structure of the old yellow enzyme from Trypanosoma cruzi 3E86 ; 1.6 ; High resolution Crystal Structure of the open NaK channel pore 1UNQ ; 0.98 ; High resolution crystal structure of the Pleckstrin Homology Domain Of Protein Kinase B/Akt Bound To Ins(1,3,4,5)-Tetrakisphophate 1MHN ; 1.8 ; High resolution crystal structure of the SMN Tudor domain 2FJ9 ; 1.6 ; High resolution crystal structure of the unliganded human ACBP 4OEO ; 1.9 ; High resolution crystal structure of the unliganded ZO-1 PDZ1 domain 3CM3 ; 1.32 ; High Resolution Crystal Structure of the Vaccinia Virus Dual-Specificity Phosphatase VH1 1J0O ; 1.15 ; High Resolution Crystal Structure of the wild type Tetraheme Cytochrome c3 from Desulfovibrio vulgaris Miyazaki F 1I24 ; 1.2 ; HIGH RESOLUTION CRYSTAL STRUCTURE OF THE WILD-TYPE PROTEIN SQD1, WITH NAD AND UDP-GLUCOSE 4I6R ; 1.38 ; High Resolution Crystal Structure of the Wild-Type Restriction-Modification Controller Protein C.Esp1396I (Triclinic form) 3L84 ; 1.36 ; High resolution crystal structure of transketolase from Campylobacter jejuni subsp. jejuni NCTC 11168 4UC1 ; 1.8 ; High resolution crystal structure of translocator protein 18kDa (TSPO) from Rhodobacter sphaeroides (A139T Mutant) in C2 space group 3LBW ; 1.65 ; High resolution crystal structure of transmembrane domain of M2 3BKD ; 2.05 ; High resolution Crystal structure of Transmembrane domain of M2 protein 4O0C ; 1.5 ; High resolution crystal structure of uncleaved human L-asparaginase protein 2UVO ; 1.4 ; High Resolution Crystal Structure of Wheat Germ Agglutinin in Complex with N-Acetyl-D-Glucosamine 3D9A ; 1.2 ; High Resolution Crystal Structure Structure of HyHel10 Fab Complexed to Hen Egg Lysozyme 1HGA ; 2.1 ; HIGH RESOLUTION CRYSTAL STRUCTURES AND COMPARISONS OF T STATE DEOXYHAEMOGLOBIN AND TWO LIGANDED T-STATE HAEMOGLOBINS: T(ALPHA-OXY)HAEMOGLOBIN AND T(MET)HAEMOGLOBIN 1HGB ; 2.1 ; HIGH RESOLUTION CRYSTAL STRUCTURES AND COMPARISONS OF T STATE DEOXYHAEMOGLOBIN AND TWO LIGANDED T-STATE HAEMOGLOBINS: T(ALPHA-OXY)HAEMOGLOBIN AND T(MET)HAEMOGLOBIN 1HGC ; 2.1 ; HIGH RESOLUTION CRYSTAL STRUCTURES AND COMPARISONS OF T STATE DEOXYHAEMOGLOBIN AND TWO LIGANDED T-STATE HAEMOGLOBINS: T(ALPHA-OXY)HAEMOGLOBIN AND T(MET)HAEMOGLOBIN 2MGA ; 2.2 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGB ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGC ; 1.9 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGD ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGE ; 1.7 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGF ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGG ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGH ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGI ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGJ ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGK ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGL ; 2.0 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2MGM ; 1.9 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF FIVE DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 1HRN ; 1.8 ; HIGH RESOLUTION CRYSTAL STRUCTURES OF RECOMBINANT HUMAN RENIN IN COMPLEX WITH POLYHYDROXYMONOAMIDE INHIBITORS 3O90 ; 1.94 ; High resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into catalytic mechanism and inhibition by aldehydes 3O91 ; 1.63 ; High resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into catalytic mechanism and inhibition by aldehydes 3O92 ; 1.9 ; High resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into catalytic mechanism and inhibition by aldehydes 3O93 ; 1.84 ; High resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into catalytic mechanism and inhibition by aldehydes 3O94 ; 1.6 ; High resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into catalytic mechanism and inhibition by aldehydes 1NR2 ; 2.18 ; High resolution crystal structures of thymus and activation-regulated chemokine 1NR4 ; 1.72 ; High resolution crystal structures of thymus and activation-regulated chemokine 2OKB ; 2.15 ; High Resolution Crystal Structures of Vaccinia Virus dUTPase 2OKD ; 2.4 ; High Resolution Crystal Structures of Vaccinia Virus dUTPase 2OKE ; 2.5 ; High Resolution Crystal Structures of Vaccinia Virus dUTPase 2OL0 ; 2.1 ; High Resolution Crystal Structures of Vaccinia Virus dUTPase 2OL1 ; 1.8 ; High Resolution Crystal Structures of Vaccinia Virus dUTPase 3SDH ; 1.4 ; HIGH RESOLUTION CRYSTALLOGRAPHIC ANALYSIS OF A COOPERATIVE DIMERIC HEMOGLOBIN 4SDH ; 1.6 ; HIGH RESOLUTION CRYSTALLOGRAPHIC ANALYSIS OF A COOPERATIVE DIMERIC HEMOGLOBIN 2W5F ; 1.9 ; High resolution crystallographic structure of the Clostridium thermocellum N-terminal endo-1,4-beta-D-xylanase 10B (Xyn10B) CBM22-1- GH10 modules complexed with xylohexaose 2WYS ; 2.75 ; High resolution crystallographic structure of the Clostridium thermocellum N-terminal endo-1,4-beta-D-xylanase 10B (Xyn10B) CBM22-1- GH10 modules complexed with xylohexaose 2WZE ; 2.5 ; High resolution crystallographic structure of the Clostridium thermocellum N-terminal endo-1,4-beta-D-xylanase 10B (Xyn10B) CBM22-1- GH10 modules complexed with xylohexaose 2CTV ; 1.95 ; HIGH RESOLUTION CRYSTALLOGRAPHIC STUDIES OF NATIVE CONCANAVALIN A USING RAPID LAUE DATA COLLECTION METHODS AND THE INTRODUCTION OF A MONOCHROMATIC LARGE-ANGLE OSCILLATION TECHNIQUE (LOT) 1XEO ; 1.3 ; High Resolution Crystals Structure of Cobalt- Peptide Deformylase Bound To Formate 2RB8 ; 1.45 ; High resolution design of a protein loop 2RBL ; 2.1 ; High resolution design of a protein loop 2RH2 ; 0.96 ; High Resolution DHFR R-67 6Q5U ; 2.75 ; High resolution electron cryo-microscopy structure of the bacteriophage PR772 2FVY ; 0.92 ; High Resolution Glucose Bound Crystal Structure of GGBP 3J08 ; 10.0 ; High resolution helical reconstruction of the bacterial p-type ATPase copper transporter CopA 3J09 ; 10.0 ; High resolution helical reconstruction of the bacterial p-type ATPase copper transporter CopA 3EC0 ; 1.18 ; High Resolution HIV-2 Protease Structure in Complex with Antiviral Inhibitor GRL-06579A 3ECG ; 1.18 ; High Resolution HIV-2 Protease Structure in Complex with Antiviral Inhibitor GRL-98065 3EBZ ; 1.2 ; High Resolution HIV-2 Protease Structure in Complex with Clinical Drug Darunavir 4Z51 ; 1.86 ; High Resolution Human Septin 3 GTPase domain 4Z54 ; 1.83 ; High Resolution Human Septin3 GTPase domain with alpha-zero helix in complex with GDP 4IHN ; 1.16 ; High Resolution Insulin by Langmuir-Blodgett Modified Hanging Drop Vapour Diffusion 1L7M ; 1.48 ; HIGH RESOLUTION LIGANDED STRUCTURE OF PHOSPHOSERINE PHOSPHATASE (PI COMPLEX) 7RVB ; 2.04 ; High resolution map of molecular chaperone Artemin 4F3N ; 1.75 ; High resolution native crystal structure of an uncharacterized ACR, COG1565 superfamily protein from Burkholderia thailandensis, solved by iodide ion SAD 5WJR ; 1.7 ; High resolution native hexamer DNA and RNA hybrid in complex with RNase H catalytic domain D132N mutant 5FLE ; 1.23 ; High resolution NI,FE-CODH-320 mV with CN state 2KMJ ; ; High resolution NMR solution structure of a complex of HIV-2 TAR RNA and a synthetic tripeptide in a 1:2 stoichiometry 7LDF ; ; High resolution NMR solution structure of a de novo designed minimal thioredoxin fold protein 2LYE ; ; High resolution NMR solution structure of a symmetrical theta-defensin, BTD-2 2LHP ; ; High resolution NMR solution structure of helix H1 of the chimpanzee HAR1 RNA 2LUB ; ; High resolution NMR solution structure of helix H1 of the human HAR1 RNA 1PS2 ; ; HIGH RESOLUTION NMR SOLUTION STRUCTURE OF HUMAN PS2, 19 STRUCTURES 2LYF ; ; High resolution NMR solution structure of the theta-defensin RTD-1 1U01 ; ; High resolution NMR structure of 5-d(GCGT*GCG)-3/5-d(CGCACGC)-3 (T*represents a cyclohexenyl nucleotide) 1NAJ ; ; High resolution NMR Structure Of DNA Dodecamer Determined In Aqueous Dilute Liquid Crystalline Phase 2L6R ; ; High resolution NMR structure of gpW (W protein of bacteriophage lambda) at acidic pH 4BA8 ; ; High resolution NMR structure of the C mu3 domain from IgM 8DRH ; ; HIGH RESOLUTION NMR STRUCTURE OF THE D(GCGTCAGG)R(CCUGACGC) HYBRID, MINIMIZED AVERAGE STRUCTURE 8PSH ; ; HIGH RESOLUTION NMR STRUCTURE OF THE STEREOREGULAR (ALL-RP)-PHOSPHOROTHIOATE-DNA/RNA HYBRID D (G*PS*C*PS*G*PS*T*PS*C*PS*A*PS*G*PS*G)R(CCUGACGC), MINIMIZED AVERAGE STRUCTURE 2LZI ; ; High resolution NMR structure of the theta-defensin HTD-2 (retrocyclin 2) 1XF7 ; ; High Resolution NMR Structure of the Wilms' Tumor Suppressor Protein (WT1) Finger 3 3LDC ; 1.45 ; High resolution open MthK pore structure crystallized in 100 mM K+ 3LDE ; 2.208 ; High resolution open MthK pore structure crystallized in 100 mM K+ and further soaked in 100 mM Na+. 3LDD ; 1.45 ; High resolution open MthK pore structure crystallized in 100 mM K+ and further soaked in 99 mM Na+/1 mM K+. 1FHG ; 2.0 ; HIGH RESOLUTION REFINEMENT OF TELOKIN 1D78 ; 1.4 ; HIGH RESOLUTION REFINEMENT OF THE HEXAGONAL A-DNA OCTAMER D(GTGTACAC) AT 1.4 ANGSTROMS RESOLUTION 1D79 ; 1.45 ; HIGH RESOLUTION REFINEMENT OF THE HEXAGONAL A-DNA OCTAMER D(GTGTACAC) AT 1.4 ANGSTROMS RESOLUTION 7KUK ; 1.67 ; High resolution RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 1YFQ ; 1.1 ; High resolution S. cerevisiae Bub3 mitotic checkpoint protein 5AOZ ; 1.14 ; High resolution SeMet structure of the third cohesin from Ruminococcus flavefaciens scaffoldin protein, ScaB 5CYO ; 2.0354 ; High resolution Septin 9 GTPase domain in complex with GDP 2XMN ; 2.85 ; High resolution snapshots of defined TolC open states present an iris- like movement of periplasmic entrance helices 2UVS ; ; High Resolution Solid-state NMR structure of Kaliotoxin 1MDJ ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB (RESIDUES 56-68 OF THE P50 SUBUNIT OF NFKB) 1MDK ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB (RESIDUES 56-68 OF THE P50 SUBUNIT OF NFKB) 1CQG ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, 31 STRUCTURES 1CQH ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, MINIMIZED AVERAGE STRUCTURE 1MDI ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN MUTANT HUMAN THIOREDOXIN AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB 1SAE ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAC STRUCTURES) 1SAK ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAC STRUCTURES) 3SAK ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAC STRUCTURES) 1SAF ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAD STRUCTURES) 1SAL ; ; HIGH RESOLUTION SOLUTION NMR STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR (SAD STRUCTURES) 5FZV ; ; High resolution solution NMR structure of the spider venom peptide U3- scytotoxin-Sth1a 5FZW ; ; High resolution solution NMR structure of the spider venom peptide U3- scytotoxin-Sth1h 5FZX ; ; High resolution solution NMR structure of the spider venom peptide U5- scytotoxin-Sth1a 2K0T ; ; High Resolution Solution NMR Structures of Oxaliplatin-DNA Adduct 2K0U ; ; High Resolution Solution NMR Structures of Oxaliplatin-DNA Adduct 2K0V ; ; High Resolution Solution NMR Structures of Undamaged DNA Dodecamer Duplex 2CNP ; ; HIGH RESOLUTION SOLUTION STRUCTURE OF APO RABBIT CALCYCLIN, NMR, 22 STRUCTURES 1E9T ; ; High resolution solution structure of human intestinal trefoil factor 1NB1 ; ; High resolution solution structure of kalata B1 1CKR ; ; HIGH RESOLUTION SOLUTION STRUCTURE OF THE HEAT SHOCK COGNATE-70 KD SUBSTRATE BINDING DOMAIN OBTAINED BY MULTIDIMENSIONAL NMR TECHNIQUES 7HSC ; ; HIGH RESOLUTION SOLUTION STRUCTURE OF THE HEAT SHOCK COGNATE-70 KD SUBSTRATE BINDING DOMAIN OBTAINED BY MULTIDIMENSIONAL NMR TECHNIQUES 1FMY ; ; HIGH RESOLUTION SOLUTION STRUCTURE OF THE PROTEIN PART OF CU7 METALLOTHIONEIN 1RXR ; ; HIGH RESOLUTION SOLUTION STRUCTURE OF THE RETINOID X RECEPTOR DNA BINDING DOMAIN, NMR, 20 STRUCTURE 3NHE ; 1.26 ; High Resolution Structure (1.26A) of USP2a in Complex with Ubiquitin 1E93 ; 2.0 ; High resolution structure and biochemical properties of a recombinant catalase depleted in iron 2V03 ; 1.33 ; High resolution structure and catalysis of an O-acetylserine sulfhydrylase 2M1I ; ; High resolution structure and dynamics of CsPinA parvulin at physiological temperature 1SB2 ; 1.9 ; High resolution Structure determination of rhodocetin 4B9F ; 1.19 ; High resolution structure for family 3a carbohydrate binding module from the cipA scaffolding of clostridium thermocellum 5UOU ; 1.5 ; High resolution structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 5HD6 ; 1.35 ; High resolution structure of 3-hydroxydecanoyl-(acyl carrier protein) dehydratase from Yersinia pestis at 1.35 A 4JJ2 ; 1.28 ; High resolution structure of a C-terminal fragment of the T4 phage gp5 beta-helix 2AHN ; 1.3 ; High resolution structure of a cherry allergen Pru av 2 3HSY ; 1.75 ; High resolution structure of a dimeric GluR2 N-terminal domain (NTD) 7W7R ; 3.46 ; High resolution structure of a fish aquaporin reveals a novel extracellular fold. 7W7S ; 1.9 ; High resolution structure of a fish aquaporin reveals a novel extracellular fold. 1GTO ; 1.82 ; HIGH RESOLUTION STRUCTURE OF A HYPERSTABLE HELICAL BUNDLE PROTEIN MUTANT 4R8I ; 2.05 ; High Resolution Structure of a Mirror-Image RNA Oligonucleotide Aptamer in Complex with the Chemokine CCL2 4V1L ; 1.75 ; High resolution structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1 4JP6 ; 1.0 ; High resolution structure of a papaya barwin-like protein 4JP7 ; 1.05 ; High resolution structure of a papaya barwin-like protein (crystal form 2) 1T28 ; ; High resolution structure of a picornaviral internal cis-acting replication element 4AFF ; 1.05 ; High resolution structure of a PII mutant (I86N) protein in complex with ATP, MG and FLC 1SFI ; 1.65 ; High resolution structure of a potent, cyclic protease inhibitor from sunflower seeds 2R8S ; 1.95 ; High resolution structure of a specific synthetic FAB bound to P4-P6 RNA ribozyme domain 3CVM ; 2.02 ; High resolution structure of a stable Plasminogen activator inhibitor type-1 in its protease cleaved form 1N7S ; 1.45 ; High Resolution Structure of a Truncated Neuronal SNARE Complex 1DZD ; ; High resolution structure of acidic fibroblast growth factor (27-154), 24 NMR structures 1DZC ; ; High resolution structure of acidic fibroblast growth factor. Mutant FGF-4-ALA-(24-154), 24 NMR structures 5KZH ; 1.61 ; High Resolution Structure of Acinetobacter baumannii beta-lactamase OXA-51 5L2F ; 1.77 ; High Resolution Structure of Acinetobacter baumannii beta-lactamase OXA-51 I129L/K83D bound to doripenem 7OUB ; 1.82 ; High resolution structure of Alpha-1-acid glycoprotein bound to potent anti-tumour compound UCN-01 3NGP ; 1.084 ; High resolution structure of alpha-spectrin SH3 domain mutant with a redesigned core 5HWE ; 1.71 ; high resolution structure of barbiturase 5HY1 ; 2.01 ; high resolution structure of barbiturase 2FJ8 ; 1.19 ; High resolution structure of barley Bowman-Birk inhibitor 1YNO ; 1.22 ; High Resolution Structure of Benzoylformate Decarboxylase from Pseudomonas Putida Complexed with Thiamine Thiazolone Diphosphate 6IQX ; 1.432 ; High resolution structure of bilirubin oxidase from Myrothecium verrucaria - M467Q mutant, aerobically prepared 6IQY ; 1.6 ; High resolution structure of bilirubin oxidase from Myrothecium verrucaria - M467Q mutant, anaerobically prepared 6IQZ ; 1.46 ; High resolution structure of bilirubin oxidase from Myrothecium verrucaria - wild type 7PPA ; 1.48 ; High resolution structure of bone morphogenetic protein receptor type II (BMPRII) extracellular domain in complex with BMP10 1YPH ; 1.34 ; High resolution structure of bovine alpha-chymotrypsin 7C4I ; 1.37 ; High resolution structure of BRPF1 Bromo Domain from Biortus 3L0F ; 1.35 ; High resolution structure of C-Phycocyanin from Thermosynechococcus elongatus 5DEV ; 1.71 ; High resolution structure of CCG DNA repeats at 1.71 angstrom resolution 8ONX ; 1.3 ; High resolution structure of Chaetomium thermophilum MAP2 4HNR ; 1.9 ; High resolution structure of Chemotaxis response regulator CheY4 of Vibrio cholerae 3TO5 ; 1.65 ; High resolution structure of CheY3 from Vibrio cholerae 1R6C ; 2.15 ; High resolution structure of ClpN 2XMX ; 1.67 ; High resolution structure of Colicin M 5YBZ ; 1.711 ; High resolution structure of complement C1q-like protein 3 C1q domain 6CAF ; 1.3 ; High Resolution Structure of Concanavalin B from Jack Bean (Canavalia ensiformis), A Chitinase-like Protein 7OY2 ; 2.06 ; High resolution structure of cytochrome bd-II oxidase from E. coli 4IK5 ; 2.5 ; High resolution structure of Delta-REST-GCaMP3 4GSX ; 1.903 ; High resolution structure of dengue virus serotype 1 sE containing stem 3ULD ; 1.6 ; High resolution structure of DNA/RNA hybrid in complex with RNase H catalytic domain D132N mutant 2LTQ ; ; High resolution structure of DsbB C41S by joint calculation with solid-state NMR and X-ray data 6IW3 ; 1.64 ; High resolution structure of Dvl2-DIX Y27W/C80S mutant 2HPH ; 1.33 ; High resolution structure of E. coli glucose/galactose binding protein bound with glucose 4DY4 ; 1.2 ; High resolution structure of E.coli WrbA with FMN 1PO7 ; 1.2 ; HIGH RESOLUTION STRUCTURE OF E28A MUTANT BENZOYLFORMATE DECARBOXYLASE FROM PSEUDOMONAS PUTIDA 1Q6Z ; 1.0 ; HIGH RESOLUTION STRUCTURE OF E28A MUTANT BENZOYLFORMATE DECARBOXYLASE FROM PSEUDOMONAS PUTIDA COMPLEXED WITH THIAMIN THIAZOLONE DIPHOSPHATE 4QEQ ; 1.381 ; High resolution structure of egg white lysozyme 8SPS ; 3.0 ; High resolution structure of ESRRB nucleosome bound OCT4 at site a and site b 4BV0 ; 3.1 ; High Resolution Structure of Evolved Agonist-bound Neurotensin Receptor 1 Mutant without Lysozyme Fusion 6LHS ; 3.35 ; High resolution structure of FANCA C-terminal domain (CTD) 6LHU ; 3.46 ; High resolution structure of FANCA C-terminal domain (CTD) 1LQK ; 1.35 ; High Resolution Structure of Fosfomycin Resistance Protein A (FosA) 4AK4 ; 1.65 ; High resolution structure of Galactose Binding lectin from Champedak (CGB) 4IK4 ; 2.01 ; High resolution structure of GCaMP3 at pH 5.0 4IK3 ; 2.007 ; High resolution structure of GCaMP3 at pH 8.5 4IK8 ; 1.55 ; High resolution structure of GCaMP3 dimer form 1 at pH 7.5 4IK9 ; 1.8 ; High resolution structure of GCaMP3 dimer form 2 at pH 7.5 4IK1 ; 2.0 ; High resolution structure of GCaMPJ at pH 8.5 2BMD ; 1.8 ; high resolution structure of GDP-bound human Rab4a 6Y0H ; 1.0 ; High resolution structure of GH11 xylanase from Nectria haematococca 3O21 ; 2.201 ; High resolution structure of GluA3 N-terminal domain (NTD) 2BME ; 1.57 ; high resolution structure of GppNHp-bound human Rab4a 5WQQ ; 0.8 ; High resolution structure of high-potential iron-sulfur protein in the oxidized state 5WQR ; 0.8 ; High resolution structure of high-potential iron-sulfur protein in the reduced state 2A1E ; 1.3 ; High resolution structure of HIV-1 PR with TS-126 1HG7 ; 1.15 ; High resolution structure of HPLC-12 type III antifreeze protein from Ocean Pout Macrozoarces americanus 3KV2 ; 1.55 ; HIGH RESOLUTION STRUCTURE OF HUMAN ARGINASE I IN COMPLEX WITH THE STRONG INHIBITOR N(omega)-hydroxy-nor-L-arginine (nor-NOHA) 3KS3 ; 0.9 ; High resolution structure of Human Carbonic Anhydrase II at 0.9 A 2J8B ; 1.15 ; High resolution structure of human CD59 2UWR ; 1.34 ; High resolution structure of human CD59 2UX2 ; 1.8 ; High resolution structure of human CD59 3ZXF ; 1.38 ; High resolution structure of Human Galectin-7 4EW1 ; 1.522 ; High resolution structure of human glycinamide ribonucleotide transformylase in apo form. 3TW2 ; 1.38 ; High resolution structure of human histidine triad nucleotide-binding protein 1 (hHINT1)/AMP complex in a monoclinic space group 2QXI ; 1.0 ; High resolution structure of Human Kallikrein 7 in Complex with Suc-Ala-Ala-Pro-Phe-chloromethylketone 7QPP ; 1.52 ; High resolution structure of human VDR ligand binding domain in complex with calcitriol 5I39 ; 1.2 ; High resolution structure of L-amino acid deaminase from Proteus vulgaris with the deletion of the specific insertion sequence 2RFV ; 1.355 ; High resolution structure of L-methionine gamma-lyase from Citrobacter freundii 7W5D ; 1.141 ; High resolution structure of lectin-ike Ox-LDL Receptor 1 7XMP ; 1.27 ; High resolution structure of lectin-like Ox-LDL receptor 1 in space group P 32 2 1 4K8M ; 0.87 ; High resolution structure of M.tb NRDH 4ZYB ; 1.5 ; High resolution structure of M23 peptidase LytM with substrate analogue 3ZS3 ; 1.8 ; High resolution structure of Mal d 2, the thaumatin like food allergen from apple 4AKD ; 2.1 ; High resolution structure of Mannose Binding lectin from Champedak (CMB) 6H40 ; 1.053 ; High resolution structure of MeT1 from Mycobacterium hassiacum in complex with 3-methoxy-1,2-propanediol. 1XBI ; 1.45 ; High resolution structure of Methanocaldococcus jannaschii L7AE 4D8B ; 1.058 ; High resolution structure of monomeric S. progenies SpeB reveals role of glycine-rich active site loop 4GAC ; 1.64 ; High resolution structure of mouse aldehyde reductase (AKR1a4) in its apo-form 5T5X ; 1.84 ; High resolution structure of mouse Cryptochrome 1 6KIR ; 1.55 ; High resolution structure of mouse CXorf40A 2XIU ; 1.5 ; High resolution structure of MTSL-tagged CylR2. 5WOP ; 1.52 ; High Resolution Structure of Mutant CA09-PB2cap 2BJI ; 1.24 ; High Resolution Structure of myo-Inositol Monophosphatase, The Target of Lithium Therapy 6LUH ; 1.5 ; High resolution structure of N(omega)-hydroxy-L-arginine hydrolase 3NT1 ; 1.73 ; High resolution structure of naproxen:COX-2 complex. 2XI8 ; 1.21 ; High resolution structure of native CylR2 4LQH ; 1.16 ; High resolution structure of native frog M ferritin 5OKB ; 1.331 ; High resolution structure of native Gan1D, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus 6FPO ; 1.05 ; High resolution structure of native Hydrogenase (Hyd-1) 2OL2 ; 2.0 ; High Resolution Structure of Native PCI in Space Group P21 4D1T ; 1.25 ; High resolution structure of native tVIM-7 from Pseudomonas aeruginosa 8Q3E ; 2.174 ; High Resolution Structure of Nucleosome Core with Bound Foamy Virus GAG Peptide 1P4C ; 1.35 ; High Resolution Structure of Oxidized Active Mutant of (S)-Mandelate Dehydrogenase 3A71 ; 1.14 ; High resolution structure of Penicillium chrysogenum alpha-L-arabinanase 3A72 ; 1.04 ; High resolution structure of Penicillium chrysogenum alpha-L-arabinanase complexed with arabinobiose 6AIR ; 0.85 ; High resolution structure of perdeuterated high-potential iron-sulfur protein 2QMV ; ; High Resolution Structure of Peroxisone Proliferation-Activated Receptor gamma and Characterisation of its Interaction with the Co-activator Transcriptional Intermediary Factor 2 2Q5B ; 1.45 ; High resolution structure of Plastocyanin from Phormidium laminosum 3VWC ; 1.5 ; High resolution structure of proteinase inhibitor from Coprinopsis cinerea 2VEB ; 1.3 ; High resolution structure of protoglobin from Methanosarcina acetivorans C2A 3EER ; 1.45 ; High resolution structure of putative organic hydroperoxide resistance protein from Vibrio cholerae O1 biovar eltor str. N16961 7O0J ; 1.4 ; High resolution structure of recombinant chichen liver Bile Acid Binding Protein (cL-BABP) 1LP8 ; 1.65 ; HIGH RESOLUTION STRUCTURE OF RECOMBINANT DIANTHIN ANTIVIRAL PROTEIN-POTENT ANTI-HIV AGENT 1LPD ; 1.7 ; HIGH RESOLUTION STRUCTURE OF RECOMBINANT DIANTHIN ANTIVIRAL PROTEIN-POTENT ANTI-HIV AGENT (COMPLEX WITH ADENINE) 1LPC ; 1.7 ; HIGH RESOLUTION STRUCTURE OF RECOMBINANT DIANTHIN ANTIVIRAL PROTEIN-POTENT ANTI-HIV AGENT (COMPLEX WITH CYCLIC AMP) 6AIQ ; 0.85 ; High resolution structure of recombinant high-potential iron-sulfur protein 2LYN ; 2.07 ; HIGH RESOLUTION STRUCTURE OF RED ABALONE LYSIN DIMER 1P5B ; 1.35 ; High Resolution Structure of Reduced Active Mutant of (S)-Mandelate Dehydrogenase 6Z3C ; 1.74 ; High resolution structure of RgNanOx 1MXR ; 1.42 ; High resolution structure of Ribonucleotide reductase R2 from E. coli in its oxidised (Met) form 2FN3 ; 1.0 ; High resolution structure of s26a mutant of benzoylformate decarboxylase from pseudomonas putida complexed with thiamine thiazolone diphosphate 4CNN ; 1.0 ; High resolution structure of Salmonella typhi type I dehydroquinase 6ELW ; 1.3 ; High resolution structure of selenocysteine containing human GPX4 1O7S ; 1.75 ; High resolution structure of Siglec-7 1O7V ; 1.9 ; High resolution structure of Siglec-7 2JG2 ; 1.3 ; HIGH RESOLUTION STRUCTURE OF SPT WITH PLP INTERNAL ALDIMINE 2E7Y ; 1.97 ; High resolution structure of T. maritima tRNase Z 2X9N ; 1.15 ; High resolution structure of TbPTR1 in complex with cyromazine 2X9G ; 1.1 ; High resolution structure of TbPTR1 in complex with Pemetrexed 2X9V ; 1.3 ; High resolution structure of TbPTR1 with trimetrexate 6SHK ; 1.992 ; High resolution structure of the antimicrobial peptide Dermcidin from human 2WFB ; 2.0 ; High resolution structure of the apo form of the orange protein (ORP) from Desulfovibrio gigas 3ZCC ; 1.25 ; High resolution structure of the asymmetric R333G Hamp-Dhp mutant 3NKE ; 1.4 ; High resolution structure of the C-terminal domain CRISP-associated protein Cas1 from Escherichia coli str. K-12 4BA6 ; 1.42 ; High Resolution structure of the C-terminal family 65 Carbohydrate Binding Module (CBM65B) of endoglucanase Cel5A from Eubacterium cellulosolvens 1JGM ; 1.3 ; High Resolution Structure of the Cadmium-containing Phosphotriesterase from Pseudomonas diminuta 4FK9 ; 1.06 ; High Resolution Structure of the Catalytic Domain of Mannanase SActE_2347 from Streptomyces sp. SirexAA-E 5BY5 ; 1.2 ; High resolution structure of the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis 4V2X ; 1.64 ; High resolution structure of the full length tri-modular endo-beta-1, 4-glucanase B (Cel5B) from Bacillus halodurans 3PWF ; 1.64 ; High resolution structure of the fully reduced form of rubrerythrin from P. furiosus 5OQ3 ; 1.35 ; High resolution structure of the functional region of Cwp19 from Clostridium difficile 4GPA ; 2.25 ; High resolution structure of the GluA4 N-terminal domain (NTD) 2B8A ; ; High Resolution Structure of the HDGF PWWP Domain 1XO0 ; 2.0 ; High resolution structure of the holliday junction intermediate in cre-loxp site-specific recombination 1WKU ; 1.6 ; High resolution structure of the human alpha-actinin isoform 3 5B8C ; 2.146 ; High resolution structure of the human PD-1 in complex with pembrolizumab Fv 8BHX ; 1.25 ; High resolution structure of the iron Superoxide Dismutase from Thermobifida fusca 7P20 ; 1.4 ; High resolution structure of the Juniperus ashei allergen - Jun a 3 2P9H ; 2.0 ; High resolution structure of the Lactose Repressor bound to IPTG 2QF5 ; 2.23 ; High resolution structure of the major periplasmic domain from the cell shape-determining filament MreC (monoclinic form) 2QF4 ; 1.2 ; High resolution structure of the major periplasmic domain from the cell shape-determining filament MreC (orthorhombic form) 4FKA ; 1.08 ; High resolution structure of the manganese derivative of insulin 1I0B ; 1.3 ; HIGH RESOLUTION STRUCTURE OF THE MANGANESE-CONTAINING PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA 7M6A ; 3.36 ; High resolution structure of the membrane embedded skeletal muscle ryanodine receptor 7M6L ; 3.98 ; High resolution structure of the membrane embedded skeletal muscle ryanodine receptor 4U9I ; 1.06 ; High Resolution Structure Of The Ni-R State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 4C6A ; 1.25 ; High Resolution Structure of the Nucleoside diphosphate kinase 1QJP ; 1.65 ; HIGH RESOLUTION STRUCTURE OF THE OUTER MEMBRANE PROTEIN A (OMPA) TRANSMEMBRANE DOMAIN 1WUK ; 1.1 ; High resolution Structure Of The Oxidized State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 5G51 ; 1.45 ; High resolution structure of the part of VP3 protein of Deformed Wing Virus forming P-domain 5OVZ ; 1.75 ; High resolution structure of the PBP NocT in complex with nopaline 2VPO ; 1.8 ; High resolution structure of the periplasmic binding protein TeaA from TeaABC TRAP transporter of Halomonas elongata in complex with hydroxyectoine 1H10 ; 1.4 ; HIGH RESOLUTION STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN OF PROTEIN KINASE B/AKT BOUND TO INS(1,3,4,5)-TETRAKISPHOPHATE 1EYU ; 1.78 ; HIGH RESOLUTION STRUCTURE OF THE PVUII ENDONCULEASE/COGNATE DNA COMPLEX AT PH 4.6 2LIS ; 1.35 ; HIGH RESOLUTION STRUCTURE OF THE RED ABALONE LYSIN MONOMER 1WUL ; 1.5 ; High Resolution Structure Of The Reduced State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 2KRN ; ; High resolution structure of the second SH3 domain of CD2AP 8C41 ; 2.393 ; High resolution structure of the Streptococcus pneumoniae topoisomerase IV-DNA complex with the novel fluoroquinolone Delafloxacin 2XJ3 ; 1.23 ; High resolution structure of the T55C mutant of CylR2. 5A6L ; 1.8 ; High resolution structure of the thermostable glucuronoxylan endo-Beta-1, 4-xylanase, CtXyn30A, from Clostridium thermocellum with two xylobiose units bound 4UYQ ; 1.81 ; High resolution structure of the third cohesin ScaC in complex with the ScaB dockerin with a mutation in the C-terminal helix (IN to SI) from Acetivibrio cellulolyticus displaying a type I interaction. 4UYP ; 1.49 ; High resolution structure of the third cohesin ScaC in complex with the ScaB dockerin with a mutation in the N-terminal helix (IN to SI) from Acetivibrio cellulolyticus displaying a type I interaction. 1HZY ; 1.3 ; HIGH RESOLUTION STRUCTURE OF THE ZINC-CONTAINING PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA 1I0D ; 1.3 ; HIGH RESOLUTION STRUCTURE OF THE ZINC/CADMIUM-CONTAINING PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA 4BUO ; 2.75 ; High Resolution Structure of Thermostable Agonist-bound Neurotensin Receptor 1 Mutant without Lysozyme Fusion 2WYU ; 1.5 ; High resolution structure of Thermus thermophilus enoyl-acyl carrier protein reductase apo-form 2WYW ; 1.9 ; High resolution structure of Thermus thermophilus enoyl-acyl carrier protein reductase NAD and triclosan-form 2WYV ; 1.86 ; High resolution structure of Thermus thermophilus enoyl-acyl carrier protein reductase NAD-form 5VT3 ; 1.98 ; High resolution structure of thioredoxin-disulfide reductase from Vibrio vulnificus CMCP6 in complex with NADP and FAD 4FZL ; 1.46 ; High resolution structure of truncated bacteriocin syringacin M from Pseudomonas syringae pv. tomato DC3000 2XOL ; 1.35 ; High resolution structure of TtrD from Archaeoglobus fulgidus 6ZFL ; 1.6 ; High resolution structure of VEGF-A 12:107 crystallized in tetragonal form 4H60 ; 1.66 ; High resolution structure of Vibrio cholerae chemotaxis protein CheY4 crystallized in low pH (4.0) condition 4MAS ; 1.22 ; High Resolution Structure of Wild Type Human Transthyretin in Complex with 3,3',5,5'-tetrachloro-[1,1'-biphenyl]-4,4'diol 2JIC ; 1.5 ; High resolution structure of xylanase-II from one micron beam experiment 6L8G ; 1.0 ; High resolution structure of YoeB in complex with YefM C-terminus(46N-83V) from Staphylococcus aureus. 1MFB ; 2.1 ; HIGH RESOLUTION STRUCTURES OF ANTIBODY FAB FRAGMENT COMPLEXED WITH CELL-SURFACE OLIGOSACCHARIDE OF PATHOGENIC SALMONELLA 1MFC ; 2.1 ; HIGH RESOLUTION STRUCTURES OF ANTIBODY FAB FRAGMENT COMPLEXED WITH CELL-SURFACE OLIGOSACCHARIDE OF PATHOGENIC SALMONELLA 1RTH ; 2.2 ; HIGH RESOLUTION STRUCTURES OF HIV-1 RT FROM FOUR RT-INHIBITOR COMPLEXES 1RTI ; 3.0 ; HIGH RESOLUTION STRUCTURES OF HIV-1 RT FROM FOUR RT-INHIBITOR COMPLEXES 1VRT ; 2.2 ; HIGH RESOLUTION STRUCTURES OF HIV-1 RT FROM FOUR RT-INHIBITOR COMPLEXES 1VRU ; 2.4 ; HIGH RESOLUTION STRUCTURES OF HIV-1 RT FROM FOUR RT-INHIBITOR COMPLEXES 2NAC ; 1.8 ; HIGH RESOLUTION STRUCTURES OF HOLO AND APO FORMATE DEHYDROGENASE 2NAD ; 2.05 ; HIGH RESOLUTION STRUCTURES OF HOLO AND APO FORMATE DEHYDROGENASE 4D8E ; 1.497 ; High resolution structures of monomeric S. pyogenes SpeB reveals role of glycine-rich active site loop 4D8I ; 1.377 ; High resolution structures of monomeric S. pyogenes SpeB reveals role of glycine-rich active site loop 4STD ; 2.15 ; HIGH RESOLUTION STRUCTURES OF SCYTALONE DEHYDRATASE-INHIBITOR COMPLEXES CRYSTALLIZED AT PHYSIOLOGICAL PH 2G82 ; 1.65 ; High Resolution Structures of Thermus aquaticus Glyceraldehyde-3-Phosphate Dehydrogenase: Role of 220's Loop Motion in Catalysis 1YMB ; 1.9 ; HIGH RESOLUTION STUDY OF THE THREE-DIMENSIONAL STRUCTURE OF HORSE HEART METMYOGLOBIN 4YSE ; 1.2 ; High resolution synchrotron structure of copper nitrite reductase from Alcaligenes faecalis 8V04 ; 1.58 ; High resolution TMPRSS2 structure following acylation by nafamostat 6WX3 ; 1.2 ; High resolution Tryptophan Synthase crystal structure from Salmonella typhimurium in complex with F9 inhibitor in the alpha-site, Cesium ion at the metal coordination site and internal aldimine form. 3AGI ; 1.2 ; High resolution X-ray analysis of Arg-lysozyme complex in the presence of 500 mM Arg 8AAZ ; 1.27 ; High resolution X-ray analysis of ATP lysozyme complex in the presence of 80 mM ATP 5CE4 ; 0.98 ; High Resolution X-Ray and Neutron diffraction structure of H-FABP 5EN9 ; 1.5 ; High resolution x-ray crystal structure of isotope-labeled ester-insulin 4LFQ ; 1.059 ; High resolution x-ray crystal structure of L-ShK toxin 5UDP ; 1.348 ; High resolution x-ray crystal structure of synthetic insulin lispro 2YVB ; 1.62 ; High resolution X-ray crystal structure of Tetragonal Hen egg white lysozyme 1QKO ; 2.1 ; HIGH RESOLUTION X-RAY STRUCTURE OF AN EARLY INTERMEDIATE IN THE BACTERIORHODOPSIN PHOTOCYCLE 1QKP ; 2.1 ; HIGH RESOLUTION X-RAY STRUCTURE OF AN EARLY INTERMEDIATE IN THE BACTERIORHODOPSIN PHOTOCYCLE 7PTZ ; 1.093 ; High resolution X-ray structure of E. coli expressed Lentinus similis LPMO. 1KJL ; 1.4 ; High Resolution X-Ray Structure of Human Galectin-3 in complex with LacNAc 2FGQ ; 1.45 ; High resolution X-ray structure of Omp32 in complex with malate 4LFS ; 0.97 ; High resolution x-ray structure of racemic ShK toxin 5AB8 ; 1.53 ; High resolution X-ray structure of the N-terminal truncated form (residues 1-11) of Mycobacterium tuberculosis HbN 7PU1 ; 1.06 ; High resolution X-ray structure of Thermoascus aurantiacus LPMO 4N9V ; 1.1 ; High resolution x-ray structure of urate oxidase in complex with 8-azaxanthine 4N9S ; 1.06 ; High resolution X-RAY STRUCTURE OF URATE OXIDASE IN COMPLEX WITH 8-HYDROXYXANTHINE 2HBC ; 2.1 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2HBD ; 2.2 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2HBE ; 2.0 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2HBF ; 2.2 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2MYA ; 1.8 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2MYB ; 1.9 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2MYC ; 1.8 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2MYD ; 1.8 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 2MYE ; 1.68 ; HIGH RESOLUTION X-RAY STRUCTURES OF MYOGLOBIN-AND HEMOGLOBIN-ALKYL ISOCYANIDE COMPLEXES 1MYG ; 1.75 ; HIGH RESOLUTION X-RAY STRUCTURES OF PIG METMYOGLOBIN AND TWO CD3 MUTANTS MB(LYS45-> ARG) AND MB(LYS45-> SER) 1MYH ; 1.9 ; HIGH RESOLUTION X-RAY STRUCTURES OF PIG METMYOGLOBIN AND TWO CD3 MUTANTS MB(LYS45-> ARG) AND MB(LYS45-> SER) 1MYI ; 2.0 ; HIGH RESOLUTION X-RAY STRUCTURES OF PIG METMYOGLOBIN AND TWO CD3 MUTANTS MB(LYS45-> ARG) AND MB(LYS45-> SER) 2FGR ; 1.5 ; High resolution Xray structure of Omp32 5FNP ; 1.8 ; High resolution Zn containing Iron sulfur cluster repair protein YtfE 6DIN ; 1.8 ; High resolutionstructure of apo dTDP-4-dehydrorhamnose 3,5-epimerase 1HKK ; 1.85 ; High resoultion crystal structure of human chitinase in complex with allosamidin 5OWH ; 2.3 ; High salt structure of human protein kinase CK2alpha in complex with 3-aminopropyl-4,5,6,7-tetrabromobenzimidazol 4EK7 ; 2.3 ; High speed X-ray analysis of plant enzymes at room temperature 2CI0 ; 1.53 ; High throughput screening and x-ray crystallography assisted evaluation of small molecule scaffolds for CYP51 inhibitors 2CIB ; 1.5 ; High throughput screening and x-ray crystallography assisted evaluation of small molecule scaffolds for CYP51 inhibitors 4TPY ; 1.3 ; High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density 4KO4 ; 2.0 ; High X-ray dose structure of anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 4KO1 ; 1.55 ; High X-ray dose structure of H2-activated anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 5VXZ ; 2.3 ; High-affinity AXL decoy receptor 6UMT ; 1.986 ; High-affinity human PD-1 PD-L2 complex 4CWM ; 2.09 ; High-glycosylation crystal structure of the bifunctional endonuclease (AtBFN2) from Arabidopsis thaliana 3HIP ; 2.8 ; HIGH-POTENTIAL IRON-SULFUR PROTEIN FROM CHROMATIUM PURPURATUM 5Z6F ; 1.801 ; High-pressure Crystal Structure Analysis of DHFR(0.1 MPa) 5Z6J ; 1.803 ; High-pressure Crystal Structure Analysis of M20 loop closed DHFR at 220 MPa 5Z6K ; 1.802 ; High-pressure Crystal Structure Analysis of M20 loop closed DHFR at 400 MPa 5Z6L ; 1.9 ; High-pressure Crystal Structure Analysis of M20 loop closed DHFR at 650 MPa 5Z6M ; 2.202 ; High-pressure Crystal Structure Analysis of M20 loop closed DHFR at 800 MPa 2OE9 ; 2.01 ; High-pressure structure of pseudo-WT T4 Lysozyme 2OEA ; 2.01 ; High-pressure structure of pseudo-WT T4 Lysozyme 2OE7 ; 2.1 ; High-Pressure T4 Lysozyme 4M5Q ; 1.534 ; High-resolution apo influenza 2009 H1N1 endonuclease structure 4V8M ; 5.57 ; High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome 6GV4 ; 2.8 ; High-resolution Cryo-EM of Fab-labeled human parechovirus 3 5SYF ; 3.5 ; High-resolution cryo-EM reconstruction of Taxol-stabilized microtubule 7ZHG ; 2.25 ; High-resolution cryo-EM structure of Pyrococcus abyssi 30S ribosomal subunit bound to mRNA and initiator tRNA anticodon stem-loop 6QZP ; 2.9 ; High-resolution cryo-EM structure of the human 80S ribosome 2OM3 ; 4.4 ; High-resolution cryo-EM structure of Tobacco Mosaic Virus 6C1D ; 3.2 ; High-Resolution Cryo-EM Structures of Actin-bound Myosin States Reveal the Mechanism of Myosin Force Sensing 6C1G ; 3.8 ; High-Resolution Cryo-EM Structures of Actin-bound Myosin States Reveal the Mechanism of Myosin Force Sensing 6C1H ; 3.9 ; High-Resolution Cryo-EM Structures of Actin-bound Myosin States Reveal the Mechanism of Myosin Force Sensing 4G03 ; 2.216 ; High-resolution Crystal Structural Variance Analysis between Recombinant and Wild-type Human Serum Albumin 4G04 ; 2.301 ; High-resolution Crystal Structural Variance Analysis between Recombinant and Wild-type Human Serum Albumin 4QRN ; 1.07 ; HIGH-RESOLUTION CRYSTAL STRUCTURE of 5-CARBOXYVANILLATE DECARBOXYLASE (TARGET EFI-505250) FROM NOVOSPHINGOBIUM AROMATICIVORANS DSM 12444 COMPLEXED WITH MANGANESE AND 4-HYDROXY-3-METHOXY-5-NITROBENZOIC ACID 363D ; 2.0 ; High-resolution crystal structure of a fully modified N3'-> P5' phosphoramidate DNA dodecamer duplex 7LHK ; 1.95 ; High-Resolution Crystal Structure of a Lipin/Pah Phosphatidic Acid Phosphatase 1KUF ; 1.35 ; High-resolution Crystal Structure of a Snake Venom Metalloproteinase from Taiwan Habu 2RCI ; 1.8 ; High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis 6QHJ ; 1.25 ; High-resolution crystal structure of calcium- and sodium-bound mouse Olfactomedin-1 beta-propeller domain 6DTD ; 1.65 ; High-resolution crystal structure of Cas13b from Prevotella buccae 1ZBZ ; 1.29 ; High-Resolution Crystal Structure of Compound I intermediate of Cytochrome c Peroxidase (CcP) 4Q4W ; 1.4 ; High-resolution crystal structure of Coxsackievirus A24v 7R8T ; 1.366 ; High-resolution crystal structure of CYP199A4 bound to 4-ethylbenzoic acid 2CPP ; 1.63 ; HIGH-RESOLUTION CRYSTAL STRUCTURE OF CYTOCHROME P450-CAM 6RQX ; 1.68 ; High-resolution crystal structure of ERAP1 in complex with 10mer phosphinic peptide 6RYF ; 1.72 ; High-resolution crystal structure of ERAP1 in complex with 15mer phosphinic peptide 7Z28 ; 1.55 ; High-resolution crystal structure of ERAP1 with bound bestatin analogue inhibitor 6Q4R ; 1.6 ; High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor 1GZ9 ; 1.7 ; High-Resolution Crystal Structure of Erythrina cristagalli Lectin in Complex with 2'-alpha-L-Fucosyllactose 1GZC ; 1.58 ; High-Resolution crystal structure of Erythrina cristagalli lectin in complex with lactose 4W4O ; 1.8 ; High-resolution crystal structure of Fc bound to its human receptor Fc-gamma-RI 6CDX ; 1.0 ; High-resolution crystal structure of fluoropropylated cystine knot, binding to alpha-5 beta-6 integrin 4HS1 ; 0.87 ; High-resolution crystal structure of Glutaredoxin like protein NrdH from Mycobacterium tuberculosis. 7MSE ; 1.27 ; High-resolution crystal structure of hMIF2 with tartrate at the active site 7LL4 ; 1.31 ; High-resolution crystal structure of human JAK2 kinase domain (JH1) bound to PN5-114. 7LL5 ; 1.5 ; High-resolution crystal structure of human JAK2 kinase domain (JH1) bound to PN5-150. 7RN6 ; 1.5 ; High-resolution crystal structure of human JAK2 kinase domain (JH1) bound to type-II inhibitor BBT594 7REE ; 1.38 ; High-resolution crystal structure of human JAK2 kinase domain (JH1) bound to YM2-059 7MDL ; 2.32 ; High-resolution crystal structure of human SepSecS-tRNASec complex 8AQL ; 1.23 ; High-resolution crystal structure of human SHMT2 4H5Y ; 2.1 ; High-resolution crystal structure of Legionella pneumophila LidA (60-594) 1ZBY ; 1.2 ; High-Resolution Crystal Structure of Native (Resting) Cytochrome c Peroxidase (CcP) 4KGD ; 1.06 ; High-resolution crystal structure of pyruvate oxidase from L. plantarum in complex with phosphate 3A1G ; 1.7 ; High-Resolution Crystal Structure of RNA polymerase PB1-PB2 subunits from Influenza A Virus 7DA0 ; 1.25 ; High-resolution crystal structure of the chicken MHF complex 4PWQ ; 1.4 ; HIGH-RESOLUTION CRYSTAL STRUCTURE OF THE E1-DOMAIN of THE AMYLOID PRECURSOR PROTEIN 5GXG ; 1.7 ; High-resolution crystal structure of the electron transfer complex of cytochrome p450cam with putidaredoxin 1QTW ; 1.02 ; HIGH-RESOLUTION CRYSTAL STRUCTURE OF THE ESCHERICHIA COLI DNA REPAIR ENZYME ENDONUCLEASE IV 5U09 ; 2.6 ; High-resolution crystal structure of the human CB1 cannabinoid receptor 4PZ3 ; 1.083 ; High-resolution crystal structure of the human CD44 hyaluronan binding domain complex with undefined peptides 4PZ4 ; 1.6 ; High-resolution crystal structure of the human CD44 hyaluronan binding domain in new space group 8G9Z ; 2.07 ; High-resolution crystal structure of the human selenomethionine-derived SepSecS-tRNASec complex 5HZ7 ; 1.43 ; High-resolution crystal structure of the minor DNA-binding pilin ComP from Neisseria meningitidis in fusion with MBP 7YOA ; 1.67 ; High-resolution crystal structure of the mouse alpha-defensin cryptdin 14 8AMY ; 1.67 ; High-resolution crystal structure of the Mu8.1 conotoxin from Conus Mucronatus 2W12 ; 1.46 ; High-resolution crystal structure of the P-I snake venom metalloproteinase BaP1 in complex with a peptidomimetic: insights into inhibitor binding 2W13 ; 1.14 ; High-resolution crystal structure of the P-I snake venom metalloproteinase BaP1 in complex with a peptidomimetic: insights into inhibitor binding 2W14 ; 1.08 ; High-resolution crystal structure of the P-I snake venom metalloproteinase BaP1 in complex with a peptidomimetic: insights into inhibitor binding 2W15 ; 1.05 ; High-resolution crystal structure of the P-I snake venom metalloproteinase BaP1 in complex with a peptidomimetic: insights into inhibitor binding 1Y7Y ; 1.69 ; High-resolution crystal structure of the restriction-modification controller protein C.AhdI from Aeromonas hydrophila 5LBN ; 1.42 ; High-resolution crystal structure of the UBC core domain of UBE2E1/UbcH6 4WDC ; 1.29 ; High-resolution crystal structure of water-soluble FraC (mutation F16P) 3VSY ; 1.5 ; High-resolution crystal structure of wild-type KSI in the apo form at neutral pH 1ZX6 ; 1.6 ; High-resolution crystal structure of yeast Pin3 SH3 domain 4R15 ; 0.97 ; High-resolution crystal structure of Z-DNA in complex with Cr3+ cations 4KT6 ; 1.71 ; High-resolution crystal structure Streptococcus pyogenes beta-NAD+ glycohydrolase in complex with its endogenous inhibitor IFS reveals a water-rich interface 1MOB ; 2.2 ; HIGH-RESOLUTION CRYSTAL STRUCTURES OF DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 1MOC ; 2.0 ; HIGH-RESOLUTION CRYSTAL STRUCTURES OF DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 1MOD ; 2.0 ; HIGH-RESOLUTION CRYSTAL STRUCTURES OF DISTAL HISTIDINE MUTANTS OF SPERM WHALE MYOGLOBIN 2YHW ; 1.64 ; High-resolution crystal structures of N-Acetylmannosamine kinase: Insights about substrate specificity, activity and inhibitor modelling. 7JRI ; 2.4 ; High-resolution Crystal Structures of Transient Intermediates in the Phytochrome Photocycle, 33 ms structure 2A2A ; 1.47 ; High-resolution crystallographic analysis of the autoinhibited conformation of a human death-associated protein kinase 6OFF ; 3.2 ; High-resolution filamentous structures of in vitro polymerized PrgI needle 3ZP8 ; 1.55 ; HIGH-RESOLUTION FULL-LENGTH HAMMERHEAD RIBOZYME 4M5R ; 1.4 ; High-resolution influenza 2009 H1N1 endonuclease bound to 4-(1H-IMIDAZOL-1-YL)PHENOL 5F66 ; 1.15 ; High-resolution isotropic multiconformer synchrotron model of CypA at 273 K 7U0Z ; 4.2 ; High-resolution map of tau filament from progressive supranuclear palsy (PSP) case 1 4YUO ; 1.2 ; High-resolution multiconformer synchrotron model of CypA at 273 K 6L46 ; 1.5 ; High-resolution neutron and X-ray joint refined structure of copper-containing nitrite reductase from Geobacillus thermodenitrificans 6L46 ; 1.3 ; High-resolution neutron and X-ray joint refined structure of copper-containing nitrite reductase from Geobacillus thermodenitrificans 7VOS ; 1.2 ; High-resolution neutron and X-ray joint refined structure of high-potential iron-sulfur protein in the oxidized state 7VOS ; 0.66 ; High-resolution neutron and X-ray joint refined structure of high-potential iron-sulfur protein in the oxidized state 5D4H ; 1.3 ; High-resolution nitrite complex of a copper nitrite reductase determined by synchrotron radiation crystallography 2M5S ; ; High-resolution NMR structure and cryo-EM imaging support multiple functional roles for the accessory I-domain of phage P22 coat protein 1RHX ; ; HIGH-RESOLUTION NMR STRUCTURE OF A PUTATIVE SULFUR TRANSFERASE (TM0979) FROM THERMOTOGA MARITIMA 2MUH ; ; High-resolution NMR structure of the protegrin-2 docked to DPC Micelles 1P98 ; ; High-resolution NMR structure of the Ubl-domain of HHR23A 4UZW ; ; High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1 4UZX ; ; High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1 3NEF ; 2.4 ; High-resolution pyrabactin-bound PYL1 structure 1YCC ; 1.23 ; HIGH-RESOLUTION REFINEMENT OF YEAST ISO-1-CYTOCHROME C AND COMPARISONS WITH OTHER EUKARYOTIC CYTOCHROMES C 2KRJ ; ; High-Resolution Solid-State NMR Structure of a 17.6 kDa Protein 2MS7 ; ; High-resolution solid-state NMR structure of the helical signal transduction filament MAVS CARD 1NC8 ; ; HIGH-RESOLUTION SOLUTION NMR STRUCTURE OF THE MINIMAL ACTIVE DOMAIN OF THE HUMAN IMMUNODEFICIENCY VIRUS TYPE-2 NUCLEOCAPSID PROTEIN, 15 STRUCTURES 2LR9 ; ; High-resolution solution NMR structure of the rho-conotoxin TIA. 1AQ5 ; ; HIGH-RESOLUTION SOLUTION NMR STRUCTURE OF THE TRIMERIC COILED-COIL DOMAIN OF CHICKEN CARTILAGE MATRIX PROTEIN, 20 STRUCTURES 1MNL ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF A SWEET PROTEIN SINGLE-CHAIN MONELLIN (SCM) DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND DYNAMICAL SIMULATED ANNEALING CALCULATIONS, 21 STRUCTURES 2BCA ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF CALCIUM-LOADED CALBINDIN D9K 2BCB ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF CALCIUM-LOADED CALBINDIN D9K 1NBJ ; ; High-resolution solution structure of cycloviolacin O1 1EZT ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF FREE RGS4 BY NMR 1EZY ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF FREE RGS4 BY NMR 2GE4 ; ; High-resolution solution structure of outer membrane protein A transmembrane domain 9PCY ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF REDUCED FRENCH BEAN PLASTOCYANIN AND COMPARISON WITH THE CRYSTAL STRUCTURE OF POPLAR PLASTOCYANIN 1PLA ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF REDUCED PARSLEY PLASTOCYANIN 1PLB ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF REDUCED PARSLEY PLASTOCYANIN 2KNI ; ; High-resolution solution structure of the ASIC1a blocker PcTX1 1BBO ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF THE DOUBLE CYS2*HIS2 ZINC FINGER FROM THE HUMAN ENHANCER BINDING PROTEIN MBP-1 1Z2Q ; ; High-resolution solution structure of the LM5-1 FYVE domain from Leishmania major 2GW9 ; ; High-resolution solution structure of the mouse defensin Cryptdin4 1OLG ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR 1OLH ; ; HIGH-RESOLUTION SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF P53 BY MULTI-DIMENSIONAL NMR 2LL1 ; ; High-resolution solution structure of the orally active insecticidal spider venom peptide U1-TRTX-Sp1a 2GWP ; ; High-resolution solution structure of the salt-bridge defficient mouse defensin (E15D)-Cryptdin4 2Y9F ; 1.47 ; High-resolution Structural Insights on the Sugar-recognition and Fusion Tag Properties of a Versatile b-Trefoil Lectin Domain 2Y9G ; 1.67 ; High-resolution Structural Insights on the Sugar-recognition and Fusion Tag Properties of a Versatile b-Trefoil Lectin Domain 6BSP ; 4.7 ; High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitope on Human Papillomavirus 16 6BT3 ; 4.7 ; High-Resolution Structure Analysis of Antibody V5 Conformational Epitope on Human Papillomavirus 16 1KUW ; ; High-Resolution Structure and Localization of Amylin Nucleation Site in Detergent Micelles 2GZU ; ; High-resolution structure determination of the CylR2 homodimer using intermonomer distances from paramagnetic relaxation enhancement and NMR dipolar couplings 208D ; 2.05 ; HIGH-RESOLUTION STRUCTURE OF A DNA HELIX FORMING (C.G)*G BASE TRIPLETS 4YPV ; 1.85 ; High-resolution structure of a metagenome-derived esterase Est8 1D27 ; 2.0 ; HIGH-RESOLUTION STRUCTURE OF A MUTAGENIC LESION IN DNA 4UQL ; 1.22 ; High-resolution structure of a Ni-A Ni-Sox mixture of the D. fructosovorans NiFe-hydrogenase L122A mutant 2GQV ; 1.1 ; High-resolution structure of a plasmid-encoded dihydrofolate reductase: pentagonal network of water molecules in the D2-symmetric active site 6GFE ; 1.8 ; High-resolution Structure of a therapeutic full-length anti-NPRA Antibody with exceptional Conformational Diversity 4D40 ; 1.669 ; High-Resolution Structure of a Type IV Pilin from Shewanella oneidensis 2ZNF ; ; HIGH-RESOLUTION STRUCTURE OF AN HIV ZINC FINGERLIKE DOMAIN VIA A NEW NMR-BASED DISTANCE GEOMETRY APPROACH 4KL8 ; 1.52 ; High-resolution structure of anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 1IH7 ; 2.21 ; High-Resolution Structure of Apo RB69 DNA Polymerase 4FH4 ; 1.09 ; high-resolution structure of apo wt SHV-1 beta-lactamase 1ATA ; ; HIGH-RESOLUTION STRUCTURE OF ASCARIS TRYPSIN INHIBITOR IN SOLUTION: DIRECT EVIDENCE FOR A PH INDUCED CONFORMATIONAL TRANSITION IN THE REACTIVE SITE 1ATB ; ; HIGH-RESOLUTION STRUCTURE OF ASCARIS TRYPSIN INHIBITOR IN SOLUTION: DIRECT EVIDENCE FOR A PH INDUCED CONFORMATIONAL TRANSITION IN THE REACTIVE SITE 1ATD ; ; HIGH-RESOLUTION STRUCTURE OF ASCARIS TRYPSIN INHIBITOR IN SOLUTION: DIRECT EVIDENCE FOR A PH INDUCED CONFORMATIONAL TRANSITION IN THE REACTIVE SITE 1ATE ; ; HIGH-RESOLUTION STRUCTURE OF ASCARIS TRYPSIN INHIBITOR IN SOLUTION: DIRECT EVIDENCE FOR A PH INDUCED CONFORMATIONAL TRANSITION IN THE REACTIVE SITE 3J8Y ; 5.0 ; High-resolution structure of ATP analog-bound kinesin on microtubules 3CFC ; 1.7 ; High-resolution structure of blue fluorescent antibody EP2-19G2 3CFB ; 1.6 ; High-resolution structure of blue fluorescent antibody EP2-19G2 in complex with stilbene hapten at 100K 4NPD ; 0.9 ; High-resolution structure of C domain of staphylococcal protein A at cryogenic temperature 4NPE ; 1.42 ; High-resolution structure of C domain of staphylococcal protein A at room temperature 4JZ5 ; 1.1 ; High-resolution structure of catalytic domain of endolysin ply40 from bacteriophage P40 of Listeria monocytogenes 5HUB ; 1.06 ; High-resolution structure of chorismate mutase from Corynebacterium glutamicum 6CN8 ; 1.4 ; High-resolution structure of ClpC1-NTD binding to Rufomycin-I 3A5F ; 1.19 ; High-resolution structure of DHDPS from Clostridium botulinum in complex with pyruvate 4KN9 ; 1.4 ; High-resolution structure of H2-activated anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 4X9D ; 1.5 ; High-resolution structure of Hfq from Methanococcus jannaschii in complex with UMP 5LXX ; 1.25 ; High-resolution structure of human collapsin response mediator protein 2 6KIS ; 1.54 ; High-resolution structure of mouse CXorf40A (soaked with Methylmercury chloride) 3PIU ; 1.35 ; High-resolution structure of native Malus domestica ACC synthase 7POG ; 2.83 ; High-resolution structure of native toxin A from Clostridioides difficile 3J8X ; 5.0 ; High-resolution structure of no-nucleotide kinesin on microtubules 3ERX ; 1.25 ; High-resolution structure of Paracoccus pantotrophus pseudoazurin 4URH ; 1.44 ; High-resolution structure of partially oxidized D. fructosovorans NiFe-hydrogenase 7N8O ; 1.93 ; High-resolution structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803 7RCV ; 2.01 ; High-resolution structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803 3ZOJ ; 0.88 ; High-resolution structure of Pichia Pastoris aquaporin Aqy1 at 0.88 A 3NS2 ; 1.634 ; High-resolution structure of pyrabactin-bound PYL2 4FEG ; 1.09 ; High-resolution structure of pyruvate oxidase in complex with reaction intermediate 2-hydroxyethyl-thiamin diphosphate carbanion-enamine, crystal A 4FEE ; 1.13 ; High-resolution structure of pyruvate oxidase in complex with reaction intermediate 2-hydroxyethyl-thiamin diphosphate carbanion-enamine, crystal B 4WEE ; 0.891 ; High-resolution structure of Synaptotagmin 1 C2A 5KB6 ; 1.2 ; High-resolution structure of the adenosine kinase from Mus musculus in complex with adenosine 7QE7 ; 2.9 ; High-resolution structure of the Anaphase-promoting complex/cyclosome (APC/C) bound to co-activator Cdh1 1LYV ; 1.363 ; High-resolution structure of the catalytically inactive yersinia tyrosine phosphatase C403A mutant in complex with phosphate. 8GY5 ; 1.98 ; High-resolution structure of the cemiplimab Fab in complex with PD-1 4WWD ; 1.3 ; High-resolution structure of the Co-bound form of the Y135F mutant of C. metallidurans CnrXs 2W73 ; 1.45 ; High-resolution structure of the complex between calmodulin and a peptide from calcineurin A 1P9D ; ; High-resolution structure of the complex of HHR23A ubiquitin-like domain and the C-terminal ubiquitin-interacting motif of proteasome subunit S5a 4UQP ; 1.42 ; High-resolution structure of the D. fructosovorans NiFe-hydrogenase L122A mutant after exposure to air 2Q9T ; 1.43 ; High-resolution structure of the DING protein from Pseudomonas fluorescens 4YBB ; 2.1 ; High-resolution structure of the Escherichia coli ribosome 5IT8 ; 3.12 ; High-resolution structure of the Escherichia coli ribosome 3HUP ; 1.371 ; High-resolution structure of the extracellular domain of human CD69 4D77 ; 1.481 ; High-resolution structure of the extracellular olfactomedin domain from gliomedin 2KJ3 ; ; High-resolution structure of the HET-s(218-289) prion in its amyloid form obtained by solid-state NMR 7AGV ; 1.85 ; High-resolution structure of the K+/H+ antiporter subunit KhtT in complex with c-di-AMP 4MIW ; 1.72 ; High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase 4WWB ; 1.11 ; High-resolution structure of the Ni-bound form of the Y135F mutant of C. metallidurans CnrXs 7SZY ; 2.4 ; High-resolution structure of the nuclease domain from the main replication protein NS1 of Human Parvovirus B19 2VPN ; 1.55 ; High-resolution structure of the periplasmic ectoine-binding protein from TeaABC TRAP-transporter of Halomonas elongata 2WIE ; 2.13 ; High-resolution structure of the rotor ring from a proton dependent ATP synthase 6WEY ; 0.95 ; High-resolution structure of the SARS-CoV-2 NSP3 Macro X domain 1L34 ; 1.9 ; HIGH-RESOLUTION STRUCTURE OF THE TEMPERATURE-SENSITIVE MUTANT OF PHAGE LYSOZYME, ARG 96 (RIGHT ARROW) HIS 3PP5 ; 1.5 ; High-resolution structure of the trimeric Scar/WAVE complex precursor Brk1 4IOT ; 1.85 ; High-resolution Structure of Triosephosphate isomerase from E. coli 4WWF ; 1.1 ; High-resolution structure of two Ni-bound forms of the M123C mutant of C. metallidurans CnrXs 4NPF ; 1.49 ; High-resolution structure of two tandem B domains of staphylococcal protein A connected by the conserved linker 4TPN ; 1.18 ; High-resolution structure of TxtE in the absence of substrate 4TPO ; 1.225 ; High-resolution structure of TxtE with bound tryptophan substrate 8BF1 ; 1.36 ; High-resolution structure of unliganded PPAR gamma in complex with the peptide PGC-1 alpha 7EOW ; 1.6 ; High-resolution structure of vWF A1 domain in complex with caplacizumab, the first nanobody-based medicine 6NNR ; 1.05 ; high-resolution structure of wild-type E. coli thymidylate synthase 4W7W ; 1.05 ; High-resolution structure of XacCel5A in complex with cellopentaose 1ZUY ; 1.39 ; High-resolution structure of yeast Myo5 SH3 domain 1AKY ; 1.63 ; HIGH-RESOLUTION STRUCTURES OF ADENYLATE KINASE FROM YEAST LIGATED WITH INHIBITOR AP5A, SHOWING THE PATHWAY OF PHOSPHORYL TRANSFER 2AKY ; 1.96 ; HIGH-RESOLUTION STRUCTURES OF ADENYLATE KINASE FROM YEAST LIGATED WITH INHIBITOR AP5A, SHOWING THE PATHWAY OF PHOSPHORYL TRANSFER 1SCR ; 2.0 ; HIGH-RESOLUTION STRUCTURES OF SINGLE-METAL-SUBSTITUTED CONCANAVALIN A: THE CO,CA-PROTEIN AT 1.6 ANGSTROMS AND THE NI,CA-PROTEIN AT 2.0 ANGSTROMS 1SCS ; 1.6 ; HIGH-RESOLUTION STRUCTURES OF SINGLE-METAL-SUBSTITUTED CONCANAVALIN A: THE CO,CA-PROTEIN AT 1.6 ANGSTROMS AND THE NI,CA-PROTEIN AT 2.0 ANGSTROMS 1XNB ; 1.49 ; HIGH-RESOLUTION STRUCTURES OF XYLANASES FROM B. CIRCULANS AND T. HARZIANUM IDENTIFY A NEW FOLDING PATTERN AND IMPLICATIONS FOR THE ATOMIC BASIS OF THE CATALYSIS 1XND ; 2.0 ; HIGH-RESOLUTION STRUCTURES OF XYLANASES FROM B. CIRCULANS AND T. HARZIANUM IDENTIFY A NEW FOLDING PATTERN AND IMPLICATIONS FOR THE ATOMIC BASIS OF THE CATALYSIS 2GLK ; 0.94 ; High-resolution study of D-Xylose isomerase, 0.94A resolution. 3ZNF ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF A SINGLE ZINC FINGER FROM A HUMAN ENHANCER BINDING PROTEIN IN SOLUTION 4ZNF ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF A SINGLE ZINC FINGER FROM A HUMAN ENHANCER BINDING PROTEIN IN SOLUTION 1HRC ; 1.9 ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF HORSE HEART CYTOCHROME C 6K9I ; 1.8 ; High-resolution three-dimensional structure of horse heart cytochrome C at room temperature 6I1B ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF INTERLEUKIN-1 BETA IN SOLUTION BY THREE-AND FOUR-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 7I1B ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF INTERLEUKIN-1 BETA IN SOLUTION BY THREE-AND FOUR-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 3TRX ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF REDUCED RECOMBINANT HUMAN THIOREDOXIN IN SOLUTION 4TRX ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF REDUCED RECOMBINANT HUMAN THIOREDOXIN IN SOLUTION 2AAS ; ; HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF RIBONUCLEASE A IN SOLUTION BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 4ER4 ; 2.1 ; HIGH-RESOLUTION X-RAY ANALYSES OF RENIN INHIBITOR-ASPARTIC PROTEINASE COMPLEXES 7XHK ; 2.3 ; High-resolution X-ray cocrystal structure of USP7 in complex with LX04-46 7XHH ; 2.1 ; High-resolution X-ray cocrystal structure of USP7 in complex with X4 3WDN ; 0.86 ; High-resolution X-ray crystal structure of bovine H-protein using a high-pressure cryocooling method 5ER2 ; 1.8 ; High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor. the analysis of the inhibitor binding and description of the rigid body shift in the enzyme 5XPF ; 1.04 ; High-resolution X-ray structure of the T26H mutant of T4 lysozyme 4F6A ; 2.009 ; High-resolution x-ray Structure of the tetramutant of BH1408 protein from Bacillus halodurans, Northeast Structural Genomics Consortium (NESG) Target BhR182 1TFD ; 2.3 ; HIGH-RESOLUTION X-RAY STUDIES ON RABBIT SERUM TRANSFERRIN: PRELIMINARY STRUCTURE ANALYSIS OF THE N-TERMINAL HALF-MOLECULE AT 2.3 ANGSTROMS RESOLUTION 1DXT ; 1.7 ; HIGH-RESOLUTION X-RAY STUDY OF DEOXY RECOMBINANT HUMAN HEMOGLOBINS SYNTHESIZED FROM BETA-GLOBINS HAVING MUTATED AMINO TERMINI 1DXU ; 1.7 ; HIGH-RESOLUTION X-RAY STUDY OF DEOXY RECOMBINANT HUMAN HEMOGLOBINS SYNTHESIZED FROM BETA-GLOBINS HAVING MUTATED AMINO TERMINI 1DXV ; 1.7 ; HIGH-RESOLUTION X-RAY STUDY OF DEOXY RECOMBINANT HUMAN HEMOGLOBINS SYNTHESIZED FROM BETA-GLOBINS HAVING MUTATED AMINO TERMINI 1HBA ; 2.1 ; HIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITE 1HBB ; 1.9 ; HIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITE 4CH8 ; 1.75 ; High-salt crystal structure of a thrombin-GpIbalpha peptide complex 5OMY ; 1.95 ; HIGH-SALT STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR 4P 6HBN ; 1.59 ; HIGH-SALT STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA/CSKN2A1 GENE PRODUCT) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR THN27 4UB7 ; 2.1 ; High-salt structure of protein kinase CK2 catalytic subunit with 4'-carboxy-6,8-bromo-flavonol (FLC26) showing an extreme distortion of the ATP-binding loop combined with a pi-halogen bond 5MS6 ; 1.9 ; High-salt structure of RavZ LIR2-fused human LC3B 5MQW ; 2.4 ; High-speed fixed-target serial virus crystallography 7KUW ; 2.43 ; High-throughput design and refinement of stable proteins using sequence-only models 6MH8 ; 4.2 ; High-viscosity injector-based Pink Beam Serial Crystallography of Micro-crystals at a Synchrotron Radiation Source 6MH6 ; 1.8 ; High-viscosity injector-based Pink Beam Serial Crystallography of Micro-crystals at a Synchrotron Radiation Source. 1TQ3 ; 1.89 ; Higher resolution crystal structure of the third PDZ domain of post synaptic PSD-95 protein 6YXP ; 1.6 ; Higher resolution structure of the N-terminal module of the human SWI/SNF-subunit BAF155/SMARCC1 3UR7 ; 1.4 ; Higher-density crystal structure of potato endo-1,3-beta-glucanase 7UT1 ; 3.8 ; Higher-order assembly of multiple MMTV strand transfer complex intasomes 6FHE ; 1.93 ; Highly active enzymes by automated modular backbone assembly and sequence design 6FHF ; 1.85 ; Highly active enzymes by automated modular backbone assembly and sequence design 7D9X ; 1.74 ; Highly active mutant W525D of Gamma-glutamyltranspeptidase from Pseudomonas nitroreducens 4EFX ; 1.98 ; Highly biologically active insulin with additional disulfide bond 6STH ; 1.726 ; Highly cationic RSL-R8 in complex with sulfonato-calix[8]arene 5WXE ; ; Highly disulfide-constrained antifeedant jasmintides from Jasminum sambac flowers 1IJ9 ; 3.0 ; Highly Hydrated Human VCAM-1 Fragment 6XWY ; 1.75 ; Highly pH-resistant long stokes-shift, red fluorescent protein mCRISPRed 4PP7 ; 3.4 ; Highly Potent and Selective 3-N-methylquinazoline-4(3H)-one Based Inhibitors of B-RafV600E Kinase 6D3X ; 1.8 ; Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma 6D3Y ; 1.32 ; Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma 6D40 ; 1.43 ; Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma 2WD3 ; 1.8 ; Highly Potent First Examples of Dual Aromatase-Steroid Sulfatase Inhibitors based on a Biphenyl Template 7PHS ; 2.77 ; highly potent IL6 antagonistic antibody selected from a camelid immune phage display repertoire 3SN7 ; 1.82 ; Highly Potent, Selective, and Orally Active Phosphodiestarase 10A Inhibitors 3SNI ; 1.9 ; Highly Potent, Selective, and Orally Active Phosphodiestarase 10A Inhibitors 3SNL ; 2.4 ; Highly Potent, Selective, and Orally Active Phosphodiestarase 10A Inhibitors 3OY1 ; 1.7 ; Highly Selective c-Jun N-Terminal Kinase (JNK) 2 and 3 Inhibitors with In Vitro CNS-like Pharmacokinetic Properties 5WWK ; 3.199 ; Highly stable green fluorescent protein 6SU8 ; 2.48 ; Highly thermostable endoglucanase Cel7B 6HLK ; 2.42 ; Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit. 6HN7 ; 3.0 ; Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit. 7OX5 ; 3.09 ; hIL-9:hIL-9Ra complex 4KPZ ; 2.09 ; Hin GlmU bound to a small molecule fragment 4KNX ; 1.9 ; Hin GlmU Bound to WG176 4KNR ; 2.1 ; Hin GlmU bound to WG188 4KQL ; 2.31 ; Hin GlmU bound to WG578 4KPX ; 2.21 ; Hin GlmU bound to WG766 1HCR ; 2.3 ; HIN RECOMBINASE BOUND TO DNA: THE ORIGIN OF SPECIFICITY IN MAJOR AND MINOR GROOVE INTERACTIONS 1TW8 ; 2.8 ; HincII bound to Ca2+ and cognate DNA GTCGAC 1XHV ; 2.5 ; HincII bound to cleaved cognate DNA GTCGAC and Mn2+ 1XHU ; 2.95 ; HincII bound to cleaved, cognate DNA containing GTCGAC 1KC6 ; 2.6 ; HincII Bound to Cognate DNA 1TX3 ; 2.5 ; HINCII BOUND TO COGNATE DNA 2GIE ; 2.6 ; HincII bound to cognate DNA GTTAAC 1GUB ; 3.1 ; Hinge-bending motion of D-allose binding protein from Escherichia coli: three open conformations 1GUD ; 1.71 ; Hinge-bending motion of D-allose binding protein from Escherichia coli: three open conformations 3NX0 ; 2.04 ; Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C 4MCD ; 1.55 ; hinTrmD in complex with 5-PHENYLTHIENO[2,3-D]PYRIMIDIN-4(3H)-ONE 4MCC ; 1.95 ; HinTrmD in complex with N-[4-(AMINOMETHYL)BENZYL]-4-OXO-3,4-DIHYDROTHIENO[2,3-D]PYRIMIDINE-5-CARBOXAMIDE 1R0D ; 1.9 ; HIP1R THATCH DOMAIN CORE 4Z5H ; 2.1 ; HipB(S29A)-O2 20mer complex 4YG4 ; 3.5 ; HipB-O1-O1* complex 4YG1 ; 3.25 ; HipB-O1-O2 complex/P21212 crystal form 4Z58 ; 2.5 ; HipB-O3 20mer complex 4Z5C ; 2.5 ; HipB-O3 21mer complex 4Z59 ; 2.3 ; HipB-O4 20mer complex 4Z5D ; 2.15 ; HipB-O4 21mer complex 6P5S ; 2.194 ; HIPK2 kinase domain bound to CX-4945 8A9M ; 2.2 ; Hippeastrum hybrid agglutinin, HHA, complex with beta-mannose 5GDS ; 2.1 ; HIRUNORMS ARE TRUE HIRUDIN MIMETICS. THE CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN:HIRUNORM V COMPLEX 1BX7 ; 1.2 ; HIRUSTASIN FROM HIRUDO MEDICINALIS AT 1.2 ANGSTROMS 1BX8 ; 1.4 ; HIRUSTASIN FROM HIRUDO MEDICINALIS AT 1.4 ANGSTROMS 4GWJ ; 1.6 ; His 62 mutant of the lectin binding domain of Lectinolysin complexed with Lewis b 4GWI ; 1.6 ; His 62 mutant of the lectin binding domain of lectinolysin complexed with Lewis y 4RNT ; 2.2 ; HIS 92 ALA MUTATION IN RIBONUCLEASE T1 INDUCES SEGMENTAL FLEXIBILITY. AN X-RAY STUDY 7CPC ; 2.801 ; His-Mediated Reversible Self-assembly of Ferritin Nanocage with Ni binding 7CPI ; 2.602 ; His-Mediated Reversible Self-assembly of Ferritin Nanocage with Zn binding 6IPY ; 1.343 ; His-tagged Fyn SH3 domain R96I mutant 5XDH ; 1.32 ; His/DOPA ligated cytochrome c from an anammox organism KSU-1 1CM3 ; 1.6 ; HIS15ASP HPR FROM E. COLI 2BWS ; 1.75 ; His243Ala Escherichia coli Aminopeptidase P 2V3X ; 1.7 ; His243Ala Escherichia coli aminopeptidase P in complex with substrate 3MJM ; 1.87 ; His257Ala mutant of dihydroorotase from E. coli 2BWW ; 2.61 ; His350Ala Escherichia coli Aminopeptidase P 2BWX ; 1.7 ; His354Ala Escherichia coli Aminopeptidase P 2BWV ; 1.7 ; His361Ala Escherichia coli Aminopeptidase P 2V3Y ; 1.6 ; His361Ala Escherichia coli aminopeptidase P in complex with product 1G8Z ; 2.0 ; HIS57ALA MUTANT OF CHOLERA TOXIN B-PENATMER 4K36 ; 1.619 ; His6 tagged anSMEcpe with bound AdoMet 1MGN ; 1.9 ; HIS64(E7)-> TYR APOMYOGLOBIN AS A REAGENT FOR MEASURING RATES OF HEMIN DISSOCIATION 1RN4 ; 1.8 ; HIS92ALA MUTATION IN RIBONUCLEASE T1 INDUCES SEGMENTAL FLEXIBILITY. AN X-RAY STUDY 7QC3 ; 1.65 ; HisF from T. maritima 1H5Y ; 2.0 ; HisF protein from Pyrobaculum aerophilum 7QC7 ; 1.6 ; HisF-C9A-D11E-V33A_L50H_I52H mutant (apo) from T. maritima 7QC9 ; 1.8 ; HisF-C9A-D11E-V33A_L50H_I52H mutant in complex with Ni(II) from T. maritima 7QC8 ; 1.8 ; HisF-C9A-D11E-V33A_L50H_I52H mutant in complex with Zn(II) from T. maritima 7QC6 ; 2.1 ; HisF_C9A_L50H_I52H mutant (apo) from T. maritima 1QFT ; 1.25 ; HISTAMINE BINDING PROTEIN FROM FEMALE BROWN EAR RHIPICEPHALUS APPENDICULATUS 1QFV ; 1.36 ; HISTAMINE BINDING PROTEIN FROM FEMALE BROWN EAR RHIPICEPHALUS APPENDICULATUS 3K30 ; 2.7 ; Histamine dehydrogenase from Nocardiodes simplex 2AOW ; 2.97 ; Histamine Methyltransferase (Natural Variant I105) Complexed with the Acetylcholinesterase Inhibitor and Altzheimer's Disease Drug Tacrine 2AOX ; 3.12 ; Histamine Methyltransferase (Primary Variant T105) Complexed with the Acetylcholinesterase Inhibitor and Altzheimer's Disease Drug Tacrine 2AOV ; 2.48 ; Histamine Methyltransferase Complexed with the Antifolate Drug Metoprine 2AOT ; 1.9 ; Histamine Methyltransferase Complexed with the Antihistamine Drug Diphenhydramine 2AOU ; 2.3 ; Histamine Methyltransferase Complexed with the Antimalarial Drug Amodiaquine 8JXT ; 3.07 ; Histamine-bound H4R/Gi complex 3QIM ; 2.1 ; Histidine 416 of the periplamsic binding protein NikA is essential for nickel uptake in Escherichia coli 5CCP ; 2.2 ; HISTIDINE 52 IS A CRITICAL RESIDUE FOR RAPID FORMATION OF CYTOCHROME C PEROXIDASE COMPOUND I 1B8F ; 2.1 ; Histidine ammonia-lyase (HAL) from Pseudomonas putida 1GKM ; 1.0 ; HISTIDINE AMMONIA-LYASE (HAL) FROM PSEUDOMONAS PUTIDA INHIBITED WITH L-CYSTEINE 1GK3 ; 2.25 ; Histidine Ammonia-Lyase (HAL) Mutant D145A from Pseudomonas putida 1EB4 ; 2.0 ; Histidine Ammonia-Lyase (HAL) Mutant F329A from Pseudomonas putida 1GK2 ; 1.9 ; Histidine Ammonia-Lyase (HAL) Mutant F329G from Pseudomonas putida 1GKJ ; 1.7 ; Histidine Ammonia-Lyase (HAL) Mutant Y280F from Pseudomonas putida 4R39 ; 2.603 ; Histidine kinase domain from Erythrobacter litoralis EL346 blue-light activated histidine kinase 5EPV ; 2.51 ; Histidine kinase domain from the LOV-HK blue-light receptor from Brucella abortus 8JWD ; 1.33 ; Histidine kinase QseE sensor domain of Escherichia coli O157:H7 5C93 ; 2.518 ; Histidine kinase with ATP 5ZL6 ; 2.1 ; Histidine Racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 5RHN ; 2.31 ; HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN (HINT) FROM RABBIT COMPLEXED WITH 8-BR-AMP 4RHN ; 1.9 ; HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN (HINT) FROM RABBIT COMPLEXED WITH ADENOSINE 3RHN ; 2.1 ; HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN (HINT) FROM RABBIT COMPLEXED WITH GMP 6RHN ; 2.15 ; HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN (HINT) FROM RABBIT WITHOUT NUCLEOTIDE 7MQW ; 1.55 ; Histidine triad protein 4XWJ ; 2.095 ; Histidine-containing phosphocarrier protein (HPr) and antisigma factor Rsd complex 2HPR ; 2.0 ; HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR MUTANT WITH MET 51 REPLACED BY VAL AND SER 83 REPLACED BY CYS (M51V, S83C) 1A0B ; 2.06 ; HISTIDINE-CONTAINING PHOSPHOTRANSFER DOMAIN OF ARCB FROM ESCHERICHIA COLI 2A0B ; 1.57 ; HISTIDINE-CONTAINING PHOSPHOTRANSFER DOMAIN OF ARCB FROM ESCHERICHIA COLI 1OPD ; 1.5 ; HISTIDINE-CONTAINING PROTEIN (HPR), MUTANT WITH SER 46 REPLACED BY ASP (S46D) 2YZ5 ; 2.1 ; Histidinol Phosphate Phosphatase complexed with Phosphate 2YXO ; 1.6 ; Histidinol Phosphate Phosphatase complexed with Sulfate 5ZON ; 1.94 ; Histidinol phosphate phosphatase from Mycobacterium tuberculosis 2Z4G ; 1.8 ; Histidinol Phosphate Phosphatase from Thermus thermophilus HB8 5T3J ; 2.55 ; Histidinol Phosphate Phosphatase(HPP) soaked with selenourea for 10 min 1H1C ; 2.85 ; Histidinol-phosphate aminotransferase (HisC) from Thermotoga maritima 1UU0 ; 2.85 ; Histidinol-phosphate aminotransferase (HisC) from Thermotoga maritima (Apo-form) 1UU2 ; 2.8 ; Histidinol-phosphate aminotransferase (HisC) from Thermotoga maritima (apo-form) 3CQ4 ; 2.2 ; Histidinol-phosphate aminotransferase from Corynebacterium glutamicum 3CQ6 ; 2.1 ; Histidinol-phosphate aminotransferase from Corynebacterium glutamicum holo-form (PLP covalently bound ) 3CQ5 ; 1.8 ; Histidinol-phosphate aminotransferase from Corynebacterium glutamicum in complex with PMP 1HTT ; 2.6 ; HISTIDYL-TRNA SYNTHETASE 3HRI ; 2.85 ; Histidyl-tRNA synthetase (apo) from Trypanosoma brucei 1KMN ; 2.8 ; HISTIDYL-TRNA SYNTHETASE COMPLEXED WITH HISTIDINOL AND ATP 1KMM ; 2.6 ; HISTIDYL-TRNA SYNTHETASE COMPLEXED WITH HISTIDYL-ADENYLATE 1H4V ; 2.4 ; HISTIDYL-TRNA SYNTHETASE from Thermus Thermophilus (ligand free) 3LC0 ; 1.8 ; Histidyl-tRNA synthetase from Trypanosoma cruzi (Histidine complex) 3HRK ; 3.05 ; Histidyl-tRNA synthetase from Trypanosoma cruzi (Histidyl-adenylate complex) 1ADJ ; 2.7 ; HISTIDYL-TRNA SYNTHETASE IN COMPLEX WITH HISTIDINE 1ADY ; 2.8 ; HISTIDYL-TRNA SYNTHETASE IN COMPLEX WITH HISTIDYL-ADENYLATE 1FNE ; 1.9 ; HISTOCOMPATIBILITY ANTIGEN 1FNG ; 1.9 ; HISTOCOMPATIBILITY ANTIGEN 1IEA ; 2.3 ; HISTOCOMPATIBILITY ANTIGEN 1IEB ; 2.7 ; HISTOCOMPATIBILITY ANTIGEN 1HDM ; 2.5 ; HISTOCOMPATIBILITY ANTIGEN HLA-DM 1F3J ; 3.1 ; HISTOCOMPATIBILITY ANTIGEN I-AG7 1IAK ; 1.9 ; HISTOCOMPATIBILITY ANTIGEN I-AK 1BOB ; 2.3 ; HISTONE ACETYLTRANSFERASE HAT1 FROM SACCHAROMYCES CEREVISIAE IN COMPLEX WITH ACETYL COENZYME A 1QSO ; 2.9 ; Histone Acetyltransferase HPA2 from Saccharomyces Cerevisiae 1QSM ; 2.4 ; Histone Acetyltransferase HPA2 from Saccharomyces Cerevisiae in Complex with Acetyl Coenzyme A 8GQ4 ; 1.77 ; Histone acetyltransferase Rtt109 mutant-N195A 1BFM ; ; HISTONE B FROM METHANOTHERMUS FERVIDUS 5BT1 ; 2.62 ; histone chaperone Hif1 playing with histone H2A-H2B dimer 6WHN ; 1.54 ; Histone deacetylases complex with peptide macrocycles 6WHO ; 2.2 ; Histone deacetylases complex with peptide macrocycles 6WHQ ; 2.35 ; Histone deacetylases complex with peptide macrocycles 6WHZ ; 2.9 ; Histone deacetylases complex with peptide macrocycles 6WI3 ; 2.35 ; Histone deacetylases complex with peptide macrocycles 4QWN ; 2.1 ; Histone demethylase KDM2A-H3K36ME1-alpha-KG complex structure 4CZZ ; 3.0 ; Histone demethylase LSD1(KDM1A)-CoREST3 Complex 6R0N ; 2.1 ; Histone fold domain of AtNF-YB2/NF-YC3 in I2 6R0M ; 2.3 ; Histone fold domain of AtNF-YB2/NF-YC3 in P212121 6R0L ; 2.7 ; Histone fold domain of OsGhd8/NF-YC7 in I2 2BYK ; 2.4 ; Histone fold heterodimer of the Chromatin Accessibility Complex 2BYM ; 2.8 ; Histone fold heterodimer of the Chromatin Accessibility Complex 8FVX ; 1.8 ; Histone from Bdellovibrio bacteriovorus 8FW7 ; 2.0 ; Histone from Bdellovibrio bacteriovorus bound to dsDNA 4IGP ; 3.003 ; Histone H3 Lysine 4 Demethylating Rice JMJ703 apo enzyme 4IGQ ; 2.35 ; Histone H3 Lysine 4 Demethylating Rice JMJ703 in complex with methylated H3K4 substrate 4IGO ; 2.4 ; Histone H3 Lysine 4 Demethylating rice Rice JMJ703 in complex with alpha-KG 2H68 ; 1.79 ; Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex 2H6K ; 1.89 ; Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex 2H6N ; 1.5 ; Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex 2H6Q ; 1.87 ; Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex 7AT8 ; 4.4 ; Histone H3 recognition by nucleosome-bound PRC2 subunit EZH2. 7DYG ; 2.0 ; Histone lysine demethylase 4D (KDM4D) in complex with the inhibitor 2-(1H-pyrazol-3-yl)isonicotinic acid 3U4S ; 2.15 ; Histone Lysine demethylase JMJD2A in complex with T11C peptide substrate crosslinked to N-oxalyl-D-cysteine 6ACL ; 1.92 ; histone lysine desuccinylase Sirt5 in complex with succinyl peptide H2AK95 6ACO ; 1.71 ; histone lysine desuccinylase Sirt5 in complex with succinyl peptide H2BK120 6ACE ; 1.98 ; histone lysine desuccinylase Sirt5 in complex with succinyl peptide H3K122 6ACP ; 2.3 ; histone lysine desuccinylase Sirt5 in complex with succinyl peptide H4K91 7YRD ; 3.2 ; histone methyltransferase 7YRG ; 4.2 ; histone methyltransferase 2HIO ; 3.1 ; HISTONE OCTAMER (CHICKEN), CHROMOSOMAL PROTEIN 1HIO ; 3.1 ; HISTONE OCTAMER (CHICKEN), CHROMOSOMAL PROTEIN, ALPHA CARBONS ONLY 1HUE ; ; HISTONE-LIKE PROTEIN 7LMT ; 2.27 ; Histone-lysine N-methyltransferase NSD2-PWWP1 with compound MRT10241866a 7MDN ; 2.42 ; Histone-lysine N-methyltransferase NSD2-PWWP1 with compound MRT10241866a 6XCG ; 1.64 ; Histone-lysine N-methyltransferase NSD2-PWWP1 with compound UNC6934 7R79 ; 1.6 ; Histoplasma capsulatum H88 Calcium Binding Protein 1 (Cbp1) 5UVM ; 2.3 ; HIT family hydrolase from Clostridium thermocellum Cth-393 4ZGL ; 2.95 ; Hit Like Protein 1A8O ; 1.7 ; HIV CAPSID C-TERMINAL DOMAIN 4IPY ; 1.64 ; HIV capsid C-terminal domain 1AUM ; 3.0 ; HIV CAPSID C-TERMINAL DOMAIN (CAC146) 2M8L ; ; HIV capsid dimer structure 6R6Q ; 2.73 ; HIV capsid hexamer with IP5 ligand 6R8C ; 1.92 ; HIV capsid hexamer with IP5 ligand 6ES8 ; 1.9 ; HIV capsid hexamer with IP6 ligand 6H09 ; 2.0 ; HIV capsid hexamer with IP6 ligand 6P65 ; 3.94 ; HIV Env 16055 NFL TD 2CC+ in complex with antibody 1C2 fragment antigen binding 6P62 ; 3.57 ; HIV Env BG505 NFL TD+ in complex with antibody E70 fragment antigen binding 6DID ; 4.71 ; HIV Env BG505 SOSIP with polyclonal Fabs from immunized rabbit #3417 post-boost#1 3VTP ; 1.9 ; HIV fusion inhibitor MT-C34 1MEQ ; ; HIV gp120 C5 5T3S ; 4.5 ; HIV gp140 trimer MD39-10MUTA in complex with Fabs PGT124 and 35022 1AIK ; 2.0 ; HIV GP41 CORE STRUCTURE 3G7A ; 2.8 ; HIV gp41 six-helix bundle composed of a chimeric alpha+alpha/beta-peptide analogue of the CHR domain in complex with an NHR domain alpha-peptide 3F50 ; 2.8 ; HIV gp41 six-helix bundle composed of an alpha/beta-peptide analogue of the CHR domain in complex with an NHR domain alpha-peptide 3F4Y ; 2.0 ; HIV gp41 six-helix bundle containing a mutant CHR alpha-peptide sequence 6ERM ; 2.0 ; HIV Hexamer with ligand 6ERN ; 2.36 ; HIV Hexamer with ligand 3LPT ; 2.0 ; HIV integrase 3LPU ; 1.95 ; HIV integrase 5OYM ; 2.05 ; HIV Integrase Binding Domain of Lens Epithelium-Derived Growth Factor 5HRS ; 1.86 ; HIV Integrase Catalytic Domain containing F185K + A124N + T125A mutations complexed with GSK0002 5HRR ; 1.88 ; HIV Integrase Catalytic Domain containing F185K + A124N + T125S mutations complexed with GSK0002 5HRP ; 1.81 ; HIV Integrase Catalytic Domain containing F185K + A124T mutations complexed with GSK0002 5HRN ; 1.75 ; HIV Integrase Catalytic Domain containing F185K mutation complexed with GSK0002 6VKA ; 1.863 ; HIV Integrase Core domain (IN) in complex with dimer-spanning ligand 6VLH ; 2.036 ; HIV Integrase Core domain (IN) in complex with dimer-spanning ligand 7L1P ; 1.85 ; HIV Integrase Core domain (IN) in complex with dimer-spanning ligand 6VQS ; 2.38 ; HIV Integrase Core domain (IN) in complex with [5-(3-fluorophenyl)-1-benzofuran-3-yl]acetic acid 1HYZ ; 2.3 ; HIV INTEGRASE CORE DOMAIN COMPLEXED WITH A DERIVATIVE OF TETRAPHENYL ARSONIUM. 1HYV ; 1.7 ; HIV INTEGRASE CORE DOMAIN COMPLEXED WITH TETRAPHENYL ARSONIUM 7RQ0 ; 1.95 ; HIV Integrase CORE domain in complex with 2-{2-[2-(3-{[4-(2-{[(3-{2-[3-(carboxymethyl)-5-methyl-1-benzofuran-2-yl]ethynyl}phenyl)methyl]amino}ethyl)piperazin-1-yl]methyl}phenyl)ethynyl]-5-methyl-1-benzofuran-3-yl}acetic acid 6VX2 ; 2.4 ; HIV Integrase core domain in complex with inhibitor (5-methyl-1-benzofuran-3-yl)acetic acid 6W0U ; 2.19 ; HIV Integrase core domain in complex with inhibitor 2-(2-ethynyl-5-methyl-1-benzofuran-3-yl)acetic acid 6WC8 ; 1.88 ; HIV Integrase core domain in complex with inhibitor 2-(5-(3-fluorophenyl)-2-(2-(thiophen-2-yl)ethynyl)-1- benzofuran-3-yl)ethanoic acid 7L23 ; 2.26 ; HIV Integrase core domain in complex with inhibitor 2-(5-(3-fluorophenyl)-2-(2-(thiophen-2-yl)ethynyl)-1- benzofuran-3-yl)ethanoic acid 7L2Y ; 1.982 ; HIV Integrase core domain in complex with inhibitor 2-(5-(3-fluorophenyl)-2-(2-(thiophen-2-yl)ethynyl)-1- benzofuran-3-yl)ethanoic acid 6W42 ; 2.26 ; HIV Integrase core domain in complex with inhibitor 2-(5-methyl-2-(2-(thiophen-2-yl)ethynyl)-1-benzofuran-3-yl)acetic acid 7SIA ; 1.85 ; HIV Integrase core domain in complex with inhibitor 2-[2-(2-{3-[(4-{2-[(3-{2-[3-(carboxymethyl)-5-methyl-1-benzofuran-2-yl]ethynyl}phenyl)formamido]ethyl}piperazin-1-yl)methyl]phenyl}ethynyl)-5-methyl-1-benzofuran-3-yl]acetic acid 6WE7 ; 2.28 ; HIV Integrase core domain in complex with inhibitor 3-methyl-2-{5-methyl-2-[2-(thiophen-2-yl)ethynyl]-1- benzofuran-3-yl}butanoic acid 6UM8 ; 2.33 ; HIV Integrase in complex with Compound-14 7T9H ; 2.53 ; HIV Integrase in complex with Compound-15 7T9O ; 1.95 ; HIV Integrase in complex with Compound-25 4NYF ; 1.9 ; HIV integrase in complex with inhibitor 3RL2 ; 2.386 ; HIV Nef derived peptide Nef73 complexed to HLA-A*0301 3CMO ; 2.3 ; HIV neutralizing monoclonal antibody YZ18 3CLE ; 2.5 ; HIV neutralizing monoclonal antibody YZ23 3CLF ; 2.0 ; HIV neutralizing monoclonal antibody YZ23 3GGU ; 1.8 ; HIV PR drug resistant patient's variant in complex with darunavir 3U7S ; 2.05 ; HIV PR drug resistant patient's variant in complex with darunavir 4EJD ; 1.103 ; HIV Protease (PR) dimer in closed form with pepstatin in active site and fragment 1F1 in the outside/top of flap 4EJK ; 1.794 ; HIV Protease (PR) dimer in closed form with pepstatin in active site and fragment 1F1-N in the outside/top of flap 4TVG ; 2.18 ; HIV Protease (PR) dimer in closed form with pepstatin in active site and fragment AK-2097 in the outside/top of flap 4TVH ; 2.195 ; HIV Protease (PR) dimer in closed form with TL-3 in active site and fragment AK-2097 in the outside/top of flap 4E43 ; 1.54 ; HIV protease (PR) dimer with acetate in exo site and peptide in active site 3KFR ; 1.3 ; HIV Protease (PR) dimer with inhibitor TL-3 bound and fragment 1F1 in the outside/top of flap 3KFS ; 1.8 ; HIV Protease (PR) dimer with inhibitor TL-3 bound and fragment 2F4 in the outside/top of flap 5VJ3 ; 2.0 ; HIV Protease (PR) in open form with Mg2+ in active site and HIVE-9 in eye site 5W5W ; 3.0 ; HIV Protease (PR) in open form with Mg2+ in active site and HIVE-9 in eye site 3KFN ; 1.77 ; HIV Protease (PR) with inhibitor TL-3 and fragment hit 4D9 by soaking 3KFP ; 1.77 ; HIV Protease (PR) with inhibitor TL-3 bound, and DMSOs in exo site 5VEA ; 2.0 ; HIV Protease (PR) with TL-3 in active site and 4-methylbenzene-1,2-diamine in exosite 5VCK ; 1.8 ; HIV Protease (PR) with TL-3 in the active site and (Z)-N-(thiazol-2-yl)-N'-tosylcarbamimidate in the exosite 3M9F ; 1.8 ; HIV protease complexed with compound 10b 4MC9 ; 1.19 ; HIV protease in complex with AA74 8ESX ; 1.35 ; HIV protease in complex with benzoxaborolone analog of darunavir 4MC6 ; 1.31 ; HIV protease in complex with SA499 4MC2 ; 1.56 ; HIV protease in complex with SA525P 4MC1 ; 1.39 ; HIV protease in complex with SA526P 3GGA ; 2.5 ; HIV Protease inhibitors with pseudo-symmetric cores 1T3R ; 1.2 ; HIV protease wild-type in complex with TMC114 inhibitor 3KF0 ; 1.8 ; HIV Protease with fragment 4D9 bound 1ZP8 ; 2.02 ; HIV Protease with inhibitor AB-2 1YT9 ; 3.0 ; HIV Protease with oximinoarylsulfonamide bound 1ZPA ; 2.02 ; HIV Protease with Scripps AB-3 Inhibitor 3GGV ; 3.09 ; HIV Protease, pseudo-symmetric inhibitors 3GGX ; 2.7 ; HIV Protease, pseudo-symmetric inhibitors 5VZ6 ; 2.6 ; HIV Reverse Transcriptase complexed with (E)-3-(pyrimidin-2-yl)-N-(5-(5,6,7,8-tetrahydronaphthalen-2-yl)-1H-pyrazol-3-yl)acrylamide 2RF2 ; 2.4 ; HIV reverse transcriptase in complex with inhibitor 7e (NNRTI) 3DRP ; 2.6 ; HIV reverse transcriptase in complex with inhibitor R8e 3DRS ; 3.15 ; HIV reverse transcriptase K103N mutant in complex with inhibitor R8D 7SLR ; 2.179 ; HIV Reverse Transcriptase with compound Pyr01 7SLS ; 2.078 ; HIV Reverse Transcriptase with compound Pyr02 3DRR ; 2.89 ; HIV reverse transcriptase Y181C mutant in complex with inhibitor R8e 3RL1 ; 2.0 ; HIV RT derived peptide complexed to HLA-A*0301 1TCX ; 2.3 ; HIV TRIPLE MUTANT PROTEASE COMPLEXED WITH INHIBITOR SB203386 1BDR ; 2.8 ; HIV-1 (2: 31, 33-37) PROTEASE COMPLEXED WITH INHIBITOR SB203386 1BDL ; 2.8 ; HIV-1 (2:31-37) PROTEASE COMPLEXED WITH INHIBITOR SB203386 1BDQ ; 2.5 ; HIV-1 (2:31-37, 47, 82) PROTEASE COMPLEXED WITH INHIBITOR SB203386 3LEV ; 2.5 ; HIV-1 antibody 2F5 in complex with epitope scaffold ES2 6U59 ; 3.86 ; HIV-1 B41 SOSIP.664 in complex with rabbit antibody 13B 6UDJ ; 2.5 ; HIV-1 bNAb 1-18 in complex with BG505 SOSIP.664 and 10-1074 6UDK ; 3.9 ; HIV-1 bNAb 1-55 in complex with modified BG505 SOSIP-based immunogen RC1 and 10-1074 6ECN ; 3.4 ; HIV-1 CA 1/2-hexamer-EE 6BHS ; 1.984 ; HIV-1 CA hexamer in complex with IP6, hexagonal crystal form 6BHT ; 2.689 ; HIV-1 CA hexamer in complex with IP6, orthorhombic crystal form 5TSX ; 1.899 ; HIV-1 CA hexamer with NUP153 peptide - P1 crystal form 5TSV ; 2.502 ; HIV-1 CA hexamer with NUP153 peptide - R3 crystal form 8G6M ; 3.1 ; HIV-1 CA lattice bound to IP6, pH 7.4 8G6K ; 3.6 ; HIV-1 CA lattice bound to IP6; from capsid-like particles 5HGK ; 1.763 ; HIV-1 CA N-terminal domain, open conformation 2BUO ; 1.7 ; HIV-1 capsid C-terminal domain in complex with an inhibitor of particle assembly 3DTJ ; 4.0 ; HIV-1 capsid C-terminal domain mutant (E187A) 3DS1 ; 1.6 ; HIV-1 capsid C-terminal domain mutant (E187A) in complex with an inhibitor of particle assembly (CAI) 3DPH ; 2.01 ; HIV-1 capsid C-terminal domain mutant (L211S) 3DS4 ; 1.12 ; HIV-1 capsid C-terminal domain mutant (L211S) in complex with an inhibitor of particle assembly (CAI) 3DS5 ; 2.4 ; HIV-1 capsid C-terminal domain mutant (N183A) 3DS0 ; 1.6 ; HIV-1 capsid C-terminal domain mutant (N183A) in complex with an inhibitor of particle assembly (CAI) 3DS2 ; 1.2 ; HIV-1 capsid C-terminal domain mutant (Y169A) 3DS3 ; 2.7 ; HIV-1 capsid C-terminal domain mutant (Y169A) in complex with an inhibitor of particle assembly (CAI) 4COC ; 1.59 ; HIV-1 capsid C-terminal domain mutant (Y169L) 4COP ; 1.85 ; HIV-1 capsid C-terminal domain mutant (Y169S) 6OMT ; 2.052 ; HIV-1 capsid hexamer R18D mutant 8G6N ; 3.5 ; HIV-1 capsid lattice bound to dNTPs 8G6O ; 3.1 ; HIV-1 capsid lattice bound to IP6 and Lenacapavir 8G6L ; 3.3 ; HIV-1 capsid lattice bound to IP6, pH 6.2 2M8N ; ; HIV-1 capsid monomer structure 1AFV ; 3.7 ; HIV-1 CAPSID PROTEIN (P24) COMPLEX WITH FAB25.3 1BAJ ; 2.6 ; HIV-1 CAPSID PROTEIN C-TERMINAL FRAGMENT PLUS GAG P2 DOMAIN 1BMX ; ; HIV-1 CAPSID PROTEIN MAJOR HOMOLOGY REGION PEPTIDE ANALOG, NMR, 8 STRUCTURES 2N1Q ; ; HIV-1 Core Packaging Signal 3WFV ; 1.8 ; HIV-1 CRF07 gp41 2FD0 ; 1.8 ; HIV-1 DIS kissing-loop in complex with lividomycin 2FCX ; 2.0 ; HIV-1 DIS kissing-loop in complex with neamine 2FCY ; 2.2 ; HIV-1 DIS kissing-loop in complex with Neomycin 2FCZ ; 2.01 ; HIV-1 DIS kissing-loop in complex with ribostamycin 1Y3O ; 2.7 ; HIV-1 DIS RNA subtype F- Mn soaked 1ZCI ; 1.65 ; HIV-1 DIS RNA subtype F- monoclinic form 1Y3S ; 2.25 ; HIV-1 DIS RNA subtype F- MPD form 1YXP ; 2.4 ; HIV-1 DIS RNA subtype F- Zn soaked 1Y6S ; 2.9 ; HIV-1 DIS(Mal) duplex Ba-soaked 1Y6T ; 2.6 ; HIV-1 Dis(Mal) Duplex Co Hexamine-Soaked 1WVD ; 2.93 ; HIV-1 Dis(Mal) Duplex CoCl2-Soaked 1Y90 ; 3.08 ; HIV-1 Dis(Mal) Duplex Mn-Soaked 1Y95 ; 2.8 ; HIV-1 Dis(Mal) Duplex Pb-Soaked 1Y73 ; 2.9 ; HIV-1 Dis(Mal) Duplex Pt-Soaked 1O3Z ; 2.65 ; HIV-1 DIS(MAL) DUPLEX RU HEXAMINE-SOAKED 1NLC ; 1.85 ; HIV-1 DIS(Mal) duplex Zn-soaked 7PC2 ; 2.8 ; HIV-1 Env (BG505 SOSIP.664) in complex with the IgA bNAb 7-269 and the antibody 3BNC117. 5WDU ; 7.0 ; HIV-1 Env BG505 SOSIP.664 H72C-H564C trimer in complex with bNAbs PGT122 Fab, 35O22 Fab and NIH45-46 scFv 8GJE ; 3.4 ; HIV-1 Env subtype C CZA97.12 SOSIP.664 in complex with 3BNC117 Fab 8GPJ ; 3.5 ; HIV-1 Env X16 UFO in complex with 8ANC195 Fab 8GPI ; 3.0 ; HIV-1 Env X18 UFO in complex with 8ANC195 Fab 8GPG ; 4.1 ; HIV-1 Env X18 UFO in complex with F6 Fab 7T74 ; 3.35 ; HIV-1 Envelope ApexGT2 in complex with PCT64.35S Fab and RM20A3 Fab 7T75 ; 2.7 ; HIV-1 Envelope ApexGT2 in complex with RM20A3 Fab 7T73 ; 4.0 ; HIV-1 Envelope ApexGT2.2MUT in complex with PCT64.LMCA Fab 7T76 ; 4.43 ; HIV-1 Envelope ApexGT3 in complex with PG9.iGL Fab 7T77 ; 4.75 ; HIV-1 Envelope ApexGT3.N130 in complex with PG9 Fab 6X9R ; 3.1 ; HIV-1 Envelope Glycoprotein BG505 SOSIP.664 expressed in HEK293F cells in complex with RM20A3 Fab 6X9T ; 3.2 ; HIV-1 Envelope Glycoprotein BG505 SOSIP.664 expressed in HEK293S cells in complex with RM20A3 Fab 6X9S ; 3.1 ; HIV-1 Envelope Glycoprotein BG505 SOSIP.664 expressed in stable CHO cells in complex with RM20A3 Fab 6X9V ; 3.5 ; HIV-1 Envelope Glycoprotein BG505 SOSIP.664, expressed in HEK293S cells and deglycosylated by endoglycosidase H, in complex with RM20A3 Fab 6X9U ; 3.2 ; HIV-1 Envelope Glycoprotein BG505 SOSIP.664, expressed in HEK293S cells and partially deglycosylated by endoglycosidase H, in complex with RM20A3 Fab 6MAR ; 4.5 ; HIV-1 Envelope Glycoprotein Clone BG505 delCT N332T in complex with broadly neutralizing antibody Fab PGT151 7ASH ; 4.2 ; HIV-1 Gag immature lattice. GagdeltaMASP1T8I 7ASL ; 4.5 ; HIV-1 Gag immature lattice. GagSP1T8I 5F4P ; 2.6 ; HIV-1 gp120 complex with BNM-III-170 8FLY ; 2.04 ; HIV-1 gp120 complex with BNM-III-170 5F4U ; 3.1 ; HIV-1 gp120 complex with BNM-IV-197 5F4R ; 2.8 ; HIV-1 gp120 complex with BNW-IV-147 7TJP ; 2.77 ; HIV-1 gp120 complex with CJF-II-195 7TJO ; 3.07 ; HIV-1 gp120 complex with CJF-II-197-S 7RSZ ; 2.79 ; HIV-1 gp120 complex with CJF-II-204 7RSY ; 2.7 ; HIV-1 gp120 complex with CJF-III-049-R 7RSX ; 2.75 ; HIV-1 gp120 complex with CJF-III-049-S 8FLZ ; 2.0 ; HIV-1 gp120 complex with CJF-III-049-S 8FM7 ; 2.34 ; HIV-1 gp120 complex with CJF-III-192 8FM0 ; 2.08 ; HIV-1 gp120 complex with CJF-III-214 8FM3 ; 2.11 ; HIV-1 gp120 complex with CJF-III-288 8FM2 ; 2.4 ; HIV-1 gp120 complex with CJF-III-289 8FM8 ; 2.47 ; HIV-1 gp120 complex with CJF-IV-046 8FM4 ; 2.18 ; HIV-1 gp120 complex with CJF-IV-047 8FM5 ; 1.88 ; HIV-1 gp120 complex with DY-III-065 5F4L ; 2.7 ; HIV-1 gp120 complex with JP-III-048 1GC1 ; 2.5 ; HIV-1 GP120 CORE COMPLEXED WITH CD4 AND A NEUTRALIZING HUMAN ANTIBODY 2NY1 ; 1.99 ; HIV-1 gp120 Envelope Glycoprotein (I109C, T257S, S334A, S375W, Q428C) Complexed with CD4 and Antibody 17b 2NY3 ; 2.0 ; HIV-1 gp120 Envelope Glycoprotein (K231C, T257S, E267C, S334A, S375W) Complexed with CD4 and Antibody 17b 2NY4 ; 2.0 ; HIV-1 gp120 Envelope Glycoprotein (K231C, T257S, E268C, S334A, S375W) Complexed with CD4 and Antibody 17b 2NY6 ; 2.8 ; HIV-1 gp120 Envelope Glycoprotein (M95W, W96C, I109C, T123C, T257S, V275C,S334A, S375W, Q428C, G431C) Complexed with CD4 and Antibody 17b 2NY5 ; 2.5 ; HIV-1 gp120 Envelope Glycoprotein (M95W, W96C, I109C, T257S, V275C, S334A, S375W, Q428C, A433M) Complexed with CD4 and Antibody 17b 2NY0 ; 2.2 ; HIV-1 gp120 Envelope Glycoprotein (M95W, W96C, T257S, V275C, S334A, S375W, A433M) Complexed with CD4 and Antibody 17b 2NY2 ; 2.0 ; HIV-1 gp120 Envelope Glycoprotein (T123C, T257S, S334A, S375W, G431C) Complexed with CD4 and Antibody 17b 2NXZ ; 2.04 ; HIV-1 gp120 Envelope Glycoprotein (T257S, S334A, S375W) Complexed with CD4 and Antibody 17b 2NY7 ; 2.3 ; HIV-1 gp120 Envelope Glycoprotein Complexed with the Broadly Neutralizing CD4-Binding-Site Antibody b12 2NXY ; 2.0 ; HIV-1 gp120 Envelope Glycoprotein(S334A) Complexed with CD4 and Antibody 17b 2ME1 ; ; HIV-1 gp41 clade B double alanine mutant Membrane Proximal External Region peptide in DPC micelle 2ME2 ; ; HIV-1 gp41 clade C Membrane Proximal External Region peptide in DPC micelle 2ME3 ; ; HIV-1 gp41 clade C Membrane Proximal External Region peptide in DPC micelle 2ME4 ; ; HIV-1 gp41 clade C Membrane Proximal External Region peptide in DPC micelle 8F3A ; 1.2 ; HIV-1 gp41 coiled-coil pocket IQN17 8F3B ; 2.0 ; HIV-1 gp41 coiled-coil pocket IQN22 1I5X ; 1.8 ; HIV-1 GP41 CORE 1I5Y ; 2.1 ; HIV-1 GP41 CORE 2PV6 ; ; HIV-1 gp41 Membrane Proximal Ectodomain Region peptide in DPC micelle 5KA6 ; 1.85 ; HIV-1 gp41 variant Q552R and L555M resistance mutations 5KA5 ; 1.8 ; HIV-1 gp41 variant V549E resistance mutation 1G9M ; 2.2 ; HIV-1 HXBC2 GP120 ENVELOPE GLYCOPROTEIN COMPLEXED WITH CD4 AND INDUCED NEUTRALIZING ANTIBODY 17B 1RZJ ; 2.2 ; HIV-1 HXBC2 GP120 ENVELOPE GLYCOPROTEIN COMPLEXED WITH CD4 AND INDUCED NEUTRALIZING ANTIBODY 17B 6BHR ; 2.908 ; HIV-1 immature CTD-SP1 hexamer in complex with IP6 3VQ6 ; 1.8 ; HIV-1 IN core domain in complex with (1-methyl-5-phenyl-1H-pyrazol-4-yl)methanol 3VQ8 ; 1.6 ; HIV-1 IN core domain in complex with (3R)-3,4-dihydro-2H-chromen-3-ylmethanol 3VQC ; 2.3 ; HIV-1 IN core domain in complex with (5-METHYL-3-PHENYL-1,2-OXAZOL-4-YL)METHANOL 3VQA ; 1.9 ; HIV-1 IN core domain in complex with 1-benzothiophen-6-amine 1,1-dioxide 3VQP ; 2.1 ; HIV-1 IN core domain in complex with 2,3-dihydro-1,4-benzodioxin-5-ylmethanol 3VQ7 ; 1.63 ; HIV-1 IN core domain in complex with 4-(1H-pyrrol-1-yl)aniline 3VQD ; 2.0 ; HIV-1 IN core domain in complex with 5-methyl-3-phenyl-1,2-oxazole-4-carboxylic acid 3VQ9 ; 1.9 ; HIV-1 IN core domain in complex with 6-fluoro-1,3-benzothiazol-2-amine 3VQB ; 2.1 ; HIV-1 IN core domain in complex with 6-fluoro-4H-1,3-benzodioxine-8-carboxylic acid 3VQ5 ; 1.7 ; HIV-1 IN core domain in complex with N-METHYL-1-(4-METHYL-2-PHENYL-1,3-THIAZOL-5-YL)METHANAMINE 3VQE ; 1.7 ; HIV-1 IN core domain in complex with [1-(4-fluorophenyl)-5-methyl-1H-pyrazol-4-yl]methanol 2XYE ; 2.0 ; HIV-1 Inhibitors with a Tertiary-Alcohol-containing Transition-State Mimic and various P2 and P1 prime Substituents 2XYF ; 1.8 ; HIV-1 Inhibitors with a Tertiary-Alcohol-containing Transition-State Mimic and various P2 and P1 prime Substituents 1EX4 ; 2.8 ; HIV-1 INTEGRASE CATALYTIC CORE AND C-TERMINAL DOMAIN 8S9Q ; 2.26 ; HIV-1 Integrase Catalytic Core Domain (CCD) F185H Mutant Complexed with STP03-0404 5KRT ; 1.651 ; HIV-1 Integrase Catalytic Core Domain (CCD) in Complex with a Fragment-Derived Allosteric Inhibitor 4GVM ; 2.16 ; HIV-1 Integrase Catalytic Core Domain A128T Mutant Complexed with Allosteric Inhibitor 4JLH ; 2.09 ; HIV-1 Integrase Catalytic Core Domain A128T Mutant Complexed with Allosteric Inhibitor 8CBR ; 1.8 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor BDM-2 8A1P ; 1.8 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor BI-D 8BUV ; 2.04 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor LEDGIN 3 8CBS ; 1.7 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor MUT871 8CBT ; 2.14 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor MUT872 8CBU ; 2.44 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor MUT884 8CBV ; 1.82 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor MUT916 8A1Q ; 2.06 ; HIV-1 Integrase Catalytic Core Domain and C-Terminal Domain in Complex with Allosteric Integrase Inhibitor STP0404 (Pirmitegravir) 4GW6 ; 2.65 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor 4ID1 ; 1.87 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor 6EB1 ; 2.2 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor (2S)-tert-butoxy[3-(3,4-dihydro-2H-1-benzopyran-6-yl)-1-phenylisoquinolin-4-yl]acetic acid 4O0J ; 2.05 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor (2S)-tert-butoxy[4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)-2,5-dimethylpyridin-3-yl]ethanoic acid 4O55 ; 2.24 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor (2S)-tert-butoxy[6-(5-chloro-1H-benzimidazol-2-yl)-2,5-dimethyl-4-phenylpyridin-3-yl]ethanoic acid 4O5B ; 2.37 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor (2S)-tert-butoxy[6-(5-chloro-1H-benzimidazol-2-yl)-2,5-dimethyl-4-phenylpyridin-3-yl]ethanoic acid 6EB2 ; 2.493 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor (2S)-[1-(1-benzyl-1H-pyrazol-4-yl)-3-(3,4-dihydro-2H-1-benzopyran-6-yl)isoquinolin-4-yl](tert-butoxy)acetic acid 6NUJ ; 2.10003 ; HIV-1 Integrase Catalytic Core Domain Complexed with Allosteric Inhibitor BI-224436 7KE0 ; 2.19 ; HIV-1 Integrase catalytic core domain complexed with allosteric inhibitor STP03-0404 8D3S ; 1.84 ; HIV-1 Integrase Catalytic Core Domain F185H Mutant Complexed with BKC-110 5KRS ; 1.7 ; HIV-1 Integrase Catalytic Core Domain in Complex with an Allosteric Inhibitor, 3-(1H-pyrrol-1-yl)-2-thiophenecarboxylic acid 7UE1 ; 3.0 ; HIV-1 Integrase Catalytic Core Domain Mutant (KGD) in Complex with Inhibitor GRL-142 4TSX ; 1.94 ; HIV-1 Integrase Catalytic Core Domain Mutant Complexed with Allosteric Inhibitor 4DMN ; 2.45 ; HIV-1 Integrase Catalytical Core Domain 1BIS ; 1.95 ; HIV-1 INTEGRASE CORE DOMAIN 1BIZ ; 1.95 ; HIV-1 INTEGRASE CORE DOMAIN 1BIU ; 2.5 ; HIV-1 INTEGRASE CORE DOMAIN COMPLEXED WITH MG++ 3VQQ ; 2.0 ; HIV-1 integrase core domain in complex with 2,1,3-benzothiadiazol-4-amine 3MED ; 2.5 ; HIV-1 K103N Reverse Transcriptase in Complex with TMC125 3MEG ; 2.8 ; HIV-1 K103N Reverse Transcriptase in Complex with TMC278 6UK0 ; 2.75695 ; HIV-1 M184V reverse transcriptase-DNA complex 6UIR ; 2.639 ; HIV-1 M184V reverse transcriptase-DNA complex with (-)-FTC-TP 6UIS ; 2.74834 ; HIV-1 M184V reverse transcriptase-DNA complex with dCTP 8CKV ; 2.89 ; HIV-1 mature capsid hexamer from CA-IP6 CLPs 8CL1 ; 3.35 ; HIV-1 mature capsid hexamer from CA-IP6 CLPs, bound to CPSF6 peptide. 8CKY ; 2.6 ; HIV-1 mature capsid hexamer from CA-IP6 CLPs, bound to Nup153 peptide 8CL3 ; 3.14 ; HIV-1 mature capsid hexamer from CA-IP6 CLPs, bound to Sec24C peptide. 8CKX ; 2.97 ; HIV-1 mature capsid hexamer next to pentamer (type I) from CA-IP6 CLPs 8CL0 ; 3.12 ; HIV-1 mature capsid hexamer next to pentamer (type I) from CA-IP6 CLPs bound to Nup153 peptide. 8CKW ; 3.12 ; HIV-1 mature capsid pentamer from CA-IP6 CLPs 8CL2 ; 3.45 ; HIV-1 mature capsid pentamer from CA-IP6 CLPs bound to CPSF6 peptide 8CKZ ; 3.07 ; HIV-1 mature capsid pentamer from CA-IP6 CLPs bound to Nup153 peptide 8CL4 ; 3.14 ; HIV-1 mature capsid pentamer from CA-IP6 CLPs bound to Sec24C peptide 1MES ; 1.9 ; HIV-1 MUTANT (I84V) PROTEASE COMPLEXED WITH DMP323 1MER ; 1.9 ; HIV-1 MUTANT (I84V) PROTEASE COMPLEXED WITH DMP450 1MET ; 1.9 ; HIV-1 MUTANT (V82F) PROTEASE COMPLEXED WITH DMP323 1MEU ; 1.9 ; HIV-1 MUTANT (V82F, I84V) PROTEASE COMPLEXED WITH DMP323 1UPH ; ; HIV-1 Myristoylated Matrix 2NEF ; ; HIV-1 NEF (REGULATORY FACTOR), NMR, 40 STRUCTURES 1QA4 ; ; HIV-1 NEF ANCHOR DOMAIN, NMR, 2 STRUCTURES 4EMZ ; 2.9 ; HIV-1 Nef in complex with MHC-I cytoplasmic domain and Mu1 adaptin subunit of AP1 adaptor (second domain) 4EN2 ; 2.58 ; HIV-1 Nef in complex with MHC-I cytoplasmic domain and Mu1 adaptin subunit of AP1 adaptor (second domain) 6URI ; 3.0 ; HIV-1 Nef in complex with the CD4 cytoplasmic domain and the AP2 clathrin adaptor complex 3RBB ; 2.35 ; HIV-1 NEF protein in complex with engineered HCK SH3 domain 3REA ; 2.0 ; HIV-1 Nef protein in complex with engineered Hck-SH3 domain 3REB ; 3.45 ; HIV-1 Nef protein in complex with engineered Hck-SH3 domain 1EFN ; 2.5 ; HIV-1 NEF PROTEIN IN COMPLEX WITH R96I MUTANT FYN SH3 DOMAIN 4ORZ ; 2.0 ; HIV-1 Nef protein in complex with single domain antibody sdAb19 and an engineered Hck SH3 domain 1AVV ; 3.0 ; HIV-1 NEF PROTEIN, UNLIGANDED CORE DOMAIN 3Q1S ; 2.15 ; HIV-1 neutralizing antibody Z13e1 in complex with epitope display protein 1NXR ; ; HIV-1 POLYPURINE HYBRID, R(GAGGACUG):D(CAGTCCTC), NMR, 18 STRUCTURES 2PYM ; 1.9 ; HIV-1 PR mutant in complex with nelfinavir 2PYN ; 1.85 ; HIV-1 PR mutant in complex with nelfinavir 2Q63 ; 2.2 ; HIV-1 PR mutant in complex with nelfinavir 2Q64 ; 2.5 ; HIV-1 PR mutant in complex with nelfinavir 2QAK ; 2.2 ; HIV-1 PR mutant in complex with nelfinavir 2RKF ; 1.8 ; HIV-1 PR resistant mutant + LPV 2RKG ; 1.8 ; HIV-1 PR resistant mutant + LPV 6BRA ; 1.111 ; HIV-1 protease (D25N, inactive) in complex with phage display optimized substrate SGIFLETS 1BV9 ; 2.0 ; HIV-1 PROTEASE (I84V) COMPLEXED WITH XV638 OF DUPONT PHARMACEUTICALS 7MA2 ; 1.869 ; HIV-1 Protease (I84V) in Complex with a Darunavir Derivative 7MA1 ; 1.848 ; HIV-1 Protease (I84V) in Complex with GRL-98065 7MAB ; 1.879 ; HIV-1 Protease (I84V) in Complex with GS-8374 7M9G ; 1.87 ; HIV-1 Protease (I84V) in Complex with LR2-18 7M9H ; 1.891 ; HIV-1 Protease (I84V) in Complex with LR2-20 7M9I ; 1.817 ; HIV-1 Protease (I84V) in Complex with LR2-26 7MA0 ; 1.92 ; HIV-1 Protease (I84V) in Complex with LR2-91 7M9O ; 1.895 ; HIV-1 Protease (I84V) in Complex with LR3-48 7M9P ; 1.819 ; HIV-1 Protease (I84V) in Complex with LR3-55 7M9N ; 1.82 ; HIV-1 Protease (I84V) in Complex with LR3-68 7M9V ; 1.891 ; HIV-1 Protease (I84V) in Complex with NR01-141 7M9W ; 1.901 ; HIV-1 Protease (I84V) in Complex with NR02-73 7M9X ; 1.831 ; HIV-1 Protease (I84V) in Complex with NR02-79 7MAC ; 1.7 ; HIV-1 Protease (I84V) in Complex with PD4 (LR4-23) 7MAD ; 1.7 ; HIV-1 Protease (I84V) in Complex with PD5 (LR4-22) 7MAE ; 1.735 ; HIV-1 Protease (I84V) in Complex with PU1 (LR3-46) 7MAO ; 1.861 ; HIV-1 Protease (I84V) in Complex with PU10 (LR4-07) 7MAF ; 1.902 ; HIV-1 Protease (I84V) in Complex with PU2 (LR2-79) 7MAG ; 1.92 ; HIV-1 Protease (I84V) in Complex with PU3 (LR3-69) 7MAH ; 1.881 ; HIV-1 Protease (I84V) in Complex with PU4 (LR2-78) 7MAI ; 1.79 ; HIV-1 Protease (I84V) in Complex with PU5 (LR4-47) 7MAJ ; 1.871 ; HIV-1 Protease (I84V) in Complex with PU6 (LR3-66) 7MAK ; 1.972 ; HIV-1 Protease (I84V) in Complex with PU7 (LR3-67) 7MAL ; 1.898 ; HIV-1 Protease (I84V) in Complex with PU8 (LR4-06) 7MAN ; 1.892 ; HIV-1 Protease (I84V) in Complex with PU9 (LR2-80) 7M9Z ; 1.828 ; HIV-1 Protease (I84V) in Complex with TMC-126 7MAA ; 1.933 ; HIV-1 Protease (I84V) in Complex with UMass10 7MA3 ; 1.969 ; HIV-1 Protease (I84V) in Complex with UMass2 7MA4 ; 1.989 ; HIV-1 Protease (I84V) in Complex with UMass3 7MA5 ; 1.977 ; HIV-1 Protease (I84V) in Complex with UMass4 7MA6 ; 1.995 ; HIV-1 Protease (I84V) in Complex with UMass5 7MA7 ; 1.919 ; HIV-1 Protease (I84V) in Complex with UMass7 7MA8 ; 1.901 ; HIV-1 Protease (I84V) in Complex with UMass8 7MA9 ; 1.9 ; HIV-1 Protease (I84V) in Complex with UMass9 4GB2 ; 1.788 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a bicyclic pyrrolidine inhibitor 3QIH ; 1.39 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a novel inhibitor 3QN8 ; 1.382 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a novel inhibitor 3QP0 ; 1.45 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a novel inhibitor 3QBF ; 1.45 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a three-armed pyrrolidine-based inhibitor 3QPJ ; 1.61 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a three-armed pyrrolidine-based inhibitor 3QRM ; 1.731 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a three-armed pyrrolidine-based inhibitor 3QRO ; 1.616 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a three-armed pyrrolidine-based inhibitor 3QRS ; 1.59 ; HIV-1 protease (mutant Q7K L33I L63I) in complex with a three-armed pyrrolidine-based inhibitor 1BWB ; 1.8 ; HIV-1 PROTEASE (V82F/I84V) DOUBLE MUTANT COMPLEXED WITH SD146 OF DUPONT PHARMACEUTICALS 1BWA ; 1.9 ; HIV-1 PROTEASE (V82F/I84V) DOUBLE MUTANT COMPLEXED WITH XV638 OF DUPONT PHARMACEUTICALS 1GNO ; 2.3 ; HIV-1 PROTEASE (WILD TYPE) COMPLEXED WITH U89360E (INHIBITOR) 3TOF ; 1.45 ; HIV-1 Protease - Epoxydic Inhibitor Complex (pH 6 - Orthorombic Crystal form P212121) 3TOG ; 1.24 ; HIV-1 Protease - Epoxydic Inhibitor Complex (pH 9 - Monoclinic Crystal form P21) 3TOH ; 1.116 ; HIV-1 Protease - Epoxydic Inhibitor Complex (pH 9 - Orthorombic Crystal form P212121) 1UPJ ; 2.22 ; HIV-1 PROTEASE COMPLEX WITH U095438 [3-[1-(4-BROMOPHENYL) ISOBUTYL]-4-HYDROXYCOUMARIN 2UPJ ; 3.0 ; HIV-1 PROTEASE COMPLEX WITH U100313 ([3-[[3-[CYCLOPROPYL [4-HYDROXY-2OXO-6-[1-(PHENYLMETHYL)PROPYL]-2H-PYRAN-3-YL] METHYL]PHENYL]AMINO]-3-OXO-PROPYL]CARBAMIC ACID TERT-BUTYL ESTER) 1MTR ; 1.75 ; HIV-1 PROTEASE COMPLEXED WITH A CYCLIC PHE-ILE-VAL PEPTIDOMIMETIC INHIBITOR 1D4K ; 1.85 ; HIV-1 PROTEASE COMPLEXED WITH A MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 1D4L ; 1.75 ; HIV-1 PROTEASE COMPLEXED WITH A MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 1A30 ; 2.0 ; HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR 1ODY ; 2.0 ; HIV-1 PROTEASE COMPLEXED WITH AN INHIBITOR LP-130 4FL8 ; 1.2 ; HIV-1 protease complexed with gem-diol-amine tetrahedral intermediate 3B7V ; 1.46 ; HIV-1 protease complexed with gem-diol-amine tetrahedral intermediate NLLTQI 5UFZ ; 1.649 ; HIV-1 Protease complexed with Inhibitor: (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-yl [(1S,2S)-1-(1-{[(4-aminophenyl)sulfonyl](2-methylpropyl)amino}cyclopropyl)-1-hydroxy-3-phenylpropan-2-yl]carbamate 1B6J ; 1.85 ; HIV-1 PROTEASE COMPLEXED WITH MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 1 1Z1R ; 1.85 ; HIV-1 protease complexed with Macrocyclic peptidomimetic inhibitor 2 1Z1H ; 1.85 ; HIV-1 protease complexed with macrocyclic peptidomimetic inhibitor 3 1B6L ; 1.75 ; HIV-1 PROTEASE COMPLEXED WITH MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 4 1B6K ; 1.85 ; HIV-1 PROTEASE COMPLEXED WITH MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 5 1B6M ; 1.85 ; HIV-1 PROTEASE COMPLEXED WITH MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 6 1B6P ; 2.0 ; HIV-1 PROTEASE COMPLEXED WITH MACROCYCLIC PEPTIDOMIMETIC INHIBITOR 7 1VIJ ; 2.4 ; HIV-1 PROTEASE COMPLEXED WITH THE INHIBITOR HOE/BAY 793 HEXAGONAL FORM 1VIK ; 2.4 ; HIV-1 PROTEASE COMPLEXED WITH THE INHIBITOR HOE/BAY 793 ORTHORHOMBIC FORM 1HPX ; 2.0 ; HIV-1 PROTEASE COMPLEXED WITH THE INHIBITOR KNI-272 7DPQ ; 1.65 ; HIV-1 Protease D30N mutant 7DOZ ; 1.91 ; HIV-1 Protease D30N mutant in complex with Nelfinavir 1HXW ; 1.8 ; HIV-1 PROTEASE DIMER COMPLEXED WITH A-84538 1PRO ; 1.8 ; HIV-1 PROTEASE DIMER COMPLEXED WITH A-98881 2I4X ; 1.55 ; HIV-1 Protease I84V, L90M with GS-8374 2I4V ; 1.5 ; HIV-1 protease I84V, L90M with TMC126 2PWC ; 1.78 ; HIV-1 protease in complex with a amino decorated pyrrolidine-based inhibitor 3BGC ; 1.8 ; HIV-1 protease in complex with a benzyl decorated oligoamine 2PWR ; 1.5 ; HIV-1 protease in complex with a carbamoyl decorated pyrrolidine-based inhibitor 2QNQ ; 2.3 ; HIV-1 Protease in complex with a chloro decorated pyrrolidine-based inhibitor 1DIF ; 1.7 ; HIV-1 PROTEASE IN COMPLEX WITH A DIFLUOROKETONE CONTAINING INHIBITOR A79285 2ZGA ; 1.65 ; HIV-1 protease in complex with a dimethylallyl decorated pyrrolidine based inhibitor (hexagonal space group) 3CKT ; 1.65 ; HIV-1 protease in complex with a dimethylallyl decorated pyrrolidine based inhibitor (orthorombic space group) 2QNP ; 1.41 ; HIV-1 Protease in complex with a iodo decorated pyrrolidine-based inhibitor 3BGB ; 1.9 ; HIV-1 protease in complex with a isobutyl decorated oligoamine 2QNN ; 1.48 ; HIV-1 protease in complex with a multiple decorated pyrrolidine-based inhibitor 2PQZ ; 1.55 ; HIV-1 Protease in complex with a pyrrolidine-based inhibitor 3BHE ; 1.75 ; HIV-1 protease in complex with a three armed pyrrolidine derivative 1XL5 ; 1.73 ; HIV-1 Protease in complex with amidhyroxysulfone 1M0B ; 2.45 ; HIV-1 protease in complex with an ethyleneamine inhibitor 3PSU ; 2.07 ; HIV-1 protease in complex with an isobutyl decorated oligoamine (symmetric binding mode) 1WBK ; 2.0 ; HIV-1 protease in complex with asymmetric inhibitor, BEA568 1W5V ; 1.8 ; HIV-1 protease in complex with fluoro substituted diol-based C2- symmetric inhibitor 1W5W ; 1.8 ; HIV-1 protease in complex with fluoro substituted diol-based C2- symmetric inhibitor 1W5X ; 1.9 ; HIV-1 protease in complex with fluoro substituted diol-based C2- symmetric inhibitor 1W5Y ; 1.9 ; HIV-1 protease in complex with fluoro substituted diol-based C2- symmetric inhibitor 2BQV ; 2.1 ; HIV-1 protease in complex with inhibitor AHA455 1XL2 ; 1.5 ; HIV-1 Protease in complex with pyrrolidinmethanamine 1A8G ; 2.5 ; HIV-1 PROTEASE IN COMPLEX WITH SDZ283-910 1WBM ; 2.0 ; HIV-1 protease in complex with symmetric inhibitor, BEA450 1AJV ; 2.0 ; HIV-1 PROTEASE IN COMPLEX WITH THE CYCLIC SULFAMIDE INHIBITOR AHA006 1AJX ; 2.0 ; HIV-1 PROTEASE IN COMPLEX WITH THE CYCLIC UREA INHIBITOR AHA001 1EBW ; 1.81 ; HIV-1 protease in complex with the inhibitor BEA322 1EBY ; 2.294 ; HIV-1 protease in complex with the inhibitor BEA369 1EBZ ; 2.01 ; HIV-1 protease in complex with the inhibitor BEA388 1EC0 ; 1.79 ; HIV-1 protease in complex with the inhibitor bea403 1EC1 ; 2.1 ; HIV-1 protease in complex with the inhibitor BEA409 1D4I ; 1.81 ; HIV-1 protease in complex with the inhibitor BEA425 1EC2 ; 2.0 ; HIV-1 protease in complex with the inhibitor BEA428 1D4H ; 1.81 ; HIV-1 Protease in complex with the inhibitor BEA435 1EC3 ; 1.8 ; HIV-1 protease in complex with the inhibitor MSA367 1D4J ; 1.81 ; HIV-1 protease in complex with the inhibitor MSL370 2WKZ ; 1.7 ; HIV-1 Protease Inhibitors Containing a Tertiary Alcohol in the Transition-State Mimic with Improved Cell-Based Antiviral Activity 2WL0 ; 1.9 ; HIV-1 Protease Inhibitors Containing a Tertiary Alcohol in the Transition-State Mimic with Improved Cell-Based Antiviral Activity 1QBR ; 1.8 ; HIV-1 PROTEASE INHIBITORS WIIH LOW NANOMOLAR POTENCY 1QBS ; 1.8 ; HIV-1 PROTEASE INHIBITORS WIIH LOW NANOMOLAR POTENCY 1QBT ; 2.1 ; HIV-1 PROTEASE INHIBITORS WIIH LOW NANOMOLAR POTENCY 1QBU ; 1.8 ; HIV-1 PROTEASE INHIBITORS WIIH LOW NANOMOLAR POTENCY 6PRF ; 1.21 ; HIV-1 Protease multiple drug resistant clinical isolate mutant PR20 with GRL-14213A 6P9B ; 1.75 ; HIV-1 Protease multiple drug resistant mutant PRS5B with Amprenavir 6P9A ; 1.66 ; HIV-1 Protease multiple mutant PRS5B with Darunavir 2F80 ; 1.45 ; HIV-1 Protease mutant D30N complexed with inhibitor TMC114 2QCI ; 1.2 ; HIV-1 Protease mutant D30N with potent Antiviral inhibitor GRL-98065 3JVY ; 1.6 ; HIV-1 Protease Mutant G86A with DARUNAVIR 3JVW ; 1.8 ; HIV-1 Protease Mutant G86A with symmetric inhibitor DMP323 3JW2 ; 1.8 ; HIV-1 Protease Mutant G86S with DARUNAVIR 4FLG ; 1.31 ; HIV-1 protease mutant I47V complexed with reaction intermediate 2F8G ; 1.22 ; HIV-1 protease mutant I50V complexed with inhibitor TMC114 2QD6 ; 1.28 ; HIV-1 Protease Mutant I50V with potent Antiviral inhibitor GRL-98065 3B80 ; 1.5 ; HIV-1 protease mutant I54V complexed with gem-diol-amine intermediate NLLTQI 2QD8 ; 1.35 ; HIV-1 Protease Mutant I84V with potent Antiviral inhibitor GRL-98065 3PWR ; 1.45 ; HIV-1 Protease Mutant L76V complexed with Saquinavir 3PWM ; 1.46 ; HIV-1 Protease Mutant L76V with Darunavir 2F81 ; 1.25 ; HIV-1 Protease mutant L90M complexed with inhibitor TMC114 4FM6 ; 1.4 ; HIV-1 protease mutant V32I complexed with reaction intermediate 2QD7 ; 1.11 ; HIV-1 Protease Mutant V82A with potent Antiviral inhibitor GRL-98065 1GNN ; 2.3 ; HIV-1 PROTEASE MUTANT WITH VAL 82 REPLACED BY ASN (V82N) COMPLEXED WITH U89360E (INHIBITOR) 1GNM ; 2.3 ; HIV-1 PROTEASE MUTANT WITH VAL 82 REPLACED BY ASP (V82D) COMPLEXED WITH U89360E (INHIBITOR) 2AZ9 ; 2.5 ; HIV-1 Protease NL4-3 1X mutant 2AZB ; 2.03 ; HIV-1 Protease NL4-3 3X mutant in complex with inhibitor, TL-3 2AZC ; 2.01 ; HIV-1 Protease NL4-3 6X mutant 6OPY ; 2.13 ; HIV-1 Protease NL4-3 I13V, G16E, V32I, L33F, K45I, M46I, A71V, L76V, V82F, I84V Mutant in complex with darunavir 6OPW ; 2.1 ; HIV-1 Protease NL4-3 I13V, G16E, V32I, L33F, K45I, M46I, A71V, V82F, I84V Mutant in complex with darunavir 6OPZ ; 2.201 ; HIV-1 Protease NL4-3 I13V, G16E, V32I, L33F, K45I, M46I, I54L, A71V, L76V, V82F, I84V Mutant in complex with darunavir 6OPX ; 2.03 ; HIV-1 Protease NL4-3 I13V, G16E, V32I, L33F, K45I, M46I, L76V, V82F, I84V Mutant in complex with darunavir 6OPV ; 1.91 ; HIV-1 Protease NL4-3 I13V, G16E, V32I, L33F, K45I, M46I, V82F, I84V Mutant in complex with darunavir 2AZ8 ; 2.0 ; HIV-1 Protease NL4-3 in complex with inhibitor, TL-3 6OPU ; 1.94 ; HIV-1 Protease NL4-3 K45I, M46I, V82F, I84V Mutant in complex with darunavir 6OOT ; 1.822 ; HIV-1 Protease NL4-3 L89V, L90M Mutant in complex with darunavir 6OOS ; 1.9 ; HIV-1 Protease NL4-3 L90M Mutant in complex with darunavir 6OPT ; 1.96 ; HIV-1 Protease NL4-3 V82F, I84V Mutant in complex with darunavir 6OPS ; 2.08 ; HIV-1 Protease NL4-3 WT in complex with darunavir 6PJB ; 1.984 ; HIV-1 Protease NL4-3 WT in Complex with Lopinavir 6OXW ; 1.982 ; HIV-1 Protease NL4-3 WT in Complex with LR-100 6OXS ; 1.989 ; HIV-1 Protease NL4-3 WT in Complex with LR-76 6OXR ; 2.035 ; HIV-1 Protease NL4-3 WT in Complex with LR-82 6OXT ; 1.861 ; HIV-1 Protease NL4-3 WT in Complex with LR-84 6OXV ; 1.991 ; HIV-1 Protease NL4-3 WT in Complex with LR-85 6OXU ; 1.861 ; HIV-1 Protease NL4-3 WT in Complex with LR-99 6OXX ; 1.962 ; HIV-1 Protease NL4-3 WT in Complex with LR2-18 6OXY ; 1.96 ; HIV-1 Protease NL4-3 WT in Complex with LR2-19 6OXZ ; 1.961 ; HIV-1 Protease NL4-3 WT in Complex with LR2-20 6OY0 ; 2.0 ; HIV-1 Protease NL4-3 WT in Complex with LR2-21 6OY2 ; 1.99 ; HIV-1 Protease NL4-3 WT in Complex with LR2-25 6OY1 ; 2.0 ; HIV-1 Protease NL4-3 WT in Complex with LR2-26 6PJD ; 1.892 ; HIV-1 Protease NL4-3 WT in Complex with LR2-32 6PJM ; 1.93 ; HIV-1 Protease NL4-3 WT in Complex with LR2-35 6PJN ; 1.98 ; HIV-1 Protease NL4-3 WT in Complex with LR2-41 6PJO ; 1.95 ; HIV-1 Protease NL4-3 WT in Complex with LR2-42 6PJE ; 1.922 ; HIV-1 Protease NL4-3 WT in Complex with LR2-43 6PJF ; 1.94 ; HIV-1 Protease NL4-3 WT in Complex with LR2-44 6OXO ; 2.003 ; HIV-1 Protease NL4-3 WT in Complex with LR2-91 6PJH ; 1.85 ; HIV-1 Protease NL4-3 WT in Complex with LR3-28 6PJK ; 2.002 ; HIV-1 Protease NL4-3 WT in Complex with LR3-29 6PJI ; 1.9 ; HIV-1 Protease NL4-3 WT in Complex with LR3-43 6PJL ; 1.993 ; HIV-1 Protease NL4-3 WT in Complex with LR3-95 6PJG ; 1.8 ; HIV-1 Protease NL4-3 WT in Complex with LR3-97 6PJC ; 1.965 ; HIV-1 Protease NL4-3 WT in Complex with LR4-41 6OXP ; 1.97 ; HIV-1 Protease NL4-3 WT in Complex with UMass3 6OXQ ; 1.89 ; HIV-1 Protease NL4-3 WT in Complex with UMass8 3NDT ; 1.72 ; HIV-1 Protease Saquinavir:Ritonavir 1:1 complex structure 3NDW ; 1.14 ; HIV-1 Protease Saquinavir:Ritonavir 1:15 complex structure 3NDU ; 1.25 ; HIV-1 Protease Saquinavir:Ritonavir 1:5 complex structure 3NDX ; 1.03 ; HIV-1 Protease Saquinavir:Ritonavir 1:50 complex structure 2WHH ; 1.69 ; HIV-1 protease tethered dimer Q-product complex along with nucleophilic water molecule 1D4Y ; 1.97 ; HIV-1 PROTEASE TRIPLE MUTANT/TIPRANAVIR COMPLEX 1HPO ; 2.5 ; HIV-1 PROTEASE TRIPLE MUTANT/U103265 COMPLEX 3S43 ; 1.26 ; HIV-1 protease triple mutants V32I, I47V, V82I with antiviral drug amprenavir 3S54 ; 1.42 ; HIV-1 protease triple mutants V32I, I47V, V82I with antiviral drug darunavir in space group P21212 3S53 ; 1.5 ; HIV-1 protease triple mutants V32I, I47V, V82I with antiviral drug darunavir in space group P212121 3S56 ; 1.88 ; HIV-1 protease triple mutants V32I, I47V, V82I with antiviral drug saquinavir 6OTG ; 1.5 ; HIV-1 protease triple mutants V32I, I47V, V82I with GRL-011-11A (a methylamine bis-Tetrahydrofuran P2-Ligand, sulfonamide isostere derivate) 1D4S ; 2.5 ; HIV-1 PROTEASE V82F/I84V DOUBLE MUTANT/TIPRANAVIR COMPLEX 1G2K ; 1.95 ; HIV-1 PROTEASE WITH CYCLIC SULFAMIDE INHIBITOR, AHA047 6DJ5 ; 1.75 ; HIV-1 protease with mutation L76V in complex with GRL-0519 (tris-tetrahydrofuran as P2 ligand) 6DJ7 ; 1.31 ; HIV-1 protease with mutation L76V in complex with GRL-5010 (gem-difluoro-bis-tetrahydrofuran as P2 ligand) 6DJ2 ; 1.36 ; HIV-1 protease with single mutation L76V in complex with Lopinavir 6DIL ; 1.482 ; HIV-1 protease with single mutation L76V in complex with tipranavir 2I4U ; 1.5 ; HIV-1 protease with TMC-126 7LE0 ; 1.952 ; HIV-1 Protease WT (NL4-3) in Complex with a Darunavir Derivative 7LDZ ; 1.861 ; HIV-1 Protease WT (NL4-3) in Complex with GRL-98065 7LE7 ; 1.978 ; HIV-1 Protease WT (NL4-3) in Complex with GS-8374 7M9K ; 1.838 ; HIV-1 Protease WT (NL4-3) in Complex with LR3-48 7M9M ; 1.881 ; HIV-1 Protease WT (NL4-3) in Complex with LR3-55 7M9J ; 1.859 ; HIV-1 Protease WT (NL4-3) in Complex with LR3-68 7M9L ; 1.752 ; HIV-1 Protease WT (NL4-3) in Complex with LR4-15 7M9Q ; 1.952 ; HIV-1 Protease WT (NL4-3) in Complex with LR4-33 7M9R ; 1.891 ; HIV-1 Protease WT (NL4-3) in Complex with LR4-44 7M9S ; 1.961 ; HIV-1 Protease WT (NL4-3) in Complex with NR01-141 7M9T ; 1.95 ; HIV-1 Protease WT (NL4-3) in Complex with NR02-73 7M9U ; 1.911 ; HIV-1 Protease WT (NL4-3) in Complex with NR02-79 7LE8 ; 1.644 ; HIV-1 Protease WT (NL4-3) in Complex with PD4 (LR4-23) 7LE9 ; 1.797 ; HIV-1 Protease WT (NL4-3) in Complex with PD5 (LR4-22) 7LEA ; 2.0 ; HIV-1 Protease WT (NL4-3) in Complex with PU1 (LR3-46) 7LEI ; 1.943 ; HIV-1 Protease WT (NL4-3) in Complex with PU10 (LR4-07) 7LEB ; 1.89 ; HIV-1 Protease WT (NL4-3) in Complex with PU2 (LR2-79) 7LEC ; 1.94 ; HIV-1 Protease WT (NL4-3) in Complex with PU3 (LR3-69) 7LED ; 1.996 ; HIV-1 Protease WT (NL4-3) in Complex with PU4 (LR2-78) 7LEE ; 1.795 ; HIV-1 Protease WT (NL4-3) in Complex with PU5 (LR4-47) 7LEF ; 1.93 ; HIV-1 Protease WT (NL4-3) in Complex with PU7 (LR3-67) 7LEG ; 1.96 ; HIV-1 Protease WT (NL4-3) in Complex with PU8 (LR4-06) 7LEH ; 2.0 ; HIV-1 Protease WT (NL4-3) in Complex with PU9 (LR2-80) 7LDY ; 1.984 ; HIV-1 Protease WT (NL4-3) in Complex with TMC-126 7LE6 ; 1.962 ; HIV-1 Protease WT (NL4-3) in Complex with UMass10 7LE1 ; 2.001 ; HIV-1 Protease WT (NL4-3) in Complex with UMass2 7LE2 ; 1.971 ; HIV-1 Protease WT (NL4-3) in Complex with UMass4 7LE3 ; 1.87 ; HIV-1 Protease WT (NL4-3) in Complex with UMass5 7LE4 ; 1.993 ; HIV-1 Protease WT (NL4-3) in Complex with UMass7 7LE5 ; 1.863 ; HIV-1 Protease WT (NL4-3) in Complex with UMass9 2I4W ; 1.55 ; HIV-1 protease WT with GS-8374 5T84 ; 1.65 ; HIV-1 protease, unbound subtype B L63P construct 1BVG ; ; HIV-1 PROTEASE-DMP323 COMPLEX IN SOLUTION, NMR MINIMIZED AVERAGE STRUCTURE 1BVE ; ; HIV-1 PROTEASE-DMP323 COMPLEX IN SOLUTION, NMR, 28 STRUCTURES 2BPV ; 1.9 ; HIV-1 protease-inhibitor complex 2BPW ; 2.8 ; HIV-1 protease-inhibitor complex 2BPX ; 2.8 ; HIV-1 protease-inhibitor complex 2BPY ; 1.9 ; HIV-1 protease-inhibitor complex 2BPZ ; 2.5 ; HIV-1 protease-inhibitor complex 7UPJ ; 2.0 ; HIV-1 PROTEASE/U101935 COMPLEX 1HXB ; 2.3 ; HIV-1 proteinase complexed with RO 31-8959 1ODX ; 2.0 ; HIV-1 Proteinase mutant A71T, V82A 2M1A ; ; HIV-1 Rev ARM peptide (residues T34-R50) 6BSY ; 2.25 ; HIV-1 Rev assembly domain (residues 1-69) 7U0F ; 3.53 ; HIV-1 Rev in complex with tubulin 5DHV ; 2.3 ; HIV-1 Rev NTD dimers with variable crossing angles 5DHX ; 2.9 ; HIV-1 Rev NTD dimers with variable crossing angles 5DHY ; 3.1 ; HIV-1 Rev NTD dimers with variable crossing angles 5DHZ ; 4.3 ; HIV-1 Rev NTD dimers with variable crossing angles 1RPV ; ; HIV-1 REV PROTEIN (RESIDUES 34-50) 1REV ; 2.6 ; HIV-1 REVERSE TRANSCRIPTASE 7AID ; 3.15 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND D-ASPARTATE TENOFOVIR 7AHX ; 2.73 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND D-ASPARTATE TENOFOVIR WITH BOUND MANGANESE 7OTA ; 3.0 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-230 7OTK ; 2.95 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-233 7OTN ; 3.4 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-247 7OTX ; 3.45 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-257 7OTZ ; 3.1 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-259 7OUT ; 3.2 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND INHIBITOR RMC-264 7OT6 ; 3.2 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND inhibitor RMC-282 7AIG ; 2.95 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND L-GLUTAMATE TENOFOVIR 7AIF ; 2.75 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND L-GLUTAMATE TENOFOVIR WITH BOUND MANGANESE 7AIJ ; 2.95 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND L-METHIONINE TENOFOVIR 7AII ; 2.62 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEX WITH DNA AND L-METHIONINE TENOFOVIR WITH BOUND MANGANESE 5CYQ ; 2.147 ; HIV-1 reverse transcriptase complexed with 4-bromopyrazole 5CYM ; 2.1 ; HIV-1 reverse transcriptase complexed with 4-iodopyrazole 1KLM ; 2.65 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH BHAP U-90152 1TV6 ; 2.8 ; HIV-1 Reverse Transcriptase Complexed with CP-94,707 1RT5 ; 2.9 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH UC10 1RT6 ; 2.8 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH UC38 1RT4 ; 2.9 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH UC781 1RT7 ; 3.0 ; HIV-1 REVERSE TRANSCRIPTASE COMPLEXED WITH UC84 1N5Y ; 3.1 ; HIV-1 Reverse Transcriptase Crosslinked to Post-Translocation AZTMP-Terminated DNA (Complex P) 1N6Q ; 3.0 ; HIV-1 Reverse Transcriptase Crosslinked to pre-translocation AZTMP-terminated DNA (complex N) 1T05 ; 3.0 ; HIV-1 reverse transcriptase crosslinked to template-primer with tenofovir-diphosphate bound as the incoming nucleotide substrate 1T03 ; 3.1 ; HIV-1 reverse transcriptase crosslinked to tenofovir terminated template-primer (complex P) 8FCC ; 2.57 ; HIV-1 Reverse Transcriptase in complex with 5-membered bicyclic core NNRTI 8FCD ; 2.57 ; HIV-1 Reverse Transcriptase in complex with 6-membered bicyclic core NNRTI 8FCE ; 2.77 ; HIV-1 Reverse Transcriptase in complex with 7-membered bicyclic core NNRTI 5K14 ; 2.402 ; HIV-1 Reverse Transcriptase in complex with a 2,6-difluorophenyl DAPY analog 4I7F ; 2.5 ; HIV-1 Reverse Transcriptase in complex with a phosphonate analog of nevirapine 3KJV ; 3.1 ; HIV-1 reverse transcriptase in complex with DNA 5J2M ; 2.432 ; HIV-1 reverse transcriptase in complex with DNA and EFdA-triphosphate, a translocation-defective RT inhibitor 5J2Q ; 2.789 ; HIV-1 reverse transcriptase in complex with DNA that has incorporated a mismatched EFdA-MP at the N-(pre-translocation) site 5J2P ; 2.53 ; HIV-1 reverse transcriptase in complex with DNA that has incorporated EFdA-MP at the P-(post-translocation) site and a second EFdA-MP at the N-(pre-translocation) site 5J2N ; 2.896 ; HIV-1 reverse transcriptase in complex with DNA that has incorporated EFdA-MP at the P-(post-translocation) site and dTMP at the N-(pre-translocation) site 2YNH ; 2.9 ; HIV-1 Reverse Transcriptase in complex with inhibitor GSK500 2YNG ; 2.12 ; HIV-1 Reverse Transcriptase in complex with inhibitor GSK560 2YNI ; 2.49 ; HIV-1 Reverse Transcriptase in complex with inhibitor GSK952 3QLH ; 2.7 ; HIV-1 Reverse Transcriptase in Complex with Manicol at the RNase H Active Site and TMC278 (Rilpivirine) at the NNRTI Binding Pocket 1IKY ; 3.0 ; HIV-1 Reverse Transcriptase in Complex with the Inhibitor MSC194 1EET ; 2.73 ; HIV-1 REVERSE TRANSCRIPTASE IN COMPLEX WITH THE INHIBITOR MSC204 3MEC ; 2.3 ; HIV-1 Reverse Transcriptase in Complex with TMC125 3MEE ; 2.4 ; HIV-1 Reverse Transcriptase in Complex with TMC278 3K2P ; 2.04 ; HIV-1 Reverse Transcriptase Isolated RnaseH Domain with the Inhibitor beta-thujaplicinol Bound at the Active Site 7DBN ; 2.67 ; HIV-1 reverse transcriptase mutant Q151M/Y115F/F116Y/M184V/F160M:DNA:dCTP ternary complex 7DBM ; 2.43 ; HIV-1 reverse transcriptase mutant Q151M/Y115F/F116Y/M184V:DNA:dGTP ternary complex 5XN0 ; 2.596 ; HIV-1 reverse transcriptase Q151M:DNA binary complex 5XN2 ; 2.381 ; HIV-1 reverse transcriptase Q151M:DNA:dGTP ternary complex 5XN1 ; 2.446 ; HIV-1 reverse transcriptase Q151M:DNA:entecavir-triphosphate ternary complex 5DZM ; 2.05 ; HIV-1 Reverse Transcriptase RH domain 5T82 ; ; HIV-1 reverse transcriptase thumb subdomain 3NBP ; 2.95 ; HIV-1 reverse transcriptase with aminopyrimidine inhibitor 2 4KFB ; 1.854 ; HIV-1 reverse transcriptase with bound fragment at NNRTI adjacent site 4IDK ; 2.1 ; HIV-1 reverse transcriptase with bound fragment at the 428 site 4IG0 ; 2.5 ; HIV-1 reverse transcriptase with bound fragment at the 507 site 4ICL ; 1.8 ; HIV-1 reverse transcriptase with bound fragment at the incoming dNTP binding site 4IFY ; 2.1 ; HIV-1 reverse transcriptase with bound fragment at the Knuckles site 4ID5 ; 1.95 ; HIV-1 reverse transcriptase with bound fragment at the RNase H primer grip site 4IG3 ; 1.95 ; HIV-1 reverse transcriptase with bound fragment near Knuckles site 3LP0 ; 2.79 ; HIV-1 reverse transcriptase with inhibitor 3LP1 ; 2.23 ; HIV-1 reverse transcriptase with inhibitor 3LP2 ; 2.8 ; HIV-1 reverse transcriptase with inhibitor 6IK9 ; 2.435 ; HIV-1 reverse transcriptase with Q151M/G112S/D113A/Y115F/F116Y/F160L/I159L:DNA:dGTP ternary complex 6IKA ; 2.598 ; HIV-1 reverse transcriptase with Q151M/G112S/D113A/Y115F/F116Y/F160L/I159L:DNA:entecavir-triphosphate ternary complex 6KDO ; 2.573 ; HIV-1 reverse transcriptase with Q151M/Y115F/F116Y/M184V/F160M:DNA:lamivudine 5'-triphosphate ternary complex 6KDK ; 2.56 ; HIV-1 reverse transcriptase with Q151M/Y115F/F116Y:DNA:dCTP ternary complex 6KDN ; 2.303 ; HIV-1 reverse transcriptase with Q151M/Y115F/F116Y:DNA:dGTP ternary complex 6KDM ; 2.32 ; HIV-1 reverse transcriptase with Q151M/Y115F/F116Y:DNA:entecavir 5'-triphosphate ternary complex 6KDJ ; 2.51 ; HIV-1 reverse transcriptase with Q151M/Y115F/F116Y:DNA:lamivudine 5'-triphosphate ternary complex 3IG1 ; 2.8 ; HIV-1 Reverse Transcriptase with the Inhibitor beta-Thujaplicinol Bound at the RNase H Active Site 6DTW ; 2.742 ; HIV-1 Reverse Transcriptase Y181C Mutant in complex with JLJ 578 2YNF ; 2.36 ; HIV-1 Reverse Transcriptase Y188L mutant in complex with inhibitor GSK560 3KK2 ; 2.9 ; HIV-1 reverse transcriptase-DNA complex with dATP bound in the nucleotide binding site 3KK3 ; 2.9 ; HIV-1 reverse transcriptase-DNA complex with GS-9148 terminated primer 3KK1 ; 2.7 ; HIV-1 reverse transcriptase-DNA complex with nuceotide inhibitor GS-9148-diphosphate bound in nucleotide site 2HMI ; 2.8 ; HIV-1 REVERSE TRANSCRIPTASE/FRAGMENT OF FAB 28/DNA COMPLEX 8DXJ ; 1.8 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 1-N-methyl-4-(trifluoromethyl)benzene-1,2-diamine at the NNRTI adjacent site 8DXE ; 1.85 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 2-amino-6-fluorobenzonitrile at the NNRTI adjacent site 8DX8 ; 1.85 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 2-chloro-6-fluorophenethylamine at the 415 site 8DX3 ; 2.06 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 3-bromobenzylamine in the thumb subdomain 8DX2 ; 2.0 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 4-amino-3-bromopyridine at multiple sites 8DXM ; 1.99 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 4-bromophenol at the Knuckles site 8DXK ; 2.0 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 4-bromopyrazole at multiple sites 8DXL ; 2.25 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 4-iodopyrazole at multiple sites 8DXG ; 2.1 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 5-(trifluoromethyl)pyridin-2-ol at W24 site 8DXB ; 2.1 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 5-fluoroindole-2-carboxylic acid at the NNRTI Adjacent site 8DXH ; 1.8 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment 5-fluoroquinazolin-4-ol at W266 site 8DXI ; 1.95 ; HIV-1 reverse transcriptase/rilpivirine with bound fragment [1-(4-fluorophenyl)-5-methyl-1H-pyrazol-4-yl]methanol at multiple sites 1BVJ ; ; HIV-1 RNA A-RICH HAIRPIN LOOP 3M8Q ; 2.7 ; HIV-1 RT with AMINOPYRIMIDINE NNRTI 3M8P ; 2.67 ; HIV-1 RT with NNRTI TMC-125 3DYA ; 2.3 ; HIV-1 RT with non-nucleoside inhibitor annulated Pyrazole 1 3DI6 ; 2.65 ; HIV-1 RT with pyridazinone non-nucleoside inhibitor 3FFI ; 2.6 ; HIV-1 RT with pyridone non-nucleoside inhibitor 1TVR ; 3.0 ; HIV-1 RT/9-CL TIBO 1BQM ; 3.1 ; HIV-1 RT/HBY 097 7D7S ; 3.32 ; HIV-1 SF2 Nef in complex with the Fyn SH3 R96I mutant 1Y99 ; 2.4 ; HIV-1 subtype A DIS RNA duplex 1XPF ; 2.3 ; HIV-1 subtype A genomic RNA Dimerization Initiation Site 2OIJ ; 2.31 ; HIV-1 subtype B DIS RNA extended duplex AuCl3 soaked 1XPE ; 1.94 ; HIV-1 subtype B genomic RNA Dimerization Initiation Site 2QEK ; 1.8 ; HIV-1 subtype F DIS RNA extended duplex form 1XP7 ; 2.5 ; HIV-1 subtype F genomic RNA Dimerization Initiation Site 6CYT ; 3.5 ; HIV-1 TAR loop in complex with Tat:AFF4:P-TEFb 1QD3 ; ; HIV-1 TAR RNA/NEOMYCIN B COMPLEX 1TAC ; ; HIV-1 TAT CYS-, NMR, 10 STRUCTURES 5SVZ ; 2.0 ; HIV-1 Tat NLS in complex with importin alpha 2BGN ; 3.15 ; HIV-1 Tat protein derived N-terminal nonapeptide Trp2-Tat(1-9) bound to the active site of Dipeptidyl peptidase IV (CD26) 1TBC ; ; HIV-1 TAT, NMR, 10 STRUCTURES 1AI1 ; 2.8 ; HIV-1 V3 LOOP MIMIC 2MA9 ; ; HIV-1 Vif SOCS-box and Elongin BC solution structure 3QAA ; 1.4 ; HIV-1 wild type protease with a substituted bis-Tetrahydrofuran inhibitor, GRL-044-10A 5JFU ; 1.7 ; HIV-1 wild Type protease with GRL-007-14A (a Adamantane P1-Ligand with bis-THF in P2 and benzylamine in P1') 6U7O ; 1.33 ; HIV-1 wild type protease with GRL-00819A, with phenyl-boronic-acid as P2'-ligand and with a 6-5-5-ring fused crown-like tetrahydropyranofuran as the P2-ligand 5BRY ; 1.34 ; HIV-1 wild Type protease with GRL-011-11A (a methylamine bis-Tetrahydrofuran P2-Ligand, sulfonamide isostere derivate) 7TO6 ; 1.21 ; HIV-1 wild type protease with GRL-01717A, with C-4 substituted cyclohexane-fused bis-tetrahydrofuran (Chf-THF) derivatives as P2-ligand [diastereomer 2] 6VOE ; 1.3 ; HIV-1 wild type protease with GRL-019-17A, a tricyclic cyclohexane fused tetrahydrofuranofuran (CHf-THF) derivative as the P2 ligand and a aminobenzothiazole(Abt)-based P2'-ligand 8FUI ; 1.25 ; HIV-1 wild type protease with GRL-02519A, with N-(2,5-dimethylphenyl)-4-(pyridin-3-yl)pyrimidin-2-amine as P2-P3 group 6VCE ; 1.18 ; HIV-1 wild type protease with GRL-026-18A, a crown-like tetrahydropyranotetrahydrofuran with a bridged methylene group as a P2 ligand 6DV0 ; 1.2 ; HIV-1 wild type protease with GRL-02815A, a thiochroman heterocycle with (S)-Boc-amine functionality as the P2 ligand 5JG1 ; 1.16 ; HIV-1 wild Type protease with GRL-031-14A (a Adamantane P1-Ligand with tetrahydropyrano-tetrahydrofuran in P2 and isobutylamine in P1') 6U7P ; 1.13 ; HIV-1 wild type protease with GRL-03119A, with phenyl-boronic-acid as P2'-ligand and with a hexahydro-4H-furo-pyran as the P2-ligand 6CDL ; 1.25 ; HIV-1 wild type protease with GRL-03214A, 6-5-5-ring fused umbrella-like tetrahydropyranofuran as the P2-ligand, a cyclopropylaminobenzothiazole as the P2'-ligand and 3,5-difluorophenylmethyl as the P1-ligand 6CDJ ; 1.13 ; HIV-1 wild type protease with GRL-03314A, 6-5-5-ring fused umbrella-like tetrahydropyranofuran as the P2-ligand, a cyclopropylaminobenzothiazole as the P2'-ligand and 3,5-difluorophenylmethyl as the P1-ligand 6E9A ; 1.22 ; HIV-1 WILD TYPE PROTEASE WITH GRL-034-17A, (3aS, 5R, 6aR)-2-OXOHEXAHYD CYCLOPENTA[D]-5-OXAZOLYL URETHANE WITH A BICYCLIC OXAZOLIDINONE SCAFF AS THE P2 LIGAND 8FUJ ; 1.12 ; HIV-1 wild type protease with GRL-03419A, with N-(2,5-dimethylphenyl)-4-(pyridin-3-yl)pyrimidin-2-amine as P2-P3 group and 3,5-difluorophenylmethyl as the P1 group 6E7J ; 1.3 ; HIV-1 wild type protease with GRL-042-17A, 3-phenylhexahydro-2h-cyclopenta[d]oxazol-2-one with a bicyclic oxazolidinone scaffold as the P2 ligand 6DV4 ; 1.14 ; HIV-1 wild type protease with GRL-04315A, a tetrahydronaphthalene carboxamide with (R)-Boc-amine and (S)-hydroxyl functionalities as the P2 ligand 5BS4 ; 1.29 ; HIV-1 wild Type protease with GRL-047-11A (a methylamine bis-Tetrahydrofuran P2-Ligand, 4-amino sulfonamide derivative) 4U8W ; 1.3 ; HIV-1 wild Type protease with GRL-050-10A (a Gem-difluoro-bis-Tetrahydrofuran as P2-Ligand) 5UPZ ; 1.27 ; HIV-1 wild Type protease with GRL-0518A , an isophthalamide-derived P2-P3 ligand with the para-hydoxymethyl sulfonamide isostere as the P2' group 6VOD ; 1.25 ; HIV-1 wild type protease with GRL-052-16A, a tricyclic cyclohexane fused tetrahydrofuranofuran (CHf-THF) derivative as the P2 ligand 7TO5 ; 1.13 ; HIV-1 wild type protease with GRL-05816A, with C-4 substituted cyclohexane-fused bis-tetrahydrofuran (Chf-THF) derivatives as P2-ligand [diastereomer 1] 4ZIP ; 1.11 ; HIV-1 wild Type protease with GRL-0648A (a isophthalamide-derived P2-Ligand) 4ZLS ; 1.53 ; HIV-1 wild Type protease with GRL-096-13A (a Boc-derivative P2-Ligand, 3,-5-dimethylbiphenyl P1-Ligand) 5JFP ; 1.49 ; HIV-1 wild Type protease with GRL-097-13A (a Adamantane P1-Ligand with bis-THF in P2 and isobutylamine in P1') 5ULT ; 1.53 ; HIV-1 wild Type protease with GRL-100-13A (a Crown-like Oxotricyclic Core as the P2-Ligand with the sulfonamide isostere as the P2' group) 8F0F ; 1.29 ; HIV-1 wild type protease with GRL-110-19A, a chloroacetamide derivative based on Darunavir as P2' group 5UOV ; 1.33 ; HIV-1 wild Type protease with GRL-1118A , an isophthalamide-derived P2-P3 ligand with the sulfonamide isostere as the P2' group 6UJZ ; 2.55643 ; HIV-1 wild-type reverse transcriptase-DNA complex with (+)-FTC-TP 6UJY ; 2.59456 ; HIV-1 wild-type reverse transcriptase-DNA complex with (-)-3TC-TP 6UJX ; 2.70451 ; HIV-1 wild-type reverse transcriptase-DNA complex with (-)-FTC-TP 6UIT ; 2.80607 ; HIV-1 wild-type reverse transcriptase-DNA complex with dCTP 1G9N ; 2.9 ; HIV-1 YU2 GP120 ENVELOPE GLYCOPROTEIN COMPLEXED WITH CD4 AND INDUCED NEUTRALIZING ANTIBODY 17B 1RZK ; 2.9 ; HIV-1 YU2 GP120 ENVELOPE GLYCOPROTEIN COMPLEXED WITH CD4 AND INDUCED NEUTRALIZING ANTIBODY 17B 1K9W ; 3.1 ; HIV-1(MAL) RNA Dimerization Initiation Site 8FZC ; 5.5 ; HIV-2 Gag Capsid from Immature Virus-like Particles 5UPJ ; 2.3 ; HIV-2 PROTEASE/U99283 COMPLEX 6UPJ ; 2.34 ; HIV-2 PROTEASE/U99294 COMPLEX 1AJU ; ; HIV-2 TAR-ARGININAMIDE COMPLEX, NMR, 20 STRUCTURES 1AKX ; ; HIV-2 TRANS ACTIVATING REGION RNA COMPLEX WITH ARGININAMIDE, NMR, MINIMIZED AVERAGE STRUCTURE 8F22 ; 2.5 ; HIV-CA Disulfide linked Hexamer bound to 11l capsid inhibitor. 8TOV ; 2.7 ; HIV-CA Disulfide linked Hexamer bound to Quinazolin-4-one Scaffold inhibitor 8TQP ; 2.9 ; HIV-CA Disulfide linked Hexamer bound to Quinazolin-4-one Scaffold inhibitor 3VIE ; 1.8 ; HIV-gp41 fusion inhibitor Sifuvirtide 3E01 ; 2.95 ; HIV-RT with non-nucleoside inhibitor annulated pyrazole 2 5KGX ; 2.67 ; HIV1 catalytic core domain in complex with an inhibitor (2~{S})-2-[3-(3,4-dihydro-2~{H}-chromen-6-yl)-1-methyl-indol-2-yl]-2-[(2-methylpropan-2-yl)oxy]ethanoic acid 5KGW ; 2.34 ; HIV1 catalytic core domain in complex with inhibitor: (2~{S})-2-[3-(3,4-dihydro-2~{H}-chromen-6-yl)-1-methyl-indol-2-yl]-2-[(2-methylpropan-2-yl)oxy]ethanoic acid 5BU8 ; 2.202 ; HK620 Tail Needle crystallized at pH 7.5 and derivatized with Xenon 5BU5 ; 1.952 ; HK620 Tail Needle crystallized at pH 9 (crystal form I) 5BVZ ; 2.5 ; HK620 Tail Needle crystallized at pH 9 (Crystal form II) 3DDX ; ; HK97 bacteriophage capsid Expansion Intermediate-II model 8CEZ ; 2.97 ; HK97 Portal Protein In situ (prohead II) 3QPR ; 5.2 ; HK97 Prohead I encapsidating inactive virally encoded protease 8CFA ; 3.06 ; HK97 Prohead II as part of a DNA packaging complex 8POP ; 3.0 ; HK97 small terminase in complex with DNA 3J1A ; 16.0 ; HK97-like fold fitted into 3D reconstruction of bacteriophage CW02 6T8P ; 2.02 ; HKATII IN COMPLEX WITH LIGAND (2R)-N-benzyl-1-[6-methyl-5-(oxan-4-yl)-7-oxo-6H,7H-[1,3]thiazolo[5,4-d]pyrimidin-2-yl]pyrrolidine-2-carboxamide 6T8Q ; 2.51 ; HKATII IN COMPLEX WITH LIGAND (2R)-N-benzyl-1-[6-methyl-5-(oxan-4-yl)-7-oxo-6H,7H-[1,3]thiazolo[5,4-d]pyrimidin-2-yl]pyrrolidine-2-carboxamide 8OMK ; 2.48 ; hKHK-C in complex with ADP & fructose 1-phosphate 4YOJ ; 1.9 ; HKU4 3CLpro bound to non-covalent inhibitor 2A 4YO9 ; 2.3 ; HKU4 3CLpro unbound structure 4YOG ; 2.0 ; HKU4-3CLpro bound to non-covalent inhibitor 3B 2HLC ; 1.7 ; HL COLLAGENASE STRUCTURE AT 1.7A RESOLUTION 5NMK ; 1.66 ; HLA A02 presenting SLFNTIAVL 5NMH ; 1.55 ; HLA A02 presenting SLYNTIATL 8TUB ; 2.4 ; HLA B7:02 with HPNGYKSLSTL 8TUH ; 2.20011 ; HLA B7:02 with RPIIRPATL 1M05 ; 1.9 ; HLA B8 in complex with an Epstein Barr Virus determinant 5EU3 ; 1.97 ; HLA Class I antigen 5EU4 ; 2.12 ; HLA Class I antigen 5EU5 ; 1.54 ; HLA Class I antigen 5EU6 ; 2.02 ; HLA Class I antigen 5C09 ; 2.475 ; HLA class I histocompatibility antigen 6EQA ; 3.16 ; HLA class I histocompatibility antigen 6EQB ; 2.81 ; HLA class I histocompatibility antigen 4U1H ; 1.59 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1I ; 1.92 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1J ; 1.38 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1K ; 2.09 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1L ; 2.06 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1M ; 1.18 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1N ; 1.77 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 4U1S ; 1.76 ; HLA class I micropolymorphisms determine peptide-HLA landscape and dictate differential HIV-1 escape through identical epitopes 6HBY ; 1.95 ; HLA class II peptide flanking residues tune the immunogenicity of a human tumor-derived epitope 7N6D ; 2.3 ; HLA peptide complex 5HGA ; 2.199 ; HLA*A2402 complex with HIV nef138 Y2F-8mer mutant epitope 5HGH ; 2.392 ; HLA*A2402 complexed with HIV nef138 10mer epitope 5HGB ; 2.4 ; HLA*A2402 complexed with HIV nef138 8mer epitope 5HGD ; 2.07 ; HLA*A2402 complexed with HIV nef138 Y2F mutant 10mer epitope 6MPP ; ; HLA-A*01:01 complex with NRAS Q61K peptide by NMR 6APN ; 2.22 ; HLA-A*0201 single chain trimer with HPV.16 E7 peptide LLMGTLGIV 6E1I ; 1.99 ; HLA-A*0201 single chain trimer with murine H2K alpha 3 domain and HPV.16 E7 peptide YMLDLQPET 7MJ6 ; 1.95 ; HLA-A*02:01 bound to Neuroblastoma Derived IGFBPL1 peptide 7MJ7 ; 1.6 ; HLA-A*02:01 bound to Neuroblastoma Derived IGFBPL1 peptide 7MJ8 ; 1.79 ; HLA-A*02:01 bound to Neuroblastoma Derived IGFBPL1 peptide 7MJ9 ; 1.75 ; HLA-A*02:01 bound to Neuroblastoma Derived mutant IGFBPL1 peptide 2HN7 ; 1.6 ; HLA-A*1101 in complex with HBV peptide homologue 7MJA ; 1.69 ; HLA-A*24:02 bound to Neuroblastoma derived PHOX2B peptide 5C0D ; 1.68 ; HLA-A02 carrying AQWGPDPAAA 5N1Y ; 1.39 ; HLA-A02 carrying MVWGPDPLYV 5C0J ; 1.64 ; HLA-A02 carrying RQFGPDWIVA 5C0F ; 1.463 ; HLA-A02 carrying RQWGPDPAAV 5C0E ; 1.491 ; HLA-A02 carrying YLGGPDFPTI 5C0G ; 1.37 ; HLA-A02 carrying YLGGPDFPTI 6NCA ; 3.3 ; HLA-A2 (A*02:01) bound to a peptide from the Epstein-Barr virus BRLF1 protein 3V5H ; 1.63 ; HLA-A2.1 KVAEIVHFL 3V5D ; 2.0 ; HLA-A2.1 KVAELVHFL 3WL9 ; 1.66 ; HLA-A24 in complex with HIV-1 Nef126-10(8I10F) 3WLB ; 2.0 ; HLA-A24 in complex with HIV-1 Nef126-10(8T10F) 3VXO ; 2.61 ; HLA-A24 in complex with HIV-1 Nef134-10(2F) 3VXP ; 2.5 ; HLA-A24 in complex with HIV-1 Nef134-10(6L) 3VXN ; 1.95 ; HLA-A24 in complex with HIV-1 Nef134-10(wt) 4WU7 ; 2.297 ; HLA-A24 in complex with HIV-1 Nef134-8(2F) 4WU5 ; 2.4 ; HLA-A24 in complex with HIV-1 Nef134-8(wt) 8ISN ; 2.48 ; HLA-A24 in complex with modified 9mer WT1 peptide 7LGT ; 1.97 ; HLA-B*07:02 in complex with 229E-derived coronavirus nucleocapsid peptide N75-83 7LGD ; 2.88 ; HLA-B*07:02 in complex with SARS-CoV-2 nucleocapsid peptide N105-113 6UZP ; 2.08 ; HLA-B*15:01 complexed with a synthetic peptide 6UZQ ; 2.395 ; HLA-B*15:01 complexed with a synthetic peptide 6UZS ; 1.9 ; HLA-B*15:01 complexed with a synthetic peptide 6VB3 ; 2.0 ; HLA-B*15:01 complexed with a synthetic peptide 6UZM ; 1.798 ; HLA-B*15:02 complexed with a synthetic peptide 6UZN ; 2.22 ; HLA-B*15:02 complexed with a synthetic peptide 6UZO ; 2.349 ; HLA-B*15:02 complexed with a synthetic peptide 6VB0 ; 1.9 ; HLA-B*15:02 complexed with a synthetic peptide 6VB1 ; 1.75 ; HLA-B*15:02 complexed with a synthetic peptide 6VB2 ; 1.41 ; HLA-B*15:02 complexed with a synthetic peptide 6VB4 ; 2.334 ; HLA-B*15:02 complexed with a synthetic peptide 6VB5 ; 2.15 ; HLA-B*15:02 complexed with a synthetic peptide 6VB6 ; 2.15 ; HLA-B*15:02 complexed with a synthetic peptide 6VB7 ; 2.1 ; HLA-B*15:02 complexed with a synthetic peptide 6VIU ; 2.334 ; HLA-B*15:02 complexed with a synthetic peptide 4XXC ; 1.426 ; HLA-B*1801 in complex with a self-peptide, DELEIKAY 4JQV ; 1.5 ; HLA-B*18:01 in complex with Epstein-Barr virus BZLF1-derived peptide (residues 173-180) 1JGE ; 2.1 ; HLA-B*2705 bound to nona-peptide m9 1JGD ; 1.9 ; HLA-B*2709 bound to deca-peptide s10R 1K5N ; 1.09 ; HLA-B*2709 BOUND TO NONA-PEPTIDE M9 7T0L ; 3.0 ; HLA-B*27:05 in complex with the pan-HLA-Ia monoclonal antibody W6/32 6VPZ ; 2.1 ; HLA-B*27:05 presenting an HIV-1 11mer peptide 6VQE ; 1.77 ; HLA-B*27:05 presenting an HIV-1 13mer peptide 6VQ2 ; 2.25 ; HLA-B*27:05 presenting an HIV-1 14mer peptide 6VQZ ; 2.25 ; HLA-B*27:05 presenting an HIV-1 6mer peptide 6VQY ; 2.57 ; HLA-B*27:05 presenting an HIV-1 7mer peptide 6VQD ; 1.88 ; HLA-B*27:05 presenting an HIV-1 8mer peptide 1SYV ; 1.7 ; HLA-B*4405 complexed to the dominant self ligand EEFGRAYGF 4JQX ; 1.9 ; HLA-B*44:03 in complex with Epstein-Barr virus BZLF1-derived peptide (residues 169-180) 3UPR ; 1.999 ; HLA-B*57:01 complexed to pep-V and Abacavir 6D2R ; 1.83 ; HLA-B*57:01 presenting GSFDYSGVHLW 6D2T ; 1.9 ; HLA-B*57:01 presenting LALLTGVRW 6D2B ; 2.04 ; HLA-B*57:01 presenting LSDSTARDVTW 5VUD ; 2.0 ; HLA-B*57:01 presenting LSSPVTKSW 5VUE ; 1.8 ; HLA-B*57:01 presenting LTVQVARVW 5VUF ; 1.9 ; HLA-B*57:01 presenting LTVQVARVY 5T6W ; 1.9 ; HLA-B*57:01 presenting SSTRGISQLW 6V2O ; 1.27 ; HLA-B*57:01 presenting the peptide ASLNLPAVSW 6D29 ; 1.88 ; HLA-B*57:01 presenting TSMSFVPRPW 5T6Y ; 1.76 ; HLA-B*57:01 presenting TSTFEDVKILAF 5T6X ; 1.686 ; HLA-B*57:01 presenting TSTTSVASSW 3VRJ ; 1.9 ; HLA-B*57:01-LTTKLTNTNI in complex with abacavir 3VRI ; 1.6 ; HLA-B*57:01-RVAQLENVYI in complex with abacavir 5VVP ; 2.0 ; HLA-B*57:03 presenting LSSPVTKSW 5VWD ; 1.8 ; HLA-B*57:03 presenting LTVQVARVW 6V2P ; 1.3 ; HLA-B*57:03 presenting the peptide ASLNLPAVSW 6V2Q ; 1.6 ; HLA-B*57:03 presenting the peptide LSSPVTKSF 5VWH ; 1.648 ; HLA-B*58:01 presenting LSSPVTKSW 5VWJ ; 2.0 ; HLA-B*58:01 presenting LTVQVARVW 5VWF ; 1.8 ; HLA-B*58:03 presenting LTVQVARVY 5W69 ; 2.8 ; HLA-C*06:02 presenting ARFNDLRFV 5W6A ; 1.74 ; HLA-C*06:02 presenting ARTELYRSL 5W67 ; 2.3 ; HLA-C*06:02 presenting VRSRR(ABA)LRL 4NT6 ; 1.84 ; HLA-C*0801 Crystal Structure 4I0P ; 3.2 ; HLA-DO in complex with HLA-DM 6MFG ; 2.0 ; HLA-DQ2-glia-alpha1 6MFF ; 2.6 ; HLA-DQ2-glia-omega1 8W83 ; 2.818 ; HLA-DQ2.5-alpha1 gliadin peptide in complex with DQN0344AE02 8W84 ; 2.105 ; HLA-DQ2.5-alpha2 gliadin peptide in complex with DQN0344AE02 8W86 ; 2.236 ; HLA-DQ2.5-B/C hordein peptide in complex with DQN0385AE02 8W85 ; 2.769 ; HLA-DQ2.5-gamma2 gliadin peptide in complex with DQN0385AE01 1IIE ; ; HLA-DR ANTIGENS ASSOCIATED INVARIANT CHAIN 1AQD ; 2.45 ; HLA-DR1 (DRA, DRB1 0101) HUMAN CLASS II HISTOCOMPATIBILITY PROTEIN (EXTRACELLULAR DOMAIN) COMPLEXED WITH ENDOGENOUS PEPTIDE 3QXA ; 2.712 ; HLA-DR1 bound with CLIP peptide 1SJH ; 2.25 ; HLA-DR1 complexed with a 13 residue HIV capsid peptide 1SJE ; 2.45 ; HLA-DR1 complexed with a 16 residue HIV capsid peptide bound in a hairpin conformation 1T5W ; 2.4 ; HLA-DR1 in complex with a synthetic peptide (AAYSDQATPLLLSPR) 1T5X ; 2.5 ; HLA-DR1 in complex with a synthetic peptide (AAYSDQATPLLLSPR) and the superantigen SEC3-3B2 4X5X ; 3.199 ; HLA-DR1 mutant bN82A with covalently linked CLIP106-120(M107W) 4X5W ; 1.34 ; HLA-DR1 with CLIP102-120(M107W) 4AH2 ; 2.36 ; HLA-DR1 with covalently linked CLIP106-120 in canonical orientation 4AEN ; 2.2 ; HLA-DR1 with covalently linked CLIP106-120 in reversed orientation 6QZA ; 3.09 ; HLA-DR1 with GMF Influenza PB1 Peptide 6QZD ; 2.66 ; HLA-DR1 with SGP Influenza Matrix Peptide 6QZC ; 1.64 ; HLA-DR1 with the QAR Peptide 6BIJ ; 2.1 ; HLA-DRB1 in complex with citrullinated fibrinogen peptide 6BIL ; 2.4 ; HLA-DRB1 in complex with citrullinated fibrinogen peptide 6BIZ ; 2.1 ; HLA-DRB1 in complex with citrullinated Histone 2B peptide 6BIV ; 2.9 ; HLA-DRB1 in complex with citrullinated LL37 peptide 6BIX ; 2.2 ; HLA-DRB1 in complex with citrullinated LL37 peptide 6BIR ; 2.3 ; HLA-DRB1 in complex with citrullinated Vimentin peptide 6BIY ; 2.05005 ; HLA-DRB1 in complex with Histone 2B peptide 6BIN ; 2.50001 ; HLA-DRB1 in complex with Type II collagen peptide 6ATZ ; 2.7 ; HLA-DRB1*1402 in complex with citrullinated fibrinogen peptide 6ATI ; 1.98 ; HLA-DRB1*1402 in complex with Vimentin-64Cit59-71 6ATF ; 1.9 ; HLA-DRB1*1402 in complex with Vimentin59-71 8TBP ; 3.12621 ; HLA-DRB1*15:01 in complex with smith antigen 7P4B ; 1.72 ; HLA-E*01:03 in complex with IL9 7P49 ; 2.05 ; HLA-E*01:03 in complex with Mtb14 6GH1 ; 2.1 ; HLA-E*01:03 in complex with Mtb44 6GL1 ; 2.623 ; HLA-E*01:03 in complex with the HIV epitope, RL9HIV 6GH4 ; 2.16 ; HLA-E*01:03 in complex with the Mtb44 peptide variant: Mtb44*P2-Gln. 6GGM ; 2.734 ; HLA-E*01:03 in complex with the Mtb44 peptide variant: Mtb44*P2-Phe. 6GHN ; 2.542 ; HLA-E*01:03 in complex with the Mtb44 peptide variant: Mtb44*P9-Phe. 6PX6 ; 3.0 ; HLA-TCR complex 6PY2 ; 2.82543 ; HLA-TCR complex 3V5K ; 2.31 ; HLA2.1 KVAELVWFL 5L0M ; 2.197 ; hLRH-1 DNA Binding Domain - 12bp Oct4 promoter complex 4K2E ; 1.8 ; HlyU from Vibrio cholerae N16961 7QZV ; ; Hm-AMP2 7QZW ; ; Hm-AMP8 6OVC ; ; hMcl1 inhibitor complex 4YT2 ; 1.65 ; Hmd II from Methanocaldococcus jannaschii 6HUY ; 2.25 ; HmdII from Desulfurobacterium thermolithotrophum reconstitued with Fe-guanylylpyridinol (FeGP) cofactor and co-crystallized with methenyl-tetrahydrofolate form A 6HUZ ; 1.85 ; HmdII from Desulfurobacterium thermolithotrophum reconstituted with Fe-guanylylpyridinol (FeGP) cofactor and co-crystallized with methenyl-tetrahydrofolate form B 6HUX ; 2.5 ; HmdII from Methanocaldococcus jannaschii reconstitued with Fe-guanylylpyridinol (FeGP) cofactor and co-crystallized with methenyl-tetrahydromethanopterin at 2.5 A resolution 4YT5 ; 1.9 ; HmdII from Methanocaldococcus jannaschii with bound methylene-tetrahydromethanopterin 1CG7 ; ; HMG PROTEIN NHP6A FROM SACCHAROMYCES CEREVISIAE 6HR7 ; 2.4 ; HMG-CoA reductase from Methanothermococcus thermolithotrophicus apo form at 2.4 A resolution 6HR8 ; 2.9 ; HMG-CoA reductase from Methanothermococcus thermolithotrophicus in complex with NADPH at 2.9 A resolution 1R7I ; 2.21 ; HMG-CoA Reductase from P. mevalonii, native structure at 2.2 angstroms resolution. 4I56 ; 1.5 ; HMG-CoA reductase from pseudomonas mevalonii complexed with dithio-HMG-coa 1R31 ; 2.1 ; HMG-CoA reductase from Pseudomonas mevalonii complexed with HMG-CoA 4I4B ; 1.7 ; HMG-CoA Reductase from Pseudomonas mevalonii complexed with NAD and intermediate hemiacetal form of HMG-CoA 2FA3 ; 2.52 ; HMG-CoA synthase from Brassica juncea in complex with acetyl-CoA and acetyl-cys117. 2F9A ; 2.51 ; HMG-CoA synthase from Brassica juncea in complex with F-244 2FA0 ; 2.49 ; HMG-CoA synthase from Brassica juncea in complex with HMG-CoA and covalently bound to HMG-CoA 2F82 ; 2.1 ; HMG-CoA synthase from Brassica juncea in the apo-form 2HDB ; 2.2 ; HMG-CoA synthase from Enterococcus faecalis. Mutation alanine 110 to glycine 1E7J ; ; HMG-D complexed to a bulge DNA 2LY4 ; ; HMGB1-facilitated p53 DNA binding occurs via HMG-box/p53 transactivation domain interaction and is regulated by the acidic tail 8DJM ; 3.23 ; HMGCR-UBIAD1 Complex State 1 8DJK ; 3.33 ; HMGCR-UBIAD1 Complex State 2 3NM9 ; 2.85 ; HMGD(M13A)-DNA complex 5KSZ ; 2.5 ; hMiro EF hand and cGTPase domains in the GMPPCP-bound state 5KTY ; 2.522 ; hMiro EF hand and cGTPase domains, GDP and Ca2+ bound state 5KSP ; 2.162 ; hMiro1 C-domain GDP Complex C2221 Crystal Form 5KSY ; 2.482 ; hMiro1 C-domain GDP Complex P41212 Crystal Form 5KSO ; 2.25 ; hMiro1 C-domain GDP-Pi Complex P3121 Crystal Form 5KU1 ; 2.501 ; hMiro1 EF hand and cGTPase domains in the GDP-bound state 5KUT ; 1.693 ; hMiro2 C-terminal GTPase domain, GDP-bound 5I8O ; 1.8 ; HMM5 Fab in complex with disaccharide 6FTH ; 1.46851 ; HMO binding ABC-transporter associated Solute Binding Protein, Blon_2347 From Bifidobacterium longum infantis ATCC 15697 4FVC ; 1.75 ; HmoB structure with heme 6OC7 ; 1.296 ; HMP42 Fab in complex with Protein G 8EAY ; 3.33 ; HMPV F complex with 4I3 Fab 8EBP ; 3.38 ; HMPV F dimer bound to RSV-199 Fab 8E2U ; 3.48 ; HMPV F monomer bound to RSV-199 Fab 8TW3 ; 2.9 ; hMPV fusion protein complexed with single domain antibodies sdHMPV16 and sdHMPV12 2KAR ; ; HNE-dG adduct mismatched with dA in acidic solution 2KAS ; ; HNE-dG adduct mismatched with dA in basic solution 1G2Y ; 1.0 ; HNF-1ALPHA DIMERIZATION DOMAIN, WITH SELENOMETHIONINE SUBSTITUED AT LEU 12 1M7W ; 2.8 ; HNF4a ligand binding domain with bound fatty acid 6CHT ; 3.174 ; HNF4alpha in complex with the corepressor EBP1 fragment 7MPZ ; 2.04 ; HNH Nuclease Domain from G. stearothermophilus Cas9 8F43 ; 1.37 ; HNH Nuclease Domain from G. stearothermophilus Cas9, K597A mutant 6O56 ; 1.9 ; HNH Nuclease from S. pyogenes Cas9 3C6X ; 1.05 ; HNL from Hevea brasiliensis to atomic resolution 3C6Y ; 1.25 ; HNL from Hevea brasiliensis to atomic resolution 3C6Z ; 1.05 ; HNL from Hevea brasiliensis to atomic resolution 3C70 ; 1.05 ; HNL from Hevea brasiliensis to atomic resolution 1HA1 ; 1.75 ; HNRNP A1 (RBD1,2) FROM HOMO SAPIENS 5V16 ; ; HnRNP A1 Alters the Conformation of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation 5V17 ; ; HnRNP A1 Alters the Conformation of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation 6J60 ; 0.96 ; hnRNP A1 reversible amyloid core GFGGNDNFG (residues 209-217) 5MPL ; ; hnRNP A1 RRM2 in complex with 5'-UCAGUU-3' RNA 5ZGL ; 0.95 ; hnRNP A1 segment GGGYGGS (residues 234-240) 5TBX ; 1.767 ; hnRNP A18 RNA Recognition Motif 7WM3 ; 1.62 ; hnRNP A2/B1 RRMs in complex with single-stranded DNA 8HNI ; 2.644 ; hnRNP A2/B1 RRMs in complex with telomeric DNA 5ZGD ; 1.401 ; hnRNPA1 reversible amyloid core GFGGNDNFG (residues 209-217) determined by X-ray 8DU2 ; 3.3 ; HnRNPA2 D290V LCD PM1 8DUW ; 3.2 ; HnRNPA2 D290V LCD PM2 8EC7 ; 3.9 ; HnRNPA2 D290V LCD PM3 6WQK ; 3.1 ; hnRNPA2 Low complexity domain (LCD) determined by cryoEM 7CRE ; 3.0 ; hnRNPK KH3 domain in complex with a ssDNA fragment from the SIRLOIN element 7CRU ; 2.8 ; hnRNPK NLS in complex with Importin alpha 1 (KPNA2) 4XBA ; 1.5 ; Hnt3 4YKL ; 2.25 ; Hnt3 in complex with DNA and guanosine 6KGY ; 2.9 ; HOCl-induced flavoprotein disulfide reductase RclA from Escherichia coli 8JTV ; 3.77 ; hOCT1 in complex with metformin in inward occluded conformation 8JTT ; 3.87 ; hOCT1 in complex with metformin in outward occluded conformation 8JTS ; 4.14 ; hOCT1 in complex with metformin in outward open conformation 8JTX ; 3.28 ; hOCT1 in complex with nb5660 in inward facing fully open conformation 8JTW ; 3.23 ; hOCT1 in complex with nb5660 in inward facing partially open 1 conformation 8JTY ; 3.26 ; hOCT1 in complex with nb5660 in inward facing partially open 2 conformation 8JU0 ; 2.98 ; hOCT1 in complex with spironolactone in inward facing occluded conformation 8JTZ ; 3.27 ; hOCT1 in complex with spironolactone in outward facing partially occluded conformation 6RTQ ; 2.0 ; Hoefavidin P61C mutant generates a stabilized octamer 4AGA ; 1.5 ; Hofmeister effects of ionic liquids in protein crystallization: direct and water-mediated interactions 1LWY ; 2.01 ; hOgg1 Borohydride-Trapped Intermediate without 8-oxoguanine 8EAZ ; 3.08 ; HOIL-1/E2-Ub/Ub transthiolation complex 6GZY ; 2.15 ; HOIP-fragment5 complex 6KC5 ; 1.543 ; HOIP-HOIPIN1 complex 6KC6 ; 2.123 ; HOIP-HOIPIN8 complex 5YIL ; 3.0 ; Hoisting-loop in bacterial multidrug exporter AcrB is a highly flexible hinge that enables the large motion of the subdomains 1HJP ; 2.5 ; HOLLIDAY JUNCTION BINDING PROTEIN RUVA FROM E. COLI 1OB8 ; 1.8 ; Holliday Junction Resolving Enzyme 1OB9 ; 2.0 ; Holliday Junction Resolving Enzyme 1L4J ; 1.85 ; Holliday Junction TCGGTACCGA with Na and Ca Binding Sites. 6GDH ; 2.85 ; Holliday Junctions formed from Telomeric DNA 6GDN ; 3.0 ; Holliday Junctions formed from Telomeric DNA 6GDS ; 2.95 ; Holliday Junctions formed from Telomeric DNA 1JKF ; 2.4 ; Holo 1L-myo-inositol-1-phosphate Synthase 5H9H ; 2.5 ; holo acyl carrier protein (holo-ACP) from Helicobacter pylori 2BGS ; 1.64 ; HOLO ALDOSE REDUCTASE FROM BARLEY 2EUH ; 2.6 ; HOLO FORM OF A NADP DEPENDENT ALDEHYDE DEHYDROGENASE COMPLEX WITH NADP+ 2N8Y ; ; Holo form of Calmodulin-Like Domain of Human Non-Muscle alpha-actinin 1 3TEN ; 2.6 ; Holo form of carbon disulfide hydrolase 1IU7 ; 1.8 ; HOLO FORM OF COPPER-CONTAINING AMINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS 7WIR ; 1.5 ; Holo form of N381A mutant of copper amine oxidase from Arthrobacter globiformis 6JWF ; 1.3 ; Holo form of Pyranose Dehydrogenase PQQ domain from Coprinopsis cinerea 7RED ; 1.53 ; Holo Hemophilin from A. baumannii 6AZU ; 2.822 ; Holo IDO1 crystal structure 7EZ2 ; 3.05 ; Holo L-16 ScaI Tetrahymena ribozyme 7WH9 ; 2.803 ; holo structure of emodin 1-OH O-methyltransferase complex with emodin and S-Adenosyl-L-homocysteine 7RNQ ; 2.102 ; Holo structure of engineered TrpB, 2B9-H275E, from Pyrococcus furiosus in the extended-open conformation 4XDZ ; 1.15 ; Holo structure of ketol-acid reductoisomerase from Ignisphaera aggregans 2JL4 ; 2.3 ; Holo structure of Maleyl Pyruvate Isomerase, a bacterial glutathione- s-transferase in Zeta class 2MR8 ; ; holo structure of the Peptidyl Carrier Protein Domain 7 of the teicoplanin producing Non-ribosomal peptide synthetase 5DVZ ; 1.69 ; Holo TrpB from Pyrococcus furiosus 2EZ1 ; 1.9 ; Holo tyrosine phenol-lyase from Citrobacter freundii at pH 8.0 6Q1D ; 1.79 ; Holo YfeA reconstituted by zinc soaking 1F7T ; 1.8 ; HOLO-(ACYL CARRIER PROTEIN) SYNTHASE AT 1.8A 1F7L ; 1.5 ; HOLO-(ACYL CARRIER PROTEIN) SYNTHASE IN COMPLEX WITH COENZYME A AT 1.5A 1F80 ; 2.3 ; HOLO-(ACYL CARRIER PROTEIN) SYNTHASE IN COMPLEX WITH HOLO-(ACYL CARRIER PROTEIN) 6HQI ; 1.85 ; holo-form of polyphenol oxidase from Solanum lycopersicum 7CDL ; 1.85 ; holo-methanol dehydrogenase (MDH) with Cys131-Cys132 reduced from Methylococcus capsulatus (Bath) 2Y3Y ; 2.39 ; Holo-Ni(II) HpNikR is a symmetric tetramer containing four canonic square-planar Ni(II) ions at physiological pH 6W4X ; 3.6 ; Holocomplex of E. coli class Ia ribonucleotide reductase with GDP and TTP 2VBI ; 2.75 ; Holostructure of pyruvate decarboxylase from Acetobacter pasteurianus 2MOK ; ; holo_FldA 2M6S ; ; Holo_YqcA 1QRY ; ; Homeobox protein VND (ventral nervous system defective protein) 5LUX ; 3.23 ; Homeobox transcription factor CDX1 bound to methylated DNA 5LTY ; 2.66 ; Homeobox transcription factor CDX2 bound to methylated DNA 2LFB ; ; HOMEODOMAIN FROM RAT LIVER LFB1/HNF1 TRANSCRIPTION FACTOR, NMR, 20 STRUCTURES 1FJL ; 2.0 ; HOMEODOMAIN FROM THE DROSOPHILA PAIRED PROTEIN BOUND TO A DNA OLIGONUCLEOTIDE 1DDW ; 1.7 ; HOMER EVH1 DOMAIN UNLIGANDED 3R3P ; 2.2 ; Homing Endonuclease I-Bth0305I Catalytic Domain 1G9Y ; 2.05 ; HOMING ENDONUCLEASE I-CREI / DNA SUBSTRATE COMPLEX WITH CALCIUM 1IPP ; 2.2 ; HOMING ENDONUCLEASE/DNA COMPLEX 5KKQ ; 1.744 ; Homo sapiens CCCTC-binding factor (CTCF) ZnF3-7 and DNA complex structure 5K5H ; 3.108 ; Homo sapiens CCCTC-binding factor (CTCF) ZnF4-7 and DNA complex structure 5K5J ; 2.287 ; Homo sapiens CCCTC-binding factor (CTCF) ZnF5-8 and DNA complex structure in space group P41212 5K5I ; 2.19 ; Homo sapiens CCCTC-binding factor (CTCF) ZnF5-8 and DNA complex structure in space group P65 5K5L ; 3.125 ; Homo sapiens CCCTC-binding factor (CTCF) ZnF6-8 and H19 sequence DNA complex structure 6DE4 ; 2.411 ; Homo sapiens dihydrofolate reductase complexed with beta-NADPH and 3'-[(2R)-4-(2,4-diamino-6-ethylphenyl)but-3-yn-2-yl]-5'-methoxy-[1,1'-biphenyl]-4-carboxylic acid 4Z49 ; 1.7 ; Homo Sapiens Fatty Acid Synthetase, Thioesterase Domain at 1.7 Angstroms Resolution 6VCU ; 1.69 ; Homo sapiens FKBP12 protein bound with APX879 in P32 space group 8CR2 ; 4.2 ; Homo sapiens Get1/Get2 heterotetramer (a3' deletion variant) in complex with a Get3 dimer 8CR1 ; 3.2 ; Homo sapiens Get1/Get2 heterotetramer in complex with a Get3 dimer 8CQZ ; 2.8 ; Homo sapiens Get3 in complex with the Get1 cytoplasmic domain 7X1O ; 2.04 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with double inhibitors HF and L95 7X09 ; 1.7 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with inhibitors L95 and Halofuginone 7F98 ; 1.999 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L95 7F9B ; 1.995 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L95 7F99 ; 1.979 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L96 7F9C ; 2.196 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L96 7F9D ; 2.497 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L96 7F9A ; 1.999 ; Homo sapiens Prolyl-tRNA Synthetase (HsPRS) in Complex with L-proline and compound L97 6WN7 ; 1.25 ; Homo sapiens S100A5 6SO5 ; 4.2 ; Homo sapiens WRB/CAML heterotetramer in complex with a TRC40 dimer 8GBC ; ; Homo sapiens Zalpha mutant - N173S 8GBD ; ; Homo sapiens Zalpha mutant - P193A 1GHC ; ; HOMO-AND HETERONUCLEAR TWO-DIMENSIONAL NMR STUDIES OF THE GLOBULAR DOMAIN OF HISTONE H1: FULL ASSIGNMENT, TERTIARY STRUCTURE, AND COMPARISON WITH THE GLOBULAR DOMAIN OF HISTONE H5 5XN5 ; 2.002 ; Homo-dimer crystal structure of geranylgeranyl diphosphate synthases 1 from Oryza sativa 5B3I ; 1.89 ; Homo-dimeric structure of cytochrome c' from Thermophilic Hydrogenophilus thermoluteolus 1OKK ; 2.05 ; HOMO-HETERODIMERIC COMPLEX OF THE SRP GTPASES 8GI1 ; 3.65 ; Homo-octamer of PbuCsx28 protein 3IVS ; 2.24 ; Homocitrate Synthase Lys4 3IVT ; 2.67 ; Homocitrate Synthase Lys4 bound to 2-OG 3IVU ; 2.72 ; Homocitrate Synthase Lys4 bound to 2-OG 3MI3 ; 2.38 ; Homocitrate Synthase Lys4 bound to Lysine 8ENO ; 2.71 ; Homocitrate-deficient nitrogenase MoFe-protein from A. vinelandii nifV knockout in complex with NafT 8ENN ; 2.58 ; Homocitrate-deficient nitrogenase MoFe-protein from Azotobacter vinelandii nifV knockout 7LXG ; 2.2 ; Homocitrullinated beta-lactamase OXA-48 4PIY ; 1.6 ; Homocysteine bound Cysteine Dioxygenase C93A variant at pH 6.2 4PIZ ; 1.4 ; Homocysteine-bound Cysteine Dioxygenase at pH 6.2 2BZY ; 2.5 ; Homodimer of CrkL-SH3C domain 4XRM ; 1.6 ; homodimer of TALE type homeobox transcription factor MEIS1 complexes with specific DNA 5V8K ; 2.2 ; Homodimeric reaction center of H. modesticaldum 4TYU ; 2.13 ; Homodimeric Single Domain Antibody (sdAb) against Staphylococcal enterotoxin B (SEB) 4U7S ; 2.07 ; Homodimeric Single Domain Antibody (sdAb) against Staphylococcal enterotoxin B (SEB) Crystallized for 5 months 4U05 ; 2.5 ; Homodimeric Single Domain Antibody (sdAb) against Staphylococcal enterotoxin B (SEB) S74A Variant 7ZVJ ; 2.61 ; Homodimeric structure of LARGE1 6YUZ ; 2.8 ; Homodimeric structure of the rBAT complex 2M0B ; ; Homodimeric transmembrane domain of the human receptor tyrosine kinase ErbB1 (EGFR, HER1) in micelles 5MYA ; 2.9 ; Homodimerization of Tie2 Fibronectin-like domains 1-3 in space group C2 5MYB ; 2.6 ; Homodimerization of Tie2 Fibronectin-like domains 2 and 3 in space group P21 5AA6 ; 2.26 ; Homohexameric Structure of the second Vanadate-Dependent Bromoperoxidase (AnII) from Ascophyllum nodosum 1PBK ; 2.5 ; HOMOLOGOUS DOMAIN OF HUMAN FKBP25 4V61 ; 9.4 ; Homology model for the Spinach chloroplast 30S subunit fitted to 9.4A cryo-EM map of the 70S chlororibosome. 8SYF ; 19.0 ; Homology model of Acto-HMM complex in ADP-state. Chicken smooth muscle HMM and chicken pectoralis actin 3IYS ; 11.3 ; Homology model of avian polyomavirus asymmetric unit 4BIQ ; 6.09 ; Homology model of coxsackievirus A7 (CAV7) empty capsid proteins. 4BIP ; 8.23 ; Homology model of coxsackievirus A7 (CAV7) full capsid proteins. 3J0G ; 4.8 ; Homology model of E3 protein of Venezuelan Equine Encephalitis Virus TC-83 strain fitted with a cryo-EM map 3J0A ; 26.0 ; Homology model of human Toll-like receptor 5 fitted into an electron microscopy single particle reconstruction 7QIO ; 9.0 ; Homology model of myosin neck domain in skeletal sarcomere 7P3X ; 9.1 ; Homology model of the full-length AP-3 complex in a compact open conformation 7P3Z ; 10.5 ; Homology model of the full-length AP-3 complex in a stretched open conformation 7P3Y ; 10.1 ; Homology model of the full-length AP-3 complex in an intermediate open conformation 7NEP ; 10.2 ; Homology model of the in situ actomyosin complex from the A-band of mouse psoas muscle sarcomere in the rigor state 1TRJ ; 11.7 ; Homology Model of Yeast RACK1 Protein fitted into 11.7A cryo-EM map of Yeast 80S Ribosome 1DGV ; ; HOMOLOGY-BASED MODEL OF APO CIB (CALCIUM-AND INTEGRIN-BINDING PROTEIN) 1DGU ; ; HOMOLOGY-BASED MODEL OF CALCIUM-SATURATED CIB (CALCIUM-AND INTEGRIN-BINDING PROTEIN) 8P3T ; 3.39 ; Homomeric GluA1 in tandem with TARP gamma-3, desensitized conformation 1 8P3U ; 3.77 ; Homomeric GluA1 in tandem with TARP gamma-3, desensitized conformation 2 8P3V ; 3.53 ; Homomeric GluA1 in tandem with TARP gamma-3, desensitized conformation 3 8P3W ; 3.53 ; Homomeric GluA1 in tandem with TARP gamma-3, desensitized conformation 4 8P3X ; 3.36 ; Homomeric GluA2 flip R/G-edited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 1 8P3Z ; 3.46 ; Homomeric GluA2 flip R/G-edited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 2 8P3Y ; 3.55 ; Homomeric GluA2 flip R/G-edited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 3 8PIV ; 3.46 ; Homomeric GluA2 flip R/G-unedited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 1 8P3S ; 2.95 ; Homomeric GluA2 flip R/G-unedited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 2 8P3Q ; 2.95 ; Homomeric GluA2 flip R/G-unedited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 3 1K5K ; ; Homonuclear 1H Nuclear Magnetic Resonance Assignment and Structural Characterization of HIV-1 Tat Mal Protein 1JFW ; ; HOMONUCLEAR AND HETERONUCLEAR 1H-13C NUCLEAR MAGNETIC RESONANCE ASSIGNMENT AND STRUCTURAL CHARACTERIZATION OF A HIV-1 TAT PROTEIN 8EBO ; 1.98 ; Homopurine parallel G-quadruplex from human chromosome 7 stabilized by K+ ions 1EBU ; 2.6 ; HOMOSERINE DEHYDROGENASE COMPLEX WITH NAD ANALOGUE AND L-HOMOSERINE 1EBF ; 2.3 ; HOMOSERINE DEHYDROGENASE FROM S. CEREVISIAE COMPLEX WITH NAD+ 3JSA ; 1.95 ; Homoserine dehydrogenase from Thermoplasma volcanium complexed with NAD 2EJW ; 1.7 ; Homoserine Dehydrogenase from Thermus thermophilus HB8 5XDF ; 2.0 ; Homoserine dehydrogenase from Thermus thermophilus HB8 complexed with HSE 6A0S ; 2.0 ; Homoserine dehydrogenase from Thermus thermophilus HB8 complexed with HSE and NADPH 6A0R ; 1.83 ; Homoserine dehydrogenase from Thermus thermophilus HB8 unliganded form 1TVE ; 3.0 ; Homoserine Dehydrogenase in complex with 4-(4-hydroxy-3-isopropylphenylthio)-2-isopropylphenol 1Q7G ; 2.6 ; Homoserine Dehydrogenase in complex with suicide inhibitor complex NAD-5-hydroxy-4-Oxonorvaline 6A0U ; 1.93 ; Homoserine dehydrogenase K195A mutant from Thermus thermophilus HB8 complexed with HSE and NADP+ 6A0T ; 1.87 ; Homoserine dehydrogenase K99A mutant from Thermus thermophilus HB8 complexed with HSE and NADP+ 5W8P ; 1.69 ; Homoserine transacetylase MetX from Mycobacterium abscessus 5W8O ; 1.47 ; Homoserine transacetylase MetX from Mycobacterium hassiacum 6PUX ; 1.9 ; Homoserine transacetylase MetX from Mycobacterium tuberculosis 7MN3 ; ; Homotarsinin monomer - Htr-M 8GOH ; 1.1 ; Homotetramic Antiparallel Coiled-Coil of 23-residues LacI C-terminal tetramerization helix 8E0L ; 2.1 ; Homotrimeric variant of tcTRP9, BGL06 8E12 ; 3.0 ; Homotrimeric variant of tcTRP9, BGL14 8E0M ; 4.0 ; Homotrimeric variant of tcTRP9, BGL15 8E0N ; 3.0 ; Homotrimeric variant of tcTRP9, BGL18 6VLP ; 1.681 ; Hop phytocystatin in space group C2221 6VLQ ; 1.799 ; Hop phytocystatin in space group P22121 7ZU0 ; 4.4 ; HOPS tethering complex from yeast 7V4S ; 1.2 ; Horcolin complex with methyl-alpha-mannose 1PRX ; 2.0 ; HORF6 A NOVEL HUMAN PEROXIDASE ENZYME 1A28 ; 1.8 ; HORMONE-BOUND HUMAN PROGESTERONE RECEPTOR LIGAND-BINDING DOMAIN 4DWV ; 1.14 ; Horse alcohol dehydrogenase complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol 6SUV ; 2.502 ; Horse cytochrome c complexed by octa-anionic calixarene 2O58 ; 1.65 ; Horse heart met manganese myoglobin 4TWU ; 1.08 ; Horse heart myoglobin mutant (D44K/D60K/E85K) with Zn-deuteroporphyrin IX 4TWV ; 1.06 ; Horse heart myoglobin mutant (K45E/K63E/K96E) with Zn-deuteroporphyrin IX 5Z7E ; 1.8 ; Horse Heart Myoglobin Mutant - H93M 5Z7F ; 1.9 ; Horse Heart Myoglobin Mutant -V68A/I107Y-Sulfide Derivative 2FRI ; 1.6 ; Horse Heart Myoglobin, Nitrite Adduct, Co-crystallized 2FRF ; 1.2 ; Horse Heart Myoglobin, Nitrite Adduct, Crystal Soak 3RJN ; 1.9 ; Horse heart myoglobin: D44K/D60K mutant with zinc (II) -deuteroporphyrin dimethyl ester 5LG2 ; 2.22 ; Horse L type ferritin iron loaded for 60 minutes 5VN1 ; 1.25 ; horse liver alcohol dehydrogenae complexed with NADH (R,S)-N-1-methylhexylformamide 3OQ6 ; 1.2 ; Horse liver alcohol dehydrogenase A317C mutant complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol 1QLJ ; 2.8 ; HORSE LIVER ALCOHOL DEHYDROGENASE APO ENZYME DOUBLE MUTANT OF GLY 293 ALA AND PRO 295 THR 1YE3 ; 1.59 ; HORSE LIVER ALCOHOL DEHYDROGENASE APOENZYME 1QLH ; 2.07 ; HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED TO NAD DOUBLE MUTANT OF GLY 293 ALA AND PRO 295 THR 1BTO ; 2.0 ; HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED TO NADH AND (1S,3R)3-BUTYLTHIOLANE 1-OXIDE 3BTO ; 1.66 ; HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED TO NADH AND (1S,3S)3-BUTYLTHIOLANE 1-OXIDE 1LDY ; 2.5 ; HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED TO NADH AND CYCLOHEXYL FORMAMIDE (CXF) 1LDE ; 2.5 ; HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED TO NADH AND N-FORMYL PIPERDINE 5VJ5 ; 1.9 ; Horse Liver Alcohol Dehydrogenase Complexed with 1,10-Phenanthroline 5VJG ; 1.9 ; horse liver alcohol dehydrogenase complexed with 2,2'bipyridine 5VKR ; 1.8 ; Horse liver alcohol dehydrogenase complexed with adenosine-5-diphosphoribose 4DXH ; 1.12 ; Horse liver alcohol dehydrogenase complexed with NAD+ and 2,2,2-trifluoroethanol 7UDD ; 1.1 ; Horse liver alcohol dehydrogenase complexed with NAD+ and 2,2,2-trifluoroethanol at 150 K 1MG0 ; 1.8 ; Horse Liver Alcohol Dehydrogenase Complexed With NAD+ and 2,3-Difluorobenzyl Alcohol 1N92 ; 1.47 ; Horse Liver Alcohol Dehydrogenase Complexed with NAD+ and 4-Iodopyrazole 5VL0 ; 1.2 ; horse liver alcohol dehydrogenase complexed with NADH and N-benzyformamide 1P1R ; 1.57 ; Horse liver alcohol dehydrogenase complexed with NADH and R-N-1-methylhexylformamide 6NBB ; 2.9 ; Horse liver alcohol dehydrogenase determined using single-particle cryo-EM at 200 keV 7UHW ; 1.3 ; Horse liver alcohol dehydrogenase G173A, complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol at 120 K 7UHX ; 1.3 ; Horse liver alcohol dehydrogenase G173A, complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol at 150 K 7UHV ; 1.3 ; Horse liver alcohol dehydrogenase G173A, complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol at 50 K 1QV7 ; 1.8 ; HORSE LIVER ALCOHOL DEHYDROGENASE HIS51GLN/LYS228ARG MUTANT COMPLEXED WITH NAD+ AND 2,3-DIFLUOROBENZYL ALCOHOL 1QV6 ; 1.8 ; HORSE LIVER ALCOHOL DEHYDROGENASE HIS51GLN/LYS228ARG MUTANT COMPLEXED WITH NAD+ AND 2,4-DIFLUOROBENZYL ALCOHOL 7RM6 ; 1.43 ; Horse liver alcohol dehydrogenase in complex with NADH and N-cylcohexyl formamide 1MGO ; 1.2 ; Horse Liver Alcohol Dehydrogenase Phe93Ala Mutant 1JU9 ; 2.0 ; HORSE LIVER ALCOHOL DEHYDROGENASE VAL292SER MUTANT 1N8K ; 1.13 ; Horse Liver Alcohol Dehydrogenase Val292Thr Mutant Complexed to NAD+ and Pyrazole 7UEI ; 1.2 ; Horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 100 K, 1.2 A, crystal 16 7UEJ ; 1.2 ; horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 150 K 7UDR ; 1.2 ; Horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 25 K 7UEC ; 1.2 ; Horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 50 K 7UEE ; 1.2 ; Horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 75 K 7UEF ; 1.2 ; Horse liver alcohol dehydrogenase with NAD and pentafluorobenzyl alcohol at 85 K 7UDE ; 1.1 ; Horse liver alcohol dehydrogenase with NAD and trifluoroethanol at 125 K 7UA6 ; 1.1 ; Horse liver alcohol dehydrogenase with NAD and trifluoroethanol at 25K 7UC9 ; 1.1 ; Horse liver alcohol dehydrogenase with NAD and trifluoroethanol at 45 K 7UCA ; 1.1 ; Horse liver alcohol dehydrogenase with NAD and trifluoroethanol at 65 K 7UCU ; 1.1 ; Horse liver alcohol dehydrogenase with NAD and trifluoroethanol at 85K 4XD2 ; 1.1 ; Horse liver alcohol dehydrogenase-NADH complex 8G2L ; 1.42 ; Horse liver alcohol dehydrogense His-51 Gln form complexed with NAD+ and 2,2,2-trifluoroethanol 8G4V ; 1.2 ; Horse liver alcohol dehydrogense His-51-Gln form complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol 8G2S ; 1.45 ; Horse liver alcohol dehydrogense His-51-Gln form complexed with NAD+ and capric acid 8G2X ; 1.47 ; Horse liver alcohol dehydrogense His-51-Gln form complexed with NAD+ and pyrazole 8G41 ; 1.5 ; Horse liver alcohol dehydrogense His-51-Gln form complexed with NADH 8G39 ; 1.42 ; Horse liver alcohol dehydrogense His-51-Gln form complexed with NADH and N-cyclohexylformamide 6CXX ; 1.26 ; Horse liver E267H alcohol dehydrogenase complex with 3'-dephosphocoenzyme A 6CY3 ; 2.3 ; Horse liver E267N alcohol dehydrogenase complex with 3'-dephosphocoenzyme A 6OWM ; 1.1 ; Horse liver F93W alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 6OWP ; 1.14 ; Horse liver F93W alcohol dehydrogenase complexed with NAD and trifluoroethanol 6O91 ; 1.1 ; Horse liver L57F alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 6OA7 ; 1.1 ; Horse liver L57F alcohol dehydrogenase E complexed with NAD and trifluoroethanol 5KCP ; 1.1 ; horse liver S48T alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 5KCZ ; 1.14 ; horse liver S48T alcohol dehydrogenase complexed with NAD and trifluoroethanol 2ZLT ; 1.9 ; Horse methemoglobin high salt, pH 7.0 2ZLX ; 2.8 ; Horse methemoglobin high salt, pH 7.0 (66% relative humidity) 2ZLW ; 2.9 ; Horse methemoglobin high salt, pH 7.0 (75% relative humidity) 2ZLV ; 2.0 ; Horse methemoglobin high salt, pH 7.0 (79% relative humidity) 2ZLU ; 2.0 ; Horse methemoglobin high salt, pH 7.0 (88% relative humidity) 1Y8H ; 3.1 ; HORSE METHEMOGLOBIN LOW SALT, PH 7.0 1Y8K ; 2.3 ; Horse methemoglobin low salt, PH 7.0 (88% relative humidity) 1Y8I ; 2.6 ; Horse methemoglobin low salt, PH 7.0 (98% relative humidity) 1HPL ; 2.3 ; HORSE PANCREATIC LIPASE. THE CRYSTAL STRUCTURE AT 2.3 ANGSTROMS RESOLUTION 2KU4 ; ; Horse prion protein 2YLJ ; 1.69 ; Horse Radish Peroxidase, mutant S167Y 5DQF ; 2.15 ; Horse Serum Albumin (ESA) in complex with Cetirizine 4DE6 ; 2.18 ; Horse spleen apo-ferritin complex with arachidonic acid 3RAV ; 1.9 ; Horse spleen apo-ferritin with bound Pentobarbital 3RD0 ; 2.0 ; Horse spleen apo-ferritin with bound thiopental 2W0O ; 1.5 ; Horse spleen apoferritin 3F32 ; 1.7 ; Horse spleen apoferritin 6PXM ; 2.1 ; Horse spleen apoferritin light chain 6RA8 ; 2.0 ; Horse spleen apoferritin under 2 kBar of argon 5D5R ; 1.6 ; Horse-heart myoglobin - deoxy state 8DWM ; 2.99 ; Host-guest complex of bleomycin A2 fully bound to CTTAGTTATAACTAAG 1X1K ; 1.1 ; Host-guest peptide (Pro-Pro-Gly)4-(Pro-alloHyp-Gly)-(Pro-Pro-Gly)4 8DW8 ; 2.58 ; Host-guest structure of BLMA2 partially bound to 5'-ATTAGTTATAACTAAT-3' 1ZNV ; 2.0 ; How a His-metal finger endonuclease ColE7 binds and cleaves DNA with a transition metal ion cofactor 1BMT ; 3.0 ; HOW A PROTEIN BINDS B12: A 3.O ANGSTROM X-RAY STRUCTURE OF THE B12-BINDING DOMAINS OF METHIONINE SYNTHASE 102L ; 1.74 ; HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME 103L ; 1.9 ; HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME 104L ; 2.8 ; HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME 201L ; 2.0 ; HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME 205L ; 2.1 ; HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME 1CCF ; ; How an Epidermal Growth Factor (EGF)-Like Domain Binds Calcium-High Resolution NMR Structure of the Calcium Form of the NH2-Terminal EGF-Like Domain in Coagulation Factor X 2NS7 ; 2.4 ; How an in vitro selected peptide mimics the antibiotic tetracycline to induce TET repressor 2NS8 ; 2.55 ; How an in vitro selected peptide mimics the antibiotic tetracycline to induce TET repressor 1TFW ; 2.2 ; How CCA is added to the 3' end of immature tRNA without the use of an oligonucleotide template 1TFY ; 3.2 ; How CCA is added to the 3' end of immature tRNA without the use of an oligonucleotide template 1F7A ; 2.0 ; HOW DOES A SYMMETRIC DIMER RECOGNIZE AN ASYMMETRIC SUBSTRATE? A SUBSTRATE COMPLEX OF HIV-1 PROTEASE. 2OLQ ; 1.94 ; How Does an Enzyme Recognize CO2? 2BV9 ; 1.5 ; HOW FAMILY 26 GLYCOSIDE HYDROLASES ORCHESTRATE CATALYSIS ON DIFFERENT POLYSACCHARIDES. STRUCTURE AND ACTIVITY OF A CLOSTRIDIUM THERMOCELLUM LICHENASE, CtLIC26A 2BVD ; 1.6 ; HOW FAMILY 26 GLYCOSIDE HYDROLASES ORCHESTRATE CATALYSIS ON DIFFERENT POLYSACCHARIDES. STRUCTURE AND ACTIVITY OF A CLOSTRIDIUM THERMOCELLUM LICHENASE, CtLIC26A 5KDI ; 1.45 ; How FAPP2 Selects Simple Glycosphingolipids Using the GLTP-fold 1CCI ; 2.4 ; HOW FLEXIBLE ARE PROTEINS? TRAPPING OF A FLEXIBLE LOOP 4BII ; 1.95 ; How nature bridges the gap: Crystallographic elucidation of pyridomycin binding to InhA 1HPM ; 1.7 ; HOW POTASSIUM AFFECTS THE ACTIVITY OF THE MOLECULAR CHAPERONE HSC70. II. POTASSIUM BINDS SPECIFICALLY IN THE ATPASE ACTIVE SITE 3CVH ; 2.9 ; How TCR-like antibody recognizes MHC-bound peptide 3CVI ; 1.8 ; How TCR-like antibody recognizes MHC-bound peptide 1IND ; 2.2 ; HOW THE ANTI-(METAL CHELATE) ANTIBODY CHA255 IS SPECIFIC FOR THE METAL ION OF ITS ANTIGEN: X-RAY STRUCTURES FOR TWO FAB'(SLASH)HAPTEN COMPLEXES WITH DIFFERENT METALS IN THE CHELATE 1INE ; 2.8 ; HOW THE ANTI-(METAL CHELATE) ANTIBODY CHA255 IS SPECIFIC FOR THE METAL ION OF ITS ANTIGEN: X-RAY STRUCTURES FOR TWO FAB'(SLASH)HAPTEN COMPLEXES WITH DIFFERENT METALS IN THE CHELATE 3OUY ; 2.69 ; How the CCA-adding Enzyme Selects Adenine Over Cytosine at Position 76 of tRNA 3OV7 ; 3.0 ; How the CCA-Adding Enzyme Selects Adenine over Cytosine in Position 76 of tRNA 3OVA ; 1.98 ; How the CCA-adding Enzyme Selects Adenine over Cytosine in Position 76 of tRNA 3OVB ; 1.95 ; How the CCA-adding Enzyme Selects Adenine over Cytosine in Position 76 of tRNA 3OVS ; 2.8 ; How the CCA-adding Enzyme Selects Adenine over Cytosine in Position 76 of tRNA 2JZW ; ; How the HIV-1 nucleocapsid protein binds and destabilises the (-)primer binding site during reverse transcription 3D36 ; 2.03 ; How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus stearothermophilus KinB with the Inhibitor Sda 6CGT ; 2.6 ; HOXA COMPLEX OF CYCLODEXTRIN GLYCOSYLTRANSFERASE MUTANT 8BYX ; 3.0 ; HOXB13-homodimer bound to DNA 5EG0 ; 3.101 ; HOXB13-MEIS1 heterodimer bound to DNA 5EGO ; 2.54 ; HOXB13-MEIS1 heterodimer bound to methylated DNA 1P0J ; ; HP (2-20) Substitution ASP To TRP Modification In SDS-D25 Micelles 1P0L ; ; HP (2-20) Substitution GLN To TRP Modification In SDS-D25 MICELLES 1P0O ; ; HP (2-20) substitution of Trp for Gln and Asp at position 17 and 19 MODIFICATION IN SDS-D25 MICELLES 1P5L ; ; HP (2-20) Substitution PHE5 to SER modification in sds-d25 micelles 1P5K ; ; HP (2-20) Substitution SER to LEU11 modification in sds-d25 micelles 1S4Z ; ; HP1 chromo shadow domain in complex with PXVXL motif of CAF-1 4CZ4 ; ; HP24stab derived from the villin headpiece subdomain 4CZ3 ; ; HP24wt derived from the villin headpiece subdomain 8SMK ; 3.5 ; hPAD4 bound to Activating Fab hA362 8SML ; 3.3 ; hPAD4 bound to inhibitory Fab hI365 5N1B ; 2.9 ; hPAD4 crystal complex with AFM-14a 5N0Y ; 2.23 ; hPAD4 crystal complex with AFM-30a 5N0Z ; 2.52 ; hPAD4 crystal complex with AFM-41a 5N0M ; 2.18 ; hPAD4 crystal complex with BB-F-amidine 6HIG ; 2.2 ; hPD-1/NBO1a Fab complex 3ITU ; 1.58 ; hPDE2A catalytic domain complexed with IBMX 6TX3 ; 2.96 ; HPF1 bound to catalytic fragment of PARP2 6TX1 ; 2.091 ; HPF1 from Nematostella vectensis 6N4E ; 1.65 ; hPGDS complexed with a quinoline-3-carboxamide 6W58 ; 2.395 ; hPGDS complexed with an aza-quinoline 8XYA ; 2.7 ; hPhK alpha-beta-gamma-delta subcomplex in inactive state 8XY7 ; 2.9 ; hPhK alpha-gamma subcomplex in active state 8XYB ; 3.1 ; hPhK gamma-delta subcomplex in inactive state 7M0K ; 2.01 ; HPK1 IN COMPLEX WITH COMPOUND 1 7M0L ; 2.43 ; HPK1 IN COMPLEX WITH COMPOUND 1 7M0M ; 1.93 ; HPK1 IN COMPLEX WITH COMPOUND 1 7L24 ; 2.68 ; HPK1 IN COMPLEX WITH COMPOUND 11 7L25 ; 1.85 ; HPK1 IN COMPLEX WITH COMPOUND 18 7L26 ; 2.3 ; HPK1 IN COMPLEX WITH COMPOUND 38 1H7U ; 2.7 ; hPMS2-ATPgS 2DPW ; 2.9 ; Hpothetical Transferase Structure from Thermus thermophilus 2VST ; 2.35 ; hPPARgamma Ligand binding domain in complex with 13-(S)-HODE 2VV1 ; 2.2 ; hPPARgamma Ligand binding domain in complex with 4-HDHA 2VV3 ; 2.85 ; hPPARgamma Ligand binding domain in complex with 4-oxoDHA 2VV2 ; 2.75 ; hPPARgamma Ligand binding domain in complex with 5-HEPA 3X1H ; 2.3 ; hPPARgamma Ligand binding domain in complex with 5-oxo-tricosahexaenoic acid 3X1I ; 2.4 ; hPPARgamma Ligand binding domain in complex with 6-oxo-tetracosahexaenoic acid 2VV4 ; 2.35 ; hPPARgamma Ligand binding domain in complex with 6-oxoOTE 2VSR ; 2.05 ; hPPARgamma Ligand binding domain in complex with 9-(S)-HODE 2VV0 ; 2.55 ; hPPARgamma Ligand binding domain in complex with DHA 1KNX ; 2.5 ; HPr kinase/phosphatase from Mycoplasma pneumoniae 2IV5 ; ; hPrP-173-195 solution structure 2IV6 ; ; hPrP-173-195-D178N solution structure 2IV4 ; ; hPrP180-195 structure 3LRU ; 1.85 ; hPRP8 Non-Native Subdomain 1FYY ; ; HPRT GENE MUTATION HOTSPOT WITH A BPDE2(10R) ADDUCT 1E2M ; 2.2 ; HPT + HMTT 1E2N ; 2.2 ; HPT + HMTT 1R8P ; ; HPV-16 E2C solution structure 1R6N ; 2.4 ; HPV11 E2 TAD complex crystal structure 1R6K ; 2.5 ; HPV11 E2 TAD crystal structure 8GCR ; 3.38 ; HPV16 E6-E6AP-p53 complex 7EOA ; 1.24 ; HR-PETase from Bacterium HR29 1URF ; ; HR1b domain from PRK1 8BWG ; 1.32 ; HRas (1-166) Y64 phosphorylation 7JII ; 1.532 ; HRAS A59E GDP 7JIH ; 1.989 ; HRAS A59E GppNHp 7JIF ; 1.757 ; HRAS A59T GppNHp 7JIG ; 2.322 ; HRAS A59T GppNHp crystal 2 6MQT ; 1.498 ; HRAS G12S in complex with GDP 7TAM ; 1.87 ; HRas G12V in complex with GDP 6DZH ; 1.95 ; HRAS G13D bound to GDP (H13GDP) 6E6C ; 1.9 ; HRAS G13D bound to GppNHp (H13GNP) 6E6P ; 1.93 ; HRAS G13D bound to GppNHp (Ha,b,c13GNP) 8ELS ; 2.267 ; HRAS R97A Crystal Form 1 R-state 8ELW ; 1.699 ; HRAS R97A Crystal Form 1 T-State 8ELK ; 1.8 ; HRAS R97F Crystal Form 1 8ELR ; 2.05 ; HRAS R97F Crystal Form 2 8ELU ; 1.93 ; HRAS R97G Crystal form 1 8ELT ; 1.66 ; HRAS R97G Crystal Form 2 8ELX ; 1.975 ; HRAS R97I Crystal Form 1 8ELV ; 2.153 ; HRAS R97I Crystal Form 2 8FG4 ; 1.85 ; HRAS R97L Crystal Form 1 8FG3 ; 1.49 ; HRAS R97L Crystal Form 2 8ELZ ; 1.961 ; HRAS R97M Crystal Form 1 8ELY ; 1.75 ; HRAS R97M Crystal Form 2 8EM0 ; 2.109 ; HRAS R97V Crystal Form 1 8CNJ ; 1.35 ; HRas(1-166) in complex with GDP and BeF3- 6CXN ; ; HRFLRH peptide NMR structure 6CXP ; ; HRFLRH peptide NMR structure in the presence of Cd(II) 6CXQ ; ; HRFLRH peptide NMR structure in the presence of CO2 6CXR ; ; HRFLRH peptide NMR structure in the presence of Zn(II) 6IAA ; 3.6 ; hRobo2 ectodomain 6I9S ; 2.48 ; hRobo2 Extracellular Domains 2-3 1QKL ; ; hRPABC14.4, essential subunit of human RNA polymerases I, II and III 6UYI ; ; hRpn13:hRpn2:K48-diubiquitin 6UYJ ; ; hRpn13:hRpn2:K48-diubiquitin 5NOH ; 1.8 ; HRSV M2-1 core domain 2L9J ; ; hRSV M2-1 core domain structure 5NKX ; 2.00009 ; HRSV M2-1 core domain, P3221 crystal form 4C3E ; 2.4 ; HRSV M2-1 mutant S58D S61D, P21 crystal 4C3B ; 2.95 ; HRSV M2-1, P21 crystal form 4C3D ; 2.52 ; HRSV M2-1, P422 crystal form 6KZ0 ; 2.4 ; HRV14 3C in complex with single chain antibody GGVV 6KYZ ; 1.845 ; HRV14 3C in complex with single chain antibody YDF 7BG7 ; 2.4 ; HRV14 in complex with its receptor ICAM-1 7BG6 ; 2.6 ; HRV14 native particle solved by cryoEM 1HRV ; 3.0 ; HRV14/SDZ 35-682 COMPLEX 1VRH ; 3.0 ; HRV14/SDZ 880-061 COMPLEX 3FC6 ; 2.063 ; hRXRalpha & mLXRalpha with an indole Pharmacophore, SB786875 6MBM ; ; HS02 - Intragenic antimicrobial peptides derived from the protein unconventional myosin 1h 6VLA ; ; Hs05 - Intragenic antimicrobial peptide 4K2C ; 3.23 ; HSA Ligand Free 6EFC ; 1.4 ; Hsa Siglec + Unique domains (unliganded) 6X3Q ; 2.15 ; Hsa Siglec and Unique domains in complex with 3'sialyl-N-acetyllactosamine trisaccharide 6X3K ; 2.5 ; Hsa Siglec and Unique domains in complex with 6S-sialy-Lewisx 7KMJ ; 1.33 ; Hsa Siglec and Unique domains in complex with Sialyl Lewis C 6EFD ; 1.85 ; Hsa Siglec and Unique domains in complex with the sialyl T antigen trisaccharide 7Y2D ; 2.0 ; HSA-Cu agent complex 4IW1 ; 2.56 ; HSA-fructose complex 4IW2 ; 2.41 ; HSA-glucose complex 7WZ9 ; 2.83 ; HSA-In agent complex 5GIY ; 2.543 ; HSA-Palmitic acid-[RuCl5(ind)]2- 8ISM ; 2.76 ; HSA-Pt compound complex 5JZS ; 2.27 ; HsaD bound to 3,5-dichloro-4-hydroxybenzoic acid 6ZFX ; 2.88 ; hSARM1 GraFix-ed 7ANW ; 2.68 ; hSARM1 NAD+ complex 1FPO ; 1.8 ; HSC20 (HSCB), A J-TYPE CO-CHAPERONE FROM E. COLI 4H5T ; 1.9 ; HSC70 NBD with ADP and Mg 4H5W ; 1.94 ; HSC70 NBD with betaine 4H5V ; 1.75 ; HSC70 NBD with Mg 4H5R ; 1.64 ; HSC70 NBD with Na, Cl and glycerol 4H5N ; 1.86 ; HSC70 NBD with PO4, Na, Cl 1U00 ; 1.95 ; HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC 6QUS ; 3.7 ; HsCKK (human CAMSAP1) decorated 13pf taxol-GDP microtubule 6QVJ ; 3.8 ; HsCKK (human CAMSAP1) decorated 14pf taxol-GDP microtubule 8G89 ; 2.222 ; HSD17B13 in complex with cofactor and inhibitor 6KWW ; 3.0 ; HslU from Staphylococcus aureus 5JI2 ; 3.307 ; HslU L199Q in HslUV complex 5TXV ; 7.086 ; HslU P21 cell with 4 hexamers 1IM2 ; 2.8 ; HslU, Haemophilus Influenzae, Selenomethionine Variant 1KYI ; 3.1 ; HslUV (H. influenzae)-NLVS Vinyl Sulfone Inhibitor Complex 5JI3 ; 3.0 ; HslUV complex 1E94 ; 2.8 ; HslV-HslU from E.coli 4UBF ; 3.0 ; HsMCAK motor domain complex 4U6W ; 1.83 ; HsMetAP (F220M) in complex with 1-amino-2-propylpentyl]phosphonic acid 4U76 ; 1.87 ; HsMetAP (F309M) holo form 4U70 ; 1.6 ; HsMetAP (F309M) in complex with (1-amino-2-cyclohexylethyl)phosphonic acid 4U75 ; 1.94 ; HsMetAP (F309M) in complex with Methionine 4U69 ; 1.6 ; HsMetAP complex with (1-amino-2-methylpentyl)phosphonic acid 4U1B ; 1.89 ; HsMetAP in complex with (1-amino-2-propylpentyl)phosphonic acid 4U6E ; 1.9 ; HsMetAP in complex with (amino(phenyl)methyl)phosphonic acid 4U6J ; 1.56 ; HsMetAP in complex with methionine 4U6C ; 1.91 ; HsMetAP in complex with [(1R)-1-amino-3-cyclopentylpropyl]phosphonic acid 4U73 ; 1.8 ; HsMetAP(F309M) IN COMPLEX WITH (amino(phenyl)methyl)phosphonic acid 4U71 ; 1.8 ; HsMetAP(F309M) IN COMPLEX WITH 1- amino(cyclohexyl)methy)phosphonic acid 4U6Z ; 1.8 ; HsMetAP(F309M) in complex with 1-amino-2-propylpentyl)phosphonic acid 7OWU ; 2.08 ; HsNMT1 in complex with both CoA and Myr-ANCFSKPR peptide 7OWP ; 1.81 ; HsNMT1 in complex with both MyrCoA and ACE-G-(L-ORN)SFSKPR 6SK2 ; 1.90001 ; HsNMT1 in complex with both MyrCoA and Acetylated-GKSFSKPR peptide reveals N-terminal Lysine Myristoylation 6SJZ ; 1.995 ; HsNMT1 in complex with both MyrCoA and Acetylated-GNCFSKPR substrates 6QRM ; 2.3 ; HsNMT1 in complex with both MyrCoA and GNCFSKRRAA substrates 7OWM ; 1.5 ; HsNMT1 in complex with both MyrCoA and HCPA substrate peptide GKQNSKLR 7OWO ; 1.7 ; HsNMT1 in complex with both MyrCoA and N-acetylated KSFSKPR peptide 7OWN ; 2.1 ; HsNMT1 in complex with both MyrCoA and peptide AKSFSKPR 7OWR ; 2.39 ; HsNMT1 in complex with both MyrCoA and peptide GGKSFSKPR 7OWQ ; 3.0 ; HsNMT1 in complex with both MyrCoA and peptide N-Methylated-GNCFSKPR 5O9T ; 2.15 ; HsNMT1 in complex with CoA and acetylated-NCFSKPK peptide 5O9U ; 1.85 ; HsNMT1 in complex with CoA and Myristoylated-GCSVSKKK octapeptide 5O9V ; 2.201 ; HsNMT1 in complex with CoA and Myristoylated-GGCFSKPK octapeptide 5O9S ; 2.7 ; HsNMT1 in complex with CoA and Myristoylated-GKSNSKLK octapeptide 6LSZ ; 1.992 ; HSP 90 in complex with Ganetespib 6N8T ; 7.7 ; Hsp104DWB closed conformation 6N8Z ; 9.3 ; HSP104DWB extended conformation 6N8V ; 9.3 ; Hsp104DWB open conformation 4FEI ; 2.4 ; Hsp17.7 from Deinococcus radiodurans 6L6M ; 3.28 ; HSP18.5 from E. histolytica 5NMS ; 10.0 ; Hsp21 dodecamer, structural model based on cryo-EM and homology modelling 7BZY ; 3.7 ; Hsp21-DXPS 1HW7 ; 2.2 ; HSP33, HEAT SHOCK PROTEIN WITH REDOX-REGULATED CHAPERONE ACTIVITY 6D6X ; ; HSP40 co-chaperone Sis1 J-domain 1XAO ; 2.07 ; Hsp40-Ydj1 dimerization domain 5AQZ ; 1.65 ; HSP72 with adenosine-derived inhibitor 5AR0 ; 1.9 ; HSP72 with adenosine-derived inhibitor 5MKS ; 1.99 ; HSP72-NBD bound to compound TCI 8 - Tyr15 in down-conformation 5MKR ; 1.87 ; HSP72-NBD bound to compound TCI 8 - Tyr15 in up-conformation 2JJC ; 1.95 ; Hsp90 alpha ATPase domain with bound small molecule fragment 7UR3 ; 1.6 ; Hsp90 alpha inhibitor 7D25 ; 1.65 ; Hsp90 alpha N-terminal domain in complex with a 14 compund 7D24 ; 1.55 ; Hsp90 alpha N-terminal domain in complex with a 4B compund 7D22 ; 1.6 ; Hsp90 alpha N-terminal domain in complex with a 6B compund 7D1V ; 1.332 ; Hsp90 alpha N-terminal domain in complex with a 6C compund 7D26 ; 1.75 ; Hsp90 alpha N-terminal domain in complex with a 8 compund 3VHA ; 1.39 ; Hsp90 alpha N-terminal domain in complex with a macrocyclic inhibitor 3VHC ; 1.41 ; Hsp90 alpha N-terminal domain in complex with a macrocyclic inhibitor 3VHD ; 1.52 ; Hsp90 alpha N-terminal domain in complex with a macrocyclic inhibitor, CH5164840 3WHA ; 1.3 ; Hsp90 alpha N-terminal domain in complex with a tricyclic inhibitor 3B24 ; 1.7 ; Hsp90 alpha N-terminal domain in complex with an aminotriazine fragment molecule 5H22 ; 1.499 ; Hsp90 alpha N-terminal domain in complex with an inhibitor 4EEH ; 1.6 ; Hsp90 Alpha N-terminal Domain in Complex with an Inhibitor 3-(4-Hydroxy-phenyl)-1H-indazol-6-ol 4EFT ; 2.12 ; Hsp90 Alpha N-terminal Domain in Complex with an Inhibitor 3-Cyclohexyl-2-(6-hydroxy-1H-indazol-3-yl)-propionitrile 4EFU ; 2.0 ; Hsp90 Alpha N-terminal Domain in Complex with an Inhibitor 6-Hydroxy-3-(3-methyl-benzyl)-1H-indazole-5-carboxylic acid benzyl-methyl-amide 3B25 ; 1.75 ; Hsp90 alpha N-terminal domain in complex with an inhibitor CH4675194 3B28 ; 1.35 ; Hsp90 alpha N-terminal domain in complex with an inhibitor CH5015765 3B26 ; 2.1 ; Hsp90 alpha N-terminal domain in complex with an inhibitor Ro1127850 3B27 ; 1.5 ; Hsp90 alpha N-terminal domain in complex with an inhibitor Ro4919127 2W0G ; 1.88 ; HSP90 CO-CHAPERONE CDC37 6HFM ; 1.55 ; Hsp90 co-chaperone Cns1 C-domain from Saccharomyces cerevisiae 6HFT ; 2.8 ; Hsp90 co-chaperone Cns1 from Saccharomyces cerevisiae (delta69) 2XD6 ; 2.2 ; Hsp90 complexed with a resorcylic acid macrolactone. 2QFO ; 1.68 ; HSP90 complexed with A143571 and A516383 2QF6 ; 3.1 ; HSP90 complexed with A56322 2QG2 ; 1.8 ; HSP90 complexed with A917985 2QG0 ; 1.85 ; HSP90 complexed with A943037 2AKP ; 1.94 ; Hsp90 Delta24-N210 mutant 6HHR ; 2.0 ; Hsp90 in complex with 5-(2,4-Dihydroxy-phenyl)-4-(2-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazole-3-thione 5J27 ; 1.7 ; HSP90 in complex with 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-methyl-N-propyl-benzenesulfonamide 5J20 ; 1.76 ; HSP90 in complex with 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide 6LR9 ; 2.196 ; HSP90 in complex with Debio0932 6LT8 ; 1.593 ; HSP90 in complex with KW-2478 5J9X ; 1.8 ; HSP90 in complex with N-Butyl-5-[4-(2-fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-2,4-dihydroxy-N-methyl-benzamide 6LTI ; 1.588 ; HSP90 in complex with NVP-AUY922 6LTK ; 2.141 ; HSP90 in complex with SNX-2112 5OD7 ; 2.0 ; Hsp90 inhibitor desolvation as a rationale to steer on-rates and impact residence time 2YE2 ; 1.9 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE3 ; 1.95 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE4 ; 2.3 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE5 ; 1.73 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE6 ; 2.56 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE7 ; 2.2 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE8 ; 2.3 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YE9 ; 2.2 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEA ; 1.73 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEB ; 2.4 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEC ; 2.1 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YED ; 2.1 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEE ; 2.3 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEF ; 1.55 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEG ; 2.5 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEH ; 2.1 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEI ; 2.2 ; HSP90 inhibitors and drugs from fragment and virtual screening 2YEJ ; 2.2 ; HSP90 inhibitors and drugs from fragment and virtual screening 3T10 ; 1.24 ; HSP90 N-terminal domain bound to ACP 1BYQ ; 1.5 ; HSP90 N-TERMINAL DOMAIN BOUND TO ADP-MG 3T2S ; 1.501 ; HSP90 N-terminal domain bound to AGS 3T1K ; 1.5 ; HSP90 N-terminal domain bound to ANP 3T0Z ; 2.192 ; Hsp90 N-terminal domain bound to ATP 4CE1 ; 2.01 ; Hsp90 N-terminal domain bound to macrolactam analogues of radicicol. 4CE2 ; 2.38 ; Hsp90 N-terminal domain bound to macrolactam analogues of radicicol. 4CE3 ; 2.31 ; Hsp90 N-terminal domain bound to macrolactam analogues of radicicol. 3K98 ; 2.4 ; HSP90 N-terminal domain in complex with (1R)-2-(5-chloro-2,4-dihydroxybenzoyl)-N-ethylisoindoline-1-carboxamide 3HEK ; 1.95 ; HSP90 N-terminal domain in complex with 1-{4-[(2R)-1-(5-chloro-2,4-dihydroxybenzoyl)pyrrolidin-2-yl]benzyl}-3,3-difluoropyrrolidinium 3K99 ; 2.1 ; HSP90 N-terminal domain in complex with 4-(1,3-dihydro-2H-isoindol-2-ylcarbonyl)benzene-1,3-diol 3K97 ; 1.95 ; HSP90 N-terminal domain in complex with 4-chloro-6-{[(2R)-2-(2-methylphenyl)pyrrolidin-1-yl]carbonyl}benzene-1,3-diol 3INW ; 1.95 ; HSP90 N-TERMINAL DOMAIN with pochoxime A 3INX ; 1.75 ; HSP90 N-TERMINAL DOMAIN with pochoxime B 8GAE ; 3.3 ; Hsp90 provides platform for CRaf dephosphorylation by PP5 8GFT ; 3.8 ; Hsp90 provides platform for CRaf dephosphorylation by PP5 5LNY ; 1.88 ; HSP90 WITH indazole derivative 5LNZ ; 1.54 ; HSP90 WITH indazole derivative 5LO0 ; 2.3 ; HSP90 WITH indazole derivative 5LO1 ; 2.7 ; HSP90 WITH indazole derivative 5LO6 ; 2.4 ; HSP90 WITH indazole derivative 5LO5 ; 1.44 ; HSP90 WITH indole derivative 7Y04 ; 3.5 ; Hsp90-AhR-p23 complex 8H77 ; 3.2 ; Hsp90-AhR-p23-XAP2 complex 4EGH ; 1.6 ; Hsp90-alpha ATPase domain in complex with (4-Hydroxyphenyl)morpholin-4-yl methanone 4EGI ; 1.79 ; Hsp90-alpha ATPase domain in complex with 2-Amino-4-ethylthio-6-methyl-1,3,5-triazine 6N8X ; 1.49484 ; Hsp90-alpha bound to PU-11-trans 6CYH ; 1.49 ; Hsp90-alpha N-domain bound to NEACA 6B99 ; 1.60238 ; Hsp90-alpha N-domain bound to NECA 6CYG ; 1.50392 ; Hsp90-alpha N-domain bound to NEOCA 6B9A ; 1.65381 ; Hsp90-alpha N-domain bound to NPCA 6OLX ; 1.43761 ; Hsp90-alpha S52A bound to PU-11-trans 6N8Y ; 1.55391 ; Hsp90-beta bound to PU-11-trans 3QDD ; 1.79 ; HSP90A N-terminal domain in complex with BIIB021 7LSZ ; 1.7 ; Hsp90a N-terminal inhibitor 7LT0 ; 1.697 ; Hsp90a N-terminal inhibitor 6U9B ; 1.75 ; Hsp90a NTD covalently bound to sulfonyl fluoride 5 at K58 6U99 ; 1.6 ; Hsp90a NTD covalently bound to sulfonyl fluoride probe 1 at K58 6U9A ; 1.65 ; Hsp90a NTD K58R bound reversibly to sulfonyl fluoride 5 6U98 ; 1.5 ; Hsp90a NTD K58R bound reversibly to sulfonyl fluoride 6 7ULJ ; 1.82 ; Hsp90b N-terminal domain in complex with 42C 3NMQ ; 2.2 ; Hsp90b N-terminal domain in complex with EC44, a pyrrolo-pyrimidine methoxypyridine inhibitor 5UC4 ; 2.05 ; Hsp90b N-terminal domain with inhibitors 5UCH ; 2.654 ; Hsp90b N-terminal domain with inhibitors 5UCI ; 2.7 ; Hsp90b N-terminal domain with inhibitors 5UCJ ; 1.693 ; Hsp90b N-terminal domain with inhibitors 6EWN ; 2.29 ; HspA from Thermosynechococcus vulcanus in the presence of 2M urea with initial stages of denaturation 3Q9P ; 2.0 ; HspB1 fragment 3Q9Q ; 2.2 ; HspB1 fragment second crystal form 6BP9 ; ; HSPB5 alpha-crystallin domain mutant R120G-ACD 8IWP ; 3.59 ; hSPCA1 in the CaE1 state 8IWR ; 3.52 ; hSPCA1 in the CaE1-ATP state 8IWW ; 3.71 ; hSPCA1 in the CaE1P-ADP state 8IWS ; 3.42 ; hSPCA1 in the CaE2P state 8IWU ; 3.31 ; hSPCA1 in the E2~P state 8IWT ; 3.25 ; hSPCA1 in the early E2P state 7PMW ; 4.1 ; HsPepT1 bound to Ala-Phe in the outward facing occluded conformation 7PMX ; 3.5 ; HsPepT1 bound to Ala-Phe in the outward facing open conformation 7PMY ; 3.8 ; HsPepT2 bound to Ala-Phe in the inward facing partially occluded conformation 2RPE ; ; hsRad51-bound ssDNA 3FPO ; 1.5 ; HSSNNF segment from Islet Amyloid Polypeptide (IAPP or Amylin) 2QQF ; 2.0 ; Hst2 bound to ADP-HPD and Acetylated histone H4 2QQG ; 2.05 ; Hst2 bound to ADP-HPD, acetyllated histone H4 and nicotinamide 7OB3 ; 2.3 ; hSTING in complex with 3',3'-c-di-araAMP 6Y99 ; 2.984 ; hSTING mutant R232K in complex with 2',3'-cGAMP 1JAS ; ; HsUbc2b 8OJC ; 2.08 ; HSV-1 DNA polymerase active site in alternative exonuclease state 8OJD ; 2.46 ; HSV-1 DNA polymerase beta-hairpin loop 8OJA ; 1.87 ; HSV-1 DNA polymerase-processivity factor complex in exonuclease state 8OJB ; 1.9 ; HSV-1 DNA polymerase-processivity factor complex in exonuclease state active site 8OJ7 ; 2.46 ; HSV-1 DNA polymerase-processivity factor complex in halted elongation state 8OJ6 ; 2.41 ; HSV-1 DNA polymerase-processivity factor complex in pre-translocation state 4ZXS ; 2.772 ; HSV-1 nuclear egress complex 8G6D ; 3.92 ; HSV-1 Nuclear Egress Complex (SUP; UL31-R229L) 7LUF ; 3.5 ; HSV1 polymerase ternary complex with dsDNA and PNU-183792 1BH8 ; 3.0 ; HTAFII18/HTAFII28 HETERODIMER CRYSTAL STRUCTURE 1BH9 ; 2.6 ; HTAFII18/HTAFII28 HETERODIMER CRYSTAL STRUCTURE WITH BOUND PCMBS 2OYY ; 2.5 ; HTHP: a hexameric tyrosine-coordinated heme protein 8ERH ; 1.47 ; HTLV-1 capsid protein C-terminal domain 8ERI ; 2.25 ; HTLV-1 capsid protein full-length 8ERG ; 2.1 ; HTLV-1 capsid protein N-terminal domain hexagonal crystal form 8ERF ; 1.47 ; HTLV-1 capsid protein N-terminal domain orthorhombic crystal form 8ERE ; 0.87 ; HTLV-1 capsid protein N-terminal domain triclinic crystal form 1MG1 ; 2.5 ; HTLV-1 GP21 ECTODOMAIN/MALTOSE-BINDING PROTEIN CHIMERA 3WSJ ; 2.404 ; HTLV-1 protease in complex with the HIV-1 protease inhibitor Indinavir 6WHA ; 3.36 ; HTR2A bound to 25-CN-NBOH in complex with a mini-Galpha-q protein, beta/gamma subunits and an active-state stabilizing single-chain variable fragment (scFv16) obtained by cryo-electron microscopy (cryoEM) 3MH4 ; 3.1 ; HtrA proteases are activated by a conserved mechanism that can be triggered by distinct molecular cues 3MH5 ; 3.0 ; HtrA proteases are activated by a conserved mechanism that can be triggered by distinct molecular cues 3MH6 ; 3.6 ; HtrA proteases are activated by a conserved mechanism that can be triggered by distinct molecular cues 3MH7 ; 2.961 ; HtrA proteases are activated by a conserved mechanism that can be triggered by distinct molecular cues 7CO5 ; 2.345 ; HtrA-type protease AlgW with decapeptide 7CO2 ; 2.1 ; HtrA-type protease AlgW with tripeptide 7CO7 ; 2.6 ; HtrA-type protease AlgWS227A with decapeptide 7CO3 ; 1.9 ; HtrA-type protease AlgWS227A with tripeptide 2JOA ; ; HtrA1 bound to an optimized peptide: NMR assignment of PDZ domain and ligand resonances 3TJN ; 3.0 ; HtrA1 catalytic domain, apo form 3TJO ; 2.301 ; HtrA1 catalytic domain, mutationally inactivated 6Z0E ; 2.6 ; HtrA1 inactive protease domain S328A with CARASIL mutation R274Q 6Z0X ; 3.1 ; HtrA1 inactive protease domain S328A with CARASIL mutations D174R R274Q 6Z0Y ; 2.2 ; HtrA1 inactive protease domain S328A with CARASIL mutations D174R R274Q 7SJN ; 3.4 ; HtrA1:Fab15H6.v4 complex 7SJO ; 3.3 ; HtrA1S328A:Fab15H6.v4 complex 5M3O ; 1.7 ; HTRA2 A141S mutant structure 5TO1 ; 1.69 ; HtrA2 exposed (L266R, F303A) mutant 5TNY ; 1.7 ; HTRA2 G399S mutant 5WYN ; 2.05 ; HtrA2 Pathogenic Mutant 5FHT ; 1.95 ; HtrA2 protease mutant V226K 5TNZ ; 1.75 ; HtrA2 S142D mutant 5TO0 ; 1.9 ; HTRA2 S276C mutant 5M3N ; 1.649 ; HTRA2 wild-type structure 7U8U ; 3.065 ; hTRAP1 with inhibitors 7U8V ; 1.448 ; hTRAP1 with inhibitors 7U8W ; 1.706 ; hTRAP1 with inhibitors 7U8X ; 1.6 ; hTRAP1 with inhibitors 1W0T ; 2.0 ; hTRF1 DNA-binding domain in complex with telomeric DNA. 1W0U ; 1.8 ; hTRF2 DNA-binding domain in complex with telomeric DNA. 6NRA ; 7.7 ; hTRiC-hPFD Class1 (No PFD) 6NRB ; 8.7 ; hTRiC-hPFD Class2 6NRC ; 8.3 ; hTRiC-hPFD Class3 6NRD ; 8.2 ; hTRiC-hPFD Class4 6NR9 ; 8.5 ; hTRiC-hPFD Class5 6NR8 ; 7.8 ; hTRiC-hPFD Class6 8VLX ; 2.6 ; HTT in complex with HAP40 and a small molecule. 8W15 ; 2.72 ; HTT in complex with HAP40 in the apo state. 6GHT ; 1.12 ; HtxB D206A protein variant from Pseudomonas stutzeri in complex with hypophosphite to 1.12 A resolution 6GHQ ; 1.53 ; HtxB D206N protein variant from Pseudomonas stutzeri in a partially open conformation to 1.53 A resolution 6EMN ; 1.25 ; HtxB from Pseudomonas stutzeri in complex with phosphite to 1.25 A resolution 5EKA ; 1.69 ; HU DNA-binding protein from Thermus thermophilus 1B8Z ; 1.6 ; HU FROM THERMOTOGA MARITIMA 1RIY ; 1.8 ; HU mutant V42I from Thermotoga maritima 4YF0 ; 2.79 ; HU38-19bp 4YFH ; 3.49 ; HU38-20bp 6J71 ; 2.918 ; HuA21-scFv in complex with the extracellular domain(ECD) of HER2 6O8Q ; 3.216 ; HUaa 19bp SYM DNA pH 4.5 6O6K ; 3.601 ; HUaa 19bp SYM DNA pH 5.5 4YEX ; 3.2 ; HUaa-19bp 4YEY ; 3.354 ; HUaa-20bp 4YEW ; 2.683 ; HUab-19bp 4YFT ; 2.914 ; HUab-20bp 6OAJ ; 4.092 ; HUaE34K 19bp SYM DNA 8EG6 ; 1.82 ; huCaspase-6 in complex with inhibitor 2a 8EG5 ; 2.14 ; huCaspase-6 in complex with inhibitor 3a 2YN2 ; 2.05 ; Huf protein - paralogue of the tau55 histidine phosphatase domain 5TJH ; 2.05 ; hUGDH A136M Substitution 6KJU ; 1.75 ; Huge conformation shift of Vibrio cholerae VqmA dimer in the absence of target DNA provides insight into DNA-binding mechanisms of LuxR-type receptors 5WR0 ; 2.85 ; Huisgen cycloaddition for PPARg-LBD labeling by soaking method 7LTM ; 2.49 ; Hum8 capsid 2RN5 ; ; Humal Insulin Mutant B31Lys-B32Arg 6NQ5 ; 1.85 ; human (alpha met/beta hemichrome) hemoglobin with S-nitrosation at beta-Cys93 2IRW ; 3.1 ; Human 11-beta-Hydroxysteroid Dehydrogenase (HSD1) with NADP and Adamantane Ether Inhibitor 2ILT ; 2.3 ; Human 11-beta-Hydroxysteroid Dehydrogenase (HSD1) with NADP and Adamantane Sulfone Inhibitor 4HFR ; 2.73 ; Human 11beta-Hydroxysteroid Dehydrogenase Type 1 in complex with an orally bioavailable acidic inhibitor AZD4017. 4P38 ; 2.8 ; Human 11beta-Hydroxysteroid Dehydrogenase Type 1 in complex with AZD8329 7DXK ; 4.1 ; Human 128QHuntingtin-HAP40 complex structure 4IHL ; 2.2 ; Human 14-3-3 isoform zeta in complex with a diphoyphorylated C-RAF peptide and Cotylenin A 5LU1 ; 2.4 ; Human 14-3-3 sigma CLU3 mutant complexed with short HSPB6 phosphopeptide 5LU2 ; 2.5 ; Human 14-3-3 sigma complexed with long HSPB6 phosphopeptide 6T80 ; 2.99 ; Human 14-3-3 sigma fused to the AANAT peptide including phosphoserine-205 6T5F ; 2.63 ; Human 14-3-3 sigma fused to the StARD1 peptide including phosphoserine-195 6T5H ; 2.04 ; Human 14-3-3 sigma fused to the StARD1 peptide including phosphoserine-57 7NFW ; 1.19 ; Human 14-3-3 sigma in complex with human Estrogen Receptor alpha peptide 7NIZ ; 1.48 ; Human 14-3-3 sigma in complex with human Estrogen Receptor alpha peptide and ligands Fusicoccin-A and WR-1065 8P0D ; 1.31 ; Human 14-3-3 sigma in complex with human MDM2 peptide 6TLF ; 2.9 ; human 14-3-3 sigma isoform in complex with IMP 6TM7 ; 3.0 ; Human 14-3-3 sigma isoform in complex with PLP 7Q16 ; 2.356 ; Human 14-3-3 zeta fused to the BAD peptide including phosphoserine-74 8FD8 ; 3.3 ; human 15-PGDH with NADH bound 1A27 ; 1.9 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 C-TERMINAL DELETION MUTANT COMPLEXED WITH ESTRADIOL AND NADP+ 1FDS ; 1.7 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 COMPLEXED WITH 17-BETA-ESTRADIOL 1FDT ; 2.2 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 COMPLEXED WITH ESTRADIOL AND NADP+ 1FDU ; 2.7 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 MUTANT H221L COMPLEXED WITH ESTRADIOL AND NADP+ 1FDV ; 3.1 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 MUTANT H221L COMPLEXED WITH NAD+ 1FDW ; 2.7 ; HUMAN 17-BETA-HYDROXYSTEROID-DEHYDROGENASE TYPE 1 MUTANT H221Q COMPLEXED WITH ESTRADIOL 5HS6 ; 2.02 ; Human 17beta-hydroxysteroid dehydrogenase type 14 in complex with Estrone 6Y5Q ; 7.1 ; human 17S U2 snRNP 7Q3L ; 2.21 ; Human 17S U2 snRNP 5' domain 6Y53 ; 7.1 ; human 17S U2 snRNP low resolution part 5NQK ; 3.25 ; human 199.16 TCR in complex with Melan-A/MART-1 (26-35) peptide and HLA-A2 5NHT ; 3.2 ; human 199.54-16 TCR in complex with Melan-A/MART-1 (26-35) peptide and HLA-A2 8CVT ; 3.0 ; Human 19S-20S proteasome, state SD2 3DO3 ; 2.5 ; Human 1gG1 Fc fragment, 2.5 Angstrom structure 6RGQ ; 2.6 ; Human 20S Proteasome 7PG9 ; 3.7 ; human 20S proteasome 8QYL ; 2.67 ; Human 20S proteasome assembly intermediate structure 2 8QYM ; 2.73 ; Human 20S proteasome assembly intermediate structure 3 8QZ9 ; 2.95 ; Human 20S proteasome assembly intermediate structure 4 8QYN ; 2.88 ; Human 20S proteasome assembly intermediate structure 5 8QYJ ; 2.73 ; Human 20S proteasome assembly structure 1 6XMJ ; 3.0 ; Human 20S proteasome bound to an engineered 11S (PA26) activator 5LF3 ; 2.1 ; Human 20S proteasome complex with Bortezomib at 2.1 Angstrom 5LF4 ; 1.99 ; Human 20S proteasome complex with Delanzomib at 2.0 Angstrom 5LF1 ; 2.0 ; Human 20S proteasome complex with Dihydroeponemycin at 2.0 Angstrom 5LF0 ; 2.41 ; Human 20S proteasome complex with Epoxomicin at 2.4 Angstrom 5LF7 ; 2.0 ; Human 20S proteasome complex with Ixazomib at 2.0 Angstrom 5LEY ; 1.9 ; Human 20S proteasome complex with Oprozomib at 1.9 Angstrom 5LEZ ; 2.19 ; Human 20S proteasome complex with Oprozomib in Mg-Acetate at 2.2 Angstrom 5LF6 ; 2.07 ; Human 20S proteasome complex with Z-LLY-ketoaldehyde at 2.1 Angstrom 7NAN ; 2.8 ; Human 20S proteasome core particle 8BZL ; 2.14 ; Human 20S Proteasome in complex with peptide activator peptide BLM42 8CVR ; 2.7 ; Human 20S proteasome with MG-132 6REY ; 3.0 ; Human 20S-PA200 Proteasome Complex 5M32 ; 3.8 ; Human 26S proteasome in complex with Oprozomib 2WEF ; 1.8 ; Human 3'(2'), 5'-bisphosphate nucleotidase 1 (BPNT1) in complex with AMP, PO4 and Magnesium 3OLH ; 2.5 ; Human 3-mercaptopyruvate sulfurtransferase 1BNK ; 2.7 ; HUMAN 3-METHYLADENINE DNA GLYCOSYLASE COMPLEXED TO DNA 3BD9 ; 2.3 ; human 3-O-sulfotransferase isoform 5 with bound PAP 1J96 ; 1.25 ; Human 3alpha-HSD type 3 in Ternary Complex with NADP and Testosterone 5OA3 ; 4.2 ; Human 40S-eIF2D-re-initiation complex 7DXJ ; 3.6 ; Human 46QHuntingtin-HAP40 complex structure 8A6L ; 3.18 ; Human 4F2hc-LAT2 heterodimeric amino acid transporter in complex with anticalin D11vs 1YQK ; 2.5 ; Human 8-oxoguanine glycosylase crosslinked with guanine containing DNA 6W0M ; 2.37 ; Human 8-oxoguanine glycosylase crosslinked with oxoG lesion containing DNA 6W13 ; 2.38 ; Human 8-oxoguanine glycosylase interrogating fully intrahelical oxoG lesion DNA 6W0R ; 2.35 ; Human 8-oxoguanine glycosylase interrogating fully intrahelical undamaged DNA 5V3P ; 2.5 ; Human A20 OTU domain (I325N) with acetamidylated C103 5V3B ; 3.0 ; Human A20 OTU domain (WT) with acetamidylated C103 7BP8 ; 3.9 ; Human AAA+ ATPase VCP mutant - T76A, ADP-bound form 7BPA ; 3.3 ; Human AAA+ ATPase VCP mutant - T76A, AMP-PNP-bound form, Conformation I 7BP9 ; 3.6 ; Human AAA+ ATPase VCP mutant - T76E, ADP-bound form 7BPB ; 4.3 ; Human AAA+ ATPase VCP mutant - T76E, AMP-PNP bound form, Conformation I 8F5B ; 3.95 ; Human ABCA4 structure in complex with AMP-PNP 7M1Q ; 2.92 ; Human ABCA4 structure in complex with N-ret-PE 7M1P ; 3.6 ; Human ABCA4 structure in the unbound state 6NLO ; 2.85022 ; Human ABCC6 NBD1 H812A in Apo state 6BZS ; 2.2999 ; Human ABCC6 NBD1 in Apo state 6BZR ; 2.79999 ; Human ABCC6 NBD2 in ADP-bound state 6P7F ; 2.85004 ; Human ABCC6 NBD2 R1459D mutant in Apo state 2HYY ; 2.4 ; Human Abl kinase domain in complex with imatinib (STI571, Glivec) 3CS9 ; 2.21 ; Human ABL kinase in complex with nilotinib 2XYN ; 2.81 ; HUMAN ABL2 IN COMPLEX WITH AURORA KINASE INHIBITOR VX-680 6BJI ; 1.54 ; Human ABO(H) blood group glycosyltransferase GTA D302C mutant 6BJJ ; 1.45 ; Human ABO(H) blood group glycosyltransferase GTB D302A mutant 6BJK ; 2.12 ; Human ABO(H) blood group glycosyltransferase GTB D302C mutant 6BJL ; 1.69 ; Human ABO(H) blood group glycosyltransferase GTB D302L mutant 6BJM ; 1.45 ; Human ABO(H) blood group glycosyltransferase GTB R188K mutant 3FF6 ; 3.19 ; Human ACC2 CT domain with CP-640186 1B41 ; 2.76 ; HUMAN ACETYLCHOLINESTERASE COMPLEXED WITH FASCICULIN-II, GLYCOSYLATED PROTEIN 4BDT ; 3.104 ; Human acetylcholinesterase in complex with huprine W and fasciculin 2 8AEV ; 2.89 ; Human acetylcholinesterase in complex with N,N,N-trimethyl-2-oxo-2-(2-(pyridin-2-ylmethylene)hydrazineyl)ethan-1-aminium 6NEA ; 2.419 ; Human Acetylcholinesterase in complex with reactivator, HLo7 8AEN ; 3.01 ; Human acetylcholinesterase in complex with zinc and N,N,N-trimethyl-2-oxo-2-(2-(pyridin-2-ylmethylene)hydrazineyl)ethan-1-aminium 5U7Z ; 2.5 ; Human acid ceramidase (ASAH1, aCDase) self-activated 1OGS ; 2.0 ; human acid-beta-glucosidase 1RG8 ; 1.1 ; Human Acidic Fibroblast Growth Factor (haFGF-1) at 1.10 angstrom resolution (140 amino acid form) 1P63 ; 1.6 ; Human Acidic Fibroblast Growth Factor. 140 Amino Acid Form with Amino Terminal His Tag and Leu111 Replaced with Ile (L111I) 1JT3 ; 1.95 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Histidine Tag AND LEU 73 REPLACED BY VAL (L73V) 1JY0 ; 1.7 ; Human acidic fibroblast growth factor. 141 amino acid form with amino terminal His tag and Cys 117 replaced with Val (C117V). 1JTC ; 1.7 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag AND LEU 44 REPLACED BY PHE (L44F) 1JT7 ; 1.7 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag AND LEU 44 REPLACED BY PHE AND LEU 73 REPLACED BY VAL AND VAL 109 REPLACED BY LEU (L44F/L73V/V109L) 1M16 ; 1.7 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag and Leu 44 Replaced with Phe (L44F), Leu 73 Replaced with Val (L73V), Val 109 Replaced with Leu (V109L) and Cys 117 Replaced with Val (C117V). 1JT5 ; 1.85 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag AND LEU 73 REPLACED BY VAL AND VAL 109 REPLACED BY LEU (L73V/V109L) 1JT4 ; 1.78 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag AND VAL 109 REPLACED BY LEU (V109L) 1K5V ; 2.1 ; Human acidic fibroblast growth factor. 141 amino acid form with amino terminal His tag with Asn106 replaced by Gly (N106G). 1K5U ; 2.0 ; Human acidic fibroblast growth factor. 141 amino acid form with amino terminal His tag with His93 replaced by Gly (H93G). 1JQZ ; 1.65 ; Human Acidic Fibroblast Growth Factor. 141 Amino Acid Form with Amino Terminal His Tag. 4QGN ; 3.05 ; Human acireductone dioxygenase with iron ion and L-methionine in active center 4FO0 ; 2.6 ; Human actin-related protein Arp8 in its ATP-bound state 1AUT ; 2.8 ; Human activated protein C 4GAH ; 2.3 ; Human acyl-CoA thioesterases 4 in complex with undecan-2-one-CoA inhibitor 3B7K ; 2.7 ; Human Acyl-coenzyme A thioesterase 12 4MOC ; 2.5 ; Human Acyl-coenzyme A Thioesterase 12 3K2I ; 2.4 ; Human Acyl-coenzyme A thioesterase 4 5W78 ; 2.271 ; Human acyloxyacyl hydrolase (AOAH), proteolytically processed 5W7C ; 2.23 ; Human acyloxyacyl hydrolase (AOAH), proteolytically processed, S263A mutant, with LPS 2K7K ; ; Human Acylphosphatase (AcPh) common type 2K7J ; ; Human Acylphosphatase(AcPh) surface charge-optimized 6D06 ; 2.55 ; Human ADAR2d E488Y mutant complexed with dsRNA containing an abasic site opposite the edited base 1ORE ; 2.1 ; Human Adenine Phosphoribosyltransferase 1ZN8 ; 1.76 ; Human Adenine Phosphoribosyltransferase Complexed with AMP, in Space Group P1 at 1.76 A Resolution 1ZN7 ; 1.83 ; Human Adenine Phosphoribosyltransferase Complexed with PRPP, ADE and R5P 1ZN9 ; 2.05 ; Human Adenine Phosphoribosyltransferase in Apo and AMP Complexed Forms 5HP3 ; 3.091 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2) bound to dsRNA sequence derived from S. cerevisiae BDF2 gene with AC mismatch at reaction site 5HP2 ; 2.983 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2) bound to dsRNA sequence derived from S. cerevisiae BDF2 gene with AU basepair at reaction site 5ED2 ; 2.95 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2) mutant E488Q bound to dsRNA sequence derived from human GLI1 gene 5ED1 ; 2.77 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2) mutant E488Q bound to dsRNA sequence derived from S. cerevisiae BDF2 gene 8E4X ; 2.8 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2-R2D) bound to dsRNA containing a G:3-deaza dA pair adjacent to the target site 8E0F ; 2.7 ; Human Adenosine Deaminase Acting on dsRNA (ADAR2-RD) bound to dsRNA containing a G-G pair adjacent to the target site 2I6A ; 2.2 ; Human Adenosine Kinase in Complex With 5'-Deoxy-5-Iodotubercidin 2I6B ; 2.3 ; Human Adenosine Kinase in Complex with An Acetylinic Inhibitor 4O1L ; 2.5 ; Human Adenosine Kinase in complex with inhibitor 2C6S ; 3.6 ; human adenovirus penton base 2 12 chimera 1QHV ; 1.51 ; HUMAN ADENOVIRUS SEROTYPE 2 FIBRE HEAD 2BZU ; 1.5 ; Human Adenovirus Serotype 41 Fiber Head 6ZC5 ; 2.5 ; Human Adenovirus serotype D10 FiberKnob protein 8QK3 ; 3.2 ; Human Adenovirus type 11 fiber knob in complex with its cell receptors, Desmoglein-2 and CD46 8QJX ; 3.3 ; Human Adenovirus type 11 fiber knob in complex with two copies of its cell receptor, Desmoglein-2 8QJY ; 3.5 ; Human Adenovirus type 11 fiber knob in complex with two copies of its cell receptor, Desmoglein-2 2O39 ; 2.85 ; Human Adenovirus type 11 knob in complex with domains SCR1 and SCR2 of CD46 (membrane cofactor protein, MCP) 3L89 ; 3.5 ; Human Adenovirus type 21 knob in complex with domains SCR1 and SCR2 of CD46 (membrane cofactor protein, MCP) 8OFP ; 3.1 ; Human adenovirus type 24 fiber-knob protein 8OFQ ; 1.6 ; Human adenovirus type 25 fiber-knob protein 8OFR ; 2.51 ; Human adenovirus type 25 fiber-knob protein complexed with sialic acid 6QNT ; 3.5 ; Human Adenovirus type 3 fiber knob in complex with one copy of Desmoglein-2 6QNU ; 3.8 ; Human Adenovirus type 3 fiber knob in complex with two copies of Desmoglein-2 8OFS ; 2.56 ; Human adenovirus type 30 fiber-knob protein complexed with sialic acid 8OFT ; 2.0 ; Human adenovirus type 32 fiber-knob protein 8OFU ; 1.61 ; Human adenovirus type 53 fiber-knob protein 8OFV ; 1.77 ; Human adenovirus type 53 fiber-knob protein complexed with sialic acid 8COI ; 3.17 ; Human adenovirus-derived synthetic ADDobody binder 7DE3 ; 2.197 ; Human adenylate kinase 1 (hAK1) mutant-R128W 2VD6 ; 2.0 ; Human adenylosuccinate lyase in complex with its substrate N6-(1,2- Dicarboxyethyl)-AMP, and its products AMP and fumarate. 2V40 ; 1.9 ; Human Adenylosuccinate synthetase isozyme 2 in complex with GDP 8SL3 ; 7.0 ; Human adenylyl Cyclase 5 in complex with Gbg 8B55 ; 1.36 ; Human ADGRG4 PTX-like domain 3P6G ; 1.2 ; Human adipocyte lipid-binding protein FABP4 in complex with (R)-ibuprofen 3P6F ; 1.2 ; Human adipocyte lipid-binding protein FABP4 in complex with (S)-3-phenyl butyric acid 3P6H ; 1.15 ; Human adipocyte lipid-binding protein FABP4 in complex with (S)-ibuprofen 3P6D ; 1.06 ; Human adipocyte lipid-binding protein FABP4 in complex with 3-(4-methoxy-3-methylphenyl) propionic acid 3P6E ; 1.08 ; Human adipocyte lipid-binding protein FABP4 in complex with 3-(4-methoxyphenyl) propionic acid 3P6C ; 1.25 ; Human adipocyte lipid-binding protein FABP4 in complex with citric acid 6AYL ; 1.86 ; Human adipocyte lipid-binding protein FABP4 in complex with fluorescein 3RZY ; 1.08 ; Human adipocyte lipid-binding protein FABP4, Apo form at 1.08 Ang resolution. 3EP6 ; 1.7 ; Human AdoMetDC D174N mutant complexed with S-Adenosylmethionine methyl ester and no putrescine bound 3EP3 ; 1.84 ; Human AdoMetDC D174N mutant with no putrescine bound 3EPA ; 2.1 ; Human AdoMetDC E178Q mutant complexed with putrescine 3EP8 ; 1.97 ; Human AdoMetDC E178Q mutant complexed with S-Adenosylmethionine methyl ester and no putrescine bound 3EP5 ; 1.99 ; Human AdoMetDC E178Q mutant with no putrescine bound 3EPB ; 1.75 ; Human AdoMetDC E256Q mutant complexed with putrescine 3EP7 ; 2.0 ; Human AdoMetDC E256Q mutant complexed with S-Adenosylmethionine methyl ester and no putrescine bound 3EP4 ; 1.89 ; Human AdoMetDC E256Q mutant with no putrescine bound 3DZ3 ; 2.62 ; Human AdoMetDC F223A mutant with covalently bound S-Adenosylmethionine methyl ester 3H0V ; 2.24 ; Human AdoMetDC with 5'-Deoxy-5'-(dimethylsulfonio) adenosine 3H0W ; 1.81 ; Human AdoMetDC with 5'-Deoxy-5'-[(N-dimethyl)amino]-8-methyl-adenosine 3DZ4 ; 1.84 ; Human AdoMetDC with 5'-[(2-carboxamidoethyl)methylamino]-5'-deoxy-8-methyladenosine 3DZ2 ; 1.86 ; Human AdoMetDC with 5'-[(3-aminopropyl)methylamino]-5'deoxy-8-methyladenosine 3DZ6 ; 1.83 ; Human AdoMetDC with 5'-[(4-aminooxybutyl)methylamino]-5'deoxy-8-ethyladenosine 3DZ7 ; 1.91 ; Human AdoMetDC with 5'-[(carboxamidomethyl)methylamino]-5'-deoxy-8-methyladenosine 3DZ5 ; 2.43 ; Human AdoMetDC with covalently bound 5'-[(2-aminooxyethyl)methylamino]-5'-deoxy-8-methyladenosine 3EP9 ; 2.35 ; Human AdoMetDC with no putrescine bound 1HUR ; 2.0 ; HUMAN ADP-RIBOSYLATION FACTOR 1 COMPLEXED WITH GDP, FULL LENGTH NON-MYRISTOYLATED 2FOZ ; 1.6 ; human ADP-ribosylhydrolase 3 2FP0 ; 2.05 ; human ADP-ribosylhydrolase 3 7AKR ; 1.95 ; Human ADP-ribosylserine hydrolase ARH3 mutant E41A in complex with ADP-ribose dimer 7AKS ; 1.86 ; Human ADP-ribosylserine hydrolase ARH3 mutant E41A in complex with H2B-S7-mar peptide 8HE8 ; 3.05 ; Human ADP-ribosyltransferase 2 (PARP2) catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 4F0E ; 2.4 ; Human ADP-RIBOSYLTRANSFERASE 7 (ARTD7/PARP15), CATALYTIC DOMAIN IN COMPLEX WITH STO1102 8GVH ; 3.32 ; Human AE2 in acidic KNO3 5OKL ; 2.09 ; Human afamin monoclinic crystal form 6FAK ; 1.9 ; Human afamin orthorhombic crystal form by controlled hydration 8D71 ; 2.5 ; Human Ago2 bound to miR122(21nt) 8D6J ; 2.5 ; Human Ago2 bound to miR122(21nt) with PIWI loop swapped to AtAgo10 sequence 4GAB ; 1.5971 ; Human AKR1B10 mutant V301L complexed with NADP+ and fidarestat 4GA8 ; 1.942 ; Human AKR1B10 mutant V301L complexed with NADP+ and sorbinil 3IHJ ; 2.3 ; Human alanine aminotransferase 2 in complex with PLP 3R9A ; 2.35 ; Human alanine-glyoxylate aminotransferase in complex with the TPR domain of human PEX5P 6RV1 ; 3.0 ; human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) 6RV0 ; 2.7 ; human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma); with PMP in the active site 5AC2 ; 1.85 ; human aldehyde dehydrogenase 1A1 with duocarmycin analog 5FHZ ; 2.9 ; Human aldehyde dehydrogenase 1A3 complexed with NAD(+) and retinoic acid 4UHW ; 2.6 ; Human aldehyde oxidase 4UHX ; 2.7 ; Human aldehyde oxidase in complex with phthalazine and thioridazine 7ORC ; 2.7 ; Human Aldehyde Oxidase in complex with Raloxifene 6Q6Q ; 3.10004 ; Human aldehyde oxidase SNP G1269R 7OPN ; 2.6 ; Human Aldehyde Oxidase SNP R1231H in complex with Raloxifene 5EPG ; 3.39 ; Human aldehyde oxidase SNP S1271L 4WB9 ; 2.07 ; Human ALDH1A1 complexed with NADH 7UM9 ; 1.8 ; Human ALDH1A1 with bound compound CM38 6XML ; 1.88 ; Human aldolase A I98C 6XMO ; 2.6 ; Human aldolase A I98F 6XMM ; 2.11 ; Human aldolase A I98S 6XMH ; 1.95 ; Human aldolase A wild type 3Q67 ; 1.55 ; Human Aldose Reductase C298S mutant in Complex with NADP+ in Space Group P212121 4QX4 ; 1.259 ; Human Aldose Reductase complexed with a ligand with a new scaffold at 1.26 A 4YS1 ; 1.07 ; Human Aldose Reductase complexed with a ligand with an IDD structure (2) at 1.07 A. 4PUU ; 1.14 ; Human Aldose Reductase complexed with a ligand with an IDD structure (2-(2-carbamoyl-5-fluoro-phenoxy)acetic acid) at 1.14 A 4QR6 ; 1.05 ; Human Aldose Reductase complexed with a ligand with an IDD structure (2-[2-(1,3-benzothiazol-2-ylmethylcarbamoyl)-5-fluoro-phenoxy]acetic acid) at 1.05 A 4PUW ; 1.12 ; Human Aldose Reductase complexed with a ligand with an IDD structure (2-[5-fluoro-2-(prop-2-ynylcarbamoyl)phenoxy]acetic acid) at 1.12 A 4Q7B ; 1.19 ; Human Aldose Reductase complexed with a ligand with an IDD structure ([2-(benzylcarbamoyl)-5-fluorophenoxy]acetic acid) at 1.19 A 4QBX ; 0.98 ; Human Aldose Reductase complexed with a ligand with an IDD structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) at 0.98 A 4RPQ ; 1.2 ; Human Aldose Reductase complexed with a ligand with an IDD structure at 1.20 A (1) 2FZB ; 1.5 ; Human Aldose Reductase complexed with four tolrestat molecules at 1.5 A resolution. 2IKI ; 1.47 ; Human aldose reductase complexed with halogenated IDD-type inhibitor 3G5E ; 1.8 ; Human aldose reductase complexed with IDD 740 inhibitor 1EL3 ; 1.7 ; HUMAN ALDOSE REDUCTASE COMPLEXED WITH IDD384 INHIBITOR 2DUZ ; 1.6 ; Human Aldose Reductase complexed with inhibitor zopolrestat after 3 days soaking (3days_soaked_2) 2FZ9 ; 1.6 ; Human Aldose Reductase complexed with inhibitor zopolrestat after six days soaking. 2HV5 ; 1.59 ; Human Aldose Reductase complexed with inhibitor zopolrestat after three days soaking (3days_soaked_3) 2FZ8 ; 1.48 ; Human Aldose reductase complexed with inhibitor zopolrestat at 1.48 A(1 day soaking). 2IKJ ; 1.55 ; Human aldose reductase complexed with nitro-substituted IDD-type inhibitor 2IKH ; 1.55 ; Human aldose reductase complexed with nitrofuryl-oxadiazol inhibitor at 1.55 A 2NVD ; 1.55 ; Human Aldose Reductase complexed with novel naphtho[1,2-d]isothiazole acetic acid derivative (2) 2NVC ; 1.65 ; Human Aldose Reductase complexed with novel naphtho[1,2-d]isothiazole acetic acid derivative (3) 1Z89 ; 1.43 ; Human Aldose Reductase complexed with novel Sulfonyl-pyridazinone Inhibitor 1Z8A ; 0.95 ; Human Aldose Reductase complexed with novel Sulfonyl-pyridazinone Inhibitor 4YU1 ; 1.02 ; Human Aldose Reductase complexed with Schl12134 (3-[5-(3-nitrophenyl)-2-thienyl]propanoic acid) at 1.02 A 4PRT ; 0.96 ; Human Aldose Reductase complexed with Schl12221 ({2-[5-(3-NITROPHENYL)FURAN-2-YL]PHENYL}ACETIC ACID) at 0.96 A 4NKC ; 1.12 ; Human Aldose Reductase complexed with Schl7764 at 1.12 A 4PR4 ; 1.06 ; Human Aldose Reductase complexed with Schl7802 at 1.06 A 4PRR ; 1.01 ; Human Aldose Reductase complexed with Schl7815 ((3-[3-(5-NITROFURAN-2-YL)PHENYL]PROPANOIC ACID)at 1.01 A 2FZD ; 1.08 ; Human aldose reductase complexed with tolrestat at 1.08 A resolution. 2DV0 ; 1.62 ; Human Aldose Reductase complexed with zopolrestat after 6 days soaking(6days_soaked_2) 2PDY ; 1.65 ; Human aldose reductase double mutant S302R-C303D complexed with fidarestat. 2PDX ; 1.65 ; Human aldose reductase double mutant S302R-C303D complexed with zopolrestat. 8AE9 ; 0.95 ; Human Aldose Reductase in Complex with a Hydroxyphenyl-Thiophen-Acid Inhibitor (Schl32357) 8BJL ; 0.97 ; Human Aldose Reductase in Complex with a Ligand with a Fluoro-Indol-Acetic-Acid Structure (Schl44172) 3T42 ; 1.28 ; Human aldose reductase in complex with a nitrile-containing IDD inhibitor 6TUC ; 1.06 ; Human Aldose Reductase in complex with ALR25 6TUF ; 1.15 ; Human Aldose Reductase in complex with ALR43 2J8T ; 0.82 ; Human aldose reductase in complex with NADP and citrate at 0.82 angstrom 1US0 ; 0.66 ; Human Aldose Reductase in complex with NADP+ and the inhibitor IDD594 at 0.66 Angstrom 2I16 ; 0.81 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594 at temperature of 15K 2I17 ; 0.81 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594 at temperature of 60K 3GHR ; 1.0 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594. Investigation of global effects of radiation damage on protein structure. First stage of radiation damage 3GHU ; 1.2 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594. Investigation of global effects of radiation damage on protein structure. Forth stage of radiation damage. 3GHS ; 1.0 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594. Investigation of global effects of radiation damage on protein structure. Second stage of radiation damage. 3GHT ; 1.1 ; Human aldose reductase in complex with NADP+ and the inhibitor IDD594. Investigation of global effects of radiation damage on protein structure. Third stage of radiation damage. 1Z3N ; 1.04 ; Human aldose reductase in complex with NADP+ and the inhibitor lidorestat at 1.04 angstrom 5HA7 ; 1.65 ; Human Aldose Reductase in Complex with NADP+ and WY14643 in Space Group P212121 3Q65 ; 2.09 ; Human Aldose Reductase in Complex with NADP+ in Space Group P212121 6SYW ; 0.93 ; human Aldose Reductase in complex with SAR25 8B66 ; 0.95 ; Human Aldose Reductase Mutant A299G in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 8AUU ; 0.95 ; Human Aldose Reductase Mutant A299G in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 8B3N ; 1.03 ; Human Aldose Reductase Mutant A299G/L300G in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 8B3R ; 0.96 ; Human Aldose Reductase Mutant A299G/L300G in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 2PDW ; 1.55 ; Human aldose reductase mutant C303D complexed with fidarestat. 2PDU ; 1.55 ; Human aldose reductase mutant C303D complexed with IDD393. 2PDQ ; 1.73 ; Human aldose reductase mutant C303D complexed with uracil-type inhibitor. 2PDC ; 1.65 ; Human aldose reductase mutant F121P complexed with IDD393. 2PDB ; 1.6 ; Human aldose reductase mutant F121P complexed with zopolrestat. 6Y1P ; 0.94 ; Human Aldose Reductase Mutant L300/301A in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 6XUM ; 0.97 ; Human Aldose Reductase Mutant L300/301A in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 2PDJ ; 1.57 ; Human aldose reductase mutant L300A complexed with IDD393. 2PDI ; 1.55 ; Human aldose reductase mutant L300A complexed with zopolrestat at 1.55 A. 6TXP ; 0.95 ; Human Aldose Reductase Mutant L300A in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 6T3P ; 0.97 ; Human Aldose Reductase Mutant L300A in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 8CNP ; 0.94 ; Human Aldose Reductase Mutant L300G in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 8CNF ; 0.95 ; Human Aldose Reductase Mutant L300G in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 2PDH ; 1.45 ; Human aldose reductase mutant L300P complexed with uracil-type inhibitor at 1.45 A. 2PDF ; 1.56 ; Human aldose reductase mutant L300P complexed with zopolrestat. 6T7Q ; 1.01 ; Human Aldose Reductase Mutant L301A in Complex with a Ligand with an IDD Structure (3-({[2-(carboxymethoxy)-4-fluorobenzoyl]amino}methyl)benzoic acid) 6TD8 ; 0.97 ; Human Aldose Reductase Mutant L301A in Complex with a Ligand with an IDD Structure ({5-fluoro-2-[(3-nitrobenzyl)carbamoyl]phenoxy}acetic acid) 2PDK ; 1.55 ; Human aldose reductase mutant L301M complexed with sorbinil. 2PDL ; 1.47 ; Human aldose reductase mutant L301M complexed with tolrestat. 2PDP ; 1.65 ; Human aldose reductase mutant S302R complexed with IDD 393. 2PDN ; 1.7 ; Human aldose reductase mutant S302R complexed with uracil-type inhibitor. 2PDM ; 1.75 ; Human aldose reductase mutant S302R complexed with zopolrestat. 3LQL ; 1.13 ; Human Aldose Reductase mutant T113A complexed with IDD 594 3LQG ; 1.35 ; Human aldose reductase mutant T113A complexed with IDD388 3MB9 ; 1.65 ; Human Aldose Reductase mutant T113A complexed with Zopolrestat 3LBO ; 1.1 ; Human aldose reductase mutant T113C complexed with IDD594 3LEP ; 0.99 ; Human Aldose Reductase mutant T113C in complex with IDD388 3LZ3 ; 1.03 ; Human aldose reductase mutant T113S complexed with IDD388 3LD5 ; 1.27 ; Human aldose reductase mutant T113S complexed with IDD594 3LEN ; 1.21 ; Human Aldose Reductase mutant T113S complexed with Zopolrestat 3M4H ; 0.94 ; Human Aldose Reductase mutant T113V complexed with IDD388 3M64 ; 1.3 ; Human aldose reductase mutant T113V complexed with IDD393 3LZ5 ; 0.95 ; Human aldose reductase mutant T113V complexed with IDD594 3MC5 ; 1.14 ; Human Aldose Reductase mutant T113V in complex with IDD393 crystallized in spacegroup P1 3M0I ; 1.07 ; Human Aldose Reductase mutant T113V in complex with Zopolrestat 2PD9 ; 1.55 ; Human aldose reductase mutant V47I complexed with fidarestat. 2PD5 ; 1.6 ; Human aldose reductase mutant V47I complexed with zopolrestat 2R24 ; 2.194 ; Human Aldose Reductase structure 2R24 ; 1.752 ; Human Aldose Reductase structure 2PDG ; 1.42 ; Human aldose reductase with uracil-type inhibitor at 1.42A. 2HVO ; 1.65 ; Human Aldose Reductase-zopolrestat complex obtained by cocrystallisation (10days_cocryst) 2HVN ; 1.58 ; Human Aldose Reductase-zopolrestat complex obtained by cocrystallisation after one day (1day_cocryst) 5UDY ; 2.6 ; Human alkaline sphingomyelinase (alk-SMase, ENPP7, NPP7) 5TCD ; 2.4 ; Human alkaline sphingomyelinase (ENPP7) in complex with phosphocholine 7VJV ; 1.75 ; Human AlkB homolog ALKBH6 in complex with alpha-katoglutarate and Mn 7VJS ; 1.792 ; Human AlkB homolog ALKBH6 in complex with Tris and Ni 7EKP ; 2.85 ; human alpha 7 nicotinic acetylcholine receptor bound to EVP-6124 7EKT ; 3.02 ; human alpha 7 nicotinic acetylcholine receptor bound to EVP-6124 and PNU-120596 7EKI ; 3.18 ; human alpha 7 nicotinic acetylcholine receptor in apo-form 1HSO ; 2.5 ; HUMAN ALPHA ALCOHOL DEHYDROGENASE (ADH1A) 1ZTG ; 3.0 ; human alpha polyC binding protein KH1 5NHU ; 1.45 ; HUMAN ALPHA THROMBIN COMPLEXED WITH ANOPHELES GAMBIAE cE5 ANTICOAGULANT 1NY2 ; 2.3 ; Human alpha thrombin inhibited by RPPGF and hirugen 6X5H ; 2.25 ; Human Alpha-1,6-fucosyltransferase (FUT8) bound to GDP 6X5R ; 2.4 ; Human Alpha-1,6-fucosyltransferase (FUT8) bound to GDP and A2-Asn 6X5S ; 3.3 ; Human Alpha-1,6-fucosyltransferase (FUT8) bound to GDP and A3'-Asn 6X5T ; 2.47 ; Human Alpha-1,6-fucosyltransferase (FUT8) bound to GDP and A3-Asn 6X5U ; 3.2 ; Human Alpha-1,6-fucosyltransferase (FUT8) bound to GDP and NM5M2-Asn 2PM4 ; 1.95 ; Human alpha-defensin 1 (multiple Arg->Lys mutant) 2PM5 ; 2.4 ; Human alpha-defensin 1 derivative (HNP1) 3HG2 ; 2.3 ; Human alpha-galactosidase catalytic mechanism 1. Empty active site 3HG3 ; 1.9 ; Human alpha-galactosidase catalytic mechanism 2. Substrate bound 3HG4 ; 2.3 ; Human alpha-galactosidase catalytic mechanism 3. Covalent intermediate 3HG5 ; 2.3 ; Human alpha-galactosidase catalytic mechanism 4. Product bound 3S48 ; 3.05 ; Human Alpha-Haemoglobin Complexed with the First NEAT Domain of IsdH from Staphylococcus aureus 3W81 ; 2.3 ; Human alpha-l-iduronidase 3W82 ; 2.76 ; Human alpha-L-iduronidase in complex with iduronic acid 1B9O ; 1.15 ; HUMAN ALPHA-LACTALBUMIN, LOW TEMPERATURE FORM 2FUE ; 1.75 ; Human alpha-Phosphomannomutase 1 with D-mannose 1-phosphate and Mg2+ cofactor bound 2FUC ; 2.1 ; Human alpha-Phosphomannomutase 1 with Mg2+ cofactor bound 1HBT ; 2.0 ; Human alpha-thrombin complexed with a peptidyl pyridinium methyl ketone containing bivalent inhibitor 1LHF ; 2.4 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH AC-(D)PHE-PRO-BORO-HOMOLYS-OH 1LHE ; 2.25 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH AC-(D)PHE-PRO-BORO-N-BUTYL-AMIDINO-GLYCINE-OH 1LHC ; 1.95 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH AC-(D)PHE-PRO-BOROARG-OH 1LHD ; 2.35 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH AC-(D)PHE-PRO-BOROLYS-OH 1LHG ; 2.25 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH AC-(D)PHE-PRO-BOROORNITHINE-OH 3TU7 ; 2.49 ; Human alpha-thrombin complexed with N-(methylsulfonyl)-D-phenylalanyl-N-((1-carbamimidoyl-4-piperidinyl)methyl)-l-prolinamide (BMS-189664) 1BMN ; 2.8 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH [S-(R*,R*)]-1-(AMINOIMINOMETHYL)-N-[[1-[N-[(2-NAPHTHALENYLSULFONYL)-L-SERYL]-PYRROLIDINYL]METHYL]-3-PIPERIDENECARBOXAMIDE (BMS-189090) 1BMM ; 2.6 ; HUMAN ALPHA-THROMBIN COMPLEXED WITH [S-(R*,R*)]-4-[(AMINOIMINOMETHYL)AMINO]-N-[[1-[3-HYDROXY-2-[(2-NAPHTHALENYLSULFONYL)AMINO]-1-OXOPROPYL]-2-PYRROLIDINYL] METHYL]BUTANAMIDE (BMS-186282) 1QUR ; 2.0 ; HUMAN ALPHA-THROMBIN IN COMPLEX WITH BIVALENT, BENZAMIDINE-BASED SYNTHETIC INHIBITOR 1AFE ; 2.0 ; HUMAN ALPHA-THROMBIN INHIBITION BY CBZ-PRO-AZALYS-ONP 1AE8 ; 2.0 ; HUMAN ALPHA-THROMBIN INHIBITION BY EOC-D-PHE-PRO-AZALYS-ONP 1AIX ; 2.1 ; HUMAN ALPHA-THROMBIN TERNARY COMPLEX WITH EXOSITE INHIBITOR HIRUGEN AND ACTIVE SITE INHIBITOR PHCH2OCO-D-DPA-PRO-BOROVAL 1AI8 ; 1.85 ; HUMAN ALPHA-THROMBIN TERNARY COMPLEX WITH THE EXOSITE INHIBITOR HIRUGEN AND ACTIVE SITE INHIBITOR PHCH2OCO-D-DPA-PRO-BOROMPG 7SR9 ; 2.1 ; Human alpha-thrombin with 180- and 220- loops replaced with homologous loops from protein C 3VXE ; 1.25 ; Human alpha-thrombin-Bivalirudin complex at PD5.0 6AVR ; 35.0 ; Human alpha-V beta-3 Integrin (intermediate conformation) in complex with the therapeutic antibody LM609 6AVU ; 35.0 ; Human alpha-V beta-3 Integrin (open conformation) in complex with the therapeutic antibody LM609 8D0O ; 2.1 ; Human alpha1,3-fucosyltransferase FUT9, heavy atom derivative 1LTO ; 2.2 ; Human alpha1-tryptase 2P9R ; 2.3 ; Human alpha2-macroglogulin is composed of multiple domains, as predicted by homology with complement component C3 8D3W ; 3.5 ; Human alpha3 Na+/K+-ATPase in its AMPPCP-bound cytoplasmic side-open state 8D3V ; 3.4 ; Human alpha3 Na+/K+-ATPase in its cytoplasmic side-open state 8D3Y ; 3.9 ; Human alpha3 Na+/K+-ATPase in its exoplasmic side-open state 8D3X ; 4.1 ; Human alpha3 Na+/K+-ATPase in its K+-occluded state 8D3U ; 3.7 ; Human alpha3 Na+/K+-ATPase in its Na+-occluded state 6PV8 ; 3.87 ; Human alpha3beta4 nicotinic acetylcholine receptor in complex with AT-1001 6PV7 ; 3.34 ; Human alpha3beta4 nicotinic acetylcholine receptor in complex with nicotine 8C9X ; 2.3 ; human alpha7 nicotinic receptor in complex with the C4 nanobody 8CAU ; 3.4 ; human alpha7 nicotinic receptor in complex with the C4 nanobody and nicotine 8CI2 ; 4.4 ; human alpha7 nicotinic receptor in complex with the C4 nanobody under sub-saturating conditions 8CE4 ; 2.7 ; Human alpha7 nicotinic receptor in complex with the E3 nanobody 8CI1 ; 2.8 ; Human alpha7 nicotinic receptor in complex with the E3 nanobody and nicotine 2WJ7 ; 2.631 ; human alphaB crystallin 3L1G ; 3.32 ; Human AlphaB crystallin 2Y1Z ; 2.5 ; Human alphaB Crystallin ACD R120G 2Y1Y ; 2.0 ; Human alphaB crystallin ACD(residues 71-157) 4M5S ; 1.37 ; Human alphaB crystallin core domain in complex with C-terminal peptide 2Y22 ; 3.7 ; Human AlphaB-crystallin Domain (residues 67-157) 5AOX ; 2.04 ; Human Alu RNA retrotransposition complex in the ribosome-stalling conformation 2V9Y ; 2.1 ; Human aminoimidazole ribonucleotide synthetase 4FYQ ; 1.9 ; Human aminopeptidase N (CD13) 4FYT ; 1.85 ; Human aminopeptidase N (CD13) in complex with amastatin 4FYS ; 2.01 ; Human aminopeptidase N (CD13) in complex with angiotensin IV 4FYR ; 1.91 ; Human aminopeptidase N (CD13) in complex with bestatin 3AQV ; 2.08 ; Human AMP-activated protein kinase alpha 2 subunit kinase domain (T172D) complexed with compound C 7TYF ; 2.2 ; Human Amylin1 Receptor in complex with Gs and rat amylin peptide 7TYW ; 3.0 ; Human Amylin1 Receptor in complex with Gs and salmon calcitonin peptide 7TYH ; 3.3 ; Human Amylin2 Receptor in complex with Gs and human calcitonin peptide 7TYX ; 2.55 ; Human Amylin2 Receptor in complex with Gs and rat amylin peptide 7TYY ; 3.0 ; Human Amylin2 Receptor in complex with Gs and salmon calcitonin peptide 8F0K ; 1.9 ; Human Amylin3 Receptor in complex with Gs and Pramlintide analogue peptide San385 8F2A ; 2.2 ; Human Amylin3 Receptor in complex with Gs and Pramlintide analogue peptide San385 (Cluster 5 conformation) 7TZF ; 2.4 ; Human Amylin3 Receptor in complex with Gs and rat amylin peptide 2YHD ; 2.2 ; Human androgen receptor in complex with AF2 small molecule inhibitor 1E3G ; 2.4 ; Human Androgen Receptor Ligand Binding in complex with the ligand metribolone (R1881) 5M9R ; 1.44 ; Human angiogenin ALS variant F100I 5M9T ; 2.2 ; Human angiogenin ALS variant H114R 5M9C ; 2.05 ; Human angiogenin ALS variant K40R 5M9P ; 1.8 ; Human angiogenin ALS variant T80S 5M9S ; 1.85 ; Human angiogenin ALS variant V103I 5EPZ ; 1.85 ; Human Angiogenin in complex with sulphate anions at a basic solution 5EQO ; 2.4 ; Human Angiogenin in complex with sulphate anions at an acidic solution 7PNP ; 1.8 ; Human Angiogenin mutant-S28A 7PNR ; 1.6 ; Human Angiogenin mutant-S28AT36AS37A 5M9A ; 1.95 ; Human angiogenin PD variant H13R 5M9G ; 2.28 ; Human angiogenin PD variant K54R 5M9J ; 1.9 ; Human angiogenin PD variant K60E 5M9M ; 1.65 ; Human angiogenin PD variant Q77P 5M9Q ; 1.35 ; Human angiogenin PD variant R95Q 5M9V ; 1.7 ; Human angiogenin PD/ALS variant R121C 7PNJ ; 3.1 ; Human Angiogenin quardruple mutant-S28AT36AS37AS87A 6U0A ; 2.11 ; Human Angiopoietin-Like 4 C-Terminal Domain (cANGPTL4) with Glycerol 6U73 ; 2.38 ; Human Angiopoietin-Like 4 C-Terminal Domain (cANGPTL4) with Myristic Acid 6U1U ; 1.75 ; Human Angiopoietin-Like 4 C-Terminal Domain (cANGPTL4) with Palmitic Acid 4BZS ; 2.1 ; Human angiotenisn converting enzyme N-domain in complex with K-26 2XYD ; 2.15 ; human Angiotenisn converting enzyme N-domain in complex with Phosphinic tripeptide 4CA5 ; 1.85 ; Human Angiotensin converting enzyme in complex with a phosphinic tripeptide FI 2XY9 ; 1.97 ; Human Angiotensin converting enzyme in complex with phosphinic tripeptide 4CA6 ; 1.91 ; Human Angiotensin converting enzyme N-domain in complex with a phosphinic tripeptide FI 8QFX ; 1.6 ; Human Angiotensin-1 converting enzyme N-domain in complex with the lactotripeptide IPP 8QHL ; 1.9 ; Human Angiotensin-1 converting enzyme N-domain in complex with the lactotripeptide VPP 4APH ; 1.99 ; Human angiotensin-converting enzyme in complex with angiotensin-II 4APJ ; 2.6 ; Human angiotensin-converting enzyme in complex with BPPb 7Z9F ; 1.7 ; Human anionic trypsin after autoproteolysis at Arg122 7DTO ; 2.8 ; Human Annexin A2 with C132-C261 intramolecular disulfide bond 2HYW ; 2.1 ; Human Annexin A2 with Calcium bound 2HYV ; 1.42 ; Human Annexin A2 with heparin hexasaccharide bound 2HYU ; 1.86 ; Human Annexin A2 with heparin tetrasaccharide bound 2XO2 ; 2.8 ; Human Annexin V with incorporated Methionine analogue Azidohomoalanine 2XO3 ; 2.3 ; Human Annexin V with incorporated Methionine analogue Homopropargylglycine 1SAV ; 2.5 ; HUMAN ANNEXIN V WITH PROLINE SUBSTITUTION BY THIOPROLINE 6A4K ; 3.15 ; Human antibody 32D6 Fab in complex with H1N1 influenza A virus HA1 6JP7 ; 1.909 ; Human antibody 32D6 Fab in complex with PEG 4YK4 ; 2.8 ; Human antibody 641 I-9 in complex with influenza hemagglutinin H1 Solomon Islands/03/2006 5IBL ; 3.39 ; Human antibody 6639 in complex with influenza hemagglutinin H1 X-181 5W6G ; 2.79 ; Human antibody 6649 in complex with influenza hemagglutinin H1 Solomon Islands 6XPQ ; 4.2 ; Human antibody D1 H1-17/H3-14 in complex with the influenza hemagglutinin head domain of A/Texas/50/2012(H3N2) 6XPR ; 4.092 ; Human antibody D2 H1-1/H3-1 H3 in complex with the influenza hemagglutinin head domain of A/Texas/50/2012(H3N2) 5UR8 ; 1.755 ; Human antibody fragment (Fab) to meningococcal Factor H binding protein 6Q18 ; 2.55 ; Human antibody H1244 in complex with the influenza hemagglutinin head domain of A/Beijing/262/95(H1N1) 6Q1G ; 1.75 ; Human antibody H1244 of the human antibody lineage 652 6E56 ; 2.0 ; Human antibody H2214 in complex with influenza hemagglutinin A/Aichi/2/1968 (X-31) (H3N2) 6Q0O ; 3.0 ; human antibody H2227 lineage 652 in complex with influenza hemagglutinin head domain of A/Solomon Islands/3/2006(H1N1) 4YJZ ; 2.72 ; Human antibody H2526 in complex with influenza hemagglutinin H1 Solomon Islands/03/2006 5UG0 ; 3.4 ; Human antibody H2897 in complex with influenza hemagglutinin H1 Solomon Islands/03/2006 7TRH ; 3.0 ; Human antibody K03.28 in complex with the influenza hemagglutinin head domain of A/California/07/2009(H1N1)(X-181) 6XPX ; 2.598 ; Human antibody S1V2-51 in complex with the influenza hemagglutinin head domain of A/Aichi/2/1968 (X-31)(H3N2) 6XPY ; 3.603 ; Human antibody S1V2-58 in complex with the influenza hemagglutinin head domain of A/Texas/50/2012(H3N2) 6XPZ ; 3.45 ; Human antibody S1V2-83 in complex with the influenza hemagglutinin head domain of A/Moscow/10/1999(H3N2) 6E4X ; 2.25 ; Human antibody S5V2-29 in complex with influenza hemagglutinin A/Texas/50/2012 (H3N2) 7TRI ; 3.6 ; Human antibody S8V1-172 in complex with the influenza hemagglutinin head domain of A/Sydney/05/1997(H3N2) 6XQ0 ; 2.3 ; Human antibody S8V2-18 in complex with the influenza hemagglutinin head domain of A/California/7/2009(NYMC-X181)(H1N1) 6XQ2 ; 3.002 ; Human antibody S8V2-37 in complex with the influenza hemagglutinin head domain of A/Texas/50/2012(H3N2) 6XQ4 ; 3.347 ; Human antibody S8V2-47 in complex with the influenza hemagglutinin head domain of A/Beijing/262/1995(H1N1) 6P94 ; 2.09 ; Human APE1 C65A AP-endonuclease product complex 5DFJ ; 1.85 ; Human APE1 E96Q/D210N mismatch substrate complex 1DE9 ; 3.0 ; HUMAN APE1 ENDONUCLEASE WITH BOUND ABASIC DNA AND MN2+ ION 7TC2 ; 1.43 ; Human APE1 in complex with 5-nitroindole-2-carboxylic acid 7TC3 ; 1.252 ; Human APE1 in the apo form 6P93 ; 2.1 ; Human APE1 K98A AP-endonuclease product complex 5DFH ; 1.949 ; Human APE1 mismatch product complex 5DFI ; 1.63 ; Human APE1 phosphorothioate substrate complex 5DG0 ; 1.8 ; Human APE1 phosphorothioate substrate complex with Mn2+ 5DFF ; 1.57 ; Human APE1 product complex 6BOQ ; 1.96 ; Human APE1 substrate complex with an A/A mismatch adjacent the THF 6BOS ; 2.304 ; Human APE1 substrate complex with an A/C mismatch adjacent the THF 6BOV ; 1.975 ; Human APE1 substrate complex with an A/G mismatch adjacent the THF 6BOT ; 2.3 ; Human APE1 substrate complex with an C/C mismatch adjacent the THF 6BOR ; 1.84 ; Human APE1 substrate complex with an G/G mismatch adjacent the THF 6BOU ; 2.538 ; Human APE1 substrate complex with an T/C mismatch adjacent the THF 6BOW ; 1.59 ; Human APE1 substrate complex with an T/T mismatch adjacent the THF 7MCR ; 1.9 ; Human Apex/Ref1 homodimer formed under oxidative condition 7MEV ; 1.6 ; Human Apex/Ref1 monomer with C138A mutation 4PYI ; 1.35 ; human apo COMT 6M52 ; 2.6 ; Human apo ferritin frozen on TEM grid with amorphous carbon supporting film 6M54 ; 2.4 ; Human apo ferritin frozen on TEM grid with Amorphous nickel titanium alloy supporting film 7Z5G ; 2.113 ; human apo MATCAP 6UMV ; 1.424 ; Human apo PD-1 double mutant 6UMU ; 1.183 ; Human apo PD-1 triple mutant 8BDC ; 2.65 ; Human apo TRPM8 in a closed state (composite map) 4PYJ ; 1.9 ; human apo-COMT, single domain swap 6FFK ; 1.94 ; Human apo-SOD1 bound to PtCl2(1R,2R-1,4-DACH 6AYG ; 4.65 ; Human Apo-TRPML3 channel at pH 4.8 6AYE ; 4.06 ; Human apo-TRPML3 channel at pH 7.4 8FVI ; 3.24 ; Human APOBEC3H bound to HIV-1 Vif in complex with CBF-beta, ELOB, ELOC, and CUL5 8CPS ; 1.82 ; Human apoferritin 8CPV ; 1.76 ; Human apoferritin 8CPW ; 1.79 ; Human apoferritin after 405 nm + 488 nm laser exposure in presence of rsEGFP2 8CPM ; 1.81 ; Human apoferritin after 405 nm laser exposure 8CPT ; 1.79 ; Human apoferritin after 488 nm laser exposure 8CPX ; 1.76 ; Human apoferritin after 488 nm laser exposure in presence of rsEGFP2 8CPU ; 1.76 ; Human apoferritin after 561 nm laser exposure 1IOJ ; ; HUMAN APOLIPOPROTEIN C-I, NMR, 18 STRUCTURES 8AX9 ; 1.549 ; Human Apolipoprotein E4 (ApoE4) N-terminal domain (space group P212121) 8AX8 ; 1.551 ; Human Apolipoprotein E4 (ApoE4) N-terminal domain (space group P3121) 4NDI ; 1.9 ; Human Aprataxin (Aptx) AOA1 variant K197Q bound to RNA-DNA, AMP, and Zn - product complex 4NDH ; 1.848 ; Human Aprataxin (Aptx) bound to DNA, AMP, and Zn - product complex 6CVO ; 2.4 ; Human Aprataxin (Aptx) bound to nicked RNA-DNA, AMP and Zn product complex 4NDG ; 2.541 ; Human Aprataxin (Aptx) bound to RNA-DNA and Zn - adenosine vanadate transition state mimic complex 4NDF ; 1.944 ; Human Aprataxin (Aptx) bound to RNA-DNA, AMP, and Zn - product complex 6CVQ ; 1.65 ; Human Aprataxin (Aptx) H201Q bound to RNA-DNA, AMP and Zn product complex 6CVS ; 2.11 ; Human Aprataxin (Aptx) L248M bound to DNA, AMP and Zn product 6CVP ; 1.999 ; Human Aprataxin (Aptx) R199H bound to RNA-DNA, AMP and Zn product complex 6CVR ; 1.88 ; Human Aprataxin (Aptx) S242N bound to RNA-DNA, AMP and Zn product complex 6CVT ; 2.941 ; Human Aprataxin (Aptx) V263G bound to RNA-DNA, AMP and Zn product complex 4IEM ; 2.3936 ; Human apurinic/apyrimidinic endonuclease (APE1) with product DNA and Mg2+ 1DE8 ; 2.95 ; HUMAN APURINIC/APYRIMIDINIC ENDONUCLEASE-1 (APE1) BOUND TO ABASIC DNA 4CSK ; 3.28 ; human Aquaporin 3D9S ; 2.0 ; Human Aquaporin 5 (AQP5) - High Resolution X-ray Structure 7K4G ; 1.8 ; Human Arginase 1 in complex with compound 01. 7K4H ; 1.65 ; Human Arginase 1 in complex with compound 04. 7K4I ; 1.98 ; Human Arginase 1 in complex with compound 06. 7K4J ; 1.94 ; Human Arginase 1 in complex with compound 51. 7K4K ; 2.27 ; Human Arginase 1 in complex with compound 52. 1PQ3 ; 2.7 ; Human Arginase II: Crystal Structure and Physiological Role in Male and Female Sexual Arousal 6V7D ; 1.82 ; Human Arginase1 Complexed with Bicyclic Inhibitor Compound 10 6V7E ; 1.99 ; Human Arginase1 Complexed with Bicyclic Inhibitor Compound 12 6V7F ; 2.02 ; Human Arginase1 Complexed with Bicyclic Inhibitor Compound 13 6V7C ; 1.8 ; Human Arginase1 Complexed with Bicyclic Inhibitor Compound 3 7KLL ; 2.22 ; Human Arginase1 Complexed with Inhibitor Compound 18 7KLM ; 2.27 ; Human Arginase1 Complexed with Inhibitor Compound 24a 7KLK ; 1.801 ; Human Arginase1 Complexed with Inhibitor Compound 3a 1AOS ; 4.2 ; HUMAN ARGININOSUCCINATE LYASE 8COG ; 3.499 ; Human arginylated beta-actin 4F3T ; 2.25 ; Human Argonaute-2 - miR-20a complex 5KI6 ; 2.153 ; Human Argonaute-2 bound to a guide RNA with a nucleobase modification at position 1 5JS2 ; 2.954 ; Human Argonaute-2 Bound to a Modified siRNA 6RA4 ; 1.9 ; Human ARGONAUTE-2 PAZ DOMAIN (214-347) IN COMPLEX WITH CGUGACUCU 4Z4H ; 2.504 ; Human Argonaute2 A481T Mutant Bound to t1-A Target RNA 4Z4I ; 2.801 ; Human Argonaute2 A481T Mutant Bound to t1-G Target RNA 5JS1 ; 2.499 ; Human Argonaute2 Bound to an siRNA 4Z4C ; 2.303 ; Human Argonaute2 Bound to t1-C Target RNA 4Z4F ; 2.8 ; Human Argonaute2 Bound to t1-DAP Target RNA 4Z4D ; 1.6 ; Human Argonaute2 Bound to t1-G Target RNA 4Z4G ; 2.7 ; Human Argonaute2 Bound to t1-Inosine Target RNA 4Z4E ; 1.8 ; Human Argonaute2 Bound to t1-U Target RNA 5WEA ; 3.12 ; Human Argonaute2 Helix-7 Mutant 6N4O ; 2.899 ; Human Argonaute2-miR-122 bound to a seed and supplementary paired target 6NIT ; 3.8 ; Human Argonaute2-miR-122 bound to a target RNA with four central mismatches (bu4) 6MFR ; 3.6 ; Human Argonaute2-miR-122 bound to a target RNA with three central mismatches (bu3) 6MDZ ; 3.4 ; Human Argonaute2-miR-122 bound to a target RNA with two central mismatches (bu2) 6MFN ; 2.5 ; Human Argonaute2-miR-27a bound to HSUR1 target RNA 7KI3 ; 3.0 ; Human Argonaute2:miR-122 bound to the HCV genotype 1a site-1 RNA 5VM9 ; 3.28 ; Human Argonaute3 bound to guide RNA 6OON ; 1.9 ; Human Argonaute4 bound to guide RNA 1X0O ; ; human ARNT C-terminal PAS domain 2K7S ; ; Human ARNT C-Terminal PAS Domain, 3 Residue IB slip 8G4A ; 1.97 ; Human ARNT PAS-B complexed with KG-548 small molecule 4GV7 ; 2.89 ; Human ARTD1 (PARP1) - Catalytic domain in complex with inhibitor ME0328 4R6E ; 2.2 ; Human artd1 (parp1) - catalytic domain in complex with inhibitor niraparib 4UXB ; 3.22 ; Human ARTD1 (PARP1) - Catalytic domain in complex with inhibitor PJ34 4UND ; 2.2 ; HUMAN ARTD1 (PARP1) - CATALYTIC DOMAIN IN COMPLEX WITH INHIBITOR TALAZOPARIB 4R5W ; 2.84 ; Human artd1 (parp1) - catalytic domain in complex with inhibitor xav939 4RV6 ; 3.19 ; Human ARTD1 (PARP1) catalytic domain in complex with inhibitor Rucaparib 4F0D ; 2.7 ; Human ARTD15/PARP16 IN COMPLEX WITH 3-AMINOBENZAMIDE 4TVJ ; 2.1 ; HUMAN ARTD2 (PARP2) - CATALYTIC DOMAIN IN COMPLEX WITH OLAPARIB 7AEO ; 2.8 ; Human ARTD2 in complex with DNA oligonucleotides 4GV4 ; 1.8 ; Human ARTD3 (PARP3) - Catalytic domain in complex with inhibitor ME0328 4L70 ; 2.0 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor ME0352 4GV2 ; 1.8 ; Human ARTD3 (PARP3) - Catalytic domain in complex with inhibitor ME0354 4GV0 ; 1.9 ; Human ARTD3 (PARP3) - Catalytic domain in complex with inhibitor ME0355 4L7L ; 2.1 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor ME0368 4L7P ; 2.3 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor ME0395 4L7U ; 2.8 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor ME0398 4L7R ; 2.2 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor ME0400 4L6Z ; 2.0 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor STO1168 4L7N ; 1.8 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor STO1542 4L7O ; 2.0 ; Human artd3 (parp3) - catalytic domain in complex with inhibitor STO1542 4F1Q ; 2.8 ; Human Artd8 (Parp14, Bal2) - catalytic domain in complex with A16(E) 4F1L ; 1.9 ; Human Artd8 (Parp14, Bal2) - catalytic domain in complex with inhibitor A16(Z) 6WO0 ; 1.97 ; human Artemis/SNM1C catalytic domain, crystal form 1 6WNL ; 2.37 ; human Artemis/SNM1C catalytic domain, crystal form 2 1AUK ; 2.1 ; HUMAN ARYLSULFATASE A 7RNN ; 2.86 ; Human ASIC1a-Nb.C1 complex 6GQ3 ; 1.85 ; Human asparagine synthetase (ASNS) in complex with 6-diazo-5-oxo-L-norleucine (DON) at 1.85 A resolution 8TC8 ; 1.9 ; Human asparaginyl-tRNA synthetase bound to adenosine 5'-sulfamate 8TC9 ; 2.0 ; Human asparaginyl-tRNA synthetase bound to OSM-S-106 8H53 ; 2.16 ; Human asparaginyl-tRNA synthetase in complex with asparagine-AMP 8TC7 ; 1.9 ; Human asparaginyl-tRNA synthetase, apo form 1APY ; 2.0 ; HUMAN ASPARTYLGLUCOSAMINIDASE 1APZ ; 2.3 ; HUMAN ASPARTYLGLUCOSAMINIDASE COMPLEX WITH REACTION PRODUCT 8H3H ; 3.15 ; Human ATAD2 Walker B mutant, ATP state 8JUW ; 3.79 ; Human ATAD2 Walker B mutant-H3/H4K5Q complex, ATP state 8JUY ; 4.34 ; Human ATAD2 Walker B mutant-H3/H4K5Q complex, ATP state (Class II) 8JUZ ; 4.29 ; Human ATAD2 Walker B mutant-H3/H4K5Q complex, ATP state (Class III) 8FKM ; ; Human Atg3 with deletions of residues 1 to 25 and 90 to 190 6B9G ; 3.0 ; human ATL1 GTPase domain bound to GDP 6B9F ; 1.9 ; Human ATL1 mutant - F151S bound to GDPAlF4- 6B9E ; 1.99 ; Human ATL1 mutant - R77A / F151S bound to GDP 6B9D ; 1.95 ; Human ATL1 mutant - R77A bound to GDP 7OL3 ; 1.9 ; Human ATL1 N417ins (catalytic core) 6XJN ; 2.2 ; Human atlastin-1 (residues 1-439) bound to GDP-Mg2+ exhibits an ordered amino terminus 4IDO ; 2.091 ; human atlastin-1 1-446, C-his6, GDPAlF4- 4IDN ; 2.252 ; Human atlastin-1 1-446, C-his6, GppNHp 4IDQ ; 2.295 ; human atlastin-1 1-446, N440T, GDPAlF4- 4IDP ; 2.587 ; human atlastin-1 1-446, N440T, GppNHp 6XJO ; 2.1 ; Human atlastin-3 (residues 1-334) bound to GDP-Mg2+ exhibits an ordered amino terminus 5VGR ; 2.096 ; Human Atlastin-3, GDP-bound 7SIC ; 2.51 ; Human ATM Dimer 7SID ; 2.53 ; Human ATM Dimer Bound to Nbs1 7NI4 ; 3.0 ; Human ATM kinase domain with bound M4076 inhibitor 7NI6 ; 2.8 ; Human ATM kinase with bound ATPyS 7NI5 ; 2.78 ; Human ATM kinase with bound inhibitor KU-55933 8H9E ; 2.53 ; Human ATP synthase F1 domain, state 1 8H9L ; 2.61 ; Human ATP synthase F1 domain, state 3a 8H9P ; 3.02 ; Human ATP synthase F1 domain, state 3b 8H9I ; 2.77 ; Human ATP synthase F1 domain, state2 8H9S ; 2.53 ; Human ATP synthase state 1 (combined) 8H9G ; 2.95 ; Human ATP synthase state 1 subregion 2 8H9F ; 2.69 ; Human ATP synthase state 1 subregion 3 8H9T ; 2.77 ; Human ATP synthase state 2 (combined) 8H9K ; 3.51 ; Human ATP synthase state 2 subregion 2 8H9U ; 2.61 ; Human ATP synthase state 3a (combined) 8H9N ; 3.56 ; Human ATP synthase state 3a subregion 2 8H9M ; 3.0 ; Human ATP synthase state 3a subregion 3 8H9V ; 3.02 ; Human ATP synthase state 3b (combined) 8H9R ; 3.97 ; Human ATP synthase state 3b subregion 2 8H9Q ; 3.47 ; Human ATP synthase state 3b subregion 3 8H9J ; 3.26 ; Human ATP synthase state2 subregion 3 7M5V ; 2.9 ; human ATP13A2 in the AMPPNP-bound occluded state 7M5X ; 2.7 ; Human ATP13A2 in the outward-facing E2 state bound to spermine and beryllium fluoride 7M5Y ; 3.0 ; human ATP13A2 in the outward-facing E2 state bound to spermine and magnesium fluoride 6GRA ; 2.6 ; Human AURKA bound to BRD-7880 6GR8 ; 1.75 ; Human AURKC INCENP complex bound to BRD-7880 6GR9 ; 2.25 ; Human AURKC INCENP complex bound to VX-680 4ZTR ; 2.85 ; Human Aurora A catalytic domain bound to FK1141 4ZTS ; 2.9 ; Human Aurora A catalytic domain bound to FK1142 4ZTQ ; 2.8 ; Human Aurora A catalytic domain bound to FK932 4ZS0 ; 3.0 ; Human Aurora A catalytic domain bound to SB-6-OH 4AF3 ; 2.75 ; Human Aurora B Kinase in complex with INCENP and VX-680 1I3E ; 1.86 ; HUMAN AZIDO-MET HEMOGLOBIN BART'S (GAMMA4) 1T2F ; 3.0 ; Human B lactate dehydrogenase complexed with NAD+ and 4-hydroxy-1,2,5-oxadiazole-3-carboxylic acid 4G9C ; 3.5 ; Human B-Raf Kinase Domain bound to a Type II Pyrazolopyridine Inhibitor 3TV6 ; 3.3 ; Human B-Raf Kinase Domain in Complex with a Methoxypyrazolopyridinyl Benzamide Inhibitor 3TV4 ; 3.4 ; Human B-Raf Kinase Domain in Complex with an Bromopyridine Benzamide Inhibitor 4MBJ ; 3.6 ; Human B-Raf Kinase Domain in Complex with an Imidazopyridine-based Inhibitor 3PPJ ; 3.7 ; Human B-Raf Kinase in Complex with a Furopyridine Inhibitor 3PPK ; 3.0 ; Human B-Raf Kinase in Complex with a Non-Oxime Furopyridine Inhibitor 3SKC ; 3.2 ; Human B-Raf Kinase in Complex with an Amide Linked Pyrazolopyridine Inhibitor 1I8L ; 3.0 ; HUMAN B7-1/CTLA-4 CO-STIMULATORY COMPLEX 2WJO ; 2.5 ; human Bace (beta secretase) in complex with Cyclohexanecarboxylic acid (2-(2-am ino-6-phenoxy-4H-quinazolin-3-yl)-2 -cyclohexyl-ethyl)- amide 3K5F ; 2.25 ; Human BACE-1 COMPLEX WITH AYH011 3K5G ; 2.0 ; Human bace-1 complex with bjc060 3K5C ; 2.12 ; Human BACE-1 complex with NB-216 2WEZ ; 1.7 ; Human BACE-1 in complex with 1-ethyl-N-((1S,2R)-2-hydroxy-3-(((3-(methyloxy)phenyl)methyl)amino)-1-(phenylmethyl)propyl)-4-(2-oxo-1- pyrrolidinyl)-1H-indole-6-carboxamide 2VNM ; 1.79 ; Human BACE-1 in complex with 3-(1,1-dioxidotetrahydro-2H-1,2-thiazin- 2-yl)-5-(ethylamino)-N-((1S,2R)-2-hydroxy-1-(phenylmethyl)-3-(((3-(trifluoromethyl)phenyl)methyl)amino)propyl)benzamide 2VIJ ; 1.6 ; Human BACE-1 in complex with 3-(1,1-dioxidotetrahydro-2H-1,2-thiazin- 2-yl)-5-(ethylamino)-N-((1S,2R)-2-hydroxy-1-(phenylmethyl)-3-(1,2,3,4- tetrahydro-1-naphthalenylamino)propyl)benzamide 2VJ7 ; 1.6 ; Human BACE-1 in complex with 3-(ethylamino)-N-((1S,2R)-2-hydroxy-1-(phenylmethyl)-3-(((3-(trifluoromethyl)phenyl)methyl)amino)propyl)-5-(2-oxo-1-pyrrolidinyl)benzamide 2WF0 ; 1.6 ; Human BACE-1 in complex with 4-ethyl-N-((1S,2R)-2-hydroxy-1-(phenylmethyl)-3-(((3-(trifluoromethyl)phenyl)methyl)amino)propyl)-8-(2-oxo-1-pyrrolidinyl)-6-quinolinecarboxamide 2WF3 ; 2.08 ; Human BACE-1 in complex with 6-(ethylamino)-N-((1S,2R)-2-hydroxy-3-(((3-(methyloxy)phenyl)methyl)amino)-1-(phenylmethyl)propyl)-1-methyl-1, 3,4,5-tetrahydro-2,1-benzothiazepine-8-carboxamide 2,2-dioxide 2WF4 ; 1.8 ; Human BACE-1 in complex with 6-ethyl-1-methyl-N-((1S)-2-oxo-1-(phenylmethyl)-3-(tetrahydro-2H-pyran-4-ylamino)propyl)-1,3,4,6- tetrahydro(1,2)thiazepino(5,4,3-cd)indole-8-carboxamide 2,2-dioxide 2VNN ; 1.87 ; Human BACE-1 in complex with 7-ethyl-N-((1S,2R)-2-hydroxy-1-(phenylmethyl)-3-(((3-(trifluoromethyl)phenyl)methyl)amino)propyl)-1- methyl-3,4-dihydro-1H-(1,2,5)thiadiazepino(3,4,5-hi)indole-9- carboxamide 2,2-dioxide 2WF1 ; 1.6 ; Human BACE-1 in complex with 7-ethyl-N-((1S,2R)-2-hydroxy-3-(((3-(methyloxy)phenyl(methyl)amino)-1-(phenylmethyl)propyl)-1-methyl-3,4- dihydro-1H-(1,2,5)thiadiazepino(3,4,5-hi)indole-9-carboxamide 2,2- dioxide 2WF2 ; 1.8 ; Human BACE-1 in complex with 8-ethyl-N-((1S,2R)-2-hydroxy-3-(((3-(methyloxy)phenyl)methyl)amino)-1-(phenylmethyl)propyl)-1-methyl-3,4,7, 8-tetrahydro-1H,6H-(1,2,5)thiadiazepino(5,4,3-de)quinoxaline-10- carboxamide 2,2-dioxide 2VIE ; 1.9 ; Human BACE-1 in complex with N-((1S,2R)-1-benzyl-2-hydroxy-3-((1,1,5- trimethylhexyl)amino)propyl)-3-(ethylamino)-5-(2-oxopyrrolidin-1-yl) benzamide 2XFI ; 1.73 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-((methylsulfonyl)(phenyl)amino)benzamide 2VIZ ; 1.6 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-(2-oxo- 1-pyrrolidinyl)-5-(propyloxy)benzamide 2XFK ; 1.8 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-(ethylamino)-5-((methylsulfonyl)(phenyl)amino)benzamide 2VJ6 ; 1.8 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-(ethylamino)-5-(2-oxo-1-pyrrolidinyl)benzamide 2XFJ ; 1.8 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-(ethylamino)-5-(2-oxo-1-pyrrolidinyl)benzamide 2VIY ; 1.82 ; Human BACE-1 in complex with N-((1S,2R)-3-(((1S)-2-(cyclohexylamino)- 1-methyl-2-oxoethyl)amino)-2-hydroxy-1-(phenylmethyl)propyl)-3-(pentylsulfonyl)benzamide 2VJ9 ; 1.6 ; Human BACE-1 in complex with N-((1S,2R)-3-(cyclohexylamino)-2-hydroxy- 1-(phenylmethyl)propyl)-3-(ethylamino)-5-(2-oxo-1-pyrrolidinyl) benzamide 6FF4 ; 3.4 ; human Bact spliceosome core structure 6FF7 ; 4.5 ; human Bact spliceosome core structure 8CZF ; 1.3 ; Human BAK in complex with the dF2 peptide 8CZG ; 1.99 ; Human BAK in complex with the dF3 peptide 8CZH ; 1.3 ; Human BAK in complex with the dM2 peptide 5FMI ; 1.491 ; Human Bak Q77L 4AQ3 ; 2.4 ; HUMAN BCL-2 WITH PHENYLACYLSULFONAMIDE INHIBITOR 1G5M ; ; HUMAN BCL-2, ISOFORM 1 1GJH ; ; HUMAN BCL-2, ISOFORM 2 1R2E ; 2.1 ; Human Bcl-XL containing a Glu to Leu mutation at position 92 1R2I ; 2.0 ; Human Bcl-XL containing a Phe to Leu mutation at position 146 1R2G ; 2.7 ; Human Bcl-XL containing a Phe to Trp mutation at position 97 3CVA ; 2.7 ; Human Bcl-xL containing a Trp to Ala mutation at position 137 1R2H ; 2.2 ; Human Bcl-XL containing an Ala to Leu mutation at position 142 2MB9 ; ; Human Bcl10 CARD 2VM6 ; 2.2 ; Human Bcl2-A1 in complex with Bim-BH3 peptide 7BDE ; 2.044 ; HUMAN BCL6 BTB-DOMAIN IN COMPLEX WITH GSK137 5HHE ; 1.46 ; Human Beclin 1 coiled-coil domain 3CU0 ; 1.9 ; human beta 1,3-glucuronyltransferase I (GlcAT-I) in complex with UDP and GAL-GAL(6-SO4)-XYL(2-PO4)-O-SER 5TBY ; 20.0 ; HUMAN BETA CARDIAC HEAVY MEROMYOSIN INTERACTING-HEADS MOTIF OBTAINED BY HOMOLOGY MODELING (USING SWISS-MODEL) OF HUMAN SEQUENCE FROM APHONOPELMA HOMOLOGY MODEL (PDB-3JBH), RIGIDLY FITTED TO HUMAN BETA-CARDIAC NEGATIVELY STAINED THICK FILAMENT 3D-RECONSTRUCTION (EMD-2240) 2GDD ; 2.35 ; Human beta II tryptase with inhibitor CRA-27592 2FXR ; 2.5 ; human beta tryptase II complexed with activated ketone inhibitor CRA-29382 2FS9 ; 2.3 ; Human beta tryptase II with inhibitor CRA-28427 1HSZ ; 2.2 ; HUMAN BETA-1 ALCOHOL DEHYDROGENASE (ADH1B*1) 5WI6 ; 2.72 ; Human beta-1 tryptase mutant Ile99Cys 5CKA ; 1.7 ; Human beta-2 microglobulin double mutant W60G-N83V 5CFH ; 1.49 ; human beta-2 microglobulin double mutant W60G-Y63W 5CKG ; 1.75 ; Human beta-2 microglobulin mutant V85E 8EFE ; 3.8 ; Human beta-cardiac myosin II bound to ADP-MG2+ and the associated essential light chain 8Y0G ; 2.5 ; Human beta-catenin crystal structure 1FD3 ; 1.35 ; HUMAN BETA-DEFENSIN 2 1FD4 ; 1.7 ; HUMAN BETA-DEFENSIN 2 1IJU ; 1.4 ; HUMAN BETA-DEFENSIN-1 1IJV ; 1.2 ; HUMAN BETA-DEFENSIN-1 2NLB ; 1.85 ; Human beta-defensin-1 (Mutant Asn4Ala) 2NLD ; 1.49 ; Human beta-defensin-1 (Mutant Gln11Ala) 2NLE ; 1.35 ; Human beta-defensin-1 (Mutant Gln11Ala) 2NLH ; 1.85 ; Human beta-defensin-1 (Mutant GLN24ALA) 2NLS ; 0.98 ; Human beta-defensin-1 (Mutant Gln24Ala) 2NLP ; 1.85 ; Human beta-defensin-1 (Mutant Gln24Glu) 2NLF ; 1.45 ; Human beta-defensin-1 (Mutant Leu13Glu) 2NLG ; 1.65 ; Human beta-defensin-1 (Mutant Lys22Glu) 2NLQ ; 1.8 ; Human beta-defensin-1 (Mutant Lys31Ala) 2NLC ; 1.65 ; Human beta-defensin-1 (mutant Ser8Ala) 3HN3 ; 1.7 ; Human beta-glucuronidase at 1.7 A resolution 1BHG ; 2.53 ; HUMAN BETA-GLUCURONIDASE AT 2.6 A RESOLUTION 1O7A ; 2.25 ; Human beta-Hexosaminidase B 2BM2 ; 2.2 ; human beta-II tryptase in complex with 4-(3-Aminomethyl-phenyl)- piperidin-1-yl-(5-phenethyl- pyridin-3-yl)-methanone 4MPV ; 2.305 ; Human beta-tryptase co-crystal structure with (2R,4S)-N,N'-bis[3-({4-[3-(aminomethyl)phenyl]piperidin-1-yl}carbonyl)phenyl]-4-hydroxy-2-(2-hydroxypropan-2-yl)-5,5-dimethyl-1,3-dioxolane-2,4-dicarboxamide 4MPU ; 1.649 ; Human beta-tryptase co-crystal structure with (6S,8R)-N,N'-bis[3-({4-[3-(aminomethyl)phenyl]piperidin-1-yl}carbonyl)phenyl]-8-hydroxy-6-(1-hydroxycyclobutyl)-5,7-dioxaspiro[3.4]octane-6,8-dicarboxamide 6P0P ; 2.55 ; Human beta-tryptase co-crystal structure with 5-{4-[3-(aminomethyl)phenyl]piperidine-1-carbonyl}-2-(3'-{4-[3-(aminomethyl)phenyl]piperidine-1-carbonyl}-[1,1'-biphenyl]-3-yl)-2-hydroxy-2H-1,3,2-benzodioxaborol-2-uide 4MPW ; 1.95 ; Human beta-tryptase co-crystal structure with [(1,1,3,3-tetramethyldisiloxane-1,3-diyl)di-1-benzofuran-3,5-diyl]bis({4-[3-(aminomethyl)phenyl]piperidin-1-yl}methanone) 4MPX ; 2.0 ; Human beta-tryptase co-crystal structure with [(1,1,3,3-tetramethyldisiloxane-1,3-diyl)di-1-benzothiene-4,2-diyl]bis({4-[3-(aminomethyl)phenyl]piperidin-1-yl}methanone) 4MQA ; 2.25 ; Human beta-tryptase co-crystal structure with {(1,1,3,3-tetramethyldisiloxane-1,3-diyl)bis[5-(methylsulfanyl)benzene-3,1-diyl]}bis({4-[3-(aminomethyl)phenyl]piperidin-1-yl}methanone) 2FWW ; 2.25 ; human beta-tryptase II complexed with 4-piperidinebutyrate to make acylenzyme 2FS8 ; 2.5 ; Human beta-tryptase II with inhibitor CRA-29382 1A0L ; 3.0 ; HUMAN BETA-TRYPTASE: A RING-LIKE TETRAMER WITH ACTIVE SITES FACING A CENTRAL PORE 5UUP ; 1.726 ; Human Bfl-1 covalently cross-linked to an electrophilic variant of a Bfl-1-specific selected peptide 5UUK ; 1.199 ; Human Bfl-1 in complex with a Bfl-1-specific selected peptide 5UUL ; 1.33 ; Human Bfl-1 in complex with PUMA BH3 6E3J ; 1.482 ; Human Bfl-1 in complex with the Bfl-1-specific designed peptide srt.F10 6E3I ; 1.481 ; Human Bfl-1 in complex with the Bfl-1-specific designed peptide srt.F4 6MBB ; 1.59 ; Human Bfl-1 in complex with the designed peptide dF1 6MBC ; 1.752 ; Human Bfl-1 in complex with the designed peptide dF4 8PM6 ; 3.22 ; Human bile salt export pump (BSEP) in complex with inhibitor GBM in nanodiscs 7DV5 ; 3.7 ; Human bile salt exporter ABCB11 in complex with taurocholate 7E1A ; 3.66 ; Human bile salt exporter ABCB11 in complex with taurocholate 6OPL ; 1.37 ; Human biliverdin IX beta reductase Q14R mutant: NADP complex 1HDO ; 1.15 ; Human biliverdin IX beta reductase: NADP complex 1HE2 ; 1.2 ; Human biliverdin IX beta reductase: NADP/biliverdin IX alpha ternary complex 5OOH ; 1.2 ; Human biliverdin IX beta reductase: NADP/Erythrosin extra bluish ternary complex 1HE4 ; 1.4 ; Human biliverdin IX beta reductase: NADP/FMN ternary complex 1HE5 ; 1.5 ; Human biliverdin IX beta reductase: NADP/Lumichrome ternary complex 1HE3 ; 1.4 ; Human biliverdin IX beta reductase: NADP/mesobiliverdin IV alpha ternary complex 5OOG ; 1.33 ; Human biliverdin IX beta reductase: NADP/Phloxine B ternary complex 2VM5 ; 1.8 ; HUMAN BIR2 DOMAIN OF BACULOVIRAL INHIBITOR OF APOPTOSIS REPEAT- CONTAINING 1 (BIRC1) 2UVL ; 1.91 ; Human BIR3 domain of Baculoviral Inhibitor of Apoptosis Repeat- Containing 3 (BIRC3) 7N3S ; 2.48 ; Human bisphosphoglycerate mutase complex with 2-phosphoglycolate 2H4X ; 1.85 ; Human bisphosphoglycerate mutase complex with 3-phosphoglycerate with crystal growth 90 days 2H4Z ; 2.0 ; Human bisphosphoglycerate mutase complexed with 2,3-bisphosphoglycerate 2HHJ ; 1.5 ; Human bisphosphoglycerate mutase complexed with 2,3-bisphosphoglycerate (15 days) 7THI ; 1.33 ; Human Bisphosphoglycerate Mutase complexed with 2-phosphoglycolate 2A9J ; 2.0 ; Human bisphosphoglycerate mutase complexed with 3-phosphoglycerate (17 days) 6ND0 ; 3.5 ; human BK channel reconstituted into liposomes 2CB5 ; 1.85 ; HUMAN BLEOMYCIN HYDROLASE, C73S/DELE455 MUTANT 1CB5 ; 2.59 ; HUMAN BLEOMYCIN HYDROLASE. 6OML ; 2.7 ; Human BMP chimera BV261 6OMO ; 2.8 ; Human BMP6 homodimer 7L0Y ; 2.54 ; Human Bocavirus 1 (pH 2.6) 7L0W ; 2.74 ; Human Bocavirus 1 (pH 5.5) 7L0X ; 2.51 ; Human Bocavirus 2 (pH 2.6) 7L0U ; 2.74 ; Human Bocavirus 2 (pH 5.5) 7L0V ; 2.71 ; Human Bocavirus 2 (pH 7.4) 5US7 ; 2.8 ; Human bocavirus 3 5US9 ; 3.0 ; Human bocavirus 4 3BMP ; 2.7 ; HUMAN BONE MORPHOGENETIC PROTEIN-2 (BMP-2) 8DNO ; 3.4 ; Human Brain Aldehyde Dehydrogenase 1 family, member A1 2O4H ; 2.7 ; Human brain aspartoacylase complex with intermediate analog (N-phosphonomethyl-L-aspartate) 4NFR ; 3.0 ; Human brain aspartoacylase mutant E285A complex with intermediate analog (N-phosphonomethyl-L-aspartate) 4MRI ; 2.8 ; Human brain aspartoacylase mutant F295S complex with intermediate analog (N-phosphonomethyl-L-aspartate) 4MXU ; 2.6 ; Human brain aspartoacylase mutant K213E complex with intermediate analog (N-phosphonomethyl-L-aspartate) 4TNU ; 2.9 ; Human brain aspartoacylase mutant Y231C complex with intermediate analog (N-phosphonomethyl-L-aspartate) 8DNM ; 2.76 ; Human Brain Dihydropyrimidinase-related protein 2 8DNP ; 2.69 ; Human Brain Ferritin Heavy Chain 1XFB ; 3.0 ; Human Brain Fructose 1,6-(bis)phosphate Aldolase (C isozyme) 8DNU ; 2.73 ; Human Brain Glutamine Synthetase 8DNS ; 3.22 ; Human Brain Glyceraldehyde 3-phosphate dehydrogenase 1OJ6 ; 1.95 ; Human brain neuroglobin three-dimensional structure 1KT8 ; 1.9 ; HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE (MITOCHONDRIAL): THREE DIMENSIONAL STRUCTURE OF ENZYME IN ITS KETIMINE FORM WITH THE SUBSTRATE L-ISOLEUCINE 1EKV ; 2.25 ; HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE (MITOCHONDRIAL): THREE DIMENSIONAL STRUCTURE OF ENZYME INACTIVATED BY TRIS BOUND TO THE PYRIDOXAL-5'-PHOSPHATE ON ONE END AND ACTIVE SITE LYS202 NZ ON THE OTHER. 1KTA ; 1.9 ; HUMAN BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE : THREE DIMENSIONAL STRUCTURE OF THE ENZYME IN ITS PYRIDOXAMINE PHOSPHATE FORM. 8F5F ; 3.149 ; human branched chain ketoacid dehydrogenase kinase in complex with inhibitors 8F5J ; 2.545 ; human branched chain ketoacid dehydrogenase kinase in complex with inhibitors 8F5S ; 2.793 ; human branched chain ketoacid dehydrogenase kinase in complex with inhibitors 1DTW ; 2.7 ; HUMAN BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE 2J9F ; 1.88 ; Human branched-chain alpha-ketoacid dehydrogenase-decarboxylase E1b 6FFG ; 1.59 ; Human BRD2 C-terminal bromodomain with (S)-1-(2-cyclopropyl-4-(2-(hydroxymethyl)benzyl)-6-(1,2,3,6-tetrahydropyridin-4-yl)-3,4-dihydroquinoxalin-1(2H)-yl)ethanone 6FFF ; 1.67 ; Human BRD2 C-terminal bromodomain with (S)-5-(1-acetyl-2-cyclopropyl-4-(2-(hydroxymethyl)benzyl)-1,2,3,4-tetrahydroquinoxalin-6-yl)pyrimidine-2-carboxamide 6FFE ; 1.76 ; Human BRD2 C-terminal bromodomain with 2-((4-acetyl-3-cyclopropyl-3,4-dihydroquinoxalin-1(2H)-yl)methyl)benzoic acid 6YTM ; 1.56 ; Human Brd2(BD2) L383V mutant in complex with ET-JQ1-OMe 5O3D ; 1.6 ; Human Brd2(BD2) mutant in complex with 9-ET 5O3C ; 1.6 ; Human Brd2(BD2) mutant in complex with 9-Me 5O3H ; 1.4 ; Human Brd2(BD2) mutant in complex with 9-ME-Am1 5O3B ; 1.95 ; Human Brd2(BD2) mutant in complex with AL 5O3G ; 1.85 ; Human Brd2(BD2) mutant in complex with AL-Am1 5O3I ; 1.2 ; Human Brd2(BD2) mutant in complex with AL-tBu 5O3A ; 2.4 ; Human Brd2(BD2) mutant in complex with ET 5O3F ; 1.75 ; Human Brd2(BD2) mutant in complex with ET-Am1 5O39 ; 1.74 ; Human Brd2(BD2) mutant in complex with ME 5O3E ; 1.4 ; Human Brd2(BD2) mutant in complex with Me-Am1 5O38 ; 1.2 ; Human Brd2(BD2) mutant in free form 8B5A ; 1.92 ; Human BRD3 bromodomain 2 in complex with a H4 peptide containing ApmTri (H4K20ApmTri) 8B5B ; 1.92 ; Human BRD4 bromdomain 1 in complex with a H4 peptide containing acetyl lysine and ApmTri (H4K5acK8ApmTri) 8B5C ; 1.58 ; Human BRD4 bromdomain 1 in complex with a H4 peptide containing ApmTri (H4K5/8ApmTri) 6FFD ; 1.83 ; Human BRD4 C-terminal bromodomain with 1-(4-(3-methylbenzyl)-3,4-dihydroquinoxalin-1(2H)-yl)ethanone 2N3K ; ; Human Brd4 ET domain in complex with MLV Integrase C-term 5C6S ; 1.3 ; Human Bromodomain and PHD Finger Containing 1, PWWP domain in complex with XST005904a 6S9I ; 2.598 ; Human Brr2 Helicase Region D534C/N1866C in complex with C-tail deleted Jab1 6S8Q ; 2.391 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 7BDK ; 2.52 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and ADP 7BDI ; 2.8 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and ATPgammaS 8BC8 ; 2.39 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 18 8BC9 ; 2.3 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 24 8BCA ; 2.8 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 26 8BCB ; 2.38 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 34 8BCC ; 2.35 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 39 8BCD ; 3.5 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 50 8BCE ; 2.05 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 76 8BCF ; 2.42 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 78 8BCG ; 2.39 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and compound 86 7BDL ; 2.69 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and mant-ADP 7BDJ ; 2.59 ; Human Brr2 Helicase Region in complex with C-tail deleted Jab1 and mant-ATPgammaS 8BCH ; 2.87 ; Human Brr2 Helicase Region in complex with Sulfaguanidine 6S8O ; 3.172 ; Human Brr2 Helicase Region M641C/A1582C 6EZ2 ; 2.7 ; Human butyrylcholinesterase carbamylated. 5LKR ; 2.52 ; Human Butyrylcholinesterase complexed with N-Propargyliperidines 6F7Q ; 2.6 ; Human Butyrylcholinesterase complexed with N-Propargyliperidines 6ZWI ; 1.85 ; Human butyrylcholinesterase in complex with ((6-((2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienamido)hexyl)triphenylphosphonium bromide) 6QAD ; 2.497 ; Human Butyrylcholinesterase in complex with ((S)-2-(butylamino)-N-(2-(4-(dimethylamino)cyclohexyl)ethyl)-3-(1H-indol-3-yl)propanamide 7QHD ; 2.04 ; Human Butyrylcholinesterase in complex with (S)-1-(4-((2-(1H-indol-3-yl)ethyl)carbamoyl)benzyl)-N-(3-((1,2,3,4-tetrahydroacridin-9-yl)amino)propyl)piperidine-3-carboxamide 7QHE ; 2.47 ; Human Butyrylcholinesterase in complex with (S)-1-(4-((naphthalen-1-yl)carbamoyl)benzyl)-N-(3-((1,2,3,4-tetrahydroacridin-9-yl)amino)propyl)piperidine-3-carboxamide 6QAA ; 1.897 ; Human Butyrylcholinesterase in complex with (S)-2-(butylamino)-N-(2-cycloheptylethyl)-3-(1H-indol-3-yl)propanamide 6QAC ; 2.771 ; Human Butyrylcholinesterase in complex with (S)-2-(butylamino)-N-(3-cycloheptylpropyl)-3-(1H-indol-3-yl)propanamide 6QAB ; 2.49 ; Human Butyrylcholinesterase in complex with (S)-N-(1-((2-cycloheptylethyl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)-N,N-dimethylbutan-1-aminium 6QAE ; 2.487 ; Human Butyrylcholinesterase in complex with (S)-N2-butyl-N1-(2-cycloheptylethyl)-3-(1H-indol-3-yl)-N1,N2-dimethylpropane-1,2-diamine 7QBQ ; 2.49 ; Human butyrylcholinesterase in complex with (Z)-N-benzyl-1-(8-hydroxyquinolin-2-yl)methanimine oxide 7QBR ; 2.13 ; Human butyrylcholinesterase in complex with (Z)-N-tert-butyl-1-(8-(3-(4-(prop-2-yn-1-yl)piperazin-1-yl)propoxy)quinolin-2-yl)methanimine oxide 8AM2 ; 2.5 ; Human butyrylcholinesterase in complex with 2,2'-(((1E,1'E)-(2-phenylpyrimidine-4,6-diyl)bis(methaneylylidene))bis(hydrazin-1-yl-2-ylidene))bis(N,N,N-trimethyl-2-oxoethan-1-aminium) 6T9P ; 2.7 ; Human Butyrylcholinesterase in complex with 2-(N-hydroxyimino)-N-[(1R)-3-{4-[(2-methyl-1H-imidazol-1-yl)methyl]-1H-1,2,3-triazol-1-yl}-1- phenylpropyl]acetamide 6T9S ; 2.7 ; Human Butyrylcholinesterase in complex with 2-(N-hydroxyimino)-N-[(1S)-3-{4-[(2-methyl-1H-imidazol-1-yl)methyl]-1H-1,2,3-triazol-1-yl}-1- phenylpropyl]acetamide 7BO4 ; 2.401 ; Human Butyrylcholinesterase in complex with 3-(2-(butyl(2-cycloheptylethyl)amino)ethyl)-1H-indol-6-ol 7BGC ; 2.4 ; human butyrylcholinesterase in complex with a tacrine-methylanacardate hybrid inhibitor 6EP4 ; 2.30005 ; Human butyrylcholinesterase in complex with decamethonium 6EQP ; 2.34942 ; Human butyrylcholinesterase in complex with ethopropazine 6EQQ ; 2.4 ; Human butyrylcholinesterase in complex with huprine 19 4TPK ; 2.7 ; Human butyrylcholinesterase in complex with N-((1-(2,3-dihydro-1H-inden-2-yl)piperidin-3-yl)methyl)-N-(2-methoxyethyl)-2-naphthamide 7BO3 ; 2.2 ; Human Butyrylcholinesterase in complex with N-(2-(1H-Indol-3-yl)ethyl)-2-cycloheptyl-N-methylethan-1-amine 6ESJ ; 2.97985 ; Human butyrylcholinesterase in complex with propidium 4BDS ; 2.1 ; Human butyrylcholinesterase in complex with tacrine 6I0C ; 2.675 ; Human butyrylcholinesterase in complex with the R enantiomer of a chlorotacrine-tryptophan multi-target inhibitor. 6I0B ; 2.384 ; Human butyrylcholinesterase in complex with the S enantiomer of a chlorotacrine-tryptophan multi-target inhibitor. 6ESY ; 2.8 ; Human butyrylcholinesterase in complex with thioflavine T 8AM1 ; 2.53 ; Human butyrylcholinesterase in complex with zinc and N,N,N-trimethyl-2-oxo-2-(2-(pyridin-2-ylmethylene)hydrazineyl)ethan-1-aminium 6ZYM ; 3.4 ; Human C Complex Spliceosome - High-resolution CORE 7A5P ; 5.0 ; Human C Complex Spliceosome - Medium-resolution PERIPHERY 1AA9 ; ; HUMAN C-HA-RAS(1-171)(DOT)GDP, NMR, MINIMIZED AVERAGE STRUCTURE 5T01 ; 1.89 ; Human c-Jun DNA binding domain homodimer in complex with methylated DNA 3A4P ; 2.54 ; human c-MET kinase domain complexed with 6-benzyloxyquinoline inhibitor 2WD1 ; 2.0 ; Human c-Met Kinase in complex with azaindole inhibitor 3F66 ; 1.4 ; Human c-Met Kinase in complex with quinoxaline inhibitor 1GNH ; 3.0 ; HUMAN C-REACTIVE PROTEIN 1B09 ; 2.5 ; HUMAN C-REACTIVE PROTEIN COMPLEXED WITH PHOSPHOCHOLINE 2LGQ ; ; Human C30S/C59S-Cox17 mutant 2QKI ; 2.4 ; Human C3c in complex with the inhibitor compstatin 3QB5 ; 2.95 ; Human C3PO complex in the presence of MnSO4 7BI5 ; 1.74 ; Human CA II in complex with benzyl alcohol 4ITO ; 1.162 ; Human CA II inhibition by novel sulfonamide 3R16 ; 1.6 ; Human CAII bound to N-(4-sulfamoylphenyl)-2-(thiophen-2-yl) acetamide 1AUI ; 2.1 ; HUMAN CALCINEURIN HETERODIMER 6WU5 ; 1.88 ; Human Calcium and Integrin Binding Protein 3 6WUD ; 1.84 ; Human Calcium and Integrin Binding Protein 3 Bound to TMC1 Residues 303-347 6WU7 ; 1.84 ; Human Calcium and Integrin Binding Protein 3 E150Q K151H 7DTT ; 3.8 ; Human Calcium-Sensing Receptor bound with calcium ions 8WPG ; 2.7 ; Human calcium-sensing receptor bound with cinacalcet in detergent 7DTU ; 4.4 ; Human Calcium-Sensing Receptor bound with L-Trp 7DTV ; 3.5 ; Human Calcium-Sensing Receptor bound with L-Trp and calcium ions 7DTW ; 4.5 ; Human Calcium-Sensing Receptor in the inactive close-close conformation 8WPU ; 3.1 ; Human calcium-sensing receptor(CaSR) bound to cinacalcet in complex with Gq protein 6SZ5 ; 2.23 ; Human calmodulin bound to a peptide of human NADPH oxidase 5 4WQ3 ; 1.79 ; Human calpain PEF(S) with (2Z,2Z')-2,2'-disulfanediylbis(3-(6-bromoindol-3-yl)acrylic acid) bound 5D69 ; 1.97 ; Human calpain PEF(S) with (2Z,2Z')-2,2'-disulfanediylbis(3-(6-iodoindol-3-yl)acrylic acid) bound 4WQ2 ; 1.64 ; Human calpain PEF(S) with (Z)-3-(6-bromondol-3-yl)-2-mercaptoacrylic acid bound 1ZCM ; 2.0 ; Human calpain protease core inhibited by ZLLYCH2F 6CMJ ; 2.4 ; Human CAMKK2 with GSK650393 3NX8 ; 2.0 ; human cAMP dependent protein kinase in complex with phenol 3OOG ; 2.0 ; human cAMP-dependent protein kinase in complex with a small fragment 3OVV ; 1.58 ; Human cAMP-dependent protein kinase in complex with an inhibitor 3OWP ; 1.88 ; Human cAMP-dependent protein kinase in complex with an inhibitor 3OXT ; 2.2 ; Human cAMP-dependent protein kinase in complex with an inhibitor 3P0M ; 2.03 ; Human cAMP-dependent protein kinase in complex with an inhibitor 3POO ; 1.6 ; human cAMP-dependent protein kinase in complex with an inhibitor 2KOE ; ; Human cannabinoid receptor 1 - helix 7/8 peptide 2KI9 ; ; Human cannabinoid receptor-2 helix 6 6FEC ; 6.3 ; Human cap-dependent 48S pre-initiation complex 5T74 ; 1.2 ; Human carboanhydrase F131C_C206S double mutant in complex with 14 5T72 ; 1.3 ; Human carboanhydrase F131C_C206S double mutant in complex with 2 5T71 ; 1.3 ; Human carboanhydrase F131C_C206S double mutant in complex with SA-2 3MZC ; 1.498 ; Human carbonic ahydrase II in complex with a benzenesulfonamide inhibitor 6UGN ; 1.406 ; Human Carbonic Anhydrase 2 complexed with SB4-205 6UGP ; 1.306 ; Human Carbonic Anhydrase 2 complexed with SB4-206 6UGR ; 1.307 ; Human Carbonic Anhydrase 2 complexed with SB4-208 6UH0 ; 1.306 ; Human Carbonic Anhydrase 2 in complex with SB4-202 7MU3 ; 1.35 ; human carbonic anhydrase 9 mimic with compound 3P5L ; 1.498 ; Human Carbonic Anhydrase complexed with sodium 4-cyano-4-phenylpiperidine-1-carbodithioate 3P5A ; 1.49 ; Human Carbonic Anhydrase complexed with Sodium morpholinocarbodithioate 8CDZ ; 1.44 ; human carbonic anhydrase I complexed with 4-(3-butylureido)benzenesulfonamide 8CDX ; 1.335 ; Human carbonic anhydrase I complexed with 4-(3-ethylureido)benzenesulfonamide 2FOY ; 1.55 ; Human Carbonic Anhydrase I complexed with a two-prong inhibitor 8BOE ; 1.55 ; Human Carbonic Anhydrase I in complex with (S)-4-(3-(1-(6-nitropyridin-2-yl)pyrrolidin-3-yl)thioureido)benzenesulfonamide 7QOB ; 1.8 ; Human Carbonic Anhydrase I in complex with benzoselenoate 7PLF ; 1.461 ; Human Carbonic Anhydrase I in complex with clorsulon 7Q0D ; 1.24 ; Human carbonic anhydrase I in complex with Methyl 2-(benzenesulfonyl)-4-chloro-5-sulfamoylbenzoate 3LXE ; 1.9 ; Human Carbonic Anhydrase I in complex with topiramate 5JG3 ; 1.21 ; Human carbonic anhydrase II (121T/N67Q) complexed with benzo[d]thiazole-2-sulfonamide 5JDV ; 1.34 ; Human carbonic anhydrase II (F131W) complexed with benzo[d]thiazole-2-sulfonamide 5JE7 ; 1.15 ; Human carbonic anhydrase II (F131Y) complexed with benzo[d]thiazole-2-sulfonamide 5JGT ; 1.1 ; Human carbonic anhydrase II (F131Y/L198A) complexed with 1,3-thiazole-2-sulfonamide 5JGS ; 1.11 ; Human carbonic anhydrase II (F131Y/L198A) complexed with benzo[d]thiazole-2-sulfonamide 8R1I ; 1.46 ; Human Carbonic Anhydrase II (hCAII) in complex with (R)-N-(3-Indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide 5JEH ; 1.13 ; Human carbonic anhydrase II (L198A) complexed with benzo[d]thiazole-2-sulfonamide 5JEP ; 1.19 ; Human carbonic anhydrase II (T199S) complexed with benzo[d]thiazole-2-sulfonamide 5JEG ; 1.19 ; Human carbonic anhydrase II (V121I) complexed with benzo[d]thiazole-2-sulfonamide 5JES ; 1.205 ; Human carbonic anhydrase II (V121T) complexed with benzo[d]thiazole-2-sulfonamide 5JG5 ; 1.19 ; Human carbonic anhydrase II (V121T/F131Y) complexed with benzo[d]thiazole-2-sulfonamide 3OKV ; 1.45 ; Human Carbonic Anhydrase II A65S, N67Q (CA IX mimic) bound with 2-Ethylestrone 3-O-sulfamate 3ZP9 ; 1.31 ; Human Carbonic Anhydrase II as a Scaffold for an Artificial Transfer Hydrogenase 3PYK ; 1.3 ; Human Carbonic Anhydrase II as Host for Pianostool Complexes Bearing a Sulfonamide Anchor 6T4N ; 1.4 ; Human Carbonic anhydrase II bound by 2,4,6-trimethylbenzenesulfonamide 3OIM ; 1.45 ; Human Carbonic anhydrase II bound by 2-Ethylestradiol 3-O-sulfamate 6T81 ; 0.98 ; Human Carbonic anhydrase II bound by 2-Naphthalenesulfonamide. 6T4O ; 1.133 ; Human Carbonic anhydrase II bound by 3,5-dimethylbenzenesulfonamide 6T5C ; 1.22 ; Human Carbonic anhydrase II bound by anthracene-9-sulfonamide 6T4P ; 1.75 ; Human Carbonic anhydrase II bound by napthalene-1-sulfonamide 8EXG ; 1.99 ; Human Carbonic Anhydrase II bound N-(2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethyl)-4-sulfamoylbenzamide 8EXC ; 1.9 ; Human Carbonic Anhydrase II bound tert-butyl (3-(4-(3-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)propoxy)butoxy)propyl)carbamate 7QNV ; 1.278 ; human carbonic anhydrase II bound to 3-methylbenzoselenoate 6WKA ; 1.34 ; human carbonic anhydrase II bound to an inhibitor modified with azidothymidine 3D92 ; 1.1 ; Human carbonic anhydrase II bound with substrate carbon dioxide 3OY0 ; 1.6 ; Human Carbonic Anhydrase II complexed with 1-(4-(4-(2-(ISOPROPYLSULFONYL)PHENYLAMINO)-1H-PYRROLO[2,3-B]PYRIDIN-6-YLAMINO)-3-METHOXYPHENYL)PIPERIDIN-4-OL 3OYS ; 1.538 ; Human Carbonic Anhydrase II complexed with 2-{[4-AMINO-3-(3-HYDROXYPROP-1-YN-1-YL)-1H-PYRAZOLO[3,4-D]PYRIMIDIN-1-YL]METHYL}-5-METHYL-3-(2-METHYLPHENYL)QUINAZOLIN-4(3H)-ONE 1TTM ; 1.95 ; Human carbonic anhydrase II complexed with 667-coumate 5EKH ; 1.34 ; Human Carbonic Anhydrase II complexed with a two-faced guest 5EKJ ; 1.129 ; Human Carbonic Anhydrase II complexed with a two-faced guest 5EKM ; 1.33 ; Human Carbonic Anhydrase II complexed with a two-faced guest 5WG7 ; 1.45 ; Human Carbonic Anhydrase II complexed with AceK 3HS4 ; 1.1 ; Human carbonic anhydrase II complexed with acetazolamide 3L14 ; 1.22 ; Human Carbonic Anhydrase II complexed with Althiazide 4YX4 ; 1.01 ; Human Carbonic Anhydrase II complexed with an inhibitor with a benzenesulfonamide group (1). 4YXI ; 0.96 ; Human Carbonic Anhydrase II complexed with an inhibitor with a benzenesulfonamide group (2). 4YXO ; 1.06 ; Human Carbonic Anhydrase II complexed with an inhibitor with a benzenesulfonamide group (3). 4YXU ; 1.08 ; Human Carbonic Anhydrase II complexed with an inhibitor with a benzenesulfonamide group (4). 4YYT ; 1.07 ; Human Carbonic Anhydrase II complexed with an inhibitor with a benzenesulfonamide group (5). 1A42 ; 2.25 ; HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH BRINZOLAMIDE 3CYU ; 1.7 ; Human Carbonic Anhydrase II complexed with Cryptophane biosensor and xenon 1KWR ; 2.25 ; HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH INHIBITOR 0134-36 1KWQ ; 2.6 ; HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH INHIBITOR 2000-07 3RJ7 ; 1.2 ; Human carbonic anhydrase II complexed with its inhibitor rhenium(I)triscarbonyl-cyclopentadienyl-carboxy-4-aminomethylbenzene-sulfonamide 1AVN ; 2.0 ; HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH THE HISTAMINE ACTIVATOR 3QYK ; 1.469 ; Human Carbonic Anhydrase II complexed with triple ring benzene sulfonamide inhibitor 2FOQ ; 1.25 ; Human Carbonic Anhydrase II complexed with two-prong inhibitors 2FOS ; 1.1 ; Human Carbonic Anhydrase II complexed with two-prong inhibitors 2FOU ; 0.99 ; Human Carbonic Anhydrase II complexed with two-prong inhibitors 2FOV ; 1.15 ; Human Carbonic Anhydrase II complexed with two-prong inhibitors 1BV3 ; 1.85 ; HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH UREA 8Q0C ; 1.3 ; Human carbonic anhydrase II containing 3-fluorotyrosine 8PHL ; 1.3 ; Human carbonic anhydrase II containing 4-fluorophenylalanine 8P6U ; 1.3 ; Human carbonic anhydrase II containing 5-fluorotryptophanes 8B29 ; 1.7 ; Human carbonic anhydrase II containing 6-fluorotryptophanes. 5T75 ; 1.5 ; Human carbonic anhydrase II G132C_C206S double mutant in complex with SA-2 4FIK ; 1.2 ; Human carbonic anhydrase II H64A complexed with thioxolone hydrolysis products 4JSW ; 1.9 ; Human carbonic anhydrase II H94C 4JSS ; 1.5 ; Human carbonic anhydrase II H94D bound to a bidentate inhibitor 8EMU ; 1.13 ; Human Carbonic Anhydrase II Heterobifunctional Degraders 3MWO ; 1.4 ; Human carbonic anhydrase II in a doubled monoclinic cell: a re-determination 3P4V ; 2.0 ; Human carbonic anhydrase II in complex with (+)-Xylariamide A 3HKN ; 1.8 ; Human carbonic anhydrase II in complex with (2,3,4,6-Tetra-O-acetyl-beta-D-galactopyranosyl) -(1-4)-1,2,3,6-tetra-O-acetyl-1-thio-beta-D-glucopyranosylsulfonamide 6SDJ ; 1.02 ; Human Carbonic Anhydrase II in complex with (R)-1-aminopropan-2-ol 6SDL ; 1.08 ; Human Carbonic Anhydrase II in complex with (R)-N-(3-(1H-indol-1-yl)-2-methylpropyl)-4-sulfamoylbenzamide 7M24 ; 1.3 ; Human carbonic anhydrase II in complex with (R)-rosiglitazone 3HKQ ; 1.7 ; Human carbonic anhydrase II in complex with 1-S-D-Galactopyranosylsulfonamide 7AEQ ; 1.5 ; Human carbonic anhydrase II in complex with 2,3,5,6-tetrafluoro-4-(2-hydroxyethylsulfanyl)-N-methyl-benzenesulfonamide 7AES ; 1.4 ; Human carbonic anhydrase II in complex with 2,3,5,6-tetrafluoro-N-methyl-4-propylsulfanyl-benzenesulfonamide 3NB5 ; 1.8 ; Human carbonic anhydrase II in complex with 2-(3-chloro-4-hydroxyphenyl)-N-(4-sulfamoylphenethyl)acetamide 3OKU ; 1.45 ; Human Carbonic Anhydrase II in complex with 2-Ethylestrone-3-O-sulfamate 6RIT ; 1.007 ; Human Carbonic Anhydrase II in complex with 2-Fluorobenzenesulfonamide 7QGY ; 1.5 ; Human carbonic anhydrase II in complex with 3-((5-(ethoxycarbonyl)-4-methylthiazol-2-yl)(4-sulfamoylphenyl)amino)propanoic acid 7QGX ; 1.19 ; Human carbonic anhydrase II in complex with 3-((5-chloro-4-(4-chlorophenyl)thiazol-2-yl)(4-sulfamoylphenyl)amino)propanoic acid 8OGF ; 1.321 ; Human Carbonic Anhydrase II in complex with 4-(((1-(3-((3aR,7R,7aS)-7-hydroxy-2,2-dimethyltetrahydro-[1,3]dioxolo[4,5-c]pyridin-5(4H)-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)amino)benzenesulfonamide 7ZWB ; 1.48 ; human Carbonic Anhydrase II in complex with 4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)benzenesulfonamide 7AGN ; 1.15 ; Human carbonic anhydrase II in complex with 4-(2-aminoethylsulfanyl)-2,3,5,6-tetrafluoro-N-methyl-benzenesulfonamide 6RG5 ; 1.089 ; Human Carbonic Anhydrase II in complex with 4-(2-hydroxyethyl)benzenesulfonamide 7A6V ; 2.0 ; Human Carbonic Anhydrase II in complex with 4-(3-(3-phenoxypropyl)thioureido)benzenesulfonamide 4RFD ; 1.631 ; Human carbonic anhydrase II in complex with 4-(4-sulfamoyl-phenoxy)-butylammonium 6SBM ; 0.95 ; Human Carbonic Anhydrase II in complex with 4-(pentyloxy)benzenesulfonamide 6RL9 ; 1.0 ; Human Carbonic Anhydrase II in complex with 4-Aminobenzenesulfonamide 6HXD ; 1.119 ; Human Carbonic Anhydrase II in complex with 4-Butylbenzenesulfonamide 6I3E ; 1.07 ; Human Carbonic Anhydrase II in complex with 4-Butylbenzenesulfonamide 6RFH ; 0.969 ; Human Carbonic Anhydrase II in complex with 4-Carboxybenzenesulfonamide 6ROB ; 0.929 ; Human Carbonic Anhydrase II in complex with 4-cyanobenzenesulfonamide 6I1U ; 1.08 ; Human Carbonic Anhydrase II in complex with 4-Ethoxybenzenesulfonamide 6HQX ; 1.097 ; Human Carbonic Anhydrase II in complex with 4-Ethylbenzenesulfonamide 6SBL ; 0.94 ; Human Carbonic Anhydrase II in complex with 4-hexylbenzenesulfonamide 6RIG ; 0.999 ; Human Carbonic Anhydrase II in complex with 4-Hydroxybenzenesulfonamide 6I0W ; 1.04 ; Human Carbonic Anhydrase II in complex with 4-Methoxybenzenesulfonamide 6GM9 ; 1.089 ; Human Carbonic Anhydrase II in complex with 4-Methylbenzenesulfonamide 6RH4 ; 0.948 ; Human Carbonic Anhydrase II in complex with 4-Nitrobenzenesulfonamide. 7R1X ; 1.35 ; human Carbonic Anhydrase II in complex with 4-oxo-N-(4-sulfamoylphenethyl)-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinoline-2-carbothioamide 7QZX ; 1.24 ; Human Carbonic Anhydrase II in complex with 4-oxo-N-(4-sulfamoylphenethyl)-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinoline-2-carboxamide 7YWT ; 1.106 ; human Carbonic Anhydrase II in complex with 4-oxo-N-(4-sulfamoylphenyl)-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinoline-2-carboxamide 6SBH ; 0.95 ; Human Carbonic Anhydrase II in complex with 4-pentylbenzenesulfonamide. 6I2F ; 1.198 ; Human Carbonic Anhydrase II in complex with 4-Propoxybenzenesulfonamide 6HR3 ; 1.02 ; Human Carbonic Anhydrase II in complex with 4-Propylbenzenesulfonamide 4XE1 ; 1.8 ; Human carbonic anhydrase II in complex with 6-SULFAMOYL-SACCHARIN 4R5B ; 1.5 ; Human Carbonic Anhydrase II in Complex with a Carbohydrate-Based Sulfamate 6RKN ; 0.959 ; Human Carbonic Anhydrase II in complex with a fluorinated Benzenesulfonamide. 6SFU ; 1.04 ; Human Carbonic Anhydrase II in complex with a furan-containing benzenesulfonamide 4ZWY ; 1.5 ; Human Carbonic Anhydrase II in complex with a glucosyl sulfamate inhibitor 4ZX0 ; 1.6 ; Human Carbonic Anhydrase II in complex with a glucosyl sulfamate inhibitor 6SDS ; 1.26 ; HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH A SULFONAMIDE INHIBITOR 3T82 ; 2.002 ; Human Carbonic Anhydrase II in complex with Acetylated Carbohydrate Sulfamates 3T83 ; 1.8 ; Human Carbonic Anhydrase II in complex with Acetylated Carbohydrate Sulfamates 3T84 ; 2.0 ; Human Carbonic Anhydrase II in complex with Acetylated Carbohydrate Sulfamates 3T85 ; 2.4 ; Human Carbonic Anhydrase II in complex with Acetylated Carbohydrate Sulfamates 5LL8 ; 1.03 ; Human Carbonic Anhydrase II in complex with aliphatic Benzenesulfonamide inhibitor. 6SEY ; 1.23 ; Human Carbonic Anhydrase II in complex with aliphatically substituted benzenesulfonamide 3HKT ; 2.36 ; Human carbonic anhydrase II in complex with alpha-D-Glucopyranosyl-(1->4)-1-thio-beta-D-glucopyranosylsulfonamide 6SDI ; 1.03 ; Human Carbonic Anhydrase II in complex with an inhibitor soaked at a concentration of 0.01 mM 6SDH ; 1.04 ; Human Carbonic Anhydrase II in complex with an inhibitor soaked at a concentration of 5 mM 6GDC ; 1.079 ; Human Carbonic Anhydrase II in complex with Benzenesulfonamide 6H29 ; 1.46 ; HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH BENZYL CARBAMATE 2VVB ; 1.66 ; Human carbonic anhydrase II in complex with bicarbonate 4M2R ; 1.993 ; Human Carbonic Anhydrase II in complex with Brinzolamide 4E5Q ; 1.7024 ; Human Carbonic Anhydrase II in complex with cyanate 6RJJ ; 1.056 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RNP ; 1.07 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6ROE ; 0.939 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RQI ; 0.95 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RRG ; 1.127 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RRI ; 1.097 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RS5 ; 1.07 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6RSZ ; 1.089 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6S9G ; 1.14 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide 6SD7 ; 1.05 ; Human Carbonic Anhydrase II in complex with fluorinated benzenesulfonamide and its dimer 5M78 ; 1.077 ; Human Carbonic Anhydrase II in complex with fragment-like inhibitor. 6RM1 ; 1.68 ; Human Carbonic Anhydrase II in complex with fragment. 6RMP ; 1.22 ; Human Carbonic Anhydrase II in complex with fragment. 6SAS ; 1.1 ; Human Carbonic Anhydrase II in complex with fragment. 6SAY ; 0.95 ; Human Carbonic Anhydrase II in complex with fragment. 6SB7 ; 1.09 ; Human Carbonic Anhydrase II in complex with fragment. 6SG6 ; 0.98 ; Human Carbonic Anhydrase II in complex with furan-containing benzenesulfonamide 7QSI ; 1.304 ; human Carbonic Anhydrase II in complex with indoline-1-sulfonamide 5EH5 ; 1.207 ; human carbonic anhydrase II in complex with ligand 5EH7 ; 1.425 ; human carbonic anhydrase II in complex with ligand 5EH8 ; 1.381 ; human carbonic anhydrase II in complex with ligand 5EHV ; 1.208 ; human carbonic anhydrase II in complex with ligand 5EHW ; 1.392 ; human carbonic anhydrase II in complex with ligand 5J8Z ; 1.7 ; Human carbonic anhydrase II in complex with ligand 7Q0E ; 1.3 ; Human Carbonic Anhydrase II in complex with Methyl 2-(benzenesulfonyl)-4-chloro-5-sulfamoylbenzoate 7QGZ ; 1.13 ; Human carbonic anhydrase II in complex with Methyl 3-((4-methylthiazol-2-yl)(4-sulfamoylphenyl)amino)propanoate 7QSE ; 1.428 ; human Carbonic Anhydrase II in complex with N-(2-aminophenyl)-4-((2-oxo-2-((4-sulfamoylbenzyl)amino)ethyl)amino)benzamide 7QRK ; 1.428 ; Human Carbonic Anhydrase II in complex with N-(2-aminophenyl)-4-((2-oxo-2-((4-sulfamoylphenethyl)amino)ethyl)amino)benzamide 2EU2 ; 1.15 ; Human Carbonic Anhydrase II in complex with novel inhibitors 2EU3 ; 1.6 ; Human Carbonic anhydrase II in complex with novel inhibitors 3P55 ; 2.0 ; Human carbonic anhydrase II in complex with p-(4-ferrocenyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 3P44 ; 2.2 ; Human carbonic anhydrase II in complex with p-(4-ruthenocenyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 3P3H ; 1.5 ; Human carbonic anhydrase II in complex with p-(5-ferrocenyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 3P3J ; 1.6 ; Human carbonic anhydrase II in complex with p-(5-ruthenocenyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 7M26 ; 1.3 ; Human carbonic anhydrase II in complex with pioglitazone 4RFC ; 1.645 ; Human carbonic anhydrase II in complex with tert-butyl 4-(4-sulfamoylphenoxy)butylcarbamate 3HKU ; 1.8 ; Human carbonic anhydrase II in complex with topiramate 7M23 ; 1.3 ; Human carbonic anhydrase II in complex with troglitazone 3OIK ; 1.5 ; Human Carbonic anhydrase II mutant A65S, N67Q (CA IX mimic) bound by 2-Ethylestradiol 3,17-O,O-bis-sulfamate 3OIL ; 1.5 ; Human Carbonic anhydrase II mutant A65S, N67Q (CA IX mimic) bound by 2-Ethylestradiol 3-O-sulfamate 3MNH ; 1.65 ; Human Carbonic Anhydrase II Mutant K170A 3MNI ; 1.75 ; Human Carbonic Anhydrase II Mutant K170D 3MNJ ; 1.75 ; Human Carbonic Anhydrase II Mutant K170E 3MNK ; 1.75 ; Human Carbonic Anhydrase II Mutant K170H 6ROF ; 1.5 ; Human Carbonic anhydrase II mutant T199V bound by 2-(cyclooctylamino)-3,5,6-trifluoro-4-[(2-hydroxyethyl)thio]benzenesulfonamide 6RMX ; 1.6 ; Human Carbonic anhydrase II mutant T199V bound by 2-[(1S)-2,3-Dihydro-1H-inden-1-ylamino]-3,5,6-trifluoro-4-[(2-hydroxyethyl)thio]benzenesulfonamide 6RMY ; 1.5 ; Human Carbonic anhydrase II mutant T199V bound by 3-(cyclooctylamino)-2,5,6-trifluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide 6KM3 ; 1.15 ; Human Carbonic Anhydrase II native 00 atm CO2 6KM4 ; 1.15 ; Human Carbonic Anhydrase II native 07 atm CO2 6KM5 ; 1.151 ; Human Carbonic Anhydrase II native 13 atm CO2 6KM6 ; 1.15 ; Human Carbonic Anhydrase II native 15 atm CO2 3TVO ; 1.6 ; Human Carbonic Anhydrase II Proton Transfer Double Mutant 4IDR ; 1.6 ; Human Carbonic Anhydrase II Proton Transfer Double Mutant 3TVN ; 1.497 ; Human Carbonic Anhydrase II Proton Transfer Mutant 3U45 ; 1.699 ; Human Carbonic Anhydrase II V143A 6KLZ ; 0.9 ; Human Carbonic Anhydrase II V143I variant 00 atm CO2 6KM0 ; 0.93 ; Human Carbonic Anhydrase II V143I variant 07 atm CO2 6KM1 ; 1.05 ; Human Carbonic Anhydrase II V143I variant 13 atm CO2 6KM2 ; 0.9 ; Human Carbonic Anhydrase II V143I variant 15 atm CO2 3U47 ; 1.6 ; Human Carbonic Anhydrase II V143L 4QEF ; 1.469 ; Human Carbonic Anhydrase II V207I - cyanate inhibitor complex 3K34 ; 0.9 ; Human carbonic anhydrase II with a sulfonamide inhibitor 5BYI ; 1.15 ; Human carbonic anhydrase II with an azobenzene inhibitor (1d) 6QFX ; 1.32 ; Human carbonic anhydrase II with bound IrCp* complex (cofactor 10) to generate an artificial transfer hydrogenase (ATHase) 6QFU ; 1.8 ; Human carbonic anhydrase II with bound IrCp* complex (cofactor 7) to generate an artificial transfer hydrogenase (ATHase) 6QFV ; 1.45 ; Human carbonic anhydrase II with bound IrCp* complex (cofactor 8) to generate an artificial transfer hydrogenase (ATHase) 6QFW ; 1.2 ; Human carbonic anhydrase II with bound IrCp* complex (cofactor 9) to generate an artificial transfer hydrogenase (ATHase) 8EYL ; 1.18 ; Human Carbonic Anhydrase II with Tert-butyl (2-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethyl)carbamate 1UGC ; 2.0 ; HUMAN CARBONIC ANHYDRASE II [HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY HIS (A65H) 1UGE ; 1.9 ; HUMAN CARBONIC ANHYDRASE II [HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY LEU (A65L) 1UGF ; 2.0 ; HUMAN CARBONIC ANHYDRASE II [HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY THR (A65T) 1Z97 ; 2.1 ; Human Carbonic Anhydrase III: Structural and Kinetic Study of Catalysis and Proton Transfer. 1Z93 ; 2.1 ; Human Carbonic Anhydrase III:Structural and Kinetic study of Catalysis and Proton Transfer. 1UGB ; 2.0 ; HUMAN CARBONIC ANHYDRASE II[HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY GLY (A65G) 1UGA ; 2.0 ; HUMAN CARBONIC ANHYDRASE II[HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY PHE (A65F) 1UGD ; 2.0 ; HUMAN CARBONIC ANHYDRASE II[HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY SER (A65S) 1UGG ; 2.2 ; HUMAN CARBONIC ANHYDRASE II[HCAII] (E.C.4.2.1.1) MUTANT WITH ALA 65 REPLACED BY SER (A65S)-ORTHORHOMBIC FORM 3P58 ; 1.49 ; Human Carbonic Anhydrase in complex with Benzyl (Methyl) Carbamodithoic Acid 2VVA ; 1.56 ; Human carbonic anhydrase in complex with CO2 1ZNC ; 2.8 ; HUMAN CARBONIC ANHYDRASE IV 6VKG ; 1.37 ; Human carbonic anhydrase IX mimic with Epacadostat bound 5WGP ; 1.53 ; Human Carbonic Anhydrase IX-mimic complexed with AceK 6UGO ; 1.457 ; Human Carbonic Anhydrase IX-mimic complexed with SB4-205 6UGQ ; 1.305 ; Human Carbonic Anhydrase IX-mimic complexed with SB4-206 6UGZ ; 1.306 ; Human Carbonic Anhydrase IX-mimic complexed with SB4-208 6SDT ; 1.94 ; HUMAN CARBONIC ANHYDRASE VII IN COMPLEX WITH A SULFONAMIDE INHIBITOR 6T5P ; 1.5 ; Human Carbonic anhydrase XII bound by 3,5-Di-tert-butylbenzenesulfonamide 6T5Q ; 1.8 ; Human Carbonic anhydrase XII bound by 3,5-diphenylbenzenesulfonamide 4RN4 ; 1.53 ; Human Carbonic anhydrases II in complex with a acetazolamide derivative comprising one hydrophobic and one hydrophilic tail moiety 3ML2 ; 1.8 ; Human carbonic anhydsase II in complex with an aryl sulfonamide inhibitor 1I3D ; 1.7 ; HUMAN CARBONMONOXY HEMOGLOBIN BART'S (GAMMA4) 6HAL ; 2.2 ; Human carbonmonoxy hemoglobin SFX dataset 4Z3D ; 1.8 ; Human carbonyl reductase 1 with glutathione in a protective configuration 7PCQ ; 3.62 ; Human carboxyhemoglobin bound to Staphylococcus aureus hemophore IsdB - 1:1 complex 7PCH ; 2.89 ; Human carboxyhemoglobin bound to Staphylococcus aureus hemophore IsdB - 1:2 complex 2PCU ; 1.6 ; Human carboxypeptidase A4 in complex with a cleaved hexapeptide. 2BO9 ; 1.6 ; Human carboxypeptidase A4 in complex with human latexin. 6G2T ; 9.0 ; human cardiac myosin binding protein C C1 Ig-domain bound to native cardiac thin filament 8EFD ; 3.8 ; Human cardiac myosin II and associated essential light chain in the rigor conformation 4LWD ; 1.792 ; Human CARMA1 CARD domain 6PXO ; 2.0 ; Human Casein Kinase 1 delta (anion-free crystallization conditions) 8D7P ; 2.25 ; Human Casein kinase 1 delta in complex with phosphorylated Drosophila PERIOD peptide 8D7M ; 2.25 ; Human Casein kinase 1 delta in complex with phosphorylated human PERIOD2 FASP peptide 8D7N ; 1.66 ; Human Casein kinase 1 delta in complex with phosphorylated human PERIOD2 FASP peptide 8D7O ; 1.65 ; Human Casein kinase 1 delta in complex with phosphorylated human PERIOD2 FASP peptide 6PXP ; 2.35 ; Human Casein Kinase 1 delta Site 2 mutant (K171E) 6PXN ; 1.551 ; Human Casein Kinase 1 delta Tau mutant (R178C) 5IH5 ; 2.25 ; Human Casein Kinase 1 isoform delta (kinase domain) in complex with Epiblastin A 5IH6 ; 2.3 ; Human Casein Kinase 1 isoform delta (kinase domain) in complex with Epiblastin A derivative 5IH4 ; 1.9 ; Human Casein Kinase 1 isoform delta apo (kinase domain) 1KWA ; 1.93 ; HUMAN CASK/LIN-2 PDZ DOMAIN 3V3K ; 3.494 ; Human caspase 9 in complex with bacterial effector protein 6CL0 ; 1.5 ; Human caspase-3 in complex with Ac-ATS009-KE 6CKZ ; 1.5 ; Human caspase-3 in complex with Ac-DW3-KE 6DEU ; 2.796 ; Human caspase-6 A109T 6DEV ; 2.348 ; Human caspase-6 E35K 8F48 ; 2.9 ; Human CASQ1 mutant - S248E 5N5K ; 1.8 ; Human catalytic MMP-12 in complex with 5-(1,2-dithiolan-3-yl)-N-(3-hydroxypropyl)pentanamide 5LSA ; 1.5 ; human catechol O-methyltransferase in complex with SAM and DNC at 1.50A 1LV4 ; ; Human catestatin 21-mer 8B5F ; 1.7 ; Human cathepsin B in complex with the carbamate inhibitor 31 8B4T ; 1.45 ; Human cathepsin B in complex with the carbamate inhibitor 7 1AU8 ; 1.9 ; HUMAN CATHEPSIN G 1CGH ; 1.8 ; Human cathepsin G 5JH3 ; 1.75 ; Human cathepsin K mutant C25S 5J94 ; 2.22002 ; Human cathepsin K mutant C25S in complex with the allosteric effector NSC13345 5JA7 ; 1.61 ; Human cathepsin K mutant C25S in complex with the allosteric effector NSC94914 8C77 ; 1.7 ; Human cathepsin L after reaction with the thiocarbazate inhibitor CID 16725315 4AXL ; 1.92 ; HUMAN CATHEPSIN L APO FORM WITH ZN 8OZA ; 1.8 ; Human cathepsin L in complex with covalently bound CA-074 methyl ester 2G6D ; 2.5 ; Human cathepsin S mutant with vinyl sulfone inhibitor CRA-14009 2FRA ; 1.9 ; Human Cathepsin S with CRA-27934, a Nitrile Inhibitor 2G7Y ; 2.0 ; Human Cathepsin S with inhibitor CRA-16981 2FRQ ; 1.6 ; Human Cathepsin S with Inhibitor CRA-26871 2FUD ; 1.95 ; Human Cathepsin S with Inhibitor CRA-27566 2FT2 ; 1.7 ; Human Cathepsin S with Inhibitor CRA-29728 6IC6 ; 1.898 ; Human cathepsin-C in complex with cyclopropyl peptidyl nitrile inhibitor 1 6IC5 ; 2.0 ; Human cathepsin-C in complex with dipeptidyl cyclopropyl nitrile inhibitor 2 6IC7 ; 2.0 ; Human cathepsin-C in complex with dipeptidyl cyclopropyl nitrile inhibitor 3 6VTM ; 1.6 ; Human Cathepsin-G Inhibited by S. aureus EapH1 6Z31 ; 2.56 ; Human cation-independent mannose 6-phosphate/ IGF2 receptor domain 8 6Z30 ; 1.5 ; Human cation-independent mannose 6-phosphate/ IGF2 receptor domains 9-10 6Z32 ; 3.47 ; Human cation-independent mannose 6-phosphate/IGF2 receptor domains 7-11 7QE8 ; 2.9 ; Human cationic trypsin (TRY1) complexed with serine protease inhibitor Kazal type 1 (SPINK1) 7QE9 ; 2.1 ; Human cationic trypsin (TRY1) complexed with serine protease inhibitor Kazal type 1 N34S (SPINK1 N34S) 2RA3 ; 1.46 ; Human cationic trypsin complexed with bovine pancreatic trypsin inhibitor (BPTI) 4WWY ; 1.7 ; human cationic trypsin G193R mutant in complex with bovine pancreatic trypsin inhibitor 4WXV ; 2.1 ; Human cationic trypsin K97D mutant in complex with bovine pancreatic trypsin inhibitor (BPTI) 8F2R ; 3.12 ; Human CCC complex 8F2U ; 3.53 ; Human CCC complex 2MLQ ; ; Human CCR2 Membrane-Proximal C-Terminal Region (PRO-C) in a frount bound form 2MLO ; ; Human CCR2 Membrane-Proximal C-Terminal Region (PRO-C) in a Membrane bound form 6QB8 ; 3.97 ; Human CCT:mLST8 complex 2H26 ; 1.8 ; human CD1b in complex with endogenous phosphatidylcholine and spacer 5C9J ; 2.4 ; Human CD1c with ligands in A' and F' channel 6V7Z ; 2.75 ; Human CD1d presenting alpha-Galactosylceramide in complex with VHH nanobody 1D22 6V7Y ; 2.4 ; Human CD1d presenting alpha-Galactosylceramide in complex with VHH nanobody 1D5 8SOS ; 2.33 ; Human CD1d presenting sphingomyelin C24:1 in complex with VHH nanobody 1D17 4XJS ; 2.8 ; Human CD38 complexed with inhibitor 1 [6-fluoro-2-methyl-4-[(2,3,6-trichlorobenzyl)amino]quinoline-8-carboxamide] 4XJT ; 2.6 ; Human CD38 complexed with inhibitor 2 [4-[(2,6-dimethylbenzyl)amino]-2-methylquinoline-8-carboxamide] 8D0M ; 2.04 ; Human CD38 ectodomain bound to a 78c-ADPR adduct 8P8C ; 1.653 ; HUMAN CD38 ECTODOMAIN BOUND TO COMPOUND 9-ADPR ADDUCT 5F1K ; 2.3 ; human CD38 in complex with nanobody MU1053 5F21 ; 1.9 ; human CD38 in complex with nanobody MU375 5F1O ; 2.2 ; human CD38 in complex with nanobody MU551 6WVG ; 2.9 ; human CD53 1H03 ; 1.7 ; Human CD55 domains 3 & 4 1H04 ; 2.0 ; Human CD55 domains 3 & 4 1H2P ; 2.8 ; Human CD55 domains 3 & 4 1H2Q ; 3.0 ; Human CD55 domains 3 & 4 1UOT ; 3.0 ; HUMAN CD55 DOMAINS 3 & 4 3CCK ; 1.8 ; Human CD69 1E8I ; 1.95 ; HUMAN CD69 - TETRAGONAL FORM 1E87 ; 1.5 ; Human CD69 - trigonal form 6S7F ; 2.05 ; Human CD73 (5'-nucleotidase) in complex with PSB12379 (an AOPCP derivative) in the closed state 6S7H ; 1.85 ; Human CD73 (5'-nucleotidase) in complex with PSB12489 (an AOPCP derivative) in the closed state 6TVG ; 1.48 ; Human CD73 (ecto 5'-nucleotidase) in complex with AMPCP in the open state 7JV9 ; 2.7 ; Human CD73 (ecto 5'-nucleotidase) in complex with compound 12 7JV8 ; 2.46 ; Human CD73 (ecto 5'-nucleotidase) in complex with compound 35 7QGM ; 2.9 ; Human CD73 (ecto 5'-nucleotidase) in complex with MRS4598 (a 3-methyl-CMPCP derivative, compound 16 in paper) in the closed state (crystal form III) 7QGA ; 1.5 ; Human CD73 (ecto 5'-nucleotidase) in complex with MRS4598 (a 3-methyl-CMPCP derivative, compound 16 in paper) in the open state 7QGO ; 2.206 ; Human CD73 (ecto 5'-nucleotidase) in complex with MRS4602 (a 3-methyl-CMPCP derivative, compound 21 in paper) in the closed state (crystal form III) 7QGL ; 1.5 ; Human CD73 (ecto 5'-nucleotidase) in complex with MRS4602 (a 3-methyl-CMPCP derivative, compound 21 in paper) in the open state 6TWF ; 2.5 ; Human CD73 (ecto 5'-nucleotidase) in complex with PSB12604 (an AOPCP derivative, compound 21 in publication) in the closed state 6TWA ; 2.0 ; Human CD73 (ecto 5'-nucleotidase) in complex with PSB12646 (an AOPCP derivative, compound 20 in publication) in the closed state 6TVX ; 2.6 ; Human CD73 (ecto 5'-nucleotidase) in complex with PSB12676 (an AOPCP derivative, compound 9 in paper) in the closed state 6TW0 ; 2.5 ; Human CD73 (ecto 5'-nucleotidase) in complex with PSB12690 (an AOPCP derivative, compound 10 in publication) in the closed state 1B6E ; 2.6 ; HUMAN CD94 3BDW ; 2.5 ; Human CD94/NKG2A 3CDG ; 3.4 ; Human CD94/NKG2A in complex with HLA-E 1C25 ; 2.3 ; HUMAN CDC25A CATALYTIC DOMAIN 1QB0 ; 1.91 ; HUMAN CDC25B CATALYTIC DOMAIN 1CWT ; 2.3 ; HUMAN CDC25B CATALYTIC DOMAIN WITH METHYL MERCURY 1CWS ; 2.0 ; HUMAN CDC25B CATALYTIC DOMAIN WITH TUNGSTATE 1CWR ; 2.1 ; HUMAN CDC25B CATALYTIC DOMAIN WITHOUT ION IN CATALYTIC SITE 3RZ3 ; 2.3 ; Human Cdc34 E2 in complex with CC0651 inhibitor 2K5B ; ; Human CDC37-HSP90 docking model based on NMR 4F99 ; 2.33 ; Human CDC7 kinase in complex with DBF4 and nucleotide 4F9A ; 2.17 ; Human CDC7 kinase in complex with DBF4 and nucleotide 4F9B ; 2.5 ; Human CDC7 kinase in complex with DBF4 and PHA767491 4F9C ; 2.08 ; Human CDC7 kinase in complex with DBF4 and XL413 4Y72 ; 2.3 ; Human CDK1/CyclinB1/CKS2 With Inhibitor 2EXM ; 1.8 ; Human CDK2 in complex with isopentenyladenine 2A0C ; 1.95 ; Human CDK2 in complex with olomoucine II, a novel 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitor 5A14 ; 2.0 ; Human CDK2 with type II inhibitor 5XQX ; 2.3 ; Human CDK8-CYCC in complex with compound 4: N-methyl-4-(4-pyridyl)-1H-pyrrole-2-carboxamide 2WVR ; 3.3 ; Human Cdt1:Geminin complex 4WHD ; 2.5 ; Human CEACAM1 N-domain homodimer 4WHC ; 2.705 ; Human CEACAM6 N-domain 4WTZ ; 2.52 ; Human CEACAM6-CEACAM8 N-domain heterodimer complex 2LPW ; ; human CEB25 minisatellite G-quadruplex 6HKR ; 1.5 ; Human Cellular Retinoic Acid Binding Protein II (CRABPII) with bound synthetic retinoid DC271. 5OGB ; 1.8 ; Human Cellular Retinoic Acid Binding Protein II (CRABPII) with bound synthetic retinoid DC360. 1GGL ; 2.31 ; HUMAN CELLULAR RETINOL BINDING PROTEIN III 2GGM ; 2.35 ; Human centrin 2 xeroderma pigmentosum group C protein complex 1BW6 ; ; HUMAN CENTROMERE PROTEIN B (CENP-B) DNA BINDIGN DOMAIN RP1 5NG4 ; 2.14 ; Human CEP135 parallel dimeric coiled coil 82-144 5OI7 ; 1.67 ; Human CEP85 - coiled coil domain 4 4WZ6 ; 2.05 ; Human CFTR aa389-678 (NBD1), deltaF508 with three solubilizing mutations, bound ATP 6WBS ; 1.857 ; Human CFTR first nucleotide binding domain with dF508/V510D 8IMF ; 2.4 ; Human cGAS catalytic domain bound with baicalein 8IME ; 2.63 ; Human cGAS catalytic domain bound with baicalin 8IMG ; 1.8 ; Human cGAS catalytic domain bound with C20 6MJX ; 2.6 ; human cGAS catalytic domain bound with cGAMP 6LRI ; 2.5 ; Human cGAS catalytic domain bound with compound 17 6LRJ ; 3.0 ; Human cGAS catalytic domain bound with compound 23 6LRE ; 2.65 ; Human cGAS catalytic domain bound with compound 3 6LRK ; 2.25 ; Human cGAS catalytic domain bound with compound 40 6LRL ; 2.655 ; Human cGAS catalytic domain bound with compound s2 6MJU ; 2.45 ; human cGAS catalytic domain bound with the inhibitor G108 6MJW ; 2.405 ; human cGAS catalytic domain bound with the inhibitor G150 6LRC ; 1.831 ; Human cGAS catalytic domain bound with the inhibitor PF-06928215 6O47 ; 2.196 ; human cGAS core domain (K427E/K428E) bound with RU-521 7C0M ; 3.9 ; Human cGAS-nucleosome complex 7MBY ; 2.44 ; Human Cholecystokinin 1 receptor (CCK1R) Gq chimera (mGsqi) complex 7MBX ; 1.95 ; Human Cholecystokinin 1 receptor (CCK1R) Gs complex 5FTG ; 1.45 ; Human choline kinase a1 in complex with compound 1-[[4-[2-[4-[[4-(dimethylamino)pyridin-1- yl]methyl]phenoxy]ethoxy]phenyl]methyl]-N,N- dimethyl-pyridin-4-amine (compound 10a) 4CG9 ; 1.83 ; Human choline kinase a1 in complex with compound 12 4CG8 ; 1.75 ; Human choline kinase a1 in complex with compound 14 5FUT ; 1.6 ; Human choline kinase a1 in complex with compound 4-(dimethylamino)-1-{4-[4-(4-{[4-(pyrrolidin- 1-yl)pyridinium-1-yl]methyl}phenyl)butyl]benzyl}pyridinium (compound BR25) 4CGA ; 1.74 ; Human choline kinase a1 in complex with compound 5 2GTR ; 1.9 ; Human chromodomain Y-like protein 4AFQ ; 1.51 ; Human Chymase - Fynomer Complex 4AFS ; 1.9 ; Human Chymase - Fynomer Complex 4AFU ; 1.82 ; Human Chymase - Fynomer Complex 4AFZ ; 2.25 ; Human Chymase - Fynomer Complex 4AG1 ; 1.4 ; Human Chymase - Fynomer Complex 4AG2 ; 1.8 ; Human Chymase - Fynomer Complex 5YJP ; 1.8 ; Human chymase in complex with 3-(ethoxyimino)-7-oxo-1,4-diazepane derivative 5YJM ; 1.9 ; Human chymase in complex with 7-oxo-3-(phenoxyimino)-1,4-diazepane derivative 8IZC ; 1.45 ; Human CK1 Delta Kinase structure bound to Inhibitor 3OWK ; 1.8 ; Human CK2 catalytic domain in complex with a benzopyridoindole derivative inhibitor 3OWL ; 2.1 ; Human CK2 catalytic domain in complex with a benzopyridoindole derivative inhibitor 3MB7 ; 1.65 ; Human CK2 catalytic domain in complex with a difurane derivative inhibitor (AMR) 3MB6 ; 1.75 ; Human CK2 catalytic domain in complex with a difurane derivative inhibitor (CPA) 3OWJ ; 1.85 ; Human CK2 catalytic domain in complex with a pyridocarbazole derivative inhibitor 3NSZ ; 1.3 ; Human CK2 catalytic domain in complex with AMPPN 3NGA ; 2.71 ; Human CK2 catalytic domain in complex with CX-4945 6TLL ; 1.88 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4,5,6,7-TETRABROMOBENZOTRIAZOLE (tBBT) 6TLO ; 1.69 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4,5,6-TRIBROMOBENZOTRIAZOLE 6TLU ; 1.81 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4,5-DIBROMOBENZOTRIAZOLE 6TLS ; 1.46 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4,6-DIBROMOBENZOTRIAZOLE 6TLR ; 1.64 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4,7-DIBROMOBENZOTRIAZOLE 6TLW ; 1.73 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 4-BROMOBENZOTRIAZOLE 6TLP ; 1.93 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6-DIBROMOBENZOTRIAZOLE 6TLV ; 1.67 ; HUMAN CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5-BROMOBENZOTRIAZOLE 1CKS ; 2.1 ; HUMAN CKSHS2 ATOMIC STRUCTURE: A ROLE FOR ITS HEXAMERIC ASSEMBLY IN CELL CYCLE CONTROL 4OR2 ; 2.8 ; Human class C G protein-coupled metabotropic glutamate receptor 1 in complex with a negative allosteric modulator 1QEW ; 2.2 ; HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN (HLA-A 0201) COMPLEX WITH A NONAMERIC PEPTIDE FROM MELANOMA-ASSOCIATED ANTIGEN 3 (RESIDUES 271-279) 1DUZ ; 1.8 ; HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN (HLA-A 0201) IN COMPLEX WITH A NONAMERIC PEPTIDE FROM HTLV-1 TAX PROTEIN 3HLA ; 2.6 ; HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN A2.1 6Z9V ; 2.01 ; Human Class I Major Histocompatibility Complex, A02 allele, presenting IIGWMWIPV 6Z9W ; 2.7 ; Human Class I Major Histocompatibility Complex, A02 allele, presenting LLGWVFAQV 6Z9X ; 2.68 ; Human Class I Major Histocompatibility Complex, A02 allele, presenting LLS (t-butyl)Y FGTPT 8U9G ; 2.87 ; Human Class I MHC HLA-A2 bound to sorting nexin 24 (127-135) neoantigen KLSHQLVLL 7U21 ; 1.9 ; Human Class I MHC HLA-A2 in complex with AVGSYVYSV peptide 3QFD ; 1.68 ; Human Class I MHC HLA-A2 in complex with Mart-1(27-35) nonameric peptide 8TBV ; 2.64 ; Human Class I MHC HLA-A2 in complex with sorting nexin 24 (127-135) neoantigen KLSHQLVLL 8TBW ; 2.081 ; Human Class I MHC HLA-A2 in complex with sorting nexin 24 (127-135) peptide KLSHQPVLL 6AMT ; 2.496 ; Human Class I MHC HLA-A2 in complex with synthetic peptide MMWDRGLGMM 2GT9 ; 1.75 ; Human Class I MHC HLA-A2 in complex with the decameric Melan-A/MART-1(26-35) peptide 3PWN ; 1.6 ; Human Class I MHC HLA-A2 in complex with the HuD (G2L) peptide variant 3PWJ ; 1.7 ; Human Class I MHC HLA-A2 in complex with the HuD (G2L,I9V) peptide variant 3PWL ; 1.65 ; Human Class I MHC HLA-A2 in complex with the HuD peptide 2GIT ; 1.7 ; Human Class I MHC HLA-A2 in complex with the modified HTLV-1 TAX (Y5K-4-[3-Indolyl]-butyric acid) peptide 2GUO ; 1.9 ; Human Class I MHC HLA-A2 in complex with the native nonameric Melan-A/MART-1(27-35) peptide 2GTW ; 1.548 ; Human Class I MHC HLA-A2 in complex with the nonameric Melan-A/MART-1(27-35) peptide having A27L substitution 2GTZ ; 1.7 ; Human Class I MHC HLA-A2 in complex with the nonameric Melan-A/MART-1(27-35) peptide having A28L substitution 3O3A ; 1.8 ; Human Class I MHC HLA-A2 in complex with the Peptidomimetic ELA-1 3O3B ; 1.9 ; Human Class I MHC HLA-A2 in complex with the Peptidomimetic ELA-1.1 3O3D ; 1.7 ; Human Class I MHC HLA-A2 in complex with the Peptidomimetic ELA-2 3O3E ; 1.85 ; Human Class I MHC HLA-A2 in complex with the Peptidomimetic ELA-2.1 3H7B ; 1.88 ; Human Class I MHC HLA-A2 in complex with the Tel1p peptide 3MYJ ; 1.89 ; Human Class I MHC HLA-A2 in complex with the WT-1 (126-134) (R1Y) peptide variant. 3HPJ ; 2.0 ; Human Class I MHC HLA-A2 in complex with the WT-1 (126-134) peptide 3IXA ; 2.1 ; Human Class I MHC HLA-A2(A150P) in complex with the Tax peptide 3H9H ; 2.0 ; Human Class I MHC HLA-A2(A150P) in complex with the Tel1p peptide 1PYW ; 2.1 ; Human class II MHC protein HLA-DR1 bound to a designed peptide related to influenza virus hemagglutinin, FVKQNA(MAA)AL, in complex with staphylococcal enterotoxin C3 variant 3B2 (SEC3-3B2) 6COZ ; 3.36 ; Human CLC-1 chloride ion channel, C-terminal cytosolic domain 6COY ; 3.36 ; Human CLC-1 chloride ion channel, transmembrane domain 7FBQ ; 1.8 ; Human CLIC1 in complex with NSC602247 6QPJ ; 2.315 ; Human CLOCK PAS-A domain 6WCC ; 3.24 ; Human closed state TMEM175 in CsCl 6WCA ; 3.03 ; Human closed state TMEM175 in KCl 8BFI ; 3.0 ; human CNOT1-CNOT10-CNOT11 module 8W8E ; 3.9 ; human co-transcriptional RNA capping enzyme RNGTT 8W8F ; 4.0 ; human co-transcriptional RNA capping enzyme RNGTT-CMTR1 6PCE ; 1.65 ; Human Coa6 6PCF ; 2.2 ; Human Coa6: W59C mutant protein 1RFN ; 2.8 ; HUMAN COAGULATION FACTOR IXA IN COMPLEX WITH P-AMINO BENZAMIDINE 1IQM ; 2.6 ; Human coagulation factor Xa in complex with M54471 1IQL ; 2.7 ; Human coagulation factor Xa in complex with M54476 1IQK ; 3.2 ; Human coagulation factor Xa in complex with M55113 1IQJ ; 3.0 ; Human coagulation factor Xa in complex with M55124 1IQI ; 2.9 ; Human coagulation factor Xa in complex with M55125 1IQH ; 3.0 ; Human coagulation factor Xa in complex with M55143 1IQG ; 2.6 ; Human coagulation factor Xa in complex with M55159 1IQF ; 3.2 ; Human coagulation factor Xa in complex with M55165 1IQN ; 2.6 ; Human coagulation factor Xa in complex with M55192 1IOE ; 2.9 ; Human coagulation factor Xa in complex with M55532 1IQE ; 2.9 ; Human coagulation factor Xa in complex with M55590 6L63 ; 3.0 ; Human Coagulation Factor XIIa (FXIIa) bound with the macrocyclic peptide F3 containing two (1S,2S)-2-ACHC residues 6VAO ; 3.4 ; Human cofilin-1 decorated actin filament 4K6J ; 2.6205 ; Human cohesin inhibitor WapL 5HDT ; 2.711 ; Human cohesin regulator Pds5B bound to a Wapl peptide 4FVL ; 2.436 ; Human collagenase 3 (MMP-13) full form with peptides from pro-domain 4G0D ; 2.54 ; Human collagenase 3 (MMP-13) full form with peptides from pro-domain 4FU4 ; 2.849 ; Human collagenase 3 (MMP-13) with peptide from pro-domain 7QVP ; 3.0 ; Human collided disome (di-ribosome) stalled on XBP1 mRNA 2W4C ; 1.52 ; Human common-type acylphosphatase variant, A99 2W4P ; 1.7 ; Human common-type acylphosphatase variant, A99G 6RU5 ; 3.9 ; human complement C3 in complex with the hC3Nb1 nanobody 8OVB ; 3.4 ; Human Complement C3b in complex with Trypanosoma brucei ISG65. 3CU7 ; 3.105 ; Human Complement Component 5 2A73 ; 3.3 ; Human Complement Component C3 2I07 ; 4.0 ; Human Complement Component C3b 7TV9 ; 3.4 ; HUMAN COMPLEMENT COMPONENT C3B IN COMPLEX WITH APL-1030 2A74 ; 2.4 ; Human Complement Component C3c 2OK5 ; 2.3 ; Human Complement factor B 7JTN ; 3.1 ; Human Complement Factor B Inhibited by a Slow Off-Rate Modified Aptamer of 29 Bases 7JTQ ; 3.5 ; Human Complement Factor B Inhibited by a Slow Off-Rate Modified Aptamer of 31 Bases 1HFD ; 2.3 ; HUMAN COMPLEMENT FACTOR D IN A P21 CRYSTAL FORM 1BIO ; 1.5 ; HUMAN COMPLEMENT FACTOR D IN COMPLEX WITH ISATOIC ANHYDRIDE INHIBITOR 2XRC ; 2.69 ; Human complement factor I 2RD7 ; 2.15 ; Human Complement Membrane Attack Proteins Share a Common Fold with Bacterial Cytolysins 7BL1 ; 9.8 ; human complex II-BATS bound to membrane-attached Rab5a-GTP 4PYK ; 2.22 ; human COMT, double domain swap 7QES ; 2.6 ; human Connexin 26 at 55mm Hg PCO2, pH7.4: two masked subunits, class A 7QEO ; 2.9 ; human Connexin 26 at 55mm Hg PCO2, pH7.4: two masked subunits, class C 7QEV ; 2.9 ; human Connexin 26 at 55mm Hg PCO2, pH7.4:two masked subunits, class D 7QEU ; 2.7 ; human Connexin 26 at 55mmHg PCO2, pH7.4: two masked subunits, class B 7QEY ; 2.0 ; human Connexin 26 class 1 hexamer at 90mmHg PCO2, pH7.4 7QEW ; 2.1 ; human Connexin 26 class 2 hexamer at 90mmHg PCO2, pH7.4 7QET ; 2.1 ; human Connexin 26 dodecamer at 20mmHg PCO2, pH7.4 7QER ; 2.2 ; human Connexin 26 dodecamer at 55mm Hg PCO2, pH7.4 7QEQ ; 1.9 ; human Connexin 26 dodecamer at 90mmHg PCO2, pH7.4 5ERA ; 3.8 ; Human Connexin-26 (Calcium-free) 6UVT ; 7.5 ; Human Connexin-26 (Low pH closed conformation) 6UVS ; 4.2 ; Human Connexin-26 (Low pH open conformation) 6UVR ; 4.0 ; Human Connexin-26 (Neutral pH open conformation) 8W77 ; 3.61 ; Human Consensus Olfactory Receptor OR52c in apo state, OR52c only 8J46 ; 3.66 ; Human Consensus Olfactory Receptor OR52c in apo state, OR52c-bRIL 8HTI ; 2.97 ; Human Consensus Olfactory Receptor OR52c in Complex with Octanoic Acid (OCA) and G Protein 4R3O ; 2.6 ; Human Constitutive 20S Proteasome 4R67 ; 2.89 ; Human constitutive 20S proteasome in complex with carfilzomib 1DO5 ; 2.75 ; HUMAN COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE DOMAIN II 5IVW ; 10.0 ; Human core TFIIH bound to DNA within the PIC 5IYA ; 5.4 ; Human core-PIC in the closed state 5IYC ; 3.9 ; Human core-PIC in the initial transcribing state 5IYD ; 3.9 ; Human core-PIC in the initial transcribing state (no IIS) 5IYB ; 3.9 ; Human core-PIC in the open state 2J97 ; 1.75 ; Human coronavirus 229E non structural protein 9 (Nsp9) 2J98 ; 1.8 ; Human coronavirus 229E non structural protein 9 cys69ala mutant (Nsp9) 6Y3Y ; 3.39 ; Human Coronavirus HKU1 Haemagglutinin-Esterase 8OHN ; 3.4 ; Human Coronavirus HKU1 spike glycoprotein 8OPN ; 4.7 ; Human Coronavirus HKU1 spike glycoprotein in complex with an alpha2,8-linked 9-O-acetylated disialoside (1-up state) 8OPO ; 3.6 ; Human Coronavirus HKU1 spike glycoprotein in complex with an alpha2,8-linked 9-O-acetylated disialoside (3-up state) 8OPM ; 3.7 ; Human Coronavirus HKU1 spike glycoprotein in complex with an alpha2,8-linked 9-O-acetylated disialoside (closed state) 7PNQ ; 3.7 ; Human coronavirus OC43 spike glycoprotein ectodomain in complex with the 43E6 antibody Fab fragment 7PNM ; 3.7 ; Human coronavirus OC43 spike glycoprotein ectodomain in complex with the 46C12 antibody Fab fragment 7PO5 ; 3.9 ; Human coronavirus OC43 spike glycoprotein ectodomain in complex with the 47C9 antibody Fab fragment 6Y3C ; 3.361 ; Human COX-1 Crystal Structure 4GB3 ; 2.74 ; Human coxsackievirus B3 strain RD coat protein 7QR4 ; 2.83 ; human CPEB3 HDV-like ribozyme 1LPJ ; 2.0 ; Human cRBP IV 4ZCB ; 1.7 ; Human CRBPII mutant - Y60W dimer 6TVO ; 3.201 ; Human CRM1-RanGTP in complex with Leptomycin B 2VM8 ; 1.9 ; Human CRMP-2 crystallised in the presence of Mg 6GRO ; 1.45 ; Human CSNK1G3 bound to SB-223133 6QY7 ; 2.1 ; Human CSNK2A1 bound to ERB-041 6QY9 ; 1.5 ; Human CSNK2A2 bound to a Pyrrolo[2,3-d]pyrimidinyl inhibitor 6QY8 ; 1.7 ; Human CSNK2A2 bound to ERB-041 6C4S ; 1.5 ; Human cSrc SH3 Domain in complex with Choline Kinase fragment 60-69 8D0B ; 3.43 ; Human CST-DNA polymerase alpha/primase preinitiation complex bound to 4xTEL-foldback template 8D0K ; 4.27 ; Human CST-DNA polymerase alpha/primase preinitiation complex bound to 4xTEL-foldback template - PRIM2C advanced PIC 6TZE ; ; Human CstF-64 RRM mutant - D50A 6V89 ; 2.45 ; Human CtBP1 (28-375) in complex with AMP 6V8A ; 2.35 ; Human CtBP1 (28-375) in complex with AMP 6CDF ; 2.6 ; Human CtBP1 (28-378) 6CDR ; 2.399 ; Human CtBP1 (28-378) 8ATI ; 2.6 ; Human CtBP2(31-364) in complex with RAI2 peptide(315-322) 5T00 ; 2.19 ; Human CTCF ZnF3-7 and methylated DNA complex 2VKT ; 2.5 ; HUMAN CTP SYNTHETASE 2 - GLUTAMINASE DOMAIN 2V4U ; 2.3 ; Human CTP synthetase 2 - glutaminase domain in complex with 5-OXO-L- NORLEUCINE 3ELB ; 2.0 ; Human CTP: Phosphoethanolamine Cytidylyltransferase in complex with CMP 4XSV ; 2.7 ; Human CTP: Phosphoethanolamine Cytidylyltransferase in complex with CTP 7MH0 ; 6.2 ; Human CTPS1 bound to CTP 7MIF ; 3.1 ; Human CTPS1 bound to inhibitor R80 7MIG ; 2.9 ; Human CTPS1 bound to inhibitor T35 7MGZ ; 2.8 ; Human CTPS1 bound to UTP, AMPPNP, and glutamine 7MH1 ; 2.8 ; Human CTPS2 bound to CTP 7MIH ; 2.8 ; Human CTPS2 bound to inhibitor R80 7MII ; 2.7 ; Human CTPS2 bound to inhibitor T35 3IHL ; 2.8 ; Human CTPS2 crystal structure 6L3T ; 2.34 ; Human Cx31.3/GJC3 connexin hemichannel in the absence of calcium 6L3U ; 2.53 ; Human Cx31.3/GJC3 connexin hemichannel in the presence of calcium 7XKT ; 2.2 ; Human Cx36/GJD2 (BRIL-fused mutant) gap junction channel in detergents at 2.2 Angstroms resolution 7XKI ; 3.4 ; Human Cx36/GJD2 (N-terminal deletion BRIL-fused mutant) gap junction channel in soybean lipids (D6 symmetry) 7XL8 ; 3.0 ; Human Cx36/GJD2 (N-terminal deletion mutant) gap junction channel in soybean lipids (D6 symmetry) 7XKK ; 3.2 ; Human Cx36/GJD2 gap junction channel in detergents 7XNH ; 3.1 ; Human Cx36/GJD2 gap junction channel with pore-lining N-terminal helices in soybean lipids 3MVJ ; 2.49 ; Human cyclic AMP-dependent protein kinase PKA inhibitor complex 5VDO ; 3.218 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 2',2'-cGAMP 5VDP ; 2.3 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 2',3'-cGAMP 5VDQ ; 3.246 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 2',5'-GpAp 5VDR ; 3.042 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 3',3'-cdIMP 5VDS ; 2.766 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 3',3'-cdUMP 5VDT ; 2.576 ; Human cyclic GMP-AMP synthase (cGAS) in complex with 3',3'-cGAMP 5VDW ; 2.711 ; Human cyclic GMP-AMP synthase (cGAS) in complex with Compound F1 5VDU ; 2.729 ; Human cyclic GMP-AMP synthase (cGAS) in complex with Compound F2 5VDV ; 2.998 ; Human cyclic GMP-AMP synthase (cGAS) in complex with Compound F3 4O67 ; 2.444 ; Human cyclic GMP-AMP synthase (cGAS) in complex with GAMP 4O69 ; 2.252 ; Human cyclic GMP-AMP synthase (cGAS) in complex with sulfate ion 3ULI ; 2.0 ; Human Cyclin Dependent Kinase 2 (CDK2) bound to azabenzimidazole derivative 2B53 ; 2.0 ; Human cyclin dependent kinase 2 (CDK2) complexed with DIN-234325 2B52 ; 1.88 ; Human cyclin dependent kinase 2 (CDK2) complexed with DPH-042562 2B55 ; 1.85 ; Human cyclin dependent kinase 2 (cdk2) complexed with indenopyraxole DIN-101312 2B54 ; 1.85 ; Human cyclin dependent kinase 2 (CKD2)complexed with DIN-232305 1GIH ; 2.8 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE CDK4 INHIBITOR 1GII ; 2.0 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE CDK4 INHIBITOR 1GIJ ; 2.2 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE CDK4 INHIBITOR 2DS1 ; 2.0 ; Human cyclin dependent kinase 2 complexed with the CDK4 inhibitor 1GZ8 ; 1.3 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR 2-Amino-6-(3'-methyl-2'-oxo)butoxypurine 1PXM ; 2.53 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR 3-[4-(2,4-Dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol 1PXJ ; 2.3 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR 4-(2,4-Dimethyl-thiazol-5-yl)-pyrimidin-2-ylamine 1PXI ; 1.95 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR 4-(2,5-Dichloro-thiophen-3-yl)-pyrimidin-2-ylamine 1PXN ; 2.5 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR 4-[4-(4-Methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol 1PXP ; 2.3 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR N-[4-(2,4-Dimethyl-thiazol-5-yl)-pyrimidin-2-yl]-N',N'-dimethyl-benzene-1,4-diamine 1PXK ; 2.8 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR N-[4-(2,4-Dimethyl-thiazol-5-yl)pyrimidin-2-yl]-N'-hydroxyiminoformamide 1E1V ; 1.95 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR NU2058 1E1X ; 1.85 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR NU6027 1CKP ; 2.05 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR PURVALANOL B 1AQ1 ; 2.0 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR STAUROSPORINE 1PXL ; 2.5 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR [4-(2,4-Dimethyl-thiazol-5-yl)-pyrimidin-2-yl]-(4-trifluoromethyl-phenyl)-amine 1PXO ; 1.96 ; HUMAN CYCLIN DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR [4-(2-Amino-4-methyl-thiazol-5-yl)-pyrimidin-2-yl]-(3-nitro-phenyl)-amine 1H0V ; 1.9 ; Human cyclin dependent protein kinase 2 in complex with the inhibitor 2-Amino-6-[(R)-pyrrolidino-5'-yl]methoxypurine 1H0W ; 2.1 ; Human cyclin dependent protein kinase 2 in complex with the inhibitor 2-Amino-6-[cyclohex-3-enyl]methoxypurine 2BHH ; 2.6 ; HUMAN CYCLIN DEPENDENT PROTEIN KINASE 2 IN COMPLEX WITH THE INHIBITOR 4-HYDROXYPIPERINDINESULFONYL-INDIRUBINE 2BHE ; 1.9 ; HUMAN CYCLIN DEPENDENT PROTEIN KINASE 2 IN COMPLEX WITH THE INHIBITOR 5-BROMO-INDIRUBINE 1B38 ; 2.0 ; HUMAN CYCLIN-DEPENDENT KINASE 2 1HCK ; 1.9 ; HUMAN CYCLIN-DEPENDENT KINASE 2 1HCL ; 1.8 ; HUMAN CYCLIN-DEPENDENT KINASE 2 1DM2 ; 2.1 ; HUMAN CYCLIN-DEPENDENT KINASE 2 COMPLEXED WITH THE INHIBITOR HYMENIALDISINE 8OY2 ; 2.618 ; Human cyclin-dependent kinase 2 in complex with inhibitor HB-29260 2A4L ; 2.4 ; Human cyclin-dependent kinase 2 in complex with roscovitine 1B39 ; 2.1 ; HUMAN CYCLIN-DEPENDENT KINASE 2 PHOSPHORYLATED ON THR 160 5KUL ; 1.7 ; Human cyclophilin A at 100K, Data set 1 5KUN ; 1.7 ; Human cyclophilin A at 100K, Data set 2 5KUO ; 1.7 ; Human cyclophilin A at 100K, Data set 3 5KUQ ; 1.7 ; Human cyclophilin A at 100K, Data set 4 5KUR ; 1.7 ; Human cyclophilin A at 100K, Data set 5 5KUS ; 1.7 ; Human cyclophilin A at 100K, Data set 6 5KUU ; 1.7 ; Human cyclophilin A at 100K, Data set 7 5KUV ; 1.7 ; Human cyclophilin A at 100K, Data set 8 5KUW ; 1.7 ; Human cyclophilin A at 100K, Data set 9 5KUZ ; 1.7 ; Human cyclophilin A at 278K, Data set 1 5KV0 ; 1.7 ; Human cyclophilin A at 278K, Data set 2 5KV1 ; 1.7 ; Human cyclophilin A at 278K, Data set 3 5KV2 ; 1.7 ; Human cyclophilin A at 278K, Data set 4 5KV3 ; 1.7 ; Human cyclophilin A at 278K, Data set 5 5KV4 ; 1.7 ; Human cyclophilin A at 278K, Data set 6 5KV5 ; 1.7 ; Human cyclophilin A at 278K, Data set 7 5KV6 ; 1.7 ; Human cyclophilin A at 278K, Data set 8 5KV7 ; 1.7 ; Human cyclophilin A at 278K, Data set 9 6X3R ; 1.8 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors 6X3Y ; 1.4 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors 6X4Q ; 1.8 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors: (2R,5S,11S,14S,18E)-14-cyclobutyl-2,11,17,17-tetramethyl-15-oxa-3,9,12,26,29-pentaazatetracyclo[18.5.3.1~5,9~.0~23,27~]nonacosa-1(25),18,20(28),21,23,26-hexaene-4,10,13,16-tetrone (compound 33) 6X4P ; 1.5 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors: (2R,5S,11S,14S,18E)-2,11,17,17-tetramethyl-14-(propan-2-yl)-15-oxa-3,9,12,26,29-pentaazatetracyclo[18.5.3.1~5,9~.0~23,27~]nonacosa-1(25),18,20(28),21,23,26-hexaene-4,10,13,16-tetrone (compound 28) 6X4N ; 1.51 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors: (2R,5S,11S,14S,18E)-2,11,17,17-tetramethyl-14-(propan-2-yl)-3-oxa-9,12,15,26,29-pentaazatetracyclo[18.5.3.1~5,9~.0~23,27~]nonacosa-1(25),18,20(28),21,23,26-hexaene-4,10,13,16-tetrone (compound 24) 6X4O ; 1.5 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors: (2R,5S,11S,14S,18E)-2,11-dimethyl-14-(propan-2-yl)-3-oxa-9,12,15,21,29-pentaazatetracyclo[18.5.3.1~5,9~.0~23,27~]nonacosa-1(26),18,20,22,24,27-hexaene-4,10,13,16-tetrone (compound 21) 6X4M ; 1.5 ; Human cyclophilin A bound to a series of acylcic and macrocyclic inhibitors: tert-butyl [(2S)-1-{[(3S,17S)-2,16-dioxo-10,15-dioxa-1,21-diazatricyclo[15.3.1.1~5,9~]docosa-5(22),6,8-trien-3-yl]amino}-3-methyl-1-oxobutan-2-yl]carbamate (compound 3) 1AK4 ; 2.36 ; HUMAN CYCLOPHILIN A BOUND TO THE AMINO-TERMINAL DOMAIN OF HIV-1 CAPSID 1CWK ; 1.8 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 1-(6,7-DIHYDRO)MEBMT 2-VAL 3-D-(2-S-METHYL)SARCOSINE CYCLOSPORIN 1BCK ; 1.8 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 2-THR CYCLOSPORIN 1CWI ; 1.9 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 2-VAL 3-(N-METHYL)-D-ALANINE CYCLOSPORIN 1CWJ ; 1.8 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 2-VAL 3-S-METHYL-SARCOSINE CYCLOSPORIN 1CWF ; 1.86 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 2-VAL CYCLOSPORIN 1CWH ; 1.86 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 3-D-SER CYCLOSPORIN 1CWL ; 1.8 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 4 4-HYDROXY-MELEU CYCLOSPORIN 1CWM ; 2.0 ; HUMAN CYCLOPHILIN A COMPLEXED WITH 4 MEILE CYCLOSPORIN 3RDD ; 2.14 ; Human Cyclophilin A Complexed with an Inhibitor 1CWO ; 1.86 ; HUMAN CYCLOPHILIN A COMPLEXED WITH THR2, LEU5, D-HIV8, LEU10 CYCLOSPORIN 7QBW ; 1.59 ; Human Cyclophilin A double mutant C52AK125C 1OCA ; ; HUMAN CYCLOPHILIN A, UNLIGATED, NMR, 20 STRUCTURES 2ESL ; 1.9 ; Human Cyclophilin C in Complex with Cyclosporin A 3RCI ; 1.44 ; Human cyclophilin D complexed with 5-methyl-1,2-oxazol-3-amine 3R4G ; 1.05 ; Human Cyclophilin D Complexed with a Fragment 3R54 ; 1.35 ; Human Cyclophilin D Complexed with a Fragment 3R56 ; 1.4 ; Human Cyclophilin D Complexed with a Fragment 3R57 ; 1.71 ; Human Cyclophilin D Complexed with a Fragment 3R59 ; 1.1 ; Human Cyclophilin D Complexed with a Fragment 3RCK ; 1.26 ; Human Cyclophilin D Complexed with a Fragment 3RCL ; 1.7 ; Human Cyclophilin D Complexed with a Fragment 3RD9 ; 1.4 ; Human Cyclophilin D Complexed with a Fragment 3RDA ; 1.07 ; Human Cyclophilin D Complexed with a Fragment 3RDB ; 1.55 ; Human Cyclophilin D Complexed with a Fragment 3RDC ; 1.94 ; Human Cyclophilin D Complexed with an Inhibitor 4J58 ; 1.28 ; Human Cyclophilin D Complexed with an Inhibitor 4J59 ; 1.92 ; Human Cyclophilin D Complexed with an Inhibitor 4J5A ; 1.58 ; Human Cyclophilin D Complexed with an Inhibitor 4J5B ; 2.01 ; Human Cyclophilin D Complexed with an Inhibitor 4J5C ; 1.03 ; Human Cyclophilin D Complexed with an Inhibitor 4J5D ; 1.32 ; Human Cyclophilin D Complexed with an Inhibitor 4J5E ; 0.99 ; Human Cyclophilin D Complexed with an Inhibitor 4ZSC ; 1.5 ; Human Cyclophilin D Complexed with an Inhibitor at room temperature 4ZSD ; 1.45 ; Human Cyclophilin D Complexed with an Inhibitor at room temperature 3RCG ; 0.97 ; Human cyclophilin D complexed with dimethylformamide 5CBT ; 1.45 ; Human Cyclophilin D Complexed with Inhibitor 5CBV ; 1.8 ; Human Cyclophilin D Complexed with Inhibitor 5CCN ; 1.8 ; Human Cyclophilin D Complexed with Inhibitor 5CCQ ; 1.8 ; Human Cyclophilin D Complexed with Inhibitor 5CCR ; 1.9 ; Human Cyclophilin D Complexed with Inhibitor 5CCS ; 2.1 ; Human Cyclophilin D Complexed with Inhibitor 5CBU ; 1.4 ; Human Cyclophilin D Complexed with Inhibitor. 5CBW ; 1.8 ; Human Cyclophilin D Complexed with Inhibitor. 3RCF ; 1.15 ; Human cyclophilin D complexed with N-[(4-aminophenyl)sulfonyl]benzamide 3R49 ; 1.77 ; Human cyclophilin D complexed with quinolin-8-amine 6R8O ; 1.36 ; Human Cyclophilin D in complex with 1-(((2R,3S,6R)-3-hydroxy-2,3,4,6-tetrahydro-1H-2,6-methanobenzo[c][1,5]oxazocin-8-yl)methyl)-3-(2-((R)-2-(2-(methylthio)phenyl)pyrrolidin-1-yl)-2-oxoethyl)urea 6R8L ; 1.64 ; Human Cyclophilin D in complex with 1-((1S,9S,10S)-10-Hydroxy-12-oxa-8-aza-tricyclo[7.3.1.02,7]trideca-2,4,6-trien-4-ylmethyl)-3- {2-[(R)-2-(2-methylsulfanyl-phenyl)-pyrrolidin-1-yl]-2-oxo-ethyl}-urea 6R8W ; 1.4 ; Human Cyclophilin D in complex with 2-(exo-3,5-Dioxo-4-aza-tricyclo[5.2.1.02,6]dec-4-yl)-N-((1R,9R,10S)-10-hydroxy-12-oxa-8-aza-tricyclo[7.3.1.02,7]trideca-2(7),3,5-trien-4-ylmethyl)-acetamide 6R9S ; 2.0 ; Human Cyclophilin D in complex with bicyclic fragment 6R9U ; 1.26 ; Human Cyclophilin D in complex with fragment 7R2I ; 1.31 ; Human Cyclophilin D in complex with fragment 7ZDN ; 1.55 ; Human Cyclophilin D in complex with fragment 7R2J ; 1.26 ; Human Cyclophilin D in complex with N-(4-aminophenyl)-7-methyl-2-oxo-1H,2H-pyrazolo[1,5-a]pyrimidine-6-carboxamide 7R2L ; 1.1 ; Human Cyclophilin D in complex with N-(4-aminophenyl)-7-methyl-2-oxo-1H,2H-pyrazolo[1,5-a]pyrimidine-6-carboxamide 7OGI ; 1.01 ; Human Cyclophilin D in complex with N-(5-ethyl-4-oxo-1,2,3,4,5,6-hexahydro-1,5-benzodiazocin-8-yl)-7methyl-2-oxo-1H,2H-pyrazolo[1,5-a]pyrimidine-6-carboxamide 6R9X ; 1.66 ; Human Cyclophilin D in complex with N-cyclopentyl-N'-pyridin-2-ylmethyl-oxalamide 7PMT ; 0.98 ; Human Cyclophilin D in complex with N-[(5-ethyl-4-oxo-1,2,3,4,5,6- hexahydro-1,5-benzodiazocin-8-yl)methyl]-7-methyl-2-oxo-1H,2H-pyrazolo[1,5-a]pyrimidine-6-carboxamide 6RA1 ; 2.0 ; Human Cyclophilin D in complex with norbornane fragment derivative 7E7F ; 1.4 ; Human CYP11B1 mutant in complex with metyrapone 7M8I ; 2.94 ; Human CYP11B2 and human adrenodoxin in complex with fadrozole 7M8V ; 3.08 ; Human CYP11B2 in complex with LCI699 6OO9 ; 2.25 ; Human CYP3A4 bound to a drug mibefradil 6OOA ; 2.52 ; Human CYP3A4 bound to a drug substrate 8DYC ; 2.4 ; Human CYP3A4 bound to a substrate 8SO2 ; 2.15 ; Human CYP3A4 bound to a substrate 6OOB ; 2.202 ; Human CYP3A4 bound to a suicide substrate 6DA2 ; 2.65 ; Human CYP3A4 bound to an inhibitor 6DA3 ; 2.37 ; Human CYP3A4 bound to an inhibitor 6DA5 ; 2.25 ; Human CYP3A4 bound to an inhibitor 6DA8 ; 2.802 ; Human CYP3A4 bound to an inhibitor 6DAA ; 2.15 ; Human CYP3A4 bound to an inhibitor 6DAB ; 2.35 ; Human CYP3A4 bound to an inhibitor 6DAC ; 2.55 ; Human CYP3A4 bound to an inhibitor 6DAG ; 2.8 ; Human CYP3A4 bound to an inhibitor 6DAJ ; 2.45 ; Human CYP3A4 bound to an inhibitor 6DAL ; 2.65 ; Human CYP3A4 bound to an inhibitor 6UNE ; 2.55 ; Human CYP3A4 bound to an inhibitor 6UNG ; 2.3 ; Human CYP3A4 bound to an inhibitor 6UNH ; 2.72 ; Human CYP3A4 bound to an inhibitor 6UNI ; 2.602 ; Human CYP3A4 bound to an inhibitor 6UNJ ; 2.6 ; Human CYP3A4 bound to an inhibitor 6UNK ; 2.75 ; Human CYP3A4 bound to an inhibitor 7KVH ; 2.791 ; Human CYP3A4 bound to an inhibitor 7KVI ; 2.55 ; Human CYP3A4 bound to an inhibitor 7KVJ ; 2.65 ; Human CYP3A4 bound to an inhibitor 7KVK ; 2.55 ; Human CYP3A4 bound to an inhibitor 7KVM ; 2.75 ; Human CYP3A4 bound to an inhibitor 7KVN ; 2.7 ; Human CYP3A4 bound to an inhibitor 7KVO ; 2.65 ; Human CYP3A4 bound to an inhibitor 7KVP ; 2.75 ; Human CYP3A4 bound to an inhibitor 7KVQ ; 2.75 ; Human CYP3A4 bound to an inhibitor 7KVS ; 2.5 ; Human CYP3A4 bound to an inhibitor 7UFC ; 2.35 ; Human CYP3A4 bound to an inhibitor 7UFD ; 2.9 ; Human CYP3A4 bound to an inhibitor 7UFE ; 2.4 ; Human CYP3A4 bound to an inhibitor 7UFF ; 2.7 ; Human CYP3A4 bound to an inhibitor 6MA7 ; 2.09 ; Human CYP3A4 bound to an inhibitor fluconazole 6MA6 ; 2.182 ; Human CYP3A4 bound to an inhibitor metyrapone 6MA8 ; 1.83 ; Human CYP3A4 bound to PMSF 8SO1 ; 2.05 ; Human CYP3A4 bound to three caffeine molecules 6FOI ; 2.0 ; Human Cys57/156Ala superoxide dismutase-1 (SOD1), as isolated. 5MMS ; 2.8 ; Human cystathionine beta-synthase (CBS) p.P49L delta409-551 variant 1G96 ; 2.5 ; HUMAN CYSTATIN C; DIMERIC FORM WITH 3D DOMAIN SWAPPING 2JIS ; 1.6 ; Human cysteine sulfinic acid decarboxylase (CSAD) in complex with PLP. 3NWV ; 1.9 ; Human cytochrome c G41S 6ECJ ; 2.7 ; Human cytochrome c G41T 5EXQ ; 1.6 ; Human cytochrome c Y48H 3QM4 ; 2.85 ; Human Cytochrome P450 (CYP) 2D6 - Prinomastat Complex 7SV2 ; 2.46 ; Human Cytochrome P450 (CYP) 3A5 ternary complex with azamulin 5IRV ; 3.098 ; Human cytochrome P450 17A1 bound to inhibitor VT-464 5IRQ ; 2.202 ; Human cytochrome P450 17A1 bound to inhibitors (R)- and (S)- orteronel 6CHI ; 2.698 ; Human Cytochrome P450 17A1 in complex with inhibitor: abiraterone C6 amide 6CIZ ; 2.601 ; Human Cytochrome P450 17A1 in complex with inhibitor: abiraterone C6 nitrile 6CIR ; 2.648 ; Human Cytochrome P450 17A1 in complex with inhibitor: abiraterone C6 oxime 8FDA ; 2.2 ; Human Cytochrome P450 17A1 in complex with steroidal isonitrile inhibitor 3SWZ ; 2.4 ; Human Cytochrome P450 17A1 in complex with TOK-001 4I8V ; 2.6 ; Human Cytochrome P450 1A1 in complex with alpha-naphthoflavone 4EJH ; 2.35 ; Human Cytochrome P450 2A13 in complex with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 4EJG ; 2.5 ; Human Cytochrome P450 2A13 in complex with Nicotine 3T3S ; 3.0 ; Human Cytochrome P450 2A13 in complex with Pilocarpine 4EJI ; 2.1 ; Human Cytochrome P450 2A13 in complex with two molecules of 4-(methylnitrosamino)-1-(3-puridyl)-1-butanone 3EBS ; 2.15 ; Human Cytochrome P450 2A6 I208S/I300F/G301A/S369G in complex with Phenacetin 3T3Q ; 2.1 ; Human Cytochrome P450 2A6 I208S/I300F/G301A/S369G in complex with Pilocarpine 4EJJ ; 2.3 ; Human Cytochrome P450 2A6 in complex with nicotine 3T3R ; 2.4 ; Human Cytochrome P450 2A6 in complex with Pilocarpine 4WNT ; 2.6 ; Human Cytochrome P450 2D6 Ajmalicine Complex 4XRY ; 2.5 ; Human Cytochrome P450 2D6 BACE1 Inhibitor 5 Complex 4XRZ ; 2.4 ; Human Cytochrome P450 2D6 BACE1 Inhibitor 6 Complex 4WNU ; 2.26 ; Human Cytochrome P450 2D6 Quinidine Complex 4WNV ; 2.35 ; Human Cytochrome P450 2D6 Quinine Complex 4WNW ; 3.299 ; Human Cytochrome P450 2D6 Thioridazine Complex 3TBG ; 2.1 ; Human cytochrome P450 2D6 with two thioridazines bound in active site 3GPH ; 2.7 ; Human cytochrome P450 2E1 in complex with omega-imidazolyl-decanoic acid 3LC4 ; 3.1 ; Human Cytochrome P450 2E1 in Complex with Omega-Imidazolyl-Dodecanoic Acid 3T3Z ; 2.35 ; Human Cytochrome P450 2E1 in complex with pilocarpine 3E4E ; 2.6 ; Human cytochrome P450 2E1 in complex with the inhibitor 4-methylpyrazole 3E6I ; 2.2 ; Human cytochrome P450 2E1 in complex with the inhibitor indazole 5VEU ; 2.91 ; Human Cytochrome P450 3A5 (CYP3A5) 3RUK ; 2.6 ; Human Cytochrome P450 CYP17A1 in complex with Abiraterone 8TEW ; 3.02 ; Human cytomegalovirus penton vertex, CVSC-bound configuration 8TET ; 4.26 ; Human cytomegalovirus portal vertex, non-infectious enveloped particle (NIEP) configuration 1 (NC1) 8TEU ; 4.01 ; Human cytomegalovirus portal vertex, non-infectious enveloped particle (NIEP) configuration 2 - inverted (NC2-inv) 8TEP ; 3.5 ; Human cytomegalovirus portal vertex, virion configuration 1 (VC1) 8TES ; 3.27 ; Human cytomegalovirus portal vertex, virion configuration 2 (VC2) 1CMV ; 2.27 ; HUMAN CYTOMEGALOVIRUS PROTEASE 1JQ6 ; 2.3 ; HUMAN CYTOMEGALOVIRUS PROTEASE DIMER-INTERFACE MUTANT, S225Y 7TCZ ; 2.67 ; Human cytomegalovirus protease mutant (C84A, C87A, C138A, C202A) in complex with inhibitor 3N4P ; 2.15 ; Human cytomegalovirus terminase nuclease domain 3N4Q ; 3.2 ; Human cytomegalovirus terminase nuclease domain, Mn soaked 6EY7 ; 2.9 ; Human cytomegalovirus terminase nuclease domain, Mn soaked, inhibitor bound 7ET2 ; 4.2 ; Human Cytomegalovirus, C12 portal 5OWO ; 1.79 ; Human cytoplasmic Dynein N-Terminus dimerization domain at 1.8 Angstrom resolution 5NW4 ; 8.7 ; Human cytoplasmic dynein-1 bound to dynactin and an N-terminal construct of BICD2 5NVS ; 8.4 ; Human cytoplasmic dynein-1 tail in the twisted N-terminus state 7YJJ ; 6.31 ; Human Cytosolic 10-formyltetrahydrofolate dehydrogenase and Gossypol complex 7ZEE ; 1.36 ; Human cytosolic 5' nucleotidase IIIB 7ZEG ; 1.56 ; Human cytosolic 5' nucleotidase IIIB in complex with 3,4-diF-Bn7GMP 7ZEH ; 1.5 ; Human cytosolic 5' nucleotidase IIIB in complex with 3,4-diF-Bn7Guanine 6FIW ; 2.2 ; Human cytosolic 5'-nucleotidase II co-crystallized with 10mM Sodium ((4-(3'-((7H-purin-6-yl)carbamoyl)-[1,1'-biphenyl]-3-yl)-1H-imidazol-1-yl) methyl) phosphonate 5CQZ ; 2.9 ; Human cytosolic 5'-nucleotidase II in complex with 3-(3-Imidazol-1-ylphenyl)-N-(9H-purin-6-yl)benzamide 4H4B ; 2.9 ; Human cytosolic 5'-nucleotidase II in complex with Anthraquinone-2,6- disulfonic acid 5CR7 ; 2.9 ; Human cytosolic 5'-nucleotidase II in complex with N-(9H-Purin-6-yl)-3-(3-pyrrol-1-ylphenyl)benzamide 6FIU ; 2.5 ; Human cytosolic 5'-nucleotidase II soaked with 10mM 2-(6-([1,1'-Biphenyl]-3-carboxamido)-9H-purin-9-yl)acetic acid 6FXH ; 2.3 ; Human cytosolic 5'-nucleotidase II soaked with 10mM 3-Phenyl-N-(9H-purin-6-yl)benzamide 6FIS ; 2.3 ; Human cytosolic 5'-nucleotidase II soaked with 10mM 7-Benzyloxymethyl-7H-adenine 6FIR ; 2.5 ; Human cytosolic 5'-nucleotidase II soaked with 5mM3-Phenyl-N-(9H-purin-6-yl)benzamide 1WL5 ; 2.26 ; Human cytosolic acetoacetyl-CoA thiolase 1WL4 ; 1.55 ; Human cytosolic acetoacetyl-CoA thiolase complexed with CoA 6O76 ; 2.787 ; Human cytosolic Histidyl-tRNA synthetase (HisRS) with WHEP domain 1CJY ; 2.5 ; HUMAN CYTOSOLIC PHOSPHOLIPASE A2 5ZJA ; 2.6 ; human D-amino acid oxidase complexed with 5-chlorothiophene-2-carboxylic acid 5ZJ9 ; 2.6 ; human D-amino acid oxidase complexed with 5-chlorothiophene-3-carboxylic acid 6C5F ; 1.4 ; Human D-Dopachrome tautomerase (D-DT)/ macrophage migration inhibitory factor 2 (MIF2) complexed with the selective inhibitor 4-CPPC 4Q3F ; 1.8 ; Human D-DT complexed with tartrate 4KCG ; 2.09 ; Human dCK C4S-S74E mutant in complex with UDP and the DI-39 inhibitor 4L5B ; 1.94 ; Human dCK C4S-S74E mutant in complex with UDP and the DI-43 inhibitor 4JLJ ; 2.0 ; Human dCK C4S-S74E mutant in complex with UDP and the F2.1.1 inhibitor (2-[({2-[3-(2-FLUOROETHOXY)-4-METHOXYPHENYL]-1,3-THIAZOL-4-YL}METHYL)SULFANYL]PYRIMIDINE-4,6-DIAMINE) 4JLK ; 1.89 ; Human dCK C4S-S74E mutant in complex with UDP and the F2.2.1 inhibitoR (2-[({2-[3-(2-FLUOROETHOXY)-4-METHOXYPHENYL]-5-METHYL-1,3-THIAZOL-4-YL}METHYL)SULFANYL]PYRIMIDINE-4,6-DIAMINE) 4JLM ; 2.18 ; Human dCK C4S-S74E mutant in complex with UDP and the F2.3.1 inhibitor (2-[({5-ETHYL-2-[3-(2-FLUOROETHOXY)-4-METHOXYPHENYL]-1,3-THIAZOL-4-YL}METHYL)SULFANYL]PYRIMIDINE-4,6-DIAMINE) 4JLN ; 2.15 ; Human dCK C4S-S74E mutant in complex with UDP and the F2.4.1 inhibitor (2-[({2-[3-(2-FLUOROETHOXY)-4-METHOXYPHENYL]-5-PROPYL-1,3-THIAZOL-4-YL}METHYL)SULFANYL]PYRIMIDINE-4,6-DIAMINE) 4Q1E ; 1.85 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 10 {2-{[(1R/S)-1-{2-[3-(2-fluoroethoxy)-4-methoxyphenyl]-5-methyl-1,3-thiazol 4-yl}ethyl]sulfanyl}pyrimidine-4,6-diamine} 4Q1F ; 2.1 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 12R {N-{2-[5-(4-{(1R)-1-[(4,6-diaminopyrimidin-2-yl)sulfanyl]ethyl}-5-methyl-1,3-thiazol-2-yl)-2-methoxyphenoxy]ethyl}methanesulfonamide} 4Q18 ; 2.0 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 4 [1-[5-(4-{[(2,6-diaminopyrimidin-4-yl)sulfanyl]methyl}-5-propyl-1,3-thiazol-2-yl)-2-methoxyphenoxy]-2-methylpropan-2-ol] 4Q19 ; 2.09 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 5 {5-(4-{[(4,6-DIAMINOPYRIMIDIN-2-YL)SULFANYL]METHYL}-5-PROPYL-1,3-THIAZOL-2-YL)-2-METHOXYPHENOL} 4Q1A ; 1.9 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 6 {2-[5-(4-{[(4,6-diaminopyrimidin-2-yl)sulfanyl]methyl}-5-propyl-1,3-thiazol-2-yl)-2-methoxyphenoxy]ethanol} 4Q1B ; 2.15 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 7 {N-(2-(3-(4-(((4,6-diaminopyrimidin-2-yl)thio)methyl)-5-propylthiazol-2-yl)phenoxy)ethyl)methanesulfonamide} 4Q1C ; 2.0 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 8 {2,2'-[{4-[(2R)-4-{[(4,6-diaminopyrimidin-2-yl)sulfanyl]methyl}-5-propyl-2,3-dihydro-1,3-thiazol-2-yl]benzene-1,2-diyl}bis(oxy)]diethanol} 4Q1D ; 2.0 ; Human dCK C4S-S74E mutant in complex with UDP and the inhibitor 9 {2-{[(1R)-1-{2-[3-(2-fluoroethoxy)-4-methoxyphenyl]-5-propyl-1,3-thiazol-4-yl}ethyl]sulfanyl}pyrimidine-4,6-diamine} 3KFX ; 1.96 ; Human dCK complex with 5-Me dC and ADP 3MJR ; 2.1 ; Human dCK complex with Acyclic Nucleoside 2W4L ; 2.1 ; Human dCMP deaminase 7MU5 ; 2.2 ; Human DCTPP1 bound to Triptolide 7UT0 ; 1.68 ; Human DDAH-1, apo form 7USZ ; 1.65 ; Human DDAH-1, holo (Zn-bound) form 7ULV ; 2.37 ; Human DDAH1 soaked with its inactivator S-((4-chloropyridin-2-yl)methyl)-L-cysteine 7ULU ; 2.2 ; Human DDAH1 soaked with its inhibitor ClPyrAA 7ULX ; 1.707 ; Human DDAH1 soaked with its inhibitor N4-(4-chloropyridin-2-yl)-L-asparagine 2PL3 ; 2.15 ; Human DEAD-box RNA helicase DDX10, DEAD domain in complex with ADP 3G0H ; 2.7 ; Human dead-box RNA helicase DDX19, in complex with an ATP-analogue and RNA 3B7G ; 1.9 ; Human DEAD-box RNA helicase DDX20, Conserved domain I (DEAD) in complex with AMPPNP (Adenosine-(Beta,gamma)-imidotriphosphate) 2OXC ; 1.3 ; Human DEAD-box RNA helicase DDX20, DEAD domain in complex with ADP 2P6N ; 2.6 ; Human DEAD-box RNA helicase DDX41, helicase domain 3FE2 ; 2.6 ; Human DEAD-BOX RNA helicase DDX5 (P68), conserved domain I in complex with ADP 3EWS ; 2.7 ; Human DEAD-box RNA-helicase DDX19 in complex with ADP 3BER ; 1.4 ; Human DEAD-box RNA-helicase DDX47, conserved domain I in complex with AMP 3DKP ; 2.1 ; Human DEAD-box RNA-helicase DDX52, conserved domain I in complex with ADP 2CKE ; 2.8 ; Human death-associated DRP-1 kinase in complex with inhibitor 1WMK ; 3.6 ; Human death-associated kinase DRP-1, mutant S308D d40 5OSY ; 2.06 ; Human Decapping Scavenger enzyme (hDcpS) in complex with m7G(5'S)ppSp(5'S)G mRNA 5' cap analog 7F5S ; 2.72 ; human delta-METTL18 60S ribosome 2BBS ; 2.05 ; Human deltaF508 NBD1 with three solubilizing mutations 2BBT ; 2.3 ; Human deltaF508 NBD1 with two solublizing mutations. 2QRO ; 3.45 ; Human Deoxycytidine kinase dAMP, UDP, Mg ion product complex 2QRN ; 3.4 ; Human Deoxycytidine kinase dCMP, UDP, Mg ion product complex 1B86 ; 2.5 ; HUMAN DEOXYHAEMOGLOBIN-2,3-DIPHOSPHOGLYCERATE COMPLEX 8A0G ; 1.84 ; Human deoxyhypusine synthase with trapped transition state 7OWG ; 4.7 ; human DEPTOR in a complex with mutant human mTORC1 A1459P 3GYF ; 1.7 ; Human DHFR with Z-isomer in Orthorhombic lattice 6SYP ; 1.8 ; Human DHODH bound to inhibitor IPP/CNRS-A017 8SZP ; 2.62 ; Human DHX9 bound to ADP 6DFX ; 2.03 ; human diabetogenic TCR T1D3 in complex with DQ8-p8E9E peptide 6VP0 ; 3.1 ; Human Diacylglycerol Acyltransferase 1 in complex with oleoyl-CoA 8FG1 ; ; Human diaphanous inhibitory domain bound to diaphanous autoregulatory domain 7XLM ; 3.73 ; Human diastrophic dysplasia sulfate transporter SLC26A2 3S7A ; 1.8 ; Human dihydrofolate reductase binary complex with PT684 5HQY ; 1.46 ; human dihydrofolate reductase complex with NADPH and 5-methyl-6-(2',3',4'-trifluorophenylthio)thieno[2,3-d]pyrimidine-2,4-diamine 5HPB ; 1.65 ; human dihydrofolate reductase complex with NADPH and 5-methyl-6-(phenylthio-4'trifluoromethyl)thieno[2,3-d]pyrimidine-2,4-diamine 1KMV ; 1.05 ; HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND (Z)-6-(2-[2,5-DIMETHOXYPHENYL]ETHEN-1-YL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE (SRI-9662), A LIPOPHILIC ANTIFOLATE 2C2T ; 1.5 ; Human Dihydrofolate Reductase Complexed With NADPH and 2,4-Diamino-5-((7,8-dicarbaundecaboran-7-yl)methyl)-6-methylpyrimidine, a novel boron containing, nonclassical Antifolate 2C2S ; 1.4 ; Human Dihydrofolate Reductase Complexed With NADPH and 2,4-Diamino-5-(1-o-carboranylmethyl)-6-methylpyrimidine, A novel boron containing, nonclassical Antifolate 4KBN ; 1.84 ; human dihydrofolate reductase complexed with NADPH and 5-{3-[3-(3,5-pyrimidine)]-phenyl-prop-1-yn-1-yl}-6-ethyl-pyrimidine-2,4diamine 4KD7 ; 2.715 ; Human dihydrofolate reductase complexed with NADPH and 5-{3-[3-methoxy-5(pyridine-4-yl)phenyl]prop-1-yn-1-yl}-6-ethyl-pyrimidine-2,4-diamine 4KEB ; 1.45 ; Human dihydrofolate reductase complexed with NADPH and 5-{3-[3-methoxy-5-(isoquin-5-yl)phenyl]but-1-yn-1-yl}6-ethylpyrimidine-2,4-diamine 4KFJ ; 1.76 ; Human dihydrofolate reductase complexed with NADPH and 5-{3-[3-methoxy-5-(isoquin-5-yl)phenyl]prop-1-yn-1-yl}6-ethylprimidine-2,4-diamine 1KMS ; 1.09 ; HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND 6-([5-QUINOLYLAMINO]METHYL)-2,4-DIAMINO-5-METHYLPYRIDO[2,3-D]PYRIMIDINE (SRI-9439), A LIPOPHILIC ANTIFOLATE 2W3B ; 1.27 ; HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND A LIPOPHILIC ANTIFOLATE SELECTIVE FOR MYCOBACTERIUM AVIUM DHFR, 6-((2,5- DIETHOXYPHENYL)AMINOMETHYL)-2,4-DIAMINO-5-METHYLPYRIDO(2,3-D) PYRIMIDINE (SRI-8686) 6A7C ; 2.06 ; Human dihydrofolate reductase complexed with NADPH and BT1 6A7E ; 1.85 ; Human dihydrofolate reductase complexed with NADPH and BT2 2W3M ; 1.6 ; HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND FOLATE 4DDR ; 2.05 ; Human dihydrofolate reductase complexed with NADPH and P218 2W3A ; 1.5 ; HUMAN DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND TRIMETHOPRIM 7XI7 ; 1.65 ; Human dihydrofolate reductase complexed with P39 3GHW ; 1.24 ; Human dihydrofolate reductase inhibitor complex 3GI2 ; 1.53 ; Human dihydrofolate reductase Q35K mutant inhibitor complex 3S3V ; 1.53 ; human dihydrofolate reductase Q35K/N64F double mutant binary complex with trimethoprim 3GHV ; 1.3 ; Human dihydrofolate reductase Q35K/N64F double mutant inhibitor complex 3F8Z ; 2.01 ; Human Dihydrofolate Reductase Structural Data with Active Site Mutant Enzyme Complexes 4QJC ; 1.62 ; Human dihydrofolate reductase ternary complex with NADPH and inhibitor 26 (N~6~-METHYL-N~6~-(3,4,5-TRIFLUOROPHENYL)PYRIDO[2,3-D]PYRIMIDINE-2,4,6-TRIAMINE) 1OHJ ; 2.5 ; HUMAN DIHYDROFOLATE REDUCTASE, MONOCLINIC (P21) CRYSTAL FORM 1OHK ; 2.5 ; HUMAN DIHYDROFOLATE REDUCTASE, ORTHORHOMBIC (P21 21 21) CRYSTAL FORM 6HFI ; 1.45995 ; Human dihydroorotase mutant F1563A apo structure 6HFH ; 1.44871 ; Human dihydroorotase mutant F1563A co-crystallized with carbamoyl aspartate at pH 7.0 6HFJ ; 1.2 ; Human dihydroorotase mutant F1563A co-crystallized with carbamoyl aspartate at pH 7.5 6HFD ; 1.86997 ; Human dihydroorotase mutant F1563L apo structure 6HFK ; 1.45914 ; Human dihydroorotase mutant F1563L co-crystallized with carbamoyl aspartate at pH 6.5 6HFL ; 1.35 ; Human dihydroorotase mutant F1563L co-crystallized with carbamoyl aspartate at pH 7.0 6HFN ; 1.44965 ; Human dihydroorotase mutant F1563L co-crystallized with carbamoyl aspartate at pH 7.5 6HFE ; 1.47997 ; Human dihydroorotase mutant F1563T apo structure 6HFP ; 1.19823 ; Human dihydroorotase mutant F1563T co-crystallized with carbamoyl aspartate at pH 7.0 6HFQ ; 1.14542 ; Human dihydroorotase mutant F1563T co-crystallized with carbamoyl aspartate at pH 7.5 6HFF ; 1.51 ; Human dihydroorotase mutant F1563Y apo structure 6HFS ; 1.34905 ; Human dihydroorotase mutant F1563Y co-crystallized with carbamoyl aspartate at pH 6.5 6HFR ; 1.29949 ; Human dihydroorotase mutant F1563Y co-crystallized with carbamoyl aspartate at pH 7.0 6HFU ; 1.39971 ; Human dihydroorotase mutant F1563Y co-crystallized with carbamoyl aspartate at pH 7.5 6CJF ; 1.63 ; Human dihydroorotate dehydrogenase bound to 4-quinoline carboxylic acid inhibitor 43 2B0M ; 2.0 ; Human dihydroorotate dehydrogenase bound to a novel inhibitor 6CJG ; 2.851 ; Human dihydroorotate dehydrogenase bound to napthyridine inhibitor 46 1D3H ; 1.8 ; HUMAN DIHYDROOROTATE DEHYDROGENASE COMPLEXED WITH ANTIPROLIFERATIVE AGENT A771726 1D3G ; 1.6 ; HUMAN DIHYDROOROTATE DEHYDROGENASE COMPLEXED WITH BREQUINAR ANALOG 3F1Q ; 2.0 ; Human dihydroorotate dehydrogenase in complex with a leflunomide derivative inhibitor 1 3FJ6 ; 1.8 ; Human dihydroorotate dehydrogenase in complex with a leflunomide derivative inhibitor 2 3FJL ; 1.9 ; Human dihydroorotate dehydrogenase in complex with a leflunomide derivative inhibitor 3 3G0U ; 2.0 ; Human dihydroorotate dehydrogenase in complex with a leflunomide derivative inhibitor 4 3G0X ; 1.8 ; Human dihydroorotate dehydrogenase in complex with a leflunomide derivative inhibitor 5 6GK0 ; 1.85 ; HUMAN DIHYDROOROTATE DEHYDROGENASE IN COMPLEX WITH CLASS III HISTONE DEACETYLASE INHIBITOR 6ET4 ; 1.7 ; HUMAN DIHYDROOROTATE DEHYDROGENASE IN COMPLEX WITH NOVEL INHIBITOR 2VR2 ; 2.8 ; Human Dihydropyrimidinase 4BKN ; 2.1 ; Human Dihydropyrimidinase-related protein 3 (DPYSL3) 5NKS ; 1.8 ; Human Dihydropyrimidinase-related Protein 4 (DPYSL4, CRMP3, ULIP-4) 3N0T ; 2.45 ; Human dipeptidil peptidase DPP7 complexed with inhibitor GSK237826A 2IIT ; 2.35 ; Human dipeptidyl peptidase 4 in complex with a diazepan-2-one inhibitor 2IIV ; 2.15 ; Human dipeptidyl peptidase 4 in complex with a diazepan-2-one inhibitor 3JYH ; 2.19 ; Human dipeptidyl peptidase DPP7 2OQV ; 2.8 ; Human Dipeptidyl Peptidase IV (DPP4) with piperidine-constrained phenethylamine 2OQI ; 2.8 ; Human Dipeptidyl Peptidase IV (DPP4) with Piperidinone-constrained phenethylamine 2JID ; 2.8 ; Human Dipeptidyl peptidase IV in complex with 1-(3,4-Dimethoxy-phenyl) -3-m-tolyl-piperidine-4-ylamine 1RWQ ; 2.2 ; Human Dipeptidyl peptidase IV in complex with 5-aminomethyl-6-(2,4-dichloro-phenyl)-2-(3,5-dimethoxy-phenyl)-pyrimidin-4-ylamine 1X70 ; 2.1 ; HUMAN DIPEPTIDYL PEPTIDASE IV IN COMPLEX WITH A BETA AMINO ACID INHIBITOR 2QOE ; 2.3 ; Human Dipeptidyl Peptidase IV in complex with a Triazolopiperazine-based beta amino acid Inhibitor 2OPH ; 2.4 ; Human dipeptidyl peptidase IV in complex with an alpha amino acid inhibitor 2QT9 ; 2.1 ; Human dipeptidyl peptidase iv/cd26 in complex with a 4-aryl cyclohexylalanine inhibitor 2QTB ; 2.25 ; Human dipeptidyl peptidase iv/cd26 in complex with a 4-aryl cyclohexylalanine inhibitor 2P8S ; 2.2 ; Human dipeptidyl peptidase IV/CD26 in complex with a cyclohexalamine inhibitor 3C43 ; 2.3 ; Human dipeptidyl peptidase IV/CD26 in complex with a flouroolefin inhibitor 3C45 ; 2.05 ; Human dipeptidyl peptidase IV/CD26 in complex with a fluoroolefin inhibitor 3D4L ; 2.0 ; Human dipeptidyl peptidase IV/CD26 in complex with a novel inhibitor 1N1M ; 2.5 ; Human Dipeptidyl Peptidase IV/CD26 in complex with an inhibitor 2FJP ; 2.4 ; Human dipeptidyl peptidase IV/CD26 in complex with an inhibitor 4PNZ ; 1.9 ; Human dipeptidyl peptidase IV/CD26 in complex with the long-acting inhibitor Omarigliptin (MK-3102) 1TKR ; 2.7 ; Human Dipeptidyl Peptidase IV/CD26 inhibited with Diisopropyl FluoroPhosphate 1U8E ; 2.2 ; HUMAN DIPEPTIDYL PEPTIDASE IV/CD26 MUTANT Y547F 2FVV ; 1.25 ; Human Diphosphoinositol polyphosphate phosphohydrolase 1 2Q9P ; 1.65 ; Human diphosphoinositol polyphosphate phosphohydrolase 1, Mg-F complex 8E28 ; 3.1 ; Human Dis3L2 in complex with hairpin A-GCU14 8E29 ; 3.1 ; Human Dis3L2 in complex with hairpin C-U12 8E2A ; 2.8 ; Human Dis3L2 in complex with hairpin D-U7 5IP5 ; 1.66 ; Human DJ-1 complexed with Na-K-tartrate 1SOA ; 1.2 ; Human DJ-1 with sulfinic acid 5MVX ; 2.17 ; Human DLL4 C2-EGF3 7C98 ; 3.47 ; Human DMC1 post-synaptic complexes 7C99 ; 3.36 ; Human DMC1 post-synaptic complexes with mismatched dsDNA 7C9C ; 3.33 ; Human DMC1 pre-synaptic complexes 7CGY ; 3.2 ; Human DMC1 Q244M mutant of the post-synaptic complexes 4RGH ; 1.9 ; Human DNA Damage-Inducible Protein: From Protein Chemistry and 3D Structure to Deciphering its Cellular Role 6P0E ; 1.85 ; Human DNA Ligase 1 (E346A,E592A) bound to adenylated DNA containing an 8-oxo guanine:adenine base-pair 6P0B ; 2.203 ; Human DNA Ligase 1 (E346A/E592A) Bound to an Adenylated, dideoxy Terminated DNA nick with 200 mM Mg2+ 6P0D ; 1.75 ; Human DNA Ligase 1 (E346A/E592A) Bound to an Adenylated, hydroxyl terminated DNA nick 6Q1V ; 1.85 ; Human DNA Ligase 1 (E592R) Bound to an Adenylated, hydroxyl terminated DNA nick 7L34 ; 1.901 ; Human DNA Ligase 1 - R641L nicked DNA complex 7L35 ; 2.0 ; Human DNA Ligase 1 - R771W nicked DNA complex 6P0A ; 2.05 ; Human DNA Ligase 1 Bound to an Adenylated, dideoxy Terminated DNA nick with 2 mM Mg2+ 6P09 ; 2.052 ; Human DNA Ligase 1 Bound to an Adenylated, dideoxy Terminated DNA nick with 200 mM Mg2+ 6P0C ; 1.55 ; Human DNA Ligase 1 Bound to an Adenylated, hydroxyl terminated DNA nick in EDTA 7KR3 ; 2.778 ; Human DNA Ligase 1(E346A/E592A) Bound to a bulged DNA substrate 7KR4 ; 2.2 ; Human DNA Ligase 1(E346A/E592A) Bound to a nicked DNA substrate control duplex 3L2P ; 3.0 ; Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching Between Two DNA Bound States 7M7P ; 1.8 ; Human DNA Pol eta S113A with dA-ended primer and dAMPNPP 7M83 ; 1.55 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 0 s 7M86 ; 1.55 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 140 s 7M87 ; 1.85 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 230 s 7M88 ; 1.66 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 300 s 7M84 ; 1.47 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 40 s 7M85 ; 1.75 ; Human DNA Pol eta S113A with dA-ended primer and dATP: in crystallo reaction for 80 s 7M7S ; 1.85 ; Human DNA Pol eta S113A with dT-ended primer and 0.1 mM dAMPNPP 7M7Q ; 2.27 ; Human DNA Pol eta S113A with dT-ended primer and dAMPNPP 7M7T ; 1.46 ; Human DNA Pol eta S113A with dT-ended primer and dATP: in crystallo reaction for 0 s 7M7U ; 1.94 ; Human DNA Pol eta S113A with dT-ended primer and dATP: in crystallo reaction for 480s 7M7R ; 1.81 ; Human DNA Pol eta S113A with rA-ended primer and dAMPNPP 7M89 ; 1.83 ; Human DNA Pol eta S113A with rA-ended primer and dATP: in crystallo reaction for 0 s 7M8B ; 1.85 ; Human DNA Pol eta S113A with rA-ended primer and dATP: in crystallo reaction for 140 s 7M8C ; 1.85 ; Human DNA Pol eta S113A with rA-ended primer and dATP: in crystallo reaction for 230 s 7M8D ; 1.92 ; Human DNA Pol eta S113A with rA-ended primer and dATP: in crystallo reaction for 300 s 7M8A ; 1.91 ; Human DNA Pol eta S113A with rA-ended primer and dATP: in crystallo reaction for 40 s 7M7N ; 1.31 ; Human DNA Pol eta with 2'-FA-ended primer and dAMPNPP 7M7L ; 1.58 ; Human DNA Pol eta with dA-ended primer and dAMPNPP 7M7Y ; 1.8 ; Human DNA Pol eta with dA-ended primer and dATP: in crystallo reaction for 0 s 7M80 ; 1.98 ; Human DNA Pol eta with dA-ended primer and dATP: in crystallo reaction for 100 s 7M81 ; 2.05 ; Human DNA Pol eta with dA-ended primer and dATP: in crystallo reaction for 100 s 7M82 ; 2.07 ; Human DNA Pol eta with dA-ended primer and dATP: in crystallo reaction for 300 s 7M7Z ; 1.82 ; Human DNA Pol eta with dA-ended primer and dATP: in crystallo reaction for 40 s 7M7O ; 1.8 ; Human DNA Pol eta with dT-ended primer and 0.1 mM dAMPNPP 7M7M ; 1.46 ; Human DNA Pol eta with rA-ended primer and dAMPNPP 5IUD ; 3.3 ; Human DNA polymerase alpha in binary complex with a DNA:DNA template-primer 8D96 ; 3.35 ; Human DNA polymerase alpha/primase elongation complex I bound to primer/template 5VS4 ; 1.87 ; Human DNA polymerase beta 8-oxoG:dA extension with dTTP after 120 s 5VS3 ; 1.7 ; Human DNA polymerase beta 8-oxoG:dA extension with dTTP after 90 s 5VRY ; 1.9 ; Human DNA polymerase beta 8-oxoG:dC extension with dTTP after 20 s 5VRZ ; 2.05 ; Human DNA polymerase beta 8-oxoG:dC extension with dTTP after 60 s 5VS0 ; 2.1 ; Human DNA polymerase beta 8-oxoG:dC extension with dTTP after 80 s 4O9M ; 2.295 ; Human DNA polymerase beta complexed with adenylated tetrahydrofuran (abasic site) containing DNA 1ZJM ; 2.1 ; Human DNA Polymerase beta complexed with DNA containing an A-A mismatched primer terminus 1ZJN ; 2.61 ; Human DNA Polymerase beta complexed with DNA containing an A-A mismatched primer terminus with dGTP 1BPY ; 2.2 ; HUMAN DNA POLYMERASE BETA COMPLEXED WITH GAPPED DNA AND DDCTP 1MQ2 ; 3.1 ; Human DNA Polymerase Beta Complexed With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine and dAMP 1MQ3 ; 2.8 ; Human DNA Polymerase Beta Complexed With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine Template Paired with dCTP 1BPZ ; 2.6 ; HUMAN DNA POLYMERASE BETA COMPLEXED WITH NICKED DNA 1TV9 ; 2.0 ; HUMAN DNA POLYMERASE BETA COMPLEXED WITH NICKED DNA CONTAINING A MISMATCHED TEMPLATE ADENINE AND INCOMING CYTIDINE 1TVA ; 2.6 ; HUMAN DNA POLYMERASE BETA COMPLEXED WITH NICKED DNA CONTAINING A MISMATCHED TEMPLATE THYMIDINE AND INCOMING CYTIDINE 2P66 ; 2.5 ; Human DNA Polymerase beta complexed with tetrahydrofuran (abasic site) containing DNA 7RBE ; 1.89 ; Human DNA polymerase beta crosslinked binary complex - A 7RBF ; 1.84 ; Human DNA polymerase beta crosslinked binary complex - B 7RBN ; 2.9 ; Human DNA polymerase beta crosslinked complex, 20 min Ca to Mg exchange 7RBI ; 1.93 ; Human DNA polymerase beta crosslinked complex, 20 s Ca to Mg exchange 7RBJ ; 1.91 ; Human DNA polymerase beta crosslinked complex, 30 s Ca to Mg exchange 7RBK ; 2.2 ; Human DNA polymerase beta crosslinked complex, 40 s Ca to Mg exchange 7RBO ; 2.96 ; Human DNA polymerase beta crosslinked complex, 60 min Ca to Mg exchange 7RBL ; 1.98 ; Human DNA polymerase beta crosslinked complex, 60 s Ca to Mg exchange 7RBM ; 2.21 ; Human DNA polymerase beta crosslinked complex, 60 s Ca to Mn exchange 7RBG ; 1.9 ; Human DNA polymerase beta crosslinked ternary complex 1 7RBH ; 1.75 ; Human DNA polymerase beta crosslinked ternary complex 2 7K97 ; 2.4 ; Human DNA polymerase beta dGDP product complex with Mn2+ 4TUQ ; 2.367 ; Human DNA polymerase beta inserting dCMPNPP opposite GG template (GG0b). 4TUR ; 2.169 ; Human DNA polymerase beta inserting dCMPNPP opposite the 5'G of cisplatin crosslinked Gs (Pt-GG2) 4TUS ; 2.42 ; Human DNA polymerase beta inserting dCMPNPP opposite the 5'G of cisplatin crosslinked Gs (Pt-GG2) WITH MANGANESE IN THE ACTIVE SITE. 5VS1 ; 2.5 ; Human DNA polymerase beta pre-catalytic 8-oxoG:dA extension complex with dTTP bound in non-planar conformation 5VS2 ; 2.33 ; Human DNA polymerase beta pre-catalytic 8-oxoG:dA extension complex with dTTP bound in Watson-Crick conformation 5VRW ; 2.58 ; Human DNA polymerase beta pre-catalytic 8-oxoG:dC extension complex with dTTP bound in non-planar conformation 5VRX ; 2.2 ; Human DNA polymerase beta pre-catalytic 8-oxoG:dC extension complex with dTTP bound in Watson-Crick conformation 7K96 ; 2.1 ; Human DNA polymerase beta ternary complex with templating cytosine and incoming deoxyguanosine diphosphate 4RQ7 ; 2.0 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG)and dATP soaked with MgCl2 for 1hr 4RQ5 ; 2.32 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG)and dATP soaked with MgCl2 for 60 s 4RPZ ; 2.19 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG)and dCTP soaked with MgCl2 for 60 s 4RQ0 ; 2.2 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG)and dCTP soaked with MgCl2 for 80 s 4RQ2 ; 2.2 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG)and dCTP soaked with MnCl2 for 35 s 4RQ4 ; 2.1 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine(8-oxoG) and dATP soaked with MgCl2 for 30 s 4RQ6 ; 2.25 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine(8-oxoG) and dATP soaked with MgCl2 for 80 s 4RQ8 ; 2.0 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine(8-oxoG) and dATP soaked with MnCl2 for 35 s 4RQ1 ; 2.7 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine(8-oxoG) and dCTP soaked with MgCl2 for 1hr 4RPY ; 1.9 ; Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine(8-oxoG) and dCTP soaked with MgCl2 for 30 s 3MR5 ; 1.8 ; Human DNA polymerase eta - DNA ternary complex with a CPD 1bp upstream of the active site (TT3) 3MR6 ; 1.9 ; Human DNA polymerase eta - DNA ternary complex with a CPD 2bp upstream of the active site (TT4) 3MR3 ; 1.75 ; Human DNA polymerase eta - DNA ternary complex with the 3'T of a CPD in the active site (TT1) 3SI8 ; 2.15 ; Human DNA polymerase eta - DNA ternary complex with the 5'T of a CPD in the active site (TT2) 4ECY ; 1.943 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 6.0 (Na+ MES) with 1 Ca2+ ion 4ECZ ; 1.834 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 6.5 (Na+ MES) with 1 Ca2+ ion 4ED0 ; 1.653 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 6.8 (Na+ MES) with 1 Ca2+ ion 4ED1 ; 1.806 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 7.0 (Na+ MES) with 1 Ca2+ ion 4ED2 ; 1.711 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 7.2 (Na+ HEPES) with 1 Ca2+ ion 4ED3 ; 1.791 ; Human DNA polymerase eta - DNA ternary complex: AT crystal at pH 7.5 (Na+ HEPES) with 1 Ca2+ ion 4ED6 ; 2.211 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 6.7 for 15 hr, Sideway translocation 4ECT ; 1.795 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 140 sec 4ECU ; 1.949 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 200 sec 4ECV ; 1.521 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 230 sec 4ECW ; 1.896 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 250 sec 4ECX ; 1.744 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 300 sec 4ECR ; 1.892 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 40 sec 4ECS ; 1.951 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the AT crystal at pH 7.0 for 80 sec 4ED8 ; 1.521 ; Human DNA polymerase eta - DNA ternary complex: Reaction in the TG crystal at pH 7.0, Normal translocation 4ED7 ; 1.717 ; Human DNA polymerase eta - DNA ternary complex: TG crystal at pH 7.0 (K+ MES) with 1 Ca2+ ion 4Q8F ; 2.797 ; Human DNA polymerase eta extending primer immediately after a phenanthriplatin adducted G 4DL6 ; 2.5 ; Human DNA polymerase eta extending primer immediately after cisplatin crosslink (Pt-GG3). 8EVF ; 2.87 ; HUMAN DNA POLYMERASE ETA EXTENSION COMPLEX WITH AN INCOMING DCTP 6M7V ; 3.062 ; Human DNA polymerase eta extension complex with cdA at the -1 position 6M7P ; 1.75 ; Human DNA polymerase eta extension complex with cdA at the -2 position 4DL7 ; 1.97 ; Human DNA polymerase eta fails to extend primer 2 nucleotide after cisplatin crosslink (Pt-GG4). 6M7T ; 2.8 ; Human DNA polymerase eta in a non-productive ternary complex with Ca2+ and dTTP oppositing cdA 6M7U ; 3.4 ; Human DNA polymerase eta in a non-productive ternary complex with Mg2+ and dTMPNPP oppositing cdA 3TQ1 ; 2.556 ; Human DNA Polymerase eta in binary complex with DNA 3JAA ; 22.0 ; HUMAN DNA POLYMERASE ETA in COMPLEX WITH NORMAL DNA AND INCO NUCLEOTIDE (NRM) 3MR2 ; 1.83 ; Human DNA polymerase eta in complex with normal DNA and incoming nucleotide (Nrm) 4Q8E ; 1.549 ; Human DNA polymerase eta inserting dCMPNPP opposite a phenanthriplatin adducted G 4DL2 ; 2.15 ; Human DNA polymerase eta inserting dCMPNPP opposite CG template (GG0a) 4DL3 ; 2.1 ; Human DNA polymerase eta inserting dCMPNPP opposite GG template (GG0b). 4DL4 ; 2.0 ; Human DNA polymerase eta inserting dCMPNPP opposite the 3'G of cisplatin crosslinked Gs (Pt-GG1). 4DL5 ; 2.92 ; Human DNA polymerase eta inserting dCMPNPP opposite the 5'G of cisplatin crosslinked Gs (Pt-GG2). 8EVE ; 2.35 ; HUMAN DNA POLYMERASE ETA INSERTION COMPLEX 5KFS ; 1.46 ; Human DNA polymerase eta R61A-DNA ternary complex: ground state at pH7.0 (K+ MES) with 1 Ca2+ ion 5KFV ; 1.6 ; Human DNA polymerase eta R61A-DNA ternary complex: reaction with 1 mM Mg2+ for 140s 5KFW ; 1.62 ; Human DNA polymerase eta R61A-DNA ternary complex: reaction with 1 mM Mg2+ for 200s 5KFX ; 1.52 ; Human DNA polymerase eta R61A-DNA ternary complex: reaction with 1 mM Mg2+ for 300s 5KFT ; 1.52 ; Human DNA polymerase eta R61A-DNA ternary complex: reaction with 1 mM Mg2+ for 40s 5KFU ; 1.55 ; Human DNA polymerase eta R61A-DNA ternary complex: reaction with 1 mM Mg2+ for 80s 6M7O ; 3.0 ; Human DNA polymerase eta ternary complex with Mn2+ and dTMPNPP oppositing cdA 4ECQ ; 1.5 ; Human DNA polymerase eta- DNA ternary complex: AT crystal at pH6.8(K+ MES) with 1 Ca2+ ion 4J9P ; 2.3 ; Human DNA polymerase eta-DNA postinsertion binary complex with TA base pair 4J9Q ; 1.96 ; Human DNA polymerase eta-DNA postinsertion binary complex with TG mispair 5KFM ; 1.6 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: ground state at pH7.0 (K+ MES) with 1 Ca2+ ion 5KFN ; 1.45 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: reaction with 1 mM Mg2+ for 1800s 5KFO ; 1.52 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: reaction with 1 mM Mn2+ for 1800s 5KFQ ; 1.55 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: reaction with 10 mM Mn2+ for 600s 5KFP ; 1.7 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: reaction with 20 mM Mg2+ for 600s 5KFR ; 1.75 ; Human DNA polymerase eta-DNA ternary complex with Sp-dATP-alpha-S: reaction with 20 mM Mn2+ for 600s 5KFA ; 1.51 ; Human DNA polymerase eta-DNA ternary complex: ground state at pH7.0 (K+ MES) with 1 Ca2+ ion 4J9L ; 1.85 ; Human DNA polymerase eta-DNA ternary complex: misincorporation G opposite T after a C at the primer 3' end (CA/G) 4J9N ; 1.956 ; Human DNA polymerase eta-DNA ternary complex: misincorporation G opposite T after a G at the primer 3' end (GA/G) 4J9K ; 2.03 ; Human DNA polymerase eta-DNA ternary complex: misincorporation G opposite T after a T at the primer 3' end (TA/G) 4J9M ; 2.25 ; Human DNA polymerase eta-DNA ternary complex: misincorporation G opposite T after an A at the primer 3' end (AA/G) 4J9O ; 2.597 ; Human DNA polymerase eta-DNA ternary complex: primer extension after a T:G mispair 5KG6 ; 1.55 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 10 mM Ca2+ for 60s 5KG5 ; 1.6 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 10 mM Cd2+ for 60s 5KG4 ; 1.6 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 10 mM Mg2+ for 60s 5KG3 ; 1.7 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 10 mM Mn2+ for 60s 5KG7 ; 1.75 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 10 mM Zn2+ for 60s 5KFZ ; 1.44 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 5 mM Mn2+ for 60s at 14 degree 5KG0 ; 1.6 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 5 mM Mn2+ for 60s at 22 degree 5KG1 ; 1.62 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 5 mM Mn2+ for 60s at 30 degree 5KG2 ; 1.6 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 5 mM Mn2+ for 60s at 37 degree 5KFY ; 1.7 ; Human DNA polymerase eta-DNA ternary complex: reaction first with 1 mM Mn2+ for 1800s then with 5 mM Mn2+ for 60s at 4 degree 5KFF ; 1.7 ; Human DNA polymerase eta-DNA ternary complex: reaction with 1 mM Mn2+ for 1800s 5KFC ; 1.5 ; Human DNA polymerase eta-DNA ternary complex: reaction with 1 mM Mn2+ for 180s 5KFD ; 1.65 ; Human DNA polymerase eta-DNA ternary complex: reaction with 1 mM Mn2+ for 300s 5KFE ; 1.55 ; Human DNA polymerase eta-DNA ternary complex: reaction with 1 mM Mn2+ for 600s 5KFB ; 1.55 ; Human DNA polymerase eta-DNA ternary complex: reaction with 1 mM Mn2+ for 90s 5KFI ; 1.65 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 120s 5KFJ ; 1.7 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 180s 5KFK ; 1.7 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 300s 5KFG ; 1.55 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 30s 5KFL ; 1.65 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 600s 5L9X ; 1.9 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 60s 5KFH ; 1.72 ; Human DNA polymerase eta-DNA ternary complex: reaction with 10 mM Mn2+ for 90s 7U72 ; 1.53 ; Human DNA polymerase eta-DNA ternary mismatch complex:ground state at pH7.0 (K+ MES) with 1 Ca2+ ion 7U73 ; 1.56 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 0.5 mM Mn2+ for 1800s 7U76 ; 1.69 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 0.5 mM Mn2+ for 1800s then with 10 mM Mn2+ for 300s 7U74 ; 1.52 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 0.5 mM Mn2+ for 1800s then with 10 mM Mn2+ for 30s 7U75 ; 1.55 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 0.5 mM Mn2+ for 1800s then with 10 mM Mn2+ for 90s 7U79 ; 1.69 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 140s 7U7A ; 1.58 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 200s 7U7B ; 1.58 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 250s 7U7C ; 1.55 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 300s 7U7L ; 1.47 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 300s with flipped-out product 7U77 ; 1.58 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 40s 7U78 ; 1.61 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 1.0 mM Mg2+ for 80s 7U7G ; 1.77 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 120s 7U7I ; 1.57 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 180s 7U7J ; 1.58 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 300s 7U7D ; 1.57 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 30s 7U7K ; 1.67 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 600s 7U7E ; 1.58 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 60s 7U7F ; 1.65 ; Human DNA polymerase eta-DNA ternary mismatch complex:reaction with 10.0 mM Mn2+ for 90s 4J9R ; 2.35 ; Human DNA polymerase eta-DNA translocated binary complex with TG mispair 4J9S ; 1.95 ; Human DNA polymerase eta-DNA translocated binary complex: with TA base pair 7U7S ; 1.6 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.025 mM Mg2+ for 600s 7U7T ; 1.55 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.05 mM Mg2+ for 600s 7U7Y ; 1.78 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.06 mM Mn2+ for 600s 7U7U ; 1.54 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.1 mM Mg2+ for 600s 7U7Z ; 1.67 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.12 mM Mn2+ for 600s 7U80 ; 1.83 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.25 mM Mn2+ for 600s 7U7V ; 1.65 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.4 mM Mg2+ for 600s 7U81 ; 1.6 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 0.5 mM Mn2+ for 600s 7U7W ; 1.66 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 1.0 mM Mg2+ for 600s 7U82 ; 1.55 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 1.0 mM Mn2+ for 600s 7U7X ; 1.65 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 2.0 mM Mg2+ for 600s 7U83 ; 1.55 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 3.0 mM Mn2+ for 600s 7U84 ; 1.71 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex in 6.0 mM Mn2+ for 600s 7U7R ; 1.64 ; Human DNA polymerase eta-DNA-dGMPNPP ternary mismatch complex:no Me2+ soaking 8E8A ; 1.8 ; Human DNA polymerase eta-DNA-dT-ended primer binary complex 8E87 ; 2.19 ; Human DNA polymerase eta-DNA-rA-ended primer-dGMPNPP ternary mismatch complex with Mg2+ 8E8K ; 2.4 ; Human DNA polymerase eta-DNA-rC-ended primer-dGMPNPP ternary mismatch complex with Mg2+ 8E86 ; 1.78 ; Human DNA polymerase eta-DNA-rC-ended primer-dGMPNPP ternary mismatch complex with Mn2+ 8E8J ; 2.4 ; Human DNA polymerase eta-DNA-rG-ended primer-dGMPNPP ternary mismatch complex with Mg2+ 8E85 ; 1.72 ; Human DNA polymerase eta-DNA-rG-ended primer-dGMPNPP ternary mismatch complex with Mn2+ 8E8B ; 2.2 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:ground state at pH7.0 (K+ MES) with 1 Ca2+ ion 8E8F ; 2.14 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 120s 8E8G ; 2.13 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 180s 8E8H ; 2.13 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 300s 8E8C ; 2.25 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 30s 8E8D ; 2.09 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 60s 8E8E ; 2.05 ; Human DNA polymerase eta-DNA-rU-ended primer ternary mismatch complex:reaction with 10 mM Mn2+ for 90s 8E89 ; 2.2 ; Human DNA polymerase eta-DNA-rU-ended primer-binary complex 8E88 ; 2.4 ; Human DNA polymerase eta-DNA-rU-ended primer-dGMPNPP ternary mismatch complex with Mg2+ 3GV5 ; 2.0 ; Human DNA polymerase iota in complex with T template DNA and incoming ddADP 3GV8 ; 2.0 ; Human DNA polymerase iota in complex with T template DNA and incoming dGTP 3GV7 ; 2.2 ; Human DNA polymerase iota in complex with T template DNA and incoming dTTP 3Q8Q ; 2.031 ; Human DNA polymerase iota incorporating dATP opposite 8-oxo-guanine 4EYI ; 2.9 ; Human DNA polymerase iota incorporating dATP opposite N-(deoxyguanosin-8-yl)-1-aminopyrene lesion 3Q8P ; 1.95 ; Human DNA polymerase iota incorporating dCTP opposite 8-oxo-guanine 4EYH ; 2.9 ; Human DNA polymerase iota incorporating dCTP opposite N-(deoxyguanosin-8-yl)-1-aminopyrene lesion 3Q8R ; 2.45 ; Human DNA polymerase iota incorporating dGTP opposite 8-oxo-guanine 3Q8S ; 2.09 ; Human DNA polymerase iota incorporating dTTP opposite 8-oxo-guanine 3PZP ; 3.336 ; Human DNA polymerase kappa extending opposite a cis-syn thymine dimer 5CP2 ; 2.36 ; Human DNA polymerase lambda L431A mutant- Apoenzyme and complex with 6 paired DNA 5CR0 ; 2.75 ; Human DNA polymerase lambda L431A mutant- MgdCTP binary and complex with 6 paired DNA 5CHG ; 2.9 ; Human DNA polymerase lambda L431A mutant- MgdGTP binary and complex with 6 paired DNA 5CJ7 ; 2.901 ; Human DNA polymerase lambda L431A mutant- MgdTTP binary and complex with 6 paired DNA 5DDM ; 2.802 ; Human DNA polymerase lambda- Apoenzyme and complex with 6 paired DNA 4XQ8 ; 2.798 ; Human DNA polymerase lambda- MgdATP binary complex and complex with 6 paired DNA 5CA7 ; 2.522 ; Human DNA polymerase lambda- MgdGTP binary and complex with 6 paired DNA 4XRH ; 3.0 ; Human DNA polymerase lambda- MgdTTP binary and complex with 6 paired DNA 4M0A ; 1.85 ; Human DNA Polymerase Mu post-catalytic complex 4M04 ; 1.898 ; Human DNA Polymerase Mu ternary complex 4LZD ; 1.849 ; Human DNA polymerase mu- Apoenzyme 8E23 ; 2.59 ; Human DNA polymerase theta in complex with allosteric inhibitor 8E24 ; 2.34 ; Human DNA polymerase theta in complex with allosteric inhibitor 8D9D ; 3.59 ; Human DNA polymerase-alpha/primase elongation complex II bound to primer/template 1TL8 ; 3.1 ; Human DNA topoisomerase I (70 kDa) in complex with the indenoisoquinoline AI-III-52 and covalent complex with a 22 base pair DNA duplex 1SC7 ; 3.0 ; Human DNA Topoisomerase I (70 Kda) In Complex With The Indenoisoquinoline MJ-II-38 and Covalent Complex With A 22 Base Pair DNA Duplex 1SEU ; 3.0 ; Human DNA Topoisomerase I (70 Kda) In Complex With The Indolocarbazole SA315F and Covalent Complex With A 22 Base Pair DNA Duplex 1T8I ; 3.0 ; Human DNA Topoisomerase I (70 Kda) In Complex With The Poison Camptothecin and Covalent Complex With A 22 Base Pair DNA Duplex 1K4T ; 2.1 ; HUMAN DNA TOPOISOMERASE I (70 KDA) IN COMPLEX WITH THE POISON TOPOTECAN AND COVALENT COMPLEX WITH A 22 BASE PAIR DNA DUPLEX 1LPQ ; 3.14 ; Human DNA Topoisomerase I (70 Kda) In Non-Covalent Complex With A 22 Base Pair DNA Duplex Containing an 8-oxoG Lesion 1K4S ; 3.2 ; HUMAN DNA TOPOISOMERASE I IN COVALENT COMPLEX WITH A 22 BASE PAIR DNA DUPLEX 1ZXN ; 2.51 ; Human DNA topoisomerase IIa ATPase/ADP 6X9I ; 2.2 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA 7SFG ; 2.43 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Cofactor SAM 7SFD ; 2.09 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3543105A 6X9K ; 2.65 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3685032A 7SFC ; 1.97 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3735967A 6X9J ; 1.79 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3830052 7SFE ; 2.55 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3830334A 7SFF ; 2.05 ; Human DNMT1(729-1600) Bound to Zebularine-Containing 12mer dsDNA and Inhibitor GSK3852279B 5NV0 ; 2.399 ; Human DNMT3B PWWP domain in complex with 4-(dipropylamino)butyronitrile 5NRR ; 1.7 ; Human DNMT3B PWWP domain in complex with 5-[(2-Hydroxyethyl)(propyl)amino]-1-pentanol 5NRV ; 2.075 ; Human DNMT3B PWWP domain in complex with 6-dipropylamino-1-hexanol 5NVO ; 2.4 ; Human DNMT3B PWWP domain in complex with choline 5NR3 ; 2.3 ; Human DNMT3B PWWP domain in complex with ethambutol 5NRS ; 2.3 ; Human DNMT3B PWWP domain in complex with N,N-bis(2-hydroxypropyl)ethanolamine 5NV2 ; 2.029 ; Human DNMT3B PWWP domain in complex with N-isopropyl-1,5-dimethylhexylamine (Metron S) 5NV7 ; 2.568 ; Human DNMT3B PWWP domain in complex with N1-(2-hydroxyethyl)-2-methyl-1,2-propanediamine 6R3E ; 2.269 ; Human DNMT3B PWWP domain in complex with triisopropanolamine 4ZEL ; 2.9 ; Human dopamine beta-hydroxylase 7DFP ; 3.1 ; Human dopamine D2 receptor in complex with spiperone 2XRP ; 8.2 ; Human Doublecortin N-DC Repeat (1MJD) and Mammalian Tubulin (1JFF and 3HKE) Docked into the 8-Angstrom Cryo-EM Map of Doublecortin- Stabilised Microtubules 4ATU ; 8.3 ; Human doublecortin N-DC repeat plus linker, and tubulin (2XRP) docked into an 8A cryo-EM map of doublecortin-stabilised microtubules reconstructed in absence of kinesin 3KWF ; 2.4 ; human DPP-IV with carmegliptin (S)-1-((2S,3S,11bS)-2-Amino-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-3-yl)-4-fluoromethyl-pyrrolidin-2-one 4CDC ; 2.4 ; Human DPP1 in complex with (2S)-2-amino-N-((1S)-1-cyano-2-(4- phenylphenyl)ethyl)butanamide 4CDD ; 2.35 ; Human DPP1 in complex with (2S)-N-((1S)-1-cyano-2-(4-(4-cyanophenyl) phenyl)ethyl)piperidine-2-carboxamide 4CDF ; 2.2 ; Human DPP1 in complex with (2S,4S)-N-((1S)-1-cyano-2-(4-(4- cyanophenyl)phenyl)ethyl)-4-hydroxy-piperidine-2-carboxamide 4CDE ; 2.4 ; Human DPP1 in complex with 4-amino-N-((1S)-1-cyano-2-(4-(4- cyanophenyl)phenyl)ethyl)tetrahydropyran-4-carboxamide 5T4B ; 1.76 ; Human DPP4 in complex with a ligand 34a 5ISM ; 2.0 ; Human DPP4 in complex with a novel 5,5,6-tricyclic pyrrolidine inhibitor 5I7U ; 1.95 ; Human DPP4 in complex with a novel tricyclic hetero-cycle inhibitor 5T4E ; 1.77 ; Human DPP4 in complex with ligand 19a 5T4H ; 2.61 ; Human DPP4 in complex with ligand 34n 5T4F ; 1.9 ; Human DPP4 in complex with ligand 34p 7JKQ ; 3.3 ; Human DPP9-CARD8 complex 7JN7 ; 3.3 ; Human DPP9-CARD8 complex 6V5B ; 3.7 ; Human Drosha and DGCR8 in complex with Primary MicroRNA (MP/RNA complex) - Active state 6V5C ; 4.4 ; Human Drosha and DGCR8 in complex with Primary MicroRNA (MP/RNA complex) - partially docked state 1Z9X ; 3.93 ; Human DRP-1 kinase, W305S S308A D40 mutant, crystal form with 3 monomers in the asymmetric unit 2A27 ; 3.0 ; Human DRP-1 kinase, W305S S308A D40 mutant, crystal form with 8 monomers in the asymmetric unit 2WO6 ; 2.5 ; Human Dual-Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A in complex with a consensus substrate peptide 5ZLE ; 2.6 ; Human duodenal cytochrome b (Dcytb) in substrate free form 5ZLG ; 2.8 ; Human duodenal cytochrome b (Dcytb) in zinc ion and ascorbate bound form 1Q5U ; 2.0 ; HUMAN DUTP PYROPHOSPHATASE 1Q5H ; 2.0 ; Human dUTP Pyrophosphatase complex with dUDP 3EHW ; 1.8 ; Human dUTPase in complex with alpha,beta-imido-dUTP and Mg2+: visualization of the full-length C-termini in all monomers and suggestion for an additional metal ion binding site 2HQU ; 2.2 ; Human dUTPase in complex with alpha,beta-iminodUTP and magnesium ion 3ARN ; 1.8 ; Human dUTPase in complex with novel uracil derivative 3ZYS ; 12.2 ; Human dynamin 1 deltaPRD polymer stabilized with GMPPCP 4UUD ; 12.5 ; Human dynamin 1 K44A superconstricted polymer stabilized with GTP 4UUK ; 12.5 ; Human dynamin 1 K44A superconstricted polymer stabilized with GTP strand 2 2XQQ ; 1.31 ; Human dynein light chain (DYNLL2) in complex with an in vitro evolved peptide (Ac-SRGTQTE). 3P8M ; 2.9 ; Human dynein light chain (DYNLL2) in complex with an in vitro evolved peptide dimerized by leucine zipper 5AIK ; 2.7 ; Human DYRK1A in complex with LDN-211898 4AZE ; 3.15 ; Human DYRK1A in complex with Leucettine L41 4NCT ; 2.597 ; Human DYRK1A in complex with PKC412 3ANR ; 2.6 ; human DYRK1A/harmine complex 3ANQ ; 2.6 ; human DYRK1A/inhibitor complex 6HDR ; 2.2 ; Human DYRK2 bound to Curcumin 6HDP ; 2.3 ; Human DYRK2 bound to Scorzodihydrostilbene A 4AZF ; 2.55 ; Human DYRK2 in complex with Leucettine L41 7MSS ; 1.75 ; Human E105Qa GTP-specific succinyl-CoA synthetase complexed with succinate, magnesium ion and CoA 7MSR ; 1.58 ; Human E105Qa GTP-specific succinyl-CoA synthetase complexed with succinyl-phosphate, magnesium ion and desulfo-coenzyme A 3LYR ; 2.51 ; Human Early B-cell Factor 1 (EBF1) DNA-binding domain 3MQI ; 2.3 ; Human early B-cell factor 1 (EBF1) IPT/TIG domain 3N50 ; 3.102 ; Human Early B-cell factor 3 (EBF3) IPT/TIG and HLHLH domains 6XUQ ; 1.97 ; Human Ecto-5'-nucleotidase (CD73) in complex with A1618 (compound 1b in publication) in the closed state in crystal form III 6XUE ; 1.94 ; Human Ecto-5'-nucleotidase (CD73) in complex with A2396 (compound 74 in publication) in the closed form in crystal form IV 6XUG ; 2.09 ; Human Ecto-5'-nucleotidase (CD73) in complex with A2410 (compound 53 in publication) in the closed form in crystal form IV 6Z9B ; 2.17 ; Human Ecto-5'-nucleotidase (CD73) in complex with AOPCP derivative A830 (compound 16 in publication) in the closed form (crystal form III) 6Z9D ; 1.9 ; Human Ecto-5'-nucleotidase (CD73) in complex with AOPCP derivative AB680 (compound 55 in publication) in the closed form (crystal form III) 6YE2 ; 2.44 ; Human Ecto-5'-nucleotidase (CD73) in complex with the AMPCP derivative A1202 (compound 4a in publication) in the closed form (crystal form IV) 6YE1 ; 2.66 ; Human Ecto-5'-nucleotidase (CD73) in complex with the AMPCP derivative A894 (compound 2n in publication) in the closed form (crystal form IV) 4H2F ; 1.85 ; Human ecto-5'-nucleotidase (CD73): crystal form I (open) in complex with adenosine 4H2G ; 1.55 ; Human ecto-5'-nucleotidase (CD73): crystal form II (open) in complex with adenosine 4H2B ; 1.7 ; Human ecto-5'-nucleotidase (CD73): crystal form II (open) in complex with Baicalin 4H1Y ; 1.58 ; Human ecto-5'-nucleotidase (CD73): crystal form II (open) in complex with PSB11552 4H2I ; 2.0 ; Human ecto-5'-nucleotidase (CD73): crystal form III (closed) in complex with AMPCP 6WG5 ; 2.6 ; Human ectonucleoside triphosphate diphosphohydrolase 4 (ENTPD4, NTPDase 4) 6C01 ; 2.3 ; Human ectonucleotide pyrophosphatase / phosphodiesterase 3 (ENPP3, NPP3, CD203c) 6C02 ; 1.942 ; Human ectonucleotide pyrophosphatase / phosphodiesterase 3 (ENPP3, NPP3, CD203c), inactive (T205A), N594S, with alpha,beta-methylene-ATP (AMPCPP) 5VEM ; 2.6 ; Human ectonucleotide pyrophosphatase / phosphodiesterase 5 (ENPP5, NPP5) 3KEN ; 2.5 ; Human Eg5 in complex with S-trityl-L-cysteine 1X88 ; 1.8 ; Human Eg5 motor domain bound to Mg-ADP and monastrol 6TLE ; 1.75 ; Human Eg5 motor domain mutant E344K 6Y1I ; 3.0 ; Human Eg5 motor domain mutant R234C 6TRL ; 2.2 ; Human Eg5 motor domain mutant Y82F 1A9W ; 2.9 ; HUMAN EMBRYONIC GOWER II CARBONMONOXY HEMOGLOBIN 7SR6 ; 2.62 ; Human Endogenous Retrovirus (HERV-K) reverse transcriptase ternary complex with dsDNA template Primer and dNTP 6SSK ; 3.18 ; Human endogenous retrovirus (HML2) mature capsid assembly, D5 capsule 6SSL ; 3.77 ; Human endogenous retrovirus (HML2) mature capsid assembly, D6 capsule 6SSJ ; 2.75 ; Human endogenous retrovirus (HML2) mature capsid assembly, T=1 icosahedron 6SSM ; 4.34 ; Human endogenous retrovirus (HML2) mature capsid assembly, T=3 icosahedron 6T6R ; 1.67 ; Human endoplasmic reticulum aminopeptidase 1 (ERAP1) in complex with (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid 1M9R ; 2.56 ; human endothelial nitric oxide synthase with 3-Bromo-7-Nitroindazole bound 1M9Q ; 2.01 ; human endothelial nitric oxide synthase with 5-nitroindazole bound 1M9M ; 1.96 ; human endothelial nitric oxide synthase with 6-nitroindazole bound 1M9K ; 2.01 ; Human Endothelial Nitric Oxide Synthase with 7-Nitroindazole Bound 3NOS ; 2.4 ; HUMAN ENDOTHELIAL NITRIC OXIDE SYNTHASE WITH ARGININE SUBSTRATE 1M9J ; 2.43 ; human endothelial nitric oxide synthase with chlorzoxazone bound 5XPR ; 3.6 ; Human endothelin receptor type-B in complex with antagonist bosentan 5X93 ; 2.2 ; Human endothelin receptor type-B in complex with antagonist K-8794 5GLH ; 2.8 ; Human endothelin receptor type-B in complex with ET-1 6K1Q ; 2.7 ; Human endothelin receptor type-B in complex with inverse agonist IRL2500 5GLI ; 2.5 ; Human endothelin receptor type-B in the ligand-free form 1EDN ; 2.18 ; HUMAN ENDOTHELIN-1 4MI0 ; 2.0 ; Human Enhancer of Zeste (Drosophila) Homolog 2(EZH2) 2BZV ; 1.15 ; Human Enteric Adenovirus Serotype 41 Short Fiber Head (pH8) 3OSY ; 2.9923 ; Human enterovirus 71 3C protease 3QZR ; 1.039 ; Human enterovirus 71 3C protease mutant E71A in complex with rupintrivir 3QZQ ; 1.7001 ; Human enterovirus 71 3C protease mutant E71D in complex with rupintrivir 3R0F ; 1.3083 ; Human enterovirus 71 3C protease mutant H133G in complex with rupintrivir 3ZFE ; 2.7 ; Human enterovirus 71 in complex with capsid binding inhibitor WIN51711 3ZFF ; 3.4 ; Human enterovirus 71 in complex with capsid binding inhibitor WIN51711 3ZFG ; 3.2 ; Human enterovirus 71 in complex with capsid binding inhibitor WIN51711 4N43 ; 3.8011 ; Human enterovirus 71 uncoating intermediate captured at atomic resolution 4N53 ; 3.3063 ; Human enterovirus 71 uncoating intermediate captured at atomic resolution 3FY2 ; 1.8 ; Human EphA3 Kinase and Juxtamembrane Region Bound to Substrate KQWDNYEFIW 3FXX ; 1.7 ; Human EphA3 Kinase and Juxtamembrane Region Bound to Substrate KQWDNYE[pTyr]IW 2QOQ ; 1.6 ; Human EphA3 kinase and juxtamembrane region, base, AMP-PNP bound structure 2QO7 ; 1.605 ; Human EphA3 kinase and juxtamembrane region, dephosphorylated, AMP-PNP bound 2QO2 ; 1.6 ; Human EphA3 kinase and juxtamembrane region, dephosphorylated, apo structure 2QO9 ; 1.55 ; Human EphA3 kinase and juxtamembrane region, phosphorylated, AMP-PNP bound 2QOL ; 1.07 ; Human EphA3 kinase and juxtamembrane region, Y596:Y602:S768G triple mutant 2QOF ; 1.2 ; Human EphA3 kinase and juxtamembrane region, Y596F mutant 2QOI ; 1.25 ; Human EphA3 kinase and juxtamembrane region, Y596F:Y602F double mutant 2QOK ; 1.2 ; Human EphA3 kinase and juxtamembrane region, Y596F:Y602F:S768A triple mutant 2QON ; 1.79 ; Human EphA3 kinase and juxtamembrane region, Y596F:Y602F:Y742A triple mutant 2QOO ; 1.25 ; Human EphA3 kinase and juxtamembrane region, Y596F:Y602F:Y742F triple mutant 2QOD ; 1.15 ; Human EphA3 kinase and juxtamembrane region, Y602F mutant 4TWN ; 1.706 ; Human EphA3 Kinase domain in complex with Birb796 4TWO ; 2.047 ; Human EphA3 Kinase domain in complex with compound 164 4G2F ; 1.699 ; Human EphA3 kinase domain in complex with compound 7 3DZQ ; 1.75 ; Human EphA3 kinase domain in complex with inhibitor AWL-II-38.3 4GK2 ; 2.195 ; Human EphA3 Kinase domain in complex with ligand 66 4GK3 ; 1.898 ; Human EphA3 Kinase domain in complex with ligand 87 4GK4 ; 2.1 ; Human EphA3 Kinase domain in complex with ligand 90 4P4C ; 1.599 ; Human EphA3 Kinase domain in complex with quinoxaline derivatives 4P5Q ; 1.35 ; Human EphA3 Kinase domain in complex with quinoxaline derivatives 4P5Z ; 2.002 ; Human EphA3 Kinase domain in complex with quinoxaline derivatives 2QOB ; 1.65 ; Human EphA3 kinase domain, base structure 2QOC ; 1.25 ; Human EphA3 kinase domain, phosphorylated, AMP-PNP bound structure 4AZR ; 2.95 ; Human epidermal fatty acid-binding protein (FABP5) in complex with the endocannabinoid anandamide 4AZM ; 2.75 ; Human epidermal fatty acid-binding protein (FABP5) in complex with the inhibitor BMS-309413 6OB7 ; 2.3 ; Human equilibrative nucleoside transporter-1, dilazep bound 6OB6 ; 2.9 ; Human equilibrative nucleoside transporter-1, S-(4-nitrobenzyl)-6-thioinosine bound, merohedrally twinned 6Z3W ; 6.4 ; Human ER membrane protein complex 6M8P ; 3.31 ; Human ERAP1 bound to phosphinic pseudotripeptide inhibitor DG013 5A8L ; 3.8 ; Human eRF1 and the hCMV nascent peptide in the translation termination complex 2KTU ; ; Human eRF1 C-domain, ""closed"" conformer 2KTV ; ; Human eRF1 C-domain, ""open"" conformer 4ZZN ; 1.33 ; Human ERK2 in complex with an inhibitor 4ZZM ; 1.89 ; Human ERK2 in complex with an irreversible inhibitor 4ZZO ; 1.63 ; Human ERK2 in complex with an irreversible inhibitor 5NGU ; 2.74 ; Human Erk2 with an Erk1/2 inhibitor 5NHF ; 2.14 ; Human Erk2 with an Erk1/2 inhibitor 5NHH ; 1.94 ; Human Erk2 with an Erk1/2 inhibitor 5NHJ ; 2.12 ; Human Erk2 with an Erk1/2 inhibitor 5NHL ; 2.07 ; Human Erk2 with an Erk1/2 inhibitor 5NHO ; 2.24 ; Human Erk2 with an Erk1/2 inhibitor 5NHP ; 1.99 ; Human Erk2 with an Erk1/2 inhibitor 5NHV ; 2.0 ; Human Erk2 with an Erk1/2 inhibitor 6SLG ; 1.33 ; HUMAN ERK2 WITH ERK1/2 INHIBITOR, AZD0364. 5XWM ; 2.45 ; human ERp44 zinc-bound form 1DGB ; 2.2 ; HUMAN ERYTHROCYTE CATALASE 1DGF ; 1.5 ; HUMAN ERYTHROCYTE CATALASE 1DGH ; 2.0 ; HUMAN ERYTHROCYTE CATALASE 3-AMINO-1,2,4-TRIAZOLE COMPLEX 7P8W ; 2.2 ; Human erythrocyte catalase cryoEM 8HID ; 2.2 ; HUMAN ERYTHROCYTE CATALSE COMPLEXED WITH BT-Br 1DGG ; 1.8 ; HUMAN ERYTHROCYTE CATALSE CYANIDE COMPLEX 2VGB ; 2.73 ; HUMAN ERYTHROCYTE PYRUVATE KINASE 2VGG ; 2.74 ; HUMAN ERYTHROCYTE PYRUVATE KINASE: R479H MUTANT 2VGI ; 2.87 ; HUMAN ERYTHROCYTE PYRUVATE KINASE: R486W MUTANT 2VGF ; 2.75 ; HUMAN ERYTHROCYTE PYRUVATE KINASE: T384M mutant 1BUY ; ; HUMAN ERYTHROPOIETIN, NMR MINIMIZED AVERAGE STRUCTURE 4MXE ; 2.6 ; Human ESCO1 (Eco1/Ctf7 ortholog), acetyltransferase domain in complex with acetyl-CoA 3F1I ; 2.3 ; Human ESCRT-0 Core Complex 6VME ; 2.19 ; Human ESCRT-I heterotetramer headpiece 3DT3 ; 2.4 ; Human Estrogen receptor alpha LBD with GW368 2B23 ; 2.1 ; Human estrogen receptor alpha ligand-binding domain and a glucocorticoid receptor-interacting protein 1 NR box II peptide 1L2I ; 1.95 ; Human Estrogen Receptor alpha Ligand-binding Domain in Complex with (R,R)-5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol and a Glucocorticoid Receptor Interacting Protein 1 NR box II Peptide 2B1Z ; 1.78 ; Human estrogen receptor alpha ligand-binding domain in complex with 17methyl-17alpha-dihydroequilenin and a glucoc interacting protein 1 NR box II peptide 2G5O ; 2.3 ; Human estrogen receptor alpha ligand-binding domain in complex with 2-(but-1-enyl)-17beta-estradiol and a glucocorticoid receptor interacting protein 1 NR BOX II Peptide 3ERT ; 1.9 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH 4-HYDROXYTAMOXIFEN 2IOG ; 1.6 ; Human estrogen receptor alpha ligand-binding domain in complex with compound 11F 1XP1 ; 1.8 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 15 1XP6 ; 1.7 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 16 1XP9 ; 1.8 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 18 1XPC ; 1.6 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 19 2IOK ; 2.4 ; Human estrogen receptor alpha ligand-binding domain in complex with compound 1D 1YIN ; 2.2 ; Human estrogen receptor alpha ligand-binding domain in complex with compound 3F 1YIM ; 1.9 ; Human estrogen receptor alpha ligand-binding domain in complex with compound 4 3ERD ; 2.03 ; HUMAN ESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH DIETHYLSTILBESTROL AND A GLUCOCORTICOID RECEPTOR INTERACTING PROTEIN 1 NR BOX II PEPTIDE 2OCF ; 2.95 ; Human estrogen receptor alpha ligand-binding domain in complex with estradiol and the E2#23 FN3 monobody 1R5K ; 2.7 ; Human Estrogen Receptor alpha Ligand-Binding Domain In Complex With GW5638 2B1V ; 1.8 ; Human estrogen receptor alpha ligand-binding domain in complex with OBCP-1M and a glucocorticoid receptor interacting protein 1 NR box II peptide 2G44 ; 2.65 ; Human Estrogen Receptor Alpha Ligand-Binding Domain In Complex With OBCP-1M-G and A Glucocorticoid Receptor Interacting Protein 1 NR Box II Peptide 2FAI ; 2.1 ; Human Estrogen Receptor Alpha Ligand-Binding Domain In Complex With OBCP-2M and A Glucocorticoid Receptor Interacting Protein 1 NR Box II Peptide 1ZKY ; 2.25 ; Human Estrogen Receptor Alpha Ligand-Binding Domain In Complex With OBCP-3M and A Glucocorticoid Receptor Interacting Protein 1 Nr Box II Peptide 1SJ0 ; 1.9 ; Human Estrogen Receptor Alpha Ligand-binding Domain in Complex with the Antagonist Ligand 4-D 7XWQ ; 1.89 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with (R)-2-(2-chloro-4-hydroxyphenyl)-3-(4-hydroxyphenyl)propanenitrile 7XVZ ; 2.08 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with (R)-3-(2-chloro-4-hydroxyphenyl)-2-(4-hydroxyphenyl)propanenitrile 1L2J ; 2.95 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with (R,R)-5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol 7XWR ; 2.164 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with (S)-2-(2-chloro-4-hydroxyphenyl)-3-(4-hydroxyphenyl)propanenitrile 7XWP ; 1.919 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with (S)-3-(2-chloro-4-hydroxyphenyl)-2-(4-hydroxyphenyl)propanenitrile 2GIU ; 2.2 ; Human estrogen receptor beta ligand-binding domain in complex with compound 45 4ZI1 ; 2.1 ; HUMAN ESTROGEN RECEPTOR BETA LIGAND-BINDING DOMAIN IN COMPLEX WITH KB095285 AND CIA12 COACTIVATOR PEPTIDE 7XVY ; 1.544 ; Human Estrogen Receptor beta Ligand-binding Domain in Complex with S-DPN 1ERE ; 3.1 ; HUMAN ESTROGEN RECEPTOR LIGAND-BINDING DOMAIN IN COMPLEX WITH 17BETA-ESTRADIOL 1ERR ; 2.6 ; HUMAN ESTROGEN RECEPTOR LIGAND-BINDING DOMAIN IN COMPLEX WITH RALOXIFENE 1BHS ; 2.2 ; HUMAN ESTROGENIC 17BETA-HYDROXYSTEROID DEHYDROGENASE 4CHL ; 2.61 ; Human Ethylmalonic Encephalopathy Protein 1 (hETHE1) 2IGQ ; 2.0 ; Human euchromatic histone methyltransferase 1 2O8J ; 1.8 ; Human euchromatic histone methyltransferase 2 8CUI ; 2.55 ; Human excitatory amino acid transporter 3 (EAAT3) in an intermediate outward facing apo state 8CV2 ; 2.44 ; Human excitatory amino acid transporter 3 (EAAT3) in an outward facing sodium-bound state 8CUJ ; 3.04 ; Human excitatory amino acid transporter 3 (EAAT3) protomer in an outward facing apo state in 150 mM NMDG-Cl 8CUD ; 2.94 ; Human excitatory amino acid transporter 3 (EAAT3) protomer in an outward facing apo state in 300 mM KCl 8CTD ; 3.42 ; Human excitatory amino acid transporter 3 (EAAT3) protomer with bound glutamate in an outward facing state 8CTC ; 2.8 ; Human excitatory amino acid transporter 3 (EAAT3) with bound glutamate in an intermediate outward facing state 8CUA ; 2.44 ; Human excitatory amino acid transporter 3 (EAAT3) with bound potassium in an intermediate outward facing state 8CV3 ; 3.04 ; Human Excitatory excitatory amino acid transporter 3 (EAAT3) protomer at in an intermediate outward facing sodium-bound state 7R6T ; 2.9 ; Human EXOG complexed with dRP-containing DNA 7R6V ; 2.16 ; Human EXOG complexed with dRP-containing DNA 5ZKI ; 2.321 ; Human EXOG-H140A in complex with duplex DNA 6IID ; 2.986 ; Human EXOG-H140A in complex with RNA-DNA chimeric duplex 5ZKJ ; 2.798 ; Human EXOG-H140A in complex with RNA/DNA hybrid duplex 7LW7 ; 2.5 ; Human Exonuclease 5 crystal structure 7LWA ; 2.85 ; Human Exonuclease 5 crystal structure (T88E) in complex with ssDNA and Mg 7LW8 ; 2.88 ; Human Exonuclease 5 crystal structure in complex with a ssDNA 7LW9 ; 2.71 ; Human Exonuclease 5 crystal structure in complex with ssDNA, Sm, and Na 6H2Y ; 2.65 ; human Fab 1E6 bound to fHbp variant 3 from Neisseria meningitidis serogroup B 5O1R ; 2.86 ; human Fab 5H2 bound to NHBA-C3 from Neisseria meningitidis serogroup B 5N4J ; 1.503 ; human Fab fragment 10C3 against NHBA from Neisseria meningitidis 5N4G ; 2.75 ; human Fab fragment 12E1 against NHBA from Neisseria meningitidis 5NYX ; 1.88 ; human Fab fragment 5H2 against NHBA from Neisseria meningitidis 5HZ9 ; 2.3 ; human FABP3 in complex with 6-Chloro-2-methyl-4-phenyl-quinoline-3-carboxylic acid 5EDC ; 1.29 ; human FABP4 in complex with 6-Chloro-4-phenyl-2-piperidin-1-yl-quinoline-3-carboxylic acid at 1.29A 1DSU ; 2.0 ; HUMAN FACTOR D, COMPLEMENT ACTIVATING ENZYME 1MZE ; 2.2 ; Human Factor Inhibiting HIF (FIH1) 1MZF ; 2.4 ; Human Factor inhibiting HIF (FIH1) in Complex with 2-oxoglutarate 5PB4 ; 2.43 ; human factor VIIa in complex with 1-[[3-[5-hydroxy-3-methyl-4-(1H-pyrrolo[3,2-c]pyridin-2-yl)pyrazol-1-yl]phenyl]methyl]-3-phenylurea at 2.43A 5PB5 ; 1.84 ; human factor VIIa in complex with 1-[[3-[5-hydroxy-4-(7H-pyrrolo[2,3-d]pyrimidin-6-yl)pyrazol-1-yl]phenyl]methyl]-3-phenylurea at 1.84A 5PAC ; 1.5 ; human factor VIIa in complex with 5-hydroxy-N-(4-oxo-3H-quinazolin-6-yl)-1-[3-[(phenylcarbamoylamino)methyl]phenyl]pyrazole-4-carboxamide at 1.50A 5PAI ; 1.73 ; human factor VIIa in complex with N-(2-amino-1H-benzimidazol-5-yl)-1-[3-[[(3,5-dimethyl-1,2-oxazol-4-yl)carbamoylamino]methyl]phenyl]-5-hydroxypyrazole-4-carboxamide at 1.73A 2ZP0 ; 2.7 ; Human factor viia-tissue factor complexed with benzylsulfonamide-D-ile-gln-P-aminobenzamidine 2ZZU ; 2.5 ; Human Factor VIIA-Tissue Factor Complexed with ethylsulfonamide-D-5-(3-carboxybenzyloxy)-Trp-Gln-p-aminobenzamidine 1WV7 ; 2.7 ; Human Factor Viia-Tissue Factor Complexed with ethylsulfonamide-D-5-propoxy-Trp-Gln-p-aminobenzamidine 1WTG ; 2.2 ; Human Factor Viia-Tissue Factor Complexed with ethylsulfonamide-D-biphenylalanine-Gln-p-aminobenzamidine 1WUN ; 2.4 ; Human Factor Viia-Tissue Factor Complexed with ethylsulfonamide-D-Trp-Gln-p-aminobenzamidine 2ZWL ; 2.2 ; Human factor viia-tissue factor complexed with highly selective peptide inhibitor 1WQV ; 2.5 ; Human Factor Viia-Tissue Factor Complexed with propylsulfonamide-D-Thr-Met-p-aminobenzamidine 1WSS ; 2.6 ; Human Factor Viia-Tissue Factor in Complex with peptide-mimetic inhibitor that has two charged groups in P2 and P4 1IQD ; 2.0 ; Human Factor VIII C2 Domain complexed to human monoclonal BO2C11 Fab. 5K0H ; 2.2 ; Human factor Xa in complex with synthetic inhibitor benzylsulfonyl-dSer(Benzyl)-Gly-4-amidinobenzylamide 1EVU ; 2.01 ; HUMAN FACTOR XIII WITH CALCIUM BOUND IN THE ION SITE 1GGU ; 2.1 ; HUMAN FACTOR XIII WITH CALCIUM BOUND IN THE ION SITE 1QRK ; 2.5 ; HUMAN FACTOR XIII WITH STRONTIUM BOUND IN THE ION SITE 1GGY ; 2.5 ; HUMAN FACTOR XIII WITH YTTERBIUM BOUND IN THE ION SITE 1EX0 ; 2.0 ; HUMAN FACTOR XIII, MUTANT W279F ZYMOGEN 4RID ; 3.3 ; Human FAN1 nuclease 3ZQS ; 2.0 ; Human FANCL central domain 2OPM ; 2.4 ; Human Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-461 2OPN ; 2.7 ; Human Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-527 3B7L ; 1.95 ; Human farnesyl diphosphate synthase complexed with MG and minodronate 1YV5 ; 2.0 ; Human farnesyl diphosphate synthase complexed with Mg and risedronate 1YQ7 ; 2.2 ; Human farnesyl diphosphate synthase complexed with risedronate 4P0W ; 2.406 ; Human farnesyl diphosphate synthase in complex with Arenarone and zoledronate 4P0X ; 2.5 ; Human farnesyl diphosphate synthase in complex with Taxodione 5EDB ; 1.18 ; human fatty acid binding protein 4 in complex with 6-Chloro-2-methyl-4-phenyl-quinoline-3-carboxylic acid at 1.18A 8G7X ; 1.815 ; Human fatty acid synthase dehydratase domain 6NNA ; 2.26 ; Human Fatty Acid Synthase Psi/KR Tri-Domain with NADPH and Compound 22 4PIV ; 2.299 ; Human Fatty Acid Synthase Psi/KR Tri-Domain with NADPH and GSK2194069 1XKT ; 2.6 ; Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain 2FCB ; 1.74 ; HUMAN FC GAMMA RECEPTOR IIB ECTODOMAIN (CD32) 1H9V ; 3.0 ; Human Fc-gamma-Receptor IIa (FcgRIIa), monoclinic 4N0F ; 3.02 ; Human FcRn complexed with human serum albumin 6FGB ; 2.9 ; Human FcRn extra-cellular domain complexed with Fab fragment of Rozanolixizumab 3RYE ; 2.1 ; Human FDPS Synthase in Complex with a N-Methyl Pyridinum Bisphosphonate 3S4J ; 1.95 ; Human FDPS Synthase in Complex with a Rigid Analog of Risedronate 2VF6 ; 2.1 ; Human FDPS synthase in complex with minodronate 2RAH ; 2.0 ; Human FDPS synthase in complex with novel inhibitor 5FV7 ; 2.84 ; Human Fen1 in complex with an N-hydroxyurea compound 5XB1 ; 3.0 ; human ferritin mutant - E-helix deletion 5YI5 ; 3.0 ; human ferritin mutant - E-helix deletion 3HCO ; 1.8 ; Human ferrochelatase with Cd and protoporphyrin IX bound 3HCR ; 2.2 ; Human Ferrochelatase with deuteroporphyrin and Ni Bound 3HCP ; 2.0 ; Human ferrochelatase with Mn and deuteroporphyrin bound 5O49 ; 1.91 ; Human FGF in complex with a covalent inhibitor 5O4A ; 2.01 ; Human FGF in complex with a covalent inhibitor 5B7V ; 2.15 ; Human FGFR1 kinase in complex with CH5183284 6YI8 ; 2.13 ; HUMAN FGFR4 KINASE DOMAIN (447-753) IN COMPLEX WITH ROBLITINIB 2IPX ; 1.82 ; Human Fibrillarin 4XKI ; 2.0 ; Human Fibroblast Growth Factor - 1 (FGF-1) mutant S116R 2NTD ; 2.52 ; Human fibroblast growth factor-1 (140 amino acid form) with Cys117Val/Pro134Cys mutations 4YOL ; 1.97 ; Human fibroblast growth factor-1 C16S/A66C/C117A/P134A 3V8O ; 2.8 ; Human Filamin C Ig - like Domains 4 and 5 8CHJ ; 1.697 ; Human FKBP12 in complex with (1S,5S,6R)-10-((R)-(3,5-dichlorophenyl)sulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHM ; 1.12 ; Human FKBP12 in complex with (1S,5S,6R)-10-((S)-(3,5-dichlorophenyl)sulfinyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHK ; 1.55 ; Human FKBP12 in complex with (1S,5S,6R)-10-((S)-(3,5-dichlorophenyl)sulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHI ; 1.7 ; Human FKBP12 in complex with (1S,5S,6R)-10-((S)-3,5-dichloro-N-methylphenylsulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHL ; 1.4 ; Human FKBP12 in complex with (1S,5S,6R)-9-((3,5-dichlorophenyl)sulfonyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,9-diazabicyclo[4.2.1]nonan-2-one 5OMP ; 1.88 ; Human FKBP5 protein 5NJX ; 2.49 ; Human FKBP51 protein in complex with C-terminal peptide of Human HSP 90-alpha 5CMP ; 2.601 ; human FLRT3 LRR domain 2X74 ; 2.34 ; Human foamy virus integrase - catalytic core. 2X78 ; 2.0 ; Human foamy virus integrase - catalytic core. 2X6S ; 2.29 ; Human foamy virus integrase - catalytic core. Magnesium-bound structure. 2X6N ; 2.06 ; Human foamy virus integrase - catalytic core. Manganese-bound structure. 4KMX ; 2.2 ; Human folate receptor alpha (FOLR1) at acidic pH, hexagonal form 4KM6 ; 1.55 ; Human folate receptor alpha (FOLR1) at acidic pH, orthorhombic form 4KM7 ; 1.801 ; Human folate receptor alpha (FOLR1) at acidic pH, triclinic form 4KMY ; 1.795 ; Human folate receptor beta (FOLR2) at neutral pH 4KN2 ; 2.6 ; Human folate receptor beta (FOLR2) in complex with antifolate pemetrexed 4KN1 ; 2.301 ; Human folate receptor beta (FOLR2) in complex with the antifolate aminopterin 4KN0 ; 2.1 ; Human folate receptor beta (FOLR2) in complex with the antifolate methotrexate 4KMZ ; 2.3 ; Human folate receptor beta (FOLR2) in complex with the folate 1FL7 ; 3.0 ; HUMAN FOLLICLE STIMULATING HORMONE 1Y1E ; 1.73 ; human formylglycine generating enzyme 1Y1F ; 1.8 ; human formylglycine generating enzyme with cysteine sulfenic acid 2HI8 ; 1.64 ; human formylglycine generating enzyme, C336S mutant, bromide co-crystallization 2HIB ; 2.0 ; human formylglycine generating enzyme, C336S mutant, iodide co-crystallization 1Y1G ; 1.67 ; Human formylglycine generating enzyme, double sulfonic acid form 1Y1H ; 1.67 ; human formylglycine generating enzyme, oxidised Cys refined as hydroperoxide 1Y1J ; 1.55 ; human formylglycine generating enzyme, sulfonic acid/desulfurated form 3N1V ; 2.18 ; Human FPPS COMPLEX WITH FBS_01 3N1W ; 2.56 ; Human FPPS COMPLEX WITH FBS_02 3N3L ; 2.74 ; Human FPPS complex with FBS_03 3N45 ; 1.88 ; Human FPPS complex with FBS_04 and zoledronic acid/MG2+ 3N49 ; 2.5 ; Human FPPS COMPLEX WITH NOV_292 3N5H ; 2.2 ; Human fpps complex with NOV_304 3N5J ; 2.35 ; Human fpps complex with NOV_311 3N6K ; 2.25 ; Human FPPS complex with NOV_823 3N46 ; 2.35 ; Human FPPS complex with NOV_980 and zoledronic acid/MG2+ 7CWE ; 3.0 ; Human Fructose-1,6-bisphosphatase 1 in APO R-state 7CVH ; 2.09 ; Human Fructose-1,6-bisphosphatase 1 in complex with geranylgeranyl diphosphate 7WVB ; 2.09 ; Human Fructose-1,6-bisphosphatase 1 mutant R50A in APO R-state 8BJM ; 2.2 ; Human full length RAD52 undecamer. 5D6B ; 2.1 ; Human fumarase (wild type) 8D0U ; 1.29 ; Human FUT9 bound to GDP 8D0R ; 1.4 ; Human FUT9 bound to GDP and H-Type 2 8D0S ; 1.37 ; Human FUT9 bound to GDP and LNnT 8D0Q ; 1.39 ; Human FUT9 bound to GDP-CF3-Fucose and H-Type 2 8D0W ; 1.332 ; Human FUT9 bound to H-Type 2 8D0X ; 1.33 ; Human FUT9 bound to LNnT 8D0P ; 1.09 ; Human FUT9, unliganded 4D76 ; 1.77 ; Human FXIa in complex with small molecule inhibitors. 4D7F ; 1.62 ; Human FXIa in complex with small molecule inhibitors. 4D7G ; 2.33 ; Human FXIa in complex with small molecule inhibitors. 2MQI ; ; human Fyn SH2 free state 3H0H ; 1.76 ; human Fyn SH3 domain R96I mutant, crystal form I 3H0I ; 2.2 ; human Fyn SH3 domain R96I mutant, crystal form II 4U1P ; 1.4 ; Human Fyn-SH2 domain in complex with a synthetic high-affinity phospho-peptide 3V5W ; 2.07 ; Human G Protein-Coupled Receptor Kinase 2 in Complex with Soluble Gbetagamma Subunits and Paroxetine 4NVQ ; 2.03 ; Human G9a in Complex with Inhibitor A-366 3MO0 ; 2.78 ; Human G9a-like (GLP, also known as EHMT1) in complex with inhibitor E11 3MO2 ; 2.49 ; human G9a-like (GLP, also known as EHMT1) in complex with inhibitor E67 3MO5 ; 2.14 ; Human G9a-like (GLP, also known as EHMT1) in complex with inhibitor E72 6D6U ; 3.92 ; Human GABA-A receptor alpha1-beta2-gamma2 subtype in complex with GABA and flumazenil, conformation A 6D6T ; 3.86 ; Human GABA-A receptor alpha1-beta2-gamma2 subtype in complex with GABA and flumazenil, conformation B 6X3S ; 3.12 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with bicuculline methbromide 6X3Z ; 3.23 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA 8SI9 ; 2.98 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus allopregnanolone 8SID ; 2.71 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus dehydroepiandrosterone sulfate 6X3X ; 2.92 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus diazepam 8DD3 ; 2.9 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus DMCM 6X3V ; 3.5 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus etomidate 6X3U ; 3.5 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus flumazenil 6X3W ; 3.3 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus phenobarbital 6X40 ; 2.86 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus picrotoxin 8SGO ; 2.65 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus pregnenolone sulfate 6X3T ; 2.55 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus propofol 8DD2 ; 2.9 ; Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with GABA plus Zolpidem 7ZKR ; 1.1 ; Human GABARAP in complex with stapled peptide Pen3-ortho 7ZL7 ; 1.55 ; Human GABARAP in complex with stapled peptide Pen8-ortho 6K2Y ; 1.57 ; Human Galectin-14 6K2Z ; 2.0 ; Human Galectin-14 with lactose 6LJQ ; 1.49 ; human galectin-16 R55N 6LJR ; 2.0 ; human galectin-16 R55N/H57R 7DF5 ; 1.08 ; Human Galectin-3 CRD in complex with novel tetrahydropyran-based thiodisaccharide mimic inhibitor 2XG3 ; 1.2 ; Human galectin-3 in complex with a benzamido-N-acetyllactoseamine inhibitor 6G0V ; 1.09 ; Human Galectin-3 in complex with a TF tumor-associated antigen mimetic 7BE3 ; 1.25 ; Human Galectin-3 in complex with LacdiNAc 6EOG ; 1.2 ; Human galectin-3c in complex with a galactose derivative 6EOL ; 1.5 ; Human galectin-3c in complex with a galactose derivative 6TF6 ; 1.5 ; Human galectin-3c in complex with a galactose derivative 6TF7 ; 1.4 ; Human galectin-3c in complex with a galactose derivative 7ZQX ; 1.05 ; Human galectin-3c in complex with a galactose derivative 4UW3 ; 1.479 ; Human galectin-7 in complex with a galactose based dendron D1. 4UW4 ; 1.766 ; Human galectin-7 in complex with a galactose based dendron D2-1. 4UW5 ; 2.04 ; Human galectin-7 in complex with a galactose based dendron D2-2. 4UW6 ; 1.79 ; Human galectin-7 in complex with a galactose based dendron D3 1HT0 ; 2.0 ; HUMAN GAMMA-2 ALCOHOL DEHYDROGENSE 2JDF ; 1.7 ; Human gamma-B crystallin 4C8R ; 2.82 ; Human gamma-butyrobetaine dioxygenase (BBOX1) in complex with Ni(II) and N-(3-hydroxypicolinoyl)-S-(pyridin-2-ylmethyl)-L-cysteine (AR692B) 8BPI ; 2.0 ; Human Gamma-D crystallin R36S mutant after UV illumination 8BD0 ; 2.0 ; Human Gamma-D crystallin R36S mutant with DTT-Cystein Protein modification 2G98 ; 2.2 ; human gamma-D-crystallin 2PN7 ; 2.41 ; Human gamma-glutamyl cyclotransferase 3JUB ; 1.2 ; Human gamma-glutamylamine cyclotransferase 3JUC ; 1.2 ; Human gamma-glutamylamine cyclotransferase complex with 5-oxoproline 3JUD ; 0.98 ; Human gamma-glutamylamine cyclotransferase, E82Q mutant 8K8E ; 2.6 ; Human gamma-secretase in complex with a substrate mimetic 6LQG ; 3.1 ; Human gamma-secretase in complex with small molecule Avagacestat 7C9I ; 3.1 ; Human gamma-secretase in complex with small molecule L-685,458 8IM7 ; 3.4 ; Human gamma-secretase treated with ganglioside GM1 1H4A ; 1.15 ; Human GammaD Crystallin R58H mutant structure AT 1.15 A resolution 1HK0 ; 1.25 ; Human GammaD Crystallin Structure at 1.25 A Resolution 1UOH ; 2.0 ; HUMAN GANKYRIN 1RBQ ; 2.104 ; Human GAR Tfase complex structure with 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid 1RBY ; 2.101 ; Human GAR Tfase complex structure with 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid and substrate beta-GAR 1RBM ; 2.3 ; Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid 1RBZ ; 2.1 ; Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid 1RC0 ; 2.05 ; Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid 1RC1 ; 2.25 ; Human GAR Tfase complex structure with polyglutamated 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid 1NJS ; 1.98 ; human GAR Tfase in complex with hydrolyzed form of 10-trifluoroacetyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid 5J9F ; 2.1 ; Human GAR transformylase in complex with GAR and (4-{[2-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)ethyl]amino}benzoyl)-L-glutamic acid (AGF183) 4ZYZ ; 1.6 ; Human GAR transformylase in complex with GAR and (S)-2-(7-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)heptanamido)pentanedioic acid (AGF145) 4ZZ0 ; 1.65 ; Human GAR transformylase in complex with GAR and (S)-2-(8-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)octanamido)pentanedioic acid (AGF147) 4ZZ1 ; 1.351 ; HUMAN GAR TRANSFORMYLASE IN COMPLEX WITH GAR AND (S)-2-({4-[3-(2-AMINO-4-OXO-4,7-DIHYDRO-3H-PYRROLO[2,3-D]PYRIMIDIN-6-YL)-PROPYL]-THIOPHENE-2-CARBONYL}-AMINO)-PENTANEDIOIC ACID 4ZYX ; 1.65 ; Human GAR transformylase in complex with GAR and (S)-2-({4-[4-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]thiophene-2-carbonyl}amino)pentanedioic acid (AGF117) 4ZZ2 ; 1.451 ; HUMAN GAR TRANSFORMYLASE IN COMPLEX WITH GAR AND (S)-2-({5-[3-(2-AMINO-4-OXO-4,7-DIHYDRO-3H-PYRROLO[2,3-D]PYRIMIDIN-6-YL)-PROPYL]-THIOPHENE-3-CARBONYL}-AMINO)-PENTANEDIOIC ACID 4ZYY ; 1.85 ; Human GAR transformylase in complex with GAR and (S)-2-({5-[4-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]thiophene-3-carbonyl}amino)pentanedioic acid (AGF118) 4ZYV ; 2.053 ; Human GAR transformylase in complex with GAR and N-({5-[(2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)butyl]thiophen-2-yl}carbonyl)-L-glutamic acid (AGF71) 4ZYW ; 2.05 ; Human GAR transformylase in complex with GAR and N-({5-[(2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)propyl]thiophen-2-yl}carbonyl)-L-glutamic acid (AGF94) 4ZYU ; 1.95 ; Human GAR transformylase in complex with GAR and N-{4-[4-(2-Amino-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-6-yl)-butyl]benzoyl}-L-glutamic acid (AGF50) 4ZYT ; 1.702 ; Human GAR transformylase in complex with GAR and N-{4-[4-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)benzyl]benzoyl}-L-glutamic acid (AGF23) 4ZZ3 ; 2.504 ; Human GAR transformylase in complex with GAR and pemetrexed 7JG0 ; 1.984 ; Human GAR transformylase in complex with GAR substrate and AGF102 inhibitor 7JG3 ; 2.091 ; Human GAR transformylase in complex with GAR substrate and AGF103 inhibitor 7JG4 ; 2.455 ; Human GAR transformylase in complex with GAR substrate and AGF131 inhibitor 8FDY ; 2.06 ; Human GAR transformylase in complex with GAR substrate and AGF132 inhibitor 8FJY ; 2.98 ; Human GAR transformylase in complex with GAR substrate and AGF291 inhibitor 8FDZ ; 2.48 ; Human GAR transformylase in complex with GAR substrate and AGF302 inhibitor 8FE0 ; 2.22 ; Human GAR transformylase in complex with GAR substrate and AGF305 inhibitor 8FJX ; 2.17 ; Human GAR transformylase in complex with GAR substrate and AGF320 inhibitor 8FJW ; 2.08 ; Human GAR transformylase in complex with GAR substrate and AGF347 inhibitor 8FJV ; 2.69 ; Human GAR transformylase in complex with GAR substrate and AGF362 inhibitor 7UHY ; 3.66 ; Human GATOR2 complex 7ALA ; 1.846 ; human GCH-GFRP inhibitory complex 7ALQ ; 2.205 ; human GCH-GFRP inhibitory complex 7-deaza-GTP bound 7ALC ; 1.726 ; human GCH-GFRP stimulatory complex 7ALB ; 1.979 ; human GCH-GFRP stimulatory complex 7-deaza-GTP bound 1Z4R ; 1.74 ; Human GCN5 Acetyltransferase 5H86 ; 2.08 ; Human Gcn5 bound to butyryl-CoA 5H84 ; 2.0 ; Human Gcn5 bound to propionyl-CoA 7YWD ; 3.2 ; Human GDAP1 core domain, trigonal crystal form 8A4J ; 2.68 ; Human GDAP1, A247V mutant 8A4K ; 1.95 ; Human GDAP1, R282H mutant 1KCQ ; 1.65 ; Human Gelsolin Domain 2 with a Cd2+ bound 5ZZ0 ; 2.635 ; HUMAN GELSOLIN FROM RESIDUES GLU28 TO ARG161 WITH CALCIUM 7Q4Y ; 3.08 ; human Gid4 bound to a Gly/N-peptide 7Q50 ; 3.16 ; human Gid4 bound to a Phe/N-peptide 6DKJ ; 1.95 ; human GIPR ECD and Fab complex 7KHD ; 2.9561 ; Human GITR-GITRL complex 5IZ5 ; 2.2 ; Human GIVD cytosolic phospholipase A2 5IXC ; 2.65 ; Human GIVD cytosolic phospholipase A2 in complex with Methyl gamma-Linolenyl Fluorophosphonate 5IZR ; 3.25 ; Human GIVD cytosolic phospholipase A2 in complex with Methyl gamma-Linolenyl Fluorophosphonate inhibitor and Terbium Chloride 4PXS ; 2.6 ; Human GKRP bound to AMG-0265 (N-[(R)-(2-CHLOROPHENYL){7-[4-(2-HYDROXYPROPAN-2-YL) PYRIDIN-2-YL]-1-BENZOTHIOPHEN-2-YL}METHYL]CYCLOPROPANESULFONAMIDE) and Sorbitol-6-phosphate 4PX5 ; 2.2 ; Human GKRP bound to AMG-0696 and Sorbitol-6-phosphate 4OHM ; 2.4 ; Human GKRP bound to AMG-0771 and sorbitol-6-phosphate 4OHK ; 2.8 ; Human GKRP bound to AMG-2526 and S6P 4OHO ; 2.58 ; Human GKRP bound to AMG-2668 4OHP ; 2.4 ; Human GKRP bound to AMG-3227 and S6P 4PX3 ; 2.43 ; Human GKRP bound to AMG-3295 and Sorbitol-6-phosphate 4OP3 ; 2.82 ; Human GKRP bound to AMG-5112 and Sorbitol-6-phosphate 4MRO ; 2.2 ; Human GKRP bound to AMG-5980 and S6P 4MSU ; 2.5 ; Human GKRP bound to AMG-6861 and Sorbitol-6-phosphate 4PX2 ; 2.15 ; Human GKRP bound to AMG2882 and Sorbitol-6-Phosphate 4OLH ; 2.4 ; Human GKRP Bound to AMG5106 and Sorbitol-6-Phosphate 4LY9 ; 2.35 ; Human GKRP complexed to AMG-1694 [(2R)-1,1,1-trifluoro-2-{4-[(2S)-2-{[(3S)-3-methylmorpholin-4-yl]methyl}-4-(thiophen-2-ylsulfonyl)piperazin-1-yl]phenyl}propan-2-ol] and sorbitol-6-phosphate 4MQU ; 2.22 ; Human GKRP complexed to AMG-3969 and S6P 8BSL ; 2.38 ; Human GLS in complex with compound 12 8BSM ; 2.782 ; Human GLS in complex with compound 18 8BSN ; 2.494 ; Human GLS in complex with compound 27 8BSK ; 2.1 ; Human GLS in complex with compound 3 3FR0 ; 2.7 ; Human glucokinase in complex with 2-amino benzamide activator 4NO7 ; 1.7 ; Human Glucokinase in complex with a nanomolar activator. 4MLH ; 2.9 ; Human Glucokinase in Complex with a Novel Amino Thiazole Allosteric Activator 3A0I ; 2.2 ; Human glucokinase in complex with a synthetic activator 3GOI ; 2.52 ; Human glucokinase in complex with a synthetic activator 3H1V ; 2.11 ; Human glucokinase in complex with a synthetic activator 4ISF ; 2.09 ; Human glucokinase in complex with novel activator (2S)-3-cyclohexyl-2-(6-fluoro-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)-N-(1,3-thiazol-2-yl)propanamide 4ISE ; 1.78 ; Human glucokinase in complex with novel activator (2S)-3-cyclohexyl-2-(6-fluoro-4-oxoquinazolin-3(4H)-yl)-N-(1,3-thiazol-2-yl)propanamide 4ISG ; 2.645 ; Human glucokinase in complex with novel activator (2S)-3-cyclohexyl-2-[4-(methylsulfonyl)-2-oxopiperazin-1-yl]-N-(1,3-thiazol-2-yl)propanamide 4MLE ; 2.6 ; Human Glucokinase in Complex with Novel Amino Thiazole Activator 5V4W ; 2.39 ; Human glucokinase in complex with novel indazole activator. 5V4X ; 2.08 ; Human glucokinase in complex with novel pyrazole activator. 1NE7 ; 1.75 ; HUMAN GLUCOSAMINE-6-PHOSPHATE DEAMINASE ISOMERASE AT 1.75 A RESOLUTION COMPLEXED WITH N-ACETYL-GLUCOSAMINE-6-PHOSPHATE AND 2-DEOXY-2-AMINO-GLUCITOL-6-PHOSPHATE 1JLH ; 2.1 ; Human Glucose-6-phosphate Isomerase 8E99 ; 4.24 ; Human GluN1a-GluN2A-GluN2C triheteromeric NMDA receptor in complex with Nb-4 5EQI ; 3.002 ; Human GLUT1 in complex with Cytochalasin B 5EQH ; 2.99 ; Human GLUT1 in complex with inhibitor (2~{S})-3-(2-bromophenyl)-2-[2-(4-methoxyphenyl)ethanoylamino]-~{N}-[(1~{S})-1-phenylethyl]propanamide 5EQG ; 2.9 ; Human GLUT1 in complex with inhibitor (2~{S})-3-(4-fluorophenyl)-2-[2-(3-hydroxyphenyl)ethanoylamino]-~{N}-[(1~{S})-1-phenylethyl]propanamide 3SJG ; 1.65 ; Human glutamate carboxypeptidase II (E424A inactive mutant ) in complex with N-acetyl-aspartyl-aminooctanoic acid 2XEI ; 1.69 ; Human glutamate carboxypeptidase II in complex with Antibody- Recruiting Molecule ARM-P2 2XEG ; 1.59 ; Human glutamate carboxypeptidase II in complex with Antibody- Recruiting Molecule ARM-P4 2XEF ; 1.59 ; Human glutamate carboxypeptidase II in complex with Antibody- Recruiting Molecule ARM-P8 2XEJ ; 1.78 ; Human glutamate carboxypeptidase II in complex with ARM-M4, urea- based inhibitor 8KGY ; 2.59 ; Human glutamate dehydrogenase I 6DQG ; 2.7 ; Human glutamate dehydrogenase, H454Y mutant 8SZJ ; 3.35 ; Human glutaminase C (Y466W) with L-Gln and Pi, filamentous form 7SBN ; 2.14 ; Human glutaminase C (Y466W) with L-Gln, closed conformation 7SBM ; 2.8 ; Human glutaminase C (Y466W) with L-Gln, open conformation 1JHB ; ; HUMAN GLUTAREDOXIN IN FULLY REDUCED FORM, NMR, 20 STRUCTURES 5GRT ; 2.4 ; HUMAN GLUTATHIONE REDUCTASE A34E, R37W MUTANT, GLUTATHIONYLSPERMIDINE COMPLEX 4GRT ; 2.8 ; HUMAN GLUTATHIONE REDUCTASE A34E, R37W MUTANT, MIXED DISULFIDE BETWEEN TRYPANOTHIONE AND THE ENZYME 2GRT ; 2.7 ; HUMAN GLUTATHIONE REDUCTASE A34E, R37W MUTANT, OXIDIZED GLUTATHIONE COMPLEX 3GRT ; 2.5 ; HUMAN GLUTATHIONE REDUCTASE A34E, R37W MUTANT, OXIDIZED TRYPANOTHIONE COMPLEX 1GRT ; 2.3 ; HUMAN GLUTATHIONE REDUCTASE A34E/R37W MUTANT 1XAN ; 2.0 ; HUMAN GLUTATHIONE REDUCTASE IN COMPLEX WITH A XANTHENE INHIBITOR 1K4Q ; 1.9 ; Human Glutathione Reductase Inactivated by Peroxynitrite 1DNC ; 1.7 ; HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DIGLUTATHIONE-DINITROSO-IRON 1GSN ; 1.7 ; HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DINITROSOGLUTATHIONE 1YKC ; 2.1 ; human glutathione S-transferase m2-2 (E.C.2.5.1.18) complexed with glutathione-disulfide 2AB6 ; 2.5 ; HUMAN GLUTATHIONE S-TRANSFERASE M2-2 (E.C.2.5.1.18) complexed with S-METHYLGLUTATHIONE 1XW5 ; 1.8 ; Human glutathione s-transferase M2-2 (E.C.2.5.1.18)complexed with glutathione, monoclinic crystal form 5HWL ; 1.6 ; Human glutathione s-transferase Mu2 complexed with BDEA, monoclinic crystal form 3CSJ ; 1.9 ; Human glutathione s-transferase p1-1 in complex with chlorambucil 2GSS ; 1.9 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1 IN COMPLEX WITH ETHACRYNIC ACID 3GSS ; 1.9 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1 IN COMPLEX WITH ETHACRYNIC ACID-GLUTATHIONE CONJUGATE 4GSS ; 2.5 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1 Y108F MUTANT 22GS ; 1.9 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1 Y49F MUTANT 5GSS ; 1.95 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1, COMPLEX WITH GLUTATHIONE 6GSS ; 1.9 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1, COMPLEX WITH GLUTATHIONE 7GSS ; 2.2 ; Human glutathione S-transferase P1-1, complex with glutathione 8GSS ; 1.9 ; Human glutathione S-transferase P1-1, complex with glutathione 9GSS ; 1.97 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1, COMPLEX WITH S-HEXYL GLUTATHIONE 10GS ; 2.2 ; HUMAN GLUTATHIONE S-TRANSFERASE P1-1, COMPLEX WITH TER117 2HGS ; 2.1 ; HUMAN GLUTATHIONE SYNTHETASE 1GUL ; 2.7 ; HUMAN GLUTATHIONE TRANSFERASE A4-4 COMPLEX WITH IODOBENZYL GLUTATHIONE 3IK7 ; 1.97 ; Human glutathione transferase a4-4 with GSDHN 1GUM ; 3.0 ; HUMAN GLUTATHIONE TRANSFERASE A4-4 WITHOUT LIGANDS 7BEU ; 1.59 ; Human glutathione transferase M1-1 3VLN ; 1.7 ; Human Glutathione Transferase O1-1 C32S Mutant in Complex with Ascorbic Acid 3Q18 ; 1.7 ; Human Glutathione Transferase O2 3Q19 ; 1.9 ; Human Glutathione Transferase O2 3QAG ; 2.0 ; Human Glutathione Transferase O2 with glutathione -new crystal form 5YVN ; 1.33 ; Human Glutathione Transferase Omega1 5YVO ; 1.8 ; Human Glutathione Transferase Omega1 covalently bound to ML175 inhibitor 1M6H ; 2.0 ; Human glutathione-dependent formaldehyde dehydrogenase 2C4J ; 1.35 ; Human glutathione-S-transferase M2-2 T210S mutant in complex with glutathione-styrene oxide conjugate 2C3Q ; 1.85 ; Human glutathione-S-transferase T1-1 W234R mutant, complex with S- hexylglutathione 2C3N ; 1.5 ; Human glutathione-S-transferase T1-1, apo form 2C3T ; 2.4 ; Human glutathione-S-transferase T1-1, W234R mutant, apo form 2QK4 ; 2.45 ; Human glycinamide ribonucleotide synthetase 1MEO ; 1.72 ; human glycinamide ribonucleotide Transformylase at pH 4.2 1MEJ ; 2.0 ; Human Glycinamide Ribonucleotide Transformylase domain at pH 8.5 8WFJ ; 3.35 ; human glycine transporter 1 in complex with ALX-5407 in inward facing conformation 8WFI ; 2.58 ; human glycine transporter 1 in complex with glycine in occluded conformation 8WFL ; 3.03 ; human glycine transporter 1 in complex with PF-03463275 in outward facing conformation 8WFK ; 3.22 ; human glycine transporter 1 in complex with SSR504734 in outward facing conformation 3CEJ ; 3.3 ; Human glycogen phosphorylase (tense state) in complex with the allosteric inhibitor AVE2865 3CEM ; 2.47 ; Human glycogen phosphorylase (tense state) in complex with the allosteric inhibitor AVE9423 8CVY ; 3.6 ; Human glycogenin-1 and glycogen synthase-1 complex in the apo mobile state 8CVZ ; 3.52 ; Human glycogenin-1 and glycogen synthase-1 complex in the apo ordered state 8CVX ; 3.5 ; Human glycogenin-1 and glycogen synthase-1 complex in the presence of glucose-6-phosphate 1GIF ; 1.9 ; HUMAN GLYCOSYLATION-INHIBITING FACTOR 7WT0 ; 2.0 ; human glyoxalase I (with C-ter His tag) in complex with TLSC702 7WSZ ; 1.52 ; human glyoxalase I (with C-ter His tag) in glycerol-bound form 7WT1 ; 1.85 ; human glyoxalase I (with C-ter His tag) in inhibitor-free form 1QIN ; 2.0 ; HUMAN GLYOXALASE I COMPLEXED WITH S-(N-HYDROXY-N-P-IODOPHENYLCARBAMOYL) GLUTATHIONE 1QIP ; 1.72 ; HUMAN GLYOXALASE I COMPLEXED WITH S-P-NITROBENZYLOXYCARBONYLGLUTATHIONE 7WT2 ; 2.0 ; human glyoxalase I in complex with TLSC702 1BH5 ; 2.2 ; HUMAN GLYOXALASE I Q33E, E172Q DOUBLE MUTANT 3W0T ; 1.351 ; Human Glyoxalase I with an N-hydroxypyridone derivative inhibitor 3VW9 ; 1.47 ; Human Glyoxalase I with an N-hydroxypyridone inhibitor 3W0U ; 1.7 ; human Glyoxalase I with an N-hydroxypyridone inhibitor 1FRO ; 2.2 ; HUMAN GLYOXALASE I WITH BENZYL-GLUTATHIONE INHIBITOR 1QH3 ; 1.9 ; HUMAN GLYOXALASE II WITH CACODYLATE AND ACETATE IONS PRESENT IN THE ACTIVE SITE 1QH5 ; 1.45 ; HUMAN GLYOXALASE II WITH S-(N-HYDROXY-N-BROMOPHENYLCARBAMOYL)GLUTATHIONE 1TJJ ; 2.0 ; Human GM2 Activator Protein PAF complex 1G13 ; 2.0 ; HUMAN GM2 ACTIVATOR STRUCTURE 2VPI ; 2.4 ; Human GMP synthetase - glutaminase domain 2VXO ; 2.5 ; Human GMP synthetase in complex with XMP 8XBH ; 2.83 ; Human GPR34 -Gi complex bound to M1 8XBI ; 3.06 ; Human GPR34 -Gi complex bound to M1, receptor focused 6BW6 ; 2.95 ; Human GPT (DPAGT1) H129 variant in complex with tunicamycin 6BW5 ; 3.1 ; Human GPT (DPAGT1) in complex with tunicamycin 6HKQ ; 1.54 ; Human GPX4 in complex with covalent Inhibitor ML162 (S enantiomer) 6BQU ; 2.5 ; Human GR (418-507) in complex with monomeric DNA binding site 6BSF ; 2.4 ; Human GR (418-507) in complex with monomeric DNA binding site 2JYE ; ; Human Granulin A 2JYT ; ; Human Granulin C, isomer 1 2JYU ; ; Human Granulin C, isomer 2 2JYV ; ; Human Granulin F 2GMF ; 2.4 ; HUMAN GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR 1IAU ; 2.0 ; HUMAN GRANZYME B IN COMPLEX WITH AC-IEPD-CHO 3CIK ; 2.75 ; Human GRK2 in Complex with Gbetagamma subunits 5UKL ; 2.15 ; Human GRK2 in complex with Gbetagamma subunits and CCG222886 (14bd) 5WG5 ; 3.1 ; Human GRK2 in complex with Gbetagamma subunits and CCG224061 5HE1 ; 3.15 ; Human GRK2 in complex with Gbetagamma subunits and CCG224062 6C2Y ; 2.74 ; Human GRK2 in complex with Gbetagamma subunits and CCG257142 5WG4 ; 2.31 ; Human GRK2 in complex with Gbetagamma subunits and CCG257284 6U7C ; 2.44 ; Human GRK2 in complex with Gbetagamma subunits and CCG258747 5WG3 ; 2.896 ; Human GRK2 in complex with Gbetagamma subunits and CCG258748 3KRX ; 3.1 ; Human GRK2 in complex with Gbetgamma subunits and balanol (co-crystal) 3KRW ; 2.9 ; Human GRK2 in complex with Gbetgamma subunits and balanol (soak) 5UKK ; 2.6 ; Human GRK2 in complex with human G-beta-gamma subunits and CCG211998 (14ak) 5ZHG ; 1.799 ; Human group C rotavirus VP8*s recognize type A histo-blood group antigens as ligands 5ZHO ; 1.401 ; Human group C rotavirus VP8*s recognize type A histo-blood group antigens as ligands 1HGU ; 2.5 ; HUMAN GROWTH HORMONE 3HHR ; 2.8 ; HUMAN GROWTH HORMONE AND EXTRACELLULAR DOMAIN OF ITS RECEPTOR: CRYSTAL STRUCTURE OF THE COMPLEX 1A22 ; 2.6 ; HUMAN GROWTH HORMONE BOUND TO SINGLE RECEPTOR 7ULL ; 2.31 ; Human Grp94 N-terminal domain in complex with 42C 3I6A ; 1.98 ; Human GST A1-1 GIMF mutant with Glutathione 1XWG ; 1.85 ; Human GST A1-1 T68E mutant 3IK9 ; 2.2 ; Human GST A1-1-GIMF with GSDHN 5X79 ; 1.9 ; Human GST Pi conjugated with novel inhibitor, GS-ESF 6PNM ; 1.82 ; Human GSTO1-1 complexed with 2-chloro-N-(4-chloro-3-(morpholinosulfonyl)phenyl)acetamide 6PNN ; 2.1 ; Human GSTO1-1 complexed with 2-chloro-N-(4-chloro-3-(N-(2-methoxyethyl)-N-methylsulfamoyl)phenyl)acetamide 6PNO ; 1.82 ; Human GSTO1-1 complexed with 2-chloro-N-(4-chloro-3-(N-isopropylsulfamoyl)phenyl)acetamide 5V3Q ; 2.25 ; Human GSTO1-1 complexed with ML175 6Z87 ; 2.564 ; human GTP cyclohydrolase I 7ACC ; 2.04 ; human GTP cyclohydrolase I feedback regulatory protein (GFRP) 7AL9 ; 1.745 ; human GTP cyclohydrolase I feedback regulatory protein (GFRP) in complex with phenylalanine 6Z86 ; 2.206 ; human GTP cyclohydrolase I in complex with 7-deaza-GTP 6Z88 ; 2.687 ; human GTP cyclohydrolase I in complex with allosteric inhibitor 6Z89 ; 2.366 ; human GTP cyclohydrolase I in complex with allosteric inhibitor 3ORH ; 1.86 ; Human guanidinoacetate N-methyltransferase with SAH 2UZ9 ; 2.3 ; Human guanine deaminase (guaD) in complex with zinc and its product Xanthine. 4AQL ; 1.99 ; HUMAN GUANINE DEAMINASE IN COMPLEX WITH VALACYCLOVIR 1F5N ; 1.7 ; HUMAN GUANYLATE BINDING PROTEIN-1 IN COMPLEX WITH THE GTP ANALOGUE, GMPPNP. 6NUI ; ; Human Guanylate Kinase 7Q12 ; 3.7 ; Human GYS1-GYG1 complex activated state bound to glucose-6-phosphate 7Q13 ; 3.0 ; Human GYS1-GYG1 complex activated state bound to glucose-6-phosphate, uridine diphosphate, and glucose 7Q0B ; 3.0 ; Human GYS1-GYG1 complex inhibited state 7Q0S ; 4.0 ; Human GYS1-GYG1 complex inhibited-like state bound to glucose-6-phosphate 2FHA ; 1.9 ; HUMAN H CHAIN FERRITIN 6JPS ; 3.503 ; Human H chain ferritin mutant-MBP 6J4A ; 3.99 ; Human H chain ferritin with an extension peptide 6J7G ; 3.868 ; Human H-ferritin mutant-C90A/C102A/C130A/D144C 4BSD ; 2.4 ; Human H7N9 Influenza Virus Haemagglutinin (with Asn-133 Glycosylation) in Complex with Avian Receptor Analogue 3'-SLN 4BSC ; 2.55 ; Human H7N9 Influenza Virus Haemagglutinin (with Asn-133 Glycosylation) in Complex with Human Receptor Analogue 6'-SLN 4BSB ; 2.35 ; Human H7N9 Influenza Virus Haemagglutinin (with Asn-133 Glycosylation) in Complex with Human Receptor Analogue LSTc 4BSF ; 2.76 ; Human H7N9 Influenza Virus Haemagglutinin in Complex with Avian Receptor Analogue 3'-SLN 4BSE ; 2.55 ; Human H7N9 Influenza Virus Haemagglutinin in Complex with Human Receptor Analogue LSTc 4X0L ; 2.05 ; Human haptoglobin-haemoglobin complex 4HCK ; ; HUMAN HCK SH3 DOMAIN, NMR, 25 STRUCTURES 5HCK ; ; HUMAN HCK SH3 DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 6UQF ; 3.04 ; Human HCN1 channel in a hyperpolarized conformation 6UQG ; 3.54 ; Human HCN1 channel Y289D mutant 5HTK ; 2.01 ; Human Heart 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase (PFKFB2) 1I0Z ; 2.1 ; HUMAN HEART L-LACTATE DEHYDROGENASE H CHAIN, TERNARY COMPLEX WITH NADH AND OXAMATE 5OCI ; 1.62 ; Human Heat Shock Protein 90 bound to 6-Hydroxy-3-(3-methyl-benzyl)-1H-indazole-5-carboxylic acid methyl-(4-morpholin-4-yl-phenyl)-amide 3HHU ; 1.59 ; Human heat-shock protein 90 (HSP90) in complex with {4-[3-(2,4-dihydroxy-5-isopropyl-phenyl)-5-thioxo- 1,5-dihydro-[1,2,4]triazol-4-yl]-benzyl}-carbamic acid ethyl ester {ZK 2819} 8AAV ; 2.0 ; Human heavy chain ferritin with introduced Cys residues modified with C10 ligand 4PGJ ; 2.6 ; Human heavy-chain domain antibody in complex with hen egg-white lysozyme 7MHZ ; 3.2 ; Human Hedgehog acyltransferase (HHAT) in complex with a palmitoylated Hedgehog peptide product and a Fab antibody fragment 7MHY ; 2.7 ; Human Hedgehog acyltransferase (HHAT) in complex with palmitoyl-CoA and two Fab antibody fragments 3VI5 ; 2.0 ; Human hematopoietic prostaglandin D synthase inhibitor complex structures 3VI7 ; 2.0 ; Human hematopoietic prostaglandin D synthase inhibitor complex structures 1T5P ; 2.11 ; Human Heme Oxygenase Oxidation of alpha- and gamma-meso-phenylhemes 1S13 ; 2.29 ; Human Heme Oxygenase Oxidatition of alpha- and gamma-meso-Phenylhemes 3QJB ; 1.8 ; Human Hemoglobin A Mutant Alpha H58L Carbonmonoxy-Form 3QJD ; 1.56 ; Human Hemoglobin A Mutant Alpha H58L Deoxy-Form 3NMM ; 1.6 ; Human Hemoglobin A mutant alpha H58W deoxy-form 3QJC ; 2.001 ; Human Hemoglobin A Mutant Beta H63L Carbonmonoxy-Form 3QJE ; 1.8 ; Human Hemoglobin A Mutant Beta H63L Deoxy-Form 3NL7 ; 1.8 ; Human Hemoglobin A mutant beta H63W carbonmonoxy-form 2YRS ; 2.3 ; Human hemoglobin D Los Angeles: crystal structure 5WOG ; 1.54 ; Human Hemoglobin immersed in Liquid Oxygen for 1 minute 5WOH ; 1.58 ; Human Hemoglobin Immersed in Liquid Oxygen for 20 seconds 7JJQ ; 2.15 ; Human Hemoglobin in Complex with Nitrosoamphetamine 8FDM ; 1.91 ; Human Hemoglobin in Complex with Nitrosomethane 4N8T ; 1.9 ; Human hemoglobin nitric oxide adduct 4M4B ; 2.0 ; Human Hemoglobin Nitroethane Modified 4M4A ; 2.05 ; Human Hemoglobin Nitromethane Modified 8FDN ; 2.2 ; Human Hemoglobin with N-tertbutylhydroxylamine 8FDL ; 1.75 ; Human Hemoglobin with Nitrosochloramphenicol 3D7O ; 1.8 ; Human hemoglobin, nitrogen dioxide anion modified 8CCY ; 2.7 ; Human heparan sulfate N-deacetylase-N-sulfotransferase 1 in complex with calcium and 3'-phosphoadenosine-5'-phosphosulfate 8CHS ; 3.15 ; Human heparan sulfate N-deacetylase-N-sulfotransferase 1 in complex with calcium, 3'-phosphoadenosine-5'-phosphosulfate and nanobody nAb13 (composite map and model). 8CD0 ; 2.42 ; Human heparan sulfate N-deacetylase-N-sulfotransferase 1 in complex with calcium, 3'-phosphoadenosine-5'-phosphosulfate, and nanobody nAb7 (composite map and model) 7ZAY ; 2.8 ; Human heparan sulfate polymerase complex EXT1-EXT2 8CQI ; 2.1 ; Human heparanase in complex with inhibitor R3794 1AE5 ; 2.3 ; HUMAN HEPARIN BINDING PROTEIN 1QGT ; 3.3 ; HUMAN HEPATITIS B VIRAL CAPSID (HBCAG) 2G34 ; 5.053 ; Human hepatitis B virus T=4 capsid strain adyw complexed with assembly effector HAP1 2G33 ; 3.96 ; Human Hepatitis B Virus T=4 capsid, strain adyw 3T2N ; 2.55 ; Human hepsin protease in complex with the Fab fragment of an inhibitory antibody 5WX8 ; 2.5 ; Human herpesvirus 6A immediate early protein 2 C-terminal domain 5B1Q ; 1.85 ; Human herpesvirus 6B tegument protein U14 7B7N ; 2.69 ; Human herpesvirus-8 gH/gL in complex with EphA2 1QHA ; 2.25 ; HUMAN HEXOKINASE TYPE I COMPLEXED WITH ATP ANALOGUE AMP-PNP 5BSK ; 2.61 ; Human HGPRT in complex with (S)-HPEPG, an acyclic nucleoside phosphonate 5BRN ; 2.3 ; Human HGPRT in complex with (S)-HPEPHx, an acyclic nucleoside phosphonate 5W8V ; 2.346 ; HUMAN HGPRT in complex with [(2-[(guanin-9-yl)methyl]propane-1,3-diyl)bis(oxy)]bis(methylene)diphosphonic acid 1BZY ; 2.0 ; HUMAN HGPRTASE WITH TRANSITION STATE INHIBITOR 7URF ; 2.8 ; Human HHAT H379C in complex with SHH N-terminal peptide 1J87 ; 3.2 ; HUMAN HIGH AFFINITY FC RECEPTOR FC(EPSILON)RI(ALPHA), HEXAGONAL CRYSTAL FORM 1 1J86 ; 3.2 ; HUMAN HIGH AFFINITY FC RECEPTOR FC(EPSILON)RI(ALPHA), MONOCLINIC CRYSTAL FORM 2 1J88 ; 3.2 ; HUMAN HIGH AFFINITY FC RECEPTOR FC(EPSILON)RI(ALPHA), TETRAGONAL CRYSTAL FORM 1 1J89 ; 4.1 ; HUMAN HIGH AFFINITY FC RECEPTOR FC(EPSILON)RI(ALPHA), TETRAGONAL CRYSTAL FORM 2 8J77 ; 3.7 ; Human high-affinity choline transporter CHT1 in the choline-bound inward-facing occluded conformation 8J74 ; 3.6 ; Human high-affinity choline transporter CHT1 in the HC-3-bound outward-facing open conformation, dimeric state 8J75 ; 3.6 ; Human high-affinity choline transporter CHT1 in the HC-3-bound outward-facing open conformation, monomeric state 8J76 ; 3.7 ; Human high-affinity choline transporter CHT1 in the inward-facing apo-open conformation 4E1O ; 1.8 ; Human histidine decarboxylase complex with Histidine methyl ester (HME) 7EIX ; 1.9 ; Human histidine decarboxylase mutant Y334F 7EIW ; 2.1 ; Human histidine decarboxylase mutant Y334F reacted with histidine 7EIY ; 2.2 ; Human histidine decarboxylase mutant Y334F soaking with histidine 5KM0 ; 1.533 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint) IMP complex 6B42 ; 1.13 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) 2'-deoxy-AMP complex at 1.13A resolution 5KLZ ; 1.5 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) AMP catalytic product complex 5WAA ; 1.098 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) C84R mutant 5KM2 ; 1.25 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) CMP catalytic product complex 5KM1 ; 1.65 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) GMP catalytic product complex 5IPB ; 1.55 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant 5KLY ; 1.3 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant adenosine nucleoside phosphoramidate substrate complex 5KM6 ; 1.6 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant Ara-A nucleoside phosphoramidate substrate complex 5WA9 ; 1.15 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant nucleoside D-Ala phosphoramidate substrate complex 5KMA ; 1.55 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant nucleoside D-Trp phosphoramidate substrate complex 5WA8 ; 1.3 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant nucleoside L-Ala phosphoramidate substrate complex 5KMB ; 1.6 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant nucleoside L-Trp phosphoramidate substrate complex 5IPC ; 1.3 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) H112N mutant nucleoside thiophosphoramidate substrate complex 5KMC ; 1.35 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) non-nucleotidic covalent intermediate complex 5IPE ; 1.45 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) nucleoside thiophosphoramidate catalytic product complex 5IPD ; 1.75 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) nucleoside thiophosphoramidate covalent intermediate complex 5KM3 ; 1.2 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) UMP catalytic product complex 5I2F ; 1.25 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) with bound sulfamide inhibitor Bio-AMS 5KM4 ; 1.4 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1)-5-Iodo-UMP complex 5EMT ; 1.5 ; Human Histidine Triad Nucleotide Binding Protein 1 (hHint1)-copper complex 6N3Y ; 1.8 ; Human Histidine Triad Nucleotide Binding Protein 1 (Hint1) with Bound 5'-O-[(3-Indolyl)-1-Ethyl]Carbamoyl Guanosine 6N3X ; 1.1 ; Human Histidine Triad Nucleotide Binding Protein 1 (Hint1) with Bound 5'-O-[1-Benzyl]Carbamoyl Guanosine 6N3V ; 1.45 ; Human Histidine Triad Nucleotide Binding Protein 1 (Hint1) with Bound 5'-O-[1-Ethyl]Carbamoyl Guanosine 6N3W ; 1.75 ; Human Histidine Triad Nucleotide Binding Protein 1 (Hint1) with Bound 5'-O-[3-Phenyl-1-Ethyl]Carbamoyl Guanosine 5I2E ; 1.6 ; Human Histidine Triad Nucleotide Binding Protein 1 (Hint1) with Bound Sulfamate Inhibitor 3a:3-(5-O-{[3-(1H-indol-3-yl)propanoyl]sulfamoyl}-beta-D-ribofuranosyl)-3H-imidazo[2,1-i]purine 4INC ; 1.19 ; Human Histidine Triad Nucleotide Binding Protein 2 5KM9 ; 1.45 ; Human Histidine Triad Nucleotide Binding Protein 2 (hHint2) adenosine complex 5KM8 ; 2.0 ; Human Histidine Triad Nucleotide Binding Protein 2 (hHint2) Cidofovir complex 5KM5 ; 2.1 ; Human Histidine Triad Nucleotide Binding Protein 2 (hHint2) triciribine 5'-monoposphate catalytic product complex 4INI ; 1.65 ; Human Histidine Triad Nucleotide Binding Protein 2 with Bound AMP 6YQM ; 1.02 ; Human histidine triad nucleotide-binding protein 1 (hHINT1) complexed with dGMP and refined to 1.02 A 6YVP ; 2.77 ; Human histidine triad nucleotide-binding protein 2 (hHINT2) complexed with dGMP and refined to 2.77 A 6YPR ; 1.26 ; Human histidine triad nucleotide-binding protein 2 (hHINT2) refined to 1.26 A in H32 space group 6YQD ; 1.407 ; Human histidine triad nucleotide-binding protein 2 (hHINT2) refined to 1.41 A in P212121 space group 6YI0 ; 1.65 ; Human histidine triad nucleotide-binding protein 2 (hHINT2) refined to 1.65 A in P41212 space group 6YPX ; 2.11 ; Human histidine triad nucleotide-binding protein 2 (hHINT2) refined to 2.11 A in C2221 space group 4X5O ; 2.8 ; Human histidine tRNA synthetase 2P0W ; 1.9 ; Human histone acetyltransferase 1 (HAT1) 3UTQ ; 1.67 ; Human HLA-A*0201-ALWGPDPAAA 2FYT ; 2.0 ; Human HMT1 hnRNP methyltransferase-like 3 (S. cerevisiae) protein 4HC4 ; 1.97 ; Human HMT1 hnRNP methyltransferase-like protein 6 (S. cerevisiae) 5E8R ; 2.55 ; Human HMT1 hnRNP methyltransferase-like protein 6 (S. cerevisiae) 5HZM ; 2.02 ; Human HMT1 hnRNP methyltransferase-like protein 6 (S. cerevisiae) 5WCF ; 1.98 ; Human HMT1 hnRNP methyltransferase-like protein 6 (S. cerevisiae) 4QQK ; 1.88 ; Human HMT1 hnRNP methyltransferase-like protein 6 (S. cerevisiae) with GMS 8ORA ; 2.4 ; Human holo aromatic L-amino acid decarboxylase (AADC) external aldimine with L-Dopa methylester 8OR9 ; 1.9 ; Human holo aromatic L-amino acid decarboxylase (AADC) native structure at physiological pH 5IY6 ; 7.2 ; Human holo-PIC in the closed state 6O9L ; 7.2 ; Human holo-PIC in the closed state 5IY8 ; 7.9 ; Human holo-PIC in the initial transcribing state 5IY9 ; 6.3 ; Human holo-PIC in the initial transcribing state (no IIS) 5IY7 ; 8.6 ; Human holo-PIC in the open state 1EY2 ; 2.3 ; HUMAN HOMOGENTISATE DIOXYGENASE WITH FE(II) 6TX2 ; 2.09 ; Human HPF1 5D8L ; 2.069 ; Human HSF2 DNA Binding Domain in complex with 3-site HSE DNA at 2.1 Angstroms Resolution 5D8K ; 1.728 ; Human HSF2 DNA-Binding Domain bound to 2-site HSE DNA at 1.73 Angstroms Resolution 6GJH ; 2.1 ; Human Hsp27 (HspB1) alpha-crystallin domain in complex with a peptide mimic of its phosphorylatable N-terminal region 4MJH ; 2.599 ; Human Hsp27 core domain in complex with C-terminal peptide 1HDJ ; ; HUMAN HSP40 (HDJ-1), NMR 2QLD ; 2.7 ; human Hsp40 Hdj1 8B7J ; ; Human HSP90 alpha ATP Binding Domain, ATP-lid closed conformation, R46A 8B7I ; ; Human HSP90 alpha ATP Binding Domain, ATP-lid open conformation, R60A 4CWF ; 2.0 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWN ; 1.8 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWO ; 2.31 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWP ; 1.95 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWQ ; 2.0 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWR ; 2.0 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWS ; 2.3 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 4CWT ; 1.9 ; Human HSP90 alpha N-terminal domain in complex with an Aminotriazoloquinazoline inhibitor 6HFO ; 1.65 ; Human Hsp90 co-chaperone TTC4 C-domain 1YER ; 1.65 ; HUMAN HSP90 GELDANAMYCIN-BINDING DOMAIN, ""CLOSED"" CONFORMATION 1YES ; 2.2 ; HUMAN HSP90 GELDANAMYCIN-BINDING DOMAIN, ""OPEN"" CONFORMATION 1OSF ; 1.75 ; Human Hsp90 in complex with 17-desmethoxy-17-N,N-Dimethylaminoethylamino-Geldanamycin 2CCU ; 2.7 ; HUMAN HSP90 WITH 4-CHLORO-6-(4-(4-(4-METHANESULPHONYL-BENZYL)- PIERAZIN-1-YL)-1H-PYRAZOL-3-YL)-BENZENE-1,3-DIOL 2CCS ; 1.79 ; HUMAN HSP90 WITH 4-CHLORO-6-(4-PIPERAZIN-1-YL-1H-PYRAZOL-3-YL)- BENZENE-1,2-DIOL 2CCT ; 2.3 ; HUMAN HSP90 WITH 5-(5-CHLORO-2,4-DIHYDROXY-PHENYL)-4-PIPERAZIN-1-YL- 2H-PYRAZOLE-3-CARBOXYLIC ACID ETHYLAMIDE 4EGK ; 1.69 ; Human Hsp90-alpha ATPase domain bound to Radicicol 1UYI ; 2.2 ; Human Hsp90-alpha with 8-(2,5-dimethoxy-benzyl)-2-fluoro-9-pent-9H-purin-6-ylamine 1UYG ; 2.0 ; Human Hsp90-alpha with 8-(2,5-dimethoxy-benzyl)-2-fluoro-9H-purin-6-ylamine 1UYF ; 2.0 ; Human Hsp90-alpha with 8-(2-chloro-3,4,5-trimethoxy-benzyl)-2-fluoro-9-pent-4-ylnyl-9H-purin-6-ylamine 1UYE ; 2.0 ; Human Hsp90-alpha with 8-(2-chloro-3,4,5-trimethoxy-benzyl)-9-pent-4-ylnyl-9H-purin-6-ylamine 1UYK ; 2.2 ; Human Hsp90-alpha with 8-Benzo[1,3]dioxol-,5-ylmethyl-9-butyl-2-fluoro-9H-purin-6-ylamine 1UY9 ; 2.0 ; Human Hsp90-alpha with 8-Benzo[1,3]dioxol-,5-ylmethyl-9-butyl-9H-purin-6-ylamine 1UYH ; 2.2 ; Human Hsp90-alpha with 9-Butyl-8-(2,5-dimethoxy-benzyl)-2-fluoro-9H-purin-6-ylamine 1UYC ; 2.0 ; Human Hsp90-alpha with 9-Butyl-8-(2,5-dimethoxy-benzyl)-9H-purin-6-ylamine 1UYD ; 2.2 ; Human Hsp90-alpha with 9-Butyl-8-(2-chloro-3,4,5-trimethoxy-benzyl)-9H-purin-6-ylamine 1UY6 ; 1.9 ; Human Hsp90-alpha with 9-Butyl-8-(3,4,5-trimethoxy-benzyl)-9H-purin-6-ylamine 1UY8 ; 1.98 ; Human Hsp90-alpha with 9-Butyl-8-(3-trimethoxy-benzyl)-9H-purin-6ylamine 1UY7 ; 1.9 ; Human Hsp90-alpha with 9-Butyl-8-(4-methoxy-benzyl)-9H-purin-6-ylamine 1UYM ; 2.45 ; Human Hsp90-beta with PU3 (9-Butyl-8(3,4,5-trimethoxy-benzyl)-9H-purin-6-ylamine) 7RXZ ; 3.152 ; human Hsp90_MC domain structure 7RY0 ; 2.2 ; human Hsp90_MC domain structure 7RY1 ; 3.523 ; human Hsp90_MC domain structure 6EZ8 ; 4.0 ; Human Huntingtin-HAP40 complex structure 3GEP ; 2.6 ; Human hypoxanthine guanine phosphoribosyltranserfase in complex with (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)guanine 6BNJ ; 1.909 ; Human hypoxanthine guanine phosphoribosyltransferase in complex with [3R,4R]-4-guanin-9-yl-3-((R)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine 3GGJ ; 2.6 ; Human hypoxanthine-guanine phosphoribosyltransferase in complex with 9-(2-phosphonoethoxyethyl)guanine 3GGC ; 2.78 ; Human hypoxanthine-guanine phosphoribosyltransferase in complex with 9-(2-phosphonoethoxyethyl)hypoxanthine 4IJQ ; 2.004 ; Human hypoxanthine-guanine phosphoribosyltransferase in complex with [(2-((Guanine-9H-yl)methyl)propane-1,3-diyl)bis(oxy)]bis(methylene))diphosphonic acid 5HIA ; 1.773 ; Human hypoxanthine-guanine phosphoribosyltransferase in complex with [3R,4R]-4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine 3E4A ; 2.6 ; Human IDE-inhibitor complex at 2.6 angstrom resolution 6IO0 ; 2.2 ; Human IDH1 R132C mutant complexed with compound A. 6PU7 ; 2.43 ; Human IDO1 in complex with compound 17 (N-{2-[(4-{N-[(7S)-4-fluorobicyclo[4.2.0]octa-1,3,5-trien-7-yl]-N'-hydroxycarbamimidoyl}-1,2,5-oxadiazol-3-yl)sulfanyl]ethyl}acetamide) 6WPE ; 2.43 ; HUMAN IDO1 IN COMPLEX WITH COMPOUND 4 6WJY ; 1.91 ; HUMAN IDO1 IN COMPLEX WITH COMPOUND 4-A 4MJ4 ; 2.172 ; Human iduronidase apo structure P21 form 5W5H ; 2.79 ; Human IFIT1 dimer with m7Gppp-AAAA 5W5I ; 2.65 ; Human IFIT1 dimer with PPP-AAAA 3SE3 ; 4.0001 ; human IFNa2-IFNAR ternary complex 3S98 ; 1.9 ; human IFNAR1 3SE4 ; 3.5001 ; human IFNw-IFNAR ternary complex 8FGW ; 3.7 ; Human IFT-A complex structures provide molecular insights into ciliary transport 8FH3 ; 4.3 ; Human IFT-A complex structures provide molecular insights into ciliary transport 3M8O ; 1.55 ; Human IgA1 Fab fragment 8Q6K ; 2.1 ; Human IgD Fab in complex with an orthosteric inhibitor of Phl p 7 4BUH ; 1.3 ; Human IgE against the major allergen Bet v 1 - Crystal structure of clone M0418 scFv 5MOL ; 1.75 ; Human IgE-Fc crystal structure 4D2R ; 2.1 ; Human IGF in complex with a Dyrk1B inhibitor 8PYK ; 2.23 ; Human IGF1R with inhibitor 47 8PYL ; 2.93 ; Human IGF1R with inhibitor 53 8PYM ; 2.652 ; Human IGF1R with inhibitor 54 8PYN ; 1.71 ; Human IGF1R with inhibitor 56 8PYI ; 3.06 ; Human IGF1R with inhibitor 6 8PYJ ; 2.702 ; Human IGF1R with inhibitor 8 1GP0 ; 1.4 ; Human IGF2R domain 11 1GP3 ; 1.95 ; Human IGF2R domain 11 4DZ8 ; 1.91 ; human IgG1 Fc fragment Heterodimer 6P6D ; 2.31 ; HUMAN IGG1 FC FRAGMENT, C239 INSERTION MUTANT 7RHO ; 2.0 ; Human IgG1 Fc fragment, hinge-free, expressed in E. coli 6BZ4 ; 2.4 ; Human IgG1 lacking complement-dependent cytotoxicity: hu3S193 Fc mutant K322A 4KIK ; 2.83 ; Human IkB kinase beta 1J7V ; 2.9 ; HUMAN IL-10 / IL-10R1 COMPLEX 8RYS ; 1.16 ; Human IL-1beta, unliganded 5UTZ ; 2.747 ; Human IL-2/Fab complex 7ZXK ; 2.2 ; Human IL-27 in complex with neutralizing SRF388 FAb fragment 1O1V ; ; Human Ileal Lipid-Binding Protein (ILBP) in Complex with Cholyltaurine 1O1U ; ; human ileal lipid-binding protein (ILBP) in free form 1DLO ; 2.7 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 1HPZ ; 3.0 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 1HQE ; 2.7 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 1HQU ; 2.7 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 2HMX ; ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 MATRIX PROTEIN 1HVU ; 4.75 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REVERSE TRANSCRIPTASE COMPLEXED WITH A 33-BASE NUCLEOTIDE RNA PSEUDOKNOT 3UPJ ; 2.5 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 PROTEASE MUTANT WITH LYS 57 REPLACED BY LEU (K57L) COMPLEX WITH U096333 [4-HYDROXY-3-[1-(PHENYL)PROPYL]-7-METHOXYCOUMARIN] 4UPJ ; 1.9 ; HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 PROTEASE MUTANT WITH LYS 57 REPLACED BY LEU (K57L) COMPLEX WITH U097410 [4-HYDROXY-3-[1-[3-[[[[(TERT-BUTYLOXYCARBONYL) AMINOMETHYL]CARBONYL]AMINO]PHENYL]PROPYL]COUMARIN 1TAM ; ; HUMAN IMMUNODEFICIENCY VIRUS, NMR, MINIMIZED AVERAGE STRUCTURE 1GTC ; ; HUMAN IMMUNODEFICIENCY VIRUS-1 OKAZAKI FRAGMENT, DNA-RNA CHIMERA, NMR, 11 STRUCTURES 6E5B ; 2.77 ; Human Immunoproteasome 20S particle in complex with compound 1 7AWE ; 2.288 ; HUMAN IMMUNOPROTEASOME 20S PARTICLE IN COMPLEX WITH [(1R)-2-(1-benzofuran-3-yl)-1-{[(1S,2R,4R)-7-oxabicyclo[2.2.1]heptan-2-yl]formamido}ethyl]boronic acid 7B12 ; 2.43 ; HUMAN IMMUNOPROTEASOME 20S PARTICLE IN COMPLEX WITH [2-(3-ethylphenyl)-1-[(2S)-3-phenyl-2-[(pyrazin-2-yl)formamido]propanamido]ethyl]boronic acid 6GIU ; 1.39 ; Human IMPase with L-690330 6GJ0 ; 1.73 ; Human IMPase with Mn 7RER ; 2.6 ; HUMAN IMPDH1 TREATED WITH ATP, IMP, AND NAD+ 7RES ; 3.05 ; HUMAN IMPDH1 TREATED WITH ATP, IMP, AND NAD+, OCTAMER-CENTERED 7RFG ; 2.6 ; HUMAN IMPDH1 TREATED WITH GTP, IMP, AND NAD+ OCTAMER-CENTERED 7RFE ; 2.6 ; HUMAN IMPDH1 TREATED WITH GTP, IMP, AND NAD+; INTERFACE-CENTERED 8G8F ; 2.6 ; Human IMPDH2 mutant - L245P, treated with ATP, IMP, and NAD+; extended filament segment reconstruction 8FOZ ; 2.0 ; Human IMPDH2 mutant - L245P, treated with ATP, IMP, and NAD+; filament assembly interface reconstruction 8G9B ; 3.0 ; Human IMPDH2 mutant - L245P, treated with GTP, ATP, IMP, and NAD+; compressed filament segment reconstruction 8FUZ ; 2.1 ; Human IMPDH2 mutant - L245P, treated with GTP, ATP, IMP, and NAD+; filament assembly interface reconstruction 6UC2 ; 4.48 ; Human IMPDH2 treated with ATP and 2 mM GTP. Free canonical octamer reconstruction. 6UDP ; 2.95 ; Human IMPDH2 treated with ATP, IMP, and 20 mM GTP. Filament assembly interface reconstruction. 6UDQ ; 3.27 ; Human IMPDH2 treated with ATP, IMP, and 20 mM GTP. Fully compressed filament end reconstruction. 6UDO ; 3.21 ; Human IMPDH2 treated with ATP, IMP, and 20 mM GTP. Fully compressed filament segment reconstruction. 6U8R ; 3.91 ; Human IMPDH2 treated with ATP, IMP, and NAD+. Bent (1/4 compressed, 3/4 extended) segment reconstruction. 6U8E ; 3.03 ; Human IMPDH2 treated with ATP, IMP, and NAD+. Filament assembly interface reconstruction. 6U8N ; 3.29 ; Human IMPDH2 treated with ATP, IMP, and NAD+. Fully extended filament segment reconstruction. 6UA2 ; 4.2 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Bent (2/4 compressed, 2/4 extended) segment reconstruction. 6UA4 ; 3.65 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Bent (3/4 compressed, 1/4 extended) segment reconstruction. 6U8S ; 3.14 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Filament assembly interface reconstruction. 6UAJ ; 3.84 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Free canonical octamer reconstruction. 6UA5 ; 3.79 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Free interfacial octamer reconstruction. 6U9O ; 3.36 ; Human IMPDH2 treated with ATP, IMP, NAD+, and 2 mM GTP. Fully compressed filament segment reconstruction. 7N8J ; 3.2 ; Human importin alpha 1 in complex with Bimax2 peptide 8FZM ; 3.0 ; Human importin alpha 3 in complex with Bimax2 peptide 4NOS ; 2.25 ; HUMAN INDUCIBLE NITRIC OXIDE SYNTHASE WITH INHIBITOR 1NSI ; 2.55 ; HUMAN INDUCIBLE NITRIC OXIDE SYNTHASE, ZN-BOUND, L-ARG COMPLEX 2NSI ; 3.0 ; HUMAN INDUCIBLE NITRIC OXIDE SYNTHASE, ZN-FREE, SEITU COMPLEX 6T0W ; 3.18 ; Human Influenza B polymerase recycling complex 3HR4 ; 2.5 ; Human iNOS Reductase and Calmodulin Complex 1W2C ; 1.95 ; Human Inositol (1,4,5) trisphosphate 3-kinase complexed with Mn2+/AMPPNP/Ins(1,4,5)P3 1W2D ; 1.94 ; Human Inositol (1,4,5)-trisphosphate 3-kinase complexed with Mn2+/ADP/Ins(1,3,4,5)P4 1W2F ; 1.8 ; Human Inositol (1,4,5)-trisphosphate 3-kinase substituted with selenomethionine 8PPH ; 1.7 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with alpha-D-glucopyranosyl 1,3,4-trisphosphate/ATP/Mn 8PPG ; 1.75 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with beta-D-glucopyranosyl 1,3,4,6-tetrakisphosphate/ADP/Mn after reaction 8PPF ; 1.85 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with beta-D-glucopyranosyl 1,3,4-trisphosphate/AMP-PNP/Mg 8PPI ; 1.65 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with beta-D-glucopyranosylmethanol 3,4,1'-trisphosphate/ATP/Mn 8PPJ ; 1.75 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with beta-D-glucopyranosylmethanol 3,4,6,1'-tetrakisphosphate/ADP/Mn after reaction 8PPB ; 1.8 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with D-3-deoxy-myo-inositol 1,4,6-trisphosphate/ATP/Mn 8PPA ; 1.73 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with D-myo-inositol 1,4,6-trisphosphate/AMP-PNP/Mn 8PPD ; 1.77 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with DL-6-deoxy-6-hydroxy-methyl-scyllo-inositol 1,2,4-trisphosphate/ATP/Mn 8PPE ; 1.59 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with DL-6-deoxy-6-phosphoryloxymethyl-scyllo-inositol 1,2,4-trisphosphate/ADP/Mn 8PPC ; 1.92 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with L-chiro-inositol 2,3,5-trisphosphate/ATP/Mn 8PP8 ; 1.59 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with L-scyllo-inositol 1,2,4-trisphosphate/AMP-PNP/Mn 8PP9 ; 1.73 ; Human inositol 1,4,5-trisphosphate 3-kinase A (IP3K) catalytic domain in complex with scyllo-inositol 1,2,3,5-tetrakisphosphate/ADP/Mn 2FVZ ; 2.4 ; Human Inositol Monophosphosphatase 2 3I3Z ; 1.6 ; Human insulin 3I40 ; 1.85 ; Human insulin 4EWW ; 2.3 ; Human Insulin 4EWX ; 2.201 ; Human Insulin 4EWZ ; 1.791 ; Human Insulin 4EX0 ; 1.86 ; Human Insulin 4EX1 ; 1.657 ; Human Insulin 4EXX ; 1.55 ; Human Insulin 4EY1 ; 1.471 ; Human Insulin 4EY9 ; 1.471 ; Human Insulin 4EYD ; 1.471 ; Human Insulin 4EYN ; 1.532 ; Human Insulin 4EYP ; 1.591 ; Human Insulin 4F0N ; 1.679 ; Human Insulin 4F0O ; 1.672 ; Human Insulin 4F1A ; 1.8 ; Human Insulin 4F1B ; 1.591 ; Human Insulin 4F1C ; 1.7 ; Human Insulin 4F1D ; 1.637 ; Human Insulin 4F1F ; 1.684 ; Human Insulin 4F1G ; 1.637 ; Human insulin 4F4T ; 1.637 ; Human Insulin 4F4V ; 1.637 ; Human Insulin 4F51 ; 1.637 ; Human Insulin 4F8F ; 1.676 ; Human Insulin 6VET ; 1.46 ; Human insulin analog: [GluB10,HisA8,ArgA9,TyrB20]-DOI 6VES ; 1.85 ; Human insulin analog: [GluB10,HisA8,ArgA9]-DOI 6VER ; 1.047 ; Human insulin analog: [GluB10,TyrB20]-DOI 4CXL ; 1.5 ; Human insulin analogue (D-ProB8)-insulin 4UNG ; 1.81 ; Human insulin B26Asn mutant crystal structure 4UNH ; 2.75 ; Human insulin B26Gly mutant crystal structure 4UNE ; 1.59 ; Human insulin B26Phe mutant crystal structure 2YPU ; 2.8 ; human insulin degrading enzyme E111Q in complex with inhibitor compound 41367 1XGL ; ; HUMAN INSULIN DISULFIDE ISOMER, NMR, 10 STRUCTURES 1QJ0 ; 2.4 ; HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR 1QIY ; 2.3 ; HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR COMPLEXED WITH PHENOL 1QIZ ; 2.0 ; HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR COMPLEXED WITH RESORCINOL 3Q6E ; 2.05 ; Human insulin in complex with cucurbit[7]uril 5MAM ; 2.2 ; Human insulin in complex with serotonin 5MT3 ; 2.02 ; Human insulin in complex with serotonin and arginine 5MT9 ; 1.88 ; Human insulin in complex with serotonin and arginine 6Z7W ; 2.42 ; Human insulin in complex with the analytical antibody HUI-018 Fab 6Z7Y ; 2.2 ; Human insulin in complex with the analytical antibody OXI-005 Fab 8ONI ; 2.3 ; Human insulin in complex with the analytical antibody S1 Fab 8ONK ; 3.403 ; Human insulin in complex with the analytical antibody S1 Fab and the analytical antibody HUI-001 Fab 6VEP ; 2.9 ; Human insulin in complex with the human insulin microreceptor in turn in complex with Fv 83-7 2KXK ; ; Human Insulin Mutant A22Gly-B31Lys-B32Arg 1B9E ; 2.5 ; HUMAN INSULIN MUTANT SERB9GLU 7YQ3 ; 3.6 ; human insulin receptor bound with A43 DNA aptamer and insulin 7YQ6 ; 4.18 ; human insulin receptor bound with A62 DNA aptamer 7YQ5 ; 4.27 ; human insulin receptor bound with A62 DNA aptamer and insulin 7YQ4 ; 3.95 ; human insulin receptor bound with A62 DNA aptamer and insulin - locally refined 8GUY ; 4.18 ; human insulin receptor bound with two insulin molecules 5J3H ; 3.27 ; Human insulin receptor domains L1-CR in complex with peptide S519C16 and 83-7 Fv 6SOF ; 4.3 ; human insulin receptor ectodomain bound by 4 insulin 8ONP ; 1.77 ; Human insulin trans-HypB26-DTIA analogue 1VKT ; ; HUMAN INSULIN TWO DISULFIDE MODEL, NMR, 10 STRUCTURES 5BOQ ; 1.7 ; Human insulin with intra-chain chemical crosslink between modified B24 and B29 5BPO ; 1.9 ; Human insulin with intra-chain chemical crosslink between modified B27 and B29 5BQQ ; 1.54 ; Human insulin with intra-chain chemical crosslink between modified B27 and B30 1GZR ; 2.0 ; Human Insulin-like growth factor; ESRF data 1GZZ ; 2.3 ; Human Insulin-like growth factor; Hamburg data 1GZY ; 2.54 ; Human Insulin-like growth factor; In-house data 1H02 ; 2.0 ; Human Insulin-like growth factor; SRS Daresbury data 1AU1 ; 2.2 ; HUMAN INTERFERON-BETA CRYSTAL STRUCTURE 4HR9 ; 2.48 ; Human interleukin 17A 1JLI ; ; HUMAN INTERLEUKIN 3 (IL-3) MUTANT WITH TRUNCATION AT BOTH N-AND C-TERMINI AND 14 RESIDUE CHANGES, NMR, MINIMIZED AVERAGE STRUCTURE 1ITL ; ; HUMAN INTERLEUKIN 4: THE SOLUTION STRUCTURE OF A FOUR-HELIX-BUNDLE PROTEIN 9ILB ; 2.28 ; HUMAN INTERLEUKIN-1 BETA 1F45 ; 2.8 ; HUMAN INTERLEUKIN-12 8CR8 ; 2.0 ; human Interleukin-23 8A4F ; ; Human Interleukin-4 mutant - C3T-IL4 1ALU ; 1.9 ; HUMAN INTERLEUKIN-6 2IL6 ; ; HUMAN INTERLEUKIN-6, NMR, 32 STRUCTURES 1IL6 ; ; HUMAN INTERLEUKIN-6, NMR, MINIMIZED AVERAGE STRUCTURE 1WLJ ; 1.9 ; human ISG20 5KO0 ; 1.4 ; Human Islet Amyloid Polypeptide Segment 15-FLVHSSNNFGA-25 Determined by MicroED 5KNZ ; 1.9 ; Human Islet Amyloid Polypeptide Segment 19-SGNNFGAILSS-29 with Early Onset S20G Mutation Determined by MicroED 5YFN ; 2.5 ; Human isocitrate dehydrogenase 1 bound with isocitrate 5YFM ; 2.4 ; Human isocitrate dehydrogenase 1 bound with NADP 2ICK ; 1.93 ; Human isopentenyl diphophate isomerase complexed with substrate analog 2VJ2 ; 2.5 ; Human Jagged-1, domains DSL and EGFs1-3 2KB9 ; ; Human Jagged-1, exon 6 5MW5 ; 2.7 ; Human Jagged2 C2-EGF2 5MWF ; 2.8 ; Human Jagged2 C2-EGF2 5MW7 ; 2.8 ; Human Jagged2 C2-EGF3 6WVD ; 2.25 ; Human JAGN1 6HZU ; 2.2 ; HUMAN JAK1 IN COMPLEX WITH LASW1393 6ELR ; 1.8 ; Human jak1 kinase domain in complex with compound 7 6GGH ; 1.7 ; Human jak1 kinase domain in complex with inhibitor 6SM8 ; 1.85 ; Human jak1 kinase domain in complex with inhibitor 6SMB ; 2.04 ; Human jak1 kinase domain in complex with inhibitor 5E1E ; 2.3 ; Human JAK1 kinase in complex with compound 30 at 2.30 Angstroms resolution 6WTO ; 1.74 ; Human JAK2 JH1 domain in complex with Baricitinib 6WTP ; 2.5 ; Human JAK2 JH1 domain in complex with PROTAC-intermediate linker handle 3 6WTQ ; 1.79968 ; Human JAK2 JH1 domain in complex with PROTAC-intermediate linker handle 4 6WTN ; 1.83 ; Human JAK2 JH1 domain in complex with Ruxolitinib 6HZV ; 2.46 ; HUMAN JAK3 IN COMPLEX WITH LASW959 PROTEIN IN COMPLEX WITH LIGAND 7Q6H ; 1.749 ; HUMAN JAK3 KINASE DOMAIN WITH 1-(4-((2-((1-methyl-1H-pyrazol-4-yl)amino)quinazolin-8-yl)amino)piperidin-1-yl)ethan-1-one 2MKD ; ; Human JAZ ZF3 Residues 168-227 6F4S ; 1.461 ; Human JMJD5 (N308C) in complex with Mn(II), 2OG and RCCD1 (139-143) (complex-4) 6F4R ; 1.3 ; Human JMJD5 (N308C) in complex with Mn(II), NOG and RCCD1 (139-143) (complex-3) 6F4Q ; 1.12 ; Human JMJD5 (Q275C) in complex with Mn(II), NOG and RPS6-A138C (129-144) (complex-2) 6F4T ; 1.22 ; Human JMJD5 (W414C) in complex with Mn(II), NOG and RCCD1 (139-143) (complex-5) 6F4N ; 2.541 ; Human JMJD5 in complex with MN and 2OG. 7DYX ; 2.27 ; Human JMJD5 in complex with MN and 5-((2-cyclopropylbenzyl)amino)pyridine-2,4-dicarboxylic acid. 7DYW ; 2.13 ; Human JMJD5 in complex with MN and 5-((2-methoxybenzyl)amino)pyridine-2,4-dicarboxylic acid. 7DYT ; 1.62 ; Human JMJD5 in complex with MN and 5-((4-methoxybenzyl)amino)pyridine-2,4-dicarboxylic acid. 7DYU ; 1.72 ; Human JMJD5 in complex with MN and 5-((4-phenylbutyl)amino)pyridine-2,4-dicarboxylic acid. 7DYV ; 1.92 ; Human JMJD5 in complex with MN and 5-(benzylamino)pyridine-2,4-dicarboxylic acid. 6F4O ; 1.28 ; Human JMJD5 in complex with Mn(II) and Succinate. 6F4P ; 1.45 ; Human JMJD5 in complex with MN, NOG and RPS6 (129-144) (complex-1) 6F4M ; 1.705 ; Human JMJD5 in its apo form. 5NFO ; 2.173 ; Human JMJD7 in complex with Mn and 2OG in the P21212 form 4AWI ; 1.91 ; Human Jnk1alpha kinase with 4-phenyl-7-azaindole IKK2 inhibitor. 8ELC ; 2.072 ; Human JNK2 bound to covalent inhibitor YL2056 6PGV ; 2.3 ; Human Josephin-2 in complex with ubiquitin 3GFT ; 2.27 ; Human K-Ras (Q61H) in complex with a GTP analogue 8JJS ; 1.534 ; Human K-Ras G12D (GDP-bound) in complex with cyclic peptide inhibitor AP10343 7YUZ ; 1.878 ; Human K-Ras G12D (GDP-bound) in complex with cyclic peptide inhibitor AP8784 7YV1 ; 1.454 ; Human K-Ras G12D (GDP-bound) in complex with cyclic peptide inhibitor LUNA18 and KA30L Fab 4RUF ; 3.4 ; Human K2P4.1 (TRAAAK) potassium channel, W262S mutant 4RUE ; 3.3 ; Human K2P4.1 (TRAAK) potassium channel, G124I mutant 2BDI ; 3.0 ; Human Kallikrein 4 complex with cobalt and p-aminobenzamidine 2BDG ; 1.95 ; Human Kallikrein 4 complex with nickel and p-aminobenzamidine 2BDH ; 3.0 ; Human Kallikrein 4 complex with zinc and p-aminobenzamidine 1L2E ; 1.75 ; Human Kallikrein 6 (hK6) Active Form with benzamidine inhibitor 1LO6 ; 1.56 ; Human Kallikrein 6 (hK6) active form with benzamidine inhibitor at 1.56 A resolution 4D8N ; 1.68 ; Human Kallikrein 6 Inhibitors with a para-Amidobenzylanmine P1 Group Carry a High Binding Efficiency 5Y9L ; 2.15 ; Human kallikrein 7 in complex with 1,3,6-trisubstituted 1,4-diazepane-7-one 5YJK ; 2.4 ; Human kallikrein 7 in complex with 1,4-diazepane-7-one 1-acetamide derivative 6SHH ; 2.0 ; Human kallikrein 7 with aromatic coumarinic ester compound 1 covalently bound to H57 6SHI ; 1.85 ; Human kallikrein 7 with aromatic coumarinic ester compound 2 covalently bound to H57 6SJU ; 1.97 ; Human kallikrein 7 with aromatic coumarinic ester compound 3 covalently bound to H57 4NFE ; 1.9 ; Human kallikrein-related peptidase 2 in complex with benzamidine 4NFF ; 1.9 ; Human kallikrein-related peptidase 2 in complex with PPACK 6Y4S ; 2.23 ; Human kallikrein-related peptidase 7 (KLK7) in the unliganded state 6XTE ; 2.27 ; Human karyopherin RanBP5 (isoform-1) 6XU2 ; 2.834 ; Human karyopherin RanBP5 (isoform-3) 7S5T ; 3.1 ; Human KATP channel in open conformation, focused on Kir (C166S G334D double mutant) and SUR TMD0 7S5X ; 3.7 ; Human KATP channel in open conformation, focused on Kir and one SUR, position 1 7S5Y ; 3.9 ; Human KATP channel in open conformation, focused on Kir and one SUR, position 2 7S5Z ; 3.9 ; Human KATP channel in open conformation, focused on Kir and one SUR, position 3 7S60 ; 3.7 ; Human KATP channel in open conformation, focused on Kir and one SUR, position 4 7S61 ; 4.0 ; Human KATP channel in open conformation, focused on Kir and one SUR, position 5 7S5V ; 3.3 ; Human KATP channel in open conformation, focused on SUR 7TTI ; 3.5 ; Human KCC1 bound with VU0463271 In an outward-open state 6KKR ; 2.9 ; human KCC1 structure determined in KCl and detergent GDN 6KKT ; 2.9 ; human KCC1 structure determined in KCl and lipid nanodisc 6KKU ; 3.5 ; human KCC1 structure determined in NaCl and GDN 7YID ; 3.4 ; Human KCNH5 closed state 1 7YIH ; 3.5 ; Human KCNH5 open state 7YIJ ; 3.8 ; Human KCNH5 pore dilation but the non-conducting state 7YIF ; 3.5 ; Human KCNH5 pre-open state 1 7YIG ; 3.6 ; Human KCNH5 pre-open state 2 7YIE ; 3.4 ; Human KCNH5-closed state 2 7XNI ; 3.5 ; human KCNQ1-CaM in apo state 7XNK ; 2.6 ; human KCNQ1-CaM in complex with ML277 7XNL ; 3.1 ; human KCNQ1-CaM-ML277-PIP2 complex in state A 7XNN ; 2.5 ; human KCNQ1-CaM-ML277-PIP2 complex in state B 7CR0 ; 3.1 ; human KCNQ2 in apo state 7CR2 ; 3.2 ; human KCNQ2 in complex with retigabine 7CR1 ; 3.4 ; human KCNQ2 in complex with ztz240 8J03 ; 2.7 ; Human KCNQ2(F104A)-CaM-PIP2-CBD complex in state I 8J02 ; 3.5 ; Human KCNQ2(F104A)-CaM-PIP2-CBD complex in state II 8J05 ; 2.7 ; Human KCNQ2-CaM complex in the presence of PIP2 7CR3 ; 3.6 ; human KCNQ2-CaM in apo state 8J00 ; 3.0 ; Human KCNQ2-CaM in complex with CBD 8J01 ; 3.1 ; Human KCNQ2-CaM in complex with CBD and PIP2 8IZY ; 2.5 ; Human KCNQ2-CaM in complex with HN37 8W4U ; 3.3 ; human KCNQ2-CaM in complex with PIP2 and HN37 7CR7 ; 3.7 ; human KCNQ2-CaM in complex with retigabine 7CR4 ; 3.9 ; human KCNQ2-CaM in complex with ztz240 8IJK ; 3.4 ; human KCNQ2-CaM-Ebio1 complex in the presence of PIP2 8X43 ; 3.0 ; human KCNQ2-CaM-Ebio1-S1 complex in the presence of PIP2 8J04 ; 2.7 ; Human KCNQ2-CaM-HN37 complex in the presence of PIP2 6FB4 ; 2.41563 ; human KIBRA C2 domain mutant C771A 6FJC ; 2.598 ; Human KIBRA C2 domain mutant C771A in complex with phosphatidylinositol 3,4,5-trisphosphate 6FJD ; 2.898 ; Human KIBRA C2 domain mutant C771A in complex with phosphatidylinositol 4,5-bisphosphate 6FD0 ; 2.64216 ; Human KIBRA C2 domain mutant M734I S735A 2XT3 ; 1.882 ; HUMAN KIF7, A KINESIN INVOLVED IN HEDGEHOG SIGNALLING 4A14 ; 1.6 ; HUMAN KIF7, A KINESIN INVOLVED IN HEDGEHOG SIGNALLING 2JAV ; 2.2 ; Human Kinase with pyrrole-indolinone ligand 3HQD ; 2.19 ; Human kinesin Eg5 motor domain in complex with AMPPNP and Mg2+ 1MKJ ; 2.7 ; Human Kinesin Motor Domain With Docked Neck Linker 6TA4 ; 6.1 ; Human kinesin-5 motor domain in the AMPPNP state bound to microtubules 6TIW ; 3.8 ; Human kinesin-5 motor domain in the GSK state bound to microtubules (Conformation 2) 6TA3 ; 3.8 ; Human kinesin-5 motor domain in the GSK-1 state bound to microtubules (Conformation 1) 8Q5H ; 4.5 ; Human KMN network (outer kinetochore) 6H46 ; 2.22 ; Human KRAS in complex with darpin K13 6H47 ; 1.7 ; Human KRAS in complex with darpin K19 5O2S ; 3.22 ; Human KRAS in complex with darpin K27 5O2T ; 2.19 ; Human KRAS in complex with darpin K27 7UKF ; 3.02 ; Human Kv4.2-KChIP2 channel complex in a putative resting state, transmembrane region 7UKC ; 3.0 ; Human Kv4.2-KChIP2 channel complex in an inactivated state, class 1, transmembrane region 7UKD ; 2.88 ; Human Kv4.2-KChIP2 channel complex in an inactivated state, class 2, transmembrane region 7UKE ; 3.01 ; Human Kv4.2-KChIP2 channel complex in an intermediate state, transmembrane region 7UK5 ; 2.76 ; Human Kv4.2-KChIP2 channel complex in an open state, transmembrane region 7UKH ; 2.33 ; Human Kv4.2-KChIP2-DPP6 channel complex in an open state, intracellular region 7UKG ; 2.24 ; Human Kv4.2-KChIP2-DPP6 channel complex in an open state, transmembrane region 3FVS ; 1.5 ; Human Kynurenine Aminotransferase I in complex with Glycerol 3FVX ; 1.5 ; Human kynurenine aminotransferase I in complex with tris 7NS7 ; 2.2 ; Human L-alanine:glyoxylate aminotransferase minor allele variant: AGXT-Mi (P11L-I340M) 2LKK ; ; Human L-FABP in complex with oleate 7Y1R ; 4.01 ; Human L-TGF-beta1 in complex with the anchor protein LRRC33 5LG8 ; 1.98 ; Human L-type ferritin iron loaded for 60 minutes 8WE9 ; 3.0 ; Human L-type voltage-gated calcium channel Cav1.2 (Class I) in the presence of pinaverium at 3.0 Angstrom resolution 8WEA ; 3.2 ; Human L-type voltage-gated calcium channel Cav1.2 (Class II) in the presence of pinaverium at 3.2 Angstrom resolution 8WE6 ; 2.9 ; Human L-type voltage-gated calcium channel Cav1.2 at 2.9 Angstrom resolution 8FHS ; 3.3 ; Human L-type voltage-gated calcium channel Cav1.2 in the presence of amiodarone and sofosbuvir at 3.3 Angstrom resolution 8WE7 ; 3.2 ; Human L-type voltage-gated calcium channel Cav1.2 in the presence of calciseptine at 3.2 Angstrom resolution 8WE8 ; 2.9 ; Human L-type voltage-gated calcium channel Cav1.2 in the presence of calciseptine, amlodipine and pinaverium at 2.9 Angstrom resolution 7UHG ; 3.0 ; Human L-type voltage-gated calcium channel Cav1.3 at 3.0 Angstrom resolution 8E5B ; 3.3 ; Human L-type voltage-gated calcium channel Cav1.3 in the presence of Amiodarone and Sofosbuvir at 3.3 Angstrom resolution 8E59 ; 3.1 ; Human L-type voltage-gated calcium channel Cav1.3 in the presence of Amiodarone at 3.1 Angstrom resolution 7UHF ; 3.1 ; Human L-type voltage-gated calcium channel Cav1.3 in the presence of cinnarizine at 3.1 Angstrom resolution 8E5A ; 3.3 ; Human L-type voltage-gated calcium channel Cav1.3 treated with 1.4 mM Sofosbuvir at 3.3 Angstrom resolution 1PR9 ; 1.96 ; Human L-Xylulose Reductase Holoenzyme 8FW6 ; 2.34 ; Human Lactate Dehydrogenase A in Complex with Inhibitor CHK-336 1Z6V ; ; Human lactoferricin 1Z6W ; ; Human Lactoferricin 1VFD ; 2.5 ; HUMAN LACTOFERRIN, N-TERMINAL LOBE MUTANT WITH ARG 121 REPLACED BY GLU (R121E) 1VFE ; 2.3 ; HUMAN LACTOFERRIN, N-TERMINAL LOBE MUTANT WITH ARG 121 REPLACED BY SER (R121S) 4L41 ; 2.7 ; Human Lactose synthase: A 2:1 complex between human alpha-lactalbumin and human beta1,4-galactosyltransferase 2XV5 ; 2.4 ; Human lamin A coil 2B fragment 1X8Y ; 2.2 ; Human lamin coil 2B 8D19 ; 1.52 ; Human LanCL1 bound to GSH 8CZK ; 1.91 ; Human LanCL1 bound to GSH and Dhb-Erk peptide 8CZL ; 1.58 ; Human LanCL1 bound to methyl glutathione (MeGSH) 8D0V ; 1.79 ; Human LanCL1 C264A mutant bound to GSH 7YTQ ; 1.6 ; Human langerin carbohydrate recognition domain in complex with an alpha-mannoside ligand 6IRT ; 3.5 ; human LAT1-4F2hc complex bound with BCH 6IRS ; 3.3 ; human LAT1-4F2hc complex incubated with JPH203 7B00 ; 3.98 ; Human LAT2-4F2hc complex in the apo-state 7D35 ; 2.401 ; Human LC8 bound to ebola virus VP35(67-76) 4AJP ; 2.38 ; Human LDHA in complex with 2-((4-(4-((3-((2-methyl-1,3-benzothiazol- 6yl)amino)-3-oxo-propyl)amino)-4-oxo-butyl)phenyl)methyl)propanedioic acid 7EPM ; 3.0 ; human LDHC complexed with NAD+ and ethylamino acetic acid 8AVE ; 5.62 ; Human leptin in complex with the human LEP-R ectodomain fused to a C-terminal trimeric isoleucine GCN4 zipper (2:2 model) 8AVF ; 6.45 ; Human leptin in complex with the human LEP-R ectodomain fused to a C-terminal trimeric isoleucine GCN4 zipper (closed 3:3 model) 8AVO ; 6.84 ; Human leptin in complex with the human LEP-R ectodomain fused to a C-terminal trimeric isoleucine GCN4 zipper (open 3:3 model). 5HES ; 2.14 ; Human leucine zipper- and sterile alpha motif-containing kinase (ZAK, MLT, HCCS-4, MRK, AZK, MLTK) in complex with vemurafenib 7MKB ; 1.9 ; Human leukocyte antigen A*0201 in complex with SARS-CoV-2 epitope YLQPRTFLL 7LG2 ; 2.4 ; Human leukocyte antigen A*0201 in complex with SARS-CoV2 epitope ALWEIQQVV 7LG3 ; 2.3 ; Human leukocyte antigen A*0201 in complex with SARS-CoV2 epitope KLWAQCVQL 5MER ; 1.88 ; Human Leukocyte Antigen A02 presenting ILAKFLHEL 5MEQ ; 2.27 ; Human Leukocyte Antigen A02 presenting ILAKFLHTL 5MEN ; 2.81 ; Human Leukocyte Antigen A02 presenting ILAKFLHWL, in complex with cognate T-Cell Receptor 5MEP ; 2.71 ; Human Leukocyte Antigen A02 presenting ILGKFLHWL 7LFZ ; 1.9 ; Human leukocyte antigen B*07:02 in complex with SARS-CoV2 epitope IPRRNVATL 7LG0 ; 2.3 ; Human leukocyte antigen B*07:02 in complex with SARS-CoV2 epitope SPRWYFYYL 6SS7 ; 2.5 ; Human Leukocyte Antigen Class I A02 Carrying LLWAGPMAV 6SS8 ; 2.24 ; Human Leukocyte Antigen Class I A02 Carrying LLWNGPIAV 6SS9 ; 2.7 ; Human Leukocyte Antigen Class I A02 Carrying LLWNGPMHV 6SSA ; 2.11 ; Human Leukocyte Antigen Class I A02 Carrying LLWNGPMQV 5N6B ; 1.71 ; Human Leukocyte Antigen Class I A02 Carrying LLWNPGMAV 8CME ; 2.26 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Membrane peptide M176-190 8CMG ; 1.64 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 nsp14 peptide (orf1ab)6420-6434 8CMF ; 2.2 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 nsp3 epitope (orf1ab)1350-1364 8CMH ; 1.64 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Omicron (BA.1) Spike peptide S486-505 8CMI ; 2.6 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Omicron (BA.1) Spike peptide S761-775 8CMB ; 1.84 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Spike peptide S486-505 8CMC ; 1.42 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Spike peptide S511-530 8CMD ; 2.54 ; Human Leukocyte Antigen class II allotype DR1 presenting SARS-CoV-2 Spike peptide S761-775 5IUE ; 2.62 ; Human leukocyte antigen F (HLA-F) presents peptides and regulates immunity through interactions with NK-cell receptors 5KNM ; 3.3 ; Human leukocyte antigen F (HLA-F) presents peptides and regulates immunity through interactions with NK-cell receptors 5MEO ; 1.772 ; Human Leukocyte Antigen presenting ILGKFLHRL 4L2L ; 1.648 ; Human Leukotriene A4 Hydrolase complexed with ligand 4-(4-benzylphenyl)thiazol-2-amine 4MS6 ; 1.72 ; Human Leukotriene A4 Hydrolase in complex with Pro-Gly-Pro analogue 4MKT ; 1.618 ; Human Leukotriene A4 Hydrolase in complex with Pro-Gly-Pro analogue and 4-(4-benzylphenyl)thiazol-2-amine 3B29 ; 3.2 ; Human leukotriene C4 synthase in complex with dodecyl-beta-D-selenomaltoside 7QNZ ; 4.58 ; human Lig1-DNA-PCNA complex reconstituted in absence of ATP 6BKG ; 2.402 ; Human LigIV catalytic domain with bound DNA-adenylate intermediate in closed conformation 5UDZ ; 2.0 ; Human LIN28A in complex with let-7f-1 microRNA pre-element 8UW3 ; 3.2 ; Human LINE-1 retrotransposon ORF2 protein engaged with template RNA in elongation state 3QH9 ; 2.01 ; Human Liprin-beta2 Coiled-Coil 1LIT ; 1.55 ; HUMAN LITHOSTATHINE 6MP4 ; 2.502 ; Human liver FABP1 bound to tetrahydrocannabinol 8DHX ; 2.92 ; Human liver ferritin 5Q08 ; 2.2 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(1-benzothiophen-3-ylsulfonyl)-3-(5-bromo-1,3-thiazol-2-yl)urea 5PZR ; 1.9 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(3-chlorophenyl)sulfonyl-3-[3-[3-[(3-chlorophenyl)sulfonylcarbamoylamino]propoxy]propyl]urea 5PZW ; 2.0 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(3-chlorophenyl)sulfonyl-3-[5-[(3-chlorophenyl)sulfonylcarbamoylamino]pentyl]urea 5PZS ; 2.368 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(3-chlorophenyl)sulfonyl-3-[6-[(3-chlorophenyl)sulfonylcarbamoylamino]hexyl]urea 5Q0B ; 2.3 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(4-bromo-3-methyl-1,2-thiazol-5-yl)-3-(3-methylphenyl)sulfonylurea 5Q04 ; 2.502 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(4-bromo-5-chlorothiophen-2-yl)sulfonyl-3-(5-bromo-1,3-thiazol-2-yl)urea 5Q07 ; 2.424 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(4-bromo-6-morpholin-4-ylpyridin-2-yl)-3-[5-(2-methoxyethyl)-4-methylthiophen-2-yl]sulfonylurea 5PZV ; 2.0 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(4-bromopyridin-2-yl)-3-(4-chlorophenyl)sulfonylurea 5PZY ; 2.21 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-(2-chlorophenyl)sulfonylurea 5PZZ ; 2.5 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-(3,4-dichlorophenyl)sulfonylurea 5PZT ; 2.8 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-(3-ethyl-4-phenylphenyl)sulfonylurea 5Q06 ; 2.4 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[4-(2-methyl-1,3-thiazol-4-yl)phenyl]sulfonylurea 5Q01 ; 2.603 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[4-(4,5-dichloro-2-methylpyrazol-3-yl)oxyphenyl]sulfonylurea 5PZX ; 2.75 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[4-methoxy-3-(2-methylpropyl)phenyl]sulfonylurea 5Q02 ; 2.095 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[5-(1,2-oxazol-3-yl)thiophen-2-yl]sulfonylurea 5Q05 ; 2.2 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[5-(2-methoxyethyl)-4-methylthiophen-2-yl]sulfonylurea 5Q03 ; 2.31 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[5-(2-methylpropyl)thiophen-2-yl]sulfonylurea 5Q0C ; 2.4 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-bromo-1,3-thiazol-2-yl)-3-[5-(4-methoxyphenyl)thiophen-2-yl]sulfonylurea and with fructose-2,6-diphosphate 5Q0A ; 2.3 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-(5-cyanopyrazin-2-yl)-3-[3-(difluoromethoxy)phenyl]sulfonylurea 5Q09 ; 1.9 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 1-[4-bromo-6-(carbamoylamino)pyridin-2-yl]-3-[5-(2-methoxyethyl)-4-methylthiophen-2-yl]sulfonylurea 5PZQ ; 2.7 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 2-(4-methoxyphenyl)furan-3,4-dicarboxylic acid 5Q00 ; 2.6 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor 2-[3-[(5-bromo-1,3-thiazol-2-yl)carbamoylsulfamoyl]-1-methylindol-7-yl]oxyacetamide 5PZU ; 1.901 ; Human liver fructose-1,6-bisphosphatase 1 (fructose 1,6-bisphosphate 1-phosphatase, E.C.3.1.3.11) complexed with the allosteric inhibitor [5-[2-amino-5-(2-methylpropyl)-1,3-thiazol-4-yl]furan-2-yl]phosphonic acid 4MJO ; 2.4 ; Human liver fructose-1,6-bisphosphatase(d-fructose-1,6-bisphosphate, 1-phosphohydrolase) (e.c.3.1.3.11) complexed with the allosteric inhibitor 3 3CEH ; 2.8 ; Human liver glycogen phosphorylase (tense state) in complex with the allosteric inhibitor AVE5688 1FA9 ; 2.4 ; HUMAN LIVER GLYCOGEN PHOSPHORYLASE A COMPLEXED WITH AMP 1L5Q ; 2.25 ; Human liver glycogen phosphorylase a complexed with caffeine, N-Acetyl-beta-D-glucopyranosylamine, and CP-403700 1XOI ; 2.1 ; Human Liver Glycogen Phosphorylase A complexed with Chloroindoloyl glycine amide 1EXV ; 2.4 ; HUMAN LIVER GLYCOGEN PHOSPHORYLASE A COMPLEXED WITH GLCNAC AND CP-403,700 1EM6 ; 2.2 ; HUMAN LIVER GLYCOGEN PHOSPHORYLASE A COMPLEXED WITH GLCNAC AND CP-526,423 2ZB2 ; 2.45 ; Human liver glycogen phosphorylase a complexed with glcose and 5-chloro-N-[4-(1,2-dihydroxyethyl)phenyl]-1H-indole-2-carboxamide 1L5R ; 2.1 ; Human liver glycogen phosphorylase a complexed with riboflavin, N-Acetyl-beta-D-Glucopyranosylamine and CP-403,700 1L7X ; 2.3 ; Human liver glycogen phosphorylase b complexed with caffeine, N-acetyl-beta-D-glucopyranosylamine, and CP-403,700 1FC0 ; 2.4 ; HUMAN LIVER GLYCOGEN PHOSPHORYLASE COMPLEXED WITH N-ACETYL-BETA-D-GLUCOPYRANOSYLAMINE 1L5S ; 2.1 ; Human liver glycogen phosphorylase complexed with uric acid, N-Acetyl-beta-D-glucopyranosylamine, and CP-403,700 2QLL ; 2.56 ; Human liver glycogen phosphorylase- GL complex 8SHS ; 2.66 ; human liver mitochondrial Aldehyde dehydrogenase ALDH2 8SKR ; 2.99 ; human liver mitochondrial Aspartate aminotransferase 8SGV ; 2.58 ; human liver mitochondrial Catalase 8SK6 ; 2.96 ; human liver mitochondrial Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase 8SK8 ; 2.31 ; human liver mitochondrial Glutamate dehydrogenase 1 8SGR ; 2.84 ; human liver mitochondrial Isovaleryl-CoA dehydrogenase 8SGP ; 2.69 ; human liver mitochondrial Medium-chain specific acyl-CoA dehydrogenase 8SGS ; 3.15 ; human liver mitochondrial Short-chain specific acyl-CoA dehydrogenase 8SKS ; 2.91 ; human liver mitochondrial Superoxide dismutase [Mn] 6OQX ; 2.004 ; Human Liver Receptor Homolog-1 bound to the agonist 5N and a fragment of the Tif2 coregulator 7JYD ; 2.3 ; Human Liver Receptor Homolog-1 in Complex with 10CA and a Fragment of Tif2 7JYE ; 2.551 ; Human Liver Receptor Homolog-1 in Complex with 9ChoP and a Fragment of Tif2 2A66 ; 2.2 ; Human Liver Receptor Homologue DNA-Binding Domain (hLRH-1 DBD) in Complex with dsDNA from the hCYP7A1 Promoter 5SYZ ; 1.9261 ; Human Liver Receptor Homologue-1 (LRH-1) Bound to a RJW100 stereoisomer and a Fragment of TIF-2 5L11 ; 1.849 ; Human Liver Receptor Homologue-1 (LRH-1) Bound to RJW100 and a Fragment of TIF-2 8SZL ; 3.12 ; Human liver-type glutaminase (Apo form) 8T0Z ; 3.3 ; Human liver-type glutaminase (K253A) with L-Gln, filamentous form 2K6O ; ; Human LL-37 Structure 7KH8 ; 1.3 ; Human LMPTP in complex with inhibitor 5AJQ ; 2.2 ; Human LOK (STK10) in complex with Bosutinib 7OXO ; 3.9 ; human LonP1, R-state, incubated in AMPPCP 6OR1 ; 2.174 ; Human LRH-1 bound to the agonist 2N and a fragment of the Tif2 coregulator 6OQY ; 2.23 ; Human LRH-1 bound to the agonist 6N and a fragment of the Tif2 coregulator 7TT8 ; 2.8 ; Human LRH-1 LBD bound to agonist 6N-10CA and fragment of Tif2 coactivator 6VIF ; 2.26 ; Human LRH-1 ligand-binding domain bound to agonist cpd 15 and fragment of coregulator TIF-2 3PLZ ; 1.75 ; Human LRH1 LBD bound to GR470 2UXX ; 2.74 ; Human LSD1 Histone Demethylase-CoREST in complex with an FAD- tranylcypromine adduct 6NQU ; 2.7 ; Human LSD1 in complex with GSK2879552 6NR5 ; 2.9 ; Human LSD1 in complex with Phenelzine sulfate 6TUY ; 2.6 ; Human LSD1/CoREST bound to the quinazoline inhibitor MC4106 5L3B ; 3.3 ; Human LSD1/CoREST: LSD1 D556G mutation 5L3C ; 3.31 ; Human LSD1/CoREST: LSD1 E379K mutation 5L3D ; 2.6 ; Human LSD1/CoREST: LSD1 Y761H mutation 4J7T ; 3.203 ; Human LTC4 synthase in complex with product analogs - implications for enzyme catalysis 4J7Y ; 2.901 ; Human LTC4 synthase in complex with product analogs - implications for enzyme catalysis 4JC7 ; 2.7 ; Human LTC4 synthase in complex with product analogs - implications for enzyme catalysis 4JCZ ; 2.75 ; Human LTC4 synthase in complex with product analogs - implications for enzyme catalysis 4JRZ ; 2.4 ; Human LTC4 synthase in complex with product analogs - implications for enzyme catalysis 5HV9 ; 3.0 ; Human LTC4S mutant-S36E 1PQ6 ; 2.4 ; HUMAN LXR BETA HORMONE RECEPTOR / GW3965 COMPLEX 1PQC ; 2.8 ; HUMAN LXR BETA HORMONE RECEPTOR COMPLEXED WITH T0901317 1PQ9 ; 2.1 ; HUMAN LXR BETA HORMONE RECEPTOR COMPLEXED WITH T0901317 COMPLEX 6JIO ; 2.6 ; Human LXR-beta in complex with a ligand 6K9G ; 2.8 ; Human LXR-beta in complex with an agonist 6K9H ; 2.5 ; Human LXR-beta in complex with an agonist 6K9M ; 2.9 ; Human LXR-beta in complex with an agonist 3RIB ; 2.79 ; Human lysine methyltransferase Smyd2 in complex with AdoHcy 3OXF ; 2.82 ; Human lysine methyltransferase Smyd3 in complex with AdoHcy (Form I) 3OXL ; 3.6 ; Human lysine methyltransferase Smyd3 in complex with AdoHcy (Form II) 3OXG ; 3.41 ; human lysine methyltransferase Smyd3 in complex with AdoHcy (Form III) 7YU3 ; 3.5 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556 7YU4 ; 3.7 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556, focused on receptor 7YU5 ; 3.7 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556, state1 7YU6 ; 3.9 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556, state2 7YU7 ; 4.5 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556, state3 7YU8 ; 5.6 ; Human Lysophosphatidic Acid Receptor 1-Gi complex bound to ONO-0740556, state4 1NOW ; 2.2 ; Human lysosomal beta-hexosaminidase isoform B in complex with (2R,3R,4S,5R)-2-Acetamido-3,4-Dihydroxy-5-Hydroxymethyl-Piperidinium Chloride (GalNAc-isofagomine) 1NP0 ; 2.5 ; Human lysosomal beta-hexosaminidase isoform B in complex with intermediate analogue NAG-thiazoline 5LVK ; 2.491 ; Human Lysozyme co-crystallized with [H2Ind][trans-RuCl4(DMSO)(HInd)] 1BB4 ; 2.23 ; HUMAN LYSOZYME DOUBLE MUTANT A96L, W109H 1D6Q ; 1.96 ; HUMAN LYSOZYME E102 MUTANT LABELLED WITH 2',3'-EPOXYPROPYL GLYCOSIDE OF N-ACETYLLACTOSAMINE 5LSH ; 1.061 ; human lysozyme in complex with a tetrasaccharide fragment of the O-chain of LPS from Klebsiella pneumoniae 1D6P ; 2.23 ; HUMAN LYSOZYME L63 MUTANT LABELLED WITH 2',3'-EPOXYPROPYL N,N'-DIACETYLCHITOBIOSE 1RE2 ; 2.3 ; HUMAN LYSOZYME LABELLED WITH TWO 2',3'-EPOXYPROPYL BETA-GLYCOSIDE OF N-ACETYLLACTOSAMINE 1BB3 ; 1.8 ; HUMAN LYSOZYME MUTANT A96L 1BB5 ; 1.8 ; HUMAN LYSOZYME MUTANT A96L COMPLEXED WITH CHITOTRIOSE 1JKB ; 1.66 ; HUMAN LYSOZYME MUTANT WITH GLU 35 REPLACED BY ALA 1JKA ; 1.66 ; HUMAN LYSOZYME MUTANT WITH GLU 35 REPLACED BY ASP 1JKD ; 1.8 ; HUMAN LYSOZYME MUTANT WITH TRP 109 REPLACED BY ALA 1JKC ; 1.6 ; HUMAN LYSOZYME MUTANT WITH TRP 109 REPLACED BY PHE 1REM ; 2.1 ; HUMAN LYSOZYME WITH MAN-B1,4-GLCNAC COVALENTLY ATTACHED TO ASP53 1REY ; 1.7 ; HUMAN LYSOZYME-N,N'-DIACETYLCHITOBIOSE COMPLEX 1REZ ; 1.7 ; HUMAN LYSOZYME-N-ACETYLLACTOSAMINE COMPLEX 6NYY ; 3.0 ; human m-AAA protease AFG3L2, substrate-bound 3SRF ; 2.845 ; Human M1 pyruvate kinase 3SRH ; 2.6 ; Human M2 pyruvate kinase 3SRD ; 2.902 ; Human M2 pyruvate kinase in complex with fructose 1-6 bisphosphate and Oxalate. 7TRK ; 2.8 ; Human M4 muscarinic acetylcholine receptor complex with Gi1 and the agonist iperoxo 7TRP ; 2.4 ; Human M4 muscarinic acetylcholine receptor complex with Gi1 and the agonist iperoxo and positive allosteric modulator LY2033298 7TRQ ; 2.5 ; Human M4 muscarinic acetylcholine receptor complex with Gi1 and the agonist iperoxo and positive allosteric modulator VU0467154 7TRS ; 2.8 ; Human M4 muscarinic acetylcholine receptor complex with Gi1 and the endogenous agonist acetylcholine 8FX5 ; 2.45 ; Human M4 muscarinic acetylcholine receptor complex with Gi1 and xanomeline 7VF5 ; 3.0 ; Human m6A-METTL associated complex (WTAP, VIRMA, and HAKAI) 7VF2 ; 3.0 ; Human m6A-METTL associated complex (WTAP, VIRMA, ZC3H13, and HAKAI) 5MP0 ; 1.63 ; Human m7GpppN-mRNA Hydrolase (DCP2, NUDT20) Catalytic Domain 6VYV ; 6.33 ; Human mAbs broadly protect against infection of arthritiogenic alphaviruses by recognizing conserved elements of the MXR8 receptor binding domain 6W09 ; 5.3 ; Human mAbs broadly protect against infection of arthritiogenic alphaviruses by recognizing conserved elements of the MXR8 receptor binding domain 6W1C ; 5.3 ; Human mAbs broadly protect against infection of arthritiogenic alphaviruses by recognizing conserved elements of the MXR8 receptor binding domain 3KBX ; 2.652 ; Human macrophage inflammatory protein-1 alpha L3M_V63M 1GD0 ; 1.5 ; HUMAN MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) 7ZUC ; 1.89 ; Human Major Histocompatibility Complex A2 allele presenting LLLGIGILV 7NMD ; 2.25 ; Human Major Histocompatibility Complex A24 Allele presenting QLPRLFPLL 2OB0 ; 1.8 ; Human MAK3 homolog in complex with Acetyl-CoA 2PSW ; 2.1 ; Human MAK3 homolog in complex with CoA 7RM9 ; 1.65 ; Human Malate Dehydrogenase I (MDHI) 1EFL ; 2.6 ; HUMAN MALIC ENZYME IN A QUATERNARY COMPLEX WITH NAD, MG, AND TARTRONATE 3V55 ; 1.81 ; Human MALT1 (334-719) in its ligand free form 3V4O ; 2.1 ; Human MALT1 (caspase domain) in complex with an irreversible peptidic inhibitor 4I1P ; 2.403 ; Human MALT1 (caspase-IG3) in complex with activity based-probe 4I1R ; 2.7 ; Human MALT1 (caspase-IG3) in complex with thioridazine 6F7I ; 2.43 ; human MALT1(329-728) IN COMPLEX WITH MLT-747 6H4A ; 2.65 ; Human MALT1(329-728) in complex with MLT-748 7AK0 ; 2.316 ; Human MALT1(329-729) in complex with a chromane urea containing inhibitor 7AK1 ; 2.507 ; Human MALT1(329-729) in complex with a chromane urea containing inhibitor 6YN8 ; 3.052 ; Human MALT1(334-719) in complex with a tetrazole containing compound 2ADQ ; 2.4 ; Human Manganese Superoxide Dismutase 1QNM ; 2.3 ; HUMAN MANGANESE SUPEROXIDE DISMUTASE MUTANT Q143N 1HUP ; 2.5 ; HUMAN MANNOSE BINDING PROTEIN CARBOHYDRATE RECOGNITION DOMAIN TRIMERIZES THROUGH A TRIPLE ALPHA-HELICAL COILED-COIL 2VZ2 ; 2.3 ; Human MAO B in complex with mofegiline 8A3D ; 1.67 ; Human mature large subunit of the ribosome with eIF6 and homoharringtonine bound 7KZ1 ; 1.62 ; Human MBD4 glycosylase domain bound to DNA containing an abasic site 7KZG ; 1.68 ; Human MBD4 glycosylase domain bound to DNA containing oxacarbenium-ion analog 1-aza-2'-deoxyribose 7KZ0 ; 1.57 ; Human MBD4 glycosylase domain bound to DNA containing substrate analog 2'-deoxy-pseudouridine 5UUM ; 2.346 ; Human Mcl-1 in complex with a Bfl-1-specific selected peptide 6UA3 ; 1.552 ; Human Mcl-1 in complex with a modified Bim BH3 peptide 6UAB ; 2.1 ; Human Mcl-1 in complex with a modified unnatural Bim BH3 peptide 6MBD ; 1.95 ; Human Mcl-1 in complex with the designed peptide dM1 6MBE ; 2.25 ; Human Mcl-1 in complex with the designed peptide dM7 7W1Y ; 2.59 ; Human MCM double hexamer bound to natural DNA duplex (polyAT/polyTA) 7DP3 ; 2.55 ; Human MCM8 N-terminal domain 7DPD ; 2.55 ; Human MCM9 N-terminal domain 6K7X ; 3.27 ; Human MCU-EMRE complex 6O58 ; 3.8 ; Human MCU-EMRE complex, dimer of channel 3JZR ; 2.1 ; Human MDM2 liganded with a 12mer peptide inhibitor (pDI6W) 3JZS ; 1.78 ; Human MDM2 liganded with a 12mer peptide inhibitor (pDIQ) 8BGU ; 4.1 ; human MDM2-5S RNP 3JZO ; 1.8 ; Human MDMX liganded with a 12mer peptide (pDI) 3JZP ; 1.74 ; Human MDMX liganded with a 12mer peptide inhibitor (pDI6W) 3JZQ ; 1.8 ; Human MDMX liganded with a 12mer peptide inhibitor (pDIQ) 7C3Q ; 1.801 ; Human MdmX protein in complex with Nutlin3a 5ODD ; ; HUMAN MED26 N-TERMINAL DOMAIN (1-92) 7ENJ ; 4.4 ; Human Mediator (deletion of MED1-IDR) in a Tail-bent conformation (MED-B) 7EMF ; 3.5 ; Human Mediator (deletion of MED1-IDR) in a Tail-extended conformation 7NVR ; 4.5 ; Human Mediator with RNA Polymerase II Pre-initiation complex 3WIG ; 2.7 ; Human MEK1 kinase in complex with CH5126766 and MgAMP-PNP 7DB6 ; 3.3 ; human melatonin receptor MT1 - Gi1 complex 8ERC ; 3.7 ; Human Membrane-bound O-acyltransferase 7 6S2K ; 3.1 ; Human Menin in complex with AJ21 8GPN ; 3.2 ; Human menin in complex with H3K79Me2 nucleosome 4GQ6 ; 1.55 ; Human menin in complex with MLL peptide 4GQ3 ; 1.56 ; Human menin with bound inhibitor MI-2 4GQ4 ; 1.27 ; Human menin with bound inhibitor MI-2-2 4OG3 ; 2.01 ; Human menin with bound inhibitor MIV-3R 4OG4 ; 1.45 ; Human menin with bound inhibitor MIV-3S 4OG6 ; 1.49 ; Human menin with bound inhibitor MIV-4 4OG5 ; 1.63 ; Human menin with bound inhibitor MIV-5 4OG8 ; 1.53 ; Human menin with bound inhibitor MIV-6R 4OG7 ; 2.08 ; Human menin with bound inhibitor MIV-7 7UAE ; 2.6 ; Human meprin alpha (active state) 7UAF ; 2.4 ; Human meprin alpha inhibitory complex with compound 10d (N~3~,N~3~-bis[(2H-1,3-benzodioxol-5-yl)methyl]-N-hydroxy-beta-alaninamide) 3U8Z ; 2.64 ; human merlin FERM domain 2W51 ; 2.8 ; Human mesencephalic astrocyte-derived neurotrophic factor (MANF) 6BX8 ; 1.98 ; Human Mesotrypsin (PRSS3) Complexed with Tissue Factor Pathway Inhibitor Variant (TFPI1-KD1-K15R-I17C-I34C) 3L3T ; 2.378 ; Human mesotrypsin complexed with amyloid precursor protein inhibitor variant (APPIR15K) 3L33 ; 2.48 ; Human mesotrypsin complexed with amyloid precursor protein inhibitor(APPI) 4U30 ; 2.5 ; Human mesotrypsin complexed with bikunin Kunitz domain 2 3P95 ; 1.2991 ; Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor variant (BPTI-K15R/R17D) 3P92 ; 1.5992 ; Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor variant (BPTI-K15R/R17G) 2R9P ; 1.4 ; Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor(BPTI) 4U32 ; 1.65 ; Human mesotrypsin complexed with HAI-2 Kunitz domain 1 5C67 ; 1.83 ; Human Mesotrypsin in complex with amyloid precursor protein inhibitor variant APPI-M17G/I18F/F34V 5TP0 ; 1.25 ; Human mesotrypsin in complex with diminazene 4DG4 ; 1.4 ; Human mesotrypsin-S39Y complexed with bovine pancreatic trypsin inhibitor (BPTI) 6UO8 ; 3.63 ; Human metabotropic GABA(B) receptor bound to agonist SKF97541 and positive allosteric modulator GS39783 6UO9 ; 4.8 ; Human metabotropic GABA(B) receptor bound to agonist SKF97541 in its intermediate state 2 6VJM ; 3.97 ; Human metabotropic GABA(B) receptor in its apo state 6UOA ; 6.3 ; Human metabotropic GABA(B) receptor in its intermediate state 1 5C5C ; 1.862 ; Human metabotropic glutamate receptor 7, extracellular ligand binding domain 4V0H ; 1.79 ; Human metallo beta lactamase domain containing protein 1 (hMBLAC1) 4FLJ ; 1.74 ; Human MetAP1 with bengamide analog Y08, in Mn form 4FLK ; 1.47 ; Human MetAP1 with bengamide analog Y10, in Mn form 4FLI ; 1.55 ; Human MetAP1 with bengamide analog Y16, in Mn form 4FLL ; 1.5 ; Human MetAP1 with bengamide analog YZ6, in Mn form 5FVD ; 1.86 ; Human metapneumovirus N0-P complex 5L0C ; 3.1 ; Human metavinculin (residues 959-1134) in complex with PIP2 5L0H ; 2.9 ; Human metavinculin MVt cardiomyopathy-associated mutant R975W (residues 959-1134) in complex with PIP2 5L0G ; 3.4 ; Human metavinculin MVt Q971R, R975D, T978R mutant (residues 959-1134) in complex with PIP2 5L0I ; 2.45 ; Human metavinculin MVt R975W cardiomyopathy-associated mutant (residues 959-1134) 5L0F ; 2.76 ; Human metavinculin quadruple mutant (residues 959-1134) 3MYI ; 2.2 ; Human metavinculin tail domain 5L0D ; 2.75 ; Human Metavinculin(residues 959-1130) in complex with PIP2 7PCF ; 5.82 ; Human methemoglobin bound to Staphylococcus aureus hemophore IsdB 4IJ2 ; 4.24 ; Human methemoglobin in complex with the second and third NEAT domains of IsdH from Staphylococcus aureus 4XS0 ; 2.55 ; Human methemoglobin in complex with the second and third NEAT domains of IsdH(F365Y/A369F/Y642A) from Staphylococcus aureus 6NBC ; 2.8 ; human methemoglobin state 1 determined using single-particle cryo-EM at 200 keV 6NBD ; 3.2 ; Human methemoglobin state 2 determined using single-particle cryo-EM at 200 keV 7RXW ; 1.07 ; Human Methionine Adenosyltransferase 2A bound to Methylthioadenosine and inhibitor imido-diphosphate (PNP) 7L1A ; 1.25 ; Human Methionine Adenosyltransferase 2A bound to Methylthioadenosine and inhibitor, di-imido triphosphate (PNPNP) 7RXX ; 1.25 ; Human Methionine Adenosyltransferase 2A bound to Methylthioadenosine and two sulfate in the active site 7RXV ; 1.07 ; Human Methionine Adenosyltransferase 2A bound to Methylthioadenosine, Malonate (MLA) and MgF3 6FCB ; 2.7 ; Human Methionine Adenosyltransferase II mutant (P115G) 6FBN ; 2.7 ; Human Methionine Adenosyltransferase II mutant (Q113A) 6FCD ; 1.7 ; Human Methionine Adenosyltransferase II mutant (R264A) 6FBO ; 1.8 ; Human Methionine Adenosyltransferase II mutant (S114A) in I222 crystal form 6FBP ; 1.65 ; Human Methionine Adenosyltransferase II mutant (S114A) in P22121 crystal form 6G6R ; 1.35 ; Human Methionine Adenosyltransferase II with SAMe and PPNP 1BN5 ; 1.8 ; HUMAN METHIONINE AMINOPEPTIDASE 2 8ONY ; 2.92 ; Human Methionine Aminopeptidase 2 at the 80S ribosome 1BOA ; 1.8 ; HUMAN METHIONINE AMINOPEPTIDASE 2 COMPLEXED WITH ANGIOGENESIS INHIBITOR FUMAGILLIN 1B6A ; 1.6 ; HUMAN METHIONINE AMINOPEPTIDASE 2 COMPLEXED WITH TNP-470 2ADU ; 1.9 ; Human Methionine Aminopeptidase Complex with 4-Aryl-1,2,3-triazole Inhibitor 1QZY ; 1.6 ; Human Methionine Aminopeptidase in complex with bengamide inhibitor LAF153 and cobalt 4IU6 ; 1.9 ; Human Methionine Aminopeptidase in complex with FZ1: Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidase-1 5YR7 ; 2.06 ; Human methionine aminopeptidase type 1b (F309L mutant) 5YR5 ; 1.6 ; Human methionine aminopeptidase type 1b (F309L mutant) in complex with Ovalicin 5YR6 ; 1.75 ; Human methionine aminopeptidase type 1b (F309L mutant) in complex with TNP470 5YKP ; 1.68 ; Human methionine aminopeptidase type 1b (F309M mutant) in complex with ovalicin 5YR4 ; 1.82 ; Human methionine aminopeptidase type 1b (F309M mutant) in complex with TNP470 1KQ0 ; 2.0 ; Human methionine aminopeptidase type II in complex with D-methionine 1KQ9 ; 1.9 ; Human methionine aminopeptidase type II in complex with L-methionine 2OAZ ; 1.9 ; Human Methionine Aminopeptidase-2 Complexed with SB-587094 1DIA ; 2.2 ; HUMAN METHYLENETETRAHYDROFOLATE DEHYDROGENASE / CYCLOHYDROLASE COMPLEXED WITH NADP AND INHIBITOR LY249543 1DIB ; 2.7 ; HUMAN METHYLENETETRAHYDROFOLATE DEHYDROGENASE / CYCLOHYDROLASE COMPLEXED WITH NADP AND INHIBITOR LY345899 1DIG ; 2.2 ; HUMAN METHYLENETETRAHYDROFOLATE DEHYDROGENASE / CYCLOHYDROLASE COMPLEXED WITH NADP AND INHIBITOR LY374571 2H00 ; 2.0 ; Human methyltransferase 10 domain containing protein 4RFQ ; 2.4 ; Human Methyltransferase-Like 18 4LEC ; 2.28 ; Human Methyltransferase-Like Protein 21A 4MTL ; 1.65 ; Human Methyltransferase-Like Protein 21C 4LG1 ; 1.8 ; Human Methyltransferase-Like Protein 21D 5TEY ; 1.8 ; Human METTL3-METTL14 complex 6E5V ; 2.95 ; human mGlu8 receptor amino terminal domain in complex with (S)-3,4-Dicarboxyphenylglycine (DCPG) 6BSZ ; 2.65 ; Human mGlu8 Receptor complexed with glutamate 6BT5 ; 2.92 ; Human mGlu8 Receptor complexed with L-AP4 8XA9 ; 2.32 ; Human MGME1 in complex with 5'-overhang DNA 7NMG ; 2.48 ; Human MHC Class I, A24 Allele presenting LWM, Complex with 4C6 TCR 7NME ; 2.2 ; Human MHC Class I, A24 Allele presenting QLPRLFPLL, Complex with 4C6 TCR 7NMF ; 2.98 ; Human MHC Class I, A24 Allele presenting QLPRLFPLL, Complex with 4C6 TCR, monoclinic form 4NE1 ; 6.499 ; Human MHF1 MHF2 DNA complexes 4NE3 ; 1.8007 ; Human MHF1-MHF2 complex 4NE5 ; 2.5 ; Human MHF1-MHF2 complex 4NE6 ; 2.1001 ; Human MHF1-MHF2 complex 4NDY ; 6.999 ; Human MHF1-MHF2 DNA complex 1XQ8 ; ; Human micelle-bound alpha-synuclein 2D58 ; 1.9 ; Human microglia-specific protein Iba1 2CKJ ; 3.59 ; Human milk xanthine oxidoreductase 3WH2 ; 1.3 ; Human Mincle in complex with citrate 3WH3 ; 1.32 ; human Mincle, ligand free form 1M8A ; 1.7 ; Human MIP-3alpha/CCL20 1E6F ; 1.75 ; Human MIR-receptor, repeat 11 1GQB ; 1.8 ; HUMAN MIR-RECEPTOR, REPEAT 11 7UPR ; 3.2 ; Human mitochondrial AAA protein ATAD1 (with a catalytic dead mutation) in complex with a peptide substrate (closed conformation) 7UPT ; 3.5 ; Human mitochondrial AAA protein ATAD1 (with a catalytic dead mutation) in complex with a peptide substrate (open conformation) 2F2S ; 2.0 ; Human mitochondrial acetoacetyl-CoA thiolase 6NOW ; 4.099 ; Human Mitochondrial Alanyl-tRNA Synthetase C-Ala domain 6NLQ ; 1.15 ; Human Mitochondrial Alanyl-tRNA Synthetase C-terminal domain 1ZUM ; 2.1 ; Human Mitochondrial Aldehyde Dehydrogenase Asian Variant, ALDH2*2, Apo Form 3INL ; 1.862 ; Human Mitochondrial Aldehyde Dehydrogenase Asian Variant, ALDH2*2, complexed with agonist Alda-1 2ONM ; 2.5 ; Human Mitochondrial Aldehyde Dehydrogenase Asian Variant, ALDH2*2, complexed with NAD+ 3INJ ; 1.688 ; Human Mitochondrial Aldehyde Dehydrogenase complexed with agonist Alda-1 1O01 ; 2.15 ; Human mitochondrial aldehyde dehydrogenase complexed with crotonaldehyde, NAD(H) and Mg2+ 1O00 ; 2.6 ; Human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Mg2+ showing dual NAD(H) conformations 1CW3 ; 2.58 ; HUMAN MITOCHONDRIAL ALDEHYDE DEHYDROGENASE COMPLEXED WITH NAD+ AND MN2+ 1NZX ; 2.45 ; Human mitochondrial aldehyde dehydrogenase complexed with NAD+ in the presence of low Mg2+ 1NZZ ; 2.45 ; Human mitochondrial aldehyde dehydrogenase complexed with NADH in the presence of low Mg2+ 1O02 ; 1.9 ; Human mitochondrial aldehyde dehydrogenase complexed with NADH in the presence of Mg2+ 3N80 ; 1.5 ; Human mitochondrial aldehyde dehydrogenase, apo form 4AH6 ; 3.7 ; Human mitochondrial aspartyl-tRNA synthetase 2IWY ; 2.06 ; Human mitochondrial beta-ketoacyl ACP synthase 2IWZ ; 1.65 ; Human mitochondrial beta-ketoacyl ACP synthase complexed with hexanoic acid 5KUI ; 2.701 ; Human mitochondrial calcium uniporter (residues 72-189) crystal structure with calcium. 5KUG ; 1.9 ; Human mitochondrial calcium uniporter (residues 72-189) crystal structure with lithium 5KUJ ; 1.6 ; Human mitochondrial calcium uniporter (residues 72-189) crystal structure with magnesium. 7L7S ; 3.5 ; Human mitochondrial chaperonin mHsp60 6DL7 ; 2.0 ; Human mitochondrial ClpP in complex with ONC201 (TIC10) 8D33 ; 2.46 ; Human mitochondrial DNA polymerase gamma ternary complex with GC basepair 8D42 ; 2.91 ; Human mitochondrial DNA polymerase gamma ternary complex with GT basepair in editing conformer (composite) 8D3R ; 3.04 ; Human mitochondrial DNA polymerase gamma ternary complex with GT basepair in intermediate conformer 8D37 ; 2.65 ; Human mitochondrial DNA polymerase gamma ternary complex with GT basepair in replication conformer 4A1N ; 2.8 ; Human Mitochondrial endo-exonuclease 5Z8U ; 1.9 ; Human mitochondrial ferritin mutant - C102A/C130A 5Z8S ; 1.973 ; Human Mitochondrial ferritin mutant - C102A/C130A/E27C/E61C/E62C 5Z8J ; 2.3 ; Human mitochondrial ferritin mutant - E27C/E62C/C102G/C130G 5Z91 ; 3.004 ; Human mitochondrial ferritin mutant bound with gold ions 3RC3 ; 2.08 ; Human Mitochondrial Helicase Suv3 3RC8 ; 2.9 ; Human Mitochondrial Helicase Suv3 in Complex with Short RNA Fragment 7NGQ ; 12.0 ; Human mitochondrial Lon protease homolog, D2-state 7P0M ; 2.75 ; Human mitochondrial Lon protease with substrate in the ATPase and protease domains 7P09 ; 2.7 ; Human mitochondrial Lon protease with substrate in the ATPase domain 7P0B ; 4.11 ; Human mitochondrial Lon protease without substrate 8OM7 ; 3.74 ; Human Mitochondrial Lon Y186E Mutant ADP Bound 8OJL ; 2.88 ; Human Mitochondrial Lon Y394E Mutant ADP Bound 8OKA ; 3.89 ; Human Mitochondrial Lon Y394F Mutant ADP Bound 7KRZ ; 3.2 ; Human mitochondrial LONP1 in complex with Bortezomib 7KSM ; 3.2 ; Human mitochondrial LONP1 with endogenous substrate 1QR6 ; 2.1 ; HUMAN MITOCHONDRIAL NAD(P)-DEPENDENT MALIC ENZYME 6J7Y ; 2.203 ; Human mitochondrial Oligoribonuclease in complex with DNA 6J80 ; 1.812 ; Human mitochondrial Oligoribonuclease in complex with poly-dT DNA 6J7Z ; 2.005 ; Human mitochondrial Oligoribonuclease in complex with RNA 7QI4 ; 2.21 ; Human mitochondrial ribosome at 2.2 A resolution (bound to partly built tRNAs and mRNA) 6ZSA ; 4.0 ; Human mitochondrial ribosome bound to mRNA, A-site tRNA and P-site tRNA 6ZSC ; 3.5 ; Human mitochondrial ribosome in complex with E-site tRNA 8ANY ; 2.85 ; Human mitochondrial ribosome in complex with LRPPRC, SLIRP, A-site, P-site, E-site tRNAs and mRNA 6ZSB ; 4.5 ; Human mitochondrial ribosome in complex with mRNA and P-site tRNA 6ZSG ; 4.0 ; Human mitochondrial ribosome in complex with mRNA, A-site tRNA, P-site tRNA and E-site tRNA 6ZM6 ; 2.59 ; Human mitochondrial ribosome in complex with mRNA, A/A tRNA and P/P tRNA 7QI5 ; 2.63 ; Human mitochondrial ribosome in complex with mRNA, A/A-, P/P- and E/E-tRNAs at 2.63 A resolution 7QI6 ; 2.98 ; Human mitochondrial ribosome in complex with mRNA, A/P- and P/E-tRNAs at 2.98 A resolution 6ZSE ; 5.0 ; Human mitochondrial ribosome in complex with mRNA, A/P-tRNA and P/E-tRNA 6ZSD ; 3.7 ; Human mitochondrial ribosome in complex with mRNA, P-site tRNA and E-site tRNA 6ZM5 ; 2.89 ; Human mitochondrial ribosome in complex with OXA1L, mRNA, A/A tRNA, P/P tRNA and nascent polypeptide 7OG4 ; 3.8 ; Human mitochondrial ribosome in complex with P/E-tRNA 6ZS9 ; 4.0 ; Human mitochondrial ribosome in complex with ribosome recycling factor 7O9M ; 2.6 ; Human mitochondrial ribosome large subunit assembly intermediate with MTERF4-NSUN4, MRM2, MTG1 and the MALSU module 7O9K ; 3.1 ; Human mitochondrial ribosome large subunit assembly intermediate with MTERF4-NSUN4, MRM2, MTG1, the MALSU module, GTPBP5 and mtEF-Tu 7PO3 ; 2.92 ; Human mitochondrial ribosome small subunit 7P2E ; 2.4 ; Human mitochondrial ribosome small subunit in complex with IF3, GMPPMP and streptomycin 8GKS ; 2.99 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF291 inhibitor 8GKT ; 2.64 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF320 inhibitor 8FJU ; 2.51 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF347 inhibitor 8T4O ; 2.68 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF347 inhibitor with no glutamate 8GKU ; 3.06 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF355 inhibitor 8GKW ; 2.38 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF359 inhibitor 8FJT ; 2.47 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and AGF362 inhibitor 8T4P ; 2.801 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and di-glutamate AGF347 inhibitor 8TLC ; 2.72 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) in complex with PLP, glycine and tri-glutamate AGF347 inhibitor 8GKY ; 2.77 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) Y105F in complex with PLP, glycine and AGF359 inhibitor 8GKZ ; 2.75 ; Human mitochondrial serine hydroxymethyltransferase (SHMT2) Y105F in complex with PLP, glycine and AGF362 inhibitor 6DK3 ; 2.04 ; HUMAN MITOCHONDRIAL SERINE HYDROXYMETHYLTRANSFERASe 2 1S3O ; 2.47 ; Human mitochondrial single strand DNA binding protein (hmSSB) 3ULL ; 2.4 ; HUMAN MITOCHONDRIAL SINGLE-STRANDED DNA BINDING PROTEIN 6RUP ; 2.1 ; Human mitochondrial single-stranded DNA binding protein, SSBP1, at 2.1 A resolution - elucidated sequence 8CSP ; 2.66 ; Human mitochondrial small subunit assembly intermediate (State A) 8CSQ ; 2.54 ; Human mitochondrial small subunit assembly intermediate (State B) 8CSR ; 2.54 ; Human mitochondrial small subunit assembly intermediate (State C) 8CSU ; 3.03 ; Human mitochondrial small subunit assembly intermediate (State C*) 8CSS ; 2.36 ; Human mitochondrial small subunit assembly intermediate (State D) 8CST ; 2.85 ; Human mitochondrial small subunit assembly intermediate (State E) 3FGH ; 1.35 ; Human mitochondrial transcription factor A box B 5EKD ; 1.82 ; Human mitochondrial tryptophanyl-tRNA synthetase bound by indolmycin and Mn*ATP. 3LPQ ; 1.7 ; Human MitoNEET with 2Fe-2S Coordinating Ligand His 87 Replaced With Cys 8PK0 ; 3.03 ; human mitoribosomal large subunit assembly intermediate 1 with GTPBP10-GTPBP7 8QSJ ; 3.0 ; Human mitoribosomal large subunit assembly intermediate 2 with GTPBP7 3RTT ; 1.82 ; Human MMP-12 catalytic domain in complex with*(R)-N*-Hydroxy-1-(phenethylsulfonyl)pyrrolidine-2-carboxamide 3RTS ; 1.81 ; Human MMP-12 catalytic domain in complex with*N*-Hydroxy-2-(2-phenylethylsulfonamido)acetamide 2OXW ; 1.15 ; Human MMP-12 complexed with the peptide IAG 2OXZ ; 1.9 ; Human MMP-12 in complex with two peptides PQG and IAG 2OY2 ; 1.5 ; Human MMP-8 in complex with peptide IAG 6RLY ; 2.2 ; Human MMP12 (catalytic domain) in complex with AP316 6RD0 ; 1.9 ; Human MMP12 catalytic domain in complex with AP280 4GUY ; 2.0 ; Human MMP12 catalytic domain in complex with*N*-Hydroxy-2-(2-(4-methoxyphenyl)ethylsulfonamido)acetamide 5N5J ; 1.8 ; Human MMP12 in complex with 3-(5-(1,2-dithiolan-3-yl)pentanamido)propane-1-sulfonate 4I03 ; 1.7 ; Human MMP12 in complex with a PEG-linked bifunctional L-glutamate motif inhibitor 3TS4 ; 1.587 ; Human MMP12 in complex with L-glutamate motif inhibitor 3TSK ; 2.0 ; Human MMP12 in complex with L-glutamate motif inhibitor 4EFS ; 1.63 ; Human MMP12 in complex with L-glutamate motif inhibitor 3LIK ; 1.8 ; Human MMP12 in complex with non-zinc chelating inhibitor 3LIL ; 1.8 ; Human MMP12 in complex with non-zinc chelating inhibitor 3LIR ; 1.9 ; Human MMP12 in complex with non-zinc chelating inhibitor 3LJG ; 1.313 ; Human MMP12 in complex with non-zinc chelating inhibitor 3TVC ; 2.43 ; Human MMP13 in complex with L-glutamate motif inhibitor 3TT4 ; 1.88 ; Human MMP8 in complex with L-glutamate motif inhibitor 5T30 ; 1.77 ; Human MnSOD-azide complex 4JIZ ; 2.1 ; Human Mob1-phosphopeptide complex 5TWG ; 2.3 ; human MOB1A bound to human MST1 phosphorylated T353 peptide 5TWH ; 2.5 ; human MOB1A bound to MST1 phosphorylated T367 peptide 5J8C ; 2.17 ; Human MOF C316S, E350Q crystal structure 3TOA ; 3.004 ; Human MOF crystal structure with active site lysine partially acetylated 3TOB ; 2.703 ; Human MOF E350Q crystal structure with active site lysine partially acetylated 5J8F ; 2.6 ; Human MOF K274P crystal structure 2BXR ; 3.0 ; Human Monoamine Oxidase A in complex with Clorgyline, Crystal Form A 2BXS ; 3.15 ; Human Monoamine Oxidase A in complex with Clorgyline, Crystal Form B 1GOS ; 3.0 ; Human Monoamine Oxidase B 1OJ9 ; 2.3 ; HUMAN MONOAMINE OXIDASE B IN COMPLEX WITH 1,4-DIPHENYL-2-BUTENE 2XFN ; 1.6 ; Human monoamine oxidase B in complex with 2-(2-benzofuranyl)-2- imidazoline 2BYB ; 2.2 ; Human Monoamine Oxidase B in complex with Deprenyl 2BK3 ; 1.8 ; Human Monoamine Oxidase B in complex with Farnesol 1OJA ; 1.7 ; HUMAN MONOAMINE OXIDASE B IN COMPLEX WITH ISATIN 1OJD ; 3.1 ; HUMAN MONOAMINE OXIDASE B IN COMPLEX WITH Lauryldimethylamine-N-oxide (LDAO) 1OJC ; 2.4 ; HUMAN MONOAMINE OXIDASE B IN COMPLEX WITH N-(2-aminoethyl)-p-chlorobenzamide 3PO7 ; 1.8 ; Human monoamine oxidase B in complex with zonisamide 2XFU ; 2.2 ; Human monoamine oxidase B with tranylcypromine 2BK5 ; 1.83 ; Human Monoamine Oxidase B: I199F mutant in complex with isatin 2BK4 ; 1.9 ; Human Monoamine Oxidase B: I199F mutant in complex with rasagiline 5NST ; 2.52 ; Human monoclonal antibody with a LAIR1 insertion 2P4N ; 9.0 ; Human Monomeric Kinesin (1BG2) and Bovine Tubulin (1JFF) Docked into the 9-Angstrom Cryo-EM Map of Nucleotide-Free Kinesin Complexed to the Microtubule 3SVM ; 2.31 ; Human MPP8 - human DNMT3AK47me2 peptide 2X9E ; 3.1 ; HUMAN MPS1 IN COMPLEX WITH NMS-P715 6GVJ ; 2.41 ; Human Mps1 kinase domain with ordered activation loop 7TXH ; 1.95 ; Human MRas Q71R in complex with human Shoc2 LRR domain M173I and human PP1Ca 8BAH ; 4.13 ; Human Mre11-Nbs1 complex 1IG6 ; ; HUMAN MRF-2 DOMAIN, NMR, 11 STRUCTURES 3OA6 ; 2.35 ; Human MSL3 Chromodomain bound to DNA and H4K20me1 peptide 3ZHP ; 2.9 ; Human MST3 (STK24) in complex with MO25beta 8QLR ; 1.85 ; Human MST3 (STK24) kinase in complex with inhibitor MR24 8QLS ; 1.61 ; Human MST3 (STK24) kinase in complex with inhibitor MR26 8QLT ; 1.47 ; Human MST3 (STK24) kinase in complex with inhibitor MR30 8BZI ; 1.72 ; Human MST3 (STK24) kinase in complex with inhibitor MR39 8BZJ ; 2.52 ; Human MST3 (STK24) kinase in complex with inhibitor MRLW5 8QLQ ; 1.64 ; Human MST3 (STK24) kinase in complex with macrocyclic inhibitor JA310 3A7F ; 1.55 ; Human MST3 kinase 3A7G ; 2.0 ; Human MST3 kinase 3A7I ; 1.45 ; Human MST3 kinase in complex with adenine 3A7H ; 1.96 ; Human MST3 kinase in complex with ATP 3A7J ; 1.5 ; Human MST3 kinase in complex with MnADP 4FP9 ; 2.9 ; Human MTERF4-NSUN4 protein complex 6JID ; 2.5 ; Human MTHFD2 in complex with Compound 1 6KG2 ; 2.25 ; Human MTHFD2 in complex with Compound 18 7EHM ; 2.13 ; Human MTHFD2 in complex with compound 21 and 15 7EHV ; 2.61 ; Human MTHFD2 in complex with compound 21 and 3 7EHN ; 2.25 ; Human MTHFD2 in complex with compound 21 and 9 7EHJ ; 2.16 ; human MTHFD2 in complex with compound 21, cofactor and phosphate. 6JIB ; 2.25 ; Human MTHFD2 in complex with DS44960156 6C90 ; 2.2 ; Human Mtr4 helicase in complex with ZCCHC8-CTD 7SA9 ; 1.69 ; Human MUC16 SEA5 Domain 6TM2 ; 2.95 ; Human MUC2 AAs 21-1397 7A5O ; 2.95 ; Human MUC2 AAs 21-1397 4P0R ; 6.501 ; human Mus81-Eme1-3'flap DNA complex 4P0S ; 6.0 ; human Mus81-Eme1-3'flap DNA complex 2ALD ; 2.1 ; HUMAN MUSCLE ALDOLASE 4ALD ; 2.8 ; HUMAN MUSCLE FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE COMPLEXED WITH FRUCTOSE 1,6-BISPHOSPHATE 5K54 ; 1.717 ; Human muscle fructose-1,6-bisphosphatase E69Q mutant in active R-state 5L0A ; 2.302 ; Human muscle fructose-1,6-bisphosphatase E69Q mutant in active R-state in complex with fructose-1,6-bisphosphate 5K55 ; 1.977 ; Human muscle fructose-1,6-bisphosphatase E69Q mutant in active R-state in complex with fructose-6-phosphate 3IFA ; 1.93 ; Human muscle fructose-1,6-bisphosphatase E69Q mutant in complex with AMP 3IFC ; 1.97 ; Human muscle fructose-1,6-bisphosphatase E69Q mutant in complex with AMP and alpha fructose-6-phosphate 5ET5 ; 1.67 ; Human muscle fructose-1,6-bisphosphatase in active R-state 5K56 ; 2.198 ; Human muscle fructose-1,6-bisphosphatase in active R-state in complex with fructose-1,6-bisphosphate 5ET8 ; 1.92 ; Human muscle fructose-1,6-bisphosphatase in active R-state in complex with fructose-6-phosphate 5ET7 ; 2.989 ; Human muscle fructose-1,6-bisphosphatase in inactive T-state 5ET6 ; 1.845 ; Human muscle fructose-1,6-bisphosphatase in inactive T-state in complex with AMP 5KY6 ; 1.941 ; Human muscle fructose-1,6-bisphosphate aldolase 1I10 ; 2.3 ; HUMAN MUSCLE L-LACTATE DEHYDROGENASE M CHAIN, TERNARY COMPLEX WITH NADH AND OXAMATE 8AG6 ; 2.8 ; human MutSalpha (MSH2/MSH6) binding to DNA with a GT mismatch 2O8E ; 3.3 ; human MutSalpha (MSH2/MSH6) bound to a G T mispair, with ADP bound to MSH2 only 2O8D ; 3.0 ; human MutSalpha (MSH2/MSH6) bound to ADP and a G dU mispair 2O8B ; 2.75 ; human MutSalpha (MSH2/MSH6) bound to ADP and a G T mispair 2O8C ; 3.37 ; human MutSalpha (MSH2/MSH6) bound to ADP and an O6-methyl-guanine T mispair 2O8F ; 3.25 ; human MutSalpha (MSH2/MSH6) bound to DNA with a single base T insert 3THY ; 2.894 ; Human MutSbeta complexed with an IDL of 2 bases (Loop2) and ADP 3THX ; 2.7 ; Human MutSbeta complexed with an IDL of 3 bases (Loop3) and ADP 3THW ; 3.09 ; Human MutSbeta complexed with an IDL of 4 bases (Loop4) and ADP 3THZ ; 4.3 ; Human MutSbeta complexed with an IDL of 6 bases (Loop6) and ADP 7NTP ; 2.1 ; Human myelin P2 mutant V115A 4A8Z ; 1.801 ; Human myelin P2 protein, K112Q mutant 4A1H ; 2.201 ; Human myelin P2 protein, K45S mutant 4A1Y ; 1.2 ; Human myelin P2 protein, K65Q mutant 5N4P ; 1.533 ; Human myelin P2, mutant I52T 4D6A ; 1.45 ; Human myelin protein P2 after neutron scattering experiments 6EW4 ; 1.271 ; Human myelin protein P2 F57A mutant, monoclinic crystal form 6EW5 ; 1.95 ; Human myelin protein P2 F57A mutant, monoclinic crystal form 6EW2 ; 1.588 ; Human myelin protein P2 F57A mutant, tetragonal crystal form 6XW9 ; 2.9 ; Human myelin protein P2 mutant K120S 6XUA ; 2.3 ; Human myelin protein P2 mutant K21Q 6XVQ ; 1.8 ; Human myelin protein P2 mutant K31Q 6XU9 ; 2.7 ; Human myelin protein P2 mutant K3N 6XUW ; 2.31 ; Human myelin protein P2 mutant L27D 6XVR ; 2.0 ; Human myelin protein P2 mutant L35S 7NRW ; 2.0 ; Human myelin protein P2 mutant M114T 6XU5 ; 1.65 ; Human myelin protein P2 mutant N2D 6XVS ; 1.8 ; Human myelin protein P2 mutant P38G, unliganded 6STS ; 3.0 ; Human myelin protein P2 mutant R30Q 6XVY ; 1.8 ; Human myelin protein P2 mutant R88Q 5N4M ; 1.59 ; Human myelin protein P2, mutant I43N 4D6B ; 2.116 ; Human myelin protein P2, mutant P38G 5N4Q ; 1.72 ; Human myelin protein P2, mutant T51P 6SVK ; 1.604 ; human Myeloid-derived growth factor (MYDGF) 6SVL ; 1.58 ; human Myeloid-derived growth factor (MYDGF) in complex with neutralizing Fab 3ZS0 ; 2.3 ; Human Myeloperoxidase inactivated by TX2 3ZS1 ; 2.6 ; Human Myeloperoxidase inactivated by TX5 1DNW ; 1.9 ; HUMAN MYELOPEROXIDASE-CYANIDE-THIOCYANATE COMPLEX 1AWB ; 2.5 ; HUMAN MYO-INOSITOL MONOPHOSPHATASE IN COMPLEX WITH D-INOSITOL-1-PHOSPHATE AND CALCIUM 2YF0 ; 2.65 ; Human Myotubularin related protein 6 (MTMR6) 2GIV ; 1.94 ; Human MYST histone acetyltransferase 1 5WCI ; 1.78 ; Human MYST histone acetyltransferase 1 2PQT ; 1.78 ; Human N-acetyltransferase 1 2IJA ; 1.701 ; Human N-acetyltransferase 1 F125S mutant 2PFR ; 1.92 ; Human N-acetyltransferase 2 6DXX ; 2.7 ; Human N-acylethanolamine-hydrolyzing acid amidase (NAAA) in complex with non-covalent benzothiazole-piperazine inhibitor ARN19702, in presence of Triton X-100 6DXW ; 2.3 ; Human N-acylethanolamine-hydrolyzing acid amidase (NAAA) precursor (C126A) 5MU6 ; 1.88 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and IMP-1088 inhibitor bound 4C2Z ; 2.08 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound 6FZ2 ; 2.05 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound 6FZ3 ; 2.0 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound 6FZ5 ; 1.89 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and inhibitor bound 6EHJ ; 2.1 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA and peptide bound 4C2Y ; 1.64 ; Human N-myristoyltransferase (NMT1) with Myristoyl-CoA co-factor 5NPQ ; 2.372 ; Human N-myristoyltransferase 1 (MNT1) with Myristoyl-CoA analogue X10 bound 4C2X ; 2.33 ; Human N-myristoyltransferase isoform 2 (NMT2) 5XM2 ; 2.187 ; Human N-terminal domain of FACT complex subunit SPT16 7VFS ; 2.8 ; Human N-type voltage gated calcium channel CaV2.2-alpha2/delta1-beta1 complex, apo state 7VFW ; 3.3 ; Human N-type voltage gated calcium channel CaV2.2-alpha2/delta1-beta1 complex, bound to CaV2.2-blocker1 7VFV ; 3.0 ; Human N-type voltage gated calcium channel CaV2.2-alpha2/delta1-beta1 complex, bound to PD173212 7VFU ; 3.0 ; Human N-type voltage gated calcium channel CaV2.2-alpha2/delta1-beta1 complex, bound to ziconotide 7MIY ; 3.1 ; Human N-type voltage-gated calcium channel Cav2.2 at 3.1 Angstrom resolution 7MIX ; 3.0 ; Human N-type voltage-gated calcium channel Cav2.2 in the presence of ziconotide at 3.0 Angstrom resolution 4X5K ; 2.494 ; Human NAA50 complex with coenzyme A and an acetylated peptide 3LKX ; 2.5 ; Human nac dimerization domain 7SX3 ; 3.1 ; Human NALCN-FAM155A-UNC79-UNC80 channelosome with CaM bound, conformation 1/2 7SX4 ; 3.5 ; Human NALCN-FAM155A-UNC79-UNC80 channelosome with CaM bound, conformation 2/2 6TAC ; 1.6 ; Human NAMPT deletion mutant in complex with nicotinamide mononucleotide, pyrophosphate, and Mg2+ 8DSM ; 2.75 ; Human NAMPT in complex with inhibitor ZN-4-3 6TA0 ; 1.58 ; Human NAMPT in complex with nicotinic acid and phosphoribosyl pyrophosphate 6TA2 ; 1.68 ; Human NAMPT in complex with nicotinic acid mononucleotide and phosphate 8DSH ; 2.2 ; Human NAMPT in complex with quercitrin and AMPcP 8DTJ ; 2.118 ; Human NAMPT in complex with small molecule activator ZN-43-S 8DSI ; 1.43 ; Human NAMPT in complex with substrate NAM 8DSE ; 1.428 ; Human NAMPT in complex with substrate NAM and activator quercitrin 8DSC ; 1.321 ; Human NAMPT in complex with substrate NAM and small molecule activator NP-A1-R 8DSD ; 1.429 ; Human NAMPT in complex with substrate NAM and small molecule activator NP-A1-S 8F7L ; 2.2 ; Human NAMPT in complex with substrate NAM and small molecule activator ZN-29-S 6J8E ; 3.0 ; Human Nav1.2-beta2-KIIIA ternary complex 7XVE ; 2.7 ; Human Nav1.7 mutant class-I 5EK0 ; 3.53 ; Human Nav1.7-VSD4-NavAb in complex with GX-936. 7WE4 ; 2.7 ; Human Nav1.8 with A-803467, class I 7WEL ; 3.2 ; Human Nav1.8 with A-803467, class II 7WFR ; 3.0 ; Human Nav1.8 with A-803467, class III 6GKD ; 2.99 ; human NBD1 of CFTR in complex with nanobodies D12 and G3a 6GJS ; 1.95 ; Human NBD1 of CFTR in complex with nanobodies D12 and T4 6GK4 ; 2.91 ; Human NBD1 of CFTR in complex with nanobodies D12 and T8 6GJU ; 2.6 ; human NBD1 of CFTR in complex with nanobodies T2a and T4 6ZE1 ; 2.705 ; human NBD1 of CFTR in complex with nanobody G11a 6GJQ ; 2.49 ; human NBD1 of CFTR in complex with nanobody T27 2BBO ; 2.55 ; Human NBD1 with Phe508 2VKW ; 2.3 ; Human NCAM, FN3 domains 1 and 2 2VKX ; 2.7 ; Human NCAM, FN3 domains 1 and 2, M610R mutant 2CIA ; 1.45 ; human nck2 sh2-domain in complex with a decaphosphopeptide from translocated intimin receptor (tir) of epec 3IZ0 ; 8.6 ; Human Ndc80 Bonsai Decorated Microtubule 2KQ0 ; ; Human NEDD4 3rd WW Domain Complex with Ebola Zaire Virus Matrix Protein VP40 Derived Peptide ILPTAPPEYMEA 2KPZ ; ; Human NEDD4 3RD WW Domain Complex with The Human T-cell Leukemia virus 1 GAG-Pro poliprotein Derived Peptide SDPQIPPPYVEP 2W5A ; 1.55 ; Human Nek2 kinase ADP-bound 2W5H ; 2.33 ; Human Nek2 kinase Apo 2W5B ; 2.4 ; Human Nek2 kinase ATPgammaS-bound 2QPJ ; 2.05 ; Human NEP complexed with a bifunctional NEP/DPP IV inhibitor 1HE7 ; 2.0 ; Human Nerve growth factor receptor TrkA 7LWH ; 1.606 ; Human neurofibromin 2/merlin residues 1-339 in complex with LATS1 6CDS ; 2.62 ; Human neurofibromin 2/merlin/schwannomin residues 1-339 in complex with PIP2 7P00 ; 2.71 ; Human Neurokinin 1 receptor (NK1R) substance P Gq chimera (mGsqi) complex 7P02 ; 2.87 ; Human Neurokinin 1 receptor (NK1R) substance P Gs complex 8IYG ; 2.69 ; Human neuronal gap junction channel connexin 36 2E9S ; 1.78 ; human neuronal Rab6B in three intermediate forms 6OS9 ; 3.0 ; human Neurotensin Receptor 1 (hNTSR1) - Gi1 Protein Complex in canonical conformation (C state) 6OSA ; 3.0 ; human Neurotensin Receptor 1 (hNTSR1) - Gi1 Protein Complex in non-canonical conformation (NC state) 1NT3 ; 2.4 ; HUMAN NEUROTROPHIN-3 5NMZ ; 1.6 ; human Neurturin (97-197) 8J2F ; 3.07 ; Human neutral shpingomyelinase 7WHU ; 2.89 ; Human Neutrophil Elastase in-complex with Ecotin Peptide 1NGL ; ; HUMAN NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN (HNGAL), REGULARISED AVERAGE NMR STRUCTURE 7Z4Z ; 4.0 ; Human NEXT dimer - focused reconstruction of the dimerization module 7Z52 ; 3.4 ; Human NEXT dimer - focused reconstruction of the single MTR4 7Z4Y ; 4.5 ; Human NEXT dimer - overall reconstruction of the core complex 1A3Q ; 2.1 ; HUMAN NF-KAPPA-B P52 BOUND TO DNA 2IIP ; 2.05 ; Human Nicotinamide N-methyltransferase 2QL6 ; 2.7 ; human nicotinamide riboside kinase (NRK1) 2QSY ; 1.95 ; Human nicotinamide riboside kinase 1 in complex with ADP 2QSZ ; 1.9 ; Human nicotinamide riboside kinase 1 in complex with nicotinamide mononucleotide 2QT1 ; 1.32 ; Human nicotinamide riboside kinase 1 in complex with nicotinamide riboside 2QT0 ; 1.92 ; Human nicotinamide riboside kinase 1 in complex with nicotinamide riboside and an ATP analogue 2P0E ; 1.8 ; Human nicotinamide riboside kinase 1 in complex with tiazofurin 6WPP ; 2.55 ; HUMAN NIK IN COMPLEX WITH LIGAND COMPOUND X 7D10 ; 3.52 ; Human NKCC1 7SFL ; 3.87 ; Human NKCC1 state Fu-II 7WGE ; 3.4 ; Human NLRP1 complexed with thioredoxin 7ZGU ; 3.4 ; Human NLRP3-deltaPYD hexamer 8OOV ; 1.7 ; human NME-1 in complex with CoA 5O6J ; 1.45 ; Human NMT1 in complex with myristoyl-CoA and inhibitor IMP-1031 5O6H ; 1.29 ; Human NMT1 in complex with myristoyl-CoA and inhibitor IMP-917 2G31 ; ; Human Nogo-A functional domain: nogo60 5IFM ; 2.6 ; Human NONO (p54nrb) Homodimer 4NRT ; 2.022 ; Human Norovirus polymerase bound to Compound 6 (suramin derivative) 5FM9 ; 2.92 ; human Notch 1, EGF 4-7 5FMA ; 2.46 ; human Notch 1, EGF 4-7 2VJ3 ; 2.6 ; Human Notch-1 EGFs 11-13 5MWB ; 1.86 ; Human Notch-2 EGF11-13 4CUD ; 1.85 ; Human Notch1 EGF domains 11-13 mutant fucosylated at T466 4D0E ; 1.61 ; Human Notch1 EGF domains 11-13 mutant GlcNAc-fucose disaccharide modified at T466 4D0F ; 2.8 ; Human Notch1 EGF domains 11-13 mutant T466A 4CUF ; 2.29 ; Human Notch1 EGF domains 11-13 mutant T466S 4CUE ; 3.0 ; Human Notch1 EGF domains 11-13 mutant T466V 2QW4 ; 2.8 ; Human NR4A1 ligand-binding domain 5DN2 ; 1.95 ; Human NRP2 b1 domain in complex with the peptide corresponding to the C-terminus of VEGF-A 2B9E ; 1.65 ; Human NSUN5 protein 7FCI ; 3.3 ; human NTCP in complex with YN69083 Fab 7S7C ; 3.62 ; Human Nuclear Exosome Targeting (NEXT) complex bound to RNA (substrate 2) 7S7B ; 4.06 ; Human Nuclear exosome targeting (NEXT) complex homodimer bound to RNA (substrate 1) 6D6R ; 3.45 ; Human nuclear exosome-MTR4 RNA complex - composite map after focused reconstruction 6D6Q ; 3.45 ; Human nuclear exosome-MTR4 RNA complex - overall reconstruction 5A9Q ; 23.0 ; Human nuclear pore complex 7R5K ; 12.0 ; Human nuclear pore complex (constricted) 7R5J ; 50.0 ; Human nuclear pore complex (dilated) 8IR1 ; 3.3 ; human nuclear pre-60S ribosomal particle - State A 8IR3 ; 3.5 ; human nuclear pre-60S ribosomal particle - State B' 8IPD ; 3.2 ; human nuclear pre-60S ribosomal particle - State C 8IPX ; 4.3 ; human nuclear pre-60S ribosomal particle - State C' 8INK ; 3.2 ; human nuclear pre-60S ribosomal particle - State D 8IPY ; 3.2 ; human nuclear pre-60S ribosomal particle - State D' 8IE3 ; 3.3 ; human nuclear pre-60S ribosomal particle - State E 8IDY ; 3.0 ; human nuclear pre-60S ribosomal particle - State F 8INF ; 3.0 ; human nuclear pre-60S ribosomal particle - State F' 8IDT ; 2.8 ; human nuclear pre-60S ribosomal particle - State G 8INE ; 3.2 ; human nuclear pre-60S ribosomal particle - State G' 8FL2 ; 2.67 ; Human nuclear pre-60S ribosomal subunit (State I1) 8FL3 ; 2.53 ; Human nuclear pre-60S ribosomal subunit (State I2) 8FL4 ; 2.89 ; Human nuclear pre-60S ribosomal subunit (State I3) 8FL6 ; 2.62 ; Human nuclear pre-60S ribosomal subunit (State J1) 8FL7 ; 2.55 ; Human nuclear pre-60S ribosomal subunit (State J2) 8FL9 ; 2.75 ; Human nuclear pre-60S ribosomal subunit (State J3) 8FLA ; 2.63 ; Human nuclear pre-60S ribosomal subunit (State K1) 8FLB ; 2.55 ; Human nuclear pre-60S ribosomal subunit (State K2) 8FLC ; 2.76 ; Human nuclear pre-60S ribosomal subunit (State K3) 8FLD ; 2.58 ; Human nuclear pre-60S ribosomal subunit (State L1) 8FLE ; 2.48 ; Human nuclear pre-60S ribosomal subunit (State L2) 8FLF ; 2.65 ; Human nuclear pre-60S ribosomal subunit (State L3) 4PLE ; 1.752 ; Human Nuclear Receptor Liver Receptor Homologue-1, LRH-1, Bound to an E. Coli Phospholipid and a Fragment of TIF-2 4DOS ; 2.0 ; Human Nuclear Receptor Liver Receptor Homologue-1, LRH-1, Bound to DLPC and a Fragment of TIF-2 1YUC ; 1.9 ; Human Nuclear Receptor Liver Receptor Homologue-1, LRH-1, Bound to Phospholipid and a Fragment of Human SHP 4DOR ; 1.9 ; Human Nuclear Receptor Liver Receptor Homologue-1, LRH-1, in its apo State Bound to a Fragment of Human SHP Box1 4PLD ; 1.75 ; Human Nuclear Receptor Liver Receptor Homologue-1, LRH-1, in its apo State Bound to a Fragment of Human TIF-2 2AWH ; 2.0 ; Human Nuclear Receptor-Ligand Complex 1 2BAW ; 2.3 ; Human Nuclear Receptor-Ligand Complex 1 2B50 ; 2.0 ; Human Nuclear Receptor-Ligand Complex 2 6H25 ; 3.8 ; Human nuclear RNA exosome EXO-10-MPP6 complex 2X8A ; 2.6 ; Human Nuclear Valosin containing protein Like (NVL), C-terminal AAA- ATPase domain 8FKP ; 2.85 ; Human nucleolar pre-60S ribosomal subunit (State A1) 8FKQ ; 2.76 ; Human nucleolar pre-60S ribosomal subunit (State A2) 8FKR ; 2.89 ; Human nucleolar pre-60S ribosomal subunit (State B1) 8FKS ; 2.88 ; Human nucleolar pre-60S ribosomal subunit (State B2) 8FKT ; 2.81 ; Human nucleolar pre-60S ribosomal subunit (State C1) 8FKU ; 2.82 ; Human nucleolar pre-60S ribosomal subunit (State C2) 8FKV ; 2.47 ; Human nucleolar pre-60S ribosomal subunit (State D1) 8FKW ; 2.5 ; Human nucleolar pre-60S ribosomal subunit (State D2) 8FKX ; 2.59 ; Human nucleolar pre-60S ribosomal subunit (State E) 8FKY ; 2.67 ; Human nucleolar pre-60S ribosomal subunit (State F) 8FKZ ; 3.04 ; Human nucleolar pre-60S ribosomal subunit (State G) 8FL0 ; 2.91 ; Human nucleolar pre-60S ribosomal subunit (State H) 3T30 ; 1.9 ; Human nucleoplasmin (Npm2): a histone chaperone in oocytes and early embryos 1EHW ; 2.4 ; HUMAN NUCLEOSIDE DIPHOSPHATE KINASE 4 2HVD ; 2.15 ; Human nucleoside diphosphate kinase A complexed with ADP 5LF8 ; 2.56 ; Human Nucleoside diphosphate-linked moiety X motif 17 (NUDT17) 5B2J ; 2.6 ; Human nucleosome containing CpG methylated DNA 5B2I ; 3.0 ; Human nucleosome containing CpG unmethylated DNA 5AV5 ; 2.4 ; human nucleosome core particle 5AV6 ; 2.2 ; human nucleosome core particle 5AV8 ; 2.2 ; human nucleosome core particle 5AV9 ; 2.2 ; human nucleosome core particle 5AVB ; 2.4 ; human nucleosome core particle 5AVC ; 2.4 ; human nucleosome core particle 8GUK ; 2.51 ; Human nucleosome core particle (free form) 6IPU ; 1.99 ; Human nucleosome core particle containing 145 bp of DNA 6JXD ; 2.25 ; Human nucleosome core particle with cohesive end DNA termini 6K1I ; 2.75 ; Human nucleosome core particle with gammaH2A.X variant 6K1K ; 2.2 ; Human nucleosome core particle with H2A.X S139E variant 6K1J ; 2.85 ; Human nucleosome core particle with H2A.X variant 5LOR ; 2.192 ; human NUDT22 5LOU ; 1.8 ; human NUDT22 3F0W ; 2.7 ; Human NUMB-like protein, phosphotyrosine interaction domain 7OU6 ; 2.41 ; Human O-GlcNAc hydrolase in complex with DNJNAc-thiazolidines 7OU8 ; 1.5 ; Human O-GlcNAc hydrolase in complex with DNJNAc-thiazolidines 4AY5 ; 3.15 ; Human O-GlcNAc transferase (OGT) in complex with UDP and glycopeptide 4AY6 ; 3.3 ; Human O-GlcNAc transferase (OGT) in complex with UDP-5SGlcNAc and substrate peptide 7YEA ; 3.82 ; Human O-GlcNAc transferase Dimer 4CDR ; 3.15 ; Human O-GlcNAc transferase in complex with a bisubstrate inhibitor, Goblin1 6TOR ; 2.05 ; human O-phosphoethanolamine phospho-lyase 1EH6 ; 2.0 ; HUMAN O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE 1T38 ; 3.2 ; HUMAN O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE BOUND TO DNA CONTAINING O6-METHYLGUANINE 1T39 ; 3.3 ; HUMAN O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE COVALENTLY CROSSLINKED TO DNA 8PHW ; 3.6 ; Human OATP1B1 8PG0 ; 2.97 ; Human OATP1B3 1AX8 ; 2.4 ; Human obesity protein, leptin 7R68 ; ; Human obscurin Ig12 7R67 ; ; Human obscurin Ig13 6MG9 ; ; Human Obscurin Ig57 Domain 4RSV ; 2.41 ; Human Obscurin Ig58 Domain 8SC1 ; 2.92 ; Human OCT1 (Apo) in inward-open conformation 8SC2 ; 3.36 ; Human OCT1 bound to diltiazem in inward-open conformation 8SC3 ; 3.24 ; Human OCT1 bound to fenoterol in inward-open conformation 8SC4 ; 3.46 ; Human OCT1 bound to metformin in inward-open conformation 8SC6 ; 3.13 ; Human OCT1 bound to thiamine in inward-open conformation 8G8E ; 3.9 ; Human Oct4 bound to nucleosome with human LIN28B sequence 8G88 ; 2.3 ; Human Oct4 bound to nucleosome with human nMatn1 sequence 8G86 ; 2.3 ; Human Oct4 bound to nucleosome with human nMatn1 sequence (focused refinement of nucleosome) 8G87 ; 8.1 ; Human Oct4 bound to nucleosome with human nMatn1 sequence (focused refinement of Oct4 bound region) 6YB8 ; 2.36 ; Human octameric PAICS in complex with CAIR and SAICAR 6YB9 ; 2.406 ; Human octameric PAICS in complex with SAICAR, AMP-PNP, and magnesium 1GWR ; 2.4 ; HUMAN OESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH 17BETA-OESTRADIOL AND TIF2 NRBOX3 PEPTIDE 1GWQ ; 2.45 ; HUMAN OESTROGEN RECEPTOR ALPHA LIGAND-BINDING DOMAIN IN COMPLEX WITH RALOXIFENE CORE AND TIF2 NRBOX2 PEPTIDE 1QKM ; 1.8 ; HUMAN OESTROGEN RECEPTOR BETA LIGAND-BINDING DOMAIN IN COMPLEX WITH PARTIAL AGONIST GENISTEIN 5LWV ; 1.9 ; Human OGT in complex with UDP and fused substrate peptide (HCF1) 5LVV ; 2.54 ; Human OGT in complex with UDP and fused substrate peptide (Tab1) 4XIF ; 3.2 ; Human OGT in complex with UDP-5S-GlcNAc and substrate peptide (keratin-7) 5C1D ; 2.05 ; Human OGT in complex with UDP-5S-GlcNAc and substrate peptide (RB2L) 4XI9 ; 3.1 ; Human OGT in complex with UDP-5S-GlcNAc and substrate peptide (RBL2) 8F76 ; 3.1 ; Human olfactory receptor OR51E2 bound to propionate in complex with miniGs399 6YWT ; 1.05 ; Human OMPD-domain of UMPS (K314AcK) in complex with 6-hydroxy-UMP at 1.05 Angstroms resolution 6YWU ; 1.1 ; Human OMPD-domain of UMPS (K314AcK) in complex with UMP at 1.1 Angstroms resolution 7OUZ ; 0.9 ; Human OMPD-domain of UMPS in complex with 6-hydroxy-UMP at 0.9 Angstroms resolution, crystal 1 7OTU ; 0.95 ; Human OMPD-domain of UMPS in complex with 6-hydroxy-UMP at 0.95 Angstroms resolution, crystal 2 7OQF ; 1.05 ; Human OMPD-domain of UMPS in complex with OMP at 1.05 Angstrom resolution, 5 minutes soaking 7OQM ; 1.05 ; Human OMPD-domain of UMPS in complex with substrate OMP at 1.05 Angstroms resolution, 20 minutes soaking 7OQK ; 1.1 ; Human OMPD-domain of UMPS in complex with substrate OMP at 1.10 Angstroms resolution, 15 minutes soaking 7OQN ; 1.1 ; Human OMPD-domain of UMPS in complex with substrate OMP at 1.10 Angstroms resolution, 30 minutes soaking 7OQI ; 1.15 ; Human OMPD-domain of UMPS in complex with substrate OMP at 1.15 Angstrom resolution, 10 minutes soaking 6YVK ; 1.25 ; Human OMPD-domain of UMPS in complex with the substrate OMP at 1.25 Angstroms resolution, 0.71 MGy exposure 6YVL ; 1.25 ; Human OMPD-domain of UMPS in complex with the substrate OMP at 1.25 Angstroms resolution, 1.42 MGy exposure 6YVM ; 1.25 ; Human OMPD-domain of UMPS in complex with the substrate OMP at 1.25 Angstroms resolution, 2.13 MGy exposure 6YVN ; 1.25 ; Human OMPD-domain of UMPS in complex with the substrate OMP at 1.25 Angstroms resolution, 2.84 MGy exposure 6YVO ; 1.25 ; Human OMPD-domain of UMPS in complex with the substrate OMP at 1.25 Angstroms resolution, 3.55 MGy exposure 6WCB ; 3.17 ; Human open state TMEM175 in CsCl 6WC9 ; 2.64 ; Human open state TMEM175 in KCl 7CTF ; 4.8 ; Human origin recognition complex 1-5 State II 5UJ8 ; 6.0 ; Human Origin Recognition Complex subunits 2 and 3 7CTG ; 5.0 ; Human Origin Recognition Complex, ORC1-5 State I 7CTE ; 3.8 ; Human Origin Recognition Complex, ORC2-5 8EZ1 ; 1.91 ; Human Ornithine Aminotransferase (hOAT) co-crystallized with its inactivator 3-Amino-4-fluorocyclopentenecarboxylic Acid 7T9Z ; 2.15 ; Human Ornithine Aminotransferase (hOAT) crystallized at pH 6.0 7TA0 ; 2.33 ; Human Ornithine Aminotransferase (hOAT) soaked with 5-aminovaleric acid 7TA1 ; 2.2 ; Human Ornithine Aminotransferase (hOAT) soaked with gamma-Aminobutyric acid 7TFP ; 2.71 ; Human Ornithine Aminotransferase cocrystallized with its inhibitor, (1S,3S)-3-amino-4-(difluoromethylene)cyclopentane-1-carboxylic acid. 7TEV ; 1.91 ; Human Ornithine Aminotransferase cocrystallized with its inhibitor, (3S,4R)-3-amino-4-(difluoromethyl)cyclopent-1-ene-1-carboxylate 7TED ; 2.63 ; Human Ornithine Aminotransferase cocrystallized with its inhibitor, (S,E)-3-amino-4-(fluoromethylene)cyclopent-1-ene-1-carboxylate 2CAN ; 2.3 ; HUMAN ORNITHINE AMINOTRANSFERASE COMPLEXED WITH L-CANALINE 1GBN ; 2.3 ; HUMAN ORNITHINE AMINOTRANSFERASE COMPLEXED WITH THE NEUROTOXIN GABACULINE 1C9Y ; 1.9 ; HUMAN ORNITHINE TRANSCARBAMYLASE: CRYSTALLOGRAPHIC INSIGHTS INTO SUBSTRATE RECOGNITION AND CATALYTIC MECHANISM 1EP9 ; 2.4 ; HUMAN ORNITHINE TRANSCARBAMYLASE: CRYSTALLOGRAPHIC INSIGHTS INTO SUBSTRATE RECOGNITION AND CONFORMATIONAL CHANGE 2WNS ; 1.9 ; Human Orotate phosphoribosyltransferase (OPRTase) domain of Uridine 5' -monophosphate synthase (UMPS) in complex with its substrate orotidine 5'-monophosphate (OMP) 2V30 ; 2.0 ; Human orotidine 5'-phosphate decarboxylase domain of uridine monophospate synthetase (UMPS) in complex with its product UMP. 3EWZ ; 1.4 ; human orotidyl-5'-monophosphate decarboxylase in complex with 5-cyano-UMP 3L0K ; 1.34 ; Human orotidyl-5'-monophosphate decarboxylase in complex with 6-acetyl-UMP 3EX3 ; 1.45 ; human orotidyl-5'-monophosphate decarboxylase in complex with 6-azido-UMP, covalent adduct 3EX2 ; 1.55 ; human orotidyl-5'-monophosphate decarboxylase in complex with 6-cyano-UMP 3L0N ; 1.74 ; Human orotidyl-5'-monophosphate decarboxylase in complex with 6-mercapto-UMP 3EX4 ; 1.24 ; human orotidyl-5'-monophosphate decarboxylase in complex with BMP 3EX1 ; 1.4 ; human orotidyl-5'-monophosphate decarboxylase soaked with 6-cyano-UMP, converted to UMP 3AIH ; 2.1 ; Human OS-9 MRH domain complexed with alpha3,alpha6-Man5 5EIQ ; 2.01 ; Human OSCAR ligand-binding domain 6GWJ ; 1.95 ; Human OSGEP / LAGE3 / GON7 complex 5CJ8 ; 2.015 ; Human Osteoclast Associated Receptor (OSCAR) extracellular domain 5CJB ; 2.398 ; Human Osteoclast Associated Receptor (OSCAR) in complex with a collagen-like peptide 6OKM ; 2.1 ; Human OX40R (TNFRSF4) bound to Fab 3C8 1YPU ; 2.05 ; Human Oxidized Low Density Lipoprotein Receptor LOX-1 C2 Space Group 1YPQ ; 1.4 ; Human Oxidized Low Density Lipoprotein Receptor LOX-1 Dioxane Complex 1YPO ; 3.0 ; Human Oxidized Low Density Lipoprotein Receptor LOX-1 P3 1 21 Space Group 6BB5 ; 2.28 ; Human Oxy-Hemoglobin 7QVM ; 3.25 ; Human Oxytocin receptor (OTR) oxytocin Gq chimera (mGoqi) complex 5JYM ; 2.45 ; Human P-cadherin EC12 with scFv TSP11 bound 5JYL ; 2.55 ; Human P-cadherin MEC1 with scFv TSP7 bound 7SSK ; 2.36 ; Human P300 complexed with a glycine-based inhibitor 7SS8 ; 2.15 ; Human P300 complexed with a proline-based inhibitor 7SZQ ; 2.8 ; Human P300 complexed with an azaindazole inhibitor 4F9Y ; 1.85 ; Human P38 alpha MAPK In Complex With a Novel and Selective Small Molecule Inhibitor 4EWQ ; 2.1 ; Human p38 alpha MAPK in complex with a pyridazine based inhibitor 4FA2 ; 2.0 ; Human P38 alpha Mitogen-Activated Kinase In Complex With SB239063 3ZYA ; 1.9 ; Human p38 MAP Kinase in Complex with 2-amino-phenylamino- dibenzosuberone 3QUD ; 2.0 ; Human p38 MAP Kinase in Complex with 2-amino-phenylamino-benzophenone 3UVP ; 2.4 ; Human p38 MAP Kinase in Complex with a Benzamide Substituted Benzosuberone 3IW6 ; 2.1 ; Human p38 MAP Kinase in Complex with a Benzylpiperazin-Pyrrol 3UVQ ; 2.2 ; Human p38 MAP Kinase in Complex with a Dibenzosuberone Derivative 4L8M ; 2.1 ; Human p38 MAP kinase in complex with a Dibenzoxepinone 3IW7 ; 2.4 ; Human p38 MAP Kinase in Complex with an Imidazo-pyridine 3IW5 ; 2.5 ; Human p38 MAP Kinase in Complex with an Indole Derivative 1KV2 ; 2.8 ; Human p38 MAP Kinase in Complex with BIRB 796 3L8S ; 2.35 ; Human p38 MAP Kinase in Complex with CP-547632 3LFA ; 2.1 ; Human p38 MAP Kinase in Complex with Dasatinib 5TCO ; 2.1 ; Human p38 MAP Kinase in Complex with Dibenzosuberone Compound 1 1ZYJ ; 2.0 ; Human P38 MAP Kinase in Complex with Inhibitor 1a 3UVR ; 2.1 ; Human p38 MAP Kinase in Complex with KM064 4EH2 ; 2.0 ; Human p38 MAP kinase in complex with NP-F1 and RL87 4EHV ; 1.6 ; Human p38 MAP kinase in complex with NP-F10 and RL87 4EH9 ; 2.1 ; Human p38 MAP kinase in complex with NP-F11 and RL87 4EH3 ; 2.4 ; Human p38 MAP kinase in complex with NP-F2 and RL87 4EH4 ; 2.5 ; Human p38 MAP kinase in complex with NP-F3 and RL87 4EH5 ; 2.0 ; Human p38 MAP kinase in complex with NP-F4 and RL87 4EH6 ; 2.1 ; Human p38 MAP kinase in complex with NP-F5 and RL87 4EH7 ; 2.1 ; Human p38 MAP kinase in complex with NP-F6 and RL87 4EH8 ; 2.2 ; Human p38 MAP kinase in complex with NP-F7 and RL87 3LFD ; 3.4 ; Human p38 MAP Kinase in Complex with RL113 3LFE ; 2.3 ; Human p38 MAP Kinase in Complex with RL116 4DLJ ; 2.6 ; Human p38 MAP kinase in complex with RL163 3LFF ; 1.5 ; Human p38 MAP Kinase in Complex with RL166 3PG3 ; 2.0 ; Human p38 MAP Kinase in Complex with RL182 3HV5 ; 2.25 ; Human p38 MAP Kinase in Complex with RL24 3HV7 ; 2.4 ; Human p38 MAP Kinase in Complex with RL38 3HV6 ; 1.95 ; Human p38 MAP Kinase in Complex with RL39 3HUC ; 1.8 ; Human p38 MAP Kinase in Complex with RL40 3GCQ ; 2.0 ; Human P38 MAP kinase in complex with RL45 3GCU ; 2.1 ; Human P38 MAP kinase in complex with RL48 3HV3 ; 2.0 ; Human p38 MAP Kinase in Complex with RL49 3HV4 ; 2.6 ; Human p38 MAP Kinase in Complex with RL51 3GCV ; 2.3 ; Human P38 MAP Kinase in Complex with RL62 4DLI ; 1.91 ; Human p38 MAP kinase in complex with RL87 3LFB ; 2.6 ; Human p38 MAP Kinase in Complex with RL98 3LFC ; 2.8 ; Human p38 MAP Kinase in Complex with RL99 3GCP ; 2.25 ; Human P38 MAP Kinase in Complex with SB203580 3HUB ; 2.25 ; Human p38 MAP Kinase in Complex with Scios-469 3QUE ; 2.7 ; Human p38 MAP Kinase in Complex with Skepinone-L 3GCS ; 2.1 ; Human P38 MAP kinase in complex with Sorafenib 1IAN ; 2.0 ; HUMAN P38 MAP KINASE INHIBITOR COMPLEX 5TBE ; 2.44 ; Human p38alpha MAP Kinase in Complex with Dibenzosuberone Compound 2 4F9W ; 2.0 ; Human P38alpha MAPK in Complex with a Novel and Selective Small Molecule Inhibitor 5ML5 ; 1.9 ; Human p38alpha MAPK in complex with imidazolyl pyridine inhibitor 11b 1O7K ; 2.0 ; human p47 PX domain complex with sulphates 2OCJ ; 2.05 ; Human p53 core domain in the absence of DNA 2BIN ; 1.9 ; human p53 core domain mutant M133L-H168R-V203A-N239Y-N268D 2BIP ; 1.8 ; human p53 core domain mutant M133L-H168R-V203A-N239Y-R249S-N268D 2J1W ; 1.8 ; Human p53 core domain mutant M133L-V143A-V203A-N239Y-N268D 2J1Y ; 1.69 ; Human p53 core domain mutant M133L-V203A-N239Y-G245S-N268D 2J1Z ; 1.8 ; Human p53 core domain mutant M133L-V203A-N239Y-N268D-F270L 2J20 ; 1.8 ; Human p53 core domain mutant M133L-V203A-N239Y-N268D-R273C 2BIM ; 1.98 ; human p53 core domain mutant M133L-V203A-N239Y-N268D-R273H 2J21 ; 1.6 ; Human p53 core domain mutant M133L-V203A-N239Y-N268D-R282W 2BIO ; 1.9 ; human p53 core domain mutant M133L-V203A-N239Y-R249S-N268D 2J1X ; 1.65 ; Human p53 core domain mutant M133L-V203A-Y220C-N239Y-N268D 2WGX ; 1.75 ; HUMAN P53 CORE DOMAIN MUTANT M133L-V203A-Y236F-N239Y-T253I-N268D 4LO9 ; 2.5 ; Human p53 Core Domain Mutant N235K 4LOE ; 1.85 ; Human p53 Core Domain Mutant N239Y 2BIQ ; 1.8 ; human p53 core domain mutant T123A-M133L-H168R-V203A-N239Y-R249S- N268D 4KVP ; 1.5 ; Human p53 Core Domain Mutant V157F 4LOF ; 2.0 ; Human p53 Core Domain Mutant V157F/N235K/N239Y 7EDS ; 1.77 ; Human p53 core domain with germline hot spot mutation M133T in complex with the natural PIG3 p53-response element and Arsenic 3D06 ; 1.2 ; Human p53 core domain with hot spot mutation R249S (I) 3D05 ; 1.7 ; Human p53 core domain with hot spot mutation R249S (II) 3D07 ; 2.2 ; Human p53 core domain with hot spot mutation R249S (III) 3D0A ; 1.8 ; Human p53 core domain with hot spot mutation R249S and second site suppressor mutation H168R in sequence-specific complex with DNA 3D08 ; 1.4 ; Human p53 core domain with hot spot mutation R249S and second-site suppressor mutation H168R 3D09 ; 1.9 ; Human p53 core domain with hot spot mutation R249S and second-site suppressor mutations H168R and T123A 4IBQ ; 1.8 ; Human p53 core domain with hot spot mutation R273C 4IBV ; 2.1 ; Human p53 core domain with hot spot mutation R273C and second-site suppressor mutation S240R in sequence-specific complex with DNA 4IBZ ; 1.92 ; Human p53 core domain with hot spot mutation R273C and second-site suppressor mutation T284R 4IBU ; 1.7 ; Human p53 core domain with hot spot mutation R273C and second-site suppressor mutation T284R in sequence-specific complex with DNA 4IBS ; 1.78 ; Human p53 core domain with hot spot mutation R273H (form I) 4IJT ; 1.78 ; Human p53 core domain with hot spot mutation R273H (form II) 4IBY ; 1.45 ; Human p53 core domain with hot spot mutation R273H and second-site suppressor mutation S240R 4IBT ; 1.7 ; Human p53 core domain with hot spot mutation R273H and second-site suppressor mutation T284R 4IBW ; 1.791 ; Human p53 core domain with hot spot mutation R273H and second-site suppressor mutation T284R in sequence-specific complex with DNA 7EEU ; 2.9 ; Human p53 core domain with hot spot mutation R282W in complex with the natural CDKN1A(p21) p53-response element and Arsenic 1LKL ; 1.8 ; HUMAN P56-LCK TYROSINE KINASE SH2 DOMAIN IN COMPLEX WITH THE PHOSPHOTYROSYL PEPTIDE AC-PTYR-GLU-GLU-GLY (PYEEG PEPTIDE) 1LKK ; 1.0 ; HUMAN P56-LCK TYROSINE KINASE SH2 DOMAIN IN COMPLEX WITH THE PHOSPHOTYROSYL PEPTIDE AC-PTYR-GLU-GLU-ILE (PYEEI PEPTIDE) 1CWD ; 2.25 ; HUMAN P56LCK TYROSINE KINASE COMPLEXED WITH PHOSPHOPEPTIDE 1CWE ; 2.3 ; HUMAN P56LCK TYROSINE KINASE COMPLEXED WITH PHOSPHOPEPTIDE 4RLO ; 2.527 ; Human p70s6k1 with ruthenium-based inhibitor EM5 4RLP ; 2.79 ; Human p70s6k1 with ruthenium-based inhibitor FL772 7VCU ; 3.15 ; Human p97 double hexamer conformer I with D1-ATPgammaS and D2-ADP bound 7VCS ; 3.32 ; Human p97 double hexamer conformer II with ATPgammaS bound 7VCV ; 3.21 ; Human p97 single hexamer conformer I with ATPgammaS bound 7VCX ; 3.24 ; Human p97 single hexamer conformer II with ATPgammaS bound 7VCT ; 3.21 ; Human p97 single hexamer conformer III with D1-ATPgammaS and D2-ADP bound 6KWY ; 2.72 ; human PA200-20S complex 7NAQ ; 3.2 ; Human PA200-20S proteasome complex 8CVS ; 3.1 ; Human PA200-20S proteasome with MG-132 8CXB ; 2.9 ; Human PA28-20S (PA28-4a3b) 7NAO ; 2.9 ; Human PA28-20S proteasome complex 7NAP ; 3.2 ; Human PA28-20S-PA28 proteasome complex 8EQ4 ; 2.71 ; Human PAC in nanodisc at pH 4.0 with PI(4,5)P2 diC8 8FBL ; 2.7 ; Human PAC in nanodisc at pH 4.0 with PI(4,5)P2 diC8 3GRO ; 2.53 ; Human palmitoyl-protein thioesterase 1 5VA9 ; 2.55 ; Human pancreatic alpha amylase in complex with peptide inhibitor piHA-L5(d10Y) 3BAI ; 1.9 ; Human Pancreatic Alpha Amylase with Bound Nitrate 3BAW ; 2.0 ; Human pancreatic alpha-amylase complexed with azide 2QMK ; 2.3 ; Human pancreatic alpha-amylase complexed with nitrite 2QV4 ; 1.97 ; Human pancreatic alpha-amylase complexed with nitrite and acarbose 1BSI ; 2.0 ; HUMAN PANCREATIC ALPHA-AMYLASE FROM PICHIA PASTORIS, GLYCOSYLATED PROTEIN 5E0F ; 1.4 ; Human pancreatic alpha-amylase in complex with mini-montbretin A 4W93 ; 1.352 ; Human pancreatic alpha-amylase in complex with montbretin A 4GQR ; 1.2 ; Human Pancreatic alpha-amylase in complex with myricetin 3BAJ ; 2.1 ; Human Pancreatic Alpha-Amylase in Complex with Nitrate and Acarbose 5EMY ; 1.231 ; Human Pancreatic Alpha-Amylase in complex with the mechanism based inactivator glucosyl epi-cyclophellitol 4GQQ ; 1.35 ; Human pancreatic alpha-amylase with bound ethyl caffeate 3IDH ; 2.14 ; Human pancreatic glucokinase in complex with glucose 3F9M ; 1.5 ; Human pancreatic glucokinase in complex with glucose and activator showing a mobile flap 2PPL ; 2.2 ; Human Pancreatic lipase-related protein 1 7F8N ; 3.4 ; Human pannexin-1 showing a conformational change in the N-terminal domain and blocked pore 7DWB ; 3.15 ; Human Pannexin1 model 3SMS ; 2.2 ; Human Pantothenate kinase 3 in complex with a pantothenate analog 1JJ4 ; 2.4 ; Human papillomavirus type 18 E2 DNA-binding domain bound to its DNA target 6VJO ; 2.0 ; Human parainfluenza virus type 3 fusion glycoprotein N-terminal heptad repeat domain+alpha/beta-VI 6NYX ; 1.85 ; Human parainfluenza virus type 3 fusion protein N-terminal heptad repeat domain+VI 6NRO ; 1.75 ; Human parainfluenza virus type 3 fusion protein N-terminal heptad repeat domain+VIQKI 6O40 ; 1.2 ; Human parainfluenza virus type 3 fusion protein N-terminal heptad repeat domain+VIQKI I454F I456F 6KN4 ; ; HUMAN PARALLEL STRANDED 7-MER G-QUADRUPLEX COMPLEXED WITH 2 ADRIAMYCIN (DM2) MOLECULES 6KXZ ; ; HUMAN PARALLEL STRANDED 7-MER G-QUADRUPLEX COMPLEXED WITH 2 EPIRUBICIN (EPI) MOLECULES 2QZ4 ; 2.22 ; Human paraplegin, AAA domain in complex with ADP 8HAO ; 3.76 ; Human parathyroid hormone receptor-1 dimer 6BHV ; 2.3 ; Human PARP-1 bound to NAD+ analog benzamide adenine dinucleotide (BAD) 2L30 ; ; Human PARP-1 zinc finger 1 3OD8 ; 2.4 ; Human PARP-1 zinc finger 1 (Zn1) bound to DNA 3ODA ; 2.64 ; Human PARP-1 zinc finger 1 (Zn1) bound to DNA 2L31 ; ; Human PARP-1 zinc finger 2 3ODC ; 2.8 ; Human PARP-1 zinc finger 2 (Zn2) bound to DNA 3ODE ; 2.95 ; Human PARP-1 zinc finger 2 (Zn2) bound to DNA 6GHK ; 2.28 ; Human PARP1 (ARTD1) - Catalytic domain in complex with inhibitor ME0527 7S6M ; 3.2 ; Human PARP1 deltaV687-E688 bound to a DNA double strand break. 7S6H ; 3.1 ; Human PARP1 deltaV687-E688 bound to NAD+ analog EB-47 and to a DNA double strand break. 8G0H ; 3.8 ; Human PARP1 deltaV687-E688 bound to UKTT5 (compound 10) and to a DNA double strand break. 6FXI ; 2.6 ; Human PARP10 (ARTD10), catalytic fragment in complex with 3-aminobenzamide and citrate 5LX6 ; 1.25 ; Human PARP10 (ARTD10), catalytic fragment in complex with PARP inhibitor Veliparib 4X52 ; 2.08 ; Human PARP13 (ZC3HAV1), C-Terminal PARP Domain (H810N; N830Y variant) 3Q71 ; 2.2 ; Human parp14 (artd8) - macro domain 2 in complex with adenosine-5-diphosphoribose 5NQE ; 2.71 ; Human PARP14 (ARTD8), catalytic fragment in complex with an N-aryl piperazine inhibitor 6WE4 ; 1.6 ; Human PARP14 (ARTD8), catalytic fragment in complex with compound 2 6WE3 ; 1.95 ; Human PARP14 (ARTD8), catalytic fragment in complex with compound 3 5LYH ; 2.17 ; Human PARP14 (ARTD8), catalytic fragment in complex with inhibitor H10 5LXP ; 2.07 ; Human PARP14 (ARTD8), catalytic fragment in complex with inhibitor H5 6FYM ; 2.15 ; Human PARP14 (ARTD8), catalytic fragment in complex with inhibitor ITK1 6FZM ; 2.67 ; Human PARP14 (ARTD8), catalytic fragment in complex with inhibitor ITK6 6G0W ; 2.34 ; Human PARP14 (ARTD8), catalytic fragment in complex with inhibitor MCD72 7LUN ; 2.57 ; Human PARP14 (ARTD8), catalytic fragment in complex with RBN011980 7L9Y ; 2.25 ; Human PARP14 (ARTD8), catalytic fragment in complex with RBN012042 6WE2 ; 2.66 ; Human PARP14 (ARTD8), catalytic fragment in complex with RBN012759 3Q6Z ; 2.23 ; HUman PARP14 (ARTD8)-Macro domain 1 in complex with adenosine-5-diphosphoribose 4ABL ; 1.15 ; HUMAN PARP14 (ARTD8, BAL2) - MACRO DOMAIN 3 4ABK ; 1.6 ; HUMAN PARP14 (ARTD8, BAL2) - MACRO DOMAIN 3 IN COMPLEX WITH ADENOSINE- 5-DIPHOSPHORIBOSE 4D86 ; 2.0 ; Human PARP14 (ARTD8, BAL2) - macro domains 1 and 2 in complex with adenosine-5-diphosphate 3VFQ ; 2.8 ; Human PARP14 (ARTD8, BAL2) - macro domains 1 and 2 in complex with adenosine-5-diphosphoribose 6HXS ; 2.05 ; Human PARP16 (ARTD15) IN COMPLEX WITH CARBA-NAD 6HXR ; 2.9 ; Human PARP16 (ARTD15) IN COMPLEX WITH EB-47 6W65 ; 2.13 ; Human PARP16 in complex with RBN010860 5AIL ; 1.55 ; Human PARP9 2nd macrodomain 8F2Q ; 2.7 ; Human Parvovirus B19 Nonstructural NS1 Protein NLS bound to Importin Alpha 2 1FJD ; ; HUMAN PARVULIN-LIKE PEPTIDYL PROLYL CIS/TRANS ISOMERASE, HPAR14 2XEQ ; 3.1 ; Human PatL1 C-terminal domain 2XER ; 2.95 ; Human PatL1 C-terminal domain (loop variant with sulfates) 2XES ; 2.1 ; Human PatL1 C-terminal domain (loop variant) 1AXC ; 2.6 ; HUMAN PCNA 5E0T ; 2.6653 ; Human PCNA mutant - S228I 8E84 ; 3.1 ; Human PCNA mutant- C148S 5E0V ; 2.074 ; Human PCNA variant (S228I) complexed with FEN1 at 2.1 Angstroms 5E0U ; 1.93 ; Human PCNA variant (S228I) complexed with p21 at 1.9 Angstroms 5JXE ; 2.9 ; Human PD-1 ectodomain complexed with Pembrolizumab Fab 6PV9 ; 2.0 ; Human PD-L1 bound to a macrocyclic peptide which blocks the PD-1/PD-L1 interaction 2WEY ; 2.8 ; Human PDE-papaverine complex obtained by ligand soaking of cross- linked protein crystals 5EDE ; 2.2 ; human PDE10A in complex with 1-(4-Chloro-phenyl)-3-methyl-1H-thieno[2,3-c]pyrazole-5-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide at 2.2A 5EDG ; 2.3 ; human PDE10A in complex with 3-(2-Chloro-5-phenyl-3H-imidazol-4-yl)-1-(3-trifluoromethoxy-phenyl)-1H-pyridazin-4-one at 2.30A 5I2R ; 2.5 ; human PDE10A in complex with 3-(2-phenylpyrazol-3-yl)-1-[3-(trifluoromethoxy)phenyl]pyridazin-4-one 5EDI ; 2.2 ; human PDE10A, 6-Chloro-5,8-dimethyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-2H-[1,2,4]triazol-3-yl)-ethyl]-[1,2,4]triazolo[1,5-a]pyridine, 2.20A, H3, Rfree=23.5% 5EDH ; 2.03 ; human PDE10A, 8-ethyl-5-methyl-2-[2-(2-methyl-5-pyrrolidin-1-yl-1,2,4-triazol-3-yl)ethyl]-[1,2,4]triazolo[1,5-c]pyrimidine, 2.03A, H3, Rfree=22.7% 6L6E ; 1.92 ; Human PDE5 catalytic core in complex with avanafil 4G2J ; 2.4 ; Human pde9 in complex with selective compound 4G2L ; 3.0 ; Human PDE9 in complex with selective compound 3JSW ; 2.3 ; Human PDE9 in complex with selective inhibitor 5LVM ; 1.26 ; Human PDK1 Kinase Domain in Complex with Adenine Bound to the ATP-Binding Site 5LVN ; 1.379 ; Human PDK1 Kinase Domain in Complex with Adenosine Bound to the ATP-Binding Site 4A06 ; 2.0 ; Human PDK1 Kinase Domain in Complex with Allosteric Activator PS114 Bound to the PIF-Pocket 4A07 ; 1.85 ; Human PDK1 Kinase Domain in Complex with Allosteric Activator PS171 Bound to the PIF-Pocket 5ACK ; 1.24 ; Human PDK1 Kinase Domain in Complex with Allosteric Compound 7 Bound to the PIF-Pocket 4AW0 ; 1.43 ; Human PDK1 Kinase Domain in Complex with Allosteric Compound PS182 Bound to the PIF-Pocket 4AW1 ; 1.68 ; Human PDK1 Kinase Domain in Complex with Allosteric Compound PS210 Bound to the PIF-Pocket 5LVO ; 1.09 ; Human PDK1 Kinase Domain in Complex with Allosteric Compound PSE10 Bound to the PIF-Pocket 5LVP ; 2.5 ; Human PDK1 Kinase Domain in Complex with an HM-Peptide Bound to the PIF-Pocket 5LVL ; 1.4 ; Human PDK1 Kinase Domain in Complex with Compound PS653 Bound to the ATP-Binding Site 8DQT ; 1.31 ; Human PDK1 kinase domain in complex with Valsartan 5MRD ; 1.41 ; Human PDK1-PKCiota Kinase Chimera in Complex with Allosteric Compound PS267 Bound to the PIF-Pocket 4CT2 ; 1.25 ; Human PDK1-PKCzeta Kinase Chimera 4CT1 ; 1.85 ; Human PDK1-PKCzeta Kinase Chimera in Complex with Allosteric Compound PS315 Bound to the PIF-Pocket 4MMM ; 1.47 ; Human Pdrx5 complex with a ligand BP7 1QRP ; 1.96 ; Human pepsin 3A in complex with a phosphonate inhibitor IVA-VAL-VAL-LEU(P)-(O)PHE-ALA-ALA-OME 3UTL ; 2.61 ; Human pepsin 3b 7KJ1 ; 2.15 ; human peroxiredoxin 2 - C172S mutant 5IJT ; 2.148 ; Human Peroxiredoxin 2 Oxidized (SS) 1HD2 ; 1.5 ; Human peroxiredoxin 5 1OC3 ; 2.0 ; HUMAN PEROXIREDOXIN 5 4K7I ; 2.25 ; HUMAN PEROXIREDOXIN 5 with a fragment 4K7N ; 2.3 ; HUMAN PEROXIREDOXIN 5 with a fragment 4K7O ; 1.98 ; HUMAN PEROXIREDOXIN 5 with a fragment 1URM ; 1.7 ; HUMAN PEROXIREDOXIN 5, C47S MUTANT 4XCS ; 2.1 ; Human peroxiredoxin-1 C83S mutant 5Y7X ; 1.699 ; Human Peroxisome proliferator-activated receptor (PPAR) delta in complexed with a potent and selective agonist 7VWH ; 2.1 ; human peroxisome proliferator-activated receptor (PPAR) delta ligand binding domain in complex with a synthetic agonist JKPL39 7VWF ; 1.9 ; Human peroxisome proliferator-activated receptor (PPAR) delta ligand binding domain in complex with a synthetic agonist TIPP204 7VWG ; 2.2 ; Human peroxisome proliferator-activated receptor (PPAR) delta ligand binding domain in complex with a synthetic alpha/delta dual agonist JKPL38 7VWE ; 3.0 ; Human peroxisome proliferator-activated receptor (PPAR) delta ligand binding domain in complex with a synthetic partial agonist JK122 4EMA ; 2.545 ; Human peroxisome proliferator-activated receptor gamma in complex with rosiglitazone 2ZK0 ; 2.36 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain 2ZK1 ; 2.61 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with 15-deoxy-delta12,14-prostaglandin J2 2ZK4 ; 2.57 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with 15-oxo-eicosatetraenoic acid 2ZK3 ; 2.58 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with 8-oxo-eicosatetraenoic acid 2ZK6 ; 2.41 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with C8-BODIPY 2ZK2 ; 2.26 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with glutathion conjugated 15-deoxy-delta12,14-prostaglandin J2 2ZK5 ; 2.45 ; Human peroxisome proliferator-activated receptor gamma ligand binding domain complexed with nitro-233 7Z0I ; 1.8 ; human PEX13 SH3 domain 7Z0J ; 2.3 ; human PEX13 SH3 domain in complex with internal FxxxF motif 7Z0K ; 2.3 ; human PEX13 SH3 in complex with PEX5 W4 (WxxxF/Y) motif 6HVH ; 2.36 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 1 6HVI ; 1.96 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 2 6HVJ ; 2.28 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 3 6IC0 ; 2.6 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 4 6IBX ; 2.11 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 5 6IBY ; 2.51 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 6 6IBZ ; 2.44 ; Human PFKFB3 in complex with a N-Aryl 6-Aminoquinoxaline inhibitor 7 4D4J ; 3.0 ; human PFKFB3 in complex with a pyrrolopyrimidone compound 4D4K ; 3.24 ; human PFKFB3 in complex with a pyrrolopyrimidone compound 4D4L ; 3.16 ; human PFKFB3 in complex with a pyrrolopyrimidone compound 4D4M ; 2.32 ; human PFKFB3 in complex with a pyrrolopyrimidone compound 5AJV ; 3.01 ; Human PFKFB3 in complex with an indole inhibitor 1 5AJW ; 2.5 ; Human PFKFB3 in complex with an indole inhibitor 2 5AJX ; 2.58 ; Human PFKFB3 in complex with an indole inhibitor 3 5AJY ; 2.37 ; Human PFKFB3 in complex with an indole inhibitor 4 5AJZ ; 2.35 ; Human PFKFB3 in complex with an indole inhibitor 5 5AK0 ; 2.03 ; Human PFKFB3 in complex with an indole inhibitor 6 6ETJ ; 2.51 ; HUMAN PFKFB3 IN COMPLEX WITH KAN0438241 3PAH ; 2.0 ; HUMAN PHENYLALANINE HYDROXYLASE CATALYTIC DOMAIN DIMER WITH BOUND ADRENALINE INHIBITOR 5PAH ; 2.1 ; HUMAN PHENYLALANINE HYDROXYLASE CATALYTIC DOMAIN DIMER WITH BOUND DOPAMINE INHIBITOR 6PAH ; 2.15 ; HUMAN PHENYLALANINE HYDROXYLASE CATALYTIC DOMAIN DIMER WITH BOUND L-DOPA (3,4-DIHYDROXYPHENYLALANINE) INHIBITOR 4PAH ; 2.0 ; HUMAN PHENYLALANINE HYDROXYLASE CATALYTIC DOMAIN DIMER WITH BOUND NOR-ADRENALINE INHIBITOR 1PAH ; 2.0 ; HUMAN PHENYLALANINE HYDROXYLASE DIMER, RESIDUES 117-424 1BD9 ; 2.05 ; HUMAN PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN 1BEH ; 1.75 ; HUMAN PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN IN COMPLEX WITH CACODYLATE 2GK9 ; 2.8 ; Human Phosphatidylinositol-4-phosphate 5-kinase, type II, gamma 3DYL ; 2.7 ; human phosphdiesterase 9 substrate complex (ES complex) 5OHJ ; 1.6 ; Human phosphodiesterase 4B catalytic domain in complex with a pyrrolidinyl inhibitor. 3JSI ; 2.72 ; Human phosphodiesterase 9 in complex with inhibitor 4E90 ; 2.5 ; Human phosphodiesterase 9 in complex with inhibitors 3DY8 ; 2.15 ; Human Phosphodiesterase 9 in complex with product 5'-GMP (E+P complex) 3DYQ ; 2.5 ; human phosphodiestrase 9 (inhibited by omitting divalent cation) in complex with cGMP 3DYN ; 2.1 ; human phosphodiestrase 9 in complex with cGMP (Zn inhibited) 3DYS ; 2.3 ; human phosphodiestrase-5'GMP complex (EP), produced by soaking with 20mM cGMP+20 mM MnCl2+20 mM MgCl2 for 2 hours, and flash-cooled to liquid nitrogen temperature when substrate was still abudant. 7LW1 ; 2.9 ; Human phosphofructokinase-1 liver type bound to activator NA-11 1KVO ; 2.0 ; HUMAN PHOSPHOLIPASE A2 COMPLEXED WITH A HIGHLY POTENT SUBSTRATE ANOLOGUE 1KQU ; 2.1 ; Human phospholipase A2 complexed with a substrate anologue 7O1B ; 3.08 ; Human phosphomannomutase 2 (PMM2) wild-type co-crystallized with the activator glucose 1,6-bisphosphate 7O0C ; 2.8 ; Human phosphomannomutase 2 (PMM2) wild-type in apo state 7O4G ; 2.66 ; Human phosphomannomutase 2 (PMM2) wild-type soaked with the activator glucose 1,6-bisphosphate 7O5Z ; 2.07 ; Human phosphomannomutase 2 (PMM2) with mutation T237M in apo state 7O58 ; 1.97 ; Human phosphomannomutase 2 (PMM2) with mutation T237M in complex with the activator glucose 1,6-bisphosphate 2JBH ; 1.7 ; Human phosphoribosyl transferase domain containing 1 2JI4 ; 2.55 ; Human phosphoribosylpyrophosphate synthetase - associated protein 41 (PAP41) 3E77 ; 2.5 ; Human phosphoserine aminotransferase in complex with PLP 6HYY ; 1.566 ; Human phosphoserine phosphatase with serine and phosphate 6Q6J ; 1.985 ; Human phosphoserine phosphatase with substrate analogue homo-cysteic acid 5K6J ; 1.86 ; Human Phospodiesterase 4B in complex with pyridyloxy-benzoxaborole based inhibitor 8PTL ; ; human PHOX2B C-terminal domain including the polyA fragment at 278K 8PUI ; ; human PHOX2B C-terminal domain including the polyA fragment at 298K 2A1X ; 2.5 ; Human phytanoyl-coa 2-hydroxylase in complex with iron and 2-oxoglutarate 8TS7 ; 2.71 ; Human PI3K p85alpha/p110alpha 8TSB ; 3.53 ; Human PI3K p85alpha/p110alpha bound to compound 2 8TSD ; 2.7 ; Human PI3K p85alpha/p110alpha bound to RLY-2608 8TS9 ; 2.83 ; Human PI3K p85alpha/p110alpha H1047R bound to compound 1 8TSA ; 2.51 ; Human PI3K p85alpha/p110alpha H1047R bound to compound 2 8TSC ; 3.62 ; Human PI3K p85alpha/p110alpha H1047R bound to compound 3 6PYS ; 2.19 ; Human PI3Kalpha in complex with Compound 2-10 ((3S)-3-benzyl-3-methyl-5-[5-(2-methylpyrimidin-5-yl)pyrazolo[1,5-a]pyrimidin-3-yl]-1,3-dihydro-2H-indol-2-one) 8BCY ; 2.43 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 13 6PYR ; 2.21 ; Human PI3Kdelta in complex with Compound 2-10 ((3S)-3-benzyl-3-methyl-5-[5-(2-methylpyrimidin-5-yl)pyrazolo[1,5-a]pyrimidin-3-yl]-1,3-dihydro-2H-indol-2-one) 7LQ1 ; 2.96 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 28 6OCU ; 2.77 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 29 7JIS ; 2.42 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 2F 7JIU ; 2.12 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 2F 7LM2 ; 2.79 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 3C 6PYU ; 2.54 ; Human PI3Kdelta in complex with Compound 4-2 ((3S)-1'-(cyclopropanecarbonyl)-5-(quinoxalin-6-yl)spiro[indole-3,2'-pyrrolidin]-2(1H)-one) 6OCO ; 2.58 ; HUMAN PI3KDELTA IN COMPLEX WITH COMPOUND 6 5M6U ; 2.85 ; HUMAN PI3KDELTA IN COMPLEX WITH LASW1579 6G6W ; 2.72 ; HUMAN PI3KDELTA IN COMPLEX WITH LIGAND LASW1976 6BQ1 ; 3.6 ; Human PI4KIIIa lipid kinase complex 8Q6H ; 1.94 ; HUMAN PI4KIIIB IN COMPLEX WITH COVALENTLY BOUND INHIBITOR (COMPOUND 11) 8Q6F ; 1.506 ; HUMAN PI4KIIIB IN COMPLEX WITH COVALENTLY BOUND INHIBITOR (COMPOUND 4) 8Q6G ; 1.541 ; HUMAN PI4KIIIB IN COMPLEX WITH COVALENTLY BOUND INHIBITOR (COMPOUND 8) 6Z8D ; 2.63 ; Human Picobirnavirus CP VLP 6Z8F ; 2.8 ; Human Picobirnavirus D45-CP VLP 6Z8E ; 2.8 ; Human Picobirnavirus Ht-CP VLP 3IHY ; 2.8 ; Human PIK3C3 crystal structure 7ZC9 ; 2.1 ; Human Pikachurin/EGFLAM C-terminal Laminin-G domain (LG3) 7ZCB ; 2.5 ; Human Pikachurin/EGFLAM N-terminal Fibronectin-III (1-2) domains 3BGP ; 2.8 ; Human Pim-1 complexed with a benzoisoxazole inhibitor VX1 6YKD ; 1.86 ; Human Pim-1 kinase in complex with an inhibitor identified by virtual screening 3BGQ ; 2.0 ; Human Pim-1 kinase in complex with an triazolo pyridazine inhibitor VX2 3BGZ ; 2.4 ; Human Pim-1 kinase in complex with diphenyl indole inhibitor VX3 6PCW ; 2.2 ; Human PIM1 bound to benzothiophene inhibitor 213 6PDI ; 1.85 ; Human PIM1 bound to benzothiophene inhibitor 224 6PDN ; 2.4 ; Human PIM1 bound to benzothiophene inhibitor 292 6PDO ; 2.4 ; Human PIM1 bound to benzothiophene inhibitor 354 6PDP ; 2.5 ; Human PIM1 bound to benzothiophene inhibitor 379 6QXK ; 2.1 ; Human PIM1 bound to OX0999 6BSK ; 2.573 ; Human PIM1 kinase in complex with compound 12b 2BIK ; 1.8 ; Human Pim1 phosphorylated on Ser261 3TCZ ; 2.1 ; Human Pin1 bound to cis peptidomimetic inhibitor 2ITK ; 1.45 ; human Pin1 bound to D-PEPTIDE 2Q5A ; 1.5 ; human Pin1 bound to L-PEPTIDE 3TDB ; 2.267 ; Human Pin1 bound to trans peptidomimetic inhibitor 3NTP ; 1.762 ; Human Pin1 complexed with reduced amide inhibitor 2F21 ; 1.5 ; human Pin1 Fip mutant 1ZCN ; 1.9 ; human Pin1 Ng mutant 4U85 ; 1.7 ; Human Pin1 with cysteine sulfinic acid 113 4U86 ; 1.6 ; Human Pin1 with cysteine sulfonic acid 113 4U84 ; 1.78 ; Human Pin1 with S-hydroxyl-cysteine 113 5WC9 ; 3.15 ; Human Pit-1 and 4xCATT DNA complex 6D1W ; 3.54 ; human PKD2 F604P mutant 8HGF ; 3.1 ; Human PKM2 mutant - C326S 4B2D ; 2.3 ; human PKM2 with L-serine and FBP bound. 5JKV ; 2.75 ; HUMAN PLACENTAL AROMATASE CYTOCHROME P450 (CYP19A1) AT 2.75 ANGSTROM WITH BOUND POLYETHYLENE GLYCOL 5JKW ; 3.0 ; HUMAN PLACENTAL AROMATASE CYTOCHROME P450 (CYP19A1) COMPLEXED WITH TESTOSTERONE 3S79 ; 2.75 ; Human placental aromatase cytochrome P450 (CYP19A1) refined at 2.75 angstrom 5JL6 ; 3.0 ; HUMAN PLACENTAL AROMATASE CYTOCHROME P450 (CYP19A1): ANDROSTENEDIONE COMPLEX #2 5JL7 ; 3.1 ; HUMAN PLACENTAL AROMATASE CYTOCHROME P450 (CYP19A1): ANDROSTENEDIONE COMPLEX #3 5JL9 ; 3.1 ; HUMAN PLACENTAL AROMATASE CYTOCHROME P450 (CYP19A1): ANDROSTENEDIONE COMPLEX #4 5EOK ; 2.8 ; Human Plasma Coagulation Factor XI in complex with peptide P39 5EOD ; 3.1 ; Human Plasma Coagulation FXI with peptide LP2 8A3Q ; 1.801 ; Human Plasma Kallekrein in complex with 14W 6T7P ; 1.416 ; human plasmakallikrein protease domain in complex with active site directed inhibitor 1A7C ; 1.95 ; HUMAN PLASMINOGEN ACTIVATOR INHIBITOR TYPE-1 IN COMPLEX WITH A PENTAPEPTIDE 1BY7 ; 2.0 ; HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2. LOOP (66-98) DELETION MUTANT 2ARQ ; 1.85 ; Human plasminogen activator inhibitor-2.[loop (66-98) deletion mutant] complexed with peptide n-acetyl-teaaagdggvmtgr-oh 2ARR ; 1.55 ; Human plasminogen activator inhibitor-2.[loop (66-98) deletion mutant] complexed with peptide n-acetyl-teaaagmggvmtgr-oh 1JRR ; 1.6 ; HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2.[LOOP (66-98) DELETIONMUTANT] COMPLEXED WITH PEPTIDE MIMIckING THE REACTIVE CENTER LOOP 1RJX ; 2.3 ; Human PLASMINOGEN CATALYTIC DOMAIN, K698M MUTANT 4XZ2 ; 2.67 ; Human platelet phosphofructokinase in an R-state in complex with ADP and F6P, crystal form I 1CF0 ; 2.2 ; HUMAN PLATELET PROFILIN COMPLEXED WITH AN L-PRO10-IODOTYROSINE PEPTIDE 1AWI ; 2.2 ; HUMAN PLATELET PROFILIN COMPLEXED WITH THE L-PRO10 PEPTIDE 1FIL ; 2.0 ; HUMAN PLATELET PROFILIN I CRYSTALLIZED IN HIGH SALT ACTIN-BINDING PROTEIN 1FIK ; 2.3 ; HUMAN PLATELET PROFILIN I CRYSTALLIZED IN LOW SALT 7Y4P ; 3.5 ; Human Plexin A1, extracellular domains 1-4 4H71 ; 1.93 ; Human Plk1-PBD in complex with Poloxime ((E)-4-(hydroxyimino)-2-isopropyl-5-methylcyclohexa-2,5-dienone) 4HCO ; 2.75 ; Human Plk1-PBD in complex with Thymoquinone at the phophopeptide binding site 4H5X ; 1.95 ; human Plk1-PBD with a glycerol bound at the phophopeptide binding site 5L0V ; 1.305 ; human POGLUT1 in complex with 2F-glucose modified EGF(+) and UDP 5L0T ; 1.43 ; human POGLUT1 in complex with EGF(+) and UDP 5L0U ; 1.8 ; human POGLUT1 in complex with EGF(+) and UDP-phosphono-glucose 5L0S ; 1.45 ; human POGLUT1 in complex with Factor VII EGF1 and UDP 5UB5 ; 2.089 ; human POGLUT1 in complex with human Notch1 EGF12 S458T mutant and UDP 5L0R ; 1.5 ; human POGLUT1 in complex with Notch1 EGF12 and UDP 7FJI ; 3.6 ; human Pol III elongation complex 7FJJ ; 3.6 ; human Pol III pre-termination complex 7NV1 ; 6.4 ; Human Pol Kappa holoenzyme with Ub-PCNA 7NV0 ; 3.4 ; Human Pol Kappa holoenzyme with wt PCNA 6HH6 ; 1.85 ; Human poly(ADP-ribose) glycohydrolase in complex with ADP-HPM 5A7R ; 1.95 ; Human poly(ADP-ribose) glycohydrolase in complex with synthetic dimeric ADP-ribose 3HKV ; 2.1 ; Human poly(ADP-ribose) polymerase 10, catalytic fragment in complex with an inhibitor 3-aminobenzamide 2PQF ; 2.2 ; Human Poly(ADP-Ribose) Polymerase 12, Catalytic fragment in complex with an inhibitor 3-Aminobenzoic acid 6V3W ; 2.04 ; Human Poly(ADP-Ribose) Polymerase 12, Catalytic fragment with four point mutations in complex with RBN-2397 3SE2 ; 2.3 ; Human poly(ADP-ribose) polymerase 14 (PARP14/ARTD8) - catalytic domain in complex with 6(5H)-phenanthridinone 3SMJ ; 1.5 ; Human poly(ADP-ribose) polymerase 14 (Parp14/Artd8) - catalytic domain in complex with a pyrimidine-like inhibitor 3SMI ; 2.4 ; Human poly(ADP-ribose) polymerase 14 (Parp14/Artd8) - catalytic domain in complex with a quinazoline inhibitor 3V2B ; 2.2 ; Human poly(adp-ribose) polymerase 15 (ARTD7, BAL3), macro domain 2 in complex with adenosine-5-diphosphoribose 3KCZ ; 2.0 ; Human poly(ADP-ribose) polymerase 2, catalytic fragment in complex with an inhibitor 3-aminobenzamide 3KJD ; 1.95 ; Human poly(ADP-ribose) polymerase 2, catalytic fragment in complex with an inhibitor ABT-888 3FHB ; 2.3 ; Human poly(ADP-ribose) polymerase 3, catalytic fragment in complex with an inhibitor 3-aminobenzoic acid 3C4H ; 2.1 ; Human poly(ADP-ribose) polymerase 3, catalytic fragment in complex with an inhibitor DR2313 3C49 ; 2.8 ; Human poly(ADP-ribose) polymerase 3, catalytic fragment in complex with an inhibitor KU0058948 3CE0 ; 2.8 ; Human poly(ADP-ribose) polymerase 3, catalytic fragment in complex with an inhibitor PJ34 6WMM ; 1.548 ; Human poly-N-acetyl-lactosamine synthase structure demonstrates a modular assembly of catalytic subsites for GT-A glycosyltransferases 6WMN ; 2.04 ; Human poly-N-acetyl-lactosamine synthase structure demonstrates a modular assembly of catalytic subsites for GT-A glycosyltransferases 6WMO ; 1.85 ; Human poly-N-acetyl-lactosamine synthase structure demonstrates a modular assembly of catalytic subsites for GT-A glycosyltransferases 5WG6 ; 3.901 ; Human Polycomb Repressive Complex 2 in complex with GSK126 inhibitor 6DU8 ; 3.11 ; Human Polycsytin 2-l1 6S1M ; 4.27 ; Human polymerase delta holoenzyme Conformer 1 6S1N ; 4.86 ; Human polymerase delta holoenzyme Conformer 2 6S1O ; 8.1 ; Human polymerase delta holoenzyme Conformer 3 6TNZ ; 4.05 ; Human polymerase delta-FEN1-PCNA toolbelt 7URC ; 3.14 ; Human PORCN in complex with LGK974 7URD ; 2.92 ; Human PORCN in complex with LGK974 and WNT3A peptide 7URA ; 3.11 ; Human PORCN in complex with Palmitoleoyl-CoA 7URE ; 3.19 ; Human PORCN in complex with palmitoleoylated WNT3A peptide 7AAJ ; 1.8 ; Human porphobilinogen deaminase in complex with cofactor 5M7F ; 2.78 ; Human porphobilinogen deaminase in complex with DPM cofactor 5M6R ; 2.73 ; Human porphobilinogen deaminase in complex with reaction intermediate 7AAK ; 1.7 ; Human porphobilinogen deaminase R173W mutant crystallized in the ES2 intermediate state 6QDV ; 3.3 ; Human post-catalytic P complex spliceosome 7D8Z ; 3.4 ; human potassium-chloride co-transporter KCC2 7D90 ; 3.6 ; human potassium-chloride co-transporter KCC3 7D99 ; 2.9 ; human potassium-chloride co-transporter KCC4 7TTH ; 3.25 ; Human potassium-chloride cotransporter 1 in inward-open state 2JAK ; 2.6 ; Human PP2A regulatory subunit B56g 6B67 ; 2.2 ; Human PP2Calpha (PPM1A) complexed with cyclic peptide c(MpSIpYVA) 6KXX ; 1.95 ; Human PPAR alpha ligand binding domain in complex with a synthetic agonist (compound A) 6KXY ; 2.0 ; Human PPAR alpha ligand binding domain in complex with a synthetic agonist (compound B) 3VI8 ; 1.75 ; Human PPAR alpha ligand binding domain in complex with a synthetic agonist APHM13 2ZNN ; 2.01 ; Human PPAR alpha ligand binding domain in complex with a synthetic agonist TIPP703 7E5H ; 1.66 ; HUMAN PPAR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH APHM6 OBTAINED BY COCRYSTALLIZATION 7E5I ; 1.58 ; HUMAN PPAR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH APHM6 OBTAINED BY SOAKING 7E5F ; 1.79 ; HUMAN PPAR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH TIPP703 OBTAINED BY SOAKING 7E5G ; 1.66 ; HUMAN PPAR ALPHA LIGAND BINDING DOMAIN IN COMPLEX WITH YN4pai OBTAINED BY SOAKING 7W0G ; 2.443 ; Human PPAR delta ligand binding domain in complex with a synthetic agonist H11 2ZNP ; 3.0 ; Human PPAR delta ligand binding domain in complex with a synthetic agonist TIPP204 2ZNQ ; 2.65 ; Human PPAR delta ligand binding domain in complex with a synthetic agonist TIPP401 8HF8 ; 2.11 ; Human PPAR delta ligand binding domain in complex with a synthetic agonist V1 4EM9 ; 2.1 ; Human PPAR gamma in complex with nonanoic acids 7LOT ; 2.29 ; Human PPAR Gamma LBD in Complex with Tetrazole Compound N-{3-[(4-methylbenzyl)oxy]benzyl}-2H-tetrazol-5-amine. 3B0R ; 2.15 ; Human PPAR gamma ligand binding dmain complexed with GW9662 in a covalent bonded form 3VSO ; 2.0 ; Human PPAR gamma ligand binding domain in complex with a gamma selective agonist mekt21 3VSP ; 2.4 ; Human PPAR gamma ligand binding domain in complex with a gamma selective agonist mekt28 3AN3 ; 2.3 ; Human PPAR gamma ligand binding domain in complex with a gamma selective agonist MO3S 3AN4 ; 2.3 ; Human PPAR gamma ligand binding domain in complex with a gamma selective agonist MO4R 3WMH ; 2.1 ; Human PPAR gamma ligand binding domain in complex with a gammma selective synthetic partial agonist MEKT75 4YT1 ; 2.2 ; Human PPAR Gamma Ligand Binding Domain in complex with a Gammma Selective Synthetic Partial Agonist MEKT76 2ZNO ; 2.4 ; Human PPAR gamma ligand binding domain in complex with a synthetic agonist TIPP703 3VJH ; 2.22 ; Human PPAR GAMMA ligand binding domain in complex with JKPL35 3VJI ; 2.61 ; Human PPAR gamma ligand binding domain in complex with JKPL53 3SZ1 ; 2.3 ; Human PPAR gamma ligand binding domain in complex with luteolin and myristic acid 3B0Q ; 2.1 ; Human PPAR gamma ligand binding domain in complex with MCC555 5U46 ; 2.0 ; Human PPARdelta ligand-binding domain in complexed with GW501516 5U3Q ; 1.5 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 1 5U3Z ; 1.72 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 10 5U42 ; 1.7 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 11 5U43 ; 1.9 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 12 5U44 ; 2.15 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 13 5U45 ; 1.95 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 14 5U40 ; 2.0 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 15 5U41 ; 1.9 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 16 5U3R ; 1.95 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 2 5U3S ; 2.0 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 3 5U3T ; 1.7 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 4 5U3U ; 2.1 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 5 5U3V ; 1.84 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 6 5U3W ; 1.8 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 7 5U3X ; 2.1 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 8 5U3Y ; 1.9 ; Human PPARdelta ligand-binding domain in complexed with specific agonist 9 8BF2 ; 2.18 ; Human PPARgamma in complex with MEHP bound to the AF-2 and omega sub-pockets 8BFF ; 2.6 ; Human PPARgamma in complex with MINCH bound to the AF-2 sub-pocket 5GTN ; 1.85 ; Human PPARgamma ligand binding dmain complexed with R35 5GTO ; 2.1 ; Human PPARgamma ligand binding dmain complexed with S35 5DV6 ; 2.8 ; Human PPARgamma ligand binding dmain complexed with SB1404 in a covalent bonded form 5DV3 ; 2.75 ; Human PPARgamma ligand binding dmain complexed with SB1405 in a covalent bonded form 5DSH ; 2.95 ; Human PPARgamma ligand binding dmain complexed with SB1406 in a covalent bonded form 5DV8 ; 2.75 ; Human PPARgamma ligand binding dmain complexed with SB1451 in a covalent bonded form 5DVC ; 2.3 ; Human PPARgamma ligand binding dmain complexed with SB1453 in a covalent bonded form 5DWL ; 2.2 ; Human PPARgamma ligand binding dmain in complex with SR1664 6L89 ; 2.1 ; Human PPARgamma ligand binding domain complexed with Butyrolactone 1 5YCN ; 2.15 ; Human PPARgamma ligand binding domain complexed with Lobeglitazone 5YCP ; 2.0 ; Human PPARgamma ligand binding domain complexed with Rosiglitazone 6IJS ; 2.15 ; Human PPARgamma ligand binding domain complexed with SB1494 6IJR ; 2.85 ; Human PPARgamma ligand binding domain complexed with SB1495 3ADT ; 2.7 ; Human PPARgamma ligand-binding domain in complex with 5-hydroxy-indole acetate 3ADU ; 2.77 ; Human PPARgamma ligand-binding domain in complex with 5-methoxy-indole acetate 3ADW ; 2.07 ; Human PPARgamma ligand-binding domain in complex with 5-methoxy-indole acetate and 15-oxo-eicosatetraenoic acid 3ADS ; 2.25 ; Human PPARgamma ligand-binding domain in complex with indomethacin 3ADX ; 1.95 ; Human PPARgamma ligand-binding domain in complex with indomethacin and nitro-233 3ADV ; 2.27 ; Human PPARgamma ligand-binding domain in complex with serotonin 6KTN ; 2.752 ; Human PPARgamma ligand-binding domain R288A mutant in complex with imatinib 2FFV ; 2.75 ; Human ppGalNAcT-2 complexed with manganese and UDP 6E7I ; 1.8 ; Human ppGalNAcT2 I253A/L310A Mutant with EA2 and UDP 5EI9 ; 1.921 ; Human PRDM9 allele-A ZnF Domain with Associated Recombination Hotspot DNA Sequence I 5EGB ; 1.977 ; Human PRDM9 allele-A ZnF Domain with Associated Recombination Hotspot DNA Sequence II 5EH2 ; 2.05 ; Human PRDM9 allele-A ZnF Domain with Associated Recombination Hotspot DNA Sequence III 7ABG ; 7.8 ; Human pre-Bact-1 spliceosome 7ABF ; 3.9 ; Human pre-Bact-1 spliceosome core structure 7ABI ; 8.0 ; Human pre-Bact-2 spliceosome 7ABH ; 4.5 ; Human pre-Bact-2 spliceosome (SF3b/U2 snRNP portion) 7AAV ; 4.2 ; Human pre-Bact-2 spliceosome core structure 3OF6 ; 2.8 ; Human pre-T cell receptor crystal structure 8QYS ; 3.89 ; Human preholo proteasome 20S core particle 7JL8 ; 2.1 ; Human PrimPol extending from the correct primer base C opposite the 8-oxoguanine lesion 7JLG ; 2.07 ; Human PrimPol extending from the erroneous primer base A opposite the 8-oxoguanine lesion 7JK1 ; 2.62 ; Human PrimPol inserting correct dCTP opposite the 8-oxoguanine lesion 7JKP ; 2.592 ; Human PrimPol misinserting dATP opposite the 8-oxoguanine lesion 7JKL ; 2.384 ; Human PrimPol misinserting dATP opposite the 8-oxoguanine lesion (3'-end base of the primer strand is 2',3'-dideoxy-terminated). 1QLX ; ; Human prion protein 1QLZ ; ; Human prion protein 1FKC ; ; HUMAN PRION PROTEIN (MUTANT E200K) FRAGMENT 90-231 6SV2 ; 2.3 ; Human prion protein (PrP) fragment 119-231 (G127V M129 variant) complexed to ICSM 18 (anti-Prp therapeutic antibody) Fab fragment 6SUZ ; 2.5 ; Human prion protein (PrP) fragment 119-231 (G127V V129 variant) complexed to ICSM 18 (anti-Prp therapeutic antibody) Fab fragment 1H0L ; ; HUMAN PRION PROTEIN 121-230 M166C/E221C 1OEH ; ; Human prion protein 61-68 1OEI ; ; Human prion protein 61-84 1HJM ; ; HUMAN PRION PROTEIN AT PH 7.0 1HJN ; ; HUMAN PRION PROTEIN AT PH 7.0 6UUR ; 3.5 ; Human prion protein fibril, M129 variant 1QM2 ; ; Human prion protein fragment 121-230 1QM3 ; ; Human prion protein fragment 121-230 1QM0 ; ; Human prion protein fragment 90-230 1QM1 ; ; Human prion protein fragment 90-230 1FO7 ; ; HUMAN PRION PROTEIN MUTANT E200K FRAGMENT 90-231 2LEJ ; ; human prion protein mutant HuPrP(90-231, M129, V210I) 3HEQ ; 1.8 ; Human prion protein variant D178N with M129 3HJX ; 2.0 ; Human prion protein variant D178N with V129 3HES ; 2.0 ; Human prion protein variant F198S with M129 3HER ; 1.85 ; Human prion protein variant F198S with V129 1E1G ; ; Human prion protein variant M166V 1E1J ; ; Human prion protein variant M166V 1E1U ; ; Human prion protein variant R220K 1E1W ; ; Human prion protein variant R220K 1E1P ; ; Human prion protein variant S170N 1E1S ; ; Human prion protein variant S170N 3HAK ; 1.8 ; Human prion protein variant V129 3HAF ; 2.26 ; Human prion protein variant V129 domain swapped dimer 3HJ5 ; 3.1 ; Human prion protein variant V129 domain swapped dimer 2LFT ; ; Human prion protein with E219K protective polymorphism 7UY1 ; 2.66 ; HUMAN PRMT5:MEP50 COMPLEX WITH MTA and Fragment 5 Bound 7ZUQ ; 2.48 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZUU ; 2.09 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZUY ; 2.0 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZV2 ; 2.01 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZVL ; 2.39 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZVU ; 1.95 ; HUMAN PRMT5:MEP50 Crystal Structure With MTA and Fragment Bound 7ZUP ; 2.01 ; Human PRMT5:MEP50 structure with Fragment (Example 18) and MTA Bound 8CSG ; 2.48 ; Human PRMT5:MEP50 structure with Fragment 1 and MTA Bound 8CTB ; 2.61 ; Human PRMT5:MEP50 structure with Fragment 3 and MTA Bound 7UYF ; 2.82 ; Human PRMT5:MEP50 structure with Fragment 4 and MTA Bound 5EGS ; 2.15 ; Human PRMT6 with bound fragment-type inhibitor 2BID ; ; HUMAN PRO-APOPTOTIC PROTEIN BID 1NN6 ; 1.75 ; Human Pro-Chymase 7UAB ; 3.7 ; Human pro-meprin alpha (zymogen state) 7UAC ; 2.7 ; Human pro-meprin alpha (zymogen state) 1AYE ; 1.8 ; HUMAN PROCARBOXYPEPTIDASE A2 2BOA ; 2.2 ; Human procarboxypeptidase A4. 1KWM ; 1.6 ; Human procarboxypeptidase B: Three-dimensional structure and implications for thrombin-activatable fibrinolysis inhibitor (TAFI) 4JR0 ; 1.796 ; Human procaspase-3 bound to Ac-DEVD-CMK 4JQY ; 2.495 ; Human procaspase-3, crystal form 1 4JQZ ; 2.889 ; Human procaspase-3, crystal form 2 4JR1 ; 2.149 ; Human procaspase-7 bound to Ac-DEVD-CMK 4JR2 ; 1.65 ; Human procaspase-7/caspase-7 heterodimer bound to Ac-DEVD-CMK 1E3K ; 2.8 ; Human Progesteron Receptor Ligand Binding Domain in complex with the ligand metribolone (R1881) 2M2D ; ; Human programmed cell death 1 receptor 6IQE ; 1.701 ; Human prohibitin 2 1GVL ; 1.8 ; Human prokallikrein 6 (hK6)/ prozyme/ proprotease M/ proneurosin 7OSY ; 2.23 ; Human Prolyl-tRNA Synthetase in Complex with L-proline 7OT3 ; 2.53 ; Human Prolyl-tRNA Synthetase in Complex with L-proline and Compound 3b 7OT1 ; 2.71 ; Human Prolyl-tRNA Synthetase in Complex with L-proline and Compound 3c 7OSZ ; 2.46 ; Human Prolyl-tRNA Synthetase in Complex with L-proline and Compound 4d 7OT0 ; 2.32 ; Human Prolyl-tRNA Synthetase in Complex with L-proline and Compound 4h 7OT2 ; 2.48 ; Human Prolyl-tRNA Synthetase in Complex with L-proline and Compound 4j 7YBU ; 2.2 ; Human propionyl-coenzyme A carboxylase 8QYO ; 2.84 ; Human proteasome 20S core particle 4RYL ; 2.1 ; Human Protein Arginine Methyltransferase 3 in complex with 1-isoquinolin-6-yl-3-[2-oxo-2-(pyrrolidin-1-yl)ethyl]urea 1BJX ; ; HUMAN PROTEIN DISULFIDE ISOMERASE, NMR, 24 STRUCTURES 1MEK ; ; HUMAN PROTEIN DISULFIDE ISOMERASE, NMR, 40 STRUCTURES 1SA4 ; 2.1 ; human protein farnesyltransferase complexed with FPP and R115777 2IEJ ; 1.8 ; Human Protein Farnesyltransferase Complexed with Inhibitor Compound STN-48 And FPP Analog at 1.8A Resolution 1S63 ; 1.9 ; Human protein farnesyltransferase complexed with L-778,123 and FPP 4Q9Z ; 2.6 ; Human Protein Kinase C Theta in Complex with Compound35 ((1R)-9-(AZETIDIN-3-YLAMINO)-1,8-DIMETHYL-3,5-DIHYDRO[1,2,4]TRIAZINO[3,4-C][1,4]BENZOXAZIN-2(1H)-ONE) 4RA5 ; 2.61 ; Human Protein Kinase C THETA IN COMPLEX WITH LIGAND COMPOUND 11a (6-[(1,3-Dimethyl-azetidin-3-yl)-methyl-amino]-4(R)-methyl-7-phenyl-2,10-dihydro-9-oxa-1,2,4a-triaza-phenanthren-3-one) 2FK9 ; 1.75 ; Human protein kinase C, eta 6RB1 ; 1.5 ; Human protein kinase CK2 alpha in complex with 2-cyano-2-propenamide compound 1 6RCB ; 2.05 ; Human protein kinase CK2 alpha in complex with 2-cyano-2-propenamide compound 14 6RCM ; 1.7 ; Human protein kinase CK2 alpha in complex with 2-cyano-2-propenamide compound 3 6RFE ; 1.54 ; Human protein kinase CK2 alpha in complex with 2-cyano-2-propenamide compound 4 6RFF ; 1.8 ; Human protein kinase CK2 alpha in complex with 2-cyano-2-propenamide compound 7 6HNY ; 1.65 ; Human protein kinase CK2 alpha in complex with boldine 6HNW ; 2.0 ; Human protein kinase CK2 alpha in complex with coumestrol 6HOP ; 1.55 ; Human protein kinase CK2 alpha in complex with curcumin degradation products 6HOQ ; 1.55 ; Human protein kinase CK2 alpha in complex with ferulic acid 6HOT ; 1.5 ; Human protein kinase CK2 alpha in complex with ferulic aldehyde 6HOR ; 1.8 ; Human protein kinase CK2 alpha in complex with feruloylmethane 6HOU ; 1.8 ; Human protein kinase CK2 alpha in complex with vanillin 4CRS ; 2.75 ; Human Protein Kinase N2 (PKN2, PRKCL2) in complex with ATPgammaS 1I1N ; 1.5 ; HUMAN PROTEIN L-ISOASPARTATE O-METHYLTRANSFERASE WITH S-ADENOSYL HOMOCYSTEINE 3ZV2 ; 2.8 ; Human protein-tyrosine phosphatase 1b C215A, S216A mutant 4GW8 ; 2.0 ; Human proto-oncogene serine threonine kinase (PIM1) in complex with a consensus peptide and Leucettine L41 6VG4 ; 3.298 ; Human protocadherin 10 ectodomain 6PJJ ; 2.4 ; Human PRPF4B bound to benzothiophene inhibitor 224 6PK6 ; 2.1 ; Human PRPF4B bound to benzothiophene inhibitor 329 6CNH ; 2.0 ; Human PRPF4B in complex with Rebastinib 7ZW1 ; 3.7 ; Human PRPH2-ROM1 hetero-dimer 6WQX ; 2.53 ; Human PRPK-TPRKB complex 8DBF ; 2.2 ; Human PRPS1 with ADP; Filament Interface 8DBE ; 2.1 ; Human PRPS1 with ADP; Hexamer 8DBH ; 2.2 ; Human PRPS1 with Phosphate and ATP; Filament Interface 8DBG ; 2.2 ; Human PRPS1 with Phosphate and ATP; Hexamer 8DBM ; 2.4 ; Human PRPS1 with Phosphate and PRPP; Filament Interface 8DBL ; 2.4 ; Human PRPS1 with Phosphate and PRPP; Hexamer 8DBJ ; 2.0 ; Human PRPS1 with Phosphate, ATP, and R5P; Filament Interface 8DBI ; 2.0 ; Human PRPS1 with Phosphate, ATP, and R5P; Hexamer 8DBK ; 2.1 ; Human PRPS1 with Phosphate, ATP, and R5P; Hexamer with resolved catalytic loops 8DBD ; 3.2 ; Human PRPS1 with Phosphate; Filament Interface 8DBC ; 3.2 ; Human PRPS1 with Phosphate; Hexamer 8DBO ; 2.5 ; Human PRPS1-E307A engineered mutation with ADP; Hexamer 8DBN ; 2.4 ; Human PRPS1-E307A engineered mutation with Phosphate, ATP, and R5P; Hexamer 7LJ1 ; 2.97 ; Human Prx1-Srx Decameric Complex 1PSR ; 1.05 ; HUMAN PSORIASIN (S100A7) 2PSR ; 2.05 ; HUMAN PSORIASIN (S100A7) CA2+ AND ZN2+ BOUND FORM (CRYSTAL FORM II) 3PSR ; 2.5 ; HUMAN PSORIASIN (S100A7) CA2+ BOUND FORM (CRYSTAL FORM I) 5IFN ; 3.17 ; Human PSPC1 Homodimer 8FLS ; 3.09 ; Human PTH1R in complex with Abaloparatide and Gs 8FLU ; 2.76 ; Human PTH1R in complex with LA-PTH and Gs 8FLT ; 3.03 ; Human PTH1R in complex with M-PTH(1-14) and Gs 8FLQ ; 2.55 ; Human PTH1R in complex with PTH(1-34) and Gs 8FLR ; 2.94 ; Human PTH1R in complex with PTHrP and Gs 1G7F ; 1.8 ; HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH PNU177496 1JF7 ; 2.2 ; HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH PNU177836 1BZC ; 2.35 ; HUMAN PTP1B CATALYTIC DOMAIN COMPLEXED WITH TPI 1G7G ; 2.2 ; HUMAN PTP1B CATALYTIC DOMAIN COMPLEXES WITH PNU179326 1BZJ ; 2.25 ; Human ptp1b complexed with tpicooh 4NY3 ; 1.797 ; Human PTPA in complex with peptide 8A1F ; 3.0 ; Human PTPRK N-terminal domains MAM-Ig-FN1 8A16 ; 2.89 ; Human PTPRM domains FN3-4, in spacegroup P212121 8A17 ; 3.09 ; Human PTPRM domains FN3-4, in spacegroup P3221 6SUC ; 1.97 ; Human PTPRU D1 domain, oxidised form 6SUB ; 1.72 ; Human PTPRU D1 domain, reduced form 5H08 ; 2.53 ; Human PTPRZ D1 domain complexed with NAZ2329 8EQG ; 1.39 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAA(DU)GGAAGTGGG) 8E3R ; 1.45 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAAAGGAAGTGGG) 8EE9 ; 1.22 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAAAGGAATGGGG) 8EK8 ; 2.63 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAAAGGAGAAGGG) 8EKJ ; 1.54 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAATGGAAGTGGG) 8EKU ; 1.52 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAATGGAATGGGG) 8EQK ; 1.45 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAACCGGAAGTGGG) 8E4H ; 1.39 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGAGGAAGTGGG) 8EJ6 ; 1.39 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGAGGAATGGGG) 8E3K ; 1.28 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGAAGTGGG) 8EO4 ; 1.24 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGAAGTGGG) with Di-methylated CpG sites 8ENG ; 1.25 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGAAGTGGG) with Hemi-methylated CpG (forward strand) 8EO1 ; 1.28 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGAAGTGGG) with Hemi-methylated CpG (reverse strand) 8EBH ; 1.33 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGAATGGGG) 8EKV ; 1.62 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGCGGATGTGGG) 8EKZ ; 1.42 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAAGGAGAAGTAGG) 8EM9 ; 2.341 ; Human PU.1 ETS-Domain (165-270) Bound to d(AATAGGAGAAGTAGGG) 8T9U ; 1.47 ; Human PU.1 ETS-domain (165-270) in complex with d(AATAAGCGIAAGTGGG) 8EJ8 ; 1.45 ; Human PU.1 ETS-Domain (165-270) Q226E Mutant Bound to d(AATAAAAGGAAGTGGG) 8EQL ; 1.52 ; Human PU.1 ETS-Domain (165-270) Q226E Mutant Bound to d(AATAACCGGAAGTGGG) 8EMD ; 1.55 ; Human PU.1 ETS-Domain (165-270) Q226E Mutant Bound to d(AATAAGCGGAAGTGGG) 8EK3 ; 1.38 ; Human PU.1 ETS-Domain (165-270) Q226E Mutant Bound to d(AATAAGCGGAATGGGG) 8E5Y ; 1.32 ; Human PU.1 ETS-Domain Bound to d(AATAAGCGGAAGTGGG) Acetate Free at pH 5.4 6LUR ; 2.0 ; Human PUF60 UHM domain (thioredoxin fusion) in complex with a small molecule binder 3GGS ; 2.52 ; Human purine nucleoside phosphorylase double mutant E201Q,N243D complexed with 2-fluoro-2'-deoxyadenosine 3GB9 ; 2.3 ; Human purine nucleoside phosphorylase double mutant E201Q,N243D complexed with 2-fluoroadenine 7ZSL ; 1.8 ; human purine nucleoside phosphorylase in complex with JS-196 7ZSM ; 2.65 ; human purine nucleoside phosphorylase in complex with JS-375 7ZSN ; 2.36 ; human purine nucleoside phosphorylase in complex with JS-379 7ZSO ; 1.95 ; human purine nucleoside phosphorylase in complex with JS-554 7ZSP ; 2.29 ; human purine nucleoside phosphorylase in complex with JS-555 7ZSQ ; 1.77 ; human purine nucleoside phosphorylase in complex with JS-555 2PXX ; 1.3 ; Human putative methyltransferase MGC2408 2B25 ; 2.5 ; Human putative tRNA(1-methyladenosine)methyltransferase 7N2A ; 2.26 ; human PXR LBD bound to compound 2 7RIV ; 2.2 ; human PXR LBD bound to GSK001 7RIU ; 2.05 ; human PXR LBD bound to GSK002 7RIO ; 2.48 ; human PXR LBD bound to GSK003 2YXT ; 2.0 ; Human Pyridoxal Kinase 2YXU ; 2.2 ; Human Pyridoxal Kinase 8QYT ; 1.69 ; Human Pyridoxine-5'-phosphate oxidase in complex with PLP 8QYW ; 2.746 ; Human Pyridoxine-5'-phosphate oxidase mutant R225H 8HWL ; 5.63 ; Human Pyruvate Carboxylase 1NI4 ; 1.95 ; HUMAN PYRUVATE DEHYDROGENASE 6CER ; 2.69 ; Human pyruvate dehydrogenase complex E1 component V138M mutation 6CFO ; 2.7 ; HUMAN PYRUVATE DEHYDROGENASE E1 COMPONENT COMPLEX WITH COVALENT TDP ADDUCT ACETYL PHOSPHINATE 2OZL ; 1.9 ; Human pyruvate dehydrogenase S264E variant 1T5A ; 2.8 ; Human Pyruvate Kinase M2 4WJ8 ; 2.87 ; Human Pyruvate Kinase M2 Mutant C424A 1ZX1 ; 2.16 ; Human quinone oxidoreductase 2 (NQO2) in complex with the cytostatic prodrug CB1954 1QR2 ; 2.1 ; HUMAN QUINONE REDUCTASE TYPE 2 2QR2 ; 2.45 ; HUMAN QUINONE REDUCTASE TYPE 2, COMPLEX WITH MENADIONE 8EPL ; 3.1 ; Human R-type voltage-gated calcium channel Cav2.3 at 3.1 Angstrom resolution 8EPM ; 3.1 ; Human R-type voltage-gated calcium channel Cav2.3 CH2II-deleted mutant at 3.1 Angstrom resolution 6FO1 ; 3.57 ; Human R2TP subcomplex containing 1 RUVBL1-RUVBL2 hexamer bound to 1 RBD domain from RPAP3. 5OEC ; 2.3 ; Human Rab32 (18-201):GDP in complex with Salmonella GtgE (21-214) C45A mutant 5OED ; 2.9 ; Human Rab32:GDP in complex with Salmonella GtgE C45A mutant 6STF ; 2.4 ; Human Rab8a phosphorylated at Ser111 in complex with GDP 6STG ; 2.5 ; Human Rab8a phosphorylated at Ser111 in complex with GPPNP 2C7M ; 2.4 ; Human Rabex-5 residues 1-74 in complex with Ubiquitin 2C7N ; 2.1 ; Human Rabex-5 residues 1-74 in complex with Ubiquitin 7EJE ; 3.98 ; human RAD51 post-synaptic complex 5H1C ; 4.5 ; Human RAD51 post-synaptic complexes 7C9A ; 3.43 ; Human RAD51 post-synaptic complexes mutant (V273P, D274G) 5H1B ; 4.4 ; Human RAD51 presynaptic complex 7EJC ; 2.97 ; human RAD51 presynaptic complex 8OUZ ; 2.2 ; Human RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex, 2.2 A resolution 8OUY ; 3.4 ; Human RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) complex, 3.4 A resolution 1H2I ; 2.7 ; Human Rad52 protein, N-terminal domain 8U61 ; 4.0 ; Human RADX tetramer bound to ssDNA 8U5Y ; 3.01 ; human RADX trimer bound to ssDNA 2QYQ ; 1.948 ; Human raf kinase inhibitor protein (rkip) in complex with o-phosphotyrosine 5YK3 ; 3.01 ; human Ragulator complex 3URF ; 2.701 ; Human RANKL/OPG complex 1U4L ; 2.0 ; human RANTES complexed to heparin-derived disaccharide I-S 1U4M ; 2.0 ; human RANTES complexed to heparin-derived disaccharide III-S 1HRJ ; ; HUMAN RANTES, NMR, 13 STRUCTURES 1GUA ; 2.0 ; HUMAN RAP1A, RESIDUES 1-167, DOUBLE MUTANT (E30D,K31E) COMPLEXED WITH GPPNHP AND THE RAS-BINDING-DOMAIN OF HUMAN C-RAF1, RESIDUES 51-131 3H2V ; 2.9 ; Human raver1 RRM1 domain in complex with human vinculin tail domain Vt 3H2U ; 2.75 ; Human raver1 RRM1, RRM2, and RRM3 domains in complex with human vinculin tail domain Vt 3SMZ ; 1.99 ; Human raver1 RRM1-3 domains (residues 39-320) 5MGS ; 1.9 ; Human receptor NKR-P1 in deglycosylated form, extracellular domain 5MGR ; 1.8 ; Human receptor NKR-P1 in glycosylated form, extracellular domain 3QCB ; 2.1 ; Human receptor protein tyrosine phosphatase gamma, domain 1, apo 3QCL ; 2.4 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 2-[(3,4-dichlorobenzyl)sulfanyl]-4-(4-hydroxybut-1-yn-1-yl)benzoic acid 3QCM ; 2.4 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 2-[(3,4-dichlorobenzyl)sulfanyl]-4-{[3-({N-[2-(methylamino)ethyl]glycyl}amino)phenyl]ethynyl}benzoic acid 3QCK ; 2.05 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 2-[(3,4-dichlorobenzyl)sulfanyl]benzoic acid 3QCH ; 2.4 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 3-[(3,4-dichlorobenzyl)sulfanyl]-N-(methylsulfonyl)thiophene-2-carboxamide 3QCF ; 2.5 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 3-[(3,4-dichlorobenzyl)sulfanyl]thiophene-2-carboxylic acid via co-crystallization 3QCE ; 2.1 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 3-[(3,4-dichlorobenzyl)sulfanyl]thiophene-2-carboxylic acid via soaking 3QCG ; 2.05 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 3-[(3-bromo-4-chlorobenzyl)sulfanyl]thiophene-2-carboxylic acid 3QCJ ; 2.26 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with 5-[({3-[(3,4-dichlorobenzyl)sulfanyl]thiophen-2-yl}carbonyl)sulfamoyl]-2-methoxybenzoic acid 3QCI ; 2.27 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with N-[(3-aminophenyl)sulfonyl]-3-[(3,4-dichlorobenzyl)sulfanyl]thiophene-2-carboxamide 3QCC ; 2.1 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with vanadate, orthorhombic crystal form 3QCD ; 1.8 ; Human receptor protein tyrosine phosphatase gamma, domain 1, in complex with vanadate, trigonal crystal form 3QCN ; 2.41 ; Human receptor protein tyrosine phosphatase gamma, domain 1, trigonal crystal form 1RPM ; 2.3 ; HUMAN RECEPTOR PROTEIN TYROSINE PHOSPHATASE MU, DOMAIN 1 7JIK ; 2.69 ; Human recombinant Beta-2-Glycoprotein 1 5I25 ; 2.85 ; human recombinant coagulation FXI in complex with a peptide derived from human high molecular weight kininogen (HKP) 1B56 ; 2.05 ; HUMAN RECOMBINANT EPIDERMAL FATTY ACID BINDING PROTEIN 1SCF ; 2.2 ; HUMAN RECOMBINANT STEM CELL FACTOR 1A31 ; 2.1 ; HUMAN RECONSTITUTED DNA TOPOISOMERASE I IN COVALENT COMPLEX WITH A 22 BASE PAIR DNA DUPLEX 6YWA ; 2.311 ; Human REF STING in complex with 3',3'-c-[2'FdAMP-2'FdAM(PS)] 2KV3 ; ; Human Regenerating Gene Type IV (REG IV) PROTEIN, P91S mutant 1ITQ ; 2.3 ; HUMAN RENAL DIPEPTIDASE 1ITU ; 2.0 ; HUMAN RENAL DIPEPTIDASE COMPLEXED WITH CILASTATIN 3VSX ; 2.8 ; Human renin in complex with compound 18 3VUC ; 2.6 ; Human renin in complex with compound 5 3VSW ; 3.0 ; Human renin in complex with compound 8 7XGK ; 2.4 ; Human renin in complex with compound1 7XGO ; 2.1 ; Human renin in complex with compound2 7XGP ; 2.65 ; Human renin in complex with compound3 3VYD ; 2.81 ; Human renin in complex with inhibitor 6 3VYE ; 2.7 ; Human renin in complex with inhibitor 7 3VYF ; 2.8 ; Human renin in complex with inhibitor 9 3D91 ; 2.2 ; Human renin in complex with remikiren 2I4Q ; 2.3 ; Human renin/PF02342674 complex 1EWI ; ; HUMAN REPLICATION PROTEIN A: GLOBAL FOLD OF THE N-TERMINAL RPA-70 DOMAIN REVEALS A BASIC CLEFT AND FLEXIBLE C-TERMINAL LINKER 8B9D ; 3.4 ; Human replisome bound by Pol Alpha 1G2C ; 2.3 ; HUMAN RESPIRATORY SYNCYTIAL VIRUS FUSION PROTEIN CORE 8FAV ; 1.85 ; HUMAN RETENOID-RELATED ORPHAN RECEPTOR-GAMMA (RORC2) LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 5 ANDINDAZOLE ACID BOUND IN H12-POCKET 8FB1 ; 2.18 ; HUMAN RETENOID-RELATED ORPHAN RECEPTOR-GAMMA (RORC2) LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 6a ANDINDAZOLE ACID BOUND IN H12-POCKET 8FB2 ; 2.3 ; HUMAN RETENOID-RELATED ORPHAN RECEPTOR-GAMMA (RORC2) LIGAND-BINDING DOMAIN IN COMPLEX WITH COMPOUND 8 ANDINDAZOLE ACID BOUND IN H12-POCKET 6CN5 ; 2.3 ; HUMAN RETENOID-RELATED ORPHAN RECEPTOR-GAMMA LIGAND- BINDING DOMAIN IN COMPLEX WITH INDOLE LIGAND CP9b IN INVERSE AGONIST CONFORMATION 7RGL ; 2.4 ; HUMAN RETINAL VARIANT IMPDH1(546) TREATED WITH ATP, IMP, NAD+, INTERFACE-CENTERED 7RGM ; 2.8 ; HUMAN RETINAL VARIANT IMPDH1(546) TREATED WITH ATP, IMP, NAD+, OCTAMER-CENTERED 7RGI ; 3.6 ; HUMAN RETINAL VARIANT IMPDH1(546) TREATED WITH GTP, ATP, IMP, NAD+; INTERFACE-CENTERED 7RGQ ; 3.9 ; HUMAN RETINAL VARIANT IMPDH1(546) TREATED WITH GTP, ATP, IMP, NAD+; INTERFACE-CENTERED 7RFH ; 3.7 ; HUMAN RETINAL VARIANT IMPDH1(595) TREATED WITH ATP, OCTAMER-CENTERED 7RFF ; 2.7 ; HUMAN RETINAL VARIANT IMPDH1(595) TREATED WITH ATP; INTERFACE-CENTERED 7RFI ; 2.6 ; HUMAN RETINAL VARIANT IMPDH1(595) TREATED WITH GTP, ATP, IMP, NAD+, INTERFACE-CENTERED 7RGD ; 3.0 ; HUMAN RETINAL VARIANT IMPDH1(595) TREATED WITH GTP, ATP, IMP, NAD+, OCTAMER-CENTERED 8U8Y ; 2.1 ; Human retinal variant phosphomimetic IMPDH1(546)-S477D filament bound by ATP, IMP, and NAD+, interface-centered 8U8O ; 2.4 ; Human retinal variant phosphomimetic IMPDH1(546)-S477D filament bound by ATP, IMP, and NAD+, octamer-centered 8U7V ; 3.3 ; Human retinal variant phosphomimetic IMPDH1(546)-S477D filament bound by GTP, ATP, IMP, and NAD+, interface-centered 8U7Q ; 3.3 ; Human retinal variant phosphomimetic IMPDH1(546)-S477D filament bound by GTP, ATP, IMP, and NAD+, octamer-centered 8U7M ; 3.1 ; Human retinal variant phosphomimetic IMPDH1(595)-S477D free octamer bound by GTP, ATP, IMP, and NAD+ 2GL8 ; 2.4 ; Human Retinoic acid receptor RXR-gamma ligand-binding domain 8SYO ; 2.94 ; Human Retriever VPS35L/VPS29/VPS26C Complex (Composite Map) 6N6J ; 1.317 ; Human REXO2 bound to pAA 6N6K ; 1.418 ; Human REXO2 bound to pAG 6N6I ; 1.431 ; Human REXO2 bound to pGG 6STY ; 3.15 ; Human REXO2 exonuclease in complex with RNA. 1R09 ; 2.9 ; HUMAN RHINOVIRUS 14 COMPLEXED WITH ANTIVIRAL COMPOUND R 61837 1AYN ; 2.9 ; HUMAN RHINOVIRUS 16 COAT PROTEIN 1AYM ; 2.15 ; HUMAN RHINOVIRUS 16 COAT PROTEIN AT HIGH RESOLUTION 1QJU ; 2.8 ; HUMAN RHINOVIRUS 16 COAT PROTEIN IN COMPLEX WITH ANTIVIRAL COMPOUND VP61209 1QJY ; 2.8 ; HUMAN RHINOVIRUS 16 COAT PROTEIN IN COMPLEX WITH ANTIVIRAL COMPOUND VP65099 1QJX ; 2.8 ; HUMAN RHINOVIRUS 16 COAT PROTEIN IN COMPLEX WITH ANTIVIRAL COMPOUND WIN68934 3DPR ; 3.5 ; Human rhinovirus 2 bound to a concatamer of the VLDL receptor module V3 1V9U ; 3.6 ; Human Rhinovirus 2 bound to a fragment of its cellular receptor protein 8AY5 ; 7.1 ; Human rhinovirus 2 empty particle in situ 8AY4 ; 4.7 ; Human rhinovirus 2 virion in situ 1RHI ; 3.0 ; HUMAN RHINOVIRUS 3 COAT PROTEIN 1FPN ; 2.6 ; HUMAN RHINOVIRUS SEROTYPE 2 (HRV2) 3V8S ; 2.286 ; Human RHO-ASSOCIATED PROTEIN KINASE 1 (ROCK 1) IN COMPLEX WITH INDAZOLE DERIVATIVE (COMPOUND 18) 3TV7 ; 2.75 ; Human Rho-associated protein kinase 1 (ROCK 1) in COMPLEX WITH RKI1342 1A2B ; 2.4 ; HUMAN RHOA COMPLEXED WITH GTP ANALOGUE 6AUI ; 3.3 ; Human ribonucleotide reductase large subunit (alpha) with dATP and CDP 2WGH ; 2.3 ; Human Ribonucleotide reductase R1 subunit (RRM1) in complex with dATP and Mg. 2VUX ; 2.8 ; Human ribonucleotide reductase, subunit M2 B 6OLF ; 3.9 ; Human ribosome nascent chain complex (CDH1-RNC) stalled by a drug-like molecule with AA and PE tRNAs 6OLE ; 3.1 ; Human ribosome nascent chain complex (CDH1-RNC) stalled by a drug-like molecule with AP and PE tRNAs 6OM0 ; 3.1 ; Human ribosome nascent chain complex (PCSK9-RNC) stalled by a drug-like molecule with AP and PE tRNAs 6OLZ ; 3.9 ; Human ribosome nascent chain complex (PCSK9-RNC) stalled by a drug-like molecule with PP tRNA 6OM7 ; 3.7 ; Human ribosome nascent chain complex (PCSK9-RNC) stalled by a drug-like small molecule with AA and PE tRNAs 6OLG ; 3.4 ; Human ribosome nascent chain complex stalled by a drug-like small molecule (CDH1_RNC with PP tRNA) 6ZUO ; 3.1 ; Human RIO1(kd)-StHA late pre-40S particle, structural state A (pre 18S rRNA cleavage) 6ZV6 ; 2.9 ; Human RIO1(kd)-StHA late pre-40S particle, structural state B (post 18S rRNA cleavage) 6FDM ; 2.1 ; Human Rio2 kinase structure 6HK6 ; 2.35 ; Human RIOK2 bound to inhibitor 7DAC ; ; Human RIPK3 amyloid fibril revealed by solid-state NMR 7UWF ; 2.7 ; Human Rix1 sub-complex scaffold 7P3B ; 2.3 ; Human RNA ligase RTCB in complex with GMP and Co(II) 8A43 ; 4.09 ; Human RNA polymerase I 8ITY ; 3.9 ; human RNA polymerase III pre-initiation complex closed DNA 1 5VBB ; 1.94 ; Human RNA Pseudouridylate Synthase Domain Containing 1 5UBA ; 1.54 ; Human RNA Pseudouridylate Synthase Domain Containing 4 2QKK ; 3.2 ; Human RNase H catalytic domain mutant D210N in complex with 14-mer RNA/DNA hybrid 2QK9 ; 2.55 ; Human RNase H catalytic domain mutant D210N in complex with 18-mer RNA/DNA hybrid 2QKB ; 2.4 ; Human RNase H catalytic domain mutant D210N in complex with 20-mer RNA/DNA hybrid 4PPE ; 2.0 ; human RNF4 RING domain 5NOI ; 2.4 ; human Robo2 extracellular domains 4-5 2XUB ; 2.8 ; Human RPC62 subunit structure 4Q94 ; 1.85 ; human RPRD1B CID in complex with a RPB1-CTD derived Ser2 phosphorylated peptide 5OAF ; 4.06 ; Human Rvb1/Rvb2 heterohexamer in INO80 complex 8PP6 ; 3.18 ; human RYBP-PRC1 bound to H2AK118ub1 nucleosome 8PP7 ; 2.91 ; human RYBP-PRC1 bound to mononucleosome 7QPG ; 3.9 ; Human RZZ kinetochore corona complex. 1LI4 ; 2.01 ; Human S-adenosylhomocysteine hydrolase complexed with neplanocin 1JEN ; 2.25 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE 1I7M ; 2.24 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE WITH COVALENTLY BOUND PYRUVOYL GROUP AND COMPLEXED WITH 4-AMIDINOINDAN-1-ONE-2'-AMIDINOHYDRAZONE 1I7C ; 2.4 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE WITH COVALENTLY BOUND PYRUVOYL GROUP AND COMPLEXED WITH METHYLGLYOXAL BIS-(GUANYLHYDRAZONE) 1I79 ; 2.01 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE WITH COVALENTLY BOUND PYRUVOYL GROUP AND COVALENTLY BOUND 5'-DEOXY-5'-[(3-HYDRAZINOPROPYL)METHYLAMINO]ADENOSINE 1I72 ; 2.0 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE WITH COVALENTLY BOUND PYRUVOYL GROUP AND COVALENTLY BOUND 5'-DEOXY-5'-[N-METHYL-N-(2-AMINOOXYETHYL) AMINO]ADENOSINE 1I7B ; 1.9 ; HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE WITH COVALENTLY BOUND PYRUVOYL GROUP AND COVALENTLY BOUND S-ADENOSYLMETHIONINE METHYL ESTER 6WKB ; 2.55 ; Human S-adenosylmethionine synthetase co-crystallized with UppNHp and Met 1DB5 ; 2.8 ; HUMAN S-PLA2 IN COMPLEX WITH INDOLE 6 1DB4 ; 2.2 ; HUMAN S-PLA2 IN COMPLEX WITH INDOLE 8 8EX4 ; 2.93 ; Human S1P transporter Spns2 in an inward-facing open conformation (state 1) 8EX6 ; 3.54 ; Human S1P transporter Spns2 in an inward-facing open conformation (state 1*) 8EX5 ; 3.47 ; Human S1P transporter Spns2 in an outward-facing open conformation (state 4) 8EX8 ; 4.17 ; Human S1P transporter Spns2 in an outward-facing partially occluded conformation (state 2) 8EX7 ; 3.53 ; Human S1P transporter Spns2 in an outward-facing partially occluded conformation (state 3) 3GVP ; 2.25 ; Human SAHH-like domain of human adenosylhomocysteinase 3 1SMD ; 1.6 ; HUMAN SALIVARY AMYLASE 6U6X ; 2.58 ; Human SAMHD1 bound to deoxyribo(C*G*C*C*T)-oligonucleotide 6U6Z ; 2.1 ; Human SAMHD1 bound to deoxyribo(TG*TTCA)-oligonucleotide 6U6Y ; 2.47 ; Human SAMHD1 bound to ribo(CGCCU)-oligonucleotide 9AXG ; 2.68 ; Human saposin B in the presence of globotriaosylceramide-NBD 8D0I ; 2.0 ; Human SARM1 bound to an NB-3 eADPR adduct 8GNI ; 3.74 ; Human SARM1 bounded with NMN and Nanobody-C6, Conformation 1 8GNJ ; 3.78 ; Human SARM1 bounded with NMN and Nanobody-C6, Conformation 2 8GQ5 ; 2.7 ; Human SARM1 bounded with NMN and Nanobody-C6, double-layer structure 7DJT ; 2.8 ; Human SARM1 inhibitory state bounded with inhibitor dHNN 8D0D ; 1.96 ; Human SARM1 TIR domain bound to an NB-7-ADPR adduct 8D0F ; 1.74 ; Human SARM1 TIR domain bound to NB-2-ADPR 8D0C ; 2.09 ; Human SARM1 TIR domain bound to NB-3-ADPR 8D0G ; 1.99 ; Human SARM1 TIR domain bound to NB-3-ADPRP 8D0H ; 2.37 ; Human SARM1 TIR domain bound to NB-3-GDPR 8D0E ; 1.88 ; Human SARM1 TIR domain bound to NB-7 2W2G ; 2.22 ; Human SARS coronavirus unique domain 2WCT ; 2.79 ; human SARS coronavirus unique domain (triclinic form) 2OX8 ; 2.5 ; Human Scavenger Receptor C-type Lectin carbohydrate-recognition domain. 5MRA ; 3.74 ; human SCBD (sorcin calcium binding domain) in complex with doxorubicin 1WP0 ; 2.8 ; Human SCO1 1PL8 ; 1.9 ; human SDH/NAD+ complex 1PL6 ; 2.0 ; Human SDH/NADH/inhibitor complex 6MKY ; 2.9 ; Human SDS22 7D3S ; 2.9 ; Human SECR in complex with an engineered Gs heterotrimer 6WI9 ; 4.3 ; Human secretin receptor Gs complex 6WZG ; 2.3 ; Human secretin receptor Gs complex 5MWA ; 1.55 ; human sEH Phosphatase in complex with 3-4-3,4-dichlorophenyl-5-phenyl-1,3-oxazol-2-yl-benzoic-acid 3GZD ; 1.8 ; Human selenocysteine lyase, P1 crystal form 5KUE ; 1.5 ; Human SeMet incorporated I141M/L146M mitochondrial calcium uniporter (residues 72-189) crystal structure with magnesium 4Z3K ; 2.35 ; Human sepiapterin reductase in complex with the cofactor NADP+ and the trypthophan metabolite xanthurenic acid 2QNR ; 2.6 ; Human septin 2 in complex with GDP 7M6J ; 3.6 ; Human Septin Hexameric Complex SEPT2G/SEPT6/SEPT7 by Single Particle Cryo-EM 7RUG ; 4.7 ; Human SERINC3-DeltaICL4 7V1Z ; 2.98 ; human Serine beta-lactamase-like protein LACTB 7V21 ; 3.08 ; human Serine beta-lactamase-like protein LACTB truncation variant 7K0I ; 3.3 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa 7K0J ; 3.1 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa protomer 7K0K ; 2.6 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa, 3KS-bound 7K0L ; 3.4 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa, myriocin-bound 7K0M ; 2.9 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 1 7K0N ; 3.1 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 2 7K0O ; 3.1 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 3 7K0P ; 3.1 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa/ORMDL3, class 4 7K0Q ; 3.3 ; Human serine palmitoyltransferase complex SPTLC1/SPLTC2/ssSPTa/ORMDL3, myriocin-bound 6ZSP ; 1.6 ; Human serine racemase bound to ATP and malonate. 6ZUJ ; 1.8 ; Human serine racemase holoenzyme from 20% DMSO soak (XChem crystallographic fragment screen). 8AXD ; 2.98 ; Human serotonin 5-HT3A receptor (apo, resting conformation) 7DJN ; 2.04 ; Human Serum Albumin 7VR0 ; 1.98 ; Human Serum Albumin 6M5D ; 2.6 ; Human serum albumin (apo form) 7A9C ; 2.75 ; Human serum albumin (HSA) crystallized in the presence of yttrium (III) chloride 7X7X ; 2.1 ; Human serum albumin complex with deschloro-aripiprazole 4E99 ; 2.3 ; Human Serum Albumin Complex with Perfluorooctane Sulfonate Potassium 2BXA ; 2.35 ; Human serum albumin complexed with 3-carboxy-4-methyl-5-propyl-2- furanpropanoic acid (CMPF) 2VUE ; 2.42 ; Human serum albumin complexed with 4Z,15E-bilirubin-IX-alpha 6A7P ; 2.28 ; Human serum albumin complexed with aripiprazole 2BX8 ; 2.7 ; Human serum albumin complexed with azapropazone 7D6J ; 3.29 ; Human serum albumin complexed with benzbromarone 1GNJ ; 2.6 ; HUMAN SERUM ALBUMIN COMPLEXED WITH cis-5,8,11,14-EICOSATETRAENOIC ACID (ARACHIDONIC ACID) 1GNI ; 2.4 ; HUMAN SERUM ALBUMIN COMPLEXED WITH cis-9-OCTADECENOIC ACID (OLEIC ACID) 2XVW ; 2.65 ; Human serum albumin complexed with dansyl-L-arginine and myristic acid 2XVU ; 2.6 ; Human serum albumin complexed with dansyl-L-asparagine 2XVV ; 2.4 ; Human serum albumin complexed with dansyl-L-asparagine and myristic acid 2XSI ; 2.7 ; Human serum albumin complexed with dansyl-L-glutamate and myristic acid 2XW1 ; 2.5 ; Human serum albumin complexed with dansyl-L-norvaline 2XW0 ; 2.4 ; Human serum albumin complexed with dansyl-L-phenylalanine 2XVQ ; 2.9 ; Human serum albumin complexed with dansyl-L-sarcosine 1E7E ; 2.5 ; HUMAN SERUM ALBUMIN COMPLEXED WITH DECANOIC ACID (CAPRIC ACID) 2BXF ; 2.95 ; Human serum albumin complexed with diazepam 2BXE ; 2.95 ; Human serum albumin complexed with diflunisal 1E7F ; 2.43 ; HUMAN SERUM ALBUMIN COMPLEXED WITH DODECANOIC ACID (LAURIC ACID) 2VUF ; 3.05 ; Human serum albumin complexed with fusidic acid 1E7H ; 2.43 ; HUMAN SERUM ALBUMIN COMPLEXED WITH HEXADECANOIC ACID (PALMITIC ACID) 2BXG ; 2.7 ; Human serum albumin complexed with ibuprofen 2BXH ; 2.25 ; Human serum albumin complexed with indoxyl sulfate 2YDF ; 2.75 ; HUMAN SERUM ALBUMIN COMPLEXED WITH IOPHENOXIC ACID 2BXL ; 2.6 ; Human serum albumin complexed with myristate and 3,5-diiodosalicylic acid 2I2Z ; 2.7 ; Human serum albumin complexed with myristate and aspirin 2BXI ; 2.5 ; Human serum albumin complexed with myristate and azapropazone 3B9L ; 2.6 ; Human serum albumin complexed with myristate and AZT 2BXM ; 2.5 ; Human serum albumin complexed with myristate and indomethacin 2BXN ; 2.65 ; Human serum albumin complexed with myristate and iodipamide 2BXO ; 2.6 ; Human serum albumin complexed with myristate and oxyphenbutazone 2BXP ; 2.3 ; Human serum albumin complexed with myristate and phenylbutazone 2I30 ; 2.9 ; Human serum albumin complexed with myristate and salicylic acid 3B9M ; 2.7 ; Human serum albumin complexed with myristate, 3'-azido-3'-deoxythymidine (AZT) and salicylic acid 2BXK ; 2.4 ; Human serum albumin complexed with myristate, azapropazone and indomethacin 2BXQ ; 2.6 ; Human serum albumin complexed with myristate, phenylbutazone and indomethacin 1BJ5 ; 2.5 ; HUMAN SERUM ALBUMIN COMPLEXED WITH MYRISTIC ACID 1E7C ; 2.4 ; HUMAN SERUM ALBUMIN COMPLEXED WITH MYRISTIC ACID and the general anesthetic halothane 1H9Z ; 2.5 ; Human Serum Albumin Complexed With Myristic Acid and the R-(+) enantiomer of warfarin 1HA2 ; 2.5 ; Human Serum Albumin Complexed With Myristic Acid and the S-(-) enantiomer of warfarin 6EZQ ; 2.39 ; human Serum Albumin complexed with NBD-C12 fatty acid 1E7I ; 2.7 ; HUMAN SERUM ALBUMIN COMPLEXED WITH OCTADECANOIC ACID (STEARIC ACID) 5X52 ; 3.005 ; Human serum albumin complexed with octanoate and N-acetyl-L-methionine 2BXB ; 3.2 ; Human serum albumin complexed with oxyphenbutazone 4Z69 ; 2.187 ; Human serum albumin complexed with palmitic acid and diclofenac 2BXC ; 3.1 ; Human serum albumin complexed with phenylbutazone 5YOQ ; 2.65 ; Human serum albumin complexed with sodium 4-phenylbutyrate 1E7G ; 2.5 ; Human serum albumin complexed with tetradecanoic acid (myristic acid) 1O9X ; 3.2 ; HUMAN SERUM ALBUMIN COMPLEXED WITH TETRADECANOIC ACID (MYRISTIC ACID) AND HEMIN 1HK1 ; 2.65 ; HUMAN SERUM ALBUMIN COMPLEXED WITH THYROXINE (3,3',5,5'-TETRAIODO-L-THYRONINE) 1HK4 ; 2.4 ; HUMAN SERUM ALBUMIN COMPLEXED WITH THYROXINE (3,3',5,5'-TETRAIODO-L-THYRONINE) and myristic acid (tetradecanoic acid) 2BXD ; 3.05 ; Human serum albumin complexed with warfarin 1BKE ; 3.15 ; HUMAN SERUM ALBUMIN IN A COMPLEX WITH MYRISTIC ACID AND TRI-IODOBENZOIC ACID 3LU6 ; 2.7 ; Human serum albumin in complex with compound 1 3LU7 ; 2.8 ; Human serum albumin in complex with compound 2 3LU8 ; 2.6 ; Human serum albumin in complex with compound 3 1HK2 ; 2.8 ; HUMAN SERUM ALBUMIN MUTANT R218H COMPLEXED WITH THYROXINE (3,3',5,5'-TETRAIODO-L-THYRONINE) 1HK5 ; 2.7 ; HUMAN SERUM ALBUMIN MUTANT R218H COMPLEXED WITH THYROXINE (3,3',5,5'-TETRAIODO-L-THYRONINE) and myristic acid (tetradecanoic acid) 1HK3 ; 2.8 ; Human serum albumin mutant r218p complexed with thyroxine (3,3',5,5'-tetraiodo-l-thyronine) 3JRY ; 2.3 ; Human Serum albumin with bound Sulfate 8EW4 ; 2.4 ; Human Serum Albumin with Cobalt (II) and Myristic Acid - crystal 1 8EW7 ; 3.3 ; Human Serum Albumin with Cobalt (II) and Myristic Acid - crystal 2 8EY5 ; 3.1 ; Human Serum Albumin with Cobalt (II) and Myristic Acid - crystal 3 6M5E ; 2.8 ; Human serum albumin with cyclic peptide dalbavancin 6R7S ; 2.21 ; Human Serum Albumin, complexed with Sulfasalazine 3UIV ; 2.2 ; Human serum albumin-myristate-amantadine hydrochloride complex 6L4K ; 2.09 ; Human serum albumin-Palmitic acid-Cu compound 5GIX ; 2.801 ; Human serum albumin-Palmitic acid-Fe(Hn3piT)Cl2 7FFS ; 2.05 ; Human Serum Albumin_1 7FFR ; 2.31 ; Human Serum Albumin_2 7PUE ; 2.506 ; Human serum and glucocorticoid-regulated kinase 1 in complex with pyrazolopyridine inhibitor 3a 1D3K ; 1.8 ; HUMAN SERUM TRANSFERRIN 1D4N ; 2.0 ; HUMAN SERUM TRANSFERRIN 5X5P ; 2.7 ; Human serum transferrin bound to ruthenium NTA 4X1B ; 2.45 ; Human serum transferrin with ferric ion bound at the C-lobe only 7FFM ; 3.06 ; Human serum transferrin with five osmium binding sites 6JAS ; 2.501 ; Human serum transferrin with iron citrate bound 1N84 ; 2.05 ; HUMAN SERUM TRANSFERRIN, N-LOBE 1RYO ; 1.2 ; Human serum transferrin, N-lobe bound with oxalate 1N7X ; 2.1 ; HUMAN SERUM TRANSFERRIN, N-LOBE Y45E MUTANT 1B3E ; 2.5 ; HUMAN SERUM TRANSFERRIN, N-TERMINAL LOBE, EXPRESSED IN PICHIA PASTORIS 1A8E ; 1.6 ; HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE 1A8F ; 1.8 ; HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE 1BP5 ; 2.2 ; HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE, APO FORM 1BTJ ; 3.2 ; HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE, APO FORM, CRYSTAL FORM 2 5Y6K ; 2.86 ; Human serum trnasferrin bound to a fluorescent probe 4RQF ; 3.503 ; human Seryl-tRNA synthetase dimer complexed with one molecule of tRNAsec 4RQE ; 4.0 ; human Seryl-tRNA synthetase dimer complexed with two molecules of tRNAsec 7EA8 ; 3.1 ; Human SETD2 bound to a nucleosome containing oncohistone mutations 3QXY ; 2.09 ; Human SETD6 in complex with RelA Lys310 3RC0 ; 2.19 ; Human SETD6 in complex with RelA Lys310 peptide 5T5G ; 2.1 ; human SETD8 in complex with MS2177 8DAF ; 2.59 ; Human SF-1 LBD bound to synthetic agonist 6N-10CA and bacterial phospholipid 5KAZ ; 1.7 ; Human SH2D1B structure 3I35 ; 1.4 ; Human SH3 domain of protein LASP1 6XY7 ; 1.086 ; Human SHIP1 with magnesium and phosphate bound to the active site 6QVG ; 2.32 ; Human SHMT2 in complex with lometrexol 6QVL ; 2.28 ; Human SHMT2 in complex with pemetrexed 4BWD ; 2.702 ; Human short coiled coil protein 4NC5 ; 2.513 ; Human sialidase 2 in complex with 2,3-difluorosialic acid (covalent intermediate) 4NCS ; 2.201 ; Human sialidase 2 in complex with 2,3-difluorosialic acid (covalent intermediate) 6DK1 ; 3.12 ; Human sigma-1 receptor bound to (+)-pentazocine 5HK2 ; 3.2 ; Human sigma-1 receptor bound to 4-IBP 6DJZ ; 3.084 ; Human sigma-1 receptor bound to haloperidol 6DK0 ; 2.9 ; Human sigma-1 receptor bound to NE-100 5HK1 ; 2.5051 ; Human sigma-1 receptor bound to PD144418 7P2P ; 4.9 ; Human Signal Peptidase Complex Paralog A (SPC-A) 7P2Q ; 4.9 ; Human Signal Peptidase Complex Paralog C (SPC-C) 6BEV ; 1.043 ; Human Single Domain Sulfurtranferase TSTD1 7W68 ; 4.4 ; human single hexameric Mcm2-7 complex 5G4C ; 2.1 ; Human SIRT2 catalyse short chain fatty acyl lysine 4R8M ; 2.1 ; Human SIRT2 crystal structure in complex with BHJH-TM1 1J8F ; 1.7 ; HUMAN SIRT2 HISTONE DEACETYLASE 4Y6Q ; 1.9 ; Human SIRT2 in complex with 2-O-myristoyl-ADP-ribose 5Y0Z ; 2.0 ; Human SIRT2 in complex with a specific inhibitor, NPD11033 4RMJ ; 1.87 ; Human Sirt2 in complex with ADP ribose and nicotinamide 6QCN ; 2.23 ; Human Sirt2 in complex with ADP-ribose and the inhibitor quercetin 7BOS ; 1.7 ; Human SIRT2 in complex with myristoyl thiourea inhibitor, No.13 7BOT ; 1.7 ; Human SIRT2 in complex with myristoyl thiourea inhibitor, No.23 4Y6L ; 1.6 ; Human SIRT2 in complex with myristoylated peptide (H3K9myr) 4Y6O ; 1.6 ; Human SIRT2 in complex with myristoylated peptide (TNF-alphaK20myr) 4RMI ; 1.45 ; Human Sirt2 in complex with SirReal1 and Ac-Lys-OTC peptide 4RMH ; 1.42 ; Human Sirt2 in complex with SirReal2 and Ac-Lys-H3 peptide 4RMG ; 1.88 ; Human Sirt2 in complex with SirReal2 and NAD+ 7T1D ; 1.75 ; Human SIRT2 in complex with small molecule 359 4FVT ; 2.47 ; Human SIRT3 bound to Ac-ACS peptide and Carba-NAD 8V15 ; 2.4 ; Human SIRT3 bound to p53-AMC peptide, Carba-NAD, and Honokiol 8V2N ; 1.74 ; Human SIRT3 co-crystallized with ligands, including p53-AMC peptide and Carba-NAD 5Y4H ; 2.6 ; Human SIRT3 in complex with halistanol sulfate 8HN9 ; 3.7 ; Human SIRT3 Recognizing CCNE2K348la peptide 6ISO ; 2.95 ; Human SIRT3 Recognizing H3K4cr 4G1C ; 1.944 ; Human SIRT5 bound to Succ-IDH2 and Carba-NAD 6EQS ; 1.32 ; Human Sirt5 in complex with stalled peptidylimidate intermediate of inhibitory compound 29 6XUY ; 2.13 ; Human Sirt6 13-308 in complex with ADP-ribose 6ZU4 ; 2.46 ; Human Sirt6 13-308 in complex with ADP-ribose and the activator fluvastatin 6XV1 ; 1.95 ; Human Sirt6 13-308 in complex with ADP-ribose and the activator MDL-801 6XV6 ; 1.75 ; Human Sirt6 3-318 in complex with ADP-ribose 6XVG ; 2.1 ; Human Sirt6 3-318 in complex with ADP-ribose and the activator MDL-801 3PKJ ; 2.12 ; Human SIRT6 crystal structure in complex with 2'-N-Acetyl ADP ribose 3PKI ; 2.04 ; Human SIRT6 crystal structure in complex with ADP ribose 5MF6 ; 1.87 ; Human Sirt6 in complex with activator UBCS039 5MGN ; 2.07 ; Human Sirt6 in complex with activator UBCS38 5MFP ; 1.98 ; Human Sirt6 in complex with activator UBCS58 8AKD ; 1.76 ; Human Sirt6 in complex with ADP-ribose and fragment 1-methyl-L-histidine 8AKC ; 1.83 ; Human Sirt6 in complex with ADP-ribose and fragment 3-(acetylamino)thiophene-2-carboxylic acid 8AKF ; 1.97 ; Human Sirt6 in complex with ADP-ribose and fragment 3-aminobenzamide 8AKG ; 1.82 ; Human Sirt6 in complex with ADP-ribose and fragment 4-amino-6-chlorobenzene-1,3-disulfonamide 8AK8 ; 1.73 ; Human Sirt6 in complex with ADP-ribose and fragment 4-hydroxybenzamide 8AKB ; 2.13 ; Human Sirt6 in complex with ADP-ribose and fragment 4-nitrocatechol 8AK7 ; 1.81 ; Human Sirt6 in complex with ADP-ribose and fragment 6-O-methylguanine 8AKA ; 1.77 ; Human Sirt6 in complex with ADP-ribose and fragment cis-resveratrol 8AK9 ; 1.95 ; Human Sirt6 in complex with ADP-ribose and fragment Isatin 8AKE ; 1.82 ; Human Sirt6 in complex with ADP-ribose and fragment nicotinamide 8AK5 ; 2.12 ; Human Sirt6 in complex with ADP-ribose and fragment pyroglutamic acid 8AK6 ; 1.98 ; Human Sirt6 in complex with ADP-ribose and fragment sulfamethoxazole 6QCH ; 2.1 ; Human Sirt6 in complex with ADP-ribose and the activator cyanidin 6QCE ; 1.9 ; Human Sirt6 in complex with ADP-ribose and the activator isoquercetin 6QCD ; 1.84 ; Human Sirt6 in complex with ADP-ribose and the activator quercetin 6QCJ ; 2.01 ; Human Sirt6 in complex with ADP-ribose and the inhibitor catechin gallate 6HOY ; 1.7 ; Human Sirt6 in complex with ADP-ribose and the inhibitor trichostatin A 5Y2F ; 2.53 ; Human SIRT6 in complex with allosteric activator MDL-801 7CL1 ; 3.2 ; Human SIRT6 in complex with allosteric activator MDL-801 (3.2A) 8I2B ; 2.2 ; Human SIRT6 in complex with inhibitor 7702 5MFZ ; 2.1 ; Human Sirt6 in complex with small molecule UBCS40 8CNM ; 1.88 ; Human Sirt6 in complex with the inhibitor S6020 and ADP-ribose 8BL0 ; 1.82 ; Human Sirt6 in complex with the inhibitor S6023 and ADP-ribose 8BL1 ; 2.06 ; Human Sirt6 in complex with the inhibitor S6039 and ADP-ribose 5CRG ; 1.97 ; Human skeletal calsequestrin, D210G mutant high-calcium complex 5CRE ; 3.315 ; Human skeletal calsequestrin, D210G mutant low-calcium complex 5CRH ; 2.03 ; Human skeletal calsequestrin, M53T mutant high-calcium complex 7XUL ; 3.16 ; Human SLC26A3 in complex with Tenidap 7XUJ ; 2.8 ; Human SLC26A3 in complex with UK5099 8IET ; 3.5 ; Human SLC26A3 in the apo state 7ZEL ; 2.8 ; Human SLFN11 dimer apoenzyme 7ZES ; 3.1 ; Human SLFN11 dimer bound to ssDNA 7ZEP ; 3.2 ; Human SLFN11 E209A dimer 7PPJ ; 3.44 ; human SLFN5 6HVD ; 1.63 ; Human SLK bound to a maleimide inhibitor 4USF ; 1.75 ; Human SLK with SB-440719 7PW4 ; 3.27 ; Human SMG1-8-9 kinase complex bound to a SMG1 inhibitor 7PW6 ; 3.05 ; Human SMG1-8-9 kinase complex bound to a SMG1 inhibitor - SMG1 body 7PW8 ; 2.82 ; Human SMG1-8-9 kinase complex bound to AMPPNP 7PW5 ; 3.4 ; Human SMG1-8-9 kinase complex with AlphaFold predicted SMG8 C-terminus, bound to a SMG1 inhibitor 7PW7 ; 3.59 ; Human SMG1-9 kinase complex bound to a SMG1 inhibitor 7PW9 ; 3.12 ; Human SMG1-9 kinase complex bound to AMPPNP 4O9R ; 3.204 ; Human Smoothened Receptor structure in complex with cyclopamine 4GNB ; 1.5 ; human SMP30/GNL 4GNC ; 1.749 ; human SMP30/GNL-1,5-AG complex 5WY2 ; 1.9 ; Human Snx5 PX domain in complex with Chlamydia IncE C terminus 3GZQ ; 1.401 ; HUMAN SOD1 A4V Metal-free Variant 4MCM ; 2.2 ; Human SOD1 C57S Mutant, As-isolated 4MCN ; 2.6 ; Human SOD1 C57S Mutant, Metal-free 3H2P ; 1.55 ; Human SOD1 D124V Variant 3CQP ; 1.95 ; Human SOD1 G85R Variant, Structure I 3CQQ ; 1.9 ; Human SOD1 G85R Variant, Structure II 3GZP ; 3.1 ; HUMAN SOD1 G93A Metal-free Variant 3GZO ; 2.1 ; HUMAN SOD1 G93A Variant 3H2Q ; 1.85 ; Human SOD1 H80R variant, P21 crystal form 3QQD ; 1.653 ; Human SOD1 H80R variant, P212121 crystal form 8CCX ; 1.665 ; Human SOD1 in complex with S-XL6 cross-linker 8Q6M ; 1.77 ; Human SOD1 low dose data collecton 4OYM ; 1.7 ; Human solAC Complexed with (4-Amino-furazan-3-yl)-(3-methoxy-phenyl)-methanone 4OYI ; 1.7 ; Human solAC Complexed with (4-Amino-furazan-3-yl)-phenyl-methanone 4OYA ; 2.03 ; Human solAC Complexed with (4-Aminofurazan-3-yl)-[3-(1H-benzoimidazol-2-ylmethoxy)phenyl]methanone 4OYP ; 2.28 ; Human solAC Complexed with 1-Benzofuran-2-carboxylic acid 4OYO ; 1.75 ; Human solAC Complexed with 4-(2-Chlorophenyl)-3-methyl-1H-pyrazole 4OZ2 ; 2.1 ; Human solAC Complexed with 4-(4-Fluorophenyl)-3-methyl-1H-pyrazole 4OZ3 ; 1.7 ; Human solAC Complexed with 4-phenyl-3-(trifluoromethyl)-1H-pyrazole 4OYX ; 1.89 ; Human solAC Complexed with AMPCPP 4OYZ ; 1.74 ; Human solAC Complexed with Bicarbonate 7OVD ; 2.2 ; Human soluble adenylyl cyclase in complex with the inhibitor TDI10229 1S8O ; 2.6 ; Human soluble Epoxide Hydrolase 1ZD3 ; 2.3 ; Human soluble epoxide hydrolase 4-(3-cyclohexyluriedo)-butyric acid complex 1ZD2 ; 3.0 ; Human soluble epoxide hydrolase 4-(3-cyclohexyluriedo)-ethanoic acid complex 1ZD5 ; 2.6 ; Human soluble epoxide hydrolase 4-(3-cyclohexyluriedo)-heptanoic acid complex 1ZD4 ; 2.7 ; Human soluble epoxide hydrolase 4-(3-cyclohexyluriedo)-hexanoic acid complex 4X6Y ; 2.1 ; Human soluble epoxide hydrolase in complex with a cyclopropyl urea derivative 3ANS ; 1.98 ; Human soluble epoxide hydrolase in complex with a synthetic inhibitor 3ANT ; 2.4 ; Human soluble epoxide hydrolase in complex with a synthetic inhibitor 4X6X ; 1.8 ; Human soluble epoxide hydrolase in complex with a three substituted cyclopropane derivative 1VJ5 ; 2.35 ; Human soluble Epoxide Hydrolase- N-cyclohexyl-N'-(4-iodophenyl)urea complex 1PL7 ; 2.2 ; Human Sorbitol Dehydrogenase (apo) 3IQ2 ; 1.7 ; Human sorting nexin 7, phox homology (PX) domain 1AWE ; ; HUMAN SOS1 PLECKSTRIN HOMOLOGY (PH) DOMAIN, NMR, 20 STRUCTURES 3VFD ; 3.301 ; Human spastin AAA domain 5FWC ; 1.4 ; Human Spectrin SH3 domain D48G, E7A, K60A 5FWB ; 1.5 ; Human Spectrin SH3 domain D48G, E7F, K60F 6RO9 ; 1.814 ; Human spectrin SH3 domain D48G, E7V, K60V 5FW9 ; 1.55 ; Human Spectrin SH3 domain D48G, E7Y, K60Y 7UX0 ; 1.49 ; Human Sperm TMEM95 Ectodomain 2O05 ; 2.0 ; Human spermidine synthase 2O06 ; 2.0 ; Human spermidine synthase 2O07 ; 1.89 ; Human spermidine synthase 2O0L ; 1.99 ; Human spermidine synthase 2FXF ; 2.0 ; Human spermidine/spermine N1-acetyltransferase 2B3U ; 1.85 ; Human Spermine spermidine acetyltransferase K26R mutant 5LMA ; 1.43 ; HUMAN SPLEEN TYROSINE KINASE KINASE DOMAIN IN COMPLEX WITH AZANAPHTHYRIDINE INHIBITOR 5LMB ; 1.95 ; HUMAN SPLEEN TYROSINE KINASE KINASE DOMAIN IN COMPLEX WITH AZANAPHTHYRIDINE INHIBITOR 8C6J ; 2.8 ; Human spliceosomal PM5 C* complex 1QGV ; 1.4 ; HUMAN SPLICEOSOMAL PROTEIN U5-15KD 4WIJ ; 3.49 ; HUMAN SPLICING FACTOR, CONSTRUCT 1 4WIK ; 3.0 ; HUMAN SPLICING FACTOR, CONSTRUCT 2 4WII ; 2.05 ; HUMAN SPLICING FACTOR, CONSTRUCT 3 6C6R ; 3.0 ; Human Squalene Epoxidase (SQLE, Squalene Monooxygenase) structure with FAD 6C6N ; 2.3 ; Human squalene epoxidase (SQLE, squalene monooxygenase) structure with FAD and Cmpd-4"" 6C6P ; 2.5 ; Human squalene epoxidase (SQLE, squalene monooxygenase) structure with FAD and NB-598 3Q30 ; 2.0 ; Human Squalene synthase in complex with (2R,3R)-2-Carboxymethoxy-3-[5-(2-naphthalenyl)pentyl]aminocarbonyl-3-[5-(2-naphthalenyl)pentyloxy]propionic acid 3ASX ; 2.0 ; Human Squalene synthase in complex with 1-{4-[{4-chloro-2-[(2-chlorophenyl)(hydroxy)methyl]phenyl}(2,2-dimethylpropyl)amino]-4-oxobutanoyl}piperidine-3-carboxylic acid 3V66 ; 1.8 ; HUMAN SQUALENE SYNTHASE IN COMPLEX WITH 2-(1-{2-[(4R,6S)-8-chloro-6-(2,3-dimethoxyphenyl)-4H,6H-pyrrolo[1,2-a][4,1]benzoxazepin-4-yl]acetyl}-4-piperidinyl)acetic acid 3Q2Z ; 2.0 ; Human Squalene synthase in complex with N-[(3R,5S)-7-Chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-aspartic acid 4MXX ; 2.6 ; Human Src A403T mutant bound to kinase inhibitor bosutinib 4MXO ; 2.105 ; human Src kinase bound to kinase inhibitor bosutinib 1AM9 ; 2.3 ; HUMAN SREBP-1A BOUND TO LDL RECEPTOR PROMOTER 1JID ; 1.8 ; Human SRP19 in complex with helix 6 of Human SRP RNA 2R55 ; 2.5 ; Human StAR-related lipid transfer protein 5 2PSO ; 2.8 ; Human StarD13 (DLC2) lipid transfer and protein localization domain 3FO5 ; 2.0 ; Human START domain of Acyl-coenzyme A thioesterase 11 (ACOT11) 6VVQ ; 3.09 ; Human START domain of Acyl-coenzyme A thioesterase 11 (ACOT11) bound to Myristic Acid 6HCY ; 3.1 ; human STEAP4 bound to NADP, FAD, heme and Fe(III)-NTA. 6HD1 ; 3.8 ; human STEAP4 bound to NADPH, FAD and heme. 4NBO ; 2.807 ; Human steroid receptor RNA activator protein carboxy-terminal domain 3P0L ; 3.4 ; Human steroidogenic acute regulatory protein 4NKV ; 2.646 ; Human steroidogenic cytochrome P450 17A1 mutant A105L with inhibitor abiraterone 4NKZ ; 3.003 ; Human steroidogenic cytochrome P450 17A1 mutant A105L with substrate 17alpha-hydroxypregnenolone 4NKY ; 2.55 ; Human steroidogenic cytochrome P450 17A1 mutant A105L with substrate 17alpha-hydroxyprogesterone 4NKW ; 2.5 ; Human steroidogenic cytochrome P450 17A1 mutant A105L with substrate pregnenolone 4NKX ; 2.794 ; Human steroidogenic cytochrome P450 17A1 mutant A105L with substrate progesterone 6WR1 ; 1.85 ; Human steroidogenic cytochrome P450 17A1 mutant N52Y with inhibitor abiraterone 6WW0 ; 2.01 ; Human steroidogenic cytochrome P450 17A1 with 3-keto-5alpha-abiraterone analog 6WR0 ; 2.7 ; Human steroidogenic cytochrome P450 17A1 with 3-keto-delta4-abiraterone analog 5UYS ; 2.392 ; Human steroidogenic cytochrome P450 17A1 with 3alphaOH-5alpha-abiraterone analog 1YOW ; 3.0 ; human Steroidogenic Factor 1 LBD with bound Co-factor Peptide 8SS0 ; 2.25 ; Human sterol 14 alpha-demethylase (CYP51) in complex with the reaction intermediate 14 alpha-aldehyde dihydrolanosterol 4UHI ; 2.04 ; HUMAN STEROL 14-ALPHA DEMETHYLASE (CYP51) IN COMPLEX WITH VFV IN C121 SPACE GROUP 4UHL ; 2.5 ; HUMAN STEROL 14-ALPHA DEMETHYLASE (CYP51) IN COMPLEX WITH VFV IN P1 SPACE GROUP 6Q2T ; 2.8 ; Human sterol 14a-demethylase (CYP51) in complex with the functionally irreversible inhibitor (R)-N-(1-(3-chloro-4'-fluoro-[1,1'-biphenyl]-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-(3-fluoro-5-(5-fluoropyrimidin-4-yl)phenyl)-1,3,4-oxadiazol-2-yl)benzamide 6UEZ ; 1.98 ; Human sterol 14a-demethylase (CYP51) in complex with the substrate lanosterol 8AF2 ; 2.51 ; Human Sterol Carrier Protein with unnatural amino acid 2,2'-bipyridine alanine incorporated at position 111 6CY7 ; 2.2 ; Human Stimulator of Interferon Genes 6DNK ; 1.95 ; Human Stimulator of Interferon Genes 7SII ; 3.45 ; Human STING bound to both cGAMP and 1-[(2-chloro-6-fluorophenyl)methyl]-3,3-dimethyl-2-oxo-N-[(2,4,6-trifluorophenyl)methyl]-2,3-dihydro-1H-indole-6-carboxamide (Compound 53) 8A2H ; 2.69 ; human STING in complex with 2',3'-cyclic-GMP-7-deazaphenyl-AMP 8A2I ; 2.16 ; human STING in complex with 2'-3'-cyclic-GMP-7-deaza(4-(2-naphthyl)phenyl)-AMP 8A2J ; 2.32 ; human STING in complex with 2'-3'-cyclic-GMP-7-deaza(4-biphenylyl)-AMP 8A2K ; 1.89 ; human STING in complex with 2'-3'-cyclic-GMP-7-deaza(4-[(2-naphthyloxy)methyl]phenyl)-AMP 8GT6 ; 3.47 ; human STING With agonist HB3089 8STI ; 1.72 ; human STING with agonist XMT-1616 8STH ; 1.97 ; human STING with diABZI agonist 15 4EQU ; 2.0 ; Human STK-10 (LOK) kinase domain in DFG-out conformation with inhibitor DSA-7 4USD ; 3.05 ; Human STK10 (LOK) with SB-633825 4USE ; 2.65 ; Human STK10 (LOK) with SB-633825 6HXF ; 2.09 ; Human STK10 bound to a maleimide inhibitor 6GTT ; 2.25 ; Human STK10 bound to BIRB-796 5OWR ; 2.3 ; Human STK10 bound to dasatinib 5OWQ ; 2.7 ; Human STK10 bound to dovitinib 6I2Y ; 2.56 ; Human STK10 bound to Foretinib 6EIM ; 1.43 ; Human STK10 bound to GW683134A 7XRB ; 1.65 ; human STK19 dimer 1C8T ; 2.6 ; HUMAN STROMELYSIN-1 (E202Q) CATALYTIC DOMAIN COMPLEXED WITH RO-26-2812 1C3I ; 1.83 ; HUMAN STROMELYSIN-1 CATALYTIC DOMAIN COMPLEXED WITH RO-26-2812 8GXL ; 2.4 ; HUMAN SUGP1 433-577 8GXM ; 2.81 ; HUMAN SUGP1 433-586 1ZD1 ; 2.24 ; Human Sulfortransferase SULT4A1 2GWH ; 1.8 ; Human Sulfotranferase SULT1C2 in complex with PAP and pentachlorophenol 2H8K ; 3.2 ; Human Sulfotranferase SULT1C3 in complex with PAP 2Z5F ; 2.1 ; Human sulfotransferase Sult1b1 in complex with PAP 2AD1 ; 2.0 ; Human Sulfotransferase SULT1C2 2D06 ; 2.3 ; Human Sult1A1 Complexed With Pap and estradiol 1LS6 ; 1.9 ; Human SULT1A1 complexed with PAP and p-Nitrophenol 1CJM ; 2.4 ; HUMAN SULT1A3 WITH SULFATE BOUND 3KYC ; 2.45 ; Human SUMO E1 complex with a SUMO1-AMP mimic 3KYD ; 2.61 ; Human SUMO E1~SUMO1-AMP tetrahedral intermediate mimic 6WMG ; 1.9 ; Human Sun2 (500-717) 4DXT ; 2.22 ; Human SUN2 (AA 522-717) 4DXR ; 2.32 ; Human SUN2-KASH1 complex 4DXS ; 2.71 ; Human SUN2-KASH2 complex 6WME ; 1.53 ; Human Sun2-KASH3 complex 6WMD ; 1.5 ; Human Sun2-KASH4 complex 6WMF ; 2.6 ; Human Sun2-KASH5 complex 1M1L ; 2.65 ; Human Suppressor of Fused (N-terminal domain) 3DBZ ; 1.8 ; human surfactant protein D 7U4Q ; 1.56 ; Human Synaptotagmin-1 C2A Y181F Ca2+ bound 7TX9 ; 1.34 ; Human Synaptotagmin-1 C2B Y312F Ca2+ bound 7TUA ; 1.35 ; Human Synaptotagmin-1 C2B Y312F without Ca2+ 3IFD ; 1.9 ; Human synthetic monocyte chemoattractant protein 1 (MCP-1) 5F71 ; 2.404 ; Human T-cell immunoglobulin and mucin domain protein 3 (hTIM-3) 5DZN ; 2.3 ; human T-cell immunoglobulin and mucin domain protein 4 5F7F ; 1.502 ; Human T-cell immunoglobulin and mucin domain protein 4 (hTIM-4) 5F7H ; 2.5 ; Human T-cell immunoglobulin and mucin domain protein 4 (hTIM-4) complex with phosphoserine 2IUL ; 2.01 ; Human tACE g13 mutant 2IUX ; 2.8 ; Human tACE mutant g1234 6U4K ; 2.555 ; Human talin2 residues 1-403 4W6E ; 1.95 ; Human Tankyrase 1 with small molecule inhibitor 3KR7 ; 1.95 ; Human tankyrase 2 - catalytic PARP domain 3MHJ ; 1.8 ; Human tankyrase 2 - catalytic PARP domain in complex with 1-methyl-3-(trifluoromethyl)-5h-benzo[c][1,8]naphtyridine-6-one 3MHK ; 2.3 ; Human tankyrase 2 - catalytic PARP domain in complex with 2-(2-pyridyl)-7,8-dihydro-5h-thiino[4,3-d]pyrimidin-4-ol 3P0N ; 1.9 ; Human Tankyrase 2 - Catalytic PARP domain in complex with an inhibitor 3P0P ; 2.49 ; Human Tankyrase 2 - Catalytic PARP domain in complex with an inhibitor 3P0Q ; 1.9 ; Human Tankyrase 2 - Catalytic PARP domain in complex with an inhibitor 4M7B ; 1.95 ; Human tankyrase 2 - catalytic Parp domain in complex with an inhibitor UPF1854 3KR8 ; 2.1 ; Human tankyrase 2 - catalytic PARP domain in complex with an inhibitor XAV939 5BXO ; 1.334 ; Human Tankyrase-2 in Complex with Macrocyclised Extended Peptide cp4n2m3 5BXU ; 1.35 ; Human Tankyrase-2 in Complex with Macrocyclised Extended Peptide cp4n4m5 4NFM ; 2.12 ; Human tau tubulin kinase 1 (TTBK1) 4NFN ; 1.42 ; Human tau tubulin kinase 1 (TTBK1) complexed with 3-({5-[(4-amino-4-methylpiperidin-1-yl)methyl]pyrrolo[2,1-f][1,2,4]triazin-4-yl}amino)-5-bromophenol 1CDW ; 1.9 ; HUMAN TBP CORE DOMAIN COMPLEXED WITH DNA 1H6F ; 1.7 ; Human TBX3, a transcription factor responsible for ulnar-mammary syndrome, bound to a palindromic DNA site 6OD4 ; 1.699 ; Human TCF4 C-terminal bHLH domain in Complex with 11-bp Oligonucleotide Containing E-box Sequence 6OD5 ; 2.05 ; Human TCF4 C-terminal bHLH domain in Complex with 12-bp Oligonucleotide Containing E-box Sequence with 5-carboxylcytosines 6OD3 ; 1.494 ; Human TCF4 C-terminal bHLH domain in Complex with 13-bp Oligonucleotide Containing E-box Sequence 4FNC ; 2.493 ; Human TDG in a post-reactive complex with 5-hydroxymethyluracil (5hmU) 4JGC ; 2.582 ; Human TDG N140A mutant IN A COMPLEX WITH 5-carboxylcytosine (5caC) 7LU7 ; 2.3 ; Human TDO (hTDO) in complex with NLG919 analog 5INO ; 3.205 ; Human Tdp2 reaction product (5'-phosphorylated DNA)-Mg2+ complex 5GVD ; 1.623 ; Human TDRD3 DUF1767-OB domains 3L15 ; 2.0 ; Human Tead2 transcriptional factor 7ZJQ ; 2.095 ; Human TEAD3 in complex with 1-Cyclopentyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid 7TRF ; 3.7 ; Human telomerase catalytic core RNP with H2A/H2B 7TRD ; 3.3 ; Human telomerase catalytic core structure at 3.3 Angstrom 7TRE ; 3.5 ; Human telomerase catalytic core with shelterin protein TPP1 7TRC ; 3.3 ; Human telomerase H/ACA RNP at 3.3 Angstrom 2HY9 ; ; Human telomere DNA quadruplex structure in K+ solution hybrid-1 form 2JPZ ; ; Human telomere DNA quadruplex structure in K+ solution hybrid-2 form 2KKA ; ; Human telomere DNA two-tetrad quadruplex structure in K+ solution 8JIH ; ; human telomere two-quartet G-quadruplex at pH 5.0 8JIC ; ; human telomere two-quartet G-quadruplex at pH 7.0 7QVQ ; 2.4 ; Human telomeric DNA G-quadruplex of a gold(III) complex containing the 2,4,6-tris (2-pyrimidyl)-1,3,5-triazine ligand 2E4I ; ; Human Telomeric DNA mixed-parallel/antiparallel quadruplex under Physiological Ionic Conditions Stabilized by Proper Incorporation of 8-Bromoguanosines 2MS6 ; ; Human Telomeric G-quadruplex DNA sequence (TTAGGGT)4 complexed with Flavonoid Quercetin 6IA0 ; ; Human telomeric G-quadruplex with 8-oxo-G substitution in the central G-quartet 6IA4 ; ; Human telomeric G-quadruplex with 8-oxo-G substitution in the outer G-quartet 6CMX ; 3.1 ; Human Teneurin 2 extra-cellular region 6VHH ; 2.97 ; Human Teneurin-2 and human Latrophilin-3 binary complex 7PLP ; 1.4 ; Human Teneurin-4 C-rich domain 7BAO ; 2.7 ; human Teneurin4 Mut C1 7BAN ; 2.7 ; human Teneurin4 Mut C2 7BAM ; 3.5 ; human Teneurin4 WT C2 4BZR ; 1.84 ; Human testis angiotensin converting enzyme in complex with K-26 7NE3 ; 2.26 ; Human TET2 in complex with favourable DNA substrate. 7NE6 ; 2.3 ; Human TET2 in complex with unfavourable DNA substrate. 1A4I ; 1.5 ; HUMAN TETRAHYDROFOLATE DEHYDROGENASE / CYCLOHYDROLASE 3ONZ ; 2.087 ; Human tetrameric hemoglobin: proximal nitrite ligand at beta 1HTN ; 2.8 ; HUMAN TETRANECTIN, A TRIMERIC PLASMINOGEN BINDING PROTEIN WITH AN ALPHA-HELICAL COILED COIL 1NVP ; 2.1 ; HUMAN TFIIA/TBP/DNA COMPLEX 4ROE ; 2.2 ; Human TFIIB-related factor 2 (Brf2) and TBP bound to RPPH1 promoter 4ROD ; 2.7 ; Human TFIIB-related factor 2 (Brf2) and TBP bound to TRNAU1 promoter 4ROC ; 1.9 ; Human TFIIB-related factor 2 (Brf2) and TBP bound to U6#2 promoter 6MZC ; 4.5 ; Human TFIID BC core 6MZM ; 7.5 ; Human TFIID bound to promoter DNA and TFIIA 6MZL ; 23.0 ; Human TFIID canonical state 6MZD ; 9.8 ; Human TFIID Lobe A canonical 6ZUY ; ; Human TFIIS N-terminal domain (TND) 6ZV4 ; ; Human TFIIS N-terminal domain in complex with IWS1 1AIU ; 2.0 ; HUMAN THIOREDOXIN (D60N MUTANT, REDUCED FORM) 1ERU ; 2.1 ; HUMAN THIOREDOXIN (OXIDIZED FORM) 1AUC ; 2.1 ; HUMAN THIOREDOXIN (OXIDIZED WITH DIAMIDE) 1ERT ; 1.7 ; HUMAN THIOREDOXIN (REDUCED FORM) 3KD0 ; 1.7 ; Human thioredoxin C35S,C62S,C69S,C73S mutant showing cadmium chloride bound to the active site 3E3E ; 2.01 ; Human Thioredoxin Double Mutant C35S,C73R 1ERW ; 1.8 ; HUMAN THIOREDOXIN DOUBLE MUTANT WITH CYS 32 REPLACED BY SER AND CYS 35 REPLACED BY SER 1ERV ; 1.65 ; HUMAN THIOREDOXIN MUTANT WITH CYS 73 REPLACED BY SER (REDUCED FORM) 4AYV ; 2.8 ; Human thrombin - inhibitor complex 4AYY ; 2.6 ; Human thrombin - inhibitor complex 4AZ2 ; 2.6 ; Human thrombin - inhibitor complex 2OD3 ; 1.75 ; Human thrombin chimera with human residues 184a, 186, 186a, 186b, 186c and 222 replaced by murine thrombin equivalents. 1HXF ; 2.1 ; HUMAN THROMBIN COMPLEX WITH HIRUDIN VARIANT 1O0D ; 2.44 ; Human Thrombin complexed with a d-Phe-Pro-Arg-type Inhibitor and a C-terminal Hirudin derived exo-site inhibitor 3U8T ; 1.861 ; Human thrombin complexed with D-Phe-Pro-D-Arg-Cys 3U8O ; 1.28 ; Human thrombin complexed with D-Phe-Pro-D-Arg-D-Thr 3U8R ; 1.47 ; Human thrombin complexed with D-Phe-Pro-D-Arg-Ile 2BVR ; 1.25 ; Human thrombin complexed with fragment-based small molecules occupying the S1 pocket 2BVS ; 1.4 ; Human thrombin complexed with fragment-based small molecules occupying the S1 pocket 4AX9 ; 1.9 ; Human thrombin complexed with Napsagatran, RO0466240 1A5G ; 2.06 ; HUMAN THROMBIN COMPLEXED WITH NOVEL SYNTHETIC PEPTIDE MIMETIC INHIBITOR AND HIRUGEN 1B5G ; 2.07 ; HUMAN THROMBIN COMPLEXED WITH NOVEL SYNTHETIC PEPTIDE MIMETIC INHIBITOR AND HIRUGEN 2JH0 ; 1.7 ; Human Thrombin Hirugen Inhibitor complex 2JH5 ; 2.5 ; Human Thrombin Hirugen Inhibitor complex 2JH6 ; 2.21 ; Human Thrombin Hirugen Inhibitor complex 3U98 ; 1.45 ; Human Thrombin In Complex With MI001 3RM2 ; 1.23 ; Human Thrombin in complex with MI003 3RMO ; 1.4 ; Human Thrombin in complex with MI004 3RLW ; 1.69 ; Human Thrombin in complex with MI328 3RLY ; 1.51 ; Human Thrombin in complex with MI329 3U9A ; 1.58 ; Human Thrombin In Complex With MI330 3RML ; 1.53 ; Human Thrombin in complex with MI331 3RMM ; 1.58 ; Human Thrombin in complex with MI332 3T5F ; 1.45 ; Human Thrombin In Complex With MI340 3RMN ; 1.78 ; Human Thrombin in complex with MI341 3UWJ ; 1.5 ; Human Thrombin In Complex With MI353 3RM0 ; 1.34 ; Human Thrombin in complex with MI354 3SHC ; 1.9 ; Human Thrombin In Complex With UBTHR101 3SI3 ; 1.55 ; Human Thrombin In Complex With UBTHR103 3SI4 ; 1.27 ; Human Thrombin In Complex With UBTHR104 3SV2 ; 1.3 ; Human Thrombin In Complex With UBTHR105 3SHA ; 1.52 ; Human Thrombin In Complex With UBTHR97 2PGQ ; 1.8 ; Human thrombin mutant C191A-C220A in complex with the inhibitor PPACK 5EW2 ; 3.59 ; Human thrombin sandwiched between two DNA aptamers: HD22 and HD1-deltaT12 5EW1 ; 2.95 ; Human thrombin sandwiched between two DNA aptamers: HD22 and HD1-deltaT3 1TBZ ; 2.3 ; HUMAN THROMBIN WITH ACTIVE SITE N-METHYL-D PHENYLALANYL-N-[5-(AMINOIMINOMETHYL)AMINO]-1-{{BENZOTHIAZOLYL)CARBONYL] BUTYL]-L-PROLINAMIDE TRIFLUROACETATE AND EXOSITE-HIRUGEN 3BIU ; 2.3 ; Human thrombin-in complex with UB-THR10 3BIV ; 1.8 ; Human thrombin-in complex with UB-THR11 1K21 ; 1.86 ; HUMAN THROMBIN-INHIBITOR COMPLEX 1K22 ; 1.93 ; HUMAN THROMBIN-INHIBITOR COMPLEX 1V7M ; 2.51 ; Human Thrombopoietin Functional Domain Complexed To Neutralizing Antibody TN1 Fab 1V7N ; 3.3 ; Human Thrombopoietin Functional Domain Complexed To Neutralizing Antibody TN1 Fab 2ZKH ; 2.04 ; Human thrombopoietin neutralizing antibody TN1 FAB 2ORV ; 2.3 ; human Thymidine Kinase 1 in complex with TP4A 1E2G ; 1.7 ; Human thymidylate kinase complexed with ADP, TDP and a magnesium-ion 1E99 ; 1.8 ; Human thymidylate kinase complexed with AZTMP and ADP 1E9B ; 1.7 ; Human thymidylate kinase complexed with AZTMP and APPNP 1E9A ; 1.6 ; Human thymidylate kinase complexed with the bisubstrate inhibitor AZTP5A 2XX3 ; 2.0 ; HUMAN THYMIDYLATE KINASE COMPLEXED WITH thymidine butenyl phosphonate monophosphate and ADP 1E2D ; 1.65 ; Human thymidylate kinase complexed with thymidine monophosphate, adenosine diphosphate and a magnesium-ion 1E2F ; 1.6 ; Human thymidylate kinase complexed with thymidine monophosphate, adenosine diphosphate and a magnesium-ion 1E2E ; 2.0 ; Human thymidylate kinase complexed with thymidine monophosphate, adenosine diphosphate,a magnesium-ion and ALf3 1E2Q ; 1.7 ; Human thymidylate kinase complexed with TP5A and a magnesium-ion 2ONB ; 2.7 ; Human Thymidylate Synthase at low salt conditions with PDPA bound 1JUJ ; 3.0 ; Human Thymidylate Synthase Bound to dUMP and LY231514, a Pyrrolo(2,3-d)pyrimidine-based Antifolate 5X5D ; 2.0 ; Human thymidylate synthase bound with dUMP 5X5A ; 2.39 ; Human thymidylate synthase bound with phosphate ion 1JU6 ; 2.89 ; Human Thymidylate Synthase Complex with dUMP and LY231514, A Pyrrolo(2,3-d)pyrimidine-based Antifolate 5WRN ; 2.39 ; Human thymidylate synthase complexed with dCMP 5HS3 ; 3.103 ; Human thymidylate synthase complexed with dUMP and 3-amino-2-benzoyl-4-methylthieno[2,3-b]pyridin-6-ol 5X5Q ; 2.79 ; Human thymidylate synthase complexed with dUMP and raltitrexed 1HVY ; 1.9 ; Human thymidylate synthase complexed with dUMP and Raltitrexed, an antifolate drug, is in the closed conformation 5X66 ; 1.99 ; Human thymidylate synthase in complex with dUMP and methotrexate 5X67 ; 2.13 ; Human thymidylate synthase in complex with dUMP and nolatrexed 4G6W ; 2.3 ; Human Thymidylate Synthase M190K with bound 4-Bromobenzene-1,2,3-triol 4G2O ; 2.25 ; Human Thymidylate Synthase M190K with bound Purpurogallin 3OB7 ; 2.75 ; Human Thymidylate Synthase R163K with Cys 195 covalently modified by Glutathione 2RD8 ; 2.5 ; Human Thymidylate Synthase Stabilized in Active Conformation by R163K Mutation: Asymmetry and Reactivity of Cys195 2RDA ; 2.67 ; Human Thymidylate Synthase Stabilized in Active Conformation by R163K Mutation: Asymmetry and Reactivity of Cys195 5X69 ; 2.69 ; Human thymidylate synthase with a fragment bound in the dimer interface 6U17 ; 1.55 ; Human thymine DNA glycosylase bound to DNA with 2'-F-5-carboxyl-dC substrate analog 3UFJ ; 2.967 ; Human Thymine DNA Glycosylase Bound to Substrate Analog 2'-fluoro-2'-deoxyuridine 6U15 ; 2.4 ; Human thymine DNA glycosylase N140A mutant bound to DNA with 2'-F-5-carboxyl-dC substrate analog 6U16 ; 1.6 ; Human thymine DNA glycosylase N140A mutant bound to DNA with 5-carboxyl-dC substrate 2J4A ; 2.2 ; Human Thyroid hormone receptor beta ligand binding domain in complex with KB131084 7UTZ ; 2.4 ; Human thyrotropin analog TR1402 bound to human Thyrotropin receptor in complex with miniGs399 (composite structure) 7T9M ; 3.1 ; Human Thyrotropin receptor bound by CS-17 Inverse Agonist Fab/Org 274179-0 Antagonist 1FAK ; 2.1 ; HUMAN TISSUE FACTOR COMPLEXED WITH COAGULATION FACTOR VIIA INHIBITED WITH A BPTI-MUTANT 5W06 ; 2.6 ; HUMAN TISSUE FACTOR IN COMPLEX WITH ANTIBODY M1587 1BR9 ; 2.1 ; HUMAN TISSUE INHIBITOR OF METALLOPROTEINASE-2 1KV3 ; 2.8 ; HUMAN TISSUE TRANSGLUTAMINASE IN GDP BOUND FORM 8OVU ; 1.95 ; Human titin immunoglobulin-like 21 domain 6DL4 ; ; Human Titin ZIg10 6WML ; 2.5 ; Human TLR8 bound to the potent agonist, GS-9688 (Selgantolimod) 7UNM ; 2.61 ; Human TMEM175 in an closed state 7UNL ; 2.45 ; Human TMEM175 in an open state 8DHM ; 2.73 ; Human TMEM175 in complex with 4-aminopyridine 8FY5 ; 3.5 ; Human TMEM175-LAMP1 full-length complex 8FYF ; 3.4 ; Human TMEM175-LAMP1 transmembrane domain only complex 8GRS ; 3.3 ; human TMEM63A 8VIS ; 1.59 ; Human TMPRSS11D complexed with a disulfide-linked autoinhibitory DDDDK peptide 7JRA ; 2.1 ; HUMAN TNF-ALPHA IN COMPLEX WITH 2-[5-(3-chloro-4-{[(1R)-1-(2-fluorophenyl)ethyl]amino}quinolin-6-yl)pyrimidin-2-yl]propan-2-ol 5MU8 ; 3.0 ; HUMAN TNF-ALPHA IN COMPLEX WITH JNJ525 7KPB ; 3.0 ; Human TNF-alpha TNFR1 complex bound to conformationally selective antibody 4TWT ; 2.85 ; Human TNFa dimer in complex with the semi-synthetic bicyclic peptide M21 5YGS ; 2.691 ; Human TNFRSF25 death domain 5YGP ; 2.09 ; Human TNFRSF25 death domain mutant-D412E 6RA5 ; 2.9 ; Human tnik in complex with compound 9 6RA7 ; 1.2 ; Human tnik in complex with compound 9 7OCV ; 1.432 ; Human TNKS1 in complex with 3-[4-(1-Hydroxy-1-methyl-ethyl)-phenyl]-6-methyl-2H-pyrrolo[1,2-a]pyrazin-1-one 6QXU ; 1.2 ; Human TNKS1 in complex with 6,8-Difluoro-2-[4-(1-hydroxy-1-methyl-ethyl)-phenyl]-3H-quinazolin-4-one 1ZIW ; 2.1 ; Human Toll-like Receptor 3 extracellular domain structure 7VDD ; 3.74 ; Human TOM complex with cross-linking 7VD2 ; 2.53 ; Human TOM complex without cross-linking 7KDT ; 3.05 ; Human Tom70 in complex with SARS CoV2 Orf9b 5GVE ; 3.606 ; Human TOP3B-TDRD3 complex 1ZXM ; 1.87 ; Human Topo IIa ATPase/AMP-PNP 1R49 ; 3.13 ; Human topoisomerase I (Topo70) double mutant K532R/Y723F 1NH3 ; 3.1 ; Human Topoisomerase I Ara-C Complex 1A35 ; 2.5 ; HUMAN TOPOISOMERASE I/DNA COMPLEX 4FM9 ; 2.901 ; Human topoisomerase II alpha bound to DNA 7QFN ; 2.621 ; Human Topoisomerase II Beta ATPase ADP 7ZBG ; 2.3 ; Human Topoisomerase II Beta ATPase ADP 7QFO ; 1.9 ; Human Topoisomerase II Beta ATPase AMPPNP 5ZAD ; 2.54 ; Human topoisomerase II beta in complex with DNA 5GWK ; 3.152 ; Human topoisomerase IIalpha in complex with DNA and etoposide 4J3N ; 2.3 ; Human Topoisomerase Iibeta in complex with DNA 4G0W ; 2.696 ; Human topoisomerase iibeta in complex with DNA and ametantrone 4G0U ; 2.7 ; Human topoisomerase IIbeta in complex with DNA and amsacrine 3QX3 ; 2.162 ; Human topoisomerase IIbeta in complex with DNA and etoposide 4G0V ; 2.548 ; Human topoisomerase iibeta in complex with DNA and mitoxantrone 5GVC ; 2.436 ; Human Topoisomerase IIIb topo domain 7LJA ; 2.77 ; Human TRAAK K+ channel FHEIG mutant A198E in a Tl+ bound conductive conformation 7LJ4 ; 2.782 ; Human TRAAK K+ channel FHEIG mutant A270P in a K+ bound conductive conformation 7LJ5 ; 2.26 ; Human TRAAK K+ channel FHIEG mutant A198E in a K+ bound conductive conformation 4WFE ; 2.5 ; Human TRAAK K+ channel in a K+ bound conductive conformation 4WFF ; 2.5 ; Human TRAAK K+ channel in a K+ bound nonconductive conformation 4WFG ; 3.0 ; Human TRAAK K+ channel in a Tl+ bound conductive conformation 4WFH ; 3.01 ; Human TRAAK K+ channel in a Tl+ bound nonconductive conformation 7LJB ; 2.97 ; Human TRAAK K+ channel mutant G158D in a K+ bound conductive conformation 6YCS ; 3.05 ; Human Transcription Cofactor PC4 DNA-binding domain in complex with full phosphorothioate 5-10-5 2'-O-methyl DNA gapmer antisense oligonucleotide. 1NFA ; ; HUMAN TRANSCRIPTION FACTOR NFATC DNA BINDING DOMAIN, NMR, 10 STRUCTURES 7E4W ; 2.9 ; Human Transcriptional Co-activator PC4 (C-terminal Domain) in space group P1211 1PCF ; 1.74 ; HUMAN TRANSCRIPTIONAL COACTIVATOR PC4 C-TERMINAL DOMAIN 1DTG ; 2.4 ; HUMAN TRANSFERRIN N-LOBE MUTANT H249E 1JQF ; 1.85 ; Human Transferrin N-Lobe Mutant H249Q 1TGK ; 3.3 ; HUMAN TRANSFORMING GROWTH FACTOR BETA 3, CRYSTALLIZED FROM PEG 4000 6I9J ; 2.0 ; Human transforming growth factor beta2 in a tetragonal crystal form 1TGJ ; 2.0 ; HUMAN TRANSFORMING GROWTH FACTOR-BETA 3, CRYSTALLIZED FROM DIOXANE 8WA8 ; 1.48 ; Human transketolase in complex with phosphite 4KXY ; 1.26 ; Human transketolase in complex with ThDP analogue (R)-2-(1,2-dihydroxyethyl)-3-deaza-ThDP 4KXU ; 0.98 ; Human transketolase in covalent complex with donor ketose D-fructose-6-phosphate 4KXX ; 1.03 ; Human transketolase in covalent complex with donor ketose D-sedoheptulose-7-phosphate 4KXV ; 0.97 ; Human transketolase in covalent complex with donor ketose D-xylulose-5-phosphate, crystal 1 4KXW ; 0.97 ; Human transketolase in covalent complex with donor ketose D-xylulose-5-phosphate, crystal 2 8WA9 ; 1.5 ; Human transketolase soaked with donor ketose D-fructose 8WAA ; 1.5 ; Human transketolase soaked with donor ketose D-xylulose 6HAD ; 1.04 ; Human transketolase variant E160Q 6HA3 ; 1.08 ; Human transketolase variant E160Q in covalent complex with donor ketose D-fructose-6-phosphate 6RJB ; 1.15 ; Human transketolase variant T382E 2IF1 ; ; HUMAN TRANSLATION INITIATION FACTOR EIF1, NMR, 29 STRUCTURES 1D7Q ; ; HUMAN TRANSLATION INITIATION FACTOR EIF1A 5OA9 ; 1.8 ; Human translation re-initiation complex containing eIF2D 1Z7J ; 2.2 ; Human transthyretin (also called prealbumin) complex with 3, 3',5,5'-tetraiodothyroacetic acid (t4ac) 1BMZ ; 2.0 ; HUMAN TRANSTHYRETIN (PREALBUMIN) 1BM7 ; 2.0 ; HUMAN TRANSTHYRETIN (PREALBUMIN) COMPLEX WITH FLUFENAMIC ACID (2-[[3-(TRIFLUOROMETHYL)PHENYL]AMINO] BENZOIC ACID) 5E23 ; 1.41 ; Human transthyretin (TTR) complexed with (2,7-Dibromo-fluoren-9-ylideneaminooxy)-acetic acid 5E4A ; 1.33 ; Human transthyretin (TTR) complexed with (2,7-Dichloro-fluoren-9-ylideneaminooxy)-acetic acid. 6TI9 ; 1.45 ; Human transthyretin (TTR) complexed with (E)-3-(((3,5-dibromo-2-hydroxybenzylidene)amino)oxy)propanoic acid. 6TJN ; 1.702 ; Human transthyretin (TTR) complexed with (E)-3-(((4-hydroxybenzylidene)amino)oxy)propanoic acid 3GS7 ; 1.8 ; Human transthyretin (TTR) complexed with (E)-3-(2-methoxybenzylideneaminooxy)propanoic acid (inhibitor 13) 4TQP ; 1.58 ; Human transthyretin (TTR) complexed with (R)-3-(9H-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide in a dual binding mode 3GS0 ; 1.85 ; Human transthyretin (TTR) complexed with (S)-3-(9H-fluoren-9-ylideneaminooxy)-2-methylpropanoic acid (inhibitor 16) 5E4O ; 1.5 ; Human transthyretin (TTR) complexed with (Z)-((3,4-Dichloro-phenyl)-methyleneaminooxy)-acetic acid 3P3S ; 1.6 ; Human transthyretin (TTR) complexed with (Z)-5-(3,5-dibromo-4-hydroxybenzylidene)-imino-1-methylimidazolidin-4-one 4PM1 ; 1.23 ; Human transthyretin (TTR) complexed with 16-alpha-bromo-estradiol 3M1O ; 1.2 ; Human Transthyretin (TTR) complexed with 2-((3,5-dichloro-4-hydroxyphenyl)amino)benzoic acid 2QGD ; 1.5 ; Human transthyretin (TTR) complexed with 2-(3,5-Dibromo-4-hydroxyphenyl)benzoxazole 2QGC ; 1.3 ; Human transthyretin (TTR) complexed with 2-(3,5-Dimethyl-4-hydroxyphenyl)benzoxazole 2QGE ; 1.45 ; Human transthyretin (TTR) complexed with 2-(3,5-Dimethylphenyl)benzoxazole 4TQH ; 1.511 ; Human transthyretin (TTR) complexed with 3-(9H-fluoren-9-ylideneaminooxy)ethanoic acid 3GS4 ; 1.78 ; Human transthyretin (TTR) complexed with 3-(9H-fluoren-9-ylideneaminooxy)propanoic acid (inhibitor 15) 4TQI ; 1.25 ; Human transthyretin (TTR) complexed with 3-(9H-fluoren-9-ylideneaminooxy)propanoic acid in a dual binding mode 3P3T ; 1.45 ; Human transthyretin (TTR) complexed with 4-(3-(2-flourophenoxy)propyl)-3,5-dimethyl-1H-pyrazole 5EZP ; 2.5 ; Human transthyretin (TTR) complexed with 4-hydroxy-chalcone 3P3U ; 1.5 ; Human transthyretin (TTR) complexed with 5-(2-ethoxyphenyl)-3-(pyridin-4-yl)-1,2,4-oxadiazole 3IPB ; 1.9 ; Human Transthyretin (TTR) complexed with a palindromic bivalent amyloid inhibitor (11 carbon linker). 3IPE ; 1.4 ; Human Transthyretin (TTR) complexed with a palindromic bivalent amyloid inhibitor (7 carbon linker). 2F8I ; 1.541 ; Human transthyretin (TTR) complexed with Benzoxazole 2FBR ; 1.46 ; Human transthyretin (TTR) complexed with bivalant amyloid inhibitor (4 carbon linker) 2FLM ; 1.65 ; Human transthyretin (TTR) complexed with bivalant amyloid inhibitor (6 carbon linker) 4PMF ; 1.35 ; Human transthyretin (TTR) complexed with curcumin 3D2T ; 1.85 ; Human transthyretin (ttr) complexed with diflunisal 2F7I ; 1.6 ; Human transthyretin (TTR) complexed with diflunisal analogues- TTR. 2',6'-Difluorobiphenyl-4-carboxylic Acid 2B77 ; 1.7 ; Human transthyretin (TTR) complexed with Diflunisal analogues- TTR.2',4'-DICHLORO-4-HYDROXY-1,1'-BIPHENYL-3-CARBOXYLIC ACID 2B9A ; 1.54 ; Human transthyretin (TTR) complexed with diflunisal analogues- TTR.3',5'-difluorobiphenyl-4-carboxylic acid 4PME ; 1.264 ; Human transthyretin (TTR) complexed with ferulic acid and curcumin. 2G5U ; 1.8 ; Human Transthyretin (TTR) Complexed with Hydroxylated polychlorinated Biphenyl-4,4'-dihydroxy-3,3',5,5'-tetrachlorobiphenyl 2G9K ; 1.85 ; Human Transthyretin (TTR) Complexed with Hydroxylated polychlorinated Biphenyl-4-hydroxy-2',3,3',4',5-Pentachlorobiphenyl 2GAB ; 1.85 ; Human Transthyretin (TTR) Complexed with Hydroxylated polychlorinated Biphenyl-4-hydroxy-3,3',5,4'-tetrachlorobiphenyl 3ESO ; 1.31 ; Human transthyretin (TTR) complexed with N-(3,5-Dibromo-4-hydroxyphenyl)-2,5-dichlorobenzamide 3ESN ; 1.35 ; Human transthyretin (TTR) complexed with N-(3,5-Dibromo-4-hydroxyphenyl)-2,6-dimethylbenzamide 3ESP ; 1.31 ; Human transthyretin (TTR) complexed with N-(3,5-Dibromo-4-hydroxyphenyl)-3,5-dimethyl-4-hydroxybenzamide 7Z60 ; 1.4 ; Human transthyretin (TTR) complexed with Quercetin 3-O-beta-D-galactoside 3GLZ ; 1.78 ; Human Transthyretin (TTR) complexed with(E)-3-(2-(trifluoromethyl)benzylideneaminooxy)propanoic acid (inhibitor 11) 2QGB ; 1.4 ; Human transthyretin (TTR) in Apo-form 3CN3 ; 1.8 ; Human transthyretin (TTR) in complex with 1,3-Dibromo-2-hydroxy-5-phenoxybenzene 3CN2 ; 1.52 ; Human transthyretin (TTR) in complex with 3,5-Dibromo-4-hydroxybiphenyl 3CN1 ; 1.52 ; Human transthyretin (TTR) in complex with 3,5-Dibromo-4-hydroxystilbene 3CN0 ; 1.52 ; Human transthyretin (TTR) in complex with 3,5-Dimethyl-4-hydroxystilbene 3CN4 ; 1.4 ; Human transthyretin (TTR) in complex with N-(3,5-Dibromo-4-hydroxyphenyl)benzamide 8VE0 ; 3.1 ; Human transthyretin covalently modified with A2-derived stilbene in the compressed conformation 7Q3I ; 1.55 ; Human Transthyretin expressed in Vibrio natriegens 4MRC ; 1.54 ; Human Transthyretin Ser52Pro Mutant 7ULK ; 2.34 ; Human TRAP1 NM in complex with 42C 8ETM ; 3.2 ; Human triacylglycerol synthesizing enzyme DGAT1 in complex with DGAT1IN1 inhibitor 8ESM ; 3.2 ; Human triacylglycerol synthesizing enzyme DGAT1 in complex with T863 inhibitor 7NVN ; 3.0 ; Human TRiC complex in closed state with nanobody and tubulin bound 7NVL ; 2.5 ; Human TRiC complex in closed state with nanobody bound (Consensus Map) 7NVM ; 3.1 ; Human TRiC complex in closed state with nanobody Nb18, actin and PhLP2A bound 7NVO ; 3.5 ; Human TRiC complex in open state with nanobody bound 7LUM ; 4.5 ; Human TRiC in ATP/AlFx closed state 8HKI ; 3.1 ; Human TRiC open state 8I1U ; 3.24 ; Human TRiC-PhLP2A complex in the closed state 8I9U ; 3.1 ; Human TRiC-PhLP2A complex in the open state 8IB8 ; 4.42 ; Human TRiC-PhLP2A-actin complex in the closed state 7X0S ; 3.1 ; Human TRiC-tubulin-S3 7LUP ; 6.2 ; Human TRiC/CCT complex with reovirus outer capsid protein sigma-3 7SJ4 ; 2.86 ; Human Trio residues 1284-1959 in complex with Rac1 7RDE ; 1.31 ; Human Triose Phosphate Isomerase Q181P 7UXB ; 2.0 ; Human triosephosphate isomerase mutant G122R 7UXV ; 2.15 ; human triosephosphate isomerase mutant G122R 7SX1 ; 2.23 ; human triosephosphate isomerase mutant v154m 7T0Q ; 2.0 ; human triosephosphate isomerase mutant v154m 6C2G ; 2.3 ; Human triosephosphate isomerase mutant V231M 1WYI ; 2.2 ; human triosephosphate isomerase of new crystal form 4AOJ ; 2.75 ; Human TrkA in complex with the inhibitor AZ-23 8OMR ; 3.3 ; Human tRNA guanine transglycosylase (TGT) bound to tRNAAsp 7NQ4 ; 2.88 ; Human tRNA guanine transglycosylase (TGT), RNA-bound covalent intermediate 7UXA ; 3.28 ; Human tRNA Splicing Endonuclease Complex bound to pre-tRNA-ARG 8SP8 ; 2.79 ; Human TRP channel TRPV6 in cNW30 nanodiscs inhibited by tetrahydrocannabivarin (THCV) 7E4T ; 3.0 ; Human TRPC5 apo state structure at 3 angstrom 7WDB ; 2.4 ; Human TRPC5 channel in complex with riluzole 6YSN ; 3.0 ; Human TRPC5 in complex with Pico145 (HC-608) 6PUU ; 3.7 ; Human TRPM2 bound to 8-Br-cADPR and calcium 6PUR ; 4.4 ; Human TRPM2 bound to ADPR 6PUS ; 3.7 ; Human TRPM2 bound to ADPR and calcium 6PUO ; 3.3 ; Human TRPM2 in the apo state 6MJ2 ; 6.36 ; Human TRPM2 ion channel in a calcium- and ADPR-bound state 6MIZ ; 6.1 ; Human TRPM2 ion channel in an ADPR-bound state 6MIX ; 3.6 ; Human TRPM2 ion channel in apo state 6BQV ; 3.1 ; Human TRPM4 ion channel in lipid nanodiscs in a calcium-bound state 6BQR ; 3.2 ; Human TRPM4 ion channel in lipid nanodiscs in a calcium-free state 5WJ9 ; 3.49 ; Human TRPML1 channel structure in agonist-bound open conformation 5WJ5 ; 3.72 ; Human TRPML1 channel structure in closed conformation 8GKG ; 4.38 ; Human TRPV3 pentamer structure 8GKA ; 2.55 ; Human TRPV3 tetramer structure, closed conformation 7AA5 ; 4.18 ; Human TRPV4 structure in presence of 4a-PDD 2FPZ ; 2.0 ; Human tryptase with 2-amino benzimidazole 4PW8 ; 2.902 ; Human tryptophan 2,3-dioxygenase 4D2S ; 2.5 ; Human TTK in complex with a Dyrk1B inhibitor 5K1N ; 1.81 ; Human TTR altered by a rhenium tris-carbonyl Pyta-C12 derivative 5K1J ; 1.69 ; Human TTR altered by a rhenium tris-carbonyl Pyta-C8 derivative 5N7C ; 2.45 ; Human TTR altered conformation from soaking in CuCl2. 5N5Q ; 2.53 ; Human TTR altered conformation from soaking in iron chloride. 5N62 ; 1.8 ; Human TTR crystals soaked in manganese chloride. 1H7C ; 1.8 ; human tubulin chaperone cofactor a 4HT1 ; 2.498 ; Human TWEAK in complex with the Fab fragment of a neutralizing antibody 4I9W ; 2.75 ; Human two pore domain K+ channel TRAAK (K2P4.1) - Fab complex structure 7AX4 ; 2.12 ; Human TYK2 pseudokinase domain (575-869) in complex with 5-(4-Fluoro-phenyl)-2-ureido-thiophene-3-carboxylic acid amide. 3ZON ; 2.15 ; Human TYK2 pseudokinase domain bound to a kinase inhibitor 2GZ5 ; 1.1 ; Human Type 1 methionine aminopeptidase in complex with ovalicin at 1.1 Ang 6DQJ ; 3.49 ; Human type 3 1,4,5-inositol trisphosphate receptor in a ligand-free state 8TKF ; 3.2 ; Human Type 3 IP3 Receptor - Activated State (+IP3/ATP/JD Ca2+) 8TLA ; 3.2 ; Human Type 3 IP3 Receptor - Higher-Order Inhibited State - Symmetry Mate 1 8TKH ; 3.5 ; Human Type 3 IP3 Receptor - Labile Resting State 1 (+IP3/ATP) 8TKI ; 3.6 ; Human Type 3 IP3 Receptor - Labile Resting State 2 (+IP3/ATP) 8TKD ; 3.7 ; Human Type 3 IP3 Receptor - Preactivated State (+IP3/ATP) 8TKE ; 3.6 ; Human Type 3 IP3 Receptor - Preactivated+Ca2+ State (+IP3/ATP/JD Ca2+) 8TK8 ; 2.7 ; Human Type 3 IP3 Receptor - Resting State (+IP3/ATP) 8TKG ; 2.5 ; Human Type 3 IP3 Receptor - Resting State (+IP3/ATP) 8TL9 ; 3.3 ; Human Type 3 IP3 Receptor - Resting State (+IP3/ATP) 3DYD ; 2.3 ; Human Tyrosine Aminotransferase 1KAK ; 2.5 ; Human Tyrosine Phosphatase 1B Complexed with an Inhibitor 1KAV ; 2.35 ; Human Tyrosine Phosphatase 1B Complexed with an Inhibitor 1QZQ ; 2.4 ; human Tyrosyl DNA phosphodiesterase 7LHX ; 2.2 ; Human U1A protein with F37M and F77M mutations for improved phasing 1A3S ; 2.8 ; HUMAN UBC9 6SYF ; 1.9 ; Human Ubc9 with covalent isopeptide ligand 1YQB ; 2.0 ; Human Ubiquilin 3 1Y6L ; 1.85 ; Human ubiquitin conjugating enzyme E2E2 5DK8 ; 1.32 ; Human ubiquitin in the P1 space group 3GUC ; 2.25 ; Human Ubiquitin-activating Enzyme 5 in Complex with AMPPNP 3H8V ; 2.0 ; Human Ubiquitin-activating Enzyme 5 in Complex with ATP 2ESO ; 1.5 ; Human Ubiquitin-Conjugating Enzyme (E2) UbcH5b mutant Ile37Ala 2ESP ; 1.52 ; Human ubiquitin-conjugating enzyme (E2) UbcH5b mutant Ile88Ala 2ESQ ; 1.44 ; Human Ubiquitin-Conjugating Enzyme (E2) UbcH5b mutant Ser94Gly 2ESK ; 1.36 ; Human Ubiquitin-Conjugating Enzyme (E2) UbcH5b, wild-type 2OB4 ; 2.4 ; Human Ubiquitin-Conjugating Enzyme CDC34 2Z5D ; 2.1 ; Human ubiquitin-conjugating enzyme E2 H 2F4W ; 2.0 ; Human ubiquitin-conjugating enzyme E2 J2 1U9A ; 2.0 ; HUMAN UBIQUITIN-CONJUGATING ENZYME UBC9 1BG2 ; 1.8 ; HUMAN UBIQUITOUS KINESIN MOTOR DOMAIN 5TDD ; 1.55 ; Human UBR-box from UBR2 in complex with HIFS peptide 1HZJ ; 1.5 ; HUMAN UDP-GALACTOSE 4-EPIMERASE: ACCOMMODATION OF UDP-N-ACETYLGLUCOSAMINE WITHIN THE ACTIVE SITE 6C5Z ; 2.95 ; Human UDP-Glucose Dehydrogenase A225L substitutuion with UDP-glucose and NADH bound 6C58 ; 2.198 ; Human UDP-Glucose Dehydrogenase A225L substitutuion with UDP-xylose bound 6C5A ; 2.3 ; Human UDP-Glucose Dehydrogenase with UDP- Glc and NADH bound 5VR8 ; 1.999 ; Human UDP-Glucose Dehydrogenase with UDP-Xylose Bound to the Co-enzyme Site 4R7P ; 3.35 ; Human UDP-glucose pyrophosphorylase isoform 1 in complex with UDP-glucose 6W92 ; 1.3 ; Human UHRF1 TTD domain 6VYJ ; 1.39 ; Human UHRF1 TTD domain in complex with a fragment 2EAW ; 2.88 ; Human UMP Synthase (C-terminal Domain- Orotidine 5'-Monophosphate Decarboxylase) 2P1F ; 1.76 ; Human UMP Synthase (C-terminal Domain-Orotidine 5'-Monophosphate Decarboxylase) 4V2A ; 2.4 ; human Unc5A ectodomain 3O23 ; 2.1 ; Human unphosphorylated IGF1-R Kinase domain in complex with an hydantoin inhibitor 1AKZ ; 1.57 ; HUMAN URACIL-DNA GLYCOSYLASE 8BLO ; 2.9 ; Human Urea Transporter UT-A (N-Terminal Domain Model) 8BLP ; 2.6 ; Human Urea Transporter UT-B/UT1 in Complex with Inhibitor UTBinh-14 3NBQ ; 2.3 ; Human uridine phosphorylase 1 (hUPP1) with 5-fluorouracil 2RMF ; ; Human Urocortin 1 2RMG ; ; Human Urocortin 2 2RMH ; ; Human Urocortin 3 3GW3 ; 1.7 ; human UROD mutant K297N 4JK6 ; 2.2 ; Human urokinase-type Plasminogen Activator (uPA) in complex with a bicyclic peptide inhibitor (UK18-D-Aba) 4JK5 ; 1.55 ; Human urokinase-type Plasminogen Activator (uPA) in complex with a bicyclic peptide inhibitor (UK18-D-Ser) 4GLY ; 1.518 ; Human urokinase-type plasminogen activator uPA in complex with the two-disulfide bridge peptide UK504 6WM2 ; 3.1 ; Human V-ATPase in state 1 with SidK and ADP 6WM3 ; 3.4 ; Human V-ATPase in state 2 with SidK and ADP 7U4T ; 3.6 ; Human V-ATPase in state 2 with SidK and mEAK-7 6WM4 ; 3.6 ; Human V-ATPase in state 3 with SidK and ADP 3OP5 ; 2.4 ; Human vaccinia-related kinase 1 1VR2 ; 2.4 ; HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR 2 (KDR) KINASE DOMAIN 5EW3 ; 2.5 ; Human Vascular Endothelial Growth Factor Receptor 2 (KDR) Kinase Domain in complex with AAL993 6LPG ; 2.3 ; human VASH1-SVBP complex 1USE ; 1.3 ; human VASP tetramerisation domain 1USD ; 1.7 ; human VASP tetramerisation domain L352M 3B0T ; 1.3 ; Human VDR ligand binding domain in complex with maxacalcitol 3R4L ; 2.7 ; Human very long half life Plasminogen Activator Inhibitor type-1 1VHR ; 2.1 ; HUMAN VH1-RELATED DUAL-SPECIFICITY PHOSPHATASE 1J4X ; 2.75 ; HUMAN VH1-RELATED DUAL-SPECIFICITY PHOSPHATASE C124S MUTANT-PEPTIDE COMPLEX 1GK7 ; 1.4 ; HUMAN VIMENTIN COIL 1A FRAGMENT (1A) 1GK4 ; 2.3 ; HUMAN VIMENTIN COIL 2B FRAGMENT (CYS2) 1GK6 ; 1.9 ; Human vimentin coil 2B fragment linked to GCN4 leucine zipper (Z2B) 2GWW ; 2.72 ; Human vinculin (head domain, Vh1, residues 1-258) in complex with Shigella's IpaA vinculin binding site (residues 602-633) 2HSQ ; 3.97 ; Human vinculin (head domain, Vh1, residues 1-258) in complex with Shigella's IpaA vinculin binding site 2 (residues 565-587) 4PR9 ; 3.2 ; Human Vinculin (residues 891-1066) in complex with PIP 1RKE ; 2.35 ; Human vinculin head (1-258) in complex with human vinculin tail (879-1066) 1RKC ; 2.7 ; Human vinculin head (1-258) in complex with talin's vinculin binding site 3 (residues 1944-1969) 1YDI ; 1.8 ; Human Vinculin Head Domain (VH1, 1-258) in Complex with Human Alpha-Actinin's Vinculin-Binding Site (Residues 731-760) 3TJ6 ; 2.76 ; human vinculin head domain (Vh1, residues 1-258) in complex with the vinculin binding site of the surface cell antigen 4 (sca4-VBS-C; residues 812-835) from Rickettsia rickettsii 3TJ5 ; 1.99 ; human vinculin head domain (Vh1, residues 1-258) in complex with the vinculin binding site of the surface cell antigen 4 (sca4-VBS-N; residues 412-434) from Rickettsia rickettsii 3S90 ; 1.97 ; Human vinculin head domain Vh1 (residues 1-252) in complex with murine talin (VBS33; residues 1512-1546) 4DJ9 ; 2.25 ; Human vinculin head domain Vh1 (residues 1-258) in complex with the talin vinculin binding site 50 (VBS50, residues 2078-2099) 1SYQ ; 2.42 ; Human vinculin head domain VH1, residues 1-258, in complex with human talin's vinculin binding site 1, residues 607-636 5L0J ; 4.0 ; Human vinculin R903Q, D907R, R910T mutant(residues 891-1066) 2IBF ; 3.2 ; Human vinculin's head domain (Vh1, residues 1-258) in complex with two vinculin binding sites of Shigella flexneri's IpaA (residues 565-587) 6WV5 ; 2.8 ; Human VKOR C43S mutant with vitamin K1 epoxide 6WV4 ; 3.012 ; Human VKOR C43S with warfarin 6WVH ; 1.99 ; Human VKOR with Brodifacoum 6WV7 ; 2.483 ; Human VKOR with Chlorophacinone 6WV6 ; 2.7 ; Human VKOR with phenindione 6WV3 ; 2.197 ; Human VKOR with warfarin 8JT9 ; 2.97 ; Human VMAT2 complex with ketanserin 8JTC ; 3.52 ; Human VMAT2 complex with reserpine 8JSW ; 2.84 ; Human VMAT2 complex with serotonin 8JTA ; 3.36 ; Human VMAT2 complex with tetrabenazine 8T6A ; 3.17 ; Human VMAT2 in complex with reserpine 8T6B ; 3.72 ; Human VMAT2 in complex with serotonin 8T69 ; 2.89 ; Human VMAT2 in complex with tetrabenazine 7EJ1 ; 3.2 ; human voltage-gated potassium channel KV1.3 7EJ2 ; 3.3 ; human voltage-gated potassium channel KV1.3 H451N mutant 7PHH ; 3.2 ; Human voltage-gated potassium channel Kv3.1 (apo condition) 7PHL ; 3.2 ; Human voltage-gated potassium channel Kv3.1 (with EDTA) 7PHI ; 3.1 ; Human voltage-gated potassium channel Kv3.1 (with Zn) 7PHK ; 3.1 ; Human voltage-gated potassium channel Kv3.1 in dimeric state (with Zn) 1ATZ ; 1.8 ; HUMAN VON WILLEBRAND FACTOR A3 DOMAIN 8SYM ; 3.2 ; Human VPS29/VPS35L Complex (Locally refined map) 4BX8 ; 2.4 ; Human Vps33A 4BX9 ; 2.6 ; Human Vps33A in complex with a fragment of human Vps16 8SYN ; 2.94 ; Human VPS35L/VPS29/VPS26C Complex 2Z2W ; 2.22 ; Human Wee1 kinase complexed with inhibitor PF0335770 8BJU ; 1.53 ; HUMAN WEE1 KINASE IN COMPLEX WITH INHIBITOR 1-[6-(1-Hydroxy-1-methyl-ethyl)-pyridin-2-yl]-2-(2-methoxy-phenyl)-6-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,2-dihydro-pyrazolo[3,4-d]pyrimidin-3-one 8P5F ; 1.82 ; Human wild-type GAPDH,orthorhombic form 7SK2 ; 3.82 ; Human wildtype GABA reuptake transporter 1 in complex with tiagabine, inward-open conformation 7KC4 ; 3.19 ; Human WLS in complex with WNT8A 7DRT ; 2.2 ; Human Wntless in complex with Wnt3a 6YDB ; 2.801 ; Human wtSTING in complex with 2',2'-difluoro-3',3'-c-di-GMP 6YEA ; 2.805 ; Human wtSTING in complex with 2',2'-difluoro-3',3'-cGAMP 6Z0Z ; 2.499 ; Human wtSTING in complex with 3',3'-c-(2'FdAMP-2'FdAMP) 6Z15 ; 2.5 ; Human wtSTING in complex with 3',3'-c-di-AMP 6YWB ; 2.503 ; Human wtSTING in complex with 3',3'-c-[2'FdAMP-2'FdAM(PS)] 6YDZ ; 2.9 ; Human wtSTING in complex with 3',3'-cGAMP 6S86 ; 2.6 ; Human wtSTING in complex with 3'3'-c-di-GMP 6VBH ; 1.995 ; Human XPG endonuclease catalytic domain 6TUR ; 2.9 ; human XPG, Apo1 form 6TUS ; 2.5 ; human XPG, Apo2 form 6TUW ; 3.5 ; human XPG-DNA, Complex 1 6TUX ; 3.1 ; human XPG-DNA, Complex 2 6ABO ; 2.65 ; human XRCC4 and IFFO1 complex 6FOA ; 1.869 ; Human Xylosyltransferase 1 apo structure 6EJE ; 2.43 ; Human Xylosyltransferase 1 in complex with peptide PAAEGSGEQDFT 6EJB ; 2.557 ; Human Xylosyltransferase 1 in complex with peptide QEEEGSAGGQGG 6EJ8 ; 2.09 ; Human Xylosyltransferase 1 in complex with peptide QEEEGSGGGQGG 6EJD ; 2.684 ; Human Xylosyltransferase 1 in complex with peptide QEEEGSGGPQGG 6EJC ; 2.057 ; Human Xylosyltransferase 1 in complex with peptide QEEEGSGVGQGG 6EJA ; 1.94 ; Human Xylosyltransferase 1 in complex with peptide QEEEYSGGGQGG 6EJ9 ; 2.02 ; Human Xylosyltransferase 1 in complex with peptide QEPEGSGGGQGG 6EJ7 ; 2.0 ; Human Xylosyltransferase 1 in complex with UDP-xylose and peptide QEEEGAGGGQGG 4AY1 ; 1.95 ; Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide binding properties 2X5Y ; 1.05 ; Human ZC3HAV1 (ARTD13), C-terminal domain 3W4U ; 1.95 ; Human zeta-2 beta-2-s hemoglobin 1ZAG ; 2.8 ; HUMAN ZINC-ALPHA-2-GLYCOPROTEIN 7Z5H ; 2.5 ; human Zn MATCAP 6G2A ; 1.8 ; Human [protein ADP-ribosylargenine] hydrolase ARH1 in complex with ADP-HPM 6G28 ; 1.23 ; Human [protein ADP-ribosylargenine] hydrolase ARH1 in complex with ADP-ribose 6R0C ; 4.2 ; Human-D02 Nucleosome Core Particle with biotin-streptavidin label 4XQ5 ; 2.592 ; Human-infecting H10N8 influenza virus retains strong preference for avian-type receptors 3GTV ; 2.2 ; Human-mouse SOD1 chimera 4OJF ; 1.998 ; Humanised 3D6 Fab complexed to amyloid beta 1-8 4B34 ; 1.55 ; Humanised monomeric RadA in complex with 2-amino benzothiazole 4B35 ; 1.4 ; Humanised monomeric RadA in complex with 4-methylester indole 4B3C ; 1.9 ; Humanised monomeric RadA in complex with 5-hydroxy indole 4B3D ; 1.589 ; Humanised monomeric RadA in complex with 5-methyl indole 5FOX ; 1.3 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH FHAA TETRAPEPTIDE 5FOU ; 1.5 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH FHPA TETRAPEPTIDE 4B3B ; 1.193 ; Humanised monomeric RadA in complex with FHTA tetrapeptide 5FOV ; 1.739 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH FHTG TETRAPEPTIDE 5FOT ; 1.189 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH FHTU TETRAPEPTIDE 4B2I ; 1.3 ; Humanised monomeric RadA in complex with indazole 4B2L ; 1.5 ; Humanised monomeric RadA in complex with L-methylester tryptophan 4B32 ; 1.5 ; Humanised monomeric RadA in complex with napht-1-ol 4B33 ; 1.499 ; Humanised monomeric RadA in complex with napht-2-ol 5FOS ; 1.35 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH OLIGOMERISATION PEPTIDE 5FOW ; 1.797 ; HUMANISED MONOMERIC RADA IN COMPLEX WITH WHTA TETRAPEPTIDE 6HQU ; 1.97 ; Humanised RadA mutant HumRadA22 in complex with a recombined BRC repeat 8-2 5KVL ; 1.74 ; Humanized 10G4 anti-leukotriene C4 antibody Fab fragment in complex with leukotriene C4 5OUI ; 3.1 ; Humanized alpha-AChBP (acetylcholine binding protein) in complex with allosteric binder fragment CU2017 5OUG ; 2.57 ; Humanized alpha-AChBP (acetylcholine binding protein) in complex with lobeline and allosteric binder fragment 4. 5OUH ; 2.5 ; Humanized alpha-AChBP (acetylcholine binding protein) in complex with lobeline. 1BVL ; 2.87 ; HUMANIZED ANTI-LYSOZYME FV 1BVK ; 2.7 ; HUMANIZED ANTI-LYSOZYME FV COMPLEXED WITH LYSOZYME 4LKX ; 1.92 ; Humanized antibody 4B12 Fab complexed with a CemX segment 2GCY ; 2.5 ; humanized antibody C25 Fab fragment 5LS9 ; 2.93 ; Humanized Archaeal ferritin 1YZZ ; 2.7 ; Humanized caban33 at room temperature 5PA3 ; 1.6 ; humanized COMT in complex with 8-hydroxy-6-[2-(methoxymethyl)phenyl]-3H-quinazolin-4-one 4KY1 ; 2.97 ; humanized HP1/2 Fab 5WFD ; 2.654 ; Humanized mutant of the Chaetomium thermophilum Polycomb Repressive Complex 2 bound to the inhibitor GSK126 5WFC ; 2.282 ; Humanized mutant of the Chaetomium thermophilum Polycomb Repressive Complex 2 bound to the inhibitor GSK343 4PYM ; 1.19 ; humanized rat apo-COMT bound to sulphate 4PYQ ; 1.39 ; Humanized rat apo-COMT in complex with a ureido-benzamidine 5P92 ; 1.61 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-(4-thieno[2,3-c]pyridin-2-ylbutyl)benzamide at 1.61A 5P8Z ; 1.42 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-(4-thieno[3,2-c]pyridin-2-ylbutyl)benzamide at 1.42A 5P90 ; 1.24 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[(E)-5-pyrrolo[3,2-c]pyridin-1-ylpent-3-enyl]benzamide at 1.24A 5P91 ; 1.2 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[2-[5-(2-methylpyridin-4-yl)-4H-1,2,4-triazol-3-yl]ethyl]benzamide at 1.20A 5P8Y ; 1.42 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[3-(pyrrolo[3,2-c]pyridin-1-ylmethoxy)propyl]benzamide at 1.42A 5P94 ; 1.2 ; humanized rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[[3-[(1H-indazol-5-ylamino)methyl]phenyl]methyl]benzamide at 1.20A 5P9Y ; 1.2 ; humanized rat catechol O-methyltransferase in complex with 6-(4-fluorophenyl)-8-hydroxy-3-(5-pyrrolo[3,2-c]pyridin-1-ylpentyl)quinazolin-4-one 5P9T ; 1.24 ; humanized rat catechol O-methyltransferase in complex with 6-(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5P9X ; 1.12 ; humanized rat catechol O-methyltransferase in complex with N-[1-[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]propan-2-yl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide 5P8X ; 1.31 ; humanized rat catechol O-methyltransferase in complex with N-[2-[5-(1H-benzimidazol-5-yl)-4H-1,2,4-triazol-3-yl]ethyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.31A 5P9U ; 1.42 ; humanized rat catechol O-methyltransferase in complex with SAH and 6-bromo-8-hydroxy-3H-quinazolin-4-one 5P93 ; 1.24 ; humanized rat catechol O-methyltransferase in complex with single conformation of 5-(4-fluorophenyl)-2,3-dihydroxy-N-[2-(3-pyridin-4-yl-1H-1,2,4-triazol-5-yl)ethyl]benzamide at 1.24A 4PYO ; 2.1 ; Humanized rat COMT bound to SAH, semi-holo form 5PA0 ; 1.26 ; humanized rat COMT in complex with 3-hydroxy-1-methyl-5-phenylpyridin-2-one 5P9P ; 1.12 ; humanized rat COMT in complex with 5,6-bis(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5P9N ; 1.17 ; humanized rat COMT in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[[3-[hydroxy-(1-methylindazol-5-yl)methyl]phenyl]methyl]benzamide at 1.17A 5P9R ; 1.7 ; humanized rat COMT in complex with 5-chloro-6-(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5P9Q ; 1.63 ; humanized rat COMT in complex with 6-(2,4-dimethyl-1,3-thiazol-5-yl)-8-hydroxy-3H-quinazolin-4-one 5PA5 ; 1.63 ; humanized rat COMT in complex with 6-(2,4-dimethyl-1,3-thiazol-5-yl)-8-hydroxy-3H-quinazolin-4-one 5PA4 ; 1.99 ; humanized rat COMT in complex with 6-(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5P9Z ; 1.6 ; humanized rat COMT in complex with 6-(4-fluorophenyl)quinazolin-8-ol 5PA7 ; 2.12 ; humanized rat COMT in complex with 6-bromo-3-chloroquinolin-8-ol 5PA6 ; 1.29 ; humanized rat COMT in complex with 7-(4-fluorophenyl)quinoxalin-5-ol 5P9O ; 1.1 ; humanized rat COMT in complex with 7-fluoro-5,6-bis(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5PA2 ; 1.12 ; humanized rat COMT in complex with 7-fluoro-6-(4-fluorophenyl)-8-hydroxy-3H-quinazolin-4-one 5P9V ; 1.04 ; humanized rat COMT in complex with 8-hydroxy-6-(2-methylpyridin-3-yl)-3H-quinazolin-4-one 5P9S ; 2.3 ; humanized rat COMT in complex with 8-hydroxy-6-[3-methyl-5-(4-methylpiperazine-1-carbonyl)thiophen-2-yl]-3H-quinazolin-4-one 4PYN ; 1.2 ; Humanized rat COMT in complex with SAH 4PYL ; 2.2 ; Humanized rat COMT in complex with sinefungin, Mg2+, and tolcapone 4YZN ; 1.55 ; Humanized Roco4 bound to Compound 19 4YZM ; 3.0 ; Humanized Roco4 bound to LRRK2-In1 5CTE ; 2.34 ; Humanized yeast ACC carboxyltransferase domain bound to 2,2-dimethylpropyl (1S)-1-methyl-8-[(7-methyl-1H-indazol-5-yl)carbonyl]-2,8-diazaspiro[4.5]decane-2-carboxylate 5CTB ; 2.4 ; Humanized yeast ACC carboxyltransferase domain bound to 6,7-dimethyl-1'-[(7-methyl-1H-indazol-5-yl)carbonyl]spiro[chromene-2,4'-piperidin]-4(3H)-one 5CTC ; 2.7 ; Humanized yeast ACC carboxyltransferase domain bound to tert-butyl 7-[(7-methyl-1H-indazol-5-yl)carbonyl]-2,7-diazaspiro[3.5]nonane-2-carboxylate 3FAL ; 2.36 ; humanRXR alpha & mouse LXR alpha complexed with Retenoic acid and GSK2186 4OYY ; 3.0 ; Humicola insolens cutinase 4OYL ; 2.05 ; Humicola insolens cutinase in complex with mono-ethylphosphate 1DYM ; 1.75 ; Humicola insolens Endocellulase Cel7B (EG 1) E197A Mutant 2A39 ; 2.2 ; HUMICOLA INSOLENS ENDOCELLULASE EGI NATIVE STRUCTURE 1A39 ; 2.2 ; HUMICOLA INSOLENS ENDOCELLULASE EGI S37W, P39W DOUBLE-MUTANT 5QUU ; 1.248 ; HumRadA1 as soaking control with 10% DMSO 6TV3 ; 1.5 ; HumRadA1 in complex with 3-amino-2-naphthoic acid 6XUF ; 1.241 ; HumRadA1 in complex with 5-Ethyl-N-(1H-indol-5-ylmethyl)-1,3,4-thiadiazol-2-amine in P21 6XUJ ; 1.54 ; HumRadA1 in complex with 5-Ethyl-N-(1H-indol-5-ylmethyl)-1,3,4-thiadiazol-2-amine in P21212 5QUO ; 1.342 ; HumRadA1 soaked with 0.2 mM indazole in 10% DMSO 5QUP ; 1.25 ; HumRadA1 soaked with 0.5 mM indazole in 10% DMSO 5QUQ ; 1.249 ; HumRadA1 soaked with 1 mM indazole in 10% DMSO 5QUT ; 1.248 ; HumRadA1 soaked with 10 mM indazole in 10% DMSO 5QUR ; 1.247 ; HumRadA1 soaked with 2 mM indazole in 10% DMSO 5QUS ; 1.247 ; HumRadA1 soaked with 5 mM indazole in 10% DMSO 5QUE ; 1.3 ; HumRadA1.2 soaked with napht-2,3-diol for 10 minutes at 20 mM 5QUB ; 1.35 ; HumRadA1.2 soaked with napht-2,3-diol for 30 seconds at 20 mM 5QUD ; 1.3 ; HumRadA1.2 soaked with napht-2,3-diol for 5 minutes at 20 mM 5QUC ; 1.43 ; HumRadA1.2 soaked with napht-2,3-diol for 60 seconds at 20 mM 5QUJ ; 1.42 ; HumRadA1.2 soaked with napht-2,3-diol overnight 10 mM 5QUG ; 1.48 ; HumRadA1.2 soaked with napht-2,3-diol overnight at 1 mM 5QUH ; 1.38 ; HumRadA1.2 soaked with napht-2,3-diol overnight at 2 mM 5QUF ; 1.35 ; HumRadA1.2 soaked with napht-2,3-diol overnight at 20 mM 5QUI ; 1.4 ; HumRadA1.2 soaked with napht-2,3-diol overnight at 5 mM 6TW3 ; 1.352 ; HumRadA2 in complex with Naphthyl-HPA fragment-peptide chimera 6TW9 ; 1.52 ; HumRadA22F in complex with CAM833 6TW4 ; 1.73 ; HumRadA22F in complex with compound 6 6XTW ; 2.31 ; HumRadA33F in complex with peptidic inhibitor 6 3IO4 ; 3.63 ; Huntingtin amino-terminal region with 17 Gln residues - Crystal C90 3IO6 ; 3.7 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C92-a 3IOT ; 3.5 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C92-b 3IOU ; 3.7 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C94 3IOR ; 3.6 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C95 3IOV ; 3.7 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C99 3IOW ; 3.5 ; Huntingtin amino-terminal region with 17 Gln residues - crystal C99-Hg 8SAH ; 3.2 ; Huntingtin C-HEAT domain in complex with HAP40 6BQS ; ; HusA haemophore from Porphyromonas gingivalis 6CRL ; ; HusA haemophore from Porphyromonas gingivalis 7MWD ; 3.7 ; HUWE1 in map with focus on HECT 7MWF ; 3.3 ; HUWE1 in map with focus on interface 7MWE ; 3.4 ; HUWE1 in map with focus on WWE 5Z5X ; ; HVF18 in complex with LPS micelles 2LAI ; ; Hyaloperonospora arabidopsidis Effector Protein ATR13 1UUH ; 2.2 ; Hyaluronan binding domain of human CD44 4D0Q ; 1.2 ; Hyaluronan Binding Module of the Streptococcal Pneumoniae Hyaluronate Lyase 2I83 ; ; hyaluronan-binding domain of CD44 in its ligand-bound form 2BVK ; ; Hyaluronan: the local solution conformation determined by NMR and computer modelling is close to a contracted left-handed four-fold helix 2HYA ; 3.0 ; HYALURONIC ACID, MOLECULAR CONFORMATIONS AND INTERACTIONS IN TWO SODIUM SALTS 3HYA ; 3.0 ; HYALURONIC ACID, MOLECULAR CONFORMATIONS AND INTERACTIONS IN TWO SODIUM SALTS 1HYA ; 3.0 ; HYALURONIC ACID, STRUCTURE OF A FULLY EXTENDED 3-FOLD HELICAL SODIUM SALT AND COMPARISON WITH THE LESS EXTENDED 4-FOLD HELICAL FORMS 4HYA ; 3.0 ; HYALURONIC ACID, THE ROLE OF DIVALENT CATIONS IN CONFORMATION AND PACKING 2J88 ; 2.6 ; Hyaluronidase in complex with a monoclonal IgG Fab fragment 6WO1 ; 3.3 ; Hybrid acetohydroxyacid synthase complex structure with Cryptococcus neoformans AHAS catalytic subunit and Saccharomyces cerevisiae AHAS regulatory subunit 8G27 ; 3.3 ; Hybrid aspen cellulose synthase-8 bound to UDP 8G2J ; 3.3 ; Hybrid aspen cellulose synthase-8 bound to UDP-glucose 7DE4 ; 3.61 ; Hybrid cluster protein (HCP) from Escherichia coli 1GN9 ; 2.6 ; Hybrid Cluster Protein from Desulfovibrio desulfuricans ATCC 27774 X-ray structure at 2.6A resolution using synchrotron radiation at a wavelength of 1.722A 1GNL ; 1.25 ; Hybrid Cluster Protein from Desulfovibrio desulfuricans X-ray structure at 1.25A resolution using synchrotron radiation at a wavelength of 0.933A 1E1D ; 1.72 ; Hybrid Cluster Protein from Desulfovibrio vulgaris 1GNT ; 1.25 ; Hybrid Cluster Protein from Desulfovibrio vulgaris. X-ray structure at 1.25A resolution using synchrotron radiation. 8CNR ; 1.45 ; Hybrid Cluster Protein from the thermophilic methanogen Methanothermococcus thermolithotrophicus as isolated in a reduced state at 1.45-A resolution 7C8L ; 1.45 ; Hybrid designing of potent inhibitors of Striga strigolactone receptor ShHTL7 6HG1 ; 2.12 ; Hybrid dihydroorotase domain of human CAD with E. coli flexible loop in apo state 6HG3 ; 1.97 ; Hybrid dihydroorotase domain of human CAD with E. coli flexible loop, bound to dihydroorotate 6HG2 ; 1.83 ; Hybrid dihydroorotase domain of human CAD with E. coli flexible loop, bound to fluoroorotate 7Q1I ; 1.65 ; Hybrid form of uridine phosphorylase from E. coli and Salmonella typhimurium in the presence glycerol 7Q1J ; 1.71 ; Hybrid form of uridine phosphorylase from E. coli and Salmonella typhimurium in the presence PEG 6DJS ; 5.8 ; Hybrid model of TRPC3 in GDN 6BG9 ; 9.0 ; HYBRID NMR/CRYO-EM STRUCTURE OF THE HIV-1 RNA DIMERIZATION SIGNAL 2KYV ; ; Hybrid solution and solid-state NMR structure ensemble of phospholamban pentamer 2KB7 ; ; Hybrid solution and solid-state NMR structure of monomeric phospholamban in lipid bilayers 4Z68 ; 1.859 ; Hybrid structural analysis of the Arp2/3 regulator Arpin identifies its acidic tail as a primary binding epitope 6GVT ; ; Hybrid structure of the pRN1 helix bundle domain in complex with DNA and 2 ATP molecules 2MME ; 7.7 ; Hybrid structure of the Shigella flexneri MxiH Type three secretion system needle 6YEG ; 4.0 ; Hybrid structure of the SPP1 tail tube by solid-state NMR and cryo EM - Final EM Refinement 6YQ5 ; 4.0 ; Hybrid structure of the SPP1 tail tube by solid-state NMR and cryo EM - NMR Ensemble 2N7H ; ; Hybrid structure of the Type 1 Pilus of Uropathogenic E.coli 8R4E ; ; Hybrid-1R G-quadruplex with a +(lpp) loop progression 6CCW ; ; Hybrid-2 form Human Telomeric G Quadruplex in Complex with Epiberberine 7O1H ; ; Hybrid-2R quadruplex-duplex with (-p-p-l) topology and 3 syn residues 3BSU ; 2.1 ; Hybrid-binding domain of human RNase H1 in complex with 12-mer RNA/DNA 6KYJ ; 1.7 ; Hybrid-Rubisco (rice RbcL and sorghum RbcS) in complex with sulfate ions 5FES ; 1.27 ; HydE from T. maritima in complex with (2R,4R)-MeSeTDA 5FEZ ; 1.35 ; HydE from T. maritima in complex with (2R,4R)-MeSeTDA, 5'-deoxyadenosine and methionine 5FEP ; 1.45 ; HydE from T. maritima in complex with (2R,4R)-MeTDA 5FF2 ; 1.47 ; HydE from T. maritima in complex with (2R,4R)-TDA 5FF4 ; 1.35 ; HydE from T. maritima in complex with (2R,4R)-TMeTDA 5FF3 ; 1.18 ; HydE from T. maritima in complex with 4R-TCA 5FEW ; 1.17 ; HydE from T. maritima in complex with S-adenosyl-L-cysteine (final product) 5FF0 ; 1.49 ; HydE from T. maritima in complex with S-adenosyl-L-cysteine and methionine 5FEX ; 1.32 ; HydE from T. maritima in complex with Se-adenosyl-L-selenocysteine (tfinal of the reaction) 5XOM ; 2.2 ; Hydra Fam20 6L0L ; ; Hydra-1ubq de nova designed by Hydra based on ubiquitin 2K35 ; ; Hydramacin-1: Structure and antibacterial activity of a peptide from the basal metazoan Hydra 4IA5 ; 2.22 ; Hydratase from Lactobacillus acidophilus - SeMet derivative (apo LAH) 4IA6 ; 1.8 ; Hydratase from lactobacillus acidophilus in a ligand bound form (LA LAH) 383D ; 1.7 ; Hydration and recognition of methylated CPG steps in DNA 384D ; 2.15 ; HYDRATION AND RECOGNITION OF METHYLATED CPG STEPS IN DNA 382D ; 2.2 ; HYDRATION AND RECOGNITION OF METHYLATED CPG STEPS IN DNA. 2MB5 ; 1.8 ; HYDRATION IN PROTEIN CRYSTALS. A NEUTRON DIFFRACTION ANALYSIS OF CARBONMONOXYMYOGLOBIN 187D ; 2.25 ; HYDRATION PATTERNS AND INTERMOLECULAR INTERACTIONS IN A-DNA CRYSTAL STRUCTURES. IMPLICATIONS FOR DNA RECOGNITION 188D ; 2.2 ; HYDRATION PATTERNS AND INTERMOLECULAR INTERACTIONS IN A-DNA CRYSTAL STRUCTURES. IMPLICATIONS FOR DNA RECOGNITION 189D ; 2.1 ; HYDRATION PATTERNS AND INTERMOLECULAR INTERACTIONS IN A-DNA CRYSTAL STRUCTURES. IMPLICATIONS FOR DNA RECOGNITION 1CGD ; 1.85 ; HYDRATION STRUCTURE OF A COLLAGEN PEPTIDE 6PW8 ; 1.95 ; Hydrocarbon-Stapled Paxillin Peptide Bound to the Focal Adhesion Targeting (FAT) Domain of the Focal Adhesion Kinase (FAK) 1TOI ; 1.9 ; Hydrocinnamic acid-bound structure of Hexamutant + A293D mutant of E. coli aspartate aminotransferase 1TOG ; 2.31 ; Hydrocinnamic acid-bound structure of SRHEPT + A293D mutant of E. coli aspartate aminotransferase 1TOJ ; 1.9 ; Hydrocinnamic acid-bound structure of SRHEPT mutant of E. coli aspartate aminotransferase 1IO5 ; 2.0 ; HYDROGEN AND HYDRATION OF HEN EGG-WHITE LYSOZYME DETERMINED BY NEUTRON DIFFRACTION 1C5H ; 1.55 ; HYDROGEN BONDING AND CATALYSIS: AN UNEXPECTED EXPLANATION FOR HOW A SINGLE AMINO ACID SUBSTITUTION CAN CHANGE THE PH OPTIMUM OF A GLYCOSIDASE 1C5I ; 1.8 ; HYDROGEN BONDING AND CATALYSIS: AN UNEXPECTED EXPLANATION FOR HOW A SINGLE AMINO ACID SUBSTITUTION CAN CHANGE THE PH OPTIMUM OF A GLYCOSIDASE 6B1Q ; 1.9 ; Hydrogen Bonding Complementary, not size complementarity is key in the formation of the double helix 6B1R ; 1.69 ; Hydrogen Bonding Complementary, not size complementarity is key in the formation of the double helix 6B1S ; 2.0 ; Hydrogen Bonding Complementary, not size complementarity is key in the formation of the double helix 1XDC ; 1.85 ; Hydrogen Bonding in Human Manganese Superoxide Dismutase containing 3-Fluorotyrosine 1XIL ; 1.53 ; HYDROGEN BONDING IN HUMAN MANGANESE SUPEROXIDE DISMUTASE CONTAINING 3-FLUOROTYROSINE 1GJN ; 1.35 ; Hydrogen Peroxide Derived Myoglobin Compound II at pH 5.2 3SB1 ; 1.67 ; Hydrogenase expression protein HupH from Thiobacillus denitrificans ATCC 25259 1CFZ ; 2.2 ; HYDROGENASE MATURATING ENDOPEPTIDASE HYBD FROM E. COLI 1GXU ; 1.27 ; Hydrogenase Maturation Protein HypF ""acylphosphatase-like"" N-terminal domain (HypF-ACP) in complex with a substrate. Crystal grown in the presence of carbamoylphosphate 1GXT ; 1.27 ; Hydrogenase Maturation Protein HypF ""acylphosphatase-like"" N-terminal domain (HypF-ACP) in complex with Sulfate 7NEM ; 1.35 ; Hydrogenase-2 variant R479K - anaerobically oxidised form 6SYO ; 1.25 ; Hydrogenase-2 variant R479K - As Isolated form 6SZD ; 1.5 ; Hydrogenase-2 variant R479K - hydrogen reduced form 6SZK ; 1.2 ; Hydrogenase-2 variant R479K - hydrogen reduced form treated with CO 6SYX ; 1.3 ; Hydrogenase-2 variant R479K - reduced sample exposed to pure oxygen 1ZIE ; 1.44 ; Hydrogenated gammaE crystallin in D2O solvent 6S2S ; 0.86 ; Hydrogenated human myelin protein P2 at 0.86-A resolution 7P6M ; 0.89 ; Hydrogenated refolded hen egg-white lysozyme 5AUS ; 1.3 ; Hydrogenobacter thermophilus cytochrome c552 dimer formed by domain swapping at C-terminal region 5AUR ; 1.26 ; Hydrogenobacter thermophilus cytochrome c552 dimer formed by domain swapping at N-terminal region 7M1O ; 1.98389 ; Hydrogenobacter thermophilus ferredoxin 1 S64A variant 1YTN ; 2.4 ; HYDROLASE 255L ; 1.8 ; HYDROLASE 1LBU ; 1.8 ; HYDROLASE METALLO (ZN) DD-PEPTIDASE 1BEL ; 1.6 ; HYDROLASE PHOSPHORIC DIESTER, RNA 5HDF ; 2.71 ; Hydrolase SeMet-StnA 5HDP ; 2.9 ; Hydrolase StnA mutant - S185A 1GOY ; 2.0 ; HYDROLASE(ENDORIBONUCLEASE)RIBONUCLEASE BI(G SPECIFIC ENDONUCLEASE) (E.C.3.1.27.-) COMPLEXED WITH GUANOSINE-3'-PHOSPHATE (3'-GMP) 1RGE ; 1.15 ; HYDROLASE, GUANYLORIBONUCLEASE 1RGF ; 1.2 ; HYDROLASE, GUANYLORIBONUCLEASE 1RGG ; 1.2 ; HYDROLASE, GUANYLORIBONUCLEASE 1RGH ; 1.2 ; HYDROLASE, GUANYLORIBONUCLEASE 2AH5 ; 1.74 ; Hydrolase, haloacid dehalogenase-like family protein SP0104 from Streptococcus pneumoniae 1RDQ ; 1.26 ; Hydrolysis of ATP in the crystal of Y204A mutant of cAMP-dependent protein kinase 3P32 ; 1.9 ; Hydrolysis of GTP to GDP by an MCM-associated and MeaB- and MMAA-like G-protein from Mycobacterium tuberculosis 3PBJ ; 2.2 ; Hydrolytic catalysis and structural stabilization in a designed metalloprotein 1WPO ; 2.0 ; HYDROLYTIC ENZYME HUMAN CYTOMEGALOVIRUS PROTEASE 1CV2 ; 1.58 ; Hydrolytic haloalkane dehalogenase linb from sphingomonas paucimobilis UT26 AT 1.6 A resolution 1K5P ; 1.8 ; Hydrolytic haloalkane dehalogenase LINB from sphingomonas paucimobilis UT26 at 1.8A resolution 1D07 ; 2.0 ; Hydrolytic haloalkane dehalogenase linb from sphingomonas paucimobilis UT26 with 1,3-propanediol, a product of debromidation of dibrompropane, at 2.0A resolution 5A62 ; 1.5 ; Hydrolytic potential of the ammonia-oxidizing Thaumarchaeon Nitrososphaera gargenis - crystal structure and activity profiles of carboxylesterases linked to their metabolic function 1HYM ; ; HYDROLYZED TRYPSIN INHIBITOR (CMTI-V, MINIMIZED AVERAGE NMR STRUCTURE) 1TLA ; 2.0 ; HYDROPHOBIC CORE REPACKING AND AROMATIC-AROMATIC INTERACTION IN THE THERMOSTABLE MUTANT OF T4 LYSOZYME SER 117 (RIGHT ARROW) PHE 5B5H ; 1.0 ; Hydrophobic ice-binding site confer hyperactivity on antifreeze protein from a snow mold fungus 8AQD ; 1.45 ; Hydrophobic probe bound to Streptavidin - 1 8AQJ ; 1.85 ; Hydrophobic probe bound to Streptavidin - 2 1L17 ; 1.7 ; HYDROPHOBIC STABILIZATION IN T4 LYSOZYME DETERMINED DIRECTLY BY MULTIPLE SUBSTITUTIONS OF ILE 3 1L18 ; 1.7 ; HYDROPHOBIC STABILIZATION IN T4 LYSOZYME DETERMINED DIRECTLY BY MULTIPLE SUBSTITUTIONS OF ILE 3 1LL1 ; 2.55 ; HYDROXO BRIDGE MET FORM HEMOCYANIN FROM LIMULUS 1A7E ; 1.8 ; HYDROXOMET MYOHEMERYTHRIN FROM THEMISTE ZOSTERICOLA 4K8S ; 2.39 ; Hydroxyethylamine-based inhibitors of BACE1: P1-P3 macrocyclization can improve potency, selectivity, and cell activity 1AAQ ; 2.5 ; HYDROXYETHYLENE ISOSTERE INHIBITORS OF HUMAN IMMUNODEFICIENCY VIRUS-1 PROTEASE: STRUCTURE-ACTIVITY ANALYSIS USING ENZYME KINETICS, X-RAY CRYSTALLOGRAPHY, AND INFECTED T-CELL ASSAYS 6T5E ; 3.3 ; Hydroxylamine Oxidoreductase from Brocadia fulgida 6M0Q ; 1.99 ; Hydroxylamine oxidoreductase from Nitrosomonas europaea 6M0P ; 2.78 ; Hydroxylamine oxidoreductase in complex with juglone 4ZR1 ; 2.6008 ; Hydroxylase domain of scs7p 7JSD ; 2.5 ; Hydroxylase homolog of BesD with Fe(II), alpha-ketoglutarate, and lysine 2R5V ; 2.3 ; Hydroxymandelate Synthase Crystal Structure 2YPN ; 2.3 ; Hydroxymethylbilane synthase 3YAS ; 1.85 ; HYDROXYNITRILE LYASE COMPLEXED WITH ACETONE 4YAS ; 2.0 ; HYDROXYNITRILE LYASE COMPLEXED WITH CHLORALHYDRATE 5YAS ; 2.2 ; HYDROXYNITRILE LYASE COMPLEXED WITH HEXAFLUOROACETONE 1YAS ; 1.9 ; HYDROXYNITRILE LYASE COMPLEXED WITH HISTIDINE 3GDP ; 1.57 ; Hydroxynitrile lyase from almond, monoclinic crystal form 2YAS ; 1.72 ; HYDROXYNITRILE LYASE FROM HEVEA BRASILIENSIS COMPLEXED WITH RHODANIDE 1YB7 ; 1.76 ; Hydroxynitrile lyase from hevea brasiliensis in complex with 2,3-dimethyl-2-hydroxy-butyronitrile 1YB6 ; 1.54 ; Hydroxynitrile lyase from hevea brasiliensis in complex with mandelonitrile 1SC9 ; 1.8 ; Hydroxynitrile Lyase from Hevea brasiliensis in complex with the natural substrate acetone cyanohydrin 8SNI ; 1.99 ; Hydroxynitrile Lyase from Hevea brasiliensis with Forty Mutations 8EUO ; 1.99 ; Hydroxynitrile Lyase from Hevea brasiliensis with Seven Mutations 6YAS ; 2.2 ; HYDROXYNITRILE LYASE FROM HEVEA BRASILIENSIS, ROOM TEMPERATURE STRUCTURE 7BR1 ; 1.25 ; Hydroxynitrile lyase from Parafontaria laminate complexed with benzaldehyde prepared by cocrystallization 7BOW ; 1.42 ; Hydroxynitrile lyase from Parafonteria laminate 7BPO ; 1.37 ; Hydroxynitrile lyase from Parafonteria laminate complexed with benzaldehyde 5XZQ ; 2.8 ; Hydroxynitrile lyase from Passiflora edulis (PeHNL) 5E46 ; 1.854 ; Hydroxynitrile lyase from the fern Davallia tyermanii 5E4B ; 1.5 ; Hydroxynitrile lyase from the fern Davallia tyermanii in complex with (R)-mandelonitrile / benzaldehyde 5E4D ; 1.85 ; Hydroxynitrile lyase from the fern Davallia tyermanii in complex with benzoic acid 5E4M ; 1.801 ; Hydroxynitrile lyase from the fern Davallia tyermanii in complex with p-hydroxybenzaldehyde 7YCB ; 2.01 ; HYDROXYNITRILE LYASE FROM THE MILLIPEDE 7YAX ; 2.01 ; HYDROXYNITRILE LYASE FROM THE MILLIPEDE, 6JHC ; 1.6 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis (ligand free) 6KFE ; 2.0 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis (recombinant) 6KFA ; 1.5 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis bound with acetate 6KFB ; 1.55 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis bound with thiocyanate 6KFC ; 2.1 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis, complexed with cyanide ion 6KFD ; 1.55 ; Hydroxynitrile lyase from the millipede, Chamberlinius hualienensis, complexed with iodoacetate 7YCD ; 2.01 ; HYDROXYNITRILE LYASE FROM THE MILLIPEDE, Oxidus gracilis bound with (R)-(+)-ALPHA-HYDROXYBENZENE-ACETONITRILE 7YCT ; 2.01 ; HYDROXYNITRILE LYASE FROM THE MILLIPEDE, Oxidus gracilis complexed with (R)-2-Chloromandelonitrile 7YCF ; 2.01 ; HYDROXYNITRILE LYASE FROM THE MILLIPEDE, Oxidus gracilis IN ACETONITRILE 7YAS ; 1.75 ; HYDROXYNITRILE LYASE, LOW TEMPERATURE NATIVE STRUCTURE 1QJ4 ; 1.1 ; HYDROXYNITRILE-LYASE FROM HEVEA BRASILIENSIS AT ATOMIC RESOLUTION 7WBC ; 2.0 ; Hydroxysteroid dehydrogenase wild-type complexed with NAD+ and (4S)-2-2-methyl-2,4-pentanediol 7RIH ; 1.35 ; hyen D 7RN3 ; ; hyen D solution structure 6P4C ; 1.85 ; HyHEL10 Fab carrying four heavy chain mutations (HyHEL10-4x): L4F, Y33H, S56N, and Y58F 8GQ1 ; 3.13 ; HyHEL10 Fab complexed with hen egg lysozyme carrying arginine cluster in framework region of light chain. 6P4A ; 2.2 ; HyHEL10 Fab complexed with hen egg lysozyme carrying two mutations (HEL2x-rigid): R21Q and R73E 6P4B ; 1.9 ; HyHEL10 fab variant HyHEL10-4x (heavy chain mutations L4F, Y33H, S56N, and Y58F) bound to hen egg lysozyme variant HEL2x-flex (mutations R21Q, R73E, C76S, and C94S) 5MMK ; ; HYL-20 5MML ; ; HYL-20k 6TTM ; 1.91 ; Hyoscyamine 6-hydroxylase in complex with N-oxalylglycine and hyoscyamine 8JHE ; 2.201 ; Hyper-thermostable ancestral L-amino acid oxidase 2 (HTAncLAAO2) 3AHQ ; 2.35 ; hyperactive human Ero1 7V5E ; ; Hyperdisulfide peptide from Schisandra chinensis 7TVH ; 1.71 ; Hyperlytic variant of Tae1, Type VI secretion amidase effector 1, from Pseudomonas aeruginosa (Cys110Ser) 1FL8 ; ; HYPERMODIFIED NUCLEOSIDES IN THE ANTICODON OF TRNALYS STABILIZE A CANONICAL U-TURN STRUCTURE 7KJ0 ; 2.29 ; hyperoxidized human peroxiredoxin 2 6WVS ; 2.202 ; Hyperstable de novo TIM barrel variant DeNovoTIM15 4EB1 ; 2.8 ; Hyperstable in-frame insertion variant of antithrombin 1AZP ; 1.6 ; HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SAC7D BOUND WITH KINKED DNA DUPLEX 1AZQ ; 1.94 ; HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SAC7D BOUND WITH KINKED DNA DUPLEX 1WTO ; 1.5 ; Hyperthermophile chromosomal protein SAC7D double mutant V26F/M29F in complex with DNA GCGATCGC 1XYI ; 1.45 ; Hyperthermophile chromosomal protein Sac7d double mutant Val26Ala/Met29Ala in complex with DNA GCGATCGC 1WTR ; 1.8 ; Hyperthermophile chromosomal protein SAC7D single mutant M29A in complex with DNA GCGATCGC 1WTV ; 1.6 ; Hyperthermophile chromosomal protein SAC7D single mutant M29A in complex with DNA GTAATTAC 1WTP ; 1.9 ; Hyperthermophile chromosomal protein SAC7D single mutant M29F in complex with DNA GCGA(UBr)CGC 1WTQ ; 1.7 ; Hyperthermophile chromosomal protein SAC7D single mutant M29F in complex with DNA GTAATTAC 1WTW ; 2.2 ; Hyperthermophile chromosomal protein SAC7D single mutant V26A in complex with DNA GCGATCGC 1WTX ; 2.2 ; Hyperthermophile chromosomal protein SAC7D single mutant V26A in complex with DNA GTAATTAC 1SAP ; ; HYPERTHERMOPHILE PROTEIN, RELAXATION MATRIX REFINEMENT STRUCTURE 4XB1 ; 2.3 ; Hyperthermophilic archaeal homoserine dehydrogenase in complex with NADPH 4XB2 ; 2.43 ; Hyperthermophilic archaeal homoserine dehydrogenase mutant in complex with NADPH 3ZWQ ; 2.0 ; HYPERTHERMOPHILIC ESTERASE FROM THE ARCHEON PYROBACULUM CALIDIFONTIS 6K52 ; 1.68 ; Hyperthermophilic GH6 cellobiohydrolase (HmCel6A) from the microbial flora of a Japanese hot spring 6K54 ; 1.905 ; Hyperthermophilic GH6 cellobiohydrolase II (HmCel6A) in complex with trisaccharide 6KLS ; 3.3 ; Hyperthermophilic respiratory Complex III 6KLV ; 3.2 ; Hyperthermophilic respiratory Complex III 2DFV ; 2.05 ; Hyperthermophilic threonine dehydrogenase from Pyrococcus horikoshii 1GB4 ; ; HYPERTHERMOPHILIC VARIANT OF THE B1 DOMAIN FROM STREPTOCOCCAL PROTEIN G, NMR, 47 STRUCTURES 5AYJ ; 2.05 ; Hyperthermostable mutant of Bacillus sp. TB-90 Urate Oxidase - R298C 4AX7 ; 1.7 ; Hypocrea jecorina Cel6A D221A mutant soaked with 4-Methylumbelliferyl- beta-D-cellobioside 4AU0 ; 1.7 ; Hypocrea jecorina Cel6A D221A mutant soaked with 6-chloro-4- methylumbelliferyl-beta-cellobioside 4AX6 ; 2.3 ; HYPOCREA JECORINA CEL6A D221A MUTANT SOAKED WITH 6-CHLORO-4- PHENYLUMBELLIFERYL-BETA-CELLOBIOSIDE 4D5Q ; 1.68 ; Hypocrea jecorina Cel7A (wild type) soaked with xylopentaose. 4UWT ; 1.2 ; Hypocrea jecorina Cel7A E212Q mutant in complex with p-nitrophenyl cellobioside 2V3I ; 1.05 ; Hypocrea jecorina Cel7A in complex with (R)-dihydroxy-phenanthrenolol 2V3R ; 1.6 ; Hypocrea jecorina Cel7A in complex with (S)-dihydroxy-phenanthrenolol 4D5O ; 1.52 ; Hypocrea jecorina cellobiohydrolase Cel7A E212Q soaked with xylopentaose. 4D5I ; 1.42 ; Hypocrea jecorina cellobiohydrolase Cel7A E212Q soaked with xylotriose. 4D5P ; 1.89 ; Hypocrea jecorina cellobiohydrolase Cel7A E217Q soaked with xylopentaose. 4D5V ; 1.62 ; Hypocrea jecorina cellobiohydrolase Cel7A E217Q soaked with xylotetraose. 4D5J ; 1.5 ; Hypocrea jecorina cellobiohydrolase Cel7A E217Q soaked with xylotriose. 6C1P ; 2.9 ; HypoPP mutant 6C1K ; 2.7 ; HypoPP mutant with ligand1 8EVQ ; 2.72 ; Hypopseudouridylated Ribosome bound with TSV IRES, eEF2, GDP, and sordarin, Structure I 8EVT ; 2.2 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES) refined against a composite map 8EUB ; 2.52 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), eEF2 and GDP, Structure I 8EVS ; 2.62 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), eEF2 and GDP, Structure II 8EWB ; 2.87 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), eEF2 and GDP, Structure III 8EVR ; 2.87 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), eEF2, GDP, and sordarin, Structure II 8EVP ; 2.38 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), Structure I 8EWC ; 2.45 ; Hypopseudouridylated yeast 80S bound with Taura syndrome virus (TSV) internal ribosome entry site (IRES), Structure II 8H0H ; 2.74 ; Hypotethical protein from Mycobacterium tuberculsosis 1YVO ; 1.9 ; hypothetical acetyltransferase from P.aeruginosa PA01 2YRR ; 1.86 ; hypothetical alanine aminotransferase (TTH0173) from Thermus thermophilus HB8 8FIP ; 1.7 ; Hypothetical anthocyanidin reducatase from Sorghum bicolor- NADP+ complex 8FIO ; 1.97 ; Hypothetical anthocyanidin reductase from Sorghum bicolor-NADP(H) and naringenin complex 2EMQ ; 2.5 ; Hypothetical Conserved Protein (GK1048) from Geobacillus Kaustophilus 1UC2 ; 2.15 ; Hypothetical Extein Protein of PH1602 from Pyrococcus horikoshii 4QO5 ; 1.697 ; Hypothetical multiheme protein 2OM6 ; 2.2 ; Hypothetical Protein (Probable Phosphoserine Phosph (PH0253) from Pyrococcus Horikoshii OT3 1PZX ; 2.0 ; Hypothetical protein APC36103 from Bacillus stearothermophilus: a lipid binding protein 1T0G ; ; Hypothetical protein At2g24940.1 from Arabidopsis thaliana has a cytochrome b5 like fold 3I3F ; 1.35 ; Hypothetical protein from Giardia lamblia GL50803_14299 2B4W ; 1.98 ; Hypothetical protein from leishmania major 3KSV ; 1.9 ; Hypothetical protein from Leishmania major 3M3I ; 2.35 ; Hypothetical protein from Leishmania major 1YQF ; 2.3 ; Hypothetical protein from leishmania major unknown function sequence homologue to human p32 protein 1ZSO ; 2.17 ; Hypothetical protein from plasmodium falciparum 1NNW ; 1.9 ; hypothetical protein from Pyrococcus furiosus Pfu-1218608 1NNH ; 1.65 ; Hypothetical protein from Pyrococcus furiosus Pfu-1801964 1XE1 ; 2.0 ; Hypothetical Protein From Pyrococcus Furiosus Pfu-880080-001 2D59 ; 1.65 ; hypothetical protein from Pyrococcus horikoshii OT3 2D5A ; 1.7 ; hypothetical protein from Pyrococcus horikoshii OT3 1YZV ; 2.001 ; HYPOTHETICAL PROTEIN FROM TRYPANOSOMA CRUZI 7O9V ; 1.99 ; hypothetical protein OMM_04225 residues 244-274 from Candidatus Magnetoglobus multicellularis fused to GCN4 adaptors 3STQ ; 2.284 ; Hypothetical protein PA2703 Pseudomonas aeruginosa PAO1 1YRE ; 2.15 ; Hypothetical protein PA3270 from Pseudomonas aeruginosa in complex with CoA 2I0X ; 2.7 ; Hypothetical protein PF1117 from Pyrococcus furiosus 4TNO ; 2.14 ; Hypothetical protein PF1117 from Pyrococcus Furiosus: Structure solved by sulfur-SAD using Swiss Light Source Data 2FZF ; 2.7 ; Hypothetical Protein Pfu-1136390-001 From Pyrococcus furiosus 1ZTD ; 2.0 ; Hypothetical Protein Pfu-631545-001 From Pyrococcus furiosus 2P8T ; 1.8 ; Hypothetical protein PH0730 from Pyrococcus horikoshii OT3 4PAU ; 2.0 ; Hypothetical protein SA1058 from S. aureus. 5EUR ; 1.698 ; Hypothetical protein SF216 from shigella flexneri 5a M90T 1MGP ; 2.0 ; Hypothetical protein TM841 from Thermotoga maritima reveals fatty acid binding function 7O97 ; 2.0 ; hypothetical protein UY81_C0065G0003 from Candidatus Giovannonibacteria bacterium converted into a canonical coiled coil 7O92 ; 2.7 ; hypothetical protein UY81_C0065G0003 residues 18-54 from Candidatus Giovannonibacteria bacterium fused to GCN4 adaptors 1Q6Y ; 1.99 ; Hypothetical protein YfdW from E. coli bound to Coenzyme A 1DBR ; 2.4 ; HYPOXANTHINE GUANINE XANTHINE 1GRV ; 2.9 ; Hypoxanthine Phosphoribosyltransferase from E. coli 1P19 ; 2.3 ; Hypoxanthine Phosphoribosyltransferase from Trypanosoma cruzi, in complex with the product IMP 1P17 ; 2.7 ; Hypoxanthine Phosphoribosyltransferase from Trypanosoma cruzi, K68R mutant, complexed with the product IMP 1P18 ; 2.0 ; Hypoxanthine Phosphoribosyltransferase from Trypanosoma cruzi, K68R mutant, ternary substrates complex 8CAG ; 2.4 ; Hypoxanthine-guanine phosphoribosyltransferase from E. coli 4ZFN ; 1.901 ; Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from Sulfolobus solfataricus containing GMP complexed in two different ways together with one or two MG2+ 4Z1O ; 2.15 ; Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from Sulfolobus solfataricus in complex with alpha-phosphoribosylpyrophosphoric acid (PRPP) and Magnesium 5BQO ; 2.394 ; Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from Sulfolobus solfataricus with sulfate bound in the 5-phosphoribosyl binding site. 5BQP ; 1.7 ; Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from Sulfolobus solfataricus with xanthosine and phosphate bound in the nucleotide binding site and with sulfate bound in the pyrophosphate binding site 1HGX ; 1.9 ; HYPOXANTHINE-GUANINE-XANTHINE PHOSPHORIBOSYLTRANSFERASE (HGXPRTASE) 6NMQ ; 1.58 ; Hypoxia-Inducible Factor (HIF) Prolyl Hydroxylase 2 (PHD2) in Complex with the Carboxamide Analog JNJ43058171 1Y1I ; 2.61 ; hyuman formylglycine generating enzyme, reduced form 1PT6 ; 1.87 ; I domain from human integrin alpha1-beta1 1QC5 ; 2.0 ; I Domain from Integrin Alpha1-Beta1 1AOX ; 2.1 ; I DOMAIN FROM INTEGRIN ALPHA2-BETA1 3V3Z ; 2.9 ; I(L177)H mutant structure of photosynthetic reaction center from Rhodobacter sphaeroides 8EKH ; 2.7 ; I-2 Y35N H35N (unbound) Fab from CH65-CH67 lineage 2P24 ; 2.15 ; I-Au/MBP125-135 3B43 ; 3.3 ; I-band fragment I65-I70 from titin 2RIK ; 1.6 ; I-band fragment I67-I69 from titin 3OK8 ; 2.25 ; I-BAR OF PinkBAR 1CAR ; 3.0 ; I-CARRAGEENAN. MOLECULAR STRUCTURE AND PACKING OF POLYSACCHARIDE DOUBLE HELICES IN ORIENTED FIBRES OF DIVALENT CATION SALTS 1T9I ; 1.6 ; I-CreI(D20N)/DNA complex 1T9J ; 2.0 ; I-CreI(Q47E)/DNA complex 1B24 ; 2.2 ; I-DMOI, INTRON-ENCODED ENDONUCLEASE 1IDO ; 1.7 ; I-DOMAIN FROM INTEGRIN CR3, MG2+ BOUND 1JLM ; 2.0 ; I-DOMAIN FROM INTEGRIN CR3, MN2+ BOUND 7U5D ; 3.52 ; I-F3b Cascade-TniQ full R-loop complex 7U5E ; 4.03 ; I-F3b Cascade-TniQ partial R-loop complex 5TJB ; 2.4 ; I-II linker of TRPML1 channel at pH 4.5 5TJA ; 2.3 ; I-II linker of TRPML1 channel at pH 6 5TJC ; 2.4 ; I-II linker of TRPML1 channel at pH 7.5 1NFI ; 2.7 ; I-KAPPA-B-ALPHA/NF-KAPPA-B COMPLEX 7O3T ; 3.1 ; I-layer structure (TrwF/VirB9NTD, TrwE/VirB10NTD) of the outer membrane core complex from the fully-assembled R388 type IV secretion system determined by cryo-EM. 6BCG ; 2.9 ; I-LtrI A28G bound to cognate substrate (pre-cleavage complex) 6BCN ; 2.5 ; I-LtrI E184D bound to cognate substrate (pre-cleavage complex) 6BCT ; 2.73 ; I-LtrI E184D bound to non-cognate C4 substrate (pre-cleavage complex) 6BCH ; 3.0 ; I-LtrI E29D bound to cognate substrate (nicked complex) 6BCF ; 2.92 ; I-LtrI G183A bound to cognate substrate (pre-cleavage complex) 6TQI ; 2.95 ; I-MOTIF STRUCTURE FORMED FROM THE C STRAND OF A HUMAN TELOMERE FRAGMENT 2FLD ; 2.0 ; I-MsoI Re-Designed for Altered DNA Cleavage Specificity 3KO2 ; 2.9 ; I-MsoI re-designed for altered DNA cleavage specificity (-7C) 3MIS ; 2.3 ; I-MsoI re-designed for altered DNA cleavage specificity (-8G) 3MIP ; 2.4 ; I-MsoI re-designed for altered DNA cleavage specificity (-8GCG) 6BDB ; 1.5 ; I-OnuI K227Y, D236A bound to A3G substrate (pre-cleavage complex) 6BD0 ; 1.45 ; I-OnuI K227Y, D236A bound to cognate substrate (pre-cleavage complex) 7RCG ; 2.368 ; I-OnuI_e-hPD1-f final stage reengineered variant of I-OnuI 1A74 ; 2.2 ; I-PPOL HOMING ENDONUCLEASE/DNA COMPLEX 3OOL ; 2.3 ; I-SceI complexed with C/G+4 DNA substrate 3C0W ; 2.2 ; I-SceI in complex with a bottom nicked DNA substrate 3C0X ; 2.3 ; I-SceI in complex with a top nicked DNA substrate 3OOR ; 2.5 ; I-SceI mutant (K86R/G100T)complexed with C/G+4 DNA substrate 5E5O ; 2.36 ; I-SmaMI bound to uncleaved DNA target in the presence of Calcium ions 5E5S ; 2.29 ; I-SmaMI K103A mutant 3SKA ; 1.73 ; I. Novel HCV NS5B Polymerase Inhibitors: Discovery of Indole 2- Carboxylic Acids with C3-Heterocycles 3SKE ; 1.97 ; I. Novel HCV NS5B Polymerase Inhibitors: Discovery of Indole 2- Carboxylic Acids with C3-Heterocycles 3SKH ; 2.5 ; I. Novel HCV NS5B Polymerase Inhibitors: Discovery of Indole 2- Carboxylic Acids with C3-Heterocycles 1G1C ; 2.1 ; I1 DOMAIN FROM TITIN 1UXL ; 1.6 ; I113T mutant of human SOD1 1TS5 ; 3.1 ; I140T MUTANT OF TOXIC SHOCK SYNDROME TOXIN-1 FROM S. AUREUS 7LNW ; 2.29 ; I146A mutant of the isopentenyl phosphate kinase from Candidatus methanomethylophilus alvus 7LNX ; 2.3 ; I146A mutant of the isopentenyl phosphate kinase from Candidatus methanomethylophilus alvus 4QHN ; 3.0 ; I2 (unbound) from CH103 Lineage 4HK3 ; 3.0 ; I2 Fab (unbound) from CH65-CH67 Lineage 3MPQ ; 2.25 ; I204R1 mutant of LeuT 5CDG ; 1.4 ; I220F horse liver alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 5CDS ; 1.4 ; I220L horse liver alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 5CDT ; 1.7 ; I220V horse liver alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol 5CDU ; 1.6 ; I220V horse liver alcohol dehydrogenase complexed with NAD and pyrazole 3PZG ; 1.4 ; I222 crystal form of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 4QHM ; 3.23 ; I3.1 (unbound) from CH103 Lineage 4QHL ; 3.153 ; I3.2 (unbound) from CH103 Lineage 4Y3C ; 3.2 ; I304V 3D polymerase mutant of EMCV 6VPY ; 2.36 ; I33M (I3.2 mutant from CH103 Lineage) 5VP8 ; 2.2 ; I38T mutant of 2009 H1N1 PA Endonuclease 5VPX ; 2.303 ; I38T mutant of 2009 H1N1 PA Endonuclease in complex with RO-7 1B0V ; 2.8 ; I40N MUTANT OF AZOTOBACTER VINELANDII FDI 4OX2 ; 2.0 ; I45T cytosolic phosphoenolpyruvate carboxykinase in complex with beta-sulfopyruvate and GTP 4AHJ ; 2.032 ; I46V - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 6QO0 ; 1.65 ; I47W mutated sulfur oxygenase reductase from Acidianus ambivaens 2R43 ; 1.58 ; I50V HIV-1 protease in complex with an amino decorated pyrrolidine-based inhibitor 2R3T ; 1.8 ; I50V HIV-1 protease mutant in complex with a carbamoyl decorated pyrrolidine-based inhibitor 7SGE ; 3.67 ; I53-50 nanoparticle core reconstructed from GPC-I53-50NP by focused refinement 1JXB ; 1.6 ; I53A, a point mutant of the cysteine-free variant of E. coli Rnase HI 8UR5 ; 3.7 ; I53_dn5 nanoparticle displaying the trimeric HA heads with heptad domain, TH-1heptad-I53_dn5 (local refinement of TH-1heptad) 8UR7 ; 3.9 ; I53_dn5 nanoparticle displaying the trimeric HA heads with heptad domain, TH-6heptad-I53_dn5 (local refinement of TH-6heptad) 7ZY1 ; 1.434 ; I567A Mutant of Recombinant CODH-II 7ZX6 ; 1.447 ; I567L Mutant of Recombinant CODH-II 7ZX5 ; 1.544 ; I567T Mutant of Recombinant CODH-II 1IX0 ; 1.8 ; I59A-3SS human lysozyme 3SJ5 ; 1.673 ; I5F Mutant Structure of T. Tengcongensis H-NOX 7RUL ; ; I5R8 Mastoparano is a peptide synthetic, modified of Mastoparano (extracted from wasp venom) 7N9D ; 2.1 ; I74A mutant of the isopentenyl phosphate kinase from Candidatus methanomethylophilus alvus 2R3W ; 1.92 ; I84V HIV-1 protease in complex with a amino decorated pyrrolidine-based inhibitor 3BC4 ; 1.82 ; I84V HIV-1 protease in complex with a pyrrolidine diester 2R38 ; 1.81 ; I84V HIV-1 protease mutant in complex with a carbamoyl decorated pyrrolidine-based inhibitor 2V5U ; 1.99 ; I92A FLAVODOXIN FROM ANABAENA 1Y9K ; 2.39 ; IAA acetyltransferase from Bacillus cereus ATCC 14579 7XXB ; 2.93 ; IAA bound state of AtPIN3 1U0I ; ; IAAL-E3/K3 heterodimer 6URU ; 2.6 ; iAChSnFR Fluorescent Acetylcholine Sensor precursor 3T6P ; 1.897 ; IAP antagonist-induced conformational change in cIAP1 promotes E3 ligase activation via dimerization 8AZ1 ; 3.1 ; IAPP S20G growth-phase fibril polymorph 2PF-C 8AZ0 ; 3.4 ; IAPP S20G growth-phase fibril polymorph 2PF-L 8AZ2 ; 3.4 ; IAPP S20G growth-phase fibril polymorph 3PF-CU 8AZ3 ; 3.4 ; IAPP S20G growth-phase fibril polymorph 4PF-CU 8AWT ; 3.0 ; IAPP S20G lag-phase fibril polymorph 2PF-P 8AZ4 ; 2.2 ; IAPP S20G plateau-phase fibril polymorph 2PF-L 8AZ5 ; 2.3 ; IAPP S20G plateau-phase fibril polymorph 4PF-CU 8AZ7 ; 2.9 ; IAPP S20G plateau-phase fibril polymorph 4PF-LJ 8AZ6 ; 3.1 ; IAPP S20G plateau-phase fibril polymorph 4PF-LU 6DCX ; 3.408 ; iASPP-PP-1c structure and targeting of p53 2JMO ; ; IBR domain of Human Parkin 3EWO ; 1.8 ; IBV Nsp3 ADRP domain 7DB9 ; 2.845 ; IC1 in complex with tubulin 6SWD ; 3.2 ; IC2 body model of cryo-EM structure of a full archaeal ribosomal translation initiation complex devoid of aIF1 in P. abyssi 6SWE ; 3.1 ; IC2 head of cryo-EM structure of a full archaeal ribosomal translation initiation complex devoid of aIF1 in P. abyssi 6SW9 ; 4.2 ; IC2A model of cryo-EM structure of a full archaeal ribosomal translation initiation complex devoid of aIF1 in P. abyssi 6SWC ; 3.3 ; IC2B model of cryo-EM structure of a full archaeal ribosomal translation initiation complex devoid of aIF1 in P. abyssi 1LVR ; ; IC3 of CB1 (L431A,A432L) Bound to G(alpha)i 1LVQ ; ; IC3 of CB1 Bound to G(alpha)i 4DX9 ; 2.99 ; ICAP1 in complex with integrin beta 1 cytoplasmic tail 4DX8 ; 2.54 ; ICAP1 in complex with KRIT1 N-terminus 1OPS ; 2.0 ; ICE-BINDING SURFACE ON A TYPE III ANTIFREEZE PROTEIN FROM OCEAN POUT 7CUO ; 2.0 ; IclR transcription factor complexed with 4-hydroxybenzoic acid from Microbacterium hydrocarbonoxydans 6ITF ; 4.7 ; Icosahedral asymmetric unit (iASU) model of the less refined, coarse part of FHV eluted particle 6ITB ; 4.7 ; Icosahedral asymmetric unit (iASU) model of the well-refined part of FHV eluted particle 7QOF ; 3.01 ; Icosahedral capsid of the phicrAss001 virion 2WBH ; 4.7 ; Icosahedral particle of covalent coat protein dimer of bacteriophage MS2 6O3H ; 2.8 ; Icosahedral reconstruction of the thermophilic bacteriophage P74-26 capsid 6VOC ; 3.1 ; icosahedral symmetry reconstruction of brome mosaic virus (RNA 3+4) 6IAT ; 3.3 ; Icosahedrally averaged capsid of bacteriophage P68 6IB1 ; 3.5 ; Icosahedrally averaged capsid of empty particle of bacteriophage P68 7WWU ; 3.5 ; ICP1 Csy complex 7WKO ; 2.3 ; ICP1 Csy1-2 complex 7WKP ; 2.0 ; ICP1 Csy4 5MHK ; 2.28 ; ICP4 DNA-binding domain in complex with 19mer DNA duplex from its own promoter 5MHJ ; 2.117 ; ICP4 DNA-binding domain, lacking intrinsically disordered region, in complex with 12mer DNA duplex from its own promoter 2M1O ; ; ID3 stem 3RQD ; 2.143 ; Ideal Thiolate-Zinc Coordination Geometry in Depsipeptide Binding to Histone Deacetylase 8 4XE0 ; 2.434 ; Idelalisib bound to the p110 subunit of PI3K delta 1DBP ; 2.2 ; IDENTICAL MUTATIONS AT CORRESPONDING POSITIONS IN TWO HOMOLOGOUS PROTEINS WITH NON-IDENTICAL EFFECTS 6NAD ; 2.90197 ; Identification and biological evaluation of tertiary ALCOHOL-based inverse agonists of RORgt 6CVH ; 3.5 ; Identification and biological evaluation of thiazole-based inverse agonists of RORgt 6JIC ; ; Identification and Characterization of a carboxypeptidase inhibitor from Lycium barbarum 3HK1 ; 1.7 ; Identification and Characterization of a Small Molecule Inhibitor of Fatty Acid Binding Proteins 4RKX ; 1.59 ; Identification and characterization of a small molecule inhibitor of S. pyogenes SpeB. 7QZP ; 1.65 ; Identification and characterization of an RRM-containing, ELAV-like, RNA binding protein in Acinetobacter Baumannii 8JVE ; 1.76 ; Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer 8JVL ; 2.06 ; Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer 5CUQ ; 1.696 ; Identification and characterization of novel broad spectrum inhibitors of the flavivirus methyltransferase 1VYA ; 2.05 ; Identification and characterization of the first plant G-quadruplex binding protein encoded by the Zea mays L. nucleoside diphosphate1 gene, ZmNDPK1 2QP3 ; 2.6 ; Identification and Characterization of Two Amino Acids Critical for the Substrate Inhibition of SULT2A1 2QP4 ; 3.0 ; Identification and Characterization of Two Amino Acids Critical for the Substrate Inhibition of SULT2A1 8Q0T ; 1.8 ; Identification and optimisation of novel inhibitors of the Polyketide synthetase 13 thioesterase domain with antitubercular activity 8Q0U ; 1.8 ; Identification and optimisation of novel inhibitors of the Polyketide synthetase 13 thioesterase domain with antitubercular activity 8Q17 ; 1.71 ; Identification and optimisation of novel inhibitors of the Polyketide synthetase 13 thioesterase domain with antitubercular activity 4R1Y ; 2.0 ; Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitor 4R1V ; 1.2 ; Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors 5W4W ; 1.99 ; Identification and Profiling of a Selective and Brain Penetrant Radioligand for In Vivo Target Occupancy Measurement of Casein Kinase 1 (CK1) Inhibitors 2LNW ; ; Identification and structural basis for a novel interaction between Vav2 and Arap3 1C50 ; 2.3 ; IDENTIFICATION AND STRUCTURAL CHARACTERIZATION OF A NOVEL ALLOSTERIC BINDING SITE OF GLYCOGEN PHOSPHORYLASE B 5KQB ; ; Identification and structural characterization of LytU 5KQC ; ; Identification and structural characterization of LytU 4AJD ; 2.3 ; Identification and structural characterization of PDE10 fragment inhibitors 4AJF ; 1.9 ; Identification and structural characterization of PDE10 fragment inhibitors 4AJG ; 2.3 ; Identification and structural characterization of PDE10 fragment inhibitors 4KFP ; 1.84 ; Identification of 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived Ureas as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 3ZRK ; 2.37 ; Identification of 2-(4-pyridyl)thienopyridinones as GSK-3beta inhibitors 3ZRL ; 2.48 ; Identification of 2-(4-pyridyl)thienopyridinones as GSK-3beta inhibitors 3ZRM ; 2.49 ; Identification of 2-(4-pyridyl)thienopyridinones as GSK-3beta inhibitors 2C3J ; 2.1 ; Identification of a buried pocket for potent and selective inhibition of Chk1: prediction and verification 2C3K ; 2.6 ; Identification of a buried pocket for potent and selective inhibition of Chk1: prediction and verification 2C3L ; 2.35 ; Identification of a buried pocket for potent and selective inhibition of Chk1: prediction and verification 8EDH ; 3.111 ; Identification of a class of WNK isoform-specific inhibitors through high-throughput screening 1XZO ; 1.702 ; Identification of a disulfide switch in BsSco, a member of the Sco family of cytochrome c oxidase assembly proteins 6GZV ; 4.0 ; Identification of a druggable VP1-VP3 interprotomer pocket in the capsid of enteroviruses 3SD0 ; 2.7 ; Identification of a Glycogen Synthase Kinase-3b Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice 5U7Q ; 3.15 ; Identification of A New Class of Potent Cdc7 Inhibitors Designed by Putative Pharmacophore Model: Synthesis and Biological Evaluation of 2,3-Dihydrothieno[3,2-d]pyrimidin-4(1H)-ones 5U7R ; 3.33 ; Identification of A New Class of Potent Cdc7 Inhibitors Designed by Putative Pharmacophore Model: Synthesis and Biological Evaluation of 2,3-Dihydrothieno[3,2-d]pyrimidin-4(1H)-ones 5DUI ; 2.306 ; Identification of a new FoxO1 binding site that precludes CREB binding at the glucose-6-phosphatase catalytic subunit gene promoter 5TY1 ; 1.6 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5TY8 ; 1.45 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5TY9 ; 1.53 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5TYA ; 1.5 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5U0D ; 1.59 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5U0E ; 1.27 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5U0F ; 1.21 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5U0G ; 1.54 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5VGY ; 1.39 ; Identification of a New Zinc Binding Chemotype by Fragment Screening 5TXY ; 1.206 ; Identification of a New Zinc Binding Chemotype of by Fragment Screening on human carbonic anhydrase 5C4O ; 2.24 ; Identification of a Novel Allosteric Binding Site for RORgt Inhibitors 5C4S ; 2.23 ; Identification of a Novel Allosteric Binding Site for RORgt Inhibitors 5C4T ; 1.77 ; Identification of a Novel Allosteric Binding Site for RORgt Inhibitors 5C4U ; 2.08 ; Identification of a Novel Allosteric Binding Site for RORgt Inhibitors 4WVD ; 2.9 ; Identification of a novel FXR ligand that regulates metabolism 2ESF ; 2.25 ; Identification of a Novel Non-Catalytic Bicarbonate Binding Site in Eubacterial beta-Carbonic Anhydrase 4Y29 ; 1.98 ; Identification of a novel PPARg ligand that regulates metabolism 2QVD ; 1.93 ; Identification of a potent anti-inflammatory agent from the natural extract of plant Cardiospermun helicacabum: Crystal structure of the complex of phospholipase A2 with Benzo(g)-1,3-benzodioxolo(5,6-a)quinolizinium, 5,6-dihydro-9,10-dimethoxy at 1.93 A resolution 1UNS ; 2.0 ; IDENTIFICATION OF A SECONDARY ZINC-BINDING SITE IN STAPHYLOCOCCAL ENTEROTOXIN C2: IMPLICATIONS FOR SUPERANTIGEN RECOGNITION 5YJ8 ; 1.762 ; Identification of a small molecule inhibitor for the Tudor domain of TDRD3 4FGY ; 2.84 ; Identification of a unique PPAR ligand with an unexpected binding mode and antibetic activity 4M6P ; 1.75 ; Identification of Amides Derived From 1H-Pyrazolo[3,4-b]pyridine-5-carboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 4M6Q ; 2.406 ; Identification of Amides Derived From 1H-Pyrazolo[3,4-b]pyridine-5-carboxylic Acid as Potent Inhibitors of Human Nicotinamide Phosphoribosyltransferase (NAMPT) 3Q37 ; 1.65 ; Identification of Amino Acids that Account for Long-Range Interactions in Proteins Using Two Triosephosphate Isomerases from Pathogenic Trypanosomes. 5WAL ; 2.45 ; Identification of an imidazopyridine scaffold to generate potent and selective TYK2 inhibitors that demonstrate activity in an in vivo psoriasis model 5WEV ; 1.854 ; Identification of an imidazopyridine scaffold to generate potent and selective TYK2 inhibitors that demonstrate activity in an in vivo psoriasis model 8F5N ; 1.9 ; Identification of an Immunodominant region on a Group A Streptococcus T-antigen Reveals Temperature-Dependent Motion in Pili 8F70 ; 2.29 ; Identification of an Immunodominant region on a Group A Streptococcus T-antigen Reveals Temperature-Dependent Motion in Pili 8C12 ; 1.549 ; Identification of an intermediate activation state of PAK5 reveals a novel mechanism of kinase inhibition. 3FXV ; 2.26 ; Identification of an N-oxide pyridine GW4064 analogue as a potent FXR agonist 6BN6 ; 2.4 ; IDENTIFICATION OF BICYCLIC HEXAFLUOROISOPROPYL ALCOHOL SULFONAMIDES AS RORGT/RORC INVERSE AGONISTS 1AY0 ; 2.6 ; IDENTIFICATION OF CATALYTICALLY IMPORTANT RESIDUES IN YEAST TRANSKETOLASE 2CGU ; 2.5 ; Identification of chemically diverse Chk1 inhibitors by receptor- based virtual screening 2CGV ; 2.6 ; Identification of chemically diverse Chk1 inhibitors by receptor- based virtual screening 2CGW ; 2.2 ; Identification of chemically diverse Chk1 inhibitors by receptor- based virtual screening 2CGX ; 2.2 ; Identification of chemically diverse Chk1 inhibitors by receptor- based virtual screening 4H6J ; 1.52 ; Identification of Cys 255 in HIF-1 as a novel site for development of covalent inhibitors of HIF-1 /ARNT PasB domain protein-protein interaction. 3DWK ; 3.1 ; Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer 4HRW ; 2.43 ; Identification of function and Mechanistic insights of Guanine deaminase from Nitrosomonas europaea 4HRQ ; 1.9 ; Identification of Function and Mechanistic Insights of Guanine Deaminase from Nitrosomonas europaea: Role of the C-terminal Loop in Catalysis 8T6D ; 2.4 ; Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors 8T6G ; 1.84 ; Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors 8T7Q ; 2.1 ; Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors 8T8Q ; 2.27 ; Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors 1YNK ; 2.1 ; Identification of Key residues of the NC6.8 Fab antibody fragment binding to synthetic sweeteners: Crystal structure of NC6.8 co-crystalized with high potency sweetener compound SC45647 1YNL ; 1.7 ; Identification of Key residues of the NC6.8 Fab antibody fragment binding to synthetic sweeterners: Crystal structure of NC6.8 co-crystalized with high potency sweetener compound SC45647 1C04 ; 5.0 ; IDENTIFICATION OF KNOWN PROTEIN AND RNA STRUCTURES IN A 5 A MAP OF THE LARGE RIBOSOMAL SUBUNIT FROM HALOARCULA MARISMORTUI 7P2G ; 2.5 ; Identification of low micromolar SARS-CoV-2 Mpro inhibitors from hits identified by in silico screens 5HJP ; 2.6 ; Identification of LXRbeta selective agonists for the treatment of Alzheimer's Disease 5HJS ; 1.72 ; Identification of LXRbeta selective agonists for the treatment of Alzheimer's Disease 7ZW8 ; 2.119 ; Identification of M4205 a highly selective inhibitor of cKIT mutations for unresectable metastatic or recurrent GIST 7ZY6 ; 3.09 ; Identification of M4205 a highly selective inhibitor of cKIT mutations for unresectable metastatic or recurrent GIST 5DWR ; 2.0 ; Identification of N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1,2 and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies 2VTJ ; 2.2 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design 2VTL ; 2.0 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design 2VTR ; 1.89 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design 2VTA ; 2.0 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTI ; 2.0 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTM ; 2.25 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTN ; 2.2 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTO ; 2.19 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTP ; 2.15 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTQ ; 1.9 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTS ; 1.9 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTT ; 1.68 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VU3 ; 1.85 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H- pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design. 2VTH ; 1.9 ; Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design 2WRM ; 1.95 ; Identification of Novel Allosteric Inhibitors of Hepatitis C Virus NS5B Polymerase Thumb Domain (Site II) by Structure-Based Design 4O09 ; 1.96 ; Identification of novel HSP90 / isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington s disease 4O04 ; 1.82 ; Identification of novel HSP90/isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease 4O05 ; 1.79 ; Identification of novel HSP90/isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease 4O07 ; 1.86 ; Identification of novel HSP90/isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease 4O0B ; 1.93 ; Identification of novel HSP90/isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease 1WBS ; 1.8 ; Identification of novel p38 alpha MAP Kinase inhibitors using fragment-based lead generation. 1WBT ; 2.0 ; Identification of novel p38 alpha MAP Kinase inhibitors using fragment-based lead generation. 1WBV ; 2.0 ; Identification of novel p38 alpha MAP Kinase inhibitors using fragment-based lead generation. 1WBW ; 2.41 ; Identification of novel p38 alpha MAP Kinase inhibitors using fragment-based lead generation. 1S17 ; 1.95 ; Identification of Novel Potent Bicyclic Peptide Deformylase Inhibitors 5DLS ; 2.15 ; Identification of Novel, in vivo Active Chk1 Inhibitors Utilizing Structure Guided Drug Design 6N3L ; 2.61 ; Identification of novel, potent and selective GCN2 inhibitors as first-in-class anti-tumor agents 6N3N ; 3.01 ; Identification of novel, potent and selective GCN2 inhibitors as first-in-class anti-tumor agents 6N3O ; 2.4 ; Identification of novel, potent and selective GCN2 inhibitors as first-in-class anti-tumor agents 5W5J ; 2.85 ; Identification of potent and selective RIPK2 inhibitors for the treatment of inflammatory diseases 5W5O ; 2.89 ; Identification of potent and selective RIPK2 inhibitors for the treatment of inflammatory diseases. 1Y1N ; 1.51 ; Identification of SH3 motif in M. Tuberculosis methionine aminopeptidase suggests a mode of interaction with the ribosome 4BV5 ; 2.1 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 4BV7 ; 1.7 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 4BVC ; 1.6 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 4BVD ; 1.68 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 4BVV ; 1.8 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 4BVW ; 2.0 ; Identification of small molecule inhibitors selective for apo(a) kringles KIV-7, KIV-10 and KV. 8JUC ; 1.54 ; Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening 8JVD ; 1.696 ; Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening 5HCV ; 2.5 ; Identification of Spirooxindole and Dibenzoxazepine Motifs as Potent Mineralocorticoid Receptor Antagonists 4FKD ; 1.633 ; Identification of the Activator Binding Residues in the Second Cysteine-Rich Regulatory Domain of Protein Kinase C Theta 3J6Q ; 3.8 ; Identification of the active sites in the methyltransferases of a transcribing dsRNA virus 6USX ; 2.27 ; Identification of the Clinical Development Candidate MRTX849, a Covalent KRASG12C Inhibitor for the Treatment of Cancer 6USZ ; 2.03 ; Identification of the Clinical Development Candidate MRTX849, a Covalent KRASG12C Inhibitor for the Treatment of Cancer 6UT0 ; 1.94 ; Identification of the Clinical Development Candidate MRTX849, a Covalent KRASG12C Inhibitor for the Treatment of Cancer 5Z9I ; 2.199 ; Identification of the functions of unusual cytochrome p450-like monooxygenases involved in microbial secondary metablism 5Z9J ; 2.0 ; Identification of the functions of unusual cytochrome p450-like monooxygenases involved in microbial secondary metablism 2WKK ; 1.5 ; Identification of the glycan target of the nematotoxic fungal galectin CGL2 in Caenorhabditis elegans 2LFN ; ; Identification of the key regions that drive functional amyloid formation by the fungal hydrophobin EAS 4ZGS ; 2.461 ; Identification of the pyruvate reductase of Chlamydomonas reinhardtii 1SMN ; 2.04 ; IDENTIFICATION OF THE SERRATIA ENDONUCLEASE DIMER: STRUCTURAL BASIS AND IMPLICATIONS FOR CATALYSIS 2LXO ; ; Identification of the Structural Traits Mediating the Antimicrobial Activity of a Chimeric Peptide of HBD2 and HBD3 2UX1 ; 1.8 ; Identification of two zinc-binding sites in the Streptococcus suis Dpr protein 2FZ0 ; ; Identification of yeast R-SNARE Nyv1p as a novel longin domain protein 3K5U ; 2.35 ; Identification, SAR Studies and X-ray Cocrystal Analysis of a Novel Furano-pyrimidine Aurora Kinase A Inhibitor 3HDZ ; 1.8 ; Identification, Synthesis, and SAR of Amino Substituted Pyrido[3,2b]pryaziones as Potent and Selective PDE5 Inhibitors 6QJZ ; 2.7 ; Identificationand Characterization of an Oxalylfrom Grass pea (Lathyrus sativusCoA-Synthetase L.) 4LBV ; 2.03 ; Identifying ligand binding hot spots in proteins using brominated fragments 4LBW ; 1.741 ; Identifying ligand binding hot spots in proteins using brominated fragments 4LBY ; 2.692 ; Identifying ligand binding hot spots in proteins using brominated fragments 4LBZ ; 2.223 ; Identifying ligand binding hot spots in proteins using brominated fragments 4LC0 ; 2.221 ; Identifying ligand binding hot spots in proteins using brominated fragments 1CYF ; 2.35 ; IDENTIFYING THE PHYSIOLOGICAL ELECTRON TRANSFER SITE OF CYTOCHROME C PEROXIDASE BY STRUCTURE-BASED ENGINEERING 8A47 ; 2.338 ; IdeS in complex with IgG1 Fc 4UMX ; 1.88 ; IDH1 R132H in complex with cpd 1 4UMY ; 2.07 ; IDH1 R132H in complex with cpd 1 5SVF ; 2.34 ; IDH1 R132H in complex with IDH125 5SUN ; 2.477 ; IDH1 R132H in complex with IDH146 6B0Z ; 2.334 ; IDH1 R132H mutant in complex with IDH305 5TQH ; 2.2 ; IDH1 R132H mutant in complex with IDH889 1CIC ; 2.5 ; IDIOTOPE-ANTI-IDIOTOPE FAB-FAB COMPLEX; D1.3-E225 1DVF ; 1.9 ; IDIOTOPIC ANTIBODY D1.3 FV FRAGMENT-ANTIIDIOTOPIC ANTIBODY E5.2 FV FRAGMENT COMPLEX 1IAI ; 2.9 ; IDIOTYPE-ANTI-IDIOTYPE FAB COMPLEX 6V52 ; 1.78 ; IDO1 IN COMPLEX WITH COMPOUND 1 7RRC ; 2.18 ; IDO1 IN COMPLEX WITH COMPOUND 14 6X5Y ; 2.65 ; IDO1 in complex with compound 4 7RRB ; 2.69 ; IDO1 IN COMPLEX WITH COMPOUND 9 7RRD ; 2.76 ; IDO1 IN COMPLEX WITH COMPOUND S-1 6AZV ; 2.755 ; IDO1/BMS-978587 crystal structure 6AZW ; 2.78 ; IDO1/FXB-001116 crystal structure 6QLZ ; 2.343 ; IDOL F3ab subdomain 6QLY ; 2.5 ; IDOL FERM domain 6N4M ; 1.58 ; IDS-oxidized ADP-bound form of the nitrogenase Fe-protein from A. vinelandii 6TGZ ; 3.2 ; IE1 from human cytomegalovirus 6TH1 ; 3.4 ; IE1 from rat cytomegalovirus 7ZD5 ; 3.17 ; IF(apo/as isolated) conformation of CydDC (Dataset-1) 7ZDE ; 3.17 ; IF(apo/as isolated) conformation of CydDC in AMP-PNP(CydD) bound state (Dataset-4) 7ZDS ; 3.26 ; IF(apo/as isolated) conformation of CydDC mutant (E500Q.C) (Dataset-18) 7ZDV ; 3.05 ; IF(apo/as isolated) conformation of CydDC mutant (E500Q.C) in AMP-PNP(CydD) bound state (Dataset-20) 7ZDR ; 3.05 ; IF(apo/as isolated) conformation of CydDC mutant (H85A.C) in AMP-PNP(CydD) bound state (Dataset-16) 7ZDA ; 3.17 ; IF(apo/asym) conformation of CydDC in ADP+Pi(CydC)/ATP(CydD) bound state (Dataset-2) 7ZDK ; 3.01 ; IF(apo/asym) conformation of CydDC in AMP-PNP(CydC)/AMP-PNP(CydD) bound state (Dataset-8) 7ZDB ; 3.35 ; IF(heme/bound) conformation of CydDC in ADP+Pi(CydC)/ATP(CydD) bound state (Dataset-2) 7ZDG ; 2.77 ; IF(heme/confined) conformation of CydDC (Dataset-5) 7ZDC ; 3.13 ; IF(heme/confined) conformation of CydDC in ADP(CydD) bound state (Dataset-3) 7ZDF ; 2.94 ; IF(heme/confined) conformation of CydDC in AMP-PNP(CydD) bound state (Dataset-4) 7ZEC ; 3.05 ; IF(heme/confined) conformation of CydDC in ATP(CydD) bound state (Dataset-15) 7ZDW ; 3.35 ; IF(heme/confined) conformation of CydDC mutant (E500Q.C) in AMP-PNP(CydD) bound state (Dataset-22) 7ZDL ; 3.35 ; IF(heme/coordinated) conformation of CydDC in AMP-PNP(CydC)/AMP-PNP(CydD) bound state (Dataset-8) 1ZO1 ; 13.8 ; IF2, IF1, and tRNA fitted to cryo-EM data OF E. COLI 70S initiation complex 2LKD ; ; IF2-G2 GDP complex 5UDJ ; 1.69 ; IFIT1 monomeric mutant (L457E/L464E) with Gppp-AAAA 5UDI ; 1.58 ; IFIT1 monomeric mutant (L457E/L464E) with m7Gppp-AAAA (syn and anti conformations of cap) 5UDK ; 1.65 ; IFIT1 monomeric mutant (L457E/L464E) with PPP-AAAA 5UDL ; 1.65 ; IFIT1 N216A monomeric mutant (L457E/L464E) with m7Gppp-AAAA (anti conformation of cap) 4R0P ; 1.52 ; Ifqins, an amyloid forming segment from human lysozyme spanning residues 56-61 8BDA ; 20.7 ; IFTA complex in anterograde intraflagellar transport trains (Chlamydomonas reinhardtii) 8BD7 ; 9.9 ; IFTB1 subcomplex of anterograde Intraflagellar transport trains (Chlamydomonas reinhardtii) 1WAA ; 1.8 ; IG27 protein domain 2N56 ; ; Ig59 domain of human obscurin A 6XJB ; 3.8 ; IgA1 Protease 6OH1 ; ; IgA1 Protease G5 domain structure 7JGJ ; 4.8 ; IgA1 Protease in complex with neutralizing mAb 7UVL ; 3.56 ; IgA1 Protease with IgA1 substrate 6DGV ; 2.8 ; iGABASnFR Fluorescent GABA Sensor precursor 6C6M ; 2.5 ; IgCam3 of human MLCK1 1OAZ ; 2.78 ; IgE Fv SPE7 complexed with a recombinant thioredoxin 7SI0 ; 3.0 ; IgE-Fc in complex with 813 7MXI ; 2.8 ; IgE-Fc in complex with DARPins E2_79 and E3_53 7SHZ ; 3.0 ; IgE-Fc in complex with HAE 7SHY ; 3.0 ; IgE-Fc in complex with omalizumab scFv 7SHU ; 2.75 ; IgE-Fc in complex with omalizumab variant C02 5NQW ; 3.4 ; IgE-Fc in complex with single domain antibody 026 1JQH ; 2.1 ; IGF-1 receptor kinase domain 3LW0 ; 1.79 ; IGF-1RK in complex with ligand MSC1609119A-1 1LB7 ; ; IGF-F1-1, A PEPTIDE ANTAGONIST OF IGF-1 5FXQ ; 2.3 ; IGFR-1R complex with a pyrimidine inhibitor. 5FXR ; 2.4 ; IGFR-1R complex with a pyrimidine inhibitor. 5FXS ; 1.9 ; IGFR-1R complex with a pyrimidine inhibitor. 1CLY ; 2.5 ; IGG FAB (HUMAN IGG1, KAPPA) CHIMERIC FRAGMENT (CBR96) COMPLEXED WITH LEWIS Y NONOATE METHYL ESTER 1CLZ ; 2.8 ; IGG FAB (IGG3, KAPPA) FRAGMENT (MBR96) COMPLEXED WITH LEWIS Y NONOATE METHYL ESTER 1MIM ; 2.6 ; IGG FAB FRAGMENT (CD25-BINDING) 5U4Y ; 2.4994 ; IgG Fc bound to 3 helix of the B-domain from Protein A 1AD9 ; 2.8 ; IGG-FAB FRAGMENT OF ENGINEERED HUMAN MONOCLONAL ANTIBODY CTM01 1AE6 ; 3.0 ; IGG-FAB FRAGMENT OF MOUSE MONOCLONAL ANTIBODY CTM01 3FZU ; 2.5 ; IgG1 Fab characterized by H/D exchange 3F58 ; 2.8 ; IGG1 FAB FRAGMENT (58.2) COMPLEX WITH 12-RESIDUE CYCLIC PEPTIDE (INCLUDING RESIDUES 315-324 OF HIV-1 GP120 (MN ISOLATE); H315S MUTATION 2F58 ; 2.8 ; IGG1 FAB FRAGMENT (58.2) COMPLEX WITH 12-RESIDUE CYCLIC PEPTIDE (INCLUDING RESIDUES 315-324 OF HIV-1 GP120) (MN ISOLATE) 1F58 ; 2.0 ; IGG1 FAB FRAGMENT (58.2) COMPLEX WITH 24-RESIDUE PEPTIDE (RESIDUES 308-333 OF HIV-1 GP120 (MN ISOLATE) WITH ALA TO AIB SUBSTITUTION AT POSITION 323 1NAK ; 2.57 ; IGG1 FAB FRAGMENT (83.1) COMPLEX WITH 16-RESIDUE PEPTIDE (RESIDUES 304-321 OF HIV-1 GP120 (MN ISOLATE)) 1IGC ; 2.6 ; IGG1 FAB FRAGMENT (MOPC21) COMPLEX WITH DOMAIN III OF PROTEIN G FROM STREPTOCOCCUS 1WEJ ; 1.8 ; IGG1 FAB FRAGMENT (OF E8 ANTIBODY) COMPLEXED WITH HORSE CYTOCHROME C AT 1.8 A RESOLUTION 4ZNE ; 2.42 ; IgG1 Fc-FcgammaRI ecd complex 7LUS ; 2.45 ; IgG2 Fc Charge Pair Mutation version 1 (CPMv1) 5AMU ; 2.2 ; IglE I39A,Y40A,V44A 8E4C ; 4.0 ; IgM BCR fab truncated form 4JVU ; 1.3 ; IgM C2-domain from mouse 4JVW ; 2.0 ; IgM C4-domain from mouse 8GZN ; 3.6 ; IgM-var2CSA complex 4Q97 ; 2.4 ; IgNAR antibody domain C1 4Q9B ; 1.5 ; IgNAR antibody domain C2 4Q9C ; 2.8 ; IgNAR antibody domain C3 7OSK ; 2.65 ; Ignisphaera aggregans GH53 catalytic domain 6Y88 ; 2.09983 ; IGPS (Indole-3-glycerol phosphate synthase) from Pseudomonas aeruginosa in complex with substrate inhibitor rCdRP 6NM8 ; 2.792 ; IgV-V76T BMS compound 105 2HT0 ; 2.0 ; IHF bound to doubly nicked DNA 2F3G ; 2.13 ; IIAGLC CRYSTAL FORM III 1F3Z ; 1.98 ; IIAGLC-ZN COMPLEX 3NVF ; 1.8 ; IIHFGS segment 138-143 from human prion 8Q1B ; 3.4 ; III2-IV1 respiratory supercomplex from S. pombe 6HU9 ; 3.35 ; III2-IV2 mitochondrial respiratory supercomplex from S. cerevisiae 7Q21 ; 2.9 ; III2-IV2 respiratory supercomplex from Corynebacterium glutamicum 8EC0 ; 3.3 ; III2IV respiratory supercomplex from Saccharomyces cerevisiae cardiolipin-lacking mutant 8E7S ; 3.2 ; III2IV2 respiratory supercomplex from Saccharomyces cerevisiae with 4 bound UQ6 7CS3 ; 2.40022 ; IiPLR1 with NADP+ 7CS4 ; 2.30509 ; IiPLR1 with NADP+ and (+)pinoresinol 7CS7 ; 2.29765 ; IiPLR1 with NADP+ and (+)secoisolariciresinol 7CS6 ; 2.2014 ; IiPLR1 with NADP+ and (-)lariciresinol 7CS5 ; 2.18993 ; IiPLR1 with NADP+ and (-)pinoresinol 7CS8 ; 2.60003 ; IiPLR1 with NADP+ and (-)secoisolariciresinol 1IKN ; 2.3 ; IKAPPABALPHA/NF-KAPPAB COMPLEX 1G0Y ; 3.0 ; IL-1 RECEPTOR TYPE 1 COMPLEXED WITH ANTAGONIST PEPTIDE AF10847 8PPM ; 2.03 ; IL-12Rb1 neutralizing Fab4, crystal kappa variant 5VB9 ; 1.7 ; IL-17A in complex with peptide 7AMA ; 2.48 ; IL-17A in complex with small molecule modulators 7AMG ; 3.18 ; IL-17A in complex with small molecule modulators 7WKX ; 2.81 ; IL-17A in complex with the humanized antibody HB0017 4R6U ; 2.8 ; IL-18 receptor complex 7FCH ; 1.883 ; IL-18Rbeta TIR domain 7FCC ; 2.144 ; IL-1RAcPb TIR domain 7FD3 ; 2.99 ; IL-1RAPL2 TIR domain 6YE3 ; 2.89 ; IL-2 in complex with a Fab fragment from UFKA-20 3QAZ ; 3.802 ; IL-2 mutant D10 ternary complex 3TGX ; 2.8 ; IL-21:IL21R complex 6WEO ; 2.6 ; IL-22 Signaling Complex with IL-22R1 and IL-10Rbeta 5MZV ; 2.8 ; IL-23:IL-23R:Nb22E11 complex 7U7N ; 3.47 ; IL-27 quaternary receptor signaling complex 7Z0L ; 4.0 ; IL-27 signalling complex 5VI4 ; 2.792 ; IL-33/ST2/IL-1RAcP ternary complex structure 6N2U ; 1.254 ; IL-8 Structure from Bacterial Expression Source 5L6Y ; 1.99 ; il13 in complex with tralokinumab 8USS ; 1.47 ; IL17A complexed to Compound 7 8DYF ; 2.02 ; IL17A homodimer bound to Compound 10 8DYI ; 2.28 ; IL17A homodimer bound to Compound 5 8DYH ; 1.94 ; IL17A homodimer bound to Compound 6 8DYG ; 1.49 ; IL17A homodimer bound to Compound 7 8USR ; 1.83 ; IL17A homodimer complexed to Compound 23 4DOH ; 2.8 ; IL20/IL201/IL20R2 Ternary Complex 6WDQ ; 3.4 ; IL23/IL23R/IL12Rb1 signaling complex 6U6U ; 2.31 ; IL36R extracellular domain in complex with BI655130 Fab 7OPB ; 2.144 ; IL7R in complex with an antagonist 3ZJM ; 1.5 ; Ile(149)G11Phe mutation of M.acetivorans protoglobin in complex with cyanide 1JPH ; 2.1 ; Ile260Thr mutant of Human UroD, human uroporphyrinogen III decarboxylase 1EIO ; ; ILEAL LIPID BINDING PROTEIN IN COMPLEX WITH GLYCOCHOLATE 7D5C ; 1.895 ; IleRS in complex with a tRNA site inhibitor 6L2S ; 2.29 ; IlvC, a ketol-acid reductoisomerase, from Streptococcus pneumoniae_D83G 6L2R ; 2.02 ; IlvC, a ketol-acid reductoisomerase, from Streptococcus pneumoniae_E195S 6L2K ; 1.95 ; IlvC, a ketol-acid reductoisomerase, from Streptococcus pneumoniae_R49E 6L2I ; 1.69 ; IlvC, a ketol-acid reductoisomerase, from Streptococcus pneumoniae_WT 6L2Z ; 2.02 ; IlvC, a ketol-acid reductoisomerase, from Streptococcus pnuemoniae_D191G 1IR7 ; 1.9 ; IM mutant of lysozyme 1IR8 ; 1.63 ; IM mutant of lysozyme 1IR9 ; 1.9 ; IM mutant of lysozyme 5OE1 ; ; Im polyamide in complex with 5'CGATGTACATCG3'- hairpin polyamides studies 3VHB ; 2.1 ; IMIDAZOLE ADDUCT OF THE BACTERIAL HEMOGLOBIN FROM VITREOSCILLA SP. 1NI1 ; 2.3 ; Imidazole and cyanophenyl farnesyl transferase inhibitors 1KA9 ; 2.3 ; Imidazole Glycerol Phosphate Synthase 6YMU ; 2.11 ; Imidazole Glycerol Phosphate Synthase 6RIO ; ; Imidazole Polyamide-DNA complex NMR structure (5'-CGATGTACATCG-3') 6U9L ; 1.7 ; Imidazole-triggered RAS-specific subtilisin SUBT_BACAM 6UAO ; 1.63 ; Imidazole-triggered RAS-specific subtilisin SUBT_BACAM complexed with the peptide EEYSAM 6UAI ; 1.2 ; Imidazole-triggered RAS-specific subtilisin SUBT_BACAM complexed with YSAM peptide 6EZJ ; 3.1 ; Imidazoleglycerol-phosphate dehydratase 6EZM ; 3.2 ; Imidazoleglycerol-phosphate dehydratase from Saccharomyces cerevisiae 1OIQ ; 2.31 ; Imidazopyridines: a potent and selective class of Cyclin-dependent Kinase inhibitors identified through Structure-based hybridisation 1OIR ; 1.91 ; Imidazopyridines: a potent and selective class of Cyclin-dependent Kinase inhibitors identified through Structure-based hybridisation 1OIT ; 1.6 ; Imidazopyridines: a potent and selective class of Cyclin-dependent Kinase inhibitors identified through Structure-based hybridisation 3NRM ; 3.05 ; Imidazo[1,2-a]pyrazine-based Aurora Kinase Inhibitors 8OZW ; 2.01 ; Imine Reductase from Ajellomyces dermatitidis in complex NADPH4 8OZV ; 1.52 ; Imine Reductase from Ajellomyces dermatitidis in complex with 2,2-difluoroacetophenone 8P2J ; 1.73 ; Imine Reductase from Ajellomyces dermatitidis in space group C21 5A9T ; 1.5 ; Imine Reductase from Amycolatopsis orientalis in complex with (R)- Methyltetrahydroisoquinoline 5FWN ; 2.14 ; Imine Reductase from Amycolatopsis orientalis. Closed form in in complex with (R)- Methyltetrahydroisoquinoline 5G6R ; 1.82 ; Imine reductase from Aspergillus oryzae 5G6S ; 2.35 ; Imine reductase from Aspergillus oryzae in complex with NADP(H) and (R)-rasagiline 5OJL ; 1.56 ; Imine Reductase from Aspergillus terreus in complex with NADPH4 and dibenz[c,e]azepine 8A5Z ; 2.31 ; Imine Reductase from Ensifer adhaerens A208N mutant in complex with NADP+ 8A3X ; 2.58 ; Imine Reductase from Ensifer adhaerens in complex with NADP+ 6TO4 ; 2.29 ; Imine Reductase from Myxococcus stipitatus in complex with NADP+ 6TOE ; 2.78 ; Imine Reductase from Myxococcus stipitatus V8 variant in complex with NAD+ 4D3S ; 2.24 ; Imine reductase from Nocardiopsis halophila 5OCM ; 1.81 ; Imine Reductase from Streptosporangium roseum in complex with NADP+ and 2,2,2-trifluoroacetophenone hydrate 8BJ5 ; 2.72 ; Imine Reductase IR007 from Amycolatopsis azurea 3Q81 ; 2.0 ; Imipenem acylated BlaR1 sensor domain from Staphylococcus aureus 4H8R ; 1.25 ; Imipenem complex of GES-5 carbapenemase 5F83 ; 1.38 ; Imipenem complex of the GES-5 C69G mutant 7T7G ; 2.5 ; Imipenem-OXA-23 2 minute complex 6FMW ; 2.6 ; IMISX-EP of Hg-BacA cocrystallization 6FMT ; 3.0 ; IMISX-EP of Hg-BacA Soaking SAD 6FMV ; 2.3 ; IMISX-EP of Hg-BacA soaking SIRAS 6FMY ; 2.7 ; IMISX-EP of S-PepTSt 6FMS ; 3.0 ; IMISX-EP of Se-LspA 6FMR ; 2.7 ; IMISX-EP of Se-PepTSt 6FMX ; 1.79 ; IMISX-EP of W-PgpB 5I4T ; 3.273 ; Immature hexagonal lattice of HIV-1 Gag 7R7P ; ; Immature HIV-1 CACTD-SP1 lattice with Bevirimat (BVM) and Inositol hexakisphosphate (IP6) 7R7Q ; ; Immature HIV-1 CACTD-SP1 lattice with Inositol hexakisphosphate (IP6) 7OVQ ; 7.2 ; Immature HIV-1 matrix structure 6HWI ; 7.2 ; Immature M-PMV capsid hexamer structure in intact virus particles 6HWW ; 6.6 ; Immature MLV capsid hexamer structure in intact virus particles 4WIC ; 2.85 ; Immediate-early 1 protein (IE1) of rhesus macaque cytomegalovirus 1SLS ; ; IMMOBILE SLIPPED-LOOP STRUCTURE (SLS) OF DNA HOMODIMER IN SOLUTION, NMR, 9 STRUCTURES 4JC5 ; 2.75 ; Immune activator bound to receptor 4Y19 ; 2.5 ; immune complex 4Y1A ; 4.0 ; immune complex 7FAH ; 3.151 ; Immune complex of head region of CA09 HA and neutralizing antibody 12H5 7EW5 ; 3.606 ; immune complex of HPV6 L1 pentamer and neutralizing antibody 13H5 7EAN ; 1.91 ; immune complex of SARS-CoV-2 RBD and cross-neutralizing antibody 6D6 7EAM ; 1.4 ; immune complex of SARS-CoV-2 RBD and cross-neutralizing antibody 7D6 5UZU ; 2.403 ; Immune evasion by a Staphylococcal Peroxidase Inhibitor that blocks myeloperoxidase 1KGC ; 1.5 ; Immune Receptor 1YPZ ; 3.4 ; Immune receptor 4GG8 ; 3.2 ; Immune Receptor 4MCY ; 2.3 ; Immune Receptor 4MCZ ; 2.41 ; Immune Receptor 4MD0 ; 2.194 ; Immune Receptor 4MD4 ; 1.95 ; Immune Receptor 4MD5 ; 1.65 ; Immune Receptor 4MDI ; 2.0 ; Immune Receptor 4MDJ ; 1.7 ; Immune Receptor 6V0Y ; 2.7 ; immune receptor complex 6V13 ; 2.75 ; immune receptor complex 6V15 ; 2.8 ; immune receptor complex 6V18 ; 2.35 ; immune receptor complex 6V19 ; 2.6 ; immune receptor complex 6V1A ; 2.29 ; immune receptor complex 6XC9 ; 2.4 ; Immune receptor complex 6XCO ; 2.9 ; Immune receptor complex 6XCP ; 3.3 ; Immune receptor complex 1AXT ; 2.15 ; IMMUNE VERSUS NATURAL SELECTION: ANTIBODY ALDOLASES WITH THE RATES OF NATURAL ENZYMES 1AJ7 ; 2.1 ; IMMUNOGLOBULIN 48G7 GERMLINE FAB ANTIBODY COMPLEXED WITH HAPTEN 5-(PARA-NITROPHENYL PHOSPHONATE)-PENTANOIC ACID. AFFINITY MATURATION OF AN ESTEROLYTIC ANTIBODY 2RCS ; 2.1 ; IMMUNOGLOBULIN 48G7 GERMLINE FAB-AFFINITY MATURATION OF AN ESTEROLYTIC ANTIBODY 3JXA ; 2.403 ; Immunoglobulin domains 1-4 of mouse CNTN4 4X98 ; 2.499 ; Immunoglobulin Fc heterodimer variant 4X99 ; 2.498 ; Immunoglobulin Fc heterodimers variant 1A8J ; 2.7 ; IMMUNOGLOBULIN LAMBDA LIGHT CHAIN DIMER (MCG) COMPLEX WITH ASPARTAME 4K3G ; 1.93 ; Immunoglobulin lambda variable domain L5(L89S) fluorogen activating protein 4K3H ; 2.45 ; Immunoglobulin lambda variable domain L5(L89S) fluorogen activationg protein in complex with malachite green 1BRE ; 2.0 ; IMMUNOGLOBULIN LIGHT CHAIN PROTEIN 5T93 ; 1.9 ; Immunoglobulin light chain variable domain AL-T05 1CMO ; ; IMMUNOGLOBULIN MOTIF DNA-RECOGNITION AND HETERODIMERIZATION FOR THE PEBP2/CBF RUNT-DOMAIN 1BM3 ; 2.0 ; IMMUNOGLOBULIN OPG2 FAB-PEPTIDE COMPLEX 1KJX ; 2.6 ; IMP Complex of E. Coli Adenylosuccinate Synthetase 1IWE ; 2.1 ; IMP Complex of the Recombinant Mouse-Muscle Adenylosuccinate Synthetase 1JJT ; 1.8 ; IMP-1 METALLO BETA-LACTAMASE FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH A BIARYL SUCCINIC ACID INHIBITOR (1) 1JJE ; 1.8 ; IMP-1 METALLO BETA-LACTAMASE FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH A BIARYL SUCCINIC ACID INHIBITOR (11) 1DD6 ; 2.0 ; IMP-1 METALLO BETA-LACTAMASE FROM PSEUDOMONAS AERUGINOSA IN COMPLEX WITH A MERCAPTOCARBOXYLATE INHIBITOR 5AHN ; 1.652 ; IMP-bound form of the D199N mutant of IMPDH from Pseudomonas aeruginosa 5AHM ; 1.74 ; IMP-bound form of the DeltaCBS mutant of IMPDH from Pseudomonas aeruginosa 6QEY ; 2.2 ; IMP1 KH1 and KH2 domains create a structural platform with unique RNA recognition and re-modelling properties 3KRM ; 2.75 ; Imp1 kh34 5KDV ; 1.93 ; IMPa metallopeptidase from Pseudomonas aeruginosa 5KDW ; 1.85 ; IMPa metallopeptidase from Pseudomonas aeruginosa 5KDX ; 2.4 ; IMPa metallopeptidase in complex with T-antigen 3PXE ; 2.85 ; Impact of BRCA1 BRCT domain missense substitutions on phospho-peptide recognition: E1836K 3PXA ; 2.55 ; Impact of BRCA1 BRCT domain missense substitutions on phospho-peptide recognition: G1656D 3PXC ; 2.8 ; Impact of BRCA1 BRCT domain missense substitutions on phospho-peptide recognition: R1699Q 3PXD ; 2.8 ; Impact of BRCA1 BRCT domain missense substitutions on phospho-peptide recognition: R1835P 3PXB ; 2.5 ; Impact of BRCA1 BRCT domain missense substitutions on phospho-peptide recognition: T1700A 5W72 ; ; Impact of IR active probes on PDZ3 and its ligand binding studied by NMR and X-ray crystallography 3CU8 ; 2.4 ; Impaired binding of 14-3-3 to Raf1 is linked to Noonan and LEOPARD syndrome 3NKX ; 2.4 ; Impaired binding of 14-3-3 to Raf1 is linked to Noonan and LEOPARD syndrome 6B65 ; 2.702 ; IMPase (AF2372) R92Q/K164E 6B66 ; 2.5 ; IMPase (AF2372) R92Q/K164E with 400 mM Glutamate 6B5Z ; 2.3 ; IMPase (AF2372) with 25 mM Asp 6B61 ; 2.7 ; IMPase (AF2372) with 25 mM Asp 6B63 ; 2.696 ; IMPase (AF2372) with 25 mM Asp 6B64 ; 2.6 ; IMPase (AF2372) with 25 mM Asp 6B60 ; 2.7 ; IMPase (AF2372) with 25 mM Glutamate 6B62 ; 2.003 ; IMPase (AF2372) with 400 mM Glutamate 8GH5 ; 2.64 ; Implementing Logic Gates in DNA Crystal Engineering 1BR8 ; 2.9 ; IMPLICATIONS FOR FUNCTION AND THERAPY OF A 2.9A STRUCTURE OF BINARY-COMPLEXED ANTITHROMBIN 1YA7 ; 2.3 ; Implications for interactions of proteasome with PAN and PA700 from the 1.9 A structure of a proteasome-11S activator complex 2X7L ; 3.17 ; Implications of the HIV-1 Rev dimer structure at 3.2A resolution for multimeric binding to the Rev response element 4LGY ; 1.48 ; Importance of Hydrophobic Cavities in Allosteric Regulation of Formylglycinamide Synthetase: Insight from Xenon Trapping and Statistical Coupling Analysis 4MGH ; 2.65 ; Importance of Hydrophobic Cavities in Allosteric Regulation of Formylglycinamide Synthetase: Insight from Xenon Trapping and Statistical Coupling Analysis 3JTC ; 1.6 ; Importance of Mg2+ in the Ca2+-Dependent Folding of the gamma-Carboxyglutamic Acid Domains of Vitamin K-Dependent clotting and anticlotting Proteins 7UMI ; 1.99 ; Importin a1 bound to Cp183-CTD 4UAF ; 1.698 ; Importin alpha 1 delta IBB in complex with Influenza PB2 nuclear localization domain 6BVT ; 2.5 ; Importin alpha 1 in cargo free state 7RFZ ; 1.95 ; Importin alpha 2 in complex with MERS ORF4B NLS peptide 4UAE ; 2.7 ; Importin alpha 3 delta IBB in complex with Influenza PB2 Nuclear Localization Domain 6BVZ ; 2.3 ; Importin alpha 3 in cargo free state 7RHT ; 2.5 ; Importin alpha 7 delta IBB (KPNA6) 4UAD ; 2.42 ; Importin alpha 7 delta IBB in complex with Influenza PB2 Nuclear Localization Domain 5E6Q ; 2.305 ; Importin alpha binding to XRCC1 NLS peptide 7JVO ; 2.2 ; Importin alpha bound to the C-terminus of ACE2 4OIH ; 2.1 ; Importin Alpha in Complex with the Bipartite NLS of Prp20 1IAL ; 2.5 ; IMPORTIN ALPHA, MOUSE 7RFX ; 2.1 ; Importin alpha2 in complex with MERS ORF4B 7RG1 ; 1.85 ; Importin alpha2 in complex with MERS ORF4B H26A mutant 7RG0 ; 2.0 ; Importin alpha2 in complex with MERS ORF4B R24A mutant 7RG2 ; 2.0 ; Importin alpha2 in complex with MERS ORF4B R33A mutant 7RG3 ; 2.0 ; Importin alpha2 in complex with MERS ORF4B R37A mutant 7RG6 ; 2.1 ; Importin alpha2 in complex with ORF4B Bat coronavirus HKU5 7RG4 ; 2.6 ; Importin alpha2 in complex with p50 NLS 7RFY ; 2.5 ; Importin alpha3 in complex with MERS ORF4B 7RG5 ; 2.15 ; Importin alpha3 in complex with p50 NLS 5GXW ; 2.394 ; Importin and NuMA complex 1O6O ; 2.8 ; Importin Beta aa1-442 bound to five FxFG repeats from yeast Nsp1p. Second crystal form 1O6P ; 2.8 ; Importin Beta bound to a GLFG Nucleoporin peptide 5W4G ; 2.038 ; Importin binding to NLS peptide of DNA polymerase lambda 5W4F ; 1.984 ; Importin binding to pol Mu NLS peptide 5W4E ; 2.18 ; Importin binding to Tdt NLS peptide 6N1Z ; 2.7 ; Importin-9 bound to H2A-H2B 5K9S ; 2.4 ; Importin-alpha in complex with HNF1-beta peptide 4U54 ; 2.41 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U58 ; 2.56 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5L ; 2.53 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5N ; 2.31 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5O ; 2.0 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5S ; 2.12 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5U ; 1.96 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 4U5V ; 1.968 ; IMPORTIN-ALPHA MINOR NLS SITE INHIBITOR 1F59 ; 2.8 ; IMPORTIN-BETA-FXFG NUCLEOPORIN COMPLEX 3ZKV ; 3.0 ; Importin13 cytosolic state 6DF2 ; 2.6 ; Improved anti-phosphotyrosine antibody 4G10-S5-4D5 Fab complexed with phosphotyrosine peptide 1CWC ; 1.86 ; IMPROVED BINDING AFFINITY FOR CYCLOPHILIN A BY A CYCLOSPORIN DERIVATIVE SINGLY MODIFIED AT ITS EFFECTOR DOMAIN 1YAT ; 2.5 ; IMPROVED CALCINEURIN INHIBITION BY YEAST FKBP12-DRUG COMPLEXES. CRYSTALLOGRAPHIC AND FUNCTIONAL ANALYSIS 8CNO ; 1.75 ; Improved complex structure of human Sirtuin 6 with its inhibitor cis-resveratrol 4CDP ; 1.45 ; Improved coordinates for Escherichia coli O157:H7 heme degrading enzyme ChuS. 6B1T ; 3.2 ; Improved cryoEM structure of human adenovirus type 5 with atomic details of minor proteins VI and VII 1X0C ; 1.7 ; Improved Crystal Structure of Isopullulanase from Aspergillus niger ATCC 9642 2ZY9 ; 2.94 ; Improved crystal structure of magnesium transporter MgtE 3SYS ; 1.65 ; Improved crystal structure of Pseudomonas aeruginosa OccK1 (OpdK) 3SY7 ; 2.15 ; Improved crystal structure of Pseudomonas aeruginosa OprD 4AZA ; 2.16 ; Improved eIF4E binding peptides by phage display guided design. 7LCO ; 1.9 ; Improved Feline Drugs as SARS-CoV-2 Mpro Inhibitors: Structure-Activity Studies & Micellar Solubilization for Enhanced Bioavailability 7LCR ; 1.95 ; Improved Feline Drugs as SARS-CoV-2 Mpro Inhibitors: Structure-Activity Studies & Micellar Solubilization for Enhanced Bioavailability 7LCS ; 1.85 ; Improved Feline Drugs as SARS-CoV-2 Mpro Inhibitors: Structure-Activity Studies & Micellar Solubilization for Enhanced Bioavailability 7LCT ; 1.93 ; Improved Feline Drugs as SARS-CoV-2 Mpro Inhibitors: Structure-Activity Studies & Micellar Solubilization for Enhanced Bioavailability 7LDL ; 2.0 ; Improved Feline Drugs as SARS-CoV-2 Mpro Inhibitors: Structure-Activity Studies & Micellar Solubilization for Enhanced Bioavailability 6T3Y ; 1.7 ; Improved High Resolution Structure of MHC Class II complex 7MGU ; 1.4 ; Improved ligand discovery using micro-beam data collection at the edge of protein crystals 6R69 ; 3.65 ; Improved map of the FliPQR complex that forms the core of the Salmonella type III secretion system export apparatus. 6HMA ; 2.65 ; Improved model derived from cryo-EM map of Staphylococcus aureus large ribosomal subunit 4Q4A ; 2.6 ; Improved model of AMP-PNP bound TM287/288 6MF2 ; 3.60936 ; Improved Model of Human Coagulation Factor VIII 2WSC ; 3.3 ; Improved Model of Plant Photosystem I 2WSE ; 3.49 ; Improved Model of Plant Photosystem I 2WSF ; 3.48 ; Improved Model of Plant Photosystem I 3LW5 ; 3.3 ; Improved model of plant photosystem I 3P19 ; 2.05 ; Improved NADPH-dependent Blue Fluorescent Protein 4QU4 ; 3.392 ; Improved refinement of the Mtr4 apo crystal structure 1SCZ ; 2.2 ; Improved structural model for the catalytic domain of E.coli dihydrolipoamide succinyltransferase 1G8W ; 2.8 ; IMPROVED STRUCTURE OF PHYTOHEMAGGLUTININ-L FROM THE KIDNEY BEAN 3FUS ; 4.0 ; Improved Structure of the Unliganded Simian Immunodeficiency Virus gp120 Core 4I0U ; 2.7 ; Improved structure of Thermotoga maritima CorA at 2.7 A resolution 8HT0 ; 2.0 ; Improved thermostability of a glucose-tolerant glycosidase based on its X-ray crystal structure 4UXA ; 2.1 ; Improved variant of (R)-selective manganese-dependent hydroxynitrile lyase from bacteria 1JI2 ; 2.3 ; Improved X-ray Structure of Thermoactinomyces vulgaris R-47 alpha-Amylase 2 256B ; 1.4 ; IMPROVEMENT OF THE 2.5 ANGSTROMS RESOLUTION MODEL OF CYTOCHROME B562 BY REDETERMINING THE PRIMARY STRUCTURE AND USING MOLECULAR GRAPHICS 8U5A ; 2.0 ; Improving protein expression, stability, and function with ProteinMPNN 4FE1 ; 4.9228 ; Improving the Accuracy of Macromolecular Structure Refinement at 7 A Resolution 8FBI ; 3.61 ; Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains 8FBJ ; 3.25 ; Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains 8FBK ; 3.15 ; Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains 8FBN ; 3.04 ; Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains 8FBO ; 3.4 ; Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains 2SNM ; 1.97 ; IN A STAPHYLOCOCCAL NUCLEASE MUTANT THE SIDE-CHAIN of A LYSINE REPLACING VALINE 66 IS FULLY BURIED IN THE HYDROPHOBIC CORE 4OCD ; 2.1 ; In and Out the minor groove: Interaction of an AT rich-DNA with the CD27 drug 4XBR ; 2.94 ; In cellulo Crystal Structure of PAK4 in complex with Inka 6RFU ; 2.8 ; In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of ATP and GMP as genuine co-factors 2GUF ; 1.95 ; In meso crystal structure of the cobalamin transporter, BtuB 4UVM ; 3.0 ; In meso crystal structure of the POT family transporter PepTSo 6LKD ; 3.0 ; in meso full-length rat KMO in complex with a pyrazoyl benzoic acid inhibitor 6LKE ; 3.0 ; in meso full-length rat KMO in complex with an inhibitor identified via DNA-encoded chemical library screening 5D5D ; 2.4 ; In meso in situ serial X-ray crystallography structure of AlgE at 100 K 5D56 ; 2.8 ; In meso in situ serial X-ray crystallography structure of diacylglycerol kinase, DgkA, at 100 K 5D53 ; 1.5 ; In meso in situ serial X-ray crystallography structure of insulin at 100 K 5D52 ; 1.8 ; In meso in situ serial X-ray crystallography structure of insulin at room temperature 5D5E ; 2.407 ; In meso in situ serial X-ray crystallography structure of insulin by sulfur-SAD at 100 K 5D5C ; 1.7 ; In meso in situ serial X-ray crystallography structure of lysozyme at 100 K 5D5F ; 1.5 ; In meso in situ serial X-ray crystallography structure of lysozyme by bromine-SAD at 100 K 5D5A ; 2.4826 ; In meso in situ serial X-ray crystallography structure of the Beta2-adrenergic receptor at 100 K 5D58 ; 2.4 ; In meso in situ serial X-ray crystallography structure of the PepTSt-Ala-Phe complex at 100 K 4AZL ; 2.8 ; In meso structure of alginate transporter, AlgE, from Pseudomoas aeruginosa, PAO1, crystal form 2. 4B61 ; 2.402 ; In meso structure of alginate transporter, AlgE, from Pseudomoas aeruginosa, PAO1. Crystal form 3. 4AFK ; 1.897 ; In meso structure of alginate transporter, AlgE, from Pseudomonas aeruginosa, PAO1 8RQR ; 2.19 ; In meso structure of apolipoprotein N-acyltransferase, Lnt, from Escherichia coli in 7.10 monoacylglycerol 7ACI ; 2.3 ; In meso structure of apolipoprotein N-acyltransferase, Lnt, from Escherichia coli in 9.8 monoacylglycerol 8RQQ ; 2.37 ; In meso structure of the adenosine A2a G protein-coupled receptor, A2aR, in 7.10 monoacylglycerol 8RQP ; 1.45 ; In meso structure of the alginate exporter, AlgE, from Pseudomonas aeruginosa in 7.10 monoacylglycerol 7ACG ; 1.85 ; In meso structure of the alginate exporter, AlgE, from Pseudomonas aeruginosa in 9.8 monoacylglycerol 7B0O ; 2.33 ; In meso structure of the membrane integral lipoprotein intramolecular transacylase Lit from Bacillus cereus in space group P21 7B0P ; 1.935 ; In meso structure of the membrane integral lipoprotein intramolecular transacylase Lit from Bacillus cereus in space group P21212 7B0Q ; 2.42 ; In meso structure of the membrane integral lipoprotein intramolecular transacylase Lit from Bacillus cereus with H85A mutation 7B0R ; 2.2 ; In meso structure of the membrane integral lipoprotein intramolecular transacylase Lit from Bacillus cereus with H85R mutation 8AQ2 ; 2.6 ; In meso structure of the membrane integral lipoprotein N-acyltransferase Lnt from P. aeruginosa covalently linked with TITC 5D57 ; 2.8 ; In meso X-ray crystallography structure of diacylglycerol kinase, DgkA, at 100 K 5D54 ; 1.5 ; In meso X-ray crystallography structure of insulin at 100 K 5D5B ; 3.8 ; In meso X-ray crystallography structure of the Beta2-adrenergic receptor at 100 K 5D59 ; 2.4 ; In meso X-ray crystallography structure of the PepTSt-Ala-Phe complex at 100 K 3Q9N ; 2.0 ; In silico and in vitro co-evolution of a high affinity complementary protein-protein interface 3Q9U ; 2.3 ; In silico and in vitro co-evolution of a high affinity complementary protein-protein interface 2N8D ; ; In silico designed antimicrobial peptide Lavracin 3NPW ; 2.14 ; In silico designed of an improved Kemp eliminase KE70 mutant by computational design and directed evolution 5L7P ; 1.9 ; In silico-powered specific incorporation of photocaged Dopa at multiple protein sites 7BHQ ; 3.2 ; In situ assembled Salmonella FlgD hook cap complex 7AMD ; 2.25 ; In situ assembly of choline acetyltransferase ligands by a hydrothiolation reaction reveals key determinants for inhibitor design 5LCB ; 26.5 ; In situ atomic-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum obtained combining solid-state NMR spectroscopy, cryo electron microscopy and polarization spectroscopy 8U10 ; 3.2 ; In situ cryo-EM structure of bacteriophage P22 gp1:gp4:gp5:gp10:gp9 N-term complex in conformation 1 at 3.2A resolution 8U11 ; 3.1 ; In situ cryo-EM structure of bacteriophage P22 gp1:gp5:gp4: gp10: gp9 N-term complex in conformation 2 at 3.1A resolution 8TVU ; 3.0 ; In situ cryo-EM structure of bacteriophage P22 portal protein: head-to-tail protein complex at 3.0A resolution 8TVR ; 2.8 ; In situ cryo-EM structure of bacteriophage P22 tail hub protein: tailspike protein complex at 2.8A resolution 8U1O ; 3.4 ; In situ cryo-EM structure of bacteriophage P22 tailspike protein complex at 3.4A resolution 7SPU ; 3.73 ; In situ cryo-EM structure of bacteriophage Sf6 gp3:gp7:gp5 complex in conformation 1 at 3.73A resolution 7SP4 ; 3.71 ; In situ cryo-EM structure of bacteriophage Sf6 gp3:gp7:gp5 complex in conformation 2 at 3.71A resolution 7SG7 ; 2.83 ; In situ cryo-EM structure of bacteriophage Sf6 gp8:gp14N complex at 2.8 A resolution 7SFS ; 2.76 ; In situ cryo-EM structure of bacteriophage Sf6 portal:gp7 complex at 2.7A resolution 7UKJ ; 3.6 ; In situ cryo-EM structure of bacteriophage Sf6 portal:gp7 complex at 2.7A resolution 8ENV ; 3.42 ; In situ cryo-EM structure of Pseudomonas phage E217 tail baseplate in C6 map 7Y7A ; 4.3 ; In situ double-PBS-PSII-PSI-LHCs megacomplex from Porphyridium purpureum. 1U33 ; 1.95 ; In situ extension as an approach for identifying novel alpha-amylase inhibitors 1U2Y ; 1.95 ; In situ extension as an approach for identifying novel alpha-amylase inhibitors, structure containing D-gluconhydroximo-1,5-lactam 1U30 ; 1.9 ; In situ extension as an approach for identifying novel alpha-amylase inhibitors, structure containing maltosyl-alpha (1,4)-D-gluconhydroximo-1,5-lactam 4N8Z ; 1.2 ; In situ lysozyme crystallized on a MiTeGen micromesh with benzamidine ligand 8BWY ; 38.0 ; In situ outer dynein arm from Chlamydomonas reinhardtii in a pre-power stroke state 8BX8 ; 30.3 ; In situ outer dynein arm from Chlamydomonas reinhardtii in the post-power stroke state 8W6K ; 2.0 ; in situ room temperature Laue crystallography 8Y1R ; 2.0 ; in situ room temperature Laue crystallography 7Y5E ; 3.3 ; In situ single-PBS-PSII-PSI-LHCs megacomplex. 7QIN ; 6.6 ; In situ structure of actomyosin complex in skeletal sarcomere 8I7O ; 4.5 ; In situ structure of axonemal doublet microtubules in mouse sperm with 16-nm repeat 8I7R ; 6.5 ; In situ structure of axonemal doublet microtubules in mouse sperm with 48-nm repeat 6TY9 ; 2.9 ; In situ structure of BmCPV RNA dependent RNA polymerase at initiation state 6TY8 ; 3.0 ; In situ structure of BmCPV RNA dependent RNA polymerase at quiescent state 6TZ0 ; 2.8 ; In situ structure of BmCPV RNA-dependent RNA polymerase at abortive state 6TZ1 ; 3.4 ; In situ structure of BmCPV RNA-dependent RNA polymerase at early-elongation state 6TZ2 ; 3.5 ; In situ structure of BmCPV RNA-dependent RNA polymerase at elongation state 6PO2 ; 3.6 ; In situ structure of BTV RNA-dependent RNA polymerase in BTV core 6PNS ; 3.7 ; In situ structure of BTV RNA-dependent RNA polymerase in BTV virion 7ELL ; 3.8 ; In situ structure of capping enzyme lambda2, penetration protein mu1 of mammalian reovirus capsid asymmetric unit. 7QIM ; 4.5 ; In situ structure of nebulin bound to actin filament in skeletal sarcomere 7YF0 ; 3.4 ; In situ structure of polymerase complex of mammalian reovirus in the core 7YED ; 3.0 ; In situ structure of polymerase complex of mammalian reovirus in the elongation state 7YEV ; 3.6 ; In situ structure of polymerase complex of mammalian reovirus in the pre-elongation state 7YEZ ; 3.4 ; In situ structure of polymerase complex of mammalian reovirus in the reloaded state 7YFE ; 3.4 ; In situ structure of polymerase complex of mammalian reovirus in virion 8K43 ; 3.0 ; In situ structure of RNA-dependent RNA polymerase in full BAV particles 6OGY ; 3.4 ; In situ structure of Rotavirus RNA-dependent RNA polymerase at duplex-open state 6OGZ ; 3.6 ; In situ structure of Rotavirus RNA-dependent RNA polymerase at transcript-elongated state 6OJ4 ; 3.3 ; In situ structure of rotavirus VP1 RNA-dependent RNA polymerase (DLP) 6OJ6 ; 4.2 ; In situ structure of rotavirus VP1 RNA-dependent RNA polymerase (DLP_RNA) 6OJ3 ; 4.5 ; In situ structure of rotavirus VP1 RNA-dependent RNA polymerase (TLP) 6OJ5 ; 5.2 ; In situ structure of rotavirus VP1 RNA-dependent RNA polymerase (TLP_RNA) 8BQE ; 3.5 ; In situ structure of the Caulobacter crescentus S-layer 8C8N ; 3.4 ; In situ structure of the Nitrosopumilus maritimus S-layer - Two-fold symmetry (C2) 8R5I ; 9.7 ; In situ structure of the Vaccinia virus (WR) A4/A10 palisade trimer in mature virions by flexible fitting into a cryoET map 6M99 ; 3.4 ; In situ structure of transcriptional enzyme complex and asymmetric inner capsid protein of aquareovirus at primed state 7ELH ; 3.3 ; In situ structure of transcriptional enzyme complex and capsid shell protein of mammalian reovirus at initiation state 5TC1 ; 3.6 ; In situ structures of the genome and genome-delivery apparatus in ssRNA bacteriophage MS2 3JB6 ; 3.3 ; In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus 3JB7 ; 4.0 ; In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus 8JAJ ; 3.9 ; In situ structures of the ultra-long contracted tail of Myoviridae phage P1 8JAN ; 3.3 ; In situ structures of the ultra-long extended tail of Myoviridae phage P1 8COA ; 4.5 ; in situ Subtomogram average of Immature Rotavirus TLP spike 8ARH ; 19.2 ; In situ subtomogram average of Vaccinia virus (WR) D13 lattice, on immature virions 4M65 ; 1.6 ; In situ thermolysin crystallized on a MiTeGen micromesh with asparagine ligand 4NCY ; 1.42 ; In situ trypsin crystallized on a MiTeGen micromesh with imidazole ligand 8AQ3 ; 2.395 ; In surfo structure of the membrane integral lipoprotein N-acyltransferase Lnt from E. coli in complex with PE 8AQ4 ; 2.62 ; In surfo structure of the membrane integral lipoprotein N-acyltransferase Lnt from E. coli in complex with TITC and lyso-PE 6GGN ; 2.0 ; In vitro and in vivo characterization of a novel, highly potent p53-MDM2 inhibitor 3ZNN ; 1.9 ; IN VITRO AND IN VIVO INHIBITION OF HUMAN D-AMINO ACID OXIDASE: REGULATION OF D-SERINE CONCENTRATION IN THE BRAIN 3ZNO ; 2.3 ; IN VITRO AND IN VIVO INHIBITION OF HUMAN D-AMINO ACID OXIDASE: REGULATION OF D-SERINE CONCENTRATION IN THE BRAIN 3ZNP ; 2.4 ; IN VITRO AND IN VIVO INHIBITION OF HUMAN D-AMINO ACID OXIDASE: REGULATION OF D-SERINE CONCENTRATION IN THE BRAIN 3ZNQ ; 2.75 ; IN VITRO AND IN VIVO INHIBITION OF HUMAN D-AMINO ACID OXIDASE: REGULATION OF D-SERINE CONCENTRATION IN THE BRAIN 7QKY ; 1.86 ; In vitro assembled 0N4R tau filaments with phosphoserine (47a) 7QL2 ; 2.95 ; In vitro assembled 244-391 tau filaments with Na2P2O7 (20a) 7QK6 ; 2.27 ; In vitro assembled 258-391 tau filaments with heparan sulfate, 700 rpm (40a) 7QKG ; 3.36 ; In vitro assembled 258-391 tau filaments with phosphoglycerate, 700 rpm (39a) 7QKK ; 2.8 ; In vitro assembled 258-391 tau filaments with phosphoglycerate, 700 rpm (39a) 7QKH ; 3.17 ; In vitro assembled 258-391 tau filaments with sodium azide, (41a) 7QK3 ; 2.44 ; In vitro assembled 258-391 tau filaments, 700 rpm (38a) 7QKW ; 2.32 ; In vitro assembled 266-391 S356D tau filaments with KCl (44a) 7QKM ; 2.66 ; In vitro assembled 266-391 S356D tau filaments with NaCl (45a) 7QL1 ; 3.34 ; In vitro assembled 266-391 tau filaments in PBS (23a) 7QKF ; 2.83 ; In vitro assembled 266/297 - 391 tau filaments with CuCl2 (12a) 7QK5 ; 1.92 ; In vitro assembled 266/297 - 391 tau filaments with KCl (10a) 7R5H ; 2.59 ; In vitro assembled 266/297 - 391 tau filaments with KCl (10b) 7QJY ; 3.14 ; In vitro assembled 266/297 - 391 tau filaments with LiCl (9a) 7QJZ ; 3.4 ; In vitro assembled 266/297 - 391 tau filaments with LiCl (9b) 7QKU ; 2.57 ; in vitro assembled 266/297 - 391 tau filaments with MgCl2 and NaCl (14a) 7QKJ ; 3.26 ; In vitro assembled 266/297 - 391 tau filaments with MgCl2 and NaCl (14b) 7QKX ; 3.16 ; In vitro assembled 266/297 - 391 tau filaments with MgSO4 and NaCl (15b) 7QL0 ; 3.13 ; In vitro assembled 266/297 - 391 tau filaments with MgSO4 and NaCl (15c) 7QL3 ; 3.32 ; in vitro assembled 266/297 - 391 tau filaments with NaCl (8b) 7R4T ; 2.75 ; In vitro assembled 266/297 - 391 tau filaments with NaHCO3 and NaCl (16a) 7QKL ; 2.07 ; In vitro assembled 266/297 - 391 tau filaments with ZnCl2 (11a) 7QK1 ; 3.03 ; In vitro assembled 297-394 tau filaments in PBS (35d) 7QJX ; 2.99 ; In vitro assembled 297-394 tau filaments, 700 rpm (34b) 7QKI ; 3.13 ; In vitro assembled 297-408 S396D S400D T403D S404D tau filaments (42a) 7QK2 ; 2.61 ; In vitro assembled 300-391 tau filaments in PBS (36a) 7QKZ ; 2.65 ; In vitro assembled 305-379 tau filaments (27a) 5HX2 ; 3.8 ; In vitro assembled star-shaped hubless T4 baseplate 7QJV ; 3.29 ; In vitro assembled tau filaments into Quadruple Helical Filaments type 1 (2c) 7QKV ; 3.23 ; In vitro assembled tau filaments with MgSO4 and NaCl (15a) 7QJW ; 2.81 ; In vitro assembled tau filaments with structures like chronic traumatic encephalopathy type II (8a) 7QL4 ; 3.2 ; in vitro assembled tau filaments with structures like Paired Helical Filaments from Alzheimer's Disease 4XBU ; 2.06 ; In vitro Crystal Structure of PAK4 in complex with Inka peptide 4MEH ; 3.12 ; In vitro evolved glmS ribozyme triple mutant, calcium ion complex 4MEG ; 3.1 ; In vitro evolved glmS ribozyme triple mutant, magnesium ion complex 6OFG ; 2.9 ; In vitro polymerized PrgI V67A filaments 7BL4 ; 2.4 ; in vitro reconstituted 50S-ObgE-GMPPNP-RsfS particle 8C8M ; 2.87 ; In vitro structure of the Nitrosopumilus maritimus S-layer - Composite map between two and six-fold symmetrised 8C8K ; 2.87 ; In vitro structure of the Nitrosopumilus maritimus S-layer - Six-fold symmetry (C6) 8C8L ; 2.71 ; In vitro structure of the Nitrosopumilus maritimus S-layer - Two-fold symmetry (C2) 6RXH ; 2.0 ; In-flow serial synchrotron crystallography using a 3D-printed microfluidic device (3D-MiXD): Aspartate alpha-decarboxylase 6RXI ; 2.0 ; In-flow serial synchrotron crystallography using a 3D-printed microfluidic device (3D-MiXD): Lysozyme 5LCJ ; 1.78 ; In-Gel Activity-Based Protein Profiling of a Clickable Covalent Erk 1/2 Inhibitor 5II7 ; 1.66 ; In-house sulfur-SAD structure of orthorhombic red abalone lysin at 1.66 A resolution 5HNL ; 2.424 ; In-house X-ray single crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels 7PTT ; 7.968 ; In-situ structure of hexameric S-layer protein 7PTP ; 11.58 ; In-situ structure of pentameric S-layer protein 6YI5 ; 9.1 ; In-situ structure of the trimeric HEF from influenza C by flexible fitting into a cryo-ET map. 4ZG3 ; 1.2 ; In-vacuum long-wavelength crystallography 4NYQ ; 1.2 ; In-vivo crystallisation (midguts of a viviparous cockroach) and structure at 1.2 A resolution of a glycosylated, lipid-binding, lipocalin-like protein 4NYR ; 2.49 ; In-vivo crystallisation (midguts of a viviparous cockroach) and structure at 2.5 A resolution of a glycosylated, lipid-binding, lipocalin-like protein 8FEX ; 3.07 ; Inactivate state of Maribacter polysiphoniae Argonuate (short pAgo system) 6K55 ; 2.883 ; Inactivated mutant (D140A) of Hyperthermophilic GH6 cellobiohydrolase II (HmCel6A) in complex with hexasaccharide 7T38 ; 3.8 ; Inactivated state of 2-APB and CBD-bound wildtype rat TRPV2 in nanodiscs 7N0M ; 3.5 ; Inactivated state of 2-APB-bound wildtype rat TRPV2 in nanodiscs 1ZTN ; ; INACTIVATION GATE OF POTASSIUM CHANNEL RAW3, NMR, 8 STRUCTURES 1ZTO ; ; INACTIVATION GATE OF POTASSIUM CHANNEL RCK4, NMR, 8 STRUCTURES 1SCN ; 1.9 ; INACTIVATION OF SUBTILISIN CARLSBERG BY N-(TERT-BUTOXYCARBONYL-ALANYL-PROLYL-PHENYLALANYL)-O-BENZOL HYDROXYLAMINE: FORMATION OF COVALENT ENZYME-INHIBITOR LINKAGE IN THE FORM OF A CARBAMATE DERIVATIVE 1KEE ; 2.1 ; Inactivation of the Amidotransferase Activity of Carbamoyl Phosphate Synthetase by the Antibiotic Acivicin 4Z10 ; 1.93 ; Inactive aurone synthase (polyphenol oxidase) co-crystallized with 1,4-resorcinol 4Z0Z ; 1.6 ; Inactive aurone synthase (polyphenol oxidase) from natural source, sulfohistidine ~ 90 % 6BK5 ; 2.401 ; Inactive choanoflagellate E3 ubiquitin ligase Cbl TKB 7KY0 ; 3.1 ; Inactive conformation of EGFR (T790M/V948R) kinase in complex with BI-4020 5TT2 ; 2.949 ; Inactive conformation of engineered human cystathionine gamma lyase (E59N, R119L, E339V) to depleting methionine 3FWQ ; 2.3 ; Inactive conformation of human protein kinase CK2 catalytic subunit 7ZNR ; 2.65 ; Inactive D62N mutant of BT1760 Endo-acting levanase from Bacteroides thetaiotaomicron VPI-5482 7ZNS ; 2.3 ; Inactive D62N mutant of BT1760 Endo-acting levanase from Bacteroides thetaiotaomicron VPI-5482 5NNL ; 2.13 ; Inactive dihydroorotase-like domain of Chaetomium thermophilum CAD-like multifunctional protein 6G0J ; 2.1 ; Inactive Fe-PP1 7LZ9 ; 2.3 ; Inactive form of VanR from S. coelicolor 3AHR ; 3.07 ; Inactive human Ero1 8AA2 ; 3.1 ; Inactive levan utilisation machinery (utilisome) in the presence of levan fructo-oligosaccharides DP 15-25 1DCN ; 2.3 ; INACTIVE MUTANT H162N OF DELTA 2 CRYSTALLIN WITH BOUND ARGININOSUCCINATE 3HB6 ; 2.3 ; Inactive mutant H54F of Proteus mirabilis catalase 8IBI ; 2.14 ; Inactive mutant of CtPL-H210S/F214I 8IBJ ; 1.92 ; Inactive mutant of CtPL-H210S/F214I/N181A/F235L 1QIL ; 2.5 ; INACTIVE MUTANT TOXIC SHOCK SYNDROME TOXIN-1 AT 2.5 A 5UBK ; 2.55 ; Inactive S1A/N269D-cpPvdQ mutant in complex with the pyoverdine precursor PVDIq reveals a specific binding pocket for the D-Tyr of this substrate 6PAS ; 5.1 ; Inactive State of Manduca sexta soluble guanylate cyclase 5ZO4 ; 2.5 ; inactive state of the nuclease 4U7N ; 3.2 ; Inactive structure of histidine kinase 3KWD ; 1.1 ; Inactive truncation of the beta-carboxysomal gamma-Carbonic Anhydrase, CcmM, form 1 3KWE ; 1.1 ; Inactive truncation of the beta-carboxysomal gamma-Carbonic Anhydrase, CcmM, form 2 1W1U ; 2.23 ; Inactive Urocanase-SA cocrystallized with urocanate 4Q2N ; 2.0 ; INADL PDZ3 in Complex with a Phage-Derived Peptide 7M0A ; 1.83 ; Incomplete in crystallo incorporation by DNA Polymerase Lambda bound to blunt-ended DSB substrate and incoming dTTP 3QCR ; 3.2 ; Incomplete structural model of a human telomeric DNA quadruplex-acridine complex. 5I0U ; 1.25 ; Incompletely interpreted D-cysteine soak of Cysteine Dioxygenase at pH 7.0 1IOP ; 1.9 ; INCORPORATION OF A HEMIN WITH THE SHORTEST ACID SIDE-CHAINS INTO MYOGLOBIN 3DR9 ; 1.26 ; Increased Distal Histidine Conformational Flexibility in the Deoxy Form of Dehaloperoxidase from Amphitrite ornata 3DTM ; 2.0 ; Increased folding stability of TEM-1 beta-lactamase by in-vitro selection 4JFK ; 1.15 ; Increasing the Efficiency Efficiency of Ligands for the FK506-Binding Protein 51 by Conformational Control: Complex of FKBP51 with (1S,6R)-3-[2-(3,4-dimethoxyphenoxy)ethyl]-10-[(2-oxo-2,3-dihydro-1,3-benzothiazol-6-yl)sulfonyl]-3,10-diazabicyclo[4.3.1]decan-2-one 4JFM ; 1.02 ; Increasing the Efficiency Efficiency of Ligands for the FK506-Binding Protein 51 by Conformational Control: Complex of FKBP51 with 2-(3,4-dimethoxyphenoxy)ethyl (2S)-1-[(2-oxo-2,3-dihydro-1,3-benzothiazol-6-yl)sulfonyl]piperidine-2-carboxylate 4JFL ; 1.2 ; Increasing the Efficiency Efficiency of Ligands for the FK506-Binding Protein 51 by Conformational Control: Complex of FKBP51 with 6-({(1S,5R)-3-[2-(3,4-dimethoxyphenoxy)ethyl]-2-oxo-3,9-diazabicyclo[3.3.1]non-9-yl}sulfonyl)-1,3-benzothiazol-2(3H)-one 4JFJ ; 1.08 ; Increasing the Efficiency Efficiency of Ligands for the FK506-Binding Protein 51 by Conformational Control: Complex of FKBP51 with compound (1S,6R)-10-(1,3-benzothiazol-6-ylsulfonyl)-3-[2-(3,4-dimethoxyphenoxy)ethyl]-3,10-diazabicyclo[4.3.1]decan-2-one 4JFI ; 1.05 ; Increasing the Efficiency Efficiency of Ligands for the FK506-Binding Protein 51 by Conformational Control: Complex of FKBP51 with compound 1-[(9S,13R,13aR)-1,3-dimethoxy-8-oxo-5,8,9,10,11,12,13,13a-octahydro-6H-9,13-epiminoazocino[2,1-a]isoquinolin-14-yl]-2-(3,4,5-trimethoxyphenyl)ethane-1,2-dione 7XQN ; 1.98 ; InDel-mutant malate dehydrogenase from E. coli 7XQM ; 2.71 ; InDel-mutant short chain Dehydrogenase bound to SAH 3J3X ; 4.3 ; Independent reconstruction of Mm-cpn cryo-EM density map from half dataset in the closed state (training map) 3FHJ ; 2.65 ; Independent saturation of three TrpRS subsites generates a partially-assembled state similar to those observed in molecular simulations 2M7W ; ; Independently verified structure of gp41-M-MAT, a membrane associated MPER trimer from HIV-1 gp41 5EH9 ; 1.29 ; Indirect contributions of mutations underlie optimization of new enzyme function 5EHT ; 1.29 ; Indirect contributions of mutations underlie optimization of new enzyme function 1Z62 ; 1.9 ; Indirubin-3'-aminooxy-acetate inhibits glycogen phosphorylase by binding at the inhibitor and the allosteric site. Broad specificities of the two sites 5OW8 ; 1.9 ; Indole-2 carboxamides as selective secreted phospholipase A2 type X (sPLA2-X) inhibitors 5OWC ; 1.75 ; Indole-2 carboxamides as selective secreted phospholipase A2 type X (sPLA2-X) inhibitors 7EZF ; 2.76 ; Indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase 7EZP ; 2.8 ; Indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase 7EZR ; 3.27 ; Indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase 1IGS ; 2.0 ; INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS AT 2.0 A RESOLUTION 1JUL ; 2.0 ; INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS IN A SECOND ORTHORHOMBIC CRYSTAL FORM 1JUK ; 2.5 ; INDOLE-3-GLYCEROLPHOSPHATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS IN A TRIGONAL CRYSTAL FORM 2G5N ; 1.51 ; Indole-amidine Complexes with Bovine Trypsin 2G5V ; 1.45 ; Indole-amidine Complexes with Bovine Trypsin 2G8T ; 1.41 ; Indole-amidine Complexes with Bovine Trypsin 2OYE ; 2.85 ; Indomethacin-(R)-alpha-ethyl-ethanolamide bound to Cyclooxygenase-1 2OYU ; 2.7 ; Indomethacin-(S)-alpha-ethyl-ethanolamide bound to Cyclooxygenase-1 7VOO ; 3.9 ; Induced alpha-2-macroglobulin monomer 4U66 ; 2.9 ; Induced Dimer Structure of Methionine Sulfoxide Reductase U16C from Clostridium Oremlandii 6LTZ ; 1.973 ; Induced DNA bending by unique dimerization of HigA antitoxin 4UNT ; 2.7 ; Induced monomer of the Mcg variable domain 6FS0 ; 2.25 ; INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN FABCOMPLEX IN COMPLEX WITH AZD5991 8AV9 ; 1.99 ; INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN FABCOMPLEX IN COMPLEX WITH COMPOUND 1 4K1H ; 1.797 ; Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding 4K1I ; 1.8 ; Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding 4K1J ; 2.2 ; Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding 4K1K ; 1.6 ; Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding 2XEM ; 2.1 ; Induced-fit and allosteric effects upon polyene binding revealed by crystal structures of the Dynemicin thioesterase 2XFL ; 2.9 ; Induced-fit and allosteric effects upon polyene binding revealed by crystal structures of the Dynemicin thioesterase 6YN5 ; 2.7 ; Inducible lysine decarboxylase LdcI decamer, pH 7.0 6YN6 ; 3.28 ; Inducible lysine decarboxylase LdcI stacks, pH 5.7 1VAF ; 2.9 ; Inducible nitric oxide synthase oxygenase domain complexed with the inhibitor AR-R17477 1M9T ; 2.4 ; Inducible Nitric Oxide Synthase with 3-Bromo-7-Nitroindazole bound 1M8I ; 2.7 ; inducible nitric oxide synthase with 5-nitroindazole bound 1M8H ; 2.85 ; inducible nitric oxide synthase with 6-nitroindazole bound 1M8E ; 2.9 ; inducible nitric oxide synthase with 7-nitroindazole bound 1M8D ; 2.35 ; inducible nitric oxide synthase with Chlorzoxazone bound 5C94 ; 2.438 ; Infectious bronchitis virus nsp9 7LNA ; 3.14 ; Infectious mammalian prion fibril (263K scrapie) 8A00 ; 2.6 ; Infectious mouse-adapted ME7 scrapie prion fibril purified from terminally-infected mouse brains 7QIG ; 2.7 ; Infectious mouse-adapted RML scrapie prion fibril purified from terminally-infected mouse brains 1ZBJ ; ; Inferential Structure Determination of the Fyn SH3 domain using NOESY data from a 15N,H2 enriched protein 5NPU ; 3.5 ; Inferred ancestral pyruvate decarboxylase 6Q19 ; 1.58 ; Inferred intermediate (I-6) of the human antibody lineage 652 6Q0H ; 2.75 ; Inferred intermediate I-7 (I-7-0) of the human antibody lineage 652 in complex with influenza hemagglutinin head domain of A/Beijing/262/95(H1N1) 6Q0L ; 2.5 ; Inferred intermediate I-7 (I-7-1) of the human antibody lineage 652 in complex with influenza hemagglutinin head domain of A/Beijing/262/95(H1N1) 6Q0I ; 2.702 ; Inferred intermediate I-7 (I-7-6) of the human antibody lineage 652 in complex with influenza hemagglutinin head domain of A/Beijing/262/95(H1N1) 6Q1K ; 2.2 ; Inferred intermediate I-7 of the human antibody lineage 652 6Q1A ; 2.001 ; Inferred intermediate mutant (I-6V) of the human antibody lineage 652 6Q1E ; 2.5 ; Inferred precursor (UCA) of the human antibody lineage 652 6Q0E ; 2.15 ; Inferred precursor (UCA) of the human antibody lineage 652 in complex with influenza hemagglutinin head domain of A/Beijing/262/95(H1N1) 5W0D ; 1.899 ; Inferred precursor (UCA) of the human antibody lineage K03.12 in complex with influenza hemagglutinin H1 Solomon Islands/03/2006 6W5Y ; 2.5 ; Inferred receptor binding domain of human endogenous retrovirus envelope EnvP(b)1 1D37 ; 1.8 ; INFLUENCE OF AGLYCONE MODIFICATIONS ON THE BINDING OF ANTHRACYCLINE DRUGS TO DNA: THE MOLECULAR STRUCTURE OF IDARUBICIN AND 4-O-DEMETHYL-11-DEOXYDOXORUBICIN COMPLEXED TO D(CGATCG) 1D38 ; 1.7 ; INFLUENCE OF AGLYCONE MODIFICATIONS ON THE BINDING OF ANTHRACYCLINE DRUGS TO DNA: THE MOLECULAR STRUCTURE OF IDARUBICIN AND 4-O-DEMETHYL-11-DEOXYDOXORUBICIN COMPLEXED TO D(CGATCG) 4AMH ; 2.3 ; Influence of circular permutation on the folding pathway of a PDZ domain 212D ; 1.9 ; INFLUENCE OF COUNTER-IONS ON THE CRYSTAL STRUCTURES OF DNA DECAMERS: BINDING OF [CO(NH3)6]3+ AND BA2+ TO A-DNA 220D ; 2.0 ; INFLUENCE OF COUNTER-IONS ON THE CRYSTAL STRUCTURES OF DNA DECAMERS: BINDING OF [CO(NH3)6]3+ AND BA2+ TO A-DNA 221D ; 1.9 ; INFLUENCE OF COUNTER-IONS ON THE CRYSTAL STRUCTURES OF DNA DECAMERS: BINDING OF [CO(NH3)6]3+ AND BA2+ TO A-DNA 222D ; 1.9 ; INFLUENCE OF COUNTER-IONS ON THE CRYSTAL STRUCTURES OF DNA DECAMERS: BINDING OF [CO(NH3)6]3+ AND BA2+ TO A-DNA 1S1K ; 1.9 ; INFLUENCE OF GROOVE INTERACTIONS ON DNA HOLLIDAY JUNCTION FORMATION 1S1L ; 2.2 ; Influence of Groove Interactions on the Formation of DNA Holliday Junctions 1HVI ; 1.8 ; INFLUENCE OF STEREOCHEMISTRY ON ACTIVITY AND BINDING MODES FOR C2 SYMMETRY-BASED DIOL INHIBITORS OF HIV-1 PROTEASE 1HVJ ; 2.0 ; INFLUENCE OF STEREOCHEMISTRY ON ACTIVITY AND BINDING MODES FOR C2 SYMMETRY-BASED DIOL INHIBITORS OF HIV-1 PROTEASE 1HVK ; 1.8 ; INFLUENCE OF STEREOCHEMISTRY ON ACTIVITY AND BINDING MODES FOR C2 SYMMETRY-BASED DIOL INHIBITORS OF HIV-1 PROTEASE 1HVL ; 1.8 ; INFLUENCE OF STEREOCHEMISTRY ON ACTIVITY AND BINDING MODES FOR C2 SYMMETRY-BASED DIOL INHIBITORS OF HIV-1 PROTEASE 3FL6 ; 1.17 ; Influence of the incorporation of a cyclohexenyl nucleic acid (CeNA) residue onto the sequence d(GCGTGCG)/d(CGCACGC) 4M5V ; 1.8 ; Influenza 2009 H1N1 endonuclease with 100 millimolar calcium 4P1U ; 2.52 ; Influenza A (flu) virus polymerase basic protein 2 (PB2) bound to VX787, an azaindole inhibitor 8G5B ; 3.1 ; Influenza A H3N2 X-31 Hemagglutinin in complex with FL-1061 6US9 ; 2.0 ; Influenza A M2 proton channel wild type TM domain bound to R-rimantadine 6US8 ; 1.7 ; Influenza A M2 proton channel wild type TM domain bound to S-rimantadine 6BMZ ; 2.634 ; Influenza A M2 transmembrane domain bound to a spiroadamantane inhibitor 6BKK ; 1.995 ; Influenza A M2 transmembrane domain bound to amantadine 6BKL ; 1.995 ; Influenza A M2 transmembrane domain bound to rimantadine 6BOC ; 2.25 ; Influenza A M2 transmembrane domain bound to rimantadine in the Inward(open) conformation 5C02 ; 1.591 ; Influenza A M2 transmembrane domain drug-resistant S31N mutant at pH 8.0 4QK7 ; 1.1 ; Influenza A M2 wild type TM domain at high pH in the lipidic cubic phase under cryo diffraction conditions 4QKL ; 1.711 ; Influenza A M2 wild type TM domain at high pH in the lipidic cubic phase under room temperature diffraction conditions 4QKC ; 1.1 ; Influenza A M2 wild type TM domain at low pH in the lipidic cubic phase under cryo diffraction conditions 4QKM ; 1.44 ; Influenza A M2 wild type TM domain at low pH in the lipidic cubic phase under room temperature diffraction conditions 1PD3 ; 2.6 ; Influenza A NEP M1-binding domain 6H9G ; 11.0 ; Influenza A nucleoprotein docked into 3D helical structure of the wild type ribonucleoprotein complex obtained using cryoEM. Conformation 1. 6I54 ; 10.0 ; Influenza A nucleoprotein docked into 3D helical structure of the wild type ribonucleoprotein complex obtained using cryoEM. Conformation 2. 6I7B ; 10.0 ; Influenza A nucleoprotein docked into 3D helical structure of the wild type ribonucleoprotein complex obtained using cryoEM. Conformation 3. 6I7M ; 10.0 ; Influenza A nucleoprotein docked into 3D helical structure of the wild type ribonucleoprotein complex obtained using cryoEM. Conformation 4. 6I85 ; 24.0 ; Influenza A nucleoprotein docked into the 3D helical structure of the wild type ribonucleoprotein complex obtained using cryoEM. Conformation 5. 7AS1 ; 1.5 ; Influenza A PB2 (F404Y mutation) in complex with VX-787 7AS3 ; 1.65 ; Influenza A PB2 (H357N mutation) in complex with VX-787 7AS2 ; 1.75 ; Influenza A PB2 (M431 mutation) in complex with VX-787 7AS0 ; 1.55 ; Influenza A PB2 in complex with VX-787 6QNW ; 3.31 ; Influenza A Polymerase Heterotrimer Human H3N2 Northern Territory 1968 1ING ; 2.4 ; INFLUENZA A SUBTYPE N2 NEURAMINIDASE COMPLEXED WITH AROMATIC BANA109 INHIBITOR 1INH ; 2.4 ; INFLUENZA A SUBTYPE N2 NEURAMINIDASE COMPLEXED WITH AROMATIC BANA111 INHIBITOR 6QXE ; 4.15 ; Influenza A virus (A/NT/60/1968) polymerase dimer of hetermotrimer in complex with 3'5' cRNA promoter and Nb8205 6QX8 ; 4.07 ; Influenza A virus (A/NT/60/1968) polymerase dimer of heterotrimer in complex with 5' cRNA promoter 6QX3 ; 3.79 ; Influenza A virus (A/NT/60/1968) polymerase Hetermotrimer in complex with 3'5' cRNA promoter and Nb8205 6RR7 ; 3.01 ; Influenza A virus (A/NT/60/1968) polymerase Heterotrimer bound to 3'5' vRNA promoter and capped RNA primer 5DUT ; 1.5 ; Influenza A virus H5 hemagglutinin globular head 5DUR ; 2.82 ; Influenza A virus H5 hemagglutinin globular head in complex with antibody 100F4 5DUP ; 3.052 ; Influenza A virus H5 hemagglutinin globular head in complex with antibody AVFluIgG03 4F23 ; 1.7 ; Influenza A virus hemagglutinin H16 HA0 structure with an alpha-helix conformation in the cleavage site: a potential drug target 6HFY ; 1.65 ; Influenza A virus N6 neuraminidase complex with DANA (Duck/England/56). 6HG5 ; 1.6 ; Influenza A virus N6 neuraminidase complex with Oseltamivir (Duck/England/56). 6HGB ; 1.5 ; Influenza A virus N6 neuraminidase native structure (Duck/England/56). 6HG0 ; 1.3 ; Influenza A Virus N9 Neuraminidase complex with NANA (Tern/Australia). 6HEB ; 1.75 ; Influenza A Virus N9 Neuraminidase complex with Oseltamivir (Tern). 6HFC ; 1.29 ; Influenza A Virus N9 Neuraminidase Native (Tern). 5TJW ; 3.231 ; Influenza A virus Nucleoprotein in Complex with Inhibitory Nanobody 2IQH ; 3.2 ; Influenza A virus nucleoprotein NP at 3.2A resolution 6QPF ; 3.634 ; Influenza A virus Polymerase Heterotrimer A/duck/Fujian/01/2002(H5N1) 6QPG ; 3.34 ; Influenza A virus Polymerase Heterotrimer A/nt/60/1968(H3N2) in complex with Nanobody NB8205 4IRY ; 2.8 ; Influenza A virus tail-loop free nucleoprotein at 2.8 A resolution 6FS6 ; 2.291 ; Influenza A/California/04/2009 (pH1N1) endonuclease with bound inhibitor, baloxavir acid (BXA) 6FS7 ; 1.96 ; Influenza A/California/04/2009 (pH1N1) endonuclease with I38T mutation with bound inhibitor, baloxavir acid (BXA) 7NUG ; 1.9 ; Influenza A/California/07/2009(H1N1) endonuclease in complex with orientin 7NUH ; 2.2 ; Influenza A/California/07/2009(H1N1) endonuclease with I38T mutation in complex with orientin 7ZPM ; 2.81 ; Influenza A/H7N9 polymerase apo-protein dimer complex 6TU5 ; 3.325 ; Influenza A/H7N9 polymerase core (apo) 7Z4O ; 3.412 ; Influenza A/H7N9 polymerase core dimer with Pol II pSer5 CTD peptide mimic bound in site 2A 7QTL ; 2.48 ; Influenza A/H7N9 polymerase elongation complex 8PNQ ; 2.88 ; Influenza A/H7N9 polymerase in elongation state with continuous Pol II pS5 CTD peptide mimic bound in site 1A/2A 8PNP ; 2.49 ; Influenza A/H7N9 polymerase in pre-initiation state with continuous Pol II pS5 CTD peptide mimic bound in site 1A/2A 8R3L ; 3.25 ; Influenza A/H7N9 polymerase in pre-initiation state, intermediate conformation (I) with PB2-C(I), ENDO(T), and Pol II pS5 CTD peptide mimic bound in site 1A/2A 8PM0 ; 2.9 ; Influenza A/H7N9 polymerase in replicase-like conformation in pre-initiation state with Pol II pS5 CTD peptide mimic bound in site 1A/2A 8R3K ; 3.43 ; Influenza A/H7N9 polymerase in self-stalled pre-termination state, with Pol II pS5 CTD peptide mimic bound in site 1A/2A. 8POH ; 3.3 ; Influenza A/H7N9 polymerase symmetric dimer bound to the promoter (PA K289A/C489R) 4FQL ; 1.898 ; Influenza B HA Antibody (Fab) CR8033 6PVR ; ; Influenza B M2 Proton Channel in the Closed State - SSNMR Structure at pH 7.5 6PVT ; ; Influenza B M2 Proton Channel in the Open State - SSNMR Structure at pH 4.5 5M3J ; 3.5 ; Influenza B polymerase bound to four heptad repeats of serine 5 phosphorylated Pol II CTD 5MSG ; 3.8 ; Influenza B polymerase bound to vRNA promoter and capped RNA primer 6QCT ; 3.2 ; Influenza B polymerase elongation complex 6QCS ; 3.1 ; Influenza B polymerase pre-initiation complex 7Z43 ; 3.123 ; Influenza B polymerase with Pol II pSer5 CTD peptide mimic bound in site 1B and 2B 7Z42 ; 2.418 ; Influenza B polymerase with Pol II pSer5 CTD peptide mimic bound in site 2B 6QWL ; 4.1 ; Influenza B virus (B/Panama/45) polymerase Hetermotrimer in complex with 3'5' cRNA promoter 1NSC ; 1.7 ; INFLUENZA B VIRUS NEURAMINIDASE CAN SYNTHESIZE ITS OWN INHIBITOR 1NSD ; 1.8 ; INFLUENZA B VIRUS NEURAMINIDASE CAN SYNTHESIZE ITS OWN INHIBITOR 1VCJ ; 2.4 ; Influenza B virus neuraminidase complexed with 1-(4-Carboxy-2-(3-pentylamino)phenyl)-5-aminomethyl-5-hydroxymethyl-pyrrolidin-2-one 6CNV ; 4.1 ; INFLUENZA B/BRISBANE HEMAGGLUTININ FAB CR9115 SD84H COMPLEX 4FQK ; 5.65 ; Influenza B/Brisbane/60/2008 hemagglutinin Fab CR8059 complex 4FQJ ; 2.5 ; Influenza B/Florida/4/2006 hemagglutinin Fab CR8071 complex 6FS8 ; 1.8 ; Influenza B/Memphis/13/03 endonuclease with bound inhibitor, baloxavir acid (BXA) 6FSB ; 1.8 ; Influenza B/Memphis/13/03 endonuclease with I38T mutation 6FS9 ; 2.28 ; Influenza B/Memphis/13/03 endonuclease with I38T mutation with bound inhibitor, baloxavir acid (BXA) 6XZD ; 3.4 ; Influenza C virus polymerase complex without chicken ANP32A - Subclass 2 6XZR ; 3.3 ; Influenza C virus polymerase in complex with chicken ANP32A - Subclass 1 6XZG ; 3.8 ; Influenza C virus polymerase in complex with chicken ANP32A - Subclass 3 6XZP ; 3.3 ; Influenza C virus polymerase in complex with chicken ANP32A - Subclass 4 6XZQ ; 3.6 ; Influenza C virus polymerase in complex with human ANP32A - Subclass 1 6Y0C ; 3.2 ; Influenza C virus polymerase in complex with human ANP32A - Subclass 2 5D9A ; 4.3 ; Influenza C Virus RNA-dependent RNA Polymerase - Space group P212121 5D98 ; 3.9 ; Influenza C Virus RNA-dependent RNA Polymerase - Space group P43212 5N2U ; 2.4 ; Influenza D virus nucleoprotein 5CXR ; 2.002 ; Influenza endonuclease complexed with 4-bromopyrazole 7DKG ; 3.0 ; Influenza H5N1 nucleoprotein (truncated) in complex with nucleotides 7DXP ; 2.3 ; Influenza H5N1 nucleoprotein in complex with nucleotides 2L4G ; ; Influenza Haemagglutinin fusion peptide mutant G13A 6XPO ; 3.0 ; Influenza hemagglutinin A/Bangkok/01/1979(H3N2) 3UBQ ; 2.0 ; Influenza hemagglutinin from the 2009 pandemic in complex with ligand 3SLN 3UBN ; 2.5079 ; Influenza hemagglutinin from the 2009 pandemic in complex with ligand 6SLN 3UBJ ; 2.25 ; Influenza hemagglutinin from the 2009 pandemic in complex with ligand LSTa 3UBE ; 2.15 ; Influenza hemagglutinin from the 2009 pandemic in complex with ligand LSTc 2JRD ; ; Influenza Hemagglutinin Fusion Domain Mutant F9A 5VMC ; 2.15 ; Influenza hemagglutinin H1 mutant DH1 in complex with 6'SLN 5VMF ; 2.35 ; Influenza hemagglutinin H1 mutant DH1D in complex with 6'SLN 5VMJ ; 2.95 ; Influenza hemagglutinin H1 mutant DH1E in complex with 3'SLN 5VMG ; 2.45 ; Influenza hemagglutinin H1 mutant DH1E in complex with 6'SLN 5KUY ; 2.598 ; Influenza hemagglutinin H3 A/Hong Kong/1/1968 in complex with designed inhibitor protein HSB.2A 5UGY ; 2.801 ; Influenza hemagglutinin in complex with a neutralizing antibody 4HKX ; 2.5 ; Influenza hemagglutinin in complex with CH67 Fab 4H53 ; 1.5 ; Influenza N2-Tyr406Asp neuraminidase in complex with beta-Neu5Ac 4D8S ; 2.398 ; Influenza NA in complex with antiviral compound 3O9J ; 2.0002 ; Influenza NA in complex with compound 5 3O9K ; 2.4945 ; Influenza NA in complex with compound 6 4MJU ; 2.35 ; Influenza Neuraminidase in complex with a novel antiviral compound 4MJV ; 2.65 ; Influenza Neuraminidase in complex with a novel antiviral compound 4M3M ; 2.1 ; Influenza Neuraminidase in complex with a stereomutated analogue of Oseltamivir carboxylate 4KS1 ; 2.2 ; Influenza neuraminidase in complex with antiviral compound (3S,4R,5R)-4-(acetylamino)-3-amino-5-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid 4KS2 ; 2.595 ; Influenza Neuraminidase in complex with antiviral compound (3S,4R,5R)-4-(acetylamino)-3-carbamimidamido-5-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid 4KS5 ; 2.699 ; Influenza neuraminidase in complex with antiviral compound (3S,4R,5R)-4-(acetylamino)-3-[4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]-5-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid 4KS3 ; 2.6 ; Influenza Neuraminidase in complex with antiviral compound (3S,4R,5R)-4-(acetylamino)-3-[4-(3-hydroxypropyl)-1H-1,2,3-triazol-1-yl]-5-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid 4KS4 ; 2.495 ; Influenza Neuraminidase in complex with antiviral compound (3S,4R,5R)-4-(acetylamino)-3-{4-[(1R)-1-hydroxypropyl]-1H-1,2,3-triazol-1-yl}-5-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylic acid 7U2Q ; 3.2 ; Influenza Neuraminidase N1-CA09-sNAp-155 7U2T ; 3.25 ; Influenza Neuraminidase N1-MI15-sNAp-174 8VGZ ; 2.09 ; Influenza PA-N Endonuclease E23K Mutant (amino acids 52-74 truncation) 5BUH ; 2.55 ; Influenza PB2 bound to a hydroxymethyl azaindole inhibitor 5F79 ; 2.4 ; Influenza PB2 bound to an azaindole inhibitor 7ZPY ; 1.9 ; Influenza polymerase A C-terminal domain of PA subunit with optimized small peptide inhibitor 4NCE ; 2.3 ; Influenza polymerase basic protein 2 (PB2) bound to 7-methyl-GTP 4NCM ; 2.82 ; Influenza polymerase basic protein 2 (PB2) bound to a small-molecule inhibitor 4YD0 ; 2.62 ; Influenza polymerase basic protein 2 (PB2) bound to an azaindole-tetrazole inhibitor 2W69 ; 2.05 ; Influenza polymerase fragment 4AVQ ; 2.1 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease 4AWM ; 2.6 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with (-)-epigallocatechin gallate from green tea 4AWF ; 2.3 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with 2 4-dioxo-4-phenylbutanoic acid DPBA 4AWK ; 1.9 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with diketo compound 1 4AVG ; 2.2 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with diketo compound 2 4AWG ; 2.6 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with diketo compound 3 4AVL ; 1.87 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with dTMP 4AWH ; 2.05 ; Influenza strain pH1N1 2009 polymerase subunit PA endonuclease in complex with rUMP 4DGR ; 1.551 ; Influenza Subtype 9 Neuraminidase Benzoic Acid Inhibitor Complex 3ZPB ; 2.6 ; INFLUENZA VIRUS (VN1194) H5 E190D mutant HA with LSTa 3ZP6 ; 2.6 ; INFLUENZA VIRUS (VN1194) H5 E190D mutant HA with LSTc 2IBX ; 2.8 ; Influenza virus (VN1194) H5 HA 3ZP2 ; 2.5 ; INFLUENZA VIRUS (VN1194) H5 HA A138V mutant with LSTa 3ZP3 ; 2.65 ; INFLUENZA VIRUS (VN1194) H5 HA A138V mutant with LSTc 3ZP0 ; 2.51 ; INFLUENZA VIRUS (VN1194) H5 HA with LSTa 3ZP1 ; 2.6 ; INFLUENZA VIRUS (VN1194) H5 HA with LSTc 3ZPA ; 2.5 ; INFLUENZA VIRUS (VN1194) H5 I155F mutant HA 1A4Q ; 1.9 ; INFLUENZA VIRUS B/BEIJING/1/87 NEURAMINIDASE COMPLEXED WITH DIHYDROPYRAN-PHENETHYL-PROPYL-CARBOXAMIDE 1A4G ; 2.2 ; INFLUENZA VIRUS B/BEIJING/1/87 NEURAMINIDASE COMPLEXED WITH ZANAMIVIR 1INF ; 2.4 ; INFLUENZA VIRUS B/LEE/40 NEURAMINIDASE COMPLEXED WITH BANA113 INHIBITOR 7NT8 ; 2.22 ; Influenza virus H3N2 nucleoprotein - R416A mutant 2VIU ; 2.5 ; INFLUENZA VIRUS HEMAGGLUTININ 1EO8 ; 2.8 ; INFLUENZA VIRUS HEMAGGLUTININ COMPLEXED WITH A NEUTRALIZING ANTIBODY 1QFU ; 2.8 ; INFLUENZA VIRUS HEMAGGLUTININ COMPLEXED WITH A NEUTRALIZING ANTIBODY 2VIR ; 3.25 ; INFLUENZA VIRUS HEMAGGLUTININ COMPLEXED WITH A NEUTRALIZING ANTIBODY 1KEN ; 3.5 ; INFLUENZA VIRUS HEMAGGLUTININ COMPLEXED WITH AN ANTIBODY THAT PREVENTS THE HEMAGGLUTININ LOW PH FUSOGENIC TRANSITION 2VIS ; 3.25 ; INFLUENZA VIRUS HEMAGGLUTININ, (ESCAPE) MUTANT WITH THR 131 REPLACED BY ILE, COMPLEXED WITH A NEUTRALIZING ANTIBODY 2VIT ; 3.25 ; INFLUENZA VIRUS HEMAGGLUTININ, MUTANT WITH THR 155 REPLACED BY ILE, COMPLEXED WITH A NEUTRALIZING ANTIBODY 1EA3 ; 2.3 ; Influenza virus M1 protein 1AA7 ; 2.08 ; INFLUENZA VIRUS MATRIX PROTEIN CRYSTAL STRUCTURE AT PH 4.0 6HCX ; 1.3 ; Influenza Virus N9 Neuraminidase A complex with Zanamivir molecule (Tern). 4WEG ; 2.1 ; influenza virus neuraminidase N9 in complex 2,3-difluorosialic acid 5W26 ; 1.9 ; INFLUENZA VIRUS NEURAMINIDASE N9 IN COMPLEX WITH 4-DEOXYGENATED 2,3-DIFLUORO-N-ACETYLNEURAMINIC ACID 5W2U ; 2.0 ; INFLUENZA VIRUS NEURAMINIDASE N9 IN COMPLEX WITH 7-DEOXYGENATED 2,3-DIFLUORO-N-ACETYLNEURAMINIC ACID 5W2W ; 1.85 ; INFLUENZA VIRUS NEURAMINIDASE N9 IN COMPLEX WITH 8-DEOXYGENATED 2,3-DIFLUORO-N-ACETYLNEURAMINIC ACID 5W2Y ; 2.39 ; INFLUENZA VIRUS NEURAMINIDASE N9 IN COMPLEX WITH 9-DEOXYGENATED 2,3-DIFLUORO-N-ACETYLNEURAMINIC ACID 6D3B ; 1.4 ; INFLUENZA VIRUS NEURAMINIDASE SUBTYPE N9 (TERN) APO FORM 3W09 ; 2.0 ; Influenza virus neuraminidase subtype N9 (TERN) complexed with 2,3-dif guanidino-neu5ac2en inhibitor 1NNC ; 1.8 ; INFLUENZA VIRUS NEURAMINIDASE SUBTYPE N9 (TERN) COMPLEXED WITH 4-GUANIDINO-NEU5AC2EN INHIBITOR 6MCX ; 2.3 ; INFLUENZA VIRUS NEURAMINIDASE SUBTYPE N9 (TERN) RECOMBINANT HEAD DOMAIN 6CRD ; 2.57 ; INFLUENZA VIRUS NEURAMINIDASE SUBTYPE N9 (TERN) with tetrabrachion (TB) domain stalk 6J1U ; 2.8 ; influenza virus nucleoprotein with a specific inhibitor 5OIC ; 1.87 ; InhA (T2A mutant) complexed with (4-((1H-pyrazol-1-yl)methyl)phenyl)methanol 5OIP ; 1.71 ; InhA (T2A mutant) complexed with 1-(Pyridin-3-ylmethyl)-3-(1-(pyrimidin-2-yl)piperidin-4-yl)urea 5OIF ; 2.03 ; InhA (T2A mutant) complexed with 1-benzyl-3-methyl-1H-pyrazol-5-amine 5OIL ; 2.76 ; InhA (T2A mutant) complexed with 1-cyclohexyl-3-(pyridin-3-ylmethyl)urea 5OIR ; 1.97 ; InhA (T2A mutant) complexed with 2,6-Dimethyl-3-(1-(pyrimidin-2-yl)piperidin-4-yl)pyridin-4(1H)-one 5OIQ ; 2.65 ; InhA (T2A mutant) complexed with 2,6-dimethyl-3-phenylpyridin-4(1H)-one 5OIS ; 2.24 ; InhA (T2A mutant) complexed with 4-((5-Amino-3-methyl-1H-pyrazol-1-yl)methyl)-N-(2-chloro-4-fluorobenzyl)benzamide 5OIO ; 2.74 ; InhA (T2A mutant) complexed with 5-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-N-ethyl-1,3,4-thiadiazol-2-amine 5OIT ; 2.58 ; InhA (T2A mutant) complexed with 5-((5-Amino-3-methyl-1H-pyrazol-1-yl)methyl)-N-(1-(2-chloro-6-fluorobenzyl)-1H-pyrazol-3-yl)-1,3,4-thiadiazol-2-amine 5OIM ; 1.91 ; InhA (T2A mutant) complexed with ethyl 2-methyl-4,5,6,7-tetrahydrobenzo[d]thiazole-6-carboxylate 5OIN ; 2.82 ; InhA (T2A mutant) complexed with N-(1-(pyrimidin-2-yl)piperidin-4-yl)acetamide 5G0S ; 1.74 ; InhA in complex with a DNA encoded library hit 5G0T ; 1.54 ; InhA in complex with a DNA encoded library hit 5G0U ; 1.73 ; InhA in complex with a DNA encoded library hit 5G0V ; 1.79 ; InhA in complex with a DNA encoded library hit 5G0W ; 1.79 ; InhA in complex with a DNA encoded library hit 6EP8 ; 1.8 ; InhA Y158F mutant in complex with NADH from Mycobacterium tuberculosis 4V08 ; 2.03 ; Inhibited dimeric pseudorabies virus protease pUL26N at 2 A resolution 1MDM ; 2.8 ; INHIBITED FRAGMENT OF ETS-1 AND PAIRED DOMAIN OF PAX5 BOUND TO DNA 5SUL ; 3.3 ; Inhibited state structure of yGsy2p 6GK9 ; 2.54 ; Inhibited structure of IMPDH from Pseudomonas aeruginosa 4D9Q ; 2.28 ; Inhibiting Alternative Pathway Complement Activation by Targeting the Exosite on Factor D 4D9R ; 2.42 ; Inhibiting Alternative Pathway Complement Activation by Targeting the Exosite on Factor D 5HHV ; 2.2 ; Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide 5HHX ; 3.0 ; Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide 7PJE ; 1.75 ; Inhibiting parasite proliferation using a rationally designed anti-tubulin agent 7PJF ; 1.862 ; Inhibiting parasite proliferation using a rationally designed anti-tubulin agent 3MU6 ; 2.434 ; Inhibiting the Binding of Class IIa Histone Deacetylases to Myocyte Enhancer Factor-2 by Small Molecules 4DFU ; 1.98 ; Inhibition of an antibiotic resistance enzyme: crystal structure of aminoglycoside phosphotransferase APH(2"")-ID/APH(2"")-IVA in complex with kanamycin inhibited with quercetin 1BLC ; 2.2 ; INHIBITION OF BETA-LACTAMASE BY CLAVULANATE: TRAPPED INTERMEDIATES IN CRYOCRYSTALLOGRAPHIC STUDIES 2OSF ; 1.6 ; Inhibition of Carbonic Anhydrase II by Thioxolone: A Mechanistic and Structural Study 2OSM ; 1.6 ; Inhibition of Carbonic Anhydrase II by Thioxolone: A Mechanistic and Structural Study 2P2C ; 3.24 ; Inhibition of caspase-2 by a designed ankyrin repeat protein (DARPin) 3V6M ; 2.692 ; Inhibition of caspase-6 activity by single mutation outside the active site 1EO3 ; 2.0 ; INHIBITION OF ECORV ENDONUCLEASE BY DEOXYRIBO-3'-S-PHOSPHOROTHIOLATES: A HIGH RESOLUTION X-RAY CRYSTALLOGRAPHIC STUDY 5ENL ; 2.2 ; INHIBITION OF ENOLASE: THE CRYSTAL STRUCTURES OF ENOLASE-CA2+-PHOSPHOGLYCERATE AND ENOLASE-ZN2+-PHOSPHOGLYCOLATE COMPLEXES AT 2.2-ANGSTROMS RESOLUTION 6ENL ; 2.2 ; INHIBITION OF ENOLASE: THE CRYSTAL STRUCTURES OF ENOLASE-CA2+-PHOSPHOGLYCERATE AND ENOLASE-ZN2+-PHOSPHOGLYCOLATE COMPLEXES AT 2.2-ANGSTROMS RESOLUTION 1QR8 ; 2.1 ; INHIBITION OF HIV-1 INFECTIVITY BY THE GP41 CORE: ROLE OF A CONSERVED HYDROPHOBIC CAVITY IN MEMBRANE FUSION 1QR9 ; 1.6 ; INHIBITION OF HIV-1 INFECTIVITY BY THE GP41 CORE: ROLE OF A CONSERVED HYDROPHOBIC CAVITY IN MEMBRANE FUSION 1GRH ; 3.0 ; INHIBITION OF HUMAN GLUTATHIONE REDUCTASE BY THE NITROSOUREA DRUGS 1,3-BIS(2-CHLOROETHYL)-1-NITROSOUREA AND 1-(2-CHLOROETHYL)-3-(2-HYDROXYETHYL)-1-NITROSOUREA 1HOS ; 2.3 ; INHIBITION OF HUMAN IMMUNODEFICIENCY VIRUS-1 PROTEASE BY A C2-SYMMETRIC PHOSPHINATE SYNTHESIS AND CRYSTALLOGRAPHIC ANALYSIS 7UJ4 ; 1.96 ; Inhibition of Human Menin by SNDX-5613 8E90 ; 1.85 ; Inhibition of Human Menin by SNDX-5613 6PKC ; 1.9 ; Inhibition of Human Menin by VTP-50469 1W0C ; 2.6 ; Inhibition of Leishmania major pteridine reductase (PTR1) by 2,4,6-triaminoquinazoline; structure of the NADP ternary complex. 1XBP ; 3.5 ; Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with Tiamulin 1OXL ; 1.8 ; INHIBITION OF PHOSPHOLIPASE A2 (PLA2) BY (2-CARBAMOYLMETHYL-5-PROPYL-OCTAHYDRO-INDOL-7-YL)-ACETIC ACID (INDOLE): CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN PLA2 FROM RUSSELL'S VIPER AND INDOLE AT 1.8 RESOLUTION 2XDW ; 1.35 ; Inhibition of Prolyl Oligopeptidase with a Synthetic Unnatural Dipeptide 3PRK ; 2.2 ; INHIBITION OF PROTEINASE K BY METHOXYSUCCINYL-ALA-ALA-PRO-ALA-CHLOROMETHYL KETONE. AN X-RAY STUDY AT 2.2-ANGSTROMS RESOLUTION 1K0U ; 3.0 ; Inhibition of S-adenosylhomocysteine Hydrolase by ""acyclic sugar"" Adenosine Analogue D-eritadenine 4KLZ ; 2.3 ; Inhibition of Small GTPases by Stabilization of the GDP Complex, a Novel Approach applied to Rit1, a Target for Rheumatoid Arthritis 2X05 ; 2.3 ; Inhibition of the exo-beta-D-glucosaminidase CsxA by a glucosamine- configured castanospermine and an amino-australine analogue 2X09 ; 2.4 ; Inhibition of the exo-beta-D-glucosaminidase CsxA by a glucosamine- configured castanospermine and an amino-australine analogue 359D ; 2.9 ; INHIBITION OF THE HAMMERHEAD RIBOZYME CLEAVAGE REACTION BY SITE-SPECIFIC BINDING OF TB(III) 1DXP ; 2.4 ; Inhibition of the Hepatitis C Virus NS3/4A Protease. The Crystal Structures of Two Protease-Inhibitor Complexes (apo structure) 1DY9 ; 2.1 ; Inhibition of the Hepatitis C Virus NS3/4A Protease. The Crystal Structures of Two Protease-Inhibitor Complexes (inhibitor I) 1DY8 ; 2.4 ; Inhibition of the Hepatitis C Virus NS3/4A Protease. The Crystal Structures of Two Protease-Inhibitor Complexes (inhibitor II) 2UWD ; 1.9 ; Inhibition of the HSP90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole, isoxazole amide analogs 2XBN ; 1.4 ; Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation 2YL5 ; 2.15 ; Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis 2YL6 ; 1.6 ; Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis 2YL8 ; 1.75 ; Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis 2YL9 ; 2.65 ; INHIBITION OF THE PNEUMOCOCCAL VIRULENCE FACTOR STRH AND MOLECULAR INSIGHTS INTO N-GLYCAN RECOGNITION AND HYDROLYSIS 2YLA ; 2.7 ; INHIBITION OF THE PNEUMOCOCCAL VIRULENCE FACTOR STRH AND MOLECULAR INSIGHTS INTO N-GLYCAN RECOGNITION AND HYDROLYSIS 2YLL ; 1.85 ; Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis 1YQS ; 1.05 ; Inhibition of the R61 DD-Peptidase by N-benzoyl-beta-sultam 1ALW ; 2.03 ; INHIBITOR AND CALCIUM BOUND DOMAIN VI OF PORCINE CALPAIN 8A0B ; 1.746 ; Inhibitor binding to HDAC2 5D2R ; 1.9 ; Inhibitor Bound Cell Shape Determinant Protein Csd4 from Helicobacter pylori 5ZRN ; 2.37 ; Inhibitor bound crystal structure of N-terminal domain of FACL13 from Mycobacterium tuberculosis 1R4L ; 3.0 ; Inhibitor Bound Human Angiotensin Converting Enzyme-Related Carboxypeptidase (ACE2) 3QUP ; 1.9 ; Inhibitor bound structure of the kinase domain of the murine receptor tyrosine kinase TYRO3 (Sky) 4FEQ ; 2.2 ; Inhibitor bound structure of the kinase domain of the murine receptor tyrosine kinase TYRO3 (Sky) 4FF8 ; 2.4 ; Inhibitor bound structure of the kinase domain of the murine receptor tyrosine kinase TYRO3 (Sky) 3LCD ; 2.5 ; Inhibitor Bound to A DFG-In structure of the Kinase Domain of CSF-1R 3LCO ; 3.4 ; Inhibitor Bound to A DFG-Out structure of the Kinase Domain of CSF-1R 7UYA ; 1.01 ; Inhibitor bound VIM1 7UYB ; 1.11 ; Inhibitor bound VIM1 7UYC ; 1.02 ; Inhibitor bound VIM1 7UYD ; 1.0 ; Inhibitor bound VIM1 2B1P ; 1.9 ; inhibitor complex of JNK3 2EXC ; 2.75 ; Inhibitor complex of JNK3 7NEE ; 2.55 ; Inhibitor Complex with Thrombin Activatable Fibrinolysis inhibitor (TAFIa) 7NEU ; 2.8 ; Inhibitor Complex with Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) 6WI8 ; 3.092 ; Inhibitor compound-induced confrontational change in Ring1b-Bmi1 domain structure 2C4B ; 1.3 ; Inhibitor cystine knot protein McoEeTI fused to the catalytically inactive barnase mutant H102A 2KTZ ; ; Inhibitor Induced Structural Change in the HCV IRES Domain IIa RNA 2KU0 ; ; Inhibitor Induced Structural Change in the HCV IRES Domain IIa RNA 6RQ4 ; 1.96 ; Inhibitor of ERK2 1IZH ; 1.9 ; Inhibitor of HIV protease with unusual binding mode potently inhibiting multi-resistant protease mutants 1IZI ; 2.15 ; Inhibitor of HIV protease with unusual binding mode potently inhibiting multi-resistant protease mutants 7BIR ; 2.02 ; Inhibitor of MDM2-p53 Interaction 7BIT ; 2.13 ; Inhibitor of MDM2-p53 Interaction 7BIV ; 1.64 ; Inhibitor of MDM2-p53 Interaction 7BJ0 ; 2.0 ; Inhibitor of MDM2-p53 Interaction 7BJ6 ; 1.59 ; Inhibitor of MDM2-p53 Interaction 7BMG ; 1.83 ; Inhibitor of MDM2-p53 Interaction 1E0H ; ; Inhibitor Protein Im9 bound to its partner E9 DNase 4JLF ; 2.1 ; Inhibitor resistant (R220A) substitution in the Mycobacterium tuberculosis beta-lactamase 5JL4 ; 1.758 ; Inhibitor resistant mutant catalytic core domain of HIV-1 Integrase 8DWL ; 2.0 ; Inhibitor-3:PP1 coexpressed complex 8DWK ; 2.5 ; Inhibitor-3:PP1 reconstituted complex 4J2T ; 3.2 ; Inhibitor-bound Ca2+ ATPase 8H3U ; 4.7 ; Inhibitor-bound EP, polyA model 2IWK ; 1.7 ; Inhibitor-bound form of nitrous oxide reductase from Achromobacter Cycloclastes at 1.7 Angstrom resolution 2ZDX ; 2.54 ; Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4 2ZDY ; 2.4 ; Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4 1AYK ; ; INHIBITOR-FREE CATALYTIC FRAGMENT OF HUMAN FIBROBLAST COLLAGENASE, NMR, 30 STRUCTURES 2AYK ; ; INHIBITOR-FREE CATALYTIC FRAGMENT OF HUMAN FIBROBLAST COLLAGENASE, NMR, MINIMIZED AVERAGE STRUCTURE 2PGB ; 1.54 ; Inhibitor-free human thrombin mutant C191A-C220A 1PHA ; 1.63 ; INHIBITOR-INDUCED CONFORMATIONAL CHANGE IN CYTOCHROME P450-CAM 1PHB ; 1.6 ; INHIBITOR-INDUCED CONFORMATIONAL CHANGE IN CYTOCHROME P450-CAM 7QG0 ; 4.02 ; Inhibitor-induced hSARM1 duplex 3LTN ; 3.1 ; Inhibitor-stabilized topoisomerase IV-DNA cleavage complex (S. pneumoniae) 4NAT ; 1.72 ; Inhibitors of 4-Phosphopanthetheine Adenylyltransferase 4NAH ; 2.38 ; Inhibitors of 4-Phosphopanthetheine Adenylyltransferase (PPAT) 3LKH ; 2.05 ; Inhibitors of Hepatitis C Virus Polymerase: Synthesis and Characterization of Novel 6-Fluoro-N-[2-Hydroxy-1(S)-Benzamides 2YCM ; 1.8 ; Inhibitors of herbicidal target IspD 2XA4 ; 2.04 ; Inhibitors of Jak2 Kinase domain 3ZMM ; 2.51 ; Inhibitors of Jak2 Kinase domain 4C61 ; 2.45 ; Inhibitors of Jak2 Kinase domain 4C62 ; 2.75 ; Inhibitors of Jak2 Kinase domain 5ANQ ; 2.0 ; inhibitors of JumonjiC domain-containing histone demethylases 2YC3 ; 1.4 ; Inhibitors of the herbicidal target IspD 2YC5 ; 1.6 ; Inhibitors of the herbicidal target IspD 7AUW ; 2.8 ; Inhibitory complex of human meprin beta with mouse fetuin-B. 6Z85 ; 2.9 ; inhibitory human GTP cyclohydrolase I - GFRP complex 7LLJ ; 3.15 ; Inhibitory immune receptor protein complex 7ZZU ; 1.85 ; Inhibitory Ligand binding to HDAC2 4LF3 ; 2.735 ; Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor 1NKR ; 1.7 ; INHIBITORY RECEPTOR (P58-CL42) FOR HUMAN NATURAL KILLER CELLS 6V6A ; 2.1 ; Inhibitory scaffolding of the ancient MAPK, ERK7 7S7T ; 3.2 ; iNicSnFR3a Nicotine Sensor comprising Periplasmic Binding sequence plus Fluorescent Sequence with varenicline bound 5U1F ; 6.8 ; Initial contact of HIV-1 Env with CD4: Cryo-EM structure of BG505 DS-SOSIP trimer in complex with CD4 and antibody PGT145 1Y63 ; 1.7 ; Initial crystal structural analysis of a probable kinase from Leishmania major Friedlin 2IRT ; 3.2 ; INITIAL CRYSTALLOGRAPHIC ANALYSES OF A RECOMBINANT INTERLEUKIN-1 RECEPTOR ANTAGONIST PROTEIN 2B30 ; 2.7 ; Initial Crystallographic Structural Analysis of a putative HAD/COF-like hydrolase from Plasmodium vivax 8EBV ; 7.1 ; Initial DNA-lesion (AP) binding by XPC and TFIIH complex 1 8EBW ; 5.6 ; Initial DNA-lesion (AP) binding by XPC and TFIIH complex2 8EBS ; 4.0 ; Initial DNA-lesion (Cy5) binding by XPC and TFIIH 1UWP ; 1.2 ; Initial Events in the Photocycle of Photoactive Yellow Protein 1YJ8 ; 2.85 ; Initial structural analysis of Plasmodium falciparum Glycerol-3-phosphate dehydrogenase 1SYR ; 2.95 ; Initial Structural Analysis of Plasmodium falciparum thioredoxin 1SVV ; 2.1 ; Initial Stuctural Analysis of Leishmania major Threonine Aldolase 4EKB ; 1.52 ; Initial Thaumatin Structure for Radiation Damage Experiment at 100 K 4EKO ; 1.52 ; Initial Thaumatin Structure for Radiation Damage Experiment at 180 K 4EL2 ; 1.52 ; Initial Thaumatin Structure for Radiation Damage Experiment at 240 K 4EK0 ; 1.52 ; Initial Thaumatin Structure for Radiation Damage Experiment at 25 K 4EL7 ; 1.52 ; Initial Thaumatin Structure for Radiation Damage Experiment at 300 K 4EP8 ; 1.55 ; Initial Urease Structure for Radiation Damage Experiment at 100 K 4EPD ; 1.7 ; Initial Urease Structure for Radiation Damage Experiment at 300 K 7NWT ; 2.66 ; Initiated 70S ribosome in complex with 2A protein from encephalomyocarditis virus (EMCV) 4V6G ; 3.5 ; Initiation complex of 70S ribosome with two tRNAs and mRNA. 7PO2 ; 3.09 ; Initiation complex of human mitochondrial ribosome small subunit with IF2, fMet-tRNAMet and mRNA 7PO1 ; 2.92 ; Initiation complex of human mitochondrial ribosome small subunit with IF3 1N1H ; 2.8 ; Initiation complex of polymerase lambda3 from reovirus 8BIL ; 2.04 ; Initiation complex of the E. coli 70S ribosome with mRNA containing AAA codon in the A-site. 8BIM ; 2.04 ; Initiation complex of the E. coli 70S ribosome with mRNA containing AAm6A codon in the A-site 1BKB ; 1.75 ; INITIATION FACTOR 5A FROM ARCHEBACTERIUM PYROBACULUM AEROPHILUM 2WQX ; 2.03 ; InlB321_4R: S199R, D200R, G206R, A227R, C242A mutant of the Listeria monocytogenes InlB internalin domain 7NMS ; 1.8 ; InlB392_T332E: T332E variant of Listeria monocytogenes InlB (internalin B) residues 36-392 7PV8 ; 2.05 ; InlB392_T332E: T332E variant of Listeria monocytogenes InlB (internalin B) residues 36-392 1FYC ; ; INNER LIPOYL DOMAIN FROM HUMAN PYRUVATE DEHYDROGENASE (PDH) COMPLEX, NMR, 1 STRUCTURE 8TV9 ; 8.15 ; Inner Mat-T4P complex 7OIU ; 3.7 ; Inner Membrane Complex (IMC) protomer structure (TrwM/VirB3, TrwK/VirB4, TrwG/VirB8tails) from the fully-assembled R388 type IV secretion system determined by cryo-EM. 8AXN ; 3.34 ; Inner membrane ring and secretin N0 N1 domains of the type 3 secretion system of Shigella flexneri 7N85 ; 7.6 ; Inner ring spoke from the isolated yeast NPC 8TJ5 ; 6.6 ; Inner spoke ring of the yeast NPC 1QJO ; ; INNERMOST LIPOYL DOMAIN OF THE PYRUVATE DEHYDROGENASE FROM ESCHERICHIA COLI 1FAJ ; 2.15 ; INORGANIC PYROPHOSPHATASE 2EIP ; 2.2 ; INORGANIC PYROPHOSPHATASE 1K23 ; 3.0 ; Inorganic Pyrophosphatase (Family II) from Bacillus subtilis 1K20 ; 1.5 ; Inorganic Pyrophosphatase (family II) from Streptococcus gordonii at 1.5 A resolution 2AUU ; 1.22 ; Inorganic pyrophosphatase complexed with magnesium pyrophosphate and fluoride 2AU9 ; 1.3 ; Inorganic pyrophosphatase complexed with substrate 1IPW ; 2.3 ; INORGANIC PYROPHOSPHATASE FROM ESCHERICHIA COLI WITH THREE MAGNESIUM IONS 5KDE ; 2.65 ; Inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with inhibitor 1 and inorganic pyrophosphate 5KDF ; 2.45 ; Inorganic pyrophosphatase from Mycobacterium tuberculosis in complex with inhibitor 6 and inorganic pyrophosphate 1TWL ; 2.201 ; Inorganic pyrophosphatase from Pyrococcus furiosus Pfu-264096-001 2BQX ; 1.9 ; Inorganic Pyrophosphatase from the Pathogenic Bacterium Helicobacter pylori-Kinetic and Structural Properties 2BQY ; 2.3 ; Inorganic Pyrophosphatase from the Pathogenic Bacterium Helicobacter pylori-Kinetic and Structural Properties 1BWD ; 3.1 ; INOSAMINE-PHOSPHATE AMIDINOTRANSFERASE STRB1 FROM STREPTOMYCES GRISEUS 4FXS ; 2.24 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae complexed with IMP and mycophenolic acid 4FEZ ; 2.16 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant 4IX2 ; 2.146 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant, complexed with IMP 4FO4 ; 2.03 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant, complexed with IMP and mycophenolic acid 4QNE ; 2.32 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant, in complex with NAD and IMP 4QQ3 ; 1.72 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant, in complex with XMP 4X3Z ; 1.62 ; Inosine 5'-monophosphate dehydrogenase from Vibrio cholerae, deletion mutant, in complex with XMP and NAD 1AK5 ; 2.3 ; INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) FROM TRITRICHOMONAS FOETUS 1MEH ; 1.95 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with IMP and MOA bound 1ME9 ; 2.2 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with IMP bound 1ME7 ; 2.15 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with RVP and MOA bound 1ME8 ; 1.9 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with RVP bound 1MEI ; 2.2 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with XMP and mycophenolic acid bound 1MEW ; 2.15 ; Inosine Monophosphate Dehydrogenase (IMPDH) From Tritrichomonas Foetus with XMP and NAD bound 1ZFJ ; 1.9 ; INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH; EC 1.1.1.205) FROM STREPTOCOCCUS PYOGENES 114D ; 2.5 ; INOSINE-ADENINE BASE PAIRS IN A B-DNA DUPLEX 1KIE ; 2.0 ; Inosine-adenosine-guanosine preferring nucleoside hydrolase from Trypanosoma vivax: Asp10Ala mutant in complex with 3-deaza-adenosine 1KIC ; 1.6 ; Inosine-adenosine-guanosine preferring nucleoside hydrolase from Trypanosoma vivax: Asp10Ala mutant in complex with inosine 1R4F ; 2.3 ; Inosine-Adenosine-Guanosine Preferring Nucleoside Hydrolase From Trypanosoma vivax: Trp260Ala Mutant In Complex With 3-Deaza-Adenosine 3FZ0 ; 2.5 ; Inosine-Guanosine Nucleoside Hydrolase (IG-NH) 4AXC ; 2.25 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase apo form 3UDT ; 3.1 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with ADP and IP5. 2XAM ; 2.2 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with ADP and IP6. 3UDZ ; 2.5 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with ADP and IP6. 3UDS ; 3.1 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with ADP. 2XAN ; 2.2 ; inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with AMP PNP and IP5 6GFG ; 3.0 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with D-chiro-IP6 and ADP 2XAO ; 2.9 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with IP5 2XAR ; 3.1 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with IP6. 6FL3 ; 2.36 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with myo-IP5 and ADP 6FJK ; 2.025 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with myo-IP6 and ADP 6GFH ; 2.65 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with neo-IP5 and ATP 6FL8 ; 2.1 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with purpurogallin and ADP 5MW8 ; 2.4 ; INOSITOL 1,3,4,5,6-PENTAKISPHOSPHATE 2-KINASE FROM M. MUSCULUS IN COMPLEX WITH ATP and IP5 5MWL ; 3.2 ; INOSITOL 1,3,4,5,6-PENTAKISPHOSPHATE 2-KINASE FROM M. MUSCULUS IN COMPLEX WITH ATP and IP5 5MWM ; 2.6 ; INOSITOL 1,3,4,5,6-PENTAKISPHOSPHATE 2-KINASE FROM M. MUSCULUS IN COMPLEX WITH IP6 4AXE ; 2.5 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase in complex with ADP 4AQK ; 2.4 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase in complex with ADP and IP6 4AXD ; 2.05 ; Inositol 1,3,4,5,6-pentakisphosphate 2-kinase in complex with AMPPNP 8OXE ; 2.26 ; Inositol 1,3,4-trisphosphate 5/6-kinase 1 from Solanum tuberosum (StITPK1) in complex with ADP/Mg2+ 7PUP ; 1.91 ; INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 4 from Arabidopsis thaliana (AtITPK4) in complex with ATP 1Z2N ; 1.2 ; Inositol 1,3,4-trisphosphate 5/6-kinase complexed Mg2+/ADP 1Z2O ; 1.24 ; Inositol 1,3,4-trisphosphate 5/6-Kinase in complex with mg2+/ADP/Ins(1,3,4,6)P4 1Z2P ; 1.22 ; Inositol 1,3,4-trisphosphate 5/6-Kinase in complex with Mg2+/AMP-PCP/Ins(1,3,4)P3 6X7Z ; 1.0 ; Inositol-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 1QL1 ; 3.1 ; INOVIRUS (FILAMENTOUS BACTERIOPHAGE) STRAIN PF1 MAJOR COAT PROTEIN ASSEMBLY 1QL2 ; 3.1 ; Inovirus (Filamentous Bacteriophage) Strain PF1 Major Coat Protein Assembly 1IFP ; 3.1 ; INOVIRUS (FILAMENTOUS BACTERIOPHAGE) STRAIN PF3 MAJOR COAT PROTEIN ASSEMBLY 5RWV ; 1.25 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1103351268 5RXD ; 1.33 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z111810692 5RXR ; 1.4 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1148747945 5RWH ; 1.56 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1152242726 5RYH ; 1.72 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1212984951 5RWY ; 1.35 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1259335913 5RX3 ; 1.45 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1262327505 5RYF ; 1.49 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1266823232 5RY7 ; 1.6 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1267773591 5RWK ; 1.32 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1267881672 5RXX ; 1.43 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1275599911 5RWN ; 1.38 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1310876699 5RYK ; 1.55 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1346370629 5RWL ; 1.37 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1348371854 5RWM ; 1.36 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z136583524 5RY8 ; 1.43 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1374778753 5RWS ; 1.28 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1478435544 5RX7 ; 1.36 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1545196403 5RX4 ; 1.35 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1593306637 5RY5 ; 1.54 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z166605480 5RXL ; 1.49 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1673618163 5RWD ; 1.29 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1675346324 5RYG ; 1.47 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z168883358 5RXJ ; 1.52 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1722836661 5RYA ; 1.32 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1741973467 5RYL ; 1.55 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1745658474 5RWG ; 1.46 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z17497990 5RXS ; 1.37 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1818332938 5RYC ; 1.56 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z18197050 5RX2 ; 1.27 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1827898537 5RY2 ; 1.54 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z19727416 5RW4 ; 1.31 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z19735192 5RXZ ; 1.56 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z19739650 5RY6 ; 1.74 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z198194394 5RWF ; 1.35 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z1983897532 5RY3 ; 1.5 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2027158783 5RW9 ; 1.45 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z203581214 5RW3 ; 1.37 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2064898339 5RXF ; 1.26 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2074076908 5RYJ ; 1.42 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2177153697 5RWW ; 1.16 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2241115980 5RXE ; 1.25 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z240654968 5RX5 ; 1.28 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2443429438 5RXI ; 1.74 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2447286438 5RX1 ; 1.31 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2466069494 5RXQ ; 1.65 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z26548083 5RW2 ; 1.22 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2737076969 5RYI ; 1.45 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z274555794 5RY9 ; 1.52 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z274575916 5RY0 ; 1.98 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z275165822 5RW8 ; 1.27 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z28290384 5RWR ; 1.43 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434783 5RWA ; 1.29 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434812 5RW6 ; 1.32 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434816 5RXB ; 1.58 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434821 5RWJ ; 1.26 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434824 5RXA ; 1.24 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434829 5RXK ; 1.46 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434840 5RXW ; 1.34 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434856 5RXU ; 1.64 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434858 5RWE ; 1.34 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434865 5RXC ; 1.59 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434868 5RWC ; 1.4 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434879 5RX8 ; 1.34 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434884 5RXM ; 1.46 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434894 5RWO ; 1.29 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434898 5RWB ; 1.25 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434899 5RXG ; 1.52 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434909 5RWI ; 1.29 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434926 5RXP ; 1.53 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2856434944 5RY1 ; 1.52 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z2940170964 5RY4 ; 1.47 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z300245038 5RX6 ; 1.45 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z30620520 5RXT ; 1.63 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z319545618 5RXY ; 1.4 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z32014663 5RWT ; 1.43 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z32327641 5RYE ; 1.7 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z33545544 5RWX ; 1.34 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z44567722 5RWQ ; 1.32 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z44592329 5RXV ; 1.5 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z45527714 5RX9 ; 1.29 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z54226095 5RX0 ; 1.43 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z57258487 5RWZ ; 1.42 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z57299529 5RWU ; 1.37 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z57778470 5RXO ; 1.71 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z68299550 5RW5 ; 1.38 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z69092635 5RW7 ; 1.23 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z86622311 5RWP ; 1.48 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z915492990 5RYB ; 1.55 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z927400026 5RXH ; 1.42 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z939944666 5RYD ; 1.6 ; INPP5D PanDDA analysis group deposition -- Crystal Structure of the phosphatase and C2 domains of SHIP1 in complex with Z955369596 5ZNS ; 2.396 ; Insect chitin deacetylase 5ZNT ; 1.979 ; Insect chitin deacetylase 8TFV ; ; INSECT DEFENSE PEPTIDE 1LQI ; ; INSECTICIDAL ALPHA SCORPION TOXIN ISOLATED FROM THE VENOM OF SCORPION LEIURUS QUINQUESTRIATUS HEBRAEUS, NMR, 29 STRUCTURES 1LQH ; ; INSECTICIDAL ALPHA SCORPION TOXIN ISOLATED FROM THE VENOM OF SCORPION LEIURUS QUINQUESTRIATUS HEBRAEUS, NMR, MINIMIZED AVERAGE STRUCTURE 1I5P ; 2.2 ; INSECTICIDAL CRYSTAL PROTEIN CRY2AA 1CIY ; 2.25 ; INSECTICIDAL TOXIN: STRUCTURE AND CHANNEL FORMATION 2WZQ ; 2.8 ; Insertion Mutant E173GP174 of the NS3 protease-helicase from dengue virus 3BQ1 ; 2.7 ; Insertion ternary complex of Dbh DNA polymerase 5OWX ; 5.2 ; Inside-out FMDV A10 capsid 1S5J ; 2.4 ; Insight in DNA Replication: The crystal structure of DNA Polymerase B1 from the archaeon Sulfolobus solfataricus 1C12 ; 2.6 ; INSIGHT IN ODORANT PERCEPTION: THE CRYSTAL STRUCTURE AND BINDING CHARACTERISTICS OF ANTIBODY FRAGMENTS DIRECTED AGAINST THE MUSK ODORANT TRASEOLIDE 1ESL ; 2.0 ; INSIGHT INTO E-SELECTIN(SLASH)LIGAND INTERACTION FROM THE CRYSTAL STRUCTURE AND MUTAGENESIS OF THE LEC(SLASH)EGF DOMAINS 3G78 ; 2.8 ; Insight into group II intron catalysis from revised crystal structure 4LVH ; 2.8 ; Insight into highly conserved H1 subtype-specific epitopes in influenza virus hemagglutinin 6O44 ; 1.83 ; Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis 6PAK ; 1.98 ; Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis 2LN4 ; ; Insight into the antimicrobial activities based on the Structure-activity relationships of coprisin isolated from the Dung Beetle, Copris tripartitus 7Y4N ; ; Insight into the C-terminal SH3 domain mediated binding of Drosophila Drk to Sos and Dos 2WTX ; 2.2 ; Insight into the mechanism of enzymatic glycosyltransfer with retention through the synthesis and analysis of bisubstrate glycomimetics of trehalose-6-phosphate synthase 7B73 ; 1.6 ; Insight into the molecular determinants of thermal stability in halohydrin dehalogenase HheD2. 5NWM ; ; Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6 5NWX ; 2.51 ; Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6 3JB8 ; 3.6 ; Insight into Three-dimensional structure of Maize Chlorotic Mottle Virus Revealed by Single Particle Analysis 2Z84 ; 1.7 ; Insights from crystal and solution structures of mouse UfSP1 2FNQ ; 3.2 ; Insights from the X-ray crystal structure of coral 8R-lipoxygenase: calcium activation via A C2-like domain and a structural basis of product chirality 6SQX ; 1.4 ; Insights into a novel NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida 3HYM ; 2.8 ; Insights into Anaphase Promoting Complex TPR subdomain assembly from a CDC26-APC6 structure 3NRY ; 2.0 ; Insights into anti-parallel microtubule crosslinking by PRC1, a conserved microtubule binding protein 3NRX ; 1.75 ; Insights into anti-parallel microtubule crosslinking by PRC1, a conserved non-motor microtubule binding protein 2CIK ; 1.75 ; Insights Into Crossreactivity in Human Allorecognition: The Structure of HLA-B35011 Presenting an Epitope derived from Cytochrome P450. 4BH6 ; 2.9 ; Insights into degron recognition by APC coactivators from the structure of an Acm1-Cdh1 complex 1J49 ; 2.2 ; INSIGHTS INTO DOMAIN CLOSURE, SUBSTRATE SPECIFICITY AND CATALYSIS OF D-LACTATE DEHYDROGENASE FROM LACTOBACILLUS BULGARICUS 1J4A ; 1.9 ; INSIGHTS INTO DOMAIN CLOSURE, SUBSTRATE SPECIFICITY AND CATALYSIS OF D-LACTATE DEHYDROGENASE FROM LACTOBACILLUS BULGARICUS 3L7H ; 1.95 ; Insights into dynein assembly from a dynein intermediate chain light chain Roadblock structure 3L9K ; 3.0 ; Insights into dynein assembly from a dynein intermediate chain-light chain roadblock structure 1FFY ; 2.2 ; INSIGHTS INTO EDITING FROM AN ILE-TRNA SYNTHETASE STRUCTURE WITH TRNA(ILE) AND MUPIROCIN 1QU2 ; 2.2 ; INSIGHTS INTO EDITING FROM AN ILE-TRNA SYNTHETASE STRUCTURE WITH TRNA(ILE) AND MUPIROCIN 1QU3 ; 2.9 ; INSIGHTS INTO EDITING FROM AN ILE-TRNA SYNTHETASE STRUCTURE WITH TRNA(ILE) AND MUPIROCIN 1S78 ; 3.25 ; Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex 4YLF ; 2.301 ; Insights into flavin-based electron bifurcation via the NADH-dependent reduced ferredoxin-NADP oxidoreductase structure 4YRY ; 2.4 ; Insights into flavin-based electron bifurcation via the NADH-dependent reduced ferredoxin-NADP oxidoreductase structure 2KV1 ; ; Insights into Function, Catalytic Mechanism and Fold Evolution of Mouse Selenoprotein Methionine Sulfoxide Reductase B1 through Structural Analysis 4DCH ; 1.79 ; Insights into Glucokinase Activation Mechanism: Observation of Multiple Distinct Protein Conformations 5FQL ; 2.3 ; Insights into Hunter syndrome from the structure of iduronate-2- sulfatase 1CRL ; 2.06 ; INSIGHTS INTO INTERFACIAL ACTIVATION FROM AN 'OPEN' STRUCTURE OF CANDIDA RUGOSA LIPASE 2VEQ ; 2.49 ; Insights into kinetochore-DNA interactions from the structure of Cep3p 3D0P ; 1.8 ; Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex 1FQV ; 2.8 ; Insights into scf ubiquitin ligases from the structure of the skp1-skp2 complex 1FS1 ; 1.8 ; INSIGHTS INTO SCF UBIQUITIN LIGASES FROM THE STRUCTURE OF THE SKP1-SKP2 COMPLEX 1FS2 ; 2.9 ; INSIGHTS INTO SCF UBIQUITIN LIGASES FROM THE STRUCTURE OF THE SKP1-SKP2 COMPLEX 4FBN ; 2.4 ; Insights into structural integration of the PLCgamma regulatory region and mechanism of autoinhibition and activation based on key roles of SH2 domains 4PGI ; 2.08 ; Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Analogs Bound 4PG0 ; 1.9 ; Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound 4PG1 ; 1.7 ; Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound 4PGK ; 2.17 ; Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound 4TW3 ; 1.6 ; Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound 3K1A ; 2.23 ; Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha-70Ile MoFe protein variant 5I0K ; 3.197 ; Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases 3GKK ; 1.83 ; Insights into the Alkyl Peroxide Reduction Activity of Xanthomonas campestris Bacterioferritin Comigratory Protein from the Trapped Intermediate/Ligand Complex Structures 3GKM ; 1.53 ; Insights into the Alkyl Peroxide Reduction Activity of Xanthomonas campestris Bacterioferritin Comigratory Protein from the Trapped Intermediate/Ligand Complex Structures 3GKN ; 1.47 ; Insights into the Alkyl Peroxide Reduction Activity of Xanthomonas campestris Bacterioferritin Comigratory Protein from the Trapped Intermediate/Ligand Complex Structures 3MYH ; 2.01 ; Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 3MYK ; 1.84 ; Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 3MYL ; 2.0 ; Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 4PQT ; 2.05 ; Insights into the mechanism of deubiquitination by JAMM deubiquitinases from co-crystal structures of enzyme with substrate and product 3E0D ; 4.6 ; Insights into the Replisome from the Crystral Structure of the Ternary Complex of the Eubacterial DNA Polymerase III alpha-subunit 2C8V ; 2.5 ; Insights into the role of nucleotide-dependent conformational change in nitrogenase catalysis: Structural characterization of the nitrogenase Fe protein Leu127 deletion variant with bound MgATP 3N4N ; 1.92 ; Insights into the stabilizing contributions of a bicyclic cytosine analogue: crystal structures of DNA duplexes containing 7,8-dihydropyrido[2,3-d]pyrimidin-2-one 3N4O ; 2.9 ; Insights into the stabilizing contributions of a bicyclic cytosine analogue: crystal structures of DNA duplexes containing 7,8-dihydropyrido[2,3-d]pyrimidin-2-one 1YOV ; 2.6 ; Insights into the Ubiquitin Transfer Cascade from the refined structure of the activating enzyme for NEDD8 4V5E ; 3.45 ; Insights into translational termination from the structure of RF2 bound to the ribosome 5UZD ; ; Insights into Watson-Crick/Hoogsteen Breathing Dynamics and Damage Repair from the Solution Structure and Dynamic Ensemble of DNA Duplexes containing m1A - A2-DNA structure 5UZF ; ; Insights into Watson-Crick/Hoogsteen Breathing Dynamics and Damage Repair from the Solution Structure and Dynamic Ensemble of DNA Duplexes containing m1A - A6-DNA structure 5UZI ; ; Insights into Watson-Crick/Hoogsteen Breathing Dynamics and Damage Repair from the Solution Structure and Dynamic Ensemble of DNA Duplexes containing m1A - A6-DNAm1A16 structure 6ATG ; 1.8 ; Insights to complement factor H recruitment by the borrelial CspZ protein as revealed by structural analysis 4AXF ; 2.93 ; InsP5 2-K in complex with Ins(3,4,5,6)P4 plus AMPPNP 1ZNI ; 1.498 ; INSULIN 2BN1 ; 1.4 ; Insulin after a high dose x-ray burn 6CK2 ; 2.25 ; Insulin analog containing a YB26W mutation 6Z7X ; 2.15 ; Insulin analytical antibody OXI-005 Fab 1GUJ ; 1.62 ; Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation. 2BN3 ; 1.4 ; Insulin before a high dose x-ray burn 4XC4 ; 1.499 ; Insulin co-crystallizes in the presence of it beta-cell chaperone sulfatide 2G4M ; 1.8 ; Insulin collected at 2.0 A wavelength 1BEN ; 1.4 ; INSULIN COMPLEXED WITH 4-HYDROXYBENZAMIDE 7RZH ; 3.8 ; Insulin Degrading Enzyme O/O 7RZF ; 3.4 ; Insulin Degrading Enzyme O/pC 7RZG ; 4.1 ; Insulin Degrading Enzyme O/pO 7RZI ; 3.0 ; Insulin Degrading Enzyme pC/pC 7RZE ; 3.3 ; Insulin Degrading Enzyme pO/pC 3P2X ; 2.0 ; Insulin fibrillation is the Janus face of induced fit. A chiaral clamp stabilizes the native state at the expense of activity 3P33 ; 2.3 ; Insulin fibrillation is the Janus face of induced fit. A chiral clamp stabilizes the native state at the expense of activity 4IYD ; 1.66 ; Insulin glargine crystal structure 1 4IYF ; 1.8 ; Insulin glargine crystal structure 2 6GV0 ; 1.26 ; Insulin glulisine 4OGA ; 3.5 ; Insulin in complex with Site 1 of the human insulin receptor 6NWV ; 1.601 ; Insulin Lispro Analog 1HUI ; ; INSULIN MUTANT (B1, B10, B16, B27)GLU, DES-B30, NMR, 25 STRUCTURES 1IOG ; ; INSULIN MUTANT A3 GLY,(B1, B10, B16, B27)GLU, DES-B30, NMR, 19 STRUCTURES 1IOH ; ; INSULIN MUTANT A8 HIS,(B1, B10, B16, B27)GLU, DES-B30, NMR, 26 STRUCTURES 1A7F ; ; INSULIN MUTANT B16 GLU, B24 GLY, DES-B30, NMR, 20 STRUCTURES 4I5Y ; 1.8 ; Insulin protein crystallization via langmuir-blodgett 4I5Z ; 1.8 ; Insulin protein crystallization via langmuir-blodgett 2HR7 ; 2.32 ; Insulin receptor (domains 1-3) 5KQV ; 4.4 ; Insulin receptor ectodomain construct comprising domains L1,CR,L2, FnIII-1 and alphaCT peptide in complex with bovine insulin and FAB 83-14 (REVISED STRUCTURE) 3W12 ; 4.301 ; Insulin receptor ectodomain construct comprising domains L1-CR in complex with high-affinity insulin analogue [D-PRO-B26]-DTI-NH2, alpha-CT peptide(704-719) and FAB 83-7 3W13 ; 4.303 ; Insulin receptor ectodomain construct comprising domains L1-CR in complex with high-affinity insulin analogue [D-PRO-B26]-DTI-NH2, alphact peptide(693-719) and FAB 83-7 3W11 ; 3.9 ; Insulin receptor ectodomain construct comprising domains L1-CR in complex with human insulin, Alpha-CT peptide(704-719) and FAB 83-7 7MD4 ; 4.5 ; Insulin receptor ectodomain dimer complexed with two IRPA-3 partial agonists 7MD5 ; 5.2 ; Insulin receptor ectodomain dimer complexed with two IRPA-9 partial agonists 6CE7 ; 7.4 ; Insulin Receptor ectodomain in complex with one insulin molecule 6CE9 ; 4.3 ; Insulin Receptor ectodomain in complex with two insulin molecules 6CEB ; 4.7 ; Insulin Receptor ectodomain in complex with two insulin molecules - C1 symmetry 3EKK ; 2.1 ; Insulin receptor kinase complexed with an inhibitor 3EKN ; 2.2 ; Insulin receptor kinase complexed with an inhibitor 7KD6 ; 2.6 ; Insulin Receptor L1-CR plus alphaCT fragment in co-complex with Fv 83-7 and single-chain insulin SCI-b 5C97 ; 3.37 ; Insulin regulated aminopeptidase 7ZYF ; 2.81 ; Insulin regulated aminopeptidase (IRAP) in complex with a nanomolar alpha hydroxy beta amino acid based inhibitor. 8CGP ; 2.62 ; Insulin regulated aminopeptidase (IRAP) in complex with an allosteric aryl sulfonamide inhibitor 8HSK ; 1.64 ; Insulin single mutant INS-Q 5LIS ; 2.293 ; Insulin solved by Native SAD from a dataset collected in one second 8HSF ; 2.9 ; Insulin triple mutant INS-RQD 5USV ; 1.3 ; Insulin with proline analog AzeP at position B28 in the T2 state 5UU3 ; 2.25 ; Insulin with proline analog DfP at position B28 in the R6 state 5URU ; 2.41 ; Insulin with proline analog DhP at position B28 in the R6 state 5URT ; 1.18 ; Insulin with proline analog DhP at position B28 in the T2 state 5UOZ ; 1.17464 ; Insulin with proline analog FyP at position B28 in the T2 state 5UQA ; 1.31 ; Insulin with proline analog FzP at position B28 in the R6 state 5HPU ; 2.2 ; Insulin with proline analog HyP at position B28 in the R6 state 5HPR ; 1.33 ; Insulin with proline analog HyP at position B28 in the T2 state 5HRQ ; 1.28 ; Insulin with proline analog HzP at position B28 in the R6 state 5HQI ; 0.97 ; Insulin with proline analog HzP at position B28 in the T2 state 5USS ; 2.061 ; Insulin with proline analog PiP at position B28 in the R6 state 5USP ; 1.174 ; Insulin with proline analog Pip at position B28 in the T2 state 5UU4 ; 1.973 ; Insulin with proline analog ThioP at position B28 in the R6 state 5UU2 ; 1.223 ; Insulin with proline analog ThioP at position B28 in the T2 state 3JSD ; 2.5 ; Insulin's biosynthesis and activity have opposing structural requirements: a new factor in neonatal diabetes mellitus 3ROV ; 2.3 ; Insulin's biosynthesis and activity have opposing structural requirements: a new factor in neonatal diabetes mellitus 1ZNJ ; 2.0 ; INSULIN, MONOCLINIC CRYSTAL FORM 7XRX ; 1.882 ; insulin-cleaving membrane protease-ICMP 4XSS ; 3.0 ; Insulin-like growth factor I in complex with site 1 of a hybrid insulin receptor / Type 1 insulin-like growth factor receptor 1PMX ; ; INSULIN-LIKE GROWTH FACTOR-I BOUND TO A PHAGE-DERIVED PEPTIDE 1B9G ; ; INSULIN-LIKE-GROWTH-FACTOR-1 8CGW ; 3.03 ; Insulin-regulated aminopeptidase (IRAP) in complex with an allosteric benzopyran-based inhibitor 6YDX ; 3.2 ; Insulin-regulated aminopeptidase complexed with a macrocyclic peptidic inhibitor 2C8Q ; 1.95 ; insuline(1sec) and UV laser excited fluorescence 2C8R ; 1.5 ; insuline(60sec) and UV laser excited fluorescence 5X6O ; 3.9 ; Intact ATR/Mec1-ATRIP/Ddc2 complex 6WSI ; 1.749 ; Intact cis-2,3-epoxysuccinic acid bound to Isocitrate Lyase-1 from Mycobacterium tuberculosis 1EFC ; 2.05 ; INTACT ELONGATION FACTOR FROM E.COLI 1TUI ; 2.7 ; INTACT ELONGATION FACTOR TU IN COMPLEX WITH GDP 6K7Y ; 3.6 ; Intact human mitochondrial calcium uniporter complex with MICU1/MICU2 subunits 1LBH ; 3.2 ; INTACT LACTOSE OPERON REPRESSOR WITH GRATUITOUS INDUCER IPTG 5D4I ; 1.6 ; Intact nitrite complex of a copper nitrite reductase determined by serial femtosecond crystallography 3DZU ; 3.2 ; Intact PPAR gamma - RXR alpha Nuclear Receptor Complex on DNA bound with BVT.13, 9-cis Retinoic Acid and NCOA2 Peptide 3E00 ; 3.1 ; Intact PPAR gamma - RXR alpha Nuclear Receptor Complex on DNA bound with GW9662, 9-cis Retinoic Acid and NCOA2 Peptide 3DZY ; 3.1 ; Intact PPAR gamma - RXR alpha Nuclear Receptor Complex on DNA bound with Rosiglitazone, 9-cis Retinoic Acid and NCOA2 Peptide 1PSI ; 2.92 ; Intact recombined alpha1-antitrypsin mutant PHE 51 to LEU 4G8K ; 2.4 ; Intact sensor domain of human RNase L in the inactive signaling state 7E8S ; 4.36 ; Intact TRAPPII (state I). 7E94 ; 4.67 ; Intact TRAPPII (State II) 7E93 ; 6.54 ; Intact TRAPPII (state III). 7EA3 ; 4.31 ; Intact Ypt32-TRAPPII (dimer). 8SMU ; 2.45 ; Integral fusion of the HtaA CR2 domain from Corynebacterium diphtheriae within EGFP 2LJ2 ; ; Integral membrane core domain of the mercury transporter MerF in lipid bilayer membranes 3AEH ; 2.0 ; Integral membrane domain of autotransporter Hbp 1KZU ; 2.5 ; INTEGRAL MEMBRANE PERIPHERAL LIGHT HARVESTING COMPLEX FROM RHODOPSEUDOMONAS ACIDOPHILA STRAIN 10050 5FGN ; 2.75 ; Integral membrane protein lipooligosaccharide phosphoethanolamine transferase A (EptA) from Neisseria meningitidis 5VFZ ; 1.847 ; Integrase from mycobacterium phage Brujita 5YLX ; 2.2 ; Integrated illustration of a valid epitope based on the SLA class I structure and tetramer technique could carry forward the development of molecular vaccine in swine species 8CLR ; ; Integrated NMR/MD structure determination of a dynamic and thermodynamically stable CUUG RNA tetraloop 2ZME ; 2.9 ; Integrated structural and functional model of the human ESCRT-II complex 3CUQ ; 2.61 ; Integrated structural and functional model of the human ESCRT-II complex 1IHF ; 2.5 ; INTEGRATION HOST FACTOR/DNA COMPLEX 6XR4 ; 14.0 ; Integrative in situ structure of Parkinsons disease-linked human LRRK2 8GBS ; 8.0 ; Integrative model of the native Ana GV shell 7UKP ; 2.80113 ; Integrin alaphIIBbeta3 complex with a gantofiban analog 7TMZ ; 2.20002 ; Integrin alaphIIBbeta3 complex with BMS compound 4 7U9F ; 2.70001 ; Integrin alaphIIBbeta3 complex with BMS compound 4 in Mn2+ 7U9V ; 2.25492 ; Integrin alaphIIBbeta3 complex with BMS4-1 7UDH ; 1.99999 ; Integrin alaphIIBbeta3 complex with BMS4-3 7UKT ; 2.36994 ; Integrin alaphIIBbeta3 complex with BMS4.2 7U60 ; 2.55 ; Integrin alaphIIBbeta3 complex with cRGDfV 7TPD ; 2.6 ; Integrin alaphIIBbeta3 complex with EF5154 7THO ; 2.75 ; Integrin alaphIIBbeta3 complex with Eptifibatide 7UE0 ; 2.74196 ; Integrin alaphIIBbeta3 complex with fradafiban 7UFH ; 2.99768 ; Integrin alaphIIBbeta3 complex with fradafiban (Mn/Ca) 7UCY ; 2.34996 ; Integrin alaphIIBbeta3 complex with gantofiban 7UBR ; 2.04993 ; Integrin alaphIIBbeta3 complex with GR144053 7UJK ; 2.43266 ; Integrin alaphIIBbeta3 complex with lamifiban 7UK9 ; 2.60002 ; Integrin alaphIIBbeta3 complex with lamifiban (Mn) 7UDG ; 2.80007 ; Integrin alaphIIBbeta3 complex with lotrafiban 7UH8 ; 2.75002 ; Integrin alaphIIBbeta3 complex with roxifiban (Mn/Ca) 7UKO ; 2.604 ; Integrin alaphIIBbeta3 complex with sibrafiban (Mn) 7TD8 ; 2.6 ; Integrin alaphIIBbeta3 complex with Tirofiban 7TCT ; 2.501 ; Integrin alaphIIBbeta3 complex with UR2922 7UJE ; 2.49997 ; Integrin alaphIIBbeta3 complex with UR2922 in Mn2+ 1MF7 ; 1.25 ; INTEGRIN ALPHA M I DOMAIN 1NA5 ; 1.5 ; INTEGRIN ALPHA M I DOMAIN 1N9Z ; 2.5 ; INTEGRIN ALPHA M I DOMAIN MUTANT 5FFO ; 3.49 ; Integrin alpha V beta 6 in complex with pro-TGF-beta 8TCG ; 3.4 ; Integrin alpha-v beta-6 in complex with minibinder B6_BP_dslf 8TCF ; 2.9 ; Integrin alpha-v beta-8 in complex with minibinder B8_BP_dsulf 6UJA ; 3.3 ; Integrin alpha-v beta-8 in complex with pro-TGF-beta1 6DJP ; 4.8 ; Integrin alpha-v beta-8 in complex with the Fabs 8B8 and 68 6UJC ; 3.56 ; Integrin alpha-v beta-8 in complex with the Fabs C6-RGD3 and 11D12v2 6UJB ; 3.51 ; Integrin alpha-v beta-8 in complex with the Fabs C6D4 and 11D12v2 1DZI ; 2.1 ; integrin alpha2 I domain / collagen complex 4BJ3 ; 3.042 ; Integrin alpha2 I domain E318W-collagen complex 5HJ2 ; 2.153 ; Integrin alpha2beta1 I-domain 3ZDX ; 2.45 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 3ZDY ; 2.45 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 3ZDZ ; 2.75 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 3ZE0 ; 2.95 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 3ZE1 ; 3.0 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 3ZE2 ; 2.35 ; Integrin alphaIIB beta3 headpiece and RGD peptide complex 2K9J ; ; Integrin alphaIIb-beta3 transmembrane complex 2VDQ ; 2.59 ; Integrin AlphaIIbBeta3 Headpiece Bound to a Chimeric Fibrinogen Gamma chain peptide, HHLGGAKQRGDV 2VDR ; 2.4 ; Integrin AlphaIIbBeta3 Headpiece Bound to a chimeric Fibrinogen Gamma chain peptide, LGGAKQRGDV 2VDO ; 2.51 ; Integrin AlphaIIbBeta3 Headpiece Bound to Fibrinogen Gamma chain peptide, HHLGGAKQAGDV 2VDP ; 2.8 ; Integrin AlphaIIbBeta3 Headpiece Bound to Fibrinogen Gamma chain peptide,LGGAKQAGDV 4Z7N ; 2.599 ; Integrin alphaIIbbeta3 in complex with AGDV peptide 4Z7O ; 2.85 ; Integrin alphaIIbbeta3 in complex with AGDV peptide 4Z7Q ; 2.7 ; Integrin alphaIIbbeta3 in complex with AGDV-NH2 peptide 5HDB ; 2.7012 ; Integrin alphaIIbbeta3 in complex with Ro-435054 7L8P ; 2.34995 ; Integrin alphaIIbbeta3 in complex with sibrafiban 7LA4 ; 3.3 ; Integrin AlphaIIbBeta3-PT25-2 Complex 7USM ; 2.7 ; Integrin alphaM/beta2 ectodomain 7USL ; 2.7 ; Integrin alphaM/beta2 ectodomain in complex with adenylate cyclase toxin RTX751 and M1F5 Fab 4MMZ ; 3.1 ; Integrin AlphaVBeta3 ectodomain bound to an antagonistic tenth domain of Fibronectin 6MK0 ; 3.005 ; Integrin AlphaVBeta3 ectodomain bound to antagonist TDI-4161 6MSL ; 3.104 ; Integrin AlphaVBeta3 ectodomain bound to EETI-II 2.5D 6NAJ ; 3.1 ; Integrin AlphaVBeta3 ectodomain bound to Hr10 variant of the 10th domain of Fibronectin. 4MMX ; 3.32 ; Integrin AlphaVBeta3 ectodomain bound to the tenth domain of Fibronectin 4MMY ; 3.183 ; Integrin AlphaVBeta3 ectodomain bound to the tenth domain of Fibronectin with the IAKGDWND motif 6MSU ; 3.11 ; Integrin alphaVBeta3 in complex with EETI-II 2.5F 2KV9 ; ; Integrin beta3 subunit in a disulfide linked alphaIIb-beta3 cytosolic domain 7S47 ; 2.0 ; Integrin beta5(743-774)-linker-PAK4cat(D440N/S474E) 1UZQ ; 2.4 ; Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, apo form cbEGF23 domain only. 1UZK ; 1.35 ; Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, Ca bound to cbEGF23 domain only 1UZJ ; 2.25 ; Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, holo form. 1UZP ; 1.78 ; Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, Sm bound form cbEGF23 domain only. 3P46 ; 1.7 ; Integrin binding collagen peptide 1L3Y ; ; INTEGRIN EGF-LIKE MODULE 3 FROM THE BETA-2 SUBUNIT 4M76 ; 2.804 ; Integrin I domain of complement receptor 3 in complex with C3d 6FPZ ; 2.2 ; Inter-alpha-inhibitor heavy chain 1, D298A 6FPY ; 2.339 ; Inter-alpha-inhibitor heavy chain 1, wild type 6RJS ; 2.6 ; Inter-dimeric interface controls function and stability of S-methionine adenosyltransferase from U. urealiticum 6RK5 ; 2.6 ; Inter-dimeric interface controls function and stability of S-methionine adenosyltransferase from U. urealiticum 6RK7 ; 1.8 ; Inter-dimeric interface controls function and stability of S-methionine adenosyltransferase from U. urealiticum 6RKA ; 2.5 ; Inter-dimeric interface controls function and stability of S-methionine adenosyltransferase from U. urealiticum 6RKC ; 2.56 ; Inter-dimeric interface controls function and stability of S-methionine adenosyltransferase from U. urealiticum 2KZ1 ; ; Inter-molecular interactions in a 44 kDa interferon-receptor complex detected by asymmetric back-protonation and 2D NOESY 3A5C ; 4.51 ; Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase 3A5D ; 4.8 ; Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase 2HOY ; 2.2 ; Inter-subunit signaling in GSAM 2HOZ ; 2.2 ; Inter-subunit signaling in GSAM 2HP1 ; 2.08 ; Inter-subunit signaling in GSAM 2HP2 ; 2.7 ; Inter-subunit signaling in GSAM 7FHI ; ; Interaction between a fluoroquinolone derivative and RNAs with a single bulge 7FJ0 ; ; Interaction between a fluoroquinolone derivative and RNAs with a single bulge 8I43 ; ; Interaction between a fluoroquinolone derivative KG022 and RNAs: effect of base pairs 3' adjacent to the bulge out residues 8I44 ; ; Interaction between a fluoroquinolone derivative KG022 and RNAs: effect of base pairs 3' adjacent to the bulge out residues 8I45 ; ; Interaction between a fluoroquinolone derivative KG022 and RNAs: effect of base pairs 3' adjacent to the bulge out residues 8I46 ; ; Interaction between a fluoroquinolone derivative KG022 and RNAs: effect of base pairs 3' adjacent to the bulge out residues 336D ; 1.0 ; INTERACTION BETWEEN LEFT-HANDED Z-DNA AND POLYAMINE-3 THE CRYSTAL STRUCTURE OF THE D(CG)3 AND THERMOSPERMINE COMPLEX 1BEJ ; 2.4 ; INTERACTION BETWEEN PROXIMAL AND DISTALS REGIONS OF CYTOCHROME C PEROXIDASE 1BEM ; 2.2 ; INTERACTION BETWEEN PROXIMAL AND DISTALS REGIONS OF CYTOCHROME C PEROXIDASE 1BEQ ; 2.16 ; INTERACTION BETWEEN PROXIMAL AND DISTALS REGIONS OF CYTOCHROME C PEROXIDASE 1BES ; 2.0 ; INTERACTION BETWEEN PROXIMAL AND DISTALS REGIONS OF CYTOCHROME C PEROXIDASE 293D ; 1.0 ; INTERACTION BETWEEN THE LEFT-HANDED Z-DNA AND POLYAMINE-2: THE CRYSTAL STRUCTURE OF THE D(CG)3 AND SPERMIDINE COMPLEX 292D ; 1.0 ; INTERACTION BETWEEN THE LEFT-HANDED Z-DNA AND POLYAMINE:THE CRYSTAL STRUCTURE OF THE D(CG)3 AND N-(2-AMINOETHYL)-1,4-DIAMINOBUTANE COMPLEX 5ZWI ; 2.4 ; Interaction between Vitamin D receptor (VDR) and a ligand having a dienone group 5H1E ; 2.6 ; Interaction between vitamin D receptor and coactivator peptide SRC2-3 1LGB ; 3.3 ; INTERACTION OF A LEGUME LECTIN WITH THE N2 FRAGMENT OF HUMAN LACTOTRANSFERRIN OR WITH THE ISOLATED BIANTENNARY GLYCOPEPTIDE: ROLE OF THE FUCOSE MOIETY 1LGC ; 2.8 ; INTERACTION OF A LEGUME LECTIN WITH THE N2 FRAGMENT OF HUMAN LACTOTRANSFERRIN OR WITH THE ISOLATED BIANTENNARY GLYCOPEPTIDE: ROLE OF THE FUCOSE MOIETY 1LOC ; 2.05 ; INTERACTION OF A LEGUME LECTIN WITH TWO COMPONENTS OF THE BACTERIAL CELL WALL 1LOD ; 2.05 ; INTERACTION OF A LEGUME LECTIN WITH TWO COMPONENTS OF THE BACTERIAL CELL WALL 1X1L ; 13.5 ; Interaction of ERA,a GTPase protein, with the 3'minor domain of the 16S rRNA within the THERMUS THERMOPHILUS 30S subunit. 1DE7 ; 2.0 ; INTERACTION OF FACTOR XIII ACTIVATION PEPTIDE WITH ALPHA-THROMBIN: CRYSTAL STRUCTURE OF THE ENZYME-SUBSTRATE COMPLEX 8G8G ; 3.2 ; Interaction of H3 tail in LIN28B nucleosome with Oct4 2M1K ; ; Interaction of Human S100A6 (C3S) with V domain of Receptor for Advanced Glycation End products (RAGE) 2ZJQ ; 3.3 ; Interaction of L7 with L11 induced by Microccocin binding to the Deinococcus radiodurans 50S subunit 2WH8 ; 1.7 ; Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines 2WHF ; 1.58 ; Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines 1CN3 ; 2.2 ; INTERACTION OF POLYOMAVIRUS INTERNAL PROTEIN VP2 WITH MAJOR CAPSID PROTEIN VP1 AND IMPLICATIONS FOR PARTICIPATION OF VP2 IN VIRAL ENTRY 6EST ; 1.8 ; INTERACTION OF THE PEPTIDE CF3-LEU-ALA-NH-C6H4-CF3(TFLA) WITH PORCINE PANCREATIC ELASTASE. X-RAY STUDIES AT 1.8 ANGSTROMS 7EST ; 1.8 ; Interaction of the peptide CF3-LEU-ALA-NH-C6H4-CF3(TFLA) with porcine pancreatic elastase. X-ray studies at 1.8 Angstroms 6G5C ; 1.8 ; Interaction of TiO2 nanoparticles (NM-101) with Lysozyme 3F81 ; 1.9 ; Interaction of VHR with SA3 4H11 ; 1.67 ; Interaction partners of PSD-93 studied by X-ray crystallography and fluorescent polarization spectroscopy 1MNH ; 2.3 ; INTERACTIONS AMONG RESIDUES CD3, E7, E10 AND E11 IN MYOGLOBINS: ATTEMPTS TO SIMULATE THE O2 AND CO BINDING PROPERTIES OF APLYSIA MYOGLOBIN 1MNJ ; 2.2 ; INTERACTIONS AMONG RESIDUES CD3, E7, E10 AND E11 IN MYOGLOBINS: ATTEMPTS TO SIMULATE THE O2 AND CO BINDING PROPERTIES OF APLYSIA MYOGLOBIN 1MNK ; 2.2 ; INTERACTIONS AMONG RESIDUES CD3, E7, E10 AND E11 IN MYOGLOBINS: ATTEMPTS TO SIMULATE THE O2 AND CO BINDING PROPERTIES OF APLYSIA MYOGLOBIN 4V4J ; 3.83 ; Interactions and Dynamics of the Shine-Dalgarno Helix in the 70S Ribosome. 1D11 ; 1.18 ; INTERACTIONS BETWEEN AN ANTHRACYCLINE ANTIBIOTIC AND DNA MOLECULAR STRUCTURE OF DAUNOMYCIN COMPLEXED TO D(CPGPTPAPCPG) AT 1.2-ANGSTROMS RESOLUTION 1DF4 ; 1.45 ; INTERACTIONS BETWEEN HIV-1 GP41 CORE AND DETERGENTS AND THEIR IMPLICATIONS FOR MEMBRANE FUSION 1DF5 ; 2.7 ; INTERACTIONS BETWEEN HIV-1 GP41 CORE AND DETERGENTS AND THEIR IMPLICATIONS FOR MEMBRANE FUSION 2DES ; 1.5 ; INTERACTIONS BETWEEN MORPHOLINYL ANTHRACYCLINES AND DNA: THE CRYSTAL STRUCTURE OF A MORPHOLINO DOXORUBICIN BOUND TO D(CGTACG) 5M9E ; 2.83 ; Interactions between the Mal3 EB1-like domain and Dis1 1IZ2 ; 2.2 ; Interactions causing the kinetic trap in serpin protein folding 1UR8 ; 1.9 ; Interactions of a family 18 chitinase with the designed inhibitor HM508, and its degradation product, chitobiono-delta-lactone 1UR9 ; 1.8 ; Interactions of a family 18 chitinase with the designed inhibitor HM508, and its degradation product, chitobiono-delta-lactone 1TD7 ; 2.5 ; Interactions of a specific non-steroidal anti-inflammatory drug (NSAID) with group I phospholipase A2 (PLA2): Crystal structure of the complex formed between PLA2 and niflumic acid at 2.5 A resolution 3GO3 ; 1.1 ; Interactions of an echinomycin-DNA complex with manganese(II) ions 4E2R ; 1.67 ; Interactions of Ba2+ with a non-self-complementary Z-type DNA duplex 4E4O ; 1.72 ; Interactions of Ba2+ with a non-self-complementary Z-type DNA duplex 4E60 ; 1.86 ; Interactions of Ba2+ with a non-self-complementary Z-type DNA duplex 1AO1 ; ; INTERACTIONS OF DEGLYCOSYLATED COBALT(III)-PEPLEOMYCIN WITH DNA, NMR, MINIMIZED AVERAGE STRUCTURE 1D4U ; ; INTERACTIONS OF HUMAN NUCLEOTIDE EXCISION REPAIR PROTEIN XPA WITH RPA70 AND DNA: CHEMICAL SHIFT MAPPING AND 15N NMR RELAXATION STUDIES 4DWY ; 1.61 ; Interactions of Mn2+ with a non-self-complementary Z-type DNA duplex 4DY8 ; 1.76 ; Interactions of Mn2+ with a non-self-complementary Z-type DNA duplex 1LGR ; 2.79 ; INTERACTIONS OF NUCLEOTIDES WITH FULLY UNADENYLYLATED GLUTAMINE SYNTHETASE FROM SALMONELLA TYPHIMURIUM 2DSV ; 2.54 ; Interactions of protective signalling factor with chitin-like polysaccharide: Crystal structure of the complex between signalling protein from sheep (SPS-40) and a hexasaccharide at 2.5A resolution 1VS2 ; 2.0 ; Interactions of quinoxaline antibiotic and DNA: the molecular structure of a TRIOSTIN A-D(GCGTACGC) complex 294D ; 2.5 ; INTERCALATED CYTOSINE MOTIF AND NOVEL ADENINE CLUSTERS IN THE CRYSTAL STRUCTURE OF TETRAHYMENA TELOMERE 1C11 ; ; INTERCALATED D(TCCCGTTTCCA) DIMER, NMR, 7 STRUCTURES 454D ; 1.2 ; INTERCALATION AND MAJOR GROOVE RECOGNITION IN THE 1.2 A RESOLUTION CRYSTAL STRUCTURE OF RH[ME2TRIEN]PHI BOUND TO 5'-G(5IU)TGCAAC-3' 1G3X ; 2.7 ; INTERCALATION OF AN 9ACRIDINE-PEPTIDE DRUG IN A DNA DODECAMER 6SX3 ; ; Intercalation of heterocyclic ligand between quartets in G-rich tetrahelical structure 3U38 ; 2.13 ; Intercalation of lambda-[Ru(phen)2(dppz)]2+ into d(CCGGTACCGG)2 6GLD ; 1.061 ; Intercalation of [Ru(TAP)2(11-Br-dppz)]2+ bound to d(TCGGCGCCGA)2 1CA5 ; 2.2 ; INTERCALATION SITE OF HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SSO7D/SAC7D BOUND TO DNA 1CA6 ; 2.2 ; INTERCALATION SITE OF HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SSO7D/SAC7D BOUND TO DNA 3LX9 ; 2.04 ; Interconversion of Human Lysosomal Enzyme Specificities 3LXA ; 3.04 ; Interconversion of Human Lysosomal Enzyme Specificities 3LXB ; 2.85 ; Interconversion of Human Lysosomal Enzyme Specificities 3LXC ; 2.35 ; Interconversion of Human Lysosomal Enzyme Specificities 4F5H ; 1.6 ; Intercoversion of Substrate Specificity: E. coli Aspatate Aminotransferase to Tyrosine Aminotransferase: Chimera P3. 3IFQ ; 2.8 ; Interction of plakoglobin and beta-catenin with desmosomal cadherins 5ADH ; 2.9 ; INTERDOMAIN MOTION IN LIVER ALCOHOL DEHYDROGENASE. STRUCTURAL AND ENERGETIC ANALYSIS OF THE HINGE BENDING MODE 8ADH ; 2.4 ; INTERDOMAIN MOTION IN LIVER ALCOHOL DEHYDROGENASE. STRUCTURAL AND ENERGETIC ANALYSIS OF THE HINGE BENDING MODE 2KM8 ; ; Interdomain RRM packing contributes to RNA recognition in the rna15, hrp1, anchor RNA 3' processing ternary complex 7Y0O ; 4.4 ; Interface of SARS-CoV-2 WT Spike in complex with R15 Fab and P14 Nanobody 1LPA ; 3.04 ; INTERFACIAL ACTIVATION OF THE LIPASE-PROCOLIPASE COMPLEX BY MIXED MICELLES REVEALED BY X-RAY CRYSTALLOGRAPHY 1POA ; 1.5 ; INTERFACIAL CATALYSIS: THE MECHANISM OF PHOSPHOLIPASE A2 1ITF ; ; INTERFERON ALPHA-2A, NMR, 24 STRUCTURES 6E3K ; 3.25 ; Interferon gamma signalling complex with IFNGR1 and IFNGR2 6E3L ; 3.8 ; Interferon gamma signalling complex with IFNGR1 and IFNGR2 1IF1 ; 3.0 ; INTERFERON REGULATORY FACTOR 1 (IRF-1) COMPLEX WITH DNA 1IRG ; ; INTERFERON REGULATORY FACTOR-2 DNA BINDING DOMAIN, NMR, 20 STRUCTURES 1IRF ; ; INTERFERON REGULATORY FACTOR-2 DNA BINDING DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 7E58 ; 2.6 ; interferon-inducible anti-viral protein 2 7E5A ; 2.5 ; interferon-inducible anti-viral protein R356A 7E59 ; 3.0 ; interferon-inducible anti-viral protein truncated 3HHC ; 2.8 ; Interferon-lambda is functionally an interferon but structurally related to the IL-10 family 1T4Q ; 2.1 ; Interleukin 1 beta F101W 1TWE ; 2.1 ; INTERLEUKIN 1 BETA MUTANT F101Y 1S0L ; 2.34 ; Interleukin 1 beta mutant F42W 6WDP ; 2.01 ; Interleukin 12 receptor subunit beta-1 8C7M ; 2.56 ; Interleukin 12 receptor subunit beta-1 Fn domains in complex with antagonistic FAb fragment. 8ODX ; 4.4 ; Interleukin 12 receptor subunit beta-1 Fn domains in complex with antagonistic FAb4 fragment and VHH. 1TOO ; 2.1 ; Interleukin 1B Mutant F146W 4NZD ; 2.75 ; Interleukin 21 receptor 21BI ; 2.0 ; INTERLEUKIN-1 BETA (IL-1 BETA) (MUTANT WITH CYS 71 REPLACED BY ALA) (C71A) 31BI ; 2.0 ; INTERLEUKIN-1 BETA (IL-1 BETA) (MUTANT WITH CYS 71 REPLACED BY SER) (C71S) 41BI ; 2.9 ; INTERLEUKIN-1 BETA (IL-1 BETA) (MUTANT WITH CYS 8 REPLACED BY ALA (C8A) 1IOB ; 2.0 ; INTERLEUKIN-1 BETA FROM JOINT X-RAY AND NMR REFINEMENT 1TWM ; 2.26 ; Interleukin-1 Beta Mutant F146Y 3POK ; 1.7 ; Interleukin-1-beta LBT L3 Mutant 1ILK ; 1.8 ; INTERLEUKIN-10 CRYSTAL STRUCTURE REVEALS THE FUNCTIONAL DIMER WITH AN UNEXPECTED TOPOLOGICAL SIMILARITY TO INTERFERON GAMMA 6X93 ; 3.5 ; Interleukin-10 signaling complex with IL-10RA and IL-10RB 7M2G ; 1.79 ; INTERLEUKIN-2 (human) mutant P65K, C125S 3QB1 ; 3.1 ; Interleukin-2 mutant D10 8ENT ; 2.83 ; Interleukin-21 signaling complex with IL-21R and IL-2Rg 5MJ3 ; 1.74 ; INTERLEUKIN-23 COMPLEX WITH AN ANTAGONISTIC ALPHABODY, CRYSTAL FORM 1 5MJ4 ; 3.4 ; INTERLEUKIN-23 COMPLEX WITH AN ANTAGONISTIC ALPHABODY, CRYSTAL FORM 2 5UV8 ; 2.7 ; Interleukin-3 Receptor Complex 6NCU ; 3.5 ; Interleukin-37 residues 53-206- dimer 8CGF ; ; Interleukin-4 (wild type) pH 2.4 1HIK ; 2.6 ; INTERLEUKIN-4 (WILD-TYPE) 1IAR ; 2.3 ; INTERLEUKIN-4 / RECEPTOR ALPHA CHAIN COMPLEX 1HZI ; 2.05 ; INTERLEUKIN-4 MUTANT E9A 3QB7 ; 3.245 ; Interleukin-4 mutant RGA bound to cytokine receptor common gamma 1HIJ ; 3.0 ; INTERLEUKIN-4 MUTANT WITH ARG 88 REPLACED WITH GLN (R88Q) 1QE6 ; 2.35 ; INTERLEUKIN-8 WITH AN ADDED DISULFIDE BETWEEN RESIDUES 5 AND 33 (L5C/H33C) 1ICW ; 2.01 ; INTERLEUKIN-8, MUTANT WITH GLU 38 REPLACED BY CYS AND CYS 50 REPLACED BY ALA 3FZN ; 1.62 ; Intermediate analogue in benzoylformate decarboxylase 2WOG ; 2.0 ; Intermediate and final states of human kinesin Eg5 in complex with S-trityl-L-cysteine 7AM2 ; 3.4 ; Intermediate assembly of the Large subunit from Leishmania major mitochondrial ribosome 8PPV ; 3.02 ; Intermediate conformer of Pyrococcus abyssi DNA polymerase D (PolD) bound to a primer/template substrate containing three consecutive mismatches 6UWH ; 2.299 ; Intermediate engineered variant of I-OnuI meganuclease with improved thermostability and partially altered specificity 6UWJ ; 1.852 ; Intermediate engineered variant of I-OnuI meganuclease with improved thermostability and partially altered specificity 1XL4 ; 2.6 ; Intermediate gating structure 1 of the inwardly rectifying K+ channel KirBac3.1 1XL6 ; 2.85 ; Intermediate gating structure 2 of the inwardly rectifying K+ channel KirBac3.1 5TDV ; 2.001 ; Intermediate O2 diiron complex in the Q228A variant of Toluene 4-moonoxygenase (T4moHD) 7DZF ; 1.7 ; Intermediate of FABP with a delay time of 10 ns 7DZH ; 1.65 ; intermediate of FABP with a delay time of 100 ns 7DZG ; 1.6 ; Intermediate of FABP with a delay time of 30 ns 7DZI ; 1.65 ; intermediate of FABP with a delay time of 300 ns 2RKW ; 2.81 ; Intermediate position of ATP on its trail to the binding pocket inside the subunit B mutant R416W of the energy converter A1Ao ATP synthase 3B2Q ; 2.1 ; Intermediate position of ATP on its trail to the binding pocket inside the subunit B mutant R416W of the energy converter A1Ao ATP synthase 8DQK ; 4.0 ; Intermediate resolution structure of barley (1,3;1,4)-beta-glucan synthase CslF6. 7KZI ; 2.82 ; Intermediate state (QQQ) of near full-length DnaK alternatively fused with a substrate peptide 5J2W ; ; Intermediate state lying on the pathway of release of Tat from HIV-1 TAR. 7DGE ; 3.65 ; intermediate state of class C GPCR 4A5Y ; 2.45 ; Intermediate state of human kinesin Eg5 in complex with Ispinesib 8DQZ ; 2.92 ; Intermediate state of RFC:PCNA bound to a 3' ss/dsDNA junction 3EVJ ; 3.0 ; Intermediate structure of antithrombin bound to the natural pentasaccharide 5HBC ; 2.79 ; Intermediate structure of iron-saturated C-lobe of bovine lactoferrin at 2.79 Angstrom resolution indicates the softening of iron coordination 1ZRN ; 1.83 ; INTERMEDIATE STRUCTURE OF L-2-HALOACID DEHALOGENASE WITH MONOCHLOROACETATE 7OSM ; 3.0 ; Intermediate translocation complex of 80 S.cerevisiae ribosome with eEF2 and ligands 7S64 ; 6.43 ; Intermediate-form oocyte/egg Alpha-2-Macroglobulin (A2Moo) tetramer 2LYW ; ; Intermolecular interactions between neurotensin and the third extracellular loop of human neurotensin 1 receptor 4H10 ; 2.402 ; Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic Helix-Loop-Helix domains with E-box DNA 4OGQ ; 2.501 ; Internal Lipid Architecture of the Hetero-Oligomeric Cytochrome b6f Complex 1E5B ; ; Internal xylan binding domain from C. fimi Xyn10A, R262G mutant 1E5C ; ; Internal xylan binding domain from C. fimi Xyn10A, R262G mutant 1XBD ; ; INTERNAL XYLAN BINDING DOMAIN FROM CELLULOMONAS FIMI XYLANASE D, NMR, 5 STRUCTURES 2XBD ; ; INTERNAL XYLAN BINDING DOMAIN FROM CELLULOMONAS FIMI XYLANASE D, NMR, MINIMIZED AVERAGE STRUCTURE 1O6T ; 1.6 ; Internalin (INLA, Listeria monocytogenes) - functional domain, uncomplexed 1O6V ; 1.5 ; Internalin (INLA, Listeria monocytogenes) - functional domain, uncomplexed 1O6S ; 1.8 ; Internalin (Listeria monocytogenes) / E-Cadherin (human) Recognition Complex 1D0B ; 1.86 ; INTERNALIN B LEUCINE RICH REPEAT DOMAIN 1H6T ; 1.6 ; Internalin B: crystal structure of fused N-terminal domains. 2WQV ; 2.8 ; Internalin domain of Listeria monocytogenes InlB: rhombohedral crystal form 2WQU ; 2.6 ; Internalin domain of Listeria monocytogenes InlB: triclinic crystal form 1H6U ; 1.8 ; Internalin H: crystal structure of fused N-terminal domains. 7JTI ; 7.4 ; Interphotoreceptor retinoid-binding protein (IRBP) in complex with a monoclonal antibody (F3F5 mAb5) 2RRM ; ; Interplay between phosphatidyl-inositol-phosphates and claudins upon binding to the 1st PDZ domain of zonula occludens 1 3HR3 ; 1.75 ; Interplay of Structure, Hydration and Thermal Stability in Formacetal Modified Oligonucleotides: RNA May Tolerate Hydrophobic Modifications Better than DNA 4CE9 ; 2.1 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEA ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEB ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEC ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CED ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEE ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEF ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEO ; 1.9 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEQ ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CER ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CES ; 1.85 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CEZ ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CF0 ; 1.85 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CF1 ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CF2 ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CF8 ; 1.65 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CF9 ; 2.1 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CFA ; 2.05 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CFB ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CFC ; 1.9 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CFD ; 2.15 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGD ; 2.0 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGF ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGG ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGH ; 1.76 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGI ; 2.07 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CGJ ; 2.15 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHN ; 2.0 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHO ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHP ; 1.9 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHQ ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHY ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CHZ ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CIE ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CIF ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CIG ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJ3 ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJ4 ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJ5 ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJE ; 1.9 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJF ; 1.9 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJK ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJL ; 1.77 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJP ; 2.0 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJQ ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJR ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJS ; 1.8 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJT ; 1.71 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJU ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJV ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CJW ; 1.95 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CK1 ; 1.75 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CK2 ; 1.85 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4CK3 ; 1.79 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 4OVL ; 1.7 ; Interrogating HIV integrase for compounds that bind- a SAMPL challenge 2GDS ; 2.3 ; Interrupting the Hydrogen Bonding Network at the Active Site of Human Manganese Superoxide Dismutase 3HS8 ; 1.9 ; Intersectin 1-peptide-AP2 alpha ear complex 3HS9 ; 2.15 ; Intersectin 1-peptide-AP2 beta ear complex 6H5T ; 1.689 ; Intersectin SH3A short isoform 1XZ4 ; 2.0 ; Intersubunit Interactions Associated with Tyr42alpha Stabilize the Quaternary-T Tetramer but are not Major Quaternary Constraints in Deoxyhemoglobin: alphaY42A deoxyhemoglobin no-salt 7A3B ; 1.91 ; Intertwined dimer of the c-Src SH3 domain mutant E106D 7A30 ; 1.67 ; Intertwined dimer of the c-Src SH3 domain mutant Q128E 7A3D ; 2.2 ; Intertwined dimer of the c-Src SH3 domain mutant T125S 7A3E ; 1.52 ; Intertwined dimer of the c-Src SH3 domain mutant T126S 7A34 ; 1.85 ; Intertwined dimer of the c-Src SH3 domain mutant V111L-N113S-T114S 7A3A ; 1.8 ; Intertwined dimer of the c-Src SH3 domain mutant V111L-N113S-T114S-Q128E at pH 6.0 6UTC ; 1.249 ; Intra-chain disulfide bonded ToxR periplasmic domain from Vibrio vulnificus 5AMT ; 1.62 ; Intracellular growth locus protein E 8PZY ; 1.97 ; Intracellular leucine aminopeptidase of Pseudomonas aeruginosa PA14 - hexameric assembly with manganese bound 8PZM ; 1.7 ; Intracellular leucine aminopeptidase of Pseudomonas aeruginosa PA14 bound to bestatin inhibitor and manganese 8PZ0 ; 1.8 ; Intracellular leucine aminopeptidase of Pseudomonas aeruginosa PA14. 1MRU ; 3.0 ; Intracellular Ser/Thr protein kinase domain of Mycobacterium tuberculosis PknB. 7Y6M ; 2.703 ; Intracellular Subtilisin from Bacillus sp. 2WV7 ; 2.45 ; Intracellular subtilisin precursor from B. clausii 2WWT ; 2.68 ; Intracellular subtilisin precursor from B. clausii 2X8J ; 1.56 ; Intracellular subtilisin precursor from B. clausii 5VG2 ; 2.46 ; Intradiol ring-cleavage Dioxygenase from Tetranychus urticae 2YC2 ; 2.588 ; Intraflagellar Transport Complex 25-27 from Chlamydomonas 2YC4 ; 2.8 ; Intraflagellar Transport Complex 25-27 from Chlamydomonas 8DDC ; ; Intramembrane recognition between transmembrane domains of IL-7R and common gamma chain 8DDD ; ; Intramembrane recognition between transmembrane domains of IL-9R and common gamma chain 3GW6 ; 2.6 ; Intramolecular Chaperone 1AO9 ; ; INTRAMOLECULAR DNA DUPLEX CONTAINING A NON-NUCLEOTIDE LINKER (GAGAGA-X-TCTCCT), NMR, 12 STRUCTURES 1AT4 ; ; INTRAMOLECULAR DNA TRIPLEX CONTAINING A NON-NUCLEOTIDE LINKER (GAGAGA-X-TCTCCT-X-CTCTCT), NMR, 7 STRUCTURES 1P3X ; ; INTRAMOLECULAR DNA TRIPLEX WITH 1-PROPYNYL DEOXYURIDINE IN THE THIRD STRAND, NMR, 10 STRUCTURES 1R3X ; ; INTRAMOLECULAR DNA TRIPLEX WITH RNA THIRD STRAND, NMR, 10 STRUCTURES 1D3X ; ; INTRAMOLECULAR DNA TRIPLEX, NMR, 10 STRUCTURES 8DJ2 ; 1.5 ; Intramolecular ester bond-containing repeat domain from Chlamydia trachomatis adhesin 7UI8 ; 2.373 ; Intramolecular ester bond-containing repeat domain from E. columbae adhesin (split and religated) 7UC3 ; 1.442 ; Intramolecular ester bond-containing repeat domain from G. bergeri adhesin 1OZ8 ; ; Intramolecular higher-order packing of parallel quadruplexes comprising a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad of GGA triplet repeat DNA 1A83 ; ; INTRAMOLECULAR I-MOTIF, NMR, 6 STRUCTURES 1AWJ ; ; INTRAMOLECULAR ITK-PROLINE COMPLEX, NMR, MINIMIZED AVERAGE STRUCTURE 1FQP ; ; INTRAMOLECULAR QUADRUPLEX DNA WITH THREE GGGG REPEATS, NMR, PH 6.7, 0.1 M NA+ AND 4 MM (STRAND CONCENTRATION), 5 STRUCTURES 2LF7 ; ; Intramolecular regulation of the ETS Domain within ETV6 sequence R335 to Q436 2LF8 ; ; Intramolecular regulation of the ETS Domain within ETV6 sequence R335 to R458 1BCB ; ; INTRAMOLECULAR TRIPLEX, NMR, 10 STRUCTURES 1BCE ; ; INTRAMOLECULAR TRIPLEX, NMR, 10 STRUCTURES 5CXO ; 1.8 ; Intriguing role of epoxide hydrolase/cyclase-like enzyme SalBIII in pyran ring formation in polyether salinomycin 1IKK ; 1.6 ; Intrinsic Bending and Deformability at the T-A step of CCTTTAAAGG: A Comparative Analysis of T-A and A-T steps within A-tracts 6XRY ; ; Intrinsically disordered bacterial polar organizing protein Z, PopZ, interacts with protein binding partners through an N-terminal Molecular Recognition Feature 3MN0 ; 1.65 ; Introducing a 2-His-1-Glu Non-Heme Iron Center into Myoglobin confers Nitric Oxide Reductase activity: Cu(II)-CN-FeBMb(-His) form 6H3K ; 2.48 ; Introduction of a methyl group curbs metabolism of pyrido[3,4-d]pyrimidine MPS1 inhibitors and enables the discovery of the Phase 1 clinical candidate BOS172722. 1AEV ; 2.1 ; INTRODUCTION OF NOVEL SUBSTRATE OXIDATION INTO CYTOCHROME C PEROXIDASE BY CAVITY COMPLEMENTATION: OXIDATION OF 2-AMINOTHIAZOLE AND COVALENT MODIFICATION OF THE ENZYME (2-AMINOTHIAZOLE) 1CYQ ; 1.93 ; INTRON ENCODED HOMING ENDONUCLEASE I-PPOI (H98A)/DNA HOMING SITE COMPLEX 1CZ0 ; 2.1 ; INTRON ENCODED HOMING ENDONUCLEASE I-PPOI/DNA COMPLEX LACKING CATALYTIC METAL ION 1A73 ; 1.8 ; INTRON-ENCODED ENDONUCLEASE I-PPOI COMPLEXED WITH DNA 6WLG ; 3.111 ; Ints3 C-terminal Domain 7BV7 ; 2.4 ; INTS3 complexed with INTS6 7BJ5 ; 2.75 ; Inulosucrase from Halalkalicoccus jeotgali 7BJ4 ; 2.72 ; Inulosucrase from Halalkalicoccus jeotgali bound to kestose 7BJC ; 3.11 ; Inulosucrase from Halalkalicoccus jeotgali in complex with sucrose 2J7J ; 1.65 ; Invariance of the zinc finger module: a comparison of the free structure with those in nucleic-acid complexes 4HP2 ; 0.64 ; Invariom refinement of a new dimeric monoclinic 2 solvate of thiostrepton at 0.64 angstrom resolution 4KOB ; 1.867 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V31I/V95I) 4KOC ; 1.459 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V31I/V95I/Y108F) 4KO6 ; 1.738 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V31I/V95K/Y108F) 4KO7 ; 2.07 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V31I/W48F/V95I) 4KO5 ; 1.79 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V31I/W48L/V95I/Y108F) 4KO9 ; 2.054 ; Investigating the functional significance of the interlocked pair structural determinants in Pseudomonas aeruginosa azurin (V95I/Y108F) 1HEY ; 2.24 ; INVESTIGATING THE STRUCTURAL DETERMINANTS OF THE P21-LIKE TRIPHOSPHATE AND MG2+ BINDING SITE 3HC8 ; 1.79 ; Investigation of Aminopyridiopyrazinones as PDE5 Inhibitors: Evaluation of Modifications to the Central Ring System. 3MOC ; 1.82 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Eighth stage of radiation damage 3MO3 ; 1.805 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Fifth stage of radiation damage 3MNB ; 1.198 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. First stage of radiation damage 3MNX ; 1.386 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Fourth stage of radiation damage 3MNC ; 1.119 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Second stage of radiation damage 3MO9 ; 2.003 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Seventh stage of radiation damage 3MO6 ; 1.66 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Sixth stage of radiation damage 3MNS ; 1.497 ; Investigation of global and local effects of radiation damage on porcine pancreatic elastase. Third stage of radiation damage 5CW0 ; 4.6 ; Investigation of RNA structure in satellite panicum mosaic virus 5CVZ ; 3.3 ; Investigation of RNA structure in satellite panicum mosaic virus - glutaraldehyde treated 2DRC ; 1.9 ; INVESTIGATION OF THE FUNCTIONAL ROLE OF TRYPTOPHAN-22 IN ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE BY SITE-DIRECTED MUTAGENESIS 3DRC ; 1.9 ; INVESTIGATION OF THE FUNCTIONAL ROLE OF TRYPTOPHAN-22 IN ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE BY SITE-DIRECTED MUTAGENESIS 1L0C ; 2.3 ; Investigation of the Roles of Catalytic Residues in Serotonin N-Acetyltransferase 1COR ; ; INVESTIGATION OF THE SOLUTION CONFORMATION OF CYTOCHROME C-551 FROM PSEUDOMONAS STUTZERI 6PEE ; 3.42 ; InvG secretin domain beta-barrel from Salmonella SPI-1 injectisome NC-base 1GYL ; 3.0 ; INVOLVEMENT OF TYR24 AND TRP108 IN SUBSTRATE BINDING AND SUBSTRATE SPECIFICITY OF GLYCOLATE OXIDASE 2X79 ; 3.8 ; Inward facing conformation of Mhp1 7MC0 ; 3.3 ; Inward facing conformation of the MetNI methionine ABC transporter 4C7R ; 2.7 ; Inward facing conformation of the trimeric betaine transporter BetP in complex with lipids 3TUI ; 2.9 ; Inward facing conformations of the MetNI methionine ABC transporter: CY5 native crystal form 3TUZ ; 3.4 ; Inward facing conformations of the MetNI methionine ABC transporter: CY5 SeMet soak crystal form 3TUJ ; 4.0 ; Inward facing conformations of the MetNI methionine ABC transporter: DM crystal form 4JA4 ; 4.2 ; Inward open conformation of the xylose transporter XylE from E. coli 5MMT ; 3.4 ; Inward open PepTSt from Streptococcus thermophilus crystallized in space group P3121 3SPH ; 3.003 ; Inward rectifier potassium channel Kir2.2 I223L mutant in complex with PIP2 3SPC ; 2.454 ; Inward rectifier potassium channel Kir2.2 in complex with dioctanoylglycerol pyrophosphate (DGPP) 3SPI ; 3.307 ; Inward rectifier potassium channel Kir2.2 in complex with PIP2 3SPG ; 2.613 ; Inward rectifier potassium channel Kir2.2 R186A mutant in complex with PIP2 6X12 ; 3.52 ; Inward-facing Apo-open state of the glutamate transporter homologue GltPh 6FHZ ; 2.8 ; Inward-facing conformation of a multidrug resistance MATE family transporter of the MOP superfamily. 5B57 ; 2.8 ; Inward-facing conformation of ABC heme importer BhuUV from Burkholderia cenocepacia 5B58 ; 3.21 ; Inward-facing conformation of ABC heme importer BhuUV in complex with periplasmic heme binding protein BhuT from Burkholderia cenocepacia 5ZOV ; 3.333 ; Inward-facing conformation of L-ascorbate transporter UlaA 8QOE ; 3.16 ; Inward-facing conformation of the ABC transporter BmrA 8CHB ; 3.14 ; Inward-facing conformation of the ABC transporter BmrA C436S/A582C cross-linked mutant 3J1Z ; 13.0 ; Inward-Facing Conformation of the Zinc Transporter YiiP revealed by Cryo-electron Microscopy 8SX9 ; 3.3 ; Inward-facing narrow conformation of bovine multidrug resistance protein 4 (MRP4) in MSP lipid nanodisc 7QPC ; 3.44 ; Inward-facing NPA bound form of auxin transporter PIN8 6X13 ; 3.66 ; Inward-facing sodium-bound state of the glutamate transporter homologue GltPh 6X15 ; 3.05 ; Inward-facing state of the glutamate transporter homologue GltPh in complex with L-aspartate and sodium ions 6X16 ; 3.39 ; Inward-facing state of the glutamate transporter homologue GltPh in complex with TBOA 6X14 ; 3.71 ; Inward-facing state of the glutamate transporter homologue GltPh in complex with TFB-TBOA 7VR8 ; 3.58 ; Inward-facing structure of human EAAT2 in the substrate-free state 7VR7 ; 3.49 ; Inward-facing structure of human EAAT2 in the WAY213613-bound state 8SXA ; 3.3 ; Inward-facing wide conformation of bovine multidrug resistance protein 4 (MRP4) in MSP lipid nanodisc 6ZBV ; 3.4 ; Inward-open structure of human glycine transporter 1 in complex with a benzoylisoindoline inhibitor and sybody Sb_GlyT1#7 6ZPL ; 3.945 ; Inward-open structure of human glycine transporter 1 in complex with a benzoylisoindoline inhibitor, sybody Sb_GlyT1#7 and bound Na and Cl ions. 6RVY ; 4.13 ; Inward-open structure of the ASCT2 (SLC1A5) mutant C467R in absence of substrate 6RVX ; 3.61 ; Inward-open structure of the ASCT2 (SLC1A5) mutant C467R in presence of TBOA 3B2I ; 1.86 ; Iodide derivative of human LFABP 3B2J ; 2.0 ; Iodide derivative of human LFABP 3B2K ; 1.73 ; Iodide derivative of human LFABP 3B2L ; 2.25 ; Iodide derivative of human LFABP 3VG2 ; 2.4 ; Iodide derivative of human LFABP 3B2H ; 1.55 ; Iodide derivative of human LFABP at high resolution 4HJH ; 2.1 ; Iodide SAD phased crystal structure of a phosphoglucomutase from Brucella melitensis complexed with glucose-6-phosphate 6I1Q ; 1.99 ; Iodide structure of Trichoderma reesei Carbohydrate-Active Enzymes Family AA12 2AXE ; 1.8 ; IODINATED COMPLEX OF ACETYL XYLAN ESTERASE AT 1.80 ANGSTROMS 5N1C ; 2.6 ; Iodinated form of the Mycobacterium tuberculosis repressor EthR2 1VAT ; 1.6 ; Iodine derivative of hen egg-white lysozyme 2YAX ; 1.8 ; IODOACETAMIDE INHIBITED SULFUR OXYGENASE REDUCTASE 3DN4 ; 1.8 ; Iodobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 3DNA ; 1.7 ; Iodobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant (seleno version) 3DN3 ; 1.8 ; Iodopentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 3DN8 ; 1.7 ; Iodopentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant (seleno version) 3T96 ; 1.872 ; Iodowillardiine bound to a double cysteine mutant (A452C/S652C) of the ligand binding domain of GluA2 7U04 ; 2.31 ; IOMA class antibody ACS101 7U0K ; 1.73 ; IOMA class antibody Fab ACS124 8HKF ; 2.66 ; ion channel 8HKK ; 2.84 ; ion channel 8HKM ; 2.95 ; ion channel 8HKQ ; 2.9 ; ion channel 5XA6 ; ; Ion channel modulation by scorpion haemolymph and its defensin ingredients uncovers origin of neurotoxins in telson formed in Paleozoic scorpion 2IH1 ; 2.4 ; Ion selectivity in a semi-synthetic K+ channel locked in the conductive conformation 2IH3 ; 1.72 ; Ion selectivity in a semi-synthetic K+ channel locked in the conductive conformation 4LSH ; 2.2 ; Ion selectivity of OmpF porin soaked in 0.2M KBr 4LSE ; 2.1 ; Ion selectivity of OmpF porin soaked in 0.2M NaBr 4LSI ; 2.089 ; Ion selectivity of OmpF porin soaked in 0.3M KBr 4LSF ; 1.9 ; Ion selectivity of OmpF soaked in 0.1M KBr 1PAL ; 1.65 ; IONIC INTERACTIONS WITH PARVALBUMINS. CRYSTAL STRUCTURE DETERMINATION OF PIKE 4.10 PARVALBUMIN IN FOUR DIFFERENT IONIC ENVIRONMENTS 2PAL ; 1.8 ; IONIC INTERACTIONS WITH PARVALBUMINS. CRYSTAL STRUCTURE DETERMINATION OF PIKE 4.10 PARVALBUMIN IN FOUR DIFFERENT IONIC ENVIRONMENTS 3PAL ; 2.4 ; IONIC INTERACTIONS WITH PARVALBUMINS. CRYSTAL STRUCTURE DETERMINATION OF PIKE 4.10 PARVALBUMIN IN FOUR DIFFERENT IONIC ENVIRONMENTS 4PAL ; 1.8 ; IONIC INTERACTIONS WITH PARVALBUMINS. CRYSTAL STRUCTURE DETERMINATION OF PIKE 4.10 PARVALBUMIN IN FOUR DIFFERENT IONIC ENVIRONMENTS 1KTW ; 2.0 ; IOTA-CARRAGEENASE COMPLEXED TO IOTA-CARRAGEENAN FRAGMENTS 7T3P ; 3.2 ; IP3 and ATP bound type 3 IP3 receptor in the pre-active A state 7T3Q ; 3.3 ; IP3 and ATP bound type 3 IP3 receptor in the pre-active B state 7T3R ; 3.4 ; IP3 and ATP bound type 3 IP3 receptor in the pre-active C state 7T3T ; 3.8 ; IP3, ATP, and Ca2+ bound type 3 IP3 receptor in the active state 7T3U ; 3.7 ; IP3, ATP, and Ca2+ bound type 3 IP3 receptor in the inactive state 7JWZ ; 2.65 ; IPI-549 bound to the PI3Kg catalytic subunit p110 gamma 8BBB ; 1.57 ; IPNS H270A variant in complex with ACV exposed to O2 8BBC ; 1.71 ; IPNS H270A variant in complex with Fe and ACV under anaerobic conditions 8BSX ; 1.38 ; IPNS H270D variant in complex with Fe and ACV after 10 min O2 exposure 8BSY ; 1.4 ; IPNS H270D variant in complex with Fe and ACV after 30s O2 exposure 8BSV ; 1.53 ; IPNS H270D variant in complex with Fe and ACV under anaerobic conditions 8A4G ; 1.97 ; IPNS H270E variant in complex with Cd and ACV 8ALJ ; 1.68 ; IPNS H270E variant in complex with Fe and ACV after 3 hours O2 exposure 8ALI ; 1.6 ; IPNS H270E variant in complex with Fe and ACV after 30 min O2 exposure 7ZOE ; 1.5 ; IPNS H270E variant in complex with Fe and ACV under anaerobic conditions 8BB9 ; 1.68 ; IPNS H270N variant in complex with Fe and ACV after O2 exposure 8BBA ; 1.5 ; IPNS H270N variant in complex with Fe and ACV under anaerobic conditions 8BBD ; 1.81 ; IPNS H270Q variant in complex with ACV after O2 exposure 8BSW ; 1.58 ; IPNS H270Q variant in complex with Fe and ACV under anaerobic conditions 1X84 ; 1.78 ; IPP isomerase (wt) reacted with (S)-bromohydrine of IPP 1P0K ; 1.9 ; IPP:DMAPP isomerase type II apo structure 1P0N ; 2.8 ; IPP:DMAPP isomerase type II, FMN complex 4AKA ; ; IPSE alpha-1, an IgE-binding crystallin 5L0O ; 2.36 ; IQGAP1 calponin homology domain fragment (CHDF) mutant K161C under oxidizing conditions 6OD1 ; 2.0 ; IraD-bound to RssB D58P variant 3CGF ; 3.0 ; IRAK-4 Inhibitors (Part II)- A structure based assessment of imidazo[1,2 a]pyridine binding 3CGO ; 3.0 ; IRAK-4 Inhibitors (Part II)- A structure based assessment of imidazo[1,2 a]pyridine binding 6N8G ; 2.0 ; IRAK4 bound to benzoxazole compound 6EGA ; 2.512 ; IRAK4 in complex with a type II inhibitor 5K7G ; 2.23 ; IRAK4 in complex with AZ3862 5K7I ; 2.31 ; IRAK4 in complex with AZ3864 8DKS ; 2.45 ; IRAK4 IN COMPLEX WITH COMPOUND #3 5K75 ; 2.03 ; IRAK4 in complex with Compound 1 5K72 ; 2.22 ; IRAK4 in complex with Compound 21 5K76 ; 2.74 ; IRAK4 in complex with Compound 28 6F3D ; 2.38 ; IRAK4 IN COMPLEX WITH inhibitor 6F3E ; 2.67 ; IRAK4 IN COMPLEX WITH inhibitor 6F3G ; 2.37 ; IRAK4 IN COMPLEX WITH inhibitor 6F3I ; 2.14 ; IRAK4 IN COMPLEX WITH inhibitor 6LXY ; 2.19 ; IRAK4 in complex with inhibitor 6RFI ; 2.31 ; IRAK4 IN COMPLEX WITH inhibitor 6RFJ ; 2.61 ; IRAK4 IN COMPLEX WITH inhibitor 6THW ; 2.44 ; IRAK4 in complex with inhibitor 6THX ; 1.99 ; IRAK4 in complex with inhibitor 6THZ ; 2.38 ; IRAK4 IN COMPLEX WITH inhibitor 6TI8 ; 2.32 ; IRAK4 IN COMPLEX WITH inhibitor 6TIA ; 2.52 ; IRAK4 IN COMPLEX WITH inhibitor 7QG1 ; 2.07 ; IRAK4 in complex with inhibitor 7QG2 ; 3.031 ; IRAK4 in complex with inhibitor 7QG3 ; 2.11 ; IRAK4 in complex with inhibitor 7QG5 ; 2.3 ; IRAK4 in complex with inhibitor 6EG9 ; 2.414 ; IRAK4 in complex with Ponatinib 5T1S ; 2.3 ; Irak4 kinase - compound 1 co-structure 5T1T ; 2.34 ; Irak4 kinase - compound 1 co-structure 4XS2 ; 2.73 ; Irak4-inhibitor co-structure 4YO6 ; 2.32 ; Irak4-inhibitor co-structure 4YP8 ; 2.641 ; Irak4-inhibitor co-structure 4ZTL ; 2.39 ; Irak4-inhibitor co-structure 4ZTM ; 2.66 ; Irak4-inhibitor co-structure 4ZTN ; 2.23 ; Irak4-inhibitor co-structure 5KX7 ; 2.8 ; Irak4-inhibitor co-structure 5KX8 ; 2.671 ; Irak4-inhibitor co-structure 6HX1 ; 2.14 ; IRE1 ALPHA IN COMPLEX WITH imidazo[1,2-b]pyridazin-8-amine compound 2 3LJ0 ; 3.2 ; IRE1 complexed with ADP and Quercetin 3LJ1 ; 3.33 ; IRE1 complexed with Cdk1/2 Inhibitor III 3LJ2 ; 3.33 ; IRE1 complexed with JAK Inhibitor I 6HV0 ; 2.73 ; IRE1 kinase/RNase in complex with imidazo[1,2-b]pyridazin-8-amine compound 33 7OG3 ; 1.904 ; IRED-88 7OSN ; 2.55 ; IRED361 from Micromonospora sp. in complex with NADP+ 4XEJ ; 3.8 ; IRES bound to bacterial Ribosome 6XB7 ; ; IRES-targeting Small Molecule Inhibits Enterovirus 71 Replication via Allosteric Stabilization of a Ternary Complex 7JM4 ; 2.95 ; IRF Transcription Factor 1ZOQ ; 2.37 ; IRF3-CBP complex 8JKL ; 2.94 ; IRF4 DNA-binding domain bound to an DNA containing GATA motif 6TD4 ; 1.71 ; IRF4 DNA-binding domain surface entropy mutant apo structure 7RH2 ; 2.47 ; IRF4 Transcription factor mutant -K59R 5DCW ; 1.9 ; Iridoid synthase from Catharanthus roseus - ligand free structure 5DF1 ; 1.75 ; Iridoid synthase from Catharanthus roseus - ternary complex with NADP+ and geranic acid 5DCU ; 1.4 ; Iridoid synthase from Catharanthus roseus - ternary complex with NADP+ and triethylene glycol carboxylic acid 5DCY ; 1.45 ; Iridoid synthase G150A mutant from Catharanthus roseus - binary complex with NADP+ 2VVH ; 1.8 ; IrisFP fluorescent protein in its green form, cis conformation 2VVI ; 2.0 ; IrisFP fluorescent protein in its green form, trans conformation 2VVJ ; 2.0 ; IrisFP fluorescent protein in its red form, cis conformation 3TMT ; 2.0 ; IrisFP, distorted chromophore 3TMR ; 2.0 ; IrisFP, planar chromophore 7DE2 ; 1.9 ; iron and alpha-ketoglutarate-dependent endoperoxidase NvfI 7EMZ ; 2.3 ; iron and alpha-ketoglutarate-dependent endoperoxidase NvfI W199F variant 7ENB ; 2.3 ; iron and alpha-ketoglutarate-dependent endoperoxidase NvfI with different conformation 5I0V ; 1.65 ; IRON AND COPPER-BOUND P19 FROM CAMPYLOBACTER JEJUNI UNDER OXIDIZING CONDITIONS 5I0W ; 1.55 ; IRON AND COPPER-BOUND P19 FROM CAMPYLOBACTER JEJUNI UNDER REDUCING CONDITIONS 4JPY ; 2.13 ; Iron and phenylalanine bound crystal structure of phenylalanine hydroxylase from Chromobacterium violaceum 5FNN ; 2.09 ; Iron and Selenomethionine containing Iron sulfur cluster repair protein YtfE 6MSX ; 1.43 ; Iron containing ferritin at 1.43A 1B1B ; 2.6 ; IRON DEPENDENT REGULATOR 5FDB ; 1.75 ; Iron free rat cysteine dioxygenase R60QC164R variant 4YNI ; 2.404 ; Iron free succinate bound rat cysteine dioxygenase 4YT4 ; 2.2 ; Iron guanylylpyridinol (FeGP) cofactor-reconstituted HmdII from Methanocaldococcus jannaschii 3RGD ; 2.89 ; Iron loaded frog M ferritin. Short soaking time 8OIE ; 2.35 ; Iron Nitrogenase Complex from Rhodobacter capsulatus 3E13 ; 1.6 ; Iron reconstituted ferric binding protein from Campylobacter jejuni 1AQO ; ; IRON RESPONSIVE ELEMENT RNA HAIRPIN, NMR, 15 STRUCTURES 1NBR ; ; Iron Responsive Element RNA Hairpin, NMR, 15 Structures 6GKB ; 1.9 ; Iron soak structure of Y40F SynFtn 1BFR ; 2.94 ; IRON STORAGE AND ELECTRON TRANSPORT 1WB8 ; 2.3 ; Iron Superoxide Dismutase (FE-SOD) from the Hyperthermophile SULFOLOBUS SOLFATARICUS. 2.3 A Resolution Structure of Recombinant Protein with a Covalently Modified Tyrosine in the Active Site. 1WB7 ; 2.24 ; Iron Superoxide Dismutase (Fe-SOD) From The Hyperthermophile Sulfolobus Solfataricus. Crystal Structure of the Y41F mutant. 6DYK ; 1.955 ; Iron- and Nitric Oxide-bound structure of the engineered cyt b562 variant, CH3Y* 2BW1 ; 1.81 ; Iron-bound crystal structure of Dps-like peroxide resistance protein (Dpr) from Streptococcus suis. 2WLU ; 1.94 ; Iron-bound crystal structure of Streptococcus pyogenes Dpr 6DYJ ; 1.96 ; Iron-bound structure of the engineered cyt b562 variant, CH3Y* 3O1M ; 1.75 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1O ; 1.92 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1P ; 1.51 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1R ; 1.77 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1S ; 1.58 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1T ; 1.48 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1U ; 1.54 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 3O1V ; 1.9 ; Iron-Catalyzed Oxidation Intermediates Captured in A DNA Repair Dioxygenase 5J8S ; 1.5 ; Iron-free state of Rana Catesbeiana H' ferritin variant E57A/E136A/D140A 6I9P ; 1.25 ; Iron-free state of Rana catesbeiana H' ferritin variant H54N 1TJO ; 1.6 ; Iron-oxo clusters biomineralizing on protein surfaces. Structural analysis of H.salinarum DpsA in its low and high iron states 1TK6 ; 2.2 ; Iron-oxo clusters biomineralizing on protein surfaces. Structural analysis of H.salinarum DpsA in its low and high iron states 1TKO ; 2.9 ; Iron-oxo clusters biomineralizing on protein surfaces. Structural analysis of H.salinarum DpsA in its low and high iron states 1TKP ; 2.2 ; Iron-oxo clusters biomineralizing on protein surfaces. Structural analysis of H.salinarum DpsA in its low and high iron states 4V2Q ; 1.95 ; Ironing out their differences: Dissecting the structural determinants of a phenylalanine aminomutase and ammonia lyase 4V2R ; 2.2 ; Ironing out their differences: Dissecting the structural determinants of a phenylalanine aminomutase and ammonia lyase 4ZIO ; 2.0 ; Irradiated state of mCherry143azF 4J8A ; 1.26 ; Irradiated-state structure of sfGFP containing the unnatural amino acid p-azido-phenylalanine at residue 145 3PDS ; 3.5 ; Irreversible Agonist-Beta2 Adrenoceptor Complex 4GS6 ; 2.2 ; Irreversible Inhibition of TAK1 Kinase by 5Z-7-Oxozeaenol 1IRS ; ; IRS-1 PTB DOMAIN COMPLEXED WITH A IL-4 RECEPTOR PHOSPHOPEPTIDE, NMR, MINIMIZED AVERAGE STRUCTURE 2BX5 ; 2.7 ; Is FR1 the antibody's Achillies heel 1GCT ; 1.6 ; IS GAMMA-CHYMOTRYPSIN A TETRAPEPTIDE ACYL-ENZYME ADDUCT OF GAMMA-CHYMOTRYPSIN? 2BXY ; 1.75 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BXZ ; 1.75 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY0 ; 1.55 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY1 ; 1.55 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY2 ; 1.5 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY3 ; 1.5 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY5 ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY6 ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY7 ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY8 ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BY9 ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 2BYA ; 1.3 ; Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection 5NNA ; 1.5 ; Isatin hydrolase A (IHA) from Labrenzia aggregata bound to benzyl benzoate 5NNB ; 1.8 ; Isatin hydrolase A (IHA) from Labrenzia aggregata with isatinate bound 5NMP ; 2.65 ; Isatin hydrolase A (IHA) from Ralstonia solanacearum 2XFP ; 1.66 ; Isatin-inhibited human monoamine oxidase B in complex with 2-(2- benzofuranyl)-2-imidazoline 6UX0 ; 2.93 ; Isavuconazole bound complex of Acanthamoeba castellanii CYP51 7UTN ; 2.74 ; IscB and wRNA bound to Target DNA 8CSZ ; 3.2 ; IscB and wRNA bound to Target DNA 8CTL ; 3.1 ; IscB and wRNA bound to Target DNA (locked state) 6XG8 ; 3.5 ; ISCth4 transposase, pre-cleaved complex, PCC 6XGW ; 3.5 ; ISCth4 transposase, pre-reaction complex, PRC 6XGX ; 3.5 ; ISCth4 transposase, strand transfer complex 1, STC1 5D1Z ; 3.17 ; IsdB NEAT1 bound by clone D4-10 5D1Q ; 3.22 ; IsdB NEAT2 bound by clone D2-06 5D1X ; 3.21 ; IsdB NEAT2 bound by D4-30 8BF8 ; 2.8 ; ISDra2 TnpB in complex with reRNA 8EXA ; 3.14 ; ISDra2 TnpB in complex with reRNA and cognate DNA, conformation 1 (RuvC domain resolved) 8EX9 ; 2.96 ; ISDra2 TnpB in complex with reRNA and cognate DNA, conformation 2 (RuvC domain unresolved) 3SZ6 ; 1.8 ; IsdX1, an anthrax hemophore 2KLE ; ; ISIC Refined Solution Structure of the Calcium Binding Domain of the C-terminal Cytosolic Domain of Polycystin-2 3G7V ; 1.86 ; Islet Amyloid Polypeptide (IAPP or Amylin) fused to Maltose Binding Protein 3G7W ; 1.75 ; Islet Amyloid Polypeptide (IAPP or Amylin) Residues 1 to 22 fused to Maltose Binding Protein 5XGW ; 1.85 ; Isoaspartyl dipeptidase from Colwellia psychrerythraea strain 34H 1POJ ; 3.3 ; Isoaspartyl Dipeptidase with bound inhibitor 8STA ; 7.3 ; Isobutyryl-CoA mutase fused in the presence of GMPPCP 4XC6 ; 3.35 ; Isobutyryl-CoA mutase fused with bound adenosylcobalamin, GDP, and Mg (holo-IcmF/GDP) 5CJT ; 3.4 ; Isobutyryl-CoA mutase fused with bound adenosylcobalamin, GDP, Mg (holo-IcmF/GDP), and substrate isobutyryl-coenzyme A 5CJV ; 3.45 ; Isobutyryl-CoA mutase fused with bound adenosylcobalamin, GDP, Mg (holo-IcmF/GDP), and substrate isovaleryl-coenzyme A 5CJU ; 3.5 ; Isobutyryl-CoA mutase fused with bound adenosylcobalamin, GDP, Mg (holo-IcmF/GDP), and substrate n-butyryl-coenzyme A 5CJW ; 3.4 ; Isobutyryl-CoA mutase fused with bound adenosylcobalamin, GDP, Mg (holo-IcmF/GDP), and substrate pivalyl-coenzyme A 4XC7 ; 3.45 ; Isobutyryl-CoA mutase fused with bound butyryl-CoA and without cobalamin or GDP (apo-IcmF) 4XC8 ; 3.25 ; Isobutyryl-CoA mutase fused with bound butyryl-CoA, GDP, and Mg and without cobalamin (apo-IcmF/GDP) 1AI2 ; 1.9 ; ISOCITRATE DEHYDROGENASE COMPLEXED WITH ISOCITRATE, NADP+, AND CALCIUM (FLASH-COOLED) 1BL5 ; 2.5 ; ISOCITRATE DEHYDROGENASE FROM E. COLI SINGLE TURNOVER LAUE STRUCTURE OF RATE-LIMITED PRODUCT COMPLEX, 10 MSEC TIME RESOLUTION 1IDC ; 2.5 ; ISOCITRATE DEHYDROGENASE FROM E.COLI (MUTANT K230M), STEADY-STATE INTERMEDIATE COMPLEX DETERMINED BY LAUE CRYSTALLOGRAPHY 1XGV ; 2.2 ; Isocitrate Dehydrogenase from the hyperthermophile Aeropyrum pernix 1TYO ; 2.15 ; Isocitrate Dehydrogenase from the hyperthermophile Aeropyrum pernix in complex with etheno-NADP 1ZOR ; 2.24 ; Isocitrate dehydrogenase from the hyperthermophile Thermotoga maritima 2UXQ ; 1.75 ; Isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila: biochemical properties and crystal structure analysis 1IDF ; 2.5 ; ISOCITRATE DEHYDROGENASE K230M MUTANT APO ENZYME 1HJ6 ; 2.0 ; ISOCITRATE DEHYDROGENASE S113E MUTANT COMPLEXED WITH ISOPROPYLMALATE, NADP+ AND MAGNESIUM (FLASH-COOLED) 1IDD ; 2.5 ; ISOCITRATE DEHYDROGENASE Y160F MUTANT APO ENZYME 1IDE ; 2.5 ; ISOCITRATE DEHYDROGENASE Y160F MUTANT STEADY-STATE INTERMEDIATE COMPLEX (LAUE DETERMINATION) 1ISO ; 1.9 ; ISOCITRATE DEHYDROGENASE: STRUCTURE OF AN ENGINEERED NADP+--> NAD+ SPECIFICITY-REVERSAL MUTANT 7CMX ; 1.79 ; Isocitrate lyase from Bacillus cereus ATCC 14579 7CMY ; 2.5 ; Isocitrate lyase from Bacillus cereus ATCC 14579 in complex with Magnessium ion, glyoxylate, and succinate 7RB1 ; 1.9 ; Isocitrate Lyase-1 from Mycobacterium tuberculosis covalently modified by 5-descarboxy-5-nitro-D-isocitric acid 5ELJ ; 1.983 ; Isoform-specific inhibition of SUMO-dependent protein-protein interactions 5ELU ; 2.35 ; Isoform-specific inhibition of SUMO-dependent protein-protein interactions 5EQL ; 2.49 ; Isoform-specific inhibition of SUMO-dependent protein-protein interactions 263D ; 2.2 ; ISOHELICITY AND PHASING IN DRUG-DNA SEQUENCE RECOGNITION: CRYSTAL STRUCTURE OF A TRIS(BENZIMIDAZOLE)-OLIGONUCLEOTIDE COMPLEX 6UBY ; 7.5 ; Isolated cofilin bound to an actin filament 6QA9 ; 4.1 ; Isolated complex I class refinement from Ovine respiratory supercomplex I+III2 6I2Z ; 3.2 ; Isolated globin domain of the Bordetella pertussis globin-coupled sensor 4UIQ ; 1.55 ; Isolated globin domain of the Bordetella pertussis globin-coupled sensor with a heme at the dimer interface 3KGC ; 1.55 ; Isolated ligand binding domain dimer of GluA2 ionotropic glutamate receptor in complex with glutamate, LY 404187 and ZK 200775 4TUU ; 2.64 ; Isolated p110a subunit of PI3Ka provides a platform for structure-based drug design 4TV3 ; 2.85 ; Isolated p110a subunit of PI3Ka provides a platform for structure-based drug design 2MT5 ; ; Isolated Ring domain 6UC0 ; 7.5 ; Isolated S3D-cofilin bound to an actin filament 5E85 ; 2.57 ; isolated SBD of BiP 5E86 ; 2.681 ; isolated SBD of BiP with loop34 modification 4LSC ; 1.529 ; Isolated SERK1 co-receptor ectodomain at high resolution 1W9N ; ; Isolation and characterization of epilancin 15X, a novel antibiotic from a clinical strain of Staphylococcus epidermidis 2KNP ; ; Isolation and characterization of peptides from Momordica cochinchinensis seeds. 6TYB ; 2.301 ; Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields 6CFB ; ; Isolation, Characterization, and Synthesis of the Barrettides: Disulfide-Containing Peptides from the Marine Sponge Geodia barretti 4JC2 ; 2.35 ; Isolation, Cloning and Biophysical Analysis of a Novel Hexameric Green Fluorescent Protein from a Philippine Soft Coral 1CPC ; 1.66 ; ISOLATION, CRYSTALLIZATION, CRYSTAL STRUCTURE ANALYSIS AND REFINEMENT OF CONSTITUTIVE C-PHYCOCYANIN FROM THE CHROMATICALLY ADAPTING CYANOBACTERIUM FREMYELLA DIPLOSIPHON AT 1.66 ANGSTROMS RESOLUTION 1N47 ; 2.7 ; Isolectin B4 from Vicia villosa in complex with the Tn antigen 1ILE ; 2.5 ; ISOLEUCYL-TRNA SYNTHETASE 1JZQ ; 3.0 ; Isoleucyl-tRNA synthetase Complexed with Isoleucyl-adenylate analogue 1JZS ; 2.5 ; Isoleucyl-tRNA synthetase Complexed with mupirocin 1UDZ ; 1.8 ; Isoleucyl-tRNA synthetase editing domain 1WNY ; 1.6 ; Isoleucyl-tRNA synthetase editing domain 1UE0 ; 2.0 ; Isoleucyl-tRNA synthetase editing domain complexed with L-Valine 1WNZ ; 1.7 ; Isoleucyl-tRNA synthetase editing domain complexed with the post-transfer editing substrate analogue, Val-2AA 1WK8 ; 1.7 ; Isoleucyl-tRNA synthetase editing domain complexed with the pre-transfer editing substrate analogue, Val-AMS 6LDK ; 2.9 ; Isoleucyl-tRNA synthetase from Candida albicans complexed with a isoleucyl-adenylate 5YX4 ; 2.1 ; Isoliquiritigenin-complexed Chalcone isomerase (S189A) from the Antarctic vascular plant Deschampsia Antarctica (DaCHI1) 1MOS ; 2.0 ; ISOMERASE DOMAIN OF GLUCOSAMINE 6-PHOSPHATE SYNTHASE COMPLEXED WITH 2-AMINO-2-DEOXYGLUCITOL 6-PHOSPHATE 1MOQ ; 1.57 ; ISOMERASE DOMAIN OF GLUCOSAMINE 6-PHOSPHATE SYNTHASE COMPLEXED WITH GLUCOSAMINE 6-PHOSPHATE 1MOR ; 1.9 ; ISOMERASE DOMAIN OF GLUCOSAMINE 6-PHOSPHATE SYNTHASE COMPLEXED WITH GLUCOSE 6-PHOSPHATE 2ZJ3 ; 1.9 ; Isomerase domain of human glucose:fructose-6-phosphate amidotransferase 2ZJ4 ; 2.2 ; Isomerase domain of human glucose:fructose-6-phosphate amidotransferase 8X6P ; 1.05 ; Isomerase Protein 6TSW ; 4.03 ; Isometric capsid of empty GTA particle computed with I4(I,n25r) symmetry 2W49 ; 35.0 ; ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE 2W4A ; 35.0 ; ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE 2W4T ; 35.0 ; ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE 2W4U ; 35.0 ; Isometrically contracting insect asynchronous flight muscle quick frozen after a length step 2W4H ; 35.0 ; Isometrically contracting insect asynchronous flight muscle quick frozen after a quick release step 2W4V ; 35.0 ; Isometrically contracting insect asynchronous flight muscle quick frozen after a quick release step 2W4G ; 35.0 ; ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE QUICK FROZEN AFTER A QUICK STRETCH STEP 2W4W ; 35.0 ; Isometrically contracting insect asynchronous flight muscle quick frozen after a quick stretch step 1DRH ; 2.3 ; ISOMORPHOUS CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE, 5-DEAZAFOLATE AND 5,10-DIDEAZATETRAHYDROFOLATE: MECHANISTIC IMPLICATIONS 1DYH ; 1.9 ; ISOMORPHOUS CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE, 5-DEAZAFOLATE AND 5,10-DIDEAZATETRAHYDROFOLATE: MECHANISTIC IMPLICATIONS 1DYI ; 1.9 ; ISOMORPHOUS CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE, 5-DEAZAFOLATE AND 5,10-DIDEAZATETRAHYDROFOLATE: MECHANISTIC IMPLICATIONS 1DYJ ; 1.85 ; ISOMORPHOUS CRYSTAL STRUCTURES OF ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE, 5-DEAZAFOLATE AND 5,10-DIDEAZATETRAHYDROFOLATE: MECHANISTIC IMPLICATIONS 1W05 ; 2.46 ; Isopenicillin N Synthase Aminoadipoyl-Cysteinyl-Alanine-Fe Complex 1W06 ; 1.65 ; Isopenicillin N Synthase Aminoadipoyl-Cysteinyl-Alanine-Fe NO Complex 1OC1 ; 2.2 ; ISOPENICILLIN N SYNTHASE aminoadipoyl-cysteinyl-aminobutyrate-FE COMPLEX 1OBN ; 1.3 ; ISOPENICILLIN N SYNTHASE aminoadipoyl-cysteinyl-aminobutyrate-FE-NO COMPLEX 1W03 ; 2.1 ; Isopenicillin N Synthase Aminoadipoyl-Cysteinyl-Glycine-Fe Complex 1W04 ; 1.28 ; Isopenicillin N Synthase Aminoadipoyl-Cysteinyl-Glycine-Fe-NO Complex 2BJS ; 1.3 ; Isopenicillin N synthase C-terminal truncation mutant 2BU9 ; 1.3 ; Isopenicillin N synthase complexed with L-aminoadipoyl-L-cysteinyl-L- hexafluorovaline 1W3V ; 1.4 ; Isopenicillin N synthase d-(L-a-aminoadipoyl)-(3R)-methyl-L-cysteine D-a-hydroxyisovaleryl ester complex (anaerobic) 1W3X ; 1.46 ; Isopenicillin N synthase d-(L-a-aminoadipoyl)-(3R)-methyl-L-cysteine D-a-hydroxyisovaleryl ester complex (Oxygen exposed 5 minutes 20 bar) 1QIQ ; 1.5 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ACmC Fe COMPLEX) 1BK0 ; 1.3 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ACV-FE COMPLEX) 1BLZ ; 1.45 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ACV-FE-NO COMPLEX) 2IVJ ; 1.46 ; Isopenicillin N Synthase From Aspergillus Nidulans (Anaerobic Ac- cyclopropylglycine Fe Complex) 2IVI ; 1.3 ; Isopenicillin N Synthase From Aspergillus Nidulans (Anaerobic Ac- methyl-cyclopropylglycine Fe Complex) 1ODM ; 1.15 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ANAEROBIC AC-VINYLGLYCINE FE COMPLEX) 1HB1 ; 1.55 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (ANAEROBIC ACOV FE COMPLEX) 1QJE ; 1.35 ; Isopenicillin N synthase from Aspergillus nidulans (IP1 - Fe complex) 1IPS ; 2.5 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (MANGANESE COMPLEX) 1QJF ; 1.4 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (Monocyclic Sulfoxide - Fe COMPLEX) 1HB2 ; 1.3 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (OXYGEN EXPOSED PRODUCT FROM ANAEROBIC ACOV FE COMPLEX) 1HB3 ; 1.4 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (OXYGEN EXPOSED PRODUCT FROM ANAEROBIC ACOV FE COMPLEX) 1HB4 ; 1.5 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (OXYGEN EXPOSED PRODUCT FROM ANAEROBIC ACOV FE COMPLEX) 1ODN ; 1.6 ; ISOPENICILLIN N SYNTHASE FROM ASPERGILLUS NIDULANS (OXYGEN-EXPOSED PRODUCT FROM ANAEROBIC AC-VINYLGLYCINE FE COMPLEX) 6Y0O ; 2.2 ; isopenicillin N synthase in complex with ACV and Fe under anaerobic environment using FT-SSX methods 6ZW8 ; 1.22 ; Isopenicillin N synthase in complex with Cd and ACV. 7P3L ; 1.32 ; Isopenicillin N synthase in complex with Fe and the substrate analogue AadCyshomoCys 6ZAP ; 1.36 ; Isopenicillin N synthase in complex with Fe, O2 and ACV under cryo conditions. 6ZAN ; 1.35 ; Isopenicillin N synthase in complex with Fe, the oxygen surrogate NO and ACV. 6Y0P ; 1.98 ; isopenicillin N synthase in complex with IPN and Fe using FT-SSX methods 6ZAO ; 1.66 ; Isopenicillin N synthase structure in complex with Fe and IPN exposed to dioxygen. 2JB4 ; 1.3 ; Isopenicillin N synthase with a 2-thiabicycloheptan-6-one product analogue 2Y60 ; 1.4 ; Isopenicillin N synthase with AC-D-methionine 2Y6F ; 1.79 ; Isopenicillin N synthase with AC-D-S-methyl-3R-methylcysteine 3ZOI ; 1.82 ; ISOPENICILLIN N SYNTHASE WITH AC-O-METHYL-D-THREONINE 1UZW ; 1.3 ; ISOPENICILLIN N SYNTHASE WITH L-D-(A-AMINOADIPOYL)-L-CYSTEINYL-D-ISODEHYDROVALINE 2VBB ; 1.4 ; Isopenicillin N synthase with substrate analogue ACOMP (35minutes oxygen exposure) 2VAU ; 1.8 ; Isopenicillin N synthase with substrate analogue ACOMP (unexposed) 3ZKY ; 1.45 ; Isopenicillin N synthase with substrate analogue AhCmC 3ZKU ; 1.4 ; Isopenicillin N synthase with substrate analogue AhCV 2VCM ; 1.65 ; Isopenicillin N synthase with substrate analogue AsMCOV 2VE1 ; 2.2 ; Isopenicillin N synthase with substrate analogue AsMCOV (oxygen exposed 1min 20bar) 2WO7 ; 2.5 ; Isopenicillin N synthase with substrate analogue L,L,D-ACd2Ab (unexposed) 2VBP ; 1.5 ; Isopenicillin N synthase with substrate analogue L,L,L-ACAB (unexposed) 2VBD ; 2.0 ; Isopenicillin N synthase with substrate analogue L,L,L-ACOMP (unexposed) 4BB3 ; 1.4 ; Isopenicillin N synthase with the dipeptide substrate analogue AhC 1PPV ; 1.7 ; ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE IN COMPLEX WITH THE BROMOHYDRINE OF IPP 1PPW ; 2.21 ; ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE IN COMPLEX WITH THE BROMOHYDRINE OF IPP 5LDG ; 1.3 ; Isopiperitenone reductase from Mentha piperita in complex with Isopiperitenone and NADP 5LCX ; 1.709 ; Isopiperitenone reductase from Mentha piperita in complex with NADP 5L4S ; 1.41 ; Isopiperitenone reductase from Mentha piperita in complex with NADP and beta-Cyclocitral 5YOT ; 1.98 ; Isoprimeverose-producing enzyme from Aspergillus oryzae in complex with isoprimeverose 5YQS ; 2.4 ; Isoprimeverose-producing enzyme from Aspergillus oryzae in complex with isoprimeverose 5J32 ; 1.933 ; Isopropylmalate dehydrogenase in complex with isopropylmalate 5J33 ; 3.492 ; Isopropylmalate dehydrogenase in complex with NAD+ 5J34 ; 1.827 ; Isopropylmalate dehydrogenase K232M mutant 3Q3W ; 1.89 ; Isopropylmalate isomerase small subunit from Campylobacter jejuni. 4OV4 ; 2.0 ; Isopropylmalate synthase binding with ketoisovalerate 7S0F ; 2.96 ; Isoproterenol bound beta1 adrenergic receptor in complex with heterotrimeric Gi protein 7S0G ; 3.86 ; Isoproterenol bound beta1 adrenergic receptor in complex with heterotrimeric Gi/s chimera protein 7XJH ; 3.3 ; Isoproterenol-activated dog beta3 adrenergic receptor 7UXY ; 3.15 ; Isoreticular, interpenetrating co-crystal of protein variant Replication Initiator Protein REPE54 (L53G,Q54G,E55G) and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence. 7UOG ; 2.63 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and asymmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence. 7UV6 ; 2.72 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and scaffold duplex (21mer) containing the cognate REPE54 sequence and an insert duplex (10mer) with guest TAMRA-labelled thymine and G-C rich sequence. 7UV7 ; 3.02 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and scaffold duplex (21mer) containing the cognate REPE54 sequence and an insert duplex (10mer) with guest TAMRA-labelled thymine and T-A rich sequence. 7UFX ; 2.8 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and scaffold-insert duplexes (21mer and 10mer) containing the cognate REPE54 sequence and an additional G-C rich sequence, respectively. 7UR0 ; 3.3 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and scaffold-insert duplexes (21mer and 10mer) containing the cognate REPE54 sequence and an additional T-A rich sequence, respectively. 8D86 ; 3.12 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence co-crystallized with a guest small molecule, netropsin. 8D8M ; 3.1 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence grown in a calcium chloride crystallization solution. 8TIY ; 3.11 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 1 sticky bases and 3' terminal phosphates and crosslinked with EDC. 8TIS ; 2.54 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 1 sticky bases and 3' terminal phosphates. 8TIX ; 2.91 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 1 sticky bases and 5' terminal phosphates and crosslinked with EDC. 8TIR ; 3.11 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 1 sticky bases and 5' terminal phosphates. 8TJ1 ; 3.15 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 2 sticky base overhangs and 3' terminal phosphates and crosslinked with EDC. 8TIU ; 3.9 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 2 sticky base overhangs and 3' terminal phosphates. 8TJ0 ; 3.24 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 2 sticky base overhangs and 5' terminal phosphates and crosslinked with EDC. 8TIZ ; 3.11 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 2 sticky base overhangs and no terminal phosphates and crosslinked with EDC. 8TIT ; 2.84 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with 2 sticky base overhangs and no terminal phosphates. 8TIW ; 3.11 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with blunt ends and 3' terminal phosphates and crosslinked with EDC. 8TIQ ; 2.45 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with blunt ends and 3' terminal phosphates. 8TIV ; 3.35 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with blunt ends and 5' terminal phosphates and crosslinked with EDC. 8TIP ; 2.79 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence with blunt ends and 5' terminal phosphates. 7U6K ; 2.38 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional G-C rich sequence. 7U7O ; 2.97 ; Isoreticular, interpenetrating co-crystal of Replication Initiator Protein REPE54 and symmetrical expanded duplex (31mer) containing the cognate REPE54 sequence and an additional T-A rich sequence. 2IJN ; 2.2 ; Isothiazoles as active-site inhibitors of HCV NS5B polymerase 5F6M ; 1.1 ; Isotropic Trypsin Model for Comparison of Diffuse Scattering 1FCZ ; 1.38 ; ISOTYPE SELECTIVITY OF THE HUMAN RETINOIC ACID NUCLEAR RECEPTOR HRAR: THE COMPLEX WITH THE PANAGONIST RETINOID BMS181156 1FCY ; 1.3 ; ISOTYPE SELECTIVITY OF THE HUMAN RETINOIC ACID NUCLEAR RECEPTOR HRAR: THE COMPLEX WITH THE RARBETA/GAMMA-SELECTIVE RETINOID CD564 1FCX ; 1.47 ; ISOTYPE SELECTIVITY OF THE HUMAN RETINOIC ACID NUCLEAR RECEPTOR HRAR: THE COMPLEX WITH THE RARGAMMA-SELECTIVE RETINOID BMS184394 1FD0 ; 1.38 ; ISOTYPE SELECTIVITY OF THE HUMAN RETINOIC ACID NUCLEAR RECEPTOR HRAR: THE COMPLEX WITH THE RARGAMMA-SELECTIVE RETINOID SR11254 3GD2 ; 3.2 ; isoxazole ligand bound to farnesoid X receptor (FXR) 1ONN ; 2.6 ; IspC apo structure 1ONP ; 2.5 ; IspC complex with Mn2+ and fosmidomycin 3R0I ; 2.1 ; IspC in complex with an N-methyl-substituted hydroxamic acid 1ONO ; 2.5 ; IspC Mn2+ complex 2V8P ; 2.1 ; IspE in complex with ADP and CDP 2V2Z ; 2.25 ; IspE in complex with ADP and CDPME 2V34 ; 2.3 ; IspE in complex with cytidine and ligand 2V2Q ; 2.3 ; IspE in complex with ligand 2V2V ; 2.4 ; IspE in complex with ligand 4C8E ; 1.9 ; IspF (Burkholderia cenocepacia) 2CMP complex 4C8I ; 2.0 ; IspF (Burkholderia cenocepacia) citrate complex 4C8G ; 2.0 ; IspF (Burkholderia cenocepacia) CMP complex 4C81 ; 1.56 ; IspF (Plasmodium falciparum) CDP complex 4C82 ; 2.0 ; IspF (Plasmodium falciparum) unliganded structure 1U3P ; 2.85 ; IspF native 1U40 ; 2.8 ; IspF with 4-diphosphocytidyl-2C-methyl-D-erythritol 1U43 ; 3.2 ; IspF with 4-diphosphocytidyl-2c-methyl-D-erythritol 2-phosphate 1U3L ; 2.5 ; IspF with Mg and CDP 4S38 ; 1.4 ; IspG in complex MEcPP 4S3C ; 1.45 ; IspG in complex with Epoxide Intermediate 4S39 ; 1.3 ; IspG in complex with HMBPP 4S3E ; 1.35 ; IspG in complex with Inhibitor 7 (compound 1061) 4S3F ; 1.7 ; IspG in complex with Inhibitor 8 (compound 1077) 4S3A ; 1.6 ; IspG in complex with Intermediate I 4S3B ; 1.8 ; IspG in complex with Intermediate II 4S3D ; 1.8 ; IspG in complex with PPi 4H4D ; 1.35 ; IspH in complex with (E)-4-amino-3-methylbut-2-enyl diphosphate 4H4C ; 1.8 ; IspH in complex with (E)-4-fluoro-3-methylbut-2-enyl diphosphate 4H4E ; 1.7 ; IspH in complex with (E)-4-mercapto-3-methylbut-2-enyl diphosphate 4MV5 ; 1.9 ; IspH in complex with 6-chloropyridin-3-ylmethyl diphosphate 3URK ; 1.5 ; IspH in complex with propynyl diphosphate (1061) 4MV0 ; 1.9 ; IspH in complex with pyridin-2-ylmethyl diphosphate 4MUX ; 1.7 ; IspH in complex with pyridin-3-ylmethyl diphosphate 4MUY ; 1.8 ; IspH in complex with pyridin-4-ylmethyl diphosphate 3T0F ; 1.9 ; IspH:HMBPP (substrate) structure of the E126D mutant 3T0G ; 2.1 ; IspH:HMBPP (substrate) structure of the T167C mutant 3SZO ; 1.6 ; IspH:HMBPP complex after 3 minutes X-ray pre-exposure 3SZU ; 1.4 ; IspH:HMBPP complex structure of E126Q mutant 3SZL ; 1.6 ; IspH:Ligand Mutants - wt 70sec 5OB3 ; 2.004 ; iSpinach aptamer 5LWI ; 3.2 ; Israeli acute paralysis virus heated to 63 degree - empty particle 5LWG ; 3.2 ; Israeli acute paralysis virus heated to 63 degree - full particle 8B4H ; 3.35 ; IstA transposase cleaved donor complex 7W08 ; 3.25 ; Itaconate inducible LysR-Type Transcriptional regulator (ITCR) in APO form, Space group P1. 7W06 ; 1.5 ; Itaconate inducible LysR-Type Transcriptional regulator (ITCR) in complex with itaconate (SeMet labeled), Space group C121. 7W07 ; 1.48 ; Itaconate inducible LysR-Type Transcriptional regulator (ITCR) in complex with itaconate, Space group C121. 1YIU ; ; Itch E3 ubiquitin ligase WW3 domain 4MF1 ; 2.113 ; ITK kinase domain in complex with benzothiazole inhibitor 12b (1S,2S)-2-{4-[(DIMETHYLAMINO)METHYL]PHENYL}-N-[6-(1H-PYRAZOL-4-YL)-1,3-BENZOTHIAZOL-2-YL]CYCLOPROPANECARBOXAMIDE 4MF0 ; 2.67 ; ITK kinase domain in complex with benzothiazole inhibitor compound 12a (1S,2S)-2-{4-[(DIMETHYLAMINO)METHYL]PHENYL}-N-[6-(PYRIDIN-3-YL)-1,3-BENZOTHIAZOL-2-YL]CYCLOPROPANECARBOXAMIDE (12a) 4RFM ; 2.1 ; ITK kinase domain in complex with compound 1 N-{1-[(1,1-dioxo-1-thian-2-yl)(phenyl)methyl]-1H- pyrazol-4-yl}-5,5-difluoro-5a-methyl-1H,4H,4aH,5H,5aH,6H-cyclopropa[f]indazole-3-carboxamide 4QD6 ; 2.45 ; ITK kinase domain in complex with inhibitor compound 4PP9 ; 2.58 ; ITK kinase domain with compound 1 (N-[1-(3-CYANOBENZYL)-1H-PYRAZOL-4-YL]-2H-INDAZOLE-3-CARBOXAMIDE) 4PPA ; 2.67 ; ITK kinase domain with compound 11 (N-[1-(3-CYANOBENZYL)-1H-PYRAZOL-4-YL]-6-(1H-PYRAZOL-4-YL)-1H-INDAZOLE-3-CARBOXAMIDE) 4PPC ; 2.95 ; ITK kinase domain with compound 27 (N-{1-[(1R)-3-(DIMETHYLAMINO)-1-PHENYLPROPYL]-1H-PYRAZOL-4-YL}-6-(1H-PYRAZOL-4-YL)-1H-INDAZOLE-3-CARBOXAMIDE) 4PPB ; 2.82 ; ITK kinase domain with compound 28 (N-{1-[(1S)-3-(DIMETHYLAMINO)-1-PHENYLPROPYL]-1H-PYRAZOL-4-YL}-6-(1H-PYRAZOL-4-YL)-1H-INDAZOLE-3-CARBOXAMIDE) 4PQN ; 1.71 ; ITK kinase domain with compound GNE-9822 2RNA ; ; Itk SH3 average minimized 2LMJ ; ; Itk-sh3 7TZ3 ; ; Iturin from Bacillus subtilis ATCC 19659 2UW1 ; 1.95 ; Ivy Desaturase Structure 1UUZ ; 1.8 ; IVY:A NEW FAMILY OF PROTEIN 7DAF ; 2.4 ; IXA in complex with tubulin 1BQ0 ; ; J-DOMAIN (RESIDUES 1-77) OF THE ESCHERICHIA COLI N-TERMINAL FRAGMENT (RESIDUES 1-104) OF THE MOLECULAR CHAPERONE DNAJ, NMR, 20 STRUCTURES 1BQZ ; ; J-DOMAIN (RESIDUES 1-77) OF THE ESCHERICHIA COLI N-TERMINAL FRAGMENT (RESIDUES 1-78) OF THE MOLECULAR CHAPERONE DNAJ, NMR, 20 STRUCTURES 2OCH ; 1.86 ; J-domain of dnj-12 from Caenorhabditis elegans 4RWU ; 1.25 ; J-domain of Sis1 protein, Hsp40 co-chaperone from Saccharomyces cerevisiae 7S6J ; 3.4 ; J08 fragment antigen binding in complex with SARS-CoV-2-6P-Mut2 S protein (conformation 1) 7S6K ; 3.4 ; J08 fragment antigen binding in complex with SARS-CoV-2-6P-Mut2 S protein (conformation 2) 7S6L ; 4.0 ; J08 fragment antigen binding in complex with SARS-CoV-2-6P-Mut7 S protein (conformation 3) 8QYA ; 2.72 ; J22.9-FNY, fully humanized, CDR optimized Fab Fragment based on chimeric J22.9-xi IgG against BCMA; with VH CDR2 glycosylation 8QY9 ; 3.1 ; J22.9-H, fully humanized Fab Fragment based on chimeric J22.9-xi IgG against BCMA 8QYB ; 3.09 ; J22.9-ISY, fully humanized and CDR optimized Fab Fragment based on chimeric J22.9-xi IgG against BCMA 4ZFO ; 1.895 ; J22.9-xi: chimeric mouse/human antibody against human BCMA (CD269) 1TUT ; ; J4/5 Loop from the Candida albicans and Candida dubliniensis Group I Introns 4P23 ; 2.25 ; J809.B5 TCR bound to IAb/3K 4P46 ; 2.851 ; J809.B5 Y31A TCR bound to IAb3K 3UO2 ; 2.13 ; Jac1 co-chaperone from Saccharomyces cerevisiae 3UO3 ; 1.85 ; Jac1 co-chaperone from Saccharomyces cerevisiae, 5-182 clone 4R6N ; 1.67 ; Jacalin-carbohydrate interactions. Distortion of the ligand as a determinant of affinity 4R6O ; 1.6 ; Jacalin-carbohydrate interactions. Distortion of the ligand as a determinant of affinity. 4R6P ; 1.7 ; Jacalin-carbohydrate interactions. Distortion of the ligand as a determinant of affinity. 4R6Q ; 1.6 ; Jacalin-carbohydrate interactions. Distortion of the ligand as a determinant of affinity. 4R6R ; 1.38 ; Jacalin-carbohydrate interactions. Distortion of the ligand as a determinant of affinity. 6XT5 ; 2.69 ; Jack bean asparaginyl endopeptidase 5HX8 ; 2.2 ; Jak1 complex with 4-[(4-aminocyclohexyl)amino]-3-(1H-benzimidazol-2-yl)-1H-pyridin-2-one 5WO4 ; 1.84 ; JAK1 complexed with compound 28 4EI4 ; 2.22 ; JAK1 kinase (JH1 domain) in complex with compound 20 4E5W ; 1.86 ; JAK1 kinase (JH1 domain) in complex with compound 26 4E4L ; 2.0 ; JAK1 kinase (JH1 domain) in complex with compound 30 4IVD ; 1.93 ; JAK1 kinase (JH1 domain) in complex with compound 34 4E4N ; 1.9 ; JAK1 kinase (JH1 domain) in complex with compound 49 4K77 ; 2.4 ; JAK1 kinase (JH1 domain) in complex with compound 6 4FK6 ; 2.2 ; JAK1 kinase (JH1 domain) in complex with compound 72 4IVC ; 2.35 ; JAK1 kinase (JH1 domain) in complex with the inhibitor (TRANS-4-{2-[(1R)-1-HYDROXYETHYL]IMIDAZO[4,5-D]PYRROLO[2,3-B]PYRIDIN-1(6H)-YL}CYCLOHEXYL)ACETONITRILE 4IVB ; 1.9 ; JAK1 kinase (JH1 domain) in complex with the inhibitor TRANS-4-{2-[(1R)-1-HYDROXYETHYL]IMIDAZO[4,5-D]PYRROLO[2,3-B]PYRIDIN-1(6H)-YL}CYCLOHEXANECARBONITRILE 6DBN ; 2.48 ; Jak1 with compound 23 8G6Z ; 2.45 ; JAK2 crystal structure in complex with Compound 13 7Q7K ; 1.61 ; JAK2 in complex with 4-(2-amino-8-methoxyquinazolin-6-yl)phenol 7Q7L ; 1.97 ; JAK2 in complex with 4-(2-amino-8-{[(2S)-1-hydroxypropan-2-yl]amino}quinazolin-6-yl)-5-ethyl-2-fluorophenol 7Q7W ; 1.85 ; JAK2 in complex with 4-(2-{[5-(dimethylamino)pentyl]amino}-8-{[(2S)-1-hydroxypropan-2-yl]amino}quinazolin-6-yl)-5-ethyl-2-fluorophenol 7Q7I ; 1.78 ; JAK2 in complex with 4-{8-methoxy-2-[(1-methyl-1H-pyrazol-4-yl)amino]quinazolin-6-yl}phenol 6VN8 ; 1.9 ; JAK2 JH1 in complex with baricitinib 6VS3 ; 2.0 ; JAK2 JH1 in complex with BL2-057 6VNB ; 2.19 ; JAK2 JH1 in complex with BL2-084 6VNC ; 2.3 ; JAK2 JH1 in complex with BL2-096 6VSN ; 2.5 ; JAK2 JH1 in complex with BL2-110 6VNE ; 2.32 ; JAK2 JH1 in complex with Fedratinib 5USY ; 2.0 ; JAK2 JH1 in complex with JNJ-7706621 6DRW ; 2.303 ; JAK2 JH1 in complex with JNJ-7706621 (Crystal Form 2) 6VNF ; 2.06 ; JAK2 JH1 in complex with MA9-086 6VNG ; 2.5 ; JAK2 JH1 in complex with PN2-118 6VNH ; 2.4 ; JAK2 JH1 in complex with PN2-123 6VNI ; 2.1 ; JAK2 JH1 in complex with PN3-115 6VNJ ; 1.9 ; JAK2 JH1 in complex with PN4-014 6VNK ; 2.0 ; JAK2 JH1 in complex with PN4-073 6VGL ; 1.9 ; JAK2 JH1 in complex with ruxolitinib 6VNL ; 2.4 ; JAK2 JH1 in complex with SG3-179 6VNM ; 2.2 ; JAK2 JH1 in complex with SY5-103 6BS0 ; 1.541 ; JAK2 JH2 in complex with 63552444 5UT6 ; 1.645 ; JAK2 JH2 in complex with a diaminopyrimidine 5UT0 ; 2.102 ; JAK2 JH2 in complex with AT9283 5UT1 ; 1.95 ; JAK2 JH2 in complex with BI-D1870 6M9H ; 1.79 ; JAK2 JH2 in complex with diaminopyrimidine JAK040 5UT5 ; 1.9 ; JAK2 JH2 in complex with GLPG0634 5UT3 ; 1.501 ; JAK2 JH2 in complex with IKK-2 Inhibitor VI 7JYQ ; 1.85942 ; JAK2 JH2 in complex with JAK020 7JYO ; 2.16127 ; JAK2 JH2 in complex with JAK064 6XJK ; 2.02351 ; JAK2 JH2 in complex with JAK067 6OAV ; 1.939 ; JAK2 JH2 in complex with JAK146 6OBL ; 2.061 ; JAK2 JH2 in complex with JAK168 6OBB ; 1.904 ; JAK2 JH2 in complex with JAK170 6OBF ; 1.71 ; JAK2 JH2 in complex with JAK179 6OCC ; 2.03 ; JAK2 JH2 in complex with JAK190 7T1T ; 2.08 ; JAK2 JH2 IN COMPLEX WITH JAK292 7T0P ; 2.04 ; JAK2 JH2 IN COMPLEX WITH JAK315 5USZ ; 2.103 ; JAK2 JH2 in complex with JNJ-7706621 6BSS ; 2.1 ; JAK2 JH2 in complex with NU6102 5UT4 ; 2.0 ; JAK2 JH2 in complex with NVP-BSK805 5UT2 ; 1.75 ; JAK2 JH2 in complex with PRT062607 6BRW ; 2.031 ; JAK2 JH2 in complex with XMU-MP-1 4GMY ; 2.403 ; JAK2 kinase (JH1 domain) in complex with 2,6-DICHLORO-N-{2-[(CYCLOPROPYLCARBONYL)AMINO]PYRIDIN-4-YL}BENZAMIDE 4E4M ; 2.25 ; JAK2 kinase (JH1 domain) in complex with compound 30 4HGE ; 2.3 ; JAK2 kinase (JH1 domain) in complex with compound 8 4JIA ; 1.85 ; JAK2 kinase (JH1 domain) in complex with compound 9 4JI9 ; 2.4 ; JAK2 kinase (JH1 domain) in complex with TG101209 4IVA ; 1.5 ; JAK2 kinase (JH1 domain) in complex with the inhibitor TRANS-4-[(8AS)-2-[(1R)-1-HYDROXYETHYL]IMIDAZO[4,5-D]PYRROLO[2,3-B]PYRIDIN-1(8AH)-YL]CYCLOHEXANECARBONITRILE 5HEZ ; 2.66 ; JAK2 kinase (JH1 domain) mutant P1057A in complex with TG101209 4E6Q ; 1.948 ; JAK2 kinase (JH1 domain) triple mutant in complex with compound 12 4E6D ; 2.22 ; JAK2 kinase (JH1 domain) triple mutant in complex with compound 7 4GFM ; 2.3 ; JAK2 kinase (JH1 domain) with 2,6-DICHLORO-N-(2-OXO-2,5-DIHYDROPYRIDIN-4-YL)BENZAMIDE 5WIM ; 2.55 ; JAK2 Pseudokinase in complex with AT9283 5WIL ; 2.2 ; JAK2 Pseudokinase in complex with AZD7762 5WIK ; 2.6 ; JAK2 Pseudokinase in complex with BI-D1870 5WIN ; 2.38 ; JAK2 Pseudokinase in complex with JNJ7706621 5WIJ ; 2.04 ; JAK2 Pseudokinase in complex with NU6140 6D2I ; 3.192 ; JAK2 Pseudokinase V617F in complex with AT9283 7F7W ; 1.83 ; JAK2-JH2 4V0G ; 3.0 ; JAK3 in complex with a covalent EGFR inhibitor 4QT1 ; 2.4 ; JAK3 kinase domain in complex with 1-[(3S)-1-isobutylsulfonyl-3-piperidyl]-3-(5H-pyrrolo[2,3-b]pyrazin-2-yl)urea 4HVI ; 2.4 ; JAK3 kinase domain in complex with 2-Cyclopropyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ((R)-1-methyl-2-oxo-2-piperidin-1-yl-ethyl)-amide 4HVH ; 2.3 ; JAK3 kinase domain in complex with 2-Cyclopropyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ((R)-2-hydroxy-1,2-dimethyl-propyl 4HVD ; 1.85 ; JAK3 kinase domain in complex with 2-Cyclopropyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ((S)-1,2,2-trimethyl-propyl)-amide 4HVG ; 2.75 ; JAK3 kinase domain in complex with 2-Cyclopropyl-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ((S)-2-hydroxy-1,2-dimethyl-propyl)-amide 4I6Q ; 1.85 ; JAK3 kinase domain in complex with 2-Phenoxy-5H-pyrrolo[2,3-b]pyrazine-7-carboxylic acid ((S)-1-cyclopropyl-ethyl)-amide 5TTS ; 2.34 ; Jak3 with covalent inhibitor 4 5TTV ; 1.93 ; Jak3 with covalent inhibitor 6 5TTU ; 1.72 ; Jak3 with covalent inhibitor 7 5TOZ ; 1.98 ; JAK3 with covalent inhibitor PF-06651600 6DA4 ; 2.9 ; JAK3 with Cyanamide CP10 6DUD ; 1.66 ; JAK3 with cyanamide CP12 6DB3 ; 1.97 ; JAK3 with Cyanamide CP23 6DB4 ; 1.662 ; JAK3 with Cyanamide CP34 1R5X ; 2.3 ; JAMM: A Metalloprotease-like Zinc Site in the Proteasome and Signalosome 3JY9 ; 2.1 ; Janus Kinase 2 Inhibitors 5OW2 ; 1.98 ; Japanese encephalitis virus capsid protein 5O19 ; 2.1 ; Japanese encephalitis virus non-structural protein 1 C-terminal domain 5O36 ; 2.6 ; Japanese encephalitis virus non-structural protein 1' C-terminal domain 1AOC ; 2.0 ; JAPANESE HORSESHOE CRAB COAGULOGEN 4PDT ; 1.4 ; Japanese Marasmius oreades lectin 4TKC ; 1.29 ; Japanese Marasmius oreades lectin complexed with mannose 4BQU ; 2.36 ; Japanin from Rhipicephalus appendiculatus bound to cholesterol: Orthorhombic crystal form 4BOE ; 2.24 ; Japanin from Rhipicephalus appendiculatus bound to cholesterol: Tetragonal crystal form 7SBZ ; 2.9 ; JAR5 Fab bound to fHbp v1.1 crystallized in space group I422 8CCO ; 3.28 ; JAS-stabilized F-ActinII from Plasmodium falciparum 4X16 ; 1.8 ; JC Mad-1 polyomavirus VP1 in complex with GD1a oligosaccharide 4X17 ; 1.75 ; JC Mad-1 polyomavirus VP1 in complex with GD1b oligosaccharide 4X14 ; 2.3 ; JC Mad-1 polyomavirus VP1 in complex with GM1 oligosaccharide 4X15 ; 2.11 ; JC Mad-1 polyomavirus VP1 in complex with GM2 oligosaccharide 4X11 ; 2.3 ; JC Polyomavirus genotype 3 VP1 in complex with GD1a oligosaccharide 4X12 ; 1.9 ; JC Polyomavirus genotype 3 VP1 in complex with GD1b oligosaccharide 4X0Z ; 1.85 ; JC Polyomavirus genotype 3 VP1 in complex with GM1 oligosaccharide 4X10 ; 1.9 ; JC Polyomavirus genotype 3 VP1 in complex with GM2 oligosaccharide 4X13 ; 2.0 ; JC Polyomavirus genotype 3 VP1 in complex with LSTc pentasaccharide 8SUD ; 2.1 ; JC Polyomavirus LTA NLS bound to importin alpha 2 3NXG ; 1.95 ; JC polyomavirus VP1 4WDY ; 1.9 ; JC Polyomavirus VP1 five-fold pore mutant N221Q 4WDZ ; 1.8 ; JC Polyomavirus VP1 five-fold pore mutant N221W 4WE0 ; 2.1 ; JC Polyomavirus VP1 five-fold pore mutant P223M 4X0Y ; 1.7 ; JC polyomavirus VP1 from a genotype 3 strain 7ZIL ; 1.24 ; JC Polyomavirus VP1 in complex with 3'-Sialyllactose glycomacromolecules (aliphatic linker) 7ZIP ; 1.9 ; JC Polyomavirus VP1 in complex with 3'-Sialyllactose glycomacromolecules (aliphatic linker) 7ZIM ; 1.55 ; JC Polyomavirus VP1 in complex with 3'-Sialyllactose glycomacromolecules (aromatic linker) 7ZIN ; 1.648 ; JC Polyomavirus VP1 in complex with 6'-Sialyllactose glycomacromolecules (aliphatic linker) 7ZIO ; 1.751 ; JC Polyomavirus VP1 in complex with 6'-Sialyllactose glycomacromolecules (aromatic linker) 7PA8 ; 3.15 ; JC polyomavirus VP1 in complex with Fab 27C2 7PA9 ; 2.75 ; JC polyomavirus VP1 in complex with Fab 98D3 3NXD ; 2.0 ; JC polyomavirus VP1 in complex with LSTc 7PA6 ; 1.9 ; JC polyomavirus VP1 in complex with scFv 27C11 7PAA ; 3.102 ; JC polyomavirus VP1 in complex with scFv 29B1 5CYN ; 2.7 ; JC Virus large T-antigen origin binding domain F258L mutant 1KZK ; 1.09 ; JE-2147-HIV Protease Complex 2JEL ; 2.5 ; JEL42 FAB/HPR COMPLEX 5YWP ; 4.6 ; JEV-2H4 Fab complex 7UQ3 ; 1.49 ; JmjC domain-containing protein 5 (JMJD5) in complex with Mn and (S)-2-(1-hydroxy-2,5-dioxopyrrolidin-3-yl)acetic acid 6I9N ; 1.361 ; JmjC domain-containing protein 5 (JMJD5) in complex with Mn and L-2-hydroxyglutarate 6I9L ; 1.53 ; JmjC domain-containing protein 5 (JMJD5) in complex with Mn and pyridine-2,4-dicarboxylic acid (2,4-PDCA) 6I9M ; 1.65 ; JmjC domain-containing protein 5 (JMJD5) in complex with Mn and R-2-hydroxyglutarate 4BIS ; 2.493 ; JMJD2A COMPLEXED WITH 8-HYDROXYQUINOLINE-4-CARBOXYLIC ACID 4AI9 ; 2.25 ; JMJD2A Complexed with Daminozide 4V2W ; 1.81 ; JMJD2A COMPLEXED WITH NI(II), NOG AND HISTONE H3K27me3 PEPTIDE (16-35) 4V2V ; 2.0 ; JMJD2A COMPLEXED WITH NI(II), NOG AND HISTONE H3K27me3 PEPTIDE (25-29) ARK(me3)SA 5FWE ; 2.05 ; JMJD2A COMPLEXED WITH NI(II), NOG AND HISTONE H4(1-15)R3me2s PEPTIDE 2YBK ; 2.4 ; JMJD2A COMPLEXED WITH R-2-HYDROXYGLUTARATE 2YBP ; 2.02 ; JMJD2A COMPLEXED WITH R-2-HYDROXYGLUTARATE AND HISTONE H3K36me3 PEPTIDE (30-41) 2YBS ; 2.32 ; JMJD2A COMPLEXED WITH S-2-HYDROXYGLUTARATE AND HISTONE H3K36me3 PEPTIDE (30-41) 2QQR ; 1.8 ; JMJD2A hybrid tudor domains 5TVS ; 2.745 ; JMJD2A in complex with Ni(II) 5TVR ; 2.093 ; JMJD2A in complex with Ni(II) and alpha-Ketoglutarate 2QQS ; 2.82 ; JMJD2A tandem tudor domains in complex with a trimethylated histone H4-K20 peptide 5LY1 ; 2.5 ; JMJD2A/ KDM4A COMPLEXED WITH NI(II) AND Macrocyclic PEPTIDE Inhibitor CP2 (13-mer) 6H8P ; 1.983 ; JMJD2A/ KDM4A COMPLEXED WITH NI(II), NOG AND Histone H1.4(18-32)K26me3 peptide (15-mer) 5LY2 ; 2.43 ; JMJD2A/ KDM4A COMPLEXED WITH NI(II), NOG AND Macrocyclic PEPTIDE Inhibitor CP2_R6Kme3 (13-mer) 4GJZ ; 1.0481 ; JMJD5 in complex with 2-oxoglutarate 4GJY ; 1.2492 ; JMJD5 in complex with N-Oxalylglycine 5NFN ; 2.982 ; JMJD7 IN COMPLEX WITH MN AND 2OG IN THE H32 FORM 3G90 ; 2.4 ; JNK-3 bound to (Z)-5-fluoro-1-((6-fluoro-4H-benzo[d][1,3]dioxin-8-yl)methyl)-3-(hydroxyimino)indolin-2-one 3ELJ ; 1.8 ; Jnk1 complexed with a bis-anilino-pyrrolopyrimidine inhibitor. 3PZE ; 2.0 ; JNK1 in complex with inhibitor 4W4V ; 2.01 ; JNK2/3 in complex with 3-(4-{[(2-chlorophenyl)carbamoyl]amino}-1H-pyrazol-1-yl)-N-(2-methylpyridin-4-yl)benzamide 4W4X ; 2.65 ; JNK2/3 in complex with 3-(4-{[(4-fluorophenyl)carbamoyl]amino}-1H-pyrazol-1-yl)-N-(2-methylpyridin-4-yl)benzamide 4W4Y ; 2.3 ; JNK2/3 in complex with 3-(4-{[(4-methylphenyl)carbamoyl]amino}-1H-pyrazol-1-yl)-N-(2-methylpyridin-4-yl)benzamide 4W4W ; 1.9 ; JNK2/3 in complex with N-(2-methylpyridin-4-yl)-3-{4-[(phenylcarbamoyl)amino]-1H-pyrazol-1-yl}benzamide 8BZP ; 1.86 ; JNK3 (Mitogen-activated protein kinase 10) in Complex with Compound 23 bearing a C(sp3)F2Br moiety 3G9N ; 2.8 ; JNK3 bound to (Z)-1-((6-fluoro-4H-benzo[d][1,3]dioxin-8-yl)methyl)-3-(hydroxyimino)-4-phenylindolin-2-one 3G9L ; 2.2 ; JNK3 bound to (Z)-1-((6-fluoro-4H-benzo[d][1,3]dioxin-8-yl)methyl)-3-(hydroxyimino)-4-styrylindolin-2-one 3KVX ; 2.4 ; JNK3 bound to aminopyrimidine inhibitor, SR-3562 3FV8 ; 2.28 ; JNK3 bound to piperazine amide inhibitor, SR2774. 6AJZ ; 1.847 ; Joint nentron and X-ray structure of BRD4 in complex with colchicin 6AJZ ; 1.301 ; Joint nentron and X-ray structure of BRD4 in complex with colchicin 6FJI ; 2.033 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (apo). 6FJI ; 1.6 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (apo). 6FJJ ; 2.0 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (saccharin). 6FJJ ; 1.5 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (saccharin). 6GCY ; 2.0 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (saccharin-sugar conjugate complex) 6GCY ; 1.3 ; Joint neutron and x-ray crystal structure of human carbonic anhydrase IX mimic (saccharin-sugar conjugate complex) 7F4X ; 2.199 ; Joint neutron and X-ray crystal structure of the nucleotide-binding domain of Hsp72 in complex with ADP 7F4X ; 1.6 ; Joint neutron and X-ray crystal structure of the nucleotide-binding domain of Hsp72 in complex with ADP 3QZA ; 2.0 ; Joint neutron and X-ray structure of apo-D-Xylose Isomerase at pH=5.9 3QZA ; 1.7 ; Joint neutron and X-ray structure of apo-D-Xylose Isomerase at pH=5.9 3R98 ; 2.4 ; Joint Neutron and X-ray structure of Cytochrome c peroxidase 3R98 ; 2.1 ; Joint Neutron and X-ray structure of Cytochrome c peroxidase 3R99 ; 2.4 ; Joint Neutron and X-ray structure of Cytochrome c peroxidase 3R99 ; 2.1 ; Joint Neutron and X-ray structure of Cytochrome c peroxidase 3BYC ; 2.2 ; Joint neutron and X-ray structure of diisopropyl fluorophosphatase. Deuterium occupancies are 1-Q, where Q is occupancy of H 3BYC ; 2.2 ; Joint neutron and X-ray structure of diisopropyl fluorophosphatase. Deuterium occupancies are 1-Q, where Q is occupancy of H 4JEC ; 2.0 ; Joint neutron and X-ray structure of per-deuterated HIV-1 protease in complex with clinical inhibitor amprenavir 4JEC ; 2.01 ; Joint neutron and X-ray structure of per-deuterated HIV-1 protease in complex with clinical inhibitor amprenavir 7A0L ; 2.1 ; Joint neutron/X-ray room temperature structure of perdeuterated Aspergillus flavus urate oxidase in complex with the 8-azaxanthine inhibitor and catalytic water bound in the peroxo hole 7A0L ; 1.33 ; Joint neutron/X-ray room temperature structure of perdeuterated Aspergillus flavus urate oxidase in complex with the 8-azaxanthine inhibitor and catalytic water bound in the peroxo hole 7A0L ; ; Joint neutron/X-ray room temperature structure of perdeuterated Aspergillus flavus urate oxidase in complex with the 8-azaxanthine inhibitor and catalytic water bound in the peroxo hole 5NKU ; 2.35 ; Joint neutron/X-ray structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 5NKU ; 2.0 ; Joint neutron/X-ray structure of dimeric chlorite dismutase from Cyanothece sp. PCC7425 7KCU ; 2.215 ; Joint neutron/X-ray structure of Oxyferrous Dehaloperoxidase B 7KCU ; 2.2 ; Joint neutron/X-ray structure of Oxyferrous Dehaloperoxidase B 7JUN ; 2.5 ; Joint neutron/X-ray structure of SARS-CoV-2 3CL Mpro at room temperature 7JUN ; 2.3 ; Joint neutron/X-ray structure of SARS-CoV-2 3CL Mpro at room temperature 4N3M ; 1.904 ; Joint neutron/X-ray structure of urate oxidase in complex with 8-azaxanthine 4N3M ; 1.919 ; Joint neutron/X-ray structure of urate oxidase in complex with 8-azaxanthine 4N9M ; 2.298 ; Joint neutron/x-ray structure of urate oxidase in complex with 8-hydroxyxanthine 4N9M ; 2.023 ; Joint neutron/x-ray structure of urate oxidase in complex with 8-hydroxyxanthine 2LGC ; ; Joint NMR and X-ray refinement reveals the structure of a novel dibenzo[a,d]cycloheptenone inhibitor/p38 MAP kinase complex in solution 2JPR ; ; Joint refinement of the HIV-1 CA-NTD in complex with the assembly inhibitor CAP-1 4QDP ; 2.0 ; Joint X-ray and neutron structure of Streptomyces rubiginosus D-xylose isomerase in complex with two Cd2+ ions and cyclic beta-L-arabinose 4QDW ; 1.8 ; Joint X-ray and neutron structure of Streptomyces rubiginosus D-xylose isomerase in complex with two Ni2+ ions and linear L-arabinose 1T0K ; 3.24 ; Joint X-ray and NMR Refinement of Yeast L30e-mRNA complex 5KWF ; 2.214 ; Joint X-ray Neutron Structure of Cholesterol Oxidase 5KWF ; 1.499 ; Joint X-ray Neutron Structure of Cholesterol Oxidase 7BBI ; 2.2 ; Joint X-ray/neutron room temperature structure of H/D-exchanged PLL lectin 7BBI ; 1.7 ; Joint X-ray/neutron room temperature structure of H/D-exchanged PLL lectin 7BBI ; ; Joint X-ray/neutron room temperature structure of H/D-exchanged PLL lectin 7PRG ; 1.9 ; Joint X-ray/neutron room temperature structure of perdeuterated LecB lectin in complex with perdeuterated fucose 7PRG ; 1.85 ; Joint X-ray/neutron room temperature structure of perdeuterated LecB lectin in complex with perdeuterated fucose 7BBC ; 2.2 ; Joint X-ray/neutron room temperature structure of perdeuterated PLL lectin in complex with perdeuterated L-fucose 7BBC ; 1.84 ; Joint X-ray/neutron room temperature structure of perdeuterated PLL lectin in complex with perdeuterated L-fucose 5VJZ ; 2.21 ; Joint X-ray/neutron structure of aspartate aminotransferase with alpha-methyl-aspartate at pH 7.5 5VJZ ; 2.0 ; Joint X-ray/neutron structure of aspartate aminotransferase with alpha-methyl-aspartate at pH 7.5 7TUR ; 2.22 ; Joint X-ray/neutron structure of aspastate aminotransferase (AAT) in complex with pyridoxamine 5'-phosphate (PMP) 7TUR ; 1.7 ; Joint X-ray/neutron structure of aspastate aminotransferase (AAT) in complex with pyridoxamine 5'-phosphate (PMP) 5MON ; 1.42 ; Joint X-ray/neutron structure of cationic trypsin in complex with 2-aminopyridine 5MON ; 0.939 ; Joint X-ray/neutron structure of cationic trypsin in complex with 2-aminopyridine 5MOO ; 1.43 ; Joint X-ray/neutron structure of cationic trypsin in complex with aniline 5MOO ; 1.441 ; Joint X-ray/neutron structure of cationic trypsin in complex with aniline 5MOQ ; 1.502 ; Joint X-ray/neutron structure of cationic trypsin in complex with benzamidine 5MOQ ; 0.93 ; Joint X-ray/neutron structure of cationic trypsin in complex with benzamidine 5MOR ; 1.49 ; Joint X-ray/neutron structure of cationic trypsin in complex with benzylamine 5MOR ; 0.98 ; Joint X-ray/neutron structure of cationic trypsin in complex with benzylamine 5MOS ; 1.5 ; Joint X-ray/neutron structure of cationic trypsin in complex with N-amidinopiperidine 5MOS ; 0.96 ; Joint X-ray/neutron structure of cationic trypsin in complex with N-amidinopiperidine 5MOP ; 1.45 ; Joint X-ray/neutron structure of cationic trypsin in its apo form 5MOP ; 0.99 ; Joint X-ray/neutron structure of cationic trypsin in its apo form 5WEY ; 2.5 ; Joint X-ray/neutron structure of Concanavalin A with alpha1-2 D-mannobiose 5WEY ; 1.8 ; Joint X-ray/neutron structure of Concanavalin A with alpha1-2 D-mannobiose 6D4L ; 2.0 ; Joint X-ray/neutron structure of DNA oligonucleotide d(GTGGCCAC)2 with 2'-SeCH3 modification on Cyt5 6D4L ; 1.56 ; Joint X-ray/neutron structure of DNA oligonucleotide d(GTGGCCAC)2 with 2'-SeCH3 modification on Cyt5 5C6E ; 2.0 ; Joint X-ray/neutron structure of equine cyanomet hemoglobin in R state 5C6E ; 1.7 ; Joint X-ray/neutron structure of equine cyanomet hemoglobin in R state 5T8H ; 2.2 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with amprenavir at pH 6.0 5T8H ; 1.85 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with amprenavir at pH 6.0 5E5K ; 2.3 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with darunavir at pH 4.3 5E5K ; 1.75 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with darunavir at pH 4.3 5E5J ; 2.0 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with darunavir at pH 6.0 5E5J ; 1.85 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with darunavir at pH 6.0 6PTP ; 2.2 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with tetrahedral intermediate mimic KVS-1 6PTP ; 1.85 ; Joint X-ray/neutron structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with tetrahedral intermediate mimic KVS-1 3TMJ ; 2.0 ; Joint X-ray/neutron structure of human carbonic anhydrase II at pH 7.8 6BBS ; 2.0 ; Joint X-ray/neutron structure of human carbonic anhydrase II in complex with brinzolamide 6BC9 ; ; Joint X-ray/neutron structure of human carbonic anhydrase II in complex with dorzolamide 6BC9 ; 1.8 ; Joint X-ray/neutron structure of human carbonic anhydrase II in complex with dorzolamide 6BCC ; 1.8 ; Joint X-ray/neutron structure of human carbonic anhydrase II in complex with ethoxzolamide 5C8I ; 2.2 ; Joint X-ray/neutron structure of Human Carbonic Anhydrase II in complex with Methazolamide 5C8I ; 1.56 ; Joint X-ray/neutron structure of Human Carbonic Anhydrase II in complex with Methazolamide 5JPC ; 2.5 ; Joint X-ray/neutron structure of MTAN complex with Formycin A 5JPC ; 2.1 ; Joint X-ray/neutron structure of MTAN complex with Formycin A 5K1Z ; 2.6 ; Joint X-ray/neutron structure of MTAN complex with p-ClPh-Thio-DADMe-ImmA 5K1Z ; 2.25 ; Joint X-ray/neutron structure of MTAN complex with p-ClPh-Thio-DADMe-ImmA 5CCD ; 2.6 ; Joint X-ray/neutron structure of MTAN D198N complex with SAH 5CCD ; 2.2 ; Joint X-ray/neutron structure of MTAN D198N complex with SAH 6E21 ; 2.5 ; Joint X-ray/neutron structure of PKAc with products Sr2-ADP and phosphorylated peptide SP20 6E21 ; 2.0 ; Joint X-ray/neutron structure of PKAc with products Sr2-ADP and phosphorylated peptide SP20 6BQ8 ; 2.2 ; Joint X-ray/neutron structure of PKG II CNB-B domain in complex with 8-pCPT-cGMP 6BQ8 ; 2.0 ; Joint X-ray/neutron structure of PKG II CNB-B domain in complex with 8-pCPT-cGMP 4QXK ; 2.2 ; Joint X-ray/neutron structure of PKGIbeta in complex with cGMP 5ZN0 ; 1.9 ; Joint X-ray/neutron structure of protein kinase ck2 alpha subunit 5ZN0 ; 1.1 ; Joint X-ray/neutron structure of protein kinase ck2 alpha subunit 5EBJ ; 2.5 ; Joint X-ray/neutron structure of reversibly photoswitching chromogenic protein, Dathail 5EBJ ; 2.1 ; Joint X-ray/neutron structure of reversibly photoswitching chromogenic protein, Dathail 8EYP ; 2.1 ; Joint X-ray/neutron structure of Salmonella typhimurium tryptophan synthase internal aldimine from microgravity-grown crystal 8EYP ; 1.8 ; Joint X-ray/neutron structure of Salmonella typhimurium tryptophan synthase internal aldimine from microgravity-grown crystal 7TDU ; 2.2 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (3CL Mpro) in complex with BBH-1 7TDU ; 1.85 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (3CL Mpro) in complex with BBH-1 7LB7 ; 2.4 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (3CL Mpro) in complex with Telaprevir 7LB7 ; 2.0 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (3CL Mpro) in complex with Telaprevir 7N8C ; 2.5 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (Mpro) in complex with Mcule5948770040 7N8C ; 2.2 ; Joint X-ray/neutron structure of SARS-CoV-2 main protease (Mpro) in complex with Mcule5948770040 7UCR ; 2.25 ; Joint X-ray/neutron structure of the Sarcin-Ricin loop RNA 7UCR ; 1.0 ; Joint X-ray/neutron structure of the Sarcin-Ricin loop RNA 8SUJ ; 2.3 ; Joint X-ray/neutron structure of Thermus thermophilus serine hydroxymethyltransferase (TthSHMT) in internal aldimine state 8SUJ ; 2.0 ; Joint X-ray/neutron structure of Thermus thermophilus serine hydroxymethyltransferase (TthSHMT) in internal aldimine state 8SUI ; 2.3 ; Joint X-ray/neutron structure of Thermus thermophilus serine hydroxymethyltransferase (TthSHMT) in internal aldimine state with L-Ser bound in a pre-Michalis complex 8SUI ; 2.0 ; Joint X-ray/neutron structure of Thermus thermophilus serine hydroxymethyltransferase (TthSHMT) in internal aldimine state with L-Ser bound in a pre-Michalis complex 4S2F ; 2.0 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 4.4 4S2F ; 1.7 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 4.4 4S2G ; 2.0 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 5.8 4S2G ; 1.6 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 5.8 4S2H ; 1.7 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 8.5 4S2H ; 1.6 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II at pH 8.5 4S2D ; 2.0 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II in complex with MES at pH 5.7 4S2D ; 1.6 ; Joint X-ray/neutron structure of Trichoderma reesei xylanase II in complex with MES at pH 5.7 5CCE ; 2.5 ; Joint X-ray/neutron structure of wild type MTAN complexed with SRH and adenine 5CCE ; 1.82 ; Joint X-ray/neutron structure of wild type MTAN complexed with SRH and adenine 3KYX ; 1.675 ; Joint Xray/neutron crystal structure determination of fully perdeuterated rubredoxin at 295K 3KYY ; 1.66 ; Joint Xray/neutron crystal structure determination of H-labeled perdeuterated rubredoxin at 295K 3KYY ; 1.1 ; Joint Xray/neutron crystal structure determination of H-labeled perdeuterated rubredoxin at 295K 2XLR ; 2.55 ; Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: Asn78Asp mutant 2XLS ; 3.0 ; Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: Asn78Lys mutant 2XLP ; 2.8 ; Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: Asn78Ser mutant 2XLT ; 2.2 ; Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: complex with 3-Acetylpyridine adenine dinucleotide phosphate (APADP) 2XLU ; 2.6 ; Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: complex with thioNADP 4OZF ; 2.7 ; JR5.1 protein complex 6U3O ; 2.743 ; JR51 DQ2-p.aeru-alpha2a complex 7LVF ; ; Jug R 2 Leader Sequence Residues 1-57 7LVE ; ; Jug r 2 Leader Sequence Residues 117-161 7LVG ; ; Jug r 2 Leader Sequence Residues 69-111 8BFL ; 4.1 ; Jumbo Phage phi-kp24 empty capsid hexamers 8BFP ; 4.1 ; Jumbo Phage phi-kp24 empty capsid pentamer hexamers 8BFK ; 3.0 ; Jumbo Phage phi-kp24 tail inner tube 8AU1 ; 3.0 ; Jumbo Phage phi-kp24 tail outer sheath 6W2R ; 2.344 ; Junction 19, DHR54-DHR79 6W2V ; 2.399 ; Junction 23, DHR14-DHR18 6W2W ; 2.21 ; Junction 24, DHR14-DHR18 6W2Q ; 1.8 ; Junction 34, DHR53-DHR4 5NUZ ; 1.85 ; Junin virus GP1 glycoprotein in complex with an antibody Fab fragment 7QU2 ; 2.5 ; Junin virus GP1 glycoprotein in complex with Fab fragment of antibody JUN1 7EJU ; 3.5 ; Junin virus(JUNV) RNA polymerase L complexed with Z protein 5W1K ; 3.99 ; JUNV GP1 CR1-10 Fab CR1-28 Fab complex 8CIQ ; ; JzTx-34 toxin peptide 8CJQ ; ; JzTx-34 toxin peptide E20A mutant 8CJP ; ; JzTx-34 toxin peptide H18A mutant 8CJR ; ; JzTx-34 toxin peptide W25A mutant 8CJS ; ; JzTx-34 toxin peptide W31A mutant 8CJT ; ; JzTx-34 toxin peptide W33A mutant 6CHC ; ; JzTx-V toxin peptide, wild-type 2F93 ; 2.0 ; K Intermediate Structure of Sensory Rhodopsin II/Transducer Complex in Combination with the Ground State Structure 2AHZ ; 2.8 ; K+ complex of the NaK Channel 6JXH ; 2.5 ; K+-bound E2-MgF state of the gastric proton pump (Tyr799Trp) 5UFQ ; 2.199 ; K-RasG12D(GNP)/R11.1.6 complex 4ZY8 ; 2.14 ; K. lactis Lst4 longin domain 7LHZ ; 3.3 ; K. pneumoniae Topoisomerase IV (ParE-ParC) in complex with DNA and (3S)-10-[(3R)-3-(1-aminocyclopropyl)pyrrolidin-1-yl]-9-fluoro-3-methyl-5-oxo-2,3-dihydro-5H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid (compound 25) 6WAA ; 3.2 ; K. pneumoniae Topoisomerase IV (ParE-ParC) in complex with DNA and compound 34 (7-[(1S,5R)-1-amino-3-azabicyclo[3.1.0]hexan-3-yl]-4-(aminomethyl)-1-cyclopropyl-3,6-difluoro-8-methylquinolin-2(1H)-one) 6UZ7 ; 3.6 ; K.lactis 80S ribosome with p/PE tRNA and eIF5B 5E67 ; 2.2 ; K103A/K262A double mutant of I-SmaMI 1IKV ; 3.0 ; K103N Mutant HIV-1 Reverse Transcriptase in Complex with Efivarenz 1IKX ; 2.8 ; K103N Mutant HIV-1 Reverse Transcriptase in Complex with the Inhibitor PNU142721 6W6N ; 2.25 ; K106L/A131E mutant of cytochrome P460 from Nitrosomonas sp. AL212 2MBO ; ; K11-linked Diubiquitin average solution structure at pH 6.8, 0 mM NaCl 2MBQ ; ; K11-linked Diubiquitin average solution structure at pH 6.8, 150 mM NaCl 5XDP ; 2.376 ; K11/48-branched teraubiquitin 5GOK ; 1.84 ; K11/K63-branched tri-Ubiquitin 8IVB ; ; K113-Ubiquitinated BAK 4RRH ; 1.55 ; K116M mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA 4RRI ; 1.5 ; K116M mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA 4RRQ ; 1.79 ; K121M mutant of N-terminal editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi with L-Ser3AA 4RRR ; 1.86 ; K121M mutant of N-terminal editing domain of threonyl-tRNA synthetase from Pyrococcus abyssi with L-Thr3AA 4NFG ; 2.11 ; K13R mutant of horse cytochrome c and yeast cytochrome c peroxidase complex 8BHC ; 1.56 ; K141H and S142H double mutant of hGSTA1-1 8BHE ; 1.87 ; K141H and S142H double mutant of hGSTA1-1 6H90 ; 1.31 ; K145A variant of beta-phosphoglucomutase from Lactococcus lactis inhibited by beryllium trifluoride to 1.3 A. 4RNX ; 1.25 ; K154 Circular Permutation of Old Yellow Enzyme 1E6C ; 1.8 ; K15M MUTANT OF SHIKIMATE KINASE FROM ERWINIA CHRYSANTHEMI 8SLJ ; 2.101 ; K164A mutant of a chlorogenic acid esterase from Lactobacillus helveticus 5X8J ; 1.8 ; K16M mutant of thermus thermophilus HB8 thymidylate kinase 2VS6 ; 2.4 ; K173A, R174A, K177A-trichosanthin 4AHF ; 2.115 ; K17E - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 4AHE ; 2.08 ; K17I - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 1XWF ; 2.8 ; K185N mutated S-adenosylhomocysteine hydrolase 7OCL ; 1.8 ; K1K1, a potent recombinant minimal hepatocyte growth factor/scatter factor mimic 7OCM ; 1.7 ; K1K1H6, a potent recombinant minimal hepatocyte growth factor/scatter factor mimic 6JEU ; 2.1 ; K1U bound crystal peptide deformylase from Acinetobacter baumanii 6JF4 ; 2.0 ; K1U bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFD ; 2.4 ; K1U bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 6JFG ; 2.6 ; K1U bound crystal structure of class II peptide deformylase from methicillin resistant Staphylococcus aureus 6IKT ; 1.9 ; K1U complex structure of peptide deformylase from Xanthomonas oryzae pv. oryzae 4X2B ; 2.94 ; K20A RNA dependent RNA polymerase mutant from Foot-and-Mouth disease Virus complexed with an RNA 1A5M ; 2.0 ; K217A VARIANT OF KLEBSIELLA AEROGENES UREASE 1A5N ; 2.4 ; K217A VARIANT OF KLEBSIELLA AEROGENES UREASE, CHEMICALLY RESCUED BY FORMATE AND NICKEL 1A5L ; 2.2 ; K217C VARIANT OF KLEBSIELLA AEROGENES UREASE 1A5O ; 2.5 ; K217C VARIANT OF KLEBSIELLA AEROGENES UREASE, CHEMICALLY RESCUED BY FORMATE AND NICKEL 1A5K ; 2.2 ; K217E VARIANT OF KLEBSIELLA AEROGENES UREASE 1YJZ ; 2.1 ; K226M Mutant Of Serine Hydroxymethyltransferase From B. Stearothermophilus 1YJY ; 2.25 ; K226M Mutant Of Serine Hydroxymethyltransferase From B. Stearothermophilus, Complex With Serine 1YJS ; 2.0 ; K226Q Mutant Of Serine Hydroxymethyltransferase From B. Stearothermophilus, Complex With Glycine 1JDE ; 2.8 ; K22A mutant of pyruvate, phosphate dikinase 4FCF ; 1.09 ; K234R: apo structure of inhibitor resistant beta-lactamase 1SCI ; 2.18 ; K236L mutant of hydroxynitrile lyase from Hevea brasiliensis 1SCK ; 1.7 ; K236L mutant of hydroxynitrile lyase from Hevea brasiliensis in complex with acetone 1SCQ ; 2.9 ; K236L mutant of hydroxynitrile lyase from Hevea brasiliensis in complex with acetonecyanohydrin 6LDT ; 1.93 ; K245A mutant of L-tyrosine decarboxylase from Methanocaldococcus jannaschii complexed with a post-decarboxylation quinonoid-like intermediate formed with L-tyrosine 2R0P ; 2.1 ; K252c-soaked RebC 5E63 ; 2.6 ; K262A mutant of I-SmaMI 3B0X ; 1.36 ; K263A mutant of PolX from Thermus thermophilus HB8 complexed with Ca-dGTP 3B0Y ; 1.45 ; K263D mutant of PolX from Thermus thermophilus HB8 complexed with Ca-dGTP 2I3P ; 2.3 ; K28R mutant of Homing Endonuclease I-CreI 3ESZ ; 1.94 ; K2AK3A Flavodoxin from Anabaena 6W7B ; 3.88 ; K2P2.1 (TREK-1), 0 mM K+ 6W7C ; 3.4 ; K2P2.1 (TREK-1), 1 mM K+ 6W7D ; 3.5 ; K2P2.1 (TREK-1), 10 mM K+ 6W83 ; 3.901 ; K2P2.1 (TREK-1), 100 mM K+ 6W84 ; 3.7 ; K2P2.1 (TREK-1), 200 mM K+ 6W7E ; 3.29 ; K2P2.1 (TREK-1), 30 mM K+ 6W82 ; 3.6 ; K2P2.1 (TREK-1), 50 mM K+ 6W8F ; 3.4 ; K2P2.1 (TREK-1):ML335 complex, 0 mM K+ 6W8C ; 2.6 ; K2P2.1 (TREK-1):ML335 complex, 1 mM K+ 6W8A ; 3.002 ; K2P2.1 (TREK-1):ML335 complex, 10 mM K+ 6W86 ; 3.299 ; K2P2.1 (TREK-1):ML335 complex, 100 mM K+ 6W85 ; 3.8 ; K2P2.1 (TREK-1):ML335 complex, 200 mM K+ 6W88 ; 3.2 ; K2P2.1 (TREK-1):ML335 complex, 30 mM K+ 6W87 ; 3.2 ; K2P2.1 (TREK-1):ML335 complex, 50 mM K+ 6CQ6 ; 3.1 ; K2P2.1(TREK-1) apo structure 6CQ8 ; 3.0 ; K2P2.1(TREK-1):ML335 complex 6CQ9 ; 2.8 ; K2P2.1(TREK-1):ML402 complex 6V36 ; 3.4 ; K2P2.1(TREK-1)I110D apo channel structure 6V3C ; 3.51 ; K2P2.1(TREK-1)I110D:Ru360 bound channel structure 6V3I ; 3.4 ; K2P2.1(TREK-1)I110D:RuR bound channel structure 6V37 ; 2.8 ; K2P2.1(TREK-1)I110D:RuR:ML335 bound channel structure 2XTH ; 1.8 ; K2PtBr6 binding to lysozyme 6JEV ; 1.9 ; K2U bound crystal structure of class I type a peptide deformylase from Acinetobacter baumanii 6JF5 ; 2.0 ; K2U bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFE ; 2.1 ; K2U bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 6JFQ ; 2.2 ; K2U bound crystal structure of class II peptide deformylase from methicillin resistant Staphylococcus aureus 6IKY ; 1.9 ; K2U complex structure of peptide deformylase from Xanthomonas oryzae pv. oryzae 3EWX ; 1.4 ; K314A mutant of human orotidyl-5'-monophosphate decarboxylase in complex with 6-azido-UMP, degraded to BMP 3EWY ; 1.1 ; K314A mutant of human orotidyl-5'-monophosphate decarboxylase soaked with OMP, decarboxylated to UMP 3AM5 ; 2.05 ; K316A mutant of Enoyl-ACP Reductase from Plasmodium falciparum (PfENR) in complex with triclosan 5OHM ; 3.8 ; K33-specific affimer bound to K33 diUb 5OHV ; 2.801 ; K33-specific affimer bound to K33 diUb 8AFG ; 2.45 ; K352D oxalyl-CoA synthetase Pcs60p 8STW ; 2.4 ; K384N HUMAN CYSTATHIONINE BETA-SYNTHASE (delta 411-551) 1SX5 ; 1.5 ; K38A EcoRV bound to cleaved DNA and Mn2+: P1 crystal form 1J9M ; 1.65 ; K38H mutant of Streptomyces K15 DD-transpeptidase 7ZSK ; 6.8 ; K3DAK4 bimodule core of BGC11 from Brevibacillus brevis. 6JEW ; 2.0 ; K3U bound crystal peptide deformylase from Acinetobacter baumanii 6JF7 ; 2.0 ; K3U bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFF ; 2.1 ; K3U bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 6JFR ; 2.4 ; K3U bound crystal structure of class II peptide deformylase from methicillin resistant Staphylococcus aureus 6IL0 ; 1.93 ; K3U complex structure of peptide deformylase from Xanthomonas oryzae pv. oryzae 7ZVE ; 2.28 ; K403 acetylated glucose-6-phosphate dehydrogenase (G6PD) 4AHI ; 2.798 ; K40I - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 5C2D ; 1.59 ; K428A mutant gp2c of large terminase subunit from bacteriophage sf6 with calcium 5C15 ; 1.57 ; K428A mutant nuclease domain of the large terminase subunit gp2 of bacterial virus Sf6 with Manganese 5C2F ; 1.86 ; K428A mutant nuclease domain of the large terminase subunit gp2 of bacterial virus Sf6 with Manganese and beta-thujaplicinol 1NZ2 ; 1.9 ; K45E Variant of Horse Heart Myoglobin 1NZ3 ; 1.6 ; K45E-K63E Variant of Horse Heart Myoglobin 6NO6 ; 1.911 ; K46bE&K114bD mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase 8PQL ; 3.76 ; K48-linked ubiquitin chain formation with a cullin-RING E3 ligase and Cdc34: NEDD8-CUL2-RBX1-ELOB/C-FEM1C with trapped UBE2R2-donor UB-acceptor UB-SIL1 peptide 6JEX ; 2.11 ; K4U bound crystal peptide deformylase from Acinetobacter baumanii 6JF8 ; 1.7 ; K4U bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFN ; 2.04 ; K4U bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 6JFS ; 2.25 ; K4U bound crystal structure of class II peptide deformylase from methicillin resistant Staphylococcus aureus 6IL2 ; 2.41 ; K4U complex structure of peptide deformylase from Xanthomonas oryzae pv. oryzae 4AHK ; 1.97 ; K54E - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 7ZXJ ; 1.249 ; K563A Mutant of Recombinant CODH-II 7ZXX ; 1.4 ; K563H Mutant of Recombinant CODH-II 5OHL ; 2.5 ; K6-specific affimer bound to K6 diUb 7DNJ ; 3.3 ; K63-polyUb MDA5CARDs complex 3JYT ; 3.3 ; K65R mutant HIV-1 reverse transcriptase cross-linked to DS-DNA and complexed with DATP as the incoming nucleotide substrate 3JSM ; 3.0 ; K65R mutant HIV-1 reverse transcriptase cross-linked to DS-DNA and complexed with tenofovir-diphosphate as the incoming nucleotide substrate 7ZVD ; 2.46 ; K89 acetylated glucose-6-phosphate dehydrogenase (G6PD) in a complex with structural NADP+ 1K89 ; 2.05 ; K89L MUTANT OF GLUTAMATE DEHYDROGENASE 2VLO ; 1.8 ; K97A mutant of E9 DNase domain in complex with Im9 3NJG ; 1.92 ; K98A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis. 5N8Y ; 4.7 ; KaiCBA circadian clock backbone model based on a Cryo-EM density 3T9H ; 2.015 ; Kainate bound to a double cysteine mutant (A452C/S652C) of the ligand binding domain of GluA2 4F31 ; 2.286 ; Kainate bound to the D655A mutant of the ligand binding domain of GluA3 4F22 ; 2.06 ; Kainate bound to the K660A mutant of the ligand binding domain of GluA3 4F39 ; 1.834 ; Kainate bound to the ligand binding domain of GluA3 4F3G ; 2.064 ; Kainate bound to the ligand binding domain of GluA3i 7F57 ; 3.8 ; Kainate-bound GluK2-1xNeto2 complex, at the desensitized state 6DFA ; 1.908 ; Kaiso (ZBTB33) E535A zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS) 5VMZ ; 2.319 ; Kaiso (ZBTB33) E535Q mutant zinc finger DNA binding domain in complex with a double CpG-methylated DNA resembling the specific Kaiso binding sequence (KBS) 6DF9 ; 2.319 ; Kaiso (ZBTB33) E535Q zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS) 6DFB ; 1.66 ; Kaiso (ZBTB33) K539A zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS) 5VMU ; 2.346 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with a double CpG-methylated DNA resembling the specific Kaiso binding sequence (KBS) 5VMW ; 2.397 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with a double CpG-methylated DNA resembling the specific Kaiso binding sequence (KBS) 5VMX ; 2.05 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with a hemi CpG-methylated DNA resembling the specific Kaiso binding sequence (KBS) 5VMY ; 2.002 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with a hemi CpG-methylated DNA resembling the specific Kaiso binding sequence (KBS) 6V8U ; 2.103 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with a modified Kaiso binding sequence (KBS) 5VMV ; 2.313 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with its double CpG-methylated DNA consensus binding site 6DF5 ; 1.819 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS) 6DFC ; 1.85 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS) with a T-to-U substitution 6DF8 ; 2.536 ; Kaiso (ZBTB33) zinc finger DNA binding domain in complex with the specific Kaiso binding sequence (KBS), pH 6.5 2MW0 ; ; Kalata B7 Ser mutant 1KTX ; ; KALIOTOXIN (1-37) SHOWS STRUCTURAL DIFFERENCES WITH RELATED POTASSIUM CHANNEL BLOCKERS 2KR9 ; ; Kalirin DH1 NMR structure 8GI8 ; 2.88 ; Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) embedded in peptidisc 1HIA ; 2.4 ; KALLIKREIN COMPLEXED WITH HIRUSTASIN 5FAH ; 1.1 ; KALLIKREIN-7 IN COMPLEX WITH COMPOUND1 5LPF ; 2.7 ; Kallikrein-related peptidase 10 5LPE ; 2.65 ; Kallikrein-related peptidase 10 complex with Zn2+ 5MS3 ; 2.3 ; Kallikrein-related peptidase 8 calcium complex 5MS4 ; 2.1 ; Kallikrein-related peptidase 8 leupeptin inhibitor complex 1KNY ; 2.5 ; KANAMYCIN NUCLEOTIDYLTRANSFERASE 5OWU ; 2.0 ; Kap95:Nup1 complex 3EA5 ; 2.5 ; Kap95p Binding Induces the Switch Loops of RanGDP to adopt the GTP-bound Conformation: Implications for Nuclear Import Complex Assembly Dynamics 2BKU ; 2.7 ; Kap95p:RanGTP complex 7QTX ; 2.11599 ; Kaposi sarcoma associated herpes virus (KSHV) encoded apoptosis inhibitor, KsBcl-2 in complex with Puma BH3 7QTW ; 1.41 ; Kaposi sarcoma associated herpes virus(KSHV) encoded apoptosis inhibitor, KsBcl-2 in complex with Bid BH3 5UR3 ; 1.8 ; Kaposi's Sarcoma Herpesvirus Protease in Complex with Allosteric Inhibitor 5UTE ; 2.05 ; Kaposi's Sarcoma Herpesvirus Protease in Complex with Allosteric Inhibitor 5UTN ; 1.8 ; Kaposi's Sarcoma Herpesvirus Protease in Complex with Allosteric Inhibitor 5UV3 ; 1.95 ; Kaposi's Sarcoma Herpesvirus Protease in Complex with Allosteric Inhibitor 5UVP ; 1.94 ; Kaposi's Sarcoma Herpesvirus Protease in Complex with Allosteric Inhibitor 6PPD ; 3.7 ; Kaposi's sarcoma-associated herpesvirus (KSHV), C1 penton vertex register, CATC-absent structure 6PPH ; 3.8 ; Kaposi's sarcoma-associated herpesvirus (KSHV), C1 penton vertex register, CATC-binding structure 6PPI ; 4.7 ; Kaposi's sarcoma-associated herpesvirus (KSHV), C12 portal dodecamer structure 6PPB ; 4.3 ; Kaposi's sarcoma-associated herpesvirus (KSHV), C5 portal vertex structure 1QP1 ; 2.06 ; KAPPA VARIABLE LIGHT CHAIN 1EK3 ; 1.9 ; KAPPA-4 IMMUNOGLOBULIN VL, REC 1HP9 ; ; kappa-Hefutoxins: a novel Class of Potassium Channel Toxins from Scorpion venom 1BK6 ; 2.8 ; KARYOPHERIN ALPHA (YEAST) + SV40 T ANTIGEN NLS 1BK5 ; 2.2 ; KARYOPHERIN ALPHA FROM SACCHAROMYCES CEREVISIAE 2QMR ; 3.0 ; Karyopherin beta2/transportin 2OT8 ; 3.1 ; Karyopherin Beta2/Transportin-hnRNPM NLS Complex 2H4M ; 3.05 ; Karyopherin Beta2/Transportin-M9NLS 3IBV ; 3.1 ; Karyopherin cytosolic state 3ICQ ; 3.2 ; Karyopherin nuclear state 2BYX ; 2.0 ; KAS I LYS328ALA Mutant in complex with fatty acid 7BE9 ; 4.2 ; Kashmir bee virus empty particle at acidic pH 5WC1 ; 3.3 ; katanin AAA ATPase domain 5WC0 ; 4.4 ; katanin hexamer in spiral conformation 5WCB ; 6.0 ; Katanin hexamer in the ring conformation 6UGE ; 3.6 ; Katanin hexamer in the ring conformation in complex with substrate 6UGF ; 4.2 ; Katanin hexamer in the ring conformation with resolved protomer one in complex with substrate 6UGD ; 3.5 ; Katanin hexamer in the spiral conformation in complex with substrate 6JQQ ; 2.4 ; KatE H392C from Escherichia coli 5DAE ; 1.4 ; Kazal type inhibitor from salivary glands of Aedes aegypti mosquito 7BG8 ; 4.0 ; KBV activated particle at acidic pH 6M22 ; 2.7 ; KCC3 bound with DIOA 8SIN ; 6.8 ; KCNQ1 with voltage sensor in the down conformation 8SIM ; 6.2 ; KCNQ1 with voltage sensor in the intermediate conformation 8SIK ; 2.9 ; KCNQ1 with voltage sensor in the up conformation 6H9L ; 2.19 ; Kcr_0859 delta TM from Korarchaeum cryptofilum 3OGC ; 3.8 ; KcsA E71A variant in presence of Na+ 3HPL ; 3.2 ; KcsA E71H-F103A mutant in the closed state 7MHX ; 2.85 ; KcsA E71V closed gate with Ba2+ 7MHR ; 2.77 ; KcsA E71V closed gate with K+ 5J9P ; 2.85 ; KcsA in vitro 8THN ; 2.9 ; KcsA M96V mutant with Y78ester in High K+ 7MUB ; 3.0 ; KcsA Open gate E71V mutant in Potassium 7MJT ; 3.3 ; KcsA open gate E71V mutant with Barium 7MK6 ; 3.1 ; KcsA open gate E71V mutant with sodium 3FB8 ; 3.4 ; KcsA Potassium channel in the open-conductive state with 20 A opening at T112 in the presence of Rb+ ion 3F7V ; 3.2 ; KcsA Potassium channel in the open-inactivated state with 23 A opening at T112 3F5W ; 3.3 ; KcsA Potassium channel in the open-inactivated state with 32 A opening at T112 3FB5 ; 2.8 ; KcsA potassium channel in the partially open state with 14.5 A opening at T112 3FB6 ; 3.0 ; KcsA Potassium channel in the partially open state with 16 A opening at T112 3F7Y ; 3.4 ; KcsA Potassium channel in the partially open state with 17 A opening at T112 3STL ; 2.4 ; KcsA potassium channel mutant Y82C with Cadmium bound 3STZ ; 2.5 ; KcsA potassium channel mutant Y82C with nitroxide spin label 1J95 ; 2.8 ; KCSA potassium channel with TBA (tetrabutylammonium) and potassium 1JVM ; 2.8 ; KCSA POTASSIUM CHANNEL WITH TBA (TETRABUTYLAMMONIUM) AND RUBIDIUM 5EBL ; 2.3 ; KcsA T75G in the Conductive State 5EBM ; 2.5 ; KcsA T75G mutant in the nonconductive state 5EBW ; 2.3 ; KcsA with G77ester mutation 5EC1 ; 2.75 ; KcsA with V76ester mutation 5EC2 ; 2.3 ; KcsA with V76ester+G77dA mutations 8U80 ; 3.6 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: Local Refinment of KCTD5(BTB)/Cullin3(NTD) 8U7Z ; 2.97 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: Local Refinment of KCTD5(CTD)/Gbeta1gamma2 8U81 ; 3.82 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: State A From Composite RELION Multi-body Refinement Map 8U82 ; 3.84 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: State B From Composite RELION Multi-body Refinement Map 8U83 ; 3.975 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: State C From Composite RELION Multi-body Refinement Map 8U84 ; 3.88 ; KCTD5/Cullin3/Gbeta1gamma2 Complex: State D From Composite RELION Multi-body Refinement Map 4BQD ; 2.48 ; KD1 of human TFPI in complex with a synthetic peptide 4FQE ; 1.93 ; KdgM porin 4PR7 ; 2.1 ; KdgM porin in complex with disordered oligogalacturonate 7UV9 ; 3.2 ; KDM2A-nucleosome structure stabilized by H3K36C-UNC8015 covalent conjugate 5KR7 ; 1.9 ; KDM4C bound to pyrazolo-pyrimidine scaffold 1X6U ; 2.7 ; KDO8P synthase in it's binary complex with the product KDO8P 6U57 ; 2.8 ; KDO8PS Structure Determined at the EuXFEL using Segmented Flow Injection 1FQ0 ; 2.1 ; KDPG ALDOLASE FROM ESCHERICHIA COLI 2V82 ; 2.1 ; KDPGal complexed to KDPGal 3WZD ; 1.57 ; KDR in complex with ligand lenvatinib 3WZE ; 1.9 ; KDR in complex with ligand sorafenib 6HWS ; 1.75 ; Keap1 - inhibitor complex 6FMP ; 2.92 ; Keap1 - peptide complex 6FMQ ; 2.1 ; Keap1 - peptide complex 7Q5H ; 2.31 ; Keap1 compound complex 7Q6Q ; 2.55 ; Keap1 compound complex 7Q6S ; 2.143 ; Keap1 compound complex 7Q8R ; 2.282 ; Keap1 compound complex 7Q96 ; 2.415 ; Keap1 compound complex 6SP4 ; 2.59 ; KEAP1 IN COMPLEX WITH COMPOUND 23 6T7Z ; 2.0 ; KEAP1 IN COMPLEX WITH COMPOUND 44 6SP1 ; 2.57 ; KEAP1 IN COMPLEX WITH COMPOUND 6 6T7V ; 2.6 ; KEAP1 IN COMPLEX WITH PEPTIDE 8 7XM5 ; 2.4 ; Keap1 Kelch domain (residues 322-609) in complex with 6i 6ZEW ; 1.38 ; Keap1 kelch domain bound to a small molecule fragment 6ZEX ; 1.98 ; Keap1 kelch domain bound to a small molecule fragment 7OF8 ; 1.78 ; Keap1 kelch domain bound to a small molecule fragment 7OF9 ; 1.8 ; Keap1 kelch domain bound to a small molecule fragment 7OFA ; 2.22 ; Keap1 kelch domain bound to a small molecule fragment 7OFB ; 2.4 ; Keap1 kelch domain bound to a small molecule fragment 7OFC ; 1.97 ; Keap1 kelch domain bound to a small molecule fragment 7OFD ; 1.25 ; Keap1 kelch domain bound to a small molecule fragment 6ZEY ; 1.801 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZEZ ; 2.55 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF0 ; 1.6 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF1 ; 1.74 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF2 ; 2.2 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF3 ; 1.28 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF4 ; 1.21 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF5 ; 1.29 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF6 ; 1.38 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF7 ; 1.37 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6ZF8 ; 1.75 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 7OFE ; 1.19 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 7OFF ; 1.37 ; Keap1 kelch domain bound to a small molecule inhibitor of the Keap1-Nrf2 protein-protein interaction 6TYP ; 2.5 ; KEAP1 Kelch domain in complex with Compound 2 6TYM ; 1.422 ; KEAP1 Kelch domain in complex with Compound 9 6Z6A ; 2.37 ; Keap1 macrocycle complex 3L9X ; 2.1 ; KefC C-terminal domain in complex with KefF and ESG 3L9W ; 1.75 ; KefC C-terminal domain in complex with KefF and GSH 5WHL ; 2.5 ; Kelch domain of human Keap1 bound to inhibitory small molecule fragment: hydroxyphenyl propionic acid 5WG1 ; 2.021 ; Kelch domain of human Keap1 bound to mutant Nrf2 EAGE peptide 7K2Q ; 2.37 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[Ahx-DPETGE] 7K2K ; 1.98 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[BAL-DEETGE] 7K2L ; 1.98 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[BAL-NPETGE] 8EHV ; 2.29 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[DhA-GDPET(bAla)E] 7K2S ; 2.13 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[DhA-GDPETGE] 7K2F ; 2.37 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GAEETGE] 7K2I ; 2.42 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GAPETGE] 7K2G ; 2.15 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GDEEAGE] 7K2J ; 2.52 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GDPEAGE] 7K2H ; 2.09 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GDPETGE] 7K2M ; 2.02 ; Kelch domain of human KEAP1 bound to Nrf2 cyclic peptide, c[GEPETGE] 5WFV ; 1.91 ; Kelch domain of human Keap1 bound to Nrf2 ETGE peptide 8EJS ; 2.82 ; Kelch domain of human KEAP1 bound to Nrf2 linear peptide, Ac-(BAla)DPETGE-NH2 7K2D ; 2.21 ; Kelch domain of human KEAP1 bound to Nrf2 linear peptide, Ac-GDEETGE-NH2 8EJR ; 2.08 ; Kelch domain of human KEAP1 bound to Nrf2 linear peptide, Ac-GDPETGE-NH2 7K2C ; 2.11 ; Kelch domain of human KEAP1 bound to Nrf2 peptide, ADEETGEAA 7K2B ; 2.31 ; Kelch domain of human KEAP1 bound to Nrf2 peptide, ADEETGEFA 7K28 ; 2.15 ; Kelch domain of human KEAP1 bound to Nrf2 peptide, ADEETGEFL 7K29 ; 2.2 ; Kelch domain of human KEAP1 bound to Nrf2 peptide, LDEETGEAL 7K2A ; 1.9 ; Kelch domain of human KEAP1 bound to Nrf2 peptide, LDEETGEFA 7K2P ; 2.11 ; Kelch domain of human KEAP1 bound to Nrf2-based cyclic peptide, c[AVA-DPETGE] 7K2N ; 2.22 ; Kelch domain of human KEAP1 bound to Nrf2-based cyclic peptide, c[BAL-DEETGE] 7K2O ; 2.11 ; Kelch domain of human KEAP1 bound to Nrf2-based cyclic peptide, c[GABA-DPETGE] 7K2E ; 2.03 ; Kelch domain of human KEAP1 bound to Nrf2-based cyclic peptide, c[GDEETGE] 7K2R ; 2.1 ; Kelch domain of human KEAP1 bound to Nrf2-based cyclic peptide, c[LhA-DEETGE] 5WIY ; 2.23 ; Kelch domain of human Keap1 bound to small molecule inhibitor fragment: 4-amino-1,7-dihydro-6H-pyrazolo[3,4-d]pyrimidine-6-thione 5WHO ; 2.23 ; Kelch domain of human Keap1 bound to small molecule inhibitor fragment: 4-oxo-4H-1-benzopyran-2-carboxylic acid 5WFL ; 1.93 ; Kelch domain of human Keap1 in open unliganded conformation 8PKX ; 1.79 ; Kelch domain of KEAP1 in complex with a ortho-dimethylbenzene linked cyclic peptide 11 (ortho-WRCNPETaEC). 8PKV ; 1.55 ; Kelch domain of KEAP1 in complex with a ortho-dimethylbenzene linked cyclic peptide 4 (ortho-WRCDEETGEC). 8PKW ; 1.54 ; Kelch domain of KEAP1 in complex with a ortho-dimethylbenzene linked cyclic peptide 5 (ortho-WRCDPETaEC). 8PKU ; 1.73 ; Kelch domain of KEAP1 in complex with ortho-dimethylbenzene linked cyclic peptide 3 (ortho-WRCDEETGEC). 6SS1 ; 1.1 ; Kemp Eliminase HG3.17 mutant Q50A, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 6SRW ; 1.45 ; Kemp Eliminase HG3.17 mutant Q50F, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 6SRZ ; 1.4 ; Kemp Eliminase HG3.17 mutant Q50H, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 6SS3 ; 1.15 ; Kemp Eliminase HG3.17 mutant Q50K, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 6TU6 ; 1.05 ; Kemp Eliminase HG3.17 mutant Q50M, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 6SRY ; 0.95 ; Kemp Eliminase HG3.17 mutant Q50S, E47N, N300D Complexed with Transition State Analog 6-Nitrobenzotriazole 7KJT ; 3.34 ; KEOPS tRNA modifying sub-complex of archaeal Cgi121 and tRNA 3FR7 ; 1.55 ; ketol-acid reductoisomerase (KARI) in complex with Mg2+ 4TSK ; 2.5 ; Ketol-acid reductoisomerase from Alicyclobacillus acidocaldarius 7Q03 ; 2.1 ; Ketol-acid reductoisomerase from Methanothermococcus thermolithotrophicus in the close state with NADP and Mg2+ 7Q07 ; 2.2 ; Ketol-acid reductoisomerase from Methanothermococcus thermolithotrophicus in the open state with NADP and tartrate 1KS9 ; 1.7 ; Ketopantoate Reductase from Escherichia coli 2G1N ; 2.9 ; Ketopiperazine-based renin inhibitors: Optimization of the ""C"" ring 2G1O ; 2.7 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G1Y ; 2.5 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G21 ; 2.2 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G22 ; 2.5 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G24 ; 1.9 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G26 ; 2.1 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2G27 ; 2.9 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the ""C"" Ring 2FS4 ; 2.2 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the C ring 2G1R ; 2.42 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the C Ring 2G1S ; 2.5 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the C Ring 2G20 ; 2.4 ; Ketopiperazine-Based Renin Inhibitors: Optimization of the C Ring 7XWU ; 2.0 ; Ketoreductase CpKR mutant - M1 8H61 ; 1.9 ; Ketoreductase CpKR mutant - M2 6WH9 ; 2.75 ; Ketoreductase from module 1 of the 6-deoxyerythronolide B synthase (KR1) in complex with antibody fragment (Fab) 1D10 6W7S ; 2.25 ; Ketoreductase from module 1 of the 6-deoxyerythronolide B synthase (KR1) in complex with antibody fragment (Fab) 2G10 5KTK ; 1.98 ; Ketoreductase from module 3 of the bacillaene synthase from Bacillus subtilis 168 5ZFM ; 2.0 ; Ketoreductase LbCR mutant - M6 5ZI0 ; 2.302 ; Ketoreductase LbCR mutant - M8 1E3J ; 2.3 ; Ketose reductase (sorbitol dehydrogenase) from silverleaf whitefly 6UAD ; 1.75 ; Ketosteroid isomerase (C. testosteroni) with truncated & designed loop for precise positioning of a catalytic E38 6UAE ; 1.93 ; Ketosteroid isomerase (C. testosteroni) with truncated & designed loop for precise positioning of a catalytic E38 7EPN ; 1.9 ; Ketosteroid Isomerase KSI native 7EPO ; 2.35 ; Ketosteroid Isomerase KSI with 5-nitrobenzoxazole (5NBI) 6QSP ; 1.45 ; Ketosynthase (ApeO) in Complex with its Chain Length Factor (ApeC) from Xenorhabdus doucetiae 7ZM9 ; 1.62 ; Ketosynthase domain 3 of Brevibacillus Brevis orphan BGC11 6KOG ; 1.68 ; Ketosynthase domain in tenuazonic acid synthetase 1 (TAS1). 7ZMD ; 2.93 ; Ketosynthase domain of module 3 from Brevibacillus Brevis orphan BGC11 7ZMA ; 2.9 ; Ketosynthase domain of module 4 from Brevibacillus Brevis orphan BGC11 7ZMC ; 3.1 ; Ketosynthase domain of module 4 from Brevibacillus Brevis orphan BGC11 5ELP ; 2.93 ; Ketosynthase from module 1 of the bacillaene synthase from Bacillus amyloliquefaciens FZB42 5ERB ; 4.2 ; Ketosynthase from module 5 of the bacillaene synthase from Bacillus amyloliquefaciens FZB42 5ENY ; 4.0 ; Ketosynthase from module 6 connected to acyl carrier protein from module 5 (unobservable) of the bacillaene synthase from Bacillus subtilis 168 5ERF ; 3.1 ; Ketosynthase from module 6 of the bacillaene synthase from Bacillus subtilis 168 5E5N ; 2.0 ; Ketosynthase from module 6 of the bacillaene synthase from Bacillus subtilis 168 (C167S mutant, crystal form 1) 5E6K ; 2.16 ; Ketosynthase from module 6 of the bacillaene synthase from Bacillus subtilis 168 (C167S mutant, crystal form 2) 4V2P ; 1.67 ; Ketosynthase MxnB 2GKW ; 2.7 ; Key contacts promote recongnito of BAFF-R by TRAF3 6F8N ; 1.45 ; Key residues affecting transglycosylation activity in family 18 chitinases - Insights into donor and acceptor subsites 1MDV ; 2.3 ; KEY ROLE OF PHENYLALANINE 20 IN CYTOCHROME C3: STRUCTURE, STABILITY AND FUNCTION STUDIES 4BED ; 9.0 ; Keyhole limpet hemocyanin (KLH): 9A cryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units 5X3I ; 2.1 ; Kfla1895 D451A mutant 5X3J ; 2.3 ; Kfla1895 D451A mutant in complex with cyclobis-(1->6)-alpha-nigerosyl 5X3K ; 2.5 ; Kfla1895 D451A mutant in complex with isomaltose 3N89 ; 2.789 ; KH domains 2FMR ; ; KH1 FROM THE FRAGILE X PROTEIN FMR1, NMR, 18 STRUCTURES 3CDC ; 1.53 ; kI O18/O8 N34I/Y87H immunoglobulin light chain variable domain 3CDF ; 1.53 ; kI O18/O8 Y87H immunoglobulin light chain variable domain 8Q8K ; 2.7 ; KI Polyomavirus LTA NLS bound to importin alpha 2 5J28 ; 2.0 ; Ki67-PP1g (protein phosphatase 1, gamma isoform) holoenzyme complex 6NMU ; 2.55 ; Kick-Off Fab 115 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 1M1F ; 1.4 ; Kid toxin protein from E.coli plasmid R1 1KBP ; 2.65 ; KIDNEY BEAN PURPLE ACID PHOSPHATASE 3KBP ; 3.0 ; KIDNEY BEAN PURPLE ACID PHOSPHATASE 4KBP ; 2.7 ; KIDNEY BEAN PURPLE ACID PHOSPHATASE 6WWU ; 2.7 ; KIF14[391-735] - ADP-AlFx in complex with a microtubule 6WWV ; 3.1 ; KIF14[391-735] - ANP-PNP in complex with a microtubule 6WWQ ; 3.0 ; KIF14[391-743] - ADP in complex with a microtubule 7LVR ; 2.9 ; KIF14[391-743] - ADP-AlFx closed state class in complex with a microtubule 6WWR ; 2.7 ; Kif14[391-743] - ADP-AlFx open state class in complex with a microtubule 7LVQ ; 2.9 ; KIF14[391-743] - AMP-PNP closed state class in complex with a microtubule 6WWS ; 2.7 ; Kif14[391-743] - AMP-PNP open state class in complex with a microtubule 6WWM ; 2.8 ; KIF14[391-748] - ADP in complex with a microtubule 6WWN ; 3.5 ; KIF14[391-748] - ADP-AlFx in complex with a microtubule 6WWO ; 2.8 ; KIF14[391-748] - AMP-PNP in complex with a microtubule 6WWJ ; 3.4 ; KIF14[391-755] - ADP in complex with a microtubule 6WWK ; 3.0 ; KIF14[391-755] dimer two-heads-bound state - ADP-AlFx in complex with a microtubule 6WWL ; 3.1 ; KIF14[391-755] dimer two-heads-bound state - AMP-PNP in complex with a microtubule 6WWF ; 3.3 ; KIF14[391-772] - ADP in complex with a microtubule 6WWG ; 2.9 ; KIF14[391-772] dimer two-heads-bound state - ADP-AlFx in complex with a microtubule 6WWH ; 3.8 ; KIF14[391-772] dimer two-heads-bound state - AMP-PNP in complex with a microtubule 2HXH ; 11.0 ; KIF1A head-microtubule complex structure in adp-form 2HXF ; 10.0 ; KIF1A head-microtubule complex structure in amppnp-form 1IA0 ; 15.0 ; KIF1A HEAD-MICROTUBULE COMPLEX STRUCTURE IN ATP-FORM 5D3A ; 2.495 ; KIF21A regulatory coiled coil 4Y05 ; 2.59 ; KIF2C short Loop2 construct 5MIO ; 3.19 ; KIF2C-DARPIN FUSION PROTEIN BOUND TO TUBULIN 6IGV ; 2.999 ; Kif5b stalk I coiled-coil 6PA1 ; 3.01 ; Killer cell immunoglobulin-like receptor 2DL2 in complex with HLA-C*07:02 6PAG ; 2.501 ; Killer cell immunoglobulin-like receptor 2DL3 in complex with HLA-C*07:02 2DL2 ; 3.0 ; KILLER IMMUNOGLOBULIN RECEPTOR 2DL2 2DLI ; 2.9 ; KILLER IMMUNOGLOBULIN RECEPTOR 2DL2,TRIGONAL FORM 1KVD ; 1.8 ; KILLER TOXIN FROM HALOTOLERANT YEAST 1KVE ; 1.8 ; KILLER TOXIN FROM HALOTOLERANT YEAST 8B70 ; 3.3 ; KimA from B. subtilis with nucleotide second-messenger c-di-AMP bound 6S3K ; 3.7 ; KimA from Bacillus subtilis in inward-facing, occluded state 2VLG ; 1.7 ; KinA PAS-A domain, homodimer 4XIV ; 3.0 ; Kinase and Dimerization (P3P4) of the Thermotoga maritima CheA kinase 2QNJ ; 2.7 ; Kinase and Ubiquitin-associated domains of MARK3/Par-1 4KIO ; 2.18 ; Kinase domain mutant of human Itk in complex with a covalently-binding inhibitor 4L7S ; 2.03 ; Kinase domain mutant of human Itk in complex with an aminobenzothiazole inhibitor 6UNR ; 2.2 ; Kinase domain of ALK2-K492A/K493A with AMPPNP 6UNS ; 2.3 ; Kinase domain of ALK2-K492A/K493A with LDN-193189 6UNQ ; 2.4 ; Kinase domain of ALK2-K493A with AMPPNP 4FIC ; 2.5 ; Kinase domain of cSrc in complex with a hinge region-binding fragment 7AH3 ; 1.95 ; Kinase domain of cSrc in complex with a pyrazolopyrimidine 4O2P ; 2.1 ; Kinase domain of cSrc in complex with a substituted pyrazolopyrimidine 6HVF ; 2.1 ; Kinase domain of cSrc in complex with compound 29B 6HVE ; 1.9 ; Kinase domain of cSrc in complex with compound 9 3G5D ; 2.2 ; Kinase domain of cSrc in complex with Dasatinib 3F3U ; 2.5 ; Kinase domain of cSrc in complex with inhibitor RL37 (Type III) 3F3T ; 2.5 ; Kinase domain of cSrc in complex with inhibitor RL38 (Type III) 3F3V ; 2.6 ; Kinase domain of cSrc in complex with inhibitor RL45 (Type II) 3TZ7 ; 3.3 ; Kinase domain of cSrc in complex with RL103 3TZ8 ; 2.7 ; Kinase domain of cSrc in complex with RL104 3TZ9 ; 3.1 ; Kinase domain of cSrc in complex with RL130 5D11 ; 2.3 ; Kinase domain of cSrc in complex with RL235 5D10 ; 2.7 ; Kinase domain of cSrc in complex with RL236 5D12 ; 3.0 ; Kinase domain of cSrc in complex with RL40 1BYG ; 2.4 ; KINASE DOMAIN OF HUMAN C-TERMINAL SRC KINASE (CSK) IN COMPLEX WITH INHIBITOR STAUROSPORINE 5MJA ; 2.14 ; Kinase domain of human EphB1 bound to a quinazoline-based inhibitor 5MJB ; 2.23 ; Kinase domain of human EphB1, G703C mutant, covalently bound to a quinazoline-based inhibitor 2R2P ; 2.4 ; Kinase domain of human ephrin type-A receptor 5 (EphA5) 2REI ; 1.6 ; Kinase domain of human ephrin type-A receptor 7 (Epha7) 3KUL ; 2.15 ; Kinase domain of human ephrin type-A receptor 8 (EPHA8) 5LOH ; 3.1 ; Kinase domain of human Greatwall 3ETA ; 2.6 ; Kinase domain of insulin receptor complexed with a pyrrolo pyridine inhibitor 7OAM ; 2.65 ; Kinase domain of MERTK in complex with compound 8 1W53 ; 1.6 ; Kinase recruitment domain of the stress phosphatase RsbU 6V9G ; 2.35 ; Kindlin-3 double deletion mutant long form 6V97 ; 2.381 ; Kindlin-3 double deletion mutant short form 3KIN ; 3.1 ; KINESIN (DIMERIC) FROM RATTUS NORVEGICUS 2KIN ; 2.0 ; KINESIN (MONOMERIC) FROM RATTUS NORVEGICUS 2V14 ; 2.2 ; Kinesin 16B Phox-homology domain (KIF16B) 5X3E ; 2.61 ; kinesin 6 6ZPG ; 4.6 ; Kinesin binding protein (KBP) 6ZPH ; 6.9 ; Kinesin binding protein complexed with Kif15 motor domain 4HNA ; 3.19 ; Kinesin motor domain in the ADP-MG-ALFX state in complex with tubulin and a DARPIN 3WPN ; 2.8 ; Kinesin spindle protein Eg5 in complex with ATP-competitive inhibitor PVZB1194 5ZO7 ; 2.6 ; Kinesin spindle protein Eg5 in complex with STLC-type inhibitor PVEI0138 3J2U ; 10.8 ; Kinesin-13 KLP10A HD in complex with CS-tubulin and a microtubule 3L1C ; 2.75 ; Kinesin-14 Protein Ncd, T436S Mutant 2WBE ; 9.4 ; Kinesin-5-Tubulin Complex with AMPPNP 5GSY ; 7.0 ; Kinesin-8 motor, KIF19A, in the nucleotide-free state complexed with GDP-taxol microtubule 7LXR ; 1.744 ; Kinesin-like protein at 61F (Klp61f) bound to AMPPNP 3EDL ; 28.0 ; Kinesin13-Microtubule Ring complex 1JA8 ; 2.12 ; Kinetic Analysis of Product Inhibition in Human Manganese Superoxide Dismutase 2IA8 ; 1.48 ; Kinetic and Crystallographic Studies of a Redesigned Manganese-Binding Site in Cytochrome c Peroxidase 2ICV ; 1.6 ; Kinetic and Crystallographic Studies of a Redesigned Manganese-Binding Site in Cytochrome c Peroxidase 1XKX ; 1.93 ; Kinetic and crystallographic studies on 2-(beta-D-glucopyranosyl)-5-methyl-1,3,4-oxadiazole,-benzothiazole, and-benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new binding site. 1XL0 ; 1.92 ; Kinetic and crystallographic studies on 2-(beta-D-glucopyranosyl)-5-methyl-1,3,4-oxadiazole,-benzothiazole, and-benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new binding site. 1XL1 ; 2.1 ; Kinetic and crystallographic studies on 2-(beta-D-glucopyranosyl)-5-methyl-1,3,4-oxadiazole,-benzothiazole, and-benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new binding site. 7FBG ; 1.6 ; Kinetic and structural analysis by Peptidoglycan editing factor from Bacillus cereus ATCC 14579 3J6L ; 9.0 ; Kinetic and Structural Analysis of Coxsackievirus B3 Receptor Interactions and Formation of the A-particle 3J6M ; 9.0 ; Kinetic and Structural Analysis of Coxsackievirus B3 Receptor Interactions and Formation of the A-particle 3J6N ; 9.0 ; Kinetic and Structural Analysis of Coxsackievirus B3 Receptor Interactions and Formation of the A-particle 3J6O ; 9.0 ; Kinetic and Structural Analysis of Coxsackievirus B3 Receptor Interactions and Formation of the A-particle 5MGU ; 1.89 ; Kinetic and Structural Changes in HsmtPheRS, Induced by Pathogenic Mutations in Human FARS2 5MGV ; 2.05 ; Kinetic and Structural Changes in HsmtPheRS, Induced by Pathogenic Mutations in Human FARS2 5MGW ; 1.46 ; Kinetic and Structural Changes in HsmtPheRS, Induced by Pathogenic Mutations in Human FARS2 3MB2 ; 2.41 ; Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily 3R3J ; 3.1 ; Kinetic and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2 4FAZ ; 1.57 ; Kinetic and structural characterization of the 4-oxalocrotonate tautomerase isozymes from Methylibium petroleiphilum 4FDX ; 1.64 ; Kinetic and structural characterization of the 4-oxalocrotonate tautomerase isozymes from Methylibium petroleiphilum 7LUU ; 1.68 ; Kinetic and Structural Characterization of the First B3 Metallo-beta-Lactamase with an Active Site Glutamic Acid 3V3F ; 2.0 ; Kinetic and structural studies of thermostabilized mutants of HCA II. 3V3G ; 1.5581 ; Kinetic and structural studies of thermostabilized mutants of HCA II. 3V3H ; 1.85 ; Kinetic and structural studies of thermostabilized mutants of HCA II. 3V3I ; 1.73 ; Kinetic and structural studies of thermostabilized mutants of HCA II. 3V3J ; 1.63 ; Kinetic and structural studies of thermostabilized mutants of HCA II. 4QWM ; 2.17 ; KINETIC CRYSTALLOGRAPHY of ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 1.85 MGy 4UBN ; 2.02 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 1.85 MGy TEMP 150K 4W1S ; 2.3 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 11.09 MGy TEMP 150K 4UBM ; 2.4 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 11.11 MGy at 100K 4UBI ; 2.24 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 3.70 MGy at 100K 4UBO ; 2.02 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 3.70 MGy TEMP 150K 4W1P ; 2.1 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 5.54 MGy TEMP 150K 4UBJ ; 2.3 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 5.55 MGy at 100K 4W1Q ; 2.12 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 7.39 MGy TEMP 150K 4UBK ; 2.33 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 7.40 MGy at 100K 4W1R ; 2.23 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 9.24 MGy TEMP 150K 4UBL ; 2.36 ; KINETIC CRYSTALLOGRAPHY OF ALPHA_E7-CARBOXYLESTERSE FROM LUCILLA CUPRINA - ABSORBED X-RAY DOSE 9.26 MGy 1OB0 ; 1.83 ; Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface 4HJS ; 1.22 ; Kinetic stabilization of transthyretin through covalent modification of K15 by (E)-N-(4-(4-hydroxy-3,5-dimethylstyryl)ethanesulfonamide 4HJT ; 1.45 ; Kinetic stabilization of transthyretin through covalent modification of K15 by (E)-N-(4-(4-hydroxy-3,5-dimethylstyryl)phenyl)propionamide 4FI7 ; 1.402 ; Kinetic Stabilization of transthyretin through covalent modification of K15 by 3-(5-(3,5-dichloro-4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)-benzenesulfonamide 4FI6 ; 1.46 ; Kinetic Stabilization of transthyretin through covalent modification of K15 by 3-(5-(3,5-dichlorophenyl)-1,3,4-oxadiazol-2-yl)-benzenesulfonamide 4FI8 ; 1.22 ; Kinetic Stabilization of transthyretin through covalent modification of K15 by 4-bromo-3-(5-(3,5-dichloro-4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl)-benzenesulfonamide 5T25 ; 1.991 ; Kinetic, Spectral and Structural Characterization of the Slow Binding Inhibitor Acetopyruvate with Dihydrodipicolinate Synthase from Escherichia coli. 5T26 ; 2.1 ; Kinetic, Spectral and Structural Characterization of the Slow Binding Inhibitor Acetopyruvate with Dihydrodipicolinate Synthase from Escherichia coli. 7UVT ; 3.9 ; Kinetically trapped misfolded state of the Tetrahymena ribozyme 7SZ4 ; 4.8 ; Kinetically trapped Pseudomonas-phage PaP3 portal protein - delta barrel mutant class-2 7SZ6 ; 6.24 ; Kinetically trapped Pseudomonas-phage PaP3 portal protein - delta barrel mutant class-3 7SXK ; 3.4 ; Kinetically trapped Pseudomonas-phage PaP3 portal protein - Full Length 7SYA ; 3.5 ; Kinetically trapped Pseudomonas-phage PaP3 portal protein - Full Length 1ALH ; 2.5 ; KINETICS AND CRYSTAL STRUCTURE OF A MUTANT E. COLI ALKALINE PHOSPHATASE (ASP-369-->ASN): A MECHANISM INVOLVING ONE ZINC PER ACTIVE SITE 1OF1 ; 1.95 ; KINETICS AND CRYSTAL STRUCTURE OF THE HERPES SIMPLEX VIRUS TYPE 1 THYMIDINE KINASE INTERACTING WITH (SOUTH)-METHANOCARBA-THYMIDINE 1E2K ; 1.7 ; Kinetics and crystal structure of the wild-type and the engineered Y101F mutant of Herpes simplex virus type 1 thymidine kinase interacting with (North)-methanocarba-thymidine 1E2L ; 2.4 ; Kinetics and crystal structure of the wild-type and the engineered Y101F mutant of Herpes simplex virus type 1 thymidine kinase interacting with (North)-methanocarba-thymidine 2JGQ ; 2.3 ; Kinetics and structural properties of triosephosphate isomerase from Helicobacter pylori 5AW8 ; 2.8 ; Kinetics by X-ray crystallography: E2.MgF42-.2RB+ crystal 5AW9 ; 2.8 ; Kinetics by X-ray crystallography: native E2.MgF42-.2K+ crystal for Rb+ bound crystals 5AW4 ; 2.8 ; Kinetics by X-ray crystallography: Rb+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 1.5 min 5AW7 ; 2.9 ; Kinetics by X-ray crystallography: Rb+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 11.3 min 5AW5 ; 2.9 ; Kinetics by X-ray crystallography: Rb+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 2.2 min 5AW6 ; 2.8 ; Kinetics by X-ray crystallography: Rb+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 5.5 min 5AVQ ; 2.6 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 0.75 min. 5AVR ; 2.7 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 1.5 min 5AW3 ; 3.35 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 100 min 5AVW ; 2.6 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 16.5 min 5AVX ; 3.3 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 20 min 5AVY ; 3.45 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 20 min 5AVS ; 2.9 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 3.5 min 5AVT ; 2.9 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 5 min 5AVZ ; 3.2 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 55 min 5AW0 ; 3.3 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 55 min 5AVU ; 2.55 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 7.0 min 5AVV ; 2.9 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 8.5 min 5AW1 ; 3.35 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 85 min 5AW2 ; 3.2 ; Kinetics by X-ray crystallography: Tl+-substitution of bound K+ in the E2.MgF42-.2K+ crystal after 85 min 2AVM ; 1.1 ; Kinetics, stability, and structural changes in high resolution crystal structures of HIV-1 protease with drug resistant mutations L24I, I50V, AND G73S 2AVO ; 1.1 ; Kinetics, stability, and structural changes in high resolution crystal structures of HIV-1 protease with drug resistant mutations L24I, I50V, AND G73S 2AVQ ; 1.3 ; Kinetics, stability, and structural changes in high resolution crystal structures of HIV-1 protease with drug resistant mutations L24I, I50V, AND G73S 2AVS ; 1.1 ; kinetics, stability, and structural changes in high resolution crystal structures of HIV-1 protease with drug resistant mutations L24I, I50V, and G73S 2AVV ; 1.5 ; Kinetics, stability, and structural changes in high resolution crystal structures of HIV-1 protease with drug resistant mutations L24I, I50V, and G73S 8IRP ; 2.8 ; kinetin bound state of Arabidopsis AZG1 3SI5 ; 2.2 ; Kinetochore-BUBR1 kinase complex 3VH8 ; 1.8 ; KIR3DL1 in complex with HLA-B*5701 5T70 ; 2.1 ; KIR3DL1 in complex with HLA-B*57:01 presenting TSNLQEQIGW 5T6Z ; 2.0 ; KIR3DL1 in complex with HLA-B*57:01-TW10 3WUW ; 2.0 ; KIR3DL1 in complex with HLA-B*57:01.I80T 6V3J ; 1.98 ; KIR3DL1 in complex with HLA-B*57:03 presenting the peptide LSSPVTKSF 7K80 ; 2.4 ; KIR3DL1*001 in complex with HLA-A*24:02 presenting the RYPLTFGW peptide 7K81 ; 2.0 ; KIR3DL1*005 in complex with HLA-A*24:02 presenting the RYPLTFGW peptide 5B38 ; 2.3 ; KIR3DL1*005 in complex with HLA-B*57:01 5B39 ; 2.5 ; KIR3DL1*015 in complex with HLA-B*57:01 7SWJ ; ; KirBac1.1 mutant - I131C 6O9U ; 2.0 ; KirBac3.1 at a resolution of 2 Angstroms 7N9L ; 2.4 ; KirBac3.1 C71S C262S 7N9K ; 2.72 ; KirBac3.1 L124M mutant 6O9V ; 3.094 ; KirBac3.1 mutant at a resolution of 3.1 Angstroms 6O9T ; 4.01 ; KirBac3.1 mutant at a resolution of 4.1 Angstroms 7ADI ; 2.8 ; KirBac3.1 W46R: role of a highly conserved tryptophan at the membrane-water interface of Kir channel 3G0E ; 1.6 ; KIT kinase domain in complex with sunitinib 3G0F ; 2.6 ; KIT kinase domain mutant D816H in complex with sunitinib 1KDX ; ; KIX DOMAIN OF MOUSE CBP (CREB BINDING PROTEIN) IN COMPLEX WITH PHOSPHORYLATED KINASE INDUCIBLE DOMAIN (PKID) OF RAT CREB (CYCLIC AMP RESPONSE ELEMENT BINDING PROTEIN), NMR 17 STRUCTURES 1DHY ; 2.3 ; KKS102 BPHC ENZYME 8HQ3 ; 2.1 ; KL1 in complex with CRM1-Ran-RanBP1 8HQ6 ; 2.03 ; KL2 in complex with CRM1-Ran-RanBP1 8ITV ; 2.3 ; KL2.1 in complex with CRM1-Ran-RanBP1 1FWB ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319A VARIANT AT PH 6.5 1FWA ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319A VARIANT AT PH 7.5 1FWC ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319A VARIANT AT PH 8.5 1FWD ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319A VARIANT AT PH 9.4 1FWE ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319A VARIANT WITH ACETOHYDROXAMIC ACID (AHA) BOUND 1FWF ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319D VARIANT 1FWG ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319S VARIANT 1FWH ; 2.0 ; KLEBSIELLA AEROGENES UREASE, C319Y VARIANT 1FWI ; 2.0 ; KLEBSIELLA AEROGENES UREASE, H134A VARIANT 1FWJ ; 2.2 ; KLEBSIELLA AEROGENES UREASE, NATIVE 6VHV ; 2.89 ; Klebsiella oxytoca NpsA in complex with 3-hydroxyanthranilyl-AMSN 6VHX ; 1.7 ; Klebsiella oxytoca NpsA N-terminal subdomain in complex with 3-hydroxyanthranilyl-AMSN 6VHW ; 1.83 ; Klebsiella oxytoca NpsA N-terminal subdomain in complex with 3-hydroxybenzoyl-AMSN 6VHZ ; 2.12 ; Klebsiella oxytoca NpsA N-terminal subdomain in complex with anthranilyl-AMSN 6VHT ; 1.84 ; Klebsiella oxytoca NpsA N-terminal subdomain in space group C2 6VHU ; 1.6 ; Klebsiella oxytoca NpsA N-terminal subdomain in space group P21 8FFK ; 2.82 ; Klebsiella pneumoniae AcrB multidrug efflux pump apo form 7UWQ ; 3.05 ; Klebsiella pneumoniae adenosine monophosphate nucleosidase 3GFX ; 2.4 ; Klebsiella pneumoniae BlrP1 pH 4.5 calcium/cy-diGMP complex 3GFZ ; 2.05 ; Klebsiella pneumoniae BlrP1 pH 6 manganese/cy-diGMP complex 3GG1 ; 2.3 ; Klebsiella pneumoniae BlrP1 pH 8.0 calcium/cy-diGMP complex 3GG0 ; 2.55 ; Klebsiella pneumoniae BlrP1 pH 9.0 manganese/cy-diGMP complex 3GFY ; 2.6 ; Klebsiella pneumoniae BlrP1 with FMN and cyclic diGMP, no metal ions 4OSG ; 2.7 ; Klebsiella pneumoniae complexed with NADPH and 6-ethyl-5-[(3R)-3-[3-methoxyl-5-(pyridine-4-yl)phenyl]but-1-yn-1-yl]pyrimidine-2,4-diamine (UCP1006) 5ECC ; 1.87 ; Klebsiella pneumoniae DfrA1 complexed with NADPH and 6-ethyl-5-(3-(2-methoxy-5-(pyridin-4-yl)phenyl)prop-1-yn-1-yl)pyrimidine-2,4-diamine 5ECX ; 1.95 ; Klebsiella pneumoniae DfrA1 complexed with NADPH and 6-ethyl-5-(3-(6-(pyridin-4-yl)benzo[d][1,3]dioxol-4-yl)but-1-yn-1-yl)pyrimidine-2,4-diamine 4OR7 ; 1.76 ; Klebsiella pneumoniae dihydrofolate reductase complexed with NADPH and 6-ethyl-5-{3-[3-(pyrimidin-5-yl)phenyl]prop-1-yn-1-yl}pyrimidine-2,4-diamine 8R37 ; 1.48 ; Klebsiella pneumoniae fosfomycin-resistance protein (FosAKP) 8GZW ; 2.5 ; Klebsiella pneumoniae FtsZ complexed with monobody (P21) 8GZV ; 2.2 ; Klebsiella pneumoniae FtsZ complexed with monobody (P212121) 5O77 ; 1.5 ; Klebsiella pneumoniae OmpK35 5O79 ; 1.65 ; Klebsiella pneumoniae OmpK36 6HHZ ; 2.15 ; Klebsiella pneumoniae Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)cytidine 6HHY ; 2.27 ; Klebsiella pneumoniae Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)N3-methyluridine 6HI0 ; 2.25 ; Klebsiella pneumoniae Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-Sulfamoyl)uridine 7AP1 ; 2.18 ; Klebsiella pneumoniae Seryl-tRNA synthetase in Complex with Compound SerS7HMDDA 6H9X ; 2.1 ; Klebsiella pneumoniae Seryl-tRNA Synthetase in Complex with the Intermediate Analog 5'-O-(N-(L-Seryl)-Sulfamoyl)Adenosine 6HCG ; 4.3 ; Klebsiella pneumoniae type II secretion system outer membrane complex. PulD, PulS and PulC HR domain. 5XKT ; 1.8 ; Klebsiella pneumoniae UreG in complex with GMPPNP and nickel 1QSL ; 2.2 ; KLENOW FRAGMENT COMPLEXED WITH SINGLE-STRANDED SUBSTRATE AND EUROPIUM (III) ION 2KFN ; 2.03 ; KLENOW FRAGMENT WITH BRIDGING-SULFUR SUBSTRATE AND MANGANESE 2KFZ ; 2.03 ; KLENOW FRAGMENT WITH BRIDGING-SULFUR SUBSTRATE AND ZINC ONLY 2KZM ; 2.6 ; KLENOW FRAGMENT WITH NORMAL SUBSTRATE AND ZINC AND MANGANESE 2KZZ ; 2.25 ; KLENOW FRAGMENT WITH NORMAL SUBSTRATE AND ZINC ONLY 6Q4U ; 2.005 ; KlenTaq DNA pol in a closed ternary complex with 7-deaza-7-(2-(2-hydroxyethoxy)-N-(prop-2-yn-1-yl)acetamide)-2-dATP 6FBI ; 1.9 ; KlenTaq DNA polymerase in a closed, ternary complex with dGpNHpp bound in the active site 7OWF ; 1.91 ; KlenTaq DNA polymerase in a ternary complex with primer/template and the fluorescent nucleotide analog BFdUTP 6Q4V ; 2.006 ; KlenTaq DNA polymerase in complex with dATP 6FBC ; 1.54 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification at the 3'-terminus of the primer. 6FBG ; 1.702 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification upstream at the fifth primer nucleotide. 6FBF ; 2.001 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification upstream at the fourth primer nucleotide. 6FBD ; 2.099 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification upstream at the second primer nucleotide. 6FBH ; 1.8 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification upstream at the sixth primer nucleotide. 6FBE ; 1.589 ; KlenTaq DNA polymerase processing a modified primer - bearing the modification upstream at the third primer nucleotide. 4BWM ; 1.749 ; KlenTaq mutant in complex with a RNA/DNA hybrid 4BWJ ; 1.55 ; KlenTaq mutant in complex with DNA and ddCTP 8SH2 ; 3.74 ; KLHDC2 in complex with EloB and EloC 8SGF ; 1.418 ; KLHDC2 Kelch Domain with KLHDC2 c-terminal peptide bound 8SGE ; 1.509 ; KLHDC2 Kelch Domain with ligand KDRLKZ-1 6DO3 ; 2.165 ; KLHDC2 ubiquitin ligase in complex with SelK C-end degron 6DO4 ; 2.2 ; KLHDC2 ubiquitin ligase in complex with SelS C-end degron 6DO5 ; 2.5 ; KLHDC2 ubiquitin ligase in complex with USP1 C-end degron 4V16 ; 2.8 ; KlHsv2 with loop 6CD replaced by a Gly-Ser linker 6B0L ; 3.98 ; KLP10A-AMPPNP in complex with a microtubule 6B0C ; 3.51 ; KLP10A-AMPPNP in complex with curved tubulin and a microtubule 4V91 ; 3.7 ; Kluyveromyces lactis 80S ribosome in complex with CrPV-IRES 4V92 ; 3.7 ; Kluyveromyces lactis 80S ribosome in complex with CrPV-IRES 4AV9 ; 3.001 ; Kluyveromyces lactis Hsv2 4AV8 ; 3.35 ; Kluyveromyces lactis Hsv2 complete loop 6CD 1NOB ; 2.6 ; KNOB DOMAIN FROM ADENOVIRUS SEROTYPE 12 1KAC ; 2.6 ; KNOB DOMAIN FROM ADENOVIRUS SEROTYPE 12 IN COMPLEX WITH DOMAIN 1 OF ITS CELLULAR RECEPTOR CAR 4NQS ; 2.64 ; Knob-into-hole IgG Fc 3EGK ; 2.2 ; KNOBLE Inhibitor 6Q4T ; 1.997 ; KOD DNA pol in a closed ternary complex with 7-deaza-7-(2-(2-hydroxyethoxy)-N-(prop-2-yn-1-yl)acetamide)-2-dATP 4K8Z ; 2.29 ; KOD Polymerase in binary complex with dsDNA 7TQW ; 3.01 ; Kod RSGA incorporating PMT, n+2 7RSS ; 2.71 ; Kod-RI incorporating DNA, n+2 7RSR ; 1.98 ; Kod-RI incorporating PMT, n+2 2V6I ; 2.1 ; Kokobera Virus Helicase 2V6J ; 2.3 ; Kokobera Virus Helicase: Mutant Met47Thr 7FJ7 ; 2.5 ; KpAckA (PduW) native structure 7FJ8 ; 2.1 ; KpAckA (PduW) with AMP complex structure 7FJ9 ; 2.3 ; KpAckA (PduW) with AMPPNP complex structure 7FJA ; 2.2 ; KpAckA (PduW) with AMPPNP, ethylene glycol complex structure 7FJB ; 2.44 ; KpAckA (PduW) with AMPPNP, sodium acetate complex structure 3RXX ; 1.62 ; KPC-2 carbapenemase in complex with 3-NPBA 3RXW ; 1.26 ; KPC-2 carbapenemase in complex with PSR3-226 7UTB ; 1.38 ; KPC-2 CARBAPENEMASE IN COMPLEX WITH THE BORONIC ACID INHIBITOR MB_076 7LLH ; 2.1 ; KPC-2 F72Y mutant with acylated imipenem 6XD7 ; 1.65 ; KPC-2 N170A mutant bound to hydrolyzed ampicillin at 1.65 A 6XJ8 ; 2.05 ; KPC-2 N170A mutant bound to hydrolyzed imipenem at 2.05 A 5FV5 ; 1.4 ; KpFlo11 presents a novel member of the Flo11 family with a unique recognition pattern for homophilic interactions 5FV6 ; 2.0 ; KpFlo11 presents a novel member of the Flo11 family with a unique recognition pattern for homophilic interactions 8FUX ; 1.2 ; KpsC D160C ternary complex 8FUW ; 1.9 ; KpsC D160N Kdo adduct 6M0Y ; ; KR-12 analog derived from human LL-37 6GOF ; 1.98 ; KRAS full length G12D GPPNHP 6GOE ; 1.6 ; KRAS full length G12V GPPNHP 6GOD ; 1.71 ; KRAS full length wild-type GPPNHP 7SCW ; 1.98 ; KRAS full length wild-type in complex with RGL1 Ras association domain 7SCX ; 1.96 ; KRAS full-length G12V in complex with RGL1 Ras association domain 6WCK ; 1.801 ; KRAS G-quadruplex G16T mutant with Bromo Uracil replacing T8 and T16. 6N65 ; 1.6 ; KRAS G-quadruplex G16T mutant. 8G47 ; 3.19 ; KRAS G12C complex with GDP and AMG 510 imaged on a cryo-EM imaging scaffold 8G42 ; 3.02 ; KRAS G12C complex with GDP imaged on a cryo-EM imaging scaffold 5V71 ; 2.228 ; KRAS G12C in bound to quinazoline based switch II pocket (SWIIP) binder 5V9L ; 1.981 ; KRAS G12C in bound to quinazoline based switch II pocket (SWIIP) binder 7YCC ; 1.79 ; KRas G12C in complex with Compound 5c 7YCE ; 1.8 ; KRas G12C in complex with Compound 7b 7MDP ; 1.96 ; KRas G12C in complex with G-2897 8AQ5 ; 1.8 ; KRAS G12C IN COMPLEX WITH GDP AND COMPOUND 16 8AQ7 ; 1.65 ; KRAS G12C IN COMPLEX WITH GDP AND COMPOUND 9 5V9O ; 1.56 ; KRAS G12C inhibitor 7T47 ; 1.27 ; KRAS G12D (GppCp) with MRTX-1133 7RT4 ; 2.1 ; KRAS G12D in complex with Compound 5B (7-(8-chloronaphthalen-1-yl)-8-fluoro-2-{[(2S)-1-methylpyrrolidin-2-yl]methoxy}-4-(piperazin-1-yl)pyrido[4,3-d]pyrimidine) 7RPZ ; 1.3 ; KRAS G12D in complex with MRTX-1133 7ROV ; 1.32 ; KRAS G12D Mutant in complex with GMPPCP and cyclic peptide MP-9903 7C41 ; 2.276 ; KRAS G12V and H-REV107 peptide complex 7W5R ; 3.87 ; KRAS G12V and peptide complex 8G4F ; 2.91 ; KRAS G12V complex with GDP imaged on a cryo-EM imaging scaffold 5WHA ; 2.04 ; KRas G12V, bound to GDP and miniprotein 225-11 5WHB ; 2.18 ; KRas G12V, bound to GDP and miniprotein 225-11(A30R) 5WPL ; 2.15 ; KRas G12V, bound to GppNHp and miniprotein 225-11 5WPM ; 1.72 ; KRas G12V, bound to GppNHp and miniprotein 225-11(A30R) 5WLB ; 1.72 ; KRas G12V, bound to GppNHp and miniprotein 225-15a/b 5WHE ; 1.91 ; KRas G12V/D38P, bound to GppNHp and miniprotein 225-11 8G4H ; 2.87 ; KRAS G13C complex with GDP imaged on a cryo-EM imaging scaffold 6E6G ; 1.93 ; KRAS G13D bound to GDP (K13GDP) 6E6F ; 3.401 ; KRAS G13D bound to GppNHp (K13GNP) 8AZV ; 1.05 ; KRAS in complex with BI-2865 8AZR ; 1.6 ; KRAS in complex with precursor 1 6ASE ; 1.554 ; KRAS mutant-A59G in GDP-bound 6ASA ; 2.545 ; KRAS mutant-D33E in GDP-bound 6MTA ; 2.15 ; KRAS P34R mutant structure in complex with GTP analogue 6GOG ; 2.05 ; KRAS-169 Q61H GPPNHP 6GQW ; 2.8 ; KRAS-169 Q61H GPPNHP + CH-1 6GQX ; 2.2 ; KRAS-169 Q61H GPPNHP + CH-2 6GQY ; 2.75 ; KRAS-169 Q61H GPPNHP + CH-3 6GOM ; 1.63 ; KRAS-169 Q61H GPPNHP + PPIN-1 6GQT ; 1.69 ; KRAS-169 Q61H GPPNHP + PPIN-2 8AZX ; 1.04 ; KRAS-G12C in complex with BI-2865 8QUG ; 1.56 ; KRAS-G12C in Complex with Compound 1 8AZY ; 1.09 ; KRAS-G12D in complex with BI-2865 7SU9 ; 1.99 ; KRAS-G12D specific TCR9a in complex with C*05-GADGVGKSL 7XKJ ; 3.0 ; Kras-G12D-GDP-MRTX1133 by FIB-MicroED 8AZZ ; 1.02 ; KRAS-G12V in complex with BI-2865 8ONV ; 1.01 ; KRAS-G13D in complex with BI-2493 8B00 ; 1.04 ; KRAS-G13D in complex with BI-2865 8UN4 ; 1.57 ; KRAS-G13D-GDP in complex with Cpd36 ((E)-1-((3S)-4-(7-(6-amino-4-methyl-3-(trifluoromethyl)pyridin-2-yl)-6-chloro-8-fluoro-2-(((S)-2-methylenetetrahydro-1H-pyrrolizin-7a(5H)-yl)methoxy)quinazolin-4-yl)-3-methylpiperazin-1-yl)-3-(4-((dimethylamino)methyl)-5-methylpyridin-2-yl)prop-2-en-1-one) 8UN5 ; 1.31 ; KRAS-G13D-GDP in complex with Cpd38 ((E)-1-((3S)-4-(7-(6-amino-4-methyl-3-(trifluoromethyl)pyridin-2-yl)-6-chloro-8-fluoro-2-(((S)-2-methylenetetrahydro-1H-pyrrolizin-7a(5H)-yl)methoxy)quinazolin-4-yl)-3-methylpiperazin-1-yl)-3-(1,2,3,4-tetrahydroisoquinolin-8-yl)prop-2-en-1-one) 8UN3 ; 2.07 ; KRAS-G13D-GDP in complex with Cpd5 (1-((S)-10-(6-amino-4-methyl-3-(trifluoromethyl)pyridin-2-yl)-11-chloro-7-(((2S,4R)-4-fluoro-1-methylpyrrolidin-2-yl)methoxy)-3,4,13,13a-tetrahydropyrazino[2',1':3,4][1,4]oxazepino[5,6,7-de]quinazolin-2(1H)-yl)prop-2-en-1-one) 8EDY ; 1.18 ; KRAS4b A146T 1-185 bound to GDP 8EER ; 1.18 ; KRAS4B A146V 1-185 bound to GDP 8EIE ; 1.41 ; KRAS4b K117N 1-185 bound to GNP-Mg2+ 8ECR ; 1.42 ; KRAS4b WT 1-185 bound to GDP-Mg2+ 7A1X ; 1.32 ; KRASG12C GDP form in complex with Cpd1 7A1Y ; 2.004 ; KRASG12C GDP form in complex with Cpd2 7A1W ; 1.76 ; KRASG12C GDP form in complex with Cpd3 7A47 ; 2.16 ; KRASG12C GDP form in complex with Cpd4 7R0N ; 1.2 ; KRasG12C in complex with GDP and compound 2 7R0Q ; 1.95 ; KRasG12C in complex with GDP and compound 3 7R0M ; 1.611 ; KRasG12C in complex with GDP and JDQ443 8X6R ; 1.85 ; KRasG12C in complex with inhibitor 6T5B ; 1.37 ; KRasG12C ligand complex 6T5U ; 1.72 ; KRasG12C ligand complex 6T5V ; 1.31 ; KRasG12C ligand complex 7O70 ; 1.18 ; KRasG12C ligand complex 7O83 ; 2.38 ; KRasG12C ligand complex 7OO7 ; 1.48 ; KRasG12C ligand complex 8B6I ; 1.7 ; KRasG12C ligand complex 8B78 ; 1.11 ; KRasG12C ligand complex 1B2I ; ; KRINGLE 2 DOMAIN OF HUMAN PLASMINOGEN: NMR SOLUTION STRUCTURE OF TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID (AMCHA) COMPLEX 7TNG ; 1.4 ; Kringle domain of human Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1) 1PMK ; 2.25 ; KRINGLE-KRINGLE INTERACTIONS IN MULTIMER KRINGLE STRUCTURES 1PML ; 2.38 ; KRINGLE-KRINGLE INTERACTIONS IN MULTIMER KRINGLE STRUCTURES 8CL8 ; 2.4 ; Krokinobacter eikastus rhodopsin 2 (KR2) extrapolated map 1us after light activation 8CL7 ; 1.76 ; Krokinobacter eikastus rhodopsin 2 (KR2) in dark state 5D51 ; 1.47 ; Krypton derivatization of an O2-tolerant membrane-bound [NiFe] hydrogenase reveals a hydrophobic gas tunnel network 7UK4 ; 1.94 ; KS-AT di-domain of mycobacterial Pks13 with endogenous KS ligand bound 8EE0 ; 2.65 ; KS-AT didomain from module 2 of the 6-deoxyerythronolide B synthase in complex with antibody fragment 1B2 8EE1 ; 2.7 ; KS-AT didomain from module 2 of the 6-deoxyerythronolide B synthase in complex with antibody fragment AA5 8CUZ ; 3.0 ; KS-AT domains of mycobacterial Pks13 with inward AT conformation 8CV0 ; 3.1 ; KS-AT domains of mycobacterial Pks13 with outward AT conformation 5MY2 ; 2.7 ; KS-MAT DI-DOMAIN OF MOUSE FAS 5MY0 ; 2.94 ; KS-MAT DI-DOMAIN OF MOUSE FAS WITH MALONYL-COA 6ROP ; 2.7 ; KS-MAT DI-DOMAIN OF MOUSE FAS WITH OCTANOYL COA 6IFS ; 2.27 ; KsgA from Bacillus subtilis 168 6IFT ; 1.9 ; KsgA from Bacillus subtilis in complex with SAM 4UZB ; 2.865 ; KSHV LANA (ORF73) C-terminal domain mutant bound to LBS1 DNA (R1039Q, R1040Q, K1055E, K1109A, D1110A, A1121E, K1138S, K1140D, K1141D) 2YPY ; 2.453 ; KSHV LANA (ORF73) C-terminal domain, decameric ring: monoclinic crystal form 2YPZ ; 3.199 ; KSHV LANA (ORF73) C-terminal domain, decameric ring: orthorhombic crystal form 2YQ0 ; 3.911 ; KSHV LANA (ORF73) C-terminal domain, octameric ring: cubic crystal form 5A76 ; 3.8 ; KSHV LANA (ORF73) C-terminal domain, open non-ring conformation: orthorhombic crystal form 4UZC ; 3.7 ; KSHV LANA (ORF73) C-terminal domain, spiral: hexagonal crystal form 6HAU ; 1.86 ; KSHV PAN RNA Mta-response element fragment complexed with the globular domain of herpesvirus saimiri ORF57 1FL1 ; 2.2 ; KSHV PROTEASE 5HSW ; 3.3 ; KSHV SOX RNA complex 5NN7 ; 2.5 ; KSHV uracil-DNA glycosylase, apo form 5NNH ; 2.2 ; KSHV uracil-DNA glycosylase, apo form 5NNU ; 2.97 ; KSHV uracil-DNA glycosylase, product complex with dsDNA exhibiting duplex nucleotide flipping 1OPY ; 1.9 ; KSI 7UWR ; 2.61 ; KSQ+AT from first module of the pikromycin synthase 2Y4I ; 3.46 ; KSR2-MEK1 heterodimer 5KKR ; 3.509 ; KSR2:MEK1 Complex Bound to the Small Molecule APS-2-79 5AQC ; 1.66 ; KstR, transcriptional repressor of cholesterol degradation in Mycobacterium tuberculosis, bound to the cholesterol coenzyme A derivative, (25R)-3-oxocholest-4-en-26-oyl-CoA. 5FMP ; 2.26 ; KstR, transcriptional repressor of cholesterol degradation in Mycobacterium tuberculosis, bound to the DNA operator 1LSU ; 2.85 ; KTN Bsu222 Crystal Structure in Complex with NADH 1LSS ; 2.3 ; KTN Mja218 CRYSTAL STRUCTURE IN COMPLEX WITH NAD+ 8K1K ; 3.0 ; KtrA bound with ATP and sodium 8K16 ; 3.1 ; KtrA bound with ATP and thallium 7ZP9 ; 2.82 ; KtrAB complex - KtrA8 ring with a KtrB dimer on each side 7ZPR ; 3.56 ; KtrAB complex with N-terminal deletion of KtrB 1-19 4J7C ; 3.5 ; KtrAB potassium transporter from Bacillus subtilis 6I8V ; 1.991 ; KtrC with ATP bound 8ASC ; 2.95 ; Ku70/80 binds to the Ku-binding motif of PAXX 7AXZ ; 3.2 ; Ku70/80 complex apo form 6HIF ; 2.8 ; Kuenenia stuttgartiensis hydrazine dehydrogenase complex 5C2V ; 2.7 ; Kuenenia stuttgartiensis Hydrazine Synthase 5C2W ; 3.2 ; Kuenenia stuttgartiensis Hydrazine Synthase Pressurized with 20 bar Xenon 4N4J ; 1.8 ; Kuenenia stuttgartiensis hydroxylamine oxidoreductase 4RWM ; 1.8 ; Kuenenia stuttgartiensis hydroxylamine oxidoreductase cryoprotected with ethylene glycol 4N4L ; 1.9 ; Kuenenia stuttgartiensis hydroxylamine oxidoreductase soaked in hydrazine 4N4K ; 2.2 ; Kuenenia stuttgartiensis hydroxylamine oxidoreductase soaked in hydroxylamine 4N4M ; 2.1 ; Kuenenia stuttgartiensis hydroxylamine oxidoreductase soaked in phenyl hydrazine 6H5L ; 2.6 ; Kuenenia stuttgartiensis reducing HAO-like protein complex Kustc0457/Kustc0458 1SIU ; 2.31 ; KUMAMOLISIN-AS E78H MUTANT 1SN7 ; 2.0 ; KUMAMOLISIN-AS, APOENZYME 8AJ7 ; 1.6 ; Kunitz domain of Amblyomin-X 4AN7 ; 2.23 ; Kunitz type trypsin inhibitor complex with porcine trypsin 4AN6 ; 1.94 ; Kuntiz type trypsin inhibitor with factor Xa inhibitory activity 6R6M ; 1.7 ; Kusta0087/Kusta0088 Complex purified from Kuenenia stuttgartiensis 5MXY ; 1.9 ; KustC0563 c-type cytochrome 5MXZ ; 1.9 ; Kustc0563 Y40F mutant 4TM3 ; 2.09 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADox-Br 4TLZ ; 2.411 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADox-NADP+-L-orn 4TM4 ; 2.632 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADox-red-NADP+-Br 4TM1 ; 2.39 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADred-NADP+-Br 4TLX ; 2.23 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADred-NADP+-L-orn 4TM0 ; 2.74 ; Kutzneria sp. 744 ornithine N-hydroxylase, KtzI-FADred-ox-NADP+-L-orn 1DSX ; 1.6 ; KV1.2 T1 DOMAIN, RESIDUES 33-119, T46V MUTANT 6NK4 ; 1.994 ; KVQIINKKL, crystal structure of a tau protein fragment 5V5B ; 1.5 ; KVQIINKKLD, Structure of the amyloid spine from microtubule associated protein tau Repeat 2 5WMJ ; 1.4 ; KVWGSI segment from Superoxide Dismutase 1,residues 30-35 3UE8 ; 3.22 ; Kynurenine Aminotransferase II Inhibitors 4GDY ; 2.89 ; Kynurenine Aminotransferase II inhibitors 4GE4 ; 2.41 ; Kynurenine Aminotransferase II Inhibitors 4GE7 ; 2.1 ; Kynurenine Aminotransferase II Inhibitors 4GE9 ; 2.43 ; Kynurenine Aminotransferase II Inhibitors 4GEB ; 2.15 ; Kynurenine Aminotransferase II Inhibitors 1E0P ; 2.1 ; L intermediate of bacteriorhodopsin 4LWY ; 2.903 ; L(M196)H,H(M202)L Double Mutant Structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV 4LZH ; 1.9 ; L,D-transpeptidase from Klebsiella pneumoniae 4XVO ; 2.6 ; L,D-transpeptidase from Mycobacterium smegmatis 3QGU ; 1.55 ; L,L-Diaminopimelate aminotransferase from Chlamydomonas reinhardtii 2YN4 ; 1.74 ; L-2-chlorobutryic acid bound complex L-haloacid dehalogenase from a Rhodobacteraceae family bacterium 1JUD ; 2.5 ; L-2-HALOACID DEHALOGENASE 7ASZ ; 1.88 ; L-2-haloacid dehalogenase H190A mutant from Zobellia galactanivorans 1F14 ; 2.3 ; L-3-HYDROXYACYL-COA DEHYDROGENASE (APO) 1F12 ; 2.4 ; L-3-HYDROXYACYL-COA DEHYDROGENASE COMPLEXED WITH 3-HYDROXYBUTYRYL-COA 1F0Y ; 1.8 ; L-3-HYDROXYACYL-COA DEHYDROGENASE COMPLEXED WITH ACETOACETYL-COA AND NAD+ 1F17 ; 2.3 ; L-3-HYDROXYACYL-COA DEHYDROGENASE COMPLEXED WITH NADH 1JPD ; 2.6 ; L-Ala-D/L-Glu Epimerase 1JPM ; 2.25 ; L-Ala-D/L-Glu Epimerase 1PJB ; 2.1 ; L-ALANINE DEHYDROGENASE 1PJC ; 2.0 ; L-ALANINE DEHYDROGENASE COMPLEXED WITH NAD 1SAY ; 2.1 ; L-ALANINE DEHYDROGENASE COMPLEXED WITH PYRUVATE 5HXW ; 2.63 ; L-amino acid deaminase from Proteus vulgaris 1TDO ; 3.0 ; L-amino acid oxidae from Agkistrodon halys in complex with L-phenylalanine 1TDN ; 2.7 ; L-amino acid oxidase from Agkistrodon halys in complex with L-leucine 1TDK ; 2.7 ; L-amino acid oxidase from Agkistrodon halys in complex with suicide substrate L-vinylglycine 1REO ; 2.31 ; L-amino acid oxidase from Agkistrodon halys pallas 3WE0 ; 1.9 ; L-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 5YB8 ; 2.3 ; L-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 - L-arginine complex 5YB6 ; 2.1 ; L-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 - L-lysine complex 5YB7 ; 2.0 ; L-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 - L-ornithine complex 4CNJ ; 2.7 ; L-Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new 3-domain family of bacterial flavoproteins 4CNK ; 2.0 ; L-Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new 3-domain family of bacterial flavoproteins 3M6I ; 2.6 ; L-arabinitol 4-dehydrogenase 1ZCF ; 3.0 ; L-asparaginase from Erwinia carotovora 2GVN ; 1.9 ; L-asparaginase from Erwinia carotovora in complex with aspartic acid 2HLN ; 2.2 ; L-asparaginase from Erwinia carotovora in complex with glutamic acid 6V5F ; 2.1 ; L-asparaginase from Escherichia coli 7M11 ; 1.83 ; L-asparaginase from Escherichia coli with bound Aspartic acid 1NNS ; 1.95 ; L-asparaginase of E. coli in C2 space group and 1.95 A resolution 1KNR ; 2.5 ; L-aspartate oxidase: R386L mutant 1AEW ; 1.95 ; L-CHAIN HORSE APOFERRITIN 5WT4 ; 2.92 ; L-Cysteine-PLP intermediate of NifS from Helicobacter pylori 5ZSS ; 3.17 ; L-Cysteine-PLP reaction intermediate of NifS from Hydrogenimonas thermophila 7KW4 ; 1.03 ; L-DNA containing 2'-fluoro modification 6Z3D ; 1.7 ; L-FerritinMSA 2J3G ; 2.5 ; L-ficolin 2J0H ; 2.85 ; L-ficolin complexed to acetyl-choline 2J0Y ; 2.35 ; L-ficolin complexed to b-1,3-D-glucan 2J3U ; 2.15 ; L-ficolin complexed to galactose 4R9J ; 2.1 ; L-ficolin complexed to glucosamine-6-sulfate 2J1G ; 1.95 ; L-ficolin complexed to N-acetyl-cystein 2J2P ; 2.8 ; L-ficolin complexed to N-acetyl-cystein (150mM) 2J3F ; 2.8 ; L-ficolin complexed to N-acetyl-D-galactosamine 2J3O ; 2.65 ; L-ficolin complexed to N-acetyl-D-glucosamine 2J0G ; 2.85 ; L-ficolin complexed to N-acetyl-mannosamine 2J61 ; 2.7 ; L-ficolin complexed to N-acetylglucosamine (forme C) 4NYT ; 2.25 ; L-Ficolin Complexed to Phosphocholine 4R9T ; 2.25 ; L-ficolin complexed to sulphates 4C20 ; 2.41 ; L-Fucose Isomerase 1FUI ; 2.5 ; L-FUCOSE ISOMERASE FROM ESCHERICHIA COLI 4C21 ; 2.55 ; L-Fucose Isomerase In Complex With Fucitol 4C22 ; 2.7 ; L-Fucose Isomerase In Complex With Fuculose 4C24 ; 1.5 ; L-fuculose 1-phosphate aldolase 4C25 ; 2.03 ; L-fuculose 1-phosphate aldolase 7X78 ; 1.85 ; L-fuculose 1-phosphate aldolase 1FUA ; 1.92 ; L-FUCULOSE 1-PHOSPHATE ALDOLASE CRYSTAL FORM T 2FUA ; 2.0 ; L-FUCULOSE 1-PHOSPHATE ALDOLASE CRYSTAL FORM T WITH COBALT 1E4A ; 2.15 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant Del(27) 1E47 ; 2.15 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant E73Q 1E48 ; 1.97 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant E73Q/Y113F/Y209F 1E46 ; 2.55 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant E73S 1E49 ; 2.53 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant N29L/S71A 1E4B ; 1.84 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant N29Q 1E4C ; 1.66 ; L-Fuculose 1-Phosphate Aldolase from Escherichia coli Mutant S71Q 4XXF ; 1.34 ; L-fuculose 1-phosphate aldolase from Glaciozyma antarctica PI12 4C23 ; 2.0 ; L-fuculose kinase 4FUA ; 2.43 ; L-FUCULOSE-1-PHOSPHATE ALDOLASE COMPLEX WITH PGH 3FUA ; 2.67 ; L-FUCULOSE-1-PHOSPHATE ALDOLASE CRYSTAL FORM K 1DZY ; 2.44 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant E214A 1DZW ; 2.17 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant F131A 1DZX ; 2.18 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant R212A 1DZU ; 2.09 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant T26A 1DZZ ; 1.92 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant Y113F 1DZV ; 1.86 ; L-Fuculose-1-Phosphate Aldolase from Escherichia coli Mutant Y113F/Y209F 1V9L ; 2.8 ; L-glutamate dehydrogenase from Pyrobaculum islandicum complexed with NAD 7ULF ; 1.61 ; l-glutamate/GTP complex of F420-gamma glutamyl ligase (CofE) from Archaeoglobus fulgidus 5DDP ; 2.302 ; L-glutamine riboswitch bound with L-glutamine 5DDR ; 2.605 ; L-glutamine riboswitch bound with L-glutamine soaked with Cs+ 5DDQ ; 2.4 ; L-glutamine riboswitch bound with L-glutamine soaked with Mn2+ 6EEX ; 1.1 ; L-GSTSTA from degenerate octameric repeats in InaZ, residues 707-712 6M9I ; 0.9 ; L-GSTSTA from degenerate octameric repeats in InaZ, residues 707-712 1KAR ; 2.1 ; L-HISTIDINOL DEHYDROGENASE (HISD) STRUCTURE COMPLEXED WITH HISTAMINE (INHIBITOR), ZINC AND NAD (COFACTOR) 1KAH ; 2.1 ; L-HISTIDINOL DEHYDROGENASE (HISD) STRUCTURE COMPLEXED WITH L-HISTIDINE (PRODUCT), ZN AND NAD (COFACTOR) 1KAE ; 1.7 ; L-HISTIDINOL DEHYDROGENASE (HISD) STRUCTURE COMPLEXED WITH L-HISTIDINOL (SUBSTRATE), ZINC AND NAD (COFACTOR) 5WT5 ; 1.9 ; L-homocysteine-bound NifS from Helicobacter pylori 1GKR ; 2.6 ; L-Hydantoinase (Dihydropyrimidinase) from Arthrobacter aurescens 3LCX ; 1.98 ; L-KDO aldolase 3LCW ; 2.35 ; L-KDO aldolase complexed with hydroxypyruvate 1Y6J ; 3.01 ; L-Lactate Dehydrogenase from Clostridium Thermocellum Cth-1135 5KKC ; 1.859 ; l-lactate dehydrogenase from rabbit muscle with the inhibitor 6DHNAD 3VPG ; 1.8 ; L-lactate dehydrogenase from Thermus caldophilus GK24 3VPH ; 2.0 ; L-lactate dehydrogenase from Thermus caldophilus GK24 complexed with oxamate, NADH and FBP 7F21 ; 1.38 ; L-lactate oxidase with D-lactate 7F20 ; 1.3 ; L-lactate oxidase with L-lactate 7F22 ; 1.41 ; L-lactate oxidase with pyruvate 7F1Y ; 1.33 ; L-lactate oxidase without substrate 8GXD ; 3.02 ; L-LEUCINE DEHYDROGENASE FROM EXIGUOBACTERIUM SIBIRICUM 1USK ; 2.0 ; L-leucine-binding protein with leucine bound 1USI ; 1.8 ; L-leucine-binding protein with phenylalanine bound 1USG ; 1.53 ; L-leucine-binding protein, apo form 6OVG ; 2.719 ; L-Methionine Depletion with an Engineered Human Enzyme Disrupts Prostate Cancer Metabolism 4P7Y ; 1.96 ; L-methionine gamma-lyase from Citrobacter freundii with Y58F substitution 3QVW ; 2.0 ; L-myo-inositol 1-phosphate synthase from Archaeoglobus fulgidus mutant K278A 3QVX ; 1.9 ; L-myo-inositol 1-phosphate synthase from Archaeoglobus fulgidus mutant K367A 3QVS ; 1.7 ; L-myo-inositol 1-phosphate synthase from Archaeoglobus fulgidus wild type 3QVT ; 2.0 ; L-myo-inositol 1-phosphate synthase from Archaeoglobus fulgidus wild-type with the intermediate 5-keto 1-phospho glucose 3QW2 ; 2.59 ; L-myo-inositol 1-phosphate synthase from Archaeoglobus mutant N255A 1C1X ; 1.4 ; L-PHENYLALANINE DEHYDROGENASE STRUCTURE IN TERNARY COMPLEX WITH NAD+ AND L-3-PHENYLLACTATE 1C1D ; 1.25 ; L-PHENYLALANINE DEHYDROGENASE STRUCTURE IN TERNARY COMPLEX WITH NADH AND L-PHENYLALANINE 7LSO ; ; L-Phenylseptin 4P7X ; 1.3 ; L-pipecolic acid-bound L-proline cis-4-hydroxylase 4P7W ; 1.8 ; L-proline-bound L-proline cis-4-hydroxylase 1D8W ; 1.6 ; L-RHAMNOSE ISOMERASE 1DE5 ; 2.2 ; L-RHAMNOSE ISOMERASE 1DE6 ; 2.1 ; L-RHAMNOSE ISOMERASE 1GT7 ; 2.7 ; L-rhamnulose-1-phosphate aldolase from Escherichia coli 2V9M ; 1.3 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT A87M- T109F-E192A) 2V9O ; 1.95 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT A87M- T109F-E192A) 2UYU ; 1.96 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT A88F- E192A) 2V9N ; 1.4 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT A88F- E192A) 2V2B ; 1.5 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT E117S- E192A-K248G-R253A-E254A) 1OJR ; 1.35 ; L-rhamnulose-1-phosphate aldolase from Escherichia coli (mutant E192A) 2V2A ; 1.75 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT E192A- K248G-R253A-E254A) 2V9E ; 1.58 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT E192A- K248W-A273S) 2V9F ; 2.1 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT E192A- K248W-A273S) 2V9I ; 1.8 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT E192A- K248W-L274stop) 2V29 ; 2.0 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT K15W) 2UYV ; 2.2 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT Q6Y- E192A) 2V9L ; 1.23 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT Q6Y- E192A) 2V9G ; 2.7 ; L-RHAMNULOSE-1-PHOSPHATE ALDOLASE FROM ESCHERICHIA COLI (MUTANT Q6Y- L84W-E192A) 3CFW ; 2.2 ; L-selectin lectin and EGF domains 8GIL ; 2.1 ; L-threonine 3-Dehydrogenase from Trypanosoma cruzi (apo form) 8GJB ; 1.75 ; L-threonine 3-Dehydrogenase from Trypanosoma cruzi in complex with NAD and acetate 3GFB ; 2.4 ; L-Threonine Dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis 5LC1 ; 2.1 ; L-threonine dehydrogenase from Trypanosoma brucei with NAD and the inhibitor pyruvate bound. 5L9A ; 1.45 ; L-threonine dehydrogenase from trypanosoma brucei. 3BWN ; 2.25 ; L-tryptophan aminotransferase 3BWO ; 2.4 ; L-tryptophan aminotransferase 7MOO ; 1.35 ; L-type DNA containing 2'-fluoro-2'-deoxycytidine 3A5X ; 4.0 ; L-type straight flagellar filament made of full-length flagellin 6RSP ; 1.91 ; L-[Ru(phen)2(11-NO2-dppz)]2+ bound to the Oligonucleotide sequence d(TCGGCGCCGA) 6RNL ; 1.88 ; L-[Ru(TAP)2(dppz)]2+ bound to the G-quadruplex forming sequence d(TAGGGTT) 1VZB ; 2.5 ; L. CASEI THYMIDYLATE SYNTHASE MUTANT E60Q BINARY COMPLEX WITH DUMP 1VZC ; 2.5 ; L. CASEI THYMIDYLATE SYNTHASE MUTANT E60Q BINARY COMPLEX WITH FDUMP 1VZE ; 2.3 ; L. CASEI THYMIDYLATE SYNTHASE MUTANT E60Q TERNARY COMPLEX WITH DUMP AND CB3717 1VZD ; 2.5 ; L. CASEI THYMIDYLATE SYNTHASE MUTANT E60Q TERNARY COMPLEX WITH FDUMP AND CB3717 1TSL ; 2.5 ; L. CASEI THYMIDYLATE SYNTHASE WITH SPECIES SPECIFIC INHIBITOR 1TSM ; 3.0 ; L. CASEI THYMIDYLATE SYNTHASE WITH SPECIES SPECIFIC INHIBITOR 2G89 ; 2.5 ; L. casei thymidylate synthase Y261A in complex with substrate, dUMP 2G86 ; 2.4 ; L. casei thymidylate synthase Y261F in complex with substrate, dUMP 7TFE ; 2.85 ; L. monocytogenes GS(12) - apo 7TF9 ; 2.61 ; L. monocytogenes GS(14)-Q-GlnR peptide 6MCP ; 2.5 ; L. pneumophila effector kinase LegK7 (AMP-PNP bound) in complex with human MOB1A 6MCQ ; 2.57 ; L. pneumophila effector kinase LegK7 in complex with human MOB1A 7OVB ; 3.61 ; L. pneumophila Type IV Coupling Complex (T4CC) with density for DotY N-terminal and middle domains 5NXK ; 1.918 ; L. reuteri 53608 SRRP 5NY0 ; 2.0 ; L. reuters 100-23 SRRP 1KKL ; 2.8 ; L.casei HprK/P in complex with B.subtilis HPr 1KKM ; 2.8 ; L.casei HprK/P in complex with B.subtilis P-Ser-HPr 7AFZ ; 1.5 ; L1 metallo-b-lactamase with compound EBL-1306 7ZO2 ; 1.49 ; L1 metallo-beta-lactamase complex with hydrolysed doripenem 7ZO5 ; 1.43 ; L1 metallo-beta-lactamase in complex with a mecillinam degradation product 7ZO7 ; 1.63 ; L1 metallo-beta-lactamase in complex with hydrolysed cefmetazole 7ZO6 ; 1.61 ; L1 metallo-beta-lactamase in complex with hydrolysed cefoxitin 7ZO4 ; 1.43 ; L1 metallo-beta-lactamase in complex with hydrolysed panipenem 7ZO3 ; 1.43 ; L1 metallo-beta-lactamase in complex with hydrolysed tebipenem 1DZL ; 3.5 ; L1 protein of human papillomavirus 16 6L31 ; 4.18 ; L1 protein of human papillomavirus 6 2OIU ; 2.6 ; L1 Ribozyme Ligase circular adduct 2JAG ; 1.93 ; L1-intermediate of halorhodopsin T203V 1ACI ; ; L11 RIBOSOMAL PROTEIN RNA BINDING DOMAIN, NMR, 20 STRUCTURES 2E34 ; ; L11 structure with RDC and RG refinement 2E36 ; ; L11 with SANS refinement 1EVW ; 3.1 ; L116A MUTANT OF THE HOMING ENDONUCLEASE I-PPOI COMPLEXED TO HOMING SITE DNA. 1WLK ; 1.9 ; L122E mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3A20 ; 1.6 ; L122K mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 1WLI ; 1.6 ; L122Y mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 5JT4 ; 1.25 ; L16A mutant of cytochrome c prime from Alcaligenes xylosoxidans: Ferrous state 5JVE ; 1.12 ; L16I mutant of cytochrome c prime from Alcaligenes xylosoxidans: Ferrous state 7AH1 ; 2.0 ; L19 diabody fragment from immunocytokine L19-IL2 5NE2 ; 1.19 ; L2 class A serine-beta-lactamase 5NE3 ; 1.35 ; L2 class A serine-beta-lactamase complexed with avibactam 5NE1 ; 2.09 ; L2 class A serine-beta-lactamase in complex with cyclic boronate 2 2DAB ; 2.0 ; L201A MUTANT OF D-AMINO ACID AMINOTRANSFERASE COMPLEXED WITH PYRIDOXAL-5'-PHOSPHATE 1A0G ; 2.0 ; L201A MUTANT OF D-AMINO ACID AMINOTRANSFERASE COMPLEXED WITH PYRIDOXAMINE-5'-PHOSPHATE 8QVO ; 1.96 ; L211Q, L254N, T262G mutant of carboxypeptidase T from Thermoactinomyces vulgaris 1SZE ; 3.0 ; L230A mutant flavocytochrome b2 with benzoylformate 2H7S ; 2.15 ; L244A mutant of Cytochrome P450cam 2H7R ; 2.1 ; L244A mutant of Cytochrome P450cam complexed with imidazole 7ARU ; 2.05 ; L254N mutant of carboxypeptidase T from Thermoactinomyces vulgaris N-sulfamoyl-L-valine 5W3Q ; 1.401 ; L28F E.coli DHFR in complex with NADPH 5CC9 ; 1.199 ; L28F E.coli dihydrofolate reductase complexed with 5,10-dideazatetrahydrofolate and oxidized nicotinamide adenine dinucleotide phosphate 1UWA ; 2.3 ; L290F mutant rubisco from chlamydomonas 1UW9 ; 2.05 ; L290F-A222T chlamydomonas Rubisco mutant 3T4U ; 2.02 ; L29I Mutation in an Aryl Esterase from Pseudomonas fluorescens Leads to Unique Peptide Flip and Increased Activity 3T52 ; 2.0 ; L29I Mutation in an Aryl Esterase from Pseudomonas fluorescens Leads to Unique Peptide Flip and Increased Activity 2BLI ; 1.7 ; L29W Mb deoxy 4Z7V ; 2.65 ; L3-12 complex 2WZ0 ; 1.72 ; L38V SOD1 mutant complexed with aniline. 2WZ5 ; 1.5 ; L38V SOD1 mutant complexed with L-methionine. 2WYZ ; 1.7 ; L38V SOD1 mutant complexed with UMP 4YEP ; 1.19 ; L4b Domain of Human Laminin alpha-2 4YEQ ; 3.2 ; L4b Domain of Human Laminin alpha-2 4JCE ; 1.9 ; L54F Variant of JC Polyomavirus Major Capsid Protein VP1 3DKH ; 2.4 ; L559A mutant of Melanocarpus albomyces laccase 7VU8 ; 3.0 ; L7-Tir domain with bound ligand 4LXW ; 2.092 ; L72V Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 7QSV ; 2.1 ; L8-complex forming RubisCO derived from ancestral sequence reconstruction of the last common ancestor of Form I'' and Form I RubisCOs 6D45 ; 1.779 ; L89S Mutant of FeBMb Sperm Whale Myoglobin 1MP3 ; 2.2 ; L89T VARIANT OF S. ENTERICA RmlA 2YGF ; 2.0 ; L89V, L93I and V136M Mutant of N-Term HSP90 complexed with Geldanamycin 7QSW ; 1.8 ; L8S8-complex forming RubisCO derived from ancestral sequence reconstruction of the last common ancestor of SSU-bearing Form I RubisCOs 1QUO ; 1.9 ; L99A/E108V MUTANT OF T4 LYSOZYME 1QUD ; 1.75 ; L99G MUTANT OF T4 LYSOZYME 1QUH ; 1.85 ; L99G/E108V MUTANT OF T4 LYSOZYME 1S29 ; 1.6 ; La autoantigen N-terminal domain 7A57 ; 3.155 ; La Crosse Virus Envelope Glycoprotein Gc W1066H Mutant Fusion Domains in Postfusion Conformation 6H3W ; 2.098 ; La Crosse Virus Glycoprotein Gc Head Domain 6Z8K ; 3.02 ; La Crosse virus polymerase at elongation mimicking stage 7ORO ; 2.9 ; La Crosse virus polymerase at replication early-elongation stage 7ORN ; 2.8 ; La Crosse virus polymerase at replication initiation stage 7ORI ; 3.9 ; La Crosse virus polymerase at replication late-elongation stage 7ORJ ; 3.9 ; La Crosse virus polymerase at transcription capped RNA cleavage stage 7ORM ; 3.3 ; La Crosse virus polymerase at transcription early-elongation stage 7ORL ; 3.6 ; La Crosse virus polymerase at transcription initiation stage 7ORK ; 3.1 ; La Crosse virus polymerase in transcription mode with cleaved capped RNA entering the polymerase active site 4UHB ; 1.8 ; Laboratory evolved variant R-C1 of potato epoxide hydrolase StEH1 4UFN ; 2.0 ; Laboratory evolved variant R-C1B1 of potato epoxide hydrolase StEH1 4UFP ; 2.95 ; Laboratory evolved variant R-C1B1D33 of potato epoxide hydrolase StEH1 4UFO ; 2.02 ; Laboratory evolved variant R-C1B1D33E6 of potato epoxide hydrolase StEH1 7TDS ; 2.2 ; Labrum-interacting protein from saliva LIPS-2 (34K-2) from Aedes albopictus, native data 7TDR ; 2.28 ; Labrum-interacting protein from saliva LIPS-2 (34K-2) from Aedes albopictus, selenomethionine derivative 1LBI ; 2.7 ; LAC REPRESSOR 4RZT ; 3.1 ; Lac repressor engineered to bind sucralose, sucralose-bound tetramer 4RZS ; 2.71 ; Lac repressor engineered to bind sucralose, unliganded tetramer 1LQC ; ; LAC REPRESSOR HEADPIECE (RESIDUES 1-56), NMR, 32 STRUCTURES 5EHF ; 1.75 ; Laccase from Antrodiella faginea 3CG8 ; 2.679 ; Laccase from Streptomyces coelicolor 1K6C ; 2.2 ; LACK OF SYNERGY FOR INHIBITORS TARGETING A MULTI-DRUG RESISTANT HIV-1 PROTEASE 1K6P ; 2.2 ; LACK OF SYNERGY FOR INHIBITORS TARGETING A MULTI-DRUG RESISTANT HIV-1 PROTEASE 1K6T ; 2.25 ; LACK OF SYNERGY FOR INHIBITORS TARGETING A MULTI-DRUG RESISTANT HIV-1 PROTEASE 1K6V ; 2.0 ; LACK OF SYNERGY FOR INHIBITORS TARGETING A MULTI-DRUG RESISTANT HIV-1 PROTEASE 2TGD ; 2.1 ; LACK OF THE TRANSITION STATE STABILIZATION SITE IS A FACTOR IN THE INACTIVITY OF TRYPSINOGEN, A SERINE PROTEASE ZYMOGEN. STRUCTURE OF DFP INHIBITED BOVINE TRYPSINOGEN AT 2.1 ANGSTROMS RESOLUTION 2BI4 ; 2.85 ; Lactaldehyde:1,2-propanediol oxidoreductase of Escherichia coli 2BL4 ; 2.85 ; Lactaldehyde:1,2-propanediol oxidoreductase of Escherichia coli 6CIV ; ; Lactam cyclised mimetic of a fragment of p21 6CIX ; ; Lactam cyclised mimetic of a fragment of p21 4M49 ; 2.052 ; Lactate Dehydrogenase A in complex with a substituted pyrazine inhibitor compound 18 4ZVV ; 2.2 ; Lactate dehydrogenase A in complex with a trisubstituted piperidine-2,4-dione inhibitor GNE-140 4JNK ; 1.896 ; Lactate Dehydrogenase A in complex with inhibitor compound 22 4QO8 ; 2.001 ; Lactate Dehydrogenase A in complex with substituted 3-Hydroxy-2-mercaptocyclohex-2-enone compound 104 4QO7 ; 2.14 ; Lactate Dehydrogenase A in complex with substituted 3-Hydroxy-2-mercaptocyclohex-2-enone compound 7 1OC4 ; 2.3 ; Lactate dehydrogenase from Plasmodium berghei 1A5Z ; 2.1 ; LACTATE DEHYDROGENASE FROM THERMOTOGA MARITIMA (TMLDH) 5IXY ; 3.0 ; Lactate Dehydrogenase in complex with hydroxylactam inhibitor compound 31: (2~{S})-5-(2-chlorophenyl)sulfanyl-2-(4-morpholin-4-ylphenyl)-4-oxidanyl-2-thiophen-3-yl-1,3-dihydropyridin-6-one 5IXS ; 2.05 ; Lactate Dehydrogenase in complex with hydroxylactam inhibitor compound 9: (6R)-3-[(2-chlorophenyl)sulfanyl]-4-hydroxy-6-(3-hydroxyphenyl)-6-(thiophen-3-yl)-5,6-dihydropyridin-2(1H)-one 6BAD ; 2.1 ; Lactate Dehydrogenase in complex with inhibitor (R)-3-((2-chlorophenyl)thio)-6-(3-((4-fluorophenyl)amino)phenyl)-4-hydroxy-6-(thiophen-3-yl)-5,6-dihydro-2H-pyran-2-one 6BB0 ; 1.95 ; Lactate Dehydrogenase in complex with inhibitor (R)-3-((2-chlorophenyl)thio)-6-(3-((4-fluorophenyl)amino)phenyl)-4-hydroxy-6-(thiophen-3-yl)-5,6-dihydro-2H-pyran-2-one 6BAG ; 2.4 ; Lactate Dehydrogenase in complex with inhibitor (R)-5-((2-chlorophenyl)thio)-6'-((4-fluorophenyl)amino)-4-hydroxy-2-(thiophen-3-yl)-2,3-dihydro-[2,2'-bipyridin]-6(1H)-one 6BB1 ; 2.3 ; Lactate Dehydrogenase in complex with inhibitor (R)-5-((2-chlorophenyl)thio)-6'-(4-fluorophenoxy)-4-hydroxy-2-(thiophen-3-yl)-2,3-dihydro-[2,2'-bipyridin]-6(1H)-one 6BAZ ; 2.7 ; Lactate Dehydrogenase in complex with inhibitor (S)-5-((2-chlorophenyl)thio)-6'-((4-fluorophenyl)amino)-4-hydroxy-2-(thiophen-3-yl)-2,3-dihydro-[2,2'-bipyridin]-6(1H)-one 6BB2 ; 2.47 ; Lactate Dehydrogenase in complex with inhibitor (S)-5-((2-chlorophenyl)thio)-6'-(4-fluorophenoxy)-4-hydroxy-2-(thiophen-3-yl)-2,3-dihydro-[2,2'-bipyridin]-6(1H)-one 6BB3 ; 2.4 ; Lactate Dehydrogenase in complex with inhibitor 3-((2-chlorophenyl)thio)-6-(6-((4-fluorophenyl)amino)pyridin-2-yl)-4-hydroxy-6-(thiophen-3-yl)-5,6-dihydro-2H-pyran-2-one 6BAX ; 2.05 ; Lactate Dehydrogenase in complex with inhibitor 6-(3-aminophenyl)-3-((2-chlorophenyl)thio)-4-hydroxy-6-(thiophen-3-yl)-5,6-dihydro-2H-pyran-2-one 4R69 ; 3.19 ; Lactate Dehydrogenase in complex with inhibitor compound 13 4R68 ; 2.112 ; Lactate Dehydrogenase in complex with inhibitor compound 31 4RLS ; 1.91 ; Lactate Dehydrogenase in complex with inhibitor compound 47 5ZJD ; 2.394 ; Lactate dehydrogenase with NADH and MLA 6DVH ; 1.7 ; Lactate Monooxygenase from Mycobacterium smegmatis - C203A mutant 8H25 ; 2.295 ; Lacticaseibacillus casei GH35 beta-galactosidase LBCZ_0230 4H04 ; 1.8 ; Lacto-N-biosidase from Bifidobacterium bifidum 5GP4 ; 2.16 ; Lactobacillus brevis CGMCC 1306 Glutamate decarboxylase 1JB1 ; 2.8 ; Lactobacillus casei HprK/P Bound to Phosphate 3IK1 ; 2.25 ; Lactobacillus casei Thymidylate Synthase in Ternary Complex with dUMP and the Phtalimidic Derivative 20C 3IK0 ; 2.1 ; Lactobacillus casei Thymidylate Synthase in Ternary Complex with dUMP and the Phtalimidic Derivative 7C1 1LCB ; 2.5 ; LACTOBACILLUS CASEI THYMIDYLATE SYNTHASE TERNARY COMPLEX WITH DTMP AND H2FOLATE 1LCA ; 2.5 ; LACTOBACILLUS CASEI THYMIDYLATE SYNTHASE TERNARY COMPLEX WITH DUMP AND CB3717 1LCE ; 2.5 ; LACTOBACILLUS CASEI THYMIDYLATE SYNTHASE TERNARY COMPLEX WITH DUMP AND CH2THF 3IJZ ; 2.21 ; Lactobacillus casei Thymidylate Synthase ternary complex with dUMP and Pthalimidic derivative 15C 3C06 ; 2.6 ; Lactobacillus CASEI Thymidylate Synthase Ternary Complex With DUMP and the Phtalimidic Derivative 14C in Multiple Binding Modes-Mode 1 3C0A ; 2.4 ; Lactobacillus CASEI Thymidylate Synthase Ternary Complex with DUMP and the Phtalimidic Derivative 14C in Multiple Binding Modes-Mode 2 3BZ0 ; 2.7 ; Lactobacillus Casei Thymidylate Synthase Ternary Complex with DUMP and the Phtalimidic Derivative C00 3BYX ; 2.4 ; Lactobacillus CASEI Thymidylate Synthase Ternary Complex with DUMP and the Phtalimidic Derivative C00 in Multiple Binding Modes 2G8D ; 2.4 ; Lactobacillus casei thymidylate synthase Y261W-dUMP complex 2G8A ; 2.4 ; Lactobacillus casei Y261M in complex with substrate, dUMP 8PO5 ; 2.1 ; Lactobacillus plantarum LpdD 4AYG ; 2.0 ; Lactobacillus reuteri N-terminally truncated glucansucrase GTF180 in orthorhombic apo-form 3HZ3 ; 2.22 ; Lactobacillus reuteri N-terminally truncated glucansucrase GTF180(D1025N)-sucrose complex 6ECA ; 2.853 ; Lactobacillus rhamnosus Beta-glucuronidase 3DRF ; 1.3 ; Lactococcal OppA complexed with an endogenous peptide in the closed conformation 3DRG ; 2.5 ; Lactococcal OppA complexed with bradykinin in the closed conformation 3RYA ; 2.9 ; Lactococcal OppA complexed with SLSQLSSQS 3RYB ; 1.5 ; Lactococcal OppA complexed with SLSQSLSQS 2LGN ; ; Lactococcin 972 5LFI ; ; lactococcin A immunity protein 2JPJ ; ; Lactococcin G-a in DPC 2JPL ; ; Lactococcin G-a in TFE 2JPK ; ; Lactococcin G-b in DPC 2JPM ; ; Lactococcin G-b in TFE 4Y1J ; 2.24 ; Lactococcus lactis yybP-ykoY Mn riboswitch A41U binding site mutant in presence of Mn2+ 4Y1I ; 2.85 ; Lactococcus lactis yybP-ykoY Mn riboswitch bound to Mn2+ 4KTZ ; 1.9 ; Lactococcus phage 67 RuvC 4KTW ; 1.68 ; Lactococcus phage 67 RuvC - apo form 1IS3 ; 1.45 ; LACTOSE AND MES-LIGANDED CONGERIN II 1LTT ; 2.3 ; LACTOSE BINDING TO HEAT-LABILE ENTEROTOXIN REVEALED BY X-RAY CRYSTALLOGRAPHY 1LBG ; 4.8 ; LACTOSE OPERON REPRESSOR BOUND TO 21-BASE PAIR SYMMETRIC OPERATOR DNA, ALPHA CARBONS ONLY 6VBG ; 2.8 ; Lactose permease complex with thiodigalactoside and nanobody 9043 3S4D ; 3.3 ; Lactose phosphorylase in a ternary complex with cellobiose and sulfate 3S4C ; 2.4 ; Lactose phosphorylase in complex with sulfate 1C1L ; 1.5 ; LACTOSE-LIGANDED CONGERIN I 1IS4 ; 1.9 ; LACTOSE-LIGANDED CONGERIN II 1G9Z ; 1.8 ; LAGLIDADG HOMING ENDONUCLEASE I-CREI / DNA PRODUCT COMPLEX WITH MAGNESIUM 6UAK ; 2.01 ; LahSb - C-terminal methyltransferase involved in RiPP biosynthesis 7SOO ; 1.65 ; LaM domain of human LARP1 7SOQ ; 1.15 ; LaM domain of human LARP1 in complex with AAA RNA 7SOR ; 1.35 ; LaM domain of human LARP1 in complex with AAA RNA 7SOS ; 1.25 ; LaM domain of human LARP1 in complex with AAAA RNA 7SOT ; 1.52 ; LaM domain of human LARP1 in complex with AAAAAA oligonucleotide 7SOU ; 1.45 ; LaM domain of human LARP1 in complex with AAAAAA polynucleotide 7SOV ; 1.45 ; LaM domain of human LARP1 in complex with AAAAAAAAAAA RNA polynucleotide 8EY6 ; 1.63 ; LaM domain of human LARP1 in complex with AAAAAG RNA 8EY8 ; 1.3 ; LaM domain of human LARP1 in complex with AAAAGA RNA 8EY7 ; 1.35 ; LaM domain of human LARP1 in complex with AAAGAA RNA 7SOP ; 1.55 ; LaM domain of human LARP1 in complex with AAAUAA RNA 7SOW ; 1.3 ; LaM domain of human LARP1 in complex with UUUUUU 8DSB ; ; Lambda Bacteriophage Orf63 2ECS ; 1.4 ; Lambda Cro mutant Q27P/A29S/K32Q at 1.4 A in space group C2 2OVG ; 1.35 ; Lambda Cro Q27P/A29S/K32Q triple mutant at 1.35 A in space group P3221 5J0N ; 11.0 ; Lambda excision HJ intermediate 5ET2 ; 1.39 ; Lambda-Ru(TAP)2(dppz)]2+ bound to d(TTGGCGCCAA) 5IP8 ; 1.76 ; Lambda-Ru(TAP)2dppz bound to d(CCGGCTCCGG) 1Q5B ; 30.0 ; lambda-shaped TRANS and CIS interactions of cadherins model based on fitting C-cadherin (1L3W) to 3D map of desmosomes obtained by electron tomography 5LFS ; 1.85 ; Lambda-[Ru(bpy)2(dppz)]2+ bound to brominated DNA 5LFW ; 1.28 ; Lambda-[Ru(phen)2(dppz)]2+ bound to a short substituted DNA sequence 4E7Y ; 1.7 ; Lambda-[Ru(phen)2(dppz)]2+ Bound to CCGGATCCGG 5LFX ; 1.56 ; Lambda-[Ru(phen)2(dppz-11,12-Me)]2+ bound to a short substituted DNA sequence 4III ; 1.02 ; Lambda-[Ru(TAP)2(11-Cl-dppz)] with a DNA decamer at atomic resolution 4YMC ; 1.88 ; Lambda-[Ru(TAP)2(dppz)]2+ bound to d(CCGGATCCGG)2 5IWJ ; 1.88 ; LAmbda-[Ru(TAP)2(dppz)]2+ bound to d(CCGGGCCCGG 4QIO ; 0.95 ; Lambda-[Ru(TAP)2(dppz)]2+ bound to d(TCGGCGCCIA) at high resolution 5IU5 ; 1.9 ; Lambda-[Ru(TAP)2(dppz)]2+ bound to d(TCGGCICCGA)2 4RE7 ; 2.181 ; Lambda-[Ru(TAP)2(dppz)]2+ bound to d(TCIGCGCCGA) 4E95 ; 1.94 ; Lambda-[Ru(TAP)2(dppz-(Me)2)]2+ bound to CCGGATCCGG 4E8X ; 2.18 ; Lambda-[Ru(TAP)2(dppz-(Me)2)]2+ bound to d(CCGGCGCCGG)2 4X1A ; 0.89 ; Lambda-[Ru(TAP)2(dppz-10,12-Me)]2+ bound to d(TCGGCGCCGA) 4MJ9 ; 0.97 ; lambda-[Ru(TAP)2(dppz-10-Me)]2+ bound to a synthetic DNA oligomer 4MS5 ; 2.23 ; Lambda-[Ru(TAP)2(dppz-11,12-(F)2)]2+ bound to CCGGATCCGG 4E8S ; 1.24 ; Lambda-[Ru(TAP)2(dppz{Me2}2)]2+ bound to TCGGCGCCGA at high resolution 1N35 ; 2.5 ; lambda3 elongation complex with four phosphodiester bond formed 6YSH ; 2.83 ; Lamin A 1-70 coil1A dimer stabilized by C-terminal capping 6YF5 ; 1.83 ; Lamin A 17-70 coil1A dimer stabilized by C-terminal capping 6YJD ; 2.9 ; Lamin A coil2 dimer stabilized by N-terminal capping 6GCZ ; 1.8 ; Laminarin binding SusD-like protein 5IK4 ; 1.27 ; Laminin A2LG45 C-form, Apo. 5IK5 ; 1.39 ; Laminin A2LG45 C-form, G6/7 bound. 5IK7 ; 2.0 ; Laminin A2LG45 I-form, Apo. 5IK8 ; 2.0 ; Laminin A2LG45 I-form, G6/7 bound. 1DYK ; 2.0 ; Laminin alpha 2 chain LG4-5 domain pair 1OKQ ; 2.8 ; LAMININ ALPHA 2 CHAIN LG4-5 DOMAIN PAIR, CA1 SITE MUTANT 2Y38 ; 2.9 ; LAMININ ALPHA5 CHAIN N-TERMINAL FRAGMENT 4AQS ; 3.109 ; Laminin beta1 LN-LE1-4 structure 3SH4 ; 1.5 ; Laminin G like domain 3 from human perlecan 4AQT ; 3.2 ; Laminin gamma1 LN-LE1-2 structure 7E1E ; 3.34 ; Lamprey serum virus-like lectin-LSVL 7Q5G ; 0.83 ; LAN-DAP5 DERIVATIVE OF LANREOTIDE: L-DIAMINO PROPIONIC ACID IN POSITION 5 IN PLACE OF L-LYSINE 4RIE ; 2.162 ; Landomycin Glycosyltransferase LanGT2 4RIF ; 1.85 ; Landomycin Glycosyltransferase LanGT2, carbasugar substrate complex 8FMX ; 3.37 ; Langya virus F glycoprotein ectodomain in prefusion form 8FEL ; 4.64 ; Langya Virus Fusion Protein (LayV-F) in Post-Fusion Conformation 8FEJ ; 4.64 ; Langya Virus Fusion Protein (LayV-F) in Pre-Fusion Conformation 7SNM ; 2.55 ; Lanosterol-bound P450 domain of the CYP51-ferredoxin fusion protein from Methylococcus capsulatus 7Q5A ; 2.46 ; Lanreotide nanotube 6OC5 ; 2.8 ; Lanthanide-dependent methanol dehydrogenase XoxF from Methylobacterium extorquens, in complex with Lanthanum 6OC6 ; 2.89 ; Lanthanide-dependent methanol dehydrogenase XoxF from Methylobacterium extorquens, in complex with Lanthanum and Pyrroloquinoline quinone 5XBO ; ; Lanthanoid tagging via an unnatural amino acid for protein structure characterization 4TVS ; 1.6 ; LAP1(aa356-583), H.sapiens, bound to VHH-BS1 6EP3 ; 2.2 ; Lar controls the expression of the Listeria monocytogenes agr system and mediates virulence. 7MJ0 ; 3.01 ; LarB, a carboxylase/hydrolase involved in synthesis of the cofactor for lactate racemase, in complex with adenosine monophosphate AMP 7MJ1 ; 3.402 ; LarB, a carboxylase/hydrolase involved in synthesis of the cofactor for lactate racemase, in complex with NAD 7MJ2 ; 2.8 ; LarB, a carboxylase/hydrolase involved in synthesis of the cofactor for lactate racemase, in complex with Zn 6BWO ; 2.03 ; LarC2, the C-terminal domain of a cyclometallase involved in the synthesis of the NPN cofactor of lactate racemase, apo form 6BWQ ; 1.85 ; LarC2, the C-terminal domain of a cyclometallase involved in the synthesis of the NPN cofactor of lactate racemase, in complex with MnCTP 6BWR ; 1.81 ; LarC2, the C-terminal domain of a cyclometallase involved in the synthesis of the NPN cofactor of lactate racemase, in complex with nickel 6UTQ ; 2.39 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with cadmium 6UTT ; 2.49 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with calcium 6UTP ; 3.55 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with cobalt 6B2M ; 2.088 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with coenzyme A 6UTR ; 2.41 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with copper 5UDR ; 2.62 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase in complex with nicotinamide mononucleotid NMN 5UDQ ; 2.09 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, apo form 6B2O ; 2.35 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, C176A variant 5UDT ; 3.188 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with AMP 6DG3 ; 2.944 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with caesium 5UDV ; 2.621 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with iron 5UDU ; 2.792 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with manganese 5UDS ; 2.37 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with MgATP 5UDW ; 2.698 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with nickel 5UDX ; 2.784 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, in complex with zinc 5UNM ; 2.58 ; LarE, a sulfur transferase involved in synthesis of the cofactor for lactate racemase, substrate free form with flexible loop 3CW4 ; 2.7 ; Large c-terminal domain of influenza a virus RNA-dependent polymerase PB2 2UWE ; 2.4 ; Large CDR3a loop alteration as a function of MHC mutation 2J8U ; 2.88 ; Large CDR3a loop alteration as a function of MHC mutation. 4DFK ; 1.647 ; large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with 5-(N-(10-hydroxydecanoyl)-aminopentinyl)-2-dUTP 5YTD ; 2.0 ; large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with the natural base pair 5fC:dGTP 5YTC ; 2.28 ; Large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with the unnatural base M-fC pair with dATP in the active site 5YTE ; 2.21 ; Large fragment of DNA Polymerase I from Thermus aquaticus in a closed ternary complex with with natural dT:dATP base pair 5KTQ ; 2.5 ; LARGE FRAGMENT OF TAQ DNA POLYMERASE BOUND TO DCTP 1UXH ; 2.1 ; Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface 1UXI ; 2.1 ; Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface 1UXJ ; 1.75 ; Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface 1UXK ; 1.8 ; Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface 1UXG ; 1.9 ; Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface. 1S01 ; 1.7 ; LARGE INCREASES IN GENERAL STABILITY FOR SUBTILISIN BPN(PRIME) THROUGH INCREMENTAL CHANGES IN THE FREE ENERGY OF UNFOLDING 1FG0 ; 3.0 ; LARGE RIBOSOMAL SUBUNIT COMPLEXED WITH A 13 BP MINIHELIX-PUROMYCIN COMPOUND 1FFZ ; 3.2 ; LARGE RIBOSOMAL SUBUNIT COMPLEXED WITH R(CC)-DA-PUROMYCIN 1MSS ; 2.4 ; LARGE SCALE STRUCTURAL REARRANGEMENTS OF THE FRONT LOOPS IN MONOMERISED TRIOSEPHOSPHATE ISOMERASE, AS DEDUCED FROM THE COMPARISON OF THE STRUCTURAL PROPERTIES OF MONOTIM AND ITS POINT MUTATION VARIANT MONOSS 5XYM ; 3.08 ; Large subunit of Mycobacterium smegmatis 7PKT ; 3.0 ; Large subunit of the Chlamydomonas reinhardtii mitoribosome 6I9R ; 3.9 ; Large subunit of the human mitochondrial ribosome in complex with Virginiamycin M and Quinupristin 5XXB ; 3.17 ; Large subunit of Toxoplasma gondii ribosome 5XY3 ; 3.2 ; Large subunit of Trichomonas vaginalis ribosome 6GYV ; 2.50004 ; Lariat-capping ribozyme (circular permutation form) 6G7Z ; 3.33595 ; Lariat-capping ribozyme with a shortened DP2 stem loop 8IRQ ; 1.49 ; Larimichthys crocea IFNd 7WZ5 ; 1.39 ; Larimichthys crocea IFNi 6PW3 ; 2.34 ; LARP1 DM15 FYRE (F844Y, R847E) mutant bound to m7GpppG dinucleotide (capG) 4WKR ; 3.2 ; LaRP7 wrapping up the 3' hairpin of 7SK non-coding RNA (302-332) 4NG0 ; 1.501 ; Lar_0958 a cell surface adhesin from lactobacillus reuteri 8CC4 ; 2.7 ; LasB bound to phosphonic acid based inhibitor 6F8B ; 1.3 ; LasB bound to thiol based inhibitor 7OC7 ; 1.95 ; LasB, alpha-alkyl-N-aryl mercaptoacetamide 6FZX ; 2.1 ; LasB, hydroxymate Inhibitor Complex 7NLK ; 1.7 ; LasB, N-aryl-2-butylmercaptoacetamide 7NLM ; 1.65 ; LasB, N-aryl-2-butylmercaptoacetamide 8CW8 ; 1.57 ; Laser Off Temperature-Jump XFEL structure of Lysozyme 8CWB ; 1.51 ; Laser Off Temperature-Jump XFEL structure of Lysozyme Bound to N,N'-diacetylchitobiose 4HV1 ; 2.3 ; Laser-induced microfragmentation of lysozyme crystals allows X-ray nanodiffraction characterization of individual domains (lb4) 4HV2 ; 2.501 ; Laser-induced microfragmentation of lysozyme crystals allows X-ray nanodiffraction characterization of individual domains (lb5) 2MBD ; ; Lasiocepsin 7EXD ; 3.4 ; Lasmiditan-bound serotonin 1F (5-HT1F) receptor-Gi protein complex 6MVN ; 2.2 ; LasR LBD L130F:3OC10HSL complex 6MVM ; 1.895 ; LasR LBD L130F:3OC14HSL complex 6MWZ ; 1.657 ; LasR LBD T75V/Y93F/A127W:BB0126 6MWH ; 2.2 ; LasR LBD:BB0020 complex 6MWW ; 2.76 ; LasR LBD:BB0126 complex 6MWL ; 1.5 ; LasR LBD:mBTL complex 3IX3 ; 1.4 ; LasR-OC12 HSL complex 3IX4 ; 1.8 ; LasR-TP1 complex 3IX8 ; 1.8 ; LasR-TP3 complex 3JPU ; 2.3 ; LasR-TP4 complex 3MX2 ; 1.983 ; Lassa fever virus Nucleoprotein complexed with dTTP 3MX5 ; 1.903 ; Lassa fever virus nucleoprotein complexed with UTP 8T5C ; 4.7 ; Lassa GPC Trimer in complex with Fab 8.11G and nanobody D5 4GV9 ; 2.46 ; Lassa nucleoprotein C-terminal domain in complex with triphosphated dsRNA soaking for 5 min 4G9Z ; 2.03 ; Lassa nucleoprotein with dsRNA reveals novel mechanism for immune suppression 8EJH ; 3.71 ; Lassa virus glycoprotein complex (Josiah) bound to 12.1F Fab 8EJI ; 3.81 ; Lassa virus glycoprotein complex (Josiah) bound to 19.7E Fab 8EJJ ; 3.22 ; Lassa virus glycoprotein complex (Josiah) bound to S370.7 Fab 7SGF ; 4.41 ; Lassa virus glycoprotein construct (Josiah GPC-I53-50A) in complex with LAVA01 antibody 7SGD ; 3.97 ; Lassa virus glycoprotein construct(Josiah GPCysR4) recovered from GPC-I53-50 nanoparticle by localized reconstruction 7OEB ; 3.04 ; Lassa virus L protein bound to 3' promoter RNA (well-resolved endonuclease) [3END-ENDO] 7OEA ; 2.7 ; Lassa virus L protein bound to 3' promoter RNA (well-resolved polymerase core) [3END-CORE] 7OJK ; 3.89 ; Lassa virus L protein bound to the distal promoter duplex [DISTAL-PROMOTER] 5IZH ; 1.85 ; Lassa virus L protein cap-snatching endonuclease. apo form 5J1N ; 1.09 ; Lassa virus L protein cap-snatching endonuclease. Bound to one manganese ion 5J1P ; 2.36 ; Lassa virus L protein cap-snatching endonuclease. Bound to two manganese ions 7OJL ; 3.3 ; Lassa virus L protein in a pre-initiation conformation [PREINITIATION] 7OJN ; 2.92 ; Lassa virus L protein in an elongation conformation [ELONGATION] 7OJJ ; 3.5 ; Lassa virus L protein with endonuclease and C-terminal domains in close proximity [MID-LINK] 2MMW ; ; LASSO PEPTIDE BASED INTEGRIN INHIBITOR: MICROCIN J25 VARIANT WITH RGD SUBSTITUTION of GLY12-ILE13-GLY14 7CU6 ; ; lasso peptide C24 mutant - A11V2C 6Q1X ; ; Lasso peptide pandonodin 6JX3 ; 1.7 ; Lasso peptide synthetase B1 complexed with the leader peptide 2MMT ; ; Lasso peptide-based integrin inhibitor: Microcin J25 variant with RGDF substitution of Gly12-Ile13-Gly14-Thr15 6C8Z ; 2.86 ; Last common ancestor of ADP-dependent phosphofructokinases from Methanosarcinales 5FQM ; 1.5 ; Last common ancestor of Gram Negative Bacteria (GNCA) Class A beta- lactamase 5FQQ ; 2.12 ; Last common ancestor of Gram-negative bacteria (GNCA4) beta-lactamase class A 7L07 ; 2.0 ; Last common ancestor of HMPPK and PLK/HMPPK vitamin kinases 2OWO ; 2.3 ; Last Stop on the Road to Repair: Structure of E.coli DNA Ligase Bound to Nicked DNA-Adenylate 6JMQ ; 3.31 ; LAT1-CD98hc complex bound to MEM-108 Fab 8XJM ; 2.85 ; Latanoprost acid bound Prostaglandin F2-alpha receptor-Gq Protein Complex 8RI9 ; 3.3 ; Late alpha-Synuclein fibril structure from liquid-liquid phase separations. 7ZKP ; 3.2 ; Late assembly intermediate of the proximal proton pumping module of complex I with assembly factors NDUFAF1 and CIA84 7PUB ; 3.7 ; Late assembly intermediate of the Trypanosoma brucei mitoribosomal small subunit 1T1A ; 1.6 ; Late intermediate IL1 from time-resolved crystallography of the E46Q mutant of PYP 1T1B ; 1.6 ; Late intermediate IL2 from time-resolved crystallography of the E46Q mutant of PYP 1T1C ; 1.6 ; Late intermediate IL3 from time-resolved crystallography of the E46Q mutant of PYP 7SSW ; 3.8 ; Late translocation intermediate with EF-G dissociated (Structure VI) 7SS9 ; 3.9 ; Late translocation intermediate with EF-G partially dissociated (Structure V) 4Z11 ; 2.5 ; Latent aurone synthase (polyphenol oxidase) from natural source 1DVN ; 2.1 ; LATENT FORM OF PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) 1QWY ; 1.3 ; Latent LytM at 1.3 A resolution 7Y1A ; 6.3 ; Lateral hexamer 3MP7 ; 2.9 ; Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes 7BNQ ; 4.1 ; Lateral-closed conformation of the lid-locked BAM complex (BamA E435C S665C, BamBDCE) by cryoEM 7NCS ; 7.1 ; Lateral-open conformation of the lid-locked BAM complex (BamA E435C S665C, BamBDCE) bound by a bactericidal Fab fragment 7NBX ; 4.8 ; Lateral-open conformation of the lid-locked BAM complex (BamA E435C S665C, BamBDCE) by cryoEM 7ND0 ; 5.2 ; lateral-open conformation of the wild-type BAM complex (BamABCDE) bound to a bactericidal Fab fragment 4B2N ; 1.8 ; Latex Oxygenase RoxA 1G5U ; 3.1 ; LATEX PROFILIN HEVB8 1EBE ; 2.2 ; Laue diffraction study on the structure of cytochrome c peroxidase compound I 2BWH ; 1.9 ; Laue Structure of a Short Lived State of L29W Myoglobin 2BW9 ; 1.68 ; Laue Structure of L29W MbCO 2C7K ; 3.2 ; Laue structure of phycoerythrocyanin from Mastigocladus laminosus 3UBR ; 2.59 ; Laue structure of Shewanella oneidensis cytochrome-c Nitrite Reductase 6XV0 ; 3.0 ; lauric acid functionalized hexamolybdoaluminate bound to human serum albumin 8I54 ; 3.95 ; Lb2Cas12a RNA DNA complex 5EY5 ; 1.972 ; LBCATS 8FQ2 ; 3.14 ; LBD conformation 1 (LBDconf1) of GluA2 flip Q isoform N619K mutant of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg/N619K) 8FQG ; 3.01 ; LBD conformation 1 (LBDconf1) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 150mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na260) 8FPV ; 3.08 ; LBD conformation 1 (LBDconf1) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 500mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na610) 8FQD ; 3.01 ; LBD conformation 1 (LBDconf1) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 10mM CaCl2, 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Ca10) 8FQ8 ; 3.11 ; LBD conformation 1 (LBDconf1) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Na110) 8FPK ; 2.76 ; LBD conformation 1 of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100uM CNQX (Closed-CaNaMg) 8FQ3 ; 3.17 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform N619K mutant of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100mM glutamate (Open-CaNaMg/N619K) 8FPL ; 2.81 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 10mM CaCl2, 150mM NaCl, 1mM MgCl2, 330uM CTZ, and 100uM CNQX (Closed-CaNaMg) 8FQH ; 3.43 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 150mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na260) 8FPY ; 2.98 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 500mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na610) 8FQE ; 3.14 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 10mM CaCl2, 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Ca10) 8FQA ; 3.35 ; LBD conformation 2 (LBDconf2) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 140mM NMDG, 330uM CTZ, and 100mM L-glutamate (Open-Na110) 8FR0 ; 3.04 ; LBD conformation 3 (LBDconf3) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 150mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na260) 8FPZ ; 3.01 ; LBD conformation 3 (LBDconf3) of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma-2, with 500mM NaCl, 330uM CTZ, and 100mM glutamate (Open-Na610) 8FQ6 ; 3.14 ; LBD of GluA2 flip Q isoform of AMPA receptor in complex with gain-of-function TARP gamma2, with 150mM CaCl2, 330uM CTZ, and 100mM L-glutamate (Open-Ca150) 7F5B ; 3.9 ; LBD-TMD focused reconstruction of DNQX-bound GluK2-1xNeto2 complex 5H91 ; 1.77 ; LbDERA mutant-T29L/F163Y 7LZP ; 2.86 ; LC/A-JPU-B9-JPU-A11-JPU-G11 2N9X ; ; LC3 FUNDC1 complex structure 2K6Q ; ; LC3 p62 complex structure 6TBE ; 1.67008 ; LC3A in complex with (3R,4S,5R,6R)-5-hydroxy-6-((4-hydroxy-3-(4-hydroxy-3-isopentylbenzamido)-8-methyl-2-oxo-2H-chromen-7-yl)oxy)-3-methoxy-2,2-dimethyltetrahydro-2H-pyran-4-yl carbamate 7R9W ; 1.75 ; LC3A in complex with Fragment 1-1 7RA0 ; 1.36 ; LC3A in complex with Fragment 2-10 7R9Z ; 1.72 ; LC3A in complex with Fragment 2-3 7ELG ; 1.599 ; LC3B modificated with a covalent probe 2LUE ; ; LC3B OPTN-LIR Ptot complex structure 5GMV ; 2.25 ; LC3B-FUNDC1 complex 4QH7 ; 1.829 ; LC8 - Ana2 (159-168) Complex 4QH8 ; 1.9 ; LC8 - Ana2 (237-246) Complex 5E0L ; 1.31 ; LC8 - Chica (415-424) Complex 5E0M ; 1.65 ; LC8 - Chica (468-476) Complex 3DVH ; 2.0 ; LC8 Point mutant K36P 7V6L ; 1.948 ; LcCOMT in complex with SAH 7V6J ; 1.799 ; LcCOMT in complex with SAM 5W10 ; 2.15 ; Lcd1 GAF domain in complex with cAMP ligand 2PL0 ; 2.8 ; LCK bound to imatinib 3MPM ; 1.95 ; LCK complexed with a pyrazolopyrimidine 6PQ4 ; 2.0 ; LCP-embedded Proteinase K treated with lipase 6PQ0 ; 2.0 ; LCP-embedded Proteinase K treated with MPD 6ADZ ; 2.431 ; LdCoroCC Double mutant- I486A-L493A 6ICR ; 2.04 ; LdCoroCC mutant- C482A 6ADO ; 2.502 ; LdCoroCC mutant-I486A 8I5Z ; 2.65 ; LDH Mutant P101Q-(An unexpected single-point mutation triggers the unleashing of catalytic potential of a NADH-dependent dehydrogenase) 6MV8 ; 1.95 ; LDHA structure in complex with inhibitor 14 6MVA ; 2.02 ; LDHA structure in complex with inhibitor 14 5ZJF ; 2.602 ; LDHA-MA 5ZJE ; 2.929 ; LDHA-mla 1AJJ ; 1.7 ; LDL RECEPTOR LIGAND-BINDING MODULE 5, CALCIUM-COORDINATING 1D2J ; ; LDL RECEPTOR LIGAND-BINDING MODULE 6 7A1C ; 1.77 ; LdtMT2 with covalent adduct derived from N-Thio-beta-lactam 1a 1TLE ; ; LE (LAMININ-TYPE EGF-LIKE) MODULE GIII4 IN SOLUTION AT PH 3.5 AND 290 K, NMR, 14 STRUCTURES 2XAL ; 3.2 ; Lead derivative of Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from A. thaliana in complex with ADP and IP6. 4B0Q ; 1.87 ; Lead Generation of BACE1 Inhibitors by Coupling Non-amidine New Warheads to a Known Binding Scaffold 2JQG ; ; Leader Protease 4J1J ; 2.65 ; Leanyer orthobunyavirus nucleoprotein-ssDNA complex 4J1G ; 2.789 ; Leanyer orthobunyavirus nucleoprotein-ssRNA complex 1Q01 ; ; Lebetin peptides, a new class of potent aggregation inhibitors 4I77 ; 1.9 ; Lebrikizumab Fab bound to IL-13 7FJH ; 1.79 ; LecA from Pseudomonas aeruginosa in complex with 4-Phenylbutyryl hydroxamic acid (CAS: 32153-46-1) 6YOH ; 1.84 ; LecA from Pseudomonas aeruginosa in complex with a catechol CAS no. 61445-50-9 6YO3 ; 1.84 ; LecA from Pseudomonas aeruginosa in complex with a catechol CAS no. 67984-81-0 7FIO ; 1.5 ; LecA from Pseudomonas aeruginosa in complex with a synthetic monovalent galactosidic inhibitor 8GUV ; 1.32 ; LecA from Pseudomonas aeruginosa in complex with tolcapone (CAS: 134308-13-7) 1OUS ; 1.2 ; Lecb (PA-LII) calcium-free 1OVS ; 1.75 ; LecB (PA-LII) in complex with core trimannoside 1OVP ; 1.4 ; LecB (PA-LII) in complex with fructose 1OXC ; 1.2 ; LecB (PA-LII) in complex with FUCOSE 1OUR ; 1.42 ; LecB (PA-LII) in complex with mannose 3DCQ ; 1.8 ; LECB (PA-LII) in complex with the synthetic ligand 2G0 1OUX ; 2.0 ; LecB (PA-LII) sugar-free 1GSL ; 2.0 ; LECTIN (FOURTH ISOLATED FROM (GRIFFONIA SIMPLICIFOLIA)) COMPLEX WITH Y HUMAN BLOOD GROUP DETERMINANT 8G1L ; 1.06 ; Lectin domain of Aap (Staphylococcus epidermidis Accumulation Associated Protein) 5LNG ; 2.09 ; Lectin domain of E. coli F9 pilus adhesin FmlH 3LEI ; 1.9 ; Lectin Domain of Lectinolysin complexed with Fucose 3LE0 ; 1.91 ; Lectin Domain of Lectinolysin complexed with Glycerol 3LEK ; 2.0 ; Lectin Domain of Lectinolysin complexed with Lewis B Antigen 3LEG ; 2.01 ; Lectin Domain of Lectinolysin complexed with Lewis Y Antigen 8G1M ; 1.93 ; Lectin domain of SasG (Staphylococcus aureus Surface protein G) 5T54 ; 1.65 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH BLOOD GROUP A ANTIGEN 5T52 ; 1.7 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH GALNAC 5T55 ; 1.43 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH GLOBOTETRAOSE 5T5J ; 1.35 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH TN-PEPTIDE 5T5L ; 1.17 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH TN-PEPTIDE 5T5O ; 2.75 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH TN-PEPTIDE 5T5P ; 1.66 ; LECTIN FROM BAUHINIA FORFICATA IN COMPLEX WITH TN-PEPTIDE 1DGL ; 2.4 ; LECTIN FROM DIOCLEA GRANDIFLORA COMPLEXED TO TRIMANNOSIDE 2BS5 ; 2.1 ; LECTIN FROM RALSTONIA SOLANACEARUM COMPLEXED WITH 2-FUCOSYLLACTOSE 2BT9 ; 0.94 ; Lectin from Ralstonia solanacearum complexed with Me-fucoside 2BS6 ; 1.8 ; LECTIN FROM RALSTONIA SOLANACEARUM COMPLEXED WITH XYLOGLUCAN FRAGMENT 1GNZ ; 2.5 ; LECTIN I-B4 FROM GRIFFONIA SIMPLICIFOLIA (GS I-B4)METAL FREE FORM 1QNW ; 2.35 ; lectin II from Ulex europaeus 2JDH ; 1.1 ; Lectin PA-IIL of P.aeruginosa complexed with disaccharide derivative 2JDK ; 1.1 ; Lectin PA-IIL of P.aeruginosa complexed with disaccharide derivative 1QOS ; 2.95 ; lectin UEA-II complexed with chitobiose 1QOT ; 3.0 ; lectin UEA-II complexed with fucosyllactose and fucosylgalactose 1DZQ ; 2.85 ; LECTIN UEA-II COMPLEXED WITH GALACTOSE 1QOO ; 2.75 ; lectin UEA-II complexed with NAG 6TVM ; ; LEDGF/p75 dimer (residues 345-467) 6TRJ ; 1.3 ; LEDGF/p75 IBD dimer 3SLI ; 1.8 ; LEECH INTRAMOLECULAR TRANS-SIALIDASE COMPLEXED WITH 2,7-ANHYDRO-NEU5AC PREPARED BY SOAKING WITH 3'-SIALYLLACTOSE 2SLI ; 1.8 ; LEECH INTRAMOLECULAR TRANS-SIALIDASE COMPLEXED WITH 2,7-ANHYDRO-NEU5AC, THE REACTION PRODUCT 4SLI ; 1.8 ; LEECH INTRAMOLECULAR TRANS-SIALIDASE COMPLEXED WITH 2-PROPENYL-NEU5AC, AN INACTIVE SUBSTRATE ANALOGUE 1SLI ; 2.0 ; LEECH INTRAMOLECULAR TRANS-SIALIDASE COMPLEXED WITH DANA 1AN1 ; 2.03 ; LEECH-DERIVED TRYPTASE INHIBITOR/TRYPSIN COMPLEX 2LEF ; ; LEF1 HMG DOMAIN (FROM MOUSE), COMPLEXED WITH DNA (15BP), NMR, 12 STRUCTURES 2ZUB ; 2.9 ; Left handed RadA 7WFD ; 3.25 ; Left PSI in the cyclic electron transport supercomplex NDH-PSI from Arabidopsis 7YVX ; 2.99 ; Left-handed DNA duplex containing consecutive G-G base pairs 7D5F ; ; Left-handed G-quadruplex containing 3 bulges 7D5D ; 1.18 ; Left-handed G-quadruplex containing one bulge 7D5E ; 1.296 ; Left-handed G-quadruplex containing two bulges 1ICK ; 0.95 ; LEFT-HANDED Z-DNA HEXAMER DUPLEX D(CGCGCG)2 7S8V ; 3.73 ; Leg region of a complex of IGF-I with the ectodomain of a hybrid insulin receptor / type 1 insulin-like growth factor receptor 6VWJ ; 4.21 ; Leg region of the closed conformation of the human type 1 insulin-like growth factor receptor ectodomain in complex with human insulin-like growth factor II 6VWH ; 4.26 ; Leg region of the open conformation of the human type 1 insulin-like growth factor receptor ectodomain in complex with human insulin-like growth factor II. 2GDM ; 1.7 ; LEGHEMOGLOBIN (OXY) 1BIN ; 2.2 ; LEGHEMOGLOBIN A (ACETOMET) 6SKU ; 3.2 ; Legionella effector AnkX in complex with human Rab1b 8ANP ; 2.2 ; Legionella effector Lem3 mutant D190A in complex with Mg2+ 8JHU ; 3.1 ; Legionella effector protein SidI 7XGV ; 2.27 ; Legionella glucosyltransferase 2WZG ; 1.9 ; Legionella glucosyltransferase (Lgt1) crystal structure 8HCY ; 2.64 ; Legionella glycosyltransferase 6E8H ; 1.68 ; Legionella Longbeachae LeSH (Llo2327) 6E8I ; 1.68 ; Legionella Longbeachae LeSH (Llo2327) bound to phosphotyrosine 6E8M ; 1.61 ; Legionella Longbeachae LeSH (Llo2327) bound to the human DnaJ-A1 pTyr381 peptide 6E8K ; 1.71 ; Legionella Longbeachae LeSH (Llo2327) bound to the human interleukin-2 receptor beta pTyr387 peptide 8DMR ; 1.86 ; Legionella macrodomain effector MavL R370A in complex with ADP-ribose 8GOK ; 1.52 ; Legionella OTU deubiquitinase LotA OTU1 domain 6X66 ; 4.2 ; Legionella pneumophila dDot T4SS OMC 4NQ1 ; 1.65 ; Legionella pneumophila dihydrodipicolinate synthase with first substrate pyruvate bound in the active site 6X62 ; 3.5 ; Legionella pneumophila Dot T4SS OMC 6X64 ; 3.7 ; Legionella pneumophila Dot T4SS PR 6X65 ; 3.7 ; Legionella pneumophila Dot/Icm T4SS 7MUC ; 3.8 ; Legionella pneumophila Dot/Icm T4SS C1 Reconstruction 7MUD ; 2.8 ; Legionella pneumophila Dot/Icm T4SS OMC 7MUE ; 2.8 ; Legionella pneumophila Dot/Icm T4SS PR 4IIK ; 1.6 ; Legionella pneumophila effector 4IIP ; 1.9 ; Legionella pneumophila effector 7EW8 ; 2.594 ; Legionella pneumophila effector AnkD 7X2P ; 2.89 ; Legionella pneumophila effector RavL 2WZF ; 2.1 ; Legionella pneumophila glucosyltransferase crystal structure 3JSZ ; 1.7 ; Legionella pneumophila glucosyltransferase Lgt1 N293A with UDP-Glc 3JT1 ; 2.3 ; Legionella pneumophila glucosyltransferase Lgt1, UDP-bound form 4FGQ ; 1.645 ; Legionella pneumophila LapG 4FGO ; 1.903 ; Legionella pneumophila LapG (calcium-bound) 4FGP ; 1.73 ; Legionella pneumophila LapG (EGTA-treated) 6VVC ; 2.1 ; Legionella pneumophila Lpg2603 kinase 6VVD ; 2.65 ; Legionella pneumophila Lpg2603 kinase bound to IP6 6VVE ; 1.85 ; Legionella pneumophila Lpg2603 kinase bound to IP6, Mn2+, and ADP 7M7A ; 3.2 ; Legionella pneumophila MavQ lipid kinase 4BR7 ; 1.8 ; Legionella pneumophila NTPDase1 crystal form I, open, AMPNP complex 4BR4 ; 1.45 ; Legionella pneumophila NTPDase1 crystal form I, open, apo 4BRF ; 1.6 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with a distorted orthomolybdate ion and AMP 4BVP ; 1.49 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with heptamolybdate and octamolybdate 4BRH ; 1.69 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with MG AND THIAMINE PHOSPHOVANADATE 4BRG ; 1.45 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with MG GMPPNP 4BRI ; 1.75 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with MG UMPPNP 4BRE ; 1.6 ; Legionella pneumophila NTPDase1 crystal form II (closed) in complex with transition state mimic adenosine 5'phosphovanadate 4BR9 ; 1.4 ; Legionella pneumophila NTPDase1 crystal form II, closed, apo 4BRQ ; 1.45 ; LEGIONELLA PNEUMOPHILA NTPDASE1 CRYSTAL FORM II, CLOSED, IN COMPLEX WITH TWO PHOSPHATES BOUND TO ACTIVE SITE MG AND PRODUCT AMP 4BRC ; 1.3 ; Legionella pneumophila NTPDase1 crystal form II, closed, Mg AMPNP complex 4BRA ; 1.6 ; Legionella pneumophila NTPDase1 crystal form II, closed, Mg AMPPNP complex 4BRN ; 1.69 ; Legionella pneumophila NTPDase1 crystal form III (closed) in complex with Mg AMP 4BRL ; 1.6 ; Legionella pneumophila NTPDase1 crystal form III (closed) in complex with transition state mimic guanosine 5'-phosphovanadate 4BRO ; 1.99 ; Legionella pneumophila NTPDase1 crystal form IV (part-open) 4BRP ; 2.5 ; Legionella pneumophila NTPDase1 crystal form V (part-open) 4BVO ; 1.7 ; Legionella pneumophila NTPDase1 crystal form VI (part-open) in complex with polytungstate POM-1 4BRK ; 1.5 ; Legionella pneumophila NTPDase1 N302Y variant crystal form III (closed) in complex with MG UMPPNP 4BRD ; 1.5 ; Legionella pneumophila NTPDase1 Q193E crystal form II, closed, Mg AMPPNP complex 5OH6 ; 2.05 ; Legionella pneumophila RidL N-terminal domain lacking beta hairpin 5OH5 ; 1.9 ; Legionella pneumophila RidL N-terminal retromer binding domain 6S5T ; 4.15 ; Legionella pneumophila SidJ-Human calmodulin complex 6PLM ; 2.592 ; Legionella pneumophila SidJ/ Calmodulin 2 complex 6OQQ ; 2.102 ; Legionella pneumophila SidJ/Saccharomyces cerevisiae calmodulin complex 1FNY ; 1.81 ; LEGUME LECTIN OF THE BARK OF ROBINIA PSEUDOACACIA. 2DDL ; ; Lei4P 7V1Q ; 1.58 ; Leifsonia Alcohol Dehydrogenases LnADH 7V1R ; 2.81 ; Leifsonia Alcohol Dehydrogenases LnADH 4Z79 ; 1.54 ; Leiomodin-1 Actin-Binding Site 2 (ABS2) 8C47 ; 2.2 ; Leishmania ATP-actin monomer in complex with Leishmania profilin 7ZHX ; 1.9 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase (N-terminal deletion variant)complexed with NADP(H) 7ZHT ; 2.8 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase apo form 7ZHY ; 1.99 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase C138S mutant complexed with NADP(H) 7ZHV ; 3.3 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase complexed with Glucose 6-Phosphate 7ZHU ; 1.7 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase complexed with NADP(H) 7ZHW ; 3.3 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase complexed with NADP(H) and Glucose 6-Phosphate 7ZHZ ; 2.5 ; Leishmania donovani Glucose 6-Phosphate Dehydrogenase mutant C138S complexed with G6P and NADP(H) 5USF ; 2.75 ; Leishmania donovani tyrosyl-tRNA synthetase in complex with nanobody and inhibitor 5WB5 ; 2.7 ; Leishmania IF4E-1 bound to Leishmania 4E-IP1 7QV8 ; 2.15 ; Leishmania infantum BRC1 repeat in complex with LiRAD51 7S6U ; 1.74 ; Leishmania infantum Glycogen Synthase Kinase 3 beta bound to AZD5438 7S6V ; 1.66 ; Leishmania infantum Glycogen Synthase Kinase 3 beta bound to CGP60474 6TUU ; 1.74 ; Leishmania infantum Rad51 surrogate LiRadA10 in complex with 5,6,7,8-tetrahydro-2-naphthoic acid 7Q8B ; 3.3 ; Leishmania major actin filament in ADP-Pi state 7Q8C ; 2.72 ; Leishmania major actin filament in ADP-state 7Q8S ; 3.4 ; Leishmania major ADP-actin filament decorated with Leishmania major cofilin 3DWR ; 1.66 ; Leishmania major coproporphyrinogen III oxidase with bound ligand 3DWS ; 2.5 ; Leishmania major Coproporphyrinogen III Oxidase with bound ligand 4AIR ; 1.8 ; Leishmania major cysteine synthase 7MYD ; 2.15 ; Leishmania major dihydroorotate dehydrogenase in complex with 5-amino-2-(1H-pyrrol-1-yl)benzonitrile 3GZ3 ; 1.9 ; Leishmania major Dihydroorotate Dehydrogenase in complex with orotate 7MX6 ; 1.8 ; Leishmania major dihydroorotate dehydrogenase in complex with [4-(1H-pyrrol-1-yl)phenyl]methanol 1R75 ; 1.86 ; Leishmania major hypothetical protein 6SWX ; 1.95 ; Leishmania major methionyl-tRNA synthetase in complex with an allosteric inhibitor 3KFL ; 2.0 ; Leishmania major methionyl-tRNA synthetase in complex with methionyladenylate and pyrophosphate 7ANE ; 3.9 ; Leishmania Major mitochondrial ribosome 4CGM ; 1.7 ; Leishmania major N-myristoyltransferase in complex with a biphenyl- derivative inhibitor 5A27 ; 1.37 ; Leishmania major N-myristoyltransferase in complex with a chlorophenyl 1,2,4-oxadiazole inhibitor. 5A28 ; 1.48 ; Leishmania major N-myristoyltransferase in complex with a chlorophenyl 1,3,4-oxadiazole inhibitor. 4CYO ; 1.5 ; Leishmania major N-myristoyltransferase in complex with a hybrid inhibitor (compound 21). 4CYQ ; 1.65 ; Leishmania major N-myristoyltransferase in complex with a hybrid inhibitor (compound 45). 4CGN ; 1.69 ; Leishmania major N-myristoyltransferase in complex with a piperidinylindole inhibitor 4CYP ; 1.55 ; Leishmania major N-myristoyltransferase in complex with a pyrrolidine inhibitor. 5G20 ; 1.52 ; Leishmania major N-myristoyltransferase in complex with a quinoline inhibitor (compound 19). 5G21 ; 1.5 ; Leishmania major N-myristoyltransferase in complex with a quinoline inhibitor (compound 26). 4CGO ; 1.3 ; Leishmania major N-myristoyltransferase in complex with a thienopyrimidine inhibitor 4CGL ; 1.48 ; Leishmania major N-myristoyltransferase in complex with an aminoacylpyrrolidine inhibitor 4CYN ; 1.4 ; Leishmania major N-myristoyltransferase in complex with an aminoacylpyrrolidine inhibitor (2b) 4CGP ; 1.4 ; Leishmania major N-myristoyltransferase in complex with cofactor 6TW8 ; 1.79 ; Leishmania major N-myristoyltransferase in complex with indazole inhibitor IMP-917 6TW7 ; 1.4 ; Leishmania major N-myristoyltransferase in complex with indazole inhibitor IMP-918 6QDG ; 1.98 ; Leishmania major N-myristoyltransferase in complex with quinazoline inhibitor IMP-0000169 6QDA ; 1.6 ; Leishmania major N-myristoyltransferase in complex with quinazoline inhibitor IMP-0000811 6QDH ; 1.45 ; Leishmania major N-myristoyltransferase in complex with quinazoline inhibitor IMP-0000906 6QD9 ; 1.46 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000065 6QDB ; 1.4 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000081 6QDF ; 1.49 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000096 6QDC ; 1.4 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000101 6QDD ; 1.65 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000105 6QDE ; 1.45 ; Leishmania major N-myristoyltransferase in complex with thienopyrimidine inhibitor IMP-0000877 6EU5 ; 1.49608 ; Leishmania major N-myristoyltransferase with bound myristoyl-CoA and inhibitor 6EWF ; 1.53517 ; Leishmania major N-myristoyltransferase with bound myristoyl-CoA and inhibitor 4DY9 ; 2.082 ; Leishmania major Peroxidase is a Cytochrome c Peroxidase 6VMT ; 2.501 ; Leishmania major Programmed Cell Death Protein 5 Homolog 6RXC ; 2.1 ; Leishmania major pteridine reductase 1 (LmPTR1) in complex with inhibitor 4 (NMT-C0026) 5L4N ; 2.35 ; Leishmania major Pteridine reductase 1 (PTR1) in complex with compound 1 5L42 ; 2.1 ; Leishmania major Pteridine reductase 1 (PTR1) in complex with compound 3 2BF7 ; 2.4 ; Leishmania major pteridine reductase 1 in complex with NADP and biopterin 2BFA ; 2.7 ; Leishmania major pteridine reductase 1 in complex with NADP and CB3717 2BFP ; 2.55 ; Leishmania major pteridine reductase 1 in complex with NADP and tetrahydrobiopterin 2BFM ; 2.6 ; Leishmania major pteridine reductase 1 in complex with NADP and trimethoprim 2BFO ; 2.6 ; Leishmania major pteridine reductase 1 in complex with NADPH 4UXH ; 2.4 ; Leishmania major Thymidine Kinase in complex with AP5dT 4UXJ ; 3.0 ; Leishmania major Thymidine Kinase in complex with dTTP 4UXI ; 2.74 ; Leishmania major Thymidine Kinase in complex with thymidine 3P0H ; 3.0 ; Leishmania major Tyrosyl-tRNA synthetase in complex with fisetin, cubic crystal form 3P0I ; 3.13 ; Leishmania major Tyrosyl-tRNA synthetase in complex with tyrosinol, cubic crystal form 3P0J ; 2.89 ; Leishmania major Tyrosyl-tRNA synthetase in complex with tyrosinol, triclinic crystal form 1 6P4E ; 1.35 ; Leishmania mexicana CPB in complex with an aza-nitrile inhibitor 1I32 ; 2.6 ; LEISHMANIA MEXICANA GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE IN COMPLEX WITH INHIBITORS 1I33 ; 3.0 ; LEISHMANIA MEXICANA GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE IN COMPLEX WITH INHIBITORS 2C34 ; ; Leishmania mexicana ICP 1AMK ; 1.83 ; LEISHMANIA MEXICANA TRIOSE PHOSPHATE ISOMERASE 3CXM ; 1.5 ; Leishmania naiffi uracil-DNA glycosylase in complex with 5-bromouracil 7Z90 ; 3.88 ; Leishmania RNA virus 1 virion 5CG7 ; 1.88 ; Leishmania siamensis Triosephosphate isomerase 3IY9 ; 14.1 ; Leishmania Tarentolae Mitochondrial Large Ribosomal Subunit Model 3IY8 ; 14.1 ; Leishmania tarentolae Mitonchondrial Ribosome small subunit 8SGX ; 10.3 ; Leishmania tarentolae propionyl-CoA carboxylase (alpha-4-beta-6) 8SGY ; 8.62 ; Leishmania tarentolae propionyl-CoA carboxylase (alpha-5-beta-6) 8SGZ ; 3.2 ; Leishmania tarentolae propionyl-CoA carboxylase (alpha-6-beta-6) 6QM8 ; 3.3 ; Leishmania tarentolae proteasome 20S subunit apo structure 6QM7 ; 2.8 ; Leishmania tarentolae proteasome 20S subunit complexed with GSK3494245 6TCZ ; 3.4 ; Leishmania tarentolae proteasome 20S subunit complexed with LXE408 6TD5 ; 3.2 ; Leishmania tarentolae proteasome 20S subunit complexed with LXE408 and bortezomib 8OLU ; 2.59 ; Leishmania tarentolae proteasome 20S subunit in complex with 1-Benzyl-N-(3-(cyclopropylcarbamoyl)phenyl)-6-oxo-1,6-dihydropyridazine-3-carboxamide 7ZYJ ; 2.7 ; Leishmania tarentolae proteasome 20S subunit in complex with compound 2 4AGS ; 2.3 ; Leishmania TDR1 - a unique trimeric glutathione transferase 1LML ; 1.86 ; LEISHMANOLYSIN 4C7H ; 1.4 ; Leismania major N-myristoyltransferase in complex with a peptidomimetic (-NH2) molecule 4C7I ; 1.3 ; Leismania major N-myristoyltransferase in complex with a peptidomimetic (-OH) molecule 1HDL ; ; LEKTI domain one 1H0Z ; ; LEKTI domain six 6RPR ; 2.26 ; LEM domain of Emerin mutant T43I in complex with BAF dimer and the Igfold of the lamin A/C 1JEI ; ; LEM DOMAIN OF HUMAN INNER NUCLEAR MEMBRANE PROTEIN EMERIN 1H9F ; ; LEM DOMAIN OF HUMAN INNER NUCLEAR MEMBRANE PROTEIN LAP2 2ODC ; ; LEM-domain of the nuclear envelope protein emerin 1H9E ; ; LEM-LIKE DOMAIN OF HUMAN INNER NUCLEAR MEMBRANE PROTEIN LAP2 6SEQ ; 2.1 ; Lemur tyrosine kinase 3 (LMTK3) 4LVE ; 2.3 ; LEN K30T MUTANT: A DOMAIN FLIP AS A RESULT OF A SINGLE AMINO ACID SUBSTITUTION 3LVE ; 2.0 ; LEN Q38E MUTANT: A DOMAIN FLIP FROM A SINGLE AMINO ACID SUBSTITUTION 2J9I ; 17.0 ; Lengsin is a survivor of an ancient family of class I glutamine synthetases in eukaryotes that has undergone evolutionary re- engineering for a tissue-specific role in the vertebrate eye lens. 1LES ; 1.9 ; LENTIL LECTIN COMPLEXED WITH SUCROSE 4AUR ; 2.7 ; LeoA bacterial dynamin GTPase from ETEC 4OHD ; 2.7 ; LEOPARD Syndrome-Associated SHP2/A461T mutant 4OHE ; 2.506 ; LEOPARD Syndrome-Associated SHP2/G464A mutant 4OHH ; 2.7 ; LEOPARD Syndrome-Associated SHP2/Q506P mutant 4OHI ; 2.2 ; LEOPARD Syndrome-Associated SHP2/Q510E mutant 4OHL ; 2.4 ; LEOPARD Syndrome-Associated SHP2/T468M mutant 4DGX ; 2.3 ; LEOPARD Syndrome-Associated SHP2/Y279C mutant 6J46 ; 2.621 ; LepI-SAH complex structure 4ARX ; 2.35 ; Lepidoptera-specific toxin Cry1Ac from Bacillus thuringiensis ssp. kurstaki HD-73 4ARY ; 2.95 ; Lepidopteran-specific toxin Cry1Ac in complex with receptor specificity determinant GalNAc 3V6O ; 1.95 ; Leptin Receptor-antibody complex 8DHA ; 3.8 ; Leptin-bound leptin receptor complex- focused interaction 8DH9 ; 4.5 ; Leptin-bound leptin receptor complex-D3-D7 8DH8 ; 5.9 ; Leptin-bound leptin receptor complex-full ECD 3B2G ; 1.76 ; Leptolyngbya boryana Ferredoxin 8A48 ; 3.044 ; Less crystallisable"" IgG1 Fc fragment (E382S variant) 7KOG ; 4.25 ; Lethocerus Myosin II complete coiled-coil domain resolved in its native environment 3T4R ; 2.0 ; Lettuce Necrotic Yellow Virus Phosphoprotein C-Terminal Domain 1SGR ; 1.8 ; LEU 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B 5TTR ; 2.7 ; LEU 55 PRO TRANSTHYRETIN CRYSTAL STRUCTURE 3ZJL ; 1.5 ; Leu(142)G4Ala mutation of M.acetivorans protoglobin in complex with cyanide 2QPM ; 1.85 ; Leu492Ala mutant of Maize cytokinin oxidase/dehydrogenase complexed with benzylurea inhibitor CPBU 3KJM ; 1.9 ; Leu492Ala mutant of Maize cytokinin oxidase/dehydrogenase complexed with phenylurea inhibitor CPPU 1LAM ; 1.6 ; LEUCINE AMINOPEPTIDASE (UNLIGATED) 7OEZ ; 2.48 ; Leucine Aminopeptidase A mature enzyme in a complex with leucine 1LAN ; 1.9 ; LEUCINE AMINOPEPTIDASE COMPLEX WITH L-LEUCINAL 1LEH ; 2.2 ; LEUCINE DEHYDROGENASE FROM BACILLUS SPHAERICUS 8HR6 ; 3.52 ; leucine DEHYDROGENASE STRUCTURE IN TERNARY COMPLEX WITH NAD+ from Bacillus thuringiensis 5IL7 ; 2.3 ; Leucine rich repeat domain of the Chlorobium tepidum Roco protein 3GWV ; 2.35 ; Leucine transporter LeuT in complex with R-fluoxetine 3GWW ; 2.46 ; Leucine transporter LeuT in complex with S-fluoxetine 3GWU ; 2.14 ; Leucine transporter LeuT in complex with sertraline 2SSP ; 2.25 ; LEUCINE-272-ALANINE URACIL-DNA GLYCOSYLASE BOUND TO ABASIC SITE-CONTAINING DNA 5DJ4 ; 2.697 ; Leucine-bound Sestrin2 from Homo sapiens 8H24 ; 2.45 ; Leucine-rich alpha-2-glycoprotein 1 6HN4 ; 4.2 ; Leucine-zippered human insulin receptor ectodomain with single bound insulin - ""lower"" membrane-proximal part 6HN5 ; 3.2 ; Leucine-zippered human insulin receptor ectodomain with single bound insulin - ""upper"" membrane-distal part 1OBC ; 2.1 ; LEUCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH A POST-TRANSFER EDITING SUBSTRATE ANALOGUE 1OBH ; 2.2 ; LEUCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH A PRE-TRANSFER EDITING SUBSTRATE ANALOGUE IN BOTH SYNTHETIC ACTIVE SITE AND EDITING SITE 1H3N ; 2.0 ; Leucyl-tRNA synthetase from Thermus thermophilus complexed with a sulphamoyl analogue of leucyl-adenylate 2V0C ; 1.85 ; LEUCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH A SULPHAMOYL ANALOGUE OF LEUCYL-ADENYLATE In the synthetic site and an adduct of AMP with 5-Fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690) in the editing site 2V0G ; 3.5 ; LEUCYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH A tRNA(leu) transcript with 5-FLUORO-1,3-DIHYDRO-1-HYDROXY-2,1- BENZOXABOROLE (AN2690) forming an adduct to the ribose of adenosine- 76 in the enzyme editing site. 2DPT ; 2.75 ; Leucyl/phenylalanyl-tRNA-protein transferase complexed with puromycin 3H5E ; 2.0 ; LeuD_1-156 small subunit of isopropylmalate isomerase (Rv2987c) from mycobacterium tuberculosis 3H5J ; 1.2 ; LeuD_1-168 small subunit of isopropylmalate isomerase (Rv2987c) from mycobacterium tuberculosis 3H5H ; 2.5 ; LeuD_1-186 small subunit of isopropylmalate isomerase (Rv2987c) from mycobacterium tuberculosis 1A7M ; ; LEUKAEMIA INHIBITORY FACTOR CHIMERA (MH35-LIF), NMR, 20 STRUCTURES 1LKF ; 1.9 ; LEUKOCIDIN F (HLGB) FROM STAPHYLOCOCCUS AUREUS 2LKF ; 2.5 ; LEUKOCIDIN F (HLGB) FROM STAPHYLOCOCCUS AUREUS 3LKF ; 1.9 ; LEUKOCIDIN F (HLGB) FROM STAPHYLOCOCCUS AUREUS WITH PHOSPHOCHOLINE BOUND 3FH5 ; 1.63 ; Leukotriene A4 Hydrolase complexed with inhibitor (2R)-2-[(4-benzylphenoxy)methyl]pyrrolidine. 3FH8 ; 1.67 ; Leukotriene A4 Hydrolase complexed with inhibitor 1-[2-(4-benzylphenoxy)ethyl]pyrrolidine. 3FH7 ; 2.05 ; Leukotriene A4 Hydrolase complexed with inhibitor 4-[(2S)-2-{[4-(4-chlorophenoxy)phenoxy]methyl}pyrrolidin-1-yl]butanoate. 3FHE ; 2.16 ; Leukotriene A4 Hydrolase complexed with inhibitor N-[3-(4-benzylphenoxy)propyl]-N-methyl-beta-alanine. 3B7R ; 1.811 ; Leukotriene A4 Hydrolase Complexed with Inhibitor RB3040 2R59 ; 1.89 ; Leukotriene A4 hydrolase complexed with inhibitor RB3041 3B7U ; 1.9 ; Leukotriene A4 Hydrolase Complexed with KELatorphan 3FU5 ; 2.3 ; Leukotriene A4 hydrolase in complex with (5-thiophen-2-ylthiophen-2-yl)methylamine 3FUM ; 2.15 ; Leukotriene A4 hydrolase in complex with (R)-pyridin-4-yl[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanol 3FUK ; 1.95 ; Leukotriene A4 hydrolase in complex with 1-[2-(1H-indol-5-yloxy)ethyl]piperidine-4-carboxylic acid 8AVA ; 1.354 ; Leukotriene A4 hydrolase in complex with 4-(4-benzylphenyl)-oxazol-2-amine 8AWH ; 1.42 ; Leukotriene A4 hydrolase in complex with 4-(4-Benzylphenyl)-selenazol-2-amine 3FUJ ; 1.9 ; Leukotriene A4 hydrolase in complex with 5-[2-(1H-pyrrol-1-yl)ethoxy]-1H-indole 3FTU ; 1.9 ; Leukotriene A4 hydrolase in complex with dihydroresveratrol 3FTX ; 1.96 ; Leukotriene A4 hydrolase in complex with dihydroresveratrol and bestatin 3FU6 ; 2.05 ; Leukotriene A4 hydrolase in complex with fragment (4-thiophen-2-ylphenyl)methanamine 3FTZ ; 2.0 ; Leukotriene A4 hydrolase in complex with fragment 2-(pyridin-3-ylmethoxy)aniline 3FTY ; 2.15 ; Leukotriene A4 hydrolase in complex with fragment 3-(benzyloxy)pyridin-2-amine 3FU3 ; 2.0 ; Leukotriene A4 hydrolase in complex with fragment 4-(2-amino-1,3-thiazol-4-yl)phenol 3FU0 ; 1.8 ; Leukotriene A4 hydrolase in complex with fragment 4-(4-fluorobenzoyl)pyridine 3FUE ; 2.38 ; Leukotriene A4 hydrolase in complex with fragment 5-chloroindole and bestatin 3FUF ; 2.6 ; Leukotriene A4 hydrolase in complex with fragment 5-fluoroindole and bestatin 3FUH ; 1.8 ; Leukotriene A4 hydrolase in complex with fragment 5-hydroxyindole and bestatin 3FTV ; 1.7 ; Leukotriene A4 hydrolase in complex with fragment N-(pyridin-3-ylmethyl)aniline 3FTW ; 1.85 ; Leukotriene A4 hydrolase in complex with fragments N-(pyridin-3-ylmethyl)aniline and acetate 3FUI ; 2.2 ; Leukotriene A4 hydrolase in complex with N-benzyl-4-[(2R)-pyrrolidin-2-ylmethoxy]aniline 3FUD ; 2.2 ; Leukotriene A4 hydrolase in complex with N-methyl-1-(2-thiophen-2-ylphenyl)methanamine 3FUL ; 2.39 ; Leukotriene A4 hydrolase in complex with pyridin-4-yl[4-(2-pyrrolidin-1-ylethoxy)phenyl]methanone 3FTS ; 2.33 ; Leukotriene A4 hydrolase in complex with resveratrol 3FUN ; 1.58 ; Leukotriene A4 hydrolase in complex with {4-[(2R)-pyrrolidin-2-ylmethoxy]phenyl}(4-thiophen-3-ylphenyl)methanone 5X33 ; 3.7 ; Leukotriene B4 receptor BLT1 in complex with BIIL260 5JAE ; 2.5 ; LeuT in the outward-oriented, Na+-free return state, P21 form at pH 6.5 5JAF ; 3.021 ; LeuT Na+-free Return State, C2 form at pH 5 5JAG ; 2.58 ; LeuT T354H mutant in the outward-oriented, Na+-free Return State 8AA0 ; 3.2 ; Levan utilisation machinery (utilisome) with levan fructo-oligosaccharides DP 8-12 7EHS ; 1.6 ; Levansucrase from Brenneria sp. EniD 312 7EHT ; 1.45 ; Levansucrase from Brenneria sp. EniD 312 7EHR ; 1.33 ; Levansucrase from Brenneria sp. EniD 312 at 1.33 angstroms resolution 7FDZ ; 1.35 ; Levansucrase from Brenneria sp. EniD 312 with sucrose 8E2O ; ; Leveraging the Structure of DNAJA1 to Discover Novel Pancreatic Cancer Therapies 7B8T ; 2.7 ; Levofloxacin bound structure of bacterial efflux pump. 6A3F ; 1.8 ; Levoglucosan dehydrogenase, apo form 6A3G ; 1.9 ; Levoglucosan dehydrogenase, complex with NADH 6A3J ; 1.9 ; Levoglucosan dehydrogenase, complex with NADH and L-sorbose 6A3I ; 2.41 ; Levoglucosan dehydrogenase, complex with NADH and levoglucosan 1JHF ; 1.8 ; LEXA G85D MUTANT 1JHE ; 2.5 ; LEXA L89P Q92W E152A K156A MUTANT 1JHC ; 2.0 ; LEXA S119A C-TERMINAL TRYPTIC FRAGMENT 1JHH ; 2.1 ; LEXA S119A MUTANT 3BQM ; 1.95 ; LFA-1 I domain bound to inhibitors 3BQN ; 1.8 ; LFA-1 I domain bound to inhibitors 3E2M ; 2.0 ; LFA-1 I domain bound to inhibitors 5ZPU ; 2.6 ; LFS829 in complex with CRM1-Ran-RanBP1 6ZXA ; 2.38 ; LH2 complex from Marichromatium purpuratum 7TUW ; 8.2 ; LH2-LH3 antenna in anti parallel configuration embedded in a nanodisc 8FB9 ; 6.4 ; LH2-LH3 antenna in anti parallel configuration embedded in a nanodisc 7TV3 ; 11.4 ; LH2-LH3 antenna in parallel configuration embedded in a nanodisc 8FBB ; 11.3 ; LH2-LH3 antenna in parallel configuration embedded in a nanodisc 7E0J ; 3.13 ; LHCII-1 in the state transition supercomplex PSI-LHCI-LHCII from the double phosphatase mutant pph1;pbcp of Chlamydomonas reinhardti. 7E0H ; 3.75 ; LHCII-1 in the state transition supercomplex PSI-LHCI-LHCII from the LhcbM1 lacking mutant of Chlamydomonas reinhardtii 7E0K ; 3.09 ; LHCII-2 in the state transition supercomplex PSI-LHCI-LHCII from the double phosphatase mutant pph1;pbcp of Chlamydomonas reinhardti. 7E0I ; 3.53 ; LHCII-2 in the state transition supercomplex PSI-LHCI-LHCII from the LhcbM1 lacking mutant of Chlamydomonas reinhardti 2VI0 ; 1.51 ; Lichenase CtLic26 in complex with a thio-oligosaccharide 7ACW ; 1.5 ; LID/HID (LMW SLP and HMW SLP interacting domains) from C. difficile (R7404 strain) 3TNF ; 2.5 ; LidA from Legionella in complex with active Rab8a 3J02 ; 8.0 ; Lidless D386A Mm-cpn in the pre-hydrolysis ATP-bound state 3J03 ; 4.8 ; Lidless Mm-cpn in the closed state with ATP/AlFx 3J31 ; 4.5 ; Life in the extremes: atomic structure of Sulfolobus Turreted Icosahedral Virus 7BTE ; 4.2 ; Lifeact-F-actin complex 6YOA ; 2.83 ; Lig v 1 structure and the inflammatory response to the Ole e 1 protein family 1M18 ; 2.45 ; LIGAND BINDING ALTERS THE STRUCTURE AND DYNAMICS OF NUCLEOSOMAL DNA 1M19 ; 2.3 ; LIGAND BINDING ALTERS THE STRUCTURE AND DYNAMICS OF NUCLEOSOMAL DNA 1M1A ; 2.65 ; LIGAND BINDING ALTERS THE STRUCTURE AND DYNAMICS OF NUCLEOSOMAL DNA 6FU4 ; 2.45 ; Ligand binding domain (LBD) of the p. aeruginosa histamine receptor TlpQ 6GCV ; 1.3 ; Ligand binding domain (LBD) of the p. aeruginosa nitrate receptor McpN 3M3K ; 1.793 ; Ligand binding domain (S1S2) of GluA3 (flop) 7K5N ; 1.8 ; Ligand binding domain (tandem PAS/dCache) of Aeromonas caviae diguanylate cyclase with proline bound 6J6F ; 4.2 ; Ligand binding domain 1 and 2 of Talaromyces marneffei Mp1 protein 5ECF ; 2.6 ; Ligand binding domain 1 of Penicillium marneffei MP1 protein complexed with arachidonic acids 5E7X ; 1.8 ; Ligand binding domain 1 of Penicillium marneffei MP1 protein in complex with palmitic acid 5FB7 ; 1.5 ; Ligand binding domain 2 of Penicillium marneffei MP1 protein complexed with multiple arachidonic acids 5CSD ; 1.45 ; Ligand binding domain 2 of Penicillium marneffei MP1 protein in complex with arachidonic acids 4B7W ; 4.0 ; Ligand binding domain human hepatocyte nuclear factor 4alpha: Apo form 3NRU ; 2.3 ; Ligand binding domain of EPHA7 4GXS ; 1.9634 ; Ligand binding domain of GluA2 (AMPA/glutamate receptor) bound to (-)-kaitocephalin 3P1I ; 2.1 ; Ligand binding domain of human ephrin type-B receptor 3 3PRG ; 2.9 ; LIGAND BINDING DOMAIN OF HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR 2YFE ; 2.0 ; Ligand binding domain of human PPAR gamma in complex with amorfrutin 1 4A4V ; 2.0 ; Ligand binding domain of human PPAR gamma in complex with amorfrutin 2 4A4W ; 2.0 ; Ligand binding domain of human PPAR gamma in complex with amorfrutin B 2XKW ; 2.02 ; LIGAND BINDING DOMAIN OF HUMAN PPAR-GAMMA IN COMPLEX WITH THE AGONIST PIOGLITAZONE 1WWB ; 2.1 ; LIGAND BINDING DOMAIN OF HUMAN TRKB RECEPTOR 3LMK ; 2.44 ; Ligand Binding Domain of Metabotropoc glutamate receptor mGluR5 complexed with glutamate 6F9G ; 2.388 ; Ligand binding domain of P. putida KT2440 polyamine chemorecpetors McpU in complex putrescine. 2Q5G ; 2.7 ; Ligand binding domain of PPAR delta receptor in complex with a partial agonist 3S9S ; 2.55 ; Ligand binding domain of PPARgamma complexed with a benzimidazole partial agonist 3U9Q ; 1.522 ; Ligand binding domain of PPARgamma complexed with Decanoic Acid and PGC-1a peptide 5T65 ; 2.2 ; LIGAND BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA PAO1 AMINO ACID CHEMORECEPTOR PCTA IN COMPLEX WITH L-ILE 5LTX ; 2.02 ; LIGAND BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA PAO1 AMINO ACID CHEMORECEPTOR PCTA IN COMPLEX WITH L-MET 5T7M ; 2.25 ; LIGAND BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA PAO1 AMINO ACID CHEMORECEPTOR PCTA IN COMPLEX WITH L-TRP 5LT9 ; 3.0 ; Ligand binding domain of Pseudomonas aeruginosa PAO1 amino acid chemoreceptors PctB in complex with L-Arg 5LTO ; 3.459 ; Ligand binding domain of Pseudomonas aeruginosa PAO1 amino acid chemoreceptors PctB in complex with L-Gln 5LTV ; 2.31 ; LIGAND BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA PAO1 AMINO ACID CHEMORECPETOR PCTC IN COMPLEX WITH GABA 3CLD ; 2.84 ; Ligand binding domain of the glucocorticoid receptor complexed with fluticazone furoate 1PRG ; 2.2 ; LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA 1KNU ; 2.5 ; LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA IN COMPLEX WITH A SYNTHETIC AGONIST 1NYX ; 2.65 ; Ligand binding domain of the human peroxisome proliferator activated receptor gamma in complex with an agonist 6S1A ; 2.112 ; Ligand binding domain of the P. putida receptor PcaY_PP 6S3B ; 1.95 ; Ligand binding domain of the P. putida receptor PcaY_PP in complex with benzoate 6S18 ; 1.6 ; Ligand binding domain of the P. putida receptor PcaY_PP in complex with glycerol 6S33 ; 1.56 ; Ligand binding domain of the P. putida receptor PcaY_PP in complex with Protocatechuate 6S38 ; 2.15 ; Ligand binding domain of the P. putida receptor PcaY_PP in complex with quinate 6S37 ; 2.3 ; Ligand binding domain of the P. putida receptor PcaY_PP in complex with salicylic acid 1VLS ; 1.85 ; LIGAND BINDING DOMAIN OF THE WILD-TYPE ASPARTATE RECEPTOR 1VLT ; 2.2 ; LIGAND BINDING DOMAIN OF THE WILD-TYPE ASPARTATE RECEPTOR WITH ASPARTATE 5Q0I ; 1.7 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0J ; 2.0 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0K ; 1.8 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0L ; 2.5 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0M ; 2.2 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0N ; 2.4 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0O ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0P ; 1.8 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0Q ; 2.6 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0R ; 1.91 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0S ; 2.5 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0T ; 2.14 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0U ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0V ; 1.87 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0W ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0X ; 2.26 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0Y ; 2.2 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q0Z ; 2.26 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q10 ; 2.2 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q11 ; 2.2 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q12 ; 2.0 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q13 ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q14 ; 1.85 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q15 ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q16 ; 2.0 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q17 ; 2.1 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q18 ; 1.9 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q19 ; 1.98 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1A ; 2.0 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1B ; 2.3 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1C ; 2.3 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1D ; 1.89 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1E ; 1.85 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1F ; 2.3 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1G ; 2.0 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1H ; 2.2 ; Ligand binding to FARNESOID-X-RECEPTOR 5Q1I ; 1.95 ; Ligand binding to FARNESOID-X-RECEPTOR 7ZZT ; 1.56 ; Ligand binding to HDAC2 7ZZW ; 1.73 ; Ligand binding to HDAC2 2RFC ; 3.1 ; Ligand bound (4-phenylimidazole) Crystal Structure of a Cytochrome P450 from the Thermoacidophilic Archaeon Picrophilus Torridus 6C4J ; 2.53 ; Ligand bound full length hUGDH with A104L substitution 7ZJ4 ; 4.43 ; Ligand bound state of a brocolli-pepper aptamer FRET tile 2KP8 ; ; Ligand bound to a model peptide that mimics the open fusogenic form 5APH ; 1.54 ; Ligand complex of RORg LBD 5APJ ; 2.08 ; Ligand complex of RORg LBD 5APK ; 2.1 ; Ligand complex of RORg LBD 5G42 ; 1.72 ; Ligand complex of RORg LBD 5G43 ; 2.58 ; Ligand complex of RORg LBD 5G44 ; 1.84 ; Ligand complex of RORg LBD 5G45 ; 2.07 ; Ligand complex of RORg LBD 5G46 ; 1.76 ; Ligand complex of RORg LBD 5NI5 ; 2.3 ; Ligand complex of RORg LBD 5NI7 ; 2.45 ; Ligand complex of RORg LBD 5NI8 ; 1.94 ; Ligand complex of RORg LBD 5NIB ; 1.82 ; Ligand complex of RORg LBD 6ESN ; 1.84 ; Ligand complex of RORg LBD 6FGQ ; 2.37 ; Ligand complex of RORg LBD 6R7A ; 2.13 ; Ligand complex of RORg LBD 6R7J ; 1.84 ; Ligand complex of RORg LBD 6R7K ; 1.54 ; Ligand complex of RORg LBD 7OFI ; 1.953 ; Ligand complex of RORg LBD 7OFK ; 1.61 ; Ligand complex of RORg LBD 5ZA1 ; 2.52 ; Ligand complex of RORgt LBD 6JDY ; 1.5 ; Ligand complex structure of GH10 family xylanase XynAF1, soaking for 120 minutes 6JDZ ; 1.16 ; Ligand complex structure of GH10 family xylanase XynAF1, soaking for 20 minutes 6JE0 ; 1.43 ; Ligand complex structure of GH10 family xylanase XynAF1, soaking for 30 minutes 6JE1 ; 1.18 ; Ligand complex structure of GH10 family xylanase XynAF1, soaking for 40 minutes 6JE2 ; 1.22 ; Ligand complex structure of GH10 family xylanase XynAF1, soaking for 80 minutes 5AI0 ; 1.75 ; Ligand complex structure of soluble epoxide hydrolase 5AI4 ; 1.93 ; ligand complex structure of soluble epoxide hydrolase 5AI5 ; 2.28 ; ligand complex structure of soluble epoxide hydrolase 5AI6 ; 2.3 ; ligand complex structure of soluble epoxide hydrolase 5AI8 ; 1.85 ; ligand complex structure of soluble epoxide hydrolase 5AI9 ; 1.8 ; ligand complex structure of soluble epoxide hydrolase 5AIA ; 2.26 ; ligand complex structure of soluble epoxide hydrolase 5AIB ; 1.95 ; ligand complex structure of soluble epoxide hydrolase 5AIC ; 1.89 ; ligand complex structure of soluble epoxide hydrolase 5AK3 ; 2.28 ; ligand complex structure of soluble epoxide hydrolase 5AK4 ; 1.79 ; ligand complex structure of soluble epoxide hydrolase 5AK5 ; 2.22 ; ligand complex structure of soluble epoxide hydrolase 5AK6 ; 2.15 ; ligand complex structure of soluble epoxide hydrolase 5AKE ; 2.26 ; ligand complex structure of soluble epoxide hydrolase 5AKG ; 2.51 ; ligand complex structure of soluble epoxide hydrolase 5AKH ; 2.1 ; ligand complex structure of soluble epoxide hydrolase 5AKI ; 1.81 ; ligand complex structure of soluble epoxide hydrolase 5AKJ ; 2.03 ; ligand complex structure of soluble epoxide hydrolase 5AKK ; 1.9 ; ligand complex structure of soluble epoxide hydrolase 5AKL ; 2.0 ; ligand complex structure of soluble epoxide hydrolase 5AKX ; 2.09 ; ligand complex structure of soluble epoxide hydrolase 5AKY ; 2.18 ; ligand complex structure of soluble epoxide hydrolase 5AKZ ; 2.18 ; ligand complex structure of soluble epoxide hydrolase 5ALD ; 2.26 ; ligand complex structure of soluble epoxide hydrolase 5ALE ; 1.95 ; ligand complex structure of soluble epoxide hydrolase 5ALF ; 2.32 ; ligand complex structure of soluble epoxide hydrolase 5ALG ; 2.4 ; ligand complex structure of soluble epoxide hydrolase 5ALH ; 1.9 ; ligand complex structure of soluble epoxide hydrolase 5ALI ; 1.85 ; ligand complex structure of soluble epoxide hydrolase 5ALJ ; 2.1 ; ligand complex structure of soluble epoxide hydrolase 5ALK ; 2.33 ; ligand complex structure of soluble epoxide hydrolase 5ALL ; 2.2 ; ligand complex structure of soluble epoxide hydrolase 5ALM ; 2.0 ; ligand complex structure of soluble epoxide hydrolase 5ALN ; 2.0 ; ligand complex structure of soluble epoxide hydrolase 5ALO ; 2.0 ; ligand complex structure of soluble epoxide hydrolase 5ALP ; 2.06 ; ligand complex structure of soluble epoxide hydrolase 5ALQ ; 2.78 ; ligand complex structure of soluble epoxide hydrolase 5ALR ; 2.6 ; ligand complex structure of soluble epoxide hydrolase 5ALS ; 2.57 ; ligand complex structure of soluble epoxide hydrolase 5ALT ; 2.15 ; ligand complex structure of soluble epoxide hydrolase 5ALU ; 1.87 ; ligand complex structure of soluble epoxide hydrolase 5ALV ; 1.8 ; ligand complex structure of soluble epoxide hydrolase 5ALW ; 2.2 ; ligand complex structure of soluble epoxide hydrolase 5ALX ; 2.23 ; ligand complex structure of soluble epoxide hydrolase 5ALY ; 1.9 ; ligand complex structure of soluble epoxide hydrolase 5ALZ ; 2.3 ; ligand complex structure of soluble epoxide hydrolase 5AM0 ; 1.88 ; ligand complex structure of soluble epoxide hydrolase 5AM1 ; 2.15 ; ligand complex structure of soluble epoxide hydrolase 5AM2 ; 1.7 ; ligand complex structure of soluble epoxide hydrolase 5AM3 ; 2.2 ; ligand complex structure of soluble epoxide hydrolase 5AM4 ; 1.87 ; ligand complex structure of soluble epoxide hydrolase 5AM5 ; 2.26 ; ligand complex structure of soluble epoxide hydrolase 5FP0 ; 2.35 ; ligand complex structure of soluble epoxide hydrolase 4JG4 ; 2.296 ; Ligand concentration regulates the pathways of coupled protein folding and binding 4AJX ; 1.2 ; Ligand controlled assembly of hexamers, dihexamers, and linear multihexamer structures by an engineered acylated insulin 4AJZ ; 1.8 ; Ligand controlled assembly of hexamers, dihexamers, and linear multihexamer structures by an engineered acylated insulin 4AK0 ; 2.28 ; Ligand controlled assembly of hexamers, dihexamers, and linear multihexamer structures by an engineered acylated insulin 4AKJ ; 2.01 ; Ligand controlled assembly of hexamers, dihexamers, and linear multihexamer structures by an engineered acylated insulin 1IS5 ; 2.0 ; Ligand free Congerin II 7XSY ; 2.5 ; Ligand free structure of branching enzyme isoform 3 (BE3) from Crocosphaera subtropica ATCC 51142 5VWS ; 2.411 ; Ligand free structure of Cytochrome P450 TbtJ1 2R0F ; 2.0 ; Ligand free structure of fungal lectin CGL3 7A0U ; 2.26049 ; LIGAND FREE TYPE II E. COLI ASPARAGINASE T12S/T89S DOUBLE MUTANT 1CD2 ; 2.2 ; LIGAND INDUCED CONFORMATIONAL CHANGES IN THE CRYSTAL STRUCTURES OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE COMPLEXES WITH FOLATE AND NADP+ 2CD2 ; 1.9 ; LIGAND INDUCED CONFORMATIONAL CHANGES IN THE CRYSTAL STRUCTURES OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE COMPLEXES WITH FOLATE AND NADP+ 3CD2 ; 2.5 ; LIGAND INDUCED CONFORMATIONAL CHANGES IN THE CRYSTAL STRUCTURES OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE COMPLEXES WITH FOLATE AND NADP+ 4CD2 ; 2.0 ; LIGAND INDUCED CONFORMATIONAL CHANGES IN THE CRYSTAL STRUCTURES OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE COMPLEXES WITH FOLATE AND NADP+ 1TBW ; 2.15 ; Ligand Induced Conformational Shift in the N-terminal Domain of GRP94, Open Conformation 1TC6 ; 1.87 ; Ligand Induced Conformational Shift in the N-terminal Domain of GRP94, Open Conformation ADP-Complex 1TC0 ; 2.2 ; Ligand Induced Conformational Shifts in the N-terminal Domain of GRP94, Open Conformation Complexed with the physiological partner ATP 5X5S ; ; Ligand induced structure of AmyP-SBD 2R4X ; 2.1 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: H69V/I114M co complex 2R4Y ; 2.0 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: H69V/I114M unliganded 2Z8A ; 1.06 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: I25W with CO Bound to HEME and in the Presence of 3 Atoms of XE 2Z85 ; 1.6 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: M37F Unliganded 2R4W ; 1.8 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: M37F with CO bound 2R4Z ; 1.6 ; Ligand Migration and Binding in The Dimeric Hemoglobin of Scapharca Inaequivalvis: Structure of I25W with CO 3G4W ; 1.9 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chlorobenzene bound to the XE4 cavity 3G52 ; 1.65 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloroethyl benzene bound to the XE4 cavity 3G46 ; 0.91 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloroform bound to the XE4 cavity 3G4Q ; 1.6 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloroform bound to the XE4 cavity 3G4Y ; 1.7 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloromethyl benzene bound to the XE4 cavity 3G4V ; 2.1 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloropentane bound to the XE4 cavity 3G53 ; 1.64 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and chloropropyl benzene bound to the XE4 cavity 3G4R ; 1.6 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to HEME and dichloroethane bound to the XE4 cavity 3G4U ; 2.1 ; Ligand migration and cavities within scapharca dimeric hemoglobin: wild type with co bound to heme and dichloropropane bound to the XE4 cavity 2BLH ; 1.77 ; Ligand Migration and Protein Fluctuations in Myoglobin Mutant L29W 5F8U ; 3.35 ; Ligand occupancy in crystal structure of beta1-adrenergic receptor previously submitted by Huang et al 3HEI ; 2.0 ; Ligand Recognition by A-Class Eph Receptors: Crystal Structures of the EphA2 Ligand-Binding Domain and the EphA2/ephrin-A1 Complex 3HPN ; 2.52 ; Ligand recognition by A-class EPH receptors: crystal structures of the EPHA2 ligand-binding domain and the EPHA2/EPHRIN-A1 complex 2R9J ; 2.55 ; Ligand recognition in C-lobe: The crystal structure of the complex of lactoferrin C-lobe with nicotinamide at 2.5 A resolution 2G93 ; 1.9 ; Ligand recognition site in C-lobe of lactoferrin: Crystal structure of the complex of C-lobe of bovine lactoferrin with methyl alpha-D-mannopyranoside at 1.9 A resolution 5OLF ; ; Ligand-Based NMR Study of C-X-C Chemokine Receptor Type 4 (CXCR4)-Ligand Interactions in Living Cancer Cells 1PDU ; 2.3 ; Ligand-binding domain of Drosophila orphan nuclear receptor DHR38 3O28 ; 2.0 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3O29 ; 2.02 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3O2A ; 1.9 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3O6G ; 1.8 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3O6H ; 2.1 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3O6I ; 1.8 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3PMV ; 1.8 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3PMW ; 2.2 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 3PMX ; 1.87 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 4FAT ; 1.4 ; Ligand-binding domain of GluA2 (flip) ionotropic glutamate receptor in complex with an allosteric modulator 2PRG ; 2.3 ; LIGAND-BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA 3LBD ; 2.4 ; LIGAND-BINDING DOMAIN OF THE HUMAN RETINOIC ACID RECEPTOR GAMMA BOUND TO 9-CIS RETINOIC ACID 2LBD ; 2.06 ; LIGAND-BINDING DOMAIN OF THE HUMAN RETINOIC ACID RECEPTOR GAMMA BOUND TO ALL-TRANS RETINOIC ACID 4LBD ; 2.5 ; LIGAND-BINDING DOMAIN OF THE HUMAN RETINOIC ACID RECEPTOR GAMMA BOUND TO THE SYNTHETIC AGONIST BMS961 1DJS ; 2.4 ; LIGAND-BINDING PORTION OF FIBROBLAST GROWTH FACTOR RECEPTOR 2 IN COMPLEX WITH FGF1 3AQ0 ; 2.65 ; Ligand-bound form of Arabidopsis medium/long-chain length prenyl pyrophosphate synthase (surface polar residue mutant) 7PQU ; 3.03 ; Ligand-bound human Kv3.1 cryo-EM structure (Lu AG00563) 5WFO ; 1.99 ; Ligand-bound Ras:SOS:Ras complex 5WFP ; 2.08 ; Ligand-bound Ras:SOS:Ras complex 5WFQ ; 2.26 ; Ligand-bound Ras:SOS:Ras complex 5WFR ; 2.46 ; Ligand-bound Ras:SOS:Ras complex 5SWE ; 3.0 ; Ligand-bound structure of adenine riboswitch aptamer domain converted in crystal from its ligand-free state using ligand mixing serial femtosecond crystallography 5LAK ; 2.299 ; Ligand-bound structure of Cavally Virus 3CL Protease 1C1F ; 1.6 ; LIGAND-FREE CONGERIN I 7PQ1 ; 2.46 ; Ligand-free crystal structure of a staphylococcal orthologue of CYP134A1 8C4I ; 3.2 ; Ligand-free Crystal Structure of the decameric Sulfofructose Transaldolase BmSF-TAL 2Y2Z ; 1.95 ; ligand-free form of TetR-like repressor SimR 3GTU ; 2.8 ; LIGAND-FREE HETERODIMERIC HUMAN GLUTATHIONE S-TRANSFERASE M2-3 (EC 2.5.1.18), MONOCLINIC CRYSTAL FORM 1N3X ; 2.5 ; Ligand-free High-Affinity Maltose-Binding Protein 1PEB ; 2.6 ; LIGAND-FREE HIGH-AFFINITY MALTOSE-BINDING PROTEIN 4GTU ; 3.3 ; LIGAND-FREE HOMODIMERIC HUMAN GLUTATHIONE S-TRANSFERASE M4-4 1GTU ; 2.68 ; LIGAND-FREE HUMAN GLUTATHIONE S-TRANSFERASE M1A-1A 2GTU ; 2.55 ; LIGAND-FREE HUMAN GLUTATHIONE S-TRANSFERASE M2-2 (E.C.2.5.1.18), MONOCLINIC CRYSTAL FORM 6V23 ; 1.75 ; Ligand-free L-aspraginase II from E. coli (EcAII) 5T50 ; 1.43 ; LIGAND-FREE LECTIN FROM BAUHINIA FORFICATA 7L0C ; 1.8 ; Ligand-free PTP1B T177G 8PCZ ; 3.21 ; Ligand-free SpSLC9C1 in lipid nanodiscs, dimer 8PD2 ; 3.25 ; Ligand-free SpSLC9C1 in lipid nanodiscs, protomer state 1 8PD3 ; 3.3 ; Ligand-free SpSLC9C1 in lipid nanodiscs, protomer state 2 8PD5 ; 3.4 ; Ligand-free SpSLC9C1 in lipid nanodiscs, protomer state 3 8PD7 ; 3.4 ; Ligand-free SpSLC9C1 in lipid nanodiscs, protomer state 4 6TLG ; 2.4 ; Ligand-free state of human 14-3-3 sigma isoform 3ZBY ; 1.93 ; Ligand-free structure of CYP142 from Mycobacterium smegmatis 2BVJ ; 2.1 ; Ligand-free structure of cytochrome P450 PikC (CYP107L1) 4WL0 ; 2.89 ; Ligand-free structure of human platelet phosphofructokinase in an R-state, crystal form I 2BZ9 ; 2.21 ; Ligand-free structure of sterol 14alpha-demethylase from Mycobacterium tuberculosis in P2(1) space group 8BC2 ; 2.6 ; Ligand-Free Structure of the decameric sulfofructose transaldolase BmSF-TAL 4OLO ; 2.5 ; Ligand-free structure of the GrpU microcompartment shell protein from Clostridiales bacterium 1_7_47FAA 4OLP ; 2.79 ; Ligand-free structure of the GrpU microcompartment shell protein from Pectobacterium wasabiae 3ASY ; 2.4 ; ligand-free structure of uridine kinase from thermus thermophilus HB8 5WB1 ; 3.508 ; Ligand-free US28 with stabilizing intracellular nanobody 7L0I ; 2.02 ; Ligand-free YopH G352T 4R17 ; 2.1 ; Ligand-induced aziridine-formation at subunit beta5 of the yeast 20S proteasome 5LAI ; 2.5 ; Ligand-induced aziridine-formation at the yeast proteasomal subunit beta5 by sulfonate esters 5MJ6 ; 2.53 ; Ligand-induced conformational change of Insulin-regulated aminopeptidase: insights on catalytic mechanism and active site plasticity. 2MSW ; ; Ligand-induced folding of a receiver domain 4R18 ; 2.4 ; Ligand-induced Lys33-Thr1 crosslinking at subunit beta5 of the yeast 20S proteasome 5LAJ ; 2.9 ; Ligand-induced Lys33-Thr1 crosslinking at the yeast proteasomal subunit beta5 by sulfonate esters 1HJX ; 1.85 ; Ligand-induced signalling and conformational change of the 39 kD glycoprotein from human articular chondrocytes 1NXF ; 1.85 ; Ligand-linked transitions of deoxyHbI crystals exposed to CO. 5MR4 ; 2.4 ; Ligand-receptor complex. 5MR5 ; 2.0 ; Ligand-receptor complex. 5MR9 ; 2.4 ; Ligand-receptor complex. 3IJ2 ; 3.75 ; Ligand-receptor structure 6J5U ; 3.9 ; Ligand-triggered allosteric ADP release primes a plant NLR complex 6J5V ; 4.25 ; Ligand-triggered allosteric ADP release primes a plant NLR complex 6J5W ; 3.7 ; Ligand-triggered allosteric ADP release primes a plant NLR complex 5BVQ ; 2.1 ; Ligand-unbound pFABP4 1IKT ; 1.75 ; LIGANDED STEROL CARRIER PROTEIN TYPE 2 (SCP-2) LIKE DOMAIN OF HUMAN MULTIFUNCTIONAL ENZYME TYPE 2 (MFE-2) 4AUA ; 2.31 ; Liganded X-ray crystal structure of cyclin dependent kinase 6 (CDK6) 4ZXG ; 1.7 ; Ligandin binding site of PfGST 2LZE ; ; Ligase 10C 4G10 ; 1.2 ; LigG from Sphingobium sp. SYK-6 is related to the glutathione transferase omega class 4LM6 ; 1.7 ; Light harvesting complex PC612 from the cryptophyte Hemiselmis virescens M1635 4LMS ; 1.35 ; Light harvesting complex PC645 from the cryptophyte Chroomonas sp. CCMP270 4LMX ; 1.8 ; Light harvesting complex PE555 from the cryptophyte Hemiselmis andersenii CCMP644 7T7U ; 1.8 ; Light Harvesting complex phycocyanin PC 630, from the cryptophyte Chroomonas sp. M1627 7T89 ; 1.0 ; Light harvesting complex Phycocyanin PC577 from the cryptophyte Hemiselmis pacifica CCMP 706 7T8S ; 2.0 ; Light Harvesting complex phycoerythrin PE 566, from the cryptophyte Cryptomonas pyrenoidifera 8EL3 ; 1.57 ; Light harvesting phycobiliprotein HaPE555 from the cryptophyte Hemiselmis andersenii CCMP644 in a loose interface filament 8EL4 ; 1.73 ; Light harvesting phycobiliprotein HaPE555 from the cryptophyte Hemiselmis andersenii CCMP644 in a tight interface filament 8EL5 ; 1.67 ; Light harvesting phycobiliprotein HaPE555 from the cryptophyte Hemiselmis andersenii CCMP644 in an alternating tight to loose interface filament 8EL6 ; 1.95 ; Light harvesting phycobiliprotein HaPE555 from the cryptophyte Hemiselmis andersenii CCMP644 with an altered helix hA/hY conformation 7SSF ; 1.45 ; Light harvesting phycobiliprotein HaPE560 from the cryptophyte Hemiselmis andersenii CCMP644 7SUT ; 1.49 ; Light harvesting phycobiliprotein HaPE645 from the cryptophyte Hemiselmis andersenii CCMP644 3BSD ; 2.3 ; Light harvesting protein from RC of Chlorobium tepidum 4Q70 ; 1.85 ; Light Harvesting Protein Phycocyanin in high resolution using a femtosecond X-Ray laser 8C69 ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 100 microsecond time delay 8C6A ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 1ps time delay 8C6B ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 20ps time delay 8C6H ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 2ps time delay 8C6C ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 300ps time delay 8C6F ; 1.9 ; Light SFX structure of D.m(6-4)photolyase at 400fs time delay 5LS8 ; 1.78 ; Light-activated ruthenium complex bound to a DNA quadruplex 8C36 ; 2.0 ; Light-adapted 2.0 Angstrom crystal structure of H132A variant of cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under aerobic conditions 1XRD ; ; Light-Harvesting Complex 1 Alfa Subunit from Wild-Type Rhodospirillum rubrum 1DX7 ; ; Light-harvesting complex 1 beta subunit from Rhodobacter sphaeroides 1WRG ; ; Light-Harvesting Complex 1 Beta Subunit from Wild-Type Rhodospirillum rubrum 3NOP ; 2.8 ; Light-induced intermediate structure L1 of Pseudomonas aeruginosa bacteriophytochrome 3NOT ; 2.7 ; Light-induced intermediate structure L2 of P. aeruginosa bacteriophytochrome 3NOU ; 3.0 ; Light-induced intermediate structure L3 of P. aeruginosa bacteriophytochrome 6RTZ ; 2.87 ; Light-Regulation of Imidazole Glycerol Phosphate Synthase by Interference with its Allosteric Machinery through Photo-Sensitive Unnatural Amino Acids 6RU0 ; 2.648 ; Light-Regulation of Imidazole Glycerol Phosphate Synthase by Interference with its Allosteric Machinery through Photo-Sensitive Unnatural Amino Acids 5VP3 ; 2.151 ; Light-sensitive photoprotein 8C76 ; 2.5 ; Light-state 2.5 Angstrom wild-type X-ray crystal structure of the cobalamin binding domain belonging to a light-dependent transcription regulator TtCarH obtained under aerobic conditions from a form 2 crystal illuminated during 5 s 5SVW ; 2.29 ; Light-state Structure of Arabidopsis Thaliana Zeitlupe 1B85 ; 1.85 ; LIGNIN PEROXIDASE 1LLP ; 1.7 ; LIGNIN PEROXIDASE (ISOZYME H2) PI 4.15 6ISS ; 1.53 ; Lignin peroxidase H8 triple mutant S49C/A67C/H239 1QPA ; 1.8 ; LIGNIN PEROXIDASE ISOZYME LIP4.65 (PI 4.65) 6BCS ; 2.1 ; LilrB2 D1D2 domains complexed with benzamidine 8AAU ; 1.74 ; LIM Domain Kinase 1 (LIMK1) bound to LIMKi3 5NXC ; 2.25 ; LIM Domain Kinase 1 (LIMK1) In Complex With PF-00477736 8S3X ; 2.59 ; LIM Domain Kinase 2 (LIMK2) bound to compound 52 5NXD ; 1.9 ; LIM Domain Kinase 2 (LIMK2) In Complex With TH-300 7QHG ; 1.45 ; LIM domain kinase 2 (LIMK2) in complex with TH-470 6MIF ; ; Lim5 domain of PINCH1 protein 7P6A ; 1.9 ; Limbic-predominant neuronal inclusion body 4R tauopathy type 1a tau filament 7P6B ; 2.2 ; Limbic-predominant neuronal inclusion body 4R tauopathy type 1b tau filament 7P6C ; 2.5 ; Limbic-predominant neuronal inclusion body 4R tauopathy type 2 tau filament 8AGM ; 1.966 ; Limonene epoxide low pH soak of epoxide hydrolase from metagenomic source ch65 1NWW ; 1.2 ; Limonene-1,2-epoxide hydrolase 1NU3 ; 1.75 ; Limonene-1,2-epoxide hydrolase in complex with valpromide 8HU4 ; 2.76 ; Limosilactobacillus reuteri N1 GtfB 8HW3 ; 2.66 ; Limosilactobacillus reuteri N1 GtfB-acarbose 8HWK ; 2.9 ; Limosilactobacillus reuteri N1 GtfB-maltohexaose 6TFT ; 2.52 ; Linalool Dehydratase Isomerase C171A mutant 6TFR ; 1.45 ; Linalool Dehydratase Isomerase C180A mutant 7AD2 ; 1.83 ; Linalool Dehydratase Isomerase G107T mutant 5G1U ; 2.57 ; Linalool Dehydratase Isomerase in complex with Geraniol 6TFN ; 2.18 ; Linalool Dehydratase Isomerase in complex with Myrcene 6THM ; 1.99 ; Linalool Dehydratase Isomerase M125A mutant 5G1V ; 2.68 ; Linalool Dehydratase Isomerase: Selenomethionine Derivative 5HSS ; 2.5 ; Linalool dehydratase/isomerase: Ldi with monoterpene substrate 5HLR ; 1.911 ; Linalool dehydratase/isomerase: Ldi-apo 1MJ5 ; 0.95 ; LINB (haloalkane dehalogenase) from sphingomonas paucimobilis UT26 at atomic resolution 1G4H ; 1.8 ; LINB COMPLEXED WITH BUTAN-1-OL 3JZ0 ; 2.0 ; LinB complexed with clindamycin and AMPCPP 8CGK ; 1.64 ; Lincomycin and Avilamycin bound to the 50S subunit 7N8S ; 2.79 ; LINE-1 endonuclease domain complex with DNA 7N94 ; 2.85 ; LINE-1 endonuclease domain complex with DNA 7N8K ; 2.01 ; LINE-1 endonuclease domain complex with Mg 7UL7 ; 3.59 ; Lineage I (Pinneo) Lassa virus glycoprotein bound to 18.5C-M30 Fab 2XRW ; 1.33 ; Linear binding motifs for JNK and for calcineurin antagonistically control the nuclear shuttling of NFAT4 2XS0 ; 2.6 ; Linear binding motifs for JNK and for calcineurin antagonistically control the nuclear shuttling of NFAT4 2GM0 ; ; Linear dimer of stemloop SL1 from HIV-1 8CMR ; 2.24 ; Linear specific OTU-type DUB SnOTU from the pathogen S. negenvensis in complex with linear di-ubiquitin 4KWX ; 1.3 ; Linear structure of the Holliday junction sequence (TCGGCGCCGA) 5GO8 ; 2.21 ; Linear tetra-ubiquitin 5GO7 ; 1.801 ; Linear tri-ubiquitin 4OQT ; 3.23 ; LINGO-1/Li81 Fab complex 3Q16 ; 4.1 ; Linkage between the Bacterial Acid Stress and Stringent Responses: The Structure of the Inducible Lysine Decarboxylase 6DXL ; 2.45 ; Linked amidobenzimidazole STING agonist 6DQA ; 1.888 ; Linked KDM5A JMJ Domain Bound to Inhibitor N70 i.e.[2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2-b]pyridine-7-carboxylic acid] 6DQ9 ; 1.748 ; Linked KDM5A JMJ Domain Bound to the Covalent Inhibitor N69 i.e. [2-((3-acrylamidophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2-b]pyridine-7-carboxylic acid] 6BH0 ; 1.985 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR (R)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1l2-pyrrolo[3,2-b]pyridine-7-carboxylic acid (Compound N51) 6BH2 ; 1.447 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR (R)-N-(1-(3-isopropyl-1H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (Compound N54) 6BH1 ; 1.932 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR (S)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1l2-pyrrolo[3,2-b]pyridine-7-carboxylic acid (Compound N52) 6BH3 ; 1.701 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR (S)-N-(1-(3-isopropyl-1H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (Compound N55) 5IWF ; 2.289 ; Linked KDM5A Jmj Domain Bound to the Inhibitor 2-(((2-((2-(dimethylamino)ethyl)(ethyl)amino)-2-oxoethyl)amino)methyl)isonicotinamid 6BGX ; 1.882 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)((4,4-difluorocyclohexyl)methoxy)methyl)-1H-pyrrolo[3,2-b]pyridine-7-carboxylic acid(Compound N42) 6BGZ ; 1.688 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(2-(1-methyl-1H-imidazol-2-yl)ethoxy)methyl)-1H-pyrrolo[3,2-b]pyridine-7-carboxylic acid (Compound N47) 6BGY ; 1.22 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(2-(1-methylpyrrolidin-2-yl)ethoxy)methyl)-1H-pyrrolo[3,2-b]pyridine-7-carboxylic acid(Compound 46) 6BGW ; 1.644 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(2-(4,4-difluoropiperidin-1-yl)ethoxy)methyl)-1H-pyrrolo[3,2-b]pyridine-7-carboxylic acid(Compound N41) 6BGV ; 1.592 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1l2-pyrrolo[3,2-b]pyridine-7-carboxylic acid (Compound N40) 6BH5 ; 1.651 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(3-(piperidin-1-yl)propoxy)methyl)-1H-pyrrolo[3,2-b]pyridine-7-carboxylic acid (Compound N48) 6BGU ; 1.684 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 2-((2-chlorophenyl)(propoxy)methyl)-1H-pyrrolo[3,2-b]pyridine (Compound N9) 6BH4 ; 2.047 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR 5-(1-(tert-butyl)-1H-pyrazol-4-yl)-6-isopropyl-7-oxo-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile (Compound N75/CPI-48) 5ISL ; 1.694 ; Linked KDM5A Jmj Domain Bound to the Inhibitor C49 (2-{[(2-{[(E)-2-(dimethylamino)ethenyl](ethyl)amino}-2-oxoethyl)amino]methyl}pyridine-4-carboxylic acid) 6DQ4 ; 1.392 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR GSK-J1 5IVF ; 1.683 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N10 8-(1-methyl-1H-imidazol-4-yl)-2-(4,4,4-trifluorobutoxy)pyrido[3,4-d]pyrimidin-4-ol 5IVJ ; 1.569 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N11 [3-({1-[2-(4,4-difluoropiperidin-1-yl)ethyl]-5-fluoro-1H-indazol-3-yl}amino)pyridine-4-carboxylic acid] 5IVV ; 1.848 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N12 [3-((1-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)amino)isonicotinic acid] 5IVY ; 1.45 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N16 [3-(2-(4-chlorophenyl)acetamido)isonicotinic acid] 5IW0 ; 1.63 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N19 [2-(5-((4-chloro-2-methylbenzyl)oxy)-1H-pyrazol-1-yl)isonicotinic acid] 5IVC ; 1.573 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N3 (4'-[(2-phenylethyl)carbamoyl][2,2'-bipyridine]-4-carboxylic acid) 6DQ5 ; 1.89 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N43 i.e. 3-((6-(4-acryloyl-1,4-diazepan-1-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid 6DQ6 ; 1.587 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N44 i.e. 3-((2-(pyridin-2-yl)-6-(4-(vinylsulfonyl)-1,4-diazepan-1-yl)pyrimidin-4-yl)amino)propanoic acid 6DQ8 ; 1.46 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N49 i.e. 2-((2-chlorophenyl)(2-(1-methylpyrrolidin-2-yl)ethoxy)methyl)thieno[3,2-b]pyridine-7-carboxylic acid 6DQC ; 1.755 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N50 i.e. 2-(4-((2-(dimethylamino)ethyl)(ethyl)carbamoyl)-5-(4-methoxyphenyl)-1H-pyrazol-1-yl)isonicotinic acid 6DQD ; 1.987 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N53 i.e. 2-(5-([1,1'-biphenyl]-3-yl)-4-(1-(2-(piperidin-1-yl)ethoxy)ethyl)-1H-pyrazol-1-yl)isonicotinic acid 6DQE ; 1.689 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N67 i.e. 2-(5-phenyl-4-(phenyl(2-(piperidin-1-yl)ethoxy)methyl)-1H-pyrazol-1-yl)isonicotinic acid 6DQF ; 1.688 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE INHIBITOR N68 i.e. 2-(1-(2-(piperidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)thieno[3,2-b]pyridine-7-carboxylic acid 5IVE ; 1.783 ; Linked KDM5A Jmj Domain Bound to the Inhibitor N8 ( 5-methyl-7-oxo-6-(propan-2-yl)-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carbonitrile) 6DQ7 ; 1.852 ; LINKED KDM5A JMJ DOMAIN BOUND TO THE POTENTIAL HYDROLYSIS PRODUCT OF INHIBITOR N45 i.e. 3-((6-(4-(2-cyano-3-methylbut-2-enoyl)-1,4-diazepan-1-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid 6DQB ; 1.791 ; LINKED KDM5A JMJ DOMAIN FORMING COVALENT BOND TO INHIBITOR N71 i.e. 2-((3-(4-(dimethylamino)but-2-enamido)phenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2-b]pyridine-7-carboxylic acid 7LJ0 ; 2.8 ; Linker 3 and scaffolded phycoerythrin beta subunit from the phycobilisome of Porphyridium purpureum 8TH8 ; 7.4 ; Linker domain of Nexin-dynein regulatory complex from Tetrahymena thermophila 7DBP ; 4.5 ; Linker histone defines structure and self-association behaviour of the 177 bp human chromosome 8JNN ; 3.3 ; linker protein LPP1 from red algal Porphyridium purpureum. 5BVS ; 2.2 ; Linoleate-bound pFABP4 2Q9S ; 2.3 ; Linoleic Acid Bound to Fatty Acid Binding Protein 4 2LXL ; ; Lip5(mit)2 2LXM ; ; Lip5-chmp5 6KHL ; 1.6 ; Lipase (Blocked form) 6KHK ; 1.75 ; Lipase (Closed form) 1LBS ; 2.6 ; LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL HYDROLASE) 1LBT ; 2.5 ; LIPASE (E.C.3.1.1.3) (TRIACYLGLYCEROL HYDROLASE) 6KHM ; 2.4 ; Lipase (Open form) 1LGY ; 2.2 ; LIPASE II FROM RHIZOPUS NIVEUS 6CL4 ; 2.64 ; LipC12 - Lipase from metagenomics 5W8N ; 2.02 ; Lipid A Disaccharide Synthase (LpxB)-6 solubilizing mutations 5W8S ; 2.1 ; Lipid A Disaccharide Synthase (LpxB)-7 solubilizing mutations 5W8X ; 1.98 ; Lipid A Disaccharide Synthase (LpxB)-7 solubilizing mutations-Bound to UDP 5KN7 ; 1.99 ; Lipid A secondary acyltransferase LpxM from Acinetobacter baumannii 5KNK ; 1.9 ; Lipid A secondary acyltransferase LpxM from Acinetobacter baumannii with catalytic residue substitution (E127A) 6O30 ; 4.47 ; Lipid A transporter MsbA from Salmonella typhimurium 1UVA ; 2.5 ; Lipid Binding in Rice Nonspecific Lipid Transfer Protein-1 Complexes from Oryza sativa 1UVB ; 2.1 ; Lipid Binding in Rice Nonspecific Lipid Transfer Protein-1 Complexes from Oryza sativa 1UVC ; 2.0 ; Lipid Binding in Rice Nonspecific Lipid Transfer Protein-1 Complexes from Oryza sativa 6NC6 ; 3.2 ; Lipid II flippase MurJ, inward closed conformation 6NC8 ; 2.601 ; Lipid II flippase MurJ, inward occluded conformation 6NC7 ; 3.0 ; Lipid II flippase MurJ, inward open conformation 6NC9 ; 1.8 ; Lipid II flippase MurJ, outward-facing conformation 1MYU ; ; Lipid induced conformation of the tachykinin peptide Kassinin 1BE2 ; ; LIPID TRANSFER PROTEIN COMPLEXED WITH PALMITATE, NMR, 10 STRUCTURES 1JTB ; ; LIPID TRANSFER PROTEIN COMPLEXED WITH PALMITOYL COENZYME A, NMR, 16 STRUCTURES 1AFH ; ; LIPID TRANSFER PROTEIN FROM MAIZE SEEDLINGS, NMR, 15 STRUCTURES 1BV2 ; ; LIPID TRANSFER PROTEIN FROM RICE SEEDS, NMR, 14 STRUCTURES 6DMR ; 3.9 ; Lipid-bound full-length rbTRPV5 2KOG ; ; lipid-bound synaptobrevin solution NMR structure 3KYQ ; 2.443 ; Lipid-induced Conformational Switch Controls Fusion Activity of Longin Domain SNARE Ykt6 1LSH ; 1.9 ; LIPID-PROTEIN INTERACTIONS IN LIPOVITELLIN 8ADU ; 3.24 ; Lipidic alpha-synuclein fibril - polymorph L1A 8ADV ; 2.98 ; Lipidic alpha-synuclein fibril - polymorph L1B 8ADW ; 2.95 ; Lipidic alpha-synuclein fibril - polymorph L1C 8A4L ; 2.68 ; Lipidic alpha-synuclein fibril - polymorph L2A 8ADS ; 3.05 ; Lipidic alpha-synuclein fibril - polymorph L2B 8AEX ; 2.76 ; Lipidic alpha-synuclein fibril - polymorph L3A 8OVK ; 2.88 ; Lipidic amyloid-beta(1-40) fibril - polymorph L1 8OVM ; 3.24 ; Lipidic amyloid-beta(1-40) fibril - polymorph L2 8OWJ ; 3.75 ; Lipidic amyloid-beta(1-40) fibril - polymorph L2-L2 8OWE ; 3.75 ; Lipidic amyloid-beta(1-40) fibril - polymorph L2-L3 8OWD ; 3.28 ; Lipidic amyloid-beta(1-40) fibril - polymorph L3 8OWK ; 3.86 ; Lipidic amyloid-beta(1-40) fibril - polymorph L3-L3 1OGV ; 2.35 ; Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides 2BNS ; 2.5 ; Lipidic cubic phase grown reaction centre from Rhodobacter sphaeroides, excited state 2BNP ; 2.7 ; Lipidic cubic phase grown reaction centre from Rhodobacter sphaeroides, ground state 7Q7P ; 2.4 ; LIPIDIC CUBIC PHASE SERIAL FEMTOSECOND CRYSTALLOGRAPHY STRUCTURE OF A PHOTOSYNTHETIC REACTION CENTRE 7Q7Q ; 2.25 ; LIPIDIC CUBIC PHASE SERIAL FEMTOSECOND CRYSTALLOGRAPHY STRUCTURE OF A PHOTOSYNTHETIC REACTION CENTRE 2WJN ; 1.86 ; Lipidic sponge phase crystal structure of photosynthetic reaction centre from Blastochloris viridis (high dose) 4AC5 ; 8.2 ; Lipidic sponge phase crystal structure of the Bl. viridis reaction centre solved using serial femtosecond crystallography 2WJM ; 1.95 ; Lipidic sponge phase crystal structure of the photosynthetic reaction centre from Blastochloris viridis (low dose) 5UPH ; 3.0 ; Lipids bound lysosomal integral membrane protein 2 6EVH ; 0.9 ; Lipoaminopeptide helioferin A and B from Mycogone rosea 2KT4 ; ; Lipocalin Q83 is a Siderocalin 8F0Y ; 2.1 ; Lipocalin-like Milk protein-1 8F0V ; 2.951 ; Lipocalin-like Milk protein-2 - E38A mutant 2CZT ; 2.0 ; lipocalin-type prostaglandin D synthase 2CZU ; 2.1 ; lipocalin-type prostaglandin D synthase 4ZFV ; 1.5 ; Lipomyces starkeyi levoglucosan kinase bound to ADP and magnesium. 4YH5 ; 1.9 ; Lipomyces starkeyi levoglucosan kinase bound to ADP and Manganese 5BSB ; 1.85 ; Lipomyces starkeyi levoglucosan kinase bound to levoglucosan 4ZLU ; 1.8 ; Lipomyces starkeyi levoglucosan kinase bound to levoglucosan, ADP and magnesium. 6V0C ; 3.46 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 1 6V0D ; 3.49 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 2 6V0E ; 3.06 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 3 6V0F ; 2.96 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 4 6V0G ; 3.03 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 5 6V0H ; 3.6 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 6 6V0I ; 3.43 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 7 6V0J ; 3.78 ; Lipophilic Envelope-spanning Tunnel B (LetB), Model 8 6VCI ; 2.15 ; Lipophilic envelope-spanning tunnel protein (LetB), domains MCE2-MCE3 7WZB ; 2.7 ; lipopolysaccharide assembly protein LapB (open) 6Y6I ; 1.92 ; lipopolysaccharide outer core galactosyltransferase WaaB and UDP complex 6Y6G ; 1.81 ; lipopolysaccharide outer core galactosyltransferase WaaB apo form 8JB4 ; ; lipopolysaccharide-binding domain-LBDB 8OKV ; 2.6 ; lipoprotein BT2095 from Bacteroides thetaiotamicron bound to cyanocobalamin CnCbl 5NAA ; 1.88 ; Lipoprotein-releasing system transmembrane protein LolC 6S7V ; 3.301 ; Lipoteichoic acids flippase LtaA 1N8Q ; 2.1 ; LIPOXYGENASE IN COMPLEX WITH PROTOCATECHUIC ACID 1YGE ; 1.4 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K 1Y4K ; 1.95 ; Lipoxygenase-1 (Soybean) at 100K, N694G Mutant 1FGM ; 1.9 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, N694H MUTANT 1F8N ; 1.4 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, NEW REFINEMENT 1FGO ; 1.62 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, Q495A MUTANT 1FGQ ; 1.85 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, Q495E MUTANT 1FGR ; 1.6 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, Q697E MUTANT 1FGT ; 1.62 ; LIPOXYGENASE-1 (SOYBEAN) AT 100K, Q697N MUTANT 5T5V ; 1.8 ; LIPOXYGENASE-1 (SOYBEAN) AT 293K 3BNE ; 1.4 ; Lipoxygenase-1 (Soybean) I553A Mutant 3BNC ; 1.65 ; Lipoxygenase-1 (Soybean) I553G Mutant 5TQP ; 1.7 ; LIPOXYGENASE-1 (SOYBEAN) I553G MUTANT AT 300K 3BNB ; 1.45 ; Lipoxygenase-1 (Soybean) I553L Mutant 5TQN ; 1.8 ; Lipoxygenase-1 (soybean) L546A mutant at 293K 4WHA ; 1.7 ; Lipoxygenase-1 (soybean) L546A/L754A mutant 5TQO ; 1.7 ; Lipoxygenase-1 (soybean) L546A/L754A mutant at 300K 5TR0 ; 1.85 ; Lipoxygenase-1 (soybean) L754A mutant at 293K 3BND ; 1.6 ; Lipoxygenase-1 (Soybean), I553V Mutant 1IK3 ; 2.0 ; LIPOXYGENASE-3 (SOYBEAN) COMPLEX WITH 13(S)-HYDROPEROXY-9(Z),11(E)-OCTADECADIENOIC ACID 1HU9 ; 2.2 ; LIPOXYGENASE-3 (SOYBEAN) COMPLEX WITH 4-HYDROPEROXY-2-METHOXY-PHENOL 1JNQ ; 2.1 ; LIPOXYGENASE-3 (SOYBEAN) COMPLEX WITH EPIGALLOCATHECHIN (EGC) 1ROV ; 2.0 ; Lipoxygenase-3 Treated with Cumene Hydroperoxide 1LNH ; 2.6 ; LIPOXYGENASE-3(SOYBEAN) NON-HEME FE(II) METALLOPROTEIN 1PMR ; ; LIPOYL DOMAIN FROM THE DIHYDROLIPOYL SUCCINYLTRANSFERASE COMPONENT OF THE 2-OXOGLUTARATE DEHYDROGENASE MULTIENZYME COMPLEX OF ESCHERICHIA COLI, NMR, 25 STRUCTURES 1IYV ; ; LIPOYL DOMAIN OF PYRUVATE DEHYDROGENASE COMPLEX, NMR, 29 STRUCTURES 1IYU ; ; LIPOYL DOMAIN OF PYRUVATE DEHYDROGENASE COMPLEX, NMR, MINIMIZED AVERAGE STRUCTURE 4FBL ; 1.99 ; LipS and LipT, two metagenome-derived lipolytic enzymes increase the diversity of known lipase and esterase families 4FBM ; 2.8 ; LipS and LipT, two metagenome-derived lipolytic enzymes increase the diversity of known lipase and esterase families 6QNB ; 1.7 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Lysozyme with GlcNAc3 6RNC ; 1.799 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Lysozyme with GlcNAc3 - 100ms diffusion time. 6RNB ; 1.699 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Lysozyme with GlcNAc3 50ms diffusion time 6QNC ; 1.897 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 0.1 s timepoint 6QNH ; 1.849 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 0ms timepoint 6QNI ; 1.846 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 1.0 s timepoint 6RND ; 1.7 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 15 ms timepoint 6RNF ; 1.7 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 30 ms timepoint 6QNJ ; 1.851 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 4.5 s timepoint 6QND ; 2.001 ; Liquid Application Method for time-resolved Analyses (LAMA) by serial synchrotron crystallography, Xylose Isomerase 60 s timepoint 2RN1 ; ; Liquid crystal solution structure of the kissing complex formed by the apical loop of the HIV TAR RNA and a high affinity RNA aptamer optimized by SELEX 4APD ; ; Liraglutide 7PV9 ; 3.3 ; Listeria monocytogene InlB (internalin B) residues 36-392 (internalin domain and B-repeat) 4ACV ; 2.401 ; Listeria monocytogenes Antigen B 2Y5Q ; 3.2 ; Listeria monocytogenes InlB (internalin B) residues 36-392 5KZS ; 2.3 ; Listeria monocytogenes internalin-like protein lmo2027 5KZT ; 1.85 ; Listeria monocytogenes OppA bound to peptide 8EOR ; 2.67 ; Liver carboxylesterase 1 1LFO ; 2.3 ; LIVER FATTY ACID BINDING PROTEIN-OLEATE COMPLEX 2ACL ; 2.8 ; Liver X-Receptor alpha Ligand Binding Domain with SB313987 6ANA ; 1.7 ; LL2 Fab in complex with anti-Kappa VHH domain 1HCV ; 1.85 ; LLAMA HEAVY CHAIN VARIABLE DOMAIN AGAINST ALPHA SUBUNIT OF HCG (HUMAN CHORIONIC GONADOTROPIN) 4QLR ; 1.7 ; Llama nanobody n02 raised against EAEC T6SS TssM 7BNP ; 1.7 ; Llama nanobody nb17 raised against GldL from Flavobacterium jonhsoniae 7BNW ; 2.59 ; Llama nanobody nb18 raised against GldL from Flavobacterium jonhsoniae 5LZ0 ; 1.6 ; Llama nanobody PorM_01 5LMW ; 1.5 ; Llama nanobody PorM_02 6GZP ; 2.1 ; Llama nanobody PorM_02 structure determined at room temperature by in-situ diffraction in ChipX microfluidic device 5FWO ; 1.7 ; Llama nanobody PorM_130 5LMJ ; 2.1 ; Llama nanobody PorM_19 7YZW ; 1.6 ; Llama nanobody VHH15 raised against the glycoprotein of Ebola virus 5HM1 ; 2.962 ; Llama VHH 2E7 in complex with gp41 5O2U ; 2.76 ; Llama VHH in complex with p24 4HEM ; 1.65 ; Llama vHH-02 binder of ORF49 (RBP) from lactococcal phage TP901-1 7YR8 ; 3.2 ; Lloviu cuevavirus nucleoprotein(1-450 residues)-RNA complex 7YPW ; 3.0356 ; Lloviu cuevavirus nucleoprotein-RNA complex 7QJF ; ; Llp mutant C1G, lytic conversion lipoprotein of phage T5 8DT8 ; 3.34 ; LM18/Nb136 bispecific tetra-nanobody immunoglobulin in complex with SARS-CoV-2-6P-Mut7 S protein (focused refinement) 6W7I ; 2.1 ; LmFPPS mutant T164W in complex with 476A, IPP & Ca 6VJC ; 1.8 ; LmFPPS mutant T164Y in complex with 476A, IPP & Ca 4HTL ; 1.64 ; Lmo2764 protein, a putative N-acetylmannosamine kinase, from Listeria monocytogenes 2MBV ; ; LMO4-LIM2 in complex with DEAF1 (404-418) 1ZMS ; 2.8 ; LMP1 Protein binds to TRAF3 as a structural CD40 6T1Z ; 2.9 ; LmrP from L. lactis, in an outward-open conformation, bound to Hoechst 33342 1LMW ; 2.5 ; LMW U-PA Structure complexed with EGRCMK (GLU-GLY-ARG Chloromethyl Ketone) 7AJ6 ; 1.9 ; LN02 Fab 7KUM ; 1.714 ; LNA modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 6YEP ; ; LNA modified G-quadruplex with flipped G-tract and central tetrad 5BXP ; 1.7 ; LNBase in complex with LNB-LOGNAc 5BXT ; 1.8 ; LNBase in complex with LNB-NHAcAUS 5BXS ; 2.2 ; LNBase in complex with LNB-NHAcCAS 5BXR ; 1.6 ; LNBase in complex with LNB-NHAcDNJ 6X7N ; 1.42 ; LnmK in complex with 2-nitronate-propionyl-amino(dethia)-CoA 6X7L ; 1.77 ; LnmK in complex with 2-nitronate-propionyl-CoA 6X7M ; 1.61 ; LnmK in complex with 2-nitronate-propionyl-oxa(dethia)-CoA 6X7O ; 1.55 ; LnmK in complex with 2-sulfonate-propionyl-CoA 6X7P ; 1.55 ; LnmK in complex with 2-sulfonate-propionyl-oxa(dethia)-CoA 5BMO ; 1.92 ; LnmX protein, a putative GlcNAc-PI de-N-acetylase from Streptomyces atroolivaceus 2XL4 ; 2.3 ; LntA, a virulence factor from Listeria monocytogenes 5HGQ ; 3.283 ; Loa loa Lysyl-tRNA synthetase in complex with Cladosporin. 4ZOF ; 1.8 ; Lobenzarit-like inhibitor bound in the active site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 1BJM ; 2.2 ; LOC NAKS, A LAMBDA 1 TYPE LIGHT-CHAIN DIMER (BENCE-JONES PROTEIN) CRYSTALLIZED IN NAKSO4 3BJL ; 2.3 ; LOC, A LAMBDA 1 TYPE LIGHT-CHAIN DIMER (BENCE-JONES PROTEIN) CRYSTALLIZED IN AMMONIUM SULFATE 1CGS ; 2.6 ; LOCAL AND TRANSMITTED CONFORMATIONAL CHANGES ON COMPLEXATION OF AN ANTI-SWEETENER FAB 2CGR ; 2.2 ; LOCAL AND TRANSMITTED CONFORMATIONAL CHANGES ON COMPLEXATION OF AN ANTI-SWEETENER FAB 7EY4 ; 3.69 ; Local CryoEM of the SARS-CoV-2 S6PV2 in complex with BD-667 7V22 ; 3.38 ; Local CryoEM structure del68-76/del679-688 prefusion-stabilized spike 7V24 ; 3.29 ; Local CryoEM structure of del68-76/del679-688 prefusion-stabilized spike in complex with the Fab of N12-9 7WR9 ; 3.24 ; Local CryoEM structure of the SARS-CoV S2P in complex with BD55-3152 Fab 8I3U ; 3.6 ; Local CryoEM structure of the SARS-CoV-2 S6P in complex with 14B1 Fab 8I3S ; 3.9 ; Local CryoEM structure of the SARS-CoV-2 S6P in complex with 7B3 Fab 7WR8 ; 3.5 ; Local CryoEM structure of the SARS-CoV-2 S6P(B.1.1.529) in complex with BD55-3152 Fab 7WRJ ; 4.08 ; Local CryoEM structure of the SARS-CoV-2 S6P(B.1.1.529) in complex with BD55-4637 Fab 7WCK ; 3.49 ; Local CryoEM structure of the SARS-CoV-2 S6P(B.1.617.2) in complex with SWA9 Fab 7WCU ; 3.09 ; Local CryoEM structure of the SARS-CoV-2 S6P(B.1.617.2) in complex with SWC11 Fab 7EY5 ; 3.4 ; Local CryoEM structure of the SARS-CoV-2 S6PV2 in complex with BD-771 Fab and BD-821 Fab 7EYA ; 3.77 ; Local CryoEM structure of the SARS-CoV-2 S6PV2 in complex with BD-804 Fab 7EZV ; 3.3 ; local CryoEM structure of the SARS-CoV-2 S6PV2 in complex with BD-812 Fab and BD-836 Fab 7EY0 ; 3.2 ; Local CryoEM structure of the SARS-CoV-2 S6PV2 in complex with BD-813 Fab and BD-744 Fab 1CB3 ; ; LOCAL INTERACTIONS DRIVE THE FORMATION OF NON-NATIVE STRUCTURE IN THE DENATURED STATE OF HUMAN ALPHA-LACTALBUMIN: A HIGH RESOLUTION STRUCTURAL CHARACTERIZATION OF A PEPTIDE MODEL IN AQUEOUS SOLUTION 7WK0 ; 3.32 ; Local refine of Omicron spike bitrimer with 6m6 antibody 8J1T ; 3.3 ; Local refined cryo-EM structure of Omicron BA.5 RBD in complex with 8-9D Fab 7V0X ; 3.0 ; Local refinement of ankyrin-1 (C-terminal half), class 1 of erythrocyte ankyrin-1 complex 7V0M ; 2.7 ; Local refinement of ankyrin-1 (N-terminal half), class 1 of erythrocyte ankyrin-1 complex 8CSV ; 2.7 ; Local refinement of Anykyrin-1 (N-terminal half of membrane binding domain) in Class 2 of erythrocyte ankyrin-1 complex 8CT2 ; 3.1 ; Local refinement of AQP1 tetramer (C1; refinement mask included D1 of protein 4.2 and Ankyrin-1 AR1-5) in Class 2 of erythrocyte ankyrin-1 complex 7V0T ; 2.7 ; Local refinement of Band 3-I cytoplasmic domains, class 1 of erythrocyte ankyrin-1 complex 8CRQ ; 3.2 ; Local refinement of Band 3-I transmembrane domains, class 1 of erythrocyte ankyrin-1 complex 7V0U ; 3.0 ; Local refinement of Band 3-II cytoplasmic domains, class 1 of erythrocyte ankyrin-1 complex 7V19 ; 3.3 ; Local refinement of Band 3-II transmembrane domains, class 1 of erythrocyte ankyrin-1 complex 7V0Y ; 3.0 ; Local refinement of Band 3-III cytoplasmic domains, class 1 of erythrocyte ankyrin-1 complex 8CRR ; 3.0 ; Local refinement of Band 3-III transmembrane domains, class 1 of erythrocyte ankyrin-1 complex 8CT3 ; 3.3 ; Local refinement of band3-I transmembrane region from class 2 of erythrocyte ankyrin-1 complex 7U0D ; 4.8 ; Local refinement of cryo-EM structure of the interface of the Omicron RBD in complex with antibodies B-182.1 and A19-46.1 8OPK ; 3.16 ; Local refinement of cubic assembly from truncated PVY coat protein with K176C mutation 8CSY ; 2.7 ; Local refinement of cytoplasmic domains of band3-I in class 2 of erythrocyte ankyrin-1 complex 8PDS ; 2.9 ; Local refinement of dimeric HMPV N-RNA bound to the C-terminal region of P 8PDO ; 3.1 ; Local refinement of dimeric human metapneumovirus (HMPV) N-RNA 8WQD ; 3.55 ; Local refinement of FEM1B bound with the C-degron of CCC89 8WQI ; 3.5 ; Local refinement of FEM1B bound with the C-degron of CUX1 7LIW ; 2.85 ; Local refinement of human ATP citrate lyase E599Q mutant ASH domain 8CSW ; 2.5 ; Local refinement of protein 4.2 in Class 2 of erythrocyte ankyrin-1 complex 7V0Q ; 2.5 ; Local refinement of protein 4.2, class 1 of erythrocyte ankyrin-1 complex 8WGW ; 2.9 ; Local refinement of RBD-ACE2 8CRT ; 3.0 ; Local refinement of Rh trimer, glycophorin B and Band3-III transmembrane region, class 1a of erythrocyte ankyrin-1 complex 7UZQ ; 2.17 ; Local refinement of RhAG-RhCE-ANK1(AR1-5), from consensus refinement of all classes 8CSX ; 2.4 ; Local refinement of RhAG/CE trimer in class 2 of erythrocyte ankyrin-1 complex 7V0S ; 2.5 ; Local refinement of RhAG/CE trimer, class 1 of erythrocyte ankyrin-1 complex 8GZZ ; 3.52 ; Local refinement of SARS-CoV-2 Omicron BA.1 Spike glycoprotein in complex with rabbit monoclonal antibody 1H1 Fab 7YD1 ; 2.99 ; Local refinement of SARS-CoV-2 Omicron S trimer complexed with XG005 7V80 ; 3.9 ; Local refinement of SARS-CoV-2 S-Beta variant (B.1.351) RBD and Angiotensin-converting enzyme 2 (ACE2) ectodomain 7V8B ; 3.2 ; Local refinement of SARS-CoV-2 S-Delta variant (B.1.617.2) RBD and Angiotensin-converting enzyme 2 (ACE2) ectodomain 7V84 ; 3.0 ; Local refinement of SARS-CoV-2 S-Gamma variant (P.1) RBD and Angiotensin-converting enzyme 2 (ACE2) ectodomain 7V87 ; 3.3 ; Local refinement of SARS-CoV-2 S-Kappa variant (B.1.617.1) RBD and Angiotensin-converting enzyme 2 (ACE2) ectodomain 8G78 ; 3.4 ; Local refinement of SARS-CoV-2 spike/nanobody mixture complex around NTD 8G79 ; 6.1 ; Local refinement of SARS-CoV-2 spike/nanobody mixture complex around RBD 8G7C ; 4.1 ; local refinement of SARS-CoV-2 spike/Nb4 complex with 2 RBDs up and 3 Nb4 bound 8DPZ ; 3.38 ; Local refinement of SARS-CoV-2 vaccine induced antibody DH1338 bound to SARS-CoV-2 HexaPro RBD Spike ectodomain 7WWK ; 3.4 ; Local refinement of the SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab 7XJ9 ; 3.27 ; Local refinement of the SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab and 58G6 Fab 8HED ; 3.59 ; Local refinement of the SARS-CoV-2 Spike trimer in complex with RmAb 9H1 Fab 7Q4E ; 3.63 ; Local refinement structure of a single N-domain of full-length, dimeric, soluble somatic angiotensin I-converting enzyme 7Q4C ; 4.08 ; Local refinement structure of the C-domain of full-length, monomeric, soluble somatic angiotensin I-converting enzyme 7Q49 ; 3.72 ; Local refinement structure of the N-domain of full-length, monomeric, soluble somatic angiotensin I-converting enzyme 7Q4D ; 3.78 ; Local refinement structure of the two interacting N-domains of full-length, dimeric, soluble somatic angiotensin I-converting enzyme 7WRZ ; 3.26 ; Local resolution of BD55-5840 Fab and SARS-COV2 Omicron RBD 7WRL ; 3.51 ; Local structure of BD55-1239 Fab and SARS-COV2 Omicron RBD complex 7WRO ; 3.4 ; Local structure of BD55-3372 and delta spike 7WSC ; 3.78 ; Local structure of BD55-3500 and omicron RBD complex 7WRY ; 3.28 ; Local structure of BD55-3546 Fab and SARS-COV2 Delta RBD complex 7Y0W ; 3.42 ; Local structure of BD55-5514 and BD55-5840 Fab and Omicron BA.1 RBD complex 7WB5 ; 3.7 ; local structure of hu33 and spike 1RE6 ; ; Localisation of Dynein Light Chains 1 and 2 and their Pro-apoptotic Ligands 5NER ; 11.5 ; Localised reconstruction of alpha v beta 6 bound to Foot and Mouth Disease Virus O PanAsia - Pose A prime. 5NEM ; 10.8 ; Localised reconstruction of alpha v beta 6 bound to Foot and Mouth Disease Virus O PanAsia - Pose A. 5NET ; 8.6 ; Localised Reconstruction of Integrin alpha V beta 6 bound to Foot and Mouth Disease Virus O1 Manisa - Pose A. 5NEU ; 12.3 ; Localised Reconstruction of Integrin alpha V beta 6 bound to Foot and Mouth Disease Virus O1 Manisa - Pose B. 1YSH ; 9.5 ; Localization and dynamic behavior of ribosomal protein L30e 4V6I ; 8.8 ; Localization of the small subunit ribosomal proteins into a 6.1 A cryo-EM map of Saccharomyces cerevisiae translating 80S ribosome 6LHT ; 3.67 ; Localized reconstruction of coxsackievirus A16 mature virion in complex with Fab 18A7 7KNA ; 3.3 ; Localized reconstruction of the H1 A/Michigan/45/2015 ectodomain displayed at the surface of I53_dn5 nanoparticle 1BG7 ; 1.85 ; LOCALIZED UNFOLDING AT THE JUNCTION OF THREE FERRITIN SUBUNITS. A MECHANISM FOR IRON RELEASE? 8GGI ; 3.5 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #1 of 20) 8GGR ; 3.4 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #10 of 20) 8GGS ; 3.5 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #11 of 20) 8GGT ; 3.5 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #12 of 20) 8GGU ; 3.4 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #13 of 20) 8GGV ; 3.5 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #14 of 20) 8GGW ; 3.6 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #15 of 20) 8GGX ; 3.6 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #16 of 20) 8GGY ; 3.9 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #17 of 20) 8GGZ ; 3.9 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #18 of 20) 8GH0 ; 4.0 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #19 of 20) 8GGJ ; 3.5 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #2 of 20) 8GH1 ; 4.1 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #20 of 20) 8GGK ; 3.3 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #3 of 20) 8GGL ; 3.2 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #4 of 20) 8GGM ; 3.2 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #5 of 20) 8GGN ; 3.3 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #6 of 20) 8GGO ; 3.2 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #7 of 20) 8GGP ; 3.2 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #8 of 20) 8GGQ ; 3.4 ; Locally refined cryoEM structure of receptor from beta-2-adrenergic receptor in complex with GTP-bound Gs heterotrimer (transition intermediate #9 of 20) 7S62 ; 3.65 ; Locally refined protomer structure of native-form oocyte/egg Alpha-2-Macroglobulin (A2Moo) tetramer 7TBF ; 3.1 ; Locally refined region of SARS-CoV-2 spike in complex with antibodies B1-182.1 and A19-61.1 7TC9 ; 5.08 ; Locally refined region of SARS-CoV-2 spike in complex with antibody A19-46.1 7WO7 ; 3.8 ; Locally refined region of SARS-CoV-2 Spike in complex with IgG 553-15 7WOC ; 3.35 ; Locally refined region of SARS-CoV-2 Spike in complex with IgG 553-60 3GGI ; 0.98 ; Locating monovalent cations in one turn of G/C rich B-DNA 3GGK ; 0.87 ; Locating monovalent cations in one turn of G/C rich B-DNA 4AU6 ; 6.0 ; Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles 4F5X ; 5.0 ; Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles 7Z3Z ; 3.1 ; Locked Wuhan SARS-CoV2 Prefusion Spike ectodomain with lipid bound 1DQ0 ; 1.7 ; Locked, metal-free concanavalin A, a minor species in solution 4BJL ; 2.4 ; LOCW, A LAMBDA 1 TYPE LIGHT-CHAIN DIMER (BENCE-JONES PROTEIN) CRYSTALLIZED IN DISTILLED WATER 8H8J ; 3.2 ; Lodoxamide-bound GPR35 in complex with G13 6C8S ; 2.2 ; Loganic acid methyltransferase with SAH 6C8R ; 1.951 ; Loganic acid O-methyltransferase complexed with SAH and loganic acid 1LHS ; 2.0 ; LOGGERHEAD SEA TURTLE MYOGLOBIN (AQUO-MET) 1LHT ; 2.0 ; LOGGERHEAD SEA TURTLE MYOGLOBIN (CYANO-MET) 7WHG ; 3.25 ; Lokiarchaeota gelsolin (2DGel) bound to two molecules of rabbit actin 5ZZB ; 2.3 ; LokiProfilin2/Rabbit Actin Complex 8CM1 ; 1.46 ; Lol B - Localization of lipoprotein B from Vibrio cholera 7V8I ; 3.6 ; LolCD(E171Q)E with bound AMPPNP in nanodiscs 7ARI ; 3.4 ; LolCDE apo structure 7ARK ; 4.1 ; LolCDE in complex with AMP-PNP in the closed NBD state 7ARH ; 3.3 ; LolCDE in complex with lipoprotein 7ARL ; 3.2 ; LolCDE in complex with lipoprotein and ADP 7ARJ ; 3.2 ; LolCDE in complex with lipoprotein and AMPPNP complex undimerized form 7ARM ; 3.6 ; LolCDE in complex with lipoprotein and LolA 7MDY ; 3.5 ; LolCDE nucleotide-bound 7MDX ; 3.8 ; LolCDE nucleotide-free 7V8L ; 3.5 ; LolCDE with bound RcsF in nanodiscs 7V8M ; 4.2 ; LolCDE-apo in nanodiscs 6N2I ; 3.5 ; Lon protease AAA+ domain 7P6U ; 3.9 ; Lon protease from Thermus Thermophilus 6V11 ; 3.8 ; Lon Protease from Yersinia pestis 6ON2 ; 3.0 ; Lon Protease from Yersinia pestis with Y2853 substrate 6WYS ; 2.229 ; Lon protease proteolytic domain 6WZV ; 2.51 ; Lon protease proteolytic domain 6X27 ; 2.12 ; Lon protease proteolytic domain complexed with bortezomib 6X1M ; 3.51 ; Lon protease proteolytic domain complexed with covalent boronic acid inhibitor 1ZID ; 2.7 ; LONG FATTY ACID CHAIN ENOYL-ACP REDUCTASE (INHA) IN COMPLEX WITH AN ISONICOTINIC-ACYL-NADH INHIBITOR 7TX8 ; 2.51 ; Long form D7 protein from Anopheles darlingi with U46619 and serotonin bound 8C8J ; 2.1 ; Long Interspersed Nuclear Element 1 (LINE-1) reverse transcriptase ternary complex with hybrid duplex and dTTP 5AFO ; 1.82 ; Long Polar Fimbriae adhesin LpfD from the adherent invasive E. coli strain LF82 6H2M ; 1.929 ; Long wavelength Mesh&Collect native SAD phasing on microcrystals 6I59 ; 2.95 ; Long wavelength native-SAD phasing of Sen1 helicase 6I5C ; 2.95 ; Long wavelength native-SAD phasing of Tubulin-Stathmin-TTL complex 2YOP ; 2.3 ; Long wavelength S-SAD structure of FAM3B PANDER 3B9O ; 1.9 ; long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN 1OYU ; 2.5 ; Long-Distance conformational changes in a protein engineered by modulated sequence duplication 1DHI ; 1.9 ; LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE 1DHJ ; 1.8 ; LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE 5KIC ; 2.7 ; Long-sought stabilization of berkelium(IV) in solution: An anomaly within the heavy actinide series 3I70 ; 2.3 ; Long-wavelength structure of NtA 1A51 ; ; LOOP D/LOOP E ARM OF E. COLI 5S RRNA, NMR, 9 STRUCTURES 1A4D ; ; LOOP D/LOOP E ARM OF ESCHERICHIA COLI 5S RRNA, NMR, MINIMIZED AVERAGE STRUCTURE 6IEI ; 2.4 ; Loop deletion and proline insertion mutant (deleting six residues and inserted five proline residues) 6IDC ; 2.007 ; Loop deletion and proline insertion mutant (deleting six residues and inserted six proline residues) 6IYS ; 3.0 ; Loop deletion and proline insertion mutant (deleting six residues and inserted three proline residues) 6ICS ; 1.4 ; Loop deletion mutant (deleting four residues) 6AIS ; 1.3 ; Loop deletion mutant (deleting two residues) 5KZJ ; 2.2 ; Loop Deletion mutant of Paracoccus denitrificans AztC 3UPG ; 3.2 ; Loop deletion mutant of Salmonella typhi osmoporin (OmpC):an Outer Membrane Protein. 5J7K ; 2.46 ; Loop grafting onto a highly stable FN3 scaffold 1JTI ; 2.3 ; Loop-inserted Structure of P1-P1' Cleaved Ovalbumin Mutant R339T 2AMO ; 2.6 ; Loose Dimer of a Bacillus subtilis Nitric Oxide Synthase 2EIG ; 2.0 ; Lotus tetragonolobus seed lectin (Isoform) 6J5C ; 3.6 ; Louping ill virus envelope protein 4R38 ; 1.6 ; LOV domain from Erythrobacter litoralis EL346 blue-light activated histidine kinase 8C05 ; 2.5 ; LOV-activated diguanylate cyclase, dark-state structure 6PH3 ; 2.74 ; LOV-PAS construct from the LOV-HK sensory protein from Brucella abortus (dark-adapted, construct 15-273) 7QNL ; 1.71 ; LOV2-DARPIN FUSION - D4_DeltaLOV 7TBN ; 1.76 ; LOV2-DARPIN fusion : D11 7TBO ; 2.32 ; LOV2-DARPIN fusion : D12 7TAL ; 1.1 ; LOV2-DARPIN fusion : D4_deltaDARP 7TBQ ; 2.678 ; LOV2-DARPIN fusion : D7 7TCD ; 1.7 ; LOV2-DARPIN fusion: D13 6KJE ; 2.484 ; lovastatin esterase PcEST in complex with monacolin J 6KJF ; 2.4 ; lovastatin esterase PcEST in complex with simvastatin 6KJD ; 2.299 ; lovastatin esterase PcEST inactive mutant S57A in complex with lovastatin 6KJC ; 2.297 ; lovastatin esterase PcEST, wild type 7CPX ; 2.91 ; Lovastatin nonaketide synthase 7CPY ; 3.6 ; Lovastatin nonaketide synthase with LovC 3B6Z ; 1.88 ; Lovastatin polyketide enoyl reductase (LovC) complexed with 2'-phosphoadenosyl isomer of crotonoyl-CoA 3GQV ; 1.74 ; Lovastatin polyketide enoyl reductase (LovC) mutant K54S with bound NADP 3J1U ; 9.7 ; Low affinity dynein microtubule binding domain - tubulin complex 7N4T ; 2.4 ; Low conductance mechanosensitive channel YnaI 6WVL ; 3.2 ; Low curvature lateral interaction within a 13-protofilament, Taxol stabilized microtubule 1CR8 ; ; LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN COMPLEMENT REPEAT 8 5LH0 ; 1.88 ; Low dose Thaumatin - 0-40 ms. 5LH1 ; 1.9 ; Low dose Thaumatin - 360-400 ms. 5LN0 ; 1.95 ; Low dose Thaumatin - 760-800 ms. 6DRA ; 3.96 ; Low IP3 Ca2+ human type 3 1,4,5-inositol trisphosphate receptor 4IDL ; 2.09 ; Low melting temperature Anti-Cholera Toxin Llama VHH domain 1PW6 ; 2.6 ; Low Micromolar Small Molecule Inhibitor of IL-2 3IG6 ; 1.83 ; Low molecular weigth human Urokinase type Plasminogen activator 2-[6-(3'-Aminomethyl-biphenyl-3-yloxy)-4-(3-dimethylamino-pyrrolidin-1-yl)-3,5-difluoro-pyridin-2-yloxy]-4-dimethylamino-benzoic acid complex 2TIO ; 1.93 ; LOW PACKING DENSITY FORM OF BOVINE BETA-TRYPSIN IN CYCLOHEXANE 3MKG ; 2.2 ; Low pH as-isolated tomato chloroplast superoxide dismutase 4GOB ; 1.53 ; Low pH Crystal Structure of a reconstructed Kaede-type Red Fluorescent Protein, Least Evolved Ancestor (LEA) 3C6R ; 25.0 ; Low pH Immature Dengue Virus 1URZ ; 2.7 ; Low pH induced, membrane fusion conformation of the envelope protein of tick-borne encephalitis virus 3H8E ; 2.75 ; Low pH native structure of leucine aminopeptidase from Pseudomonas putida 4GF4 ; 3.1 ; Low pH structure of Pseudomonas putida OprB 3FOU ; 2.1 ; Low pH structure of the Rieske protein from Thermus thermophilus at 2.1 A 3C13 ; 1.95 ; Low pH-value crystal structure of emodin in complex with the catalytic subunit of protein kinase CK2 2J42 ; 3.13 ; low quality crystal structure of the transport component C2-II of the C2-toxin from Clostridium botulinum 2WTH ; 2.8 ; Low resolution 3D structure of C.elegans globin-like protein (GLB-1): P3121 crystal form 6LQJ ; 3.24 ; Low resolution architecture of curli complex 7PG0 ; 7.6 ; Low resolution Cryo-EM structure of full-length insulin receptor bound to 3 insulin with visible ddm micelle, conf 1 7PG2 ; 6.7 ; Low resolution Cryo-EM structure of full-length insulin receptor bound to 3 insulin, conf 1 7PG4 ; 9.1 ; Low resolution Cryo-EM structure of the full-length insulin receptor bound to 2 insulin, conf 3 7PG3 ; 7.3 ; Low resolution Cryo-EM structure of the full-length insulin receptor bound to 3 insulin, conf 2 6UJI ; 5.5 ; Low resolution crystal structure (5.5 A) of the anthrax toxin protective antigen heptamer prepore D425A mutant 1L3D ; 2.85 ; Low Resolution Crystal Structure of a Viral RNA Pseudoknot 5D1Y ; 9.005 ; Low resolution crystal structure of human ribonucleotide reductase alpha6 hexamer in complex with dATP 4X96 ; 8.69 ; Low resolution crystal structure of Lecithin:Cholesterol Acyltransferase (LCAT; residues 21-397) 4IM8 ; 3.503 ; low resolution crystal structure of mouse RAGE 6NZI ; 4.44 ; Low resolution crystal structure of the bacterial multidrug efflux transporter AcrB in the presence of cadmium 4J23 ; 3.882 ; Low resolution crystal structure of the FGFR2D2D3/FGF1/SR128545 complex 4IIA ; 3.3 ; Low resolution crystal structure of the NTF2-like domain of human G3BP1 7JZT ; 3.77 ; Low resolution crystal structure of Zaire Ebola virus VP40 in space group P6422 1IUF ; ; LOW RESOLUTION SOLUTION STRUCTURE OF THE TWO DNA-BINDING DOMAINS IN Schizosaccharomyces pombe ABP1 PROTEIN 4DG7 ; 4.195 ; Low resolution structure of Drosophila Translin 4LDI ; 4.15 ; Low resolution structure of Ebola virus M241R mutant 4XX1 ; 3.6 ; Low resolution structure of LCAT in complex with Fab1 6FWF ; 4.2 ; Low resolution structure of Neisseria meningitidis qNOR 1FB5 ; 3.5 ; LOW RESOLUTION STRUCTURE OF OVINE ORNITHINE TRANSCARBMOYLASE IN THE UNLIGANDED STATE 1ZN2 ; 2.91 ; Low Resolution Structure of Response Regulator StyR 6Z3B ; 2.58 ; Low resolution structure of RgNanOx 2LLI ; ; Low resolution structure of RNA-binding subunit of the TRAMP complex 2JGT ; 3.0 ; Low resolution structure of SPT 3S4G ; 6.0 ; Low Resolution Structure of STNV complexed with RNA 5OBZ ; 3.7 ; low resolution structure of the p34ct/p44ct minimal complex 4UW0 ; 3.87 ; Low resolution structure of WbdD with C-terminal bundle ordered to residue 505 4UFS ; 4.8 ; Low resolution structure R-spondin-2 (Fu1Fu2) in complex with the ectodomains of LGR5 and ZNRF3 2W6F ; 6.0 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration: Hydration State 2. 2W6G ; 6.0 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration: Hydration State 3. 2W6H ; 5.0 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration: Hydration State 4A. 2W6I ; 4.0 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration: Hydration State 4B. 2W6J ; 3.84 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration: Hydration State 5. 2W6E ; 6.5 ; Low resolution structures of bovine mitochondrial F1-ATPase during controlled dehydration:hydration state 1. 3PAW ; 6.61 ; Low resolution X-ray crystal structure of Yeast Rnr1p with dATP bound in the A-site 3HR2 ; 5.16 ; Low resolution, molecular envelope structure of type I collagen in situ determined by fiber diffraction. Single type I collagen molecule, post rigid body refinement, 'relaxed' 3HQV ; 5.16 ; Low resolution, molecular envelope structure of type I collagen in situ determined by fiber diffraction. Single type I collagen molecule, rigid body refinement 5OWL ; 2.23 ; Low salt structure of human protein kinase CK2alpha in complex with 3-aminopropyl-4,5,6,7-tetrabromobenzimidazol 5FNY ; 2.01 ; Low solvent content crystal form of Zn containing Iron sulfur cluster repair protein YtfE 1J9E ; 1.44 ; Low Temperature (100K) Crystal Structure of Flavodoxin D. vulgaris S35C Mutant at 1.44 Angstrom Resolution 1J9G ; 2.4 ; Low Temperature (100K) Crystal Structure of Flavodoxin D. vulgaris S64C Mutant, monomer oxidised, at 2.4 Angstrom Resolution 1J8Q ; 1.35 ; Low Temperature (100K) Crystal Structure of Flavodoxin D. vulgaris Wild-type at 1.35 Angstrom Resolution 1WSW ; 1.69 ; Low Temperature (100K) Crystal Structure Of Flavodoxin Mutant S64C, dimer, semiquinone state 1XYY ; 1.7 ; Low Temperature (100K) Crystal Structure Of Flavodoxin Mutant S64C, homodimer, oxidised state 1XYV ; 1.79 ; Low Temperature (100K) Crystal Structure Of Flavodoxin Mutant S64C, monomer, semiquinone state 1QCJ ; 2.1 ; LOW TEMPERATURE COMPLEX OF POKEWEED ANTIVIRAL PROTEIN WITH PTEORIC ACID 1LPU ; 1.86 ; Low Temperature Crystal Structure of the Apo-form of the catalytic subunit of protein kinase CK2 from Zea mays 6D54 ; 1.9 ; Low Temperature joint X-ray/neutron structure of DNA oligonucleotide d(GTGGCCAC)2 with 2'-SeCH3 modification on Cyt5 6D54 ; 1.65 ; Low Temperature joint X-ray/neutron structure of DNA oligonucleotide d(GTGGCCAC)2 with 2'-SeCH3 modification on Cyt5 1BHZ ; 3.9 ; LOW TEMPERATURE MIDDLE RESOLUTION STRUCTURE OF HEN EGG WHITE LYSOZYME FROM MASC DATA 1BHY ; 4.18 ; LOW TEMPERATURE MIDDLE RESOLUTION STRUCTURE OF P64K FROM MASC DATA 1BHW ; 4.1 ; LOW TEMPERATURE MIDDLE RESOLUTION STRUCTURE OF XYLOSE ISOMERASE FROM MASC DATA 1JPO ; 2.1 ; LOW TEMPERATURE ORTHORHOMBIC LYSOZYME 7RB6 ; 2.4 ; Low temperature structure of hAChE in complex with substrate analog 4K-TMA 1E2U ; 1.6 ; Low Temperature Structure of Hybrid Cluster Protein from Desulfovibrio vulgaris to 1.6A 2VFM ; 1.5 ; Low Temperature Structure of P22 Tailspike Protein Fragment (109-666) 2VFN ; 1.5 ; Low Temperature Structure of P22 Tailspike Protein Fragment (109-666), Mutant V125A 2VFO ; 1.5 ; Low Temperature Structure of P22 Tailspike Protein Fragment (109-666), Mutant V125L 2VFP ; 1.55 ; Low Temperature Structure of P22 Tailspike Protein Fragment (109-666), Mutant V349L 2VFQ ; 1.55 ; Low Temperature Structure of P22 Tailspike Protein Fragment (109-666), Mutant V450A 2C7L ; 2.85 ; Low temperature structure of phycoerythrocyanin from Mastigocladus laminosus 1QCG ; 2.1 ; LOW TEMPERATURE STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN 1QCI ; 2.0 ; LOW TEMPERATURE STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN COMPLEXED WITH ADENINE 1CW7 ; 2.6 ; LOW TEMPERATURE STRUCTURE OF WILD-TYPE IDH COMPLEXED WITH MG-ISOCITRATE 4DH7 ; 1.8 ; Low temperature X-ray structure of cAMP dependent Protein Kinase A catalytic subunit with high Mg2+, AMP-PNP and IP20' 4DH3 ; 2.2 ; Low temperature X-ray structure of cAMP dependent Protein Kinase A catalytic subunit with high Mg2+, ATP and IP20 4DH1 ; 2.0 ; Low temperature X-ray structure of cAMP dependent Protein Kinase A catalytic subunit with low Mg2+, ATP and IP20 4IAD ; 1.9 ; Low temperature X-ray Structure OF cAMP dependent protein kinase A in complex with high Mg2+ concentration, ADP and phosphorylated peptide pSP20 4IAK ; 1.6 ; Low temperature X-ray structure of cAMP dependent protein kinase A in complex with high Sr2+ concentration, ADP and phosphorylated peptide pSP20 4UPV ; 1.52 ; Low X-ray dose structure of a Ni-A Ni-Sox mixture of the D. fructosovorans NiFe-hydrogenase L122A mutant 4KO3 ; 1.7 ; Low X-ray dose structure of anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 4KO2 ; 1.6 ; Low X-ray dose structure of H2-activated anaerobically purified Dm. baculatum [NiFeSe]-hydrogenase after crystallization under air 6YRX ; 1.87 ; Low-dose crystal structure of FAP at room temperature 5M3S ; 1.8 ; Low-dose fixed target serial synchrotron crystallography structure of Metmyoglobin 5O41 ; 1.8 ; Low-dose fixed target serial synchrotron crystallography structure of sperm whale myoglobin 6J8M ; 1.9 ; Low-dose structure of bovine heart cytochrome c oxidase in the fully oxidized state determined using 30 keV X-ray 3A8Q ; 3.2 ; Low-resolution crystal structure of the Tiam2 PHCCEx domain 6BQE ; 3.2 ; Low-resolution structure of cyclohexadienyl dehydratase from Pseudomonas aeruginosa in space group P4322. 7AHM ; 3.14 ; Low-resolution structure of the K+/H+ antiporter subunit KhtT in complex with c-di-AMP 4CH2 ; 1.6 ; Low-salt crystal structure of a thrombin-GpIbalpha peptide complex 5ONI ; 2.0 ; LOW-SALT STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR 4P 6HME ; 1.85 ; LOW-SALT STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA; CSNK2A1 gene product) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR THN27 4UBA ; 2.995 ; Low-salt structure of protein kinase CK2 catalytic subunit with 4'-carboxy-6,8-bromo-flavonol (FLC26) 5MS5 ; 1.53 ; Low-salt structure of RavZ LIR2-fused human LC3B 2D95 ; 2.0 ; LOW-TEMPERATURE STUDY OF THE A-DNA FRAGMENT D(GGGCGCCC) 3UR8 ; 1.26 ; Lower-density crystal structure of potato endo-1,3-beta-glucanase 7R8U ; 1.901 ; LOX-1 - Structural and Functional Studies of a Receptor Implicated in Atherosclerosis 7D2F ; 2.6 ; Lp major histidine acid phosphatase mutant D281A/5'-AMP 7DOQ ; 2.2 ; Lp major histidine acid phosphatase mutant D281A/5'-AMP 5JPL ; ; LP2006, a handcuff-topology lasso peptide antibiotic 7X4T ; 2.2 ; LpCdnE UMPNPP Mg complex 7X4Q ; 1.95 ; LpCdnE UTP Mg complex 8PZO ; 2.0 ; LpdD 8PZH ; 2.02 ; LpdD (H61A) mutant 7SF7 ; 2.9 ; LPHN3 (ADGRL3) 7TM domain bound to tethered agonist in complex with G protein heterotrimer 7PXW ; 1.4 ; LPMO, expressed in E.coli, in complex with Cellotetraose 3CKM ; 1.35 ; LpoA (YraM) C-domain from Haemophilus influenzae, a regulator of PBP1A 6DCJ ; 1.35 ; LpoA N-terminal domain from Haemophilus influenzae; monoclinic form at 1.35 A resolution 4Q6Z ; 2.8 ; LpoB C-terminal domain from Escherichia coli 4Q6L ; 2.2 ; LpoB C-terminal domain from Salmonella enterica (Native) 4Q6V ; 1.97 ; LpoB C-terminal domain from Salmonella enterica (Sel-Met) 7A0Z ; 1.45 ; LppS with covalent adduct derived from 1b 7A1E ; 1.77 ; LppS with covalent adduct derived from 1c 7A11 ; 1.65 ; LppS with covalent adduct derived from 1E 7A10 ; 1.85 ; LppS with covalent adduct derived from 1g 8HPL ; 4.29 ; LpqY-SugABC in state 1 8HPM ; 3.82 ; LpqY-SugABC in state 2 8HPN ; 4.55 ; LpqY-SugABC in state 3 8HPR ; 3.75 ; LpqY-SugABC in state 4 8HPS ; 3.51 ; LpqY-SugABC in state 5 5Z32 ; ; LPS bound solution NMR structure of WS2-VR18 5Z31 ; ; LPS bound solution structure of WS2-KG18 2O0S ; ; LPS-bound structure of a designed peptide 6MBN ; 1.957 ; LptB E163Q in complex with ATP 6MJP ; 2.85 ; LptB(E163Q)FGC from Vibrio cholerae 7EFO ; 3.85 ; LptB2FG-LPS from Klebsiella pneumoniae in nanodiscs 6MIT ; 3.2 ; LptBFGC from Enterobacter cloacae 4U3D ; 1.25 ; LpxC from A.Aaeolicus in complex with 4-[[4-[2-[4-(morpholinomethyl)phenyl]ethynyl]phenoxy]methyl]tetrahydropyran-4-carbohydroxamic acid (compound 9) 4U3B ; 1.34 ; LpxC from A.Aaeolicus in complex with the MMP inhibitor 4-[[4-(4-chlorophenoxy)phenyl]sulfanylmethyl]tetrahydropyran-4-carbohydroxamic acid - compound 2 4OKG ; 2.06 ; LpxC from P.aeruginosa with the inhibitor 6-(benzimidazol-1-yl)-5-[4-[2-[6-[(4-methylpiperazin-1-yl)methyl]-3-pyridyl]ethynyl]phenyl]pyridine-3-carbohydroxamic acid 7PHJ ; 2.45 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PHN ; 1.9 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PJ2 ; 1.8 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PJG ; 2.04 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PK8 ; 2.3 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PKK ; 2.55 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PKM ; 2.1 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PZS ; 2.45 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PZU ; 2.15 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PZV ; 1.92 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PZW ; 2.0 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7PZX ; 2.39 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 7Q01 ; 2.01 ; LpxC Inhibitors With Fluoroproline As A Novel Zinc-Binding Group Can Serve As A Novel Class of Antibiotic With Activity Against Multidrug-Resistant Gram-Negative Bacteria 3FID ; 1.9 ; LpxR from Salmonella typhimurium 1LIR ; ; LQ2 FROM LEIURUS QUINQUESTRIATUS, NMR, 22 STRUCTURES 7LIZ ; 2.8 ; LR6 rod linker and scaffolded phycoerythrin beta subunits from the phycobilisome of Porphyridium purpureum 8F8M ; 2.6 ; LRH-1 bound to small molecule Tet and fragment of coactivator Tif2 6VC2 ; 1.697 ; LRH-1 bound to SS-RJW100 and a fragment of the Tif2 Coactivator 4U7L ; 2.3 ; LRIG1 extracellular domain: Structure and Function Analysis 4U7M ; 2.757 ; LRIG1 extracellular domain: Structure and Function Analysis 7NAM ; 1.6 ; LRP6_E1 in complex with Lr-EET-3.5 7UCX ; 1.72 ; LRP8 11H1 Fab complexed to a cyclized CR1 peptide 4IM6 ; 1.65 ; LRR domain from human NLRP1 8BEN ; 3.1 ; LRR domain Structure of the LRRC8C protein 7SA1 ; 3.21 ; LRR-F-Box plant ubiquitin ligase 8F75 ; 4.0 ; LRRC8A(T48D):C conformation 2 LRR focus 8F74 ; 3.1 ; LRRC8A(T48D):C conformation 2 top focus 8F77 ; 3.15 ; LRRC8A(T48D):C conformation 2 top focus 8F79 ; 3.15 ; LRRC8A(T48D):C conformation 2 top focus 8F7B ; 3.15 ; LRRC8A(T48D):C conformation 2 top focus 8F7D ; 4.2 ; LRRC8A(T48D):C conformation 2 top focus 8F7E ; 4.13 ; LRRC8A(T48D):C conformation 2 top focus 8F7J ; 4.32 ; LRRC8A(T48D):C conformation 2 top focus 6NZW ; 3.21 ; LRRC8A-DCPIB in MSP1E3D1 nanodisc constricted state 6NZZ ; 3.32 ; LRRC8A-DCPIB in MSP1E3D1 nanodisc expanded state 8DS3 ; 3.07 ; LRRC8A:C conformation 1 (round) 8DRN ; 4.12 ; LRRC8A:C conformation 1 (round) LRR focus 1 8DRO ; 4.06 ; LRRC8A:C conformation 1 (round) LRR focus 2 8DRQ ; 4.16 ; LRRC8A:C conformation 1 (round) LRR focus 3 8DRK ; 2.95 ; LRRC8A:C conformation 1 (round) top focus 8DRE ; 3.18 ; LRRC8A:C conformation 2 (oblong) 8DRA ; 3.98 ; LRRC8A:C conformation 2 (oblong) LRR mask 8DR8 ; 3.04 ; LRRC8A:C conformation 2 (oblong) top mask 8DSA ; 3.48 ; LRRC8A:C in MSP1E3D1 nanodisc 8DS9 ; 3.17 ; LRRC8A:C in MSPE3D1 nanodisc top focus 6U3N ; 2.8 ; LS2.8/3.15 - DQ2-P.fluor-alpha1a complex 7NHK ; 2.9 ; LsaA, an antibiotic resistance ABCF, in complex with 70S ribosome from Enterococcus faecalis 7PQR ; 1.3 ; LsAA9A expressed in E. coli 7PXV ; 1.5 ; LsAA9_A chemically reduced with ascorbic acid (high X-ray dose) 7PXU ; 1.8 ; LsAA9_A chemically reduced with ascorbic acid (low X-ray dose) 8INL ; 2.62 ; LSD1 in complex with S2172 4UV8 ; 2.8 ; LSD1(KDM1A)-CoREST in complex with 1-Benzyl-Tranylcypromine 4UV9 ; 3.0 ; LSD1(KDM1A)-CoREST in complex with 1-Ethyl-Tranylcypromine 4UVA ; 2.9 ; LSD1(KDM1A)-CoREST in complex with 1-Methyl-Tranylcypromine (1R,2S) 4UVB ; 2.8 ; LSD1(KDM1A)-CoREST in complex with 1-Methyl-Tranylcypromine (1S,2R) 4UVC ; 3.1 ; LSD1(KDM1A)-CoREST in complex with 1-Phenyl-Tranylcypromine 4UXN ; 2.85 ; LSD1(KDM1A)-CoREST in complex with Z-Pro derivative of MC2580 5YJB ; 2.96 ; LSD1-CoREST in complex with 4-[5-(piperidin-4-ylmethoxy)-2-(p-tolyl)pyridin-3-yl]benzonitrile 3ZMS ; 2.96 ; LSD1-CoREST in complex with INSM1 peptide 3ZMU ; 3.2 ; LSD1-CoREST in complex with PKSFLV peptide 3ZMV ; 3.0 ; LSD1-CoREST in complex with PLSFLV peptide 3ZN1 ; 3.1 ; LSD1-CoREST in complex with PRLYLV peptide 3ZN0 ; 2.8 ; LSD1-CoREST in complex with PRSFAA peptide 3ZMZ ; 3.0 ; LSD1-CoREST in complex with PRSFAV peptide 3ZMT ; 3.1 ; LSD1-CoREST in complex with PRSFLV peptide 6KGK ; 2.7 ; LSD1-CoREST-S2101 five-membered ring adduct model 6KGL ; 2.7 ; LSD1-CoREST-S2101 N5 adduct model 6KGM ; 2.62 ; LSD1-CoREST-S2116 five-membered ring adduct model 6KGN ; 2.62 ; LSD1-CoREST-S2116 N5 adduct model 5L3F ; 3.5 ; LSD1-CoREST1 in complex with polymyxin B 5L3G ; 3.1 ; LSD1-CoREST1 in complex with polymyxin E (colistin) 5L3E ; 2.8 ; LSD1-CoREST1 in complex with quinazoline-derivative reversible inhibitor 5LBQ ; 3.3 ; LSD1-CoREST1 in complex with quinazoline-derivative reversible inhibitor 6KGQ ; 2.32 ; LSD1-FCPA-MPE five-membered ring adduct model 6KGR ; 2.32 ; LSD1-FCPA-MPE N5 adduct model 6KGO ; 2.25 ; LSD1-S2157 five-membered ring adduct model 6KGP ; 2.25 ; LSD1-S2157 N5 adduct model 2EJR ; 2.7 ; LSD1-tranylcypromine complex 6K3E ; 2.87 ; LSD1/Co-Rest structure with an inhibitor 6S35 ; 3.1 ; LSD1/CoREST1 complex with macrocyclic peptide inhibitor 6P0W ; 2.4 ; LsfA from P. aeruginosa, a 1-Cys Prx in reduced form 7KUU ; 2.0 ; LsfA from P. aeruginosa, a 1-Cys Prx in Sulfonic acid form 1LSI ; ; LSIII (NMR, 23 STRUCTURES) 6TFL ; 2.397 ; Lsm protein (SmAP) from Halobacterium salinarum 6DSP ; 1.37 ; LsrB from Clostridium saccharobutylicum in complex with AI-2 5LX2 ; 2.579 ; Lt 14-3-3 in complex with PI4KIIIB peptide 4FNF ; 1.75 ; LT-IIB-B5 S74D mutant 6VRT ; 2.555 ; LT1009 humanized antibody Fab fragment in complex with calcium 7QEH ; 1.67 ; LTA-binding domain of SlpA, the S-layer protein from Lactobacillus amylovorus 6ENB ; 1.84 ; LTA4 hydrolase (E297Q) mutant in complex with Pro-Gly-Pro peptide 8QOW ; 2.35 ; LTA4 hydrolase in complex with compound 2(S) 8QQ4 ; 1.6 ; LTA4 hydrolase in complex with compound 6(R) 8QPN ; 2.0 ; LTA4 hydrolase in complex with compound 6(S) 7AUZ ; 1.9 ; LTA4 hydrolase in complex with compound LYS006 7AV0 ; 1.9 ; LTA4 hydrolase in complex with compound R(13) 6ENC ; 1.95 ; LTA4 hydrolase in complex with Compound11 6END ; 2.24 ; LTA4 hydrolase in complex with Compound15 8RX7 ; 1.85 ; LTA4 hydrolase in complex with compound2 8RX9 ; 2.9 ; LTA4 hydrolase in complex with compound3 8RX3 ; 1.85 ; LTA4 hydrolase in complex with CTX-4430 7AV2 ; 1.95 ; LTA4 hydrolase in complex with fragment1 7AV1 ; 1.79 ; LTA4 hydrolase in complex with fragment2 6H5F ; 2.0 ; LtgA disordered Helix 7NX0 ; 1.95 ; LTK:ALKAL1 complex stabilized by a Nanobody 6OK1 ; 1.7 ; Ltp2-ChsH2(DUF35) aldolase 5GYZ ; 2.4 ; luciferase AMP/7-cy-L complex 5GZ2 ; 2.0 ; luciferase complex with 7-cy-L 5WYS ; 2.999 ; luciferase with inhibitor 3i 5GTQ ; 1.13 ; Luciferin-regenerating enzyme at cryogenic temperature 5GX1 ; 1.6 ; Luciferin-regenerating enzyme collected with serial synchrotron rotational crystallography with accumulated dose of 1.1 MGy (1st measurement) 5GX4 ; 1.6 ; Luciferin-regenerating enzyme collected with serial synchrotron rotational crystallography with accumulated dose of 14 MGy (12th measurement) 5GX5 ; 1.6 ; Luciferin-regenerating enzyme collected with serial synchrotron rotational crystallography with accumulated dose of 26 MGy (23rd measurement) 5GX2 ; 1.6 ; Luciferin-regenerating enzyme collected with serial synchrotron rotational crystallography with accumulated dose of 3.4 MGy (3rd measurement) 5GX3 ; 1.6 ; Luciferin-regenerating enzyme collected with serial synchrotron rotational crystallography with accumulated dose of 6.9 MGy (6th measurement) 5D9D ; 1.701 ; Luciferin-regenerating enzyme solved by SAD using synchrotron radiation at room temperature 5XFE ; 1.5 ; Luciferin-regenerating enzyme solved by SAD using XFEL (refined against 11,000 patterns) 5D9C ; 1.6 ; Luciferin-regenerating enzyme solved by SIRAS using XFEL (refined against Hg derivative data) 5D9B ; 1.5 ; Luciferin-regenerating enzyme solved by SIRAS using XFEL (refined against native data) 5C8V ; 2.01 ; Lucilia cuprina alpha esterase 7: Gly137Asp 8EO2 ; 2.31 ; Lufaxin a bifunctional inhibitor of complement and coagulation 7X7M ; 2.33 ; Lumazine Synthase from Aquifex aeolicus 2C94 ; 1.9 ; LUMAZINE SYNTHASE FROM MYCOBACTERIUM TUBERCULOSIS BOUND TO 3-(1,3,7- TRIHYDRO-9-D-RIBITYL-2,6,8-PURINETRIONE-7-YL) 1,1 difluoropentane-1- PHOSPHATE 2C92 ; 1.6 ; LUMAZINE SYNTHASE FROM MYCOBACTERIUM TUBERCULOSIS BOUND TO 3-(1,3,7- TRIHYDRO-9-D-RIBITYL-2,6,8-PURINETRIONE-7-YL) PENTANE 1 PHOSPHATE 1W29 ; 2.3 ; Lumazine Synthase from Mycobacterium tuberculosis bound to 3-(1,3,7- trihydro-9-D-ribityl-2,6,8-purinetrione-7-yl)butane 1-phosphate 2C9D ; 2.8 ; Lumazine Synthase from Mycobacterium tuberculosis Bound to 3-(1,3,7- TRIHYDRO-9-D-RIBITYL-2,6,8-PURINETRIONE-7-YL)HEXANE 1-PHOSPHATE 1W19 ; 2.0 ; Lumazine Synthase from Mycobacterium tuberculosis bound to 3-(1,3,7- trihydro-9-D-ribityl-2,6,8-purinetrione-7-yl)propane 1-phosphate 2C97 ; 2.0 ; LUMAZINE SYNTHASE FROM MYCOBACTERIUM TUBERCULOSIS BOUND TO 4-(6- chloro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)butyl phosphate 2VI5 ; 2.3 ; LUMAZINE SYNTHASE FROM MYCOBACTERIUM TUBERCULOSIS BOUND TO N-6-(ribitylamino)pyrimidine-2,4(1H,3H)-dione-5-yl-propionamide 2C9B ; 2.75 ; Lumazine Synthase from Mycobacterium tuberculosus Bound to 3-(1,3,7- TRIHYDRO-9-D-RIBITYL-2,6,8-PURINETRIONE-7-YL) 1KYX ; 2.6 ; Lumazine Synthase from S.pombe bound to carboxyethyllumazine 1KYY ; 2.4 ; Lumazine Synthase from S.pombe bound to nitropyrimidinedione 1KYV ; 2.4 ; Lumazine Synthase from S.pombe bound to riboflavin 1EJB ; 1.85 ; LUMAZINE SYNTHASE FROM SACCHAROMYCES CEREVISIAE 2I0F ; 2.22 ; Lumazine synthase RibH1 from Brucella abortus (Gene BruAb1_0785, Swiss-Prot entry Q57DY1) 2F59 ; 2.3 ; Lumazine synthase RibH1 from Brucella abortus (Gene BruAb1_0785, Swiss-Prot entry Q57DY1) complexed with inhibitor 5-Nitro-6-(D-Ribitylamino)-2,4(1H,3H) Pyrimidinedione 2O6H ; 2.7 ; Lumazine synthase RibH1 from Brucella melitensis (Gene BMEI1187, Swiss-Prot entry Q8YGH2) complexed with inhibitor 5-Nitro-6-(D-Ribitylamino)-2,4(1H,3H) Pyrimidinedione 2OBX ; 2.53 ; Lumazine synthase RibH2 from Mesorhizobium loti (Gene mll7281, Swiss-Prot entry Q986N2) complexed with inhibitor 5-Nitro-6-(D-Ribitylamino)-2,4(1H,3H) Pyrimidinedione 2GTL ; 3.5 ; Lumbricus Erythrocruorin at 3.5A resolution 1HCZ ; 1.96 ; LUMEN-SIDE DOMAIN OF REDUCED CYTOCHROME F AT-35 DEGREES CELSIUS 8B7D ; 2.59 ; Luminal domain of TMEM106B 1B08 ; 2.3 ; LUNG SURFACTANT PROTEIN D (SP-D) (FRAGMENT) 7FIJ ; 3.8 ; luteinizing hormone/choriogonadotropin receptor 7FIG ; 3.9 ; luteinizing hormone/choriogonadotropin receptor(S277I)-chorionic gonadotropin-Gs complex 7FIH ; 3.2 ; luteinizing hormone/choriogonadotropin receptor(S277I)-chorionic gonadotropin-Gs-Org43553 complex 7FII ; 4.3 ; luteinizing hormone/choriogonadotropin receptor-chorionic gonadotropin-Gs complex 2PF6 ; 2.2 ; Lutheran glycoprotein, N-terminal domains 1 and 2 2PET ; 1.7 ; Lutheran glycoprotein, N-terminal domains 1 and 2. 3HYD ; 1.0 ; LVEALYL peptide derived from human insulin chain B, residues 11-17 3Q9H ; 2.25 ; LVFFA segment from Alzheimer's Amyloid-Beta displayed on 42-membered macrocycle scaffold 3Q9I ; 1.99 ; LVFFA segment from Alzheimer's Amyloid-Beta displayed on 42-membered macrocycle scaffold, bromide derivative 8H6R ; 2.6 ; LW Domain of Arabidopsis thaliana TFIIS 7UH4 ; 2.2 ; LXG-associated alpha-helical protein D2 (LapD2) 6S4N ; 1.9 ; LXRbeta ligand binding domain in comlpex with small molecule inhibitors 6S4T ; 2.0 ; LXRbeta ligand binding domain in comlpex with small molecule inhibitors 6S4U ; 2.81 ; LXRbeta ligand binding domain in comlpex with small molecule inhibitors 6S5K ; 1.6 ; LXRbeta ligand binding domain in complex with small molecule inhibitors 7MMO ; 2.427 ; LY-CoV1404 neutralizing antibody against SARS-CoV-2 7KMI ; 1.73 ; LY-CoV481 neutralizing antibody against SARS-CoV-2 7KMH ; 1.72 ; LY-CoV488 neutralizing antibody against SARS-CoV-2 7KMG ; 2.16 ; LY-CoV555 neutralizing antibody against SARS-CoV-2 6WZJ ; 2.37 ; LY3041658 Fab bound to CXCL2 6WZK ; 1.8 ; LY3041658 Fab bound to CXCL3 6WZL ; 2.29 ; LY3041658 Fab bound to CXCL7 6WZM ; 2.28 ; LY3041658 Fab bound to CXCL8 5NGN ; 1.48 ; Lybatide 2, a cystine-rich peptide from Lycium barbarum 7MMM ; ; LyeTx I 6CL3 ; ; LyeTxI-b, a synthetic peptide derived from Lycosa erythrognatha spider venom, shows potent antibiotic activity, in vitro and in vivo 1FJ1 ; 2.68 ; LYME DISEASE ANTIGEN OSPA IN COMPLEX WITH NEUTRALIZING ANTIBODY FAB LA-2 4BG5 ; 3.4 ; Lyme disease associated outer surface protein BBA65 from Borrelia burgdorferi 4ZR6 ; 2.6 ; Lymnaea Stagnalis Acetylcholine Binding Protein in Complex with 3-[(4E)-4-[(3-methylimidazol-4-yl)methylene]-2,3-dihydropyrrol-5-yl]pyridine 8DMI ; 3.26 ; Lymphocytic choriomeningitis virus glycoprotein 8DMH ; 3.19 ; Lymphocytic choriomeningitis virus glycoprotein in complex with neutralizing antibody M28 7X6V ; 3.6 ; lymphocytic choriomeningitis virus polymerase- Matrix Z Protein Complex (LCMV L-Z Complex) 7X6S ; 3.4 ; lymphocytic choriomeningitis virus RNA-dependent RNA polymerase (LCMV-L protein) 3A4O ; 3.0 ; Lyn kinase domain 2ZV7 ; 2.5 ; Lyn Tyrosine Kinase Domain, apo form 2ZV8 ; 2.7 ; Lyn Tyrosine Kinase Domain-AMP-PNP complex 2ZVA ; 2.6 ; Lyn Tyrosine Kinase Domain-Dasatinib complex 2ZV9 ; 2.76 ; Lyn Tyrosine Kinase Domain-PP2 complex 4GVU ; 1.55 ; Lyngbyastatin 7-Porcine Pancreatic Elastase Co-crystal Structure 2OMP ; 1.9 ; LYQLEN peptide derived from human insulin chain A, residues 13-18 1HJA ; 2.3 ; LYS 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH ALPHA-CHYMOTRYPSIN 1LPH ; 2.3 ; LYS(B28)PRO(B29)-HUMAN INSULIN 5GOC ; 1.733 ; Lys11-linked diubiquitin 5GOD ; 1.15 ; Lys27-linked di-ubiquitin 5J8P ; 1.554 ; Lys27-linked diubiquitin 5JBV ; 2.104 ; Lys27-linked triubiquitin 5JBY ; 1.987 ; Lys27-linked triubiquitin 5GOG ; 1.977 ; Lys29-linked di-ubiquitin 5GOH ; 1.946 ; Lys33-linked di-ubiquitin 5GOI ; 1.594 ; Lys48-linked di-ubiquitin 8IC9 ; 1.25 ; Lys48-linked K48C-diubiquitin 6AL3 ; 2.57 ; Lys49 PLA2 BPII derived from the venom of Protobothrops flavoviridis. 2IFJ ; ; Lys6 deamidated variant of ImI conotoxin 2IFZ ; ; Lys6 Variant of ImI Conotoxin 5GOB ; 1.153 ; Lys6-linked di-ubiquitin 3ZLZ ; 2.9 ; Lys6-linked tri-ubiquitin 5GOJ ; 1.549 ; Lys63-linked di-ubiquitin 3ZXG ; 3.12 ; lysenin sphingomyelin complex 5O1Q ; ; LysF1 sh3b domain structure 5BUA ; 1.812 ; Lysine 120-acetylated P53 DNA binding domain in a complex with DNA. 5LGY ; 2.92 ; Lysine 120-acetylated P53 DNA binding domain in a complex with the BAX response element. 6QHD ; 2.85 ; Lysine acetylated and tyrosine phosphorylated STAT3 in a complex with DNA 2CJG ; 1.95 ; Lysine aminotransferase from M. tuberculosis in bound PMP form 2CJD ; 2.0 ; Lysine aminotransferase from M. tuberculosis in external aldimine form 2CIN ; 1.98 ; Lysine aminotransferase from M. tuberculosis in the internal aldimine form 2CJH ; 2.0 ; Lysine aminotransferase from M. tuberculosis in the internal aldimine form with bound substrate 2-ketoglutarate 6Q6I ; 3.7 ; Lysine decarboxylase A from Pseudomonas aeruginosa 2ND5 ; ; Lysine dimethylated FKBP12 4QAO ; 2.103 ; Lysine-ligated cytochrome c with F82H 4Q5P ; 1.87 ; Lysine-Ligated Yeast Iso-1 Cytochrome C 6YW0 ; 2.2 ; Lysine-N,N-Dimethylated HIF prolyl hydroxylase 2 (PHD2/ EGLN1) in complex with BB-287 6NDX ; 3.04 ; Lysinoalanine cross-linked FlgE dimer from Treponema denticola 6C0G ; 2.145 ; Lysinoalanine synthase, DurN, from duramycin biosynthesis 6C0H ; 1.9 ; Lysinoalanine synthase, DurN, from duramycin biosynthesis bound to 1-Dha6Ala 6C0Y ; 1.66 ; Lysinoalanine synthase, DurN, from duramycin biosynthesis bound to duramycin 1E0G ; ; LYSM Domain from E.coli MLTD 4NSV ; 0.9 ; Lysobacter enzymogenes lysc endoproteinase K30R mutant covalently inhibited by TLCK 7TD0 ; 2.83 ; Lysophosphatidic acid receptor 1-Gi complex bound to LPA 7TD1 ; 3.08 ; Lysophosphatidic acid receptor 1-Gi complex bound to LPA, state a 7TD2 ; 3.11 ; Lysophosphatidic acid receptor 1-Gi complex bound to LPA, state a 8IZB ; 3.06 ; Lysophosphatidylserine receptor GPR174-Gs complex 8IZ4 ; 2.93 ; Lysophosphatidylserine receptor GPR34-Gi complex 8WRB ; 2.91 ; Lysophosphatidylserine receptor GPR34-Gi complex 8A26 ; 1.45 ; Lysophospholipase PlaA from Legionella pneumophila str. Corby - complex with palmitate 8A25 ; 1.73 ; Lysophospholipase PlaA from Legionella pneumophila str. Corby - complex with PEG fragment 8A24 ; 2.36 ; Lysophospholipase PlaA from Legionella pneumophila str. Corby - iodide soak 7F40 ; 3.49 ; Lysophospholipid acyltransferase LPCAT3 in a complex with Arachidonoyl-CoA 7F3X ; 3.57 ; Lysophospholipid acyltransferase LPCAT3 in complex with lysophosphatidylcholine 7YM0 ; 2.91 ; Lysoplasmalogen-specific phospholipase D (LyPls-PLD) with Ca2+ 6MTW ; 1.999 ; Lysosomal Phospholipase A2 in complex with Zinc 6RJE ; 2.5 ; Lysostaphin SH3b P4-G5 complex, homesource dataset 6RK4 ; 1.43 ; Lysostaphin SH3b P4-G5 complex, synchrotron dataset 253L ; 2.0 ; LYSOZYME 254L ; 1.9 ; LYSOZYME 2CDS ; 2.0 ; LYSOZYME 2C8O ; 1.5 ; lysozyme (1sec) and UV lasr excited fluorescence 2C8P ; 1.5 ; lysozyme (60sec) and UV laser excited fluorescence 5B05 ; 1.8 ; Lysozyme (control experiment) 5B07 ; 1.8 ; Lysozyme (denatured by DCl and refolded) 5B06 ; 1.8 ; Lysozyme (denatured by NaOD and refolded) 2IHL ; 1.4 ; LYSOZYME (E.C.3.2.1.17) (JAPANESE QUAIL) 1HSW ; 2.0 ; LYSOZYME (MUCOPEPTIDE N-ACETYLMURAMYL HYDROLASE) 7RGR ; 2.48 ; Lysozyme 056 from Deep neural language modeling 7DER ; 1.03 ; Lysozyme alone in H2O 8EZO ; 1.9 ; Lysozyme Anomalous Dataset at 220 K and 7.1 keV 8F0B ; 1.9 ; Lysozyme Anomalous Dataset at 240 K and 7.1 keV 8EZP ; 1.9 ; Lysozyme Anomalous Dataset at 260 K and 7.1 keV 8EZU ; 1.901 ; Lysozyme Anomalous Dataset at 273 K and 7.1 keV 8F00 ; 1.2 ; Lysozyme Anomalous Dataset at 293 K and 12 keV 8EZX ; 1.9 ; Lysozyme Anomalous Dataset at 293 K and 7.1 keV 4D9Z ; 1.709 ; Lysozyme at 318K 6MX9 ; 1.35 ; Lysozyme bound to 3-Aminophenol 8DCU ; 2.0 ; Lysozyme cluster 0028 (benzamidine ligand) 8DCV ; 2.0 ; Lysozyme cluster 0043, NAG ligand 8DCW ; 2.0 ; Lysozyme cluster 0062 (NAG and benzamidine ligands) 8DCT ; 2.0 ; Lysozyme cluster 3 dual apo structure 2PC2 ; 1.538 ; Lysozyme Cocrystallized with Tris-dipicolinate Eu complex 1BB7 ; 2.0 ; LYSOZYME COMPLEX WITH 4-METHYL-UMBELLIFERYL CHITOBIOSE 1BB6 ; 2.0 ; LYSOZYME COMPLEX WITH 4-METHYL-UMBELLIFERYL CHITOTRIOSE 3ULR ; 1.65 ; Lysozyme contamination facilitates crystallization of a hetero-trimericCortactin:Arg:Lysozyme complex 8SCY ; 1.45 ; Lysozyme crystallized in cyclic olefin copolymer-based microfluidic chips 8SIL ; 1.7 ; Lysozyme crystallized in cyclic olefin copolymer-based microfluidic chips 6F9Y ; 1.2 ; Lysozyme crystallized in presence of 10 mM lithium sulphate at pH 4.5 6FA0 ; 1.3 ; Lysozyme crystallized in presence of 100 mM ammonium sulphate at pH 4.5 6F9X ; 1.25 ; Lysozyme crystallized in presence of 100 mM lithium sulphate at pH 4.5 6F1L ; 1.3 ; Lysozyme crystallized in presence of 100 mM sodium phosphate at pH 4.5 6F1M ; 1.48 ; Lysozyme crystallized in presence of 100 mM sodium phosphate at pH 4.5: low-humidity form 6F9Z ; 1.2 ; Lysozyme crystallized in presence of 5 mM ammonium sulphate at pH 4.5 7BB1 ; 1.3 ; Lysozyme crystallized in the presence of the hydrated deep eutectic solvent Choline chloride-Glutamic acid 2:1 7BAZ ; 1.3 ; Lysozyme crystallized in the presence of the hydrated deep eutectic solvent Choline chloride-Glycerol 1:2 7B9J ; 2.2 ; Lysozyme crystallized in the presence of the hydrated deep eutectic solvent Choline chloride-Urea 1:2 4RDS ; 1.23 ; Lysozyme crystallized with red food coloring dye 1AM7 ; 2.3 ; Lysozyme from bacteriophage lambda 1JUG ; 1.9 ; LYSOZYME FROM ECHIDNA MILK (TACHYGLOSSUS ACULEATUS) 1HSX ; 1.9 ; LYSOZYME GROWN AT BASIC PH AND ITS LOW HUMIDITY VARIANT 7CQO ; 1.71 ; Lysozyme grown in LCP soaked with selenourea for 6 min 3SP3 ; 1.801 ; Lysozyme in 20% sucrose 3RT5 ; 1.75 ; Lysozyme in 30% propanol 8CL6 ; 1.32 ; Lysozyme in matrix of hydroxyethylcellulose (HEC) 8CL5 ; 1.31 ; Lysozyme in matrix of lipidic cubic phase of monoolein (LCP) 4EOF ; 1.83 ; Lysozyme in the presence of arginine 4WOA ; 1.8 ; Lysozyme Multiple Crystals After Surface Acoustic Wave Alignment 1LZ8 ; 1.53 ; LYSOZYME PHASED ON ANOMALOUS SIGNAL OF SULFURS AND CHLORINES 4WO9 ; 1.99 ; Lysozyme Post-Surface Acoustic Waves 4WO6 ; 2.001 ; Lysozyme Pre-surface acoustic wave 6LT5 ; 1.32 ; Lysozyme protected by alginate gel 7WXS ; 1.25 ; Lysozyme protected by polyacrylamide gel 5NJM ; 1.5 ; Lysozyme room-temperature structure determined by serial millisecond crystallography 7CDU ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 1700 kGy (3000 images) 7CDO ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 21 kGy (3000 images) 7CDR ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 210 kGy (3000 images) 7CDP ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 42 kGy (3000 images) 7CDK ; 1.7 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 42 kGy (4500 images from 1st half of data set) 7CDM ; 1.7 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 42 kGy (4500 images from 2nd half of data set) 7CDN ; 1.7 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 42 kGy (9000 images) 7CDS ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 420 kGy (3000 images) 7CDQ ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 83 kGy (3000 images) 7CDT ; 1.8 ; Lysozyme room-temperature structure determined by SS-ROX combined with HAG method, 830 kGy (3000 images) 4UWN ; 1.67 ; Lysozyme soaked with a ruthenium based CORM with a methione oxide ligand (complex 6b) 4UWU ; 1.78 ; Lysozyme soaked with a ruthenium based CORM with a pyridine ligand (complex 7) 4UWV ; 1.77 ; Lysozyme soaked with a ruthenium based CORM with a pyridine ligand (complex 8) 7Q0T ; 1.34 ; Lysozyme soaked with V(IV)OSO4 7Q0U ; 1.19 ; Lysozyme soaked with V(IV)OSO4 and bipy 7Q0V ; 1.12 ; Lysozyme soaked with V(IV)OSO4 and phen 6G8A ; 1.143 ; Lysozyme solved by Native SAD from a dataset collected in 5 seconds at 1 A wavelength with JUNGFRAU detector 8RPM ; 1.8 ; Lysozyme structure based on automated real-time serial crystallography data processing using CrystFEL 5TK0 ; 1.795 ; Lysozyme structure collected with 3D printed polymer mounts 2AUB ; 1.7 ; Lysozyme structure derived from thin-film-based crystals 6GF0 ; 2.07 ; Lysozyme structure determined from SFX data using a Sheet-on-Sheet chipless chip 7O2O ; 1.833 ; Lysozyme structure from microfluidic-based in situ data collection 7BYP ; 1.6 ; Lysozyme structure SASE1 from SASE mode 7D02 ; 1.65 ; Lysozyme structure SASE2 from SASE mode 7D05 ; 1.7 ; Lysozyme structure SASE3 from SASE mode 8P1C ; 1.58 ; Lysozyme structure solved from serial crystallography data collected at 1 kHz with JUNGFRAU detector at MAXIV 8P1D ; 1.6 ; Lysozyme structure solved from serial crystallography data collected at 100 Hz with JUNGFRAU detector at MAXIV 8P1A ; 2.05 ; Lysozyme structure solved from serial crystallography data collected at 2 kHz for 5 seconds with JUNGFRAU detector at MAXIV 8P1B ; 1.7 ; Lysozyme structure solved from serial crystallography data collected at 2 kHz with JUNGFRAU detector at MAXIV 7BYO ; 1.6 ; Lysozyme structure SS1 from SS mode 7D01 ; 1.65 ; Lysozyme structure SS2 from SS mode 7D04 ; 1.7 ; Lysozyme structure SS3 from SS mode 8F28 ; 1.2 ; Lysozyme Structures from Single-Entity Crystallization Method NanoAC 4DC4 ; 2.654 ; Lysozyme Trimer 4NWE ; 1.58 ; Lysozyme UNDER 30 BAR PRESSURE OF NITROUS OXIDE 4NWH ; 1.65 ; Lysozyme UNDER 30 BAR PRESSURE OF XENON 4HSF ; 1.82 ; Lysozyme with Arginine at 318K 4II8 ; 1.88 ; Lysozyme with Benzyl alcohol 5K2N ; 1.4 ; lysozyme with nano particles 5K2Q ; 1.1 ; Lysozyme with nano particles 5K2S ; 1.55 ; Lysozyme with nano particles 8A9E ; 1.665 ; Lysozyme, 9-11 fs FEL pulses as determined by XTCAV 5LIN ; 1.496 ; Lysozyme, collected at rotation 1 degree per second 5LIO ; 1.496 ; Lysozyme, collected at rotation 360 degree per second 6MUZ ; 1.839 ; Lysozyme, room temperature structure solved by serial 3 degree oscillation crystallography 4ETB ; 1.908 ; lysozyme, room temperature, 200 kGy dose 4ETC ; 1.906 ; Lysozyme, room temperature, 24 kGy dose 4ETA ; 1.91 ; Lysozyme, room temperature, 400 kGy dose 4ETE ; 1.905 ; Lysozyme, room-temperature, rotating anode, 0.0021 MGy 4ETD ; 1.904 ; Lysozyme, room-temperature, rotating anode, 0.0026 MGy 2XJW ; 1.67 ; Lysozyme-CO releasing molecule adduct 7DEQ ; 1.03 ; Lysozyme-sugar complex in D2O 7BR5 ; 1.0 ; Lysozyme-sugar complex in H2O 6H3B ; 1.9 ; Lysozyme: Machining protein microcrystals for structure determination by electron diffraction 7V5V ; 2.37 ; LysR family transcriptional regulator RipR from Salmonella Typhimurium 7XRO ; 2.8 ; LysR-family transcriptional regulator RipR effector binding domain with its effector, 3-phenylpropionic acid 3VPD ; 1.95 ; LysX from Thermus thermophilus complexed with AMP-PNP 6BKF ; 3.25 ; Lysyl-adenylate form of human LigIV catalytic domain with bound DNA substrate in open conformation 1BBW ; 2.7 ; LYSYL-TRNA SYNTHETASE (LYSS) 1BBU ; 2.7 ; LYSYL-TRNA SYNTHETASE (LYSS) COMPLEXED WITH LYSINE 1LYL ; 2.8 ; LYSYL-TRNA SYNTHETASE (LYSU) (E.C.6.1.1.6) COMPLEXED WITH LYSINE 1E24 ; 2.35 ; LYSYL-TRNA SYNTHETASE (LYSU) HEXAGONAL FORM complexed with lysine and ATP and MN2+ 1E22 ; 2.43 ; LYSYL-TRNA SYNTHETASE (LYSU) HEXAGONAL FORM complexed with lysine and the non-hydrolysable atp analogue amp-pcp 1E1T ; 2.4 ; LYSYL-TRNA SYNTHETASE (LYSU) HEXAGONAL FORM COMPLEXED WITH THE LYSYL_ADENYLATE INTERMEDIATE 1E1O ; 2.12 ; lysyl-tRNA Synthetase (LYSU) hexagonal form, complexed with lysine 3A74 ; 1.8 ; Lysyl-tRNA synthetase from Bacillus stearothermophilus complexed with Diadenosine Tetraphosphate (AP4A) 3E9I ; 2.2 ; Lysyl-tRNA synthetase from Bacillus stearothermophilus complexed with L-Lysine hydroxamate-AMP 3E9H ; 2.1 ; Lysyl-tRNA synthetase from Bacillus stearothermophilus complexed with L-Lysylsulfamoyl adenosine 4QI8 ; 1.1 ; Lytic polysaccharide monooxygenase 9F from Neurospora crassa, NcLPMO9F 5MSZ ; 1.1 ; Lytic Polysaccharide Monooxygenase AA15 from Thermobia domestica in the Cu(I) State 5O1J ; 1.9 ; Lytic transglycosylase in action 5O24 ; 1.429 ; Lytic transglycosylase in action 5O29 ; 1.3785 ; Lytic transglycosylase in action 5O2N ; 1.513 ; Lytic transglycosylase in action 5O2O ; 1.43 ; Lytic transglycosylase in action 6FPN ; 1.44 ; Lytic transglycosylase in action 6QK4 ; 1.73 ; Lytic transglycosylase, LtgG, of Burkholderia pseudomallei. 7QRL ; 2.25 ; LytM domain of DipM, a coordinator of a complex net of autolysins in Caulobacter crescentus 4BH5 ; 1.57 ; LytM domain of EnvC, an activator of cell wall amidases in Escherichia coli 4DE8 ; 1.95 ; LytR-Cps2a-Psr family protein with bound octaprenyl monophosphate lipid 3TFL ; 2.05 ; LytR-Cps2a-Psr family protein with bound octaprenyl pyrophosphate lipid 3TEP ; 2.03 ; LytR-CPS2a-Psr family protein with bound octaprenyl pyrophosphate lipid and magnesium ion 3TEL ; 1.8 ; LytR-CPS2A-Psr family protein with bound octaprenyl pyrophosphate lipid and manganese ion 4DE9 ; 1.787 ; LytR-CPS2A-psr family protein YwtF (TagT) with bound octaprenyl pyrophosphate lipid 5V8C ; 2.51 ; LytR-Csp2A-Psr enzyme from Actinomyces oris 3D6W ; 2.4 ; LytTr DNA-binding domain of putative methyl-accepting/DNA response regulator from Bacillus cereus. 2F95 ; 2.2 ; M intermediate structure of sensory rhodopsin II/transducer complex in combination with the ground state structure 1CWQ ; 2.25 ; M INTERMEDIATE STRUCTURE OF THE WILD TYPE BACTERIORHODOPSIN IN COMBINATION WITH THE GROUND STATE STRUCTURE 6HF3 ; 2.2 ; M tuberculosis DprE1 in complex with a covalently bound nitrobenzothiazinone 6HEZ ; 2.3 ; M tuberculosis DprE1 in complex with BTZ043 6GFV ; 1.96 ; M tuberculosis LpqI 6SAB ; ; M-BUTX-Ptr1a (Parabuthus transvaalicus) 1A6S ; ; M-DOMAIN FROM GAG POLYPROTEIN OF ROUS SARCOMA VIRUS, NMR, 20 STRUCTURES 2WNP ; 1.21 ; M-ficolin mutant Y271F 6SAA ; ; M-TRTX-Preg1a (Poecilotheria regalis) 3K6V ; 1.69 ; M. acetivorans Molybdate-Binding Protein (ModA) in Citrate-Bound Open Form 3K6X ; 2.25 ; M. acetivorans Molybdate-Binding Protein (ModA) in Molybdate-Bound Close Form with 2 Molecules in Asymmetric Unit Forming Beta Barrel 3K6U ; 1.95 ; M. acetivorans Molybdate-Binding Protein (ModA) in Unliganded Open Form 3EEO ; 1.94 ; M. HhaI co-crystallized with synthetic dsDNA containing a propane diol in place of the deoxycytidine residue targeted for methylation. 2QJI ; 2.8 ; M. jannaschii ADH synthase complexed with dihydroxyacetone phosphate and glycerol 2QJG ; 2.6 ; M. jannaschii ADH synthase complexed with F1,6P 2QJH ; 2.6 ; M. jannaschii ADH synthase covalently bound to dihydroxyacetone phosphate 3PAF ; 1.7 ; M. jannaschii L7Ae mutant 3BBE ; 2.2 ; M. jannaschii Nep1 3BBD ; 2.15 ; M. jannaschii Nep1 complexed with S-adenosyl-homocysteine 3BBH ; 2.25 ; M. jannaschii Nep1 complexed with Sinefungin 1U12 ; 2.7 ; M. loti cyclic nucleotide binding domain mutant 3CLP ; 2.0 ; M. loti cyclic-nucleotide binding domain mutant 2 4MUV ; 1.25 ; M. loti cyclic-nucleotide binding domain mutant displaying inverted ligand selectivity, cyclic-GMP bound 3CL1 ; 2.4 ; M. loti cyclic-nucleotide binding domain, cyclic-GMP bound 3AQB ; 2.4 ; M. luteus B-P 26 heterodimeric hexaprenyl diphosphate synthase in complex with magnesium 3AQC ; 2.61 ; M. luteus B-P 26 heterodimeric hexaprenyl diphosphate synthase in complex with magnesium and FPP analogue 5JHJ ; ; M. Oryzae effector AVR-Pia mutant H3 5ZRP ; 1.74 ; M. smegmatis antimutator protein MutT2 form 3 5ZRI ; 1.58 ; M. smegmatis antimutator protein MutT2 in complex with 5m-dCMP 5ZRO ; 1.41 ; M. smegmatis antimutator protein MutT2 in complex with 5mdCTP 5ZRL ; 1.61 ; M. smegmatis antimutator protein MutT2 in complex with CDP 5ZRH ; 1.54 ; M. smegmatis antimutator protein MutT2 in complex with CMP 5ZRG ; 1.3 ; M. smegmatis antimutator protein MutT2 in complex with dCMP 5ZRK ; 1.49 ; M. smegmatis antimutator protein MutT2 in complex with dCTP 1GX3 ; 1.7 ; M. smegmatis arylamine N-acetyl transferase 5ZEP ; 3.4 ; M. smegmatis hibernating state 70S ribosome structure 5ZEU ; 3.7 ; M. smegmatis P/P state 30S ribosomal subunit 5ZET ; 3.2 ; M. smegmatis P/P state 50S ribosomal subunit 5ZEB ; 3.4 ; M. Smegmatis P/P state 70S ribosome structure 5ZEY ; 12.5 ; M. smegmatis Trans-translation state 70S ribosome 7MYG ; 2.51 ; M. tb Ag85C modified by THL-10d 7SCF ; 2.67 ; M. tb EgtD in complex with HD2 7SF5 ; 2.52 ; M. tb EgtD in complex with HD3 7SEW ; 1.72 ; M. tb EgtD in complex with HD6 7SF4 ; 2.39 ; M. tb EgtD in complex with imatinib 7SEY ; 2.39 ; M. tb EgtD in complex with SGH 7SEX ; 2.2 ; M. tb EgtD in complex with TGX221 6MJY ; 1.56 ; M. thermoresistible GuaB2 delta-CBS in complex with 6Cl-IMP 6D4Q ; 1.71 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 14 (VCC900455) 6D4R ; 1.34 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 18 (VCC399134) 6D4V ; 2.02 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 22 (VCC061422) 6D4U ; 1.7 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 27 (VCC663664) 6D4W ; 1.8 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 35 (VCC620637) 6D4S ; 1.63 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 37 (VCC670597) 6D4T ; 1.54 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor Compound 45 (VCC117054) 5J5R ; 1.6 ; M. thermoresistible GuaB2 delta-CBS in complex with inhibitor VCC234718 5K4X ; 1.37 ; M. thermoresistible IMPDH in complex with IMP and Compound 1 5OU1 ; 1.78 ; M. thermoresistible IMPDH in complex with IMP and Compound 1 (7759844) 5OU2 ; 1.45 ; M. thermoresistible IMPDH in complex with IMP and Compound 2 (NMR744) 5OU3 ; 1.6 ; M. thermoresistible IMPDH in complex with IMP and Compound 31 (AT080) 5K4Z ; 1.64 ; M. thermoresistible IMPDH in complex with IMP and Compound 6 4RCV ; 2.294 ; M. tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase bound to 1-deoxy-L-erythrulose 4OOF ; 2.3 ; M. tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase W203F mutant bound to fosmidomycin and NADPH 4OOE ; 1.826 ; M. tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase W203Y mutant bound to fosmidomycin and NADPH 7UGW ; 3.0 ; M. tuberculosis DNA gyrase cleavage core bound to DNA and evybactin 6HF0 ; 2.384 ; M. tuberculosis DprE1 covalently bound to a nitrobenzoxacinone. 4KW5 ; 2.612 ; M. tuberculosis DprE1 in complex with inhibitor TCA1 1SM8 ; 2.9 ; M. tuberculosis dUTPase complexed with chromium and dUTP 3PKA ; 1.25 ; M. tuberculosis MetAP with bengamide analog Y02, in Mn form 3PKC ; 1.47 ; M. tuberculosis MetAP with bengamide analog Y08, in Mn form 3PKD ; 1.47 ; M. tuberculosis MetAP with bengamide analog Y10, in Mn form 3PKE ; 1.6 ; M. tuberculosis MetAP with bengamide analog Y10, in Ni form 3PKB ; 1.25 ; M. tuberculosis MetAP with bengamide analog Y16, in Mn form 3IU7 ; 1.4 ; M. tuberculosis methionine aminopeptidase with Mn inhibitor A02 3IU8 ; 1.85 ; M. tuberculosis methionine aminopeptidase with Ni inhibitor T03 3IU9 ; 1.75 ; M. tuberculosis methionine aminopeptidase with Ni inhibitor T07 7KAB ; 2.5 ; M. tuberculosis PheRS complex with cognate precursor tRNA and phenylalanine 7S0S ; 3.05 ; M. tuberculosis ribosomal RNA methyltransferase TlyA bound to M. smegmatis 50S ribosomal subunit 8EOT ; 3.3 ; M. tuberculosis RNAP elongation complex with NusG 8EOS ; 3.1 ; M. tuberculosis RNAP elongation complex with NusG and CMPCPP 8EJ3 ; 3.13 ; M. tuberculosis RNAP pause escaped complex with Bacillus subtilis NusG and GMPCPP 8EXY ; 3.2 ; M. tuberculosis RNAP paused complex with B. subtilis NusG and GMPCPP 2W24 ; 2.5 ; M. tuberculosis Rv3291c complexed to Lysine 8QC4 ; 1.578 ; M. tuberculosis salicylate synthase MbtI in complex with 5-(3-carboxyphenyl)furan-2-carboxylic acid 6ZA4 ; 2.092 ; M. tuberculosis salicylate synthase MbtI in complex with 5-(3-cyanophenyl)furan-2-carboxylate 6ZA6 ; 1.804 ; M. tuberculosis salicylate synthase MbtI in complex with Ba2+ 8QN5 ; 1.544 ; M. tuberculosis salicylate synthase MbtI in complex with methyl-AMT (new crystal form) 6ZA5 ; 2.109 ; M. tuberculosis salicylate synthase MbtI in complex with salicylate and Mg2+ 5OAY ; ; M. tuberculosis [4Fe-4S] protein WhiB1 is a four-helix bundle that forms a NO-sensitive complex with sigmaA and regulates the major virulence factor ESX-1 7S2T ; 3.45 ; M. xanthus encapsulin EncA bound to EncB targeting peptide 7S4Q ; 3.12 ; M. xanthus encapsulin EncA bound to EncC targeting peptide 7S21 ; 3.4 ; M. xanthus encapsulin shell protein EncA with T=1 symmetry 7S20 ; 3.4 ; M. xanthus encapsulin shell protein EncA with T=3 symmetry 7S5C ; 1.86 ; M. xanthus ferritin-like protein EncB 7S5K ; 1.95 ; M. xanthus ferritin-like protein EncB 7S8T ; 2.49 ; M. xanthus ferritin-like protein EncC 3ZOM ; 2.2 ; M.acetivorans protoglobin F145W mutant 3ZOL ; 1.6 ; M.acetivorans protoglobin F93Y mutant in complex with cyanide 3ZJO ; 1.8 ; M.acetivorans protoglobin in complex with azide 3ZJS ; 2.3 ; M.acetivorans protoglobin in complex with azide and Xenon 3ZJN ; 1.6 ; M.acetivorans protoglobin in complex with cyanide 3ZJR ; 3.0 ; M.acetivorans protoglobin in complex with cyanide and Xenon 3ZJP ; 1.38 ; M.acetivorans protoglobin in complex with imidazole 3ZJQ ; 1.9 ; M.acetivorans protoglobin in complex with nicotinamide 1VP6 ; 1.7 ; M.loti ion channel cylic nucleotide binding domain 5KWI ; 1.3 ; M.tb Ag85C modified at C209 by adamantyl-ebselen 5KWJ ; 2.01 ; M.tb Ag85C modified at C209 by amino-ebselen 5VNS ; 1.45 ; M.tb Antigen 85C Acyl-Enzyme Intermediate with Tetrahydrolipstatin 6O0G ; 2.4 ; M.tb MenD bound to Intermediate I and Inhibitor 6O04 ; 2.5 ; M.tb MenD IntII bound with Inhibitor 6O0N ; 3.03 ; M.tb MenD with Inhibitor 6O0J ; 2.35 ; M.tb MenD with ThDP and Inhibitor bound 1BVR ; 2.8 ; M.TB. ENOYL-ACP REDUCTASE (INHA) IN COMPLEX WITH NAD+ AND C16-FATTY-ACYL-SUBSTRATE 4X6T ; 1.4 ; M.tuberculosis betalactamase complexed with inhibitor EC19 6R3Y ; 1.6 ; M.tuberculosis nitrobindin with a cyanide molecule coordinated to the heme iron atom 6R3W ; 1.2 ; M.tuberculosis nitrobindin with a water molecule coordinated to the heme iron atom 2BK8 ; 1.69 ; M1 domain from titin 7WWY ; 1.5 ; M117L variant of Cu/Zn-superoxide dismutase from dog (Canis familiaris) 6VU2 ; 2.19 ; M1214_N1 Fab structure 7TNC ; 1.47 ; M13F/G116F Pseudomonas aeruginosa azurin 2BP0 ; 1.9 ; M144L mutant of nitrite reductase from Alcaligenes xylosoxidans 2JFC ; 2.4 ; M144L mutant of Nitrite Reductase from Alcaligenes xylosoxidans in space group P212121 2BP8 ; 1.9 ; M144Q Structure of nitrite reductase from Alcaligenes xylosoxidans 3B0J ; 1.7 ; M175E mutant of assimilatory nitrite reductase (Nii3) from tobbaco leaf 3B0L ; 1.7 ; M175G mutant of assimilatory nitrite reductase (Nii3) from tobbaco leaf 3B0M ; 1.9 ; M175K mutant of assimilatory nitrite reductase (Nii3) from tobbaco leaf 5C1I ; 3.1 ; m1A58 tRNA methyltransferase mutant - D170A 5C0O ; 2.62 ; m1A58 tRNA methyltransferase mutant - Y78A 3HR5 ; 2.4 ; M1prime peptide from IgE bound by humanized antibody 47H4 Fab 6KGJ ; 1.8 ; M1Q-hNTAQ1 C28S 5NYU ; ; M2 G-quadruplex 10 wt% PEG8000 5NYT ; ; M2 G-quadruplex 20 wt% ethylene glycol 5NYS ; ; M2 G-quadruplex dilute solution 6Z2U ; 2.4 ; M2 mutant (R111K:Y134F:T54V:R132Q:P39Y:R59Y) of human cellular retinoic acid binding protein II 6Z2Z ; 2.55 ; M2 mutant (R111K:Y134F:T54V:R132Q:P39Y:R59Y) of human cellular retinoic acid binding protein II - 2a conjugate 6ZSX ; 2.4 ; M2 mutant (R111K:Y134F:T54V:R132Q:P39Y:R59Y) of human cellular retinoic acid binding protein II - 4 conjugate 6ZSW ; 2.08 ; M2 mutant (R111K:Y134F:T54V:R132Q:P39Y:R59Y) of human cellular retinoic acid binding protein II - 6 conjugate 1DXZ ; ; M2 TRANSMEMBRANE SEGMENT OF ALPHA-SUBUNIT OF NICOTINIC ACETYLCHOLINE RECEPTOR FROM TORPEDO CALIFORNICA, NMR, 20 STRUCTURES 7T9N ; 2.9 ; M22 Agonist Autoantibody bound to Human Thyrotropin receptor in complex with miniGs399 (composite structure) 3FQ8 ; 2.0 ; M248I mutant of GSAM 8QMM ; 1.2 ; M291I variant of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima 3KLV ; 2.6 ; M296I G62S mutant of foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA 3KNA ; 2.8 ; M296I mutant of foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA 3KOA ; 2.4 ; M296I mutant of foot-and-mouth disease virus RNA-polymerase in complex with a template- primer RNA and GTP 5ZHP ; 3.1 ; M3 muscarinic acetylcholine receptor in complex with a selective antagonist 3MRA ; ; M3 TRANSMEMBRANE SEGMENT OF ALPHA-SUBUNIT OF NICOTINIC ACETYLCHOLINE RECEPTOR FROM TORPEDO CALIFORNICA, NMR, 15 STRUCTURES 4U16 ; 3.7 ; M3-mT4L receptor bound to NMS 4U15 ; 2.8 ; M3-mT4L receptor bound to tiotropium 4Y2C ; 2.2 ; M300V 3D polymerase mutant of EMCV 4N8I ; 2.011 ; M31G mutant, RipA structure 1XMD ; 2.1 ; M335V mutant structure of mouse carnitine octanoyltransferase 7TDL ; 1.6 ; M379A mutant tyrosine phenol-lyase complexed with 3-bromo-DL-phenylalanine 7TCS ; 1.37 ; M379A mutant tyrosine phenol-lyase complexed with L-methionine 2GRH ; 1.5 ; M37V mutant of Scapharca dimeric hemoglobin, with CO bound 7JKA ; 1.53 ; m3DLH 7ECC ; 2.0 ; M4 family peptidase PlM4P-mature form 5K0Y ; 5.8 ; m48S late-stage initiation complex, purified from rabbit reticulocytes lysates, displaying eIF2 ternary complex and eIF3 i and g subunits relocated to the intersubunit face 1EEU ; 1.6 ; M4L/Y(27D)D/Q89D/T94H mutant of LEN 1EEQ ; 1.5 ; M4L/Y(27D)D/T94H Mutant of LEN 6AH6 ; 2.5 ; M500V mutant of Coronin coiled coil domain 2X51 ; 2.2 ; M6 delta Insert1 1OV6 ; 2.4 ; M64V PNP + ALLO 1OVG ; 2.2 ; M64V PNP +MePdr 1OUM ; 2.4 ; M64V PNP +Talo 4KMM ; 2.6 ; M76H variant of human ferrochelatase 5H3T ; 2.571 ; m7G cap bound to GEMIN5-WD 7O4Y ; 1.6 ; m971 Fab in complex with anti-Kappa VHH domain 1RGQ ; 2.9 ; M9A HCV Protease complex with pentapeptide keto-amide inhibitor 7T7F ; 2.3 ; MA-1-206-OXA-23 25 minute complex 7T7E ; 2.4 ; MA-1-206-OXA-23 3 minute complex 7T7D ; 2.65 ; MA-1-206-OXA-23 30s complex 7TR4 ; 2.3 ; MA2-MART1-HLAA0201 1DBN ; 2.75 ; MAACKIA AMURENSIS LEUKOAGGLUTININ (LECTIN) WITH SIALYLLACTOSE 1UZL ; 2.0 ; MabA from Mycobacterium tuberculosis 1UZM ; 1.49 ; MabA from Mycobacterium tuberculosis 1UZN ; 1.91 ; MabA from Mycobacterium tuberculosis 1BHQ ; 2.7 ; MAC-1 I DOMAIN CADMIUM COMPLEX 1BHO ; 2.7 ; MAC-1 I DOMAIN MAGNESIUM COMPLEX 1IDN ; 2.7 ; MAC-1 I DOMAIN METAL FREE 4AAN ; 1.22 ; MacA wild-type fully reduced 4AAM ; 2.17 ; MacA wild-type mixed-valence 4AAL ; 1.84 ; MacA wild-type oxidized 4AAO ; 2.3 ; MacA-H93G 7XXU ; 1.8 ; Macaca fascicularis galectin-10/Charcot-Leyden crystal protein 7XXW ; 1.63 ; Macaca fascicularis galectin-10/Charcot-Leyden crystal protein with glycerol 7XXV ; 1.6 ; Macaca fascicularis galectin-10/Charcot-Leyden crystal protein with lactose 7XXX ; 1.94 ; Macaca mulatta galectin-10/Charcot-Leyden crystal protein 7XXZ ; 1.83 ; Macaca mulatta galectin-10/Charcot-Leyden crystal protein with glycerol 7XXY ; 1.92 ; Macaca mulatta galectin-10/Charcot-Leyden crystal protein with lactose 5EHQ ; 2.5 ; mAChE-anti TZ2PA5 complex 5EIA ; 2.7 ; mACHE-anti TZ2PA5 complex from a 1:6 mixture of the syn/anti isomers 5EHN ; 2.6 ; mAChE-syn TZ2PA5 complex 5EHZ ; 2.5 ; mAChE-syn TZ2PA5 complex from an equimolar mixture of the syn/anti isomers 5EIE ; 2.1 ; mAChE-TZ2 complex 5EIH ; 2.7 ; mAChE-TZ2/PA5 complex 3KAS ; 2.4 ; Machupo virus GP1 bound to human transferrin receptor 1 7QU1 ; 1.91 ; Machupo virus GP1 glycoprotein in complex with Fab fragment of antibody MAC1 7C33 ; 3.83 ; Macro domain of SARS-CoV-2 in complex with ADP-ribose 2BFQ ; 1.5 ; MACRO DOMAINS ARE ADP-RIBOSE BINDING MOLECULES 7ZB0 ; 2.47 ; macrocyclase OphP with 15mer 7ZAZ ; 2.0 ; macrocyclase OphP with ZPP 3R91 ; 1.579 ; Macrocyclic lactams as potent Hsp90 inhibitors with excellent tumor exposure and extended biomarker activity. 6CG3 ; 2.03 ; Macrocyclic peptide derived from Abeta(17-36) - (ORN)LV(PHI)FAED(ORN)AII(2-nitrobenzylglycine)L(ORN)V 6WNK ; 2.28 ; Macrocyclic peptides TDI5575 that selectively inhibit the Mycobacterium tuberculosis proteasome 7THS ; 1.8 ; Macrocyclic plasmin inhibitor 7UAH ; 1.57 ; Macrocyclic plasmin inhibitor 8F7U ; 1.47 ; Macrocyclic Plasmin Inhibitor 8F7V ; 1.65 ; Macrocyclic plasmin inhibitor 4COE ; 2.45 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CP7 ; 1.8 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPQ ; 2.35 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPR ; 1.8 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPS ; 1.55 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPT ; 1.7 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPU ; 1.82 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPW ; 1.7 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 4CPX ; 1.85 ; Macrocyclic Transition-State Mimicking HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol 6KZU ; 1.79 ; Macrocyclization of an all-D linear peptide improves target affinity and imparts cellular activity: A novel stapled alpha-helical peptide modality 3H6Q ; 1.643 ; Macrocypin, a beta-trefoil cysteine protease inhibitor 5M3I ; 2.17 ; Macrodomain of Mycobacterium tuberculosis DarG 5M31 ; 1.67 ; Macrodomain of Thermus aquaticus DarG 5M3E ; 2.5 ; Macrodomain of Thermus aquaticus DarG in complex with ADP-ribose 2XX2 ; 1.85 ; Macrolactone Inhibitor bound to HSP90 N-term 2XX4 ; 2.199 ; Macrolactone Inhibitor bound to HSP90 N-term 2XX5 ; 2.0 ; Macrolactone Inhibitor bound to HSP90 N-term 4ION ; 1.6 ; Macrolepiota procera ricin B-like lectin (MPL) 4J2S ; 1.4 ; Macrolepiota procera ricin B-like lectin (MPL) in complex with Di-LacNAc 4IYB ; 1.59 ; Macrolepiota procera ricin B-like lectin (MPL) in complex with galactose 4IZX ; 1.1 ; Macrolepiota procera ricin B-like lectin (MPL) in complex with lactose 5IGH ; 1.55 ; Macrolide 2'-phosphotransferase type I 5IGP ; 1.6 ; Macrolide 2'-phosphotransferase type I - complex with GDP and erythromycin 5IGR ; 1.6 ; Macrolide 2'-phosphotransferase type I - complex with GDP and oleandomycin 5IGI ; 1.2 ; Macrolide 2'-phosphotransferase type I - complex with guanosine and azithromycin 5IGJ ; 1.4 ; Macrolide 2'-phosphotransferase type I - complex with guanosine and clarithromycin 5IGT ; 1.39 ; Macrolide 2'-phosphotransferase type I - complex with guanosine and erythromycin 5IGS ; 1.38 ; Macrolide 2'-phosphotransferase type I - complex with guanosine and oleandomycin 5IGU ; 2.1 ; Macrolide 2'-phosphotransferase type II 5IGV ; 1.55 ; Macrolide 2'-phosphotransferase type II - complex with GDP and azithromycin 5IGW ; 2.096 ; Macrolide 2'-phosphotransferase type II - complex with GDP and clarithromycin 5IGY ; 1.45 ; Macrolide 2'-phosphotransferase type II - complex with GDP and erythromycin 5IH1 ; 1.31 ; Macrolide 2'-phosphotransferase type II - complex with GDP and phosphorylated josamycin 5IGZ ; 1.6 ; Macrolide 2'-phosphotransferase type II - complex with GDP and spiramycin 5IWU ; 1.3 ; Macrolide 2'-phosphotransferase type II complexed with erythromycin 5IH0 ; 1.65 ; Macrolide 2'-phosphotransferase type II Y92M mutant - complex with GDP and erythromycin 5E79 ; 3.5 ; Macromolecular diffractive imaging using imperfect crystals 5E7C ; 4.5 ; Macromolecular diffractive imaging using imperfect crystals - Bragg data 1HDS ; 1.98 ; MACROMOLECULAR STRUCTURE REFINEMENT BY RESTRAINED LEAST-SQUARES AND INTERACTIVE GRAPHICS AS APPLIED TO SICKLING DEER TYPE III HEMOGLOBIN 2MCM ; 1.5 ; MACROMOMYCIN 8CA0 ; ; Macrophage inhibitory factor (MIF) in complex with small molecule PAV174 1FIM ; 2.2 ; MACROPHAGE MIGRATION INHIBITORY FACTOR 1MIF ; 2.6 ; MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) 3DJH ; 1.25 ; Macrophage Migration Inhibitory Factor (MIF) at 1.25 A Resolution 3IJG ; 1.7 ; Macrophage Migration Inhibitory Factor (MIF) Bound to the (R)-Stereoisomer of AV1013 3B9S ; 1.8 ; Macrophage Migration Inhibitory Factor (MIF) complexed with Inhibitor, 4-IPP. 1GCZ ; 1.9 ; MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) COMPLEXED WITH INHIBITOR. 2OOZ ; 1.8 ; Macrophage Migration Inhibitory Factor (MIF) Complexed with OXIM6 (an OXIM Derivative Not Containing a Ring in its R-group) 3B64 ; 1.03 ; Macrophage Migration Inhibitory Factor (MIF) From /Leishmania Major 1CGQ ; 2.0 ; MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) WITH ALANINE INSERTED BETWEEN PRO-1 AND MET-2 6FVE ; 1.41 ; Macrophage Migration Inhibitory Factor (MIF) with Covalently Bound FITC 3SMC ; 1.8 ; Macrophage Migration Inhibitory Factor (MIF) with Covalently Bound L-sulforaphane 6FVH ; 1.4 ; Macrophage Migration Inhibitory Factor (MIF) with Covalently Bound PITC 1CA7 ; 2.5 ; MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) WITH HYDROXPHENYLPYRUVATE 1P1G ; 2.5 ; MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) WITH PRO-1 MUTATED TO GLY-1 5J7P ; 1.85 ; Macrophage Migration Inhibitory Factor bound to Covalent Inhibitor RDR03785 5J7Q ; 2.05 ; Macrophage Migration Inhibitory Factor bound to Inhibitor K664 Derivative 4F2K ; 1.53 ; Macrophage Migration Inhibitory Factor covalently complexed with phenethylisothiocyanate 2OS5 ; 1.6 ; Macrophage migration inhibitory factor from Ancylostoma ceylanicum 4WR8 ; 2.6 ; Macrophage Migration Inhibitory Factor in complex with a biaryltriazole inhibitor (3b-180) 4WRB ; 1.81 ; Macrophage Migration Inhibitory Factor in complex with a biaryltriazole inhibitor (3b-190) 6B1K ; 1.17 ; Macrophage Migration Inhibitory Factor in Complex with a Naphthyridinone Inhibitor (3a) 6B1C ; 2.163 ; Macrophage Migration Inhibitory Factor in complex with a Naphthyridinone Inhibitor (4a) 6B2C ; 2.0 ; Macrophage Migration Inhibitory Factor in Complex with a Naphthyridinone Inhibitor (4b) 6CBG ; 2.0 ; Macrophage Migration Inhibitory Factor in Complex with a Pyrazole Inhibitor (5) 6CBF ; 2.3 ; Macrophage Migration Inhibitory Factor in Complex with a Pyrazole Inhibitor (6a) 6CB5 ; 1.78 ; Macrophage Migration Inhibitory Factor in complex with a Pyrazole Inhibitor (8g) 6CBH ; 2.0 ; Macrophage Migration Inhibitory Factor in Complex with a Pyrazole Inhibitor (8m) 4DH4 ; 1.82 ; Macrophage migration inhibitory factor Toxoplasma gondii 1MFF ; 2.0 ; MACROPHAGE MIGRATION INHIBITORY FACTOR Y95F MUTANT 5W1M ; 3.91 ; MACV GP1 CR1-07 Fab complex 1F6Y ; 2.2 ; MAD CRYSTAL STRUCTURE ANALYSIS OF METHYLTETRAHYDROFOLATE: CORRINOID/IRON-SULFUR PROTEIN METHYLTRANSFERASE (METR) 242D ; 1.65 ; MAD PHASING STRATEGIES EXPLORED WITH A BROMINATED OLIGONUCLEOTIDE CRYSTAL AT 1.65 A RESOLUTION. 1E3U ; 1.66 ; MAD structure of OXA10 class D beta-lactamase 1OAP ; 1.93 ; Mad structure of the periplasmique domain of the Escherichia coli PAL protein 4BOH ; 2.595 ; Madanins (MEROPS I53) are cleaved by thrombin and factor Xa 7PZE ; 2.6 ; MademoiseLLE domain 2 of Rrm4 from Ustilago maydis 6ZNG ; 2.72 ; MaeB full-length acetyl-CoA bound state 6ZNJ ; 3.7 ; MaeB full-length enzyme apoprotein form 6ZN4 ; 1.679 ; MaeB malic enzyme domain apoprotein 6ZN7 ; 1.67 ; MaeB malic enzyme domain apoprotein 6ZN9 ; 2.72 ; MaeB PTA domain apoprotein 6ZNU ; 2.33 ; MaeB PTA domain E544R mutant 6ZNK ; 3.039 ; MaeB PTA domain N718D mutant 6ZNR ; 2.217 ; MaeB PTA domain R535A mutant 6ZNE ; 2.393 ; MaeB PTA domain R535E mutant 6ZNT ; 1.96 ; MaeB PTA domain, acetyl-CoA bound form 7UPN ; 3.5 ; Maedi visna virus Vif in complex with CypA and E3 ubiquitin ligase 5LLJ ; 1.78 ; Maedi-Visna virus (MVV) integrase C-terminal domain (residues 220-276) 5T3A ; 2.501 ; Maedi-Visna virus (MVV) integrase CCD-CTD (residues 60-275) 5AF0 ; 2.401 ; MAEL domain from Bombyx mori Maelstrom 5LWL ; 3.1 ; MaeR D54A mutant response regulator bound to sulfate 5LWK ; 2.11 ; MaeR response regulator bound to beryllium trifluoride 7Q4Q ; 1.65 ; Magacizumab Fab fragment in complex with human LRG1 epitope 2LSA ; ; Magainin 3MDS ; 1.8 ; MAGANESE SUPEROXIDE DISMUTASE FROM THERMUS THERMOPHILUS 5BRZ ; 2.62 ; MAGE-A3 reactive TCR in complex with MAGE-A3 in HLA-A1 5BS0 ; 2.4 ; MAGE-A3 Reactive TCR in complex with Titin Epitope in HLA-A1 7UOA ; 3.5 ; MAGEA4-MTP1 linear peptide complex 5N7F ; 2.3 ; MAGI-1 complexed with a pRSK1 peptide 5N7D ; 2.3 ; MAGI-1 complexed with a RSK1 peptide 5N7G ; 2.95 ; MAGI-1 complexed with a synthetic pRSK1 peptide 2KPK ; ; MAGI-1 PDZ1 2KPL ; ; MAGI-1 PDZ1 / E6CT 6TWQ ; 2.65 ; MAGI1_2 complexed with a 16E6 peptide 6TWU ; 2.4 ; MAGI1_2 complexed with a phosphomimetic 16E6 peptide 6TWY ; 2.3 ; MAGI1_2 complexed with a phosphomimetic RSK1 peptide 6TWX ; 2.3 ; MAGI1_2 complexed with a phosphorylated 16E6 peptide 7M0G ; ; Magic Angle Spinning NMR Structure of Human Cofilin-2 Assembled on Actin Filaments 7U8K ; ; Magic Angle Spinning NMR Structure of Human Cofilin-2 Assembled on Actin Filaments 7QI2 ; ; Magic-angle spinning NMR structure of the human voltage-dependent anion channel 1 (E73V/C127A/C232S) in DMPC lipid bilayers 7RIK ; ; Magic-Angle-Spinning NMR Structure of Kinesin-1 Motor Domain Assembled with Microtubules 2KAD ; ; Magic-Angle-Spinning Solid-State NMR Structure of Influenza A M2 Transmembrane Domain 3Q46 ; 0.99 ; Magnesium activated Inorganic pyrophosphatase from Thermococcus thioreducens bound to hydrolyzed product at 0.99 Angstrom resolution 1CHN ; 1.76 ; MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL CHANGES INVOLVING ITS FUNCTIONAL SURFACE 5XT8 ; 2.01 ; Magnesium bound apo structure of thymidylate kinase (form I) from Thermus thermophilus HB8 6YTJ ; 2.79 ; Magnesium chelatase H subunit (ChlH) E625K variant from Synechocystis sp.PCC6803 6YT0 ; 2.85 ; Magnesium chelatase H subunit (ChlH) E660D variant from Synechocystis sp.PCC6803 6YTN ; 2.7 ; Magnesium chelatase H subunit (ChlH) E660W variant from Synechocystis sp.PCC6803 6YSG ; 2.54 ; Magnesium chelatase H subunit (ChlH) from Synechocystis sp.PCC6803 to 2.54 A resolution 1U7O ; 1.9 ; Magnesium Dependent Phosphatase 1 (MDP-1) 6LB9 ; 2.227 ; Magnesium ion-bound SspB crystal structure 5C2L ; 2.009 ; Magnesium soaked into the active site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 1QSH ; 1.7 ; MAGNESIUM(II)-AND ZINC(II)-PROTOPORPHYRIN IX'S STABILIZE THE LOWEST OXYGEN AFFINITY STATE OF HUMAN HEMOGLOBIN EVEN MORE STRONGLY THAN DEOXYHEME 1QSI ; 1.7 ; MAGNESIUM(II)-AND ZINC(II)-PROTOPORPHYRIN IX'S STABILIZE THE LOWEST OXYGEN AFFINITY STATE OF HUMAN HEMOGLOBIN EVEN MORE STRONGLY THAN DEOXYHEME 3EJA ; 1.902 ; Magnesium-bound glycoside hydrolase 61 isoform E from Thielavia terrestris 1UUN ; 2.5 ; Main porin from Mycobacterium smegmatis (MspA) 3D23 ; 2.5 ; Main protease of HCoV-HKU1 3DQ0 ; 1.9 ; Maize cytokinin oxidase/dehydrogenase complexed with N6-(3-methoxy-phenyl)adenine 3S1C ; 2.09 ; Maize cytokinin oxidase/dehydrogenase complexed with N6-isopentenyladenosine 3BW7 ; 1.95 ; Maize cytokinin oxidase/dehydrogenase complexed with the allenic cytokinin analog HA-1 3C0P ; 1.95 ; Maize cytokinin oxidase/dehydrogenase complexed with the allenic cytokinin analog HA-8 3B2F ; 1.7 ; Maize Ferredoxin 1 1MZL ; 1.9 ; MAIZE NONSPECIFIC LIPID TRANSFER PROTEIN 1MZM ; 1.78 ; MAIZE NONSPECIFIC LIPID TRANSFER PROTEIN COMPLEXED WITH PALMITATE 7MIA ; 1.9 ; Maize rayado fino virus protease 7MIC ; 2.09 ; Maize rayado fino virus protease in complex with Ubiquitin 1ITZ ; 2.3 ; Maize Transketolase in complex with TPP 8CI0 ; 1.902 ; Maize Transketolase in complex with TPP and hydrolyzed (+)-Cornexistin 1GGB ; 2.8 ; MAJOR ANTIGEN-INDUCED DOMAIN REARRANGEMENTS IN AN ANTIBODY 1GGC ; 2.8 ; MAJOR ANTIGEN-INDUCED DOMAIN REARRANGEMENTS IN AN ANTIBODY 6R5H ; 1.75 ; Major aspartyl peptidase 1 from C. neoformans 6R6A ; 1.8 ; Major aspartyl peptidase 1 from C. neoformans 6R61 ; 1.81 ; Major aspartyl peptidase 1 from C. neoformans in complex with Inhibitor LP258 4K7H ; 3.5964 ; Major capsid protein P1 of the Pseudomonas phage phi6 3MEF ; ; MAJOR COLD-SHOCK PROTEIN FROM ESCHERICHIA COLI SOLUTION NMR STRUCTURE 1NMF ; ; MAJOR COLD-SHOCK PROTEIN, NMR, 20 STRUCTURES 1NMG ; ; MAJOR COLD-SHOCK PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 2LX1 ; ; Major Conformation of the Internal Loop 5'GAGU/3'UGAG 7FG3 ; 3.9 ; Major cryo-EM structure of S protein trimer of SARS-CoV2 with K-874, composite map 1XAV ; ; Major G-quadruplex structure formed in human c-MYC promoter, a monomeric parallel-stranded quadruplex 2M27 ; ; Major G-quadruplex structure formed in human VEGF promoter, a monomeric parallel-stranded quadruplex 2MNX ; ; Major groove orientation of the (2S)-N6-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine DNA adduct induced by 1,2-epoxy-3-butene 8UOP ; 3.8 ; Major interface of Streptococcal surface enolase dimer from AP53 group A streptococcus bound to a lipid vesicle 8UOY ; 3.4 ; Major interface of Streptococcal surface enolase dimer from AP53 group A streptococcus bound to a lipid vesicle 3KFI ; 1.42 ; Major mouse urinary protein IV complexed with 2,5-dimethylpyrazine 3KFH ; 1.02 ; Major mouse urinary protein IV complexed with 2-ethylhexanol 3KFG ; 1.43 ; Major mouse urinary protein IV complexed with 2-heptanone 3KFF ; 0.96 ; Major mouse urinary protein IV complexed with 2-sec-butyl-4,5-dihydrothiazole 7XO1 ; 3.0 ; Major polymorph in alpha-synuclein fibril seeded by cerebrospinal fluid from a mid-to-late stage (mid-PD-1) Parkinson's disease patient 8H04 ; 3.0 ; Major polymorph in alpha-synuclein fibril seeded by cerebrospinal fluid from a postmortal Parkinson's disease patient 8H03 ; 2.8 ; Major polymorph in alpha-synuclein fibril seeded by cerebrospinal fluid from a preclinical Parkinson's disease patient 7OVT ; 2.69 ; major seeded in vitro fibril morphology from murine SAA1.1 protein 1MSP ; 2.5 ; MAJOR SPERM PROTEIN, ALPHA ISOFORM (RECOMBINANT), PH 4.6 2MSP ; 3.3 ; MAJOR SPERM PROTEIN, BETA ISOFORM, ENGINEERED C59S/T90C MUTANT, PUTATIVE SUBFILAMENT STRUCTURE, PH 8.5 6Y1H ; ; Major subunit ComGC from S. pneumoniae Com pseudopili 6TXT ; ; Major subunit ComGC from S. sanguinis Com pseudopili 1YU3 ; 2.52 ; Major Tropism Determinant I1 Variant 1YU2 ; 1.86 ; Major Tropism Determinant M1 Variant 2IOU ; 3.16 ; Major Tropism Determinant P1 (Mtd-P1) Variant Complexed with Bordetella brochiseptica Virulence Factor Pertactin extracellular domain (Prn-E). 1YU0 ; 1.56 ; Major Tropism Determinant P1 Variant 1YU1 ; 2.07 ; Major Tropism Determinant P3c Variant 1YU4 ; 1.87 ; Major Tropism Determinant U1 Variant 6TCT ; 2.02 ; MakD from the mak operon of Vibrio cholerae 2EXG ; ; Making Protein-Protein Interactions Drugable: Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain 4ABO ; 8.6 ; Mal3 CH domain homology model and mammalian tubulin (2XRP) docked into the 8.6-Angstrom cryo-EM map of Mal3-GTPgammaS-microtubules 4GGN ; 2.29 ; Malaria invasion machinery protein complex 4GFT ; 1.6 ; Malaria invasion machinery protein-Nanobody complex 2RJI ; 1.8 ; Malarial EBA-175 region VI crystallographic structure reveals a KIX-like binding interface 2NQ8 ; 2.5 ; Malarial enoyl acyl ACP reductase bound with INH-NAD adduct 1CJB ; 2.0 ; MALARIAL PURINE PHOSPHORIBOSYLTRANSFERASE 5Z3W ; 2.29 ; Malate dehydrogenase binds silver at C113 1B8P ; 1.9 ; MALATE DEHYDROGENASE FROM AQUASPIRILLUM ARCTICUM 1B8U ; 2.5 ; MALATE DEHYDROGENASE FROM AQUASPIRILLUM ARCTICUM 1B8V ; 2.1 ; Malate dehydrogenase from Aquaspirillum arcticum 7BY8 ; 1.945 ; Malate Dehydrogenase from Geobacillus stearothermophilus (gs-MDH) 7BYA ; 2.2 ; Malate Dehydrogenase from Geobacillus stearothermophilus (gs-MDH) complexed with Oxaloacetic Acid (OAA) and Adenosine 5'-Diphosphoribose (APR) 7BY9 ; 2.2 ; Malate Dehydrogenase from Geobacillus stearothermophilus (gs-MDH) complexed with Oxaloacetic Acid (OAA) and Nicotinamide Adenine Dinucleotide (NAD) 7X1L ; 2.28 ; Malate dehydrogenase from Geobacillus stearothermophilus (gs-MDH) delta E311 mutant complexed with Nicotinamide Adenine Dinucleotide (NAD+) 7F8D ; 2.4 ; Malate Dehydrogenase from Geobacillus stearothermophilus (gs-MDH) G218Y mutant 5ULV ; 1.66 ; Malate dehydrogenase from Methylobacterium extorquens 5UJK ; 1.53 ; Malate dehydrogenase from Methylobacterium extorquens, complexed with NAD 3HHP ; 1.45 ; Malate dehydrogenase open conformation 1D8C ; 2.0 ; MALATE SYNTHASE G COMPLEXED WITH MAGNESIUM AND GLYOXYLATE 2JWP ; ; Malectin 1TOK ; 1.85 ; Maleic acid-bound structure of SRHEPT mutant of E. coli aspartate aminotransferase 5CEE ; 2.498 ; Malic enzyme from Candidatus Phytoplasma AYWB in complex with NAD and Mg2+ 6URF ; 3.6 ; Malic enzyme from Mycobacterium tuberculosis 1GQ2 ; 2.5 ; Malic Enzyme from Pigeon Liver 1G29 ; 1.9 ; MALK 2ZO9 ; 2.2 ; Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal ion preference 2ZOA ; 2.4 ; Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) COLLECTED AT 1.280 ANGSTROM 3NYR ; 1.45 ; Malonyl-CoA Ligase Ternary Product Complex with Malonyl-CoA and AMP bound 3NYQ ; 1.43 ; Malonyl-CoA Ligase Ternary Product Complex with Methylmalonyl-CoA and AMP bound 8A30 ; 1.45 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal Apo 8AET ; 2.0 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal E779W variant 8A8T ; 2.11 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal NADP and malonate bound 8A7S ; 1.542 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal NADP bound 8AEO ; 1.76 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal R773A variant 8AEQ ; 1.64 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal R773Q variant 8AER ; 1.77 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - C-terminal Y731A variant 8AEW ; 2.72 ; Malonyl-CoA reductase from Chloroflexus aurantiacus - N-terminal Apo 1NM2 ; 2.0 ; Malonyl-CoA:ACP Transacylase 7A41 ; 2.13 ; MALT1 in complex with a NVS-MALT1 chemical probe 7PAV ; 2.199 ; MALT1 in complex with compound 1 7PAW ; 2.19 ; MALT1 in complex with compound 1 6YN9 ; 2.558 ; MALT1(329-728) in complex with a sulfonamide containing compound 3RT1 ; 2.8 ; Maltodextarn bound activated state form of yeast glycogen synthase isoform 2 3RSZ ; 3.009 ; Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 5MTU ; 0.999 ; Maltodextrin binding protein MalE1 from L. casei BL23 bound to alpha-cyclodextrin 5MK9 ; 0.919 ; Maltodextrin binding protein MalE1 from L. casei BL23 bound to beta-cyclodextrin 5MKA ; 1.149 ; Maltodextrin binding protein MalE1 from L. casei BL23 bound to gamma-cyclodextrin 5MTT ; 1.12 ; Maltodextrin binding protein MalE1 from L. casei BL23 bound to maltotetraose 5M28 ; 1.079 ; Maltodextrin binding protein MalE1 from L. casei BL23 bound to maltotriose 5MKB ; 1.698 ; Maltodextrin binding protein MalE1 from L. casei BL23 without ligand 4MBP ; 1.7 ; MALTODEXTRIN BINDING PROTEIN WITH BOUND MALTETROSE 1ANF ; 1.67 ; MALTODEXTRIN BINDING PROTEIN WITH BOUND MALTOSE 1MPB ; 2.0 ; MALTODEXTRIN-BINDING PROTEIN (MALTOSE-BINDING PROTEIN) MUTANT, WITH ARGININE REPLACING TRYPTOPHAN AT POSITION 230 (TRP-230-ARG) 1MPC ; 2.1 ; MALTODEXTRIN-BINDING PROTEIN (MALTOSE-BINDING PROTEIN) MUTANT, WITH ARGININE REPLACING TRYPTOPHAN AT POSITION 230 (TRP-230-ARG) 1MPD ; 2.3 ; MALTODEXTRIN-BINDING PROTEIN (MALTOSE-BINDING PROTEIN) MUTANT, WITH ARGININE REPLACING TRYPTOPHAN AT POSITION 230 (TRP-230-ARG), COMPLEXED WITH MALTOSE 1IUD ; 2.7 ; MALTODEXTRIN-BINDING PROTEIN INSERTION/DELETION MUTANT WITH AN INSERTED B-CELL EPITOPE FROM THE PRES2 REGION OF HEPATITIS B VIRUS 1JVX ; 2.5 ; Maltodextrin-binding protein variant D207C/A301GS/P316C cross-linked in crystal 1JVY ; 1.9 ; Maltodextrin-binding protein variant D207C/A301GS/P316C with beta-mercaptoethanol mixed disulfides 3MBP ; 1.7 ; MALTODEXTRIN-BINDING PROTEIN WITH BOUND MALTOTRIOSE 1MPR ; 2.8 ; MALTOPORIN FROM SALMONELLA TYPHIMURIUM 2MPR ; 2.4 ; MALTOPORIN FROM SALMONELLA TYPHIMURIUM 1MPO ; 2.8 ; MALTOPORIN MALTOHEXAOSE COMPLEX 1MPM ; 2.6 ; MALTOPORIN MALTOSE COMPLEX 1MPN ; 3.2 ; MALTOPORIN MALTOTRIOSE COMPLEX 1AF6 ; 2.4 ; MALTOPORIN SUCROSE COMPLEX 1MPQ ; 3.0 ; MALTOPORIN TREHALOSE COMPLEX 3DM0 ; 2.4 ; Maltose Binding Protein fusion with RACK1 from A. thaliana 5LDF ; 6.2 ; Maltose binding protein genetically fused to dodecameric glutamine synthetase 1MH3 ; 2.1 ; maltose binding-a1 homeodomain protein chimera, crystal form I 1MH4 ; 2.3 ; maltose binding-a1 homeodomain protein chimera, crystal form II 6DTQ ; 2.15 ; Maltose bound T. maritima MalE3 1H54 ; 2.15 ; Maltose phosphorylase from Lactobacillus brevis 1YTV ; 1.8 ; Maltose-binding protein fusion to a C-terminal fragment of the V1a vasopressin receptor 3OSQ ; 1.9 ; Maltose-bound maltose sensor engineered by insertion of circularly permuted green fluorescent protein into E. coli maltose binding protein at position 175 3OSR ; 2.0 ; Maltose-bound maltose sensor engineered by insertion of circularly permuted green fluorescent protein into E. coli maltose binding protein at position 311 1SO7 ; 1.49 ; Maltose-induced structure of the human cytolsolic sialidase Neu2 6FFL ; 1.707 ; Maltose/maltodextrin-binding domain MalE from Bdellovibrio bacteriovorus bound to maltotriose 1GJU ; 2.4 ; Maltosyltransferase from Thermotoga maritima 6DTU ; 1.5 ; Maltotetraose bound T. maritima MalE1 6DTS ; 1.5 ; Maltotetraose bound T. maritima MalE2 1JDA ; 2.2 ; MALTOTETRAOSE-FORMING EXO-AMYLASE 5CGT ; 2.5 ; MALTOTRIOSE COMPLEX OF PRECONDITIONED CYCLODEXTRIN GLYCOSYLTRANSFERASE MUTANT 5UGR ; 1.56 ; Malyl-CoA lyase from Methylobacterium extorquens 5L73 ; 2.24 ; MAM domain of human neuropilin-1 4XI0 ; 2.88 ; MamA 41-end from Desulfovibrio magneticus RS-1 3AS4 ; 2.33 ; MamA AMB-1 C2221 3AS5 ; 2.0 ; MamA AMB-1 P212121 3ASH ; 2.41 ; MamA D159K mutant 1 3ASG ; 2.33 ; MamA D159K mutant 2 3ASF ; 2.39 ; MamA MSR-1 C2 3AS8 ; 2.0 ; MamA MSR-1 P41212 3ASD ; 2.45 ; MamA R50E mutant 5LFL ; 3.37 ; MamA RS-1 ArsTM double mutant 5LFM ; 3.28 ; MamA RS-1 ArsTM double mutant 5HO3 ; 2.15 ; MamB 5HO5 ; 1.99 ; MamB 6QFJ ; 2.13 ; MamB CTD magnetosome protein [Desulfamplus magnetovallimortis BW-1] 5HO1 ; 2.53 ; MamB-CTD 5HOK ; 1.7 ; MamB-CTD mutant - D247A 1IMT ; ; MAMBA INTESTINAL TOXIN 1, NMR, 39 STRUCTURES 2MFA ; ; Mambalgin-2 5LJV ; 3.64 ; MamK double helical filament 5LJW ; 1.8 ; MamK non-polymerising A278D mutant bound to AMPPNP 6GMT ; 1.59 ; MamM CTD - Cadmium form 6GP6 ; 2.146 ; MamM CTD - Copper form 6GMV ; 1.59 ; MamM CTD - Nickel form 6G55 ; 1.65 ; MamM CTD C267S 6H9Q ; 1.5 ; MamM CTD D249E - Cadmium form 6H5K ; 1.54 ; MamM CTD D249E - Zinc form 6H84 ; 2.04 ; MamM CTD D249H - Cadmium form 6H83 ; 1.5 ; MamM CTD D249H - Copper form 6HA2 ; 1.5 ; MamM CTD D249H-H285D 6H88 ; 1.5 ; MamM CTD D249N 6H8A ; 1.8 ; MamM CTD D249N - Cadmium form 6H89 ; 1.7 ; MamM CTD D249N - Copper form 6H8D ; 1.62 ; MamM CTD D249N - Nickel form 6H87 ; 1.5 ; MamM CTD D249N - Zinc form 6HHS ; 2.7 ; MamM CTD E289D - Cadmium form 6H9P ; 2.1 ; MamM CTD E289D - Manganese form 6H81 ; 1.5 ; MamM CTD E289H - Nickel form 6G64 ; 1.9 ; MamM CTD H264A-E289A 6G5E ; 1.6 ; MamM CTD H264A-E289A-C267S 6H5V ; 1.49 ; MamM CTD H264E 6H8G ; 1.35 ; MamM CTD H264E - Cadmium form 1 6HAO ; 2.4 ; MamM CTD H264E - Cadmium form 2 6H5M ; 1.6 ; MamM CTD H264E - Zinc form 1 6H5U ; 2.0 ; MamM CTD H264E - Zinc form 2 6HAN ; 2.6 ; MamM CTD H264E-E289H 6H85 ; 2.0 ; MamM CTD H264E-E289H - Cadmium form 6H8I ; 1.4 ; MamM CTD H285D 6H9T ; 1.7 ; MamM CTD H285D - Cadmium form 5HSP ; 1.79 ; MamM CTD M250L 6G6I ; 2.4 ; MamM CTD W247A 3W8G ; 2.05 ; MamM V260R 3W5X ; 1.6 ; MamM-CTD 3W5Y ; 1.95 ; MamM-CTD 3W63 ; 1.9 ; MamM-CTD 215-293 3W64 ; 2.85 ; MamM-CTD 215-293 3W5Z ; 1.66 ; MamM-CTD D249A 3W65 ; 2.37 ; MamM-CTD D249A and H264A 3W66 ; 2.05 ; MamM-CTD D249A and H285A 3W8P ; 1.8 ; MamM-CTD D249A&H28A mutant 3W62 ; 1.64 ; MamM-CTD E289A 3W60 ; 1.82 ; MamM-CTD H264A 3W61 ; 1.59 ; MamM-CTD H285A 5FLX ; 3.9 ; Mammalian 40S HCV-IRES complex 6YAL ; 3.0 ; Mammalian 48S late-stage initiation complex with beta-globin mRNA 6YAM ; 3.6 ; Mammalian 48S late-stage translation initiation complex (LS48S+eIF3 IC) with beta-globin mRNA 6YAN ; 3.48 ; Mammalian 48S late-stage translation initiation complex with histone 4 mRNA 4UJC ; 9.5 ; mammalian 80S HCV-IRES initiation complex with eIF5B POST-like state 4UJD ; 8.9 ; mammalian 80S HCV-IRES initiation complex with eIF5B PRE-like state 7TOR ; 2.9 ; Mammalian 80S ribosome bound with the ALS/FTD-associated dipeptide repeat protein GR20 7TOQ ; 3.1 ; Mammalian 80S ribosome bound with the ALS/FTD-associated dipeptide repeat protein poly-PR 6D90 ; 3.2 ; Mammalian 80S ribosome with a double translocated CrPV-IRES, P-site tRNA and eRF1. 6D9J ; 3.2 ; Mammalian 80S ribosome with a double translocated CrPV-IRES, P-sitetRNA and eRF1. 7UCJ ; 3.1 ; Mammalian 80S translation initiation complex with mRNA and Harringtonine 4BC7 ; 2.4 ; MAMMALIAN ALKYLDIHYDROXYACETONEPHOSPHATE SYNTHASE: Arg419His mutant 4BCA ; 2.4 ; MAMMALIAN ALKYLDIHYDROXYACETONEPHOSPHATE SYNTHASE: Tyr578Phe mutant 4BBY ; 1.9 ; MAMMALIAN ALKYLDIHYDROXYACETONEPHOSPHATE SYNTHASE: WILD-TYPE 4BC9 ; 2.41 ; MAMMALIAN ALKYLDIHYDROXYACETONEPHOSPHATE SYNTHASE: WILD-TYPE, ADDUCT WITH CYANOETHYL 1QHU ; 2.3 ; MAMMALIAN BLOOD SERUM HAEMOPEXIN DEGLYCOSYLATED AND IN COMPLEX WITH ITS LIGAND HAEM 1QJS ; 2.9 ; mammalian blood serum haemopexin glycosylated-native protein and in complex with its ligand haem 8D4T ; 3.1 ; Mammalian CIV with GDN bound 3GDI ; 2.4 ; Mammalian Clock Protein mPER2 - Crystal Structure of a PAS Domain Fragment 4MLP ; 1.943 ; Mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase 7ZPI ; 5.91 ; Mammalian Dicer in the ""dicing state"" with pre-miR-15a substrate 7YYM ; 4.19 ; Mammalian Dicer in the ""pre-dicing state"" with pre-miR-15a substrate 7ZPJ ; 3.81 ; Mammalian Dicer in the ""pre-dicing state"" with pre-miR-15a substrate and TARBP2 subunit 7ZPK ; 3.81 ; Mammalian Dicer in the ""pre-dicing state"" with pre-miR-15a substrate and TARBP2 subunit 7YYN ; 6.21 ; Mammalian Dicer in the dicing state with pre-miR-15a substrate 5YE2 ; 5.8 ; mammalian endo-lysosomal TRPML1 channel inserting into amphipol 3IZY ; 10.8 ; Mammalian mitochondrial translation initiation factor 2 7NWI ; 3.13 ; Mammalian pre-termination 80S ribosome with Empty-A site bound by Blasticidin S 7NWH ; 4.1 ; Mammalian pre-termination 80S ribosome with eRF1 and eRF3 bound by Blasticidin S. 7NWG ; 3.8 ; Mammalian pre-termination 80S ribosome with Hybrid P/E- and A/P-site tRNA's bound by Blasticidin S. 7NFX ; 3.2 ; Mammalian ribosome nascent chain complex with SRP and SRP receptor in early state A 1Y7Q ; ; Mammalian SCAN domain dimer is a domain-swapped homologue of the HIV capsid C-terminal domain 2A79 ; 2.9 ; Mammalian Shaker Kv1.2 potassium channel- beta subunit complex 1H6V ; 3.0 ; Mammalian thioredoxin reductase 4C0S ; 2.703 ; Mammalian translation elongation factor eEF1A2 6VQ6 ; 3.9 ; Mammalian V-ATPase from rat brain - composite model of rotational state 1 bound to ADP and SidK (built from focused refinement models) 6VQ7 ; 4.0 ; Mammalian V-ATPase from rat brain - composite model of rotational state 2 bound to ADP and SidK (built from focused refinement models) 6VQ8 ; 3.9 ; Mammalian V-ATPase from rat brain - composite model of rotational state 3 bound to ADP and SidK (built from focused refinement models) 6VQI ; 4.3 ; Mammalian V-ATPase from rat brain collar and peripheral stalks rotational state 1 (from focused refinement) 6VQJ ; 5.7 ; Mammalian V-ATPase from rat brain collar and peripheral stalks rotational state 2 (from focused refinement) 6VQK ; 5.7 ; Mammalian V-ATPase from rat brain collar and peripheral stalks rotational state 3 (from focused refinement) 6VQC ; 3.8 ; Mammalian V-ATPase from rat brain membrane-embedded Vo region rotational state 1 (from focused refinement) 6VQG ; 4.2 ; Mammalian V-ATPase from rat brain membrane-embedded Vo region rotational state 2 (from focused refinement) 6VQH ; 4.4 ; Mammalian V-ATPase from rat brain membrane-embedded Vo region rotational state 3 (from focused refinement) 6VQ9 ; 3.6 ; Mammalian V-ATPase from rat brain soluble V1 region rotational state 1 with SidK and ADP (from focused refinement) 6VQA ; 3.7 ; Mammalian V-ATPase from rat brain soluble V1 region rotational state 2 with SidK and ADP (from focused refinement) 6VQB ; 3.6 ; Mammalian V-ATPase from rat brain soluble V1 region rotational state 2 with SidK and ADP (from focused refinement) 1QDO ; 2.8 ; MAN(APLHA1-3)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX 1QDC ; 2.0 ; MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX 6A13 ; 1.7 ; Mandelate oxidase mutant-Y128F 6A1N ; 1.421 ; Mandelate oxidase mutant-Y128F with (2R,3S)-3-fluoro-2-hydroxy-3-phenylpropanoic acid 6A0V ; 1.39 ; Mandelate oxidase mutant-Y128F with (S)-mandelic acid 6A0M ; 1.75 ; Mandelate oxidase mutant-Y128F with 2-Phenylacetic acid 6A1B ; 1.47 ; Mandelate oxidase mutant-Y128F with 3,3,3-trifluoro-2,2-dihydroxypropanoic acid 6A1A ; 1.35 ; Mandelate oxidase mutant-Y128F with 4-hydroxymandelic acid 6A1H ; 1.36 ; Mandelate oxidase mutant-Y128F with 5-deazariboflavin mononucleotide 6A1L ; 1.4 ; Mandelate oxidase mutant-Y128F with 5-deazariboflavin mononucleotide and benzoic acid 6A1M ; 1.55 ; Mandelate oxidase mutant-Y128F with 5-deazariboflavin mononucleotide and benzoylformic acid 6A1P ; 1.51 ; Mandelate oxidase mutant-Y128F with 5-deazariboflavin mononucleotide and phenylpyruvic acid 6A0O ; 1.55 ; Mandelate oxidase mutant-Y128F with benzaldehyde 6A0Y ; 1.7 ; Mandelate oxidase mutant-Y128F with Benzoic acid 6A19 ; 1.55 ; Mandelate oxidase mutant-Y128F with Benzoylformic acid 6A11 ; 1.45 ; Mandelate oxidase mutant-Y128F with phenylpyruvic acid 6A36 ; 1.44 ; Mandelate oxidase mutant-Y128F with the 3-fluoropyruvic acid FMN adduct 6AI7 ; 2.07 ; Mandelate oxidase mutant-Y128F with the C4a-OH-FMN adduct 6A4G ; 2.04 ; Mandelate oxidase mutant-Y128F with the monooxide FMN adduct 6A23 ; 1.65 ; Mandelate oxidase mutant-Y128F with the N5-benzyl-FMN adduct 6A21 ; 1.501 ; Mandelate oxidase mutant-Y128F with the N5-malonyl-FMN adduct 6A1R ; 1.652 ; Mandelate oxidase mutant-Y128F with the N5-phenylacetyl-FMN adduct 6A4H ; 1.99 ; Mandelate oxidase mutant-Y128F with the peroxide FMN adduct 7BSR ; 1.894 ; Mandelate oxidase with the 2-Hydroxy-3-oxosuccinic acid 6A1W ; 1.7 ; Mandelate oxidase with the enoyl FMN epoxide adduct 1DTN ; 2.1 ; MANDELATE RACEMASE MUTANT D270N CO-CRYSTALLIZED WITH (S)-ATROLACTATE 1MRA ; 2.1 ; MANDELATE RACEMASE MUTANT D270N CO-CRYSTALLIZED WITH (S)-ATROLACTATE 1MDL ; 1.85 ; MANDELATE RACEMASE MUTANT K166R CO-CRYSTALLIZED WITH (R)-MANDELATE 6CKH ; 2.1 ; Manduca sexta Peptidoglycan Recognition Protein-1 1BVA ; 1.89 ; MANGANESE BINDING MUTANT IN CYTOCHROME C PEROXIDASE 2O5M ; 1.65 ; Manganese horse heart myoglobin, azide modified 2O5L ; 1.7 ; Manganese horse heart myoglobin, methanol modified 2O5Q ; 1.9 ; Manganese horse heart myoglobin, nitric oxide modified 2O5O ; 1.6 ; Manganese horse heart myoglobin, nitrite modified 2O5B ; 2.0 ; Manganese horse heart myoglobin, reduced 5FNO ; 2.038 ; Manganese Lipoxygenase 1MNP ; 2.0 ; MANGANESE PEROXIDASE 1YYG ; 1.6 ; Manganese peroxidase complexed with Cd(II) inhibitor 1MN1 ; 2.0 ; MANGANESE PEROXIDASE SUBSTRATE BINDING SITE MUTANT D179N 1MN2 ; 2.0 ; MANGANESE PEROXIDASE SUBSTRATE BINDING SITE MUTANT E35Q, D179N 1YZR ; 1.6 ; Manganese peroxidase-Sm(III) complex 2PFQ ; 2.1 ; Manganese promotes catalysis in a DNA polymerase lambda-DNA crystal 6N2V ; 2.85 ; Manganese riboswitch from Xanthmonas oryzae bound to Mn(II) 2CDY ; 2.0 ; Manganese Superoxide Dismutase (Mn-SOD) from Deinococcus radiodurans 2CE4 ; 2.2 ; Manganese Superoxide Dismutase (Mn-SOD) from Deinococcus radiodurans 1VEW ; 2.1 ; MANGANESE SUPEROXIDE DISMUTASE FROM ESCHERICHIA COLI 5A9G ; 1.35 ; Manganese Superoxide Dismutase from Sphingobacterium sp. T2 5FD5 ; 1.91 ; manganese uptake regulator 3S6V ; 2.6 ; Manganese-bound Ac-ASP-7 5ZR4 ; 3.1 ; Manganese-dependent transcriptional repressor 5ZR6 ; 3.0 ; Manganese-dependent transcriptional repressor complex with manganese 5MEG ; 2.0 ; Manganese-substituted Cyanothece lipoxygenase 2 (Mn-CspLOX2) 4WFO ; 1.14 ; manganese-substituted soybean lipoxygenase-1 1DQ5 ; 2.0 ; Manganese;Manganese concanavalin A at pH 5.0 1DQ6 ; 1.9 ; Manganese;Manganese concanavalin A at pH 7.0 3BVG ; 2.0 ; Manipulating the coupled folding and binding process drives affinity maturation in a protein-protein complex 3BVM ; 2.0 ; Manipulating the coupled folding and binding process drives affinity maturation in a protein-protein complex 3BVZ ; 2.3 ; Manipulating the coupled folding and binding process drives affinity maturation in a protein-protein complex 3BYY ; 2.2 ; Manipulating the coupled folding and binding process drives affinity maturation in a protein-protein complex 3BZD ; 2.3 ; Manipulating the coupled folding and binding process drives affinity maturation in a protein-protein complex 2YII ; 2.18 ; Manipulating the regioselectivity of phenylalanine aminomutase: new insights into the reaction mechanism of MIO-dependent enzymes from structure-guided directed evolution 2BGO ; ; Mannan Binding Module from Man5C 2BGP ; ; Mannan Binding Module from Man5C in bound conformation 7EET ; 2.57 ; Mannanase KMAN from Klebsiella oxytoca KUB-CW2-3 5XTJ ; 2.22 ; Mannanase(RmMan134A) 1H5Q ; 1.5 ; Mannitol dehydrogenase from Agaricus bisporus 7OCS ; 2.3 ; Mannitol-1-phosphate bound to the phosphatase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD-D16A from Acinetobacter baumannii 7OCU ; 2.7 ; Mannitol-1-phosphate bound to the phosphatase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD-N374A from Acinetobacter baumannii 7RK5 ; 2.1 ; Mannitol-2-dehydrogenase bound to NADH from Aspergillus fumigatus 7RK4 ; 1.8 ; Mannitol-2-dehydrogenase from Aspergillus fumigatus 3MAN ; 1.6 ; MANNOHEXAOSE COMPLEX OF THERMOMONOSPORA FUSCA BETA-MANNANASE 1RDO ; 1.7 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT 1RDL ; 1.7 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH ALPHA-METHYL-D-MANNOPYRANOSIDE (0.2 M) 1RDM ; 1.9 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH ALPHA-METHYL-D-MANNOPYRANOSIDE (1.3 M) 1RDN ; 1.8 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH ALPHA-METHYL-D-N-ACETYLGLUCOSAMINIDE 1RDI ; 1.8 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH ALPHA-METHYL-L-FUCOPYRANOSIDE 1RDJ ; 1.8 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH BETA-METHYL-L-FUCOPYRANOSIDE 1RDK ; 1.8 ; MANNOSE-BINDING PROTEIN, SUBTILISIN DIGEST FRAGMENT COMPLEX WITH D-GALACTOSE 1BCH ; 2.0 ; MANNOSE-BINDING PROTEIN-A MUTANT (QPDWGH) COMPLEXED WITH N-ACETYL-D-GALACTOSAMINE 1BCJ ; 2.1 ; MANNOSE-BINDING PROTEIN-A MUTANT (QPDWGHV) COMPLEXED WITH N-ACETYL-D-GALACTOSAMINE 6X7X ; 1.3 ; mannose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 1NPL ; 2.0 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM DAFFODIL (NARCISSUS PSEUDONARCISSUS) BULBS IN COMPLEX WITH MANNOSE-ALPHA1,3-MANNOSE 1BWU ; 2.8 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM GARLIC (ALLIUM SATIVUM) BULBS COMPLEXED WITH ALPHA-D-MANNOSE 1KJ1 ; 2.2 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM GARLIC (ALLIUM SATIVUM) BULBS COMPLEXED WITH ALPHA-D-MANNOSE 1MSA ; 2.29 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM SNOWDROP (GALANTHUS NIVALIS) BULBS COMPLEXED WITH METHYL-ALPHA-D-MANNOSIDE 1NIV ; 3.0 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM SNOWDROP (GALANTHUS NIVALIS) BULBS IN COMPLEX WITH MANNOSE-ALPHA 1,3-METHYL-D-MANNOSE 1JPC ; 2.0 ; MANNOSE-SPECIFIC AGGLUTININ (LECTIN) FROM SNOWDROP (GALANTHUS NIVALIS) BULBS IN COMPLEX WITH MANNOSE-ALPHA1,6-(MANNOSE-ALPHA1,3)-MANNOSE-ALPHA1,6-(MANNOSE-ALPHA1,3)-MANNOSE 3BED ; 1.45 ; Mannose/sorbose specific IIA subunit of phosphotransferase system from Enterococcus faecalis 3F1Y ; 2.2 ; Mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus 2WVK ; 2.97 ; Mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 apoprotein 2WVL ; 2.806 ; Mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 in complex with GDP-alpha-D-Mannose and Mg(II) 2Y4M ; 2.7 ; MANNOSYLGLYCERATE SYNTHASE IN COMPLEX WITH GDP-Mannose 2Y4J ; 2.3 ; MANNOSYLGLYCERATE SYNTHASE IN COMPLEX WITH LACTATE 2Y4L ; 2.8 ; MANNOSYLGLYCERATE SYNTHASE IN COMPLEX WITH Manganese and GDP 2Y4K ; 2.45 ; MANNOSYLGLYCERATE SYNTHASE IN COMPLEX WITH MG-GDP 6YV7 ; 2.7 ; Mannosyltransferase PcManGT from Pyrobaculum calidifontis 6YV8 ; 2.6 ; Mannosyltransferase PcManGT from Pyrobaculum calidifontis in complex with GDP and Mn2+ 6YV9 ; 2.7 ; Mannosyltransferase PcManGT from Pyrobaculum calidifontis in complex with GDP-Man and Mn2+ 2MAN ; 1.9 ; MANNOTRIOSE COMPLEX OF THERMOMONOSPORA FUSCA BETA-MANNANASE 2C64 ; 2.2 ; MAO inhibition by rasagiline analogues 2C65 ; 1.7 ; MAO inhibition by rasagiline analogues 2C66 ; 2.5 ; MAO inhibition by rasagiline analogues 2C67 ; 1.7 ; MAO inhibition by rasagiline analogues 5I7N ; 1.65 ; MaoC-like dehydratase 3PG1 ; 1.95 ; MAP kinase LmaMPK10 from Leishmania major (1.95 angs resolution) 3UIB ; 2.65 ; Map kinase LMAMPK10 from leishmania major in complex with SB203580 7PHG ; 4.3 ; MaP OF P5C3RBD Interface 5Z1E ; 2.3 ; MAP2K7 C218S mutant-inhibitor 5Z1D ; 2.28 ; MAP2K7 C276S mutant-inhibitor 5Y90 ; 1.3 ; MAP2K7 mutant -C218S 6Z1T ; 2.31 ; MAP3K14 (NIK) in complex with 4S/3694 6Z1Q ; 2.42 ; MAP3K14 (NIK) in complex with DesF-3R/4076 4U41 ; 2.2 ; MAP4K4 Bound to inhibitor compound 1 4RVT ; 2.4 ; MAP4K4 in complex with a pyridin-2(1H)-one derivative 5DI1 ; 2.9 ; MAP4K4 in complex with an inhibitor 4ZP5 ; 2.29 ; MAP4K4 in complex with inhibitor 5J95 ; 2.5 ; MAP4K4 in complex with inhibitor 4U44 ; 2.43 ; MAP4K4 in complex with inhibitor (compound 16) 4OBO ; 2.1 ; MAP4K4 in complex with inhibitor (compound 22), 6-(3-CHLOROPHENYL)QUINAZOLIN-4-AMINE 4U45 ; 2.58 ; MAP4K4 in complex with inhibitor (compound 25) 4OBP ; 2.27 ; MAP4K4 in complex with inhibitor (compound 29), 6-(2-FLUOROPYRIDIN-4-YL)PYRIDO[3,2-D]PYRIMIDIN-4-AMINE 4OBQ ; 2.19 ; MAP4K4 in complex with inhibitor (compound 31), N-[3-(4-AMINOQUINAZOLIN-6-YL)-5-FLUOROPHENYL]-2-(PYRROLIDIN-1-YL)ACETAMIDE 4U43 ; 2.18 ; MAP4K4 in complex with inhibitor (compound 6) 5W5Q ; 2.33 ; MAP4K4 in complex with inhibitor compound 12 (N3-methyl-10-(3-methyl-3-(5-methyloxazol-2-yl)but-1-yn-1-yl)-6,7-dihydro-5H-5,7-methanobenzo[c]imidazo[1,2-a]azepine-2,3-dicarboxamide) 4ZK5 ; 2.89 ; MAP4K4 in complex with inhibitor GNE-495 4U42 ; 2.504 ; MAP4K4 T181E Mutant Bound to inhibitor compound 1 8RC1 ; 3.7 ; MAP7 MTBD (microtubule binding domain) decorated microtubule protofilament 7CD5 ; 2.7 ; mAPE1-blunt-ended dsDNA product complex 7CD6 ; 2.701 ; mAPE1-recessed dsDNA product complex 4EYJ ; 2.102 ; MAPK13 Complex with inhibitor 4EYM ; 2.353 ; MAPK13 complex with inhibitor 4MYG ; 2.594 ; MAPK13, active form 7BDQ ; 2.75 ; MAPK14 bound with SR300 7BDO ; 2.7 ; MAPK14 bound with SR302 6SFO ; 1.75 ; MAPK14 with bound inhibitor SR-318 3DHS ; 3.6 ; Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA 7JX3 ; 2.65 ; Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology 7JXC ; 2.47 ; Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology 7JXD ; 2.5 ; Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology 7JXE ; 2.043 ; Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology 1UX9 ; 2.4 ; Mapping protein matrix cavities in human cytoglobin through Xe atom binding: a crystallographic investigation 6QUR ; 1.792 ; Mapping the allosteric communication network of aminodeoxychorismate synthase 6DPQ ; 2.94 ; Mapping the binding trajectory of a suicide inhibitor in human indoleamine 2,3-dioxygenase 1 6DPR ; 3.2 ; Mapping the binding trajectory of a suicide inhibitor in human indoleamine 2,3-dioxygenase 1 6MQ6 ; 3.05 ; Mapping the binding trajectory of a suicide inhibitor in human indoleamine 2,3-dioxygenase 1 1Z8Y ; 9.0 ; Mapping the E2 Glycoprotein of Alphaviruses 6TSQ ; 1.85 ; Marasmius oreades agglutinin (MOA) activated by manganese (II) 6TSR ; 1.85 ; Marasmius oreades agglutinin (MOA) activated by manganese (II) and calcium 6TSL ; 1.4 ; Marasmius oreades agglutinin (MOA) in complex with the truncated PVPRAHS synthetic substrate 6YH0 ; 1.56 ; Marasmius oreades agglutinin (MOA) in complex with the truncated PVPRAHS synthetic substrate 6TSM ; 1.4 ; Marasmius oreades agglutinin (MOA) in complex with the truncated PVVRAHS synthetic substrate 6TSO ; 2.1 ; Marasmius oreades agglutinin (MOA) inhibited by cadmium 6TSP ; 1.85 ; Marasmius oreades agglutinin (MOA) inhibited by zinc 6TSN ; 1.6 ; Marasmius oreades agglutinin (MOA), papain back.swap W208Q-Q276W variant 7F1M ; 3.1 ; Marburg virus nucleoprotein-RNA complex 5T3W ; 3.25 ; Marburg virus VP30 bound to nucleoprotein 7FGZ ; 2.2 ; Marine bacterial GH16 hydrolase 6JIA ; 1.9 ; Marine bacterial laminarinase mutant E135A complex with laminaritetraose 6AH8 ; 2.61 ; Marine bacterial prolidase with promiscuous organophosphorus hydrolase activity 7C4D ; 2.03 ; Marine microorganism esterase 5KZ7 ; 3.2 ; Mark2 complex with 7-[(1S)-1-(4-fluorophenyl)ethyl]-5,5-dimethyl-2-(3-pyridylamino)pyrrolo[2,3-d]pyrimidin-6-one 5KZ8 ; 3.21 ; Mark2 complex with 7-[(1S)-1-(4-fluorophenyl)ethyl]-5,5-dimethyl-2-(3-pyridylamino)pyrrolo[2,3-d]pyrimidin-6-one 5ERI ; 2.3 ; MarR Protein from Peptoclostridium difficile DA00132 7LV9 ; 4.5 ; Marseillevirus heterotrimeric (hexameric) nucleosome 6LRU ; 2.4 ; Marsupenaeus japonicus ferritin mutant (T158H) 6LS2 ; 1.6 ; Marsupenaeus japonicus ferritin mutant (T158H) pH 4.0 6LRX ; 1.702 ; Marsupenaeus japonicus ferritin mutant(T158H) 6LRW ; 2.4 ; Marsupenaeus japonicus ferritin mutant(T158H) pH 7.0 6LRV ; 2.3 ; Marsupenaeus japonicus ferritin mutant(T158H) pH9.0 7DQO ; 1.701 ; Marsupenaeus japonicus ferritin mutant-D132R 7L15 ; 2.25 ; Marsupial T cell receptor Spl_118 7K0X ; 3.1 ; Marsupial T cell receptor Spl_145 7K0Z ; 3.2 ; Marsupial T cell receptor Spl_157 5CP0 ; 2.0 ; MAS complex structure of peptide deformylase from Xanthomonas oryzae pv oryzae 8FAU ; 1.44 ; Masking thiol reactivity with thioamide-based MBPs- carbonic anhydrase II complexed with 4-phenylthiazole-2(3H)-thione 8FAL ; 1.37 ; Masking thiol reactivity with thioamide-based MBPs- carbonic anhydrase II complexed with benzo[d]thiazole-2(3H)-thione 1BAX ; ; MASON-PFIZER MONKEY VIRUS MATRIX PROTEIN, NMR, AVERAGE STRUCTURE 7BGT ; 1.93 ; Mason-Pfizer Monkey Virus Protease mutant C7A/D26N/C106A in complex with peptidomimetic inhibitor 7BGU ; 2.433 ; Mason-Pfizer Monkey Virus Protease mutant C7A/D26N/C106A in complex with peptidomimetic inhibitor 6XL3 ; 2.33 ; Mastigocladopsis repens rhodopsin chloride pump 1AKH ; 2.5 ; MAT A1/ALPHA2/DNA TERNARY COMPLEX 7OCK ; 3.6 ; MAT in complex with SAMH 1K61 ; 2.1 ; MATALPHA2 HOMEODOMAIN BOUND TO DNA 6HKE ; 2.11 ; MatC (Rpa3494) from Rhodopseudomonas palustris with bound malate 7Z6S ; 2.9 ; MATCAP bound to a human 14 protofilament microtubule 4Z3P ; 3.3 ; MATE transporter ClbM in complex with Rb+ 4HUL ; 3.81 ; MATE transporter NorM-NG in complex with Cs+ and monobody 4HUM ; 3.49 ; MATE transporter NorM-NG in complex with ethidium and monobody 4HUN ; 3.59 ; MATE transporter NorM-NG in complex with R6G and monobody 4HUK ; 3.59 ; MATE transporter NorM-NG in complex with TPP and monobody 1MMP ; 2.3 ; MATRILYSIN COMPLEXED WITH CARBOXYLATE INHIBITOR 1MMQ ; 1.9 ; MATRILYSIN COMPLEXED WITH HYDROXAMATE INHIBITOR 1MMR ; 2.4 ; MATRILYSIN COMPLEXED WITH SULFODIIMINE INHIBITOR 6T9T ; 1.69 ; Matriptase in complex with the synthetic inhibitor (S)-3-(3-(4-(3-(tert-butyl)ureido)piperidin-1-yl)-2-((3'-fluoro-4'-(hydroxymethyl)-[1,1'-biphenyl])-3-sulfonamido)-3-oxopropyl)benzimidamide (MI-1904) 7VB7 ; 2.4 ; Matrix arm of active state CI from DQ-NADH dataset 7VYN ; 2.4 ; Matrix arm of active state CI from Q1-NADH dataset 7VXP ; 2.7 ; Matrix arm of active state CI from Q10 dataset 7VY8 ; 2.6 ; Matrix arm of active state CI from Q10-NADH dataset 7VYF ; 2.8 ; Matrix arm of active state CI from Rotenone dataset 7VBZ ; 2.4 ; Matrix arm of active state CI from Rotenone-NADH dataset 7VBN ; 2.4 ; Matrix arm of deactive state CI from DQ-NADH dataset 7VZ1 ; 2.5 ; Matrix arm of deactive state CI from Q1-NADH dataset 7VXU ; 2.8 ; Matrix arm of deactive state CI from Q10 dataset 7VYA ; 2.8 ; Matrix arm of deactive state CI from Q10-NADH dataset 7VYH ; 2.9 ; Matrix arm of deactive state CI from Rotenone dataset 7VWJ ; 2.6 ; Matrix arm of deactive state CI from rotenone-NADH dataset 1XUC ; 1.7 ; Matrix metalloproteinase-13 complexed with non-zinc binding inhibitor 1XUD ; 1.8 ; Matrix metalloproteinase-13 complexed with non-zinc binding inhibitor 1XUR ; 1.85 ; Matrix metalloproteinase-13 complexed with non-zinc binding inhibitor 5UWM ; 1.62 ; Matrix metalloproteinase-13 complexed with selective inhibitor compound (R)-17a 5UWK ; 1.6 ; Matrix metalloproteinase-13 complexed with selective inhibitor compound (S)-10a 5UWL ; 2.55 ; Matrix metalloproteinase-13 complexed with selective inhibitor compound (S)-17a 5UWN ; 3.2 ; Matrix metalloproteinase-13 complexed with selective inhibitor compound 10d 4L19 ; 1.66 ; Matrix metalloproteinase-13 complexed with selective inhibitor compound Q1 5WCO ; 2.604 ; Matrix Protein (M1) of Infectious Salmon Anaemia Virus 8B2M ; 1.7 ; Matrix-metallopeptidase inhibitor Potempin A (PotA) from Tannerella forsythia 8B2Q ; 1.35 ; Matrix-metallopeptidase inhibitor Potempin A (PotA) from Tannerella forsythia in complex with T. forsythia karilysin. 8BH6 ; 3.7 ; Mature 30S ribosomal subunit from Staphylococcus aureus 7BV8 ; 3.14 ; Mature 50S ribosomal subunit from RrmJ knock out E.coli strain 1SEV ; 2.55 ; Mature and translocatable forms of glyoxysomal malate dehydrogenase have different activities and stabilities but similar crystal structures 1SMK ; 2.5 ; Mature and translocatable forms of glyoxysomal malate dehydrogenase have different activities and stabilities but similar crystal structures 7BOX ; 3.8 ; Mature bacteriorphage t7 tail adaptor protein gp11 7BOY ; 3.8 ; Mature bacteriorphage t7 tail nozzle protein gp12 7OZ4 ; 3.9 ; Mature capsid of bacteriophage phiRSA1 3H1P ; 2.61 ; Mature Caspase-7 I213A with DEVD-CHO inhibitor bound to active site 7PTL ; 4.9 ; Mature conformer of a 6-helix bundle of RNA with clasp 7ESD ; 3.9 ; Mature Donggang virus 7OVR ; 7.0 ; Mature HIV-1 matrix structure 1EKG ; 1.8 ; MATURE HUMAN FRATAXIN 3FCT ; 2.4 ; MATURE METAL CHELATASE CATALYTIC ANTIBODY WITH HAPTEN 6HWX ; 7.2 ; Mature MLV capsid hexamer structure in intact virus particles 6HWY ; 8.6 ; Mature MLV capsid pentamer structure in intact virus particles 4PH2 ; 1.44 ; mature N-terminal domain of capsid protein from bovine leukemia virus 1AXS ; 2.6 ; MATURE OXY-COPE CATALYTIC ANTIBODY WITH HAPTEN 6TJL ; 1.87 ; Mature primitive pytochelatin synthase Alr0975 from Nostoc species bound to glutathione 2QZ0 ; 1.2 ; Mature Q183E variant of Green Fluorescent Protein Chromophore 2AWL ; 1.85 ; Mature R96K GFP mutant 6XUO ; 2.803 ; mature recombinant horse NGF 8XOW ; 3.32 ; Mature virion portal of bacteriophage lambda 8XPM ; 3.9 ; Mature virion portal of phage lambda with DNA 8XQB ; 4.07 ; Mature virion portal vertex of bacteriophage lambda 1C6W ; ; MAUROCALCIN FROM SCORPIO MAURUS 2KQL ; ; Maurocalcine in D configuration from Scorpio maurus palmatus 7BXH ; 2.7 ; MavC-Lpg2149 complex 7BXG ; 2.705 ; MavC-UBE2N-Ub complex 2N1E ; ; MAX1 peptide fibril 6W2U ; 4.8 ; Mayaro Virus glycoprotein E1 ectodomain and glycoportien E2 ectodomain asymmetric unit 1MVF ; 1.65 ; MazE addiction antidote 4MZM ; 2.1 ; MazF from S. aureus crystal form I, P212121, 2.1 A 4MZT ; 2.303 ; MazF from S. aureus crystal form II, C2221, 2.3 A 4MZP ; 2.702 ; MazF from S. aureus crystal form III, C2221, 2.7 A 7YH5 ; 2.7 ; MazG(Mycobacterium tuberculosis) 6SM5 ; 2.75 ; MbC/SHP1-C-SH2 complex 6C1Y ; 2.3 ; mbd of human mecp2 in complex with methylated DNA 6C1U ; 2.3 ; MBD2 in complex with a deoxy-oligonucleotide 6C1T ; 1.84 ; MBD2 in complex with a partially methylated DNA 6C1V ; 2.3 ; MBD2 in complex with double-stranded DNA 6C1A ; 2.05 ; MBD2 in complex with methylated DNA 6C2F ; 2.65 ; MBD2 in complex with methylated DNA 6CNQ ; 2.151 ; MBD2 in complex with methylated DNA 6CEU ; 2.005 ; MBD3 MBD in complex with methylated, non-palindromic CpG DNA: alternative interpretation of crystallographic data 6CEV ; 2.005 ; MBD3 MBD in complex with methylated, non-palindromic CpG DNA: alternative interpretation of crystallographic data 7XEO ; 2.89 ; MbetaCD treated state of mTRPV2 6ZVI ; 3.0 ; Mbf1-ribosome complex 5Z1Y ; ; mBjAMP1 structure 4AQB ; 4.2 ; MBL-Ficolin Associated Protein-1, MAP-1 aka MAP44 7DZ9 ; 2.2 ; MbnABC complex 7L6G ; 2.04 ; MbnP from Methylosinus trichosporium 5JST ; 2.199 ; MBP fused MDV1 coiled coil 4PE2 ; 1.724 ; MBP PilA1 CD160 4EDQ ; 1.641 ; MBP-fusion protein of myosin-binding protein c residues 149-269 4TSM ; 1.899 ; MBP-fusion protein of PilA1 from C. difficile R20291 residues 26-166 4OGM ; 2.234 ; MBP-fusion protein of PilA1 residues 26-159 3OB4 ; 2.706 ; MBP-fusion protein of the major peanut allergen Ara h 2 6N84 ; 1.75 ; MBP-fusion protein of transducin-alpha residues 327-350 1NMU ; 2.31 ; MBP-L30 5E7U ; 2.8 ; MBP-MamC loop structure, a magnetite biomineralizing protein from Magnetospirillium magneticum AMB-1 5I69 ; 2.7 ; MBP-MamC magnetite-interaction component mutant-D70A 8SVY ; 1.47 ; MBP-Mcl1 in complex with ligand 10 8G3S ; 1.4 ; MBP-Mcl1 in complex with ligand 11 8G3T ; 1.83 ; MBP-Mcl1 in complex with ligand 12 8G3U ; 1.94 ; MBP-Mcl1 in complex with ligand 21 8G3W ; 1.78 ; MBP-Mcl1 in complex with ligand 28 8G3X ; 1.46 ; MBP-Mcl1 in complex with ligand 32 8G3Y ; 1.7 ; MBP-Mcl1 in complex with ligand 34 1MB1 ; 2.1 ; MBP1 FROM SACCHAROMYCES CEREVISIAE 6NFX ; 1.95 ; MBTD1 MBT repeats 5ENO ; 2.2 ; MBX2319 bound structure of bacterial efflux pump. 5ENP ; 1.9 ; MBX2931 bound structure of bacterial efflux pump. 5ENQ ; 1.8 ; MBX3132 bound structure of bacterial efflux pump. 5ENR ; 2.3 ; MBX3135 bound structure of bacterial efflux pump. 6ZZC ; 2.93 ; MB_CRS6-1 bound to CrSAS-6_6HR 6ZZG ; 2.93 ; MB_CRS6-1 bound to CrSAS-6_N 6ZZD ; 2.05 ; MB_CRS6-13 bound to CrSAS-6_N 6ZZ8 ; 3.73 ; MB_CRS6-15 bound to CrSAS-6_6HR 4OJ0 ; 1.7 ; mCardinal V218E 6ISA ; 2.0 ; mCD226 4UNU ; 0.95 ; MCG - a dimer of lambda variable domains 5ACM ; 1.05 ; Mcg immunoglobulin variable domain with methylene blue 5ACL ; 1.49 ; Mcg immunoglobulin variable domain with sulfasalazine 1DCL ; 2.3 ; MCG, A LAMBDA V TYPE LIGHT-CHAIN DIMER (BENCE-JONES PROTEIN), CRYSTALLIZED FROM AMMONIUM SULFATE 7BUQ ; 3.091 ; mcGAS bound with 23-cGAMP 7BUM ; 3.047 ; mcGAS bound with pGpA 7BUJ ; 2.13 ; mcGAS bound with pppGpG 1NAN ; 2.3 ; MCH CLASS I H-2KB MOLECULE COMPLEXED WITH PBM1 PEPTIDE 6YLM ; 1.6 ; mCherry 6MZ3 ; 1.088 ; mCherry pH sensitive mutant - M66T (mCherryTYG) 8IM1 ; 2.05 ; mCherry-LaM1 complex 8ILX ; 3.29 ; mCherry-LaM3 complex 8IM0 ; 1.31 ; mCherry-LaM8 complex 4BPI ; 1.982 ; Mcl-1 bound to alpha beta Puma BH3 peptide 2 4BPJ ; 1.599 ; Mcl-1 bound to alpha beta Puma BH3 peptide 3 6U63 ; 2.75 ; Mcl-1 bound to compound 17 6U64 ; 2.55 ; Mcl-1 bound to compound 17 6U65 ; 2.09 ; Mcl-1 bound to compound 19 6U67 ; 1.84 ; Mcl-1 bound to compound 24 3KZ0 ; 2.349 ; MCL-1 complex with MCL-1-specific selected peptide 5C6H ; 2.05 ; Mcl-1 complexed with Mule 5FC4 ; 1.5 ; Mcl-1 complexed with small molecule inhibitor 5FDO ; 2.8 ; Mcl-1 complexed with small molecule inhibitor 5FDR ; 2.6 ; Mcl-1 complexed with small molecule inhibitor 4ZBF ; 2.2 ; Mcl-1 complexed with small molecules 4ZBI ; 2.5 ; Mcl-1 complexed with small molecules 6BW2 ; 2.75 ; Mcl-1 complexed with small molecules 6BW8 ; 2.9 ; Mcl-1 complexed with small molecules 4G35 ; 2.0 ; Mcl-1 in complex with a biphenyl cross-linked Noxa peptide. 3KJ2 ; 2.351 ; Mcl-1 in complex with Bim BH3 mutant F4aE 3KJ1 ; 1.945 ; Mcl-1 in complex with Bim BH3 mutant I2dA 3KJ0 ; 1.7 ; Mcl-1 in complex with Bim BH3 mutant I2dY 5VX2 ; 1.851 ; Mcl-1 in complex with Bim-h3Pc-RT 5MEV ; 2.94 ; MCL1 FAB COMPLEX IN COMPLEX WITH COMPOUND 21 5MES ; 2.24 ; MCL1 FAB COMPLEX IN COMPLEX WITH COMPOUND 29 6QB6 ; 2.24 ; Mcl1 in complex with a Fab 6FS1 ; 1.6 ; MCL1 in complex with an indole acid ligand 6FS2 ; 2.55 ; MCL1 in complex with indole acid ligand 6QB4 ; 2.38 ; Mcl1-scFv complex with an indole acid inhibitor 8X7U ; 3.57 ; MCM in complex with dsDNA in presence of ATP. 8X7T ; 3.26 ; MCM in the Apo state. 4POG ; 3.203 ; MCM-ssDNA co-crystal structure 2KWQ ; ; Mcm10 C-terminal DNA binding domain 4UUZ ; 2.9 ; MCM2-histone complex 5L7E ; 1.86 ; MCR IN COMPLEX WITH ligand 5L7G ; 2.01 ; MCR IN COMPLEX WITH ligand 5L7H ; 1.84 ; MCR IN COMPLEX WITH ligand 5YLF ; 1.5 ; MCR-1 complex with D-glucose 5YLE ; 1.85 ; MCR-1 complex with ethanolamine (ETA) 8GF5 ; 3.0 ; McrD binds asymmetrically to methyl-coenzyme M reductase improving active site accessibility during assembly 1U60 ; 1.61 ; MCSG APC5046 Probable glutaminase ybaS 6XJV ; 4.17 ; MCU holocomplex in High-calcium state 6XJX ; 4.6 ; MCU holocomplex in Low-calcium blocking state 6X4S ; 3.5 ; MCU-EMRE complex of a metazoan mitochondrial calcium uniporter 8AIN ; 2.7 ; MCUGI SAUNG complex 5MIZ ; ; MD ensemble of bovine insulin 7DNI ; 3.2 ; MDA5 CARDs-MAVS CARD polyUb complex 4Z7X ; 1.55 ; MdbA protein, a thiol-disulfide oxidoreductase from Actinomyces oris. 5C00 ; 1.77 ; MdbA protein, a thiol-disulfide oxidoreductase from Corynebacterium diphtheriae 6BO0 ; 1.2 ; MdbA protein, a thiol-disulfide oxidoreductase from Corynebacterium matruchotii 6E2T ; 1.692 ; MDDEF in complex with MVAPP 6E2W ; 1.95 ; MDDEF in complex with MVAPP, ADP, sulfate and cobalt 6E2Y ; 2.34 ; MDDEF in complex with MVAPP, ADP, sulfate and cobalt. Anomalous data 6E2V ; 2.1 ; MDDEF in complex with MVAPP, ADPBeF3 and magnesium 6E2U ; 2.05 ; MDDEF in complex with MVAPP, AMPPCP and Magnesium 6EUQ ; 2.2 ; MdfA(Q131R/L339E) 3JBI ; 8.5 ; MDFF model of the vinculin tail domain bound to F-actin 5ZI3 ; 2.1 ; MDH3 wild type, apo-form 5ZI2 ; 2.0 ; MDH3 wild type, nad-form 5ZI4 ; 2.1 ; MDH3 wild type, nad-oaa-form 5H55 ; 3.5 ; Mdm12 from K. lactis 5H5A ; 2.26 ; Mdm12 from K. lactis (1-239), Lys residues are uniformly dimethyl modified 5H5C ; 3.31 ; Mdm12 from K. lactis (1-239), uniformly Lys dimethyl modified, crystallized in FOS-MEA-10 5H54 ; 3.1 ; Mdm12 from K. lactis 1-239 6IM9 ; 3.3 ; MDM2 bound CueO-PM2 sensor 1YCR ; 2.6 ; MDM2 BOUND TO THE TRANSACTIVATION DOMAIN OF P53 6AAW ; 2.0 ; Mdm2 in complex with a D amino Acid Containing Stapled Peptide 2GV2 ; 1.8 ; MDM2 in complex with an 8-mer p53 peptide analogue 5TRF ; 2.1 ; MDM2 in complex with SAR405838 3SKQ ; 2.1 ; Mdm38 is a 14-3-3-like receptor and associates with the protein synthesis machinery at the inner mitochondrial membrane 2N0U ; ; Mdmx-057 2N14 ; ; Mdmx-295 2N06 ; ; Mdmx-298 2MWY ; ; Mdmx-p53 2N0W ; ; Mdmx-SJ212 4GYE ; 2.27 ; MDR 769 HIV-1 Protease in Complex with Reduced P1F 3OUD ; 1.8 ; MDR769 HIV-1 protease complexed with CA/p2 hepta-peptide 3OTS ; 1.7 ; MDR769 HIV-1 protease complexed with MA/CA hepta-peptide 3OUB ; 1.6 ; MDR769 HIV-1 protease complexed with NC/p1 hepta-peptide 3OUA ; 1.7 ; MDR769 HIV-1 protease complexed with p1/p6 hepta-peptide 3OUC ; 2.0 ; MDR769 HIV-1 protease complexed with p2/NC hepta-peptide 3OU3 ; 1.7 ; MDR769 HIV-1 protease complexed with PR/RT hepta-peptide 3OU1 ; 1.8 ; MDR769 HIV-1 protease complexed with RH/IN hepta-peptide 3OTY ; 1.75 ; MDR769 HIV-1 protease complexed with RT/RH hepta-peptide 3OU4 ; 1.6 ; MDR769 HIV-1 protease complexed with TF/PR hepta-peptide 3DNV ; 2.68 ; MDT Protein 2XU6 ; 2.7 ; MDV1 coiled coil domain 8DPB ; 2.72 ; MeaB in complex with the cobalamin-binding domain of its target mutase with GMPPCP bound 2QM7 ; 1.85 ; MeaB, A Bacterial Homolog of MMAA, Bound to GDP 4LC1 ; 1.8 ; MeaB, A Bacterial Homolog of MMAA, Bound to GDP and crystallized in the presence of GDP and [AlF4]- 4JYB ; 2.1 ; MeaB, A Bacterial Homolog of MMAA, Bound to GMPPNP 4JYC ; 2.2 ; MeaB, A Bacterial Homolog of MMAA, in its Apo form 2QM8 ; 1.7 ; MeaB, A Bacterial Homolog of MMAA, in the Nucleotide Free Form 6HTL ; 2.3 ; Measles Phosphoprotein Coiled-Coil Domain IPKI Variant 4BHV ; 2.1 ; Measles virus phosphoprotein tetramerization domain 4C5Q ; 2.2 ; measles virus phosphoprotein tetramerization domain 2I3V ; 2.4 ; Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor: Structure of G725C mutant 2I3W ; 2.3 ; Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor: Structure of S729C mutant 6DG0 ; 2.457 ; MEC-8 C-terminal RRM domain bound to AGCACA 5TKZ ; 1.529 ; MEC-8 N-terminal RRM bound to tandem GCAC ligand 6Z2W ; 2.82 ; Mec1-Ddc2 (F2244L mutant) in complex with Mg AMP-PNP 6Z2X ; 3.2 ; Mec1-Ddc2 (F2244L mutant) in complex with Mg AMP-PNP (State II) 6Z3A ; 3.8 ; Mec1-Ddc2 (wild-type) in complex with AMP-PNP 3QOB ; 1.6 ; Mechanical Coupling Controls Cooperative Ligand Binding in a Homodimeric Hemoglobin 1XLA ; 2.3 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLB ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLC ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLD ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLE ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLF ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLG ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLH ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLI ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLJ ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLK ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 1XLL ; 2.5 ; MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT 6PCO ; 2.75 ; Mechanism for regulation of DNA binding of Bordetella bronchiseptica BpsR by 6-hydroxynicotinic acid 6PCP ; 3.2 ; Mechanism for regulation of DNA binding of Bordetella bronchiseptica BpsR by 6-hydroxynicotinic acid 2KSP ; ; Mechanism for the selective interaction of C-terminal EH-domain proteins with specific NPF-containing partners 7CCF ; 2.8 ; Mechanism insights on steroselective oxidation of phosphorylated ethylphenols with cytochrome P450 CreJ 3PJS ; 3.8 ; Mechanism of Activation Gating in the Full-Length KcsA K+ Channel 5SVB ; 2.645 ; Mechanism of ATP-Dependent Acetone Carboxylation, Acetone Carboxylase AMP bound structure 5SVC ; 2.7 ; Mechanism of ATP-Dependent Acetone Carboxylation, Acetone Carboxylase nucleotide-free structure 2BFX ; 1.8 ; Mechanism of Aurora-B activation by INCENP and inhibition by Hesperadin. 2P1O ; 1.9 ; Mechanism of Auxin Perception by the TIR1 ubiquitin ligase 2P1P ; 2.21 ; Mechanism of Auxin Perception by the TIR1 ubiquitin ligase 2P1Q ; 1.91 ; Mechanism of Auxin Perception by the TIR1 ubiquitin ligase 2P1N ; 2.5 ; Mechanism of Auxin Perception by the TIR1 Ubiqutin Ligase 1SZ1 ; 6.21 ; Mechanism of CCA-adding enzymes specificity revealed by crystal structures of ternary complexes 2CJM ; 2.3 ; Mechanism of CDK inhibition by active site phosphorylation: CDK2 Y15p T160p in complex with cyclin A structure 6DZU ; 3.3 ; Mechanism of cellular recognition by PCV2 6E2R ; 2.8 ; Mechanism of cellular recognition by PCV2 6E2X ; 3.5 ; Mechanism of cellular recognition by PCV2 6E2Z ; 3.4 ; Mechanism of cellular recognition by PCV2 6E30 ; 3.5 ; Mechanism of cellular recognition by PCV2 4HTM ; 2.0 ; Mechanism of CREB Recognition and Coactivation by the CREB Regulated Transcriptional Coactivator CRTC2 2F3B ; 1.8 ; Mechanism of displacement of a catalytically essential loop from the active site of fructose-1,6-bisphosphatase 2F3D ; 1.83 ; Mechanism of displacement of a catalytically essential loop from the active site of fructose-1,6-bisphosphatase 5AN9 ; 3.3 ; Mechanism of eIF6 release from the nascent 60S ribosomal subunit 5ANB ; 4.1 ; Mechanism of eIF6 release from the nascent 60S ribosomal subunit 5ANC ; 4.2 ; Mechanism of eIF6 release from the nascent 60S ribosomal subunit 6QKL ; 3.3 ; Mechanism of eIF6 release from the nascent 60S ribosomal subunit 2X7N ; 11.8 ; Mechanism of eIF6s anti-association activity 7ENL ; 2.2 ; MECHANISM OF ENOLASE: THE CRYSTAL STRUCTURE OF ENOLASE-MG2+-PHOSPHOGLYCERATE(SLASH) PHOSPHOENOLPYRUVATE COMPLEX AT 2.2-ANGSTROMS RESOLUTION 4CAD ; 2.5 ; Mechanism of farnesylated CAAX protein processing by the integral membrane protease Rce1 1BI7 ; 3.4 ; MECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURE OF THE CDK6-P16INK4A TUMOR SUPPRESSOR COMPLEX 1BI8 ; 2.8 ; MECHANISM OF G1 CYCLIN DEPENDENT KINASE INHIBITION FROM THE STRUCTURES CDK6-P19INK4D INHIBITOR COMPLEX 3CMT ; 3.15 ; Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures 3CMU ; 4.2 ; Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures 3CMV ; 4.3 ; Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures 3CMW ; 2.8 ; Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures 3CMX ; 3.4 ; Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures 1C82 ; 1.7 ; MECHANISM OF HYALURONAN BINDING AND DEGRADATION: STRUCTURE OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE IN COMPLEX WITH HYALURONIC ACID DISACCHARIDE AT 1.7 A RESOLUTION 5A4M ; 1.7 ; Mechanism of Hydrogen activation by NiFe-hydrogenases 3PA9 ; 1.7 ; Mechanism of inactivation of E. coli aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) pH 7.5 3PAA ; 1.9 ; Mechanism of inactivation of E. coli aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) pH 8.0 1HDC ; 2.2 ; MECHANISM OF INHIBITION OF 3ALPHA,20BETA-HYDROXYSTEROID DEHYDROGENASE BY A LICORICE-DERIVED STEROIDAL INHIBITOR 1RTJ ; 2.35 ; MECHANISM OF INHIBITION OF HIV-1 REVERSE TRANSCRIPTASE BY NON-NUCLEOSIDE INHIBITORS 5M50 ; 5.3 ; Mechanism of microtubule minus-end recognition and protection by CAMSAP proteins 5M54 ; 8.0 ; Mechanism of microtubule minus-end recognition and protection by CAMSAP proteins 5M5C ; 4.8 ; Mechanism of microtubule minus-end recognition and protection by CAMSAP proteins 1THA ; 2.0 ; MECHANISM OF MOLECULAR RECOGNITION. STRUCTURAL ASPECTS OF 3,3'-DIIODO-L-THYRONINE BINDING TO HUMAN SERUM TRANSTHYRETIN 2V55 ; 3.705 ; Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure 7E40 ; 2.6 ; Mechanism of Phosphate Sensing and Signaling Revealed by Rice SPX1-PHR2 Complex Structure 1NSP ; 2.1 ; MECHANISM OF PHOSPHATE TRANSFER BY NUCLEOSIDE DIPHOSPHATE KINASE: X-RAY STRUCTURES OF A PHOSPHO-HISTIDINE INTERMEDIATE OF THE ENZYMES FROM DROSOPHILA AND DICTYOSTELIUM 1NSQ ; 2.18 ; MECHANISM OF PHOSPHATE TRANSFER BY NUCLEOSIDE DIPHOSPHATE KINASE: X-RAY STRUCTURES OF A PHOSPHO-HISTIDINE INTERMEDIATE OF THE ENZYMES FROM DROSOPHILA AND DICTYOSTELIUM 1JQL ; 2.5 ; Mechanism of Processivity Clamp Opening by the Delta Subunit Wrench of the Clamp Loader Complex of E. coli DNA Polymerase III: Structure of beta-delta (1-140) 1JQJ ; 2.9 ; Mechanism of Processivity Clamp Opening by the Delta Subunit Wrench of the Clamp Loader Complex of E. coli DNA Polymerase III: Structure of the beta-delta complex 6MDW ; 1.5 ; Mechanism of protease dependent DPC repair 6MDX ; 1.55 ; Mechanism of protease dependent DPC repair 1TQE ; 2.7 ; Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2 8DOL ; 2.8 ; Mechanism of regulation of the Helicobacter pylori Cagbeta ATPase by CagZ 6XWM ; 2.6 ; Mechanism of substrate release in neurotransmitter:sodium symporters: the structure of LeuT in an inward-facing occluded conformation 3PMH ; 3.2 ; Mechanism of Sulfotyrosine-Mediated Glycoprotein Ib Interaction with Two Distinct alpha-Thrombin Sites 2IMW ; 2.05 ; Mechanism of Template-Independent Nucleotide Incorporation Catalyzed by a Template-Dependent DNA Polymerase 1WA3 ; 1.9 ; Mechanism of the Class I KDPG aldolase 2C0A ; 1.55 ; Mechanism of the Class I KDPG aldolase 2MNR ; 1.9 ; MECHANISM OF THE REACTION CATALYZED BY MANDELATE RACEMASE. 2. CRYSTAL STRUCTURE OF MANDELATE RACEMASE AT 2.5 ANGSTROMS RESOLUTION: IDENTIFICATION OF THE ACTIVE SITE AND POSSIBLE CATALYTIC RESIDUES 4O9T ; 3.079 ; Mechanism of transhydrogenase coupling proton translocation and hydride transfer 4O9U ; 6.926 ; Mechanism of transhydrogenase coupling proton translocation and hydride transfer 1P3Q ; 1.7 ; Mechanism of Ubiquitin Recognition by the CUE Domain of VPS9 2YLM ; 2.7 ; Mechanism of USP7 (HAUSP) activation by its C-terminal ubiquitin-like domain (HUBL) and allosteric regulation by GMP-synthetase. 4CI6 ; 2.651 ; Mechanisms of crippling actin-dependent phagocytosis by YopO 2AD5 ; 2.8 ; Mechanisms of feedback regulation and drug resistance of CTP synthetases: structure of the E. coli CTPS/CTP complex at 2.8-Angstrom resolution. 8BRD ; 2.48 ; Mechanisms of ion selectivity and rotor coupling in the bacterial flagellar sodium-driven stator unit 4U6V ; 2.56 ; Mechanisms of Neutralization of a Human Anti-Alpha Toxin Antibody 6BBM ; 4.1 ; Mechanisms of Opening and Closing of the Bacterial Replicative Helicase: The DnaB Helicase and Lambda P Helicase Loader Complex 4XTA ; 2.5 ; MECHANISMS OF PPARgamma ACTIVATION BY NON-STEROIDAL ANTI-INFLAMMATORY DRUGS 3JBU ; 3.64 ; Mechanisms of Ribosome Stalling by SecM at Multiple Elongation Steps 3JBV ; 3.32 ; Mechanisms of Ribosome Stalling by SecM at Multiple Elongation Steps 1KBB ; 1.9 ; Mechanistic Analyses of Catalysis in Human Pancreatic alpha-Amylase: Detailed Kinetic and Structural Studies of Mutants of Three Conserved Carboxylic Acids 1KBK ; 1.9 ; Mechanistic Analyses of Catalysis in Human Pancreatic Alpha-Amylase: Detailed Kinetic and Structural Studies of Mutants of Three Conserved Carboxylic Acids 2REH ; 2.4 ; Mechanistic and Structural Analyses of the Roles of Arg409 and Asp402 in the Reaction of the Flavoprotein Nitroalkane Oxidase 2ZAF ; 2.5 ; Mechanistic and Structural Analyses of the Roles of Arg409 and Asp402 in the Reaction of the Flavoprotein Nitroalkane Oxidase 5IAT ; 1.67 ; Mechanistic and Structural Analysis of Substrate Recognition and Cofactor Binding by an Unusual Bacterial Prolyl Hydroxylase - apo-BaP4H 5IAV ; 1.7 ; Mechanistic and Structural Analysis of Substrate Recognition and Cofactor Binding by an Unusual Bacterial Prolyl Hydroxylase - Co-BaP4H-MLI 5IAX ; 2.1 ; Mechanistic and Structural Analysis of Substrate Recognition and Cofactor Binding by an Unusual Bacterial Prolyl Hydroxylase - Co-BaP4H-PPG 2OZ0 ; 2.8 ; Mechanistic and Structural Studies of H373Q Flavocytochrome b2: Effects of Mutating the Active Site Base 4HVA ; 2.074 ; Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6 1E8D ; 2.2 ; MECHANISTIC ASPECTS OF CYANOGENESIS FROM ACTIVE SITE MUTANT SER80ALA OF HYDROXYNITRILE LYASE FROM MANIHOT ESCULENTA IN COMPLEX WITH ACETONE CYANOHYDRIN 4QPO ; 1.999 ; Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM 4QPQ ; 3.106 ; Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM 1DBS ; 1.8 ; MECHANISTIC IMPLICATIONS AND FAMILY RELATIONSHIPS FROM THE STRUCTURE OF DETHIOBIOTIN SYNTHETASE 4M4W ; 6.1 ; Mechanistic implications for the bacterial primosome assembly of the structure of a helicase-helicase loader complex 1MML ; 1.8 ; MECHANISTIC IMPLICATIONS FROM THE STRUCTURE OF A CATALYTIC FRAGMENT OF MMLV REVERSE TRANSCRIPTASE 5YEI ; 2.301 ; Mechanistic insight into the regulation of Pseudomonas aeruginosa aspartate kinase 4TL3 ; 2.3 ; Mechanistic insights from the crystal structure of an inward proton-transporting Anabaena sensory rhodopsin mutant 4XH3 ; 2.1 ; Mechanistic insights into anchorage of the contractile ring from yeast to humans 4XOH ; 2.801 ; Mechanistic insights into anchorage of the contractile ring from yeast to humans 5H5U ; 3.01 ; Mechanistic insights into the alternative translation termination by ArfA and RF2 8VSI ; 3.1 ; Mechanistic Insights Revealed by YbtPQ in the Occluded State 7PKL ; 2.35 ; Mechanistic understanding of antibody masking with anti-idiotypic antibody fragments 7DLU ; 2.5 ; Mechanosensitive channel MscS K180R mutant 7ONL ; 3.9 ; Mechanosensitive channel MscS solubilized with DDM in closed conformation 7OO6 ; 3.1 ; Mechanosensitive channel MscS solubilized with DDM in closed conformation with added lipid 7OO0 ; 3.1 ; Mechanosensitive channel MscS solubilized with DDM in open conformation 7OO8 ; 3.7 ; Mechanosensitive channel MscS solubilized with LMNG in closed conformation with added lipid 7ONJ ; 2.3 ; Mechanosensitive channel MscS solubilized with LMNG in open conformation 7OOA ; 2.7 ; Mechanosensitive channel MscS solubilized with LMNG in open conformation with added lipid 2OAR ; 3.5 ; Mechanosensitive Channel of Large Conductance (MscL) 2OAU ; 3.7 ; Mechanosensitive Channel of Small Conductance (MscS) 6YWW ; 2.102 ; MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion 5BT2 ; 2.2 ; MeCP2 MBD domain (A140V) in complex with methylated DNA 6OGJ ; 1.8 ; MeCP2 MBD in complex with DNA 6OGK ; 1.65 ; MeCP2 MBD in complex with DNA 2IWB ; 1.8 ; MecR1 unbound extracellular antibiotic-sensor domain. 7UIO ; 3.3 ; Mediator-PIC Early (Composite Model) 7UIF ; 4.6 ; Mediator-PIC Early (Core B) 7UIG ; 4.3 ; Mediator-PIC Early (Mediator A) 7UIK ; 7.7 ; Mediator-PIC Early (Tail A + Upstream DNA & Activator) 7UIC ; 3.7 ; Mediator-PIC Early (Tail A) 7UIL ; 4.3 ; Mediator-PIC Early (Tail A/B Dimer) 5SVA ; 15.3 ; Mediator-RNA Polymerase II Pre-Initiation Complex 7RBP ; 2.1 ; Medicago truncatula D-1-piperideine-2-carboxylic acid reductase 8QAV ; 2.23 ; Medicago truncatula HISN5 (IGPD) in complex with MN and IG2 8QAY ; 2.2 ; Medicago truncatula HISN5 (IGPD) in complex with MN, FMT, ACT, CIT, EDO, SO4 8QAX ; 1.69 ; Medicago truncatula HISN5 (IGPD) in complex with MN, FMT, GOL and TRS 8QAW ; 1.55 ; Medicago truncatula HISN5 (IGPD) in complex with MN, IMD, EDO, FMT, GOL and TRS 5U5F ; 1.81 ; MEDITOPE ENABLED TRASTUZUMAB I83E VARIANT IN COMPLEX WITH (Ac) CQFDA(PH)2STRRLRCGGSK 4HJG ; 2.0 ; Meditope-enabled trastuzumab 4IOI ; 1.95 ; Meditope-enabled trastuzumab in complex with CQFDLSTRRLKC 4P13 ; 1.73 ; Medium chain acyl-CoA dehydrogenase, K304E mutant 2A9P ; 1.82 ; Medium Resolution BeF3 bound RR02-rec 2V6S ; 2.22 ; Medium resolution crystal structure of pterin-4a-carbinolamine dehydratase from Toxoplasma gondii 4AX8 ; 3.0 ; Medium resolution structure of the bifunctional kinase- methyltransferase WbdD 5AFE ; 2.6 ; Medium Resolution structure of the C-terminal family 65 Carbohydrate Binding Module (CBM65B) of endoglucanase Cel5A from Eubacterium cellulosolvens with a bound xyloglucan heptasaccharide (XXXG) 1UDY ; 2.4 ; Medium-Chain Acyl-CoA Dehydrogenase with 3-Thiaoctanoyl-CoA 6BZ1 ; 2.97 ; MEF2 Chimera D83V mutant/DNA complex 6BYY ; 2.3 ; MEF2 CHIMERA/DNA Complex 6C9L ; 2.3 ; MEF2B Apo Protein Structure 4U4I ; 2.2 ; Megavirus chilensis superoxide dismutase 8VTT ; 2.45 ; Meis1 homeobox domain bound to neomycin fragment 8VTS ; 1.91 ; Meis1 homeobox domain bound to paromomycin fragment 4U80 ; 2.8 ; MEK 1 kinase bound to G799 5HZE ; 2.4 ; Mek1 adopts DFG-out conformation when bound to an analog of E6201. 7XLP ; 2.1 ; MEK1 bound to DS03090629 7XNC ; 2.1 ; MEK1 bound to DS94070624 5EYM ; 2.7 ; MEK1 IN COMPLEX WITH BI 847325 7B9L ; 1.7 ; MEK1 in complex with compound 23 7B7R ; 1.7 ; MEK1 in complex with compound 4 7B3M ; 2.3 ; MEK1 in complex with compound 6 7B94 ; 2.0 ; MEK1 in complex with compound 6 7PQV ; 2.13 ; MEK1 IN COMPLEX WITH COMPOUND 7 4U81 ; 2.701 ; MEK1 Kinase bound to small molecule inhibitor G659 3DV3 ; 2.3 ; MEK1 with PF-04622664 Bound 6WHB ; 1.90032 ; MEKK1 TOG domain (548-867) 1F9B ; 2.7 ; MELANIN PROTEIN INTERACTION: X-RAY STRUCTURE OF THE COMPLEX OF MARE LACTOFERRIN WITH MELANIN MONOMERS 3FU8 ; 1.8 ; Melanocarpus albomyces laccase crystal soaked (10 sec) with 2,6-dimethoxyphenol 3FU9 ; 2.0 ; Melanocarpus albomyces laccase crystal soaked (20 min) with 2,6-dimethoxyphenol 3FU7 ; 1.67 ; Melanocarpus albomyces laccase crystal soaked (4 sec) with 2,6-dimethoxyphenol 7AUE ; 2.97 ; Melanocortin receptor 4 (MC4R) Gs protein complex 4I1S ; 2.293 ; Melanoma differentiation associated protein-5 Helicase domain complex with inhibitor Non-structural protein V 1HJD ; ; Melanoma inhibitory activity (MIA) protein 1B6B ; 2.5 ; MELATONIN BIOSYNTHESIS: THE STRUCTURE OF SEROTONIN N-ACETYLTRANSFERASE AT 2.5 A RESOLUTION SUGGESTS A CATALYTIC MECHANISM 7VGY ; 3.1 ; Melatonin receptor1-2-Iodomelatonin-Gicomplex 6TR5 ; 1.509 ; Melatonin-Notum complex 7YJL ; 4.42 ; Melbournevirus major capsid protein built from 4.4A reconstruction 7N8N ; 3.89 ; Melbournevirus nucleosome like particle 2MLT ; 2.0 ; MELITTIN 5IH8 ; 1.85 ; MELK in complex with NVS-MELK1 5IHC ; 2.14 ; MELK in complex with NVS-MELK12B 5K00 ; 1.77 ; MELK in complex with NVS-MELK5 5IH9 ; 1.79 ; MELK in complex with NVS-MELK8A 5IHA ; 1.96 ; MELK in complex with NVS-MELK8F 7SAD ; 3.96 ; Memantine-bound GluN1a-GluN2B NMDA receptors 5YH1 ; 2.18 ; Member of s1p family of ribosomal proteins PF0399 DHH domain 1SAZ ; 2.5 ; Membership in the ASKHA Superfamily: Enzymological Properties and Crystal Structure of Butyrate Kinase 2 from Thermotoga maritima 7VBL ; 2.6 ; Membrane arm of active state CI from DQ-NADH dataset 7VYS ; 2.5 ; Membrane arm of active state CI from Q1-NADH dataset 7VXS ; 2.9 ; Membrane arm of active state CI from Q10 dataset 7VY9 ; 2.9 ; Membrane arm of active state CI from Q10-NADH dataset 7VYG ; 2.9 ; Membrane arm of active state CI from rotenone dataset 7VC0 ; 2.6 ; Membrane arm of active state CI from Rotenone-NADH dataset 7VBP ; 2.8 ; Membrane arm of deactive state CI from DQ-NADH dataset 7VZ8 ; 2.7 ; Membrane arm of deactive state CI from Q1-NADH dataset 7VY1 ; 3.3 ; Membrane arm of deactive state CI from Q10 dataset 7VYE ; 3.1 ; Membrane arm of deactive state CI from Q10-NADH dataset 7VYI ; 3.1 ; Membrane arm of deactive state CI from Rotenone dataset 7VWL ; 2.7 ; Membrane arm of deactive state CI from rotenone-NADH dataset 2MLR ; ; Membrane Bilayer complex with Matrix Metalloproteinase-12 at its Alpha-face 2MLS ; ; Membrane Bilayer complex with Matrix Metalloproteinase-12 at its Beta-face 4V3A ; 15.0 ; Membrane bound pleurotolysin prepore (TMH1 lock) trapped with engineered disulphide cross-link 4V3M ; 17.0 ; Membrane bound pleurotolysin prepore (TMH2 helix lock) trapped with engineered disulphide cross-link 4V3N ; 14.0 ; Membrane bound pleurotolysin prepore (TMH2 strand lock) trapped with engineered disulphide cross-link 8J8K ; 3.36 ; Membrane bound PRTase, C3 symmetry, acceptor bound 8J8J ; 2.76 ; Membrane bound PRTase, C3 symmetry, donor bound 7R95 ; ; Membrane bound structure of HR1 domain of SARS-CoV-2 spike protein 6ZKB ; 2.9 ; Membrane domain of closed complex I during turnover 6ZKA ; 2.5 ; Membrane domain of open complex I during turnover 1B9U ; ; MEMBRANE DOMAIN OF THE SUBUNIT B OF THE E.COLI ATP SYNTHASE 4V2T ; 11.0 ; Membrane embedded pleurotolysin pore with 13 fold symmetry 2MOC ; ; Membrane induced structure of novel human tachykinin Hemokinin-1 (hHK1) 2NOU ; ; Membrane induced structure of Scyliorhinin I: A Dual NK1/NK2 agonist 2MCE ; ; Membrane induced structure of the mammalian tachykinin neuropeptide gamma 1FGP ; ; MEMBRANE PENETRATION DOMAIN OF THE MINOR COAT PROTEIN G3P OF PHAGE FD, NMR, 15 STRUCTURES 6KZO ; 3.3 ; membrane protein 5DIR ; 2.8 ; membrane protein at 2.8 Angstroms 2LEG ; ; Membrane protein complex DsbB-DsbA structure by joint calculations with solid-state NMR and X-ray experimental data 6PFY ; 2.9 ; Membrane Protein Megahertz Crystallography at the European XFEL, Photosystem I at synchrotron to 2.9 A 6PGK ; 2.9 ; Membrane Protein Megahertz Crystallography at the European XFEL, Photosystem I XFEL at 2.9 A 7B0K ; 3.8 ; membrane protein structure 1DEP ; ; MEMBRANE PROTEIN, NMR, 1 STRUCTURE 8AP7 ; 2.7 ; membrane region of the Trypanosoma brucei mitochondrial ATP synthase dimer 8T4C ; 1.5 ; Membrane-associated thioredoxin oxidoreductase FetE from Campylobacter jejuni 1CFG ; ; MEMBRANE-BINDING PEPTIDE FROM THE C2 DOMAIN OF FACTOR VIII FORMS AN AMPHIPATHIC STRUCTURE AS DETERMINED BY NMR SPECTROSCOPY 6L8V ; ; membrane-bound Bax helix2-helix5 domain 1ZY6 ; ; Membrane-bound dimer structure of Protegrin-1 (PG-1), a beta-Hairpin Antimicrobial Peptide in Lipid Bilayers from Rotational-Echo Double-Resonance Solid-State NMR 3J2S ; 15.0 ; Membrane-bound factor VIII light chain 2JBJ ; 2.19 ; membrane-bound glutamate carboxypeptidase II (GCPII) in complex with 2-PMPA (2-phosphonoMethyl-pentanedioic acid) 2C6C ; 2.0 ; membrane-bound glutamate carboxypeptidase II (GCPII) in complex with GPI-18431 (S)-2-(4-iodobenzylphosphonomethyl)-pentanedioic acid 2C6P ; 2.39 ; Membrane-bound glutamate carboxypeptidase II (GCPII) in complex with phosphate anion 2JBK ; 2.99 ; membrane-bound glutamate carboxypeptidase II (GCPII) in complex with quisqualic acid (quisqualate, alpha-amino-3,5-dioxo-1,2,4- oxadiazolidine-2-propanoic acid) 2C6G ; 2.2 ; Membrane-bound glutamate carboxypeptidase II (GCPII) with bound glutamate 2CIJ ; 2.4 ; membrane-bound glutamate carboxypeptidase II (GCPII) with bound methionine 2NAE ; ; Membrane-bound mouse CD28 cytoplasmic tail 6L8R ; ; membrane-bound PD-L1-CD 3AYZ ; 1.22 ; Membrane-bound respiratory [NiFe] hydrogenase from Hydrogenovibrio marinus in an air-oxidized condition 3AYX ; 1.18 ; Membrane-bound respiratory [NiFe] hydrogenase from Hydrogenovibrio marinus in an H2-reduced condition 5Y34 ; 1.32 ; Membrane-bound respiratory [NiFe]-hydrogenase from Hydrogenovibrio marinus in a ferricyanide-oxidized condition 2KLV ; ; Membrane-bound structure of the Pf1 major coat protein in DHPC micelle 2XCU ; 2.42 ; Membrane-embedded monofunctional glycosyltransferase WaaA of Aquifex aeolicus, complex with CMP 2XCI ; 2.0 ; Membrane-embedded monofunctional glycosyltransferase WaaA of Aquifex aeolicus, substrate-free form 8AN5 ; 1.44 ; MenAT1 toxin-antitoxin complex (rv0078a-rv0078b) from Mycobacterium tuberculosis H37Rv 2MMI ; ; Mengovirus Leader: Structural Characterization of the Mengovirus Leader Protein Bound to Ran GTPase by Nuclear Magnetic Resonance 6WNH ; 2.1 ; Menin bound to inhibitor M-808 7M4T ; 2.74 ; Menin bound to M-1121 6B41 ; 2.61 ; Menin bound to M-525 6E1A ; 3.1 ; Menin bound to M-89 4X5Z ; 1.86 ; menin in complex with MI-136 6BXY ; 1.82 ; Menin in complex with MI-1481 6BY8 ; 1.9 ; Menin in complex with MI-1482 5DDC ; 1.62 ; Menin in complex with MI-2-3 5DDF ; 1.66 ; Menin in complex with MI-273 5DDB ; 1.54 ; Menin in complex with MI-319 5DD9 ; 1.62 ; Menin in complex with MI-326 5DDA ; 1.83 ; Menin in complex with MI-333 5DB1 ; 1.86 ; Menin in complex with MI-336 6O5I ; 1.24026 ; Menin in complex with MI-3454 5DB0 ; 1.5 ; Menin in complex with MI-352 5DB2 ; 1.54 ; Menin in complex with MI-389 4X5Y ; 1.59 ; Menin in complex with MI-503 5DB3 ; 1.71 ; Menin in complex with MI-574 5DDD ; 2.14 ; menin in complex with MI-836 6BXH ; 2.445 ; Menin in complex with MI-853 5DDE ; 1.78 ; Menin in complex with MI-859 6OPJ ; 1.50066 ; Menin in complex with peptide inhibitor 25 4Z3T ; 1.62 ; Meningococcal Factor H binding protein mutant L130R/G133D 8AN4 ; 1.65 ; MenT1 toxin (rv0078a) from Mycobacterium tuberculosis H37Rv 6Y5U ; 1.59 ; MenT3 (aka TglT), nucleotidyltransferase toxin Rv1045 from Mycobacterium tuberculosis 6Y56 ; 1.23 ; MenT4, nucleotidyltransferase toxin Rv2826c from Mycobacterium tuberculosis H37Rv 5L51 ; 2.66 ; Menthone neomenthol reductase from Mentha piperita 5L53 ; 2.24 ; Menthone neomenthol reductase from Mentha piperita in complex with NADP 3S05 ; 2.204 ; mEos2 Fluorescent Protein-Green Form 6YLS ; 1.55 ; mEos4b - Directionality of Optical Properties of Fluorescent Proteins 1U10 ; 2.4 ; MEPA, active form with ZN in P1 1TZP ; 1.4 ; MEPA, inactive form without ZN in P21 7UAI ; 2.8 ; Meprin alpha helix in complex with fetuin-B 4YWO ; 1.62 ; Mercuric reductase from Metallosphaera sedula 4JC6 ; 2.152 ; Mercury activation of the plant aquaporin SoPIP2;1 - structural and functional characterization 1HT3 ; 1.8 ; MERCURY INDUCED MODIFICATIONS IN THE STEREOCHEMISTRY OF THE ACTIVE SITE THROUGH CYS-73 IN A SERINE PROTEASE: CRYSTAL STRUCTURE OF THE COMPLEX OF A PARTIALLY MODIFIED PROTEINASE K WITH MERCURY AT 1.8 A RESOLUTION 4JKN ; 1.536 ; Mercury Metallated Pseudomonas aeruginosa Azurin at 1.54 A 2WIU ; 2.35 ; Mercury-modified bacterial persistence regulator hipBA 1R0G ; 1.6 ; mercury-substituted rubredoxin 8TUR ; 2.15 ; Merkel Cell Polyomavirus LTA bipartite NLS bound to importin alpha 2 8TUT ; 2.55 ; Merkel Cell Polyomavirus LTA NLSct bound to importin alpha 2 8TUV ; 2.3 ; Merkel Cell Polyomavirus LTA NLSm bound to importin alpha 2 4FMI ; 2.0 ; Merkel cell polyomavirus VP1 in complex with 3'-sialyllactosamine 4FMH ; 1.85 ; Merkel Cell Polyomavirus VP1 in complex with Disialyllactose 4FMJ ; 2.4 ; Merkel cell polyomavirus VP1 in complex with GD1a oligosaccharide 4FMG ; 2.1 ; Merkel Cell Polyomavirus VP1 Unassembled Pentamer 4ZRK ; 2.316 ; Merlin-FERM and Lats1 complex 3TQ2 ; 1.1 ; Merohedral twinning in protein crystals revealed a new synthetic three helix bundle motif 3Q82 ; 2.1 ; Meropenem acylated BlaR1 sensor domain from Staphylococcus aureus 3DWZ ; 1.8 ; Meropenem Covalent Adduct with TB Beta-lactamase 6ZBE ; 3.3 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, alternative conformation 1 6ZBD ; 3.21 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, alternative conformation 2 6ZBF ; 3.2 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, alternative conformation 3 6ZBG ; 3.2 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, alternative conformation 4 6ZBH ; 3.6 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, alternative conformation 5 6ZBC ; 3.1 ; Merozoite surface protein 1 (MSP-1) from Plasmodium falciparum, main conformation 8UYK ; 6.9 ; MERS 5' proximal stem-loop 5, conformation 1 8UYL ; 6.4 ; MERS 5' proximal stem-loop 5, conformation 2 8UYM ; 6.4 ; MERS 5' proximal stem-loop 5, conformation 3 7V5K ; 2.8 ; MERS S ectodomain trimer in complex with neutralizing antibody 0722 (state 1) 7V5J ; 2.8 ; MERS S ectodomain trimer in complex with neutralizing antibody 0722(state 2) 7V6O ; 4.56 ; MERS S ectodomain trimer in complex with neutralizing antibody 111 (state 2) 7V6N ; 3.99 ; MERS S ectodomain trimer in complex with neutralizing antibody 111 state1 7V3L ; 3.47 ; MERS S ectodomain trimer in complex with neutralizing antibody 6516 5W9H ; 4.0 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9I ; 3.6 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9J ; 4.8 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9K ; 4.6 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9L ; 4.8 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9M ; 4.7 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9N ; 5.0 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9O ; 4.5 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 5W9P ; 4.0 ; MERS S ectodomain trimer in complex with variable domain of neutralizing antibody G4 6PZ8 ; 4.19 ; MERS S0 trimer in complex with variable domain of antibody G2 6NB3 ; 3.5 ; MERS-CoV complex with human neutralizing LCA60 antibody Fab fragment (state 1) 8PPL ; 2.65 ; MERS-CoV Nsp1 bound to the human 43S pre-initiation complex 8T4S ; 2.6 ; MERS-CoV Nsp1 protein bound to the Human 40S Ribosomal subunit 7M5E ; 2.5 ; MERS-CoV S bound to the broadly neutralizing B6 Fab fragment (C3 refinement) 6NB4 ; 3.6 ; MERS-CoV S complex with human neutralizing LCA60 antibody Fab fragment (state 2) 7S3M ; 2.4 ; MERS-CoV S stem helix peptide bound to Fab22 6Q06 ; 2.7 ; MERS-CoV S structure in complex with 2,3-sialyl-N-acetyl-lactosamine 6Q07 ; 2.9 ; MERS-CoV S structure in complex with 2,6-sialyl-N-acetyl-lactosamine 6Q04 ; 2.5 ; MERS-CoV S structure in complex with 5-N-acetyl neuraminic acid 6Q05 ; 2.8 ; MERS-CoV S structure in complex with sialyl-lewisX 7X27 ; 2.49 ; MERS-CoV spike complex 7X2A ; 2.49 ; MERS-CoV spike complex with S41 neutralizing antibody Fab Class1 (1u2d RBD with 1Fab) 7X29 ; 2.49 ; MERS-CoV spike complex with S41 neutralizing antibody Fab Class2 (1u2d RBD with 2Fab) 7X28 ; 2.49 ; MERS-CoV spike complex with S41 neutralizing antibody Fab Class3 (2u1d RBD with 2Fab) 7X25 ; 2.49 ; MERS-CoV spike complex with S41 neutralizing antibody Fab Class4 (2u1d RBD with 3Fab) 6J11 ; 3.0 ; MERS-CoV spike N-terminal domain and 7D10 scFv complex 8IFN ; 2.81 ; MERS-CoV spike trimer in complex with nanobody VHH-T148 1QOW ; 1.06 ; Mersacidin from Bacillus 7AVZ ; 2.04 ; MerTK kinase domain in complex with a bisaminopyrimidine inhibitor 7AW1 ; 1.98 ; MerTK kinase domain in complex with a type 2 inhibitor 7AVX ; 2.44 ; MerTK kinase domain in complex with NPS-1034 7AW0 ; 1.893 ; MerTK kinase domain in complex with purine inhibitor 7AVY ; 2.31 ; MerTK kinase domain in complex with quinazoline-based inhbitor 7AW3 ; 1.99 ; MerTK kinase domain with type 1 inhibitor from a DNA-encoded library 7OLS ; 1.89 ; MerTK kinase domain with type 1.5 inhibitor containing a di-methyl pyrazole group 7OLV ; 2.13 ; MerTK kinase domain with type 1.5 inhibitor containing a di-methyl, cyano pyrazole group 7OLX ; 1.98 ; MerTK kinase domain with type 1.5 inhibitor containing a tri-methyl pyrazole group 7AW2 ; 2.1 ; MerTK kinase domain with type 1.5 inhibitor from a DNA-encoded library 7AW4 ; 1.98 ; MerTK kinase domain with type 3 inhibitor from a DNA-encoded library 8IBL ; 2.6 ; MES bound form of PET-degrading cutinase Cut190 with thermostability-improving mutations of S226P/R228S/Q138A/D250C-E296C/Q123H/N202H and S176A inactivation 1IS6 ; 1.7 ; MES-Liganded Congerin II 2KMI ; ; MESD(12-155), The Core Structural Domain of MESD that Is Essential for Proper Folding of LRP5/6 2KVD ; ; Mesencephalic astrocyte-derived neurotrophic factor (MANF) 6N2A ; 1.88 ; Meso-Diaminopimelate Decarboxylase from Arabidopsis thaliana (Isoform 1) 6N2F ; 2.27 ; Meso-Diaminopimelate Decarboxylase from Arabidopsis thaliana (Isoform 2) 8I78 ; 2.64 ; Meso-Diaminopimelate dehydrogenase 8I7H ; 3.02 ; Meso-Diaminopimelate dehydrogenase 5JBT ; 1.4 ; Mesotrypsin in complex with cleaved amyloid precursor like protein 2 inhibitor (APLP2) 5UTB ; 1.78 ; Met form of sperm whale myoglobin V68A/I107Y 6GCU ; 6.001 ; MET receptor in complex with InlB internalin domain and DARPin A3A 1CMA ; 2.8 ; MET REPRESSOR/DNA COMPLEX + S-ADENOSYL-METHIONINE 5UAB ; 1.9 ; MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody 5UAD ; 2.25 ; MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody 6UBW ; 2.0 ; MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody 6JF6 ; 2.35 ; Met-ala-ser bound crystal structure of class I type b peptide deformylase from Acinetobacter baumannii 6JFA ; 1.93 ; Met-Ala-Ser bound crystal structure of class I type b peptide deformylase from Pseudomonas aeruginosa 5XL0 ; 1.25 ; met-aquo form of sperm whale myoglobin reconstituted with 7-PF, a heme possesseing CF3 group as side chain 2AVK ; 1.53 ; met-azido-DcrH-Hr 2AWY ; 2.1 ; met-DcrH-Hr 2LWC ; ; Met-enkephalin in DPMC SUV 1XQ5 ; 1.9 ; Met-Perch Hemoglobin at 1.9A 3BJ1 ; 1.9 ; met-Perch Hemoglobin at pH 5.7 3BJ2 ; 2.0 ; met-Perch Hemoglobin at pH 6.3 3BJ3 ; 2.1 ; met-Perch hemoglobin at pH 8.0 1EQT ; 1.6 ; MET-RANTES 2R1H ; 1.9 ; met-Trout IV hemoglobin at pH 6.3 3H56 ; 1.5 ; Met150Leu/Phe312Cys variant of nitrite reductase from Alcaligenes faecalis 3H4F ; 2.1 ; Met62Leu variant of nitrite reductase from Alcaligenes faeclis 1KYQ ; 2.2 ; Met8p: A bifunctional NAD-dependent dehydrogenase and ferrochelatase involved in siroheme synthesis. 3H4H ; 1.6 ; Met94Thr/Phe312Cys variant of nitrite reductase from Alcaligenes faecalis 4MDL ; 1.516 ; Meta Carborane Carbonic Anhydrase Inhibitor 6YOI ; 1.2 ; Meta-Carborane di-propyl-sulfonamide in complex with CA IX mimic 6YO2 ; 1.2 ; Meta-Carborane propyl-sulfonamide in complex with CA IX mimic 1IUO ; 2.0 ; meta-Cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) S103A mutant complexed with acetates 1IUP ; 1.6 ; meta-Cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) S103A mutant complexed with isobutyrates 1IUN ; 2.8 ; meta-Cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) S103A mutant hexagonal 302D ; 2.2 ; META-HYDROXY ANALOGUE OF HOECHST 33258 ('HYDROXYL IN' CONFORMATION) BOUND TO D(CGCGAATTCGCG)2 303D ; 2.2 ; META-HYDROXY ANALOGUE OF HOECHST 33258 ('HYDROXYL OUT' CONFORMATION) BOUND TO D(CGCGAATTCGCG)2 6YOL ; 1.15 ; Meta-Nidocarborane propyl-sulfonamide in complex with CA IX mimic 6S20 ; 1.98 ; Metabolism of multiple glycosaminoglycans by bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus (BT33336S-sulf) 6S21 ; 2.8 ; Metabolism of multiple glycosaminoglycans by bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus (BT33494S-sulf) 6VUI ; 2.681 ; Metabolite-bound PreQ1 riboswitch with Mn2+ 7OTT ; 3.84 ; Metabolon-embedded pyruvate dehydrogenase complex E2 core at near-atomic resolution 5KZN ; 2.8 ; Metabotropic Glutamate Receptor 6N52 ; 4.0 ; Metabotropic Glutamate Receptor 5 Apo Form 6N4X ; 4.0 ; Metabotropic Glutamate Receptor 5 Apo Form Ligand Binding Domain 6N51 ; 4.0 ; Metabotropic Glutamate Receptor 5 bound to L-quisqualate and Nb43 6N50 ; 3.751 ; Metabotropic Glutamate Receptor 5 Extracellular Domain in Complex with Nb43 and L-quisqualic acid 6N4Y ; 3.262 ; Metabotropic Glutamate Receptor 5 Extracellular Domain with Nb43 5KZQ ; 2.8 ; Metabotropic Glutamate Receptor in complex with antagonist (1~{S},2~{R},3~{S},4~{S},5~{R},6~{R})-2-azanyl-3-[[3,4-bis(fluoranyl)phenyl]sulfanylmethyl]-4-oxidanyl-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 3KS9 ; 1.9 ; Metabotropic glutamate receptor mGluR1 complexed with LY341495 antagonist 3MQ4 ; 2.8 ; Metabotropic glutamate receptor mGluR7 complexed with LY341495 antagonist 6QHN ; 1.9 ; Metagenome-derived salicylaldehyde dehydrogenase from alpine soil in complex with protocatechuic acid 8OI4 ; 1.76 ; Metagenomic Beta-galactosidase from Glycoside Hydrolase family GH154 7ZOB ; 1.2 ; Metagenomic cytidine deaminase Cdd 8BWK ; 2.29 ; Metagenomic derived PL6 alginate lyase 5XGZ ; 1.75 ; Metagenomic glucose-tolerant glycosidase 5HX7 ; 1.75 ; Metal ABC transporter from Listeria monocytogenes 5JPD ; 1.72 ; Metal ABC transporter from Listeria monocytogenes with cadmium 5I4K ; 1.79 ; Metal ABC transporter from Listeria monocytogenes with manganese 2LI9 ; ; Metal binding domain of rat beta-amyloid 2MZC ; ; Metal Binding of Glutaredoxins 2LQB ; ; Metal binding repeat 2 of the Wilson disease protein (ATP7B) 7SRV ; 2.03 ; Metal dependent activation of Plasmodium falciparum M17 aminopeptidase (inactive form), spacegroup P22121 7T3V ; 2.3 ; Metal dependent activation of Plasmodium falciparum M17 aminopeptidase, spacegroup P22121 after crystals soaked with Zn2+ 3EIM ; 1.88 ; Metal exchange in Thermolysin 3FB0 ; 1.6 ; Metal exchange in thermolysin 3FBO ; 1.92 ; Metal exchange in Thermolysin 3FXS ; 1.55 ; Metal exchange in thermolysin 5I7G ; 1.21 ; Metal free Glucose Isomerase collected at room temperature using the HC1b humidity controller 5OUW ; 2.05 ; Metal free structure of SynFtn 6SOM ; 2.15 ; Metal free structure of SynFtn variant D137A 6SOP ; 1.93 ; Metal free structure of SynFtn variant E62A 5OUZ ; 2.081 ; Metal free structure of Y40F SynFtn 4WJK ; 1.85 ; Metal Ion and Ligand Binding of Integrin 4WK0 ; 1.78 ; Metal Ion and Ligand Binding of Integrin 4WK2 ; 2.5 ; Metal Ion and Ligand Binding of Integrin 4WK4 ; 2.5 ; Metal Ion and Ligand Binding of Integrin 1WRN ; 2.3 ; Metal Ion dependency of the antiterminator protein, HutP, for binding to the terminator region of hut mRNA- A structural basis 1WRO ; 2.35 ; Metal Ion dependency of the antiterminator protein, HutP, for binding to the terminator region of hut mRNA- A structural basis 1O7T ; 1.65 ; Metal nanoclusters bound to the Ferric Binding Protein from Neisseria gonorrhoeae. 6Q28 ; 2.2 ; Metal ROK rebel: Characterisation of N-acetylmannosamine kinase from the pathogen Staphylococcus aureus 8DTA ; 1.81 ; Metal sensitive GFP (mseGFP) complexed with phenylarsine oxide. 6H0D ; 1.598 ; Metal soaked Flv1 flavodiiron core from Synechocystis sp. PCC6803 1LFI ; 2.1 ; METAL SUBSTITUTION IN TRANSFERRINS: THE CRYSTAL STRUCTURE OF HUMAN COPPER-LACTOFERRIN AT 2.1 ANGSTROMS RESOLUTION 4G1A ; 1.85 ; Metal-binding properties of a self-assembled coiled coil: formation of a polynuclear Cd-thiolated cluster 6VD8 ; 2.3 ; Metal-bound C-terminal domain of CzcD transporter from Pseudomonas aeruginosa 6VDA ; 2.4 ; Metal-bound C-terminal domain of CzcD transporter from Thermotoga maritima 6VD9 ; 1.75 ; Metal-bound C-terminal domain of the CzcD transporter from Cuprividus metallidurans 2FQZ ; 2.0 ; Metal-depleted Ecl18kI in complex with uncleaved DNA 2GB7 ; 1.7 ; Metal-depleted Ecl18kI in complex with uncleaved, modified DNA 2GME ; 1.75 ; Metal-free (apo) P. angolensis seed lectin 2GMP ; 2.5 ; Metal-free (apo) P. angolensis seed lectin in complex with GlcNAC-beta(1-2)Man 2GMM ; 2.15 ; Metal-free (apo) P. angolensis seed lectin in complex with Man-alpha(1-2)Man 2GN7 ; 2.9 ; Metal-free (apo) P. angolensis seed lectin in complex with Man-alpha(1-3)Man-alpha(1-6)Man 2GN3 ; 1.97 ; Metal-free (apo-PAL) in complex with alpha-D-Met-Man 3KBE ; 1.1 ; Metal-free C. elegans Cu,Zn Superoxide Dismutase 3SXM ; 1.55 ; Metal-free FCD domain of TM0439 a putative transcriptional regulator 3SXZ ; 2.322 ; Metal-free FCD domain of TM0439 a putative transcriptional regulator 3ITY ; 1.84 ; Metal-free form of Pseudomonas stutzeri L-rhamnose isomerase 3SXY ; 1.647 ; Metal-free full-length structure of Tm0439, a metal-binding FCD family transcriptional regulator 1IJ5 ; 3.0 ; METAL-FREE STRUCTURE OF MULTIDOMAIN EF-HAND PROTEIN, CBP40, FROM TRUE SLIME MOLD 6DYB ; 2.75 ; Metal-free structure of the engineered cyt cb562 variant, CH3 3HOG ; 1.85 ; Metal-free Tomato Chloroplast Superoxide Dismutase 5KKV ; 1.9 ; Metal-mediated coiled-coil GCN4-p2L peptide assembly crystal 6YKH ; 1.1 ; Metala-Carborane di-ethyl-sulfonamide (cis isomer) in complex with CA IX mimic 6YKC ; 1.2 ; Metala-Carborane di-ethyl-sulfonamide (trans isomer) in complex with CA IX mimic 6YJ3 ; 1.55 ; Metala-Carborane di-propyl-sulfonamide 5OGN ; 1.1 ; Metalacarborane inhibitors of Carbonic Anhydrase IX 5OGP ; 1.1 ; Metalacarborane inhibitors of Carbonic Anhydrase IX 1SML ; 1.7 ; METALLO BETA LACTAMASE L1 FROM STENOTROPHOMONAS MALTOPHILIA 2AIO ; 1.7 ; Metallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactam 7E3W ; 1.55 ; Metallo beta-lactamase fold protein (cAMP bound) 7E3V ; 2.05 ; Metallo beta-lactamase fold protein (cAMP free) 3BC2 ; 1.7 ; METALLO BETA-LACTAMASE II FROM BACILLUS CEREUS 569/H/9 AT PH 6.0, MONOCLINIC CRYSTAL FORM 2BC2 ; 1.7 ; METALLO BETA-LACTAMASE II FROM BACILLUS CEREUS 569/H/9 AT PH 6.0, TRIGONAL CRYSTAL FORM 8PJM ; 1.44 ; Metallo beta-lactamase VIM2 with compound AK4 7AYJ ; 1.21 ; Metallo beta-lactamse Vim-1 with a sulfamoyl inhibitor. 1ZNB ; 1.85 ; METALLO-BETA-LACTAMASE 2BMI ; 2.0 ; METALLO-BETA-LACTAMASE 2UYX ; 1.95 ; metallo-beta-lactamase (1BC2) single point mutant D120S 4ZNB ; 2.65 ; METALLO-BETA-LACTAMASE (C181S MUTANT) 2ZNB ; 2.15 ; METALLO-BETA-LACTAMASE (CADMIUM-BOUND FORM) 3ZNB ; 2.7 ; METALLO-BETA-LACTAMASE (ZN, HG-BOUND FORM) 1MQO ; 1.35 ; Metallo-beta-lactamase BcII Cd substituted from Bacillus cereus at 1.35 angstroms resolution 1BVT ; 1.85 ; METALLO-BETA-LACTAMASE FROM BACILLUS CEREUS 569/H/9 1DXK ; 1.85 ; Metallo-beta-lactamase from Bacillus cereus 569/H/9 C168S mutant 1HLK ; 2.5 ; METALLO-BETA-LACTAMASE FROM BACTEROIDES FRAGILIS IN COMPLEX WITH A TRICYCLIC INHIBITOR 6DR8 ; 1.476 ; Metallo-beta-lactamase from Cronobacter sakazakii (Enterobacter sakazakii) HARLDQ motif mutant S60/R118H/Q121H/K254H 6XFR ; 2.608 ; Metallo-beta-lactamase from Pontibacter korlensis 1A8T ; 2.55 ; METALLO-BETA-LACTAMASE IN COMPLEX WITH L-159,061 8A76 ; 1.5 ; Metallo-beta-lactamase NDM-1 in complex with 1,2,4-Triazole-3-thione compound 26 7CJL ; 1.789 ; Metallo-Beta-Lactamase VIM-2 in complex with (S)-N-(3-(2H-tetrazol-5-yl)phenyl)-3-mercapto-2-methylpropanamide 7CHV ; 2.174 ; Metallo-Beta-Lactamase VIM-2 in complex with 1-benzyl-1H-imidazole-2-carboxylic acid 6J8R ; 1.575 ; Metallo-Beta-Lactamase VIM-2 in complex with Dual MBL/SBL Inhibitor MS01 6JN6 ; 1.602 ; Metallo-Beta-Lactamase VIM-2 in complex with Dual MBL/SBL Inhibitor MS19 1A7T ; 1.85 ; METALLO-BETA-LACTAMASE WITH MES 4A37 ; 1.6 ; Metallo-carboxypeptidase from Pseudomonas Aeruginosa 4A39 ; 1.6 ; Metallo-carboxypeptidase from Pseudomonas Aeruginosa in complex with (2-guanidinoethylmercapto)succinic acid 4A38 ; 2.0 ; METALLO-CARBOXYPEPTIDASE FROM PSEUDOMONAS AUREGINOSA IN COMPLEX WITH L-BENZYLSUCCINIC ACID 1DTH ; 2.0 ; METALLOPROTEASE 6QIG ; 2.8 ; Metalloproteinase 4D80 ; 3.6 ; Metallosphera sedula Vps4 crystal structure 4D81 ; 2.4 ; Metallosphera sedula Vps4 crystal structure 4D82 ; 3.2 ; Metallosphera sedula Vps4 crystal structure 1QJK ; ; Metallothionein MTA from sea urchin (alpha domain) 1QJL ; ; METALLOTHIONEIN MTA FROM SEA URCHIN (BETA DOMAIN) 1LVZ ; ; METARHODOPSIN II BOUND STRUCTURE OF C-TERMINAL PEPTIDE OF ALPHA-SUBUNIT OF TRANSDUCIN 6UPW ; 2.9 ; Metavinculin ABD-F-actin complex 7RU9 ; 3.3 ; Metazoan pre-targeting GET complex (cBUGG-in) 7RUA ; 3.4 ; Metazoan pre-targeting GET complex (cBUGG-out) 7RUC ; 3.6 ; Metazoan pre-targeting GET complex with SGTA (cBUGGS) 2MOB ; ; METHANE MONOOXYGENASE COMPONENT B 1MHY ; 2.0 ; METHANE MONOOXYGENASE HYDROXYLASE 1MHZ ; 2.7 ; METHANE MONOOXYGENASE HYDROXYLASE 1MTY ; 1.7 ; METHANE MONOOXYGENASE HYDROXYLASE FROM METHYLOCOCCUS CAPSULATUS (BATH) 1FZI ; 3.3 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM I PRESSURIZED WITH XENON GAS 1FZ8 ; 2.1 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II COCRYSTALLIZED WITH DIBROMOMETHANE 1FZ9 ; 2.3 ; Methane monooxygenase hydroxylase, form II cocrystallized with iodoethane 1FZ5 ; 2.4 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II CRYSTALLIZED ANAEROBICALLY FROM REDUCED ENZYME 1FZ2 ; 2.15 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II MIXED-VALENT GENERATED BY CRYSTAL SOAKING 1FZ0 ; 2.07 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II MIXED-VALENT GROWN ANAEROBICALLY 1FZH ; 2.6 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II PRESSURIZED WITH XENON GAS 1FYZ ; 2.15 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II REDUCED BY SOAKING 1FZ6 ; 2.05 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM II SOAKED IN 1 M METHANOL 1FZ1 ; 1.96 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM III OXIDIZED 1FZ3 ; 2.03 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM III SOAK AT PH 6.2 (0.1 M PIPES) 1FZ4 ; 2.38 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM III SOAKED AT PH 8.5 (0.1 M TRIS) 1FZ7 ; 1.96 ; METHANE MONOOXYGENASE HYDROXYLASE, FORM III SOAKED IN 0.9 M ETHANOL 8JNG ; 3.2 ; Methanesulfonate monooxygenase ferredoxin subunit of PBS-PSII-PSI-LHCs from Porphyridium purpureum. 2GYO ; 2.0 ; Methanethiol-Cys 112 Inhibition Complex of E. Coli Ketoacyl Synthase III (FabH) and Coenzyme A 2EFT ; 2.0 ; Methanethiol-CYS 112 inhibition complex of E. coli ketoacyl synthase III (FABH) and Coenzyme A (high concentration (1.7mM) soak) 7TCX ; 2.21 ; Methanobactin biosynthetic protein complex of MbnB and MbnC from Methylosinus trichosporium OB3b at 2.21 Angstrom resolution 7TCU ; 2.31 ; Methanobactin biosynthetic protein complex of MbnB and MbnC from Methylosinus trichosporium OB3b at 2.31 Angstrom resolution 7TCR ; 2.62 ; Methanobactin biosynthetic protein complex of MbnB and MbnC from Methylosinus trichosporium OB3b at 2.62 Angstrom resolution 7TCW ; 2.67 ; Methanobactin biosynthetic protein complex of MbnB and MbnC from Methylosinus trichosporium OB3b, H210S mutant 2YGI ; 0.8 ; Methanobactin HM1 2YGJ ; 0.8 ; Methanobactin MB4 5ICQ ; 1.9 ; Methanobactin periplasmic binding protein 4OZ7 ; 1.65 ; Methanobactin production by methanotrophic bacteria and their structural diversity from Methylosinus strains: Insights into copper release 6VZ6 ; 2.1 ; Methanococcoides burtonii cytochrome b5 domain protein (WP 011499504.1) 1G8S ; 1.6 ; METHANOCOCCUS JANNASCHII FIBRILLARIN PRE-RRNA PROCESSING PROTEIN 4UQV ; 3.0 ; methanococcus jannaschii serine hydroxymethyl-transferase in complex with PLP 4BHD ; 2.83 ; Methanococcus jannaschii serine hydroxymethyl-transferase, apo form 2Z8U ; 1.9 ; Methanococcus jannaschii TBP 7RAK ; 3.9 ; Methanococcus maripaludis chaperonin complex in open conformation 7R9O ; 4.0 ; Methanococcus maripaludis chaperonin, closed conformation 1 7R9M ; 4.0 ; Methanococcus maripaludis chaperonin, closed conformation 2 7R9U ; 4.4 ; Methanococcus maripaludis chaperonin, closed conformation 3 7R9K ; 4.1 ; Methanococcus maripaludis chaperonin, closed conformation 4 7R9E ; 4.0 ; Methanococcus maripaludis chaperonin, open conformation 1 7R9H ; 6.3 ; Methanococcus maripaludis chaperonin, open conformation 2 7R9I ; 6.4 ; Methanococcus maripaludis chaperonin, open conformation 2 7R9J ; 6.3 ; Methanococcus maripaludis chaperonin, open conformation 4 2ODR ; 3.228 ; Methanococcus Maripaludis Phosphoseryl-tRNA synthetase 4MAE ; 1.6 ; Methanol dehydrogenase from Methylacidiphilum fumariolicum SolV 4AAH ; 2.4 ; METHANOL DEHYDROGENASE FROM METHYLOPHILUS W3A1 4HS9 ; 1.8 ; Methanol tolerant mutant of the Proteus mirabilis lipase 7CE5 ; 1.8 ; Methanol-PQQ bound methanol dehydrogenase (MDH) from Methylococcus capsulatus (Bath) 4N0L ; 2.37 ; Methanopyrus kandleri Csm3 crystal structure 4WA8 ; 2.2 ; Methanopyrus Kandleri FEN-1 nuclease 6ZNW ; 2.121 ; Methanosaeta concilii ATP citrate lyase (D541A mutant) in complex with (3S)-citryl-CoA. 8PUQ ; 1.95 ; MetHemoglobin structure from serial synchrotron crystallography with fixed target 5T7V ; 3.6 ; Methicillin Resistant, Linezolid resistant Staphylococcus aureus 70S ribosome (delta S145 uL3) 5TCU ; 3.9 ; Methicillin sensitive Staphylococcus aureus 70S ribosome 4TO8 ; 2.1 ; Methicillin-Resistant Staphylococcus Aureus Class IIb Fructose 1,6-Bisphosphate Aldolase 4L4Q ; 2.0 ; Methionine Adenosyltransferase 1O90 ; 3.1 ; Methionine Adenosyltransferase complexed with a L-methionine analogue 1QM4 ; 2.66 ; Methionine Adenosyltransferase Complexed with a L-Methionine Analogue 1O92 ; 3.19 ; Methionine Adenosyltransferase complexed with ADP and a L-methionine analogue 1O93 ; 3.49 ; Methionine Adenosyltransferase complexed with ATP and a L-methionine analogue 1O9T ; 2.9 ; Methionine adenosyltransferase complexed with both substrates ATP and methionine 1XGM ; 2.8 ; METHIONINE AMINOPEPTIDASE FROM HYPERTHERMOPHILE PYROCOCCUS FURIOSUS 1XGN ; 2.9 ; METHIONINE AMINOPEPTIDASE FROM HYPERTHERMOPHILE PYROCOCCUS FURIOSUS 1XGO ; 3.5 ; METHIONINE AMINOPEPTIDASE FROM HYPERTHERMOPHILE PYROCOCCUS FURIOSUS 1XGS ; 1.75 ; METHIONINE AMINOPEPTIDASE FROM HYPERTHERMOPHILE PYROCOCCUS FURIOSUS 1MJM ; 2.2 ; METHIONINE APOREPRESSOR MUTANT (Q44K) COMPLEXED TO HALF OF THE CONSENSUS OPERATOR SEQUENCE 1MJP ; 3.4 ; METHIONINE APOREPRESSOR MUTANT (Q44K) COMPLEXED TO THE MINIMAL MET CONSENSUS OPERATOR 1CUP ; 1.89 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1KS3 ; 2.16 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1KW5 ; 1.75 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1KW7 ; 1.89 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1KY0 ; 1.97 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1KY1 ; 2.05 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1L0J ; 1.98 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1L0K ; 2.02 ; METHIONINE CORE MUTANT OF T4 LYSOZYME 1D3M ; 2.12 ; METHIONINE CORE MUTATION 1D3N ; 2.0 ; METHIONINE CORE MUTATION 1E5F ; 2.18 ; METHIONINE GAMMA-LYASE (MGL) FROM TRICHOMONAS VAGINALIS 1E5E ; 2.18 ; METHIONINE GAMMA-LYASE (MGL) FROM TRICHOMONAS VAGINALIS IN COMPLEX WITH PROPARGYLGLYCINE 3MKJ ; 1.65 ; Methionine gamma-lyase from Citrobacter freundii with pyridoximine-5'-phosphate 1MJO ; 2.1 ; METHIONINE HOLOREPRESSOR MUTANT (Q44K) PLUS COREPRESSOR (S-ADENOSYL METHIONINE) COMPLEXED TO THE MINIMAL MET CONSENSUS OPERATOR WITH THE CENTRAL TA STEP MUTATED TO AT 1MJL ; 2.1 ; METHIONINE REPRESSOR MUTANT (Q44K) COMPLEX WITH THE COREPRESSOR SAM (S-ADENOSYL METHIONINE) FROM ESCHERICHIA COLI 1MJ2 ; 2.4 ; METHIONINE REPRESSOR MUTANT (Q44K) PLUS COREPRESSOR (S-ADENOSYL METHIONINE) COMPLEXED TO A CONSENSUS OPERATOR SEQUENCE 1MJQ ; 2.4 ; METHIONINE REPRESSOR MUTANT (Q44K) PLUS COREPRESSOR (S-ADENOSYL METHIONINE) COMPLEXED TO AN ALTERED MET CONSENSUS OPERATOR SEQUENCE 1MJK ; 2.15 ; METHIONINE REPRESSOR MUTANT APOREPRESSOR (Q44K) FROM ESCHERICHIA COLI 4D7L ; 1.895 ; Methionine sulfoxide reductase A of Corynebacterium diphtheriae 1MSK ; 1.8 ; METHIONINE SYNTHASE (ACTIVATION DOMAIN) 5VON ; 2.1 ; Methionine synthase folate-binding domain from Thermus thermophilus HB8 5VOP ; 2.1 ; Methionine synthase folate-binding domain from Thermus thermophilus HB8 native 5VOO ; 2.4 ; Methionine synthase folate-binding domain with methyltetrahydrofolate from Thermus thermophilus HB8 8SSD ; 2.4 ; Methionine synthase, C-terminal fragment, Cobalamin and Reactivation Domains from Thermus thermophilus HB8 8SSE ; 3.15 ; Methionine synthase, C-terminal fragment, Cobalamin and Reactivation Domains from Thermus thermophilus HB8 3SO4 ; 3.18 ; Methionine-adenosyltransferase from Entamoeba histolytica 5CPD ; 2.2 ; Methionine-alanine complex structure of peptide deformylase from Xanthomonas oryzae pv. oryzae 2D0K ; 1.9 ; Methionine-free mutant of Escherichia coli dihydrofolate reductase 1ZGH ; 2.05 ; Methionyl-tRNA formyltransferase from Clostridium thermocellum 3Q0I ; 1.89 ; Methionyl-tRNA formyltransferase from Vibrio cholerae 1QQT ; 2.03 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI 1PFV ; 1.7 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH DIFLUOROMETHIONINE 1PG2 ; 1.75 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH METHIONINE AND ADENOSINE 1PFU ; 1.91 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH METHIONINE PHOSPHINATE 1P7P ; 1.8 ; Methionyl-tRNA synthetase from Escherichia coli complexed with methionine phosphonate 1PG0 ; 1.9 ; Methionyl-trna synthetase from escherichia coli complexed with methioninyl adenylate 1PFY ; 1.93 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH METHIONYL SULPHAMOYL ADENOSINE 1PFW ; 1.78 ; METHIONYL-TRNA SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH TRIFLUOROMETHIONINE 1RQG ; 2.9 ; Methionyl-tRNA synthetase from Pyrococcus abyssi 7WPJ ; 2.65 ; Methionyl-tRNA synthetase from Staphylococcus aureus 7WPM ; 2.8 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a fragment and ATP 7WPX ; 2.4 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a fragment and ATP 7WQ0 ; 2.09 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a fragment and ATP 7WPT ; 2.26 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a fragment M2-80 and ATP 7WPI ; 1.92 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a phenylbenzimidazole inhibitor 7WPN ; 2.4 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with a phenylbenzimidazole inhibitor and ATP 7WPL ; 2.5 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with ATP 7WPK ; 2.8 ; Methionyl-tRNA synthetase from Staphylococcus aureus complexed with L-Met 1A8H ; 2.0 ; METHIONYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS 1MEA ; ; METHIONYL-TRNA SYNTHETASE ZINC BINDING DOMAIN. 3D STRUCTURE AND HOMOLOGY WITH RUBREDOXIN AND GAG RETROVIRAL PROTEINS 1MED ; ; METHIONYL-TRNA SYNTHETASE ZINC BINDING DOMAIN. 3D STRUCTURE AND HOMOLOGY WITH RUBREDOXIN AND GAG RETROVIRAL PROTEINS 2FMT ; 2.8 ; METHIONYL-TRNAFMET FORMYLTRANSFERASE COMPLEXED WITH FORMYL-METHIONYL-TRNAFMET 1FMT ; 2.0 ; METHIONYL-TRNAFMET FORMYLTRANSFERASE FROM ESCHERICHIA COLI 1BBT ; 2.6 ; METHODS USED IN THE STRUCTURE DETERMINATION OF FOOT AND MOUTH DISEASE VIRUS 1DLR ; 2.3 ; METHOTREXATE-RESISTANT VARIANTS OF HUMAN DIHYDROFOLATE REDUCTASE WITH SUBSTITUTION OF LEUCINE 22: KINETICS, CRYSTALLOGRAPHY AND POTENTIAL AS SELECTABLE MARKERS 1DLS ; 2.3 ; METHOTREXATE-RESISTANT VARIANTS OF HUMAN DIHYDROFOLATE REDUCTASE WITH SUBSTITUTION OF LEUCINE 22: KINETICS, CRYSTALLOGRAPHY AND POTENTIAL AS SELECTABLE MARKERS 8IVG ; 1.8 ; Methyl and Fluorine Effects in Novel Orally Bioavailable Keap1/Nrf2 PPI Inhibitor for Treatment of Chronic Kidney Disease 8IVR ; 1.5 ; Methyl and Fluorine Effects in Novel Orally Bioavailable Keap1/Nrf2 PPI Inhibitor for Treatment of Chronic Kidney Disease 8IXS ; 1.48 ; Methyl and Fluorine Effects in Novel Orally Bioavailable Keap1/Nrf2 PPI Inhibitor for Treatment of Chronic Kidney Disease 6D8V ; 2.8 ; Methyl-accepting Chemotaxis protein X 1HBN ; 1.16 ; METHYL-COENZYME M REDUCTASE 1MRO ; 1.16 ; METHYL-COENZYME M REDUCTASE 1HBM ; 1.8 ; METHYL-COENZYME M REDUCTASE ENZYME PRODUCT COMPLEX 1E6V ; 2.7 ; Methyl-coenzyme M reductase from Methanopyrus kandleri 1E6Y ; 1.6 ; Methyl-coenzyme M reductase from Methanosarcina barkeri 5A0Y ; 1.1 ; METHYL-COENZYME M REDUCTASE FROM METHANOTHERMOBACTER MARBURGENSIS AT 1.1 A RESOLUTION 5A8K ; 1.41 ; METHYL-COENZYME M REDUCTASE FROM METHANOTHERMOBACTER WOLFEII AT 1.4 A RESOLUTION 7NKG ; 1.6 ; Methyl-coenzyme M reductase from Methermicoccus shengliensis at 1.6-A resolution 5G0R ; 1.25 ; METHYL-COENZYME M REDUCTASE I FROM METHANOTHERMOBACTER MARBURGENSIS EXPOSED TO 3-NITROOXYPROPANOL 5A8R ; 2.15 ; METHYL-COENZYME M REDUCTASE II FROM METHANOTHERMOBACTER MARBURGENSIS AT 2.15 A RESOLUTION 5A8W ; 1.8 ; METHYL-COENZYME M REDUCTASE II FROM METHANOTHERMOBACTER WOLFEII AT 1. 8 A RESOLUTION 5N1Q ; 1.9 ; METHYL-COENZYME M REDUCTASE III FROM METHANOTHERMOCOCCUS THERMOLITHOTROPHICUS AT 1.9 A RESOLUTION 5N28 ; 2.8 ; METHYL-COENZYME M REDUCTASE III FROM METHANOTORRIS FORMICICUS MONOCLINIC FORM 5N2A ; 2.8 ; METHYL-COENZYME M REDUCTASE III FROM METHANOTORRIS FORMICICUS TRIGONAL FORM 1HBU ; 1.9 ; METHYL-COENZYME M REDUCTASE IN THE MCR-RED1-SILENT STATE IN COMPLEX with COENZYME M 1HBO ; 1.78 ; METHYL-COENZYME M REDUCTASE MCR-RED1-SILENT 3ZVI ; 1.9 ; Methylaspartate ammonia lyase from Clostridium tetanomorphum mutant L384A 3ZVH ; 1.99 ; Methylaspartate ammonia lyase from Clostridium tetanomorphum mutant Q73A 1WPK ; ; Methylated Form of N-terminal Transcriptional Regulator Domain of Escherichia Coli Ada Protein 1EH7 ; 2.0 ; METHYLATED HUMAN O6-ALKYLGUANINE-DNA ALKYLTRANSFERASE 7MJW ; 1.4 ; Methylated MiaB in the complex with 5'-deoxyadenosine, methionine and RNA 6OJY ; 3.3 ; Methylated PilT4 from Geobacter metallireducens bound to sulfate: C3ocococ conformation 2VIX ; 2.85 ; Methylated Shigella flexneri MxiC 2VJ4 ; 2.5 ; Methylated Shigella flexneri MxiC 5GM8 ; 2.2 ; Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruiginosa 5GMB ; 1.62 ; Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruiginosa 5GMC ; 1.7 ; Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruiginosa 1Y9H ; ; Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement 4DNB ; 2.0 ; METHYLATION OF THE ECORI RECOGNITION SITE DOES NOT ALTER DNA CONFORMATION. THE CRYSTAL STRUCTURE OF D(CGCGAM6ATTCGCG) AT 2.0 ANGSTROMS RESOLUTION 3L07 ; 1.88 ; Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase, putative bifunctional protein folD from Francisella tularensis. 6GOC ; 1.9 ; Methylesterase BT1017 1B93 ; 1.9 ; METHYLGLYOXAL SYNTHASE FROM ESCHERICHIA COLI 6F2C ; 2.34 ; Methylglyoxal synthase MgsA from Bacillus subtilis 6N94 ; 1.75 ; Methylmalonyl-CoA decarboxylase in complex with 2-nitronate-propionyl-amino(dethia)-CoA 6N92 ; 1.7 ; Methylmalonyl-CoA decarboxylase in complex with 2-nitronate-propionyl-CoA 6N93 ; 1.7 ; Methylmalonyl-CoA decarboxylase in complex with 2-nitronate-propionyl-oxa(dethia)-CoA 6N97 ; 1.75 ; Methylmalonyl-CoA decarboxylase in complex with 2-sulfonate-propionyl-amino(dethia)-CoA 6N95 ; 1.798 ; Methylmalonyl-CoA decarboxylase in complex with 2-sulfonate-propionyl-CoA 6N96 ; 1.7 ; Methylmalonyl-CoA decarboxylase in complex with 2-sulfonate-propionyl-oxa(dethia)-CoA 6WFI ; 1.37 ; Methylmalonyl-CoA epimerase in complex with 2-nitronate-propionyl-CoA 6WF7 ; 1.55 ; Methylmalonyl-CoA epimerase in complex with methylmalonyl-CoA and NH4+ 1REQ ; 2.0 ; METHYLMALONYL-COA MUTASE 1E1C ; 2.62 ; METHYLMALONYL-COA MUTASE H244A Mutant 4REQ ; 2.2 ; Methylmalonyl-COA Mutase substrate complex 7REQ ; 2.2 ; METHYLMALONYL-COA MUTASE, 2-CARBOXYPROPYL-COA INHIBITOR COMPLEX 6REQ ; 2.2 ; METHYLMALONYL-COA MUTASE, 3-CARBOXYPROPYL-COA INHIBITOR COMPLEX 2REQ ; 2.5 ; METHYLMALONYL-COA MUTASE, NON-PRODUCTIVE COA COMPLEX, IN OPEN CONFORMATION REPRESENTING SUBSTRATE-FREE STATE 3REQ ; 2.7 ; METHYLMALONYL-COA MUTASE, SUBSTRATE-FREE STATE (POOR QUALITY STRUCTURE) 5REQ ; 2.2 ; Methylmalonyl-COA MUTASE, Y89F Mutant, substrate complex 7QSJ ; 1.35 ; Methylmannose polysaccharide hydrolase MmpH from M. hassiacum 7QSG ; 2.75 ; Methylmannose polysaccharide mannosyltransferase from M. hassiacum 4CT3 ; 1.69 ; Methylmercury chloride derivative structure of the lytic CHAPK domain of the endolysin LysK from Staphylococcus aureus bacteriophage K 1H4I ; 1.94 ; Methylobacterium extorquens methanol dehydrogenase 1H4J ; 3.0 ; Methylobacterium extorquens methanol dehydrogenase D303E mutant 1VXO ; 2.4 ; METHYLPHOSPHONYLATED ACETYLCHOLINESTERASE (AGED) OBTAINED BY REACTION WITH O-ETHYL-S-[2-[BIS(1-METHYLETHYL)AMINO]ETHYL] METHYLPHOSPHONOTHIOATE (VX) 1CFJ ; 2.6 ; METHYLPHOSPHONYLATED ACETYLCHOLINESTERASE (AGED) OBTAINED BY REACTION WITH O-ISOPROPYLMETHYLPHOSPHONOFLUORIDATE (GB, SARIN) 8CIW ; 1.93 ; Methylsuccinyl-CoA dehydrogenase from Pseudomonas migulae with bound FAD and (2S)-methylsuccinyl-CoA 6ES9 ; 1.37 ; Methylsuccinyl-CoA dehydrogenase of Paracoccus denitrificans with bound flavin adenine dinucleotide 4ZOJ ; 1.96 ; Methylsulfanyl-containing inhibitor bound in the active site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 4ZOK ; 2.34 ; Methylsulfonyl-containing inhibitor bound in the substrate capture site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 4L5Y ; 2.0957 ; Methylthioadenosine phosphorylase from Schistosoma mansoni in APO form 4L6I ; 2.1 ; Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with adenine 4L5C ; 2.075 ; Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with adenine in space group P212121 4L5A ; 2.2993 ; Methylthioadenosine phosphorylase from Schistosoma mansoni in complex with tubercidin 1D2C ; 2.5 ; METHYLTRANSFERASE 1XVA ; 2.2 ; METHYLTRANSFERASE 3ROD ; 2.72 ; Methyltransferase 2YCJ ; 1.96 ; methyltransferase bound with methyltetrahydrofolate 2YCK ; 2.15 ; methyltransferase bound with tetrahydrofolate 4RG1 ; 1.86 ; Methyltransferase domain of C9orf114 4I51 ; 1.9 ; Methyltransferase domain of HUMAN EUCHROMATIC HISTONE METHYLTRANSFERASE 1, mutant Y1211A 3DAL ; 1.65 ; Methyltransferase domain of human PR domain-containing protein 1 3IHX ; 2.5 ; Methyltransferase domain of human PR domain-containing protein 10 3EP0 ; 2.1 ; Methyltransferase domain of human PR domain-containing protein 12 2QPW ; 1.79 ; Methyltransferase domain of human PR domain-containing protein 2 2R3A ; 2.0 ; Methyltransferase domain of human suppressor of variegation 3-9 homolog 2 6P0R ; 2.4 ; Methyltransferase domain of human suppressor of variegation 3-9 homolog 2 (SUV39H2) in complex with OTS186935 inhibitor 2HA8 ; 1.6 ; Methyltransferase Domain of Human TAR (HIV-1) RNA binding protein 1 3GDH ; 2.0 ; Methyltransferase domain of human Trimethylguanosine Synthase 1 (TGS1) bound to m7GTP and adenosyl-homocysteine (active form) 3EGI ; 2.21 ; Methyltransferase domain of human trimethylguanosine synthase TGS1 bound to m7GpppA (inactive form) 5UPD ; 1.8 ; Methyltransferase domain of human Wolf-Hirschhorn Syndrome Candidate 1-Like protein 1 (WHSC1L1) 4XCX ; 2.84 ; METHYLTRANSFERASE DOMAIN OF SMALL RNA 2'-O-METHYLTRANSFERASE 4AY7 ; 1.8 ; methyltransferase from Methanosarcina mazei 6SJK ; 1.85 ; Methyltransferase MtgA from Desulfitobacterium hafniense 6SK4 ; 1.55 ; Methyltransferase MtgA from Desulfitobacterium hafniense in complex with methyl-tetrahydrofolate (P21) 6SJN ; 1.75 ; Methyltransferase MtgA from Desulfitobacterium hafniense in complex with methyl-tetrahydrofolate (P212121) 6SJ8 ; 1.35 ; Methyltransferase MtgA from Desulfitobacterium hafniense in complex with tetrahydrofolate 2YCI ; 1.78 ; methyltransferase native 6SJO ; 1.95 ; Methyltransferase of the MtgA D102A mutant from Desulfitobacterium hafniense in complex with methyl-tetrahydrofolate 6SJP ; 1.9 ; Methyltransferase of the MtgA N227A mutant from Desulfitobacterium hafniense 6SJS ; 1.8 ; Methyltransferase of the MtgA N227A mutant from Desulfitobacterium hafniense in complex with methyl-tetrahydrofolate 6SJR ; 1.75 ; Methyltransferase of the MtgA N227A mutant from Desulfitobacterium hafniense in complex with tetrahydrofolate 8GHU ; 3.0 ; Methyltransferase RmtC bound to the 30S ribosomal subunit 3VU8 ; 2.2 ; Metionyl-tRNA synthetase from Thermus thermophilus complexed with methionyl-adenylate analogue 5MJC ; 1.62 ; metNeuroglobin under oxygen at 50 bar 5MJD ; 1.7 ; metNgb under oxygen at 80 bar 6GFN ; 2.86 ; METTL16 MTase domain 6GT5 ; 2.45 ; METTL16 MTase domain (crystal form 2) 7O2I ; 3.0 ; METTL3-METTL14 heterodimer bound to the SAM competitive small molecule inhibitor STM2457 8BN8 ; 2.213 ; METTL3-METTL14 heterodimer bound to the SAM competitive small molecule inhibitor STM3006 2HKE ; 1.8 ; Mevalonate diphosphate decarboxylase from Trypanosoma brucei 5V2L ; 2.1 ; Mevalonate diphosphate mediated ATP binding mechanism of the mevalonate diphosphate decarboxylase from Enterococcus faecalis 5V2M ; 1.989 ; Mevalonate diphosphate mediated ATP binding mechanism of the mevalonate diphosphate decarboxylase from Enterococcus faecalis 6MDF ; 2.46 ; Mevalonate kinase from Methanosarcina mazei with 5-phosphomevalonate bound 6MDE ; 2.1 ; Mevalonate kinase from Methanosarcina mazei with mevalonate bound 7OEQ ; 1.36 ; Mevalonyl-coenzyme A hydratase (Sid H) 7BSM ; 2.8 ; Mevo lectin complex with 2alpha-mannobiose 7BSN ; 2.6 ; Mevo lectin complex with 3alpha-mannobiose 7BT9 ; 2.45 ; Mevo lectin complex with alpha-mannose 7DED ; 2.228 ; Mevo lectin complex with mannoheptose (Man7) 7BTL ; 2.25 ; Mevo lectin complex with mannopentose 7W62 ; 2.0 ; Mevo lectin complex with mannotetraose (Man4) 7BT8 ; 2.7 ; Mevo lectin complex with mannotriose 7WAP ; 3.1 ; Mevo lectin mutant D134A 7BTH ; 2.6 ; Mevo lectin- Native form-1 7BSB ; 2.45 ; Mevo lectin- Native form-2 6TA6 ; 3.2 ; MexAB assembly of the Pseudomonas MexAB-OprM efflux pump reconstituted in nanodiscs 6IIA ; 2.91 ; MexB in complex with LMNG 6T7S ; 4.5 ; MexB structure solved by cryo-EM in nanodisc in absence of its protein partners 2BDZ ; 2.1 ; Mexicain from Jacaratia mexicana 4ZZL ; 2.19 ; MexR R21W derepressor mutant causing multidrug resistance in P. aeruginosa by mexAB-oprM efflux pump expression 6EY3 ; ; mf2 7SSG ; 5.2 ; Mfd DNA complex 6X2N ; 3.9 ; Mfd-bound E.coli RNA polymerase elongation complex - I state 6X43 ; 3.6 ; Mfd-bound E.coli RNA polymerase elongation complex - II state 6X4W ; 3.8 ; Mfd-bound E.coli RNA polymerase elongation complex - III state 6X4Y ; 3.6 ; Mfd-bound E.coli RNA polymerase elongation complex - IV state 6X26 ; 4.1 ; Mfd-bound E.coli RNA polymerase elongation complex - L1 state 6X2F ; 4.0 ; Mfd-bound E.coli RNA polymerase elongation complex - L2 state 6X50 ; 3.3 ; Mfd-bound E.coli RNA polymerase elongation complex - V state 1QOK ; 2.4 ; MFE-23 AN ANTI-CARCINOEMBRYONIC ANTIGEN SINGLE-CHAIN FV ANTIBODY 2BHD ; 2.5 ; Mg substituted E. coli Aminopeptidase P in complex with product 1L8P ; 2.1 ; Mg-phosphonoacetohydroxamate complex of S39A yeast enolase 1 1WL6 ; 2.0 ; Mg-substituted form of E. coli aminopeptidase P 1RVA ; 2.0 ; MG2+ BINDING TO THE ACTIVE SITE OF ECO RV ENDONUCLEASE: A CRYSTALLOGRAPHIC STUDY OF COMPLEXES WITH SUBSTRATE AND PRODUCT DNA AT 2 ANGSTROMS RESOLUTION 1RVB ; 2.1 ; MG2+ BINDING TO THE ACTIVE SITE OF ECO RV ENDONUCLEASE: A CRYSTALLOGRAPHIC STUDY OF COMPLEXES WITH SUBSTRATE AND PRODUCT DNA AT 2 ANGSTROMS RESOLUTION 1RVC ; 2.1 ; MG2+ BINDING TO THE ACTIVE SITE OF ECO RV ENDONUCLEASE: A CRYSTALLOGRAPHIC STUDY OF COMPLEXES WITH SUBSTRATE AND PRODUCT DNA AT 2 ANGSTROMS RESOLUTION 4JP1 ; 2.46 ; Mg2+ bound structure of Vibrio Cholerae CheY3 3TH2 ; 1.72 ; Mg2+ Is Required for Optimal Folding of the Gamma-Carboxyglutamic Acid (Gla) Domains of Vitamin K-Dependent Clotting Factors At Physiological Ca2+ 3TH3 ; 2.7 ; Mg2+ Is Required for Optimal Folding of the Gamma-Carboxyglutamic Acid (Gla) Domains of Vitamin K-Dependent Clotting Factors At Physiological Ca2+ 3TH4 ; 1.8 ; Mg2+ Is Required for Optimal Folding of the Gamma-Carboxyglutamic Acid (Gla) Domains of Vitamin K-Dependent Clotting Factors At Physiological Ca2+ 7K2T ; 3.6 ; Mg2+/ATP-bound structure of the full-length WzmWzt O antigen ABC transporter in lipid nanodiscs 7YZQ ; 1.96 ; MgADP-AlF4-bound DCCP:DCCP-R complex 7QQA ; 1.79 ; MgADP-bound Fe protein of the iron-only nitrogenase from Azotobacter vinelandii 6Q93 ; 2.2 ; MgADP-bound Fe protein of Vanadium nitrogenase from Azotobacter vinelandii 7YZM ; 1.82 ; MgADPNP-bound DCCP:DCCP-R complex 5WAY ; 2.09 ; MgaSpn protein, Mga regulator from Streptococcus pneumoniae 1G20 ; 2.2 ; MGATP-BOUND AND NUCLEOTIDE-FREE STRUCTURES OF A NITROGENASE PROTEIN COMPLEX BETWEEN LEU127DEL-FE PROTEIN AND THE MOFE PROTEIN 1G21 ; 3.0 ; MGATP-BOUND AND NUCLEOTIDE-FREE STRUCTURES OF A NITROGENASE PROTEIN COMPLEX BETWEEN LEU127DEL-FE PROTEIN AND THE MOFE PROTEIN 6BQB ; 1.769 ; MGG4 Fab in complex with peptide 7C40 ; 2.516 ; MgGDP bound KRAS G12V 3T1O ; 1.9 ; MglA bound to GDP 3T1T ; 1.9 ; MglA bound to GDP in P1 tetrameric arrangement 3T1V ; 2.4 ; MglA bound to GDP in P2(1) tetrameric arrangement 3T1Q ; 2.7 ; MglA bound to GppNHp in complex with MglB 3T12 ; 2.2 ; MglA in complex with MglB in transition state 3T1S ; 1.67 ; MglB Homodimer 3T1X ; 2.91 ; MglB R124A E127A Monomer 3T1R ; 2.0 ; MglB with tetrameric arrangement 5CNI ; 2.69 ; mGlu2 with Glutamate 4XAR ; 2.26 ; mGluR2 ECD and mGluR3 ECD complex with ligands 4XAQ ; 2.21 ; mGluR2 ECD and mGluR3 ECD with ligands 4XAS ; 2.35 ; mGluR2 ECD ligand complex 5CNJ ; 2.65 ; mGlur2 with glutamate analog 5CNM ; 2.84 ; mGluR3 complexed with glutamate analog 5CNK ; 3.15 ; mglur3 with glutamate 1MJS ; 1.91 ; MH2 domain of transcriptional factor SMAD3 6G3K ; 2.9 ; MHC A02 Allele presenting MTSAIGILPV 6G3J ; 2.45 ; MHC A02 Allele presenting MTSAIGILVP 7Q9B ; 3.24 ; MHC Class I A02 Allele presenting EAAGIGILTV, in complex with Mel8 TCR 7Q9A ; 2.1 ; MHC Class I A02 Allele presenting LLLGIGILVL, in complex with Mel5 TCR 7Q98 ; 2.5 ; MHC Class I A02 Allele presenting NLSALGIFST 7Q99 ; 2.55 ; MHC Class I A02 Allele presenting NLSALGIFST, in complex with Mel5 TCR 7ZQI ; 2.15 ; MHC class I from a wild bird in complex with a nonameric peptide P2 7ZQJ ; 2.25 ; MHC class I from a wild bird in complex with a nonameric peptide P3 1CE6 ; 2.9 ; MHC CLASS I H-2DB COMPLEXED WITH A SENDAI VIRUS NUCLEOPROTEIN PEPTIDE 1QLF ; 2.65 ; MHC CLASS I H-2DB COMPLEXED WITH GLYCOPEPTIDE K3G 3E6F ; 2.41 ; MHC CLASS I H-2Dd Heavy chain complexed with Beta-2 Microglobulin and a variant peptide, PA9, from the Human immunodeficiency virus (BaL) envelope glycoprotein 120 3E6H ; 2.1 ; MHC CLASS I H-2Dd heavy chain complexed with Beta-2 Microglobulin and a variant peptide, PI10, from the human immunodeficiency virus (BaL) envelope glycoprotein 120 1DDH ; 3.1 ; MHC CLASS I H-2DD HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND AN IMMUNODOMINANT PEPTIDE P18-I10 FROM THE HUMAN IMMUNODEFICIENCY VIRUS ENVELOPE GLYCOPROTEIN 120 1OSZ ; 2.1 ; MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND AN (L4V) MUTANT OF THE VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN 1VAC ; 2.5 ; MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND CHICKEN OVALBUMIN 1RK0 ; 2.61 ; Mhc Class I H-2Kb Heavy Chain Complexed With beta-2 Microglobulin and Herpes Simplex Virus Glycoprotein B peptide 2VAB ; 2.5 ; MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND SENDAI VIRUS NUCLEOPROTEIN 2VAA ; 2.3 ; MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN 1VAD ; 2.5 ; MHC CLASS I H-2KB HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND YEAST ALPHA-GLUCOSIDASE 1KJ3 ; 2.3 ; Mhc Class I H-2Kb molecule complexed with pKB1 peptide 1KBG ; 2.2 ; MHC Class I H-2KB Presented Glycopeptide RGY8-6H-GAL2 2FWO ; 2.6 ; MHC Class I H-2Kd heavy chain in complex with beta-2microglobulin and peptide derived from influenza nucleoprotein 4PGC ; 2.3 ; MHC Class I in complex with modified Sendai virus nucleoprotein peptide FAPGN(3,5-diiodotyrosine)PAL 4PGB ; 2.8 ; MHC Class I in complex with modified Sendai virus nucleoprotein peptide FAPGNWPAL 4PGD ; 2.7 ; MHC Class I in complex with modified Sendai virus nucleoprotein peptide FAPGNYPAF 4PGE ; 2.0 ; MHC Class I in complex with modified Sendai virus nucleoprotein peptide FAPGNYPAW 4PG9 ; 2.4 ; MHC Class I in complex with Sendai virus nucleoprotein peptide FAPGNYPAL 1A1N ; 2.0 ; MHC CLASS I MOLECULE B*3501 COMPLEXED WITH PEPTIDE VPLRPMTY FROM THE NEF PROTEIN (75-82) OF HIV1 1A1O ; 2.3 ; MHC CLASS I MOLECULE B*5301 COMPLEXED WITH PEPTIDE LS6 (KPIVQYDNF) FROM THE MALARIA PARASITE P. FALCIPARUM 1A1M ; 2.3 ; MHC CLASS I MOLECULE B*5301 COMPLEXED WITH PEPTIDE TPYDINQML FROM GAG PROTEIN OF HIV2 1RK1 ; 2.1 ; Mhc Class I Natural H-2Kb Heavy Chain Complexed With beta-2 Microglobulin and Herpes Simplex Virus Mutant Glycoprotein B Peptide 1FZK ; 1.7 ; MHC CLASS I NATURAL MUTANT H-2KBM1 HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND SENDAI VIRUS NUCLEOPROTEIN 1FZJ ; 1.9 ; MHC CLASS I NATURAL MUTANT H-2KBM1 HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN 1RJY ; 1.9 ; Mhc Class I Natural Mutant H-2Kbm8 Heavy Chain Complexed With beta-2 Microglobulin and Herpes Simplex Virus Glycoprotein B Peptide 1RJZ ; 2.6 ; Mhc Class I Natural Mutant H-2Kbm8 Heavy Chain Complexed With beta-2 Microglobulin and Herpies Simplex Virus Mutant Glycoprotein B Peptide 2CLZ ; 1.9 ; Mhc Class I Natural Mutant H-2Kbm8 Heavy Chain Complexed With beta-2 Microglobulin and pBM1 peptide 2CLV ; 1.9 ; MHC Class I Natural Mutant H-2Kbm8 Heavy Chain Complexed With beta-2 Microglobulin and pBM8 peptide 1FZO ; 1.8 ; MHC CLASS I NATURAL MUTANT H-2KBM8 HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND SENDAI VIRUS NUCLEOPROTEIN 1FZM ; 1.8 ; MHC CLASS I NATURAL MUTANT H-2KBM8 HEAVY CHAIN COMPLEXED WITH BETA-2 MICROGLOBULIN AND VESICULAR STOMATITIS VIRUS NUCLEOPROTEIN 5F1N ; 2.0 ; MHC complexed to 11mer peptide 7P3E ; 2.0 ; MHC I A02 Allele presenting YLQLRTFLL 7P3D ; 1.67 ; MHC I A02 Allele presenting YLQPRTFLL 4P57 ; 2.6 ; MHC TCR peptide complex 5F1I ; 2.904 ; MHC with 9-mer peptide 3BUY ; 2.6 ; MHC-I in complex with peptide 7YX9 ; 1.76 ; MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange 7YXB ; 2.095 ; MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange 7Z0Q ; 2.1 ; MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange 6C68 ; 2.59 ; MHC-independent t cell receptor A11 6C61 ; 2.43 ; MHC-independent T-cell receptor B12A 6XNG ; 2.79 ; MHC-like protein complex structure 7M72 ; 2.4 ; MHC-like protein complex structure 6JTT ; 2.51 ; MHETase in complex with BHET 8EKG ; 2.65 ; MHETase variant Thr159Val, Met192Tyr, Tyr252Phe, Tyr503Trp 2RPD ; ; Mhr1p-bound ssDNA 3HD4 ; 1.747 ; MHV Nucleocapsid Protein NTD 2YQ1 ; 2.3 ; MHV-68 LANA (ORF73) C-terminal domain: triclinic crystal form 7MJX ; 1.5 ; MiaB in the complex with 5'-deoxyadenosine, methionine and RNA 7MJY ; 1.86 ; MiaB in the complex with s-adenosyl-L-homocysteine and RNA 7MJV ; 2.24 ; MiaB in the complex with s-adenosylmethionine and RNA 2LU2 ; ; MIC5 regulates the activity of Toxoplasma subtilisin 1 by mimicking a subtilisin prodomain 5UBO ; 2.39 ; Mical-oxidized Actin complex with Gelsolin Segment 1 5LE0 ; 3.3 ; MICAL1 Cterminal domain 1NXT ; 2.34 ; MicArec pH 4.0 1NXV ; 2.0 ; MicArec pH 4.2 1NXW ; 1.92 ; MicArec pH 5.1 1NXX ; 1.9 ; MicArec pH 5.5 1NXP ; 1.82 ; MicArec pH4.5 1NXS ; 1.92 ; MicArec pH4.9 1NXO ; 1.85 ; MicArec pH7.0 2EQT ; ; Micelle-bound structure of growth-blocking peptide of the armyworm, Pseudaletia separata 2RN0 ; ; Micelle-embedded integrin beta3 transmembrane segment 1D3C ; 1.78 ; MICHAELIS COMPLEX OF BACILLUS CIRCULANS STRAIN 251 CYCLODEXTRIN GLYCOSYLTRANSFERASE WITH GAMMA-CYCLODEXTRIN 3X2W ; 1.7 ; Michaelis complex of cAMP-dependent Protein Kinase Catalytic Subunit 1C81 ; 2.5 ; MICHAELIS COMPLEX OF FRUCTOSE-2,6-BISPHOSPHATASE 4C4C ; 1.45 ; Michaelis complex of Hypocrea jecorina CEL7A E217Q mutant with cellononaose spanning the active site 1IKG ; 1.9 ; MICHAELIS COMPLEX OF STREPTOMYCES R61 DD-PEPTIDASE WITH A SPECIFIC PEPTIDOGLYCAN SUBSTRATE FRAGMENT 5BRR ; 3.16 ; Michaelis complex of tPA-S195A:PAI-1 3X2V ; 1.77 ; Michaelis-like complex of cAMP-dependent Protein Kinase Catalytic Subunit 3X2U ; 2.4 ; Michaelis-like initial complex of cAMP-dependent Protein Kinase Catalytic Subunit. 4PVV ; 2.5 ; Micobacterial Adenosine Kinase in complex with inhibitor 8T1N ; 3.0 ; Micro-ED Structure of a Novel Domain of Unknown Function Solved with AlphaFold 8ECO ; 2.2 ; Microbacterium phage Oxtober96 3VSR ; 2.0 ; Microbacterium saccharophilum K-1 beta-fructofuranosidase catalytic domain 3VSS ; 1.97 ; Microbacterium saccharophilum K-1 beta-fructofuranosidase catalytic domain complexed with fructose 3WPV ; 1.81 ; Microbacterium saccharophilum K-1 beta-fructofuranosidase mutant T47S/F447V/F470Y/P500S 3WPZ ; 2.27 ; Microbacterium saccharophilum K-1 beta-fructofuranosidase mutant T47S/S200T/F447P/F470Y/P500S 3WPY ; 2.0 ; Microbacterium saccharophilum K-1 beta-fructofuranosidase mutant T47S/S200T/F447V/P500S 7X8L ; 1.77 ; Microbial family VII carboxylesterase E93 Wild-type 6KF5 ; 2.09 ; Microbial Hormone-sensitive lipase E53 mutant I256L 7CI0 ; 1.7 ; Microbial Hormone-sensitive lipase E53 mutant S162A 6KF7 ; 1.8 ; Microbial Hormone-sensitive lipase E53 mutant S285G 7CIH ; 1.789 ; Microbial Hormone-sensitive lipase E53 mutant S285G 7CIP ; 1.752 ; Microbial Hormone-sensitive lipase E53 wild type 7W8N ; 1.75 ; Microbial Hormone-sensitive lipase E53 wild type 6KF1 ; 1.996 ; Microbial Hormone-sensitive lipase- E53 mutant S162A 6WB5 ; 3.102 ; Microbiome-derived Acarbose Kinase Mak1 as a Complex with Acarbose and AMP-PNP 6WB4 ; 2.593 ; Microbiome-derived Acarbose Kinase Mak1 Labeled with selenomethionine 3TLY ; 1.7 ; Microcin C7 self immunity protein MccF active site mutant S118A/N220A/K247A in the apo state 3TLB ; 1.501 ; Microcin C7 self immunity protein MccF in complex aspartyl sulfamoyl adenosine 3TLE ; 1.3 ; Microcin C7 self immunity protein MccF in complex with glutamyl sulfamoyl adenylate 3TLC ; 1.3 ; Microcin C7 self immunity protein MccF in complex with Microcin C7 antibiotic 3TLG ; 1.4993 ; Microcin C7 self immunity protein MccF in the inactive mutant APO state 3TLA ; 1.201 ; Microcin C7 self immunity protein MccF in the wild type APO state 3TLZ ; 1.5 ; Microcin C7 self immunity protein MccF mutant W186F in complex with Adenosine Monophosphate 2MLP ; ; MICROCIN LEADER PEPTIDE FROM E. COLI, NMR, 25 STRUCTURES 5TY4 ; 2.9 ; MicroED structure of a complex between monomeric TGF-b and its receptor, TbRII, at 2.9 A resolution 6U5G ; 2.5 ; MicroED structure of a FIB-milled CypA Crystal 7N2L ; 0.9 ; MicroED structure of a mutant mammalian prion segment 7N2J ; 1.5 ; MicroED structure of a mutant mammalian prion segment phased by ARCIMBOLDO-BORGES 6PO6 ; 1.0 ; MicroED Structure of a Natural Product VFAThiaGlu 8FYN ; 2.0 ; MicroED structure of A2A from plasma milled lamellae 6YMA ; 2.5 ; MicroED structure of acetazolamide-bound human carbonic anhydrase II 7UTE ; 2.1 ; MicroED structure of Aeropyrum pernix protoglobin mutant 8EUN ; 2.5 ; MicroED structure of an Aeropyrum pernix protoglobin metallo-carbene complex 8EUM ; 2.1 ; MicroED structure of an Aeropyrum pernix protoglobin mutant 7C4V ; 1.05 ; MicroED structure of anorthic Vancomycin at 1.05 A resolution 8SKW ; 1.1 ; MicroED structure of d(CGCGCG)2 Z-DNA 7T3H ; 1.05 ; MicroED structure of Dynobactin 6YNG ; 2.8 ; MicroED structure of granulin determined from five native nanocrystalline granulovirus occlusion bodies 6YMB ; 2.5 ; MicroED structure of human carbonic anhydrase II 7N2E ; 1.0 ; MicroED structure of human CPEB3 segment (154-161) straight polymorph 7N2F ; 1.2 ; MicroED structure of human CPEB3 segment (154-161) straight polymorph phased by ARCIMBOLDO-BORGES 7N2G ; 1.201 ; MicroED structure of human CPEB3 segment(154-161) kinked polymorph phased by ARCIMBOLDO-BORGES 7N2I ; 1.402 ; MicroED structure of human LECT2 (45-53) phased by ARCIMBOLDO-BORGES 7N2D ; 1.503 ; MicroED structure of human zinc finger protein 292 segment (534-542) phased by ARCIMBOLDO-BORGES 6LAV ; 1.73 ; MicroED structure of lysozyme at 1.73A determained using crystal lamellas prepared by focused ion beam milling 5K7O ; 1.8 ; MicroED structure of lysozyme at 1.8 A resolution 7MRP ; 1.75 ; MicroED structure of lysozyme from milled crystals at 1.75A 7KUH ; 3.12 ; MicroED structure of mVDAC 6CPV ; 2.5002 ; MicroED structure of NaK ion channel reveals a process of Na+ partition into the selectivity filter 7C4U ; 1.2 ; MicroED structure of orthorhombic Vancomycin at 1.2 A resolution 6UOW ; 1.2 ; MicroED structure of OsPYL/RCAR5 (24-29) at 12 e-/A^2 6UOR ; 0.9 ; MicroED structure of OsPYL/RCAR5 (24-29) at 3 e-/A^2 6UOS ; 0.9 ; MicroED structure of OsPYL/RCAR5 (24-29) at 6 e-/A^2 6UOU ; 1.04 ; MicroED structure of OsPYL/RCAR5 (24-29) at 9 e-/A^2 6LAW ; 1.5 ; MicroED structure of proteinase K at 1.50A determained using crystal lamellas prepared by focused ion beam milling 5K7S ; 1.6 ; MicroED structure of proteinase K at 1.6 A resolution 5I9S ; 1.75 ; MicroED structure of proteinase K at 1.75 A resolution 6N4U ; 2.75 ; MicroED structure of Proteinase K at 2.75A resolution from a single milled crystal. 7SW1 ; 1.85 ; MicroED structure of proteinase K from a 115 nm thick lamella measured at 200 kV 7SVY ; 2.3 ; MicroED structure of proteinase K from a 130 nm thick lamella measured at 120 kV 7SW2 ; 1.95 ; MicroED structure of proteinase K from a 130 nm thick lamella measured at 200 kV 7SW8 ; 1.9 ; MicroED structure of proteinase K from a 150 nm thick lamella measured at 300 kV 7SW9 ; 2.1 ; MicroED structure of proteinase K from a 170 nm thick lamella measured at 300 kV 7SVZ ; 2.0 ; MicroED structure of proteinase K from a 200 nm thick lamella measured at 120 kV 7SW6 ; 1.95 ; MicroED structure of proteinase K from a 260 nm thick lamella measured at 200 kV 7SWA ; 2.1 ; MicroED structure of proteinase K from a 320 nm thick lamella measured at 300 kV 7SW0 ; 2.7 ; MicroED structure of proteinase K from a 325 nm thick lamella measured at 120 kV 7SWB ; 2.05 ; MicroED structure of proteinase K from a 360 nm thick lamella measured at 300 kV 7SW5 ; 1.95 ; MicroED structure of proteinase K from a 460 nm thick lamella measured at 200 kV 7SW7 ; 2.3 ; MicroED structure of proteinase K from a 530 nm thick lamella measured at 200 kV 7SW4 ; 2.4 ; MicroED structure of proteinase K from a 540 nm thick lamella measured at 200 kV 7SWC ; 2.9 ; MicroED structure of proteinase K from a 550 nm thick lamella measured at 300 kV 7SW3 ; 2.35 ; MicroED structure of proteinase K from a 95 nm thick lamella measured at 200 kV 6PKO ; 2.07 ; MicroED structure of proteinase K from a platinum coated, unpolished, single lamella at 2.07A resolution (#12) 6PKR ; 1.79 ; MicroED structure of proteinase K from a platinum-coated, polished, single lamella at 1.79A resolution (#13) 6PKQ ; 1.85 ; MicroED structure of proteinase K from a platinum-coated, polished, single lamella at 1.85A resolution (#11) 6PKP ; 1.91 ; MicroED structure of proteinase K from a platinum-coated, polished, single lamella at 1.91A resolution (#10) 6PKJ ; 2.17 ; MicroED structure of proteinase K from an uncoated, single lamella at 2.17A resolution (#2) 6PKM ; 2.17 ; MicroED structure of proteinase K from an uncoated, single lamella at 2.17A resolution (#8) 6PKK ; 2.176 ; MicroED structure of proteinase K from an uncoated, single lamella at 2.18A resolution (#5) 6PKL ; 2.59 ; MicroED structure of proteinase K from an uncoated, single lamella at 2.59A resolution (#7) 6PKN ; 2.08 ; MicroED structure of proteinase K from an unpolished, platinum-coated, single lamella at 2.08A resolution (#9) 8FYQ ; 1.4 ; MicroED structure of Proteinase K from argon milled lamellae 8FYO ; 1.39 ; MicroED structure of Proteinase K from lamellae milled from multiple plasma sources 6PKS ; 2.16 ; MicroED structure of proteinase K from low-dose merged lamellae that were not pre-coated with platinum 2.16A resolution (LD) 6PKT ; 1.85 ; MicroED structure of proteinase K from merging low-dose, platinum pre-coated lamellae at 1.85A resolution (LDPT) 8FYS ; 1.8 ; MicroED structure of Proteinase K from nitrogen milled lamellae 8FYR ; 1.5 ; MicroED structure of Proteinase K from oxygen milled lamellae 8FYP ; 1.45 ; MicroED structure of Proteinase K from xenon milled lamellae 6PU5 ; 2.7 ; MicroED structure of proteinase K recorded on CetaD 6PU4 ; 2.1 ; MicroED structure of proteinase K recorded on Falcon III 8E52 ; 2.8 ; MicroED structure of proteinase K recorded on K2 8E53 ; 1.7 ; MicroED structure of proteinase K recorded on K3 7N2K ; 1.301 ; MicroED structure of sequence variant of repeat segment of the yeast prion New1p phased by ARCIMBOLDO-BORGES 5K7N ; 1.1 ; MicroED structure of tau VQIVYK peptide at 1.1 A resolution 5K7Q ; 2.5 ; MicroED structure of thaumatin at 2.5 A resolution 6N3J ; 3.0 ; MicroED Structure of the CTD-SP1 fragment of HIV-1 Gag 6N3U ; 2.9 ; MicroED Structure of the CTD-SP1 fragment of HIV-1 Gag with bound maturation inhibitor Bevirimat. 6N3U ; ; MicroED Structure of the CTD-SP1 fragment of HIV-1 Gag with bound maturation inhibitor Bevirimat. 7RM5 ; 2.79 ; MicroED structure of the human adenosine receptor at 2.8A 7BEQ ; 3.0 ; MicroED structure of the MyD88 TIR domain higher-order assembly 5W52 ; 1.4 ; MicroED structure of the segment, DLIIKGISVHI, from the RRM2 of TDP-43, residues 247-257 4ZNN ; 1.41 ; MicroED structure of the segment, GVVHGVTTVA, from the A53T familial mutant of Parkinson's disease protein, alpha-synuclein residues 47-56 5WKB ; 1.0 ; MicroED structure of the segment, NFGEFS, from the A315E familial variant of the low complexity domain of TDP-43, residues 312-317 5K7T ; 2.5 ; MicroED structure of thermolysin at 2.5 A resolution 6MXF ; 1.91 ; MicroED structure of thiostrepton at 1.9 A resolution 7ULY ; 0.87 ; MicroED structure of triclinic lysozyme 8E54 ; 1.2 ; MicroED structure of triclinic lysozyme recorded on K3 5K7R ; 1.7 ; MicroED structure of trypsin at 1.7 A resolution 5K7P ; 2.3 ; MicroED structure of xylanase at 2.3 A resolution 3QY5 ; 1.25 ; Microfluidic crystallization of Thaumatin using the Crystal Former 4BY8 ; 0.94 ; Microheterogeneous Paracelsin-X from Trichoderma reesei 2XQS ; 3.0 ; Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases 2XQT ; 2.2 ; Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases 2XQU ; 1.84 ; Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases 1N6B ; 2.3 ; Microsomal Cytochrome P450 2C5/3LVdH Complex with a dimethyl derivative of sulfaphenazole 1NR6 ; 2.1 ; MICROSOMAL CYTOCHROME P450 2C5/3LVDH COMPLEX WITH DICLOFENAC 2FDY ; 1.95 ; Microsomal P450 2A6 with the inhibitor Adrithiol bound 2FDU ; 1.85 ; Microsomal P450 2A6 with the inhibitor N,N-Dimethyl(5-(pyridin-3-yl)furan-2-yl)methanamine bound 2FDV ; 1.65 ; Microsomal P450 2A6 with the inhibitor N-Methyl(5-(pyridin-3-yl)furan-2-yl)methanamine bound 1Z9H ; 2.6 ; Microsomal prostaglandin E synthase type-2 6I7S ; 2.5 ; Microsomal triglyceride transfer protein 8EOJ ; 3.07 ; Microsomal triglyceride transfer protein 3ERR ; 2.27 ; Microtubule binding domain from mouse cytoplasmic dynein as a fusion with seryl-tRNA synthetase 2RR7 ; ; Microtubule Binding Domain of DYNEIN-C 5FCN ; 1.8 ; microtubule binding domain of human CEP135 6ZPI ; 4.5 ; Microtubule complexed with Kif15 motor domain. Symmetrised asymmetric unit 8C5C ; 5.3 ; microtubule decorated with tubulin oligomers in presence of APC C-terminal domain. (here only map corresponding to the 13-pf microtubule is represented) 5JCB ; 2.3 ; Microtubule depolymerizing agent podophyllotoxin derivative YJTSF1 5N74 ; 2.3 ; Microtubule end binding protein complex 3ECI ; 2.65 ; Microtubule-associated protein 1 light chain 3 alpha isoform A (MAP1ALC3) 5ND2 ; 5.8 ; Microtubule-bound MKLP2 motor domain in the presence of ADP 5ND4 ; 4.4 ; Microtubule-bound MKLP2 motor domain in the presence of ADP.AlFx 5ND7 ; 7.9 ; Microtubule-bound MKLP2 motor domain in the presence of AMPPNP 5ND3 ; 6.1 ; Microtubule-bound MKLP2 motor domain in the with no nucleotide 2Y1S ; ; Microvirin lectin 2YHH ; ; Microvirin:mannobiose complex 7SSD ; 3.3 ; Mid translocation intermediate with EF-G bound with GDP (Structure IV) 7K54 ; 3.2 ; Mid-translocated +1-frameshifting(CCC-A) complex with EF-G and GDPCP (Structure II-FS) 7K51 ; 3.5 ; Mid-translocated non-frameshifting(CCA-A) complex with EF-G and GDPCP (Structure II) 3E1R ; 2.0 ; Midbody targeting of the ESCRT machinery by a non-canonical coiled-coil in CEP55 7PUA ; 3.6 ; Middle assembly intermediate of the Trypanosoma brucei mitoribosomal small subunit 4J8E ; 2.6 ; Middle domain of Hsc70-interacting protein, crystal form I 4J8D ; 2.8 ; Middle domain of Hsc70-interacting protein, crystal form II 1HK7 ; 2.5 ; Middle Domain of HSP90 1HU3 ; 2.37 ; MIDDLE DOMAIN OF HUMAN EIF4GII 6KSQ ; 2.202 ; Middle Domain of Human HSP90 Alpha 4J2R ; 2.42 ; Middle domain of influenza A virus RNA-dependent polymerase PB2 1Y6Z ; 1.88 ; Middle domain of Plasmodium falciparum putative heat shock protein PF14_0417 4M02 ; 1.59 ; Middle fragment(residues 494-663) of the binding region of SraP 8PHR ; 2.65 ; Middle part of the Borrelia bacteriophage BB1 procapsid, tenfold-symmetrized outer shell 8IXJ ; 3.1 ; Middle segment of the bacteriophage M13 mini variant 8D5A ; 3.1 ; Middle state of SARS-CoV-2 BA.2 variant spike protein 2OOW ; 1.75 ; MIF Bound to a Fluorinated OXIM Derivative 4Z1U ; 2.05 ; MIF in complex with 1-(4-methylphenyl)-3-phenylprop-2-yn-1-one 4Z15 ; 1.6 ; MIF in complex with 3-(2-furylmethyl)-2-thioxo-1,3-thiazolan-4-one 4Z1T ; 1.5 ; MIF in complex with 4-[(4-oxo-2-thioxo-1,3-thiazolan-3-yl)methyl]benzonitrile 6PEG ; 2.0 ; MIF with a allosteric inhibitor 7KQX ; 1.6 ; MIF Y99C homotrimeric mutant 4IUL ; 2.3 ; MIF4G domain of DAP5 4B89 ; 1.5 ; MIF4G domain of the yeast Not1 1MR8 ; 1.9 ; MIGRATION INHIBITORY FACTOR-RELATED PROTEIN 8 FROM HUMAN 3NVG ; 1.48 ; MIHFGN segment 137-142 from mouse prion 3NVH ; 1.61 ; MIHFGND segment 137-143 from mouse prion 8B2V ; 1.73 ; Millisecond cryo-trapping by the spitrobot crystal plunger, CTX-M-14 E166A Ampicillin, 1 sec 8B2O ; 1.86 ; Millisecond cryo-trapping by the spitrobot crystal plunger, CTX-M-14 E166A, Ampicillin, 5 sec 8B2W ; 1.78 ; Millisecond cryo-trapping by the spitrobot crystal plunger, CTX-M-14 E166A, Ampicillin, 500 MS 8B3M ; 1.97 ; Millisecond cryo-trapping by the spitrobot crystal plunger, CTXM-14 Avibactam complex, SSX, 1 sec 8AWY ; 1.6 ; Millisecond cryo-trapping by the spitrobot crystal plunger, Serial measurement Xylose Isomerase with 2,3-butanediol at 50ms 8AWX ; 1.96 ; Millisecond cryo-trapping by the spitrobot crystal plunger, Xylose Isomerase with Glucose at 1s 8AWU ; 1.47 ; Millisecond cryo-trapping by the spitrobot crystal plunger, Xylose Isomerase with Glucose at 250ms 8AWV ; 2.08 ; Millisecond cryo-trapping by the spitrobot crystal plunger, Xylose Isomerase with Glucose at 500ms 8AWS ; 2.26 ; Millisecond cryo-trapping by the spitrobot crystal plunger, Xylose Isomerase with Glucose at 50ms 6MFI ; 1.839 ; MIM-2 Metallo-Beta-Lactamase 8ODR ; 2.85 ; Mimetic of UBC9-SUMO1 7Q0C ; 1.12 ; Mimic carbonic anhydrase IX in complex with Methyl 2-chloro-4-(cyclohexylsulfanyl)-5-sulfamoylbenzoate 3BBK ; 2.75 ; Miminally Junctioned Hairpin Ribozyme Incorporates A38C and 2'5'-phosphodiester Linkage within Active Site 4Z24 ; 2.0 ; Mimivirus R135 (residues 51-702) 4Z25 ; 3.339 ; Mimivirus R135 (residues 51-702) 4Z26 ; 2.915 ; Mimivirus R135 (residues 51-702) 4BA3 ; 2.1 ; mImp_alphadIBB_A89NLS 2YNR ; 2.3 ; mImp_alphadIBB_B54NLS 4V02 ; 2.7 ; MinC:MinD cell division protein complex, Aquifex aeolicus 6RIQ ; 3.1 ; MinCD filament from Pseudomonas aeruginosa 8H4V ; 2.4 ; Mincle CRD complex with PGL trisaccharide 1HYQ ; 2.6 ; MIND BACTERIAL CELL DIVISION REGULATOR FROM A. FULGIDUS 4V03 ; 1.9 ; MinD cell division protein, Aquifex aeolicus 2AAX ; 1.75 ; Mineralocorticoid Receptor Double Mutant with Bound Cortisone 2AB2 ; 1.85 ; Mineralocorticoid Receptor Double Mutant with Bound Spironolactone 6GEV ; 1.54 ; Mineralocorticoid receptor in complex with (s)-13 6GG8 ; 1.8 ; Mineralocorticoid receptor in complex with (s)-13 6GGG ; 1.71 ; Mineralocorticoid receptor in complex with (s)-13 3WFF ; 2.05 ; Mineralocorticoid receptor ligand-binding domain with compound 2b 3WFG ; 1.4 ; Mineralocorticoid receptor ligand-binding domain with compuond 2e 4PF3 ; 1.1 ; Mineralocorticoid receptor ligand-binding domain with compuond 37a 3VHV ; 1.35 ; Mineralocorticoid receptor ligand-binding domain with non-steroidal antagonist 3VHU ; 2.11 ; Mineralocorticoid receptor ligand-binding domain with spironolactone 2AA6 ; 1.95 ; Mineralocorticoid Receptor S810L Mutant with Bound Progesterone 2AA2 ; 1.95 ; Mineralocorticoid Receptor with Bound Aldosterone 2AA7 ; 2.2 ; Mineralocorticoid Receptor with Bound Deoxycorticosterone 2AA5 ; 2.2 ; Mineralocorticoid Receptor with Bound Progesterone 5EIU ; 1.908 ; Mini TRIM5 B-box 2 dimer C2 crystal form 2L13 ; ; mini-haipin of AT basepairs having a C12-alkyl linker forming the loop region 1SJU ; ; MINI-PROINSULIN, SINGLE CHAIN INSULIN ANALOG MUTANT: DES B30, HIS(B 10)ASP, PRO(B 28)ASP AND PEPTIDE BOND BETWEEN LYS B 29 AND GLY A 1, NMR, 20 STRUCTURES 1SJT ; ; MINI-PROINSULIN, TWO CHAIN INSULIN ANALOG MUTANT: DES B30, HIS(B 10)ASP, PRO(B 28)ASP, NMR, 20 STRUCTURES 6TNN ; 3.07 ; Mini-RNase III (Mini-III) bound to 50S ribosome with precursor 23S rRNA 5TX2 ; 1.82 ; Miniature TGF-beta2 3-mutant monomer 8C9N ; 2.36 ; MiniCoV-ADDomer, a SARS-CoV-2 epitope presenting viral like particle 8CTA ; 2.93 ; Minimal 2:2 Ternary Complex between BI-224436 bound HIV-1 Integrase Catalytic Core Domain Dimer and Carboxy Terminal Domains 1G2G ; ; MINIMAL CONFORMATION OF THE ALPHA-CONOTOXIN IMI FOR THE ALPHA7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTOR RECOGNITION 2KWB ; ; Minimal Constraint Solution NMR Structure of Translationally-controlled tumor protein (TCTP) from C.elegans, Northeast Structural Genomics Consortium Target WR73 2LMD ; ; Minimal Constraints Solution NMR Structure of Prospero Homeobox protein 1 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4660B 6YA6 ; 1.44 ; Minimal construct of Cdc7-Dbf4 bound to XL413 4G6P ; 2.641 ; Minimal Hairpin Ribozyme in the Precatalytic State with A38P Variation 4G6S ; 2.84 ; Minimal Hairpin Ribozyme in the Transition State with A38P Variation 4G6R ; 2.832 ; Minimal Hairpin Ribozyme in the Transition State with G8I Variation 2PZE ; 1.7 ; Minimal human CFTR first nucleotide binding domain as a head-to-tail dimer 2PZF ; 2.0 ; Minimal human CFTR first nucleotide binding domain as a head-to-tail dimer with delta F508 2PZG ; 1.8 ; Minimal human CFTR first nucleotide binding domain as a monomer 8PMB ; ; Minimal I-motif comprising three cytosine-cytosine+ base-pairs 8SSF ; 2.5 ; Minimal protein-only/RNA-free Ribonuclease P from Hydrogenobacter thermophilus 8SSG ; 3.2 ; Minimal protein-only/RNA-free Ribonuclease P from Hydrogenobacter thermophilus 8DKO ; 1.8 ; Minimal PutA proline dehydrogenase domain (design #1) complexed with S-(-)-tetrahydro-2-furoic acid 8DKQ ; 1.72 ; Minimal PutA proline dehydrogenase domain (design #2) complexed with 2-(Furan-2-yl)acetic acid 8DKP ; 1.23 ; Minimal PutA proline dehydrogenase domain (design #2) complexed with S-(-)-tetrahydro-2-furoic acid 3CJS ; 1.37 ; Minimal Recognition Complex between PrmA and Ribosomal Protein L11 4PJO ; 3.3 ; Minimal U1 snRNP 3B5S ; 2.25 ; Minimally Hinged Hairpin Ribozyme Incorporates A38DAP Mutation and 2'-O-methyl Modification at the Active Site 3B91 ; 2.75 ; Minimally Hinged Hairpin Ribozyme Incorporates Ade38(2AP) and 2',5'-Phosphodiester Linkage Mutations at the Active Site 3BBM ; 2.65 ; Minimally Junctioned Hairpin Ribozyme Incorporates A38C and 2'O-Me Modification at Active Site 3B58 ; 2.65 ; Minimally Junctioned Hairpin Ribozyme Incorporates A38G Mutation and a 2',5'-Phosphodiester Linkage at the Active Site 3BBI ; 2.35 ; Minimally Junctioned Hairpin Ribozyme Incorporating A38(2AP) and A-1 2'-O-Me Modifications near Active Site 6WHK ; 2.6 ; Minimally mutated anti-influenza broadly neutralizing antibody 1K18 ; ; Minimized Average NMR Structure of the Zinc Finger Domain of Human DNA Polymerase-alpha 1KX2 ; ; Minimized average structure of a mono-heme ferrocytochrome c from Shewanella putrefaciens 1J56 ; ; MINIMIZED AVERAGE STRUCTURE OF BERYLLOFLUORIDE-ACTIVATED NTRC RECEIVER DOMAIN: MODEL STRUCTURE INCORPORATING ACTIVE SITE CONTACTS 1JY9 ; ; MINIMIZED AVERAGE STRUCTURE OF DP-TT2 3J6F ; 4.9 ; Minimized average structure of GDP-bound dynamic microtubules 3J6G ; 5.5 ; Minimized average structure of microtubules stabilized by taxol 1IQS ; ; Minimized average structure of MTH1880 from Methanobacterium Thermoautotrophicum 1J4M ; ; Minimized average structure of the 14-residue peptide RG-KWTY-NG-ITYE-GR (MBH12) 1L2M ; ; Minimized Average Structure of the N-terminal, DNA-binding domain of the replication initiation protein from a geminivirus (Tomato yellow leaf curl virus-Sardinia) 2JU2 ; ; Minimized mean solution structure of the acyl carrier protein domain from module 2 of 6-deoxyerythronolide B synthase (DEBS) 1JXC ; ; Minimized NMR structure of ATT, an Arabidopsis trypsin/chymotrypsin inhibitor 1JFK ; ; MINIMUM ENERGY REPRESENTATIVE STRUCTURE OF A CALCIUM BOUND EF-HAND PROTEIN FROM ENTAMOEBA HISTOLYTICA 1HY2 ; 2.0 ; MINIPROTEIN MP-1 COMPLEX WITH STREPTAVIDIN 1HQQ ; 1.7 ; MINIPROTEIN MP-2 (M9A) COMPLEX WITH STREPTAVIDIN 1HXL ; 1.8 ; MINIPROTEIN MP-2 (V10A) COMPLEX WITH STREPTAVIDIN 1HXZ ; 1.8 ; MINIPROTEIN MP-2 COMPLEX WITH STREPTAVIDIN 7LWM ; 2.83 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 1-RBD up conformation 7LWN ; 2.94 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 1-RBD up conformation 7LWO ; 2.85 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 1-RBD up conformation 7LWP ; 3.01 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 2-RBD up conformation 7LWI ; 3.07 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 3-RBD down conformation 7LWJ ; 3.24 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 3-RBD down conformation 7LWK ; 2.92 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 3-RBD down conformation 7LWL ; 2.84 ; Mink Cluster 5-associated SARS-CoV-2 spike protein (S-GSAS-D614G-delFV) in the 3-RBD down conformation 7LWQ ; 3.44 ; Mink Cluster 5-associated SARS-CoV-2 spike protein(S-GSAS-D614G-delFV) missing the S1 subunit and SD2 subdomain of one protomer 7R18 ; 3.0 ; Mink Variant SARS-CoV-2 Spike in Closed conformation 7R1B ; 2.8 ; Mink Variant SARS-CoV-2 Spike with 1 Erect RBD 7R19 ; 3.3 ; Mink Variant SARS-CoV-2 Spike with 2 Erect RBDs 6ZO6 ; 2.35 ; Minocycline binding to the deep binding pocket of AcrB-G619P 6ZO8 ; 2.5 ; Minocycline binding to the deep binding pocket of AcrB-G621P 6ZOG ; 2.75 ; Minocycline binding to the deep binding pocket of AcrB-I38F_I671T 5ENT ; 2.5 ; Minocycline bound structure of bacterial efflux pump. 1BPS ; ; MINOR CONFORMER OF A BENZO[A]PYRENE DIOL EPOXIDE ADDUCT OF DA IN DUPLEX DNA 7FG2 ; 4.4 ; Minor cryo-EM structure of S protein trimer of SARS-CoV2 with K-874A VHH, composite map 3HJ4 ; 1.56 ; Minor Editosome-Associated TUTase 1 3HJ1 ; 1.95 ; Minor Editosome-Associated TUTase 1 with bound UTP 3HIY ; 2.3 ; Minor Editosome-Associated TUTase 1 with bound UTP and Mg 5LUE ; ; Minor form of the recombinant cytotoxin-1 from N. oxiana 144D ; 2.25 ; MINOR GROOVE BINDING OF SN6999 TO AN ALKYLATED DNA: MOLECULAR STRUCTURE OF D(CGC[E6G]AATTCGCG)-SN6999 COMPLEX 5TTD ; 2.0 ; Minor pilin FctB from S. pyogenes with engineered intramolecular isopeptide bond 7XO2 ; 3.0 ; Minor polymorph in alpha-synuclein fibril seeded by cerebrospinal fluid from a mid-to-late stage (mid-PD-4) Parkinson's disease patient 8H05 ; 3.4 ; Minor polymorph in alpha-synuclein fibril seeded by cerebrospinal fluid from a postmortal Parkinson's disease patient 7XO0 ; 3.0 ; Minor polymorph inalpha-synuclein fibril seeded by cerebrospinal fluid from a mid-to-late stage (mid-PD-1) Parkinson's disease patient 3ZIO ; 2.1 ; minor-site specific NLS (A28) 3ZIP ; 2.4 ; minor-site specific NLS (A58) 3ZIR ; 2.3 ; minor-site specific NLS (B141) 3ZIQ ; 2.1 ; minor-site specific NLS (B6) 3OAB ; 2.3 ; Mint deletion mutant of heterotetrameric geranyl pyrophosphate synthase in complex with ligands 3OAC ; 2.6 ; Mint deletion mutant of heterotetrameric geranyl pyrophosphate synthase in complex with ligands 3KRC ; 2.3 ; Mint heterotetrameric geranyl pyrophosphate synthase in complex with IPP 3KRA ; 1.9 ; Mint heterotetrameric geranyl pyrophosphate synthase in complex with magnesium 3KRP ; 2.42 ; Mint heterotetrameric geranyl pyrophosphate synthase in complex with magnesium and GPP 3KRF ; 2.2 ; Mint heterotetrameric geranyl pyrophosphate synthase in complex with magnesium, IPP, and DMASPP (I) 3KRO ; 1.95 ; Mint heterotetrameric geranyl pyrophosphate synthase in complex with magnesium, IPP, and DMASPP (II) 3WRN ; 1.52 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 3WRO ; 1.48 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 3WRQ ; 1.53 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 3WRR ; 1.62 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 3WRS ; 1.58 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 4PP4 ; 1.45 ; Minute virus of mice non-structural protein-1N-terminal nuclease domain reveals a unique Zn2+ coordination in the active site pocket and shows a novel mode of DNA recognition at the origin of replication 5YH4 ; 1.3 ; Miraculin-like protein from Vitis vinifera 1T6D ; 2.15 ; MIRAS phasing of the Aquifex aeolicus Ppx/GppA phosphatase: crystal structure of the type II variant 2CA6 ; 2.2 ; MIRAS structure determination from hemihedrally twinned crystals 7OD0 ; 2.1 ; Mirolysin in complex with compound 9 8F5C ; 1.15 ; Mirror-image DNA containing 2'-OMe-L-dC modification 8F27 ; 1.6 ; Mirror-image DNA containing 2'-OMe-L-uridine residue 8F24 ; 3.2 ; Mirror-image RNA octamer containing 2'-OMe-L-uridine 5KTV ; 2.35 ; Mis-pairing of unnatural base Z-G DNA duplex at pH 8.5 4XYI ; 3.0 ; Mis16 with H4 peptide 7XSK ; 3.53 ; Misfolded Tetrahymena ribozyme conformation 1 7XSL ; 3.84 ; Misfolded Tetrahymena ribozyme conformation 2 7XSM ; 4.01 ; Misfolded Tetrahymena ribozyme conformation 3 1NGN ; 2.1 ; Mismatch repair in methylated DNA. Structure of the mismatch-specific thymine glycosylase domain of methyl-CpG-binding protein MBD4 5X9W ; 3.3 ; Mismatch Repair Protein 5YK4 ; 2.97 ; Mismatch Repair Protein 1XCI ; ; Mispair Aligned N3T-Butyl-N3T Interstrand Crosslink 1U6O ; ; Mispairing of a Site-Specific Major Groove (2S,3S)-N6-(2,3,4-Trihydroxybutyl)-2-deoxyadenosyl DNA Adduct of Butadiene Diol Epoxide with Deoxyguanosine: Formation of a dA(anti)dG(anti) Pairing Interaction 6BIE ; 1.77 ; MISREADING CHAPERONE-SUBSTRATE COMPLEXES FROM RANDOM NOISE 4YP1 ; 2.65 ; Misting with CDA 1CE7 ; 2.7 ; MISTLETOE LECTIN I FROM VISCUM ALBUM 1ONK ; 2.1 ; Mistletoe lectin I from viscum album 2MLL ; 2.7 ; MISTLETOE LECTIN I FROM VISCUM ALBUM 1OQL ; 3.0 ; Mistletoe Lectin I from Viscum album complexed with galactose 1M2T ; 1.89 ; Mistletoe Lectin I from Viscum album in Complex with Adenine Monophosphate. Crystal Structure at 1.9 A Resolution 1SZ6 ; 2.05 ; MISTLETOE LECTIN I FROM VISCUM ALBUM. CRYSTAL STRUCTURE AT 2.05 A RESOLUTION 1PUM ; 2.3 ; Mistletoe lectin I in complex with galactose 1PUU ; 2.3 ; Mistletoe lectin I in complex with lactose 3D7W ; 2.49 ; Mistletoe Lectin I in Complex with Zeatin 7PZO ; 2.25 ; mite allergen Der p 3 from Dermatophagoides pteronyssinus 3N9C ; 1.5 ; Mite-y Lysozyme: Marmite 3N9E ; 1.38 ; Mite-y Lysozyme: Promite 3N9A ; 1.4 ; Mite-y Lysozyme: Vegemite 4ATH ; 1.95 ; MITF apo structure 7D8S ; 2.28 ; MITF bHLHLZ apo structure 7D8T ; 3.201 ; MITF bHLHLZ complex with M-box DNA 6FX5 ; 2.05 ; MITF dimerization mutant 7EOD ; 1.9 ; MITF HLHLZ Delta AKE 7D8R ; 3.0 ; MITF HLHLZ structure 6G1L ; 2.4 ; MITF/CLEARbox structure 4ATK ; 2.95 ; MITF:E-box complex 4ATI ; 2.6 ; MITF:M-box complex 4HTN ; 1.3 ; Mitigation of X-ray damage in macromolecular crystallography by submicrometer line focusing; total dose 1.32 x 10e+12 X-ray photons 4HTK ; 1.2 ; Mitigation of X-ray damage in macromolecular crystallography by submicrometer line focusing; total dose 2.17 x 10e+12 X-ray photons 4HTQ ; 1.399 ; Mitigation of X-ray damage in macromolecular crystallography by submicrometer line focusing; total dose 6.70 x 10e+11 X-ray photons 1N9G ; 1.98 ; Mitochondrial 2-enoyl thioester reductase Etr1p/Etr2p heterodimer from Candida tropicalis 4PED ; 1.64 ; Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthes 6AZ0 ; 3.4 ; Mitochondrial ATPase Protease YME1 8OM1 ; 2.39 ; Mitochondrial complex I from Mus musculus in the active state 8OLT ; 2.84 ; Mitochondrial complex I from Mus musculus in the active state bound with piericidin A 5O31 ; 4.13 ; Mitochondrial complex I in the deactive state 1CRK ; 3.0 ; MITOCHONDRIAL CREATINE KINASE 7PZP ; 3.5 ; Mitochondrial DNA dependent RNA polymerase homodimer. 1VAR ; 2.5 ; MITOCHONDRIAL MANGANESE SUPEROXIDE DISMUTASE VARIANT WITH ILE 58 REPLACED BY THR 7EKL ; 3.5 ; Mitochondrial outer membrane protein 7EKM ; 3.6 ; Mitochondrial outer membrane protein 6E0G ; 2.9 ; Mitochondrial peroxiredoxin from Leishmania infantum after heat stress without unfolding client protein 6E0F ; 3.7 ; Mitochondrial peroxiredoxin from Leishmania infantum in complex with unfolding client protein after heat stress 3VR8 ; 2.81 ; Mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum 3VRA ; 3.44 ; Mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor Atpenin A5 3VR9 ; 3.01 ; Mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil 3VRB ; 2.91 ; Mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil and substrate fumarate 6WUL ; 3.2 ; Mitochondrial SAM complex - dimer 1 in detergent 6WUM ; 3.6 ; Mitochondrial SAM complex - dimer 2 in detergent 6WUN ; 3.9 ; Mitochondrial SAM complex - dimer 3 in detergent 6WUT ; 3.0 ; Mitochondrial SAM complex - high resolution monomer in detergent 6WUJ ; 3.7 ; Mitochondrial SAM complex - monomer in detergent 6WUH ; 3.4 ; Mitochondrial SAM complex in lipid nanodiscs 1T3J ; 2.5 ; Mitofusin domain HR2 V686M/I708M mutant 6JFM ; 2.09 ; Mitofusin2 (MFN2)_T111D 4ZSG ; 1.79 ; MITOGEN ACTIVATED PROTEIN KINASE 7 IN COMPLEX WITH INHIBITOR 4ZSJ ; 2.48 ; MITOGEN ACTIVATED PROTEIN KINASE 7 IN COMPLEX WITH INHIBITOR 4ZSL ; 2.25 ; MITOGEN ACTIVATED PROTEIN KINASE 7 IN COMPLEX WITH INHIBITOR 2FSO ; 1.83 ; mitogen activated protein kinase p38alpha (D176A) activating mutant 2FST ; 1.45 ; mitogen activated protein kinase p38alpha (D176A+F327L) activating mutant 2FSL ; 1.7 ; mitogen activated protein kinase p38alpha (D176A+F327S) activating mutant form-A 2FSM ; 1.86 ; mitogen activated protein kinase p38alpha (D176A+F327S) activating mutant form-B 6DTL ; 2.753 ; Mitogen-activated protein kinase 6 4U7Z ; 2.805 ; Mitogen-Activated Protein Kinase Kinase (MEK1) bound to G805 3OS3 ; 2.8 ; Mitogen-activated protein kinase kinase 1 (MEK1) in complex with CH4858061 and MgATP 3ORN ; 2.8 ; Mitogen-activated protein kinase kinase 1 (MEK1) in complex with CH4987655 and MgAMP-PNP 4U40 ; 2.3 ; Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) Bound to AMPPNP 8EDV ; 3.3 ; Mitoguardin homolog (MIGA) delta TM residues 106-496 from Caenorhabditis elegans bound to modelled lipid phosphatidylethanolamine 6DE9 ; 1.95 ; mitoNEET bound to furosemide 7P0O ; 1.65 ; mitoNEET bound to M1 molecule 2QH7 ; 1.5 ; MitoNEET is a uniquely folded 2Fe-2S outer mitochondrial membrane protein stabilized by pioglitazone 5NJP ; 1.7 ; Mix-and-diffuse serial synchrotron crystallography: structure of N,N',N''-Triacetylchitotriose bound to Lysozyme with 1s time-delay, phased with 1HEW 5NJQ ; 1.7 ; Mix-and-diffuse serial synchrotron crystallography: structure of N,N',N''-Triacetylchitotriose bound to Lysozyme with 1s time-delay, phased with 4ET8 5NJS ; 1.7 ; Mix-and-diffuse serial synchrotron crystallography: structure of N,N',N''-Triacetylchitotriose bound to Lysozyme with 50s time-delay, phased with 1HEW 5NJR ; 1.7 ; Mix-and-diffuse serial synchrotron crystallography: structure of N,N',N''-Triacetylchitotriose bound to Lysozyme with 50s time-delay, phased with 4ET8 1YUX ; 1.6 ; Mixed valant state of nigerythrin 2Y5Z ; 2.06 ; Mixed-function P450 MycG in complex with mycinamicin III in C2221 space group 2YCA ; 1.8 ; Mixed-function P450 MycG in complex with mycinamicin III in P21212 space group 7ZS8 ; 1.4 ; Mixed-valence, active form, of cytochrome c peroxidase from obligate human pathogenic bacterium Neisseria gonorrhoeae at 1.4 Angstrom resolution 6TI6 ; ; Mixing Abeta(1-40) and Abeta(1-42) peptides generates unique amyloid fibrils 6TI7 ; ; Mixing Abeta(1-40) and Abeta(1-42) peptides generates unique amyloid fibrils 2AEU ; 1.7 ; MJ0158, apo form 2AEV ; 2.0 ; MJ0158, NaBH4-reduced form 1DUS ; 1.8 ; MJ0882-A hypothetical protein from M. jannaschii 3KA0 ; 2.9 ; MK2 complex with inhibitor 6-(5-(2-aminopyrimidin-4-ylamino)-2-hydroxyphenyl)-N-methylbenzo[b]thiophene-2-carboxamide 3KC3 ; 2.9 ; MK2 complexed to inhibitor N4-(7-(benzofuran-2-yl)-1H-indazol-5-yl)pyrimidine-2,4-diamine 3R2Y ; 3.0 ; MK2 kinase bound to Compound 1 3R30 ; 3.2 ; MK2 kinase bound to Compound 2 3R2B ; 2.9 ; MK2 kinase bound to Compound 5b 3R1N ; 2.09 ; MK3 kinase bound to Compound 5b 5T1Y ; 2.05 ; MLA10 coiled-coil fragment 6MW0 ; 0.78 ; Mle-Phe-Mle-D-Phe. Linear tetrapeptide related to pseudoxylallemycin A. 6MVZ ; 0.83 ; Mle-Phe-Mle-Phe. Linear precursor of pseudoxylallemycin A. 7ANG ; 2.14 ; MlghB, GDP-mannoheptose C3,5 epimerase from Campylobacter jejuni 7AN4 ; 2.6 ; MlghB, GDP-mannoheptose C3,5 epimerase from Campylobacter jejuni complex with GDP-mannose 7ANC ; 1.66 ; MlghC, GDP-mannoheptose C4 reductase from Campylobacter jejuni with NADP bound 6LK6 ; 2.41 ; MLKL mutant - T357AS358A 6LK5 ; 2.5 ; MLKL mutant - T357ES358D 6U9R ; 2.1 ; MLL1 SET N3861I/Q3867L bound to inhibitor 12 (TC-5140) 6U9N ; 1.95 ; MLL1 SET N3861I/Q3867L bound to inhibitor 14 (TC-5139) 6U9M ; 2.05 ; MLL1 SET N3861I/Q3867L bound to inhibitor 16 (TC-5109) 6U9K ; 2.0 ; MLL1 SET N3861I/Q3867L bound to inhibitor 18 (TC-5153) 8PJI ; 1.7 ; MLLT1 in complex with compound 10a 8PJ7 ; 1.26 ; MLLT3 in complex with compound PFI-6 7QCR ; 2.28 ; MLLT4/Afadin PDZ domain in complex with the C-terminal peptide from protein E of SARS-CoV-2 6I9D ; 4.0 ; MloK1 consensus structure from single particle analysis of 2D crystals 6IAX ; 5.2 ; MloK1 model from single particle analysis of 2D crystals, class 1 (extended conformation) 6QCY ; 4.7 ; MloK1 model from single particle analysis of 2D crystals, class 2 (intermediate conformation) 6QCZ ; 4.4 ; MloK1 model from single particle analysis of 2D crystals, class 3 (intermediate extended conformation) 6QD0 ; 4.5 ; MloK1 model from single particle analysis of 2D crystals, class 4 (compact/open conformation) 6QD1 ; 5.4 ; MloK1 model from single particle analysis of 2D crystals, class 5 (intermediate compact conformation) 6QD2 ; 4.8 ; MloK1 model from single particle analysis of 2D crystals, class 6 (intermediate compact conformation) 6QD3 ; 5.0 ; MloK1 model from single particle analysis of 2D crystals, class 7 (intermediate conformation) 6QD4 ; 5.6 ; MloK1 model from single particle analysis of 2D crystals, class 8 (intermediate conformation) 3CO2 ; 2.9 ; Mlotik1 ion channel cyclic-nucleotide binding domain mutant 7XJR ; 1.85 ; MLXase AlXyn26A 3IZH ; 11.0 ; Mm-cpn D386A with ATP 3IZN ; 6.4 ; Mm-cpn deltalid with ATP 3IZK ; 4.9 ; Mm-cpn rls deltalid with ATP 3IZL ; 6.2 ; Mm-cpn rls deltalid with ATP and AlFx 3IZI ; 6.7 ; Mm-cpn rls with ATP 3IZJ ; 6.9 ; Mm-cpn rls with ATP and AlFx 3IZM ; 7.2 ; Mm-cpn wildtype with ATP 8KCM ; 2.5 ; MmCPDII-DNA complex containing low-dosage, light induced repaired DNA. 3NVE ; 1.7 ; MMHFGN segment 138-143 from Syrian Hamster prion 5H8A ; 1.751 ; Mmi1 YTH domain 5HFZ ; 1.96 ; Mmi1 YTH domain 5FMS ; 3.488 ; mmIFT52 N-terminal domain 5FMU ; 1.593 ; MmIFT54 CH-domain 8CNZ ; 3.6 ; mmLarE-[4Fe-4S] phased by Fe-SAD 3ZXH ; 1.3 ; MMP-13 complexed with 2-Napthylsulfonamide hydroxamic acid inhibitor 3I7G ; 1.95 ; MMP-13 in complex with a non zinc-chelating inhibitor 3I7I ; 2.208 ; MMP-13 in complex with a non zinc-chelating inhibitor 3O2X ; 1.9 ; MMP-13 in complex with selective tetrazole core inhibitor 6HV2 ; 1.709 ; MMP-13 in complex with the peptide IMISF 1UEA ; 2.8 ; MMP-3/TIMP-1 COMPLEX 2OVX ; 2.0 ; MMP-9 active site mutant with barbiturate inhibitor 2OW2 ; 2.9 ; MMP-9 active site mutant with difluoro butanoic acid inhibitor 2OW0 ; 2.0 ; MMP-9 active site mutant with iodine-labeled carboxylate inhibitor 2OVZ ; 2.0 ; MMP-9 active site mutant with phosphinate inhibitor 2OW1 ; 2.2 ; MMP-9 active site mutant with trifluoromethyl hydroxamate inhibitor 2WO8 ; 2.0 ; MMP12 complex with a beta hydroxy carboxylic acid 2WO9 ; 1.7 ; MMP12 complex with a beta hydroxy carboxylic acid 2WOA ; 2.3 ; MMP12 complex with a beta hydroxy carboxylic acid 3UVC ; 1.3 ; MMP12 in a complex with the dimeric adduct: 5-(5-phenylhydantoin)-5-phenylhydantoin 2OZR ; 2.3 ; MMP13 Catalytic Domain Complexed with 4-{[1-methyl-2,4-dioxo-6-(3-phenylprop-1-yn-1-yl)-1,4-dihydroquinazolin-3(2H)-yl]methyl}benzoic acid 2YIG ; 1.7 ; MMP13 in complex with a novel selective non zinc binding inhibitor 4A7B ; 2.2 ; MMP13 IN COMPLEX WITH A NOVEL SELECTIVE NON ZINC BINDING INHIBITOR CMPD22 4JPA ; 2.0 ; Mmp13 in complex with a piperazine hydantoin ligand 4JP4 ; 1.43 ; Mmp13 in complex with a reverse hydroxamate Zn-binder 1A85 ; 2.0 ; MMP8 WITH MALONIC AND ASPARAGINE BASED INHIBITOR 1A86 ; 2.0 ; MMP8 WITH MALONIC AND ASPARTIC ACID BASED INHIBITOR 1GKD ; 2.1 ; MMP9 active site mutant-inhibitor complex 1GKC ; 2.3 ; MMP9-inhibitor complex 6OR2 ; 2.59 ; MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine 1JAT ; 1.6 ; Mms2/Ubc13 Ubiquitin Conjugating Enzyme Complex 2GMI ; 2.5 ; Mms2/Ubc13~Ubiquitin 7VVX ; 2.51 ; MmtN-SAH-Met complex 7VVW ; 2.11 ; MmtN-SAM complex 2XZ5 ; 2.8 ; MMTS-modified Y53C mutant of Aplysia AChBP in complex with acetylcholine 2BB7 ; 1.7 ; Mn Form Of E. coli Methionine Aminopeptidase In Complex With a quinolinyl sulfonamide inhibitor 2BN7 ; 2.4 ; Mn substituted E. coli Aminopeptidase P in complex with product and Zn 1JQC ; 1.61 ; Mn substituted Ribonucleotide reductase R2 from E. Coli oxidized by hydrogen peroxide and hydroxylamine 1JPR ; 1.88 ; Mn substituted Ribonucleotide reductase R2 from E. coli oxidized by nitric oxide 2IND ; 2.2 ; Mn(II) Reconstituted Toluene/o-xylene Monooxygenase Hydroxylase X-ray Crystal Structure 6DY6 ; 1.8 ; Mn(II)-bound structure of the engineered cyt cb562 variant, CH2E 6DY8 ; 1.9 ; Mn(II)-bound structure of the engineered cyt cb562 variant, CH2EY 5D6M ; 1.653 ; Mn(II)-loaded MnCcP.1 4IT2 ; 2.097 ; Mn(III)-PPIX bound Tt H-NOX 6WZ7 ; 2.3 ; Mn-bound structure of a TriCyt3 variant 6WZ1 ; 1.999 ; Mn-bound structure of an engineered protein trimer, TriCyt3 6SF5 ; 1.9 ; Mn-containing form of the ribonucleotide reductase NrdB protein from Leeuwenhoekiella blandensis 5UKI ; 1.8 ; Mn2+ and Zn2+ requirements for the lariat debranching enzyme, Dbr1 3ITX ; 1.8 ; Mn2+ bound form of Pseudomonas stutzeri L-rhamnose isomerase 3W5W ; 2.95 ; Mn2+-GMP complex of nanoRNase (Nrn) from Bacteroides fragilis 5K8O ; 2.893 ; Mn2+/5NSA-bound 5-nitroanthranilate aminohydrolase 4YKJ ; 1.401 ; Mnemiopsis leidyi ML032222a iGluR LBD complex with Alanine 4YKK ; 1.38 ; Mnemiopsis leidyi ML032222a iGluR LBD D-serine complex 5CMC ; 1.28 ; Mnemiopsis leidyi ML032222a iGluR LBD E423S mutant glycine complex 4YKI ; 1.21 ; Mnemiopsis leidyi ML032222a iGluR LBD glycine complex 5CMB ; 1.34 ; Mnemiopsis leidyi ML032222a iGluR LBD R703K mutant glycine complex 4YKP ; 1.46 ; Mnemiopsis leidyi ML032222a iGluR LBD serine complex 6PRO ; 2.263 ; MnSOD from Geobacillus stearothermophilus 4X9Q ; 1.77 ; MnSOD-3 Room Temperature Structure 5HDQ ; 1.83 ; MntC co-structure with mAB 305-78-7 5MU9 ; 1.3 ; MOA-E-64 complex 5D61 ; 1.6 ; MOA-Z-VAD-fmk complex, direct orientation 5D62 ; 1.7 ; MOA-Z-VAD-fmk complex, inverted orientation 5D63 ; 1.65 ; MOA-Z-VAD-fmk inhibitor complex, direct/inverted dual orientation 4PYD ; 3.186 ; MoaC in complex with cPMP crystallized in space group P212121 4PYA ; 1.789 ; MoaC K51A in complex with 3',8-cH2GTP 1EKR ; 2.0 ; MOAC PROTEIN FROM E. COLI 7LGC ; 1.85 ; MOAP1 CA-like C-terminal domain 6P3E ; 5.4 ; Mobile loops and electrostatic interactions maintain the flexible lambda tail tube 1B92 ; 2.02 ; MOBILITY OF AN HIV-1 INTEGRASE ACTIVE SITE LOOP IS CORRELATED WITH CATALYTIC ACTIVITY 1B9D ; 1.7 ; MOBILITY OF AN HIV-1 INTEGRASE ACTIVE SITE LOOP IS CORRELATED WITH CATALYTIC ACTIVITY 1B9F ; 1.7 ; MOBILITY OF AN HIV-1 INTEGRASE ACTIVE SITE LOOP IS CORRELATED WITH CATALYTIC ACTIVITY 5N2Q ; 2.0 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to 26nt pMV158 oriT DNA 4LVI ; 1.9 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to plasmid pMV158 oriT DNA (22nt). Mn-bound crystal structure at pH 4.6 4LVJ ; 2.17 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to plasmid pMV158 oriT DNA (22nt). Mn-bound crystal structure at pH 5.5 4LVK ; 2.37 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to plasmid pMV158 oriT DNA (22nt+3'Phosphate). Mn-bound crystal structure at pH 4.6 4LVL ; 2.2 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to plasmid pMV158 oriT DNA (22nt+3'Thiophosphate). Mn-bound crystal structure at pH 6.8 4LVM ; 3.1 ; MobM Relaxase Domain (MOBV; Mob_Pre) bound to plasmid pMV158 oriT DNA (23nt). Mn-bound crystal structure at pH 6.5 4XXU ; 1.43 ; ModA - chromate bound 3D31 ; 3.0 ; ModBC from Methanosarcina acetivorans 3BYP ; 1.7 ; Mode of Action of a Putative Zinc Transporter CzrB 3BYR ; 1.8 ; Mode of Action of a Putative Zinc Transporter CzrB (Zn form) 5HPW ; 2.5 ; Mode of binding of antithyroid drug, propylthiouracil to lactoperoxidase: Binding studies and structure determination 3I6N ; 2.7 ; Mode of Binding of the Tuberculosis Prodrug Isoniazid to Peroxidases: Crystal Structure of Bovine Lactoperoxidase with Isoniazid at 2.7 Resolution 4FJR ; 1.86 ; Mode of interaction of Merocyanine 540 with HEW Lysozyme 3GCJ ; 2.34 ; Mode of ligand binding and assignment of subsites in mammalian peroxidases: crystal structure of lactoperoxidase complexes with acetyl salycylic acid, salicylhydroxamic acid and benzylhydroxamic acid 3GCK ; 2.9 ; Mode of ligand binding and assignment of subsites in mammalian peroxidases: crystal structure of lactoperoxidase complexes with acetyl salycylic acid, salicylhydroxamic acid and benzylhydroxamic acid 3GCL ; 2.5 ; Mode of ligand binding and assignment of subsites in mammalian peroxidases: crystal structure of lactoperoxidase complexes with acetyl salycylic acid, salicylhydroxamic acid and benzylhydroxamic acid 4A0W ; 13.9 ; model built against symmetry-free cryo-EM map of TRiC-ADP-AlFx 1GDR ; 3.5 ; MODEL FOR A DNA MEDIATED SYNAPTIC COMPLEX SUGGESTED BY CRYSTAL PACKING OF GAMMA DELTA RESOLVASE SUBUNITS 1N03 ; 20.0 ; Model for Active RecA Filament 2QU4 ; 16.0 ; Model for Bacterial ParM Filament 2HI5 ; 8.0 ; Model for bacteriophage fd from cryo-EM 6BBP ; 35.0 ; Model for compact volume of truncated monomeric Cytohesin-3 (Grp1; amino acids 63-399) E161A 6GS Arf6 Q67L fusion protein 2IX8 ; 9.9 ; MODEL FOR EEF3 BOUND TO AN 80S RIBOSOME 6BBQ ; 35.0 ; Model for extended volume of truncated monomeric Cytohesin-3 (Grp1; amino acids 63-399) E161A Arf6 Q67L fusion protein 8PZQ ; 5.3 ; Model for focused reconstruction of influenza A RNP-like particle 8PZP ; 8.7 ; Model for influenza A virus helical ribonucleoprotein-like structure 2ZWH ; 3.3 ; Model for the F-actin structure 1BRD ; 3.5 ; Model for the structure of Bacteriorhodopsin based on high-resolution Electron Cryo-microscopy 1OLN ; ; Model for thiostrepton antibiotic binding to L11 substrate from 50S ribosomal RNA 2JQ7 ; ; Model for thiostrepton binding to the ribosomal L11-RNA 2PHE ; ; Model for VP16 binding to PC4 2PHG ; ; Model for VP16 binding to TFIIB 3J07 ; 20.0 ; Model of a 24mer alphaB-crystallin multimer 3J0R ; 7.7 ; Model of a type III secretion system needle based on a 7 Angstrom resolution cryoEM map 3BYH ; 12.0 ; Model of actin-fimbrin ABD2 complex 3LUE ; 15.0 ; Model of alpha-actinin CH1 bound to F-actin 7OE2 ; 2.4 ; Model of closed pentamer of the Haliangium ochraceum encapsulin from symmetry expansion of icosahedral single particle reconstruction 4CKD ; 13.0 ; Model of complex between the E.coli enzyme beta-galactosidase and four single chain Fv antibody domains scFv13R4. 2J28 ; 9.5 ; MODEL OF E. COLI SRP BOUND TO 70S RNCS 3J4J ; 11.5 ; Model of full-length T. thermophilus Translation Initiation Factor 2 refined against its cryo-EM density from a 30S Initiation Complex map 6FCZ ; 10.0 ; Model of gC1q-Fc complex based on 7A EM map 3J70 ; 20.0 ; Model of gp120, including variable regions, in complex with CD4 and 17b 7ODW ; 2.5 ; Model of Haliangium ochraceum encapsulin from icosahedral single particle reconstruction 3ZW6 ; 20.0 ; MODEL OF HEXAMERIC AAA DOMAIN ARRANGEMENT OF GREEN-TYPE RUBISCO ACTIVASE FROM TOBACCO. 3C9K ; 20.0 ; Model of Histone Octamer Tubular Crystals 5L9U ; 6.4 ; Model of human Anaphase-promoting complex/Cyclosome (APC/C-CDH1) with a cross linked Ubiquitin variant-substrate-UBE2C (UBCH10) complex representing key features of multiubiquitination 5L9T ; 6.4 ; Model of human Anaphase-promoting complex/Cyclosome (APC/C-CDH1) with E2 UBE2S poised for polyubiquitination where UBE2S, APC2, and APC11 are modeled into low resolution density 5KHU ; 4.8 ; Model of human Anaphase-promoting complex/Cyclosome (APC15 deletion mutant), in complex with the Mitotic checkpoint complex (APC/C-CDC20-MCC) based on cryo EM data at 4.8 Angstrom resolution 5KHR ; 6.1 ; Model of human Anaphase-promoting complex/Cyclosome complex (APC15 deletion mutant) in complex with the E2 UBE2C/UBCH10 poised for ubiquitin ligation to substrate (APC/C-CDC20-substrate-UBE2C) 1E07 ; ; Model of human carcinoembryonic antigen by homology modelling and curve-fitting to experimental solution scattering data 1IGA ; ; MODEL OF HUMAN IGA1 DETERMINED BY SOLUTION SCATTERING CURVE-FITTING AND HOMOLOGY MODELLING 1R70 ; 30.0 ; Model of human IgA2 determined by solution scattering, curve fitting and homology modelling 4AQW ; 9.5 ; Model of human kinesin-5 motor domain (1II6, 3HQD) and mammalian tubulin heterodimer (1JFF) docked into the 9.5-angstrom cryo-EM map of microtubule-bound kinesin-5 motor domain in the rigor state. 4AQV ; 9.7 ; Model of human kinesin-5 motor domain (3HQD) and mammalian tubulin heterodimer (1JFF) docked into the 9.7-angstrom cryo-EM map of microtubule-bound kinesin-5 motor domain in the AMPPPNP state. 2YH1 ; ; Model of human U2AF65 tandem RRM1 and RRM2 domains with eight-site uridine binding 2J37 ; 8.7 ; MODEL OF MAMMALIAN SRP BOUND TO 80S RNCS 3J2Q ; 15.0 ; Model of membrane-bound factor VIII organized in 2D crystals 1MHC ; 2.1 ; MODEL OF MHC CLASS I H2-M3 WITH NONAPEPTIDE FROM RAT ND1 REFINED AT 2.3 ANGSTROMS RESOLUTION 7LFI ; 1.7 ; MODEL OF MHC CLASS Ib H2-M3 WITH MOUSE ND1 N-TERMINAL HEPTAPEPTIDE REFINED AT 1.70 ANGSTROMS RESOLUTION 7LFJ ; 1.7 ; MODEL OF MHC CLASS Ib H2-M3 WITH MOUSE ND1 N-TERMINAL HEPTAPEPTIDE, ALA MUTANT, REFINED AT 1.70 ANGSTROMS RESOLUTION 7LFK ; 1.6 ; MODEL OF MHC CLASS Ib H2-M3 WITH MOUSE ND1 N-TERMINAL HEPTAPEPTIDE, THR MUTANT, REFINED AT 1.60 ANGSTROMS RESOLUTION 7LFL ; 1.6 ; MODEL OF MHC CLASS Ib H2-M3 WITH MOUSE ND1 N-TERMINAL HEPTAPEPTIDE, VAL MUTANT, MONOCLINIC CELL, REFINED AT 1.60 ANGSTROMS RESOLUTION 7LFM ; 1.6 ; MODEL OF MHC CLASS Ib H2-M3 WITH MOUSE ND1 N-TERMINAL HEPTAPEPTIDE, VAL MUTANT, TRICLINIC CELL, REFINED AT 1.60 ANGSTROMS RESOLUTION 1NTL ; 30.0 ; Model of mouse Crry-Ig determined by solution scattering, curve fitting and homology modelling 7T81 ; 10.0 ; Model of Munc13-1 C1-C2B-MUN-C2C 2D crystal between lipid bilayers. 1MHS ; 8.0 ; Model of Neurospora crassa proton ATPase 7OEU ; 2.64 ; Model of open pentamer of the Haliangium ochraceum encapsulin from symmetry expansion of icosahedral single particle reconstruction 3EP2 ; 9.0 ; Model of Phe-tRNA(Phe) in the ribosomal pre-accommodated state revealed by cryo-EM 1NTJ ; 30.0 ; Model of rat Crry determined by solution scattering, curve fitting and homology modelling 6H7W ; 11.4 ; Model of retromer-Vps5 complex assembled on membrane. 3J15 ; 6.6 ; Model of ribosome-bound archaeal Pelota and ABCE1 6CVJ ; 3.2 ; Model of synthetic tau (four tandem repeats of first repeat sequence) bound to the microtubule 6CVN ; 3.9 ; Model of synthetic tau (R2x4) bound to the microtubule 7RNO ; ; Model of the Ac-6-FP/hpMR1/bB2m/TAPBPR complex from integrated docking, NMR and restrained MD 7AQK ; 9.0 ; Model of the actin filament Arp2/3 complex branch junction in cells 3J2O ; 25.0 ; Model of the bacteriophage T4 fibritin based on the cryo-EM reconstruction of the contracted T4 tail containing the phage collar and whiskers 6EHM ; 7.3 ; Model of the Ebola virus nucleocapsid subunit from recombinant virus-like particles 6EHL ; 6.6 ; Model of the Ebola virus nucleoprotein in recombinant nucleocapsid-like assemblies 3IZO ; 3.6 ; Model of the fiber tail and its interactions with the penton base of human adenovirus by cryo-electron microscopy 7LOI ; ; Model of the HIV-1 gp41 membrane-proximal external region, transmembrane domain and cytoplasmic tail 6UJV ; ; Model of the HIV-1 gp41 membrane-proximal external region, transmembrane domain and cytoplasmic tail (LLP2) 3J8C ; 11.6 ; Model of the human eIF3 PCI-MPN octamer docked into the 43S EM map 3J8B ; 9.3 ; Model of the human eIF3 PCI-MPN octamer docked into the 43S-HCV IRES EM map 7PER ; 35.0 ; Model of the inner ring of the human nuclear pore complex 3IZD ; 8.6 ; Model of the large subunit RNA expansion segment ES27L-out based on a 6.1 A cryo-EM map of Saccharomyces cerevisiae translating 80S ribosome. 3IZD is a small part (an expansion segment) which is in an alternative conformation to what is in already 3IZF. 8R1A ; 26.8 ; Model of the membrane-bound GBP1 oligomer 7PEQ ; 35.0 ; Model of the outer rings of the human nuclear pore complex 3J6D ; 11.7 ; Model of the PrgH-PrgK periplasmic rings 6F9C ; 8.0 ; Model of the Rift Valley fever virus glycoprotein hexamer type 1 6F9D ; 13.3 ; Model of the Rift Valley fever virus glycoprotein hexamer type 2 6F9E ; 13.3 ; Model of the Rift Valley fever virus glycoprotein hexamer type 3 6F9F ; 13.3 ; Model of the Rift Valley fever virus glycoprotein pentamer 2VAZ ; 10.0 ; Model of the S15-mRNA complex fitted into the cryo-EM map of the 70S entrapment complex. 4V7E ; 5.5 ; Model of the small subunit RNA based on a 5.5 A cryo-EM map of Triticum aestivum translating 80S ribosome 4B2Q ; 37.0 ; Model of the yeast F1Fo-ATP synthase dimer based on subtomogram average 3EQ4 ; 12.0 ; Model of tRNA(Leu)-EF-Tu in the ribosomal pre-accommodated state revealed by cryo-EM 3EQ3 ; 9.0 ; Model of tRNA(Trp)-EF-Tu in the ribosomal pre-accommodated state revealed by cryo-EM 4A13 ; 11.3 ; model refined against symmetry-free cryo-EM map of TRiC-ADP 4A0V ; 10.7 ; model refined against the Symmetry-free cryo-EM map of TRiC-AMP-PNP 1EKY ; ; MODEL STRUCTURE FROM NON-NOE BASED NMR STRUCTURE CALCULATION 5TLQ ; ; Model structure of the oxidized PaDsbA1 and 3-[(2-methylbenzyl)sulfanyl]-4H-1,2,4-triazol-4-amine complex 1IFD ; 4.0 ; MODEL-BUILDING STUDIES OF INOVIRUS: GENETIC VARIATIONS ON A GEOMETRIC THEME 2IFO ; ; MODEL-BUILDING STUDIES OF INOVIRUS: GENETIC VARIATIONS ON A GEOMETRIC THEME 2YEW ; 5.0 ; Modeling Barmah Forest virus structural proteins 2BMH ; 2.0 ; MODELING PROTEIN-SUBSTRATE INTERACTIONS IN THE HEME DOMAIN OF CYTOCHROME P450BM-3 2X31 ; 7.5 ; Modelling of the complex between subunits BchI and BchD of magnesium chelatase based on single-particle cryo-EM reconstruction at 7.5 ang 7SPI ; 2.97 ; Models for C13 reconstruction of Outer Membrane Core Complex (OMCC) of Type IV Secretion System (T4SS) encoded by a plasmid overproducing TraV, TraK and TraB of pED208 7SPB ; 3.31 ; Models for C13 reconstruction of Outer Membrane Core Complex (OMCC) of Type IV Secretion System (T4SS) encoded by F-plasmid (pED208). 7SPK ; 3.9 ; Models for C16 reconstruction of Outer Membrane Core Complex (OMCC) of Type IV Secretion System (T4SS) encoded by a plasmid overproducing TraV, TraK and TraB of pED208 7SPJ ; 3.56 ; Models for C17 reconstruction of Outer Membrane Core Complex (OMCC) of Type IV Secretion System (T4SS) encoded by a plasmid overproducing TraV, TraK and TraB of pED208 7SPC ; 2.95 ; Models for C17 reconstruction of Outer Membrane Core Complex (OMCC) of Type IV Secretion System (T4SS) encoded by F-plasmid (pED208). 3IZZ ; 10.8 ; Models for ribosome components that are nearest neighbors to the bovine mitochondrial initiation factor2 bound to the E. Coli ribosome 3J0E ; 9.9 ; Models for the T. thermophilus ribosome recycling factor and the E. coli elongation factor G bound to the E. coli post-termination complex 3J0D ; 11.1 ; Models for the T. thermophilus ribosome recycling factor bound to the E. coli post-termination complex 3J0C ; 4.8 ; Models of E1, E2 and CP of Venezuelan Equine Encephalitis Virus TC-83 strain restrained by a near atomic resolution cryo-EM map 3J16 ; 7.2 ; Models of ribosome-bound Dom34p and Rli1p and their ribosomal binding partners 1XIB ; 1.6 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIC ; 1.6 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XID ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIE ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIF ; 1.6 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIG ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIH ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XII ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 1XIJ ; 1.7 ; MODES OF BINDING SUBSTRATES AND THEIR ANALOGUES TO THE ENZYME D-XYLOSE ISOMERASE 6GHC ; 2.85 ; Modification dependent EcoKMcrA restriction endonuclease 6GHS ; 2.92 ; Modification dependent TagI restriction endonuclease 4PCJ ; 1.9 ; Modifications to toxic CUG RNAs induce structural stability and rescue mis-splicing in Myotonic Dystrophy 2LGB ; ; Modified A22Gly-B31Arg Human Insulin 6NTA ; 3.1 ; Modified ASL proline bound to Thermus thermophilus 70S (cognate) 6NSH ; 3.397 ; Modified ASL proline bound to Thermus thermophilus 70S (near-cognate) 6ORQ ; 4.4 ; Modified BG505 SOSIP-based immunogen RC1 in complex with the elicited V3-glycan patch antibody Ab275MUR 6ORO ; 3.9 ; Modified BG505 SOSIP-based immunogen RC1 in complex with the elicited V3-glycan patch antibody Ab874NHP 6ORP ; 4.4 ; Modified BG505 SOSIP-based immunogen RC1 in complex with the elicited V3-glycan patch antibody Ab897NHP 6ORN ; 4.05 ; Modified BG505 SOSIP-based immunogen RC1 in complex with the elicited V3-glycan patch bNAb 10-1074 3IZ4 ; 13.6 ; Modified E. coli tmRNA in the resume state with the tRNA-like domain in the ribosomal P site interacting with the SmpB 1K2A ; 1.0 ; Modified Form of Eosinophil-derived Neurotoxin 1GTI ; 3.0 ; MODIFIED GLUTATHIONE S-TRANSFERASE (PI) COMPLEXED WITH S (P-NITROBENZYL)GLUTATHIONE 5GTM ; 2.896 ; Modified human MxA, nucleotide-free form 4R6D ; 1.55 ; Modified mTFP* for enhanced metal binding: co-crystallization with CuCl2 8ONO ; 1.65 ; Modified oligopeptidase B from S. proteamaculans in intermediate conformation with 5 spermine molecule at 1.65 A resolution 7YX7 ; 1.72 ; Modified oligopeptidase B from S. proteomaculans in intermediate conformation with 1 spermine molecule at 1.72 A resolution 7YWS ; 1.7 ; Modified oligopeptidase B from S. proteomaculans in intermediate conformation with 3 spermine molecules at 1.7 A resolution 7YWZ ; 1.75 ; Modified oligopeptidase B from S. proteomaculans in intermediate conformation with 4 spermine molecules at 1.75 A resolution 1JZP ; ; Modified Peptide A (D18-A1) of the Rabbit Skeletal Dihydropyridine Receptor 2G9C ; 1.7 ; Modified pyrimidines Specifically bind the purine riboswitch 5U66 ; 1.7 ; Modified single helix from the B-domain of protein A bound to IgG1 Fc 6NUO ; 3.2 ; Modified tRNA(Pro) bound to Thermus thermophilus 70S (cognate) 6NWY ; 3.5 ; Modified tRNA(Pro) bound to Thermus thermophilus 70S (near-cognate) 2VQE ; 2.5 ; Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U-G wobble pairing during decoding 2VQF ; 2.9 ; Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U-G wobble pairing during decoding 5BP4 ; 3.75 ; Modifying region (DH-ER-KR) of a mycocerosic acid synthase-like (MAS-like) PKS 6FN6 ; 2.7 ; Modifying region (DH-ER-KR) of an insect fatty acid synthase (FAS) 4J4L ; 2.3 ; Modular evolution and design of the protein binding interface 1TMH ; 2.8 ; MODULAR MUTAGENESIS OF A TIM-BARREL ENZYME: THE CRYSTAL STRUCTURE OF A CHIMERIC E. COLI TIM HAVING THE EIGHTH (BETA-ALPHA)-UNIT REPLACED BY THE EQUIVALENT UNIT OF CHICKEN TIM 7XVK ; 2.29 ; Modularity of Phytophthora effectors enables host mimicry of a principal phosphatase 3NVR ; 2.148 ; Modulating Heme Redox Potential Through Protein-Induced Porphyrin Distortion 3NVU ; 2.038 ; Modulating Heme Redox Potential Through Protein-Induced Porphyrin Distortion 6IAM ; 1.51 ; Modulating Protein-Protein Interactions with Visible Light Peptide Backbone Switches 4H27 ; 1.3 ; Modulating the function of human serine racemase and human serine dehydratase by protein engineering 4NJ3 ; 1.848 ; Modulating the interaction between CDK2 and Cyclin A with a Quinoline-based inhibitor 1DE0 ; 2.4 ; MODULATING THE MIDPOINT POTENTIAL OF THE [4FE-4S] CLUSTER OF THE NITROGENASE FE PROTEIN 1PZ7 ; 1.421 ; Modulation of agrin function by alternative splicing and Ca2+ binding 1PZ8 ; 2.35 ; Modulation of agrin function by alternative splicing and Ca2+ binding 1PZ9 ; 2.8 ; Modulation of agrin function by alternative splicing and Ca2+ binding 1CDM ; 2.0 ; MODULATION OF CALMODULIN PLASTICITY IN MOLECULAR RECOGNITION ON THE BASIS OF X-RAY STRUCTURES 5M23 ; 1.97 ; Modulation of MLL1 Methyltransferase Activity 5M25 ; 2.43 ; Modulation of MLL1 Methyltransferase Activity 6EHT ; 3.2 ; Modulation of PCNA sliding surface by p15PAF suggests a suppressive mechanism for cisplatin-induced DNA lesion bypass by pol eta holoenzyme 4F2B ; 2.16 ; Modulation of S.Aureus Phosphatidylinositol-Specific Phospholipase C Membrane Binding 4F2T ; 2.3 ; Modulation of S.aureus Phosphatidylinositol-Specific Phospholipase C Membrane Binding. 5GIK ; 1.49 ; Modulation of the affinity of a HIV-1 capsid-directed ankyrin towards its viral target through critical amino acid editing 1CH4 ; 2.5 ; MODULE-SUBSTITUTED CHIMERA HEMOGLOBIN BETA-ALPHA (F133V) 1G8R ; 2.65 ; MOEA 2NQR ; 2.2 ; MoeA D142N 2NQV ; 2.82 ; MoeA D228A 2NQK ; 2.9 ; MoeA D59N mutant 2NQS ; 2.5 ; MoeA E188A 2NQU ; 2.7 ; MoeA E188Q 2NRO ; 2.5 ; MoeA K279Q 2NQQ ; 2.4 ; MoeA R137Q 2NRP ; 3.0 ; MoeA R350A 2NRS ; 2.8 ; MoeA S371W 2NQM ; 3.0 ; MoeA T100A mutant 2NQN ; 2.2 ; MoeA T100W 8BVE ; 2.14 ; MoeA2 from Corynebacterium glutamicum 8BVF ; 2.68 ; MoeA2 from Corynebacterium glutamicum in complex with FtsZ-CTD 6KVC ; 1.66 ; MoeE5 in complex with UDP-glucose and NAD 6KV9 ; 1.48 ; MoeE5 in complex with UDP-glucuronic acid and NAD 1SGH ; 3.5 ; Moesin FERM domain bound to EBP50 C-terminal peptide 2I1J ; 2.1 ; Moesin from Spodoptera frugiperda at 2.1 angstroms resolution 2I1K ; 3.0 ; Moesin from Spodoptera frugiperda reveals the coiled-coil domain at 3.0 angstrom resolution 6Y06 ; ; Moevan: a designed granulopoietic protein by topological rescaffolding 7MCI ; 1.65 ; MoFe protein from Azotobacter vinelandii with a sulfur-replenished cofactor 8FMY ; 2.66 ; Mojiang virus F ectodomain in prefusion form 6TMR ; 2.893 ; Mokola virus glycoprotein, monomeric post-fusion conformation 4F8K ; 1.7 ; Molecular analysis of the interaction between the prostacyclin receptor and the first PDZ domain of PDZK1 3NGH ; 1.8 ; Molecular Analysis of the Interaction of the HDL Receptor SR-BI with the Adaptor Protein PDZK1 3R69 ; 1.499 ; Molecular analysis of the interaction of the HDL-receptor SR-BI with the PDZ3 domain of its adaptor protein PDZK1 3R68 ; 1.3 ; Molecular Analysis of the PDZ3 domain of PDZK1 4R2Z ; 1.7 ; Molecular Analysis of the PDZ4 Domain of Mouse PDZK1 1BYH ; 2.8 ; MOLECULAR AND ACTIVE-SITE STRUCTURE OF A BACILLUS (1-3,1-4)-BETA-GLUCANASE 1J8L ; 1.6 ; Molecular and Crystal Structure of D(CGCAAATTMO4CGCG): the Watson-Crick Type N4-Methoxycytidine/Adenosine Base Pair in B-DNA 1G75 ; 1.57 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATF5UCGCG): 5-FORMYLURIDINE/ ADENOSINE BASE-PAIRS IN B-DNA 1G8N ; 1.55 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATF5UCGCG):5-FORMYLURIDINE/ ADENOSINE BASE-PAIRS IN B-DNA 1G8U ; 1.85 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATF5UCGCG):5-FORMYLURIDINE/ ADENOSINE BASE-PAIRS IN B-DNA 1G8V ; 1.8 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATF5UCGCG):5-FORMYLURIDINE/ ADENOSINE BASE-PAIRS IN B-DNA 1I3T ; 1.6 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATT(MO4)CGCG): THE WATSON-CRICK TYPE AND WOBBLE N4-METHOXYCYTIDINE/GUANOSINE BASE PAIRS IN B-DNA 1I47 ; 2.1 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGAATT(MO4)CGCG): THE WATSON-CRICK TYPE AND WOBBLE N4-METHOXYCYTIDINE/GUANOSINE BASE PAIRS IN B-DNA 1DA2 ; 1.7 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGMO4CG): N4-METHOXYCYTOSINE/GUANINE BASE-PAIRS IN Z-DNA 456D ; 1.6 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGMO6AATCCGCG): THE WATSON-CRICK TYPE N6-METHOXYADENOSINE/CYTIDINE BASE-PAIRS IN B-DNA 1EDR ; 1.6 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGMO6AATTCGCG) AT 1.6 ANGSTROM 457D ; 2.0 ; MOLECULAR AND CRYSTAL STRUCTURE OF D(CGCGMO6AATTCGCG): N6-METHOXYADENOSINE/ THYMIDINE BASE-PAIRS IN B-DNA 2XVC ; 2.15 ; Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division 4C0R ; 1.547 ; Molecular and structural basis of glutathione import in Gram-positive bacteria via GshT and the cystine ABC importer TcyBC of Streptococcus mutans. 2OGQ ; 1.95 ; Molecular and structural basis of Plk1 substrate recognition: Implications in centrosomal localization 2OJX ; 2.85 ; Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization 3BZI ; 2.1 ; Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization 2P5T ; 3.2 ; Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae 4ESR ; 1.53 ; Molecular and Structural Characterization of the SH3 Domain of AHI-1 in Regulation of Cellular Resistance of BCR-ABL+ Chronic Myeloid Leukemia Cells to Tyrosine Kinase Inhibitors 3C7K ; 2.9 ; Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation 3C7L ; 1.89 ; Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation 1YJ5 ; 2.8 ; Molecular architecture of mammalian polynucleotide kinase, a DNA repair enzyme 7Y38 ; 2.8 ; Molecular architecture of the chikungunya virus replication complex 3WLW ; 3.088 ; Molecular Architecture of the ErbB2 Extracellular Domain Homodimer 4V94 ; 3.8 ; Molecular architecture of the eukaryotic chaperonin TRiC/CCT derived by a combination of chemical crosslinking and mass-spectrometry, XL-MS 1QO1 ; 3.9 ; Molecular Architecture of the Rotary Motor in ATP Synthase from Yeast Mitochondria 2VY9 ; 2.3 ; Molecular architecture of the stressosome, a signal integration and transduction hub 3T98 ; 2.5 ; Molecular Architecture of the Transport Channel of the Nuclear Pore Complex: Nup54/Nup58 3T97 ; 2.8 ; Molecular Architecture of the Transport Channel of the Nuclear Pore Complex: Nup62/Nup54 2YGD ; 9.4 ; Molecular architectures of the 24meric eye lens chaperone alphaB- crystallin elucidated by a triple hybrid approach 6H9Z ; 1.51 ; Molecular bases of histo-blood group antigen recognition by the most common human rotavirus 7C01 ; 2.88 ; Molecular basis for a potent human neutralizing antibody targeting SARS-CoV-2 RBD 4JBK ; 2.963 ; Molecular basis for abrogation of activation of pro-inflammatory cytokines 2BFI ; 1.1 ; Molecular basis for amyloid fibril formation and stability 5EN2 ; 1.821 ; Molecular basis for antibody-mediated neutralization of New World hemorrhagic fever mammarenaviruses 6GC5 ; 1.9 ; Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM 1FLK ; 2.8 ; MOLECULAR BASIS FOR CD40 SIGNALING MEDIATED BY TRAF3 1FLL ; 3.5 ; MOLECULAR BASIS FOR CD40 SIGNALING MEDIATED BY TRAF3 5T53 ; 2.699 ; MOLECULAR BASIS FOR COHESIN ACETYLATION BY ESTABLISHMENT OF SISTER CHROMATID COHESION N-ACETYLTRANSFERASE ESCO1 3OHX ; 3.503 ; Molecular Basis for Complement Recognition and Inhibition Determined by Crystallographic Studies of the Staphylococcal Complement Inhibitor (SCIN) Bound to C3c and C3b 6CGO ; 2.0 ; Molecular basis for condensation domain-mediated chain release from the enacyloxin polyketide synthase 7KY1 ; 1.50003 ; Molecular basis for control of antibiotic production by a bacterial hormones 4QD2 ; 2.4 ; Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex 6AGL ; 2.5 ; Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli 6AGM ; 2.0 ; Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli 6LR4 ; 3.0 ; Molecular basis for inhibition of human gamma-secretase by small molecule 3V1W ; 1.908 ; Molecular Basis for Multiple Ligand Binding of Calsequestrin and Potential Inhibition by Caffeine and Gallocatecin 7E5Y ; 3.59 ; Molecular basis for neutralizing antibody 2B11 targeting SARS-CoV-2 RBD 5JPW ; ; Molecular basis for protein recognition specificity of the DYNLT1/Tctex1 canonical binding groove. Characterization of the interaction with activin receptor IIB 1I3K ; 1.5 ; MOLECULAR BASIS FOR SEVERE EPIMERASE-DEFICIENCY GALACTOSEMIA: X-RAY STRUCTURE OF THE HUMAN V94M-SUBSTITUTED UDP-GALACTOSE 4-EPIMERASE 1I3L ; 1.5 ; MOLECULAR BASIS FOR SEVERE EPIMERASE-DEFICIENCY GALACTOSEMIA: X-RAY STRUCTURE OF THE HUMAN V94M-SUBSTITUTED UDP-GALACTOSE 4-EPIMERASE 1I3M ; 1.5 ; MOLECULAR BASIS FOR SEVERE EPIMERASE-DEFICIENCY GALACTOSEMIA: X-RAY STRUCTURE OF THE HUMAN V94M-SUBSTITUTED UDP-GALACTOSE 4-EPIMERASE 1I3N ; 1.5 ; MOLECULAR BASIS FOR SEVERE EPIMERASE-DEFICIENCY GALACTOSEMIA: X-RAY STRUCTURE OF THE HUMAN V94M-SUBSTITUTED UDP-GALACTOSE 4-EPIMERASE 5F5P ; 3.568 ; Molecular Basis for Shroom2 Recognition by Rock1 3ZHA ; 2.55 ; Molecular basis for the action of the collagen-specific chaperone Hsp47 SERPINH1 and its structure-specific client recognition. 3H85 ; 2.6 ; Molecular basis for the association of PIPKI gamma-p90 with the clathrin adaptor AP-2 3H1Z ; 1.83 ; Molecular basis for the association of PIPKIgamma -p90 with the clathrin adaptor AP-2 6WQH ; 3.6 ; Molecular basis for the ATPase-powered substrate translocation by the Lon AAA+ protease 3CZ7 ; 2.0 ; Molecular Basis for the Autoregulation of the Protein Acetyl Transferase Rtt109 1TMB ; 2.3 ; MOLECULAR BASIS FOR THE INHIBITION OF HUMAN ALPHA-THROMBIN BY THE MACROCYCLIC PEPTIDE CYCLOTHEONAMIDE A 2Z5S ; 2.3 ; Molecular basis for the inhibition of p53 by Mdmx 2Z5T ; 2.3 ; Molecular basis for the inhibition of p53 by Mdmx 1L8L ; 2.51 ; Molecular basis for the local confomational rearrangement of human phosphoserine phosphatase 1L8O ; 2.8 ; Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase 3T3O ; 2.5 ; Molecular basis for the recognition and cleavage of RNA (CUGG) by the bifunctional 5'-3' exo/endoribonuclease RNase J 3T3N ; 3.09 ; Molecular basis for the recognition and cleavage of RNA (UUCCGU) by the bifunctional 5'-3' exo/endoribonuclease RNase J 2C1J ; 2.6 ; Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3 2C1N ; 2.0 ; Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3 4UY8 ; 3.8 ; Molecular basis for the ribosome functioning as a L-tryptophan sensor - Cryo-EM structure of a TnaC stalled E.coli ribosome 7AC8 ; 2.06 ; Molecular basis for the unique allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. 6ULI ; 1.88 ; Molecular basis for tumor infiltrating TCR recognition of hotspot KRAS-G12D mutation 6ULK ; 1.9 ; Molecular basis for tumor infiltrating TCR recognition of hotspot KRAS-G12D mutation 6ULN ; 2.01 ; Molecular basis for tumor infiltrating TCR recognition of hotspot KRAS-G12D mutation 6ULR ; 3.2 ; Molecular basis for tumor infiltrating TCR recognition of hotspot KRAS-G12D mutation 6UON ; 3.5 ; Molecular basis for tumor infiltrating TCR recognition of hotspot KRAS-G12D mutation 2IZX ; 1.3 ; Molecular Basis of AKAP Specificity for PKA Regulatory Subunits 2IZY ; 2.2 ; Molecular Basis of AKAP Specificity for PKA Regulatory Subunits 1LLD ; 2.0 ; MOLECULAR BASIS OF ALLOSTERIC ACTIVATION OF BACTERIAL L-LACTATE DEHYDROGENASE 1RLG ; 2.7 ; Molecular basis of Box C/D RNA-protein interaction: co-crystal structure of the Archaeal sRNP intiation complex 1DBJ ; 2.7 ; MOLECULAR BASIS OF CROSS-REACTIVITY AND THE LIMITS OF ANTIBODY-ANTIGEN COMPLEMENTARITY 1DBK ; 3.0 ; MOLECULAR BASIS OF CROSS-REACTIVITY AND THE LIMITS OF ANTIBODY-ANTIGEN COMPLEMENTARITY 1DBM ; 2.7 ; MOLECULAR BASIS OF CROSS-REACTIVITY AND THE LIMITS OF ANTIBODY-ANTIGEN COMPLEMENTARITY 2DBL ; 2.9 ; MOLECULAR BASIS OF CROSS-REACTIVITY AND THE LIMITS OF ANTIBODY-ANTIGEN COMPLEMENTARITY 6GF6 ; 2.3 ; Molecular basis of egg coat filament cross-linking: high-resolution structure of the partially deglycosylated ZP1 ZP-N1 domain homodimer 6GF8 ; 3.1 ; Molecular basis of egg coat filament cross-linking: structure of the glycosylated ZP1 ZP-N1 domain homodimer 6GF7 ; 2.7 ; Molecular basis of egg coat filament cross-linking: Zn-SAD structure of the partially deglycosylated ZP1 ZP-N1 domain homodimer 2XE0 ; 2.31 ; Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus 3MX9 ; 2.6 ; Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus 3MXA ; 2.3 ; Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus 3MXB ; 2.3 ; Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus 2X35 ; 2.0 ; Molecular basis of Histone H3K36me3 recognition by the PWWP domain of BRPF1. 2X4W ; 1.5 ; Molecular basis of Histone H3K36me3 recognition by the PWWP domain of BRPF1. 2X4X ; 1.85 ; Molecular basis of Histone H3K36me3 recognition by the PWWP domain of BRPF1. 2X4Y ; 1.7 ; Molecular basis of Histone H3K36me3 recognition by the PWWP domain of BRPF1. 2VNF ; 1.76 ; MOLECULAR BASIS OF HISTONE H3K4ME3 RECOGNITION BY ING4 5OAM ; 5.5 ; Molecular basis of human kinesin-8 function and inhibition 5OCU ; 5.2 ; Molecular basis of human kinesin-8 function and inhibition 5OGC ; 4.8 ; Molecular basis of human kinesin-8 function and inhibition 2VBJ ; 1.95 ; Molecular basis of human XPC gene recognition and cleavage by engineered homing endonuclease heterodimers 2VBL ; 1.8 ; Molecular basis of human XPC gene recognition and cleavage by engineered homing endonuclease heterodimers 2VBN ; 1.9 ; Molecular basis of human XPC gene recognition and cleavage by engineered homing endonuclease heterodimers 2VBO ; 1.8 ; Molecular basis of human XPC gene recognition and cleavage by engineered homing endonuclease heterodimers 4F15 ; 2.81 ; Molecular basis of infectivity of 2009 pandemic H1N1 influenza A viruses 2FHZ ; 1.15 ; Molecular Basis of Inhibition of the Ribonuclease Activity in Colicin E5 by Its Cognate Immunity Protein 1KLL ; 1.5 ; Molecular basis of mitomycin C resictance in streptomyces: Crystal structures of the MRD protein with and without a drug derivative 1KMZ ; 1.5 ; MOLECULAR BASIS OF MITOMYCIN C RESICTANCE IN STREPTOMYCES: CRYSTAL STRUCTURES OF THE MRD PROTEIN WITH AND WITHOUT A DRUG DERIVATIVE 2KE1 ; ; Molecular Basis of non-modified histone H3 tail Recognition by the First PHD Finger of Autoimmune Regulator 4TQX ; 1.37 ; Molecular Basis of Streptococcus mutans Sortase A Inhibition by Chalcone. 6FAH ; 3.133 ; Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction 3N27 ; 1.8 ; Molecular Basis of the Inhibition of Henipa Viruses 1H2S ; 1.93 ; Molecular basis of transmenbrane signalling by sensory rhodopsin II-transducer complex 4HT4 ; 2.907 ; Molecular Basis of Vancomycin Resistance Transfer in Staphylococcus aureus 8BQU ; 2.7 ; Molecular basis of ZP3/ZP1 heteropolymerization: crystal structure of a native vertebrate egg coat filament 8RKI ; 4.2 ; Molecular basis of ZP3/ZP1 heteropolymerization: crystal structure of a native vertebrate egg coat filament fragment 2GQE ; ; Molecular characterization of the Ran binding zinc finger domain 2K9K ; ; Molecular characterization of the tonb2 protein from vibrio anguillarum 1YIQ ; 2.2 ; Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADHIIG from Pseudomonas putida HK5. Compariison to the other quinohemoprotein alcohol dehydrogenase ADHIIB found in the same microorganism. 1D6G ; ; MOLECULAR COMPLEX OF CHOLECYSTOKININ-8 AND N-TERMINUS OF THE CHOLECYSTOKININ A RECEPTOR BY NMR SPECTROSCOPY 2LAS ; ; Molecular Determinants of Paralogue-Specific SUMO-SIM Recognition 8POI ; ; Molecular Docking of SPF30 Tudor domain with synthetic inhibitor 4-(pyridin-2-yl)thiazol-2-amine 5TSK ; 6.5 ; Molecular Dynamics Flexible Fitting Model of Coxsackievirus A16 empty Procapsid VP1 Subunit 5TSL ; 6.5 ; Molecular Dynamics Flexible Fitting Model of Coxsackievirus A16 empty Procapsid VP3 Subunit 2LPT ; ; Molecular dynamics re-refinement of domain 5 of the Pylaiella littoralis group II intron 2LPS ; ; Molecular dynamics re-refinement of domain 5 of the yeast ai5(gamma) group II intron 2TEC ; 1.98 ; MOLECULAR DYNAMICS REFINEMENT OF A THERMITASE-EGLIN-C COMPLEX AT 1.98 ANGSTROMS RESOLUTION AND COMPARISON OF TWO CRYSTAL FORMS THAT DIFFER IN CALCIUM CONTENT 1TOR ; ; MOLECULAR DYNAMICS SIMULATION FROM 2D-NMR DATA OF THE FREE ACHR MIR DECAPEPTIDE AND THE ANTIBODY-BOUND [A76]MIR ANALOGUE 4J2M ; 1.786 ; Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template 4J35 ; 1.783 ; Molecular Engineering of Organophosphate Hydrolysis Activity from a Weak Promiscuous Lactonase Template 6QDJ ; 1.884 ; Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin 6QDK ; 3.4 ; Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin 6QDL ; 2.929 ; Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin 6QDM ; 3.8 ; Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin 4URE ; 1.4 ; Molecular Genetic and Crystal Structural Analysis of 1-(4- Hydroxyphenyl)-Ethanol Dehydrogenase from Aromatoleum aromaticum EbN1 4URF ; 1.1 ; Molecular Genetic and Crystal Structural Analysis of 1-(4- Hydroxyphenyl)-Ethanol Dehydrogenase from Aromatoleum aromaticum EbN1 6SGF ; 1.756 ; Molecular insight into a new low affinity xylan binding module CBM86, from the xylanolytic gut symbiont Roseburia intestinalis. 5J2Y ; 2.4 ; Molecular insight into the regulatory mechanism of the quorum-sensing repressor RsaL in Pseudomonas aeruginosa 2XE1 ; 2.5 ; Molecular insights into clinically isolated OmpC mutants and their role in multi-drug resistance 2XG6 ; 3.47 ; Molecular insights into clinically isolated OmpC mutants and their role in multi-drug resistance 2XE5 ; 2.28 ; Molecular insights into clinically isolated OmpC mutants and their role in multi-drug resistance (OmpC26) 2XE2 ; 2.5 ; Molecular insights into clinically isolated OmpC20 mutants and their role in multi-drug resistance 3AX1 ; 2.74 ; Molecular insights into miRNA processing by Arabidopsis Serrate 1CL3 ; ; MOLECULAR INSIGHTS INTO PEBP2/CBF-SMMHC ASSOCIATED ACUTE LEUKEMIA REVEALED FROM THE THREE-DIMENSIONAL STRUCTURE OF PEBP2/CBF BETA 3AQ2 ; 1.65 ; Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b 3AQ3 ; 2.1 ; Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b 3AQ4 ; 1.8 ; Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b 5C2Z ; 1.9553 ; Molecular insights into the specificity of exfoliative toxins from Staphylococcus aureus 7CIO ; 1.1 ; Molecular interactions of cytoplasmic region of CTLA-4 with SH2 domains of PI3-kinase 4QRH ; 1.65 ; Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp 6X9H ; 3.01 ; Molecular mechanism and structural basis of small-molecule modulation of acid-sensing ion channel 1 (ASIC1) 3NXC ; 2.5 ; Molecular mechanism by which the Escherichia coli nucleoid occlusion factor, SlmA, keeps cytokinesis in check 4NOO ; 2.3 ; Molecular mechanism for self-protection against type VI secretion system in Vibrio cholerae 5X0W ; 3.0 ; Molecular mechanism for the binding between Sharpin and HOIP 1GZ3 ; 2.3 ; Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate 1GZK ; 2.3 ; Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation 6F7U ; 1.4 ; Molecular Mechanism of ATP versus GTP Selectivity of Adenylate Kinase 7YIT ; 3.3 ; Molecular mechanism of biased signaling at the kappa opioid receptor 1UWE ; 2.67 ; MOLECULAR MECHANISM OF ENANTIOSELECTIVE PROTON TRANSFER TO CARBON IN CATALYTIC ANTIBODY 14D9 1UWG ; 2.79 ; Molecular Mechanism of Enantioselective Proton Transfer to Carbon in Catalytic Antibody 14D9 3NVN ; 2.26 ; Molecular mechanism of guidance cue recognition 3NVQ ; 2.4 ; Molecular mechanism of guidance cue recognition 3NVX ; 2.0 ; Molecular mechanism of guidance cue recognition 5V5W ; 2.718 ; Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges 8G8W ; 3.8 ; Molecular mechanism of nucleotide inhibition of human uncoupling protein 1 2XEL ; 2.5 ; Molecular Mechanism of Pentachloropseudilin Mediated Inhibition of Myosin Motor Activity 8DWI ; 3.4 ; Molecular Mechanism of Sialic Acid Transport Mediated by Sialin 8JU9 ; 2.0 ; Molecular mechanism of the one-component regulator RccR on bacterial metabolism and virulence 1GZ4 ; 2.2 ; molecular mechanism of the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate 7SR8 ; 3.3 ; Molecular mechanism of the the wake-promoting agent TAK-925 3RC4 ; 1.5 ; Molecular mechanisms of viral and host-cell substrate recognition by HCV NS3/4A protease 3RC5 ; 1.6 ; Molecular mechanisms of viral and host-cell substrate recognition by HCV NS3/4A protease 3RC6 ; 1.3 ; Molecular mechanisms of viral and host-cell substrate recognition by HCV NS3/4A protease 3GOE ; 0.97 ; Molecular Mimicry of SUMO promotes DNA repair 2V6L ; 16.0 ; Molecular Model of a Type III Secretion System Needle 3LU0 ; 11.2 ; Molecular model of Escherichia coli core RNA polymerase 7D6Z ; 3.4 ; Molecular model of the cryo-EM structure of 70S ribosome in complex with peptide deformylase and trigger factor 7D80 ; 4.1 ; Molecular model of the cryo-EM structure of 70S ribosome in complex with peptide deformylase, trigger factor, and methionine aminopeptidase 1IFI ; 3.3 ; MOLECULAR MODELS AND STRUCTURAL COMPARISONS OF NATIVE AND MUTANT CLASS I FILAMENTOUS BACTERIOPHAGES FF (FD, F1, M13), IF1 AND IKE 1IFJ ; 3.3 ; MOLECULAR MODELS AND STRUCTURAL COMPARISONS OF NATIVE AND MUTANT CLASS I FILAMENTOUS BACTERIOPHAGES FF (FD, F1, M13), IF1 AND IKE 1IFK ; 5.0 ; MOLECULAR MODELS AND STRUCTURAL COMPARISONS OF NATIVE AND MUTANT CLASS I FILAMENTOUS BACTERIOPHAGES FF (FD, F1, M13), IF1 AND IKE 1IFL ; 5.0 ; MOLECULAR MODELS AND STRUCTURAL COMPARISONS OF NATIVE AND MUTANT CLASS I FILAMENTOUS BACTERIOPHAGES FF (FD, F1, M13), IF1 AND IKE 1M8Q ; 70.0 ; Molecular Models of Averaged Rigor Crossbridges from Tomograms of Insect Flight Muscle 1MVW ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O18 ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O19 ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1A ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1B ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1C ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1D ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1E ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1F ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 1O1G ; 70.0 ; MOLECULAR MODELS OF AVERAGED RIGOR CROSSBRIDGES FROM TOMOGRAMS OF INSECT FLIGHT MUSCLE 3SIC ; 1.8 ; MOLECULAR RECOGNITION AT THE ACTIVE SITE OF SUBTILISIN BPN': CRYSTALLOGRAPHIC STUDIES USING GENETICALLY ENGINEERED PROTEINACEOUS INHIBITOR SSI (STREPTOMYCES SUBTILISIN INHIBITOR) 5SIC ; 2.2 ; MOLECULAR RECOGNITION AT THE ACTIVE SITE OF SUBTILISIN BPN': CRYSTALLOGRAPHIC STUDIES USING GENETICALLY ENGINEERED PROTEINACEOUS INHIBITOR SSI (STREPTOMYCES SUBTILISIN INHIBITOR) 1DDY ; 3.0 ; MOLECULAR RECOGNITION BY THE VITAMIN B12 RNA APTAMER 1MPW ; 2.34 ; Molecular Recognition in (+)-a-Pinene Oxidation by Cytochrome P450cam 2BOV ; 2.66 ; Molecular recognition of an ADP-ribosylating Clostridium botulinum C3 exoenzyme by RalA GTPase 2Y6T ; 2.74 ; Molecular Recognition of Chymotrypsin by the Serine Protease Inhibitor Ecotin from Yersinia pestis 1HWR ; 1.8 ; MOLECULAR RECOGNITION OF CYCLIC UREA HIV PROTEASE INHIBITORS 1GWX ; 2.5 ; MOLECULAR RECOGNITION OF FATTY ACIDS BY PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 2GWX ; 2.3 ; MOLECULAR RECOGNITION OF FATTY ACIDS BY PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 3GWX ; 2.4 ; MOLECULAR RECOGNITION OF FATTY ACIDS BY PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS 3CWD ; 2.4 ; Molecular recognition of nitro-fatty acids by PPAR gamma 1ZX7 ; 2.15 ; Molecular Recognition of RNA by Neomycin and a Restricted Neomycin Derivative 1ZZ5 ; 3.0 ; Molecular Recognition of RNA by Neomycin and a Restricted Neomycin Derivative 2A04 ; 2.95 ; Molecular Recognition of RNA by Neomycin and a Restricted Neomycin Derivative 1S32 ; 2.05 ; Molecular Recognition of the Nucleosomal 'Supergroove' 8HA0 ; 2.62 ; Molecular recognition of two endogenous hormones by the human parathyroid hormone receptor-1 1LFH ; 2.8 ; MOLECULAR REPLACEMENT SOLUTION OF THE STRUCTURE OF APOLACTOFERRIN, A PROTEIN DISPLAYING LARGE-SCALE CONFORMATIONAL CHANGE 6QD6 ; 2.84 ; Molecular scaffolds expand the nanobody toolkit for cryo-EM applications: crystal structure of Mb-cHopQ-Nb207 7YYY ; 2.2 ; Molecular snapshots of drug release from tubulin: 1 microsecond after photoactivation 7YZ1 ; 2.2 ; Molecular snapshots of drug release from tubulin: 1 millisecond after photoactivation. 7YYV ; 2.2 ; Molecular snapshots of drug release from tubulin: 1 nanosecond after photoactivation. 7YYZ ; 2.2 ; Molecular snapshots of drug release from tubulin: 10 microseconds after photoactivation. 7YZ2 ; 2.2 ; Molecular snapshots of drug release from tubulin: 10 milliseconds after photoactivation. 7YYW ; 2.2 ; Molecular snapshots of drug release from tubulin: 10 nanoseconds after photoactivation. 7YZ0 ; 2.2 ; Molecular snapshots of drug release from tubulin: 100 microseconds after photoactivation. 7YZ5 ; 2.11 ; Molecular snapshots of drug release from tubulin: 100 milliseconds (steady state) 7YYX ; 2.2 ; Molecular snapshots of drug release from tubulin: 100 nanoseconds after photoactivation. 7YZ3 ; 1.8 ; Molecular snapshots of drug release from tubulin: Apo state 7YZ6 ; 2.1 ; Molecular snapshots of drug release from tubulin: Dark (steady state) 7YYQ ; 1.7 ; Molecular snapshots of drug release from tubulin: Dark state 2GLR ; 2.2 ; MOLECULAR STRUCTURE AT 1.8 ANGSTROMS OF MOUSE LIVER CLASS PI GLUTATHIONE S-TRANSFERASE COMPLEXED WITH S-(P-NITROBENZYL)GLUTATHIONE AND OTHER INHIBITORS 3DNL ; 20.0 ; Molecular structure for the HIV-1 gp120 trimer in the b12-bound state 3DNO ; 20.0 ; Molecular structure for the HIV-1 gp120 trimer in the CD4-bound state 3DNN ; 20.0 ; Molecular structure for the HIV-1 gp120 trimer in the unliganded state 1VTV ; 1.3 ; Molecular structure of (M5DC-DG)3: The role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA 2D47 ; 2.0 ; MOLECULAR STRUCTURE OF A COMPLETE TURN OF A-DNA 1HRO ; 2.2 ; MOLECULAR STRUCTURE OF A HIGH POTENTIAL CYTOCHROME C2 ISOLATED FROM RHODOPILA GLOBIFORMIS 2DCG ; 0.9 ; MOLECULAR STRUCTURE OF A LEFT-HANDED DOUBLE HELICAL DNA FRAGMENT AT ATOMIC RESOLUTION 4AYJ ; 3.0 ; Molecular structure of a metal-independent bacterial glycosyltransferase that catalyzes the synthesis of histo-blood group A antigen 4AYL ; 1.919 ; Molecular structure of a metal-independent bacterial glycosyltransferase that catalyzes the synthesis of histo-blood group A antigen 5ZF1 ; 1.75 ; Molecular structure of a novel 5,10-methylenetetrahydrofolate dehydrogenase from the silkworm, Bombyx mori 6IVE ; 2.3 ; Molecular structure of a thermostable and a Zinc ion binding gamma-class carbonic anhydrase 1D13 ; 2.0 ; MOLECULAR STRUCTURE OF AN A-DNA DECAMER D(ACCGGCCGGT) 1AEP ; 2.7 ; MOLECULAR STRUCTURE OF AN APOLIPOPROTEIN DETERMINED AT 2.5-ANGSTROMS RESOLUTION 2AT2 ; 3.0 ; MOLECULAR STRUCTURE OF BACILLUS SUBTILIS ASPARTATE TRANSCARBAMOYLASE AT 3.0 ANGSTROMS RESOLUTION 8B9Q ; ; Molecular structure of Cu(II)-bound amyloid-beta monomer implicated in inhibition of peptide self-assembly in Alzheimer's disease 8B9R ; ; Molecular structure of Cu(II)-bound amyloid-beta monomer implicated in inhibition of peptide self-assembly in Alzheimer's disease 1C2R ; 2.5 ; MOLECULAR STRUCTURE OF CYTOCHROME C2 ISOLATED FROM RHODOBACTER CAPSULATUS DETERMINED AT 2.5 ANGSTROMS RESOLUTION 128D ; 2.5 ; MOLECULAR STRUCTURE OF D(CGC[E6G]AATTCGCG) COMPLEXED WITH HOECHST 33258 130D ; 2.5 ; MOLECULAR STRUCTURE OF D(CGC[E6G]AATTCGCG) COMPLEXED WITH HOECHST 33342 1YNY ; 2.3 ; Molecular Structure of D-Hydantoinase from a Bacillus sp. AR9: Evidence for mercury inhibition 1J79 ; 1.7 ; Molecular Structure of Dihydroorotase: A Paradigm for Catalysis Through the Use of a Binuclear Metal Center 2C0W ; 3.2 ; Molecular Structure of fd Filamentous Bacteriophage Refined with Respect to X-ray Fibre Diffraction 2C0X ; ; MOLECULAR STRUCTURE OF FD FILAMENTOUS BACTERIOPHAGE REFINED WITH RESPECT TO X-RAY FIBRE DIFFRACTION AND SOLID-STATE NMR DATA 1FCB ; 2.4 ; MOLECULAR STRUCTURE OF FLAVOCYTOCHROME B2 AT 2.4 ANGSTROMS RESOLUTION 5W3N ; ; Molecular structure of FUS low sequence complexity domain protein fibrils 6C0V ; 3.4 ; Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation 1KAN ; 3.0 ; MOLECULAR STRUCTURE OF KANAMYCIN NUCLEOTIDYLTRANSFERASE DETERMINED TO 3.0-ANGSTROMS RESOLUTION 8HNR ; 1.42 ; Molecular structure of Kunitz-type trypsin inhibitor from seeds of Albizia procera 1LAP ; 2.7 ; MOLECULAR STRUCTURE OF LEUCINE AMINOPEPTIDASE AT 2.7-ANGSTROMS RESOLUTION 6SHT ; 2.73 ; Molecular structure of mouse apoferritin resolved at 2.7 Angstroms with the Glacios cryo-microscope 1VTE ; 3.0 ; MOLECULAR STRUCTURE OF NICKED DNA. MODEL A4 1NDN ; 3.0 ; MOLECULAR STRUCTURE OF NICKED DNA. MODEL T4 6HQA ; 7.1 ; Molecular structure of promoter-bound yeast TFIID 1D96 ; 2.0 ; MOLECULAR STRUCTURE OF R(GCG)D(TATACGC): A DNA-RNA HYBRID HELIX JOINED TO DOUBLE HELICAL DNA 121D ; 2.2 ; MOLECULAR STRUCTURE OF THE A-TRACT DNA DODECAMER D(CGCAAATTTGCG) COMPLEXED WITH THE MINOR GROOVE BINDING DRUG NETROPSIN 1FQG ; 1.7 ; MOLECULAR STRUCTURE OF THE ACYL-ENZYME INTERMEDIATE IN TEM-1 BETA-LACTAMASE 1D65 ; 2.2 ; MOLECULAR STRUCTURE OF THE B-DNA DODECAMER D(CGCAAATTTGCG)2; AN EXAMINATION OF PROPELLER TWIST AND MINOR-GROOVE WATER STRUCTURE AT 2.2 ANGSTROMS RESOLUTION 1BBP ; 2.0 ; MOLECULAR STRUCTURE OF THE BILIN BINDING PROTEIN (BBP) FROM PIERIS BRASSICAE AFTER REFINEMENT AT 2.0 ANGSTROMS RESOLUTION. 6XFM ; 2.62 ; Molecular structure of the core of amyloid-like fibrils formed by residues 111-214 of FUS 112D ; 2.5 ; MOLECULAR STRUCTURE OF THE G.A BASE PAIR IN DNA AND ITS IMPLICATIONS FOR THE MECHANISM OF TRANSVERSION MUTATIONS 1IMR ; 1.6 ; MOLECULAR STRUCTURE OF THE HALOGENATED ANTI-CANCER DRUG IODODOXORUBICIN COMPLEXED WITH D(TGTACA) AND D(CGATCG) 1IMS ; 1.5 ; MOLECULAR STRUCTURE OF THE HALOGENATED ANTI-CANCER DRUG IODODOXORUBICIN COMPLEXED WITH D(TGTACA) AND D(CGATCG) 2A9I ; 1.7 ; Molecular Structure of the Interleukin-1 Receptor-Associated Kinase-4 Death Domain 1VTJ ; 2.4 ; MOLECULAR STRUCTURE OF THE NETROPSIN-D(CGCGATATCGCG) COMPLEX: DNA CONFORMATION IN AN ALTERNATING AT SEGMENT; CONFORMATION 1 1DNE ; 2.4 ; MOLECULAR STRUCTURE OF THE NETROPSIN-D(CGCGATATCGCG) COMPLEX: DNA CONFORMATION IN AN ALTERNATING AT SEGMENT; CONFORMATION 2 1VT6 ; 2.25 ; Molecular structure of the octamer D(G-G-C-C-G-G-C-C) modified A-DNA 1VTC ; 2.25 ; MOLECULAR STRUCTURE OF THE OCTAMER D(G-G-C-C-G-G-C-C) MODIFIED A-DNA 1HPI ; 1.8 ; MOLECULAR STRUCTURE OF THE OXIDIZED HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM ECTOTHIORHODOSPIRA VACUOLATA 1FRD ; 1.7 ; MOLECULAR STRUCTURE OF THE OXIDIZED, RECOMBINANT, HETEROCYST (2FE-2S) FERREDOXIN FROM ANABAENA 7120 DETERMINED TO 1.7 ANGSTROMS RESOLUTION 1WLH ; 2.8 ; Molecular structure of the rod domain of Dictyostelium filamin 1ETN ; 0.89 ; MOLECULAR STRUCTURE OF THE TOXIC DOMAIN OF HEAT-STABLE ENTEROTOXIN PRODUCED BY A PATHOGENIC STRAIN OF ESCHERICHIA COLI 1O55 ; 1.04 ; MOLECULAR STRUCTURE OF TWO CRYSTAL FORMS OF CYCLIC TRIADENYLIC ACID AT 1 ANGSTROM RESOLUTION 1O56 ; 0.9 ; MOLECULAR STRUCTURE OF TWO CRYSTAL FORMS OF CYCLIC TRIADENYLIC ACID AT 1 ANGSTROM RESOLUTION 2NU1 ; 1.8 ; Molecular structures of the complexes of SGPB with OMTKY3 aromatic P1 variants Trp18I, His18I, Phe18I and Tyr18I 2NU0 ; 1.95 ; Molecular structures of the complexes of SGPB with OMTKY3 aromatic P1 variants Trp18I, His18I, Phe18I, and Tyr18I 4Q21 ; 2.0 ; MOLECULAR SWITCH FOR SIGNAL TRANSDUCTION: STRUCTURAL DIFFERENCES BETWEEN ACTIVE AND INACTIVE FORMS OF PROTOONCOGENIC RAS PROTEINS 6Q21 ; 1.95 ; MOLECULAR SWITCH FOR SIGNAL TRANSDUCTION: STRUCTURAL DIFFERENCES BETWEEN ACTIVE AND INACTIVE FORMS OF PROTOONCOGENIC RAS PROTEINS 1HWV ; ; MOLECULAR TOPOLOGY OF POLYCYCLIC AROMATIC CARCINOGENS DETERMINES DNA ADDUCT CONFORMATION: A LINK TO TUMORIGENIC ACTIVITY 1HX4 ; ; MOLECULAR TOPOLOGY OF POLYCYCLIC AROMATIC CARCINOGENS DETERMINES DNA ADDUCT CONFORMATION: A LINK TO TUMORIGENIC ACTIVITY 5OEG ; 3.15 ; Molecular tweezers modulate 14-3-3 protein-protein interactions 5OEH ; 2.35 ; Molecular tweezers modulate 14-3-3 protein-protein interactions. 5J7T ; 3.2001 ; Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation 8BF9 ; 2.69 ; Molecular view of ER membrane remodeling by the Sec61/TRAP translocon. 1PFC ; 3.125 ; MOLECULAR-REPLACEMENT STRUCTURE OF GUINEA PIG IGG1 P*FC(PRIME) REFINED AT 3.1 ANGSTROMS RESOLUTION 1DDS ; 2.2 ; MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE 1DDR ; 2.45 ; MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND UREA 1H9S ; 1.82 ; Molybdate bound complex of Dimop domain of ModE from E.coli 1O7L ; 2.75 ; Molybdate-activated form of ModE from Escherichia coli 1XI8 ; 2.504 ; Molybdenum cofactor biosynthesis protein from Pyrococcus furiosus Pfu-1657500-001 6H8H ; 1.901 ; Molybdenum storage protein - in a recombinant and in vivo-like form 7ZQQ ; 1.75 ; Molybdenum storage protein - LB131H 6RKE ; 1.7 ; Molybdenum storage protein - P212121, ADP, molybdate 6RJ4 ; 1.9 ; Molybdenum storage protein - P6422, ADP 6H73 ; 2.3 ; Molybdenum storage protein - recombinantly produced and loaded with molybdate under in vitro conditions 7ZSE ; 1.4 ; Molybdenum storage protein in complex with polyoxotungstates in the in-vitro state 7ZR4 ; 1.701 ; Molybdenum storage protein loaded with polyoxotungstates in the in vivo-like state 6H8B ; 1.9 ; Molybdenum storage protein prepared under in vivo-like conditions and incubated with ATP and molybdate at 303 K 5O5W ; 1.7 ; Molybdenum storage protein room-temperature structure determined by serial millisecond crystallography 6RKD ; 3.2 ; Molybdenum storage protein under turnover conditions 6GUJ ; 2.102 ; Molybdenum storage protein with two occupied ATP binding sites 6GWV ; 2.8 ; Molybdenum storage protein without polymolybdate clusters and ATP 6GWB ; 1.9 ; Molybdenum storage protein without polyoxomolybdate clusters 6H6W ; 1.9 ; Molybdenum storage protein- H156A 7L32 ; 1.9 ; Molybdopterin biosynthesis MoaE protein from Burkholderia ambifaria MC40-6 7L2A ; 1.85 ; Molybdopterin cofactor biosynthesis protein E from Burkholderia multivorans ATCC 17616 1FM0 ; 1.45 ; MOLYBDOPTERIN SYNTHASE (MOAD/MOAE) 1FMA ; 1.58 ; MOLYBDOPTERIN SYNTHASE (MOAD/MOAE) 1BM4 ; ; MOMLV CAPSID PROTEIN MAJOR HOMOLOGY REGION PEPTIDE ANALOG 8DZP ; 2.71 ; momSalB bound Kappa Opioid Receptor in complex with Gi1 8DZQ ; 2.82 ; momSalB bound Kappa Opioid Receptor in complex with GoA 2W10 ; 1.9 ; Mona SH3C in complex 1OEB ; 1.76 ; Mona/Gads SH3C domain 1UTI ; 1.5 ; Mona/Gads SH3C in complex with HPK derived peptide 2O9U ; 1.15 ; Monellin (MNEI) at 1.15 resolution 1GO9 ; ; Monitoring the structural Consequences of Phe12-->D-Phe12 and Leu15-->Aib15 substitution in h/r Corticotropin Releasing Hormone: Implications for Design of CRH antagonists. 1GOE ; ; Monitoring the structural Consequences of Phe12-->D-Phe12 and Leu15-->Aib15 substitution in h/r Corticotropin Releasing Hormone: Implications for Design of CRH antagonists. 8HPA ; 3.01 ; Monkeypox virus DNA replication holoenzyme F8, A22 and E4 complex in a DNA binding form 8HDZ ; 3.05 ; Monkeypox virus DNA replication holoenzyme F8, A22 and E4 complex in an apo form 8CGB ; 2.47 ; Monkeypox virus VP39 in complex with SAH 8OIV ; 2.12 ; Monkeypox virus VP39 in complex with SAH and cap0 6FN9 ; 2.27 ; Mono- and bivalent 14-3-3 inhibitors for characterizing supramolecular lysine-PEG interactions in proteins 6FNA ; 2.12 ; Mono- and bivalent 14-3-3 inhibitors for characterizing supramolecular lysine-PEG interactions in proteins 6FNB ; 2.3 ; Mono- and bivalent 14-3-3 inhibitors for characterizing supramolecular lysine-PEG interactions in proteins 6FNC ; 2.12 ; Mono- and bivalent 14-3-3 inhibitors for characterizing supramolecular lysine-PEG interactions in proteins 6BO1 ; 1.24 ; Mono-adduct formed after 3 days in the reaction of dichlorido(1,3-dimethylbenzimidazol-2-ylidene)(eta6-p-cymene)ruthenium(II) with HEWL 7O90 ; 1.49 ; Mono-Fe-sulerythrin 2LI0 ; ; Mono-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 2LI1 ; ; Mono-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 2LI2 ; ; Mono-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 6VAE ; 3.6 ; Mono-ubiquitinated Fanconi Anemia ID complex bound to ICL DNA 4UWR ; 1.55 ; Mono-zinc VIM-26. Leu224 in VIM-26 from Klebsiella pneumoniae has implications for drug binding. 5NAI ; 1.15 ; mono-Zinc VIM-5 metallo-beta-lactamase in complex with (1-chloro-4-hydroxyisoquinoline-3-carbonyl)-D-tryptophan (Compound 1) 5N55 ; 1.99 ; mono-Zinc VIM-5 metallo-beta-lactamase in complex with (1-chloro-4-hydroxyisoquinoline-3-carbonyl)-L-tryptophan (Compound 2) 1QXK ; 2.3 ; Monoacid-Based, Cell Permeable, Selective Inhibitors of Protein Tyrosine Phosphatase 1B 6O03 ; 3.3 ; Monobody (MC17) bound to tyrosine kinase binding domain of E3 ubiquitin ligase CBL 6O02 ; 2.953 ; Monobody (MC3) bound to tyrosine kinase binding domain of E3 ubiquitin ligase CBL 8EZG ; 2.52 ; Monobody 12D1 bound to KRAS(G12D) 8F0M ; 2.44 ; Monobody 12D5 bound to KRAS(G12D) 7L0G ; 2.54 ; Monobody 12VC1 Bound to HRAS(G12C) 7L0F ; 1.98 ; Monobody 12VC3 Bound to HRAS(WT) 5MTN ; 2.85 ; Monobody Mb(Lck_1) bound to Lck-Sh2 5MTM ; 2.405 ; Monobody Mb(Lck_3) bound to Lck-SH2 domain 3QL9 ; 0.93 ; Monoclinic complex structure of ATRX ADD bound to histone H3K9me3 peptide 5M56 ; 2.237 ; Monoclinic complex structure of human protein kinase CK2 catalytic subunit (isoform CK2alpha') with the inhibitor 4'-carboxy-6,8-chloro-flavonol (FLC21) 5CQU ; 2.35 ; Monoclinic Complex Structure of Protein Kinase CK2 Catalytic Subunit with a Benzotriazole-Based Inhibitor Generated by click-chemistry 2GVY ; 1.8 ; Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 A resolution 4CJ8 ; 3.5 ; monoclinic crystal form of Bogt6a E192Q in complex with UDP-GalNAc, UDP and GalNAc 4GSB ; 1.8 ; Monoclinic crystal form of the apo-ERK2 5T7Z ; 2.03 ; Monoclinic crystal form of the EpoB NRPS cyclization-docking bidomain from Sorangium cellulosum 4D7C ; 1.45 ; Monoclinic crystal form of the extracellular olfactomedin domain from gliomedin 1RG0 ; 1.8 ; Monoclinic crystal form of the truncated K122-4 pilin from Pseudomonas aeruginosa 4TLH ; 1.7 ; Monoclinic Crystal Structure of EutL from Clostridium Perfringens 3SMP ; 1.9 ; Monoclinic crystal structure of human pantothenate kinase 1 alpha 2PL6 ; 2.2 ; Monoclinic crystal structure of hydrophobin HFBII in presence of a detergent 7QFA ; 2.0 ; Monoclinic crystal structure of PTG CBM21 in complex with beta-cyclodextrin 5II9 ; 2.11 ; Monoclinic crystal structure of red abalone lysin at 2.11 A resolution 3VKI ; 2.3 ; Monoclinic Crystal Structure of Salmonella FlgA in closed form 6GNQ ; 2.2 ; Monoclinic crystalline form of human insulin, complexed with meta-cresol 6ARC ; 1.9 ; Monoclinic EutL - structure determined from merged ""Group 1"" data 6ARD ; 2.0 ; Monoclinic EutL - structure determined from merged ""Group 2"" data 5EYX ; 2.25 ; Monoclinic Form of Centrolobium tomentosum seed lectin (CTL) complexed with Man1-3Man-OMe. 3PVO ; 3.0 ; Monoclinic form of Human C-Reactive Protein 3QNY ; 2.3 ; Monoclinic form of human IgA1 Fab fragment, sharing same Fv as IgG 1H4O ; 1.95 ; Monoclinic form of human peroxiredoxin 5 1ICT ; 3.0 ; MONOCLINIC FORM OF HUMAN TRANSTHYRETIN COMPLEXED WITH THYROXINE (T4) 2VNP ; 2.19 ; Monoclinic form of IDI-1 2VNQ ; 2.2 ; Monoclinic form of IDI-1 3QO1 ; 2.4 ; Monoclinic form of IgG1 Fab fragment (apo form) sharing same Fv as IgA 3QO0 ; 2.3 ; Monoclinic form of IgG1 Fab fragment (in complex with antigenic peptide) sharing same Fv as IgA 6C7N ; 2.0 ; Monoclinic form of malic enzyme from sorghum at 2 angstroms resolution 1KHP ; 2.0 ; Monoclinic form of papain/ZLFG-DAM covalent complex 1MS3 ; 1.65 ; Monoclinic form of Trypanosoma cruzi trans-sialidase 1MS1 ; 1.8 ; Monoclinic form of Trypanosoma cruzi trans-sialidase, in complex with 3-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA) 1MS0 ; 2.5 ; Monoclinic form of Trypanosoma cruzi trans-sialidase, in complex with 3-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA)and lactose 1LKR ; 1.6 ; MONOCLINIC HEN EGG WHITE LYSOZYME IODIDE 1LCN ; 1.63 ; Monoclinic hen egg white lysozyme, thiocyanate complex 2D4K ; 1.15 ; Monoclinic hen egg-white lysozyme crystallized at 313K 2D4I ; 1.16 ; Monoclinic hen egg-white lysozyme crystallized at pH4.5 form heavy water solution 6TC2 ; 1.36 ; Monoclinic human insulin in complex with p-coumaric acid 3WL2 ; 0.96 ; Monoclinic Lysozyme at 0.96 A resolution 2QZE ; 2.9 ; Monoclinic Mimivirus Capping Enzyme Triphosphatase. 4OFN ; 2.69 ; Monoclinic NaGST1 7B1H ; 2.4 ; Monoclinic P21 Structure of Human Mad1 C-terminal Domain in Complex with Phosphorylated Bub1 CD1 Domain 7B8H ; 1.34 ; Monoclinic structure of human protein kinase CK2 catalytic subunit in complex with a heparin oligo saccharide 3N9D ; 2.3 ; Monoclinic Structure of P. aeruginosa LigD phosphoesterase domain 5EFZ ; 1.82 ; Monoclinic structure of the acetyl esterase MekB 7QON ; 1.51 ; Monoclinic triose phosphate isomerase from Fasciola hepatica. 1MLB ; 2.1 ; MONOCLONAL ANTIBODY FAB D44.1 RAISED AGAINST CHICKEN EGG-WHITE LYSOZYME 1MLC ; 2.5 ; MONOCLONAL ANTIBODY FAB D44.1 RAISED AGAINST CHICKEN EGG-WHITE LYSOZYME COMPLEXED WITH LYSOZYME 1BFV ; 2.1 ; MONOCLONAL ANTIBODY FRAGMENT FV4155 FROM E. COLI 1CFV ; 2.1 ; MONOCLONAL ANTIBODY FRAGMENT FV4155 FROM E. COLI 2BFV ; 2.5 ; MONOCLONAL ANTIBODY FRAGMENT FV4155 FROM E. COLI 6FBJ ; 2.3 ; monoclonal antibody targeting Matrix metalloproteinase 7 1FGN ; 2.5 ; MONOCLONAL MURINE ANTIBODY 5G9-ANTI-HUMAN TISSUE FACTOR 7R5Z ; 1.75 ; Monocot chimeric jacalin JAC1 from Oryza sativa: dirigent domain (crystal form 1) 7YWE ; 2.15 ; Monocot chimeric jacalin JAC1 from Oryza sativa: dirigent domain (crystal form 2) 7YWF ; 2.6 ; Monocot chimeric jacalin JAC1 from Oryza sativa: dirigent domain with bound galactobiose 7YWG ; 1.1 ; Monocot chimeric jacalin JAC1 from Oryza sativa: lectin domain (crystal form 1) 7YWW ; 1.4 ; Monocot chimeric jacalin JAC1 from Oryza sativa: lectin domain (crystal form 2) 1DOL ; 2.4 ; MONOCYTE CHEMOATTRACTANT PROTEIN 1, I-FORM 1DOK ; 1.85 ; MONOCYTE CHEMOATTRACTANT PROTEIN 1, P-FORM 1BO0 ; ; MONOCYTE CHEMOATTRACTANT PROTEIN-3, NMR, MINIMIZED AVERAGE STRUCTURE 6KRT ; 2.2 ; monodehydroascorbate reductase, MDHAR, from Antarctic hairgrass Deschampsia antarctica 6MOL ; 3.163 ; Monoextended DARPin M_R12 complex with EpoR 1AG1 ; 2.36 ; MONOHYDROGEN PHOSPHATE BINDING TO TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE 5CVJ ; 1.8 ; Monolignol 4-O-methyltransferase 5 - coniferyl alcohol 7W26 ; 2.43 ; monolignol ferulate transferase 3REO ; 1.9 ; Monolignol O-methyltransferase (MOMT) 3TKY ; 2.47 ; Monolignol o-methyltransferase (momt) 5XLM ; 2.2 ; Monomer form of M.tuberculosis PknI sensor domain 6O5B ; 3.6 ; Monomer of a cation channel 5BNG ; 3.5 ; monomer of TALE type homeobox transcription factor MEIS1 complexes with specific DNA 7E2D ; 3.71 ; Monomer of TRAPPII (Closed) 7E2C ; 4.18 ; Monomer of TRAPPII (open) 7E8T ; 3.8 ; Monomer of Ypt32-TRAPPII 7XS2 ; 2.15 ; Monomer structure of HtrA from Helicobacter pylori 3WQ8 ; 2.81 ; Monomer structure of hyperthermophilic beta-glucosidase mutant forming a dodecameric structure in the crystal form 6L4J ; 2.3 ; Monomer structure of monellin loop1 mutant (YEPKG) 6FV6 ; 3.8 ; Monomer structure of the MATE family multidrug resistance transporter Aq_128 from Aquifex aeolicus in the outward-facing state 8HGA ; ; Monomer structure of transforming growth factor beta induced protein (TGFBIp) G623R fibril 6CP3 ; 3.8 ; Monomer yeast ATP synthase (F1Fo) reconstituted in nanodisc with inhibitor of oligomycin bound. 6CP6 ; 3.6 ; Monomer yeast ATP synthase (F1Fo) reconstituted in nanodisc. 6CP7 ; 4.1 ; Monomer yeast ATP synthase Fo reconstituted in nanodisc generated from masked refinement. 6WTD ; 4.2 ; Monomer yeast ATP synthase Fo reconstituted in nanodisc with inhibitor of Bedaquiline bound 6CP5 ; 4.2 ; Monomer yeast ATP synthase Fo reconstituted in nanodisc with inhibitor of oligomycin bound generated from focused refinement. 2LK7 ; ; Monomer-dimer equilibrium for 5'-5' stacking of propeller-type parallel-stranded G-quadruplexes: NMR structural study 7NYP ; 2.1 ; monomeric acetyl-CoA synthase in closed conformation 7NYS ; 2.0 ; monomeric acetyl-CoA synthase in closed conformation with carbon monoxide bound to the Ni proximal of cluster A 7O0D ; 2.3 ; monomeric acetyl-CoA synthase in open conformation with methanethiol moiety of CoA bound to nickel proximal 7NZ5 ; 1.9 ; monomeric acetyl-CoA synthase with Zn at the proximal position of cluster A 7RRW ; 2.0 ; Monomeric CRM197 expressed in E. coli 5ZB1 ; 3.061 ; Monomeric crystal structure of orf57 from KSHV 5OY5 ; 2.6 ; Monomeric crystal structure of RpBphP1 photosensory core domain from the bacterium Rhodopseudomonas palustris 6AOA ; 1.4 ; Monomeric crystal structure of the E497/C566D double mutant of the guanylyl cyclase domain of the RhoGC fusion protein from the aquatic fungus Blastocladiella emersonii 1ESO ; 2.0 ; MONOMERIC CU,ZN SUPEROXIDE DISMUTASE FROM ESCHERICHIA COLI 6HQB ; 4.0 ; Monomeric cyanobacterial photosystem I 6MOE ; 2.091 ; Monomeric DARPin E2 complex with EpoR 6MOF ; 2.894 ; Monomeric DARPin G2 complex with EpoR 8R1F ; 3.67 ; Monomeric E6AP-E6-p53 ternary complex 3BX9 ; 1.8 ; Monomeric Far-red Fluorescent Protein mKate Crystallized at pH 2.0 3BXA ; 1.75 ; Monomeric Far-red Fluorescent Protein mKate Crystallized at pH 4.2 3BXB ; 2.6 ; Monomeric Far-red Fluorescent Protein mKate Crystallized at pH 7.0 3BXC ; 2.6 ; Monomeric Far-red Fluorescent Protein mKate Crystallized at pH 9.0 4J12 ; 1.9 ; monomeric Fc 4P2F ; 2.05 ; Monomeric form of a single mutant (F363R) of Mycobacterial Adenylyl cyclase Rv1625c 6JY3 ; 1.85 ; Monomeric Form of Bovine Heart Cytochrome c Oxidase in the Fully Oxidized State 6JY4 ; 1.95 ; Monomeric Form of Bovine Heart Cytochrome c Oxidase in the Fully Reduced State 4QKG ; 1.95 ; Monomeric form of human LLT1, a ligand for NKR-P1 2O3M ; ; Monomeric G-DNA tetraplex from human C-kit promoter 3LL2 ; 0.97 ; Monomeric Griffithsin in Complex with a High-Mannose Branched Carbohydrate 3LKY ; 1.11 ; Monomeric Griffithsin with a Single Gly-Ser Insertion 3LL1 ; 0.97 ; Monomeric Griffithsin with a Single Gly-Ser Insertion and Mutations to Remove Residual Self-Association 3LL0 ; 1.7 ; Monomeric Griffithsin with two Gly-Ser Insertions 8Y4Z ; ; Monomeric HERC5 HECT c-lobe structure in solution 6K9K ; 7.82 ; Monomeric human ATM (Ataxia telangiectasia mutated) kinase 2KYP ; ; Monomeric Human CKIT-2 proto-oncogene promoter quadruplex DNA NMR, 12 structures 2XJK ; 1.45 ; Monomeric Human Cu,Zn Superoxide dismutase 2XJL ; 1.55 ; Monomeric Human Cu,Zn Superoxide dismutase without Cu ligands 3HFF ; 2.2 ; Monomeric human Cu,Zn Superoxide dismutase without Zn ligands 5J07 ; 2.0 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, circular permutant P1/2 5J0C ; 1.6 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, circular permutant P2/3 5J0F ; 1.25 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, circular permutant P4/5 5J0G ; 2.5 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, circular permutant P7/8 4BD4 ; 2.78 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, mutant H43F 4XCR ; 3.602 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form, mutant I35A 4BCZ ; 1.93 ; Monomeric Human Cu,Zn Superoxide dismutase, loops IV and VII deleted, apo form. 4BCY ; 1.272 ; Monomeric Human Cu,Zn Superoxide dismutase, mutation H43F 6FLH ; 1.79 ; Monomeric Human Cu,Zn Superoxide dismutase, SOD1 7+7, apo form 1MFM ; 1.02 ; MONOMERIC HUMAN SOD MUTANT F50E/G51E/E133Q AT ATOMIC RESOLUTION 8YCM ; 1.32 ; Monomeric Human STK19 2JSK ; ; Monomeric Human Telomere DNA Tetraplex with 3+1 Strand Fold Topology, Two Edgewise Loops and Double-Chain Reversal Loop, 16 G Form 1, NMR, 10 Structures 2JSQ ; ; Monomeric Human Telomere DNA Tetraplex with 3+1 Strand Fold Topology, Two Edgewise Loops and Double-Chain Reversal Loop, Form 2 15BrG, NMR, 10 Structures 2JSL ; ; Monomeric Human Telomere DNA Tetraplex with 3+1 Strand Fold Topology, Two Edgewise Loops and Double-Chain Reversal Loop, Form 2 Natural, NMR, 10 Structures 2JSM ; ; MONOMERIC HUMAN TELOMERE DNA TETRAPLEX WITH 3+1 STRAND FOLD TOPOLOGY, TWO EDGEWISE LOOPS AND DOUBLE-CHAIN REVERSAL LOOP, NMR, 10 STRUCTURES, Form 1 Natural 2GKU ; ; Monomeric human telomere DNA tetraplex with 3+1 strand fold topology, two edgewise loops and double-chain reversal loop, NMR, 12 structures 5HVW ; 1.95 ; Monomeric IgG4 Fc 2KPR ; ; Monomeric intronic human chl1 gene quadruplex DNA NMR, 17 structures 6OJQ ; 3.67 ; Monomeric kinesin-1 motor domain in no-nucleotide state bound to GMPCPP-stabilized microtubule 5Y1G ; 1.35 ; Monomeric L-threonine 3-dehydrogenase from metagenome database (AKB and NADH bound form) 5Y1D ; 1.9 ; Monomeric L-threonine 3-dehydrogenase from metagenome database (apo form) 5Y1E ; 1.9 ; monomeric L-threonine 3-dehydrogenase from metagenome database (L-Ser and NAD+ bound form) 5Y1F ; 1.25 ; Monomeric L-threonine 3-dehydrogenase from metagenome database (NAD+ bound form) 6NRE ; 2.06 ; Monomeric Lipocalin Can F 6 6TME ; 2.33 ; Monomeric LRX8 in complex with RALF4. 1GOD ; 2.8 ; MONOMERIC LYS-49 PHOSPHOLIPASE A2 HOMOLOGUE ISOLATED FROM THE VENOM OF CERROPHIDION (BOTHROPS) GODMANI 1MC2 ; 0.85 ; monomeric LYS-49 phospholipase A2 homologue purified from AG 8SQU ; 3.28 ; Monomeric MapSPARTA bound with guide RNA and target DNA hybrid 2LEM ; ; Monomeric Mouse ApoAI(1-216) 5NMR ; 2.1 ; Monomeric mouse Sortilin extracellular domain 2A5P ; ; Monomeric parallel-stranded DNA tetraplex with snap-back 3+1 3' G-tetrad, single-residue chain reversal loops, GAG triad in the context of GAAG diagonal loop, NMR, 8 struct. 5DA7 ; 2.802 ; monomeric PCNA bound to a small protein inhibitor 2LXQ ; ; Monomeric PilE G-Quadruplex DNA from Neisseria Gonorrhoeae 5OTJ ; 2.35 ; Monomeric polcalcin (Phl p 7) in complex with two identical allergen-specific antibodies 7R3F ; 1.65 ; Monomeric PqsE mutant E187R 1K53 ; 2.1 ; Monomeric Protein L B1 Domain with a G15A Mutation 1K52 ; 1.8 ; Monomeric Protein L B1 Domain with a K54G mutation 4V0T ; 2.05 ; Monomeric pseudorabies virus protease pUL26N at 2.1 A resolution 4CX8 ; 2.53 ; Monomeric pseudorabies virus protease pUL26N at 2.5 A resolution 7ZQC ; 2.31 ; Monomeric PSI of Chlamydomonas reinhardtii at 2.31 A resolution 5FPK ; 1.343 ; MONOMERIC RADA IN COMPLEX WITH FATA TETRAPEPTIDE 2VAD ; 1.59 ; Monomeric red fluorescent protein, DsRed.M1 7Z10 ; 3.87 ; Monomeric respiratory complex IV isolated from S. cerevisiae 5LMX ; 4.9 ; Monomeric RNA polymerase I at 4.9 A resolution 2A89 ; 1.85 ; Monomeric Sarcosine Oxidase: Structure of a covalently flavinylated amine oxidizing enzyme 2GB0 ; 1.85 ; Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme 7M2Z ; 3.7 ; Monomeric single-particle reconstruction of the Yeast gamma-TuSC 6ZYT ; 1.8 ; Monomeric streptavidin with a conjugated biotinylated pyrrolidine 5YGM ; 1.6 ; Monomeric structure of concanavalin A at pH 7.5 from Carnivalia ensiformis 6KLE ; 4.5 ; Monomeric structure of Machupo virus polymerase bound to vRNA promoter 6L4I ; 2.2 ; Monomeric structure of monellin loop1 mutant with QEPKG motif 6L44 ; 2.492 ; Monomeric structure of monellin loop1 mutant with QVPAG motif 1MD8 ; 2.8 ; Monomeric structure of the active catalytic domain of complement protease C1r 1F0M ; 2.2 ; MONOMERIC STRUCTURE OF THE HUMAN EPHB2 SAM (STERILE ALPHA MOTIF) DOMAIN 3UNN ; 1.7 ; Monomeric structure of the human MDC1 FHA domain in complex with an MDC1 phospho-T4 peptide 1MD7 ; 3.2 ; Monomeric structure of the zymogen of complement protease C1r 3ZBP ; 2.0 ; Monomeric subunit of TubZ from Bacteriophage PhiKZ 2LJF ; ; Monophosphorylated (747pY) beta3 integrin cytoplasmic tail under aqueous conditions 2LJD ; ; monophosphorylated (747pY) beta3 integrin cytoplasmic tail under membrane mimetic conditions 6M94 ; 2.7 ; Monophosphorylated pSer33 b-Catenin peptide bound to b-TrCP/Skp1 Complex 6M91 ; 2.4 ; Monophosphorylated pSer33 b-Catenin peptide, b-TrCP/Skp1, NRX-103094 ternary complex 6M93 ; 2.5 ; Monophosphorylated pSer33 b-Catenin peptide, b-TrCP/Skp1, NRX-1933 ternary complex 6M92 ; 2.35 ; Monophosphorylated pSer33 b-Catenin peptide, b-TrCP/Skp1, NRX-2663 ternary complex 6M90 ; 2.05 ; Monophosphorylated pSer33 b-Catenin peptide, b-TrCP/Skp1, NRX-2776 ternary complex 2WSQ ; 2.1 ; MonoTIM mutant RMM0-1, dimeric form. 2WSR ; 1.65 ; MONOTIM MUTANT RMM0-1, MONOMERIC FORM. 8TI4 ; 2.1 ; monovalent bispecific IgG antibodies through novel electrostatic steering mutations at the CH1-CL interface 8TJF ; 2.3 ; monovalent bispecific IgG antibodies through novel electrostatic steering mutations at the CH1-CL interface 9INS ; 1.7 ; MONOVALENT CATION BINDING IN CUBIC INSULIN CRYSTALS 1FP7 ; 3.2 ; MONOVALENT CATION BINDING SITES IN N10-FORMYLTETRAHYDROFOLATE SYNTHETASE FROM MOORELLA THERMOACETICA 1FPM ; 3.0 ; MONOVALENT CATION BINDING SITES IN N10-FORMYLTETRAHYDROFOLATE SYNTHETASE FROM MOORELLA THERMOACETICA 1DOU ; 1.82 ; MONOVALENT CATIONS SEQUESTER WITHIN THE A-TRACT MINOR GROOVE OF [D(CGCGAATTCGCG)]2 6OCN ; 1.147 ; Montbretin A analogue M06-MbA in complex with Human pancreatic alpha-amylase 6OBX ; 1.3 ; Montbretin A analogue M10-MbA in complex with Human pancreatic alpha-amylase 4AWX ; 2.3 ; Moonlighting functions of FeoC in the regulation of ferrous iron transport in Feo 3ZXN ; 1.9 ; Moorella thermoacetica RsbS S58E 7EM9 ; 1.9 ; Mooring Stone-Like Arg114 Pulls Diverse Bulged Peptides: First Insight into African Swine Fever Virus-Derived T Cell Epitopes Presented by Swine Major Histocompatibility Complex Class I 7EMA ; 1.8 ; Mooring Stone-Like Arg114 Pulls Diverse Bulged Peptides: First Insight into African Swine Fever Virus-Derived T Cell Epitopes Presented by Swine Major Histocompatibility Complex Class I 7EMB ; 1.97 ; Mooring Stone-Like Arg114 Pulls Diverse Bulged Peptides: First Insight into African Swine Fever Virus-Derived T Cell Epitopes Presented by Swine Major Histocompatibility Complex Class I 7EMC ; 1.9 ; Mooring Stone-Like Arg114 Pulls Diverse Bulged Peptides: First Insight into African Swine Fever Virus-Derived T Cell Epitopes Presented by Swine Major Histocompatibility Complex Class I 7EMD ; 1.7 ; Mooring Stone-Like Arg114 Pulls Diverse Bulged Peptides: First Insight into African Swine Fever Virus-Derived T Cell Epitopes Presented by Swine Major Histocompatibility Complex Class I 7RJF ; 1.8 ; MOPD-1 mutant-L47W 6T6L ; 1.757 ; Mopeia Virus Exonuclease domain complexed soak with Alendronate 5LS4 ; 1.469 ; Mopeia virus exonuclease domain complexed with Calcium 5LRP ; 1.941 ; Mopeia Virus Exonuclease domain complexed with Magnesium 6SX8 ; 1.8 ; Mopeia Virus Exonuclease domain complexed with Manganese 6SY8 ; 2.08 ; Mopeia Virus Exonuclease domain fully depleted of Manganese un ALD compound 6T2A ; 2.0 ; Mopeia Virus Exonuclease domain partially complexed with Manganese 1GUS ; 1.8 ; MopII from Clostridium pasteurianum (apo1) 1GUT ; 1.5 ; MopII from Clostridium pasteurianum (apo2) 1GUO ; 2.5 ; MopII from Clostridium pasteurianum complexed with molybdate 1GUN ; 1.83 ; MopII from Clostridium pasteurianum complexed with molybdate (partial) 1GUG ; 1.6 ; MopII from Clostridium pasteurianum complexed with tungstate 5SVI ; 1.613 ; MORC3 CW domain in complex with unmodified histone H3 5SVY ; 1.05 ; MORC3 CW in complex with histone H3K4me1 5SVX ; 1.56 ; MORC3 CW in complex with histone H3K4me3 5U2J ; 1.6 ; MORF double PHD finger (DPF) in complex with histone H3K14bu 6YEW ; 3.2 ; Morganella morganii TcdA4 in complex with porcine mucosa heparin 6S3F ; 1.68 ; Moringa seed protein Mo-CBP3-4 5WUZ ; ; Morintides mO1 3IA5 ; 2.1 ; Moritella profunda dihydrofolate reductase (DHFR) 3IA4 ; 1.7 ; Moritella profunda dihydrofolate reductase (DHFR) in complex with NADPH and methotrexate (MTX) 2ZZA ; 2.0 ; Moritella profunda Dihydrofolate reductase complex with NADP+ and Folate 8EF6 ; 3.2 ; Morphine-bound mu-opioid receptor-Gi complex 1GWJ ; 2.2 ; Morphinone reductase 3BV3 ; 2.59 ; Morpholino pyrrolotriazine P38 Alpha Map Kinase inhibitor compound 2 3BV2 ; 2.4 ; Morpholino pyrrolotriazine P38 Alpha map kinase inhibitor compound 30 6NHK ; 2.777 ; Mortalin nucleotide binding domain in the ADP-bound state 4R79 ; 3.1 ; Mos1 transposase paired-end complex with left transposon end 6B8H ; 3.6 ; Mosaic model of yeast mitochondrial ATP synthase monomer 5V13 ; 1.84 ; Mosquito juvenile hormone-binding protein 1W99 ; 1.75 ; Mosquito-larvicidal toxin Cry4Ba from Bacillus thuringiensis ssp. Israelensis 7QX4 ; 2.6 ; mosquitocidal Cry11Aa determined at pH 7 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7QX6 ; 3.3 ; mosquitocidal Cry11Aa-E583Q determined at pH 7 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7QX7 ; 3.4 ; mosquitocidal Cry11Aa-F17Y determined at pH 7 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7QX5 ; 3.1 ; mosquitocidal Cry11Aa-Y449F determined at pH 7 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7R1E ; 2.65 ; Mosquitocidal Cry11Ba determined at pH 10.4 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7QYD ; 2.4 ; mosquitocidal Cry11Ba determined at pH 6.5 from naturally-occurring nanocrystals by Serial femtosecond crystallography 7ZHC ; 1.819 ; Moss spermine/spermidine acetyl transferase (PpSSAT) in complex with AcetylCoA and polyethylen glycol 7ZKT ; 2.06 ; Moss spermine/spermidine acetyl transferase (PpSSAT) in complex with CoA and lysine 6GU5 ; 1.9 ; Mosto containing the core POM clusters 7ZB5 ; 2.8 ; Mot1(1-1836):TBP:DNA - post-hydrolysis complex dimer 7Z8S ; 3.9 ; Mot1:TBP:DNA - post hydrolysis state 7ZKE ; 3.6 ; Mot1:TBP:DNA - pre-hydrolysis state 7Z7N ; 5.1 ; Mot1E1434Q:TBP:DNA - substrate recognition state 3MSP ; ; MOTILE MAJOR SPERM PROTEIN (MSP) OF ASCARIS SUUM, NMR, 20 STRUCTURES 1CM4 ; 2.0 ; Motions of calmodulin-four-conformer refinement 1CM1 ; 2.0 ; MOTIONS OF CALMODULIN-SINGLE-CONFORMER REFINEMENT 5WDH ; 2.248 ; Motor domain of human kinesin family member C1 1LKX ; 3.0 ; MOTOR DOMAIN OF MYOE, A CLASS-I MYOSIN 2OWM ; 3.25 ; Motor domain of Neurospora crassa kinesin-3 (NcKin3) 3T0Q ; 2.35 ; Motor Domain Structure of the Kar3-like kinesin from Ashbya gossypii 5NUG ; 3.8 ; Motor domains from human cytoplasmic dynein-1 in the phi-particle conformation 3UNH ; 3.2 ; Mouse 20S immunoproteasome 3UNF ; 2.9 ; Mouse 20S immunoproteasome in complex with PR-957 1MAA ; 2.9 ; MOUSE ACETYLCHOLINESTERASE CATALYTIC DOMAIN, GLYCOSYLATED PROTEIN 8FRA ; 1.95 ; Mouse acidic mammalian chitinase, catalytic domain in complex with diacetylchitobiose at pH 5.60 8GCA ; 1.7 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N',N''-triacetylchitotriose at pH 4.74 8FRC ; 1.92 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N'-diacetylchitobiose at pH 4.91 8FR9 ; 1.5 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N'-diacetylchitobiose at pH 5.08 8FRB ; 1.7 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N'-diacetylchitobiose at pH 5.25 8FRD ; 1.68 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N'-diacetylchitobiose at pH 5.25 8FRG ; 1.74 ; Mouse acidic mammalian chitinase, catalytic domain in complex with N,N'-diacetylchitobiose at pH 5.43 5CK7 ; 2.99 ; Mouse ADP-dependent Glucokinase; AMP bound 6O3E ; 4.001 ; mouse aE-catenin 82-883 2Q76 ; 2.0 ; Mouse anti-hen egg white lysozyme antibody F10.6.6 Fab fragment 6JWC ; 2.297 ; Mouse antibody 2B5 Fab in complex with PEG 6JU0 ; 2.601 ; Mouse antibody 3.3 Fab in complex with PEG 4P7F ; 1.37 ; Mouse apo-COMT 8EMQ ; 1.66 ; Mouse apoferritin heavy chain with zinc determined using single-particle cryo-EM with Apollo camera. 8EN7 ; 1.68 ; Mouse apoferritin heavy chain without zinc determined using single-particle cryo-EM with Apollo camera. 6DDT ; 2.1 ; mouse beta-mannosidase (MANBA) 6DDU ; 2.668 ; mouse beta-mannosidase bound to beta-D-mannose (MANBA) 1MBE ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 1 1MBF ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 1 1MBG ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 2 1MBH ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 2 1MBJ ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 3 1MBK ; ; MOUSE C-MYB DNA-BINDING DOMAIN REPEAT 3 3RS1 ; 1.94 ; Mouse C-type lectin-related protein Clrg 2OAC ; 2.2 ; Mouse C14A Glutathione-S-Transferase Mutant in Complex with S-(p-nitrobenzyl) Glutathione 2OA7 ; 2.2 ; Mouse C14A Glutathione-S-Transferase Mutant in Complex with S-hexyl glutathione 6CG6 ; 2.707 ; mouse cadherin-10 EC1-2 adhesive fragment 6CG7 ; 2.705 ; mouse cadherin-22 EC1-2 adhesive fragment 6CGU ; 1.9 ; mouse cadherin-6 EC1-2 adhesive fragment 6CGS ; 1.72 ; mouse cadherin-7 EC1-2 adhesive fragment 4BPV ; 2.0 ; MOUSE CATHEPSIN S WITH COVALENT LIGAND 4BQV ; 1.7 ; MOUSE CATHEPSIN S WITH COVALENT LIGAND 4BS5 ; 1.25 ; MOUSE CATHEPSIN S WITH COVALENT LIGAND 4BS6 ; 1.2 ; MOUSE CATHEPSIN S WITH COVALENT LIGAND 4BSQ ; 1.96 ; MOUSE CATHEPSIN S WITH COVALENT LIGAND 4MZS ; 1.85 ; Mouse cathepsin s with covalent ligand (3S,4S)-1-[(2-CHLOROPHENYL)SULFONYL]-N-[(2E)-2-IMINOETHYL]-4-(MORPHOLIN-4-YLCARBONYL)PYRROLIDINE-3-CARBOXAMIDE 4MZO ; 1.47 ; Mouse cathepsin s with covalent ligand (3S,4S)-N-[(2E)-2-IMINOETHYL]-4-(MORPHOLIN-4-YLCARBONYL)-1-(PHENYLSULFONYL)PYRROLIDINE-3-CARBOXAMIDE 2K4F ; ; Mouse CD3epsilon Cytoplasmic Tail 5YJ1 ; 2.0 ; Mouse Cereblon thalidomide binding domain complexed with R-form thalidomide 5YIZ ; 2.0 ; Mouse Cereblon thalidomide binding domain complexed with racemic thalidomide 5YJ0 ; 1.8 ; Mouse Cereblon thalidomide binding domain complexed with S-form thalidomide 3WX2 ; 2.0 ; Mouse Cereblon thalidomide binding domain, native 3WX1 ; 1.93 ; Mouse Cereblon thalidomide binding domain, selenomethionine derivative 1Q3H ; 2.5 ; mouse CFTR NBD1 with AMP.PNP 5XZE ; 2.177 ; Mouse cGAS bound to the inhibitor RU332 5XZB ; 2.13 ; Mouse cGAS bound to the inhibitor RU365 5XZG ; 1.828 ; Mouse cGAS bound to the inhibitor RU521 1E3E ; 2.12 ; Mouse class II alcohol dehydrogenase complex with NADH 1E3I ; 2.08 ; Mouse class II alcohol dehydrogenase complex with NADH and inhibitor 7MRN ; 3.5 ; Mouse CNTN5 APP complex 5FCR ; 1.25 ; MOUSE COMPLEMENT FACTOR D 3UNE ; 3.2 ; Mouse constitutive 20S proteasome 3UNB ; 2.9 ; Mouse constitutive 20S proteasome in complex with PR-957 7OL4 ; 4.8 ; Mouse contactin-1 neurofascin-155 immunoglobulin domains adhesion complex 7MIP ; 2.4 ; Mouse CTPS1 bound to inhibitor R80 7MIU ; 2.6 ; Mouse CTPS2 bound to inhibitor R80 7MIV ; 2.8 ; Mouse CTPS2-I250T bound to inhibitor R80 4O6A ; 1.859 ; Mouse cyclic GMP-AMP synthase (cGAS) in complex with DNA 6SQW ; 1.8 ; Mouse dCTPase in complex with 5-Me-dCMP 6SQY ; 1.9 ; Mouse dCTPase in complex with dCMP 6SQZ ; 1.9 ; Mouse dCTPase in complex with dCMPNPP 6DFV ; 1.71 ; Mouse diabetogenic TCR 8F10 6DFQ ; 2.6 ; mouse diabetogenic TCR I.29 1Z65 ; ; Mouse Doppel 1-30 peptide 2QVF ; 2.4 ; mouse E-cadherin domains 1,2 3Q2N ; 2.73 ; Mouse E-cadherin EC1-2 L175D mutant 3Q2L ; 2.7 ; Mouse E-cadherin EC1-2 V81D mutant 6O9H ; 2.1 ; Mouse ECD with Fab1 6NJT ; 2.07 ; Mouse endonuclease G mutant - H97A 6NJU ; 2.35 ; Mouse endonuclease G mutant H97A bound to A-DNA 7YZ4 ; 3.84 ; Mouse endoribonuclease Dicer (composite structure) 6HT9 ; 3.1 ; Mouse fetuin-B in complex with crayfish astacin 4V2C ; 4.0 ; mouse FLRT2 LRR domain in complex with rat Unc5D Ig1 domain 8EMA ; 8.2 ; mouse full length B cell receptor 2HZY ; 1.35 ; Mouse fumarylacetoacetate hydrolase complexes with a transition-state mimic of the complete substrate 1AWC ; 2.15 ; MOUSE GABP ALPHA/BETA DOMAIN BOUND TO DNA 4UFM ; 2.4 ; Mouse Galactocerebrosidase complexed with 1-deoxy-galacto-nojirimycin DGJ 4UFI ; 2.4 ; Mouse Galactocerebrosidase complexed with aza-galacto-fagomine AGF 4UFL ; 2.4 ; Mouse Galactocerebrosidase complexed with deoxy-galacto-noeurostegine DGN 4UFK ; 2.402 ; Mouse Galactocerebrosidase complexed with dideoxy-imino-lyxitol DIL 6Y6T ; 2.25 ; Mouse Galactocerebrosidase complexed with galacto-noeurostegine GNS at pH 4.6 6Y6S ; 2.1 ; Mouse Galactocerebrosidase complexed with galacto-noeurostegine GNS at pH 6.8 4UFH ; 2.16 ; Mouse Galactocerebrosidase complexed with iso-galacto-fagomine IGF 4UFJ ; 2.2 ; Mouse Galactocerebrosidase complexed with iso-galacto-fagomine lactam IGL 5NXB ; 3.6 ; Mouse galactocerebrosidase in complex with saposin A 7DF6 ; 1.8 ; Mouse Galectin-3 CRD in complex with novel tetrahydropyran-based thiodisaccharide mimic inhibitor 6MYG ; 2.919 ; Mouse Gamma S Crystallin L16 Octamer 7RJ0 ; 2.919 ; Mouse Gamma S Crystallin L16 Octamer 7RFP ; 4.4 ; Mouse GITR (mGITR) with DTA-1 Fab fragment 7KHX ; 3.2057 ; Mouse GITR-GITRL complex 1AO5 ; 2.6 ; MOUSE GLANDULAR KALLIKREIN-13 (PRORENIN CONVERTING ENZYME) 6V21 ; 1.75 ; Mouse heavy chain apoferritin determined using single-particle cryo-EM at 200 keV 1DZ1 ; ; Mouse HP1 (M31) C terminal (shadow chromo) domain 6MGN ; 1.901 ; mouse Id1 (51-104) - human hE47 (348-399) complex 6UQC ; 1.87 ; Mouse IgG2a Bispecific Fc 3ZO0 ; 1.99 ; Mouse IgG2a in complex with mouse TRIM21 PRYSPRY 4YQX ; 2.826 ; Mouse IL-2 Bound to JES6-1 scFv Fragment 4YUE ; 2.194 ; Mouse IL-2 Bound to S4B6 Fab Fragment 6BHQ ; 2.05 ; Mouse Immunoglobulin G 2c Fc fragment with complex-type glycan 6BHY ; 2.04 ; Mouse Immunoglobulin G 2c Fc fragment with single GlcNAc 1Q1S ; 2.3 ; Mouse Importin alpha- phosphorylated SV40 CN peptide complex 1PJM ; 2.5 ; Mouse Importin alpha-bipartite NLS from human retinoblastoma protein Complex 1PJN ; 2.5 ; Mouse Importin alpha-bipartite NLS N1N2 from Xenopus laevis phosphoprotein Complex 3RZX ; 2.61 ; Mouse importin alpha-Ku70 NLS peptide complex 3RZ9 ; 2.29 ; Mouse importin alpha-Ku80 NLS peptide complex 1EJY ; 2.9 ; MOUSE IMPORTIN ALPHA-NUCLEOPLASMIN NLS PEPTIDE COMPLEX 3L3Q ; 2.3 ; Mouse importin alpha-pepTM NLS peptide complex 1EJL ; 2.8 ; MOUSE IMPORTIN ALPHA-SV40 LARGE T ANTIGEN NLS PEPTIDE COMPLEX 4HTV ; 3.0 ; Mouse importin alpha: BFDV Cap NLS peptide complex 3UKW ; 2.1 ; Mouse importin alpha: Bimax1 peptide complex 3UKX ; 2.2 ; Mouse importin alpha: Bimax2 peptide complex 5HHG ; 2.2 ; Mouse importin alpha: Dengue 2 NS5 C-terminal NLS peptide complex 5FC8 ; 2.1 ; Mouse importin alpha: Dengue 3 NS5 C-terminal NLS peptide complex 3UKZ ; 2.3 ; Mouse importin alpha: mouse CBP80 cNLS complex 3UL0 ; 2.0 ; Mouse importin alpha: mouse CBP80Y8D cNLS complex 1Q1T ; 2.5 ; Mouse Importin alpha: non-phosphorylated SV40 CN peptide complex 3UL1 ; 1.9 ; Mouse importin alpha: nucleoplasmin cNLS peptide complex 3UKY ; 2.35 ; Mouse importin alpha: yeast CBP80 cNLS complex 8CR6 ; 2.85 ; mouse Interleukin-12 6SFF ; 2.4 ; mouse Interleukin-12 subunit beta - p80 homodimer in space group I41 6SMC ; 3.5 ; mouse Interleukin-12 subunit beta - p80 homodimer in space group P1 6SP3 ; 3.0 ; mouse Interleukin-12 subunit beta - p80 homodimer in space group P21 crystal form 1 7PUR ; 3.9 ; mouse Interleukin-12 subunit beta - p80 homodimer in space group P21 crystal form 2 7R3N ; 3.16 ; mouse Interleukin-12 subunit beta - p80 homodimer in space group P21 crystal form 3 7OX4 ; 1.8 ; Mouse interleukin-9 in complex with Fab 35D8. 4TR4 ; 1.93 ; Mouse iodothyronine deiodinase 3 catalytic core, active site mutant SeCys->Cys 4TR3 ; 1.9 ; Mouse iodothyronine deiodinase 3 catalytic core, SeMet-labeled active site mutant SeCys->Cys 2JOC ; ; Mouse Itch 3rd domain phosphorylated in T30 2JO9 ; ; Mouse Itch 3rd WW domain complex with the Epstein-Barr virus latent membrane protein 2A derived peptide EEPPPPYED 5ZFH ; 1.93 ; Mouse Kallikrein 7 5ZFI ; 1.8 ; Mouse kallikrein 7 in complex with 6-benzyl-1,4-diazepan-7-one derivative 6AHS ; 1.75 ; Mouse Kallikrein 7 in complex with imidazolinylindole derivative 7D14 ; 3.8 ; Mouse KCC2 8Q1Q ; 1.378 ; mouse Keap1 in complex with stapled peptide 8Q1R ; 1.33 ; mouse Keap1 in complex with stapled peptide 5KE8 ; 2.45 ; mouse Klf4 E446P ZnF1-3 and MpG/MpG sequence DNA complex structure 5KE9 ; 2.336 ; mouse Klf4 E446P ZnF1-3 and TpG/CpA sequence DNA complex structure 5KEA ; 2.458 ; mouse Klf4 ZnF1-3 (E446D) and CpG/CpG sequence DNA complex structure: Form I 5KEB ; 2.453 ; mouse Klf4 ZnF1-3 (E446D) and CpG/CpG sequence DNA complex structure: Form II 5KE6 ; 1.99 ; mouse Klf4 ZnF1-3 and TpG/CpA sequence DNA complex structure 5KE7 ; 2.06 ; mouse Klf4 ZnF1-3 and TpG/MpA sequence DNA complex structure 5VEP ; 2.59 ; MOUSE KYNURENINE AMINOTRANSFERASE III, RE-REFINEMENT OF THE PDB STRUCTURE 3E2F 5VEQ ; 2.26 ; MOUSE KYNURENINE AMINOTRANSFERASE III, RE-REFINEMENT OF THE PDB STRUCTURE 3E2Y 5VER ; 2.81 ; MOUSE KYNURENINE AMINOTRANSFERASE III, RE-REFINEMENT OF THE PDB STRUCTURE 3E2Z 2JD4 ; 1.9 ; Mouse laminin alpha1 chain, domains LG4-5 2JXA ; ; Mouse Latrophilin-1 GPCR Gal_lectin domain in complex with Rhamnose 8AVC ; 4.6 ; Mouse leptin:LEP-R complex cryoEM structure (3:3 model) 3TRZ ; 2.9 ; Mouse Lin28A in complex with let-7d microRNA pre-element 3TS0 ; 2.763 ; Mouse Lin28A in complex with let-7f-1 microRNA pre-element 3TS2 ; 2.01 ; Mouse Lin28A in complex with let-7g microRNA pre-element 3V4L ; 3.15 ; Mouse MALT1(caspase-IG3 domains) in complex with a irreversible peptidic inhibitor 7USF ; 3.5 ; Mouse mammary tumor virus strand transfer complex intasome 4EW0 ; 2.39 ; mouse MBD4 glycosylase domain in complex with a G:5hmU (5-hydroxymethyluracil) mismatch 4EVV ; 2.39 ; mouse MBD4 glycosylase domain in complex with a G:T mismatch 4EW4 ; 2.791 ; mouse MBD4 glycosylase domain in complex with DNA containing a ribose sugar 5GSX ; 2.5 ; Mouse MHC class I H-2Kd with a MERS-CoV-derived peptide 142-2 5GSV ; 1.996 ; Mouse MHC class I H-2Kd with a MERS-CoV-derived peptide 142-5 5GR7 ; 2.4 ; Mouse MHC class I H-2Kd with a MERS-CoV-derived peptide 37-1 5GSB ; 1.801 ; Mouse MHC class I H-2Kd with a MERS-CoV-derived peptide 37-3 5GSR ; 2.198 ; Mouse MHC class I H-2Kd with a MERS-CoV-derived peptide I5A 6G2J ; 3.3 ; Mouse mitochondrial complex I in the active state 6G72 ; 3.9 ; Mouse mitochondrial complex I in the deactive state 7PNW ; 3.09 ; Mouse mitochondrial ribosome small subunit lacking m5U modification 2DGN ; 2.4 ; Mouse Muscle Adenylosuccinate Synthetase partially ligated complex with GTP, 2'-deoxy-IMP 5VR2 ; 1.922 ; mouse myocilin leucine zipper C-terminal 7 heptad repeat 5KPI ; 4.01 ; Mouse native PGP 2VRY ; 1.87 ; Mouse Neuroglobin with heme iron in the reduced ferrous state 4GZ9 ; 2.7 ; Mouse Neuropilin-1, extracellular domains 1-4 (a1a2b1b2) 4EAX ; 2.3 ; Mouse NGF in complex with Lyso-PS 2I62 ; 1.8 ; Mouse Nicotinamide N-methyltransferase 7N6Y ; 3.3 ; Mouse norovirus (MNV-1) capsid at pH 5.0 7N7F ; 3.0 ; Mouse norovirus (MNV-1) capsid at pH 7.5 6P4J ; 3.1 ; Mouse norovirus complexed with GCDCA 6P4K ; 3.1 ; mouse norovirus complexed with TCA 6CRJ ; 8.0 ; Mouse norovirus model using the crystal structure of MNV P domain and the Norwalkvirus shell domain 7L5J ; 3.2 ; Mouse Norovirus Protruding domain complexed with neutralizing Fab fragment from mAb A6.2 2QC9 ; 2.35 ; Mouse Notch 1 Ankyrin Repeat Intracellular Domain 2ZO0 ; 2.19 ; mouse NP95 SRA domain DNA specific complex 1 2ZO1 ; 1.96 ; Mouse NP95 SRA domain DNA specific complex 2 2ZO2 ; 3.09 ; Mouse NP95 SRA domain non-specific DNA complex 2IOM ; 2.0 ; Mouse p53 core domain soaked with 2-propanol 2P52 ; 1.5 ; mouse p53 DNA-binding domain in zinc-free oxidized state 5MSJ ; 3.5 ; Mouse PA28alpha 5MX5 ; 2.9 ; Mouse PA28alpha-beta 5MSK ; 3.6 ; Mouse PA28beta 3QE6 ; 2.6 ; Mouse PACSIN 3 F-BAR domain structure 7SZ3 ; 2.2 ; Mouse PARP13/ZAP ZnF5-WWE1-WWE2 bound to ADPr 7SZ2 ; 2.2 ; Mouse PARP13/ZAP ZnF5-WWE1-WWE2 bound to ATP 7WK7 ; 3.49 ; Mouse Pendrin bound bicarbonate in inward state 7WK1 ; 3.25 ; Mouse Pendrin bound chloride in inward state 8HZN ; 3.25 ; Mouse Pendrin bound chloride in inward state 7WLA ; 3.76 ; Mouse Pendrin in bicarbonate and iodide buffer in asymmetric state 7WL2 ; 3.25 ; Mouse Pendrin in bicarbonate and iodide buffer in inward state 7WL7 ; 3.51 ; Mouse Pendrin in chloride and bicarbonate buffer in inward state 7WLE ; 3.62 ; Mouse Pendrin in chloride and bicarbonate buffer in outward state 7WL9 ; 3.78 ; Mouse Pendrin in chloride and bicarbonate in asymmetric state 7WLB ; 4.1 ; Mouse Pendrin in chloride and iodide buffer in asymmetric state 7WL8 ; 3.4 ; Mouse Pendrin in chloride and iodide buffer in inward state 5KOY ; 3.85 ; Mouse pgp 34 linker deleted bound with ATP 5KPD ; 3.35 ; Mouse pgp 34 linker deleted double EQ mutant 5KO2 ; 3.3 ; Mouse pgp 34 linker deleted mutant Hg derivative 5KPJ ; 3.5 ; Mouse pgp methylated protein 6UWA ; 1.2 ; Mouse PKC C1B and C2 domains 3LW2 ; 1.93 ; Mouse Plasminogen Activator Inhibitor-1 (PAI-1) 3AL9 ; 2.1 ; Mouse Plexin A2 extracellular domain 3OKT ; 2.296 ; Mouse Plexin A2, extracellular domains 1-4 5KY5 ; 1.5 ; mouse POFUT1 in complex with EGF(+) and GDP 5KXQ ; 1.9 ; mouse POFUT1 in complex with GDP 5KXH ; 1.33 ; mouse POFUT1 in complex with mouse Factor VII EGF1 and GDP 5KY3 ; 1.53 ; mouse POFUT1 in complex with mouse Factor VII EGF1 mutant (T101A) and GDP-fucose 5KY9 ; 1.83 ; mouse POFUT1 in complex with mouse Notch1 EGF12 mutant (D464G/A465G) and GDP 5KY0 ; 1.53 ; mouse POFUT1 in complex with mouse Notch1 EGF12(D464G) and GDP 5KY4 ; 1.472 ; mouse POFUT1 in complex with mouse Notch1 EGF26 and GDP 5KY7 ; 1.6 ; mouse POFUT1 in complex with O-glucosylated EGF(+) and GDP 5KY2 ; 1.47 ; mouse POFUT1 in complex with O-glucosylated mouse Factor VII EGF1 and GDP 5KY8 ; 1.65 ; mouse POFUT1 in complex with O-glucosylated mouse Notch1 EGF12 mutant (D464G) and GDP 5DMS ; 1.89999 ; Mouse Polo-box domain and Emi2 (169-177) 5DNJ ; 2.3 ; Mouse Polo-box domain and Peptide analog 702 2L1E ; ; Mouse prion protein (121-231) containing the substitution F175A 2L40 ; ; Mouse prion protein (121-231) containing the substitution Y169A 2L1D ; ; Mouse prion protein (121-231) containing the substitution Y169G 2L1K ; ; Mouse prion protein (121-231) containing the substitutions Y169A, Y225A, and Y226A 2KU5 ; ; Mouse Prion Protein (121-231) with mutation D167S 2K5O ; ; Mouse Prion Protein (121-231) with Mutation S170N 2KFO ; ; Mouse Prion Protein (121-231) with Mutation V166A 2KU6 ; ; Mouse Prion Protein (121-231) with mutations D167S and N173K 2KFM ; ; Mouse Prion Protein (121-231) with Mutations Y225A and Y226A 1XYX ; ; mouse prion protein fragment 121-231 2L1H ; ; Mouse prion protein fragment 121-231 at 20 C 2L39 ; ; Mouse prion protein fragment 121-231 AT 37 C 6HER ; 1.199 ; Mouse prion protein in complex with Nanobody 484 6HHD ; 2.102 ; Mouse Prion Protein in complex with Nanobody 484 1Y15 ; ; Mouse Prion Protein with mutation N174T 1Y16 ; ; mouse prion protein with mutations S170N and N174T 2V8F ; 1.1 ; Mouse Profilin IIa in complex with a double repeat from the FH1 domain of mDia1 2V8C ; 1.98 ; Mouse Profilin IIa in complex with the proline-rich domain of VASP 6CV7 ; 1.692 ; Mouse Protocadherin-15 Extracellular Cadherin Domains 1 through 3 7DMP ; 3.2 ; Mouse radial spoke complex 1S55 ; 1.9 ; Mouse RANKL Structure at 1.9A Resolution 6SOE ; ; Mouse RBM20 RRM domain 6SO9 ; ; Mouse RBM20 RRM domain in complex with AUCUUA RNA 6JPD ; ; Mouse receptor-interacting protein kinase 3 (RIP3) amyloid structure by solid-state NMR 6VAC ; 5.7 ; Mouse retromer (VPS26/VPS35/VPS29) heterotrimer 7U6F ; 4.9 ; Mouse retromer (VPS26/VPS35/VPS29) heterotrimers 6VAB ; 4.9 ; Mouse retromer sub-structure: VPS35/VPS35 flat dimer 3TBK ; 2.14 ; Mouse RIG-I ATPase Domain 3KIO ; 2.9 ; mouse RNase H2 complex 6TAY ; 3.2 ; Mouse RNF213 mutant R4753K modeling the Moyamoya-disease-related Human variant R4810K 6TAX ; 3.2 ; Mouse RNF213 wild type protein 7OIM ; 4.0 ; Mouse RNF213, with mixed nucleotides bound 7OIK ; 3.5 ; Mouse RNF213:UBE2L3 transthiolation intermediate, chemically stabilized 2OX9 ; 1.95 ; Mouse Scavenger Receptor C-type Lectin carbohydrate-recognition domain. 4GZ8 ; 3.3 ; Mouse Semaphorin 3A, domains Sema-PSI-IG 3AFC ; 2.5 ; Mouse Semaphorin 6A extracellular domain 3OKW ; 2.299 ; Mouse Semaphorin 6A, extracellular domains 1-2 1OAA ; 1.25 ; MOUSE SEPIAPTERIN REDUCTASE COMPLEXED WITH NADP AND OXALOACETATE 1SEP ; 1.95 ; MOUSE SEPIAPTERIN REDUCTASE COMPLEXED WITH NADP AND SEPIAPTERIN 6HIN ; 4.1 ; Mouse serotonin 5-HT3 receptor, serotonin-bound, F conformation 6HIO ; 4.2 ; Mouse serotonin 5-HT3 receptor, serotonin-bound, I1 conformation 6HIQ ; 3.2 ; Mouse serotonin 5-HT3 receptor, serotonin-bound, I2 conformation 6HIS ; 4.5 ; Mouse serotonin 5-HT3 receptor, tropisetron-bound, T conformation 8CC6 ; 3.2 ; Mouse serotonin 5-HT3A receptor in complex with PZ-1922 8CC7 ; 3.0 ; Mouse serotonin 5-HT3A receptor in complex with PZ-1939 8AW2 ; 3.01 ; Mouse serotonin 5-HT3A receptor in complex with vortioxetine 6Y1Z ; 2.82 ; Mouse serotonin 5HT3 receptor in complex with palonosetron 1YMT ; 1.2 ; Mouse SF-1 LBD 4GN7 ; 1.95 ; mouse SMP30/GNL 4GN8 ; 1.7 ; mouse SMP30/GNL-1,5-AG complex 4GN9 ; 2.0 ; mouse SMP30/GNL-glucose complex 4GNA ; 1.85 ; mouse SMP30/GNL-xylitol complex 3GTT ; 2.4 ; Mouse SOD1 6FG9 ; 4.2 ; Mouse SORCS2 ectodomain (sortilin related VPS10 domain containing receptor 2) 5C7I ; 2.0098 ; Mouse sperm Glyceraldehyde-3-phosphate dehydrogenase: apo enzyme 2C91 ; 2.3 ; mouse succinic semialdehyde reductase, AKR7A5 1M4M ; 2.8 ; Mouse Survivin 7YTY ; 3.5 ; Mouse SVCT1 in an apo state 7E62 ; 1.99 ; Mouse TAB2 NZF in complex with Lys6-linked diubiquitin 6MFS ; 2.85 ; Mouse talin1 residues 1-138 fused to residues 169-400 in complex with phosphatidylinositol 4,5-bisphosphate (PIP2) 6DFS ; 3.1 ; mouse TCR I.29 in complex with IAg7-p8E9E6ss 8D5P ; 2.75 ; Mouse TCR TG6 4YRA ; 2.65 ; mouse TDH in the apo form 4YRB ; 3.25 ; mouse TDH mutant R180K with NAD+ bound 4YR9 ; 2.8 ; mouse TDH with NAD+ bound 5TVQ ; 2.35 ; Mouse Tdp2 catalytic domain bound to SUMO2 5INN ; 2.8 ; Mouse Tdp2 D358N protein, apo state with increased disorder amongst variable DNA-binding grasp conformations 5INM ; 2.4 ; Mouse Tdp2 protein, apo state with variable DNA-binding grasp conformations 5INK ; 2.15 ; Mouse Tdp2 reaction product (5'-phosphorylated DNA)-abasic/THF-Mg2+ complex 5INQ ; 1.848 ; Mouse Tdp2 reaction product (5'-phosphorylated DNA)-Ca2+ complex 5HT2 ; 1.43 ; Mouse Tdp2 reaction product (5'-phosphorylated DNA)-Mg2+ complex with 1-N6-etheno-adenine 5INL ; 1.551 ; Mouse Tdp2 reaction product (5'-phosphorylated DNA)-Mg2+ complex with deoxyadenosine 5INP ; 1.947 ; Mouse Tdp2 reaction product (5'-phosphorylated DNA)-Mn2+ complex 4QZ9 ; 2.05 ; Mouse Tdt in complex with a DSB substrate, C-A base pair 4QZA ; 2.15 ; Mouse Tdt in complex with a DSB substrate, C-C base pair 4QZ8 ; 2.7 ; Mouse Tdt in complex with a DSB substrate, C-G base pair 4QZB ; 2.15 ; Mouse Tdt in complex with a DSB substrate, C-T base pair 4QZI ; 2.65 ; Mouse Tdt, F401A mutant, in complex with a DSB substrate and Zn2+ 4QZF ; 2.6 ; Mouse Tdt, F401A mutant, in complex with a DSB substrate, C-A base pair 4QZG ; 2.75 ; Mouse Tdt, F401A mutant, in complex with a DSB substrate, C-C base pair 4QZE ; 2.25 ; Mouse Tdt, F401A mutant, in complex with a DSB substrate, C-G base pair 4QZH ; 2.6 ; Mouse Tdt, F401A mutant, in complex with a DSB substrate, C-T base pair 4QZD ; 2.7 ; Mouse Tdt, F405A mutant, in complex with a DSB substrate, C-C base pair 4QZC ; 2.75 ; Mouse Tdt, F405A mutant, in complex with a DSB substrate, C-G base pair 1IG3 ; 1.9 ; Mouse Thiamin Pyrophosphokinase Complexed with Thiamin 2F17 ; 2.5 ; Mouse Thiamin Pyrophosphokinase in a Ternary Complex with Pyrithiamin Pyrophosphate and AMP at 2.5 angstrom 6GKO ; 1.839 ; Mouse thymidylate synthase cocrystallized with dUMP and soaked in phenolphthalein 6Y08 ; 2.297 ; Mouse thymidylate synthase cocrystallized with dUMP and soaked in sulfamethoxazole 6F6Z ; 2.127 ; Mouse Thymidylate Synthase Cocrystallized with N(4)OHdCMP and Soaked in Methylenetetrahydrofolate 6GYJ ; 1.75 ; Mouse thymidylate synthase crystal soaked in phenolphthalein 5FCT ; 1.55 ; Mouse thymidylate synthase in ternary complex with FdUMP and methylenetetrahydrofolate. 3CIY ; 3.41 ; Mouse Toll-like receptor 3 ectodomain complexed with double-stranded RNA 7DA7 ; 3.47 ; Mouse Toll-like receptor 3 ectodomain in complex with lncRNA Rmrp in elongated form 7DAS ; 3.64 ; Mouse Toll-like receptor 3 ectodomain in complex with lncRNA Rmrp in lapped form 3U3Y ; 2.28 ; Mouse TREX1 D200H mutant 3U6F ; 2.3 ; Mouse TREX1 D200N mutant 7EBK ; 1.74 ; Mouse Trim66 PHD-Bromo dual domain complexed with the H3(1-24)K9me3K18ac peptide 7WRE ; 2.52 ; Mouse TRPM8 in lipid nanodiscs in the presence of calcium and icilin 7WRF ; 3.04 ; Mouse TRPM8 in lipid nanodiscs in the presence of calcium, icilin and PI(4,5)P2 7WRA ; 2.98 ; Mouse TRPM8 in LMNG in ligand-free state 7WRB ; 2.88 ; Mouse TRPM8 in LMNG in the presence of calcium 7WRD ; 2.98 ; Mouse TRPM8 in LMNG in the presence of calcium and icilin 7WRC ; 3.21 ; Mouse TRPM8 in LMNG in the presence of calcium, icilin and PI(4,5)P2 8E4P ; 3.59 ; Mouse TRPM8 structure determined in the ligand- and PI(4,5)P2-free condition, Class I , C0 state 7MIM ; 3.42 ; Mouse TRPV3 in cNW11 nanodiscs, closed state at 4 degrees Celsius 7MIN ; 3.09 ; Mouse TRPV3 in cNW11 nanodiscs, closed state at 42 degrees Celsius 7MIO ; 3.48 ; Mouse TRPV3 in cNW11 nanodiscs, open state at 42 degrees Celsius 7MIJ ; 1.98 ; Mouse TRPV3 in MSP2N2 nanodiscs, closed state at 4 degrees Celsius 7MIK ; 3.12 ; Mouse TRPV3 in MSP2N2 nanodiscs, closed state at 42 degrees Celsius 7MIL ; 3.86 ; Mouse TRPV3 in MSP2N2 nanodiscs, sensitized state at 42 degrees Celsius 6PIS ; 2.77 ; Mouse two pore domain K+ channel TRAAK (K2P4.1) - Fab complex structure 3FDE ; 1.41 ; Mouse UHRF1 SRA domain bound with hemi-methylated CpG DNA, crystal structure in space group C222(1) at 1.4 A resolution 3F8J ; 1.99 ; Mouse UHRF1 SRA domain bound with hemi-methylated CpG, crystal structure in space group C222(1) 3F8I ; 2.29 ; Mouse UHRF1 SRA domain bound with hemi-methylated CpG, crystal structure in space group P21 4GZN ; 0.99 ; Mouse ZFP57 zinc fingers in complex with methylated DNA 4C86 ; 2.0 ; mouse ZNRF3 ectodomain crystal form I 4C8A ; 2.7 ; mouse ZNRF3 ectodomain crystal form II 4C8C ; 2.4 ; mouse ZNRF3 ectodomain crystal form III 4C8F ; 2.69 ; mouse ZNRF3 ectodomain crystal form IV 4C8P ; 2.1 ; mouse ZNRF3 ectodomain crystal form V, disulfide-bridged S90C variant 4C99 ; 2.8 ; Mouse ZNRF3 ectodomain in complex with mouse RSPO2 Fu1-Fu2 crystal form I 4C9A ; 2.4 ; Mouse ZNRF3 ectodomain in complex with Xenopus RSPO2 Fu1-Fu2 (Seleno Met) crystal form I 4C9E ; 3.0 ; Mouse ZNRF3 ectodomain in complex with Xenopus RSPO2 Fu1-Fu2 (Seleno Met) crystal form II 3LTV ; 2.453 ; Mouse-human sod1 chimera 5V3J ; 2.064 ; mouseZFP568-ZnF1-10 in complex with DNA 5V3M ; 2.091 ; mouseZFP568-ZnF1-11 in complex with DNA 5WJQ ; 2.794 ; mouseZFP568-ZnF2-11 in complex with DNA 6SZA ; 6.0 ; MoxR AAA-ATPase RavA, C2-symmetric closed ring conformation 6SZB ; 7.0 ; MoxR AAA-ATPase RavA, spiral open ring conformation 5DSS ; 2.8 ; MP-4 contributes to snake venom neutralization by Mucuna pruriens seeds through stimulation of cross-reactive antibodies 1SKO ; 2.0 ; MP1-p14 Complex 2ZL1 ; 2.0 ; MP1-p14 Scaffolding complex 3CPT ; 1.9 ; MP1-p14 Scaffolding complex 8B6V ; 3.1 ; Mp2Ba1 pre-pore 2X0A ; 1.52 ; MPD-Lysozyme structure at 55.5 keV using a TRIXXEL CsI-aSi based digital imager and the new ESRF U22 undulator source at ID15 6X58 ; 3.26 ; MPER-Fluc-Ec2 bound to 10E8v4 antibody 6E8W ; ; MPER-TM Domain of HIV-1 envelope glycoprotein (Env) 6V4T ; ; MPER-TMD of HIV-1 Env bound with the entry inhibitor S2C3 8B6U ; 2.134 ; Mpf2Ba1 monomer 8B6W ; 2.6 ; Mpf2Ba1 pore 5K0I ; 1.3 ; mpges1 bound to an inhibitor 5T27 ; 2.6 ; mPI3Kd IN COMPLEX WITH 5d 5T2B ; 2.3 ; mPI3Kd IN COMPLEX WITH 5e 5T28 ; 2.8 ; mPI3Kd IN COMPLEX WITH 5k 5T2G ; 2.55 ; mPI3Kd IN COMPLEX WITH 7i 5T2D ; 2.9 ; mPI3Kd IN COMPLEX WITH 7j 5T2I ; 2.3 ; mPI3Kd IN COMPLEX WITH 7k 5T2L ; 2.55 ; mPI3Kd IN COMPLEX WITH 7l 5T2M ; 2.8 ; mPI3Kd IN COMPLEX WITH 7m 7OIJ ; 1.8 ; mPI3Kd in complex with an inhibitor 6FTN ; 2.0 ; mPI3Kd IN COMPLEX WITH AZ2 6GY0 ; 2.55 ; mPI3Kd IN COMPLEX WITH AZ3 7OI4 ; 1.8 ; mPI3Kd in complex with compound 12 7OIL ; 1.95 ; mPI3Kd in complex with compound 58 7OIS ; 2.3 ; mPI3Kd in complex with compound 7 5NCY ; 1.9 ; mPI3Kd IN COMPLEX WITH inh1 5NCZ ; 1.94 ; mPI3Kd IN COMPLEX WITH inh1 2QLG ; 1.8 ; mPlum 2QLI ; 1.34 ; mPlum E16Q mutant 2QLH ; 1.9 ; mPlum I65L mutant 4H3L ; 1.65 ; mPlum-E16P 3NF0 ; 1.75 ; mPlum-TTN 4H3N ; 1.75 ; mPlumAYC 4H3M ; 2.0 ; mPlumAYC-E16A 6B9S ; 2.373 ; MPnS crystallized in the absence of substrate 4TOZ ; 1.5 ; MppA Periplasmic Murein Tripeptide Binding Protein, Unliganded Open Form 8YA5 ; 2.72 ; Mpro from SARS-CoV-2 8S9Z ; 1.6 ; Mpro inhibitors of SARS-CoV-2 8AIV ; 2.6 ; Mpro of SARS COV-2 in complex with the MG-100 inhibitor 8AIQ ; 2.19 ; Mpro of SARS COV-2 in complex with the MG-87 inhibitor 8AIU ; 1.997 ; Mpro of SARS COV-2 in complex with the MG-97 inhibitor 8AJ0 ; 2.519 ; Mpro of SARS COV-2 in complex with the RK-90 inhibitor 8AIZ ; 1.992 ; Mpro of SARS-CoV-2 in complex with the RK-68 inhibitor 4CV8 ; 3.0 ; MPS1 kinase with 3-aminopyridin-2-one inhibitors 4CV9 ; 2.5 ; MPS1 kinase with 3-aminopyridin-2-one inhibitors 4CVA ; 2.5 ; MPS1 kinase with 3-aminopyridin-2-one inhibitors 6IGW ; 1.979 ; MPZL1 mutant - S86G, V145G, Q146K,P147T,G148S 6IGT ; 2.404 ; MPZL1 mutant - V145G, Q146K, P147T and G148S 4UDB ; 2.36 ; MR in complex with desisobutyrylciclesonide 4UDA ; 2.03 ; MR in complex with dexamethasone 5G37 ; 2.5 ; MR structure of the binary mosquito larvicide BinAB at pH 5 5JNQ ; 2.6 ; MraY tunicamycin complex 4UAK ; 1.73 ; MRCK beta in complex with ADP 5OTE ; 1.68 ; MRCK beta in complex with BDP-00008900 5OTF ; 2.0 ; MRCK beta in complex with BDP-00009066 4UAL ; 1.71 ; MRCK beta in complex with BDP00005290 3TKU ; 2.15 ; MRCK beta in complex with fasudil 3QFV ; 2.65 ; MRCK beta in complex with TPCA-1 8X79 ; 2.41 ; MRE-269 bound Prostacyclin Receptor G protein complex 4HD0 ; 2.3 ; Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair 6ASC ; 2.15 ; Mre11 dimer in complex with Endonuclease inhibitor PFM04 6X1Y ; 2.35 ; Mre11 dimer in complex with small molecule modulator PFMI 6X1Z ; 1.9 ; Mre11 dimer in complex with small molecule modulator PFMJ 3QKR ; 3.4 ; Mre11 Rad50 binding domain bound to Rad50 3QKS ; 2.1 ; Mre11 Rad50 binding domain bound to Rad50 3QKU ; 3.3 ; Mre11 Rad50 binding domain in complex with Rad50 and AMP-PNP 1JCE ; 2.1 ; MREB FROM THERMOTOGA MARITIMA 1JCG ; 3.1 ; MREB FROM THERMOTOGA MARITIMA, AMPPNP 1JCF ; 2.1 ; MREB FROM THERMOTOGA MARITIMA, TRIGONAL 6ZLV ; 3.5 ; MreC 2J5U ; 2.5 ; MreC Lysteria monocytogenes 7S4A ; 2.693 ; MRG15 complex with PALB2 peptide 2LVX ; ; MRH domain of the Glucosidase II beta subunit from S. pombe 5EJL ; 2.3 ; MrkH, A novel c-di-GMP dependence transcription regulatory factor. 8G61 ; 2.94 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (AC state) 8GLP ; 1.67 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (Consensus LSU focused refined structure) 8G60 ; 2.54 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (CR state) 8G6J ; 2.8 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (GA state 2) 8G5Z ; 2.64 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (GA state) 8G5Y ; 2.29 ; mRNA decoding in human is kinetically and structurally distinct from bacteria (IC state) 7BXY ; 1.98 ; mRNA interferase from Bacillus cereus 7DNT ; 2.5 ; mRNA-decapping enzyme g5Rp 7DNU ; 2.245 ; mRNA-decapping enzyme g5Rp with inhibitor insp6 complex 3NEZ ; 1.7 ; mRojoA 3NED ; 0.95 ; mRouge 1P3Y ; 2.54 ; MrsD from Bacillus sp. HIL-Y85/54728 7Q6B ; 1.8 ; mRubyFT/S148I, a mutant of blue-to-red fluorescent timer in its blue state 2LQO ; ; Mrx1 reduced 2BNY ; 3.0 ; MS2 (N87A mutant) - RNA hairpin complex 2BS1 ; 2.8 ; MS2 (N87AE89K mutant) - Qbeta RNA hairpin complex 2BQ5 ; 2.91 ; MS2 (N87AE89K mutant) - RNA hairpin complex 2BS0 ; 2.45 ; MS2 (N87AE89K mutant) - Variant Qbeta RNA hairpin complex 1ZDH ; 2.7 ; MS2 COAT PROTEIN/RNA COMPLEX 5MSF ; 2.8 ; MS2 PROTEIN CAPSID/RNA COMPLEX 7MSF ; 2.8 ; MS2 PROTEIN CAPSID/RNA COMPLEX 2B2G ; 3.02 ; MS2 Wild-type RNA stemloop complexed with an N87S mutant MS2 capsid 2C4Q ; 2.38 ; MS2-RNA HAIRPIN (2ONE -5) COMPLEX 2C4Z ; 2.6 ; MS2-RNA HAIRPIN (2SU -5-6) COMPLEX 2C4Y ; 2.68 ; MS2-RNA HAIRPIN (2THIOURACIL-5) COMPLEX 2IZ9 ; 2.85 ; MS2-RNA HAIRPIN (4ONE -5) COMPLEX 2BU1 ; 2.2 ; MS2-RNA HAIRPIN (5BRU -5) COMPLEX 2C50 ; 2.65 ; MS2-RNA HAIRPIN (A -5) COMPLEX 2IZM ; 2.7 ; MS2-RNA HAIRPIN (C-10) COMPLEX 2IZ8 ; 3.3 ; MS2-RNA HAIRPIN (C-7) COMPLEX 2C51 ; 2.8 ; MS2-RNA HAIRPIN (G -5) COMPLEX 2IZN ; 2.56 ; MS2-RNA HAIRPIN (G-10) COMPLEX 7RY2 ; 2.05 ; mSandy2 5AJI ; 2.99 ; MscS D67R1 high resolution 6PWO ; 3.4 ; MscS DDM 6PWP ; 4.1 ; MscS Nanodisc 6PWN ; 3.1 ; MscS Nanodisc with N-terminal His-Tag 6JUL ; 2.3 ; MsDpo4-DNA complex 1 6JUM ; 1.78 ; MsDpo4-DNA complex 2 6JUN ; 2.51 ; MsDpo4-DNA complex 3 6JUO ; 2.16 ; MsDpo4-DNA complex 4 6JUR ; 2.06 ; MsDpo4-DNA complex 5 6JUS ; 2.5 ; MsDpo4-DNA complex 6 5GL6 ; 2.2 ; Msmeg rimP 6XRI ; 2.37 ; MSMEG_2027 domain-swapped dimer 3H96 ; 2.0 ; Msmeg_3358 F420 Reductase 3F7E ; 1.23 ; MSMEG_3380 F420 Reductase 8IIQ ; 2.1 ; MsmUdgX H109S/E52N double mutant 8IIR ; 2.28 ; MsmUdgX H109S/Q53A double mutant 8IIS ; 1.61 ; MsmUdgX H109S/R184A double mutant 6PE0 ; 3.5 ; Msp1 (E214Q)-substrate complex 6PDW ; 3.1 ; Msp1-substrate complex in closed conformation 6PDY ; 3.7 ; Msp1-substrate complex in open conformation 4F0Q ; 2.046 ; MspJI Restriction Endonuclease - P21 Form 4F0P ; 2.79 ; MspJI Restriction Endonuclease - P31 Form 4R28 ; 3.055 ; MspJI Restriction Endonuclease in Complex with 27-mer Oligonucleotide 6Q9V ; 1.85 ; MSRB3 6QA0 ; 1.709 ; MSRB3 - AA 1-137 2ZRO ; 2.9 ; MsRecA ADP form IV 2ZRP ; 3.3 ; MsRecA dATP form II' 2ZRM ; 2.8 ; MsRecA dATP form IV 2ZRN ; 3.3 ; MsRecA Form IV 2ZR7 ; 3.6 ; Msreca native form II' 2ZRI ; 3.3 ; MsRecA Q196A ADP form IV 2ZRJ ; 2.6 ; MsRecA Q196A ATPgS form IV 2ZRL ; 3.7 ; MsRecA Q196A dATP FORM II' 2ZRK ; 3.2 ; MsRecA Q196A dATP form IV 2ZRH ; 3.2 ; MsRecA Q196A form IV 2ZRA ; 3.1 ; MsRecA Q196E ATPgS 2ZR9 ; 2.5 ; MsRecA Q196E dATP form IV 2ZRB ; 3.25 ; MsRecA Q196E Form II' 2ZRD ; 3.1 ; MsRecA Q196N ADP form IV 2ZRE ; 2.9 ; MsRecA Q196N ATPgS form IV 2ZRG ; 3.5 ; MsRecA Q196N dATP form II' 2ZRF ; 3.0 ; MsRecA Q196N dATP form IV 2ZRC ; 3.1 ; MsRecA Q196N Form IV 1UBE ; 3.3 ; MsRecA-ADP Complex 2OEP ; 3.1 ; MSrecA-ADP-complex 2ODW ; 3.3 ; MSrecA-ATP-GAMA-S complex 1UBF ; 3.5 ; MsREcA-ATPgS complex 1UBG ; 3.5 ; MsREcA-dATP complex 2G88 ; 3.2 ; MSRECA-dATP COMPLEX 2ODN ; 3.1 ; MSRECA-dATP complex 2OFO ; 3.16 ; MSrecA-native 2OE2 ; 3.45 ; MSrecA-native-low humidity 95% 2OES ; 3.5 ; MSrecA-native-SSB 2ZR0 ; 3.0 ; MSRECA-Q196E mutant 4DB4 ; 3.599 ; Mss116p DEAD-box helicase domain 2 bound to a chimaeric RNA-DNA duplex 4DB2 ; 3.157 ; Mss116p DEAD-box helicase domain 2 bound to an RNA duplex 4QNA ; 1.849 ; MST3 IN COMPLEX WITH 2-(4,6-Diamino-1,3,5-triazin-2-yl)phenol 4QML ; 1.882 ; MST3 in complex with AMP-PNP 4QMM ; 1.852 ; MST3 IN COMPLEX WITH AT-9283, 4-[(2-{4-[(CYCLOPROPYLCARBAMOYL)AMINO]-1H-PYRAZOL-3-YL}-1H-BENZIMIDAZOL-6-YL)METHYL]MORPHOLIN-4-IUM 4QMN ; 2.091 ; MST3 in complex with BOSUTINIB 4QMP ; 2.0 ; MST3 IN COMPLEX WITH CDK1/2 INHIBITOR III, 5-AMINO-3-{[4-(AMINOSULFONYL)PHENYL]AMINO}-N-(2,6-DIFLUOROPHENYL)-1H-1,2,4-TRIAZOLE-1-CARBOTHIOAMIDE 7B30 ; 2.1 ; MST3 in complex with compound G-5555 7B34 ; 2.1 ; MST3 in complex with compound MRIA12 7B35 ; 2.40005 ; MST3 in complex with compound MRIA13 7B31 ; 1.8 ; MST3 in complex with compound MRIA9 4QMQ ; 1.769 ; MST3 in complex with CP-673451 4QO9 ; 2.2 ; MST3 IN COMPLEX WITH Danusertib 4QMS ; 1.883 ; MST3 in complex with DASATINIB 4QMT ; 1.5 ; MST3 in complex with HESPERADIN 4QMO ; 1.898 ; MST3 IN COMPLEX WITH Imidazolo-oxindole PKR inhibitor C16 4QMU ; 1.546 ; MST3 IN COMPLEX WITH JNJ-7706621, 4-({5-AMINO-1-[(2,6-DIFLUOROPHENYL)CARBONYL]-1H-1,2,4-TRIAZOL-3-YL}AMINO)BENZENESULFONAMIDE 7B33 ; 1.9 ; MST3 in complex with MRIA11 7B32 ; 1.75 ; MST3 in complex with MRIA7 4QMV ; 2.4 ; MST3 IN COMPLEX WITH PF-03814735, N-{2-[(1S,4R)-6-{[4-(CYCLOBUTYLAMINO)-5-(TRIFLUOROMETHYL)PYRIMIDIN-2-YL]AMINO}-1,2,3,4-TETRAHYDRO-1,4-EPIMINONAPHTHALEN-9-YL]-2-OXOETHYL}ACETAMIDE 4QMW ; 1.6 ; MST3 IN COMPLEX WITH PP-121, 1-CYCLOPENTYL-3-(1H-PYRROLO[2,3-B]PYRIDIN-5-YL)-1H-PYRAZOLO[3,4-D]PYRIMIDIN-4-AMINE 4QMX ; 1.882 ; MST3 in complex with SARACATINIB 4QMY ; 1.883 ; MST3 IN COMPLEX WITH STAUROSPORINE 4QMZ ; 1.88 ; MST3 IN COMPLEX WITH SUNITINIB 7B36 ; 2.10681 ; MST4 in complex with compound G-5555 4KC0 ; 2.2 ; mSTING 4KBY ; 2.36 ; mSTING/c-di-GMP 1IG7 ; 2.2 ; Msx-1 Homeodomain/DNA Complex Structure 6SGB ; 3.3 ; mt-SSU assemblosome of Trypanosoma brucei 7AOR ; 3.5 ; mt-SSU from Trypanosoma cruzi in complex with mt-IF-3. 1L3I ; 1.95 ; MT0146, THE PRECORRIN-6Y METHYLTRANSFERASE (CBIT) HOMOLOG FROM M. THERMOAUTOTROPHICUM, ADOHCY BINARY COMPLEX 1L3B ; 2.65 ; MT0146, THE PRECORRIN-6Y METHYLTRANSFERASE (CBIT) HOMOLOG FROM M. THERMOAUTOTROPHICUM, C2 SPACEGROUP W/ LONG CELL 1L3C ; 2.31 ; MT0146, THE PRECORRIN-6Y METHYLTRANSFERASE (CBIT) HOMOLOG FROM M. THERMOAUTOTROPHICUM, C2 SPACEGROUP WITH SHORT CELL 1KXZ ; 2.7 ; MT0146, the Precorrin-6y methyltransferase (CbiT) homolog from M. Thermoautotrophicum, P1 spacegroup 6CM1 ; ; MT1-MMP HPX Domain with Blade 2 Loop Bound to Nanodiscs 6CLZ ; ; MT1-MMP HPX domain with Blade 4 Loop Bound to Nanodiscs 4P3C ; 1.943 ; MT1-MMP:Fab complex (Form I) 4P3D ; 1.949 ; MT1-MMP:Fab complex (Form II) 7VGZ ; 3.3 ; MT1-remalteon-Gi complex 7VH0 ; 3.46 ; MT2-remalteon-Gi complex 1IHN ; 2.2 ; MT938 7YUX ; 3.8 ; MtaLon-ADP for the spiral oligomers of hexamer 7YUW ; 3.6 ; MtaLon-ADP for the spiral oligomers of pentamer 7YUV ; 3.8 ; MtaLon-ADP for the spiral oligomers of tetramer 7YUU ; 5.8 ; MtaLon-ADP for the spiral oligomers of trimer 7YUT ; 4.1 ; MtaLon-Apo for the spiral oligomers of hexamer 7YUP ; 3.7 ; MtaLon-Apo for the spiral oligomers of pentamer 7YUM ; 3.8 ; MtaLon-Apo for the spiral oligomers of tetramer 7YUH ; 3.7 ; MtaLon-Apo for the spiral oligomers of trimer 2JG3 ; 1.9 ; MtaqI with BAZ 7MT2 ; 2.76 ; Mtb 70S initiation complex 7MT7 ; 2.71 ; Mtb 70S with P and E site tRNAs 7MT3 ; 2.8 ; Mtb 70S with P/E tRNA 7MSC ; 2.97 ; Mtb 70SIC in complex with MtbEttA at Pre_R0 state 7MSH ; 3.23 ; Mtb 70SIC in complex with MtbEttA at Pre_R1 state 7MSM ; 2.79 ; Mtb 70SIC in complex with MtbEttA at Trans_R0 state 7MSZ ; 3.1 ; Mtb 70SIC in complex with MtbEttA at Trans_R1 state 4O1G ; 1.5 ; MTB adenosine kinase in complex with gamma-Thio-ATP 6ED3 ; 6.3 ; Mtb ClpB in complex with AMPPNP 6DJU ; 3.8 ; Mtb ClpB in complex with ATPgammaS and casein, Conformer 1 6DJV ; 3.9 ; Mtb ClpB in complex with ATPgammaS and casein, Conformer 2 4BQR ; 2.05 ; Mtb InhA complex with Methyl-thiazole compound 11 4BQP ; 1.89 ; Mtb InhA complex with Methyl-thiazole compound 7 4D0R ; 2.75 ; Mtb InhA complex with Pyradizinone compound 1 4D0S ; 1.64 ; Mtb InhA complex with Pyradizinone compound 14 6C04 ; 3.27 ; Mtb RNAP Holo/RbpA/double fork DNA -closed clamp 6BZO ; 3.38 ; Mtb RNAP Holo/RbpA/Fidaxomicin/upstream fork DNA 5W95 ; 1.723 ; Mtb Rv3802c with PEG bound 5NQ5 ; 2.85 ; Mtb TMK crystal structure in complex with compound 1 6YT1 ; 1.9 ; Mtb TMK crystal structure in complex with compound 26 5NRN ; 2.2 ; Mtb TMK crystal structure in complex with compound 3 5NRQ ; 2.1 ; Mtb TMK crystal structure in complex with compound 33 5NR7 ; 2.35 ; Mtb TMK crystal structure in complex with compound 43 4UNR ; 1.98 ; Mtb TMK in complex with compound 23 4UNP ; 2.3 ; Mtb TMK in complex with compound 34 4UNQ ; 2.3 ; Mtb TMK in complex with compound 36 4UNS ; 2.18 ; Mtb TMK in complex with compound 40 4UNN ; 2.5 ; Mtb TMK in complex with compound 8 7MU0 ; 2.9 ; MtbEttA in the ADP bound state 6QSL ; 1.6 ; mTFP* closed conformation: I197C-Y200H-Y204H mutant for enhanced metal binding 6QSO ; 1.8 ; mTFP* closed conformation: I197E-Y200H-Y204H mutant for enhanced metal binding 6QSM ; 1.65 ; mTFP* open conformation: I197C-Y200H-Y204H mutant for enhanced metal binding 4Q9X ; 1.9 ; mTFP* PdCl2 soak 4Q9W ; 1.0 ; mTFP*: a robust and versatile host protein at 1.00 A resolution 6FP8 ; 1.855 ; mTFP1/DARPin 1238_E11 complex in space group C2 6FP7 ; 1.576 ; mTFP1/DARPin 1238_E11 complex in space group P6522 3G1K ; 3.1 ; Mth0212 (WT) crystallized in a monoclinic space group 3G3C ; 3.04 ; Mth0212 (WT) in complex with a 6bp dsDNA containing a single one nucleotide long 3'-overhang 3G4T ; 2.64 ; Mth0212 (WT) in complex with a 7bp dsDNA 3G00 ; 1.74 ; Mth0212 in complex with a 9bp blunt end dsDNA at 1.7 Angstrom 3G2C ; 2.3 ; Mth0212 in complex with a short ssDNA (CGTA) 3G3Y ; 2.5 ; Mth0212 in complex with ssDNA in space group P32 3GA6 ; 1.898 ; Mth0212 in complex with two DNA helices 3G0A ; 2.6 ; Mth0212 with two bound manganese ions 5ANU ; 1.8 ; MTH1 in complex with compound 15 5ANV ; 1.16 ; MTH1 in complex with compound 15 5ANW ; 1.37 ; MTH1 in complex with compound 24 6US4 ; 1.95033 ; MTH1 in complex with compound 32 6US3 ; 1.47029 ; MTH1 in complex with compound 4 6US2 ; 1.80013 ; MTH1 in complex with compound 5 6EQ6 ; 2.002 ; MTH1 in complex with fragment 1 6EQ7 ; 1.5 ; MTH1 in complex with fragment 11 6EQ5 ; 1.801 ; MTH1 in complex with fragment 4 6EQ2 ; 1.802 ; MTH1 in complex with fragment 6 6EQ4 ; 1.4 ; MTH1 in complex with fragment 8 6EQ3 ; 1.798 ; MTH1 in complex with fragment 9 3WHW ; 2.701 ; MTH1 in complex with Ruthenium-based inhibitor 8A07 ; 2.19 ; MTH1 in complex with TH001969 8A0T ; 1.9 ; MTH1 in complex with TH012532 8A34 ; 1.9 ; MTH1 in complex with TH013071 8A3A ; 1.6 ; MTH1 in complex with TH013074 8A0S ; 1.4 ; MTH1 in complex with TH013350 5FSI ; 1.63 ; MTH1 substrate recognition: Complex with 8-oxo-dGTP. 5FSK ; 1.56 ; MTH1 substrate recognition: Complex with 8-oxo-dGTP. 5FSN ; 1.69 ; MTH1 substrate recognition: Complex with a aminomethylpyrimidinyl oxypropanol. 5FSL ; 1.24 ; MTH1 substrate recognition: Complex with a methylaminopurinone 5FSO ; 1.67 ; MTH1 substrate recognition: Complex with a methylaminopyrimidinedione. 5FSM ; 1.67 ; MTH1 substrate recognition: Complex with a methylbenzimidazolyl acetamide. 1PM3 ; 3.15 ; MTH1859 8QA5 ; 3.14 ; MTHFR + SAH asymmetric dis-inhibited state 8QA4 ; 2.8 ; MTHFR + SAH symmetric dis-inhibited state 8QA6 ; 2.91 ; MTHFR + SAM inhibited state 6PEY ; 2.88 ; MTHFR with mutation Asp120Ala 3R65 ; 1.8 ; MthK channel pore E92Q mutant 3OUS ; 1.75 ; MthK channel pore T59A mutant 3RBZ ; 3.4 ; MthK channel, Ca2+-bound 6U6D ; 3.6 ; MthK closed state with EDTA 6UWN ; 3.5 ; MthK N-terminal truncation RCK domain state 1 bound with calcium 6UX4 ; 3.5 ; MthK N-terminal truncation RCK domain state 2 bound with calcium 6UX7 ; 6.7 ; MthK N-terminal truncation state 1 bound with calcium 6UXA ; 4.5 ; MthK N-terminal truncation state 2 bound with calcium 6UXB ; 4.9 ; MthK N-terminal truncation state 3 bound with calcium 4HZ3 ; 1.7 ; MthK pore crystallized in presence of TBSb 3RBX ; 2.8 ; MthK RCK domain D184N mutant, Ca2+-bound 8DJB ; 3.18 ; MthK-A90L mutant in closed state with 0 Ca2+ 8G7J ; 3.4 ; mtHsp60 V72I apo 8G7K ; 3.8 ; mtHsp60 V72I apo focus 4AOM ; 1.939 ; MTIP and MyoA complex 4JSV ; 3.5 ; mTOR kinase structure, mechanism and regulation. 6BCX ; 3.23 ; mTORC1 structure refined to 3.0 angstroms 4JT5 ; 3.45 ; mTORdeltaN-mLST8-pp242 complex 7JU3 ; 2.7 ; MtrR bound to the mtrCDE operator from Neisseria gonorrhoeae 7JNP ; 2.6 ; MtrR bound to the rpoH operator from Neisseria gonorrhoeae 8FW0 ; 2.37 ; MtrR from Neisseria gonorrhoeae bound to beta-Estradiol 8SSH ; 3.2 ; MtrR from Neisseria gonorrhoeae bound to Ethinyl Estradiol 8FW8 ; 2.31 ; MtrR from Neisseria gonorrhoeae bound to Progesterone 8FW3 ; 2.22 ; MtrR from Neisseria gonorrhoeae bound to Testosterone 2ZTC ; 2.8 ; MtRuvA Form II 2ZTD ; 2.4 ; MtRuvA Form III 2ZTE ; 3.2 ; MtRuvA Form IV 2XZ6 ; 3.137 ; MTSET-modified Y53C mutant of Aplysia AChBP 6PGY ; 2.0 ; MTSL labelled T4 lysozyme pseudo-wild type K65C mutant 6PGZ ; 2.0 ; MTSL labelled T4 lysozyme pseudo-wild type V75C mutant 2XGA ; 2.3 ; MTSL spin-labelled Shigella Flexneri Spa15 4AGE ; 4.84 ; MTSSL spin labeled D67C mutant of MscS in the open form 4AGF ; 4.7 ; MTSSL spin labeled L124C mutant of MscS in the open form 6YLO ; 1.7 ; mTurquoise2 - Directionality of Optical Properties of Fluorescent Proteins 6YLN ; 1.85 ; mTurquoise2 SG P212121 - Directional optical properties of fluorescent proteins 6DDE ; 3.5 ; Mu Opioid Receptor-Gi Protein Complex 6DDF ; 3.5 ; Mu Opioid Receptor-Gi Protein Complex 5YDN ; 1.6 ; Mu pahge neck subunit 8JU3 ; 2.0 ; Mu phage tail fiber 1GIB ; ; MU-CONOTOXIN GIIIB, NMR 7SAW ; ; Mu-conotoxin KIIIA isomer 2 1H6E ; 3.6 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 ADAPTOR (SECOND DOMAIN), COMPLEXED WITH CTLA-4 INTERNALIZATION PEPTIDE TTGVYVKMPPT 1BW8 ; 2.65 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 ADAPTOR (SECOND DOMAIN), COMPLEXED WITH EGFR INTERNALIZATION PEPTIDE FYRALM 2PR9 ; 2.51 ; Mu2 adaptin subunit (AP50) of AP2 adaptor (second domain), complexed with GABAA receptor-gamma2 subunit-derived internalization peptide DEEYGYECL 2BP5 ; 2.8 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 ADAPTOR (SECOND DOMAIN), COMPLEXED WITH NON-CANONICAL INTERNALIZATION PEPTIDE VEDYEQGLSG 1HES ; 3.0 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 ADAPTOR (SECOND DOMAIN), COMPLEXED WITH P-selectin INTERNALIZATION PEPTIDE SHLGTYGVFTNAA 1BXX ; 2.7 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 ADAPTOR (SECOND DOMAIN), COMPLEXED WITH TGN38 INTERNALIZATION PEPTIDE DYQRLN 1I31 ; 2.5 ; MU2 ADAPTIN SUBUNIT (AP50) OF AP2 CLATHRIN ADAPTOR, COMPLEXED WITH EGFR INTERNALIZATION PEPTIDE FYRALM AT 2.5 A RESOLUTION 5FPI ; 2.77 ; Mu2 adaptin subunit of the AP2 adaptor (C-terminal domain) complexed with Integrin alpha4 internalisation peptide QYKSILQE 5WRK ; 2.62 ; Mu2 subunit of the clathrin adaptor complex AP2 in complex with IRS-1 Y608 peptide 5WRL ; 3.095 ; Mu2 subunit of the clathrin adaptor complex AP2 in complex with IRS-1 Y628 peptide 5WRM ; 2.597 ; Mu2 subunit of the clathrin adaptor complex AP2 in complex with IRS-1 Y658 peptide 4BS1 ; 18.0 ; MuB is an AAAplus ATPase that forms helical filaments to control target selection for DNA transposition 4BT0 ; 17.0 ; MuB is an AAAplus ATPase that forms helical filaments to control target selection for DNA transposition 4BT1 ; 16.0 ; MuB is an AAAplus ATPase that forms helical filaments to control target selection for DNA transposition 6TM6 ; 1.63 ; MUC2 CysD1 domain 8CK2 ; 1.5 ; MUC2 CysD1 G1352S 7PRL ; 2.48 ; MUC2 D1 with Cu(II) 7POV ; 3.8 ; MUC2 Tubules of D1D2D3 domains 7PP6 ; 3.4 ; MUC2 Tubules of D1D2D3 domains 8OV0 ; 1.7 ; MUC5AC CysD7 amino acids 3518-3626 8OER ; 3.0 ; MUC5B amino acids 26-1435 8OES ; 3.0 ; MUC5B amino acids 26-1435 Three beads 8VRS ; 2.47 ; Mucin 16 peptide fused to MBP in complex with 4H11-scFv antibody 6RBF ; 2.704 ; Mucin 2 D3 domain 2LHV ; ; Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 2MUC ; 2.3 ; MUCONATE CYCLOISOMERASE VARIANT F329I 3MUC ; 2.3 ; MUCONATE CYCLOISOMERASE VARIANT I54V 1BKH ; 2.1 ; MUCONATE LACTONIZING ENZYME FROM PSEUDOMONAS PUTIDA 6VCT ; 1.94 ; Mucor circinelloides FKBP12 protein bound with APX879 in C2221 space group 6VRX ; 2.54 ; Mucor circinelloides FKBP12 protein bound with FK506 in P3221 space group 4DZB ; 1.7 ; Mucosal-associated invariant T cell receptor, Valpha7.2Jalpha33-Vbeta2 7XFS ; 1.06 ; MucP PDZ1 domain 7XFT ; 1.21 ; MucP PDZ2 domain 7XFU ; 1.53 ; MucP PDZ2 domain with peptide GPAVLA 6H2X ; 2.6 ; MukB coiled-coil elbow from E. coli 6M2D ; 1.795 ; MUL1-RING domain 5MJP ; 2.11 ; Multi-bunch pink beam serial crystallography: Phycocyanin (One chip) 1IH6 ; 1.45 ; Multi-Conformation Crystal Structure of GGBr5CGCC 1IH4 ; 1.9 ; Multi-Conformation Crystal Structure of GGm5CGCC 1IH3 ; 2.4 ; Multi-conformation crystal structure of GGm5CGm5CC 6UCW ; 1.25 ; Multi-conformer model of Apo Ketosteroid Isomerase from Pseudomonas Putida (pKSI) at 250 K 7RXK ; 1.1 ; Multi-conformer model of Apo Ketosteroid Isomerase Y32F/Y57F mutant from Pseudomonas Putida (pKSI) at 250 K 7RXF ; 1.16 ; Multi-conformer model of Apo Ketosteroid Isomerase Y57F mutant from Pseudomonas Putida (pKSI) at 250 K 6UCY ; 1.15 ; Multi-conformer model of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) bound to 4-Androstenedione at 250 K 6UCN ; 1.32 ; Multi-conformer model of Ketosteroid Isomerase from Pseudomonas Putida (pKSI) bound to Equilenin at 250 K 7RY4 ; 1.11 ; Multi-conformer model of Ketosteroid Isomerase Y57F/D40N mutant from Pseudomonas Putida (pKSI) bound to a transition state analog at 250 K 3BBG ; ; MULTI-CONFORMER STRUCTURE OF RAGWEED POLLEN ALLERGEN FROM AMBROSIA TRIFIDA V, NMR, 2 STRUCTURES 7NSN ; 2.29 ; Multi-domain GH92 alpha-1,2-mannosidase from Neobacillus novalis: mannoimidazole complex 4IQR ; 2.9 ; Multi-Domain Organization of the HNF4alpha Nuclear Receptor Complex on DNA 8GJJ ; 3.08 ; Multi-drug efflux pump RE-CmeB Apo form 8GJK ; 3.16 ; Multi-drug efflux pump RE-CmeB bound with ampicillin 8GK4 ; 3.12 ; Multi-drug efflux pump RE-CmeB bound with Chloramphenicol 8GJL ; 3.44 ; multi-drug efflux pump RE-CmeB bound with Ciprofloxacin 8GK0 ; 3.44 ; Multi-drug efflux pump RE-CmeB bound with Erythromycin 5NG5 ; 6.5 ; multi-drug efflux; membrane transport; RND superfamily; Drug resistance 5V5S ; 6.5 ; multi-drug efflux; membrane transport; RND superfamily; Drug resistance 4GZF ; 2.05 ; Multi-drug resistant HIV-1 protease 769 variant with reduced LrF peptide 3PR7 ; 2.94 ; Multi-functional and mechanosensitive receptor binding activity of the Moraxella catarrhalis adhesin UspA1 6WEB ; 2.1 ; Multi-Hit SFX using MHz XFEL sources 6WEC ; 2.1 ; Multi-Hit SFX using MHz XFEL sources 7TUM ; 3.202 ; Multi-Hit SFX using MHz XFEL sources- first hit 5F4N ; 1.91 ; Multi-parameter lead optimization to give an oral CHK1 inhibitor clinical candidate: (R)-5-((4-((morpholin-2-ylmethyl)amino)-5-(trifluoromethyl)pyridin-2-yl)amino)pyrazine-2-carbonitrile (CCT245737) 4FA8 ; 2.2 ; Multi-pronged modulation of cytokine signaling 3M6U ; 1.402 ; Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus in space group 43 3M6V ; 1.82 ; Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus in space group P2 in complex with S-Adenosyl-L-Methionine 3M6X ; 1.676 ; Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus in space group P21212 3M6W ; 1.3 ; Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus in space group P21212 in complex with S-Adenosyl-L-Methionine 8FIH ; 2.2 ; Multi-state design of two-state switchable hinge proteins 8FIN ; 2.3 ; Multi-state design of two-state switchable hinge proteins 8FIQ ; 2.66 ; Multi-state design of two-state switchable hinge proteins 8FIT ; 2.75 ; Multi-state design of two-state switchable hinge proteins 8FVT ; 3.07 ; Multi-state design of two-state switchable hinge proteins 7EN4 ; ; Multi-state structure determination and dynamics analysis elucidate a new ubiquitin-recognition mechanism of yeast ubiquitin C-terminal hydrolase. 6W6P ; 2.9 ; MultiBody Refinement of 70S Ribosome from Enterococcus faecalis 6T2D ; 1.8 ; Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions 6T2E ; 2.4 ; Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions 6T2F ; 2.09 ; Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions 4YUP ; 1.75 ; Multiconformer fixed-target X-ray free electron (XFEL) model of CypA at 273 K 4PSS ; 0.849 ; Multiconformer model for Escherichia coli dihydrofolate reductase at 100K 4PST ; 1.05 ; Multiconformer model for Escherichia coli dihydrofolate reductase at 277 K 6BAI ; 1.95 ; Multiconformer model of apo K197C PTP1B at 100 K 6B90 ; 1.95 ; Multiconformer model of apo WT PTP1B with glycerol at 100 K (ALTERNATIVE REFINEMENT OF PDB 1SUG showing conformational heterogeneity) 6B8E ; 1.82 ; Multiconformer model of apo WT PTP1B with glycerol at 180 K 6B8T ; 1.85 ; Multiconformer model of apo WT PTP1B with glycerol at 240 K 6B8X ; 1.74 ; Multiconformer model of apo WT PTP1B with glycerol at 278 K 6B95 ; 1.95 ; Multiconformer model of K197C PTP1B tethered to compound 2 at 100 K 6B8Z ; 1.8 ; Multiconformer model of WT PTP1B with BB3 at 273 K 4YUG ; 1.48 ; Multiconformer synchrotron model of CypA at 100 K 4YUH ; 1.34 ; Multiconformer synchrotron model of CypA at 150 K 4YUI ; 1.38 ; Multiconformer synchrotron model of CypA at 180 K 4YUJ ; 1.42 ; Multiconformer synchrotron model of CypA at 240 K 4YUK ; 1.48 ; Multiconformer synchrotron model of CypA at 260 K 4YUL ; 1.42 ; Multiconformer synchrotron model of CypA at 280 K 4YUM ; 1.5 ; Multiconformer synchrotron model of CypA at 300 K 4YUN ; 1.58 ; Multiconformer synchrotron model of CypA at 310 K 4EF3 ; 1.9 ; Multicopper Oxidase CueO (Citrate buffer) 4NER ; 1.6 ; Multicopper Oxidase CueO (data1) 4E9Q ; 1.3 ; Multicopper Oxidase CueO (data2) 4E9R ; 1.3 ; Multicopper Oxidase CueO (data4) 4E9S ; 1.06 ; Multicopper Oxidase CueO (data5) 4E9T ; 1.3 ; Multicopper Oxidase CueO (data6) 3UAA ; 1.7 ; Multicopper Oxidase CueO mutant C500SE506Q (data1) 3UAB ; 1.3 ; Multicopper Oxidase CueO mutant C500SE506Q (data2) 3UAC ; 1.3 ; Multicopper Oxidase CueO mutant C500SE506Q (data4) 3UAD ; 1.1 ; Multicopper Oxidase CueO mutant C500SE506Q (data5) 3UAE ; 1.3 ; Multicopper Oxidase CueO mutant C500SE506Q (data6) 4HAK ; 1.4 ; Multicopper Oxidase CueO mutant E506A 4HAL ; 1.4 ; Multicopper Oxidase CueO mutant E506I 3ZX1 ; 1.95 ; Multicopper oxidase from Campylobacter jejuni: a metallo-oxidase 4E9V ; 1.8 ; Multicopper Oxidase mgLAC (data1) 4E9W ; 1.45 ; Multicopper Oxidase mgLAC (data2) 4E9X ; 1.14 ; Multicopper Oxidase mgLAC (data3) 4E9Y ; 1.5 ; Multicopper Oxidase mgLAC (data4) 1HTQ ; 2.4 ; Multicopy crystallographic structure of a relaxed glutamine synthetase from Mycobacterium tuberculosis 8RAA ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 1023 fs time delay 8RAB ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 1112 fs time delay 8RAC ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 1174 fs time delay 8RAD ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 1235 fs time delay 8RAE ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 1303 fs time delay 8RA1 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 312 fs time delay 8RA2 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 392 fs time delay 8RA3 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 462 fs time delay 8RA4 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 527 fs time delay 8RA5 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 590 fs time delay 8RA6 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 655 fs time delay 8RA7 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 722 fs time delay 8RA8 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 802 fs time delay 8RA9 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 101 mJ/cm2 laser fluence, 907 fs time delay 8R9L ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 1036 fs time delay 8R9M ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 1143 fs time delay 8R9N ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 1224 fs time delay 8R9P ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 1297 fs time delay 8R9Q ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 1373 fs time delay 8R9C ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 320 fs time delay 8R9D ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 399 fs time delay 8R9E ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 469 fs time delay 8R9F ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 537 fs time delay 8R9G ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 600 fs time delay 8R9H ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 661 fs time delay 8R9I ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 733 fs time delay 8R9J ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 822 fs time delay 8R9K ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 23 mJ/cm2 laser fluence, 922 fs time delay 8R94 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 1001 fs time delay 8R95 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 1401 fs time delay 8R8W ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 254 fs time delay 8R8X ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 327 fs time delay 8R8Y ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 402 fs time delay 8R8Z ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 471 fs time delay 8R90 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 604 fs time delay 8R91 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 627 fs time delay 8R92 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 702 fs time delay 8R93 ; 1.4 ; Multicopy-refined carboxymyoglobin photolysis time series at 5 mJ/cm2 laser fluence, 847 fs time delay 6RVO ; 1.97 ; Multicrystal dataset of thaumatin collected using a multilayer monochromator. 8A9D ; 2.1 ; Multicrystal room temperature structure of Lysozyme collected using a double multilayer monochromator. 6SVA ; 1.92 ; Multicrystal structure of equine Haemoglobin at room temperature using a multilayer monochromator. 8FT4 ; 4.0 ; Multicrystal structure of Na+, leucine-bound LeuT determined at 5 keV 6RZP ; 2.2 ; Multicrystal structure of Proteinase K at room temperature using a multilayer monochromator. 6SEL ; 2.2 ; Multicrystal structure of Thermolysin at room temperature using a multilayer monochromator. 5UQE ; 3.6 ; Multidomain structure of human kidney-type glutaminase(KGA/GLS) 2HYD ; 3.0 ; Multidrug ABC transporter SAV1866 7M4Q ; 2.87 ; Multidrug Efflux pump AdeJ 7M4P ; 2.86 ; Multidrug Efflux pump AdeJ with Eravacycline bound 7RY3 ; 2.91 ; Multidrug Efflux pump AdeJ with TP-6076 bound 7RR6 ; 3.1 ; Multidrug efflux pump subunit AcrB 7RR7 ; 3.05 ; Multidrug efflux pump subunit AcrB 7RR8 ; 3.51 ; Multidrug efflux pump subunit AcrB 6R81 ; 3.9 ; Multidrug resistance transporter BmrA mutant E504A bound with ATP and Mg solved by Cryo-EM 7BG4 ; 4.2 ; Multidrug resistance transporter BmrA mutant E504A bound with ATP, Mg, and Rhodamine 6G solved by Cryo-EM 8IZP ; 3.31 ; Multidrug resistance-associated protein 3 8IZR ; 3.62 ; Multidrug resistance-associated protein 3 1BOW ; 2.7 ; MULTIDRUG-BINDING DOMAIN OF TRANSCRIPTION ACTIVATOR BMRR (APO FORM) 2BOW ; 2.8 ; MULTIDRUG-BINDING DOMAIN OF TRANSCRIPTION ACTIVATOR BMRR IN COMPLEX WITH A LIGAND, TETRAPHENYLPHOSPHONIUM 2JUG ; ; Multienzyme Docking in Hybrid Megasynthetases 4IM4 ; 2.42 ; Multifunctional cellulase, xylanase, mannanase 8JUA ; 2.00001 ; Multifunctional cytochrome P450 enzyme IkaD from Streptomyces sp. ZJ306, in complex with epoxyikarugamycin 8BS7 ; 3.2 ; Multimerisation domain of Borna disease virus 1 8B8A ; 2.75 ; Multimerization domain of borna disease virus 1 phosphoprotein 8B8D ; 2.4 ; multimerization domain of Gaboon Viper Virus 1 8B8B ; 2.15 ; Multimerization domain of Munia virus 1 phosphoprotein 1H09 ; 2.1 ; Multimodular Pneumococcal Cell Wall Endolysin from phage Cp-1 1OBA ; 2.45 ; Multimodular Pneumococcal Cell Wall Endolysin from phage Cp-1 complexed with choline 2HS7 ; ; Multipattern rietveld refinement with protein powder data: An approach to higher resolution 2HS9 ; ; Multipattern Rietveld refinement with protein powder data: An approach to higher resolution 2HSO ; ; Multipattern rietveld refinement with protein powder data: An approach to higher resolution 1BL0 ; 2.3 ; MULTIPLE ANTIBIOTIC RESISTANCE PROTEIN (MARA)/DNA COMPLEX 1JGS ; 2.3 ; Multiple Antibiotic Resistance Repressor, MarR 172D ; 3.0 ; MULTIPLE BINDING MODES OF ANTICANCER DRUG ACTINOMYCIN D: X-RAY, MOLECULAR MODELING, AND SPECTROSCOPIC STUDIES OF D(GAAGCTTC)2-ACTINOMYCIN D COMPLEXES AND ITS HOST DNA 173D ; 3.0 ; MULTIPLE BINDING MODES OF ANTICANCER DRUG ACTINOMYCIN D: X-RAY, MOLECULAR MODELING, AND SPECTROSCOPIC STUDIES OF D(GAAGCTTC)2-ACTINOMYCIN D COMPLEXES AND ITS HOST DNA 3WNR ; 2.008 ; Multiple binding modes of benzyl isothiocyanate inhibitor complexed with Macrophage Migration Inhibitory Factor 3WNT ; 2.074 ; Multiple binding modes of benzyl isothiocyanate inhibitor complexed with Macrophage Migration Inhibitory Factor 4OXK ; 1.8429 ; Multiple binding modes of inhibitor PT155 to the Mycobacterium tuberculosis enoyl-ACP reductase InhA within a tetramer 5APM ; 4.3 ; Multiple capsid-stabilizing protein-RNA and protein-protein interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis 2ULL ; 1.5 ; MULTIPLE CONFORMATION STRUCTURE OF ALPHA-LYTIC PROTEASE AT 120 K 2AIV ; ; Multiple conformations in the ligand-binding site of the yeast nuclear pore targeting domain of NUP116P 4J2I ; 2.98 ; Multiple crystal structures of an all-AT DNA dodecamer stabilized by weak interactions 4HW1 ; 3.1 ; Multiple Crystal structures of an all-AT DNA dodecamer stabilized by weak interactions. 1ZKL ; 1.67 ; Multiple Determinants for Inhibitor Selectivity of Cyclic Nucleotide Phosphodiesterases 2H50 ; 10.8 ; Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26 2H53 ; 11.5 ; Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26 6THD ; 2.23 ; Multiple Genomic RNA-Coat Protein Contacts Play Vital Roles in the Assembly of Infectious Enterovirus-E 6THN ; 2.6 ; Multiple Genomic RNA-Coat Protein Contacts Play Vital Roles in the Assembly of Infectious Enterovirus-E symmetry expansion+2fold focused classification 1LW9 ; 1.45 ; Multiple methionine substitutions are tolerated in T4 lysozyme and have coupled effects on folding and stability 1LWG ; 1.7 ; Multiple Methionine Substitutions are Tolerated in T4 Lysozyme and have Coupled Effects on Folding and Stability 1LWK ; 2.1 ; Multiple Methionine Substitutions are Tolerated in T4 Lysozyme and have Coupled Effects on Folding and Stability 1LPY ; 1.65 ; Multiple Methionine Substitutions in T4 Lysozyme 2XBZ ; 2.65 ; Multiple oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand-binding site 1L69 ; 1.9 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L70 ; 1.9 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L71 ; 1.85 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L72 ; 1.85 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L73 ; 2.05 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L74 ; 1.7 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 1L75 ; 1.9 ; MULTIPLE STABILIZING ALANINE REPLACEMENTS WITHIN ALPHA-HELIX 126-134 OF T4 LYSOZYME HAVE INDEPENDENT, ADDITIVE EFFECTS ON BOTH STRUCTURE AND STABILITY 6XYO ; 2.6 ; Multiple system atrophy Type I alpha-synuclein filament 6XYP ; 3.29 ; Multiple system atrophy Type II-1 alpha-synuclein filament 6XYQ ; 3.09 ; Multiple system atrophy Type II-2 alpha-synuclein filament 7TN1 ; 3.1 ; Multistate design to stabilize viral class I fusion proteins 5D21 ; 1.9 ; Multivalency Effects in Glycopeptide Dendrimer Inhibitors of Pseudomonas aeruginosa Biofilms Targeting Lectin LecA 7T7V ; 10.0 ; Munc13-1 C1-C2B-MUN-C2C Lateral conformation on lipid bilayer surface 7T7X ; 10.0 ; Munc13-1 C1-C2B-MUN-C2C Upright conformation spanning two lipid bilayers 6NYT ; 1.369 ; Munc13-1 C2B-domain, calcium bound 6NYC ; 1.893 ; Munc13-1 C2B-domain, calcium free 3SWH ; 2.65 ; Munc13-1, MUN domain, C-terminal module 2L22 ; ; Mupirocin didomain ACP 4YXF ; 2.7 ; MupS, a 3-oxoacyl (ACP) reductase involved in Mupirocin biosynthesis 1Q3G ; 2.65 ; MurA (Asp305Ala) liganded with tetrahedral reaction intermediate 3KQJ ; 1.7 ; MurA binary complex with UDP-N-acetylglucosamine 3KR6 ; 1.7 ; MurA dead-end complex with fosfomycin 3KQA ; 2.25 ; MurA dead-end complex with terreic acid 1YBG ; 2.6 ; MurA inhibited by a derivative of 5-sulfonoxy-anthranilic acid 2Z2C ; 2.05 ; MURA inhibited by unag-cnicin adduct 6H9D ; 1.9 ; Muramidase domain of SpmX from Asticaccaulis excentricus 8B2E ; 1.1 ; Muramidase from Kionochaeta sp natural catalytic core 8B2H ; 2.36 ; Muramidase from Thermothielavioides terrestris, catalytic domain 1UXY ; 1.8 ; MURB MUTANT WITH SER 229 REPLACED BY ALA, COMPLEX WITH ENOLPYRUVYL-UDP-N-ACETYLGLUCOSAMINE 2MBR ; 1.8 ; MURB WILD TYPE, COMPLEX WITH ENOLPYRUVYL-UDP-N-ACETYLGLUCOSAMINE 1GQQ ; 3.1 ; MURC - Crystal structure of the apo-enzyme from Haemophilus influenzae 1GQY ; 1.8 ; MURC - CRYSTAL STRUCTURE OF THE ENZYME FROM HAEMOPHILUS INFLUENZAE COMPLEXED WITH AMPPCP 2WTZ ; 3.0 ; MurE ligase of Mycobacterium Tuberculosis 5L7M ; ; Murin CXCL13 solution structure 5IZB ; ; Murin CXCL13 solution structure featuring a folded N-terminal domain 1PG7 ; 2.5 ; Murine 6A6 Fab in complex with humanized anti-Tissue Factor D3H44 Fab 5KAR ; 1.142 ; Murine acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3B) 5KAS ; 1.619 ; Murine acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3B) with phosphocholine 5W7D ; 1.75 ; Murine acyloxyacyl hydrolase (AOAH), S262A mutant 5W7E ; 1.83 ; Murine acyloxyacyl hydrolase (AOAH), S262A mutant, with dimyristoyl phosphatidylcholine 5W7F ; 2.8 ; Murine acyloxyacyl hydrolase (AOAH), S262A mutant, with lipid A 1FKW ; 2.4 ; MURINE ADENOSINE DEAMINASE (D295E) 1FKX ; 2.4 ; MURINE ADENOSINE DEAMINASE (D296A) 1FO0 ; 2.5 ; MURINE ALLOREACTIVE SCFV TCR-PEPTIDE-MHC CLASS I MOLECULE COMPLEX 1KJ2 ; 2.71 ; Murine Alloreactive ScFv TCR-Peptide-MHC Class I Molecule Complex 1NAM ; 2.7 ; MURINE ALLOREACTIVE SCFV TCR-PEPTIDE-MHC CLASS I MOLECULE COMPLEX 8BG9 ; 3.5 ; Murine amyloid-beta filaments with the Arctic mutation (E22G) from APP(NL-G-F) mouse brains | ABeta 2BWL ; 1.62 ; Murine angiogenin, phosphate complex 2BWK ; 1.5 ; Murine angiogenin, sulphate complex 7JIX ; 3.901 ; Murine antibody that engages the influenza hemagglutinin receptor binding site 1GV4 ; 2.0 ; Murine apoptosis-inducing factor (AIF) 2ZNC ; 2.8 ; MURINE CARBONIC ANHYDRASE IV 3ZNC ; 2.8 ; MURINE CARBONIC ANHYDRASE IV COMPLEXED WITH BRINZOLAMIDE 1URT ; 2.8 ; MURINE CARBONIC ANHYDRASE V 1BQH ; 2.8 ; MURINE CD8AA ECTODOMAIN FRAGMENT IN COMPLEX WITH H-2KB/VSV8 8UMO ; 2.6 ; Murine CD94-NKG2A receptor in complex with Qa-1b presenting AMAPRTLLL 7O3H ; 2.6 ; Murine CIII2 focus-refined from supercomplex CICIII2 5TIL ; 2.83 ; Murine class I major histocompatibility complex H-2 Db in complex with LCMV-derived GP33 altered peptide V3P and T-cell receptor P14 6G9R ; 2.7 ; Murine class I major histocompatibility complex H-2 Db in complex with self-antigen derived from dopamine monooxygenase. 5TJE ; 3.2 ; Murine class I major histocompatibility complex H-2Db in complex with LCMV-derived gp33 and T cell receptor P14 3ROO ; 2.0 ; Murine class I major histocompatibility complex H-2Kb in complex with immunodominant LCMV-derived gp34-41 peptide 3ROL ; 2.6 ; Murine class I major histocompatibility complex H-2Kb in complex with post-translationally modified LCMV-derived gp34-41 peptide, comprising a nitrotyrosine at position 3 1DY2 ; 2.0 ; Murine collagen alpha1(XV), endostatin domain 7KDV ; 4.59 ; Murine core lysosomal multienzyme complex (LMC) composed of acid beta-galactosidase (GLB1) and protective protein cathepsin A (PPCA, CTSA) 5FDQ ; 1.9 ; Murine COX-2 S530T mutant 1PQZ ; 2.1 ; MURINE CYTOMEGALOVIRUS IMMUNOMODULATORY PROTEIN M144 8BTJ ; 1.94 ; Murine cytomegalovirus protein M35 5YEV ; 2.5 ; Murine DR3 death domain 1I3Z ; 2.15 ; MURINE EAT2 SH2 DOMAIN IN COMPLEX WITH SLAM PHOSPHOPEPTIDE 5VEN ; 1.69 ; Murine ectonucleotide pyrophosphatase / phosphodiesterase 5 (ENPP5, NPP5) 5VEO ; 1.53 ; Murine ectonucleotide pyrophosphatase / phosphodiesterase 5 (ENPP5, NPP5), inactive (T72A), in complex with AMP 5MHF ; 2.1 ; Murine endoplasmic reticulum alpha-glucosidase I with N-9'-methoxynonyl-1-deoxynojirimycin 5F0E ; 1.74 ; Murine endoplasmic reticulum alpha-glucosidase II 5IEE ; 1.92 ; Murine endoplasmic reticulum alpha-glucosidase II with 1-deoxynojirimycin 5HJR ; 2.4 ; Murine endoplasmic reticulum alpha-glucosidase II with bound covalent intermediate 5HJO ; 2.29 ; Murine endoplasmic reticulum alpha-glucosidase II with bound substrate analogue 5IED ; 1.81 ; Murine endoplasmic reticulum alpha-glucosidase II with castanospermine 5IEG ; 1.822 ; Murine endoplasmic reticulum alpha-glucosidase II with N-9'-methoxynonyl-1-deoxynojirimycin 5IEF ; 2.38 ; Murine endoplasmic reticulum alpha-glucosidase II with N-butyl-1-deoxynojirimycin 1DY0 ; 2.2 ; Murine endostatin, crystal form II 1DY1 ; 2.2 ; Murine endostatin, crystal form III 4AZQ ; 2.0 ; Murine epidermal fatty acid-binding protein (FABP5) in complex with the endocannabinoid 2-arachidonoylglycerol 4AZP ; 2.1 ; Murine epidermal fatty acid-binding protein (FABP5) in complex with the endocannabinoid anandamide 4AZO ; 2.33 ; Murine epidermal fatty acid-binding protein (FABP5), apo form, poly- his tag removed 4AZN ; 2.51 ; Murine epidermal fatty acid-binding protein (FABP5), apo form, poly- his tag-mediated crystal packing 7SD2 ; 3.75 ; Murine Fab that recognizes Hev b 8 (profilin for Hevea brasiliensis) 7SBD ; 3.04 ; Murine Fab/IgE in complex with profilin from Hevea brasieliensis (Hev b 8) 7SBG ; 3.34 ; Murine Fab/IgE in complex with profilin from Hevea brasieliensis (Hev b 8) 3WCY ; 2.9 ; Murine Ifnar1 in complex with interferon-beta 7ZG0 ; 3.18 ; Murine IL-27 in complex with IL-27Ra and a non-competing Nb 1QOM ; 2.7 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER (DELTA 65) WITH SWAPPED N-TERMINAL HOOK 3NOD ; 2.7 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER (DELTA 65) WITH TETRAHYDROBIOPTERIN AND PRODUCT ANALOGUE L-THIOCITRULLINE 1NOD ; 2.6 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER (DELTA 65) WITH TETRAHYDROBIOPTERIN AND SUBSTRATE L-ARGININE 2NOD ; 2.6 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER (DELTA 65) WITH TETRAHYDROBIOPTERIN AND WATER BOUND IN ACTIVE CENTER 1JWK ; 2.3 ; Murine Inducible Nitric Oxide Synthase Oxygenase Dimer (Delta 65) with W457A Mutation at Tetrahydrobiopterin Binding Site 1JWJ ; 2.6 ; Murine Inducible Nitric Oxide Synthase Oxygenase Dimer (Delta 65) with W457F Mutation at Tetrahydrobiopterin Binding Site 1DWV ; 2.35 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER N-hydroxyarginine and 4-amino tetrahydrobiopterin 1DWW ; 2.35 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER N-hydroxyarginine and dihydrobiopterin 1DWX ; 2.6 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER N-hydroxyarginine and tetrahydrobiopterin 1R35 ; 2.3 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DIMER, TETRAHYDROBIOPTERIN AND 4R-FLUORO-N6-ETHANIMIDOYL-L-LYSINE 1DD7 ; 2.25 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DOMAIN (DELTA 114) (N-[(1,3-BENZODIOXOL-5-YL)METHYL]-1-[2-(1H-IMIDAZOL-1-YL)PYRIMIDIN-4-YL]-4-(METHOXYCARBONYL)-PIPERAZINE-2-ACETAMIDE COMPLEX 2ORO ; 2.0 ; Murine inducible nitric oxide synthase oxygenase domain (delta 114) (r)-1-(2-imidazol-1-yl-6-methyl-pyrimidin-4-yl)-pyrrolidine-2-carboxylic acid (2-benzo[1,3]dioxol-5-yl-ethyl)-amide complex 2ORT ; 1.87 ; Murine Inducible Nitric Oxide Synthase Oxygenase Domain (Delta 114) 1-Benzo[1,3]dioxol-5-ylmethyl-3S-(4-imidazol-1-yl-phenoxy)-piperidine Complex 2ORP ; 1.97 ; Murine inducible nitric oxide synthase oxygenase domain (delta 114) 2-[4-(2-Imidazol-1-yl-6-methyl-pyrimidin-4-yl)-1-isobutyryl-piperazin-2-yl]-N-[2-(4-methoxy-phenyl)-ethyl]-acetamide complex 2ORS ; 2.0 ; Murine Inducible Nitric Oxide Synthase Oxygenase Domain (DELTA 114) 4-(Benzo[1,3]dioxol-5-yloxy)-2-(4-imidazol-1-yl-phenoxy)-6-methyl-pyrimidine Complex 2ORR ; 2.0 ; Murine Inducible Nitric Oxide Synthase Oxygenase Domain (Delta 114) 4-(Benzo[1,3]dioxol-5-yloxy)-2-(4-imidazol-1-yl-phenoxy)-pyrimidine Complex 2ORQ ; 2.1 ; Murine Inducible Nitric Oxide Synthase Oxygenase Domain (DELTA 114) 4-(imidazol-1-yl)phenol and piperonylamine Complex 1NOC ; 2.6 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DOMAIN (DELTA 114) COMPLEXED WITH TYPE I E. COLI CHLORAMPHENICOL ACETYL TRANSFERASE AND IMIDAZOLE 2NOS ; 2.3 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DOMAIN (DELTA 114), AMINOGUANIDINE COMPLEX 1NOS ; 2.1 ; MURINE INDUCIBLE NITRIC OXIDE SYNTHASE OXYGENASE DOMAIN (DELTA 114), IMIDAZOLE COMPLEX 1QW5 ; 2.7 ; Murine inducible nitric oxide synthase oxygenase domain in complex with W1400 inhibitor. 2BHJ ; 3.2 ; murine iNO synthase with coumarin inhibitor 3E65 ; 2.05 ; Murine INOS dimer with HEME, pterin and inhibitor AR-C120011 3E67 ; 2.6 ; Murine inos dimer with inhibitor 4-MAP bound 1DF1 ; 2.35 ; MURINE INOSOXY DIMER WITH ISOTHIOUREA BOUND IN THE ACTIVE SITE 8CR5 ; 2.15 ; Murine Interleukin-12 receptor beta 1 domain 1 in complex with murine Interleukin-12 beta. 4LV5 ; 1.7 ; Murine IRGa6 bound to Toxoplasma ROP5B, a pseudokinase GDI 4LV8 ; 1.72 ; Murine IRGa6 bound to Toxoplasma ROP5C, a pseudokinase GDI 7TLH ; 1.74 ; Murine meteorin C-terminal NTR domain 7TL6 ; 2.3 ; Murine meteorin N-terminal CUB domain 7TLW ; 1.75 ; Murine Meteorin-like C-terminal NTR domain 2F74 ; 2.7 ; Murine MHC class I H-2Db in complex with human b2-microglobulin and LCMV-derived immunodminant peptide gp33 1DMX ; 2.45 ; MURINE MITOCHONDRIAL CARBONIC ANYHDRASE V AT 2.45 ANGSTROMS RESOLUTION 6DXY ; 1.851 ; Murine N-acylethanolamine-hydrolyzing acid amidase (NAAA) 6R1Q ; 1.95 ; murine Neuroglobin under 2 kBar of argon 4O4Z ; 1.7 ; MURINE NEUROGLOBIN UNDER 30 BAR PRESSURE NITROUS Oxide 4O4T ; 1.9 ; MURINE NEUROGLOBIN UNDER XENON PRESSURE 30 bar 8TKN ; 2.8 ; Murine NF-kappaB p50 Rel Homology Region homodimer in complex with 10-mer kappaB DNA from human Neutrophil Gelatinase-associated Lipocalin (NGAL) promoter 8TKM ; 2.8 ; Murine NF-kappaB p50 Rel Homology Region homodimer in complex with 17-mer kappaB DNA from human interleukin-6 (IL-6) promoter 8TKL ; 3.0 ; Murine NF-kappaB p50 Rel Homology Region homodimer in complex with a Test 16-mer kappaB-like DNA 8UV3 ; 2.72 ; Murine norovirus capsid protein + 1 mM MgCl2 8UUX ; 2.74 ; Murine norovirus capsid protein in the presence of 1mM calcium 6H6L ; 2.5 ; Murine norovirus protruding domain (CW3 strain) in complex with the CD300lf receptor and glycochenodeoxycholate (GCDCA) 4O4R ; 2.4 ; Murine Norovirus RdRp in complex with PPNDS 4NRU ; 2.3 ; Murine Norovirus RNA-dependent-RNA-polymerase in complex with Compound 6, a suramin derivative 1KN3 ; 1.8 ; Murine PEBP-2 (phosphatidylethanolamine-binding protein-2) 6MUL ; 3.09 ; Murine PI3K delta kinsae domain - cpd 1 6MUM ; 3.06 ; Murine PI3K delta kinsae domain - cpd 3 1SID ; 3.65 ; MURINE POLYOMAVIRUS COMPLEXED WITH 3'SIALYL LACTOSE 1SIE ; 3.65 ; MURINE POLYOMAVIRUS COMPLEXED WITH A DISIALYLATED OLIGOSACCHARIDE 7K23 ; 3.3 ; Murine polyomavirus hexavalent capsomer with 8A7H5 Fab, subparticle reconstruction 7K25 ; 2.9 ; Murine polyomavirus hexavalent capsomer, subparticle reconstruction 7K22 ; 3.2 ; Murine polyomavirus pentavalent capsomer with 8A7H5 Fab, subparticle reconstruction 7K24 ; 2.9 ; Murine polyomavirus pentavalent capsomer, subparticle reconstruction 6GBD ; ; Murine Protein Tyrosine Phosphatase PTPN13 PDZ3 Domain 6GBE ; ; Murine Protein Tyrosine Phosphatase PTPN13 PDZ3 Domain-PRK2 Peptide Complex 8S9W ; 1.69 ; Murine S100A7/S100A15 in presence of calcium 1MBY ; 2.0 ; Murine Sak Polo Domain 5U85 ; 1.65 ; Murine saposin-D (SapD), open conformation 8DU5 ; 3.5 ; Murine sialidase-1 (NEU1) 8W6R ; 1.95 ; murine SMPDL3A bound to sulfate 5FC6 ; 1.658 ; Murine SMPDL3A in complex with ADP analog AMPCP 5FCB ; 1.55 ; Murine SMPDL3A in complex with AMP 5FC5 ; 1.678 ; Murine SMPDL3A in complex with phosphocholine 5FC1 ; 1.389 ; Murine SMPDL3A in complex with sulfate 5FC7 ; 1.456 ; Murine SMPDL3A in complex with sulfate (tetragonal) 5FCA ; 1.924 ; Murine SMPDL3A in presence of excess zinc 7O37 ; 3.2 ; Murine supercomplex CIII2CIV in the assembled locked conformation 7O3E ; 3.6 ; Murine supercomplex CIII2CIV in the intermediate locked conformation 7O3C ; 3.3 ; Murine supercomplex CIII2CIV in the mature unlocked conformation 1TCR ; 2.5 ; MURINE T-CELL ANTIGEN RECEPTOR 2C CLONE 1KB5 ; 2.5 ; MURINE T-CELL RECEPTOR VARIABLE DOMAIN/FAB COMPLEX 2VOK ; 1.3 ; Murine TRIM21 6O5K ; 1.6 ; Murine TRIM28 Bbox1 domain 8OL2 ; 3.0 ; Murine type II Abeta fibril from APP23 mouse 8OL5 ; 3.4 ; Murine type II Abeta fibril from ARTE10 mouse 8OL6 ; 3.8 ; Murine type II Abeta fibril from tgAPPSwe mouse 8OL3 ; 3.5 ; Murine type III Abeta fibril from APP/PS1 mouse 8OLO ; 3.5 ; Murine type III Abeta fibril from ARTE10 mouse 3HKF ; 2.5 ; Murine unglycosylated IgG Fc fragment 3AXL ; 2.9 ; Murine Valpha 10 Vbeta 8.1 T-cell receptor 1U9B ; 2.0 ; MURINE/HUMAN UBIQUITIN-CONJUGATING ENZYME UBC9 8OL7 ; 3.0 ; MurineArc type I Abeta fibril from tg-APPArcSwe mouse 7WAW ; 2.8 ; MurJ inward closed form 7WAX ; 2.35 ; MurJ inward occluded form 6FQB ; 3.0 ; MurT/GatD peptidoglycan amidotransferase complex from Streptococcus pneumoniae R6 5DQ6 ; 2.8 ; Mus musculus A20 OTU domain 4ARA ; 2.5 ; Mus musculus Acetylcholinesterase in complex with (R)-C5685 at 2.5 A resolution. 4ARB ; 2.25 ; Mus musculus Acetylcholinesterase in complex with (S)-C5685 at 2.25 A resolution. 6FSE ; 2.7 ; Mus musculus acetylcholinesterase in complex with 1-(4-(4-Ethylpiperazin-1-yl)piperidin-1-yl)-2-((4'-methoxy-[1,1'-biphenyl]-4-yl)oxy)ethanone dihydrochloride (15) 4B81 ; 2.8 ; Mus musculus Acetylcholinesterase in complex with 1-(4-Chloro-phenyl)- N-(2-diethylamino-ethyl)-methanesulfonamide 7QYN ; 2.5 ; Mus musculus acetylcholinesterase in complex with 2-((hydroxyimino)methyl)-1-(5-(4-methyl-3-nitrobenzamido)pentyl)pyridinium 6FSD ; 2.7 ; Mus musculus acetylcholinesterase in complex with 2-(4-Biphenylyloxy)-N-[3-(1-piperidinyl)propyl]-acetamide hydrochloride (10) 4B85 ; 2.1 ; Mus musculus Acetylcholinesterase in complex with 4-Chloranyl-N-(2- diethylamino-ethyl)-benzenesulfonamide 7QB4 ; 2.50001 ; Mus Musculus Acetylcholinesterase in complex with 7-[(1-benzylpiperidin-3-yl)methoxy]-3,4-dimethyl-2H-chromen-2-one 7QAK ; 2.6 ; Mus Musculus Acetylcholinesterase in complex with 7-[(4-{[benzyl(methyl)amino]methyl}benzyl)oxy]-4-(hydroxymethyl)-2H-chromen-2-one 5FUM ; 2.5 ; Mus musculus acetylcholinesterase in complex with AL200 2JEY ; 2.7 ; Mus musculus acetylcholinesterase in complex with HLo-7 6TD2 ; 2.8 ; Mus musculus Acetylcholinesterase in complex with N-(2-(diethylamino)ethyl)-1-(4-(trifluoromethyl)phenyl)methanesulfonamide 4B82 ; 2.1 ; Mus musculus Acetylcholinesterase in complex with N-(2-Diethylamino- ethyl)-2-fluoranyl-benzenesulfonamide 4B83 ; 2.4 ; Mus musculus Acetylcholinesterase in complex with N-(2-Diethylamino- ethyl)-3-methoxy-benzenesulfonamide 4B84 ; 2.6 ; Mus musculus Acetylcholinesterase in complex with N-(2-Diethylamino- ethyl)-3-trifluoromethyl-benzenesulfonamide 4B80 ; 2.5 ; Mus musculus Acetylcholinesterase in complex with N-(2-Diethylamino-ethyl)-1-(4-fluoro-phenyl)-methanesulfonamide 4B7Z ; 2.3 ; Mus musculus Acetylcholinesterase in complex with N-(2-Diethylamino-ethyl)-1-(4-methylphenyl)-methanesulfonamide 7R02 ; 2.3 ; Mus musculus acetylcholinesterase in complex with N-(3-(diethylamino)propyl)-4-methyl-3-nitrobenzamide 4A23 ; 2.4 ; Mus musculus Acetylcholinesterase in complex with racemic C5685 2JEZ ; 2.6 ; Mus musculus acetylcholinesterase in complex with tabun and HLo-7 2JF0 ; 2.5 ; Mus musculus acetylcholinesterase in complex with tabun and Ortho-7 6BAQ ; 2.50261 ; Mus musculus BPIFA1 6SWA ; 3.1 ; Mus musculus brain neocortex ribosome 60S bound to Ebp1 6EWP ; 1.85 ; Mus musculus CEP120 third C2 domain (C2C) 4NTA ; 2.7 ; Mus Musculus LTC4 synthase in apo form 4NTB ; 2.7 ; Mus Musculus LTC4 synthase in GSH complex form 4NTF ; 2.65 ; Mus Musculus LTC4 synthase in S-hexyl-GSH complex form 3F0N ; 1.9 ; Mus Musculus Mevalonate Pyrophosphate Decarboxylase 4GYZ ; 2.556 ; Mus Musculus Tdp2 Bound to dAMP and Mg2+ 4GZ2 ; 1.85 ; Mus Musculus Tdp2 excluded ssDNA complex 4GZ1 ; 1.5 ; Mus Musculus Tdp2 reaction product (5'-phosphorylated DNA)-Mg2+ complex at 1.5 Angstroms resolution 4PUQ ; 1.6 ; Mus Musculus Tdp2 reaction product complex with 5'-phosphorylated RNA/DNA, glycerol, and Mg2+ 4GZ0 ; 2.113 ; Mus Musculus Tdp2-DNA Substrate Analog (5'-6-aminohexanol) Complex 2MSS ; ; MUSASHI1 RBD2, NMR 2MST ; ; MUSASHI1 RBD2, NMR 6WJC ; 2.55 ; Muscarinic acetylcholine receptor 1 - muscarinic toxin 7 complex 6OIJ ; 3.3 ; Muscarinic acetylcholine receptor 1-G11 protein complex 6OIK ; 3.6 ; Muscarinic acetylcholine receptor 2-Go complex 2CRK ; 2.35 ; MUSCLE CREATINE KINASE 7KIJ ; 1.69 ; Muscovy duck circovirus Rep domain complexed with a single-stranded DNA 10-mer comprising the cleavage site 7KII ; 1.3 ; Muscovy duck circovirus Rep domain complexed with a single-stranded DNA 10-mer comprising the cleavage site and Mn2+ 1EFZ ; 2.0 ; MUTAGENESIS AND CRYSTALLOGRAPHIC STUDIES OF ZYMOMONAS MOBILIS TRNA-GUANINE TRANSGLYCOSYLASE TO ELUCIDATE THE ROLE OF SERINE 103 FOR ENZYMATIC ACTIVITY 4CE6 ; 2.05 ; Mutagenesis of a Rhodobacteraceae L-haloacid dehalogenase 4CF3 ; 2.16 ; Mutagenesis of a Rhodobacteraceae L-haloacid dehalogenase 4CF4 ; 2.14 ; Mutagenesis of a Rhodobacteraceae L-haloacid dehalogenase 4CF5 ; 2.34 ; Mutagenesis of a Rhodobacteraceae L-haloacid dehalogenase 4CNQ ; 1.84 ; Mutagenesis of a Rhodobacteraceae L-haloacid dehalogenase 3MGY ; 2.1 ; Mutagenesis of p38 MAP Kinase eshtablishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-out state 3MH0 ; 2.0 ; Mutagenesis of p38 MAP Kinase eshtablishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-out state 3MH1 ; 2.2 ; Mutagenesis of p38 MAP kinase establishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-out state 3MH2 ; 2.3 ; Mutagenesis of p38 MAP kinase establishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-out state 3MH3 ; 2.2 ; Mutagenesis of p38 MAP kinase establishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-out state 1WCQ ; 2.1 ; Mutagenesis of the Nucleophilic Tyrosine in a Bacterial Sialidase to Phenylalanine. 4F6H ; 1.744 ; Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-b-lactamase active site 4F6Z ; 2.0 ; Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-b-lactamase active site 5EOZ ; 2.088 ; Mutagenicity of 7-Benzyl guanine lesion and Replication by Human DNA Polymerase beta 7XZ7 ; 1.98 ; Mutant (D137A) of the N-terminal domain of fucoidan lyase FdlA 1QPK ; 2.0 ; MUTANT (D193G) MALTOTETRAOSE-FORMING EXO-AMYLASE IN COMPLEX WITH MALTOTETRAOSE 1QI3 ; 2.0 ; MUTANT (D193N) MALTOTETRAOSE-FORMING EXO-AMYLASE IN COMPLEX WITH MALTOTETRAOSE 1QI5 ; 2.0 ; MUTANT (D294N) MALTOTETRAOSE-FORMING EXO-AMYLASE IN COMPLEX WITH MALTOTETRAOSE 5E1Q ; 1.943 ; Mutant (D415G) GH97 alpha-galactosidase in complex with Gal-Lac 1QI4 ; 2.0 ; MUTANT (E219G) MALTOTETRAOSE-FORMING EXO-AMYLASE IN COMPLEX WITH MALTOTETRAOSE 1JDC ; 1.9 ; MUTANT (E219Q) MALTOTETRAOSE-FORMING EXO-AMYLASE COCRYSTALLIZED WITH MALTOTETRAOSE (CRYSTAL TYPE 1) 1JDD ; 1.9 ; MUTANT (E219Q) MALTOTETRAOSE-FORMING EXO-AMYLASE COCRYSTALLIZED WITH MALTOTETRAOSE (CRYSTAL TYPE 2) 7XZ9 ; 1.54 ; Mutant (E236A) of the N-terminal domain of fucoidan lyase FdlA 2V2P ; 1.15 ; Mutant (E53,56,57,60Q and R59M) recombinant horse spleen apoferritin cocrystallized with haemin in acidic conditions 2V2R ; 1.9 ; Mutant (E53,56,57,60Q and R59M) recombinant horse spleen apoferritin cocrystallized with haemin in basic conditions 2V2L ; 1.9 ; Mutant (E53,56,57,60Q) recombinant horse spleen apoferritin cocrystallized with haemin in acidic conditions 2V2M ; 1.65 ; Mutant (E53,56,57,60Q) recombinant horse spleen apoferritin cocrystallized with haemin in basic conditions 7XZD ; 1.75 ; Mutant (F179A) of the N-terminal domain of fucoidan lyase FdlA 2JDU ; 1.5 ; Mutant (G24N) of Pseudomonas aeruginosa lectin II (PA-IIL) complexed with methyl-a-L-fucopyranoside 2JDY ; 1.7 ; Mutant (G24N) of Pseudomonas aeruginosa lectin II (PA-IIL) complexed with methyl-b-D-mannoyranoside 7XZE ; 1.8 ; Mutant (H176A) of the N-terminal domain of fucoidan lyase FdlA 7XZ8 ; 1.89 ; Mutant (K141A) of the N-terminal domain of fucoidan lyase FdlA 4BEC ; 2.84 ; MUTANT (K220A) OF THE HSDR SUBUNIT OF THE ECOR124I RESTRICTION ENZYME IN COMPLEX WITH ATP 4BEB ; 2.989 ; MUTANT (K220E) OF THE HSDR SUBUNIT OF THE ECOR124I RESTRICTION ENZYME IN COMPLEX WITH ATP 4BE7 ; 2.744 ; MUTANT (K220R) OF THE HSDR SUBUNIT OF THE ECOR124I RESTRICTION ENZYME IN COMPLEX WITH ATP 7XZC ; 1.7 ; Mutant (R240A) of the N-terminal domain of fucoidan lyase FdlA 5Z03 ; 1.755 ; Mutant (S106A) Escherichia coli L,D-carboxypeptidase A (LdcA) 2JDM ; 1.7 ; Mutant (S22A) of Pseudomonas aeruginosa lectin II (PA-IIL) complexed with methyl-a-L-fucopyranoside 2JDN ; 1.3 ; Mutant (S22A) of Pseudomonas aeruginosa lectin II (PA-IIL) complexed with methyl-a-L-mannopyranoside 2JDP ; 1.3 ; Mutant (S23A) of Pseudomonas aeruginosa lectin II (PA-IIL) complexed with methyl-a-L-fucopyranoside 7XZB ; 2.25 ; Mutant (Y242A) of the N-terminal domain of fucoidan lyase FdlA 7XZA ; 2.08 ; Mutant (Y242F) of the N-terminal domain of fucoidan lyase FdlA 2ZYH ; 1.83 ; mutant A. Fulgidus lipase S136A complexed with fatty acid fragment 7NYO ; 1.4 ; Mutant A541L of SH3 domain of JNK-interacting Protein 1 (JIP1) 1XZ6 ; 1.55 ; Mutant ABO(H) blood group glycosyltransferase A 1WT1 ; 1.55 ; Mutant ABO(H) blood group glycosyltransferase with bound UDP and acceptor 2VYZ ; 1.8 ; Mutant Ala55Phe of Cerebratulus lacteus mini-hemoglobin 2VYY ; 1.6 ; Mutant Ala55Trp of Cerebratuls lacteus mini-hemoglobin 8G0Z ; 3.61 ; Mutant bacteriophage T4 gp41 helicase hexamer bound with single strand DNA and ATPgammaS in the stalled primosome 2DQX ; 2.2 ; mutant beta-amylase (W55R) from soy bean 3KIG ; 1.39 ; Mutant carbonic anhydrase II in complex with an azide and an alkyne 6R0Q ; 1.5 ; Mutant cereblon isoform 4 from Magnetospirillum gryphiswaldense in complex with thalidomide metabolite alpha-(o-carboxybenzamido)glutarimide 1GXO ; 2.05 ; Mutant D189A of Family 10 polysaccharide lyase from Cellvibrio cellulosa in complex with trigalaturonic acid 7Q31 ; 1.75 ; Mutant D24G of uridine phosphorylase from E. coli 7Q32 ; 1.7 ; Mutant D24G of uridine phosphorylase from E. coli 1OCN ; 1.31 ; Mutant D416A of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS in complex with a cellobio-derived isofagomine at 1.3 angstrom resolution 1OCJ ; 1.3 ; Mutant D416A of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS in complex with a THIOPENTASACCHARIDE at 1.3 angstrom resolution 1GZ1 ; 1.9 ; Mutant D416A of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS in complex with methyl-cellobiosyl-4-deoxy-4-thio-beta-D-cellobioside 6FVM ; 1.631 ; Mutant DNA polymerase sliding clamp from Escherichia coli with bound P7 peptide 6FVO ; 2.689 ; Mutant DNA polymerase sliding clamp from Mycobacterium tuberculosis with bound P7 peptide 1U3A ; 2.0 ; mutant DsbA 5UDG ; 2.5 ; Mutant E97Q crystal structure of Bacillus subtilis QueF with a disulfide Cys 55-99 3HMB ; 2.7 ; Mutant endolysin from Bacillus subtilis 4J1L ; 2.6 ; Mutant Endotoxin TeNT 1KZ9 ; 3.1 ; Mutant Enzyme L119F Lumazine Synthase from S.pombe 1KZ1 ; 2.0 ; Mutant enzyme W27G Lumazine Synthase from S.pombe 1KZ4 ; 3.1 ; Mutant enzyme W63Y Lumazine Synthase from S.pombe 1KZ6 ; 2.7 ; Mutant enzyme W63Y/L119F Lumazine Synthase from S.pombe 1QKT ; 2.2 ; MUTANT ESTROGEN NUCLEAR RECEPTOR LIGAND BINDING DOMAIN COMPLEXED WITH ESTRADIOL 6OWC ; 1.85 ; Mutant estrogen receptor alpha (ERa) Y537S covalently bound to H3B-6545. 7BGA ; 1.9 ; Mutant F105A of recombinant beta-lactoglobulin in complex with endogenous ligand 7BGX ; 2.0 ; Mutant F105L of recombinant beta-lactoglobulin 2ENI ; 2.5 ; Mutant F197M structure of PH0725 from Pyrococcus horikoshii OT3 1GYR ; 2.6 ; Mutant form of enoyl thioester reductase from Candida tropicalis 1E4V ; 1.85 ; Mutant G10V of adenylate kinase from E. coli, modified in the Gly-loop 5JXS ; 2.8 ; Mutant GC216/7AA of 3D polymerase from Foot-and-Mouth Disease Virus 1CJ2 ; 2.8 ; MUTANT GLN34ARG OF PARA-HYDROXYBENZOATE HYDROXYLASE 5J77 ; 2.1 ; Mutant glyceraldehyde dehydrogenase (F34M+S405N) from Thermoplasma acidophilum 5M4X ; 3.56 ; Mutant glyceraldehyde dehydrogenase (F34M+Y399C+S405N) from Thermoplasma acidophilum 1B0Y ; 0.93 ; MUTANT H42Q OF HIPIP FROM CHROMATIUM VINOSUM AT 0.93A 7NYL ; 1.95 ; Mutant H493A of SH3 domain of JNK-interacting Protein 1 (JIP1) 1WT0 ; 1.8 ; Mutant human ABO(H) blood group glycosyltransferase A 1WT2 ; 1.9 ; Mutant human ABO(H) blood group glycosyltransferase A with bound UDP and inhibitor 1WT3 ; 1.8 ; Mutant human ABO(H) blood group glycosyltransferase with bound UDP and acceptor 1WSZ ; 1.59 ; Mutant human ABO(H) blood group transferase A 2FYE ; 2.2 ; Mutant Human Cathepsin S with irreversible inhibitor CRA-14013 4YP3 ; 1.89 ; Mutant Human DNA Polymerase Eta Q38A/R61A Inserting dCTP Opposite an 8-Oxoguanine Lesion 4YQW ; 2.064 ; Mutant Human DNA Polymerase Eta Q38A/R61A Inserting dCTP Opposite Template G 4YR2 ; 1.95 ; Mutant Human DNA Polymerase Eta R61M Inserting dATP Opposite an 8-Oxoguanine Lesion 4YR0 ; 1.78 ; Mutant Human DNA Polymerase Eta R61M Inserting dCTP Opposite an 8-Oxoguanine Lesion 4YR3 ; 2.0 ; Mutant Human DNA Polymerase Eta R61M Inserting dCTP Opposite Template G 1I22 ; 1.8 ; MUTANT HUMAN LYSOZYME (A83K/Q86D/A92D) 1I20 ; 1.9 ; MUTANT HUMAN LYSOZYME (A92D) 1I1Z ; 1.8 ; MUTANT HUMAN LYSOZYME (Q86D) 207L ; 1.8 ; MUTANT HUMAN LYSOZYME C77A 208L ; 2.2 ; MUTANT HUMAN LYSOZYME C77A 1C43 ; 1.8 ; MUTANT HUMAN LYSOZYME WITH FOREIGN N-TERMINAL RESIDUES 1C45 ; 1.8 ; MUTANT HUMAN LYSOZYME WITH FOREIGN N-TERMINAL RESIDUES 1C46 ; 2.2 ; MUTANT HUMAN LYSOZYME WITH FOREIGN N-TERMINAL RESIDUES 2E0L ; 1.6 ; Mutant Human Ribonuclease 1 (Q28L, R31L, R32L) 2E0J ; 1.6 ; Mutant Human Ribonuclease 1 (R31L, R32L) 2E0M ; 1.7 ; Mutant Human Ribonuclease 1 (T24L, Q28L, R31L, R32L) 2E0O ; 2.0 ; Mutant Human Ribonuclease 1 (V52L, D53L, N56L, F59L) 1E9D ; 1.7 ; Mutant human thymidylate kinase (F105Y) complexed with AZTMP and ADP 1E9E ; 1.6 ; Mutant human thymidylate kinase (F105Y) complexed with dTMP and ADP 1E9F ; 1.9 ; Mutant human thymidylate kinase complexed with TMP and ADP 1E9C ; 1.6 ; Mutant human thymidylate kinase complexed with TMP and APPNP 5X4X ; 2.31 ; Mutant human thymidylate synthase A191K crystallized in a sulfate-containing condition 5X4W ; 2.1 ; Mutant human thymidylate synthase A191K crystallized in a sulfate-free condition 5X4Y ; 2.2 ; Mutant human thymidylate synthase M190K crystallized in a sulfate-containing condition 8P35 ; 2.2 ; Mutant human titin immunoglobulin-like 21 domain - C3575S 2ED3 ; 2.5 ; Mutant I127M structure of PH0725 from Pyrococcus horikoshii OT3 2E4R ; 2.2 ; Mutant I253M structure of PH0725 from Pyrococcus horikoshii OT3 7BF8 ; 1.8 ; Mutant I56F of recombinant bovine beta-lactoglobulin in complex with tetracaine 8BK1 ; 2.7 ; Mutant Imine Reductase IR007-143 from Amycolatopsis azurea, E120A, M197W, M206S, A213P, D238G, I240L 6SM2 ; 2.5 ; Mutant immunoglobulin light chain causing amyloidosis (Pat-1) 2EJJ ; 2.1 ; Mutant K129M structure of PH0725 from Pyrococcus horikoshii OT3 8PBU ; 1.67 ; Mutant K1482M of the dihydroorotase domain of human CAD protein bound to the inhibitor fluoorotate 8PBT ; 1.43 ; Mutant K1482M of the dihydroorotase domain of human CAD protein bound to the substrate dihydroorotate 8PBS ; 2.05 ; Mutant K1482M of the dihydroorotase domain of human CAD protein in apo form 8PBG ; 1.46 ; Mutant K1556T of the dihydroorotase domain of human CAD protein bound to the inhibitor fluoroorotate 8PBE ; 1.71 ; Mutant K1556T of the dihydroorotase domain of human CAD protein bound to the substrate carbamoyl aspartate 4WYL ; 2.0 ; Mutant K18E of 3D polymerase from Foot-and-Moth Disease Virus 4WZM ; 2.52 ; Mutant K18E of RNA dependent RNA polymerase from Foot-and-Mouth Disease Virus complexed with RNA 4WYW ; 1.8 ; Mutant K20E of 3D polymerase from Foot-and-Mouth Disease Virus 4WZQ ; 2.8 ; Mutant K20E of RNA dependent RNA polymerase 3D from Foot-and-Mouth disease Virus complexed with RNA 6J6W ; 1.693 ; Mutant K23N of heat shock factor 4-DBD 1GKH ; 1.7 ; MUTANT K69H OF GENE V PROTEIN (SINGLE-STRANDED DNA BINDING PROTEIN) 3C81 ; 1.85 ; Mutant K85A of T4 lysozyme in wildtype background at room temperature 2ENU ; 1.7 ; Mutant L121M structure of TTHB049 from Thermus thermophilus HB8 2ELD ; 2.3 ; Mutant L160M structure of PH0725 from Pyrococcus horikoshii OT3 2EH5 ; 2.3 ; Mutant L184M structure of PH0725 from Pyrococcus horikoshii OT3 2EMU ; 2.2 ; Mutant L21H structure of PH0725 from Pyrococcus horikoshii OT3 1AE2 ; 2.0 ; MUTANT L32R OF GENE V PROTEIN (SINGLE-STRANDED DNA BINDING PROTEIN) 6LR8 ; 1.595 ; Mutant L331A of deglycosylated hydroxynitrile lyase isozyme 5 from Prunus communis 2EJK ; 2.4 ; Mutant L38M structure of PH0725 from Pyrococcus horikoshii OT3 7BGZ ; 2.401 ; Mutant L39K of recombinant beta-lactoglobulin in complex with endogenous ligand 7BH0 ; 2.1 ; Mutant L39Y of recombinant beta-lactoglobulin in complex with endogenous ligand 7Z9Z ; 2.5 ; Mutant L39Y of recombinant bovine beta-lactoglobulin in complex with pramocaine 7ZLF ; 2.1 ; Mutant L39Y-L58F of recombinant bovine beta-lactoglobulin in complex with endogenous fatty acid 7ZCD ; 2.1 ; Mutant L39Y-L58F of recombinant bovine beta-lactoglobulin in complex with pramocaine 7ZA0 ; 2.1 ; Mutant L58F of recombinant bovine beta-lactoglobulin in complex with pramocaine 7BF7 ; 2.1 ; Mutant L58F of recombinant bovine beta-lactoglobulin in complex with tetracaine 2EMR ; 2.4 ; Mutant L65M structure of PH0725 from Pyrococcus horikoshii OT3 2WNE ; 2.124 ; Mutant Laminarinase 16A cyclizes laminariheptaose 7BF9 ; 1.8 ; Mutant M107L of recombinant bovine beta-lactoglobulin in complex with tetracaine 6GVV ; 2.35 ; Mutant M16A of RNA dependent RNA polymerase 3D from Foot-and-Mouth disease Virus 6GVY ; 2.2 ; Mutant M16A of RNA dependent RNA polymerase 3D from Foot-and-Mouth disease Virus complexed with an template -primer RNA 4H0J ; 2.0 ; Mutant M58C of Nostoc sp Cytochrome c6 4H0K ; 1.95 ; Mutant m58h of Nostoc sp cytochrome c6 1CZA ; 1.9 ; MUTANT MONOMER OF RECOMBINANT HUMAN HEXOKINASE TYPE I COMPLEXED WITH GLUCOSE, GLUCOSE-6-PHOSPHATE, AND ADP 1DGK ; 2.8 ; MUTANT MONOMER OF RECOMBINANT HUMAN HEXOKINASE TYPE I WITH GLUCOSE AND ADP IN THE ACTIVE SITE 2GHL ; 2.099 ; Mutant Mus Musculus P38 Kinase Domain in Complex with Inhibitor PG-874743 7B19 ; 2.55 ; Mutant Myosin-II-GGG motor domain 3WDD ; 1.18 ; Mutant N-terminal domain of Mycobacterium tuberculosis ClpC1, F2Y, bound to Cyclomarin A 3WDE ; 1.44 ; Mutant N-terminal domain of Mycobacterium tuberculosis ClpC1, F80Y, bound to Cyclomarin A 2DSL ; 1.7 ; Mutant N33D structure of phenylacetic acid degradation protein PaaI from Thermus thermophilus HB8 7BBM ; 1.14 ; Mutant nitrobindin M75L/H76L/Q96C/M148L (NB4H) from Arabidopsis thaliana with cofactor MnPPIX 5O86 ; 1.687 ; Mutant of claas II CPD photolyase from Methanosarcina mazei - W388F 5O8E ; 1.7 ; Mutant of class II CPD photolyase from Methanosarcina mazei 5O8D ; 2.0 ; Mutant of class II CPD photolyase from Methanosarcina mazei - Y345F 1DST ; 2.0 ; MUTANT OF FACTOR D WITH ENHANCED CATALYTIC ACTIVITY 6IB5 ; 2.12 ; Mutant of flavin-dependent tryptophan halogenase Thal with altered regioselectivity (Thal-RebH5) 6F56 ; 1.9402 ; Mutant of Human N-myristoyltransferase with bound myristoyl-CoA 1D1T ; 2.4 ; MUTANT OF HUMAN SIGMA ALCOHOL DEHYDROGENASE WITH LEUCINE AT POSITION 141 1FXH ; 1.97 ; MUTANT OF PENICILLIN ACYLASE IMPAIRED IN CATALYSIS WITH PHENYLACETIC ACID IN THE ACTIVE SITE 8AVN ; 1.65 ; Mutant of Superoxide dismutase SodFM1 from CPR Parcubacteria Wolfebacteria 8AVM ; 2.0 ; Mutant of Superoxide Dismutase sodfm2 from Bacteroides fragilis 3PRT ; 1.66 ; Mutant of the Carboxypeptidase T 2BVZ ; 2.2 ; Mutant of the Ribosomal Protein S6 2LPA ; ; Mutant of the sub-genomic promoter from Brome Mosaic Virus 3HFY ; 2.0 ; Mutant of tRNA-guanine transglycosylase (K52M) 6HF1 ; 1.94 ; Mutant oxidoreductase fragment of mouse QSOX1 in complex with an antibody Fab 3NMA ; 2.6 ; Mutant P169S of Foot-and-mouth disease Virus RNA dependent RNA-polymerase 4D4F ; 2.34 ; Mutant P250A of bacterial chalcone isomerase from Eubacterium ramulus 3NL0 ; 2.6 ; Mutant P44S M296I of Foot-and-mouth disease Virus RNA-dependent RNA polymerase 4IQX ; 2.5 ; Mutant P44S P169S M296I of Foot-and-mouth disease Virus RNA-dependent RNA polymerase 1E4Y ; 1.85 ; Mutant P9L of adenylate kinase from E. coli, modified in the Gly-loop 1E0Q ; ; Mutant Peptide from the first N-terminal 17 amino-acid of Ubiquitin 6JUP ; 2.44 ; Mutant PolIV-DNA incoming nucleotide complex 6JUQ ; 2.74 ; mutant PolIV-DNA incoming nucleotide complex 2 1CJ4 ; 2.4 ; MUTANT Q34T OF PARA-HYDROXYBENZOATE HYDROXYLASE 1CXX ; ; MUTANT R122A OF QUAIL CYSTEINE AND GLYCINE-RICH PROTEIN, NMR, MINIMIZED STRUCTURE 8PBR ; 2.06 ; Mutant R1475Q of the dihydroorotase domain of human CAD protein in apo form 4ZGD ; 2.25 ; Mutant R157A of Fe-Type Nitrile Hydratase from Comamonas testosteroni Ni1 8PBI ; 1.5 ; Mutant R1617Q of the dihydroorotase domain of human CAD protein bound to the inhibitor fluoroorotate 8PBH ; 1.87 ; Mutant R1617Q of the dihydroorotase domain of human CAD protein bound to the substrate carbamoyl aspartate 8PBK ; 1.69 ; Mutant R1722W of the dihydroorotase domain of human CAD protein bound to the inhibitor fluoorotate 8PBJ ; 1.55 ; Mutant R1722W of the dihydroorotase domain of human CAD protein bound to the substrate carbamoyl aspartate 8PBP ; 1.54 ; Mutant R1785C of the dihydroorotase domain of human CAD protein bound to the substrate carbamoyl aspartate 8PBN ; 1.71 ; Mutant R1789Q of the dihydroorotase domain of human CAD protein bound to the inhibitor fluoorotate 8PBM ; 1.28 ; Mutant R1789Q of the dihydroorotase domain of human CAD protein bound to the substrate dihydroorotate 8PBQ ; 1.54 ; Mutant R1810Q of the dihydroorotase domain of human CAD protein bound to the substrates 2FEM ; 1.9 ; Mutant R188M of the Cytidine Monophosphate Kinase From E. Coli 2FEO ; 2.8 ; Mutant R188M of The Cytidine Monophosphate Kinase from E. coli complexed with dCMP 2EN5 ; 1.9 ; Mutant R262H structure of PH0725 from Pyrococcus horikoshii OT3 6FF9 ; 2.0 ; Mutant R280K of human P53 2V2N ; 1.55 ; Mutant R59M recombinant horse spleen apoferritin cocrystallized with haemin in acidic conditions 2V2O ; 1.87 ; Mutant R59M recombinant horse spleen apoferritin cocrystallized with haemin in basic conditions 2V2S ; 1.37 ; Mutant R59M recombinant horse spleen apoferritin crystallized in acidic conditions 1AE3 ; 2.0 ; MUTANT R82C OF GENE V PROTEIN (SINGLE-STRANDED DNA BINDING PROTEIN) 3C7Y ; 1.95 ; Mutant R96A OF T4 lysozyme in wildtype background at 298K 4REO ; 1.35 ; Mutant ribosomal protein l1 from thermus thermophilus with threonine 217 replaced by valine 3TG8 ; 1.95 ; Mutant ribosomal protein L1 lacking ala158 from thermus thermophilus 8JZI ; 1.76 ; Mutant S-adenosylmethionine synthase from C. glutamicum 7R2W ; 1.6 ; Mutant S-adenosylmethionine synthetase from E.coli complexed with AMPPNP and methionine 2ED5 ; 2.1 ; Mutant S147M structure of PH0725 from Pyrococcus horikoshii OT3 4KQX ; 1.8 ; Mutant Slackia exigua KARI DDV in complex with NAD and an inhibitor 7ENO ; 3.15 ; Mutant strain M3 of foot-and-mouth disease virus type O 1M03 ; 1.9 ; Mutant Streptomyces plicatus beta-hexosaminidase (D313A) in complex with product (GlcNAc) 1M04 ; 1.95 ; Mutant Streptomyces plicatus beta-hexosaminidase (D313N) in complex with product (GlcNAc) 4H0F ; 2.4 ; Mutant Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae 4M72 ; 2.1 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus 4M73 ; 2.0 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus 4M74 ; 2.2 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus 4M6X ; 2.3 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus complexed with S-adenosyl-L-homocysteine and methylphenylpyruvic acid 4M6Y ; 2.5 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus complexed with S-adenosyl-L-homocysteine and methylphenylpyruvic acid 4M71 ; 2.21 ; Mutant structure of methyltransferase from Streptomyces hygroscopicus complexed with S-adenosyl-L-homocysteine and methylphenylpyruvic acid 3W8R ; 2.5 ; Mutant structure of Thermus thermophilus HB8 uridine-cytidine kinase 5UTL ; 1.92 ; Mutant Structures of Streptococcus Agalactiae GBS Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) 5UTM ; 1.77 ; Mutant Structures of Streptococcus Agalactiae GBS Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) 5V8X ; 2.95 ; Mutant Structures of Streptococcus Agalactiae GBS Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) 5V8Y ; 1.95 ; Mutant Structures of Streptococcus Agalactiae GBS Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) 2EH4 ; 2.1 ; Mutant T146M structure of PH0725 from Pyrococcus horikoshii OT3 5OMW ; 2.6 ; Mutant T252A of E. coli leucyl-tRNA synthetase, tRNA(leu) and leucyl-adenylate analogue in the aminoacylation conformation 7Q30 ; 1.901 ; Mutant T91A of uridine phosphorylase from Shewanella oneidensis 7Q2W ; 1.654 ; Mutant T91S of uridine phosphorylase from Shewanella oneidensis 5DIM ; 3.32 ; Mutant toxin in 'native' space group 3KXC ; 2.0 ; Mutant transport protein 1O8X ; 1.3 ; Mutant tryparedoxin-I Cys43Ala 1CJ3 ; 2.5 ; MUTANT TYR38GLU OF PARA-HYDROXYBENZOATE HYDROXYLASE 2ELE ; 2.4 ; Mutant V18C structure of PH0725 from Pyrococcus horikoshii OT3 2EH2 ; 2.0 ; Mutant V18M structure of PH0725 from Pyrococcus horikoshii OT3 2E4N ; 1.8 ; Mutant V251M structure of PH0725 from Pyrococcus horikoshii OT3 7DHB ; 3.02 ; mutant V507M coiled coil domain of Trypanosoma brucei coronin 7NYM ; 1.614 ; Mutant V517A - SH3 domain of JNK-interacting Protein 1 (JIP1) 7NZB ; 1.959 ; Mutant V517L of the SH3 domain of JNK-interacting protein 1 (JIP1) 2VNL ; 1.8 ; MUTANT Y108Wdel OF THE HEADBINDING DOMAIN OF PHAGE P22 TAILSPIKE C- TERMINally fused to ISOLEUCINE ZIPPER pIIGCN4 (chimera II) 2EEQ ; 2.5 ; Mutant Y29M structure of PH0725 from Pyrococcus horikoshii OT3 7NYN ; 1.537 ; Mutant Y526A of SH3 domain of JNK-interacting Protein 1 (JIP1) 2ENW ; 2.1 ; Mutant Y92H structure of TTHB049 from Thermus thermophilus HB8 1UCI ; 1.8 ; Mutants of RNase Sa 1UCJ ; 1.81 ; Mutants of RNase Sa 1UCK ; 1.8 ; Mutants of RNase Sa 1UCL ; 1.82 ; Mutants of RNase Sa 1UYQ ; 2.2 ; mutated b-glucosidase A from Paenibacillus polymyxa showing increased stability 2L2A ; ; Mutated Domain 11 of the Cytoplasmic region of the Cation-independent mannose-6-phosphate receptor 2GHM ; 2.35 ; Mutated MAP kinase P38 (Mus Musculus) in complex with Inhbitor PG-895449 2GTN ; 1.8 ; Mutated MAP kinase P38 (Mus Musculus) in complex with Inhbitor PG-951717 2GTM ; 1.9 ; Mutated Mouse P38 MAP Kinase Domain in complex with Inhibitor PG-892579 1YW2 ; 2.01 ; Mutated Mus Musculus P38 Kinase (mP38) 3KBD ; ; MUTATED NF KAPPA-B SITE, BI MODEL 1D1K ; 2.0 ; MUTATED SHIGA-LIKE TOXIN B SUBUNIT (D17E/W34A) COMPLEXED WITH RECEPTOR GB3 ANALOGUE 1C4Q ; 1.52 ; MUTATED SHIGA-LIKE TOXIN B SUBUNIT (F30A/W34A) COMPLEXED WITH RECEPTOR GB3 ANALOGUE 1C48 ; 1.6 ; MUTATED SHIGA-LIKE TOXIN B SUBUNIT (G62T) 1D1I ; 1.7 ; MUTATED SHIGA-LIKE TOXIN B SUBUNIT (W34A) COMPLEXED WITH RECEPTOR GB3 ANALOGUE 6MFH ; 2.04 ; Mutated Uronate Dehydrogenase 5ZLM ; 1.7 ; Mutation in the trinuclear site of CotA-laccase: H491C mutant, PH 8.0 5ZLK ; 2.6 ; Mutation in the trinuclear site of CotA-laccase: H493A mutant, PH 8.0 5ZLL ; 2.6 ; Mutation in the trinuclear site of CotA-laccase: H493C mutant, PH 8.0 1HTL ; 2.5 ; MUTATION OF A BURIED RESIDUE CAUSES LACK OF ACTIVITY BUT NO CONFORMATIONAL CHANGE: CRYSTAL STRUCTURE OF E. COLI HEAT-LABILE ENTEROTOXIN MUTANT VAL 97--> LYS 1MG2 ; 2.25 ; MUTATION OF ALPHA PHE55 OF METHYLAMINE DEHYDROGENASE ALTERS THE REORGANIZATION ENERGY AND ELECTRONIC COUPLING FOR ITS ELECTRON TRANSFER REACTION WITH AMICYANIN 1MG3 ; 2.4 ; MUTATION OF ALPHA PHE55 OF METHYLAMINE DEHYDROGENASE ALTERS THE REORGANIZATION ENERGY AND ELECTRONIC COUPLING FOR ITS ELECTRON TRANSFER REACTION WITH AMICYANIN 3FZD ; 2.35 ; Mutation of Asn28 disrupts the enzymatic activity and dimerization of SARS 3CLpro 3MYM ; 1.72 ; Mutation of Methionine-86 in Dehaloperoxidase-hemoglobin: Effects of the Asp-His-Fe Triad in a 3/3 Globin 3MYN ; 2.194 ; Mutation of Methionine-86 in Dehaloperoxidase-hemoglobin: Effects of the Asp-His-Fe Triad in a 3/3 Globin 2GTI ; 2.15 ; mutation of MHV coronavirus non-structural protein nsp15 (F307L) 3TK0 ; 1.611 ; mutation of sfALR 2WVJ ; 2.2 ; Mutation of Thr163 to Ser in Human Thymidine Kinase Shifts the Specificity from Thymidine towards the Nucleoside Analogue Azidothymidine 1CTY ; 2.2 ; MUTATION OF TYROSINE-67 IN CYTOCHROME C SIGNIFICANTLY ALTERS THE LOCAL HEME ENVIRONMENT 1CTZ ; 1.9 ; MUTATION OF TYROSINE-67 IN CYTOCHROME C SIGNIFICANTLY ALTERS THE LOCAL HEME ENVIRONMENT 1JQ0 ; 1.7 ; Mutation that destabilize the gp41 core: determinants for stabilizing the SIV/CPmac envelope glycoprotein complex. Mutant structure. 1JPX ; 2.3 ; Mutation that destabilize the gp41 core: determinants for stabilizing the SIV/CPmac envelope glycoprotein complex. Wild type. 4G38 ; 1.56 ; Mutational analysis of sulfite reductase hemoprotein reveals the mechanism for coordinated electron and proton transfer 4G39 ; 2.4 ; Mutational analysis of sulfite reductase hemoprotein reveals the mechanism for coordinated electron and proton transfer 1BCX ; 1.81 ; MUTATIONAL AND CRYSTALLOGRAPHIC ANALYSES OF THE ACTIVE SITE RESIDUES OF THE BACILLUS CIRCULANS XYLANASE 7ANV ; 1.65 ; Mutational and structural analysis of an ancestral D-type dye decolorizing peroxidase 2R49 ; 2.2 ; Mutational and Structural Studies of E85I Reveal the Flexible Loops of Fibrobacter succinogenes 1,3-1,4-beta-D-GlucanaseGlucanase 2ZCF ; 1.43 ; Mutational study on Alpha-Gln90 of Fe-type nitrile hydratase from Rhodococcus sp. N771 3JTQ ; 2.2 ; Mutations in Cephalosporin Acylase Affecting Stability and Autoproteolysis 3JTR ; 2.5 ; Mutations in Cephalosporin Acylase Affecting Stability and Autoproteolysis 6SLC ; 2.3 ; Mutations in SsgB correlate to longitudinal cell division during sporulation of Streptomyces coelicolor 6SUJ ; 3.2 ; Mutations in SsgB correlate to longitudinal cell division during sporulation of Streptomyces coelicolor 5A36 ; 2.0 ; Mutations in the Calponin homology domain of Alpha-Actinin-2 affect Actin binding and incorporation in muscle. 5A37 ; 1.88 ; Mutations in the Calponin homology domain of Alpha-Actinin-2 affect Actin binding and incorporation in muscle. 5A38 ; 1.9 ; Mutations in the Calponin homology domain of Alpha-Actinin-2 affect Actin binding and incorporation in muscle. 5A4B ; 2.01 ; Mutations in the Calponin homology domain of Alpha-Actinin-2 affect Actin binding and incorporation in muscle. 2JWZ ; ; Mutations in the hydrophobic core of ubiquitin differentially affect its recognition by receptor proteins 4A66 ; 1.95 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: D116A mutant 4A67 ; 2.1 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: D116E mutant 4A68 ; 2.0 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: D116N mutant 4AKQ ; 2.1 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: E498D mutant 4AKO ; 1.7 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: E498L mutant 4AKP ; 2.0 ; Mutations in the neighbourhood of CotA-laccase trinuclear site: E498T mutant 1OOC ; 2.94 ; Mutations in the T1.5 loop of pectate lyase A 1PE9 ; 1.6 ; MUTATIONS IN THE T1.5 LOOP OF PECTATE LYASE A 2FUS ; 2.2 ; MUTATIONS OF FUMARASE THAT DISTINGUISH BETWEEN THE ACTIVE SITE AND A NEARBY DICARBOXYLIC ACID BINDING SITE 4Q1W ; 1.85 ; Mutations Outside the Active Site of HIV-1 Protease Alter Enzyme Structure and Dynamic Ensemble of the Active Site to Confer Drug Resistance 4Q1X ; 1.9 ; Mutations Outside the Active Site of HIV-1 Protease Alter Enzyme Structure and Dynamic Ensemble of the Active Site to Confer Drug Resistance 4Q1Y ; 1.5 ; Mutations Outside the Active Site of HIV-1 Protease Alter Enzyme Structure and Dynamic Ensemble of the Active Site to Confer Drug Resistance 4H7V ; 1.8 ; MUTB inactive double mutant D200A-D415N in complex with GLUCOSE 4HA1 ; 2.2 ; MutB inactive double mutant D200A-D415N in complex with isomaltulose 4H8U ; 2.0 ; MUTB inactive double mutant D200A-D415N soaked with sucrose and having as bound ligands sucrose in molecule A and the reaction product trehalulose in molecule B 4H8H ; 2.0 ; MUTB inactive double mutant E254Q-D415N 1B62 ; 2.1 ; MUTL COMPLEXED WITH ADP 1B63 ; 1.9 ; MUTL COMPLEXED WITH ADPNP 1R2Z ; 1.63 ; MutM (Fpg) bound to 5,6-dihydrouracil (DHU) containing DNA 1R2Y ; 2.34 ; MutM (Fpg) bound to 8-oxoguanine (oxoG) containing DNA 1L1T ; 1.8 ; MutM (Fpg) Bound to Abasic-Site Containing DNA 1L1Z ; 1.7 ; MutM (Fpg) Covalent-DNA Intermediate 1L2B ; 2.4 ; MutM (Fpg) DNA End-Product Structure 1L2D ; 2.0 ; MutM (Fpg)-DNA Estranged Guanine Mismatch Recognition Complex 1L2C ; 2.2 ; MutM (Fpg)-DNA Estranged Thymine Mismatch Recognition Complex 4G4R ; 1.95 ; MutM containing F114A mutation bound to oxoG-containing DNA 4G4Q ; 1.86 ; MutM containing F114A mutation bound to undamaged DNA 4G4O ; 1.95 ; MutM containing M77A mutation bound to oxoG-containing DNA 4G4N ; 1.85 ; MutM containing M77A mutation bound to undamaged DNA 2F5N ; 2.0 ; MutM crosslinked to undamaged DNA sampling A:T base pair IC1 2F5P ; 2.0 ; MutM crosslinked to undamaged DNA sampling A:T base pair IC2 2F5O ; 2.05 ; MutM crosslinked to undamaged DNA sampling G:C base pair IC3 3GO8 ; 1.89 ; MutM encountering an intrahelical 8-oxoguanine (oxoG) lesion in EC3-loop deletion complex 3GPP ; 2.15 ; MutM encountering an intrahelical 8-oxoguanine (oxoG) lesion in EC3-T224P complex 3GP1 ; 2.05 ; MutM encountering an intrahelical 8-oxoguanine (oxoG) lesion in EC3-V222P complex 3GPU ; 1.62 ; MutM encountering an intrahelical 8-oxoguanine (oxoG) lesion in EC4-loop deletion complex 3GQ3 ; 1.83 ; MutM encountering an intrahelical 8-oxoguanine (oxoG) lesion in EC5-loop deletion complex 3JR4 ; 2.601 ; MutM interrogating an extrahelical G 3SAU ; 1.65 ; MUTM Interrogation complex 6 3JR5 ; 1.704 ; MutM lesion recognition control complex with N174C crosslinking site 3U6O ; 1.9 ; MutM set 1 ApG 3U6C ; 1.8 ; MutM set 1 ApGo 3U6P ; 1.6 ; MutM set 1 GpG 3U6D ; 1.87 ; MutM set 1 GpGo 3U6S ; 1.77 ; MutM set 1 TpG 3U6E ; 1.7 ; MutM set 1 TpGo 3U6Q ; 1.981 ; MutM set 2 ApGo 3U6L ; 1.97 ; MutM set 2 CpGo 3SAR ; 1.95 ; MUTM Slanted complex 1 3SAS ; 2.05 ; MUTM Slanted complex 4 with R112A mutation 3SAT ; 2.15 ; MUTM Slanted complex 6 with R112A mutation 3SBJ ; 2.1 ; MutM slanted complex 7 3SAV ; 2.125 ; MUTM Slanted complex 8 3SAW ; 2.35 ; MUTM Slanted complex 8 with R112A mutation 5XAE ; 1.996 ; mutNLIR_LC3B 2OK2 ; 2.0 ; MutS C-terminal domain fused to Maltose Binding Protein 5AKB ; 4.71 ; MutS in complex with the N-terminal domain of MutL - crystal form 1 5AKC ; 6.6 ; MutS in complex with the N-terminal domain of MutL - crystal form 2 5AKD ; 7.6 ; MutS in complex with the N-terminal domain of MutL - crystal form 3 7AI7 ; 3.9 ; MutS in Intermediate state 7AI6 ; 6.9 ; MutS in mismatch bound state 7AI5 ; 4.4 ; MutS in Scanning state 7AIB ; 4.7 ; MutS-MutL in clamp state 7AIC ; 5.0 ; MutS-MutL in clamp state (kinked clamp domain) 8OLX ; 3.1 ; MutSbeta bound to (CAG)2 DNA (canonical form) 8OM9 ; 3.32 ; MutSbeta bound to (CAG)2 DNA (open form) 8OMA ; 3.29 ; MutSbeta bound to 61bp homoduplex DNA 1TUM ; ; MUTT PYROPHOSPHOHYDROLASE-METAL-NUCLEOTIDE-METAL COMPLEX, NMR, 16 STRUCTURES 1KBH ; ; Mutual Synergistic Folding in the Interaction Between Nuclear Receptor Coactivators CBP and ACTR 6U7T ; 2.0 ; MutY adenine glycosylase bound to DNA containing a transition state analog (1N) paired with d(8-oxo-G) 6Q0C ; 2.0 ; MutY adenine glycosylase bound to DNA containing a transition state analog (1N) paired with undamaged dG 1VRL ; 2.5 ; MutY adenine glycosylase in complex with DNA and soaked adenine free base 1RRQ ; 2.22 ; MutY adenine glycosylase in complex with DNA containing an A:oxoG pair 1RRS ; 2.4 ; MutY adenine glycosylase in complex with DNA containing an abasic site 5KN9 ; 1.93 ; MutY N-terminal domain in complex with DNA containing an intrahelical oxoG:A base-pair 5KN8 ; 1.81 ; MutY N-terminal domain in complex with undamaged DNA 5HWO ; 1.48 ; MvaS in complex with 3-hydroxy-3-methylglutaryl coenzyme A 5HWQ ; 1.5 ; MvaS in complex with acetoacetyl coenzyme A 5HWR ; 1.5 ; MvaS in complex with coenzyme A 5HWP ; 2.2 ; MvaS with acetylated Cys115 in complex with coenzyme A 7BXF ; 2.7 ; MvcA-Lpg2149 complex 7PNN ; 1.43 ; mVenus released from fusion protein. 2OKZ ; 1.8 ; MVGGVV peptide derived from Alzheimer's A-beta 2ONA ; 2.03 ; MVGGVV peptide derived from Alzheimer's A-beta, residues 35-40 6A3C ; 2.35 ; MVM NES mutant Nm12 in complex with CRM1-Ran-RanBP1 6A3B ; 2.51 ; MVM NES mutant Nm13 in complex with CRM1-Ran-RanBP1 6A3E ; 2.7 ; MVM NES mutant Nm15 in complex with CRM1-Ran-RanBP1 6A3A ; 2.3 ; MVM NES mutant Nm2 in complex with CRM1-Ran-RanBP1 6KFT ; 2.51 ; MVM NS2 mutant Nm42 in complex with CRM1-Ran-RanBP1 6A38 ; 2.69 ; MVM NS2 NES in complex with CRM1-Ran-RanBP1 1MVM ; 3.5 ; MVM(STRAIN I), COMPLEX(VIRAL COAT/DNA), VP2, PH=7.5, T=4 DEGREES C 4NRW ; 2.845 ; MvNei1-G86D 7U32 ; 3.46 ; MVV cleaved synaptic complex (CSC) intasome at 3.4 A resolution 7Z1Z ; 3.5 ; MVV strand transfer complex (STC) intasome in complex with LEDGF/p75 at 3.5 A resolution 8TUU ; 2.5 ; MW Polyomavirus LTA bipartite NLS bound to importin alpha 2 6RWK ; 3.86 ; MxiD N0 N1 and MxiG C-terminal domains of the Shigella type 3 secretion system 2CA5 ; 2.1 ; MxiH needle protein of Shigella Flexneri (monomeric form, residues 1- 78) 6NEB ; ; MYC Promoter G-Quadruplex with 1:6:1 loop length 8OTT ; 3.3 ; MYC-MAX bound to a nucleosome at SHL+5.8 4RRU ; 2.1 ; Myc3 N-terminal JAZ-binding domain[5-242] from arabidopsis 3SSM ; 2.247 ; MycE Methyltransferase from the Mycinamycin Biosynthetic Pathway in Complex with Mg and SAH, Crystal form 1 3SSO ; 1.895 ; MycE Methyltransferase from the Mycinamycin Biosynthetic Pathway in Complex with Mg and SAH, Crystal form 2 3SSN ; 2.392 ; MycE Methyltransferase from the Mycinamycin Biosynthetic Pathway in Complex with Mg, SAH, and Mycinamycin VI 4X7X ; 1.75 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, E139A variant) in complex with Mg, SAH and macrocin 4X7V ; 1.45 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, E139A variant) in complex with Mg, SAH and mycinamicin IV (product) 4X7W ; 1.75 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, E139A variant) in complex with Mg, SAH and mycinamicin VI (MycE substrate) 4X7Y ; 1.4 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, M56A, E139A variant) in complex with Mg and SAH 4X7Z ; 1.44 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, M56A, E139A variant) in complex with Mg, SAH and mycinamicin III (substrate) 4X81 ; 1.59 ; MycF mycinamicin III 3'-O-methyltransferase (E35Q, M56A, E139A variant) in complex with Mg, SAH and mycinamicin VI (MycE substrate) 4XVZ ; 2.49 ; MycF mycinamicin III 3'-O-methyltransferase in complex with Mg 4X7U ; 1.65 ; MycF mycinamicin III 3'-O-methyltransferase in complex with Mg, SAH and mycinamicin III (substrate) 4XVY ; 2.42 ; MycF mycinamicin III 3'-O-methyltransferase in complex with SAH 6RCX ; 2.0 ; Mycobacterial 4'-phosphopantetheinyl transferase PptAb in complex with the ACP domain of PpsC. 1Y11 ; 3.3 ; Mycobacterial adenylyl cyclase Rv1264, holoenzyme, active state 1Y10 ; 2.3 ; Mycobacterial adenylyl cyclase Rv1264, holoenzyme, inhibited state 7RH5 ; 3.0 ; Mycobacterial CIII2CIV2 supercomplex, Inhibitor free 7RH6 ; 3.5 ; Mycobacterial CIII2CIV2 supercomplex, inhibitor free, -Lpqe cyt cc open 7RH7 ; 3.0 ; Mycobacterial CIII2CIV2 supercomplex, Telacebec (Q203) bound 6NHX ; 1.4 ; mycobacterial DNA ligase D complexed with ATP and MES 6NHZ ; 1.8 ; mycobacterial DNA ligase D complexed with ATP and Mg 6DZS ; 2.62 ; Mycobacterial homoserine dehydrogenase ThrA in complex with NADP 6CYZ ; 2.04 ; Mycobacterial homoserine kinase ThrB in complex with AMPPNP 6S2Q ; 2.5 ; Mycobacterial hydrolase 1 6S2R ; 1.45 ; Mycobacterial hydrolase 2 6G3N ; 2.32 ; Mycobacterial hydrolase complex 14. 2GAZ ; 2.61 ; Mycobacterial lipoglycan presentation by CD1d 4Y0L ; 2.4 ; Mycobacterial membrane protein MmpL11D2 4WJ2 ; 2.8 ; Mycobacterial protein 4Y6U ; 2.271 ; Mycobacterial protein 8E9G ; 2.6 ; Mycobacterial respiratory complex I with both quinone positions modelled 8E9H ; 2.7 ; Mycobacterial respiratory complex I, fully-inserted quinone 8E9I ; 2.8 ; Mycobacterial respiratory complex I, semi-inserted quinone 7P5X ; 3.2 ; Mycobacterial RNAP with transcriptional activator PafBC 6BLK ; 1.552 ; Mycobacterial sensor histidine kinase MprB 8EDU ; 2.7 ; Mycobacteriophage Muddy capsid 5DB4 ; 2.28 ; Mycobacterium abscessus NadD in complex with Mg-ATP, space group I41 5DEO ; 2.22 ; Mycobacterium abscessus NadD in complex with nicotinic acid adenine dinucleotide 7YY1 ; 1.697 ; Mycobacterium abscessus Phosphopantetheine adenylyltransferase ternary complex with 4'-phosphopantetheine & non-hydrolyzable ATP analogue (AMPCPP) 7REY ; 1.87 ; MYCOBACTERIUM ABSCESSUS TRNA METHYLTRANSFERASE IN APO FORM 7REZ ; 1.64 ; MYCOBACTERIUM ABSCESSUS TRNA METHYLTRANSFERASE IN COMPLEX WITH S-ADENOSYL-L-HOMOCYSTEINE 7RF0 ; 1.59 ; MYCOBACTERIUM ABSCESSUS TRNA METHYLTRANSFERASE IN COMPLEX WITH S-ADENOSYL-L-HOMOCYSTEINE AND MAGNESIUM 2W3W ; 1.6 ; MYCOBACTERIUM AVIUM DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND A LIPOPHILIC ANTIFOLATE SELECTIVE FOR M. AVIUM DHFR, 6-((2,5- DIETHOXYPHENYL)AMINOMETHYL)-2,4-DIAMINO-5-METHYLPYRIDO(2,3-D) PYRIMIDINE (SRI-8686) 2W3V ; 1.89 ; MYCOBACTERIUM AVIUM DIHYDROFOLATE REDUCTASE COMPLEXED WITH NADPH AND TRIMETHOPRIM 4R9Z ; 2.6 ; Mycobacterium avium subs paratuberculosis tesB protein MAP1729c 7BZ6 ; 3.302 ; Mycobacterium bovis AhpC 1HKV ; 2.6 ; mycobacterium diaminopimelate dicarboxylase (lysa) 1HKW ; 2.8 ; MYCOBACTERIUM DIAMINOPIMELATE DICARBOXYLASE (LysA) 2NTV ; 2.1 ; Mycobacterium leprae InhA bound with PTH-NAD adduct 6CVC ; 2.2 ; Mycobacterium marinum cytochrome P450 CYP124A1 in the substrate-free form 6DCD ; 1.55 ; Mycobacterium marinum cytochrome P450 CYP150A6 in the substrate-free form 6BLD ; 1.997 ; Mycobacterium marinum cytochrome P450 CYP268A2 in complex with pseudoionone 8EC2 ; 2.4 ; Mycobacterium phage Adephagia 8SAJ ; 2.66 ; Mycobacterium phage Adjutor 8EC8 ; 2.5 ; Mycobacterium phage Bobi 8ECJ ; 2.9 ; Mycobacterium phage Cain 8E16 ; 2.5 ; Mycobacterium phage Che8 8ECN ; 2.7 ; Mycobacterium phage Ogopogo 8GIU ; 2.39 ; Mycobacterium phage Patience 2UZH ; 2.2 ; Mycobacterium smegmatis 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) 7Y41 ; 4.1 ; Mycobacterium smegmatis 50S ribosomal subunit from Log Phase of growth 7XAM ; 3.5 ; Mycobacterium smegmatis 50S ribosomal subunit from Stationary phase of growth 7BWR ; 3.5 ; Mycobacterium smegmatis arabinosyltransferase complex EmbB2-AcpM2 in substrate DPA bound asymmetric ""active state"" 7BX8 ; 3.6 ; Mycobacterium smegmatis arabinosyltransferase complex EmbB2-AcpM2 in symmetric ""resting state"" 7NKD ; 3.12 ; Mycobacterium smegmatis ATP synthase b-delta state 1 7NKL ; 3.67 ; Mycobacterium smegmatis ATP synthase b-delta state 2 7NKQ ; 2.98 ; Mycobacterium smegmatis ATP synthase b-delta state 3 7NK7 ; 2.11 ; Mycobacterium smegmatis ATP synthase F1 state 1 7NKH ; 2.78 ; Mycobacterium smegmatis ATP synthase F1 state 2 7NKJ ; 2.17 ; Mycobacterium smegmatis ATP synthase F1 state 3 7NJT ; 2.75 ; Mycobacterium smegmatis ATP synthase Fo combined all classes 7NJU ; 3.74 ; Mycobacterium smegmatis ATP synthase Fo combined class 1 7NJV ; 2.9 ; Mycobacterium smegmatis ATP synthase Fo combined class 2 7NJW ; 3.67 ; Mycobacterium smegmatis ATP synthase Fo combined class 3 7NJX ; 4.32 ; Mycobacterium smegmatis ATP synthase Fo combined class 4 7NJY ; 2.94 ; Mycobacterium smegmatis ATP synthase Fo combined class 5 7NK9 ; 2.9 ; Mycobacterium smegmatis ATP synthase Fo domain state 1 7NKP ; 4.06 ; Mycobacterium smegmatis ATP synthase Fo state 2 7NL9 ; 2.86 ; Mycobacterium smegmatis ATP synthase Fo state 3 7NKB ; 2.9 ; Mycobacterium smegmatis ATP synthase rotor state 1 7NKK ; 3.6 ; Mycobacterium smegmatis ATP synthase rotor state 2 7NKN ; 2.71 ; Mycobacterium smegmatis ATP synthase rotor state 3 7NJK ; 2.52 ; Mycobacterium smegmatis ATP synthase state 1a 7NJL ; 2.71 ; Mycobacterium smegmatis ATP synthase state 1b 7NJM ; 2.84 ; Mycobacterium smegmatis ATP synthase state 1c 7NJN ; 2.64 ; Mycobacterium smegmatis ATP synthase state 1d 7NJO ; 2.92 ; Mycobacterium smegmatis ATP synthase state 1e 7NJP ; 2.84 ; Mycobacterium smegmatis ATP synthase state 2 7NJQ ; 2.67 ; Mycobacterium smegmatis ATP synthase state 3a 7NJR ; 2.56 ; Mycobacterium smegmatis ATP synthase state 3b 7NJS ; 2.46 ; Mycobacterium smegmatis ATP synthase state 3c 6C33 ; 1.8 ; Mycobacterium smegmatis DNA flap endonuclease 6C34 ; 2.2 ; Mycobacterium smegmatis DNA flap endonuclease mutant D125N 4G3T ; 2.346 ; Mycobacterium smegmatis DprE1 - hexagonal crystal form 4G3U ; 2.689 ; Mycobacterium smegmatis DprE1 - monoclinic crystal form 1VEI ; 2.85 ; Mycobacterium smegmatis Dps 1VEQ ; 3.98 ; Mycobacterium smegmatis Dps Hexagonal form 1VEL ; 2.99 ; Mycobacterium smegmatis Dps tetragonal form 5H46 ; 2.85 ; Mycobacterium smegmatis Dps1 mutant - F47E 6C35 ; 1.803 ; Mycobacterium smegmatis flap endonuclease mutant D148N 6C36 ; 1.9 ; Mycobacterium smegmatis flap endonuclease mutant D208N 6Y8O ; 1.6 ; Mycobacterium smegmatis GyrB 22kDa ATPase sub-domain in complex with novobiocin 7CAG ; 3.78 ; Mycobacterium smegmatis LpqY-SugABC complex in the catalytic intermediate state 7CAF ; 3.3 ; Mycobacterium smegmatis LpqY-SugABC complex in the pre-translocation state 7CAE ; 3.44 ; Mycobacterium smegmatis LpqY-SugABC complex in the resting state 5KEI ; 2.325 ; Mycobacterium smegmatis MbtA apo structure 6C30 ; 1.397 ; Mycobacterium smegmatis RimJ (apo form) 6C37 ; 1.696 ; Mycobacterium smegmatis RimJ in complex with CoA-disulfide 6C32 ; 1.898 ; Mycobacterium smegmatis RimJ with AcCoA 7D6X ; 2.88 ; Mycobacterium smegmatis Sdh1 complex in the apo form 7D6V ; 2.53 ; Mycobacterium smegmatis Sdh1 in complex with UQ1 1TEX ; 2.6 ; Mycobacterium smegmatis Stf0 Sulfotransferase with Trehalose 7CAD ; 3.41 ; Mycobacterium smegmatis SugABC complex 6Y8L ; 1.4 ; Mycobacterium thermoresistibile GyrB21 in complex with novobiocin 6Y8N ; 1.5 ; Mycobacterium thermoresistibile GyrB21 in complex with Redx03863 8EM5 ; 1.95 ; Mycobacterium thermoresistible MmpS5 7CLL ; 1.99 ; Mycobacterium tubeculosis enolase in complex with 2-Phosphoglycerate 5Y8G ; 2.01 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate Dehydrogenase (MtHIBADH) 5Y8J ; 1.86 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + (R)-3-hydroxyisobutyrate (R-HIBA) 5Y8I ; 2.04 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + (S)-3-hydroxyisobutyrate (S-HIBA) 5Y8P ; 2.15 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + 3-Hydroxy propionate (3-HP) 5Y8K ; 2.04 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + L-serine 5Y8M ; 2.04 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + NAD + (R)-3-hydroxyisobutyrate (R-HIBA) 5Y8O ; 2.05 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + NAD + 3-Hydroxy propionate (3-HP) 5Y8N ; 2.68 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + NAD + L-serine 5Y8L ; 1.85 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + NAD +(S)-3-hydroxyisobutyrate (S-HIBA) 5Y8H ; 2.1 ; Mycobacterium tuberculosis 3-Hydroxyisobutyrate dehydrogenase (MtHIBADH) + NAD+ 7SVT ; 2.4 ; Mycobacterium tuberculosis 3-hydroxyl-ACP dehydratase HadAB in complex with 1,3-diarylpyrazolyl-acylsulfonamide inhibitor 3PYG ; 1.99 ; Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) in complex with ADP 3PYF ; 1.7 ; Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) in complex with AMP-PNP 3PYE ; 2.0 ; Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) in complex with CDPME 3NE3 ; 1.9 ; Mycobacterium tuberculosis Acyl Carrier Protein Synthase Apo structure 3NE1 ; 2.51 ; Mycobacterium tuberculosis Acyl Carrier Protein Synthase in complex with sulfate ion 6C9S ; 2.23 ; Mycobacterium tuberculosis adenosine kinase bound to (2R,3R,4S,5R)-2-(6-([1,1'-biphenyl]-4-ylethynyl)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 6C9V ; 1.7 ; Mycobacterium tuberculosis adenosine kinase bound to (2R,3S,4R,5R)-2-(hydroxymethyl)-5-(6-(4-phenylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3,4-diol 6C9R ; 2.1 ; Mycobacterium tuberculosis adenosine kinase bound to (2R,3S,4R,5R)-2-(hydroxymethyl)-5-(6-(thiophen-3-yl)-9H-purin-9-yl)tetrahydrofuran-3,4-diol 6C9Q ; 1.95 ; Mycobacterium tuberculosis adenosine kinase bound to 5'-aminoadenosine 6C9P ; 2.0 ; Mycobacterium tuberculosis adenosine kinase bound to 6-methylmercaptopurine riboside 6C67 ; 2.11 ; Mycobacterium tuberculosis adenosine kinase bound to iodotubercidin 6C9N ; 2.1 ; Mycobacterium tuberculosis adenosine kinase bound to sangivamycin 1YBU ; 2.4 ; Mycobacterium tuberculosis adenylyl cyclase Rv1900c CHD, in complex with a substrate analog. 1YBT ; 2.31 ; MYCOBACTERIUM TUBERCULOSIS ADENYLYL CYCLASE, RV1900C CHD 2BMX ; 2.4 ; Mycobacterium tuberculosis AhpC 6SCZ ; 1.57 ; Mycobacterium tuberculosis alanine racemase inhibited by DCS 1F0N ; 1.8 ; MYCOBACTERIUM TUBERCULOSIS ANTIGEN 85B 1F0P ; 1.9 ; MYCOBACTERIUM TUBERCULOSIS ANTIGEN 85B WITH TREHALOSE 3QB9 ; 2.11 ; Mycobacterium tuberculosis bacterioferritin, BfrA 3UOF ; 2.902 ; Mycobacterium tuberculosis bacterioferritin, BfrA 3UOI ; 1.9 ; Mycobacterium tuberculosis bacterioferritin, BfrA 4XTU ; 1.65003 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor (N-({[(1R,2S,3R,4R)-4-(6-amino-9H-purin-9-yl)-2,3-dihydroxycyclopentyl]methyl}sulfamoyl)-5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamide) 4XTV ; 1.45001 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 36 (N-({[(1R,3S)-3-(6-amino-9H-purin-9-yl)cyclopentyl]methyl}sulfamoyl)-5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamide) 4XTW ; 2.30014 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 46 with azide in place of 2'OH 4XTX ; 2.3001 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 57 with azide in place of ribose 2'OH 4XTY ; 1.80003 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 63 with Fluorine in place of 2'OH 4XTZ ; 1.90001 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 69 that has a fluorine in place of the ribose 2'OH 4XU0 ; 1.6 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 73 that has a 2'-methyl on the ribose 4XU1 ; 1.70001 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 82 that incorporates a morpholine in place of the ribose 4XU2 ; 1.85003 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 87 with a 3'deoxy ribose 4XU3 ; 2.24268 ; Mycobacterium tuberculosis biotin ligase complexed with bisubstrate inhibitor 90 that has an acyclic ether in place of the ribose 1SJP ; 3.2 ; Mycobacterium tuberculosis Chaperonin60.2 2O11 ; 1.65 ; Mycobacterium tuberculosis Chorismate synthase 4BAJ ; 2.3 ; MYCOBACTERIUM TUBERCULOSIS CHORISMATE SYNTHASE after exposure to 266nm UV laser 4BAI ; 2.3 ; Mycobacterium tuberculosis Chorismate synthase before exposure to 266 nm UV laser 2O12 ; 1.72 ; Mycobacterium tuberculosis Chorismate synthase in complex with FMN 2QHF ; 1.65 ; Mycobacterium tuberculosis Chorismate synthase in complex with NCA 8A8U ; 3.62 ; Mycobacterium tuberculosis ClpC1 hexamer structure 8A8V ; 3.34 ; Mycobacterium tuberculosis ClpC1 hexamer structure bound to the natural product antibiotic Cyclomarin 8A8W ; 4.29 ; Mycobacterium tuberculosis ClpC1 hexamer structure bound to the natural product antibiotic Ecumycin (class 1) 5I7A ; 2.08 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 1 [3-(3-(3,4-Dichlorophenyl)ureido)benzoic acid] 5I7R ; 1.73 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 2 [3-(3-([1,1'-biphenyl]-3-yl)ureido)benzoic acid] 5IWC ; 2.7 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 3 [4-(3-([1,1'-Biphenyl]-3-yl)ureido)-2-hydroxybenzoic acid] 5IW8 ; 2.04 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 4 [5-(3-([1,1'-Biphenyl]-3-yl)ureido)-2-hydroxybenzoic acid] 5I6D ; 1.64 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 5 [3-(3-(p-Tolyl)ureido) benzoic acid] 5I7H ; 2.57 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 6 [3-(3-(4-Bromophenyl)ureido)benzoic acid] 5I7O ; 2.49 ; Mycobacterium tuberculosis CysM in complex with the Urea-scaffold inhibitor 7 [3-(3-(4-Chlorophenyl)ureido)benzoic acid] 7NQM ; 1.6 ; Mycobacterium tuberculosis Cytochrome P450 CYP121 in complex with lead compound 10 7NQN ; 1.6 ; Mycobacterium tuberculosis Cytochrome P450 CYP121 in complex with lead compound 14 7NQO ; 1.6 ; Mycobacterium tuberculosis Cytochrome P450 CYP121 in complex with lead compound 21 7JT5 ; 2.0 ; Mycobacterium tuberculosis dethiobiotin synthetase in complex with fragment analogue 9 7L1J ; 1.6 ; Mycobacterium tuberculosis dethiobiotin synthetase in complex with Tetrazole 1 7JT6 ; 2.0 ; Mycobacterium tuberculosis dethiobiotin synthetase in complex with Tetrazole 2 5JA3 ; 1.814 ; Mycobacterium tuberculosis Dihydrofolate Reductase complexed with beta- NADPH and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-4'-methoxy-[1,1'-b iphenyl]-4-carboxylic acid (UCP1106) 6DDP ; 1.49 ; Mycobacterium tuberculosis Dihydrofolate Reductase complexed with beta-NADPH and 3'-[(2R)-4-(2,4-diamino-6-ethylpyrimidin-5-yl)but-3-yn-2-yl]-5'-methoxy[1,1'-biphenyl]-4-carboxylic acid 6DDS ; 1.72 ; Mycobacterium tuberculosis Dihydrofolate Reductase complexed with beta-NADPH and 4-[3-[3-[2,4-bis(azanyl)-6-ethyl-pyrimidin-5-yl]prop-2-ynyl]-5-methoxy-phenyl]benzoic acid 6DDW ; 1.4 ; Mycobacterium tuberculosis Dihydrofolate Reductase complexed with beta-NADPH and N-(4-{[(2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl]amino}-2-hydroxybenzene-1-carbonyl)-L-glutamic acid 4M2X ; 2.26 ; Mycobacterium tuberculosis dihydrofolate reductase complexed with trimetrexate (TMQ) 6VSD ; 1.693 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 3-((thiophen-2-ylthio)methyl)benzoic acid (fragment 13) 6VS6 ; 1.853 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 3-(furan-2-yl)-1-methyl-1H-pyrazole-5-carboxylic acid (fragment 2) 6VSE ; 1.758 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 3-(phenoxymethyl)benzoic acid(fragment 14) 6VS9 ; 1.842 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 3-(piperidin-1-ylmethyl)benzoic acid(fragment 11) 6VSF ; 2.012 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 4-(3,4-dihydro-2H-benzo[b][1,4]dioxepin-7-yl)-4-oxobutanoic acid(fragment 16) 6VSG ; 2.304 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 4-(trifluoromethyl)benzene-1,2-diamine(fragment 17) 8COW ; 1.6 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 5-(cyclopropylethynyl)-6-(2-fluorophenyl)pyrimidine-2,4-diamine 8COQ ; 1.7 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 5-(cyclopropylethynyl)-6-(2-methoxyphenyl)pyrimidine-2,4-diamine 8CQ9 ; 1.75 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 5-(cyclopropylethynyl)-6-(4-(trifluoromethyl)phenyl)pyrimidine-2,4-diamine 6VS5 ; 1.758 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 5-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid (fragment 1) 6VVB ; 1.45 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with 6-methyl-5-(4-phenylthiazol-2-yl)-2- (trifluoromethyl)nicotinic acid (fragment 10) 6VS8 ; 1.829 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with ethyl 2-methyl thiazole-4-carboxylate(fragment 3) 6VV6 ; 2.235 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with JEB113 6VV7 ; 1.999 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with JEB136 6VV8 ; 2.683 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with JEB285 6VV9 ; 2.18 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with JEB300 8CQ8 ; 1.8 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with methyl 4-(2,6-diamino-5-(cyclopropylethynyl)pyrimidin-4-yl)benzoate 8COX ; 2.1 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with N-(2-(2,6-diamino-5-(cyclopropylethynyl)pyrimidin-4-yl)phenyl)methanesulfonamide 8CQA ; 2.0 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with N-(4-(2,6-diamino-5-(cyclopropylethynyl)pyrimidin-4-yl)phenyl)acetamide 8COP ; 1.8 ; Mycobacterium tuberculosis dihydrofolate reductase in complex with N-(4-(2,6-diamino-5-(cyclopropylethynyl)pyrimidin-4-yl)phenyl)methanesulfonamide 4FEH ; 2.035 ; Mycobacterium tuberculosis DprE1 - hexagonal crystal form 4FDP ; 2.23 ; Mycobacterium tuberculosis DprE1 - monoclinic crystal form 6HFW ; 2.47 ; Mycobacterium tuberculosis DprE1 in complex with CMP1 6HFV ; 2.05 ; Mycobacterium tuberculosis DprE1 in complex with CMP2 4FDO ; 2.403 ; Mycobacterium tuberculosis DprE1 in complex with CT319 4FDN ; 2.4 ; Mycobacterium tuberculosis DprE1 in complex with CT325 - hexagonal crystal form 4FF6 ; 2.6 ; Mycobacterium tuberculosis DprE1 in complex with CT325 - monoclinic crystal form 5OEQ ; 2.25 ; Mycobacterium tuberculosis DprE1 in complex with inhibitor TCA020 5OEP ; 2.35 ; Mycobacterium tuberculosis DprE1 in complex with inhibitor TCA481 5OEL ; 2.2 ; Mycobacterium tuberculosis DprE1 mutant Y314C in complex with TCA1 1SMC ; 2.1 ; Mycobacterium tuberculosis dUTPase complexed with dUTP in the absence of metal ion. 1SIX ; 1.3 ; Mycobacterium tuberculosis dUTPase complexed with magnesium and alpha,beta-imido-dUTP 1SJN ; 1.8 ; Mycobacterium tuberculosis dUTPase complexed with magnesium and alpha,beta-imido-dUTP 1SNF ; 1.85 ; MYCOBACTERIUM TUBERCULOSIS DUTPASE COMPLEXED WITH MAGNESIUM AND DEOXYURIDINE 5'-MONOPHOSPHATE 1SLH ; 3.0 ; Mycobacterium tuberculosis dUTPase complexed with magnesium and dUDP 5ECT ; 1.3 ; Mycobacterium tuberculosis dUTPase G143STOP mutant 3SXN ; 2.03 ; Mycobacterium tuberculosis Eis protein initiates modulation of host immune responses by acetylation of DUSP16/MKP-7 3SXO ; 2.5 ; Mycobacterium tuberculosis Eis protein initiates modulation of host immune responses by acetylation of DUSP16/MKP-7 2FEZ ; 2.0 ; Mycobacterium tuberculosis EmbR 2FF4 ; 1.9 ; Mycobacterium tuberculosis EmbR in complex with low affinity phosphopeptide 7CKP ; 2.9 ; Mycobacterium tuberculosis Enolase 7CLK ; 2.15 ; Mycobacterium tuberculosis enolase in complex with alternate 2-phosphoglycerate 7DLR ; 2.25 ; Mycobacterium tuberculosis enolase mutant - E163A 7E4F ; 2.3 ; Mycobacterium tuberculosis enolase mutant - E204A complex with phosphoenolpyruvate 6L7D ; 3.0 ; Mycobacterium tuberculosis enolase mutant - S42A 2O15 ; 1.95 ; Mycobacterium tuberculosis epsp synthase after partial products withdrawal 2O0X ; 1.96 ; Mycobacterium tuberculosis epsp synthase in complex with intermediate 2O0Z ; 2.0 ; Mycobacterium tuberculosis epsp synthase in complex with product (EPS) 2O0D ; 1.6 ; Mycobacterium tuberculosis epsp synthase in complex with s3p 2O0B ; 1.15 ; Mycobacterium tuberculosis epsp synthase in complex with S3P (partially photolyzed) 2O0E ; 1.81 ; Mycobacterium tuberculosis epsp synthase in complex with S3P and PEP 2BJB ; 1.8 ; Mycobacterium Tuberculosis Epsp Synthase In Unliganded State 2QJ3 ; 3.0 ; Mycobacterium tuberculosis FabD 3R44 ; 1.8 ; Mycobacterium tuberculosis fatty acyl CoA synthetase 3OJ5 ; 2.845 ; Mycobacterium tuberculosis ferritin homolog, BfrB 3UNO ; 2.503 ; Mycobacterium tuberculosis ferritin homolog, BfrB 2VOS ; 2.0 ; Mycobacterium tuberculosis Folylpolyglutamate synthase complexed with ADP 1LQU ; 1.25 ; Mycobacterium tuberculosis FprA in complex with NADPH 1RQ2 ; 1.86 ; MYCOBACTERIUM TUBERCULOSIS FTSZ IN COMPLEX WITH CITRATE 1RQ7 ; 2.6 ; MYCOBACTERIUM TUBERCULOSIS FTSZ IN COMPLEX WITH GDP 6YM1 ; 1.7 ; Mycobacterium tuberculosis FtsZ in complex with GDP 1RLU ; 2.08 ; Mycobacterium tuberculosis FtsZ in complex with GTP-gamma-S 6YM9 ; 2.03 ; Mycobacterium tuberculosis FtsZ in complex with GTP-gamma-S 6Y1U ; 1.68 ; Mycobacterium tuberculosis FtsZ-GDP in complex with 4-hydroxycoumarin 6Y1V ; 2.4 ; Mycobacterium tuberculosis FtsZ-GTP-gamma-S in complex with 4-hydroxycoumarin 2JA2 ; 1.65 ; Mycobacterium tuberculosis glutamyl-tRNA synthetase 3UC1 ; 1.65 ; Mycobacterium tuberculosis gyrase type IIA topoisomerase C-terminal domain 4G3N ; 1.4 ; Mycobacterium tuberculosis gyrase type IIA topoisomerase C-terminal domain at 1.4 A resolution 4NL5 ; 1.9 ; Mycobacterium tuberculosis heme-degrading protein MhuD in complex with heme and cyanide 7EWC ; 2.05 ; Mycobacterium tuberculosis HigA2 (Form I) 7EWD ; 3.2 ; Mycobacterium tuberculosis HigA2 (Form II) 7EWE ; 3.41 ; Mycobacterium tuberculosis HigA2 (Form III) 7SFM ; 2.149 ; Mycobacterium tuberculosis Hip1 crystal structure 2NV6 ; 1.9 ; Mycobacterium tuberculosis InhA (S94A) bound with INH-NAD adduct 4R9R ; 2.9 ; Mycobacterium tuberculosis InhA bound to NITD-564 4R9S ; 3.2 ; Mycobacterium tuberculosis InhA bound to NITD-916 2H9I ; 2.2 ; Mycobacterium tuberculosis InhA bound with ETH-NAD adduct 2NTJ ; 2.5 ; Mycobacterium tuberculosis InhA bound with PTH-NAD adduct 4DRE ; 2.4 ; Mycobacterium tuberculosis InhA in complex with NADH 4DQU ; 2.45 ; Mycobacterium tuberculosis InhA-D148G mutant in complex with NADH 4DTI ; 1.9 ; Mycobacterium tuberculosis InhA-S94A mutant in complex with NADH 6KOQ ; 3.353 ; Mycobacterium tuberculosis initial transcription complex comprising sigma H and 5'-OH RNA of 10 nt 6KON ; 3.0 ; Mycobacterium tuberculosis initial transcription complex comprising sigma H and 5'-OH RNA of 5 nt 6KOO ; 2.8 ; Mycobacterium tuberculosis initial transcription complex comprising sigma H and 5'-OH RNA of 7 nt 6KOP ; 3.303 ; Mycobacterium tuberculosis initial transcription complex comprising sigma H and 5'-OH RNA of 9 nt 3OXH ; 1.75 ; Mycobacterium tuberculosis kinase inhibitor homolog RV0577 5UA1 ; 2.9 ; Mycobacterium tuberculosis KstR in complex with a 18-bp DNA operator 5UA2 ; 2.9002 ; Mycobacterium tuberculosis KstR in complex with a 26-bp DNA operator 6O7F ; 2.303 ; Mycobacterium tuberculosis L-alanine dehydrogenase x-ray structure in complex with N6-isobutyl adenosine 4LMP ; 1.95 ; Mycobacterium tuberculosis L-alanine dehydrogenase x-ray structure in complex with N6-methyl adenosine 6A2Q ; 1.48 ; Mycobacterium tuberculosis LexA C-domain I 6A2R ; 2.25 ; Mycobacterium tuberculosis LexA C-domain II 6A2T ; 1.9 ; Mycobacterium tuberculosis LexA C-domain K197A 6A2S ; 2.5 ; Mycobacterium tuberculosis LexA C-domain S160A 2GQ3 ; 2.3 ; mycobacterium tuberculosis malate synthase in complex with magnesium, malate, and coenzyme A 5YXF ; 1.61 ; Mycobacterium Tuberculosis Methionine aminopeptidase type 1c (C105L mutant) in complex with Methionine 5YOH ; 1.63 ; Mycobacterium Tuberculosis Methionine aminopeptidase type 1c (C105M mutant) in complex with Methionine 5YPD ; 1.62 ; Mycobacterium Tuberculosis Methionine aminopeptidase type 1c (C105N mutant) in complex with Methionine 5YPJ ; 2.01 ; Mycobacterium Tuberculosis Methionine aminopeptidase type 1c (C105N mutant). 5YOI ; 1.63 ; Mycobacterium Tuberculosis Methionine aminopeptidase type 1c (C105T mutant) in complex with Methionine 4IDY ; 2.0 ; Mycobacterium Tuberculosis Methionine aminopeptidase Type 1c in complex with 2-hydroxyethyl disulfide 4IF7 ; 2.0 ; Mycobacterium Tuberculosis Methionine aminopeptidase Type 1c in complex with homocysteine-methyl disulfide 6AX8 ; 2.6 ; Mycobacterium tuberculosis methionyl-tRNA synthetase in complex with methionyl-adenylate 1K44 ; 2.6 ; Mycobacterium tuberculosis Nucleoside Diphosphate Kinase 5XMB ; 3.2 ; Mycobacterium tuberculosis Pantothenate kinase mutant F247A 5XLW ; 2.26 ; Mycobacterium tuberculosis Pantothenate kinase mutant F247A/F254A 5XLV ; 1.8 ; Mycobacterium tuberculosis Pantothenate kinase mutant F254A 8EHQ ; 3.0 ; Mycobacterium tuberculosis paused transcription complex with Bacillus subtilis NusG 6WGU ; 1.65 ; Mycobacterium tuberculosis pduO-type ATP:cobalamin adenosyltransferase 8D32 ; 1.85 ; Mycobacterium tuberculosis pduO-type ATP:cobalamin adenosyltransferase bound to 5-deoxyadenosylrhodibalamin and PPPi 6WGS ; 1.5 ; Mycobacterium tuberculosis pduO-type ATP:cobalamin adenosyltransferase bound to adenosylcobalamin 6WGV ; 2.151 ; Mycobacterium tuberculosis pduO-type ATP:cobalamin adenosyltransferase bound to adenosylcobalamin and PPPi 6WH5 ; 1.866 ; Mycobacterium tuberculosis pduO-type ATP:cobalamin adenosyltransferase bound to cob(II)alamin and PPPi 3ORM ; 2.5 ; Mycobacterium tuberculosis PknB kinase domain D76A mutant 3ORI ; 2.0 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 1) 3ORK ; 1.6 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 2) 3ORL ; 2.9 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 3) 3ORO ; 1.9 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 4) 3ORP ; 2.1 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 5) 3ORT ; 1.9 ; Mycobacterium tuberculosis PknB kinase domain L33D mutant (crystal form 6) 6D8I ; 1.65 ; Mycobacterium tuberculosis polyketide synthase 13 N-terminal acyl carrier protein domain 6D8J ; 1.63 ; Mycobacterium tuberculosis polyketide synthase 13 N-terminal acyl carrier protein domain 4QVB ; 2.3 ; Mycobacterium tuberculosis protein Rv1155 in complex with co-enzyme F420 4X8K ; 2.202 ; Mycobacterium tuberculosis RbpA-SID in complex with SigmaA domain 2 4PPN ; 2.6 ; Mycobacterium tuberculosis RecA citrate bound low temperature structure IIA-BN 4PPG ; 3.0 ; Mycobacterium tuberculosis RecA citrate bound low temperature structure IIA-BR 4PPQ ; 2.85 ; Mycobacterium tuberculosis RecA citrate bound low temperature structure IIA-CR 4PPF ; 2.3 ; Mycobacterium tuberculosis RecA citrate bound low temperature structure IIA-N 4PQR ; 2.8 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIB-BN 4PQF ; 2.8 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIB-CR 4OQF ; 2.8 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIB-SR 4POA ; 2.95 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-BN 4PO9 ; 2.75 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-BR 4PO8 ; 2.7 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-CR 4PTL ; 2.5 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-GM 4PSA ; 2.65 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-N1 4PR0 ; 2.6 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-N3 4PQY ; 2.95 ; Mycobacterium tuberculosis RecA glycerol bound low temperature structure IIC-N4 4PO1 ; 3.4 ; Mycobacterium tuberculosis RecA glycerol bound room temperature structure IIC-RT 4PSK ; 2.8 ; Mycobacterium tuberculosis RecA phosphate bound low temperature structure I-LT 4PSV ; 2.6 ; Mycobacterium tuberculosis RecA phosphate bound room temperature structure I-RT 6B5E ; 1.85 ; Mycobacterium tuberculosis RmlA in complex with dTDP-glucose 6B5K ; 1.6 ; Mycobacterium tuberculosis RmlA in complex with Mg/dTTP 1UPI ; 1.7 ; Mycobacterium tuberculosis rmlC epimerase (Rv3465) 2M4V ; ; Mycobacterium tuberculosis RNA polymerase binding protein A (RbpA) and its interactions with sigma factors 5ZX3 ; 2.751 ; Mycobacterium tuberculosis RNA polymerase holoenzyme with ECF sigma factor sigma H 7U22 ; 3.87 ; Mycobacterium tuberculosis RNA polymerase sigma A holoenzyme open promoter complex containing UMN-7 7RWI ; 3.7 ; Mycobacterium tuberculosis RNA polymerase sigma L holoenzyme open promoter complex containing TNP-2198 5ZX2 ; 2.8 ; Mycobacterium tuberculosis RNA polymerase transcription initiation complex with ECF sigma factor sigma H and 7nt RNA 6JCY ; 3.106 ; Mycobacterium tuberculosis RNA polymerase transcription initiation open complex with a chimeric ECF sigma factor sigH/E 8E95 ; 2.9 ; Mycobacterium tuberculosis RNAP elongation complex 8E82 ; 3.03 ; Mycobacterium tuberculosis RNAP elongation complex with NusG transcription factor 6C05 ; 5.15 ; Mycobacterium tuberculosis RNAP Holo/RbpA in relaxed state 6C06 ; 5.15 ; Mycobacterium tuberculosis RNAP Holo/RbpA/Fidaxomicin 6EDT ; ; Mycobacterium tuberculosis RNAP open promoter complex with RbpA/CarD and AP3 promoter 8E8M ; 3.13 ; Mycobacterium tuberculosis RNAP paused elongation complex 8E79 ; 3.71 ; Mycobacterium tuberculosis RNAP paused elongation complex with Escherichia coli NusG transcription factor 8E74 ; 2.94 ; Mycobacterium tuberculosis RNAP paused elongation complex with NusG transcription factor 6EE8 ; 3.92 ; Mycobacterium tuberculosis RNAP promoter unwinding intermediate complex with RbpA/CarD and AP3 promoter 6EEC ; 3.55 ; Mycobacterium tuberculosis RNAP promoter unwinding intermediate complex with RbpA/CarD and AP3 promoter captured by Corallopyronin 6VW0 ; 3.59 ; Mycobacterium tuberculosis RNAP S456L mutant open promoter complex 6VVZ ; 3.72 ; Mycobacterium tuberculosis RNAP S456L mutant transcription initiation intermediate structure with Sorangicin 6M7J ; 4.4 ; Mycobacterium tuberculosis RNAP with RbpA/us fork and Corallopyronin 7WNU ; 3.2 ; Mycobacterium tuberculosis Rnase J complex with 7nt RNA 5MTW ; 1.84 ; Mycobacterium tuberculosis Rv1957 SecB-like chaperone in complex with a ChAD peptide from Rv1956 HigA1 antitoxin 4HC6 ; 1.8 ; Mycobacterium tuberculosis Rv2523cE77A x-ray structure solved with 1.8 angstrom resolution 6DE5 ; 2.3 ; Mycobacterium tuberculosis Rv2671 complexed with beta-NADPH and 6-ethyl-5-{(3S)-3-[2-methoxy-5-(pyridin-4-yl)phenyl]but-1-yn-1-yl}pyrimidine-2,4-diamine 2Q74 ; 2.6 ; Mycobacterium tuberculosis SuhB 2I1U ; 1.3 ; Mycobacterium tuberculosis thioredoxin C 3NOF ; 1.6 ; Mycobacterium tuberculosis thioredoxin C C40S mutant 3O6T ; 2.4 ; Mycobacterium tuberculosis thioredoxin C C40S mutant in Complex with Quinol Inhibitor PMX464 2GQ2 ; 2.1 ; Mycobacterium tuberculosis ThyX-NADP complex 5UCT ; 2.7 ; Mycobacterium tuberculosis toxin MazF-mt6 8EOE ; 3.2 ; Mycobacterium tuberculosis transcription elongation complex with Bacillus subtilis NusG (EC_LG) 8EOF ; 3.3 ; Mycobacterium tuberculosis transcription elongation complex with Bacillus subtilis NusG (EC_PG) 6JCX ; 2.903 ; Mycobacterium tuberculosis transcription initiation complex with ECF sigma factor sigma H and 6nt RNA 6CYJ ; 2.699 ; Mycobacterium tuberculosis transcriptional regulator 6CYY ; 2.506 ; Mycobacterium tuberculosis transcriptional regulator 6CZ6 ; 2.7 ; Mycobacterium tuberculosis transcriptional regulator 6D2S ; 1.819 ; Mycobacterium tuberculosis transcriptional regulator 7NGD ; 1.47 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGG ; 1.17 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGI ; 1.7 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGJ ; 1.89 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGK ; 1.89 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGM ; 1.76 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGN ; 1.55 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGO ; 2.37 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGR ; 1.92 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGS ; 2.5 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGT ; 2.49 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGU ; 1.26 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGW ; 1.26 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGX ; 1.24 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 7NGY ; 1.27 ; Mycobacterium tuberculosis transcriptional regulator EthR with bound inhibitory compound 2O2J ; 2.56 ; Mycobacterium tuberculosis tryptophan synthase beta chain dimer (apoform) 2O2E ; 2.2 ; Mycobacterium tuberculosis tryptophan synthase beta subunit dimer (apoform) 3ZQJ ; 3.4 ; Mycobacterium tuberculosis UvrA 7KIM ; 3.38 ; Mycobacterium tuberculosis WT RNAP transcription closed promoter complex with WhiB7 transcription factor 6VVX ; 3.39 ; Mycobacterium tuberculosis WT RNAP transcription initiation intermediate structure with Sorangicin 6VVY ; 3.42 ; Mycobacterium tuberculosis WT RNAP transcription open promoter complex with Sorangicin 7KIN ; 2.74 ; Mycobacterium tuberculosis WT RNAP transcription open promoter complex with WhiB7 promoter 7KIF ; 2.94 ; Mycobacterium tuberculosis WT RNAP transcription open promoter complex with WhiB7 transcription factor 2N5Z ; ; Mycobacterium tuberculosis: a dynamic view of the resuscitation promoting factor RpfC catalytic domain 4CXR ; 1.7 ; Mycobaterium tuberculosis transaminase BioA complexed with 1-(1,3- benzothiazol-2-yl)methanamine 4MQP ; 1.83 ; Mycobaterium tuberculosis transaminase BioA complexed with 2-hydrazinylbenzo[d]thiazole 4MQQ ; 1.7 ; Mycobaterium tuberculosis transaminase BioA complexed with benzo[d]thiazole-2-carbohydrazide 4MQR ; 2.1 ; Mycobaterium tuberculosis transaminase BioA complexed with E)-5-hydroxy-4-(((Z)-isonicotinoyldiazenyl)methylene)-6-methyl-1,4-dihydropyridin-3-yl)methyl phosphate 4CXQ ; 1.8 ; Mycobaterium tuberculosis transaminase BioA complexed with substrate KAPA 7Q2B ; 1.85 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT218 7Q2C ; 1.9 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT260 7Q2H ; 1.75 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT275 7Q2D ; 1.89 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT320 7Q2E ; 1.93 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT424 7Q2F ; 1.85 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT585 7Q2G ; 2.0 ; mycolic acid methyltransferase Hma (MmaA4) from Mycobac-terium tuberculosis in complex with ZT726 2OJE ; 3.0 ; Mycoplasma arthritidis-derived mitogen complexed with class II MHC molecule HLA-DR1/HA complex in the presence of EDTA 5OBV ; 2.49 ; Mycoplasma genitalium DnaK deletion mutant lacking SBDalpha in complex with ADP and Pi. 5OBU ; 2.0 ; Mycoplasma genitalium DnaK deletion mutant lacking SBDalpha in complex with AMPPNP. 5OBX ; 1.78 ; Mycoplasma genitalium DnaK-NBD 5OBY ; 1.3 ; Mycoplasma genitalium DnaK-NBD in complex with AMP-PNP 5OBW ; 1.4 ; Mycoplasma genitalium DnaK-NBD in complex with ATP 6RUT ; 2.65 ; Mycoplasma Genitalium Heterodimer Nap Complex (P140-P110 globular) 3MYU ; 1.95 ; Mycoplasma genitalium MG289 7DOL ; 2.002 ; Mycoplasma genitalium RNase R in complex with double-stranded RNA 7DID ; 1.9 ; Mycoplasma genitalium RNase R in complex with ribose methylated single-stranded RNA 7DIC ; 2.242 ; Mycoplasma genitalium RNase R in complex with single-stranded RNA 7OOC ; 3.7 ; Mycoplasma pneumoniae 30S subunit of ribosomes in chloramphenicol-treated cells 7OOD ; 3.4 ; Mycoplasma pneumoniae 50S subunit of ribosomes in chloramphenicol-treated cells 7P6Z ; 3.5 ; Mycoplasma pneumoniae 70S ribosome in untreated cells 8OFJ ; 2.25 ; Mycoplasma pneumoniae CdaM 7NPU ; 4.48 ; MycP5-free ESX-5 inner membrane complex, state I 7NPV ; 6.66 ; MycP5-free ESX-5 inner membrane complex, State II 1PKO ; 1.45 ; Myelin Oligodendrocyte Glycoprotein (MOG) 1PKQ ; 3.0 ; Myelin Oligodendrocyte Glycoprotein-(8-18C5) Fab-complex 7NSR ; 1.5 ; Myelin protein P2 I50del 5LF5 ; 3.8 ; Myelin-associated glycoprotein (MAG) deglycosylated full extracellular domain with co-purified ligand 5LFU ; 4.3 ; Myelin-associated glycoprotein (MAG) glycosylated and lysine-methylated full extracellular domain 4C1M ; 2.0 ; Myeloperoxidase in complex with the revesible inhibitor HX1 6T5L ; 2.17 ; MYO-1 from Myroides odoratimimus. Environmental metallo-beta-lactamases exhibit high enzymatic activity under zinc deprivation 1GR0 ; 1.95 ; myo-inositol 1-phosphate synthase from Mycobacterium tuberculosis in complex with NAD and zinc. 4XF6 ; 2.08 ; myo-inositol 3-kinase bound with its products (ADP and 1D-myo-inositol 3-phosphate) 4XF7 ; 1.93 ; myo-inositol 3-kinase bound with its substrates (AMPPCP and myo-inositol) 3W4S ; 1.78 ; Myo-inositol kinase from Thermococcus kodakarensis 1U1I ; 1.9 ; Myo-inositol phosphate synthase mIPS from A. fulgidus 1JKI ; 2.2 ; myo-Inositol-1-phosphate Synthase Complexed with an Inhibitor, 2-deoxy-glucitol-6-phosphate 7SKF ; 1.282 ; Myocilin OLF mutant A445V 7SIJ ; 1.54 ; Myocilin OLF mutant E352K 7SJT ; 1.54 ; Myocilin OLF mutant K398R 7SIB ; 1.78 ; Myocilin OLF mutant K500R 7SJW ; 1.38 ; Myocilin OLF mutant L303I 6PKD ; 1.9 ; Myocilin OLF mutant N428D/D478H 6PKF ; 1.484 ; Myocilin OLF mutant N428E/D478K 6PKE ; 1.88 ; Myocilin OLF mutant N428E/D478S 7SKE ; 1.24 ; Myocilin OLF mutant R296H 7SKD ; 1.712 ; Myocilin OLF mutant S331L 7SJU ; 1.391 ; Myocilin OLF mutant T293K 7SJV ; 1.39 ; Myocilin OLF mutant T353I 7SKG ; 1.33 ; Myocilin OLF mutant V329M 7T8D ; 1.38 ; Myocilin OLF mutant V449I 1XCH ; 1.7 ; MYOGLOBIN (HORSE HEART) MUTANT WITH LEU 104 REPLACED BY ASN (L104N) 1RSE ; 1.7 ; MYOGLOBIN (HORSE HEART) MUTANT WITH SER 92 REPLACED BY ASP (S92D) 1WLA ; 1.7 ; MYOGLOBIN (HORSE HEART) RECOMBINANT WILD-TYPE 1AZI ; 2.0 ; MYOGLOBIN (HORSE HEART) RECOMBINANT WILD-TYPE COMPLEXED WITH AZIDE 1DWR ; 1.45 ; MYOGLOBIN (HORSE HEART) WILD-TYPE COMPLEXED WITH CO 1NPF ; 1.9 ; MYOGLOBIN (HORSE HEART) WILD-TYPE COMPLEXED WITH NITRIC OXIDE 1NPG ; 1.7 ; MYOGLOBIN (HORSE HEART) WILD-TYPE COMPLEXED WITH NITROSOETHANE 2OHA ; 1.8 ; Myoglobin cavity mutant F138W 3H57 ; 1.7 ; Myoglobin Cavity Mutant H64LV68N Deoxy form 3H58 ; 1.8 ; Myoglobin Cavity Mutant H64LV68N Met form 2OHB ; 1.8 ; Myoglobin cavity mutant I107W 2OH8 ; 1.8 ; Myoglobin cavity mutant I28W 2OH9 ; 1.8 ; Myoglobin cavity mutant V68W 7YLK ; 1.63 ; Myoglobin containing Ir complex 6G5T ; 1.5 ; Myoglobin H64V/V68A in the resting state, 1.5 Angstrom resolution 5XKW ; 1.7 ; myoglobin mutant F43Y/F46Y 7VUC ; 1.4 ; Myoglobin mutant L29I/H64G/V68A 3VAU ; 1.7 ; Myoglobin nitrite structure: nitriheme modified 8ESS ; 1.4 ; Myoglobin variant Mb-cIII complex 8ESU ; 1.04 ; Myoglobin variant Mb-imi complex 4LSD ; 2.28 ; Myokine structure 2XMF ; 1.5 ; Myosin 1e SH3 1B7T ; 2.5 ; MYOSIN DIGESTED BY PAPAIN 1W9L ; 1.95 ; Myosin II Dictyostelium discoideum motor domain S456E bound with MgADP-AlF4 1W9J ; 2.0 ; Myosin II Dictyostelium discoideum motor domain S456Y bound with MgADP-AlF4 1W9I ; 1.75 ; Myosin II Dictyostelium discoideum motor domain S456Y bound with MgADP-BeFx 3GN4 ; 2.7 ; Myosin lever arm 5VT9 ; 1.85 ; Myosin Light chain 1 and MyoA complex 2MYS ; 2.8 ; MYOSIN SUBFRAGMENT-1, ALPHA CARBON COORDINATES ONLY FOR THE TWO LIGHT CHAINS 2F6H ; 2.25 ; Myosin V cargo binding domain 4ZG4 ; 2.36 ; Myosin Vc Pre-powerstroke 5HMP ; 2.397 ; Myosin Vc pre-powerstroke state 2V26 ; 1.75 ; Myosin VI (MD) pre-powerstroke state (Mg.ADP.VO4) 4E7Z ; 2.3 ; Myosin VI (MD) pre-powerstroke state, P21 crystal form 2VB6 ; 2.3 ; Myosin VI (MD-insert2-CaM, Delta Insert1) Post-rigor state (crystal form 2) 2VAS ; 2.4 ; Myosin VI (MD-insert2-CaM, Delta-Insert1) Post-rigor state 4PJJ ; 2.4 ; MYOSIN VI (MD-INSERT2-CAM, DELTA-INSERT1) post-rigor state - long soaking with PO4 4ANJ ; 2.6 ; MYOSIN VI (MDinsert2-GFP fusion) PRE-POWERSTROKE STATE (MG.ADP.AlF4) 4DBR ; 1.95 ; Myosin VI D179Y (MD) pre-powerstroke state 4DBQ ; 2.6 ; MYOSIN VI D179Y (MD-INSERT2-CAM, DELTA-INSERT1) post-rigor state 4E7S ; 2.25 ; Myosin VI D23R I24R R569E (MD) pre-powerstroke state 4PJL ; 2.1 ; Myosin VI motor domain A458E mutant in the Pi release state, space group P212121 - 4PFP ; 2.32 ; Myosin VI motor domain in the Pi release state (with Pi) space group P21 4PFO ; 1.75 ; Myosin VI motor domain in the Pi release state, space group P212121 4PJN ; 2.0 ; Myosin VI motor domain in the Pi release state, space group P212121 - shortly soaked with PO4 4PJM ; 2.05 ; Myosin VI motor domain in the Pi release state, space group P212121 - soaked with PO4 - located in the active site 4PK4 ; 2.78 ; Myosin VI motor domain in the PPS state - from a Pi release state crystal, space group P212121 after long soaking with PO4 5O2L ; 2.2 ; Myosin VI motor domain in the Pre-Transition State 2BKH ; 2.4 ; Myosin VI nucleotide-free (MDInsert2) crystal structure 4DBP ; 2.2 ; Myosin VI nucleotide-free (MDINSERT2) D179Y crystal structure 3L9I ; 2.2 ; Myosin VI nucleotide-free (mdinsert2) L310G mutant crystal structure 2BKI ; 2.9 ; Myosin VI nucleotide-free (MDinsert2-IQ) crystal structure 8ARD ; 2.219 ; Myosin VI proximal tail domain, dimeric 5HMO ; 3.493 ; myosin X motor activity 3TFM ; 2.53 ; Myosin X PH1N-PH2-PH1C tandem 7KCH ; 4.33 ; Myosin XI-F-actin complex 6Z7U ; 2.58 ; Myosin-II motor domain complexed with blebbistatin in a new ADP-release conformation 7B1A ; 2.6 ; Myosin-II-AA mutant motor domain 4K27 ; 2.35 ; Myotonic Dystrophy Type 2 RNA: Structural Studies and Designed Small Molecules that Modulate RNA Function 7LYE ; 1.758 ; Myotoxin I from Bothrops moojeni co-crystallized with synthetic inhibitor Varespladib (LY315920) 6MQF ; 1.693 ; Myotoxin II from Bothrops moojeni complexed with Acetylsalicylic acid 6MQD ; 1.6 ; Myotoxin II from Bothrops moojeni complexed with Rosmarinic Acid 5C16 ; 2.07 ; Myotubularin-related proetin 1 5GNH ; 2.6 ; Myotubularin-related protein 2 7KLN ; 3.6 ; Myoviridae Phage XM1 Neck Region (12-fold) 2KJY ; ; MYPT1(658-714) 2NMT ; 2.9 ; MYRISTOYL-COA:PROTEIN N-MYRISTOYLTRANSFERASE BOUND TO MYRISTOYL-COA AND PEPTIDE ANALOGS 2R2I ; 2.0 ; Myristoylated Guanylate Cyclase Activating Protein-1 with Calcium Bound 1QA5 ; ; MYRISTOYLATED HIV-1 NEF ANCHOR DOMAIN, NMR, 2 STRUCTURES 1IKU ; ; myristoylated recoverin in the calcium-free state, NMR, 22 structures 1JSA ; ; MYRISTOYLATED RECOVERIN WITH TWO CALCIUMS BOUND, NMR, 24 STRUCTURES 5LDL ; ; Myristoylated T41I/T78I mutant of M-PMV matrix protein 1E4M ; 1.2 ; MYROSINASE FROM SINAPIS ALBA 1MYR ; 1.64 ; MYROSINASE FROM SINAPIS ALBA 1E6X ; 1.6 ; MYROSINASE FROM SINAPIS ALBA with a bound transition state analogue,D-glucono-1,5-lactone 1E71 ; 1.5 ; MYROSINASE FROM SINAPIS ALBA with bound ascorbate 1E6S ; 1.35 ; MYROSINASE FROM SINAPIS ALBA with bound gluco-hydroximolactam and sulfate 1E72 ; 1.6 ; Myrosinase from Sinapis alba with bound gluco-hydroximolactam and sulfate or ascorbate 1E6Q ; 1.35 ; MYROSINASE FROM SINAPIS ALBA with the bound transition state analogue gluco-tetrazole 5DYJ ; 2.5 ; Mysosin heavy chain kinase A catalytic domain mutant - D663A 2PQ8 ; 1.45 ; MYST histone acetyltransferase 1 6CT2 ; 2.128 ; MYST histone acetyltransferase KAT6A/B in complex with WM-1119 8TK7 ; 2.53 ; Myxococcus xanthus EncA protein shell with compartmentalized SNAP-tag cargo protein 4PT2 ; 4.6 ; Myxococcus xanthus encapsulin protein (EncA) 6HJH ; 3.3 ; Myxococcus xanthus MglA bound to GDP 6HJO ; 1.98 ; Myxococcus xanthus MglA bound to GDP 6H35 ; 2.3 ; Myxococcus xanthus MglA bound to GDP and Pi with mixed inactive and active switch region conformations 6IZW ; 2.4 ; Myxococcus xanthus MglA bound to GTP-gamma-S and MglB 6H17 ; 1.275 ; Myxococcus xanthus MglA bound to GTPgammaS 6H5B ; 2.8 ; Myxococcus xanthus MglA in complex with its GAP MglB and GTPgammaS 5YMX ; 1.35 ; Myxococcus xanthus MglA in GDP bound conformation 6HJM ; 2.39 ; Myxococcus xanthus MglB 4WHJ ; 3.2 ; Myxovirus Resistance Protein 2 (MxB) 1FFH ; 2.05 ; N AND GTPASE DOMAINS OF THE SIGNAL SEQUENCE RECOGNITION PROTEIN FFH FROM THERMUS AQUATICUS 1NG1 ; 2.03 ; N AND GTPASE DOMAINS OF THE SIGNAL SEQUENCE RECOGNITION PROTEIN FFH FROM THERMUS AQUATICUS 2NG1 ; 2.02 ; N AND GTPASE DOMAINS OF THE SIGNAL SEQUENCE RECOGNITION PROTEIN FFH FROM THERMUS AQUATICUS 3NG1 ; 2.3 ; N AND GTPASE DOMAINS OF THE SIGNAL SEQUENCE RECOGNITION PROTEIN FFH FROM THERMUS AQUATICUS 2MKP ; ; N domain of cardiac troponin C bound to the switch fragment of fast skeletal troponin I at pH 6 6IHG ; 2.397 ; N terminal domain of Mycobacterium avium complex Lon protease 7VBG ; ; N Terminal Domain of PRC1 4M01 ; 2.1 ; N terminal fragment(residues 245-575) of binding region of SraP 6F1U ; 3.4 ; N terminal region of dynein tail domains in complex with dynactin filament and BICDR-1 6OZZ ; 3.304 ; N terminally deleted GapR crystal structure from C. crescentus 7QF6 ; 1.87 ; N(5)-hydroxyornithine:cis-anhydromevalonyl coenzyme A-N(5)-transacylase sidF 6LVV ; 2.8 ; N, N-dimethylformamidase 3WL4 ; 1.54 ; N,N'-diacetylchitobiose deacetylase (Se-derivative) from Pyrococcus furiosus 4XM0 ; 2.8 ; N,N'-diacetylchitobiose deacetylase (SeMet derivative) from Pyrococcus furiosus in the absence of cadmium 4XLZ ; 1.51 ; N,N'-diacetylchitobiose deacetylase (SeMet derivative) from Pyrococcus furiosus in the presence of cadmium 4XM2 ; 2.3 ; N,N'-diacetylchitobiose deacetylase from Pyrococcus furiosus in the absence of cadmium 4XM1 ; 1.8 ; N,N'-diacetylchitobiose deacetylase from Pyrococcus furiosus in the presence of cadmium 3WL3 ; 2.0 ; N,N'-diacetylchitobiose deacetylase from Pyrococcus horikoshii 5B2E ; 1.8 ; N,N'-diacetylchitobiose deacetylase from Pyrococcus horikoshii complexed with its inhibitor MPG (acetate-containing condition) 5B2F ; 1.9 ; N,N'-diacetylchitobiose deacetylase from Pyrococcus horikoshii complexed with its inhibitor MPG (phosphate-containing condition) 8BGN ; 2.76 ; N,N-diacetylchitobiose deacetylase from Pyrococcus chitonophagus 8BGP ; 2.51 ; N,N-diacetylchitobiose deacetylase from Pyrococcus chitonophagus anomalous data 8BGO ; 3.08 ; N,N-diacetylchitobiose deacetylase from Pyrococcus chitonophagus with substrate N,N-diacetylchitobiose 2V0W ; 1.7 ; N- and C-terminal helices of oat LOV2 (404-546) are involved in light- induced signal transduction (cryo-trapped light structure of LOV2 (404-546)) 2V0U ; 1.4 ; n- and c-terminal helices of oat lov2 (404-546) are involved in light-induced signal transduction (cryo dark structure of lov2 (404-546)) 2V1A ; 1.65 ; N- and C-terminal helices of oat LOV2 (404-546) are involved in light-induced signal transduction (room temperature (293K) dark structure of LOV2 (404-546)) 2V1B ; 1.55 ; N- and C-terminal helices of oat LOV2 (404-546) are involved in light-induced signal transduction (room temperature (293K) light structure of LOV2 (404-546)) 3G49 ; 2.5 ; N-(Pyridin-2-yl) Arylsulfonamide Inhibitors of 11b-Hydroxysteroid Dehydrogenase Type 1: Discovery of PF-915275 2QKX ; 2.75 ; N-acetyl glucosamine 1-phosphate uridyltransferase from Mycobacterium tuberculosis complex with N-acetyl glucosamine 1-phosphate 8HUY ; 2.45 ; N-acetyl-(R)-beta-phenylalanine acylase 8I5A ; 2.75 ; N-acetyl-(R)-beta-phenylalanine acylase, 2.75 angstrom resolution 8I59 ; 3.21 ; N-acetyl-(R)-beta-phenylalanine acylase, selenomethionyl derivative 2EPM ; 2.04 ; N-acetyl-B-D-glucoasminidase (GCNA) from Stretococcus gordonii 2EPK ; 1.85 ; N-acetyl-B-D-glucosaminidase (GCNA) from Streptococcus gordonii 2EPL ; 1.4 ; N-acetyl-B-D-glucosaminidase (GCNA) from Streptococcus gordonii 2EPN ; 1.61 ; N-acetyl-B-D-glucosaminidase (GCNA) from Streptococcus gordonii 2EPO ; 1.56 ; N-acetyl-B-D-glucosaminidase (GCNA) from Streptococcus gordonii 6X7Y ; 1.0 ; N-acetyl-glucosamine-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 1GS5 ; 1.5 ; N-acetyl-L-glutamate kinase from Escherichia coli complexed with its substrate N-acetylglutamate and its substrate analog AMPPNP 1FIH ; 1.95 ; N-ACETYLGALACTOSAMINE BINDING MUTANT OF MANNOSE-BINDING PROTEIN A (QPDWG-HDRPY), COMPLEX WITH N-ACETYLGALACTOSAMINE 1FIF ; 1.95 ; N-ACETYLGALACTOSAMINE-SELECTIVE MUTANT OF MANNOSE-BINDING PROTEIN-A (QPDWG-HDRPY) 7P9Y ; 1.94 ; N-acetylglucosamine kinase from Plesiomonas shigelloides compexed with alpha-N-acetylglucosamine 7P7W ; 1.57 ; N-acetylglucosamine kinase from Plesiomonas shigelloides compexed with alpha-N-acetylglucosamine and ADP 7P9P ; 2.11 ; N-acetylglucosamine kinase from Plesiomonas shigelloides compexed with alpha-N-acetylglucosamine and AMP-PNP inhibitor 7P9L ; 1.75 ; N-acetylglucosamine kinase from Plesiomonas shigelloides compexed with alpha-N-acetylglucosamine-6-phosphate 7S6N ; 2.7 ; N-acetylglucosamine-1-phosphotransferase (GNPT) alpha and beta subunits (GNPTAB) catalytic domain, from zebrafish 7SJ2 ; 2.3 ; N-acetylglucosamine-1-phosphotransferase (GNPT) alpha and beta subunits (GNPTAB) catalytic domain, from zebrafish, in complex with uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and magnesium 7S69 ; 3.04 ; N-acetylglucosamine-1-phosphotransferase (GNPT) gamma subunit (GNPTG), from clawed frog 6F04 ; 1.699 ; N-acetylglucosamine-2-epimerase 3IV8 ; 2.53 ; N-acetylglucosamine-6-phosphate deacetylase from Vibrio cholerae complexed with fructose 6-phosphate 3EGJ ; 2.9 ; N-acetylglucosamine-6-phosphate deacetylase from Vibrio cholerae. 4USJ ; 2.85 ; N-acetylglutamate kinase from Arabidopsis thaliana in complex with PII from Chlamydomonas reinhardtii 4WH1 ; 2.05 ; N-Acetylhexosamine 1-kinase (ligand free) 4WH2 ; 1.847 ; N-acetylhexosamine 1-kinase in complex with ADP 4WH3 ; 1.8 ; N-acetylhexosamine 1-kinase in complex with ATP 4OCQ ; 1.878 ; N-acetylhexosamine 1-phosphate kinase in complex with GalNAc 4OCJ ; 1.571 ; N-acetylhexosamine 1-phosphate kinase in complex with GlcNAc 4OCK ; 1.72 ; N-acetylhexosamine 1-phosphate kinase in complex with GlcNAc and AMPPNP 4OCO ; 2.16 ; N-acetylhexosamine 1-phosphate kinase in complex with GlcNAc-1-phosphate 4OCP ; 1.938 ; N-acetylhexosamine 1-phosphate kinase in complex with GlcNAc-1-phosphate and ADP 4OCU ; 1.904 ; N-acetylhexosamine 1-phosphate kinase_ATCC15697 in complex with GlcNAc 4OCV ; 1.472 ; N-acetylhexosamine 1-phosphate kinase_ATCC15697 in complex with GlcNAc and AMPPNP 6Q26 ; 2.328 ; N-Acetylmannosamine kinase from Staphylococcus aureus 6Q27 ; 2.2 ; N-acetylmannosamine kinase with N-acetylmannosamine from Staphylococcus aureus 7MFN ; 1.55 ; N-Acetylmannosamine-6-phosphate 2-epimerase E180A from Staphylococcus aureus (strain MRSA USA300) 6VVA ; 1.84 ; N-Acetylmannosamine-6-phosphate 2-epimerase from Staphylococcus aureus (strain MRSA USA300) 7MQT ; 1.88 ; N-Acetylmannosamine-6-phosphate 2-epimerase from Staphylococcus aureus (strain MRSA USA300) with 5-deoxy substrate bound 7MFS ; 1.51 ; N-Acetylmannosamine-6-phosphate 2-epimerase from Staphylococcus aureus (strain MRSA USA300) with substrate and product bound 5EMI ; 1.12 ; N-acetylmuramoyl-L-alanine amidase AmiC2 of Nostoc punctiforme 8C4D ; 1.97 ; N-acetylmuramoyl-L-alanine amidase from Enterococcus faecium prophage genome 6SSC ; 1.21 ; N-acetylmuramoyl-L-alanine amidase LysC from Clostridium intestinale URNW 5KZE ; 1.74 ; N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus 5KZD ; 2.334 ; N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus with bound sialic acid alditol 1FDY ; 2.45 ; N-ACETYLNEURAMINATE LYASE IN COMPLEX WITH HYDROXYPYRUVATE 1FDZ ; 2.6 ; N-ACETYLNEURAMINATE LYASE IN COMPLEX WITH PYRUVATE VIA BOROHYDRIDE REDUCTION 4JEV ; 1.67 ; N-acetylornithine aminotransferase from S. typhimurium complexed with gabaculine 4JEW ; 1.48 ; N-acetylornithine aminotransferase from S. typhimurium complexed with L-canaline 6TR6 ; 1.35 ; N-acetylserotonin-Notum complex 4A6G ; 2.71 ; N-acyl amino acid racemase from Amycalotopsis sp. Ts-1-60: G291D- F323Y mutant in complex with N-acetyl methionine 5FJP ; 2.58 ; N-acyl amino acid racemase from Amycolatopsis sp Ts-1-60: G291D F323Y I293G mutant in complex with N-acetyl naphthylalanine 5FJT ; 2.11 ; N-acyl amino acid racemase from Amycolatopsis sp. Ts-1-60: G291D F323 mutant in complex with N-acetyl phenylalanine 5FJO ; 2.08 ; N-acyl amino acid racemase from Amycolatopsis sp. Ts-1-60: G291D- F323Y mutant in complex with N-acetyl naphthylalanine 5FJR ; 2.44 ; N-acyl amino acid racemase from Amycolatopsis sp. Ts-1-60: Q26A M50I G291D F323Y mutant in complex with N-acetyl napthylalanine 5FJU ; 2.52 ; N-acyl amino acid racemase from Amycolatopsis sp. Ts-1-60: Q26A M50I G291D F323Y mutant in complex with N-acetyl phenylalanine 4WKS ; 1.629 ; n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ 4WKT ; 1.782 ; n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ 4WKU ; 2.0 ; n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ 4WKV ; 2.1434 ; n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ 7S1N ; 2.11 ; N-Aromatic-Substituted Indazole Derivatives as Brain Penetrant and Orally Bioavailable JNK3 Inhibitors 3FR2 ; 2.2 ; N-Benzyl-indolo carboxylic acids: Design and synthesis of potent and selective adipocyte Fatty-Acid Binding Protein (A-FABP) inhibitors 3FR4 ; 2.16 ; N-Benzyl-indolo carboxylic acids: Design and synthesis of potent and selective adipocyte Fatty-Acid Binding Protein (A-FABP) inhibitors 3FR5 ; 2.2 ; N-Benzyl-indolo carboxylic acids: Design and synthesis of potent and selective adipocyte Fatty-Acid Binding Protein (A-FABP) inhibitors 1NBB ; 2.4 ; N-BUTYLISOCYANIDE BOUND RHODOBACTER CAPSULATUS CYTOCHROME C' 1NCJ ; 3.4 ; N-CADHERIN, TWO-DOMAIN FRAGMENT 8C46 ; 2.0 ; N-Carbamoyl-beta-Alanine Amidohydrolases from Rhizobium radiobacter MDC 8606 8I99 ; 3.17 ; N-carbamoyl-D-amino-acid hydrolase mutant - M4Th3 6P29 ; 1.5 ; N-demethylindolmycin synthase (PluN2) in complex with N-demethylindolmycin 3ZRI ; 1.8 ; N-domain of ClpV from Vibrio cholerae 2H8M ; 1.8 ; N-Domain Of Grp94 In Complex With the 2-Iodo-NECA 2HCH ; 2.3 ; N-Domain Of Grp94 In Complex With the Novel Ligand N-(2-amino)ethyl Carboxyamido Adenosine 2HG1 ; 2.3 ; N-Domain Of Grp94 In Complex With the Novel Ligand N-(2-hydroxyl)ethyl Carboxyamido Adenosine 2GQP ; 1.5 ; N-Domain Of Grp94 In Complex With the Novel Ligand N-Propyl Carboxyamido Adenosine 1U0Z ; 1.9 ; N-Domain Of Grp94 Lacking The Charged Domain In Complex With Radicicol 6D1X ; 2.3 ; N-Domain Of Grp94, with the Charged Domain, In Complex With the Novel Ligand N-Propyl Carboxyamido Adenosine 3TJQ ; 2.001 ; N-domain of HtrA1 3LSD ; 2.03 ; N-Domain of human adhesion/growth-regulatory galectin-9 3LSE ; 2.69 ; N-Domain of human adhesion/growth-regulatory galectin-9 in complex with lactose 1ZAC ; ; N-DOMAIN OF TROPONIN C FROM CHICKEN SKELETAL MUSCLE, NMR, MINIMIZED AVERAGE STRUCTURE 6RJ1 ; 2.65 ; N-Domain P40/P90 Mycoplasma pneumoniae 6TLZ ; 3.1 ; N-Domain P40/P90 Mycoplasma pneumoniae complexed with 3'SL 6TM0 ; 2.8 ; N-Domain P40/P90 Mycoplasma pneumoniae complexed with 6'SL 1GYA ; ; N-GLYCAN AND POLYPEPTIDE NMR SOLUTION STRUCTURES OF THE ADHESION DOMAIN OF HUMAN CD2 7CU5 ; 2.81 ; N-Glycosylation of PD-1 and glycosylation dependent binding of PD-1 specific monoclonal antibody camrelizumab 6D4G ; 2.8 ; N-GTPase domain of p190RhoGAP-A 2GEH ; 2.0 ; N-Hydroxyurea, a versatile zinc binding function in the design of metalloenzyme inhibitors 2OTZ ; 2.07 ; N-methylaniline in complex with T4 Lysozyme L99A 2RBT ; 1.24 ; n-methylbenzylamine in complex with Cytochrome C Peroxidase W191G 1NMT ; 2.45 ; N-MYRISTOYL TRANSFERASE FROM CANDIDA ALBICANS AT 2.45 A 5UUT ; 2.252 ; N-myristoyltransferase 1 (NMT) bound to myristoyl-CoA 2KIC ; ; n-NafY. N-terminal domain of NafY 2RBN ; 1.29 ; N-phenylglycinonitrile in complex with T4 lysozyme L99A/M102Q 2FG7 ; 2.9 ; N-succinyl-L-ornithine transcarbamylase from B. fragilis complexed with carbamoyl phosphate and N-succinyl-L-norvaline 2FG6 ; 2.8 ; N-succinyl-L-ornithine transcarbamylase from B. fragilis complexed with sulfate and N-succinyl-L-norvaline 7BOZ ; 3.8 ; N-teminal of mature bacteriophage T7 tail fiber protein gp17 1SKH ; ; N-terminal (1-30) of bovine Prion protein 1SYO ; 2.2 ; N-terminal 3 domains of CI-MPR bound to mannose 6-phosphate 1SZ0 ; 2.1 ; N-terminal 3 domains of CI-MPR bound to mannose 6-phosphate 1H7S ; 1.95 ; N-terminal 40kDa fragment of human PMS2 1EA6 ; 2.7 ; N-terminal 40kDa fragment of NhPMS2 complexed with ADP 4WUB ; 1.75 ; N-terminal 43 kDa fragment of the E. coli DNA gyrase B subunit grown from 100 mM KCl condition 4XTJ ; 1.92 ; N-terminal 43 kDa fragment of the E. coli DNA gyrase B subunit grown from 100 mM KCl plus 100 mM NaCl condition 4WUC ; 1.9 ; N-terminal 43 kDa fragment of the E. coli DNA gyrase B subunit grown from 100 mM NaCl condition 4WUD ; 1.95 ; N-terminal 43 kDa fragment of the E. coli DNA gyrase B subunit grown from no salt condition 6ZT3 ; 1.56 ; N-terminal 47 kDa fragment of the Mycobacterium smegmatis DNA Gyrase B subunit complexed with ADPNP 6V02 ; 2.46 ; N-terminal 5 domains of CI-MPR 6P8I ; 2.54 ; N-terminal 5 domains of IGFIIR 3U1A ; 2.0 ; N-terminal 81-aa fragment of smooth muscle tropomyosin alpha 3U59 ; 2.5 ; N-terminal 98-aa fragment of smooth muscle tropomyosin beta 3TDU ; 1.5 ; N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex: Structure of a human Cul1WHB-Dcn1P-acetylated Ubc12N complex 3TDZ ; 2.0 ; N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex: Structure of a human Cul1WHB-Dcn1P-stapled acetylated Ubc12N complex 1DXX ; 2.6 ; N-terminal Actin-binding Domain of Human Dystrophin 1AOA ; 2.4 ; N-TERMINAL ACTIN-CROSSLINKING DOMAIN FROM HUMAN FIMBRIN 4M6A ; 2.71 ; N-Terminal beta-Strand Swapping in a Consensus Derived Alternative Scaffold Driven by Stabilizing Hydrophobic Interactions 8B97 ; 0.97 ; N-terminal beta-trefoil lectin domain of the Laccaria bicolor lectin in complex with N-acetyl-lactosamine 5WMD ; 1.27 ; N-terminal bromodomain of BRD4 in complex with OTX-015 5WMG ; 1.19 ; N-terminal bromodomain of BRD4 in complex with OTX-015 5WMA ; 1.401 ; N-terminal bromodomain of BRD4 in complex with PLX5981 6MO8 ; 1.8 ; N-terminal bromodomain of human BRD2 in complex with 4,4'-(quinoline-5,7-diyl)bis(3,5-dimethylisoxazole) inhibitor 6MO9 ; 1.801 ; N-terminal bromodomain of human BRD2 in complex with N-cyclopentyl-7-(3,5-dimethylisoxazol-4-yl)quinoline-5-sulfonamide inhibitor 4UYH ; 1.73 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1-((2R,4S)-2-methyl-4-(phenylamino)-6-(4-(piperidin-1-ylmethyl)phenyl)-3,4-dihydroquinolin-1(2H)-yl)ethanone 4A9H ; 2.05 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1-(2-methyl-1,2,3,4-tetrahydroquinolin-1-yl)ethan-1-one 4A9F ; 1.73 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 1-METHYLPYRROLIDIN-2-ONE 4ALH ; 1.97 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 3,5 dimethyl-4-phenyl-1,2- oxazole 4A9E ; 1.91 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 3-methyl-1,2,3,4- tetrahydroquinazolin-2-one 4A9I ; 2.25 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 3-methyl-1,2,3,4- tetrahydroquinazolin-2-one 4A9O ; 1.78 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 5 ethyl-3-methyl-4-phenyl-1, 2-oxazole 6TQ2 ; 2.26 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH 5-(4-(4-fluorophenyl)-1H-imidazol-5-yl)-1-methylpyridin-2(1H)-one 6DB0 ; 1.7 ; N-Terminal bromodomain of Human BRD2 with a Tetrahydroquinoline analogue 4UYF ; 1.6 ; N-Terminal bromodomain of Human BRD2 with I-BET726 (GSK1324726A) 4ALG ; 1.6 ; N-Terminal Bromodomain of Human BRD2 With IBET-151 6MO7 ; 1.85 ; N-terminal bromodomain of human BRD2 with N-((4-(3-(N-cyclopentylsulfamoyl)-4-methylphenyl)-3-methylisoxazol-5-yl)methyl)acetamide inhibitor 4A9J ; 1.9 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-(4-hydroxyphenyl) acetamide 4A9M ; 2.06 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-cyclopentyl-5-(3,5- dimethyl-1,2-oxazol-4-yl)-2-methylbenzene-1-sulfonamide 4A9N ; 1.85 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD2 WITH N-cyclopropyl-5-(3,5- dimethyl-1,2-oxazol-4-yl)-2-methylbenzene-1-sulfonamide 4AKN ; 1.82 ; N-Terminal Bromodomain of Human BRD2 With tbutyl-phenyl-amino- dimethyl-oxazolyl-quinoline-carboxylic acid 6Z7M ; 1.26 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 (3R,4R)-N-cyclohexyl-4-((3-methyl-2-oxo-1,2-dihydro-1,7-naphthyridin-8-yl)amino)piperidine-3-carboxamide 8PXN ; 1.952 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH (1R,1'R)-7,7'-(ethane-1,2-diylbis(oxy))bis(1,3-dimethyl-1,3-dihydro-2H-benzo[d]azepin-2-one) 8PXM ; 2.378 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH (1R,1'R)-7,7'-(pentane-1,5-diylbis(oxy))bis(1,3-dimethyl-1,3-dihydro-2H-benzo[d]azepin-2-one) 8PXA ; 1.3 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH (S)-5-(1-((1-(1-isopropylpiperidine-4-carbonyl)piperidin-3-yl)methyl)-1H-benzo[d]imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one 4UYD ; 1.37 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 1,3-dimethyl-2-oxo-2,3- dihydro-1H-1,3-benzodiazole-5-carboxamide 6TPY ; 1.8 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 1,3-dimethyl-5-(1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one 4A9L ; 1.6 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 1,3-DIMETHYL-6-(MORPHOLINE- 4-SULFONYL)-1,2,3,4-TETRAHYDROQUINAZOLIN-2-ONE 6TPX ; 1.48 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 1-((1-acetylpiperidin-4-yl)methyl)-2-(4-hydroxy-3,5-dimethylphenyl)-N-methyl-1H-benzo[d]imidazole-5-carboxamide 5ACY ; 2.01 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 1-(2R,4S)-2-methyl-4-(phenylamino)-6-4-(piperidin-1-ylmethyl)phenyl-1,2,3,4- tetrahydroquinolin-1-yl-ethan-1-one 7A9U ; 1.444 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 3-(3-(but-3-yn-1-yl)-3H-diazirin-3-yl)-N-(3-methyl-[1,2,4]triazolo[4,3-a]pyridin-8-yl)propanamide 5MKZ ; 1.62 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 4-chloro-2-methyl-5-(((3-methylthiophen-2-yl)methyl)amino)pyridazin-3(2H)-one 5MLI ; 1.63 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 4-chloro-2-methyl-5-(methylamino)pyridazin-3(2H)-one 6TPZ ; 1.299 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 5-(1-(1,3-dimethoxypropan-2-yl)-5-morpholino-1H-benzo[d]imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one 6TQ1 ; 1.9 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 5-(1-(1,3-dimethoxypropan-2-yl)-5-morpholino-1H-benzo[d]imidazol-2-yl)-1,3-dimethylpyridin-2(1H)-one 5LJ2 ; 1.19 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 5-(5-aminopyridin-3-yl)-8-(((3R,4R)-3-((1,1-dioxidotetrahydro-2H-thiopyran-4-yl)methoxy)piperidin-4-yl)amino)-3-methyl-1,7-naphthyridin-2(1H)-one 4UIZ ; 1.19 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 7-(3,4-dimethoxyphenyl)-2-(4-methanesulfonylpiperazine-1-carbonyl)-5-methyl-4H,5H-thieno-3,2-c- pyridin-4-one 4UIX ; 1.58 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 7-(3,4-dimethoxyphenyl)-N-(1,1-dioxo-1-thian-4-yl)-5-methyl-4-oxo-4H,5H-thieno-3,2-c-pyridine-2- carboxamide 5LJ1 ; 1.9 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 8-(((3R,4R,5S)-3-((4,4-difluorocyclohexyl)methoxy)-5-methoxypiperidin-4-yl)amino)-3-methyl-5-(5-methylpyridin-3-yl)-1,7-naphthyridin-2(1H)-one 5A85 ; 1.72 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 8-(3R,4R)-3-(cyclohexylmethoxy)piperidin-4-ylamino-3-methyl-1,2-dihydro-1,7- naphthyridin-2-one 6HDQ ; 1.7 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH : 8-(((1R,2R,3R,5S)-2-(2-(4,4-difluorocyclohexyl)ethyl)-8-azabicyclo[3.2.1]octan-3-yl)amino)-3-methyl-5-(5-methylpyridin-3-yl)-1,7-naphthyridin-2(1H)-one 7P6V ; 1.17 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH compound 3ag 7P6W ; 1.31 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH compound 3bg 7P6Y ; 1.881 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH compound 5ef 4BJX ; 1.59 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH GSK1324726A (I-BET726) 6ZB3 ; 1.419 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH GSK620 6Z7L ; 1.624 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 with GSK789 7O18 ; 1.7 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH I-BET282 4CL9 ; 1.4 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH I-BET295 7QDL ; 1.67 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 with I-BET567 4CLB ; 1.6 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH IBET-295 6SWN ; 1.28 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH iBET-BD1 (GSK778) 6SWQ ; 1.601 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH iBET-BD2 (GSK046) 4CFK ; 1.55 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH LY294002 4CFL ; 1.32 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH LY303511 4UIY ; 1.3 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH N-(1,1-dioxo-1-thian-4-yl)- 5-methyl-4-oxo-7-3-(trifluoromethyl)phenyl-4H,5H-thieno-3,2-c- pyridine-2-carboximidamide 6Z7G ; 1.59 ; N-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH N-(2-(1H-imidazol-4-yl)ethyl)-4-acetamido-3-(benzyloxy)benzamide 4ICW ; 2.2 ; N-terminal C2 domain of human CEP120 4ICX ; 2.7 ; N-terminal C2 domain of human CEP120 7NF9 ; ; N-terminal C2H2 Zn-finger domain of Clamp 2PQ3 ; 1.3 ; N-Terminal Calmodulin Zn-Trapped Intermediate 1ULP ; ; N-TERMINAL CELLULOSE-BINDING DOMAIN FROM CELLULOMONAS FIMI BETA-1,4-GLUCANASE C, NMR, 25 STRUCTURES 1ULO ; ; N-TERMINAL CELLULOSE-BINDING DOMAIN FROM CELLULOMONAS FIMI BETA-1,4-GLUCANASE C, NMR, MINIMIZED AVERAGE STRUCTURE 3Q0X ; 3.02 ; N-terminal coiled-coil dimer domain of C. reinhardtii SAS-6 homolog Bld12p 4GFA ; 3.55 ; N-terminal coiled-coil dimer of C.elegans SAS-6, crystal form A 4GFC ; 2.85 ; N-terminal coiled-coil dimer of C.elegans SAS-6, crystal form B 1GJJ ; ; N-TERMINAL CONSTANT REGION OF THE NUCLEAR ENVELOPE PROTEIN LAP2 3I8T ; 2.1 ; N-terminal CRD1 domain of mouse Galectin-4 in complex with lactose 4B2F ; 1.88 ; N-terminal deletion mutant of an outer surface protein BBA73 from Borrelia burgdorferi 2NZ8 ; 2.0 ; N-terminal DHPH cassette of Trio in complex with nucleotide-free Rac1 4ICG ; 2.9217 ; N-terminal dimerization domain of H-NS in complex with Hha (Salmonella Typhimurium) 1BB8 ; ; N-TERMINAL DNA BINDING DOMAIN FROM TN916 INTEGRASE, NMR, 25 STRUCTURES 2BB8 ; ; N-TERMINAL DNA BINDING DOMAIN FROM TN916 INTEGRASE, NMR, MINIMIZED AVERAGE STRUCTURE 4ZLX ; 2.31 ; N-terminal DNA binding domain of the antitoxin Phd from phage P1 4HH5 ; 2.0 ; N-terminal domain (1-163) of ClpV1 ATPase from E.coli EAEC Sci1 T6SS. 7BUT ; ; N-terminal domain (NTD) Solution structure of aciniform spidroin (AcSpN) from Nephila antipodiana. 1D2W ; 1.89 ; N-TERMINAL DOMAIN CORE METHIONINE MUTATION 1D2Y ; 2.06 ; N-TERMINAL DOMAIN CORE METHIONINE MUTATION 1D3F ; 2.05 ; N-TERMINAL DOMAIN CORE METHIONINE MUTATION 1D3J ; 1.97 ; N-TERMINAL DOMAIN CORE METHIONINE MUTATION 7UJB ; 4.12 ; N-terminal domain deletion variant of Eta 2WHN ; 2.05 ; N-terminal domain from the PilC type IV pilus biogenesis protein 6HS5 ; 1.8 ; N-terminal domain including the conserved ImpA_N region of the TssA component of the type VI secretion system from Burkholderia cenocepacia 5N4K ; 1.49 ; N-terminal domain of a human Coronavirus NL63 nucleocapsid protein 8JFR ; 3.1 ; N-terminal domain of AcrIIA15 in complex with palindromic DNA substrate 2WQ4 ; 1.42 ; N-terminal domain of BC2L-C Lectin from Burkholderia cenocepacia 5HM6 ; 2.0 ; N-terminal domain of BfmR from Acinetobacter baumannii 2MEK ; ; N-terminal domain of Bilbo1 from Trypanosoma brucei 3UA0 ; 3.0 ; N-Terminal Domain of Bombyx mori Fibroin Mediates the Assembly of Silk in Response to pH Decrease 6YQZ ; 1.39 ; N-terminal domain of BRD4 with biphenyl-methyamino-dimethylpyridazinone 4GQT ; 2.15 ; N-terminal domain of C. elegans Hsp90 3Q0Y ; 2.1 ; N-terminal domain of C. reinhardtii SAS-6 homolog Bld12p 4TPZ ; 1.8 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p F145W (NN2) 4TTY ; 1.9 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p G94D F145W Q147R (NN25) 4TTW ; 1.2 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p K105C F145C (NN18) 4TQ7 ; 2.643 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p Q93E (NN10) 4TO7 ; 1.252 ; N-Terminal domain of C. Reinhardtii SAS-6 homolog bld12p Q93E F145W K146R (NN24) 4TTX ; 2.498 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p variant G94C K146C (NN19) 4TTZ ; 2.5 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p variant G94E F145W Q147K (NN26) 4U2J ; 2.0 ; N-terminal domain of C. Reinhardtii SAS-6 homolog bld12p variant Q93E F145W (NN27) 4U2I ; 2.281 ; N-terminal domain of C. Rheinhardtii SAS-6 homolog bld12p Q93E G94D K146R Q147R (NN23) 2KGF ; ; N-terminal domain of capsid protein from the Mason-Pfizer monkey virus 2CBL ; 2.1 ; N-TERMINAL DOMAIN OF CBL IN COMPLEX WITH ITS BINDING SITE ON ZAP-70 7P3A ; 2.0 ; N-terminal domain of CGI-99 4NC7 ; 2.0 ; N-terminal domain of delta-subunit of RNA polymerase complexed with I3C and nickel ions 4NC8 ; 2.17 ; N-terminal domain of delta-subunit of RNA polymerase complexed with nickel ions 4PQL ; 2.444 ; N-Terminal domain of DNA binding protein 1B79 ; 2.3 ; N-TERMINAL DOMAIN OF DNA REPLICATION PROTEIN DNAB 8U1J ; 3.0 ; N-Terminal domain of DNA-Damage Response Protein C (DdrC) from Deinococcus radiodurans - Crystal form xMJ7102 6SHW ; 2.0 ; N-terminal domain of Drosophila X Virus VP3 6SI6 ; 1.98 ; N-terminal domain of Drosophila X virus VP3 6PQT ; ; N-terminal domain of dynein intermediate chain from Chaetomium thermophilum 6T22 ; 2.21 ; N-terminal domain of EcoKMcrA restriction endonuclease (NEco) in complex with T5hmCGA target sequence 6T21 ; 2.07 ; N-terminal domain of EcoKMcrA restriction endonuclease (NEco) in complex with T5mCGA target sequence 2M7M ; ; N-terminal domain of EhCaBP1 structure 5T12 ; 2.299 ; N-terminal domain of Enzyme 1 - Nitrogen 1AOY ; ; N-TERMINAL DOMAIN OF ESCHERICHIA COLI ARGININE REPRESSOR NMR, 23 STRUCTURES 5CE6 ; 1.7 ; N-terminal domain of FACT complex subunit SPT16 from Cicer arietinum (chickpea) 6A8M ; 1.7 ; N-terminal domain of FACT complex subunit SPT16 from Eremothecium gossypii (Ashbya gossypii) 2F4E ; 2.32 ; N-terminal domain of FKBP42 from Arabidopsis thaliana 7OOM ; 1.8 ; N-terminal domain of FlSp spidroin from Nephila clavipes 4X9L ; 3.1 ; N-terminal domain of Heat shock protein 90 from Oryza sativa 6C5D ; 1.97 ; N-terminal domain of Helicobacter pylori LlaJI.R1 7CZO ; 2.7 ; N-terminal domain of HipA toxin 4YTE ; 2.15 ; N-terminal domain of HmdIII from Methanocaldococcus jannaschii 4XC0 ; 1.77 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with ACP 4XCJ ; 1.75 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with ADP 4XCL ; 1.21 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with AGS 4XD8 ; 1.55 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with ANP 4XDM ; 1.5 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with Geldanamycin 4XE2 ; 1.199 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in complex with peptide 4XKA ; 2.0 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in hexagonal form with glycerol 4XKO ; 2.455 ; N-terminal domain of Hsp90 from Dictyostelium discoideum in hexagonal form with PEG 8CDY ; 1.9 ; N-terminal domain of human apolipoprotein E 8CE0 ; 1.75 ; N-terminal domain of human apolipoprotein E 2W50 ; 1.6 ; N-terminal domain of human conserved dopamine neurotrophic factor (CDNF) 1UUJ ; 1.75 ; N-terminal domain of Lissencephaly-1 protein (Lis-1) 6R64 ; 2.64 ; N-terminal domain of modification dependent EcoKMcrA restriction endonuclease (NEco) in complex with C5mCGG target sequence 5M0W ; 1.39 ; N-terminal domain of mouse Shisa 3 6VZD ; 1.88 ; N-terminal domain of mouse surfactant protein B (K46E/R51E mutant) with bound lipid 6VYN ; 2.2 ; N-terminal domain of mouse surfactant protein B with bound lipid, wild type 6W1B ; 2.31 ; N-terminal domain of mouse surfactant protein B with bound lipid, Y59A/H79A mutant 7MBK ; 2.17 ; N-terminal domain of mouse surfactant protein B, 6W mutant 3WDB ; 1.37 ; N-terminal domain of Mycobacterium tuberculosis ClpC1 3WDC ; 1.18 ; N-terminal domain of Mycobacterium tuberculosis ClpC1 bound to Cyclomarin A 1QCS ; 1.9 ; N-TERMINAL DOMAIN OF N-ETHYLMALEIMIDE SENSITIVE FACTOR (NSF) 2V75 ; 1.8 ; N-terminal domain of Nab2 4YE7 ; 1.4 ; N-terminal domain of Orf22, a Cydia pomonella granulovirus envelope protein 3UH8 ; 2.3 ; N-terminal domain of phage TP901-1 ORF48 8BCQ ; 2.7 ; N-terminal domain of Plasmodium berghei glutamyl-tRNA synthetase (native crystal structure) 8BHD ; 3.17 ; N-terminal domain of Plasmodium berghei glutamyl-tRNA synthetase (Tbxo4 derivative crystal structure) 7M0S ; 1.64 ; N-terminal domain of PmrA from Acinetobacter baumannii 3ZFJ ; ; N-terminal domain of pneumococcal PhtD protein with bound Zn(II) 3IC5 ; 2.08 ; N-terminal domain of putative saccharopine dehydrogenase from Ruegeria pomeroyi. 8E2B ; 1.95 ; N-terminal domain of S. aureus GpsB 8E2C ; 2.4 ; N-terminal domain of S. aureus GpsB in complex with PBP4 fragment 3ZN3 ; 1.9 ; N-terminal domain of S. pombe Cdc23 APC subunit 1QHK ; ; N-TERMINAL DOMAIN OF SACCHAROMYCES CEREVISIAE RNASE HI REVEALS A FOLD WITH A RESEMBLANCE TO THE N-TERMINAL DOMAIN OF RIBOSOMAL PROTEIN L9 1CR5 ; 2.3 ; N-TERMINAL DOMAIN OF SEC18P 1QFP ; 2.8 ; N-TERMINAL DOMAIN OF SIALOADHESIN (MOUSE) 1QFO ; 1.85 ; N-TERMINAL DOMAIN OF SIALOADHESIN (MOUSE) IN COMPLEX WITH 3'SIALYLLACTOSE 1URL ; 2.4 ; N-TERMINAL DOMAIN OF SIALOADHESIN (MOUSE) IN COMPLEX WITH GLYCOPEPTIDE 6N0S ; 1.92 ; N-terminal domain of Staphylothermus marinus McrB 4GCN ; 1.85 ; N-terminal domain of stress-induced protein-1 (STI-1) from C.elegans 1PFT ; ; N-TERMINAL DOMAIN OF TFIIB, NMR 1MWP ; 1.8 ; N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN 2K7R ; ; N-terminal domain of the Bacillus subtilis helicase-loading protein DnaI 4PH3 ; 2.44 ; N-terminal domain of the capsid protein from bovine leukaemia virus (with no beta-hairpin) 3ZHI ; 1.6 ; N-terminal domain of the CI repressor from bacteriophage TP901-1 3ZHM ; 2.6 ; N-terminal domain of the CI repressor from bacteriophage TP901-1 in complex with the OL2 operator half-site 1ABV ; ; N-TERMINAL DOMAIN OF THE DELTA SUBUNIT OF THE F1F0-ATP SYNTHASE FROM ESCHERICHIA COLI, NMR, MINIMIZED AVERAGE STRUCTURE 2KXE ; ; N-terminal domain of the DP1 subunit of an archaeal D-family DNA polymerase 5ME8 ; 3.2 ; N-terminal domain of the human tumor suppressor ING5 5MTO ; 3.1 ; N-terminal domain of the human tumor suppressor ING5 C19S mutant 3H43 ; 2.1 ; N-terminal domain of the proteasome-activating nucleotidase of Methanocaldococcus jannaschii 2B29 ; 1.6 ; N-terminal domain of the RPA70 subunit of human replication protein A. 5CHS ; 1.8 ; N-terminal domain of the vesicular stomatitis virus L protein 4B8B ; 2.801 ; N-Terminal domain of the yeast Not1 6P0F ; 1.683 ; N-terminal domain of Thermococcus Gammatolerans McrB 6P0G ; 2.27 ; N-terminal domain of Thermococcus Gammatolerans McrB bound to m5C DNA 3PFU ; 1.8 ; N-terminal domain of Thiol:disulfide interchange protein DsbD in its reduced form 2TMP ; ; N-TERMINAL DOMAIN OF TISSUE INHIBITOR OF METALLOPROTEINASE-2 (N-TIMP-2), NMR, 49 STRUCTURES 2C5K ; 2.05 ; N-terminal domain of tlg1 complexed with N-terminus of vps51 2C5I ; 2.3 ; N-terminal domain of tlg1 complexed with N-terminus of vps51 in distorted conformation 2C5J ; 2.1 ; N-terminal domain of tlg1, domain-swapped dimer 6O6D ; 1.82 ; N-terminal domain of translation initiation factor IF-3 from Helicobacter pylori 2JHE ; 2.3 ; N-terminal domain of TyrR transcription factor (residues 1 - 190) 4GEI ; 1.5 ; N-terminal domain of VDUP-1 4GEJ ; 2.9 ; N-terminal domain of VDUP-1 7VE6 ; 2.77 ; N-terminal domain of VraR 3I7M ; 1.46 ; N-terminal domain of Xaa-Pro dipeptidase from Lactobacillus brevis. 4CHH ; 2.03 ; N-terminal domain of yeast PIH1p 8HCZ ; 1.48 ; N-terminal domain structure of mycobacterium tuberculosis FadD23 1QDW ; 2.1 ; N-TERMINAL DOMAIN, VOLTAGE-GATED POTASSIUM CHANNEL KV1.2 RESIDUES 33-119 1QDV ; 1.6 ; N-TERMINAL DOMAIN, VOLTAGE-GATED POTASSIUM CHANNEL KV1.2 RESIDUES 33-131 4RR6 ; 1.88 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA (snapshot 1) 4RR7 ; 1.86 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA (snapshot 2) 4RR8 ; 1.86 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA (snapshot 3) 4RR9 ; 1.67 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA (snapshot 4) 4RRA ; 1.7 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA (snapshot 1) 4RRB ; 2.1 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA (snapshot 2) 4RRC ; 1.86 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA (snapshot 3) 4RRD ; 1.86 ; N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA (snapshot 4) 1BF9 ; ; N-TERMINAL EGF-LIKE DOMAIN FROM HUMAN FACTOR VII, NMR, 23 STRUCTURES 2XI5 ; 2.2 ; N-terminal endonuclease domain of La Crosse virus L-protein 2XI7 ; 2.2 ; N-terminal endonuclease domain of La Crosse virus L-protein 6SAC ; 1.02 ; N-terminal expression tag remainder of human Carbonic Anhydrase II covalently modified by fragment 5FWH ; 2.06 ; N-terminal FHA domain from EssC a component of the bacterial Type VII secretion apparatus 7LCP ; 1.9 ; N-terminal finger stabilizes feline drug GC376 in coronavirus 3CL protease 7LCQ ; 2.15 ; N-terminal finger stabilizes feline drug GC376 in coronavirus 3CL protease 2BLN ; 1.2 ; N-terminal formyltransferase domain of ArnA in complex with N-5- formyltetrahydrofolate and UMP 1CS6 ; 1.8 ; N-TERMINAL FRAGMENT OF AXONIN-1 FROM CHICKEN 5AL7 ; 2.92 ; N-terminal fragment of Drosophila melanogaster Sas-6 (F143D), dimerised via the coiled-coil domain. 5AFR ; 5.0 ; N-terminal fragment of dynein heavy chain 2OM5 ; 3.07 ; N-Terminal Fragment of Human TAX1 1GCJ ; 2.6 ; N-TERMINAL FRAGMENT OF IMPORTIN-BETA 8DHY ; 2.15 ; N-terminal fragment of MsbA fused to GFP in complex with copper(II) 1AIL ; 1.9 ; N-TERMINAL FRAGMENT OF NS1 PROTEIN FROM INFLUENZA A VIRUS 3JSY ; 1.6 ; N-terminal fragment of ribosomal protein L10 from Methanococcus jannaschii 1H3L ; 2.375 ; N-terminal fragment of SigR from Streptomyces coelicolor 2OTO ; 3.04 ; N-terminal fragment of Streptococcus pyogenes M1 protein 2GX5 ; 1.74 ; N-terminal GAF domain of transcriptional pleiotropic repressor CodY 2HGV ; 2.3 ; N-terminal GAF domain of transcriptional pleiotropic repressor CodY 2B18 ; 1.8 ; N-terminal GAF domain of transcriptional pleiotropic repressor CodY. 4UC6 ; 2.1 ; N-terminal globular domain of the RSV Nucleoprotein 4UC7 ; 2.45 ; N-terminal globular domain of the RSV Nucleoprotein 4UC9 ; 2.4 ; N-terminal globular domain of the RSV Nucleoprotein in complex with C- terminal dipeptide of the Phosphoprotein 4UCA ; 3.22 ; N-terminal globular domain of the RSV Nucleoprotein in complex with C- terminal peptide of the Phosphoprotein 4UCB ; 2.79 ; N-terminal globular domain of the RSV Nucleoprotein in complex with C- terminal peptide of the Phosphoprotein 4UC8 ; 2.0 ; N-terminal globular domain of the RSV Nucleoprotein in complex with C- terminal phenylalanine of the Phosphoprotein 4UCE ; 2.95 ; N-terminal globular domain of the RSV Nucleoprotein in complex with the Nucleoprotein Phosphoprotein interaction inhibitor M72 4UCC ; 2.05 ; N-terminal globular domain of the RSV Nucleoprotein in complex with the Nucleoprotein Phosphoprotein interaction inhibitor M76 4UCD ; 2.66 ; N-terminal globular domain of the RSV Nucleoprotein in complex with the Nucleoprotein Phosphoprotein interaction inhibitor M81 1MKN ; ; N-TERMINAL HALF OF MIDKINE 2Y3W ; 1.98 ; N-terminal head domain and beginning of coiled coil domain of Danio rerio SAS-6 2Y3V ; 1.92 ; N-terminal head domain of Danio rerio SAS-6 1Z0H ; 2.0 ; N-terminal helix reorients in recombinant C-fragment of Clostridium botulinum type B 5DKT ; 2.9 ; N-terminal His tagged apPOL exonuclease mutant 1BY0 ; ; N-TERMINAL LEUCINE-REPEAT REGION OF HEPATITIS DELTA ANTIGEN 5TCE ; ; N-terminal microdomain of 34-mers from HsDHODH - N-t(DH) 5LV6 ; ; N-terminal motif dimerization of EGFR transmembrane domain in bicellar environment 6WIH ; 1.9 ; N-terminal mutation of ISCU2 (L35H36) traps Nfs1 Cys loop in the active site of ISCU2 without metal present. Structure of human mitochondrial complex Nfs1-ISCU2(L35H36)-ISD11 with E.coli ACP1 at 1.9 A resolution (NIAU)2. 2UUR ; 1.8 ; N-terminal NC4 domain of collagen IX 1L6P ; 1.65 ; N-terminal of DsbD (residues 20-144) from E. coli. 1ODA ; 3.31 ; N-terminal of Sialoadhesin in complex with Me-a-9-N-(biphenyl-4-carbonyl)-amino-9-deoxy-Neu5Ac (BIP compound) 1OD7 ; 3.0 ; N-terminal of Sialoadhesin in complex with Me-a-9-N-(naphthyl-2-carbonyl)-amino-9-deoxy-Neu5Ac (NAP compound) 1OD9 ; 2.1 ; N-terminal of Sialoadhesin in complex with Me-a-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ compound) 6EY0 ; 2.4 ; N-terminal part (residues 30-212) of PorM with the llama nanobody nb01 5IU1 ; 1.7 ; N-terminal PAS domain homodimer of PpANR MAP3K from Physcomitrella patens. 1S6J ; ; N-terminal Region of the Ca2+-saturated calcium regulatory domain (CLD) from Soybean Calcium-dependent Protein Kinase-alpha (CDPK) 2LE3 ; ; N-terminal regulatory segment of carnitine palmitoyltransferase 1A 1E4U ; ; N-terminal RING finger domain of human NOT-4 3HST ; 2.25 ; N-Terminal RNASE H domain of rv2228c from mycobacterium tuberculosis as a fusion protein with maltose binding protein 6PXB ; 1.747 ; N-Terminal SH2 domain of the p120RasGAP 6PXC ; 1.6 ; N-Terminal SH2 domain of the p120RasGAP bound to a p190RhoGAP phosphotyrosine peptide 2BZ8 ; 2.0 ; N-terminal Sh3 domain of CIN85 bound to Cbl-b peptide 2J6K ; 2.77 ; N-TERMINAL SH3 DOMAIN OF CMS (CD2AP HUMAN HOMOLOG) 2J6F ; 1.7 ; N-TERMINAL SH3 DOMAIN OF CMS (CD2AP HUMAN HOMOLOG) BOUND TO CBL-B PEPTIDE 2EYW ; ; N-terminal SH3 domain of CT10-Regulated Kinase 6SDF ; 2.5 ; N-terminal SH3 domain of Grb2 protein 1LOI ; ; N-TERMINAL SPLICE REGION OF RAT C-AMP PHOSPHODIESTERASE, NMR, 7 STRUCTURES 4ZHB ; 1.3 ; N-terminal structure of ankyrin repeat-containing protein legA11 from Legionella pneumophila 5DUK ; 2.352 ; N-terminal structure of putative DNA binding transcription factor from Thermoplasmatales archaeon SCGC AB-539-N05 4GBR ; 3.993 ; N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor 5A0L ; 1.35 ; N-terminal thioester domain of fibronectin-binding protein SfbI from Streptococcus pyogenes 5A0N ; 1.3 ; N-terminal thioester domain of protein F2 like fibronectin-binding protein from Streptococcus pneumoniae 5A0G ; 2.62 ; N-terminal thioester domain of surface protein from Clostridium perfringens 5A0D ; 1.6 ; N-terminal thioester domain of surface protein from Clostridium perfringens, Cys138Ala mutant 4LGI ; 2.301 ; N-terminal truncated NleC structure 3ZFK ; 1.7 ; N-terminal truncated Nuclease Domain of Colicin E7 8V44 ; 2.9 ; N-terminal truncation of CRISPR-associated DinG 1CKL ; 3.1 ; N-TERMINAL TWO DOMAINS OF HUMAN CD46 (MEMBRANE COFACTOR PROTEIN, MCP) 6VGJ ; 2.52 ; N-terminal variant of CXCL13 8F0E ; 1.31 ; N-terminal WD40 domain of beta'-COPI subunit with four chains in the asymmetric unit 8EWX ; 1.24 ; N-terminal WD40 domain of beta'-COPI subunit with two chains in the asymmetric unit 5X6T ; ; N-terminal Zinc Finger of Synaptotagmin-like Protein 4 1E0E ; ; N-terminal zinc-binding HHCC domain of HIV-2 integrase 3RBU ; 1.6 ; N-terminally AviTEV-tagged Human Glutamate Carboxypeptidase II in complex with 2-PMPA 6R74 ; 1.81 ; N-terminally reversed variant of FimA E. coli 6R7E ; 1.79 ; N-terminally reversed variant of FimA E. coli with alanine insertion at position 20 1QQF ; 1.45 ; N-TERMINALLY TRUNCATED C3D,G FRAGMENT OF THE COMPLEMENT SYSTEM 1QSJ ; 1.9 ; N-TERMINALLY TRUNCATED C3DG FRAGMENT 4TVD ; 2.3 ; N-terminally truncated dextransucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299 in complex with D-glucose 4TVC ; 1.85 ; N-terminally truncated dextransucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299 in complex with gluco-oligosaccharides 4TTU ; 2.18 ; N-terminally truncated dextransucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299 in complex with isomaltotriose 6BBK ; 1.73 ; N-terminally truncated group I PilA from Pseudomonas aeruginosa strain 1244 6TTO ; 1.31 ; N-terminally truncated hyoscyamine 6-hydroxylase (tH6H) in complex with 2-oxoglutarate 6TTN ; 1.12 ; N-terminally truncated hyoscyamine 6-hydroxylase (tH6H) in complex with N-oxalylglycine and hyoscyamine 1BOI ; 2.2 ; N-TERMINALLY TRUNCATED RHODANESE 7LUO ; 3.17 ; N-terminus of Skp2 bound to Cyclin A 1R4C ; 2.18 ; N-Truncated Human Cystatin C; Dimeric Form With 3D Domain Swapping 1MVJ ; ; N-TYPE CALCIUM CHANNEL BLOCKER, OMEGA-CONOTOXIN MVIIA NMR, 15 STRUCTURES 1MVI ; ; N-TYPE CALCIUM CHANNEL BLOCKER, OMEGA-CONOTOXIN MVIIA, NMR, 15 STRUCTURES 6TR7 ; 1.47 ; N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide-Notum complex 5O8O ; 6.8 ; N. crassa Tom40 model based on cryo-EM structure of the TOM core complex at 6.8 A 6CKL ; 2.684 ; N. meningitidis CMP-sialic acid synthetase in the presence of CMP and Neu5Ac2en 6CKM ; 1.543 ; N. meningitidis CMP-sialic acid synthetase in the presence of CMP-sialic acid and Ca2+ 6CKK ; 1.8 ; N. meningitidis CMP-sialic acid synthetase in the presence of CTP and Ca2+ 6CKJ ; 1.75 ; N. meningitidis CMP-sialic acid synthetase, ligand-free 1HPN ; ; N.M.R. AND MOLECULAR-MODELLING STUDIES OF THE SOLUTION CONFORMATION OF HEPARIN 8JN0 ; 1.22826 ; N/F domain of alkaline amylase Amy703 4AR0 ; ; N0 domain of Neisseria meningitidis Pilus assembly protein PilQ 2HTY ; 2.5 ; N1 neuraminidase 3CL0 ; 2.2 ; N1 Neuraminidase H274Y + oseltamivir 3CKZ ; 1.9 ; N1 Neuraminidase H274Y + Zanamivir 2HU0 ; 2.95 ; N1 neuraminidase in complex with oseltamivir 1 2HU4 ; 2.5 ; N1 neuraminidase in complex with oseltamivir 2 3CL2 ; 2.538 ; N1 Neuraminidase N294S + Oseltamivir 4IOK ; 2.497 ; N10-formyltetrahydrofolate synthetase from Moorella thermoacetica with ADP, XPO 4IOL ; 2.563 ; N10-formyltetrahydrofolate synthetase from Moorella thermoacetica with ADP/ZD9 and XPO 4IOM ; 2.999 ; N10-formyltetrahydrofolate synthetase from Moorella thermoacetica with folate 4IOJ ; 2.202 ; N10-formyltetrahydrofolate synthetase from Moorella thermoacetica with sulfate 2W8W ; 2.14 ; N100Y SPT with PLP-ser 8CZ5 ; 2.645 ; N11 P domain 2D9 Fab P complex 6UBI ; 1.903 ; N123-VRC34.05 HIV neutralizing antibody in complex with HIV fusion peptide residue 512-519 6UCE ; 1.382 ; N123-VRC34_pI3 HIV neutralizing antibody in complex with HIV fusion peptide residue 512-519 6UCF ; 1.29 ; N123-VRC34_pI4 HIV neutralizing antibody in complex with HIV fusion peptide residue 512-519 6W5B ; 1.15 ; N124D Deamidation Mutant of Human gammaD-Crystallin 1DZG ; 2.8 ; N135Q-S380C-ANTITHROMBIN-III 4HTR ; 1.6 ; N149W variant of SiRHP bound to sulfite 1E2V ; 1.85 ; N153Q mutant of cytochrome f from Chlamydomonas reinhardtii 6WCY ; 1.204 ; N160D Deamidation Mutant of Human gammaD-Crystallin 1E2W ; 1.6 ; N168F mutant of cytochrome f from Chlamydomonas reinhardtii 5FAF ; 1.05 ; N184K pathological variant of gelsolin domain 2 (orthorhombic form) 5FAE ; 1.7 ; N184K pathological variant of gelsolin domain 2 (trigonal form) 6NEH ; 1.52 ; N191D, F205S mutant of scoulerine 9-O-methyltransferase from Thalictrum flavum complexed with (13aS)-3,10-dimethoxy-5,8,13,13a-tetrahydro-6H-isoquino[3,2-a]isoquinoline-2,9-diol and S-ADENOSYL-L-HOMOCYSTEINE 6NEG ; 1.95 ; N191D, F205S mutant of scoulerine-9-O methyltransferase from Thalictrum flavum complexed with S-ADENOSYL-L-HOMOCYSTEINE 1NGQ ; 2.4 ; N1G9 (IGG1-LAMBDA) FAB FRAGMENT 1NGP ; 2.4 ; N1G9 (IGG1-LAMBDA) FAB FRAGMENT COMPLEXED WITH (4-HYDROXY-3-NITROPHENYL) ACETATE 4GZW ; 2.45 ; N2 neuraminidase D151G mutant of A/Tanzania/205/2010 H3N2 in complex with avian sialic acid receptor 4GZS ; 2.35 ; N2 neuraminidase D151G mutant of a/Tanzania/205/2010 H3N2 in complex with hepes 4GZX ; 2.45 ; N2 neuraminidase D151G mutant of A/Tanzania/205/2010 H3N2 in complex with human sialic acid receptor 4GZT ; 2.19 ; N2 neuraminidase D151G mutant of A/Tanzania/205/2010 H3N2 in complex with oseltamivir carboxylate 6BR5 ; 2.03791 ; N2 neuraminidase in complex with a novel antiviral compound 6BR6 ; 2.03984 ; N2 neuraminidase in complex with a novel antiviral compound 8G40 ; 2.8 ; N2 neuraminidase of A/Hong_Kong/2671/2019 in complex with 3 FNI19 Fab molecules 8G3O ; 3.1 ; N2 neuraminidase of A/Hong_Kong/2671/2019 in complex with 3 FNI9 Fab molecules 8G3V ; 2.2 ; N2 neuraminidase of A/Hong_Kong/2671/2019 in complex with 4 FNI19 Fab molecules 8G3P ; 2.5 ; N2 neuraminidase of A/Hong_Kong/2671/2019 in complex with 4 FNI9 Fab molecules 8G3Q ; 2.3 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with 3 FNI17 Fab molecules 8G3M ; 3.0 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with 3 FNI9 Fab molecules 8G30 ; 3.1 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with 4 FNI19 Fab molecules 8G3N ; 2.9 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with 4 FNI9 Fab molecules 4GZO ; 2.6 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with hepes 4GZP ; 2.3 ; N2 Neuraminidase of A/Tanzania/205/2010 H3N2 in complex with oseltamivir carboxylate 4GZQ ; 2.2 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 in complex with sialic acid 8G3R ; 2.3 ; N2 neuraminidase of A/Tanzania/205/2010 H3N2 with S245N S247T mutations in complex with one FNI17 Fab molecule 7UIU ; 2.8 ; N2 sub-domain of IF2 bound to the 30S subunit in the Pseudomonas aeruginosa 70S ribosome initiation complex (focused classification and refinement) 6UG0 ; 1.83 ; N2-bound Nitrogenase MoFe-protein from Azotobacter vinelandii 2N0Q ; ; N2-dG-IQ modified DNA at the G1 position of the NarI recognition sequence 2LBI ; ; N2-dG:N2-dG interstrand cross-link induced by trans-4-hydroxynonenal 1HM4 ; 3.47 ; N219L PENTALENENE SYNTHASE 1HM7 ; 2.9 ; N219L PENTALENENE SYNTHASE 6KIL ; 1.6 ; N21Q mutant thioredoxin from Halobacterium salinarum NRC-1 2PS4 ; 2.46 ; N225D trichodiene synthase 2PS5 ; 2.1 ; N225D Trichodiene Synthase: Complex With Mg and Pyrophosphate 2PS6 ; 2.6 ; N225D/S229T trichodiene synthase 1NTO ; 1.94 ; N249Y MUTANT OF ALCOHOL DEHYDROGENASE FROM THE ARCHAEON SULFOLOBUS SOLFATARICUS-MONOCLINIC CRYSTAL FORM 1NVG ; 2.5 ; N249Y MUTANT OF THE ALCOHOL DEHYDROGENASE FROM THE ARCHAEON SULFOLOBUS SOLFATARICUS-TETRAGONAL CRYSTAL FORM 1CK3 ; 2.28 ; N276D MUTANT OF ESCHERICHIA COLI TEM-1 BETA-LACTAMASE 3WS0 ; 2.0 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (Condition-1A) 3WS1 ; 1.8 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (Condition-1B) 3WS2 ; 2.1 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (Condition-1C) 3WS4 ; 1.9 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (Condition-2A) 3WS5 ; 2.8 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (Condition-2B) 3WRZ ; 1.8 ; N288Q-N321Q mutant BETA-LACTAMASE DERIVED FROM CHROMOHALOBACTER SP.560 (without soaking) 3BAK ; 1.9 ; N298S mutant of Human Pancreatic Alpha-Amylase in complex with nitrate 3BAX ; 1.9 ; N298S Variant of Human Pancreatic Alpha-Amylase in Complex with Azide 3BAY ; 1.99 ; N298S Variant of Human Pancreatic Alpha-Amylase in Complex with Nitrate and Acarbose 2JJF ; 1.95 ; N328A mutant of M. tuberculosis Rv3290c 3VY2 ; 1.6 ; N33D mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3VY5 ; 1.4 ; N33Q mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 1BOX ; 1.6 ; N39S MUTANT OF RNASE SA FROM STREPTOMYCES AUREOFACIENS 4FF1 ; 2.47 ; N4 mini-vRNAP transcription initiation complex, 1 min after soaking GTP, ATP and Mn 4FF2 ; 2.0 ; N4 mini-vRNAP transcription initiation complex, 2 min after soaking GTP, ATP and Mn 4FF3 ; 1.997 ; N4 mini-vRNAP transcription initiation complex, 3 min after soaking GTP, ATP and Mn 4FF4 ; 2.026 ; N4 mini-vRNAP transcription initiation complex, 4 min after soaking GTP, ATP and Mn 2HTV ; 2.8 ; N4 neuraminidase 2HTW ; 3.5 ; N4 neuraminidase in complex with DANA 6LZT ; 1.853 ; N409A mutant of chitin-specific solute binding protein from Vibrio harveyi co-crystalized with chitobiose 2QQD ; 2.0 ; N47A mutant of Pyruvoyl-dependent Arginine Decarboxylase from Methanococcus jannashii 1B6R ; 2.1 ; N5-CARBOXYAMINOIMIDAZOLE RIBONUCLEOTIDE SYNTHETASE FROM E. COLI 1NV8 ; 2.2 ; N5-glutamine methyltransferase, HemK 2WAZ ; 2.3 ; N512P mutant of the DNA binding domain of the Adenovirus 5 ssDNA binding protein 3CQT ; 1.6 ; N53I V55L MUTANT of FYN SH3 DOMAIN 5LR5 ; 2.4 ; N6-methyladenine is accommodated in a conventional A-U basepair 2MVS ; ; N6-Methyladenosine RNA 1JO1 ; ; N7-Guanine Adduct of 2,7-diaminomitosene with DNA 7MN0 ; 2.9 ; N74D mutant of the HIV-1 capsid protein 7MKC ; 2.65 ; N74D mutant of the HIV-1 capsid protein in complex with PF-3450074 (PF74) 2VLN ; 1.6 ; N75A mutant of E9 DNase domain in complex with Im9 1GY7 ; 1.6 ; N77Y point mutant of S.Cerevisiae NTF2 1GYB ; 1.9 ; N77Y point mutant of yNTF2 bound to FxFG nucleoporin repeat 4JF0 ; 2.1 ; N79R mutant of N-acetylornithine aminotransferase 4JEZ ; 1.55 ; N79R mutant of N-acetylornithine aminotransferase complexed with L-canaline 2HT5 ; 2.4 ; N8 Neuraminidase 2HTR ; 2.5 ; N8 neuraminidase in complex with DANA 2HT8 ; 2.4 ; N8 neuraminidase in complex with oseltamivir 2HTU ; 2.2 ; N8 neuraminidase in complex with peramivir 2HTQ ; 2.2 ; N8 neuraminidase in complex with zanamivir 2HT7 ; 2.6 ; N8 neuraminidase in open complex with oseltamivir 8CAF ; 2.66 ; N8C_Fab3b in complex with NEDD8-CUL1(WHB) 1NMA ; 3.0 ; N9 NEURAMINIDASE COMPLEXES WITH ANTIBODIES NC41 AND NC10: EMPIRICAL FREE-ENERGY CALCULATIONS CAPTURE SPECIFICITY TRENDS OBSERVED WITH MUTANT BINDING DATA 1XOE ; 2.2 ; N9 Tern influenza neuraminidase complexed with (2R,4R,5R)-5-(1-Acetylamino-3-methyl-butyl-pyrrolidine-2, 4-dicarobyxylic acid 4-methyl esterdase complexed with 1XOG ; 2.8 ; N9 Tern Influenza neuraminidase complexed with a 2,5-Disubstituted tetrahydrofuran-5-carboxylic acid 2PFN ; 1.9 ; Na in the active site of DNA Polymerase lambda 2BHC ; 2.4 ; Na substituted E. coli Aminopeptidase P 7ZC6 ; 4.27 ; Na+ - translocating ferredoxin: NAD+ reductase (Rnf) of C. tetanomorphum 2AHY ; 2.4 ; Na+ complex of the NaK Channel 3BEU ; 1.05 ; Na+-Dependent Allostery Mediates Coagulation Factor Protease Active Site Selectivity 4HYT ; 3.404 ; Na,K-ATPase in the E2P state with bound ouabain and Mg2+ in the cation-binding site 3TFY ; 2.75 ; Naa50p amino-terminal acetyltransferase bound to substrate peptide fragment and CoA 2JPS ; ; NAB2 N-terminal domain 5L2L ; 1.55 ; Nab2 Zn fingers 5-7 bound to A11G RNA 4LJ0 ; 2.15 ; Nab2 Zn fingers complexed with polyadenosine 3LCN ; 2.0 ; Nab2:Gfd1 complex 2L41 ; ; Nab3 RRM - UCUU complex 4YGJ ; 1.1 ; NaBr--Interactions between Hofmeister Anions and the Binding Pocket of a Protein 6VX3 ; 3.7 ; NaChBac in GDN 6VWX ; 3.1 ; NaChBac in lipid nanodisc 6W6O ; 3.2 ; NaChBac-Nav1.7VSDII chimera and HWTX-IV complex 6VXO ; 3.5 ; NaChBac-Nav1.7VSDII chimera in nanodisc 4YGL ; 1.51 ; NaClO4--Interactions between Hofmeister Anions and the Binding Pocket of a Protein 2DVM ; 1.6 ; NAD complex structure of PH1275 protein from Pyrococcus horikoshii 4R81 ; 1.5 ; NAD(P)H:quinone oxidoreductase from Methanothermobacter marburgensis 6K23 ; 2.8 ; NAD+ bound structure of enoyl-acyl carrier protein reductase (FabI) from Acinetobacter baumanii 5GTK ; 2.6 ; NAD+ complex structure of aldehyde dehydrogenase from bacillus cereus 2PZB ; 1.9 ; NAD+ Synthetase from Bacillus anthracis 2PZA ; 2.4 ; NAD+ Synthetase from Bacillus anthracis with AMP + PPi and Mg2+ 2PZ8 ; 2.0 ; NAD+ Synthetase from Bacillus anthracis with AMP-CPP and Mg2+ 7CM7 ; 2.6 ; NAD+-bound Sarm1 E642A in the self-inhibited state 7CM6 ; 3.0 ; NAD+-bound Sarm1 in the self-inhibited state 1XDW ; 1.98 ; NAD+-dependent (R)-2-Hydroxyglutarate Dehydrogenase from Acidaminococcus fermentans 6T92 ; 1.12 ; NAD+-dependent fungal formate dehydrogenase from Chaetomium thermophilum: A complex of N120C mutant protein with the reduced form of the cofactor NADH and the substrate formate at a secondary site. 6T94 ; 1.15 ; NAD+-dependent fungal formate dehydrogenase from Chaetomium thermophilum: A complex of N120C mutant protein with the reduced form of the cofactor NADH. 6T8Y ; 1.26 ; NAD+-dependent fungal formate dehydrogenase from Chaetomium thermophilum: A complex with the reduced form of the cofactor NADH and the substrate formate at a secondary site. 6T8Z ; 1.21 ; NAD+-dependent fungal formate dehydrogenase from Chaetomium thermophilum: A ternary complex with the oxidised form of the cofactor NAD+ and the substrate formate both at a primary and secondary sites. 2GSD ; 1.95 ; NAD-dependent formate dehydrogenase from bacterium Moraxella sp.C2 in complex with NAD and azide 3N7U ; 2.0 ; NAD-dependent formate dehydrogenase from higher-plant Arabidopsis thaliana in complex with NAD and azide 2GO1 ; 2.1 ; NAD-dependent formate dehydrogenase from Pseudomonas sp.101 2GUG ; 2.28 ; NAD-dependent formate dehydrogenase from Pseudomonas sp.101 in complex with formate 6EXI ; 1.918 ; NAD-free crystal structure of S-adenosyl-L-homocysteine hydrolase from Bradyrhizobium elkanii complexed with adenosine 7CFX ; 2.5 ; NAD-soaked Holo-methanol dehydrogenase (MDH) from Methylococcus capsulatus (Bath) 7SWK ; 1.8 ; NAD/NADP-dependent betaine aldehyde dehydrogenase from Klebsiella pneumoniae subsp. pneumoniae 6YGE ; 1.6 ; NADase from Aspergillus fumigatus 6YGG ; 1.85 ; NADase from Aspergillus fumigatus complexed with a substrate anologue 8PMR ; 1.94 ; NADase from Aspergillus fumigatus with mutated calcium binding motif (D219A/E220A) 8PMS ; 2.4 ; NADase from Aspergillus fumigatus with replaced C-terminus from Neurospora crassa 6YGF ; 1.7 ; NADase from Aspergillus fumigatus with trapped reaction products 2NPX ; 2.4 ; NADH BINDING SITE AND CATALYSIS OF NADH PEROXIDASE 6KIA ; 1.59798 ; NADH bound structure of FabMG, novel type of Enoyl-acyl carrier protein reductase 7OCQ ; 2.9 ; NADH bound to the dehydrogenase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD from Acinetobacter baumannii 1XHC ; 2.35 ; NADH oxidase /nitrite reductase from Pyrococcus furiosus Pfu-1140779-001 1NOX ; 1.59 ; NADH OXIDASE FROM THERMUS THERMOPHILUS 1JOA ; 2.8 ; NADH PEROXIDASE WITH CYSTEINE-SULFENIC ACID 6RUZ ; 2.9 ; NADH-dependent Coenzyme A Disulfide Reductase 6RVH ; 3.0 ; NADH-dependent Coenzyme A Disulfide Reductase soaked with Menadione 6RVB ; 2.9 ; NADH-dependent Coenzyme A Disulfide Reductase soaked with NADH 5JFC ; 1.598 ; NADH-dependent Ferredoxin:NADP Oxidoreductase (NfnI) from Pyrococcus furiosus 6SCH ; 2.2 ; NADH-dependent variant of CBADH 6SDM ; 2.85 ; NADH-dependent variant of TBADH 4XHY ; 1.53 ; NADH:FMN oxidoreductase from Paracoccus denitrificans 5NA4 ; 2.55 ; NADH:quinone oxidoreductase (NDH-II) from Staphylococcus aureus - E172S mutant 5NA1 ; 2.32 ; NADH:quinone oxidoreductase (NDH-II) from Staphylococcus aureus - holoprotein structure - 2.32 A resolution 2AG8 ; 2.1 ; NADP complex of Pyrroline-5-carboxylate reductase from Neisseria meningitidis 6TGE ; 1.5 ; NADP dependent methylene-tetrahydromethanopterin dehydrogenase-NADP+-methenyl-H4MPT+ complex 5JCA ; 1.5 ; NADP(H) bound NADH-dependent Ferredoxin:NADP Oxidoreductase (NfnI) from Pyrococcus furiosus 4GMG ; 2.31 ; NADP+ bound structure of a Thiazolinyl Imine Reductase from Yersinia enterocolitica (Irp3) 5KVQ ; 1.45 ; NADP+ bound structure of Irp3, a Thiazolinyl Imine Reductase from Yersinia enterocolitica 5VW6 ; 1.5 ; NADP+ soak of Y316A mutant of corn root ferredoxin:NADP+ reductase 5VW3 ; 1.453 ; NADP+ soak of Y316S mutant of corn root ferredoxin:NADP+ reductase 5VW8 ; 1.808 ; NADP+ soak of Y316S mutant of corn root ferredoxin:NADP+ reductase in alternate space group 1YKF ; 2.5 ; NADP-DEPENDENT ALCOHOL DEHYDROGENASE FROM THERMOANAEROBIUM BROCKII 7OCR ; 2.6 ; NADPH and fructose-6-phosphate bound to the dehydrogenase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD from Acinetobacter baumannii 3LF2 ; 2.3 ; NADPH Bound Structure of the Short Chain Oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 Containing an Atypical Catalytic Center 7OCP ; 2.75 ; NADPH bound to the dehydrogenase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD from Acinetobacter baumannii 7OCT ; 2.85 ; NADPH bound to the dehydrogenase domain of the bifunctional mannitol-1-phosphate dehydrogenase/phosphatase MtlD-N374A from Acinetobacter baumannii 5A9S ; 2.06 ; NADPH complex of Imine Reductase from Amycolatopsis orientalis 5GTL ; 2.0 ; NADPH complex structure of Aldehyde Dehydrogenase from Bacillus cereus 1MOK ; 2.8 ; NADPH DEPENDENT 2-KETOPROPYL COENZYME M OXIDOREDUCTASE/CARBOXYLASE 1MO9 ; 1.65 ; NADPH DEPENDENT 2-KETOPROPYL COENZYME M OXIDOREDUCTASE/CARBOXYLASE COMPLEXED WITH 2-KETOPROPYL COENZYME M 5VW7 ; 1.608 ; NADPH soak of Y316A mutant of corn root ferredoxin:NADP+ reductase 5VW2 ; 1.451 ; NADPH soak of Y316S mutant of corn root ferredoxin:NADP+ reductase 1XK2 ; 2.2 ; NADPH- and Ascorbate-Supported Heme Oxygenase Reactions are Distinct. Regiospecificity of Heme Cleavage by the R183E Mutant 1XK3 ; 2.08 ; NADPH- and Ascorbate-Supported Heme Oxygenase Reactions are Distinct. Regiospecificity of Heme Cleavage by the R183E Mutant 7W1W ; 1.82 ; NADPH-bound AKR4C17 mutant F291D 3ES9 ; 3.4 ; NADPH-Cytochrome P450 Reductase in an Open Conformation 7SUZ ; 2.5 ; NADPH-dependent cytochrome P450 reductase 2b from Sorghum bicolor (SbCPR2b) 7SUX ; 2.36 ; NADPH-dependent cytochrome P450 reductase 2b from Sorghum bicolor (SbCPR2b) -NADP+ complex 7SV0 ; 2.7 ; NADPH-dependent cytochrome P450 reductase 2b from Sorghum bicolor (SbCPR2b) -oxidized form of NADP+ complex 5Z2F ; 2.1 ; NADPH/PDA bound Dihydrodipicolinate reductase from Paenisporosarcina sp. TG-14 1BKJ ; 1.8 ; NADPH:FMN OXIDOREDUCTASE FROM VIBRIO HARVEYI 2BKJ ; 2.08 ; NADPH:FMN OXIDOREDUCTASE FROM VIBRIO HARVEYI COMPLEXED WITH NAD+ 1LW7 ; 2.9 ; NADR PROTEIN FROM HAEMOPHILUS INFLUENZAE 7RKT ; 2.1 ; Naegleria fowleri CYP51 (NfCYP51) complex with (S)-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl 3-(trifluoromethyl)benzoate 7RKR ; 1.76 ; Naegleria fowleri CYP51 (NfCYP51) complex with (S)-1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethyl 3-(trifluoromethyl)benzoate 7RKW ; 1.81 ; Naegleria fowleri CYP51(NfCYP51) complex with (S)-1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethyl 3,5-dichlorobenzoate 6AY4 ; 2.7 ; Naegleria fowleri CYP51-fluconazole complex 6AYC ; 2.6 ; Naegleria fowleri CYP51-itraconazole complex 6AYB ; 1.87 ; Naegleria fowleri CYP51-ketoconazole complex 5TL8 ; 1.71 ; Naegleria fowleri CYP51-posaconazole complex 6AY6 ; 2.4 ; Naegleria fowleri CYP51-voriconazole complex 6VT1 ; 2.381 ; Naegleria gruberi RNA ligase D172A mutant apo 6VTG ; 2.49 ; Naegleria gruberi RNA ligase E227A mutant apo 6VT9 ; 2.49 ; Naegleria gruberi RNA ligase E227A mutant with ATP and Mn 6VT8 ; 1.998 ; Naegleria gruberi RNA ligase E312A mutant with AMP and Mn 6VT0 ; 2.002 ; Naegleria gruberi RNA ligase K170A mutant apo 6VT6 ; 1.969 ; Naegleria gruberi RNA ligase K170A mutant with ATP and Mn 6VTE ; 2.1 ; Naegleria gruberi RNA Ligase K170M mutant with AMP and Mn 6VT3 ; 1.844 ; Naegleria gruberi RNA ligase K326A mutant apo 6VTB ; 1.547 ; Naegleria gruberi RNA ligase K326A mutant with ATP and Mn 6VT4 ; 2.16 ; Naegleria gruberi RNA ligase R149A mutant apo 6VTD ; 2.4 ; Naegleria gruberi RNA ligase R149A mutant with ATP and Mn 6VT5 ; 1.8 ; Naegleria gruberi RNA ligase R4a K121A mutant apo 6VTF ; 2.71 ; Naegleria gruberi RNA ligase with PPi 7P0P ; 1.74 ; NAF-1 bound to M1 molecule 2C4N ; 1.8 ; NagD from E.coli K-12 strain 6DAO ; 1.939 ; NahE WT selenomethionine 1CQW ; 1.5 ; NAI COCRYSTALLISED WITH HALOALKANE DEHALOGENASE FROM A RHODOCOCCUS SPECIES 4YGN ; 1.23 ; NaI--Interactions between Hofmeister Anions and the Binding Pocket of a Protein 8A7X ; 2.1 ; NaK C-DI F92A mutant soaked in Cs+ 7PA0 ; 1.95 ; NaK C-DI F92A mutant with Rb+ and K+ 7OOU ; 1.8 ; NaK C-DI mutant with Li+ and K+ 7OOR ; 1.47 ; NaK C-DI mutant with Na+ and K+ 8AYP ; 2.1 ; NaK C-DI mutant with Rb+ and Ba2+ 8AYQ ; 2.75 ; NaK C-DI mutant with Rb+ and Ca2+ 8A35 ; 2.05 ; NaK C-DI mutant with Rb+ and Na+ 7OQ2 ; 1.7 ; NaK S-DI mutant soaked in Na+ 7OPH ; 1.42 ; NaK S-DI mutant with Na+ and K+ 7OQ1 ; 1.85 ; NaK S-ELM mutant with Na+ and K+ 6SLF ; 1.75 ; Nalpha-acylglutamine aminoacylase from Corynebacterium sp.releasing human axilla odorants co-crystallised with high affinity inhibitor 6E68 ; 1.5 ; NAMPT co-crystal with inhibitor compound 2 4XYX ; 2.1 ; NanB plus Optactamide 2WJQ ; 2.0 ; NanC porin structure in hexagonal crystal form. 2WJR ; 1.8 ; NanC porin structure in rhombohedral crystal form. 5F53 ; 1.8 ; Nano-ring of cadmium ions coordinated by nvPizza2-S16S58 7OZT ; 1.74 ; Nanobodies restore stability to cancer-associated mutants of tumor suppressor protein p16INK4a 6XYF ; 1.11097 ; Nanobody 22 8DQU ; 2.45003 ; Nanobody bound SARS-CoV-2 Nsp9 7S2R ; 2.49 ; nanobody bound to IL-2Rg 7S2S ; 1.93 ; nanobody bound to Interleukin-2Rbeta 7OAU ; 1.65 ; Nanobody C5 bound to Kent variant RBD (N501Y) 7OAO ; 1.5 ; Nanobody C5 bound to RBD 7OAN ; 3.0 ; Nanobody C5 bound to Spike 4I13 ; 1.6 ; Nanobody ca1697 binding to the DHFR.folate binary complex 7B14 ; 3.79 ; Nanobody E bound to Spike-RBD in a localized reconstruction 7OM4 ; 6.05 ; Nanobody EgB4 bound to the full extracellular EGFR-EGF complex 7OAY ; 2.34 ; Nanobody F2 bound to RBD 7Z1A ; 2.59 ; Nanobody H11 and F2 bound to RBD 7Z1B ; 2.3 ; Nanobody H11-A10 and F2 bound to RBD 7Z1C ; 1.9 ; Nanobody H11-B5 and H11-F2 bound to RBD 7Z1E ; 1.59 ; Nanobody H11-H4 Q98R H100E bound to RBD 7Z1D ; 1.55 ; Nanobody H11-H6 bound to RBD 7OAP ; 1.901 ; Nanobody H3 AND C1 bound to RBD 7OAQ ; 1.55 ; Nanobody H3 AND C1 bound to RBD with Kent mutation 6XZF ; 1.8 ; Nanobody in complex with eGFP 5IMK ; 1.227 ; Nanobody targeting human Vsig4 in Spacegroup C2 5IML ; 1.8 ; Nanobody targeting human Vsig4 in Spacegroup P212121 6S0Y ; 1.81 ; Nanobody targeting influenza A matrix protein 2 ectodomain (M2e) 5IMM ; 1.2 ; Nanobody targeting mouse Vsig4 in Spacegroup P212121 5IMO ; 2.1 ; Nanobody targeting mouse Vsig4 in Spacegroup P3221 8FQ7 ; 1.4 ; Nanobody with WIW inserted in CDR3 loop to Inhibit Growth of Alzheimer's Tau fibrils 3CFI ; 2.58 ; Nanobody-aided structure determination of the EPSI:EPSJ pseudopilin heterdimer from Vibrio Vulnificus 5OCL ; 2.2 ; Nanobody-anti-VGLUT nanobody complex 5OVW ; 2.653 ; Nanobody-bound BtuF, the vitamin B12 binding protein in Escherichia coli 6VI4 ; 3.3 ; Nanobody-Enabled Monitoring of Kappa Opioid Receptor States 4KRM ; 2.655 ; Nanobody/VHH domain 7D12 in complex with domain III of the extracellular region of EGFR, pH 3.5 4KRL ; 2.849 ; Nanobody/VHH domain 7D12 in complex with domain III of the extracellular region of EGFR, pH 6.0 4KRP ; 2.823 ; Nanobody/VHH domain 9G8 in complex with the extracellular region of EGFR 4KRN ; 1.553 ; Nanobody/VHH domain EgA1 4KRO ; 3.054 ; Nanobody/VHH domain EgA1 in complex with the extracellular region of EGFR 8HXQ ; 2.4 ; Nanobody1 in complex with human BCMA ECD 8HXR ; 2.7 ; Nanobody2 in complex with human BCMA ECD 7UMB ; 3.231 ; NanoBRET tracer Tram-bo bound to a KSR2-MEK1 complex 6VPX ; 5.0 ; Nanodisc of full-length HIV-1 Envelope glycoprotein clone AMC011 in complex with one PGT151 Fab and three 10E8 Fabs 7A6C ; 3.6 ; Nanodisc reconstituted human ABCB1 in complex with MRK16 Fab and elacridar 7A6E ; 3.6 ; Nanodisc reconstituted human ABCB1 in complex with MRK16 Fab and tariquidar 7A69 ; 3.2 ; Nanodisc reconstituted human ABCB1 in complex with MRK16 Fab and vincristine 7A6F ; 3.5 ; Nanodisc reconstituted human ABCB1 in complex with MRK16 Fab and zosuquidar 6QEX ; 3.6 ; Nanodisc reconstituted human ABCB1 in complex with UIC2 fab and taxol 7NIW ; 3.8 ; Nanodisc reconstituted human ABCB4 in complex with 4B1-Fab (posaconazole-bound, inward-open conformation) 7NIU ; 4.2 ; Nanodisc reconstituted human ABCB4 in complex with 4B1-Fab and QA2-Fab (apo-inward-open conformation) 7NIV ; 3.6 ; Nanodisc reconstituted human ABCB4 in complex with 4B1-Fab and QA2-Fab (phosphatidylcholine-bound, occluded conformation) 6QEE ; 3.9 ; Nanodisc reconstituted Human-mouse chimeric ABCB1 (ABCB1HM)-EQ mutant in complex with UIC2 Fab and Zosuquidar. 7PH2 ; 3.7 ; Nanodisc reconstituted MsbA in complex with nanobodies, spin-labeled at position A60C 7PH7 ; 4.1 ; Nanodisc reconstituted MsbA in complex with nanobodies, spin-labeled at position T68C 7A65 ; 3.9 ; Nanodisc reconstituted, drug-free human ABCB1 in complex with MRK16 Fab 8AQI ; 1.99 ; NanoLuc luciferase with bound coelenteramide in surface allosteric site 8AQ6 ; 1.69 ; NanoLuc luciferase with bound furimamide in surface allosteric site 8BO9 ; 3.1 ; NanoLuc-D9R/H57A/K89R mutant complexed with azacoelenterazine bound in intra-barrel catalytic site 8AQH ; 2.798 ; NanoLuc-Y94A luciferase mutant 7E9T ; 10.9 ; Nanometer resolution in situ structure of SARS-CoV-2 post-fusion spike 4XYC ; 3.3 ; NANOMOLAR INHIBITORS OF MYCOBACTERIUM TUBERCULOSIS GLUTAMINE SYNTHETASE 1: SYNTHESIS, BIOLOGICAL EVALUATION AND X-RAY CRYSTALLOGRAPHIC STUDIES 2INY ; 3.9 ; Nanoporous Crystals of Chicken Embryo Lethal Orphan (CELO) Adenovirus Major Coat Protein, Hexon 8D6G ; 2.2 ; Nanorana parkeri saxiphilin 8D6O ; 2.2 ; Nanorana parkeri saxiphilin:F-STX (soaked) 8D6M ; 2.0 ; Nanorana parkeri saxiphilin:STX (co-crystal) 6WFQ ; 3.9 ; NanR dimer-DNA hetero-complex 1JI4 ; 2.52 ; NAP protein from helicobacter pylori 2PYB ; 2.6 ; Napa protein from borrelia burgdorferi 1NDO ; 2.25 ; NAPHTHALENE 1,2-DIOXYGENASE 4HJL ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to 1-chloronaphthalene 4HM1 ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to 1-indanone 4HKV ; 1.65 ; Naphthalene 1,2-Dioxygenase bound to benzamide 4HM3 ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to ethylbenzene 4HM2 ; 1.6 ; Naphthalene 1,2-Dioxygenase bound to ethylphenylsulfide 4HM4 ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to indan 4HM5 ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to indene 4HM0 ; 1.8 ; Naphthalene 1,2-Dioxygenase bound to indole-3-acetate 4HM6 ; 1.499 ; Naphthalene 1,2-Dioxygenase bound to phenetole 4HM7 ; 1.5 ; Naphthalene 1,2-Dioxygenase bound to styrene 4HM8 ; 1.3 ; Naphthalene 1,2-Dioxygenase bound to thioanisole 2QPZ ; 1.85 ; Naphthalene 1,2-dioxygenase Rieske ferredoxin 1EG9 ; 1.6 ; NAPHTHALENE 1,2-DIOXYGENASE WITH INDOLE BOUND IN THE ACTIVE SITE. 1O7G ; 1.7 ; NAPHTHALENE 1,2-DIOXYGENASE WITH NAPHTHALENE BOUND IN THE ACTIVE SITE. 1UUV ; 1.65 ; NAPHTHALENE 1,2-DIOXYGENASE WITH NITRIC OXIDE AND INDOLE BOUND IN THE ACTIVE SITE. 1UUW ; 2.3 ; NAPHTHALENE 1,2-DIOXYGENASE WITH NITRIC OXIDE BOUND IN THE ACTIVE SITE. 1O7H ; 2.2 ; NAPHTHALENE 1,2-DIOXYGENASE WITH OXIDIZED RIESKE IRON SULPHUR CENTER SITE. 1O7M ; 1.75 ; NAPHTHALENE 1,2-DIOXYGENASE, BINARY COMPLEX WITH DIOXYGEN 1O7W ; 1.9 ; NAPHTHALENE 1,2-DIOXYGENASE, FULLY REDUCED FORM 1O7P ; 1.95 ; NAPHTHALENE 1,2-DIOXYGENASE, PRODUCT COMPLEX 1O7N ; 1.4 ; NAPHTHALENE 1,2-DIOXYGENASE, TERNARY COMPLEX WITH DIOXYGEN AND INDOLE 7ZM6 ; 2.07 ; Nariva virus receptor binding protein 1ZG5 ; 2.3 ; NarL complexed to narG-89 promoter palindromic tail-to-tail DNA site 1ZG1 ; 2.3 ; NarL complexed to nirB promoter non-palindromic tail-to-tail DNA site 6GX5 ; 3.2 ; Narrow Pick Filament from Pick's disease brain 4YGK ; 1.5 ; NaSCN--Interactions between Hofmeister Anions and the Binding Pocket of a Protein 8B4A ; 3.06 ; Nativ complex of PqsE and RhlR with autoinducer C4-HSL 7R3J ; 3.06 ; Nativ complex of PqsE and RhlR with the synthetic antagonist mBTL 1QG8 ; 1.5 ; NATIVE (MAGNESIUM-CONTAINING) SPSA FROM BACILLUS SUBTILIS 1A80 ; 2.1 ; Native 2,5-DIKETO-D-GLUCONIC acid reductase a from CORYNBACTERIUM SP. complexed with nadph 1GQN ; 1.78 ; Native 3-dehydroquinase from Salmonella typhi 8CDC ; 1.54 ; Native 3CLpro from SARS-CoV-2 at 1.54 A 4U37 ; 1.55 ; Native 7mer-RNA duplex 2ACE ; 2.5 ; NATIVE ACETYLCHOLINESTERASE (E.C. 3.1.1.7) FROM TORPEDO CALIFORNICA 1EA5 ; 1.8 ; NATIVE ACETYLCHOLINESTERASE (E.C. 3.1.1.7) FROM TORPEDO CALIFORNICA at 1.8A resolution 8PI2 ; 1.48 ; Native alpha-1-antitrypsin at 1.5 Angstrom (Cys232Ser) 7VON ; 5.2 ; Native alpha-2-macroglobulin monomer 7LDD ; 3.4 ; native AMPA receptor 7LDE ; 3.9 ; native AMPA receptor 6OKJ ; 1.73 ; Native ananain from Ananas comosus 6MIS ; 1.98 ; Native ananain in complex with E-64 4EIP ; 2.332 ; Native and K252c bound RebC-10x 4K37 ; 1.62 ; Native anSMEcpe with bound AdoMet 4K39 ; 1.783 ; Native anSMEcpe with bound AdoMet and Cp18Cys peptide 4K38 ; 1.831 ; Native anSMEcpe with bound AdoMet and Kp18Cys peptide 3CZ4 ; 1.7 ; Native AphA class B acid phosphatase/phosphotransferase from E. coli 1R12 ; 1.7 ; Native Aplysia ADP ribosyl cyclase 5O2K ; 2.1 ; Native apo-structure of Pseudomonas stutzeri PtxB to 2.1 A resolution 1UV4 ; 1.5 ; Native Bacillus subtilis Arabinanase Arb43A 4YHE ; 1.85 ; NATIVE BACTEROIDETES-AFFILIATED GH5 CELLULASE LINKED WITH A POLYSACCHARIDE UTILIZATION LOCUS 4YHG ; 2.4 ; NATIVE BACTEROIDETES-AFFILIATED GH5 CELLULASE LINKED WITH A POLYSACCHARIDE UTILIZATION LOCUS 6MAF ; 3.79 ; native BbvCI A2B2 tetramer at low resolution 6MAG ; 2.07 ; native BbvCI B2 dimer in space group C222 7V9G ; 3.5 ; Native BEN4 domain of protein Bend3 with DNA 1ZOL ; 1.9 ; native beta-PGM 1S0Q ; 1.02 ; Native Bovine Pancreatic Trypsin 5KN2 ; 2.601 ; Native bovine skeletal calsequestrin, high-Ca2+ form 5KN0 ; 2.729 ; Native bovine skeletal calsequestrin, low-Ca2+ form 6T4E ; 1.66 ; Native C3-like protease from Southampton virus complexed with FMOPL000287a. 1B5F ; 1.72 ; NATIVE CARDOSIN A FROM CYNARA CARDUNCULUS L. 7X4A ; 2.21 ; Native CD-NTase ClCdnE 7X4C ; 1.75 ; Native CD-NTase EfCdnE 7X4F ; 2.46 ; Native CD-NTase LpCdnE 6ZKO ; 3.8 ; Native complex I, closed 6ZKP ; 3.2 ; Native complex I, open1 6ZKQ ; 3.3 ; Native complex I, open2 6ZKR ; 3.5 ; Native complex I, open3 8AT5 ; 2.9 ; native Coxsackievirus A9 2PC5 ; 2.2 ; Native crystal structure analysis on Arabidopsis dUTPase 2BS9 ; 2.2 ; Native crystal structure of a GH39 beta-xylosidase XynB1 from Geobacillus stearothermophilus 6H98 ; 1.8 ; Native crystal structure of anaerobic ergothioneine biosynthesis enzyme from Chlorobium limicola. 6ZK8 ; 1.83 ; Native crystal structure of anaerobic F420H2-Oxidase from Methanothermococcus thermolithotrophicus at 1.8A resolution 4AK5 ; 1.7 ; Native crystal structure of BpGH117 6S7J ; 2.2 ; Native crystal structure of ergothioneine degrading enzyme Ergothionase from Treponema denticola 6ILB ; 2.51 ; Native crystal structure of fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi 3O1Q ; 1.85 ; Native Crystal Structure of Helicobacter pylori Urease Accessory Protein UreF 4P11 ; 1.891 ; Native crystal structure of MltF Pseudomonas aeruginosa 4JIM ; 2.1 ; Native Crystal Structure of N10-Formyltetrahydrofolate Synthetase 2CWM ; 1.95 ; Native Crystal Structure of NO releasing inductive lectin from seeds of the Canavalia maritima (ConM) 7EWM ; 2.9 ; Native crystal structure of S. cerevisiae Csn12 in complex with Thp3 and Sem1 1TW0 ; 2.2 ; Native crystal structure of SPE16 2H9C ; 2.35 ; Native Crystal Structure of the Isochorismate-Pyruvate Lyase from Pseudomonas aeruginosa 8AQR ; 1.46 ; Native crystal structure of the N-terminal beta-hairpin docking (bHD) domain of the AerJ halogenase, from the aeruginosin biosynthetic assembly line 1I9I ; 2.72 ; NATIVE CRYSTAL STRUCTURE OF THE RECOMBINANT MONOCLONAL WILD TYPE ANTI-TESTOSTERONE FAB FRAGMENT 2BSJ ; 1.83 ; Native Crystal Structure of the Type III Secretion chaperone SycT from Yersinia enterocolitica 3OG2 ; 1.2 ; Native crystal structure of Trichoderma reesei beta-galactosidase 7XNZ ; 3.6 ; Native cystathionine beta-synthase of Mycobacterium tuberculosis. 6TR1 ; 1.7 ; Native cytochrome c6 from Thermosynechococcus elongatus in space group H3 1W1O ; 1.7 ; Native Cytokinin Dehydrogenase 4UWO ; 1.555 ; Native di-zinc VIM-26. Leu224 in VIM-26 from Klebsiella pneumoniae has implications for drug binding. 1H9W ; 2.0 ; Native Dioclea Guianensis seed lectin 2H46 ; 1.9 ; Native domain-swapped dimer crystal structure of the Grb2 SH2 domain 2GBC ; 2.8 ; Native DPP-IV (CD26) from Rat 6UTM ; 2.14 ; Native E. coli Glyceraldehyde 3-phosphate dehydrogenase 6UTN ; 1.79 ; Native E. coli Glyceraldehyde 3-phosphate dehydrogenase 6UTO ; 1.64 ; Native E. coli Glyceraldehyde 3-phosphate dehydrogenase 7A3H ; 0.95 ; NATIVE ENDOGLUCANASE CEL5A CATALYTIC CORE DOMAIN AT 0.95 ANGSTROMS RESOLUTION 5Z01 ; 1.75 ; Native Escherichia coli L,D-carboxypeptidase A (LdcA) 2JEM ; 1.78 ; Native family 12 xyloglucanase from Bacillus licheniformis 2JEP ; 1.4 ; Native family 5 xyloglucanase from Paenibacillus pabuli 1K07 ; 1.65 ; Native FEZ-1 metallo-beta-lactamase from Legionella gormanii 5WCK ; 1.65 ; Native FEZ-1 metallo-beta-lactamase from Legionella gormanii 5AM6 ; 1.96 ; Native FGFR1 with an inhibitor 1D6O ; 1.85 ; NATIVE FKBP 1PV2 ; 2.71 ; Native Form 2 E.coli Chaperone Hsp31 8B9S ; 2.42 ; NATIVE FORM, THERMOSTABLE LIPASE FROM THERMOANAEROBACTER THERMOHYDROSULFURICUS 3FPX ; 1.8 ; Native fungus laccase from Trametes hirsuta 8G4O ; 3.06 ; Native GABA-A receptor from the mouse brain, alpha1-beta2-gamma2 subtype, in complex with didesethylflurazepam and endogenous GABA 8FOI ; 2.5 ; Native GABA-A receptor from the mouse brain, alpha1-beta2-gamma2 subtype, in complex with GABA and allopregnanolone 8G4N ; 2.67 ; Native GABA-A receptor from the mouse brain, alpha1-beta2-gamma2 subtype, in complex with GABA, Zolpidem, and endogenous neurosteroids 8G4X ; 2.56 ; Native GABA-A receptor from the mouse brain, meta-alpha1-alpha3-beta2-gamma2 subtype, in complex with GABA and allopregnanolone 8G5G ; 2.94 ; Native GABA-A receptor from the mouse brain, meta-alpha1-alpha3-beta2-gamma2 subtype, in complex with GABA, Zolpidem, and endogenous neurosteroid 8G5F ; 2.64 ; Native GABA-A receptor from the mouse brain, ortho-alpha1-alpha3-beta2-gamma2 subtype, in complex with GABA and allopregnanolone 8G5H ; 2.89 ; Native GABA-A receptor from the mouse brain, ortho-alpha1-alpha3-beta2-gamma2 subtype, in complex with GABA, Zolpidem, and endogenous neurosteroid 6GS0 ; 1.34 ; Native Glucuronoyl Esterase from Opitutus terrae 1ODW ; 2.1 ; Native HIV-1 Proteinase 5LE5 ; 1.8 ; Native human 20S proteasome at 1.8 Angstrom 5LEX ; 2.2 ; Native human 20S proteasome in Mg-Acetate at 2.2 Angstrom 1R42 ; 2.2 ; Native Human Angiotensin Converting Enzyme-Related Carboxypeptidase (ACE2) 1NOU ; 2.4 ; Native human lysosomal beta-hexosaminidase isoform B 1REX ; 1.5 ; NATIVE HUMAN LYSOZYME 5VF9 ; 1.82 ; Native human manganese superoxide dismutase 1VYM ; 2.3 ; NATIVE HUMAN PCNA 1W60 ; 3.15 ; NATIVE HUMAN PCNA 2YB6 ; 1.5 ; Native human Rad6 7T9I ; 2.9 ; Native human TSH bound to human Thyrotropin receptor in complex with miniGs399 (composite structure) 1F8E ; 1.4 ; Native Influenza Neuraminidase in Complex with 4,9-diamino-2-deoxy-2,3-dehydro-N-acetyl-neuraminic Acid 1F8C ; 1.7 ; Native Influenza Neuraminidase in Complex with 4-amino-2-deoxy-2,3-dehydro-N-neuraminic Acid 1F8D ; 1.4 ; Native Influenza Neuraminidase in Complex with 9-amino-2-deoxy-2,3-dehydro-N-neuraminic Acid 1F8B ; 1.8 ; Native Influenza Virus Neuraminidase in Complex with NEU5AC2EN 7NN9 ; 2.0 ; NATIVE INFLUENZA VIRUS NEURAMINIDASE SUBTYPE N9 (TERN) 2V81 ; 2.4 ; Native KDPGal structure 7ZPO ; 3.24 ; native KtrAB complex 7ARP ; 1.78 ; Native L-2-haloacid dehalogenase from Zobellia galactanivorans 1JSW ; 2.7 ; NATIVE L-ASPARTATE AMMONIA LYASE 2YML ; 1.79 ; Native L-haloacid dehalogenase from a Rhodobacteraceae family bacterium 7UOV ; 2.75 ; Native Lassa glycoprotein in complex with neutralizing antibodies 12.1F and 37.2D 7UOT ; 2.77 ; Native Lassa glycoprotein in complex with neutralizing antibodies 8.9F and 37.2D 5A6U ; 9.0 ; Native mammalian ribosome-bound Sec61 protein-conducting channel in the 'non-inserting' state 1B2P ; 1.7 ; NATIVE MANNOSE-SPECIFIC BULB LECTIN FROM SCILLA CAMPANULATA (BLUEBELL) AT 1.7 ANGSTROMS RESOLUTION 2J3D ; 2.6 ; Native monoclinic form of Torpedo acetylcholinesterase 7SAV ; ; Native mu-conotoxin KIIIA isomer 7CRR ; 3.48 ; Native NSD3 bound to 187-bp nucleosome 1W75 ; 2.4 ; Native Orthorhombic form of Torpedo californica acetylcholinesterase (AChE) 7WYI ; 3.9 ; Native Photosystem I of Chlamydomonas reinhardtii 3G7D ; 1.8 ; Native PhpD with Cadmium Atoms 1OTY ; 2.5 ; Native PNP +ALLO 1OU4 ; 2.5 ; Native PNP +Talo 1PPY ; 1.95 ; Native precursor of pyruvoyl dependent Aspartate decarboxylase 2C45 ; 2.99 ; NATIVE PRECURSOR OF PYRUVOYL DEPENDENT ASPARTATE DECARBOXYLASE 5HBL ; 1.617 ; Native rhodanese domain of YgaP prepared with 1mM DDT is S-nitrosylated 5HBO ; 1.66 ; Native rhodanese domain of YgaP prepared without DDT is both S-nitrosylated and S-sulfhydrated 7MRW ; 3.72 ; Native RhopH complex of the malaria parasite Plasmodium falciparum 4MS9 ; 1.32 ; Native RNA-10mer Structure: ccggcgccgg 8DE3 ; 3.3 ; Native serotonin transporter in complex with 15B8 Fab antibody in the presence of cocaine 8DE4 ; 2.9 ; Native serotonin transporter in complex with 15B8 Fab in the presence of methamphetamine 1VXA ; 2.0 ; NATIVE SPERM WHALE MYOGLOBIN 1VXB ; 2.0 ; NATIVE SPERM WHALE MYOGLOBIN 1VXC ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 1VXD ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 1VXE ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 1VXF ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 1VXG ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 1VXH ; 1.7 ; NATIVE SPERM WHALE MYOGLOBIN 5FLO ; 1.66 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FLP ; 1.71 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FLQ ; 1.7 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FLR ; 1.68 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FLS ; 1.67 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FLT ; 1.67 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNG ; 2.05 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNH ; 1.66 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNI ; 1.6 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNJ ; 1.67 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNK ; 1.59 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNL ; 1.59 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 5FNM ; 1.59 ; Native state mass spectrometry, surface plasmon resonance and X-ray crystallography correlate strongly as a fragment screening combination 3MXH ; 2.3 ; Native structure of a c-di-GMP riboswitch from V. cholerae 2W1W ; 1.55 ; Native structure of a family 35 carbohydrate binding module from Clostridium thermocellum 2JKA ; 1.9 ; Native structure of a family 97 alpha-glucosidase from Bacteroides thetaiotaomicron 4AO6 ; 1.6 ; Native structure of a novel cold-adapted esterase from an Arctic intertidal metagenomic library 7QOD ; 1.85 ; Native structure of a small alarmone hydrolase (RelH) from Corynebacterium glutamicum 1TG7 ; 1.9 ; Native structure of beta-galactosidase from Penicillium sp. 1XC6 ; 2.1 ; Native Structure Of Beta-Galactosidase from Penicillium sp. in complex with Galactose 3I01 ; 2.15 ; Native structure of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica, water-bound C-cluster. 1L0N ; 2.6 ; native structure of bovine mitochondrial cytochrome bc1 complex 1E43 ; 1.7 ; Native structure of chimaeric amylase from B. amyloliquefaciens and B. licheniformis at 1.7A 1E3X ; 1.9 ; Native structure of chimaeric amylase from B. amyloliquefaciens and B. licheniformis at 1.92A 6RYG ; 0.974 ; native structure of conglutinin carbohydrate recognition domain 4IXZ ; 2.07 ; Native structure of cystathionine gamma lyase (XometC) from xanthomonas oryzae pv. oryzae at pH 9.0 6LD7 ; 2.1 ; Native Structure of cystathionine gamma synthase (XometB) from Xanthomonas oryzae pv. oryzae 8OHY ; 1.95 ; Native Structure of Dictyostelium discoideum dye-decolorizing peroxidase 3RRD ; 2.46 ; Native structure of Dioclea virgata lectin 6QKI ; 2.04 ; Native structure of EgtB from Chloracidobacterium thermophilum, a type II sulfoxide synthase 3PZ9 ; 1.42 ; Native structure of endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 2X8F ; 1.9 ; Native structure of Endo-1,5-alpha-L-arabinanases from Bacillus subtilis 2BW8 ; 1.54 ; Native structure of Endoglucanase 12A (Cel12A) from Rhodothermus marinus 3ZOU ; 1.55 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PA01, with bound fragment SPB02696, and substrate geranyl pyrophosphate. 3ZMB ; 1.9 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PA01, with bound fragment SPB02696. 4UMJ ; 1.85 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PA01, with bound ibandronic acid molecules. 3ZMC ; 1.87 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PA01, with bound substrate molecule Geranyl pyrophosphate. 3ZCD ; 1.55 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PA01. 3ZL6 ; 1.85 ; Native structure of Farnesyl Pyrophosphate Synthase from Pseudomonas aeruginosa PAO1, with bound fragment KM10833. 5GK3 ; 1.8 ; Native structure of fructose 1,6-bisphosphate aldolase from Escherichia coli at 1.8 Angstrom resolution 5GK4 ; 2.0 ; Native structure of fructose 1,6-bisphosphate aldolase from Escherichia coli at 2.0 Angstrom resolution 4BMX ; 1.76 ; Native structure of futalosine hydrolase of Helicobacter pylori strain 26695 5YUL ; 1.9 ; Native Structure of hSOD1 in P6322 space group 4RIM ; 2.3 ; Native structure of intercalation-locked DNA tetraplex 3MVG ; 1.25 ; Native structure of IRIP, a type I ribosome inactivating protein from Iris hollandica var. at 1.25 A 4FWE ; 2.13 ; Native structure of LSD2 /AOF1/KDM1b in spacegroup of C2221 at 2.13A 4FWJ ; 2.9 ; Native structure of LSD2/AOF1/KDM1b in spacegroup of I222 at 2.9A 2QCJ ; 3.0 ; Native Structure of Lyp 6T14 ; 1.86 ; Native structure of mosquitocidal Cyt1A protoxin obtained by Serial Femtosecond Crystallography on in vivo grown crystals at pH 7 7P7I ; 1.7 ; Native structure of N-acetylglucosamine kinase from Plesiomonas shigelloides 2R8V ; 2.5 ; Native structure of N-acetylglutamate synthase from Neisseria gonorrhoeae 5AFD ; 1.65 ; Native structure of N-acetylneuramininate lyase (sialic acid aldolase) from Aliivibrio salmonicida 5XP6 ; 0.95 ; native structure of NDM-1 crystallized at pH5.5 4UB6 ; 1.95 ; Native structure of photosystem II (dataset-1) by a femtosecond X-ray laser 4UB8 ; 1.95 ; Native structure of photosystem II (dataset-2) by a femtosecond X-ray laser 1R8W ; 2.5 ; Native structure of the B12-independent glycerol dehydratase from clostridium butyricum 2W94 ; 1.8 ; Native structure of the Discoidin I from Dictyostelium discoideum at 1.8 angstrom resolution 1ERN ; 2.4 ; NATIVE STRUCTURE OF THE EXTRACELLULAR DOMAIN OF ERYTHROPOIETIN (EPO) RECEPTOR [EBP] 2LP5 ; ; Native Structure of the Fyn SH3 A39V/N53P/V55L 2W5N ; 1.85 ; Native structure of the GH93 alpha-L-arabinofuranosidase of Fusarium graminearum 1KO9 ; 2.15 ; Native Structure of the Human 8-oxoguanine DNA Glycosylase hOGG1 5A6Q ; 1.7 ; Native structure of the LecB lectin from Pseudomonas aeruginosa strain PA14 5I3T ; 2.1 ; Native Structure of the Linalool Dehydratase-Isomerase from Castellaniella defragrans 4CSH ; 1.79 ; Native structure of the lytic CHAPK domain of the endolysin LysK from Staphylococcus aureus bacteriophage K 6G3X ; 2.1 ; Native Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 4P12 ; 1.6011 ; Native Structure of the P domain from a GI.7 Norovirus variant. 2VM9 ; 1.75 ; Native structure of the recombinant discoidin II of Dictyostelium discoideum at 1.75 angstrom 3OJL ; 2.8 ; Native structure of the UDP-N-acetyl-mannosamine dehydrogenase Cap5O from Staphylococcus aureus 3N8T ; 2.4 ; Native structure of TK1436, a GH57 branching enzyme from hyperthermophilic archaeon Thermococcus kodakaraensis 6H7T ; 2.1 ; Native structure of Trichoderma reesei Carbohydrate-Active Enzymes Family AA12 4IXS ; 2.29 ; Native structure of xometc at ph 5.2 5E5D ; 2.6 ; Native structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv. oryzae 1ZCK ; 1.9 ; native structure prl-1 (ptp4a1) 8JHF ; 3.68 ; Native SUV420H1 bound to 167-bp nucleosome 8JHG ; 3.58 ; Native SUV420H1 bound to 167-bp nucleosome 3H8J ; 1.8 ; Native T4 RNase H in the absence of divalent metal ions 2VBK ; 1.25 ; NATIVE TAILSPIKE PROTEIN OF BACTERIOPHAGE SF6 6RT1 ; 1.336 ; Native tetragonal lysozyme - home source data 6RT3 ; 1.05 ; Native tetragonal lysozyme - synchrotron data 1QHZ ; 1.95 ; NATIVE TETRAGONAL STRUCTURE OF THE ENDOGLUCANASE CEL5A FROM BACILLUS AGARADHAERENS 7XSN ; 3.01 ; Native Tetrahymena ribozyme conformation 8B3Y ; 1.25 ; Native Thermogutta terrifontis endoglucanase catalytic domain with a linker at C-terminal from glycoside hydrolase family 5 (TtEnd5A-CDC) 8BBT ; 1.69 ; Native Tipula oleracea Nudivirus polyhedrin - 1960 2INC ; 1.85 ; Native Toluene/o-xylene Monooxygenase Hydroxylase X-ray Crystal Structure 2VT7 ; 2.2 ; Native Torpedo californica acetylcholinesterase collected with a cumulated dose of 800000 Gy 2VT6 ; 2.4 ; Native Torpedo californica acetylcholinesterase collected with a cumulated dose of 9400000 Gy 2Y87 ; 1.86 ; Native VIM-7. Structural and computational investigations of VIM-7: Insights into the substrate specificity of VIM metallo-beta- lactamases 8AHZ ; 1.7 ; Native VirD of Streptomyces virginiae 7BC3 ; 2.9 ; Native virion of Kashmir bee virus at acidic pH 7BGK ; 2.8 ; Native virion of Kashmir bee virus at neutral pH 5GTH ; 2.5 ; Native XFEL structure of photosystem II (dark dataset) 5WS5 ; 2.35 ; Native XFEL structure of photosystem II (preflash dark dataset) 5WS6 ; 2.35 ; Native XFEL structure of Photosystem II (preflash two-flash dataset 5GTI ; 2.5 ; Native XFEL structure of photosystem II (two flash dataset) 1US3 ; 1.85 ; Native xylanase10C from Cellvibrio japonicus 5ONK ; 1.03 ; Native YndL 6HRI ; 1.03 ; Native YndL 5Y42 ; 2.9 ; Native-crystal structure of three chain non-toxic type II ribosome inactivating protein purified from the seeds of Trichosanthes anguina 7E1F ; 1.447 ; Native-DBD 7S63 ; 4.12 ; Native-form oocyte/egg Alpha-2-Macroglobulin (A2Moo) tetramer 7AL3 ; 4.8 ; Native-like genome-containing particle of DWV in acidic pH 1CPM ; 2.0 ; NATIVE-LIKE IN VIVO FOLDING OF A CIRCULARLY PERMUTED JELLYROLL PROTEIN SHOWN BY CRYSTAL STRUCTURE ANALYSIS 1CPN ; 1.8 ; NATIVE-LIKE IN VIVO FOLDING OF A CIRCULARLY PERMUTED JELLYROLL PROTEIN SHOWN BY CRYSTAL STRUCTURE ANALYSIS 4TKS ; 3.2017 ; Native-SAD phasing for human EGFR kinase domain. 4TKR ; 3.0023 ; Native-SAD phasing for ThiT from Listeria monocytogenes serovar. 4TKQ ; 2.8025 ; Native-SAD phasing for YetJ from Bacillus Subtilis 6U42 ; 3.4 ; Natively decorated ciliary doublet microtubule 6TM4 ; 1.89 ; NatL2 in complex with two molecules of salicylic acid 7ODU ; 3.0 ; Natural killer cell receptor NKR-P1B from Rattus norvegicus in complex with its cognate ligand Clr-11 2O1F ; 1.99 ; Natural Occuring Mutation of Human ABO(H) galactosyltransferase: GTB/M214R 2O1G ; 1.71 ; Natural occurring mutant of Human ABO(H) Galactosyltransferase: GTB/M214T 2XUC ; 2.3 ; Natural product-guided discovery of a fungal chitinase inhibitor 2O1H ; 1.67 ; Naturally occurring mutation of Humna ABO(H) Galactosyltransferase in complex with UDP: GTB/M214T_UDP 5AP0 ; 2.15 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP1 ; 2.05 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP2 ; 2.8 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP3 ; 2.7 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP4 ; 2.85 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP5 ; 2.8 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP6 ; 2.1 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 5AP7 ; 2.45 ; Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance. 1ELF ; 1.7 ; NATURE OF THE INACTIVATION OF ELASTASE BY N-PEPTIDYL-O-AROYL HYDROXYLAMINE AS A FUNCTION OF PH 1ELG ; 1.65 ; NATURE OF THE INACTIVATION OF ELASTASE BY N-PEPTIDYL-O-AROYL HYDROXYLAMINE AS A FUNCTION OF PH 7XVF ; 2.8 ; Nav1.7 mutant class2 6C1E ; 2.86 ; NavAb NormoPP mutant 6C1M ; 2.518 ; NavAb NormoPP mutant 6MVX ; 3.455 ; NavAb Voltage-gated Sodium Channel, I217C, in Complex with Class 1C Anti-arrhythmic Flecainide 6MVV ; 2.9 ; NavAb voltage-gated sodium channel, I217C/F203A 6MVW ; 3.198 ; NavAb voltage-gated sodium channel, I217C/F203W 6MVY ; 3.002 ; NavAb voltage-gated sodium channel, residues 1-226, crystallized in the presence of Class 1B Anti-arrhythmic drug Lidocaine 6MWA ; 2.4 ; NavAb Voltage-gated Sodium Channel, residues 1-239 6MWB ; 2.6 ; NavAb Voltage-gated Sodium Channel, residues 1-239 with mutation T206A 6MWD ; 2.327 ; NavAb Voltage-gated Sodium Channel, residues 1-239 with mutation T206S 6MWG ; 2.501 ; NavAb Voltage-gated Sodium Channel, residues 1-239, with mutation T206V 7PGI ; 3.638 ; NaVAb1p (bicelles) 7PGG ; 2.85 ; NaVAb1p detergent (DM) 7PGH ; 4.194 ; NaVAe1/Sp1CTDp (DDM) 7X5V ; 2.83 ; NaVEh Sodium channel, and NaVEh from the coccolithophore Emiliania huxleyi 4X8A ; 3.02 ; NavMS pore and C-terminal domain grown from protein purified in LiCl 4X89 ; 2.62 ; NavMs voltage-gated sodium channal pore and C-terminal domain soaked with Silver nitrate 5BZB ; 2.7 ; NavMs voltage-gated sodium channel pore and C-terminal domain 7PG8 ; 4.5 ; NaV_Ae1/Sp1CTD_pore-ANT05 complex 7PGB ; 3.6 ; NaV_Ae1/Sp1CTD_pore-SAT09 complex 6Y1R ; 1.85 ; Nb22-LBT 5NML ; 2.5 ; Nb36 Ser85Cys with Hg bound 5NM0 ; 1.5 ; Nb36 Ser85Cys with Hg, crystal form 1 7R63 ; 2.0 ; Nb82, a nanobody against voltage gated sodium channels Nav1.4 and Nav1.5 3EAK ; 1.95 ; NbBCII10 humanized (FGLA mutant) 6Y0E ; 1.5 ; Nbe LBM 6XYM ; 1.2 ; Nbe-LBM 8E0E ; 2.0 ; nbF3:CaV beta subunit 2a complex 8DAM ; 2.0 ; nbF3:nbE8:CaV beta subunit 1b complex 3CS5 ; 2.2 ; NblA protein from Synechococcus elongatus PCC 7942 2QDO ; 2.5 ; NblA protein from T. vulcanus 2Q8V ; 2.5 ; NblA protein from T. vulcanus crystallized with urea 8C5H ; 1.68 ; NbSyt1 anti-(rat Synaptotagmin-1) nanobody bound to target cytosolic domain of Synaptotagmin-1 2NCD ; 2.5 ; NCD (NON-CLARET DISJUNCTIONAL) DIMER FROM D. MELANOGASTER 7CND ; 1.8 ; NCI-1 in complex with CRM1-Ran-RanBP1 2CI9 ; 1.5 ; Nck1 SH2-domain in complex with a dodecaphosphopeptide from EPEC protein Tir 4UDY ; 1.09 ; NCO- bound to cluster C of Ni,Fe-CO dehydrogenase at true-atomic resolution 6QI4 ; 1.78 ; NCS-1 bound to a ligand 1KVH ; ; NCSi-gb-bulge-DNA complex induced formation of a DNA bulge structure by a molecular wedge ligand-post-activated neocarzinostatin chromophore 6EFF ; 1.6 ; NCTC10712 3T79 ; 3.6113 ; Ndc10: a platform for inner kinetochore assembly in budding yeast 6C89 ; 1.75006 ; NDM-1 Beta-Lactamase Exhibits Differential Active Site Sequence Requirements for the Hydrolysis of Penicillin versus Carbapenem Antibiotics 8B1W ; 1.7 ; NDM-1 metallo-beta-lactamase in complex with triazole-based inhibitor CP35 8B1Z ; 1.6 ; NDM-1 metallo-beta-lactamase in complex with triazole-based inhibitor CP56 8B20 ; 1.78 ; NDM-1 metallo-beta-lactamase in complex with triazole-based inhibitor CP57 5NBK ; 2.6 ; NDM-1 metallo-beta-lactamase: a parsimonious interpretation of the diffraction data 7UOX ; 0.99 ; NDM1-inhibitor co-structure 7UOY ; 1.47 ; NDM1-inhibitor co-structure 7UP1 ; 1.11 ; NDM1-inhibitor co-structure 7UP2 ; 1.13 ; NDM1-inhibitor co-structure 7UP3 ; 1.4 ; NDM1-inhibitor co-structure 1S5Z ; 2.0 ; NDP kinase in complex with adenosine phosphonoacetic acid 1MN9 ; 2.9 ; NDP kinase mutant (H122G) complex with RTP 1MN7 ; 2.15 ; NDP kinase mutant (H122G;N119S;F64W) in complex with aBAZTTP 3VVW ; 2.5 ; NDP52 in complex with LC3C 4CP5 ; 2.32 ; ndpK in complex with (Rp)-SPMPApp 1M77 ; 1.25 ; Near Atomic Resolution Crystal Structure of an A-DNA Decamer d(CCCGATCGGG): Cobalt Hexammine Interactions with A-DNA 4B8X ; 1.25 ; Near atomic resolution crystal structure of Sco5413, a MarR family transcriptional regulator from Streptomyces coelicolor 6QI5 ; 3.4 ; Near Atomic Structure of an Atadenovirus Shows a possible gene duplication event and Intergenera Variations in Cementing Proteins 5JUL ; 4.4 ; Near atomic structure of the Dark apoptosome 8GWR ; 2.801 ; Near full length Kidney type Glutaminase in complex with 2,2-Dimethyl-2,3-Dihydrobenzo[a] Phenanthridin-4(1H)-one (DDP) 7K55 ; 3.3 ; Near post-translocated +1-frameshifting(CCC-A) complex with EF-G and GDPCP (Structure III-FS) 7K52 ; 3.4 ; Near post-translocated non-frameshifting(CCA-A) complex with EF-G and GDPCP (Structure III) 5KMG ; 3.5 ; Near-atomic cryo-EM structure of PRC1 bound to the microtubule 3NFT ; 1.51 ; Near-atomic resolution analysis of BipD- A component of the type-III secretion system of Burkholderia pseudomallei 5SYE ; 3.5 ; Near-atomic resolution cryo-EM reconstruction of doubly bound Taxol- and peloruside-stabilized microtubule 5SYC ; 3.5 ; Near-atomic resolution cryo-EM reconstruction of peloruside-stabilized microtubule 4CBF ; 4.1 ; Near-atomic resolution cryo-EM structure of Dengue serotype 4 virus 5TCP ; 4.3 ; Near-atomic resolution cryo-EM structure of the periplasmic domains of PrgH and PrgK 5TCQ ; 3.6 ; Near-atomic resolution cryo-EM structure of the Salmonella SPI-1 type III secretion injectisome secretin InvG 5OQV ; 4.0 ; Near-atomic resolution fibril structure of complete amyloid-beta(1-42) by cryo-EM 3J8I ; 4.7 ; Near-Atomic Resolution for One State of F-Actin 4AR3 ; 1.05 ; Near-atomic resolution neutron crystallography on the oxidised form perdeuterated Pyrococcus furiosus rubredoxin. 2Q9O ; 1.3 ; Near-atomic resolution structure of a Melanocarpus albomyces laccase 6EK5 ; 4.2 ; Near-atomic resolution structure of a plant geminivirus determined by electron cryo-microscopy. 6JLV ; 1.22 ; Near-Atomic Resolution Structure of the CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 8H2I ; 3.8 ; Near-atomic structure of five-fold averaged PBCV-1 capsid 6NCL ; 3.5 ; Near-atomic structure of icosahedrally averaged PBCV-1 capsid 6HPS ; 3.1 ; Near-infrared dual bioluminescence imaging in vivo using infra-luciferin 4H8P ; 2.05 ; NEAT5 domain of IsdX2, a B. anthracis hemophore in complex with heme 8HQO ; 3.2 ; Neck of DT57C bacteriophage in the full state 6TO8 ; 3.36 ; Neck of empty GTA particle computed with C12 symmetry 6TOA ; 3.47 ; Neck of empty GTA particle computed with C6 symmetry 6TE8 ; 3.32 ; Neck of native GTA particle computed with C12 symmetry 6TE9 ; 3.58 ; Neck of native GTA particle computed with C6 symmetry 8FWE ; 3.46 ; Neck structure of Agrobacterium phage Milano, C3 symmetry 8C6Z ; 1.85 ; necrotic enteritis associated Clostridium p. chitinase F8UNI4 in complex with inhibitor bisdionin C 4BE8 ; 2.996 ; NEDD4 HECT A889F structure 2XBF ; 2.503 ; Nedd4 HECT structure 5C91 ; 2.44 ; NEDD4 HECT with covalently bound indole-based inhibitor 4BBN ; 2.51 ; NEDD4 HECT-Ub:Ub complex 2XBB ; 2.68 ; Nedd4 HECT:Ub complex 2LTY ; ; NEDD4L WW2 domain in complex with a Smad7 derived peptide 2BKR ; 1.9 ; NEDD8 NEDP1 complex 2BKQ ; 2.0 ; NEDD8 protease 2KO3 ; ; Nedd8 solution structure 8F2P ; 2.63 ; Nef SF2 dimerization mutant bound to Hck SH3 2QEX ; 2.9 ; Negamycin Binds to the Wall of the Nascent Chain Exit Tunnel of the 50S Ribosomal Subunit 8T2I ; 10.4 ; Negative stain EM assembly of MYC, JAZ, and NINJA complex 3ZUH ; 21.0 ; Negative stain EM Map of the AAA protein CbbX, a red-type Rubisco activase from R. sphaeroides 5A7X ; 17.0 ; negative stain EM of BG505 SOSIP.664 in complex with sCD4, 17b, and 8ANC195 2BYU ; 16.5 ; Negative stain EM reconstruction of M.tuberculosis Acr1(Hsp 16.3) fitted with wheat sHSP dimer 7KTS ; 19.09 ; Negative stain EM structure of the human SAGA coactivator complex (TRRAP, core, splicing module) 6VKL ; 15.0 ; Negative stain reconstruction of the yeast exocyst octameric complex. 5KC2 ; 28.0 ; Negative stain structure of Vps15/Vps34 complex 4D2U ; 17.0 ; Negative-stain electron microscopy of E. coli ClpB (BAP form bound to ClpP) 4D2Q ; 18.0 ; Negative-stain electron microscopy of E. coli ClpB mutant E432A (BAP form bound to ClpP) 4D2X ; 20.0 ; Negative-stain electron microscopy of E. coli ClpB of Y503D hyperactive mutant (BAP form bound to ClpP) 8AJO ; 30.6 ; Negative-stain electron microscopy structure of DDB1-DCAF12-CCT5 4B5M ; 2.758 ; Neisseria AP endonuclease bound to the substrate with a cytosine orphan base 4B5J ; 2.1 ; Neisseria AP endonuclease bound to the substrate with an orphan Adenine base 3W1O ; 1.85 ; Neisseria DNA mimic protein DMP12 7OEY ; 1.35 ; Neisseria gonnorhoeae variant E93Q at 1.35 angstrom resolution 6GQ4 ; 1.65 ; Neisseria gonorrhoeae Adhesin Complex Protein 1KOP ; 1.9 ; NEISSERIA GONORRHOEAE CARBONIC ANHYDRASE 1KOQ ; 1.9 ; NEISSERIA GONORRHOEAE CARBONIC ANHYDRASE 1D9Y ; 2.2 ; NEISSERIA GONORRHOEAE FERRIC BINDING PROTEIN 6Q8A ; 2.11 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with 5'-O-(N-(L-Leucyl)-Sulfamoyl)Cytidine 6Q8B ; 2.2 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with 5'-O-(N-(L-Leucyl)-Sulfamoyl)N3-methyluridine 6Q8C ; 2.31 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with 5'-O-(N-(L-Leucyl)-Sulfamoyl)Uridine 6YKO ; 2.21 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11a 6YKN ; 2.63 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11b 6YKQ ; 1.94 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11c 6YKS ; 1.97 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11d 6YKT ; 2.32 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11e 6YKU ; 2.14 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11f 6YKV ; 2.43 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11g 6YKW ; 2.46 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11h 7A0P ; 2.18 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11i 6YKX ; 2.41 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11j 6YKL ; 2.27 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 11k 6YKK ; 2.236 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound 15 7AP2 ; 2.25 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound LeuS7HMDDA 7YP8 ; 2.1 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Leucyl-sulfamoyl 3-deazaadenosine 6Q89 ; 2.21 ; Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with the Intermediate Analog 5'-O-(N-(L-Leucyl)-Sulfamoyl)Adenosine 8AXP ; 1.83 ; Neisseria gonorrhoeae peptidyl-tRNA hydrolase complexed with an XChem hit. 3K8A ; 2.7 ; Neisseria gonorrhoeae PriB 6ZWF ; 1.05 ; Neisseria gonorrhoeae transaldolase 6ZX4 ; 0.96 ; Neisseria gonorrhoeae transaldolase 7ODO ; 1.4 ; Neisseria gonorrhoeae transaldolase at 0.27 MGy dose 6ZWJ ; 1.35 ; Neisseria gonorrhoeae transaldolase at 1.35 Angstrom resolution 6ZWH ; 1.5 ; Neisseria gonorrhoeae transaldolase at 1.5 Angstrom resolution 7ODP ; 1.4 ; Neisseria gonorrhoeae transaldolase at 2.7 MGy dose 7ODQ ; 1.4 ; Neisseria gonorrhoeae transaldolase at 5.4 MGy dose 7B0L ; 1.65 ; Neisseria gonorrhoeae transaldolase, low-dose inhouse 7BBW ; 1.25 ; Neisseria gonorrhoeae transaldolase, variant C38S 7BBX ; 0.85 ; Neisseria gonorrhoeae transaldolase, variant K8A 5D02 ; 1.87 ; Neisseria meningitidis 3 deoxy-D-arabino-heptulosonate 7-phosphate synthase Glu176Gln variant 5D05 ; 1.75 ; Neisseria meningitidis 3 deoxy-D-arabino-heptulosonate 7-phosphate synthase Lys107Ala variant regulated 5D09 ; 2.35 ; Neisseria meningitidis 3 deoxy-D-arabino-heptulosonate 7-phosphate synthase Phe211Ala variant 5D03 ; 1.84 ; Neisseria meningitidis 3 deoxy-D-arabino-heptulosonate 7-phosphate synthase Val223Ala variant 5D04 ; 1.7 ; Neisseria meningitidis 3 deoxy-D-arabino-heptulosonate 7-phosphate synthase Val223Ala variant regulated 5CZT ; 2.04 ; Neisseria meningitidis 3 dexy-D-arabino-heptulosonate 7-phosphate synthase Glu176Ala variant 5CZ0 ; 2.5 ; Neisseria meningitidis 3 dexy-D-arabino-heptulosonate 7-phosphate synthase Glu98Ala variant 5CZS ; 2.42 ; Neisseria meningitidis 3 dexy-D-arabino-heptulosonate 7-phosphate synthase Glu98Ala variant regulated 5DCE ; 2.23 ; Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase regulated (Tryptophan) 5DCD ; 2.31 ; Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase regulated (Tyrosine) 5DCB ; 2.05 ; Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase regulated and complexed with PEP 4UC5 ; 2.19 ; Neisseria Meningitidis DAH7PS-Phenylalanine regulated 5T5F ; 2.98 ; Neisseria meningitidis factor H binding protein in complex with monoclonal antibody JAR5 7RML ; 2.7 ; Neisseria meningitidis Methylenetetrahydrofolate reductase in complex with FAD 8PJP ; 2.92 ; Neisseria meningitidis PilE, SB-GATDH variant, bound to the F10 nanobody 8P3B ; 3.15 ; Neisseria meningitidis Type IV pilus SA-GATDH variant 8P36 ; 2.51 ; Neisseria meningitidis Type IV pilus SB-DATDH variant 8PIZ ; 2.75 ; Neisseria meningitidis Type IV pilus SB-DATDH variant bound to the C24 nanobody 8P2V ; 2.99 ; Neisseria meningitidis Type IV pilus SB-GATDH variant 8PIJ ; 2.9 ; Neisseria meningitidis Type IV pilus SB-GATDH variant bound to the C24 nanobody 5M57 ; 2.3 ; Nek2 bound to arylaminopurine 6 5M55 ; 2.4 ; Nek2 bound to arylaminopurine 71 5M51 ; 1.899 ; Nek2 bound to arylaminopurine compound 8 5M53 ; 1.9 ; Nek2 bound to arylaminopurine inhibitor 11 4AFE ; 2.597 ; Nek2 bound to hybrid compound 21 6SK9 ; 2.0 ; Nek2 bound to purine compound 51 6SGK ; 2.0 ; Nek2 kinase bound to inhibitor 102 6SGI ; 2.3 ; Nek2 kinase bound to inhibitor 96 6SGD ; 2.0 ; Nek2 kinase covalently bound to 2-arylamino-6-ethynylpurine inhibitor 24 6SGH ; 3.0 ; Nek2 kinase covalently bound to 2-arylamino-6-ethynylpurine inhibitor 66 4A4X ; 2.4 ; NEK2-EDE bound to CCT248662 7NH3 ; 6.37 ; Nematocida Huwe1 in open conformation. 2HM3 ; ; Nematocyst outer wall antigen, cysteine rich domain NW1 2HM6 ; ; Nematocyst outer wall antigen, NW1 G11V K21P 2HM4 ; ; Nematocyst Outer Wall Antigen, NW1 K21P 6ENA ; ; Nemertide alpha-1 4BWN ; 2.27 ; NEMO CC2-LZ DOMAIN 2V4H ; 2.9 ; NEMO CC2-LZ domain - 1D5 DARPin complex 3F89 ; 2.8 ; NEMO CoZi domain 2ZVO ; 2.9 ; NEMO CoZi domain in complex with diubiquitin in C2 space group 2ZVN ; 3.0 ; NEMO CoZi domain incomplex with diubiquitin in P212121 space group 3BRT ; 2.25 ; NEMO/IKK association domain structure 3BRV ; 2.2 ; NEMO/IKKb association domain structure 7RM4 ; 3.33 ; Neoantigen p53R175H-specific TCR 6-11 binds to p53R175H-HLA-A2 8DZ8 ; 2.972 ; Neoleukin 4, a de novo designed IL-4 mimetic 3FRU ; 2.2 ; NEONATAL FC RECEPTOR, PH 6.5 5JMY ; 2.0 ; NEPRILYSIN COMPLEXED WITH LBQ657 6THP ; 2.54 ; Neprilysin in complex with the inhibitor (R)-4-(1-carboxy-3-(3'-chlorobiphenyl-4-yl)propan-2-ylamino)-4-oxobutanoic acid 4CTH ; 2.15 ; Neprilysin variant G399V,G714K in complex with phosphoramidon 5N6G ; 1.58 ; NerA from Agrobacterium radiobacter in complex with 2-phenylacrylic acid 5Z0C ; 1.54 ; Nerol dehydrogenase from Persicaria minor 7D16 ; ; NERP-2 in a DPC solution 7D13 ; ; NERP-2 in a HFIP solution 4EDW ; 2.48 ; Nerve Growth Factor in Complex with Fab from humanized version of mouse mAb 911 (tanezumab) 4EDX ; 2.5 ; Nerve Growth Factor in Complex with Fab from mouse mAb 911 7VPC ; 1.94 ; Neryl diphosphate synthase from Solanum lycopersicum 8X37 ; 1.98 ; Neryl diphosphate synthase from Solanum lycopersicum complexed with DMSAPP 8X35 ; 1.92 ; Neryl diphosphate synthase from Solanum lycopersicum complexed with DMSAPP, IPP, and magnesium ion (form A) 8X36 ; 2.28 ; Neryl diphosphate synthase from Solanum lycopersicum complexed with DMSAPP, IPP, and magnesium ion (form B) 6XF2 ; 7.11 ; Nesprin-1G (aa2070-2200)-FHOD1(aa1-339) complex, H. sapiens 6XF1 ; 2.8 ; Nesprin-2G(aa1425-1649)-FHOD1(aa1-339) complex, H. sapiens 4WNX ; 2.723 ; Netrin 4 lacking the C-terminal Domain 7LER ; 5.99 ; Netrin-1 filament assembly 7LRF ; 3.21 ; Netrin-1 in complex with SOS 3ZYJ ; 3.25 ; NetrinG1 in complex with NGL1 3ZYI ; 2.6 ; NetrinG2 in complex with NGL2 3ZYG ; 2.2 ; NETRING2 LAM AND EGF1 DOMAINS 1ZTT ; 1.85 ; Netropsin bound to d(CTTAATTCGAATTAAG) in complex with MMLV RT catalytic fragment 3NCM ; ; NEURAL CELL ADHESION MOLECULE, MODULE 2, NMR, 20 STRUCTURES 2NCM ; ; NEURAL CELL ADHESION MOLECULE, NMR, 20 STRUCTURES 7U4E ; 1.54 ; Neuraminidase from influenza virus A/Bilthoven/17938/1969(H3N2) 7U4F ; 1.4 ; Neuraminidase from influenza virus A/Moscow/10/1999(H3N2) 8DWB ; 1.602 ; Neuraminidase from influenza virus A/Moscow/10/1999(H3N2) in complex with sialic acid 7U4G ; 1.65 ; Neuraminidase from influenza virus A/Shandong/9/1993(H3N2) 7CM1 ; 2.14 ; Neuraminidase from the Wuhan Asiatic toad influenza virus 4QN5 ; 1.7 ; Neuraminidase N5 binds LSTa at the second SIA binding site 3BEQ ; 1.64 ; Neuraminidase of A/Brevig Mission/1/1918 H1N1 strain 3B7E ; 1.45 ; Neuraminidase of A/Brevig Mission/1/1918 H1N1 strain in complex with zanamivir 8G3Z ; 2.3 ; Neuraminidase of B/Massachusetts/02/2012 (Yamagata) in complex with 4 FNI17 Fab molecules 7MOC ; 4.56 ; Neurofibromin core 7MP6 ; 6.25 ; Neurofibromin homodimer 7R04 ; 3.7 ; Neurofibromin in open conformation 7R03 ; 3.6 ; Neurofibromin occluded conformation 7XWO ; 2.7 ; Neurokinin A bound to active human neurokinin 2 receptor in complex with G324 8JBG ; 2.8 ; Neurokinin B bound to active human neurokinin 3 receptor in complex with Gq 1I1I ; 2.3 ; NEUROLYSIN (ENDOPEPTIDASE 24.16) CRYSTAL STRUCTURE 2NBT ; ; NEURONAL BUNGAROTOXIN, NMR, 10 STRUCTURES 5AEQ ; 1.95 ; Neuronal calcium sensor (NCS-1)from Rattus norvegicus 5AER ; 2.19 ; Neuronal calcium sensor-1 (NCS-1)from Rattus norvegicus complex with D2 dopamine receptor peptide from Homo sapiens 5AFP ; 2.3 ; Neuronal calcium sensor-1 (NCS-1)from Rattus norvegicus complex with rhodopsin kinase peptide from Homo sapiens 6U6T ; 3.01 ; Neuronal growth regulator 1 (NEGR1) 1VAG ; 2.0 ; Neuronal nitric oxide synthase oxygenase domain complexed with the inhibitor AR-R17477 7QGG ; 2.86 ; Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state 1SFC ; 2.4 ; NEURONAL SYNAPTIC FUSION COMPLEX 7VGX ; 3.2 ; Neuropeptide Y Y1 Receptor (NPY1R) in Complex with G Protein and its endogeneous Peptide-Agonist Neuropeptide Y (NPY) 6TKK ; 1.06 ; Neuropilin 1-b1 domain in a complex with the C-terminal VEGFB186 peptide 2QQN ; 2.2 ; Neuropilin-1 b1 Domain in Complex with a VEGF-Blocking Fab 6FMF ; 2.811 ; Neuropilin-1 b1 domain in complex with EG01377; 2.8 Angstrom structure 2QQK ; 2.75 ; Neuropilin-2 a1a2b1b2 Domains in Complex with a Semaphorin-Blocking Fab 2QQL ; 3.1 ; Neuropilin-2 a1a2b1b2 Domains in Complex with a Semaphorin-Blocking Fab 7P5U ; 1.6 ; Neuropilin-b1 in a complex with a VEGFB-derived peptide 6FMC ; 0.9 ; Neuropilin1-b1 domain in complex with EG01377, 0.9 Angstrom structure 6TDB ; 2.45 ; Neuropilin2-b1 domain in a complex with the C-terminal VEGFB167 peptide 6TJT ; 1.31 ; Neuropilin2-b1 domain in a complex with the C-terminal VEGFC peptide 2WV3 ; 1.95 ; Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor 1NPM ; 2.1 ; NEUROPSIN, A SERINE PROTEASE EXPRESSED IN THE LIMBIC SYSTEM OF MOUSE BRAIN 1JOF ; 2.5 ; Neurospora crassa 3-carboxy-cis,cis-mucoante lactonizing enzyme 3EJ6 ; 2.3 ; Neurospora Crassa Catalase-3 Crystal Structure 3ZJ5 ; 1.95 ; NEUROSPORA CRASSA CATALASE-3 EXPRESSED IN E. COLI, ORTHORHOMBIC FORM. 3ZJ4 ; 3.098 ; Neurospora Crassa Catalase-3 expressed in E. coli, triclinic form. 4ZTY ; 1.88 ; Neurospora crassa cobalamin-independent methionine synthase complexed with Cd2+ 4ZTX ; 2.1 ; Neurospora crassa cobalamin-independent methionine synthase complexed with Zn2+ 5TKH ; 1.2 ; Neurospora crassa polysaccharide monooxygenase 2 ascorbate treated 5TKF ; 2.1 ; Neurospora crassa polysaccharide monooxygenase 2 high mannosylation 5TKG ; 1.2 ; Neurospora crassa polysaccharide monooxygenase 2 resting state 5TKI ; 2.115 ; Neurospora crassa polysaccharide monooxygenase 2 resting state joint X-ray/neutron refinement 5TKI ; 1.5 ; Neurospora crassa polysaccharide monooxygenase 2 resting state joint X-ray/neutron refinement 2LNF ; ; Neurotensin 40 structures in DMPC/CHAPS(q=0.25) bicelle pH 5.5 & 298K. NMR data & Structures 2LNG ; ; Neurotensin 40 structures in DMPC:CHAPS:GM1(q= 0.25) bicelle pH 5.5 & 298K. NMR data & Structures 2LNE ; ; Neurotensin 40 structures in water pH 5.5 298 K. NMR data & structures 2OYV ; ; Neurotensin in DPC micelles 2OYW ; ; Neurotensin in TFE:H2O (80:20) 8FMZ ; 2.59 ; Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator 6UP7 ; 4.2 ; neurotensin receptor and arrestin2 complex 1B7D ; 1.73 ; NEUROTOXIN (TS1) FROM BRAZILIAN SCORPION TITYUS SERRULATUS 1XTF ; 2.2 ; neurotoxin BoNT/A E224Q Y366F mutant 1VYC ; ; Neurotoxin from Bungarus candidus 2MJ4 ; ; Neurotoxin II from snake venom Naja Oxiana in solution 1B98 ; 2.75 ; NEUROTROPHIN 4 (HOMODIMER) 4F42 ; 2.38 ; Neurotrophin p75NTR intracellular domain 4F44 ; 2.4 ; Neurotrophin p75NTR intracellular domain 1B8K ; 2.15 ; Neurotrophin-3 from Human 6GL7 ; 6.3 ; Neurturin-GFRa2-RET extracellular complex 6TTJ ; 3.392 ; Neutral invertase 2 from Arabidopsis thaliana 7WG6 ; 3.4 ; Neutral Omicron Spike Trimer 7WGB ; 3.5 ; Neutral Omicron Spike Trimer in complex with ACE2 7WGC ; 3.6 ; Neutral Omicron Spike Trimer in complex with ACE2. 1ESP ; 2.8 ; NEUTRAL PROTEASE MUTANT E144S 5JTA ; 2.72 ; Neutral trehalase Nth1 from Saccharomyces cerevisiae 5NIS ; 3.155 ; Neutral trehalase Nth1 from Saccharomyces cerevisiae 5M4A ; 2.9 ; Neutral trehalase Nth1 from Saccharomyces cerevisiae in complex with trehalose 6L62 ; 7.2 ; Neutralization mechanism of a monoclonal antibody targeting a porcine circovirus type 2 Cap protein conformational epitope 6LM3 ; 6.7 ; Neutralization mechanism of a monoclonal antibody targeting a porcine circovirus type 2 Cap protein conformational epitope 2R29 ; 3.0 ; Neutralization of dengue virus by a serotype cross-reactive antibody elucidated by cryoelectron microscopy and x-ray crystallography 4HZL ; 2.85 ; Neutralizing antibody mAb#8 in complex with the Epitope II of HCV E2 envelope protein 4NCC ; 2.49 ; Neutralizing antibody to murine norovirus 3X2O ; 1.5 ; Neutron and X-ray joint refined structure of PcCel45A apo form at 298K. 3X2O ; 1.0 ; Neutron and X-ray joint refined structure of PcCel45A apo form at 298K. 3X2P ; 1.518 ; Neutron and X-ray joint refined structure of PcCel45A with cellopentaose at 298K. 3X2P ; 0.99 ; Neutron and X-ray joint refined structure of PcCel45A with cellopentaose at 298K. 8W48 ; 1.9 ; Neutron and X-ray joint structure of WT-TTR in complex with piceatannol 8W48 ; 1.19 ; Neutron and X-ray joint structure of WT-TTR in complex with piceatannol 2QWS ; 2.5 ; Neutron and X-ray structural studies of short hydrogen bonds in Photoactive Yellow Protein (PYP) 4XPV ; 2.0 ; Neutron and X-ray structure analysis of xylanase: N44D at pH6 4XPV ; 1.7 ; Neutron and X-ray structure analysis of xylanase: N44D at pH6 3A1R ; 1.7 ; Neutron crystal structure analysis of bovine pancreatic ribonuclease A 6GTJ ; 1.801 ; Neutron crystal structure for copper nitrite reductase from Achromobacter Cycloclastes at 1.8 A resolution 2EFA ; 2.7 ; Neutron crystal structure of cubic insulin at pD6.6 2ZPP ; 2.5 ; Neutron crystal structure of cubic insulin at pD9 1WQ2 ; 2.4 ; Neutron Crystal Structure Of Dissimilatory Sulfite Reductase D (DsrD) 4PDJ ; 1.994 ; Neutron crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ 4PDJ ; 1.599 ; Neutron crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ 7D6G ; 2.1 ; Neutron crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH4.5 7D6G ; 1.65 ; Neutron crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH4.5 2INQ ; 2.2 ; Neutron Crystal Structure of Escherichia coli Dihydrofolate Reductase Bound to the Anti-cancer drug, Methotrexate 5D97 ; 1.8 ; Neutron crystal structure of H2O-solvent ribonuclease A 5CG5 ; 2.4 ; Neutron crystal structure of human farnesyl pyrophosphate synthase in complex with risedronate 5CG5 ; 1.402 ; Neutron crystal structure of human farnesyl pyrophosphate synthase in complex with risedronate 5CG6 ; 2.4 ; Neutron crystal structure of human farnesyl pyrophosphate synthase in complex with risedronate and isopentenyl pyrophosphate 5CG6 ; 1.7 ; Neutron crystal structure of human farnesyl pyrophosphate synthase in complex with risedronate and isopentenyl pyrophosphate 7XVX ; 2.0 ; Neutron crystal structure of human macrophage migration inhibitory factor 7XVX ; 1.6 ; Neutron crystal structure of human macrophage migration inhibitory factor 3U2J ; 2.0 ; Neutron crystal structure of human Transthyretin 8DHD ; 2.106 ; Neutron crystal structure of maltotetraose bound tmMBP 8DHD ; 1.7 ; Neutron crystal structure of maltotetraose bound tmMBP 8E1W ; 2.8 ; Neutron crystal structure of Panus similis AA9A at room temperature 8E1W ; 2.1 ; Neutron crystal structure of Panus similis AA9A at room temperature 6EXY ; 1.7 ; Neutron crystal structure of perdeuterated galectin-3C in complex with glycerol 6EXY ; 1.1 ; Neutron crystal structure of perdeuterated galectin-3C in complex with glycerol 6EYM ; 1.7 ; Neutron crystal structure of perdeuterated galectin-3C in complex with lactose 6EYM ; 1.1 ; Neutron crystal structure of perdeuterated galectin-3C in complex with lactose 6F2Q ; 1.757 ; Neutron crystal structure of perdeuterated galectin-3C in the ligand-free form 6F2Q ; 1.03 ; Neutron crystal structure of perdeuterated galectin-3C in the ligand-free form 2ZOI ; 1.5 ; Neutron Crystal Structure of Photoactive Yellow Protein, Wild type, at 295K 4QCD ; 1.932 ; Neutron crystal structure of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin IXalpha at room temperature. 4QCD ; 1.551 ; Neutron crystal structure of phycocyanobilin:ferredoxin oxidoreductase in complex with biliverdin IXalpha at room temperature. 4RSG ; 1.907 ; Neutron crystal structure of Ras bound to the GTP analogue GppNHp 4ZZ4 ; 1.798 ; Neutron crystal structure of ribonuclease A determined by the real space D/H contrast method 7TX4 ; 2.35 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain at 293 K (P21 crystal form) 7TX4 ; 1.9 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain at 293 K (P21 crystal form) 7TX3 ; 1.89 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain at 293 K (P43 crystal form) 7TX3 ; 1.6 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain at 293 K (P43 crystal form) 7TX5 ; 2.3 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ADP-ribose at 293 K (C2 crystal form) 7TX5 ; 1.95 ; Neutron crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ADP-ribose at 293 K (C2 crystal form) 6U0F ; 2.0 ; Neutron crystal structure of T4L L99AE 6U0F ; 2.053 ; Neutron crystal structure of T4L L99AE 6U0E ; 1.889 ; Neutron crystal structure of T4L M6AE 6U0E ; 2.106 ; Neutron crystal structure of T4L M6AE 6L26 ; 1.444 ; Neutron crystal structure of the mutant green fluorescent protein (EGFP) 1IU6 ; 1.6 ; Neutron Crystal Structure of the rubredoxin mutant from Pyrococcus Furiosus 1VCX ; 1.5 ; Neutron Crystal Structure of the Wild Type Rubredoxin from Pyrococcus Furiosus at 1.5A Resolution 2ZWB ; 1.8 ; Neutron crystal structure of wild type human lysozyme in D2O 6U0B ; 2.101 ; Neutron crystal structure of wtT4LD 6U0B ; 1.951 ; Neutron crystal structure of wtT4LD 6U0C ; 2.1 ; Neutron crystal structure of wtT4LE 6U0C ; 2.0 ; Neutron crystal structure of wtT4LE 1V9G ; 1.8 ; Neutron Crystallographic analysis of the Z-DNA hexamer CGCGCG 5VG1 ; 2.1 ; Neutron crystallographic structure of a Jonesia denitrificans lytic polysaccharide monooxygenase 5VNQ ; 2.2 ; Neutron crystallographic structure of perdeuterated T4 lysozyme cysteine-free pseudo-wild type at cryogenic temperature 4AR4 ; 1.381 ; Neutron crystallographic structure of the reduced form perdeuterated Pyrococcus furiosus rubredoxin to 1.38 Angstrom resolution. 4QX5 ; 1.318 ; Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: Insights for PKG agonist design 2VS2 ; 2.0 ; Neutron diffraction structure of endothiapepsin in complex with a gem- diol inhibitor. 1GKT ; 2.1 ; Neutron Laue diffraction structure of endothiapepsin complexed with transition state analogue inhibitor H261 2DXM ; 2.1 ; Neutron Structure Analysis of Deoxy Human Hemoglobin 1L2K ; 1.5 ; Neutron Structure Determination of Sperm Whale Met-Myoglobin at 1.5A Resolution. 5TY5 ; 2.3 ; Neutron structure from microgravity-grown crystals of Inorganic Pyrophosphatase from Thermococcus theoreducens 2WYX ; 2.1 ; Neutron structure of a class A Beta-lactamase Toho-1 E166A R274N R276N triple mutant 7YQS ; 1.8 ; Neutron structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, L-Rha complex 7YQS ; 1.25 ; Neutron structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, L-Rha complex 4BD1 ; 2.002 ; Neutron structure of a perdeuterated Toho-1 R274N R276N double mutant Beta-lactamase in complex with a fully deuterated boronic acid (BZB) 4C3Q ; 2.2 ; Neutron structure of a perdeuterated Toho-1 R274N R276N double mutant Beta-lactamase in complex with a fully deuterated boronic acid (BZB) at 100K 4G0C ; 2.0 ; Neutron structure of acetazolamide-bound human carbonic anhydrase II reveal molecular details of drug binding. 8RBR ; 1.8 ; Neutron structure of alginate lyase PsPL7C from Paradendryphiella salina 8RBN ; 2.1 ; Neutron structure of alginate lysase PsPL7C from Paradendryphiella salina soaked with penta-mannuronic acid 7YL8 ; 1.6 ; Neutron structure of Bacillus thermoproteolyticus Ferredoxin at room temperature 7YL8 ; 1.45 ; Neutron structure of Bacillus thermoproteolyticus Ferredoxin at room temperature 5MNX ; 1.42 ; Neutron structure of cationic trypsin in complex with 2-aminopyridine 5MNY ; 1.43 ; Neutron structure of cationic trypsin in complex with aniline 5MO0 ; 1.502 ; Neutron structure of cationic trypsin in complex with benzamidine 5MO1 ; 1.491 ; Neutron structure of cationic trypsin in complex with benzylamine 5MO2 ; 1.5 ; Neutron structure of cationic trypsin in complex with N-amidinopiperidine 5MNZ ; 1.45 ; Neutron structure of cationic trypsin in its apo form 4CVJ ; 2.501 ; Neutron Structure of Compound I intermediate of Cytochrome c Peroxidase - Deuterium exchanged 100 K 4CVJ ; 2.182 ; Neutron Structure of Compound I intermediate of Cytochrome c Peroxidase - Deuterium exchanged 100 K 5JPR ; 2.202 ; Neutron Structure of Compound II of Ascorbate Peroxidase 5JPR ; 1.806 ; Neutron Structure of Compound II of Ascorbate Peroxidase 6L9C ; 1.72 ; Neutron structure of copper amine oxidase from Arthrobacter glibiformis at pD 7.4 6L9C ; 1.14 ; Neutron structure of copper amine oxidase from Arthrobacter glibiformis at pD 7.4 8J6G ; 1.67 ; Neutron structure of copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pD 9.0 8J6G ; 1.09 ; Neutron structure of copper amine oxidase from Arthrobacter globiformis anaerobically reduced by phenylethylamine at pD 9.0 7VEI ; 2.0 ; Neutron structure of D2O-solvent lysozyme 6TAE ; 2.222 ; Neutron structure of ferric ascorbate peroxidase 6TAE ; 1.9 ; Neutron structure of ferric ascorbate peroxidase 6XV4 ; 2.09 ; Neutron structure of ferric ascorbate peroxidase-ascorbate complex 6XV4 ; 1.9 ; Neutron structure of ferric ascorbate peroxidase-ascorbate complex 4CVI ; 2.407 ; Neutron Structure of Ferric Cytochrome c Peroxidase - Deuterium exchanged at room temperature 4CVI ; 2.1 ; Neutron Structure of Ferric Cytochrome c Peroxidase - Deuterium exchanged at room temperature 7JOR ; 2.05 ; Neutron structure of ferric Dehaloperoxidase B 1CQ2 ; 2.0 ; NEUTRON STRUCTURE OF FULLY DEUTERATED SPERM WHALE MYOGLOBIN AT 2.0 ANGSTROM 1LZN ; 1.7 ; NEUTRON STRUCTURE OF HEN EGG-WHITE LYSOZYME 3KKX ; 2.0 ; Neutron structure of human carbonic anhydrase II 4PVM ; 2.0 ; Neutron structure of human transthyretin (TTR) at room temperature to 2.0A resolution (Laue) 4PVM ; 1.95 ; Neutron structure of human transthyretin (TTR) at room temperature to 2.0A resolution (Laue) 4PVN ; 2.3 ; Neutron structure of human transthyretin (TTR) at room temperature to 2.3A resolution (monochromatic) 4PVN ; 1.95 ; Neutron structure of human transthyretin (TTR) at room temperature to 2.3A resolution (monochromatic) 5NFW ; 1.8 ; Neutron structure of human transthyretin (TTR) S52P mutant at room temperature to 1.8A resolution (quasi-Laue) 5NFW ; 1.8 ; Neutron structure of human transthyretin (TTR) S52P mutant at room temperature to 1.8A resolution (quasi-Laue) 6FFT ; 2.0 ; Neutron structure of human transthyretin (TTR) S52P mutant in complex with tafamidis at room temperature to 2A resolution (quasi-Laue) 6FFT ; 2.0 ; Neutron structure of human transthyretin (TTR) S52P mutant in complex with tafamidis at room temperature to 2A resolution (quasi-Laue) 5NFE ; 1.85 ; Neutron structure of human transthyretin (TTR) T119M mutant at room temperature to 1.85A resolution 5NFE ; 1.853 ; Neutron structure of human transthyretin (TTR) T119M mutant at room temperature to 1.85A resolution 6H1M ; 2.15 ; Neutron structure of Lactobacillus brevis alcohol dehydrogenase 4NY6 ; 1.85 ; Neutron structure of leucine and valine methyl protonated type III antifreeze 4NY6 ; 1.05 ; Neutron structure of leucine and valine methyl protonated type III antifreeze 7T5D ; 2.4 ; Neutron structure of Neurospora crassa Lytic Polysaccharide Monooxygenase 9D (NcLPMO9D) ascorbate soak 7T5E ; 2.144 ; Neutron structure of Neurospora crassa Polysaccharide Monooxygenase 9D (NcLPMO9D) low pH vapor exchange 7T5E ; 1.9 ; Neutron structure of Neurospora crassa Polysaccharide Monooxygenase 9D (NcLPMO9D) low pH vapor exchange 7KKS ; 2.2 ; Neutron structure of Oxidized Human MnSOD 7YKB ; 2.1 ; Neutron Structure of PcyA D105N Mutant Complexed with Biliverdin at Room Temperature 7YKB ; 1.38 ; Neutron Structure of PcyA D105N Mutant Complexed with Biliverdin at Room Temperature 7YK9 ; 2.0 ; Neutron Structure of PcyA I86D Mutant Complexed with Biliverdin at Room Temperature 7YK9 ; 1.9 ; Neutron Structure of PcyA I86D Mutant Complexed with Biliverdin at Room Temperature 4K9F ; 1.75 ; Neutron structure of Perdeuterated Rubredoxin refined against 1.75 resolution data collected on the new IMAGINE instrument at HFIR, ORNL 3RZ6 ; 1.75 ; Neutron structure of perdeuterated rubredoxin using 40 hours 1st pass data 3SS2 ; 1.75 ; Neutron structure of perdeuterated rubredoxin using 48 hours 3rd pass data 3RZT ; 1.7504 ; Neutron structure of perdeuterated rubredoxin using rapid (14 hours) data 7KKW ; 2.3 ; Neutron structure of Reduced Human MnSOD 4LNC ; 2.19 ; Neutron structure of the cyclic glucose bound Xylose Isomerase E186Q mutant 4LNC ; 1.84 ; Neutron structure of the cyclic glucose bound Xylose Isomerase E186Q mutant 2XQZ ; 2.1 ; Neutron structure of the perdeuterated Toho-1 R274N R276N double mutant beta-lactamase 5XPE ; 2.09 ; Neutron structure of the T26H mutant of T4 lysozyme 5XPE ; 1.648 ; Neutron structure of the T26H mutant of T4 lysozyme 3QF6 ; 1.85 ; Neutron structure of type-III Antifreeze Protein allows the reconstruction of AFP-ice interface 5ZO0 ; 1.648 ; Neutron structure of xylanase at pD5.4 8W6X ; 2.2 ; Neutron structure of [NiFe]-hydrogenase from D. vulgaris Miyazaki F in its oxidized state 8W6X ; 1.04 ; Neutron structure of [NiFe]-hydrogenase from D. vulgaris Miyazaki F in its oxidized state 8K9P ; 1.9 ; Neutron X-ray joint structure of pseudoazurin from Alcaligenes faecalis 8K9P ; 1.5 ; Neutron X-ray joint structure of pseudoazurin from Alcaligenes faecalis 6NTJ ; 2.35 ; Neutron/X-ray crystal structure of AAC-VIa bound to gentamicin C1A 6NTJ ; 1.9 ; Neutron/X-ray crystal structure of AAC-VIa bound to gentamicin C1A 6NTI ; ; Neutron/X-ray crystal structure of AAC-VIa bound to kanamycin b 6NTI ; 2.3 ; Neutron/X-ray crystal structure of AAC-VIa bound to kanamycin b 1TVX ; 1.75 ; NEUTROPHIL ACTIVATING PEPTIDE-2 VARIANT FORM M6L WITH FIVE ADDITIONAL AMINO TERMINAL RESIDUES (DSDLY) 5ABW ; 1.6 ; Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases 1QQS ; 2.4 ; NEUTROPHIL GELATINASE ASSOCIATED LIPOCALIN HOMODIMER 1L6M ; 2.4 ; Neutrophil Gelatinase-associated Lipocalin is a Novel Bacteriostatic Agent that Interferes with Siderophore-mediated Iron Acquisition 4Q7X ; 2.55 ; Neutrophil serine protease 4 (PRSS57) apo form 1 4Q7Y ; 2.7 ; Neutrophil serine protease 4 (PRSS57) apo form 2 4Q7Z ; 1.4 ; Neutrophil serine protease 4 (PRSS57) with phe-phe-arg-chloromethylketone (FFR-cmk) 4Q80 ; 3.07 ; Neutrophil serine protease 4 (PRSS57) with val-leu-lys-chloromethylketone (VLK-cmk) 2Y66 ; 1.49 ; New 5-Benzylidenethiazolidine-4-one Inhibitors of Bacterial MurD Ligase: Design, Synthesis, Crystal Structures, and Biological Evaluation 2Y67 ; 1.85 ; New 5-Benzylidenethiazolidine-4-one Inhibitors of Bacterial MurD Ligase: Design, Synthesis, Crystal Structures, and Biological Evaluation 4B1C ; 1.95 ; New Aminoimidazoles as BACE-1 Inhibitors: From Rational Design to Ab- lowering in Brain 4B1D ; 1.95 ; New Aminoimidazoles as BACE-1 Inhibitors: From Rational Design to Ab- lowering in Brain 4B1E ; 1.95 ; New Aminoimidazoles as BACE-1 Inhibitors: From Rational Design to Ab- lowering in Brain 6T73 ; 3.435 ; New antiparallel dimer of aureochrome 1a LOV domain mutants from Phaeodactylum tricornutum 6T74 ; 1.9 ; New antiparallel dimer of aureochrome 1a LOV domain mutants from Phaeodactylum tricornutum 3HH3 ; 1.25 ; New azaborine compounds bind to the T4 lysozyme L99A cavity - 1,2-dihydro-1,2-azaborine 3HH5 ; 1.25 ; New azaborine compounds bind to the T4 lysozyme L99A cavity - 1-ethyl-2-hydro-1,2-azaborine 3HH4 ; 1.25 ; New azaborine compounds bind to the T4 lysozyme L99A cavity - Benzene as control 3HH6 ; 1.25 ; New azaborine compounds bind to the T4 lysozyme L99A cavity -ethylbenzene as control 1HO0 ; ; NEW B-CHAIN MUTANT OF BOVINE INSULIN 3K1W ; 1.5 ; New Classes of Potent and Bioavailable Human Renin Inhibitors 4ZQS ; 1.804 ; New compact conformation of linear Ub2 structure 3WT3 ; 1.68 ; New crystal form of a hyperthermophilic endocellulase 4US6 ; 1.2 ; New Crystal Form of Glucose Isomerase Grown in Short Peptide Supramolecular Hydrogels 3K4V ; 1.39 ; New crystal form of HIV-1 Protease/Saquinavir structure reveals carbamylation of N-terminal proline 1IV5 ; 2.6 ; New Crystal Form of Human CD81 Large Extracellular Loop. 1QGE ; 1.7 ; NEW CRYSTAL FORM OF PSEUDOMONAS GLUMAE (FORMERLY CHROMOBACTERIUM VISCOSUM ATCC 6918) LIPASE 3IMP ; 2.5 ; New crystal form of the C-terminal domain of Helicobacter pylori MotB (residues 125-256) 3WQ7 ; 1.68 ; New crystal form of the hyperthermophilic family 12 endo-cellulase from Pyrococcus furiosus 2BP7 ; 2.9 ; New crystal form of the Pseudomonas putida branched-chain dehydrogenase (E1) 2IEK ; 1.83 ; New crystal form of transcriptional regulator tm1030 from Thermotoga maritima 4GUK ; 1.75 ; New crystal form structure of human NCS1 1GSB ; 2.5 ; NEW CRYSTAL FORMS OF A MU CLASS GLUTATHIONE S-TRANSFERASE FROM RAT LIVER 1GSC ; 2.5 ; NEW CRYSTAL FORMS OF A MU CLASS GLUTATHIONE S-TRANSFERASE FROM RAT LIVER 1P8L ; 2.95 ; New Crystal Structure of Chlorella Virus DNA Ligase-Adenylate 3EYC ; 2.6 ; New crystal structure of human tear lipocalin in complex with 1,4-butanediol in space group P21 4Z2Z ; 1.8 ; New crystal structure of yeast Ddi1 aspartyl protease reveals substrate engagement mode 2MLW ; ; New Cyt-like delta-endotoxins from Dickeya dadantii - CytC protein 7CT2 ; 1.95 ; New Delhi metallo-beta-lactamase 1 (NDM1) mutant - H116Q 4HL2 ; 1.05 ; New Delhi Metallo-beta-Lactamase-1 1.05 A structure Complexed with Hydrolyzed Ampicillin 3SRX ; 2.5 ; New Delhi Metallo-beta-Lactamase-1 Complexed with Cd 4H0D ; 1.498 ; New Delhi Metallo-beta-Lactamase-1 Complexed with Mn from Klebsiella pneumoniae 4HKY ; 2.004 ; New Delhi Metallo-beta-Lactamase-1, Complexed with Cd and Faropenem 4UB0 ; 2.2 ; New design for monovalent bispecific IgG through cysteine engineering of the CH1-CL interface 2L6Q ; ; New high resolution NMR structure of gpW (W protein of bacteriophage lambda) at neutral pH 4I2L ; 1.426 ; New HIV entry inhibitor MTSFT/T23 complex 5JX8 ; 2.0 ; New improved structure of D4 in trigonal space group 2FZI ; 1.6 ; New Insights into DHFR Interactions: Analysis of Pneumocystis carinii and Mouse DHFR Complexes with NADPH and Two Highly Potent Trimethoprim Derivatives 2FZJ ; 2.0 ; New Insights into DHFR Interactions: Analysis of Pneumocystis carinii and Mouse DHFR Complexes with NADPH and Two Highly Potent Trimethoprim Derivatives 2FZH ; 2.1 ; New Insights into Dihydrofolate Reductase Interactions: Analysis of Pneumocystis carinii and Mouse DHFR Complexes with NADPH and Two Highly Potent Trimethoprim Derivatives 1C2T ; 2.1 ; NEW INSIGHTS INTO INHIBITOR DESIGN FROM THE CRYSTAL STRUCTURE AND NMR STUDIES OF E. COLI GAR TRANSFORMYLASE IN COMPLEX WITH BETA-GAR AND 10-FORMYL-5,8,10-TRIDEAZAFOLIC ACID. 1C3E ; 2.1 ; NEW INSIGHTS INTO INHIBITOR DESIGN FROM THE CRYSTAL STRUCTURE AND NMR STUDIES OF E. COLI GAR TRANSFORMYLATE IN COMPLEX WITH BETA-GAR AND 10-FORMYL-5,8,10-TRIDEAZAFOLIC ACID. 4ATO ; 2.2 ; New insights into the mechanism of bacterial Type III toxin-antitoxin systems: selective toxin inhibition by a non-coding RNA pseudoknot 8DAX ; 1.61 ; New insights into the P186 flip and oligomeric state of Staphylococcus aureus exfoliative toxin E: implications for the exfoliative mechanism 6FJ5 ; 2.051 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-AGG-HG) 5MF7 ; 1.59 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-GADD45) 5MCT ; 1.446 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-LHG1) 5MCU ; 1.7 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-LHG2) 5MCV ; 1.6 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-LWC1) 5MCW ; 1.897 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-LWC2) 5MG7 ; 1.45 ; New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins (complex p53DBD-p53R2) 1H98 ; 1.64 ; New Insights into Thermostability of Bacterial Ferredoxins: High Resolution Crystal Structure of the Seven-Iron Ferredoxin from Thermus thermophilus 6I6R ; 2.02 ; New Irreversible a-l-Iduronidase Inhibitors and Activity-Based Probes 6I6X ; 2.39 ; New Irreversible a-l-Iduronidase Inhibitors and Activity-Based Probes 4TVT ; 1.2 ; New ligand for thaumatin discovered using acoustic high throughput screening 4QPF ; 1.59 ; New lower bone affinity bisphosphonate drug design for effective use in diseases characterized by abnormal bone resorption 6R5J ; 1.38 ; New MAX Effector from Magnaporthe oryzae 5JSP ; 2.2 ; New Mechanistic Insight from Substrate and Product Bound Structures of the Metal-dependent Dimethylsulfoniopropionate Lyase DddQ 5JSR ; 2.5 ; New Mechanistic Insight from Substrate and Product Bound Structures of the Metal-dependent Dimethylsulfoniopropionate Lyase DddQ 5TFX ; 1.5 ; New method for synthesis of benzoxazole amide inhibitors of carbonic anhydrase 2NWN ; 2.15 ; New Pharmacophore for Serine Protease Inhibition Revealed by Crystal Structure of Human Urokinase-type Plasminogen Activator Complexed with a Cyclic Peptidyl Inhibitor, upain-1 7NUY ; 1.65 ; New polymorhp of proteinase K obtained by free interface diffusion technique 1BET ; 2.3 ; NEW PROTEIN FOLD REVEALED BY A 2.3 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF NERVE GROWTH FACTOR 3LVZ ; 1.4 ; New refinement of the crystal structure of BJP-1, a subclass B3 metallo-beta-lactamase of Bradyrhizobium japonicum 3RUM ; 1.851 ; New strategy to analyze structures of glycopeptide antibiotic-target complexes 3RUN ; 1.4 ; New strategy to analyze structures of glycopeptide antibiotic-target complexes 3RUL ; 2.5 ; New strategy to analyze structures of glycopeptide-target complexes 4W5H ; 1.96 ; New structural conformations of adenylate kinase from Streptococcus pneumoniae D39 4W5J ; 1.65 ; New structural conformations of adenylate kinase from Streptococcus pneumoniae D39 with Ap5A 1RO3 ; ; New structural insights on short disintegrin echistatin by NMR 2Z72 ; 1.1 ; New Structure Of Cold-Active Protein Tyrosine Phosphatase At 1.1 Angstrom 1XN2 ; 1.9 ; New substrate binding pockets for beta-secretase. 4AX2 ; 1.88 ; New Type VI-secreted toxins and self-resistance proteins in Serratia marcescens 1USR ; 2.0 ; Newcastle disease virus hemagglutinin-neuraminidase: Evidence for a second sialic acid binding site and implications for fusion 3I6K ; 2.8 ; Newly identified epitope from SARS-CoV membrane protein complexed with HLA-A*0201 3I6G ; 2.201 ; Newly identified epitope Mn2 from SARS-CoV M protein complexed withHLA-A*0201 3I6L ; 2.4 ; Newly identified epitope N1 derived from SARS-CoV N protein complexed with HLA-A*2402 4K7F ; 2.0 ; Newly identified epitope V60 from HBV core protein complexed with HLA-A*0201 1RNC ; 1.5 ; NEWLY OBSERVED BINDING MODE IN PANCREATIC RIBONUCLEASE 1RND ; 1.5 ; NEWLY OBSERVED BINDING MODE IN PANCREATIC RIBONUCLEASE 6WIB ; 2.55 ; Next generation monomeric IgG4 Fc 6WMH ; 2.3 ; Next generation monomeric IgG4 Fc 6WNA ; 2.4 ; Next generation monomeric IgG4 Fc 6WOL ; 2.49 ; Next generation monomeric IgG4 Fc bound to neonatal Fc receptor 1MY5 ; 1.8 ; NF-kappaB p65 subunit dimerization domain homodimer 1MY7 ; 1.49 ; NF-kappaB p65 subunit dimerization domain homodimer N202R mutation 1ZK9 ; 2.18 ; NF-kB RelB forms an intertwined homodimer 1ZKA ; 2.2 ; NF-kB RelB forms an intertwined homodimer, Y300S mutant 7AH8 ; 2.70001 ; NF-Y bound to suramin inhibitor 8QU3 ; 1.41 ; NF-YB/C Heterodimer in Complex with a 13-mer NF-YA-derived Peptide Stabilized with C8-Hydrocarbon Linker 8QU4 ; 1.38 ; NF-YB/C Heterodimer in Complex with a 13-mer NF-YA-derived Peptide Stabilized with C8-Hydrocarbon Linker in an alternative binding pose 8QU2 ; 1.45 ; NF-YB/C Heterodimer in Complex with a 16-mer NF-YA-derived Peptide Stabilized with C8-Hydrocarbon Linker 6QMP ; 2.0 ; NF-YB/C Heterodimer in Complex with NF-YA Peptide 6QMS ; 1.8 ; NF-YB/C Heterodimer in Complex with NF-YA-derived Peptide Stabilized with C11-Hydrocarbon Linker 6QMQ ; 2.5 ; NF-YB/C Heterodimer in Complex with NF-YA-derived Peptide Stabilized with C8-Hydrocarbon Linker 1SVC ; 2.6 ; NFKB P50 HOMODIMER BOUND TO DNA 3FR1 ; 1.85 ; NFLVHS segment from Islet Amyloid Polypeptide (IAPP or Amylin) 3FTH ; 1.84 ; NFLVHSS segment from Islet Amyloid Polypeptide (IAPP or Amylin) 6DIX ; 1.0 ; NFVFGT segment from Human Immunoglobulin Light-Chain Variable Domain, Residues 98-103, assembled as an amyloid fibril 6Y2Z ; 2.15 ; NG domain of human SRP54 6Y30 ; 2.65 ; NG domain of human SRP54 T115A mutant 6Y31 ; 4.001 ; NG domain of human SRP54 T117 deletion mutant 6QUY ; 3.8 ; NgCKK (N.Gruberi CKK) decorated 13pf taxol-GDP microtubule 6QVE ; 3.7 ; NgCKK (Naegleria Gruberi CKK) decorated 14pf taxol-GDP microtubule 1WWA ; 2.5 ; NGF BINDING DOMAIN OF HUMAN TRKA RECEPTOR 1WWW ; 2.2 ; NGF IN COMPLEX WITH DOMAIN 5 OF THE TRKA RECEPTOR 5JZ7 ; 3.4 ; NGF IN COMPLEX WITH MEDI578 scFv 3NCV ; 2.4 ; NgoL 5CG8 ; 2.702 ; NgTET1 in complex with 5hmC DNA 5CG9 ; 2.693 ; NgTET1 in complex with 5mC DNA in space group P3221 5KAI ; 2.80001 ; NH3-bound RT XFEL structure of Photosystem II 500 ms after the 2nd illumination (2F) at 2.8 A resolution 3P52 ; 2.74 ; NH3-dependent NAD synthetase from Campylobacter jejuni subsp. jejuni NCTC 11168 in complex with the nitrate ion 1KQP ; 1.03 ; NH3-DEPENDENT NAD+ SYNTHETASE FROM BACILLUS SUBTILIS AT 1 A RESOLUTION 1IH8 ; 1.9 ; NH3-dependent NAD+ Synthetase from Bacillus subtilis Complexed with AMP-CPP and Mg2+ ions. 3FI1 ; 7.0 ; NhaA dimer model 8EZB ; 8.9 ; NHEJ Long-range complex with ATP 8EZA ; 4.39 ; NHEJ Long-range complex with PAXX 7LT3 ; 4.6 ; NHEJ Long-range synaptic complex 7LSY ; 8.4 ; NHEJ Short-range synaptic complex 4Q2P ; 2.05 ; NHERF3 PDZ2 in Complex with a Phage-Derived Peptide 7B96 ; 1.8 ; NHL domain of human TRIM2 6OY3 ; 4.0 ; nhTMEM16 L302A +Ca2+ in nanodiscs 1DKE ; 2.1 ; NI BETA HEME HUMAN HEMOGLOBIN 8DRD ; 1.89 ; Ni(II)-bound B2 dimer (H60/H100/H104) 6HY6 ; 1.87 ; Ni(II)-substituted Wells-Dawson binding to Hen Egg-White Lysozyme (HEWL) 8ON3 ; 1.74 ; NI,FE-CODH -320mV + CN state : 24 h Dioxygen Exposure 8OMX ; 1.5 ; NI,FE-CODH -600mV state : 1 min Dioxygen Exposure 8ON2 ; 1.58 ; NI,FE-CODH -600mV state : 24 h Dioxygen Exposure 8OMY ; 1.37 ; NI,FE-CODH -600mV state : 35 min Dioxygen Exposure 8ON1 ; 1.37 ; NI,FE-CODH -600mV state : 4 h Dioxygen Exposure 8ON0 ; 1.29 ; NI,FE-CODH -600mV state : 90 min Dioxygen Exposure 2YIV ; 1.28 ; NI,FE-CODH with n-butylisocyanate state 3B53 ; 1.5 ; Ni,Fe-CODH-320 mV state 3I39 ; 1.36 ; NI,FE-CODH-320 MV+CN state 3B51 ; 1.4 ; Ni,Fe-CODH-600 mV state 3B52 ; 1.5 ; Ni,Fe-CODH-600 mV state + CO2 4MTS ; 1.8 ; Ni- and Zn-bound GloA2 at high resolution 4MTT ; 2.17 ; Ni- and Zn-bound GloA2 at low resolution 6LV7 ; 1.2 ; Ni- Carbonic Anhydrase II pH 11.0 0 atm CO2 6LV8 ; 1.2 ; Ni- Carbonic Anhydrase II pH 11.0 20 atm CO2 6LV5 ; 1.2 ; Ni- Carbonic Anhydrase II pH 7.8 0 atm CO2 6LV6 ; 1.2 ; Ni- Carbonic Anhydrase II pH 7.8 20 atm CO2 7N4F ; 1.8 ; Ni-bound crystal structure of the engineered cyt cb562 variant, AB2-H100A, crystallized in the presence of Ni(II) 7LSN ; 1.52 ; Ni-bound crystal structure of the engineered cyt cb562 variant, DiCyt2 - H63A, crystallized in the presence of Ni(II) 7LRA ; 1.7 ; Ni-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Cu(II) (M1) and Ni(II) (M2) 7LRV ; 1.4 ; Ni-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Ni(II) 7LR5 ; 1.7 ; Ni-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Ni(II) (M1) and Cu(II) (M2) 7LRB ; 1.78 ; Ni-bound crystal structure of the engineered cyt cb562 variant, DiCyt2, crystallized in the presence of Ni(II) (M1) and Cu(II) (M2) 5U7H ; 2.0 ; Ni-bound dihydroneopterin triphosphate pyrophosphohydrolase from E. coli 2Y39 ; 1.41 ; Ni-bound form of Cupriavidus metallidurans CH34 CnrXs 3ZG1 ; 1.85 ; NI-BOUND FORM OF M123A MUTANT OF CUPRIAVIDUS METALLIDURANS CH34 CNRXS 4MTQ ; 2.17 ; Ni-bound GloA2 6WZA ; 2.5 ; Ni-bound structure of an engineered metal-dependent protein trimer, TriCyt1 6WZC ; 2.195 ; Ni-bound structure of an engineered protein trimer, TriCyt3 7Y2S ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 100 K 7Y2T ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 120 K 7Y2U ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 140 K 7Y2V ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 160 K 7Y2W ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 180 K 7Y2X ; 1.5 ; Ni-Carbonic Anhydrase II complexed with 3NPA after UV at 200 K 7Y2R ; 1.2 ; Ni-Carbonic Anhydrase II complexed with 3NPA before UV at 100 K 3SET ; 1.9 ; Ni-mediated Dimer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization (Form I) 3SEX ; 1.95 ; Ni-mediated Dimer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization (Form II) 6RUH ; 1.1 ; Ni-substituted alpha-Keggin bound to Proteinase K solved by MR 7A9M ; 1.62 ; Ni-substituted Keggin silicotungstate with covalent bond to proteinase K 473D ; 1.58 ; NI2+/GUANINE INTERACTIONS AND NETROPSIN/GUANINE STACKING IN D(CGTATATACG)2 8BAL ; 2.27 ; Niako3494, a bacterial protein structure in glycoside hydrolase family 20 6X07 ; 2.1 ; Nic96 from S. cerevisiae bound by VHH-SAN12 7KHO ; 2.69 ; NicA2 variant N462V in complex with (S)-nicotine 7KHN ; 2.31 ; NicA2 variant N462Y/W427Y in complex with (S)-nicotine 7C4A ; 2.05 ; nicA2 with cofactor FAD 7C49 ; 2.25 ; nicA2 with cofactor FAD and substrate nicotine 4YD2 ; 2.471 ; Nicked complex of human DNA Polymerase Mu with 2-nt gapped DNA substrate 1G1N ; ; NICKED DECAMER DNA WITH PEG6 TETHER, NMR, 30 STRUCTURES 3QSI ; 3.08 ; Nickel binding domain of NikR from Helicobacter pylori disclosing partial metal occupancy 1T6I ; 2.81 ; Nickel Superoxide Dismutase (NiSOD) Apo Structure 1T6Q ; 2.05 ; Nickel Superoxide Dismutase (NiSOD) CN-treated Apo Structure 1T6U ; 1.3 ; Nickel Superoxide Dismutase (NiSOD) Native 1.30 A Structure 8ASO ; 1.19 ; Nickel(II) bound to a non-canonical quadruplex 1Q5Y ; 1.4 ; Nickel-Bound C-terminal Regulatory Domain of NikR 6F5N ; 2.2 ; Nickel-Bound Crystal Structure of a GB1 Variant 2HZA ; 2.1 ; Nickel-bound full-length Escherichia coli NikR 8E3U ; 1.99 ; Nickel-reconstituted nitrogenase MoFeP mutant S188A from Azotobacter vinelandii after IDS oxidation 1R0J ; 2.0 ; nickel-substituted rubredoxin 6HN9 ; ; Nicomicin-1 -- Novel antimicrobial peptides from the Arctic polychaeta Nicomache minor provide new molecular insight into biological role of the BRICHOS domain 6F4C ; 2.8 ; Nicotiana benthamiana alpha-galactosidase 5DHK ; 2.43 ; Nicotiana tabacum 5-epi-aristolochene synthase mutant W273E - alkylated 5DHI ; 2.25 ; Nicotiana tabacum 5-epi-aristolochene synthase mutant W273E - nonalkylated 5VW5 ; 1.953 ; Nicotinamide soak of Y316A mutant of corn root ferredoxin:NADP+ reductase 5VW4 ; 1.351 ; Nicotinamide soak of Y316S mutant of corn root ferredoxin:NADP+ reductase 5VW9 ; 1.894 ; Nicotinamide soak of Y316S mutant of corn root ferredoxin:NADP+ reductase in alternate space group 6C71 ; 2.649 ; Nicotine Oxidoreductase in Complex with S-nicotine 3E27 ; 2.2 ; Nicotinic acid mononucleotide (NaMN) adenylyltransferase from Bacillus anthracis: product complex 6Z04 ; 1.05 ; Nido-carborane butyl-sulfonamide in complex with CA IX mimic 4MDM ; 1.55 ; Nido-Carborane Carbonic Anhydrase Inhibitor 6T9Z ; 1.12 ; Nidocarborane inhibitor of Carbonic Anhydrase IX 1GL4 ; 2.0 ; Nidogen-1 G2/Perlecan IG3 Complex 5WT2 ; 2.301 ; NifS from Helicobacter pylori 6KG0 ; 2.78 ; NifS from Helicobacter pylori, soaked with L-cysteine for 118 sec 6KG1 ; 2.7 ; NifS from Helicobacter pylori, soaked with L-cysteine for 180 sec 5ZSP ; 2.57 ; NifS from Hydrogenimonas thermophila 5ZSQ ; 3.211 ; NifS from Hydrogenimonas thermophila, soaked with L-cysteine for 4 min 5ZSR ; 2.61 ; NifS from Hydrogenimonas thermophila, soaked with L-cysteine for 8 min 5ZST ; 3.1 ; NifS from Hydrogenimonas thermopile in a persulfurated form 7XEQ ; 2.9 ; NifS with D-cysteine 7XES ; 3.0 ; NifS with L-penicillamine 1ECX ; 2.7 ; NIFS-LIKE PROTEIN 1EG5 ; 2.0 ; NIFS-LIKE PROTEIN 2NB2 ; ; Nigellin-1.1 4BEY ; 2.9 ; Night blindness causing G90D rhodopsin in complex with GaCT2 peptide 4BEZ ; 3.3 ; Night blindness causing G90D rhodopsin in the active conformation 7SZR ; 2.8 ; NIK bound to inhibitor G02792917 2OLN ; 1.15 ; NikD, an unusual amino acid oxidase essential for nikkomycin biosynthesis: closed form at 1.15 A resolution 2OLO ; 1.9 ; NikD, an unusual amino acid oxidase essential for nikkomycin biosynthesis: open form at 1.9A resolution 2CAD ; 2.3 ; NikR from Helicobacter pylori in closed trans-conformation and nickel bound to 2F, 2X and 2I sites. 2CAJ ; 2.35 ; NikR from Helicobacter pylori in closed trans-conformation and nickel bound to 4 intermediary sites 2BJ8 ; 2.1 ; NIKR IN CLOSED CONFORMATION AND NICKEL BOUND TO HIGH and LOW-AFFINITY SITES 2BJ7 ; 2.1 ; NIKR IN CLOSED CONFORMATION AND NICKEL BOUND TO HIGH-AFFINITY SITES 2BJ1 ; 3.0 ; NIKR IN OPEN CONFORMATION AND NICKEL BOUND TO HIGH-AFFINITY SITES 2BJ9 ; 3.0 ; NIKR with bound NICKEL and phosphate 2BJ3 ; 2.2 ; NIKR-apo 2HZV ; 3.1 ; NikR-operator DNA complex 1W3P ; 1.8 ; NimA from D. radiodurans with a His71-Pyruvate residue 1W3Q ; 1.88 ; NimA from D. radiodurans with covalenly bound lactate 1W3R ; 1.9 ; NimA from D. radiodurans with Metronidazole and Pyruvate 19HC ; 1.8 ; NINE-HAEM CYTOCHROME C FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 3RD2 ; 1.6 ; NIP45 SUMO-like Domain 2 7TXZ ; 3.2 ; Nipah Virus attachment (G) glycoprotein ectodomain in complex with nAH1.3 neutralizing antibody Fab fragment (local refinement of the distal region) 7TY0 ; 3.5 ; Nipah Virus attachment (G) glycoprotein ectodomain in complex with nAH1.3 neutralizing antibody Fab fragment (local refinement of the stalk region) 2VWD ; 2.25 ; Nipah Virus Attachment Glycoprotein 8XC4 ; 3.24 ; Nipah virus attachment glycoprotein head domain in complex with a broadly neutralizing antibody 1E5 2VSM ; 1.8 ; Nipah virus attachment glycoprotein in complex with human cell surface receptor ephrinB2 7SKU ; 2.117 ; Nipah virus matrix protein in complex with PI(4,5)P2 6BW0 ; 2.1 ; Nipah virus W protein C-terminus in complex with Importin alpha 1 6BVV ; 2.3 ; Nipah virus W protein C-terminus in complex with Importin alpha 3 3P0C ; 2.273 ; Nischarin PX-domain 2G02 ; 2.5 ; Nisin cyclase 2G0D ; 2.21 ; Nisin cyclase 5K8A ; 1.999 ; NIST FAB 5JQN ; 1.19 ; NitN Amidase from Neterenkonia sp. AN1 after thrombin His-tag removal. 2PP9 ; 1.8 ; Nitrate bound wild type oxidized AfNiR 4BJO ; 2.06 ; Nitrate in the active site of PTP1b is a putative mimetic of the transition state 2YBJ ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (12.31 MGy) 2YBL ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (17.9 MGy) 2YBH ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (2.31 MGy). 2YBM ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (23.3 MGy) 2YBN ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (28.6 MGy) 2YBI ; 2.0 ; Nitrate X-ray induced reduction on HEWL crystals (6.62 MGy) 1S8J ; 2.3 ; Nitrate-bound D85S mutant of bacteriorhodopsin 2ADP ; 2.4 ; Nitrated Human Manganese Superoxide Dismutase 1SNR ; 1.31 ; Nitric oxide bound to Cu nitrite reductase 5JLI ; 1.55 ; Nitric oxide complex of the L16A mutant of cytochrome c prime from Alcaligenes xylosoxidans 5JS5 ; 1.7 ; Nitric oxide complex of the L16F mutant of cytochrome c prime from Alcaligenes xylosoxidans 5JUA ; 1.13 ; Nitric oxide complex of the L16I mutant of cytochrome c prime from Alcaligenes xylosoxidans 5JRA ; 1.38 ; Nitric oxide complex of the L16V mutant of cytochrome c prime from Alcaligenes xylosoxidans 1MLU ; 1.9 ; NITRIC OXIDE RECOMBINATION TO DOUBLE MUTANTS OF MYOGLOBIN: THE ROLE OF LIGAND DIFFUSION IN A FLUCTUATING HEME POCKET 4XYD ; 2.85 ; Nitric oxide reductase from Roseobacter denitrificans (RdNOR) 6XK6 ; 1.84 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(((2-(pyridin-2-yl)ethyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 6XK4 ; 2.13 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(((3-(6-aminopyridin-2-yl)propyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 6XK5 ; 1.87 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(((4-(6-aminopyridin-2-yl)butyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 6XK3 ; 1.95 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(((pyridin-2-ylmethyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 6XK7 ; 1.85 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(2-(6-aminopyridin-2-yl)ethyl)phenoxy)methyl)quinolin-2-amine 6XMC ; 1.85 ; Nitric Oxide Synthase from Bacillus subtilis in complex with 7-((3-(2-(6-aminopyridin-2-yl)ethyl)phenoxy)methyl)quinolin-2-amine 6XCX ; 2.25203 ; Nitric Oxide Synthase from Bacillus subtilis in complex with N2-((3-((2-aminoquinolin-7-yl)methoxy)phenoxy)methyl)pyridine-2,6-diamine 3K2F ; 1.98 ; Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma 7ELF ; 2.2 ; Nitrilase-Like Protein Nit2 from Kluyve-romyces lactis 1AHJ ; 2.65 ; NITRILE HYDRATASE 2AHJ ; 1.7 ; NITRILE HYDRATASE COMPLEXED WITH NITRIC OXIDE 3V2V ; 1.65 ; Nitrite Bound Chlorin Substituted Myoglobin- Method 1 3V2Z ; 1.65 ; Nitrite Bound Chlorin Substituted Myoglobin- Method 2 1SJM ; 1.4 ; Nitrite bound copper containing nitrite reductase 4L3X ; 1.85 ; Nitrite complex of TvNiR, first middle dose data set 4L3Y ; 1.95 ; Nitrite complex of TvNiR, high dose data set (NO complex) 4L38 ; 1.8 ; Nitrite complex of TvNiR, low dose data set 4L3Z ; 1.85 ; Nitrite complex of TvNiR, second middle dose data set 5F7A ; 1.54 ; Nitrite complex structure of copper nitrite reductase from Alcaligenes faecalis determined at 293 K 1NDT ; 2.1 ; NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS 2VN3 ; 2.35 ; Nitrite Reductase from Alcaligenes xylosoxidans 2VW7 ; 1.9 ; Nitrite reductase from Alcaligenes xylosoxidans - 1 of 3 2VW4 ; 1.9 ; NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS - 2 OF 3 2VW6 ; 1.9 ; NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS - 3 OF 3 1BQ5 ; 2.05 ; NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS GIFU 1051 2DY2 ; 2.26 ; Nitrite reductase pH 6.0 6GT0 ; 1.5 ; Nitrite-bound copper nitrite reductase from Achromobacter cycloclastes determined by serial femtosecond rotation crystallography 6ZAT ; 1.0 ; Nitrite-bound copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) at 1.0 A resolution (unrestrained full matrix refinement by SHELX) 6ZAX ; 1.48 ; Nitrite-bound copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) at low dose (0.5 MGy) 7ZCN ; 1.19 ; Nitrite-bound MSOX movie series dataset 1 (0.8 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - nitrite (start) 7ZCP ; 1.29 ; Nitrite-bound MSOX movie series dataset 17 (13.6 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - nitric oxide (NO) intermediate 7ZCQ ; 1.35 ; Nitrite-bound MSOX movie series dataset 25 (20 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - NO/water intermediate 7ZCR ; 1.45 ; Nitrite-bound MSOX movie series dataset 38 (30.4 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - water ligand 7ZCS ; 1.61 ; Nitrite-bound MSOX movie series dataset 65 (52 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - water ligand (final) 7ZCO ; 1.22 ; Nitrite-bound MSOX movie series dataset 8 (6.4 MGy) of the copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) - nitrite/NO intermediate 3X1N ; 1.55 ; Nitrite-bound thermostable copper nitrite reductase at 320 K 1KBV ; 1.95 ; NITRITE-SOAKED CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF ANIA FROM NEISSERIA GONORRHOEAE 3D9E ; 2.2 ; Nitroalkane oxidase: active site mutant D402N crystallized with 1-nitrooctane 3D9F ; 2.2 ; Nitroalkane oxidase: active site mutant S276A crystallized with 1-nitrohexane 3D9D ; 2.1 ; Nitroalkane oxidase: mutant D402N crystallized with 1-nitrohexane 3FCJ ; 2.4 ; Nitroalkane oxidase: mutant402N crystallized with nitroethane 3D9G ; 2.15 ; Nitroalkane oxidase: wild type crystallized in a trapped state forming a cyanoadduct with FAD 2NSS ; 2.0 ; Nitrobenzene Modified Horse Heart Myoglobin 6HR9 ; 1.99 ; Nitrocefin acylation of both catalytic serines of the Y409 mutant of penicillin-binding protein 3 from P. aeruginosa 6HR6 ; 2.53 ; Nitrocefin reacted with catalytic serine (Ser294) of penicillin-binding protein 3 from Pseudomonas aeruginosa 1A6J ; 2.35 ; NITROGEN REGULATORY BACTERIAL PROTEIN IIA-NITROGEN 4USI ; 1.45 ; Nitrogen regulatory protein PII from Chlamydomonas reinhardtii in complex with MgATP and 2-oxoglutarate 4USH ; 1.6 ; Nitrogen regulatory protein PII from Chlamydomonas reinhardtii in unliganded state 5VQ4 ; 2.3 ; Nitrogenase Av1 at pH 5 1M34 ; 2.3 ; Nitrogenase Complex From Azotobacter Vinelandii Stabilized By ADP-Tetrafluoroaluminate 1N2C ; 3.0 ; NITROGENASE COMPLEX FROM AZOTOBACTER VINELANDII STABILIZED BY ADP-TETRAFLUOROALUMINATE 5VPW ; 1.85 ; Nitrogenase Cp1 at pH 5 5VQ3 ; 1.72 ; Nitrogenase Cp1 at pH 6.5 1RW4 ; 2.5 ; Nitrogenase Fe protein l127 deletion variant 1G5P ; 2.2 ; NITROGENASE IRON PROTEIN FROM AZOTOBACTER VINELANDII 2NIP ; 2.2 ; NITROGENASE IRON PROTEIN FROM AZOTOBACTER VINELANDII 1CP2 ; 1.93 ; NITROGENASE IRON PROTEIN FROM CLOSTRIDIUM PASTEURIANUM 1QGU ; 1.6 ; NITROGENASE MO-FE PROTEIN FROM KLEBSIELLA PNEUMONIAE, DITHIONITE-REDUCED STATE 1H1L ; 1.9 ; NITROGENASE MO-FE PROTEIN FROM KLEBSIELLA PNEUMONIAE, NIFV MUTANT 8BTS ; 3.03 ; Nitrogenase MoFe protein from A. vinelandii alpha double mutant C45A/L158C 8P8G ; 1.55 ; Nitrogenase MoFe protein from A. vinelandii beta double mutant D353G/D357G 1M1N ; 1.16 ; Nitrogenase MoFe protein from Azotobacter vinelandii 2MIN ; 2.03 ; NITROGENASE MOFE PROTEIN FROM AZOTOBACTER VINELANDII, OXIDIZED STATE 3MIN ; 2.03 ; NITROGENASE MOFE PROTEIN FROM AZOTOBACTER VINELANDII, OXIDIZED STATE 1QH8 ; 1.6 ; NITROGENASE MOFE PROTEIN FROM KLEBSIELLA PNEUMONIAE, AS-CRYSTALLIZED (MIXED OXIDATION) STATE 1QH1 ; 1.6 ; NITROGENASE MOFE PROTEIN FROM KLEBSIELLA PNEUMONIAE, PHENOSAFRANIN OXIDIZED STATE 5KOH ; 1.83 ; Nitrogenase MoFeP from Gluconacetobacter diazotrophicus in dithionite reduced state 6O7P ; 1.7 ; Nitrogenase MoFeP mutant F99Y from Azotobacter vinelandii in the dithionite reduced state 6O7M ; 1.4 ; Nitrogenase MoFeP mutant F99Y from Azotobacter vinelandii in the indigo carmine oxidized state 6O7R ; 2.27 ; Nitrogenase MoFeP mutant F99Y, S188A from Azotobacter vinelandii in the dithionite reduced state 6O7O ; 1.89 ; Nitrogenase MoFeP mutant F99Y/S188A from Azotobacter vinelandii in the dithionite reduced state after redox cycling 6O7N ; 1.75 ; Nitrogenase MoFeP mutant F99Y/S188A from Azotobacter vinelandii in the indigo carmine oxidized state 6O7L ; 2.26 ; Nitrogenase MoFeP mutant S188A from Azotobacter vinelandii in the dithionite reduced state after redox cycling 6O7Q ; 2.0 ; Nitrogenase MoFeP mutant S188A from Azotobacter vinelandii in the dithionite reduced state after redox cycling 6O7S ; 2.27 ; Nitrogenase MoFeP mutant S188A from Azotobacter vinelandii in the indigo carmine oxidized state 5KOJ ; 2.592 ; Nitrogenase MoFeP protein in the IDS oxidized state 5CX1 ; 1.7476 ; Nitrogenase molybdenum-iron protein beta-K400E mutant 4WES ; 1.08 ; Nitrogenase molybdenum-iron protein from Clostridium pasteurianum at 1.08 A resolution 2NSR ; 1.9 ; Nitromethane Modified Horse Heart Myoglobin 4NP1 ; 2.3 ; NITROPHORIN 1 COMPLEX WITH NITRIC OXIDE 4BN7 ; 1.723 ; Nitroreductase CinD from Lactococcus lactis in complex with 2,6- dichlorophenolindophenol 4BN8 ; 1.895 ; Nitroreductase CinD from Lactococcus lactis in complex with 4- nitrophenol 4BNB ; 1.478 ; Nitroreductase CinD from Lactococcus lactis in complex with 4- nitroquinoline 1-oxide 4BN6 ; 1.462 ; Nitroreductase CinD from Lactococcus lactis in complex with chloramphenicol 4BN9 ; 2.084 ; Nitroreductase CinD from Lactococcus lactis in complex with nicotinic acid 1OO6 ; 2.0 ; Nitroreductase from e-coli in complex with the dinitrobenzamide prodrug SN23862 1OON ; 2.49 ; Nitroreductase from e-coli in complex with the dinitrobenzamide prodrug SN27217 1OOQ ; 2.0 ; Nitroreductase from e-coli in complex with the inhibitor dicoumarol 1NEC ; 1.95 ; NITROREDUCTASE FROM ENTEROBACTER CLOACAE 3HU9 ; 1.46 ; Nitrosobenzene in complex with T4 lysozyme L99A/M102Q 8GAR ; 1.55 ; Nitrosomonas europaea Cytochrome P460 Arg44Ala 3BHS ; 1.99 ; Nitrosomonas europaea Rh50 and mechanism of conduction by Rhesus protein family of channels 4N4N ; 2.2 ; Nitrosomonas europea HAO 4N4O ; 2.472 ; Nitrosomonas europea HAO soaked in NH2OH 4D4N ; 1.45 ; Nitrosyl complex of the D121A variant of cytochrome c prime from Alcaligenes xylosoxidans 4D4X ; 1.3 ; Nitrosyl complex of the D121I variant of cytochrome c prime from Alcaligenes xylosoxidans 5AGF ; 1.09 ; Nitrosyl complex of the D121Q variant of cytochrome c prime from Alcaligenes xylosoxidans 2FRK ; 1.3 ; Nitrosyl Horse Heart Myoglobin, Nitric Oxide Gas Method 2FRJ ; 1.3 ; Nitrosyl Horse Heart Myoglobin, Nitrite/Dithionite Method 2ZPB ; 1.3 ; nitrosylated Fe-type nitrile hydratase 2ZPE ; 1.48 ; nitrosylated Fe-type nitrile hydratase with tert-butylisonitrile 3RTW ; 2.095 ; Nitrowillardiine bound to the ligand binding domain of GluA2 4Q30 ; 2.03 ; Nitrowillardiine bound to the ligand binding domain of GluA2 at pH 3.5 5BMG ; 2.2 ; Nitroxide Spin Labels in Protein GB1: E15 Mutant 3V3X ; 2.0 ; Nitroxide Spin Labels in Protein GB1: N8/K28 Double Mutant 5BMI ; 2.5 ; Nitroxide Spin Labels in Protein GB1: T44 Mutant, Crystal Form A 5BMH ; 1.6 ; Nitroxide Spin Labels in Protein GB1: T44 Mutant, Crystal Form B 1OAO ; 1.9 ; NiZn[Fe4S4] and NiNi[Fe4S4] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase 2NAB ; ; Nizp1-C2HR zinc finger structure 1NKL ; ; NK-LYSIN FROM PIG, NMR, 20 STRUCTURES 1BHT ; 2.0 ; NK1 FRAGMENT OF HUMAN HEPATOCYTE GROWTH FACTOR 1NK1 ; 2.5 ; NK1 FRAGMENT OF HUMAN HEPATOCYTE GROWTH FACTOR/SCATTER FACTOR (HGF/SF) AT 2.5 ANGSTROM RESOLUTION 8SE5 ; 1.43 ; NKG2D complexed with inhibitor 14 8EA5 ; 1.63 ; NKG2D complexed with inhibitor 1a 8SE6 ; 1.36 ; NKG2D complexed with inhibitor 36 8EA6 ; 1.73 ; NKG2D complexed with inhibitor 3e 8EA7 ; 1.28 ; NKG2D complexed with inhibitor 3g 8EA8 ; 1.77 ; NKG2D complexed with inhibitor 4a 8EA9 ; 1.58 ; NKG2D complexed with inhibitor 4d 8EAA ; 1.57 ; NKG2D complexed with inhibitor 4e 8EAB ; 1.44 ; NKG2D complexed with inhibitor 4f 1KCG ; 2.6 ; NKG2D in complex with ULBP3 5J2S ; 2.0 ; NKR-P1B from Rattus norvegicus 3RKQ ; 1.7 ; NKX2.5 Homeodomain dimer bound to ANF-242 DNA 6QM2 ; 2.8 ; NlaIV restriction endonuclease 5XAD ; 1.88 ; NLIR - LC3B fusion protein 8EV4 ; 1.3 ; NlpC B3 - Trichomonas Vaginalis 8EV5 ; 1.65 ; NlpC B3 covalently bound with E64 inhibitor fragment 5NNW ; 1.54 ; NLPPya in complex with glucosamine 5NO9 ; 1.75 ; NLPPya in complex with mannosamine 8WSM ; 2.7 ; NLRP3 NACHT domain in complex with compound 32 8ERT ; 3.3 ; NLRP3 PYD filament 7QVK ; 3.1 ; NM-02 in complex with HER2-ECD 2P0N ; 1.41 ; NMB1532 protein from Neisseria meningitidis, unknown function 1BUE ; 1.64 ; NMC-A CARBAPENEMASE FROM ENTEROBACTER CLOACAE 5T6R ; 4.2 ; Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis: 60S-Nmd3 Complex 5T62 ; 3.3 ; Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis: 60S-Nmd3-Tif6-Lsg1 Complex 2M7R ; ; Nmda receptor antagonist, conantokin bk-b, nmr, 20 structure 1ONU ; ; NMDA RECEPTOR ANTAGONIST, CONANTOKIN-G, NMR, 17 STRUCTURES 1ONT ; ; NMDA RECEPTOR ANTAGONIST, CONANTOKIN-T, NMR, 17 STRUCTURES 7ZLW ; 2.2 ; NME1 in complex with ADP 7ZTK ; 2.6 ; NME1 in complex with CoA 7ZL8 ; 1.96 ; NME1 in complex with succinyl-CoA 7KPF ; 2.23 ; NME2 bound to myristoyl-CoA 6J9M ; 2.394 ; NmeBH+AcrIIC2 4UCG ; 2.0 ; NmeDAH7PS R126S variant 6J9N ; 2.606 ; NmeHNH+AcrIIC3 3ZQR ; 1.9 ; NMePheB25 insulin analogue crystal structure 7O8F ; 1.45 ; NmHR dark state structure determined by serial femtosecond crystallography 7O8L ; 1.8 ; NmHR dark state structure determined by serial millisecond crystallography 7O8I ; 1.8 ; NmHR light state structure at 1 us after photoexcitation determined by serial femtosecond crystallography (with extrapolated, dark and light dataset) 7O8H ; 1.8 ; NmHR light state structure at 10 ns after photoexcitation determined by serial femtosecond crystallography (with extrapolated, dark and light dataset) 7O8G ; 1.9 ; NmHR light state structure at 10 ps after photoexcitation determined by serial femtosecond crystallography (with extrapolated, dark and light dataset) 7O8O ; 2.2 ; NmHR light state structure at 12.5 ms (10 - 15 ms) after photoexcitation determined by serial millisecond crystallography 7O8P ; 2.4 ; NmHR light state structure at 17.5 ms (15 - 20 ms) after photoexcitation determined by serial millisecond crystallography 7O8M ; 2.2 ; NmHR light state structure at 2.5 ms (0 - 5 ms) after photoexcitation determined by serial millisecond crystallography 7O8J ; 1.8 ; NmHR light state structure at 20 us after photoexcitation determined by serial femtosecond crystallography (with extrapolated, dark and light dataset) 7O8Q ; 2.6 ; NmHR light state structure at 22.5 ms (20 - 25 ms) after photoexcitation determined by serial millisecond crystallography 7O8R ; 2.7 ; NmHR light state structure at 27.5 ms (25 - 30 ms) after photoexcitation determined by serial millisecond crystallography 7O8K ; 1.9 ; NmHR light state structure at 300 us after photoexcitation determined by serial femtosecond crystallography (with extrapolated, dark and light dataset) 7O8S ; 2.5 ; NmHR light state structure at 32.5 ms (30 - 35 ms) after photoexcitation determined by serial millisecond crystallography 7O8T ; 2.5 ; NmHR light state structure at 37.5 ms (35 - 40 ms) after photoexcitation determined by serial millisecond crystallography 7O8U ; 2.5 ; NmHR light state structure at 45 ms (40 - 50 ms) after photoexcitation determined by serial millisecond crystallography 7O8V ; 2.5 ; NmHR light state structure at 55 ms (50 - 60 ms) after photoexcitation determined by serial millisecond crystallography 7O8N ; 2.1 ; NmHR light state structure at 7.5 ms (5 - 10 ms) after photoexcitation determined by serial millisecond crystallography 5Z9R ; 2.0 ; NMNAT as a specific chaperone antagonizing pathological condensation of phosphorylated tau 1AB7 ; ; NMR 15N RELAXATION AND STRUCTURAL STUDIES REVEAL CONFORMATIONAL EXCHANGE IN BARSTAR C40/82A, 30 STRUCTURES 1QWP ; ; NMR analysis of 25-35 fragment of beta amyloid peptide 1ELH ; ; NMR ANALYSIS OF HELIX I FROM THE 5S RNA OF ESCHERICHIA COLI 2J5H ; ; NMR analysis of mouse CRIPTO CFC domain 2M61 ; ; NMR and Mass Spectrometric Studies of M-2 Branch Mini-M Conotoxins from Indian Cone Snails 2KVJ ; ; NMR and MD solution structure of a Gamma-Methylated PNA duplex 1EKA ; ; NMR AND MOLECULAR MODELING REVEAL THAT DIFFERENT HYDROGEN BONDING PATTERNS ARE POSSIBLE FOR GU PAIRS: ONE HYDROGEN BOND FOR EACH GU PAIR IN R(GGCGUGCC)2 AND TWO FOR EACH GU PAIR IN R(GAGUGCUC)2 1EKD ; ; NMR AND MOLECULAR MODELING REVEAL THAT DIFFERENT HYDROGEN BONDING PATTERNS ARE POSSIBLE FOR GU PAIRS: ONE HYDROGEN BOND FOR EACH GU PAIR IN R(GGCGUGCC)2 AND TWO FOR EACH GU PAIR IN R(GAGUGCUC)2 6AST ; ; NMR and Restrained Molecular Dynamics Determination of the Structure of an Aza-Benzimidazole Derivative Complex with the DNA Minor Groove of an -AAGATA Sequence 6ASF ; ; NMR and Restrained Molecular Dynamics Determination of the Structure of an Aza-Benzimidazole Derivative Complex with the DNA Minor Groove of an -AAGATA- Sequence 1TFS ; ; NMR AND RESTRAINED MOLECULAR DYNAMICS STUDY OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF TOXIN FS2, A SPECIFIC BLOCKER OF THE L-TYPE CALCIUM CHANNEL, ISOLATED FROM BLACK MAMBA VENOM 2PVE ; 0.79 ; NMR and X-ray Analysis of Structural Additivity in Metal Binding Site-Swapped Hybrids of Rubredoxin 2PVX ; 1.04 ; NMR and X-ray Analysis of Structural Additivity in Metal Binding Site-Swapped Hybrids of Rubredoxin 2N6T ; ; NMR Assignment and NMR Structure of CssA3 (top stem) of CssA thermometer 5NVP ; ; NMR assignment and structure of a peptide derived from the fusion peptide of HIV-1 gp41 in the presence of dodecylphosphocholine micelles 5NWV ; ; NMR assignment and structure of a peptide derived from the fusion peptide of HIV-1 gp41 in the presence of dodecylphosphocholine micelles 5NWW ; ; NMR assignment and structure of a peptide derived from the fusion peptide of HIV-1 gp41 in the presence of dodecylphosphocholine micelles 5NWU ; ; NMR assignment and structure of a peptide derived from the fusion peptide of HIV-1 gp41 in the presence of hexafluoroisopropanol 2M8O ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in DPC 8B6X ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in DPC micelles 2MG3 ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of dodecylphosphocholine micelles 2NCS ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of dodecylphosphocholine micelles 2M8M ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of hexafluoroisopropanol 2MG2 ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of hexafluoroisopropanol 2NCT ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of hexafluoroisopropanol 8B6Y ; ; NMR assignment and structure of a peptide derived from the membrane proximal external region of HIV-1 gp41 in the presence of hexafluoroisopropanol 2MG1 ; ; NMR assignment and structure of a peptide derived from the trans-membrane region of HIV-1 gp41 in the presence of hexafluoroisopropanol 2N6W ; ; NMR Assignment and structure of CssA Thermometer from Neisseria meningitidis 2N6X ; ; NMR Assignment and structure of CssA5 (middle region) of CssA thermometer from Neisseria meningitidis 5VO7 ; ; NMR Assignment and Structure of Thioredoxin (Rv1471 ortholog) from Mycobacterium smegmatis ATCC 700084 / mc(2)155 2M1S ; ; NMR assignment of the arenaviral protein Z from Lassa fever virus 2N34 ; ; NMR assignments and solution structure of the JAK interaction region of SOCS5 8TT7 ; ; NMR Assignments and Structure for the Dimeric Kinesin Neck Domain 2N3S ; ; NMR Assignments and structure of Translation initiation factor IF-1 from Burkholderia thailandensis E264. 2HYM ; ; NMR based Docking Model of the Complex between the Human Type I Interferon Receptor and Human Interferon alpha-2 5GQS ; ; NMR based solution structure of PTS system, galactitol-specific IIB component from methicillin resistant Staphylococcus aureus 1UR6 ; ; NMR based structural model of the UbcH5B-CNOT4 complex 2KJH ; ; NMR based structural model of the UBCH8-UBIQUITIN complex 2PEA ; ; NMR Based Structure of the Closed Conformation of LYS48-Linked Di-Ubiquitin Using Experimental Global Rotational Diffusion Tensor from NMR Relaxation Measurements 2PE9 ; ; NMR Based Structure of the Open Conformation of LYS48-Linked Di-UBiquitin Using Experimental Global Rotational Diffusion Tensor from NMR Relaxation Measurements 1JWW ; ; NMR characterization of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis 1YY1 ; ; NMR Conformational Analysis of LHRH and its analogues 1YY2 ; ; NMR Conformational Analysis of LHRH and its analogues 2JZF ; ; NMR Conformer closest to the mean coordinates of the domain 513-651 of the SARS-CoV nonstructural protein nsp3 1RFL ; ; NMR data driven structural model of G-domain of MnmE protein 2MSC ; ; NMR data-driven model of GTPase KRas-GDP tethered to a lipid-bilayer nanodisc 6CCH ; ; NMR data-driven model of GTPase KRas-GMPPNP tethered to a nanodisc (E3 state) 6CC9 ; ; NMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodisc 6CCX ; ; NMR data-driven model of GTPase KRas-GMPPNP:Cmpd2 complex tethered to a nanodisc 2MSD ; ; NMR data-driven model of GTPase KRas-GNP tethered to a lipid-bilayer nanodisc 2MSE ; ; NMR data-driven model of GTPase KRas-GNP:ARafRBD complex tethered to a lipid-bilayer nanodisc 6PTS ; ; NMR data-driven model of KRas-GMPPNP:RBD-CRD complex tethered to a nanodisc (state A) 6PTW ; ; NMR data-driven model of KRas-GMPPNP:RBD-CRD complex tethered to a nanodisc (state B) 5OR0 ; ; NMR derived model of the 5'-splice site of SMN2 in complex with the 5'-end of U1 snRNA 2JNX ; ; NMR derived solution structure of an EF-hand Calcium Binding Protein from Entamoeba Histolytica 5J7J ; ; NMR Derived Structure of Ca2+ Calmodulin bound to Phosphorylated PSD-95 7YVW ; ; NMR determination of the 2:1 binding motif structure involving cytosine flipping out for the recognition of the CGG/CGG triad DNA 2LK6 ; ; NMR determination of the global structure of the Cd-113 derivative of desulforedoxin 2KNV ; ; NMR dimer structure of the UBA domain of p62 (SQSTM1) 1BLK ; ; NMR ENSEMBLE OF BLK SH2 DOMAIN USING CHEMICAL SHIFT REFINEMENT, 20 STRUCTURES 1BLJ ; ; NMR ENSEMBLE OF BLK SH2 DOMAIN, 20 STRUCTURES 6O0I ; ; NMR ensemble of computationally designed protein XAA 6O0C ; ; NMR ensemble of computationally designed protein XAA_GVDQ mutant M4L 1W7E ; ; NMR Ensemble OF Fasciclin-Like Protein From Rhodobacter sphaeroides 1I6Y ; ; NMR ENSEMBLE OF ION-SELECTIVE LIGAND A1 FOR PLATELET INTEGRIN ALPHAIIB-BETA3 1I8E ; ; NMR ENSEMBLE OF ION-SELECTIVE LIGAND A22 FOR PLATELET INTEGRIN ALPHAIIB-BETA3 1I93 ; ; NMR ENSEMBLE OF ION-SELECTIVE LIGAND D16 FOR PLATELET INTEGRIN ALPHAIIB-BETA3 1I98 ; ; NMR ENSEMBLE OF ION-SELECTIVE LIGAND D18 FOR PLATELET INTEGRIN ALPHAIIB-BETA3 6FCE ; ; NMR ensemble of Macrocyclic Peptidomimetic Containing Constrained a,a-dialkylated Amino Acids with Potent and Selective Activity at Human Melanocortin Receptors 1EIJ ; ; NMR ENSEMBLE OF METHANOBACTERIUM THERMOAUTOTROPHICUM PROTEIN 1615 2JUY ; ; NMR ensemble of Neopetrosiamide A 3HCK ; ; NMR ensemble of the uncomplexed human HCK SH2 domain, 20 structures 2FH0 ; ; NMR Ensemble of The Yeast Saccharomyces cerevisiae protein Ymr074cp core region 6B34 ; ; NMR ensemble of Tyrocidine A analogue AC3.27 6B35 ; ; NMR ensemble of Tyrocidine A analogue AC3.28 1ORM ; ; NMR FOLD OF THE OUTER MEMBRANE PROTEIN OMPX IN DHPC MICELLES 8HCK ; 2.0 ; NMR fragment-based screening against the two PDZ do-mains of MDA-9 1L1K ; ; NMR Identification and Characterization of the Flexible Regions in the 160 KD Molten Globule-like Aggregate of Barstar at Low pH 2MIS ; ; NMR Localization of Divalent Cations at the Active Site of the Neurospora VS Ribozyme Provides Insights Into RNA-Metal Ion Interactions 1K2J ; ; NMR MINIMIZED AVERAGE STRUCTURE OF d(CGTACG)2 1K2K ; ; NMR MINIMIZED AVERAGE STRUCTURE OF d(CGTACG)2 1LCM ; ; NMR minimized average structure of microcystin-LR 2KPV ; ; NMR model of the first let-7 miRNA complementary site (LCS1) in 3'-UTR of lin-41 mRNA from C. elegans 1EVO ; ; NMR OBSERVATION OF A NOVEL C-TETRAD 1EVM ; ; NMR OBSERVATION OF A-TETRAD 1EVN ; ; NMR OBSERVATION OF A-TETRAD 1EMQ ; ; NMR OBSERVATION OF T-TETRADS IN A PARALLEL STRANDED DNA QUADRUPLEX FORMED BY SACCHAROMYCES CEREVISIAE TELOMERE REPEATS 1MKL ; ; NMR REFINED STRUCTURE OF THE 8,9-DIHYDRO-8-(N7-GUANYL)-9-HYDROXY-AFLATOXIN B1 ADDUCT IN A 5'-CPAFBG-3' SEQUENCE 1E5U ; ; NMR Representative Structure of Intimin-190 (Int190) from Enteropathogenic E. coli 2KOX ; ; NMR residual dipolar couplings identify long range correlated motions in the backbone of the protein ubiquitin 2MXG ; ; NMR resolved structure of VG16KRKP, an antimicrobial peptide in D8PG micelles 2MXH ; ; NMR resolved structure of VG16KRKP, an antimicrobial peptide in SDS 2JSE ; ; NMR reveals absence of hydrogen bonding in adjacent UU and AG mismatches in an isolated internal loop from ribosomal RNA. 1CHL ; ; NMR SEQUENTIAL ASSIGNMENTS AND SOLUTION STRUCTURE OF CHLOROTOXIN, A SMALL SCORPION TOXIN THAT BLOCKS CHLORIDE CHANNELS 8DFZ ; ; NMR shows why a small chemical change almost abolishes the antimicrobial activity of GccF 6WUX ; ; NMR soltution structure of homotarsinin homodimer - Htr 6JCE ; ; NMR solution and X-ray crystal structures of a DNA containing both right-and left-handed parallel-stranded G-quadruplexes 1QS3 ; ; NMR SOLUTION CONFORMATION OF AN ANTITOXIC ANALOG OF ALPHA-CONOTOXIN GI 2F4X ; ; NMR Solution of HIV-1 Lai Kissing Complex 2FJ3 ; ; NMR solution of rabbit Prion Protein (91-228) 2KGB ; ; NMR solution of the regulatory domain cardiac F77W-Troponin C in complex with the cardiac Troponin I 144-163 switch peptide 7O2K ; ; NMR solution structue of cytotoxin 2 from Naja Kaouthia 1BZF ; ; NMR SOLUTION STRUCTURE AND DYNAMICS OF THE COMPLEX OF LACTOBACILLUS CASEI DIHYDROFOLATE REDUCTASE WITH THE NEW LIPOPHILIC ANTIFOLATE DRUG TRIMETREXATE, 22 STRUCTURES 1PAJ ; ; NMR SOLUTION STRUCTURE AND FLEXIBILITY OF A PEPTIDE ANTIGEN REPRESENTING THE RECEPTOR BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA 1PAK ; ; NMR SOLUTION STRUCTURE AND FLEXIBILITY OF A PEPTIDE ANTIGEN REPRESENTING THE RECEPTOR BINDING DOMAIN OF PSEUDOMONAS AERUGINOSA 2N0O ; ; NMR Solution Structure and Model Membrane Interaction Studies of the Peptide Hylin a1 from the Arboreal South American Frog Hypsiboas albopunctatus 2M6T ; ; NMR solution structure ensemble of 3-4D mutant domain 11 IGF2R 2M68 ; ; NMR solution structure ensemble of 3-4D mutant domain 11 IGF2R in complex with IGF2 (domain 11 structure only) 2LLA ; ; NMR solution structure ensemble of domain 11 of the echidna M6P/IGF2R receptor 2N0I ; ; NMR solution structure for di-sulfide 11mer peptide 7SXB ; ; NMR Solution Structure for Domain 3 of Heligmosomoides polygyrus protein Transforming Growth Factor Beta Mimic 1 (TGM-1 D3) 2N0N ; ; NMR solution structure for lactam (5,9) 11mer 2K9E ; ; NMR Solution Structure for ShK-192: A Potent KV1.3-Specific Immunosuppressive Polypeptide 2NCO ; ; NMR solution structure for the C-terminal domain of Tetrahymena Tcb2 in the absence of calcium 2NCP ; ; NMR solution structure for the C-terminal domain of Tetrahymena Tcb2 in the presence of calcium 7A64 ; ; NMR solution structure for Tsp1a 2LWJ ; ; NMR solution structure Myxoccoccus xanthus CdnL 2KOC ; ; NMR solution structure of a 14-mer hairpin RNA with cUUCGg tetraloop 3BTB ; ; NMR SOLUTION STRUCTURE OF A BAND 3 PEPTIDE INHIBITOR BOUND TO GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, 20 STRUCTURES 1MVZ ; ; NMR solution structure of a Bowman Birk inhibitor isolated from snail medic seeds (Medicago Scutellata) 6M6O ; ; NMR SOLUTION STRUCTURE OF A C-FLIPs 2N39 ; ; NMR solution structure of a C-terminal domain of the chromodomain helicase DNA-binding protein 1 2LQC ; ; NMR solution structure of a Ca2+-Calmodulin with a binding motif (NSCaTE) peptide from the N-terminal cytoplasmic domain of the L-type Voltage-Cated Calcium Channel alpha1C subunit 7WGW ; ; NMR Solution Structure of a cGMP Fill-in Vacancy G-quadruplex Formed in the Oxidized BLM Gene Promoter 1FC8 ; ; NMR SOLUTION STRUCTURE OF A CHIMERIC OLIGONUCLEOTIDE HAIRPIN R(GGAC)D(TTCG)2'F-A(GTCC) 1CMR ; ; NMR SOLUTION STRUCTURE OF A CHIMERIC PROTEIN, DESIGNED BY TRANSFERRING A FUNCTIONAL SNAKE BETA-HAIRPIN INTO A SCORPION ALPHA/BETA SCAFFOLD (PH 3.5, 20C), NMR, 18 STRUCTURES 2OFQ ; ; NMR Solution Structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system 1CFF ; ; NMR SOLUTION STRUCTURE OF A COMPLEX OF CALMODULIN WITH A BINDING PEPTIDE OF THE CA2+-PUMP 2N77 ; ; NMR solution structure of a complex of PEP-19 bound to the C-domain of apo calmodulin 2MN4 ; ; NMR solution structure of a computational designed protein based on structure template 1cy5 2MLB ; ; NMR solution structure of a computational designed protein based on template of human erythrocytic ubiquitin 2LVS ; ; NMR solution structure of a CRISPR repeat binding protein 7M7X ; ; NMR Solution Structure of a CsrA-binding peptide 1FMH ; ; NMR SOLUTION STRUCTURE OF A DESIGNED HETERODIMERIC LEUCINE ZIPPER 1U2U ; ; Nmr solution structure of a designed heterodimeric leucine zipper 2KLB ; ; NMR Solution structure of a diflavin flavoprotein A3 from Nostoc sp. PCC 7120, Northeast Structural Genomics Consortium Target NsR431C 1T9E ; ; NMR solution structure of a disulfide analogue of the cyclic sunflower trypsin inhibitor SFTI-1 1A84 ; ; NMR SOLUTION STRUCTURE OF A DNA DODECAMER DUPLEX CONTAINING A CIS-DIAMMINEPLATINUM(II) D(GPG) INTRASTRAND CROSS-LINK, THE MAJOR ADDUCT OF THE ANTICANCER DRUG CISPLATIN, 1 STRUCTURE 1JU0 ; ; NMR solution structure of a DNA kissing complex 6M6K ; ; NMR solution structure of a DNA minidumbbell containing an abasic bulge between two CCTG repeats 6M6J ; ; NMR solution structure of a DNA minidumbbell containing an abasic bulge between two CTTG repeats 1H0Q ; ; NMR solution structure of a fully modified locked nucleic acid (LNA) hybridized to RNA 2H5M ; ; NMR Solution Structure of a GCN5-like putative N-acetyltransferase from Staphylococcus aureus complexed with acetyl-CoA. Northeast Structural Genomics Consortium Target ZR31 1R57 ; ; NMR Solution Structure of a GCN5-like putative N-acetyltransferase from Staphylococcus aureus. Northeast Structural Genomics Consortium Target ZR31 2JTN ; ; NMR Solution Structure of a ldb1-LID:Lhx3-LIM complex 1ZA8 ; ; NMR solution structure of a leaf-specific-expressed cyclotide vhl-1 2JMM ; ; NMR solution structure of a minimal transmembrane beta-barrel platform protein 2M3A ; ; NMR solution structure of a MYB-like DNA binding domain of KNL-2 from C. Elegans 7S7P ; ; NMR solution structure of a neurotoxic thionin from Urtica ferox 2HLG ; ; NMR solution structure of a new tomato peptide 1S9L ; ; NMR Solution Structure of a Parallel LNA Quadruplex 1Q2F ; ; NMR SOLUTION STRUCTURE OF A PEPTIDE FROM THE MDM-2 BINDING DOMAIN OF THE P53 PROTEIN THAT IS SELECTIVELY CYTOTOXIC TO CANCER CELLS 1Q2I ; ; NMR SOLUTION STRUCTURE OF A PEPTIDE FROM THE MDM-2 BINDING DOMAIN OF THE P53 PROTEIN THAT IS SELECTIVELY CYTOTOXIC TO CANCER CELLS 176D ; ; NMR SOLUTION STRUCTURE OF A PEPTIDE NUCLEIC ACID COMPLEXED WITH RNA 6S10 ; ; NMR solution structure of a ProQ homolog from Legionella pneumophila 2BZB ; ; NMR Solution Structure of a protein aspartic acid phosphate phosphatase from Bacillus Anthracis 2C0S ; ; NMR Solution Structure of a protein aspartic acid phosphate phosphatase from Bacillus Anthracis 2KK8 ; ; NMR Solution Structure of a Putative Uncharacterized Protein obtained from Arabidopsis thaliana: Northeast Structural Genomics Consortium target AR3449A 2KV7 ; ; NMR solution structure of a soluble PrgI mutant from Salmonella Typhimurium 5JWJ ; ; NMR solution structure of a thermophilic lysine methyl transferase from Sulfolobus islandicus 2K5P ; ; NMR Solution Structure of a Thiamine Biosynthesis Protein from Geobacter Metallireducens: Northeast Structural Genomics Consortium Target GmR137 2L0K ; ; NMR solution structure of a transcription factor SpoIIID in complex with DNA 6U7W ; ; NMR solution structure of a triazole bridged KLK7 inhibitor 6VY8 ; ; NMR solution structure of a triazole bridged trypsin inhibitor based on the framework of SFTI-1 2KJ6 ; ; NMR Solution Structure of a Tubulin folding cofactor B obtained from Arabidopsis thaliana: Northeast Structural Genomics Consortium target AR3436A 5WOT ; ; NMR solution structure of a-lytic protease using two 4D-spectra 2KL2 ; ; NMR solution structure of A2LD1 (gi:13879369) 2K53 ; ; NMR solution structure of A3DK08 protein from Clostridium thermocellum: Northeast Structural Genomics Consortium Target CmR9 6DRI ; ; NMR solution structure of Acan1 from the Ancylostoma caninum hookworm 7KPD ; ; NMR Solution Structure of Acyclotide ribe 31 2N00 ; ; NMR Solution structure of AIM2 PYD from Mus musculus 2KS6 ; ; NMR solution structure of ALG13 --- obtained with iterative CS-Rosetta from backbone NMR data. 2JZC ; ; NMR solution structure of ALG13: The sugar donor subunit of a yeast N-acetylglucosamine transferase. Northeast Structural Genomics Consortium target YG1 2MD6 ; ; NMR SOLUTION STRUCTURE OF ALPHA CONOTOXIN LO1A FROM Conus longurionis 1QFD ; ; NMR SOLUTION STRUCTURE OF ALPHA-AMYLASE INHIBITOR (AAI) 6XYI ; ; NMR solution structure of alpha-AnmTX- Ms11a-3 (Ms11a-3) 6XYH ; ; NMR solution structure of alpha-AnmTX-Ms11a-2 (Ms11a-2) 5UG3 ; ; NMR SOLUTION STRUCTURE OF ALPHA-CONOTOXIN GID MUTANT A10V 1E76 ; ; NMR SOLUTION STRUCTURE OF ALPHA-CONOTOXIN IM1 POINT MUTATION VARIANT D5N 1E74 ; ; NMR SOLUTION STRUCTURE OF ALPHA-CONOTOXIN IM1 POINT MUTATION VARIANT R11E 1E75 ; ; NMR SOLUTION STRUCTURE OF ALPHA-CONOTOXIN IM1 POINT MUTATION VARIANT R7L 1IM1 ; ; NMR SOLUTION STRUCTURE OF ALPHA-CONOTOXIN IM1, 20 STRUCTURES 1ABT ; ; NMR SOLUTION STRUCTURE OF AN ALPHA-BUNGAROTOXIN(SLASH)NICOTINIC RECEPTOR PEPTIDE COMPLEX 5B7X ; ; NMR Solution structure of an EF-hand Calcium binding protein (EhCaBP6) from Entamoeba Histolytica 1JFJ ; ; NMR SOLUTION STRUCTURE OF AN EF-HAND CALCIUM BINDING PROTEIN FROM ENTAMOEBA HISTOLYTICA 1IE1 ; ; NMR Solution Structure of an In Vitro Selected RNA which is Sequence Specifically Recognized by Hamster Nucleolin RBD12. 2LZK ; ; NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing 1PG9 ; ; NMR Solution Structure of an Oxaliplatin 1,2-d(GG) Intrastrand Cross-Link in a DNA Dodecamer Duplex 1PGC ; ; NMR Solution Structure of an Oxaliplatin 1,2-d(GG) Intrastrand Cross-Link in a DNA Dodecamer Duplex 2KCU ; ; NMR solution structure of an uncharacterized protein from Chlorobium tepidum. Northeast Structural Genomics target CtR107 1CCV ; ; NMR SOLUTION STRUCTURE OF APIS MELLIFERA CHYMOTRYPSIN INHIBITOR (AMCI). 1T50 ; ; NMR SOLUTION STRUCTURE OF APLYSIA ATTRACTIN 1KCY ; ; NMR solution structure of apo calbindin D9k (F36G + P43M mutant) 1CMF ; ; NMR SOLUTION STRUCTURE OF APO CALMODULIN CARBOXY-TERMINAL DOMAIN 2LUO ; ; NMR solution structure of apo-MptpA 2KG5 ; ; NMR Solution structure of ARAP3-SAM 6X46 ; ; NMR solution structure of Asterix/Gtsf1 from mouse (CHHC zinc finger domains) 2N8O ; ; NMR Solution Structure of Aureocin A53 1ZK6 ; ; NMR solution structure of B. subtilis PrsA PPIase 1FSP ; ; NMR SOLUTION STRUCTURE OF BACILLUS SUBTILIS SPO0F PROTEIN, 20 STRUCTURES 2FSP ; ; NMR SOLUTION STRUCTURE OF BACILLUS SUBTILIS SPO0F PROTEIN, MINIMIZED AVERAGE STRUCTURE 2JQO ; ; NMR solution structure of Bacillus subtilis YobA 21-120: Northeast Structural Genomics Consortium target SR547 5LWC ; ; NMR solution structure of bacteriocin BacSp222 from Staphylococcus pseudintermedius 222 6NZ2 ; ; NMR solution structure of Bcd1p120-303 from Saccharomyces cerevisiae 7PQW ; ; NMR solution structure of BCR4 1PUX ; ; NMR Solution Structure of BeF3-Activated Spo0F, 20 conformers 1MXJ ; ; NMR solution structure of benz[a]anthracene-dG in ras codon 12,2; GGCAGXTGGTG 2JMH ; ; NMR solution structure of Blo t 5, a major mite allergen from Blomia tropicalis 1WWN ; ; NMR Solution Structure of BmK-betaIT, an Excitatory Scorpion Toxin from Buthus martensi Karsch 1GIO ; ; NMR SOLUTION STRUCTURE OF BOVINE ANGIOGENIN, 10 STRUCTURES 2M2I ; ; NMR solution structure of BRCT domain of yeast REV1 7EDK ; ; NMR solution structure of Bt14.12, a novel A-family conotoxin from Conus betulinus 1C55 ; ; NMR SOLUTION STRUCTURE OF BUTANTOXIN 1C56 ; ; NMR SOLUTION STRUCTURE OF BUTANTOXIN 2LIZ ; ; NMR solution structure of C-terminal domain of SARS-CoV main protease in 2.5M urea 8DJ4 ; ; NMR Solution Structure of C-terminally amidated, Full-length Human Galanin 1KJS ; ; NMR SOLUTION STRUCTURE OF C5A AT PH 5.2, 303K, 20 STRUCTURES 2F33 ; ; NMR solution structure of Ca2+-loaded calbindin D28K 2G9B ; ; NMR solution structure of CA2+-loaded calbindin D28K 1TNW ; ; NMR SOLUTION STRUCTURE OF CALCIUM SATURATED SKELETAL MUSCLE TROPONIN C 1TNX ; ; NMR SOLUTION STRUCTURE OF CALCIUM SATURATED SKELETAL MUSCLE TROPONIN C 1CMG ; ; NMR SOLUTION STRUCTURE OF CALCIUM-LOADED CALMODULIN CARBOXY-TERMINAL DOMAIN 2FYJ ; ; NMR Solution structure of calcium-loaded LRP double module 1NYA ; ; NMR SOLUTION STRUCTURE OF CALERYTHRIN, AN EF-HAND CALCIUM-BINDING PROTEIN 1G6M ; ; NMR SOLUTION STRUCTURE OF CBT2 1AK8 ; ; NMR SOLUTION STRUCTURE OF CERIUM-LOADED CALMODULIN AMINO-TERMINAL DOMAIN (CE2-TR1C), 23 STRUCTURES 5UKZ ; ; NMR Solution structure of chemically synthesized antilisterial Pediocin PA-1 M31L analog. 1MVG ; ; NMR solution structure of chicken Liver basic Fatty Acid Binding Protein (Lb-FABP) 7P27 ; ; NMR solution structure of Chikungunya virus macro domain 2MFK ; ; NMR solution structure of chitin-binding domain from dust mite group XII allergen Blo t 12 2M6E ; ; NMR solution structure of cis (minor) form of In936 in Methanol 2M6C ; ; NMR solution structure of cis (minor) form of In936 in water 6XTH ; ; NMR solution structure of class IV lasso peptide felipeptin A1 from Amycolatopsis sp. YIM10 6XTI ; ; NMR solution structure of class IV lasso peptide felipeptin A2 from Amycolatopsis sp. YIM10 1DEY ; ; NMR SOLUTION STRUCTURE OF CO(II)-BLEOMYCIN A2 1D2L ; ; NMR SOLUTION STRUCTURE OF COMPLEMENT-LIKE REPEAT CR3 FROM THE LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN (LRP). EVIDENCE FOR SPECIFIC BINDING TO THE RECEPTOR BINDING DOMAIN OF HUMAN ALPHA-2 MACROGLOBULIN 2KC3 ; ; NMR solution structure of complete receptor binding domain of human apolipoprotein E 2MRY ; ; NMR solution structure of copper binding protein in the apo form 1YVA ; ; NMR solution structure of crambin in DPC micelles 2GVS ; ; NMR solution structure of CSPsg4 7S55 ; ; NMR Solution Structure of Cter 27 2KON ; ; NMR solution structure of CV_2116 from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvT4(1-82) 6PIN ; ; NMR Solution structure of cyclic tachyplesin I 6PIO ; ; NMR Solution structure of cyclic tachyplesin II 6PIP ; ; NMR Solution structure of cyclic tachyplesin III 1KKV ; ; NMR Solution Structure of d(CCACGCGTGG)2, parent to G-T mismatch structure 1KKW ; ; NMR Solution Structure of d(CCATGCGTGG)2, G-T mismatch structure 1G7Z ; ; NMR SOLUTION STRUCTURE OF D(CGCTAGCG)2 1G80 ; ; NMR SOLUTION STRUCTURE OF D(GCGTACGC)2 6B9W ; ; NMR solution structure of Defensin1 from Centruroides limpidus limpidus 6BAM ; ; NMR solution structure of Defensin1 from Centruroides limpidus limpidus 6BB6 ; ; NMR solution structure of Defensin1 from Centruroides limpidus limpidus 6BI5 ; ; NMR solution structure of Defensin1 from Centruroides limpidus limpidus 1HS5 ; ; NMR SOLUTION STRUCTURE OF DESIGNED P53 DIMER 5KX2 ; ; NMR Solution Structure of Designed Peptide NC_cEE_D1 5KX1 ; ; NMR Solution Structure of Designed Peptide NC_cHHH_D1 5KWZ ; ; NMR Solution Structure of Designed Peptide NC_cHH_D1 5KX0 ; ; NMR Solution Structure of Designed Peptide NC_cHh_DL_D1 5KWX ; ; NMR Solution Structure of Designed Peptide NC_EEH_D1 5KWP ; ; NMR Solution Structure of Designed Peptide NC_EEH_D2 5KWO ; ; NMR Solution Structure of Designed Peptide NC_EHE_D1 5KVN ; ; NMR Solution Structure of Designed Peptide NC_HEE_D1 1BO9 ; ; NMR SOLUTION STRUCTURE OF DOMAIN 1 OF HUMAN ANNEXIN I 2M57 ; ; NMR solution structure of domain 5 from Azotobacter vinelandii Intron 5 at pH 7.8 1Z66 ; ; NMR solution structure of domain III of E-protein of tick-borne Langat flavivirus (no RDC restraints) 2GG1 ; ; NMR solution structure of domain III of the E-protein of tick-borne Langat flavivirus (includes RDC restraints) 1Q27 ; ; NMR Solution Structure of DR0079: An hypothetical Nudix protein from D. radiodurans 2KDC ; ; NMR Solution Structure of E. coli diacylglycerol kinase (DAGK) in DPC micelles 5TCZ ; ; NMR solution structure of engineered Protoxin-II analog 5WOY ; ; NMR solution structure of Enzyme I (nEIt) protein using two 4D-spectra 2LW8 ; ; NMR solution structure of Eph receptor 2NAV ; ; NMR solution structure of Ex-4[1-16]/pl14a 6VH8 ; ; NMR Solution Structure of Excelsatoxin A 2NAW ; ; NMR solution structure of Exendin-4/conotoxin chimera (Ex-4[1-27]/pl14a) 2WCY ; ; NMR solution structure of factor I-like modules of complement C7. 2L6F ; ; NMR Solution structure of FAT domain of FAK complexed with LD2 and LD4 motifs of PAXILLIN 6MJD ; ; NMR Solution structure of GIIIC 2L71 ; ; NMR solution structure of GIP in Bicellular media 2L70 ; ; NMR solution structure of GIP in micellular media 2L63 ; ; NMR solution structure of GLP-2 in 2,2,2 trifluroethanol 2L64 ; ; NMR Solution structure of GLP-2 in DHPC micelles 1KX6 ; ; NMR solution structure of Glucagon in a lipid-water interphase 6VK2 ; ; NMR solution structure of Grb2-SH2 domain at pH 7 1GHU ; ; NMR solution structure of growth factor receptor-bound protein 2 (GRB2) SH2 domain, 24 structures 5M9Y ; ; NMR solution structure of Harzianin HK-VI in DPC micelles 5MF3 ; ; NMR solution structure of Harzianin HK-VI in SDS micelles 5MF8 ; ; NMR solution structure of Harzianin HK-VI in trifluoroethanol 6SLY ; ; NMR solution structure of Helicobacter pylori TonB-CTD (residues 179-285) 5LW8 ; ; NMR solution structure of Helicobacter pylori TonB-CTD (residues 194-285) 1E8L ; ; NMR solution structure of hen lysozyme 7S3Q ; ; NMR Solution Structure of hGal(1-12)KK, a solubility-tagged truncation of the human neuropeptide galanin 7S3R ; ; NMR Solution Structure of hGal(1-12)KK, a solubility-tagged truncation of the human neuropeptide galanin 7S3O ; ; NMR Solution Structure of hGal(2-12)KK, a solubility-tagged truncation of the human neuropeptide galanin 2JV7 ; ; NMR Solution Structure of Histoplasma capsulatum CBP Homodimer 2M3Z ; ; NMR solution structure of HIV-1 nucleocapsid protein in complex with an inhibitor displaying a 2 inhibitors:1 NC stoichiometry 6SAI ; ; NMR solution structure of Hml-2 C-terminal dimer domain 2JUW ; ; NMR solution structure of homodimer protein SO_2176 from Shewanella oneidensis. Northeast Structural Genomics Consortium target SoR77 2N2Q ; ; NMR solution structure of HsAFP1 1BLR ; ; NMR SOLUTION STRUCTURE OF HUMAN CELLULAR RETINOIC ACID BINDING PROTEIN-TYPE II, 22 STRUCTURES 2I85 ; ; NMR solution structure of Human ephrinB2 ectodomain 5LKN ; ; NMR solution structure of human FNIII domain 2 of NCAM 2LW7 ; ; NMR solution structure of human HisRS splice variant 2JYO ; ; NMR Solution structure of Human MIP-3alpha/CCL20 1RON ; ; NMR SOLUTION STRUCTURE OF HUMAN NEUROPEPTIDE Y 2GO0 ; ; NMR solution structure of human pancreatitis-associated protein 2HKY ; ; NMR solution structure of human RNase 7 1M12 ; ; NMR solution structure of human Saposin C 1SN6 ; ; NMR solution structure of human Saposin C in SDS micelles 2KLC ; ; NMR solution structure of human ubiquitin-like domain of ubiquilin 1, Northeast Structural Genomics Consortium (NESG) target HT5A 2LAV ; ; NMR solution structure of human Vaccinia-Related Kinase 1 2JOI ; ; NMR solution structure of hypothetical protein TA0095 from Thermoplasma acidophilum 5WOX ; ; NMR solution structure of KanY protein (ms6282) using two 4D-spectra 2LUR ; ; NMR solution structure of Kb1[ghrw;23-28] 2JXU ; ; NMR solution structure of KP-TerB, a tellurite resistance protein from Klebsiella pneumoniae 2JZP ; ; NMR solution structure of Kx5Q ProtL mutant 2KAC ; ; NMR solution structure of KX6E protL mutant 8F2F ; ; NMR solution structure of lambda-MeuKTx-1 2KPW ; ; NMR solution structure of Lamin-B1 protein from Homo sapiens: Northeast Structural Genomics Consortium MEGA target, HR5546A (439-549) 6MI5 ; ; NMR solution structure of lanmodulin (LanM) complexed with yttrium(III) ions 6WQR ; ; NMR solution structure of leech peptide HSTX-I 2MWH ; ; NMR solution structure of ligand-free OAA 7RFA ; ; NMR Solution structure of linear [T20K]kalataB1 6QKP ; ; NMR solution structure of LSR2 binding domain. 6QKQ ; ; NMR solution structure of LSR2-T112D binding domain. 6O3S ; ; NMR solution structure of Luffin P1 8FLP ; ; NMR Solution Structure of LvIC analogue 5NMY ; ; NMR solution structure of lysostaphin 2K1X ; ; NMR solution structure of M-crystallin in calcium free form (apo). 2K1W ; ; NMR solution structure of M-crystallin in calcium loaded form(holo). 5ISN ; ; NMR solution structure of macro domain from Venezuelan equine encephalitis virus 5MQX ; ; NMR solution structure of macro domain from Venezuelan equine encephalitis virus(VEEV) in complex with ADP-ribose 2NDH ; ; NMR solution structure of MAL/TIRAP TIR domain (C116A) 5IQ5 ; ; NMR solution structure of Mayaro virus macro domain 2L9F ; ; NMR solution structure of meACP 2K5Q ; ; NMR Solution structure of membrane associated protein from Bacillus cereus: Northeast Structural Genomics Consortium Target: BcR97A 2KGL ; ; NMR solution structure of MESD 2RQK ; ; NMR Solution Structure of Mesoderm Development (MESD) - closed conformation 2RQM ; ; NMR Solution Structure of Mesoderm Development (MESD) - open conformation 2KE8 ; ; NMR solution structure of metal-modified DNA 2LU6 ; ; NMR solution structure of Midi peptide designed based on m-conotoxins 2LUT ; ; NMR solution structure of midkine-a 2LUU ; ; NMR solution structure of midkine-b, mdkb 6FBL ; ; NMR Solution Structure of MINA-1(254-334) 2K67 ; ; NMR solution structure of modified DNA containing imidazole nucleosides at acidic pH 2K69 ; ; NMR solution structure of modified DNA containing imidazole nucleosides at basic pH 2K68 ; ; NMR solution structure of modified DNA containing imidazole nucleosides at neutral pH 6FGP ; ; NMR solution structure of monomeric CCL5 in complex with a doubly-sulfated N-terminal segment of CCR5 1LBJ ; ; NMR solution structure of motilin in phospholipid bicellar solution 2NPB ; ; NMR solution structure of mouse SelW 2MDK ; ; NMR Solution Structure of MSP-P56S Domain/VAPB in DPC 2LXG ; ; NMR solution structure of Mu-conotoxin KIIIA 2LO9 ; ; NMR solution structure of Mu-contoxin BuIIIB 2N7F ; ; NMR solution structure of muO-conotoxin MfVIA 1HA6 ; ; NMR Solution Structure of Murine CCL20/MIP-3a Chemokine 6EHZ ; ; NMR solution structure of murine CXCL12 gamma isoform 7QAB ; ; NMR Solution Structure of mussel adhesive protein Pvfp-5b 2LW9 ; ; NMR solution structure of Myo10 anti-CC 2M7K ; ; NMR solution structure of N-terminal domain of (Y81F)-EhCaBP1 2JOJ ; ; NMR solution structure of N-terminal domain of Euplotes octocarinatus centrin 7L2G ; ; NMR solution structure of Nak1 from the Necator americanus hookworm 2PQ4 ; ; NMR solution structure of NapD in complex with NapA1-35 signal peptide 6PI2 ; ; NMR Solution structure of native tachyplesin II peptide 6PI3 ; ; NMR Solution structure of native tachyplesin III peptide 2LFK ; ; NMR solution structure of native TdPI-short 1MPZ ; ; NMR solution structure of native Viperidae lebetina obtusa protein 6VXW ; ; NMR solution structure of natural scorpion toxin Cl13 7L83 ; ; NMR solution structure of Nav1.5 DIV S3b-S4a paddle motif in DPC micelle 1ZEC ; ; NMR Solution structure of NEF1-25, 20 structures 1L0R ; ; NMR Solution Structure of Nogalamycin Intercalation Between Co-Axially Stacked Hairpins 6F27 ; ; NMR solution structure of non-bound [des-Arg10]-kallidin (DAKD) 1JE9 ; ; NMR SOLUTION STRUCTURE OF NT2 2N1B ; ; NMR solution structure of nucleotide-free Ran GTPase 2KD0 ; ; NMR solution structure of O64736 protein from Arabidopsis thaliana. Northeast Structural Genomics Consortium MEGA Target AR3445A 1TTK ; ; NMR solution structure of omega-conotoxin MVIIA, a N-type calcium channel blocker 1TR6 ; ; NMR solution structure of omega-conotoxin [K10]GVIA, a cyclic cysteine knot peptide 2PXG ; ; NMR Solution Structure of OmlA 2MLH ; ; NMR Solution Structure of Opa60 from N. Gonorrhoeae in FC-12 Micelles 2LO4 ; ; NMR Solution Structure of Optineurin Zinc-finger Domain 1G90 ; ; NMR Solution Structure of Outer Membrane Protein A Transmembrane Domain: 10 conformers 1K3G ; ; NMR Solution Structure of Oxidized Cytochrome c-553 from Bacillus pasteurii 1K3H ; ; NMR Solution Structure of Oxidized Cytochrome c-553 from Bacillus pasteurii 2MBS ; ; NMR solution structure of oxidized KpDsbA 2MGO ; ; NMR solution structure of oxytocin 2LV5 ; ; NMR solution structure of PA1075 from Pseudomonas Aeruginosa 4CSQ ; ; NMR solution structure of PA3793 from Pseudomonas aeruginosa 2JUF ; ; NMR solution structure of PARC CPH Domain. NESG Target HR3443B/SGC-Toronto 2NB6 ; ; NMR solution structure of PawS Derived Peptide 10 (PDP-10) 2LWQ ; ; NMR solution structure of PawS derived peptide 11 (PDP-11) 2NDN ; ; NMR solution structure of PawS Derived Peptide 20 (PDP-20) 2NDM ; ; NMR solution structure of PawS Derived Peptide 21 (PDP-21) 2NDL ; ; NMR solution structure of PawS Derived Peptide 22 (PDP-22) 2LWS ; ; NMR solution structure of PawS Derived Peptide 4 (PDP-4) 2LWT ; ; NMR solution structure of PawS Derived Peptide 5 (PDP-5) 2LWV ; ; NMR solution structure of PawS Derived Peptide 6 (PDP-6) 2LWU ; ; NMR solution structure of PawS Derived Peptide 7 (PDP-7) 2NB5 ; ; NMR solution structure of PawS Derived Peptide 9 (PDP-9) 7OSD ; ; NMR Solution Structure of Peptide 12: First-in-class cyclic Temporin L analogue with antibacterial and antibiofilm activities 2LX4 ; ; NMR solution structure of peptide a2N(1-17) from Mus musculus V-ATPase 2LX5 ; ; NMR solution structure of peptide epsilon(103-120) from Mycobacterium tuberculosis F-ATPsynthase 2JVA ; ; NMR solution structure of peptidyl-tRNA hydrolase domain protein from Pseudomonas syringae pv. tomato. Northeast Structural Genomics Consortium target PsR211 2FUI ; ; NMR solution structure of PHD finger fragment of human BPTF in free state 2JMI ; ; NMR solution structure of PHD finger fragment of Yeast Yng1 protein in free state 1QFR ; ; NMR SOLUTION STRUCTURE OF PHOSPHOCARRIER PROTEIN HPR FROM ENTEROCOCCUS FAECALIS 1FJK ; ; NMR Solution Structure of Phospholamban (C41F) 1FJP ; ; NMR Solution Structure of Phospholamban (C41F) 2BYE ; ; NMR solution structure of phospholipase c epsilon RA 1 domain 2BYF ; ; NMR solution structure of phospholipase c epsilon RA 2 domain 1R9I ; ; NMR Solution Structure of PIIIA toxin, NMR, 20 structures 2M9E ; ; NMR solution structure of Pin1 WW domain mutant 5-1 2M9F ; ; NMR solution structure of Pin1 WW domain mutant 5-1g 2M9J ; ; NMR solution structure of Pin1 WW domain mutant 6-1g 2KBU ; ; NMR solution structure of Pin1 WW domain mutant with beta turn mimic at position 12 2M9I ; ; NMR solution structure of Pin1 WW domain variant 6-1 2K19 ; ; NMR solution structure of PisI 1JKZ ; ; NMR Solution Structure of Pisum sativum defensin 1 (Psd1) 6NOM ; ; NMR solution structure of Pisum sativum defensin 2 (Psd2) provides evidence for the presence of hydrophobic surface clusters 7JN6 ; ; NMR Solution Structure of plant defensin AtD90 7JNN ; ; NMR Solution Structure of plant defensin SlD26 2B3I ; ; NMR SOLUTION STRUCTURE OF PLASTOCYANIN FROM THE PHOTOSYNTHETIC PROKARYOTE, PROCHLOROTHRIX HOLLANDICA (19 STRUCTURES) 1B3I ; ; NMR SOLUTION STRUCTURE OF PLASTOCYANIN FROM THE PHOTOSYNTHETIC PROKARYOTE, PROCHLOROTHRIX HOLLANDICA (MINIMIZED AVERAGE STRUCTURE) 1Z64 ; ; NMR Solution Structure of Pleurocidin in DPC Micelles 1QBF ; ; NMR SOLUTION STRUCTURE OF PORCINE PEPTIDE YY 2JYA ; ; NMR solution structure of protein ATU1810 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium target AtR23, Ontario Centre for Structural Proteomics Target ATC1776 2FB7 ; ; NMR Solution Structure of protein from Zebra Fish Dr.13312 2JZ5 ; ; NMR solution structure of protein VPA0419 from Vibrio parahaemolyticus. Northeast Structural Genomics target VpR68 6N68 ; ; NMR solution structure of Protonectin (Agelaia pallipes pallipes) interacting with SDS micelles: an antimicrobial peptide with anticancer activity on breast cancer cells 2N9T ; ; NMR solution structure of ProTx-II 7LNS ; ; NMR solution structure of PsDef2 defensin from P. sylvestris 2KVS ; ; NMR Solution Structure of Q7A1E8 protein from Staphylococcus aureus: Northeast Structural Genomics Consortium target: ZR215 1XYD ; ; NMR Solution Structure of Rat Zinc-Calcium-S100B, 20 Structures 2LU9 ; ; NMR solution structure of recombinant Tamapin 1TAP ; ; NMR SOLUTION STRUCTURE OF RECOMBINANT TICK ANTICOAGULANT PROTEIN (RTAP), A FACTOR XA INHIBITOR FROM THE TICK ORNITHODOROS MOUBATA 1G7O ; ; NMR SOLUTION STRUCTURE OF REDUCED E. COLI GLUTAREDOXIN 2 6LXG ; ; NMR solution structure of regulatory ACT domain of the Mycobacterium tuberculosis Rel protein 6DHR ; ; NMR Solution structure of Rivi3 6KLM ; ; NMR solution structure of Roseltide rT7 2N2R ; ; NMR solution structure of RsAFP2 5WOZ ; ; NMR solution structure of Rtt103 (RTT) protein using two 4D-spectra 2N8Q ; ; NMR solution structure of S114A mutant of a UV inducible protein from Chlamydomonas reinhardtii 2MSF ; ; NMR SOLUTION STRUCTURE OF SCORPION VENOM TOXIN Ts11 (TsPep1) FROM Tityus serrulatus 7N82 ; ; NMR Solution structure of Se0862 6U7S ; ; NMR solution structure of SFTI-1 based plasmin inhibitor 6U7Q ; ; NMR solution structure of SFTI-R10 6U7R ; ; NMR solution structure of SFTI1 based KLK7 protease inhibitor 2KNO ; ; NMR Solution Structure of SH2 Domain of the Human Tensin Like C1 Domain Containing Phosphatase (TENC1) 1ROO ; ; NMR SOLUTION STRUCTURE OF SHK TOXIN, NMR, 20 STRUCTURES 5XQM ; ; NMR solution structure of SMO1, Sumo homologue in Caenorhabditis elegans 7OJ9 ; ; NMR solution structure of SNX9 SH3 - EEEV nsP3 peptide complex 2K7H ; ; NMR solution structure of soybean allergen Gly m 4 2CVR ; ; NMR solution structure of sso7d mutant, K12L, 12 conformers 6SOW ; ; NMR solution structure of staphylococcal protein A, C domain 2K3A ; ; NMR solution structure of Staphylococcus saprophyticus CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) domain protein. Northeast Structural Genomics Consortium target SyR11 2LRJ ; ; NMR solution structure of staphyloxanthin biosynthesis protein 1K7B ; ; NMR Solution Structure of sTva47, the Viral-Binding Domain of Tva 1S3A ; ; NMR Solution Structure of Subunit B8 from Human NADH-Ubiquinone Oxidoreductase Complex I (CI-B8) 8HGX ; ; NMR solution structure of subunit epsilon of the Acinetobacter baumannii F-ATP synthase 5YIO ; ; NMR solution structure of subunit epsilon of the Mycobacterium tuberculosis F-ATP synthase 7P2O ; ; NMR solution structure of SUD-C domain of SARS-CoV-2 6D3T ; ; NMR solution structure of tamapin, mutant DP30 6D8Q ; ; NMR solution structure of tamapin, mutant DP30/Y31+N 6D9O ; ; NMR solution structure of tamapin, mutant E25A 6D8R ; ; NMR solution structure of tamapin, mutant E25K 6D8T ; ; NMR solution structure of tamapin, mutant E25K/K27E 6VNZ ; ; NMR solution structure of tamapin, mutant K20A 6D8U ; ; NMR solution structure of tamapin, mutant K20E 6D9P ; ; NMR solution structure of tamapin, mutant K27A 6D8S ; ; NMR solution structure of tamapin, mutant K27E 6D8H ; ; NMR solution structure of tamapin, mutant Y31+N 6D93 ; ; NMR solution structure of tamapin, mutant Y31A 6D8Y ; ; NMR solution structure of tamapin, mutant Y31H 7AY8 ; ; NMR solution structure of Tbo-IT2 1U6F ; ; NMR solution structure of TcUBP1, a single RBD-unit from Trypanosoma cruzi 2GJY ; ; NMR Solution Structure of Tensin1 PTB Domain 8IJC ; ; NMR solution structure of the 1:1 complex of a platinum(II) ligand L1-transpt covalently bound to a G-quadruplex MYT1L 7X3A ; ; NMR solution structure of the 1:1 complex of a pyridostatin (PDS) bound to a G-quadruplex MYT1L 7X2Z ; ; NMR solution structure of the 1:1 complex of a pyridostatin derivative (PyPDS) bound to a G-quadruplex MYT1L 7EL7 ; ; NMR solution structure of the 1:1 complex of a quadruplex-duplex hybrid MYT1L and a platinum(II) ligand L1Pt(dien) 6KFI ; ; NMR solution structure of the 1:1 complex of Tel26 G-quadruplex and a tripodal cationic fluorescent probe NBTE 6KFJ ; ; NMR solution structure of the 1:1 complex of wtTel26 G-quadruplex and a tripodal cationic fluorescent probe NBTE 7X8M ; ; NMR Solution Structure of the 2:1 Berberine-KRAS-G4 Complex 7X8O ; ; NMR Solution Structure of the 2:1 Coptisine-KRAS-G4 Complex 2KVY ; ; NMR solution structure of the 4:1 complex between an uncharged distamycin A analogue and [d(TGGGGT)]4 2JT7 ; ; NMR solution structure of the 4:1 distamycin A/[d(TGGGGT)]4 complex 1D6K ; ; NMR SOLUTION STRUCTURE OF THE 5S RRNA E-LOOP/L25 COMPLEX 1O6X ; ; NMR solution structure of the activation domain of human procarboxypeptidase A2 2GV1 ; ; NMR solution structure of the Acylphosphatase from Eschaerichia Coli 5UG5 ; ; NMR SOLUTION STRUCTURE OF THE ALPHA-CONOTOXIN GID MUTANT V13Y 1N37 ; ; NMR Solution Structure of the Anthracycline Respinomycin D Intercalation Complex with a Double Stranded DNA Molecule (AGACGTCT)2 2JRQ ; ; NMR solution structure of the anticodon of E. coli TRNA-VAL3 with 1 modification (cmo5U34) 2JRG ; ; NMR solution structure of the anticodon of E. coli TRNA-VAL3 with 2 modifications (cmo5U34 M6A37) 2JSG ; ; NMR solution structure of the anticodon of E.coli TRNA-VAL3 with 1 modification (M6A37) 2JR4 ; ; NMR Solution Structure of the Anticodon of E.coli TRNA-VAL3 With no Modifications 1FEQ ; ; NMR SOLUTION STRUCTURE OF THE ANTICODON OF TRNA(LYS3) WITH T6A MODIFICATION AT POSITION 37 1LUX ; ; NMR SOLUTION STRUCTURE OF THE ANTICODON OF YEAST TRNA-PHE WITH 3 MODIFICATIONS (OMC32 OMG34 M5C40) 1LUU ; ; NMR SOLUTION STRUCTURE OF THE ANTICODON OF YEAST TRNA-PHE WITH 4 MODIFICATIONS (OMC32 OMG34 1MG37 5MC40) 5LW4 ; ; NMR solution structure of the apo-form of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A 1T23 ; ; NMR Solution Structure of the Archaebacterial Chromosomal Protein MC1 5XEE ; ; NMR solution structure of the aromatic mutant H43F H67F cytochrome b5 5XE4 ; ; NMR solution structure of the aromatic mutant H43W H67F cytochrome b5 1PV3 ; ; NMR Solution Structure of the Avian FAT-domain of Focal Adhesion Kinase 2KHK ; ; NMR solution structure of the b30-82 domain of subunit b of Escherichia coli F1FO ATP synthase 2K77 ; ; NMR solution structure of the Bacillus subtilis ClpC N-domain 1ZQ3 ; ; NMR Solution Structure of the Bicoid Homeodomain Bound to the Consensus DNA Binding Site TAATCC 1F68 ; ; NMR SOLUTION STRUCTURE OF THE BROMODOMAIN FROM HUMAN GCN5 2A93 ; ; NMR SOLUTION STRUCTURE OF THE C-MYC-MAX HETERODIMERIC LEUCINE ZIPPER, 40 STRUCTURES 1A93 ; ; NMR SOLUTION STRUCTURE OF THE C-MYC-MAX HETERODIMERIC LEUCINE ZIPPER, NMR, MINIMIZED AVERAGE STRUCTURE 2K2I ; ; NMR Solution structure of the C-terminal domain (T94-Y172) of the human centrin 2 in complex with a repeat sequence of human Sfi1 (R641-T660) 2N2E ; ; NMR solution structure of the C-terminal domain of NisI, a lipoprotein from Lactococcus lactis which confers immunity against nisin 2LAE ; ; NMR solution structure of the C-terminal domain of the E. coli lipoprotein BamC 1TRL ; ; NMR SOLUTION STRUCTURE OF THE C-TERMINAL FRAGMENT 255-316 OF THERMOLYSIN: A DIMER FORMED BY SUBUNITS HAVING THE NATIVE STRUCTURE 1P9C ; ; NMR solution structure of the C-terminal ubiquitin-interacting motif of the proteasome subunit S5a 2MA3 ; ; NMR solution structure of the C-terminus of the minichromosome maintenance protein MCM from Methanothermobacter thermautotrophicus 2M45 ; ; NMR solution structure of the C-terminus of the minichromosome maintenance protein MCM from Sulfolobus solfataricus 6HYK ; ; NMR solution structure of the C/D box snoRNA U14 7P4N ; ; NMR solution structure of the C6 domain of von Willebrand Factor 2LQP ; ; NMR solution structure of the Ca2+-Calmodulin C-terminal domain in a complex with a peptide (NSCaTE) from the L-type Voltage-Gated Calcium Channel alpha1C subunit 1SNL ; ; NMR Solution Structure of the Calcium-binding Domain of Nucleobindin (CALNUC) 1C7V ; ; NMR SOLUTION STRUCTURE OF THE CALCIUM-BOUND C-TERMINAL DOMAIN (W81-S161) OF CALCIUM VECTOR PROTEIN FROM AMPHIOXUS 1C7W ; ; NMR SOLUTION STRUCTURE OF THE CALCIUM-BOUND C-TERMINAL DOMAIN (W81-S161) OF CALCIUM VECTOR PROTEIN FROM AMPHIOXUS 1D1D ; ; NMR SOLUTION STRUCTURE OF THE CAPSID PROTEIN FROM ROUS SARCOMA VIRUS 6Z40 ; ; NMR solution structure of the carbohydrate-binding module family 5 (CBM5) from Cellvibrio japonicus CjLPMO10A 6Z41 ; ; NMR solution structure of the carbohydrate-binding module family 73 (CBM73) from Cellvibrio japonicus CjLPMO10A 6E26 ; ; NMR solution structure of the CARD9 CARD 6E25 ; ; NMR solution structure of the CARD9 CARD bound to zinc 1TDP ; ; NMR solution structure of the carnobacteriocin B2 immunity protein 2KE9 ; ; NMR solution structure of the CASKIN SH3 domain 6F7E ; ; NMR solution structure of the cellulose-binding family 2 carbohydrate binding domain (CBM2) from ScLPMO10C 1K19 ; ; NMR Solution Structure of the Chemosensory Protein CSP2 from Moth Mamestra brassicae 1KQH ; ; NMR Solution Structure of the cis Pro30 Isomer of ACTX-Hi:OB4219 1GP8 ; ; NMR SOLUTION STRUCTURE OF THE COAT PROTEIN-BINDING DOMAIN OF BACTERIOPHAGE P22 SCAFFOLDING PROTEIN 2GP8 ; ; NMR SOLUTION STRUCTURE OF THE COAT PROTEIN-BINDING DOMAIN OF BACTERIOPHAGE P22 SCAFFOLDING PROTEIN 2M1V ; ; NMR solution structure of the d3'-hairpin from the Sc.ai5gamma group II intron including the EBS1:dIBS1 RNA:DNA hybrid 2M24 ; ; NMR solution structure of the d3'-hairpin including the exon binding site 1 (EBS1) of the group II intron Sc.ai5gamma 2M23 ; ; NMR solution structure of the d3'-hairpin of the group II intron Sc.ai5gamma including EBS1 bound to IBS1 2K66 ; ; NMR solution structure of the d3'-stem closed by a GAAA tetraloop of the group II intron Sc.ai5(gamma) 7UWY ; ; NMR solution structure of the De novo designed small beta-barrel protein 29_bp_sh3 7UWZ ; ; NMR solution structure of the De novo designed small beta-barrel protein 33_bp_sh3 2DCX ; ; NMR solution structure of the Dermaseptin antimicrobial peptide analog NC12-K4S4(1-13)a 1IC9 ; ; NMR SOLUTION STRUCTURE OF THE DESIGNED BETA-SHEET MINI-PROTEIN TH10AOX 1HI7 ; ; NMR SOLUTION STRUCTURE OF THE DISULPHIDE-LINKED HOMODIMER OF HUMAN TFF1, 10 STRUCTURES 2KRF ; ; NMR solution structure of the DNA binding domain of Competence protein A 1FZX ; ; NMR SOLUTION STRUCTURE OF THE DNA DODECAMER GGCAAAAAACGG 1G14 ; ; NMR SOLUTION STRUCTURE OF THE DNA DODECAMER GGCAAGAAACGG 1DHH ; ; NMR SOLUTION STRUCTURE OF THE DNA DUPLEX CONTAINING DNA/RNA HYBRID REGION, D(GG)R(AGAU)D(GAC)/D(GTCATCTCC) 1DRN ; ; NMR SOLUTION STRUCTURE OF THE DNA DUPLEX CONTAINING DNA/RNA HYBRID REGION, D(GGAGA)R(UGAC)/D(GTCATCTCC) 2MEO ; ; NMR solution structure of the double GS-Tamapin mutation R6A/R7A 2A7U ; ; NMR solution structure of the E.coli F-ATPase delta subunit N-terminal domain in complex with alpha subunit N-terminal 22 residues 2MHL ; ; NMR solution Structure of the E.coli Outer Membrane Protein W 2KHN ; ; NMR solution structure of the EH 1 domain from human intersectin-1 protein. Northeast Structural Genomics Consortium target HR3646E. 1T0V ; ; NMR Solution Structure of the Engineered Lipocalin FluA(R95K) Northeast Structural Genomics Target OR17 2K65 ; ; NMR solution structure of the exon/intron binding site 1 (EBS1/IBS1) of the group II intron Sc.ai5(gamma) 1LFU ; ; NMR Solution Structure of the Extended PBX Homeodomain Bound to DNA 5OUN ; ; NMR solution structure of the external DII domain of Rvb2 from Saccharomyces cerevisiae 2HRJ ; ; NMR solution structure of the F2 subdomain of talin 6SO0 ; ; NMR solution structure of the family 14 carbohydrate binding module (CBM14) from human chitotriosidase 2KFT ; ; NMR Solution structure of the first PHD finger domain of human Autoimmune Regulator (AIRE) in complex with Histone H3(1-20Cys) Peptide 2GAQ ; ; NMR SOLUTION STRUCTURE OF THE FRB DOMAIN OF mTOR 1NAU ; ; NMR Solution Structure of the Glucagon Antagonist [desHis1, desPhe6, Glu9]Glucagon Amide in the Presence of Perdeuterated Dodecylphosphocholine Micelles 8QHI ; ; NMR solution structure of the golden kiwi fruit allergen Act c 8.0101 8QHH ; ; NMR solution structure of the green kiwi fruit allergen Act d 8.0101 2MEN ; ; NMR solution structure of the GS-TAMAPIN MUTATION R13A 2ME7 ; ; NMR solution structure of the GS-TAMAPIN MUTATION R6A 2MEL ; ; NMR solution structure of the GS-TAMAPIN MUTATION R7A 6Y3H ; ; NMR solution structure of the hazelnut allergen Cor a 1.0401 6Y3I ; ; NMR solution structure of the hazelnut allergen Cor a 1.0402 6Y3K ; ; NMR solution structure of the hazelnut allergen Cor a 1.0403 6Y3L ; ; NMR solution structure of the hazelnut allergen Cor a 1.0404 8OVL ; ; NMR solution structure of the heavy metal binding domain of P1B-ATPase LpCopA. 1VPU ; ; NMR SOLUTION STRUCTURE OF THE HIV-1 VPU CYTOPLASMIC DOMAIN, 9 STRUCTURES 6N2M ; ; NMR solution structure of the homodimeric, autoinhibited state of the CARD9 CARD and first coiled-coil 1JNJ ; ; NMR solution structure of the human beta2-microglobulin 2FHO ; ; NMR solution structure of the human spliceosomal protein complex p14-SF3b155 6Q2Z ; ; NMR solution structure of the HVO_2922 protein from Haloferax volcanii 2JVI ; ; NMR Solution Structure of the Hyper-Sporulation Response Regulator Spo0F Mutant H101A from Bacillus subtilis 2JVJ ; ; NMR Solution Structure of the Hyper-Sporulation Response Regulator Spo0F Mutant I90A from Bacillus subtilis 2JVK ; ; NMR Solution Structure of the Hyper-Sporulation Response Regulator Spo0F Mutant L66A from Bacillus subtilis 1R4H ; ; NMR Solution structure of the IIIc domain of GB Virus B IRES Element 2POJ ; ; NMR Solution Structure of the Inhibitor-Free State of Macrophage Metalloelastase (MMP-12) 1I6F ; ; NMR SOLUTION STRUCTURE OF THE INSECT-SPECIFIC NEUROTOXIN VARIANT 5 (CSE-V5) FROM THE SCORPION CENTRUROIDES SCULPTURATUS EWING 1I6G ; ; NMR SOLUTION STRUCTURE OF THE INSECT-SPECIFIC NEUROTOXIN VARIANT 5 (CSE-V5) FROM THE SCORPION CENTRUROIDES SCULPTURATUS EWING 1DGQ ; ; NMR SOLUTION STRUCTURE OF THE INSERTED DOMAIN OF HUMAN LEUKOCYTE FUNCTION ASSOCIATED ANTIGEN-1 2LFL ; ; NMR solution structure of the intermediate IIIb of TdPI-short 6XYV ; ; NMR solution structure of the Iron-Sulfur protein PioC from Rhodopseudomonas palustris TIE-1 2LU0 ; ; NMR solution structure of the kappa-zeta region of S.cerevisiae group II intron ai5(gamma) 5Z55 ; ; NMR Solution Structure of the Kringle domain of human receptor tyrosine kinase-like orphan receptor 1 (ROR1) 2M5W ; ; NMR Solution Structure of the La motif (N-terminal Domain, NTD) of Dictyostelium discoideum La protein 1EHX ; ; NMR SOLUTION STRUCTURE OF THE LAST UNKNOWN MODULE OF THE CELLULOSOMAL SCAFFOLDIN PROTEIN CIPC OF CLOSTRIDUM CELLULOLYTICUM 5MMU ; ; NMR solution structure of the major apple allergen Mal d 1 6ALK ; ; NMR solution structure of the major beech pollen allergen Fag s 1 2HWT ; ; NMR solution structure of the Master-Rep protein nuclease domain (2-95) from the Faba Bean Necrotic Yellows Virus 1PYV ; ; NMR solution structure of the mitochondrial F1b presequence peptide from Nicotiana plumbaginifolia 6E3C ; ; NMR Solution Structure of the Monomeric Form of the Phage L Decoration Protein 2KK7 ; ; NMR solution structure of the N terminal domain of subunit E (E1-52) of A1AO ATP synthase from Methanocaldococcus jannaschii 2JX3 ; ; NMR solution structure of the N-terminal domain of DEK 1BNP ; ; NMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, 55 STRUCTURES 1BNO ; ; NMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, MINIMIZED AVERAGE STRUCTURE 2L1P ; ; NMR solution structure of the N-terminal domain of DNA-binding protein SATB1 from Homo sapiens: Northeast Structural Genomics Target HR4435B(179-250) 2LVA ; ; NMR solution structure of the N-terminal domain of human USP28, Northeast structural genomics consortium target HT8470A 2N32 ; ; NMR solution structure of the N-terminal domain of NisI, a lipoprotein from Lactococcus lactis which confers immunity against nisin 2LQK ; ; NMR solution structure of the N-terminal domain of the CdnL protein from Thermus thermophilus 2KEB ; ; NMR solution structure of the N-terminal domain of the DNA polymerase alpha p68 subunit 2LAF ; ; NMR solution structure of the N-terminal domain of the E. coli lipoprotein BamC 2L4R ; ; NMR solution structure of the N-terminal PAS domain of hERG 8BGF ; ; NMR solution structure of the N-terminal RRM and flanking linker regions of Polypyrimidine tract binding protein 1 using the CYANA CONSENSUS method. 2JW4 ; ; NMR solution structure of the N-terminal SH3 domain of human Nckalpha 5T4R ; ; NMR solution structure of the Nav1.7 selective spider venom-derived peptide Pn3a 1VIB ; ; NMR SOLUTION STRUCTURE OF THE NEUROTOXIN B-IV, 20 STRUCTURES 2K4R ; ; NMR solution structure of the neurotrypsin kringle domain 2K51 ; ; NMR Solution Structure of the Neurotrypsin Kringle Domain 2KCK ; ; NMR solution structure of the Northeast Structural Genomics Consortium (NESG) target MrR121A 2HW0 ; ; NMR Solution Structure of the nuclease domain from the Replicator Initiator Protein from porcine circovirus PCV2 2HQI ; ; NMR SOLUTION STRUCTURE OF THE OXIDIZED FORM OF MERP, 14 STRUCTURES 1WVK ; ; NMR Solution Structure of the Partially Disordered Protein At2g23090 from Arabidopsis thaliana 6Z98 ; ; NMR solution structure of the peach allergen Pru p 1.0101 2FUU ; ; NMR solution structure of the PHD domain from the human BPTF in complex with H3(1-15)K4me3 peptide 2JMJ ; ; NMR solution structure of the PHD domain from the yeast YNG1 protein in complex with H3(1-9)K4me3 peptide 2NSV ; ; NMR Solution Structure of the Pheromone En-1 2KC6 ; ; NMR solution structure of the pheromone En-1 of Euplotes nobilii at -1.5 C 2NSW ; ; NMR Solution Structure of the Pheromone En-2 2KK2 ; ; NMR solution structure of the pheromone En-A1 from Euplotes nobilii 2N2S ; ; NMR solution structure of the pheromone Ep-1 from Euplotes petzi 2L1L ; ; NMR Solution Structure of the Phi0 PKI NES Peptide in Complex with CRM1-RanGTP 7TUJ ; ; NMR solution structure of the phosphorylated MUS81-binding region from human SLX4 1RY3 ; ; NMR Solution Structure of the Precursor for Carnobacteriocin B2, an Antimicrobial Peptide from Carnobacterium piscicola 2MZE ; ; NMR Solution Structure of the PRO Form of Human Matrilysin (proMMP-7) 2MZI ; ; NMR Solution Structure of the PRO Form of Human Matrilysin (proMMP-7) in Complex with Anionic Membrane 2MZH ; ; NMR Solution Structure of the PRO Form of Human Matrilysin (proMMP-7) in Complex with Zwitterionic Membrane 1D1R ; ; NMR SOLUTION STRUCTURE OF THE PRODUCT OF THE E. COLI YCIH GENE. 2JRT ; ; NMR solution structure of the protein coded by gene RHOS4_12090 of Rhodobacter sphaeroides. Northeast Structural Genomics target RhR5 2L6P ; ; NMR solution structure of the protein NP_253742.1 1T2Y ; ; NMR solution structure of the protein part of Cu6-Neurospora crassa MT 2L6N ; ; NMR solution structure of the protein YP_001092504.1 1SG7 ; ; NMR solution structure of the putative cation transport regulator ChaB 5AIW ; ; NMR solution structure of the putative transfer protein TraH from Gram-positive conjugative plasmid pIP501 2GFU ; ; NMR solution structure of the PWWP domain of Mismatch repair protein hMSH6 1RFA ; ; NMR SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF C-RAF-1 2I9H ; ; NMR solution structure of the reduced form of thioredoxin 1 from yeast (Trx1) 1YLB ; ; NMR solution structure of the reduced spinach plastocyanin 2JPH ; ; NMR solution structure of the Rho GTPase binding domain of human plexin-b1 1JU7 ; ; NMR Solution Structure of the RNA Hairpin Binding Site for the Histone Stem-loop Binding Protein 1JWC ; ; NMR SOLUTION STRUCTURE OF THE RNA HAIRPIN BINDING SITE FOR THE HISTONE STEM-LOOP BINDING PROTEIN 5SZW ; ; NMR solution structure of the RRM1 domain of the post-transcriptional regulator HuR 3ZGK ; ; NMR solution structure of the RXLR effector AVR3a11 from Phytophthora Capsici 1XNA ; ; NMR SOLUTION STRUCTURE OF THE SINGLE-STRAND BREAK REPAIR PROTEIN XRCC1-N-TERMINAL DOMAIN 1XNT ; ; NMR SOLUTION STRUCTURE OF THE SINGLE-STRAND BREAK REPAIR PROTEIN XRCC1-N-TERMINAL DOMAIN 2K2J ; ; NMR solution structure of the split PH domain from Phospholipase C gamma 2 2K62 ; ; NMR solution structure of the supramolecular adduct between a liver cytosolic bile acid binding protein and a bile acid-based Gd(III)-chelate 7OFN ; ; NMR solution structure of the SYLF domain of Burkholderia pseudomallei BPSL1445 1PES ; ; NMR SOLUTION STRUCTURE OF THE TETRAMERIC MINIMUM TRANSFORMING DOMAIN OF P53 1PET ; ; NMR SOLUTION STRUCTURE OF THE TETRAMERIC MINIMUM TRANSFORMING DOMAIN OF P53 1HZN ; ; NMR SOLUTION STRUCTURE OF THE THIRD EXTRACELLULAR LOOP OF THE CHOLECYSTOKININ A RECEPTOR 1KQI ; ; NMR Solution Structure of the trans Pro30 Isomer of ACTX-Hi:OB4219 1JAU ; ; NMR Solution Structure of the Trp-Rich Peptide of HIV gp41 Bound to DPC Micelles 5N5C ; ; NMR solution structure of the TSL2 RNA hairpin 2BBX ; ; NMR solution structure of the TSR domain of malaria TRAP protein 2M2A ; ; NMR solution structure of the two domain PPIase SlpA from Escherichia coli 5UJQ ; ; NMR Solution Structure of the Two-component Bacteriocin CbnXY 5UJR ; ; NMR Solution Structure of the Two-component Bacteriocin CbnXY 1T1H ; ; NMR solution structure of the U box domain from AtPUB14, an armadillo repeat containing protein from Arabidopsis thaliana 1W4U ; ; NMR solution structure of the ubiquitin conjugating enzyme UbcH5B 2MRP ; ; NMR solution structure of the Ubiquitin like domain (UBL) of DNA-damage-inducible 1 protein (Ddi1) 2PPZ ; ; NMR solution Structure of the Villin Headpiece Mutant G34L 1JRF ; ; NMR Solution Structure of the Viral Receptor Domain of Tva 7X8N ; ; NMR Solution Structure of the Wild-type Bulge-containing KRAS-G4 2MC3 ; ; NMR solution structure of the winged-helix domain from MUS81 structure-specific endonuclease 2FV4 ; ; NMR solution structure of the yeast kinetochore Spc24/Spc25 globular domain 2MNJ ; ; NMR solution structure of the yeast Pih1 and Tah1 C-terminal domains complex 8R6T ; ; NMR solution structure of thyropin IrThy-Cd from the hard tick Ixodes ricinus 2KA7 ; ; NMR solution structure of TM0212 at 40 C 2RN7 ; ; NMR solution structure of TnpE protein from Shigella flexneri. Northeast Structural Genomics Target SfR125 2M6F ; ; NMR solution structure of trans (major) form of In936 in Methanol 2M6D ; ; NMR solution structure of trans (major) form of In936 in water 6U7U ; ; NMR solution structure of triazole bridged matriptase inhibitor 6U7X ; ; NMR solution structure of triazole bridged plasmin inhibitor 6U24 ; ; NMR solution structure of triazole bridged SFTI-1 2MXM ; ; NMR solution structure of TRTX-Tp1a from the tarantula Thrixopelma pruriens 1MQZ ; ; NMR solution structure of type-B lantibiotics mersacidin bound to lipid II in DPC micelles 1MQY ; ; NMR solution structure of type-B lantibiotics mersacidin in DPC micelles 1MQX ; ; NMR Solution Structure of Type-B Lantibiotics Mersacidin in MeOH/H2O Mixture 6BL9 ; ; NMR Solution structure of U-SLPTX15-Sm2a 5OBN ; ; NMR solution structure of U11/U12 65K protein's C-terminal RRM domain (381-516) 2JVC ; ; NMR solution structure of ubiquitin like protein 2JXX ; ; NMR solution structure of Ubiquitin-like domain of NFATC2IP. Northeast Structural Genomics Consortium target HR5627 5N9V ; ; NMR solution structure of ubl5 domain from polyubiquitin locus of T.thermophila. 6YW8 ; ; NMR solution structure of unbound recombinant human Nerve Growth Factor (rhNGF) 1K0T ; ; NMR SOLUTION STRUCTURE OF UNBOUND, OXIDIZED PHOTOSYSTEM I SUBUNIT PSAC, CONTAINING [4FE-4S] CLUSTERS FA AND FB 6LNZ ; ; NMR solution structure of VEGF G-quadruplex bound a non-planar cyclometalated-carbene platinum(II) complex 2KMT ; ; NMR solution structure of Vibrio fischeri CcdB 2L0Q ; ; NMR Solution Structure of Vibrio harveyi Acyl Carrier Protein (ACP) 6O3Q ; ; NMR solution structure of vicilin-buried peptide-8 (VBP-8) 2GL1 ; ; NMR solution structure of Vigna radiata Defensin 2 (VrD2) 6EFE ; ; NMR Solution Structure of vil14a 2NA5 ; ; NMR solution structure of vitamin B12 conjugates of PYY3-36 1HFG ; ; NMR solution structure of vMIP-II 1-71 from Kaposi's sarcoma-associated herpesvirus (minimized average structure). 2GJI ; ; NMR solution structure of VP9 from White Spot Syndrome Virus 1DSJ ; ; NMR SOLUTION STRUCTURE OF VPR50_75, 20 STRUCTURES 1DSK ; ; NMR SOLUTION STRUCTURE OF VPR59_86, 20 STRUCTURES 6DO6 ; ; NMR solution structure of wild type apo hFABP1 at 308 K 6DO7 ; ; NMR solution structure of wild type hFABP1 with GW7647 6DRG ; ; NMR solution structure of wild type hFABP1 with GW7647 7UNX ; ; NMR solution structure of xanthusin-1 2LIR ; ; NMR Solution Structure of Yeast Iso-1-cytochrome c Mutant P71H in oxidized states 2LIT ; ; NMR Solution Structure of Yeast Iso-1-cytochrome c Mutant P71H in reduced states 6G03 ; ; NMR Solution Structure of yeast TSR2(1-152) 6G04 ; ; NMR Solution Structure of Yeast TSR2(1-152) in Complex with S26A(100-119) 6OWR ; ; NMR solution structure of YfiD 2JN9 ; ; NMR solution structure of YkvR protein from Bacillus subtilis: NESG target SR358 2LDI ; ; NMR solution structure of ZiaAN sub mutant 1NKU ; ; NMR Solution Structure of Zinc-binding protein 3-methyladenine DNA glycosylase I (TAG) 1BX5 ; ; NMR SOLUTION STRUCTURE OF [D(GCGAAT-3'-3'-ALPHAT-5'-5'-CGC)2] 1BWT ; ; NMR SOLUTION STRUCTURE OF [D(GCGAATCGC)2] 2RU2 ; ; NMR solution structure of [G5,T7,S9]-oxytocin 7OS8 ; ; NMR SOLUTION STRUCTURE OF [Pro3,DLeu9]TL 5J3F ; ; NMR solution structure of [Rp, Rp]-PT dsDNA 5J3I ; ; NMR solution structure of [Sp, Sp]-PT dsDNA 7LHC ; ; NMR Solution Structure of [T20K]kalata B1 2HV4 ; ; NMR solution structure refinement of yeast iso-1-ferrocytochrome c 7SXD ; ; NMR solution structure TnC-TnI chimera 2FEB ; ; NMR Solution Structure, Dynamics and Binding Properties of the Kringle IV Type 8 module of apolipoprotein(a) 2JOR ; ; NMR Solution Structure, Stability, and Interaction of the Recombinant Bovine Fibrinogen alphaC-Domain Fragment 2L2U ; ; NMR Solution Structures of +3 (5' staggered) Bistranded Abasic Site Lesions in DNA 2L2V ; ; NMR Solution Structures of -3 (3' staggered) Bistranded Abasic Site Lesions in DNA 2KOR ; ; NMR solution structures of 2-octenoyl-ACP from Streptomyces coelicolor Fatty Acid Synthase 2KGE ; ; NMR Solution Structures of 3,5-dioxohexyl ACP (a triketide mimic) from the actinorhodin polyketide synthase in Streptomyces coelicolor 2KOQ ; ; NMR solution structures of 3-hydroxyoctanoyl-ACP from Streptomyces coelicolor Fatty Acid Synthase 2KGD ; ; NMR Solution Structures of 3-oxo-butyl-ACP, an intermediate mimic from the actinorhodin polyketide synthase in Streptomyces coelicolor 2KOP ; ; NMR solution structures of 3-oxooctanyl-ACP from Streptomyces coelicolor Fatty Acid Synthase 6IY5 ; ; NMR solution structures of 5'-ATTCTATTCT-3 1X2O ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2S ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2U ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2V ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2X ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2Y ; ; NMR Solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X2Z ; ; NMR solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 1X30 ; ; NMR Solution structures of a DNA dodecamer containing a tandem GT mismatches using NOE and residual dipolar couplings 7VCK ; ; NMR solution structures of a hairpin formed by GGCCTG repeats 1I2V ; ; NMR SOLUTION STRUCTURES OF AN ANTIFUNGAL AND ANTIBACTERIAL MUTANT OF HELIOMICIN 1I2U ; ; NMR SOLUTION STRUCTURES OF ANTIFUNGAL HELIOMICIN 2EVN ; ; NMR solution structures of At1g77540 2KG9 ; ; NMR Solution Structures of butyryl-ACP (a non-polar, non pathway intermediate) from the actinorhodin polyketide synthase in Streptomyces coelicolor 7D12 ; ; NMR solution structures of CAG RNA-DB213 binding complex 1G1P ; ; NMR Solution Structures of delta-Conotoxin EVIA from Conus ermineus that Selectively Acts on Vertebrate Neuronal Na+ Channels 1G1Z ; ; NMR Solution Structures of delta-Conotoxin EVIA from Conus ermineus that Selectively Acts on Vertebrate Neuronal Na+ Channels, LEU12-PRO13 Cis isomer 7E4E ; ; NMR solution structures of DNA minidumbbell containing a N1-methyladenine 2MFQ ; ; NMR solution structures of FRS2a PTB domain with neurotrophin receptor TrkB 2KMY ; ; NMR Solution structures of fully oxidised cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 2KGA ; ; NMR Solution Structures of hexanoyl ACP (a non natural intermediate) from the actinorhodin polyketide synthase in Streptomyces coelicolor 2KOO ; ; NMR solution structures of hexanoyl-ACP from the Streptomyces coelicolor Fatty Acid Synthase 2RO1 ; ; NMR Solution Structures of Human KAP1 PHD finger-bromodomain 2KG8 ; ; NMR Solution Structures of malonyl ACP from the actinorhodin polyketide synthase in Streptomyces coelicolor 2KGC ; ; NMR Solution Structures of octanoyl ACP (a non-natural intermediate) from the actinorhodin polyketide synthase in Streptomyces coelicolor 2KOS ; ; NMR solution structures of octanoyl-ACP from Streptomyces coelicolor Fatty Acid Synthase 7XFG ; ; NMR solution structures of p300 TAZ2 domain in complex with BRD4-NUT F1c domain binding motif #1 7XEZ ; ; NMR solution structures of p300 TAZ2 domain in complex with BRD4-NUT F1c domain binding motif #2 6MNL ; ; NMR solution structures of second bromodomain of BRD4 with FOXO3a peptide 7D0X ; ; NMR solution structures of the DNA minidumbbell formed by 5'-mCTTGXmCTTG-3' 7YF7 ; ; NMR solution structures of the DNA minidumbbell formed by two ATTTT repeats 7D0Z ; ; NMR solution structures of the DNA minidumbbell formed by two CCTG repeats at pH 5 7D0Y ; ; NMR solution structures of the DNA minidumbbell formed by two CmCTG repeats at pH 5 1KRI ; ; NMR Solution Structures of the Rhesus Rotavirus VP4 Sialic Acid Binding Domain without Ligand 1HFF ; ; NMR solution structures of the vMIP-II 1-10 peptide from Kaposi's sarcoma-associated herpesvirus. 7KAA ; ; NMR solution structures of tirasemtiv drug bound to a fast skeletal troponin C-troponin I complex 1HFN ; ; NMR solution structures of vMIP-II 1-71 from Kaposi's sarcoma-associated herpesvirus. 1TT3 ; ; NMR soulution structure of omega-conotoxin [K10]MVIIA 2JWM ; ; NMR spatial srtucture of ternary complex kalata B7/Mn2+/DPC micelle 5OB4 ; ; NMR spatial structure of HER2 TM domain dimer in DPC micelles. 2MEU ; ; NMR spatial structure of mutant dimeric TM domain of VEGFR2 receptor 2N2Z ; ; NMR spatial structure of nonspecific lipid transfer protein from the dill Anethum graveolens L. 5MOU ; ; NMR spatial structure of scorpion alpha-like toxin BeM9 2M6A ; ; NMR spatial structure of the antimicrobial peptide Tk-Amp-X2 2MET ; ; NMR spatial structure of the trimeric mutant TM domain of VEGFR2 receptor. 2LQX ; ; NMR spatial structure of the trypsin inhibitor BWI-2c from the buckwheat seeds 5LM0 ; ; NMR spatial structure of Tk-hefu peptide 2L8U ; ; NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1 - UU pair with one hydrogen bond pair 2L8C ; ; NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1 - UU pair with zero hydrogen bond pairs 1XY4 ; ; NMR strcutre of sst1-selective somatostatin (SRIF) analog 1 1XY5 ; ; NMR strcutre of sst1-selective somatostatin (SRIF) analog 1 1XY6 ; ; NMR strcutre of sst1-selective somatostatin (SRIF) analog 1 1XY8 ; ; NMR strcutre of sst1-selective somatostatin (SRIF) analog 1 1XY9 ; ; NMR strcutre of sst1-selective somatostatin (SRIF) analog 1 1G5K ; ; NMR Structrure of d(CCAAAGXACTGGG), X is a 3'-phosphoglycolate, 5'-phosphate gapped lesion, 10 structures 1K64 ; ; NMR Structue of alpha-conotoxin EI 2A2Y ; ; NMR Structue of Sso10b2 from Sulfolobus solfataricus 1ZRY ; ; NMR structural analysis of apo chicken liver bile acid binding protein 2AQC ; ; NMR Structural analysis of archaeal Nop10 2AQA ; ; NMR structural analysis of Nop10p from Saccharomyces cerevisiae 1KC4 ; ; NMR Structural Analysis of the Complex Formed Between alpha-Bungarotoxin and the Principal alpha-Neurotoxin Binding Sequence on the alpha7 Subunit of a Neuronal Nicotinic Acetylcholine Receptor 1KL8 ; ; NMR STRUCTURAL ANALYSIS OF THE COMPLEX FORMED BETWEEN ALPHA-BUNGAROTOXIN AND THE PRINCIPAL ALPHA-NEUROTOXIN BINDING SEQUENCE ON THE ALPHA7 SUBUNIT OF A NEURONAL NICOTINIC ACETYLCHOLINE RECEPTOR 2AWV ; ; NMR Structural Analysis of the dimer of 5MCCTCATCC 6ZDB ; ; NMR structural analysis of yeast Cox13 reveals its C-terminus in interaction with ATP 6BJF ; ; NMR Structural and biophysical functional analysis of intracellular loop 5 of the NHE1 isoform of the Na+/H+ exchanger. 5NDA ; ; NMR Structural Characterisation of Pharmaceutically Relevant Proteins Obtained Through a Novel Recombinant Production: The Case of The Pulmonary Surfactant Polypeptide C Analogue rSP-C33Leu. 1LM2 ; ; NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c7 1ED0 ; ; NMR structural determination of viscotoxin A3 from Viscum album L. 2A9H ; ; NMR structural studies of a potassium channel / charybdotoxin complex 2KY7 ; ; NMR Structural Studies on the Covalent DNA Binding of a Pyrrolobenzodiazepine-Naphthalimide Conjugate 2K3G ; ; NMR structure analysis of a BMP receptor 1TUQ ; ; NMR Structure Analysis of the B-DNA Dodecamer CTCtCACGTGGAG with a tricyclic cytosin base analogue 2NO8 ; ; NMR Structure analysis of the colicin immuntiy protein IM2 1DK6 ; ; NMR structure analysis of the DNA nine base pair duplex D(CATGAGTAC) D(GTAC(NP3)CATG) 2OI3 ; ; NMR Structure Analysis of the Hematopoetic Cell Kinase SH3 Domain complexed with an artificial high affinity ligand (PD1) 2OJ2 ; ; NMR Structure Analysis of the Hematopoetic Cell Kinase SH3 Domain complexed with an artificial high affinity ligand (PD1) 1U62 ; ; NMR structure analysis of the lactoferrin-based peptide FQWQRNIRKVR in complex with lipopolysaccharide 1K8B ; ; NMR Structure Analysis of the N-terminal Domain of Archaeal Translation Initiation Factor 2 Subunit beta 2NZZ ; ; NMR structure analysis of the Penetratin conjugated Gas (374-394) peptide 2O00 ; ; NMR structure analysis of the Penetratin conjugated Gas (374-394) peptide 2MRC ; ; NMR Structure and 1H, 13C and 15N Chemical Shift Assignments for High mobility group protein from Plasmodium falciparum 3D7. 5NR6 ; ; NMR structure and 1H, 13C and 15N signal assignments for Dictyostelium discoidans MATB protein S71A mutant 5NR5 ; ; NMR structure and 1H, 13C and 15N signal assignments for Dictyostelium discoideum MATA protein 2KXT ; ; NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae 2KXV ; ; NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae 5KGQ ; ; NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi 6LUL ; ; NMR structure and dynamics studies of yeast respiratory super-complex factor 2 in micelles 2JRK ; ; NMR Structure and Epitope Mapping of Blo t 5 5XJK ; ; NMR Structure and Localization of a Large Fragment of the SARS-CoV Fusion Protein: Implications in Viral Cell Fusion 2HEM ; ; NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E.coli 50S ribosomal subunit. 1SJ6 ; ; NMR Structure and Regulated Expression in APL Cell of Human SH3BGRL3 5N14 ; ; NMR structure calculation of a composite Cys2His2 type zinc finger protein containing a non-peptide (or oligourea) helical domain 2IH0 ; ; NMR structure determination of a synthetic analogue of the iturinic antibiotic bacillomycin Lc 2JQP ; ; NMR structure determination of Bungatoxin from Bungarus candidus (Malayan Krait) 6NAN ; ; NMR structure determination of Ixolaris and Factor X interaction reveals a noncanonical mechanism of Kunitz inhibition 1WAZ ; ; NMR Structure Determination of the bacterial mercury transporter, MerF, in micelles 2PFU ; ; NMR structure determination of the periplasmic domain of ExbD from E.coli 1QXB ; ; NMR structure determination of the self complementary DNA Dodecamer CGCGAATT*CGCG in which a ribose is inserted between the 3'-OH of T8 and the 5'-phosphate group of C9 1QEY ; ; NMR Structure Determination of the Tetramerization Domain of the MNT Repressor: An Asymmetric A-Helical Assembly in Slow Exchange 1TCP ; ; NMR STRUCTURE DETERMINATION OF TICK ANTICOAGULANT PEPTIDE (TAP) 1WWD ; ; NMR structure determined for MLV NC complex with RNA sequence AACAGU 1WWF ; ; NMR Structure Determined for MLV NC Complex with RNA Sequence CCUCCGU 1WWG ; ; NMR Structure Determined for MLV NC Complex with RNA Sequence UAUCUG 1WWE ; ; NMR Structure Determined for MLV NC complex with RNA Sequence UUUUGCU 2IJY ; ; NMR structure ensemble for the reduced DsbA disulphide oxidoreductase from Vibrio Cholerae 1IYR ; ; NMR Structure Ensemble Of Dff-C Domain 1Y7J ; ; NMR structure family of Human Agouti Signalling Protein (80-132: Q115Y, S124Y) 1Y7K ; ; NMR structure family of Human Agouti Signalling Protein (80-132: Q115Y, S124Y) 2N6H ; ; NMR structure for a 2-stranded parallel beta-sheet 2N6I ; ; NMR structure for a 2-stranded parallel beta-sheet 2N4N ; ; NMR structure for a 3-stranded parallel beta-sheet 1N1K ; ; NMR Structure for d(CCGCGG)2 2LGX ; ; NMR structure for Kindle-2 N-terminus 2K5C ; ; NMR Structure for PF0385 6DVT ; ; NMR structure for Sp1 transcription factor duplex 5'-d(GGGGCGGGA) 6DM7 ; ; NMR structure for Sp1 transcription factor duplex 5'-d(GGGGCGGGG) 6ED9 ; ; NMR structure for Sp1 transcription factor duplex 5'-d(TGGGCGGGA) 6DXM ; ; NMR structure for Sp1 transcription factor duplex 5'-d(TGGGCGGGG) 2H9X ; ; NMR structure for the CgNa toxin from the sea anemone Condylactis gigantea 2L3H ; ; NMR Structure in a Membrane Environment Reveals Putative Amyloidogenic Regions of the SEVI Precursor Peptide PAP248-286 2RN8 ; ; NMR structure note: murine Itk SH3 domain 2M5H ; ; NMR structure note: solution structure of monomeric human FAM96A 1P82 ; ; NMR STRUCTURE OF 1-25 FRAGMENT OF MYCOBACTERIUM TUBERCULOSIS CPN10 1P83 ; ; NMR STRUCTURE OF 1-25 FRAGMENT OF MYCOBACTERIUM TUBERCULOSIS CPN10 2HSK ; ; NMR Structure of 13mer Duplex DNA containing an abasic site (Y) in 5'-CCAAAGYACCGGG-3' (10 structures, alpha anomer) 2HSL ; ; NMR structure of 13mer duplex DNA containing an abasic site, averaged structure (alpha anomer) 1FW7 ; ; NMR STRUCTURE OF 15N-LABELED BARNASE 1PPQ ; ; NMR structure of 16th module of Immune Adherence Receptor, Cr1 (Cd35) 1DVW ; ; NMR structure of 18 residue peptide from merp protein 2LXY ; ; NMR structure of 2-MERCAPTOPHENOL-ALPHA3C 1OLD ; ; NMR STRUCTURE OF 24-MER DEOXYRIBONUCLEIC ACID, 7 STRUCTURES 2FQ5 ; ; NMR structure of 2F associated with lipid disc 2FQ8 ; ; NMR structure of 2F associated with lipid disc 1QWB ; ; NMR structure of 5'-r(GGACACGAAAUCCCGAAGUAGUGUCC)-3' : an RNA hairpin containing the in vitro selected consensus sequence for nucleolin RBD12 1QWA ; ; NMR structure of 5'-r(GGAUGCCUCCCGAGUGCAUCC): an RNA hairpin derived from the mouse 5'ETS that binds nucleolin RBD12. 2JOY ; ; NMR Structure of 50S Ribosomal Protein L14e from Sulfolobus Solfataricus: Northeast Structural Genomics Consortium Target SSR105 1BDZ ; ; NMR STRUCTURE OF A 14 MER EXTENDED C-MYB COGNATE DNA SEQUENCE 5'D(APCPAPAP CPTPGPCP APGPTPTP GPT)3', MINIMIZED AVERAGE STRUCTURE 5A4G ; ; NMR structure of a 180 residue construct encompassing the N-terminal metal-binding site and the membrane proximal domain of SilB from Cupriavidus metallidurans CH34 1LEJ ; ; NMR Structure of a 1:1 Complex of Polyamide (Im-Py-Beta-Im-Beta-Im-Py-Beta-Dp) with the Tridecamer DNA Duplex 5'-CCAAAGAGAAGCG-3' 2JYK ; ; NMR Structure of a 21 bp DNA duplex preferentially cleaved by Human Topoisomerase II 2ADT ; ; NMR structure of a 30 kDa GAAA tetraloop-receptor complex. 1G3F ; ; NMR STRUCTURE OF A 9 RESIDUE PEPTIDE FROM SMAC/DIABLO COMPLEXED TO THE BIR3 DOMAIN OF XIAP 8X1V ; ; NMR structure of a bimolecular parallel G-quadruplex formed by AAGGG repeats from pathogenic RFC1 gene 2MCQ ; ; NMR structure of a BolA-like hypothetical protein RP812 from Rickettsia prowazekii, Seattle structural genomics center for infectious disease (SSGCID) 1T3K ; ; NMR structure of a CDC25-like dual-specificity tyrosine phosphatase of Arabidopsis thaliana 1A60 ; ; NMR STRUCTURE OF A CLASSICAL PSEUDOKNOT: INTERPLAY OF SINGLE-AND DOUBLE-STRANDED RNA, 24 STRUCTURES 1TTV ; ; NMR Structure of a Complex Between MDM2 and a Small Molecule Inhibitor 1ONV ; ; NMR Structure of a Complex Containing the TFIIF Subunit RAP74 and the RNAP II CTD Phosphatase FCP1 2K7L ; ; NMR structure of a complex formed by the C-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 1F5Y ; ; NMR STRUCTURE OF A CONCATEMER OF THE FIRST AND SECOND LIGAND-BINDING MODULES OF THE HUMAN LDL RECEPTOR 1PQQ ; ; NMR Structure of a Cyclic Polyamide-DNA Complex 1S4A ; ; NMR Structure of a D,L alternating decamer of norleucine: double antiparallel beta-helix 1S1O ; ; NMR Structure of a D,L Alternating pentadecamer of norleucine: double antiparallel beta-helix 1R9V ; ; NMR Structure of a D,L-Alternating Dodecamer of Norleucine 2KI0 ; ; NMR Structure of a de novo designed beta alpha beta 7T03 ; ; NMR structure of a designed cold unfolding four helix bundle 1S88 ; ; NMR structure of a DNA duplex with two INA nucleotides inserted opposite each other, dCTCAACXCAAGCT:dAGCTTGXGTTGAG 7ALU ; ; NMR structure of a DNA G-quadruplex containing two SP1 binding sites from HIV-1 promoter 1EKW ; ; NMR STRUCTURE OF A DNA THREE-WAY JUNCTION 2CYU ; ; NMR structure of a downhill folding protein 2N6E ; ; NMR structure of a DUF1491 family protein (CC_1065) from Caulobacter crescentus CB15 2N6A ; ; NMR structure of a human calmodulin/connexin-36 peptide hybrid 2N17 ; ; NMR structure of a Kazal-type serine protease inhibitor from the subterranean termite defense gland of Coptotermes formosanus Shiraki soldiers 2PN9 ; ; NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA modified aptamer 2OOM ; ; NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA/RNA aptamer 2LR6 ; ; NMR structure of a LINE-1 type transposase domain-containing protein 1 (L1TD1) from Homo sapiens 1DNG ; ; NMR STRUCTURE OF A MODEL HYDROPHILIC AMPHIPATHIC HELICAL ACIDIC PEPTIDE 1DJF ; ; NMR STRUCTURE OF A MODEL HYDROPHILIC AMPHIPATHIC HELICAL BASIC PEPTIDE 1DN3 ; ; NMR STRUCTURE OF A MODEL HYDROPHILIC AMPHIPATHIC HELICAL BASIC PEPTIDE 2KBL ; ; NMR Structure of a Monomeric Folding Intermediate Reveals the Structural Basis for Rapid Assembly of an Evolutionary Optimized Trimerization Module 2LPI ; ; NMR structure of a monomeric mutant (A72R) of major ampullate spidroin 1 N-terminal domain 2K0D ; ; NMR structure of a mutant colicin e7 immunity protein im7 with an extended helix III 2RVD ; ; NMR STRUCTURE of A MUTANT OF CHIGNOLIN, CLN025 5I2V ; ; NMR structure of a new G-quadruplex forming sequence within the KRAS proto-oncogene promoter region 2IDN ; ; NMR structure of a new modified Thrombin Binding Aptamer containing a 5'-5' inversion of polarity site 1QU5 ; ; NMR STRUCTURE OF A NEW PHOSPHOTYROSINE BINDING DOMAIN CONTAINING THE FHA2 DOMAIN OF RAD 53 2G9P ; ; NMR structure of a novel antimicrobial peptide, latarcin 2a, from spider (Lachesana tarabaevi) venom 1JUU ; ; NMR Structure of a Parallel Stranded DNA Duplex at Atomic Resolution 1SBU ; ; NMR structure of a peptide containing a dimetylthiazolidine : an analog of delta conotoxin EVIA loop 2 7P5Q ; ; NMR structure of a peptide deriving from SARS-CoV-2 Lineage B.1.1.7 S RBD 482-506 fragment in HFIP/H2O 7P5S ; ; NMR structure of a peptide deriving from SARS-CoV-2 Lineages P.1 and B.1.351 S RBD 482-506 fragment in HFIP/H2O 7P5G ; ; NMR structure of a peptide deriving from SARS-CoV-2 S RBD 482-506 fragment in HFIP/H2O 2MN8 ; ; NMR structure of a peptoid analogue of maculatin G15 containing cis-Nleu at position 13 1TBO ; ; NMR STRUCTURE OF A PROTEIN KINASE C-G PHORBOL-BINDING DOMAIN, 30 STRUCTURES 1TBN ; ; NMR STRUCTURE OF A PROTEIN KINASE C-G PHORBOL-BINDING DOMAIN, MINIMIZED AVERAGE STRUCTURE 1UWD ; ; NMR STRUCTURE OF A PROTEIN WITH UNKNOWN FUNCTION FROM THERMOTOGA MARITIMA (TM0487), WHICH BELONGS TO THE DUF59 FAMILY. 2BJC ; ; NMR structure of a protein-DNA complex of an altered specificity mutant of the lac repressor headpiece that mimics the gal repressor 1PB5 ; ; NMR Structure of a Prototype LNR Module from Human Notch1 2KLA ; ; NMR STRUCTURE OF A PUTATIVE DINITROGENASE (MJ0327) FROM METHANOCOCCUS JANNASCHII 1RDU ; ; NMR STRUCTURE OF A PUTATIVE NIFB PROTEIN FROM THERMOTOGA (TM1290), WHICH BELONGS TO THE DUF35 FAMILY 2MSN ; ; NMR structure of a putative phosphoglycolate phosphatase (NP_346487.1) from Streptococcus pneumoniae TIGR4 2K87 ; ; NMR STRUCTURE OF A PUTATIVE RNA BINDING PROTEIN (SARS1) FROM SARS CORONAVIRUS 1K5I ; ; NMR Structure of a Ribosomal RNA Hairpin Containing a Conserved CUCAA Pentaloop 2N08 ; ; NMR structure of a short hydrophobic 11mer peptide in 25 mM SDS solution 2N09 ; ; NMR structure of a short hydrophobic 11mer peptide in DMSO-d6/H2O (1:3) solution 1L1W ; ; NMR structure of a SRP19 binding domain in human SRP RNA 8CWX ; ; NMR structure of a Stapled Lanthipeptide Natural Product 2MDW ; ; NMR structure of a strand-swapped dimer of the WW domain 1UUI ; ; NMR structure of a synthetic small molecule, rbt158, bound to HIV-1 TAR RNA 1UUD ; ; NMR structure of a synthetic small molecule, rbt203, bound to HIV-1 TAR RNA 1ILO ; ; NMR structure of a thioredoxin, MtH895, from the archeon Methanobacterium thermoautotrophicum strain delta H. 7KW8 ; ; NMR Structure of a tRNA 2'-phosphotransferase from Runella slithyformis 7KW9 ; ; NMR Structure of a tRNA 2'-phosphotransferase from Runella slithyformis in complex with NAD+ 2M88 ; ; NMR structure of a two-domain RNA-binding fragment of Nrd1 2MDF ; ; NMR structure of a two-transmembrane segment TM VI-VII of NHE1 1U6U ; ; NMR structure of a V3 (IIIB isolate) peptide bound to 447-52D, a human HIV-1 neutralizing antibody 1U6V ; ; NMR structure of a V3 (IIIB isolate) peptide bound to 447-52D, a human HIV-1 neutralizing antibody 1NIZ ; ; NMR structure of a V3 (MN isolate) peptide bound to 447-52D, a human HIV-1 neutralizing antibody 1NJ0 ; ; NMR structure of a V3 (MN isolate) peptide bound to 447-52D, a human HIV-1 neutralizing antibody 1SP2 ; ; NMR STRUCTURE OF A ZINC FINGER DOMAIN FROM TRANSCRIPTION FACTOR SP1F2, MINIMIZED AVERAGE STRUCTURE 1SP1 ; ; NMR STRUCTURE OF A ZINC FINGER DOMAIN FROM TRANSCRIPTION FACTOR SP1F3, MINIMIZED AVERAGE STRUCTURE 1XRZ ; ; NMR Structure of a Zinc Finger with Cyclohexanylalanine Substituted for the Central Aromatic Residue 2L7Z ; ; NMR Structure of A13 homedomain 8DHZ ; ; NMR Structure of Ac-hGal(17-30)NH2, an N-terminally acetylated fragment of the C-terminus of human galanin 1OVF ; ; NMR Structure of ActD/5'-CCGTTTTGTGG-3' Complex 2N57 ; ; NMR structure of Acyl carrier protein from Brucella melitensis 2K3Z ; ; NMR structure of adenosine bulged RNA duplex with C:G-A triple 2KH3 ; ; NMR Structure of Aflatoxin Formamidopyrimidine alpha-anomer in duplex DNA 2KPQ ; ; NMR Structure of Agrobacterium tumefaciens protein Atu1219: Northeast Structural Genomics Consortium target AtT14 2Z3S ; ; NMR structure of AgTx2-MTX 2LCR ; ; NMR Structure of Alk1 extracellular domain 1YX3 ; ; NMR structure of Allochromatium vinosum DsrC: Northeast Structural Genomics Consortium target OP4 6OTB ; ; NMR structure of alpha conotoxin SII 1IK8 ; ; NMR structure of Alpha-Bungarotoxin 1IKC ; ; NMR Structure of alpha-Bungarotoxin 2LLR ; ; NMR structure of Alvinellacin 1L4W ; ; NMR structure of an AChR-peptide (Torpedo Californica, alpha-subunit residues 182-202) in complex with alpha-Bungarotoxin 1LJZ ; ; NMR structure of an AChR-peptide (Torpedo Californica, alpha-subunit residues 182-202) in complex with alpha-Bungarotoxin 2LOL ; ; NMR structure of an acyl-carrier protein from Rickettsia prowazekii, Seattle Structural Genomics Center for Infectious Disease (SSGCID) 1OKF ; ; NMR structure of an alpha-L-LNA:RNA hybrid 1TFQ ; ; NMR Structure of an Antagonists of the XIAP-Caspase-9 Interaction Complexed to the BIR3 domain of XIAP 1TFT ; ; NMR Structure of an Antagonists of the XIAP-Caspase-9 Interaction Complexed to the BIR3 domain of XIAP 1JVE ; ; NMR Structure of an AT-Rich DNA with the GAA-Hairpin Loop 1D7T ; ; NMR STRUCTURE OF AN ENGINEERED CONTRYPHAN CYCLIC PEPTIDE (MOTIF CPXXPXC) 5NZ9 ; ; NMR structure of an EphA2-Sam fragment 1EQ1 ; ; NMR STRUCTURE OF AN EXCHANGEABLE APOLIPOPROTEIN-MANDUCA SEXTA APOLIPOPHORIN-III 2M9P ; ; NMR structure of an inhibitor bound dengue NS3 protease 2M9Q ; ; NMR structure of an inhibitor bound dengue NS3 protease 1GN7 ; ; NMR STRUCTURE OF AN INTRAMOLECULAR DNA TRIPLEX CONTAINING AN N7-GLYCOSYLATED GUANINE, 8 STRUCTURES 2G2K ; ; NMR structure of an N-terminal fragment of the eukaryotic initiation factor 5 (eIF5) 2MYQ ; ; NMR structure of an Odin-Sam1 fragment 6F7O ; ; NMR structure of an Odin-Sam1 stapled peptide 1G5D ; ; NMR STRUCTURE OF AN OLIGONUCLEOTIDE CONTAINING AN ABASIC SITE: ALPHA ANOMER 1GIZ ; ; NMR STRUCTURE OF AN OLIGONUCLEOTIDE CONTAINING AN ABASIC SITE: ALPHA ANOMER 1G5E ; ; NMR STRUCTURE OF AN OLIGONUCLEOTIDE CONTAINING AN ABASIC SITE: BETA ANOMER 1GJ0 ; ; NMR STRUCTURE OF AN OLIGONUCLEOTIDE CONTAINING AN ABASIC SITE: BETA ANOMER 7BEV ; ; NMR structure of an optimized version of the first TPR domain of the human SPAG1 protein 2K6H ; ; NMR structure of an unusually 28 kDa Active Mutant of Maize Ribosome-Inactivating protein (MOD) 2LMT ; ; NMR structure of Androcam 7N21 ; ; NMR structure of AnIB-OH 7N22 ; ; NMR structure of AnIB[Y(SO3)16Y]-NH2 7N23 ; ; NMR structure of AnIB[Y(SO3)16Y]-OH 2JPO ; ; NMR structure of Antheraea polyphemus pheromone-binding protein 1 at pH 4.5 2M1F ; ; NMR Structure of Antiamoebin I (peptaibol antibiotic) bound to DMPC/DHPC bicelles 2NY8 ; ; NMR structure of antibacterial defensin DEF-AAA from the insect anopheles gambiae 5IX5 ; ; NMR structure of antibacterial factor-2 1OZZ ; ; NMR structure of antifungal defensin ARD1 from Archaeoprepona demophon 1XKM ; ; NMR structure of antimicrobial peptide distinctin in water 1ZO0 ; ; NMR structure of antizyme isoform 1 from rat 1LKJ ; ; NMR Structure of Apo Calmodulin from Yeast Saccharomyces cerevisiae 1ILF ; ; NMR STRUCTURE OF APO CBFB 1B4M ; ; NMR STRUCTURE OF APO CELLULAR RETINOL-BINDING PROTEIN II, 24 STRUCTURES 1AEL ; ; NMR STRUCTURE OF APO INTESTINAL FATTY ACID-BINDING PROTEIN, 20 STRUCTURES 5T43 ; ; NMR Structure of Apo-form Human Tear Lipocalin 5TGW ; ; NMR structure of apo-PS1 2MZZ ; ; NMR structure of APOBEC3G NTD variant, sNTD 1LS4 ; ; NMR structure of apolipophorin-III from Locusta migratoria 1SOU ; ; NMR structure of Aquifex aeolicus 5,10-methenyltetrahydrofolate synthetase: Northeast Structural Genomics Consortium Target QR46 1GAC ; ; NMR structure of asymmetric homodimer of a82846b, a glycopeptide antibiotic, complexed with its cell wall pentapeptide fragment 2LI5 ; ; NMR structure of Atg8-Atg7C30 complex 2KPH ; ; NMR Structure of AtraPBP1 at pH 4.5 6GS9 ; ; NMR structure of aurein 2.5 in SDS micelles 2MLI ; ; NMR structure of B25-(alpha, beta)-dehydro-phenylalanine insulin 2MPB ; ; NMR structure of BA42 protein from the psychrophilic bacteria Bizionia argentinensis sp. nov 2LT2 ; ; NMR structure of BA42 protein from the psychrophilic bacteria Bizionia argentinensis sp. nov. 2HEQ ; ; NMR Structure of Bacillus subtilis protein YorP, Northeast Structural Genomics Target SR399. 2DSM ; ; NMR Structure of Bacillus Subtilis Protein YqaI, Northeast Structural Genomics Target SR450 2HJQ ; ; NMR Structure of Bacillus Subtilis Protein YqbF, Northeast Structural Genomics Target SR449 1T8J ; ; NMR Structure of BBA5, A Compact, Independently Folded BBA Motif 6QS0 ; ; NMR structure of BB_A03, Borrelia burgdorferi outer surface lipoprotein 6QBI ; ; NMR structure of BB_P28, Borrelia burgdorferi outer surface lipoprotein 2LCU ; ; NMR structure of BC28.1 2LPC ; ; NMR STRUCTURE of Bcl-XL 1LXL ; ; NMR STRUCTURE OF BCL-XL, AN INHIBITOR OF PROGRAMMED CELL DEATH, MINIMIZED AVERAGE STRUCTURE 2M98 ; ; NMR Structure of BeF3 Activated Sma0114 2MDV ; ; NMR structure of beta alpha alpha 38 7LGV ; ; NMR structure of Beta-KTx14.3 6QBL ; ; NMR Structure of Big-defensin 1 from oyster Crassostrea gigas 6QBK ; ; NMR Structure of Big-defensin 1 [44-93] from oyster Crassostrea gigas 8BGK ; ; NMR Structure of Big-defensin 5 from oyster Crassostrea gigas 6UF2 ; ; NMR structure of biofilm-related Se0862 from Synechococcus elongatus 2J5D ; ; NMR structure of BNIP3 transmembrane domain in lipid bicelles 1HKO ; ; NMR structure of bovine cytochrome b5 1JV8 ; ; NMR Structure of BPTI Mutant G37A 1JV9 ; ; NMR Structure of BPTI Mutant G37A 6OQ2 ; ; NMR Structure of Branched K11/K48-Linked Tri-Ubiquitin 1BI6 ; ; NMR STRUCTURE OF BROMELAIN INHIBITOR VI FROM PINEAPPLE STEM 2MFZ ; ; NMR structure of C-terminal domain from A. ventricosus minor ampullate spidroin (MiSp) 2J8P ; ; NMR structure of C-terminal domain of human CstF-64 6V1W ; ; NMR Structure of C-terminal Domain of phi29 ATPase 1RQS ; ; NMR structure of C-terminal domain of ribosomal protein L7 from E.coli 1XWE ; ; NMR Structure of C345C (NTR) domain of C5 of complement 2M28 ; ; NMR structure of Ca2+ bound CaBP4 C-domain 2M29 ; ; NMR structure of Ca2+ bound CaBP4 N-domain 2K7D ; ; NMR Structure of Ca2+-bound CaBP1 C-domain 2LAP ; ; NMR structure of Ca2+-bound CaBP1 C-domain with RDC 2LAN ; ; NMR structure of Ca2+-bound CaBP1 N-domain with RDC 1AWY ; ; NMR STRUCTURE OF CALCIUM BOUND CONFORMER OF CONANTOKIN G, MINIMIZED AVERAGE STRUCTURE 1CFI ; ; NMR STRUCTURE OF CALCIUM ION-BOUND GAMMA-CARBOXY-GLUTAMIC ACID-RICH DOMAIN OF FACTOR IX 2LCP ; ; NMR structure of calcium loaded, un-myristoylated human NCS-1 2K60 ; ; NMR structure of calcium-loaded STIM1 EF-SAM 2L5Y ; ; NMR structure of calcium-loaded STIM2 EF-SAM. 8DGH ; ; NMR Structure of calmodulin bound to C-terminal site in the beta-subunit of cyclic nucleotide-gated channel 8DGK ; ; NMR structure of calmodulin bound to N-terminal site in the beta-subunit of cyclic nucleotide-gated channel 1YX8 ; ; NMR structure of Calsensin, 20 low energy structures. 1YX7 ; ; NMR structure of Calsensin, energy minimized average structure. 2LUS ; ; NMR structure of Carcinoscorpius rotundicauda thioredoxin related protein 16 and its role in regulating transcription factor NF-kB activity 2NPL ; ; NMR Structure of CARD d2 Domain 1FFJ ; ; NMR STRUCTURE OF CARDIOTOXIN IN DPC-MICELLE 6FS5 ; ; NMR structure of Casocidin-I antimicrobial peptide in 60% TFE 6FS4 ; ; NMR structure of Casocidin-II antimicrobial peptide in 60% TFE 2HGO ; ; NMR structure of Cassiicolin 2WC2 ; ; Nmr structure of catabolite activator protein in the unliganded state 1JSP ; ; NMR Structure of CBP Bromodomain in complex with p53 peptide 1R8U ; ; NMR structure of CBP TAZ1/CITED2 complex 2KJE ; ; NMR structure of CBP TAZ2 and adenoviral E1A complex 2M6U ; ; NMR Structure of CbpAN from Streptococcus pneumoniae 2AVG ; ; NMR structure of cC1 domain from Human Cardiac Myosin Binding Protein C 2RLP ; ; NMR structure of CCP modules 1-2 of complement factor H 2RLQ ; ; NMR structure of CCP modules 2-3 of complement factor H 2N5R ; ; NMR structure of cFLIP-derived calmodulin binding peptide 2GJH ; ; NMR Structure of CFr (C-terminal fragment of computationally designed novel-topology protein Top7) 2JSS ; ; NMR structure of chaperone Chz1 complexed with histone H2A.Z-H2B 2LG5 ; ; NMR structure of Chicken AvBD2 defensin 2LG6 ; ; NMR structure of chicken AvBD2-K31A mutant 5LCS ; ; NMR structure of Chicken AvBD7 defensin 6R2X ; ; NMR structure of Chromogranin A (F39-D63) 2KNZ ; ; NMR structure of CIP75 UBA domain 2JN3 ; ; NMR structure of cl-BABP complexed to chenodeoxycholic acid 2LFO ; ; NMR structure of cl-BABP/SS complexed with glycochenodeoxycholic and glycocholic acids 2JOV ; ; NMR Structure of Clostridium Perfringens Protein CPE0013. Northeast Structural Genomics Target CpR31. 2N71 ; ; NMR structure of CmPI-II, a serin protease inhibitor isolated from mollusk Cenchitis muricatus 5O6F ; ; NMR structure of cold shock protein A from Corynebacterium pseudotuberculosis 1DFY ; ; NMR STRUCTURE OF CONTRYPHAN-SM CYCLIC PEPTIDE (MAJOR FORM-CIS) 1DFZ ; ; NMR STRUCTURE OF CONTRYPHAN-SM CYCLIC PEPTIDE (MINOR FORM-TRANS) 2MN5 ; ; NMR structure of Copsin 1S4J ; ; NMR structure of cross-reactive peptides from Homo sapiens 1S4H ; ; NMR structure of cross-reactive peptides from L. braziliensis 7TA8 ; ; NMR structure of crosslinked cyclophilin A 2MWT ; ; NMR structure of crotalicidin in DPC micelles 7SUP ; ; NMR structure of cTnC-TnI chimera bound to calcium and A1 7SVC ; ; NMR structure of cTnC-TnI chimera bound to calcium and A2 1I02 ; ; NMR STRUCTURE OF CTX A3 AT NEUTRAL PH (20 STRUCTURES) 1RJT ; ; NMR Structure of CXC Chemokine CXCL11/ITAC 1EVA ; ; NMR structure of cyanobacterial toxin, phosphatase-1/-2A inhibitor 1EVB ; ; NMR structure of cyanobacterial toxin, phosphatase-1/-2A inhibitor 1EVC ; ; NMR structure of CYANOBACTERIAL TOXIN, PHOSPHATASE-1/-2A INHIBITOR 1EVD ; ; NMR structure of CYANOBACTERIAL TOXIN, PHOSPHATASE-1/-2A INHIBITOR 1H9C ; ; NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,N'-diacetylchitobiose specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. 6RC7 ; ; NMR structure of cytotoxin 3 from Naja kaouthia in solution, major form 1GJ1 ; ; NMR structure of d(CCAAAGXACTGGG), X is a 3'phosphoglycolate, 5'phosphate gapped lesion 1N0O ; ; NMR Structure of d(CCAAGGXCTTGGG), X is a 3'-phosphoglycolate, 5'-phosphate gapped lesion, 10 structures 1SKP ; ; NMR STRUCTURE OF D(GCATATGATAG)(DOT)D(CTATCATATGC): A CONSENSUS SEQUENCE FOR PROMOTERS RECOGNIZED BY SIGMA-K RNA POLYMERASE, 4 STRUCTURES 1EKH ; ; NMR STRUCTURE OF D(TTGGCCAA)2 BOUND TO CHROMOMYCIN-A3 AND COBALT 1HOD ; ; NMR STRUCTURE OF D130I MUTANT T3-I2, A 32 RESIDUE PEPTIDE FROM THE ALPHA 2A ADRENERGIC RECEPTOR 7A05 ; ; NMR structure of D3-D4 domains of Vibrio vulnificus ribosomal protein S1 2E4E ; ; NMR structure of D4P/K7G mutant of GPM12 6MK8 ; ; NMR structure of Database designed and improved anti-Staphylococcal peptide DFT503 bound to micelles 2NY9 ; ; NMR structure of DEF-ABB, a mutant of anopheles defensin DEF-AAA 2NZ3 ; ; NMR structure of DEF-AcAA, a mutant of anopheles defensin DEF-AAA 2E3F ; ; NMR structure of DEF-BAT, a mutant of anopheles defensin DEF-AAA 2E3E ; ; NMR structure of DEF-BBB, a mutant of anopheles defensin DEF-AAA 2E3G ; ; NMR structure of DEF-DAA, a mutant of anopheles defensin DEF-AAA 2KAM ; ; NMR structure of delta-toxin from Staphylococcus aureus in CD3OH 2RT4 ; ; NMR Structure of designed protein, AF.2A1, (Ensembles) 1UAO ; ; NMR Structure of designed protein, Chignolin, consisting of only ten amino acids (Ensembles) 1DG0 ; ; NMR STRUCTURE OF DES[GLY1]-CONTRYPHAN-R CYCLIC PEPTIDE (MAJOR FORM) 1KOY ; ; NMR structure of DFF-C domain 1IBX ; ; NMR STRUCTURE OF DFF40 AND DFF45 N-TERMINAL DOMAIN COMPLEX 1RQT ; ; NMR structure of dimeric N-terminal domain of ribosomal protein L7 from E.coli 2W1O ; ; NMR structure of dimerization domain of human ribosomal protein P2 1CP8 ; ; NMR STRUCTURE OF DNA (5'-D(TTGGCCAA)2-3') COMPLEXED WITH NOVEL ANTITUMOR DRUG UCH9 1TQR ; ; NMR Structure of DNA 17-mer GGAAAATCTCTAGCAGT corresponding to the extremity of the U5 LTR of the HIV-1 genome 2MCI ; ; NMR structure of DNA duplex 1K9H ; ; NMR structure of DNA TGTGAGCGCTCACA 1S6N ; ; NMR Structure of Domain III of the West Nile Virus Envelope Protein, Strain 385-99 2LJH ; ; NMR structure of Double-stranded RNA-specific editase Adar 2DX3 ; ; NMR structure of DP5_conformation1: monomeric alpha-helix 2DX4 ; ; NMR structure of DP5_conformation2: monomeric beta-hairpin 2JUL ; ; NMR Structure of DREAM 2LSZ ; ; NMR structure of duplex DNA containing the alpha-OH-PdG dA base pair: A mutagenic intermediate of acrolein 2LT0 ; ; NMR structure of duplex DNA containing the beta-OH-PdG dA base pair: A mutagenic intermediate of acrolein 1N0K ; ; NMR Structure of duplex DNA d(CCAAGGXCTTGGG), X is a 3' phosphoglycolate, 5'phosphate gapped lesion 1ZGW ; ; NMR structure of E. Coli Ada protein in complex with DNA 2MII ; ; NMR structure of E. coli LpoB 2M4Q ; ; NMR structure of E. coli ribosomela decoding site with apramycin 2MLY ; ; NMR structure of E. coli Trigger Factor in complex with unfolded PhoA1-150 2MLX ; ; NMR structure of E. coli Trigger Factor in complex with unfolded PhoA220-310 2MLZ ; ; NMR structure of E. coli Trigger Factor in complex with unfolded PhoA365-471 2JOE ; ; NMR Structure of E. Coli YehR Protein. Northeast Structural Genomics Target ER538. 2HTJ ; ; NMR structure of E.coli PapI 2JNE ; ; NMR structure of E.coli YfgJ modelled with two Zn+2 bound. Northeast Structural Genomics Consortium Target ER317. 2RLJ ; ; NMR Structure of Ebola fusion peptide in SDS micelles at pH 7 2RVH ; ; NMR structure of eIF1 5H7U ; ; NMR structure of eIF3 36-163 2MBH ; ; NMR structure of EKLF(22-40)/Ubiquitin Complex 2JMS ; ; NMR Structure of En-6 pheromone from the Antarctic Ciliate Euplotes nobilii 5L82 ; ; NMR Structure of Enterocin K1 in 50%/50% TFE/Water 1TVM ; ; NMR structure of enzyme GatB of the galactitol-specific phosphoenolpyruvate-dependent phosphotransferase system 6F7M ; ; NMR structure of EphA2-Sam stapled peptides (S13ST) 6F7N ; ; NMR structure of EphA2-Sam stapled peptides (S13STshort) 7N25 ; ; NMR structure of EpI-OH 7N26 ; ; NMR structure of EpI-[Y(SO3)15Y]-NH2 2RVJ ; ; NMR structure of Epithelial splicing regulatory protein 1 7N0T ; ; NMR structure of EpI[Y(SO)315Y]-OH 1G7D ; ; NMR STRUCTURE OF ERP29 C-DOMAIN 2KXX ; ; NMR Structure of Escherichia coli BamE, a Lipoprotein Component of the beta-Barrel Assembly Machinery Complex 3GRX ; ; NMR STRUCTURE OF ESCHERICHIA COLI GLUTAREDOXIN 3-GLUTATHIONE MIXED DISULFIDE COMPLEX, 20 STRUCTURES 1P0A ; ; NMR structure of ETD135, mutant of the antifungal defensin ARD1 from Archaeoprepona demophon 1P00 ; ; NMR structure of ETD151, mutant of the antifungal defensin ARD1 from Archaeoprepona demophon 5J8T ; ; NMR structure of Excalibur domain of CbpL 1MOT ; ; NMR Structure Of Extended Second Transmembrane Domain Of Glycine Receptor alpha1 Subunit in SDS Micelles 2KD2 ; ; NMR Structure of FAIM-CTD 1W7D ; ; NMR Structure of Fasciclin-Like Protein From Rhodobacter sphaeroides 2N4U ; ; NMR structure of Fbp28 WW domain E454Y mutant 2N4R ; ; NMR structure of Fbp28 WW domain L453D mutant 2N4S ; ; NMR structure of Fbp28 WW domain L453E mutant 2N4T ; ; NMR structure of Fbp28 WW domain L453W mutant 2N4V ; ; NMR structure of Fbp28 WW domain T456D mutant 2N4W ; ; NMR structure of Fbp28 WW domain T456Y mutant 2MWF ; ; NMR structure of FBP28 WW2 mutant Y438R DN 2MWD ; ; NMR structure of FBP28 WW2 mutant Y438R DNDC 2MWE ; ; NMR structure of FBP28 WW2 mutant Y438R, L453A DNDC 2MWA ; ; NMR structure of FBP28 WW2 mutant Y446L 2MW9 ; ; NMR structure of FBP28 WW2 Y438R mutant 2K4Y ; ; NMR Structure of FeoA-like protein from Clostridium acetobutylicum: Northeast Structural Genomics Consortium Target CaR178 2RSE ; ; NMR structure of FKBP12-mTOR FRB domain-rapamycin complex structure determined based on PCS 7A0O ; ; NMR structure of flagelliform spidroin (FlagSp) N-terminal domain from Trichonephila clavipes at pH 5.5 7A0I ; ; NMR structure of flagelliform spidroin (FlagSp) N-terminal domain from Trichonephila clavipes at pH 7.2 1VDB ; ; NMR structure of FMBP-1 tandem repeat 1 in 30%(v/v) TFE solution 1WNM ; ; NMR structure of FMBP-1 tandem repeat 2 in 30%(v/v) TFE solution 1WNK ; ; NMR Structure of FMBP-1 Tandem repeat 3 in 30%(V/V) TFE solution 1WNN ; ; NMR structure of fmbp-1 tandem repeat 4 in 30%(v/v) TFE solution 5JYT ; ; NMR structure of foldswitch-stablized KaiB from Thermosynechococcus elongatus 5JYV ; ; NMR structure of foldswitch-stablized KaiB in complex with pseudo receiver domain of CikA from Thermosynechococcus elongatus 2LQH ; ; NMR structure of FOXO3a transactivation domains (CR2C-CR3) in complex with CBP KIX domain (2b3l conformation) 2LQI ; ; NMR structure of FOXO3a transactivation domains (CR2C-CR3) in complex with CBP KIX domain (2l3b conformation) 2KFQ ; ; NMR Structure of FP1 2KJ8 ; ; NMR structure of fragment 87-196 from the putative phage integrase IntS of E. coli: Northeast Structural Genomics Consortium target ER652A, PSI-2 2L7B ; ; NMR Structure of full length apoE3 2KAL ; ; NMR structure of fully methylated GATC site 2L4Z ; ; NMR structure of fusion of CtIP (641-685) to LMO4-LIM1 (18-82) 1XOO ; ; NMR structure of G1S mutant of influenza hemagglutinin fusion peptide in DPC micelles at pH 5 1XOP ; ; NMR structure of G1V mutant of influenza hemagglutinin fusion peptide in DPC micelles at pH 5 2KAJ ; ; NMR structure of gallium substituted ferredoxin 2ABO ; ; NMR structure of gamma herpesvirus 68 a viral Bcl-2 homolog 7M2M ; ; NMR Structure of GCAP5 1TM9 ; ; NMR Structure of gene target number gi3844938 from Mycoplasma genitalium: Berkeley Structural Genomics Center 7NRN ; ; NMR structure of GIPC1-GH2 domain 1IYY ; ; NMR STRUCTURE OF Gln25-RIBONUCLEASE T1, 24 STRUCTURES 1ID8 ; ; NMR STRUCTURE OF GLUTAMATE MUTASE (B12-BINDING SUBUNIT) COMPLEXED WITH THE VITAMIN B12 NUCLEOTIDE 1EGS ; ; NMR STRUCTURE OF GROES MOBILE LOOP RESIDUES 19-27 IN THE SYNTHETIC PEPTIDE (RESIDUES 13-32) BOUND TO GROEL, 20 STRUCTURES 1X0N ; ; NMR structure of growth factor receptor binding protein SH2 domain complexed with the inhibitor 2NA0 ; ; NMR structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) mutant V77E in a Ca2+-free/Mg2+-bound Activator State 2L2F ; ; NMR Structure of GzCVNH (Gibberella zeae CVNH) 2KP5 ; ; NMR structure of Hahellin, a beta-gamma crystallin 7L8V ; ; NMR Structure of half-calcified calmodulin mutant (CaMEF12) bound to the IQ-motif of CaV1.2 2ITH ; ; NMR Structure of Haloferax volcanii DHFR 1IDV ; ; NMR structure of HCV ires RNA domain IIIC 2LVG ; ; NMR structure of HCV Non-structural protein AB, NS4B(1-40) 2KYZ ; ; NMR structure of heavy metal binding protein TM0320 from Thermotoga maritima 1X93 ; ; NMR Structure of Helicobacter pylori HP0222 2K1O ; ; NMR Structure of Helicobacter pylori JHP0511 (HP0564). 1NBL ; ; NMR Structure of Hellethionin D 1IBN ; ; NMR STRUCTURE OF HEMAGGLUTININ FUSION PEPTIDE IN DPC MICELLES AT PH 5 1IBO ; ; NMR STRUCTURE OF HEMAGGLUTININ FUSION PEPTIDE IN DPC MICELLES AT PH 7.4 1OQ2 ; ; NMR structure of hemimethylated GATC site 1UAB ; ; NMR structure of hemimethylated GATC site 2MJK ; ; Nmr structure of hen egg beta-defensin gallin (chicken ovo-defensin) 1B9P ; ; NMR STRUCTURE OF HEPARIN BINDING SITE OF NON COLLAGENOUS DOMAIN I (NC1) OF COLLAGEN FACIT XIV 1B9Q ; ; NMR STRUCTURE OF HEPARIN BINDING SITE OF NON COLLAGENOUS DOMAIN I (NC1) OF COLLAGEN FACIT XIV 2K1Q ; ; NMR structure of hepatitis c virus ns3 serine protease complexed with the non-covalently bound phenethylamide inhibitor 2K40 ; ; NMR structure of HESX-1 homeodomain double mutant R31L/E42L 2KMZ ; ; NMR Structure of hFn14 1XAX ; ; NMR structure of HI0004, a putative essential gene product from Haemophilus influenzae 1JEM ; ; NMR STRUCTURE OF HISTIDINE PHOSPHORYLATED FORM OF THE PHOSPHOCARRIER HISTIDINE CONTAINING PROTEIN FROM BACILLUS SUBTILIS, NMR, 25 STRUCTURES 1LB0 ; ; NMR Structure of HIV-1 gp41 659-671 13-mer peptide 1LCX ; ; NMR structure of HIV-1 gp41 659-671 13mer peptide 2LIW ; ; NMR structure of HMG-ACPI domain from CurA module from Lyngbya majuscula 1MTG ; ; NMR Structure of HO2-Co(III)bleomycin A(2) bound to d(GAGCTC)(2) 1MXK ; ; NMR Structure of HO2-Co(III)bleomycin A(2) Bound to d(GGAAGCTTCC)(2) 1EII ; ; NMR STRUCTURE OF HOLO CELLULAR RETINOL-BINDING PROTEIN II 8A7Z ; ; NMR structure of holo-acp 8AIG ; ; NMR structure of holo-acp 8ALL ; ; NMR structure of holo-acp 2LIU ; ; NMR structure of holo-ACPI domain from CurA module from Lyngbya majuscula 5TGY ; ; NMR structure of holo-PS1 6WPO ; ; NMR Structure of HSP-4 antimicrobial peptide in presence of DPC-d38 micelles 6WPD ; ; NMR Structure of HSP1-NH2 antimicrobial peptide in presence of DPC-d38 micelles 6WPB ; ; NMR Structure of HSP1-NH2 antimicrobial peptide in presence of SDS-d25 micelles 2LJL ; ; NMR structure of Hsp12 in the presence of DPC 4AXP ; ; NMR structure of Hsp12, a protein induced by and required for dietary restriction-induced lifespan extension in yeast. 7P55 ; ; NMR structure of human ACE2 21-42 fragment in HFIP/water 50/50 v/v 2KHT ; ; NMR Structure of human alpha defensin HNP-1 5KI0 ; ; NMR structure of human antimicrobial peptide KAMP-19 1I5J ; ; NMR STRUCTURE OF HUMAN APOLIPOPROTEIN C-II IN THE PRESENCE OF SDS 2PRU ; ; NMR Structure of Human apoS100B at 10C 1IOX ; ; NMR Structure of human Betacellulin-2 1IP0 ; ; NMR STRUCTURE OF HUMAN BETACELLULIN-2 1WNJ ; ; NMR structure of human coactosin-like protein 1Q8G ; ; NMR structure of human Cofilin 1Q8X ; ; NMR structure of human cofilin 2NAN ; ; NMR structure of human DCL-1 (CD302) extracellular domain 1IMO ; ; NMR STRUCTURE OF HUMAN DNA LIGASE IIIALPHA BRCT DOMAIN 1IN1 ; ; NMR STRUCTURE OF HUMAN DNA LIGASE IIIALPHA BRCT DOMAIN 1K36 ; ; NMR Structure of human Epiregulin 1K37 ; ; NMR Structure of human Epiregulin 1TEY ; ; NMR structure of human histone chaperone, ASF1A 2HIU ; ; NMR STRUCTURE OF HUMAN INSULIN IN 20% ACETIC ACID, ZINC-FREE, 10 STRUCTURES 2JV1 ; ; NMR structure of human insulin monomer in 35% CD3CN zinc free, 50 structures 2KJU ; ; NMR structure of human insulin mutant glu-b21-d-glu, his-b10 asp pro-b28-lys, lys-b29-pro, 20 structures 2L1Y ; ; NMR Structure of human insulin mutant GLY-B20-D-ALA, GLY-B23-D-ALA PRO-B28-LYS, LYS-B29-PRO, 20 Structures 2L1Z ; ; NMR Structure of human insulin mutant GLY-B20-D-ALA, GLY-B23-D-ALA PRO-B28-LYS, LYS-B29-PRO, 20 Structures 2KQQ ; ; NMR structure of human insulin mutant gly-b8-d-ala, his-b10-asp, pro-b28-lys, lys-b29-pro, 20 structures 2HH4 ; ; NMR structure of human insulin mutant GLY-B8-D-SER, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures 2HHO ; ; NMR structure of human insulin mutant GLY-B8-SER, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures 2JMN ; ; NMR structure of human insulin mutant His-B10-Asp, Pro-B28-Lys, Lys-B29-Pro, 20 structures 1T1Q ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT HIS-B10-ASP, VAL-B12-ABA, PRO-B28-LYS, LYS-B29-PRO, 15 STRUCTURES 1T1K ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT HIS-B10-ASP, VAL-B12-ALA, PRO-B28-LYS, LYS-B29-PRO, 15 STRUCTURES 1T1P ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT HIS-B10-ASP, VAL-B12-THR, PRO-B28-LYS, LYS-B29-PRO, 15 STRUCTURES 2H67 ; ; NMR structure of human insulin mutant HIS-B5-ALA, HIS-B10-ASP PRO-B28-LYS, LYS-B29-PRO, 20 structures 1K3M ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT ILE-A2-ALA, HIS-B10-ASP, PRO-B28-LYS, LYS-B29-PRO, 15 STRUCTURES 1KMF ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT ILE-A2-ALLO-ILE, HIS-B10-ASP, PRO-B28-LYS, LYS-B29-PRO, 15 STRUCTURES 1LKQ ; ; NMR STRUCTURE OF HUMAN INSULIN MUTANT ILE-A2-GLY, VAL-A3-GLY, HIS-B10-ASP, PRO-B28-LYS, LYS-B29-PRO, 20 STRUCTURES 1SF1 ; ; NMR STRUCTURE OF HUMAN INSULIN under Amyloidogenic Condition, 15 STRUCTURES 2K21 ; ; NMR structure of human KCNE1 in LMPG micelles at pH 6.0 and 40 degree C 8K6Z ; ; NMR structure of human leptin 2MHS ; ; NMR Structure of human Mcl-1 1B50 ; ; NMR STRUCTURE OF HUMAN MIP-1A D26A, 10 STRUCTURES 1B53 ; ; NMR STRUCTURE OF HUMAN MIP-1A D26A, MINIMIZED AVERAGE STRUCTURE 1EQ3 ; ; NMR STRUCTURE OF HUMAN PARVULIN HPAR14 2M65 ; ; NMR structure of human restriction factor APOBEC3A 2BZE ; ; NMR Structure of human RTF1 PLUS3 domain. 2JXD ; ; NMR structure of human Serine protease inhibitor Kazal type II (SPINK2) 2MD7 ; ; NMR structure of human Sp140 PHD finger trans conformer 4BS2 ; ; NMR structure of human TDP-43 tandem RRMs in complex with UG-rich RNA 2KXN ; ; NMR structure of human Tra2beta1 RRM in complex with AAGAAC RNA 1Y32 ; ; NMR structure of humanin in 30% TFE solution 2FQH ; ; NMR structure of hypothetical protein TA0938 from Termoplasma acidophilum 2LBQ ; ; NMR structure of i6A37_tyrASL 1JJS ; ; NMR Structure of IBiD, A Domain of CBP/p300 2N78 ; ; NMR structure of IF1 from Pseudomonas aeruginosa 2LQR ; ; NMR structure of Ig3 domain of palladin 2JT9 ; ; NMR structure of immunosuppressory peptide containing cyclolinopeptide X and antennapedia(43-58) sequences 2JTA ; ; NMR structure of immunosuppressory ubiquitin fragment is similar to related ubiquitin region. 2DCI ; ; NMR structure of influenza HA fusion peptide mutant W14A in DPC in pH5 2KJ9 ; ; NMR structure of IntB phage-integrase-like protein fragment 90-199 from Erwinia carotova subsp. atroseptica: Northeast Structural Genomics Consortium target EwR217E 1GA3 ; ; NMR STRUCTURE OF INTERLEUKIN-13 1URE ; ; NMR STRUCTURE OF INTESTINAL FATTY ACID-BINDING PROTEIN COMPLEXED WITH PALMITATE, 20 STRUCTURES 1C89 ; ; NMR STRUCTURE OF INTRAMOLECULAR DIMER ANTIFREEZE PROTEIN RD3, 40 SA STRUCTURES 1C8A ; ; NMR STRUCTURE OF INTRAMOLECULAR DIMER ANTIFREEZE PROTEIN RD3, 40 SA STRUCTURES 2JTU ; ; NMR structure of iota-RXIA(38) 5ZFO ; ; NMR structure of IRD12 from Capsicum annum. 2MNY ; ; NMR Structure of KDM5B PHD1 finger 2MNZ ; ; NMR Structure of KDM5B PHD1 finger in complex with H3K4me0(1-10aa) 1F53 ; ; NMR STRUCTURE OF KILLER TOXIN-LIKE PROTEIN SKLP 1MZK ; ; NMR structure of kinase-interacting FHA domain of kinase associated protein phosphatase, KAPP in Arabidopsis 2MSU ; ; NMR structure of Kindlin-2 F2 339-358 5Y70 ; ; NMR structure of KMP11 in DPC micelle 2N5G ; ; NMR structure of KorA, a plasmid-encoded, global transcription regulator KorA 2NA3 ; ; NMR Structure of KR-12: A minimalized domain derived from the human cathelicidin LL-37 6T51 ; ; NMR structure of KRAS22RT G-quadruplex forming within KRAS promoter region at physological temperature 6T2G ; ; NMR structure of KRAS32R G25T conformer G-quadruplex within KRAS promoter region 6SUU ; ; NMR structure of KRAS32R G9T conformer G-quadruplex within KRAS promoter region 2NCU ; ; NMR structure of KYE21 in LPS micelles 1FOX ; ; NMR STRUCTURE OF L11-C76, THE C-TERMINAL DOMAIN OF 50S RIBOSOMAL PROTEIN L11, 33 STRUCTURES 1FOW ; ; NMR STRUCTURE OF L11-C76, THE C-TERMINAL DOMAIN OF 50S RIBOSOMAL PROTEIN L11, MINIMIZED AVERAGE STRUCTURE 1ZL8 ; ; NMR structure of L27 heterodimer from C. elegans Lin-7 and H. sapiens Lin-2 scaffold proteins 8TYI ; ; NMR structure of L5pG ([p23W, G24W]kalata B1) 1RQU ; ; NMR structure of L7 dimer from E.coli 1CJG ; ; NMR STRUCTURE OF LAC REPRESSOR HP62-DNA COMPLEX 2MAI ; ; NMR structure of lassomycin 2RRS ; ; NMR Structure of LC4 transmembrane segment of CCR5 2KDY ; ; NMR structure of LP2086-B01 2BGF ; ; NMR structure of Lys48-linked di-ubiquitin using chemical shift perturbation data together with RDCs and 15N-relaxation data 2MAG ; ; NMR STRUCTURE OF MAGAININ 2 IN DPC MICELLES, 10 STRUCTURES 2LTH ; ; NMR structure of major ampullate spidroin 1 N-terminal domain at pH 5.5 2LPJ ; ; NMR structure of major ampullate spidroin 1 N-terminal domain at pH 7.2 2KDE ; ; NMR structure of major S5a (196-306):K48 linked diubiquitin species 1ZPX ; ; NMR Structure of Mcol1-[13-33] from Hydra 2LZG ; ; NMR Structure of Mdm2 (6-125) with Pip-1 1A11 ; ; NMR STRUCTURE OF MEMBRANE SPANNING SEGMENT 2 OF THE ACETYLCHOLINE RECEPTOR IN DPC MICELLES, 10 STRUCTURES 2N7Y ; ; NMR structure of metal-binding domain 1 of ATP7B 1AD7 ; ; NMR STRUCTURE OF METAL-FREE CONANTOKIN G, 1 STRUCTURE 1PLX ; ; NMR structure of Methionine-Enkephalin in fast tumbling Bicelles/DMPG 1PLW ; ; NMR structure of Methionine-Enkephalin in fast tumbling DMPC/DHPC bicelles 2K7C ; ; NMR Structure of Mg2+-bound CaBP1 C-domain 2K7B ; ; NMR structure of Mg2+-bound CaBP1 N-domain 2KNJ ; ; NMR structure of microplusin a antimicrobial peptide from Rhipicephalus (Boophilus) microplus 2DWF ; ; NMR structure of Mini-B, an N-terminal- C-terminal construct from human Surfactant Protein B (SP-B), in Sodium dodecyl sulfate (SDS) micelles 2JOU ; ; NMR structure of Mini-B, an N-terminal- C-terminal construct from human Surfactant Protein-B (SP-B), in Hexafluoroisopropanol (HFIP) 2KDF ; ; NMR structure of minor S5a (196-306):K48 linked diubiquitin species 1YGM ; ; NMR structure of Mistic 6SGO ; ; NMR structure of MLP124017 1RSF ; ; NMR Structure of Monomeric CAR d1 domain 2GTV ; ; NMR structure of monomeric chorismate mutase from Methanococcus jannaschii 5UKE ; ; NMR structure of monomeric human IRAK-M Death Domain R56D, Y61E mutant 2L2C ; ; NMR Structure of mosquito odorant binding protein bound to MOP pheromone 1I17 ; ; NMR STRUCTURE OF MOUSE DOPPEL 51-157 2KOH ; ; NMR structure of mouse Par3-PDZ3 in complex with VE-Cadherin C-terminus 1JRM ; ; NMR structure of MTH0637. Ontario Centre for Structural Proteomics target MTH0637_1_104; Northeast Structural Genomics Target TT135 1SIY ; ; NMR structure of mung bean non-specific lipid transfer protein 1 1ZWM ; ; NMR structure of murine gamma-S crystallin 1ZWO ; ; NMR structure of murine gamma-S crystallin 2A5M ; ; NMR structure of murine gamma-S crystallin from joint refinement with SAXS data 2BTT ; ; NMR Structure of MYO3-SH3 domain from Myosin-typeI from S. cerevisiae 2KSS ; ; NMR structure of Myxococcus xanthus antirepressor CarS1 1G7E ; ; NMR STRUCTURE OF N-DOMAIN OF ERP29 PROTEIN 1YSM ; ; NMR Structure of N-terminal domain (Residues 1-77) of Siah-Interacting Protein. 6TV5 ; ; NMR structure of N-terminal domain from A. argentata tubuliform spidroin (TuSp) at pH 5.5 2MX9 ; ; NMR structure of N-terminal domain from A. ventricosus minor ampullate spidroin (MiSp) at pH 5.5 2MX8 ; ; NMR structure of N-terminal domain from A. ventricosus minor ampullate spidroin (MiSp) at pH 7.2 1G03 ; ; NMR STRUCTURE OF N-TERMINAL DOMAIN OF HTLV-I CA1-134 7WIO ; ; NMR structure of N-terminal domain of Triconephila clavipes of major ampullate spidroin 1 2MAV ; ; NMR Structure of N2-IQ-dG at the G3 position in the NarI recognition sequence 7N20 ; ; NMR structure of native AnIB 7N24 ; ; NMR structure of native EpI 7N1Z ; ; NMR structure of native PnIA 1P9F ; ; NMR Structure of Neurokinin B from DYANA 2N0C ; ; NMR structure of Neuromedin C in 10% TFE 2N0D ; ; NMR structure of Neuromedin C in 25% TFE 2N0E ; ; NMR structure of Neuromedin C in 40% TFE 2N0F ; ; NMR structure of Neuromedin C in 60% TFE 2N0G ; ; NMR structure of Neuromedin C in 90% TFE 2N0B ; ; NMR structure of Neuromedin C in aqueous solution 2N0H ; ; NMR structure of Neuromedin C in presence of SDS micelles 2KKD ; ; NMR Structure of Ni Substitued Desulfovibrio vulgaris Rubredoxin 2BA3 ; ; NMR Structure of NikA N-terminal Fragment 2MP8 ; ; NMR structure of NKR-5-3B 2N69 ; ; NMR structure of non-sweet mutant (ins18RI19) of sweet protein Brazzein 7QDD ; ; NMR structure of Npl3 RRM1 bound to the AUCCAA RNA 7QDE ; ; NMR structure of Npl3 RRM12 bound to the AUCCAGUGGAA RNA 2LLH ; ; NMR structure of Npm1_c70 6HT4 ; ; NMR Structure of NS5A-D2 (JFH1) peptide (304-323) 1WN8 ; ; NMR Structure of OaNTR 2NDB ; ; NMR structure of omega-agatoxin IVA in DPC micelles 1DW4 ; ; NMR STRUCTURE OF OMEGA-CONOTOXIN MVIIA: CONSTRAINTS ON DISULPHIDE BRIDGES 1DW5 ; ; NMR STRUCTURE OF OMEGA-CONOTOXIN MVIIA: NO CONSTRAINTS ON DISULPHIDE BRIDGES 2M07 ; ; NMR structure of OmpX in DPC micelles 2M06 ; ; NMR structure of OmpX in phopspholipid nanodiscs 6OBK ; ; NMR structure of Orf47 from Lactococcus virus P2 8HQB ; ; NMR Structure of OsCIE1-Ubox 8HPB ; ; NMR Structure of OsCIE1-Ubox S237D mutant 6XCR ; ; NMR structure of Ost4 in DPC micelles 6XCU ; ; NMR structure of Ost4V23D, a critical mutant of Ost4, in DPC micelles 2N85 ; ; NMR structure of OtTx1a - AMP in DPC micelles 2N86 ; ; NMR structure of OtTx1a - ICK 1L6U ; ; NMR STRUCTURE OF OXIDIZED ADRENODOXIN 1EGO ; ; NMR STRUCTURE OF OXIDIZED ESCHERICHIA COLI GLUTAREDOXIN: COMPARISON WITH REDUCED E. COLI GLUTAREDOXIN AND FUNCTIONALLY RELATED PROTEINS 1XPN ; ; NMR structure of P. aeruginosa protein PA1324: Northeast Structural Genomics Consortium target PaP1 1YWW ; ; NMR structure of P. aeruginosa protein PA4738: Northeast Structural Genomics Consortium target PaP2 1JM4 ; ; NMR Structure of P/CAF Bromodomain in Complex with HIV-1 Tat Peptide 1L3H ; ; NMR structure of P41icf, a potent inhibitor of human cathepsin L 2KTR ; ; NMR structure of p62 PB1 dimer determined based on PCS 2MJO ; ; NMR structure of p75 transmembrane domain C257A mutant in DPC micelles 2MIC ; ; NMR structure of p75 transmembrane domain in DPC micelles 8X8T ; ; NMR structure of p75NTR juxtamembrane domain in complex with RhoGDI N-terminal domain containing a phosphorylation-mimicking S34D mutation 5ZGG ; ; NMR structure of p75NTR transmembrane domain in complex with NSC49652 2JPI ; ; NMR structure of PA4090 from Pseudomonas aeruginosa 1P94 ; ; NMR Structure of ParG symmetric dimer 2MGV ; ; NMR structure of PASTA domain of PonA2 from Mycobacterium tuberculosis 1X5V ; ; NMR Structure of PcFK1 2IMU ; ; NMR structure of pep46 from the infectious bursal disease virus (IBDV) in dodecylphosphocholin (DPC). 5LFH ; ; NMR structure of peptide 10 targeting CXCR4 5LFF ; ; NMR structure of peptide 2 targeting CXCR4 6QXB ; ; NMR structure of peptide 7, characterized by a cis-4-amino-Pro residue, with a significant lower MIC on E. coli 6QXC ; ; NMR structure of peptide 8, characterized by a trans-4-cyclohexyl-Pro, with a dramatic reduction in activity on E. coli ATCC and lost effect on P. aeruginosa. 2N7N ; ; NMR structure of Peptide PG-989 in DPC micelles 2N7O ; ; NMR Structure of Peptide PG-990 in DPC micelles 2N7T ; ; NMR structure of Peptide PG-992 in DPC micelles 1YT6 ; ; NMR structure of peptide SD 7UO6 ; ; NMR structure of Pheromone-binding protein 2 in Ostrinia furnacalis 2MX4 ; ; NMR structure of Phosphorylated 4E-BP2 2N5D ; ; NMR structure of PKS domains 1YTR ; ; NMR structure of plantaricin a in dpc micelles, 20 structures 2KEG ; ; NMR structure of Plantaricin K in DPC-micelles 2K9I ; ; NMR structure of plasmid copy control protein ORF56 from sulfolobus islandicus 6RSF ; ; NMR structure of pleurocidin KR in SDS micelles 6RSG ; ; NMR structure of pleurocidin VA in SDS micelles 2KQP ; ; NMR Structure of Proinsulin 2MZ6 ; ; NMR structure of Protegrin-3 (PG3) in the presence of DPC micelles 2KBZ ; ; NMR structure of protein gp15 of bacteriophage SPP1 2HFD ; ; NMR structure of protein Hydrogenase-1 operon protein hyaE from Escherichia coli: Northeast Structural Genomics Consortium Target ER415 2HFQ ; ; NMR structure of protein NE1680 from Nitrosomonas europaea: Northeast Structural Genomics Consortium target NeT5 2MHG ; ; NMR structure of protein NP_254181.1 from Pseudomonas aeruginosa PA01 2K4N ; ; NMR structure of protein PF0246 from Pyrococcus furiosus: target PfR75 from the Northeast Structural Genomics Consortium 2JS5 ; ; NMR Structure of protein Q60C73_METCA. Northeast Structural Genomics Consortium target McR1 2JS3 ; ; NMR Structure of protein Q6N9A4_RHOPA. Northeast Structural Genomics Consortium target RpT8 2MC8 ; ; NMR structure of protein RUMGNA_01855 from Ruminococcus gnavus ATCC 29149 2NWT ; ; NMR Structure of Protein UPF0165 protein AF_2212 from Archaeoglobus Fulgidus; Northeast Structural Genomics Consortium Target GR83 2FKI ; ; NMR Structure of Protein yjbR from Escherichia coli; Northeast Structural Genomics Consortium Target ER226 2ML5 ; ; NMR structure of protein ZP_02064002.1 from Bacteroides ovatus ATCC 8483 2ML6 ; ; NMR structure of protein ZP_02069618.1 from Bacteroides uniformis ATCC 8492 4A1M ; ; NMR Structure of protoporphyrin-IX bound murine p22HBP 5JYU ; ; NMR structure of pseudo receiver domain of CikA from Thermosynechococcus elongatus 2LA9 ; ; NMR structure of Pseudouridine_ASL_Tyr 1B1V ; ; NMR STRUCTURE OF PSP1, PLASMATOCYTE-SPREADING PEPTIDE FROM PSEUDOPLUSIA INCLUDENS 1B5N ; ; NMR STRUCTURE OF PSP1, PLASMATOCYTE-SPREADING PEPTIDE FROM PSEUDOPLUSIA INCLUDENS 6F61 ; ; NMR structure of purotoxin-6 1NGO ; ; NMR Structure of Putative 3' Terminator for B. Anthracis pagA Gene Coding Strand 1NGU ; ; NMR Structure of Putative 3'Terminator for B. Anthracis pagA Gene Noncoding Strand 2MQB ; ; NMR structure of putative beta-lactamase (NP_372339.1) from Staphylococcus aureus Mu50 2JY9 ; ; NMR structure of putative tRNA hydrolase domain from Salmonella typhimurium. NorthEast Structural Genomics Consortium target StR220 1M02 ; ; NMR Structure of PW2 Bound to SDS Micelles: A Tryptophan-rich Anticocidial Peptide Selected from Phage Display Libraries 2JOM ; ; NMR structure of rabbit prion protein mutation I214V 2JOH ; ; NMR structure of rabbit prion protein mutation S173N 1AAB ; ; NMR STRUCTURE OF RAT HMG1 HMGA FRAGMENT 2MTM ; ; NMR structure of RCB-1 peptide 2KLH ; ; NMR Structure of RCL in complex with GMP 2I94 ; ; NMR Structure of recoverin bound to rhodopsin kinase 2MAO ; ; NMR structure of region 2 of E. coli sigmaE 2LWW ; ; NMR structure of RelA-TAD/CBP-TAZ1 complex 6SZC ; ; NMR structure of repeat domain 13 of the fibrillar adhesin CshA from Streptococcus gordonii. 2NAL ; ; NMR Structure of retro-KR-12: A reversed sequence of a minimalized domain derived from human cathelicidin LL-37 2ATG ; ; NMR structure of Retrocyclin-2 in SDS 7PQ4 ; ; NMR Structure of RgpB C-terminal Domain 1YGW ; ; NMR STRUCTURE OF RIBONUCLEASE T1, 34 STRUCTURES 1GO0 ; ; NMR Structure of Ribosomal Protein L30e from Thermococcus celer 1GO1 ; ; NMR Structure of Ribosomal Protein L30e from Thermococcus celer. 1DFE ; ; NMR STRUCTURE OF RIBOSOMAL PROTEIN L36 FROM THERMUS THERMOPHILUS 1KKG ; ; NMR Structure of Ribosome-Binding Factor A (RbfA) 2JXQ ; ; NMR structure of RNA duplex 2JXS ; ; NMR structure of RNA duplex containing single adenosine bulge 2M7S ; ; NMR structure of RNA recognition motif 2 (RRM2) of Homo sapiens splicing factor, arginine/serine-rich 1 2GBS ; ; NMR structure of Rpa0253 from Rhodopseudomonas palustris. Northeast structural genomics consortium target RpR3 2OSQ ; ; NMR Structure of RRM-1 of Yeast NPL3 Protein 2OSR ; ; NMR Structure of RRM-2 of Yeast NPL3 Protein 2MY8 ; ; NMR Structure of RRM-3 domain of ETR-3 1SJQ ; ; NMR Structure of RRM1 from Human Polypyrimidine Tract Binding Protein Isoform 1 (PTB1) 1SJR ; ; NMR Structure of RRM2 from Human Polypyrimidine Tract Binding Protein Isoform 1 (PTB1) 2MBY ; ; NMR Structure of Rrp7 C-terminal Domain 2M3F ; ; NMR structure of Rsa1p238-259 from S. Cerevisiae 7NHZ ; ; NMR structure of Rv1813c from Mycobacterium tuberculosis 2KFS ; ; NMR structure of Rv2175c 2NCV ; ; NMR structure of RWS21 structure in LPS micelles 2GD3 ; ; NMR structure of S14G-humanin in 30% TFE solution 2LCM ; ; NMR structure of S3-4 peptide 8E6Y ; ; NMR structure of Sa1_V90T at 30 degrees Celsius 2ML8 ; ; NMR structure of Saccharomyces cerevisiae Acyl Carrier Protein. 6CJD ; ; NMR Structure of Salmonella Type III Secretion system protein OrgC 1JDM ; ; NMR Structure of Sarcolipin 2ACF ; 1.4 ; NMR STRUCTURE OF SARS-COV NON-STRUCTURAL PROTEIN NSP3A (SARS1) FROM SARS CORONAVIRUS 7M67 ; ; NMR Structure of Schistocin-1 antimicrobial peptide in presence of DPC-d38 micelles 7M73 ; ; NMR Structure of Schistocin-2 antimicrobial peptide in presence of DPC-d38 micelles 7M77 ; ; NMR Structure of Schistocin-3 antimicrobial peptide in presence of DPC-d38 micelles 7M79 ; ; NMR Structure of Schistocin-3.1 antimicrobial peptide in presence of DPC-d38 micelles 6AZA ; ; NMR structure of sea anemone toxin Kappa-actitoxin-Ate1a 2K8Q ; ; NMR Structure of Shq1p N-terminal domain 2LRA ; ; NMR Structure of Signal Sequence Deleted (SSD) Rv0603 Protein from Mycobacterium tuberculosis without N-terminal His-tag 5H1H ; ; NMR structure of SLBA, a chimera of SFTI 1K8H ; ; NMR Structure of Small Protein B (SmpB) from Aquifex aeolicus 2FE0 ; ; NMR structure of SMP-1 (Small Myristoylated Protein) from Leishmania major 6BV7 ; ; NMR structure of Sodium/Calcium Exchanger 1 (NCX1) Two-helix Bundle (THB) domain 2MD8 ; ; NMR structure of Sp140 PHD finger cis conformer 2MCJ ; ; NMR structure of spermine modified DNA duplex 1AG4 ; ; NMR STRUCTURE OF SPHERULIN 3A (S3A) FROM PHYSARUM POLYCEPHALUM, MINIMIZED AVERAGE STRUCTURE 2N6R ; ; NMR structure of spider toxin U4-hexatoxin-Hi1a 2MXO ; ; NMR structure of spider toxin- G7W/N24S mutant of TRTX-Hhn2b 2MQF ; ; NMR structure of spider toxin-TRTX-Hhn2b 2FFT ; ; NMR structure of Spinach Thylakoid Soluble Phosphoprotein of 9 kDa in SDS Micelles 2MGX ; ; NMR structure of SRA1p C-terminal domain 1CQ5 ; ; NMR STRUCTURE OF SRP RNA DOMAIN IV 1CQL ; ; NMR STRUCTURE OF SRP RNA DOMAIN IV 1XSX ; ; NMR Structure of Sso10a, a Hyperthermophile DNA-binding Protein with an Extended Anti-parallel Coiled Coil 1ESY ; ; NMR STRUCTURE OF STEM LOOP SL2 OF THE HIV-1 PSI RNA PACKAGING SIGNAL REVEALS A NOVEL A-U-A BASE-TRIPLE PLATFORM 2GBH ; ; NMR structure of stem region of helix-35 of 23S E.coli ribosomal RNA (residues 736-760) 2KX8 ; ; NMR structure of stem-loop 4 from the human 7SK snRNA in complex with arginine 2D21 ; ; NMR Structure of stereo-array isotope labelled (SAIL) maltodextrin-binding protein (MBP) 2RS4 ; ; NMR structure of stereo-array isotope labelled (SAIL) peptidyl-prolyl cis-trans isomerase from E. coli (EPPIb) 8DIJ ; ; NMR Structure of Streptococcal Protein GB1 Backbone Modified Variant: beta-ACPC24, beta-3-Lys28, beta-3-Lys31, beta-ACPC35 2N66 ; ; NMR Structure of sweeter mutant (D40K) of sweet protein Brazzein, 1HLL ; ; NMR STRUCTURE OF T3-I2, A 32 RESIDUE PEPTIDE FROM THE ALPHA-2A ADRENERGIC RECEPTOR 1HOF ; ; NMR STRUCTURE OF T3-I2, A 32 RESIDUE PEPTIDE FROM THE ALPHA-2A ADRENERGIC RECEPTOR 2G35 ; ; NMR structure of talin-PTB in complex with PIPKI 1QC8 ; ; NMR STRUCTURE OF TAU EXON 10 SPLICING REGULATORY ELEMENT RNA 2LVV ; ; NMR structure of TB24 2N2C ; ; NMR Structure of TDP-43 prion-like hydrophobic helix in DPC 6GIL ; ; NMR structure of temporin B in SDS micelles 6GIJ ; ; NMR structure of temporin B KKG6A in SDS micelles 6GIK ; ; NMR structure of temporin B L1FK in SDS micelles 6GS5 ; ; NMR structure of temporin L in SDS micelles 8TV4 ; ; NMR structure of temporin L in solution 2MAA ; ; NMR structure of Temporin-1 Ta in lipopolysaccharide micelles: Mechanistic insight into inactivation by outer memebrane 2MCF ; ; NMR structure of TGAM_1934 2CHJ ; ; NMR structure of TGLGLT quadruplex 8IKQ ; ; NMR structure of Thanatin IM14 in LPS 1CEU ; ; NMR STRUCTURE OF THE (1-51) N-TERMINAL DOMAIN OF THE HIV-1 REGULATORY PROTEIN 1U57 ; ; NMR structure of the (345-392)Gag sequence from HIV-1 1QNZ ; ; NMR structure of the 0.5b anti-HIV antibody complex with the gp120 V3 peptide 1R84 ; ; NMR structure of the 13-cis-15-syn retinal in dark_adapted bacteriorhodopsin 2N6D ; ; NMR structure of the 140-315 fragment of the N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits 6JJ0 ; ; NMR structure of the 1:1 complex of a carbazole derivative BMVC bound to c-MYC G-quadruplex 1HZ0 ; ; NMR STRUCTURE OF THE 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE (PHIP) C8-DEOXYGUANOSINE ADDUCT IN DUPLEX DNA 6O2L ; ; NMR structure of the 2:1 complex of a carbazole derivative BMVC bound to c-MYC G-quadruplex 1RFR ; ; NMR structure of the 30mer stemloop-D of coxsackieviral RNA 5IEM ; ; NMR structure of the 5'-terminal hairpin of the 7SK snRNA 1FHK ; ; NMR STRUCTURE OF THE 690 LOOP OF 16 S RRNA OF E. COLI 2L5Z ; ; NMR structure of the A730 loop of the Neurospora VS ribozyme 2L23 ; ; NMR structure of the ACID (ACtivator Interacting Domain) of the human mediator Med25 protein 2NBB ; ; NMR structure of the Acidic domain of SYNCRIP (24-140) 2MXT ; ; NMR structure of the acidic domain of SYNCRIP (hnRNPQ) 1OW9 ; ; NMR Structure of the Active Conformation of the VS Ribozyme Cleavage Site 1JQR ; ; NMR structure of the African swine fever virus DNA polymerase X 1R2N ; ; NMR structure of the all-trans retinal in dark-adapted Bacteriorhodopsin 2FRB ; ; NMR structure of the alpha-conotoxin GI (ASN4)-benzoylphenylalanine derivative 2FR9 ; ; NMR structure of the alpha-conotoxin GI (SER12)-benzoylphenylalanine derivative 1EI0 ; ; NMR STRUCTURE OF THE ALPHA-HELICAL HAIRPIN OF P8MTCP1 1Y5O ; ; NMR structure of the amino-terminal domain from the Tfb1 subunit of yeast TFIIH 7OD2 ; ; NMR structure of the Anemonia erythraea AeTX-K toxin 2JQ2 ; ; NMR structure of the anticoccidial peptide PW2 in DPC micelles 8B1L ; ; NMR structure of the antimicrobial peptide Of-Pis1 in DPC micelles 2RLH ; ; NMR structure of the antimicrobial peptide RP-1 bound to DPC micelles 2RLG ; ; NMR structure of the antimicrobial peptide RP-1 bound to SDS micelles 7OB2 ; ; NMR structure of the antimicrobial RiLK1 peptide in SDS micelles 1Z30 ; ; NMR structure of the apical part of stemloop D from cloverleaf 1 of bovine enterovirus 1 RNA 2IN2 ; ; NMR Structure of the Apo Human Rhinovirus 3C Protease (serotype 14) 2JYQ ; ; NMR structure of the apo v-Src SH2 domain 6TPB ; ; NMR structure of the apo-form of Pseudomonas fluorescens CopC 2N1M ; ; NMR structure of the apo-form of the flavoprotein YP_193882.1 from Lactobacillus acidophilus NCFM 1YLG ; ; NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor 1YNC ; ; NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor 1YNE ; ; NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor 1YNG ; ; NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor 2G1W ; ; NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1 1PC0 ; ; NMR Structure of the Archaeal Homologue of RNase P Protein Rpp29 2JXJ ; ; NMR structure of the ARID domain from the histone H3K4 demethylase RBP2 2L8K ; ; NMR Structure of the Arterivirus nonstructural protein 7 alpha (nsp7 alpha) 2HKB ; ; NMR Structure of the B-DNA Dodecamer CTCGGCGCCATC 1Q56 ; ; NMR structure of the B0 isoform of the agrin G3 domain in its Ca2+ bound state 2BZT ; ; NMR structure of the bacterial protein YFHJ from E. coli 8DSX ; ; NMR STRUCTURE OF THE BACTERIOPHAGE LAMBDA EA22 C-TERMINAL DOMAIN 7OFM ; ; NMR structure of the Bak transmembrane helix in DPC micelles 7OFO ; ; NMR structure of the Bak transmembrane helix in lipid nanodiscs 2MH3 ; ; NMR structure of the basic helix-loop-helix region of the transcriptional repressor HES-1 1P6U ; ; NMR structure of the BeF3-activated structure of the response regulator Chey2-Mg2+ from Sinorhizobium meliloti 1SCV ; ; NMR STRUCTURE OF THE C TERMINAL DOMAIN OF CARDIAC TROPONIN C BOUND TO THE N TERMINAL DOMAIN OF CARDIAC TROPONIN I 1FI5 ; ; NMR STRUCTURE OF THE C TERMINAL DOMAIN OF CARDIAC TROPONIN C BOUND TO THE N TERMINAL DOMAIN OF CARDIAC TROPONIN I. 2MLE ; ; NMR structure of the C-domain of troponin C bound to the anchoring region of troponin I 2N64 ; ; NMR Structure of the C-terminal Coiled-Coil Domain of CIN85 2F8B ; ; NMR structure of the C-terminal domain (dimer) of HPV45 oncoprotein E7 2RST ; ; NMR structure of the C-terminal domain of EW29 2NBQ ; ; NMR Structure of the C-Terminal Domain of human APOBEC3B 2JVL ; ; NMR structure of the C-terminal domain of MBF1 of Trichoderma reesei 2KN8 ; ; NMR structure of the C-terminal domain of pUL89 5LXK ; ; NMR structure of the C-terminal domain of the Bacteriophage T5 decoration protein pb10. 6EZ4 ; ; NMR structure of the C-terminal domain of the human RPAP3 protein 1GCF ; ; NMR STRUCTURE OF THE C-TERMINAL DOMAIN OF THE LIGAND-BINDING REGION OF MURINE GRANULOCYTE COLONY-STIMULATING FACTOR RECEPTOR, 12 STRUCTURES 1CTO ; ; NMR STRUCTURE OF THE C-TERMINAL DOMAIN OF THE LIGAND-BINDING REGION OF MURINE GRANULOCYTE COLONY-STIMULATING FACTOR RECEPTOR, MINIMIZED AVERAGE STRUCTURE 2M26 ; ; NMR structure of the C-terminal domain of the protein HCFC1 from Mus musculus 2KVL ; ; NMR structure of the C-terminal domain of VP7 2LM7 ; ; NMR structure of the C-terminal domain of VP7 in membrane mimicking micelles 1P97 ; ; NMR structure of the C-terminal PAS domain of HIF2a 2N51 ; ; NMR structure of the C-terminal region of human eukaryotic elongation factor 1B 2LA4 ; ; NMR structure of the C-terminal RRM domain of poly(U) binding 1 7PVM ; ; NMR structure of the C. thermophilum Xrn2 zinc finger 1E2B ; ; NMR STRUCTURE OF THE C10S MUTANT OF ENZYME IIB CELLOBIOSE OF THE PHOSPHOENOL-PYRUVATE DEPENDENT PHOSPHOTRANSFERASE SYSTEM OF ESCHERICHIA COLI, 17 STRUCTURES 2MQ0 ; ; NMR structure of the c3 domain of human cardiac myosin binding protein-c 2MQ3 ; ; NMR structure of the c3 domain of human cardiac myosin binding protein-c with a hypertrophic cardiomyopathy-related mutation R502W. 1C9F ; ; NMR STRUCTURE OF THE CAD DOMAIN OF CASPASE-ACTIVATED DNASE 2JSC ; ; NMR structure of the cadmium metal-sensor CMTR from Mycobacterium tuberculosis 5O2Y ; ; NMR structure of the calcium bound form of PulG, major pseudopilin from Klebsiella oxytoca T2SS 2LGE ; ; NMR structure of the calcium-bound form of the protein YP_001302112.1 from Parabacteroides distasonis 1XYK ; ; NMR Structure of the canine prion protein 2MU2 ; ; NMR structure of the cap domain of NP_346487.1, a putative phosphoglycolate phosphatase from Streptococcus pneumoniae TIGR4 1XI7 ; ; NMR structure of the carboxyl-terminal cysteine domain of the VHv1.1 polydnaviral gene product 1WCL ; ; NMR structure of the carboxyterminal domains of Escherichia coli NusA 1WCN ; ; NMR structure of the carboxyterminal domains of Escherichia coli NusA 1XYJ ; ; NMR Structure of the cat prion protein 3ZG4 ; ; NMR structure of the catalytic domain from E. faecium L,D- transpeptidase 3ZGP ; ; NMR structure of the catalytic domain from E. faecium L,D- transpeptidase acylated by ertapenem 2JOK ; ; NMR structure of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei 2MHC ; ; NMR structure of the catalytic domain of the large serine resolvase TnpX 2KA4 ; ; NMR structure of the CBP-TAZ1/STAT2-TAD complex 2KA6 ; ; NMR structure of the CBP-TAZ2/STAT1-TAD complex 1H67 ; ; NMR Structure of the CH Domain of Calponin 2MIM ; ; NMR structure of the chicken CD3 epsilon delta/gamma heterodimer 1U3M ; ; NMR structure of the chicken prion protein fragment 128-242 1K8J ; ; NMR STRUCTURE OF THE CK14 DNA DUPLEX: A PORTION OF THE KNOWN NF-kB SEQUENCE CK1 7JGI ; ; NMR structure of the cNTnC-cTnI chimera bound to A7 6MV3 ; ; NMR structure of the cNTnC-cTnI chimera bound to calcium desensitizer W7 7UHA ; ; NMR structure of the cNTnC-cTnI chimera bound to W6 7UH9 ; ; NMR structure of the cNTnC-cTnI chimera bound to W8 2LCY ; ; NMR Structure of the Complete Internal Fusion Loop from Ebolavirus GP2 at pH 5.5 2LCZ ; ; NMR Structure of the Complete Internal Fusion Loop from Ebolavirus GP2 at pH 7.0 2MB1 ; ; NMR Structure of the Complete Internal Fusion Loop mutant I544A from Ebolavirus GP2 at pH 5.5 2M5F ; ; NMR Structure of the Complete Internal Fusion Loop mutant L529A/I544A from Ebolavirus GP2 at pH 5.5 1HOY ; ; NMR STRUCTURE OF THE COMPLEX BETWEEN A-BUNGAROTOXIN AND A MIMOTOPE OF THE NICOTINIC ACETYLCHOLINE RECEPTOR 1JBD ; ; NMR Structure of the Complex Between alpha-bungarotoxin and a Mimotope of the Nicotinic Acetylcholine Receptor 1RGJ ; ; NMR STRUCTURE OF THE COMPLEX BETWEEN ALPHA-BUNGAROTOXIN AND MIMOTOPE OF THE NICOTINIC ACETYLCHOLINE RECEPTOR WITH ENHANCED ACTIVITY 1U5S ; ; NMR structure of the complex between Nck-2 SH3 domain and PINCH-1 LIM4 domain 2K2U ; ; NMR Structure of the complex between Tfb1 subunit of TFIIH and the activation domain of VP16 2N0Y ; ; NMR structure of the complex between the C-terminal domain of the Rift Valley fever virus protein NSs and the PH domain of the Tfb1 subunit of TFIIH 1AZE ; ; NMR STRUCTURE OF THE COMPLEX BETWEEN THE C32S-Y7V MUTANT OF THE NSH3 DOMAIN OF GRB2 WITH A PEPTIDE FROM SOS, 10 STRUCTURES 5U4K ; ; NMR structure of the complex between the KIX domain of CBP and the transactivation domain 1 of p65 2LOX ; ; NMR structure of the complex between the PH domain of the Tfb1 subunit from TFIIH and Rad2 2M14 ; ; NMR structure of the complex between the PH domain of the Tfb1 subunit from TFIIH and Rad4 2GS0 ; ; NMR structure of the complex between the PH domain of the Tfb1 subunit from TFIIH and the activation domain of p53 2N23 ; ; NMR structure of the complex between the PH domain of the Tfb1 subunit from TFIIH and the N-terminal activation domain of EKLF (TAD1) 5URN ; ; NMR structure of the complex between the PH domain of the Tfb1 subunit from TFIIH and the transactivation domain 1 of p65 2L2I ; ; NMR Structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of EKLF 1EKZ ; ; NMR STRUCTURE OF THE COMPLEX BETWEEN THE THIRD DSRBD FROM DROSOPHILA STAUFEN AND A RNA HAIRPIN 1A6B ; ; NMR STRUCTURE OF THE COMPLEX BETWEEN THE ZINC FINGER PROTEIN NCP10 OF MOLONEY MURINE LEUKEMIA VIRUS AND A SEQUENCE OF THE PSI-PACKAGING DOMAIN OF HIV-1, 20 STRUCTURES 5OR5 ; ; NMR structure of the complex formed by an engineered region 2 of sigmaE in complex with GTAAAA 2M55 ; ; NMR structure of the complex of an N-terminally acetylated alpha-synuclein peptide with calmodulin 2GJF ; ; NMR structure of the computationally designed procarboxypeptidase-A (1AYE) domain 2H7A ; ; NMR Structure of the Conserved Protein YcgL from Escherichia coli representing the DUF709 Family Reveals a Novel a/b/a Sandwich Fold 2MU1 ; ; NMR structure of the core domain of NP_346487.1, a putative phosphoglycolate phosphatase from Streptococcus pneumoniae TIGR4 1RY4 ; ; NMR Structure of the CRIB-PDZ module of Par-6 1JJD ; ; NMR structure of the Cyanobacterial Metallothionein SmtA 1Q3Y ; ; NMR structure of the Cys28His mutant (D form) of the nucleocapsid protein NCp7 of HIV-1. 1Q3Z ; ; NMR structure of the Cys28His mutant (E form) of the nucleocapsid protein NCp7 of HIV-1. 2L8N ; ; NMR structure of the cytidine repressor DNA binding domain in presence of operator half-site DNA 1S4W ; ; NMR structure of the cytoplasmic domain of integrin AIIb in DPC micelles 2M8S ; ; NMR Structure of the Cytoplasmic Tail of the Membrane Form of Heparin-binding EGF-like Growth Factor (proHB-EGF-CT) Complexed with the Ubiquitin Homology Domain of Bcl-2-associated Athanogene 1 from Mus musculus (mBAG-1-UBH) 1DRO ; ; NMR STRUCTURE OF THE CYTOSKELETON/SIGNAL TRANSDUCTION PROTEIN 1Z2K ; ; NMR structure of the D1 domain of the Natural Killer Cell Receptor, 2B4 2N6B ; ; NMR structure of the de-novo toxin Hui1 2H0P ; ; NMR Structure of the Dengue-4 virus Envelope Protein Domain III 1TUZ ; ; NMR Structure of the Diacylglycerol kinase alpha, NESGC target HR532 2MLF ; ; NMR structure of the dilated cardiomyopathy mutation G159D in troponin C bound to the anchoring region of troponin I 1BAU ; ; NMR STRUCTURE OF THE DIMER INITIATION COMPLEX OF HIV-1 GENOMIC RNA, MINIMIZED AVERAGE STRUCTURE 6NVZ ; ; NMR Structure of the DNA binding domain of EhMybS3 1BUT ; ; NMR STRUCTURE OF THE DNA DECAMER D(CATGGCCATG)2, 10 STRUCTURES 1L3G ; ; NMR Structure of the DNA-binding Domain of Cell Cycle Protein, Mbp1(2-124) from Saccharomyces cerevisiae 2L4A ; ; NMR structure of the DNA-binding domain of E.coli Lrp 2HZD ; ; NMR structure of the DNA-binding TEA domain and insights into TEF-1 function 6GVU ; ; NMR structure of the DNA-bound helix bundle domain from the functional pRN1 primase 2KHI ; ; NMR structure of the domain 4 of the E. coli ribosomal protein S1 5XQ5 ; ; NMR structure of the domain 5 of the E. coli ribosomal protein S1 2RNK ; ; NMR structure of the domain 513-651 of the SARS-CoV nonstructural protein nsp3 2JZD ; ; NMR structure of the domain 527-651 of the SARS-CoV nonstructural protein nsp3 2JZE ; ; NMR structure of the domain 527-651 of the SARS-CoV nonstructural protein nsp3, single conformer closest to the mean coordinates of an ensemble of twenty energy minimized conformers 2KHJ ; ; NMR structure of the domain 6 of the E. coli ribosomal protein S1 1KMA ; ; NMR Structure of the Domain-I of the Kazal-type Thrombin Inhibitor Dipetalin 1OVX ; ; NMR structure of the E. coli ClpX chaperone zinc binding domain dimer 1JNS ; ; NMR Structure of the E. coli Peptidyl-Prolyl cis/trans-Isomerase Parvulin 10 1JNT ; ; NMR Structure of the E. coli Peptidyl-Prolyl cis/trans-Isomerase Parvulin 10 5T17 ; ; NMR structure of the E. coli protein NPr, residues 1-85 2JMR ; ; NMR structure of the E. coli type 1 pilus subunit FimF 2JO6 ; ; NMR structure of the E.coli protein NirD, Northeast Structural Genomics target ET100 2B3W ; ; NMR structure of the E.coli protein YbiA, Northeast Structural Genomics target ET24. 2L27 ; ; NMR Structure of the ECD1 of CRF-R1 in complex with a peptide agonist 2KC1 ; ; NMR structure of the F0 domain (residues 0-85) of the talin ferm domain 2KMA ; ; NMR structure of the F0F1 double domain (residues 1-202) of the talin ferm domain 2KC2 ; ; NMR structure of the F1 domain (residues 86-202) of the talin 2ASE ; ; NMR structure of the F28L mutant of Cdc42Hs 1MZT ; ; NMR structure of the fd bacteriophage pVIII coat protein in lipid bilayer membranes 2L9V ; ; NMR structure of the FF domain L24A mutant's folding transition state 2A0T ; ; NMR structure of the FHA1 domain of Rad53 in complex with a biological relevant phosphopeptide derived from Madt1 1J4P ; ; NMR STRUCTURE OF THE FHA1 DOMAIN OF RAD53 IN COMPLEX WITH A RAD9-DERIVED PHOSPHOTHREONINE (AT T155) PEPTIDE 1K3N ; ; NMR Structure of the FHA1 Domain of Rad53 in Complex with a Rad9-derived Phosphothreonine (at T155) Peptide 1J4Q ; ; NMR STRUCTURE OF THE FHA1 DOMAIN OF RAD53 IN COMPLEX WITH A RAD9-DERIVED PHOSPHOTHREONINE (AT T192) PEPTIDE 1K3Q ; ; NMR structure of the FHA1 Domain of Rad53 in Complex with a Rad9-derived Phosphothreonine (at T192) Peptide 1G3G ; ; NMR STRUCTURE OF THE FHA1 DOMAIN OF YEAST RAD53 2FNB ; ; NMR STRUCTURE OF THE FIBRONECTIN ED-B DOMAIN, NMR, 20 STRUCTURES 1J8K ; ; NMR STRUCTURE OF THE FIBRONECTIN EDA DOMAIN, NMR, 20 STRUCTURES 1G4F ; ; NMR STRUCTURE OF THE FIFTH DOMAIN OF HUMAN BETA2-GLYCOPROTEIN I 1G4G ; ; NMR STRUCTURE OF THE FIFTH DOMAIN OF HUMAN BETA2-GLYCOPROTEIN I 2CKN ; ; NMR Structure of the First Ig Module of mouse FGFR1 2LH9 ; ; NMR structure of the first lotus domain of tudor domain-containing protein 7 1XWH ; ; NMR structure of the first phd finger of autoimmune regulator protein (AIRE1): insights into apeced 2HGL ; ; NMR structure of the first qRRM domain of human hnRNP F 2KFY ; ; NMR structure of the first qRRM of hnRNP F in complex with AGGGAU G-tract RNA 2MHN ; ; NMR structure of the first RRM domain of the protein RBM39 from Homo sapiens 2KE7 ; ; NMR structure of the first SAM domain from AIDA1 6FD7 ; ; NMR structure of the first TPR domain of the human RPAP3 protein 1M9O ; ; NMR structure of the first Zinc Binding domain of Nup475/TTP/TIS11 2MXV ; ; NMR structure of the first Zinc Finger domain of RBM10 1QXC ; ; NMR structure of the fragment 25-35 of beta amyloid peptide in 20/80 v:v hexafluoroisopropanol/water mixture 6GT7 ; ; NMR structure of the free helix bundle domain from the functional pRN1 primase 1TM6 ; ; NMR Structure of the Free Zinc Binding C-terminal Domain of SecA 8UWF ; ; NMR structure of the funnel-web spider toxin Hc3a 1AOU ; ; NMR STRUCTURE OF THE FYN SH2 DOMAIN COMPLEXED WITH A PHOSPHOTYROSYL PEPTIDE, 22 STRUCTURES 1AOT ; ; NMR STRUCTURE OF THE FYN SH2 DOMAIN COMPLEXED WITH A PHOSPHOTYROSYL PEPTIDE, MINIMIZED AVERAGE STRUCTURE 1CYZ ; ; NMR STRUCTURE OF THE GAACTGGTTC/TRI-IMIDAZOLE POLYAMIDE COMPLEX 2JU4 ; ; NMR structure of the gamma subunit of cGMP phosphodiesterase 2OVN ; ; NMR structure of the GCN4 trigger peptide 2L56 ; ; NMR structure of the GCN4 trigger peptide refined using biased molecular dynamics simulations 4B1Q ; ; NMR structure of the glycosylated conotoxin CcTx from Conus consors 1Z1Z ; ; NMR structure of the gpu tail protein from lambda bacteriophage 1XFN ; ; NMR structure of the ground state of the photoactive yellow protein lacking the N-terminal part 2M3D ; ; NMR structure of the GUCT domain from human DEAD box polypeptide 21 2KIL ; ; NMR structure of the H103G mutant SO2144 H-NOX domain from Shewanella oneidensis in the Fe(II)CO ligation state 6UZJ ; ; NMR structure of the HACS1 SH3 domain 1F2R ; ; NMR STRUCTURE OF THE HETERODIMERIC COMPLEX BETWEEN CAD DOMAINS OF CAD AND ICAD 2LHJ ; ; NMR structure of the high mobility group protein-like protein NHP1 from Babesia bovis T2Bo (BaboA.00841.a) 1BXD ; ; NMR STRUCTURE OF THE HISTIDINE KINASE DOMAIN OF THE E. COLI OSMOSENSOR ENVZ 2LH0 ; ; NMR structure of the histone-interacting N-terminal homodimeric region of Rtt106 1F6U ; ; NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop sl2 of the psi-RNA packaging signal. Implications for genome recognition 1M8L ; ; NMR structure of the HIV-1 Regulatory Protein Vpr 2DI2 ; ; NMR structure of the HIV-2 nucleocapsid protein 2E1X ; ; NMR structure of the HIV-2 nucleocapsid protein 5K5F ; ; NMR structure of the HLTF HIRAN domain 2MZN ; ; NMR structure of the HLTF HIRAN domain in its DNA-bound conformation 2LKX ; ; NMR structure of the homeodomain of Pitx2 in complex with a TAATCC DNA binding site 2M34 ; ; NMR Structure of the homeodomain transcription factor Gbx1 from Homo sapiens 2ME6 ; ; NMR Structure of the homeodomain transcription factor Gbx1 from Homo sapiens in complex with the DNA sequence CGACTAATTAGTCG 2ME0 ; ; NMR Structure of the homeodomain transcription factor Gbx1 from Homo sapiens solved in the presence of the DNA sequence CGACTAATTAGTCG 2N8G ; ; NMR Structure of the homeodomain transcription factor Gbx1[E23R,R58E] from Homo sapiens 1D8B ; ; NMR STRUCTURE OF THE HRDC DOMAIN FROM SACCHAROMYCES CEREVISIAE RECQ HELICASE 2G2B ; ; NMR structure of the human allograft inflammatory factor 1 1SGO ; ; NMR Structure of the human C14orf129 gene product, HSPC210. Northeast Structural Genomics target HR969. 1QZP ; ; NMR structure of the human dematin headpiece domain 1ZV6 ; ; NMR structure of the human dematin headpiece S74E mutant 1LG4 ; ; NMR structure of the human doppel protein fragment 24-152 1HLS ; ; NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16) 1G1E ; ; NMR STRUCTURE OF THE HUMAN MAD1 TRANSREPRESSION DOMAIN SID IN COMPLEX WITH MAMMALIAN SIN3A PAH2 DOMAIN 1TOZ ; ; NMR structure of the human NOTCH-1 ligand binding region 2B0F ; ; NMR Structure of the Human Rhinovirus 3C Protease (serotype 14) with covalently bound Ace-LEALFQ-ethylpropionate inhibitor 1HCS ; ; NMR STRUCTURE OF THE HUMAN SRC SH2 DOMAIN COMPLEX 1HCT ; ; NMR STRUCTURE OF THE HUMAN SRC SH2 DOMAIN COMPLEX 7M1W ; ; NMR structure of the Human T-cell leukemia virus 1 matrix protein 2GW6 ; ; NMR structure of the human tRNA endonuclease SEN15 subunit 2K7E ; ; NMR structure of the human tRNALys3 bound to the HIV genome Loop I 2MQD ; ; NMR structure of the hypotheical protein Lreu_0056 from Lactobacillus reuteri 1VDY ; ; NMR Structure of the hypothetical ENTH-VHS domain At3g16270 from Arabidopsis thaliana 1VEE ; ; NMR structure of the hypothetical rhodanese domain At4g01050 from Arabidopsis thaliana 1M6A ; ; NMR structure of the i-Motif Tetramer Formed by XC2 1YBL ; ; NMR structure of the i-motif tetramer of d(AACCCC) 2MI0 ; ; NMR structure of the I-V kissing-loop interaction of the Neurospora VS ribozyme 2N3Q ; ; NMR structure of the II-III-VI three-way junction from the VS ribozyme 2N3R ; ; NMR structure of the II-III-VI three-way junction from the VS ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement 2WWV ; ; NMR structure of the IIAchitobiose-IIBchitobiose complex of the N,N'- diacetylchitoboise brance of the E. coli phosphotransferase system. 2WY2 ; ; NMR structure of the IIAchitobiose-IIBchitobiose phosphoryl transition state complex of the N,N'-diacetylchitoboise brance of the E. coli phosphotransferase system. 2MTJ ; ; NMR structure of the III-IV-V three-way junction from the VS ribozyme 2MTK ; ; NMR structure of the III-IV-V three-way junction from the VS ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement 4A52 ; ; NMR structure of the imipenem-acylated L,D-transpeptidase from Bacillus subtilis 2AJJ ; ; NMR structure of the in-plane membrane anchor domain [1-28] of the monotopic Non Structural Protein 5A (NS5A) of Bovine Viral Diarrhea Virus (BVDV) 2AJM ; ; NMR structure of the in-plane membrane anchor domain [1-28] of the monotopic NonStructural Protein 5A (NS5A) from the Bovine Viral Diarrhea Virus (BVDV) 2AJN ; ; NMR structure of the in-plane membrane anchor domain [1-28] of the monotopic NonStructural Protein 5A (NS5A) from the Bovine Viral Diarrhea Virus (BVDV) 2AJO ; ; NMR structure of the in-plane membrane anchor domain [1-28] of the monotopic NonStructural Protein 5A (NS5A) from the Bovine Viral Diarrhea Virus (BVDV) 1S4X ; ; NMR Structure of the integrin B3 cytoplasmic domain in DPC micelles 1N6U ; ; NMR structure of the interferon-binding ectodomain of the human interferon receptor 2JX4 ; ; NMR structure of the intracellular loop (i3) of the vasopressin V2 receptor (GPCR) 2HKC ; ; NMR Structure of the IQ-modified Dodecamer CTCGGC[IQ]GCCATC 2Z2H ; ; NMR Structure of the IQ-modified Dodecamer CTCG[IQ]GCGCCATC 2Z2G ; ; NMR Structure of the IQ-modified Dodecamer CTC[IQ]GGCGCCATC 1J5L ; ; NMR STRUCTURE OF THE ISOLATED BETA_C DOMAIN OF LOBSTER METALLOTHIONEIN-1 1LUK ; ; NMR Structure of the Itk SH2 domain, Pro287cis, Energy minimized average structure 1LUM ; ; NMR Structure of the Itk SH2 domain, Pro287trans, 20 low energy structures 1LUN ; ; NMR Structure of the Itk SH2 domain, Pro287trans, energy minimized average structure 2KQX ; ; NMR structure of the J-domain (residues 2-72) in the Escherichia coli CbpA 1XBL ; ; NMR STRUCTURE OF THE J-DOMAIN (RESIDUES 2-76) IN THE ESCHERICHIA COLI N-TERMINAL FRAGMENT (RESIDUES 2-108) OF THE MOLECULAR CHAPERONE DNAJ, 20 STRUCTURES 1N4C ; ; NMR Structure of the J-Domain and Clathrin Substrate Binding Domain of Bovine Auxilin 6I9B ; ; NMR structure of the La module from human LARP4A 1S7A ; ; NMR structure of the La motif of human La protein 2LKQ ; ; NMR structure of the lambda 5 22-45 peptide 1AJ1 ; ; NMR STRUCTURE OF THE LANTIBIOTIC ACTAGARDINE 7EES ; ; NMR structure of the lasso peptide rubrivimycin 1JBI ; ; NMR structure of the LCCL domain 2LIE ; ; NMR structure of the lectin CCL2 1DTV ; ; NMR STRUCTURE OF THE LEECH CARBOXYPEPTIDASE INHIBITOR (LCI) 1C8P ; ; NMR STRUCTURE OF THE LIGAND BINDING DOMAIN OF THE COMMON BETA-CHAIN IN THE GM-CSF, IL-3 AND IL-5 RECEPTORS 5ML1 ; ; NMR Structure of the Littorina littorea metallothionein, a snail MT folding into three distinct domains 5MN3 ; ; NMR structure of the Littorina littorea metallothionein, a snail MT folding into three distinct domains 1JOX ; ; NMR Structure of the LP5.1 Hairpin from Bacillus RNase P RNA Refined with Residual Dipolar Couplings 1JP0 ; ; NMR Structure of the LP5.1 Hairpin from Bacillus RNase P RNA Refined WITHOUT Residual Dipolar Couplings 2M94 ; ; NMR structure of the lymphocyte receptor NKR-P1A 2MTI ; ; NMR structure of the lymphocyte receptor NKR-P1A 2MXN ; ; NMR Structure of the mature form of Trypanosoma brucei 1CGrx1 2KAW ; ; NMR structure of the mDvl1 PDZ domain in complex with its inhibitor 1R7F ; ; NMR structure of the membrane anchor domain (1-31) of the nonstructural protein 5A (NS5A) of hepatitis C virus (Ensemble of 43 structures. Sample in 100mM SDS) 1R7D ; ; NMR structure of the membrane anchor domain (1-31) of the nonstructural protein 5A (NS5A) of hepatitis C virus (Ensemble of 51 structures, sample in 50% tfe) 1R7G ; ; NMR structure of the membrane anchor domain (1-31) of the nonstructural protein 5A (NS5A) of hepatitis C virus (Minimized average structure, Sample in 100mM DPC) 1R7C ; ; NMR structure of the membrane anchor domain (1-31) of the nonstructural protein 5A (NS5A) of hepatitis C virus (Minimized average structure, Sample in 50% tfe) 1R7E ; ; NMR structure of the membrane anchor domain (1-31) of the nonstructural protein 5A (NS5A) of hepatitis C virus (Minimized average structure. Sample in 100mM SDS). 1PEH ; ; NMR STRUCTURE OF THE MEMBRANE-BINDING DOMAIN OF CTP PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE, 10 STRUCTURES 1PEI ; ; NMR STRUCTURE OF THE MEMBRANE-BINDING DOMAIN OF CTP PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE, 10 STRUCTURES 2JP7 ; ; NMR structure of the Mex67 UBA domain 1SBJ ; ; NMR Structure of the Mg2+-loaded C Terminal Domain of Cardiac Troponin C Bound to the N Terminal Domain of Cardiac Troponin I 1U6P ; ; NMR Structure of the MLV encapsidation signal bound to the Nucleocapsid protein 2L6E ; ; NMR Structure of the monomeric mutant C-terminal domain of HIV-1 Capsid in complex with stapled peptide Inhibitor 28SP ; ; NMR STRUCTURE OF THE MOST CONSERVED RNA MOTIF IN SRP RNA 28SR ; ; NMR STRUCTURE OF THE MOST CONSERVED RNA MOTIF IN SRP RNA 2L9L ; ; NMR Structure of the Mouse MFG-E8 C2 Domain 2JMU ; ; NMR structure of the mouse thiamine triphosphatase 1QPM ; ; NMR STRUCTURE OF THE MU BACTERIOPHAGE REPRESSOR DNA-BINDING DOMAIN 1G4D ; ; NMR STRUCTURE OF THE MU BACTERIOPHAGE REPRESSOR DNA-BINDING DOMAIN/DNA COMPLEX 2NC8 ; ; NMR structure of the Mycobacterium tuberculosis LppM (Rv2171) protein folded domain 2N1R ; ; NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein 1R2U ; ; NMR structure of the N domain of trout cardiac troponin C at 30 C 5VLN ; ; NMR structure of the N-domain of troponin C bound to switch region of troponin I 5W88 ; ; NMR structure of the N-domain of troponin C bound to switch region of troponin I and 3-methyldiphenylamine (peptide mode) 5WCL ; ; NMR structure of the N-domain of troponin C bound to switch region of troponin I and 3-methyldiphenylamine (solvent exposed mode) 2N7L ; ; NMR structure of the N-domain of troponin C bound to the switch region of troponin I and the covalent levosimendan analog i9 1FU6 ; ; NMR STRUCTURE OF THE N-SH2 DOMAIN OF THE P85 SUBUNIT OF PI3-KINASE 1FU5 ; ; NMR STRUCTURE OF THE N-SH2 DOMAIN OF THE P85 SUBUNIT OF PI3-KINASE COMPLEXED TO A DOUBLY PHOSPHORYLATED PEPTIDE DERIVED FROM POLYOMAVIRUS MIDDLE T ANTIGEN 2K48 ; ; NMR Structure of the N-terminal Coiled Coil Domain of the Andes Hantavirus Nucleocapsid Protein 2ALB ; ; NMR structure of the N-terminal domain a of the glycoprotein chaperone ERp57 1JWE ; ; NMR Structure of the N-Terminal Domain of E. Coli Dnab Helicase 7YWR ; ; NMR structure of the N-terminal domain of Nsp8 from SARS-CoV-2 5LXL ; ; NMR structure of the N-terminal domain of the Bacteriophage T5 decoration protein pb10 1R6P ; ; NMR structure of the N-terminal domain of trout cardiac troponin C at 7 C 3NLA ; ; NMR STRUCTURE OF THE N-TERMINAL DOMAIN WITH A LINKER PORTION OF ANTARCTIC EEL POUT ANTIFREEZE PROTEIN RD3, 40 STRUCTURES 3RDN ; ; NMR STRUCTURE OF THE N-TERMINAL DOMAIN WITH A LINKER PORTION OF ANTARCTIC EEL POUT ANTIFREEZE PROTEIN RD3, MINIMIZED AVERAGE STRUCTURE 1RI0 ; ; NMR structure of the N-terminal hath domain of human HDGF 1FAF ; ; NMR STRUCTURE OF THE N-TERMINAL J DOMAIN OF MURINE POLYOMAVIRUS T ANTIGENS. 2LXI ; ; NMR structure of the N-terminal RNA Binding domain 1 (RRM1) of the protein RBM10 from Homo sapiens 1P1T ; ; NMR Structure of the N-terminal RRM domain of Cleavage stimulation factor 64 KDa subunit 2AZS ; ; NMR structure of the N-terminal SH3 domain of Drk (calculated without NOE restraints) 1PN5 ; ; NMR structure of the NALP1 Pyrin domain (PYD) 2FN5 ; ; NMR Structure of the Neurabin PDZ domain (502-594) 1KG1 ; ; NMR structure of the NIP1 elicitor protein from Rhynchosporium secalis 2KM6 ; ; NMR structure of the NLRP7 Pyrin domain 2GDT ; ; NMR Structure of the nonstructural protein 1 (nsp1) from the SARS coronavirus 2HSX ; ; NMR Structure of the nonstructural protein 1 (nsp1) from the SARS coronavirus 1YSY ; ; NMR Structure of the nonstructural Protein 7 (nsP7) from the SARS CoronaVirus 1UAP ; ; NMR structure of the NTR domain from human PCOLCE1 2KKG ; ; NMR structure of the octarepeat region of prion protein bound to pentosan polysulfate 1Q9F ; ; NMR STRUCTURE OF THE OUTER MEMBRANE PROTEIN OMPX IN DHPC MICELLES 1Q9G ; ; NMR STRUCTURE OF THE OUTER MEMBRANE PROTEIN OMPX IN DHPC MICELLES 2KIO ; ; NMR structure of the oxidized yeast TOR1 FATC domain bound to DPC micelles at 318K 2M5U ; ; NMR structure of the P4 hairpin of the CPEB3 ribozyme 2KKC ; ; NMR structure of the p62 PB1 domain 2M8E ; ; NMR structure of the PAI subdomain of Sleeping Beauty transposase 1CQO ; ; NMR STRUCTURE OF THE PALINDROMIC DNA DECAMER D(GCGTTAACGC)2 2MDZ ; ; NMR structure of the Paracoccus denitrificans Z-subunit determined in the presence of ADP 1NZM ; ; NMR structure of the parallel-stranded DNA quadruplex d(TTAGGGT)4 complexed with the telomerase inhibitor RHPS4 2KUD ; ; NMR structure of the PASTA domain 1 and 2 of Mycobacterium tuberculosis of PknB 2KUE ; ; NMR structure of the PASTA domain 2 and 3 of Mycobacterium tuberculosis of PknB 2KUF ; ; NMR structure of the PASTA domain 3 and 4 of Mycobacterium tuberculosis of PknB 2KUI ; ; NMR structure of the PASTA domain of Mycobacterium tuberculosis of PknB 1EE7 ; ; NMR STRUCTURE OF THE PEPTAIBOL CHRYSOSPERMIN C BOUND TO DPC MICELLES 1W3D ; ; NMR structure of the peripheral-subunit binding domain of Bacillus stearothermophilus E2p 1TWO ; ; NMR structure of the pheromone binding protein from Antheraea polyphemus at acidic pH 2FM4 ; ; NMR structure of the phosphoryl carrier domain of pyruvate phosphate dikinase 2KB3 ; ; NMR Structure of the phosphorylated form of OdhI, pOdhI. 2LFW ; ; NMR structure of the PhyRSL-NepR complex from Sphingomonas sp. Fr1 1XYQ ; ; NMR structure of the pig prion protein 2LIC ; ; NMR Structure of the Polyserine Tract of Apis mellifera Vitellogenin, residues 358-392 1HO2 ; ; NMR STRUCTURE OF THE POTASSIUM CHANNEL FRAGMENT L45 IN MICELLES 1HO7 ; ; NMR STRUCTURE OF THE POTASSIUM CHANNEL FRAGMENT L45 IN TFE 5U87 ; ; NMR structure of the precursor protein PawS1 comprising SFTI-1 and a seed storage albumin 6HPI ; ; NMR structure of the pro-inflammatory cytokine interleukin-36alpha 2N7I ; ; NMR structure of the prolactin receptor transmembrane domain 2MHD ; ; NMR structure of the protein BACUNI_03114 from Bacteroides uniformis ATCC 8492 2LO1 ; ; NMR structure of the protein BC008182, a DNAJ-like domain from Homo sapiens 2LMI ; ; NMR structure of the protein BC040485 from Homo sapiens 2M4L ; ; NMR structure of the protein BT_0846 from Bacteroides thetaiotaomicron VPI-5482 (NP_809759.1) 2MQC ; ; NMR structure of the protein BVU_0925 from Bacteroides vulgatus ATCC 8482 2KL4 ; ; NMR structure of the protein NB7804A 2LYY ; ; NMR structure of the protein NB7890A from Shewanella sp 2MVB ; ; NMR structure of the protein NP_344732.1 from Streptococcus pneumoniae TIGR4 2M7O ; ; NMR Structure of the protein NP_346341.1 from Streptococcus pneumoniae 2LR4 ; ; NMR structure of the protein NP_390037.1 from Bacillus subtilis 2LYX ; ; NMR structure of the protein NP_390345.1 from Bacilus subtilis 2KTS ; ; NMR structure of the protein NP_415897.1 2MHE ; ; NMR structure of the protein NP_419126.1 from Caulobacter crescentus 2MW1 ; ; NMR structure of the protein NP_809137.1 from Bacteroides thetaiotaomicron 2LLG ; ; NMR structure of the protein NP_814968.1 from Enterococcus faecalis 2KA5 ; ; NMR Structure of the protein TM1081 2K9Z ; ; NMR structure of the protein TM1112 2KA0 ; ; NMR structure of the protein TM1367 2LRG ; ; NMR structure of the protein YP_001300941.1 from Bacteroides vulgatus 2LG7 ; ; NMR structure of the protein YP_001302112.1 from Parabacteroides Distasonis 2MMB ; ; NMR structure of the protein YP_001712342.1 from Acinetobacter baumannii 2MCA ; ; NMR structure of the protein YP_002937094.1 from Eubacterium rectale 2MWM ; ; NMR structure of the protein YP_193882.1 from Lactobacillus acidophilus NCFM in presence of FMN 2LA7 ; ; NMR structure of the protein YP_557733.1 from Burkholderia xenovorans 2L6O ; ; NMR structure of the protein YP_926445.1 from Shewanella Amazonensis 2LZ0 ; ; NMR structure of the protein ZP_02034617.1 from Bacteroides capillosus ATCC 29799 2MCT ; ; NMR structure of the protein ZP_02042476.1 from Ruminococcus gnavus 2XEB ; ; NMR STRUCTURE OF THE PROTEIN-UNBOUND SPLICEOSOMAL U4 SNRNA 5' STEM LOOP 2J48 ; ; NMR structure of the pseudo-receiver domain of the CikA protein. 2LL0 ; ; NMR structure of the putative ATPase regulatory protein YP_916642.1 from Paracoccus denitrificans 6X6N ; ; NMR structure of the putative GTPase-Activating (GAP) domain of VopE 1UCP ; ; NMR structure of the PYRIN domain of human ASC 1R7W ; ; NMR STRUCTURE OF THE R(GGAGGACAUCCCUCACGGGUGACCGUGGUCCUCC), DOMAIN IV STEM-LOOP B OF ENTEROVIRAL IRES WITH AUCCCU BULGE 1R7Z ; ; NMR STRUCTURE OF THE R(GGAGGACAUUCCUCACGGGUGACCGUGGUCCUCC), DOMAIN IV STEM-LOOP B OF ENTEROVIRAL IRES WITH AUUCCU BULGE 1UG8 ; ; NMR structure of the R3H domain from Poly(A)-specific Ribonuclease 2MRE ; ; NMR structure of the Rad18-UBZ/ubiquitin complex 2JQI ; ; NMR Structure of the Rad53 FHA1 domain in complex with a phosphothreonien peptide derived from Rad53 SCD1 3CRD ; ; NMR STRUCTURE OF THE RAIDD CARD DOMAIN, 15 STRUCTURES 5UNK ; ; NMR structure of the RED subdomain of the Sleeping Beauty transposase 1XJH ; ; NMR structure of the redox switch domain of the E. coli Hsp33 1P6Q ; ; NMR Structure of the Response regulator CheY2 from Sinorhizobium meliloti, complexed with Mg++ 1AQG ; ; NMR STRUCTURE OF THE RHODOPSIN-BOUND C-TERMINAL PEPTIDE OF THE TRANSDUCIN ALPHA-SUBUNIT, 20 STRUCTURES 1N88 ; ; NMR structure of the ribosomal protein L23 from Thermus thermophilus. 2LXH ; ; NMR structure of the RING domain in ubiquitin ligase gp78 2ERR ; ; NMR Structure of the RNA Binding Domain of Human Fox-1 in Complex with UGCAUGU 2LQ5 ; ; NMR structure of the RNA binding motif 39 (RBM39) from Mus musculus 2MAX ; ; NMR structure of the RNA polymerase alpha subunit C-terminal domain from Helicobacter pylori 6CCJ ; ; NMR structure of the Rous sarcoma virus matrix protein (M domain) 6CE5 ; ; NMR structure of the Rous sarcoma virus matrix protein (M-domain) in the presence of myo-inositol hexakisphosphate 2FVT ; ; NMR Structure of the Rpa2829 protein from Rhodopseudomonas palustris: Northeast Structural Genomics Target RpR43 2MKS ; ; NMR structure of the RRM domain of RBMX from homo sapiens 2MZR ; ; NMR structure of the RRM1 domain of Hrb1 2MZS ; ; NMR structure of the RRM2 domain of Hrb1 2M2B ; ; NMR structure of the RRM2 domain of the protein RBM10 from Homo sapiens 2MZQ ; ; NMR structure of the RRM3 domain of Gbp2 2MZT ; ; NMR structure of the RRM3 domain of Hrb1 2MIJ ; ; NMR structure of the S-linked glycopeptide sublancin 168 2RNJ ; ; NMR Structure of The S. Aureus VraR DNA Binding Domain 1OW5 ; ; NMR structure of the Saccharomyces cerevisiae SAM (Sterile Alpha Motif) domain 1Z1V ; ; NMR structure of the Saccharomyces cerevisiae Ste50 SAM domain 5X29 ; ; NMR structure of the SARS Coronavirus E protein pentameric ion channel 2KYS ; ; NMR Structure of the SARS Coronavirus Nonstructural Protein Nsp7 in Solution at pH 6.5 2GRI ; ; NMR Structure of the SARS-CoV non-structural protein nsp3a 2IDY ; ; NMR Structure of the SARS-CoV non-structural protein nsp3a 6GGZ ; ; NMR structure of the scorpion toxin AmmTx3 2KS4 ; ; NMR structure of the sea anemone actinoporin Sticholysin 5LAH ; ; NMR structure of the sea anemone peptide tau-AnmTx Ueq 12-1 with an uncommon fold 2LY1 ; ; NMR structure of the second and third lotus domains of tudor domain-containing protein 7 (NMR ensemble overlay for Lotus #2) 2LY2 ; ; NMR structure of the second and third lotus domains of tudor domain-containing protein 7 (NMR ensemble overlay for Lotus #3) 2DDI ; ; NMR structure of the second Kunitz domain of human WFIKKN1 2DDJ ; ; NMR structure of the second Kunitz domain of human WFIKKN1 2LRI ; ; NMR structure of the second PHD finger of AIRE (AIRE-PHD2) 2HGM ; ; NMR structure of the second qRRM domain of human hnRNP F 6DG1 ; ; NMR structure of the second qRRM2 domain of human hnRNP H 6FDT ; ; NMR structure of the second TPR domain of the human RPAP3 protein in complex with HSP70 peptide SGPTIEEVD 6FDP ; ; NMR structure of the second TPR domain of the human RPAP3 protein in complex with HSP90 peptide DTSRMEEVD 2LWH ; ; NMR Structure of the Self-Complementary 10 mer DNA Duplex 5'-GGATATATCC-3' in Complex with Netropsin 2LWG ; ; NMR Structure of the Self-Complementary 10 mer DNA Oligonucleotide 5'-GGATATATCC-3'. 1GL5 ; ; NMR structure of the SH3 domain from the Tec protein tyrosine kinase 2M51 ; ; NMR structure of the SH3 domain of human RAS p21 protein activator (GTPase activating protein) 1 2O8K ; ; NMR Structure of the Sigma-54 RpoN Domain Bound to the-24 Promoter Element 1NJQ ; ; NMR structure of the single QALGGH zinc finger domain from Arabidopsis thaliana SUPERMAN protein 1F8Z ; ; NMR STRUCTURE OF THE SIXTH LIGAND-BINDING MODULE OF THE LDL RECEPTOR 2KII ; ; NMR structure of the SO2144 H-NOX domain from Shewanella oneidensis in the Fe(II)CO ligation state 2MJ1 ; ; NMR structure of the soluble A beta 17-34 peptide 2IGZ ; ; NMR structure of the sterol-dependent antifungal antibiotic bacillomycin Lc 7JI1 ; ; NMR structure of the Streptococcus pyogenes NAD+-glycohydrolase translocation domain 1Q5L ; ; NMR structure of the substrate binding domain of DnaK bound to the peptide NRLLLTG 1DG4 ; ; NMR STRUCTURE OF THE SUBSTRATE BINDING DOMAIN OF DNAK IN THE APO FORM 2BPR ; ; NMR STRUCTURE OF THE SUBSTRATE BINDING DOMAIN OF DNAK, 25 STRUCTURES 1BPR ; ; NMR STRUCTURE OF THE SUBSTRATE BINDING DOMAIN OF DNAK, MINIMIZED AVERAGE STRUCTURE 1XV3 ; ; NMR structure of the synthetic penaeidin 4 2JTX ; ; NMR structure of the TFIIE-alpha carboxyl terminus 1IE5 ; ; NMR STRUCTURE OF THE THIRD IMMUNOGLOBULIN DOMAIN FROM THE NEURAL CELL ADHESION MOLECULE. 2HGN ; ; NMR structure of the third qRRM domain of human hnRNP F 2M52 ; ; NMR Structure of the third RNA Recognition Motif (RRM) of U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) 2 6I57 ; ; NMR structure of the third TPR domain of the human SPAG1 protein 1SV1 ; ; NMR structure of the ThKaiA180C-CIIABD complex (25-structure ensemble) 1SUY ; ; NMR structure of the ThKaiA180C-CIIABD complex (average minimized structure) 1RDE ; ; NMR structure of the thrombin-binding DNA aptamer stabilized by Sr2+ 2KLU ; ; NMR structure of the transmembrane and cytoplasmic domains of human CD4 2K0L ; ; NMR structure of the transmembrane domain of the Outer Membrane Protein A from Klebsiella pneumoniae in DHPC micelles. 1MUZ ; ; NMR STRUCTURE OF THE TUMOR SUPPRESSOR BIN1: ALTERNATIVE SPLICING IN MELANOMA AND INTERACTION WITH C-MYC 1MV0 ; ; NMR STRUCTURE OF THE TUMOR SUPPRESSOR BIN1: ALTERNATIVE SPLICING IN MELANOMA AND INTERACTION WITH C-MYC 1MV3 ; ; NMR STRUCTURE OF THE TUMOR SUPPRESSOR BIN1: ALTERNATIVE SPLICING IN MELANOMA AND INTERACTION WITH C-MYC 1M0V ; ; NMR STRUCTURE OF THE TYPE III SECRETORY DOMAIN OF YERSINIA YOPH COMPLEXED WITH THE SKAP-HOM PHOSPHO-PEPTIDE N-acetyl-DEpYDDPF-NH2 7PS8 ; ; NMR Structure of the U3 RNA G-quadruplex 1Q02 ; ; NMR structure of the UBA domain of p62 (SQSTM1) 2K0B ; ; NMR structure of the UBA domain of p62 (SQSTM1) 2L4E ; ; NMR structure of the UBA domain of S. cerevisiae Dcn1 2L4F ; ; NMR structure of the UBA domain of S. cerevisiae Dcn1 bound to ubiquitin 2JY8 ; ; NMR structure of the ubiquitin associated (UBA) domain of p62 (SQSTM1) in complex with ubiquitin. RDC refined 2JY7 ; ; NMR structure of the ubiquitin associated (UBA) domain of p62 (SQSTM1). RDC refined 2MRF ; ; NMR structure of the ubiquitin-binding zinc finger (UBZ) domain from human Rad18 1I42 ; ; NMR STRUCTURE OF THE UBX DOMAIN FROM P47 1JRU ; ; NMR STRUCTURE OF THE UBX DOMAIN FROM P47 (ENERGY MINIMISED AVERAGE) 2OJ7 ; ; NMR structure of the UGUU tetraloop of Duck Epsilon apical stem loop 2OJ8 ; ; NMR structure of the UGUU tetraloop of Duck Epsilon apical stem loop of the Hepatitis B virus 2LGL ; ; NMR structure of the UHRF1 PHD domain 1LS8 ; ; NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH 2KB4 ; ; NMR structure of the unphosphorylated form of OdhI, OdhI. 1TBK ; ; NMR structure of the VS ribozyme stem-loop V RNA in the absence of multivalent ions. 2LUH ; ; NMR structure of the Vta1-Vps60 complex 5H7P ; ; NMR structure of the Vta1NTD-Did2(176-204) complex 1XX8 ; ; NMR Structure of the W24A Mutant of the Hyperthermophile Sac7d Protein 2D3J ; ; NMR structure of the WIF domain from human WIF-1 2KD3 ; ; NMR structure of the Wnt modulator protein Sclerostin 2L4W ; ; NMR structure of the Xanthomonas VirB7 1K8N ; ; NMR structure of the XBY2 DNA duplex, an analog of CK14 containing phosphorodithioate groups at C22 and C24 1F5X ; ; NMR STRUCTURE OF THE Y174 AUTOINHIBITED DBL HOMOLOGY DOMAIN 2N3Y ; ; NMR structure of the Y48pCMF variant of human cytochrome c in its reduced state 2JQL ; ; NMR structure of the yeast Dun1 FHA domain in complex with a doubly phosphorylated (pT) peptide derived from Rad53 SCD1 1QGP ; ; NMR STRUCTURE OF THE Z-ALPHA DOMAIN OF ADAR1, 15 STRUCTURES 7VKV ; ; NMR structure of the zeta-subunit of the F1F0-ATPase from Sinorhizobium meliloti 1KLR ; ; NMR Structure of the ZFY-6T[Y10F] Zinc Finger 1KLS ; ; NMR Structure of the ZFY-6T[Y10L] Zinc Finger 1K81 ; ; NMR Structure of the Zinc-Ribbon Domain within Translation Initiation Factor 2 Subunit beta 8SXM ; ; NMR structure of the ZNF750 zinc finger domain, Z* 2GLG ; ; NMR structure of the [L23,A24]-sCT mutant 1DQB ; ; NMR STRUCTURE OF THROMBOMODULIN EGF(4-5) 2L9I ; ; NMR structure of thymosin alpha-1 5O2V ; ; NMR structure of TIA-1 RRM1 domain 5H1I ; ; NMR structure of TIBA, a chimera of SFTI 2CHK ; ; NMR structure of TLLLLT quadruplex 5NAO ; ; NMR structure of TLR4 transmembrane domain (624-657) in DPC micelles 5NAM ; ; NMR structure of TLR4 transmembrane domain (624-670) in DMPG/DHPC bicelles 8I26 ; ; NMR structure of Toxoplasma gondii PDCD5 (cis form) 8I25 ; ; NMR structure of Toxoplasma gondii PDCD5 (trans form) 2DX2 ; ; NMR structure of TP (Target Peptide): monomeric 3_10 helix 2I2H ; ; NMR structure of TPC3 in TFE 1Y4E ; ; NMR structure of transmembrane segment IV of the NHE1 isoform of the Na+/H+ exchanger 1L2Y ; ; NMR Structure of Trp-Cage Miniprotein Construct TC5b 6OVJ ; ; NMR structure of truncated alpha conotoxin SII: Ile-SII(3-14) 1LE0 ; ; NMR structure of Tryptophan Zipper 1: a stable, monomeric beta-hairpin with a type II' turn 1LE1 ; ; NMR Structure of Tryptophan Zipper 2: A stable, Monomeric Beta-Hairpin with a Type I' Turn 1LE3 ; ; NMR Structure of Tryptophan Zipper 4: A Stable Beta-Hairpin Peptide Based on the C-terminal Hairpin of the B1 Domain of Protein G 7DFE ; ; NMR structure of TuSp2-RP 2LXP ; ; NMR structure of two domains in ubiquitin ligase gp78, RING and G2BR, bound to its conjugating enzyme Ube2g 1Q5F ; ; NMR Structure of Type IVb pilin (PilS) from Salmonella typhi 6BA3 ; ; NMR structure of U21-hexatoxin-Hi1a toxin from Australian Funnel-web spider Hadronyche infensa 2KF0 ; ; NMR structure of U6 ISL at pH 7.0 2KEZ ; ; NMR structure of U6 ISL at pH 8.0 2I2J ; ; NMR structure of UA159sp in TFE 6FZK ; ; NMR structure of UB2H, regulatory domain of PBP1b from E. coli 2MR9 ; ; NMR structure of UBA domain of DNA-damage-inducible 1 protein (Ddi1) 2JY5 ; ; NMR structure of Ubiquilin 1 UBA domain 1MG8 ; ; NMR structure of ubiquitin-like domain in murine Parkin 1P1A ; ; NMR structure of ubiquitin-like domain of hHR23B 2LGK ; ; NMR Structure of UHRF1 PHD domains in a complex with histone H3 peptide 2L3R ; ; NMR structure of UHRF1 Tandem Tudor Domains in a complex with Histone H3 peptide 5IAY ; ; NMR structure of UHRF1 Tandem Tudor Domains in a complex with Spacer peptide 5JTK ; ; NMR structure of Uncharacterized protein from Pseudomonas aeruginosa PAO1 2MY7 ; ; NMR Structure of unfolding intermediate state of RRM-3 domain of ETR-3 1Z1M ; ; NMR structure of unliganded MDM2 1OPQ ; ; NMR structure of unmethylated GATC site 2LAC ; ; NMR structure of unmodified_ASL_Tyr 1ZLL ; ; NMR Structure of Unphosphorylated Human Phospholamban Pentamer 2GZO ; ; NMR structure of UPF0301 PROTEIN SO3346 from Shewanella oneidensis: Northeast Structural Genomics Consortium target SOR39 2K41 ; ; NMR structure of uridine bulged RNA duplex 6HVB ; ; NMR structure of Urotensin Peptide Asp-c[Cys-Phe-(N-Me)Trp-Lys-Tyr-Cys]-Val in SDS solution 6HVC ; ; NMR structure of Urotensin Peptide Asp-c[Cys-Phe-Trp-(N-Me)Lys-Tyr-Cys]-Val in SDS solution 5ZB6 ; ; NMR structure of UVI31+ 2RRI ; ; NMR structure of vasoactive intestinal peptide in DPC Micelle 2RRH ; ; NMR structure of vasoactive intestinal peptide in Methanol 1CZ4 ; ; NMR STRUCTURE OF VAT-N: THE N-TERMINAL DOMAIN OF VAT (VCP-LIKE ATPASE OF THERMOPLASMA) 1CZ5 ; ; NMR STRUCTURE OF VAT-N: THE N-TERMINAL DOMAIN OF VAT (VCP-LIKE ATPASE OF THERMOPLASMA) 2MWL ; ; NMR structure of VG16KRKP, an antimicrobial peptide in LPS 2N01 ; ; NMR structure of VirB9 C-terminal domain in complex with VirB7 N-terminal domain from Xanthomonas citri's T4SS 1WN4 ; ; NMR Structure of VoNTR 1YXR ; ; NMR Structure of VPS4A MIT Domain 2K3W ; ; NMR structure of VPS4A-MIT-CHMP6 6ZSS ; ; NMR structure of water-soluble domain of human Lynx2 (Lypd1) protein 1TK7 ; ; NMR structure of WW domains (WW3-4) from Suppressor of Deltex 6NM2 ; ; NMR Structure of WW291 6NM3 ; ; NMR structure of WW295 2NCW ; ; NMR structure of WWWKYE21 structure in LPS micelles 2GM2 ; ; NMR structure of Xanthomonas campestris XCC1710: Northeast Structural Genomics Consortium target XcR35 2MPJ ; ; NMR structure of Xenopus RecQ4 zinc knuckle 5YDX ; ; NMR structure of YAP1-2 WW1 domain with LATS1 PPxY motif complex 5YDY ; ; NMR structure of YAP1-2 WW2 domain with LATS1 PPxY motif complex 2KPU ; ; NMR Structure of YbbR family protein Dhaf_0833 (residues 32-118) from Desulfitobacterium hafniense DCB-2: Northeast Structural Genomics Consortium target DhR29B 2L5N ; ; NMR Structure of YbbR family protein Dhaf_0833 (residues 32-118) from Desulfitobacterium hafniense DCB-2: Northeast Structural Genomics Consortium target DhR29B 5VSO ; ; NMR structure of Ydj1 J-domain, a cytosolic Hsp40 from Saccharomyces cerevisiae 2N94 ; ; NMR structure of yeast Bcd1 protein zinc finger 2JQJ ; ; NMR structure of yeast Dun1 FHA domain 2N95 ; ; NMR structure of yeast Hit1 protein zinc finger 1RKL ; ; NMR structure of yeast oligosaccharyltransferase subunit Ost4p 2N2M ; ; NMR structure of yersinia pestis Ail (attachment invasion locus) in decylphosphocholine micelles 2N2L ; ; NMR structure of yersinia pestis ail (attachment invasion locus) in decylphosphocholine micelles calculated with implicit membrane solvation 1IH9 ; ; NMR Structure of Zervamicin IIB (peptaibol antibiotic) Bound to DPC Micelles 1N1U ; ; NMR structure of [Ala1,15]kalata B1 1DUM ; ; NMR STRUCTURE OF [F5Y, F16W] MAGAININ 2 BOUND TO PHOSPHOLIPID VESICLES 1Z2T ; ; NMR structure study of anchor peptide Ser65-Leu87 of enzyme acholeplasma laidlawii Monoglycosyldiacyl Glycerol Synthase (alMGS) in DHPC micelles 2LVL ; ; NMR Structure the lantibiotic immunity protein SpaI 1RL5 ; ; NMR structure with tightly bound water molecule of cytotoxin I from Naja oxiana in aqueous solution (major form) 1CB9 ; ; NMR STRUCTURE WITH TIGHTLY BOUND WATER MOLECULES OF CYTOTOXIN II (CARDIOTOXIN) FROM NAJA NAJA OXIANA IN AQUEOUS SOLUTION (MAJOR FORM). 1CCQ ; ; NMR STRUCTURE WITH TIGHTLY BOUND WATER MOLECULES OF CYTOTOXIN II (CARDIOTOXIN) FROM NAJA NAJA OXIANA IN AQUEOUS SOLUTION (MINOR FORM). 2RSW ; ; NMR structure, Localization and Vesicle fusion of Chikungunya virus Fusion peptide 2KJL ; ; NMR structures of a designed Cyanovirin-N homolog lectin; LKAMG 1CS2 ; ; NMR STRUCTURES OF B-DNA D(CTACTGCTTTAG).D(CTAAAGCAGTAG) 1DBY ; ; NMR STRUCTURES OF CHLOROPLAST THIOREDOXIN M CH2 FROM THE GREEN ALGA CHLAMYDOMONAS REINHARDTII 2K1K ; ; NMR structures of dimeric transmembrane domain of the receptor tyrosine kinase EphA1 in lipid bicelles at pH 4.3 2K1L ; ; NMR structures of dimeric transmembrane domain of the receptor tyrosine kinase EphA1 in lipid bicelles at pH 6.3 1FCT ; ; NMR STRUCTURES OF FERREDOXIN CHLOROPLASTIC TRANSIT PEPTIDE FROM CHLAMYDOMONAS REINHARDTII PROMOTED BY TRIFLUOROETHANOL IN AQUEOUS SOLUTION 2KDL ; ; NMR structures of GA95 and GB95, two designed proteins with 95% sequence identity but different folds and functions 2KDM ; ; NMR structures of GA95 and GB95, two designed proteins with 95% sequence identity but different folds and functions 2M5I ; ; NMR structures of human apoptotic protein tBid in LPPG micelle 5J6T ; ; NMR structures of hylin-a1 analogs: Hylin-Ac 5J6V ; ; NMR structures of hylin-a1 analogs: Hylin-D 5J6W ; ; NMR structures of hylin-a1 analogs: Hylin-K 1LUI ; ; NMR Structures of Itk SH2 domain, Pro287cis isoform, ensemble of 20 low energy structures 1FH3 ; ; NMR STRUCTURES OF LQH III ALPHA-LIKE SCORPION TOXIN FROM LEIURUS QUINQUESTRIATUS CORRESPONDING TO THE MAJOR CONFORMER IN SOLUTION 1DE1 ; ; NMR STRUCTURES OF OXIDIZED BACTERIOPHAGE T4 GLUTAREDOXIN 1NZS ; ; NMR structures of phosphorylated carboxy terminus of bovine rhodopsin in arrestin-bound state 1DE2 ; ; NMR STRUCTURES OF REDUCED BACTERIOPHAGE T4 GLUTAREDOXIN 2H80 ; ; NMR structures of SAM domain of Deleted in Liver Cancer 2 (DLC2) 2LWZ ; ; NMR Structures of Single-chain Insulin 2MAW ; ; NMR structures of the alpha7 nAChR transmembrane domain. 1IVT ; ; NMR structures of the C-terminal globular domain of human lamin A/C 1AIW ; ; NMR STRUCTURES OF THE CELLULOSE-BINDING DOMAIN OF THE ENDOGLUCANASE Z FROM ERWINIA CHRYSANTHEMI, 23 STRUCTURES 2ICZ ; ; NMR Structures of the Expanded DNA 10bp xTGxTAxCxGCxAxGT:xACTxGCGxTAxCA 2K58 ; ; NMR structures of the first transmembrane domain of the neuronal acetylcholine receptor beta 2 subunit 1L3E ; ; NMR Structures of the HIF-1alpha CTAD/p300 CH1 Complex 2BBP ; ; NMR structures of the peptide linked to the genome (VPg) of poliovirus 2BBL ; ; NMR structures of the peptide linked to the genome (VPg) of poliovirus in a stabilizing solvent 2K59 ; ; NMR structures of the second transmembrane domain of the neuronal acetylcholine receptor beta 2 subunit 2LM2 ; ; NMR structures of the transmembrane domains of the AChR b2 subunit 2LLY ; ; NMR structures of the transmembrane domains of the nAChR a4 subunit 1K0P ; ; NMR Structures of the Zinc Finger Domain of Human DNA Polymerase-alpha 1N5G ; ; NMR Structures of the Zinc Finger Domain of Human DNA Polymerase-alpha 2KSR ; ; NMR structures of TM domain of the n-Acetylcholine receptor b2 subunit 2NVJ ; ; NMR structures of transmembrane segment from subunit a from the yeast proton V-ATPase 1GH1 ; ; NMR STRUCTURES OF WHEAT NONSPECIFIC LIPID TRANSFER PROTEIN 2Z4D ; ; NMR Structures of Yeast Proteasome Component Rpn13 5IEW ; ; NMR Structures Show Unwinding of the GCN4p Coiled Coil Superhelix Accompanying Disruption of Ion Pairs at Acidic pH 5IIR ; ; NMR Structures Show Unwinding of the GCN4p Coiled Coil Superhelix Accompanying Disruption of Ion Pairs at Acidic pH 7XGA ; ; NMR strucutre of chimeric protein for model of PHD-Stella complex 1CYA ; ; NMR STUDIES OF (U-13C)CYCLOSPORIN A BOUND TO CYCLOPHILIN: BOUND CONFORMATION AND PORTIONS OF CYCLOSPORIN INVOLVED IN BINDING 1CYB ; ; NMR STUDIES OF (U-13C)CYCLOSPORIN A BOUND TO CYCLOPHILIN: BOUND CONFORMATION AND PORTIONS OF CYCLOSPORIN INVOLVED IN BINDING 2KB1 ; ; NMR studies of a channel protein without membrane: structure and dynamics of water-solubilized KcsA 2K1E ; ; NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA 2K1D ; ; NMR Studies of a Pathogenic Mutant (D178N) of the Human Prion Protein 1TFB ; ; NMR STUDIES OF HUMAN GENERAL TRANSCRIPTION FACTOR TFIIB: DYNAMICS AND INTERACTION WITH VP16 ACTIVATION DOMAIN, 20 STRUCTURES 2MIV ; ; NMR studies of N2-guanine adducts derived from the tumorigen dibenzo[a,l]pyrene in DNA: Impact of adduct stereochemistry, size, and local DNA structure on solution conformations 2CNJ ; ; NMR studies on the interaction of Insulin-Growth Factor II (IGF-II) with IGF2R domain 11 1ROE ; ; NMR STUDY OF 2FE-2S FERREDOXIN OF SYNECHOCOCCUS ELONGATUS 1ROF ; ; NMR STUDY OF 4FE-4S FERREDOXIN OF THERMATOGA MARITIMA 2MMX ; ; NMR study of 6aJL2 1EMO ; ; NMR STUDY OF A PAIR OF FIBRILLIN CA2+ BINDING EPIDERMAL GROWTH FACTOR-LIKE DOMAINS, 22 STRUCTURES 1EMN ; ; NMR STUDY OF A PAIR OF FIBRILLIN CA2+ BINDING EPIDERMAL GROWTH FACTOR-LIKE DOMAINS, MINIMIZED AVERAGE STRUCTURE 1HJ7 ; ; NMR study of a pair of LDL receptor Ca2+ binding epidermal growth factor-like domains, 20 structures 1RML ; ; NMR STUDY OF ACID FIBROBLAST GROWTH FACTOR BOUND TO 1,3,6-NAPHTHALENE TRISULPHONATE, 26 STRUCTURES 1FJB ; ; NMR Study of an 11-Mer DNA Duplex Containing 7,8-Dihydro-8-Oxoadenine (AOXO) Opposite Thymine 1FV8 ; ; NMR STUDY OF AN HETEROCHIRAL HAIRPIN 1WRT ; ; NMR STUDY OF APO TRP REPRESSOR 1FKY ; ; NMR STUDY OF B-DNA CONTAINING A MISMATCHED BASE PAIR IN THE 29-39 K-RAS GENE SEQUENCE: CC CT C+C C+T, 2 STRUCTURES 1FKZ ; ; NMR STUDY OF B-DNA CONTAINING A MISMATCHED BASE PAIR IN THE 29-39 K-RAS GENE SEQUENCE: CC CT C+C C+T, 2 STRUCTURES 1KXS ; ; NMR STUDY OF B-DNA CONTAINING A MODIFIED BASE PAIR: THE 2'-DEOXYADENOSINE 3-(2-HYDROXYETHYL-2'-DEOXYURIDINE) 1BWY ; ; NMR STUDY OF BOVINE HEART FATTY ACID BINDING PROTEIN 2BI6 ; ; NMR STUDY OF BROMELAIN INHIBITOR VI FROM PINEAPPLE STEM 1JUN ; ; NMR STUDY OF C-JUN HOMODIMER 1FJA ; ; NMR STUDY OF DEOXYRIBONUCLEIC ACID COMPLEXED WITH ACTINOMYCIN D 1AL9 ; ; NMR STUDY OF DNA (5'-D(*AP*CP*GP*TP*AP*CP*GP*T)-3') SELF-COMPLEMENTARY DUPLEX COMPLEXED WITH A BIS-DAUNORUBICIN, MINIMIZED AVERAGE STRUCTURE 1DSC ; ; NMR STUDY OF DNA (5'-D(*GP*AP*AP*GP*CP*TP*TP*C)-3') SELF-COMPLEMENTARY DUPLEX COMPLEXED WITH ACTINOMYCIN D, MINIMIZED AVERAGE STRUCTURE 1DSD ; ; NMR STUDY OF DNA (5'-D(*GP*AP*TP*GP*CP*TP*TP*C)-3') T:T MISMATCHED DUPLEX COMPLEXED WITH ACTINOMYCIN D, MINIMIZED AVERAGE STRUCTURE 1AMD ; ; NMR STUDY OF DNA (5'-D(*TP*GP*TP*AP*CP*A)-3') SELF-COMPLEMENTARY DUPLEX COMPLEXED WITH A BIS-DAUNORUBICIN WP-652, MINIMIZED AVERAGE STRUCTURE 1WRS ; ; NMR STUDY OF HOLO TRP REPRESSOR 3IFB ; ; NMR STUDY OF HUMAN INTESTINAL FATTY ACID BINDING PROTEIN 1EAL ; ; NMR STUDY OF ILEAL LIPID BINDING PROTEIN 1CV9 ; ; NMR STUDY OF ITAM PEPTIDE SUBSTRATE 2M35 ; ; NMR study of k-Ssm1a 1IKM ; ; NMR study of monomeric human interleukin-8 (30 structures) 1IKL ; ; NMR study of monomeric human interleukin-8 (minimized average structure) 1EIT ; ; NMR STUDY OF MU-AGATOXIN 1MUT ; ; NMR STUDY OF MUTT ENZYME, A NUCLEOSIDE TRIPHOSPHATE PYROPHOSPHOHYDROLASE 2BTA ; ; NMR STUDY OF N-TERMINAL HUMAN BAND 3 PEPTIDE, RESIDUES 1-15 2BTB ; ; NMR STUDY OF N-TERMINAL HUMAN BAND 3 PEPTIDE, RESIDUES 1-15 1OMG ; ; NMR STUDY OF OMEGA-CONOTOXIN MVIIA 2MBT ; ; NMR study of PaDsbA 1NOE ; ; NMR STUDY OF REDUCED HIGH POTENTIAL IRON SULFUR PROTEIN 1B4O ; ; NMR STUDY OF SSO7D MUTANT (F31A) MINIMIZED AVERAGE STRUCTURE 1NCS ; ; NMR STUDY OF SWI5 ZINC FINGER DOMAIN 1 1SOC ; ; NMR STUDY OF THE BACKBONE CONFORMATIONAL EQUILIBRIA OF SANDOSTATIN, MINIMIZED AVERAGE BETA-SHEET STRUCTURE 2SOC ; ; NMR STUDY OF THE BACKBONE CONFORMATIONAL EQUILIBRIA OF SANDOSTATIN, TWO REPRESENTATIVE MINIMUM ENERGY PARTIALLY HELICAL STRUCTURES 1LMJ ; ; NMR Study of the Fibrillin-1 cbEGF12-13 Pair of Ca2+ Binding Epidermal Growth Factor-like Domains 1SUT ; ; NMR STUDY OF THE PROLINE REPEAT FROM TUS 1QLY ; ; NMR Study of the SH3 Domain From Bruton's Tyrosine Kinase, 20 Structures 1A0N ; ; NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE COMPLEXED WITH THE SYNTHETIC PEPTIDE P2L CORRESPONDING TO RESIDUES 91-104 OF THE P85 SUBUNIT OF PI3-KINASE, FAMILY OF 25 STRUCTURES 1AZG ; ; NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE KINASE COMPLEXED WITH THE SYNTHETIC PEPTIDE P2L CORRESPONDING TO RESIDUES 91-104 OF THE P85 SUBUNIT OF PI3-KINASE, MINIMIZED AVERAGE (PROBMAP) STRUCTURE 1NYG ; ; NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE, FAMILY OF 20 STRUCTURES 1NYF ; ; NMR STUDY OF THE SH3 DOMAIN FROM FYN PROTO-ONCOGENE TYROSINE KINASE, MINIMIZED AVERAGE (PROBMAP) STRUCTURE 1KSQ ; ; NMR Study of the Third TB Domain from Latent Transforming Growth Factor-beta Binding Protein-1 1APJ ; ; NMR STUDY OF THE TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN-LIKE DOMAIN (TB MODULE/8-CYS DOMAIN), NMR, 21 STRUCTURES 1CO0 ; ; NMR STUDY OF TRP REPRESSOR-MTR OPERATOR DNA COMPLEX 1RCS ; ; NMR STUDY OF TRP REPRESSOR-OPERATOR DNA COMPLEX 1VIG ; ; NMR STUDY OF VIGILIN, REPEAT 6, 40 STRUCTURES 1VIH ; ; NMR STUDY OF VIGILIN, REPEAT 6, MINIMIZED AVERAGE STRUCTURE 1TNE ; ; NMR STUDY OF Z-DNA AT PHYSIOLOGICAL SALT CONDITIONS, MINIMIZED AVERAGE STRUCTURE 1FQZ ; ; NMR VALIDATED MODEL OF DOMAIN IIID OF HEPATITIS C VIRUS INTERNAL RIBOSOME ENTRY SITE 1QM9 ; ; NMR, REPRESENTATIVE STRUCTURE 2MMA ; ; NMR-based docking model of GrxS14-BolA2 apo-heterodimer from Arabidopsis thaliana 5Y22 ; ; NMR-Based Model of the 22 Amino Acid Peptide in Polysialyltransferase Domain (PSTD) of the Polysialyltransferase ST8Sia IV 5Y3U ; ; NMR-Based Model of the 22 Amino Acid Peptide in Polysialyltransferase Domain (PSTD) of the Polysialyltransferase ST8Sia IV in the Presence of Polysialic Acid (PolySia) 2C06 ; ; NMR-based model of the complex of the toxin Kid and a 5-nucleotide substrate RNA fragment (AUACA) 1R36 ; ; NMR-based structure of autoinhibited murine Ets-1 deltaN301 1IIO ; ; NMR-Based Structure of the Conserved Protein MTH865 from the Archea Methanobacterium thermoautotrophicum 6CAH ; ; NMR-based structure of the FHA-2 domain from Mycobacterium tuberculosis ABC transporter Rv1747 8E1D ; ; NMR-derived ensemble of the TAZ2 domain of p300 bound to the microphthalmia-associated transcription factor 1QSK ; ; NMR-DERIVED SOLUTION STRUCTURE OF A FIVE-ADENINE BULGE LOOP WITHIN A DNA DUPLEX 1PRR ; ; NMR-DERIVED THREE-DIMENSIONAL SOLUTION STRUCTURE OF PROTEIN S COMPLEXED WITH CALCIUM 1PRS ; ; NMR-DERIVED THREE-DIMENSIONAL SOLUTION STRUCTURE OF PROTEIN S COMPLEXED WITH CALCIUM 6W4F ; ; NMR-driven structure of KRAS4B-GDP homodimer on a lipid bilayer nanodisc 6W4E ; ; NMR-driven structure of KRAS4B-GTP homodimer on a lipid bilayer nanodisc 7RSC ; ; NMR-driven structure of the KRAS4B-G12D ""alpha-alpha"" dimer on a lipid bilayer nanodisc 7RSE ; ; NMR-driven structure of the KRAS4B-G12D ""alpha-beta"" dimer on a lipid bilayer nanodisc 7OFV ; 1.43 ; NMR-guided design of potent and selective EphA4 agonistic ligands 2KHO ; ; NMR-RDC / XRAY structure of E. coli HSP70 (DNAK) chaperone (1-605) complexed with ADP and substrate 2N7M ; ; NMR-SAXS/WAXS Structure of the core of the U4/U6 di-snRNA 2GMO ; ; NMR-structure of an independently folded C-terminal domain of influenza polymerase subunit PB2 2MZJ ; ; NMR-structure of the Nop6-RBD from S. cerevisiae 1OKD ; ; NMR-structure of tryparedoxin 1 1S05 ; ; NMR-validated structural model for oxidized R.palustris cytochrome c556 7AQT ; ; NMR2 structure of BRD4-BD2 in complex with iBET-762 7B9X ; ; NMR2 structure of TRIM24-BD in complex with a precursor of IACS-9571 5A5S ; 1.36 ; NN-TERMINAL BROMODOMAIN OF HUMAN BRD4 WITH 5-5-methoxypyridin-3-yl-3- methyl-8-piperidin-4-ylamino-1,2-dihydro-1,7-naphthyridin-2-one 6LUN ; 1.9 ; NN2101 Antibody Fab fragment 6X3I ; 2.268 ; NNAS Fc mutant 3DGJ ; 1.8 ; NNFGAIL segment from Islet Amyloid Polypeptide (IAPP or amylin) 3FVA ; 1.458 ; NNQNTF segment from elk prion 2ONX ; 1.52 ; NNQQ peptide corresponding to residues 8-11 of yeast prion sup35 (alternate crystal form) 4GFL ; 2.3 ; NO mechanism, slma 6ZAV ; 1.19 ; NO-bound copper nitrite reductase from Bradyrhizobium sp. ORS 375 (two-domain) at 1.19 A resolution (unrestrained, full matrix refinement by SHELX) 2FC2 ; 2.2 ; NO-HEME complex in a bacterial nitric oxide synthase. An Fe(III)-NO may cause nitrosation. 2XEC ; 2.2 ; Nocardia farcinica maleate cis-trans isomerase bound to TRIS 2XED ; 1.95 ; Nocardia farcinica maleate cis-trans isomerase C194S mutant with a covalently bound succinylcysteine intermediate 6NF0 ; 2.7 ; Nocturnin with bound NADPH substrate 4E9M ; 2.15 ; NOD1 card domain with three disulfide-clinched, domain-swapped dimers in the asymmetric unit 6MRY ; 2.3 ; NoD173 plant defensin 4N1D ; 1.912 ; Nodal/BMP2 chimera NB250 1NOV ; 3.5 ; NODAMURA VIRUS 3G80 ; 2.5 ; Nodamura virus protein b2, RNA-binding domain 8FMB ; 6.3 ; Nodavirus RNA replication protein A polymerase domain, local refinement 8FMA ; 3.1 ; Nodavirus RNA replication proto-crown, detergent-solubliized C11 multimer 8FM9 ; 3.2 ; Nodavirus RNA replication proto-crown, detergent-solubliized C12 multimer 1AY3 ; ; Nodularin from Nodularia spumigena 6TIR ; ; NOE based model of hVDAC-1 bound to beta-NADH in detergent micelles 2LYK ; ; NOE-based 3D structure of the CylR2 homodimer at 270K (-3 Celsius degrees) 2LYJ ; ; NOE-based 3D structure of the CylR2 homodimer at 298K 2LYP ; ; NOE-based 3D structure of the monomer of CylR2 in equilibrium with predissociated homodimer at 266K (-7 Celsius degrees) 2LYQ ; ; NOE-based 3D structure of the monomeric intermediate of CylR2 at 262K (-11 Celsius degrees) 2LYS ; ; NOE-based 3D structure of the monomeric partially-folded intermediate of CylR2 at 257K (-16 Celsius degrees) 2LYR ; ; NOE-based 3D structure of the monomeric partially-folded intermediate of CylR2 at 259K (-14 Celsius degrees) 2LYL ; ; NOE-based 3D structure of the predissociated homodimer of CylR2 in equilibrium with monomer at 266K (-7 Celsius degrees) 2MUV ; ; NOE-based model of the influenza A virus M2 (19-49) bound to drug 11 2MUW ; ; NOE-based model of the influenza A virus N31S mutant (19-49) bound to drug 11 1ZRI ; ; NOE-based solution structure with dipolar coupling restraints of rat OMP (olfactory marker protein) 7A58 ; ; NOE-only solution structure of the Iron-Sulfur protein PioC from Rhodopseudomonas palustris TIE-1 7OF1 ; 3.1 ; Nog1-TAP associated immature ribosomal particle population A from S. cerevisiae 7OH3 ; 3.4 ; Nog1-TAP associated immature ribosomal particle population B from S. cerevisiae 7OHQ ; 3.1 ; Nog1-TAP associated immature ribosomal particle population C from S. cerevisiae 7OHR ; 4.72 ; Nog1-TAP associated immature ribosomal particle population E from S. cerevisiae 7OHS ; 4.38 ; Nog1-TAP associated immature ribosomal particle population F from S. cerevisiae 7OHT ; 4.7 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL2 expression shut down, population A 7OHU ; 3.7 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL2 expression shut down, population B 7OHV ; 3.9 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL2 expression shut down, population C 7OHP ; 3.9 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL25 expression shut down, population A 7OHW ; 3.5 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL25 expression shut down, population B 7OHX ; 3.3 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL34 expression shut down, population A 7OHY ; 3.9 ; Nog1-TAP associated immature ribosomal particles from S. cerevisiae after rpL34 expression shut down, population B 2JV5 ; ; Nogo54 2KO2 ; ; NOGO66 6X19 ; 2.1 ; Non peptide agonist CHU-128, bound to Glucagon-Like peptide-1 (GLP-1) Receptor 6X1A ; 2.5 ; Non peptide agonist PF-06882961, bound to Glucagon-Like peptide-1 (GLP-1) Receptor 3GJ1 ; 1.8 ; Non photoactivated state of PA-GFP 5MKP ; 2.5 ; Non redox thiolation in transfer RNAs occuring via sulfur activation by a [4Fe-4S] cluster 7KW3 ; 2.3 ; Non Ribosomal PCP domain 1L9V ; 2.6 ; Non Structural protein encoded by gene segment 8 of rotavirus (NSP2), an NTPase, ssRNA binding and nucleic acid helix-destabilizing protein 6K10 ; 1.78962 ; Non substrate bound state of Staphylococcus Aureus AldH 1RCX ; 2.4 ; NON-ACTIVATED SPINACH RUBISCO IN COMPLEX WITH ITS SUBSTRATE RIBULOSE-1,5-BISPHOSPHATE 2WFZ ; 1.95 ; NON-AGED CONJUGATE OF TORPEDO CALIFORNICA ACETYLCHOLINESTERASE WITH SOMAN 2WG2 ; 1.95 ; NON-AGED CONJUGATE OF TORPEDO CALIFORNICA ACETYLCHOLINESTERASE WITH SOMAN (ALTERNATIVE REFINEMENT) 2C0Q ; 2.5 ; non-aged form of mouse acetylcholinesterase inhibited by tabun 3DL4 ; 2.5 ; Non-Aged Form of Mouse Acetylcholinesterase Inhibited by Tabun- Update 6G17 ; 2.2 ; Non-aged form of Torpedo californica acetylcholinesterase inhibited by nerve agent tabun 6G4O ; 2.78 ; Non-aged form of Torpedo californica acetylcholinesterase inhibited by tabun analog NEDPA bound to uncharged reactivator 1 6G4P ; 2.83 ; Non-aged form of Torpedo californica acetylcholinesterase inhibited by tabun analog NEDPA bound to uncharged reactivator 2 4ZTV ; 2.01 ; Non-anthranilate-like inhibitor (TAMU-A7) complexed with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis in absence of PRPP 2WQ5 ; 1.65 ; Non-antibiotic properties of tetracyclines: structural basis for inhibition of secretory phospholipase A2. 6NMV ; 2.61 ; Non-Blocking Fab 218 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 6NMT ; 1.83 ; Non-Blocking Fab 3 anti-SIRP-alpha antibody in complex with SIRP-alpha Variant 1 8BAF ; 1.6 ; Non-canonical quadruplex containing the oxidation product 8-oxoguanine 7ZVI ; 2.973 ; Non-canonical Staphylococcus aureus pathogenicity island repression 7P4A ; 2.901 ; Non-canonical Staphylococcus aureus pathogenicity island repression. 1PH0 ; 2.2 ; Non-carboxylic Acid-Containing Inhibitor of PTP1B Targeting the Second Phosphotyrosine Site 2YPJ ; 2.35 ; Non-catalytic carbohydrate binding module CBM65B 4A8F ; 3.3 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8K ; 3.5 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8M ; 2.92 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8O ; 2.67 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8Q ; 3.06 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8S ; 2.9 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8W ; 3.04 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 4A8Y ; 3.41 ; Non-Catalytic Ions Direct the RNA-Dependent RNA Polymerase of Bacterial dsRNA virus phi6 from De Novo Initiation to Elongation 2XDH ; 1.96 ; Non-cellulosomal cohesin from the hyperthermophilic archaeon Archaeoglobus fulgidus 6TKL ; 1.3 ; Non-cleavable tsetse thrombin inhibitor in complex with human alpha-thrombin 1GXG ; ; Non-cognate protein-protein interactions: the NMR structure of the colicin E8 inhibitor protein Im8 and its interaction with the DNase domain of colicin E9 5OKS ; 1.96 ; Non-conservatively refined structure of Gan1D, a 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-beta-glucose 5OKA ; 1.25 ; Non-conservatively refined structure of Gan1D-E170Q, a catalytic mutant of a 6-phospho-beta-galactosidase from Geobacillus stearothermophilus 5OKG ; 1.25 ; Non-conservatively refined structure of Gan1D-E170Q, a catalytic mutant of a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with cellobiose-6-phosphate 5OKQ ; 1.85 ; Non-conservatively refined structure of Gan1D-WT, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-beta-galactose 5OKJ ; 1.76 ; Non-conservatively refined structure of Gan1D-WT, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in the C2 spacegroup 4Z9S ; 2.3 ; Non-covalent assembly of monoubiquitin that mimics K11 poly-ubiquitin 1OPH ; 2.3 ; NON-COVALENT COMPLEX BETWEEN ALPHA-1-PI-PITTSBURGH AND S195A TRYPSIN 2W19 ; 2.15 ; Non-covalent complex between dahp synthase and chorismate mutase from Mycobacterium tuberculosis 2W1A ; 2.35 ; Non-covalent complex between dahp synthase and chorismate mutase from Mycobacterium tuberculosis with bound tsa 2PE6 ; 2.4 ; Non-covalent complex between human SUMO-1 and human Ubc9 2UYZ ; 1.4 ; Non-covalent complex between Ubc9 and SUMO1 5HUD ; 2.15 ; Non-covalent complex of and DAHP synthase and chorismate mutase from Corynebacterium glutamicum with bound transition state analog 5CKX ; 2.7 ; Non-covalent complex of DAHP synthase and chorismate mutase from Mycobacterium tuberculosis with bound transition state analog and feedback effectors tyrosine and phenylalanine 1PW1 ; 1.2 ; Non-Covalent Complex Of Streptomyces R61 DD-Peptidase With A Highly Specific Penicillin 6NUH ; 1.594 ; Non-covalent DNA-protein complex between E. coli YedK and ssDNA containing an abasic site analog 2XYA ; 2.4 ; Non-covalent inhibtors of rhinovirus 3C protease. 6NNQ ; 2.621 ; Non-covalent structure of SENP1 in complex with SUMO2 1TQ9 ; 2.0 ; Non-covalent swapped dimer of Bovine Seminal Ribonuclease in complex with 2'-DEOXYCYTIDINE-2'-DEOXYADENOSINE-3',5'-MONOPHOSPHATE 6U4V ; 2.3 ; Non-crosslinked wild type cysteine dioxygenase 5ZTL ; 1.85 ; Non-cryogenic structure of light-driven chloride pump having an NTQ motif 6OMA ; 7.2 ; non-decorated head of the phage T5 2CFO ; 2.45 ; Non-Discriminating Glutamyl-tRNA Synthetase from Thermosynechococcus elongatus in Complex with Glu 6RPK ; 2.84 ; non-expanded bat circovirus with DNA VLP 1I1C ; 2.7 ; NON-FCRN BINDING FC FRAGMENT OF RAT IGG2A 1UA5 ; 2.5 ; Non-fusion GST from S. japonicum in complex with glutathione 4ZBN ; 2.447 ; Non-helical DNA Triplex Forms a Unique Aptamer Scaffold for High Affinity Recognition of Nerve Growth Factor 6ZYK ; 2.55 ; Non-heme monooxygenase, ThoJ-Ni complex 6ZYL ; 2.09 ; non-heme monooxygenase; ThoJ apo 7LSV ; 1.58 ; Non-kinase domain of Legionella effector protein kinase LegK2 4YCI ; 3.25 ; non-latent pro-bone morphogenetic protein 9 7ZTC ; 3.9 ; Non-muscle F-actin decorated with non-muscle tropomyosin 1.6 7ZTD ; 4.6 ; Non-muscle F-actin decorated with non-muscle tropomyosin 3.2 1OMV ; 1.9 ; non-myristoylated bovine recoverin (E85Q mutant) with calcium bound to EF-hand 3 2HET ; 3.0 ; Non-myristoylated bovine recoverin (truncated at C-terminus) with calcium bound to EF-hand 3 1RRG ; 2.4 ; NON-MYRISTOYLATED RAT ADP-RIBOSYLATION FACTOR-1 COMPLEXED WITH GDP, DIMERIC CRYSTAL FORM 1RRF ; 3.0 ; NON-MYRISTOYLATED RAT ADP-RIBOSYLATION FACTOR-1 COMPLEXED WITH GDP, MONOMERIC CRYSTAL FORM 1OMR ; 1.5 ; non-myristoylated wild-type bovine recoverin with calcium bound to EF-hand 3 6IPQ ; 3.103 ; Non-native ferritin 8-mer mutant-C90A/C102A/C130A 6IPP ; 2.699 ; Non-native ferritin 8-mer mutant-C90A/C102A/C130A/D144C 6ZE9 ; 2.9 ; Non-native fold of the putative VPS39 zinc finger domain 6IPC ; 4.443 ; Non-native human ferritin 8-mer 1LIQ ; ; Non-native Solution Structure of a fragment of the CH1 domain of CBP 5I4S ; 2.46 ; Non-natural DNA pair Z (6-amino-5-nitro-2[1H] pyridone heterocycle)-Guanosine 7QSX ; 2.7 ; Non-obligately L8S8-complex forming RubisCO derived from ancestral sequence reconstruction and rational engineering in L8 complex 7QSZ ; 2.25 ; Non-obligately L8S8-complex forming RubisCO derived from ancestral sequence reconstruction and rational engineering in L8 complex with substitution e170N 7QSY ; 2.1 ; Non-obligately L8S8-complex forming RubisCO derived from ancestral sequence reconstruction and rational engineering in L8S8 complex 7QT1 ; 2.1 ; Non-obligately L8S8-complex forming RubisCO derived from ancestral sequence reconstruction and rational engineering in L8S8 complex with substitution e170N 4YN7 ; 2.6 ; Non-oxidized YfiR 3PSD ; 3.6 ; Non-oxime pyrazole based inhibitors of B-Raf kinase 6ORV ; 3.0 ; Non-peptide agonist (TT-OAD2) bound to the Glucagon-Like peptide-1 (GLP-1) Receptor 6C9H ; 2.65 ; non-phosphorylated AMP-activated protein kinase bound to pharmacological activator R734 4Q7E ; 1.441 ; Non-phosphorylated HemR Receiver Domain from Leptospira biflexa 6QTY ; 1.65 ; Non-phosphorylated human CLK1 in complex with an indole inhibitor to 1.65 Ang 3NYX ; 2.5 ; Non-phosphorylated TYK2 JH1 domain with Quinoline-Thiadiazole-Thiophene Inhibitor 3NZ0 ; 2.0 ; Non-phosphorylated TYK2 kinase with CMP6 2V4R ; 2.5 ; Non-productive complex of the Y-family DNA polymerase Dpo4 with dGTP skipping the M1dG adduct to pair with the next template cytosine 1MTL ; 2.8 ; Non-productive MUG-DNA complex 6BN5 ; 2.22 ; Non-receptor Protein Tyrosine Phosphatase SHP2 F285S in Complex with Allosteric Inhibitor JLR-2 7JVN ; 1.917 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Compound 24 6MDD ; 2.05 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Imidazo-pyridine 24 6MD9 ; 2.12 ; NON-RECEPTOR PROTEIN TYROSINE PHOSPHATASE SHP2 IN COMPLEX WITH ALLOSTERIC INHIBITOR Isoxazolo-pyridinone 3 6MDA ; 2.21 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Pyrazolo-pyridine 4 6MDC ; 2.14 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Pyrazolo-pyrimidinone 1 SHP389 6MDB ; 2.34 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Pyrazolo-pyrimidinone 5 6MD7 ; 1.96 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor Pyrimidinone 7 7RCT ; 1.8 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor RMC-4550 5EHR ; 1.7 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor SHP099 6BMR ; 2.205 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor SHP244 6BMV ; 2.053 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor SHP504 5EHP ; 1.85 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor SHP836 6BMX ; 2.424 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor SHP844 7VXG ; 2.1 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor TK-453 7JVM ; 2.166 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitor TNO155 6BMU ; 2.12 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitors SHP099 and SHP244 6BMW ; 2.1 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitors SHP099 and SHP504 6BMY ; 2.09 ; Non-receptor Protein Tyrosine Phosphatase SHP2 in Complex with Allosteric Inhibitors SHP099 and SHP844 2MTO ; ; Non-reducible analogues of alpha-conotoxin RgIA: [2,8]-cis dicarba RgIA 2MTT ; ; Non-reducible analogues of alpha-conotoxin RgIA: [3,12]-cis dicarba RgIA 2MTU ; ; Non-reducible analogues of alpha-conotoxin RgIA: [3,12]-trans dicarba RgIA 2MFX ; ; Non-reducible analogues of alpha-conotoxin Vc1.1: [2,8]-cis dicarba Vc1.1 2MFY ; ; Non-reducible analogues of alpha-conotoxin Vc1.1: [2,8]-trans dicarba Vc1.1 2MG6 ; ; Non-reducible analogues of alpha-conotoxin Vc1.1: [3,16]-trans dicarba Vc1.1 7KVW ; 2.18 ; Non-ribosomal didomain (holo-PCP-C) acceptor bound state 7KW2 ; 2.0 ; Non-ribosomal didomain (holo-PCP-C) acceptor bound state, R2577G 7KW0 ; 1.9 ; Non-ribosomal didomain (stabilised glycine-PCP-C) acceptor bound state 8FX6 ; 2.2 ; Non-ribosomal PCP-C didomain (amide stabilised leucine) acceptor bound state 8FX7 ; 2.2 ; Non-ribosomal PCP-C didomain (ester stabilised leucine) acceptor bound state 8G3I ; 3.02 ; Non-ribosomal PCP-C didomain (thioether stabilised glycolic acid) acceptor bound state 8G3J ; 2.1 ; Non-ribosomal PCP-C didomain R2577G (thioether stabilised glycolic acid) acceptor bound state 7E3Z ; 1.45 ; Non-Ribosomal Peptide Synthetases, Thioesterase 8CGN ; 2.28 ; Non-rotated 80S S. cerevisiae ribosome with ligands 6OFX ; 3.3 ; Non-rotated ribosome (Structure I) 7D3V ; ; Non-specific and specific interactions work cooperatively to promote cytidine deamination catalyzed by APOBEC3A 7D3W ; ; Non-specific and specific interactions work cooperatively to promote cytidine deamination catalyzed by APOBEC3A 7D3X ; ; Non-specific and specific interactions work cooperatively to promote cytidine deamination catalyzed by APOBEC3A 1TDV ; 1.7 ; Non-specific binding to phospholipase A2:Crystal structure of the complex of PLA2 with a designed peptide Tyr-Trp-Ala-Ala-Ala-Ala at 1.7A resolution 7CLE ; 2.342 ; Non-Specific Class-c acidphosphatase from Sphingobium sp. RSMS 8AOG ; 1.603 ; Non-specific covalent inhibitor(17) of ERK2 6ZLC ; 2.3 ; Non-specific dsRNA recognition by wildtype H7N1 RNA-binding domain 1MID ; 1.71 ; Non-specific lipid transfer protein 1 from barley in complex with L-alfa-lysophosphatidylcholine, Laudoyl 1BBX ; ; NON-SPECIFIC PROTEIN-DNA INTERACTIONS IN THE SSO7D-DNA COMPLEX, NMR, 1 STRUCTURE 6S5G ; 4.33 ; Non-square conformation of KtrA A80P mutant ring with bound ADP 6S5E ; 3.893 ; Non-square conformation of KtrA A80P mutant ring with bound ATP 6S5B ; 3.052 ; Non-square conformation of KtrA R16K mutant ring with bound ADP 6S5O ; 3.983 ; Non-square conformations of KtrA E125Q mutant rings with bound ADP 6S5N ; 4.09 ; Non-square conformations of KtrA E125Q mutant rings with bound ATP 6S7R ; 3.73 ; Non-square conformations of KtrA R16A mutant rings with bound ADP 1JCA ; 2.5 ; Non-standard Design of Unstable Insulin Analogues with Enhanced Activity 7ORR ; 1.79 ; Non-structural protein 10 (nsp10) from SARS CoV-2 in complex with fragment VT00022 7ORU ; 1.67 ; Non-structural protein 10 (nsp10) from SARS CoV-2 in complex with fragment VT00221 7ORV ; 1.95 ; Non-structural protein 10 (nsp10) from SARS CoV-2 in complex with fragment VT00239 7ORW ; 1.95 ; Non-structural protein 10 (nsp10) from SARS CoV-2 in complex with fragment VT00265 6SV6 ; 1.15 ; Non-terahertz irradiated structure of bovine trypsin (even frames of crystal x38) 6SV9 ; 1.15 ; Non-terahertz irradiated structure of bovine trypsin (even frames of crystal x40) 6SVD ; 1.15 ; Non-terahertz irradiated structure of bovine trypsin (even frames of crystal x41) 6SVI ; 1.16 ; Non-terahertz irradiated structure of bovine trypsin (even frames of crystal x42) 6SV0 ; 1.16 ; Non-terahertz irradiated structure of bovine trypsin (odd frames of crystal x37) 3DJY ; 2.1 ; Nonaged Form of Human Butyrylcholinesterase Inhibited by Tabun 2WID ; 2.3 ; NONAGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA1 2WIG ; 2.15 ; NONAGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA4 2WIJ ; 2.1 ; NONAGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA5 2WIK ; 2.1 ; NONAGED FORM OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY TABUN ANALOGUE TA6 2Y2V ; 2.45 ; Nonaged form of Mouse Acetylcholinesterase inhibited by sarin-Update 2Y2U ; 2.6 ; Nonaged form of Mouse Acetylcholinesterase inhibited by VX-Update 7AMY ; 3.75 ; Nonameric cytoplasmic domain of FlhA from Vibrio parahaemolyticus 7ALW ; 3.7 ; Nonameric cytoplasmic domain of SctV from Yersinia enterocolitica 1XM1 ; 2.3 ; Nonbasic Thrombin Inhibitor Complex 6UZ1 ; 3.14 ; Noncanonical binding of single-chain A6 TCR variant S3-4 in complex with Tax/HLA-A2 1I7D ; 2.05 ; NONCOVALENT COMPLEX OF E.COLI DNA TOPOISOMERASE III WITH AN 8-BASE SINGLE-STRANDED DNA OLIGONUCLEOTIDE 4JEI ; 2.6 ; Nonglycosylated Yarrowia lipolytica LIP2 lipase 5VRT ; 1.995 ; Nonheme Iron Replacement in a Biosynthetic Nitric Oxide Reductase Model Performing O2 Reduction to Water: Co-bound FeBMb 5VNU ; 1.584 ; Nonheme Iron Replacement in a Biosynthetic Nitric Oxide Reductase Model Performing O2 Reduction to Water: Mn-bound FeBMb 1HVH ; 1.8 ; NONPEPTIDE CYCLIC CYANOGUANIDINES AS HIV PROTEASE INHIBITORS 1EAS ; 1.8 ; NONPEPTIDIC INHIBITORS OF HUMAN LEUKOCYTE ELASTASE. 3. DESIGN, SYNTHESIS, X-RAY CRYSTALLOGRAPHIC ANALYSIS, AND STRUCTURE-ACTIVITY RELATIONSHIPS FOR A SERIES OF ORALLY ACTIVE 3-AMINO-6-PHENYLPYRIDIN-2-ONE TRIFLUOROMETHYL KETONES 1EAT ; 2.0 ; NONPEPTIDIC INHIBITORS OF HUMAN LEUKOCYTE ELASTASE. 5. DESIGN, SYNTHESIS, AND X-RAY CRYSTALLOGRAPHY OF A SERIES OF ORALLY ACTIVE 5-AMINO-PYRIMIDIN-6-ONE-CONTAINING TRIFLUOROMETHYLKETONES 1EAU ; 2.0 ; NONPEPTIDIC INHIBITORS OF HUMAN LEUKOCYTE ELASTASE. 6. DESIGN OF A POTENT, INTRATRACHEALLY ACTIVE, PYRIDONE-BASED TRIFLUOROMETHYL KETONE 1OJ1 ; 2.1 ; Nonproductive and Novel Binding Modes in Cytotoxic Ribonucleases from Rana catesbeiana of Two Crystal Structures Complexed with (2,5 CpG) and d(ApCpGpA) 1E27 ; 2.2 ; Nonstandard peptide binding of HLA-B*5101 complexed with HIV immunodominant epitope KM1(LPPVVAKEI) 1E28 ; 3.0 ; Nonstandard peptide binding of HLA-B*5101 complexed with HIV immunodominant epitope KM2(TAFTIPSI) 5M1J ; 3.3 ; Nonstop ribosomal complex bound with Dom34 and Hbs1 6ZCT ; 2.55 ; Nonstructural protein 10 (nsp10) from SARS CoV-2 6ZPE ; 1.58 ; Nonstructural protein 10 (nsp10) from SARS CoV-2 7DCD ; 2.57 ; Nonstructural protein 7 and 8 complex of SARS-CoV-2 7OFZ ; 2.62 ; Nontypeable Haemophillus influenzae SapA in complex with double stranded RNA 7OFW ; 3.15 ; Nontypeable Haemophillus influenzae SapA in complex with heme 7OG0 ; 2.61 ; Nontypeable Haemophillus influenzae SapA in open and closed conformations, in complex with double stranded RNA 5SVD ; 2.1 ; Nop9, a new PUF-like protein, prevents premature pre-rRNA cleavage to correctly process mature 18S rRNA 7LO7 ; 3.74 ; NorA in complex with Fab25 7LO8 ; 3.16 ; NorA in complex with Fab36 5MM2 ; 2.7 ; nora virus structure 2R1V ; 1.7 ; Norepinephrine quinone conjugation to DJ-1 2AKH ; 14.9 ; Normal mode-based flexible fitted coordinates of a non-translocating SecYEG protein-conducting channel into the cryo-EM map of a SecYEG-nascent chain-70S ribosome complex from E. coli 2AKI ; 14.9 ; Normal mode-based flexible fitted coordinates of a translocating SecYEG protein-conducting channel into the cryo-EM map of a SecYEG-nascent chain-70S ribosome complex from E. coli 3H5Y ; 1.77 ; Norovirus polymerase+primer/template+CTP complex at 6 mM MnCl2 7MRY ; 3.8 ; Norovirus T=3 GII.4 HOV VLP 5FEU ; 1.73 ; Noroxomaritidine/Norcraugsodine Reductase in complex with NADP+ 5FFF ; 1.501 ; Noroxomaritidine/Norcraugsodine Reductase in complex with NADP+ and piperonal 5FF9 ; 1.814 ; Noroxomaritidine/Norcraugsodine Reductase in Complex with NADP+ and tyramine 1KDE ; ; NORTH-ATLANTIC OCEAN POUT ANTIFREEZE PROTEIN TYPE III ISOFORM HPLC12 MUTANT, NMR, 22 STRUCTURES 1KDF ; ; NORTH-ATLANTIC OCEAN POUT ANTIFREEZE PROTEIN TYPE III ISOFORM HPLC12 MUTANT, NMR, MINIMIZED AVERAGE STRUCTURE 1NI7 ; ; NORTHEAST STRUCTURAL GENOMIC CONSORTIUM TARGET ER75 1M0S ; 1.9 ; NORTHEAST STRUCTURAL GENOMICS CONSORTIUM (NESG ID IR21) 1GTD ; 2.56 ; NORTHEAST STRUCTURAL GENOMICS CONSORTIUM (NESG ID TT50) STRUCTURE OF MTH169, THE PURS SUBUNIT OF FGAM SYNTHETASE 2JN7 ; ; Northeast Structural Genomics Consortium Target ER411 3D26 ; 2.3 ; Norwalk P domain A-trisaccharide complex 3BY2 ; 2.6 ; Norwalk P polypeptide (228-523) 3BSN ; 1.8 ; Norwalk Virus polymerase bound to 5-nitrocytidine triphosphate and primer-template RNA 3BSO ; 1.74 ; Norwalk Virus polymerase bound to cytidine 5'-triphosphate and primer-template RNA 2WKG ; 3.0 ; Nostoc punctiforme Debranching Enzyme (NPDE)(Native form) 4GYD ; 1.8 ; Nostoc sp Cytochrome c6 5FU6 ; 2.9 ; NOT module of the human CCR4-NOT complex (Crystallization mutant) 5AJD ; 3.62 ; Not1 C-terminal domain in complex with Not4 5AIE ; 2.8 ; Not4 ring domain in complex with Ubc4 4CBZ ; 2.5 ; Notch ligand, Jagged-1, contains an N-terminal C2 domain 4CC0 ; 2.32 ; Notch ligand, Jagged-1, contains an N-terminal C2 domain 4CC1 ; 2.84 ; Notch ligand, Jagged-1, contains an N-terminal C2 domain 5KZO ; ; Notch1 transmembrane and associated juxtamembrane segment 2NOT ; 3.0 ; NOTECHIS II-5, NEUROTOXIC PHOSPHOLIPASE A2 FROM NOTECHIS SCUTATUS SCUTATUS 1AE7 ; 2.0 ; NOTEXIN, A PRESYNAPTIC NEUROTOXIC PHOSPHOLIPASE A2 7YPC ; 2.66 ; Notothenia coriiceps TRAF4 6KU5 ; 3.299 ; Notothenia coriiceps TRAF5 7BNL ; 1.23 ; Notum ARUK3003710 7B4X ; 1.24 ; Notum complex with ARUK3002697 7B37 ; 1.34 ; Notum complex with ARUK3003718 7B3X ; 1.34 ; Notum complex with ARUK3003748 7B3P ; 1.28 ; Notum complex with ARUK3003775 7B3I ; 1.34 ; Notum complex with ARUK3003776 7B50 ; 1.33 ; Notum complex with ARUK3003778 7B3G ; 1.28 ; Notum complex with ARUK3003902 7B2V ; 1.24 ; Notum complex with ARUK3003906 7B2Z ; 1.24 ; Notum complex with ARUK3003907 7B3H ; 1.28 ; Notum complex with ARUK3003909 7B2Y ; 1.23 ; Notum complex with ARUK3003910 7B45 ; 1.38 ; Notum complex with ARUK3003934 7BNF ; 1.45 ; Notum Cotinine 7B98 ; 1.53 ; Notum Fragment 282 7B99 ; 1.81 ; Notum Fragment 283 6ZUV ; 1.54 ; Notum fragment 286 7B9D ; 1.93 ; Notum Fragment 290 7B9I ; 1.34 ; Notum Fragment 297 7B9N ; 1.38 ; Notum Fragment 588 7BM7 ; 1.87 ; Notum fragment 5e 7B9U ; 1.5 ; Notum Fragment 609 7BA1 ; 1.93 ; Notum Fragment 634 7BAC ; 1.54 ; Notum Fragment 646 7BAP ; 1.53 ; Notum Fragment 648 7BC8 ; 1.74 ; Notum Fragment 658 7BC9 ; 1.73 ; Notum Fragment 690 7BCC ; 1.58 ; Notum Fragment 705 7BCD ; 1.51 ; Notum Fragment 714 7BCF ; 1.86 ; Notum Fragment 722 6R8P ; 1.45 ; Notum fragment 723 7BCH ; 1.7 ; Notum Fragment 772 7BCI ; 1.94 ; Notum Fragment 784 7BCK ; 1.7 ; Notum Fragment 791 7BCL ; 1.84 ; Notum Fragment 792 7BD2 ; 1.52 ; Notum Fragment 810 7BD3 ; 1.91 ; Notum Fragment 823 7BD4 ; 1.8 ; Notum Fragment 828 7BD5 ; 1.69 ; Notum Fragment 830 7BD6 ; 1.7 ; Notum Fragment 863 7BD8 ; 1.42 ; Notum Fragment 872 7BD9 ; 1.59 ; Notum Fragment 886 7BDA ; 1.47 ; Notum Fragment 900 7BDB ; 1.46 ; Notum Fragment 916 7BDC ; 1.32 ; Notum Fragment 923 7BDD ; 1.47 ; Notum Fragment 924 7BDF ; 1.4 ; Notum Fragment 927 7BDG ; 1.6 ; Notum Fragment 934 7BDH ; 1.54 ; Notum Fragment 955 7BN5 ; 2.22 ; Notum fragment_1 (2-(isoquinolin-1-ylsulfanyl)acetic acid) 7BNC ; 1.86 ; Notum fragment_126 (2-(1,2-dihydroacenaphthylen-5-ylsulfanyl)acetic acid) 7BO2 ; 1.21 ; Notum Fragment_130 (4H-thieno[3,2-c]chromene-2-carboxylic acid) 7BO5 ; 1.38 ; Notum Fragment_130_methyEster (methyl 4H-thieno[3,2-c]chromene-2-carboxylate) 7BO1 ; 1.4 ; Notum Fragment_274 [(4-fluorophenyl)amino]thiourea 7BN8 ; 1.78 ; Notum fragment_3 (4H,5H-naphtho[1,2-b]thiophene-2-carboxylic acid) 7BNB ; 1.16 ; Notum fragment_50 (3-(quinazolin-4-ylsulfanyl)propanoic acid) 7ARG ; 1.24 ; Notum in complex with ARUK3002704 8BT8 ; 1.28 ; Notum Inhibitor ARUK3004048 8BTA ; 1.34 ; Notum Inhibitor ARUK3004308 8BTE ; 1.62 ; Notum Inhibitor ARUK3004470 8BTH ; 1.3 ; Notum Inhibitor ARUK3004552 8BTI ; 1.31 ; Notum Inhibitor ARUK3004556 8BTC ; 1.54 ; Notum Inhibitor ARUK3004558 8BT2 ; 1.7 ; Notum Inhibitor ARUK3004876 8BT5 ; 1.4 ; Notum Inhibitor ARUK3004877 8BT7 ; 1.4 ; Notum Inhibitor ARUK3004903 8BT0 ; 1.6 ; Notum Inhibitor ARUK3005518 8BSZ ; 1.7 ; Notum Inhibitor ARUK3005522 8BSP ; 1.55 ; Notum Inhibitor ARUK3006560 8BSQ ; 1.45 ; Notum Inhibitor ARUK3006561 8BSR ; 1.45 ; Notum Inhibitor ARUK3006562 7BNE ; 1.7 ; Notum Nicotine 7BMB ; 1.83 ; Notum PPOH complex 7BNJ ; 1.49 ; Notum Riluzole 7BM3 ; 1.4 ; Notum Rosmarinic acid complex 7B3F ; 1.39 ; Notum S232A in complex with ARUK3003718 7BMD ; 1.45 ; Notum TDZD8 complex 7BLI ; 1.47 ; Notum-Bepridil complex 7B8A ; 1.23 ; Notum-Fragment 110 7B8C ; 1.43 ; Notum-Fragment 147 7B8D ; 1.62 ; Notum-Fragment 151 7B8F ; 1.62 ; Notum-Fragment 154 7B8G ; 1.58 ; Notum-Fragment 159 7B8J ; 1.75 ; Notum-Fragment 163 7B8K ; 1.6 ; Notum-Fragment 173 7B8L ; 1.45 ; Notum-Fragment 174 7B8M ; 1.48 ; Notum-Fragment 193 7B8N ; 1.56 ; Notum-Fragment 197 7B8O ; 1.5 ; Notum-Fragment 199 7B8U ; 1.54 ; Notum-Fragment 201 7B8X ; 1.51 ; Notum-Fragment 210 7B8Y ; 1.57 ; Notum-Fragment 276 7B8Z ; 1.73 ; Notum-Fragment 277 7B7W ; 1.6 ; Notum-Fragment049 7B7X ; 2.41 ; Notum-Fragment063 7B7Y ; 1.48 ; Notum-Fragment064 7B84 ; 1.36 ; Notum-Fragment065 7B86 ; 1.4 ; Notum-Fragment067 7B87 ; 1.58 ; Notum-Fragment074 7B89 ; 1.84 ; Notum-Fragment077 7BLS ; 1.19 ; Notum-maybridge_18 7PJR ; 1.51 ; Notum_ARUK3000438 7PK3 ; 1.41 ; Notum_ARUK3001185 7BND ; 2.1 ; Notum_Fragment41 (N-methyl-4,5-dihydronaphtho,2-bthiophene-2-carboxamide) 6ZYF ; 2.19 ; Notum_Ghrelin complex 7PKV ; 1.68 ; Notum_Inhibitor ARUK3000223 7BLT ; 1.2 ; Notum_Maybridge_4 7BLU ; 1.21 ; Notum_Maybridge_56 7BLW ; 1.45 ; Notum_Piperine complex 7BM1 ; 1.37 ; Notum_Valsartan complex 2NO3 ; 3.2 ; Novel 4-anilinopyrimidines as potent JNK1 Inhibitors 2FLR ; 2.35 ; Novel 5-Azaindole Factor VIIa Inhibitors 1OJ8 ; 1.7 ; Novel and retro Binding Modes in Cytotoxic Ribonucleases from Rana catesbeiana of Two Crystal Structures Complexed with d(ApCpGpA) and (2',5'CpG) 4DTK ; 1.86 ; Novel and selective pan-PIM kinase inhibitor 8CXC ; 4.31 ; Novel Anti-Mesothelin Antibodies Enable Crystallography of the Intact Mesothelin Ectodo- main and Engineering of Potent, T cell-engaging Bispecific Therapeutics 8CYH ; 3.38 ; Novel Anti-Mesothelin Antibodies Enable Crystallography of the Intact Mesothelin Ectodo- main and Engineering of Potent, T cell-engaging Bispecific Therapeutics 8CZ8 ; 2.6 ; Novel Anti-Mesothelin Antibodies Enable Crystallography of the Intact Mesothelin Ectodo- main and Engineering of Potent, T cell-engaging Bispecific Therapeutics 8JQ9 ; 2.66 ; Novel Anti-phage System 8JQC ; 3.39 ; Novel Anti-phage System 2N9R ; ; Novel antimicrobial peptide PaDBS1R1 designed from the ribosomal protein L39E from Pyrobaculum aerophilum using bioinformatics 5T4S ; 2.64 ; Novel Approach of Fragment-Based Lead Discovery applied to Renin Inhibitors 1B9V ; 2.35 ; NOVEL AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE MAKE SELECTIVE INTERACTIONS WITH CONSERVED RESIDUES AND WATER MOLECULES IN TEH ACTIVE SITE 1B9S ; 2.5 ; NOVEL AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE MAKE SELECTIVE INTERACTIONS WITH CONSERVED RESIDUES AND WATER MOLECULES IN THE ACTIVE SITE 1B9T ; 2.4 ; NOVEL AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE MAKE SELECTIVE INTERACTIONS WITH CONSERVED RESIDUES AND WATER MOLECULES IN THE ACTIVE SITE 3SHE ; 2.25 ; Novel ATP-competitive MK2 inhibitors with potent biochemical and cell-based activity throughout the series 4JBO ; 2.493 ; Novel Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules 4JBP ; 2.45 ; Novel Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules 4JBQ ; 2.3 ; Novel Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules 2GG0 ; 1.28 ; Novel bacterial methionine aminopeptidase inhibitors 2GG2 ; 1.0 ; Novel bacterial methionine aminopeptidase inhibitors 2GG3 ; 1.45 ; Novel bacterial methionine aminopeptidase inhibitors 2GG5 ; 2.12 ; Novel bacterial methionine aminopeptidase inhibitors 2GG7 ; 1.12 ; Novel bacterial methionine aminopeptidase inhibitors 2GG8 ; 1.8 ; Novel bacterial methionine aminopeptidase inhibitors 2GG9 ; 1.05 ; Novel bacterial methionine aminopeptidase inhibitors 2GGB ; 2.13 ; Novel bacterial methionine aminopeptidase inhibitors 2GGC ; 1.0 ; Novel bacterial methionine aminopeptidase inhibitors 3PN1 ; 2.0 ; Novel Bacterial NAD+-dependent DNA Ligase Inhibitors with Broad Spectrum Potency and Antibacterial Efficacy In Vivo 3P2V ; 1.69 ; Novel Benzothiazepine Inhibitor in Complex with human Aldose Reductase 6BKY ; 2.17 ; Novel Binding Modes of Inhibition of Wild-Type IDH1: Allosteric Inhibition with Cmpd2 4QOY ; 2.8 ; Novel binding motif and new flexibility revealed by structural analysis of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase sub-complex from the escherichia coli pyruvate dehydrogenase multi-enzyme complex 4ZHX ; 2.99 ; Novel binding site for allosteric activation of AMPK 3EFX ; 1.94 ; Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin, 1.9A crystal structure reveals the details 2D6B ; 1.25 ; Novel Bromate Species trapped within a Protein Crystal 3IG7 ; 1.8 ; Novel CDK-5 inhibitors - crystal structure of inhibitor EFP with CDK-2 3IGG ; 1.8 ; Novel CDK-5 inhibitors - crystal structure of inhibitor EFQ with CDK-2 1QHR ; 2.2 ; NOVEL COVALENT ACTIVE SITE THROMBIN INHIBITORS 1QJ1 ; 2.0 ; Novel Covalent Active Site Thrombin Inhibitors 1QJ6 ; 2.2 ; Novel Covalent Active Site Thrombin Inhibitors 1QJ7 ; 2.2 ; Novel Covalent Active Site Thrombin Inhibitors 1AWF ; 2.2 ; NOVEL COVALENT THROMBIN INHIBITOR FROM PLANT EXTRACT 1AWH ; 3.0 ; NOVEL COVALENT THROMBIN INHIBITOR FROM PLANT EXTRACT 2GHY ; 2.5 ; Novel Crystal Form of the ColE1 Rom Protein 5UEB ; 1.5 ; Novel crystal structure of a hypothetical protein from Neisseria gonorrhoeae 6FDG ; 1.3 ; Novel crystal structure of DHNA-CoA Thioesterase from Staphylococcus aureus 3SFM ; 1.4 ; Novel crystallization conditions for tandem variant R67 DHFR yields wild-type crystal structure 2LE2 ; ; Novel dimeric structure of phage phi29-encoded protein p56: Insights into Uracil-DNA glycosylase inhibition 3EAQ ; 2.3 ; Novel dimerization motif in the DEAD box RNA helicase Hera form 2, complete dimer, symmetric 3EAS ; 2.8 ; Novel dimerization motif in the DEAD box RNA helicase Hera: form 1, complete dimer, asymmetric 3EAR ; 2.3 ; Novel dimerization motif in the DEAD box RNA helicase Hera: form 1, partial dimer 8T0B ; 2.1 ; Novel Domain of Unknown Function Solved with AlphaFold 8T1M ; 3.0 ; Novel Domain of Unknown Function Solved with AlphaFold 5NFQ ; 1.6 ; Novel epoxide hydrolases belonging to the alpha/beta hydrolases superfamily in metagenomes from hot environments 5NG7 ; 1.39 ; Novel epoxide hydrolases belonging to the alpha/beta hydrolases superfamily in metagenomes from hot environments 4KPE ; 3.43 ; Novel fluoroquinolones in complex with topoisomerase IV from S. pneumoniae and E-site G-gate 4KPF ; 3.24 ; Novel fluoroquinolones in complex with topoisomerase IV from S. pneumoniae and E-site G-gate 4IWB ; 1.75 ; Novel Fold of FliC/FliS Fusion Protein 3EE1 ; 3.01 ; Novel fold of VirA, a type III secretion system effector protein from Shigella flexneri 1O70 ; 2.6 ; Novel Fold Revealed by the Structure of a FAS1 Domain Pair from the Insect Cell Adhesion Molecule Fasciclin I 5C86 ; 1.51 ; Novel fungal alcohol oxidase with catalytic diversity among the AA5 family, apo form 5C92 ; 2.1 ; Novel fungal alcohol oxidase with catalytic diversity among the AA5 family, in complex with copper 7P1Z ; 2.17 ; Novel GH12 endogluconase from Aspergillus cervinus 3U4O ; 1.77 ; Novel HCV NS5B polymerase Inhibitors: Discovery of Indole C2 Acyl sulfonamides 3U4R ; 2.0 ; Novel HCV NS5B polymerase Inhibitors: Discovery of Indole C2 Acyl sulfonamides 3VTQ ; 1.53 ; Novel HIV fusion inhibitor 4BUL ; 2.6 ; Novel hydroxyl tricyclics (e.g. GSK966587) as potent inhibitors of bacterial type IIA topoisomerases 5M7M ; 2.7 ; Novel Imidazo[1,2-a]pyridine Derivatives with Potent Autotaxin/ENPP2 Inhibitor Activity 5MHP ; 2.43 ; Novel Imidazo[1,2-a]pyridine Derivatives with Potent Autotaxin/ENPP2 Inhibitor Activity 1YFZ ; 2.2 ; Novel IMP Binding in Feedback Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase from Thermoanaerobacter tengcongensis 2JLE ; 2.9 ; Novel indazole nnrtis created using molecular template hybridization based on crystallographic overlays 4QXU ; 2.3 ; Novel Inhibition Mechanism of Membrane Metalloprotease by an Exosite-Swiveling Conformational antibody 4Z7M ; 1.43 ; Novel Inhibitors of Bacterial Methionine Aminopeptidase with Broad-Spectrum Biochemical Activity 5FX5 ; 1.7 ; Novel inhibitors of human rhinovirus 3C protease 5FX6 ; 1.45 ; Novel inhibitors of human rhinovirus 3C protease 1VYQ ; 2.4 ; Novel inhibitors of Plasmodium Falciparum dUTPase provide a platform for anti-malarial drug design 5A79 ; 4.1 ; Novel inter-subunit contacts in Barley Stripe Mosaic Virus revealed by cryo-EM 5A7A ; 4.1 ; Novel inter-subunit contacts in Barley Stripe Mosaic Virus revealed by cryo-EM 3SC1 ; 2.7 ; Novel Isoquinolone PDK1 Inhibitors Discovered through Fragment-Based Lead Discovery 3NLB ; 1.9 ; Novel kinase profile highlights the temporal basis of context dependent checkpoint pathways to cell death 4DIN ; 3.7 ; Novel Localization and Quaternary Structure of the PKA RI beta Holoenzyme 2M5X ; ; Novel method of protein purification for structural research. Example of ultra high resolution structure of SPI-2 inhibitor by X-ray and NMR spectroscopy. 6BKX ; 1.65 ; Novel Modes of Inhibition of Wild-Type IDH1: Direct Covalent Modification of His315 with Cmpd1 6BL1 ; 2.02 ; Novel Modes of Inhibition of Wild-Type IDH1: Direct Covalent Modification of His315 with Cmpd13 6BL2 ; 1.92 ; Novel Modes of Inhibition of Wild-Type IDH1: Direct Covalent Modification of His315 with Cmpd15 6BKZ ; 2.01 ; Novel Modes of Inhibition of Wild-Type IDH1: Non-equivalent Allosteric Inhibition with Cmpd3 6BL0 ; 2.17 ; Novel Modes of Inhibition of Wild-Type IDH1:Direct Covalent Modification of His315 with Cmpd11 4IMI ; 2.35 ; Novel Modifications on C-terminal Domain of RNA Polymerase II can Fine- tune the Phosphatase Activity of Ssu72. 4IMJ ; 2.58 ; Novel Modifications on C-terminal Domain of RNA Polymerase II can Fine-tune the Phosphatase Activity of Ssu72 1JL5 ; 2.1 ; Novel Molecular Architecture of YopM-a Leucine-rich Effector Protein from Yersinia pestis 7DFY ; 1.69 ; Novel motif for left-handed G-quadruplex formation 4DW6 ; 2.0 ; Novel N-phenyl-phenoxyacetamide derivatives as potential EthR inhibitors and ethionamide boosters. Discovery and optimization using High-Throughput Synthesis. 1DLA ; 3.0 ; NOVEL NADPH-BINDING DOMAIN REVEALED BY THE CRYSTAL STRUCTURE OF ALDOSE REDUCTASE 3NW2 ; 2.8 ; Novel nanomolar Imidazopyridines as selective Nitric Oxide Synthase (iNOS) inhibitors: SAR and structural insights 5IAW ; 2.58 ; Novel natural FXR modulator with a unique binding mode 7C6Q ; 2.76 ; Novel natural PPARalpha agonist with a unique binding mode 6BRB ; 2.82 ; Novel non-antibody protein scaffold targeting CD40L 1SB1 ; 1.9 ; Novel Non-Covalent Thrombin Inhibitors Incorporating P1 4,5,6,7-Tetrahydrobenzothiazole Arginine Side Chain Mimetics 5XSR ; 2.3 ; novel orally efficacious inhibitors complexed with PARP1 5XST ; 2.3 ; novel orally efficacious inhibitors complexed with PARP1 5XSU ; 2.4 ; novel orally efficacious inhibitors complexed with PARP1 6Y8H ; 1.37 ; Novel p38-alpha crystal lattice with highly exposed p38/TAB1 non-canonical PPI surface. 1W6H ; 2.24 ; Novel plasmepsin II-inhibitor complex 5FC9 ; 1.6 ; Novel Purple Cupredoxin from Nitrosopumilus maritimus 4UY1 ; 2.2 ; Novel pyrazole series of group X Secretory Phospholipase A2 (sPLA2-X) inhibitors 5AEP ; 1.95 ; Novel pyrrole carboxamide inhibitors of JAK2 as potential treatment of myeloproliferative disorders 4KJI ; 3.2 ; Novel re-arrangement of an RsmA/cSRa family protein to create a structurally distinct new RNA-binding family member 4KRW ; 2.01 ; Novel re-arrangement of an RsmA/cSRa family protein to create a structurally distinct new RNA-binding family member 6A51 ; 2.6 ; Novel Regulators CheP and CheQ Specifically Control Chemotaxis Core Gene cheVAW Transcription in Bacterial Pathogen Campylobacter jejuni 2W4S ; 2.45 ; novel RNA-binding domain in Cryptosporidium parvum at 2.5 angstrom resolution 7YSS ; ; Novel salt-resistant antimicrobial peptide, RR14 8GVN ; ; Novel salt-resistant antimicrobial peptide, RR14 5LAW ; 1.64 ; Novel Spiro[3H-indole-3,2 -pyrrolidin]-2(1H)-one Inhibitors of the MDM2-p53 Interaction: HDM2 (MDM2) IN COMPLEX WITH COMPOUND 14 5LAV ; 1.73 ; Novel Spiro[3H-indole-3,2 -pyrrolidin]-2(1H)-one Inhibitors of the MDM2-p53 Interaction: HDM2 (MDM2) in complex with compound 6b 5LAZ ; 1.66 ; Novel Spiro[3H-indole-3,2 -pyrrolidin]-2(1H)-one Inhibitors of the MDM2-p53 Interaction: HDM2 (MDM2) IN COMPLEX WITH COMPOUND BI-0252 1ABE ; 1.7 ; NOVEL STEREOSPECIFICITY OF THE L-ARABINOSE-BINDING PROTEIN 2N50 ; ; Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis 6RA9 ; 2.7 ; Novel structural features and post-translational modifications in eukaryotic elongation factor 1A2 from Oryctolagus cuniculus 7SO5 ; 1.797 ; Novel structural insights for a pair of monoclonal antibodies recognizing non-overlapping epitopes of the glucosyltransferase domain of Clostridium difficile toxin B 7SO7 ; 3.59 ; Novel structural insights for a pair of monoclonal antibodies recognizing non-overlapping epitopes of the glucosyltransferase domain of Clostridium difficile toxin B 5SZU ; 2.8 ; Novel Structural Insights into GDP-Mediated Regulation of Acyl-CoA Thioesterases 5SZV ; 2.0 ; Novel Structural Insights into GDP-Mediated Regulation of Acyl-CoA Thioesterases 5SZY ; 2.0 ; Novel Structural Insights into GDP-Mediated Regulation of Acyl-CoA Thioesterases 5SZZ ; 2.3 ; Novel Structural Insights into GDP-Mediated Regulation of Acyl-CoA Thioesterases 5V3A ; 2.0 ; Novel Structural Insights into GDP-Mediated Regulation of Acyl-CoA Thioesterases 6POO ; 3.03 ; Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin 2XYJ ; 2.3 ; Novel Sulfonylthiadiazoles with an Unusual Binding Mode as Partial Dual Peroxisome Proliferator-Activated Receptor (PPAR) gamma-delta Agonists with High Potency and In-vivo Efficacy 2XYW ; 3.14 ; Novel Sulfonylthiadiazoles with an Unusual Binding Mode as Partial Dual Peroxisome Proliferator-Activated Receptor (PPAR) gamma-delta Agonists with High Potency and In-vivo Efficacy 2XYX ; 2.7 ; Novel Sulfonylthiadiazoles with an Unusual Binding Mode as Partial Dual Peroxisome Proliferator-Activated Receptor (PPAR) gamma-delta Agonists with High Potency and In-vivo Efficacy 2I1R ; 2.2 ; Novel Thiazolones as HCV NS5B Polymerase Inhibitors: Further Designs, Synthesis, SAR and X-ray Complex Structure 3B92 ; 2.0 ; Novel thio-based TACE inhibitors Part 2: Rational design, synthesis and SAR of thiol-contaning aryl sufones 1GOF ; 1.7 ; NOVEL THIOETHER BOND REVEALED BY A 1.7 ANGSTROMS CRYSTAL STRUCTURE OF GALACTOSE OXIDASE 1GOG ; 1.9 ; NOVEL THIOETHER BOND REVEALED BY A 1.7 ANGSTROMS CRYSTAL STRUCTURE OF GALACTOSE OXIDASE 1GOH ; 2.2 ; NOVEL THIOETHER BOND REVEALED BY A 1.7 ANGSTROMS CRYSTAL STRUCTURE OF GALACTOSE OXIDASE 1YRV ; 2.18 ; Novel Ubiquitin-Conjugating Enzyme 1U53 ; 1.56 ; Novel X-Ray Structure of Na-ASP-2, a PR-1 protein from the nematode parasite Necator americanus and a vaccine antigen for human hookworm infection 2FFG ; 2.31 ; Novel x-ray structure of the YkuJ protein from Bacillus subtilis. Northeast Structural Genomics target SR360. 2BSM ; 2.05 ; Novel, potent small molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design 2BT0 ; 1.9 ; Novel, potent small molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design 6MSA ; 2.06 ; Novel, potent, selective and brain penetrant phosphodiesterase 10A inhibitors 6MSC ; 2.36 ; Novel, potent, selective and brain penetrant phosphodiesterase 10A inhibitors 1AJ6 ; 2.3 ; NOVOBIOCIN-RESISTANT MUTANT (R136H) OF THE N-TERMINAL 24 KDA FRAGMENT OF DNA GYRASE B COMPLEXED WITH NOVOBIOCIN AT 2.3 ANGSTROMS RESOLUTION 1Z6U ; 2.1 ; Np95-like ring finger protein isoform b [Homo sapiens] 7WKW ; 2.62 ; NPA bound state of AtPIN3 8HFR ; 2.64 ; NPC-trapped pre-60S particle 6W5T ; 3.7 ; NPC1 structure in GDN micelles at pH 5.5, conformation a 6W5U ; 3.9 ; NPC1 structure in GDN micelles at pH 5.5, conformation b 6W5S ; 3.0 ; NPC1 structure in GDN micelles at pH 8.0 6W5R ; 3.6 ; NPC1 structure in Nanodisc 3GKH ; 1.81 ; NPC1(NTD) 3GKI ; 1.8 ; NPC1(NTD):cholesterol 6W5V ; 4.0 ; NPC1-NPC2 complex structure at pH 5.5 3GKJ ; 1.6 ; NPC1D(NTD):25hydroxycholesterol 3QNT ; 2.83 ; NPC1L1 (NTD) Structure 6JWJ ; 1.58 ; Npl4 in complex with Ufd1 6CDD ; 2.58234 ; Npl4 zinc finger and MPN domains (Chaetomium thermophilum) 6VHY ; 3.0 ; NpsA-ThdA, an artificially fused Adenylation-PCP di-domain NRPS from Klebsiella oxytoca 2L25 ; ; Np_888769.1 8PQN ; 3.8 ; NQO1 bound to RBS-10 5B3P ; 1.652 ; Nqo5 of the trypsin-resistant fragment (1-134) in P212121 form 5B3Q ; 3.003 ; Nqo5 of the trypsin-resistant fragment (1-134) in P63 form 8C5L ; 2.6 ; NR2F6 ligand binding domain in complex with NSD1 peptide 6E6H ; 1.99 ; NRAS G13D bound to GppNHp (N13GNP) 2N9C ; ; NRAS Isoform 5 2L6B ; ; NRC consensus ankyrin repeat protein solution structure 7AEX ; 1.95 ; NRD-HEPN domains (N-terminal truncation) of Escherichia coli RnlA endoribonuclease 1R7H ; 2.69 ; NrdH-redoxin of Corynebacterium ammoniagenes forms a domain-swapped dimer 7X5G ; 2.3 ; Nrf2 (A510Y)-MafG heterodimer bound with CsMBE2 7X5E ; 2.3 ; Nrf2-MafG heterodimer bound with CsMBE1 7X5F ; 2.6 ; Nrf2-MafG heterodimer bound with CsMBE2 8C0T ; 1.28 ; NRS 1.2: Fluorescent Sensors for Imaging Interstitial Calcium 4M9K ; 1.46 ; NS2B-NS3 protease from dengue virus at pH 5.5 4M9M ; 1.53 ; NS2B-NS3 protease from dengue virus at pH 8.5 4M9T ; 1.74 ; NS2B-NS3 protease from dengue virus in the presence of DTNB, a covalent allosteric inhibitor 4KTC ; 2.3 ; NS3/NS4A protease with inhibitor 2M5L ; ; Ns5a308 4TLR ; 1.86 ; NS5b in complex with lactam-thiophene carboxylic acids 4TN2 ; 2.7 ; NS5b in complex with lactam-thiophene carboxylic acids 4NZB ; 2.68 ; NS9283 bound to Ls-AChBP 6KQQ ; 1.8 ; NSD1 SET domain in complex with BT3 and SAM 6KQP ; 2.4 ; NSD1 SET domain in complex with SAM 2NAA ; ; NSD1-PHD_5-C5HCH tandem domain structure 7CRO ; 3.75 ; NSD2 bearing E1099K/T1150A dual mutation in complex with 187-bp NCP 7E8D ; 2.8 ; NSD2 E1099K mutant bound to nucleosome 7VLN ; 3.09 ; NSD2-PWWP1 domain bound with an imidazol-5-yl benzonitrile compound 7CRP ; 3.2 ; NSD3 bearing E1181K/T1232A dual mutation in complex with 187-bp NCP (1:1 binding mode) 7CRQ ; 3.15 ; NSD3 bearing E1181K/T1232A dual mutation in complex with 187-bp NCP (2:1 binding mode) 7DG2 ; 1.7 ; Nse1-Nse3-Nse4 complex 7LTO ; 3.2 ; Nse5-6 complex 7OGG ; 3.29 ; Nse5/6 complex 6IP2 ; 3.7 ; NSF-D1D2 part in the whole 20S complex 7RNS ; 1.14 ; nSH2 domain of p85-alpha subunit of phosphatidylinositol 3-kinase in complex with an actin peptide with phosphorylated tyrosine 53 7RNU ; 1.45 ; nSH2 domain of p85-beta subunit of phosphatidylinositol 3-kinase in complex with an actin peptide with phosphorylated tyrosine 53 7PKP ; 3.1 ; NSP2 RNP complex 1MBM ; 2.0 ; NSP4 proteinase from Equine Arteritis Virus 7AAP ; 2.5 ; Nsp7-Nsp8-Nsp12 SARS-CoV2 RNA-dependent RNA polymerase in complex with template:primer dsRNA and favipiravir-RTP 1UW7 ; 2.8 ; Nsp9 protein from SARS-coronavirus. 6TY0 ; 2.1 ; NT PART CRYSTAL STRUCTURE OF THE RYMV-ENCODED VIRAL RNA SILENCING SUPPRESSOR P1 7WVJ ; 3.26 ; NT-mut(K117D,K139D,K145D) TLR3 -poly I:C complex 6G7B ; 1.76 ; Nt2 domain of the TssA component from the type VI secretion system of Aeromonas hydrophila. 6G7C ; 3.13 ; Nt2-CTD domains of the TssA component from the type VI secretion system of Aeromonas hydrophila. 1WWC ; 1.9 ; NT3 BINDING DOMAIN OF HUMAN TRKC RECEPTOR 8BXK ; 2.31 ; Ntaya virus methyltransferase 8CQH ; 2.0 ; Ntaya virus methyltransferase in complex with GTP and SAH 2XKP ; 3.05 ; NtcA from Synechococcus elongatus: active and inactive 6U6I ; 3.12 ; NTD of GluA2 in complex with CNIH3 - with antagonist ZK200775 - in asymmetric global conformation 6U5S ; 3.07 ; NTD of GluA2 in complex with CNIH3 - with antagonist ZK200775 - in pseudo-symmetric global conformation 7OCC ; 3.4 ; NTD of resting state GluA1/A2 heterotertramer 6Q8F ; 1.9 ; Nterminal domain of human SMU1 6Q8I ; 3.17 ; Nterminal domain of human SMU1 in complex with human REDmid 6Q8J ; 1.8 ; Nterminal domain of human SMU1 in complex with LSP641 1GY6 ; 1.6 ; NTF2 from rat, ammonium sulphate conditions 3UB1 ; 1.8 ; Ntf2 like protein involved in plasmid conjugation 4EC6 ; 2.5 ; Ntf2-like, potential transfer protein TraM from Gram-positive conjugative plasmid pIP501 5ODM ; ; NtiPr polyamide in complex with 5'CGATGTACTACG3 5ODF ; ; NtMe polyamide in complex with 5'CGATGTACATCG3'- hairpin polyamides studies 5E1D ; 1.45 ; NTMT1 in complex with YPKRIA peptide 3ZX2 ; 1.81 ; NTPDase1 in complex with Decavanadate 3ZX0 ; 2.5 ; NTPDase1 in complex with Heptamolybdate 8CHD ; 2.34 ; NtUGT1 in two conformations 7VVZ ; 8.8 ; NuA4 bound to the nucleosome 7VVU ; 3.4 ; NuA4 HAT module bound to the nucleosome 7ZVW ; 3.4 ; NuA4 Histone Acetyltransferase Complex 5Y81 ; 4.7 ; NuA4 TEEAA sub-complex 7SCZ ; 3.5 ; Nuc147 bound to multiple BRCTs 7SCY ; 4.1 ; Nuc147 bound to single BRCT 1H6K ; 2.0 ; nuclear Cap Binding Complex 7QQD ; 2.7 ; Nuclear factor one X - NFIX in P21 7QQE ; 3.5 ; Nuclear factor one X - NFIX in P41212 6RSA ; 2.0 ; NUCLEAR MAGNETIC RESONANCE AND NEUTRON DIFFRACTION STUDIES OF THE COMPLEX OF RIBONUCLEASE*A WITH URIDINE VANADATE, A TRANSITION-STATE ANALOGUE 1FTZ ; ; NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF THE FUSHI TARAZU HOMEODOMAIN FROM DROSOPHILA AND COMPARISON WITH THE ANTENNAPEDIA HOMEODOMAIN 1ERP ; ; NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF THE PHEROMONE ER-10 FROM THE CILIATED PROTOZOAN EUPLOTES RAIKOVI 2PLD ; ; NUCLEAR MAGNETIC RESONANCE STRUCTURE OF AN SH2 DOMAIN OF PHOSPHOLIPASE C-GAMMA1 COMPLEXED WITH A HIGH AFFINITY BINDING PEPTIDE 2PLE ; ; NUCLEAR MAGNETIC RESONANCE STRUCTURE OF AN SH2 DOMAIN OF PHOSPHOLIPASE C-GAMMA1 COMPLEXED WITH A HIGH AFFINITY BINDING PEPTIDE 5NHQ ; ; Nuclear Magnetic Resonance Structure of the Human Polyoma JC Virus Agnoprotein 2MIW ; ; Nuclear magnetic resonance studies of N2-guanine adducts derived from the tumorigen dibenzo[a,l]pyrene in DNA: Impact of adduct stereochemistry, size, and local DNA structure on solution conformations 2JOT ; ; Nuclear Magnetic Resonance Studies on Huwentoxin-XI from the Chinese Bird Spider Ornithoctonus huwena 1WFI ; ; Nuclear move domain of nuclear distribution gene C homolog 2O30 ; 1.66 ; Nuclear movement protein from E. cuniculi GB-M1 3UP3 ; 1.25 ; Nuclear receptor DAF-12 from hookworm Ancylostoma ceylanicum in complex with (25S)-cholestenoic acid 3UP0 ; 1.6 ; Nuclear receptor DAF-12 from hookworm Ancylostoma ceylanicum in complex with (25S)-delta7-dafachronic acid 3GYT ; 2.4 ; Nuclear receptor DAF-12 from parasitic nematode Strongyloides stercoralis in complex with its physiological ligand dafachronic acid delta 4 3GYU ; 2.4 ; Nuclear receptor DAF-12 from parasitic nematode Strongyloides stercoralis in complex with its physiological ligand dafachronic acid delta 7 1AR0 ; 2.3 ; NUCLEAR TRANSPORT FACTOR 2 (NTF2) E42K MUTANT 1ASK ; 2.3 ; NUCLEAR TRANSPORT FACTOR 2 (NTF2) H66A MUTANT 1QMA ; 2.5 ; Nuclear Transport Factor 2 (NTF2) W7A mutant 3SOY ; 2.0 ; Nuclear transport factor 2 (NTF2-like) superfamily protein from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 5VQI ; 2.501 ; Nuclear transport of the Neurospora crassa NIT2 transcription factor is mediated by Importin-alpha 5C10 ; 1.55 ; Nuclease domain of the large terminase subunit gp2 of bacterial virus Sf6 5C12 ; 1.517 ; Nuclease domain of the large terminase subunit gp2 of bacterial virus Sf6 8B7F ; 4.6 ; Nuclease from C. glutamicum 4B8C ; 3.41 ; nuclease module of the yeast Ccr4-Not complex 6EJU ; 1.9 ; Nuclease NucB from Bacillus licheniformis in P1 space group 6EJT ; 1.7 ; Nuclease NucB from Bacillus licheniformis in P21 space group 6EJS ; 1.6 ; Nuclease NucB from Bacillus licheniformis in P212121 space group 6EJV ; 1.75 ; Nuclease NucB from Bacillus licheniformis in sulphate free conditions 4ZT9 ; 3.1 ; Nuclease-inactive Streptococcus pyogenes Cas9 (D10A/H840A, dCas9) in complex with single-guide RNA at 3.1 Angstrom resolution 8FD5 ; 4.57 ; Nucleocapsid monomer structure from SARS-CoV-2 1CL4 ; ; NUCLEOCAPSID PROTEIN FROM MASON-PFIZER MONKEY VIRUS (MPMV) 1AAF ; ; NUCLEOCAPSID ZINC FINGERS DETECTED IN RETROVIRUSES: EXAFS STUDIES ON INTACT VIRUSES AND THE SOLUTION-STATE STRUCTURE OF THE NUCLEOCAPSID PROTEIN FROM HIV-1 1T6O ; 2.0 ; Nucleocapsid-binding domain of the measles virus P protein (amino acids 457-507) in complex with amino acids 486-505 of the measles virus N protein 4UOQ ; 2.7 ; Nucleophile mutant (E324A) of beta-(1,6)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 4E3D ; 1.6 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 4E3F ; 1.5 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 4E3G ; 1.55 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 4E3H ; 1.5 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 4E49 ; 1.45 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 4E4A ; 1.45 ; Nucleophile recognition as an alternative inhibition mode for benzoic acid based carbonic anhydrase inhibitors 2WLQ ; 1.4 ; Nucleophile-disabled Lam16A mutant holds laminariheptaose (L7) in a cyclical conformation 1V1D ; ; Nucleophilic and General Acid Catalysis at Physiological pH by a Designed Miniature Esterase 7UUI ; 2.9 ; Nucleoplasmic pre-60S intermediate of the Nog2 containing post-rotation state from a SPB1 D52A strain 7UOO ; 2.34 ; Nucleoplasmic pre-60S intermediate of the Nog2 containing pre-rotation state 7UQZ ; 2.44 ; Nucleoplasmic pre-60S intermediate of the Nog2 containing pre-rotation state from a SPB1 D52A strain 7V08 ; 2.36 ; Nucleoplasmic pre-60S intermediate of the Nog2 containing pre-rotation state from a Spb1 D52A suppressor 3 strain 7UQB ; 2.43 ; Nucleoplasmic pre-60S intermediate of the Nog2 containing pre-rotation state from a SPB1-D52A strain with AlF4 4I0O ; 1.9 ; Nucleoporin ELYS (aa1-494), Mus musculus 3CQC ; 2.53 ; Nucleoporin Nup107/Nup133 interaction complex 3CQG ; 3.0 ; Nucleoporin Nup107/Nup133 interaction complex, delta finger mutant 3HXR ; 3.0 ; Nucleoporin Nup120 from S.cerevisiae (aa 1-757) 4FHL ; 2.6 ; Nucleoporin Nup37 from Schizosaccharomyces pombe 3MWP ; 1.795 ; Nucleoprotein structure of lassa fever virus 8PQP ; 1.709 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 D62N Mutant bound to ImmH-Forodesine 8PQS ; 1.95 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 E88A Mutant 8PQQ ; 2.23 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 E88Q Mutant bound to Clofarabine 8PQT ; 1.7 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 WT bound to Bis-Tris 8PQR ; 1.586 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 WT bound to DAD_Immucillin-H 8RH3 ; 1.96 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 WT bound to Gemcitabine 8QC0 ; 2.02 ; Nucleoside 2'deoxyribosyltransferase from Chroococcidiopsis thermalis PCC 7203 WT ribosylated 1PAE ; 2.7 ; nucleoside diphosphate kinase 3PRV ; 2.69 ; Nucleoside diphosphate kinase B from Trypanosoma cruzi 6XP4 ; 2.0 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 6XP7 ; 2.2 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to ADP 6XPW ; 1.9 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to CDP 6XPV ; 2.3 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to dTDP 6XPS ; 1.644 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to GDP 6XPU ; 1.9 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to IDP 6XPT ; 2.3 ; Nucleoside Diphosphate Kinase from Aspergillus fumgiatus Af293 bound to UDP 5X00 ; 3.06 ; Nucleoside Diphosphate Kinase from Vibrio cholerae is a Thermolabile Type II tetramer 1BHN ; 2.4 ; NUCLEOSIDE DIPHOSPHATE KINASE ISOFORM A FROM BOVINE RETINA 1BE4 ; 2.4 ; NUCLEOSIDE DIPHOSPHATE KINASE ISOFORM B FROM BOVINE RETINA 7PEW ; 4.6 ; Nucleosome 1 of the 4x177 nucleosome array containing H1 7PF6 ; 4.0 ; Nucleosome 1 of the 4x187 nucleosome array containing H1 7PFD ; 4.4 ; Nucleosome 1 of the 4x197 nucleosome array containing H1 7PFV ; 4.4 ; Nucleosome 1 of the 4x207 nucleosome array containing H1 7PEX ; 5.1 ; Nucleosome 2 of the 4x177 nucleosome array containing H1 7PF5 ; 3.8 ; Nucleosome 2 of the 4x187 nucleosome array containing H1 7PFE ; 4.4 ; Nucleosome 2 of the 4x197 nucleosome array containing H1 7PFW ; 5.2 ; Nucleosome 2 of the 4x207 nucleosome array containing H1 7PEY ; 4.5 ; Nucleosome 3 of the 4x177 nucleosome array containing H1 7PF4 ; 4.0 ; Nucleosome 3 of the 4x187 nucleosome array containing H1 7PFF ; 4.3 ; Nucleosome 3 of the 4x197 nucleosome array containing H1 7PFX ; 4.3 ; Nucleosome 3 of the 4x207 nucleosome array containing H1 7PEZ ; 7.9 ; Nucleosome 4 of the 4x177 nucleosome array containing H1 7PF3 ; 4.0 ; Nucleosome 4 of the 4x187 nucleosome array containing H1 6ESF ; 3.7 ; Nucleosome : Class 1 7K7G ; 4.2 ; nucleosome and Gal4 complex 3HFD ; 2.8 ; Nucleosome Assembly Protein 1 from Plasmodium knowlesi 2Z2R ; 3.2 ; Nucleosome assembly proteins I (NAP-1, 74-365) 8OF4 ; 2.94 ; Nucleosome Bound human SIRT6 (Composite) 6ESG ; 5.4 ; Nucleosome breathing : Class 2 6ESH ; 5.1 ; Nucleosome breathing : Class 3 6ESI ; 6.3 ; Nucleosome breathing : Class 4 5CPK ; 2.632 ; Nucleosome containing methylated Sat2L DNA 5CPJ ; 3.15 ; Nucleosome containing methylated Sat2R DNA 5CPI ; 2.902 ; Nucleosome containing unmethylated Sat2R DNA 4KGC ; 2.69 ; Nucleosome Core Particle Containing (ETA6-P-CYMENE)-(1, 2-ETHYLENEDIAMINE)-RUTHENIUM 2NZD ; 2.65 ; Nucleosome core particle containing 145 bp of DNA 4XUJ ; 3.18 ; Nucleosome core particle containing adducts from treatment with a thiomorpholine-substituted [(eta-6-p-cymene)Ru(3-hydroxy-2-pyridone)Cl] compound 5DNN ; 2.8 ; Nucleosome core particle containing adducts of gold(I)-triethylphosphane and ruthenium(II)-toluene PTA complexes 5DNM ; 2.81 ; Nucleosome core particle containing adducts of ruthenium(II)-toluene PTA complex 6IQ4 ; 2.25 ; Nucleosome core particle cross-linked with a hetero-binuclear molecule possessing RAPTA and gold(I) 4-(diphenylphosphino)benzoic acid groups. 3O62 ; 3.216 ; Nucleosome core particle modified with a cisplatin 1,3-cis-{Pt(NH3)2}2+-d(GpTpG) intrastrand cross-link 3B6F ; 3.45 ; Nucleosome core particle treated with cisplatin 3B6G ; 3.45 ; Nucleosome core particle treated with oxaliplatin 5CP6 ; 2.6 ; Nucleosome Core Particle with Adducts from the Anticancer Compound, [(eta6-5,8,9,10-tetrahydroanthracene)Ru(ethylenediamine)Cl][PF6] 5XF3 ; 2.6 ; Nucleosome core particle with an adduct of a binuclear RAPTA (Ru-arene-phosphaadamantane) compound having a 1,2-diphenylethylenediamine linker (R,R-configuration) 5XF5 ; 2.82 ; Nucleosome core particle with an adduct of a binuclear RAPTA (Ru-arene-phosphaadamantane) compound having a 1,2-diphenylethylenediamine linker (R,S-configuration) 5XF4 ; 2.87 ; Nucleosome core particle with an adduct of a binuclear RAPTA (Ru-arene-phosphaadamantane) compound having a 1,2-diphenylethylenediamine linker (S,S-configuration) 5XF6 ; 2.63 ; Nucleosome core particle with an adduct of a binuclear RAPTA (Ru-arene-phosphaadamantane) compound having an ethylenediamine linker 7U51 ; 3.1 ; Nucleosome core particle with AP-site at SHL-6 7U52 ; 3.4 ; nucleosome core particle with AP-site at SHL-6.5 7U53 ; 4.0 ; Nucleosome core particle with AP-site at SHL0 4XZQ ; 2.4 ; Nucleosome disassembly by RSC and SWI/SNF is enhanced by H3 acetylation near the nucleosome dyad axis 4YS3 ; 3.0 ; Nucleosome disassembly by RSC and SWI/SNF is enhanced by H3 acetylation near the nucleosome dyad axis 4Z66 ; 2.5 ; Nucleosome disassembly by RSC and SWI/SNF is enhanced by H3 acetylation near the nucleosome dyad axis 7KTQ ; 3.3 ; Nucleosome from a dimeric PRC2 bound to a nucleosome 7KBD ; 3.38 ; Nucleosome in interphase chromosome formed in Xenopus egg extract (oligo fraction) 7KBE ; 3.5 ; Nucleosome isolated from metaphase chromosome formed in Xenopus egg extract (oligo fraction) 1OFC ; 1.9 ; nucleosome recognition module of ISWI ATPase 7PEV ; 6.0 ; Nucleosome stack of the 4x177 nucleosome array containing H1 7PF2 ; 5.1 ; Nucleosome stack of the 4x187 nucleosome array containing H1 7PFC ; 6.4 ; Nucleosome stack of the 4x197 nucleosome array containing H1 7PFU ; 5.0 ; Nucleosome stack of the 4x207 nucleosome array containing H1 8G8B ; 4.3 ; Nucleosome with human nMatn1 sequence in complex with Human Oct4 6T93 ; 3.49 ; Nucleosome with OCT4-SOX2 motif at SHL-6 7OHA ; 2.9 ; nucleosome with TBP and TFIIA bound at SHL +2 7OH9 ; 3.0 ; Nucleosome with TBP and TFIIA bound at SHL -6 8ATF ; 3.45 ; Nucleosome-bound Ino80 ATPase 6RYR ; 3.1 ; Nucleosome-CHD4 complex structure (single CHD4 copy) 6RYU ; 4.0 ; Nucleosome-CHD4 complex structure (two CHD4 copies) 3NHB ; 2.15 ; Nucleotide Binding Domain of Human ABCB6 (ADP bound structure) 3NHA ; 2.1 ; Nucleotide Binding Domain of Human ABCB6 (ADP Mg bound structure) 3NH6 ; 2.0 ; Nucleotide Binding Domain of human ABCB6 (apo structure) 3NH9 ; 2.1 ; Nucleotide Binding Domain of Human ABCB6 (ATP bound structure) 6S7P ; 3.2 ; Nucleotide bound ABCB4 1NJF ; 2.3 ; Nucleotide bound form of an isolated E. coli clamp loader gamma subunit 7K0R ; 3.3 ; Nucleotide bound SARS-CoV-2 Nsp15 1IJE ; 2.4 ; Nucleotide Exchange Intermediates in the eEF1A-eEF1Ba Complex 1IJF ; 3.0 ; Nucleotide exchange mechanisms in the eEF1A-eEF1Ba complex 7M2U ; 8.2 ; Nucleotide Excision Repair complex TFIIH Rad4-33 6WID ; 1.5 ; Nucleotide incorporation intermediate into quaternary complex of human Polymerase Mu on a complementary DNA double-strand break substrate 1UDI ; 2.7 ; NUCLEOTIDE MIMICRY IN THE CRYSTAL STRUCTURE OF THE URACIL-DNA GLYCOSYLASE-URACIL GLYCOSYLASE INHIBITOR PROTEIN COMPLEX 1CDG ; 2.0 ; NUCLEOTIDE SEQUENCE AND X-RAY STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE FROM BACILLUS CIRCULANS STRAIN 251 IN A MALTOSE-DEPENDENT CRYSTAL FORM 2JF2 ; 1.8 ; Nucleotide substrate binding by UDP-N-acetylglucosamine acyltransferase 2JF3 ; 3.0 ; Nucleotide substrate binding by UDP-N-acetylglucosamine acyltransferase 1HXP ; 1.8 ; NUCLEOTIDE TRANSFERASE 4WOP ; 2.393 ; Nucleotide Triphosphate Promiscuity in Mycobacterium tuberculosis Dethiobiotin Synthetase 5TFG ; 1.91 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with 5-methyl-UTP 5TFB ; 1.87 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with 7-methyl-GTP 5TF7 ; 1.931 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with ATP 5TFD ; 1.891 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with CTP 5TGK ; 1.912 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with dATP 5TFJ ; 1.85 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with dCTP 5TFI ; 1.891 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with dGTP 5TF8 ; 1.861 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with dTTP 5TFA ; 1.87 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with dUTP 5TFC ; 1.92 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with GTP 5TFF ; 1.891 ; Nucleotide-binding domain 1 of the human cystic fibrosis transmembrane conductance regulator (CFTR) with UTP 8PMD ; 2.95 ; Nucleotide-bound BSEP in nanodiscs 4BGB ; 1.34 ; Nucleotide-bound closed form of a putative sugar kinase MK0840 from Methanopyrus kandleri 4BGA ; 2.6 ; Nucleotide-bound open form of a putative sugar kinase MK0840 from Methanopyrus kandleri 8FNY ; 2.22 ; Nucleotide-bound structure of a functional construct of eukaryotic elongation factor 2 kinase. 2XCL ; 2.1 ; Nucleotide-bound Structures of Bacillus subtilis Glycinamide Ribonucleotide Synthetase 2XD4 ; 2.65 ; Nucleotide-bound Structures of Bacillus subtilis Glycinamide Ribonucleotide Synthetase 1HQY ; 2.8 ; Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU 1HT1 ; 2.8 ; Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU 1HT2 ; 2.8 ; Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU 7XKH ; 3.1 ; Nucleotide-depleted F1 domain of FoF1-ATPase from Bacillus PS3, state1 5VFO ; 3.5 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFP ; 4.2 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFQ ; 4.2 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFR ; 4.9 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFS ; 3.6 ; Nucleotide-Driven Triple-State Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFT ; 7.0 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 5VFU ; 5.8 ; Nucleotide-driven Triple-state Remodeling of the AAA-ATPase Channel in the Activated Human 26S Proteasome 6MHU ; 4.0 ; Nucleotide-free Cryo-EM Structure of E.coli LptB2FG Transporter 6MI7 ; 4.2 ; Nucleotide-free Cryo-EM Structure of E.coli LptB2FGC 4C3Z ; 2.1 ; Nucleotide-free crystal structure of nucleotide-binding domain 1 from human MRP1 supports a general-base catalysis mechanism for ATP hydrolysis. 7YYL ; 3.25 ; nucleotide-free DCCP:DCCP-R complex 1SGK ; 2.3 ; NUCLEOTIDE-FREE DIPHTHERIA TOXIN 4BEJ ; 3.483 ; Nucleotide-free Dynamin 1-like protein (DNM1L, DRP1, DLP1) 1NJG ; 2.2 ; Nucleotide-free form of an Isolated E. coli Clamp Loader Gamma Subunit 5ZME ; 3.603 ; Nucleotide-free form of C. reinhardtii ArsA1 2WOO ; 3.006 ; Nucleotide-free form of S. pombe Get3 7SPZ ; 3.0 ; Nucleotide-free Get3 in two open forms 4H1U ; 2.3 ; Nucleotide-free human dynamin-1-like protein GTPase-GED fusion 2MMC ; ; Nucleotide-free human ran gtpase 3J6H ; 8.1 ; Nucleotide-free Kinesin motor domain complexed with GMPCPP-microtubule 4LNU ; 2.19 ; Nucleotide-free kinesin motor domain in complex with tubulin and a DARPin 5LT3 ; 2.59 ; nucleotide-free kinesin-1 motor domain T87A mutant, P1 crystal form 5LT4 ; 2.881 ; nucleotide-free kinesin-1 motor domain T92V mutant, P1 crystal form 5LT1 ; 1.949 ; nucleotide-free kinesin-1 motor domain T92V mutant, P21 crystal form 5LT2 ; 2.6 ; nucleotide-free kinesin-1 motor domain, P1 crystal form 5LT0 ; 2.0 ; nucleotide-free kinesin-1 motor domain, P212121 crystal form 6JFL ; 2.806 ; Nucleotide-free Mitofusin2 (MFN2) 6Z7T ; 1.88 ; Nucleotide-free Myosin-II motor domain 7A40 ; 2.297 ; Nucleotide-free OSM-3 kinesin motor domain 1DFK ; 4.2 ; NUCLEOTIDE-FREE SCALLOP MYOSIN S1-NEAR RIGOR STATE 4P4U ; 1.9 ; Nucleotide-free stalkless-MxA 8FO6 ; 2.553 ; Nucleotide-free structure of a functional construct of eukaryotic elongation factor 2 kinase. 7VAJ ; 3.1 ; Nucleotide-free V1EG domain of V/A-ATPase from Thermus thermophilus, state1-2 7VAK ; 4.7 ; Nucleotide-free V1EG domain of V/A-ATPase from Thermus thermophilus, state2 4LY6 ; 3.6 ; Nucleotide-induced asymmetry within ATPase activator ring drives s54-RNAP interaction and ATP hydrolysis 4LZZ ; 3.21 ; Nucleotide-induced asymmetry within atpase activator ring drives s54-RNAP interaction and ATP hydrolysis 2VAN ; 2.1 ; Nucleotidyl Transfer Mechanism of Mismatched dNTP Incorporation by DNA Polymerase b by Structural and Kinetic Analyses 6EHI ; 1.58 ; NucT from Helicobacter pylori 7ANM ; 2.72 ; Nudaurelia capensis omega virus capsid: virus-like particles expressed in Nicotiana benthamiana 8ACH ; 3.91 ; Nudaurelia capensis omega virus maturation intermediate captured at pH5.6 (insect cell expressed VLPs): large class from symmetry expansion 8AC6 ; 3.63 ; Nudaurelia capensis omega virus maturation intermediate captured at pH5.6 (insect cell expressed VLPs): medium class from symmetry expansion 8AAY ; 3.39 ; Nudaurelia capensis omega virus maturation intermediate captured at pH5.6 (insect cell expressed VLPs): small class from symmetry expansion 8A3C ; 3.92 ; Nudaurelia capensis omega virus maturation intermediate captured at pH5.9 (insect cell expressed VLPs) 8A6J ; 4.8 ; Nudaurelia capensis omega virus maturation intermediate captured at pH6.25 (insect cell expressed VLPs) 8A41 ; 4.88 ; Nudaurelia capensis omega virus procapsid at pH7.6 (insect cell expressed VLPs) 7ATA ; 6.63 ; Nudaurelia capensis omega virus procapsid: virus-like particles expressed in Nicotiana benthamiana 2B0V ; 1.55 ; NUDIX hydrolase from Nitrosomonas europaea. 6YPB ; 1.7 ; NUDIX1 hydrolase from Rosa x hybrida 6YPF ; 1.45 ; NUDIX1 hydrolase from Rosa x hybrida in complex with geranyl pyrophosphate 1J57 ; ; NuiA 1KTU ; ; NuiA 5Z5Q ; ; Nukacin ISK-1 in active state 5Z5R ; ; Nukacin ISK-1 in inactive state 3I4R ; 3.53 ; Nup107(aa658-925)/Nup133(aa517-1156) complex, H.sapiens 6X06 ; 4.27 ; Nup120 (aa1-757) from S. cerevisiae bound by VHH-SAN11 6X05 ; 2.1 ; Nup133 (aa55-481) from S. cerevisiae bound by VHH-SAN4 6X04 ; 2.68 ; Nup133 (aa55-481) from S. cerevisiae bound by VHH-SAN5 3I5Q ; 2.204 ; Nup170(aa1253-1502) at 2.2 A, S.cerevisiae 3I5P ; 3.2 ; Nup170(aa979-1502), S.cerevisiae 4KF7 ; 2.65 ; Nup188(aa1-1160) from Myceliophthora thermophila 4KF8 ; 3.0 ; Nup188(aa1445-1827) from Myceliophthora thermophila 4C31 ; 3.0 ; Nup1:Sac3:Sus1 complex 4GQ1 ; 2.4 ; Nup37 of S. pombe 4FHN ; 6.989 ; Nup37-Nup120 full-length complex from Schizosaccharomyces pombe 4FHM ; 4.339 ; Nup37-Nup120(aa1-961) complex from Schizosaccharomyces pombe 2C1M ; 2.2 ; Nup50:importin-alpha complex 6X02 ; 6.38 ; Nup84-Nup133 (aa521-1157) from S. cerevisiae bound by VHH-SAN8 6X03 ; 7.3 ; Nup84-Nup133 (aa521-1157) from S. cerevisiae bound by VHH-SAN8 and VHH-SAN9 3JRO ; 4.004 ; NUP84-NUP145C-SEC13 edge element of the NPC lattice 6X08 ; 4.19 ; Nup85-Seh1 from S. cerevisiae bound by VHH-SAN2 7ZOX ; 4.4 ; Nup93 in complex with xhNup93-Nb4i and xNup93-Nb2t 8CYO ; 2.41 ; Nurr1 Covalently Bound to a Synthetic Ligand, 10.25, via a Disulfide Bond 6DDA ; 3.2 ; Nurr1 Covalently Modified by a Dopamine Metabolite 8F5G ; 2.7 ; NusG-RNA complex 4QPX ; 1.86 ; NV polymerase post-incorporation-like complex 3FTL ; 1.6 ; NVGSNTY segment from Islet Amyloid Polypeptide (IAPP or Amylin), dehydrated crystal form 3FTK ; 1.5 ; NVGSNTY segment from Islet Amyloid Polypeptide (IAPP or Amylin), hydrated crystal form 5I1Y ; 1.95 ; NvPizza2-H16S58 with cobalt 7JX0 ; 3.15 ; NVS-PI3-4 bound to the PI3Kg catalytic subunit p110 gamma 2HM5 ; ; NW1, K21P, Structural Species II 7F32 ; ; Ny-Hydroxyasparagine: A Multifunctional Unnatural Amino Acid That is a Good P1 Substrate of Asparaginyl Peptide Ligases 6R2L ; 2.3 ; NYBR1-A2-SLSKILDTV 7S3T ; 1.4 ; NzeB Diketopiperazine Dimerase Mutant: Q68I-G87A-A89G-I90V 8PHA ; 2.02 ; O(S)-methyltransferase from Pleurotus sapidus 7KB0 ; 1.85 ; O-acety-L-homoserine aminocarboxypropyltransferase (MetY) from Thermotoga maritima with pyridoxal-5-phosphate (PLP) bound in the internal aldimine state 1Y7L ; 1.55 ; O-Acetylserine Sulfhydrylase Complex 7N2T ; 1.55 ; O-acetylserine sulfhydrylase from Citrullus vulgaris in the internal aldimine state, with citrate bound 1OAS ; 2.2 ; O-ACETYLSERINE SULFHYDRYLASE FROM SALMONELLA TYPHIMURIUM 4O8V ; 1.815 ; O-Acetyltransferase Domain of Pseudomonas putida AlgJ 4DRJ ; 1.8 ; o-crystal structure of the PPIase domain of FKBP52, Rapamycin and the FRB fragment of mTOR 1VXR ; 2.2 ; O-ETHYLMETHYLPHOSPHONYLATED ACETYLCHOLINESTERASE OBTAINED BY REACTION WITH O-ETHYL-S-[2-[BIS(1-METHYLETHYL)AMINO]ETHYL] METHYLPHOSPHONOTHIOATE (VX) 5A01 ; 2.66 ; O-GlcNAc transferase from Drososphila melanogaster 6E37 ; 2.531 ; O-GlcNAc Transferase in complex with covalent inhibitor 6EOU ; 1.75 ; O-GlcNAc transferase TPR domain with the intellectual disability associated mutation L254F 3WV0 ; 2.3 ; O-glycan attached to herpes simplex virus type 1 glycoprotein gB is recognized by the Ig V-set domain of human paired immunoglobulin-like type 2 receptor alpha 7O3J ; 2.6 ; O-layer structure (TrwH/VirB7, TrwF/VirB9CTD, TrwE/VirB10CTD) of the outer membrane core complex from the fully-assembled R388 type IV secretion system determined by cryo-EM. 3GEL ; 2.39 ; O-Methylphosphorylated Torpedo Acetylcholinesterase Obtained by Reaction with Methyl Paraoxon (AGED) 8C9V ; 1.5 ; O-methyltransferase from Desulfuromonas acetoxidans 8BGZ ; 2.0 ; O-Methyltransferase Plu4890 (mutant H229N) in complex with SAH and AQ-256 8BID ; 1.75 ; O-Methyltransferase Plu4890 (mutant H229N) in complex with SAH and AQ-270a 8BIB ; 2.3 ; O-Methyltransferase Plu4890 in complex with SAH and AQ-256 8BGX ; 1.9 ; O-Methyltransferase Plu4890 in complex with SAH and AQ-270a 8BH0 ; 1.7 ; O-Methyltransferase Plu4890 in complex with SAH and AQ-270b 8BGY ; 1.95 ; O-Methyltransferase Plu4890 in complex with SAH and AQ-284a 8BIH ; 2.4 ; O-Methyltransferase Plu4890 in complex with SAH and AQ-284b 8BGT ; 2.15 ; O-Methyltransferase Plu4890 in complex with SAM 8BIC ; 1.85 ; O-Methyltransferase Plu4891 in complex with SAH 8BIF ; 2.0 ; O-Methyltransferase Plu4892 in complex with SAH 8BIJ ; 1.55 ; O-Methyltransferase Plu4894 (mutant I88M, W91L, C97Y, S142L, G146V, Y258M, L270F, S309Y) in complex with SAH 8BIE ; 2.25 ; O-Methyltransferase Plu4894 in complex with SAH 8BII ; 2.8 ; O-Methyltransferase Plu4895 (mutant H229N) in complex with SAH 8BIG ; 2.8 ; O-Methyltransferase Plu4895 in complex with SAH 8BIR ; 2.4 ; O-Methyltransferase Plu4895 in complex with SAH and AQ-256 4V0Z ; 1.7 ; o-nitrophenyl Cellobioside as an Active Site Probe for Family 7 Cellobiohydrolases 5GTD ; 2.69 ; o-Succinylbenzoate CoA Synthetase (MenE) from Bacillus Subtilis in Complex with the Acyl-adenylate Intermediate OSB-AMP 5BUS ; 2.603 ; O-succinylbenzoate Coenzyme A Synthetase (MenE) from Bacillus Subtilis, in complex with AMP 5BUR ; 2.82 ; O-succinylbenzoate Coenzyme A Synthetase (MenE) from Bacillus Subtilis, in Complex with ATP and Magnesium Ion 7N79 ; 1.98 ; O2-, PLP-dependent desaturase Plu4 holo-enzyme 7RF9 ; 1.926 ; O2-, PLP-dependent desaturase Plu4 intermediate-bound enzyme 7RGB ; 2.5 ; O2-, PLP-dependent desaturase Plu4 product-bound enzyme 6C3A ; 1.53 ; O2-, PLP-dependent L-arginine hydroxylase RohP 4-hydroxy-2-ketoarginine complex 6C3B ; 1.51 ; O2-, PLP-Dependent L-Arginine Hydroxylase RohP Holoenzyme 6C3D ; 1.55 ; O2-, PLP-dependent L-arginine hydroxylase RohP quinonoid II complex 7LA7 ; 1.55101 ; O6 variable lymphocyte receptor ectodomain 7LA8 ; 1.8965 ; O6 variable lymphocyte receptor ectodomain bound to 3-HSO3-Gal-4GlcNAc 4O5W ; 1.6 ; O6-carboxymethylguanine in DNA forms a sequence context dependent wobble base pair structure with thymine 4O5Y ; 1.75 ; O6-carboxymethylguanine in DNA forms a sequence context dependent wobble base pair structure with thymine 4O5Z ; 1.75 ; O6-carboxymethylguanine in DNA forms a sequence context dependent wobble base pair structure with thymine 4O5X ; 1.6 ; O6-carboxymethylguanine in DNA forms a sequence context dependent wobble base pair structure with thymine. 2HHX ; 2.26 ; O6-methyl-guanine in the polymerase template preinsertion site 2HHQ ; 1.8 ; O6-methyl-guanine:T pair in the polymerase-10 basepair position 2HHS ; 1.8 ; O6-methyl:C pair in the polymerase-10 basepair position 8AMT ; 1.5 ; OBD-RepB pMV158 domain 1SL9 ; 1.17 ; Obelin from Obelia longissima 2JSJ ; ; Obestatin in water solution 2JSH ; ; obestatin NMR structure in SDS/DPC micellar solution 4GN3 ; 1.95 ; OBody AM1L10 bound to hen egg-white lysozyme 4GN4 ; 1.861 ; OBody AM2EP06 bound to hen egg-white lysozyme 4GLV ; 2.574 ; OBody AM3L09 bound to hen egg-white lysozyme 4GN5 ; 1.86 ; OBody AM3L15 bound to hen egg-white lysozyme 4GLA ; 2.75 ; OBody NL8 bound to hen egg-white lysozyme 6HDD ; 4.5 ; OBP chaperonin in the nucleotide-free state 1JCJ ; 1.1 ; OBSERVATION OF COVALENT INTERMEDIATES IN AN ENZYME MECHANISM AT ATOMIC RESOLUTION 1JCL ; 1.05 ; OBSERVATION OF COVALENT INTERMEDIATES IN AN ENZYME MECHANISM AT ATOMIC RESOLUTION 1DID ; 2.5 ; OBSERVATIONS OF REACTION INTERMEDIATES AND THE MECHANISM OF ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE 1DIE ; 2.5 ; OBSERVATIONS OF REACTION INTERMEDIATES AND THE MECHANISM OF ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE 4KLQ ; 1.999 ; Observing a DNA polymerase choose right from wrong. 6VI5 ; 1.604 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - a resting state structure 6VIA ; 1.591 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - a seven-membered lactone bound structure 6VI6 ; 1.901 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - a substrate monodentately bound structure 6VI8 ; 1.95 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - a superoxo bound structure 6VI9 ; 2.31 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - an alkylperoxo bound structure 6X11 ; 2.097 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - an enol tautomer of ACMS monodentately bound structure 6VIB ; 1.84 ; Observing a ring-cleaving dioxygenase in action through a crystalline lens - enol tautomers of ACMS bidentately bound structure 4XOL ; 2.91 ; Observing the overall rocking motion of a protein in a crystal - Cubic Ubiquitin crystals. 4XOF ; 1.15 ; Observing the overall rocking motion of a protein in a crystal - Orthorhombic Ubiquitin crystals without Zinc. 4XOK ; 2.2 ; Observing the overall rocking motion of a protein in a crystal. 3J42 ; 21.0 ; Obstruction of Dengue Virus Maturation by Fab Fragments of the 2H2 Antibody 7NH7 ; 2.2 ; OC43 coronavirus methyltransferase 7ZDT ; 2.71 ; Occ(apo/return) conformation of CydDC mutant (E500Q.C) in ATP(CydC) bound state (Dataset-18) 7ZE5 ; 2.94 ; Occ(apo/return) conformation of CydDC mutant (E500Q.C) in ATP(CydC)/AMP-PNP(CydD) bound state (Dataset-23) 7ZDU ; 2.98 ; Occ(apo/return) conformation of CydDC mutant (E500Q.C) in ATP(CydC)/ATP(CydD) bound state (Dataset-19) 4Y1O ; 2.95 ; Oceanobacillus iheyensis group II intron domain 1 4Y1N ; 3.0 ; Oceanobacillus iheyensis group II intron domain 1 with iridium hexamine 5LCC ; 2.0 ; Oceanobacillus iheyensis macrodomain mutant D40A 5LAU ; 1.35 ; Oceanobacillus iheyensis macrodomain mutant G37V with ADPR 5LBP ; 1.76 ; Oceanobacillus iheyensis macrodomain mutant N30A 5L9Q ; 1.75 ; OCEANOBACILLUS IHEYENSIS MACRODOMAIN WITH ADP 5L9K ; 1.77 ; OCEANOBACILLUS IHEYENSIS MACRODOMAIN WITH ADPR 5FUD ; 1.9 ; Oceanobacillus iheyensis macrodomain with MES bound 5U9Y ; ; Ocellatin-F1 5UA8 ; ; Ocellatin-F1, solution structure in SDS micelle by NMR spectroscopy 5U9S ; ; Ocellatin-F1, solution structure in TFE by NMR spectroscopy 5U9Q ; ; Ocellatin-LB1 5U9V ; ; Ocellatin-LB1, solution structure in DPC micelle by NMR spectroscopy 5UA6 ; ; Ocellatin-LB1, solution structure in SDS micelle by NMR spectroscopy 5U9X ; ; Ocellatin-LB2 5UA7 ; ; Ocellatin-LB2, solution structure in SDS micelle by NMR spectroscopy 5U9R ; ; Ocellatin-LB2, solution structure in TFE by NMR spectroscopy 3E5X ; 1.999 ; OCPA complexed CprK 3E5U ; 1.83 ; OCPA complexed CprK (C200S) 3E6B ; 2.01 ; OCPA complexed CprK (C200S) 8OTS ; 3.3 ; OCT4 and MYC-MAX co-bound to a nucleosome 6YOV ; 3.42 ; OCT4-SOX2-bound nucleosome - SHL+6 6T90 ; 3.05 ; OCT4-SOX2-bound nucleosome - SHL-6 8BX1 ; 2.5 ; Oct4/Sox2 protein:DNA complex 8BX2 ; 3.14 ; Oct4/Sox2 protein:DNA complex 6HT5 ; 3.451 ; Oct4/Sox2:UTF1 structure 1EBH ; 1.9 ; OCTAHEDRAL COORDINATION AT THE HIGH AFFINITY METAL SITE IN ENOLASE; CRYSTALLOGRAPHIC ANALYSIS OF THE MG++-ENZYME FROM YEAST AT 1.9 ANGSTROMS RESOLUTION 8GZ7 ; 3.5 ; Octahedral supramolecular assembly of the bicomponent gamma-hemolysin octameric pore complexes from Staphylococcus aureus Newman. 419D ; 2.2 ; OCTAMER 5'-R(*GP*UP*AP*UP*AP*CP*A)-D(P*C)-3' WITH SIX WATSON-CRICK BASE-PAIRS AND TWO 3' OVERHANG RESIDUES 6RCD ; 1.98 ; Octamer C-Domain P140 Mycoplasma genitalium. 5FTT ; 3.4 ; Octameric complex of Latrophilin 3 (Lec, Olf) , Unc5D (Ig, Ig2, TSP1) and FLRT2 (LRR) 1L4X ; 2.0 ; Octameric de novo designed peptide 7T8B ; 3.8 ; Octameric Human Twinkle Helicase Clinical Variant W315L 3LA6 ; 3.2 ; Octameric kinase domain of the E. coli tyrosine kinase Wzc with bound ADP 6TV6 ; 2.5 ; Octameric McsB from Bacillus subtilis. 8EAX ; 3.73 ; Octameric prenyltransferase domain of fusicoccadiene Synthase with C2 symmetry sans transiently associating cyclase domains 4U3L ; 1.482 ; octameric RNA duplex co-crystallized in calcium(II)chloride 4U3R ; 1.701 ; Octameric RNA duplex co-crystallized with cobalt(II)chloride 4U3P ; 1.866 ; Octameric RNA duplex co-crystallized with strontium(II)chloride 4U78 ; 1.501 ; Octameric RNA duplex soaked in copper(II)chloride 4U3O ; 1.8 ; Octameric RNA duplex soaked in manganese(II)chloride 4U47 ; 1.952 ; Octameric RNA duplex soaked in terbium(III)chloride 3OOW ; 1.75 ; Octameric structure of the phosphoribosylaminoimidazole carboxylase catalytic subunit from Francisella tularensis subsp. tularensis SCHU S4. 4P4Z ; 1.31 ; Octomer formed by a macrocyclic peptide derived from beta-2-microglobulin (63-69) - (ORN)YLL(PHI)YTE(ORN)KVT(MVA)TVK 6VC1 ; ; Octreotide oxalate 7YAE ; 3.37 ; Octreotide-bound SSTR2-Gi complex 7OWL ; 2.9 ; Odinarchaeota Adenylate kinase (OdinAK) in complex with CTP 7OWK ; 3.1 ; Odinarchaeota Adenylate kinase (OdinAK) in complex with dTTP 7OWJ ; 2.5 ; Odinarchaeota Adenylate kinase (OdinAK) in complex with GTP 7OWE ; 2.75 ; Odinarchaeota Adenylate kinase (OdinAK) in complex with inhibitor Ap5a 7OWH ; 1.85 ; Odinarchaeota Adenylate kinase (OdinAK) native structure 7F1A ; 1.9 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound 78% GTP/22% GDP 1 K+, 1 Mg2+ 7EVE ; 2.0 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 100% GDP and 2 Na+ 7EVD ; 1.45 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 53% GTP/47% and 2 Na+ 7EVC ; 1.25 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 60% GTP/40% GDP and 2 Na+ 7EVL ; 2.15 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 64% GTP/36% GDP and 2 Na+ in a small unit cell 7EVB ; 1.62 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 77% GTP/23% and 2 Na+ 7EVK ; 1.75 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 78% GTP, 22% GDP, Na+ 7EVI ; 1.55 ; Odinarchaeota tubulin (OdinTubulin) H393D mutant, in a protofilament arrangement, bound to 79% GTP, 21% GDP, Na+, Mg2+ 7F1B ; 2.4 ; Odinarchaeota tubulin H393D mutant, in a pseudo protofilament arrangement, after GTP hydrolysis and phosphate release 7EVH ; 2.5 ; Odinarchaeota tubulin H393D mutant, in a psuedo protofilament arrangement, bound to 59% GDP, 41% phosphate 5ZZA ; 1.53 ; OdinProfilin/Rabbit Actin Complex 3R1O ; 2.1 ; Odorant Binding Protein 7 from Anopheles gambiae with Four Disulfide Bridges 3R1P ; 1.85 ; Odorant Binding Protein 7 from Anopheles gambiae with Four Disulfide Bridges, form P1 3R1V ; 2.19 ; Odorant Binding Protein 7 from Anopheles gambiae with Four Disulfide Bridges, in complex with an azo compound 1A3Y ; 2.25 ; ODORANT BINDING PROTEIN FROM NASAL MUCOSA OF PIG 3FIQ ; 1.599 ; Odorant Binding Protein OBP1 6QQ4 ; 1.998 ; Odorant-binding protein dmelOBP28a from Drosophila melanogaster 1OBP ; 2.0 ; ODORANT-BINDING PROTEIN FROM BOVINE NASAL MUCOSA 6ZOQ ; 1.8 ; Oestrogen receptor ligand binding domain in complex with compound 16 6ZOS ; 2.0 ; Oestrogen receptor ligand binding domain in complex with compound 18 6ZOR ; 1.97 ; Oestrogen receptor ligand binding domain in complex with compound 28 7QVL ; 1.9 ; OESTROGEN RECEPTOR LIGAND BINDING DOMAIN IN COMPLEX WITH COMPOUND 38 1TPB ; 1.9 ; OFFSET OF A CATALYTIC LESION BY A BOUND WATER SOLUBLE 1TPC ; 1.9 ; OFFSET OF A CATALYTIC LESION BY A BOUND WATER SOLUBLE 2BML ; 2.6 ; Ofloxacin-like antibiotics inhibit pneumococcal cell wall degrading virulence factors 2XSA ; 2.0 ; OgOGA apostructure 7KHS ; 1.78 ; OgOGA IN COMPLEX WITH LIGAND 55 2XSB ; 2.11 ; OgOGA PUGNAc complex 5NCR ; 1.89 ; OH1 from the Orf virus: a tyrosine phosphatase that displays distinct structural features and triple substrate specificity 6EBG ; 2.15 ; Ohr (Organic Hydroperoxide Resistance protein) mutant - C60S interacting with dihydrolipoamide 4XX2 ; 2.15 ; Ohr from Xylella fastidiosa in oxidized state 6ED0 ; 1.44 ; OhrA (Organic Hydroperoxide Resistance protein) mutant (C61S) in the ""open conformation"" from chromobacterium violaceum 6ECY ; 1.4 ; OhrA (Organic Hydroperoxide Resistance protein) wild type from chromobacterium violaceum 6EB4 ; 2.1 ; OhrB (Organic Hydroperoxide Resistance protein) from Chromobacterium violaceum 6EBD ; 2.61 ; OhrB (Organic Hydroperoxide Resistance protein) mutant (C60A) from Chromobacterium violaceum, interacting with dihydrolipoamide 6EBC ; 1.87 ; OhrB (Organic Hydroperoxide Resistance protein) wild type from Chromobacterium violaceum and reduced by DTT 6P74 ; 2.2 ; OLD nuclease from Thermus Scotoductus 1BWL ; 2.7 ; OLD YELLOW ENZYME (OYE1) DOUBLE MUTANT H191N:N194H 1BWK ; 2.3 ; OLD YELLOW ENZYME (OYE1) MUTANT H191N 8E5I ; 1.7 ; Old Yellow Enzyme 1 (NpOYE1) from Neptuniibacter sp. 8E5H ; 1.27 ; Old Yellow Enzyme 5 (PcOYE5) from Pseudomonas chloritidismutans 1OYA ; 2.0 ; OLD YELLOW ENZYME AT 2 ANGSTROMS RESOLUTION: OVERALL STRUCTURE, LIGAND BINDING AND COMPARISON WITH RELATED FLAVOPROTEINS 1OYB ; 2.0 ; OLD YELLOW ENZYME AT 2 ANGSTROMS RESOLUTION: OVERALL STRUCTURE, LIGAND BINDING AND COMPARISON WITH RELATED FLAVOPROTEINS 1OYC ; 2.0 ; OLD YELLOW ENZYME AT 2 ANGSTROMS RESOLUTION: OVERALL STRUCTURE, LIGAND BINDING AND COMPARISON WITH RELATED FLAVOPROTEINS 8PUN ; 2.3 ; Old Yellow Enzyme from the thermophilic Ferrovum sp. JA12 3HF3 ; 2.2 ; Old Yellow Enzyme from Thermus scotoductus SA-01 3HGJ ; 2.0 ; Old Yellow Enzyme from Thermus scotoductus SA-01 complexed with p-hydroxy-benzaldehyde 7Q6R ; 2.44 ; OleP mutant E89Y in complex with 6DEB 7Q89 ; 2.08 ; OleP mutant G92W in complex with 6DEB 7Q6X ; 2.7 ; OleP mutant S240Y in complex with 6DEB 4XE3 ; 2.65 ; OleP, the cytochrome P450 epoxidase from Streptomyces antibioticus involved in Oleandomycin biosynthesis: functional analysis and crystallographic structure in complex with clotrimazole. 6ZHZ ; 2.2 ; OleP-oleandolide(DEO) in high salt crystallization conditions 6ZI2 ; 2.93 ; OleP-oleandolide(DEO) in low salt crystallization conditions 6NAX ; 1.551 ; Olfactomedin domain of mouse myocilin 8EFB ; 3.2 ; Oliceridine-bound mu-opioid receptor-Gi complex 1JET ; 1.2 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KAK 1B4Z ; 1.75 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KDK 1JEU ; 1.25 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KEK 1B40 ; 2.2 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KFK 1B3L ; 2.0 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KGK 1B3F ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KHK 1B3G ; 2.0 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KIK 1B9J ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KLK 1B32 ; 1.75 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KMK 1B5I ; 1.9 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KNK 1B46 ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KPK 1B5J ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KQK 1QKA ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KRK 1B51 ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KSK 1B52 ; 2.3 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KTK 1QKB ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KVK 1JEV ; 1.3 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KWK 1B58 ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH KYK 1OLC ; 2.1 ; OLIGO-PEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH LYS-LYS-LYS-ALA 1B3H ; 2.0 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-CYCLOHEXYLALANYL-LYSINE 1B4H ; 1.9 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-DIAMINOBUTYRIC ACID-LYSINE 1B5H ; 1.9 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-DIAMINOPROPANOIC ACID-LYSINE 1B0H ; 1.9 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-NAPTHYLALANYL-LYSINE 1B7H ; 2.0 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-NORLEUCYL-LYSINE 1B6H ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN COMPLEXED WITH LYSYL-NORVALYL-LYSINE 1B2H ; 1.9 ; Oligo-Peptide Binding Protein Complexed with Lysyl-Ornithyl-Lysine 1B1H ; 1.8 ; OLIGO-PEPTIDE BINDING PROTEIN/TRIPEPTIDE (LYS HPE LYS) COMPLEX 3PE7 ; 1.65 ; Oligogalacturonate lyase in complex with manganese 4GPO ; 3.5 ; Oligomeic Turkey Beta1-Adrenergic G Protein-Coupled Receptor 5CMD ; 3.086 ; Oligomer crystal structure of CC chemokine 5 (CCL5) 5L2U ; 2.28 ; Oligomer crystal structure of CC chemokine 5 (CCL5) 2YJE ; 3.1 ; Oligomeric assembly of actin bound to MRTF-A 2YJF ; 3.5 ; Oligomeric assembly of actin bound to MRTF-A 8DE6 ; 3.2 ; Oligomeric C9 in complex with aE11 Fab 6DV5 ; 3.58 ; Oligomeric complex of a Hsp27 24-mer at 3.6 A resolution 2OF5 ; 3.2 ; Oligomeric Death Domain complex 7ZW6 ; 3.7 ; Oligomeric structure of SynDLP 2L9H ; ; Oligomeric Structure of the Chemokine CCL5/RANTES from NMR, MS, and SAXS Data 3LMN ; 2.15 ; Oligomeric structure of the DUSP domain of human USP15 6DLN ; ; Oligomeric Structure of the HIV gp41 MPER-TMD in Phospholipid Bilayers 1B4F ; 1.95 ; OLIGOMERIC STRUCTURE OF THE HUMAN EPHB2 RECEPTOR SAM DOMAIN 1A92 ; 1.8 ; OLIGOMERIZATION DOMAIN OF HEPATITIS DELTA ANTIGEN 1XCU ; 2.0 ; oligonucleotid/drug complex 2LFA ; ; Oligonucleotide duplex contaning (5'S)-8,5'-cyclo-2'-deoxyguansine 2MNC ; ; oligonucleotide model of miR-21 pre-element 7OB1 ; 2.0 ; OLIGOPEPTIDASE B FROM S. PROTEOMACULANS WITH MODIFIED HINGE 7NE7 ; 2.3 ; oligopeptidase B from S. proteomaculans with modified hinge region in complex with N-[(1S)-5-amino-1-(chloroacetyl)pentyl]-4-methylbenzenesulfonamide 4BP8 ; 2.4 ; Oligopeptidase B from Trypanosoma brucei - open form 4BP9 ; 2.85 ; Oligopeptidase B from Trypanosoma brucei with covalently bound antipain - closed form 2OLB ; 1.4 ; OLIGOPEPTIDE BINDING PROTEIN (OPPA) COMPLEXED WITH TRI-LYSINE 5IPW ; 2.6 ; oligopeptide-binding protein OppA 1J9A ; 2.5 ; OLIGORIBONUCLEASE 6A4A ; 2.7 ; Oligoribonuclease (ORN) from Colwellia psychrerythraea strain 34H 1AHP ; 3.0 ; OLIGOSACCHARIDE SUBSTRATE BINDING IN ESCHERICHIA COLI MALTODEXTRIN PHSPHORYLASE 1H4G ; 1.1 ; Oligosaccharide-binding to family 11 xylanases: both covalent intermediate and mutant-product complexes display 2,5B conformations at the active-centre 1H4H ; 1.9 ; Oligosaccharide-binding to family 11 xylanases: both covalent intermediate and mutant-product complexes display 2,5B conformations at the active-centre 8CA7 ; 2.06 ; Omadacycline and spectinomycin bound to the 30S ribosomal subunit head 3CU4 ; 1.3 ; OmcF, Outer membrance cytochrome F from Geobacter sulfurreducens 3ZUO ; 1.86 ; OMCI in complex with leukotriene B4 3ZUI ; 1.71 ; OMCI in complex with palmitoleic acid 4PA0 ; 2.25 ; Omecamtiv Mercarbil binding site on the Human Beta-Cardiac Myosin Motor Domain 2KM9 ; ; Omega conotoxin-FVIA 7LI2 ; ; Omega ester peptide pre-fuscimiditide 1OAV ; ; OMEGA-AGATOXIN IVA 1OAW ; ; OMEGA-AGATOXIN IVA 1TTL ; ; Omega-conotoxin GVIA, a N-type calcium channel blocker 1CNN ; ; OMEGA-CONOTOXIN MVIIC FROM CONUS MAGUS 2MYH ; ; Omega-Tbo-IT1: selective inhibitor of insect calcium channels isolated from Tibellus oblongus spider venom 7ZF6 ; 2.21 ; Omi-12 Fab 7ZR9 ; 4.0 ; OMI-2 FAB IN COMPLEX WITH SARS-COV-2 BETA SPIKE GLYCOPROTEIN 7ZRC ; 3.5 ; OMI-38 FAB IN COMPLEX WITH SARS-COV-2 BETA SPIKE 7ZR8 ; 3.7 ; OMI-38 FAB IN COMPLEX WITH SARS-COV-2 BETA SPIKE RBD (local refinement) 7ZFF ; 2.32 ; Omi-42 Fab 7ZR7 ; 3.7 ; OMI-42 FAB IN COMPLEX WITH SARS-COV-2 BETA SPIKE GLYCOPROTEIN 8C5R ; 3.7 ; Omicron B.1.1.529 2 RBD up conformation 8GOU ; 3.7 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH003 Fab 7YVE ; 3.4 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH027 Fab 7YVO ; 3.3 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH027/132 Fab 7YVG ; 3.4 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH132 Fab 7YVI ; 3.7 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH236 Fab 7YVK ; 3.2 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH272 Fab 7YVP ; 3.8 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH272/281 Fab 7YVN ; 3.4 ; Omicron BA.4/5 SARS-CoV-2 S in complex with TH281 Fab 7YVF ; 3.4 ; Omicron BA.4/5 SARS-CoV-2 S RBD in complex with TH027 Fab 7YVH ; 3.6 ; Omicron BA.4/5 SARS-CoV-2 S RBD in complex with TH132 Fab 7YVJ ; 3.6 ; Omicron BA.4/5 SARS-CoV-2 S RBD in complex with TH236 Fab 7YVL ; 3.3 ; Omicron BA.4/5 SARS-CoV-2 S RBD in complex with TH272 Fab 7YVM ; 3.5 ; Omicron BA.4/5 SARS-CoV-2 S RBD in complex with TH272 Fab 7YKJ ; 3.5 ; Omicron RBDs bound with P3E6 Fab (one up and one down) 7TGW ; 3.0 ; Omicron spike at 3.0 A (open form) 7WJZ ; 3.34 ; Omicron Spike bitrimer with 6m6 antibody 7WJY ; 3.24 ; Omicron spike trimer with 6m6 antibody 8I4H ; 3.81 ; Omicron spike variant BA.1 with Bn03 8I4G ; 3.68 ; Omicron spike variant BQ.1.1 with n3130v-Fc 8I4E ; 3.98 ; Omicron spike variant XBB with Bn03 8I4F ; 3.44 ; Omicron spike variant XBB with n3130v-Fc 6U83 ; 2.3566 ; OmpA-like domain of FopA1 from Francisella tularensis subsp. tularensis SCHU S4 2XE3 ; 2.85 ; OmpC28 6ZX1 ; 1.0 ; OMPD-domain of human UMPS in complex with 6-Aza-UMP at 1.0 Angstroms resolution 6ZX2 ; 1.2 ; OMPD-domain of human UMPS in complex with 6-carboxamido-UMP at 1.2 Angstroms resolution 6ZX3 ; 1.15 ; OMPD-domain of human UMPS in complex with 6-thiocarboxamido-UMP at 1.15 Angstroms resolution 7AM9 ; 0.99 ; OMPD-domain of human UMPS in complex with the substrate OMP at 0.99 Angstroms resolution 6ZX0 ; 1.25 ; OMPD-domain of human UMPS in complex with the substrate OMP at 1.25 Angstroms resolution 6ZWY ; 1.0 ; OMPD-domain of human UMPS in complex with UMP at 1.0 Angstroms resolution 6ENE ; 2.3 ; OmpF orthologue from Enterobacter cloacae (OmpE35) 2OMF ; 2.4 ; OMPF PORIN 3K19 ; 3.79 ; OmpF porin 1GFM ; 3.5 ; OMPF PORIN (MUTANT D113G) 1GFO ; 3.3 ; OMPF PORIN (MUTANT R132P) 1GFP ; 2.7 ; OMPF PORIN (MUTANT R42C) 1GFQ ; 2.8 ; OMPF PORIN (MUTANT R82C) 1GFN ; 3.1 ; OMPF PORIN DELETION (MUTANT DELTA 109-114) 1BT9 ; 3.0 ; OMPF PORIN MUTANT D74A 1HXU ; 3.0 ; OMPF PORIN MUTANT KK 1HXT ; 2.4 ; OMPF PORIN MUTANT NQAAA 1HXX ; 2.2 ; OMPF PORIN MUTANT Y106F 6V78 ; 2.6 ; OmpK37 porin 1ODD ; 2.2 ; OMPR C-TERMINAL DOMAIN (OMPR-C) FROM ESCHERICHIA COLI 1OPC ; 1.95 ; OMPR DNA-BINDING DOMAIN, ESCHERICHIA COLI 6EHD ; 1.66 ; OmpT (in-vitro folded), an outer membrane protein of Vibrio cholerae 6EHF ; 2.72 ; OmpT (in-vitro folded), an outer membrane protein Vibrio cholerae (trimer form) 6EHE ; 2.312 ; OmpTdeltaL8 (loop L8 deletion mutant of OmpT), an outer membrane protein of Vibrio cholerae 6EHB ; 1.55 ; OmpU, an outer membrane protein, of Vibrio cholerae 6EHC ; 2.02 ; OmpUdeltaN (N-terminus deletion mutant of OmpU), outer membrane protein of Vibrio cholerae 3WYZ ; 2.21 ; On archaeal homologs of the human RNase P protein Rpp30 in the hyperthermophilic archaeon Thermococcus kodakarensis 3WZ0 ; 2.79 ; On archaeal homologs of the human RNase P proteins Pop5 and Rpp30 in the hyperthermophilic archaeon Thermococcus kodakarensis 1TGC ; 1.8 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 1TGT ; 1.7 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 2PTN ; 1.55 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 2TGA ; 1.8 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 2TGT ; 1.7 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 2TPI ; 2.1 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 3PTN ; 1.7 ; ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY 1E89 ; 2.1 ; ON THE MECHANISM OF CYANOGENESIS CATALYZED BY HYDROXYNITRILE LYASE FROM MANIHOT ESCULENTA. CRYSTAL STRUCTURE OF ACTIVE SITE MUTANT SER80ALA IN COMPLEX WITH ACETONE CYANOHYDRIN 1MNS ; 2.0 ; ON THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATE 2A7A ; 1.75 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7B ; 1.65 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7C ; 1.65 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7D ; 1.66 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7E ; 1.66 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7F ; 1.85 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7G ; 1.85 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7H ; 2.1 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7I ; 1.75 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 2A7J ; 1.65 ; On the Routine Use of Soft X-Rays in Macromolecular Crystallography, Part III- The Optimal Data Collection Wavelength 3OR7 ; 2.3 ; On the structural basis of modal gating behavior in K+channels - E71I 3OR6 ; 2.7 ; On the structural basis of modal gating behavior in K+channels - E71Q 6FEK ; 2.3 ; Oncogenic point mutation of RET receptor tyrosine kinase 3SNF ; 1.1 ; Onconase, atomic resolution crystal structure 1E7W ; 1.75 ; One active site, two modes of reduction correlate the mechanism of leishmania pteridine reductase with pterin metabolism and antifolate drug resistance in trpanosomes 8HIF ; 3.5 ; One asymmetric unit of Singapore grouper iridovirus capsid 3FGW ; 2.8 ; One chain form of the 66.3 kDa protein 8HEY ; 4.1 ; One CVSC-binding penton vertex in HCMV B-capsid 6IL9 ; 1.72005 ; One Glycerol complexed Crystal structure of fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi 1BUU ; 1.9 ; ONE HO3+ FORM OF RAT MANNOSE-BINDING PROTEIN A 2GND ; 2.25 ; One hour EDTA treatment, P. angolensis lectin 4LPJ ; 1.27 ; One minute iron loaded frog M ferritin 4ML5 ; 1.22 ; one minute iron loaded frog M ferritin mutant H54Q 4Y08 ; 1.34 ; ONE MINUTE IRON LOADED HUMAN H FERRITIN 5J8W ; 1.11 ; One minute iron loaded Rana Catesbeiana H' ferritin variant E57A/E136A/D140A 3QJJ ; 2.8049 ; One RAMP protein binding different RNA substrates 3QJL ; 2.7009 ; One RAMP protein binding different RNA substrates 7SBL ; 3.4 ; One RBD-up 1 of pre-fusion SARS-CoV-2 Delta variant spike protein 7SBS ; 3.8 ; One RBD-up 1 of pre-fusion SARS-CoV-2 Gamma variant spike protein 7SBQ ; 3.7 ; One RBD-up 1 of pre-fusion SARS-CoV-2 Kappa variant spike protein 7SBO ; 4.3 ; One RBD-up 2 of pre-fusion SARS-CoV-2 Delta variant spike protein 7SBT ; 4.4 ; One RBD-up 2 of pre-fusion SARS-CoV-2 Gamma variant spike protein 7SBR ; 4.3 ; One RBD-up 2 of pre-fusion SARS-CoV-2 Kappa variant spike protein 8D56 ; 3.0 ; One RBD-up state of SARS-CoV-2 BA.2 variant spike protein 2DID ; ; One sequence two fold ? : Correct fold of the zf-B-box domain from human tripartite motif protein 39 2DIF ; ; One sequence two fold ? : Miss fold of the zf-B-box domain from human tripartite motif protein 39 1PWF ; 1.16 ; One Sugar Pucker Fits All: Pairing Versatility Despite Conformational Uniformity in TNA 6IES ; 1.8 ; Onion lachrymatory factor synthase (LFS) containing (E)-2-propen 1-ol (crotyl alcohol) 4LRN ; 1.89 ; Ontogeny of recognition specificity and functionality for the anti-HIV antibody 4E10 4M62 ; 1.8 ; Ontogeny of recognition specificity and functionality for the anti-HIV neutralizing antibody 4E10 4M8Q ; 2.89 ; Ontogeny of recognition specificity and functionality for the anti-HIV neutralizing antibody 4E10 4OB5 ; 1.7 ; Ontogeny of recognition specificity and functionality for the broadly neutralizing anti-HIV antibody 4E10 2R1K ; 2.1 ; OpdA from Agrobacterium radiobacter with bound diethyl phosphate from crystal soaking with the compound- 1.9 A 2R1L ; 1.95 ; OpdA from Agrobacterium radiobacter with bound diethyl thiophosphate from crystal soaking with the compound- 1.95 A 2D2H ; 1.8 ; OpdA from Agrobacterium radiobacter with bound inhibitor trimethyl phosphate at 1.8 A resolution 2R1M ; 2.5 ; OpdA from Agrobacterium radiobacter with bound product diethyl phosphate from crystal soaking with diethyl 4-methoxyphenyl phosphate (450h)- 2.5 A 2R1P ; 1.8 ; OpdA from Agrobacterium radiobacter with bound product diethyl thiophosphate from co-crystallisation with tetraethyl dithiopyrophosphate- 1.8 A 3C86 ; 1.8 ; OpdA from agrobacterium radiobacter with bound product diethyl thiophosphate from crystal soaking with tetraethyl dithiopyrophosphate- 1.8 A 2D2G ; 1.85 ; OpdA from Agrobacterium radiobacter with bound product dimethylthiophosphate 2R1N ; 1.7 ; OpdA from Agrobacterium radiobacter with bound slow substrate diethyl 4-methoxyphenyl phosphate (20h)- 1.7 A 2D2J ; 1.75 ; OpdA from Agrobacterium radiobacter without inhibitor/product present at 1.75 A resolution 5A71 ; 0.91 ; Open and closed conformations and protonation states of Candida antarctica Lipase B: atomic resolution native 5A6V ; 2.28 ; Open and closed conformations and protonation states of Candida antarctica Lipase B: Xenon complex 4JKH ; 1.8 ; Open and closed forms of D1781E human PRP8 RNase H-like domain with bound Mg ion 4JKD ; 1.55 ; Open and closed forms of I1790Y human PRP8 RNase H-like domain with bound Mg ion 4JKG ; 1.8 ; Open and closed forms of mixed T1789P+R1865A and R1865A human PRP8 RNase H-like domain with bound Mg ion 4JKA ; 1.32 ; Open and closed forms of R1865A human PRP8 RNase H-like domain with bound Co ion 4JK8 ; 1.15 ; Open and closed forms of R1865A human PRP8 RNase H-like domain with bound Mg ion 4JKE ; 1.65 ; Open and closed forms of T1789P human PRP8 RNase H-like domain with bound Mg ion 4JKF ; 1.95 ; Open and closed forms of T1791P+R1865A human PRP8 RNase H-like domain with bound Mg ion 4JKC ; 1.5 ; Open and closed forms of T1800E human PRP8 RNase H-like domain with bound Mg ion 4JKB ; 1.3 ; Open and closed forms of V1788D human PRP8 RNase H-like domain with bound Mg ion 4JK9 ; 1.5 ; Open and closed forms of wild-type human PRP8 RNase H-like domain with bound Co ion 4JK7 ; 1.4 ; Open and closed forms of wild-type human PRP8 RNase H-like domain with bound Mg ion 2OEF ; 2.4 ; Open and Closed Structures of the UDP-Glucose Pyrophosphorylase from Leishmania major 2OEG ; 2.3 ; Open and Closed Structures of the UDP-Glucose Pyrophosphorylase from Leishmania major 4F5R ; 2.2 ; Open and closed ternary complex of R283K DNA polymerase beta with a dCTP analog in the same asymmetric unit 6BY3 ; 2.37 ; Open and conductive conformation of KcsA-T75A mutant 7S89 ; 2.54 ; Open apo-state cryo-EM structure of human TRPV6 in cNW11 nanodiscs 7S88 ; 2.69 ; Open apo-state cryo-EM structure of human TRPV6 in glyco-diosgenin detergent 4F4L ; 3.49 ; Open Channel Conformation of a Voltage Gated Sodium Channel 4B9Q ; 2.4 ; Open conformation of ATP-bound Hsp70 homolog DnaK 7BNN ; 3.5 ; Open conformation of D614G SARS-CoV-2 spike with 1 Erect RBD 7BNO ; 4.2 ; Open conformation of D614G SARS-CoV-2 spike with 2 Erect RBDs 5G1S ; 1.7 ; Open conformation of Francisella tularensis ClpP at 1.7 A 5G1R ; 1.9 ; Open conformation of Francisella tularensis ClpP at 1.9 A 3LHS ; 1.3 ; Open Conformation of HtsA Complexed with Staphyloferrin A 5VKE ; 2.37 ; Open conformation of KcsA deep-inactivated 5VK6 ; 2.25 ; Open conformation of KcsA non-inactivating E71A mutant 4BE9 ; 2.0 ; Open conformation of O. piceae sterol esterase 4UPD ; 2.4 ; Open conformation of O. piceae sterol esterase mutant I544W 3LIP ; 2.0 ; OPEN CONFORMATION OF PSEUDOMONAS CEPACIA LIPASE 8B8T ; 4.2 ; Open conformation of the complex of DNA ligase I on PCNA and DNA in the presence of ATP 6H03 ; 5.6 ; OPEN CONFORMATION OF THE MEMBRANE ATTACK COMPLEX 7M2X ; 3.6 ; Open conformation of the Yeast wild-type gamma-TuRC 3GWF ; 2.2 ; Open crystal structure of cyclohexanone monooxygenase 3R1B ; 3.0 ; Open crystal structure of cytochrome P450 2B4 covalently bound to the mechanism-based inactivator tert-butylphenylacetylene 4AOY ; 2.35 ; Open CtIDH. The complex structures of Isocitrate dehydrogenase from Clostridium thermocellum and Desulfotalea psychrophila, support a new active site locking mechanism 6UG4 ; 2.295 ; Open Dimer of Y77A Mutant Putative Ryanodine Receptor from Bacteroides thetaiotaomicron VPI-5482 2FFF ; 2.23 ; Open Form of a Class A Transpeptidase Domain 5FIB ; 2.8 ; Open form of murine Acid Sphingomyelinase 5FIC ; 2.8 ; Open form of murine Acid Sphingomyelinase in presence of lipid 7CTS ; 1.1 ; Open form of PET-degrading cutinase Cut190 with thermostability-improving mutations of S226P/R228S/Q138A/D250C-E296C/Q123H/N202H and S176A inactivation 7R8P ; 1.37 ; Open form of SAOUHSC_02373 in complex with ADP, Mg2+ and Na+ 3W8N ; 2.2 ; Open form structure of CMP kinase in complex with CMP from Thermus thermophilus HB8 3FB7 ; 3.3 ; Open KcsA potassium channel in the presence of Rb+ ion 3M9W ; 2.15 ; Open ligand-free crystal structure of xylose binding protein from Escherichia coli 3M9X ; 2.2 ; Open liganded crystal structure of xylose binding protein from Escherichia coli 5MLX ; 1.6 ; Open loop conformation of PhaZ7 Y105E mutant 8DDJ ; 3.1 ; Open MscS in PC14.1 Nanodiscs 4QE9 ; 2.15 ; Open MthK pore structure soaked in 10 mM Ba2+/100 mM K+ 4QE7 ; 2.4 ; Open MthK pore structure soaked in 10 mM Ba2+/100 mM Na+ 8RWZ ; 4.0 ; Open non-crosslinked structure Brd4BD2-MZ1-(NEDD8)-CRL2VHL 5NP1 ; 5.7 ; Open protomer of human ATM (Ataxia telangiectasia mutated) 6A4V ; 2.2 ; Open Reading frame 49 8SFE ; 3.36 ; Open state CCT-G beta 5 complex 8AYO ; 3.3 ; Open state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and ligand JNJ-61432059 6DLZ ; 3.9 ; Open state GluA2 in complex with STZ after micelle signal subtraction 6O9G ; 4.8 ; Open state GluA2 in complex with STZ and blocked by AgTx-636, after micelle signal subtraction 6DM0 ; 4.4 ; Open state GluA2 in complex with STZ and blocked by IEM-1460, after micelle signal subtraction 6DM1 ; 4.2 ; Open state GluA2 in complex with STZ and blocked by NASPM, after micelle signal subtraction 3AQ1 ; 2.746 ; Open state monomer of a group II chaperonin from methanococcoides burtonii 4UEO ; 2.0 ; Open state of galactitol-1-phosphate 5-dehydrogenase from E. coli, with zinc in the catalytic site. 5IK1 ; 1.53 ; Open state of P450cam after soaking in camphor 7ST9 ; 2.2 ; Open state of Rad24-RFC:9-1-1 bound to a 5' ss/dsDNA junction 8DQW ; 2.1 ; Open state of Rad24-RFC:9-1-1 bound to a 5' ss/dsDNA junction 8DQX ; 2.1 ; Open state of RFC:PCNA bound to a 3' ss/dsDNA junction 8DR5 ; 2.76 ; Open state of RFC:PCNA bound to a 3' ss/dsDNA junction (DNA2) with NTD 8DR4 ; 2.45 ; Open state of RFC:PCNA bound to a 3' ss/dsDNA junction (DNA2) without NTD 8DR7 ; 2.7 ; Open state of RFC:PCNA bound to a nicked dsDNA 7W92 ; 3.1 ; Open state of SARS-CoV-2 Delta variant spike protein 8DUE ; 2.9 ; Open state of T4 bacteriophage gp41 hexamer bound with single strand DNA 8SUZ ; ; Open State of the SARS-CoV-2 Envelope Protein Transmembrane Domain, Determined by Solid-State NMR 6BO4 ; 4.0 ; Open state structure of the full-length TRPV2 cation channel with a resolved pore turret domain 3U6N ; 3.61 ; Open Structure of the BK channel Gating Ring 4F5N ; 1.8 ; Open ternary complex of R283K DNA polymerase beta with a metal free dCTP analog 4F5O ; 2.0 ; Open ternary complex of R283K DNA polymerase beta with a one metal bound dCTP analog 2KTQ ; 2.3 ; OPEN TERNARY COMPLEX OF THE LARGE FRAGMENT OF DNA POLYMERASE I FROM THERMUS AQUATICUS 4F5P ; 1.85 ; Open ternary mismatch complex of R283K DNA polymerase beta with a dATP analog 6ZM1 ; 4.7 ; Open-closed state of the Bt1762-Bt1763 levan transport system 6UHS ; 2.46 ; Open-form Crystal Structure of Chimera Bt-hRyR_12 from Bacteroides thetaiotaomicron /human 6UHA ; 2.855 ; Open-form Crystal Structure of Human RYR Receptor 3 ( 848-1055) 3ZJZ ; 2.92 ; Open-form NavMS Sodium Channel Pore (with C-terminal Domain) 4CBC ; 2.664 ; Open-form NavMS Sodium Channel Pore (with C-terminal Domain) after thallium soak 6W0A ; 3.237 ; Open-gate KcsA soaked in 1 mM BaCl2 6W0E ; 3.512 ; Open-gate KcsA soaked in 10 mM BaCl2 6W0B ; 3.604 ; Open-gate KcsA soaked in 2 mM BaCl2 6W0C ; 3.556 ; Open-gate KcsA soaked in 4 mM BaCl2 6W0D ; 3.639 ; Open-gate KcsA soaked in 5 mM BaCl2 7PXA ; 2.8 ; Open-gate mycobacterium 20S CP proteasome in complex MPA - global 3D refinement 6ZLT ; 3.9 ; Open-open state of the Bt1762-Bt1763 levan transport system 7YPH ; 3.68 ; Open-spiral pentamer of the substrate-free Lon protease with a Y224S mutation 8T1D ; 3.35 ; Open-state cryo-EM structure of full-length human TRPV4 in complex with agonist 4a-PDD 7WHN ; 3.3 ; Opened spike of Bombyx mori cytoplasmic polyhedrosis virus 1OPG ; 2.0 ; OPG2 FAB FRAGMENT 6R00 ; 1.74 ; OphA DeltaC6 V404F complex with SAH 6GEW ; 2.1 ; OphA Y63F-sinefungin complex 6TSC ; 2.19 ; OphMA I407P complex with SAH 3DFX ; 2.7 ; Opposite GATA DNA binding 8QN3 ; 1.75 ; OPR3 wildtype in complex with NADH4 8QMX ; 1.4 ; OPR3 wildtype in complex with NADPH4 8AUL ; 1.5 ; OPR3 Y190F in complex with 2-methoxyethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUJ ; 1.57 ; OPR3 Y190F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUM ; 1.35 ; OPR3 Y190F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxopentanoate 8AUO ; 1.58 ; OPR3 Y370F variant in complex with 2-methoxyethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUN ; 1.49 ; OPR3 Y370F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUQ ; 1.42 ; OPR3 Y370F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxopentanoate 6TA5 ; 3.2 ; OprM-MexA complex from the MexAB-OprM Pseudomonas aeruginosa whole assembly reconstituted in nanodiscs 4X1H ; 2.29 ; Opsin/G(alpha) peptide complex stabilized by nonyl-glucoside 1QMQ ; 1.55 ; Optical detection of cytochrome P450 by sensitizer-linked substrates 2WPA ; 2.51 ; Optimisation of 6,6-Dimethyl Pyrrolo 3,4-c pyrazoles: Identification of PHA-793887, a Potent CDK Inhibitor Suitable for Intravenous Dosing 4BAE ; 2.35 ; Optimisation of pyrroleamides as mycobacterial GyrB ATPase inhibitors: Structure Activity Relationship and in vivo efficacy in the mouse model of tuberculosis 1YUO ; 1.95 ; Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase (UNG)from atlantic cod (Gadus morhua) 6VSW ; 3.202 ; Optimization and biological evaluation of thiazole-bis-amide inverse agonists of RORgt 5TMG ; 2.2 ; Optimization of 3,5-Disubstitued Piperidine: Discovery of Non-Peptide mimetics as an Orally Active Renin Inhibitor 5TMK ; 2.65 ; Optimization of 3,5-Disubstitued Piperidine: Discovery of Non-Peptide mimetics as an Orally Active Renin Inhibitor 5AAU ; 1.9 ; Optimization of a novel binding motif to to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H- pyrido(3,4-b)indol-1-yl)phenyl)acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist 5AAV ; 1.95 ; Optimization of a novel binding motif to to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H- pyrido(3,4-b)indol-1-yl)phenyl)acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist 5EAK ; 2.8 ; Optimization of Microtubule Affinity Regulating Kinase (MARK) Inhibitors with Improved Physical Properties 3KM4 ; 1.9 ; Optimization of Orally Bioavailable Alkyl Amine Renin Inhibitors 6I3U ; 2.09 ; Optimization of potent and selective ATM inhibitors suitable for a proof-of-concept study in Huntington's disease models 3R4M ; 1.7 ; Optimization of Potent, Selective, and Orally Bioavailable Pyrrolodinopyrimidine-containing Inhibitors of Heat Shock Protein 90. Identification of Development Candidate 2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide 3R4N ; 2.0 ; Optimization of Potent, Selective, and Orally Bioavailable Pyrrolodinopyrimidine-containing Inhibitors of Heat Shock Protein 90. Identification of Development Candidate 2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide 3R4O ; 2.65 ; Optimization of Potent, Selective, and Orally Bioavailable Pyrrolodinopyrimidine-containing Inhibitors of Heat Shock Protein 90. Identification of Development Candidate 2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide 3R4P ; 1.7 ; Optimization of potent, selective, and orally bioavailable pyrrolodinopyrimidine-containing inhibitors of heat shock protein 90. identification of development candidate 2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide 5TPG ; 1.5 ; Optimization of spirocyclic proline tryptophanhydroxylase-1 inhibitors 7ZJP ; 2.19 ; Optimization of TEAD P-Site Binding Fragment Hit into In Vivo Active Lead MSC-4106 3NPU ; 2.25 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution 3NPV ; 1.48 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution 3NPX ; 1.79 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution 3Q2D ; 2.19 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution 3NQ2 ; 2.02 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution R2 3/5G 3NQ8 ; 1.4 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution R4 8/5A 3NQV ; 1.7 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution R5 7/4A 3NR0 ; 2.19 ; Optimization of the in silico designed Kemp eliminase KE70 by computational design and directed evolution R6 6/10A 2M97 ; ; Optimized Ratiometric Calcium Sensors For Functional In Vivo Imaging of Neurons and T-Lymphocytes 6HR0 ; 1.04 ; Optimizing electroactive organisms: the effect of orthologous proteins 7AHD ; 3.4 ; OpuA (E190Q) occluded 7AHC ; 3.3 ; OpuA apo inward-facing 7AHE ; 4.1 ; OpuA inhibited inward facing 7AHH ; 3.5 ; OpuA inhibited inward-facing, SBD docked 2WI1 ; 2.3 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI2 ; 2.09 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI3 ; 1.9 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI4 ; 2.4 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI5 ; 2.1 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI6 ; 2.18 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2WI7 ; 2.5 ; Orally Active 2-Amino Thienopyrimidine Inhibitors of the Hsp90 Chaperone 2Y5K ; 2.1 ; Orally active aminopyridines as inhibitors of tetrameric fructose 1,6- bisphosphatase 2Y5L ; 2.2 ; orally active aminopyridines as inhibitors of tetrameric fructose 1,6- bisphosphatase 2FEQ ; 2.44 ; orally active thrombin inhibitors 2FES ; 2.42 ; Orally active thrombin inhibitors 2ANK ; 2.46 ; orally active thrombin inhibitors in complex with thrombin and an exosite decapeptide 2A2X ; 2.44 ; Orally Active Thrombin Inhibitors in Complex with Thrombin Inh12 2BZ6 ; 1.6 ; Orally available Factor7a inhibitor 7ZXV ; 1.8 ; Orange Carotenoid Protein Trp-288 BTA mutant 4MD1 ; 1.73 ; Orange species of bacteriorhodopsin from Halobacterium salinarum 7SXN ; 1.05 ; Orb2A residues 1-9 MYNKFVNFI 1AI3 ; 1.9 ; ORBITAL STEERING IN THE CATALYTIC POWER OF ENZYMES: SMALL STRUCTURAL CHANGES WITH LARGE CATALYTIC CONSEQUENCES 7JPS ; 4.4 ; ORC-DNA: Human Origin Recognition Complex (ORC) with DNA bound in the core 7JPO ; 3.2 ; ORC-O1AAA: Human Origin Recognition Complex (ORC) with dynamic/unresolved ORC2 WH 7JPQ ; 3.5 ; ORC-O2-5: Human Origin Recognition Complex (ORC) with subunits 2,3,4,5 7JPP ; 3.7 ; ORC-O2WH: Human Origin Recognition Complex (ORC) with dynamic/unresolved ORC1 AAA+ domain 7JPR ; 4.0 ; ORC-OPEN: Human Origin Recognition Complex (ORC) in an open conformation 3H1R ; 2.41 ; Order-disorder structure of fluorescent protein FP480 115D ; 1.7 ; ORDERED WATER STRUCTURE IN AN A-DNA OCTAMER AT 1.7 ANGSTROMS RESOLUTION 4HBM ; 1.9 ; Ordering of the N Terminus of Human MDM2 by Small Molecule Inhibitors 6EWG ; 1.6 ; Oreochromis niloticus CEP120 second C2 domain (C2B) 6EWI ; 2.1 ; Oreochromis niloticus CEP120 second C2 domain (C2B) A200P + G307S mutant 6EWH ; 1.5 ; Oreochromis niloticus CEP120 second C2 domain (C2B) G307S mutant 7L1U ; 3.2 ; Orexin Receptor 2 (OX2R) in Complex with G Protein and Natural Peptide-Agonist Orexin B (OxB) 7L1V ; 3.0 ; Orexin Receptor 2 (OX2R) in Complex with G Protein and Small-Molecule Agonist Compound 1 2X4I ; 2.2 ; ORF 114a from Sulfolobus islandicus rudivirus 1 2X48 ; 2.6 ; ORF 55 from Sulfolobus islandicus rudivirus 1 2M7B ; ; ORF PP_3909 from Pseudomonas putida KT2440 encoding a protein similar to bacteriophage lambda ea8.5 7ADS ; 2.22032 ; Orf virus Apoptosis inhibitor ORFV125 7ADT ; 2.21004 ; Orf virus Apoptosis inhibitor ORFV125 7P0S ; 2.50316 ; ORF virus encoded Bcl-2 homolog ORFV125 in complex with Puma BH3 peptide 7P0U ; 1.99374 ; ORF virus encoded Bcl-2 homolog ORFV125 in complex with Puma BH3 peptide 7XXR ; 2.4 ; Orf1 R342A-glycylthricin complex 8GRI ; 2.365 ; Orf1-E312A-glycine-glycylthricin 7XQA ; 1.93 ; Orf1-glycine complex 7Y0X ; 2.05 ; Orf1-glycine complex 7XXM ; 2.119 ; Orf1-glycine-4-aminobutylthricin complex 7XXC ; 1.989 ; Orf1-glycine-glycylthricin complex 7XXD ; 1.982 ; Orf1-sarcosine complex 7YPU ; 2.357 ; OrfE-CoA-glycylthricin complex 1USP ; 1.9 ; Organic Hydroperoxide Resistance Protein from Deinococcus radiodurans 6LY5 ; 2.38 ; Organization and energy transfer in a huge diatom PSI-FCPI supercomplex 2YMN ; 20.0 ; Organization of the Influenza Virus Replication Machinery 2FO0 ; 2.27 ; Organization of the SH3-SH2 Unit in Active and Inactive Forms of the c-Abl Tyrosine Kinase 6QJA ; 1.54 ; Organizational principles of the NuMA-Dynein interaction interface and implications for mitotic spindle functions 3SO7 ; 2.2 ; Organophoshatedegrading enzyme (OpdA)-phosphate complex 2ZC1 ; 1.9 ; Organophosphorus Hydrolase from Deinococcus radiodurans 3HTW ; 1.9 ; Organophosphorus hydrolase from Deinococcus radiodurans with cacodylate bound 2PL7 ; 1.0 ; Orhorhombic crystal structure of hydrophobin HFBII in the presence of a detergent 6M6X ; 2.88 ; Oridonin in complex with CRM1#-Ran-RanBP1 7N3K ; 3.0 ; Oridonin-bound SARS-CoV-2 Nsp9 1OO9 ; ; Orientation in Solution of MMP-3 Catalytic Domain and N-TIMP-1 from Residual Dipolar Couplings 1GBR ; ; ORIENTATION OF PEPTIDE FRAGMENTS FROM SOS PROTEINS BOUND TO THE N-TERMINAL SH3 DOMAIN OF GRB2 DETERMINED BY NMR SPECTROSCOPY 3J0K ; 36.0 ; Orientation of RNA polymerase II within the human VP16-Mediator-pol II-TFIIF assembly 2V3L ; ; Orientational and dynamical heterogeneity of Rhodamine 6G terminally attached to a DNA helix 2IPR ; 1.5 ; Origin binding domain of the SV40 large T antigen (residues 131-259). P21 crystal form 2ITJ ; 2.5 ; Origin binding domain of the SV40 large T antigen (residues 131-259). P212121 crystal form 1HSY ; 1.9 ; ORIGIN OF THE PH-DEPENDENT SPECTROSCOPIC PROPERTIES OF PENTACOORDINATE METMYOGLOBIN VARIANTS 8SIY ; 2.9 ; Origin Recognition Complex Associated (ORCA) protein bound to H4K20me3-nucleosome 8SIU ; 1.8 ; Origin Recognition Complex Associated (ORCA) protein bound to Orc2 5V0Q ; 2.4 ; Original engineered variant of I-OnuI meganuclease targeting the HIV integrase gene; harbors 49 point mutations relative to wild-type I-OnuI 1VZ6 ; 2.75 ; Ornithine Acetyltransferase (ORF6 Gene Product - Clavulanic Acid Biosynthesis) from Streptomyces clavuligerus 1VZ7 ; 3.0 ; Ornithine Acetyltransferase (ORF6 Gene Product - Clavulanic Acid Biosynthesis) from Streptomyces clavuligerus 1VZ8 ; 2.75 ; Ornithine Acetyltransferase (ORF6 Gene Product - Clavulanic Acid Biosynthesis) from Streptomyces clavuligerus (SeMet structure) 1OAT ; 2.5 ; ORNITHINE AMINOTRANSFERASE 7LON ; 1.95 ; Ornithine Aminotransferase (OAT) cocrystallized with its inactivator - (1S,3S)-3-amino-4-(difluoromethylene)cyclohexene-1-carboxylic acid 7LNM ; 2.0 ; Ornithine Aminotransferase (OAT) cocrystallized with its inactivator - (1S,3S)-3-amino-4-(difluoromethylene)cyclopentene-1-carboxylic acid 7LK0 ; 1.96 ; Ornithine Aminotransferase (OAT) cocrystallized with its potent inhibitor - (S)-3-amino-4,4-difluorocyclopent-1-enecarboxylic acid (SS-1-148) 7LOM ; 2.1 ; Ornithine Aminotransferase (OAT) soaked with its inactivator - (1S,3S)-3-amino-4-(difluoromethylene)cyclohexene-1-carboxylic acid 7LK1 ; 1.79 ; Ornithine Aminotransferase (OAT) with its potent inhibitor - (S)-3-amino-4,4-difluorocyclopent-1-enecarboxylic acid (SS-1-148) - 1 Hour Soaking 2OAT ; 1.95 ; ORNITHINE AMINOTRANSFERASE COMPLEXED WITH 5-FLUOROMETHYLORNITHINE 5VWO ; 1.773 ; Ornithine aminotransferase inactivated by (1R,3S,4S)-3-amino-4-fluorocyclopentane-1-carboxylic acid (FCP) 2BYJ ; 3.02 ; Ornithine aminotransferase mutant Y85I 1Z7D ; 2.1 ; Ornithine aminotransferase PY00104 from Plasmodium Yoelii 1A1S ; 2.7 ; ORNITHINE CARBAMOYLTRANSFERASE FROM PYROCOCCUS FURIOSUS 2TOD ; 2.0 ; ORNITHINE DECARBOXYLASE FROM TRYPANOSOMA BRUCEI K69A MUTANT IN COMPLEX WITH ALPHA-DIFLUOROMETHYLORNITHINE 1C4K ; 2.7 ; ORNITHINE DECARBOXYLASE MUTANT (GLY121TYR) 3S5W ; 1.9 ; Ornithine Hydroxylase (PvdA) from Pseudomonas aeruginosa 2OTC ; 2.8 ; ORNITHINE TRANSCARBAMOYLASE COMPLEXED WITH N-(PHOSPHONACETYL)-L-ORNITHINE 1ORT ; 3.0 ; ORNITHINE TRANSCARBAMOYLASE FROM PSEUDOMONAS AERUGINOSA 1AKM ; 2.8 ; ORNITHINE TRANSCARBAMYLASE FROM ESCHERICHIA COLI 6H3X ; 2.092 ; Oropouche Virus Glycoprotein Gc Head Domain 5HY0 ; 2.4 ; orotic acid hydrolase 1X1Z ; 1.45 ; Orotidine 5'-monophosphate decarboxylase (odcase) complexed with BMP (produced from 6-cyanoump) 3WJZ ; 1.39 ; Orotidine 5'-monophosphate decarboxylase D75N mutant from M. thermoautotrophicus complexed with 6-amino-UMP 1L2U ; 2.5 ; Orotidine 5'-monophosphate decarboxylase from E. coli 3WJY ; 1.72 ; Orotidine 5'-monophosphate decarboxylase K72A mutant from M. thermoautotrophicus complexed with 6-amino-UMP 3WK3 ; 1.26 ; Orotidine 5'-monophosphate decarboxylase K72A mutant from M. thermoautotrophicus complexed with orotidine 5'-monophosphate ethyl ester 3WK2 ; 1.69 ; Orotidine 5'-monophosphate decarboxylase K72A mutant from M. thermoautotrophicus complexed with orotidine 5'-monophosphate methyl ester 7ASQ ; 0.95 ; Orotidine 5'-monophosphate decarboxylase-domain of human UMPS in complex with the reaction product UMP at 0.95 Angstrom resolution 7OV0 ; 0.95 ; Orotidine 5'-monophosphate decarboxylase-domain of human UMPS in resting state at 0.95 Angstrom resolution 2ZZ5 ; 1.56 ; Orotidine Monophosphate Deacarboxylase D70A/K72A double mutant from M. thermoautotrophicum complexed with 6- cyano-UMP 1KLY ; 1.5 ; Orotidine monophosphate decarboxylase D70G mutant complexed with 6-azaUMP 2ZZ7 ; 1.58 ; Orotidine Monophosphate Decarboxylase K72A mutant complexed with BMP (produced from 6-Iodo-UMP) 2ZZ2 ; 1.53 ; Orotidine Monophosphate Decarboxylase K72A mutant from M. thermoautotrophicum complexed with 6-cyano-UMP 1KM1 ; 1.6 ; Orotidine monophosphate decarboxylase mutant S127A crystal structure 8HS2 ; 3.08 ; Orphan GPR20 in complex with Fab046 6YO7 ; 1.17 ; Ortho-Carborane di-propyl-sulfonamide in complex with CA IX mimic 6E69 ; 2.33 ; Ortho-substituted phenyl sulfonyl fluoride and fluorosulfate as potent elastase inhibitory fragments 5M4U ; 2.195 ; ORTHORHOMBIC COMPLEX STRUCTURE OF HUMAN PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA') WITH THE INHIBITOR 4'-CARBOXY-6,8-CHLORO- FLAVONOL (FLC21) 3ZTO ; 1.47 ; Orthorhombic crystal form C222 of the Aquifex aeolicus nucleoside diphosphate kinase 1OK6 ; 2.4 ; Orthorhombic crystal form of an Archaeal fructose 1,6-bisphosphate aldolase 4CJB ; 2.78 ; orthorhombic crystal form of Bogt6a E192Q in complex with GalNAc 4CJC ; 3.42 ; orthorhombic crystal form of Bogt6a E192Q in complex with UDP-GalNAc, UDP, GalNAc 2UUZ ; 2.3 ; Orthorhombic crystal form of GamS from bacteriophage lambda. 1DO0 ; 3.0 ; ORTHORHOMBIC CRYSTAL FORM OF HEAT SHOCK LOCUS U (HSLU) FROM ESCHERICHIA COLI 1NVI ; 1.9 ; Orthorhombic Crystal Form of Molybdopterin Synthase 4NYH ; 1.2 ; Orthorhombic crystal form of pir1 dual specificity phosphatase core 6XFO ; 1.58 ; Orthorhombic crystal form of Striga hermonthica Dwarf14 (ShD14) 3ZTP ; 1.37 ; Orthorhombic crystal form P21212 of the Aquifex aeolicus nucleoside diphosphate kinase 2GUY ; 1.59 ; Orthorhombic crystal structure (space group P21212) of Aspergillus niger alpha-amylase at 1.6 A resolution 6YB5 ; 1.59 ; Orthorhombic crystal structure of a native BcsRQ complex crystallized in the presence of ADP 5D6O ; 1.8 ; Orthorhombic Crystal Structure of an acetylester hydrolase from Corynebacterium glutamicum 2QYP ; 2.45 ; Orthorhombic Crystal Structure of Human Saposin C Dimer in Open Conformation 5FQU ; 2.74 ; Orthorhombic crystal structure of of PlpD (selenomethionine derivative) 2ZAK ; 2.01 ; Orthorhombic crystal structure of precursor E. coli isoaspartyl peptidase/L-asparaginase (EcAIII) with active-site T179A mutation 7QF7 ; 1.47 ; Orthorhombic crystal structure of PTG CBM21 in complex with beta-cyclodextrin 5II8 ; 0.99 ; Orthorhombic crystal structure of red abalone lysin at 0.99 A resolution 3VJP ; 2.7 ; Orthorhombic Crystal Structure of Salmonella FlgA in closed form 197D ; 2.19 ; ORTHORHOMBIC CRYSTAL STRUCTURE OF THE A-DNA OCTAMER D(GTACGTAC). COMPARISON WITH THE TETRAGONAL STRUCTURE 1ZK2 ; 1.55 ; Orthorhombic crystal structure of the apo-form of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis 6ZE0 ; 1.99 ; Orthorhombic crystal structure of the bulky-bulky ketone specific alcohol dehydrogenase from Comamonas testosteroni 3QNX ; 2.2 ; Orthorhombic form of human IgA1 Fab fragment, sharing same Fv as IgG 3QNZ ; 2.2 ; Orthorhombic form of IgG1 Fab fragment (in complex with antigenic tubulin peptide) sharing same Fv as IgA 1JRN ; 2.0 ; Orthorhombic form of Oxytricha telomeric DNA at 2.0A 1KHQ ; 1.6 ; ORTHORHOMBIC FORM OF PAPAIN/ZLFG-DAM COVALENT COMPLEX 1W76 ; 2.3 ; Orthorhombic form of Torpedo californica acetylcholinesterase (AChE) complexed with bis-acting galanthamine derivative 1MR5 ; 2.25 ; Orthorhombic form of Trypanosoma cruzi trans-sialidase 1Y6E ; 3.0 ; Orthorhombic glutathione S-transferase of Schistosoma japonicum 4XEI ; 3.874 ; Orthorhombic isomorph of bovine Arp2/3 complex 6F1O ; 0.96 ; Orthorhombic Lysozyme crystallized at 298 K and pH 4.5 1BGI ; 1.7 ; ORTHORHOMBIC LYSOZYME CRYSTALLIZED AT HIGH TEMPERATURE (310K) 6RT9 ; 1.55 ; Orthorhombic lysozyme grown with 300g/L sucrose 4MON ; 2.3 ; ORTHORHOMBIC MONELLIN 7B1J ; 2.9 ; Orthorhombic P21212 Structure of Human Mad1 C-terminal Domain in Complex with Phosphorylated Bub1 CD1 Domain 7B1F ; 1.75 ; Orthorhombic P212121 Structure of Human Mad1 C-terminal Domain in Complex with Phosphorylated Bub1 CD1 Domain 5E4Y ; 2.8 ; Orthorhombic structure of the acetyl esterase MekB 2I6T ; 2.1 ; Orthorhombic Structure of the LDH domain of Human Ubiquitin-conjugating Enzyme E2-like Isoform A 6B6N ; 2.0 ; Orthorhombic trypsin (295 K) in the presence of 50% mpd 6AVL ; 2.0 ; Orthorhombic Trypsin (295 K) in the presence of 50% xylose 3T27 ; 1.95 ; Orthorhombic trypsin (bovine) in the presence of betaine 3T26 ; 1.7 ; Orthorhombic trypsin (bovine) in the presence of sarcosine 6B6O ; 2.40008 ; Orthorhombic trypsin cryocooled to 100 K with 20% xylose as cryoprotectant 6DZF ; 2.2 ; Orthorhombic trypsin cryocooled to 100 K with 20% xylose as cryoprotectant 6B6P ; 2.00006 ; Orthorhombic trypsin cryocooled to 100 K with 30% xylose as cryoprotectant 6B6S ; 2.00023 ; Orthorhombic trypsin cryocooled to 100 K with 50% ethanol as cryoprotectant 6B6T ; 2.0 ; Orthorhombic trypsin cryocooled to 100 K with 50% methanol as cryoprotectant 6B6R ; 2.00006 ; Orthorhombic trypsin cryocooled to 100 K with 50% mpd as cryoprotectant 6B6Q ; 2.00007 ; Orthorhombic trypsin cryocooled to 100 K with 50% xylose as cryoprotectant 7YYE ; 2.0 ; Orthorombic crystal structure of YTHDF1 YTH domain (G459N mutant) form I 7YYF ; 2.3 ; Orthorombic crystal structure of YTHDF1 YTH domain (G459N mutant) form II 5LW0 ; 1.65 ; Oryza sativa APL macrodomain in complex with ADP-ribose 6ELX ; 1.35 ; Oryza sativa DWARF14 5MOG ; 2.77 ; Oryza sativa phytoene desaturase inhibited by norflurazon 6KF8 ; 3.6 ; OsACBP2 in complex with C18:3-CoA 2JMX ; ; OSCP-NT (1-120) in complex with N-terminal (1-25) alpha subunit from F1-ATPase 4JCH ; 1.7 ; OSH4 bound to an electrophilic oxysterol 7A3Z ; 2.095 ; OSM-3 kinesin motor domain complexed with Mg.ADP 7A5E ; 1.904 ; OSM-3 kinesin motor domain complexed with Mg.AMPPNP 6KU6 ; 2.007 ; OSM1 mutant - R326A 5V4I ; 1.5 ; Osmium(II)(cymene)(chlorido)2-lysozyme adduct with one binding site 7FFU ; 2.601 ; Osmium-bound human serum transferrin 1J7Z ; 2.25 ; Osmolyte Stabilization of Ribonuclease 1J80 ; 2.1 ; Osmolyte Stabilization of RNase 1J81 ; 2.2 ; Osmolyte Stabilization of RNase 1J82 ; 2.3 ; Osmolyte Stabilization of RNase 1OSM ; 3.2 ; OSMOPORIN (OMPK36) FROM KLEBSIELLA PNEUMONIAE 2J1N ; 2.0 ; osmoporin OmpC 7JZ3 ; 2.56 ; Osmoporin OmpC from E.coli K12 7NL4 ; 3.0 ; OsNIP2;1 silicon transporter from rice 6J5M ; 1.85 ; OspA mutant, PSAM-VLGDV1-form3, grafted short chameleon sequence from alpha-B crystallin 6J5N ; 1.73 ; OspA mutant, PSAM-VLGDV1-form4, grafted short chameleon sequence from alpha-B crystallin 6J5O ; 1.9 ; OspA mutant, PSAM-VLGDV1-form5, grafted short chameleon sequence from alpha-B crystallin 6J5P ; 1.8 ; OspA mutant, PSAM-VLGDV1-form6, grafted short chameleon sequence from alpha-B crystallin 6J5Q ; 1.798 ; OspA mutant, PSAM-VLGDV1-form7, grafted short chameleon sequence from alpha-B crystallin 6J5R ; 1.85 ; OspA mutant, PSAM-VLGDV1-form8, grafted short chameleon sequence from alpha-B crystallin 6J47 ; 1.9 ; OspA variant with a short chameleon sequence from alpha B crystallin 7JWG ; 3.05 ; OspA-Fab 221-7 complex structure 7T25 ; 2.25 ; OspA-Fab 319-44 complex structure 7UJ2 ; 1.503 ; OspC Type B 6UOP ; 1.351 ; OsPYL/RCAR5 (24 - 29) solved by nanobeam diffraction tomography 6UOQ ; 1.007 ; OsPYL/RCAR5 residues 24-29 solved from electron diffraction stills 1VZM ; 1.4 ; OSTEOCALCIN FROM FISH ARGYROSOMUS REGIUS 6JAK ; 2.41 ; OtsA apo structure 3PHU ; 2.2 ; OTU Domain of Crimean Congo Hemorrhagic Fever Virus 3PHX ; 1.6 ; OTU Domain of Crimean Congo Hemorrhagic Fever Virus in complex with ISG15 3PHW ; 2.0 ; OTU Domain of Crimean Congo Hemorrhagic Fever Virus in complex with Ubiquitin 6DRM ; 2.06 ; OTU domain of Fam105A 5V5I ; 2.201 ; OTU protease of Crimean Congo Hemorrhagic Fever Virus bound to ubiquitin variant CC.1 5V5H ; 1.5 ; OTU protease of Crimean Congo Hemorrhagic Fever Virus bound to ubiquitin variant CC.2 5V5G ; 2.1 ; OTU protease of Crimean Congo Hemorrhagic Fever Virus bound to ubiquitin variant CC.4 6YK8 ; 2.42 ; OTU-like deubiquitinase from Legionella -Lpg2529 8CMS ; 1.77 ; OTUB2 in covalent complex with LN5P45 7KZM ; 7.5 ; Outer dynein arm bound to doublet microtubules from C. reinhardtii 7KZN ; 4.0 ; Outer dynein arm core subcomplex from C. reinhardtii 7KZO ; 3.3 ; Outer dynein arm docking complex bound to doublet microtubules from C. reinhardtii 6ZYY ; 4.4 ; Outer Dynein Arm-Shulin complex - Dyh3 motor region (Tetrahymena thermophila) 6ZYW ; 8.78 ; Outer Dynein Arm-Shulin complex - overall structure (Tetrahymena thermophila) 6ZYX ; 4.3 ; Outer Dynein Arm-Shulin complex - Shulin region from Tetrahymena thermophila 8Q84 ; 3.15 ; Outer kinetochore Dam1 protomer dimer Ndc80-Nuf2 coiled-coil complex 8Q85 ; 3.97 ; Outer kinetochore Dam1 protomer monomer Ndc80-Nuf2 coiled-coil complex 8QAU ; 3.54 ; Outer kinetochore Ndc80-Dam1 alpha/beta-tubulin complex 8TVA ; 8.55 ; Outer Mat-T4P complex 8BYM ; 3.15 ; Outer membrane attachment porin OmpM1 from Veillonella parvula 8BYT ; 2.78 ; Outer membrane attachment porin OmpM1 from Veillonella parvula, C3 symmetry 8BYS ; 3.28 ; Outer membrane attachment porin OmpM1 from Veillonella parvula, native 1NQE ; 2.0 ; OUTER MEMBRANE COBALAMIN TRANSPORTER (BTUB) FROM E. COLI 1NQF ; 2.7 ; OUTER MEMBRANE COBALAMIN TRANSPORTER (BTUB) FROM E. COLI, METHIONINE SUBSTIUTION CONSTRUCT FOR SE-MET SAD PHASING 1NQG ; 3.31 ; OUTER MEMBRANE COBALAMIN TRANSPORTER (BTUB) FROM E. COLI, WITH BOUND CALCIUM 1NQH ; 3.1 ; OUTER MEMBRANE COBALAMIN TRANSPORTER (BTUB) FROM E. COLI, WITH BOUND CALCIUM AND CYANOCOBALAMIN (VITAMIN B12) SUBSTRATE 6NEF ; 3.4 ; Outer Membrane Cytochrome S Filament from Geobacter Sulfurreducens 3UCP ; 1.76 ; Outer membrane Endecaheme cytochrome UndA from Shewanella sp. HRCR-6 6Z8A ; 2.95 ; Outer membrane FoxA in complex with nocardamine 7X6F ; 2.3 ; Outer membrane lipoprotein QseG of Escherichia coli O157:H7 7X6G ; 2.35 ; Outer membrane lipoprotein QseG of Escherichia coli O157:H7 7X6H ; 2.6 ; Outer membrane lipoprotein QseG of Escherichia coli O157:H7 1FW2 ; 2.6 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI 1FW3 ; 2.8 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI 1QD5 ; 2.17 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI 1QD6 ; 2.1 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI 1ILD ; 2.8 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI N156A ACTIVE SITE MUTANT pH 4.6 1ILZ ; 2.5 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI N156A ACTIVE SITE MUTANT pH 6.1 1IM0 ; 2.98 ; OUTER MEMBRANE PHOSPHOLIPASE A FROM ESCHERICHIA COLI N156A ACTIVE SITE MUTANT PH 8.3 1BXW ; 2.5 ; OUTER MEMBRANE PROTEIN A (OMPA) TRANSMEMBRANE DOMAIN 3PIK ; 2.3 ; Outer membrane protein CusC 2JQY ; ; Outer Membrane Protein G 2F1T ; 3.0 ; Outer membrane protein OmpW 2F1V ; 2.7 ; Outer membrane protein OmpW 8AXL ; 3.42 ; Outer membrane secretin pore of the type 3 secretion system of Shigella flexneri 8I8B ; 4.31 ; Outer shell and inner layer structures of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 1P4P ; 2.0 ; Outer Surface Protein B of B. burgdorferi: crystal structure of the C-terminal fragment 4D53 ; 1.85 ; Outer surface protein BB0689 from Borrelia burgdorferi 1GGQ ; 2.51 ; OUTER SURFACE PROTEIN C (OSPC) OF BORRELIA BURGDORFERI STRAIN B31 7UJ6 ; 1.951 ; Outer Surface Protein C Type K 5OYK ; 3.2 ; Outer-membrane expressed OmpT of Vibrio cholerae 7MBZ ; 6.4 ; Outward facing conformation of the MetNI methionine ABC transporter in complex with lipo-MetQ 6I1Z ; 3.4 ; Outward facing structure of apo CST 7QP9 ; 2.89 ; Outward-facing apo-form of auxin transporter PIN8 7QPA ; 3.18 ; Outward-facing auxin bound form of auxin transporter PIN8 6GWH ; 2.8 ; Outward-facing conformation of a multidrug resistance MATE family transporter of the MOP superfamily. 6HFB ; 3.495 ; Outward-facing conformation of a multidrug resistance MATE family transporter of the MOP superfamily. 6HRC ; 3.3 ; Outward-facing PglK with ATPgammaS bound 8JZS ; 2.95 ; Outward-facing SLC15A4 dimer 6X17 ; 3.66 ; Outward-facing state of the glutamate transporter homologue GltPh in complex with TBOA 8K7C ; 3.9 ; Outward-facing structure of human ABCB6 W546A mutant (ADP/VO4-bound) 8PNL ; 2.7 ; Outward-open conformation of a Major Facilitator Superfamily (MFS) transporter MHAS2168, a homologue of Rv1410 from M. tuberculosis, in complex with an alpaca nanobody 8JZR ; 3.25 ; Outward_facing SLC15A4 monomer 5UJH ; ; ov-GRN12-34 7EPZ ; 3.4 ; Overall structure of Erastin-bound xCT-4F2hc complex 7WBH ; 3.7 ; overall structure of hu33 and spike 6M23 ; 3.2 ; Overall structure of KCC2 3UIT ; 2.05 ; Overall structure of Patj/Pals1/Mals complex 7DSQ ; 3.4 ; Overall structure of the LAT1-4F2hc bound with 3,5-diiodo-L-tyrosine 7DSK ; 2.9 ; Overall structure of the LAT1-4F2hc bound with JX-075 7DSL ; 2.9 ; Overall structure of the LAT1-4F2hc bound with JX-078 7DSN ; 3.1 ; Overall structure of the LAT1-4F2hc bound with JX-119 5LJ5 ; 10.0 ; Overall structure of the yeast spliceosome immediately after branching. 8IHL ; 7.64 ; Overlapping tri-nucleosome 5UJG ; ; ovGRN12-35_3s 7NF8 ; 2.83 ; Ovine (b0,+AT-rBAT)2 hetero-tetramer, asymmetric unit, rigid-body fitted 6TT7 ; 3.5 ; Ovine ATP synthase 1a state 7NF6 ; 3.05 ; Ovine b0,+AT-rBAT heterodimer 4CK4 ; 1.12 ; Ovine beta-Lactoglobulin at Atomic Resolution 7JXT ; 3.35 ; Ovine COX-1 in complex with the subtype-selective derivative 2a 2M1J ; ; Ovine Doppel Signal peptide (1-30) 1B5L ; 2.1 ; OVINE INTERFERON TAU 6T44 ; 2.0 ; Ovine lactoglobulin complex with decanol 1EBV ; 3.2 ; OVINE PGHS-1 COMPLEXED WITH SALICYL HYDROXAMIC ACID 1Y2S ; ; Ovine Prion Protein Variant R168 7NF7 ; 2.68 ; Ovine rBAT ectodomain homodimer, asymmetric unit 1TPX ; 2.56 ; Ovine recombinant PrP(114-234), ARQ variant in complex with the Fab of the VRQ14 antibody 1TQC ; 2.8 ; Ovine recombinant PrP(114-234), ARR variant in complex with the VRQ14 Fab fragment (IgG2a) 1TQB ; 2.55 ; Ovine recombinant PrP(114-234), VRQ variant in complex with the Fab of the VRQ14 antibody 6QC5 ; 4.3 ; Ovine respiratory complex I FRC closed class 1 6QC6 ; 4.1 ; Ovine respiratory complex I FRC open class 1 6QC8 ; 4.2 ; Ovine respiratory complex I FRC open class 2 6QC7 ; 4.4 ; Ovine respiratory complex I FRC open class 3 6QC9 ; 5.7 ; Ovine respiratory complex I FRC open class 4 6QCA ; 6.2 ; Ovine respiratory complex I FRC open class 5 6QCF ; 6.5 ; Ovine respiratory complex I FRC open class 6 6QBX ; 4.2 ; Ovine respiratory supercomplex I+III2 closed class. 6QC3 ; 4.2 ; Ovine respiratory supercomplex I+III2 open class 1 6QC2 ; 4.2 ; Ovine respiratory supercomplex I+III2 open class 2 6QC4 ; 4.6 ; Ovine respiratory supercomplex I+III2 open class 3 5AC0 ; 1.9 ; ovis aries Aldehyde Dehydrogenase 1A1 in complex with a duocarmycin analog 1IQ7 ; 2.3 ; Ovotransferrin, C-Terminal Lobe, Apo Form 1TFA ; 1.9 ; OVOTRANSFERRIN, N-TERMINAL LOBE, APO FORM 1IEJ ; 1.65 ; OVOTRANSFERRIN, N-TERMINAL LOBE, HOLO FORM, AT 1.65 A RESOLUTION 1NFT ; 2.1 ; OVOTRANSFERRIN, N-TERMINAL LOBE, IRON LOADED OPEN FORM 7YK4 ; 2.7 ; ox40-antibody 6OKN ; 3.25 ; OX40R (TNFRSF4) bound to Fab 1A7 1K57 ; 1.9 ; OXA 10 class D beta-lactamase at pH 6.0 1K56 ; 1.7 ; OXA 10 class D beta-lactamase at pH 6.5 1K55 ; 1.39 ; OXA 10 class D beta-lactamase at pH 7.5 5MNU ; 1.56 ; OXA-10 Avibactam complex with bound bromide 5MOX ; 1.41 ; OXA-10 Avibactam complex with bound CO2 5MOZ ; 1.34 ; OXA-10 Avibactam complex with bound Iodide 7B3U ; 1.598 ; OXA-10 beta-lactamase with covalent modification 7B3R ; 1.83 ; OXA-10 beta-lactamase with S64Dha modification and lysinoalanine crosslink 7B3S ; 1.85 ; OXA-10 beta-lactamase with S67Dha modification 1K54 ; 1.7 ; OXA-10 class D beta-lactamase partially acylated with reacted 6beta-(1-hydroxy-1-methylethyl) penicillanic acid 4S2O ; 1.7 ; OXA-10 in complex with Avibactam 6SKR ; 1.85 ; OXA-10_ETP. Structural insight to the enhanced carbapenem efficiency of OXA-655 compared to OXA-10. 6SKP ; 1.891 ; OXA-10_IPM. Structural insight to the enhanced carbapenem efficiency of OXA-655 compared to OXA-10. 5HAR ; 1.74 ; OXA-163 beta-lactamase - S70G mutant 4JF4 ; 2.14 ; OXA-23 meropenem complex 6N6T ; 1.25 ; OXA-23 mutant F110A/M221A low pH form 6N6U ; 1.55 ; OXA-23 mutant F110A/M221A low pH form imipenem complex 6N6V ; 1.55 ; OXA-23 mutant F110A/M221A low pH form meropenem complex 6N6W ; 3.25 ; OXA-23 mutant F110A/M221A neutral pH form 6N6X ; 3.1 ; OXA-23 mutant F110A/M221A neutral pH form imipenem complex 6N6Y ; 3.501 ; OXA-23 mutant F110A/M221A neutral pH form meropenem complex 3G4P ; 1.97 ; OXA-24 beta-lactamase at pH 7.5 3MBZ ; 2.6 ; OXA-24 beta-lactamase complex soaked with 10mM SA4-17 inhibitor for 15min 3FZC ; 2.0 ; OXA-24 beta-lactamase complex with SA3-53 inhibitor 3FYZ ; 2.1 ; OXA-24 beta-lactamase complex with SA4-17 inhibitor 3FV7 ; 2.0 ; OXA-24 beta-lactamase complex with SA4-44 inhibitor 5TG4 ; 1.44 ; OXA-24/40 in Complex with Boronic Acid BA16 5TG7 ; 2.28 ; OXA-24/40 in Complex with Boronic Acid BA3 5TG6 ; 1.78 ; OXA-24/40 in Complex with Boronic Acid BA4 5TG5 ; 1.75 ; OXA-24/40 in Complex with Boronic Acid BA8 5HAP ; 1.89 ; OXA-48 beta-lactamase - S70A mutant 5HAQ ; 2.14 ; OXa-48 beta-lactamase mutant - S70G 6XQR ; 2.2 ; OXA-48 bound by Compound 2.2 7JHQ ; 2.0 ; OXA-48 bound by Compound 2.3 7K5V ; 2.8 ; OXA-48 bound by Compound 3.1 7R6Z ; 2.1 ; OXA-48 bound by Compound 3.3 7L8O ; 2.7 ; OXA-48 bound by Compound 4.3 6UVK ; 2.2 ; OXA-48 bound by inhibitor CDD-97 8SQF ; 2.3 ; OXA-48 bound to inhibitor CDD-2725 8SQG ; 2.03 ; OXA-48 bound to inhibitor CDD-2801 6P96 ; 1.6 ; OXA-48 carbapanemase, apo form 6P9C ; 1.9 ; OXA-48 carbapanemase, doripenem complex 6P99 ; 2.25 ; OXA-48 carbapanemase, ertapenem complex 6P97 ; 1.8 ; OXA-48 carbapanemase, imipenem complex 6P98 ; 1.75 ; OXA-48 carbapanemase, meropenem complex 7DML ; 1.936 ; OXA-48 carbapenemase in complex with (R)-2-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-3-yl)acrylic acid 4WMC ; 2.3 ; OXA-48 covalent complex with Avibactam inhibitor 4S2J ; 2.54 ; OXA-48 in complex with Avibactam at pH 6.5 4S2K ; 2.1 ; OXA-48 in complex with Avibactam at pH 7.5 4S2N ; 2.0 ; OXA-48 in complex with Avibactam at pH 8.5 5QAL ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 11b 5QAI ; 1.9 ; OXA-48 IN COMPLEX WITH COMPOUND 12a 5QAJ ; 2.0 ; OXA-48 IN COMPLEX WITH COMPOUND 13 5QAK ; 1.9 ; OXA-48 IN COMPLEX WITH COMPOUND 14 5QAM ; 1.87 ; OXA-48 IN COMPLEX WITH COMPOUND 17 5QAN ; 2.3 ; OXA-48 IN COMPLEX WITH COMPOUND 19a 5QAO ; 2.0 ; OXA-48 IN COMPLEX WITH COMPOUND 19b 5QAP ; 1.79 ; OXA-48 IN COMPLEX WITH COMPOUND 21a 5QAQ ; 2.4 ; OXA-48 IN COMPLEX WITH COMPOUND 21b 5QAR ; 2.1 ; OXA-48 IN COMPLEX WITH COMPOUND 23a 5QAS ; 1.9 ; OXA-48 IN COMPLEX WITH COMPOUND 23b 5QAT ; 1.9 ; OXA-48 IN COMPLEX WITH COMPOUND 24 5QAU ; 1.75 ; OXA-48 IN COMPLEX WITH COMPOUND 26a 5QAV ; 1.72 ; OXA-48 IN COMPLEX WITH COMPOUND 26b 5QAW ; 2.2 ; OXA-48 IN COMPLEX WITH COMPOUND 27 5QAX ; 2.31 ; OXA-48 IN COMPLEX WITH COMPOUND 28 5QAY ; 1.7 ; OXA-48 IN COMPLEX WITH COMPOUND 32 5QAZ ; 2.2 ; OXA-48 IN COMPLEX WITH COMPOUND 34 5QB0 ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 35 5QB1 ; 1.8 ; OXA-48 IN COMPLEX WITH COMPOUND 36 5QB2 ; 1.75 ; OXA-48 IN COMPLEX WITH COMPOUND 38 5QA4 ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 3a 5QA5 ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 3b 5QB3 ; 2.0 ; OXA-48 IN COMPLEX WITH COMPOUND 40 5QA6 ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 4a 5QA7 ; 1.82 ; OXA-48 IN COMPLEX WITH COMPOUND 4b 5QA8 ; 2.5 ; OXA-48 IN COMPLEX WITH COMPOUND 4c 5QA9 ; 1.9 ; OXA-48 IN COMPLEX WITH COMPOUND 5 5QAA ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 6a 5QAB ; 2.15 ; OXA-48 IN COMPLEX WITH COMPOUND 6b 5QAC ; 2.0 ; OXA-48 IN COMPLEX WITH COMPOUND 6c 5QAD ; 1.75 ; OXA-48 IN COMPLEX WITH COMPOUND 8a 5QAE ; 2.1 ; OXA-48 IN COMPLEX WITH COMPOUND 8b 5QAF ; 2.15 ; OXA-48 IN COMPLEX WITH COMPOUND 8c 5QAG ; 2.3 ; OXA-48 IN COMPLEX WITH COMPOUND 9a 5QAH ; 1.95 ; OXA-48 IN COMPLEX WITH COMPOUND 9b 5FAQ ; 1.96 ; OXA-48 in complex with FPI-1465 5FAS ; 1.74 ; OXA-48 in complex with FPI-1523 5FAT ; 2.09 ; OXA-48 in complex with FPI-1602 5QB4 ; 1.95 ; OXA-48 IN COMPLEX WITH SUBSTRATE IMIPENEM 7ODA ; 1.796 ; OXA-48-like Beta-lactamase OXA-436 8FAJ ; 1.75 ; OXA-48-NA-1-157 inhibitor complex 8PEA ; 1.97 ; OXA-48_F72L. Epistasis Arises from Shifting the Rate-Limiting Step during Enzyme Evolution 7ASS ; 1.91 ; OXA-48_L67F_CAZ. What Doesnt Kill You Makes You Stronger: Sub-MIC Selection Drives Cryptic Evolution of OXA-48 6Q5B ; 2.22 ; OXA-48_P68A-AVI. Evolutionary trade-offs of OXA-48 mediated ceftazidime-avibactam resistance 6Q5F ; 2.5 ; OXA-48_P68A-CAZ. Evolutionary trade-offs of OXA-48 mediated ceftazidime-avibactam resistance 8PEC ; 2.66 ; OXA-48_Q5-CAZ. Epistasis Arises from Shifting the Rate-Limiting Step during Enzyme Evolution 8PEB ; 1.17 ; OXA-48_Q5. Epistasis Arises from Shifting the Rate-Limiting Step during Enzyme Evolution 6T1H ; 2.1 ; OXA-51-like beta-lactamase OXA-66 7VVI ; 1.4 ; OXA-58 crystal structure of acylated meropenem complex 7VX3 ; 1.8 ; OXA-58 crystal structure of acylated meropenem complex 2 7VX6 ; 1.7 ; OXA-58 crystal structure of acylated meropenem complex 2 6SKQ ; 2.1 ; OXA-655_MEM. Structural insights into the enhanced carbapenemase efficiency of OXA-655 compared to OXA-10. 2IWD ; 2.4 ; Oxacilloyl-acylated MecR1 extracellular antibiotic-sensor domain. 2ET1 ; 1.6 ; Oxalate oxidase in complex with substrate analogue glycolate 1BKA ; 2.4 ; OXALATE-SUBSTITUTED DIFERRIC LACTOFERRIN 1ONY ; 2.15 ; Oxalyl-Aryl-Amino Benzoic Acid inhibitors of PTP1B, compound 17 1ONZ ; 2.4 ; Oxalyl-aryl-Amino Benzoic acid Inhibitors of PTP1B, compound 8b 7AYG ; 1.9 ; oxalyl-CoA decarboxylase from Methylorubrum extorquens with bound TPP and ADP 6A4Z ; 1.7 ; Oxidase ChaP 7W5E ; 1.65 ; Oxidase ChaP D49L mutant 7WCC ; 1.5 ; Oxidase ChaP-D49L/Q91C mutant 7WB2 ; 1.8 ; Oxidase ChaP-D49L/Y109F mutant 6A52 ; 2.0 ; Oxidase ChaP-H1 6A4X ; 1.63 ; Oxidase ChaP-H2 2ZCT ; 1.7 ; Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate 1OES ; 2.2 ; Oxidation state of protein tyrosine phosphatase 1B 1OET ; 2.3 ; Oxidation state of protein tyrosine phosphatase 1B 1OEU ; 2.5 ; Oxidation state of protein tyrosine phosphatase 1B 1OEV ; 2.2 ; Oxidation state of protein tyrosine phosphatase 1B 2YCC ; 1.9 ; OXIDATION STATE-DEPENDENT CONFORMATIONAL CHANGES IN CYTOCHROME C 4QIB ; 1.865 ; Oxidation-Mediated Inhibition of the Peptidyl-Prolyl Isomerase Pin1 1DYZ ; 1.75 ; OXIDISED AZURIN II FROM ALCALIGENES XYLOSOXIDANS 6GSQ ; 1.5 ; Oxidised copper nitrite reductase from Achromobacter cycloclastes determined by serial femtosecond rotation crystallography 1DFD ; ; OXIDISED DESULFOVIBRIO AFRICANUS FERREDOXIN I, NMR, 19 STRUCTURES 1DAX ; ; OXIDISED DESULFOVIBRIO AFRICANUS FERREDOXIN I, NMR, MINIMIZED AVERAGE STRUCTURE 2Y2Y ; 2.0 ; Oxidised form of E. coli CsgC 1H51 ; 1.6 ; Oxidised Pentaerythritol Tetranitrate Reductase (SCN complex) 1H31 ; 2.55 ; Oxidised SoxAX complex from Rhodovulum sulfidophilum 1H33 ; 1.75 ; Oxidised SoxAX complex from Rhodovulum sulfidophilum 1GM4 ; 2.05 ; OXIDISED STRUCTURE OF CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 at pH 7.6 3CAO ; 1.6 ; OXIDISED STRUCTURE OF THE ACIDIC CYTOCHROME C3 FROM DESULFOVIBRIO AFRICANUS 2XPE ; 2.5 ; Oxidised Thiol peroxidase (Tpx) from Yersinia pseudotuberculosis 3ZRD ; 1.74 ; Oxidised Thiol peroxidase (Tpx) from Yersinia pseudotuberculosis 2FL0 ; 2.7 ; Oxidized (All ferric) form of the Azotobacter vinelandii bacterioferritin 4E4Z ; 1.98 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) in complex with hydrogen peroxide (1.98 A) 3MIC ; 2.42 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound azide obtained by co-crystallization 3MID ; 3.06 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound azide obtained by soaking (100mM NaN3) 3MIE ; 3.26 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound azide obtained by soaking (50mM NaN3) 3MIH ; 2.74 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound azide, obtained in the presence of substrate 3MIF ; 2.0 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound carbon monooxide (CO) 3MIB ; 2.35 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound nitrite 3MIG ; 2.7 ; Oxidized (Cu2+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound nitrite, obtained in the presence of substrate 1OPM ; 2.1 ; OXIDIZED (CU2+) PEPTIDYLGLYCINE ALPHA-HYDROXYLATING MONOOXYGENASE (PHM) WITH BOUND SUBSTRATE 1YCF ; 3.0 ; Oxidized (di-ferric) FprA from Moorella thermoacetica 2VL2 ; 1.925 ; Oxidized and reduced forms of human peroxiredoxin 5 2VL3 ; 1.83 ; Oxidized and reduced forms of human peroxiredoxin 5 2BZ7 ; 1.76 ; Oxidized and reduced structures of a mutant Plastocyanin of fern 2BZC ; 1.79 ; Oxidized and reduced structures of a mutant Plastocyanin of fern 4PUH ; 1.898 ; Oxidized BolA2 from Arabidopsis thaliana 3HPM ; 2.8 ; Oxidized dimeric PICK1 PDZ C46G mutant in complex with the carboxyl tail peptide of GluR2 3HPK ; 2.2 ; Oxidized dimeric PICK1 PDZ in complex with the carboxyl tail peptide of GluR2 1E60 ; 2.0 ; OXIDIZED DMSO REDUCTASE EXPOSED TO HEPES - Structure II BUFFER 1E61 ; 1.9 ; OXIDIZED DMSO REDUCTASE EXPOSED TO HEPES - Structure II BUFFER 1E5V ; 2.4 ; OXIDIZED DMSO REDUCTASE EXPOSED TO HEPES BUFFER 1DMR ; 1.82 ; OXIDIZED DMSO REDUCTASE FROM RHODOBACTER CAPSULATUS 1A2M ; 2.7 ; OXIDIZED DSBA AT 2.7 ANGSTROMS RESOLUTION, CRYSTAL FORM III 1A2J ; 2.0 ; OXIDIZED DSBA CRYSTAL FORM II 3WU6 ; 1.8 ; Oxidized E.coli Lon Proteolytic domain 5LMC ; 1.9 ; Oxidized flavodiiron core of Escherichia coli flavorubredoxin, including the Fe-4SG atoms from its rubredoxin domain 2GTO ; ; Oxidized form of ADAP hSH3-N 1SFD ; 0.99 ; oxidized form of amicyanin mutant P94F 1FDO ; 2.8 ; OXIDIZED FORM OF FORMATE DEHYDROGENASE H FROM E. COLI 1FDI ; 2.9 ; OXIDIZED FORM OF FORMATE DEHYDROGENASE H FROM E. COLI COMPLEXED WITH THE INHIBITOR NITRITE 2VL9 ; 2.7 ; Oxidized form of human peroxiredoxin 5 1KDJ ; 1.7 ; OXIDIZED FORM OF PLASTOCYANIN FROM DRYOPTERIS CRASSIRHIZOMA 7PZQ ; 2.25 ; Oxidized form of SARS-CoV-2 Main Protease determined by XFEL radiation 2PPD ; 1.8 ; Oxidized H145A mutant of AfNiR bound to nitric oxide 3WSD ; 2.5 ; Oxidized HcgD from Methanocaldococcus jannaschii 3WSF ; 2.0 ; Oxidized HcgD from Methanocaldococcus jannaschii with citrate 1LT7 ; 2.15 ; Oxidized Homo sapiens betaine-homocysteine S-methyltransferase in complex with four Sm(III) ions 6PRX ; 3.25 ; oxidized Human Branched Chain Aminotransferase mutant C318A 4X9M ; 2.4 ; Oxidized L-alpha-Glycerophosphate Oxidase from Mycoplasma pneumoniae with FAD bound 2LQQ ; ; Oxidized Mrx1 4PAZ ; 1.76 ; OXIDIZED MUTANT P80A PSEUDOAZURIN FROM A. FAECALIS 6PAZ ; 1.91 ; OXIDIZED MUTANT P80I PSEUDOAZURIN FROM A. FAECALIS 8PAZ ; 1.6 ; OXIDIZED NATIVE PSEUDOAZURIN FROM A. FAECALIS 1D9Q ; 2.4 ; OXIDIZED PEA FRUCTOSE-1,6-BISPHOSPHATASE FORM 1 2PVA ; 2.5 ; OXIDIZED PENICILLIN V ACYLASE FROM B. SPHAERICUS 1YIP ; 2.2 ; Oxidized Peptidylglycine Alpha-Hydroxylating Monooxygenase (PHM) in a New Crystal Form 7N8Y ; 3.65 ; Oxidized PheRS G318W from Salmonella enterica serovar Typhimurium 1BXU ; 1.9 ; OXIDIZED PLASTOCYANIN FROM SYNECHOCOCCUS SP. 1H6D ; 2.05 ; Oxidized Precursor Form of Glucose-Fructose Oxidoreductase from Zymomonas mobilis complexed with glycerol 1H6C ; 2.2 ; Oxidized Precursor Form of Glucose-Fructose Oxidoreductase from Zymomonas mobilis complexed with succinate 1BQK ; 1.35 ; OXIDIZED PSEUDOAZURIN 1ZIA ; 1.54 ; OXIDIZED PSEUDOAZURIN 4ZVL ; 1.899 ; Oxidized quinone reductase 2 in complex with acridine orange 4FGK ; 1.401 ; Oxidized quinone reductase 2 in complex with chloroquine 4U7H ; 1.48 ; Oxidized quinone reductase 2 in complex with CK2 inhibitor DMAT 4U7G ; 1.96 ; Oxidized quinone reductase 2 in complex with CK2 inhibitor TBBz 4ZVM ; 1.973 ; Oxidized quinone reductase 2 in complex with doxorubicin 5BUC ; 1.867 ; Oxidized quinone reductase 2 in complex with ethidium 4FGJ ; 1.346 ; Oxidized quinone reductase 2 in complex with primaquine 7LJX ; 1.31 ; Oxidized rat cytochrome c mutant (K53Q) 6N1O ; 1.55 ; Oxidized rat cytochrome c mutant (S47E) 1PIU ; 2.2 ; OXIDIZED RIBONUCLEOTIDE REDUCTASE R2-D84E MUTANT CONTAINING OXO-BRIDGED DIFERRIC CLUSTER 6ATD ; 2.5 ; Oxidized SHP2 forms a disulfide bond between Cys367 and Cys459 4AOS ; 2.5 ; Oxidized steroid monooxygenase bound to NADP 4AOX ; 2.42 ; Oxidized steroid monooxygenase bound to NADP 4AP1 ; 2.95 ; Oxidized steroid monooxygenase bound to NADP 4AP3 ; 2.39 ; Oxidized steroid monooxygenase bound to NADP 1UPD ; 1.4 ; Oxidized STRUCTURE OF CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 AT PH 7.6 7TXM ; 2.16 ; Oxidized Structure of RexT 2W3E ; 1.6 ; Oxidized structure of the first GAF domain of Mycobacterium tuberculosis DosS 1ZYN ; 2.3 ; Oxidized structure of the N-terminal domain of Salmonella typhimurium AhpF 6ZOM ; ; Oxidized thioredoxin 1 from the anaerobic bacteria Desulfovibrio vulgaris Hildenborough 2X8G ; 1.9 ; Oxidized thioredoxin glutathione reductase from Schistosoma mansoni 2Q0K ; 1.7 ; Oxidized thioredoxin reductase from Helicobacter pylori in complex with NADP+ 2PPC ; 1.58 ; Oxidized wild type AfNiR exposed to NO (nitrite bound) 2MJD ; ; Oxidized Yeast Adrenodoxin Homolog 1 4YNA ; 3.2 ; Oxidized YfiR 1QT9 ; 1.3 ; OXIDIZED [2FE-2S] FERREDOXIN FROM ANABAENA PCC7119 1IQZ ; 0.92 ; OXIDIZED [4Fe-4S] FERREDOXIN FROM BACILLUS THERMOPROTEOLYTICUS (FORM I) 1IR0 ; 1.0 ; OXIDIZED [4Fe-4S] FERREDOXIN FROM BACILLUS THERMOPROTEOLYTICUS (FORM II) 3KWC ; 2.0 ; Oxidized, active structure of the beta-carboxysomal gamma-Carbonic Anhydrase, CcmM 3WU4 ; 1.7 ; Oxidized-form structure of E.coli Lon Proteolytic domain 1MBB ; 2.3 ; OXIDOREDUCTASE 1MBT ; 3.0 ; OXIDOREDUCTASE 3Q6O ; 2.05 ; Oxidoreductase Fragment of Human QSOX1 4IJ3 ; 2.7 ; Oxidoreductase Fragment of Human QSOX1 in Complex with a FAB Fragment from an Anti- Human QSOX1 Antibody 8AON ; 2.1 ; Oxidoreductase fragment of human QSOX1 in complex with a Fab fragment of a humanized anti-QSOX1 antibody 5D93 ; 2.201 ; Oxidoreductase Fragment of Mouse QSOX1 in Complex with a FAb Fragment from a Mouse QSOX1-Specific Antibody 5D96 ; 2.3 ; Oxidoreductase Fragment of Mouse QSOX1 in Complex with a FAb Fragment from an Antibody Targeting Mouse and Human QSOX1 5TWC ; 2.31 ; Oxidoreductase IruO in the oxidized form 5TWB ; 1.822 ; Oxidoreductase IruO in the reduced form 2ZNM ; 2.3 ; Oxidoreductase NmDsbA3 from Neisseria meningitidis 4HU6 ; 2.3 ; Oxime side-chain cross-links in the GCN4-p1 dimeric coiled coil: Cyclic product 4HU5 ; 2.3 ; Oxime side-chain cross-links in the GCN4-p1 dimeric coiled coil: Linear precursor 4DFW ; 1.55 ; Oxime-based Post Solid-phase Peptide Diversification: Identification of High Affinity Polo-like Kinase 1 (Plk1) Polo-box Domain Binding Peptides 2L3I ; ; Oxki4a, spider derived antimicrobial peptide 1XC1 ; 1.51 ; Oxo Zirconium(IV) Cluster in the Ferric Binding Protein (FBP) 2C07 ; 1.5 ; Oxoacyl-ACP reductase of Plasmodium falciparum 2ASD ; 1.95 ; oxoG-modified Insertion Ternary Complex 2ASL ; 2.65 ; oxoG-modified Postinsertion Binary Complex 2ASJ ; 2.35 ; oxoG-modified Preinsertion Binary Complex 1AAT ; 2.8 ; OXOGLUTARATE-INDUCED CONFORMATIONAL CHANGES IN CYTOSOLIC ASPARTATE AMINOTRANSFERASE 1LFZ ; 3.1 ; OXY HEMOGLOBIN (25% METHANOL) 1LFY ; 3.3 ; OXY HEMOGLOBIN (84% RELATIVE HUMIDITY) 1LFV ; 2.8 ; OXY HEMOGLOBIN (88% RELATIVE HUMIDITY) 1LFT ; 2.6 ; OXY HEMOGLOBIN (90% RELATIVE HUMIDITY) 1LFQ ; 2.6 ; OXY HEMOGLOBIN (93% RELATIVE HUMIDITY) 4F6D ; 1.8 ; Oxy structure of His100Phe Cerebratulus lacteus mini-hemoglobin 4F6I ; 1.56 ; Oxy Structure of His100Trp Cerebratulus lacteus mini-hemoglobin 4F68 ; 1.8 ; Oxy structure of Tyr11Phe/Gln44Leu/Thr48Val/Ala55Trp Cerebratulus lacteus mini-hemoglobin 1GZX ; 2.1 ; Oxy T State Haemoglobin - Oxygen bound at all four haems 7E99 ; 2.1 ; Oxy-deoxy intermediate of 400 kDa giant hemoglobin at 13% oxygen saturation 7E98 ; 2.2 ; Oxy-deoxy intermediate of 400 kDa giant hemoglobin at 21% oxygen saturation 7E97 ; 2.7 ; Oxy-deoxy intermediate of 400 kDa giant hemoglobin at 58% oxygen saturation 7E96 ; 2.4 ; Oxy-deoxy intermediate of 400 kDa giant hemoglobin at 69% oxygen saturation 7VLF ; 2.4 ; Oxy-deoxy intermediate of V2 hemoglobin at 26% oxygen saturation 7VLE ; 2.3 ; Oxy-deoxy intermediate of V2 hemoglobin at 55% oxygen saturation 7VLD ; 2.1 ; Oxy-deoxy intermediate of V2 hemoglobin at 69% oxygen saturation 7VLC ; 2.2 ; Oxy-deoxy intermediate of V2 hemoglobin at 78% oxygen saturation 1A6M ; 1.0 ; OXY-MYOGLOBIN, ATOMIC RESOLUTION 5HH3 ; 2.1 ; OxyA from Actinoplanes teichomyceticus 4TVF ; 1.9 ; OxyB from Actinoplanes teichomyceticus 8F91 ; 2.8 ; OxyB, a cytochrome P450 involved in keratinimicin biosynthesis 1NIR ; 2.15 ; OXYDIZED NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA 5V5J ; 1.814 ; oxyferrous Dehaloperoxidase B 2HHE ; 2.2 ; OXYGEN AFFINITY MODULATION BY THE N-TERMINI OF THE BETA CHAINS IN HUMAN AND BOVINE HEMOGLOBIN 2HHD ; 2.2 ; OXYGEN AFFINITY MODULATION BY THE N-TERMINI OF THE BETA-CHAINS IN HUMAN AND BOVINE HEMOGLOBIN 1TES ; 1.7 ; OXYGEN BINDING MUSCLE PROTEIN 1DZ8 ; 1.9 ; oxygen complex of p450cam from pseudomonas putida 6VJR ; 1.55 ; Oxygen tolerant Archeal 4hydroxybutyrylCoA dehydratase (4HBD) from N. maritimus 8T7J ; 2.4 ; Oxygen- and PLP-dependent Cap15 holoenzyme bound with phosphate anion 1DP6 ; 2.3 ; OXYGEN-BINDING COMPLEX OF FIXL HEME DOMAIN 3VMH ; 1.85 ; Oxygen-bound complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 3UBV ; 3.2 ; Oxygen-bound hell's gate globin I by classical hanging drop 3UBC ; 1.65 ; Oxygen-bound hell's gate globin I by LB nanotemplate method 6LL4 ; 2.2 ; Oxygen-exposed carbazole-soaked reduced terminal oxygenase of carbazole 1,9a-dioxygenase 6LL1 ; 2.15 ; Oxygen-exposed reduced terminal oxygenase in carbazole 1,9a-dioxygenase 5XBP ; 2.9 ; Oxygenase component of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2 4NBF ; 2.0 ; Oxygenase with Gln282 replaced by Asn and ferredoxin complex of carbazole 1,9a-dioxygenase 4NBG ; 1.85 ; Oxygenase with Gln282 replaced by Tyr and ferredoxin complex of carbazole 1,9a-dioxygenase 4NB8 ; 2.01 ; Oxygenase with Ile262 replaced by Leu and ferredoxin complex of carbazole 1,9a-dioxygenase 4NB9 ; 2.05 ; Oxygenase with Ile262 replaced by Val and ferredoxin complex of carbazole 1,9a-dioxygenase 4NBC ; 1.945 ; Oxygenase with Phe275 replaced by Trp and ferredoxin complex of carbazole 1,9a-dioxygenase (form1) 1NOL ; 2.4 ; OXYGENATED HEMOCYANIN (SUBUNIT TYPE II) 5TDT ; 1.818 ; Oxygenated toluene intermediate in toluene 4-monooxygenase (T4moHD) after reaction in the crystal 7LLY ; 3.3 ; Oxyntomodulin-bound Glucagon-Like Peptide-1 (GLP-1) Receptor in complex with Gs protein 5AK2 ; 2.19 ; Oxyphenylpropenoic acids as Oral Selective Estrogen Receptor Down- Regulators. 4XWS ; 3.006 ; OxyR regulatory domain C199D mutant from pseudomonas aeruginosa 5B7D ; 1.52 ; OxyR2 E204G mutant regulatory domain from Vibrio vulnificus (sulfate-bound) 5B70 ; 2.3 ; OxyR2 E204G regulatory domain from Vibrio vulnificus 5X0Q ; 1.55 ; OxyR2 E204G variant (Cl-bound) from Vibrio vulnificus 5B7H ; 1.492 ; OxyR2 regulatory domain C206S mutant from Vibrio vulnificus 4K2X ; 2.55 ; OxyS anhydrotetracycline hydroxylase from Streptomyces rimosus 7OFG ; ; Oxytocin NMR solution structure 7OTD ; ; Oxytocin NMR solution structure 7RYC ; 2.9 ; Oxytocin receptor (OTR) bound to oxytocin in complex with a heterotrimeric Gq protein 3TX9 ; 1.999 ; OYE1 complexed with 2-(Hydroxymethyl)-cyclopent-2-enone 4YIL ; 1.461 ; OYE1 W116A COMPLEXED WITH (Z)-METHYL 3-CYANO-3-(4-FLUOROPHENYL)ACRYLATE IN A NON PRODUCTIVE BINDING MODE 4YNC ; 1.498 ; OYE1 W116A COMPLEXED WITH (Z)-METHYL-3-CYANO-3-PHENYLACRYLATE IN A NON PRODUCTIVE BINDING MODE 4K7V ; 1.516 ; OYE1-W116A complexed with (R)-carvone 4GBU ; 1.179 ; OYE1-W116A in complex with aromatic product of S-carvone dismutation 4GE8 ; 1.499 ; OYE1-W116I complexed with (s)-Carvone 4GXM ; 1.362 ; OYE1-W116L in complex with aromatic product of R-carvone dismutation 3TXZ ; 1.7 ; OYE1-W116Q complexed with R-carvone 4K7Y ; 1.199 ; Oye1-w116t 4K8H ; 1.55 ; OYE1-W116V complexed with (R)-carvone 4K8E ; 1.269 ; OYE1-W116V complexed with the aromatic product of (R)-carvone dismutation 4H4I ; 1.25 ; OYE1-W116V complexed with the dismutation product of (S)-carvone 4M5P ; 1.503 ; OYE2.6 Y78W, I113C 5ZV9 ; 1.8 ; P domain of GII.13 norovirus capsid 5ZVC ; 1.8 ; P domain of GII.13 norovirus capsid complexed with Lewis A trisaccharide 5ZUQ ; 1.99 ; P domain of GII.17-1978 5ZUS ; 2.0 ; P domain of GII.17-2014/15 5ZV5 ; 2.1 ; P domain of GII.17-2014/15 complexed with A-trisaccharide 5ZV7 ; 1.95 ; P domain of GII.17-2014/15 complexed with B-trisaccharide 6IR5 ; 2.6 ; P domain of GII.3-TV24 6IS5 ; 2.501 ; P domain of GII.3-TV24 with A-tetrasaccharide complex 1WVE ; 1.85 ; p-Cresol Methylhydroxylase: Alteration of the Structure of the Flavoprotein Subunit upon its Binding to the Cytochrome Subunit 1WVF ; 1.3 ; p-Cresol Methylhydroxylase: Alteration of the Structure of the Flavoprotein Subunit upon its Binding to the Cytochrome Subunit 6JLZ ; 3.35 ; P-eIF2a - eIF2B complex 2BN6 ; ; P-Element Somatic Inhibitor Protein 2BN5 ; ; P-Element Somatic Inhibitor Protein Complex with U1-70k proline-rich peptide 4Q9H ; 3.4 ; P-glycoprotein at 3.4 A resolution 4XWK ; 3.5 ; P-glycoprotein co-crystallized with BDE-100 4Q9I ; 3.781 ; P-glycoprotein cocrystallised with QZ-Ala 4Q9K ; 3.8 ; P-glycoprotein cocrystallised with QZ-Leu 4Q9L ; 3.8 ; P-glycoprotein cocrystallised with QZ-Phe 4Q9J ; 3.6 ; P-glycoprotein cocrystallised with QZ-Val 6UJN ; 3.98 ; P-glycoprotein mutant-C952A-with BDE100 6UJR ; 4.1 ; P-glycoprotein mutant-F724A and C952A-with BDE100 6UJS ; 4.17 ; P-glycoprotein mutant-F728A and C952A-with BDE100 6UJP ; 3.98 ; P-glycoprotein mutant-F979A and C952A-with BDE100 6UJT ; 4.17 ; P-glycoprotein mutant-Y303A and C952A-with BDE100 6UJW ; 4.15 ; P-glycoprotein mutant-Y306A and C952A-with BDE100 1BGN ; 2.0 ; P-HYDROXYBENZOATE HYDROXYLASE (PHBH) MUTANT WITH CYS 116 REPLACED BY SER (C116S) AND ARG 269 REPLACED BY THR (R269T), IN COMPLEX WITH FAD AND 4-HYDROXYBENZOIC ACID 1BF3 ; 2.2 ; P-HYDROXYBENZOATE HYDROXYLASE (PHBH) MUTANT WITH CYS 116 REPLACED BY SER (C116S) AND ARG 42 REPLACED BY LYS (R42K), IN COMPLEX WITH FAD AND 4-HYDROXYBENZOIC ACID 1BGJ ; 3.0 ; P-HYDROXYBENZOATE HYDROXYLASE (PHBH) MUTANT WITH CYS 116 REPLACED BY SER (C116S) AND HIS 162 REPLACED BY ARG (H162R), IN COMPLEX WITH FAD AND 4-HYDROXYBENZOIC ACID 1BKW ; 2.2 ; p-Hydroxybenzoate hydroxylase (phbh) mutant with cys116 replaced by ser (c116s) and arg44 replaced by lys (r44k), in complex with fad and 4-hydroxybenzoic acid 1IUV ; 2.5 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-4-HYDROXYBENZOATE AT PH 5.0 1IUW ; 2.0 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-4-HYDROXYBENZOATE AT PH 7.4 1IUX ; 2.0 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-4-HYDROXYBENZOATE AT PH 9.4 1IUS ; 2.2 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE AT PH 5.0 1IUT ; 2.0 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE AT PH 7.4 1IUU ; 2.0 ; P-HYDROXYBENZOATE HYDROXYLASE COMPLEXED WITH 4-AMINOBENZOATE AT PH 9.4 6JU1 ; 1.6 ; p-Hydroxybenzoate hydroxylase Y385F mutant complexed with 3,4-dihydroxybenzoate 3QGM ; 2.0 ; p-nitrophenyl phosphatase from Archaeoglobus fulgidus 4YON ; 1.95 ; P-Rex1:Rac1 complex 1G1S ; 1.9 ; P-SELECTIN LECTIN/EGF DOMAINS COMPLEXED WITH PSGL-1 PEPTIDE 2IDF ; 2.25 ; P. aeruginosa azurin N42C/M64E double mutant, BMME-linked dimer 2IUT ; 2.25 ; P. aeruginosa FtsK motor domain, dimeric 2IUU ; 2.9 ; P. aeruginosa FtsK motor domain, hexamer 7T5S ; 3.0 ; P. aeruginosa LpxA in complex with ligand H16 7T5R ; 1.95 ; P. aeruginosa LpxA in complex with ligand H7 7T60 ; 2.0 ; P. aeruginosa LpxA in complex with ligand L13 7T61 ; 2.1 ; P. aeruginosa LpxA in complex with ligand L15 7T5X ; 2.2 ; P. aeruginosa LpxA in complex with ligand L6 7T5Z ; 2.25 ; P. aeruginosa LpxA in complex with ligand L8 5AIJ ; 1.95 ; P. aeruginosa SdsA hexagonal polymorph 2GNM ; 1.95 ; P. angolensis lectin (PAL) treated with EDTA for 39 hours 7Z2B ; 3.3 ; P. berghei kinesin-8B motor domain in AMPPNP state bound to tubulin dimer 7Z2A ; 4.3 ; P. berghei kinesin-8B motor domain in no nucleotide state bound to tubulin dimer 5LY3 ; 1.6 ; P. calidifontis crenactin in complex with arcadin-2 C-terminal peptide 7K3Z ; 3.69 ; P. falciparum Cpn60 D474A mutant bound to ATP 6TJ3 ; ; P. falciparum essential light chain, N-terminal domain 6TJ4 ; 1.5 ; P. falciparum essential light chain, N-terminal domain 7Z2C ; 4.1 ; P. falciparum kinesin-8B motor domain in no nucleotide bound to tubulin dimer 8DKC ; 3.5 ; P. gingivalis RNA Polymerase 6PYK ; 1.35 ; P. mirabilis hemolysin A mutant - F80L 6PZL ; 1.17 ; P. mirabilis hemolysin A mutant - Q125A 6Q0P ; 1.542 ; P. mirabilis hemolysin A mutant - Y134S 5IZ3 ; 1.3 ; P. patens sedoheptulose-1,7-bisphosphatase 7TFD ; 3.16 ; P. polymyxa GS(12) - apo 7TFA ; 2.07 ; P. polymyxa GS(12)-Q-GlnR peptide 7TFB ; 2.28 ; P. polymyxa GS(14)-Q-GlnR peptide 4HNC ; 1.889 ; P. putida C92S/K166C/C264S mandelate racemase co-crystallized with benzilic acid 4FP1 ; 1.68 ; P. putida mandelate racemase co-crystallized with 3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl) propionic acid 6VIM ; 2.0 ; P. putida mandelate racemase co-crystallized with phenylboronic acid 4M6U ; 1.8 ; P. putida mandelate racemase co-crystallized with tartronic acid 3UXK ; 2.201 ; P. putida mandelate racemase co-crystallized with the intermediate analogue benzohydroxamate 3UXL ; 2.201 ; P. putida mandelate racemase co-crystallized with the intermediate analogue cupferron 7MQX ; 1.914 ; P. putida mandelate racemase forms an oxobenzoxaborole adduct with 2-formylphenylboronic acid 4X2P ; 1.65 ; P. putida mandelate racemase in complex with 3-hydroxypyruvate 4DF2 ; 2.021 ; P. stipitis OYE2.6 complexed with p-Chlorophenol 4QAI ; 2.75 ; P. stipitis OYE2.6-Y78W 7JSO ; 2.848 ; P. syringae AldA Indole-3-Acetaldehyde Dehydrogenase C302A mutant in complex with NAD+ and IAA 4MCT ; 2.8 ; P. vulgaris HIGBA structure, crystal form 1 4MCX ; 2.1 ; P. vulgaris HIGBA structure, crystal form 2 2QDX ; 1.55 ; P.Aeruginosa Fpr with FAD 1BSM ; 1.35 ; P.SHERMANII SOD(FE+3) 140K PH8 1BS3 ; 1.55 ; P.SHERMANII SOD(FE+3) FLUORIDE 1BT8 ; 1.85 ; P.SHERMANII SOD(FE+3) PH 10.0 5O4V ; 1.7 ; P.vivax NMT with aminomethylindazole and quinoline inhibitors bound 5O48 ; 1.69 ; P.vivax NMT with an aminomethylindazole inhibitor bound 8X90 ; 2.95 ; P/Q type calcium channel 8X93 ; 2.92 ; P/Q type calcium channel in complex with omega-Agatoxin IVA 8X91 ; 3.11 ; P/Q type calcium channel in complex with omega-conotoxin MVIIC 3O1F ; 1.4 ; P1 crystal form of E. coli ClpS at 1.4 A resolution 3GNF ; 2.1 ; P1 Crystal structure of the N-terminal R1-R7 of murine MVP 1HLX ; ; P1 HELIX NUCLEIC ACIDS (DNA/RNA) RIBONUCLEIC ACID 6RC9 ; 1.94 ; P1 Mycoplasma pneumoniae 1AK0 ; 1.8 ; P1 NUCLEASE IN COMPLEX WITH A SUBSTRATE ANALOG 2CEJ ; 2.5 ; P1' Extended HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol in the Transition-State Mimicking Scaffold 2CEM ; 1.8 ; P1' Extended HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol in the Transition-State Mimicking Scaffold 2CEN ; 1.7 ; P1' Extended HIV-1 Protease Inhibitors Encompassing a Tertiary Alcohol in the Transition-State Mimicking Scaffold 1UWX ; 2.2 ; P1.2 serosubtype antigen derived from N. meningitidis PorA in complex with Fab fragment 1ASJ ; 2.9 ; P1/MAHONEY POLIOVIRUS, AT CRYOGENIC TEMPERATURE 1AR7 ; 2.9 ; P1/MAHONEY POLIOVIRUS, DOUBLE MUTANT P1095S + H2142Y 1AR6 ; 2.9 ; P1/MAHONEY POLIOVIRUS, DOUBLE MUTANT V1160I +P1095S 1AR8 ; 2.9 ; P1/MAHONEY POLIOVIRUS, MUTANT P1095S 1AR9 ; 2.9 ; P1/MAHONEY POLIOVIRUS, SINGLE SITE MUTANT H2142Y 1AL2 ; 2.9 ; P1/MAHONEY POLIOVIRUS, SINGLE SITE MUTANT V1160I 1LEO ; 2.6 ; P100S NUCLEOSIDE DIPHOSPHATE KINASE 7SMC ; 2.7 ; p107 pocket domain complexed with ARID4A peptide 7SMD ; 2.15 ; p107 pocket domain complexed with EID1 peptide 7SME ; 2.64 ; p107 pocket domain complexed with HDAC1 peptide 4YOS ; 2.3 ; p107 pocket domain complexed with LIN52 peptide 7SMF ; 3.0 ; p107 pocket domain complexed with mutated HDAC1-3X peptide 4YOZ ; 2.245 ; p107 pocket domain in complex with HPV E7 peptide 4YOO ; 2.4 ; p107 pocket domain in complex with LIN52 P29A peptide 1A4P ; 2.25 ; P11 (S100A10), LIGAND OF ANNEXIN II 1BT6 ; 2.4 ; P11 (S100A10), LIGAND OF ANNEXIN II IN COMPLEX WITH ANNEXIN II N-TERMINUS 5DXT ; 2.25 ; p110alpha with GDC-0326 5DXH ; 3.0 ; p110alpha/p85alpha with compound 5 5DXU ; 2.64 ; p110delta/p85alpha with GDC-0326 5T8F ; 2.91 ; p110delta/p85alpha with taselisib (GDC-0032) 4AHL ; 2.053 ; P112L - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 4ITG ; 1.74 ; P113S mutant of E. coli Cystathionine beta-lyase MetC 4ITX ; 1.61 ; P113S mutant of E. coli Cystathionine beta-lyase MetC inhibited by reaction with L-Ala-P 3NJJ ; 1.56 ; P115A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis 3NJM ; 1.64 ; P117A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis. 7TPB ; 3.2 ; p120RasGAP SH3 domain in complex with DLC1 RhoGAP domain 5W93 ; 2.001 ; p130Cas complex with paxillin LD1 5O2M ; ; p130Cas SH3 domain 5O2P ; ; p130Cas SH3 domain PTP-PEST peptide chimera 5O2Q ; ; p130Cas SH3 domain Vinculin peptide chimera 8FSD ; 1.49 ; P130R mutant of soybean SHMT8 in complex with PLP-glycine and formylTHF 6PQZ ; 2.23 ; P133G/S128A S. typhimurium siroheme synthase 6PR0 ; 1.9 ; P133H-S128A S. typhimurium siroheme synthase 1PUC ; 1.95 ; P13SUC1 IN A STRAND-EXCHANGED DIMER 1DZH ; 2.85 ; P14-FLUORESCEIN-N135Q-S380C-ANTITHROMBIN-III 6YRK ; 4.1 ; P140-P110 complex fitted into the cryo-electron density map of the heterodimer 6YDJ ; 1.04 ; P146A variant of beta-phosphoglucomutase from Lactococcus lactis in complex with glucose 6-phosphate and trifluoromagnesate 1CFE ; ; P14A, NMR, 20 STRUCTURES 3LP3 ; 2.8 ; p15 HIV RNaseH domain with inhibitor MK3 8W52 ; 2.38 ; p17 protein structure of HIV2 when OLA1 existing 7CWN ; 3.2 ; P17-H014 Fab cocktail in complex with SARS-CoV-2 spike protein 1AP7 ; ; P19-INK4D FROM MOUSE, NMR, 20 STRUCTURES 2K85 ; ; p190-A RhoGAP FF1 domain 5IRC ; 1.72 ; p190A GAP domain complex with RhoA 1BLX ; 1.9 ; P19INK4D/CDK6 COMPLEX 7NFY ; 3.9 ; P1a-state of wild type human mitochondrial LONP1 protease with bound substrate protein and ATPgS 7KKH ; 2.0 ; P1A4 Fab in complex with ARS1620 7NG4 ; 4.4 ; P1b-state of wild type human mitochondrial LONP1 protease with bound endogenous substrate protein and in presence of ATP/ADP mix 7NG5 ; 3.8 ; P1c-state of wild type human mitochondrial LONP1 protease with bound substrate protein in presence of ATP/ADP mix 5DOR ; 2.5 ; P2 Integrase catalytic domain in space group P21 5K1Y ; 2.97 ; P2(1) Structure of pNOB8 AspA-DNA complex 6KN1 ; 1.9 ; P20/P12 of caspase-11 mutant C254A 4L5S ; 2.94 ; p202 HIN1 in complex with 12-mer dsDNA 5Z7D ; 4.5 ; p204HINab-dsDNA complex structure 4IQ2 ; 1.7 ; P21 crystal form of FKBP12.6 2EAR ; 3.1 ; P21 crystal of the SR CA2+-ATPase with bound TG 1M1P ; 1.55 ; P21 crystal structure of the tetraheme cytochrome c3 from Shewanella oneidensis MR1 4YRH ; 2.861 ; p21 isoform of MEC-17 from Danio Rerio 6B16 ; 2.285 ; P21-activated kinase 1 in complex with a 4-azaindole inhibitor 3PZU ; 2.1 ; P212121 crystal form of the endo-1,4-beta-glucanase from Bacillus subtilis 168 3GNG ; 3.0 ; P21B crystal structure of R1-R7 of Murine MVP 3IYI ; 9.1 ; P22 expanded head coat protein structures reveal a novel mechanism for capsid maturation: Stability without auxiliary proteins or chemical cross-links 3IYH ; 8.2 ; P22 procapsid coat protein structures reveal a novel mechanism for capsid maturation: Stability without auxiliary proteins or chemical cross-links 4ZXQ ; 2.75 ; P22 Tail Needle Gp26 1-140 crystallized at pH 3.9 4ZKU ; 2.5 ; P22 Tail Needle Gp26 crystallized at pH 10.0 4ZKP ; 2.1 ; P22 Tail Needle Gp26 crystallized at pH 7.0 3TH0 ; 1.75 ; P22 Tailspike complexed with S.Paratyphi O antigen octasaccharide 6KMU ; 2.1 ; P22/P10 complex of caspase-11 mutant C254A 1M1Q ; 0.97 ; P222 oxidized structure of the tetraheme cytochrome c from Shewanella oneidensis MR1 1JSU ; 2.3 ; P27(KIP1)/CYCLIN A/CDK2 COMPLEX 7NGC ; 7.5 ; P2a-state of wild type human mitochondrial LONP1 protease with bound substrate protein and in presence of ATPgS 7NGF ; 5.6 ; P2c-state of wild type human mitochondrial LONP1 protease with bound endogenous substrate protein and in presence of ATP/ADP mix 1F4M ; 2.25 ; P3(2) CRYSTAL STRUCTURE OF ALA2ILE2-6, A VERSION OF ROP WITH A REPACKED HYDROPHOBIC CORE AND A NEW FOLD. 1HX6 ; 1.65 ; P3, THE MAJOR COAT PROTEIN OF THE LIPID-CONTAINING BACTERIOPHAGE PRD1. 8Q92 ; 3.05 ; P301S Tau Filaments from the Brains of PS19 Transgenic Mouse Line 8Q96 ; 3.09 ; P301S Tau Filaments from the Brains of Tg2541 Transgenic Mouse Line 6QAX ; ; P31-43 4IQC ; 1.903 ; P3121 crystal form of FKBP12.6 6KMT ; 2.6 ; P32 of caspase-11 mutant C254A 7WR0 ; 2.8 ; P32 of caspase-4 C258A mutant 7WR1 ; 2.13 ; P32 of caspase-4 C258A mutant in complex with OspC3 C-terminal ankyrin-repeat domain 6S1C ; 6.1 ; P3221 crystal form of the Ctf18-1-8/Pol2(1-528) complex 2AN2 ; 2.6 ; P332G, A333S Double mutant of the Bacillus subtilis Nitric Oxide Synthase 5O85 ; 3.4 ; p34-p44 complex 6QDZ ; 1.73 ; P38 alpha complex with AR117045 6QE1 ; 1.85 ; P38 alpha complex with AR117046 3NWW ; 2.09 ; P38 Alpha kinase complexed with a 2-aminothiazol-5-yl-pyrimidine based inhibitor 3OCG ; 2.21 ; P38 Alpha kinase complexed with a 5-amino-pyrazole based inhibitor 3L8X ; 2.4 ; P38 alpha kinase complexed with a pyrazolo-pyrimidine based inhibitor 3S4Q ; 2.27 ; P38 alpha kinase complexed with a pyrazolo-triazine based inhibitor 3C5U ; 2.8 ; P38 ALPHA map kinase complexed with a benzothiazole based inhibitor 3BX5 ; 2.4 ; P38 alpha map kinase complexed with BMS-640994 3MVL ; 2.8 ; P38 Alpha Map Kinase complexed with pyrrolotriazine inhibitor 7K 3MVM ; 2.0 ; P38 Alpha Map Kinase complexed with pyrrolotriazine inhibitor 7V 2QD9 ; 1.7 ; P38 Alpha Map Kinase inhibitor based on heterobicyclic scaffolds 5MZ3 ; 2.15 ; P38 ALPHA MUTANT C162S IN COMPLEX WITH CMPD2 [N-(4-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide] 3DS6 ; 2.9 ; P38 complex with a phthalazine inhibitor 3DT1 ; 2.8 ; P38 Complexed with a quinazoline inhibitor 3HEC ; 2.5 ; P38 in complex with Imatinib 3HEG ; 2.2 ; P38 in complex with Sorafenib 6OHD ; 2.5 ; P38 in complex with T-3220137 3P5K ; 2.09 ; P38 inhibitor-bound 3P78 ; 2.3 ; P38 inhibitor-bound 3P79 ; 2.1 ; P38 inhibitor-bound 3P7A ; 2.31 ; p38 inhibitor-bound 3P7B ; 1.9 ; p38 inhibitor-bound 3P7C ; 2.3 ; p38 inhibitor-bound 3FSF ; 2.1 ; P38 kinase crystal structure in complex with 3-(2,6-Dichloro-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-1-methyl-3,4-dihydro-1H-pyrimido[4,5-d]pyrimidin-2-one 3FMJ ; 2.0 ; P38 kinase crystal structure in complex with 4-(5-Methyl-3-phenyl-isoxazol-4-yl)-pyrimidin-2-ylamine 3FLS ; 2.3 ; P38 kinase crystal structure in complex with 6-(2,4-Difluoro-phenoxy)-2-((R)-2-methanesulfonyl-1-methyl-ethylamino)-8-methyl-8H-pyrido[2,3-d]pyrimidin-7-one 3FLQ ; 1.9 ; P38 kinase crystal structure in complex with 6-(2,4-difluoro-phenoxy)-2-((s)-2-methanesulfonyl-1-methyl-ethylamino)-8-methyl-8h-pyrido[2,3-d]pyrimidin 3FLY ; 1.8 ; P38 kinase crystal structure in complex with 6-(2,4-difluoro-phenoxy)-2-isopropylamino-8-methyl-8h-pyrido[2,3-d]pyrimidin-7-one 3FMH ; 1.9 ; P38 kinase crystal structure in complex with 6-(2,4-Difluoro-phenoxy)-8-methyl-2-((R)-1-methyl-2-tetrazol-2-yl-ethylamino)-8H-pyrido[2,3-d]pyrimidin-7-one 3FMK ; 1.7 ; P38 kinase crystal structure in complex with 6-(2,4-Difluoro-phenoxy)-8-methyl-2-((S)-1-methyl-2-tetrazol-2-yl-ethylamino)-8H-pyrido[2,3-d]pyrimidin-7-one 3FLZ ; 2.23 ; P38 kinase crystal structure in complex WITH 8-Methyl-6-phenoxy-2-(tetrahydro-pyran-4-ylamino)-8H-pyrido[2,3-d]pyrimidin-7-one 3FLW ; 2.1 ; P38 kinase crystal structure in complex with pamapimod 3FLN ; 1.9 ; P38 kinase crystal structure in complex with R1487 3FMN ; 1.9 ; P38 kinase crystal structure in complex with RO2530 2GFS ; 1.752 ; P38 Kinase Crystal Structure in complex with RO3201195 3FKO ; 2.0 ; P38 kinase crystal structure in complex with RO3668 3FI4 ; 2.2 ; P38 kinase crystal structure in complex with RO4499 3FL4 ; 1.8 ; P38 kinase crystal structure in complex with RO5634 3FML ; 2.1 ; P38 kinase crystal structure in complex with RO6224 3FMM ; 2.0 ; P38 kinase crystal structure in complex with RO6226 3FSK ; 2.0 ; P38 kinase crystal structure in complex with RO6257 3FKN ; 2.0 ; P38 kinase crystal structure in complex with RO7125 3FKL ; 2.0 ; P38 kinase crystal structure in complex with RO9552 1W7H ; 2.214 ; p38 Kinase crystal structure in complex with small molecule inhibitor 1W82 ; 2.2 ; p38 Kinase crystal structure in complex with small molecule inhibitor 1W83 ; 2.5 ; p38 Kinase crystal structure in complex with small molecule inhibitor 1W84 ; 2.2 ; p38 Kinase crystal structure in complex with small molecule inhibitor 3HRB ; 2.2 ; p38 kinase Crystal structure in complex with small molecule inhibitor 3MW1 ; 2.8 ; p38 kinase Crystal structure in complex with small molecule inhibitor 3RIN ; 2.2 ; p38 kinase crystal structure in complex with small molecule inhibitor 3S3I ; 1.8 ; p38 kinase crystal structure in complex with small molecule inhibitor 1KV1 ; 2.5 ; p38 MAP Kinase in Complex with Inhibitor 1 1OZ1 ; 2.1 ; P38 MITOGEN-ACTIVATED KINASE IN COMPLEX WITH 4-AZAINDOLE INHIBITOR 6QYX ; 1.66 ; p38(alpha) MAP kinase with the activation loop of ERK2 3NEW ; 2.51 ; p38-alpha complexed with Compound 10 6Y6V ; 2.1 ; p38a bound with MCP-81 6ZWP ; 1.9 ; p38a bound with SR348 6ZWR ; 1.9 ; p38a bound with SR92 4GEO ; 1.66 ; P38a MAP kinase DEF-pocket penta mutant (M194A, L195A, H228A, I229A, Y258A) 6B2G ; 2.407 ; P38A mutant of HIV-1 capsid protein 4E6C ; 2.39 ; p38a-perifosine Complex 4E6A ; 2.09 ; p38a-PIA23 complex 6B2H ; 2.6 ; P38A/T216I mutant of the HIV-1 capsid protein 3K3J ; 1.995 ; P38alpha bound to novel DFG-out compound PF-00416121 3K3I ; 1.7 ; p38alpha bound to novel DGF-out compound PF-00215955 2BAJ ; 2.25 ; p38alpha bound to pyrazolourea 2BAQ ; 2.8 ; p38alpha bound to Ro3201195 5OMH ; 2.5 ; p38alpha in complex with pyrazolobenzothiazine inhibitor COXH11 5OMG ; 2.0 ; p38alpha in complex with pyrazolobenzothiazine inhibitor COXP4M12 4AA0 ; 1.8 ; P38ALPHA MAP KINASE BOUND TO CMPD 2 4AA4 ; 2.3 ; P38ALPHA MAP KINASE BOUND TO CMPD 22 4AAC ; 2.5 ; P38ALPHA MAP KINASE BOUND TO CMPD 29 4AA5 ; 2.38 ; P38ALPHA MAP KINASE BOUND TO CMPD 33 4A9Y ; 2.2 ; P38ALPHA MAP KINASE BOUND TO CMPD 8 2BAK ; 2.2 ; p38alpha MAP kinase bound to MPAQ 2BAL ; 2.1 ; p38alpha MAP kinase bound to pyrazoloamine 1OO3 ; ; P395S mutant of the p85 regulatory subunit of the N-terminal src homology 2 domain of PI3-Kinase 1OO4 ; ; P395S mutant of the p85 regulatory subunit of the N-terminal src homology 2 domain of PI3-Kinase complexed to a peptide derived from PDGFr 1W4C ; 2.5 ; P4 protein from Bacteriophage PHI12 apo state 1W44 ; 2.0 ; P4 protein from Bacteriophage PHI12 in complex with ADP 1W46 ; 2.7 ; P4 protein from Bacteriophage PHI12 in complex with ADP and MG 1W47 ; 2.5 ; P4 protein from Bacteriophage PHI12 in complex with ADP and MN 1W48 ; 2.3 ; P4 protein from Bacteriophage PHI12 in complex with AMPcPP 1W49 ; 2.4 ; P4 protein from Bacteriophage PHI12 in complex with AMPcPP and Mg 4BLR ; 1.9 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 IN COMPLEX WITH UTP 2VHU ; 2.75 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 K241C mutant in complex with ADP and MgCl 2VHC ; 2.35 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 N234G mutant in complex with AMPCPP and MN 4BLS ; 2.6 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 Q278A MUTANT IN COMPLEX WITH AMPcPP 2VHT ; 3.0 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 R279A mutant in complex with ATP 2VHJ ; 1.8 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 S252A mutant in complex with ADP 2VHQ ; 2.15 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 S252A mutant in complex with ATP AND MG 4BLT ; 2.4 ; P4 PROTEIN FROM BACTERIOPHAGE PHI12 S292A MUTANT IN COMPLEX WITH AMPcPP 4BLP ; 1.7 ; P4 PROTEIN FROM BACTERIOPHAGE PHI13 4BLO ; 2.8 ; P4 PROTEIN FROM BACTERIOPHAGE PHI6 IN COMPLEX WITH ADP 4BLQ ; 2.79 ; P4 PROTEIN FROM BACTERIOPHAGE PHI8 4BWY ; 3.1 ; P4 PROTEIN FROM BACTERIOPHAGE PHI8 (R32) 1W4A ; 2.4 ; P4 protein from PHI12 in complex with AMPcPP and Mn 1W4B ; 2.3 ; P4 protein from PHI12 in complex with product (AMPcPP Mg 22C) 8DSG ; 1.87 ; P411-PFA carbene transferase 4WG2 ; 2.66 ; P411BM3-CIS T438S I263F regioselective C-H amination catalyst 2ZBB ; 2.5 ; P43 crystal of DctBp 7TTQ ; 1.62 ; P450 (OxyA) from kistamicin biosynthesis, imidazole complex 7TTO ; 1.6 ; P450 (OxyA) from kistamicin biosynthesis, mixed heme conformation 7TTP ; 1.8 ; P450 (OxyA) from kistamicin biosynthesis, mixed heme conformation 7TTA ; 2.001 ; P450 (OxyA) from kistamicin biosynthesis, mixed heme conformation, attenuated beam 7TTB ; 1.80159 ; P450 (OxyA) from kistamicin biosynthesis, Y99F mutant 2X7Y ; 2.1 ; P450 BM3 F87A in complex with DMSO 2X80 ; 2.3 ; P450 BM3 F87A in complex with DMSO 2J1M ; 1.7 ; P450 BM3 Heme domain in complex with DMSO 2J4S ; 2.1 ; P450 BM3 heme domain in complex with DMSO 6CP4 ; 1.9 ; P450CAM D251N MUTANT 2FE6 ; 1.5 ; P450CAM from Pseudomonas putida reconstituted with manganic protoporphyrin IX 2FER ; 1.7 ; P450CAM from Pseudomonas putida reconstituted with manganic protoporphyrin IX 2FEU ; 1.7 ; P450CAM from Pseudomonas putida reconstituted with manganic protoporphyrin IX 5WK7 ; 1.983 ; P450cam mutant R186A 4L77 ; 1.379 ; P450cin Active Site Water: Implications for Substrate Binding and Solvent Accessibility 1JIP ; 2.0 ; P450eryF(A245S)/ketoconazole 1JIO ; 2.1 ; P450eryF/6DEB 1JIN ; 2.3 ; P450eryF/ketoconazole 3WI0 ; 1.998 ; P453H/I471T mutant of PB2 middle domain from influenza virus A/Puerto Rico/8/34(H1N1) 3WI1 ; 1.931 ; P453H/I471T mutant of PB2 middle domain from influenza virus A/Puerto Rico/8/34(H1N1) with m7GTP 6RNN ; 1.95 ; P46, an immunodominant surface protein from Mycoplasma hyopneumoniae 6RQG ; 3.1 ; P46, an immunodominant surface protein from Mycoplasma hyopneumoniae 6RUX ; 2.5 ; P46, an immunodominant surface protein from Mycoplasma hyopneumoniae 6S3T ; 3.5 ; P46, an immunodominant surface protein from Mycoplasma hyopneumoniae 7R7T ; 4.5 ; p47-bound p97-R155H mutant with ADP 7R7S ; 4.23 ; p47-bound p97-R155H mutant with ATPgammaS 1E3L ; 2.5 ; P47H mutant of mouse class II alcohol dehydrogenase complex with NADH 1KQ6 ; 1.18 ; p47phox PX domain 6SHZ ; 1.24 ; p53 cancer mutant Y220C 5O1E ; 1.3 ; p53 cancer mutant Y220C im complex with compound MB577 5O1C ; 1.32 ; p53 cancer mutant Y220C in complex with compound MB184 5O1A ; 1.44 ; p53 cancer mutant Y220C in complex with compound MB240 5O1D ; 1.36 ; p53 cancer mutant Y220C in complex with compound MB481 5O1G ; 1.35 ; p53 cancer mutant Y220C in complex with compound MB487 5O1H ; 1.32 ; p53 cancer mutant Y220C in complex with compound MB539 5O1F ; 1.38 ; p53 cancer mutant Y220C in complex with compound MB582 5O1I ; 1.4 ; p53 cancer mutant Y220C in complex with compound MB710 5O1B ; 1.43 ; p53 cancer mutant Y220C in complex with compound MB84 8A31 ; 1.46 ; p53 cancer mutant Y220C in complex with iodophenol-based small-molecule stabilizer JC694 8A32 ; 1.47 ; p53 cancer mutant Y220C in complex with iodophenol-based small-molecule stabilizer JC769 6GGA ; 1.55 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9284 6GGB ; 1.32 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9318 6GGC ; 1.24 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9320 6SI0 ; 1.53 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9323 6GGD ; 1.40001 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9324 6GGE ; 1.25001 ; p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9327 5LAP ; 1.42 ; p53 cancer mutant Y220C with Cys182 alkylation 6SI1 ; 1.44 ; p53 cancer mutant Y220H 6SI2 ; 1.5 ; p53 cancer mutant Y220S 6SI3 ; 1.4 ; p53 cancer mutant Y220S in complex with small-molecule stabilizer PK9301 6SI4 ; 1.8 ; p53 cancer mutant Y220S in complex with small-molecule stabilizer PK9323 6SL6 ; 1.67 ; p53 charged core 1TSR ; 2.2 ; P53 CORE DOMAIN IN COMPLEX WITH DNA 4QO1 ; 1.924 ; p53 DNA binding domain in complex with Nb139 8F2I ; 5.0 ; P53 monomer structure 1AIE ; 1.5 ; P53 TETRAMERIZATION DOMAIN CRYSTAL STRUCTURE 2J10 ; ; p53 tetramerization domain mutant T329F Q331K 2J11 ; ; p53 tetramerization domain mutant Y327S T329G Q331G 2J0Z ; ; p53 tetramerization domain wild type 1YCS ; 2.2 ; P53-53BP2 COMPLEX 7EDX ; 4.5 ; p53-bound TFIID-based core PIC on HDM2 promoter 7EGC ; 3.9 ; p53-bound TFIID-based holo PIC on HDM2 promoter 6VTC ; 1.83 ; p53-specific T cell receptor 6VTH ; 2.36 ; p53-specific T cell receptor 8A92 ; 1.37 ; p53-Y220C Core Domain in Complex with a Bromo-trifluoro-pyrazole-amine 2B3G ; 1.6 ; p53N (fragment 33-60) bound to RPA70N 1BHF ; 1.8 ; P56LCK SH2 DOMAIN INHIBITOR COMPLEX 1GV9 ; 1.46 ; p58/ERGIC-53 7P40 ; 3.5 ; P5C3 is a potent fab neutralizer 1OQ0 ; ; P6.1 stem loop from the activation domain of hTR 5OW5 ; 1.7 ; p60p80-CAMSAP complex 7R1O ; 2.202 ; p62-ZZ domain of the human sequestosome in complex with dusquetide 5YP7 ; 1.424 ; p62/SQSTM1 ZZ domain 5YP8 ; 1.448 ; p62/SQSTM1 ZZ domain with Arg-peptide 6KHZ ; 2.8 ; p62/SQSTM1 ZZ domain with Gly-peptide 5YPB ; 2.9 ; p62/SQSTM1 ZZ domain with His-peptide 5YPH ; 1.629 ; p62/SQSTM1 ZZ domain with Ile-peptide 5YPG ; 2.199 ; p62/SQSTM1 ZZ domain with Leu-peptide 5YPA ; 2.502 ; p62/SQSTM1 ZZ domain with Lys-peptide 5YPC ; 1.962 ; p62/SQSTM1 ZZ domain with Phe-peptide 5YPF ; 2.951 ; p62/SQSTM1 ZZ domain with Trp-peptide 5YPE ; 2.851 ; p62/SQSTM1 ZZ domain with Tyr-peptide 7BMX ; 1.9 ; p62PH in cesium chloride (0.25 M CsCl in protein buffer and 0.75 M CsCl in cryo protectant) 7BMV ; 1.9 ; p62PH in cesium chloride (0.25 M CsCl in protein buffer and cryo protectant) 7BMU ; 1.9 ; p62PH in cesium chloride (0.25 M CsCl in protein buffer) 7BMY ; 1.8 ; p62PH in cesium chloride (0.7 M CsCl in crystallization condition and cryo protectant) 7BMW ; 1.9 ; p62PH in cesium chloride (0.75 M CsCl in cryo protectant) 7BMZ ; 2.5 ; p62PH in potassium chloride 2NB1 ; ; P63/p73 hetero-tetramerisation domain 8TPK ; 3.46 ; P6522 crystal form of C. crescentus DriD-ssDNA-DNA complex 7N91 ; 3.0 ; P70 S6K1 IN COMPLEX WITH MSC2317067A-1 7N93 ; 2.74 ; P70 S6K1 IN COMPLEX WITH MSC2363318A-1 5HOB ; 1.22001 ; p73 homo-tetramerization domain mutant I 5HOC ; 1.36008 ; p73 homo-tetramerization domain mutant II 2M16 ; ; P75/LEDGF PWWP Domain 2N80 ; ; p75NTR DD:RhoGDI 2N83 ; ; p75NTR DD:RIP2 CARD 8TS8 ; 2.72 ; p85alpha/p110alpha heterodimer H1047R mutant 1A5Q ; 2.3 ; P93A VARIANT OF BOVINE PANCREATIC RIBONUCLEASE A 2RHR ; 2.5 ; P94L actinorhodin ketordeuctase mutant, with NADPH and Inhibitor Emodin 6MCK ; 3.77 ; p97 D1D2 with CB5083 bound 5KIY ; 2.79 ; p97 ND1-A232E in complex with VIMP 5KIW ; 3.41 ; p97 ND1-L198W in complex with VIMP 5C19 ; 4.2 ; p97 variant 2 in the apo state 5C1B ; 3.08 ; p97-delta709-728 in complex with a UFD1-SHP peptide 5C18 ; 3.3 ; p97-delta709-728 in complex with ATP-gamma-S 5C1A ; 3.8 ; p97-N750D/R753D/M757D/Q760D in complex with ATP-gamma-S 8B5R ; 6.1 ; p97-p37-SPI substrate complex 7L5W ; 3.34 ; p97-R155H mutant dodecamer I 7L5X ; 6.1 ; p97-R155H mutant dodecamer II 5HAI ; 2.74 ; P99 beta-lactamase mutant - S64G 2VUC ; 1.3 ; PA-IIL lectin from Pseudomonas aeruginosa complexed with Fucose- derived glycomimetics 2VUD ; 1.7 ; PA-IIL lectin from pseudomonas aeruginosa complexed with fucose- derived glycomimetics 8CNE ; 1.57 ; Pa.FabF-C164A in complex with N-(propan-2-yl)-1H-pyrazole-3-carboxamide 8COU ; 1.68 ; Pa.FabF-C164Q in complex with 3-acetamido-4-methoxybenzoic acid 8CN4 ; 1.67 ; Pa.FabF-C164Q in complex with 5-acetamido-2-chlorobenzoic acid 8COV ; 1.8 ; Pa.FabF-C164Q in complex with 6-chloro-2-methyl-1H-indole-5-carboxylic acid 8CN2 ; 1.88 ; Pa.FabF-C164Q in complex with N-isobutyl-1H-pyrazole-3-carboxamide 8CN7 ; 2.1 ; Pa.FabF-C164Q in complex with platencin 8CN5 ; 1.93 ; Pa.FabF-C164Q in complex with propan-2-yl 1~{H}-pyrazole-3-carboxylate 8CNG ; 2.1 ; Pa.FabF-C164Q in complex with ~{N}-cyclopentyl-3-methyl-1~{H}-pyrazole-5-carboxamide 8ECX ; 2.03 ; PA0709 with glyoxal and BME modifications 6M8M ; 1.2 ; PA14 sugar-binding domain from RTX adhesin 8Q8O ; 2.7 ; PA14_16140 protein: the regulator of an operon involved in the biofilm formation in PA14 P. aeruginosa 3QY3 ; 1.75 ; PA2801 protein, a putative Thioesterase from Pseudomonas aeruginosa 7DR6 ; 4.1 ; PA28alpha-beta in complex with immunoproteasome 4Y8E ; 1.61 ; PA3825-EAL Ca-Apo Structure 4Y9P ; 2.44 ; PA3825-EAL Ca-CdG Structure 5MKG ; 2.44 ; PA3825-EAL Ca-CdG Structure 4Y9M ; 1.6 ; PA3825-EAL Metal-Free-Apo Structure 4Y9N ; 1.92 ; PA3825-EAL Metal-Free-Apo Structure - Magnesium Co-crystallisation 4Y9O ; 1.81 ; PA3825-EAL Metal-Free-Apo Structure - Manganese Co-crystallisation 5MF5 ; 1.77 ; PA3825-EAL Mg-CdG Structure 5MFU ; 2.15 ; PA3825-EAL Mn-pGpG Structure 5IB0 ; 1.65 ; PA4534: acetyl CoA complex 6SIW ; 1.96 ; PaaK family AMP-ligase with AMP 6SIY ; 1.95 ; PaaK family AMP-ligase with AMP and substrate 6SIX ; 1.88 ; PaaK family AMP-ligase with ANP 6SIZ ; 1.77 ; PaaK family AMP-ligase with ANP and substrate 2Y4N ; 1.92 ; PaaK1 in complex with phenylacetyl adenylate 8C3L ; 1.5971 ; PaaR2 N-terminal domain in complex with nanobody 33 8C3K ; 1.74972 ; PaaR2 N-terminal domin in complex with nanobody 33 7NKV ; ; PaaR2 regulator N-terminal domain 3R6W ; 2.085 ; paAzoR1 binding to nitrofurazone 1YR6 ; 2.15 ; PAB0955 crystal structure : a GTPase in Apo form from Pyrococcus abyssi 1YRB ; 1.75 ; PAB0955 crystal structure : a GTPase in GDP and Mg bound form from Pyrococcus abyssi 2OXR ; 2.4 ; PAB0955 crystal structure : a GTPase in GDP and Mg bound form from Pyrococcus abyssi (after GTP hydrolysis) 1YR9 ; 2.8 ; PAB0955 crystal structure : a GTPase in GDP and PO4 bound form from Pyrococcus abyssi 1YRA ; 2.3 ; PAB0955 crystal structure : a GTPase in GDP bound form from Pyrococcus abyssi 1YR8 ; 2.4 ; PAB0955 crystal structure : a GTPase in GTP bound form from Pyrococcus abyssi 1YR7 ; 2.08 ; PAB0955 crystal structure : a GTPase in GTP-gamma-S bound form from Pyrococcus abyssi 8AHH ; 2.037 ; PAC FragmentDEL: Photoactivated covalent capture of DNA encoded fragments for hit discovery 5X4T ; 1.601 ; PAC from Oscillatoria acuminata after 20 seconds photoactivation 5X4U ; 1.8 ; PAC from Oscillatoriaacuminata after 60 seconds photoactivation 8AHE ; 2.108 ; PAC-FragmentDEL: Photoactivated covalent capture of DNA encoded fragments for hit discovery 8AHF ; 2.271 ; PAC-FragmentDEL: Photoactivated covalent capture of DNA encoded fragments for hit discovery 8AHG ; 1.885 ; PAC-FragmentDEL: Photoactivated covalent capture of DNA encoded fragments for hit discovery 8AHI ; 2.69 ; PAC-FragmentDEL: Photoactivated covalent capture of DNA encoded fragments for hit discovery 6P9Y ; 3.01 ; PAC1 GPCR Receptor complex 2JOD ; ; Pac1-Rshort N-terminal EC domain Pacap(6-38) complex 7SNC ; 2.5 ; Pacifastin related protease inhibitors 7SND ; 1.79 ; Pacifastin related protease inhibitors 7BP0 ; 4.6 ; Packing Bacteriophage T7 portal protein GP8 2XMW ; 1.8 ; PacS, N-terminal domain, from Synechocystis PCC6803 4BNE ; 2.57 ; Pacsin2 Interacts with Membranes and Actin-Filaments 2IUE ; ; Pactolus I-domain: Functional Switching of the Rossmann Fold 7VRX ; 1.96635 ; Pad-1 in the absence of substrate 3ZUF ; 2.2 ; Padron off (non-fluorescent) Btrans 3ZUJ ; 2.345 ; Padron on (fluorescent) ABcis 3ZUL ; 2.3 ; Padron on (fluorescent) Icis intermediate state 3LSA ; 1.79 ; Padron0.9-OFF (non-fluorescent state) 3LS3 ; 1.65 ; Padron0.9-ON (fluorescent state) 2JB7 ; 1.65 ; PAE2307 with AMP 6GH2 ; 2.5 ; Paenibacillus sp. YM1 laminaribiose phosphorylase with alpha-glc-1-phosphate bound 6GH3 ; 1.82 ; Paenibacillus sp. YM1 laminaribiose phosphorylase with alpha-man-1-phosphate bound 6GGY ; 1.95 ; Paenibacillus sp. YM1 laminaribiose phosphorylase with sulphate bound 7PGD ; ; PAF in 50 v/v % DMSO-water solution 1VYH ; 3.4 ; PAF-AH Holoenzyme: Lis1/Alfa2 7NXI ; ; PAF-D19S in 50 v/v % DMSO-water solution 5TTY ; 1.8 ; PagF prenyltransferase 5TU6 ; 2.22 ; PagF prenyltransferase with cyclic[INPYLYP] and DMSPP 5TU5 ; 1.9 ; PagF prenyltransferase with Tyr-Tyr-Tyr and DMSPP 6PGN ; 1.85 ; PagF single mutant with GPP 5TU4 ; 2.1 ; PagF with Boc-Tyr and DMSPP 7MKF ; 3.0 ; Paired helical filament extracted from PrP-CAA Patient brain tissue 6VHL ; 3.3 ; Paired Helical Filament from Alzheimer's Disease Human Brain Tissue 7NRV ; 3.0 ; Paired helical filament from Alzheimer's disease with PET ligand APN-1607 7NRQ ; 2.76 ; Paired helical filament from primary age-related tauopathy brain 6HRE ; 3.2 ; Paired helical filament from sporadic Alzheimer's disease brain 5O3L ; 3.4 ; Paired helical filament in Alzheimer's disease brain 7MKH ; 3.3 ; Paired helical tau filament extracted from GSS Patient brain tissue | tau filament from Gerstmann Straussler Scheinker disease | PHF Tau 8AZU ; 3.1 ; Paired helical tau filaments from high-spin supernatants of aqueous extracts from Alzheimer's disease brains | PHF Tau 6GRQ ; 3.3 ; Paired immunoglobulin-like receptor B (PirB) or Leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) full extracellular domain 6GRS ; 3.4 ; Paired immunoglobulin-like receptor B (PirB) or Leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) full extracellular domain 6GRT ; 4.504 ; Paired immunoglobulin-like receptor B (PirB) or Leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) full extracellular domain 2HY8 ; 2.0 ; PAK1 complex with ST2001 4ZJJ ; 2.2 ; PAK1 in complex with (S)-N-(tert-butyl)-3-((2-chloro-5-ethyl-8-fluoro-dibenzodiazepin-11-yl)amino)pyrrolidine-1-carboxamide 4ZJI ; 1.99 ; PAK1 in complex with 2-chloro-5-ethyl-8-fluoro-11-(4-methylpiperazin-1-yl)-dibenzodiazepine 5KBR ; 2.36 ; Pak1 in complex with 7-azaindole inhibitor 5KBQ ; 2.58 ; Pak1 in complex with bis-anilino pyrimidine inhibitor 3DVP ; 2.5 ; Pak1 peptide bound LC8 6WLX ; 2.2 ; PAK4 kinase domain in complex with beta-catenin Ser675 substrate peptide 5VEF ; 1.752 ; PAK4 kinase domain in complex with fasudil 5VEE ; 2.5 ; PAK4 kinase domain in complex with FRAX486 6WLY ; 1.9 ; PAK4 kinase domain in complex with LIMK1 Thr508 substrate peptide 5VED ; 2.301 ; PAK4 kinase domain in complex with Staurosporine 7S46 ; 2.1 ; PAK4cat (D440N/S474E) in complex with Integrin beta5 760-770 peptide 7S48 ; 1.9 ; PAK4cat in complex with Integrin beta5 760-770 peptide 4KS7 ; 1.4 ; PAK6 kinase domain in complex with PF-3758309 4KS8 ; 1.95 ; PAK6 kinase domain in complex with sunitinib 5BVT ; 2.31 ; Palmitate-bound pFABP5 4Y1K ; 3.8 ; PALMITOYLATED OPRM OUTER MEMBRANE FACTOR 6BMS ; 2.441 ; Palmitoyltransferase structure 7NTJ ; 1.74 ; PALS1 PDZ1 domain with SARS-CoV-1_E PBM complex 7NTK ; 1.9 ; PALS1 PDZ1 domain with SARS-CoV-2_E PBM complex 7QCS ; 2.804 ; PALS1/MPP5 PDZ domain in complex with SARS-CoV-2_E PBM peptide 7YAC ; 3.24 ; Paltusotine-bound SSTR2-Gi complex 4RNI ; 2.17 ; PaMorA dimeric phosphodiesterase. apo form 4RNJ ; 2.32 ; PaMorA phosphodiesterase domain, apo form 4RNF ; 2.85 ; PaMorA tandem diguanylate cyclase - mutant phosphodiesterase, apo form 4RNH ; 2.45 ; PaMorA tandem diguanylate cyclase - phosphodiesterase, c-di-GMP complex 5M1T ; 2.27 ; PaMucR Phosphodiesterase, c-di-GMP complex 4CVL ; 2.98 ; PaMurF in complex with AMP-PNP 4CVM ; 2.06 ; PaMurF in complex with AMP-PNP and UDP-MurNAc-tripeptide (mDAP) 4CVK ; 1.92 ; PaMurF in complex with UDP-MurNAc-tripeptide (mDAP) 6DZN ; 2.1 ; Pan-ebolavirus human antibody ADI-15878 Fab 6HE8 ; 6.86 ; PAN-proteasome in state 1 6HE9 ; 6.35 ; PAN-proteasome in state 2 6HEA ; 7.04 ; PAN-proteasome in state 3 6HEC ; 6.95 ; PAN-proteasome in state 4 6HED ; 6.95 ; PAN-proteasome in state 5 6QIH ; 1.42 ; Pancreatic Bovine Trypsin with a boronic acid inhibitor 1J1A ; 2.2 ; PANCREATIC SECRETORY PHOSPHOLIPASE A2 (IIa) WITH ANTI-INFLAMMATORY ACTIVITY 1PSP ; 2.5 ; PANCREATIC SPASMOLYTIC POLYPEPTIDE: FIRST THREE-DIMENSIONAL STRUCTURE OF A MEMBER OF THE MAMMALIAN TREFOIL FAMILY OF PEPTIDES 1UV0 ; 1.78 ; Pancreatitis-associated protein 1 from human 8BW2 ; 1.35 ; PanDDA analysis -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 8BW3 ; 1.3 ; PanDDA analysis -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 8BW4 ; 1.55 ; PanDDA analysis -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 8ERS ; 1.05 ; PanDDA analysis -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398507 - (R,S) isomer 8UM3 ; 1.925 ; PanDDA analysis -- Crystal Structure of Zika virus NS3 Helicase in complex with Z203039992 8V7R ; 1.41 ; PanDDA analysis -- Crystal Structure of Zika virus NS3 Helicase in complex with Z56772132 8V7U ; 1.82 ; PanDDA analysis -- Crystal Structure of Zika virus NS3 Helicase in complex with Z729726784 5R08 ; 1.7 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry A07, DMSO-free 5QY1 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry A07a 5QY2 ; 1.36 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry A12b 5R09 ; 1.56 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry B03, DMSO-free 5QY3 ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry B03a 5QY4 ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry B08a 5R0A ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C02, DMSO-free 5QY5 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C02a 5R0B ; 1.82 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C05, DMSO-free 5QY6 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C05a 5R0C ; 1.6 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C08, DMSO-free 5QY7 ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C08a 5QY8 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C10a 5R0D ; 1.27 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C11, DMSO-free 5QY9 ; 1.4 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry C11b 5R0E ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D02, DMSO-free 5QYA ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D02a 5R0F ; 1.97 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D06, DMSO-free 5QYB ; 2.1 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D06a 5R0G ; 1.73 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D07, DMSO-free 5QYC ; 1.7 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry D07a 5R0H ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry E05, DMSO-free 5QYD ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry E05a 5R0I ; 1.86 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry E12, DMSO-free 5QYE ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry E12a 5QYF ; 1.49 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry F02a 5R0J ; 1.81 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry F08, DMSO-free 5QYG ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry F08a 5QYH ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry G04a 5R0K ; 1.8 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry G12, DMSO-free 5QYI ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry G12a 5R0L ; 1.7 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry H11, DMSO-free 5QYJ ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry H11a 5R0M ; 1.7 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry H12, DMSO-free 5QYK ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment F2X-Entry H12a 5ST0 ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02B04 from the F2X-Universal Library 5ST1 ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02C03 from the F2X-Universal Library 5ST2 ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02C06 from the F2X-Universal Library 5ST3 ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02C09 from the F2X-Universal Library 5ST4 ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02D05 from the F2X-Universal Library 5ST5 ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02D06 from the F2X-Universal Library 5ST6 ; 1.62 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02D07 from the F2X-Universal Library 5ST7 ; 1.46 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02E03 from the F2X-Universal Library 5ST8 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02E09 from the F2X-Universal Library 5ST9 ; 1.4 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02F01 from the F2X-Universal Library 5STA ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02F03 from the F2X-Universal Library 5STB ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02F05 from the F2X-Universal Library 5STC ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02F09 from the F2X-Universal Library 5STE ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02F11 from the F2X-Universal Library 5STF ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H02 from the F2X-Universal Library 5STG ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H08 from the F2X-Universal Library 5STH ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H09 from the F2X-Universal Library 5STI ; 1.76 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H11 from the F2X-Universal Library 5STJ ; 1.76 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H11 from the F2X-Universal Library 5STK ; 1.8 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P02H12 from the F2X-Universal Library 5STL ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03A02 from the F2X-Universal Library 5STM ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03A03 from the F2X-Universal Library 5STN ; 1.56 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03A11 from the F2X-Universal Library 5STO ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03A12 from the F2X-Universal Library 5STP ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03B02 from the F2X-Universal Library 5STQ ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03B03 from the F2X-Universal Library 5STR ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03B04 from the F2X-Universal Library 5STS ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03B11 from the F2X-Universal Library 5STT ; 1.49 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03C03 from the F2X-Universal Library 5STU ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03C07 from the F2X-Universal Library 5STV ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03C11 from the F2X-Universal Library 5STW ; 1.89 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03C12 from the F2X-Universal Library 5STX ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D01 from the F2X-Universal Library 5STY ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D02 from the F2X-Universal Library 5STZ ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D04 from the F2X-Universal Library 5SU0 ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D07 from the F2X-Universal Library 5SU1 ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D08 from the F2X-Universal Library 5SU2 ; 1.85 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D10 from the F2X-Universal Library 5SU3 ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03D12 from the F2X-Universal Library 5SU4 ; 1.66 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03E02 from the F2X-Universal Library 5SU5 ; 1.81 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03E05 from the F2X-Universal Library 5SU6 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03E08 from the F2X-Universal Library 5SU7 ; 1.81 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03E12 from the F2X-Universal Library 5SU8 ; 1.79 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03F01 from the F2X-Universal Library 5SU9 ; 1.66 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03F06 from the F2X-Universal Library 5SUA ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03F12 from the F2X-Universal Library 5SUB ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03G01 from the F2X-Universal Library 5SUC ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03G02 from the F2X-Universal Library 5SUD ; 1.48 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03G05 from the F2X-Universal Library 5SUE ; 1.7 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03G10 from the F2X-Universal Library 5SUF ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03H03 from the F2X-Universal Library 5SUG ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03H05 from the F2X-Universal Library 7FJU ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03H10 from the F2X-Universal Library 7FJV ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03H10 from the F2X-Universal Library 7FJW ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P03H12 from the F2X-Universal Library 7FJX ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A01 from the F2X-Universal Library 7FJY ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A02 from the F2X-Universal Library 7FJZ ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A04 from the F2X-Universal Library 7FK0 ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A05 from the F2X-Universal Library 7FK1 ; 1.76 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A06 from the F2X-Universal Library 7FK2 ; 1.35 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A07 from the F2X-Universal Library 7FK3 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A09 from the F2X-Universal Library 7FK4 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A11 from the F2X-Universal Library 7FK5 ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04A12 from the F2X-Universal Library 7FK6 ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04B02 from the F2X-Universal Library 7FK7 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04B04 from the F2X-Universal Library 7FK8 ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04B07 from the F2X-Universal Library 7FK9 ; 1.35 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04B12 from the F2X-Universal Library 7FKA ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04C04 from the F2X-Universal Library 7FKB ; 1.68 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04C07 from the F2X-Universal Library 7FKC ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04C10 from the F2X-Universal Library 7FKD ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04C11 from the F2X-Universal Library 7FKE ; 1.48 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04C12 from the F2X-Universal Library 7FKF ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D04 from the F2X-Universal Library 7FKG ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D05 from the F2X-Universal Library 7FKH ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D06 from the F2X-Universal Library 7FKI ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D08 from the F2X-Universal Library 7FKJ ; 1.74 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D11 from the F2X-Universal Library 7FKK ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04D12 from the F2X-Universal Library 7FKL ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E02 from the F2X-Universal Library 7FKM ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E03 from the F2X-Universal Library 7FKN ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E05 from the F2X-Universal Library 7FKO ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E07 from the F2X-Universal Library 7FKP ; 1.52 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E08 from the F2X-Universal Library 7FKQ ; 1.68 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E09 from the F2X-Universal Library 7FKR ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04E11 from the F2X-Universal Library 7FKS ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04F01 from the F2X-Universal Library 7FKT ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04F02 from the F2X-Universal Library 7FKU ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04F03 from the F2X-Universal Library 7FKV ; 1.75 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04F08 from the F2X-Universal Library 7FKW ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04F09 from the F2X-Universal Library 7FKX ; 1.85 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04G02 from the F2X-Universal Library 7FKY ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04G05 from the F2X-Universal Library 7FKZ ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04G08 from the F2X-Universal Library 7FL0 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04G11 from the F2X-Universal Library 7FL1 ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H03 from the F2X-Universal Library 7FL2 ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H05 from the F2X-Universal Library 7FL3 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H06 from the F2X-Universal Library 7FL4 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H06 from the F2X-Universal Library 7FL5 ; 1.89 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H07 from the F2X-Universal Library 7FL6 ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P04H10 from the F2X-Universal Library 7FL7 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05A01 from the F2X-Universal Library 7FL8 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05A03 from the F2X-Universal Library 7FL9 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05A08 from the F2X-Universal Library 7FLA ; 1.87 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05A09 from the F2X-Universal Library 7FLB ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05A10 from the F2X-Universal Library 7FLC ; 1.95 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05B08 from the F2X-Universal Library 7FLD ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05B11 from the F2X-Universal Library 7FLE ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05C05 from the F2X-Universal Library 7FLF ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05C06 from the F2X-Universal Library 7FLG ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05D01 from the F2X-Universal Library 7FLH ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05D03 from the F2X-Universal Library 7FLI ; 1.75 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05D09 from the F2X-Universal Library 7FLJ ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05E05 from the F2X-Universal Library 7FLK ; 1.62 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05E08 from the F2X-Universal Library 7FLL ; 1.48 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05E12 from the F2X-Universal Library 7FLM ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05F01 from the F2X-Universal Library 7FLN ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05F09 from the F2X-Universal Library 7FLO ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05F11 from the F2X-Universal Library 7FLP ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05F11 from the F2X-Universal Library 7FLQ ; 1.73 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05F12 from the F2X-Universal Library 7FLR ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G01 from the F2X-Universal Library 7FLS ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G02 from the F2X-Universal Library 7FLT ; 1.73 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G04 from the F2X-Universal Library 7FLU ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G05 from the F2X-Universal Library 7FLV ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G05 from the F2X-Universal Library 7FLW ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G07 from the F2X-Universal Library 7FLX ; 1.75 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G08 from the F2X-Universal Library 7FLY ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G10 from the F2X-Universal Library 7FLZ ; 1.52 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05G11 from the F2X-Universal Library 7FM0 ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05H01 from the F2X-Universal Library 7FM1 ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05H02 from the F2X-Universal Library 7FM2 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05H04 from the F2X-Universal Library 7FM3 ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P05H09 from the F2X-Universal Library 7FM4 ; 1.62 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06A01 from the F2X-Universal Library 7FM5 ; 1.56 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06A02 from the F2X-Universal Library 7FM6 ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06A03 from the F2X-Universal Library 7FM7 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06A04 from the F2X-Universal Library 7FM8 ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06A09 from the F2X-Universal Library 7FM9 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06B02 from the F2X-Universal Library 7FMA ; 1.41 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06B04 from the F2X-Universal Library 7FMB ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06B06 from the F2X-Universal Library 7FMC ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06B07 from the F2X-Universal Library 7FMD ; 1.68 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06B12 from the F2X-Universal Library 7FME ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C01 from the F2X-Universal Library 7FMF ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C06 from the F2X-Universal Library 7FMG ; 1.71 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C09 from the F2X-Universal Library 7FMH ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C10 from the F2X-Universal Library 7FMI ; 1.34 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C11 from the F2X-Universal Library 7FMJ ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06C12 from the F2X-Universal Library 7FMK ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06D03 from the F2X-Universal Library 7FML ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06D04 from the F2X-Universal Library 7FMM ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06D09 from the F2X-Universal Library 7FMN ; 1.6 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06D11 from the F2X-Universal Library 7FMO ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06D12 from the F2X-Universal Library 7FMP ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E01 from the F2X-Universal Library 7FMQ ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E04 from the F2X-Universal Library 7FMR ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E05 from the F2X-Universal Library 7FMS ; 1.58 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E05 from the F2X-Universal Library 7FMT ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E09 from the F2X-Universal Library 7FMU ; 1.81 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E11 from the F2X-Universal Library 7FMV ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06E12 from the F2X-Universal Library 7FMW ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06F06 from the F2X-Universal Library 7FMX ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06F06 from the F2X-Universal Library 7FMY ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06F07 from the F2X-Universal Library 7FMZ ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06F08 from the F2X-Universal Library 7FN0 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06G05 from the F2X-Universal Library 7FN1 ; 1.44 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06G06 from the F2X-Universal Library 7FN2 ; 1.62 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06G08 from the F2X-Universal Library 7FN3 ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06G09 from the F2X-Universal Library 7FN4 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06G11 from the F2X-Universal Library 7FN5 ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06H04 from the F2X-Universal Library 7FN6 ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06H06 from the F2X-Universal Library 7FN7 ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P06H08 from the F2X-Universal Library 7FN8 ; 1.41 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07A01 from the F2X-Universal Library 7FN9 ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07A05 from the F2X-Universal Library 7FNA ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07A11 from the F2X-Universal Library 7FNB ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07A12 from the F2X-Universal Library 7FNC ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07B01 from the F2X-Universal Library 7FND ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07B06 from the F2X-Universal Library 7FNE ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07B07 from the F2X-Universal Library 7FNF ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07B10 from the F2X-Universal Library 7FNG ; 1.6 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07B12 from the F2X-Universal Library 7FNH ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07C05 from the F2X-Universal Library 7FNI ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07C09 from the F2X-Universal Library 7FNJ ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07C10 from the F2X-Universal Library 7FNK ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07C12 from the F2X-Universal Library 7FNL ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07D01 from the F2X-Universal Library 7FNM ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07D05 from the F2X-Universal Library 7FNN ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07D07 from the F2X-Universal Library 7FNO ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07D12 from the F2X-Universal Library 7FNP ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07E01 from the F2X-Universal Library 7FNQ ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07E01 from the F2X-Universal Library 7FNR ; 1.6 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07E02 from the F2X-Universal Library 7FNS ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07E03 from the F2X-Universal Library 7FNT ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07E12 from the F2X-Universal Library 7FNU ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F03 from the F2X-Universal Library 7FNV ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F04 from the F2X-Universal Library 7FNW ; 1.9 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F07 from the F2X-Universal Library 7FNX ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F08 from the F2X-Universal Library 7FNY ; 1.71 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F10 from the F2X-Universal Library 7FNZ ; 1.66 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07F12 from the F2X-Universal Library 7FO0 ; 1.83 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G02 from the F2X-Universal Library 7FO1 ; 1.5 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G03 from the F2X-Universal Library 7FO2 ; 2.01 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G04 from the F2X-Universal Library 7FO3 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G06 from the F2X-Universal Library 7FO4 ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G08 from the F2X-Universal Library 7FO5 ; 1.71 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07G11 from the F2X-Universal Library 7FO6 ; 1.57 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H04 from the F2X-Universal Library 7FO7 ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H05 from the F2X-Universal Library 7FO8 ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H06 from the F2X-Universal Library 7FO9 ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H07 from the F2X-Universal Library 7FOA ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H07 from the F2X-Universal Library 7FOB ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P07H11 from the F2X-Universal Library 7FOC ; 1.9 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08A01 from the F2X-Universal Library 7FOD ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08A07 from the F2X-Universal Library 7FOE ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08A08 from the F2X-Universal Library 7FOF ; 1.77 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08A10 from the F2X-Universal Library 7FOG ; 1.41 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08B02 from the F2X-Universal Library 7FOH ; 1.69 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08B05 from the F2X-Universal Library 7FOI ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08B06 from the F2X-Universal Library 7FOJ ; 1.65 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08B08 from the F2X-Universal Library 7FOK ; 1.72 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08B09 from the F2X-Universal Library 7FOL ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C01 from the F2X-Universal Library 7FOM ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C04 from the F2X-Universal Library 7FON ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C04 from the F2X-Universal Library 7FOO ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C06 from the F2X-Universal Library 7FOP ; 1.66 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C08 from the F2X-Universal Library 7FOQ ; 1.74 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C10 from the F2X-Universal Library 7FOR ; 2.03 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08C12 from the F2X-Universal Library 7FOS ; 1.67 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08D01 from the F2X-Universal Library 7FOT ; 1.56 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08D03 from the F2X-Universal Library 7FOU ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08E01 from the F2X-Universal Library 7FOV ; 1.48 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08E03 from the F2X-Universal Library 7FOW ; 1.51 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08E04 from the F2X-Universal Library 7FOX ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08E08 from the F2X-Universal Library 7FOY ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08E10 from the F2X-Universal Library 7FOZ ; 1.83 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08F01 from the F2X-Universal Library 7FP0 ; 1.54 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08F02 from the F2X-Universal Library 7FP1 ; 1.43 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08F04 from the F2X-Universal Library 7FP2 ; 1.64 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08F10 from the F2X-Universal Library 7FP3 ; 1.76 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08F11 from the F2X-Universal Library 7FP4 ; 1.45 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08G02 from the F2X-Universal Library 7FP5 ; 1.53 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08G04 from the F2X-Universal Library 7FP6 ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08G05 from the F2X-Universal Library 7FP7 ; 1.47 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08G09 from the F2X-Universal Library 7FP8 ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P08H12 from the F2X-Universal Library 7FP9 ; 1.9 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09A12 from the F2X-Universal Library 7FPA ; 1.86 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09C01 from the F2X-Universal Library 7FPB ; 2.02 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09C03 from the F2X-Universal Library 7FPC ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09D07 from the F2X-Universal Library 7FPD ; 1.61 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09E01 from the F2X-Universal Library 7FPE ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09E03 from the F2X-Universal Library 7FPF ; 1.55 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09E08 from the F2X-Universal Library 7FPG ; 1.6 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09F06 from the F2X-Universal Library 7FPH ; 1.91 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P09G03 from the F2X-Universal Library 7FPI ; 1.63 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P10C11 from the F2X-Universal Library 7FPJ ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P10D05 from the F2X-Universal Library 7FPK ; 1.59 ; PanDDA analysis group deposition -- Aar2/RNaseH in complex with fragment P10E03 from the F2X-Universal Library 5QYL ; 1.56 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 01 5R0N ; 1.78 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 01, DMSO-free 5QYM ; 1.47 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 02 5R0O ; 1.86 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 02, DMSO-free 5QYN ; 1.65 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 03 5R0P ; 1.73 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 03, DMSO-free 5QYO ; 1.58 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 04 5R0Q ; 1.91 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 04, DMSO-free 5QYP ; 1.61 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 05 5R0R ; 1.73 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 05, DMSO-free 5QYQ ; 1.67 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 06 5R0S ; 1.81 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 06, DMSO-free 5QYR ; 1.54 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 07 5R0T ; 1.96 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 07, DMSO-free 5QYS ; 1.52 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 08 5R0U ; 1.86 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 08, DMSO-free 5QYT ; 1.52 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 09 5R0V ; 1.81 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 09, DMSO-free 5QYU ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 10 5R0W ; 1.86 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 10, DMSO-free 5QYV ; 1.59 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 11 5R0X ; 1.84 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 11, DMSO-free 5QYW ; 1.63 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 12 5R0Y ; 1.75 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 12, DMSO-free 5QYX ; 1.597 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 13 5R0Z ; 1.86 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 13, DMSO-free 5QYY ; 1.71 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 14 5R10 ; 1.7 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 14, DMSO-free 5QYZ ; 1.37 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 15 5R11 ; 1.82 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 15, DMSO-free 5QZ0 ; 1.57 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 16 5R12 ; 1.7 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 16, DMSO-free 5QZ1 ; 1.58 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 17 5QZ2 ; 1.54 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 17 5QZ3 ; 1.53 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 18 5R13 ; 1.87 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 18, DMSO-free 5QZ4 ; 1.75 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 19 5R14 ; 1.74 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 19, DMSO-free 5QZ5 ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 20 5R15 ; 1.79 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 20, DMSO-free 5QZ6 ; 1.32 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 21 5R16 ; 1.84 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 21, DMSO-free 5QZ7 ; 1.48 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 22 5R17 ; 1.87 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 22, DMSO-free 5QZ8 ; 1.62 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 23 5R18 ; 1.79 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 23, DMSO-free 5QZ9 ; 1.43 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 24 5R19 ; 1.7 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 24, DMSO-free 5QZA ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 25 5R1A ; 1.73 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 25, DMSO-free 5QZB ; 1.69 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 26 5R1B ; 1.89 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 26, DMSO-free 5QZC ; 1.72 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 27 5R1C ; 1.91 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 27, DMSO-free 5QZD ; 1.589 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 28 5R1D ; 1.82 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 28, DMSO-free 5QZE ; 1.55 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 29 5R1E ; 1.7 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 29, DMSO-free 5QZF ; 1.68 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 30 5R1F ; 1.8 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 30, DMSO-free 5QZG ; 1.55 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 31 5R1G ; 1.81 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 31, DMSO-free 5QZH ; 1.77 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 32 5R1H ; 2.06 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 32, DMSO-free 5QZI ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 33 5R1I ; 2.01 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 33, DMSO-free 5QZJ ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 34 5R1J ; 1.96 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 34, DMSO-free 5QZK ; 1.73 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 35 5R1K ; 1.99 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 35, DMSO-free 5QZL ; 1.54 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 36 5R1L ; 1.94 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 36, DMSO-free 5QZM ; 1.66 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 37 5R1M ; 1.9 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 37, DMSO-free 5QZN ; 1.44 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 38 5R1N ; 1.94 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 38, DMSO-free 5QZO ; 1.39 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 39 5R1O ; 1.9 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 39, DMSO-free 5QZP ; 1.5 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 40 5R1P ; 1.95 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 40, DMSO-free 5QZQ ; 2.11 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 41 5R1Q ; 1.86 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 41, DMSO-free 5QZR ; 1.59 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 42 5R1S ; 2.05 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 42, DMSO-free 5QZS ; 1.58 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 43 5QZT ; 1.535 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 44 5QZU ; 1.54 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 45 5QZV ; 2.11 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 46 5QZW ; 1.36 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 47 5QZX ; 1.55 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 48 5QZY ; 1.66 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 49 5QZZ ; 1.59 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 50 5R00 ; 1.72 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 51 5R01 ; 1.72 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 52 5R02 ; 1.66 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 53 5R03 ; 1.51 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 54 5R04 ; 1.34 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 55 5R05 ; 1.57 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 56 5R06 ; 1.67 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 57 5R07 ; 1.71 ; PanDDA analysis group deposition -- Auto-refined data of Aar2/RNaseH for ground state model 58 5R2E ; 1.098 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 01, DMSO-Free 5R2F ; 1.119 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 02, DMSO-Free 5R2G ; 0.998 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 03, DMSO-Free 5R2H ; 1.018 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 04, DMSO-Free 5R2I ; 1.008 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 05, DMSO-Free 5R2J ; 1.007 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 06, DMSO-Free 5R2K ; 1.029 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 07, DMSO-Free 5R2L ; 0.999 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 09, DMSO-Free 5R2M ; 1.008 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 10, DMSO-Free 5R2N ; 1.078 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 11, DMSO-Free 5R2O ; 0.969 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 12, DMSO-Free 5R2P ; 1.179 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 13, DMSO-Free 5R2Q ; 1.038 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 14, DMSO-Free 5R2R ; 1.048 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 15, DMSO-Free 5R2S ; 1.149 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 16, DMSO-Free 5R2T ; 1.009 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 17, DMSO-Free 5R2U ; 1.138 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 18, DMSO-Free 5R2V ; 1.048 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 19, DMSO-Free 5R2W ; 1.285 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 20, DMSO-Free 5R2X ; 1.129 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 21, DMSO-Free 5R2Y ; 1.008 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 22, DMSO-Free 5R2Z ; 0.969 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 23, DMSO-Free 5R30 ; 1.038 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 24, DMSO-Free 5R31 ; 0.92 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 25, DMSO-Free 5R32 ; 0.9 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 26, DMSO-Free 5R33 ; 0.92 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 27, DMSO-Free 5R34 ; 0.999 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 28, DMSO-Free 5R35 ; 0.91 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 29, DMSO-Free 5R36 ; 1.008 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 30, DMSO-Free 5R37 ; 1.038 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 31, DMSO-Free 5R38 ; 1.076 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 32, DMSO-Free 5R39 ; 0.919 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 33, DMSO-Free 5R3A ; 1.088 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 34, DMSO-Free 5R3B ; 1.17 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 35, DMSO-Free 5R3C ; 0.949 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 36, DMSO-Free 5R3D ; 0.979 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 37, DMSO-Free 5R3E ; 1.008 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 38, DMSO-Free 5R3F ; 1.187 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 39, DMSO-Free 5R3G ; 1.106 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 40, DMSO-Free 5R3H ; 1.039 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 41, DMSO-Free 5R3I ; 1.039 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 42, DMSO-Free 5R3J ; 1.077 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 43, DMSO-Free 5R3K ; 1.207 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 44, DMSO-Free 5R3L ; 0.94 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 45, DMSO-Free 5R3M ; 1.038 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 46, DMSO-Free 5R3N ; 1.059 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 47, DMSO-Free 5R3O ; 1.217 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 48, DMSO-Free 5R3P ; 1.077 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 49, DMSO-Free 5R3Q ; 1.009 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 50, DMSO-Free 5R3R ; 0.979 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 51, DMSO-Free 5R3S ; 1.048 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 52, DMSO-Free 5R3T ; 1.069 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 53, DMSO-Free 5R3U ; 1.088 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 54, DMSO-Free 5R3V ; 1.118 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 55, DMSO-Free 5R3W ; 1.188 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 56, DMSO-Free 5R3X ; 1.165 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 57, DMSO-Free 5R3Y ; 1.038 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 58, DMSO-Free 5R3Z ; 1.067 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 59, DMSO-Free 5R40 ; 1.069 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 60, DMSO-Free 5R41 ; 1.077 ; PanDDA analysis group deposition -- Auto-refined data of Endothiapepsin for ground state model 61, DMSO-Free 8OGN ; 1.29 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry A09 8OGO ; 1.21 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry A12 8OGP ; 1.22 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry B03 8OGQ ; 1.42 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry B06 8OGR ; 1.35 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry B07 8OGS ; 1.25 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry B08 8OGT ; 1.5 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry C04 8OGU ; 1.41 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry C07 8OGV ; 1.25 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry C08 8OGW ; 1.17 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry D02 8OGY ; 1.23 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry D04 8OGZ ; 1.14 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry D06 8OH0 ; 1.27 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry D08 8OH1 ; 1.22 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry E04 8OHB ; 1.11 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry E08 8OHC ; 1.17 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry E12 8OHE ; 1.15 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry F03 8OHF ; 1.22 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry F04 8OHG ; 1.25 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry F09 8OHH ; 1.3 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry G05 8OHJ ; 1.22 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry G08 8OHK ; 1.26 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry H01 8OHL ; 1.29 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry H09 8OHO ; 1.32 ; PanDDA analysis group deposition -- CdaA in complex with fragment F2X-Entry H11 5QXL ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF776 5QXM ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF789 5QXN ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF826 5QXO ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF848 5QXR ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF849 5QXS ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF852 5QXZ ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with DF853 5QXT ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with JKH47 5QXY ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with JKH93A 5QXJ ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with PC578 5QXK ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with PC581 5QXI ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with PC587 5QY0 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with PC591 5QXV ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with PC631 5QXW ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with RZ189 5R4E ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with RZ201 5QXU ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with RZ373 5QXX ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with RZ99 5QXP ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with TCJ732 5QXQ ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of ATAD2 in complex with TCJ779 5PBG ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 1) 5PBP ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 10) 5PE7 ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 100) 5PE8 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 101) 5PE9 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 102) 5PEA ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 103) 5PEB ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 104) 5PEC ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 105) 5PED ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 106) 5PEE ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 107) 5PEF ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 108) 5PEG ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 109) 5PBQ ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 11) 5PEH ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 110) 5PEI ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 111) 5PEJ ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 112) 5PEK ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 113) 5PEL ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 114) 5PEM ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 115) 5PEN ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 116) 5PEO ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 118) 5PEQ ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 119) 5PBR ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 12) 5PER ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 120) 5PES ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 121) 5PET ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 122) 5PEU ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 123) 5PEV ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 124) 5PEW ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 125) 5PEX ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 126) 5PEY ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 127) 5PEZ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 128) 5PF0 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 129) 5PBS ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 13) 5PF1 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 130) 5PF2 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 131) 5PF3 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 132) 5PF4 ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 133) 5PF5 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 134) 5PF6 ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 135) 5PF7 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 136) 5PF8 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 137) 5PF9 ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 138) 5PFA ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 139) 5PBT ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 14) 5PFB ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 140) 5PFC ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 141) 5PFD ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 142) 5PFE ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 143) 5PFF ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 144) 5PFG ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 145) 5PFH ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 146) 5PFI ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 147) 5PFJ ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 148) 5PFL ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 149) 5PBU ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 15) 5PFM ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 150) 5PFN ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 151) 5PFO ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 152) 5PFP ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 153) 5PFQ ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 154) 5PFR ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 155) 5PFS ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 156) 5PFT ; 2.02 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 157) 5PFU ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 158) 5PFV ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 159) 5PBV ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 16) 5PFW ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 160) 5PFX ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 161) 5PFY ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 162) 5PFZ ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 163) 5PG0 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 164) 5PG1 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 165) 5PG2 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 166) 5PG3 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 167) 5PG4 ; 2.49 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 168) 5PG5 ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 169) 5PBW ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 17) 5PG6 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 170) 5PG7 ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 171) 5PG8 ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 172) 5PG9 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 173) 5PGA ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 174) 5PGB ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 175) 5PGC ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 176) 5PGD ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 177) 5PGE ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 178) 5PGF ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 179) 5PBX ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 18) 5PGG ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 180) 5PGH ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 181) 5PGI ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 182) 5PGJ ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 183) 5PGK ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 184) 5PGL ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 185) 5PGN ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 186) 5PGO ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 187) 5PGP ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 188) 5PGQ ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 189) 5PBY ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 19) 5PGR ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 190) 5PGS ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 191) 5PGT ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 192) 5PBH ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 2) 5PBZ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 20) 5PC0 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 21) 5PC1 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 22) 5PC2 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 23) 5PC3 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 24) 5PC4 ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 25) 5PC5 ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 26) 5PC6 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 27) 5PC7 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 28) 5PC8 ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 29) 5PBI ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 3) 5PC9 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 30) 5PCA ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 31) 5PCB ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 32) 5PCC ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 33) 5PCD ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 34) 5PCE ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 35) 5PCF ; 2.02 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 36) 5PCG ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 37) 5PCH ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 38) 5PCI ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 39) 5PBJ ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 4) 5PCJ ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 40) 5PCK ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 41) 5PCL ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 42) 5PCM ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 43) 5PCN ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 44) 5PCO ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 45) 5PCP ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 46) 5PCQ ; 2.29 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 47) 5PCR ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 48) 5PCS ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 49) 5PBK ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 5) 5PCT ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 50) 5PCU ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 51) 5PCV ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 52) 5PCW ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 53) 5PCX ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 54) 5PCZ ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 55) 5PD0 ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 56) 5PD1 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 57) 5PD2 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 58) 5PD3 ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 59) 5PBL ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 6) 5PD4 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 60) 5PD5 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 61) 5PD6 ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 62) 5PD7 ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 63) 5PD8 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 64) 5PD9 ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 65) 5PDA ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 66) 5PDB ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 67) 5PDC ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 68) 5PDD ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 69) 5PBM ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 7) 5PDE ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 70) 5PDF ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 71) 5PDG ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 72) 5PDH ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 73) 5PDI ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 74) 5PDJ ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 76) 5PDK ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 77) 5PDL ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 78) 5PDM ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 79) 5PBN ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 8) 5PDN ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 80) 5PDO ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 81) 5PDP ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 82) 5PDQ ; 2.26 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 83) 5PDR ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 84) 5PDS ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 85) 5PDT ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 86) 5PDU ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 87) 5PDV ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 88) 5PDW ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 89) 5PBO ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 9) 5PDX ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 90) 5PDY ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 91) 5PDZ ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 92) 5PE0 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 93) 5PE1 ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 94) 5PE2 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 95) 5PE3 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 96) 5PE4 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 97) 5PE5 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 98) 5PE6 ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B after initial refinement with no ligand modelled (structure 99) 5PBE ; 1.835 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09428a 5PB7 ; 1.655 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09440a 5PBA ; 1.925 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09460a 5PBB ; 1.783 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09496a 5PB9 ; 1.782 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09521a 5PB8 ; 1.649 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09522a 5PBF ; 1.801 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09645a 5PBD ; 1.776 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09682a 5PBC ; 1.771 ; PanDDA analysis group deposition -- Crystal Structure of BAZ2B in complex with N09724a 5PP1 ; 2.35 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 1) 5PPA ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 10) 5PRT ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 100) 5PRU ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 101) 5PRV ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 102) 5PRW ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 103) 5PRX ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 104) 5PRY ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 105) 5PRZ ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 106) 5PS0 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 107) 5PS1 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 108) 5PS2 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 109) 5PPB ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 11) 5PS3 ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 110) 5PS4 ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 111) 5PS5 ; 2.15 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 113) 5PS6 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 114) 5PS7 ; 2.21 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 115) 5PS8 ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 116) 5PS9 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 117) 5PSA ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 118) 5PSB ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 119) 5PPC ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 12) 5PSC ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 120) 5PSD ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 121) 5PSE ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 122) 5PSF ; 2.31 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 123) 5PSG ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 124) 5PSH ; 3.43 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 125) 5PSI ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 126) 5PSJ ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 127) 5PSK ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 128) 5PSL ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 129) 5PPD ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 13) 5PSM ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 130) 5PSN ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 131) 5PSO ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 132) 5PSP ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 133) 5PSQ ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 134) 5PSR ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 135) 5PSS ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 136) 5PST ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 137) 5PSU ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 138) 5PSV ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 139) 5PPE ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 14) 5PSW ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 140) 5PSX ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 141) 5PSY ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 142) 5PSZ ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 143) 5PT0 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 144) 5PT1 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 145) 5PT2 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 146) 5PT3 ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 147) 5PT4 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 148) 5PT5 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 149) 5PT6 ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 150) 5PT7 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 151) 5PT8 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 152) 5PT9 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 153) 5PTA ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 154) 5PTB ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 155) 5PTC ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 156) 5PTE ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 157) 5PTF ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 158) 5PTG ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 159) 5PPF ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 16) 5PTH ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 160) 5PTJ ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 161) 5PTK ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 162) 5PTL ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 163) 5PTM ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 164) 5PTN ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 165) 5PTO ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 167) 5PTQ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 168) 5PTR ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 169) 5PPG ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 17) 5PTS ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 170) 5PTT ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 171) 5PTU ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 172) 5PTV ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 173) 5PTW ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 174) 5PTX ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 175) 5PTY ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 176) 5PTZ ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 177) 5PU0 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 178) 5PU1 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 179) 5PPH ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 18) 5PU2 ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 180) 5PU3 ; 2.37 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 181) 5PU4 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 182) 5PU5 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 183) 5PU6 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 184) 5PU7 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 185) 5PU8 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 186) 5PU9 ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 187) 5PUA ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 188) 5PUB ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 189) 5PPI ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 19) 5PUC ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 190) 5PUD ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 191) 5PUE ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 192) 5PUF ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 193) 5PUG ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 194) 5PUH ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 195) 5PUI ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 196) 5PUJ ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 197) 5PUK ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 198) 5PUL ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 199) 5PP2 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 2) 5PPJ ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 20) 5PUM ; 2.15 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 200) 5PUN ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 201) 5PUO ; 2.06 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 202) 5PUP ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 203) 5PUQ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 204) 5PUR ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 205) 5PUS ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 206) 5PUT ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 207) 5PUU ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 208) 5PUV ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 209) 5PPK ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 21) 5PUW ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 210) 5PUX ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 211) 5PUY ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 212) 5PUZ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 213) 5PV0 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 214) 5PV1 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 215) 5PV2 ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 216) 5PV3 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 217) 5PV4 ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 218) 5PV5 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 219) 5PPL ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 22) 5PV6 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 220) 5PV7 ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 221) 5PV8 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 222) 5PV9 ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 223) 5PVA ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 224) 5PVB ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 225) 5PVC ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 226) 5PVD ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 227) 5PVE ; 2.29 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 228) 5PVF ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 229) 5PPM ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 23) 5PVG ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 230) 5PVH ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 232) 5PVI ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 233) 5PVJ ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 234) 5PVK ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 235) 5PVL ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 236) 5PVM ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 237) 5PVN ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 238) 5PVO ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 239) 5PPN ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 24) 5PVP ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 240) 5PVQ ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 241) 5PVR ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 242) 5PVS ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 243) 5PVT ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 244) 5PVU ; 3.01 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 245) 5PVV ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 246) 5PVW ; 2.18 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 247) 5PVX ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 248) 5PVY ; 2.49 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 249) 5PPO ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 25) 5PVZ ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 250) 5PW0 ; 2.13 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 251) 5PW1 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 252) 5PW2 ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 253) 5PW3 ; 2.21 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 254) 5PW4 ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 255) 5PW5 ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 256) 5PW6 ; 2.75 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 257) 5PW7 ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 258) 5PW8 ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 259) 5PPP ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 26) 5PW9 ; 3.44 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 260) 5PWA ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 261) 5PWB ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 262) 5PPQ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 27) 5PPR ; 2.69 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 28) 5PPS ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 29) 5PP3 ; 2.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 3) 5PPT ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 30) 5PPU ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 31) 5PPV ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 32) 5PPW ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 33) 5PPX ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 34) 5PPY ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 35) 5PPZ ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 36) 5PQ0 ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 37) 5PQ1 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 38) 5PQ2 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 39) 5PP4 ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 4) 5PQ3 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 40) 5PQ4 ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 41) 5PQ5 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 42) 5PQ6 ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 43) 5PQ7 ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 44) 5PQ8 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 45) 5PQ9 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 46) 5PQA ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 47) 5PQB ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 48) 5PQC ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 49) 5PP5 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 5) 5PQD ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 50) 5PQE ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 51) 5PQF ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 52) 5PQG ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 53) 5PQH ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 54) 5PQI ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 55) 5PQJ ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 56) 5PQK ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 57) 5PQL ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 58) 5PQM ; 2.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 59) 5PP6 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 6) 5PQN ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 60) 5PQO ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 61) 5PQP ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 62) 5PQQ ; 2.3 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 63) 5PQR ; 2.43 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 64) 5PQS ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 65) 5PQT ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 66) 5PQU ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 67) 5PQV ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 68) 5PQW ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 69) 5PP7 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 7) 5PQX ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 70) 5PQY ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 71) 5PQZ ; 2.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 72) 5PR0 ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 73) 5PR1 ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 74) 5PR2 ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 75) 5PR4 ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 77) 5PR5 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 78) 5PR6 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 79) 5PP8 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 8) 5PR7 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 80) 5PR8 ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 81) 5PR9 ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 82) 5PRA ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 83) 5PRB ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 84) 5PRD ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 85) 5PRE ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 86) 5PRF ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 87) 5PRG ; 2.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 88) 5PRH ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 89) 5PP9 ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 9) 5PRI ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 90) 5PRJ ; 2.17 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 91) 5PRK ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 92) 5PRL ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 93) 5PRM ; 3.58 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 94) 5PRO ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 95) 5PRP ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 96) 5PRQ ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 97) 5PRR ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 98) 5PRS ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 after initial refinement with no ligand modelled (structure 99) 5POB ; 1.779 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with E13683b 5POD ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N07807b 5PO8 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N07808b 5PO9 ; 2.116 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N07950b 5PNX ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10128a 5PO2 ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10132a 5PO0 ; 1.458 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10146a 5PO1 ; 1.517 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10152a 5PO6 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10157a 5PNZ ; 1.557 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10162a 5PO3 ; 1.699 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10164a 5PO4 ; 1.487 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10170a 5PNY ; 1.479 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10174a 5POA ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10186a 5POE ; 1.518 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10188a and N07807b 5PO5 ; 1.439 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10192a 5POW ; 1.768 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10894b 5POK ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10908a 5POS ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10919a 5POT ; 1.628 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10931a 5POF ; 2.27 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10941a 5POJ ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10941a 5POU ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10954a 5POM ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10958a 5POO ; 1.499 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10966a 5POL ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10971a 5POQ ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10974a 5PON ; 1.519 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10980a 5POR ; 1.578 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10982a 5POP ; 1.579 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N10987a 5PP0 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11009a 5POI ; 2.365 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11016a 5POH ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11029a 5POY ; 1.758 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11029a 5POZ ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11039a 5POG ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11063a 5POV ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11063a 5POX ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11075a 5POC ; 1.478 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11081a 5PO7 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of BRD1 in complex with N11083a 5R81 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z1367324110 5R82 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z219104216 5R84 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z31792168 5R7Y ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of COVID-19 main protease in complex with Z45617795 5Q2A ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 1) 5Q2I ; 2.33 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 10) 5Q4Z ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 100) 5Q50 ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 101) 5Q51 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 102) 5Q52 ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 103) 5Q53 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 104) 5Q54 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 105) 5Q55 ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 106) 5Q56 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 107) 5Q57 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 108) 5Q58 ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 109) 5Q2J ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 11) 5Q59 ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 110) 5Q5A ; 2.26 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 111) 5Q5B ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 112) 5Q5C ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 113) 5Q5D ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 114) 5Q5E ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 115) 5Q5F ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 116) 5Q5G ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 117) 5Q5H ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 118) 5Q5I ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 119) 5Q2K ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 12) 5Q5J ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 120) 5Q5K ; 2.81 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 121) 5Q5L ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 122) 5Q5M ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 123) 5Q5N ; 2.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 124) 5Q5O ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 125) 5Q5P ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 126) 5Q5Q ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 127) 5Q5R ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 128) 5Q5S ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 129) 5Q2L ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 13) 5Q5T ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 130) 5Q5U ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 131) 5Q5V ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 132) 5Q5W ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 133) 5Q5X ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 134) 5Q5Y ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 135) 5Q5Z ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 136) 5Q60 ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 137) 5Q61 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 138) 5Q62 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 139) 5Q2M ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 14) 5Q63 ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 140) 5Q64 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 141) 5Q65 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 142) 5Q66 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 143) 5Q67 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 144) 5Q68 ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 145) 5Q69 ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 146) 5Q6A ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 147) 5Q6B ; 2.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 148) 5Q6C ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 149) 5Q2N ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 15) 5Q6D ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 150) 5Q6E ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 151) 5Q6F ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 152) 5Q6G ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 153) 5Q6H ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 154) 5Q6I ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 155) 5Q6J ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 156) 5Q6K ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 157) 5Q6L ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 158) 5Q6M ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 159) 5Q2O ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 16) 5Q6N ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 160) 5Q6O ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 161) 5Q6P ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 162) 5Q6Q ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 163) 5Q6R ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 164) 5Q6S ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 165) 5Q6T ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 166) 5Q6U ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 167) 5Q6V ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 168) 5Q6W ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 169) 5Q2P ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 17) 5Q6X ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 170) 5Q6Y ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 171) 5Q6Z ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 172) 5Q70 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 173) 5Q71 ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 174) 5Q72 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 175) 5Q73 ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 176) 5Q74 ; 1.21 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 177) 5Q75 ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 178) 5Q76 ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 179) 5Q2Q ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 18) 5Q77 ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 180) 5Q78 ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 181) 5Q79 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 182) 5Q7A ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 183) 5Q7B ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 184) 5Q7C ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 185) 5Q7D ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 186) 5Q7E ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 187) 5Q7F ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 188) 5Q7G ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 189) 5Q2R ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 19) 5Q7H ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 190) 5Q7I ; 1.26 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 191) 5Q7J ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 192) 5Q7K ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 193) 5Q7L ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 194) 5Q7M ; 1.26 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 195) 5Q7N ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 196) 5Q7O ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 197) 5Q7P ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 198) 5Q7Q ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 199) 5Q2S ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 20) 5Q7R ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 200) 5Q7S ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 201) 5Q7T ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 202) 5Q7U ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 203) 5Q7V ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 204) 5Q7W ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 205) 5Q7X ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 206) 5Q7Y ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 207) 5Q7Z ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 208) 5Q80 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 209) 5Q2T ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 21) 5Q81 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 210) 5Q82 ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 211) 5Q83 ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 212) 5Q84 ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 213) 5Q85 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 214) 5Q86 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 215) 5Q87 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 216) 5Q88 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 217) 5Q89 ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 218) 5Q8A ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 219) 5Q2U ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 22) 5Q8B ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 220) 5Q8C ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 221) 5Q8D ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 222) 5Q8E ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 223) 5Q8F ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 224) 5Q8G ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 225) 5Q8H ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 227) 5Q8I ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 228) 5Q8J ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 229) 5Q2V ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 23) 5Q8K ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 230) 5Q8L ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 231) 5Q8M ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 232) 5Q8N ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 233) 5Q8O ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 234) 5Q8P ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 235) 5Q8Q ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 236) 5Q8R ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 237) 5Q8S ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 238) 5Q8T ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 239) 5Q2W ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 24) 5Q8U ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 240) 5Q8V ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 241) 5Q8W ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 242) 5Q8X ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 243) 5Q8Y ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 244) 5Q8Z ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 245) 5Q90 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 246) 5Q91 ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 247) 5Q92 ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 248) 5Q93 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 249) 5Q2X ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 25) 5Q94 ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 250) 5Q95 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 251) 5Q96 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 252) 5Q97 ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 253) 5Q98 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 254) 5Q99 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 255) 5Q9A ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 256) 5Q9B ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 257) 5Q9C ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 258) 5Q9D ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 259) 5Q2Y ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 26) 5Q9E ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 260) 5Q9F ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 261) 5Q9G ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 262) 5Q9H ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 263) 5Q9I ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 264) 5Q9J ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 265) 5Q9K ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 266) 5Q9L ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 267) 5Q9M ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 268) 5Q9N ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 269) 5Q2Z ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 27) 5Q9O ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 270) 5Q9P ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 271) 5Q9Q ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 272) 5Q9R ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 273) 5Q9S ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 274) 5Q9T ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 275) 5Q9U ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 276) 5Q9V ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 277) 5Q9W ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 278) 5Q9X ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 279) 5Q30 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 28) 5Q9Y ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 280) 5Q9Z ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 281) 5QA0 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 282) 5QA1 ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 283) 5QA2 ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 284) 5Q31 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 29) 5Q2B ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 3) 5Q32 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 30) 5Q33 ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 31) 5Q34 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 32) 5Q35 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 33) 5Q36 ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 34) 5Q37 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 35) 5Q38 ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 36) 5Q39 ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 37) 5Q3A ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 38) 5Q3B ; 2.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 39) 5Q2C ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 4) 5Q3C ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 40) 5Q3D ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 41) 5Q3E ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 42) 5Q3F ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 43) 5Q3G ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 44) 5Q3H ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 45) 5Q3I ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 46) 5Q3J ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 47) 5Q3K ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 48) 5Q3L ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 49) 5Q2D ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 5) 5Q3M ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 50) 5Q3N ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 51) 5Q3O ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 52) 5Q3P ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 53) 5Q3Q ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 54) 5Q3R ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 55) 5Q3S ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 56) 5Q3T ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 57) 5Q3U ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 58) 5Q3V ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 59) 5Q2E ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 6) 5Q3W ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 60) 5Q3X ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 61) 5Q3Y ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 62) 5Q3Z ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 63) 5Q40 ; 2.04 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 64) 5Q41 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 65) 5Q42 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 66) 5Q43 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 67) 5Q44 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 69) 5Q2F ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 7) 5Q45 ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 70) 5Q46 ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 71) 5Q47 ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 72) 5Q48 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 73) 5Q49 ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 74) 5Q4A ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 75) 5Q4B ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 76) 5Q4C ; 2.73 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 77) 5Q4D ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 78) 5Q4E ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 79) 5Q2G ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 8) 5Q4F ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 80) 5Q4G ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 81) 5Q4H ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 82) 5Q4I ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 83) 5Q4J ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 84) 5Q4K ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 85) 5Q4L ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 86) 5Q4M ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 87) 5Q4N ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 88) 5Q4O ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 89) 5Q2H ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 9) 5Q4P ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 90) 5Q4Q ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 91) 5Q4R ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 92) 5Q4S ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 93) 5Q4T ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 94) 5Q4U ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 95) 5Q4V ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 96) 5Q4W ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 97) 5Q4X ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 98) 5Q4Y ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A after initial refinement with no ligand modelled (structure 99) 5Q1S ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with BDOOA011525c 5Q1Y ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000032a 5Q29 ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000058a 5Q1L ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000073a 5Q1K ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000074a 5Q1X ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000085a 5Q1Z ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000150a 5Q1V ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000166a 5Q28 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000186a 5Q1R ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000291a 5Q1Q ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000294a 5Q1N ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000295a 5Q1P ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000299a 5Q1U ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000351a 5Q27 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000421a 5Q1O ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000478a 5Q1T ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000492a 5Q20 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000524a 5Q25 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000532a 5Q23 ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000543a 5Q1W ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000546a 5Q24 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000676a 5Q26 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000710a 5Q22 ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000728a 5Q1M ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMOPL000740a 5Q1J ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of DCLRE1A in complex with FMSOA000341b 5QOJ ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOCR000171b 5QOO ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000144a 5QOI ; 1.99 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000213a 5QOK ; 2.28 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000294a 5QOL ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000435a 5QON ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000446a 5QPA ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000449a 5QOM ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000576a 5QPB ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with FMOPL000701a 5QOP ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with NUOOA000023a 5QP7 ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with PB1230873739 5QOZ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with PB1787571279 5QP8 ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with PB1787571279 5QOH ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with XST00000847b 5QOY ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with YW-FY-378 5QP9 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z100435060 5QP2 ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1170065264 5QOS ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1187701032 5QP1 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1190363272 5QOR ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1203490773 5QP3 ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1494850193 5QOT ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1592710382 5QP6 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1662802141 5QOV ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z1699011516 5QOX ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z2212124043 5QOW ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z2895259675 5QOQ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z2895259680 5QP5 ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z2895259681 5QOU ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z296300542 5QP4 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z450133538 5QP0 ; 2.0 ; PanDDA analysis group deposition -- Crystal Structure of DCP2 (NUDT20) in complex with Z454376544 5RVW ; 1.614 ; PanDDA analysis group deposition -- Crystal Structure of DHTKD1 in complex with Z1587220559 5RVZ ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of DHTKD1 in complex with Z1929757385 5RW0 ; 1.673 ; PanDDA analysis group deposition -- Crystal Structure of DHTKD1 in complex with Z2444997446 5RVY ; 1.609 ; PanDDA analysis group deposition -- Crystal Structure of DHTKD1 in complex with Z437516460 5RVX ; 1.661 ; PanDDA analysis group deposition -- Crystal Structure of DHTKD1 in complex with Z804566442 7GPV ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00023820 7GPW ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00023824 7GPX ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00024661 7GPY ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00024667 7GPZ ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00024673 7GQ0 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with NCL-00025345 7GPQ ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0008 7GPT ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0026 7GPP ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0050 7GPO ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0066 7GPR ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0095 7GPS ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0120 7GPU ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with POB0122 7GNV ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z104474228 7GNW ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z104475702 7GNX ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1082839290 7GNY ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1102357527 7GNZ ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1129283193 7GO0 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1137725943 7GO1 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1143279263 7GO2 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1182328459 7GQP ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1198152494 7GO3 ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1198162455 7GQQ ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1198183601 7GO4 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1198233191 7GO5 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1198275935 7GQN ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1201621250 7GO6 ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1203586731 7GO7 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1220452176 7GO8 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1230013388 7GO9 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1266933824 7GOA ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1269184613 7GOB ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1295863442 7GOC ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1318110042 7GOD ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1331830630 7GOE ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1342868616 7GOF ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z137811222 7GOG ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1398461996 7GOH ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1439422127 7GOI ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1456069604 7GQH ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1509711879 7GQ1 ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z166605460 7GOJ ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1685106505 7GOK ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1696091761 7GOL ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1827602749 7GOM ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z19234337 7GQ2 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1954800348 7GON ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z19755216 7GOO ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z1980894300 7GOP ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z2033637875 7GOQ ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z220996120 7GOR ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z2273972081 7GQG ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z228589380 7GQ5 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z2301685688 7GQR ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z235343929 7GOS ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z235449082 7GQ3 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z241119328 7GOT ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z26781952 7GQI ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z27782662 7GQ9 ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z281773378 7GOU ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z285782452 7GOV ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z30904160 7GOW ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z31432964 7GQC ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z315923746 7GQO ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z3227118860 7GOX ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z33452106 7GQF ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z362020366 7GQM ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z362043378 7GOY ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z375990520 7GOZ ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z381474098 7GP0 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z385450668 7GP1 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z401437758 7GQ6 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z425338146 7GP2 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z425757818 7GP3 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z437516460 7GQB ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z44548882 7GP4 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z44585777 7GQ7 ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z45636695 7GP5 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z50145861 7GP6 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z53116498 7GP7 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z53825020 7GP8 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z53825177 7GQL ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z53833304 7GP9 ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z53860899 7GQ4 ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z56761437 7GQD ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z56862798 7GPA ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z56978034 7GQA ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z57299966 7GPC ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z57328552 7GPD ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z57472297 7GQE ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z57473948 7GQ8 ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z57965168 7GQK ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z635046794 7GQJ ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z667925512 7GPE ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z760031264 7GPF ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z760048004 7GPG ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z802540802 7GPH ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z822382694 7GPI ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z839157334 7GPJ ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z85249949 7GPK ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z905434478 7GPL ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z975817026 7GPM ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z979742720 7GPN ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of Enterovirus D68 3C Protease in complex with Z992916756 5R5T ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z1251207602 5R5X ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z1259335913 5R5U ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z1545312521 5R61 ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z1578665941 5R60 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z19735067 5R5Z ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z2856434821 5R5V ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z2856434824 5R62 ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z2856434840 5R5W ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z2856434942 5R63 ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z319545618 5R5Y ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of FIBRINOGEN-LIKE GLOBE DOMAIN OF HUMAN TENASCIN-C in complex with Z509756472 5QRA ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1101755952 5QQR ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1171217421 5QRE ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z117233350 5QRD ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1328968520 5QQU ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1348371854 5QR2 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1348371854 5QQW ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z136583524 5QQV ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1545312521 5QQZ ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z1675346324 5QR5 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2241115980 5QQS ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z275151340 5QR4 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2856434826 5QQT ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2856434834 5QQQ ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2856434857 5QRB ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2856434868 5QQY ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z2856434899 5QR9 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z31478129 5QRC ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z31721798 5QQX ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z373768900 5QR1 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z396380540 5QR6 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z44567722 5QR8 ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z57258487 5QR7 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z57299529 5QR0 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z730649594 5QR3 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of human ALAS2A in complex with Z915492990 5QS8 ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z1432018343 5QSJ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z198194394 5QSE ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2017168803 5QSA ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434778 5QSF ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434814 5QSH ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434868 5QSB ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434874 5QSG ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434903 5QSK ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z2856434906 5QSC ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z300245038 5QT0 ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z321318226 5QS7 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z32327641 5QS6 ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z44592329 5QS9 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z48847594 5QSD ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z54571979 5QSI ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury G177D variant in complex with Z933326822 5QSL ; 2.2 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1273312153 5QRO ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1506050651 5QRW ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1509882419 5QRS ; 2.06 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1891773393 5QRM ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1899842917 5QS1 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1954800564 5QRV ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z198194396 5QS3 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z198195770 5QRZ ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z1998104358 5QRU ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z235341991 5QRP ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z2442270563 5QS0 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z274555794 5QRG ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z275151340 5QRK ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z275179758 5QRI ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z2856434826 5QRY ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z2856434890 5QS2 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z291279160 5QS4 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z30820160 5QRR ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z31720228 5QRT ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z31735562 5QRH ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z32327641 5QS5 ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z32400357 5QRX ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z364328788 5QRF ; 2.03 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z373768900 5QRJ ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z416341642 5QRL ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z437516460 5QRN ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z54226006 5QRQ ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of human Brachyury in complex with Z645232558 5R4R ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with EN08775-42 5R4U ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with EN08775-43 5R4S ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with EN08775-45 5R66 ; 2.02 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with FMOPL000198a 5R65 ; 2.28 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with FMOPL000387a 5R64 ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with FMOPL000464a 5R67 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with FMOPL000589a 5R4P ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with NM450-1 5R4Q ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with NM466-1 5R4T ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of HUMAN CLEAVAGE FACTOR IM in complex with SK-430 5R5I ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N06325b 5R57 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N08253b 5R55 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13369a 5R50 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13371a 5R59 ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13441a 5R58 ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13542a 5R5D ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13564a 5R54 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13582a 5R5L ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13589a 5R5N ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13595a 5R5A ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13663a 5R56 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13688a 5R5H ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13706a 5R5G ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13707a 5R5B ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13725a 5R5S ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13775a 5R5F ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13793a 5R5E ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13848a 5R53 ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13854a 5R5P ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13910a 5R5Q ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13920a 5R5C ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13956a 5R5K ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13960a 5R5J ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N13964a 5R51 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N14003a 5R52 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N14004a 5R5O ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N14027a 5R5R ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N14078a 5R5M ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of human NUDT22 in complex with N14123a 5QHT ; 1.05 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000065a 5QHV ; 1.05 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000299a 5QI4 ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000466a 5QI6 ; 1.1 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000597a 5QI8 ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000605a 5QI9 ; 1.05 ; PanDDA analysis group deposition -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000711a 5QSZ ; 3.08 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z1267773786 5QSN ; 2.66 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z1272480091 5QSR ; 3.28 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z136583524 5QST ; 2.58 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2447286438 5QSV ; 2.76 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2856434783 5QSX ; 2.34 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2856434812 5QSW ; 3.03 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2856434884 5QSU ; 2.73 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2856434926 5QSP ; 2.89 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z2856434929 5QSS ; 3.08 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z33452282 5QSQ ; 2.48 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z396380540 5QSO ; 2.7 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z466628048 5QSM ; 2.74 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z57261895 5QSY ; 2.4 ; PanDDA analysis group deposition -- Crystal Structure of human STAG1 in complex with Z755044716 5RAJ ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with BD009815a 5RAU ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with DA000165b 5RAP ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM000707a 5RAO ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001084a 5RAY ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001469a 5RAE ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001558a 5RAF ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001559a 5RAD ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001568a 5RB6 ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001569a 5RAQ ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001577a 5RB7 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001648a 5RB4 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001677a 5RB1 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001700a 5RAB ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001726a 5RAV ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001763a 5RAG ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001767a 5RB2 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001784a 5RAC ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM001810a 5RAW ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM009970a 5RAA ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM009990a 5RB5 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM010010a 5RAZ ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM010013a 5RB0 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM010020a 5RAH ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM010032a 5RAX ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with FM010054a 5RAR ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with TD000005c 5RAS ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS036302b 5RAM ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS038544d 5RAN ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS039080d 5RB3 ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS039249d 5RAL ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS039332c 5RAI ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS040404c 5RAK ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of JMJD1B in complex with XS040486b 5PHO ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 1) 5PHX ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 10) 5PKF ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 100) 5PKG ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 101) 5PKH ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 102) 5PKI ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 103) 5PKJ ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 104) 5PKK ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 105) 5PKL ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 106) 5PKM ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 107) 5PKN ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 108) 5PKO ; 2.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 109) 5PHY ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 11) 5PKP ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 110) 5PKQ ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 111) 5PKR ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 112) 5PKS ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 113) 5PKT ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 114) 5PKU ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 115) 5PKV ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 116) 5PKW ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 117) 5PKX ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 118) 5PKY ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 119) 5PHZ ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 12) 5PKZ ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 120) 5PL0 ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 121) 5PL1 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 122) 5PL2 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 123) 5PL3 ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 124) 5PL4 ; 1.21 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 125) 5PL5 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 126) 5PL6 ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 127) 5PL7 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 128) 5PL8 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 129) 5PI0 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 13) 5PL9 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 130) 5PLA ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 131) 5PLB ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 132) 5PLC ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 133) 5PLD ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 134) 5PLE ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 135) 5PLF ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 136) 5PLG ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 137) 5PLH ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 138) 5PLI ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 139) 5PI1 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 14) 5PLJ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 140) 5PLK ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 141) 5PLL ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 142) 5PLM ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 143) 5PLN ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 144) 5PLO ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 145) 5PLP ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 146) 5PLQ ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 147) 5PLR ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 148) 5PLS ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 149) 5PI2 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 15) 5PLT ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 150) 5PLU ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 151) 5PLV ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 152) 5PLW ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 153) 5PLX ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 155) 5PLY ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 156) 5PLZ ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 157) 5PM0 ; 2.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 158) 5PM1 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 159) 5PI3 ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 16) 5PM2 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 160) 5PM3 ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 161) 5PM4 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 162) 5PM5 ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 163) 5PM6 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 164) 5PM7 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 165) 5PM8 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 166) 5PM9 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 167) 5PMA ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 168) 5PMB ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 169) 5PI4 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 17) 5PMC ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 170) 5PMD ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 171) 5PME ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 172) 5PMF ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 173) 5PMG ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 174) 5PMH ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 175) 5PMI ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 176) 5PMJ ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 177) 5PMK ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 178) 5PML ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 179) 5PI5 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 18) 5PMM ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 180) 5PMN ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 181) 5PMO ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 182) 5PMP ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 183) 5PMQ ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 184) 5PMR ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 185) 5PMS ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 186) 5PMT ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 187) 5PMU ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 188) 5PMV ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 189) 5PI6 ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 19) 5PMW ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 190) 5PMX ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 191) 5PMY ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 192) 5PMZ ; 1.15 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 193) 5PN0 ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 194) 5PN1 ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 195) 5PN2 ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 196) 5PN3 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 197) 5PN4 ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 198) 5PN5 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 199) 5PHP ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 2) 5PI7 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 20) 5PN6 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 200) 5PN7 ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 201) 5PN8 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 202) 5PN9 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 203) 5PNA ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 204) 5PNB ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 205) 5PNC ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 206) 5PND ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 207) 5PNE ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 208) 5PNF ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 209) 5PI8 ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 21) 5PNG ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 210) 5PNH ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 211) 5PNI ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 212) 5PNJ ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 213) 5PNK ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 214) 5PNL ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 215) 5PNM ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 216) 5PNN ; 1.21 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 217) 5PNO ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 218) 5PNP ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 219) 5PI9 ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 22) 5PNQ ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 220) 5PNR ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 221) 5PNS ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 222) 5PNU ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 223) 5PNV ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 224) 5PNW ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 225) 5PIA ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 23) 5PIB ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 24) 5PIC ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 25) 5PID ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 26) 5PIE ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 27) 5PIF ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 28) 5PIG ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 29) 5PHQ ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 3) 5PIH ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 30) 5PII ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 31) 5PIJ ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 32) 5PIK ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 33) 5PIL ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 34) 5PIM ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 35) 5PIN ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 36) 5PIO ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 37) 5PIP ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 38) 5PIQ ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 39) 5PHR ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 4) 5PIR ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 40) 5PIS ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 41) 5PIT ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 42) 5PIU ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 43) 5PIV ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 44) 5PIW ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 45) 5PIX ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 46) 5PIY ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 47) 5PIZ ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 48) 5PJ0 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 49) 5PHS ; 2.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 5) 5PJ1 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 50) 5PJ2 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 51) 5PJ3 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 52) 5PJ4 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 53) 5PJ5 ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 54) 5PJ6 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 55) 5PJ7 ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 56) 5PJ8 ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 57) 5PJ9 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 58) 5PJA ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 59) 5PHT ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 6) 5PJB ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 60) 5PJC ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 61) 5PJD ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 62) 5PJE ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 63) 5PJF ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 64) 5PJG ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 65) 5PJH ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 66) 5PJI ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 67) 5PJJ ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 68) 5PJK ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 69) 5PHU ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 7) 5PJL ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 70) 5PJM ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 71) 5PJN ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 72) 5PJO ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 73) 5PJP ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 74) 5PJQ ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 75) 5PJR ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 76) 5PJS ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 77) 5PJT ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 78) 5PJU ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 79) 5PHV ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 8) 5PJV ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 80) 5PJW ; 1.56 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 81) 5PJX ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 82) 5PJY ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 83) 5PJZ ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 84) 5PK0 ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 85) 5PK1 ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 86) 5PK2 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 87) 5PK3 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 88) 5PK4 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 89) 5PHW ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 9) 5PK5 ; 1.39 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 90) 5PK6 ; 2.38 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 91) 5PK7 ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 92) 5PK8 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 93) 5PK9 ; 1.34 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 94) 5PKA ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 95) 5PKB ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 96) 5PKC ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 97) 5PKD ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 98) 5PKE ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D after initial refinement with no ligand modelled (structure 99) 5PHA ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09398a 5PHJ ; 1.15 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09400a 5PHD ; 1.359 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09419a 5PHB ; 1.338 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09447a 5PH1 ; 1.249 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09449a 5PHE ; 1.351 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09453a 5PHM ; 1.398 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09455a 5PHH ; 1.604 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09457a 5PHI ; 1.971 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09480a 5PH0 ; 1.341 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09484a 5PH7 ; 1.431 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09504a 5PHL ; 1.141 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09506a 5PHN ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09522a 5PH8 ; 1.396 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09552a 5PH3 ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09575a 5PH2 ; 1.454 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09597a 5PH4 ; 1.269 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09597a 5PHC ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09649a 5PHF ; 1.389 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09688a 5PHG ; 1.398 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09689a 5PH9 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09701a 5PHK ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09720a 5PH5 ; 1.349 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09724a 5PH6 ; 1.742 ; PanDDA analysis group deposition -- Crystal Structure of JMJD2D in complex with N09736a 5QQF ; 2.26 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-004-412-710 5QQI ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-178-994 5QQK ; 2.24 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-359-835 5QQE ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-531-494 5QQG ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-541-216 5QQL ; 2.25 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-565-301 5QQM ; 2.02 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-565-325 5QQJ ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-009-587-558 5QQN ; 2.26 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-010-382-606 5QQH ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with MolPort-020-096-465 5QQD ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of Kalirin/Rac1 in complex with Z56880342 5QTO ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with 1R-0641 5QTS ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with 8J-537S 5QTP ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with AE-0227 5QTQ ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with FS-1169 5QTM ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with FS-2639 5QTR ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with FS-3764 5QTL ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with GB-0804 5QTN ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with SS-4432 5QJ5 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of NUDT5 in complex with Z44592329 5RJO ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00023827 5RJJ ; 1.151 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00023833 5RJK ; 1.21 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024661 5RJL ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024662 5RJQ ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024665 5RJM ; 1.407 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024671 5RJP ; 1.242 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024672 5RJN ; 1.435 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with NCL-00024673 5S8X ; 1.15 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5S96 ; 1.17 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5S98 ; 1.1 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5S99 ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5S9G ; 1.091 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5S9J ; 1.15 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with starting material 5RKP ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1079512010 5RKG ; 1.282 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1124201124 5RKT ; 1.241 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1266933824 5RKA ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z126932614 5RKX ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1324080698 5RKR ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1432018343 5RK3 ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1501469697 5RK1 ; 1.271 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1507502062 5RKQ ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1545196101 5RKL ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1545196403 5RKF ; 1.264 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1674937530 5RKS ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1696844792 5RKY ; 1.38 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z1796014543 5RK6 ; 1.241 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194394 5RKI ; 1.268 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 5S8R ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8S ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8T ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8U ; 1.33 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8V ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8W ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8Y ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S8Z ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S90 ; 1.1 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S91 ; 1.29 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S92 ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S93 ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S94 ; 1.2 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S95 ; 1.21 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S97 ; 1.15 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S9A ; 1.36 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S9C ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S9D ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5S9E ; 1.18 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z198194396 synthetic derivative 5RKB ; 1.279 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z2004563941 5RKM ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z2017168803 5RKD ; 1.237 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z2168282707 5RKC ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z234898257 5RJW ; 1.514 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z256709556 5RKK ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z275181224 5RKW ; 1.242 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z27678561 5RJS ; 1.37 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z285642082 5RJX ; 1.291 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z285782452 5RKO ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z30620520 5RK0 ; 1.24 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z30932204 5RKH ; 1.252 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z31432917 5RK7 ; 1.304 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z31721097 5RKU ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z32367954 5RKJ ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z373768898 5RKN ; 1.23 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z373768900 5RJY ; 1.25 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z383325512 5RJT ; 1.169 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z404993336 5RJR ; 1.27 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z45705015 5RK9 ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z461898648 5RK8 ; 1.272 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z53116498 5RK2 ; 1.235 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z54633859 5RK4 ; 1.284 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z56791867 5RKV ; 1.277 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z56877838 5RJV ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z57190020 5RJU ; 1.32 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z57261895 5RK5 ; 1.243 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z57478994 5RJZ ; 1.275 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z755044716 5RKE ; 1.291 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex with Z906021418 5S9B ; 1.153 ; PanDDA analysis group deposition -- Crystal Structure of PHIP in complex withstarting material 5SDR ; 2.077 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z1273312153 5SDM ; 2.039 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z1328078283 5SDG ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z136583524 5SDE ; 1.854 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z1619978933 5SDO ; 2.051 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z19735067 5SDP ; 2.195 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2277255954 5SDF ; 1.877 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2856434834 5SDH ; 2.313 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2856434854 5SDD ; 1.839 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2856434879 5SDQ ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2856434887 5SDC ; 1.928 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z2856434912 5SDL ; 2.44 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z321318226 5SDJ ; 2.041 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z32327641 5SDK ; 1.977 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z416341642 5SDN ; 2.023 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z437584380 5SDI ; 1.898 ; PanDDA analysis group deposition -- Crystal Structure of Porphyromonas gingivalis in complex with Z44592329 5SO3 ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with JKH100B 5SO4 ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with JKH93A 5SO5 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with JKH93B 5SND ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1217960891 5SNX ; 1.99 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1267881672 5SNM ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z135439900 5SNS ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1354416068 5SOE ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1429867185 5SOC ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1530301542 5SNB ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1545313172 5SOA ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1613492358 5SO9 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1622626423 5SOD ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1730522163 5SNY ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1827602749 5SNQ ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1891773476 5SNE ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z192955056 5SNN ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z1954800564 5SNH ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z198194394 5SNR ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z198195770 5SNL ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2027049478 5SO7 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z219104216 5SOB ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2204875953 5SO0 ; 2.28 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z24758179 5SO6 ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z26968795 5SNU ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2856434770 5SN5 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2856434897 5SNK ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2856434941 5SN6 ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z2856434942 5SNI ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z285782452 5SNV ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z295848548 5SNA ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z30620520 5SO1 ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z30620520 5SNT ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z30820160 5SOH ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z31432226 5SO2 ; 2.38 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z31504642 5SN7 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z32327641 5SNO ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z364368134 5SOF ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z373768900 5SN8 ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z375990520 5SNP ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z381729066 5SNG ; 1.94 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z383325512 5SNZ ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z44567722 5SN9 ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z57258487 5SOG ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z57328997 5SNW ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z730649594 5SNC ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z768399682 5SO8 ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z85895198 5SNF ; 1.99 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z87615031 5SNJ ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of Pseudomonas Aeruginosa FabF-C164Q mutant protein in complex with Z906021418 7FRE ; 1.85 ; PanDDA analysis group deposition -- Crystal structure of PTP1B after initial refinement with no ligand modeled 5QDO ; 1.792 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOCR000171b 5QET ; 1.724 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000017a 5QF8 ; 1.987 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000114a 5QFC ; 1.841 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000140a 5QES ; 1.745 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000141a 5QF4 ; 1.832 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000144a 5QEU ; 1.735 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000149a 5QF2 ; 1.772 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000187a 5QF3 ; 1.563 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000194a 5QFL ; 1.824 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000206a 5QF9 ; 1.94 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000242a 5QFM ; 1.83 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000269a 5QFP ; 1.771 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000293a 5QFS ; 1.853 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOMB000293a 5QFU ; 1.613 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000487a 5QFQ ; 1.621 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000491a 5QFV ; 1.641 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000491a 5QFR ; 1.622 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000497a 5QFW ; 1.662 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000497a 5QFD ; 1.693 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000505a 5QFE ; 1.563 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000509a 5QFK ; 1.594 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000509a 5QFF ; 1.703 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000515a 5QFG ; 1.654 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000523a 5QFH ; 1.591 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000525a 5QFI ; 1.68 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000531a 5QGF ; 1.513 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000539a 5QGA ; 1.653 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000540a 5QG8 ; 1.634 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000555a 5QG9 ; 1.671 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000595a 5QG7 ; 1.811 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000611a 5QGD ; 1.661 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000611a 5QGB ; 1.552 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000628a 5QGC ; 1.586 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000650a 5QG3 ; 1.654 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000662a 5QG4 ; 1.788 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOOA000666a 5QDH ; 1.682 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000004a 5QDK ; 1.555 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000069a 5QDL ; 1.833 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000072a 5QDM ; 2.647 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000074a 5QDR ; 1.784 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000089a 5QDS ; 1.751 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000108a 5QEX ; 1.673 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000123a 5QE8 ; 1.813 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000127a 5QEF ; 1.605 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000134a 5QDI ; 1.623 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000157a 5QDN ; 1.821 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000163a 5QDP ; 1.744 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000207a 5QDJ ; 1.761 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000211a 5QE9 ; 1.692 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000232a 5QEE ; 1.932 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000240a 5QEC ; 1.673 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000270a 5QG2 ; 2.122 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000275a 5QEG ; 1.97 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000278a 5QDG ; 1.79 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000294a 5QDF ; 1.712 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000295a 5QEH ; 1.941 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000323a 5QFN ; 1.675 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000324a 5QFY ; 1.769 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000396a 5QE2 ; 1.787 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000398a 5QDZ ; 2.141 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000435a 5QE3 ; 1.742 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000449a 5QDW ; 2.212 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000465a 5QDU ; 1.672 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000466a 5QDT ; 1.821 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000475a 5QDX ; 2.062 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000484a 5QE4 ; 1.852 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000514a 5QED ; 1.755 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000538a 5QDV ; 1.773 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000574a 5QE7 ; 1.713 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000601a 5QE6 ; 1.774 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000608a 5QG1 ; 2.209 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000619a 5QGE ; 1.703 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000619a 5QE5 ; 1.773 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000632a 5QEB ; 1.733 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000639a 5QE1 ; 1.685 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000645a 5QE0 ; 1.98 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000648a 5QEY ; 1.775 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000708a 5QFZ ; 1.723 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000711a 5QEA ; 1.743 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000733a 5QDE ; 1.764 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOPL000740a 5QEK ; 1.904 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMOZE000092b 5QF1 ; 1.844 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000272b 5QF6 ; 1.765 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000281b 5QEW ; 1.826 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000470b 5QEO ; 1.721 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000657b 5QEL ; 1.654 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000675b 5QFT ; 1.96 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000683b 5QG5 ; 2.07 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000811b 5QFJ ; 1.954 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000814b 5QER ; 1.733 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000847b 5QF7 ; 1.75 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000951b 5QFX ; 1.824 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000953b 5QEN ; 1.775 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA000955b 5QG6 ; 1.734 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA001176b 5QEJ ; 1.924 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA001247b 5QF5 ; 1.725 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_FMSOA001440b 5QFB ; 1.851 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_PKOOA000283c 5QEI ; 1.743 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_PKTTA024495b 5QF0 ; 1.707 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000216b 5QEM ; 1.754 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000217b 5QEQ ; 1.972 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000245b 5QG0 ; 1.753 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000280c 5QDY ; 1.835 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000599c 5QEV ; 1.723 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000603b 5QFO ; 1.851 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000644b 5QEP ; 1.774 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000692b 5QEZ ; 1.654 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000713b 5QFA ; 1.742 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000752b 5QDQ ; 1.575 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with compound_XST00000847b 7FQW ; 2.17 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOCR000171b 7GSO ; 1.72 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000029a 7GST ; 1.64 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000056a 7GTA ; 2.06 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000065a 7GTD ; 1.91 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000110a 7GSQ ; 1.73 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000149a 7FQZ ; 2.09 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000203a 7GT1 ; 1.91 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000209a 7GT0 ; 1.76 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000275a 7FQT ; 2.54 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000293a 7GTU ; 2.08 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOMB000297a 7FQN ; 2.04 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000497a 7FQP ; 1.88 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000505a 7FQO ; 1.93 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000523a 7GT3 ; 1.59 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000527a 7GT4 ; 1.75 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000528a 7GT5 ; 1.61 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000529a 7GT6 ; 1.66 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000530a 7GTM ; 1.72 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000543a 7GTK ; 1.76 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000552a 7GTL ; 1.83 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000554a 7FQS ; 2.12 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000555a 7GTI ; 1.66 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000571a 7GTO ; 1.65 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000602a 7FQQ ; 1.88 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000611a 7GTN ; 1.66 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000625a 7GTH ; 1.66 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000637a 7FQR ; 1.9 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000666a 7GTG ; 1.69 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOOA000684a 7FRF ; 2.15 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000089a 7GTT ; 1.93 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000148a 7GSA ; 1.72 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000260a 7FQY ; 2.13 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000278a 7GSK ; 1.84 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000279a 7GTQ ; 2.09 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000311a 7GSG ; 1.9 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000316a 7GSU ; 1.65 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000382a 7GSE ; 1.89 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000383a 7GSF ; 1.78 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000421a 7GSB ; 1.72 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000438a 7GS8 ; 1.67 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000466a 7GSH ; 1.88 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000530a 7GSJ ; 1.77 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000543a 7GTR ; 1.78 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000587a 7FQX ; 2.46 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000601a 7GTS ; 1.8 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000604a 7GSD ; 1.8 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000605a 7FQM ; 1.94 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000619a 7GS7 ; 1.66 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000621a 7GS9 ; 1.96 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000631a 7GTP ; 2.47 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000688a 7GSC ; 1.69 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMOPL000729a 7GSL ; 1.77 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000274b 7GT9 ; 1.9 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000463b 7FQU ; 1.86 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000470b 7GSZ ; 1.91 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000686b 7GSV ; 1.92 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000830b 7GTB ; 1.86 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA000899b 7GSY ; 1.97 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA001175b 7GT7 ; 1.84 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA001181b 7GT8 ; 1.91 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA001439b 7GSX ; 1.67 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with FMSOA001440b 7GSI ; 1.71 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000046b 7GSR ; 1.69 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000055b 7FRQ ; 2.01 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with XST00000217b 7FRP ; 1.77 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with XST00000245b 7GTJ ; 1.83 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000280c 7GSW ; 1.79 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000422b 7GSM ; 2.03 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000437b 7GSN ; 1.87 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000519b 7GTE ; 1.9 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000646b 7GT2 ; 1.9 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000752b 7GTF ; 1.97 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000754b 7GTV ; 1.72 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00000765c 7FQV ; 2.04 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with XST00000847b 7GTC ; 1.92 ; PanDDA Analysis group deposition -- Crystal structure of PTP1B in complex with XST00001145b 7FRH ; 1.84 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z2856434762 7FRJ ; 1.8 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z2856434770 7FRR ; 1.83 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z2856434906 7FRL ; 1.79 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z2856434917 7FRK ; 1.8 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z30820160 7FRG ; 1.84 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z31222641 7FRI ; 1.86 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z321318226 7FRM ; 1.91 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z509756472 7FRO ; 1.93 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z744754722 7FRN ; 1.85 ; PanDDA analysis group deposition -- Crystal structure of PTP1B in complex with Z915492990 5RMM ; 2.2 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with POB0066 5RMH ; 2.021 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1101755952 5RMK ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1273312153 5RLJ ; 1.879 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1407673036 5RLE ; 2.268 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1429867185 5RLO ; 2.097 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1454310449 5RM0 ; 1.909 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1492796719 5RLK ; 1.956 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1509882419 5RM8 ; 2.143 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1614545742 5RM4 ; 2.96 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1639162606 5RLM ; 1.858 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1650168321 5RLP ; 2.562 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z166605480 5RL9 ; 1.788 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1703168683 5RM2 ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1741964527 5RM3 ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z1745658474 5RLD ; 2.233 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z19735981 5RLG ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z19739650 5RL6 ; 1.921 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z198195770 5RLY ; 2.434 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2027049478 5RLB ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z216450634 5RLZ ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2293643386 5RLF ; 2.235 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z235341991 5RLV ; 2.21 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2467208649 5RMC ; 2.15 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z24758179 5RME ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z26333434 5RLH ; 2.379 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2856434778 5RMB ; 2.206 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2856434920 5RM9 ; 2.076 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z2856434942 5RMG ; 2.115 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z285675722 5RLQ ; 2.225 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z285782452 5RMA ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z321318226 5RL7 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z364321922 5RLN ; 2.147 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z364328788 5RM5 ; 2.06 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z373768900 5RM6 ; 2.128 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z396380540 5RLL ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z425387594 5RM1 ; 1.896 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z426041412 5RLI ; 2.26 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z45617795 5RLW ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z45705015 5RLT ; 2.43 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z53116498 5RL8 ; 2.21 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z53825177 5RMI ; 2.116 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z53860899 5RMF ; 2.23 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z54226006 5RLC ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z56923284 5RMD ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z57614330 5RLS ; 2.278 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z59181945 5RMJ ; 2.1 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z68299550 5RM7 ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z69118333 5RLU ; 2.347 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z744754722 5RLR ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z822382694 5RML ; 2.43 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 helicase in complex with Z85956652 5RF1 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with NCL-00023830 5RFU ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102121 5RFR ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102169 5RFQ ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102179 5RFP ; 2.03 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102190 5REP ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102201 5REJ ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102241 5RFW ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102243 5RFX ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102254 5RET ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102269 5RFZ ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102274 5REW ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102275 5RFH ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102277 5RES ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102281 5REX ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102287 5RFV ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102306 5REK ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102327 5REL ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102340 5RFI ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102353 5RFG ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102372 5RFL ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102389 5REU ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102395 5REN ; 2.15 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102425 5RFT ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102432 5RG0 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102535 5RFM ; 2.06 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102539 5RFK ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102575 5REO ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102578 5RER ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102615 5RFF ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102704 5RFS ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102739 5RFN ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102868 5REY ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102911 5RFO ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102972 5RFY ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102974 5REM ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103016 5RFJ ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103067 5REV ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0103072 5RF0 ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with POB0073 5REZ ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with POB0129 5REH ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z111507846 5RE4 ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1129283193 5R7Z ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1220452176 5RFD ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z126932614 5RFB ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1271660837 5RF6 ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1348371854 5REG ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1545313172 5REC ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1587220559 5RF2 ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1741969146 5RF3 ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1741970824 5RF4 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1741982125 5R80 ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z18197050 5RF9 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z217038356 5REE ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2217052426 5REF ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z24758179 5RFA ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2643472210 5RF8 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z271004858 5RE8 ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2737076969 5RE9 ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434836 5REI ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434856 5RED ; 1.47 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434865 5REB ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434899 5RE7 ; 1.79 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z30932204 5REA ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z31432226 5RF7 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z316425948_minor 5RF5 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z3241250482 5RE5 ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z33545544 5R83 ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z44592329 5RFE ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z509756472 5RE6 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z54571979 5RFC ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 main protease in complex with Z979145504 5S72 ; 2.512 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with BBL029427 5SAH ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with EN300-100112 5SAG ; 1.881 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with EN300-1605072 5S70 ; 2.327 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with EN300-181428 5SAF ; 2.11 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with EN300-321461 5S71 ; 1.941 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with FUZS-5 5S6Z ; 2.28 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with PB2255187532 5SAI ; 2.022 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z1424343998 5SA5 ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z1530301542 5SA7 ; 2.222 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z1673618163 5SA4 ; 2.046 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z239136710 5SA9 ; 1.92 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z2697514548 5SA6 ; 2.517 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z2856434783 5S6X ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z2889976755 5SAB ; 2.486 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z31504642 5SAA ; 2.239 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z319891284 5SAE ; 2.12 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z3219959731 5SAD ; 1.961 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z425449682 5S6Y ; 2.32 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z56900771 5SAC ; 2.029 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z59181945 5SA8 ; 2.298 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with Z68299550 5SLI ; 2.3 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1003146540 5SLA ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1003207278 5SL2 ; 1.739 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z100643660 5SL7 ; 1.841 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1186029914 5SLD ; 1.581 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1246465616 5SM7 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1247413608 5SKX ; 2.342 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z126932614 5SKW ; 2.093 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1272494722 5SL1 ; 2.383 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1273312153 5SLW ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1310876699 5SLK ; 2.21 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1354370680 5SLS ; 2.29 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1373445602 5SLJ ; 2.31 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1430613393 5SLY ; 2.018 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1526504764 5SLU ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1796014543 5SLT ; 1.901 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1816233707 5SLC ; 1.668 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1849009686 5SM6 ; 2.29 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z1899842917 5SLF ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z198195770 5SM8 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2027158783 5SMC ; 2.19 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2033637875 5SLZ ; 2.54 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2072621991 5SLR ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2073741691 5SMG ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2092370954 5SM9 ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2234920345 5SL3 ; 1.99 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z223688272 5SL6 ; 2.289 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z256709556 5SMD ; 1.826 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z274575916 5SLM ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z28290384 5SL8 ; 2.07 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434762 5SM5 ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434807 5SLQ ; 2.112 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434829 5SMA ; 2.011 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434890 5SMH ; 2.64 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434938 5SLV ; 2.049 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434942 5SM4 ; 2.16 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z2856434944 5SM2 ; 1.781 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z3006151474 5SL5 ; 2.36 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z32014663 5SLG ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z32400357 5SM0 ; 2.086 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z32665176 5SLP ; 1.819 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z373768898 5SL4 ; 1.936 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z383202616 5SMB ; 2.181 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z419995480 5SME ; 1.91 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z437584380 5SKY ; 2.25 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z466628048 5SL9 ; 1.749 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z54571979 5SLL ; 1.807 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z54615640 5SMF ; 2.011 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z56791867 5SLE ; 2.009 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z56880342 5SLO ; 1.829 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z56983806 5SKZ ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z57258487 5SL0 ; 2.001 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z57260516 5SLN ; 2.208 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z57299529 5SLH ; 1.819 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z65532537 5SM1 ; 1.941 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z68277692 5SMI ; 2.08 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z71580604 5SLB ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z744930860 5SLX ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z752989138 5SM3 ; 2.198 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NSP14 in complex with Z943693514 5S1E ; 1.172 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with AB-601_30915014 5S1K ; 1.076 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-105873 5S1G ; 1.11 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-108952 5S1Q ; 1.127 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-17035 5S1I ; 1.068 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-301084 5S18 ; 1.13 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-321461 5SR2 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with EN300-36602160 5S1A ; 1.079 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-43406 5S1U ; 1.08 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-52144 5S24 ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with EN300-697611 5S4K ; 1.076 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with FMOOA000509a 5SPM ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00002410346 5SPW ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00004674769 - (R,S,R) isomer 5SPN ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00010608284 5SPS ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00012962804 - (S) isomer 5SPQ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00014134848 - (R) isomer 5SQQ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00014649046 5SPO ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with FRESH00020289192 - (S) isomer 5S40 ; 1.187 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00023824 5S41 ; 1.186 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00023825 5S42 ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00023833 5S43 ; 1.11 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00024661 5S45 ; 1.16 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00024773 5S44 ; 1.059 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with NCL-00024890 5S20 ; 1.037 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with PB1827975385 5S3Y ; 1.113 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0012 5S3Q ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0013 5S3R ; 1.038 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0014 5S3U ; 1.078 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0041 5S3S ; 1.039 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0103 5S3V ; 1.119 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0120 5S3T ; 1.085 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0128 5S3W ; 0.987 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0135 5S3X ; 1.13 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0136 5S3Z ; 1.31 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with POB0140 7FR3 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with PTERA_A01A - (S) isomer 7FRC ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with PTERA_A05 - (R) isomer 7FRD ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with PTERA_A25A - (S) isomer 7FR4 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with PTERA_A26A - (S) isomer 5SQF ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250000548538 - (R) isomer 5SPZ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250001448407 - (S) isomer 5SPP ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250002155324 5SPR ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250002852032 - (S) isomer 5SPK ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250003296134 - (R) isomer 5SPV ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250003774401 5SPX ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250003958539 5SQU ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL250004627335 5SQ0 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL300007260658 - (S,S) isomer 5SQR ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL300016493575 - (R,S) isomer 5SPY ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with REAL300019621104 5S4F ; 1.131 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with SF003 5S4G ; 1.172 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with SF005 5S4H ; 1.175 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with SF048 5S4I ; 1.131 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with SF051 5S4J ; 1.124 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with SF054 5S1Y ; 1.091 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with STK346965 5S1M ; 1.184 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with STK497968 5S1O ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with STL414928 5S3O ; 1.188 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z102768020 5SQZ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1039058598 5S2X ; 1.06 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1139246057 5S2E ; 1.116 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1152242726 5S2V ; 1.081 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1186029914 5S3P ; 1.1 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1238477790 5S27 ; 1.126 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1262398530 5S2A ; 1.08 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1263529624 5S2Z ; 1.07 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z126932614 5SR1 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1272415642 - (R) isomer 5S3J ; 1.087 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1324853681 7FRA ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1343520564 7FR9 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1367095370 5S2W ; 1.081 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1407672867 7FR1 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1423250928 5SQ7 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1445235880 5SQ8 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z1445261766 5S22 ; 1.175 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z145120524 5S3A ; 1.178 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1562205518 5S1S ; 1.16 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1613477500 5S39 ; 1.164 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z165170770 5S31 ; 1.145 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1741959530 5S3B ; 1.091 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1741966151 5S48 ; 1.074 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1741982125 5S4D ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1741982441 5S38 ; 1.072 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1745658474 5S2N ; 1.133 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1787627869 5S4C ; 1.01 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1954800348 5S37 ; 1.22 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z1954800564 5S2Y ; 1.052 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z19727416 5S29 ; 1.3 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z199959602 5S3K ; 1.17 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z219104216 5S2L ; 1.085 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2234920345 5S4E ; 1.07 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2301685688 5SRW ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2364914118 - (S) isomer 5SQ4 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2364980062 - (R) isomer 5SRN ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2466029596 - (R) and (S) isomers 5SR4 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2479779298 - (R,S) and (S,R) isomers 5SQK ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2479782408 - (R,S) isomer 5SRS ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2614735107 - (R) and (S) isomers 5S32 ; 1.166 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z26781943 5S2Q ; 1.28 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z26781952 5S2T ; 1.108 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z26781964 5SQL ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2689779890 5S3E ; 1.05 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z274553586 5S3H ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434892 5S2S ; 1.104 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434894 5S2H ; 1.068 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434920 5S3C ; 1.185 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434937 5S36 ; 1.058 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434938 5S34 ; 1.057 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z2856434941 5S3N ; 1.185 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z287484230 7FR6 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2890147894 7FR0 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2890182452 7FR5 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2890189003 7FR8 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2890408258 - (R) isomer 5SQ2 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z2976440814 - (S) isomer 5SR6 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3011799020 - (R) isomer 5S1C ; 1.174 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z3034471507 5S3D ; 1.187 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z30820160 5S2G ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z321318226 5S4B ; 1.185 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z3219959731 5SP9 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3508769536 - (S) isomer 5SR9 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3562259556 - (R) isomer 5SR0 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3649721459 - (R,S) and (S,R) isomers 5S2D ; 1.06 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z369936976 5S2B ; 1.11 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z373769142 5SRQ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3831836449 - (R) isomer 5S3G ; 1.14 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z384468096 5SRM ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z3860662215 - (R) and (S) isomers 5S28 ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z409974522 5SRR ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4158218973 - (S,S) isomer 5SRF ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4175156780 - (R) isomer 7FR7 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z431872694 5S2K ; 1.097 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z445856640 5S2F ; 1.186 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z44592329 5S2C ; 1.092 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z45612755 5S3M ; 1.26 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z45656995 5SPI ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4574659604 - (R,R) and (S,S) isomers 5SPH ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398515 - (R,S) isomer 5SPE ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398531 - (S,S) isomer 5SPD ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398539 - (R,R) and (S,S) isomers 5SPF ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398569 5SP4 ; 1.06 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398572 5SP6 ; 1.07 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398580 5SPG ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4718398585 5SQN ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4914649780 - (S) isomer 5SR7 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4914649782 - (R,R,S) and (S,S,R) isomers 5SR8 ; 1.1 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z4914650235 - (S) isomer 5SQD ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894382 - (R,R) and (S,S) isomers 5SSN ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894382 - (R,S) isomer 5SPC ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894387 - (R,R) and (S,S) isomers 5SQC ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894388 - (R,R) and (S,S) isomers 5SQB ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894390 - (R,R) and (S,S) isomers 5SQE ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894392- (S,S) isomer 5SQA ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894395 - (R,R) and (S,S) isomers 5SQV ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894399 - (S,S) isomer 5SPB ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894404 - (R,R) and (S,S) isomers 5SQ6 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894406 5SQ5 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894407 - (R,S) and (S,S) isomers 5SP8 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894415 - (S) isomer 5SPA ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894417 - (R,R) and (S,S) isomers 5SQ9 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894420 - (R,R) and (S,S) isomers 5SQG ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894430 - (R,R) and (S,S) isomers 5SQH ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010894431- (S,S) isomer 5SP7 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5010903509 - (S,S) isomer 5SQW ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5014193706 - (R,R) and (S,S) isomers 5S3I ; 1.17 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z50145861 5SQI ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5016127255 - (R,R) and (S,S) isomers 5SQJ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5021668601 5SR3 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5021669050 - (S,S) isomer 5SQ3 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5028367848 - (R) isomer 5SQM ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5028367849 - (S) isomer 5SQP ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5028367859 - (S) isomer 5SQO ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5030903496 - (R) isomer 5S2J ; 1.111 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z509756472 5SQX ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5183357278 - (R,R) and (S,S) isomers 5SRC ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562500 - (R,R) and (R,S) isomers 5SRX ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562503 - (R) isomer 5SRO ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562509 - (R) and (S) isomers 5SSO ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562519 - (R) and (S) isomers 5SRU ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562523 - (S) isomer 5SRE ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562530 - (R) isomer 5SRB ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562532 - (R) and (S) isomers 5SRV ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562533 - (R,R) isomer 5SRT ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5198562791 - (R) isomer 5SQY ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5211314110 - (S,S) isomer 5SRY ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5265428218 5SRJ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5265428226 5SRG ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5265428403 5SR5 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5265454473 - (R) isomer 5SRH ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5265470867 - pyrimido-indole core only 5SRI ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5278734565 - pyrimido-indole core only 5SRZ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5281440906 - (R,S) and (S,R) isomers 5SRP ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5340019182 - (R) isomer 5SRL ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5352447655 - (R,R) isomer 5SRA ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5372052920 - (R) isomer 5SRD ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5373433723 - (S) isomer 5SRK ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5373433775 - (R) isomer 5SSM ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5459166256 - (R,R) and (S,S) isomers 5SSP ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5459166285 - (R,R) and (S,S) isomers 5SSQ ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5459166291 5SSR ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5459166300 5S3L ; 1.091 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z54628578 7FR2 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5551425673 - (S) isomer 7FRB ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with Z5551426009 - (S) isomer 5S2M ; 1.136 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z56827661 5S49 ; 1.03 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z56866006 5S46 ; 1.191 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z57131035 5S2R ; 1.132 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z57292369 5S2I ; 1.085 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z57299529 5S3F ; 1.16 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z57446103 5S26 ; 1.125 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z605596346 5S2O ; 1.091 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z645232558 5S30 ; 1.19 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z65532537 5S35 ; 1.099 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z68404778 5S1W ; 1.135 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z838838708 5S2U ; 1.034 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z85956652 5S33 ; 1.06 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z906021418 5S2P ; 1.033 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z927746322 5S47 ; 1.09 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z940713508 5S4A ; 1.081 ; PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 Nsp3 macrodomain in complex with Z955123498 5RSO ; 1.03 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000000226 5RUE ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000000922 5RSM ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000001099 5RS8 ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000001601 5RTM ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000002005 5RSU ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000002055 5RUC ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000005878 5RU1 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000034687 5RUG ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000038389 5RV4 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000039224 5RV8 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000039575 5RT1 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000039810 5RV0 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000039994 5RT4 ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000051581 5RV3 ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000057162 5RT5 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000058111 5RSN ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000064576 5RTX ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000090873 5RUH ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000123600 5RVL ; 1.36 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000149580 5RU8 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000154817 5RVP ; 1.04 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000154817 5RT6 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000156509 5RTH ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000156863 5RTY ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000157088 5RVM ; 1.03 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000157088 5RTD ; 1.04 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000157108 5RSQ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000158490 5RV6 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000158540 5RSR ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000158650 5RTS ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000159004 5RVS ; 1.52 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000159004 5RTU ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000159056 5RUK ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000161692 5RU3 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000161696 5RT8 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000161908 5RUT ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000161958 5RUL ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000163774 5RTK ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000164504 5RTW ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000164777 5RU9 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000165882 5RUN ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000194295 5RV1 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000251609 5RVH ; 0.98 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000265642 5RV2 ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000311783 5RU2 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000331715 5RSD ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000331945 5RTA ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000332540 5RUI ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000332651 5RST ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000332673 5RVN ; 1.26 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000332748 5RTJ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000332752 5RSW ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000337835 5RSV ; 1.03 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000340465 5RTL ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388056 5RUS ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388081 5RV9 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388150 5RSX ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388262 5RT9 ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388280 5RTO ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388302 5RU0 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000388514 5RTG ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000395673 5RTZ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000404062 5RUJ ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000404314 5RUU ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000438614 5RTT ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000000873830 5RU6 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001442764 5RVJ ; 1.2 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001612349 5RSB ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001674697 5RTP ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001679336 5RUO ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001683100 5RU4 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001688638 5RTV ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000001698894 5RUX ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002020050 5RTF ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002047514 5RVU ; 1.2 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002506130 5RVQ ; 1.08 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002508153 5RSP ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002560357 5RT0 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002582714 5RVT ; 1.26 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002582714 5RVK ; 1.46 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000002977810 5RU7 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000003591110 5RSC ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000003888754 5RV7 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000003954002 5RSZ ; 1.02 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000004218283 5RTI ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000004219237 5RSY ; 1.04 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000004787230 5RUP ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000004976927 5RTC ; 1.06 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000006490906 5RTB ; 1.04 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000006534965 5RSS ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000006691828 5RS9 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000007636250 5RV5 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000008578948 5RUD ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000008615114 5RT2 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000008652361 5RUM ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000008861082 5RTE ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000013283576 5RTN ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000013514509 5RVO ; 1.52 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000013514509 5RUY ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000013517187 5RVB ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000014419577 5RT7 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000015442276 5RVR ; 1.04 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000016052862 5RVA ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000016343276 5RUF ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000016989831 5RUR ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000017744334 5RTR ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000018169763 5RTQ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000019015078 5RUV ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000019015194 5RUZ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000019685960 5RVV ; 1.42 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000020269197 5RSF ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000026180281 5RUQ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000032199226 5RUA ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000033986325 5RS7 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000034618676 5RT3 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000039281982 5SOX ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000043461211 5RUW ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000045014941 5SOI ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000078036511 - (R) and (S) isomers 5RVF ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000082473428_N3 5RVI ; 0.94 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000084843283 5RSJ ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000089254160_N3 5RU5 ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000098208711 5SOR ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000110510893 5SOW ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000118179920 5SOY ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000222377450 5RSG ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000263392672 5RVD ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000263980802 5RSH ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000274438208 5SOU ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000285507655 - (R) and (S) isomers 5SOT ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000292637864 - (R) and (S) isomers 5SOK ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000302059710 - (R) isomer 5RSE ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000336438345 5RSL ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000365052868 5RSI ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000374420934 5RVG ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000400552187_N3 5SP3 ; 1.01 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000450476923 - (S,R) isomer 5SOS ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000559260078 5SP2 ; 0.97 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000579359572 - (R) and (S) isomers 5SPL ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000611664196 - (S,S) isomer 5SOJ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000642067873 - (R) isomer 5SP0 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000681764827 5RVE ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000736709772 5SOZ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000827900828 5SQT ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000833624464 - (R,R) and (S,S) isomers 5SOM ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000835985505 - (S) isomer 5SPT ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000850008207 5SPJ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000893101964 5SOV ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000893191027 - (S) and (R) isomers 5SOQ ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000896845531 - (R) isomer 5SOO ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000897286891 - (R) isomer 5RSK ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000901381520_N3 5SOL ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000910475722 - (S,R) isomer 5SON ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000920153280 - (R) isomer 5RVC ; 1.0 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC000933940912 5SQS ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC001240411747 5SOP ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC001364194305 - (R) isomer 5SPU ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC001364774273 - (S) isomer 5SP1 ; 1.03 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC001472868186 5SQ1 ; 1.05 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINC001601221314 - (S) isomer 5SSC ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCk500000doQ8X 5SSK ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCkk00000cjQyM - (R,S) isomer 5SS6 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINClf00000cdzal 5SSA ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINClv000001jcNa - (r,r) isomer 5SSD ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCm4000007vvRA - (R,S) isomer 5SSB ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCmk000007RhkC 5SSF ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCmr000000sTGN 5SSI ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCn500000bifGU 5SS0 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCn9000000uj1v 5SSJ ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCno00000broQT 5SS4 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCns000000RJoU 5SS2 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCnt000006kx7L 5SS3 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCnu000001eLaQ 5SS8 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCny000002NPIr 5SS7 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCnz000004Qo8S 5SSE ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCoD000001aHBe 5SSL ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCoj00000doMWF 5SS1 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCou000000a2Hm 5SS9 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCow000000AiWv - (R) isomer 5SS5 ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCpE000000mAwk - (S) isomer 5SSG ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCpv000006Li5M - (R,R) isomer 5SSH ; 1.15 ; PanDDA analysis group deposition -- Crystal structure of SARS-CoV-2 NSP3 macrodomain in complex with ZINCpx000006Mh4L - (S) isomer 5PWE ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 1) 5PWN ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 10) 5PZ4 ; 1.94 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 100) 5PZ5 ; 2.64 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 101) 5PZ6 ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 102) 5PZ7 ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 103) 5PZ8 ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 104) 5PZ9 ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 105) 5PZA ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 106) 5PZB ; 2.05 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 107) 5PZC ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 108) 5PZD ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 109) 5PWO ; 1.85 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 11) 5PZE ; 1.82 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 110) 5PZF ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 111) 5PZG ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 112) 5PZH ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 113) 5PZI ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 114) 5PZJ ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 115) 5PWP ; 1.51 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 13) 5PWQ ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 14) 5PWR ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 15) 5PWS ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 16) 5PWT ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 17) 5PWU ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 18) 5PWV ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 19) 5PWF ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 2) 5PWW ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 20) 5PWX ; 1.69 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 21) 5PWY ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 22) 5PWZ ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 23) 5PX0 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 24) 5PX1 ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 25) 5PX2 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 26) 5PX3 ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 27) 5PX4 ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 28) 5PX5 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 29) 5PWG ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 3) 5PX6 ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 30) 5PX7 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 31) 5PX8 ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 32) 5PX9 ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 33) 5PXA ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 34) 5PXB ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 35) 5PXC ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 36) 5PXD ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 37) 5PXE ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 38) 5PXF ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 39) 5PWH ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 4) 5PXG ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 40) 5PXH ; 2.25 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 41) 5PXI ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 42) 5PXJ ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 43) 5PXK ; 1.98 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 44) 5PXL ; 1.35 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 45) 5PXM ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 46) 5PXN ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 47) 5PXO ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 48) 5PXP ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 49) 5PWI ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 5) 5PXQ ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 50) 5PXR ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 51) 5PXS ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 52) 5PXT ; 1.4 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 53) 5PXU ; 1.76 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 54) 5PXV ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 55) 5PXW ; 2.01 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 56) 5PXX ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 57) 5PXY ; 2.14 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 58) 5PXZ ; 1.65 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 59) 5PWJ ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 6) 5PY0 ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 60) 5PY1 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 61) 5PY2 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 62) 5PY3 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 63) 5PY4 ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 64) 5PY5 ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 65) 5PY6 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 66) 5PY7 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 67) 5PY8 ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 68) 5PY9 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 69) 5PWK ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 7) 5PYA ; 1.55 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 70) 5PYB ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 71) 5PYC ; 1.87 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 72) 5PYD ; 2.02 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 73) 5PYE ; 1.81 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 74) 5PYF ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 75) 5PYG ; 1.95 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 76) 5PYH ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 77) 5PYI ; 2.29 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 78) 5PYJ ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 79) 5PWL ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 8) 5PYK ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 80) 5PYL ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 81) 5PYM ; 1.7 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 82) 5PYN ; 1.89 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 83) 5PYO ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 84) 5PYP ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 85) 5PYQ ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 86) 5PYR ; 1.94 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 87) 5PYS ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 88) 5PYT ; 2.13 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 89) 5PWM ; 1.54 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 9) 5PYU ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 90) 5PYV ; 1.94 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 91) 5PYW ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 92) 5PYX ; 1.57 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 93) 5PYY ; 1.64 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 94) 5PYZ ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 95) 5PZ0 ; 2.13 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 96) 5PZ1 ; 2.13 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 97) 5PZ2 ; 1.88 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 98) 5PZ3 ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of SP100 after initial refinement with no ligand modelled (structure 99) 5PWC ; 1.549 ; PanDDA analysis group deposition -- Crystal Structure of SP100 in complex with E48115b 5PWD ; 1.569 ; PanDDA analysis group deposition -- Crystal Structure of SP100 in complex with N09600b 5QQ6 ; 1.94 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000530a 5QQ7 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000562a 5QQ8 ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000563a 5QQ9 ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000567a 5QQA ; 2.2 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000648a 5QQB ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOOA000676a 5QQ4 ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000276a 5QPG ; 1.58 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000291a 5QPD ; 1.93 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000293a 5QPE ; 1.77 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000295a 5QPH ; 1.86 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000315a 5QPV ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000416a 5QPY ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000449a 5QPL ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000464a 5QPJ ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000465a 5QPF ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000478a 5QPM ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000500a 5QPP ; 1.48 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000512a 5QPZ ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000524a 5QPX ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000534a 5QPI ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000554a 5QPO ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000574a 5QPN ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000576a 5QPK ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000586a 5QPQ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000631a 5QPW ; 1.72 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000632a 5QPT ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000642a 5QPS ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000644a 5QQ3 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000672a 5QQ2 ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000693a 5QQ1 ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000699a 5QPU ; 1.44 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with FMOPL000733a 5QQ5 ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with PKTTA024495b 5QQ0 ; 1.6 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with XST00000046b 5QPR ; 1.67 ; PanDDA analysis group deposition -- Crystal Structure of T. cruzi FPPS in complex with XST00001145b 5R4N ; 1.28 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000061a 5R4J ; 1.39 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000280a 5R4H ; 1.18 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000287a 5R4K ; 1.17 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000292a 5R4L ; 1.13 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000349a 5R4I ; 1.28 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000443a 5R4M ; 1.11 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000513a 5R4G ; 1.25 ; PanDDA analysis group deposition -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF in complex with FMOPL000621a 5SA2 ; 1.78 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z1148747945 5SA0 ; 1.97 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z1506050651 5S9T ; 1.66 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z1614545742 5S9X ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z1899842917 5S9Y ; 1.75 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z24758179 5S9W ; 1.96 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z26769872 5S9V ; 1.9 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z2856434826 5SA3 ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z2856434874 5S9Z ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z2856434884 5S9S ; 1.8 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z2856434898 5SA1 ; 1.84 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z2856434944 5S9U ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of Trypanosoma brucei Trypanothione reductase in complex with Z32327641 7GA2 ; 2.034 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with POB0008 7GA1 ; 2.093 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with POB0128 7G9L ; 1.541 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z111782404 7GA5 ; 1.843 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z119989094 7G9Z ; 1.622 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1216822028 7G9K ; 1.551 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1262246195 5RHJ ; 1.5 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z126932614 5RHX ; 1.73 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1324080698 7G9O ; 1.931 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z133716556 5RHR ; 1.46 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1348559502 5RHO ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1444783243 5RHM ; 1.68 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1454310449 7GA6 ; 1.749 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1509711879 5RHH ; 1.59 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1515654336 7G9P ; 1.743 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1619958679 5RHU ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z1703168683 7G9T ; 1.904 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z18618496 5RHI ; 1.45 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z198194396 7GA0 ; 1.967 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z2048325751 5RHG ; 1.41 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z235341991 5RHQ ; 1.49 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z235449082 7G9Y ; 1.83 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z2678251369 5RHS ; 1.53 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z274555794 5RHP ; 1.61 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z2856434938 5RHT ; 1.63 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z291279160 5RHW ; 1.62 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z31222641 7GA3 ; 1.809 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z3241250482 7G9V ; 1.74 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z383202616 7G9R ; 1.798 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z385450668 5RHL ; 1.43 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z425387594 7G9W ; 1.855 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z444860982 7G9M ; 1.541 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z44584886 7G9U ; 1.689 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z55222357 7GA4 ; 1.749 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z56823075 7G9N ; 1.422 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z57821475 5RHV ; 1.71 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z62645406 7G9Q ; 2.131 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z751811134 7G9S ; 2.09 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z758198920 7GA7 ; 1.42 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z85933875 5RHK ; 1.52 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z87615031 7G9X ; 1.809 ; PanDDA analysis group deposition -- Crystal Structure of Zika virus NS3 Helicase in complex with Z905065822 5RBO ; 1.08 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library A07a 5RBP ; 1.05 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library B03a 5RBQ ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library B06b 5RBR ; 0.9 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library C04a 5RBS ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library C08a 5RBT ; 1.12 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library C11b 5RBU ; 1.01 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library D01a 5RBV ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library D04a 5RBW ; 0.95 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library D06b 5RBX ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library D10a 5RBY ; 1.1 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library D11b 5RBZ ; 1.14 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library E05a 5RC0 ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library E06a 5RC1 ; 1.05 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library E07a 5RC2 ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library E11b 5RC3 ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library F03a 5RC4 ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library F04a 5RC5 ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library F06b 5RC6 ; 1.18 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library F08b 5RC7 ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library F11a 5RC8 ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library G02a 5RC9 ; 1.08 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library G03b 5RCA ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library G08b 5RCB ; 0.99 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library G09a 5RCC ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library H02b 5RCD ; 1.02 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library H03a 5RCE ; 1.05 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library H05a 5RCF ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library H10b 5RCG ; 1.23 ; PanDDA analysis group deposition -- Endothiapepsin changed state model for fragment F2X-Entry Library H11a 5RDO ; 1.06 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 01 5RCH ; 1.22 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 02 5RCI ; 1.23 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 03 5RCJ ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 04 5RCK ; 0.92 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 05 5RCL ; 1.01 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 06 5RCM ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 07 5RCN ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 08 5RCO ; 1.21 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 09 5RCP ; 1.08 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 10 5RCQ ; 1.34 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 11 5RE3 ; 1.09 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 12 5RCR ; 1.05 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 13 5RCS ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 14 5RCT ; 1.01 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 15 5RCU ; 1.1 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 16 5RCV ; 0.95 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 17 5RCW ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 18 5RCX ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 19 5RCY ; 1.11 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 20 5RCZ ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 21 5RD0 ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 22 5RD1 ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 23 5RD2 ; 1.08 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 24 5RD3 ; 0.93 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 25 5RD4 ; 1.18 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 26 5RD5 ; 1.15 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 27 5RD6 ; 1.13 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 28 5RD7 ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 29 5RD8 ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 30 5RD9 ; 1.11 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 31 5RDA ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 32 5RDB ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 33 5RDC ; 1.02 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 34 5RDD ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 35 5RDE ; 1.01 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 36 5RDF ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 37 5RDG ; 1.12 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 38 5RDH ; 0.85 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 39 5RDI ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 40 5RDP ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 41 5RDQ ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 42 5RDJ ; 0.93 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 43 5RDK ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 44 5RDL ; 1.09 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 45 5RDM ; 1.01 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 46 5RDN ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 47 5RDR ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 48 5RDS ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 49 5RDT ; 1.04 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 50 5RDU ; 1.05 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 51 5RDV ; 1.08 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 52 5RDW ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 53 5RDX ; 0.98 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 54 5RDY ; 1.13 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 55 5RDZ ; 1.14 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 56 5RE0 ; 1.03 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 57 5RE1 ; 0.97 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 58 5RE2 ; 1.0 ; PanDDA analysis group deposition -- Endothiapepsin ground state model 59 5R1T ; 1.187 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry A07, DMSO-free 5R1U ; 1.039 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry B03, DMSO-free 5R1V ; 0.94 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry C04, DMSO-free 5R1W ; 1.077 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry C11, DMSO-free 5R1X ; 1.069 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry D04, DMSO-free 5R1Y ; 1.038 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry D10, DMSO-free 5R1Z ; 1.067 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry D11, DMSO-free 5R20 ; 1.009 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry E06, DMSO-free 5R21 ; 1.047 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry E07, DMSO-free 5R22 ; 1.098 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry E11, DMSO-free 5R23 ; 1.029 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry F03, DMSO-free 5R24 ; 1.19 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry F04, DMSO-free 5R25 ; 1.078 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry F08, DMSO-free 5R26 ; 1.058 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry G02, DMSO-free 5R27 ; 1.029 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry G03, DMSO-free 5R28 ; 1.019 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry G08, DMSO-free 5R29 ; 1.105 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry G09, DMSO-free 5R2A ; 1.049 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry H02, DMSO-free 5R2B ; 1.019 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry H03, DMSO-free 5R2C ; 1.184 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry H05, DMSO-free 5R2D ; 0.919 ; PanDDA analysis group deposition -- Endothiapepsin in complex with fragment F2X-Entry H11, DMSO-free 5QT1 ; 1.58 ; PanDDA analysis group deposition -- Partial occupancy interpretation of PanDDA event map: SETDB1 in complex with FMOMB000017a 5QT2 ; 1.59 ; PanDDA analysis group deposition -- Partial occupancy interpretation of PanDDA event map: SETDB1 in complex with FMOPL000074a 7FV9 ; 1.17 ; PanDDA analysis group deposition -- PHIP in complex with Z1004253138 7FVP ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z1004277578 7FVF ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z123605878 7FUY ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z1284554279 7FV6 ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z1334218055 7FVD ; 1.36 ; PanDDA analysis group deposition -- PHIP in complex with Z1424453050 7FVO ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z1435810807 7FVM ; 1.26 ; PanDDA analysis group deposition -- PHIP in complex with Z1590917771 7FVR ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z166737374 7FVI ; 1.18 ; PanDDA analysis group deposition -- PHIP in complex with Z183306756 7FUV ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z183376720 7FUX ; 1.22 ; PanDDA analysis group deposition -- PHIP in complex with Z183480798 7FV7 ; 1.25 ; PanDDA analysis group deposition -- PHIP in complex with Z1929967066 7FVN ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z371875396 7FVK ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z409964562 7FVL ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z4140355932 7FUZ ; 1.43 ; PanDDA analysis group deposition -- PHIP in complex with Z4307421429 7FV2 ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z445899798 7FUU ; 1.16 ; PanDDA analysis group deposition -- PHIP in complex with Z445977856 7FV0 ; 1.21 ; PanDDA analysis group deposition -- PHIP in complex with Z44602337 7FV4 ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z44602341 7FUT ; 1.18 ; PanDDA analysis group deposition -- PHIP in complex with Z44602357 7FUS ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z44602363 7FVE ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z488932160 7FV1 ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z4912742920 7FV3 ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z4912742924 7FVA ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z4913872963 7FVJ ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z4913873236 7FVC ; 1.18 ; PanDDA analysis group deposition -- PHIP in complex with Z495704106 7FVH ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z5067911819 7FV5 ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z606695272 7FVB ; 1.38 ; PanDDA analysis group deposition -- PHIP in complex with Z6617539657 7FVQ ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z68576046 7FUW ; 1.19 ; PanDDA analysis group deposition -- PHIP in complex with Z961579360 7FV8 ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z964297186 7FVG ; 1.15 ; PanDDA analysis group deposition -- PHIP in complex with Z992453336 5RPH ; 1.38 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen A11a 5ROQ ; 1.02 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen A12a 5ROP ; 1.64 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen A12a at Room Temperature 5RPJ ; 1.27 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen B12a 5ROL ; 1.22 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen B5a 5RP9 ; 1.48 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen B7a 5RPK ; 1.78 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen B9a 5ROF ; 1.08 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen C11a 5RP6 ; 1.17 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen C2a 5RPL ; 1.09 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen C8a 5RP7 ; 1.15 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen D12a 5RPA ; 1.25 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen E3a 5RON ; 1.22 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen E4a 5RPD ; 1.02 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen F12a 5ROR ; 1.22 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen F1a 5ROW ; 1.21 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen F6a 5RPG ; 1.5 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen H2a 5RPC ; 1.23 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen H3a 5RPM ; 1.22 ; PanDDA analysis group deposition -- Proteinase K changed state model for fragment Frag Xtal Screen H5a 5ROT ; 1.05 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo1 5RPY ; 1.09 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo10 5RP3 ; 1.09 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo14 5RPR ; 1.16 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo15 5RP2 ; 1.1 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo20 5ROY ; 1.05 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo22 5ROX ; 1.12 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo24 5RPI ; 1.03 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo26 5RPF ; 1.39 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo27 5ROI ; 1.05 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo30 5RPQ ; 1.07 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo32 5ROS ; 1.45 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo34 5RPV ; 1.1 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo35 5RP1 ; 1.11 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo36 5ROK ; 1.04 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo37 5RPE ; 1.02 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo40 5ROZ ; 1.14 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo41 5RPX ; 1.05 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo43 5RPP ; 1.08 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo44 5ROM ; 1.07 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo45 5RP8 ; 1.03 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo46 5RP5 ; 1.09 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo48 5ROG ; 1.08 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo51 5RP0 ; 1.03 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo57 5RPZ ; 1.22 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo58 5ROJ ; 1.02 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo59 5ROE ; 1.5 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo6 5RPS ; 1.04 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo60 5ROH ; 1.04 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo61 5ROV ; 1.04 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo62 5RPW ; 1.02 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo63 5RPN ; 1.02 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo64 5ROC ; 1.523 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo65 5RPU ; 1.55 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo67 5RPB ; 1.64 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo68 5RPO ; 1.5 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo7 5RP4 ; 1.05 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo70 5ROD ; 1.04 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo71 5ROU ; 1.06 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo72 5ROO ; 1.41 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo73 5RPT ; 1.98 ; PanDDA analysis group deposition -- Proteinase K crystal structure Apo9 5R8W ; 1.5 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment K00283c in complex with MAP kinase p38-alpha 5R91 ; 1.731 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL057 in complex with MAP kinase p38-alpha 5R92 ; 1.66 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL063 in complex with MAP kinase p38-alpha 5R93 ; 1.489 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL077 in complex with MAP kinase p38-alpha 5R94 ; 1.45 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL081 in complex with MAP kinase p38-alpha 5R95 ; 1.59 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL093 in complex with MAP kinase p38-alpha 5R96 ; 1.767 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment KCL095 in complex with MAP kinase p38-alpha 5R8Z ; 1.65 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N01381c in complex with MAP kinase p38-alpha 5R8U ; 1.48 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N05703b in complex with MAP kinase p38-alpha 5RA8 ; 1.78 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N05711b in complex with MAP kinase p38-alpha 5R9O ; 1.6 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N06122b in complex with MAP kinase p38-alpha 5R9Q ; 1.645 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N07422b in complex with MAP kinase p38-alpha 5RA9 ; 1.68 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N08051b in complex with MAP kinase p38-alpha 5R8Y ; 1.679 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N08078b in complex with MAP kinase p38-alpha 5RA1 ; 1.61 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N08141b in complex with MAP kinase p38-alpha 5RA2 ; 1.57 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N09036b in complex with MAP kinase p38-alpha 5R8V ; 1.479 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N09139b in complex with MAP kinase p38-alpha 5RA3 ; 1.57 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N10836b in complex with MAP kinase p38-alpha 5R90 ; 1.619 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11145a in complex with MAP kinase p38-alpha 5RA5 ; 1.54 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11302a in complex with MAP kinase p38-alpha 5RA4 ; 1.59 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11337a in complex with MAP kinase p38-alpha 5RA6 ; 1.86 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11338a in complex with MAP kinase p38-alpha 5RA7 ; 1.92 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11351a in complex with MAP kinase p38-alpha 5R8X ; 1.73 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N11396a in complex with MAP kinase p38-alpha 5R9R ; 1.76 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13413a in complex with MAP kinase p38-alpha 5R9M ; 1.809 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13418a in complex with MAP kinase p38-alpha 5R9N ; 1.688 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13421a in complex with MAP kinase p38-alpha 5RA0 ; 1.91 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13421a in complex with MAP kinase p38-alpha 5R9P ; 1.72 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13430a in complex with MAP kinase p38-alpha 5R9S ; 1.7 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13470a in complex with MAP kinase p38-alpha 5R9U ; 1.67 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13475a in complex with MAP kinase p38-alpha 5R9T ; 1.8 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13477a in complex with MAP kinase p38-alpha 5R9Z ; 1.66 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13502a in complex with MAP kinase p38-alpha 5R9V ; 1.45 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13596a in complex with MAP kinase p38-alpha 5R9W ; 1.89 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13598a in complex with MAP kinase p38-alpha 5R9X ; 1.72 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13611a in complex with MAP kinase p38-alpha 5R99 ; 1.89 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13619a in complex with MAP kinase p38-alpha 5R9Y ; 1.57 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13619a in complex with MAP kinase p38-alpha 5R97 ; 1.438 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13662a in complex with MAP kinase p38-alpha 5R9E ; 1.775 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13693a in complex with MAP kinase p38-alpha 5R9F ; 1.986 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13724a in complex with MAP kinase p38-alpha 5R9A ; 1.53 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13838a in complex with MAP kinase p38-alpha 5R9B ; 1.657 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N13866a in complex with MAP kinase p38-alpha 5R9C ; 1.74 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N14074a in complex with MAP kinase p38-alpha 5R98 ; 1.68 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N14109a in complex with MAP kinase p38-alpha 5R9J ; 1.52 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N14231a in complex with MAP kinase p38-alpha 5R9K ; 1.498 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N14246a in complex with MAP kinase p38-alpha 5R9L ; 1.47 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment N14274a in complex with MAP kinase p38-alpha 5R9G ; 1.73 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment PC587 in complex with MAP kinase p38-alpha 5R9D ; 1.69 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment S00888c in complex with MAP kinase p38-alpha 5R9H ; 1.49 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment TCJ658 in complex with MAP kinase p38-alpha 5R9I ; 1.813 ; PanDDA analysis group deposition Form1 MAP kinase p38-alpha -- Fragment TCJ795 in complex with MAP kinase p38-alpha 5R8H ; 1.5 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z111716368 in complex with INTERLEUKIN-1 BETA 5R8G ; 1.43 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1259086950 in complex with INTERLEUKIN-1 BETA 5R85 ; 1.44 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1262246195 in complex with INTERLEUKIN-1 BETA 5R8A ; 1.47 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1492796719 in complex with INTERLEUKIN-1 BETA 5R88 ; 1.48 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1545313172 in complex with INTERLEUKIN-1 BETA 5R8D ; 1.47 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1745658474 in complex with INTERLEUKIN-1 BETA 5R8M ; 1.39 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1818332938 in complex with INTERLEUKIN-1 BETA 5R8O ; 1.42 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1881545321 in complex with INTERLEUKIN-1 BETA 5R8L ; 1.56 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z1891773393 in complex with INTERLEUKIN-1 BETA 5R8B ; 1.49 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z2027049478 in complex with INTERLEUKIN-1 BETA 5R8I ; 1.47 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z210803634 in complex with INTERLEUKIN-1 BETA 5R89 ; 1.65 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z217038356 in complex with INTERLEUKIN-1 BETA 5R8F ; 1.41 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z2377835233 in complex with INTERLEUKIN-1 BETA 5R8Q ; 1.23 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z2643472210 in complex with INTERLEUKIN-1 BETA 5R8C ; 1.54 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z30857828 in complex with INTERLEUKIN-1 BETA 5R8J ; 1.62 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z355728146 in complex with INTERLEUKIN-1 BETA 5R8K ; 1.47 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z355728146 in complex with INTERLEUKIN-1 BETA 5R87 ; 1.47 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z44592329 in complex with INTERLEUKIN-1 BETA 5R8N ; 1.48 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z57292400 in complex with INTERLEUKIN-1 BETA 5R8E ; 1.35 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z57475877 in complex with INTERLEUKIN-1 BETA 5R8P ; 1.53 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z818727262 in complex with INTERLEUKIN-1 BETA 5R86 ; 1.5 ; PanDDA analysis group deposition INTERLEUKIN-1 BETA -- Fragment Z943693514 in complex with INTERLEUKIN-1 BETA 5RL0 ; 1.69 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-2 (Mpro-x3110) 5RL2 ; 1.48 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-26 (Mpro-x3115) 5RL1 ; 1.65 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-27 (Mpro-x3113) 5RL4 ; 1.53 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-3 (Mpro-x3124) 5RL5 ; 1.58 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-30 (Mpro-x3359) 5RL3 ; 1.51 ; PanDDA analysis group deposition of computational designs of SARS-CoV-2 main protease covalent inhibitors -- Crystal Structure of SARS-CoV-2 main protease in complex with LON-WEI-adc59df6-39 (Mpro-x3117) 5R4F ; 1.44 ; PanDDA analysis group deposition of ground-state model of ATAD2 5R4O ; 1.05 ; PanDDA analysis group deposition of ground-state model of BROMODOMAIN OF HUMAN NUCLEOSOME-REMODELING FACTOR SUBUNIT BPTF 5RW1 ; 1.52 ; PanDDA analysis group deposition of ground-state model of DHTKD1 5R7X ; 1.44 ; PanDDA analysis group deposition of ground-state model of Human JMJD1B 5RKZ ; 1.38 ; PanDDA analysis group deposition of ground-state model of human NUDT22 screened against the DSPL fragment library by X-ray Crystallography 5R7W ; 1.27 ; PanDDA analysis group deposition of ground-state model of INTERLEUKIN-1 BETA 5QU9 ; 2.0 ; PanDDA analysis group deposition of ground-state model of Kalirin/Rac1 screened against a customized urea fragment library by X-ray Crystallography at the XChem facility of Diamond Light Source beamline I04-1 5RJI ; 1.24 ; PanDDA analysis group deposition of ground-state model of PHIP 5SDS ; 1.91 ; PanDDA analysis group deposition of ground-state model of Porphyromonas gingivalis DPP11 7FRS ; 1.83 ; PanDDA analysis group deposition of ground-state model of PTP1B 7FRT ; 1.86 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster 1 7FRU ; 1.98 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster 2 7GTW ; 1.51 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster1 7GU4 ; 1.59 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster11 7GU5 ; 1.52 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster12 7GU6 ; 1.56 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster14 7GU7 ; 1.7 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster15 7GU8 ; 1.59 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster16 7GU9 ; 1.53 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster17 7GUA ; 1.63 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster18 7GUB ; 1.94 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster19 7GTX ; 1.51 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster2 7GUC ; 1.78 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster20 7GTY ; 1.54 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster3 7GTZ ; 1.6 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster5 7GU0 ; 1.66 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster6 7GU1 ; 1.59 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster7 7GU2 ; 1.8 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster8 7GU3 ; 1.74 ; PanDDA analysis group deposition of ground-state model of PTP1B, using pre-clustering, cluster9 5ROB ; 1.87 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 helicase 5R8T ; 1.27 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 main protease screened against DSI poised (Enamine), Fraglites and Peplites (Newcastle university), Mini Frags (Astex), York 3D (York university), electrophile cysteine covalent (Weizman institute) fragment libraries 5SBF ; 1.64 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 NendoU 5SMK ; 1.65 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 NSP14 5S73 ; 1.06 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 Nsp3 macrodomain 5S74 ; 0.96 ; PanDDA analysis group deposition of ground-state model of SARS-CoV-2 Nsp3 macrodomain 5RHY ; 1.36 ; PanDDA analysis group deposition of ground-state model of Zika Virus NS3 Helicase 5QIB ; 1.48 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with FMOPL000388a 5QIG ; 1.42 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z1407672867 5QID ; 1.45 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z1787627869 5QIH ; 1.33 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z2697514548 5QIE ; 1.34 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z2856434894 5QIC ; 1.34 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z30620520 5QIF ; 1.2 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of HAO1 in complex with Z31792168 5QHS ; 1.95 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FF000014a 5QHK ; 1.61 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000010a 5QHO ; 1.66 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000010a 5QHI ; 1.73 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000271a 5QHL ; 1.68 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000551a 5QHP ; 2.06 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000554a 5QHQ ; 1.96 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000574a 5QHN ; 1.73 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000622a 5QHR ; 1.68 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000635a 5QHJ ; 1.68 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with FMOPL000709a 5QHM ; 1.79 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human FAM83B in complex with OX-145 5QI2 ; 1.08 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000110a 5QIA ; 1.14 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000242a 5QHX ; 1.11 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000278a 5QHW ; 1.12 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000347a 5QI0 ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000352a 5QHZ ; 1.15 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000385a 5QHY ; 1.17 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000462a 5QI1 ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000474a 5QI3 ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000475a 5QI7 ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000506a 5QI5 ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMOPL000633a 5QHU ; 1.05 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of human PARP14 Macrodomain 3 in complex with FMSOA000341b 5QK9 ; 1.56 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z102895082 5QK5 ; 1.63 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1267773786 5QK0 ; 1.44 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1270312110 5QK8 ; 1.71 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1271660837 5QK6 ; 1.51 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1343633025 5QJN ; 1.77 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1439422127 5QJA ; 1.64 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1497321453 5QJP ; 1.5 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1578665941 5QJ6 ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1614545742 5QJZ ; 1.52 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1696822287 5QJB ; 1.66 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1787627869 5QJ4 ; 1.89 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1827602749 5QJI ; 1.69 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1899842917 5QK7 ; 1.66 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z1918536193 5QJW ; 1.57 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z198194396 5QK1 ; 1.49 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z2027049478 5QJR ; 1.62 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z220816104 5QKA ; 1.55 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z2377835233 5QK3 ; 1.71 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z239136710 5QJD ; 1.61 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z240297434 5QJJ ; 1.71 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z24758179 5QJE ; 1.75 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z275181224 5QJV ; 1.61 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z281802060 5QJX ; 1.73 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z2856434778 5QJ8 ; 1.76 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z2856434829 5QJ7 ; 1.56 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z32327641 5QJM ; 1.75 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z328695024 5QJK ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z373221060 5QJH ; 2.03 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z375990520 5QJG ; 1.57 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z44567722 5QK4 ; 1.62 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z44590919 5QJF ; 1.63 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z52425517 5QK2 ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z54628578 5QJQ ; 1.55 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z56791867 5QJL ; 1.66 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z56983806 5QJO ; 1.98 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z57292369 5QJC ; 1.47 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z755044716 5QJ9 ; 1.85 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z768399682 5QJU ; 1.77 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z906021418 5QJY ; 1.77 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z94597856 5QJT ; 1.62 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z969560582 5QJS ; 1.58 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT5 in complex with Z979145504 5QGR ; 1.96 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000022a 5QGL ; 2.27 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000275a 5QGH ; 1.82 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000420a 5QGS ; 1.55 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000476a 5QGT ; 1.97 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000609a 5QGK ; 1.81 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000679a 5QGG ; 1.91 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000693a 5QGJ ; 1.95 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000706a 5QGI ; 1.95 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000710a 5QGU ; 1.71 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with FMOPL000747a 5QHG ; 1.92 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NU000442a 5QHH ; 1.52 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NU000443a 5QGW ; 1.94 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000154 5QGX ; 1.61 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000155 5QGY ; 1.72 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000158 5QGZ ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000161 5QH0 ; 1.57 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000180 5QH1 ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000181 5QH2 ; 1.74 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000188 5QH3 ; 1.65 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000191 5QH7 ; 1.74 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000194a 5QH4 ; 1.67 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000220a 5QH5 ; 1.85 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000224a 5QH6 ; 2.0 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000259a 5QHF ; 1.67 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with NUOOA000301a 5QGM ; 1.96 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with OX-160 5QGN ; 1.95 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with OX-210 5QGO ; 1.82 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with OX-220 5QGP ; 2.09 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with OX-221 5QGQ ; 1.95 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with OX-65 5QH8 ; 1.75 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with PCM-0102558 5QH9 ; 1.72 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with PCM-0102716 5QHA ; 1.57 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with PCM-0102951 5QHB ; 1.57 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with RK4-332 5QHC ; 2.21 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with RK4-337 5QHE ; 1.74 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with RK4-350 5QGV ; 1.59 ; PanDDA analysis group deposition of models with modelled events (e.g. bound ligands) -- Crystal Structure of NUDT7 in complex with UNUYB062989 5SMN ; 1.36 ; PanDDA analysis group deposition of SARS-CoV-2 main protease ligands identified from single sequence-guideddeep generative framework -- Crystal structure of SARS-CoV-2 main protease in complex with Z1365651030 (Mpro-IBM0078) 5SMM ; 1.58 ; PanDDA analysis group deposition of SARS-CoV-2 main protease ligands identified from single sequence-guideddeep generative framework -- Crystal structure of SARS-CoV-2 main protease in complex with Z1633315555 (Mpro-IBM0058) 5SML ; 1.53 ; PanDDA analysis group deposition of SARS-CoV-2 main protease ligands identified from single sequence-guideddeep generative framework -- Crystal structure of SARS-CoV-2 main protease in complex with Z68337194 (Mpro-IBM0045) 5RHB ; 1.43 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Cov_HetLib030 (Mpro-x2097) 5RHC ; 1.58 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Cov_HetLib053 (Mpro-x2119) 5RG1 ; 1.65 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with NCL-00024905 5RG2 ; 1.63 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with NCL-00025058 5RG3 ; 1.58 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with NCL-00025412 5RGM ; 2.04 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102142 (Mpro-x0708) 5RGO ; 1.74 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102248 (Mpro-x0736) 5RGP ; 2.07 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102628 (Mpro-x0771) 5RGN ; 1.86 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102759 (Mpro-x0731) 5RGL ; 1.76 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PCM-0102962 (Mpro-x0705) 5RHF ; 1.76 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PG-COV-34 (Mpro-x2754) 5RHE ; 1.56 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with PG-COV-42 (Mpro-x2052) 5RHD ; 1.57 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with SF013 (Mpro-x2193) 5RH2 ; 1.827 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1129289650 (Mpro-x2646) 5RGS ; 1.72 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1259086950 (Mpro-x1163) 5RH3 ; 1.69 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1264525706 (Mpro-x2649) 5RH0 ; 1.916 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1286870272 (Mpro-x2608) 5RGK ; 1.43 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1310876699 (Mpro-x0426) 5RGZ ; 1.52 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1343543528 (Mpro-x2600) 5RGX ; 1.69 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1344037997 (Mpro-x2572) 5RGJ ; 1.34 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1401276297 (Mpro-x0425) 5RHA ; 1.51 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z147647874 (Mpro-x2779) 5RH4 ; 1.34 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1530425063 (Mpro-x2659) 5RGY ; 1.976 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1535580916 (Mpro-x2581) 5RGH ; 1.7 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1619978933 (Mpro-x0395) 5RGQ ; 2.15 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z1849009686 (Mpro-x1086) 5RH1 ; 1.96 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2010253653 (Mpro-x2643) 5RGG ; 2.26 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z2856434890 (Mpro-x0165) 5RGR ; 1.41 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z328695024 (Mpro-x1101) 5RGI ; 1.57 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z369936976 (Mpro-x0397) 5RH9 ; 1.91 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4438424255 (Mpro-x2776) 5RH5 ; 1.72 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4439011520 (Mpro-x2694) 5RH7 ; 1.71 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4439011584 (Mpro-x2705) 5RH6 ; 1.6 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4439011588 (Mpro-x2703) 5RGT ; 2.22 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4439011607 (Mpro-x2540) 5RGW ; 1.43 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4444621910 (Mpro-x2569) 5RH8 ; 1.81 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4444621965 (Mpro-x2764) 5RGV ; 1.82 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4444622066 (Mpro-x2563) 5RGU ; 2.108 ; PanDDA analysis group deposition SARS-CoV-2 main protease fragment screen -- Crystal Structure of SARS-CoV-2 main protease in complex with Z4444622180 (Mpro-x2562) 2PTA ; ; PANDINUS TOXIN K-A (PITX-KA) FROM PANDINUS IMPERATOR, NMR, 20 STRUCTURES 8FEM ; 2.34 ; Panicum vigratum Dihydroflavonol 4-reductase complexed with NADP 8FEN ; 2.55 ; Panicum vigratum Dihydroflavonol 4-reductase complexed with NADP and DHQ 6X4J ; 2.3 ; PANK3 complex structure with compound PZ-2863 6X4K ; 2.1 ; PANK3 complex structure with compound PZ-2890 6PE6 ; 1.6 ; PANK3 complex structure with compound PZ-3022 6X4L ; 2.0 ; PANK3 complex structure with compound PZ-3565 7UE5 ; 1.63 ; PANK3 complex structure with compound PZ-3741 7UE6 ; 1.74 ; PANK3 complex structure with compound PZ-3802 7UE3 ; 1.56 ; PANK3 complex structure with compound PZ-3804 7UE4 ; 1.94 ; PANK3 complex structure with compound PZ-3855 7UEP ; 2.0 ; PANK3 complex structure with compound PZ-3860 7UE7 ; 1.55 ; PANK3 complex structure with compound PZ-3883 7UE8 ; 2.01 ; PANK3 complex structure with compound PZ-3890 7UEO ; 1.8 ; PANK3 complex structure with compound PZ-3977 7UEQ ; 1.7 ; PANK3 complex structure with compound PZ-4061 7UER ; 1.7 ; PANK3 complex structure with compound PZ-4071 7UEX ; 1.9 ; PANK3 complex structure with compound PZ-4127 7UEY ; 1.7 ; PANK3 complex structure with compound PZ-4128 7UET ; 1.9 ; PANK3 complex structure with compound PZ-4140 7UEV ; 1.8 ; PANK3 complex structure with compound PZ-4200 7UES ; 1.8 ; PANK3 complex structure with compound PZ-4202 7UEU ; 2.0 ; PANK3 complex structure with compound PZ-4215 6B3V ; 1.601 ; PANK3 complex with compound PZ-2891 5KPZ ; 2.4 ; PANK3-ADP-PhosphoPantothenate complex 5KQ8 ; 2.002 ; PANK3-AMPPN complex 5KPT ; 2.301 ; PANK3-AMPPNP complex 5KPR ; 1.827 ; PANK3-AMPPNP-Pantothenate complex 5KQD ; 2.6 ; PANK3:Palmitoyl-CoA complex 3Q10 ; 1.83 ; Pantoate-beta-alanine ligase from Yersinia pestis 3Q12 ; 1.58 ; Pantoate-beta-alanine ligase from Yersinia pestis in complex with pantoate. 3UNV ; 1.54 ; Pantoea agglomerans Phenylalanine Aminomutase 6TGF ; 2.55 ; Pantoea stewartii WceF is a glycan biofilm modifying enzyme with a bacteriophage tailspike-like parallel beta-helix fold 4NE2 ; 1.9 ; Pantothenamide-bound Pantothenate Kinase from Klebsiella pneumoniae 4NB4 ; 2.25 ; Pantothenamide-bound Pantothenate kinase from Staphylococcus aureus 2ZS8 ; 2.8 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) co-crystallized with ADP 2GET ; 2.35 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with a coenzyme A derivative, Form-I (LT) 2GES ; 2.4 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with a coenzyme A derivative, Form-I (RT) 2GEV ; 2.35 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with a coenzyme A derivative, Form-II (LT) 2GEU ; 2.9 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with a coenzyme A derivative, Form-II (RT) 2ZS9 ; 2.7 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with ADP and Pantothenate 2ZSA ; 2.5 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with ADP and Phosphopantothenate 2ZSB ; 2.75 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with ADP, obtained through soaking of native enzyme crystals with the ligand 3AF2 ; 2.3 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with AMPPCP 2ZSE ; 2.5 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with AMPPCP and Pantothenate 2ZSF ; 2.8 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with ATP and ADP 2ZS7 ; 2.65 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with citrate anion 2ZSD ; 2.5 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with Coenzyme A 3AF1 ; 2.5 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with GDP 3AF0 ; 2.5 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with GDP and Pantothenate 3AEZ ; 2.2 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with GDP and Phosphopantothenate 3AF4 ; 2.6 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with GMPPCP 3AF3 ; 2.35 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with GMPPCP and Pantothenate 3AVQ ; 3.0 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with N9-Pan 3AVO ; 2.55 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with Pantothenate 3AVP ; 2.6 ; Pantothenate kinase from Mycobacterium tuberculosis (MtPanK) in complex with Pantothenol 4MQ6 ; 1.7 ; Pantothenate synthase in complex with 2-(5-methoxy-2-(tosylcarbamoyl)-1H-indol-1-yl)acetic acid 4DDK ; 1.75 ; Pantothenate synthetase in complex with 1,3-benzodioxole-5-carboxylic acid 4FZJ ; 1.63 ; Pantothenate synthetase in complex with 1,3-DIMETHYL-1H-THIENO[2,3-C]PYRAZOLE-5-CARBOXYLIC ACID 4DDM ; 1.83 ; Pantothenate synthetase in complex with 2,1,3-benzothiadiazole-5-carboxylic acid 4DDH ; 2.07 ; Pantothenate synthetase in complex with 6-methoxy-1-benzofuran-3-yl acetic acid 4DE5 ; 2.25 ; Pantothenate synthetase in complex with fragment 6 4EFK ; 1.7 ; Pantothenate synthetase in complex with N,N-DIMETHYLTHIOPHENE-3-SULFONAMIDE 4G5F ; 2.33 ; Pantothenate synthetase in complex with racemate (2S)-2,3-DIHYDRO-1,4-BENZODIOXINE-2-CARBOXYLIC ACID and (2R)-2,3-DIHYDRO-1,4-BENZODIOXINE-2-CARBOXYLIC ACID 6QHK ; 1.96 ; PAO-linked dimer of the catalytic domain of the human ubiquitin-conjugating enzyme UBE2S 7VA2 ; 2.3 ; PaOrn Oligoribonuclease D11A mutant with product GMP complex structure 7VA6 ; 2.1 ; PaOrn Oligoribonuclease D11A mutant with RNA GU complex structure 7VA3 ; 1.8 ; PaOrn Oligoribonuclease D11A mutant with substrate pGpG complex structure 7V9Z ; 1.85 ; PaOrn Oligoribonuclease native structure 8A8K ; 3.1 ; PAP phosphatase from Methanothermococcus thermolithotrophicus refined to 3.1 A 2MG0 ; ; PAP262-270 in SDS micelles 6AEF ; 2.16 ; PapA2 acyl transferase 6TCX ; 1.65 ; Papain bound to a natural cysteine protease inhibitor from Streptomyces mobaraensis 7SDR ; 2.72 ; Papain-Like Protease of SARS CoV-2 in Complex with Jun9-72-2 Inhibitor 7RZC ; 2.04 ; Papain-Like Protease of SARS CoV-2 in complex with Jun9-84-3 inhibitor 7SGW ; 1.95 ; Papain-Like Protease of SARS CoV-2 in complex with PLP_Snyder630 inhibitor 8G62 ; 2.17 ; Papain-Like Protease of SARS CoV-2 in complex with remodilin NCGC 390004 7SQE ; 2.0 ; Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with Jun9-84-3 inhibitor 7SGU ; 1.79 ; Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with PLP_Snyder608 inhibitor 7SGV ; 2.0 ; Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with PLP_Snyder630 inhibitor 6I5Z ; 3.0 ; Papaver somniferum O-methyltransferase 6I5Q ; 3.05 ; Papaver somniferum O-methyltransferase 1 6I6K ; 1.49 ; Papaver somniferum O-methyltransferase 1 6I6L ; 1.29 ; Papaver somniferum O-methyltransferase 1 6I6M ; 1.2 ; Papaver somniferum O-methyltransferase 1 6I6N ; 1.5 ; Papaver somniferum O-methyltransferase 1 5K93 ; 2.7 ; PapD wild-type chaperone 1PDK ; 2.4 ; PAPD-PAPK CHAPERONE-PILUS SUBUNIT COMPLEX FROM E.COLI P PILUS 1J8S ; 2.1 ; PAPG ADHESIN RECEPTOR BINDING DOMAIN-UNBOUND FORM 8A7E ; 5.02 ; PAPP-A dimer in complex with its inhibitor STC2 8A8O ; 1.45 ; PAPS reductase from Methanothermococcus thermolithotrophicus refined to 1.45 A 2O8V ; 3.0 ; PAPS reductase in a covalent complex with thioredoxin C35A 1N4F ; 1.78 ; Para-Arsanilate Derivative of Hen Egg-White Lysozyme 6YOK ; 1.25 ; Para-Carborane di-propyl-sulfonamide in complex with CA IX mimic 6YO4 ; 1.7 ; Para-Carborane propyl-sulfonamide in complex with CA IX mimic 7R6U ; 1.55 ; Paracoccidioides americana Pb03 Calcium Binding Protein 1 (Cbp1) 3C75 ; 2.5 ; Paracoccus versutus methylamine dehydrogenase in complex with amicyanin 7R2X ; 3.35 ; Paradendryphiella salina PL8 mannuronate-specific alginate lyase 1HIQ ; ; PARADOXICAL STRUCTURE AND FUNCTION IN A MUTANT HUMAN INSULIN ASSOCIATED WITH DIABETES MELLITUS 1Z4Y ; 2.6 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) (pH 8.0) 1Z4V ; 2.3 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) with ligand DANA (soaked with DANA, pH 7.0) 1Z4W ; 2.7 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) with ligand DANA (soaked with DANA, pH8.0) 1Z50 ; 2.8 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) with ligand DANA (soaked with sialic acid, pH 8.0) 1Z4Z ; 2.5 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) with ligand DANA(soaked with sialic acid, pH7.0)) 1Z4X ; 2.5 ; Parainfluenza Virus 5 (SV5) Hemagglutinin-Neuraminidase (HN) with ligand Sialyllactose (soaked with Sialyllactose, pH8.0) 6V85 ; 4.38 ; Parainfluenza virus 5 L-P complex 6V86 ; 4.63 ; Parainfluenza virus 5 L-P complex with an alternate conformation of the CD-MTase-CTD module 6YY4 ; ; Parallel 17-mer DNA G-quadruplex 272D ; 2.0 ; PARALLEL AND ANTIPARALLEL (G.GC)2 TRIPLE HELIX FRAGMENTS IN A CRYSTAL STRUCTURE 2CCE ; 1.9 ; Parallel Configuration of pLI E20S 7EUC ; ; Parallel G-quadruplex structure 5XAX ; 2.903 ; Parallel homodimer structures of the extracellular domains of the voltage-gated sodium channel beta4 subunit explain its role in cell-cell adhesion 5XAW ; 2.101 ; Parallel homodimer structures of voltage-gated sodium channel beta4 for cell-cell adhesion 2M1G ; ; Parallel human telomeric quadruplex containing 2'F-ANA substitutions 7PNE ; ; Parallel Q-D hybrid with 3' duplex stem-loop as a lateral snapback loop 4AH9 ; 1.7 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 4AHR ; 1.9 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 4AHS ; 1.75 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 4AHT ; 1.8 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 4AHU ; 1.9 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 4AHV ; 1.8 ; Parallel screening of a low molecular weight compound library: do differences in methodology affect hit identification 2MB2 ; ; parallel-stranded G-quadruplex in DNA poly-G stretches 2K9C ; ; Paramagnetic shifts in solid-state NMR of Proteins to elicit structural information 2XY8 ; ; Paramagnetic-based NMR structure of the complex between the N- terminal epsilon domain and the theta domain of the DNA polymerase III 3QB8 ; 1.5 ; Paramecium Chlorella Bursaria Virus1 Putative ORF A654L is a Polyamine Acetyltransferase 1SVF ; 1.4 ; PARAMYXOVIRUS SV5 FUSION PROTEIN CORE 8D52 ; 2.02 ; Parathyroid hormone 1 receptor extracellular domain complexed with a peptide ligand containing (2-naphthyl)-beta-3-homoalanine 8D51 ; 2.0 ; Parathyroid hormone 1 receptor extracellular domain complexed with a peptide ligand containing beta-3-homotryptophan 7UZO ; 1.3 ; Parathyroid hormone 1 receptor extracellular domain complexed with a peptide ligand containing one beta-amino acid 7UZP ; 2.29 ; parathyroid hormone 1 receptor extracellular domain complexed with a peptide ligand containing three beta-amino acids 8C24 ; 2.1 ; ParDE1 toxin-antitoxin complex from Mycobacterium tuberculosis (rv1960c-rv1959c) 8C26 ; 2.35 ; ParDE2 toxin-antitoxin complex from Mycobacterium tuberculosis (rv2142A-rv2142c) 7CMP ; 2.886 ; parE in complex with AMPPNP 2HU3 ; 1.3 ; Parent Structure of Hen Egg White Lysozyme grown in acidic pH 4.8. Refinement for comparison with crosslinked molecules of lysozyme 4E07 ; 2.9 ; ParF-AMPPCP-C2221 form 7PA3 ; 1.42 ; PARK7 with covalent inhibitor JYQ-88 7PA2 ; 1.21 ; PARK7 with inhibitor 8RK64 1ZGS ; 2.5 ; Parkia platycephala seed lectin in complex with 5-bromo-4-chloro-3-indolyl-a-D-mannose 5C23 ; 2.37 ; Parkin (S65DUblR0RBR) 5C1Z ; 1.79 ; Parkin (UblR0RBR) 6HUE ; 2.85 ; ParkinS65N 7US2 ; 2.76 ; PARL-cleaved Skd3 (human ClpB) E455Q Nucleotide Binding Domain hexamer bound to ATPgammaS, open conformation 5AI7 ; ; ParM doublet model 2ZHC ; 23.0 ; ParM filament 1MWM ; 2.0 ; ParM from plasmid R1 ADP form 1MWK ; 2.3 ; ParM from plasmid R1 APO form 4A61 ; 2.0 ; ParM from plasmid R1 in complex with AMPPNP 4A62 ; 2.2 ; ParM from R1 plasmid in complex with peptide from C-terminus of ParR 2ZGY ; 1.9 ; PARM with GDP 2ZGZ ; 2.25 ; PARM with GMPPNP 1A3M ; ; PAROMOMYCIN BINDING INDUCES A LOCAL CONFORMATIONAL CHANGE IN THE A SITE OF 16S RRNA, NMR, 20 STRUCTURES 4ZC7 ; 3.041 ; Paromomycin bound to a leishmanial ribosomal A-site 2LE0 ; ; PARP BRCT Domain 2RCW ; 2.8 ; PARP complexed with A620223 2RD6 ; 2.3 ; PARP complexed with A861695 3GN7 ; 2.5 ; PARP complexed with A861696 3L3L ; 2.5 ; PARP complexed with A906894 3L3M ; 2.5 ; PARP complexed with A927929 3GJW ; 2.3 ; PARP complexed with A968427 4L6S ; 2.2 ; PARP complexed with benzo[1,4]oxazin-3-one inhibitor 7ONR ; 2.05 ; PARP1 catalytic domain in complex with 8-chloroquinazolinone-based inhibitor (compound 9) 7ONT ; 1.853 ; PARP1 catalytic domain in complex with a selective pyridine carboxamide-based inhibitor (compound 22) 7ONS ; 1.97 ; PARP1 catalytic domain in complex with isoquinolone-based inhibitor (compound 16) 7R3L ; 2.0 ; PARP14 catalytic domain in complex with OUL40 5O2D ; 1.6 ; PARP14 Macrodomain 2 with inhibitor 7F41 ; 1.39721 ; PARP15 catalytic domain in complex with 3-AMINOBENZAMIDE 6RY4 ; 1.95 ; PARP15 catalytic domain in complex with 4-(3-carbamoylphenoxy)benzamide. 7F42 ; 1.41 ; PARP15 catalytic domain in complex with Iniparib 7F43 ; 1.62 ; PARP15 catalytic domain in complex with Niraparib 7OSP ; 1.44 ; PARP15 catalytic domain in complex with OUL113 7R4A ; 1.9 ; PARP15 catalytic domain in complex with OUL188 7OSS ; 1.5 ; PARP15 catalytic domain in complex with OUL194 7OSX ; 1.6 ; PARP15 catalytic domain in complex with OUL205 7Z1V ; 1.5 ; PARP15 catalytic domain in complex with OUL208 7Z41 ; 2.1 ; PARP15 catalytic domain in complex with OUL209 7OTF ; 1.3 ; PARP15 catalytic domain in complex with OUL213 7Z2O ; 1.5 ; PARP15 catalytic domain in complex with OUL215 7PW3 ; 1.4 ; PARP15 catalytic domain in complex with OUL217 7PWL ; 2.0 ; PARP15 catalytic domain in complex with OUL218 7OTH ; 1.7 ; PARP15 catalytic domain in complex with OUL219 7OUW ; 1.6 ; PARP15 catalytic domain in complex with OUL220 7PWP ; 2.1 ; PARP15 catalytic domain in complex with OUL221 7PWW ; 2.15 ; PARP15 catalytic domain in complex with OUL224 7OUX ; 1.95 ; PARP15 catalytic domain in complex with OUL228 7Z2Q ; 2.0 ; PARP15 catalytic domain in complex with OUL232 7R5D ; 2.15 ; PARP15 catalytic domain in complex with OUL234 7PWA ; 1.6 ; PARP15 catalytic domain in complex with OUL237 7PWC ; 1.5 ; PARP15 catalytic domain in complex with OUL238 7PWK ; 1.8 ; PARP15 catalytic domain in complex with OUL239 7PWQ ; 1.7 ; PARP15 catalytic domain in complex with OUL240 7PX6 ; 1.65 ; PARP15 catalytic domain in complex with OUL241 7PX7 ; 1.6 ; PARP15 catalytic domain in complex with OUL242 7Z1Y ; 1.75 ; PARP15 catalytic domain in complex with OUL245 7Z1W ; 1.9 ; PARP15 catalytic domain in complex with OUL246 7PWM ; 1.35 ; PARP15 catalytic domain in complex with OUL252 7PWR ; 1.6 ; PARP15 catalytic domain in complex with OUL254 7PWS ; 1.8 ; PARP15 catalytic domain in complex with OUL255 7PWU ; 1.9 ; PARP15 catalytic domain in complex with OUL256 7R3O ; 2.2 ; PARP15 catalytic domain in complex with OUL40 7OQQ ; 2.0 ; PARP15 catalytic domain in complex with TIQ-A 6EK3 ; 1.6 ; PARP15 CATALYTIC DOMAIN MUTANT (Y598L) IN COMPLEX WITH OUL35 7R59 ; 2.0 ; PARP2 catalytic domain in complex with OUL245 8SWZ ; 3.0 ; PARP4 ART domain bound to EB47 8SWY ; 2.55 ; PARP4 ART domain bound to NADH 8SX1 ; 4.2 ; PARP4 catalytic domain 8SX2 ; 2.95 ; PARP4 catalytic domain bound to EB47 2JD3 ; 2.8 ; ParR from plasmid pB171 6D0H ; 1.5 ; ParT: Prs ADP-ribosylating toxin bound to cognate antitoxin ParS 6D0I ; 1.55 ; ParT: Prs ADP-ribosylating toxin bound to cognate antitoxin ParS. L48M ParT, SeMet-substituted complex. 2LJ9 ; ; Partial 3d structure of the c-terminal part of the free arabidopsis thaliana cp12-2 in its oxidized form 8G99 ; 2.8 ; Partial auto-inhibitory complex of Xenopus laevis DNA polymerase alpha-primase 7N8X ; 3.4 ; Partial C. difficile TcdB and CSPG4 fragment 7KFT ; 3.4 ; Partial Cas6-RT-Cas1--Cas2 complex 7EPR ; 2.2 ; Partial Consensus L-threonine 3-dehydrogenase (C-Change) 7EPS ; 2.102 ; Partial Consensus L-threonine 3-dehydrogenase (E-change) 8A7D ; 3.06 ; Partial dimer complex of PAPP-A and its inhibitor STC2 8G9N ; 3.5 ; Partial DNA elongation subcomplex of Xenopus laevis DNA polymerase alpha-primase 8UCU ; 2.85 ; Partial DNA termination subcomplex of Xenopus laevis DNA polymerase alpha-primase 1QD7 ; 5.5 ; PARTIAL MODEL FOR 30S RIBOSOMAL SUBUNIT 7K1V ; 4.6 ; Partial open state of Mycobacterium tuberculosis zinc metalloprotease 1 4N6V ; 1.8 ; Partial rotational order disorder structure of human stefin B 1DV4 ; 4.5 ; PARTIAL STRUCTURE OF 16S RNA OF THE SMALL RIBOSOMAL SUBUNIT FROM THERMUS THERMOPHILUS 4KYD ; 2.21 ; Partial Structure of the C-terminal domain of the HPIV4B phosphoprotein, fused to MBP. 4KYE ; 2.6 ; Partial Structure of the C-terminal domain of the HPIV4B phosphoprotein, fused to MBP. 6ZZU ; 3.5 ; Partial structure of the substrate-free tyrosine hydroxylase (apo-TH). 6ZN2 ; 4.3 ; Partial structure of tyrosine hydroxylase in complex with dopamine showing the catalytic domain and an alpha-helix from the regulatory domain involved in dopamine binding. 7PIM ; 4.6 ; Partial structure of tyrosine hydroxylase lacking the first 35 residues in complex with dopamine. 7VTB ; 2.0 ; Partially closed conformation of talaropentaene synthase cyclase domain 2J25 ; 2.9 ; Partially deglycosylated glucoceramidase 8OR4 ; 3.8 ; Partially dissociated CAND1-CUL1-RBX1-SKP1-SKP2-CKS1-CDK2 6ZOA ; 3.05 ; Partially induced AcrB T protomer and DDM binding to the TM8/PC2 pathway of AcrB L2 protomer 4JA3 ; 3.8 ; Partially occluded inward open conformation of the xylose transporter XylE from E. coli 1ULX ; 2.0 ; Partially photolyzed structure of CO-bound heme-heme oxygenase complex 1YUZ ; 1.4 ; Partially Reduced State of Nigerythrin 1MFZ ; 2.8 ; Partially refined 2.8 A Crystal structure of GDP-mannose dehydrogenase from P. aeruginosa 6RGI ; 2.64 ; Partially unfolded cytochrome c in complex with sulfonatocalix[6]arene 8SR4 ; 3.12 ; particulate methane monooxygeanse treated with potassium cyanide and copper reloaded 8SQW ; 2.16 ; particulate methane monooxygenase crosslinked with 2,2,2-trifluoroethanol bound 8SR1 ; 2.18 ; particulate methane monooxygenase crosslinked with 4,4,4-trifluorobutanol bound 8SR2 ; 2.36 ; particulate methane monooxygenase incubated with 4,4,4-trifluorobutanol 8SR5 ; 3.22 ; particulate methane monooxygenase potassium cyanide treated 8OYI ; 2.19 ; particulate methane monooxygenase with 2,2,2-trifluoroethanol bound 3EZ9 ; 2.8 ; Partition Protein 3EZF ; 2.8 ; Partition Protein 3EZ7 ; 2.92 ; Partition Protein Apo form in space group I4122 3EZ2 ; 2.05 ; Partition protein-ADP complex 1B8C ; 2.0 ; PARVALBUMIN 1B8R ; 1.9 ; PARVALBUMIN 1B9A ; 2.0 ; PARVALBUMIN (MUTATION;D51A, F102W) 1DNV ; 3.6 ; PARVOVIRUS (DENSOVIRUS) FROM GALLERIA MELLONELLA 4DPV ; 2.9 ; PARVOVIRUS/DNA COMPLEX 3A0S ; 1.47 ; PAS domain of histidine kinase ThkA (TM1359) 3A0V ; 1.7 ; PAS domain of histidine kinase ThkA (TM1359) (SeMet, F486M/F489M) 6TC7 ; 2.13 ; PAS-GAF bidomain of Glycine max phytochromeA 4Y5F ; 1.7 ; PAS-GAF fragment from Deinococcus radiodurans BphP assembled with BV - Y307S, high dose 4Y3I ; 1.69 ; PAS-GAF fragment from Deinococcus radiodurans BphP assembled with BV - Y307S, low dose 6T3U ; 2.21 ; PAS-GAF fragment from Deinococcus radiodurans phytochrome 1ps after photoexcitation 6T3L ; 2.07 ; PAS-GAF fragment from Deinococcus radiodurans phytochrome in dark state 5NOD ; 1.9 ; PASTA subunit 4 of Streptococcus pneumoniae STKP crystallized with PEG and succinate 4UVQ ; 1.724 ; PatG Domain of Unknown Function 4AKS ; 2.19 ; PatG macrocyclase domain 4AKT ; 2.63 ; PatG macrocyclase in complex with peptide 8ACX ; 1.9 ; Pathogen effector of Zymoseptoria tritici: Zt-KP4 7XVI ; 3.11 ; pathogen effectors which are essential to cause plant disease by manipulating cellular processes in the host 7UQO ; 1.75 ; Pathogenesis related 10-10 (S)-tetrahydropapaverine complex 7UQL ; 1.9 ; Pathogenesis related 10-10 app from 7UQN ; 1.7 ; Pathogenesis related 10-10 noscapine complex 7UQM ; 1.8 ; Pathogenesis related 10-10 papaverine complex 1AUN ; 1.8 ; PATHOGENESIS-RELATED PROTEIN 5D FROM NICOTIANA TABACUM 8Q1S ; 3.23 ; Pathogenic mutations of human phosphorylation sites affect protein-protein interactions 6XSD ; 2.54 ; Patient-derived B2GPI 4MIX ; 1.8 ; PaToxG Glycosyltransferase 8BXL ; 2.4 ; Patulin Synthase from Penicillium expansum 5KN4 ; 1.99 ; Pavine N-methyltransferase apoenzyme pH 6.0 5KPC ; 2.5 ; Pavine N-methyltransferase H206A mutant in complex with S-adenosylmethionine pH 6 5KPG ; 1.6 ; Pavine N-methyltransferase in complex with S-adenosylhomocysteine pH 7 5KOC ; 2.293 ; Pavine N-methyltransferase in complex with S-adenosylmethionine pH 7 5KOK ; 1.792 ; Pavine N-methyltransferase in complex with Tetrahydropapaverine and S-adenosylhomocysteine pH 7.25 6AZG ; ; PawL-Derived Peptide PLP-10 (cis conformer) 6AZF ; ; PawL-Derived Peptide PLP-10 (trans conformer) 6AWK ; ; PawL-Derived Peptide PLP-12 6AXI ; ; PawL-Derived Peptide PLP-2 6AWM ; ; PawL-Derived Peptide PLP-4 1K78 ; 2.25 ; Pax5(1-149)+Ets-1(331-440)+DNA 6EK4 ; 2.8 ; PaxB from Photorhabdus luminescens 1OW8 ; 2.85 ; Paxillin LD2 motif bound to the Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 1OW6 ; 2.35 ; Paxillin LD4 motif bound to the Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 1OW7 ; 2.6 ; Paxillin LD4 motif bound to the Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase 4NJ6 ; 2.4 ; PB1 Domain of AtARF7 4NJ7 ; 3.0 ; PB1 Domain of AtARF7 - SeMet Derivative 5JUN ; 2.69 ; PB2 bound to an azaindole inhibitor 5JUR ; 2.93 ; PB2 bound to an azaindole inhibitor 5LHX ; 1.53 ; PB3 Domain of Drosophila melanogaster PLK4 (Sak) 5LHY ; 3.31 ; PB3 Domain of Human PLK4 (apo) 5LHZ ; 2.51 ; PB3 Domain of Human PLK4 in Complex with Coiled-Coil Domain of STIL 1M4X ; 28.0 ; PBCV-1 virus capsid, quasi-atomic model 8CKD ; 1.6 ; PBP AccA from A. fabrum C58 in complex with agrocinopine D-like 8C6W ; 2.8 ; PBP AccA from A. tumefaciens Bo542 in apoform 1 8C6Y ; 1.901 ; PBP AccA from A. tumefaciens Bo542 in apoform 2 8C75 ; 1.673 ; PBP AccA from A. tumefaciens Bo542 in apoform 3 8C6R ; 1.884 ; PBP AccA from A. tumefaciens Bo542 in apoform 4 8CAW ; 1.256 ; PBP AccA from A. tumefaciens Bo542 in complex with agrocin84 8CAY ; 1.626 ; PBP AccA from A. tumefaciens Bo542 in complex with Agrocinopine D-like 8CB9 ; 1.79 ; PBP AccA from A. tumefaciens Bo542 in complex with D-Glucose-2-phosphate 4ZE8 ; 1.72 ; PBP AccA from A. tumefaciens C58 4ZEC ; 2.15 ; PBP AccA from A. tumefaciens C58 in complex with agrocin 84 4ZEB ; 1.89 ; PBP AccA from A. tumefaciens C58 in complex with agrocinopine A 4ZED ; 1.75 ; PBP AccA from A. tumefaciens C58 in complex with agrocinopine-3'-O-benzoate 4RA1 ; 1.75 ; PBP AccA from A. tumefaciens C58 in complex with D-Glucose-2-phosphate 4ZEK ; 2.09 ; PBP AccA from A. tumefaciens C58 in complex with L-arabinose-2-isopropylphosphate 4ZEI ; 2.3 ; PBP AccA from A. tumefaciens C58 in complex with L-arabinose-2-phosphate 8CJU ; 1.349 ; PBP AccA from A. vitis S4 in complex with agrocin84 8CH1 ; 1.496 ; PBP AccA from A. vitis S4 in complex with Agrocinopine A 8CH3 ; 1.398 ; PBP AccA from A. vitis S4 in complex with Agrocinopine C-like 8CHC ; 1.679 ; PBP AccA from A. vitis S4 in complex with Agrocinopine D-like 8CI6 ; 1.199 ; PBP AccA from A. vitis S4 in complex with D-glucose-2-phosphate (G2P) 8CH2 ; 1.404 ; PBP AccA from A. vitis S4 in complex with L-arabinose-2-phosphate (A2P) 8CKE ; 1.298 ; PBP AccA from A.tumefaciens C58 in complex with agrocinopine A in space group I222 8CKO ; 1.421 ; PBP AccA from A.tumefaciens C58 in complex with agrocinopine C-like 8CDO ; 1.32 ; PBP AccA-F144YG440Q from A. tumefaciens Bo542 in complex with agrocinopine C-like 8C6U ; 1.843 ; PBP AccA-G145YG440Q mutant from A. tumefaciens Bo542 in apoform 4 1K25 ; 3.2 ; PBP2x from a Highly Penicillin-resistant Streptococcus pneumoniae Clinical Isolate 1RP5 ; 3.0 ; PBP2x from Streptococcus pneumoniae strain 5259 with reduced susceptibility to beta-lactam antibiotics 7Y4L ; 3.3 ; PBS of PBS-PSII-PSI-LHCs from Porphyridium purpureum. 1B72 ; 2.35 ; PBX1, HOMEOBOX PROTEIN HOX-B1/DNA TERNARY COMPLEX 4MGQ ; 1.68 ; PbXyn10C CBM APO 2KE3 ; ; PC1/3 DCSG sorting domain in CHAPS 2KDT ; ; PC1/3 DCSG sorting domain structure in DPC 6IXW ; 3.253 ; pCBH ParM non-polymerisable quadruple mutant 2JZX ; ; PCBP2 KH1-KH2 domains 7A67 ; 3.18 ; Pcc1Pcc2 complex 7UQW ; 1.5 ; PCC6803 Cyanophycinase S132DAP covalently bound to cyanophycin dimer 4ZM7 ; 0.701 ; PcCel45A N105D mutatnt at cryo condition 4G8Z ; 1.75 ; pcDHFR K37S/F69N double mutant TMP NADPH ternary complex 4IXG ; 1.7 ; pcDHFR-268-K37S-N69F variant 4IXF ; 1.7 ; pcDHFR-269 F69N variant 4IXE ; 1.54 ; pcDHFR-NADPH-270 6MEQ ; 2.9 ; PcdhgB3 EC1-4 in 50 mM HEPES 6MER ; 3.0 ; PcdhgB3 EC1-4 in 50 mM HEPES 1GY3 ; 2.7 ; pCDK2/cyclin A in complex with MgADP, nitrate and peptide substrate 5M8Z ; 1.659 ; PCE reductive dehalogenase from S. multivorans in complex with 2,3-difluorophenol 5M8X ; 1.869 ; PCE reductive dehalogenase from S. multivorans in complex with 2,4,5-trichlorophenol 5M2G ; 1.8 ; PCE reductive dehalogenase from S. multivorans in complex with 2,4,6-tribromophenol 5MA1 ; 2.498 ; PCE reductive dehalogenase from S. multivorans in complex with 2,4,6-trichlorophenol 5M92 ; 1.785 ; PCE reductive dehalogenase from S. multivorans in complex with 2,4-dibromophenol 5M91 ; 1.719 ; PCE reductive dehalogenase from S. multivorans in complex with 2,6-dibromophenol 5MA0 ; 1.9 ; PCE reductive dehalogenase from S. multivorans in complex with 2,6-dichlorophenol 5M90 ; 1.599 ; PCE reductive dehalogenase from S. multivorans in complex with 3,4,5-trifluorophenol 5MAA ; 1.686 ; PCE reductive dehalogenase from S. multivorans in complex with 3-bromophenol 5M8Y ; 1.857 ; PCE reductive dehalogenase from S. multivorans in complex with 3-chlorophenol 5M8U ; 1.9 ; PCE reductive dehalogenase from S. multivorans in complex with 4-bromophenol 5M8W ; 2.279 ; PCE reductive dehalogenase from S. multivorans in complex with 4-chlorophenol 5MA2 ; 1.879 ; PCE reductive dehalogenase from S. multivorans in complex with 4-iodophenol 5OBI ; 1.599 ; PCE reductive dehalogenase from S. multivorans with 5-METHOXYBENZIMIDAZOLYL-NORCOBAMIDE cofactor 5OBP ; 1.593 ; PCE reductive dehalogenase from S. multivorans with 6-hydroxybenzimidazolyl norcobamide cofactor 4PZ7 ; 2.109 ; PCE1 guanylyltransferase 4PZ6 ; 2.406 ; PCE1 guanylyltransferase bound to SER2/SER5 phosphorylated RNA pol II CTD 4PZ8 ; 3.1 ; PCE1 guanylyltransferase bound to SPT5 CTD 6QEQ ; 1.9 ; PcfF from Enterococcus faecalis pCF10 4HPL ; 2.0 ; PCGF1 Ub fold (RAWUL)/BCOR PUFD Complex 4HPM ; 1.85 ; PCGF1 Ub fold (RAWUL)/BCORL1 PUFD Complex 4S3O ; 2.0 ; PCGF5-RING1B-UbcH5c complex 3T5X ; 2.123 ; PCID2:DSS1 Structure 8A6U ; 1.65 ; PcIDS1 in complex with Mg2+ 8A7A ; 1.6 ; PcIDS1 in complex with Mg2+ and 3-Br-GPP 8A70 ; 2.1 ; PcIDS1 in complex with Mg2+ and GPP 8A6V ; 1.9 ; PcIDS1 in complex with Mg2+ and IPP 8A7L ; 1.85 ; PcIDS1 in complex with Mg2+, GPP, and ZOL 8A7C ; 1.2 ; PcIDS1 in complex with Mg2+, IPP, and ZOL 8A7K ; 1.3 ; PcIDS1 in complex with Mg2+/Mn2+, IPP, and ZOL 8A73 ; 1.6 ; PcIDS1 in complex with Mn2+ and GPP 8A6Z ; 2.4 ; PcIDS1 in complex with Mn2+ and IPP 8A7J ; 1.2 ; PcIDS1 in complex with Mn2+, IPP, and ZOL 8A7B ; 1.65 ; PcIDS1_D319N in complex with Mg2+ and 3-Br-GPP 8A74 ; 1.9 ; PcIDS1_F315A in complex with Mg2+ and GPP 8A78 ; 1.6 ; PcIDS1_F315A in complex with Mg2+/Mn2+ and GPP 8A7U ; 1.55 ; PcIDS1_F315D in complex with Mg2+ and GPP 8A7R ; 2.0 ; PcIDS1_I420A in complex with Mg2+ and GPP 7KQ0 ; 2.4 ; PCNA bound to peptide mimetic 7M5M ; 3.0 ; PCNA bound to peptide mimetic 7M5L ; 3.0 ; PCNA bound to peptide mimetic with linker 7M5N ; 3.11 ; PCNA bound to peptide mimetic with linker 7KQ1 ; 3.3 ; PCNA bound to truncated peptide mimetic 6QCG ; 3.4 ; PCNA complex with Cdt1 N-terminal PIP-box peptide 6QC0 ; 3.5 ; PCNA complex with Cdt2 C-terminal PIP-box peptide 8Q7I ; 1.95 ; PCNA from Chaetomium thermophilum in complex with Fen1 peptide 8P9O ; 2.45 ; PCNA from Chaetomium thermophilum in complex with PolD3 peptide 7O1F ; 2.45 ; PCNA from Chaetomium thermophilum in complex with PolD4 PIP peptide 7N5I ; 1.95 ; PCNA from Thermococcus gammatolerans: crystal I, collection 1, 1.95 A, 5.22 MGy 7N5J ; 2.82 ; PCNA from Thermococcus gammatolerans: crystal I, collection 5, 2.82 A, 89.1 MGy 7N5K ; 1.98 ; PCNA from Thermococcus gammatolerans: crystal II, collection 1, 1.98 A, 3.84 MGy 7N5L ; 3.07 ; PCNA from Thermococcus gammatolerans: crystal II, collection 20, 3.07 A, 77.0 MGy 7N5M ; 2.0 ; PCNA from Thermococcus gammatolerans: crystal III, collection 1, 2.00 A, 1.91 MGy 7N5N ; 2.2 ; PCNA from Thermococcus gammatolerans: crystal III, collection 15, 2.20 A, 28.7 MGy 6CBI ; 2.75 ; PCNA in complex with inhibitor 5V7K ; 3.05 ; PCNA mutant D41A/D42A Protein Defective in Gene Silencing 5V7M ; 1.93 ; PCNA mutant L126A/I128A Protein Defective in Gene Silencing 5V7L ; 3.201 ; PCNA mutant R61A/D63A Protein Defective in Gene Silencing 4RNS ; 2.7 ; PcpR inducer binding domain (apo-form) 4RPO ; 1.95 ; PcpR inducer binding domain (Complex with 2,4,6-trichlorophenol) 4RPN ; 2.272 ; PcpR inducer binding domain complex with pentachlorophenol 4NAE ; 2.0 ; PcrB from Geobacillus kaustophilus, with bound G1P 6CYF ; 2.78 ; PcrV fragment with bound Fab 5VL7 ; 3.5 ; PCSK9 complex with Fab33 5VLP ; 2.9 ; PCSK9 complex with LDLR antagonist peptide and Fab7G7 7KEV ; 2.8 ; PCSK9 in complex with a cyclic peptide LDLR disruptor 6U36 ; 2.7 ; PCSK9 in complex with a Fab and compound 14 6U38 ; 2.73 ; PCSK9 in complex with a Fab and compound 8 6U26 ; 1.53 ; PCSK9 in complex with compound 16 7S5G ; 2.041 ; PCSK9 in complex with compound 19 6U3X ; 2.64 ; PCSK9 in complex with compound 2 6U2N ; 2.15 ; PCSK9 in complex with compound 4 6U2P ; 2.04 ; PCSK9 in complex with compound 5 4NE9 ; 2.6 ; PCSK9 in complex with LDLR peptide 7KFA ; 2.45 ; PCSK9 in complex with PCSK9i a 13mer cyclic peptide LDLR disruptor 3SQO ; 2.7 ; PCSK9 J16 Fab complex 6XIB ; 1.546 ; PCSK9(deltaCRD) in complex with cyclic peptide 30 7S5H ; 1.272 ; PCSK9(deltaCRD) in complex with cyclic peptide 35 6XIC ; 1.377 ; PCSK9(deltaCRD) in complex with cyclic peptide 40 6XID ; 1.482 ; PCSK9(deltaCRD) in complex with cyclic peptide 51 6XIE ; 1.43 ; PCSK9(deltaCRD) in complex with cyclic peptide 77 6XIF ; 1.774 ; PCSK9(deltaCRD) in complex with cyclic peptide 83 4NMX ; 1.85 ; PCSK9(deltaCRD) in complex with phage-derived inhibitory peptide 2-8 2W2P ; 2.62 ; PCSK9-deltaC D374A mutant bound to WT EGF-A of LDLR 2W2Q ; 2.33 ; PCSK9-deltaC D374H mutant bound to WT EGF-A of LDLR 2W2O ; 2.62 ; PCSK9-deltaC D374Y mutant bound to WT EGF-A of LDLR 6U2F ; 2.94 ; PCSK9-Fab 7G7 complex bound to cis-1-amino-4-phenylcyclohexaneacyl-WNLK(hR)IGLLR - NH2 3BPS ; 2.41 ; PCSK9:EGF-A complex 3GCX ; 2.7 ; PCSK9:EGFA (pH 7.4) 3GCW ; 2.7 ; PCSK9:EGFA(H306Y) 5OCA ; 2.3 ; PCSK9:Fab Complex with Dextran Sulfate 5UZW ; 2.82 ; PCY1 G696Insertion Variant in Complex with Follower Peptide and the Covalent Inhibitor ZPP 5UW5 ; 2.94 ; PCY1 H695A Variant in Complex with Follower Peptide 5UW3 ; 1.96 ; PCY1 in Complex with Follower Peptide 5UW6 ; 3.3 ; PCY1 in Complex with Follower Peptide and Covalent Inhibitor ZPP 5UW7 ; 2.37 ; PCY1 Y481F Variant in Complex with Follower Peptide 5C3T ; 1.8 ; PD-1 binding domain from human PD-L1 8AS0 ; 3.5 ; PD-1 extracellular domain in complex with Fab fragment from D12 antibody 7WSL ; 1.534 ; PD-1 in complex with Dostarlimab 5GGR ; 3.3 ; PD-1 in complex with nivolumab Fab 5GGS ; 1.997 ; PD-1 in complex with pembrolizumab Fab 6NM7 ; 2.426 ; PD-L1 IgV domain bound to fragment 6NNV ; 1.92 ; PD-L1 IgV domain complex with macro-cyclic peptide 6NOJ ; 2.33 ; PD-L1 IgV domain V76T with fragment 6NOS ; 2.701 ; PD-L1 IgV domain V76T with fragment 6NP9 ; 1.27 ; PD-L1 IgV domain V76T with fragment 5X8L ; 3.1 ; PD-L1 in complex with atezolizumab 5GGT ; 2.8 ; PD-L1 in complex with BMS-936559 Fab 5X8M ; 2.661 ; PD-L1 in complex with durvalumab 8EQ6 ; 1.65 ; PD1 signaling receptor bound to FAB Complex 1PDT ; ; PD235, PNA-DNA DUPLEX, NMR, 8 STRUCTURES 7WBN ; ; PDB structure of RevCC 6E0H ; 4.05 ; PDB: afTMEM16 reconstituted in nanodiscs in the presence of Ca2+ 5ZQ4 ; 2.217 ; PDE-Ubi-ADPr 5ZQ3 ; 2.182 ; PDE-Ubiquitin 5C1W ; 1.7 ; PDE10 complexed with 4,6-dichloro-2-cyclopropyl-5-methyl-pyrimidine 4ZO5 ; 2.5 ; PDE10 complexed with 4-isopropoxy-2-(2-(3-(4-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)isoindoline-1,3-dione 5DH4 ; 2.2 ; PDE10 complexed with 5-chloro-N-[(2,4-dimethylthiazol-5-yl)methyl]pyrazolo[1,5-a]pyrimidin-7-amine 5C29 ; 2.05 ; PDE10 complexed with 6-chloro-2-cyclopropyl-5-methyl-N-propyl-pyrimidin-4-amine 5C28 ; 1.56 ; PDE10 complexed with 6-chloro-2-cyclopropyl-5-methyl-pyrimidin-4-amine 5C2A ; 2.0 ; PDE10 complexed with 6-chloro-2-cyclopropyl-N-[(2,4-dimethylthiazol-5-yl)methyl]-5-methyl-pyrimidin-4-amine 5C2H ; 2.09 ; PDE10 complexed with 6-chloro-N-[(2,4-dimethylthiazol-5-yl)methyl]-5-methyl-2-[3-(2-quinolyl)propoxy]pyrimidin-4-amine 5DH5 ; 2.0 ; PDE10 complexed with N-[(1-methylpyrazol-4-yl)methyl]-5-[[(1S,2S)-2-(2-pyridyl)cyclopropyl]methoxy]pyrazolo[1,5-a]pyrimidin-7-amine 5C2E ; 2.1 ; PDE10 complexed with6-chloro-N-[(2,4-dimethylthiazol-5-yl)methyl]-5-methyl-2-[2-(2-pyridyl)ethoxy]pyrimidin-4-amine 4DDL ; 2.07 ; PDE10a Crystal Structure Complexed with Novel Inhibitor 4AEL ; 2.2 ; PDE10A in complex with the inhibitor AZ5 5K9R ; 2.7 ; PDE10a with imidazopyrazine inhibitor 5W6E ; 1.9 ; PDE1b complexed with compound 3S 5U7D ; 1.75 ; PDE2 catalytic domain complexed with inhibitors 5U7I ; 2.0 ; PDE2 catalytic domain complexed with inhibitors 5U7J ; 1.9 ; PDE2 catalytic domain complexed with inhibitors 5U7K ; 2.06 ; PDE2 catalytic domain complexed with inhibitors 5U7L ; 2.38 ; PDE2 catalytic domain complexed with inhibitors 6BLF ; 2.11 ; PDE2 complexed with 2-[6-fluoro-8-methylsulfonyl-9-[(1R)-1-[4-(trifluoromethyl)phenyl]ethyl]-1,2,3,4-tetrahydrocarbazol-1-yl]acetic acid 6B98 ; 1.97 ; PDE2 in complex with compound 1 6CYC ; 1.54 ; PDE2 in complex with compound 5 6CYB ; 1.62 ; PDE2 in complex with compound 7 6CYD ; 1.69 ; PDE2 in complex with compound 7 6EZF ; 1.5 ; PDE2 in complex with molecule 5 4D08 ; 1.9 ; PDE2a catalytic domain in complex with a brain penetrant inhibitor 4D09 ; 2.5 ; PDE2a catalytic domain in complex with a brain penetrant inhibitor 4NW7 ; 2.15 ; PDE4 catalytic domain 4WCU ; 2.35 ; PDE4 complexed with inhibitor 5K1I ; 2.61 ; PDE4 crystal structure in complex with small molecule inhibitor 8OEG ; 1.89 ; PDE4B bound to MAPI compound 92a 3O0J ; 1.95 ; PDE4B In complex with ligand an2898 4W1O ; 2.2 ; PDE4D complexed with inhibitor 5K32 ; 1.99 ; PDE4D crystal structure in complex with small molecule inhibitor 5JO3 ; 1.49 ; PDE5A for NaV1.7 6X88 ; 3.19974 ; PDE6 chicken GAF domain 4PM0 ; 2.1 ; PDE7A catalytic domain in complex with 2-(Cyclopentylamino)thieno[3,2-d]pyrimidin-4(3H)-one derivative 3G3N ; 2.4 ; PDE7A catalytic domain in complex with 3-(2,6-difluorophenyl)-2-(methylthio)quinazolin-4(3H)-one 6VNA ; 2.2 ; Pden_1323 7QW4 ; 3.1 ; Pden_5119 protein 1ICJ ; 1.9 ; PDF PROTEIN IS CRYSTALLIZED AS NI2+ CONTAINING FORM, COCRYSTALLIZED WITH INHIBITOR POLYETHYLENE GLYCOL (PEG) 4QCI ; 2.3 ; PDGF-B blocking antibody bound to PDGF-BB 2L6W ; ; PDGFR beta-TM 6V0L ; ; PDGFR-b Promoter Forms a G-Vacancy Quadruplex that Can be Complemented by dGMP: Molecular Structure and Recognition of Guanine Derivatives and Metabolites 8PQH ; 2.5 ; PDGFRA T674I mutant kinase domain in complex with avapritinib 8PQI ; 2.6 ; PDGFRA T674I mutant kinase domain in complex with avapritinib derivative 9 8PQJ ; 1.82 ; PDGFRA wild-type kinase domain 3IOP ; 2.2 ; PDK-1 in complex with the inhibitor Compound-8i 3ION ; 2.4 ; PDK1 in complex with Compound 8h 3QC4 ; 1.8 ; PDK1 in complex with DFG-OUT inhibitor xxx 3NAY ; 2.6 ; PDK1 in complex with inhibitor MP6 3NAX ; 1.75 ; PDK1 in complex with inhibitor MP7 3ORZ ; 1.9995 ; PDK1 mutant bound to allosteric disulfide fragment activator 2A2 3OTU ; 2.1013 ; PDK1 mutant bound to allosteric disulfide fragment activator JS30 3ORX ; 2.2044 ; PDK1 mutant bound to allosteric disulfide fragment inhibitor 1F8 4Q2O ; 2.1 ; PDLIM4 PDZ in Complex with a Phage-Derived Peptide 3NGK ; 2.2608 ; PduA from Salmonella enterica Typhimurium 4RBV ; 3.1 ; PduA K26A S40GSG mutant, from Salmonella enterica serovar Typhimurium LT2 4RBT ; 2.3 ; PduA K26A S40L mutant, from Salmonella enterica serovar Typhimurium LT2 4RBU ; 2.79 ; PduA K26A S40Q mutant, from Salmonella enterica serovar Typhimurium LT2 4PPD ; 2.4 ; PduA K26A, crystal form 2 5D6V ; 1.5 ; PduJ K25A mutant, from Salmonella enterica serovar Typhimurium LT2, PduJ mutant 3N79 ; 1.5 ; PduT C38S Mutant from Salmonella enterica Typhimurium 7LB6 ; 3.16 ; PDX1.2/PDX1.3 co-expression complex 6HX3 ; 2.0 ; PDX1.2/PDX1.3 complex 6HXG ; 1.9 ; PDX1.2/PDX1.3 complex (intermediate) 6HYE ; 2.53 ; PDX1.2/PDX1.3 complex (PDX1.3:K97A) 5K2Z ; 1.8 ; PDX1.3-adduct (Arabidopsis) 1R8K ; 2.1 ; PDXA PROTEIN; NAD-DEPENDENT DEHYDROGENASE/CARBOXYLASE; SUBUNIT OF PYRIDOXINE PHOSPHATE BIOSYNTHETIC PROTEIN PDXJ-PDXA [SALMONELLA TYPHIMURIUM] 4WXZ ; 2.7 ; PdxS (G. stearothermophilus) co-crystallized with R5P 4WY0 ; 2.3 ; PdxS (G. stearothermophilus) co-crystallized with R5P in the presence of ammonia. 6X1X ; 1.198 ; PDZ domain from choanoflagellate GIPC (mbGIPC) 6X20 ; 1.402 ; PDZ domain from choanoflagellate GIPC (mbGIPC) bound to B1AR peptide 6X22 ; 1.402 ; PDZ domain from choanoflagellate GIPC (mbGIPC) bound to GAIP peptide 6X23 ; 2.154 ; PDZ domain from choanoflagellate SHANK1 (mbSHANK1) bound to GIRK3 peptide 3PS4 ; 1.85 ; PDZ domain from Human microtubule-associated serine/threonine-protein kinase 1 5OVP ; 1.5 ; PDZ domain from rat Shank3 bound to the C terminus of CIRL 5OVC ; 1.55 ; PDZ domain from rat Shank3 bound to the C terminus of GKAP 5OVV ; 1.4 ; PDZ domain from rat Shank3 bound to the C terminus of ProSAPiP1 6EXJ ; 1.8 ; PDZ domain from rat Shank3 bound to the C terminus of somatostatin receptor subtype 2 2LOB ; ; PDZ Domain of CAL (Cystic Fibrosis Transmembrane Regulator-Associated Ligand) 2I4S ; 1.92 ; PDZ domain of EpsC from Vibrio cholerae, residues 204-305 2I6V ; 1.63 ; PDZ domain of EpsC from Vibrio cholerae, residues 219-305 1WFG ; ; PDZ domain of human RIM2B 1ZOK ; ; PDZ1 Domain Of Synapse Associated Protein 97 1KEF ; ; PDZ1 of SAP90 1VJ6 ; ; PDZ2 from PTP-BL in complex with the C-terminal ligand from the APC protein 5E1Y ; 1.011 ; PDZ2 of LNX2 at 277K, model with alternate conformations 5E21 ; 1.011 ; PDZ2 of LNX2 at 277K,single conformer model 7QCT ; 3.197 ; PDZ2 of LNX2 with SARS-CoV-2_E PBM complex 1TP3 ; 1.99 ; PDZ3 domain of PSD-95 protein complexed with KKETPV peptide ligand 6EZI ; 1.50332 ; PDZK1 domain 4 in complex with C-terminal peptide of human PepT2. 4AF7 ; 2.85 ; PEA FNR C266M MUTANT 4AF6 ; 2.9 ; PEA FNR L268V MUTANT 1QFY ; 1.8 ; PEA FNR Y308S MUTANT IN COMPLEX WITH NADP+ 1QFZ ; 1.7 ; PEA FNR Y308S MUTANT IN COMPLEX WITH NADPH 1QGA ; 2.0 ; PEA FNR Y308W MUTANT IN COMPLEX WITH NADP+ 1OFS ; 1.8 ; Pea lectin-sucrose complex 2BHW ; 2.5 ; PEA LIGHT-HARVESTING COMPLEX II AT 2.5 ANGSTROM RESOLUTION 2PEL ; 2.25 ; PEANUT LECTIN 1V6O ; 3.0 ; Peanut lectin complexed with 10mer peptide (PVRIWSSATG) 1BZW ; 2.7 ; PEANUT LECTIN COMPLEXED WITH C-LACTOSE 6VAV ; 1.85 ; Peanut lectin complexed with divalent N-beta-D-galactopyranosyl-L-succinamoyl derivative (diNGS) 6V95 ; 1.78 ; Peanut lectin complexed with divalent N-beta-D-galactopyranosyl-L-tartaramidoyl derivative (diNGT) 6VGF ; 1.83 ; Peanut lectin complexed with divalent S-beta-D-thiogalactopyranosyl beta-D-glucopyranoside derivative (diSTGD) 1QF3 ; 2.8 ; PEANUT LECTIN COMPLEXED WITH METHYL-BETA-GALACTOSE 1CIW ; 2.7 ; PEANUT LECTIN COMPLEXED WITH N-ACETYLLACTOSAMINE 6VAW ; 1.75 ; Peanut lectin complexed with N-beta-D-galactopyranosyl-L-succinamoyl derivative (NGS) 6VC3 ; 1.95 ; Peanut lectin complexed with S-beta-D-thiogalactopyranosyl 6-deoxy-6-S-propynyl-beta-D-glucopyranoside (STG) 6VC4 ; 1.9 ; Peanut lectin complexed with S-beta-D-Thiogalactopyranosyl beta-D-glucopyranoside derivative (STGD) 2TEP ; 2.5 ; PEANUT LECTIN COMPLEXED WITH T-ANTIGENIC DISACCHARIDE 1V6M ; 2.7 ; Peanut Lectin with 9mer peptide (IWSSAGNVA) 1V6N ; 3.5 ; Peanut lectin with 9mer peptide (PVIWSSATG) 1V6J ; 2.9 ; peanut lectin-lactose complex crystallized in orthorhombic form at acidic pH 1V6I ; 2.15 ; Peanut lectin-lactose complex in acidic pH 1V6L ; 2.5 ; Peanut lectin-lactose complex in the presence of 9mer peptide (PVIWSSATG) 1V6K ; 2.4 ; Peanut lectin-lactose complex in the presence of peptide(IWSSAGNVA) 1CR7 ; 2.6 ; PEANUT LECTIN-LACTOSE COMPLEX MONOCLINIC FORM 1CQ9 ; 3.5 ; PEANUT LECTIN-TRICLINIC FORM 1SCH ; 2.56 ; PEANUT PEROXIDASE 8SY2 ; 2.67 ; Peanut USP-type BURP Domain Peptide Cyclase 2QY1 ; 1.9 ; pectate lyase A31G/R236F from Xanthomonas campestris 7BBV ; 1.2 ; Pectate lyase B from Verticillium dahliae 2O17 ; 2.3 ; Pectate lyase bound to hexasaccharide 2O04 ; 1.7 ; Pectate lyase bound to hexasaccharide compound II 2O0V ; 1.9 ; Pectate lyase bound to hexasaccharide compound III 2O0W ; 1.9 ; Pectate lyase bound to hexasaccharide compound IV 2O1D ; 2.0 ; Pectate lyase bound to trisaccharide 1AIR ; 2.2 ; PECTATE LYASE C FROM ERWINIA CHRYSANTHEMI (EC16) TO A RESOLUTION OF 2.2 ANGSTROMS WITH 128 WATERS 1O8E ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 11.2 with 1mM Ca2+ 1O88 ; 2.2 ; Pectate Lyase C From Erwinia Chrysanthemi at pH 11.2 with 30mM Ca2+ 1O8D ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 11.2 with 5mM CA2+ 1O8K ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 4.5 with 20mM CA2+ 1O8J ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 4.5 with 30mM CA2+ 1O8L ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 4.5 with 5mM CA2+ 1O8M ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 4.5 with no Ca2+ Added 1O8H ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 9.5 with 0.3mM Ca2+ Added 1O8F ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 9.5 with 30mM Ca2+ 1O8G ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 9.5 with 5mM Ca2+ 1O8I ; 2.2 ; Pectate Lyase C from Erwinia Chrysanthemi at pH 9.5 with no Ca2+ Added 1PLU ; 2.2 ; PECTATE LYASE C FROM ERWINIA CHRYSANTHEMI WITH 1 LU+3 ION IN THE PUTATIVE CALCIUM BINDING SITE 2QXZ ; 2.12 ; pectate lyase R236F from Xanthomonas campestris 1IDJ ; 2.4 ; PECTIN LYASE A 1IDK ; 1.93 ; PECTIN LYASE A 1QCX ; 1.7 ; PECTIN LYASE B 1GQ8 ; 1.75 ; Pectin methylesterase from Carrot 3UW0 ; 3.5 ; Pectin methylesterase from Yersinia enterocolitica 1QJV ; 2.37 ; Pectin methylesterase PemA from Erwinia chrysanthemi 7VJO ; 1.31 ; Pectobacterium phage ZF40 apo-Aca2 7VJQ ; 2.79 ; Pectobacterium phage ZF40 apo-aca2 complexed with 26bp DNA substrate 4AO8 ; 1.61 ; PEG-bound complex of a novel cold-adapted esterase from an Arctic intertidal metagenomic library 7LGA ; 1.9 ; PEG10 CA-like C-terminal domain 7T2Q ; 1.95 ; PEGylated Calmodulin-1 (K148U) 6D9I ; 1.15 ; Pekin duck egg lysozyme isoform II (DEL-II) 5V94 ; 1.65 ; Pekin duck egg lysozyme isoform III (DEL-III), cubic form 5V92 ; 1.11 ; Pekin duck egg lysozyme isoform III (DEL-III), orthorhombic form 5VAS ; 1.4 ; Pekin duck egg lysozyme isoform III (DEL-III), orthorhombic form 5V8G ; 1.2 ; Pekin duck lysozyme isoform I (DEL-I) 5WFT ; 2.821 ; PelB 319-436 from Pseudomonas aeruginosa PAO1 5T10 ; 2.4987 ; PelC dodecamer from Paraburkholderia phytofirmans, space group P6 5T0Z ; 2.255 ; PelC from Geobacter metallireducens 5T11 ; 2.104 ; PelC L103M dodecamer from Paraburkholderia phytofirmans, space group C2 4DN0 ; 2.3 ; PelD 156-455 from Pseudomonas aeruginosa PA14 in complex with c-di-GMP 4DMZ ; 2.102 ; PelD 156-455 from Pseudomonas aeruginosa PA14, apo form 1KPZ ; ; PEMV-1 P1-P2 Frameshifting Pseudoknot Regularized Average Structure 1KPY ; ; PEMV-1 P1-P2 Frameshifting Pseudoknot, 15 Lowest Energy Structures 4MBH ; 1.22 ; Penam sulfone PSR-3-226 bound to E166A variant of SHV-1 beta-lactamase 8UUK ; 2.5 ; Pendrin in apo 8SIE ; 2.7 ; Pendrin in complex with bicarbonate 8SGW ; 2.5 ; Pendrin in complex with chloride 8SH3 ; 2.8 ; Pendrin in complex with iodide 8SHC ; 3.0 ; Pendrin in complex with Niflumic acid 1AJP ; 2.31 ; PENICILLIN ACYLASE COMPLEXED WITH 2,5-DIHYDROXYPHENYLACETIC ACID 1AI4 ; 2.35 ; PENICILLIN ACYLASE COMPLEXED WITH 3,4-DIHYDROXYPHENYLACETIC ACID 1AI5 ; 2.36 ; PENICILLIN ACYLASE COMPLEXED WITH M-NITROPHENYLACETIC ACID 1AJN ; 2.36 ; PENICILLIN ACYLASE COMPLEXED WITH P-NITROPHENYLACETIC ACID 1AI7 ; 2.5 ; PENICILLIN ACYLASE COMPLEXED WITH PHENOL 1AJQ ; 2.05 ; PENICILLIN ACYLASE COMPLEXED WITH THIOPHENEACETIC ACID 1PNK ; 1.9 ; PENICILLIN ACYLASE HAS A SINGLE-AMINO-ACID CATALYTIC CENTRE 1PNL ; 2.5 ; PENICILLIN ACYLASE HAS A SINGLE-AMINO-ACID CATALYTIC CENTRE 1PNM ; 2.5 ; PENICILLIN ACYLASE HAS A SINGLE-AMINO-ACID CATALYTIC CENTRE 1FXV ; 2.25 ; PENICILLIN ACYLASE MUTANT IMPAIRED IN CATALYSIS WITH PENICILLIN G IN THE ACTIVE SITE 1KEC ; 2.3 ; PENICILLIN ACYLASE MUTANT WITH PHENYL PROPRIONIC ACID 1AI6 ; 2.55 ; PENICILLIN ACYLASE WITH P-HYDROXYPHENYLACETIC ACID 1K7D ; 2.15 ; Penicillin Acylase with Phenyl Proprionic Acid 1JX9 ; 2.28 ; Penicillin Acylase, mutant 1K5Q ; 2.34 ; PENICILLIN ACYLASE, MUTANT COMPLEXED WITH PAA 1K5S ; 2.43 ; PENICILLIN ACYLASE, MUTANT COMPLEXED WITH PPA 5OJ1 ; 2.85 ; Penicillin Binding Protein 2x (PBP2x) from S.pneumoniae in complex with Oxacillin and a tetrasaccharide 5CED ; 2.02 ; Penicillin G Acylated Bd3459 Predatory Endopeptidase from Bdellovibrio bacteriovorus in complex with immunity protein Bd3460 3PVA ; 2.8 ; PENICILLIN V ACYLASE FROM B. SPHAERICUS 5LP4 ; 3.03 ; Penicillin-Binding Protein (PBP2) from Helicobacter pylori 2ZC5 ; 3.0 ; Penicillin-binding protein 1A (PBP 1A) acyl-enzyme complex (biapenem) from Streptococcus pneumoniae 2ZC6 ; 2.7 ; Penicillin-binding protein 1A (PBP 1A) acyl-enzyme complex (tebipenem) from Streptococcus pneumoniae 2C5W ; 2.55 ; PENICILLIN-BINDING PROTEIN 1A (PBP-1A) ACYL-ENZYME COMPLEX (CEFOTAXIME) FROM STREPTOCOCCUS PNEUMONIAE 2C6W ; 2.61 ; PENICILLIN-BINDING PROTEIN 1A (PBP-1A) FROM STREPTOCOCCUS PNEUMONIAE 7ZUL ; 1.744 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) in complex with 8Az lactone - Streptococcus pneumoniae R6 2Y2G ; 2.05 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (A01) 2Y2L ; 2.07 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (E06) 2Y2N ; 2.07 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (E07) 2Y2M ; 1.62 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (E08) 2Y2O ; 1.88 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (EO9) 2Y2Q ; 2.15 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (Z06) 2Y2P ; 1.62 ; Penicillin-binding protein 1b (pbp-1b) in complex with an alkyl boronate (z10) 2Y2H ; 1.96 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (ZA2) 2Y2I ; 1.78 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (ZA3) 2Y2J ; 2.06 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (ZA4) 2Y2K ; 2.09 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) IN COMPLEX WITH AN ALKYL BORONATE (ZA5) 7ZUI ; 1.57 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) in complex with lactone 5Az - Streptococcus pneumoniae R6 7ZUJ ; 1.55 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) in complex with lactone 6Az - Streptococcus pneumoniae R6 7ZUK ; 1.631 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) in complex with lactone 7Az - Streptococcus pneumoniae R6 7ZUH ; 1.467 ; PENICILLIN-BINDING PROTEIN 1B (PBP-1B) Streptococcus pneumoniae R6 2WAD ; 2.18 ; PENICILLIN-BINDING PROTEIN 2B (PBP-2B) FROM STREPTOCOCCUS PNEUMONIAE (STRAIN 5204) 2WAE ; 2.26 ; PENICILLIN-BINDING PROTEIN 2B (PBP-2B) FROM STREPTOCOCCUS PNEUMONIAE (STRAIN 5204) 2WAF ; 3.29 ; PENICILLIN-BINDING PROTEIN 2B (PBP-2B) FROM STREPTOCOCCUS PNEUMONIAE (STRAIN R6) 2ZC3 ; 2.5 ; Penicillin-binding protein 2X (PBP 2X) acyl-enzyme complex (biapenem) from Streptococcus pneumoniae 2ZC4 ; 2.8 ; Penicillin-binding protein 2X (PBP 2X) acyl-enzyme complex (tebipenem) from Streptococcus pneumoniae 1PMD ; 3.5 ; PENICILLIN-BINDING PROTEIN 2X (PBP-2X) 1QME ; 2.4 ; PENICILLIN-BINDING PROTEIN 2X (PBP-2X) 1QMF ; 2.8 ; PENICILLIN-BINDING PROTEIN 2X (PBP-2X) ACYL-ENZYME COMPLEX 2Z2L ; 2.85 ; Penicillin-Binding Protein 2X (PBP2X) from Streptococcus pneumoniae 5OAU ; 2.67 ; Penicillin-Binding Protein 2X (PBP2X) from Streptococcus pneumoniae 5OJ0 ; 2.66 ; Penicillin-Binding Protein 2X (PBP2X) from Streptococcus pneumoniae in complex with Cefepime 5OIZ ; 2.7 ; Penicillin-Binding Protein 2X (PBP2X) from Streptococcus pneumoniae in complex with oxacillin 4F8X ; 1.47 ; Penicillium canescens endo-1,4-beta-xylanase XylE 3J3I ; 4.1 ; Penicillium chrysogenum virus (PcV) capsid structure 2RI8 ; 2.16 ; Penicillium citrinum alpha-1,2-mannosidase complex with glycerol 2RI9 ; 1.95 ; Penicillium citrinum alpha-1,2-mannosidase in complex with a substrate analog 7ZTF ; 1.1 ; Penicillium expansum antifungal protein B 7ZVH ; 1.2 ; Penicillium expansum antifungal protein B 7ZW2 ; 1.2 ; Penicillium expansum antifungal protein B 7ZTJ ; 1.3 ; Penicillium expansum antifungal protein chimera C-ter 7ZUT ; 1.1 ; Penicillium expansum chimera loop1 1PWC ; 1.1 ; penicilloyl acyl enzyme complex of the Streptomyces R61 DD-peptidase with penicillin G 7F8S ; 2.63 ; Pennisetum glaucum (Pearl millet) dehydroascorbate reductase (DHAR) with catalytic cysteine (Cy20) in sulphenic and sulfinic acid forms. 2XXJ ; 1.964 ; Penta mutant of lactate dehydrogenase from Thermus thermophilus, ternary complex 6J9S ; 2.0 ; Penta mutant of Lactobacillus casei lactate dehydrogenase 4UWP ; 1.7 ; Penta Zn1 coordination. Leu224 in VIM-26 from Klebsiella pneumoniae has implications for drug binding. 2XXB ; 2.15 ; Penta-mutant of Thermus thermophilus lactate dehydrogenase, complex with AMP 8CGI ; 1.89 ; Pentacycline TP038 bound to the 30S head 7VEA ; 3.7 ; Pentacylindrical allophycocyanin core from Thermosynechococcus vulcanus 6VE4 ; 6.9 ; Pentadecameric PilQ from Pseudomonas aeruginosa 3P81 ; 1.2 ; Pentaerythritol tetranitrate reductase co-crystal structure containing a bound (E)-1-(4'-hydroxyphenyl)-2-nitroethene molecule 3P80 ; 1.2 ; Pentaerythritol tetranitrate reductase co-crystal structure containing bound (E)-1-(3'-hydroxyphenyl)-2-nitroethene 3P7Y ; 1.2 ; Pentaerythritol tetranitrate reductase co-crystal structure with bound (E)-1-(2'-hydroxyphenyl)-2-nitroethene 3DN0 ; 1.8 ; Pentafluorobenzene binding in the hydrophobic cavity of T4 lysozyme L99A mutant 6HQV ; 3.0 ; Pentafunctional AROM Complex from Chaetomium thermophilum 2D52 ; 1.6 ; Pentaketide chromone synthase (M207G mutant complexed with Coa) 2D51 ; 1.6 ; Pentaketide chromone synthase (M207G mutant) 2D3M ; 1.6 ; Pentaketide chromone synthase complexed with coenzyme A 1PS1 ; 2.6 ; PENTALENENE SYNTHASE 8HEE ; 3.2 ; Pentamer of FMDV (A/TUR/14/98) 8HEG ; 3.2 ; Pentamer of FMDV (A/TUR/14/98) in complex with M3F 4J4U ; 2.803 ; Pentamer SFTSVN 2R5K ; 3.2 ; Pentamer Structure of Major Capsid protein L1 of Human Papilloma Virus type 11 2R5H ; 3.7 ; Pentamer structure of Major Capsid Protein L1 of Human Papilloma Virus type 16 2R5I ; 3.4 ; Pentamer Structure of Major Capsid Protein L1 of Human Papilloma Virus type 18 2R5J ; 3.3 ; Pentamer Structure of Major Capsid protein L1 of Human Papilloma Virus Type 35 2A3Y ; 2.0 ; Pentameric crystal structure of human serum amyloid P-component bound to Bis-1,2-{[(Z)-2carboxy-2-methyl-1,3-dioxane]-5-yloxycarbamoyl}-ethane. 3KLY ; 2.1 ; Pentameric formate channel 3KLZ ; 2.5 ; Pentameric formate channel with formate bound 2YKS ; 3.3 ; PENTAMERIC LIGAND GATED ION CHANNEL ELIC MUTANT F246A 2XQ3 ; 3.5 ; Pentameric ligand gated ion channel GLIC in complex with Br-lidocaine 2XQ7 ; 3.4 ; Pentameric ligand gated ion channel GLIC in complex with cadmium ion (Cd2+) 2XQ6 ; 3.7 ; Pentameric ligand gated ion channel GLIC in complex with cesium ion (Cs+) 2XQA ; 3.7 ; Pentameric ligand gated ion channel GLIC in complex with tetrabutylantimony (TBSb) 2XQ5 ; 3.5 ; Pentameric ligand gated ion channel GLIC in complex with tetraethylarsonium (TEAs) 2XQ4 ; 3.6 ; Pentameric ligand gated ion channel GLIC in complex with tetramethylarsonium (TMAs) 2XQ8 ; 3.6 ; Pentameric ligand gated ion channel GLIC in complex with zinc ion (Zn2+) 2XQ9 ; 3.2 ; Pentameric ligand gated ion channel GLIC mutant E221A in complex with tetraethylarsonium (TEAs) 2YN6 ; 3.31 ; Pentameric Ligand-Gated Ion Channel ELIC in Complex with Barium 5HEU ; 3.2 ; Pentameric ligand-gated ion channel ELIC mutant A257Y 5HEJ ; 3.5 ; Pentameric ligand-gated ion channel ELIC mutant F116A 5HEO ; 3.3 ; Pentameric ligand-gated ion channel ELIC mutant P254G 5HEW ; 4.5 ; Pentameric ligand-gated ion channel ELIC mutant T28D 5HEH ; 3.3 ; Pentameric ligand-gated ion channel GLIC mutant P246A 5HEG ; 3.214 ; Pentameric ligand-gated ion channel GLIC mutant P246G 8ATG ; 2.9 ; Pentameric ligand-gated ion channel GLIC with bound lipids 7Q3G ; 3.5 ; Pentameric ligand-gated ion channel, DeCLIC at pH 7 with 10 mM Ca2+ 7Q3H ; 3.2 ; Pentameric ligand-gated ion channel, DeCLIC at pH 7 with 10 mM EDTA 1FOQ ; 20.0 ; PENTAMERIC MODEL OF THE BACTERIOPHAGE PHI29 PROHEAD RNA 4J4V ; 2.303 ; Pentameric SFTSVN with suramin 7WHP ; 3.7 ; Pentameric turret of Bombyx mori cytoplasmic polyhedrosis virus after spike detaches. 6FLS ; 2.8 ; Pentapeptide repeat family protein from Clostridium botulinum 6ZT4 ; 1.77 ; Pentapeptide repeat protein MfpA from Mycobacterium smegmatis 7TBA ; 3.5 ; Pentraxin - ligand complex 3M3L ; 1.85 ; PEPA bound to the ligand binding domain of GluA2 (flop form) 3M3F ; 2.5 ; PEPA bound to the ligand binding domain of GluA3 (flop form) 1KHG ; 2.34 ; PEPCK 1M51 ; 2.25 ; PEPCK complex with a GTP-competitive inhibitor 1NHX ; 2.1 ; PEPCK COMPLEX WITH A GTP-COMPETITIVE INHIBITOR 2GMV ; 2.3 ; PEPCK complex with a GTP-competitive inhibitor 1KHE ; 2.4 ; PEPCK complex with nonhydrolyzable GTP analog, MAD data 1KHB ; 1.854 ; PEPCK complex with nonhydrolyzable GTP analog, native data 1KHF ; 2.02 ; PEPCK complex with PEP 7L3V ; 1.98 ; PEPCK MMQX structure 120ms post-mixing with oxaloacetic acid 7L3M ; 2.07 ; PEPCK MMQX structure 40ms post-mixing with oxaloacetic acid 7L36 ; 1.84 ; PEPCK steady-state structure with Mn and GTP 6HVK ; ; Pepducin UT-Pep2 a biased allosteric agonist of Urotensin-II receptor 5D6K ; 2.4 ; PepT - CIM 5MAS ; 0.84 ; Peptaibol Bergofungin A 4Z0W ; 1.1 ; Peptaibol gichigamin isolated from Tolypocladium sup_5 3PBC ; 1.38 ; Peptidase module of the peptidoglycan hydrolase RipA (Rv1477) from Mycobacterium tuberculosis at 1.38 resolution 3S0Q ; 1.45 ; Peptidase module of the peptidoglycan hydrolase RipA (Rv1477) from Mycobacterium tuberculosis, catalytic site mutant (Cys383Ala) at 1.45 resolution 1FNO ; 2.4 ; PEPTIDASE T (TRIPEPTIDASE) 8CV7 ; 1.6 ; Peptide 2.2E in complex with BRD2-BD2 5V4C ; ; Peptide 38136 modified from fragment 21-37 of Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites (CelTOS) 5VL6 ; ; Peptide 38138 modified from fragment 21-37 of Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoite (Pf-CelTOS) 5VR5 ; ; Peptide 38142 modified from fragment 41-60 of Plasmodium falciparum Thrombospondin-Related Sporozoite Protein (TRSP) 5UY2 ; ; peptide 38146 derived from fragment 41-60 of Plasmodium falciparum Thrombospondin-Related Sporozoite Protein (TRSP) 5V2B ; ; Peptide 38148 modified from fragment 41-60 of Plasmodium falciparum Thrombospondin-Related Sporozoite Protein (TRSP) 8CV5 ; 1.47 ; Peptide 4.2B in complex with BRD3.2 8CV6 ; 1.7 ; Peptide 4.2B in complex with BRD4.2 8CV4 ; 1.93 ; Peptide 4.2C in complex with BRD4.2 7Q8G ; 2.06 ; Peptide ALAASS in complex with human cathepsin V C25S mutant 1IMW ; ; Peptide Antagonist of IGFBP-1 1GJE ; ; Peptide Antagonist of IGFBP-1, Minimized Average Structure 1IN2 ; ; Peptide Antagonist of IGFBP1, (i,i+7) Covalently Restrained Analog 1GJF ; ; Peptide Antagonist of IGFBP1, (i,i+7) Covalently Restrained Analog, Minimized Average Structure 1IN3 ; ; Peptide Antagonist of IGFBP1, (i,i+8) Covalently Restrained Analog 1GJG ; ; Peptide Antagonist of IGFBP1, (i,i+8) Covalently Restrained Analog, Minimized Average Structure 1DSR ; ; Peptide antibiotic, NMR, 6 structures 8BRP ; 2.6 ; Peptide Arginase OspR from the cyanobacterium Kamptonema sp. 6IDV ; 2.4 ; Peptide Asparaginyl Ligases from Viola yedoensis 7Q8I ; 1.59 ; Peptide AVAEKQ in complex with human cathepsin V C25S mutant 7QFH ; 1.52 ; Peptide AYFKKVL in complex with human cathepsin V C25A mutant 2OL9 ; 0.85 ; Peptide corresponding to residues 170-175 of human prion 1DFF ; 2.88 ; PEPTIDE DEFORMYLASE 4AL3 ; 1.98 ; peptide deformylase (Co-form) with mercaptoethanol 4AL2 ; 2.6 ; peptide deformylase (Ni-form) with hydrosulfide 1BSZ ; 1.9 ; PEPTIDE DEFORMYLASE AS FE2+ CONTAINING FORM (NATIVE) IN COMPLEX WITH INHIBITOR POLYETHYLENE GLYCOL 1BS7 ; 2.5 ; PEPTIDE DEFORMYLASE AS NI2+ CONTAINING FORM 1BS6 ; 2.1 ; PEPTIDE DEFORMYLASE AS NI2+ CONTAINING FORM IN COMPLEX WITH TRIPEPTIDE MET-ALA-SER 1BS5 ; 2.5 ; PEPTIDE DEFORMYLASE AS ZN2+ CONTAINING FORM 1BS4 ; 1.9 ; PEPTIDE DEFORMYLASE AS ZN2+ CONTAINING FORM (NATIVE) IN COMPLEX WITH INHIBITOR POLYETHYLENE GLYCOL 1BS8 ; 2.2 ; PEPTIDE DEFORMYLASE AS ZN2+ CONTAINING FORM IN COMPLEX WITH TRIPEPTIDE MET-ALA-SER 2DEF ; ; PEPTIDE DEFORMYLASE CATALYTIC CORE (RESIDUES 1-147), NMR, 20 STRUCTURES 1DEF ; ; PEPTIDE DEFORMYLASE CATALYTIC CORE (RESIDUES 1-147), NMR, 9 STRUCTURES 3QU1 ; 1.8 ; Peptide deformylase from Vibrio cholerae 7Q8H ; 1.75 ; Peptide EVCKKKK in complex with human cathepsin V C25A mutant 1PEF ; 1.5 ; PEPTIDE F (EQLLKALEFLLKELLEKL), AMPHIPHILIC OCTADECAPEPTIDE 1DU1 ; ; PEPTIDE FRAGMENT THR671-LEU690 OF THE RABBIT SKELETAL DIHYDROPYRIDINE RECEPTOR 4HH6 ; 2.5 ; Peptide from EAEC T6SS Sci1 SciI protein 7K1M ; ; Peptide from stony coral Heliofungia actiniformis: Hact-1 7QHJ ; 1.4 ; Peptide GAKSAA in complex with human cathepsin V C25A mutant 7QO2 ; 1.77 ; Peptide GAKSAA in complex with human cathepsin V C25A mutant 7Q8F ; 1.49 ; Peptide GNYKEAKK in complex with human cathepsin V C25A mutant 7P3H ; 2.1 ; Peptide HC02 - Lanthanide Selectivity Engineered into Structurally Characterized Designed Coiled Coils 7Q8J ; 1.64 ; Peptide IILKEK in complex with human cathepsin V C25S mutant 8BV1 ; 2.834 ; Peptide inhibitor P4 in complex with ASF1 histone chaperone 1SHD ; 2.0 ; PEPTIDE INHIBITORS OF SRC SH3-SH2-PHOSPHOPROTEIN INTERACTIONS 7Q8N ; 2.0 ; Peptide KKYDAFLA in complex with human cathepsin V C25A mutant 7Q8M ; 1.57 ; Peptide KPKKKTK in complex with human cathepsin V C25A mutant 4I4W ; 1.77 ; Peptide length determines the outcome of T cell receptor/peptide-MHCI engagement 2M3N ; ; Peptide leucine arginine 7Q9H ; 1.4 ; Peptide LLKAVAEKQ in complex with human cathepsin V C25A mutant 7Q8K ; 1.74 ; Peptide LLKVAL in complex with human cathepsin V C25S mutant 7Q8P ; 1.71 ; Peptide LLKVAL in complex with human cathepsin V C25S mutant 7Q8O ; 1.9 ; Peptide LLSGKE in complex with human cathepsin V C25S mutant 2NBL ; ; Peptide model of 4-stranded beta-arch 7CIS ; 2.1 ; Peptide modification of MHC class I molecules 1PNN ; 2.5 ; PEPTIDE NUCLEIC ACID (PNA) COMPLEXED WITH DNA 1ODQ ; ; PEPTIDE OF HUMAN APOA-I RESIDUES 166-185. NMR, 5 STRUCTURES AT PH 3.7, 37 DEGREES CELSIUS AND PEPTIDE:SDS MOLE RATIO OF 1:40 1ODR ; ; PEPTIDE OF HUMAN APOA-I RESIDUES 166-185. NMR, 5 STRUCTURES AT PH 6.0, 37 DEGREES CELSIUS AND PEPTIDE:DPC MOLE RATIO OF 1:40 1ODP ; ; PEPTIDE OF HUMAN APOA-I RESIDUES 166-185. NMR, 5 STRUCTURES AT PH 6.6, 37 DEGREES CELSIUS AND PEPTIDE:SDS MOLE RATIO OF 1:40 1OEF ; ; PEPTIDE OF HUMAN APOE RESIDUES 263-286, NMR, 5 STRUCTURES AT PH 4.8, 37 DEGREES CELSIUS AND PEPTIDE:SDS MOLE RATIO OF 1:90 1OEG ; ; PEPTIDE OF HUMAN APOE RESIDUES 267-289, NMR, 5 STRUCTURES AT PH 6.0, 37 DEGREES CELSIUS AND PEPTIDE:SDS MOLE RATIO OF 1:90 1OPP ; ; PEPTIDE OF HUMAN APOLIPOPROTEIN C-I RESIDUES 1-38, NMR, 28 STRUCTURES 1BY6 ; ; Peptide of human apolipoprotein C-II 6CFA ; ; peptide PaAMP1R3 7CIR ; 1.81 ; Peptide phosphorylation modification of MHC class I molecules 7QHK ; 1.83 ; Peptide QLRQQE in complex with human cathepsin V C25A mutant 7Q9C ; 1.4 ; Peptide RLSAKP in complex with human cathepsin V C25A mutant 7Q8Q ; 2.13 ; Peptide RLSAKP in complex with human cathepsin V C25S mutant 4OWI ; 1.202 ; peptide structure 1XNS ; 2.8 ; Peptide trapped Holliday junction intermediate in Cre-loxP recombination 7Q8D ; 1.8 ; Peptide TRESEDLE in complex with human cathepsin V C25A mutant 7QFF ; 1.5 ; Peptide VACKSSQP in complex with human cathepsin V C25A mutant 7Q8L ; 1.8 ; Peptide VPCGTAHE in complex with human cathepsin V C25A mutant 7QNS ; 1.4 ; Peptide VYEKKP in complex with human cathepsin V C25S mutant 7RTB ; 2.14 ; Peptide-19 bound to the Glucagon-Like Peptide-1 Receptor (GLP-1R) 4O6W ; 1.448 ; Peptide-Based Inhibitors of Plk1 Polo-box Domain 2OP6 ; 1.85 ; Peptide-binding domain of Heat shock 70 kDa protein D precursor from C.elegans 3DQG ; 1.72 ; Peptide-binding domain of heat shock 70 kDa protein F, mitochondrial precursor, from Caenorhabditis elegans. 3DOB ; 2.39 ; Peptide-binding domain of Heat shock 70 kDa protein F44E5.5 from C.elegans. 6W9Q ; 2.05 ; Peptide-bound SARS-CoV-2 Nsp9 RNA-replicase 6WC1 ; 2.4 ; Peptide-bound SARS-CoV-2 Nsp9 RNA-replicase 5CH4 ; 3.64 ; Peptide-Bound State of Thermus thermophilus SecYEG 6X5V ; 1.6 ; Peptide-bound structure of Marinomonas primoryensis peptide-binding domain 6X5W ; 1.8 ; Peptide-bound structure of Marinomonas primoryensis peptide-binding domain 6X6M ; 1.9 ; Peptide-bound structure of Marinomonas primoryensis peptide-binding domain 6X6Q ; 2.17 ; Peptide-bound structure of Marinomonas primoryensis peptide-binding domain 1C9I ; 2.9 ; PEPTIDE-IN-GROOVE INTERACTIONS LINK TARGET PROTEINS TO THE B-PROPELLER OF CLATHRIN 1C9L ; 2.9 ; PEPTIDE-IN-GROOVE INTERACTIONS LINK TARGET PROTEINS TO THE B-PROPELLER OF CLATHRIN 5MXL ; ; Peptide-membrane interaction between targeting and lysis 5MXS ; ; Peptide-membrane interaction between targeting and lysis 5MXT ; ; Peptide-membrane interaction between targeting and lysis 6HNE ; ; Peptide-membrane interaction between targeting and lysis 6HNG ; ; Peptide-membrane interaction between targeting and lysis 6HNH ; ; Peptide-membrane interaction between targeting and lysis 7N5Q ; 1.76 ; Peptide-MHC complex of mouse H2-Db presenting PA224 with E4C mutation 4K40 ; 2.634 ; Peptidoglycan O-acetylesterase in action, 0 min 4K3U ; 2.158 ; Peptidoglycan O-acetylesterase in action, 30 min 4K7J ; 1.968 ; Peptidoglycan O-acetylesterase in action, 5 min 4K9S ; 2.334 ; Peptidoglycan O-acetylesterase in action, setmet 1OHT ; 2.0 ; Peptidoglycan recognition protein LB 7R7H ; 2.15 ; Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors 7CTQ ; 1.978 ; Peptidyl tryptophan dihydroxylase QhpG essential for tryptophylquinone cofactor biogenesis 1G63 ; 2.5 ; PEPTIDYL-CYSTEINE DECARBOXYLASE EPID 1YW5 ; 1.6 ; Peptidyl-prolyl isomerase ESS1 from Candida albicans 2PTH ; 1.2 ; PEPTIDYL-TRNA HYDROLASE FROM ESCHERICHIA COLI 3TD6 ; 3.2 ; Peptidyl-tRNA hydrolase from Mycobacterium tuberculosis from trigonal partially dehydrated crystal 8DSJ ; 2.8 ; Peptidylglycine alpha hydroxylating monooxygenase anaerobic 8DSL ; 2.05 ; Peptidylglycine alpha hydroxylating monooxygenase, Q272E 8DSN ; 2.8 ; Peptidylglycine alpha hydroxylating monoxygenase, Q272A 1PHM ; 1.9 ; PEPTIDYLGLYCINE ALPHA-HYDROXYLATING MONOOXYGENASE (PHM) FROM RAT 2NUL ; 2.1 ; PEPTIDYLPROLYL ISOMERASE FROM E. COLI 1A33 ; 2.15 ; PEPTIDYLPROLYL ISOMERASE, CYCLOPHILIN-LIKE DOMAIN FROM BRUGIA MALAYI 2MN9 ; ; peptoid analogue of maculatin G15 - peptoid trans-Nleu at position 13 6W47 ; 1.15 ; Peptoid-Containing Collagen Peptide 5OXO ; 1.95 ; PepTSt apo structure 5OXK ; 2.38 ; PepTSt in complex with dipeptide Ala-Gln 5OXL ; 2.66 ; PepTSt in complex with dipeptide Ala-Leu 5OXM ; 2.295 ; PepTSt in complex with dipeptide Asp-Glu 5OXN ; 2.196 ; PepTSt in complex with dipeptide Phe-Ala 6EIA ; 2.0 ; PepTSt in complex with HEPES (100 mM) 5OXQ ; 2.195 ; PepTSt in complex with HEPES (300 mM) 6GHJ ; 2.26 ; PepTSt in complex with tripeptide Phe-Ala-Gln 5OXP ; 2.372 ; PepTSt in occluded conformation with phosphate ion bound 6DGU ; 2.691 ; PER-2 class A extended-spectrum beta-lactamase crystal structure at 2.69 Angstrom resolution 6D3G ; 2.398 ; PER-2 class A extended-spectrum beta-lactamase crystal structure in complex with avibactam at 2.4 Angstrom resolution 5EZT ; 1.54 ; Peracetylated Bovine Carbonic Anhydrase II 2QXW ; 0.8 ; Perdeuterated alr2 in complex with idd594 7ABX ; 1.2 ; Perdeuterated E65Q-TIM complexed with 2-PHOSPHOGLYCOLIC ACID 7AZ3 ; 1.7 ; Perdeuterated E65Q-TIM complexed with 2-PHOSPHOGLYCOLIC ACID 7AZ3 ; 1.15 ; Perdeuterated E65Q-TIM complexed with 2-PHOSPHOGLYCOLIC ACID 7AZ4 ; 1.7 ; Perdeuterated E65Q-TIM complexed with 2-PHOSPHOGLYCOLIC ACID 7AZ4 ; 1.15 ; Perdeuterated E65Q-TIM complexed with 2-PHOSPHOGLYCOLIC ACID 7AZ9 ; 1.8 ; Perdeuterated E65Q-TIM complexed with PHOSPHOGLYCOLOHYDROXAMATE 7AZ9 ; 1.1 ; Perdeuterated E65Q-TIM complexed with PHOSPHOGLYCOLOHYDROXAMATE 7AZA ; 1.8 ; Perdeuterated E65Q-TIM complexed with PHOSPHOGLYCOLOHYDROXAMATE 7AZA ; 1.1 ; Perdeuterated E65Q-TIM complexed with PHOSPHOGLYCOLOHYDROXAMATE 7AVG ; 1.0 ; Perdeuterated hen egg-white lysozyme at 100 K 6S2M ; 0.72 ; Perdeuterated human myelin protein P2 at 0.72-A resolution 5AE0 ; 1.04 ; Perdeuterated mouse CNPase catalytic domain at atomic resolution 4CE8 ; 0.9 ; Perdeuterated Pseudomonas aeruginosa Lectin II complex with hydrogenated L-Fucose and Calcium 7AVE ; 0.98 ; Perdeuterated refolded hen egg-white lysozyme at 100 K 6NV8 ; 2.26 ; Perdeuterated tyrosine phenol-lyase from Citrobacter freundii complexed with an aminoacrylate intermediate formed from S-ethyl-L-cysteine and 4-hydroxypyridine 2KLF ; ; PERE NMR structure of maltodextrin-binding protein 2KLG ; ; PERE NMR structure of ubiquitin 3NXO ; 1.35 ; Perferential Selection of Isomer Binding from Chiral Mixtures: Alternate Binding Modes Observed for the E- and Z-isomers of a Series of 5-Substituted 2,4-Diaminofuro[2,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 3NXR ; 1.35 ; Perferential Selection of Isomer Binding from Chiral Mixtures: Alternate Binding Modes Observed for the E- and Z-isomers of a Series of 5-Substituted 2,4-Diaminofuro[2,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 5UG6 ; 2.0 ; Perforin C2 Domain - T431D 1PFO ; 2.2 ; PERFRINGOLYSIN O 1M3I ; 2.9 ; Perfringolysin O, new crystal form 2C9E ; 2.1 ; Peridinin-chlorophyll a protein, high-salt form 1PPR ; 2.0 ; PERIDININ-CHLOROPHYLL-PROTEIN OF AMPHIDINIUM CARTERAE 6ZK9 ; 2.3 ; Peripheral domain of open complex I during turnover 8AP8 ; 3.7 ; Peripheral stalk of Trypanosoma brucei mitochondrial ATP synthase 8OQJ ; 1.64 ; Peripheral subunit binding domain of the E. coli Dihydrolipoamide Acetyltransferase (E2) of the pyruvate dehydrogenase complex 1W4G ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state folding transitions 1W4E ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 1W4I ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 1W4J ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 1W4K ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 2BTH ; ; Peripheral-subunit binding domains from mesophilic, thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 2BTG ; ; peripheral-subunit binding domains from mesophilic,thermophilic, and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 1W4F ; ; Peripheral-subunit from mesophilic, thermophilic and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 1W4H ; ; Peripheral-subunit from mesophilic, thermophilic and hyperthermophilic bacteria fold by ultrafast, apparently two-state transitions 3ZKW ; 1.71 ; Periplasmic Binding Protein CeuE apo form 5OD5 ; 1.9 ; Periplasmic binding protein CeuE complexed with a synthetic catalyst 5A1J ; 1.6 ; Periplasmic Binding Protein CeuE in complex with ferric 4-LICAM 2LIV ; 2.4 ; PERIPLASMIC BINDING PROTEIN STRUCTURE AND FUNCTION. REFINED X-RAY STRUCTURES OF THE LEUCINE/ISOLEUCINE/VALINE-BINDING PROTEIN AND ITS COMPLEX WITH LEUCINE 1BF8 ; ; PERIPLASMIC CHAPERONE FIMC, NMR, 20 STRUCTURES 6FUE ; 1.78 ; Periplasmic coiled coil domain of the FapF amyloid transporter 6EY4 ; 2.0 ; Periplasmic domain (residues 36-513) of GldM 2W7V ; 2.3 ; periplasmic domain of EpsL from Vibrio parahaemolyticus 1UV7 ; 1.7 ; periplasmic domain of EpsM from Vibrio cholerae 8UK7 ; 1.8 ; Periplasmic domain of Escherichia coli CpxA 6F49 ; 2.02 ; Periplasmic domain of LolC lacking the Hook. 5NHX ; 1.95 ; Periplasmic domain of Outer Membrane Protein A from Klebsiella pneumoniae 8HDJ ; 1.85 ; Periplasmic domain of RsgI2 of Clostridium thermocellum 4E29 ; 1.6 ; Periplasmic domain of the chimeric WzzB chain length regulator protein 3GR5 ; 2.05 ; Periplasmic domain of the outer membrane secretin EscC from enteropathogenic E.coli (EPEC) 3LR3 ; 2.1 ; Periplasmic domain of the risS sensor protein from Burkholderia pesuromallei, low pH native structure 3LR4 ; 1.9 ; Periplasmic domain of the risS sensor protein from Burkholderia pseudomallei, barium phased at low pH 3LR0 ; 1.9 ; Periplasmic domain of the risS sensor protein from Burkholderia pseudomallei, iodide phased at low pH 3LR5 ; 2.3 ; Periplasmic domain of the risS sensor protein from Burkholderia pseudomallei, iodide phased at neutral pH 3GR0 ; 2.3 ; Periplasmic domain of the T3SS inner membrane protein PrgH from S.typhimurium (fragment 170-362) 3GR1 ; 2.8 ; Periplasmic domain of the T3SS inner membrane protein PrgH from S.typhimurium (fragment 170-392) 7NN6 ; ; periplasmic domain of Vibrio cholerae ToxR 3V67 ; 2.3 ; Periplasmic domain of Vibrio parahaemolyticus CpxA 6WM7 ; 1.56 ; Periplasmic EDTA-binding protein EppA, orthorhombic 6WM6 ; 1.42 ; Periplasmic EDTA-binding protein EppA, tetragonal 1EFD ; 1.9 ; PERIPLASMIC FERRIC SIDEROPHORE BINDING PROTEIN FHUD COMPLEXED WITH GALLICHROME 5GIZ ; 1.5 ; Periplasmic heme-binding protein BhuT in apo form 5Y89 ; 2.4 ; Periplasmic heme-binding protein BhuT in complex with one heme (holo-1) 5Y8A ; 2.001 ; Periplasmic heme-binding protein BhuT in complex with two hemes (holo-2 form) 5Y8B ; 2.4 ; Periplasmic heme-binding protein RhuT from Roseiflexus sp. RS-1 in apo form 5GJ3 ; 2.0 ; Periplasmic heme-binding protein RhuT from Roseiflexus sp. RS-1 in two-heme bound form (holo-2) 6RWX ; 3.55 ; Periplasmic inner membrane ring of the Shigella type 3 secretion system 3IX1 ; 2.4 ; Periplasmic N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine binding protein from Bacillus halodurans 3UB7 ; 1.4 ; Periplasmic portion of the Helicobacter pylori chemoreceptor TlpB with acetamide bound 3UB8 ; 1.42 ; Periplasmic portion of the Helicobacter pylori chemoreceptor TlpB with formamide bound 3UB9 ; 1.42 ; Periplasmic portion of the Helicobacter pylori chemoreceptor TlpB with hydroxyurea bound 3UB6 ; 1.38 ; Periplasmic portion of the Helicobacter pylori chemoreceptor TlpB with urea bound 4XJY ; 1.8 ; Periplasmic repressor protein YfiR 3B47 ; 2.0 ; Periplasmic sensor domain of chemotaxis protein GSU0582 3B42 ; 1.9 ; Periplasmic sensor domain of chemotaxis protein GSU0935 4K08 ; 2.0 ; Periplasmic sensor domain of chemotaxis protein, Adeh_3718 4K0D ; 1.997 ; Periplasmic sensor domain of sensor histidine kinase, Adeh_2942 2QRY ; 2.25 ; Periplasmic thiamin binding protein 1TOA ; 1.8 ; PERIPLASMIC ZINC BINDING PROTEIN TROA FROM TREPONEMA PALLIDUM 4W70 ; 2.28 ; Periplasmically Produced Monomeric Single Domain Antibody (sdAb) C22A/C99V variant against Staphylococcal enterotoxin B (SEB) at pH 7.0 4W81 ; 2.25 ; Periplasmically Produced Monomeric Single Domain Antibody (sdAb) C22A/C99V variant against Staphylococcal enterotoxin B (SEB) at pH 8.0 7QSP ; 1.36 ; Permutated C-terminal lobe of the ribose binding protein from Thermotoga maritima 7QSQ ; 1.79 ; Permutated N-terminal lobe of the ribose binding protein from Thermotoga maritima 1U9P ; 1.9 ; Permuted single-chain Arc 1GZA ; 2.06 ; PEROXIDASE 1GZB ; 1.8 ; PEROXIDASE 6ERC ; 2.50002 ; Peroxidase A from Dictyostelium discoideum (DdPoxA) 5WBD ; 1.5 ; Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins - N49A 5WBB ; 1.5 ; Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins - S112A 5WBA ; 1.5 ; Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins - WT 6ANX ; 1.62 ; Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins - WT (low exposure) 3MPS ; 2.0 ; Peroxide Bound Oxidized Rubrerythrin from Pyrococcus furiosus 3I63 ; 2.09 ; Peroxide Bound Toluene 4-Monooxygenase 7O9D ; 1.28 ; peroxide-bound diCo-sulerythrin 3A2V ; 1.65 ; Peroxiredoxin (C207S) from Aeropyrum pernix K1 complexed with hydrogen peroxide 3A2X ; 1.9 ; Peroxiredoxin (C50S) from Aeropyrum pernix K1 (acetate-bound form) 3A2W ; 2.3 ; Peroxiredoxin (C50S) from Aeropytum pernix K1 (peroxide-bound form) 3A5W ; 2.2 ; Peroxiredoxin (wild type) from Aeropyrum pernix K1 (reduced form) 5XBS ; 2.51 ; Peroxiredoxin from Aeropyrum pernix (6m mutant) 6KRM ; 1.8 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys F46A mutant 6KRQ ; 2.1 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys F80A mutant 6KRK ; 1.8 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys mutant 6KRR ; 2.15 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys W210A mutant 6KRS ; 2.3 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys W211A mutant 6KRP ; 1.89 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) 0Cys W88A mutant 7C87 ; 2.2 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) C50S/F80C/C207S/C213S mutant (ApPrx*F80C) 7C8A ; 2.1 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) C50S/F80C/C207S/C213S mutant modified with 2-(bromoacetyl)naphthalene(Naph@ApPrx*) 7C89 ; 2.1 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) C50S/F80C/C207S/C213S mutant modified with 2-bromoacetophenone(Ph@ApPrx*) 7CQJ ; 2.9 ; Peroxiredoxin from Aeropyrum pernix K1 (ApPrx) C50S/K84A/C207S/C213S mutant (ApPrx*K84A) 5XBQ ; 2.25 ; Peroxiredoxin from Pyrococcus horikoshii (6m mutant) 5XBR ; 2.1 ; Peroxiredoxin from Pyrococcus horikoshii (sulfonic acid form) 6IU1 ; 2.89 ; Peroxiredoxin from Pyrococcus horikoshii 0Cys mutant) 6ITZ ; 2.96 ; Peroxiredoxin from Thermococcus kodakaraensis 6IU0 ; 2.38 ; Peroxiredoxin from Thermococcus kodakaraensis (0Cys mutant) 8HH0 ; 2.35 ; Peroxiredoxin from Thermococcus kodakaraensis (TkPrx) F42C/C46S/C205S/C211S mutant modified with 2-(bromoacetyl)naphthalene (Naph@TkPrx*F42C) 4EO3 ; 1.649 ; Peroxiredoxin Nitroreductase Fusion Enzyme 2Y6V ; 2.83 ; Peroxisomal alpha-beta-hydrolase Lpx1 (Yor084w) from Saccharomyces cerevisiae (crystal form I) 2Y6U ; 1.9 ; Peroxisomal alpha-beta-hydrolase Lpx1 (Yor084w) from Saccharomyces cerevisiae (crystal form II) 5VXV ; 1.55 ; Peroxisomal membrane protein PEX15 8DK4 ; 2.6 ; Peroxisome proliferator-activated receptor gamma in complex with VSP-51-2 6MS7 ; 1.43 ; Peroxisome proliferator-activated receptor gamma ligand binding domain in complex with a novel selective PPAR-gamma modulator VSP-77 5TWO ; 1.927 ; Peroxisome proliferator-activated receptor gamma ligand binding domain in complex with a novel selectively PPAR gamma-modulating ligand VSP-51 6R9N ; 2.074 ; Peroxy diiron species of chemotaxis sensor ODP 3AXF ; 2.0 ; Perrhenate binding to A11C/R153C ModA mutant 3R26 ; 1.7 ; Perrhenate Binding to Molybdate Binding Protein 1L00 ; 1.9 ; PERTURBATION OF TRP 138 IN T4 LYSOZYME BY MUTATIONS AT GLN 105 USED TO CORRELATE CHANGES IN STRUCTURE, STABILITY, SOLVATION, AND SPECTROSCOPIC PROPERTIES 1L98 ; 1.8 ; PERTURBATION OF TRP 138 IN T4 LYSOZYME BY MUTATIONS AT GLN 105 USED TO CORRELATE CHANGES IN STRUCTURE, STABILITY, SOLVATION, AND SPECTROSCOPIC PROPERTIES 1L99 ; 1.95 ; PERTURBATION OF TRP 138 IN T4 LYSOZYME BY MUTATIONS AT GLN 105 USED TO CORRELATE CHANGES IN STRUCTURE, STABILITY, SOLVATION, AND SPECTROSCOPIC PROPERTIES 7U6Z ; 1.30002 ; Pertussis toxin E129D NAD 7SKK ; 1.65001 ; pertussis toxin in complex with ADPR and Nicotinamide 7SKI ; 1.09912 ; Pertussis toxin in complex with PJ34 7SKY ; 1.37 ; Pertussis toxin S1 bound to NAD+ 7SNE ; 1.00011 ; Pertussis toxin S1 subunit bound to BaAD 6EZ7 ; 1.9 ; Pes4 RRM3 Structure 4CBG ; 2.82 ; Pestivirus NS3 helicase 4CBH ; 2.51 ; Pestivirus NS3 helicase 4CBI ; 3.0 ; Pestivirus NS3 helicase 4CBL ; 3.05 ; Pestivirus NS3 helicase 4CBM ; 3.27 ; Pestivirus NS3 helicase 7Z6B ; 1.4 ; PET hydrolase PET6 from halophilic organsim Vibrio gazogenes 1ZLP ; 2.7 ; Petal death protein PSR132 with cysteine-linked glutaraldehyde forming a thiohemiacetal adduct 8CRU ; 1.3 ; PETase Ancestral Sequence Reconstruction 008 6QGC ; 2.0 ; PETase from Ideonella sakaiensis without ligand 6GR0 ; 2.5 ; Petrobactin-binding engineered lipocalin in complex with gallium-petrobactin 6GQZ ; 1.4 ; Petrobactin-binding engineered lipocalin without ligand 2IZ0 ; 2.6 ; PEX inhibitor-home data 5NL8 ; 2.2 ; Pex4 of Hansenula Polymorpha 4BWF ; 3.23 ; Pex4p-Pex22p disulphide bond mutant 2Y9P ; 3.25 ; Pex4p-Pex22p mutant II structure 2Y9M ; 2.6 ; Pex4p-Pex22p structure 7LCK ; 3.24 ; PF 06882961 bound to the glucagon-like peptide-1 receptor (GLP-1R) 7LCI ; 2.9 ; PF 06882961 bound to the glucagon-like peptide-1 receptor (GLP-1R):Gs complex 7LCJ ; 2.82 ; PF 06882961 bound to the glucagon-like peptide-1 receptor (GLP-1R):Gs complex 2IFM ; 3.3 ; PF1 FILAMENTOUS BACTERIOPHAGE: REFINEMENT OF A MOLECULAR MODEL BY SIMULATED ANNEALING USING 3.3 ANGSTROMS RESOLUTION X-RAY FIBRE DIFFRACTION DATA 2IFN ; 4.0 ; PF1 FILAMENTOUS BACTERIOPHAGE: REFINEMENT OF A MOLECULAR MODEL BY SIMULATED ANNEALING USING 3.3 ANGSTROMS RESOLUTION X-RAY FIBRE DIFFRACTION DATA 3IFM ; 3.3 ; PF1 FILAMENTOUS BACTERIOPHAGE: REFINEMENT OF A MOLECULAR MODEL BY SIMULATED ANNEALING USING 3.3 ANGSTROMS RESOLUTION X-RAY FIBRE DIFFRACTION DATA 4IFM ; 3.3 ; PF1 FILAMENTOUS BACTERIOPHAGE: REFINEMENT OF A MOLECULAR MODEL BY SIMULATED ANNEALING USING 3.3 ANGSTROMS RESOLUTION X-RAY FIBRE DIFFRACTION DATA 1PFI ; 3.0 ; PF1 VIRUS STRUCTURE: HELICAL COAT PROTEIN AND DNA WITH PARAXIAL PHOSPHATES 2HR5 ; 2.7 ; PF1283- Rubrerythrin from Pyrococcus furiosus iron bound form 1PFM ; ; PF4-M2 CHIMERIC MUTANT WITH THE FIRST 10 N-TERMINAL RESIDUES OF R-PF4 REPLACED BY THE N-TERMINAL RESIDUES OF THE IL8 SEQUENCE. MODELS 1-15 OF A 27-MODEL SET. 1PFN ; ; PF4-M2 CHIMERIC MUTANT WITH THE FIRST 10 N-TERMINAL RESIDUES OF R-PF4 REPLACED BY THE N-TERMINAL RESIDUES OF THE IL8 SEQUENCE. MODELS 16-27 OF A 27-MODEL SET. 5EUO ; 2.1 ; PF6-M1-HLA-A2 2R0Z ; 2.096 ; PFA1 FAB complexed with GripI peptide fragment 2IPT ; 2.0 ; PFA1 Fab Fragment 2IPU ; 1.65 ; PFA1 Fab fragment complexed with Abeta 1-8 peptide 3EYS ; 1.95 ; PFA1 Fab fragment complexed with pyro-Glu3-A-Beta (3-8) 3EYU ; 2.71 ; PFA1 Fab fragment complexed with Ror2(518-525) 2R0W ; 2.503 ; PFA2 FAB complexed with Abeta1-8 2IQA ; 2.0 ; PFA2 FAB fragment, monoclinic apo form 2IQ9 ; 2.3 ; PFA2 FAB fragment, triclinic apo form 6RIW ; 1.85 ; PfaC Keto synthase-Chain length factor 3SRJ ; 2.15 ; PfAMA1 in complex with invasion-inhibitory peptide R1 2LJ3 ; ; PFBD: High-throughput Strategy of Backbone fold Determination for small well-folded proteins in less than a day 7BK6 ; 2.15 ; PfCopC mutant - D83A 7BK7 ; 2.3 ; PfCopC mutant - D83N 7BK5 ; 1.54 ; PfCopC mutant - E27A 7PI3 ; 3.269 ; PfCyRPA bound to Fab fragments from monoclonal antibodies Cy.003, Cy.004 and Cy.007 7PI7 ; 2.72 ; PfCyRPA bound to monoclonal antibody Cy.002 Fab fragment 7PI2 ; 3.14 ; PfCyRPA bound to monoclonal antibody Cy.003 Fab fragment 7PHW ; 2.793 ; PfCyRPA bound to monoclonal antibody Cy.004 Fab fragment 7PHV ; 3.091 ; PfCyRPA bound to monoclonal antibody Cy.007 Fab fragment 8CDE ; 3.1 ; PfCyRPA-PfRIPR complex from Plasmodium falciparum bound to antibody Cy.003 7CF8 ; 2.21 ; PfkB(Mycobacterium marinum) 7FCA ; 2.21 ; PfkB(Mycobacterium marinum) 2DWO ; 2.25 ; PFKFB3 in complex with ADP and PEP 3QPW ; 2.25 ; PFKFB3 in complex with Aluminum Tetrafluoride 3QPU ; 2.3 ; PFKFB3 in complex with PPi 3QPV ; 2.5 ; PFKFB3 trapped in a phospho-enzyme intermediate state 5IY0 ; 3.0 ; PfMCM N-terminal domain double hexamer 4POF ; 2.648 ; PfMCM N-terminal domain without DNA 4R7Z ; 3.8 ; PfMCM-AAA double-octamer 6RCU ; 4.005 ; PfRH5 bound to monoclonal antibodies R5.004 and R5.016 6RCV ; 3.582 ; PfRH5 bound to monoclonal antibodies R5.011 and R5.016 7PHU ; 2.53 ; PfRH5 bound to monoclonal antibody R5.015 and R5.016 Fab fragments 6RCO ; 1.66 ; PfRH5-binding monoclonal antibody R5.004 6RCQ ; 2.28 ; PfRH5-binding monoclonal antibody R5.011 6RCS ; 2.1 ; PfRH5-binding monoclonal antibody R5.016 8CDD ; 3.0 ; PfRH5-PfCyRPA-PfRIPR complex from Plasmodium falciparum bound to antibody Cy.003 7UA2 ; 2.19 ; Pfs230 D1 domain in complex with 230AL-18 7UA8 ; 2.8 ; Pfs230 D1 domain in complex with 230AL-20 7U9E ; 2.39 ; Pfs230 D1 domain in complex with 230AL-26 7UCQ ; 2.5 ; Pfs230 D1 domain in complex with 230AS-18 7UBS ; 2.5 ; Pfs230 D1 domain in complex with 230AS-26 7UC8 ; 2.9 ; Pfs230 D1 domain in complex with 230AS-73 7U9W ; 2.79 ; Pfs230 D1 domain in complex with 230AS-88 7JUM ; 1.998 ; Pfs230 D1 domain in complex with neutralizing antibody LMIV230-01 7UI1 ; 3.3 ; Pfs230 D1D2 domain in complex with 230AL-37 7UFW ; 2.1 ; Pfs230 D1D2 in complex with LMIV230-01 7UVS ; 2.06 ; Pfs230 domain 1 bound by LMIV230-02 Fab 7UVH ; 2.59 ; Pfs230 domain 1 bound by RUPA-32 Fab 7UVO ; 2.09 ; Pfs230 domain 1 bound by RUPA-38 Fab 7UVI ; 2.92 ; Pfs230 domain 1 bound by RUPA-55 Fab 7UVQ ; 3.29 ; Pfs230 domain 1 bound by RUPA-97 and 15C5 Fabs 6PHB ; 2.0 ; Pfs25 in complex with the human transmission blocking antibody 2530 6PHC ; 2.9 ; Pfs25 in complex with the human transmission blocking antibody 2544 6PHD ; 3.1 ; Pfs25 in complex with the human transmission blocking antibody 2586 6PHF ; 3.1 ; Pfs25 in complex with the human transmission blocking antibody 2587 8EZK ; 2.3 ; Pfs25 in complex with transmission-reducing antibody AS01-04 8EZL ; 2.3 ; Pfs25 in complex with transmission-reducing antibody AS01-50 8EZM ; 2.1 ; Pfs25 in complex with transmission-reducing antibody AS01-63 7ZXG ; 4.2 ; Pfs48/45 bound to Fab fragment of monoclonal antibody 10D8 7ZXF ; 3.72 ; Pfs48/45 bound to monoclonal antibodies 10D8 and 85RF45.1 7ZWF ; 2.132 ; Pfs48/45 bound to scFv fragment of monoclonal antibody 32F3 7ZWI ; 1.9 ; Pfs48/45 C-terminal domain bound to fab fragment of monoclonal antibody 32F3 7ZWM ; 3.69 ; Pfs48/45 central and C-terminal domains bound to Fab fragments of monoclonal antibody 10D8 and 32F3 2LU1 ; ; pfsub2 solution NMR structure 7YNT ; 3.1 ; pFTAA-bound alpha-synuclein fibrils 2K3R ; ; Pfu Rpp21 structure and assignments 6RNY ; 3.9 ; PFV intasome - nucleosome strand transfer complex 4E7I ; 2.5301 ; PFV intasome freeze-trapped prior to 3'-processing, Mn-bound form (UI-Mn) 4E7H ; 2.5701 ; PFV intasome prior to 3'-processing, Apo form (UI-Apo) 4IKF ; 3.4 ; PFV intasome with inhibitor MB-76 4BE0 ; 2.68 ; PFV intasome with inhibitor XZ-115 4BE1 ; 2.71 ; PFV intasome with inhibitor XZ-116 4BE2 ; 2.38 ; PFV intasome with inhibitor XZ-259 4BDY ; 2.52 ; PFV intasome with inhibitor XZ-89 4BDZ ; 2.85 ; PFV intasome with inhibitor XZ-90 4E7L ; 3.0001 ; PFV integrase Strand Transfer Complex (STC-Mn*) following reaction in crystallo, at 3.0 A resolution. 4E7K ; 3.02 ; PFV integrase Target Capture Complex (TCC-Mn), freeze-trapped prior to strand transfer, at 3.0 A resolution 4E7J ; 3.1501 ; PFV integrase Target Capture Complex, Apo form (TCC-Apo), at 3.15 A resolution 3OS0 ; 2.81 ; PFV strand transfer complex (STC) at 2.81 A resolution 3OS1 ; 2.97 ; PFV target capture complex (TCC) at 2.97 A resolution 3OS2 ; 3.32 ; PFV target capture complex (TCC) at 3.32 A resolution 5WHZ ; 3.549 ; PGDM1400-10E8v4 CODV Fab 8XJL ; 2.77 ; PGF2-alpha bound Prostaglandin F2-alpha receptor-Gq Protein Complex 8RDX ; 3.67 ; PGGtase I in complex with probe BAY-6092 5NP8 ; 1.9 ; PGK1 in complex with CRT0063465 (3-[2-(4-bromophenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-6-yl]propanoic acid) 5TYH ; 2.1 ; PglD from Campylobacter jejuni NCTC 11168 in complex with 5-(2-furanyl)-1H-pyrazole-3-carboxylic acid 3BSY ; 1.8 ; PglD from Campylobacter jejuni, NCTC 11168, in complex with acetyl coenzyme A 3BSS ; 2.3 ; PglD from Campylobacter jejuni, NCTC 11168, with native substrate 3BSW ; 1.77 ; PglD-citrate complex, from Campylobacter jejuni NCTC 11168 2VHE ; 1.8 ; PglD-CoA complex: An acetyl transferase from Campylobacter jejuni 4ZTC ; 2.0 ; PglE Aminotransferase in complex with External Aldimine, Mutant K184A 5NBD ; 3.9 ; PglK flippase in complex with inhibitory nanobody 7D62 ; 1.9 ; pGpG-specific phosphodiesterase - PggH from Vibrio cholrae 6NIJ ; 5.7 ; PGT145 Fab in complex with full length AMC011 HIV-1 Env 1QFX ; 2.4 ; PH 2.5 ACID PHOSPHATASE FROM ASPERGILLUS NIGER 7YQV ; 3.58 ; pH 5.5 SARS-CoV-2 BA.2.75 S Trimer (1 RBD Up) 1B17 ; 1.7 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.00 COORDINATES) 1B18 ; 1.8 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.53 COORDINATES) 1B19 ; 1.8 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.80 COORDINATES) 1B2A ; 1.7 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.00 COORDINATES) 1B2B ; 1.8 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.16 COORDINATES) 1B2C ; 1.8 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.26 COORDINATES) 1B2D ; 1.7 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.35 COORDINATES) 1B2E ; 1.9 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.50 COORDINATES) 1B2F ; 1.9 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.98 COORDINATES) 1B2G ; 1.8 ; PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 9.00 COORDINATES) 2KJO ; ; pH dependent structures of LAH4 in micellar environment: mode of acting 2KJN ; ; pH dependent structures of LAH4 in micellar environmnet:mode of acting 1BWN ; 2.1 ; PH DOMAIN AND BTK MOTIF FROM BRUTON'S TYROSINE KINASE MUTANT E41K IN COMPLEX WITH INS(1,3,4,5)P4 1BTK ; 1.6 ; PH DOMAIN AND BTK MOTIF FROM BRUTON'S TYROSINE KINASE MUTANT R28C 1B55 ; 2.4 ; PH DOMAIN FROM BRUTON'S TYROSINE KINASE IN COMPLEX WITH INOSITOL 1,3,4,5-TETRAKISPHOSPHATE 6F24 ; ; PH domain from PfAPH 6F8E ; ; PH domain from TgAPH 5C79 ; 1.6 ; PH domain of ASAP1 in complex with diC4-PtdIns(4,5)P2 2A6U ; ; pH evolution of tetragonal HEWL at 4 degrees Celcius. 5UKD ; 1.9 ; PH INFLUENCES FLUORIDE COORDINATION NUMBER OF THE ALFX PHOSPHORYL TRANSFER TRANSITION STATE ANALOG 1QF9 ; 1.7 ; PH INFLUENCES FLUORIDE COORDINATION NUMBER OF THE ALFX PHOSPHORYL TRANSFER TRANSITION STATE ANALOG IN UMP/CMP KINASE 2X12 ; 2.9 ; pH-induced modulation of Streptococcus parasanguinis adhesion by Fap1 fimbriae 6SU5 ; 1.2 ; Ph2119 endolysin from Thermus scotoductus MAT2119 bacteriophage Ph2119 5IP0 ; 3.0 ; PHA Binding Protein PhaP (Phasin) 4RGA ; 2.1 ; Phage 1358 receptor binding protein in complex with the trisaccharide GlcNAc-Galf-GlcOMe 8C7J ; 2.0 ; Phage display derived serum albumin binding knob domain engineered within a novel VH framework 3 bispecific antibody format 8C7V ; 1.61 ; Phage display derived serum albumin binding knob domain engineered within a novel VH framework 3 bispecific antibody format 1KF9 ; 2.6 ; PHAGE DISPLAY DERIVED VARIANT OF HUMAN GROWTH HORMONE COMPLEXED WITH TWO COPIES OF THE EXTRACELLULAR DOMAIN OF ITS RECEPTOR 3ZF1 ; 3.0 ; Phage dUTPases control transfer of virulence genes by a proto- oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase D81N mutant with dUpNHpp). 3ZF4 ; 3.1 ; Phage dUTPases control transfer of virulence genes by a proto- oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase Y81A mutant with dUpNHpp). 3ZF2 ; 2.9 ; Phage dUTPases control transfer of virulence genes by a proto- oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase). 3ZEZ ; 2.8 ; Phage dUTPases control transfer of virulence genes by a proto- oncogenic G protein-like mechanism.(Staphylococcus bacteriophage 80alpha dUTPase with dUPNHPP). 3ZF6 ; 2.6 ; Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase D81A D110C S168C mutant with dUpNHpp). 3ZF0 ; 2.9 ; Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase D81A mutant with dUpNHpp). 3ZF5 ; 3.2 ; Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase Y84F mutant with dUpNHpp). 3ZF3 ; 3.1 ; Phage dUTPases control transfer of virulence genes by a proto-oncogenic G protein-like mechanism. (Staphylococcus bacteriophage 80alpha dUTPase Y84I mutant). 1FR5 ; 3.5 ; PHAGE FR CAPSIDS WITH A FOUR RESIDUE DELETION IN THE COAT PROTEIN FG LOOP 6WKK ; 6.1 ; Phage G gp27 major capsid proteins and gp26 decoration proteins 2WCC ; ; phage lambda IntDBD1-64 complex with p prime 2 DNA 8F72 ; 2.7 ; Phage P32 gp64- RNA polymerase 2FIP ; 2.0 ; Phage phi29 transcription regulator p4 2FIO ; 2.7 ; Phage phi29 transcription regulator p4-DNA complex 4HIZ ; 1.601 ; Phage phi92 endosialidase 6ZNB ; 2.8 ; PHAGE SAM LYASE IN APO STATE 6ZMG ; 1.48 ; PHAGE SAM LYASE IN COMPLEX WITH S-ADENOSYL-L-HOMOCYSTEINE 6ZM9 ; 1.45 ; PHAGE SAM LYASE IN COMPLEX WITH S-METHYL-5'-THIOADENOSINE 2HOT ; 2.19 ; Phage selected homeodomain bound to modified DNA 206L ; 1.75 ; PHAGE T4 LYSOZYME 2XVR ; 10.8 ; Phage T7 empty mature head shell 3U6X ; 2.6 ; Phage TP901-1 baseplate tripod 5UDN ; 1.971 ; Phage-associated cell wall hydrolase PlyPy from Streptococcus pyogenes, space group P3121 5UDM ; 2.64 ; Phage-associated cell wall hydrolase PlyPy from Streptococcus pyogenes, space group P6522 4KLK ; 1.93 ; Phage-related protein DUF2815 from Enterococcus faecalis 2HOS ; 1.9 ; Phage-Selected Homeodomain Bound to Unmodified DNA 1ZDA ; ; PHAGE-SELECTED MINI PROTEIN A DOMAIN, Z38, NMR, 24 STRUCTURES 1ZDB ; ; PHAGE-SELECTED MINI PROTEIN A DOMAIN, Z38, NMR, MINIMIZED MEAN STRUCTURE 7BTI ; 3.6 ; Phalloidin bound F-actin complex 4ZB7 ; 2.4 ; Phanerochaete chrysosporium URE2P6 in apo form. 3QBL ; 2.2 ; Pharaonis halorhodopsin complexed with nitrate 4DO4 ; 1.4 ; Pharmacological chaperones for human alpha-N-acetylgalactosaminidase 4DO5 ; 1.51 ; Pharmacological chaperones for human alpha-N-acetylgalactosaminidase 4DO6 ; 1.6 ; Pharmacological chaperones for human alpha-N-acetylgalactosaminidase 3S5Y ; 2.105 ; Pharmacological Chaperoning in Human alpha-Galactosidase 3S5Z ; 2.001 ; Pharmacological Chaperoning in Human alpha-Galactosidase 3TV8 ; 2.639 ; Pharmacological Chaperoning in Human alpha-Galactosidase 6X8R ; ; Pharmacological characterisation and NMR structure of the novel mu-conotoxin SxIIIC, a potent irreversible NaV channel inhibitor 5AFV ; 2.25 ; Pharmacophore-based virtual screening to discover new active compounds for human choline kinase alpha1. 6LPD ; 1.65 ; Phascolosoma esculenta 6LPE ; 1.99 ; Phascolosoma esculenta ferritin 2Z18 ; 1.15 ; Phase transition of monoclinic lysozyme crystal soaked in a 10% NaCl solution 2Z19 ; 1.15 ; Phase transition of monoclinic lysozyme crystal soaked in a saturated NaCl solution 2VTV ; 1.9 ; PhaZ7 depolymerase from Paucimonas lemoignei 2D81 ; 1.66 ; PHB depolymerase (S39A) complexed with R3HB trimer 2M85 ; ; PHD Domain from Human SHPRH 2M1R ; ; PHD domain of ING4 N214D mutant 3ZVZ ; 1.449 ; PHD finger of human UHRF1 3ZVY ; 1.95 ; PHD finger of human UHRF1 in complex with unmodified histone H3 N- terminal tail 8JWU ; 3.58 ; PHD Finger Protein 7 (PHF7) fused to UBE2D2 via a (GSGG)3 linker 8JWJ ; 2.96 ; PHD Finger Protein 7 (PHF7) in complex with UBE2D2 3O70 ; 1.85 ; PHD-type zinc finger of human PHD finger protein 13 5OQD ; 2.447 ; PHD2 and winged-helix domain of Polycomblike 3OUJ ; 2.3 ; PHD2 with 2-Oxoglutarate 3OUH ; 2.51 ; PHD2-R127 with JNJ41536014 3OUI ; 1.7 ; PHD2-R717 with 40787422 3HQU ; 2.3 ; PHD2:Fe:UN9:partial HIF1-alpha substrate complex 3HQR ; 2.0 ; PHD2:Mn:NOG:HIF1-alpha substrate complex 6MLC ; 1.8 ; PHD6 domain of MLL3 in complex with histone H4 6DAQ ; 2.0 ; PhdJ bound to substrate intermediate 6DAN ; 2.047 ; PhdJ WT 2 Angstroms resolution 2SGF ; 1.75 ; PHE 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B 3ZJJ ; 2.0 ; Phe(93)E11Leu mutation of M.acetivorans protoglobin in complex with cyanide 1TTT ; 2.7 ; Phe-tRNA, elongation factoR EF-TU:GDPNP ternary complex 1CC4 ; 2.0 ; PHE161 AND ARG166 VARIANTS OF P-HYDROXYBENZOATE HYDROXYLASE. IMPLICATIONS FOR NADPH RECOGNITION AND STRUCTURAL STABILITY. 1CC6 ; 2.2 ; PHE161 AND ARG166 VARIANTS OF P-HYDROXYBENZOATE HYDROXYLASE. IMPLICATIONS FOR NADPH RECOGNITION AND STRUCTURAL STABILITY. 1JPI ; 2.3 ; Phe232Leu mutant of human UROD, human uroporphyrinogen III decarboxylase 3PGU ; 1.7 ; Phe3Glu mutant of EcFadL 3PGS ; 1.9 ; Phe3Gly mutant of EcFadL 1MTI ; 1.9 ; PHE46(CD4) ORIENTS THE DISTAL HISTIDINE FOR HYDROGEN BONDING TO BOUND LIGANDS IN SPERM WHALE MYOGLOBIN 1MTJ ; 1.7 ; PHE46(CD4) ORIENTS THE DISTAL HISTIDINE FOR HYDROGEN BONDING TO BOUND LIGANDS IN SPERM WHALE MYOGLOBIN 1MTK ; 1.8 ; PHE46(CD4) ORIENTS THE DISTAL HISTIDINE FOR HYDROGEN BONDING TO BOUND LIGANDS IN SPERM WHALE MYOGLOBIN 7Z9L ; ; Phen-DC3 intercalation causes hybrid-to-antiparallel transformation of human telomeric DNA G-quadruplex 1A18 ; 2.4 ; PHENANTHROLINE MODIFIED MURINE ADIPOCYTE LIPID BINDING PROTEIN 7SAB ; 4.3 ; Phencyclidine-bound GluN1a-GluN2B NMDA receptors 3SMB ; 1.6 ; Phenethylisothiocyanate Covalently Bound to Macrophage Migration Inhibitory Factor (MIF) 7VQF ; 2.3 ; Phenol binding protein, MopR 1FOH ; 2.4 ; PHENOL HYDROXYLASE FROM TRICHOSPORON CUTANEUM 1PN0 ; 1.7 ; Phenol hydroxylase from Trichosporon cutaneum 5KGY ; ; Phenol-soluble modulin Alpha 3 5KGZ ; ; Phenol-soluble modulin Beta2 4YYL ; 1.905 ; Phenolic acid derivative bound to influenza strain H1N1 polymerase subunit PA endonuclease 1W4X ; 1.7 ; Phenylacetone Monooxygenase, a Baeyer-Villiger Monooxygenase 4OVI ; 1.87 ; Phenylacetone monooxygenase: oxidised enzyme in complex with APADP 4C77 ; 2.7 ; Phenylacetone monooxygenase: oxidised R337K mutant in complex with APADP 4C74 ; 1.97 ; Phenylacetone monooxygenase: Reduced enzyme in complex with APADP 1AMU ; 1.9 ; PHENYLALANINE ACTIVATING DOMAIN OF GRAMICIDIN SYNTHETASE 1 IN A COMPLEX WITH AMP AND PHENYLALANINE 1W27 ; 1.7 ; Phenylalanine ammonia-lyase (PAL) from Petroselinum crispum 6F6T ; 1.89996 ; Phenylalanine ammonia-lyase (PAL) from Petroselinum crispum complexed with S-APPA 6AT7 ; 2.493 ; Phenylalanine Ammonia-Lyase (PAL) from Sorghum bicolor 1BXG ; 2.3 ; PHENYLALANINE DEHYDROGENASE STRUCTURE IN TERNARY COMPLEX WITH NAD+ AND BETA-PHENYLPROPIONATE 1BW9 ; 1.5 ; PHENYLALANINE DEHYDROGENASE STRUCTURE IN TERNARY COMPLEX WITH NAD+ AND PHENYLPYRUVATE 5JK6 ; 2.072 ; Phenylalanine hydroxylase from dictyostelium - apo form 5JK5 ; 2.071 ; Phenylalanine hydroxylase from dictyostelium - BH2 complex 5JK8 ; 2.394 ; Phenylalanine hydroxylase from dictyostelium - BH2, norleucine complex 2RG5 ; 2.4 ; Phenylalanine pyrrolotriazine p38 alpha map kinase inhibitor compound 11B 2RG6 ; 1.72 ; Phenylalanine pyrrolotriazine p38 alpha map kinase inhibitor compound 11J 1Q2H ; 1.7 ; Phenylalanine Zipper Mediates APS Dimerization 1B70 ; 2.7 ; PHENYLALANYL TRNA SYNTHETASE COMPLEXED WITH PHENYLALANINE 1B7Y ; 2.5 ; PHENYLALANYL TRNA SYNTHETASE COMPLEXED WITH PHENYLALANINYL-ADENYLATE 1PYS ; 2.9 ; PHENYLALANYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS 2IY5 ; 3.1 ; PHENYLALANYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS complexed with tRNA and a phenylalanyl-adenylate analog 8FDK ; 1.89 ; Phenylhydroxylamine in Reaction with Human Hemoglobin 1MUP ; 2.4 ; PHEROMONE BINDING TO TWO RODENT URINARY PROTEINS REVEALED BY X-RAY CRYSTALLOGRAPHY 2ERL ; 1.0 ; PHEROMONE ER-1 FROM 1ERY ; ; PHEROMONE ER-11, NMR 1HD6 ; ; PHEROMONE ER-22, NMR 1HA8 ; ; Pheromone Er-23 from Euplotes raikovi 6E6O ; 0.7 ; Pheromone from Euplotes raikovi, Er-1 6E6N ; 1.363 ; Pheromone from Euplotes raikovi, Er-13 2RHQ ; 2.2 ; PheRS from Staphylococcus haemolyticus- rational protein engineering and inhibitor studies 2RHS ; 2.2 ; PheRS from Staphylococcus haemolyticus- rational protein engineering and inhibitor studies 4P73 ; 3.03 ; PheRS in complex with compound 1a 4P72 ; 2.62 ; PheRS in complex with compound 2a 4P74 ; 2.7 ; PheRS in complex with compound 3a 4P75 ; 2.96 ; PheRS in complex with compound 4a 8OTJ ; 3.3 ; PHF tau filament from Kii ALS/PDC 8SEH ; 2.9 ; PHF Tau from Down Syndrome 4HCZ ; 1.85 ; PHF1 Tudor in complex with H3K36me3 4BD3 ; ; Phf19 links methylated lysine 36 of histone H3 to regulation of Polycomb activity 8F8Z ; 3.3 ; PHF2 (PHD+JMJ) in Complex with H3 Histone N-Terminal Peptide 8F8Y ; 3.06 ; PHF2 (PHD+JMJ) in Complex with VRK1 N-Terminal Peptide 3PTR ; 1.954 ; PHF2 Jumonji domain 3PU3 ; 1.95 ; PHF2 Jumonji domain-NOG complex 3PU8 ; 1.943 ; PHF2 Jumonji-NOG-Fe(II) complex 3PUA ; 1.89 ; PHF2 Jumonji-NOG-Ni(II) 3PUS ; 2.08 ; PHF2 Jumonji-NOG-Ni(II) 7M10 ; 1.15 ; PHF2 PHD Domain Complexed with Peptide From N-terminus of VRK1 6L10 ; 1.6 ; PHF20L1 Tudor1 - MES 6WXK ; 2.9 ; PHF23 PHD Domain Apo 7DKM ; 1.7 ; PHGDH covalently linked to oridonin 8F2O ; 3.0 ; Phi-29 expanded, DNA-packaged fiberless prohead 8F2N ; 3.0 ; Phi-29 partially-expanded fiberless prohead 8F2M ; 3.7 ; Phi-29 scaffolding protein bound to intermediate-state MCP 2PZS ; 2.6 ; Phi29 DNA polymerase complexed with primer-template DNA (post-translocation binary complex) 2PYJ ; 2.03 ; Phi29 DNA polymerase complexed with primer-template DNA and incoming nucleotide substrates (ternary complex) 2PYL ; 2.2 ; Phi29 DNA polymerase complexed with primer-template DNA and incoming nucleotide substrates (ternary complex) 2PY5 ; 1.6 ; Phi29 DNA polymerase complexed with single-stranded DNA 1XI1 ; 2.2 ; Phi29 DNA polymerase ssDNA complex, monoclinic crystal form 1XHX ; 2.35 ; Phi29 DNA Polymerase, orthorhombic crystal form 1XHZ ; 2.7 ; Phi29 DNA polymerase, orthorhombic crystal form, ssDNA complex 2KVN ; ; Phi29 E-loop hairpin 7PV4 ; 2.8 ; PhiCPV4 bacteriophage Portal Protein 8FNE ; 3.9 ; phiPA3 PhuN Tetramer, p2 8JFL ; 2.9 ; PhK holoenzyme in active state, muscle isoform 8JFK ; 2.9 ; PhK holoenzyme in inactive state, muscle isoform 4PVK ; 1.3 ; Phl p 4 I153V N158H variant, a glucose oxidase 4PWC ; 2.3 ; Phl p 4 I153V N158H variant, a glucose oxidase, 3.5 M NaBr soak 4PVJ ; 1.8 ; Phl p 4 I153V variant, a glucose oxidase 4PWB ; 1.9 ; Phl p 4 I153V variant, a glucose oxidase, pressurized with Xenon 4PVH ; 1.4 ; Phl p 4 N158H variant, a glucose dehydrogenase 6TRK ; 1.6 ; Phl p 6 fold stabilized mutant - S46Y 6MT7 ; 1.78 ; Phlebotomus duboscqi salivary D7 protein, selenomethionine derivative 7VUB ; 1.2 ; Phloem lectin (PP2) complex with Nitrobenzene 7W4B ; 2.5 ; Phloem lectin (PP2) structure -complex with Chitotrise 7VWB ; 1.9 ; Phloem lectin (PP2) structure -complex with N-Acetyllactosamine (LacNAc) 7VS6 ; 2.5 ; Phloem lectin (PP2) structure -native form 7YAQ ; 1.853 ; Phloem lectin (PP2)C34S mutant 2UXI ; 2.5 ; Phloretin in complex with TtgR 5G4K ; 1.74 ; Phloroglucinol reductase from Clostridium sp. apo-form 5G4L ; 1.8 ; Phloroglucinol reductase from Clostridium sp. with bound NADPH 8KI5 ; 2.01 ; PhmA, a type I diterpene synthase without NST/DTE motif 8KIH ; 2.0 ; PhmA, a type I diterpene synthase without NST/DTE motif 1GXP ; 2.5 ; PhoB effector domain in complex with pho box DNA. 1B00 ; 1.88 ; PHOB RECEIVER DOMAIN FROM ESCHERICHIA COLI 2JB9 ; 1.7 ; PhoB response regulator receiver domain constitutively-active double mutant D10A and D53E. 2JBA ; 1.45 ; PhoB response regulator receiver domain constitutively-active double mutant D53A and Y102C. 3T72 ; 4.33 ; PhoB(E)-Sigma70(4)-(RNAP-Betha-flap-tip-helix)-DNA Transcription Activation Sub-Complex 7PZG ; 1.44 ; Phocaeicola vulgatus sialic acid esterase at 1.44 Angstrom resolution 7PZH ; 2.06 ; Phocaeicola vulgatus sialic acid esterase at 2.06 Angstrom resolution 8FZZ ; 2.68 ; Phocaeicola vulgatus type VI secretion system Ntox15 effector and immunity Tde2/Tdi2 6A86 ; 1.8 ; Pholiota squarrosa lectin 6A87 ; 2.41 ; Pholiota squarrosa lectin (PhoSL) in complex with fucose(alpha1-6)GlcNAc 7VU9 ; 2.154 ; Pholiota squarrosa lectin (PhoSL) in complex with fucose(alpha1-6)[GlcNAc(beta1-4)]GlcNAc 5XZK ; ; Pholiota squarrosa lectin trimer 7CNO ; 2.5 ; Phomopsin A in complex with tubulin 6A8V ; 2.7 ; PhoQ sensor domain (D179R mutant): analysis of internal cavity 6A8U ; 1.848 ; PhoQ sensor domain (wild type): analysis of internal cavity 2TRC ; 2.4 ; PHOSDUCIN/TRANSDUCIN BETA-GAMMA COMPLEX 5HPE ; 2.27 ; Phosphatase domain of PP5 bound to a phosphomimetic Cdc37 substrate peptide 6IAH ; 1.75 ; Phosphatase Tt82 from Thermococcus thioreducens 6A1K ; 2.3 ; Phosphate acyltransferase PlsX from B.subtilis 4OMB ; 1.5 ; Phosphate binding protein 8JFS ; 1.0 ; Phosphate bound acylphosphatase from Deinococcus radiodurans at 1 Angstrom resolution 1IE7 ; 1.85 ; PHOSPHATE INHIBITED BACILLUS PASTEURII UREASE CRYSTAL STRUCTURE 4S2E ; 2.35 ; Phosphate ion bound Crystal structure of thymidylate kinase (aq_969) from Aquifex Aeolicus VF5 3DFP ; 2.05 ; Phosphate ions in D33N mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 3DFT ; 1.94 ; Phosphate ions in D33S mutant fructose-1,6-bisphosphate aldolase from rabbit muscle 2QUV ; 2.22 ; Phosphate ions in fructose-1,6-bisphosphate aldolase from rabbit muscle 1A0A ; 2.8 ; PHOSPHATE SYSTEM POSITIVE REGULATORY PROTEIN PHO4/DNA COMPLEX 1IXH ; 0.98 ; PHOSPHATE-BINDING PROTEIN (PBP) COMPLEXED WITH PHOSPHATE 8ODS ; 1.909 ; Phosphate-Binding Protein (PstS) from Xanthomonas citri pv. citri A306 bound to phosphate 2ABH ; 1.7 ; PHOSPHATE-BINDING PROTEIN (RE-REFINED) 5JK4 ; 1.1 ; Phosphate-Binding Protein from Stenotrophomonas maltophilia. 1A55 ; 2.4 ; PHOSPHATE-BINDING PROTEIN MUTANT A197C 1A54 ; 1.6 ; PHOSPHATE-BINDING PROTEIN MUTANT A197C LABELLED WITH A COUMARIN FLUOROPHORE AND BOUND TO DIHYDROGENPHOSPHATE ION 1OIB ; 2.4 ; PHOSPHATE-BINDING PROTEIN MUTANT T141D 1QUK ; 1.7 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH ASP 137 REPLACED BY ASN COMPLEX WITH PHOSPHATE 1QUI ; 1.9 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH ASP 137 REPLACED BY GLY COMPLEX WITH BROMINE AND PHOSPHATE 1QUJ ; 1.9 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH ASP 137 REPLACED BY GLY COMPLEX WITH CHLORINE AND PHOSPHATE 1QUL ; 1.7 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH ASP 137 REPLACED BY THR COMPLEX WITH CHLORINE AND PHOSPHATE 1IXI ; 1.89 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH ASP 56 REPLACED BY ASN COMPLEX WITH MONOBASIC PHOSPHATE ION 1IXG ; 1.05 ; PHOSPHATE-BINDING PROTEIN MUTANT WITH THR 141 REPLACED BY ASP (T141D), COMPLEXED WITH PHOSPATE 1A40 ; 1.7 ; PHOSPHATE-BINDING PROTEIN WITH ALA 197 REPLACED WITH TRP 5LTD ; 2.5 ; Phosphate-bound Pichia angusta Atg18 1A44 ; 1.84 ; PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN FROM CALF BRAIN 2GZQ ; 1.3 ; Phosphatidylethanolamine-binding protein from Plasmodium vivax 1PHT ; 2.0 ; PHOSPHATIDYLINOSITOL 3-KINASE P85-ALPHA SUBUNIT SH3 DOMAIN, RESIDUES 1-85 1H9O ; 1.79 ; PHOSPHATIDYLINOSITOL 3-KINASE, P85-ALPHA SUBUNIT: C-TERMINAL SH2 DOMAIN COMPLEXED WITH A TYR751 PHOSPHOPEPTIDE FROM THE PDGF RECEPTOR, CRYSTAL STRUCTURE AT 1.79 A 1PIC ; ; PHOSPHATIDYLINOSITOL 3-KINASE, P85-ALPHA SUBUNIT: C-TERMINAL SH2 DOMAIN COMPLEXED WITH A TYR751 PHOSPHOPEPTIDE FROM THE PDGF RECEPTOR, NMR, MINIMIZED MEAN STRUCTURE 4WAE ; 3.318 ; Phosphatidylinositol 4-kinase III beta crystallized with ATP 4WAG ; 3.407 ; Phosphatidylinositol 4-kinase III beta crystallized with MI103 inhibitor 4D0M ; 6.0 ; Phosphatidylinositol 4-kinase III beta in a complex with Rab11a-GTP- gamma-S and the Rab-binding domain of FIP3 4D0L ; 2.94 ; Phosphatidylinositol 4-kinase III beta-PIK93 in a complex with Rab11a- GTP gammaS 1BO1 ; 3.0 ; PHOSPHATIDYLINOSITOL PHOSPHATE KINASE TYPE II BETA 1AUA ; 2.5 ; PHOSPHATIDYLINOSITOL TRANSFER PROTEIN SEC14P FROM SACCHAROMYCES CEREVISIAE 1VFY ; 1.15 ; PHOSPHATIDYLINOSITOL-3-PHOSPHATE BINDING FYVE DOMAIN OF VPS27P PROTEIN FROM SACCHAROMYCES CEREVISIAE 1PTD ; 2.6 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C 1AOD ; 2.6 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C FROM LISTERIA MONOCYTOGENES 2PLC ; 2.0 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C FROM LISTERIA MONOCYTOGENES 1GYM ; 2.2 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C IN COMPLEX WITH GLUCOSAMINE-(ALPHA-1-6)-MYO-INOSITOL 1PTG ; 2.6 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C IN COMPLEX WITH MYO-INOSITOL 2PTD ; 2.0 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT D198E 4PTD ; 2.3 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT D274N 3PTD ; 2.2 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT D274S 5PTD ; 2.7 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT H32A 6PTD ; 2.6 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT H32L 7PTD ; 2.6 ; PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C MUTANT R163K 8A6M ; ; Phosphatidylserine-dependent synaptic vesicle membrane sculpting by synaptogyrin 6IH6 ; 2.491 ; Phosphite Dehydrogenase mutant I151R/P176R/M207A from Ralstonia sp. 4506 in complex with non-natural cofactor Nicotinamide Cytosine dinucleotide 1SUR ; 2.0 ; PHOSPHO-ADENYLYL-SULFATE REDUCTASE 2HEG ; 1.5 ; Phospho-Aspartyl Intermediate Analogue of Apha class B acid phosphatase/phosphotransferase 1J97 ; 1.5 ; Phospho-Aspartyl Intermediate Analogue of Phosphoserine phosphatase 1RLO ; 2.0 ; Phospho-aspartyl Intermediate Analogue of ybiV from E. coli K12 5V60 ; 2.18 ; Phospho-ERK2 bound to AMP-PCP 5V61 ; 2.2 ; Phospho-ERK2 bound to bivalent inhibitor SBP2 5V62 ; 1.9 ; Phospho-ERK2 bound to bivalent inhibitor SBP3 7UQC ; 2.65 ; phospho-GlialCAM peptide AA370-389 with Fab MS39p2w174 4PYH ; 1.65 ; Phospho-glucan bound structure of starch phosphatase Starch EXcess4 reveals the mechanism for C6-specificty 5J19 ; 2.0 ; phospho-Pon binding-induced Plk1 dimerization 7R4H ; 2.34 ; phospho-STING binding to adaptor protein complex-1 1MCP ; 2.7 ; PHOSPHOCHOLINE BINDING IMMUNOGLOBULIN FAB MC/PC603. AN X-RAY DIFFRACTION STUDY AT 2.7 ANGSTROMS 7PK5 ; 4.4 ; Phosphodiesterase PdeL (EAL domain of crystals comprising full-length protein) 7F0I ; 2.70001 ; phosphodiesterase-9A in complex with inhibitor 4b 4QGE ; 2.0 ; phosphodiesterase-9A in complex with inhibitor WYQ-C36D 1AQ2 ; 1.9 ; PHOSPHOENOLPYRUVATE CARBOXYKINASE 1AYL ; 1.8 ; PHOSPHOENOLPYRUVATE CARBOXYKINASE 1OEN ; 1.9 ; PHOSPHOENOLPYRUVATE CARBOXYKINASE 1K3D ; 2.0 ; Phosphoenolpyruvate carboxykinase in complex with ADP and AlF3 1K3C ; 2.0 ; Phosphoenolpyruvate carboxykinase in complex with ADP, AlF3 and Pyruvate 1PYM ; 1.8 ; PHOSPHOENOLPYRUVATE MUTASE FROM MOLLUSK IN WITH BOUND MG2-OXALATE 1BLE ; 2.9 ; PHOSPHOENOLPYRUVATE-DEPENDENT PHOSPHOTRANSFERASE SYSTEM 1PDO ; 1.7 ; PHOSPHOENOLPYRUVATE-DEPENDENT PHOSPHOTRANSFERASE SYSTEM 3UJ9 ; 1.24 ; Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with phosphocholine 3UJA ; 1.466 ; Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with phosphoethanolamine 3UJB ; 1.521 ; Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with SAH and phosphoethanolamine 3UJ7 ; 1.549 ; Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with SAM and PO4 3UJ8 ; 1.351 ; Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with sinefungin and PO4 6WLF ; 2.05 ; Phosphoethanolamine Methyltransferase from the Pine Wilt Nematode Bursaphelenchus xylophilus 3UJC ; 1.19 ; Phosphoethanolamine methyltransferase mutant (H132A) from Plasmodium falciparum in complex with phosphocholine 3UJD ; 1.5 ; Phosphoethanolamine methyltransferase mutant (Y19F) from Plasmodium falciparum in complex with phosphocholine 6PFK ; 2.6 ; PHOSPHOFRUCTOKINASE, INHIBITED T-STATE 3PFK ; 2.4 ; PHOSPHOFRUCTOKINASE. STRUCTURE AND CONTROL 4PFK ; 2.4 ; PHOSPHOFRUCTOKINASE. STRUCTURE AND CONTROL 2FUV ; 2.0 ; Phosphoglucomutase from Salmonella typhimurium. 1C4G ; 2.7 ; PHOSPHOGLUCOMUTASE VANADATE BASED TRANSITION STATE ANALOG COMPLEX 7VSS ; 2.96 ; Phosphoglucomutase_tlr1976 7VST ; 2.74 ; Phosphoglucomutase_tlr1976 1T10 ; 2.35 ; Phosphoglucose isomerase from Leishmania mexicana in complex with substrate D-fructose-6-phosphate 1Q50 ; 2.6 ; Phosphoglucose isomerase from Leishmania mexicana. 7OYL ; 1.78 ; Phosphoglucose isomerase of Aspergillus fumigatus in complexed with Glucose-6-phosphate 16PK ; 1.6 ; PHOSPHOGLYCERATE KINASE FROM TRYPANOSOMA BRUCEI BISUBSTRATE ANALOG 5Y2I ; 1.917 ; Phosphoglycerate mutase 1 (PGAM1) complexed with its inhibitor PGMI-004A 8IT5 ; 2.2 ; Phosphoglycerate mutase 1 complexed with a compound 8IT6 ; 2.55 ; Phosphoglycerate mutase 1 complexed with a compound 8IT7 ; 2.8 ; Phosphoglycerate mutase 1 complexed with a compound 8IT8 ; 1.95 ; Phosphoglycerate mutase 1 complexed with a compound 8ITB ; 2.38 ; Phosphoglycerate mutase 1 complexed with a compound 8ITC ; 1.88 ; Phosphoglycerate mutase 1 complexed with a compound 8ITD ; 1.9 ; Phosphoglycerate mutase 1 complexed with a compound 7XB7 ; 2.2 ; Phosphoglycerate mutase 1 complexed with a covalent inhibitor 7XB8 ; 1.6 ; Phosphoglycerate mutase 1 complexed with a covalent inhibitor 7XB9 ; 1.58 ; Phosphoglycerate mutase 1 complexed with a covalent inhibitor 8IT4 ; 2.4 ; Phosphoglycerate mutase 1 complexed with a covalent inhibitor 6ISN ; 1.98 ; Phosphoglycerate mutase 1 complexed with a small molecule inhibitor 5ZRM ; 2.28 ; Phosphoglycerate mutase 1 complexed with a small molecule inhibitor In-AC 5Y35 ; 1.994 ; Phosphoglycerate mutase 1 complexed with a small molecule inhibitor KH1 5Y65 ; 2.554 ; Phosphoglycerate mutase 1 complexed with a small molecule inhibitor KH2 5Y64 ; 2.149 ; Phosphoglycerate mutase 1 H11 phosphorylated form complexed with KH1 5U9Z ; 2.001 ; Phosphoglycerol transferase GacH from Streptococcus pyogenes 7PO7 ; 2.31 ; Phosphoglycolate phosphatase from Mus musculus 7POE ; 3.16 ; Phosphoglycolate Phosphatase with Inhibitor CP1 8V4J ; 1.31 ; Phosphoheptose isomerase GMHA from Burkholderia pseudomallei bound to inhibitor Mut148233 8V2T ; 1.402 ; Phosphoheptose isomerase GMHA from Burkholderia pseudomallei bound to inhibitor Mut148591 7KKE ; 2.81 ; Phosphoinositide 3-Kinase gamma bound to a thiazole inhibitor 6C1S ; 2.31 ; Phosphoinositide 3-Kinase gamma bound to an pyrrolopyridinone Inhibitor 8SO9 ; 3.03 ; Phosphoinositide phosphate 3 kinase gamma 8SOB ; 3.9 ; Phosphoinositide phosphate 3 kinase gamma bound with ADP 8SOC ; 3.5 ; Phosphoinositide phosphate 3 kinase gamma bound with ADP and Gbetagamma 8SOD ; 3.4 ; Phosphoinositide phosphate 3 kinase gamma bound with ADP and two Gbetagamma subunits in State 1 8SOE ; 3.6 ; Phosphoinositide phosphate 3 kinase gamma bound with ADP and two Gbetagamma subunits in State 2 8SOA ; 3.32 ; Phosphoinositide phosphate 3 kinase gamma bound with ATP 3QD0 ; 1.99 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with (2R,5S)-1-[2-Amino-6-(3-amino-1H-indazol-6-yl)-4-pyrimidinyl]-6-methyl-N-phenyl-3-piperidinecarboxamide 3QD3 ; 2.0 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 1,1-Dimethylethyl {(3R,6S)-1-[2-amino-6-(3-amino-1H-indazol-6-yl)-4-pyrimidinyl]-6-methyl-3-piperidinyl}carbamate 3QD4 ; 2.3 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 1,1-Dimethylethyl{(3R,5R)-1-[2-amino-6-(3-amino-1H-indazol-6-yl)-4-pyrimidinyl]-5-methyl-3-piperidinyl}carbamate 3QCY ; 2.2 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 4-[2-Amino-6-(3-amino-1H-indazol-6-yl)-4-pyrimidinyl]-N-phenyl-2-morpholinecarboxamide 3QCQ ; 2.501 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 6-(3-Amino-1H-indazol-6-yl)-N4-ethyl-2,4-pyrimidinediamine 3QCS ; 2.487 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 6-[2-Amino-6-(4-morpholinyl)-4-pyrimidinyl]-1H-indazol-3-amine 3QCX ; 2.3 ; Phosphoinositide-Dependent Kinase-1 (PDK1) kinase domain with 6-{2-Amino-6-[(3R)-3-methyl-4-morpholinyl]-4-pyrimidinyl}-1H-indazol-3-amine 3NUU ; 1.9803 ; phosphoinositide-dependent kinase-1 (PDK1) with fragment11 3NUY ; 2.1 ; phosphoinositide-dependent kinase-1 (PDK1) with fragment17 3NUS ; 2.75 ; phosphoinositide-dependent kinase-1 (PDK1) with fragment8 3NUN ; 2.2 ; phosphoinositide-dependent kinase-1 (PDK1) with lead compound 3H9O ; 2.3 ; Phosphoinositide-dependent protein kinase 1 (PDK-1) in complex with compound 9 2ISD ; 2.5 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT 1DJH ; 2.5 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH BARIUM 1DJI ; 2.5 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH CALCIUM 1DJX ; 2.3 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH INOSITOL-1,4,5-TRISPHOSPHATE 1DJY ; 2.8 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH INOSITOL-2,4,5-TRISPHOSPHATE 1DJW ; 2.45 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH INOSITOL-2-METHYLENE-1,2-CYCLIC-MONOPHOSPHONATE 1DJZ ; 2.95 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH INOSITOL-4,5-BISPHOSPHATE 1DJG ; 2.6 ; PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C-DELTA1 FROM RAT COMPLEXED WITH LANTHANUM 3AHD ; 1.9 ; Phosphoketolase from Bifidobacterium Breve complexed with 2-acetyl-thiamine diphosphate 3AHE ; 2.1 ; Phosphoketolase from Bifidobacterium Breve complexed with dihydroxyethyl thiamine diphosphate 3AHF ; 2.3 ; Phosphoketolase from Bifidobacterium Breve complexed with inorganic phosphate 1A3D ; 1.8 ; PHOSPHOLIPASE A2 (PLA2) FROM NAJA NAJA VENOM 1A3F ; 2.65 ; PHOSPHOLIPASE A2 (PLA2) FROM NAJA NAJA VENOM 1BPQ ; 1.8 ; PHOSPHOLIPASE A2 ENGINEERING. X-RAY STRUCTURAL AND FUNCTIONAL EVIDENCE FOR THE INTERACTION OF LYSINE-56 WITH SUBSTRATES 2BPP ; 1.8 ; PHOSPHOLIPASE A2 ENGINEERING. X-RAY STRUCTURAL AND FUNCTIONAL EVIDENCE FOR THE INTERACTION OF LYSINE-56 WITH SUBSTRATES 1RGB ; 3.3 ; Phospholipase A2 from Vipera ammodytes meridionalis 1VPI ; 1.76 ; PHOSPHOLIPASE A2 INHIBITOR FROM VIPOXIN 1BK9 ; 2.0 ; PHOSPHOLIPASE A2 MODIFIED BY PBPB 3JQ5 ; 2.03 ; Phospholipase A2 Prevents the Aggregation of Amyloid Beta Peptides: Crystal Structure of the Complex of Phospholipase A2 with Octapeptide Fragment of Amyloid Beta Peptide, Asp-Ala-Glu-Phe-Arg-His-Asp-Ser at 2 A Resolution 5VET ; 2.0 ; PHOSPHOLIPASE A2, RE-REFINEMENT OF THE PDB STRUCTURE 1JQ8 WITHOUT THE PUTATIVE COMPLEXED OLIGOPEPTIDE 3V9M ; 1.563 ; Phospholipase ACII4 from Australian King Brown Snake 8EMX ; 3.3 ; Phospholipase C beta 3 (PLCb3) in complex with Gbg on lipid nanodiscs 8EMW ; 3.5 ; Phospholipase C beta 3 (PLCb3) in complex with Gbg on liposomes 8EMV ; 3.6 ; Phospholipase C beta 3 (PLCb3) in solution 1AH7 ; 1.501 ; PHOSPHOLIPASE C FROM BACILLUS CEREUS 5TNW ; 1.4 ; Phospholipase C gamma-1 C-terminal SH2 domain 5TQ1 ; 1.485 ; Phospholipase C gamma-1 C-terminal SH2 domain bound to a phosphopeptide derived from the insulin receptor 5TQS ; 1.876 ; Phospholipase C gamma-1 C-terminal SH2 domain bound to a phosphopeptide derived from the receptor tyrosine kinase ErbB2 5TO4 ; 1.7 ; Phospholipase C gamma-1 C-terminal SH2 domain, spacegroup P212121 1YWP ; 1.6 ; Phospholipase Cgamma1 SH3 1YWO ; 1.81 ; Phospholipase Cgamma1 SH3 in complex with a SLP-76 motif 7JRB ; 2.493 ; Phospholipase D engineered mutant 7JS7 ; 2.3 ; Phospholipase D engineered mutant (TNYR) H442 covalent adduct with 1-inositol phosphate 7JS5 ; 2.5 ; Phospholipase D engineered mutant (TNYR) inactive enzyme (H168A) bound to 1-inositol phosphate 7JRV ; 2.42 ; Phospholipase D engineered mutant bound to phosphatidic acid (30 minute soak) 7JRW ; 1.99 ; Phospholipase D engineered mutant bound to phosphatidic acid (5 day soak) 7JRU ; 2.21 ; Phospholipase D engineered mutant bound to phosphatidic acid (8 hour soak) 7JRC ; 2.01 ; Phospholipase D engineered mutant in complex with phosphate 1V0T ; 1.53 ; Phospholipase D from Streptomyces sp. strain PMF soaked with the product glycerophosphate 1V0U ; 1.42 ; Phospholipase D from Streptomyces sp. strain PMF soaked with the product glycerophosphate. 1V0V ; 1.7 ; Phospholipase D from Streptomyces sp. strain PMF soaked with the substrate dibutyrylphosphatidylcholine. 1V0W ; 1.35 ; Phospholipase D from Streptomyces sp. strain PMF soaked with the substrate dibutyrylphosphatidylcholine. 1V0Y ; 1.71 ; Phospholipase D from Streptomyces sp. strain PMF soaked with the substrate dibutyrylphosphatidylcholine. 6ZTH ; 2.3 ; Phospholipase PlaB from Legionella pneumophila 6ZTI ; 1.81 ; Phospholipase PlaB from Legionella pneumophila in complex with thio-NAD 5G4J ; 1.87 ; Phospholyase A1RDF1 from Arthrobacter in complex with phosphoethanolamine 2I54 ; 2.1 ; Phosphomannomutase from Leishmania mexicana 2FKF ; 2.0 ; Phosphomannomutase/Phosphoglucomutase from Pseudomonas aeruginosa with alpha-D-glucose 1,6-bisphosphate bound 4BAY ; 3.1 ; Phosphomimetic mutant of LSD1-8a splicing variant in complex with CoREST 4UPK ; 2.24 ; Phosphonate monoester hydrolase SpPMH from Silicibacter pomeroyi 4K5L ; 1.91 ; Phosphonic Arginine Mimetics as Inhibitors of the M1 Aminopeptidases from Plasmodium falciparum 4K5M ; 1.75 ; Phosphonic Arginine Mimetics as Inhibitors of the M1 Aminopeptidases from Plasmodium falciparum 4K5N ; 1.91 ; Phosphonic Arginine Mimetics as Inhibitors of the M1 Aminopeptidases from Plasmodium falciparum 4K5O ; 1.9 ; Phosphonic Arginine Mimetics as Inhibitors of the M1 Aminopeptidases from Plasmodium falciparum 4K5P ; 1.85 ; Phosphonic Arginine Mimetics as Inhibitors of the M1 Aminopeptidases from Plasmodium falciparum 4K3N ; 2.0 ; Phosphonic Arginine Mimetics as Inhibitors of the M17 Aminopeptidases from Plasmodium falciparum 1RQN ; 2.8 ; Phosphonoacetaldehyde hydrolase complexed with magnesium 3NBA ; 2.68 ; Phosphopantetheine Adenylyltranferase from Mycobacterium tuberculosis in complex with adenosine-5'-[(alpha,beta)-methyleno]triphosphate (AMPCPP) 6CHO ; 1.85 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with (R)-2-((1-(3-(4-methoxyphenoxy)phenyl)ethyl)amino)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one 6CKW ; 2.06 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with (R)-3-((7-(((S)-2-amino-2-(2-methoxyphenyl)ethyl)amino)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)amino)-3-(3-chlorophenyl)propanenitrile 6CHL ; 2.2 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with (R)-3-(3-chlorophenyl)-3-((5-methyl-7-oxo-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)amino)propanenitrile 6CHQ ; 1.79 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with 2-benzyl-N-(3-chloro-4-methylphenyl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine 6CHP ; 1.94 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with methyl (R)-4-(3-(2-cyano-1-((5-methyl-1H-imidazo[4,5-b]pyridin-2-yl)amino)ethyl)benzyl)piperidine-1-carboxylate 6CHN ; 2.03 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with methyl (R)-4-(3-(2-cyano-1-((5-methyl-7-oxo-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)amino)ethyl)phenoxy)piperidine-1-carboxylate 6CHM ; 2.28 ; Phosphopantetheine adenylyltransferase (CoaD) in complex with N-(2-(5-methoxy-1H-indol-3-yl)ethyl)pivalamide 1QJC ; 1.63 ; Phosphopantetheine Adenylyltransferase from Escherichia coli in complex with 4'-phosphopantetheine 1TFU ; 1.99 ; phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis 3RFF ; 1.76 ; Phosphopantetheine adenylyltransferase from Mycobacterium Tuberculosis (1.76 A resolution) 4E1A ; 1.62 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis at 1.62A resolution 3UC5 ; 1.7 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis complexed with ATP 3LCJ ; 2.1 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis complexed with CoA 3RHS ; 1.59 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis complexed with CoA 3RBA ; 1.59 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis complexed with DPCoA 6QMI ; 1.781 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in complex with 3-(1H-indol-1-yl)propanoic acid at 1.7A resolution. 6QMH ; 1.837 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in complex with 3-(1H-indol-3-yl)propanoic acid at 1.6A resolution. 3NBK ; 1.58 ; Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis in complex with 4'-phosphopantetheine 6G6V ; 1.942 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in complex with 4-(2-carboxybenzoyl)-2-nitrobenzoic acid at 1.9A resolution. 6QMG ; 1.65 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in complex with 5-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid at 1.8A resolution. 6QMF ; 1.771 ; Phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis in complex with 5-[3-(1H-indol-3-yl)propoxy]-1-phenyl-1H-pyrazole-4-carboxylic acid at 1.8A resolution. 3PNB ; 2.11 ; Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis in complex with coenzyme A 3L92 ; 1.89 ; Phosphopantetheine adenylyltransferase from Yersinia pestis complexed with coenzyme A. 3L93 ; 2.16 ; Phosphopantetheine adenylyltransferase from Yersinia pestis. 1B6T ; 1.8 ; PHOSPHOPANTETHEINE ADENYLYLTRANSFERASE IN COMPLEX WITH 3'-DEPHOSPHO-COA FROM ESCHERICHIA COLI 1H1T ; 1.78 ; PHOSPHOPANTETHEINE ADENYLYLTRANSFERASE IN COMPLEX WITH Coenzyme A FROM ESCHERICHIA COLI 1GN8 ; 1.83 ; PHOSPHOPANTETHEINE ADENYLYLTRANSFERASE IN COMPLEX WITH Mn2+ATP FROM ESCHERICHIA COLI 8GKF ; 2.45 ; Phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis in complex with Raltitrexed. 1U7U ; 2.4 ; Phosphopantothenoylcysteine synthetase from E. coli 1U7Z ; 2.3 ; Phosphopantothenoylcysteine synthetase from E. coli, 4'-phosphopantothenoyl-CMP complex 1U80 ; 2.85 ; Phosphopantothenoylcysteine synthetase from E. coli, CMP complex 1U7W ; 2.5 ; Phosphopantothenoylcysteine synthetase from E. coli, CTP-complex 4LRD ; 1.78 ; Phosphopentomutase 4H11 variant 3M8W ; 1.85 ; Phosphopentomutase from Bacillus cereus 3M8Y ; 2.1 ; Phosphopentomutase from Bacillus cereus after glucose-1,6-bisphosphate activation 3OT9 ; 1.75 ; Phosphopentomutase from Bacillus cereus bound to glucose-1,6-bisphosphate 3M8Z ; 1.8 ; Phosphopentomutase from Bacillus cereus bound with ribose-5-phosphate 4LR7 ; 2.1 ; Phosphopentomutase S154A variant 4LR9 ; 2.1 ; Phosphopentomutase S154A variant soaked with 2,3-dideoxyribose 5-phosphate 4LR8 ; 2.0 ; Phosphopentomutase S154A variant soaked with ribose 5-phosphate 4LRA ; 2.0 ; Phosphopentomutase S154G variant 4LRB ; 2.0 ; Phosphopentomutase S154G variant soaked with 2,3-dideoxyribose 5-phosphate 4LRF ; 2.0 ; Phosphopentomutase S154G variant soaked with ribose 5-phosphate 4LRE ; 2.1 ; Phosphopentomutase soaked with 2,3-dideoxyribose 5-phosphate 3UN2 ; 1.8 ; Phosphopentomutase T85Q variant enzyme 3UN3 ; 1.8 ; phosphopentomutase T85Q variant soaked with glucose 1,6-bisphosphate 4LRC ; 1.89 ; Phosphopentomutase V158L variant 7S8I ; 1.66 ; PHOSPHOPEPTIDE-SPECIFIC LC13 TCR, MONOCLINIC CRYSTAL FORM 7S8J ; 1.92 ; PHOSPHOPEPTIDE-SPECIFIC LC13 TCR, ORTHORHOMBIC CRYSTAL FORM 3QN3 ; 2.13 ; Phosphopyruvate hydratase from Campylobacter jejuni. 5LHE ; 1.85 ; Phosphoribosyl anthranilate isomerase from Thermococcus kodakaraensis 5LHF ; 1.75 ; Phosphoribosyl anthranilate isomerase from Thermococcus kodakaraensis 3MJF ; 1.47 ; Phosphoribosylamine-glycine ligase from Yersinia pestis 3OPQ ; 2.0 ; Phosphoribosylaminoimidazole carboxylase with fructose-6-phosphate bound to the central channel of the octameric protein structure. 1IBS ; 2.8 ; PHOSPHORIBOSYLDIPHOSPHATE SYNTHETASE IN COMPLEX WITH CADMIUM IONS 3P4E ; 1.77 ; Phosphoribosylformylglycinamidine cyclo-ligase from Vibrio cholerae 1A7J ; 2.5 ; PHOSPHORIBULOKINASE FROM RHODOBACTER SPHEROIDES 1E4O ; 2.9 ; Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question 1QM5 ; 2.0 ; Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question 1CNU ; 2.25 ; PHOSPHORYLATED ACTOPHORIN FROM ACANTAMOEBA POLYPHAGA 4ZMF ; 2.39 ; Phosphorylated Aspartate in the Crystal Structure of the Alpha-kinase domain of Myosin-II Heavy Chain Kinase A 1QMP ; 2.0 ; Phosphorylated aspartate in the crystal structure of the sporulation response regulator, Spo0A 3TWZ ; 1.75 ; Phosphorylated Bacillus cereus phosphopentomutase in space group P212121 3UO0 ; 2.3 ; phosphorylated Bacillus cereus phosphopentomutase soaked with glucose 1,6-bisphosphate 7R1K ; 1.5 ; Phosphorylated Bacillus pumilus Lipase A 3JRW ; 2.6 ; Phosphorylated BC domain of ACC2 6H91 ; 2.38 ; Phosphorylated beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 2.4 A 6H92 ; 2.6 ; Phosphorylated beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 2.6 A 1QMZ ; 2.2 ; PHOSPHORYLATED CDK2-CYCLYIN A-SUBSTRATE PEPTIDE COMPLEX 2RLT ; ; phosphorylated CPI-17 (22-120) 2DVJ ; ; phosphorylated Crk-II 1JST ; 2.6 ; PHOSPHORYLATED CYCLIN-DEPENDENT KINASE-2 BOUND TO CYCLIN A 1R0Z ; 2.35 ; Phosphorylated Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain one (NBD1) with ATP 7OPM ; 2.45 ; Phosphorylated ERK2 in complex with ORF45 6OPG ; 2.9 ; phosphorylated ERK2 with AMP-PNP 6OPH ; 2.4 ; phosphorylated ERK2 with GDC-0994 6OPI ; 3.0 ; phosphorylated ERK2 with SCH-CPD336 6OPK ; 2.54 ; Phosphorylated ERK2 with Vertex-11e 6HU7 ; 2.8 ; phosphorylated F97L Hepatitis B core protein capsid 1D5W ; 2.3 ; PHOSPHORYLATED FIXJ RECEIVER DOMAIN 1YGP ; 2.8 ; PHOSPHORYLATED FORM OF YEAST GLYCOGEN PHOSPHORYLASE WITH PHOSPHATE BOUND IN THE ACTIVE SITE. 7MST ; 1.61 ; Phosphorylated human E105Qa GTP-specific succinyl-CoA synthetase complexed with coenzyme A 2Z8C ; 3.25 ; Phosphorylated insulin receptor tyrosine kinase in complex with (4-{[5-carbamoyl-4-(3-methylanilino)pyrimidin-2-yl]amino}phenyl)acetic acid 1IR3 ; 1.9 ; PHOSPHORYLATED INSULIN RECEPTOR TYROSINE KINASE IN COMPLEX WITH PEPTIDE SUBSTRATE AND ATP ANALOG 3TUY ; 2.498 ; Phosphorylated Light Chain Domain of Scallop smooth Muscle Myosin 2ERK ; 2.4 ; PHOSPHORYLATED MAP KINASE ERK2 1CM8 ; 2.4 ; PHOSPHORYLATED MAP KINASE P38-GAMMA 5JEK ; 2.4 ; Phosphorylated MAVS in complex with IRF-3 6TCA ; 3.7 ; Phosphorylated p38 and MAPKAPK2 complex with inhibitor 5JEO ; 1.719 ; Phosphorylated Rotavirus NSP1 in complex with IRF-3 6G76 ; 3.0 ; Phosphorylated RSK4 N-terminal Kinase Domain in complex with AMP-PNP 5JEJ ; 2.0 ; Phosphorylated STING in complex with IRF-3 CTD 5JEL ; 1.6 ; Phosphorylated TRIF in complex with IRF-3 6TKO ; 3.3 ; Phosphorylated turkey beta1 adrenoceptor with bound agonist formoterol coupled to arrestin-2 in lipid nanodisc. 6MSM ; 3.2 ; Phosphorylated, ATP-bound human cystic fibrosis transmembrane conductance regulator (CFTR) 5W81 ; 3.37 ; Phosphorylated, ATP-bound structure of zebrafish cystic fibrosis transmembrane conductance regulator (CFTR) 2O02 ; 1.5 ; Phosphorylation independent interactions between 14-3-3 and Exoenzyme S: from structure to pathogenesis 7CIQ ; 1.59 ; Phosphorylation modification of MHC I polypeptide 2FWN ; 1.4 ; Phosphorylation of an active site serine in a ThDP-dependent enzyme by phosphonate inactivation 4MPJ ; 1.5 ; Phosphorylation of an active site threonine in the benzyolformate decarboxylase mutant S26T by phosphonate inactivation 2MZA ; ; Phosphorylation of CB1 Cannabinoid Receptor Fourth Intracellular Loop pepducins: Effects on Structure and Function 2MZ3 ; ; Phosphorylation of CB1Cannabinoid Receptor Fourth Intracellular Loop Pepducins: Effects on Structure and Function 2MZ2 ; ; Phosphorylation of CB1Cannabinoid Receptor Fourth Intracellular Loop Peptides: Effects on Structure and Function 7DYN ; 2.0 ; Phosphorylation of MHC I peptide 3FQN ; 1.65 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 3FQR ; 1.7 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 3FQT ; 1.8 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 3FQU ; 1.8 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 3FQW ; 1.927 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 3FQX ; 1.7 ; Phosphorylation of self-peptides alters Human Leukocyte Antigen Class I-restricted antigen presentation and generates tumor specific epitopes 2KQS ; ; Phosphorylation of SUMO-interacting motif by CK2 enhances Daxx SUMO binding activity 2CEH ; ; Phosphorylation of the Cytoplasmic Tail of Tissue Factor and its Role in Modulating Structure and Binding Affinity 2CEZ ; ; Phosphorylation of the Cytoplasmic Tail of Tissue Factor and its Role in Modulating Structure and Binding Affinity 2CFJ ; ; Phosphorylation of the Cytoplasmic Tail of Tissue Factor and its Role in Modulating Structure and Binding Affinity 2CEF ; ; Phosphorylation of the Cytoplasmic Tail of Tissue Factor and its Role in Modulating Structure and Binding Affinity. 3S8E ; 2.88 ; Phosphorylation regulates assembly of the caspase-6 substrate-binding groove 3WP1 ; 2.804 ; Phosphorylation-dependent interaction between tumor suppressors Dlg and Lgl 1BT4 ; 2.3 ; PHOSPHOSERINE AMINOTRANSFERASE FROM BACILLUS CIRCULANS SUBSP. ALKALOPHILUS 6N14 ; 1.52169 ; Phosphoserine BlaC, Class A serine beta-lactamase from Mycobacterium tuberculosis 1QZT ; 2.7 ; Phosphotransacetylase from Methanosarcina thermophila 2AF4 ; 2.147 ; Phosphotransacetylase from Methanosarcina thermophila co-crystallized with coenzyme A 2AF3 ; 2.6 ; Phosphotransacetylase from Methanosarcina thermophila soaked with Coenzyme A 1FYN ; 2.3 ; PHOSPHOTRANSFERASE 1ZIO ; 1.96 ; PHOSPHOTRANSFERASE 6JBC ; 2.7 ; Phosphotransferase related to CoA biosynthesis pathway 6JBD ; 2.5 ; Phosphotransferase-ATP complex related to CoA biosynthesis pathway 1PSC ; 2.0 ; PHOSPHOTRIESTERASE FROM PSEUDOMONAS DIMINUTA 1BF6 ; 1.7 ; PHOSPHOTRIESTERASE HOMOLOGY PROTEIN FROM ESCHERICHIA COLI 6FS3 ; 1.75 ; Phosphotriesterase PTE_A53_1 6FQE ; 1.75 ; Phosphotriesterase PTE_A53_4 6FFW ; 1.495 ; Phosphotriesterase PTE_A53_5 6FRZ ; 1.65 ; Phosphotriesterase PTE_A53_7 6G1J ; 2.1 ; Phosphotriesterase PTE_C23M_1 6G3M ; 1.665 ; Phosphotriesterase PTE_C23M_4 6FU6 ; 1.95 ; Phosphotriesterase PTE_C23_2 6FWE ; 1.774 ; Phosphotriesterase PTE_C23_6 4XD6 ; 1.75 ; Phosphotriesterase Variant E2a 4XD4 ; 1.9 ; Phosphotriesterase variant E2b 4XD3 ; 1.57 ; Phosphotriesterase variant E3 5WCR ; 1.75 ; Phosphotriesterase variant R0deltaL7 6BH7 ; 1.4 ; Phosphotriesterase variant R18+254S 6BHK ; 1.4 ; Phosphotriesterase variant R18deltaL7 4XD5 ; 1.85 ; Phosphotriesterase variant R2 4PCN ; 1.54 ; Phosphotriesterase variant R22 4PBF ; 1.9 ; Phosphotriesterase variant Rev12 4PBE ; 1.51 ; Phosphotriesterase Variant Rev6 5W6B ; 1.739 ; Phosphotriesterase variant S1 5WCQ ; 1.576 ; Phosphotriesterase variant S2 5WCW ; 1.457 ; Phosphotriesterase variant S3 5WIZ ; 1.96 ; Phosphotriesterase variant S5 6B2F ; 1.775 ; Phosphotriesterase variant S5 + TS analogue 5WJ0 ; 1.65 ; Phosphotriesterase variant S5+254R 6BHL ; 1.4 ; Phosphotriesterase variant S5deltaL7 5WCP ; 1.5 ; Phosphotriesterase variant S7 5WMS ; 1.6 ; Phosphotriesterase variant S7 6AML ; 1.46 ; Phosphotriesterase variant S8 2MQ1 ; ; Phosphotyrosine binding domain 4G36 ; 2.624 ; Photinus pyralis luciferase in the adenylate-forming conformation bound to DLSA 2CZ0 ; 1.5 ; photo-activation state of Fe-type NHase in aerobic condition 2CYZ ; 1.55 ; photo-activation state of Fe-type NHase in anaerobic condition 2CZ1 ; 1.39 ; photo-activation state of Fe-type NHase with n-BA in anaerobic condition 6FRY ; 1.7 ; Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology 1S1Y ; 1.6 ; Photoactivated chromophore conformation in Photoactive Yellow Protein (E46Q mutant) from 10 microseconds to 3 milliseconds 1S1Z ; 1.6 ; Photoactivated chromophore conformation in Photoactive Yellow Protein (E46Q mutant) from 10 to 500 nanoseconds 3GJ2 ; 1.9 ; Photoactivated state of PA-GFP 1ODV ; 1.14 ; Photoactive yellow protein 1-25 deletion mutant 6P4I ; 1.6 ; Photoactive Yellow Protein PYP 10ps 6P5D ; 1.6 ; Photoactive Yellow Protein PYP 30ps 6P5E ; 1.6 ; Photoactive Yellow Protein PYP 80ps 6P5G ; 1.6 ; Photoactive Yellow Protein PYP Dark Full 6P5F ; 1.7 ; Photoactive Yellow Protein PYP Pure Dark 6MMD ; 1.228 ; Photoactive Yellow Protein with 3,5-dichlorotyrosine substituted at position 42 6MKT ; 1.6 ; Photoactive Yellow Protein with 3-chlorotyrosine substituted at position 42 6MHI ; 1.35 ; Photoactive Yellow Protein with covalently bound 3,5-dichloro-4-hydroxycinnamic acid chromophore 6MHN ; 1.67 ; Photoactive Yellow Protein with covalently bound 3-chloro-4-hydroxycinnamic acid chromophore 2PYR ; 1.9 ; PHOTOACTIVE YELLOW PROTEIN, 1 NANOSECOND INTERMEDIATE (287K) 3PYP ; 0.85 ; PHOTOACTIVE YELLOW PROTEIN, CRYOTRAPPED EARLY LIGHT CYCLE INTERMEDIATE 2PHY ; 1.4 ; PHOTOACTIVE YELLOW PROTEIN, DARK STATE (UNBLEACHED) 3PHY ; ; PHOTOACTIVE YELLOW PROTEIN, DARK STATE (UNBLEACHED), SOLUTION STRUCTURE, NMR, 26 STRUCTURES 2PYP ; 1.9 ; PHOTOACTIVE YELLOW PROTEIN, PHOTOSTATIONARY STATE, 50% GROUND STATE, 50% BLEACHED 7XC6 ; 2.79 ; Photobacterium phosphoreum fatty acid reductase complex LuxC-LuxE 5HPJ ; 1.5 ; Photobacterium profundum alpha-carbonic anhydrase 1FT4 ; 2.9 ; PHOTOCHEMICALLY-ENHANCED BINDING OF SMALL MOLECULES TO THE TUMOR NECROSIS FACTOR RECEPTOR-1 8ISI ; 3.77 ; Photochromobilin-free form of Arabidopsis thaliana phytochrome A - apo-AtphyA 7DNA ; 2.3 ; Photocleavable Fluorescent Protein in green and red form 7DMX ; 2.1 ; Photocleavable Fluorescent Protein in green form 6Y1G ; 2.3 ; Photoconverted HcRed in its optoacoustic state 5EXC ; 2.14 ; Photoconverted red fluorescent protein DendRFP 6PRU ; 1.539 ; Photoconvertible crystals of PixJ from Thermosynechococcus elongatus 6D38 ; 2.8 ; Photodissociable dimeric Dronpa green fluorescent protein variant M (pdDronpaM) 6D39 ; 2.83 ; Photodissociable dimeric Dronpa green fluorescent protein variant V (pdDronpaV) 1JNU ; 2.6 ; Photoexcited structure of the plant photoreceptor domain, phy3 LOV2 6KII ; 1.6 ; photolyase from Arthrospira platensis 1ABS ; 1.5 ; PHOTOLYSED CARBONMONOXY-MYOGLOBIN AT 20 K 1DWS ; 1.45 ; PHOTOLYZED CARBONMONOXY MYOGLOBIN (HORSE HEART) 1DXD ; 1.4 ; Photolyzed CO complex of Myoglobin Mb-YQR at 20K 2G0V ; 1.95 ; Photolyzed CO L29F Myoglobin: 100ps 2G0Z ; 1.95 ; Photolyzed CO L29F Myoglobin: 1ns 2G10 ; 1.9 ; Photolyzed CO L29F Myoglobin: 3.16ns 2G14 ; 1.9 ; Photolyzed CO L29F Myoglobin: 3.16us 2G11 ; 1.9 ; Photolyzed CO L29F Myoglobin: 31.6ns 2G12 ; 1.9 ; Photolyzed CO L29F Myoglobin: 316ns 2G0X ; 1.95 ; Photolyzed CO L29F Myoglobin: 316ps 1AJH ; 1.69 ; PHOTOPRODUCT OF CARBONMONOXY MYOGLOBIN AT 40 K 1HCJ ; 1.8 ; Photoproduct of the wild-type Aequorea victoria Green Fluorescent Protein 1W7U ; 1.85 ; Photoproduct of the Wild-Type Aequorea victoria Green Fluorescent Protein after structural annealing at 170K 1W7T ; 1.85 ; Photoproduct of the Wild-Type Aequorea victoria Green Fluorescent Protein at 100 K 1DWT ; 1.4 ; Photorelaxed horse heart MYOGLOBIN CO complex 5MXF ; 1.9 ; Photorhabdus asymbiotica lectin (PHL) in complex with alpha-methyl fucoside 5MXG ; 2.2 ; Photorhabdus asymbiotica lectin (PHL) in complex with blood group H trisaccharide 5MXH ; 1.95 ; Photorhabdus asymbiotica lectin (PHL) in complex with D-galactose 6F5W ; 1.91 ; Photorhabdus asymbiotica lectin (PHL) in complex with propargyl-fucoside 6FHX ; 2.34 ; Photorhabdus asymbiotica lectin (PHL) in complex with synthetic C-fucoside 6FHY ; 1.86 ; Photorhabdus asymbiotica lectin (PHL) in complex with synthetic C-fucoside 6FLU ; 1.78 ; Photorhabdus asymbiotica lectin (PHL) in complex with synthetic C-fucoside 5MXE ; 1.9 ; Photorhabdus asymbiotica lectin (PHL) in free form 6RGU ; 1.75 ; Photorhabdus asymbiotica lectin PHL in complex with 3-O-methyl-D-glucose 6RGJ ; 1.8 ; Photorhabdus asymbiotica lectin PHL in complex with D-glucose 6RGR ; 1.89 ; Photorhabdus asymbiotica lectin PHL in complex with L-rhamnose 6RGW ; 1.75 ; Photorhabdus asymbiotica lectin PHL in complex with O-methylated PGL-1-derived disaccharide 8R05 ; 2.5 ; Photorhabdus lamondii ClpP in complex with the natural product beta-lactone inhibitor Cystargolide A at 2.5 A resolution 6RG2 ; 1.12 ; Photorhabdus laumondii lectin PLL2 in complex with 3-O-methyl-D-glucose 6RFZ ; 1.8 ; Photorhabdus laumondii lectin PLL2 in complex with D-glucose 6RG1 ; 1.7 ; Photorhabdus laumondii lectin PLL2 in complex with L-rhamnose 6RGG ; 2.2 ; Photorhabdus laumondii lectin PLL2 in complex with O-methylated PGL-1-derived disaccharide 6T96 ; 1.65 ; Photorhabdus laumondii subsp. laumondii lectin PLL3 7PQ5 ; 3.17 ; Photorhabdus laumondii T6SS-associated Rhs protein carrying the Tre23 toxin domain 8P52 ; 3.6 ; Photorhabdus luminescens Makes caterpillars floppy (Mcf) toxin 8P51 ; 3.55 ; Photorhabdus luminescens Makes caterpillars floppy (Mcf) toxin with the C-terminal deletion 8P50 ; 4.04 ; Photorhabdus luminescens Makes caterpillars floppy (Mcf) toxin with the C-terminal deletion in complex with Arf3 8CQ2 ; 3.6 ; Photorhabdus luminescens TcdA1 prepore-to-pore intermediate, C16S, C20S, C870S, T1279C mutant 8CPZ ; 2.9 ; Photorhabdus luminescens TcdA1 prepore-to-pore intermediate, K1179W mutant 8CQ0 ; 3.2 ; Photorhabdus luminescens TcdA1 prepore-to-pore intermediate, K567W K2008W mutant 6P22 ; 2.291 ; Photorhabdus Virulence Cassette (PVC) PAAR repeat protein Pvc10 in complex with a T4 gp5 beta-helix fragment modified to mimic Pvc8, the central spike protein of PVC 6TL4 ; 2.9 ; Photosensory module (PAS-GAF-PHY) of Glycine max phyB 8BOR ; 2.3 ; Photosensory module from DrBphP without PHY tongue 5LLY ; 2.4 ; Photosensory Module of Bacteriophytochrome linked Diguanylyl Cyclase from Idiomarina species A28L 6J1C ; 2.09 ; Photoswitchable fluorescent protein Gamillus, N150C/T204V double mutant, off-state 6J1B ; 1.99 ; Photoswitchable fluorescent protein Gamillus, N150C/T204V double mutant, on-state 6J1A ; 1.96 ; Photoswitchable fluorescent protein Gamillus, off-state 6JXF ; 1.8 ; Photoswitchable fluorescent protein Gamillus, off-state (pH7.0) 2N9Q ; ; Photoswitchable G-quadruplex 3CFH ; 1.75 ; Photoswitchable red fluorescent protein psRFP, off-state 3CFF ; 1.8 ; Photoswitchable red fluorescent protein psRFP, on-state 1K6L ; 3.1 ; Photosynethetic Reaction Center from Rhodobacter sphaeroides 7UEA ; 3.49 ; Photosynthetic assembly of Chlorobaculum tepidum (RC-FMO1) 7UEB ; 3.08 ; Photosynthetic assembly of Chlorobaculum tepidum (RC-FMO2) 8WDV ; 2.24 ; Photosynthetic LH1-RC complex from the purple sulfur bacterium Allochromatium vinosum purified by Ca2+-DEAE 8WDU ; 2.24 ; Photosynthetic LH1-RC complex from the purple sulfur bacterium Allochromatium vinosum purified by sucrose density 6MGI ; 2.986 ; Photosynthetic phosphoenolpyruvate carboxylase isoenzyme from maize complexed with the allosteric activator glucose-6-phosphate in its allosteric site 1C51 ; 4.0 ; PHOTOSYNTHETIC REACTION CENTER AND CORE ANTENNA SYSTEM (TRIMERIC), ALPHA CARBON ONLY 2PPS ; 4.0 ; PHOTOSYNTHETIC REACTION CENTER AND CORE ANTENNA SYSTEM (TRIMERIC), ALPHA CARBON ONLY 1R2C ; 2.86 ; PHOTOSYNTHETIC REACTION CENTER BLASTOCHLORIS VIRIDIS (ATCC) 1VRN ; 2.2 ; PHOTOSYNTHETIC REACTION CENTER BLASTOCHLORIS VIRIDIS (ATCC) 1RVJ ; 2.75 ; PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT FROM RHODOBACTER SPHAEROIDES WITH ASP L213 REPLACED WITH ASN AND ARG H177 REPLACED WITH HIS 1RZZ ; 2.4 ; PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT FROM RHODOBACTER SPHAEROIDES WITH ASP L213 REPLACED WITH ASN AND ARG M233 REPLACED WITH CYS IN THE CHARGE-NEUTRAL DQAQB STATE (TETRAGONAL FORM) 1RZH ; 1.8 ; PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT FROM RHODOBACTER SPHAEROIDES WITH ASP L213 REPLACED WITH ASN AND ARG M233 REPLACED WITH CYS IN THE CHARGE-NEUTRAL DQAQB STATE (TRIGONAL FORM) 1S00 ; 2.6 ; PHOTOSYNTHETIC REACTION CENTER DOUBLE MUTANT FROM RHODOBACTER SPHAEROIDES WITH ASP L213 REPLACED WITH ASN AND ARG M233 REPLACED WITH CYS IN THE CHARGE-SEPARATED D+QAQB- STATE 2JBL ; 2.4 ; PHOTOSYNTHETIC REACTION CENTER FROM BLASTOCHLORIS VIRIDIS 4TQQ ; 2.499 ; Photosynthetic Reaction Center from R. sphaeroides Analyzed at Room Temperature on an X-ray Transparent Microfluidic Chip 1M3X ; 2.55 ; Photosynthetic Reaction Center From Rhodobacter Sphaeroides 1Z9J ; 4.5 ; Photosynthetic Reaction Center from Rhodobacter sphaeroides 1Z9K ; 4.6 ; Photosynthetic Reaction Center from Rhodobacter sphaeroides 3I4D ; 2.01 ; Photosynthetic reaction center from rhodobacter sphaeroides 2.4.1 1AIJ ; 2.2 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE CHARGE-NEUTRAL DQAQB STATE 1DS8 ; 2.5 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE CHARGE-NEUTRAL DQAQB STATE WITH THE PROTON TRANSFER INHIBITOR CD2+ 1DV6 ; 2.5 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE CHARGE-NEUTRAL DQAQB STATE WITH THE PROTON TRANSFER INHIBITOR ZN2+ 1DV3 ; 2.5 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE CHARGE-SEPARATED D+QAQB-STATE WITH THE PROTON TRANSFER INHIBITOR CD2+ 1AIG ; 2.6 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES IN THE D+QB-CHARGE SEPARATED STATE 3V3Y ; 2.8 ; Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV 6Z02 ; 2.1 ; Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV in surfo crystallization 6Z27 ; 2.1 ; Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV LCP crystallization 6Z1J ; 2.1 ; Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV LSP co-crystallization with spheroidene 5PRC ; 2.35 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (ATRAZINE COMPLEX) 6PRC ; 2.3 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (DG-420314 (TRIAZINE) COMPLEX) 7PRC ; 2.65 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (DG-420315 (TRIAZINE) COMPLEX) 3PRC ; 2.4 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (QB-DEPLETED) 2PRC ; 2.45 ; PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (UBIQUINONE-2 COMPLEX) 1DXR ; 2.0 ; Photosynthetic reaction center from Rhodopseudomonas viridis - His L168 Phe mutant (terbutryn complex) 2GMR ; 2.5 ; Photosynthetic reaction center mutant from Rhodobacter sphaeroides with Asp L210 replaced with Asn 1RY5 ; 2.1 ; PHOTOSYNTHETIC REACTION CENTER MUTANT FROM RHODOBACTER SPHAEROIDES WITH ASP L213 REPLACED WITH ASN 2JIY ; 2.2 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH ALA M149 REPLACED WITH TRP (CHAIN M, AM149W) 2JJ0 ; 2.8 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH ALA M248 REPLACED WITH TRP (CHAIN M, AM248W) 1QOV ; 2.1 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH ALA M260 REPLACED WITH TRP (CHAIN M, A260W) 1UMX ; 2.8 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH ARG M267 REPLACED WITH LEU (CHAIN M, R267L) 1JH0 ; 3.5 ; Photosynthetic Reaction Center Mutant With Glu L 205 Replaced to Leu 5LSE ; 2.5 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH Glu L212 replaced with Ala (CHAIN L, EL212W), Asp L213 replaced with ALA (Chain L, DL213A) AND LEU M215 REPLACED WITH ALA (CHAIN M, LM215A) 5LRI ; 2.4 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH GLUL212 REPLACED WITH TRP (CHAIN L, EL212W) 2BOZ ; 2.4 ; Photosynthetic Reaction Center Mutant With Gly M203 Replaced With Leu 1MPS ; 2.55 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH PHE M 197 REPLACED WITH ARG AND TYR M 177 REPLACED WITH PHE (CHAIN M, Y177F, F197R) 1E14 ; 2.7 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH PHE M197 REPLACED WITH ARG (CHAIN M, FM197R) AND GLY M203 REPLACED WITH ASP (CHAIN M, GM203D) 1JGX ; 3.01 ; Photosynthetic Reaction Center Mutant With Thr M 21 Replaced With Asp 1JGW ; 2.8 ; Photosynthetic Reaction Center Mutant With Thr M 21 Replaced With Leu 1E6D ; 2.3 ; PHOTOSYNTHETIC REACTION CENTER MUTANT WITH TRP M115 REPLACED WITH PHE (CHAIN M, WM115F) PHE M197 REPLACED WITH ARG (CHAIN M, FM197R) 1JGZ ; 2.7 ; Photosynthetic Reaction Center Mutant With Tyr M 76 Replaced With Lys 1JGY ; 2.7 ; Photosynthetic Reaction Center Mutant With Tyr M 76 Replaced With Phe 3ZUM ; 2.5 ; Photosynthetic Reaction Centre Mutant with Phe L146 replaced with Ala 3ZUW ; 2.31 ; Photosynthetic Reaction Centre Mutant with TYR L128 replaced with HIS 8BCV ; 2.2 ; Photosystem I assembly intermediate of Avena sativa 8BCW ; 2.11 ; Photosystem I assembly intermediate of Avena sativa 7DWQ ; 3.3 ; Photosystem I from a chlorophyll d-containing cyanobacterium Acaryochloris marina 7BGI ; 2.54 ; Photosystem I of a temperature sensitive mutant Chlamydomonas reinhardtii 7BLX ; 3.15 ; Photosystem I of a temperature sensitive mutant Chlamydomonas reinhardtii 6IJJ ; 2.89 ; Photosystem I of Chlamydomonas reinhardtii 6IJO ; 3.3 ; Photosystem I of Chlamydomonas reinhardtii 6ZOO ; 2.74 ; Photosystem I reduced Plastocyanin Complex 6TCL ; 3.2 ; Photosystem I tetramer 7D0J ; 3.42 ; Photosystem I-LHCI-LHCII of Chlamydomonas reinhardtii 1FC6 ; 1.8 ; PHOTOSYSTEM II D1 C-TERMINAL PROCESSING PROTEASE 1FC7 ; 2.0 ; PHOTOSYSTEM II D1 C-TERMINAL PROCESSING PROTEASE 1FC9 ; 1.9 ; PHOTOSYSTEM II D1 C-TERMINAL PROCESSING PROTEASE 1FCF ; 2.1 ; PHOTOSYSTEM II D1 C-TERMINAL PROCESSING PROTEASE 5MX2 ; 2.197 ; Photosystem II depleted of the Mn4CaO5 cluster at 2.55 A resolution 1W5C ; 3.2 ; Photosystem II from Thermosynechococcus elongatus 7CJI ; 2.35 ; Photosystem II structure in the S1 state 7CJJ ; 2.4 ; Photosystem II structure in the S2 state 4ZFS ; 2.01 ; Phototoxic Fluorescent Protein KillerOrange 4ZBL ; 1.57 ; Phototoxic fluorescent protein mKillerOrange 3GBF ; 1.92 ; Phpd with cadmium complexed with hydroethylphosphonate (HEP) 8CNI ; 3.35 ; PHT1 in the outward facing conformation, bound to Sb27 2PIA ; 2.0 ; PHTHALATE DIOXYGENASE REDUCTASE: A MODULAR STRUCTURE FOR ELECTRON TRANSFER FROM PYRIDINE NUCLEOTIDES TO [2FE-2S] 3J5V ; 7.1 ; PhuZ201 filament 7VEB ; 4.2 ; Phycocyanin rod structure of cyanobacterial phycobilisome 8FWA ; 2.0 ; Phycocyanin structure from a modular droplet injector for serial femtosecond crystallography 4Z8K ; 2.5 ; Phycocyanin structure from T. elongatus at 2.5-A from XFEL using a viscous delivery medium for serial femtosecond crystallography 6TBY ; 1.8 ; Phycocyanobilin-adducted PAS-GAF bidomain of Sorghum bicolor phyB 2C7J ; 3.0 ; Phycoerythrocyanin from Mastigocladus laminosus, 295 K, 3.0 A 2JQ0 ; ; Phylloseptin-1 2JPY ; ; Phylloseptin-2 2JQ1 ; ; Phylloseptin-3 7R8R ; 1.8 ; Physachenolide C with Bromodomain (BRD3-BD1) 1E57 ; 3.2 ; PHYSALIS MOTTLE VIRUS: EMPTY CAPSID 2WWS ; 3.9 ; Physalis Mottle Virus: Natural Empty Capsid 2BL0 ; 1.75 ; Physarum polycephalum myosin II regulatory domain 6EO5 ; 2.6 ; Physcomitrella patens BBE-like 1 variant D396N 6EO4 ; 2.9 ; Physcomitrella patens BBE-like 1 wild-type 5W6Y ; 1.995 ; Physcomitrella patens Chorismate Mutase 5IZ1 ; 3.0 ; Physcomitrella patens FBPase 4QDQ ; 1.95 ; Physical basis for Nrp2 ligand binding 4QDR ; 2.4 ; Physical basis for Nrp2 ligand binding 4QDS ; 2.4 ; Physical basis for Nrp2 ligand binding 1IVY ; 2.2 ; PHYSIOLOGICAL DIMER HPP PRECURSOR 6TC5 ; 2.1 ; Phytochromobilin-adducted PAS-GAF bidomain of Sorghum bicolor phyB 1FAT ; 2.8 ; PHYTOHEMAGGLUTININ-L 7XP9 ; 1.93 ; Phytophthora infesfans RxLR effector AVRvnt1 8BAU ; 1.6 ; Phytophthora nicotianae var. parasitica NADAR in complex with ADP-ribose 6J8L ; 2.3 ; Phytophthora sojae effector PsAvh240 inhibits a host aspartic protease secretion to promote infection 8DCP ; 2.41 ; PI 3-kinase alpha with nanobody 3-126 8DD4 ; 3.1 ; PI 3-kinase alpha with nanobody 3-142 8DD8 ; 3.4 ; PI 3-kinase alpha with nanobody 3-142, crosslinked with DSG 8DCX ; 2.8 ; PI 3-kinase alpha with nanobody 3-159 6S2A ; 2.7 ; PI PLC mutant H82A 2RAK ; 3.0 ; PI(3)P bound PX-BAR membrane remodeling unit of Sorting Nexin 9 6DMU ; 4.0 ; PI(4,5)P2 bound full-length rbTRPV5 5X1O ; 1.9 ; PI(4,5)P2 lipid binding induced a reorientation of FGF2 molecules near membrane surface to facilitate the unconventional oligomerization-dependent secretion process as revealed by a combined FTIR/NMR/X-ray study 1VDE ; 2.4 ; PI-SCEI, A HOMING ENDONUCLEASE WITH PROTEIN SPLICING ACTIVITY 1RXI ; 1.5 ; pI258 arsenate reductase (ArsC) triple mutant C10S/C15A/C82S 6HI1 ; 2.07 ; PI3 Kinase Delta in complex with 3[6(morpholin4yl)pyridin2yl]phenol 6HI9 ; 2.08 ; PI3 Kinase Delta in complex with 3[6(oxan4yl)pyridin2yl]phenol 6HI2 ; 1.9 ; PI3 Kinase Delta in complex with 3{6[(1S,6R)3oxabicyclo[4.1.0]heptan6yl]pyridin2yl}phenol 6EYZ ; 2.2 ; PI3 kinase delta in complex with 4-Fluorophenyl 5-(4-(5-((4-isopropylpiperazin-1-yl)methyl)oxazol-2-yl)-1H-indazol-6-yl)-2-methoxynicotinate 7POS ; 2.493 ; PI3 kinase delta in complex with 5-(3,6-dihydro-2H-pyran-4-yl)-2-methoxy-N-(5-{3-[4-(propan-2-yl)piperazin-1-yl]prop-1-yn-1-yl}pyridin-3-yl)pyridine-3-sulfonamide 7POP ; 2.491 ; PI3 kinase delta in complex with 5-[3,6-dihydro-2H-pyran-4-yl]-2-methoxy-N-[2-methylpyridin-4-yl]pyridine-3-sulfonamide 6EZ6 ; 2.04 ; PI3 kinase delta in complex with Methyl 5-(4-(5-((4-isopropylpiperazin-1-yl)methyl)oxazol-2-yl)-1H-indazol-6-yl)-2-methoxynicotinate 7POR ; 2.26 ; PI3 kinase delta in complex with N-[2-(2-fluoro-4-{[4-(propan-2-yl)piperazin-1-yl]methyl}phenyl)pyridin-4-yl]-2-methoxy-5-(morpholin-4-yl)pyridine-3-sulfonamide 7POT ; 2.391 ; PI3 kinase delta in complex with N-[5-(3,6-dihydro-2H-pyran-4-yl)-2-methoxypyridin-3-yl]benzenesulfonamide 5L72 ; 3.06 ; PI3 kinase delta in complex with N-[6-(5-methanesulfonamido-6-methoxypyridin-3-yl)-1,3-dihydro-2-benzofuran-4-yl]-2-(morpholin-4-yl)acetamide 4FUL ; 2.47 ; PI3 Kinase Gamma bound to a pyrmidine inhibitor 3MJW ; 2.87 ; PI3 Kinase gamma with a benzofuranone inhibitor 3LJ3 ; 2.43 ; PI3-kinase-gamma with a pyrrolopyridine-benzofuran inhibitor 7TZ7 ; 2.41 ; PI3K alpha in complex with an inhibitor 4YKN ; 2.9 ; Pi3K alpha lipid kinase with Active Site Inhibitor 6Q74 ; 2.48 ; PI3K delta in complex with 1benzylN[5(3,6dihydro2Hpyran4yl)2methoxypyridin3yl]2methyl1Himidazole4sulfonamide 6TNS ; 2.4 ; PI3K delta in complex with 2methoxyN[2methoxy5(7{[(2R)4(oxetan3 yl)morpholin2yl]methoxy}1,3dihydro2 benzofuran5yl)pyridin3yl]ethane1 sulfonamide 6ZAA ; 2.52 ; PI3K Delta in complex with methoxy(methylsulfamoyl)pyridinylN(methylpiperidinyl)dihydrobenzoxazinecarboxamide 6ZAD ; 2.24 ; PI3K Delta in complex with methoxymethyloxathiatetraazatetracyclodocosahexaenedione 6Q6Y ; 2.03 ; PI3K delta in complex with N(2chloro5phenylpyridin3yl)benzenesulfonamide 6Q73 ; 2.21 ; PI3K delta in complex with N[2chloro5(3,6dihydro2Hpyran4yl)pyridin3yl]methanesulfonamide 6TNR ; 1.9 ; PI3K delta in complex with N[5(7{2[4(2hydroxypropan2yl)piperidin1 yl]ethoxy}1,3dihydro2benzofuran5yl)2 methoxypyridin3yl]methanesulfonamide 7R26 ; 2.3 ; PI3K delta in complex with SD5 6ZAC ; 2.15 ; PI3K Delta in complex with [(dimethylamino)methyldihydrobenzoxazin2methoxypyridinyl]methanesulfonamide 5AUL ; 1.1 ; PI3K p85 C-terminal SH2 domain/CD28-derived peptide complex 5GJI ; 0.9 ; PI3K p85 N-terminal SH2 domain/CD28-derived peptide complex 3I5R ; 1.7 ; PI3K SH3 domain in complex with a peptide ligand 6AUD ; 2.015 ; PI3K-gamma K802T in complex with Cpd 8 10-((1-(tert-butyl)piperidin-4-yl)sulfinyl)-2-(1-isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepine 8V8I ; 3.2 ; PI3Ka H1047R co-crystal structure with inhibitor in cryptic pocket (compound 5). 8V8U ; 2.93 ; PI3Ka H1047R co-crystal structure with inhibitor in cryptic pocket near H1047R (compound 12). 8V8H ; 3.58 ; PI3Ka H1047R co-crystal structure with inhibitor in cryptic pocket near H1047R (compound 4). 8V8V ; 2.61 ; PI3Ka H1047R co-crystal structure with inhibitor in cryptic pocket near H1047R (compound 7). 8V8J ; 3.35 ; PI3Ka H1047R co-crystal structure with inhibitors in two cryptic pockets (compounds 4 and 5). 7BI4 ; 2.42 ; PI3KC2a core apo 7BI6 ; 2.75 ; PI3KC2a core in complex with ATP 7BI9 ; 2.65 ; PI3KC2a core in complex with PIK90 8A9I ; 2.87 ; PI3KC2a core in complex with PITCOIN1 7Z74 ; 2.5 ; PI3KC2a core in complex with PITCOIN2 7Z75 ; 2.59 ; PI3KC2a core in complex with PITCOIN3 7BI2 ; 3.25 ; PI3KC2aDeltaN and DeltaC-C2 7R2B ; 2.7 ; PI3Kdelta in complex with an inhibitor 5T7F ; 2.6 ; PI3Kdelta in complex with the inhibitor GS-643624 5T8I ; 2.6 ; PI3Kdelta in complex with the inhibitor GS-9901 5T23 ; 2.78 ; PI3Kg IN COMPLEX WITH 5d 4URK ; 2.9 ; PI3Kg in complex with AZD6482 6FH5 ; 2.84 ; PI3Kg IN COMPLEX WITH Compound 7 6GQ7 ; 2.84 ; PI3Kg IN COMPLEX WITH INH 6WHG ; 3.1 ; PI3P and calcium bound full-length TRPY1 in detergent 5I0N ; 2.28 ; PI4K IIalpha bound to calcium 5FBL ; 3.372 ; PI4KB in complex with Rab11 and the MI356 Inhibitor 5FBQ ; 3.789 ; PI4KB in complex with Rab11 and the MI358 Inhibitor 5FBR ; 3.28 ; PI4KB in complex with Rab11 and the MI359 Inhibitor 5FBV ; 3.285 ; PI4KB in complex with Rab11 and the MI364 Inhibitor 5FBW ; 3.487 ; PI4KB in complex with Rab11 and the MI369 Inhibitor 7YNO ; 2.8 ; PiB-bound alpha-synuclein fibrils conformation 1 7YNQ ; 2.8 ; PiB-bound alpha-synuclein fibrils conformation 2 8GXS ; 4.16 ; PIC-Mediator in complex with +1 nucleosome (T40N) in H-binding state 8GXQ ; 5.04 ; PIC-Mediator in complex with +1 nucleosome (T40N) in MH-binding state 3UPW ; 1.781 ; Pichia Stipitis OYE2.6 complexed with nicotinamide 6BJN ; 2.43 ; PICK1 PDZ domain in complex with the class I PDZ binding motif QSAV 6BJO ; 1.75 ; PICK1 PDZ domain in complex with the small molecule inhibitor BIO124. 5B19 ; 1.851 ; Picrophilus torridus aspartate racemase 3L35 ; 1.55 ; PIE12 D-peptide against HIV entry 3L36 ; 1.45 ; PIE12 D-peptide against HIV entry 3L37 ; 1.45 ; PIE12 D-peptide against HIV entry 6PSA ; 1.3 ; PIE12 D-PEPTIDE AGAINST HIV ENTRY (IN COMPLEX WITH IQN17 Q577R RESISTANCE MUTANT) 6E49 ; 2.9 ; Pif1 peptide bound to PCNA trimer 1EKO ; 2.2 ; PIG ALDOSE REDUCTASE COMPLEXED WITH IDD384 INHIBITOR 1AH0 ; 2.3 ; PIG ALDOSE REDUCTASE COMPLEXED WITH SORBINIL 1AH4 ; 2.0 ; PIG ALDOSE REDUCTASE, HOLO FORM 1PIF ; 2.3 ; PIG ALPHA-AMYLASE 4ZSW ; 1.7 ; Pig Brain GABA-AT inactivated by (E)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic acid 4ZSY ; 1.7 ; Pig Brain GABA-AT inactivated by (Z)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic acid. 5Y0B ; 6.5 ; PIG GASTRIC H+,K+ - ATPASE IN COMPLEX with BYK99 3IXZ ; 6.5 ; Pig gastric H+/K+-ATPase complexed with aluminium fluoride 2XZB ; 7.0 ; Pig Gastric H,K-ATPase with bound BeF and SCH28080 5YTA ; 2.1 ; Pig Heart Lactate Dehydrogenase in complex with NADH and Oxamate 3HDH ; 2.8 ; PIG HEART SHORT CHAIN L-3-HYDROXYACYL COA DEHYDROGENASE REVISITED: SEQUENCE ANALYSIS AND CRYSTAL STRUCTURE DETERMINATION 5FV4 ; 2.4 ; Pig liver esterase 5 (PLE5) 1HDI ; 1.8 ; Pig muscle 3-PHOSPHOGLYCERATE KINASE complexed with 3-PG and MgADP. 1PIG ; 2.2 ; PIG PANCREATIC ALPHA-AMYLASE COMPLEXED WITH THE OLIGOSACCHARIDE V-1532 1BVN ; 2.5 ; PIG PANCREATIC ALPHA-AMYLASE IN COMPLEX WITH THE PROTEINACEOUS INHIBITOR TENDAMISTAT 1UTE ; 1.55 ; PIG PURPLE ACID PHOSPHATASE COMPLEXED WITH PHOSPHATE 5UQ6 ; 1.182 ; PIG PURPLE ACID PHOSPHATASE COMPLEXED WITH PHOSPHATE IN TWO COORDINATION MODES ALONG WITH A BRIDGING HYDROXIDE ION 6X34 ; 4.7 ; Pig R615C RyR1 EGTA (all classes, open) 6X35 ; 4.2 ; Pig R615C RyR1 in complex with CaM, EGTA (class 1, open) 6X36 ; 4.7 ; Pig R615C RyR1 in complex with CaM, EGTA (class 3, closed) 6W1N ; 4.0 ; Pig Ryanodine Receptor (WT) in 5mM EGTA condition 5ZW8 ; 1.689 ; PigA with FAD and proline 6AF6 ; 1.62 ; PigA with FAD and proline 6PU0 ; 1.8979 ; Pigeon Cryptochrome4 bound to flavin adenine dinucleotide 2R80 ; 1.44 ; Pigeon Hemoglobin (OXY form) 7CLF ; 1.982 ; PigF with SAH 7CLU ; 1.9 ; PigF with SAH 5JDX ; ; PigG holo 4CSE ; 3.3 ; PIH N-terminal domain 4CV4 ; 1.902 ; PIH N-terminal domain 4CKT ; 3.0 ; PIH1 N-terminal domain 4PSF ; 1.578 ; PIH1D1 N-terminal domain 4PSI ; 2.45 ; PIH1D1/phospho-Tel2 complex 2PII ; 1.9 ; PII, GLNB PRODUCT 6T76 ; 1.9 ; PII-like protein CutA from Nostoc sp. PCC 7120 in apo form 6T7E ; 2.45 ; PII-like protein CutA from Nostoc sp. PCC7120 in complex with MES 6N4A ; 2.3 ; PII-like SbtB from Cyanobium sp PCC 7001 (apo) 6NTB ; 1.9 ; PII-like SbtB from Cyanobium sp PCC 7001 bound to ATP 4B7D ; 1.89 ; PikC bound to the 10-DML analog with the 3-(N,N-dimethylamino) propanoate anchoring group 4B7S ; 1.84 ; PikC D50N mutant bound to the 10-DML analog with the 3-(N,N- dimethylamino)propanoate anchoring group 3ZK5 ; 1.89 ; PikC D50N mutant bound to the 10-DML analog with the 3-(N,N-dimethylamino)ethanoate anchoring group 4BF4 ; 2.7 ; PikC D50N mutant in complex with the engineered cycloalkane substrate mimic bearing a termianl N,N-dimethylamino group 4UMZ ; 2.32 ; PikC D50N mutant in complex with the engineered substrate mimic bearing a 2-dimethylaminomethylbenzoate group 3ZPI ; 1.63 ; PikC D50N mutant in P21 space group 2PVB ; 0.91 ; PIKE PARVALBUMIN (PI 4.10) AT LOW TEMPERATURE (100K) AND ATOMIC RESOLUTION (0.91 A). 7K1W ; 5.1 ; PIKfyve/Fig4/Vac14 complex centered on Fig4 - map3 7K2V ; 6.6 ; PIKfyve/Fig4/Vac14 complex centered on PIKfyve - map2 7K1Y ; 5.25 ; PIKfyve/Fig4/Vac14 complex centered on Vac14 - map1 2H7X ; 1.85 ; Pikromycin Thioesterase adduct with reduced triketide affinity label 2HFK ; 1.79 ; Pikromycin thioesterase in complex with product 10-deoxymethynolide 2H7Y ; 2.1 ; Pikromycin Thioesterase with covalent affinity label 2HFJ ; 1.95 ; Pikromycin thioesterase with covalent pentaketide affinity label 7O5Y ; 1.77 ; PilA minor pilin of Streptococcus sanguinis type IV pili 5TSG ; 3.4011 ; PilB from Geobacter metallireducens bound to ADP 5TSH ; 2.3 ; PilB from Geobacter metallireducens bound to AMP-PNP 7B7P ; 2.26 ; PilB minor pilin from Streptococcus sanguinis 7OA7 ; 1.45 ; PilC minor pilin of Streptococcus sanguinis 2908 type IV pili 7OA8 ; 1.6 ; PilC minor pilin of Streptococcus sanguinis SK36 type IV pili 2YCH ; 2.2 ; PilM-PilN type IV pilus biogenesis complex 6I2V ; 1.75 ; Pilotin from Vibrio vulnificus type 2 secretion system, EpsS. 4K0U ; 2.15 ; Pilotin/secretin peptide Complex 5FL3 ; 2.52 ; PilT2 from Thermus thermophilus 6OJZ ; 3.027 ; PilT4 from Geobacter metallireducens bound to ADP with partial occupancy: C3ocococ conformation 6OK2 ; 3.287 ; PilT4 from Geobacter metallireducens bound to ADP: C3ocococ conformation 6OKV ; 4.007 ; PilT4 from Geobacter metallireducens bound to AMP-PNP: C2ccocco conformation 6OJX ; 1.892 ; PilT4 from Geobacter metallireducens bound to ATP 4BUG ; 2.8 ; Pilus-presented adhesin, Spy0125 (Cpa), Cys426Ala mutant 2XI9 ; 1.9 ; Pilus-presented adhesin, Spy0125 (Cpa), P1 form 2XID ; 2.65 ; Pilus-presented adhesin, Spy0125 (Cpa), P212121 form (DLS) 2XIC ; 2.9 ; Pilus-presented adhesin, Spy0125 (Cpa), P212121 form (ESRF data) 3O0P ; 1.3 ; Pilus-related Sortase C of Group B Streptococcus 4XRN ; 2.0 ; Pilz domain with c-di-gmp of a protein from Pseudomonas aeruginosa 5Y6G ; 2.3 ; PilZ domain with c-di-GMP of YcgR from Escherichia coli 3C4E ; 1.98 ; Pim-1 Kinase Domain in Complex with 3-aminophenyl-7-azaindole 5TEL ; 2.214 ; Pim-1 kinase in complex with a 7-azaindole 5TEX ; 2.149 ; Pim-1 kinase in complex with a 7-azaindole 5TOE ; 2.301 ; Pim-1 kinase in complex with a 7-azaindole 5TUR ; 2.948 ; Pim-1 kinase in complex with a 7-azaindole 5KCX ; 2.2 ; Pim-1 kinase in Complex with a Selective N-substituted 7-azaindole Inhibitor 3WE8 ; 1.954 ; Pim-1 kinase in complex with Ruthenium-based inhibitor 6VRU ; 2.07 ; PIM-inhibitor complex 1 3T9I ; 2.6 ; Pim1 complexed with a novel 3,6-disubstituted indole at 2.6 Ang Resolution 4N6Y ; 2.6 ; Pim1 Complexed with a phenylcarboxamide 4N6Z ; 2.2 ; Pim1 Complexed with a pyridylcarboxamide 4N70 ; 2.1 ; Pim1 Complexed with a pyridylcarboxamide 6AYD ; 3.0 ; Pim1 complexed with N-(6-(4-hydroxyphenyl)-1H-indazol-3-yl)cyclopropanecarboxamide 7QFM ; 1.95 ; Pim1 in complex with (E)-4-((2-oxoindolin-3-ylidene)methyl)benzoic acid and Pimtide 7QB2 ; 2.53 ; Pim1 in complex with (E)-4-((6-amino-1-methyl-2-oxoindolin-3-ylidene)methyl)benzoic acid and Pimtide 7Z6U ; 2.28 ; Pim1 in complex with (E)-4-((6-amino-2-oxoindolin-3-ylidene)methyl)benzoic acid and Pimtide 8R18 ; 1.89 ; Pim1 in complex with (E)-4-(4-hydroxystyryl)benzoic acid and Pimtide 8AFR ; 2.15 ; Pim1 in complex with 4-((6-hydroxybenzofuran-3-yl)methyl)benzoic acid and Pimtide 8R1T ; 2.0 ; Pim1 in complex with 4-(4-aminophenethyl)benzoic acid and Pimtide 8R1N ; 2.21 ; Pim1 in complex with 4-(4-hydroxyphenethyl)benzoic acid and Pimtide 8R10 ; 2.2 ; Pim1 in complex with 4-(4-hydroxystyryl)benzoic acid and Pimtide 8R1P ; 2.45 ; Pim1 in complex with 6-bromobenzo[d]oxazol-2-amine and Pimtide 6NO9 ; 1.712 ; PIM1 in complex with Cpd16 (5-amino-N-(5-((4R,5R)-4-amino-5-fluoroazepan-1-yl)-1-methyl-1H-pyrazol-4-yl)-2-(2,6-difluorophenyl)thiazole-4-carboxamide) 5DIA ; 1.964 ; PIM1 in complex with Cpd36 ((1S,3S)-N1-(6-(5-(pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridin-3-yl)pyridin-2-yl)cyclohexane-1,3-diamine) 5DHJ ; 2.457 ; PIM1 in complex with Cpd4 (3-methyl-5-(pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridine) 6NO8 ; 2.377 ; PIM1 in complex with Cpd9 ((R)-5-amino-N-(3-(4-aminoazepan-1-yl)-1H-pyrazol-4-yl)-2-(2,6-difluorophenyl)thiazole-4-carboxamide) 5VUA ; 2.2 ; Pim1 Kinase in complex with a benzofuranone inhibitor 5VUB ; 2.0 ; Pim1 Kinase in complex with a benzofuranone inhibitor 5VUC ; 2.0 ; Pim1 Kinase in complex with a benzofuranone inhibitor 4XHK ; 1.9 ; PIM1 kinase in complex with Compound 1s 5V80 ; 2.252 ; PIM1 kinase in complex with Cpd1 (1-methyl-4-(3-(6-(piperazin-1-yl)pyridin-2-yl)-1H-pyrazolo[3,4-c]pyridin-5-yl)piperazin-2-one) 5V82 ; 1.888 ; PIM1 kinase in complex with Cpd17 (1-(6-(4,4-difluoropiperidin-3-yl)pyridin-2-yl)-6-(6-methylpyrazin-2-yl)-1H-pyrazolo[4,3-c]pyridine) 7VSY ; 2.141 ; Pim1 with N82K mutation 4X7Q ; 2.33 ; PIM2 kinase in complex with Compound 1s 7VO4 ; 2.1 ; Pimaricin type I PKS thioesterase domain (apo Pim TE) 7VO5 ; 2.4 ; Pimaricin type I PKS thioesterase domain (holo Pim TE) 1PIN ; 1.35 ; PIN1 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE FROM HOMO SAPIENS 2N1O ; ; PIN1 WW domain in complex with a phosphorylated CPEB1 derived peptide 6AND ; 1.75 ; Pinatuzumab Fab in complex with anti-Kappa VHH domain 6QY4 ; 1.84 ; Pink beam serial crystallography: Lysozyme, 1 us exposure, 14793 patterns merged 6QY5 ; 1.84 ; Pink beam serial crystallography: Lysozyme, 1 us exposure, 4448 patterns merged (1 chip) 6QXX ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 14793 patterns merged 6QY1 ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 1500 patterns merged 6QXW ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 24344 patterns merged (3 chips) 6QY0 ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 3000 patterns merged 6QY2 ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 750 patterns merged 6QXY ; 1.7 ; Pink beam serial crystallography: Lysozyme, 5 us exposure, 8813 patterns merged (1 chip) 6QXV ; 1.94 ; Pink beam serial crystallography: Proteinase K, 1 us exposure, 1585 patterns merged (2 chips) 5OAT ; 2.78 ; PINK1 structure 6RTR ; 1.55 ; Piperideine-6-carboxylate dehydrogenase from Streptomyces clavuligerus 6RTU ; 1.9 ; Piperideine-6-carboxylate dehydrogenase from Streptomyces clavuligerus complexed with alpha-aminoadipic acid 6RTS ; 2.25 ; Piperideine-6-carboxylate dehydrogenase from Streptomyces clavuligerus complexed with NAD+ 6RTT ; 1.65 ; Piperideine-6-carboxylate dehydrogenase from Streptomyces clavuligerus complexed with picolinic acid 8FVZ ; 3.1 ; PiPT Y150A 3LSF ; 1.851 ; Piracetam bound to the ligand binding domain of GluA2 3LSL ; 2.122 ; Piracetam bound to the ligand binding domain of GluA2 (flop form) 3LSX ; 2.006 ; Piracetam bound to the ligand binding domain of GluA3 5MIL ; 2.1 ; Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity islands transfer. 1QLL ; 2.04 ; Piratoxin-II (Prtx-II) - a K49 PLA2 from Bothrops pirajai 6PGM ; 2.3 ; PirF geranyltransferase 5LOS ; 2.0 ; Piriformospora indica PIIN_05872 7UV3 ; ; Pis v 3.0101 Vicilin Leader Sequence Residues 5-52 7UV4 ; ; Pis v 3.0101 vicilin leader sequence residues 56-115 6UFK ; 3.2 ; Pistol ribozyme product crystal soaked in Mn2+ 6UFJ ; 2.645 ; Pistol ribozyme product crystal structure 6UEY ; 2.8 ; Pistol ribozyme transition-state analog vanadate 6UF1 ; 3.1 ; Pistol ribozyme transition-state analog vanadate 1AU7 ; 2.3 ; PIT-1 MUTANT/DNA COMPLEX 7U38 ; 2.49 ; Pixantrone tethered DNA duplex 2F7E ; 2.0 ; PKA complexed with (S)-2-(1H-Indol-3-yl)-1-(5-isoquinolin-6-yl-pyridin-3-yloxymethyl-etylamine 1Q62 ; 2.3 ; PKA double mutant model of PKB 1Q24 ; 2.6 ; PKA double mutant model of PKB in complex with MgATP 2GNH ; 2.05 ; PKA five fold mutant model of Rho-kinase with H1152P 2GNI ; 2.27 ; PKA fivefold mutant model of Rho-kinase with inhibitor Fasudil (HA1077) 5BX7 ; 1.89 ; PKA in complex with a benzothiophene fragment compound. 5BX6 ; 1.89 ; PKA in complex with a halogenated phthalazinone fragment compound. 6WJF ; 7.5 ; PKA RIIbeta holoenzyme with DnaJB1-PKAc fusion in fibrolamellar hepatoceullar carcinoma 6WJG ; 6.2 ; PKA RIIbeta holoenzyme with DnaJB1-PKAc fusion in fibrolamellar hepatoceullar carcinoma 2UZT ; 2.1 ; PKA structures of AKT, indazole-pyridine inhibitors 2UZU ; 2.4 ; PKA structures of indazole-pyridine series of AKT inhibitors 2UZV ; 2.5 ; PKA structures of indazole-pyridine series of AKT inhibitors 2UZW ; 2.2 ; PKA structures of indazole-pyridine series of AKT inhibitors 2GNJ ; 2.28 ; PKA three fold mutant model of Rho-kinase with Y-27632 2GNL ; 2.6 ; PKA threefold mutant model of Rho-kinase with inhibitor H-1152P 1Q61 ; 2.1 ; PKA triple mutant model of PKB 6FRX ; 1.88 ; PKA variant as Aurora B mimic in complex with a dianilinopyrimidine inhibitor 4C33 ; 1.7 ; PKA-S6K1 Chimera Apo 4C35 ; 2.19 ; PKA-S6K1 Chimera with compound 1 (NU1085) bound 4C36 ; 1.98 ; PKA-S6K1 Chimera with compound 15e (CCT147581) bound 4C37 ; 1.7 ; PKA-S6K1 Chimera with compound 21a (CCT196539) bound 4C38 ; 1.58 ; PKA-S6K1 Chimera with compound 21e (CCT239066) bound 4C34 ; 1.78 ; PKA-S6K1 Chimera with Staurosporine bound 4Z84 ; 1.554 ; PKAB3 in complex with pyrrolidine inhibitor 34a 4Z83 ; 1.8 ; PKAB3 in complex with pyrrolidine inhibitor 47a 4GV1 ; 1.49 ; PKB alpha in complex with AZD5363 3TXO ; 2.05 ; PKC eta kinase in complex with a naphthyridine 8FP3 ; 2.3 ; PKCeta kinase domain in complex with compound 11 8FP1 ; 1.85 ; PKCeta kinase domain in complex with compound 2 1KPB ; 2.0 ; PKCI-1-APO 1KPC ; 2.2 ; PKCI-1-APO+ZINC 1KPA ; 2.0 ; PKCI-1-ZINC 1AV5 ; 2.0 ; PKCI-SUBSTRATE ANALOG 1KPF ; 1.5 ; PKCI-SUBSTRATE ANALOG 1KPE ; 1.8 ; PKCI-TRANSITION STATE ANALOG 1B4R ; ; PKD DOMAIN 1 FROM HUMAN POLYCYSTEIN-1 4XED ; 1.23 ; PKD domain of M14-like peptidase from Thermoplasmatales archaeon SCGC AB-540-F20 5JD7 ; 1.749 ; PKG I's Carboxyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with PET-cGMP 5L0N ; 1.285 ; PKG I's Carboxyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with RP-cGMP 5JAX ; 1.486 ; PKG I's Carboyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with 8-Br-cGMP 5J48 ; 1.49 ; PKG I's Carboyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with 8-pCPT-cGMP 5C6C ; 2.05 ; PKG II's Amino Terminal Cyclic Nucleotide Binding Domain (CNB-A) in a complex with cAMP 5C8W ; 1.8 ; PKG II's Amino Terminal Cyclic Nucleotide Binding Domain (CNB-A) in a complex with cGMP 5JIX ; 1.47 ; PKG II's Carboxyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with 8-Br-cGMP 5JIZ ; 1.5 ; PKG II's Carboxyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with 8-pCPT-cGMP 5BV6 ; 1.94 ; PKG II's Carboxyl Terminal Cyclic Nucleotide Binding Domain (CNB-B) in a complex with cGMP 8G2E ; 1.838 ; PKM2 bound to compound 2 4G1N ; 2.3 ; PKM2 in complex with an activator 6TTQ ; 2.7 ; PKM2 in complex with Compound 10 5X1V ; 2.1 ; PKM2 in complex with compound 2 5X1W ; 3.0 ; PKM2 in complex with compound 5 6TTF ; 3.2 ; PKM2 in complex with Compound 5 6TTI ; 2.5 ; PKM2 in complex with Compound 6 6TTH ; 2.6 ; PKM2 in complex with L-threonine 8WJY ; 1.88 ; PKMYT1_Cocrystal_Cpd 4 2KFU ; ; PknB-phosphorylated Rv1827 8QEL ; 2.451 ; PKR kinase domain- eIF2alpha in complex with compound 2A19 ; 2.5 ; PKR kinase domain- eIF2alpha- AMP-PNP complex. 2A1A ; 2.8 ; PKR kinase domain-eIF2alpha Complex 5XUO ; 2.586 ; Pks13 AT domain fragment from Mycobacterium tuberculosis 4YXQ ; 2.47 ; PksG, a HMG-CoA Synthase from Bacillus subtilis 4YXT ; 2.1 ; PksG, a HMG-CoA Synthase from Bacillus subtilus 4YXV ; 2.75 ; PksG, a HMG-CoA Synthase from Bacillus subtilus 6WKN ; 3.46 ; PL-bound rat TRPV2 in nanodiscs 7CZH ; 2.104 ; PL24 ulvan lyase-Uly1 6MQU ; 3.17 ; PL5, synthetic transmembrane domain variant of human phospholamban 7DMK ; 2.213 ; PL6 alginate lyase BcAlyPL6 1LD4 ; 11.4 ; Placement of the Structural Proteins in Sindbis Virus 3MK2 ; 1.89 ; Placental alkaline phosphatase complexed with Phe 6A66 ; 1.4 ; Placental protein 13/galectin-13 variant R53H with Tris 6A63 ; 1.63 ; Placental protein 13/galectin-13 variant R53HH57R with Lactose 6A62 ; 2.03 ; Placental protein 13/galectin-13 variant R53HH57RD33G with Lactose 6A65 ; 1.771 ; Placental protein 13/galectin-13 variant R53HR55N with Tris 6A64 ; 1.63 ; Placental protein 13/galectin-13 variant R53HR55NH57RD33G with Lactose 2EC6 ; 3.25 ; Placopecten Striated Muscle Myosin II 2K1J ; ; Plan homeodomain finger of tumour supressor ING4 3A8T ; 2.37 ; Plant adenylate isopentenyltransferase in complex with ATP 2O7R ; 1.4 ; Plant carboxylesterase AeCXE1 from Actinidia eriantha with acyl adduct 6S0P ; 1.24 ; Plant Cysteine Oxidase PCO4 from Arabidopsis thaliana 6S7E ; 1.82 ; Plant Cysteine Oxidase PCO4 from Arabidopsis thaliana (using PEG 3350 and NaF as precipitants) 6SBP ; 1.91 ; Plant Cysteine Oxidase PCO5 from Arabidopsis thaliana 1W1S ; 2.0 ; Plant Cytokinin Dehydrogenase in Complex with Benzylaminopurine 1W1Q ; 1.8 ; Plant Cytokinin Dehydrogenase in Complex with Isopentenyladenine 1W1R ; 1.9 ; Plant Cytokinin Dehydrogenase in Complex with trans-Zeatin 2C7Y ; 2.1 ; plant enzyme 2C7Z ; 2.37 ; Plant enzyme crystal form II 6GMO ; 1.75 ; Plant glutamate cysteine ligase (GCL) in complex with non-reducing GSH (GSM) 7W0K ; 2.04 ; plant glycosyltransferase 7DXN ; 1.8 ; Plant growth-promoting factor YxaL from Bacillus velezensis 7EVF ; 1.5 ; Plant growth-promoting factor YxaL mutant from Bacillus velezensis - T175W/S213G/W215A 7EQ5 ; 2.6 ; Plant growth-promoting factor YxaL mutant from Bacillus velezensis - T175W/W215G 7JRG ; 3.2 ; Plant Mitochondrial complex III2 from Vigna radiata 7JRO ; 3.8 ; Plant Mitochondrial complex IV from Vigna radiata 7JRP ; 3.8 ; Plant Mitochondrial complex SC III2+IV from Vigna radiata 7A23 ; 3.7 ; Plant mitochondrial respiratory complex I 7Z1I ; 3.09 ; Plant myrosinase TGG1 from Arabidopsis thaliana 7ZGM ; 1.43 ; Plant N-glycan specific alpha-1,3-mannosidase 4KPN ; 3.35 ; Plant nucleoside hydrolase - PpNRh1 enzyme 6ZK1 ; 1.99 ; Plant nucleoside hydrolase - ZmNRh2b enzyme 6ZK2 ; 2.2 ; Plant nucleoside hydrolase - ZmNRh2b in complex with forodesine 6ZK3 ; 1.75 ; Plant nucleoside hydrolase - ZmNRh2b in complex with ribose 6ZK4 ; 1.95 ; Plant nucleoside hydrolase - ZmNRh2b with a bound adenine 4KPO ; 2.49 ; Plant nucleoside hydrolase - ZmNRh3 enzyme 6ZK5 ; 1.9 ; Plant nucleoside hydrolase - ZmNRh3 enzyme in complex with forodesine 3CPM ; 2.4 ; plant peptide deformylase PDF1B crystal structure 7DAB ; ; plant peptide hormone 7OGU ; 2.872 ; Plant peptide hormone receptor complex H1C9S1 7OGZ ; 2.7 ; Plant peptide hormone receptor complex H1L3S1 7ODV ; 2.31 ; Plant peptide hormone receptor complex H1LS1 7ODK ; 1.83 ; Plant peptide hormone receptor H1 7OGO ; 2.38 ; Plant peptide hormone receptor H1I1S1 7OGQ ; 2.2 ; Plant peptide hormone receptor H1I2S1 5HYX ; 2.596 ; Plant peptide hormone receptor RGFR1 in complex with RGF1 5HZ0 ; 2.56 ; Plant peptide hormone receptor RGFR1 in complex with RGF2 5HZ1 ; 2.59 ; Plant peptide hormone receptor RGFR1 in complex with RGF3 5HZ3 ; 2.86 ; Plant peptide hormone receptor RGFR1 in complex with RGFR5 2LIY ; ; Plant peptide hormone regulating stomatal density 8JEC ; 3.1 ; plant potassium channel SKOR mutant - L271P/D312N 6YAC ; 2.5 ; Plant PSI-ferredoxin supercomplex 6YEZ ; 2.7 ; Plant PSI-ferredoxin-plastocyanin supercomplex 5GYY ; 2.351 ; Plant receptor complex 5XJO ; 2.626 ; Plant receptor ERL1-TMM in complex with peptide EPF1 7W3V ; 3.11 ; Plant receptor like protein RXEG1 in complex with xyloglucanase XEG1 3RJ0 ; 2.541 ; Plant steroid receptor BRI1 ectodomain in complex with brassinolide 4LSX ; 3.302 ; Plant steroid receptor ectodomain bound to brassinolide and SERK1 co-receptor ectodomain 3VHF ; 1.39 ; plant thaumatin I at pH 8.0 7ZGN ; 1.95 ; Plant/insect N-glycan active PNGase 5MLH ; 1.86 ; Plantago Major multifunctional oxidoreductase in complex with 8-oxogeranial and NADP+ 6GSD ; 2.7 ; Plantago Major multifunctional oxidoreductase in complex with progesterone and NADP+ 5MLR ; 1.46 ; Plantago Major multifunctional oxidoreductase V150M mutant in complex with citral and NADP+ 5MLM ; 2.563 ; Plantago Major multifunctional oxidoreductase V150M mutant in complex with progesterone and NADP+ 2KHF ; ; Plantaricin J in DPC-micelles 2KHG ; ; Plantaricin J in TFE 2KEH ; ; Plantaricin K in TFE 6GNZ ; ; Plantaricin S-a in 100 mM DPC micelles. This is the alpha part of the bacteriocin plantaricin S. 6GO0 ; ; PLANTARICIN S-B IN 100 MM DPC MICELLES. THIS IS THE BETA PART OF THE BACTERIOCIN PLANTARICIN S 3EBB ; 1.9 ; PLAP/P97 complex 1E05 ; 2.62 ; PLASMA ALPHA ANTITHROMBIN-III 1E03 ; 2.9 ; PLASMA ALPHA ANTITHROMBIN-III AND PENTASACCHARIDE 1E04 ; 2.6 ; PLASMA BETA ANTITHROMBIN-III 5HS4 ; 1.339 ; Plasmdoium Vivax Lactate dehydrogenase 2BJU ; 1.56 ; Plasmepsin II complexed with a highly active achiral inhibitor 1SME ; 2.7 ; PLASMEPSIN II, A HEMOGLOBIN-DEGRADING ENZYME FROM PLASMODIUM FALCIPARUM, IN COMPLEX WITH PEPSTATIN A 1W6I ; 2.7 ; plasmepsin II-pepstatin A complex 6C4G ; 2.39 ; Plasmepsin V from Plasmodium vivax bound to a transition state mimetic (WEHI-601) 4ZL4 ; 2.37 ; Plasmepsin V from Plasmodium vivax bound to a transition state mimetic (WEHI-842) 1GKI ; 3.0 ; Plasmid coupling protein TrwB in complex with ADP and Mg2+. 1GL7 ; 3.0 ; Plasmid coupling protein TrwB in complex with the non-hydrolisable ATP-analogue ADPNP. 1GL6 ; 2.8 ; Plasmid coupling protein TrwB in complex with the non-hydrolysable GTP analogue GDPNP 6AHT ; 2.0 ; Plasmid partitioning protein TubR from Bacillus cereus 1BQY ; 2.5 ; Plasminogen activator (TSV-PA) from snake venom 4AQH ; 2.4 ; Plasminogen activator inhibitor type-1 in complex with the inhibitor AZ3976 1B3K ; 2.99 ; Plasminogen activator inhibitor-1 1C5G ; 2.6 ; PLASMINOGEN ACTIVATOR INHIBITOR-1 1OC0 ; 2.28 ; plasminogen activator inhibitor-1 complex with somatomedin B domain of vitronectin 6OG4 ; 1.7 ; plasminogen binding group A streptococcal M protein 8TVL ; 3.8 ; Plasminogen binding group A streptococcus M-like protein from AP53 bound to human plasminogen 4CIK ; 1.78 ; plasminogen kringle 1 in complex with inhibitor 6ZN3 ; 2.51 ; Plasmodium facliparum glideosome trimeric sub-complex 6FQX ; 2.8 ; Plasmodium falciparum 6-phosphogluconate dehydrogenase in its apo form, in complex with its cofactor NADP+ and in complex with its substrate 6-phosphogluconate 6FQY ; 2.9 ; Plasmodium falciparum 6-phosphogluconate dehydrogenase in its apo form, in complex with its cofactor NADP+ and in complex with its substrate 6-phosphogluconate 6FQZ ; 1.9 ; Plasmodium falciparum 6-phosphogluconate dehydrogenase in its apo form, in complex with its cofactor NADP+ and in complex with its substrate 6-phosphogluconate 7SXL ; 2.7 ; Plasmodium falciparum apicoplast DNA polymerase (exo-minus) without affinity tag 7SXQ ; 2.5 ; Plasmodium falciparum apicoplast DNA polymerase (exo-minus) without affinity tag 4EOY ; 2.22 ; Plasmodium falciparum Atg8 in complex with Plasmodium falciparum Atg3 peptide 5ULC ; 2.4 ; PLASMODIUM FALCIPARUM BROMODOMAIN-CONTAINING PROTEIN PF10_0328 8OIL ; ; Plasmodium falciparum circumsporozoite protein C-terminal domain 1QNH ; 2.1 ; Plasmodium falciparum Cyclophilin (double mutant) complexed with Cyclosporin A 1QNG ; 2.1 ; Plasmodium falciparum Cyclophilin complexed with Cyclosporin A 2FU0 ; 1.8 ; Plasmodium falciparum cyclophilin PFE0505w putative cyclosporin-binding domain 7TXE ; 2.3 ; Plasmodium falciparum Cyt c2 DSD 7U2V ; 2.55 ; Plasmodium falciparum Cyt c2 DSD 7DPI ; 3.597 ; Plasmodium falciparum cytoplasmic Phenylalanyl-tRNA synthetase in complex with BRD7929 3QG2 ; 2.3 ; Plasmodium falciparum DHFR-TS qradruple mutant (N51I+C59R+S108N+I164L, V1/S) pyrimethamine complex 6I4B ; 1.98 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) co-crystallized with 3-Hydroxy-1-methyl-5-((3-(trifluoromethyl)phenoxy)methyl)-1H-pyrazole-4-carboxylic acid 6I55 ; 1.98 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) co-crystallized with N-(2,2-Diphenylethyl)-4-hydroxy-1,2,5-thiadiazole-3-carboxamide 4CQ8 ; 1.98 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) in complex with Genz-669178 4CQ9 ; 2.72 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) in complex with IDI-6253 4CQA ; 2.82 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) in complex with IDI-6273 7WYF ; 3.3 ; Plasmodium falciparum dihydroorotate dehydrogenase (DHODH) in complex with its inhibitor 50 3I65 ; 2.0 ; Plasmodium falciparum dihydroorotate dehydrogenase bound with triazolopyrimidine-based inhibitor DSM1 3I68 ; 2.4 ; Plasmodium falciparum dihydroorotate dehydrogenase bound with triazolopyrimidine-based inhibitor DSM2 3I6R ; 2.5 ; Plasmodium falciparum dihydroorotate dehydrogenase bound with triazolopyrimidine-based inhibitor DSM74 6E0B ; 2.099 ; Plasmodium falciparum dihydroorotate dehydrogenase C276F mutant bound with triazolopyrimidine-based inhibitor DSM1 6GJG ; 1.99 ; Plasmodium falciparum dihydroorotate dehydrogenase DHODH in complex with 3,6-dimethyl-N-(4-(trifluoromethyl)phenyl)-(1,2)oxazolo(5,4-d)pyrimidin-4-amine 1TV5 ; 2.4 ; Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor 2Y8C ; 2.1 ; Plasmodium falciparum dUTPase in complex with a trityl ligand 6N7Q ; 2.1 ; Plasmodium falciparum FVO apical membrane antigen 1 (AMA1) bound to cyclised RON2 peptide 6N87 ; 1.588 ; Plasmodium falciparum FVO apical membrane antigen 1 (AMA1) bound to MTSL spin-labelled cyclised RON2 peptide 7MYV ; 3.51 ; Plasmodium falciparum HAD5/PMM 7ZZI ; 2.8 ; Plasmodium falciparum hexokinase complexed with glucose and citrate 1SQ6 ; 2.4 ; Plasmodium falciparum homolog of Uridine phosphorylase/Purine nucleoside phosphorylase 6S02 ; 1.87 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain - ADP bound state 6RZQ ; 1.81 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain - ANP-PnP bound state 7OOH ; 2.36 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with NCL-00023818 7P31 ; 2.36 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with NCL-00023818 7OOG ; 2.42 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with NCL-00023823 7NQS ; 2.56 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with Z1203107138 7NQZ ; 2.319 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with Z1827898537 7NQR ; 2.22 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with Z287256168 7OOE ; 2.369 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with Z321318226 7NQU ; 2.13 ; Plasmodium falciparum Hsp70-x chaperone nucleotide binding domain in complex with Z396380540 7NBA ; 4.0 ; Plasmodium falciparum kinesin-5 motor domain bound to AMPPNP, complexed with 14 protofilament microtubule. 7NB8 ; 4.4 ; Plasmodium falciparum kinesin-5 motor domain without nucleotide, complexed with 14 protofilament microtubule. 4B7U ; 1.88 ; PLASMODIUM FALCIPARUM L-LACTATE DEHYDROGENASE COMPLEXED WITH BICINE 1LDG ; 1.74 ; PLASMODIUM FALCIPARUM L-LACTATE DEHYDROGENASE COMPLEXED WITH NADH AND OXAMATE 2X8L ; 1.6 ; Plasmodium falciparum lactate dehydrogenase apo structure 1U4O ; 1.7 ; Plasmodium falciparum lactate dehydrogenase complexed with 2,6-naphthalenedicarboxylic acid 1U4S ; 2.0 ; Plasmodium falciparum lactate dehydrogenase complexed with 2,6-naphthalenedisulphonic acid 1XIV ; 1.7 ; Plasmodium falciparum lactate dehydrogenase complexed with 2-({4-chloro-[hydroxy(methoxy)methyl]cyclohexyl}amino)ethane-1,1,2-triol 1U5A ; 1.8 ; Plasmodium falciparum lactate dehydrogenase complexed with 3,5-dihydroxy-2-naphthoic acid 1U5C ; 2.65 ; Plasmodium falciparum lactate dehydrogenase complexed with 3,7-dihydroxynaphthalene-2-carboxylic acid and NAD+ 1T24 ; 1.7 ; Plasmodium falciparum lactate dehydrogenase complexed with NAD+ and 4-hydroxy-1,2,5-oxadiazole-3-carboxylic acid 1T2D ; 1.1 ; Plasmodium falciparum lactate dehydrogenase complexed with NAD+ and oxalate 1T2C ; 2.01 ; Plasmodium falciparum lactate dehydrogenase complexed with NADH 1T25 ; 1.9 ; Plasmodium falciparum lactate dehydrogenase complexed with NADH and 3-hydroxyisoxazole-4-carboxylic acid 1T26 ; 1.8 ; Plasmodium falciparum lactate dehydrogenase complexed with NADH and 4-hydroxy-1,2,5-thiadiazole-3-carboxylic acid 1T2E ; 1.85 ; Plasmodium falciparum lactate dehydrogenase S245A, A327P mutant complexed with NADH and oxamate 6TLB ; 2.85 ; Plasmodium falciparum lipocalin (PF3D7_0925900) 8SLO ; 1.55 ; Plasmodium falciparum M1 aminopeptidase bound to selective inhibitor MIPS2673 8EYF ; 1.9 ; Plasmodium falciparum M1 in complex with inhibitor 15aa 8EZ2 ; 1.83 ; Plasmodium falciparum M1 in complex with inhibitor 15ag 8EYD ; 1.83 ; Plasmodium falciparum M1 in complex with inhibitor 15ah 8EX3 ; 1.6 ; Plasmodium falciparum M1 in complex with inhibitor 9aa 8EYE ; 1.83 ; Plasmodium falciparum M1 in complex with inhibitor 9aj 8EWZ ; 1.75 ; Plasmodium falciparum M1 in complex with inhibitor 9c 8EZ4 ; 1.89 ; Plasmodium falciparum M17 in complex with inhibitor 9aa 7RIE ; 2.49 ; Plasmodium falciparum M17 in complex with inhibitor MIPS2571 6ZBJ ; 3.3 ; Plasmodium falciparum merozoite surface protein 1 dimer, conformation 1 6ZBL ; 3.6 ; Plasmodium falciparum merozoite surface protein 1 dimer, conformation 2 6YCZ ; 3.27 ; Plasmodium falciparum Myosin A delta-Nter, Post-Rigor state 6YCY ; 2.55 ; Plasmodium falciparum Myosin A full-length, post-rigor state 8A12 ; 2.03 ; Plasmodium falciparum Myosin A full-length, post-rigor state complexed to Mg.ATP-gamma-S 8CDM ; 2.35 ; Plasmodium falciparum Myosin A full-length, post-rigor state complexed to the inhibitor KNX-002 8CDQ ; 2.21 ; Plasmodium falciparum Myosin A full-length, post-rigor state complexed to the inhibitor KNX-002 and Mg.ATP-gamma-S 6YCX ; 3.99 ; Plasmodium falciparum Myosin A full-length, pre-powerstroke state 6I7D ; 2.82 ; Plasmodium falciparum Myosin A, post-rigor and rigor-like states 6I7E ; 3.492 ; Plasmodium falciparum Myosin A, Pre-powerstroke 5LM3 ; 2.5 ; Plasmodium falciparum nicotinic acid mononucleotide adenylyltransferase complexed with APC 5LLT ; 2.2 ; Plasmodium falciparum nicotinic acid mononucleotide adenylyltransferase complexed with NaAD 1XIQ ; 3.05 ; Plasmodium falciparum Nucleoside diphosphate kinase B 1RL4 ; 2.18 ; Plasmodium falciparum peptide deformylase complex with inhibitor 6RZY ; 1.379 ; Plasmodium falciparum PFA0660w Hsp40 co-chaperone J-domain 6H5N ; 3.23 ; Plasmodium falciparum Pfs48/45 C-terminal domain bound to monoclonal antibody 85RF45.1 4R6W ; 1.5894 ; Plasmodium falciparum phosphoethanolamine methyltransferase D128A mutant in complex with S-adenosylhomocysteine and phosphocholine 4R6X ; 2.5534 ; Plasmodium falciparum phosphoethanolamine methyltransferase D128A mutant in complex with S-adenosylhomocysteine and phosphoethanolamine 2JKF ; 2.31 ; Plasmodium falciparum profilin 2JKG ; 1.89 ; Plasmodium falciparum profilin 7V9D ; 1.937 ; Plasmodium falciparum Prolyl-tRNA Synthetase (PfPRS) in Complex with inhibitor L95 and azetidine 7F96 ; 2.577 ; Plasmodium falciparum Prolyl-tRNA Synthetase (PfPRS) in Complex with L-proline and compound L95 7F97 ; 2.394 ; Plasmodium falciparum Prolyl-tRNA Synthetase (PfPRS) in Complex with L-proline and compound L97 7S7R ; 1.77 ; Plasmodium falciparum protein Pf12 bound to nanobody G7 7KJ7 ; 2.8 ; Plasmodium falciparum protein Pf12p 7KJH ; 2.0 ; Plasmodium falciparum protein Pf12p bound to nanobody B9 7KJI ; 3.25 ; Plasmodium falciparum protein Pf12p bound to nanobody D9 7USV ; 2.1 ; Plasmodium falciparum protein Pfs230 D1 in complex with nanobody F10 7UST ; 1.7 ; Plasmodium falciparum protein Pfs230 D1 in complex with nanobody F5 7USR ; 1.93 ; Plasmodium falciparum protein Pfs230 D1D2 - Structure of the first two 6-cysteine domains 7USS ; 1.9 ; Plasmodium falciparum protein Pfs230 Pro-D1D2 - Structure of the first two 6-cysteine domains with N-terminal extension 5ZNI ; 2.3 ; Plasmodium falciparum purine nucleoside phosphorylase in complex with mefloquine 5ZNC ; 1.66 ; Plasmodium falciparum purine nucleoside phosphorylase in complex with quinine 2FBN ; 1.63 ; Plasmodium falciparum putative FK506-binding protein PFL2275c, C-terminal TPR-containing domain 7Z4M ; 1.9 ; Plasmodium falciparum pyruvate kinase complexed with Mg2+ and K+ 7Z4N ; 1.8 ; Plasmodium falciparum pyruvate kinase complexed with pyruvate 7Z4R ; 2.0 ; Plasmodium falciparum pyruvate kinase mutant - C343A 7Z4Q ; 2.1 ; Plasmodium falciparum pyruvate kinase mutant - C49A 4U0Q ; 3.1 ; Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) bound to basigin 4U0R ; 2.3 ; Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) bound to monoclonal antibody 9AD4 4U1G ; 3.1 ; Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) bound to monoclonal antibody QA1 7KIY ; 2.92 ; Plasmodium falciparum RhopH complex in soluble form 2MUJ ; ; Plasmodium falciparum SERA protein peptide analogues having short helical regions induce protection against malaria 3U31 ; 2.2 ; Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine 3U3D ; 2.4 ; Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine 6HY1 ; 1.6 ; Plasmodium falciparum spermidine synthase in complex with 5'-methylthioadenosine and N,N'-Bis(3-aminopropyl)-1,4-cyclohexanediamine after catalysis in crystal 6I1N ; 1.85 ; Plasmodium falciparum spermidine synthase in complex with N-(3-aminopropyl)-trans-cyclohexane-1,4-diamine 3ULP ; 2.1 ; Plasmodium falciparum SSB complex with ssDNA 2YOG ; 1.5 ; Plasmodium falciparum thymidylate kinase in complex with a (thio)urea- alpha-deoxythymidine inhibitor 2YOF ; 1.82 ; Plasmodium falciparum thymidylate kinase in complex with a (thio)urea- beta-deoxythymidine inhibitor 2YOH ; 1.6 ; Plasmodium falciparum thymidylate kinase in complex with a urea-alpha- deoxythymidine inhibitor 2WWH ; 2.7 ; Plasmodium falciparum thymidylate kinase in complex with AP5dT 2WWI ; 2.99 ; Plasmodium falciparum thymidylate kinase in complex with AZTMP and ADP 2WWG ; 2.4 ; Plasmodium falciparum thymidylate kinase in complex with dGMP and ADP 2WWF ; 1.89 ; Plasmodium falciparum thymidylate kinase in complex with TMP and ADP 1O5X ; 1.1 ; Plasmodium falciparum TIM complexed to 2-phosphoglycerate 1M7O ; 2.4 ; Plasmodium Falciparum Triosephosphate isomerase (PfTIM) compled to substrate analog 3-phosphoglycerate (3PG) 1M7P ; 2.4 ; Plasmodium Falciparum Triosephosphate isomerase (PfTIM) compled to substrate analog glycerol-3-phosphate (G3P). 1LYX ; 1.9 ; Plasmodium Falciparum Triosephosphate Isomerase (PfTIM)-Phosphoglycolate complex 1LZO ; 2.8 ; Plasmodium Falciparum Triosephosphate Isomerase-Phosphoglycolate Complex 7ROS ; 2.15 ; Plasmodium falciparum tyrosyl-tRNA synthetase in complex with ML901-Tyr 7ROR ; 1.8 ; Plasmodium falciparum tyrosyl-tRNA synthetase in complex with tyrosine-AMP 7ROT ; 2.2 ; Plasmodium falciparum tyrosyl-tRNA synthetase, S234C mutant, in complex with ML901-Tyr 2ONU ; 2.38 ; Plasmodium falciparum ubiquitin conjugating enzyme PF10_0330, putative homologue of human UBE2H 3FOW ; 2.8 ; Plasmodium Purine Nucleoside Phosphorylase V66I-V73I-Y160F Mutant 3LX3 ; 1.55 ; Plasmodium vivax 6-pyruvoyltetrahydropterin synthase (PTPS) in complex with xanthopterin 3M0N ; 1.9 ; Plasmodium vivax 6-pyruvoyltetrahydropterin synthase (PTPS), E37A catalytic residue mutant 3LZE ; 1.9 ; Plasmodium vivax 6-pyruvoyltetrahydropterin synthase (PTPS), E37C catalytic residue mutant 2QGA ; 2.01 ; Plasmodium vivax adenylosuccinate lyase Pv003765 with AMP bound 7BY6 ; 2.997 ; Plasmodium vivax cytoplasmic Phenylalanyl-tRNA synthetase in complex with BRD1389 8A44 ; 2.49 ; Plasmodium vivax Duffy binding protein region II bound the DARC ectodomain and monoclonal antibody DB1 2QG7 ; 2.407 ; Plasmodium vivax ethanolamine kinase Pv091845 6BPD ; 2.32 ; Plasmodium vivax invasion blocking monoclonal antibody 10B12 6BPB ; 1.87 ; Plasmodium vivax invasion blocking monoclonal antibody 4F7 6WVV ; 2.33 ; Plasmodium vivax M17 leucyl aminopeptidase 7K5K ; 2.66 ; Plasmodium vivax M17 leucyl aminopeptidase Pv-M17 2YNE ; 1.72 ; Plasmodium vivax N-myristoyltransferase in complex with a benzothiophene inhibitor 4CAE ; 1.46 ; Plasmodium vivax N-myristoyltransferase in complex with a benzothiophene inhibitor (compound 20b) 4CAF ; 1.7 ; Plasmodium vivax N-myristoyltransferase in complex with a benzothiophene inhibitor (compound 34a) 4C68 ; 1.38 ; Plasmodium vivax N-myristoyltransferase in complex with a peptidomimetic inhibitor 2YND ; 1.89 ; Plasmodium vivax N-myristoyltransferase in complex with a pyrazole sulphonamide inhibitor. 4UFV ; 1.75 ; Plasmodium vivax N-myristoyltransferase in complex with a pyridyl inhibitor (compound 18) 4UFX ; 1.49 ; Plasmodium vivax N-myristoyltransferase in complex with a pyridyl inhibitor (compound 19) 4UFW ; 1.5 ; Plasmodium vivax N-myristoyltransferase in complex with a pyridyl inhibitor (compound 22) 5G1Z ; 1.5 ; Plasmodium vivax N-myristoyltransferase in complex with a quinoline inhibitor (compound 1) 5G22 ; 2.32 ; Plasmodium vivax N-myristoyltransferase in complex with a quinoline inhibitor (compound 26) 2YNC ; 1.75 ; Plasmodium vivax N-myristoyltransferase in complex with YnC12-CoA thioester. 4B11 ; 1.59 ; Plasmodium vivax N-myristoyltransferase with a bound benzofuran inhibitor (compound 13) 4B12 ; 1.79 ; Plasmodium vivax N-myristoyltransferase with a bound benzofuran inhibitor (compound 23) 4B13 ; 1.58 ; Plasmodium vivax N-myristoyltransferase with a bound benzofuran inhibitor (compound 25) 4B14 ; 1.5 ; Plasmodium vivax N-myristoyltransferase with a bound benzofuran inhibitor (compound 26) 4BBH ; 1.63 ; Plasmodium vivax N-myristoyltransferase with a bound benzothiophene inhibitor 4B10 ; 1.56 ; Plasmodium vivax N-myristoyltransferase with a non-hydrolysable co- factor 6TW5 ; 1.55 ; Plasmodium vivax N-myristoyltransferase with bound indazole inhibitor IMP-917 6TW6 ; 1.7 ; Plasmodium vivax N-myristoyltransferase with bound indazole inhibitor IMP-923 4A95 ; 1.55 ; Plasmodium vivax N-myristoyltransferase with quinoline inhibitor 8ARL ; 1.45 ; Plasmodium vivax PVP01_0000100 TRAg domain 6WM9 ; 2.45 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 237235 6WN1 ; 3.15 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 241242 6WNO ; 3.35 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 243244 6WOZ ; 2.9 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 251249 6WTY ; 3.481 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 253245 6WTV ; 3.05 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 258259 6WTU ; 2.55 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 273264 6WQO ; 3.15 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to human monoclonal antibody 283284 6BPA ; 2.53 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to monoclonal antibody 3E9 6BPC ; 2.66 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to monoclonal antibody 4F7 6BPE ; 3.34 ; Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) bound to monoclonal antibody 6H1 2O1Z ; 2.4 ; Plasmodium vivax Ribonucleotide Reductase Subunit R2 (Pv086155) 5GVL ; 2.5 ; Plasmodium vivax SHMT bound with PLP-glycine and GS182 5GVK ; 2.24 ; Plasmodium vivax SHMT bound with PLP-glycine and GS256 5XMV ; 2.16 ; Plasmodium vivax SHMT bound with PLP-glycine and GS362 5XMU ; 2.39 ; Plasmodium vivax SHMT bound with PLP-glycine and GS363 5XMT ; 2.55 ; Plasmodium vivax SHMT bound with PLP-glycine and GS380 5XMS ; 2.45 ; Plasmodium vivax SHMT bound with PLP-glycine and GS498 5GVM ; 2.24 ; Plasmodium vivax SHMT bound with PLP-glycine and GS557 5YFY ; 2.3 ; Plasmodium vivax SHMT bound with PLP-glycine and GS625 5GVN ; 2.3 ; Plasmodium vivax SHMT bound with PLP-glycine and GS653 5GVP ; 2.26 ; Plasmodium vivax SHMT bound with PLP-glycine and GS654 5YG0 ; 2.33 ; Plasmodium vivax SHMT bound with PLP-glycine and GS657 5YG1 ; 2.45 ; Plasmodium vivax SHMT bound with PLP-glycine and GS704 5YG2 ; 2.2 ; Plasmodium vivax SHMT bound with PLP-glycine and GS705 5YFZ ; 2.16 ; Plasmodium vivax SHMT bound with PLP-glycine and S-GS626 5YG3 ; 2.4 ; Plasmodium vivax SHMT bound with PLP-glycine and S-GS834 5YG4 ; 2.3 ; Plasmodium vivax SHMT bound with PLP-glycine and S-GS849 5XMR ; 2.55 ; Plasmodium vivax SHMT(C346A) bound with PLP-glycine and GS395 5XMQ ; 2.2 ; Plasmodium vivax SHMT(C346A) bound with PLP-glycine and MF011 5XMP ; 2.4 ; Plasmodium vivax SHMT(C346A) bound with PLP-glycine and MF057 2FO3 ; 1.86 ; Plasmodium vivax ubiquitin conjugating enzyme E2 2QG8 ; 2.0 ; Plasmodium yoelii acyl carrier protein synthase PY06285 with ADP bound 2B71 ; 2.5 ; Plasmodium yoelii cyclophilin-like protein 4L0W ; 2.29 ; Plasmodium yoelii Prx1a modified at the N-terminus forms an artifactual octamer 2P1I ; 2.7 ; Plasmodium yoelii Ribonucleotide Reductase Subunit R2 (PY03671) 6YJE ; 1.62 ; Plasmoodium vivax phosphoglycerate kinase bound to nitrofuran inhibitor from PEG3350 and ammonium acetate at pH 5.5 6YJF ; 1.85 ; Plasmoodium vivax phosphoglycerate kinase bound to nitrofuran inhibitor from PEGSmear at pH 6.5 7AOJ ; 1.63 ; Plasmoredoxin, a redox-active protein unique for malaria parasites 7AOO ; 1.6 ; Plasmoredoxin, a redox-active protein unique for malaria parasites 3TMS ; 2.1 ; PLASTIC ADAPTATION TOWARD MUTATIONS IN PROTEINS: STRUCTURAL COMPARISON OF THYMIDYLATE SYNTHASES 4TMS ; 2.35 ; PLASTIC ADAPTATION TOWARD MUTATIONS IN PROTEINS: STRUCTURAL COMPARISON OF THYMIDYLATE SYNTHASES 1QRB ; 2.0 ; PLASTICITY AND STERIC STRAIN IN A PARALLEL BETA-HELIX: RATIONAL MUTATIONS IN P22 TAILSPIKE PROTEIN 3QZW ; 2.798 ; Plasticity of human CD8 binding to peptide-HLA-A*2402 2W0N ; ; Plasticity of PAS domain and potential role for signal transduction in the histidine-kinase DcuS 3IIN ; 4.18 ; Plasticity of the kink turn structural motif 4KX6 ; 2.95 ; Plasticity of the quinone-binding site of the complex II homolog quinol:fumarate reductase 8R5O ; 2.49 ; Plastid-encoded RNA polymerase 8R6S ; 2.49 ; Plastid-encoded RNA polymerase (Integrated model) 8RAS ; 2.62 ; Plastid-encoded RNA polymerase transcription elongation complex 8RDJ ; 2.62 ; Plastid-encoded RNA polymerase transcription elongation complex (Integrated model) 8IA1 ; 2.31 ; plastidial glycerol-3-phosphate acyltransferases (GPAT) from the green alga Myrmecia incisa 5LRB ; 2.9 ; Plastidial phosphorylase from Barley in complex with acarbose 5LRA ; 3.0 ; Plastidial phosphorylase PhoI from barley in complex with maltotetraose 1IUZ ; 1.6 ; PLASTOCYANIN 7ZQE ; 2.55 ; Plastocyanin bound to PSI of Chlamydomonas reinhardtii 1NIN ; ; PLASTOCYANIN FROM ANABAENA VARIABILIS, NMR, 20 STRUCTURES 1BAW ; 2.8 ; PLASTOCYANIN FROM PHORMIDIUM LAMINOSUM 1AG6 ; 1.6 ; PLASTOCYANIN FROM SPINACH 2W8C ; 1.8 ; Plastocyanin variant with N-terminal Methionine - closed structure 2W88 ; 2.89 ; Plastocyanin variant with N-terminal Methionine - open structure 1M8O ; ; Platelet integrin alfaIIb-beta3 cytoplasmic domain 2KNC ; ; Platelet integrin ALFAIIB-BETA3 transmembrane-cytoplasmic heterocomplex 1WAB ; 1.7 ; PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE 8UQN ; 3.4 ; PLCb3-Gaq complex on membranes 8UQO ; 3.37 ; PLCb3-Gbg-Gaq complex on membranes 2W2W ; 2.8 ; PLCg2 Split Pleckstrin Homology (PH) Domain 1MPH ; ; PLECKSTRIN HOMOLOGY DOMAIN FROM MOUSE BETA-SPECTRIN, NMR, 50 STRUCTURES 1PMS ; ; PLECKSTRIN HOMOLOGY DOMAIN OF SON OF SEVENLESS 1 (SOS1) WITH GLYCINE-SERINE ADDED TO THE N-TERMINUS, NMR, 20 STRUCTURES 1ZFU ; ; Plectasin:A peptide antibiotic with therapeutic potential from a saprophytic fungus 4ZDM ; 1.5 ; Pleurobrachia bachei iGluR3 LBD Glycine Complex 2LS9 ; ; Pleurocidin-NH2 6T0Q ; 2.05 ; Pleurotus Ostreatus Lectin (POL), apo form 6T1D ; 2.2 ; Pleurotus Ostreatus Lectin (POL), compelx with melibiose 6MYI ; 1.15 ; Pleurotus ostreatus OstreolysinA 6MYK ; 1.8 ; Pleurotus ostreatus OstreolysinA mutant E69A with Bis-Tris 6MYJ ; 1.33 ; Pleurotus ostreatus OstreolysinA plus sphingomyelin 5L7N ; 2.2 ; Plexin A1 extracellular fragment, domains 7-10 (IPT3-IPT6) 5L56 ; 4.0 ; Plexin A1 full extracellular region, domains 1 to 10, to 4 angstrom 5L59 ; 6.0 ; Plexin A1 full extracellular region, domains 1 to 10, to 6 angstrom, spacegroup P2(1) 5L5C ; 6.0 ; Plexin A1 full extracellular region, domains 1 to 10, to 6 angstrom, spacegroup P4(3)2(1)2 3AL8 ; 3.6 ; Plexin A2 / Semaphorin 6A complex 5L74 ; 1.36 ; Plexin A2 extracellular segment domains 4-5 (PSI2-IPT2), resolution 1.36 Angstrom 5L5G ; 10.0 ; Plexin A2 full extracellular region, domains 1 to 8 modeled, data to 10 angstrom 3OKY ; 2.195 ; Plexin A2 in complex with Semaphorin 6A 5L5K ; 7.501 ; Plexin A4 full extracellular region, domains 1 to 10, data to 7.5 angstrom, spacegroup P4(1) 5L5M ; 8.0 ; Plexin A4 full extracellular region, domains 1 to 7 modeled, data to 8 angstrom, spacegroup P4(3)2(1)2 5L5N ; 8.502 ; Plexin A4 full extracellular region, domains 1 to 7 modeled, data to 8.5 angstrom, spacegroup P4(3)22 5L5L ; 8.001 ; Plexin A4 full extracellular region, domains 1 to 8 modeled, data to 8 angstrom, spacegroup P2(1) 7VG7 ; 2.5 ; Plexin B1 extracellular fragment in complex with lasso-grafted PB1m6A9 peptide 7VF3 ; 2.29 ; Plexin B1 extracellular fragment in complex with lasso-grafted PB1m7 peptide 5E6P ; 3.215 ; PlexinB2 cytoplasmic region/PDZ-RhoGEF PDZ domain complex 2CCN ; 1.6 ; pLI E20C is antiparallel 2BNI ; 1.5 ; pLI mutant E20C L16G Y17H, antiparallel 7MX1 ; 1.64 ; PLK-1 polo-box domain in complex with a high affinity macrocycle synthesized using a novel glutamic acid analog 4X9R ; 1.398 ; PLK-1 polo-box domain in complex with Bioactive Imidazolium-containing phosphopeptide macrocycle 3B 4X9V ; 1.429 ; PLK-1 polo-box domain in complex with Bioactive Imidazolium-containing phosphopeptide macrocycle 3C 4X9W ; 1.798 ; PLK-1 polo-box domain in complex with Bioactive Imidazolium-containing phosphopeptide macrocycle 4C 6AX4 ; 1.45 ; Plk-1 polo-box domain in complex with histidine N(tau)-cyclized Macrocycle 5b. 3FC2 ; 2.45 ; PLK1 in complex with BI6727 8JOQ ; 1.796 ; Plk1 polo-box domain bound to HPV18 L2 residues 209-215 with pThr213 8JOY ; 2.61 ; Plk1 polo-box domain bound to HPV4 L2 residues 251-257 with pThr255 7VVS ; 2.2 ; PLL9 induced TmFtn nanocage 5OFZ ; 1.75 ; PllA lectin, apo 5OFI ; 2.0 ; PllA lectin, Fluorophore carbohydrate complex 5ODU ; 1.56 ; PllA lectin, monosaccharide complex 5OFX ; 1.75 ; Plla lectin, trisaccharide complex 7WAY ; 2.9 ; PlmCasX-sgRNAv1-dsDNA ternary complex at nts loading state 7WB0 ; 3.2 ; PlmCasX-sgRNAv1-dsDNA ternary complex at nts loading state with flexible H2 domain 7WAZ ; 3.4 ; PlmCasX-sgRNAv1-dsDNA ternary complex at ts loading state 7WB1 ; 3.7 ; PlmCasX-sgRNAv2-dsDNA ternary complex at nts loading state 6SMD ; 3.3 ; PlMCAT:AntF (holo): type II PKS acyl-carrier protein in complex with its malonyl-transacylase 4HXY ; 1.68 ; PlmKR1-Ketoreductase from the first module of phoslactomycin biosynthesis in Streptomyces sp. HK803 5T4J ; 2.231 ; PLP and GABA Trigger GabR-Mediated Transcription Regulation in Bacillus subsidies via External Aldimine Formation 5T4K ; 2.245 ; PLP and GABA Trigger GabR-Mediated Transcription Regulation in Bacillus subsidies via External Aldimine Formation 5T4L ; 1.53 ; PLP and GABA Trigger GabR-Mediated Transcription Regulation in Bacillus subsidies via External Aldimine Formation 4E3R ; 1.9 ; PLP-bound aminotransferase mutant crystal structure from Vibrio fluvialis 6K1N ; 2.26 ; PLP-bound form of a putative cystathionine gamma-lyase 1BS0 ; 1.65 ; PLP-DEPENDENT ACYL-COA SYNTHASE 3HQT ; 2.7 ; PLP-Dependent Acyl-CoA Transferase CqsA 3KKI ; 1.8 ; PLP-Dependent Acyl-CoA transferase CqsA 1WCB ; 2.5 ; PLP-DEPENDENT CATALYTIC ANTIBODY 15A9 IN COMPLEX WITH ITS HAPTEN 6C3C ; 1.5 ; PLP-dependent L-arginine hydroxylase RohP quinonoid I complex 5G4I ; 1.5 ; PLP-dependent phospholyase A1RDF1 from Arthrobacter aurescens TC1 6YVA ; 3.18 ; PLpro-C111S with mISG15 4WXY ; 2.7 ; PLPS (inactive glutaminase mutant) co-crystallized with glutamine and R5P. 7CQM ; 1.8 ; PlsY grown in LCP soaked with selenourea for 22 min 2N5H ; ; PltL-holo 2N5I ; ; PltL-pyrrolyl 8I8C ; 4.93 ; Plug structure of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 6M60 ; 2.17 ; Plumbagin in complex with CRM1#-Ran-RanBP1 5YSU ; 2.3 ; Plumbagin in complex with CRM1-RanM189D-RanBP1 5URP ; 1.65 ; Plx2a, an ADP-ribosyltransferase toxin from Paenibacillus larvae 4ZRZ ; 1.72 ; PlyCB mutant R66E 6H5Y ; 2.3 ; PM1 mutant, 7D5 6RAS ; 2.75 ; Pmar-Lig_Pre. 6RCE ; 1.946 ; Pmar-Lig_PreS3 6RAR ; 1.785 ; Pmar-Lig_PreS3-Mn 7OZH ; 3.02 ; PMCA-amplified alpha-synuclein fibril polymorph, Multiple System Atrophy patient-derived seeds 7OZG ; 3.3 ; PMCA-amplified alpha-synuclein fibril polymorph, Parkinson's Disease patient-derived seeds 8SZ6 ; 1.65 ; PmHMGR bound to mevaldehyde and CoA 2FKM ; 1.9 ; PMM/PGM S108D mutant with alpha-d-glucose 1,6-bisphosphate bound 7YZY ; 4.8 ; pMMO structure from native membranes by cryoET and STA 5BRK ; 2.3 ; pMob1-Lats1 complex 4D9C ; 1.97 ; PMP bound form of Salmonella typhimurium D-Cysteine desulfhydrase obtained after co-crystallization with L-cycloserine 4E3Q ; 1.9 ; PMP-bound form of Aminotransferase crystal structure from Vibrio fluvialis 1AUR ; 2.5 ; PMSF-INHIBITED CARBOXYLESTERASE FROM PSEUDOMONAS FLUORESCENS 6XJI ; 4.0 ; PmtCD ABC exporter at C1 symmetry 6XJH ; 3.6 ; PmtCD ABC exporter without the basket domain at C2 symmetry 6U2D ; 2.11 ; PmtCD peptide exporter basket domain 6XFU ; 1.4 ; PmtCD peptide exporter basket domain 1QE3 ; 1.5 ; PNB ESTERASE 1C7J ; 1.6 ; PNB ESTERASE 56C8 6CSL ; 1.921 ; Pneumococcal PhtD protein 269-339 fragment with bound Zn(II) 1PSZ ; 2.0 ; PNEUMOCOCCAL SURFACE ANTIGEN PSAA 4QJZ ; 1.61 ; Pneumocystis carinii dihydrofolate reductase ternary complex with NADPH and the inhibitor 24, (N~6~-METHYL-N~6~-(NAPHTHALEN-1-YL)PYRIDO[2,3-D]PYRIMIDINE-2,4,6-TRIAMINE) 1PNF ; 2.0 ; PNGASE F COMPLEX WITH DI-N-ACETYLCHITOBIOSE 5F9G ; 2.772 ; pnGFP1.5-Y.Cro: circularly permuted green fluorescent protein (with a tyrosine-derived chromophore) 1CI0 ; 2.7 ; PNP OXIDASE FROM SACCHAROMYCES CEREVISIAE 6A4D ; 2.19 ; pNP-TMP bound Oligoribonuclease (ORN) from Colwellia psychrerythraea strain 34H 7DBW ; 2.5 ; PnpA1, the oxygenase component of a two-component para-nitrophenol hydroxylase from Rhodococcus imtechensis RKJ300 2FQW ; 1.71 ; PnrA from Treponema pallidum as purified from E. coli (bound to inosine) 2FQY ; 1.9 ; PnrA from Treponema pallidum complexed with adenosine. 2FQX ; 1.7 ; PnrA from Treponema pallidum complexed with guanosine 6PD1 ; 2.72 ; PntC-AEPT: fusion protein of phosphonate-specific cytidylyltransferase and 2-aminoethylphosphonate (AEP) transaminase from Treponema denticola 6PD2 ; 1.95 ; PntC-AEPT: fusion protein of phosphonate-specific cytidylyltransferase and 2-aminoethylphosphonate (AEP) transaminase from Treponema denticola in complex with cytidine monophosphate-AEP 6LFU ; 3.123 ; Poa1p F152A mutant in complex with ADP-ribose 6LFS ; 1.87 ; Poa1p H23A mutant in complex with ADP-ribose 6LFR ; 1.78 ; Poa1p in complex with ADP-ribose 6LFT ; 1.57 ; Poa1p S30A mutant in complex with ADP-ribose 5W1E ; 2.06 ; PobR in complex with PHB 3MKH ; 1.995 ; Podospora anserina Nitroalkane Oxidase 6NOG ; 3.9 ; Poised-state Dot1L bound to the H2B-Ubiquitinated nucleosome 1GIK ; 1.8 ; POKEWEED ANTIVIRAL PROTEIN FROM SEEDS 1J1S ; 2.0 ; Pokeweed Antiviral Protein from Seeds (PAP-S1) Complexed with Formycin 6VDC ; 2.402 ; POL domain of Pol1 from M. smegmatis 6VDD ; 1.9 ; POL domain of Pol1 from M. smegmatis complex with DNA primer-template and dNTP 8OO6 ; 4.3 ; Pol I bound to extended and displaced DNA section - closed conformation 8OOY ; 4.0 ; Pol I bound to extended and displaced DNA section - open conformation 6BQF ; 3.35 ; Pol II elongation complex with 'dT-AP' at i+1, i-1 position 6BLO ; 3.401 ; Pol II elongation complex with an abasic lesion at i+1 position 6BLP ; 3.203 ; Pol II elongation complex with an abasic lesion at i+1 position, soaking AMPCPP 6BM2 ; 3.403 ; Pol II elongation complex with an abasic lesion at i-1 position 6BM4 ; 2.951 ; Pol II elongation complex with an abasic lesion at i-1 position,soaking UMPNPP 5W4U ; 3.6 ; Pol II elongation complex with an N6-methyladenine-containing template 5W51 ; 3.404 ; Pol II elongation complex with an N6-methyladenine-containing template and a matched UMPNPP 7OPC ; 3.0 ; Pol II-CSB-CRL4CSA-UVSSA-SPT6-PAF (Structure 4) 7OPD ; 3.0 ; Pol II-CSB-CRL4CSA-UVSSA-SPT6-PAF (Structure 5) 8B3F ; 3.1 ; Pol II-CSB-CSA-DDB1-ELOF1 7OO3 ; 2.8 ; Pol II-CSB-CSA-DDB1-UVSSA (Structure1) 7OOB ; 2.7 ; Pol II-CSB-CSA-DDB1-UVSSA-ADPBeF3 (Structure2) 7OOP ; 2.9 ; Pol II-CSB-CSA-DDB1-UVSSA-PAF-SPT6 (Structure 3) 7UNC ; 3.0 ; Pol II-DSIF-SPT6-PAF1c-TFIIS complex with rewrapped nucleosome 7UND ; 3.0 ; Pol II-DSIF-SPT6-PAF1c-TFIIS-nucleosome complex (stalled at +38) 3DKE ; 1.25 ; Polar and non-polar cavities in phage T4 lysozyme 6KNB ; 6.9 ; PolD-PCNA-DNA (form A) 6KNC ; 9.3 ; PolD-PCNA-DNA (form B) 6PSZ ; 3.2 ; Poliovirus (Type 1 Mahoney), heat-catalysed 135S particle 6P9W ; 3.2 ; Poliovirus (Type 1 Mahoney), receptor catalysed 135S particle map 6Q0B ; 3.4 ; Poliovirus (Type 1 Mahoney), receptor-catalysed 135S particle incubated with anti-VP1 mAb at RT for 1 hr 1VBD ; 2.9 ; POLIOVIRUS (TYPE 1, MAHONEY STRAIN) COMPLEXED WITH R78206 1PO2 ; 2.9 ; POLIOVIRUS (TYPE 1, MAHONEY) IN COMPLEX WITH R77975, AN INHIBITOR OF VIRAL REPLICATION 1PO1 ; 2.9 ; POLIOVIRUS (TYPE 1, MAHONEY) IN COMPLEX WITH R80633, AN INHIBITOR OF VIRAL REPLICATION 1VBC ; 2.8 ; POLIOVIRUS (TYPE 3, SABIN STRAIN) (P3/SABIN, P3/LEON/12A(1)B) COMPLEXED WITH R77975 1VBA ; 2.9 ; POLIOVIRUS (TYPE 3, SABIN STRAIN) (P3/SABIN, P3/LEON/12A(1)B) COMPLEXED WITH R78206 1VBB ; 2.8 ; POLIOVIRUS (TYPE 3, SABIN STRAIN) (P3/SABIN, P3/LEON/12A(1)B) COMPLEXED WITH R80633 1VBE ; 2.8 ; POLIOVIRUS (TYPE 3, SABIN STRAIN, MUTANT 242-H2) COMPLEXED WITH R78206 1XYR ; 11.0 ; Poliovirus 135S cell entry intermediate 6P9O ; 2.9 ; Poliovirus 135S-like expanded particle in complex with a monoclonal antibody directed against the N-terminal extension of capsid protein VP1 1L1N ; 2.1 ; POLIOVIRUS 3C PROTEINASE 1RDR ; 2.4 ; POLIOVIRUS 3D POLYMERASE 3J9F ; 9.0 ; Poliovirus complexed with soluble, deglycosylated poliovirus receptor (Pvr) at 4 degrees C 3IYB ; 10.0 ; Poliovirus early RNA-release intermediate 3IYC ; 10.0 ; Poliovirus late RNA-release intermediate 4NLY ; 2.3 ; Poliovirus Polymerase - C290E Loop Mutant 4NLQ ; 2.3 ; Poliovirus Polymerase - C290F Loop Mutant 4NLO ; 2.2 ; Poliovirus Polymerase - C290I Loop Mutant 4NLR ; 2.0 ; Poliovirus Polymerase - C290S Loop Mutant 4NLP ; 2.2 ; Poliovirus Polymerase - C290V Loop Mutant 4NLU ; 2.1 ; Poliovirus Polymerase - G289A Loop Mutant 4NLV ; 2.3 ; Poliovirus Polymerase - G289A/C290F Loop Mutant 4NLW ; 2.1 ; Poliovirus Polymerase - G289A/C290I Loop Mutant 4NLX ; 2.6 ; Poliovirus Polymerase - G289A/C290V Loop Mutant 4NLS ; 2.0 ; Poliovirus Polymerase - S288A Loop Mutant 4NLT ; 2.5 ; Poliovirus Polymerase - S291P Loop Mutant 3OL6 ; 2.5 ; Poliovirus polymerase elongation complex 4K4S ; 2.4 ; Poliovirus polymerase elongation complex (r3_form) 4K4T ; 2.75 ; Poliovirus polymerase elongation complex (r4_form) 4K4V ; 2.63 ; Poliovirus polymerase elongation complex (r5+1_form) 4K4W ; 2.69 ; Poliovirus polymerase elongation complex (r5+2_form) 4K4U ; 2.85 ; Poliovirus polymerase elongation complex (r5_form) 3OLB ; 2.41 ; Poliovirus polymerase elongation complex with 2',3'-dideoxy-ctp 3OLA ; 2.55 ; Poliovirus polymerase elongation complex with 2'-deoxy-CTP 3OL9 ; 2.25 ; Poliovirus polymerase elongation complex with 3'-deoxy-CTP 3OL7 ; 2.7 ; Poliovirus polymerase elongation complex with CTP 3OL8 ; 2.75 ; Poliovirus polymerase elongation complex with CTP-Mn 1RA6 ; 2.0 ; Poliovirus Polymerase Full Length Apo Structure 1TQL ; 2.3 ; POLIOVIRUS POLYMERASE G1A MUTANT 1RAJ ; 2.5 ; Poliovirus Polymerase with a 68 residue N-terminal truncation 1RA7 ; 2.35 ; Poliovirus Polymerase with GTP 3URO ; 3.5005 ; Poliovirus receptor CD155 D1D2 8AYZ ; 1.88 ; Poliovirus type 2 (strain MEF-1) virus-like particle in complex with capsid binder compound 17 6Z6W ; 3.0 ; Poliovirus type 3 (strain Saukett) stabilised virus-like particle (PV3 SC8) from a mammalian expression system. 8AYX ; 2.5 ; Poliovirus type 3 (strain Saukett) stabilised virus-like particle (PV3 SC8) in complex with GSH and GPP3 8AYY ; 2.6 ; Poliovirus type 3 (strain Saukett) stabilised virus-like particle (PV3 SC8) in complex with GSH and Pleconaril 8ANW ; 2.7 ; Poliovirus type 3 (strain Saukett) stabilised virus-like particle (PV3 SC8). 5O5B ; 3.6 ; Poliovirus type 3 (strain Saukett) stabilized virus-like particle 5O5P ; 4.1 ; Poliovirus type 3 (strain Saukett) stabilized virus-like particle in complex with the pocket factor compound GPP3 5DMV ; 2.499 ; Polo-box domain of Mouse Polo-like kinase 1 complexed with Emi2 (146-177) 3RQ7 ; 1.55 ; Polo-like kinase 1 Polo box domain in complex with a C6H5(CH2)8-derivatized peptide inhibitor 3FVH ; 1.58 ; Polo-like kinase 1 Polo box domain in complex with Ac-LHSpTA-NH2 peptide 3C5L ; 2.33 ; Polo-like kinase 1 Polo box domain in complex with PPHSpT peptide 3P36 ; 1.59 ; Polo-like kinase I Polo-box domain in complex with DPPLHSpTA phosphopeptide from PBIP1 3P37 ; 2.38 ; Polo-like kinase I Polo-box domain in complex with FDPPLHSpTA phosphopeptide from PBIP1 3Q1I ; 1.4 ; Polo-like kinase I Polo-box domain in complex with FMPPPMSpSM phosphopeptide from TCERG1 3P35 ; 2.09 ; Polo-like kinase I Polo-box domain in complex with MQSpSPL phosphopeptide 3P34 ; 1.4 ; Polo-like kinase I Polo-box domain in complex with MQSpTPL phosphopeptide 3P2Z ; 1.79 ; Polo-like kinase I Polo-box domain in complex with PLHSpTA phosphopeptide from PBIP1 8ADK ; 2.474 ; Poly(ADP-ribose) glycohydrolase (PARG) from Drosophila melanogaster 8ADJ ; 2.508 ; Poly(ADP-ribose) glycohydrolase (PARG) from Drosophila melanogaster in complex with PARG inhibitor PDD00017272 8GU4 ; 1.5 ; Poly(ethylene terephthalate) hydrolase (IsPETase)-linker 6ACS ; 1.81 ; poly-cis-prenyltransferase 6EOJ ; 3.55 ; PolyA polymerase module of the cleavage and polyadenylation factor (CPF) from Saccharomyces cerevisiae 6HMM ; 1.9 ; POLYADPRIBOSYL GLYCOHYDROLASE IN COMPLEX WITH PDD00013907 6HMK ; 2.06 ; POLYADPRIBOSYL GLYCOHYDROLASE IN COMPLEX WITH PDD00016690 6HMN ; 2.87 ; POLYADPRIBOSYL GLYCOSIDASE IN COMPLEX WITH PDD00014909 5LHB ; 2.23 ; POLYADPRIBOSYL GLYCOSIDASE IN COMPLEX WITH PDD00017262 6HML ; 2.25 ; POLYADPRIBOSYL GLYCOSIDASE IN COMPLEX WITH PDD00017299 6OEH ; 3.8 ; PolyAla Model of OMCC I-Layer 6OEF ; 3.8 ; PolyAla Model of the O-layer from the Type 4 Secretion System of H. pylori 6ODJ ; 3.5 ; PolyAla Model of the PRC from the Type 4 Secretion System of H. pylori 5LIJ ; 4.2 ; polyalanine chain built in bacteriophage phi812K1-420 cement protein density map 6GZ7 ; ; Polyamide - DNA complex NMR structure 3KWA ; 2.0 ; Polyamines inhibit carbonic anhydrases 2IE1 ; 1.6 ; Polyamines stabilize left-handed Z-DNA. We found new type of polyamine which stabilize left-handed Z-DNA by X-ray crystallography 1PDQ ; 1.76 ; Polycomb chromodomain complexed with the histone H3 tail containing trimethyllysine 27. 5U8F ; 1.343 ; Polycomb protein EED in complex with inhibitor: (3R,4S)-1-[(1S)-7-fluoro-2,3-dihydro-1H-inden-1-yl]-N,N-dimethyl-4-(1-methyl-1H-indol-3-yl)pyrrolidin-3-amine 5U8A ; 1.45 ; Polycomb protein EED in complex with inhibitor: (3R,4S)-1-[(2-bromo-6-fluorophenyl)methyl]-N,N-dimethyl-4-(1-methyl-1H-indol-3-yl)pyrrolidin-3-amine 5U69 ; 1.28 ; Polycomb protein EED in complex with inhibitor: (3R,4S)-1-[(2-methoxyphenyl)methyl]-N,N-dimethyl-4-(1-methylindol-3-yl)pyrrolidin-3-amine 5U6D ; 1.64 ; Polycomb protein EED in complex with inhibitor: 2-[4-(4-{(3S,4R)-4-(dimethylamino)-1-[(2-fluoro-6-methylphenyl)methyl]pyrrolidin-3-yl}phenyl)-1H-pyrazol-1-yl]acetamide 4IDW ; ; Polycrystalline T6 Bovine Insulin: Anisotropic Lattice Evolution and Novel Structure Refinement Strategy 5MQ6 ; 2.0 ; Polycyclic Ketone Monooxygenase from the Thermophilic Fungus Thermothelomyces thermophila 8BRB ; 1.7 ; Polyester Hydrolase Leipzig 7 (PHL7) bound to terephthalic acid (TPA) 8BRA ; 1.7 ; Polyester Hydrolase Leipzig 7 (PHL7) bound to terephthalic acid (TPA) and Mg2+ 7NEI ; 1.3 ; Polyester Hydrolase Leipzig 7 (PHL7) in the unliganded state 6SBN ; 1.09 ; Polyester hydrolase PE-H of Pseudomonas aestusnigri 6SCD ; 1.35 ; Polyester hydrolase PE-H Y250S mutant of Pseudomonas aestusnigri 5DQN ; 2.262 ; Polyethylene 600-bound form of P450 CYP125A3 mutant from Myobacterium Smegmatis - W83Y 8PO9 ; 2.2 ; Polyethylene oxidation hexamerin PEase Cibeles (XP_026756460) from Galleria mellonella 7EC8 ; 1.35 ; Polyethylene terephthalate hydrolyzing lipase PET2 mutant - F105R-E110K 7ECB ; 1.83 ; Polyethylene terephthalate hydrolyzing lipase PET2 mutant - R47C-G89C-F105R-E110K-S156P-G180A-T297P 6LVW ; 2.493 ; Polyextremophilic Beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi 1IA5 ; 2.0 ; POLYGALACTURONASE FROM ASPERGILLUS ACULEATUS 1BHE ; 1.9 ; POLYGALACTURONASE FROM ERWINIA CAROTOVORA SSP. CAROTOVORA 5X2I ; 2.05 ; Polygalacturonate Lyase by Fusing with a Self-assembling Amphipathic Peptide 1KW4 ; 1.75 ; Polyhomeotic SAM domain structure 5B08 ; 1.325 ; Polyketide cyclase OAC from Cannabis sativa 5B09 ; 1.7 ; Polyketide cyclase OAC from Cannabis sativa bound with Olivetolic acid 5B0A ; 2.1 ; Polyketide cyclase OAC from Cannabis sativa, H5Q mutant 5B0G ; 1.4 ; Polyketide cyclase OAC from Cannabis sativa, H78S mutant 5B0B ; 2.187 ; Polyketide cyclase OAC from Cannabis sativa, I7F mutant 5B0E ; 1.603 ; Polyketide cyclase OAC from Cannabis sativa, V59M mutant 5B0C ; 1.602 ; Polyketide cyclase OAC from Cannabis sativa, Y27F mutant 5B0D ; 1.801 ; Polyketide cyclase OAC from Cannabis sativa, Y27W mutant 5B0F ; 1.6 ; Polyketide cyclase OAC from Cannabis sativa, Y72F mutant 7W6E ; 1.38 ; Polyketide cyclase OAC-F24I mutant from Cannabis sativa in complex with 6-heptylresorcylic acid 7W6F ; 1.58 ; Polyketide cyclase OAC-F24I mutant from Cannabis sativa in complex with 6-nonylresorcylic acid 7W6D ; 1.54 ; Polyketide cyclase OAC-F24I mutant from Cannabis sativa in complex with olivetolic acid 5L40 ; 1.6 ; polyketide ketoreductase SimC7 - apo crystal form 1 5L45 ; 1.9 ; polyketide ketoreductase SimC7 - apo crystal form 2 5L3Z ; 1.95 ; polyketide ketoreductase SimC7 - binary complex with NADP+ 5L4L ; 1.2 ; polyketide ketoreductase SimC7 - ternary complex with NADP+ and 7-oxo-SD8 8IHA ; 1.56 ; Polyketone cyclase Rv2186c in Mycobacterium tuberculosis H37Rv 7V4V ; 2.3 ; polylysine induce assembly of Thermotoga maritima ferritin 1LCU ; 3.5 ; Polylysine Induces an Antiparallel Actin Dimer that Nucleates Filament Assembly: Crystal Structure at 3.5 A Resolution 4MKY ; 2.4 ; Polymerase Domain from Mycobacterium tuberculosis Ligase D in complex with an annealed double-strand DNA break. 2R9L ; 2.4 ; Polymerase Domain from Mycobacterium tuberculosis Ligase D in complex with DNA 3PKY ; 3.1 ; Polymerase Domain from Mycobacterium tuberculosis Ligase D in complex with DNA, UTP and Manganese. 6XBU ; 3.29 ; polymerase domain of polymerase-theta 6D0Z ; 1.75 ; Polymerase Eta cytarabine (AraC) extension ternary complex 6D0M ; 1.832 ; Polymerase Eta post-insertion binary complex with cytarabine (AraC) 6PZ3 ; 2.395 ; Polymerase Eta-catalyzed insertion of correct G opposite template cytarabine (AraC) residue 6Q02 ; 2.09 ; Polymerase Eta-catalyzed insertion of the mismatched A opposite template cytarabine (AraC) residue 2JW5 ; ; Polymerase Lambda BRCT domain 7ZGP ; 2.7 ; Polymerase module of CPF in complex with Mpe1 and a pre-cleaved CYC1 RNA 7ZGR ; 2.6 ; Polymerase module of yeast CPF in complex with Mpe1, the yPIM of Cft2 and the pre-cleaved CYC1 RNA 7ZGQ ; 2.8 ; Polymerase module of yeast CPF in complex with the yPIM of Cft2 2IHM ; 2.4 ; Polymerase mu in ternary complex with gapped 11mer DNA duplex and bound incoming nucleotide 4Q43 ; 2.45 ; Polymerase-damaged DNA complex 4Q44 ; 2.71 ; Polymerase-Damaged DNA Complex 4IR1 ; 2.38 ; Polymerase-DNA Complex 4IR9 ; 2.33 ; Polymerase-DNA complex 4IRC ; 2.67 ; Polymerase-DNA complex 5TXJ ; 1.13 ; Polymorphic form 1 of amyloid-beta derived peptide - IFAEDV 5TXH ; 1.45 ; Polymorphic form 2 of amyloid-beta derived peptide - IFAEDV 239D ; 2.05 ; POLYMORPHISM IN LEFT HANDED DNA: THE CRYSTAL STRUCTURE OF D(CCCGGG)2 8DI3 ; 1.5 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DJJ ; 2.51 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DK8 ; 2.6 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DKH ; 1.95 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DKJ ; 2.11 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DKK ; 2.0 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DKL ; 1.9 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DKZ ; 3.0 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8DMN ; 2.3 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8EJ7 ; 2.3 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 8EJ9 ; 2.5 ; Polymorphism in SARS-CoV-2 Nsp5 main protease reveals differences in cleavage of viral and host substrates 4GP6 ; 2.1 ; Polynucleotide kinase 4GP7 ; 2.0 ; Polynucleotide kinase 7LD5 ; 3.07 ; polynucleotide phosphorylase 4FB3 ; 3.79 ; Polyomavirus T-ag binds symmetrical repeats at the viral origin in an asymmetrical manner 1VPS ; 1.9 ; POLYOMAVIRUS VP1 PENTAMER COMPLEXED WITH A DISIALYLATED HEXASACCHARIDE 8PTE ; 1.797 ; Polyoxidovanadate interaction with proteins: crystal structure of lysozyme bound to octadecavanadate ion (structure B) 7ZU6 ; 1.183 ; Polyoxidovanadate interaction with proteins: crystal structure of lysozyme bound to tetra-vanadate ion (structure 1) 1GQE ; 1.81 ; Polypeptide Chain Release Factor 2 (RF2) from Escherichia coli 6IC2 ; 1.15 ; Polypharmacology of Epacadostat: a Potent and Selective Inhibitor of the Tumor Associated Carbonic Anhydrases IX and XII 1RKK ; ; POLYPHEMUSIN I NMR SOLUTION STRUCTURE 6ENJ ; 3.7 ; Polyproline-stalled ribosome in the presence of A+P site tRNA and elongation-factor P (EF-P) 6ENU ; 3.1 ; Polyproline-stalled ribosome in the presence of elongation-factor P (EF-P) 7XFD ; 2.2 ; Polysaccharide export protein Wza 7XFF ; 2.3 ; Polysaccharide export protein Wza 5NO8 ; 1.7 ; Polysaccharide Lyase BACCELL_00875 5NOA ; 1.26 ; Polysaccharide Lyase BACCELL_00875 5NOK ; 2.24 ; Polysaccharide Lyase BACCELL_00875 7SHG ; 2.5 ; Polysaccharide ribofuranosyl transferase from Thermobacillus composti 3K91 ; 1.75 ; Polysulfane Bridge in Cu-Zn Superoxide Dismutase 2VPZ ; 2.4 ; Polysulfide reductase native structure 2VPW ; 3.1 ; Polysulfide reductase with bound menaquinone 2VPX ; 3.1 ; Polysulfide reductase with bound quinone (UQ1) 2VPY ; 2.5 ; Polysulfide reductase with bound quinone inhibitor, pentachlorophenol (PCP) 6F36 ; 3.7 ; Polytomella Fo model 8T9L ; 7.0 ; Pom34-Pom152 membrane attachment site yeast NPC 8C50 ; 7.6 ; Pontibacter korlensis curli subunit CsgA 1QR1 ; 2.4 ; POOR BINDING OF A HER-2/NEU EPITOPE (GP2) TO HLA-A2.1 IS DUE TO A LACK OF INTERACTIONS IN THE CENTER OF THE PEPTIDE 8OZ4 ; 3.1 ; Populus tremula stable protein 1 with an alternate crystal lattice 8OZO ; 2.4 ; Populus tremula stable protein 1 with N-terminal binding peptide extension 8OZS ; 2.4 ; Populus tremula stable protein 1 with N-terminal binding peptide extension with hemin 4USS ; 2.5 ; Populus trichocarpa glutathione transferase X1-1 (GHR1), complexed with glutathione 5NQ0 ; 1.1 ; Porcine (Sus scrofa) Major Histocompatibility Complex, class I, presenting DFEREGYSL 5NPZ ; 1.43 ; Porcine (Sus scrofa) Major Histocompatibility Complex, class I, presenting EFEDLTFLA 5NQ1 ; 2.14 ; Porcine (Sus scrofa) Major Histocompatibility Complex, class I, with human beta2 micro globulin, presenting DFEREGYSL 3FX4 ; 1.99 ; Porcine aldehyde reductase in ternary complex with inhibitor 6ZMR ; 3.94 ; Porcine ATP synthase Fo domain 6ZNA ; 6.2 ; Porcine ATP synthase Fo domain 5BNI ; 2.5 ; Porcine CD38 complexed with complexed with a covalent intermediate, ribo-F-ribose-5'-phosphate 6WDZ ; 2.03 ; Porcine circovirus 2 Rep domain complexed with a single-stranded DNA 10-mer comprising the cleavage site 1SDB ; 1.65 ; PORCINE DESB1-2 DESPENTAPEPTIDE(B26-B30) INSULIN 7LJS ; 2.0 ; Porcine Dihydropyrimidine dehydrogenase (DPD) complexed with 5-Ethynyluracil (5EU) - Open Form 7LJU ; 1.87 ; Porcine Dihydropyrimidine Dehydrogenase (DPD) crosslinked with 5-Ethynyluracil (5EU) 7LJT ; 1.98 ; Porcine Dihydropyrimidine Dehydrogenase (DPD) soaked with 5-Ethynyluracil (5EU), NADPH - 20 minutes 2AJC ; 1.95 ; Porcine dipeptidyl peptidase IV (CD26) in complex with 4-(2-Aminoethyl)-benzene sulphonyl fluoride (AEBSF) 2AJ8 ; 2.11 ; Porcine dipeptidyl peptidase IV (CD26) in complex with 7-Benzyl-1,3-dimethyl-8-piperazin-1-yl-3,7-dihydro-purine-2,6-dione (BDPX) 2AJD ; 2.56 ; Porcine dipeptidyl peptidase IV (CD26) in complex with L-Pro-boro-L-Pro (boroPro) 2AJB ; 2.75 ; Porcine dipeptidyl peptidase IV (CD26) in complex with the tripeptide tert-butyl-Gly-L-Pro-L-Ile (tBu-GPI) 5LLS ; 2.41 ; Porcine dipeptidyl peptidase IV in complex with 8-(3-aminopiperidin-1-yl)-7-[(2-bromophenyl)methyl]-1,3-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione 6IAL ; 1.45 ; Porcine E.coli heat-labile enterotoxin B-pentamer in complex with Lacto-N-neohexaose 1LVY ; 1.87 ; PORCINE ELASTASE 1C1M ; 2.2 ; PORCINE ELASTASE UNDER XENON PRESSURE (8 BAR) 8URB ; 3.4 ; Porcine epidemic diarrhea virus complete core polymerase complex 8G6R ; 3.3 ; Porcine epidemic diarrhea virus core polymerase complex 7F0U ; 2.2 ; porcine epidemic diarrhea virus papain-like protease 2 C44S mutant in complex with mono ubiquitin 1PFX ; 3.0 ; PORCINE FACTOR IXA 1X7A ; 2.9 ; Porcine Factor IXa Complexed to 1-{3-[amino(imino)methyl]phenyl}-N-[4-(1H-benzimidazol-1-yl)-2-fluorophenyl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide 5LZI ; 1.6 ; Porcine heat-labile enterotoxin R13H in complex with inhibitor MM146 6Z7Z ; 2.4 ; Porcine insulin in complex with the analytical antibody OXI-005 Fab 1VE9 ; 2.5 ; Porcine kidney D-amino acid oxidase 1LEV ; 2.15 ; PORCINE KIDNEY FRUCTOSE-1,6-BISPHOSPHATASE COMPLEXED WITH AN AMP-SITE INHIBITOR 2QVU ; 1.5 ; Porcine Liver Fructose-1,6-bisphosphatase cocrystallized with Fru-2,6-P2 and Mg2+, I(T)-state 2QVV ; 2.03 ; Porcine Liver Fructose-1,6-bisphosphatase cocrystallized with Fru-2,6-P2 and Zn2+, I(T)-state 1F8P ; ; PORCINE NEUROPEPTIDE Y BOUND TO DPC MICELLES 1E00 ; 1.83 ; Porcine Odorant Binding Protein Complexed with 2,6-dimethyl-7-octen-2-ol 1DZJ ; 2.0 ; Porcine Odorant Binding Protein Complexed with 2-amino-4-butyl-5-propylselenazole 1E06 ; 2.12 ; Porcine Odorant Binding Protein Complexed with 5-methyl-2-(1-methylethyl)phenol 1DZM ; 1.93 ; Porcine Odorant Binding Protein Complexed with benzoic acid phenylmethylester 1DZP ; 1.83 ; Porcine Odorant Binding Protein Complexed with diphenylmethanone 1DZK ; 1.48 ; Porcine Odorant Binding Protein Complexed with pyrazine (2-isobutyl-3-metoxypyrazine) 1E02 ; 2.15 ; Porcine Odorant Binding Protein Complexed with undecanal 1SFW ; ; PORCINE PANCREAS PHOSPHOLIPASE A2, NMR, 18 STRUCTURES 1SFV ; ; PORCINE PANCREAS PHOSPHOLIPASE A2, NMR, MINIMIZED AVERAGE STRUCTURE 1OSE ; 2.3 ; Porcine pancreatic alpha-amylase complexed with acarbose 4X0N ; 2.6001 ; Porcine pancreatic alpha-amylase in complex with helianthamide, a novel proteinaceous inhibitor 1GVK ; 0.94 ; Porcine pancreatic elastase acyl enzyme at 0.95 A resolution 1QGF ; 1.7 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3R, 4S)N-PARA-TOLUENESULPHONYL-3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE 1BTU ; 1.6 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4R)-1-TOLUENESULPHONYL-3-ETHYL-AZETIDIN-2-ONE-4-CARBOXYLIC ACID 1E34 ; 1.8 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA- TOLUENESULPHONYL-3-ETHYL-4-(CARBOXYLIC ACID) PYRROLIDIN-2-ONE SOAKED IN PH 9 BUFFER FOR ONE MINUTE 1E36 ; 1.7 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA-NITROBENZENESULPHONYL -3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE 1E37 ; 1.75 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA-NITROBENZENESULPHONYL -3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE SOAKED IN PH 9 BUFFER FOR 1 MINUTE 1E38 ; 1.7 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA-NITROBENZENESULPHONYL -3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE SOAKED IN PH 9 BUFFER FOR 2 MINUTES 1E35 ; 1.9 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH (3S, 4S)N-PARA-TOLUENESULPHONYL -3-ETHYL-4-(CARBOXYLIC ACID)PYRROLIDIN-2-ONE SOAKED IN PH 9 BUFFER FOR TWO MINUTES 1MMJ ; 2.2 ; Porcine pancreatic elastase complexed with a potent peptidyl inhibitor, FR136706 1H9L ; 1.67 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH ACETYL-VAL-GLU-PRO-ILE-COOH 2BDB ; 1.7 ; Porcine pancreatic elastase complexed with Asn-Pro-Ile and Ala-Ala at pH 5.0 2BDC ; 1.8 ; Porcine pancreatic elastase complexed with Asn-Pro-Ile at pH 5.0 2BD2 ; 1.7 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Arg-Phe at pH 5.0 2BD7 ; 1.6 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Arg-Phe at pH 5.0 (50 min soak) 2BD9 ; 1.9 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Arg-Phe at pH 5.0 (50 min soak) and immersed in pH 9 buffer for 28 seconds (2nd pH jump) 2BD8 ; 1.7 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Arg-Phe at pH 5.0 (50 min soak) and immersed in pH 9 buffer for 30 seconds 2BB4 ; 1.6 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Asp-Phe at pH 5.0 2BD3 ; 1.6 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Lys-Ala-NH2 at pH 5.0 2BD5 ; 1.8 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Lys-Ser at pH 5 and immersed in pH 9 buffer for 30 seconds 2BD4 ; 1.7 ; Porcine pancreatic elastase complexed with beta-casomorphin-7 and Lys-Ser at pH 5.0 1HV7 ; 1.7 ; PORCINE PANCREATIC ELASTASE COMPLEXED WITH GW311616A 1QIX ; 1.9 ; Porcine pancreatic elastase complexed with human beta-casomorphin-7 2H1U ; 1.6 ; Porcine pancreatic elastase complexed with MetPheLeuGlu at pH 5.0 2BDA ; 1.8 ; Porcine pancreatic elastase complexed with N-acetyl-NPI and Ala-Ala at pH 5.0 2V35 ; 1.67 ; Porcine Pancreatic Elastase in complex with inhibitor JM54 1LKA ; 1.7 ; Porcine Pancreatic Elastase/Ca-Complex 1LKB ; 1.7 ; Porcine Pancreatic Elastase/Na-Complex 1UO6 ; 1.65 ; PORCINE PANCREATIC ELASTASE/Xe-COMPLEX 2PSP ; 1.95 ; Porcine pancreatic spasmolytic polypeptide 1K3V ; 3.5 ; Porcine Parvovirus Capsid 6XCT ; 1.99 ; Porcine pepsin in complex with amprenavir 6XD2 ; 1.9 ; Porcine pepsin in complex with darunavir 6XCY ; 2.05 ; Porcine pepsin in complex with ritonavir 6XCZ ; 1.89 ; Porcine pepsin in complex with saquinavir 5I65 ; ; Porcine reproductive and respiratory syndrome virus nonstructural protein 7 alpha (nsp7 alpha) 2BNH ; 2.3 ; PORCINE RIBONUCLEASE INHIBITOR 1S83 ; 1.25 ; PORCINE TRYPSIN COMPLEXED WITH 4-AMINO PROPANOL 1S82 ; 1.85 ; PORCINE TRYPSIN COMPLEXED WITH BORATE AND ETHYLENE GLYCOL 1S5S ; 1.4 ; Porcine trypsin complexed with guanidine-3-propanol inhibitor 1S6H ; 1.45 ; PORCINE TRYPSIN COMPLEXED WITH GUANIDINE-3-PROPANOL INHIBITOR 1S85 ; 2.2 ; PORCINE TRYPSIN COMPLEXED WITH P-HYDROXYMETHYL BENZAMIDINE AND BORATE 1S84 ; 1.85 ; PORCINE TRYPSIN COVALENT COMPLEX WITH 4-AMINO BUTANOL, BORATE AND ETHYLENE GLYCOL 1S6F ; 1.8 ; PORCINE TRYPSIN COVALENT COMPLEX WITH BORATE AND GUANIDINE-3 INHIBITOR 1S81 ; 1.7 ; PORCINE TRYPSIN WITH NO INHIBITOR BOUND 8JJ5 ; 3.5 ; Porcine uroplakin complex 4I0N ; 1.8 ; Pore forming protein 4P24 ; 3.1 ; pore forming toxin 6KLX ; 2.9 ; Pore structure of Iota toxin binding component (Ib) 7T4D ; 3.0 ; Pore structure of pore-forming toxin Epx4 3W9T ; 2.9 ; pore-forming CEL-III 4WX3 ; 1.701 ; pore-forming thermostable direct hemolysin from Grimontia hollisae 4WX5 ; 2.302 ; pore-forming thermostable direct hemolysin from Grimontia hollisae 6Q61 ; 1.3 ; Pore-modulating toxins exploit inherent slow inactivation to block K+ channels 6Q6C ; 1.3 ; Pore-modulating toxins exploit inherent slow inactivation to block K+ channels 3POR ; 2.5 ; PORIN CONFORMATION IN THE ABSENCE OF CALCIUM; REFINED STRUCTURE AT 2.5 ANGSTROMS RESOLUTION 7TLS ; 0.73 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TLU ; 0.79 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TM1 ; 1.1 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TM2 ; 0.88 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TMA ; 1.0 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TME ; 0.8 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TMH ; 0.8 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TMI ; 0.8 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TMJ ; 1.0 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TMK ; 0.83 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 7TML ; 0.93 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GB9 ; 1.0 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GBA ; 0.89 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GBH ; 1.02 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GBI ; 0.95 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GBM ; 1.04 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GBO ; 1.06 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GD6 ; 0.91 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GD8 ; 1.04 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GIV ; 0.99 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GJ7 ; 1.19 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GK1 ; 0.83 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GK2 ; 0.89 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GK9 ; 0.97 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GKB ; 0.95 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GKX ; 0.81 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GL0 ; 1.02 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GL4 ; 0.76 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8GL5 ; 1.02 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8SW2 ; 1.2 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 8SY4 ; 0.95 ; Porous framework formed by assembly of a bipyridyl-conjugated helical peptide 4HTG ; 1.45 ; Porphobilinogen Deaminase from Arabidopsis Thaliana 5H6O ; 2.702 ; Porphobilinogen deaminase from Vibrio Cholerae 2WOQ ; 1.75 ; Porphobilinogen Synthase (HemB) in Complex with 5-acetamido-4- oxohexanoic acid (Alaremycin 2) 4RBM ; 1.75 ; Porphyromonas gingivalis gingipain K (Kgp) catalytic and immunoglobulin superfamily-like domains 6I9A ; 1.2 ; Porphyromonas gingivalis gingipain K (Kgp) in complex with inhibitor KYT-36 6I0X ; 1.6 ; Porphyromonas gingivalis peptidylarginine deminase (PPAD) mutant G231N/E232T/N235D in complex with Cl-amidine. 7EY8 ; 3.4 ; portal 6IAC ; 3.9 ; Portal and tail of native bacteriophage P68 8FWB ; 3.14 ; Portal assembly of Agrobacterium phage Milano 8PHO ; 2.34 ; Portal from the Borrelia bacteriophage BB1 procapsid 8PHP ; 2.56 ; Portal from the Borrelia bacteriophage BB1 procapsid with bound scaffold protein 7Z44 ; 3.6 ; Portal of bacteriophage SU10 2JES ; 3.4 ; Portal protein (gp6) from bacteriophage SPP1 7QOG ; 3.09 ; Portal protein assembly of the phicrAss001 virion with C12 symmetry imposed 8FQL ; 3.6 ; Portal vertex of HK97 phage 6UZC ; 4.5 ; Portal vertex structure of bacteriophage T4 8JOV ; 3.8 ; Portal-tail complex of phage GP4 8I4M ; 3.81 ; Portal-tail complex structure of the Cyanophage P-SCSP1u 6FDB ; 3.619 ; Positively supercharged variant of the computationally designed cage protein O3-33 3R0A ; 2.31 ; Possible transcriptional regulator from Methanosarcina mazei Go1 (gi 21227196) 6SA1 ; 2.01 ; Post catalytic complex of Prim-PolC from Mycobacterium smegmatis with gapped DNA and 3'-dUTP 7COD ; 1.8 ; Post insertion complex of DNA polymerase Mu (K438A/Q441A) with 1-nt gapped DNA 7ST2 ; 2.9 ; Post translocation, non-rotated 70S ribosome with EF-G dissociated (Structure VII) 7R6M ; 3.68 ; Post-2S intermediate of the Tetrahymena group I intron, symmetry-expanded monomer from a synthetic dimeric construct 6IPE ; 1.7 ; Post-catalytic Complex of Human DNA Polymerase Mu with Templating Adenine and Mg-8oxodGMP 6IPD ; 1.7 ; Post-catalytic Complex of Human DNA Polymerase Mu with Templating Adenine and Mn-8oxodGMP 6IPG ; 1.62 ; Post-catalytic Complex of Human DNA Polymerase Mu with Templating Cytosine and Mg-8oxodGMP 6IPF ; 1.77 ; Post-catalytic Complex of Human DNA Polymerase Mu with Templating Cytosine and Mn-8oxodGMP 5VZ9 ; 1.65 ; Post-catalytic complex of human Polymerase Mu (G433A) mutant with incoming dTTP 5VZ8 ; 1.601 ; Post-catalytic complex of human Polymerase Mu (G433A) mutant with incoming UTP 5VZC ; 1.552 ; Post-catalytic complex of human Polymerase Mu (G433S) mutant with incoming dTTP 5VZB ; 1.5 ; Post-catalytic complex of human Polymerase Mu (G433S) mutant with incoming UTP 5TWS ; 1.85 ; Post-catalytic complex of human Polymerase Mu (H329A) with newly incorporated UTP 5VZF ; 1.65 ; Post-catalytic complex of human Polymerase Mu (W434A) mutant with incoming dTTP 5VZE ; 1.506 ; Post-catalytic complex of human Polymerase Mu (W434A) mutant with incoming UTP 5VZI ; 1.5 ; Post-catalytic complex of human Polymerase Mu (W434H) mutant with incoming dTTP 5VZH ; 1.95 ; Post-catalytic complex of human Polymerase Mu (W434H) mutant with incoming UTP 7M08 ; 1.7 ; Post-catalytic nicked complex of DNA Polymerase Lambda with bound 1-nt gapped SSB substrate and incoming dUMPNPP 7M0C ; 2.65 ; Post-catalytic nicked complex of DNA Polymerase Lambda with bound mismatched DSB substrate 6P1S ; 1.75 ; Post-catalytic nicked complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and newly incorporated AMP 6P1U ; 1.75 ; Post-catalytic nicked complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and newly incorporated CMP 6P1O ; 1.65 ; Post-catalytic nicked complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and newly incorporated dAMP 6P1Q ; 1.9 ; Post-catalytic nicked complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and newly incorporated dCMP 6WIE ; 1.5 ; Post-catalytic nicked complex of human Polymerase Mu on a complementary DNA double-strand break substrate 5TWQ ; 1.8 ; Post-catalytic nicked complex of human Polymerase Mu with newly incorporated UTP 6EXN ; 3.7 ; Post-catalytic P complex spliceosome with 3' splice site docked 2GCV ; 2.1 ; Post-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 2H0W ; 2.4 ; Post-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 2HO6 ; 2.8 ; Post-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 6S8C ; 2.57 ; Post-fusion conformation of the envelope protein of tick-borne encephalitis virus with longer stem 7UHZ ; 3.3 ; Post-fusion ectodomain of HSV-1 gB in complex with BMPC-23 Fab 7UI0 ; 3.4 ; Post-fusion ectodomain of HSV-1 gB in complex with HSV010-13 Fab 1WYY ; 2.2 ; Post-fusion hairpin conformation of the sars coronavirus spike glycoprotein 6M3W ; 3.9 ; Post-fusion structure of SARS-CoV spike glycoprotein 3BQ2 ; 2.7 ; Post-insertion binary complex of Dbh DNA polymerase 2V4Q ; 2.6 ; Post-insertion complex of the Y-family DNA polymerase Dpo4 with M1dG containing template DNA 8K7B ; 3.9 ; post-occluded structure of human ABCB6 W546A mutant (ADP/VO4-bound) 2FLC ; 2.59 ; Post-Reactive Complex of Restriction Endonuclease HinP1I with Nicked Cognate DNA and Magnesium Ions 2LLT ; ; Post-translational S-nitrosylation is an endogenous factor fine-tuning human S100A1 protein properties 2LLU ; ; Post-translational S-nitrosylation is an endogenous factor fine-tuning human S100A1 protein properties 5TBA ; 2.49 ; Postcatalytic ternary complex of Human DNA Polymerase Beta with Gapped DNA substrate, incorporated (-)3TC and PPi. 5TBB ; 2.39 ; Postcatalytic ternary complex of Human DNA Polymerase Beta with Gapped DNA substrate, incorporated (-)FTC and PPi. 4W4G ; 3.3 ; Postcleavage state of 70S bound to HigB toxin and AAA (lysine) codon 8DMJ ; 3.2 ; Postfusion Nipah virus fusion protein in complex with Fab 1H1 5L1K ; 1.82 ; PostInsertion complex of Human DNA Polymerase Eta bypassing an O6-Methyl-2'-deoxyguanosine : dC site 5L1L ; 1.62 ; PostInsertion complex of Human DNA Polymerase Eta bypassing an O6-Methyl-2'-deoxyguanosine : dT site 6RAU ; 1.99 ; PostS3_Pmar_lig4_WT 3ZD8 ; 2.0 ; Potassium bound structure of E. coli ExoIX in P1 3ZD9 ; 2.0 ; Potassium bound structure of E. coli ExoIX in P21 8HK6 ; 2.64 ; potassium channel 1BL8 ; 3.2 ; POTASSIUM CHANNEL (KCSA) FROM STREPTOMYCES LIVIDANS 1F6G ; ; POTASSIUM CHANNEL (KCSA) FULL-LENGTH FOLD 1JQ1 ; ; POTASSIUM CHANNEL (KCSA) OPEN GATE MODEL 1JQ2 ; ; POTASSIUM CHANNEL (KCSA) OPEN GATE MODEL 1AV3 ; ; POTASSIUM CHANNEL BLOCKER KAPPA CONOTOXIN PVIIA FROM C. PURPURASCENS, NMR, 20 STRUCTURES 2WLL ; 3.65 ; POTASSIUM CHANNEL FROM BURKHOLDERIA PSEUDOMALLEI 2WLH ; 3.28 ; POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 2WLI ; 3.09 ; POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 2WLJ ; 2.6 ; Potassium channel from Magnetospirillum magnetotacticum 2WLM ; 3.61 ; POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 2WLN ; 3.44 ; POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 2WLO ; 4.036 ; POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 2X6A ; 3.1 ; Potassium Channel from Magnetospirillum Magnetotacticum 2X6B ; 3.3 ; Potassium Channel from Magnetospirillum Magnetotacticum 2X6C ; 2.7 ; Potassium Channel from Magnetospirillum Magnetotacticum 2JK5 ; 2.4 ; Potassium Channel KcsA in complex with Tetrabutylammonium in high K 2NLJ ; 2.52 ; Potassium Channel KcsA(M96V)-Fab complex in KCl 2ITD ; 2.7 ; Potassium Channel KcsA-Fab complex in Barium Chloride 1R3L ; 2.41 ; potassium channel KcsA-Fab complex in Cs+ 1K4C ; 2.0 ; Potassium Channel KcsA-Fab complex in high concentration of K+ 1R3J ; 1.9 ; potassium channel KcsA-Fab complex in high concentration of Tl+ 3GB7 ; 2.85 ; Potassium Channel KcsA-Fab complex in Li+ 3IGA ; 2.75 ; Potassium Channel KcsA-Fab complex in Li+ and K+ 1K4D ; 2.3 ; Potassium Channel KcsA-Fab complex in low concentration of K+ 1R3K ; 2.8 ; potassium channel KcsA-Fab complex in low concentration of Tl+ 1R3I ; 2.4 ; potassium channel KcsA-Fab complex in Rb+ 2ITC ; 3.2 ; Potassium Channel KcsA-Fab complex in Sodium Chloride 2BOB ; 2.76 ; Potassium channel KcsA-Fab complex in thallium with tetrabutylammonium (TBA) 2BOC ; 3.01 ; Potassium channel KcsA-Fab complex in thallium with tetraethylarsonium (TEAs) 1S5H ; 2.2 ; Potassium Channel Kcsa-Fab Complex T75C mutant in K+ 2HJF ; 2.9 ; Potassium channel kcsa-fab complex with tetrabutylammonium (TBA) 2W0F ; 2.4 ; Potassium Channel KcsA-Fab Complex with Tetraoctylammonium 4UUJ ; 2.4 ; POTASSIUM CHANNEL KCSA-FAB WITH TETRAHEXYLAMMONIUM 8HIR ; 3.18 ; potassium channels 1K4X ; ; POTASSIUM FORM OF OXY-1.5 QUADRUPLEX DNA 3ZDE ; 2.45 ; Potassium free structure of E. coli ExoIX 8WTZ ; 3.1 ; potassium outward rectifier channel SKOR 8K1S ; 2.83 ; Potassium transporter KtrAB from Bacillus subtilis in ADP-bound state 8K1U ; 2.82 ; Potassium transporter KtrAB from Bacillus subtilis in ATP-bound state with addition of EDTA and EGTA 8XMI ; 3.0 ; Potassium transporter KtrAB from Bacillus subtilis in ATP-bound state with addition of EDTA and EGTA, C1 symmetry 8XMH ; 2.85 ; Potassium transporter KtrAB from Bacillus subtilis in ATP-bound state with addition of EDTA and EGTA, vertical C2 symmetry axis 8K1T ; 2.48 ; Potassium transporter KtrAB from Bacillus subtilis in ATP-bound state with addition of MgCl2 4G65 ; 2.09 ; Potassium transporter peripheral membrane component (trkA) from Vibrio vulnificus 8HEW ; 2.59 ; Potato 14-3-3 St14f 6LX1 ; 2.03 ; Potato D-enzyme complexed with Acarbose 6LX2 ; 2.05 ; Potato D-enzyme complexed with CA26 7COV ; 2.0 ; Potato D-enzyme, native (substrate free) 7ULO ; 2.21 ; Potato leafroll virus N-terminal readthrough domain 6HXX ; 3.4 ; Potato virus Y 8B2N ; 1.85 ; Potempin A (PotA) from Tannerella forsythia in complex with the catalytic domain of human MMP-12 4GB9 ; 2.438 ; Potent and Highly Selective Benzimidazole Inhibitors of PI3K-delta 6F2U ; 1.88 ; Potent and selective Aldo-Keto Reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a Bioisosteric Scaffold Hopping Approach to Flufenamic acid 6F78 ; 1.3 ; Potent and selective Aldo-Keto Reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: Application of a Bioisosteric Scaffold Hopping Approach to Flufenamic acid 6BA5 ; 1.62 ; Potent and Selective Antitumor Activity of a T-Cell Engaging Bispecific Antibody Targeting a Membrane-Proximal Epitope of ROR1 6BAN ; 1.95 ; Potent and Selective Antitumor Activity of a T-Cell Engaging Bispecific Antibody Targeting a Membrane-Proximal Epitope of ROR1 6OSH ; 1.117 ; Potent and Selective Antitumor Antibody Targeting a Membrane-Proximal Epitope of ROR2 6OSN ; 1.083 ; Potent and Selective Antitumor Antibody Targeting a Membrane-Proximal Epitope of ROR2 6OSV ; 1.34 ; Potent and Selective Antitumor Antibody Targeting a Membrane-Proximal Epitope of ROR2 3QN7 ; 1.9 ; Potent and selective bicyclic peptide inhibitor (UK18) of human urokinase-type plasminogen activator(uPA) 5ANS ; 1.6 ; Potent and selective inhibitors of MTH1 probe its role in cancer cell survival 5ANT ; 2.0 ; Potent and selective inhibitors of MTH1 probe its role in cancer cell survival 4EZJ ; 2.67 ; Potent and Selective Inhibitors of PI3K-delta: Obtaining Isoform Selectivity from the Affinity Pocket and Tryptophan Shelf 4EZK ; 2.803 ; Potent and Selective Inhibitors of PI3K-delta: Obtaining Isoform Selectivity from the Affinity Pocket and Tryptophan Shelf 4EZL ; 2.94 ; Potent and Selective Inhibitors of PI3K-delta: Obtaining Isoform Selectivity from the Affinity Pocket and Tryptophan Shelf 2P83 ; 2.5 ; Potent and selective isophthalamide S2 hydroxyethylamine inhibitor of BACE1 4FCB ; 2.1 ; Potent and Selective Phosphodiesterase 10A Inhibitors 4FCD ; 2.02 ; Potent and Selective Phosphodiesterase 10A Inhibitors 3I25 ; 2.1 ; Potent Beta-Secretase 1 hydroxyethylene Inhibitor 3IXK ; 2.5 ; Potent beta-secretase 1 inhibitor 5TUS ; 2.66 ; Potent competitive inhibition of human ribonucleotide reductase by a novel non-nucleoside small molecule 1V2N ; 1.8 ; Potent factor XA inhibitor in complex with bovine trypsin variant X(99/175/190)bT 3W19 ; 1.278 ; Potent HIV fusion inhibitor CP32M-2 1JLD ; 2.5 ; Potent hiv protease inhibitors containing a novel (hydroxyethyl)amide isostere 3U1Y ; 2.0 ; Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections 5NQR ; 2.2 ; Potent inhibitors of NUDT5 silence hormone signaling in breast cancer 5NWH ; 2.6 ; Potent inhibitors of NUDT5 silence hormone signaling in breast cancer 8FIU ; 1.56 ; Potent long-acting inhibitors targeting HIV-1 capsid based on a versatile quinazolin-4-one scaffold 3OWN ; 2.0 ; Potent macrocyclic renin inhibitors 7N9A ; 3.5 ; Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes-CovS RBD with NB21 7N9B ; 3.8 ; Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes-CovS with NB21 7N9E ; 3.52 ; Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes-CovS with NB34 7N9C ; 3.71 ; Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes-CovS with NB95 7KZA ; 1.69 ; Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1antibodies 7KZB ; 2.83 ; Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1antibodies 7KZC ; 2.3 ; Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1antibodies 5E7V ; 2.4 ; Potent Vitamin D Receptor Agonist 2ZEB ; 2.5 ; Potent, Nonpeptide Inhibitors of Human Mast Cell Tryptase 2ZEC ; 2.059 ; Potent, Nonpeptide Inhibitors of Human Mast Cell Tryptase 5JHU ; 1.8 ; Potent, Reversible MetAP2 Inhibitors via FBDD 5JI6 ; 2.15 ; Potent, Reversible MetAP2 Inhibitors via FBDD 5JFR ; 1.6 ; Potent, Reversible MetAP2 Inhibitors via Fragment Based Drug Discovery 5A2S ; 2.65 ; Potent, selective and CNS-penetrant tetrasubstituted cyclopropane class IIa histone deacetylase (HDAC) inhibitors 1NZ7 ; 2.4 ; POTENT, SELECTIVE INHIBITORS OF PROTEIN TYROSINE PHOSPHATASE 1B USING A SECOND PHOSPHOTYROSINE BINDING SITE, complexed with compound 19. 1NL9 ; 2.4 ; Potent, Selective Protein Tyrosine Phosphatase 1B Inhibitor Compound 12 Using a Linked-Fragment Strategy 1NNY ; 2.4 ; Potent, Selective Protein Tyrosine Phosphatase 1B Inhibitor Compound 23 Using a Linked-Fragment Strategy 1NO6 ; 2.4 ; Potent, Selective Protein Tyrosine Phosphatase 1B Inhibitor Compound 5 Using a Linked-Fragment Strategy 1NC6 ; 1.9 ; Potent, small molecule inhibitors of human mast cell tryptase. Anti-asthmatic action of a dipeptide-based transition state analogue containing benzothiazole ketone 8AT0 ; 2.0 ; PotF with mutation D247K 8ASZ ; 1.28 ; PotF with mutations S87Y and A182D in complex with Agmatine 3MC9 ; 2.2 ; POTRA1-2 of the periplasmic domain of Omp85 from Anabaena 3MC8 ; 2.59 ; POTRA1-3 of the periplasmic domain of Omp85 from Anabaena 6NFW ; ; Potyvirus viral protein genome linked (VPg) emulates the m7G cap to recruit the eukaryotic translation initiation factor eIF4E 3L1P ; 2.8 ; POU protein:DNA complex 7KYL ; 2.0 ; Powassan virus Envelope protein DIII in complex with neutralizing Fab POWV-80 7P7R ; 2.9 ; PoxtA-EQ2 antibiotic resistance ABCF bound to E. faecalis 70S ribosome, state I 7P7S ; 3.0 ; PoxtA-EQ2 antibiotic resistance ABCF bound to E. faecalis 70S ribosome, state II 7P7T ; 2.9 ; PoxtA-EQ2 antibiotic resistance ABCF bound to E. faecalis 70S ribosome, state III 5C5J ; 2.1 ; Poymerase Nucleotide complex 6OBQ ; 1.84 ; PP1 H66K in complex with Microcystin LR 6OBR ; 1.5 ; PP1 Y134A in complex with Microcystin LR 6OBS ; 1.803 ; PP1 Y134K 6OBU ; 1.95 ; PP1 Y134K in complex with Microcystin LR 4I5J ; 2.091 ; PP2A PR70 Holoenzyme 4I5K ; 2.9 ; PP2A PR70 Holoenzyme model3_diCa_rcsb.pdb bppnat5_extend.mtz 3C5V ; 2.0 ; PP2A-specific methylesterase apo form (PME) 4RA2 ; 1.94 ; PP2Ca 6R8I ; 1.517 ; PP4R3A EVH1 domain bound to FxxP motif 1WAO ; 2.9 ; PP5 structure 2QUD ; 1.6 ; PP7 Coat Protein Dimer 2QUX ; 2.44 ; PP7 coat protein dimer in complex with RNA hairpin 3OZ0 ; 3.0 ; PPAR Delta in complex with azppard02 6FZP ; 2.3 ; PPAR gamma complex. 7SQB ; 2.6 ; PPAR gamma LBD bound to Inverse Agonist SR10221 7SQA ; 2.499 ; PPAR gamma LBD bound to SR10221 and SMRT corepressor motif 6D8X ; 1.9 ; PPAR gamma LBD complexed with the agonist GW1929 6TDC ; 2.328 ; PPAR gamma ligand binding domain in complex with MRL-871 6FZG ; 2.1 ; PPAR gamma mutant complex 6FZJ ; 2.011 ; PPAR gamma mutant complex 6FZY ; 3.1 ; PPAR mutant 6T1S ; 1.65 ; PPAR mutant 6FZF ; 1.95 ; PPAR mutant complex 3PEQ ; 2.4 ; PPARd complexed with a phenoxyacetic acid partial agonist 3DY6 ; 2.9 ; PPARdelta complexed with an anthranilic acid partial agonist 8DSY ; 2.95 ; PPARg bound to inverse agonist H3B-343 8DKV ; 1.59 ; PPARg bound to JTP-426467 and Co-R peptide 8DSZ ; 2.5 ; PPARg bound to partial agonist H3B-487 8DKN ; 1.95 ; PPARg bound to T0070907 and Co-R peptide 6E5A ; 2.4 ; PPARg in complex with compound 4b 7QB1 ; 2.2 ; PPARg in complex with inhibitor 6C5Q ; 2.404 ; PPARg LBD bound to SR10171 6C5T ; 2.75 ; PPARg LBD bound to SR11023 6D3E ; 2.395 ; PPARg LBD in Complex with SR1988 7WOX ; 3.2 ; PPARgamma antagonist (MMT-160)- PPARgamma LBD complex 5LSG ; 2.0 ; PPARgamma complex with the betulinic acid 1WM0 ; 2.9 ; PPARgamma in complex with a 2-BABA compound 2POB ; 2.3 ; PPARgamma Ligand binding domain complexed with a farglitazar analogue gw4709 4XUM ; 2.4 ; PPARgamma ligand binding domain in complex with indomethacin 4XUH ; 2.22 ; PPARgamma ligand binding domain in complex with sulindac sulfide 5JI0 ; 1.98 ; PPARgamma-RXRalpha(S427F) heterodimer in complex with SRC-1, rosiglitazone, and 9-cis-retanoic acid 1MVL ; 2.0 ; PPC decarboxylase mutant C175S 1MVN ; 2.21 ; PPC decarboxylase mutant C175S complexed with pantothenoylaminoethenethiol 3SJ1 ; 1.9 ; PpcA M58D mutant 3SEL ; 2.1 ; PpcA M58N mutant 3SJ4 ; 1.9 ; PpcA mutant M58K 3SJ0 ; 2.0 ; PpcA mutant M58S 3BXU ; 1.35 ; PpcB, A Cytochrome c7 from Geobacter sulfurreducens 3H33 ; 2.25 ; PpcC, A cytochrome c7 from Geobacter sulfurreducens 3H4N ; 1.35 ; PpcD, A cytochrome c7 from Geobacter sulfurreducens 3H34 ; 1.6 ; PpcE, A cytochrome c7 from Geobacter sulfurreducens 6DMD ; 2.65 ; ppGpp Riboswitch bound to ppGpp, manganese chloride structure 6DMC ; 2.2 ; ppGpp Riboswitch bound to ppGpp, native structure 6DME ; 2.702 ; ppGpp Riboswitch bound to ppGpp, thallium acetate structure 1HXV ; ; PPIASE DOMAIN OF THE MYCOPLASMA GENITALIUM TRIGGER FACTOR 4TYO ; 1.75 ; PPIase in complex with a non-phosphate small molecule inhibitor. 5X1T ; 1.55 ; PpkA-294 5X1R ; 1.6 ; PpkA-294 apo form 5X1S ; 1.45 ; PpkA-294 with Amppcp 5X1Q ; 1.602 ; PpkA-294 with ATP and MnCl2 5YRG ; 1.5 ; PPL3A-isomaltose complex 5YRF ; 1.7 ; PPL3A-trehalose complex 5YRJ ; 1.8 ; PPL3B-isomaltose complex 5YRI ; 1.65 ; PPL3B-trehalose complex 5YRM ; 1.5 ; PPL3C-isomaltose complex 5YRL ; 2.1 ; PPL3C-trehalose complex 1RKY ; 1.68 ; PPLO + Xe 1W7C ; 1.23 ; PPLO at 1.23 Angstroms 2OB2 ; 1.92 ; ppm1 in the absence of 1,8-ANS (cf 1JD) 2OB1 ; 1.9 ; ppm1 with 1,8-ANS 6JKV ; 2.1 ; PppA, a key regulatory component of T6SS in Pseudomonas aeruginosa 1HKQ ; 2.75 ; PPS10 plasmid DNA replication initiator protein RepA. Replication inactive, dimeric N-terminal domain. 8A8E ; 2.9 ; PPSA C terminal octahedral structure 6RN5 ; 2.037 ; PptA from Streptomyces chartreusis 6CT5 ; 1.75935 ; PptT PAP(CoA) 8918 complex 7N8M ; 1.57 ; PptT PAP(CoA) 8978B complex 7N8L ; 2.26 ; PptT PAP(CoA) 9016 complex 7N8E ; 1.74 ; PptT PAP(CoA) 9056 complex 7WMK ; 1.47 ; PQQ-dependent alcohol dehydrogenase complexed with PQQ 7WMD ; 2.0 ; PQQ-dependent alcohol dehydrogenase detoxifying DON 7CE9 ; 2.2 ; PQQ-soaked Apo-methanol dehydrogenase (MDH) from Methylococcus capsulatus (Bath) 1OTV ; 2.1 ; PqqC, Pyrroloquinolinquinone Synthase C 5OQ4 ; 2.7 ; PQR309 - a Potent, Brain-Penetrant, Orally Bioavailable, pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology 6OAC ; 3.15 ; PQR530 [(S)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine] bound to the PI3Ka catalytic subunit p110alpha 6TPR ; 3.2 ; PqsR (MvfR) bound to inhibitory compound 40 6Z07 ; 2.95 ; PqsR (MvfR) in complex with antagonist 12 6Z5K ; 3.201 ; PqsR (MvfR) in complex with antagonist 18 6YZ3 ; 3.0 ; PqsR (MvfR) in complex with antagonist 19 7O2U ; 3.0 ; PqsR (MvfR) in complex with antagonist 40 6Z17 ; 3.15 ; PqsR (MvfR) in complex with antagonist 6 7O2T ; 2.65 ; PqsR (MvfR) in complex with antagonist 61 8Q5L ; 2.9 ; PqsR coinducer binding domain of Pseudomonas aeruginosa with ligand 2f: 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile 8Q5K ; 2.8 ; PqsR coinducer binding domain of Pseudomonas aeruginosa with ligand 2t : 2-(4-(3-((6-chloro-1-(2-methoxyethyl)-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile 8ISJ ; 3.0 ; Pr conformer of Arabidopsis thaliana phytochrome A - AtphyA-Pr 8ISK ; 3.3 ; Pr conformer of Zea mays phytochrome A1 - ZmphyA1-Pr 4A2J ; 2.0 ; PR X-Ray structures in agonist conformations reveal two different mechanisms for partial agonism in 11beta-substituted steroids 4APU ; 1.9 ; PR X-Ray structures in agonist conformations reveal two different mechanisms for partial agonism in 11beta-substituted steroids 1FUJ ; 2.2 ; PR3 (MYELOBLASTIN) 7DBC ; 2.4 ; PRA in complex with tubulin 7EK4 ; 2.3 ; prawn ferritin to coordinate with heavy metal ions 7EK5 ; 3.0 ; prawn ferritin to coordinate with heavy metal ions 7EK7 ; 2.7 ; prawn ferritin to coordinate with heavy metal ions 6WKR ; 3.5 ; PRC2-AEBP2-JARID2 bound to H2AK119ub1 nucleosome 7KSR ; 4.1 ; PRC2:EZH1_A from a dimeric PRC2 bound to a nucleosome 7KTP ; 4.8 ; PRC2:EZH1_B from a dimeric PRC2 bound to a nucleosome 4NAF ; 1.9 ; PrcB from Geobacillus kaustophilus, apo structure 1H99 ; 1.55 ; PRD of LicT antiterminator from Bacillus subtilis 8U0T ; 3.2 ; PRD-0038 RBD bound to Rhinolophus alcyone ACE2 (local refinement) 1YQ5 ; 2.0 ; PRD1 vertex protein P5 1YQ6 ; 2.4 ; PRD1 vertex protein P5 1YQ8 ; 2.6 ; PRD1 vertex protein P5 5V3G ; 2.416 ; PRDM9-allele-C ZnF8-13 7SSO ; 3.2 ; Pre translocation 70S ribosome with A/A and P/E tRNA (Structure II-A) 7SSN ; 3.2 ; Pre translocation 70S ribosome with A/P* and P/E tRNA (Structure II-B) 7ST7 ; 3.2 ; Pre translocation intermediate stalled with viomycin and bound with EF-G in a GDP and Pi state (Structure III-vio) 7SSL ; 3.8 ; Pre translocation intermediate with EF-G bound to GDP and Pi (Structure III) 7ST6 ; 3.0 ; Pre translocation, non-rotated 70S ribosome (Structure I) 7BL5 ; 3.3 ; pre-50S-ObgE particle 7BL2 ; 3.7 ; pre-50S-ObgE particle state 1 7BL3 ; 3.5 ; pre-50S-ObgE particle state 2 6YLX ; 3.9 ; pre-60S State NE1 (TAP-Flag-Nop53) 6YLY ; 3.8 ; pre-60S State NE2 (TAP-Flag-Nop53) 7PDU ; ; Pre-catalytic complex of 10-23 DNAzyme with RNA target 7M09 ; 1.65 ; Pre-catalytic quaternary complex of DNA Polymerase Lambda with blunt-ended DSB substrate and incoming dUMPNPP 7M0D ; 1.8 ; Pre-catalytic quaternary complex of DNA Polymerase Lambda with bound complementary DSB substrate and incoming dUMPNPP 7M0B ; 2.0 ; Pre-catalytic quaternary complex of DNA Polymerase Lambda with bound mismatched DSB and incoming dUMPNPP 6WIC ; 1.55 ; Pre-catalytic quaternary complex of human Polymerase Mu on a complementary DNA double-strand break substrate 7M0E ; 2.25 ; Pre-catalytic synaptic complex of DNA Polymerase Lambda with gapped DSB substrate and incoming dUMPNPP 7M07 ; 1.57 ; Pre-catalytic ternary complex of DNA Polymerase Lambda with bound 1-nt gapped SSB substrate and incoming dUMPNPP 5U2S ; 2.3 ; Pre-catalytic ternary complex of Human DNA Polymerase Beta With Gapped DNA substrate incoming (-)3TC-TP and Ca2+. 5U2T ; 1.79 ; Pre-catalytic ternary complex of Human DNA Polymerase Beta With Gapped DNA substrate incoming (-)FTC-TP and Ca2+. 6P1T ; 1.7 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and bound CMPCPP 6P1R ; 1.701 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and bound incoming AMPNPP 6P1N ; 1.6 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and bound incoming dAMPNPP 6P1P ; 1.75 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing template 8OG and bound incoming dCMPNPP 6P1W ; 1.751 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing undamaged template dG and bound incoming CMPCPP 6P1V ; 1.95 ; Pre-catalytic ternary complex of human DNA Polymerase Mu with 1-nt gapped substrate containing undamaged template dG and bound incoming dCMPNPP 6AK8 ; 1.74 ; Pre-catalytic Ternary Complex of Human DNA Polymerase Mu with Templating Adenine and Incoming Ca-8oxodGTP 6AKH ; 1.75 ; Pre-catalytic Ternary Complex of Human DNA Polymerase Mu with Templating Adenine and Incoming Mn-dUMPNPP 6AK9 ; 1.91 ; Pre-catalytic Ternary Complex of Human DNA Polymerase Mu with Templating Cytosine and Incoming Ca-8oxodGTP 5VZ7 ; 1.551 ; Pre-catalytic ternary complex of human Polymerase Mu (G433A) mutant with incoming nonhydrolyzable UMPNPP 5VZA ; 1.501 ; Pre-catalytic ternary complex of human Polymerase Mu (G433S) mutant with incoming nonhydrolyzable UMPNPP 5TWR ; 1.9 ; Pre-catalytic ternary complex of human Polymerase Mu (H329A) mutant with incoming nonhydrolyzable UMPNPP 5VZD ; 1.602 ; Pre-catalytic ternary complex of human Polymerase Mu (W434A) mutant with incoming nonhydrolyzable UMPNPP 5VZG ; 1.85 ; Pre-catalytic ternary complex of human Polymerase Mu (W434H) mutant with incoming nonhydrolyzable UMPNPP 5TWP ; 2.001 ; Pre-catalytic ternary complex of human Polymerase Mu with incoming nonhydrolyzable UMPNPP 2GCS ; 2.1 ; Pre-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 2H0S ; 2.35 ; Pre-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 2H0X ; 2.3 ; Pre-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme 2H0Z ; 2.7 ; Pre-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme bound to glucose-6-phosphate 2HO7 ; 2.9 ; Pre-cleavage state of the Thermoanaerobacter tengcongensis glmS ribozyme bound to glucose-6-phosphate 3SLJ ; 2.481 ; Pre-cleavage Structure of the Autotransporter EspP - N1023A mutant 3SLO ; 2.52 ; Pre-cleavage Structure of the Autotransporter EspP - N1023D mutant 3SLT ; 2.46 ; Pre-cleavage Structure of the Autotransporter EspP - N1023S Mutant 6TR2 ; ; Pre-folded structures govern folding pathways of human telomeric G-quadruplexes 5XJX ; 3.055 ; Pre-formed plant receptor ERL1-TMM complex 2M8R ; ; Pre-Fusion Solution NMR Structure of Neuronal SNARE Syntaxin 1A 7N6A ; 14.3 ; Pre-fusion state 1 of EEEV with localized reconstruction 7N69 ; 14.1 ; Pre-fusion state 2 of EEEV with localized reconstruction 4CC8 ; 6.0 ; Pre-fusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy 3BQ0 ; 2.6 ; Pre-insertion binary complex of Dbh DNA polymerase 4RZ9 ; 1.28 ; Pre-mRNA-splicing factor 38A AS 1-179 4RZA ; 1.9 ; Pre-mRNA-splicing factor 38A AS 1-205 7A4L ; ; PRE-only solution structure of the Iron-Sulfur protein PioC from Rhodopseudomonas palustris TIE-1 2OR3 ; 1.2 ; Pre-oxidation Complex of Human DJ-1 6CIL ; 4.15 ; PRE-REACTION COMPLEX, RAG1(E962Q)/2-INTACT/INTACT 12/23RSS COMPLEX IN MN2+ 6CIK ; 3.15 ; Pre-Reaction Complex, RAG1(E962Q)/2-intact/nicked 12/23RSS complex in Mn2+ 6CIM ; 3.6 ; Pre-Reaction Complex, RAG1(E962Q)/2-nicked/intact 12/23RSS complex in Mn2+ 1CKQ ; 1.85 ; PRE-TRANSITION STATE ECO RI ENDONUCLEASE/COGNATE DNA (TCGCGAATTCGCG) COMPLEX 7K53 ; 3.2 ; Pre-translocation +1-frameshifting(CCC-A) complex (Structure I-FS) 7OSA ; 3.0 ; Pre-translocation complex of 80 S.cerevisiae ribosome with eEF2 and ligands 7K50 ; 3.4 ; Pre-translocation non-frameshifting(CCA-A) complex (Structure I) 7LV0 ; 3.2 ; Pre-translocation rotated ribosome +1-frameshifting(CCC-A) complex (Structure Irot-FS) 5EJ1 ; 3.4 ; Pre-translocation state of bacterial cellulose synthase 7K98 ; 2.19 ; Preaminoacylation complex of M. tuberculosis PheRS with cognate precursor tRNA and 5'-O-(N-phenylalanyl)sulfamoyl-adenosine (F-AMS) 5TB8 ; 2.0 ; Precatalytic ternary complex of Human DNA Polymerase Beta in closed conformation With Gapped DNA substrate incoming (-)3TC-TP and Mn2+. 5TB9 ; 2.49 ; Precatalytic ternary complex of Human DNA Polymerase Beta in closed conformation With Gapped DNA substrate incoming (-)FTC-TP and Mn2+. 4RQ3 ; 2.0 ; Precatalytic ternary complex of Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG) and dATP in the presence of CaCl2 4RPX ; 1.9 ; Precatalytic ternary complex of Human DNA Polymerase Beta With Gapped DNA Containing an 8-oxo-7,8-dihydro-Guanine (8-oxoG) and dCTP in the presence of CaCl2 5U2R ; 1.8 ; PRECATALYTIC TERNARY COMPLEX OF HUMAN DNA POLYMERASE BETA WITH GAPPED DNA SUBSTARTE, INCOMING L-DCTP AND CA2+ 5TBC ; 1.85 ; PRECATALYTIC TERNARY COMPLEX OF HUMAN DNA POLYMERASE BETA WITH GAPPED DNA SUBSTRATE, INCORPORATED (-)3TC-MP AND AN ANOTHER INCOMING (-)3TC-TP NUCLEOTIDE. 5AWW ; 2.724 ; Precise Resting State of Thermus thermophilus SecYEG 8EOV ; 1.59 ; Precisely patterned nanofibers made from extendable protein multiplexes 8EOX ; 3.3 ; Precisely patterned nanofibers made from extendable protein multiplexes 8EOZ ; 3.0 ; Precisely patterned nanofibers made from extendable protein multiplexes 8ERW ; 2.88 ; Precisely patterned nanofibers made from extendable protein multiplexes 4YPB ; 3.4 ; Precleavage 70S structure of the P. vulgaris HigB DeltaH92 toxin bound to the AAA codon 4YZV ; 3.1 ; Precleavage 70S structure of the P. vulgaris HigB deltaH92 toxin bound to the ACA codon 4B05 ; 1.8 ; Preclinical characterization of AZD3839, a novel clinical candidate BACE1 inhibitor for the treatment of Alzheimer Disease 6VEB ; 2.55 ; Precorrin-2-bound S128A S. typhimurium siroheme synthase 4E16 ; 2.49 ; Precorrin-4 C(11)-methyltransferase from Clostridium difficile 1OU0 ; 2.1 ; precorrin-8X methylmutase related protein 3PDI ; 2.4 ; Precursor bound NifEN 2IWM ; 2.5 ; precursor mutant Cys1Ser of Penicillin V Acylase from Bacillus sphaericus 2VQX ; 1.821 ; Precursor of Protealysin, Metalloproteinase from Serratia proteamaculans. 9GAA ; 2.1 ; PRECURSOR OF THE T152A MUTANT GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 9GAC ; 1.9 ; PRECURSOR OF THE T152C MUTANT GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 9GAF ; 1.9 ; PRECURSOR OF THE W11F MUTANT GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 6OF4 ; 3.2 ; Precursor ribosomal RNA processing complex, apo-state. 6OF3 ; 3.0 ; Precursor ribosomal RNA processing complex, State 1. 6OF2 ; 2.9 ; Precursor ribosomal RNA processing complex, State 2. 1KEH ; 2.5 ; Precursor structure of cephalosporin acylase 6SJX ; ; Precursor structure of the self-processing module of iron-regulated FrpC of N. Meningitidis with calcium ions 1YOZ ; 2.0 ; Predicted coding region AF0941 from Archaeoglobus fulgidus 1YOY ; 2.0 ; Predicted coding region AF1432 from Archaeoglobus Fulgidus 2B6C ; 2.1 ; Predicted DNA alkylation repair enzyme from Enterococcus faecalis. 6PHG ; 2.0 ; Predicted germline variant of human transmission blocking antibody 2544 3GO9 ; 1.62 ; Predicted insulinase family protease from Yersinia pestis 3AUV ; 2.4 ; Predicting Amino Acid Preferences in the Complementarity Determining Regions of an Antibody-Antigen Recognition Interface 4NVA ; 1.57 ; Predicting protein conformational response in prospective ligand discovery 4NVC ; 1.6 ; Predicting protein conformational response in prospective ligand discovery 4NVE ; 1.54 ; Predicting protein conformational response in prospective ligand discovery 4NVF ; 1.49 ; Predicting protein conformational response in prospective ligand discovery 4NVG ; 1.742 ; Predicting protein conformational response in prospective ligand discovery 4NVH ; 1.24 ; Predicting protein conformational response in prospective ligand discovery 4NVM ; 1.51 ; Predicting protein conformational response in prospective ligand discovery 4NVN ; 1.47 ; Predicting protein conformational response in prospective ligand discovery 4NVO ; 1.71 ; Predicting protein conformational response in prospective ligand discovery 4NVB ; 1.17 ; Predicting protein conformational response in prospective ligand discovery. 4NVD ; 1.3 ; Predicting protein conformational response in prospective ligand discovery. 4NVI ; 1.51 ; Predicting protein conformational response in prospective ligand discovery. 4NVJ ; 1.813 ; Predicting protein conformational response in prospective ligand discovery. 4NVK ; 1.56 ; Predicting protein conformational response in prospective ligand discovery. 4NVL ; 1.432 ; Predicting protein conformational response in prospective ligand discovery. 4OQ7 ; 1.89 ; Predicting protein conformational response in prospective ligand discovery. 6BL8 ; 2.5 ; Predicting the Conformational Variability of Abl Tyrosine Kinase Using Molecular Dynamics Simulations and Markov State Models 1TNG ; 1.8 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 1TNH ; 1.8 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 1TNI ; 1.9 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 1TNJ ; 1.8 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 1TNK ; 1.8 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 1TNL ; 1.9 ; PREDICTION OF NOVEL SERINE PROTEASE INHIBITORS 3NXY ; 1.9 ; Preferential Selection of Isomer Binding from Chiral Mixtures: Alernate Binding Modes Observed fro the E- and Z-isomers of a Series of 5-Substituted 2,4-Diaminofuro[2,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 3NXX ; 1.35 ; Preferential Selection of Isomer Binding from Chiral Mixtures: Alternate Binding Modes Observed for the E- and Z-isomers of a Series of 5-Substituted 2,4-Diaminofuro-2,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 3NXV ; 1.9 ; Preferential Selection of Isomer Binding from Chiral Mixtures: Alternate Binding Modes Observed for the E- and Z-isomers of a Series of 5-Substituted 2,4-Diaminofuro[2,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 3NXT ; 1.7 ; Preferential Selection of Isomer Binding from Chiral Mixtures: Alternate Binding Modes Observed for the E-and Z-isomers of a Series of 5-substituted 2,4-diaminofuro[2m,3-d]pyrimidines as Ternary Complexes with NADPH and Human Dihydrofolate Reductase 7WU7 ; 3.85 ; Prefoldin-tubulin-TRiC complex 6VSB ; 3.46 ; Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up 5I2S ; 3.0 ; PREFUSION FORM OF THE VESICULAR STOMATITIS VIRUS GLYCOPROTEIN G ECTODOMAIN 6W52 ; 3.74 ; Prefusion RSV F bound by neutralizing antibody RSB1 7KQD ; 2.94 ; Prefusion RSV F Bound to RV521 7LUE ; 2.9 ; Prefusion RSV F glycoprotein bound by neutralizing site V-directed antibody ADI-14442 6OE4 ; 3.3 ; Prefusion RSV F monomer bound by neutralizing antibody CR9501 6X79 ; 2.9 ; Prefusion SARS-CoV-2 S ectodomain trimer covalently stabilized in the closed conformation 5I08 ; 4.04 ; Prefusion structure of a human coronavirus spike protein 5X5C ; 4.1 ; Prefusion structure of MERS-CoV spike glycoprotein, conformation 1 5X5F ; 4.2 ; Prefusion structure of MERS-CoV spike glycoprotein, conformation 2 5X59 ; 3.7 ; Prefusion structure of MERS-CoV spike glycoprotein, three-fold symmetry 6U7K ; 3.14 ; Prefusion structure of PEDV spike 5X58 ; 3.2 ; Prefusion structure of SARS-CoV spike glycoprotein, conformation 1 5X5B ; 3.7 ; Prefusion structure of SARS-CoV spike glycoprotein, conformation 2 8U29 ; 2.8 ; Prefusion structure of the PRD-0038 spike glycoprotein ectodomain trimer 8DNR ; 2.8 ; Prefusion-stabilized Hendra virus fusion protein 8CW9 ; 3.46 ; Prefusion-stabilized hMPV fusion protein bound to ADI-61026 and MPE8 Fabs 8U1R ; 3.6 ; Prefusion-stabilized Langya virus F protein, variant G99C/I109C 8DNG ; 3.0 ; Prefusion-stabilized Nipah virus fusion protein 7UPK ; 2.8 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 1A9 7UPB ; 3.0 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 1H1 7UPA ; 2.5 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 1H8 7UPD ; 2.4 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 2B12 7UP9 ; 2.9 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 2D3 7UOP ; 2.8 ; Prefusion-stabilized Nipah virus fusion protein complexed with Fab 4H3 8DO4 ; 3.2 ; Prefusion-stabilized Nipah virus fusion protein, dimer of trimers 8U1G ; 3.2 ; Prefusion-stabilized SARS-CoV-2 S2 subunit 8FEZ ; 3.72 ; Prefusion-stabilized SARS-CoV-2 spike protein 8T08 ; 3.0 ; Preholo-Proteasome from Pre1-1 Pre4-1 Double Mutant 8DPX ; ; Preligand association structure of DR5 4IRF ; 1.65 ; Preliminary structural investigations of a malarial protein secretion system 4IOD ; 1.8 ; Preliminary structural investigations of a malarial protein secretion system. 1IYW ; 4.0 ; Preliminary Structure of Thermus thermophilus Ligand-Free Valyl-tRNA Synthetase 2VZ1 ; 1.91 ; Premat-galactose oxidase 1MRC ; 2.4 ; PREPARATION, CHARACTERIZATION AND CRYSTALLIZATION OF AN ANTIBODY FAB FRAGMENT THAT RECOGNIZES RNA. CRYSTAL STRUCTURES OF NATIVE FAB AND THREE FAB-MONONUCLEOTIDE COMPLEXES 1MRD ; 2.3 ; PREPARATION, CHARACTERIZATION AND CRYSTALLIZATION OF AN ANTIBODY FAB FRAGMENT THAT RECOGNIZES RNA. CRYSTAL STRUCTURES OF NATIVE FAB AND THREE FAB-MONONUCLEOTIDE COMPLEXES 1MRE ; 2.3 ; PREPARATION, CHARACTERIZATION AND CRYSTALLIZATION OF AN ANTIBODY FAB FRAGMENT THAT RECOGNIZES RNA. CRYSTAL STRUCTURES OF NATIVE FAB AND THREE FAB-MONONUCLEOTIDE COMPLEXES 1MRF ; 2.4 ; PREPARATION, CHARACTERIZATION AND CRYSTALLIZATION OF AN ANTIBODY FAB FRAGMENT THAT RECOGNIZES RNA. CRYSTAL STRUCTURES OF NATIVE FAB AND THREE FAB-MONONUCLEOTIDE COMPLEXES 5WHX ; 1.69 ; PREPHENATE DEHYDROGENASE FROM SOYBEAN 5T95 ; 1.689 ; Prephenate Dehydrogenase M219T, N222D mutant from Soybean 5T9F ; 1.994 ; Prephenate Dehydrogenase N222D mutant from Soybean 7T4E ; 2.87 ; Prepore structure of pore-forming toxin Epx1 7REX ; 2.6 ; PreQ1-1 (type-1) riboswitch in complex with tandem stacked metabolites 8FB3 ; 3.0 ; PreQ1-1 (type-1) riboswitch with stacked metabolites and a C10-G34 base pair in the expression platform 5D5L ; 2.5 ; PreQ1-II riboswitch with an engineered G-U wobble pair bound to Cs+ 4JFD ; 2.46 ; Preservation of peptide specificity during TCR-MHC contact dominated affinity enhancement of a melanoma-specific TCR 4JFE ; 2.7 ; Preservation of peptide specificity during TCR-MHC contact dominated affinity enhancement of a melanoma-specific TCR 4JFF ; 2.43 ; Preservation of peptide specificity during TCR-MHC contact dominated affinity enhancement of a melanoma-specific TCR 5G3C ; 1.75 ; Preserving Metallic sites affected by radiation damage the CuT2 case in thermus termophilus multicopper oxidase 5G3E ; 1.78 ; Preserving Metallic Sites Affected by Radiation DAmage the CuT2 CAse in THermus Thermophilus Multicopper Oxidase 5G3F ; 1.82 ; Preserving Metallic Sites Affected by Radiation Damage the CuT2 CAse in Thermus Thermophilus Multicopper Oxidase 5G3G ; 1.84 ; Preserving MEtallic Sites Affected by Radiation Damage the CuT2 case in Thermus Thermophilus multicopper Oxidase 5G3H ; 1.93 ; Preserving Metallic Sites Affected by Radiation Damage the CuT2 Case in Thermus Thermophilus Multicopper oxidase 5G3D ; 1.78 ; preserving Metallic Sites Affected by Radiation Damage the CuT2 cCase in Thermus Thermophilus Multicopper Oxidase 5G3B ; 1.69 ; Preserving metallic sites affected by radiation damage: the CuT2 case in Thermus thermophilus multicopper oxidase 6G90 ; 4.0 ; Prespliceosome structure provides insight into spliceosome assembly and regulation (map A2) 7AET ; 2.53 ; Pressure wave-exposed human hemoglobin: probe only data (3500 indexed images) 7AEU ; 2.54 ; Pressure wave-exposed human hemoglobin: probe only data (5500 indexed images) 7AEV ; 2.77 ; Pressure wave-exposed human hemoglobin: pump/probe data (3500 indexed images) 6WL2 ; 3.3 ; preTCRbeta-pMHC complex crystal structure 6WL3 ; 3.45 ; preTCRbeta-pMHC complex crystal structure 6WL4 ; 3.6 ; preTCRbeta-pMHC complex crystal structure 4NGK ; 1.5 ; Previously de-ionized HEW lysozyme batch crystallized in 0.2 M CoCl2 4NEB ; 1.48 ; Previously de-ionized HEW lysozyme batch crystallized in 0.5 M MnCl2 4NGV ; 1.64 ; Previously de-ionized HEW lysozyme batch crystallized in 0.5 M YbCl3 4NGL ; 1.52 ; Previously de-ionized HEW lysozyme batch crystallized in 0.6 M CoCl2 4NGO ; 1.58 ; Previously de-ionized HEW lysozyme batch crystallized in 1.0 M CoCl2 4NFV ; 1.63 ; Previously de-ionized HEW lysozyme batch crystallized in 1.1 M MnCl2 4NG1 ; 1.82 ; Previously de-ionized HEW lysozyme batch crystallized in 1.9 M CsCl 4NGZ ; 1.7 ; Previously de-ionized HEW lysozyme crystallized in 0.5 M YbCl3/30% (v/v) glycerol and collected at 125K 4NGI ; 1.7 ; Previously de-ionized HEW lysozyme crystallized in 1.0 M RbCl and collected at 125K 2BEO ; 2.7 ; PrfA, Transcriptional Regulator In Listeria Monocytogenes 2BGC ; 2.3 ; PrfA-G145S, a constitutive active mutant of the Transcriptional Regulator In L.monocytogenes 3ZQB ; 2.4 ; PrgI-SipD from Salmonella typhimurium 3ZQE ; 2.19 ; PrgI-SipD from Salmonella typhimurium in complex with deoxycholate 6LXD ; 3.9 ; Pri-miRNA bound DROSHA-DGCR8 complex 4NL4 ; 2.65 ; PriA Helicase Bound to ADP 6DGD ; 2.823 ; PriA helicase bound to dsDNA of a DNA replication fork 4NL8 ; 4.08 ; PriA Helicase Bound to SSB C-terminal Tail Peptide 8C9F ; 3.1 ; Priestia megaterium inactive HIGH motif mutant of type1 isoleucyl-tRNA synthetase complexed with an isoleucyl-adenylate analogue. 8C8W ; 2.29 ; Priestia megaterium mupirocin hyper-resistant HIGH motif mutant of type 2 isoleucyl-tRNA synthetase complexed with an isoleucyl-adenylate analogue 8C8U ; 1.901 ; Priestia megaterium mupirocin-resistant isoleucyl-tRNA synthetase 2 complexed with mupirocin 8C8V ; 2.2 ; Priestia megaterium mupirocin-resistant isoleucyl-tRNA synthetase 2 with a fully-resolved C-terminal tRNA-binding domain complexed with an isoleucyl-adenylate analogue 8C9E ; 2.9 ; Priestia megaterium mupirocin-sensitive isoleucyl-tRNA synthetase 1 complexed with an isoleucyl-adenylate analogue 8C9G ; 2.8 ; Priestia megaterium mupirocin-sensitive isoleucyl-tRNA synthetase 1 complexed with mupirocin 8C9D ; 2.3 ; Priestia megaterium W130Q mutant of type 2 isoleucyl-tRNA synthetase complexed with an isoleucyl-adenylate analogue 7NQD ; 2.97 ; Prim-Pol Domain of CRISPR-associated Prim-Pol (CAPP) from Marinitoga sp. 1137 7P9J ; 1.9 ; Prim-Pol Domain of CRISPR-associated Prim-Pol (CAPP) from Marinitoga sp. 1137 - Primer Initiation Complex 7QAZ ; 2.11 ; Prim-Pol Domain of CRISPR-associated Prim-Pol (CAPP) from Marinitoga sp. 1137 - Primer Initiation Complex 7NQE ; 1.28 ; Prim-Pol Domain of CRISPR-associated Prim-Pol (CAPP) from Marinitoga sp. 1137 with dGTP 7NQF ; 2.02 ; Prim-Pol Domain of CRISPR-associated Prim-Pol (CAPP) from Marinitoga sp. 1137 with dsDNA 1A56 ; ; PRIMARY SEQUENCE AND SOLUTION CONFORMATION OF FERRICYTOCHROME C-552 FROM NITROSOMONAS EUROPAEA, NMR, MEAN STRUCTURE REFINED WITH EXPLICIT HYDROGEN BOND CONSTRAINTS 1A8C ; ; PRIMARY SEQUENCE AND SOLUTION CONFORMATION OF FERROCYTOCHROME C-552 FROM NITROSOMONAS EUROPAEA, NMR, MEAN STRUCTURE REFINED WITHOUT HYDROGEN BOND CONSTRAINTS 1SMV ; 3.0 ; PRIMARY STRUCTURE OF SESBANIA MOSAIC VIRUS COAT PROTEIN: ITS IMPLICATIONS TO THE ASSEMBLY AND ARCHITECTURE OF THE VIRUS 2DLA ; 2.9 ; Primase large subunit amino terminal domain from Pyrococcus horikoshii 8DWJ ; 3.9 ; Primase of mutant bacteriophage T4 primosome with single strand DNA/RNA primer hybrid in primer exiting state 4KI1 ; 3.2 ; Primitive triclinic crystal form of the human IgE-Fc(epsilon)3-4 bound to its B cell receptor derCD23 3QIJ ; 1.8 ; Primitive-monoclinic crystal structure of the FERM domain of protein 4.1R 1MCB ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCC ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCD ; ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCE ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCF ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCH ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCI ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCJ ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCK ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCL ; 2.7 ; PRINCIPLES AND PITFALLS in DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCN ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCQ ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCR ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 1MCS ; 2.7 ; PRINCIPLES AND PITFALLS IN DESIGNING SITE DIRECTED PEPTIDE LIGANDS 5NB5 ; 3.0 ; Principles for computational design of antibodies 5NBI ; 2.1 ; Principles for computational design of antibodies 2ETW ; 1.67 ; Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes 2EUV ; 1.94 ; Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes 7ELJ ; ; Prion Derived Tetrapeptide Stabilizes Thermolabile Insulin via Conformational Trapping 6HEQ ; 1.23 ; Prion nanobody 484 3MD4 ; 1.15 ; Prion peptide 3MD5 ; 1.4 ; Prion peptide 4WBU ; 1.15 ; prion peptide 1AG2 ; ; PRION PROTEIN DOMAIN PRP(121-231) FROM MOUSE, NMR, 2 MINIMIZED AVERAGE STRUCTURE 2XKS ; ; Prion-like conversion during amyloid formation at atomic resolution 2XKU ; ; Prion-like conversion during amyloid formation at atomic resolution 1B82 ; 1.8 ; PRISTINE RECOMB. LIGNIN PEROXIDASE H8 1X24 ; 3.2 ; Prl-1 (ptp4a) 1ZCL ; 2.9 ; prl-1 c104s mutant in complex with sulfate 6IZQ ; 2.449 ; PRMT4 bound with a bicyclic compound 6V0N ; 2.11 ; PRMT5 bound to PBM peptide from Riok1 6V0O ; 2.86 ; PRMT5 bound to the PBM peptide from pICln 6V0P ; 1.88 ; PRMT5 complex bound to covalent PBM inhibitor BRD6711 7MXG ; 2.395 ; PRMT5(M420T mutant):MEP50 complexed with inhibitor PF-06855800 7MXN ; 2.55 ; PRMT5(M420T mutant):MEP50 complexed with inhibitor PF-06939999 7L1G ; 2.47 ; PRMT5-MEP50 Complexed with SAM 7S1R ; 2.1 ; PRMT5/MEP50 crystal structure with MTA and a phthalazinone inhibitor bound (compound (M)-31) 7S1Q ; 2.78 ; PRMT5/MEP50 crystal structure with MTA and a phthalazinone inhibitor bound (Compound 9) 7UOH ; 2.7 ; PRMT5/MEP50 crystal structure with MTA and an achiral, class 1, non-atropisomeric inhibitor bound 7S1S ; 2.62 ; PRMT5/MEP50 crystal structure with MTA and MRTX-1719 bound 7S0U ; 2.01 ; PRMT5/MEP50 crystal structure with MTA and phthalazinone fragment bound 7S1P ; 2.21 ; PRMT5/MEP50 crystal structure with sinefungin bound 7SES ; 2.5 ; PRMT5/MEP50 with compound 29 bound 7SER ; 2.14 ; PRMT5/MEP50 with compound 30 bound 7KIC ; 2.43 ; PRMT5:MEP50 Complexed with 5,5-Bicyclic Inhibitor Compound 34 7KIB ; 2.52 ; PRMT5:MEP50 Complexed with 5,5-Bicyclic Inhibitor Compound 4 7KID ; 2.5 ; PRMT5:MEP50 Complexed with 5,5-Bicyclic Inhibitor Compound 72 7MXC ; 2.41 ; PRMT5:MEP50 complexed with adenosine 6UXX ; 2.69 ; PRMT5:MEP50 Complexed with Allosteric Inhibitor Compound 1a 6UXY ; 2.57 ; PRMT5:MEP50 Complexed with Allosteric Inhibitor Compound 8 7U30 ; 2.6 ; PRMT5:MEP50 Complexed with Cyclonucleoside Compound 1 7MXA ; 2.713 ; PRMT5:MEP50 complexed with inhibitor PF-06855800 7MX7 ; 2.49 ; PRMT5:MEP50 complexed with inhibitor PF-06939999 2V7M ; 2.0 ; PrnB 7-Cl-D-tryptophan complex 2V7L ; 2.4 ; PrnB 7Cl-L-tryptophan complex 2V7K ; 1.7 ; PrnB D-tryptophan complex 2V7J ; 2.0 ; PrnB L-tryptophan complex 2V7I ; 1.75 ; PrnB native 2SGP ; 1.8 ; PRO 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 6.5 1BOQ ; 2.1 ; PRO REGION C-TERMINUS: PROTEASE ACTIVE SITE INTERACTIONS ARE CRITICAL IN CATALYZING THE FOLDING OF ALPHA-LYTIC PROTEASE 2PRO ; 3.0 ; PRO REGION OF ALPHA-LYTIC PROTEASE 8JBQ ; 2.0 ; Pro-alpha-hemolysin of Vibrio campbellii 4YCG ; 3.3 ; Pro-bone morphogenetic protein 9 4P10 ; 2.0 ; pro-carboxypeptidase U In Complex With 5-(3-aminopropyl)-1-propyl-6,7-dihydro-4H-benzimidazole-5-carboxylic acid 6XT6 ; 2.103 ; pro-concanavalin A: Precursor of circularly permuted concanavalin A 6AGW ; 2.093 ; Pro-domain of Caspase-8 8G32 ; 1.85 ; Pro-form of a CDCL short from E. anophelis 3S1E ; 1.9 ; Pro427Gln mutant of maize cytokinin oxidase/dehydrogenase complexed with N6-isopentenyladenine 2IH6 ; ; Pro6 variant of CMrVIA conotoxin 2FLY ; ; Proadrenomedullin N-Terminal 20 Peptide 1PRE ; 2.8 ; PROAEROLYSIN 1Z52 ; 2.38 ; Proaerolysin Mutant W373L 5GAI ; 10.5 ; Probabilistic Structural Models of Mature P22 Bacteriophage Portal, Hub, and Tailspike proteins 5BQF ; 1.45 ; Probable 2-hydroxyacid dehydrogenase from Rhizobium etli CFN 42 in complex with NADP, HEPES and L(+)-tartaric acid 4XCV ; 1.4 ; Probable 2-hydroxyacid dehydrogenase from Rhizobium etli CFN 42 in complex with NADPH 2OSU ; 2.29 ; Probable glutaminase from Bacillus subtilis complexed with 6-diazo-5-oxo-L-norleucine 2PBY ; 2.07 ; Probable Glutaminase from Geobacillus kaustophilus HTA426 2DOU ; 2.3 ; probable N-succinyldiaminopimelate aminotransferase (TTHA0342) from Thermus thermophilus HB8 2OER ; 2.0 ; Probable Transcriptional Regulator from Pseudomonas aeruginosa 7ZJG ; 3.49 ; Probenecid 4H9G ; 1.93 ; Probing EF-Tu with a very small brominated fragment library identifies the CCA pocket 6VI7 ; 2.617 ; Probing extradiol dioxygenase mechanism in NAD(+) biosynthesis by viewing reaction cycle intermediates - a substrate bidentately bound structure 3QPK ; 1.9 ; Probing oxygen channels in Melanocarpus albomyces laccase 2DRI ; 1.6 ; PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS 1DRJ ; 2.5 ; PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE-BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS 1DRK ; 2.0 ; PROBING PROTEIN-PROTEIN INTERACTIONS: THE RIBOSE-BINDING PROTEIN IN BACTERIAL TRANSPORT AND CHEMOTAXIS 4B2Y ; 1.9 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 4B31 ; 2.25 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 4B40 ; 1.93 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 4B5K ; 1.7 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 4B7A ; 1.95 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 5ZZ1 ; 1.91 ; Probing the active center of catalase-phenol oxidase from Scytalidium thermophilum 2XHZ ; 2.6 ; Probing the active site of the sugar isomerase domain from E. coli arabinose-5-phosphate isomerase via X-ray crystallography 8T5X ; 1.63 ; Probing the dissociation pathway of a kinetically labile transthyretin mutant (A25T) 3EEE ; 2.12 ; Probing the function of heme distortion in the H-NOX family 4KML ; 1.5 ; Probing the N-terminal beta-sheet conversion in the crystal structure of the full-length human prion protein bound to a Nanobody 4N9O ; 1.5 ; Probing the N-terminal beta-sheet conversion in the crystal structure of the human prion protein bound to a Nanobody 1MFU ; 2.0 ; Probing the role of a mobile loop in human salivary amylase: Structural studies on the loop-deleted mutant 1MFV ; 2.0 ; Probing the role of a mobile loop in human slaivary amylase: Structural studies on the loop-deleted enzyme 3DHP ; 1.5 ; Probing the role of aromatic residues at the secondary saccharide binding sites of human salivary alpha-amylase in substrate hydrolysis and bacterial binding 1RM9 ; 2.9 ; Probing the Role of Tryptophans in Aequorea Victoria Green Fluorescent Proteins with an Expanded Genetic Code 1RMM ; 1.9 ; Probing the Role of Tryptophans in Aequorea Victoria Green Fluorescent Proteins with an Expanded Genetic Code 1RMO ; 1.8 ; Probing the Role of Tryptophans in Aequorea Victoria Green Fluorescent Proteins with an Expanded Genetic Code 1RMP ; 3.0 ; Probing the Role of Tryptophans in Aequorea Victoria Green Fluorescent Proteins with an Expanded Genetic Code 5CE5 ; 2.0 ; Probing the roles of two tryptophans surrounding the unique zinc coordination site in lipase family I.5 1A2F ; 2.1 ; PROBING THE STRENGTH AND CHARACTER OF AN ASP-HIS-X HYDROGEN BOND BY INTRODUCING BURIED CHARGES 1A2G ; 2.1 ; PROBING THE STRENGTH AND CHARACTER OF AN ASP-HIS-X HYDROGEN BOND BY INTRODUCING BURIED CHARGES 1CCL ; 2.0 ; PROBING THE STRENGTH AND CHARACTER OF AN ASP-HIS-X HYDROGEN BOND BY INTRODUCING BURIED CHARGES 5C51 ; 3.426 ; Probing the Structural and Molecular Basis of Nucleotide Selectivity by Human Mitochondrial DNA Polymerase gamma 5C52 ; 3.637 ; Probing the Structural and Molecular Basis of Nucleotide Selectivity by Human Mitochondrial DNA Polymerase gamma 5C53 ; 3.567 ; Probing the Structural and Molecular Basis of Nucleotide Selectivity by Human Mitochondrial DNA Polymerase gamma 4U10 ; 2.05 ; Probing the structure and mechanism of de-N-acetylase from aggregatibacter actinomycetemcomitans 1BWP ; 2.1 ; PROBING THE SUBSTRATE SPECIFICITY OF THE INTRACELLULAR BRAIN PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE 1BWQ ; 2.3 ; PROBING THE SUBSTRATE SPECIFICITY OF THE INTRACELLULAR BRAIN PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE 1BWR ; 2.4 ; PROBING THE SUBSTRATE SPECIFICITY OF THE INTRACELLULAR BRAIN PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE 1AL0 ; 3.5 ; PROCAPSID OF BACTERIOPHAGE PHIX174 1CD3 ; 3.5 ; PROCAPSID OF BACTERIOPHAGE PHIX174 1KBC ; 1.8 ; PROCARBOXYPEPTIDASE TERNARY COMPLEX 1PCI ; 3.2 ; PROCARICAIN 3E4C ; 2.05 ; Procaspase-1 zymogen domain crystal structure 5FPW ; 2.1 ; proCathepsin B S9 from Trypanosoma congolense 3TM7 ; 1.7 ; Processed Aspartate Decarboxylase Mutant with Asn72 mutated to Ala 1PYU ; 1.9 ; Processed Aspartate Decarboxylase Mutant with Ser25 mutated to Cys 2XRM ; 2.6 ; Processed Intracellular subtilisin from B. clausii 7FIE ; 2.36 ; Processive cleavage of substrate at individual proteolytic active sites of the Lon protease complex (conformation 2) 7FIZ ; 3.28 ; Processive cleavage of substrate at individual proteolytic active sites of the Lon protease complex (conformation 3) 7FID ; 2.44 ; Processive cleavage of substrate at individual proteolytic active sites of the Lon proteasecomplex (conformation 1) 1FCE ; 2.0 ; PROCESSIVE ENDOCELLULASE CELF OF CLOSTRIDIUM CELLULOLYTICUM 6TNY ; 3.08 ; Processive human polymerase delta holoenzyme 1GQ6 ; 1.75 ; PROCLAVAMINATE AMIDINO HYDROLASE FROM STREPTOMYCES CLAVULIGERUS 1GQ7 ; 2.45 ; PROCLAVAMINATE AMIDINO HYDROLASE FROM STREPTOMYCES CLAVULIGERUS 7POI ; 2.9 ; Prodomain bound BMP10 crystal form 1 7POJ ; 3.5 ; Prodomain bound BMP10 crystal form 2 6L1O ; 1.9 ; Product bound BacF structure from Bacillus subtillis 2QXF ; 1.5 ; Product bound structure of exonuclease I at 1.5 angstrom resolution 6YO9 ; 2.4 ; Product bound structure of the Ectoine utilization protein EutD (DoeA) from Halomonas elongata 6TWM ; 2.5 ; Product bound structure of the Ectoine utilization protein EutE (DoeB) from Ruegeria pomeroyi 2YA1 ; 2.25 ; Product complex of a multi-modular glycogen-degrading pneumococcal virulence factor SpuA 3N10 ; 1.6 ; Product complex of adenylate cyclase class IV 4KQ6 ; 2.24 ; Product complex of lumazine synthase from candida glabrata 4O21 ; 1.95 ; Product complex of metal-free PKAc, ATP-gamma-S and SP20. 4B5I ; 2.555 ; Product complex of Neisseria AP endonuclease in presence of metal ions 4H45 ; 3.1 ; Product Complexes of Porcine Liver Fructose-1,6-bisphosphatase with Mutation E192Q 4GX3 ; 2.25 ; Product Complexes of Porcine Liver Fructose-1,6-bisphosphatase with mutation R22M Reveal a T-state Conformation 7U87 ; 1.701 ; Product of 13mer primer with activated G monomer diastereomer 1 7U88 ; 2.14 ; Product of 13mer primer with activated G monomer diastereomer 2 7U8B ; 1.73 ; Product of 14mer primer with activated asymmetric GA dimer diastereomer 1 7U89 ; 1.65 ; Product of 14mer primer with activated G monomer diastereomer 1 7U8A ; 2.1 ; Product of 14mer primer with activated G monomer diastereomer 2 5A0R ; 1.251 ; Product peptide-bound structure of metalloprotease Zmp1 variant E143A from Clostridium difficile 2IYP ; 2.79 ; product rup 2CWV ; 1.85 ; Product schiff-base intermediate of copper amine oxidase from arthrobacter globiformis 3JVI ; 1.8 ; Product state mimic crystal structure of protein tyrosine phosphatase from Entamoeba histolytica 6NP1 ; 1.6 ; Product state mimicry leads to aminoglycoside discrimination in an antibiotic acetyltransferase 7JOY ; 2.0 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with its C-terminal autoprocessing sequence. 8DRX ; 1.5 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp10-nsp11 (C10) cut site sequence (form 2) 8DRY ; 2.49 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp12-nsp13 (C12) cut site sequence 8DRZ ; 1.98 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp13-nsp14 (C13) cut site sequence 8DS0 ; 2.2 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp14-nsp15 (C14) cut site sequence (form 2) 8DRR ; 2.0 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp4-nsp5 (C4) cut site sequence 8DRS ; 1.8 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp6-nsp7 (C6) cut site sequence 8DRT ; 1.5 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp6-nsp7 (C6) cut site sequence (form 2) 8DRU ; 2.31 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp7-nsp8 (C7) cut site sequence 8DRV ; 2.4 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp8-nsp9 (C8) cut site sequence 8DRW ; 2.67 ; Product structure of SARS-CoV-2 Mpro C145A mutant in complex with nsp9-nsp10 (C9) cut site sequence 5MHB ; 2.1 ; Product-Complex of E.coli 5-Amino Laevulinic Acid Dehydratase 2AX2 ; 1.5 ; Production and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II 8C6D ; 2.4 ; Production of antigenically stable enterovirus A71 virus-like particles in Pichia pastoris as a vaccine candidate. 2N8R ; ; Productive complex between MMP-12 and synthetic triple-helical collagen, revealed through paramagnetic NMR 1R0C ; 2.37 ; Products in the T State of Aspartate Transcarbamylase: Crystal Structure of the Phosphate and N-carbamyl-L-aspartate Ligated Enzyme 1FDP ; 2.1 ; PROENZYME OF HUMAN COMPLEMENT FACTOR D, RECOMBINANT PROFACTOR D 1CJF ; 2.3 ; PROFILIN BINDS PROLINE-RICH LIGANDS IN TWO DISTINCT AMIDE BACKBONE ORIENTATIONS 1A0K ; 2.2 ; PROFILIN I FROM ARABIDOPSIS THALIANA 3NUL ; 1.6 ; Profilin I from Arabidopsis thaliana 3UB5 ; 2.2 ; Profilin:actin with a wide open nucleotide cleft 3HQ5 ; 2.1 ; Progesterone Receptor bound to an Alkylpyrrolidine ligand. 3KBA ; 2.0 ; Progesterone receptor bound to sulfonamide pyrrolidine partial agonist 1SR7 ; 1.46 ; Progesterone Receptor Hormone Binding Domain with Bound Mometasone Furoate 1ZUC ; 2.0 ; Progesterone receptor ligand binding domain in complex with the nonsteroidal agonist tanaproget 1SQN ; 1.451 ; Progesterone Receptor Ligand Binding Domain with bound Norethindrone 2OVM ; 2.6 ; Progesterone Receptor with Bound Asoprisnil and a Peptide from the Co-Repressor NCoR 2OVH ; 2.0 ; Progesterone Receptor with Bound Asoprisnil and a Peptide from the Co-Repressor SMRT 3G8O ; 1.9 ; Progesterone Receptor with bound Pyrrolidine 1 4OAR ; 2.41 ; Progesterone receptor with bound ulipristal acetate and a peptide from the co-repressor SMRT 7P65 ; 2.7 ; Progressive supranuclear palsy tau filament 6OKB ; 6.7 ; Prohead 2 of the phage T5 8XOT ; 3.51 ; Prohead portal of bacteriophage lambda 8XOU ; 5.58 ; Prohead portal vertex of bacteriophage lambda 3R4F ; 3.5 ; Prohead RNA 6UCK ; ; proIAPP in DPC Micelles - Two-Conformer Ensemble Refinement, Bent Conformer 6UCJ ; ; proIAPP in DPC Micelles - Two-Conformer Ensemble Refinement, Open Conformer 2PN0 ; 1.7 ; Prokaryotic transcription elongation factor GreA/GreB from Nitrosomonas europaea 3NPZ ; 3.35 ; Prolactin Receptor (PRLR) Complexed with the Natural Hormone (PRL) 1PV9 ; 2.0 ; Prolidase from Pyrococcus furiosus 1GE8 ; 2.1 ; PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA) HOMOLOG FROM PYROCOCCUS FURIOSUS 5DAI ; 2.0 ; Proliferating cell nuclear antigen homolog 1 bound to FEN-1 peptide 5A6D ; 2.8 ; Proliferating Cell Nuclear Antigen, PCNA, from Thermococcus gammatolerans 6WM8 ; 2.6 ; Proliferation-Associated protein 2G4 (PA2G4) 1E5S ; 2.4 ; Proline 3-hydroxylase (type II) - Iron form 1E5R ; 2.3 ; Proline 3-hydroxylase (type II) -apo form 8P5O ; 2.6 ; Proline activating adenylation domain of gramicidin S synthetase 2 - GrsB1-Acore 4PV4 ; 1.76 ; Proline aminopeptidase P II from Yersinia pestis 4ICB ; 1.6 ; PROLINE CIS-TRANS ISOMERS IN CALBINDIN D9K OBSERVED BY X-RAY CRYSTALLOGRAPHY 5CDL ; 1.8 ; Proline dipeptidase from Deinococcus radiodurans (selenomethionine derivative) 5CDV ; 1.45 ; Proline dipeptidase from Deinococcus radiodurans R1 7DT0 ; 2.43 ; Proline hydroxylase H11-N101I mutant 5YHP ; 2.393 ; Proline iminopeptidase from Psychrophilic yeast glaciozyma antarctica 1AZW ; 2.7 ; PROLINE IMINOPEPTIDASE FROM XANTHOMONAS CAMPESTRIS PV. CITRI 8A4R ; 3.59 ; Proline Racemase (ProR) from the Gram-positive bacterium Acetoanaerobium sticklandii from isotropic orthorhombic data at 3.59 A 8A3F ; 3.15 ; Proline Racemase (ProR) from the Gram-positive bacterium Acetoanaerobium sticklandii from isotropic tetragonal data at 3.15 A 1W61 ; 2.1 ; proline racemase in complex with 2 molecules of pyrrole-2-carboxylic acid (holo form) 1W62 ; 2.5 ; proline racemase in complex with one molecule of pyrrole-2-carboxylic acid (hemi form) 5V7Y ; 2.05 ; Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu 6T8M ; 2.02 ; Prolyl Hydroxylase (PHD) involved in hypoxia sensing by Dictyostelium discoideum 6EY1 ; 1.199 ; prolyl hydroxylase from Trichoplax adhaerens 6F0W ; 1.301 ; prolyl hydroxylase in complex with hypoxia inducible factor oxygen degradation domain peptide fragment from Trichoplax adhaerens 5UY9 ; 1.85 ; Prolyl isomerase Pin1 R14A mutant bound with Brd4 peptide 5N4F ; 2.4 ; Prolyl oligopeptidase B from Galerina marginata - apo protein 5N4D ; 1.62 ; Prolyl oligopeptidase B from Galerina marginata bound to 25mer macrocyclization substrate - D661A mutant 5N4B ; 1.44 ; Prolyl oligopeptidase B from Galerina marginata bound to 25mer macrocyclization substrate - S577A mutant 5N4E ; 2.9 ; Prolyl oligopeptidase B from Galerina marginata bound to 35mer hydrolysis and macrocyclization substrate - H698A mutant 5N4C ; 2.19 ; Prolyl oligopeptidase B from Galerina marginata bound to 35mer hydrolysis and macrocyclization substrate - S577A mutant 3EQ7 ; 2.89 ; Prolyl oligopeptidase complexed with R-Pro-(decarboxy-Pro)-Type inhibitors 3EQ8 ; 2.73 ; Prolyl oligopeptidase complexed with R-Pro-(decarboxy-Pro)-Type inhibitors 3EQ9 ; 2.47 ; Prolyl oligopeptidase complexed with R-Pro-(decarboxy-Pro)-Type inhibitors 1H2W ; 1.39 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN 4AMY ; 2.0 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND INHIBITOR IC-1 4AMZ ; 2.0 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND INHIBITOR IC-2 4AN0 ; 2.2 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND INHIBITOR IC-3 4AN1 ; 1.9 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND INHIBITOR IC-4 4BCB ; 1.7 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND P2- substituted N-acyl-prolylpyrrolidine inhibitor 4BCC ; 1.65 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A COVALENTLY BOUND P2- substituted N-acyl-prolylpyrrolidine inhibitor 4BCD ; 1.5 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN WITH A NON-COVALENTLY BOUND P2-substituted N-acyl-prolylpyrrolidine inhibitor 1O6F ; 1.6 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, D641A MUTANT WITH BOUND PEPTIDE LIGAND SUC-GLY-PRO 1O6G ; 1.4 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, D641N MUTANT WITH BOUND PEPTIDE LIGAND SUC-GLY-PRO 4AX4 ; 1.6 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, H680A MUTANT 1E5T ; 1.7 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, MUTANT 1E8M ; 1.5 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, MUTANT, COMPLEXED WITH INHIBITOR 1E8N ; 1.5 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, MUTANT, COMPLEXED WITH PEPTIDE 1UOQ ; 2.1 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, S554A MUTANT WITH BOUND PEPTIDE LIGAND GLU-PHE-SER-PRO 1UOO ; 2.35 ; Prolyl oligopeptidase from porcine brain, S554A mutant with bound peptide ligand GLY-PHE-ARG-PRO 1UOP ; 1.85 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, S554A MUTANT WITH BOUND PEPTIDE LIGAND GLY-PHE-GLU-PRO 1H2Z ; 1.65 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, S554A MUTANT WITH BOUND PEPTIDE LIGAND SUC-GLY-PRO 1VZ3 ; 1.6 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, T597C MUTANT 1H2X ; 1.49 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, Y473F MUTANT 1H2Y ; 1.78 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, Y473F MUTANT WITH COVALENTLY BOUND INHIBITOR Z-PRO-PROLINAL 1VZ2 ; 2.2 ; PROLYL OLIGOPEPTIDASE FROM PORCINE BRAIN, Y73C/V427C/C255T MUTANT 1QFM ; 1.4 ; PROLYL OLIGOPEPTIDASE FROM PORCINE MUSCLE 1QFS ; 2.0 ; PROLYL OLIGOPEPTIDASE FROM PORCINE MUSCLE WITH COVALENTLY BOUND INHIBITOR Z-PRO-PROLINAL 5T88 ; 1.902 ; Prolyl oligopeptidase from Pyrococcus furiosus 6CAN ; 2.2 ; Prolyl oligopeptidase mutant S477C from Pyrococcus furiosus 3DDU ; 1.56 ; Prolyl Oligopeptidase with GSK552 2EEP ; 2.2 ; Prolyl Tripeptidyl Aminopeptidase Complexed with an Inhibitor 2Z3W ; 2.0 ; Prolyl tripeptidyl aminopeptidase mutant E636A 2Z3Z ; 1.95 ; Prolyl tripeptidyl aminopeptidase mutant E636A complexd with an inhibitor 2J3L ; 2.3 ; Prolyl-tRNA synthetase from Enterococcus faecalis complexed with a prolyl-adenylate analogue ('5'-O-(N-(L-PROLYL)-SULFAMOYL)ADENOSINE) 2J3M ; 2.3 ; PROLYL-TRNA SYNTHETASE FROM ENTEROCOCCUS FAECALIS COMPLEXED WITH ATP, manganese and prolinol 1HC7 ; 2.43 ; Prolyl-tRNA synthetase from Thermus thermophilus 1H4T ; 2.9 ; Prolyl-tRNA synthetase from Thermus thermophilus complexed with L-proline 1H4S ; 2.85 ; Prolyl-tRNA synthetase from Thermus thermophilus complexed with tRNApro(CGG) and a prolyl-adenylate analogue 1H4Q ; 3.0 ; Prolyl-tRNA synthetase from Thermus thermophilus complexed with tRNApro(CGG), ATP and prolinol 6T2N ; 2.7 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 6T2O ; 2.05 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 6T2P ; 2.1 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 6T2Q ; 2.0 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 6T2R ; 2.1 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 6T2S ; 3.3 ; Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown 3A5U ; 2.8 ; Promiscuity and specificity in DNA binding to SSB: Insights from the structure of the Mycobacterium smegmatis SSB-ssDNA complex 8SF6 ; 1.702 ; Promiscuous amino acid gamma synthase from Caldicellulosiruptor hydrothermalis in closed conformation 8SF5 ; 2.3 ; Promiscuous amino acid gamma synthase from Caldicellulosiruptor hydrothermalis in open conformation 4V6U ; 6.6 ; Promiscuous behavior of proteins in archaeal ribosomes revealed by cryo-EM: implications for evolution of eukaryotic ribosomes 2L4S ; ; Promiscuous Binding at the Crossroads of Numerous Cancer Pathways: Insight from the Binding of GIP with Glutaminase L 5NPO ; 1.95 ; Promiscuous Protein Self-Assembly as a Function of Protein Stability 6YPZ ; 1.08 ; Promiscuous Reductase LugOII Catalyzes Keto-reduction at C1 during Lugdunomycin Biosynthesis 6YQ0 ; 1.08 ; Promiscuous Reductase LugOII Catalyzes Keto-reduction at C1 during Lugdunomycin Biosynthesis 6YQ3 ; 1.57 ; Promiscuous Reductase LugOII Catalyzes Keto-reduction at C1 during Lugdunomycin Biosynthesis 6YQ6 ; 2.08 ; Promiscuous Reductase LugOII Catalyzes Keto-reduction at C1 during Lugdunomycin Biosynthesis 3GTY ; 3.4 ; Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone 3GU0 ; 3.5 ; Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone 1GXD ; 3.1 ; proMMP-2/TIMP-2 complex 5UE5 ; ; proMMP-7 with heparin octasaccharide bound to the catalytic domain 5UE2 ; ; proMMP-7 with heparin octasaccharide bridging between domains 5UE3 ; 1.599 ; proMMP-9desFnII 5UE4 ; 1.8 ; proMMP-9desFnII complexed to JNJ0966 INHIBITOR 5O3O ; 3.5 ; Pronase-treated paired helical filament in Alzheimer's disease brain 2NTX ; 2.2 ; Prone8 1JMW ; 1.9 ; Propagating Conformational Changes Over Long (And Short) Distances 1DC9 ; 2.1 ; PROPERTIES AND CRYSTAL STRUCTURE OF A BETA-BARREL FOLDING MUTANT, V60N INTESTINAL FATTY ACID BINDING PROTEIN (IFABP) 3APT ; 1.85 ; properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8 3APY ; 2.8 ; Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8 2WBA ; 2.3 ; Properties of Trypanothione Reductase From T. brucei 1HN4 ; 1.5 ; PROPHOSPHOLIPASE A2 DIMER COMPLEXED WITH MJ33, SULFATE, AND CALCIUM 8E1U ; 2.65 ; Propionibacterium freudenreichii PPi-dependent PEPCK in complex with malate 1RQB ; 1.9 ; Propionibacterium shermanii transcarboxylase 5S subunit 1S3H ; 2.5 ; Propionibacterium shermanii transcarboxylase 5S subunit A59T 1RR2 ; 2.0 ; Propionibacterium shermanii transcarboxylase 5S subunit bound to 2-ketobutyric acid 1RQE ; 2.5 ; Propionibacterium shermanii transcarboxylase 5S subunit bound to oxaloacetate 1RQH ; 2.0 ; Propionibacterium shermanii transcarboxylase 5S subunit bound to pyruvic acid 1U5J ; 2.8 ; Propionibacterium shermanii transcarboxylase 5S subunit, Met186Ile 3IBB ; 3.5 ; Propionyl-CoA Carboxylase Beta Subunit, D422A 3IB9 ; 2.0 ; Propionyl-CoA Carboxylase Beta Subunit, D422L 3IAV ; 1.75 ; Propionyl-CoA Carboxylase Beta Subunit, D422V 6YBP ; 3.48 ; Propionyl-CoA carboxylase of Methylorubrum extorquens with bound CoA 5WGC ; 2.15 ; propionyl-DpsC in complex with oxetane-bearing probe 1PFZ ; 1.85 ; PROPLASMEPSIN II FROM PLASMODIUM FALCIPARUM 1IWD ; 1.63 ; Proposed Amino Acid Sequence and the 1.63 Angstrom X-ray Crystal Structure of a Plant Cysteine Protease Ervatamin B: Insight into the Structural Basis of its Stability and Substrate Specificity. 5CTS ; 1.9 ; PROPOSED MECHANISM FOR THE CONDENSATION REACTION OF CITRATE SYNTHASE. 1.9-ANGSTROMS STRUCTURE OF THE TERNARY COMPLEX WITH OXALOACETATE AND CARBOXYMETHYL COENZYME A 6CTS ; 2.5 ; PROPOSED MECHANISM FOR THE CONDENSATION REACTION OF CITRATE SYNTHASE. 1.9-ANGSTROMS STRUCTURE OF THE TERNARY COMPLEX WITH OXALOACETATE AND CARBOXYMETHYL COENZYME A 7R3I ; 3.1 ; PROSS optimitzed variant of RhlR (61 mutations) in complex with the synthetic antagonist mBTL 7R3H ; 3.49 ; PROSS optimitzed variant of RhlR (75 mutations) in complex with native autoinducer C4-HSL 7R3G ; 2.15 ; PROSS optimitzed variant of RhlR (75 mutations) in complex with the synthetic antagonist mBTL 8D1D ; 1.42 ; PROSS PETase 1RY8 ; 1.69 ; Prostaglandin F synthase complexed with NADPH and rutin 1CQE ; 3.1 ; PROSTAGLANDIN H2 SYNTHASE-1 COMPLEX WITH FLURBIPROFEN 1PGF ; 4.5 ; PROSTAGLANDIN H2 SYNTHASE-1 COMPLEXED WITH 1-(4-IODOBENZOYL)-5-METHOXY-2-METHYLINDOLE-3-ACETIC ACID (IODOINDOMETHACIN), CIS MODEL 1PGG ; 4.5 ; PROSTAGLANDIN H2 SYNTHASE-1 COMPLEXED WITH 1-(4-IODOBENZOYL)-5-METHOXY-2-METHYLINDOLE-3-ACETIC ACID (IODOINDOMETHACIN), TRANS MODEL 1PGE ; 3.5 ; PROSTAGLANDIN H2 SYNTHASE-1 COMPLEXED WITH P-(2'-IODO-5'-THENOYL)HYDROTROPIC ACID (IODOSUPROFEN) 1GVZ ; 1.42 ; Prostate Specific Antigen (PSA) from stallion seminal plasma 7ZZV ; ; Prostatic acid phosphatase (PAP) fragment (85-120) 3CNQ ; 1.71 ; Prosubtilisin Substrate Complex of Subtilisin SUBT_BACAM 8QU8 ; 3.5 ; PROTAC-mediated complex of KRAS with VHL/Elongin-B/Elongin-C/Cullin-2/Rbx1 6ZHC ; 1.92 ; PROTAC6 mediated complex of VHL:EloB:EloC and Bcl-xL 2R0K ; 3.51 ; Protease domain of HGFA with inhibitor Fab58 1YBW ; 2.7 ; Protease domain of HGFA with no inhibitor 5LKQ ; 2.498 ; Protease domain of RadA 5KR0 ; 1.8 ; Protease E35D-APV 5KQZ ; 1.7 ; Protease E35D-CaP2 5KQY ; 1.65 ; Protease E35D-DRV 5KQX ; 2.4 ; Protease E35D-SQV 1SKZ ; 1.9 ; PROTEASE INHIBITOR 5UGD ; 1.38 ; Protease Inhibitor 5UGG ; 1.2 ; Protease Inhibitor 1ECY ; 2.19 ; PROTEASE INHIBITOR ECOTIN 1ECZ ; 2.68 ; PROTEASE INHIBITOR ECOTIN 7SGQ ; 2.09 ; Protease inhibitors variant, CTI-homolog pacifastin 7SLT ; 2.0 ; Protease inhibitors variant, CTI-homolog pacifastin 5KR1 ; 1.6 ; Protease PR5-DRV 5KR2 ; 1.78 ; Protease PR5-SQV 7AGE ; 1.3 ; Protease Sapp1p from Candida parapsilosis in complex with KB32 7AGB ; 1.7 ; Protease Sapp1p from Candida parapsilosis in complex with KB70 7AGC ; 1.35 ; Protease Sapp1p from Candida parapsilosis in complex with KB74 7AGD ; 1.8 ; Protease Sapp1p from Candida parapsilosis in complex with KB75 6D3Z ; 2.0 ; Protease SFTI complex 7EOX ; 1.7 ; Protease structure from Euphorbia resinifera 3ICU ; 2.1 ; Protease-associated domain of the E3 ligase grail 4BR1 ; 1.9 ; Protease-induced heterodimer of human triosephosphate isomerase. 1SI5 ; 2.53 ; Protease-like domain from 2-chain hepatocyte growth factor 3VKM ; 2.98 ; Protease-resistant mutant form of Human Galectin-8 in complex with sialyllactose and lactose 3VKL ; 2.55 ; Protease-resistant mutant form of human Galectin-8 in complex with two lactose molecules 5YL7 ; 1.4 ; Proteases from Pseudoalteromonas arctica PAMC 21717 (Pro21717) 3H4P ; 4.1 ; Proteasome 20S core particle from Methanocaldococcus jannaschii 8T0M ; 2.4 ; Proteasome 20S core particle from Pre1-1 Pre4-1 Double mutant 6SJ9 ; 2.2 ; Proteasome accessory factor B/C (PafBC) of Arthrobacter aurescens 4V7O ; 3.005 ; Proteasome Activator Complex 1AVO ; 2.8 ; PROTEASOME ACTIVATOR REG(ALPHA) 2JAY ; 1.99 ; Proteasome beta subunit PrcB from Mycobacterium tuberculosis 1PMA ; 3.4 ; PROTEASOME FROM THERMOPLASMA ACIDOPHILUM 3SHJ ; 2.8 ; Proteasome in complex with hydroxyurea derivative HU10 3D29 ; 2.6 ; Proteasome Inhibition by Fellutamide B 2WG5 ; 2.1 ; Proteasome-Activating Nucleotidase (PAN) N-domain (57-134) from Archaeoglobus fulgidus fused to GCN4 2WG6 ; 2.5 ; Proteasome-Activating Nucleotidase (PAN) N-domain (57-134) from Archaeoglobus fulgidus fused to GCN4, P61A Mutant 7QXN ; 3.7 ; Proteasome-ZFAND5 Complex Z+A state 7QXP ; 3.6 ; Proteasome-ZFAND5 Complex Z+B state 7QXU ; 4.3 ; Proteasome-ZFAND5 Complex Z+C state 7QXW ; 4.1 ; Proteasome-ZFAND5 Complex Z+D state 7QXX ; 4.4 ; Proteasome-ZFAND5 Complex Z+E state 7QY7 ; 4.7 ; Proteasome-ZFAND5 Complex Z-A state 7QYA ; 4.8 ; Proteasome-ZFAND5 Complex Z-B state 7QYB ; 4.1 ; Proteasome-ZFAND5 Complex Z-C state 2MTX ; ; Protection against experimental P. falciparum malaria is associated with short AMA-1 peptide analogue alpha-helical structures 8DOZ ; 1.7 ; Protective antibody against gonococcal lipooligosaccharide 8DUZ ; 1.65 ; Protective antibody against gonococcal lipooligosaccharide bound to peptide mimetic 7KXR ; 3.3 ; Protective antigen pore translocating lethal factor N-terminal domain 2MUG ; ; Protective cellular immunity against P. falciparum malaria merozoite is associated with a different P7 and P8 residue orientation in the MHC-peptide-TCR complex 1PG1 ; ; PROTEGRIN 1 (PG1) FROM PORCINE LEUKOCYTES, NMR, 20 STRUCTURES 5UWZ ; 1.25 ; Protein 12 with aldehyde deformylating oxygenase activity from Gloeobacter violaceus 5UX2 ; 1.99 ; Protein 19 with aldehyde deformylating oxidase activity from Synechococcus 8FHB ; 1.95 ; Protein 32 with aldehyde deformylating oxidase activity from Synechococcus sp. 5UXI ; 2.0 ; Protein 4 with aldehyde deformylating oxygenase activity from Nostoc puntiforme 7UZS ; 2.2 ; Protein 4.2 (local refinement from consensus reconstruction of ankyrin complex classes) 8FHC ; 2.097 ; Protein 41 with aldehyde deformylating oxidase activity from Gamma proteobacterium 5UX1 ; 1.5 ; Protein 43 with aldehyde deformylating oxygenase activity from Synechococcus 6D9F ; 2.03 ; Protein 60 with aldehyde deformylating oxidase activity from Kitasatospora setae 5UXG ; 1.72 ; Protein 84 with aldehyde deformylating oxygenase activity from Sulfolobus tokodaii (monoclinic) 5V4T ; 1.7 ; Protein 84 with aldehyde deformylating oxygenase activity from Sulfolobus tokodaii (orthorhombic form) 2JWD ; ; protein A 5C6N ; 3.0 ; protein A 6OOM ; 2.2 ; PROTEIN A 6VRZ ; 2.0 ; protein A 2M5A ; ; Protein A binding by an engineered Affibody molecule 1CQM ; 1.65 ; PROTEIN AGGREGATION AND ALZHEIMER'S DISEASE: CRYSTALLOGRAPHIC ANALYSIS OF THE PHENOMENON. ENGINEERED VERSION OF THE RIBOSOMAL PROTEIN S6 USED AS A STABLE SCAFFOLD TO STUDY OLIGOMERIZATION. 1CQN ; 2.1 ; PROTEIN AGGREGATION AND ALZHEIMER'S DISEASE: CRYSTALLOGRAPHIC ANALYSIS OF THE PHENOMENON. ENGINEERED VERSION OF THE RIBOSOMAL PROTEIN S6 USED AS A STABLE SCAFFOLD TO STUDY OLIGOMERIZATION. 1QJH ; 2.2 ; Protein Aggregation and Alzheimer's Disease: Crystallographic Analysis of the Phenomenon. Engineered version of the ribosomal protein S6 used as a stable scaffold to study oligomerization. 6SVC ; ; Protein allostery of the WW domain at atomic resolution: apo structure 6SVH ; ; Protein allostery of the WW domain at atomic resolution: FFpSPR bound structure 6SVE ; ; Protein allostery of the WW domain at atomic resolution: pCdc25C bound structure 2L61 ; ; Protein and metal cluster structure of the wheat metallothionein domain g-Ec-1. The second part of the puzzle. 2L62 ; ; Protein and metal cluster structure of the wheat metallothionein domain g-Ec-1. The second part of the puzzle. 6FH2 ; 2.7 ; Protein arginine kinase McsB in the AMP-PN-bound state 6FH1 ; 1.7 ; Protein arginine kinase McsB in the apo state 6FH3 ; 1.85 ; Protein arginine kinase McsB in the pArg-bound state 4QQN ; 2.08 ; Protein arginine methyltransferase 3 in complex with compound MTV044246 5C6O ; 3.0 ; protein B 6OOP ; 2.8 ; protein B 6VS0 ; 2.1 ; protein B 5C6P ; 3.0 ; protein C 6OOQ ; 3.0 ; protein C 6VS1 ; 3.0 ; protein C 2PD0 ; 2.3 ; Protein cgd2_2020 from Cryptosporidium parvum 7Q5S ; 4.47 ; Protein community member fatty acid synthase complex from C. thermophilum 7Q5Q ; 4.38 ; Protein community member oxoglutarate dehydrogenase complex E2 core from C. thermophilum 7Q5R ; 3.84 ; Protein community member pyruvate dehydrogenase complex E2 core from C. thermophilum 4GG6 ; 3.2 ; Protein complex 7F7X ; ; Protein complex between phosphorylated ubiquitin and Ubqln2 UBA 4OI4 ; 2.4 ; Protein complex of Clp1 bound to ATP and Mg2+ with Pcf11deltaN454deltaC563 of S. cerevisiae 1Z3D ; 2.5 ; Protein crystal growth improvement leading to the 2.5A crystallographic structure of ubiquitin-conjugating enzyme (ubc-1) from Caenorhabditis elegans 4NN2 ; 1.472 ; Protein Crystal Structure of Human Borjeson-Forssman-Lehmann Syndrome Associated Protein PHF6 4BQQ ; 2.15 ; Protein crystal structure of the N-terminal and recombinase domains of the Streptomyces temperate phage serine recombinase, fC31 integrase. 3RDK ; 1.49 ; Protein crystal structure of xylanase A1 of Paenibacillus sp. JDR-2 4A8I ; 0.95 ; Protein crystallization and microgravity: glucose isomerase crystals grown during the PCDF-PROTEIN mission 4A8L ; 1.35 ; Protein crystallization and microgravity: glucose isomerase crystals grown during the PCDF-PROTEIN mission 4A8N ; 1.2 ; Protein crystallization and microgravity: glucose isomerase crystals grown during the PCDF-PROTEIN mission 4A8R ; 1.42 ; Protein crystallization and microgravity: glucose isomerase crystals grown during the PCDF-PROTEIN mission 6QUK ; 1.58 ; Protein crystallization by ionic liquid hydrogel support: glucose isomerase grown by using ionic liquid hydrogel 6QUF ; 1.19 ; Protein crystallization by ionic liquid hydrogel support: reference crystal of glucose isomerase grown on standard silanized glass 6VS2 ; 3.0 ; protein D 2BJX ; ; PROTEIN DISULFIDE ISOMERASE 1A8L ; 1.9 ; PROTEIN DISULFIDE OXIDOREDUCTASE FROM ARCHAEON PYROCOCCUS FURIOSUS 4QGU ; 2.545 ; protein domain complex with ssDNA 3ZN2 ; 1.8 ; protein engineering of halohydrin dehalogenase 1XIN ; 2.4 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 2XIN ; 2.3 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 3XIN ; 2.3 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 4XIM ; 2.3 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 5XIM ; 2.6 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 5XIN ; 2.3 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 6XIM ; 2.5 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 7XIM ; 2.4 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 8XIM ; 2.4 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 9XIM ; 2.4 ; PROTEIN ENGINEERING OF XYLOSE (GLUCOSE) ISOMERASE FROM ACTINOPLANES MISSOURIENSIS. 1. CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF METAL BINDING SITES 1ML1 ; 2.6 ; PROTEIN ENGINEERING WITH MONOMERIC TRIOSEPHOSPHATE ISOMERASE: THE MODELLING AND STRUCTURE VERIFICATION OF A SEVEN RESIDUE LOOP 6FVC ; ; Protein environment affects the water-tryptophan binding mode. Molecular dynamics simulations of Engrailed homeodomain mutants 1FPP ; 2.75 ; PROTEIN FARNESYLTRANSFERASE COMPLEX WITH FARNESYL DIPHOSPHATE 2H6F ; 1.5 ; Protein Farnesyltransferase Complexed with a Farnesylated DDPTASACVLS Peptide Product at 1.5A Resolution 1KZP ; 2.1 ; PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A FARNESYLATED K-RAS4B PEPTIDE PRODUCT 1TN8 ; 2.25 ; Protein Farnesyltransferase Complexed with a H-Ras Peptide Substrate and a FPP Analog at 2.25A Resolution 1TN6 ; 1.8 ; Protein Farnesyltransferase Complexed with a Rap2a Peptide Substrate and a FPP Analog at 1.8A Resolution 1TN7 ; 2.3 ; Protein Farnesyltransferase Complexed with a TC21 Peptide Substrate and a FPP Analog at 2.3A Resolution 3E37 ; 1.8 ; Protein farnesyltransferase complexed with bisubstrate ethylenediamine scaffold inhibitor 5 1KZO ; 2.2 ; PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH FARNESYLATED K-RAS4B PEPTIDE PRODUCT AND FARNESYL DIPHOSPHATE SUBSTRATE BOUND SIMULTANEOUSLY 3DPY ; 2.7 ; Protein farnesyltransferase complexed with FPP and caged TKCVIM substrate 3E30 ; 2.45 ; Protein farnesyltransferase complexed with FPP and ethylene diamine inhibitor 4 3E32 ; 2.45 ; Protein farnesyltransferase complexed with FPP and ethylenediamine scaffold inhibitor 2 3E33 ; 1.9 ; Protein farnesyltransferase complexed with FPP and ethylenediamine scaffold inhibitor 7 3E34 ; 2.05 ; Protein farnesyltransferase complexed with FPP and ethylenediamine-scaffold inhibitor 10 2KIB ; ; Protein Fibril 167L ; 2.2 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 168L ; 2.9 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 169L ; 3.0 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 170L ; 2.6 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 171L ; 2.5 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 172L ; 1.9 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 173L ; 1.7 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 174L ; 2.3 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 175L ; 2.1 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 176L ; 2.2 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 177L ; 2.5 ; Protein flexibility and adaptability seen in 25 crystal forms of T4 LYSOZYME 178L ; 2.71 ; Protein flexibility and adaptability seen in 25 crystal forms of T4 LYSOZYME 180L ; 1.75 ; PROTEIN FLEXIBILITY AND ADAPTABILITY SEEN IN 25 CRYSTAL FORMS OF T4 LYSOZYME 2K6R ; ; Protein folding on a highly rugged landscape: Experimental observation of glassy dynamics and structural frustration 4WH4 ; 2.2 ; Protein GB1 Quadruple Mutant I6H/N8H/K28H/Q32H 1N4R ; 2.8 ; Protein Geranylgeranyltransferase type-I Complexed with a Geranylgeranylated KKKSKTKCVIL Peptide Product 1N4Q ; 2.4 ; Protein Geranylgeranyltransferase type-I Complexed with a GGPP Analog and a KKKSKTKCVIL Peptide 1N4P ; 2.65 ; Protein Geranylgeranyltransferase type-I Complexed with Geranylgeranyl Diphosphate 1N4S ; 2.6 ; Protein Geranylgeranyltransferase type-I Complexed with GGPP and a Geranylgeranylated KKKSKTKCVIL Peptide Product 4INN ; 2.6 ; Protein HP1028 from the human pathogen Helicobacter pylori belongs to the lipocalin family 1LMA ; 1.75 ; PROTEIN HYDRATION AND WATER STRUCTURE: X-RAY ANALYSIS OF A CLOSELY PACKED PROTEIN CRYSTAL WITH VERY LOW SOLVENT CONTENT 3MYZ ; 1.6 ; Protein induced photophysical changes to the amyloid indicator dye, thioflavin T 2F7Z ; 3.0 ; Protein Kinase A bound to (R)-1-(1H-Indol-3-ylmethyl)-2-(2-pyridin-4-yl-[1,7]naphtyridin-5-yloxy)-ehylamine 2F7X ; 1.9 ; Protein Kinase A bound to (S)-2-(1H-Indol-3-yl)-1-[5-((E)-2-pyridin-4-yl-vinyl)-pyridin-3-yloxymethyl]-ethylamine 7PID ; 1.496 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN060 7PIE ; 1.427 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN068 7PNS ; 1.855 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN081 7PIF ; 1.395 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN086 7PIG ; 1.553 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN088 7PIH ; 1.374 ; Protein kinase A catalytic subunit in complex with PKI5-24 and EN093 2GNG ; 1.87 ; Protein kinase A fivefold mutant model of Rho-kinase 2GNF ; 2.28 ; Protein kinase A fivefold mutant model of Rho-kinase with Y-27632 4UJ1 ; 1.768 ; Protein Kinase A in complex with an Inhibitor 4UJ2 ; 2.019 ; Protein Kinase A in complex with an Inhibitor 4UJ9 ; 1.87 ; Protein Kinase A in complex with an Inhibitor 4UJA ; 1.93 ; Protein Kinase A in complex with an Inhibitor 4UJB ; 1.949 ; Protein Kinase A in complex with an Inhibitor 5N23 ; 2.088 ; Protein kinase A mutants as surrogate model for Aurora B with AT9283 inhibitor 3AMA ; 1.75 ; Protein kinase A sixfold mutant model of Aurora B with inhibitor JNJ-7706621 3AMB ; 2.25 ; Protein kinase A sixfold mutant model of Aurora B with inhibitor VX-680 1SMH ; 2.044 ; Protein kinase A variant complex with completely ordered N-terminal helix 1PTQ ; 1.95 ; PROTEIN KINASE C DELTA CYS2 DOMAIN 1PTR ; 2.2 ; PROTEIN KINASE C DELTA CYS2 DOMAIN COMPLEXED WITH PHORBOL-13-ACETATE 2QC6 ; 1.85 ; Protein kinase CK2 in complex with DBC 2OXX ; 2.3 ; Protein kinase CK2 in complex with tetrabromobenzoimidazole derivatives K17, K22 and K32 2OXY ; 1.812 ; Protein kinase CK2 in complex with tetrabromobenzoimidazole derivatives K17, K22 and K32 2OXD ; 2.3 ; Protein kinase CK2 in complex with tetrabromobenzoimidazole K17, K22 and K32 inhibitors 3FL5 ; 2.3 ; Protein kinase CK2 in complex with the inhibitor Quinalizarin 2H6D ; 1.85 ; Protein Kinase Domain of the Human 5'-AMP-activated protein kinase catalytic subunit alpha-2 (AMPK alpha-2 chain) 2JBO ; 3.1 ; Protein kinase MK2 in complex with an inhibitor (crystal form-1, soaking) 2JBP ; 3.31 ; Protein kinase MK2 in complex with an inhibitor (crystal form-2, co- crystallization) 7OVK ; 2.05 ; Protein kinase MKK7 in complex with 5-bromo-2-hydroxyphenyl-substituted pyrazolopyrimidine 7OVM ; 2.9 ; Protein kinase MKK7 in complex with cyclobutyl-substituted indazole 7OVJ ; 2.35 ; Protein kinase MKK7 in complex with difluoro-phenethyltriazole-substituted pyrazolopyrimidine 7OVL ; 2.9 ; Protein kinase MKK7 in complex with methoxycyclohexyl-substituted indazole 7OVI ; 1.95 ; Protein kinase MKK7 in complex with phenethyltriazole-substituted pyrazolopyrimidine 7OVN ; 2.9 ; Protein kinase MKK7 in complex with tolyl-substituted indazole 2XIX ; 2.4 ; Protein kinase Pim-1 in complex with fragment-1 from crystallographic fragment screen 2XIY ; 2.2 ; Protein kinase Pim-1 in complex with fragment-2 from crystallographic fragment screen 2XIZ ; 2.21 ; Protein kinase Pim-1 in complex with fragment-3 from crystallographic fragment screen 2XJ0 ; 3.1 ; Protein kinase Pim-1 in complex with fragment-4 from crystallographic fragment screen 2XJ2 ; 2.2 ; Protein kinase Pim-1 in complex with small molecule inhibitor 2XJ1 ; 2.13 ; Protein kinase Pim-1 in complex with small molecule inibitor 2UGI ; 2.2 ; PROTEIN MIMICRY OF DNA FROM CRYSTAL STRUCTURES OF THE URACIL GLYCOSYLASE INHIBITOR PROTEIN AND ITS COMPLEX WITH ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE 7LYZ ; 2.5 ; PROTEIN MODEL BUILDING BY THE USE OF A CONSTRAINED-RESTRAINED LEAST-SQUARES PROCEDURE 1JHS ; 1.9 ; Protein Mog1 E65A mutant 5GZA ; 2.0 ; protein O-mannose kinase 2O35 ; 2.12 ; Protein of Unknown Function (DUF1244) from Sinorhizobium meliloti 2OEZ ; 1.97 ; Protein of Unknown Function (DUF1342) from Vibrio parahaemolyticus 2OEQ ; 2.9 ; Protein of Unknown Function (DUF964) from Bacillus stearothermophilus 2GBO ; 2.2 ; Protein of Unknown Function EF2458 from Enterococcus faecalis 2DDZ ; 2.24 ; Protein of Unknown Function from Pyrococcus horikoshi 2GKP ; 1.35 ; Protein of Unknown Function NMB0488 from Neisseria meningitidis 8PW4 ; 2.3 ; Protein p6 from bacteriophage phi29, C-terminal delta20 truncated version 8PW2 ; 1.59 ; Protein p6 from bacteriophage phi29, C-terminal delta31 truncated version 6QWN ; 3.892 ; Protein peptide complex 6QXP ; 3.201 ; Protein peptide complex 6ZK6 ; 1.9 ; Protein Phosphatase 1 (PP1) T320E mutant 6NTS ; 3.63 ; Protein Phosphatase 2A (Aalpha-B56alpha-Calpha) holoenzyme in complex with a Small Molecule Activator of PP2A (SMAP) 3K7V ; 2.85 ; Protein phosphatase 2A core complex bound to dinophysistoxin-1 3K7W ; 2.96 ; Protein phosphatase 2A core complex bound to dinophysistoxin-2 3QC1 ; 2.35 ; Protein Phosphatase Subunit: Alpha4 2UZQ ; 2.38 ; Protein Phosphatase, New Crystal Form 2MP0 ; ; Protein Phosphorylation upon a Fleeting Encounter 6ZNV ; 1.14 ; Protein polybromo-1 (PB1 BD2) Bound To DP28 6ZN6 ; 2.02 ; Protein polybromo-1 (PB1 BD2) Bound To MW278 1XSM ; 2.3 ; PROTEIN R2 OF RIBONUCLEOTIDE REDUCTASE FROM MOUSE 4G9J ; 3.1 ; Protein Ser/Thr phosphatase-1 in complex with cell-permeable peptide 1FJM ; 2.1 ; Protein serine/threonine phosphatase-1 (alpha isoform, type 1) complexed with microcystin-LR toxin 1SNO ; 1.7 ; PROTEIN STABILITY IN STAPHYLOCOCCAL NUCLEASE 1SNP ; 1.95 ; PROTEIN STABILITY IN STAPHYLOCOCCAL NUCLEASE 1SNQ ; 1.7 ; PROTEIN STABILITY IN STAPHYLOCOCCAL NUCLEASE 5O4W ; 2.11 ; Protein structure determination by electron diffraction using a single three-dimensional nanocrystal 5O4X ; 2.11 ; Protein structure determination by electron diffraction using a single three-dimensional nanocrystal 2M3W ; ; Protein structure determination from a set of 4D NOESY 3M8E ; 2.0 ; Protein structure of Type III plasmid segregation TubR 3M9A ; 2.5 ; Protein structure of type III plasmid segregation TubR 3M8F ; 2.8 ; Protein structure of type III plasmid segregation TubR mutant 3M8K ; 2.3 ; Protein structure of type III plasmid segregation TubZ 3OH3 ; 2.03 ; Protein structure of USP from L. major bound to URIDINE-5'-DIPHOSPHATE -Arabinose 3OH4 ; 2.21 ; Protein structure of USP from L. major bound to URIDINE-5'-DIPHOSPHATE Glucose 3OH2 ; 2.14 ; Protein structure of USP from L. major bound to URIDINE-5'-DIPHOSPHATE-GALACTOSE 3OH1 ; 2.18 ; Protein structure of USP from L. major bound to URIDINE-5'-DIPHOSPHATE-Galacturonic acid 3OH0 ; 2.15 ; Protein structure of USP from L. major bound to URIDINE-5'-TRIPHOSPHATE 3OGZ ; 2.03 ; Protein structure of USP from L. major in Apo-form 209L ; 2.7 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 210L ; 1.89 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 211L ; 1.7 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 212L ; 1.76 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 213L ; 2.13 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 214L ; 1.89 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 215L ; 1.96 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 218L ; 2.05 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 219L ; 1.66 ; PROTEIN STRUCTURE PLASTICITY EXEMPLIFIED BY INSERTION AND DELETION MUTANTS IN T4 LYSOZYME 7E15 ; 2.45 ; Protein ternary complex working for DNA replication initiation 7CK6 ; 3.4 ; Protein translocase of mitochondria 3S4O ; 2.3 ; Protein Tyrosine Phosphatase (putative) from Leishmania major 7LFO ; 1.94 ; Protein Tyrosine Phosphatase 1B 5K9W ; 2.01 ; Protein Tyrosine Phosphatase 1B (1-301) in complex with TCS401, closed state 6OL4 ; 2.15 ; Protein Tyrosine Phosphatase 1B (1-301), F182A mutant, apo state 6PHA ; 2.299 ; Protein Tyrosine Phosphatase 1B (1-301), F182A mutant, vanadate bound state 5K9V ; 1.898 ; Protein Tyrosine Phosphatase 1B (1-301), open state 6OMY ; 2.1 ; Protein Tyrosine Phosphatase 1B (1-301), P180A mutant, apo state 6PM8 ; 2.06 ; Protein Tyrosine Phosphatase 1B (1-301), P180A mutant, vanadate bound state 6OLV ; 2.1 ; Protein Tyrosine Phosphatase 1B (1-301), P185A mutant, apo state 6PHS ; 2.129 ; Protein Tyrosine Phosphatase 1B (1-301), P185A mutant, vanadate bound state 6OLQ ; 2.1 ; Protein Tyrosine Phosphatase 1B (1-301), P188A mutant, apo state 6PG0 ; 2.1 ; Protein Tyrosine Phosphatase 1B (1-301), P188A mutant, vanadate bound state 6PFW ; 2.34 ; Protein Tyrosine Phosphatase 1B (1-301), T177A mutant, apo state 6PGT ; 2.2 ; Protein Tyrosine Phosphatase 1B (1-301), T177A mutant, vanadate bound state 3QKP ; 2.05 ; Protein Tyrosine Phosphatase 1B - Apo W179F mutant with open WPD-loop 7S4F ; 1.65 ; Protein Tyrosine Phosphatase 1B - F182Q mutant bound with Hepes 3I7Z ; 2.3 ; Protein Tyrosine Phosphatase 1B - Transition state analog for the first catalytic step 3I80 ; 2.25 ; Protein Tyrosine Phosphatase 1B - Transition state analog for the second catalytic step 3QKQ ; 2.2 ; Protein Tyrosine Phosphatase 1B - W179F mutant bound with vanadate 6CWV ; 1.98002 ; Protein Tyrosine Phosphatase 1B A122S mutant 6W30 ; 2.1 ; Protein Tyrosine Phosphatase 1B Bound to Amorphadiene 1A5Y ; 2.5 ; PROTEIN TYROSINE PHOSPHATASE 1B CYSTEINYL-PHOSPHATE INTERMEDIATE 5KA1 ; 1.84 ; Protein Tyrosine Phosphatase 1B Delta helix 7 mutant in complex with TCS401, closed state 5KA0 ; 1.991 ; Protein Tyrosine Phosphatase 1B Delta helix 7, open state 5KAB ; 1.968 ; Protein Tyrosine Phosphatase 1B Delta helix 7, P185G mutant in complex with TCS401, open state 5KAA ; 1.968 ; Protein Tyrosine Phosphatase 1B Delta helix 7, P185G mutant, open state 6CWU ; 2.08 ; Protein Tyrosine Phosphatase 1B F135Y mutant 5KA9 ; 2.07 ; Protein Tyrosine Phosphatase 1B L192A mutant in complex with TCS401, open state 5KA8 ; 1.971 ; Protein Tyrosine Phosphatase 1B L192A mutant, open state 5KAD ; 1.9 ; Protein Tyrosine Phosphatase 1B N193A mutant in complex with TCS401, closed state 5KAC ; 1.9 ; Protein Tyrosine Phosphatase 1B P185G mutant, open state 5KA7 ; 2.061 ; Protein Tyrosine Phosphatase 1B T178A mutant in complex with TCS401, closed state 5KA4 ; 2.185 ; Protein Tyrosine Phosphatase 1B T178A mutant, open state 1WAX ; 2.2 ; Protein tyrosine phosphatase 1B with active site inhibitor 7KLX ; 1.839 ; Protein Tyrosine Phosphatase 1B with inhibitor 2F6T ; 1.7 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F6V ; 1.7 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F6W ; 2.2 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F6Y ; 2.15 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F6Z ; 1.7 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F70 ; 2.12 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 2F71 ; 1.55 ; Protein tyrosine phosphatase 1B with sulfamic acid inhibitors 5KA3 ; 2.141 ; Protein Tyrosine Phosphatase 1B YAYA (Y152A, Y153A) mutant in complex with TCS401, closed state 5KA2 ; 2.071 ; Protein Tyrosine Phosphatase 1B YAYA (Y152A, Y153A) mutant, open state 7KEY ; 1.771 ; Protein Tyrosine Phosphatase 1B, Apo 7KEN ; 1.8 ; Protein Tyrosine Phosphatase 1B, D289A mutant, apo state 3BRH ; 2.2 ; Protein Tyrosine Phosphatase PTPN-22 (Lyp) bound to the mono-Phosphorylated Lck active site peptide 2JJD ; 3.2 ; Protein Tyrosine Phosphatase, Receptor Type, E isoform 1LP1 ; 2.3 ; Protein Z in complex with an in vitro selected affibody 6HZX ; 2.91 ; Protein-aromatic foldamer complex crystal structure 6Q3O ; 2.23 ; PROTEIN-AROMATIC FOLDAMER COMPLEX CRYSTAL STRUCTURE 6Q9T ; 2.68 ; Protein-aromatic foldamer complex crystal structure 4QCB ; 2.89 ; Protein-DNA complex of Vaccinia virus D4 with double-stranded non-specific DNA 4CRO ; 3.9 ; PROTEIN-DNA CONFORMATIONAL CHANGES IN THE CRYSTAL STRUCTURE OF A LAMBDA CRO-OPERATOR COMPLEX 1O3Q ; 3.0 ; PROTEIN-DNA RECOGNITION AND DNA DEFORMATION REVEALED IN CRYSTAL STRUCTURES OF CAP-DNA COMPLEXES 1O3R ; 3.0 ; PROTEIN-DNA RECOGNITION AND DNA DEFORMATION REVEALED IN CRYSTAL STRUCTURES OF CAP-DNA COMPLEXES 1O3S ; 3.0 ; PROTEIN-DNA RECOGNITION AND DNA DEFORMATION REVEALED IN CRYSTAL STRUCTURES OF CAP-DNA COMPLEXES 1O3T ; 2.8 ; PROTEIN-DNA RECOGNITION AND DNA DEFORMATION REVEALED IN CRYSTAL STRUCTURES OF CAP-DNA COMPLEXES 3W1W ; 2.006 ; Protein-drug complex 2VQA ; 2.95 ; Protein-folding location can regulate Mn versus Cu- or Zn-binding. Crystal Structure of MncA. 3MZT ; 2.7 ; Protein-induced photophysical changes to the amyloid indicator dye, thioflavin T 1DL5 ; 1.8 ; PROTEIN-L-ISOASPARTATE O-METHYLTRANSFERASE 4O29 ; 2.9 ; PROTEIN-L-ISOASPARTATE O-METHYLTRANSFERASE from Pyrobaculum aerophilum in COMPLEX WITH S-ADENOSYL-L-HOMOCYSTEINE 2XNI ; 3.3 ; Protein-ligand complex of a novel macrocyclic HCV NS3 protease inhibitor derived from amino cyclic boronates 3S8L ; 1.71 ; Protein-Ligand Interactions: Thermodynamic Effects Associated with Increasing Hydrophobic Surface Area 2AN6 ; 3.0 ; Protein-peptide complex 5U4P ; 2.5 ; Protein-protein complex between 26S proteasome regulatory subunit RPN8, RPN11, and Ubiquitin S31 3RPF ; 1.9 ; Protein-protein complex of subunit 1 and 2 of Molybdopterin-converting factor from Helicobacter pylori 26695 5B6G ; 1.99 ; Protein-protein interaction 5IZ6 ; 2.15 ; Protein-protein interaction 5IZ8 ; 3.06 ; Protein-protein interaction 5IZ9 ; 2.93 ; Protein-protein interaction 5IZA ; 1.5 ; Protein-protein interaction 6FW4 ; ; Protein-protein interactions and conformational changes : Importance of the hydrophobic cavity of TolA C-terminal domain 2AOS ; 2.9 ; Protein-protein Interactions of protective signalling factor: Crystal structure of ternary complex involving signalling protein from goat (SPG-40), tetrasaccharide and a tripeptide Trp-pro-Trp at 2.9 A resolution 1BRS ; 2.0 ; PROTEIN-PROTEIN RECOGNITION: CRYSTAL STRUCTURAL ANALYSIS OF A BARNASE-BARSTAR COMPLEX AT 2.0-A RESOLUTION 2PY9 ; 2.56 ; Protein-RNA Interaction involving KH1 domain from Human Poly(C)-Binding Protein-2 1BMV ; 3.0 ; PROTEIN-RNA INTERACTIONS IN AN ICOSAHEDRAL VIRUS AT 3.0 ANGSTROMS RESOLUTION 1EGP ; 2.0 ; PROTEINASE INHIBITOR EGLIN C WITH HYDROLYSED REACTIVE CENTER 3N0K ; 1.8 ; Proteinase inhibitor from Coprinopsis cinerea 1DEM ; ; PROTEINASE INHIBITOR HOMOLOGUES AS POTASSIUM CHANNEL BLOCKERS 1DEN ; ; PROTEINASE INHIBITOR HOMOLOGUES AS POTASSIUM CHANNEL BLOCKERS 1PMC ; ; PROTEINASE INHIBITOR PMP-C (NMR, 36 STRUCTURES) 3SSI ; 2.3 ; PROTEINASE INHIBITOR SSI (STREPTOMYCES SUBTILISIN, INHIBITOR) FROM STREPTOMYCES ALBOGRISEOLUS 8F07 ; 1.05 ; Proteinase K Anomalous Dataset at 273 K and 12 keV 8F05 ; 1.8 ; Proteinase K Anomalous Dataset at 293 K and 7.1 keV 8F06 ; 1.8 ; Proteinase K Anomalous Dataset at 310 K and 7.1 keV 3DWE ; 0.99 ; Proteinase K by Classical hanging drop method after high X-Ray dose on ESRF ID14-2 beamline 3I30 ; 0.992 ; Proteinase K by Classical hanging drop Method after high X-Ray dose on ID14-2 Beamline at ESRF 3DE4 ; 1.8 ; Proteinase K by Classical hanging drop method after the first step of high X-Ray dose on ESRF ID23-1 beamline 3DE7 ; 2.3 ; Proteinase K by Classical hanging drop method after the fourth step of high X-Ray dose on ESRF ID23-1 beamline 3DE6 ; 2.2 ; Proteinase K by Classical hanging drop method after the third step of high X-Ray dose on ESRF ID23-1 beamline 3DW3 ; 0.99 ; Proteinase K by Classical hanging drop method before high X Ray dose on ESRF ID 14-2 beamline 3DE3 ; 1.43 ; Proteinase K by Classical hanging drop method before high X-Ray dose on ESRF ID23-1 beamline 3I2Y ; 0.995 ; Proteinase K by Classical hanging drop Method before high X-Ray dose on ID14-2 Beamline at ESRF 4DJ5 ; 1.8 ; Proteinase K by Langmuir-Blodgett Hanging Drop Method at 1.8A resolution for Unique Water Distribution 3I34 ; 1.0 ; Proteinase K by LB Nanotemplate Method after high X-Ray dose on ID14-2 Beamline at ESRF 3DVR ; 1.02 ; Proteinase K by LB nanotemplate method after the first step of high X-Ray dose on ESRF ID14-2 beamline 3DDZ ; 1.7 ; Proteinase K by LB nanotemplate method after the first step of high X-Ray dose on ESRF ID23-1 beamline 3DE2 ; 2.1 ; Proteinase K by LB nanotemplate method after the fourth step of high X-Ray dose on ESRF ID23-1 beamline 3DE0 ; 1.9 ; Proteinase K by LB nanotemplate method after the second step of high X-Ray dose on ESRF ID23-1 beamline 3DW1 ; 1.03 ; Proteinase K by LB nanotemplate method after the third step high X-Ray dose on ESRF ID14-2 beamline 3DE1 ; 2.0 ; Proteinase K by LB nanotemplate method after the third step of high X-Ray dose on ESRF ID23-1 beamline 3DVQ ; 1.02 ; Proteinase K by LB nanotemplate method before high X-Ray dose on ESRF ID14-2 beamline 3D9Q ; 1.43 ; Proteinase K by LB nanotemplate method before high X-Ray dose on ESRF ID23-1 beamline 3I37 ; 0.995 ; Proteinase K by LB Nanotemplate Method before high X-Ray dose on ID14-2 Beamline at ESRF 3DVS ; 1.02 ; Proteinase K by LB nanotmplate method after the second step of high dose on ESRF ID14-2 beamline 5CW1 ; 1.45 ; Proteinase K complexed with 4-iodopyrazole 7A68 ; 2.55 ; proteinase K crystallized from 0.5 M NaNO3 6V8R ; 1.6 ; Proteinase K Determined by MicroED Phased by ARCIMBOLDO_SHREDDER 6J43 ; 1.85 ; Proteinase K determined by PAL-XFEL 7NJJ ; 1.65 ; Proteinase K grown inside HARE serial crystallography chip 6TXG ; 1.372 ; Proteinase K in complex with a ""half sandwich""-type Ru(II) coordination compound 8SOG ; 1.13 ; Proteinase K Multiconformer Model at 313K 8SQV ; 1.22 ; Proteinase K Multiconformer Model at 333K 8SPL ; 1.21 ; Proteinase K Multiconformer Model at 343K 8SOV ; 1.291 ; Proteinase K Multiconformer Model at 353K 8SOU ; 1.54 ; Proteinase K Multiconformer Model at 363K 7JSY ; 1.78 ; Proteinase K soaked with I3C determined by MicroED from a single milled microcrystal 7NUZ ; 1.09 ; Proteinase K structure at atomic resolution from crystals grown in agarose gel 3DYB ; 1.32 ; proteinase K- digalacturonic acid complex 4WOC ; 1.601 ; Proteinase-K Post-Surface Acoustic Waves 4WOB ; 1.9 ; Proteinase-K Pre-Surface Acoustic Wave 6FJS ; 1.9 ; Proteinase~K SIRAS phased structure of room-temperature, serially collected synchrotron data 8X34 ; 2.8 ; ProteinMY 4E0Y ; 2.4 ; Protelomerase tela covalently complexed with mutated substrate DNA 4E0P ; 2.2 ; Protelomerase tela covalently complexed with substrate DNA 4F43 ; 2.354 ; Protelomerase TelA mutant R255A complexed with CAAG hairpin DNA 4F41 ; 2.5 ; Protelomerase TelA mutant R255A complexed with CTTG hairpin DNA 4E0Z ; 2.42 ; Protelomerase tela R205A covalently complexed with substrate DNA 4E0J ; 2.3 ; Protelomerase tela R255A mutant complexed with DNA hairpin product 4E10 ; 2.506 ; Protelomerase tela Y201A covalently complexed with substrate DNA 4E0G ; 2.2 ; Protelomerase tela/DNA hairpin product/vanadate complex 2V6E ; 3.2 ; protelomerase TelK complexed with substrate DNA 5ZTZ ; 2.8 ; Proteobacterial origin of protein arginine methylation and regulation of Complex I assembly by MidA 5ZU0 ; 2.76 ; Proteobacterial origin of protein arginine methylation and regulation of Complex I assembly by MidA 5ZZW ; 2.6 ; Proteobacterial origin of protein arginine methylation and regulation of Complex I assembly by MidA 4NJP ; 2.4 ; Proteolysis inside the membrane is a rate-governed reaction not Driven by substrate affinity 1W9C ; 2.3 ; Proteolytic fragment of CRM1 spanning six C-terminal HEAT repeats 7LY5 ; 2.5 ; Proteolyzed crystal structure of the bacillamide NRPS, BmdB, in complex with the oxidase BmdC 6ESP ; ; Proteome-wide analysis of phospho-regulated PDZ domain interactions 6H1Q ; 1.58 ; Proteus mirabilis Ambient Temperature Fimbriae adhesin AtfE 1NM0 ; 2.3 ; Proteus mirabilis catalase in complex with formiate 6JD9 ; 1.58 ; Proteus mirabilis lipase mutant - I118V/E130G 6H4E ; 1.561 ; Proteus mirabilis N-acetylneuraminate lyase 6MHH ; 2.083 ; Proteus mirabilis ScsC linker (residues 39-49) deletion and N6K mutant 6CHV ; 2.9 ; Proteus vulgaris HigA antitoxin bound to DNA 6CF1 ; 1.9 ; Proteus vulgaris HigA antitoxin structure 8V9P ; 1.85 ; Proteus vulgaris tryptophan indole-lyase complexed with (3S)-dioxindolyl-L-alanine 8V6P ; 1.74 ; Proteus vulgaris tryptophan indole-lyase complexed with 7-aza-L-tryptophan 8V2K ; 1.81 ; Proteus vulgaris tryptophan indole-lyase complexed with L-alanine 8V4A ; 1.96 ; Proteus vulgaris tryptophan indole-lyase complexed with L-ethionine 5DZW ; 2.43 ; Protocadherin alpha 4 extracellular cadherin domains 1-4 5DZV ; 3.6 ; Protocadherin alpha 7 extracellular cadherin domains 1-5 5DZX ; 2.879 ; Protocadherin beta 6 extracellular cadherin domains 1-4 5DZY ; 2.9 ; Protocadherin beta 8 extracellular cadherin domains 1-4 5SZL ; 4.2 ; Protocadherin gamma A1 extracellular cadherin domains 1-4 5SZQ ; 2.608 ; Protocadherin Gamma A4 extracellular cadherin domains 3-6 5SZM ; 3.6 ; Protocadherin gamma A8 extracellular cadherin domains 1-4 5SZN ; 2.944 ; Protocadherin gamma A9 extracellular cadherin domains 1-5 5T9T ; 3.5 ; Protocadherin Gamma B2 extracellular cadherin domains 1-5 5SZR ; 2.3 ; Protocadherin Gamma B2 extracellular cadherin domains 3-6 5SZP ; 3.1 ; Protocadherin Gamma B7 extracellular cadherin domains 1-4 P21 crystal form 5SZO ; 3.612 ; Protocadherin Gamma B7 extracellular cadherin domains 1-4 P41212 crystal form 5V5X ; 3.5 ; Protocadherin gammaB7 EC3-6 cis-dimer structure 7JGZ ; 3.51 ; Protocadherin gammaC4 EC1-4 crystal structure 7RGF ; 2.4 ; Protocadherin gammaC4 EC1-4 crystal structure disrupted trans interface 1YKK ; 2.06 ; Protocatechuate 3,4-Dioxygenase Y408C Mutant 1YKL ; 2.25 ; Protocatechuate 3,4-Dioxygenase Y408C mutant bound to DHB 1YKM ; 2.22 ; Protocatechuate 3,4-Dioxygenase Y408E mutant 1YKN ; 2.06 ; Protocatechuate 3,4-dioxygenase Y408E mutant bound to DHB 1YKO ; 2.54 ; Protocatechuate 3,4-Dioxygenase Y408H mutant 1YKP ; 2.41 ; Protocatechuate 3,4-Dioxygenase Y408H mutant bound to DHB 3PCD ; 2.1 ; PROTOCATECHUATE 3,4-DIOXYGENASE Y447H MUTANT 1B4U ; 2.2 ; PROTOCATECHUATE 4,5-DIOXYGENASE (LIGAB) IN COMPLEX WITH PROTOCATECHUATE (PCA) 8JQQ ; 2.06 ; Protocatecuate hydroxylase from Xylophilus ampelinus C347T mutant 8JQP ; 1.65 ; Protocatecuate hydroxylase from Xylophilus ampelinus complexed with 3,4-dihydroxybenzoate 8JQO ; 1.6 ; Protocatecuate hydroxylase from Xylophilus ampelinus complexed with imidazole 3ZBQ ; 1.7 ; Protofilament of TubZ from Bacteriophage PhiKZ 6U0U ; 4.16 ; Protofilament Ribbon Flagellar Proteins Rib43a-L 6U0T ; 4.16 ; Protofilament Ribbon Flagellar Proteins Rib43a-S 7N32 ; 4.5 ; protofilaments of microtubule doublets bound to outer-arm dynein 8IJ1 ; 4.2 ; Protomer 1 and 2 of the asymmetry trimer of the Cul2-Rbx1-EloBC-FEM1B ubiquitin ligase complex 7V2W ; 3.2 ; protomer structure from the dimer of yeast THO complex 7ZF2 ; 3.86 ; Protomeric substructure from an octameric assembly of M. tuberculosis RNA polymerase in complex with sigma-b initiation factor 2RLF ; ; Proton Channel M2 from Influenza A in complex with inhibitor rimantadine 1RTN ; ; PROTON NMR ASSIGNMENTS AND SOLUTION CONFORMATION OF RANTES, A CHEMOKINE OF THE CC TYPE 1RTO ; ; PROTON NMR ASSIGNMENTS AND SOLUTION CONFORMATION OF RANTES, A CHEMOKINE OF THE CC TYPE 1VNA ; ; PROTON NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY(SLASH)SIMULATED ANNEALING STUDIES ON THE VARIANT-1 NEUROTOXIN FROM THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 1VNB ; ; PROTON NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY(SLASH)SIMULATED ANNEALING STUDIES ON THE VARIANT-1 NEUROTOXIN FROM THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 6AFX ; 2.301 ; Proton pyrophosphatase - E225A 6AFT ; 2.492 ; Proton pyrophosphatase - E301Q 6AFS ; 2.299 ; Proton pyrophosphatase - two phosphates-bound 6AFZ ; 2.483 ; Proton pyrophosphatase-E225H mutant 6AFY ; 2.401 ; Proton pyrophosphatase-E225S mutant 6AFV ; 2.701 ; Proton pyrophosphatase-L555K mutant 6AFU ; 2.798 ; Proton pyrophosphatase-L555M mutant 6AFW ; 2.185 ; Proton pyrophosphatase-T228D mutant 3X2N ; 1.2 ; Proton relay pathway in inverting cellulase 1YO0 ; 1.8 ; Proton Transfer from His200 in Human Carbonic Anhydrase II 1YO1 ; 1.7 ; Proton Transfer from His200 in Human Carbonic Anhydrase II 1YO2 ; 1.8 ; Proton Transfer from His200 in Human Carbonic Anhydrase II 2L3Z ; ; Proton-Detected 4D DREAM Solid-State NMR Structure of Ubiquitin 6WP8 ; 2.5 ; Proton-pumping mutant of Mastigocladopsis repens rhodopsin chloride pump 2G7O ; 1.4 ; Protonation-mediated structural flexibility in the F conjugation regulatory protein, TraM 2G9E ; 1.8 ; Protonation-mediated structural flexibility in the F conjugation regulatory protein, TRAM 4BAC ; 3.263 ; prototype foamy virus strand transfer complexes on product DNA 1E0M ; ; PROTOTYPE WW domain 7TGY ; 3.0 ; Prototypic SARS-CoV-2 G614 spike (closed form) 7TGX ; 3.2 ; Prototypic SARS-CoV-2 G614 spike (open form) 8UUL ; 3.2 ; Prototypic SARS-CoV-2 spike (containing K417) in the closed conformation 8UUM ; 3.9 ; Prototypic SARS-CoV-2 spike (containing K417) in the open conformation 8UUN ; 3.8 ; Prototypic SARS-CoV-2 spike (containing V417) in the closed conformation 8UUO ; 3.9 ; Prototypic SARS-CoV-2 spike (containing V417) in the open conformation 5KLT ; 2.6 ; Prototypical P4[M]cNLS 5KLR ; 2.2 ; Prototypical P4[R]cNLS 5N7M ; 1.73 ; Protruding domain of GI.1 norovirus in complex with 2-fucosyllactose (2FL) 5F4O ; 1.59 ; Protruding domain of GII.17 norovirus Kawasaki308 5LKG ; 1.51 ; Protruding domain of GII.17 norovirus Kawasaki308 in complex with 2-fucosyllactose (2'FL) 5LKK ; 1.49 ; Protruding domain of GII.17 norovirus Kawasaki308 in complex with 3-fucosyllactose (3FL) 5LKC ; 1.81 ; Protruding domain of GII.17 norovirus Kawasaki308 in complex with HBGA type A (triglycan) 5F4M ; 2.27 ; Protruding domain of GII.17 norovirus Kawasaki323 5F4J ; 1.933 ; Protruding domain of GII.17 norovirus Saitama/T87 5IYN ; 1.56 ; Protruding domain of GII.4 human norovirus CHDC2094 5IYR ; 1.54 ; Protruding domain of GII.4 human norovirus CHDC2094 in complex with 2-fucosyllactose (2'FL) 5IYW ; 1.41 ; Protruding domain of GII.4 human norovirus CHDC2094 in complex with 3-fucosyllactose (3FL) 5IYP ; 1.27 ; Protruding domain of GII.4 human norovirus CHDC2094 in complex with HBGA type A (triglycan) 5IYQ ; 1.41 ; Protruding domain of GII.4 human norovirus CHDC2094 in complex with HBGA type B (triglycan) 5KON ; 1.51 ; Protruding domain of GII.4 human norovirus isolate 08-14 5LFE ; 2.3 ; Protruding domain of GII.4 human norovirus isolate 8-14 in complex with HBGA type B (triglycan) 5J35 ; 1.47 ; Protruding domain of GII.4 human norovirus NSW0514 in complex with 2-fucosyllactose (2'FL) 5J3O ; 1.47 ; Protruding domain of GII.4 human norovirus NSW0514 in complex with 3-fucosyllactose (3FL) 7CZ6 ; 4.1 ; Protrusion structure of Omono River virus 8CDB ; 4.5 ; Proulilysin E229A structure 7P9B ; 2.45 ; Providencia stuartii Arginine decarboxylase (Adc), decamer structure 7PK6 ; 2.15 ; Providencia stuartii Arginine decarboxylase (Adc), stack structure 2WSD ; 1.6 ; Proximal mutations at the type 1 Cu site of CotA-laccase: I494A mutant 4W5M ; 1.2 ; Prp peptide 4W5P ; 1.151 ; Prp peptide 5L6R ; ; PrP226* - Solution-state NMR structure of truncated human prion protein 2KFD ; ; Prp40 FF4 domain 6NQI ; 2.75 ; Prp8 RH domain from C. merolae 5BYT ; 2.0 ; PRPP complexed with a single Mg in the active site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 5C7S ; 2.1 ; PRPP complexed with two Mn2+ in the active site of Mycobacterium tuberculosis anthranilate phosphoribosyltransferase (AnPRT; trpD) 6DLR ; 2.656 ; PRPP Riboswitch bound to PRPP, iridium-hexamine soaked structure 6DNR ; 2.896 ; PRPP Riboswitch bound to PRPP, ligand-free structure 6DLQ ; 2.8 ; PRPP Riboswitch bound to PRPP, manganese chloride soaked structure 6DLT ; 2.9 ; PRPP Riboswitch bound to PRPP, native structure 6DLS ; 2.885 ; PRPP Riboswitch bound to PRPP, thallium acetate soaked structure 6CK5 ; 2.49 ; PRPP riboswitch from T. mathranii bound to PRPP 5Y4L ; 2.198 ; PRRSV nsp4 8EHN ; 2.3 ; PRRSV-1 PLP2 domain 8EHO ; 2.85 ; PRRSV-1 PLP2 domain bound to ubiquitin 1K7G ; 2.0 ; PrtC from Erwinia chrysanthemi 1K7Q ; 1.8 ; PrtC from Erwinia chrysanthemi: E189A mutant 1K7I ; 1.59 ; PrtC from Erwinia chrysanthemi: Y228F mutant 3HBV ; 1.95 ; PrtC methionine mutants: M226A in-house 3HDA ; 2.131 ; PrtC methionine mutants: M226A_DESY 3HBU ; 1.77 ; PrtC methionine mutants: M226H DESY 3HB2 ; 1.75 ; PrtC methionine mutants: M226I 5L22 ; 3.15 ; PrtD T1SS ABC transporter 2OK9 ; 2.34 ; PrTX-I-BPB 4Z3U ; 2.706 ; PRV nuclear egress complex 5J2Z ; 2.5 ; PRV UL37 N-terminal half (R2 mutant) 1TP9 ; 1.62 ; PRX D (type II) from Populus tremula 7N1N ; 1.6 ; Prx in complex with ComR DNA-binding domain 3KB5 ; 1.5 ; PRY-SPRY domain of human TRIM72 4B8E ; 1.779 ; PRY-SPRY domain of Trim25 5JYS ; 1.901 ; Pry1 CAP domain 8SPX ; 2.95 ; PS3 F1 Rotorless, high ATP 8SPW ; 3.5 ; PS3 F1 Rotorless, low ATP 8SPV ; 3.06 ; PS3 F1 Rotorless, no ATP 7L1Q ; 3.4 ; PS3 F1-ATPase Binding/TS Dwell 7L1R ; 3.1 ; PS3 F1-ATPase Hydrolysis Dwell 7L1S ; 3.6 ; PS3 F1-ATPase Pi-bound Dwell 7KYO ; 2.85 ; PsaBC from Streptococcus pneumoniae in complex with Fab 7KYP ; 2.9 ; PsaBC from Streptococcus pneumoniae in complex with Fab 1GXI ; ; PsaE Subunit of the Photosystem I of the Cyanobacterium Synechocystis sp. PCC 6803 1W2Z ; 2.24 ; PSAO and Xenon 2KND ; ; Psb27 structure from Synechocystis 8JNL ; 3.2 ; Psb34 from red algal Porphyridium purpureum. 5G3A ; 1.224 ; PsbO subunit of Photosystem II, beta barrel domain at 100K, pH 10 5G38 ; 1.15 ; PsbO subunit of Photosystem II, beta barrel domain at 100K, pH 6 5G39 ; 1.5 ; PsbO subunit of Photosystem II, beta barrel domain at 297K, pH 6 8JNM ; 3.2 ; PsbW from red algal Porphyridium purpureum. 5JXB ; 2.9 ; PSD-95 extended PDZ3 in complex with SynGAP PBM 1G6A ; 1.75 ; PSE-4 CARBENICILLINASE, R234K MUTANT 1G68 ; 1.95 ; PSE-4 CARBENICILLINASE, WILD TYPE 2FNI ; 3.0 ; PseC aminotransferase involved in pseudoaminic acid biosynthesis 2FNU ; 1.5 ; PseC aminotransferase with external aldimine 5KHZ ; 1.49 ; PSEUDO T4 LYSOZYME 5KI1 ; 1.46 ; PSEUDO T4 LYSOZYME MUTANT - Y18F 5KI3 ; 1.65 ; PSEUDO T4 LYSOZYME MUTANT - Y18PHE-BR 5KIO ; 1.63 ; PSEUDO T4 LYSOZYME MUTANT - Y18PHE-I 5KI2 ; 1.5 ; PSEUDO T4 LYSOZYME MUTANT - Y18PHE-METHYL 5KIG ; 1.5 ; PSEUDO T4 LYSOZYME MUTANT - Y88F 5KI8 ; 1.55 ; PSEUDO T4 LYSOZYME MUTANT - Y88PHE-BR 5KIM ; 1.5 ; PSEUDO T4 LYSOZYME MUTANT - Y88PHE-I 5KII ; 1.56 ; PSEUDO T4 LYSOZYME MUTANT - Y88PHE-METHYL 5T0N ; 3.004 ; Pseudo-apo structure of Sestrin2 at 3.0 angstrom resolution 6SIT ; 4.5 ; Pseudo-atomic crystal structure of the desmoglein 2 - human adenovirus serotype 3 fibre knob complex 7OA6 ; 7.8 ; Pseudo-atomic model for Hsp26 residues 63 to 214. Please be advised that the target map is not of sufficient resolution to unambiguously position backbone or side chain atoms. This model represents a likely fit. 6T1R ; 9.8 ; Pseudo-atomic model of a 16-mer assembly of reduced recombinant human alphaA-crystallin (non domain swapped configuration) 1YXN ; 7.9 ; Pseudo-atomic model of a fiberless isometric variant of bacteriophage phi29 1IF0 ; 12.0 ; PSEUDO-ATOMIC MODEL OF BACTERIOPHAGE HK97 PROCAPSID (PROHEAD II) 3J6P ; 8.2 ; Pseudo-atomic model of dynein microtubule binding domain-tubulin complex based on a cryoEM map 4CK7 ; 9.2 ; Pseudo-atomic model of microtubule-bound human kinesin-5 motor domain in presence of adp.alfx (NECK-LINKER IN ITS DISCONNECTED CONFORMATION, based on cryo-electron microscopy experiment 4CK5 ; 10.0 ; Pseudo-atomic model of microtubule-bound human kinesin-5 motor domain in the ADP state, based on cryo-electron microscopy experiment. 4CK6 ; 9.2 ; Pseudo-atomic model of microtubule-bound human kinesin-5 motor domain in the ADP.AlFx state, based on cryo-electron microscopy experiment. 5M5L ; 9.3 ; Pseudo-atomic model of microtubule-bound S. pombe kinesin-5 motor domain in the AMPPNP state (based on cryo-electron microscopy experiment): the N-terminus adopts multiple conformations 5M5M ; 9.3 ; Pseudo-atomic model of microtubule-bound S.pombe kinesin-5 motor domain in the AMPPNP state (based on cryo-electron microscopy experiment): the N-terminus adopts multiple conformations. 5M5N ; 9.3 ; Pseudo-atomic model of microtubule-bound S.pombe kinesin-5 motor domain in the AMPPNP state (based on cryo-electron microscopy experiment): the N-terminus adopts multiple conformations. 5M5O ; 9.3 ; Pseudo-atomic model of microtubule-bound S.pombe kinesin-5 motor domain in the AMPPNP state (based on cryo-electron microscopy experiment): the N-terminus adopts multiple conformations. 5M5I ; 9.3 ; Pseudo-atomic model of microtubule-bound S.pombe kinesin-5 motor domain in the AMPPNP state (based on cryo-electron microscopy experiment): the N-terminus conformation allows formation of a cover neck bundle. 3J4Q ; 35.0 ; Pseudo-atomic model of the AKAP18-PKA complex in a bent conformation derived from electron microscopy 3J4R ; 35.0 ; Pseudo-atomic model of the AKAP18-PKA Complex in a linear conformation derived from electron microscopy 3J41 ; 25.0 ; Pseudo-atomic model of the Aquaporin-0/Calmodulin complex derived from electron microscopy 5U6Y ; 20.0 ; Pseudo-atomic model of the CaMKIIa holoenzyme. 3DIK ; 9.0 ; Pseudo-atomic model of the HIV-1 CA hexameric lattice 5VM7 ; 5.7 ; Pseudo-atomic model of the MurA-A2 complex 5MS0 ; 9.8 ; pseudo-atomic model of the RNA polymerase lambda-based antitermination complex solved by cryo-EM 3TIR ; 4.1 ; Pseudo-atomic model of the Rous Sarcoma Virus capsid hexamer 7PE3 ; 6.49 ; Pseudo-atomic model of the tetrahedral 24mer of Hsp17 from Caenorhabditis elegans 6H60 ; 6.0 ; pseudo-atomic structural model of the E3BP component of the human pyruvate dehydrogenase multienzyme complex 5JB1 ; 6.0 ; Pseudo-atomic structure of Human Papillomavirus Type 59 L1 Virus-like Particle 3MUW ; 9.0 ; Pseudo-atomic structure of the E2-E1 protein shell in Sindbis virus 2LP9 ; ; Pseudo-triloop from the sub-genomic promoter of Brome Mosaic Virus 8RJK ; 5.91 ; Pseudoatomic model of a second-order Sierpinski triangle formed by the citrate synthase from Synechococcus elongatus 6Z9M ; 9.1 ; Pseudoatomic model of the pre-fusion conformation of glycoprotein B of Herpes simplex virus 1 1ADW ; 2.5 ; PSEUDOAZURIN 5X31 ; 2.6 ; Pseudoazurin from Alcaligenes faecalis (space group P65) 2JKW ; 1.6 ; Pseudoazurin M16F 2UXF ; 2.0 ; Pseudoazurin with engineered amicyanin ligand loop, oxidized form, pH 5.5 2UX6 ; 1.3 ; Pseudoazurin with engineered amicyanin ligand loop, oxidized form, pH 7.5 2UXG ; 1.99 ; Pseudoazurin with engineered amicyanin ligand loop, reduced form, pH 5.5 2UX7 ; 1.3 ; Pseudoazurin with engineered amicyanin ligand loop, reduced form, pH 7.5 7UQV ; 2.4 ; Pseudobacteroides cellulosolvens pseudo-CphB 6A5I ; ; Pseudocerastes Persicus Trypsin Inhibitor 5U4U ; 1.9 ; pseudoGTPase domain (pG1) of p190RhoGAP-A 5U4V ; 2.6 ; pseudoGTPase domain (pG1) of p190RhoGAP-B 7QP3 ; 1.85 ; Pseudogymnoascus pannorum M36 protease without the propeptide 5CEM ; 2.1 ; Pseudokinase and C-terminal extension of Human Tribbles Homolog 1 6RUU ; 2.95 ; Pseudokinase domain of human IRAK3 5CEK ; 2.8 ; Pseudokinase domain of Human Tribbles Homolog 1 5KNJ ; 2.88 ; Pseudokinase Domain of MLKL bound to Compound 1. 5KO1 ; 2.16 ; Pseudokinase Domain of MLKL bound to Compound 4. 1XK9 ; 2.1 ; Pseudomanas exotoxin A in complex with the PJ34 inhibitor 8IXH ; 1.95 ; Pseudomoans aeruginosa Wildtype Ketopantoate Reductase With 3-Methyl-2-oxovalerate at substrate site 8IWQ ; 2.191 ; Pseudomoans Aerugiona Native Ketopantoate Reductase with glycerol 8IWG ; 2.15 ; Pseudomoans Aerugiona Wildtype Ketopantoate Reductase native structure 8IXM ; 1.96 ; Pseudomoans Aerugiona Wildtype Ketopantoate Reductase ternary complex with NADP+ and alpha-Ketoisocaproic acid 8IX9 ; 2.198 ; Pseudomoans Aerugiona Wildtype Ketopantoate Reductase with NADPH 6SPE ; 3.6 ; Pseudomonas aeruginosa 30s ribosome from a clinical isolate 6SPC ; 2.95 ; Pseudomonas aeruginosa 30s ribosome from an aminoglycoside resistant clinical isolate 6LCH ; 1.899 ; Pseudomonas aeruginosa 5086 (PA5086) 6SPD ; 3.28 ; Pseudomonas aeruginosa 50s ribosome from a clinical isolate 6SPB ; 2.82 ; Pseudomonas aeruginosa 50s ribosome from a clinical isolate with a mutation in uL6 2OBA ; 2.33 ; Pseudomonas aeruginosa 6-pyruvoyl tetrahydrobiopterin synthase 6SPG ; 3.34 ; Pseudomonas aeruginosa 70s ribosome from a clinical isolate 6SPF ; 2.89 ; Pseudomonas aeruginosa 70s ribosome from an aminoglycoside resistant clinical isolate 7UNR ; 2.9 ; Pseudomonas aeruginosa 70S ribosome initiation complex bound to compact IF2-GDP (composite structure I-A) 7UNU ; 2.9 ; Pseudomonas aeruginosa 70S ribosome initiation complex bound to compact IF2-GDP (composite structure I-B) 7UNV ; 2.7 ; Pseudomonas aeruginosa 70S ribosome initiation complex bound to IF2-GDPCP (structure II-A) 7UNW ; 2.6 ; Pseudomonas aeruginosa 70S ribosome initiation complex bound to IF2-GDPCP (structure II-B) 7CSV ; 1.71 ; Pseudomonas aeruginosa antitoxin HigA 7CSY ; 2.29 ; Pseudomonas aeruginosa antitoxin HigA with higBA promoter 7CSW ; 1.97 ; Pseudomonas aeruginosa antitoxin HigA with pa2440 promoter 4ZU2 ; 2.15 ; Pseudomonas aeruginosa AtuE 1JZJ ; 1.8 ; Pseudomonas aeruginosa Azurin Os(bpy)2(im)(His83) 1JZI ; 1.62 ; Pseudomonas aeruginosa Azurin Re(phen)(CO)3(His83) 1JZE ; 1.6 ; Pseudomonas aeruginosa Azurin Ru(bpy)2(im)(His83) 1JZH ; 1.7 ; Pseudomonas aeruginosa Azurin Ru(tpy)(bpy)(His83) 3FSZ ; 2.0 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAAAHAAAAM) 3FT0 ; 1.8 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAAAHAAAAM), chemically reduced 2XV3 ; 2.3 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAAAHAAAAM), chemically reduced, pH5.3 3FSW ; 2.0 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAAAHAAAM) 3FSV ; 2.3 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAAHAAAM) 3FS9 ; 1.05 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAHAAM) 2XV2 ; 1.6 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAHAAM), chemically reduced, pH4.2 2XV0 ; 1.6 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAHAAM), chemically reduced, pH4.8 3FSA ; 0.98 ; Pseudomonas aeruginosa Azurin with mutated metal-binding loop sequence (CAAHAAM); chemically reduced. 4BQ0 ; 1.77 ; Pseudomonas aeruginosa beta-alanine:pyruvate aminotransferase holoenzyme without divalent cations on dimer-dimer interface 1GJQ ; 2.7 ; Pseudomonas aeruginosa cd1 nitrite reductase reduced cyanide complex 3R5D ; 1.8 ; Pseudomonas aeruginosa DapD (PA3666) apoprotein 3R5C ; 2.4 ; Pseudomonas aeruginosa DapD (PA3666) in complex with CoA and succinate 3R5A ; 1.89 ; Pseudomonas aeruginosa DapD (PA3666) in complex with D-2-aminopimelate 3R5B ; 2.51 ; Pseudomonas aeruginosa DapD (PA3666) in complex with L-2-aminopimelate 7PTG ; 2.2 ; Pseudomonas aeruginosa DNA gyrase B 24kDa ATPase subdomain complexed with EBL2888 8BN6 ; 1.6 ; Pseudomonas aeruginosa DNA gyrase B 24kDa ATPase subdomain complexed with EBL3021 7PTF ; 1.32 ; Pseudomonas aeruginosa DNA gyrase B 24kDa ATPase subdomain complexed with novobiocin 2FNW ; 1.4 ; Pseudomonas aeruginosa E2Q/H83Q/M109H-azurin RE(PHEN)(CO)3 3IBO ; 1.45 ; Pseudomonas aeruginosa E2Q/H83Q/T126H-azurin RE(PHEN)(CO)3 7Z68 ; 1.5 ; Pseudomonas aeruginosa Elastase in complex with a Thiol based inhibitor (R-and S-configured) 3DBK ; 1.4 ; Pseudomonas aeruginosa elastase with phosphoramidon 1IKP ; 1.45 ; Pseudomonas Aeruginosa Exotoxin A, P201Q, W281A mutant 1IKQ ; 1.62 ; Pseudomonas Aeruginosa Exotoxin A, wild type 8R0I ; 1.51 ; Pseudomonas aeruginosa FabF C164A in complex with 3-amino-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)benzamide 8QER ; 1.95 ; Pseudomonas aeruginosa FabF C164A in complex with 4-(1H-pyrazole-3-carbonylamino)pentanoic acid 8R1V ; 2.087 ; Pseudomonas aeruginosa FabF C164A in complex with N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(4-methoxyphenoxy)acetamide 8PJ0 ; 1.7 ; Pseudomonas aeruginosa FabF C164A mutant in complex with N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-methylbutanamide 8PD1 ; 1.87 ; Pseudomonas aeruginosa FabF C164A mutant in complex with N-isopropyl-1H-imidazole-4-carboxamide 8PFZ ; 1.78 ; Pseudomonas aeruginosa FabF C164A mutant in complex with(S)-2-(1H-pyrazole-3-carboxamido)butanoic acid 7DEK ; 2.9 ; Pseudomonas aeruginosa FK506-binding protein PaFkbA 2J5O ; ; Pseudomonas aeruginosa FtsK gamma domain 6URB ; 2.096 ; Pseudomonas aeruginosa HasA mutant - H32A 6U87 ; 1.3 ; Pseudomonas aeruginosa HasA mutant - Y75H 5G13 ; 1.99 ; Pseudomonas aeruginosa HDAH (H143A) unliganded. 5G12 ; 2.02 ; Pseudomonas aeruginosa HDAH (Y313F) unliganded. 5G10 ; 1.71 ; Pseudomonas aeruginosa HDAH bound to 9,9,9 trifluoro-8,8-dihydroy-N-phenylnonanamide 5G0X ; 1.7 ; Pseudomonas aeruginosa HDAH bound to acetate. 5G11 ; 2.48 ; Pseudomonas aeruginosa HDAH bound to PFSAHA. 5G0Y ; 2.29 ; Pseudomonas aeruginosa HDAH unliganded. 2WGN ; ; Pseudomonas aeruginosa ICP 1GZT ; 1.3 ; Pseudomonas aeruginosa lectin II (PA-IIL) together with fucose 1W8F ; 1.05 ; PSEUDOMONAS AERUGINOSA LECTIN II (PA-IIL)COMPLEXED WITH LACTO-N-NEO- FUCOPENTAOSE V(LNPFV) 6UEE ; 2.1 ; Pseudomonas aeruginosa LpxA Complex Structure with Ligand 6UEG ; 2.0 ; Pseudomonas aeruginosa LpxA Complex Structure with Ligand 4J3D ; 2.0 ; Pseudomonas aeruginosa LpxC in complex with a hydroxamate inhibitor 5U39 ; 1.75 ; Pseudomonas aeruginosa LpxC in complex with CHIR-090 5U3B ; 2.0 ; Pseudomonas aeruginosa LpxC in complex with NVS-LPXC-01 6UEC ; 2.6 ; Pseudomonas aeruginosa LpxD Complex Structure with Ligand 4JUQ ; 2.2 ; Pseudomonas aeruginosa MetAP T2N mutant, in Mn form 4FO8 ; 1.9 ; Pseudomonas aeruginosa MetAP with Met, in Mn form 4FO7 ; 1.8 ; Pseudomonas aeruginosa MetAP, in Mn form 6X9N ; 2.25 ; Pseudomonas aeruginosa MurC with AZ5595 6X9F ; 2.35 ; Pseudomonas aeruginosa MurC with AZ8074 8DOF ; 2.6 ; Pseudomonas aeruginosa MurC with WYH9-2-P - OSA_001044 8GXJ ; 2.18 ; Pseudomonas aeruginosa N-acetyltransferase domain-containing protein PA3270 7QVS ; 2.3 ; Pseudomonas aeruginosa nicotinamide adenine dinucleotide kinase (NADK) structure in complex with NADP 1JZF ; 1.5 ; Pseudomonas aeruginosa Oxidized Azurin(Cu2+) Ru(tpy)(phen)(His83) 1K0L ; 2.0 ; Pseudomonas aeruginosa phbh R220Q free of p-OHB 1K0I ; 1.8 ; Pseudomonas aeruginosa phbh R220Q in complex with 100mM PHB 1K0J ; 2.2 ; Pseudomonas aeruginosa phbh R220Q in complex with NADPH and free of p-OHB 4AS2 ; 2.12 ; Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Monoclinic form 4AS3 ; 2.4 ; Pseudomonas Aeruginosa Phosphorylcholine Phosphatase. Orthorhombic form 5EOX ; 2.4 ; Pseudomonas aeruginosa PilM bound to ADP 5EQ6 ; 3.5 ; Pseudomonas aeruginosa PilM bound to AMP-PNP 5EOU ; 2.4 ; Pseudomonas aeruginosa PilM:PilN1-12 bound to ATP 1JZG ; 1.4 ; Pseudomonas aeruginosa Reduced Azurin (Cu1+) Ru(tpy)(phen)(His83) 2B4Q ; 2.3 ; Pseudomonas aeruginosa RhlG/NADP active-site complex 3ZLK ; 1.952 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 3ZLL ; 2.0 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4ARW ; 2.204 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4ASJ ; 2.25 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4ASY ; 2.3 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B2W ; 2.36 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B2X ; 1.7 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B3U ; 1.8 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B42 ; 2.505 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B4B ; 2.1 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B4G ; 2.5 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B4M ; 2.35 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 4B5B ; 2.055 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FTS ; 2.2 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FTV ; 2.213 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FU0 ; 1.9 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FU8 ; 2.2 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FUH ; 1.6 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5FYE ; 2.4 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 6T37 ; 2.079 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 6T38 ; 2.15 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 6TQG ; 2.45 ; Pseudomonas aeruginosa RmlA in complex with allosteric inhibitor 5EOY ; 2.5 ; Pseudomonas aeruginosa SeMet-PilM bound to ADP 6HE3 ; 2.16 ; Pseudomonas aeruginosa Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)cytidine 6HE1 ; 2.22 ; Pseudomonas aeruginosa Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)N3-methyluridine 6HDZ ; 2.06 ; Pseudomonas aeruginosa Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-Sulfamoyl)uridine 2FHX ; 1.9 ; Pseudomonas aeruginosa SPM-1 metallo-beta-lactamase 7DRG ; 1.6 ; Pseudomonas aeruginosa T6SS protein PA0821 1LR0 ; 1.914 ; Pseudomonas aeruginosa TolA Domain III, Seleno-methionine Derivative 7DYM ; 3.1 ; Pseudomonas aeruginosa TseT-TsiT complex 7FF0 ; 2.6 ; Pseudomonas aeruginosa Virulence Factor Regulator with cAMP ligand and auranofin 7FEW ; 1.75 ; Pseudomonas aeruginosa Virulence Factor Regulator with cAMP ligand and auranofin gold analogues 7FF8 ; 2.8 ; Pseudomonas aeruginosa Virulence Factor Regulator with cAMP ligand and Cl(triethylphosphine)gold(I) 7FF9 ; 2.4 ; Pseudomonas aeruginosa Virulence Factor Regulator with cAMP ligand and Cl(triethylphosphine)gold(I) 1R1C ; 1.9 ; PSEUDOMONAS AERUGINOSA W48F/Y72F/H83Q/Y108W-AZURIN RE(PHEN)(CO)3(HIS107) 1H41 ; 1.5 ; Pseudomonas cellulosa E292A alpha-D-glucuronidase mutant complexed with aldotriuronic acid 1HQD ; 2.3 ; PSEUDOMONAS CEPACIA LIPASE COMPLEXED WITH TRANSITION STATE ANALOGUE OF 1-PHENOXY-2-ACETOXY BUTANE 6EDG ; 1.47 ; Pseudomonas exotoxin A domain III T18H477L 8GXF ; 3.04 ; Pseudomonas flexibilis GCN5 family acetyltransferase 5VI0 ; 2.396 ; Pseudomonas fluorescens alkylpurine DNA glycosylase AlkC bound to DNA containing an abasic site analog 5VHV ; 1.799 ; Pseudomonas fluorescens alkylpurine DNA glycosylase AlkC bound to DNA containing an oxocarbenium-intermediate analog 1VA4 ; 1.804 ; Pseudomonas fluorescens aryl esterase 3IA2 ; 1.65 ; Pseudomonas fluorescens esterase complexed to the R-enantiomer of a sulfonate transition state analog 7L9Z ; 1.3 ; Pseudomonas fluorescens G150A isocyanide hydratase (G150A-1) at 274K, Refmac5-refined 7LA0 ; 1.25 ; Pseudomonas fluorescens G150A isocyanide hydratase (G150A-2) at 274K, Refmac5-refined 7LA3 ; 1.349 ; Pseudomonas fluorescens G150A isocyanide hydratase (G150A-3) at 274K, Refmac5-refined 7LAV ; 1.149 ; Pseudomonas fluorescens G150T isocyanide hydratase (G150T-1) at 274K, Refmac5-refined 7LAX ; 1.198 ; Pseudomonas fluorescens G150T isocyanide hydratase (G150T-2) at 274K, Refmac5-refined 7LB9 ; 1.101 ; Pseudomonas fluorescens G150T isocyanide hydratase (G150T-3) at 274K, Refmac5-refined 8TSX ; 1.0 ; Pseudomonas fluorescens G150T isocyanide hydratase at 100 K 8VPW ; 1.3 ; Pseudomonas fluorescens G150T isocyanide hydratase at 298 K XFEL data, free enzyme 8VQ1 ; 1.3 ; Pseudomonas fluorescens G150T isocyanide hydratase at 298 K XFEL data, thioimidate intermediate 8TSU ; 1.15 ; Pseudomonas fluorescens G150T-1 isocyanide hydratase at 274 K 8TSY ; 1.2 ; Pseudomonas fluorescens G150T-2 isocyanide hydratase at 274 K 8TSZ ; 1.1 ; Pseudomonas fluorescens G150T-3 isocyanide hydratase at 274 K 6NIA ; 1.05 ; Pseudomonas fluorescens isocyanide hydratase at 100 K helical disorder model 6NI6 ; 1.201 ; Pseudomonas fluorescens isocyanide hydratase at 274 K 6NI5 ; 1.3 ; Pseudomonas fluorescens isocyanide hydratase at 274 K G150A mutant 6NI9 ; 1.201 ; Pseudomonas fluorescens isocyanide hydratase at 274 K qFit multiconformer model 6NI7 ; 1.15 ; Pseudomonas fluorescens isocyanide hydratase at 277 K 6NI4 ; 1.1 ; Pseudomonas fluorescens isocyanide hydratase at 277 K G150T mutant 6NPQ ; 1.55 ; Pseudomonas fluorescens isocyanide hydratase at 298 K XFEL data 8TT0 ; 1.5 ; Pseudomonas fluorescens isocyanide hydratase pH=4.2 8TT1 ; 1.45 ; Pseudomonas fluorescens isocyanide hydratase pH=5.0 8TT2 ; 1.33 ; Pseudomonas fluorescens isocyanide hydratase pH=5.4 8TT4 ; 1.2 ; Pseudomonas fluorescens isocyanide hydratase pH=6.0 8TT5 ; 1.02 ; Pseudomonas fluorescens isocyanide hydratase pH=8.3 6UNF ; 1.55 ; Pseudomonas fluorescens isocyanide hydratase post-catalysis at 298 K XFEL data 6NI8 ; 1.45 ; Pseudomonas fluorescens isocyanide hydratase rotating anode 298K 6UND ; 1.55 ; Pseudomonas fluorescens isocyanide hydratase thioimidate intermediate at 298 K XFEL data 5NA5 ; 1.94 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) apo structure 5N7T ; 1.81 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-(5,6-dichloro-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)propanoic acid 5MZI ; 1.71 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-(5-chloro-6-cyclopropoxy-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)propanoic acid 5MZC ; 1.82 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-(5-chloro-6-ethoxy-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)propanoic acid 5NAB ; 1.63 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-(5-chloro-6-methyl-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)propanoic acid 5MZK ; 1.82 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-[5-chloro-6-(cyclobutylmethoxy)-2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl]propanoic acid 5NAE ; 1.76 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-{5-chloro-2-oxo-6-[(1R)-1-(pyridin-2-yl)ethoxy]-2,3-dihydro-1,3-benzoxazol-3-yl}propanoic acid 5NAH ; 1.75 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-{5-chloro-6-[(1R)-1-(6-methylpyridazin-3-yl)ethoxy]-1,2-benzoxazol-3-yl}propanoic acid 5NAG ; 1.68 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with 3-{5-chloro-6-[(1R)-1-(pyridin-2-yl)ethoxy]-1,2-benzoxazol-3-yl}propanoic acid 5NAK ; 1.5 ; Pseudomonas fluorescens kynurenine 3-monooxygenase (KMO) in complex with the enzyme substrate L-kynurenine 1M2W ; 1.8 ; Pseudomonas fluorescens mannitol 2-dehydrogenase ternary complex with NAD and D-mannitol 6QSI ; 1.69 ; Pseudomonas fluorescens Pf-5 thiamine diphosphate-dependent 4-hydroxybenzoylformate decarboxylase 4A9V ; 1.1 ; Pseudomonas fluorescens PhoX 4ALF ; 1.25 ; Pseudomonas fluorescens PhoX in complex with phosphate 4A9X ; 1.79 ; Pseudomonas fluorescens PhoX in complex with the substrate analogue AppCp 4AMF ; 1.52 ; Pseudomonas fluorescens PhoX in complex with the substrate analogue AppCp 3ZWU ; 1.39 ; Pseudomonas fluorescens PhoX in complex with vanadate, a transition state analogue 8GXK ; 1.78 ; Pseudomonas jinjuensis N-acetyltransferase 5LIP ; 2.9 ; PSEUDOMONAS LIPASE COMPLEXED WITH RC-(RP, SP)-1,2-DIOCTYLCARBAMOYLGLYCERO-3-O-OCTYLPHOSPHONATE 4LIP ; 1.75 ; PSEUDOMONAS LIPASE COMPLEXED WITH RC-(RP, SP)-DIBUTYLCARBAMOYLGLYCERO-3-O-BUTYLPHOSPHONATE 2LIP ; 2.1 ; PSEUDOMONAS LIPASE OPEN CONFORMATION 8E4A ; 2.034 ; Pseudomonas LpxC in complex with LPC-233 2FX5 ; 1.8 ; Pseudomonas mendocina lipase 8FRS ; 3.96 ; Pseudomonas phage E217 5-fold vertex (capsid and decorating proteins) 8EON ; 3.6 ; Pseudomonas phage E217 baseplate complex 8FVG ; 3.1 ; Pseudomonas phage E217 contracted sheath 8FUV ; 3.1 ; Pseudomonas phage E217 extended sheath and tail tube 8FVH ; 3.1 ; Pseudomonas phage E217 neck (portal, head-to-tail connector, collar and gateway proteins) 7UXE ; 3.38 ; Pseudomonas phage E217 small terminase (TerS) 6ICK ; 1.952 ; Pseudomonas putida CBB5 NdmA 6ICP ; 2.2 ; Pseudomonas putida CBB5 NdmA QL mutant with caffeine 6ICQ ; 1.9 ; Pseudomonas putida CBB5 NdmA QL mutant with theobromine 6ICN ; 1.65 ; Pseudomonas putida CBB5 NdmA with caffeine 6ICM ; 2.961 ; Pseudomonas putida CBB5 NdmA with ferredoxin domain of NdmD 6ICO ; 1.85 ; Pseudomonas putida CBB5 NdmA with theophylline 6ICL ; 2.1 ; Pseudomonas putida CBB5 NdmB 6E13 ; 2.349 ; Pseudomonas putida PqqB with a non-physiological zinc at the active site binds the substrate mimic, 5-cysteinyl-3,4-dihydroxyphenylalanine (5-Cys-DOPA), non-specifically but supports the proposed function of the enzyme in pyrroloquinoline quinone biosynthesis. 1NLU ; 1.3 ; Pseudomonas sedolisin (serine-carboxyl proteinase) complexed with two molecules of pseudo-iodotyrostatin 6M8W ; 1.1 ; PSEUDOMONAS SERINE-CARBOXYL PROTEINASE (SEDOLISIN) COMPLEXED WITH THE INHIBITOR AIAF 6M8Y ; 1.1 ; PSEUDOMONAS SERINE-CARBOXYL PROTEINASE (SEDOLISIN) COMPLEXED WITH THE INHIBITOR AIPF 6M9D ; 2.0 ; PSEUDOMONAS SERINE-CARBOXYL PROTEINASE (SEDOLISIN) COMPLEXED WITH THE INHIBITOR Chymostatin 6M9C ; 1.8 ; PSEUDOMONAS SERINE-CARBOXYL PROTEINASE (SEDOLISIN) COMPLEXED WITH THE INHIBITOR Pseudotyrostatin 6M9F ; 1.3 ; PSEUDOMONAS SERINE-CARBOXYL PROTEINASE (SEDOLISIN) COMPLEXED WITH THE INHIBITOR Tyrostatin 7APY ; 1.778 ; Pseudomonas stutzeri nitrous oxide reductase mutant, D576A 7AQ0 ; 1.584 ; Pseudomonas stutzeri nitrous oxide reductase mutant, D576A/S550A 6Y6Y ; 1.67 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H129A 6Y71 ; 1.64 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H130A 6Y72 ; 1.55 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H178A 6Y77 ; 1.49 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H326A 7AQA ; 1.497 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H382A 6Y7D ; 1.6 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H433A 6Y7E ; 1.6 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H494A 7AQ2 ; 1.683 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583A 7AQ3 ; 1.639 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583D 7AQ4 ; 1.708 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583E 7AQ6 ; 1.514 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583F 7AQ5 ; 1.7 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583N 7AQ9 ; 1.585 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583W 7AQ7 ; 1.608 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583Y 7AQ8 ; 1.791 ; Pseudomonas stutzeri nitrous oxide reductase mutant, H583Y/D576A 3SBP ; 2.1 ; Pseudomonas stutzeri nitrous oxide reductase, P1 crystal form 3SBR ; 2.24 ; Pseudomonas stutzeri nitrous oxide reductase, P1 crystal form with substrate 3SBQ ; 1.7 ; Pseudomonas stutzeri nitrous oxide reductase, P65 crystal form 5O37 ; 1.37 ; Pseudomonas stutzeri PtxB in complex with methylphosphonate (MPn) to 1.37 A resolution 5O2J ; 1.52 ; Pseudomonas stutzeri PtxB in complex with phosphite to 1.52 A resolution 6EAC ; 2.269 ; Pseudomonas syringae SelO 8DKR ; 2.05 ; Pseudomonas-phage E217 TerL nuclease domain 7U6L ; 2.6 ; Pseudooxynicotine amine oxidase 6C4N ; 1.95 ; Pseudopaline dehydrogenase (PaODH) - NADP+ bound 6PBN ; 1.65 ; Pseudopaline Dehydrogenase with (R)-Pseudopaline Soaked 1 hour 6PBT ; 2.18 ; Pseudopaline Dehydrogenase with (R)-Pseudopaline Soaked 2 hours 6PBP ; 1.64 ; Pseudopaline Dehydrogenase with (S)-Pseudopaline Soaked 1 hour 6PBM ; 1.57 ; Pseudopaline Dehydrogenase with NADP+ bound 5FKI ; 35.0 ; Pseudorabies virus (PrV) nuclear egress complex proteins fitted as a hexameric lattice into a sub-tomogram average derived from focused- ion beam milled lamellae electron cryo-microscopic data 5E8C ; 2.9 ; pseudorabies virus nuclear egress complex, pUL31, pUL34 1EA2 ; 1.8 ; Pseudoreversion of the Catalytic Activity of Y14F by the Additional Tyrosine-to-Phenylalanine Substitution(s) in the Hydrogen Bond Network of Delta-5-3-Ketosteroid Isomerase from Pheudomonas putida Biotype B 7C1Y ; 2.08343 ; Pseudouridine and ADP bound structure of Pseudouridine kinase (PUKI) from Arabidopsis thaliana 7VVA ; 2.75029 ; Pseudouridine bound structure of Pseudouridine kinase (PUKI) from Escherichia coli strain B 7VTG ; 1.89859 ; Pseudouridine bound structure of Pseudouridine kinase (PUKI) S30A mutant from Escherichia coli strain B 5U5G ; 2.048 ; Psf3 in complex with NADP+ and 2-OPP 5U58 ; 2.7 ; Psf4 in complex with Fe2+ and (R)-2-HPP 5U57 ; 2.73 ; Psf4 in complex with Fe2+ and (S)-2-HPP 5U5D ; 2.49 ; Psf4 in complex with Mn2+ and (R)-2-HPP 5U55 ; 2.45 ; Psf4 in complex with Mn2+ and (S)-2-HPP 8JW0 ; 2.9 ; PSI-AcpPCI supercomplex from Amphidinium carterae 8JZE ; 2.99 ; PSI-AcpPCI supercomplex from Symbiodinium 8JZF ; 2.7 ; PSI-AcpPCI supercomplex from Symbiodinium 7WZN ; 4.9 ; PSI-LHCI from Chlamydomonas reinhardtii with bound ferredoxin 8WEY ; 1.92 ; PSI-LHCI of the red alga Cyanidium caldarium RK-1 (NIES-2137) 6L35 ; 3.23 ; PSI-LHCI Supercomplex from Physcometrella patens 7XQP ; 2.68 ; PSI-LHCI-LHCII-Lhcb9 supercomplex of Physcomitrella patens 7F9O ; 4.5 ; PSI-NDH supercomplex of Barley 1E29 ; 1.21 ; PSII associated cytochrome C549 from Synechocystis sp. 7DXA ; 3.14 ; PSII intermediate Psb28-RC47 6YP7 ; 3.8 ; PSII-LHCII C2S2 supercomplex from Pisum sativum grown in high light conditions 7YMI ; 3.3 ; PSII-Pcb Dimer of Acaryochloris Marina 7YMM ; 3.6 ; PSII-Pcb Tetramer of Acaryochloris Marina 8PB8 ; 2.531 ; PsiM in complex with SAH 8PB6 ; 0.93 ; PsiM in complex with SAH and baeocystin 8PB3 ; 1.18 ; PsiM in complex with SAH and norbaeocystin, monoclinic crystal form 8PB4 ; 0.91 ; PsiM in complex with SAH and norbaeocystin, orthorhombic crystal form 8QXQ ; 0.94 ; PsiM in complex with SAH and psilocybin 8PB7 ; 0.92 ; PsiM in complex with sinefungin and baeocystin 8PB5 ; 0.89 ; PsiM in complex with sinefungin and norbaeocystin 1U83 ; 2.2 ; PSL synthase from Bacillus subtilis 5MUA ; 1.49 ; PSL1a-E64 complex 7UIH ; 3.1 ; PSMD2 Structure 7UJD ; 2.5 ; PSMD2 Structure bound to MC1 and Fab8/14 1FHY ; 2.2 ; PSORALEN CROSS-LINKED D(CCGCTAGCGG) FORMS HOLLIDAY JUNCTION 1FHZ ; 2.2 ; PSORALEN CROSS-LINKED D(CCGGTACCGG) FORMS HOLLIDAY JUNCTION 4ZK0 ; 2.15 ; Psoriasis pathogenesis - Pso p27 constitute a compact structure forming large aggregates. High pH structure 4ZK3 ; 2.0 ; Psoriasis pathogenesis - Pso p27 constitute a compact structure forming large aggregates. Low pH structure 2BJW ; 1.75 ; PspF AAA domain 2VII ; 2.85 ; PspF1-275-Mg-AMP 6HYJ ; 1.929 ; PSPH Human phosphoserine phosphatase 6R02 ; 2.65 ; Psychrobacter arcticus ATP phosphoribosyltransferase bound to histidine and PRPP 7Z6R ; 2.55 ; Psychrobacter arcticus ATPPRT (HisGZ) R56A mutant bound to ATP and PRPP 4XG1 ; 2.5 ; Psychromonas ingrahamii diaminopimelate decarboxylase with LLP 4RKC ; 2.19 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 4RKD ; 2.76 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 cocrystalized with aspartic acid 6ZUP ; 2.5 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 cocrystalized with substrate analog - L-(-)-3-phenyllactic acid 6ZVG ; 2.59 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 cocrystalized with substrate analog - L-indole-3-lactic acid 6ZUR ; 2.31 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 cocrystalized with substrate analog - L-p-hydroxyphenyllactic acid 6T3V ; 1.62 ; Psychrophilic aromatic amino acids aminotransferase from Psychrobacter sp. B6 cocrystalized with substrate analog - malic acid 1H71 ; 2.1 ; Psychrophilic Protease from Pseudoalteromonas 'TAC II 18' 5T7L ; 2.83 ; Pt(II)-mediated copper-dependent interactions between ATOX1 and MNK1 2WB7 ; 2.6 ; pT26-6p 2M38 ; ; PTB domain of AIDA1 5NJJ ; 2.7 ; PTB domain of human Numb isoform-1 5NJK ; 3.13 ; PTB domain of human Numb isoform-1 8BWF ; 2.9 ; PTBP1 RRM1 bound to an allosteric inhibitor 4OWH ; 1.484 ; PtBr6 binding to HEWL 6H6E ; 3.95 ; PTC3 holotoxin complex from Photorhabdus luminecens in prepore state (TcdA1, TcdB2, TccC3) 6H6F ; 3.72 ; PTC3 holotoxin complex from Photorhabdus luminiscens - Mutant TcC-D651A 4OWE ; 1.41 ; PtCl6 binding to HEWL 2VZ0 ; 1.9 ; Pteridine Reductase 1 (PTR1) from Trypanosoma Brucei in complex with NADP and DDD00066641 2WD7 ; 1.9 ; PTERIDINE REDUCTASE 1 (PTR1) FROM TRYPANOSOMA BRUCEI IN COMPLEX WITH NADP AND DDD00066750 2WD8 ; 2.1 ; PTERIDINE REDUCTASE 1 (PTR1) FROM TRYPANOSOMA BRUCEI IN COMPLEX WITH NADP AND DDD00071204 1E92 ; 2.2 ; Pteridine reductase 1 from Leishmania major complexed with NADP+ and dihydrobiopterin 1P33 ; 2.86 ; Pteridine reductase from Leishmania tarentolae complex with NADPH and MTX 1N3O ; 2.0 ; Pterocarcpus angolensis lectin in complex with alpha-methyl glucose 1UKG ; 1.7 ; Pterocarps angolensis lectin PAL in complex with methyl-alpha-mannose 2PHT ; 2.1 ; Pterocarpus angolensis lectin (P L) in complex with Man-7D3 2ARE ; 1.8 ; Pterocarpus angolensis Lectin (PAL) In Complex With D-Mannose (anomeric mixture) 2PHX ; 1.8 ; Pterocarpus angolensis lectin (PAL) in complex with Man-5 2PHR ; 1.9 ; Pterocarpus angolensis lectin (PAL) in complex with Man-7D1 2PHW ; 1.8 ; Pterocarpus angolensis lectin (PAL) in complex with Man-9 1Q8Q ; 2.05 ; Pterocarpus angolensis lectin (PAL) in complex with the dimannoside Man(alpha1-4)Man 1Q8S ; 2.05 ; Pterocarpus angolensis lectin (PAL) in complex with the dimannoside Man(alpha1-6)Man 2ARB ; 1.8 ; Pterocarpus angolensis Lectin (PAL) In Complex With The GlcNAc(beta1-2)Man Disaccharide 2AR6 ; 1.8 ; Pterocarpus angolensis Lectin (PAL) In Complex With The Pentasaccharide M592 1Q8V ; 1.85 ; Pterocarpus angolensis lectin (PAL) in complex with the trimannoside [Man(Alpha1-3)]Man(alpha1-6)Man 2PHF ; 2.1 ; Pterocarpus angolensis lectin complexed with Man-6 1N3Q ; 2.2 ; Pterocarpus angolensis lectin complexed with turanose 2PHU ; 2.2 ; Pterocarpus angolensis lectin in complex with Man-8D1D3 1N3P ; 2.1 ; Pterocarpus angolensis lectin in complex with sucrose 2AUY ; 1.95 ; Pterocarpus angolensis lectin in complex with the trisaccharide GlcNAc(b1-2)Man(a1-3)Man 1Q8P ; 1.75 ; Pterocarpus angolensis lectin PAL in complex with the dimannoside Man(alpha1-3)Man 1S1A ; 1.8 ; Pterocarpus angolensis seed lectin (PAL) with one binding site free and one binding site containing the disaccharide Man(a1-3)ManMe 2ARX ; 2.0 ; Pterocarpus angolensis seed lectin in complex with the decasaccharide NA2F 1Q8O ; 2.2 ; Pterocartpus angolensis lectin PAL in complex with the dimmanoside Man(alpha1-2)Man 6E10 ; 4.16 ; PTEX Core Complex in the Engaged (Extended) State 6E11 ; 4.23 ; PTEX Core Complex in the Resetting (Compact) State 1BL1 ; ; PTH RECEPTOR N-TERMINUS FRAGMENT, NMR, 1 STRUCTURE 7VVK ; 3.3 ; PTH-bound human PTH1R in complex with Gs (class1) 7VVL ; 2.8 ; PTH-bound human PTH1R in complex with Gs (class2) 7VVM ; 3.2 ; PTH-bound human PTH1R in complex with Gs (class3) 7VVN ; 3.8 ; PTH-bound human PTH1R in complex with Gs (class4) 7VVO ; 4.1 ; PTH-bound human PTH1R in complex with Gs (class5) 7VVJ ; 3.2 ; PTHrP-bound human PTH1R in complex with Gs 8HAF ; 3.25 ; PTHrP-PTH1R-Gs complex 4OWC ; 1.62 ; PtI6 binding to HEWL 7MN9 ; 1.24 ; PTP1B 1-284 F225Y-R199N 7MNA ; 1.47 ; PTP1B 1-284 F225Y-R199N in complex with TCS401 7MOV ; 1.65 ; PTP1B 1-301 F225Y-R199N mutations 1XBO ; 2.5 ; PTP1B complexed with Isoxazole Carboxylic Acid 6NTP ; 1.89 ; PTP1B Domain of PTP1B-LOV2 Chimera 7MOW ; 1.8 ; PTP1B F225I in complex with TCS401 7MN7 ; 1.95 ; PTP1B F225Y in complex with TCS401 7MKZ ; 1.4 ; PTP1B F225Y mutant, open state 7MOU ; 1.48 ; PTP1B F225Y-R199N-L195R 7MNB ; 2.2 ; PTP1B F225Y-R199N-L195R in complex with TCS401 8SKL ; 1.55 ; PTP1B in complex with 182 3CWE ; 1.6 ; PTP1B in complex with a phosphonic acid inhibitor 7MM1 ; 1.85 ; PTP1B in complex with TCS401 by Native S-SAD at Room Temperature 7MNC ; 1.85 ; PTP1B L204A 7MND ; 2.29 ; PTP1B L204A in complex with TCS401 7MNF ; 1.7 ; PTP1B P206G in complex with TCS401 7MNE ; 1.6 ; PTP1B P206G mutation, open state 1NWE ; 3.1 ; Ptp1B R47C Modified at C47 with N-[4-(2-{2-[3-(2-Bromo-acetylamino)-propionylamino]-3-hydroxy-propionylamino}-ethyl)-phenyl]-oxalamic acid 1OEM ; 1.8 ; PTP1B with the catalytic cysteine oxidized to a sulfenyl-amide bond 1OEO ; 2.15 ; PTP1B with the catalytic cysteine oxidized to sulfonic acid 4ZRT ; 1.74 ; PTP1BC215S bound to Nephrin peptide substrate 4GFV ; 2.095 ; PTPN18 in complex with HER2-pY1196 phosphor-peptides 4GFU ; 2.0 ; PTPN18 in complex with HER2-pY1248 phosphor-peptides 8GVL ; 2.1 ; PTPN21 FERM 8GXE ; 3.0 ; PTPN21 FERM PTP complex 8GVV ; 1.8 ; PTPN21 PTP domain C1108S mutant 8GWH ; 2.0 ; PTPN21 PTP domain C1108S mutant in complex with SRC pTyr530 peptide 3OLR ; 2.5 ; PTPN22 in complex with consensus phospho-tyrosine peptide 1 3KLD ; 1.999 ; PTPRG CNTN4 complex 3S97 ; 2.2971 ; PTPRZ CNTN1 complex 7ZL1 ; 2.5 ; PTX3 Pentraxin Domain 2J17 ; 2.84 ; pTyr bound form of SDP-1 1PUE ; 2.1 ; PU.1 ETS DOMAIN-DNA COMPLEX 7ZCU ; 2.7 ; PucA-LH2 complex from Rps. palustris 7ZDI ; 2.9 ; PucB-LH2 complex from Rps. palustris 7ZE3 ; 2.7 ; PucD-LH2 complex from Rps. palustris 7ZE8 ; 3.6 ; PucE-LH2 complex from Rps. palustris 3K4E ; 3.2 ; Puf3 RNA binding domain bound to Cox17 RNA 3' UTR recognition sequence site A 3K49 ; 2.5 ; Puf3 RNA binding domain bound to Cox17 RNA 3' UTR recognition sequence site B 3BX2 ; 2.84 ; Puf4 RNA binding domain bound to HO endonuclease RNA 3' UTR recognition sequence 3BX3 ; 3.0 ; Puf4 T650C/C724R Mutant bound to Cox17 RNA 3' UTR recognition sequence 2WAN ; 1.65 ; Pullulanase from Bacillus acidopullulyticus 2YJ1 ; 2.24 ; Puma BH3 foldamer in complex with Bcl-xL 1U11 ; 1.55 ; PurE (N5-carboxyaminoimidazole Ribonucleotide Mutase) from the acidophile Acetobacter aceti 8GYG ; 2.0 ; Purification ,Crystallization and X-ray Diffraction analysis of a novel arysulfatase from Pseudoalteromonas atlantica T6c 2YYF ; ; Purification and structural characterization of a D-amino acid containing conopeptide, marmophine, from Conus marmoreus 8E2X ; 3.3 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E2Y ; 8.0 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E31 ; 14.0 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E38 ; 4.2 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E39 ; 3.1 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E3A ; 7.4 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E3B ; 5.9 ; Purification of Enterovirus A71, strain 4643, WT capsid 8E3C ; 7.1 ; Purification of Enterovirus A71, strain 4643, WT capsid 3WX8 ; 1.952 ; Purification, characterization and structure of nucleoside diphosphate kinase from Drosophila S2 cells 7BX9 ; 1.38 ; Purification, characterization and X-ray structure of YhdA-type azoreductase from Bacillus velezensis 1OFN ; 1.5 ; Purification, crystallisation and preliminary structural studies of dTDP-4-keto-6-deoxy-glucose-5-epimerase (EvaD) from Amycolatopsis orientalis; the fourth enzyme in the dTDP-L-epivancosamine biosynthetic pathway. 5XYJ ; 1.93 ; Purification,crystallization and structural analysis of cytoplastic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae 5XZ5 ; 2.2 ; Purification,crystallization and structural analysis of cytoplastic acetoacetyl-CoA thiolase from Saccharomyces cerevisiae 1S2D ; 2.1 ; Purine 2'-Deoxyribosyl complex with arabinoside: Ribosylated Intermediate (AraA) 1S3F ; 2.2 ; Purine 2'-deoxyribosyltransferase + selenoinosine 1S2G ; 2.1 ; Purine 2'deoxyribosyltransferase + 2'-deoxyadenosine 1S2I ; 2.24 ; Purine 2'deoxyribosyltransferase + bromopurine 1S2L ; 2.1 ; Purine 2'deoxyribosyltransferase native structure 1MAS ; 2.5 ; PURINE NUCLEOSIDE HYDROLASE 2MAS ; 2.3 ; PURINE NUCLEOSIDE HYDROLASE WITH A TRANSITION STATE INHIBITOR 1B8N ; 2.0 ; PURINE NUCLEOSIDE PHOSPHORYLASE 1B8O ; 1.5 ; PURINE NUCLEOSIDE PHOSPHORYLASE 1ECP ; 2.0 ; PURINE NUCLEOSIDE PHOSPHORYLASE 1PBN ; 2.0 ; PURINE NUCLEOSIDE PHOSPHORYLASE 1VFN ; 2.15 ; PURINE NUCLEOSIDE PHOSPHORYLASE 5IFK ; 1.967 ; Purine nucleoside phosphorylase 2AI1 ; 2.0 ; Purine nucleoside phosphorylase from calf spleen 2AI2 ; 1.7 ; Purine nucleoside phosphorylase from calf spleen 2AI3 ; 1.7 ; Purine nucleoside phosphorylase from calf spleen 1FXU ; 2.2 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM CALF SPLEEN IN COMPLEX WITH N(7)-ACYCLOGUANOSINE INHIBITOR AND A PHOSPHATE ION 1C3X ; 2.4 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM CELLULOMONAS SP. IN COMPLEX WITH 8-IODO-GUANINE 1QE5 ; 2.2 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM CELLULOMONAS SP. IN COMPLEX WITH PHOSPHATE 1K9S ; 2.0 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM E. COLI IN COMPLEX WITH FORMYCIN A DERIVATIVE AND PHOSPHATE 1ODI ; 2.4 ; Purine nucleoside phosphorylase from Thermus Thermophilus 1ODJ ; 2.4 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM THERMUS THERMOPHILUS 1ODK ; 1.9 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM THERMUS THERMOPHILUS 1ODL ; 2.1 ; PURINE NUCLEOSIDE PHOSPHORYLASE FROM THERMUS THERMOPHILUS 1A69 ; 2.1 ; PURINE NUCLEOSIDE PHOSPHORYLASE IN COMPLEX WITH FORMYCIN B AND SULPHATE (PHOSPHATE) 8C25 ; 1.56 ; purine nucleoside phosphorylase in complex with JS-375 7ZSR ; 1.97 ; purine nucleoside phosphorylase in complex with JS-379 8W7H ; 1.85 ; Purine Nucleoside Phosphorylase in complex with MMV000848 1OTX ; 2.7 ; Purine Nucleoside Phosphorylase M64V mutant 7OP9 ; 1.5 ; Purine nucleoside phosphorylase(DeoD-type) from H. pylori with 2,6-dichloropurine 7OOZ ; 1.7 ; Purine nucleoside phosphorylase(DeoD-type) from H. pylori with 6-benzyloxo-2-chloropurine 7OOY ; 1.9 ; Purine nucleoside phosphorylase(DeoD-type) from H. pylori with 6-benzylthio-2-chloropurine 7OPA ; 2.0 ; Purine nucleoside phosphorylase(DeoD-type) from H. pylori with 6-benzylthiopurine 1PRU ; ; PURINE REPRESSOR DNA-BINDING DOMAIN DNA BINDING 1PRV ; ; PURINE REPRESSOR DNA-BINDING DOMAIN DNA BINDING 1JHZ ; 2.4 ; Purine Repressor Mutant Corepressor Binding Domain Structure 1BDH ; 2.7 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1BDI ; 3.0 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1QP7 ; 2.9 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1QQA ; 3.0 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1QQB ; 2.7 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1JFS ; 2.9 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PURF OPERATOR COMPLEX 1JFT ; 2.5 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PURF OPERATOR COMPLEX 1JH9 ; 2.55 ; PURINE REPRESSOR MUTANT-HYPOXANTHINE-PURF OPERATOR COMPLEX 1ZAY ; 2.7 ; PURINE REPRESSOR-HYPOXANTHINE-MODIFIED-PURF-OPERATOR COMPLEX 1QP0 ; 2.9 ; PURINE REPRESSOR-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1QP4 ; 3.0 ; PURINE REPRESSOR-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1QPZ ; 2.5 ; PURINE REPRESSOR-HYPOXANTHINE-PALINDROMIC OPERATOR COMPLEX 1PNR ; 2.7 ; PURINE REPRESSOR-HYPOXANTHINE-PURF-OPERATOR COMPLEX 6TK9 ; 2.5 ; Purine-nucleoside phosphorylase from Thermus thermophilus 6BA1 ; 2.9 ; Purine-Preferring Ribonucleoside Hydrolase from Gardnerella vaginalis 7K09 ; 2.313 ; Puromycin N-acetyltransferase in complex with acetyl-CoA 7K0A ; 2.0 ; Puromycin N-acetyltransferase in complex with acetylated puromycin and CoA 8SW0 ; 2.301 ; Puromycin sensitive aminopeptidase 8SW1 ; 3.65 ; Puromycin-sensitive aminopeptidase with bound peptide 2MZG ; ; Purotoxin-2 NMR structure in DPC micelles 2MZF ; ; Purotoxin-2 NMR structure in water 1QHW ; 2.2 ; PURPLE ACID PHOSPHATASE FROM RAT BONE 6GJ2 ; 1.68 ; PURPLE ACID PHYTASE FROM WHEAT ISOFORM B2 - COMPLEX WITH INOSITOL HEXASULPHATE 6GJA ; 1.5 ; PURPLE ACID PHYTASE FROM WHEAT ISOFORM B2 - H229A MUTANT 6GIT ; 1.418 ; PURPLE ACID PHYTASE FROM WHEAT ISOFORM B2 - PRODUCT COMPLEX 6GJ9 ; 1.76 ; PURPLE ACID PHYTASE FROM WHEAT ISOFORM B2 - REGENERATION COMPLEX 6GIZ ; 1.54 ; PURPLE ACID PHYTASE FROM WHEAT ISOFORM B2 - SUBSTRATE COMPLEX 1CC3 ; 1.65 ; PURPLE CUA CENTER 3CFD ; 2.5 ; Purple-fluorescent antibody EP2-25C10 in complex with its stilbene hapten 3OMS ; 1.9 ; Putative 3-demethylubiquinone-9 3-methyltransferase, PhnB protein, from Bacillus cereus. 2JZ4 ; ; Putative 32 kDa myrosinase binding protein At3g16450.1 from Arabidopsis thaliana 3IVE ; 1.7 ; Putative 5'-Nucleotidase (c4898) from Escherichia Coli in complex with Cytidine 3IVD ; 1.9 ; Putative 5'-Nucleotidase (c4898) from Escherichia Coli in complex with Uridine 3E6Q ; 1.75 ; Putative 5-carboxymethyl-2-hydroxymuconate isomerase from Pseudomonas aeruginosa. 4GB7 ; 1.6 ; Putative 6-aminohexanoate-dimer hydrolase from Bacillus anthracis 1SGW ; 1.7 ; Putative ABC transporter (ATP-binding protein) from Pyrococcus furiosus Pfu-867808-001 1VKC ; 1.89 ; Putative acetyl transferase from Pyrococcus furiosus 2DXQ ; 1.8 ; Putative acetyltransferase from Agrobacterium tumefaciens str. C58 3EY5 ; 2.15 ; Putative acetyltransferase from GNAT family from Bacteroides thetaiotaomicron. 5OEK ; ; Putative active dimeric state of GHR transmembrane domain 5GJ7 ; 1.95 ; putative Acyl-CoA dehydrogenase 6YP4 ; 1.94541 ; Putative adenylyl cyclase HpAC1 from Hippeastrum reveals a dominant triphophatase activity 4EXB ; 2.75 ; Putative aldo-keto reductase from Pseudomona aeruginosa 5MG9 ; 1.801 ; Putative Ancestral Mamba toxin 1 (AncTx1-W28R/I38S) 1CE3 ; ; PUTATIVE ANCESTRAL PROTEIN ENCODED BY A SINGLE SEQUENCE REPEAT OF THE MULTIDOMAIN PROTEINASE INHIBITOR FROM NICOTIANA ALATA 7KB2 ; 1.6 ; Putative ankyrin repeat domain-containing protein from Enterobacter cloacae 2OMO ; 1.83 ; Putative antibiotic biosynthesis monooxygenase from Nitrosomonas europaea 3OMT ; 1.65 ; Putative antitoxin component, CHU_2935 protein, from Xre family from Prevotella buccae. 6U0I ; 1.9 ; Putative Antitoxin HicB3 from Escherichia coli str. K-12 substr. DH10B 4IP2 ; 1.95 ; Putative Aromatic Acid Decarboxylase 4IWS ; 2.3 ; Putative Aromatic Acid Decarboxylase 3RDW ; 2.2 ; Putative arsenate reductase from Yersinia pestis 3QWU ; 2.35 ; Putative ATP-dependent DNA ligase from Aquifex aeolicus. 3DV9 ; 1.72 ; Putative beta-phosphoglucomutase from Bacteroides vulgatus. 3LUY ; 2.0 ; Putative chorismate mutase from Bifidobacterium adolescentis 1S4K ; 1.9 ; Putative cytoplasmic protein from Salmonella typhimurium 1RYQ ; 1.38 ; Putative DNA-directed RNA polymerase, subunit e'' from Pyrococcus Furiosus Pfu-263306-001 1PQW ; 2.66 ; Putative enoyl reductase domain of polyketide synthase 4NEK ; 2.3 ; Putative enoyl-CoA hydratase/carnithine racemase from Magnetospirillum magneticum AMB-1 7KRM ; 1.9 ; Putative FabG bound to NADH from Acinetobacter baumannii 7KRK ; 1.4 ; Putative FabG from Acinetobacter baumannii 3FDX ; 1.58 ; Putative filament protein / universal stress protein F from Klebsiella pneumoniae. 1US4 ; 1.75 ; PUTATIVE GLUR0 LIGAND BINDING CORE WITH L-GLUTAMATE 1US5 ; 1.5 ; PUTATIVE GLUR0 LIGAND BINDING CORE WITH L-GLUTAMATE 7NIE ; 35.0 ; putative glycerol kinase-like proteins anchored on an array of voltage dependent anion channels in the outer mitochondrial membrane of pig sperm mitochondria 3JUW ; 2.11 ; Putative GnaT-family acetyltransferase from Bordetella pertussis. 3HP7 ; 1.53 ; Putative hemolysin from Streptococcus thermophilus. 2QM2 ; 2.09 ; Putative HopJ type III effector protein from Vibrio parahaemolyticus 5OHD ; ; Putative inactive (dormant) dimeric state of GHR transmembrane domain 6W0P ; 2.23 ; Putative kojibiose phosphorylase from human microbiome 4GVO ; 1.448 ; Putative L-Cystine ABC transporter from Listeria monocytogenes 7EME ; 1.78 ; Putative Leptospira interrogans recombinant L-amino acid oxidase 1X9G ; 2.41 ; PUTATIVE MAR1 RIBONUCLEASE FROM LEISHMANIA DONOVANI 1XN4 ; 3.8 ; PUTATIVE MAR1 RIBONUCLEASE FROM LEISHMANIA MAJOR 6QEK ; 1.95 ; Putative membrane tansporter, magnetosome protein MamM CTD [Desulfamplus magnetovallimortis BW-1] 2FPO ; 2.05 ; Putative methyltransferase yhhF from Escherichia coli. 3SQN ; 2.31 ; Putative Mga family transcriptional regulator from Enterococcus faecalis 2G2C ; 1.5 ; Putative molybdenum cofactor biosynthesis protein from Corynebacterium diphtheriae. 1VJK ; 1.51 ; Putative molybdopterin converting factor, subunit 1 from Pyrococcus furiosus, Pfu-562899-001 3E8X ; 2.1 ; Putative NAD-dependent epimerase/dehydratase from Bacillus halodurans. 1PW5 ; 2.8 ; putative nagD protein 4DM5 ; 1.5 ; Putative Osmotically inducible lipoprotein OsmE characterization by Xray crystallography 6OZ7 ; 1.36 ; Putative oxidoreductase from Escherichia coli str. K-12 1DZ9 ; 1.9 ; Putative oxo complex of P450cam from Pseudomonas putida 2M6I ; ; Putative pentameric open-channel structure of full-length transmembrane domains of human glycine receptor alpha1 subunit 6WBU ; ; Putative Peptidyl Prolyl cis-trans Isomerase FKBP12 from Mycobacterium tuberculosis 7UQ0 ; 2.0 ; Putative periplasmic iron siderophore binding protein FecB (Rv3044) from Mycobacterium tuberculosis 7Z3M ; 2.001 ; Putative Phage Recombinase RecA 1TE2 ; 1.76 ; Putative Phosphatase Ynic from Escherichia coli K12 5F64 ; 2.71 ; Putative positive transcription regulator (sensor EvgS) from Shigella flexneri 2ODK ; 1.4 ; Putative prevent-host-death protein from Nitrosomonas europaea 1T6T ; 1.8 ; putative protein from Aquifex aeolicus 5GYQ ; 2.1 ; Putative receptor-binding domain of bat-derived coronavirus HKU9 spike protein 4JOQ ; 1.9 ; Putative ribose ABC transporter, periplasmic solute-binding protein from Rhodobacter sphaeroides 3N4J ; 1.47 ; Putative RNA methyltransferase from Yersinia pestis 3N4K ; 1.76 ; Putative RNA methyltransferase from Yersinia pestis in complex with S-ADENOSYL-L-HOMOCYSTEINE. 6PZM ; 2.1 ; Putative SDR from Acinetobacter baumannii Crystal Form 1 6PZN ; 2.0 ; Putative SDR from Acinetobacter baumannii Crystal Form 2 6NRP ; 1.9 ; Putative short-chain dehydrogenase/reductase (SDR) from Acinetobacter baumannii 3RY3 ; 2.43 ; Putative solute-binding protein from Yersinia pestis. 1MJF ; 1.798 ; PUTATIVE SPERMIDINE SYNTHETASE FROM PYROCOCCUS FURIOSUS PFU-132382 4GL0 ; 1.92 ; Putative spermidine/putrescine ABC transporter from Listeria monocytogenes 1USC ; 1.24 ; PUTATIVE STYRENE MONOOXYGENASE SMALL COMPONENT 1USF ; 1.3 ; PUTATIVE STYRENE MONOOXYGENASE SMALL COMPONENT WITH BOUND NADP+ 6EWJ ; 1.9 ; Putative sugar aminotransferase Spr1654 from Streptococcus pneumoniae, apo-form 6EWQ ; 2.2 ; Putative sugar aminotransferase Spr1654 from Streptococcus pneumoniae, PLP-form 6EWR ; 2.4 ; Putative sugar aminotransferase Spr1654 from Streptococcus pneumoniae, PMP-form 5HTR ; 2.0 ; Putative sugar kinases from Arabidopsis thaliana in apo form 5HTX ; 1.492 ; Putative sugar kinases from Arabidopsis thaliana in complex with ADP 5HTV ; 1.78 ; Putative sugar kinases from Arabidopsis thaliana in complex with AMPPNP 5HUX ; 1.96 ; Putative sugar kinases from Synechococcus elongatus PCC7942 in complex with ADP 5HTP ; 2.3 ; Putative sugar kinases from Synechococcus elongatus PCC7942 in complex with AMPPNP 5HV7 ; 2.35 ; Putative sugar kinases from Synechococcus elongatus PCC7942 in complex with D-ribulose 5HTN ; 2.301 ; putative sugar kinases from Synechococcus elongatus PCC7942-apo form 5HTJ ; 2.001 ; Putative sugar kinases from Synechococcus elongatus PCC7942-D8A 2R5F ; 2.1 ; Putative sugar-binding domain of transcriptional regulator DeoR from Pseudomonas syringae pv. tomato 2I10 ; 2.05 ; Putative TetR transcriptional regulator from Rhodococcus sp. RHA1 3FFY ; 2.0 ; Putative tetrapyrrole (corrin/porphyrin) methyltransferase from Bacteroides fragilis. 3QDN ; 2.09 ; Putative thioredoxin protein from Salmonella typhimurium 2WLR ; 1.45 ; Putative thiosulfate sulfurtransferase YnjE 2WLX ; 1.9 ; Putative thiosulfate sulfurtransferase YnjE 3MLF ; 2.6 ; Putative transcriptional regulator from Staphylococcus aureus. 1YYV ; 2.35 ; Putative transcriptional regulator ytfH from Salmonella typhimurium 7NHR ; 2.85 ; Putative transmembrane protein Wzc K540M C1 2O38 ; 1.83 ; Putative XRE Family Transcriptional Regulator 1PDX ; ; PUTIDAREDOXIN 1R7S ; 1.91 ; PUTIDAREDOXIN (Fe2S2 ferredoxin), C73G mutant 1IWI ; 2.0 ; Putidaredoxin-Binding Stablilizes an Active Conformer of Cytochrome P450cam in its Reduced State; Crystal Structure of Cytochrome P450cam 1IWJ ; 2.0 ; Putidaredoxin-Binding Stablilizes an Active Conformer of Cytochrome P450cam in its Reduced State; Crystal Structure of Mutant(109K) Cytochrome P450cam 1IWK ; 2.0 ; Putidaredoxin-Binding Stablilizes an Active Conformer of Cytochrome P450cam in its Reduced State; Crystal Structure of Mutant(112K) Cytochrome P450cam 1A99 ; 2.2 ; PUTRESCINE RECEPTOR (POTF) FROM E. COLI 6HX9 ; 2.05 ; Putrescine transaminase from Pseudomonas putida 7B09 ; 13.4 ; Puumala virus glycoprotein (Gc) in complex with fab fragment P-4G2. 7B0A ; 13.9 ; Puumala virus-like particle glycoprotein spike and lattice contacts model. 1EAH ; 2.9 ; PV2L COMPLEXED WITH ANTIVIRAL AGENT SCH48973 1X7K ; ; PV5 nmr solution structure 2B5K ; ; PV5 NMR solution structure in DPC micelles 2XF2 ; 1.8 ; PVC-AT 6CUL ; 2.3 ; PvdF of pyoverdin biosynthesis is a structurally unique N10-formyltetrahydrofolate-dependent formyltransferase 4B95 ; 2.8 ; pVHL-EloB-EloB-EloC complex_(2S,4R)-1-(2-chlorophenyl)carbonyl-N-[(4-chlorophenyl)methyl]-4-oxidanyl-pyrrolidine-2-carboxamide bound 4B9K ; 2.0 ; pVHL-ELOB-ELOC complex_(2S,4R)-1-(3-amino-2-methylbenzoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide bound 3ZRC ; 2.9 ; pVHL54-213-EloB-EloC complex (4R)-4-HYDROXY-1-[(3-METHYLISOXAZOL-5-YL)ACETYL]-N-[4-(1,3-OXAZOL-5-YL)BENZYL]-L-PROLINAMIDE bound 3ZTC ; 2.65 ; pVHL54-213-EloB-EloC complex _ (2S,4R)-N-((1,1'-biphenyl)-4-ylmethyl)- 4-hydroxy-1-(2-(3-methylisoxazol-5-yl)acetyl)pyrrolidine-2- carboxamide 3ZTD ; 2.79 ; pVHL54-213-EloB-EloC complex _ methyl 4-(((2S,4R)-4-hydroxy-1-(2-(3- methylisoxazol-5-yl)acetyl)pyrrolidine-2-carboxamido)methyl)benzoate 3ZUN ; 2.5 ; pVHL54-213-EloB-EloC complex_(2S,4R)-4-hydroxy-1-(2-(3-methylisoxazol- 5-yl)acetyl)-N-(4-nitrobenzyl)pyrrolidine-2-carboxamide bound 3ZRF ; 2.8 ; pVHL54-213-EloB-EloC complex_apo 4AWJ ; 2.5 ; pVHL:EloB:EloC complex, in complex with capped Hydroxyproline 4W9I ; 2.4 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((2S,4R)-1-acetyl-4-hydroxypyrrolidine-2-carbonyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 10) 4W9L ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-((S)-2-acetamido-3,3-dimethylbutanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 15) 4W9K ; 2.1 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-((S)-2-acetamido-3-phenylpropanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 14) 4W9J ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-((S)-2-acetamido-4-methylpentanamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 13) 5NW0 ; 2.3 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(1-acetamidocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 17) 5NVZ ; 2.7 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(1-acetylcyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 16) 8CQK ; 2.62 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(1-Fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-((S)-1-(2-methyl-4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (Compound 30) 8CQE ; 2.85 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(1-Fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-((S)-1-(2-methyl-4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide (Compound 37) 5NVX ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(1-fluorocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 10) 5NW1 ; 2.1 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(cyclobutanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 18) 5NVW ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-(cyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 6) 4W9H ; 2.1 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-acetamido-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 7) 6FMJ ; 2.45 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-Acetamidopropanethioyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl) benzyl)pyrrolidine-2-carboxamide (ligand 3) 5NVY ; 2.9 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-2-acetamidopropanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl) pyrrolidine-2-carboxamide (ligand 11) 5NW2 ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-((S)-3,3-dimethyl-2-(oxetane-3-carboxamido)butanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 19) 4W9G ; 2.7 ; pVHL:EloB:EloC in complex with (2S,4R)-1-(3,3-dimethylbutanoyl)-4-hydroxy-N-(3-methyl-4-(thiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 6) 4W9D ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-(3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methyloxazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 3) 4W9F ; 2.1 ; pVHL:EloB:EloC in complex with (2S,4R)-1-(3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 5) 4W9C ; 2.2 ; pVHL:EloB:EloC in complex with (2S,4R)-1-(3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(oxazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 2) 4W9E ; 2.6 ; pVHL:EloB:EloC in complex with (2S,4R)-1-(3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(thiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 4) 5NVV ; 2.1 ; pVHL:EloB:EloC in complex with (2S,4R)-4-hydroxy-1-((S)-2-(2-hydroxyacetamido)-3,3-dimethylbutanoyl)-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (ligand 3) 8CQL ; 2.38 ; pVHL:EloB:EloC in complex with (2S,4R)-N-((S)-1-(5-Fluoro-2-methoxy-4-(4-methylthiazol-5-yl)phenyl)ethyl)-1-((S)-2-(1-fluorocyclopropane-1-carboxamido)-3,3-dimethylbutanoyl)-4-hydroxypyrrolidine-2-carboxamide (Compound 33) 6GMQ ; 2.755 ; pVHL:EloB:EloC in complex with (4-(1H-pyrrol-1-yl)phenyl)methanol 6GMR ; 1.75 ; pVHL:EloB:EloC in complex with (4-(1H-pyrrol-1-yl)phenyl)methanol 6GMX ; 2.533 ; pVHL:EloB:EloC in complex with 6-chlorothiochroman-4-one 6GMN ; 1.94 ; pVHL:EloB:EloC in complex with methyl 4H-furo[3,2-b]pyrrole-5-carboxylate 6GFX ; 1.83 ; pVHL:EloB:EloC in complex with modified HIF-1a CODD peptide containing (3R,4S)-3-fluoro-4-hydroxyproline (ligand 13a) 6GFY ; 2.7 ; pVHL:EloB:EloC in complex with modified VH032 containing (3R,4S)-3-fluoro-4-hydroxyproline (ligand 14a) 6GFZ ; 2.3 ; pVHL:EloB:EloC in complex with modified VH032 containing (3S,4S)-3-fluoro-4-hydroxyproline (ligand 14b) 6FMI ; 2.8 ; pVHL:EloB:EloC in complex with N-((S)-1-((2S,4R)-4-Hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamothioyl) pyrrolidin-1-yl)-1-oxopropan-2-yl)acetamide (ligand 2) 6FMK ; 2.75 ; pVHL:EloB:EloC in complex with N-((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamothioyl) pyrrolidin-1-yl)-1-thioxopropan-2-yl)acetamide (ligand 4) 5LLI ; 2.4 ; pVHL:EloB:EloC in complex with VH298 8QKG ; 1.538 ; PvSub1 Catalytic Domain in Complex with Peptidomimetic Inhibitor (MAM-125) 8QKJ ; 1.767 ; PvSub1 Catalytic Domain in Complex with Peptidomimetic Inhibitor (MAM-133) 8QKE ; 1.504 ; PvSub1 Catalytic Domain in Complex with Peptidomimetic Inhibitor (MH-13) 1BOO ; 2.8 ; PVUII DNA METHYLTRANSFERASE (CYTOSINE-N4-SPECIFIC) 2PVI ; 1.76 ; PVUII ENDONUCLEASE COMPLEXED TO AN IODINATED COGNATE DNA 1F0O ; 2.5 ; PVUII ENDONUCLEASE/COGNATE DNA COMPLEX (GLUTARALDEHYDE-CROSSLINKED CRYSTAL) AT PH 7.5 WITH TWO CALCIUM IONS AT EACH ACTIVE SITE 4RVQ ; 1.135 ; PWI-like domain of Chaetomium thermophilum Brr2 3L42 ; 1.3 ; PWWP domain of human bromodomain and PHD finger containing protein 1 3MO8 ; 1.69 ; PWWP Domain of Human Bromodomain and PHD finger-containing protein 1 In Complex with Trimethylated H3K36 Peptide 3PFS ; 1.9 ; PWWP Domain of Human Bromodomain and PHD finger-containing protein 3 3LYI ; 2.1 ; PWWP Domain of Human Bromodomain-Containing Protein 1 3EAE ; 2.24 ; PWWP domain of human hepatoma-derived growth factor 2 (HDGF2) 3PMI ; 2.82 ; PWWP Domain of Human Mutated Melanoma-Associated Antigen 1 4LD6 ; 1.7 ; PWWP domain of human PWWP Domain-Containing Protein 2B 6UE6 ; 2.4 ; PWWP1 domain of NSD2 in complex with MR837 6HTY ; 2.22 ; PXR in complex with P2X4 inhibitor compound 25 6TFI ; 1.85 ; PXR IN COMPLEX WITH THROMBIN INHIBITOR COMPOUND 17 2H01 ; 2.3 ; PY00414- Plasmodium yoelii thioredoxin peroxidase I 7FEA ; 1.4 ; PY14 in complex with Col-D 8E94 ; 3.72 ; PYD-106-bound Human GluN1a-GluN2C NMDA receptor in intact conformation 8E97 ; 4.19 ; PYD-106-bound Human GluN1a-GluN2C NMDA receptor in splayed conformation 4XEF ; 2.5 ; Pyk2-FAT complexed with Leupaxin LD motif LD1 4XEK ; 1.793 ; Pyk2-FAT domain in complex with leupaxin LD4 motif 6NWC ; 2.35 ; PYL10 bound to the ABA pan-agonist 3CB 7MLC ; 1.77 ; PYL10 bound to the ABA pan-antagonist 4a 7MLD ; 1.8 ; PYL10 bound to the ABA pan-antagonist antabactin 6NWB ; 2.003 ; PYL10 bound to the selective agonist hexabactin 4FFN ; 2.4 ; PylC in complex with D-ornithine and AMPPNP 4FFL ; 1.5 ; PylC in complex with L-lysine 4FFP ; 2.0 ; PylC in complex with L-lysine-Ne-D-ornithine (cocrystallized with L-lysine and D-ornithine) 4FFM ; 1.91 ; PylC in complex with L-lysine-Ne-D-ornithine (cocrystallized with L-lysine-Ne-D-ornithine) 4FFO ; 2.0 ; PylC in complex with phosphorylated D-ornithine 4Q3A ; 2.2 ; PylD cocrystallized with L-Lysine-Ne-3S-methyl-L-ornithine and NAD+ 4Q3B ; 1.9 ; PylD cocrystallized with L-Lysine-Ne-D-lysine and NAD+ 4Q3C ; 2.1 ; PylD cocrystallized with L-Lysine-Ne-L-lysine and NAD+ 4Q3E ; 2.2 ; PylD cocrystallized with L-Ornithine-Nd-D-lysine and NAD+ 4Q3D ; 2.2 ; PylD cocrystallized with L-Ornithine-Nd-D-ornithine and NAD+ 4J43 ; 2.2 ; PylD holoenzyme 4JK3 ; 2.5 ; PylD holoenzyme (SeMet) 4J49 ; 2.2 ; PylD holoenzyme soaked with L-lysine-Ne-D-ornithine 4J4B ; 1.9 ; PylD in complex with L-lysine-Ne-D-ornithine and NADH 4J4H ; 1.8 ; PylD in complex with pyrroline-carboxy-lysine and NADH 4Q39 ; 2.2 ; PylD in complex with pyrrolysine and NADH 6LY7 ; 2.09447 ; PylRS C-terminus domain mutant bound with 1-Formyl-L-tryptophan and AMPNP 6LYA ; 1.5907 ; PylRS C-terminus domain mutant bound with 1-Methyl-L-tryptophan and AMPNP 6LY6 ; 2.50013 ; PylRS C-terminus domain mutant bound with 3-(1-Naphthyl)-L-alanine and AMPNP 6LY3 ; 1.8959 ; PylRS C-terminus domain mutant bound with 3-Benzothienyl-L-alanine and AMPNP 8KE4 ; 1.75051 ; PylRS C-terminus domain mutant bound with D-3-bromophenylalanine and AMPNP 8KE5 ; 1.90007 ; PylRS C-terminus domain mutant bound with D-3-chlorophenylalanine and AMPNP 8KE3 ; 1.89981 ; PylRS C-terminus domain mutant bound with D-3-trifluoromethylphenylalanine and AMPNP 8KE1 ; 2.50082 ; PylRS C-terminus domain mutant bound with L-3-bromophenylalanine and AMPNP 8KE6 ; 1.89571 ; PylRS C-terminus domain mutant bound with L-3-chlorophenylalanine and AMPNP 8KE2 ; 2.1964 ; PylRS C-terminus domain mutant bound with L-3-trifluoromethylphenylalanine and AMPNP 6LYB ; 1.90366 ; PylRS C-terminus domain mutant in complex with 3-Benzothienyl-D-alanine and AMPNP 4BWA ; 2.45 ; PylRS Y306G, Y384F, I405R mutant in complex with adenylated norbornene 4BW9 ; 2.35 ; PylRS Y306G, Y384F, I405R mutant in complex with AMP-PNP 6O5D ; 2.4 ; PYOCHELIN 1XKW ; 2.0 ; Pyochelin outer membrane receptor FptA from Pseudomonas aeruginosa 7EMY ; 2.97 ; Pyochelin synthetase, a dimeric nonribosomal peptide synthetase elongation module 7EN1 ; 3.47 ; Pyochelin synthetase, a dimeric nonribosomal peptide synthetase elongation module-after-condensation 7EN2 ; 3.78 ; Pyochelin synthetase, a dimeric nonribosomal peptide synthetase elongation module-after-condensation, condensation 5K21 ; 1.8 ; Pyocyanin demethylase 1XKH ; 3.6 ; Pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa PAO1 bound to pyoverdine 5GX9 ; 1.493 ; PYP mutant - E46Q 2QJ5 ; 1.2 ; PYP ultra-high resolution of a bacterial photoreceptor 2QJ7 ; 1.05 ; PYP ultra-high resolution of a bacterial photoreceptor 1NWZ ; 0.82 ; PYP Ultra-high resolution structure of a Bacterial Photoreceptor 5UR5 ; 1.93 ; PYR1 bound to the rationally designed agonist 4m 5UR6 ; 1.631 ; PYR1 bound to the rationally designed agonist cyanabactin 3NEG ; 2.801 ; Pyrabactin-bound PYL1 structure in the open and close forms 3NR4 ; 2.006 ; Pyrabactin-bound PYL2 6B2V ; 1.55 ; Pyran synthase domain from module nine of the sorangicin pathway 3K4N ; 2.75 ; Pyranose 2-oxidase F454A/S455A/Y456A mutant 3K4K ; 1.6 ; Pyranose 2-oxidase F454N mutant 3K4L ; 1.75 ; Pyranose 2-oxidase F454N mutant in complex with 2FG 4MIH ; 2.4 ; Pyranose 2-oxidase from Phanerochaete chrysosporium, recombinant H158A mutant 4MIG ; 1.8 ; Pyranose 2-oxidase from Phanerochaete chrysosporium, recombinant wild type 4MIF ; 1.8 ; Pyranose 2-oxidase from Phanerochaete chrysosporium, wild type from natural source 3BG6 ; 1.7 ; Pyranose 2-oxidase from Trametes multicolor, E542K mutant 3BLY ; 1.9 ; Pyranose 2-oxidase from Trametes multicolor, E542K/L537W 3BG7 ; 2.1 ; Pyranose 2-oxidase from Trametes multicolor, L537G mutant 3PL8 ; 1.35 ; Pyranose 2-oxidase H167A complex with 3-deoxy-3-fluoro-beta-D-glucose 4MOK ; 1.9 ; Pyranose 2-oxidase H167A mutant soaked with 3-fluorinated galactose (not bound) 4MOL ; 2.0 ; Pyranose 2-oxidase H167A mutant with 2-fluorinated galactose 3LSM ; 1.7 ; Pyranose 2-oxidase H167A mutant with flavin N(5) sulfite adduct 3K4C ; 1.7 ; Pyranose 2-oxidase H167A/T169G mutant 4MOO ; 1.65 ; Pyranose 2-oxidase H450G mutant with 2-fluorinated galactose 4MOF ; 1.85 ; Pyranose 2-oxidase H450G mutant with 2-fluorinated glucose 4MOM ; 1.9 ; Pyranose 2-oxidase H450G mutant with 3-fluorinated galactose 4MOE ; 2.0 ; Pyranose 2-oxidase H450G mutant with 3-fluorinated glucose 4MOS ; 1.8 ; Pyranose 2-oxidase H450G/V546C double mutant with 2-fluorinated galactose 4MOJ ; 2.0 ; Pyranose 2-oxidase H450G/V546C double mutant with 2-fluorinated glucose 4MOR ; 1.5 ; Pyranose 2-oxidase H450G/V546C double mutant with 3-fluorinated galactose 4MOI ; 1.9 ; Pyranose 2-oxidase H450G/V546C double mutant with 3-fluorinated glucose 3K4J ; 2.0 ; Pyranose 2-oxidase H450Q mutant 3LSH ; 1.9 ; Pyranose 2-oxidase T169A, monoclinic 3LSI ; 1.9 ; Pyranose 2-oxidase T169A, tetragonal 3LSK ; 1.95 ; Pyranose 2-oxidase T169S acetate complex 3K4B ; 1.9 ; Pyranose 2-oxidase T169S mutant 3FDY ; 1.55 ; Pyranose 2-oxidase thermostable triple mutant, T169G/E542K/V546C 4MOQ ; 1.6 ; Pyranose 2-oxidase V546C mutant with 2-fluorinated galactose 4MOH ; 2.1 ; Pyranose 2-oxidase V546C mutant with 2-fluorinated glucose 4MOP ; 2.3 ; Pyranose 2-oxidase V546C mutant with 3-fluorinated galactose 4MOG ; 2.0 ; Pyranose 2-oxidase V546C mutant with 3-fluorinated glucose 3K4M ; 2.2 ; Pyranose 2-oxidase Y456W mutant in complex with 2FG 7P58 ; 1.886 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5E ; 1.874 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5F ; 1.88 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5I ; 1.86 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5K ; 1.79 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5N ; 1.89 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 7P5P ; 1.85 ; Pyrazole Carboxylic Acid Inhibitors of KEAP1:NRF2 interaction 3IEJ ; 2.18 ; Pyrazole-based Cathepsin S Inhibitors with Arylalkynes as P1 Binding Elements 3D4Q ; 2.8 ; Pyrazole-based inhibitors of B-Raf kinase 2G01 ; 3.5 ; Pyrazoloquinolones as Novel, Selective JNK1 inhibitors 3S7L ; 2.162 ; Pyrazolyl and Thienyl Aminohydantoins as Potent BACE1 Inhibitors 3S7M ; 2.2 ; Pyrazolyl and Thienyl Aminohydantoins as Potent BACE1 Inhibitors 7DVK ; 2.6 ; PyrI4 in complex with intermolecular Diels-Alder product 6S15 ; 1.7 ; Pyridine derivative of the natural alkaloid Berberine as Human Telomeric G-quadruplex Binder 3CGB ; 1.9 ; Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity 3CGC ; 2.3 ; Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity 3CGD ; 2.25 ; Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity 3CGE ; 2.262 ; Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity 5W98 ; 1.23 ; Pyridine synthase, PbtD, from GE2270 biosynthesis 5W99 ; 1.59 ; Pyridine synthase, PbtD, from GE2270 biosynthesis bound to TSP 5WA3 ; 2.8 ; Pyridine synthase, TbtD, from thiomuracin biosynthesis 5WA4 ; 2.646 ; Pyridine synthase, TbtD, from thiomuracin biosynthesis bound to an N-terminal leader peptide fragment 4HXX ; 2.09 ; Pyridinylpyrimidines selectively inhibit human methionine aminopeptidase-1 4Y46 ; 2.04 ; Pyridopyrimidinone Derivatives as Potent and Selective c-Jun N-Terminal Kinase (JNK) inhibitors 4Y5H ; 2.055 ; Pyridopyrimidinone Derivatives as Potent and Selective c-Jun N-Terminal Kinase (JNK) inhibitors 7LB5 ; 3.16 ; Pyridoxal 5'-phosphate synthase-like subunit PDX1.2 (Arabidopsis thaliana) 6K8Z ; 1.9 ; Pyridoxal Kinase from Leishmania donovani in complex with ADP 6K92 ; 1.85 ; Pyridoxal Kinase from Leishmania donovani in complex with ADP and Ginkgotoxin 6K90 ; 1.9 ; Pyridoxal Kinase from Leishmania donovani in complex with ADP and Pyridoxamine 6K91 ; 2.0 ; Pyridoxal Kinase from Leishmania donovani in complex with ADP and Pyridoxine 4S1H ; 1.6 ; Pyridoxal kinase of Entamoeba histolytica with ADP 4S1I ; 1.6 ; Pyridoxal Kinase of Entamoeba histolytica with PLP 3O6C ; 1.87 ; Pyridoxal phosphate biosynthetic protein PdxJ from Campylobacter jejuni 3O6D ; 1.95 ; Pyridoxal phosphate biosynthetic protein PdxJ from Campylobacter jejuni in complex with pyridoxine-5'-phosphate 2SKC ; 2.4 ; PYRIDOXAL PHOSPHORYLASE B IN COMPLEX WITH FLUOROPHOSPHATE, GLUCOSE AND INOSINE-5'-MONOPHOSPHATE 2SKD ; 2.4 ; PYRIDOXAL PHOSPHORYLASE B IN COMPLEX WITH PHOSPHATE, GLUCOSE AND INOSINE-5'-MONOPHOSPHATE 2SKE ; 2.46 ; PYRIDOXAL PHOSPHORYLASE B IN COMPLEX WITH PHOSPHITE, GLUCOSE AND INOSINE-5'-MONOPHOSPHATE 4D9B ; 1.67 ; Pyridoxamine 5' phosphate (PMP) bound form of Salmonella typhimurium D-Cysteine desulfhydrase obtained after co-crystallization with D-cycloserine 1A2D ; 2.4 ; PYRIDOXAMINE MODIFIED MURINE ADIPOCYTE LIPID BINDING PROTEIN 8XV5 ; 3.7 ; Pyridoxamine-bound human SLC19A3 6BA0 ; 2.03 ; Pyrimidine-specific Ribonucleoside Hydrolase from Gardnerella vaginalis 2WL1 ; 1.35 ; Pyrin PrySpry domain 2ZYZ ; 1.7 ; Pyrobaculum aerophilum splicing endonuclease 5LZL ; 3.47 ; Pyrobaculum calidifontis 5-aminolaevulinic acid dehydratase 2YH2 ; 2.2 ; Pyrobaculum calidifontis esterase monoclinic form 4FM2 ; 2.9 ; Pyrococcus abyssi B family DNA polymerase (triple mutant) bound to a dsDNA, in edition mode 4FLT ; 2.9 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLU ; 3.1 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLV ; 2.7 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLW ; 2.15 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLX ; 2.9 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLY ; 2.3 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FLZ ; 3.2 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FM0 ; 3.12 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 4FM1 ; 3.0 ; Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode 8PPT ; 2.9 ; Pyrococcus abyssi DNA polymerase D (PolD) in its editing mode bound to a primer/template substrate containing a mismatch 8PPU ; 3.02 ; Pyrococcus abyssi DNA polymerase D (PolD) in its editing mode bound to a primer/template substrate containing three consecutive mismatches 5WT3 ; 3.204 ; Pyrococcus abyssi methyltransferase PaTrm5a bound by MTA and cognate tRNA 5WT1 ; 2.598 ; Pyrococcus abyssi methyltransferase PaTrm5a bound by SAH and cognate tRNA 1YK5 ; 1.79 ; Pyrococcus abyssi rubredoxin 1S4E ; 2.9 ; Pyrococcus furiosus galactokinase in complex with galactose, ADP and magnesium 4YWM ; 3.2 ; Pyrococcus furiosus MCM N-terminal domain beta-turn triple mutant pentameric ring 4YWL ; 3.2 ; Pyrococcus furiosus MCM N-terminal domain F179A point mutant pentameric ring 4YWK ; 1.55 ; Pyrococcus furiosus MCM N-terminal domain with Zinc-binding subdomain B deleted 1ISQ ; 2.3 ; Pyrococcus furiosus PCNA complexed with RFCL PIP-box peptide 1IZ5 ; 1.8 ; Pyrococcus furiosus PCNA mutant (Met73Leu, Asp143Ala, Asp147Ala): orthorhombic form 1IZ4 ; 2.0 ; Pyrococcus furiosus PCNA mutant (Met73Leu/Asp143Ala): tetragonal form 5AUJ ; 2.5 ; Pyrococcus furiosus proliferating cell nuclear antigen (PCNA) SeMet derivative 6ZFF ; 3.0 ; Pyrococcus furiosus Rad50 coiled coils in rod configuration 5X4I ; 2.092 ; Pyrococcus furiosus RecJ (D83A, Mn-soaking) 4RSJ ; 3.5 ; Pyrococcus furiosus Smc hinge domain with an extended coiled coil 4HXG ; 2.7 ; Pyrococcus horikoshii acylaminoacyl peptidase (orthorhombic crystal form) 4HXE ; 1.91 ; Pyrococcus horikoshii acylaminoacyl peptidase (uncomplexed) 5L1N ; 3.6 ; Pyrococcus horikoshii CoA Disulfide Reductase Quadruple Mutant 1G8A ; 1.4 ; PYROCOCCUS HORIKOSHII FIBRILLARIN PRE-RRNA PROCESSING PROTEIN 3GQU ; 2.5 ; Pyrococcus Horikoshii NOP5 RNA Binding Domain 3GQX ; 2.5 ; Pyrococcus Horikoshii NOP5 RNA Binding Domain from a twinned crystal form 2CF4 ; 3.08 ; Pyrococcus horikoshii TET1 peptidase can assemble into a tetrahedron or a large octahedral shell 7LFQ ; 2.7 ; Pyrococcus RNA ligase 1QLV ; 2.1 ; Pyrone synthase (PYS) from Gerbera hybrida 6K21 ; 2.0 ; Pyrophosphatase from Acinetobacter baumannii 6KI8 ; 1.79 ; Pyrophosphatase mutant K149R from Acinetobacter baumannii 6KI7 ; 2.75 ; Pyrophosphatase mutant K30R from Acinetobacter baumannii 6K27 ; 1.86 ; Pyrophosphatase with PPi from Acinetobacter baumannii 5YSP ; 1.7 ; Pyrophosphate-dependent kinase in the ribokinase family complexed with a pyrophosphate analog and myo-inositol 1W30 ; 1.9 ; PyrR of Mycobacterium Tuberculosis as a potential drug target 1A3C ; 1.6 ; PYRR, THE BACILLUS SUBTILIS PYRIMIDINE BIOSYNTHETIC OPERON REPRESSOR, DIMERIC FORM 1A4X ; 2.3 ; PYRR, THE BACILLUS SUBTILIS PYRIMIDINE BIOSYNTHETIC OPERON REPRESSOR, HEXAMERIC FORM 1NON ; 2.4 ; PyrR, the regulator of the pyrimidine biosynthetic operon in Bacillus caldolyticus 1XZ8 ; 2.8 ; Pyrr, The Regulator Of The Pyrimidine Biosynthetic Operon In Bacillus caldolyticus, Nucleotide-bound form 1XZN ; 2.27 ; PYRR, THE REGULATOR OF THE PYRIMIDINE BIOSYNTHETIC OPERON IN BACILLUS CALDOLYTICUS, sulfate-bound form 4D0W ; 1.77 ; Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors 4D0X ; 1.82 ; Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors 4D1S ; 1.66 ; Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors 8C70 ; 1.65 ; Pyrrolidine fragment 1 bound to endothiapepsin 8C72 ; 1.2 ; Pyrrolidine fragment 10b bound to endothiapepsin 8C74 ; 1.15 ; Pyrrolidine fragment 10d bound to endothiapepsin 8C71 ; 1.1 ; Pyrrolidine fragment 5b bound to endothiapepsin 1A2Z ; 1.73 ; PYRROLIDONE CARBOXYL PEPTIDASE FROM THERMOCOCCUS LITORALIS 4GFN ; 1.9 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic 4GGL ; 1.69 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity 4HZ5 ; 2.7 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity 4GEE ; 1.7 ; Pyrrolopyrimidine inhibitors of DNA gyrase B and topoisomerase IV, part I: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HXW ; 1.69 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HXZ ; 2.7 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HY1 ; 1.9 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HYM ; 1.9 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HYP ; 2.6 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 4HZ0 ; 2.2 ; Pyrrolopyrimidine inhibitors of dna gyrase b and topoisomerase iv, part i: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. 2Q7G ; 1.9 ; Pyrrolysine tRNA Synthetase bound to a pyrrolysine analogue (cyc) and ATP 2Q7H ; 2.1 ; Pyrrolysyl-tRNA synthetase bound to adenylated pyrrolysine and pyrophosphate 2ZIM ; 2.1 ; Pyrrolysyl-tRNA synthetase bound to adenylated pyrrolysine and pyrophosphate 6EZD ; 2.4 ; Pyrrolysyl-tRNA synthetase from Canditatus Methanomethylophilus alvus (MmaPylRS) 7R6O ; 2.2 ; Pyrrolysyl-tRNA synthetase from methanogenic archaeon ISO4-G1 (G1PylRS) 8GMK ; 1.81 ; Pyruvate bound structure of Citrate Synthase (CitA) in Mycobacterium Tuberculosis 6EFG ; 2.04 ; Pyruvate decarboxylase from Kluyveromyces lactis 2VJY ; 2.3 ; Pyruvate decarboxylase from Kluyveromyces lactis in complex with the substrate analogue methyl acetylphosphonate 6EFH ; 2.99 ; Pyruvate decarboxylase from Kluyveromyces lactis soaked with pyruvamide 5EUJ ; 2.15 ; PYRUVATE DECARBOXYLASE FROM ZYMOBACTER PALMAE 1ZPD ; 1.86 ; PYRUVATE DECARBOXYLASE FROM ZYMOMONAS MOBILIS 3OE1 ; 1.985 ; Pyruvate decarboxylase variant Glu473Asp from Z. mobilis in complex with reaction intermediate 2-lactyl-ThDP 1QPB ; 2.4 ; PYRUVATE DECARBOYXLASE FROM YEAST (FORM B) COMPLEXED WITH PYRUVAMIDE 2Q8I ; 2.6 ; Pyruvate dehydrogenase kinase isoform 3 in complex with antitumor drug radicicol 1JM6 ; 2.5 ; Pyruvate dehydrogenase kinase, isozyme 2, containing ADP 1H17 ; 1.75 ; Pyruvate Formate-Lyase (E.coli) in complex with CoA and the substrate analog oxamate 1H18 ; 2.3 ; Pyruvate Formate-Lyase (E.coli) in complex with Pyruvate 1H16 ; 1.53 ; Pyruvate Formate-Lyase (E.coli) in complex with Pyruvate and CoA 5WS8 ; 2.62 ; Pyruvate kinase (PYK) from Mycobacterium tuberculosis in complex with Oxalate 5WSA ; 2.85 ; Pyruvate kinase (PYK) from Mycobacterium tuberculosis in complex with Oxalate and allosteric activator Glucose 6-Phosphate 5WSB ; 2.25 ; Pyruvate kinase (PYK) from Mycobacterium tuberculosis in complex with Oxalate, allosteric activators AMP and Glucose 6-Phosphate 5WS9 ; 1.9 ; Pyruvate kinase (PYK) from Mycobacterium tuberculosis in complex with Oxalate, ATP and allosteric activator AMP 4HYW ; 2.35 ; Pyruvate kinase (PYK) from Trypanosoma brucei in the presence of Magnesium and F26BP 4HYV ; 2.3 ; Pyruvate kinase (PYK) from Trypanosoma brucei in the presence of Magnesium, PEP and F26BP 4KCV ; 2.18 ; Pyruvate kinase (PYK) from Trypanosoma brucei soaked with 2-oxoglutaric acid 4KCU ; 2.35 ; Pyruvate kinase (PYK) from Trypanosoma brucei soaked with D-Malate 4KCW ; 2.5 ; Pyruvate kinase (PYK) from Trypanosoma brucei soaked with oxalate 4KCT ; 1.95 ; Pyruvate kinase (PYK) from Trypanosoma brucei soaked with Oxaloacetate 4KS0 ; 2.8 ; Pyruvate kinase (PYK) from Trypanosoma cruzi in the presence of Magnesium, oxalate and F26BP 1A5U ; 2.35 ; PYRUVATE KINASE COMPLEX WITH BIS MG-ATP-NA-OXALATE 1PKY ; 2.5 ; PYRUVATE KINASE FROM E. COLI IN THE T-STATE 1AQF ; 2.7 ; PYRUVATE KINASE FROM RABBIT MUSCLE WITH MG, K, AND L-PHOSPHOLACTATE 1A3W ; 3.0 ; PYRUVATE KINASE FROM SACCHAROMYCES CEREVISIAE COMPLEXED WITH FBP, PG, MN2+ AND K+ 1A3X ; 3.0 ; PYRUVATE KINASE FROM SACCHAROMYCES CEREVISIAE COMPLEXED WITH PG, MN2+ AND K+ 7UEH ; 2.4 ; Pyruvate kinase from Zymomonas mobilis 6ECK ; 2.36 ; Pyruvate Kinase Isoform L-type with phosphorylated Ser113 (pS113) in complex with FBP 6ECH ; 2.19 ; Pyruvate Kinase Isoform L-type with phosphorylated Ser12 (pS12) in complex with FBP 3BJF ; 2.03 ; Pyruvate kinase M2 is a phosphotyrosine binding protein 3BJT ; 2.5 ; Pyruvate kinase M2 is a phosphotyrosine binding protein 6B6U ; 1.35 ; Pyruvate Kinase M2 mutant - S437Y 6NU5 ; 1.6 ; Pyruvate Kinase M2 Mutant - S437Y in Complex with L-cysteine 6NUB ; 1.7 ; Pyruvate Kinase M2 Mutant - S437Y in Complex with L-serine 6WP3 ; 1.84 ; Pyruvate Kinase M2 Mutant-K433Q 7L21 ; 2.29 ; Pyruvate Kinase M2 mutant-N70D 6WP5 ; 2.17 ; Pyruvate Kinase M2 mutant-S37D 6WP4 ; 1.9 ; Pyruvate Kinase M2 mutant-S37E 6WP6 ; 2.45 ; Pyruvate Kinase M2 mutant-S37E K433E 6HAF ; 1.3 ; Pyruvate oxidase variant E59Q from L. plantarum in complex with phosphate 2EZ4 ; 2.03 ; Pyruvate oxidase variant F479W 2EZU ; 2.16 ; Pyruvate oxidase variant F479W in complex with reaction intermediate 2-acetyl-thiamin diphosphate 2EZT ; 2.29 ; Pyruvate oxidase variant F479W in complex with reaction intermediate 2-hydroxyethyl-thiamin diphosphate 2EZ8 ; 1.963 ; Pyruvate oxidase variant F479W in complex with reaction intermediate 2-lactyl-thiamin diphosphate 2EZ9 ; 1.6 ; Pyruvate oxidase variant F479W in complex with reaction intermediate analogue 2-phosphonolactyl-thiamin diphosphate 1Y9D ; 2.2 ; Pyruvate Oxidase variant V265A from Lactobacillus plantarum 1DIK ; 2.3 ; PYRUVATE PHOSPHATE DIKINASE 1KBL ; 1.94 ; PYRUVATE PHOSPHATE DIKINASE 2R82 ; 3.6 ; Pyruvate phosphate dikinase (PPDK) triple mutant R219E/E271R/S262D adapts a second conformational state 1VBG ; 2.3 ; Pyruvate Phosphate Dikinase from Maize 1VBH ; 2.3 ; Pyruvate Phosphate Dikinase with bound Mg-PEP from Maize 1KC7 ; 2.2 ; Pyruvate Phosphate Dikinase with Bound Mg-phosphonopyruvate 2H9D ; 1.95 ; Pyruvate-Bound Structure of the Isochorismate-Pyruvate Lyase from Pseudomonas aerugionsa 6CIP ; 3.189 ; Pyruvate:ferredoxin oxidoreductase from Moorella thermoacetica with acetyl-TPP bound 6CIQ ; 3.302 ; Pyruvate:ferredoxin oxidoreductase from Moorella thermoacetica with coenzyme A bound 6CIO ; 3.003 ; Pyruvate:ferredoxin oxidoreductase from Moorella thermoacetica with lactyl-TPP bound 1AW8 ; 2.2 ; PYRUVOYL DEPENDENT ASPARTATE DECARBOXYLASE 5YHS ; 2.5 ; Pyruvylated beta-D-galactosidase from Bacillus sp. HMA207, apo form 5YIF ; 2.45 ; Pyruvylated beta-D-galactosidase from Bacillus sp. HMA207, E163A mutant pyruvylated beta-D-galactose complex 3AHM ; 2.0 ; Pz peptidase a 3AHN ; 1.8 ; PZ PEPTIDASE A with Inhibitor 1 3AHO ; 1.88 ; PZ PEPTIDASE A with inhibitor 2 7SBF ; 2.9 ; PZM21 bound Mu Opioid Receptor-Gi Protein Complex 8EFO ; 2.8 ; PZM21-bound mu-opioid receptor-Gi complex 4WBA ; 1.799 ; Q/E mutant SA11 NSP4_CCD 6VVR ; 1.8 ; Q0 fused 4-OT wild type symmetric trimer 8DB2 ; 1.5 ; Q108K:K40L:T51C:T53A:R58L:Q38F mutant of hCRBPII bound to synthetic fluorophore CM1V 8D6L ; 1.69 ; Q108K:K40L:T51C:T53A:R58L:Q38F:Q4F mutant of hCRBPII bound to synthetic fluorophore CM1V 8D6H ; 1.6 ; Q108K:K40L:T51C:T53A:R58L:Q38F:Q4F mutant of hCRBPII bound to synthetic fluorophore CM1V after UV irradiation 8DN1 ; 1.32 ; Q108K:K40L:T51C:T53A:R58L:Q38F:Q4F mutant of hCRBPII bound to synthetic fluorophore CM1V at pH 7.2 8W02 ; 1.499 ; Q108K:K40L:T51V:T53S:R58W mutant of hCRBPII bound to synthetic fluorophore TD-1V 8VZY ; 1.34 ; Q108K:K40L:T51V:T53S:R58Y mutant of hCRBPII bound to synthetic fluorophore TD-1V 8VZZ ; 1.22 ; Q108K:K40L:T51V:T53S:Y19W:R58W mutant of hCRBPII bound to synthetic fluorophore TD-1V 8W00 ; 1.23 ; Q108K:K40L:T51V:T53S:Y19W:R58W:L117E mutant of hCRBPII bound to synthetic fluorophore TD-1V 8VZX ; 1.47 ; Q108K:K40L:T53A:R58F mutant of hCRBPII bound to synthetic fluorophore TD-1V 8D6N ; 1.42 ; Q108K:K40L:T53A:R58L:Q38F:Q4F mutant of hCRBPII bound to synthetic fluorophore CM1V 3NJN ; 1.25 ; Q118A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis 4AHD ; 2.47 ; Q12L - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 1AW7 ; 1.95 ; Q136A MUTANT OF TOXIC SHOCK SYNDROME TOXIN-1 FROM S. AUREUS 3E44 ; 2.52 ; Q138F HincII bound to cleaved DNA (GTT | AAC) and Mn2+ 2GIH ; 2.5 ; Q138F HincII bound to cognate DNA GTCGAC and Ca2+ 2GII ; 2.3 ; Q138F HincII bound to cognate DNA GTTAAC 2GIJ ; 1.93 ; Q138F HincII bound to cognate DNA GTTAAC and Ca2+ 3E41 ; 2.73 ; Q138F HincII bound to GTCGAC and 5 mM Ca2+ 3E42 ; 2.68 ; Q138F HincII bound to GTCGAC and Ca2+ (cocrystallized) 3E43 ; 2.73 ; Q138F HincII bound to GTTAAC and cocrystallized with 2.5 mM MgCl2 3E3Y ; 2.13 ; Q138F HincII bound to GTTAAC and cocrystallized with 5 mM Ca2+ 3E40 ; 2.1 ; Q138F HincII bound to GTTAAC and cocrystallized with 5 mM Ca2+ 3E45 ; 2.78 ; Q138F HincII bound to Noncognate DNA (GTGCAC) and Ca2+ 1TS4 ; 3.4 ; Q139K MUTANT OF TOXIC SHOCK SYNDROME TOXIN-1 FROM S. AUREUS 4AX0 ; 1.74 ; Q157A mutant. Crystal Structure of the Mobile Metallo-beta-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the role of Gln157 4AX1 ; 1.4 ; Q157N mutant. Crystal Structure of the Mobile Metallo-beta-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the role of Gln157 1E2Z ; 2.5 ; Q158L mutant of cytochrome f from Chlamydomonas reinhardtii 3FTN ; 2.192 ; Q165E/S254K Double Mutant Chimera of alcohol dehydrogenase by exchange of the cofactor binding domain res 153-295 of T. brockii ADH by C. beijerinckii ADH 7RVH ; 0.9 ; Q172E mutant of the bank vole prion protein 168-176 QYNNENNFV 4Y6C ; 1.772 ; Q17M crystal structure of Podosopora anserina putative kinesin light chain nearly identical TPR-like repeats 3B8J ; 2.507 ; Q191A mutant of DegS-deltaPDZ 3LH1 ; 2.507 ; Q191A mutant of the DegS-deltaPDZ 6P19 ; 3.8 ; Q21 transcription antitermination complex: loaded complex 6P18 ; 3.5 ; Q21 transcription antitermination complex: loading complex 3NBF ; 1.9 ; Q28E mutant of hera helicase N-terminal domain bound to 8-oxo-ADP 3MWL ; 1.6 ; Q28E mutant of HERA N-terminal RecA-like domain in complex with 8-OXOADENOSINE 3MWJ ; 1.4 ; Q28E mutant of HERA N-terminal RecA-like domain, apo form 3MWK ; 1.45 ; Q28E mutant of HERA N-terminal RecA-like domain, complex with 8-oxo-AMP 3NEJ ; 2.57 ; Q28E mutant of Hera RNA helicase N-terminal domain - perfectly twinned hexagonal form 1EFQ ; 1.6 ; Q38D mutant of LEN 3B0N ; 2.0 ; Q448K mutant of assimilatory nitrite reductase (Nii3) from tobbaco leaf 2I3Q ; 2.3 ; Q44V mutant of Homing Endonuclease I-CreI 2BKB ; 1.7 ; q69e-FeSOD 1ZA5 ; 1.8 ; Q69H-FeSOD 3PKQ ; 2.4 ; Q83D Variant of S. Enterica RmlA with dGTP 3PKP ; 2.6 ; Q83S Variant of S. Enterica RmlA with dATP 4MMK ; 2.156 ; Q8A Hfq from Pseudomonas aeruginosa 7OGW ; 1.09 ; Q9A mutant of Hfq protein from Neisseria meningitidis 7Y7T ; 2.5 ; QDE-1 in complex with 12nt DNA template, ATP and 3'-dGTP 7Y7R ; 2.1 ; QDE-1 in complex with DNA template, RNA primer and 3'-dGTP 7Y7S ; 2.7 ; QDE-1 in complex with DNA template, RNA primer and AMPNPP 7Y7Q ; 2.05 ; QDE-1 in complex with RNA template, RNA primer and 3'-dGTP 7Y7P ; 2.7 ; QDE-1 in complex with RNA template, RNA primer and AMPNPP 1A1H ; 1.6 ; QGSR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GCAC SITE) 2HZ8 ; ; QM/MM structure refined from NMR-structure of a single chain diiron protein 2JBM ; 2.0 ; QPRTASE STRUCTURE FROM HUMAN 1MZH ; 2.0 ; QR15, an Aldolase 7O4D ; 2.249 ; QR2 inhibitor from a novel sulfanamide series to tackle age related oxidative stress and cognitive decline 6NBJ ; 2.94 ; Qri7 3WUH ; 2.937 ; Qri7 and AMP complex 3QCP ; 2.3 ; QSOX from Trypanosoma brucei 6H62 ; 2.684 ; QTRT1, the catalytic subunit of murine tRNA-Guanine Transglycosylase 6FV5 ; 2.179 ; QTRT2, the non-catalytic subunit of murine tRNA-Guanine Transglycosylase 6KOT ; 2.149 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with B12128 and NADPH 6KP7 ; 1.97 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with B12154 6KPR ; 2.1 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with B12155 inhibitor 6LHJ ; 2.4 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with C452 (compound 16) and NADPH 6LHI ; 2.59 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with C466 (compound 42) and NADPH 6LEU ; 2.59 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 42 and NADPH 6LEV ; 2.644 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 46 and NADPH 6LEZ ; 2.644 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 46 and NADPH 6LH9 ; 2.644 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 46 and NADPH 4DP3 ; 2.4 ; Quadruple mutant (N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with P218 and NADPH 4DPH ; 2.38 ; Quadruple mutant (N51I+C59R+S108N+I164L) Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with P65 and NADPH 3DG8 ; 2.58 ; Quadruple mutant (N51I+C59R+S108N+I164L) Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with RJF670, NADPH, and dUMP 1J3K ; 2.1 ; Quadruple mutant (N51I+C59R+S108N+I164L) Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with WR99210, NADPH, and dUMP 7B2E ; 2.8 ; quadruple mutant of oxalyl-CoA decarboxylase from Methylorubrum extorquens with bound TPP and ADP 6KP2 ; 1.973 ; Quadruple mutant plasmodium falciparum dihydrofolate reductase complexed with B10042 1QCA ; 2.2 ; QUADRUPLE MUTANT Q92C, N146F, Y168F, I172V TYPE III CAT COMPLEXED WITH FUSIDIC ACID. CRYSTALS GROWN AT PH 6.3. X-RAY DATA COLLECTED AT ROOM TEMPERATURE 3JSU ; 2.7 ; Quadruple mutant(N51I+C59R+S108N+I164L) plasmodium falciparum dihydrofolate reductase-thymidylate synthase(PFDHFR-TS) complexed with QN254, NADPH, and dUMP 5LDZ ; 2.2 ; Quadruple space group ambiguity due to rotational and translational non-crystallographic symmetry in human liver fructose-1,6-bisphosphatase 2RQJ ; ; Quadruplex structure of an RNA aptamer against bovine prion protein 5MBR ; ; Quadruplex with flipped tetrad formed by a human telomeric sequence 5MCR ; ; Quadruplex with flipped tetrad formed by an artificial sequence 6ERL ; ; Quadruplex with flipped tetrad formed by the c-myc promoter sequence 7CV3 ; ; Quadruplex-duplex hybrid structure in the PIM1 gene, Form 1 7CV4 ; ; Quadruplex-duplex hybrid structure in the PIM1 gene, Form 2 1IBI ; ; QUAIL CYSTEINE AND GLYCINE-RICH PROTEIN, NMR, 15 MINIMIZED MODEL STRUCTURES 1QLI ; ; QUAIL CYSTEINE AND GLYCINE-RICH PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 7LX0 ; 2.96 ; Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light 5I1R ; ; Quantitative characterization of configurational space sampled by HIV-1 nucleocapsid using solution NMR and X-ray scattering 5IFS ; 2.46 ; Quantitative interaction mapping reveals an extended ubiquitin regulatory domain in ASPL that disrupts functional p97 hexamers and induces cell death 5IFW ; 3.4 ; Quantitative interaction mapping reveals an extended ubiquitin regulatory domain in ASPL that disrupts functional p97 hexamers and induces cell death 5I5A ; 1.2 ; quasi racemic structure of allo-Ile7-ShK and D-ShK 5I5B ; 0.9 ; quasi racemic structure of allo-Thr13-ShK and D-ShK 1GW7 ; 13.5 ; QUASI-ATOMIC RESOLUTION MODEL OF BACTERIOPHAGE PRD1 CAPSID, OBTAINED BY COMBINED CRYO-EM AND X-RAY CRYSTALLOGRAPHY. 1HB5 ; 12.0 ; quasi-atomic resolution model of bacteriophage PRD1 P3-shell, obtained by combined cryo-EM and X-ray crystallography. 1HB7 ; 14.0 ; quasi-atomic resolution model of bacteriophage PRD1 sus1 mutant, obtained by combined cryo-EM and X-ray crystallography. 1GW8 ; 13.3 ; quasi-atomic resolution model of bacteriophage PRD1 sus607 mutant, obtained by combined cryo-EM and X-ray crystallography. 1HB9 ; 25.0 ; quasi-atomic resolution model of bacteriophage PRD1 wild type virion, obtained by combined cryo-EM and X-ray crystallography. 7KZU ; 2.15 ; Quasi-intermediate state (Q) of a truncated Hsp70 DnaK fused with a substrate peptide 8DDF ; 1.1 ; Quasi-racemic mixture of L-FWF and D-FYF peptide reveals rippled beta-sheet 5E5T ; 1.572 ; Quasi-racemic snakin-1 in P1 after radiation damage 5E5Y ; 1.506 ; Quasi-racemic snakin-1 in P1 before radiation damage 4TTN ; 1.2507 ; Quasi-racemic structure of [G6A]kalata B1 4TTO ; 2.3002 ; Quasi-racemic structure of [V25A] kalata B1 3VCA ; 1.59 ; Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman and UV-visible Spectroscopic Analysis of a Rieske-type Demethylase 5NCO ; 4.8 ; Quaternary complex between SRP, SR, and SecYEG bound to the translating ribosome 5Y7R ; 1.96 ; Quaternary complex of AsqJ-Fe3+-2OG-cyclopeptin 5Y7T ; 2.05 ; Quaternary complex of AsqJ-Fe3+-2OG-D-cyclopeptin 6VND ; 1.97 ; Quaternary Complex of human dihydroorotate dehydrogenase (DHODH) with flavin mononucleotide (FMN), orotic acid and AG-636 7Q2J ; 2.5 ; Quaternary Complex of human WDR5 and pVHL:ElonginC:ElonginB bound to PROTAC Homer 5ON3 ; 3.1 ; Quaternary complex of mutant T252A of E. coli leucyl-tRNA synthetase with tRNA(leu), leucyl-adenylate analogue, and post-transfer editing analogue of leucine in the aminoacylation conformation 5ON2 ; 3.1 ; Quaternary complex of mutant T252A of E. coli leucyl-tRNA synthetase with tRNA(leu), leucyl-adenylate analogue, and post-transfer editing analogue of norvaline in the aminoacylation conformation 5ONH ; 3.1 ; Quaternary complex of wild type E. coli leucyl-tRNA synthetase with tRNA(leu), leucyl-adenylate analogue, and post-transfer editing analogue of norvaline in the aminoacylation conformation 3O03 ; 1.9 ; Quaternary complex structure of gluconate 5-dehydrogenase from streptococcus suis type 2 1ACJ ; 2.8 ; QUATERNARY LIGAND BINDING TO AROMATIC RESIDUES IN THE ACTIVE-SITE GORGE OF ACETYLCHOLINESTERASE 1ACL ; 2.8 ; QUATERNARY LIGAND BINDING TO AROMATIC RESIDUES IN THE ACTIVE-SITE GORGE OF ACETYLCHOLINESTERASE 4NI1 ; 1.9 ; Quaternary R CO-liganded hemoglobin structure in complex with a thiol containing compound 4NI0 ; 2.15 ; Quaternary R3 CO-liganded hemoglobin structure in complex with a thiol containing compound 3FM7 ; 3.5 ; Quaternary Structure of Drosophila melanogaster IC/Tctex-1/LC8; Allosteric Interactions of Dynein Light Chains with Dynein Intermediate Chain 3GLW ; 3.15 ; Quaternary Structure of Drosophila melanogaster IC/Tctex-1/LC8; Allosteric Interactions of Dynein Light Chains with Dynein Intermediate Chain 4NTK ; 1.6 ; QueD from E. coli 4NTM ; 2.05 ; QueD soaked with sepiapterin (selenomethionine substituted protein) 1GQG ; 1.7 ; Quercetin 2,3-dioxygenase in complex with the inhibitor diethyldithiocarbamate 1GQH ; 2.15 ; Quercetin 2,3-dioxygenase in complex with the inhibitor kojic acid 6P78 ; 1.726 ; queuine lyase from Clostridium spiroforme bound to SAM and queuine 4P2L ; 2.9 ; Quiescin Sulfhydryl Oxidase from Rattus norvegicus 3JYO ; 1.0 ; Quinate dehydrogenase from Corynebacterium glutamicum in complex with NAD 3JYP ; 1.16 ; Quinate dehydrogenase from Corynebacterium glutamicum in complex with quinate and NADH 3JYQ ; 1.16 ; Quinate dehydrogenase from Corynebacterium glutamicum in complex with shikimate and NADH 1O9B ; 2.5 ; QUINATE/SHIKIMATE DEHYDROGENASE YDIB COMPLEXED WITH NADH 4Z4Q ; 3.04 ; Quinazolinedione(PD 0305970)-DNA cleavage complex of topoisomerase IV from S. pneumoniae 3RAF ; 3.24 ; Quinazolinedione-DNA cleavage complex of type IV topoisomerase from S. pneumoniae 3PRE ; 2.91 ; Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3K/mTOR dual inhibitors. 3PRZ ; 2.6 ; Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3K/mTOR dual inhibitors. 3PS6 ; 2.6 ; Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3K/mTOR dual inhibitors. 2L7V ; ; Quindoline/G-quadruplex complex 1CYX ; 2.3 ; QUINOL OXIDASE (PERIPLASMIC FRAGMENT OF SUBUNIT II WITH ENGINEERED CU-A BINDING SITE)(CYOA) 1CYW ; 2.5 ; QUINOL OXIDASE (PERIPLASMIC FRAGMENT OF SUBUNIT II) (CYOA) 6L1X ; 3.15 ; Quinol-dependent nitric oxide reductase (qNOR) from Neisseria meningitidis in the monomeric oxidized state with zinc complex. 1L0V ; 3.3 ; Quinol-Fumarate Reductase with Menaquinol Molecules 1KFY ; 3.6 ; QUINOL-FUMARATE REDUCTASE WITH QUINOL INHIBITOR 2-[1-(4-CHLORO-PHENYL)-ETHYL]-4,6-DINITRO-PHENOL 1E7P ; 3.1 ; QUINOL:FUMARATE REDUCTASE FROM WOLINELLA SUCCINOGENES 2BS2 ; 1.78 ; QUINOL:FUMARATE REDUCTASE FROM WOLINELLA SUCCINOGENES 5O7A ; 2.495 ; Quinolin-6-yloxyacetamides are microtubule destabilizing agents that bind to the colchicine site of tubulin 1QPO ; 2.4 ; Quinolinate Phosphoribosyl Transferase (QAPRTase) Apo-Enzyme from Mycobacterium Tuberculosis 7XGL ; 2.11 ; Quinolinate Phosphoribosyl Transferase (QAPRTase) from Streptomyces pyridomyceticus NRRL B-2517 in Apo form 7XGN ; 2.6 ; Quinolinate Phosphoribosyl Transferase (QAPRTase) from Streptomyces pyridomyceticus NRRL B-2517 in complex with Nicotinic Acid (NA) 7XGM ; 2.85 ; Quinolinate Phosphoribosyl Transferase (QAPRTase) from Streptomyces pyridomyceticus NRRL B-2517 in complex with Quinolinic Acid (QA) 1QPN ; 2.6 ; Quinolinate Phosphoribosyl Transferase from Mycobacterium Tuberculosis in Complex with NCNN 1QPR ; 2.45 ; QUINOLINATE PHOSPHORIBOSYLTRANSFERASE (QAPRTASE) FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH PHTHALATE AND PRPCP 4HHE ; 2.797 ; Quinolinate synthase from Pyrococcus furiosus 1QAP ; 2.8 ; QUINOLINIC ACID PHOSPHORIBOSYLTRANSFERASE WITH BOUND QUINOLINIC ACID 6L73 ; 2.0 ; Quinolone synthase (AmQNS) from Aegle marmelos Correa 6L78 ; 1.55 ; Quinolone synthase (QNS) from Aegle marmelos 6L7J ; 1.8 ; Quinolone synthase (QNS) from Aegle marmelos Correa., complexed with Coenzyme A 6L5U ; 1.85 ; Quinolone synthase from Aegle marmelos Correa 7CCT ; 2.35 ; Quinolone synthase from Aegle marmelos Correa complexed with N-Methylanthraniloyl-CoA 6L61 ; 1.4 ; Quinolone synthase from Aegle marmelos Correa, Dimer 3RAD ; 3.35 ; Quinolone(Clinafloxacin)-DNA cleavage complex of type IV topoisomerase from S. pneumoniae 4Z2D ; 3.38 ; Quinolone(Levofloxacin)-DNA cleavage complex of gyrase from S. pneumoniae 3RAE ; 2.9 ; Quinolone(Levofloxacin)-DNA cleavage complex of type IV topoisomerase from S. pneumoniae 4Z2C ; 3.19 ; Quinolone(Moxifloxacin)-DNA cleavage complex of gyrase from S. pneumoniae 4Z3O ; 3.44 ; Quinolone(Moxifloxacin)-DNA cleavage complex of topoisomerase IV from S. pneumoniae 4Z2E ; 3.46 ; Quinolone(Trovafloxacin)-DNA cleavage complex of gyrase from S. pneumoniae 4Z53 ; 3.26 ; Quinolone(Trovafloxacin)-DNA cleavage complex of topoisomerase IV from S. pneumoniae 4KOE ; 3.02 ; Quinolone(Trovafloxacin)-DNA cleavage complex of type IV topoisomerase from S. pneumoniae 5EIX ; 3.35 ; QUINOLONE-STABILIZED CLEAVAGE COMPLEX OF TOPOISOMERASE IV FROM KLEBSIELLA PNEUMONIAE 3TZB ; 2.1901 ; Quinone Oxidoreductase (NQ02) bound to NSC13000 3TE7 ; 1.7 ; Quinone Oxidoreductase (NQ02) bound to the imidazoacridin-6-one 5a1 3TEM ; 1.45 ; Quinone Oxidoreductase (NQ02) bound to the imidazoacridin-6-one 6a1 3FW1 ; 1.75 ; Quinone Reductase 2 2QMY ; 2.5 ; Quinone Reductase 2 in complex with adrenochrome 1XI2 ; 1.5 ; Quinone Reductase 2 in Complex with Cancer Prodrug CB1954 2QMZ ; 2.1 ; Quinone Reductase 2 in Complex with Dopamine 1QRD ; 2.4 ; QUINONE REDUCTASE/FAD/CIBACRON BLUE/DUROQUINONE COMPLEX 2VLF ; 1.89 ; Quinonoid intermediate of Citrobacter freundii tyrosine phenol-lyase formed with alanine 2VLH ; 1.95 ; Quinonoid intermediate of Citrobacter freundii tyrosine phenol-lyase formed with methionine 8TAO ; 2.9 ; Quis and CDPPB bound active mGlu5 8T7H ; 3.3 ; Quis-bound intermediate mGlu5 8T8M ; 3.0 ; Quis-bound intermediate mGlu5 4F2O ; 1.912 ; Quisqualate bound to the D655A mutant of the ligand binding domain of GluA3 4F2Q ; 2.202 ; Quisqualate bound to the D655A mutant of the ligand binding domain of GluA3 4F29 ; 1.749 ; Quisqualate bound to the ligand binding domain of GluA3i 3SZT ; 2.55 ; Quorum Sensing Control Repressor, QscR, Bound to N-3-oxo-dodecanoyl-L-Homoserine Lactone 8DQ0 ; 3.74 ; Quorum-sensing receptor RhlR bound to PqsE 8DQ1 ; 4.1 ; Quorum-sensing receptor RhlR bound to PqsE 5EP1 ; 1.5 ; Quorum-Sensing Signal Integrator LuxO - Catalytic Domain 5EP3 ; 1.8 ; Quorum-Sensing Signal Integrator LuxO - Catalytic Domain Bound to CV-133 Inhibitor 5EP2 ; 1.421 ; Quorum-Sensing Signal Integrator LuxO - Catalytic Domain in Complex with AzaU Inhibitor 5EP0 ; 1.6 ; Quorum-Sensing Signal Integrator LuxO - Receiver+Catalytic Domains 1RVW ; 2.5 ; R STATE HUMAN HEMOGLOBIN [ALPHA V96W], CARBONMONOXY 2LPF ; ; R state structure of monomeric phospholamban (C36A, C41F, C46A) 2L8W ; ; r(CCGCUGCGG)2 UU Internal Loop Found in Myotonic Dystrophy Type 1 - UU pair with two hydrogen bond pairs 7BPV ; 1.781 ; r(GUGGGCCGAC)/d(GTCGGCCCAC) hybrid duplex structure 7T7Q ; 2.2 ; R-27 In Complex with S. aureus DHFR and alpha-NADPH - Remediated for comparison with tNADPH 7T7S ; 2.2 ; R-27 in Complex with S. aureus DHFR and tricyclic-NADPH (tNADPH) 5CPG ; 1.694 ; R-Hydratase PhaJ1 from Pseudomonas aeruginosa in the unliganded form 3ZHB ; 2.73 ; R-imine reductase from Streptomyces kanamyceticus in complex with NADP. 3OZ4 ; 1.59 ; R-Methyl Carbocyclic LNA 1YXI ; 2.0 ; R-State AMP Complex Reveals Initial Steps of the Quaternary Transition of Fructose-1,6-bisphosphatase 1YYZ ; 1.85 ; R-State AMP Complex Reveals Initial Steps of the Quaternary Transition of Fructose-1,6-bisphosphatase 1YZ0 ; 2.07 ; R-State AMP Complex Reveals Initial Steps of the Quaternary Transition of Fructose-1,6-bisphosphatase 1HBR ; 2.3 ; R-STATE FORM OF CHICKEN HEMOGLOBIN D 1AJ9 ; 2.2 ; R-STATE HUMAN CARBONMONOXYHEMOGLOBIN ALPHA-A53S 3OO5 ; 2.1 ; R-state human hemoglobin: nitriheme modified 3OO4 ; 1.9 ; R-state human hemoglobin: nitriheme modified at alpha 7NGL ; 3.8 ; R-state of wild type human mitochondrial LONP1 protease bound to endogenous ADP 2ZQZ ; 2.5 ; R-state structure of allosteric L-lactate dehydrogenase from Lactobacillus casei 1RDX ; 2.75 ; R-STATE STRUCTURE OF THE ARG 243 TO ALA MUTANT OF PIG KIDNEY FRUCTOSE 1,6-BISPHOSPHATASE EXPRESSED IN E. COLI 2OWZ ; 2.18 ; R-state, citrate and Fru-6-P-bound Escherichia coli fructose-1,6-bisphosphatase 2OX3 ; 2.18 ; R-state, PEP and Fru-6-P-bound, Escherichia coli fructose-1,6-bisphosphatase 1UCU ; 4.0 ; R-type straight flagellar filament made of full-length flagellin 6XKW ; 5.2 ; R. capsulatus CIII2CIV bipartite super-complex (SC-2A) with CcoH/cy 6XKX ; 6.1 ; R. capsulatus CIII2CIV tripartite super-complex, conformation A (SC-1A) 6XKZ ; 7.2 ; R. capsulatus CIII2CIV tripartite super-complex, conformation B (SC-1B) 6XI0 ; 3.3 ; R. capsulatus cyt bc1 (CIII2) at 3.3A 6XKV ; 3.5 ; R. capsulatus cyt bc1 with both FeS proteins in b position (CIII2 b-b) 6XKT ; 3.75 ; R. capsulatus cyt bc1 with both FeS proteins in c position (CIII2 c-c) 6XKU ; 4.2 ; R. capsulatus cyt bc1 with one FeS protein in b position and one in c position (CIII2 b-c) 5M2O ; 1.26 ; R. flavefaciens' third ScaB cohesin in complex with a group 1 dockerin 5M2S ; 1.7 ; R. flavefaciens' third ScaB cohesin in complex with a group 1 dockerin 8GET ; 2.9 ; R. hominis 2 beta-glucuronidase bound to norquetiapine-glucuronide 8GES ; 2.7 ; R. hominis 2 beta-glucuronidase bound to UNC10201652-glucuronide 5OKU ; 2.07 ; R. palustris Rpa4515 with adipate 5OEI ; 1.78 ; R. palustris Rpa4515 with oxoadipate 1NM5 ; 2.4 ; R. rubrum transhydrogenase (dI.Q132N)2(dIII)1 asymmetric complex 1U28 ; 2.3 ; R. rubrum transhydrogenase asymmetric complex (dI.NAD+)2(dIII.NADP+)1 5V33 ; 3.487 ; R. sphaeroides photosythetic reaction center mutant - Residue L223, Ser to Trp - Room Temperature Structure Solved on X-ray Transparent Microfluidic Chip 3D1K ; 1.25 ; R/T intermediate quaternary structure of an antarctic fish hemoglobin in an alpha(CO)-beta(pentacoordinate) state 4I1N ; 1.888 ; R104A-ca1697 nanobody binding to the binary DHFR.folate complex 1T96 ; 1.85 ; r106g kdo8ps with pep 1T8X ; 1.8 ; r106g kdo8ps with pep and a5p 1T99 ; 1.85 ; r106g kdo8ps without substrates 4I88 ; 2.85 ; R107G HSP16.5 1CO7 ; 1.9 ; R117H mutant rat anionic trypsin complexed with bovine pancreatic trypsin inhibitor (BPTI) 8AIB ; 2.2 ; R11A variant of glutathione transferase Chi 1 from Synechocystis sp. PCC 6803 in complex with glutathione 4AHN ; 2.977 ; R121H - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 7PDJ ; 4.2 ; R12E vFLIP mutant 4JF1 ; 1.28 ; R144Q mutant of N-acetylornithine aminotransferase 8GLL ; 2.65 ; R149E variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 8GMF ; 2.96 ; R153M variant of Citrate Synthase (CitA) in Mycobacterium tuberculosis 2J6W ; 2.6 ; R164N mutant of the RUNX1 Runt domain 8ECP ; 1.5 ; R16A PA0709 with BME modifications 3LGY ; 2.7 ; R178A mutant of the DegS-deltaPDZ protease 7OH8 ; 1.7 ; R17A mutant of Hfq protein from Neisseria meningitidis 7T3N ; 3.0 ; R184Q/E191Q mutant of rat vesicular glutamate transporter 2 (VGLUT2) 5WK9 ; 1.983 ; R186AP450cam with CN and camphor 5C5H ; 2.401 ; R195K E. coli MenE with bound OSB-AMS 6A42 ; 1.7 ; R1EN(5-223)-ubiquitin fusion 6A43 ; 2.4 ; R1EN(5-225)-ubiquitin fusion 6A44 ; 2.4 ; R1EN(5-227)-ubiquitin fusion 4AC8 ; 2.75 ; R2-like ligand binding Mn-Fe oxidase from M. tuberculosis with an organized C-terminal helix 3EE4 ; 1.9 ; R2-like ligand binding Mn/Fe oxidase from M. tuberculosis 6F65 ; 1.948 ; R2-like ligand-binding oxidase A171F mutant with aerobically reconstituted Mn/Fe cofactor 6F6B ; 2.009 ; R2-like ligand-binding oxidase A171F mutant with anaerobically reconstituted Mn/Fe cofactor 6QJV ; 1.905 ; R2-like ligand-binding oxidase E69D mutant with aerobically reconstituted Mn/Fe cofactor 6QK0 ; 2.091 ; R2-like ligand-binding oxidase E69D mutant with anaerobically reconstituted Mn/Fe cofactor 6I90 ; 1.803 ; R2-like ligand-binding oxidase G68F mutant with aerobically reconstituted Mn/Fe cofactor 6I92 ; 1.849 ; R2-like ligand-binding oxidase G68F mutant with anaerobically reconstituted Mn/Fe cofactor 6I93 ; 2.101 ; R2-like ligand-binding oxidase G68L mutant with aerobically reconstituted Fe/Fe cofactor 6I95 ; 1.646 ; R2-like ligand-binding oxidase G68L mutant with anaerobically reconstituted Mn/Fe cofactor 6I94 ; 1.703 ; R2-like ligand-binding oxidase G68L mutant with non-activated Mn/Mn cofactor (after aerobic reconstitution with Mn and Fe) 6F6C ; 1.766 ; R2-like ligand-binding oxidase V72A mutant with aerobically reconstituted Mn/Fe cofactor 6F6E ; 1.627 ; R2-like ligand-binding oxidase V72A mutant with anaerobically reconstituted Mn/Fe cofactor 6F6F ; 1.788 ; R2-like ligand-binding oxidase V72I mutant with aerobically reconstituted Mn/Fe cofactor 6F6G ; 1.991 ; R2-like ligand-binding oxidase V72I mutant with anaerobically reconstituted Mn/Fe cofactor 6F6H ; 1.764 ; R2-like ligand-binding oxidase V72L mutant with aerobically reconstituted Mn/Fe cofactor 6F6K ; 1.982 ; R2-like ligand-binding oxidase V72L mutant with anaerobically reconstituted Mn/Fe cofactor 4XB9 ; 1.798 ; R2-like ligand-binding oxidase with aerobically reconstituted diiron cofactor 5DCO ; 2.326 ; R2-like ligand-binding oxidase with aerobically reconstituted diiron cofactor (short soak) 4XBW ; 1.991 ; R2-like ligand-binding oxidase with aerobically reconstituted dimanganese cofactor 4HR0 ; 1.896 ; R2-like ligand-binding oxidase with aerobically reconstituted metal cofactor 5OMJ ; 2.005 ; R2-like ligand-binding oxidase with aerobically reconstituted metal cofactor after photoconversion 5OMK ; 1.704 ; R2-like ligand-binding oxidase with aerobically reconstituted metal cofactor before photoconversion 5DCS ; 2.006 ; R2-like ligand-binding oxidase with aerobically reconstituted Mn/Fe cofactor (long soak) 5EKB ; 2.074 ; R2-like ligand-binding oxidase with aerobically reconstituted Mn/Fe cofactor (reconstituted in solution) 5DCR ; 2.108 ; R2-like ligand-binding oxidase with aerobically reconstituted Mn/Fe cofactor (short soak) 4XBV ; 1.799 ; R2-like ligand-binding oxidase with anaerobically reconstituted diiron cofactor 4HR4 ; 1.901 ; R2-like ligand-binding oxidase with anaerobically reconstituted metal cofactor 4HR5 ; 2.291 ; R2-like ligand-binding oxidase without metal cofactor 6F6L ; 1.904 ; R2-like ligand-binding oxidase Y162F mutant with aerobically reconstituted Mn/Fe cofactor 6F6M ; 1.393 ; R2-like ligand-binding oxidase Y162F mutant with anaerobically reconstituted Mn/Fe cofactor 6QK1 ; 1.754 ; R2-like ligand-binding oxidase Y175F mutant with aerobically reconstituted Mn/Fe cofactor 6QK2 ; 1.596 ; R2-like ligand-binding oxidase Y715F mutant with anaerobically reconstituted Mn/Fe cofactor 6A8Q ; 2.0 ; R207A mutant of highly active EfBSH 2X0R ; 2.915 ; R207S, R292S Mutant of Malate Dehydrogenase from the Halophilic Archeon Haloarcula marismortui (HoloForm) 1H43 ; 2.2 ; R210E N-TERMINAL LOBE HUMAN LACTOFERRIN 1H45 ; 1.95 ; R210G N-TERMINAL LOBE HUMAN LACTOFERRIN 1EH3 ; 2.0 ; R210K N-TERMINAL LOBE HUMAN LACTOFERRIN 1H44 ; 2.0 ; R210L N-TERMINAL LOBE HUMAN LACTOFERRIN 2JM9 ; ; R21A Spc-SH3 bound 2JM8 ; ; R21A Spc-SH3 free 2JMA ; ; R21A Spc-SH3:P41 complex 8GK8 ; 2.68 ; R21A Staphylococcus aureus pyruvate carboxylase 3GU9 ; 2.06 ; R228A mutation in organophosphorus hydrolase from Deinococcus radiodurans 1ESI ; 1.8 ; R248L MUTANT OF STREPTOMYCES K15 DD-TRANSPEPTIDASE 6PR1 ; 1.82 ; R260A/S128A S. typhimurium siroheme synthase 6PR2 ; 2.16 ; R261A/S128A S. typhimurium siroheme synthase 3AIM ; 2.3 ; R267E mutant of a HSL-like carboxylesterase from Sulfolobus tokodaii 3AIN ; 1.65 ; R267G mutant of a HSL-like carboxylesterase from Sulfolobus tokodaii 3AIO ; 1.7 ; R267K mutant of a HSL-like carboxylesterase from Sulfolobus tokodaii 4GXI ; 1.949 ; R283K DNA polymerase beta binary complex with a templating 8OG 4GXK ; 1.998 ; R283K DNA polymerase beta ternary complex with a templating 8OG and incoming dATP analog 4GXJ ; 2.2 ; R283K DNA polymerase beta ternary complex with a templating 8OG and incoming dCTP analog 1E0T ; 1.8 ; R292D mutant of E. coli pyruvate kinase 2L38 ; ; R29Q Sticholysin II mutant 1KGP ; 2.0 ; R2F from Corynebacterium Ammoniagenes in its Mn substituted form 1KGN ; 1.85 ; R2F from Corynebacterium Ammoniagenes in its oxidised, Fe containing, form 1KGO ; 2.25 ; R2F from Corynebacterium Ammoniagenes in its reduced, Fe containing, form 2K1V ; ; R3/I5 relaxin chimera 2AEK ; 2.9 ; R304K trichodiene synthase 2AEL ; 2.5 ; R304K Trichodiene Synthase: Complex With Mg, Pyrophosphate, and (4R)-7-Azabisabolene 2AET ; 2.75 ; R304K trichodiene synthase: Complex with Mg, pyrophosphate, and (4S)-7-azabisabolene 1HQX ; 3.0 ; R308K ARGINASE VARIANT 4AHH ; 2.498 ; R31K - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 1GYG ; 1.9 ; R32 CLOSED FORM OF ALPHA-TOXIN FROM CLOSTRIDIUM PERFRINGENS STRAIN CER89L43 2DIK ; 2.5 ; R337A MUTANT OF PYRUVATE PHOSPHATE DIKINASE 5CDE ; 1.85 ; R372A mutant of Xaa-Pro dipeptidase from Xanthomonas campestris 2B7S ; 2.12 ; R381K mutant of flavocytochrome c3 4BEN ; 2.15 ; R39-imipenem Acyl-enzyme crystal structure 7QVW ; 1.922 ; R396W mutant of the vanadium-dependent bromoperoxidase from Corallina pilulifera 7QW3 ; 1.78 ; R396W mutant of the vanadium-dependent bromoperoxidase from Corallina pilulifera in complex with Br ion. 7ZJF ; 1.3 ; R399E, a mutated form of GDF5, for disease modification of osteoarthritis 3ZDP ; 2.69 ; R416A Monomeric nucleoprotein of influenza A virus 2ZY5 ; 2.65 ; R487A mutant of L-aspartate beta-decarboxylase 6HDK ; 1.24 ; R49A variant of beta-phosphoglucomutase from Lactococcus lactis complexed with aluminium tetrafluoride and beta-G6P to 1.2 A. 6HDM ; 1.3 ; R49A variant of beta-phosphoglucomutase from Lactococcus lactis complexed with magnesium trifluoride and beta-G6P to 1.3 A. 6HDI ; 2.03 ; R49A variant of beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 2.0 A. 6HDJ ; 1.16 ; R49K variant of beta-phosphoglucomutase from Lactococcus lactis complexed aluminium tetrafluoride and beta-G6P to 1.2 A. 6HDL ; 1.16 ; R49K variant of beta-phosphoglucomutase from Lactococcus lactis complexed with magnesium trifluoride and beta-G6P to 1.2 A. 6HDH ; 1.62 ; R49K variant of beta-phosphoglucomutase from Lactococcus lactis in an open conformer to 1.6 A. 2D02 ; 1.42 ; R52Q Mutant of Photoactive Yellow Protein, P65 Form 2VLP ; 2.0 ; R54A mutant of E9 DNase domain in complex with Im9 1AI0 ; ; R6 HUMAN INSULIN HEXAMER (NON-SYMMETRIC), NMR, 10 STRUCTURES 4AIY ; ; R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 'GREEN' SUBSTATE, AVERAGE STRUCTURE 5AIY ; ; R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 'RED' SUBSTATE, AVERAGE STRUCTURE 1AIY ; ; R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 10 STRUCTURES 2AIY ; ; R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 20 STRUCTURES 3AIY ; ; R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, REFINED AVERAGE STRUCTURE 6SE7 ; 1.87 ; R600A mutant from Mycoplasma genitalium P110 Adhesin at 1.87 Angstroms resolution 4UZE ; 2.34 ; R66A mutant of FAD synthetase from Corynebacterium ammoniagenes 4UZF ; 2.52 ; R66E mutant of FAD synthetase from Corynebacterium ammoniagenes 6VVM ; 1.83 ; R7 fused 4-OT wild type asymmetric trimer 6QA2 ; 2.2 ; R80A MUTANT OF NUCLEOSIDE DIPHOSPHATE KINASE FROM MYCOBACTERIUM TUBERCULOSIS 6W9W ; 2.65 ; R80A PCNA mutant defective in BIR 4ANE ; 1.9 ; R80N MUTANT OF NUCLEOSIDE DIPHOSPHATE KINASE FROM MYCOBACTERIUM TUBERCULOSIS 2UY8 ; 2.8 ; R92A mutant of Bacillus subtilis Oxalate Decarboxylase OxdC 3CDR ; 1.7 ; R96Q Mutant of wildtype phage T4 lysozyme at 298 K 1WGY ; ; RA domain of guanine nucleotide exchange factor for Rap1 1RAX ; ; RA-DOMAIN OF RAL GUANOSINE-NUCLEOTIDE DISSOCIATION STIMULATOR 2P5S ; 2.15 ; RAB domain of human RASEF in complex with GDP 8BUX ; 1.86 ; Rab-binding domain of human MiniBAR 5JCZ ; 2.056 ; Rab11 bound to MyoVa-GTD 7OPQ ; 2.23 ; Rab27a fusion with Slp2a-RBDa1 effector covalent adduct with CA1 in C188 7OPR ; 2.32 ; Rab27a fusion with Slp2a-RBDa1 effector covalent adduct with CB1 in C123 6HH2 ; 1.449 ; Rab29 small GTPase bound to GDP 3BBP ; 3.0 ; Rab6-GTP:GCC185 Rab binding domain complex 5LEF ; 2.088 ; Rab6A:Kif20A complex 4KZY ; 7.01 ; Rabbit 40S ribosomal subunit in complex with eIF1 and eIF1A. 4KZX ; 7.809 ; Rabbit 40S ribosomal subunit in complex with eIF1. 4KZZ ; 7.0305 ; Rabbit 40S ribosomal subunit in complex with mRNA, initiator tRNA and eIF1A 7ZJW ; 2.8 ; Rabbit 80S ribosome as it decodes the Sec-UGA codon 7O81 ; 3.1 ; Rabbit 80S ribosome colliding in another ribosome stalled by the SARS-CoV-2 pseudoknot 7O80 ; 2.9 ; Rabbit 80S ribosome in complex with eRF1 and ABCE1 stalled at the STOP codon in the mutated SARS-CoV-2 slippery site 7ZJX ; 3.1 ; Rabbit 80S ribosome programmed with SECIS and SBP2 7O7Z ; 2.4 ; Rabbit 80S ribosome stalled close to the mutated SARS-CoV-2 slippery site by a pseudoknot (classified for pseudoknot) 7O7Y ; 2.2 ; Rabbit 80S ribosome stalled close to the mutated SARS-CoV-2 slippery site by a pseudoknot (high resolution) 6SGC ; 2.8 ; Rabbit 80S ribosome stalled on a poly(A) tail 6MTE ; 3.4 ; Rabbit 80S ribosome with eEF2 and SERBP1 (rotated state) 6MTD ; 3.3 ; Rabbit 80S ribosome with eEF2 and SERBP1 (unrotated state with 40S head swivel) 6MTB ; 3.6 ; Rabbit 80S ribosome with P- and Z-site tRNAs (unrotated state) 6MTC ; 3.4 ; Rabbit 80S ribosome with Z-site tRNA and IFRD2 (unrotated state) 5W7B ; 1.9 ; Rabbit acyloxyacyl hydrolase (AOAH), proteolytically processed, S262A mutant, with LPS 5W7A ; 2.3 ; Rabbit acyloxyacyl hydrolase (AOAH), proteolytically processed, S262A mutant, with LPS (low quality saposin domain) 7JPV ; 3.4 ; Rabbit Cav1.1 in the presence of 1 micromolar (S)-(-)-Bay K8644 in nanodiscs at 3.4 Angstrom resolution 7JPL ; 3.4 ; Rabbit Cav1.1 in the presence of 10 micromolar (S)-(-)-Bay K8644 in nanodiscs at 3.4 Angstrom resolution 7JPW ; 3.2 ; Rabbit Cav1.1 in the presence of 100 micromolar (R)-(+)-Bay K8644 in nanodiscs at 3.2 Angstrom resolution 7JPK ; 3.0 ; Rabbit Cav1.1 in the presence of 100 micromolar (S)-(-)-Bay K8644 in nanodiscs at 3.0 Angstrom resolution 7JPX ; 2.9 ; Rabbit Cav1.1 in the presence of 100 micromolar amlodipine in nanodiscs at 2.9 Angstrom resolution 6JP8 ; 2.7 ; Rabbit Cav1.1-Bay K8644 Complex 6JPB ; 2.9 ; Rabbit Cav1.1-Diltiazem Complex 6JP5 ; 2.9 ; Rabbit Cav1.1-Nifedipine Complex 6JPA ; 2.6 ; Rabbit Cav1.1-Verapamil Complex 7NMN ; 3.6 ; Rabbit HCN4 stabilised in amphipol A8-35 3ZUE ; 10.3 ; Rabbit Hemorrhagic Disease Virus (RHDV)capsid protein 8E58 ; 3.0 ; Rabbit L-type voltage-gated calcium channel Cav1.1 in the presence of Amiodarone and 1 mM MNI-1 at 3.0 Angstrom resolution 8E57 ; 2.8 ; Rabbit L-type voltage-gated calcium channel Cav1.1 in the presence of Amiodarone and 100 microM MNI-1 at 2.8 Angstrom resolution 8E56 ; 2.8 ; Rabbit L-type voltage-gated calcium channel Cav1.1 in the presence of Amiodarone at 2.8 Angstrom resolution 6YP9 ; 2.564 ; Rabbit muscle actin in complex with ADF-H and ATP-ATTO-488 6ALD ; 2.3 ; RABBIT MUSCLE ALDOLASE A/FRUCTOSE-1,6-BISPHOSPHATE COMPLEX 6V20 ; 2.13 ; Rabbit muscle aldolase determined using single-particle cryo-EM at 200 keV 8EHG ; 2.24 ; Rabbit muscle aldolase determined using single-particle cryo-EM with Apollo camera. 5VY5 ; 2.6 ; Rabbit muscle aldolase using 200keV 3ZCP ; 1.83 ; Rabbit muscle glycogen phosphorylase b in complex with N- cyclohexancarbonyl-N-beta-D-glucopyranosyl urea determined at 1.83 A resolution 3ZCS ; 2.03 ; Rabbit muscle glycogen phosphorylase b in complex with N-(1-naphthoyl) -N-beta-D-glucopyranosyl urea determined at 2.07 A resolution 3ZCT ; 2.0 ; Rabbit muscle glycogen phosphorylase b in complex with N-(2-naphthoyl) -N-beta-D-glucopyranosyl urea determined at 2.0 A resolution 3ZCQ ; 2.15 ; Rabbit muscle glycogen phosphorylase b in complex with N-(4- trifluoromethyl-benzoyl)-N-beta-D-glucopyranosyl urea determined at 2. 15 A resolution 3ZCR ; 2.07 ; Rabbit muscle glycogen phosphorylase b in complex with N-(4-tert- butyl-benzoyl)-N-beta-D-glucopyranosyl urea determined at 2.07 A resolution 3ZCV ; 1.83 ; Rabbit muscle glycogen phosphorylase b in complex with N-(indol-2- carbonyl)-N-beta-D-glucopyranosyl urea determined at 1.8 A resolution 3ZCU ; 2.05 ; Rabbit muscle glycogen phosphorylase b in complex with N-(pyridyl-2- carbonyl)-N-beta-D-glucopyranosyl urea determined at 2.05 A resolution 7P7D ; 1.45 ; Rabbit muscle Glycogen Phosphorylase T state 7P4G ; 2.6 ; Rabbit Muscle L-lactate dehydrogenase in complex with citrate 5NQB ; 1.58 ; Rabbit Muscle L-lactate dehydrogenase in complex with malonate 5NQQ ; 1.872 ; Rabbit Muscle L-lactate dehydrogenase in complex with NADH and oxaloacetate 3H3F ; 2.38 ; Rabbit muscle L-lactate dehydrogenase in complex with NADH and oxamate 1JDY ; 2.7 ; RABBIT MUSCLE PHOSPHOGLUCOMUTASE 1VKL ; 2.7 ; RABBIT MUSCLE PHOSPHOGLUCOMUTASE 6H26 ; 1.288 ; Rabbit muscle phosphoglycerate mutase 8F5U ; 2.3 ; Rabbit muscle pyruvate kinase in complex with magnesium, potassium and pyruvate 8F5T ; 2.41 ; Rabbit muscle pyruvate kinase in complex with sodium and magnesium 6DY0 ; 3.014 ; Rabbit N-acylethanolamine-hydrolyzing acid amidase (NAAA) covalently bound to beta-lactam inhibitor ARN726, in presence of Triton X-100 6DXZ ; 2.7 ; Rabbit N-acylethanolamine-hydrolyzing acid amidase (NAAA) in complex with non-covalent benzothiazole-piperazine inhibitor ARN19702, in presence of Triton X-100 6DY1 ; 2.998 ; Rabbit N-acylethanolamine-hydrolyzing acid amidase (NAAA) with fatty acid (myristate), in presence of Triton X-100 1LOX ; 2.4 ; RABBIT RETICULOCYTE 15-LIPOXYGENASE 7T64 ; 4.0 ; Rabbit RyR1 disease mutant Y523S in complex with FKBP12.6 embedded in lipidic nanodisc in the closed state 7T65 ; 4.05 ; Rabbit RyR1 disease mutant Y523S in complex with FKBP12.6 embedded in lipidic nanodisc in the open state 7TDJ ; 3.7 ; Rabbit RyR1 with AMP-PCP and high Ca2+ embedded in nanodisc in closed-inactivated conformation class 1(Dataset-A) 7TDI ; 3.3 ; Rabbit RyR1 with AMP-PCP and high Ca2+ embedded in nanodisc in closed-inactivated conformation class 2 (Dataset-A) 7TDK ; 3.8 ; Rabbit RyR1 with AMP-PCP and high Ca2+ embedded in nanodisc in closed-inactivated conformation class 3 (Dataset-A) 7TDG ; 3.8 ; Rabbit RyR1 with AMP-PCP and high Ca2+ embedded in nanodisc in inactivated conformation (Dataset-A) 7TDH ; 4.0 ; Rabbit RyR1 with AMP-PCP and high Ca2+ embedded in nanodisc in open conformation 1JNF ; 2.6 ; Rabbit serum transferrin at 2.6 A resolution. 2VYP ; 2.35 ; Rabbit-muscle G-actin in complex with myxobacterial rhizopodin 6D0S ; 2.3 ; RabGAP domain of human TBC1D22B 4EHM ; 2.2 ; RabGGTase in complex with covalently bound Psoromic acid 8A1E ; 2.83 ; Rabies virus glycoprotein in complex with Fab fragments of 17C7 and 1112-1 neutralizing antibodies 6TOU ; 2.587 ; Rabies virus glycoprotein PH domain in complex with the scFv fragment of broadly neutralizing human antibody RVC20 7U9G ; 3.39 ; Rabies virus glycoprotein pre-fusion trimer in complex with neutralizing antibody RVA122 8BUY ; 1.6 ; Rac-binding domain of human MiniBAR 6M7M ; 1.101 ; rac-GSTSTA from degenerate octameric repeats in InaZ, residues 707-712 2P2L ; 1.9 ; Rac1-GDP-Zinc Complex 1HH4 ; 2.7 ; Rac1-RhoGDI complex involved in NADPH oxidase activation 2RMK ; ; Rac1/PRK1 Complex 2W2T ; 1.95 ; Rac2 (G12V) in complex with GDP 2W2V ; 2.0 ; Rac2 (G12V) in complex with GTPgS 6ZPF ; 1.442 ; Racemic compound of RNA duplexes. 6ZQ9 ; 1.5 ; Racemic compound of RNA duplexes. 6ZR1 ; 1.528 ; Racemic compound of RNA duplexes. 6ZRL ; 1.53 ; Racemic compound of RNA duplexes. 6ZRS ; 1.52 ; Racemic compound of RNA duplexes. 6ZW3 ; 1.522 ; Racemic compound of RNA duplexes. 6ZWU ; 1.527 ; Racemic compound of RNA duplexes. 6ZX5 ; 1.523 ; Racemic compound of RNA duplexes. 6ZX8 ; 1.981 ; Racemic compound of RNA duplexes. 7A9L ; 1.98 ; Racemic compound of RNA duplexes. 7A9N ; 1.602 ; Racemic compound of RNA duplexes. 7A9O ; 1.601 ; Racemic compound of RNA duplexes. 7A9P ; 1.985 ; Racemic compound of RNA duplexes. 7A9Q ; 2.185 ; Racemic compound of RNA duplexes. 7A9R ; 2.455 ; Racemic compound of RNA duplexes. 7A9S ; 2.29 ; Racemic compound of RNA duplexes. 7A9T ; 1.7 ; Racemic compound of RNA duplexes. 4R45 ; 1.9 ; Racemic crystal structure of a bimolecular DNA G-quadruplex (P-1) 4R47 ; 1.85 ; Racemic crystal structure of a bimolecular DNA G-quadruplex (P21/n) 4R49 ; 1.28 ; Racemic crystal structure of a calcium-bound B-DNA duplex 4R48 ; 2.33 ; Racemic crystal structure of a calcium-bound DNA four-way junction 4R4A ; 1.49 ; Racemic crystal structure of a cobalt-bound B-DNA duplex 4R4D ; 1.29 ; Racemic crystal structure of a magnesium-bound B-DNA duplex 4R44 ; 2.695 ; Racemic crystal structure of a tetramolecular DNA G-quadruplex 6GN3 ; 2.8 ; Racemic crystal structure of A-DNA duplex formed from d(CCCGGG) in space group P21/n 6GN2 ; 2.48 ; Racemic crystal structure of A-DNA duplex formed from d(CCCGGG) in space group R3 4WSP ; 1.65 ; Racemic crystal structure of Rv1738 from Mycobacterium tuberculosis (Form-I) 4WPY ; 1.5 ; Racemic crystal structure of Rv1738 from Mycobacterium tuberculosis (Form-II) 5EWB ; 1.694 ; Racemic crystal structures of Pribnow box consensus promoter sequence (P21/c) 5ET9 ; 1.83 ; Racemic crystal structures of Pribnow box consensus promoter sequence (P21/n) 5EZF ; 1.65 ; Racemic crystal structures of Pribnow box consensus promoter sequence (Pbca) 5EYQ ; 2.3 ; Racemic crystal structures of Pribnow box consensus promoter sequence (Pnna) 4RWB ; 2.0 ; Racemic influenza M2-TM crystallized from monoolein lipidic cubic phase 4RWC ; 1.05 ; Racemic M2-TM crystallized from racemic detergent 6MPL ; 1.55 ; Racemic M2-TM I39A crystallized from racemic detergent 6MPM ; 1.4 ; Racemic M2-TM I42A crystallized from racemic detergent 6MPN ; 1.4 ; Racemic M2-TM I42E crystallized from racemic detergent 6O4M ; 1.27 ; Racemic melittin 8T86 ; 1.102 ; Racemic mixture of amylin segment 25-AILSS-29 forms heterochiral rippled beta-sheet 8T89 ; 1.5 ; Racemic mixture of amyloid beta segment 16-KLVFFA-21 forms heterochiral rippled beta-sheet 8T84 ; 1.101 ; Racemic mixture of amyloid beta segment 35-MVGGVV-40 forms heterochiral rippled beta-sheet, includes hexafluoroisopropanol 8T82 ; 1.1 ; Racemic mixture of amyloid beta segment 35-MVGGVV-40 forms heterochiral rippled beta-sheet, includes pentafluoropropionic acid 8DDH ; 1.1 ; Racemic mixture of FYF peptide reveals rippled beta-sheet 6NIV ; 1.45 ; Racemic Phenol-Soluble Modulin Alpha 3 Peptide 8AVU ; 0.89 ; Racemic protein crystal structure of aureocin A53 from Staphylococcus aureus in the dimeric state 8AVS ; 1.21 ; Racemic protein crystal structure of aureocin A53 from Staphylococcus aureus in the presence of citrate and acetate 8AVT ; 1.2 ; Racemic protein crystal structure of aureocin A53 from Staphylococcus aureus in the presence of glycerol 3-phosphate 8AVR ; 1.13 ; Racemic protein crystal structure of aureocin A53 from Staphylococcus aureus in the presence of sulfate 7P5R ; 0.96 ; Racemic protein crystal structure of lacticin Q from Lactococcus lactis 5E5Q ; 1.6 ; Racemic snakin-1 in P21/c 5INZ ; 1.447 ; Racemic structure of baboon theta defensin-2 4TTL ; 1.7004 ; Racemic structure of cyclic Vc1.1 (cVc1.1-1) 6DL1 ; 1.029 ; Racemic structure of jatrophidin, an orbitide from Jatropha curcas 4TTM ; 1.9001 ; Racemic structure of kalata B1 (kB1) 7QDJ ; 1.44 ; Racemic structure of PK-10 and PK-11 8BFD ; 2.0 ; Racemic structure of PK-7 (310HD-U2U5) 6DKZ ; 0.99 ; Racemic structure of ribifolin, an orbitide from Jatropha ribifolia 4TTK ; 1.2502 ; Racemic structure of Sunflower Trypsin Inhibitor-1 (SFTI-1) 7MMY ; 1.464 ; Racemic structure of the cyclic plant peptide PDP-23 8P6Q ; 1.4 ; Racemic structure of TNFR1 cysteine-rich domain 5YV7 ; 2.395 ; Racemic X-ray Structure of Calcicludine 6KZF ; 2.52 ; Racemic X-ray Structure of Calcicludine 6M9J ; 0.9 ; Racemic-GSTSTA from degenerate octameric repeats in InaZ, residues 707-712 4JD8 ; 1.16 ; Racemic-[Ru(phen)2(dppz)]2+] bound to synthetic DNA at high resolution 2Y43 ; 1.8 ; Rad18 ubiquitin ligase RING domain structure 7STE ; 2.73 ; Rad24-RFC ADP state 3QKT ; 1.9 ; Rad50 ABC-ATPase with adjacent coiled-coil region in complex with AMP-PNP 1L8D ; 2.2 ; Rad50 coiled-coil Zn hook 1B22 ; ; RAD51 (N-TERMINAL DOMAIN) 1PZN ; 2.85 ; Rad51 (RadA) 8PBD ; 2.83 ; RAD51 filament on dsDNA bound by the BRCA2 c-terminus 8PBC ; 2.61 ; RAD51 filament on ssDNA bound by the BRCA2 c-terminus 8GJ8 ; 2.3 ; RAD51C C-terminal domain 8GJ9 ; 1.6 ; RAD51C N-terminal domain 8GJA ; 2.6 ; RAD51C-XRCC3 structure 5JRB ; 2.405 ; Rad52(1-212) K102A/K133A/E202A mutant 7UVC ; 3.05 ; Rad6(P43L)-Bre1 Complex 7UV8 ; 2.7 ; Rad6-Bre1 Complex 3RCZ ; 1.9 ; Rad60 SLD2 Ubc9 Complex 5LKM ; 3.5 ; RadA bound to dTDP 4A6P ; 1.498 ; RadA C-terminal ATPase domain from Pyrococcus furiosus 4UQO ; 1.88 ; RADA C-TERMINAL ATPASE DOMAIN FROM PYROCOCCUS FURIOSUS BOUND TO ADP 4D6P ; 1.482 ; RADA C-TERMINAL ATPASE DOMAIN FROM PYROCOCCUS FURIOSUS BOUND TO AMPPNP 4A6X ; 1.548 ; RadA C-terminal ATPase domain from Pyrococcus furiosus bound to ATP 4B2P ; 1.6 ; RadA C-terminal ATPase domain from Pyrococcus furiosus bound to GTP 4QKQ ; 2.0 ; RadA from Methanococcus Voltae in complex with copper phthalocyanine tetrasulfonate inhibitor 3NTU ; 1.9 ; RADA RECOMBINASE D302K MUTANT IN COMPLEX with AMP-PNP 3ETL ; 2.4 ; RadA recombinase from Methanococcus maripaludis in complex with AMPPNP 3EWA ; 2.0 ; RADA recombinase from METHANOCOCCUS MARIPALUDIS in complex with AMPPNP and ammonium ions 3EW9 ; 2.4 ; RADA recombinase from METHANOCOCCUS MARIPALUDIS in complex with AMPPNP and potassium ions 2FPK ; 2.1 ; RadA recombinase in complex with ADP 2FPM ; 2.0 ; RadA recombinase in complex with AMP-PNP and high concentration of K+ 2FPL ; 2.3 ; RadA recombinase in complex with AMP-PNP and low concentration of K+ 2B21 ; 2.4 ; RADA Recombinase in complex with AMPPNP at pH 6.0 2I1Q ; 1.9 ; RadA Recombinase in complex with Calcium 7JTK ; 3.2 ; Radial spoke 1 isolated from Chlamydomonas reinhardtii 7JU4 ; 3.4 ; Radial spoke 2 stalk, IDAc, and N-DRC attached with doublet microtubule 8X2U ; 3.57 ; Radial spoke head-neck dimer 6JUB ; 1.54 ; Radiation damage in Aspergillus oryzae pro-tyrosinase oxygen-bound C92A mutant 6JUD ; 1.56 ; Radiation damage in Aspergillus oryzae pro-tyrosinase oxygen-bound C92A/H103F mutant 4H94 ; 1.2 ; Radiation damage in lysozyme - 0.56 MGy 2BHX ; 1.68 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure A) 2BI1 ; 1.69 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure B) 2BI2 ; 1.69 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure C) 2BI3 ; 1.69 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure D) 2BI5 ; 1.73 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure E) 2BI9 ; 1.73 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure F) 2BIA ; 1.77 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure G) 2BIE ; 1.3 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure H) 2BIG ; 1.3 ; Radiation damage of the Schiff base in phosphoserine aminotransferase (structure I) 4M4F ; 1.9 ; Radiation damage study of Cu T6-insulin - 0.01 MGy 4M4H ; 1.9 ; Radiation damage study of Cu T6-insulin - 0.06 MGy 4M4I ; 1.9 ; Radiation damage study of Cu T6-insulin - 0.12 MGy 4M4J ; 1.9 ; Radiation damage study of Cu T6-insulin - 0.30 MGy 4H8X ; 1.1998 ; Radiation damage study of lysozyme - 0.07 MGy 4H8Z ; 1.1998 ; Radiation damage study of lysozyme - 0.21 MGy 4H90 ; 1.1999 ; Radiation damage study of lysozyme - 0.28 MGy 4H91 ; 1.2002 ; Radiation damage study of lysozyme - 0.35 MGy 4H93 ; 1.2003 ; Radiation damage study of lysozyme - 0.49 MGy 4H9A ; 1.1997 ; Radiation damage study of lysozyme - 0.63 MGy 4H9B ; 1.1998 ; Radiation damage study of lysozyme - 0.70 MGy 4H9C ; 1.1998 ; Radiation damage study of lysozyme - 0.77 MGy 4H9E ; 1.1998 ; Radiation damage study of lysozyme - 0.84 MGy 4H9F ; 1.2003 ; Radiation damage study of lysozyme - 0.91 MGy 4H9H ; 1.2002 ; Radiation damage study of lysozyme - 0.98 MGy 4H9I ; 1.2002 ; Radiation damage study of lysozyme - 1.05 MGy 4H8Y ; 1.1998 ; Radiation damage study of lysozyme- 0.14 MGy 4H92 ; 1.2002 ; Radiation damage study of lysozyme- 0.42 MGy 3P7P ; 2.2 ; Radiation damage study of thermolysin - 100K structure A (0.1 MGy) 3P7Q ; 2.2 ; Radiation damage study of thermolysin - 100K structure B (2.5 MGy) 3P7R ; 2.2 ; Radiation damage study of thermolysin - 100K structure C (4.9 MGy) 3P7S ; 2.2 ; Radiation damage study of thermolysin - 100K structure D (7.2 MGy) 3P7T ; 2.2 ; Radiation damage study of thermolysin - 160K structure A (0.1 MGy) 3P7U ; 2.2 ; Radiation damage study of thermolysin - 160K structure B (2.4 MGy) 3P7V ; 2.2 ; Radiation damage study of thermolysin - 160K structure C (4.8 MGy) 3P7W ; 2.2 ; Radiation damage study of thermolysin - 160K structure D (7.1 MGy) 6QT1 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 0.48 MGy dose 6QT3 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 12.0 MGy dose 6QT4 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 17.7 MGy dose 6QT6 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 29.2 MGy dose 6QT2 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 6.2 MGy dose 6QT5 ; 1.8 ; Radiation damage study on a 16mer DNA segment, structure at 63.7 MGy dose 6UPP ; 1.56 ; Radiation Damage Test of PixJ Pb state crystals 5MCC ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 1.11 MGy 5MCI ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 11.9 MGy 5MCJ ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 14.1 MGy 5MCK ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 16.2 MGy 5MCL ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 18.4 MGy 5MCM ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 20.6 MGy 5MCN ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 22.7 MGy 5MCD ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 3.27 MGy 5MCE ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 5.43 MGy 5MCF ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 7.59 MGy 5MCH ; 2.0 ; Radiation damage to GH7 Family Cellobiohydrolase from Daphnia pulex: Dose (DWD) 9.75 MGy 4X4D ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 10.3 MGy 4X4E ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 14.4 MGy 4X4B ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 2.1 MGy 4X4F ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 20.6 MGy 4X4G ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 26.8 MGy 4X4H ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 35.7 MGy 4X4I ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 44.6 MGy 4X4C ; 2.8 ; RADIATION DAMAGE TO THE NUCLEOPROTEIN COMPLEX C.Esp1396I: DOSE (DWD) 6.2 MGy 5EEU ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 1.31 MGy 5EEY ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 11.6 MGy 5EEZ ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 14.2 MGy 5EF0 ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 16.7 MGy 5EF1 ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 19.3 MGy 5EF2 ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 21.9 MGy 5EF3 ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 25.0 MGy 5EEV ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 3.88 MGy 5EEW ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 6.45 MGy 5EEX ; 1.98 ; RADIATION DAMAGE TO THE TRAP-RNA COMPLEX: DOSE (DWD) 9.02 MGy 1O7U ; 1.5 ; Radiation induced tryparedoxin-I 1O85 ; 1.5 ; Radiation-reduced Tryparedoxin-I 1O8W ; 1.7 ; Radiation-reduced Tryparedoxin-I 6FD2 ; 2.55 ; Radical SAM 1,2-diol dehydratase AprD4 in complex with its substrate paromamine 2IWS ; 2.7 ; Radicicol analogues bound to the ATP site of HSP90 1BGQ ; 2.5 ; RADICICOL BOUND TO THE ATP BINDING SITE OF THE N-TERMINAL DOMAIN OF THE YEAST HSP90 CHAPERONE 3X23 ; 2.396 ; Radixin complex 1A1K ; 1.9 ; RADR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GACC SITE) 1A1I ; 1.6 ; RADR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GCAC SITE) 1A1J ; 2.0 ; RADR (ZIF268 VARIANT) ZINC FINGER-DNA COMPLEX (GCGT SITE) 1FAQ ; ; RAF-1 CYSTEINE RICH DOMAIN, NMR, 27 STRUCTURES 1FAR ; ; RAF-1 CYSTEINE RICH DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 4ZZE ; 1.76 ; Raffinose and panose binding protein from Bifidobacterium animalis subsp. lactis Bl-04, bound with panose 4ZS9 ; 1.37 ; Raffinose and panose binding protein from Bifidobacterium animalis subsp. lactis Bl-04, bound with raffinose 4ZZA ; 2.02 ; Raffinose and panose binding protein from Bifidobacterium animalis subsp. lactis Bl-04, bound with raffinose, selenomethionine derivative 1RMD ; 2.1 ; RAG1 DIMERIZATION DOMAIN 8T4R ; 1.2 ; RAG2-PHD finger in complex with H3K4tBuNle peptide 4OI8 ; 3.101 ; RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. 4OI7 ; 3.104 ; RAGE recognizes nucleic acids and promotes inflammatory responses to DNA 2LE9 ; ; RAGEC2-S100A13 tetrameric complex 2BBG ; ; RAGWEED POLLEN ALLERGEN FROM AMBROSIA TRIFIDA V, NMR, 30 STRUCTURES 1BBG ; ; RAGWEED POLLEN ALLERGEN FROM AMBROSIA TRIFIDA V, NMR, MINIMIZED AVERAGE STRUCTURE 1HK6 ; ; Ral binding domain from Sec5 2KWH ; ; Ral binding domain of RLIP76 (RalBP1) 2KWI ; ; RalB-RLIP76 (RalBP1) complex 8G63 ; 2.5 ; Ralimetinib (LY2228820) in complex with wild type EGFR 8JLP ; 3.23 ; Ralmitaront(RO-6889450)-bound hTAAR1-Gs protein complex 7UJC ; 1.78 ; Raloxifene in Complex with Estrogen Receptor Alpha Ligand Binding Domain Y537S Mutation 2CHH ; 1.0 ; RALSTONIA SOLANACEARUM HIGH-AFFINITY MANNOSE-BINDING LECTIN 1UQX ; 1.7 ; Ralstonia solanacearum lectin (RS-IIL) in complex with alpha-methylmannoside 2XBS ; 1.37 ; Raman crystallography of Hen White Egg Lysozyme - High X-ray dose (16 MGy) 2XBR ; 1.29 ; Raman crystallography of Hen White Egg Lysozyme - Low X-ray dose (0.2 MGy) 7CGT ; 3.0 ; RAMEB COMPLEX OF CYCLODEXTRIN GLYCOSYLTRANSFERASE MUTANT 6IE9 ; 1.78 ; RamR in complex with chenodeoxycholic acid 6IE8 ; 2.0 ; RamR in complex with cholic acid 5CIT ; 1.75 ; Ran GDP wild type monoclinic crystal form 5CIQ ; 1.65 ; Ran GDP wild type tetragonal crystal form 5CIW ; 1.75 ; Ran GDP Y39A mutant monoclinic crystal form 5CJ2 ; 1.75 ; Ran GDP Y39A mutant triclinic crystal form 5CLQ ; 3.2 ; Ran Y39A in complex with GPPNHP and RanBD1 1I2M ; 1.76 ; RAN-RCC1-SO4 COMPLEX 8D6P ; 2.6 ; Rana catesbeiana saxiphilin mutant - Y558A 8D6S ; 2.6 ; Rana catesbeiana saxiphilin mutant - Y558A:STX (co-crystal) 8D6Q ; 2.7 ; Rana catesbeiana saxiphilin mutant - Y558I 8D6T ; 2.15 ; Rana catesbeiana saxiphilin mutant - Y558I:STX (co-crystal) 8D6U ; 2.65 ; Rana catesbeiana saxiphilin:F-STX (soaked) 2VH3 ; 1.16 ; ranasmurfin 5YRO ; 2.396 ; RanL182A in complex with RanBP1-CRM1 5YST ; 2.04 ; RanM189D in complex with RanBP1-CRM1 5YTB ; 2.3 ; RanY197A in complex with RanBP1-CRM1 4GFB ; 2.99 ; Rap1/DNA complex 3ZFI ; 1.98 ; Rap1a protein (SMA2260) from Serratia marcescens 3ZIB ; 1.9 ; Rap2a protein (SMA2265) from Serratia marcescens 4A5G ; 2.05 ; Raphanus sativus anionic peroxidase. 4M3B ; 2.001 ; Rapid and efficient design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging and linking approaches 4M3D ; 1.9 ; Rapid and efficient design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging and linking approaches 4M3E ; 2.109 ; Rapid and efficient design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging and linking approaches 4M3F ; 2.0 ; Rapid and efficient design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging and linking approaches 4M3G ; 2.3 ; Rapid and efficient design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging and linking approaches 6LNG ; 1.8 ; Rapid crystallization of streptavidin using charged peptides 138L ; 1.7 ; RAPID CRYSTALLIZATION OF T4 LYSOZYME BY INTERMOLECULAR DISULFIDE CROSSLINKING 139L ; 1.7 ; RAPID CRYSTALLIZATION OF T4 LYSOZYME BY INTERMOLECULAR DISULFIDE CROSSLINKING 7LQP ; 2.07 ; Rapid development of potent inhibitors of the HIV integrase-LEDGF interaction by fragment-linking using off-rate screening 4YZU ; 1.41 ; Rapid development of two Factor IXa inhibitors from Hit to Lead 4Z0K ; 1.41 ; Rapid development of two Factor IXa inhibitors from Hit to Lead 5EH0 ; 2.18 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EHL ; 2.66 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EHO ; 2.18 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EHY ; 2.26 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EI2 ; 2.67 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EI6 ; 2.01 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 5EI8 ; 2.17 ; Rapid Discovery of Pyrido[3,4-d]pyrimidine Inhibitors of Monopolar Spindle kinase 1 (MPS1) Using a Structure-Based Hydridization Approach 2P1H ; 1.59 ; Rapid Folding and Unfolding of Apaf-1 CARD 6TMP ; 2.076 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TMQ ; 2.112 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TMZ ; 2.71 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TN0 ; 1.905 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TN2 ; 1.768 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TN4 ; 1.274 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 6TN5 ; 1.165 ; Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures 3RCJ ; 1.7 ; Rapid preparation of triazolyl substituted NH-heterocyclic kinase inhibitors via one-pot Sonogashira coupling TMS-deprotection CuAAC sequence 1XRJ ; 2.0 ; Rapid structure determination of human uridine-cytidine kinase 2 using a conventional laboratory X-ray source and a single samarium derivative 6U62 ; 3.18 ; Raptor-Rag-Ragulator complex 5M24 ; 1.69 ; RARg mutant-S371E 1HE8 ; 3.0 ; Ras G12V - PI 3-kinase gamma complex 6EPL ; 2.55 ; Ras guanine exchange factor SOS1 (Rem-cdc25) in complex with KRAS(G12C) 6EPN ; 2.5 ; Ras guanine exchange factor SOS1 (Rem-cdc25) in complex with KRAS(G12C) and fragment screening hit F2 6EPO ; 2.4 ; RAS GUANINE EXCHANGE FACTOR SOS1 (REM-CDC25) IN COMPLEX WITH KRAS(G12C) AND FRAGMENT SCREENING HIT F3 6EPP ; 2.4 ; RAS GUANINE EXCHANGE FACTOR SOS1 (REM-CDC25) IN COMPLEX WITH KRAS(G12C) AND FRAGMENT SCREENING HIT F4 6EPM ; 2.5 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with KRAS(G12C) and fragment screening hit F1 5OVI ; 2.2 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with small molecule inhibitor BAY-293 (compound 23) 5OVE ; 1.85 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with small molecule inhibitor compound 1 5OVF ; 2.01 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with small molecule inhibitor compound 17 5OVG ; 2.3 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with small molecule inhibitor compound 18 5OVH ; 2.3 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in complex with small molecule inhibitor compound 21 5OVD ; 1.9 ; Ras guanine nucleotide exchange factor SOS1 (Rem-cdc25) in new crystal form 6EIE ; 2.72 ; Ras guanine nucleotide exchange factor SOS2 (Rem-cdc25), with surface mutations 2KMD ; ; Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to co-activator CBP 3LBH ; 1.85 ; Ras soaked in Calcium Acetate 3LBN ; 1.862 ; Ras soaked in Magnesium Acetate 3LBI ; 2.087 ; Ras soaked in Magnesium Acetate and back soaked in Calcium Acetate 1WER ; 1.6 ; RAS-GTPASE-ACTIVATING DOMAIN OF HUMAN P120GAP 1WQ1 ; 2.5 ; RAS-RASGAP COMPLEX 3X1W ; 1.2 ; Ras-related protein Rap1B with GDP 3X1X ; 1.0 ; Ras-related protein Rap1B with GppNHp 3X1Y ; 1.168 ; Ras-related protein Rap1B(L9V) with GppNHp 3X1Z ; 1.25 ; Ras-related protein Rap1B(T65A) with GppNHp 7NZZ ; 2.45 ; Ras1 guanine nucleotide exchange factor Cdc25 (REM and catalytic domains) 6BVI ; 1.746 ; Ras:SOS:Ras in complex with a small molecule activator 6BVJ ; 1.747 ; Ras:SOS:Ras in complex with a small molecule activator 6BVK ; 1.799 ; Ras:SOS:Ras in complex with a small molecule activator 6BVL ; 1.748 ; Ras:SOS:Ras in complex with a small molecule activator 6BVM ; 1.796 ; Ras:SOS:Ras in complex with a small molecule activator 6CUO ; 1.73 ; Ras:SOS:Ras in complex with a small molecule activator 6CUP ; 1.833 ; Ras:SOS:Ras in complex with a small molecule activator 6CUR ; 1.73 ; Ras:SOS:Ras in complex with a small molecule activator 6D55 ; 1.68 ; Ras:SOS:Ras in complex with a small molecule activator 6D56 ; 1.68 ; Ras:SOS:Ras in complex with a small molecule activator 6D59 ; 1.7 ; Ras:SOS:Ras in complex with a small molecule activator 6D5E ; 1.75 ; Ras:SOS:Ras in complex with a small molecule activator 6D5G ; 1.92 ; Ras:SOS:Ras in complex with a small molecule activator 6D5H ; 1.8 ; Ras:SOS:Ras in complex with a small molecule activator 6D5J ; 1.751 ; Ras:SOS:Ras in complex with a small molecule activator 6D5L ; 1.7 ; Ras:SOS:Ras in complex with a small molecule activator 6D5M ; 2.081 ; Ras:SOS:Ras in complex with a small molecule activator 6D5V ; 2.04 ; Ras:SOS:Ras in complex with a small molecule activator 6D5W ; 2.478 ; Ras:SOS:Ras in complex with a small molecule activator 2XFQ ; 2.2 ; Rasagiline-inhibited human monoamine oxidase B in complex with 2-(2- benzofuranyl)-2-imidazoline 5KHQ ; 2.8 ; Rasip1 RA domain 5KHO ; 2.78 ; Rasip1 RA domain in complex with Rap1B 4WL6 ; 1.85 ; Raster-scanning protein crystallography using micro and nano-focused synchrotron beams 6TU3 ; 2.7 ; Rat 20S proteasome 2WJ5 ; 1.12 ; Rat alpha crystallin domain 1SLU ; 1.8 ; RAT ANIONIC N143H, E151H TRYPSIN COMPLEXED TO A86H ECOTIN 1SLV ; 2.3 ; RAT ANIONIC N143H, E151H TRYPSIN COMPLEXED TO A86H ECOTIN; COPPER-BOUND 1SLW ; 2.0 ; RAT ANIONIC N143H, E151H TRYPSIN COMPLEXED TO A86H ECOTIN; NICKEL-BOUND 1SLX ; 2.2 ; RAT ANIONIC N143H, E151H TRYPSIN COMPLEXED TO A86H ECOTIN; ZINC-BOUND 1A8B ; 1.9 ; RAT ANNEXIN V COMPLEXED WITH GLYCEROPHOSPHOETHANOLAMINE 1A8A ; 1.9 ; RAT ANNEXIN V COMPLEXED WITH GLYCEROPHOSPHOSERINE 2RAN ; 1.89 ; RAT ANNEXIN V CRYSTAL STRUCTURE: CA2+-INDUCED CONFORMATIONAL CHANGES 4P7J ; 1.45 ; Rat apo-COMT sulfate bound 4P7G ; 2.58 ; Rat apo-COMT, phosphate bound 1AF3 ; 2.5 ; RAT BCL-XL AN APOPTOSIS INHIBITORY PROTEIN 8DC0 ; 1.93 ; Rat Betaglycan Zona Pellucida Domain (ZPC) in complex with mini monomer TGFb2 (mmTGF-b2-7M2R) 1E3S ; 2.0 ; Rat brain 3-hydroxyacyl-CoA dehydrogenase binary complex with NADH 1E3W ; 2.0 ; Rat brain 3-hydroxyacyl-CoA dehydrogenase binary complex with NADH and 3-keto butyrate 1E6W ; 1.7 ; Rat brain 3-hydroxyacyl-CoA dehydrogenase binary complex with NADH and estradiol 1BG3 ; 2.8 ; RAT BRAIN HEXOKINASE TYPE I COMPLEX WITH GLUCOSE AND INHIBITOR GLUCOSE-6-PHOSPHATE 8F4Q ; 2.151 ; rat branched chain ketoacid dehydrogenase kinase in complex with inhibtors 8F6P ; 3.2 ; Rat Cardiac Sodium Channel with Ranolazine Bound 5LQA ; 1.2 ; rat catechol O-methyltransferase at high pH in complex with a bisubstrate inhibitor 5P9W ; 1.43 ; rat catechol O-methyltransferase in complex with 4'-fluoro-4,5-dihydroxy-N-{[(1R,2R)-2-{(2S,4R,5R)-4-hydroxy-5-[6-(methylamino)-9H-purin-9-yl]oxolan-2-yl}cyclopropyl]methyl}[1,1'-biphenyl]-3-carboxamide 5P98 ; 1.2 ; rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-(2-hydroxyethyl)benzamide at 1.20A 5P9D ; 1.42 ; rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-(5-imidazol-1-ylpentyl)benzamide at 1.42A 5P9C ; 1.7 ; rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-(5-pyrrolo[3,2-c]pyridin-1-ylpentyl)benzamide at 1.70A 5P97 ; 1.3 ; rat catechol O-methyltransferase in complex with 5-(4-fluorophenyl)-2,3-dihydroxy-N-[(1-methylimidazol-4-yl)methyl]benzamide at 1.30A 3OZT ; 1.48 ; Rat catechol O-methyltransferase in complex with a catechol-type, 4-oxo-pyridinyl-containing inhibitor - humanized form 3OZR ; 1.73 ; Rat catechol O-methyltransferase in complex with a catechol-type, bisubstrate inhibitor, no substituent in the adenine site - humanized form 3HVI ; 1.2 ; Rat catechol O-methyltransferase in complex with a catechol-type, N6-ethyladenine-containing bisubstrate inhibitor 3HVH ; 1.3 ; Rat catechol O-methyltransferase in complex with a catechol-type, N6-methyladenine-containing bisubstrate inhibitor 3HVJ ; 1.79 ; Rat catechol O-methyltransferase in complex with a catechol-type, N6-propyladenine-containing bisubstrate inhibitor 3HVK ; 1.3 ; Rat catechol O-methyltransferase in complex with a catechol-type, purine-containing bisubstrate inhibitor - humanized form 3OE4 ; 1.49 ; Rat catechol O-methyltransferase in complex with a catechol-type, purine-containing bisubstrate inhibitor - humanized form 3OE5 ; 1.52 ; Rat catechol O-methyltransferase in complex with a catechol-type, pyridylsulfanyl-containing inhibitor - humanized form 3OZS ; 1.44 ; Rat catechol O-methyltransferase in complex with a catechol-type, trifluoromethyl-imidazolyl-containing inhibitor - humanized form 5P9E ; 1.5 ; rat catechol O-methyltransferase in complex with N-[2-(5-benzyl-1H-1,2,4-triazol-3-yl)ethyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.50A 5P99 ; 1.2 ; rat catechol O-methyltransferase in complex with N-[2-[2-(3,4-dihydroxyphenyl)-2-oxoethyl]sulfanylethyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.20A 5P9A ; 1.91 ; rat catechol O-methyltransferase in complex with N-[2-[2-(6-aminopurin-9-yl)ethoxy]ethyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.91A 5P9B ; 1.45 ; rat catechol O-methyltransferase in complex with N-[2-[[5-(4-fluorophenyl)-2,3-dihydroxybenzoyl]amino]ethyl]-6-hydroxypyrimidine-4-carboxamide at 1.45A 5P96 ; 1.4 ; rat catechol O-methyltransferase in complex with N-[5-(2-aminopurin-9-yl)pentyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.40A 5P95 ; 1.3 ; rat catechol O-methyltransferase in complex with N-[5-(6-aminopurin-9-yl)pentyl]-5-(4-fluorophenyl)-2,3-dihydroxybenzamide at 1.30A 5PA1 ; 1.24 ; rat catechol O-methyltransferase in complex with SAH and 6-(4-fluorophenyl)quinolin-8-ol 3R6T ; 1.2 ; Rat catechol o-methyltransferase in complex with the bisubstrate inhibitor 4'-fluoro-4,5-dihydroxy-biphenyl-3-carboxylic acid {(E)-3-[(2S,4R,5R)-4-hydroxy-5-(6-methyl-purin-9-yl)-tetrahydro-furan-2-yl]-allyl}-amide 5N0K ; 2.3 ; Rat ceruloplasmin orthorhombic form 5N4L ; 3.2 ; Rat ceruloplasmin trigonal form 3NWB ; 1.3 ; Rat COMT in complex with a fluorinated desoxyribose-containing bisubstrate inhibitor avoids hydroxyl group 3NWE ; 1.5 ; Rat COMT in complex with a methylated desoxyribose bisubstrate-containing inhibitor avoids hydroxyl group 3NW9 ; 1.65 ; Rat COMT in complex with a methylpurin-containing bisubstrate inhibitor 6GY1 ; 2.1 ; rat COMT in complex with inhibitor 3S68 ; 1.85 ; Rat COMT in complex with SAM and Tolcapone at 1.85A, P3221, Rfree=22.0 4P7K ; 1.22 ; Rat COMT in complex with sinefungin 5URG ; 2.3 ; rat CYPOR D632F mutant 4Y9R ; 2.4 ; rat CYPOR mutant - G141del 4Y7C ; 2.2 ; rat CYPOR mutant - G141del/E142N 4Y9U ; 1.95 ; rat CYPOR mutant - G143del 4YAF ; 1.91 ; rat CYPOR with 2'-AMP 5URI ; 2.7 ; Rat CYPOR/D632A with 2'-AMP 4KWL ; 1.63 ; Rat cysteine dioxygenase with 3-mercaptopropionic acid persulfide bound 4KWK ; 1.95 ; Rat cysteine dioxygenase with cysteine persulfide bound to active site iron 2QEY ; 1.9 ; Rat cytosolic PEPCK in complex with GTP 2QF2 ; 1.65 ; Rat cytosolic PEPCK in complex with oxaloacetic acid and GDP. 2QF1 ; 1.8 ; Rat cytosolic PEPCK in complex with oxaloacetic acid. 2QEW ; 1.8 ; Rat cytosolic PEPCK, in complex with manganese ion. 1UUM ; 2.3 ; Rat dihydroorotate dehydrogenase (DHOD)in complex with atovaquone 1UUO ; 2.44 ; Rat dihydroorotate dehydrogenase (DHOD)in complex with brequinar 4ORI ; 1.5 ; Rat dihydroorotate dehydrogenase bound with DSM338 (N-[3,5-difluoro-4-(trifluoromethyl)phenyl]-5-methyl-2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine) 2GBF ; 3.1 ; rat dpp-IV with alkynyl cyanopyrrolidine #1 2GBG ; 3.0 ; rat DPP-IV with alkynyl cyanopyrrolidine #2 2GBI ; 3.3 ; rat DPP-IV with xanthine inhibitor 4 2I3Z ; 2.9 ; rat DPP-IV with xanthine mimetic inhibitor #7 2C08 ; 2.9 ; Rat endophilin A1 BAR domain 6OT6 ; 1.65 ; Rat ERK2 D319N 6OTS ; 2.1 ; Rat ERK2 E320K 1B5A ; ; RAT FERROCYTOCHROME B5 A CONFORMATION, NMR, 1 STRUCTURE 1B5B ; ; RAT FERROCYTOCHROME B5 B CONFORMATION, NMR, 1 STRUCTURE 5JPG ; 1.9 ; Rat Galectin 5 with lactose 3M2M ; 2.95 ; Rat galectin-1 complex with lactose 6KSS ; 8.1 ; Rat GluD1 receptor(compact conformation) in complex with 7-CKA and Calcium ions 6KSP ; 8.1 ; Rat GluD1 receptor(splayed conformation) in complex with 7-CKA and Calcium ions 4YBQ ; 3.27 ; Rat GLUT5 with Fv in the outward-open form 1EV9 ; 2.2 ; RAT GLUTATHIONE S-TRANSFERASE A1-1 MUTANT W21F WITH GSO3 BOUND 1EV4 ; 2.2 ; RAT GLUTATHIONE S-TRANSFERASE A1-1: MUTANT W21F/F220Y WITH GSO3 BOUND 1FI8 ; 2.2 ; RAT GRANZYME B [N66Q] COMPLEXED TO ECOTIN [81-84 IEPD] 4G99 ; 2.3 ; Rat Heme Oxygenase-1 in complex with Heme and CO at 100 K after warming to 160 K 4G98 ; 2.3 ; Rat Heme Oxygenase-1 in complex with Heme and CO at 100K 4G7P ; 1.9 ; Rat Heme Oxygenase-1 in complex with Heme and CO with 1 hr Illumination at 100 K: Laser off 4G7T ; 1.9 ; Rat Heme Oxygenase-1 in complex with Heme and CO with 1 hr Illumination: Laser on 4G7U ; 1.9 ; Rat Heme Oxygenase-1 in complex with Heme and CO with 16 hr Illumination: Laser off 4G8P ; 1.9 ; Rat Heme Oxygenase-1 in complex with Heme and CO with 16 hr Illumination: Laser on 4G8U ; 2.1 ; Rat Heme Oxygenase-1 in complex with Heme and O2 with 13 hr illumination: Laser off 4G8W ; 2.4 ; Rat Heme Oxygenase-1 in complex with Heme and O2 with 13 hr illumination: Laser on 7OST ; 1.4 ; Rat HIP1R ANTH domain 6N69 ; 2.0 ; rat hPGDS complexed with a quinoline 3P7L ; 2.0776 ; Rat Insulin Degrading Enzyme (Insulysin) 3P7O ; 2.1423 ; Rat Insulin Degrading Enzyme (Insulysin) E111F mutant with two bound peptides 6LU9 ; 8.8 ; Rat ionotropic Glutamate Delta-2 receptor in complex with 7-CKA and Calcium 7UZG ; 3.7 ; Rat Kidney V-ATPase lacking subunit H, with SidK and NCOA7B, State 1 7UZI ; 3.9 ; Rat Kidney V-ATPase lacking subunit H, with SidK and NCOA7B, State 2 7UZF ; 3.8 ; Rat Kidney V-ATPase with SidK, State 1 7UZH ; 3.8 ; Rat Kidney V-ATPase with SidK, State 2 7UZK ; 3.0 ; Rat Kidney V1 complex lacking subunit H with SidK and NCOA7B, State 1 7UZJ ; 3.3 ; Rat Kidney V1 complex with SidK and NCOA7B, State 1 8I5M ; 2.85 ; Rat Kir4.1 in complex with PIP2 8I5N ; 2.85 ; Rat Kir4.1 in complex with PIP2 and Lys05 4AJI ; 1.93 ; rat LDHA in complex with 2-((3,4-dimethoxyphenyl)methyl))propanedioic acid 4AJJ ; 1.75 ; rat LDHA in complex with 2-((3,4-dimethoxyphenyl)methyl))propanedioic acid and N-(2-methyl-1,3-benzothiazol-6-yl)-3-ureido-propanamide 4AJN ; 2.1 ; rat LDHA in complex with 2-((4-(2-((3-((2-methyl-1,3-benzothiazol-6- yl)amino)-3-oxo-propyl)carbamoylamino)ethyl)phenyl)methyl) propanedioic acid 4AL4 ; 1.78 ; rat LDHA in complex with 2-((4-(2-((3-((2-methyl-1,3-benzothiazol-6- yl)amino)3-oxo-propyl)carbamoylamino)ethoxy)phenyl)methylpropanedioic acid 4AJO ; 1.96 ; rat LDHA in complex with 2-((4-(4-((3-((2-methyl-1,3-benzothiazol-6yl) amino)-3-oxo-propyl)amino)-4-oxo-butyl)phenyl)methyl)propanedioic acid 4AJE ; 2.35 ; rat LDHA in complex with 2-(4-bromophenoxy)propanedioic acid 4AJL ; 1.77 ; rat LDHA in complex with 3-(ethylcarbamoylamino)-N-(2-methyl-1,3- benzothiazol-6-yl)propanamide 4AJ4 ; 1.9 ; rat LDHA in complex with 4-((2-allylsulfanyl-1,3-benzothizol-6-yl) amino)-4-oxo-butanoic acid 4AJ2 ; 1.75 ; rat LDHA in complex with 5-(2-chlorophenyl)-1H-tetrazole 4AJ1 ; 1.87 ; rat LDHA in complex with N-(2-(methylamino)-1,3-benzothiazol-6-yl) acetamide 4AJK ; 2.03 ; rat LDHA in complex with N-(2-(methylamino)-1,3-benzothiazol-6-yl) acetamide 4AJH ; 1.93 ; rat LDHA in complex with N-(2-methyl-1,3-benzothiazol-6-yl)-3-ureido- propanamide and 2-(4-bromophenoxy)propanedioic acid 1MAB ; 2.8 ; RAT LIVER F1-ATPASE 2F43 ; 3.0 ; Rat liver F1-ATPase 1PWE ; 2.8 ; Rat Liver L-Serine Dehydratase Apo Enzyme 1PWH ; 2.6 ; Rat Liver L-Serine Dehydratase- Complex with PYRIDOXYL-(O-METHYL-SERINE)-5-MONOPHOSPHATE 1B3R ; 2.8 ; RAT LIVER S-ADENOSYLHOMOCYSTEIN HYDROLASE 1KWT ; 1.95 ; Rat mannose binding protein A (native, MPD) 1KWV ; 2.0 ; Rat mannose binding protein A complexed with a-Me-GlcNAc 1KWU ; 1.95 ; Rat mannose binding protein A complexed with a-Me-Man 1KX0 ; 2.0 ; Rat mannose protein A (H189V I207V) complexed with man-a13-man 1KWZ ; 1.9 ; Rat mannose protein A (H189V) complexed with Man-a13-Man 1KWW ; 1.9 ; Rat mannose protein A complexed with a-Me-Fuc. 1KWX ; 2.0 ; Rat mannose protein A complexed with b-Me-Fuc. 1KWY ; 2.0 ; Rat mannose protein A complexed with man-a13-man. 1KX1 ; 2.8 ; Rat mannose protein A complexed with Man6-GlcNAc2-Asn 3RL3 ; 1.42 ; Rat metallophosphodiesterase MPPED2 3RL4 ; 1.29 ; Rat metallophosphodiesterase MPPED2 G252H Mutant 3RL5 ; 1.26 ; Rat metallophosphodiesterase MPPED2 H67R Mutant 1ZVI ; 2.0 ; Rat Neuronal Nitric Oxide Synthase Oxygenase Domain 1ZVL ; 2.5 ; Rat Neuronal Nitric Oxide Synthase Oxygenase Domain complexed with natural substrate L-Arg. 1QW6 ; 2.1 ; Rat neuronal nitric oxide synthase oxygenase domain in complex with N-omega-propyl-L-Arg. 1QWC ; 2.3 ; Rat neuronal nitric oxide synthase oxygenase domain in complex with W1400 inhibitor. 1P6K ; 1.78 ; Rat neuronal NOS D597N mutant heme domain with L-N(omega)-nitroarginine-2,4-L-diaminobutyric amide bound 1P6I ; 1.9 ; Rat neuronal NOS heme domain with (4S)-N-(4-amino-5-[aminoethyl]aminopentyl)-N'-nitroguanidine bound 1RS6 ; 1.95 ; Rat neuronal NOS heme domain with D-lysine-D-nitroarginine amide bound 1RS7 ; 1.95 ; Rat neuronal NOS heme domain with D-phenylalanine-D-nitroarginine amide bound 1P6J ; 2.0 ; Rat neuronal NOS heme domain with L-N(omega)-nitroarginine-(4R)-amino-L-proline amide bound 1P6H ; 1.98 ; Rat neuronal NOS heme domain with L-N(omega)-nitroarginine-2,4-L-diaminobutyric amide bound 1M00 ; 2.05 ; Rat neuronal NOS heme domain with N-butyl-N'-hydroxyguanidine bound 1LZZ ; 2.05 ; Rat neuronal NOS heme domain with N-isopropyl-N'-hydroxyguanidine bound 1LZX ; 2.0 ; Rat neuronal NOS heme domain with NG-hydroxy-L-arginine bound 1MMV ; 2.0 ; Rat neuronal NOS heme domain with NG-propyl-L-arginine bound 1MMW ; 2.0 ; Rat neuronal NOS heme domain with vinyl-L-NIO bound 1ZZQ ; 1.9 ; Rat nNOS D597N mutant with L-N(omega)-Nitroarginine-(4R)-amino-L-proline amide bound 1ZZR ; 2.05 ; Rat nNOS D597N/M336V double mutant with L-N(omega)-Nitroarginine-(4R)-amino-L-proline amide bound 1ZZU ; 1.9 ; Rat nNOS D597N/M336V double mutant with L-N(omega)-Nitroarginine-2,4-L-Diaminobutyric Amide Bound 2HX3 ; 2.0 ; Rat nNOS heme domain complexed with (4S)-N-{4-Amino-5-[(2-aminoethyl)-hydroxyamino]-pentyl}-N'-nitroguanidine 2HX4 ; 2.15 ; Rat nNOS heme domain complexed with 4-N-(Nw-nitro-L-argininyl)-trans-4-hydroxyamino-L-proline amide 4BR0 ; 2.05 ; rat NTPDase2 in complex with Ca AMPNP 4BR2 ; 2.0 ; rat NTPDase2 in complex with Ca UMPPNP 4BQZ ; 2.05 ; Rat NTPDase2 in complex with Mg GMPPNP 4BR5 ; 1.75 ; Rat NTPDase2 in complex with Zn AMPPNP 1QKN ; 2.25 ; RAT OESTROGEN RECEPTOR BETA LIGAND-BINDING DOMAIN IN COMPLEX WITH ANTAGONIST RALOXIFENE 1HJ1 ; 2.3 ; RAT OESTROGEN RECEPTOR BETA LIGAND-BINDING DOMAIN IN COMPLEX WITH PURE ANTIOESTROGEN ICI164,384 1AWP ; 2.0 ; RAT OUTER MITOCHONDRIAL MEMBRANE CYTOCHROME B5 1B5M ; 2.7 ; RAT OUTER MITOCHONDRIAL MEMBRANE CYTOCHROME B5 1EUE ; 1.8 ; RAT OUTER MITOCHONDRIAL MEMBRANE CYTOCHROME B5 1ICC ; 2.0 ; RAT OUTER MITOCHONDRIAL MEMBRANE CYTOCHROME B5 1BU8 ; 1.8 ; RAT PANCREATIC LIPASE RELATED PROTEIN 2 2IQY ; 1.4 ; Rat Phosphatidylethanolamine-Binding Protein 2IQX ; 2.2 ; Rat Phosphatidylethanolamine-Binding Protein Containing the S153E Mutation in the Complex with o-Phosphorylethanolamine 2A1L ; 2.18 ; Rat PITP-Beta Complexed to Phosphatidylcholine 3RDJ ; 1.9 ; Rat PKC C2 domain Apo 4L1L ; 1.6 ; Rat PKC C2 domain bound to CD 3TWY ; 1.5 ; RAT PKC C2 DOMAIN BOUND TO PB 2O8G ; 2.5 ; Rat pp1c gamma complexed with mouse inhibitor-2 2O8A ; 2.61 ; rat PP1cgamma complexed with mouse inhibitor-2 4JA9 ; 2.3 ; Rat PP5 apo 4JA7 ; 2.0 ; Rat PP5 co-crystallized with P5SA-2 5EUS ; 1.833 ; Rat prestin STAS domain in complex with bromide 5EUU ; 1.87 ; Rat prestin STAS domain in complex with chloride 5EUZ ; 2.403 ; Rat prestin STAS domain in complex with iodide 5EUW ; 1.81 ; Rat prestin STAS domain in complex with nitrate 5EUX ; 2.038 ; Rat prestin STAS domain in complex with thiocyanate 1MIR ; 2.8 ; RAT PROCATHEPSIN B 1SA5 ; 2.6 ; Rat protein farnesyltransferase complexed with FPP and BMS-214662 8E9E ; 2.844 ; Rat protein farnesyltransferase in complex with FPP and inhibitor 2f 1TNY ; 2.7 ; Rat Protein Geranylgeranyltransferase Type-I Complexed with a GGPP analog and a FREKKFFCAIL Peptide Derived from the Heterotrimeric G Protein Gamma-2 Subunit 1TNU ; 2.7 ; Rat Protein Geranylgeranyltransferase Type-I Complexed with a GGPP analog and a GCINCCKVL Peptide Derived from RhoB 1TNO ; 2.7 ; Rat Protein Geranylgeranyltransferase Type-I Complexed with a GGPP analog and a KKKSKTKCVIM Peptide Derived from K-Ras4B 1TNZ ; 2.9 ; Rat Protein Geranylgeranyltransferase Type-I Complexed with a GGPP analog and a RRCVLL Peptide Derived from Cdc42 splice isoform-2 1TNB ; 2.85 ; Rat Protein Geranylgeranyltransferase Type-I Complexed with a GGPP analog and a substrate KKSKTKCVIF Peptide Derived from TC21 1S64 ; 2.55 ; Rat protein geranylgeranyltransferase type-I complexed with L-778,123 and a sulfate anion 6J6U ; 3.32 ; Rat PTPRZ D1-D2 domain 7Y4O ; 3.0 ; Rat Semaphorin 6D extracellular region 2YJZ ; 2.2 ; Rat STEAP4 oxidoreductase domain complexed with NADP 1TON ; 1.8 ; RAT SUBMAXILLARY GLAND SERINE PROTEASE, TONIN. STRUCTURE SOLUTION AND REFINEMENT AT 1.8 ANGSTROMS RESOLUTION 1W16 ; 2.3 ; rat synaptotagmin 4 C2B domain in the absence of calcium 1W15 ; 1.93 ; rat synaptotagmin 4 C2B domain in the presence of calcium 1GKE ; 2.5 ; RAT TRANSTHYRETIN 1KGJ ; 2.3 ; Rat transthyretin (also called prealbumin) complex with 3',5'-dibromoflavone (EMD21388) 1KGI ; 1.8 ; Rat transthyretin (also called prealbumin) complex with 3,3',5,5'-tetraiodothyroacetic acid (t4ac) 1IE4 ; 2.5 ; RAT TRANSTHYRETIN COMPLEX WITH THYROXINE (T4) 8SLX ; 3.23 ; Rat TRPV2 bound with 1 CBD ligand in nanodiscs 8SLY ; 3.32 ; Rat TRPV2 bound with 2 CBD ligands in nanodiscs 8EKS ; 3.1 ; rat TRPV2 in nanodiscs in the presence of weak acid at pH 5 1F7Z ; 1.55 ; RAT TRYPSINOGEN K15A COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR 1F5R ; 1.65 ; RAT TRYPSINOGEN MUTANT COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR 1AB8 ; 2.2 ; RAT TYPE II ADENYLYL CYCLASE C2 DOMAIN/FORSKOLIN COMPLEX 4V2B ; 2.0 ; rat Unc5D Ig domain 1 7T3O ; 3.3 ; Rat vesicular glutamate transporter 2 (VGLUT2) in low Cl condition 6AJU ; 1.94 ; Rat Xanthine oxidoreductase 4YRW ; 1.99 ; rat xanthine oxidoreductase, C-terminal deletion protein variant 4YTZ ; 2.3 ; Rat xanthine oxidoreductase, C-terminal deletion protein variant, crystal grown without dithiothreitol 6A7X ; 2.15 ; Rat Xanthine oxidoreductase, D428A variant, NAD bound form 6AD4 ; 1.8 ; Rat Xanthine oxidoreductase, D428A variant, NADH bound form 6ADJ ; 2.18 ; Rat Xanthine oxidoreductase, D428E variant 6AC4 ; 2.19 ; Rat Xanthine oxidoreductase, D428N variant 6ABU ; 1.77 ; Rat Xanthine oxidoreductase, NAD bound form 6AC1 ; 1.77 ; Rat Xanthine oxidoreductase, NADH bound form 6LFE ; 1.6 ; Rat-COMT, Nitecapone,SAM and Mg bond 7XJB ; 2.6 ; Rat-COMT, opicapone,SAM and Mg bond 4KJD ; 2.21 ; RatIntestinal AP expressed in E. coli 2J5C ; 1.95 ; Rational conversion of substrate and product specificity in a monoterpene synthase. Structural insights into the molecular basis of rapid evolution. 4F5J ; 1.954 ; Rational Design and Directed Evolution for Conversion of Substrate Specificity from E.coli Aspartate Aminotransferase to Tyrosine Aminotransferase: Mutant P5. 4F5G ; 1.67 ; Rational Design and Directed Evolution of E. coli Apartate Aminotransferase to Tyrosine Aminotransferase: Mutant P2. 3U6A ; 2.199 ; Rational Design and Synthesis of Aminopiperazinones as Beta Secretase (BACE) Inhibitors 1T6W ; ; RATIONAL DESIGN OF A CALCIUM-BINDING ADHESION PROTEIN NMR, 20 STRUCTURES 8ADT ; 1.4 ; Rational design of a calcium-independent trypsin variant 1USB ; 2.07 ; Rational design of a novel enzyme - efficient thioester hydrolysis enabled by the incorporation of a single His residue into human glutathione transferase A1-1 3K9Z ; 1.72 ; Rational Design of a Structural and Functional Nitric Oxide Reductase 4R6B ; 2.0 ; Rational Design of Enhanced Photoresistance in a Photoswitchable Fluorescent Protein 3T8M ; 2.5 ; Rational Design of PI3K-alpha Inhibitors that Exhibit Selectivity Over the PI3K-beta Isoform 1HVR ; 1.8 ; RATIONAL DESIGN OF POTENT, BIOAVAILABLE, NONPEPTIDE CYCLIC UREAS AS HIV PROTEASE INHIBITORS 1HPS ; 2.3 ; RATIONAL DESIGN, SYNTHESIS AND CRYSTALLOGRAPHIC ANALYSIS OF A HYDROXYETHYLENE-BASED HIV-1 PROTEASE INHIBITOR CONTAINING A HETEROCYCLIC P1'-P2' AMIDE BOND ISOSTERE 3GJE ; 2.3 ; Rational development of high-affinity T-cell receptor-like antibodies 3GJF ; 1.9 ; Rational development of high-affinity T-cell receptor-like antibodies 3HAE ; 2.9 ; Rational development of high-affinity T-cell receptor-like antibodies 6A9O ; 2.5 ; Rational discovery of a SOD1 tryptophan oxidation inhibitor with therapeutic potential for amyotrophic lateral sclerosis 6WS0 ; 2.24 ; Rational drug design of phenazopyridine derivatives as novel inhibitors of Rev1-CT 6WS5 ; 2.472 ; Rational drug design of phenazopyridine derivatives as novel inhibitors of Rev1-CT 5A25 ; 1.9 ; Rational engineering of a mesophilic carbonic anhydrase to an extreme halotolerant biocatalyst 6DI4 ; 1.9 ; Rational Modification of Vanillin Derivatives to Stereospecifically Destabilize Sickle Hemoglobin Polymer Formation 2GX6 ; 1.97 ; Rational stabilization of E. coli ribose binding protein 7UVJ ; 1.99 ; Rationally Designed ED1 Epitope-Scaffold Immunogen for SARS-CoV-2 8HU2 ; 1.6 ; Rattus Syntenin-1 PDZ domain with inhibitor 8WKL ; 2.67 ; Rauvolfia serpentina strictosidine synthase (RsSTR) in complex with a non-reactive tryptamine substitute crystallized in P1211 space group 3VF0 ; 2.54 ; Raver1 in complex with metavinculin L954 deletion mutant 5KS2 ; 2.18 ; RAWV_CTD (Helix form) of 16S/23S 2'-O-methyltransferase TlyA 5KYG ; 1.9 ; RAWV_CTD (Loop Structure) of 16S/23S 2'-O-methyltransferase TlyA 1GUX ; 1.85 ; RB POCKET BOUND TO E7 LXCXE MOTIF 2HFE ; 2.25 ; Rb+ complex of a K channel with an amide to ester substitution in the selectivity filter 6JXJ ; 2.5 ; Rb+-bound E2-AlF state of the gastric proton pump (Tyr799Trp) 6JXI ; 2.6 ; Rb+-bound E2-MgF state of the gastric proton pump (Tyr799Trp) 6JXK ; 4.3 ; Rb+-bound E2-MgF state of the gastric proton pump (Wild-type) 7NNP ; 3.2 ; Rb-loaded cryo-EM structure of the E1-ATP KdpFABC complex. 3QER ; 1.96 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dATP Opposite Difluorotoluene Nucleoside 3SNN ; 2.0 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dCTP Opposite dG in the presence of Mg2+ 3QEI ; 2.178 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dCTP Opposite Difluorotoluene Nucleoside 3QEV ; 1.77 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dCTP Opposite dT 3QEW ; 1.84 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dDTP Opposite dT 3QES ; 1.98 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dGTP Opposite Difluorotoluene Nucleoside 3QEX ; 1.73 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dGTP Opposite dT 3QEP ; 1.8 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dTTP Opposite Difluorotoluene Nucleoside 3QET ; 2.08 ; RB69 DNA Polymerase (L561A/S565G/Y567A) Ternary Complex with dTTP Opposite dT 3NE6 ; 2.001 ; RB69 DNA Polymerase (S565G/Y567A) Ternary Complex with dCTP Opposite dG 3NHG ; 2.5 ; RB69 DNA Polymerase (S565G/Y567A) Ternary Complex with dTTP Opposite dG 3QNO ; 1.88 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dATP Opposite 3tCo 3LZI ; 2.3 ; RB69 DNA Polymerase (Y567A) ternary complex with dATP Opposite 7,8-dihydro-8-oxoguanine 3RWU ; 2.33 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dATP Opposite Difluorotoluene Nucleoside 3NAE ; 2.003 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dATP Opposite Guanidinohydantoin 3SUQ ; 3.15 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dCTP Opposite 2AP (AT rich sequence) 3SUP ; 2.32 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dCTP Opposite 2AP (GC rich sequence) 3LZJ ; 2.05 ; RB69 DNA Polymerase (Y567A) ternary complex with dCTP Opposite 7,8-Dihydro-8-oxoguanine 3NDK ; 2.0 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dCTP Opposite dG 3QNN ; 1.92 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dGT Opposite 3tCo 3SUN ; 2.42 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dTTP Opposite 2AP (AT rich sequence) 3SUO ; 2.23 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dTTP Opposite 2AP (GC rich sequence) 3NGI ; 1.886 ; RB69 DNA Polymerase (Y567A) Ternary Complex with dTTP Opposite dG 4J2A ; 1.8 ; RB69 DNA Polymerase L415A Ternary Complex 4J2B ; 2.04 ; RB69 DNA Polymerase L415G Ternary Complex 4J2D ; 1.76 ; RB69 DNA Polymerase L415K Ternary Complex 4J2E ; 2.02 ; RB69 DNA Polymerase L415M Ternary Complex 3UIQ ; 1.879 ; RB69 DNA Polymerase Ternary Complex containing dUpNpp 4DTN ; 1.96 ; RB69 DNA Polymerase Ternary Complex with dATP Opposite an Abasic Site and ddA/dT as the Penultimate Base-pair 4DTR ; 2.04 ; RB69 DNA Polymerase Ternary Complex with dATP Opposite an Abasic Site and ddC/dG as the Penultimate Base-pair 4DU1 ; 2.15 ; RB69 DNA Polymerase Ternary Complex with dATP Opposite dT 4DU4 ; 2.28 ; RB69 DNA Polymerase Ternary Complex with dATP Opposite dT with 3-Deaza-adenine at the N-3 Position of Primer Strand 4FJK ; 2.0 ; RB69 DNA polymerase ternary complex with dATP/dA 4FJG ; 2.02 ; RB69 DNA polymerase ternary complex with dATP/dC 4FJX ; 2.11 ; RB69 DNA polymerase ternary complex with dATP/dG 4FJ5 ; 2.05 ; RB69 DNA polymerase ternary complex with dATP/dT 4DTO ; 2.05 ; RB69 DNA Polymerase Ternary Complex with dCTP Opposite an Abasic Site and ddA/dT as the Penultimate Base-pair 4DTS ; 1.96 ; RB69 DNA Polymerase Ternary Complex with dCTP Opposite an Abasic Site and ddC/dG as the Penultimate Base-pair 4DTM ; 1.95 ; RB69 DNA Polymerase Ternary Complex with dCTP Opposite an Abasic Site and ddG/dC as the Penultimate Base-pair 3NCI ; 1.79 ; RB69 DNA Polymerase Ternary Complex with dCTP Opposite dG at 1.8 angstrom resolution 4FJM ; 2.02 ; RB69 DNA polymerase ternary complex with dCTP/dA 4FJI ; 2.2 ; RB69 DNA polymerase ternary complex with dcTP/dC 4FK0 ; 2.18 ; RB69 DNA polymerase ternary complex with dCTP/dG 4FJ8 ; 2.19 ; RB69 DNA polymerase ternary complex with dCTP/dT 4DU3 ; 2.02 ; RB69 DNA Polymerase Ternary Complex with dDTP Opposite dT with 3-Deaza-adenine at the N-1 Position of Template Strand 4M3Y ; 1.86 ; RB69 DNA polymerase ternary complex with dG/dT at position n-1 of primer/template duplex 4M3Z ; 1.84 ; RB69 DNA polymerase ternary complex with dG/dT at position n-2 of primer/tempLate duplex 4M41 ; 2.15 ; RB69 DNA polymerase ternary complex with dG/dT at position n-3 of primer/tempLate duplex 4M42 ; 2.04 ; RB69 DNA polymerase ternary complex with dG/dT at position n-4 of primer/tempLate duplex 4M45 ; 1.89 ; RB69 DNA polymerase ternary complex with dG/dT at position n-5 of primer/template duplex 4DTP ; 2.05 ; RB69 DNA Polymerase Ternary Complex with dGTP Opposite an Abasic Site and ddA/dT as the Penultimate Base-pair 4DTU ; 1.86 ; RB69 DNA Polymerase Ternary Complex with dGTP Opposite an Abasic Site and ddC/dG as the Penultimate Base-pair 4FJL ; 1.87 ; RB69 DNA polymerase ternary complex with dGTP/dA 4FJH ; 2.11 ; RB69 DNA polymerase ternary complex with dGTP/dC 4FK4 ; 1.9 ; RB69 DNA polymerase ternary complex with dGTP/dG 4FJ7 ; 1.9 ; RB69 DNA polymerase ternary complex with dGTP/dT 4E3S ; 2.04 ; RB69 DNA Polymerase Ternary Complex with dQTP Opposite dT 4M3R ; 2.07 ; RB69 DNA polymerase ternary complex with dT/dG at position n-1 of primer/template duplex 4M3T ; 1.9 ; RB69 DNA polymerase ternary complex with dT/dG at position n-2 of primer/template duplex 4M3U ; 2.07 ; RB69 DNA polymerase ternary complex with dT/dG at position n-3 of primer/template duplex 4M3W ; 2.1 ; RB69 DNA polymerase ternary complex with dT/dG at position n-4 of primer/template duplex 4M3X ; 2.2 ; RB69 DNA polymerase ternary complex with dT/dG at position n-5 of primer/template duplex 3SQ2 ; 2.1 ; RB69 DNA Polymerase Ternary Complex with dTTP Opposite 2AP (AT rich sequence) 3SQ4 ; 2.23 ; RB69 DNA Polymerase Ternary Complex with dTTP Opposite 2AP (GC rich sequence) 4DTX ; 1.84 ; RB69 DNA Polymerase Ternary Complex with dTTP Opposite an Abasic Site and ddC/dG as the Penultimate Base-pair 4DTJ ; 1.9 ; RB69 DNA Polymerase Ternary Complex with dTTP Opposite an Abasic Site and ddT/dA as the Penultimate Base-pair 4FJN ; 1.98 ; RB69 DNA polymerase ternary complex with dTTP/dA 4FJJ ; 1.99 ; RB69 DNA polymerase ternary complex with dTTP/dC 4FK2 ; 1.98 ; RB69 DNA polymerase ternary complex with dTTP/dG 4FJ9 ; 1.97 ; RB69 DNA polymerase ternary complex with dTTP/dT 3SQ1 ; 1.82 ; RB69 DNA Polymerase Ternary Complex with dUpCpp Opposite dA 3SI6 ; 1.85 ; RB69 DNA Polymerase Triple Mutant (L561A/S565G/Y567A) Ternary Complex with dUpNpp and a Deoxy-terminated Primer in the presence of Mg2+ 3SJJ ; 2.38 ; RB69 DNA Polymerase Triple Mutant (L561A/S565G/Y567A) Ternary Complex with dUpNpp and a Deoxy-terminated Primer in the presence of Mn2+ 3SCX ; 2.35 ; RB69 DNA Polymerase Triple Mutant(L561A/S565G/Y567A) Ternary Complex with dUpNpp and a Deoxy-terminated Primer in the Presence of Ca2+ 3S9H ; 1.95 ; RB69 DNA Polymerase Triple Mutant(L561A/S565G/Y567A) ternary complex with dUpNpp and a dideoxy-terminated primer in the presence of Ca2+ 3SPY ; 2.14 ; RB69 DNA Polymerase(L415A/L561A/S565G/Y567A) Ternary Complex with dUpCpp Opposite dA 2A1K ; 2.0 ; RB69 single-stranded DNA binding protein core domain 2ATQ ; 3.2 ; RB69 single-stranded DNA binding protein-DNA polymerase fusion 7VOY ; 4.2 ; Rba sphaeroides PufX-KO RC-LH1 7VA9 ; 3.08 ; Rba sphaeroides PufY-KO RC-LH1 dimer type-1 7VB9 ; 3.45 ; Rba sphaeroides PufY-KO RC-LH1 dimer type-2 7VNM ; 2.86 ; Rba sphaeroides PufY-KO RC-LH1 monomer 7VNY ; 2.79 ; Rba sphaeroides WT RC-LH1 monomer 6ZZ3 ; 2.095 ; RBcel1 cellulase variant Y201F with cellotriose covalently bound 6MR1 ; 1.35 ; RbcS-like subdomain of CcmM 2PY8 ; 2.45 ; RbcX 7PV5 ; 1.6 ; RBD domain of D. melanogaster tRNA (uracil-5-)-methyltransferase homolog A (TRMT2A) 7NKT ; 2.3 ; RBD domain of SARS-CoV2 in complex with neutralizing nanobody NM1226 7B27 ; 2.902 ; RBD domain SARS-CoV2 in complex with neutralizing nanobody NM1230 7XXL ; 7.3 ; RBD in complex with Fab14 2RGF ; ; RBD OF RAL GUANOSINE-NUCLEOTIDE EXCHANGE FACTOR (PROTEIN), NMR, 10 STRUCTURES 8CYJ ; 3.6 ; RBD of SARS-CoV-2 Spike protein in complex with pan-sarbecovirus nanobodies 2-10, 2-67, 2-62 and 1-25 8JJE ; 3.4 ; RBD of SARS-CoV2 spike protein with ACE2 decoy 7WCR ; 3.5 ; RBD-1 of SARS-CoV-2 Beta spike in complex with S5D2 Fab 7V27 ; 4.18 ; RBD/XG005 local refinement 6PPK ; 4.4 ; RbgA+45SRbgA complex 1QSD ; 2.2 ; RBL2P, BETA-TUBULIN BINDING POST-CHAPERONIN COFACTOR 5ZSW ; ; RBM10-RRM2 domain and its lung cancer related mutant 5ZSY ; ; RBM10-RRM2 domain and its lung cancer related mutant 5MFY ; ; RBM5 OCRE domain 2M9K ; ; RBPMS2-Nter 2LGV ; ; Rbx1 6Z5S ; 2.65 ; RC-LH1(14)-W complex from Rhodopseudomonas palustris 6Z5R ; 2.8 ; RC-LH1(16) complex from Rhodopseudomonas palustris 4V9G ; 7.78 ; RC-LH1-PufX dimer complex from Rhodobacter sphaeroides 8ASL ; 3.15 ; RCII/PSI complex, class 2 8AM5 ; 3.1 ; RCII/PSI complex, class 3 8ASP ; 2.9 ; RCII/PSI complex, focused refinement of PSI 4YS2 ; 1.968 ; RCK domain with CDA 7B5U ; 1.2 ; RCK_C domain dimer of S.agalactiae BusR in complex with c-di-AMP 7B5W ; 1.0 ; RCK_C domain of S.agalactiae BusR in ligand-free state 8ODN ; 2.7 ; RcpA-TadD with C13 symmetry from the Pseudomonas aeruginosa Tight Adherence Secretion System 6T7F ; 2.58 ; RCR E3 ligase E2-Ubiquitin transthiolation intermediate 5E9D ; 2.51 ; RD-1 Mart-1 High bound to Mart-1 decameric peptide (ELA) in complex with HLA-A2 6W3G ; 1.62 ; Rd1NTF2_04 with long sheet 6W3D ; 1.38 ; Rd1NTF2_05 with long sheet 6W3F ; 1.83 ; Rd1NTF2_05_I64F_A80G_T94P_D101K_L106W 7EIK ; 1.7 ; RD4-BD1 in complex with LT-872-297 2KYD ; ; RDC and RCSA refinement of an A-form RNA: Improvements in Major Groove Width 2KRO ; ; RDC refined high resolution structure of the third SH3 domain of CD2AP 2MEY ; ; RDC refined solution structure of Blo t 5. 2LUP ; ; RDC refined solution structure of double-stranded RNA binding domain of S. cerevisiae RNase III (rnt1p) in complex with the terminal RNA hairpin of snr47 precursor 1XXE ; ; RDC refined solution structure of the AaLpxC/TU-514 complex 2KRM ; ; RDC refined solution structure of the first SH3 domain of CD2AP 6URP ; ; RDC refined solution structure of the insecticidal toxin Ta1a 2L1G ; ; RDC refined solution structure of the THAP zinc finger of THAP1 in complex with its 16bp RRM1 DNA target 1RO4 ; ; RDC-derived models of the zinc ribbon domain of human general transcription factor TFIIB (zinc free structures) 1RLY ; ; RDC-derived models of the zinc ribbon domain of human general transcription TFIIB (zinc bound structures) 8CH7 ; ; RDC-refined Interleukin-4 (wild type) pH 5.6 1NTI ; ; RDC-refined NMR structure of bovine Acyl-coenzyme A Binding Protein, ACBP 1NVL ; ; RDC-refined NMR structure of bovine Acyl-coenzyme A Binding Protein, ACBP, in complex with palmitoyl-coenzyme A 1YJJ ; ; RDC-refined Solution NMR structure of oxidized putidaredoxin 6NS8 ; ; RDC-refined SOLUTION NMR STRUCTURE OF PROTEIN PF2048.1 1YJI ; ; RDC-refined Solution NMR structure of reduced putidaredoxin 2RO3 ; ; RDC-refined Solution Structure of the N-terminal DNA Recognition Domain of the Bacillus subtilis Transition-state Regulator Abh 2RO4 ; ; RDC-refined Solution Structure of the N-terminal DNA Recognition Domain of the Bacillus subtilis Transition-state Regulator AbrB 2RO5 ; ; RDC-refined solution structure of the N-terminal DNA recognition domain of the Bacillus subtilis transition-state regulator SpoVT 7ACZ ; 3.5 ; RdeltaD2 H/L (LMW SLP/HMW SLP) complex from C. difficile SlpA (R20291 strain) 6D0O ; 2.3 ; rdpA dioxygenase holoenzyme 6K32 ; 3.2 ; RdRp complex 4MTP ; 3.65 ; RdRp from Japanesese Encephalitis Virus 5HMV ; 0.98 ; Re refinement of 4mwk. 5I5Q ; 1.42 ; Re refinement of 4mwn. 1I53 ; 1.8 ; RE(I)-TRICARBONYL DIIMINE (Q107H)) AZURIN 1HYT ; 1.7 ; RE-DETERMINATION AND REFINEMENT OF THE COMPLEX OF BENZYLSUCCINIC ACID WITH THERMOLYSIN AND ITS RELATION TO THE COMPLEX WITH CARBOXYPEPTIDASE A 2DJG ; 2.05 ; Re-determination of the native structure of human dipeptidyl peptidase I (cathepsin C) 7P75 ; 1.23 ; Re-engineered 2-deoxy-D-ribose-5-phosphate aldolase catalysing asymmetric Michael addition reactions in substrate-free state 7P76 ; 1.9 ; Re-engineered 2-deoxy-D-ribose-5-phosphate aldolase catalysing asymmetric Michael addition reactions, Schiff base complex with cinnamaldehyde 1YO7 ; 2.8 ; Re-engineering topology of the homodimeric ROP protein into a single-chain 4-helix bundle 1ZLZ ; 1.55 ; Re-Evaluation of the Low-Temperature Azide in Mn-Dependent Superoxide Dismutase 6W1I ; 1.8 ; Re-interpretation of ppGpp (G4P) electron density in the deposited crystal structure of Xanthine phosphoribosyltransferase (XPRT) (1Y0B). 3QGZ ; 1.1 ; Re-investigated high resolution crystal structure of histidine triad nucleotide-binding protein 1 (HINT1) from rabbit complexed with adenosine 4RR0 ; 3.054 ; re-refined 1vcw, CRYSTAL STRUCTURE OF DEGS AFTER BACKSOAKING THE ACTIVATING PEPTIDE 3OU0 ; 3.0 ; re-refined 3CS0 5UWB ; 2.604 ; Re-refined 4FCZ: lipid-bound crystal structure of toluene-tolerance protein from Pseudomonas putida 3SYU ; 1.95 ; Re-refined coordinates for pdb entry 1det - ribonuclease T1 carboxymethylated at GLU 58 in complex with 2'GMP 3QL3 ; 1.8 ; Re-refined coordinates for PDB entry 1RX2 6TW2 ; 1.8 ; Re-refined crystal structure of di-phosphorylated human CLK1 in complex with a novel substituted indole inhibitor 7K17 ; 4.3 ; Re-refined crystal structure of DNA-dependent protein kinase catalytic subunit complexed with Ku80 C-terminal helix 4R1F ; 2.51 ; Re-refined Human DNA topoisomerase IIa (ATPase and transducer domains) in complex with ADP and SO4 8E0G ; 2.1 ; Re-refined model of active mu-opioid receptor (PDB 5c1m) as an adduct with BU72 4RQY ; 2.204 ; RE-REFINED STRUCTURE OF 1TE0 - STRUCTURAL ANALYSIS of DEGS, A STRESS SENSOR OF THE BACTERIAL PERIPLASM 7Q3V ; 1.9 ; Re-refined structure of a type III antifreeze protein isoform HPLC 12 6JML ; 2.3 ; Re-refined structure of R-state L-lactate dehydrogenase fromLactobacillus casei 5LYE ; 1.9 ; Re-refined structure of the bacteriophage T4 short tail fibre PDB entry 1H6W containing 71 additionally identified residues 3ZGO ; 1.63 ; Re-refined structure of the human Sirt2 apoform 4RQZ ; 2.4 ; re-refinement of 1soz, Crystal Structure of DegS protease in complex with an activating peptide 5L3H ; 1.7 ; Re-refinement of 4dd4; cisplatin coordination chemistry determination at hen egg white lysozyme His15 with standard uncertainties 5L3I ; 1.7 ; Re-refinement of 4dd6; cisplatin coordination chemistry determination at hen egg white lysozyme His15 5HLL ; 1.7 ; Re-refinement of 4g4a: room-temperature X-ray diffraction study of cisplatin and its binding to His15 of HEWL after 14 months chemical exposure in the presence of DMSO. 5HMJ ; 1.2999 ; Re-refinement of 4xan: hen lysozyme with carboplatin in sodium bromide solution 6QE4 ; 2.3 ; Re-refinement of 5OLI human IBA57-I3C 6QE3 ; 1.75 ; Re-refinement of 6ESR human IBA57 at 1.75 A resolution 4G1M ; 2.9 ; Re-refinement of alpha V beta 3 structure 4NX4 ; 1.5 ; Re-refinement of CAP-1 HIV-CA complex 8EGK ; 1.98 ; Re-refinement of Crystal Structure of NosGet3d, the All4481 protein from Nostoc sp. PCC 7120 5V2C ; 1.9 ; RE-REFINEMENT OF CRYSTAL STRUCTURE OF PHOTOSYSTEM II COMPLEX 7Y44 ; 1.9 ; Re-refinement of damage free X-ray structure of bovine cytochrome c oxidase at 1.9 angstrom resolution 4RR1 ; 2.3 ; re-refinement of entry 1sot, Crystal Structure of the DegS stress sensor 2VDK ; 2.8 ; Re-refinement of Integrin AlphaIIbBeta3 Headpiece 2VDL ; 2.75 ; Re-refinement of Integrin AlphaIIbBeta3 Headpiece 2VDN ; 2.9 ; Re-refinement of Integrin AlphaIIbBeta3 Headpiece Bound to Antagonist Eptifibatide 2VC2 ; 3.1 ; Re-refinement of Integrin AlphaIIbBeta3 Headpiece Bound to Antagonist L-739758 2VDM ; 2.9 ; Re-refinement of Integrin AlphaIIbBeta3 Headpiece Bound to Antagonist Tirofiban 5ES4 ; 3.3 ; RE-REFINEMENT OF INTEGRIN ALPHAXBETA2 ECTODOMAIN IN THE CLOSED/BENT CONFORMATION 7NRY ; 3.8 ; Re-refinement of MAPKAP kinase-2/inhibitor complex 3fyj 2V4D ; 3.2 ; Re-refinement of MexA adaptor protein 7NRB ; 1.9 ; Re-refinement of MK3-inhibitor complex 6DSQ ; 2.7 ; Re-refinement of P. falciparum orotidine 5'-monophosphate decarboxylase 6DSR ; 2.597 ; Re-refinement of P. falciparum orotidine 5'-monophosphate decarboxylase 6DSS ; 2.599 ; Re-refinement of P. falciparum orotidine 5'-monophosphate decarboxylase 3V56 ; 3.0 ; Re-refinement of PDB entry 1OSG - Complex between BAFF and a BR3 derived peptide presented in a beta-hairpin scaffold - reveals an additonal copy of the peptide. 4E1B ; 1.8 ; Re-refinement of PDB entry 2EQA - SUA5 protein from Sulfolobus tokodaii with bound threonylcarbamoyladenylate 3URP ; 3.19 ; Re-refinement of PDB entry 5RNT - ribonuclease T1 with guanosine-3',5'-diphosphate and phosphate ion bound 7F8T ; 1.5 ; Re-refinement of the 2XRY X-ray structure of archaeal class II CPD photolyase from Methanosarcina mazei 9BNA ; 1.9 ; RE-REFINEMENT OF THE B-DODECAMER D(CGCGAATTCGCG) WITH A COMPARATIVE ANALYSIS OF THE SOLVENT IN IT AND IN THE Z-HEXAMER D(5BRCG5BRCG5BRCG) 3PUK ; 3.054 ; Re-refinement of the crystal structure of Munc18-3 and Syntaxin4 N-peptide complex 5E6V ; 1.8 ; Re-refinement of the Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin b2 Subunit 5E6W ; 2.2 ; Re-refinement of the Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin b2 Subunit 5E6X ; 1.75 ; Re-refinement of the Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin b2 Subunit 6EYC ; 3.8 ; Re-refinement of the MCM2-7 double hexamer using ISOLDE 5VEH ; 1.55 ; Re-refinement OF THE PDB STRUCTURE 1yiz of Aedes aegypti kynurenine aminotransferase 5W5E ; 3.5 ; Re-refinement of the pyocin tube structure 1IZ7 ; 1.58 ; Re-refinement of the structure of hydrolytic haloalkane dehalogenase linb from sphingomonas paucimobilis UT26 AT 1.6 A resolution 1IZ8 ; 2.0 ; Re-refinement of the structure of hydrolytic haloalkane dehalogenase linb from sphingomonas paucimobilis UT26 with 1,3-propanediol, a product of debromidation of dibrompropane, at 2.0A resolution 4HL8 ; 3.5 ; Re-refinement of the vault ribonucleoprotein particle 5TMF ; 3.0 ; Re-refinement of thermus thermophilus RNA polymerase 5TMC ; 2.71 ; Re-refinement of Thermus thermopiles DNA-directed RNA polymerase structure 3F9Q ; 1.9 ; Re-refinement of uncomplexed plasmepsin II from Plasmodium falciparum. 4XHQ ; 1.948 ; Re-refinement the crystal structure of Dscam1 isoform 1.34, N-terminal four Ig domains 2JYJ ; ; Re-refining the tetraloop-receptor RNA-RNA complex using NMR-derived restraints and Xplor-nih (2.18) 6I27 ; 7.8 ; Rea1 AAA2L-H2alpha deletion mutant in AMPPNP State 6HYP ; 4.4 ; Rea1 Wild type ADP state (AAA+ ring part) 6HYD ; 3.9 ; Rea1 Wild type ADP state (tail part) 6I26 ; 4.3 ; Rea1 Wild type AMPPNP state 2HG3 ; 2.7 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with brominated phosphatidylcholine 2HH1 ; 2.55 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with dibrominated phosphatidylcholine 2HIT ; 2.75 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with dibrominated phosphatidylethanolamine 2HHK ; 2.5 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with dibrominated phosphatidylglycerol 2HJ6 ; 3.0 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with dibrominated phosphatidylserine 2HG9 ; 2.45 ; Reaction centre from Rhodobacter sphaeroides strain R-26.1 complexed with tetrabrominated phosphatidylcholine 6ET5 ; 2.87 ; Reaction centre light harvesting complex 1 from Blc. virids 4GST ; 1.9 ; REACTION COORDINATE MOTION IN AN SNAR REACTION CATALYZED BY GLUTATHIONE TRANSFERASE 5GST ; 2.0 ; REACTION COORDINATE MOTION IN AN SNAR REACTION CATALYZED BY GLUTATHIONE TRANSFERASE 2F5V ; 1.41 ; Reaction geometry and thermostability mutant of pyranose 2-oxidase from the white-rot fungus Peniophora sp. 2F6C ; 1.84 ; Reaction geometry and thermostability of pyranose 2-oxidase from the white-rot fungus Peniophora sp., Thermostability mutant E542K 1S4S ; 1.9 ; Reaction Intermediate in the Photocycle of PYP, intermediate occupied between 100 micro-seconds to 5 milli-seconds 3AEP ; 2.28 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing alpha-amino-alpha, beta-butenoic acid-pyridoxal-5'-phosphate 3AEO ; 2.15 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing methionine alpha, beta-enamine-pyridoxamine-5'-phosphate 3AEL ; 2.0 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing methionine imine-pyridoxamine-5'-phosphate and alpha-amino-alpha, beta-butenoic acid-pyridoxal-5'-phosphate 3AEN ; 2.0 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing Michaelis complex and alpha-amino-alpha, beta-butenoic acid-pyridoxal-5'-phosphate 3AEM ; 2.2 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 containing Michaelis complex and methionine imine-pyridoxamine-5'-phosphate 3AEJ ; 2.59 ; Reaction intermediate structure of Entamoeba histolytica methionine gamma-lyase 1 tetramer containing Michaelis complex and methionine-pyridoxal-5'-phosphate 1ALK ; 2.0 ; REACTION MECHANISM OF ALKALINE PHOSPHATASE BASED ON CRYSTAL STRUCTURES. TWO METAL ION CATALYSIS 5D2C ; 2.06 ; Reaction of phosphorylated CheY with imidazole 1 of 3 5DGC ; 1.94 ; Reaction of phosphorylated CheY with imidazole 2 of 3 5DKF ; 1.94 ; Reaction of phosphorylated CheY with imidazole 3 of 3 8EST ; 1.78 ; REACTION OF PORCINE PANCREATIC ELASTASE WITH 7-SUBSTITUTED 3-ALKOXY-4-CHLOROISOCOUMARINS: DESIGN OF POTENT INHIBITORS USING THE CRYSTAL STRUCTURE OF THE COMPLEX FORMED WITH 4-CHLORO-3-ETHOXY-7-GUANIDINO-ISOCOUMARIN 3C6B ; 2.17 ; Reaction product of paraoxon and S-formylglutathione hydrolase W197I mutant 4TKU ; 1.43 ; Reactivated Nitrogenase MoFe-protein from A. vinelandii 6EUC ; 2.21999 ; Reactivating oxime bound to Tc AChE's catalytic gorge. 8QBC ; 1.23 ; Reactive amide intermediate in sperm whale myoglobin mutant H64V V68A 6EE5 ; 2.48 ; Reactive centre loop dynamics and serpin specificity 4C49 ; 2.7 ; Reactive loop cleaved human CBG in complex with cortisol 1PI2 ; 2.5 ; REACTIVE SITES OF AN ANTICARCINOGENIC BOWMAN-BIRK PROTEINASE INHIBITOR ARE SIMILAR TO OTHER TRYPSIN INHIBITORS 1WCI ; 1.84 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BEU ; 1.89 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BEV ; 1.8 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BEW ; 1.79 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BFB ; 1.77 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BFC ; 1.64 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BFD ; 1.39 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BFE ; 1.69 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 2BFF ; 1.46 ; Reactivity modulation of human branched-chain alpha-ketoacid dehydrogenase by an internal molecular switch 4V47 ; 12.3 ; Real space refined coordinates of the 30S and 50S subunits fitted into the low resolution cryo-EM map of the EF-G.GTP state of E. coli 70S ribosome 4V48 ; 11.5 ; Real space refined coordinates of the 30S and 50S subunits fitted into the low resolution cryo-EM map of the initiation-like state of E. coli 70S ribosome 7JR5 ; 2.4 ; Real Time Reaction Intermediates in Stigmatella Bacteriophytochrome P2 1LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 2LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 3LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 4LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 5LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 6LYZ ; 2.0 ; Real-space refinement of the structure of hen egg-white lysozyme 2XFG ; 1.679 ; Reassembly and co-crystallization of a family 9 processive endoglucanase from separately expressed GH9 and CBM3c modules 7JU0 ; 2.602 ; RebH Variant 0S, Tryptamine 7-halogenase with bound tryptamine 6P2V ; 2.553 ; RebH Variant 10S, Tryptamine 5-halogenase 6P00 ; 2.249 ; RebH Variant 8F, Tryptamine 6-halogenase 2OAL ; 2.1 ; RebH with bound FAD 2E4G ; 2.08 ; RebH with bound L-Trp 5MJV ; 3.09 ; Rebuild and re-refined model for Human Parechovirus 1 6H86 ; 1.901 ; Rebuilt and re-refined PDB entry 4R3Q: Crystal structure of SYCE3 7AER ; 3.0 ; Rebuilt and re-refined PDB entry 5yep: tri-AMPylated Shewanella oneidensis HEPN toxin in complex with MNT antitoxin 1B80 ; 1.73 ; REC. LIGNIN PEROXIDASE H8 OXIDATIVELY PROCESSED 8SCA ; 1.67 ; Rec3 Domain from S. pyogenes Cas9 2REC ; ; RECA HEXAMER MODEL, ELECTRON MICROSCOPY 5I0A ; 1.5 ; RecA mini intein in complex with cisplatin 5K08 ; 1.401 ; RecA mini intein-Zeise's salt complex 1EW1 ; ; RECA PROTEIN-BOUND SINGLE-STRANDED DNA 1MO3 ; 3.1 ; RECA-ADP COMPLEX 1G18 ; 3.8 ; RECA-ADP-ALF4 COMPLEX 1MO4 ; 3.2 ; RECA-ATP-GAMMA-S COMPLEX 1MO5 ; 3.25 ; RECA-ATP-GAMMA-S-MG COMPLEX 1MO6 ; 3.2 ; RECA-DATP-MG COMPLEX 8B1R ; 3.2 ; RecBCD in complex with the phage protein gp5.9 8B1T ; 3.4 ; RecBCD-DNA in complex with the phage protein Abc2 8B1U ; 3.8 ; RecBCD-DNA in complex with the phage protein Abc2 and host PpiB 1W36 ; 3.1 ; RecBCD:DNA complex 2GKG ; 1.0 ; Receiver domain from Myxococcus xanthus social motility protein FrzS 2I6F ; 1.9 ; Receiver domain from Myxococcus xanthus social motility protein FrzS 2NT4 ; 1.02 ; Receiver domain from Myxococcus xanthus social motility protein FrzS (H92F mutant) 2NT3 ; 1.3 ; Receiver domain from Myxococcus xanthus social motility protein FrzS (Y102A Mutant) 7L9C ; 1.85 ; Receiver Domain of RssB 7LCM ; 1.91 ; Receiver Domain of RssB bound to beryllofluoride 5WQ0 ; 2.604 ; Receiver domain of Spo0A from Paenisporosarcina sp. TG-14 1LRE ; ; RECEPTOR ASSOCIATED PROTEIN (RAP) DOMAIN 1, NMR, 20 STRUCTURES 1NRE ; ; RECEPTOR ASSOCIATED PROTEIN (RAP) DOMAIN 1, NMR, MINIMIZED AVERAGE STRUCTURE 4ZS6 ; 3.166 ; Receptor binding domain and Fab complex 5VID ; 2.75 ; Receptor binding domain of BoNT/B in complex with mini-protein binder Bot.0671.2 5VMR ; 1.95 ; Receptor binding domain of BoNT/B in complex with mini-protein binder Bot.2110.4 5JLV ; 2.0 ; Receptor binding domain of Botulinum neurotoxin A in complex with human glycosylated SV2C 5JMC ; 2.64 ; Receptor binding domain of Botulinum neurotoxin A in complex with rat SV2C 1AYO ; 1.9 ; RECEPTOR BINDING DOMAIN OF BOVINE ALPHA-2-MACROGLOBULIN 6THB ; 2.78 ; Receptor binding domain of the Cedar Virus attachment glycoprotein (G) 1HIT ; ; Receptor binding redefined by a structural switch in a mutant Human Insulin 1BV8 ; ; RECEPTOR DOMAIN FROM ALPHA-2-MACROGLOBULIN 2MOV ; ; Receptor for Advanced Glycation End Products (RAGE) Specifically Recognizes Methylglyoxal Derived AGEs. 6XQ3 ; 1.71 ; Receptor for Advanced Glycation End Products VC1 domain in complex with 3-(3-(((3-(4-Carboxyphenoxy)benzyl)oxy)methyl)phenyl)-1H-indole-2-carboxylic acid 7LML ; 2.15 ; Receptor for Advanced Glycation End Products VC1 domain in complex with 3-(3-(((3-(4-Carboxyphenoxy)benzyl)oxy)methyl)phenyl)-1H-indole-2-carboxylic acid 6XQ1 ; 1.51 ; Receptor for Advanced Glycation End Products VC1 domain in complex with 3-(3-((4-(4-carboxyphenoxy)benzyl)oxy)phenyl)-1H-indole-2-carboxylic acid 7LMW ; 2.5 ; Receptor for Advanced Glycation End Products VC1 domain in complex with 3-(3-((4-(4-carboxyphenoxy)benzyl)oxy)phenyl)-1H-indole-2-carboxylic acid 6XQ5 ; 1.8 ; Receptor for Advanced Glycation End Products VC1 domain in complex with Fragment 1 6XQ6 ; 1.9 ; Receptor for Advanced Glycation End Products VC1 domain in complex with Fragment 11 6XQ7 ; 1.8 ; Receptor for Advanced Glycation End Products VC1 domain in complex with Fragment 5 6XQ8 ; 1.82 ; Receptor for Advanced Glycation End Products VC1 domain in complex with Fragments 1 & 11 6XQ9 ; 2.3 ; Receptor for Advanced Glycation End Products VC1 domain in complex with Fragments 1 & 13 5LS2 ; 2.3 ; Receptor mediated chitin perception in legumes is functionally seperable from Nod factor perception 1YFO ; 2.25 ; RECEPTOR PROTEIN TYROSINE PHOSPHATASE ALPHA, DOMAIN 1 FROM MOUSE 8DVC ; 2.638 ; Receptor ShHTL5 from Striga hermonthica in complex with strigolactone agonist GR24 7P8I ; 4.5 ; Receptor-binding domain (RBD) of the spike protein of the bat coronavirus RaTG13 virus in complex with the extracellular domain of human angiotensin-converting enzyme 2 (ACE2) - Crystal form 1 7P8J ; 6.585 ; Receptor-binding domain (RBD) of the spike protein of the bat coronavirus RaTG13 virus in complex with the extracellular domain of human angiotensin-converting enzyme 2 (ACE2) - Crystal form 2 1LCS ; 2.5 ; RECEPTOR-BINDING DOMAIN FROM SUBGROUP B FELINE LEUKEMIA VIRUS 6H1X ; 1.7 ; Receptor-binding domain of Proteus mirabilis Uroepithelial Cell Adhesin UcaD21-211 6H2L ; 1.5 ; Receptor-binding domain of Proteus mirabilis Uroepithelial Cell Adhesin UcaD21-217 7QLR ; 2.462 ; Receptor-binding protein of Clostridium difficile phage CDHS-1 1GEA ; ; RECEPTOR-BOUND CONFORMATION OF PACAP21 6H3E ; ; Receptor-bound Ghrelin conformation 5VZ4 ; 2.2 ; Receptor-growth factor crystal structure at 2.20 Angstrom resolution 3OL2 ; 2.99 ; Receptor-ligand structure of Human Semaphorin 4D with Plexin B1. 7YOQ ; 2.265 ; Recj2 and CMP complex from Methanocaldococcus jannaschii 7YOR ; 2.53 ; Recj2 and dCMP complex from Methanocaldococcus jannaschii 7YOS ; 2.17 ; Recj2 and Mn complex from Methanocaldococcus jannaschii 2RPF ; ; RecO-bound ssDNA 4ILL ; 2.484 ; Recognition and Cleavage of a non-structured CRISPR RNA by its Processing Endoribonuclease Cas6 4ILR ; 3.088 ; Recognition and Cleavage of a non-structured CRISPR RNA by its Processing Endoribonuclease Cas6 6SEH ; 3.15 ; Recognition and processing of branched DNA substrates by Slx1-Slx4 nuclease 6SEI ; 2.69 ; Recognition and processing of branched DNA substrates by Slx1-Slx4 nuclease 5KP0 ; ; Recognition and targeting mechanisms by chaperones in flagella assembly and operation 5KRW ; ; Recognition and targeting mechanisms by chaperones in flagella assembly and operation 5KS6 ; ; Recognition and targeting mechanisms by chaperones in flagella assembly and operation 1BGS ; 2.6 ; RECOGNITION BETWEEN A BACTERIAL RIBONUCLEASE, BARNASE, AND ITS NATURAL INHIBITOR, BARSTAR 1AN2 ; 2.9 ; RECOGNITION BY MAX OF ITS COGNATE DNA THROUGH A DIMERIC B/HLH/Z DOMAIN 2MND ; ; Recognition complex of DNA d(CGACGCGTCG)2 with thiazotropsin B 2MNE ; ; Recognition complex of DNA d(CGACTAGTCG)2 with thiazotropsin analogue AIK-18/51 2K39 ; ; Recognition dynamics up to microseconds revealed from RDC derived ubiquitin ensemble in solution 1MFE ; 2.0 ; RECOGNITION OF A CELL-SURFACE OLIGO-SACCHARIDE OF PATHOGENIC SALMONELLA BY AN ANTIBODY FAB FRAGMENT 2OR1 ; 2.5 ; RECOGNITION OF A DNA OPERATOR BY THE REPRESSOR OF PHAGE 434. A VIEW AT HIGH RESOLUTION 3O9W ; 2.8 ; Recognition of a Glycolipid Antigen by the iNKT Cell TCR 3KL4 ; 3.5 ; Recognition of a signal peptide by the signal recognition particle 2WH0 ; 2.25 ; Recognition of an intrachain tandem 14-3-3 binding site within protein kinase C epsilon 3FDQ ; 1.75 ; Recognition of AT-rich DNA binding sites by the MogR Repressor 6Q6R ; 1.5 ; Recognition of different base tetrads by RHAU: X-ray crystal structure of G4 recognition motif bound to the 3-end tetrad of a DNA G-quadruplex 1LJ2 ; 2.38 ; Recognition of eIF4G by Rotavirus NSP3 reveals a basis for mRNA circularization 3O8X ; 2.74 ; Recognition of Glycolipid Antigen by iNKT Cell TCR 2KX5 ; ; Recognition of HIV TAR RNA by peptide mimetic of Tat protein 6MWR ; 3.3 ; Recognition of MHC-like molecule 1ZB5 ; 2.45 ; Recognition of peptide ligands by signalling protein from porcine mammary gland (SPP-40): Crystal structure of the complex of SPP-40 with a peptide Trp-Pro-Trp at 2.45A resolution 3NFN ; 2.392 ; Recognition of peptide-MHC by a V-delta/V-beta TCR 1ZBK ; 2.9 ; Recognition of specific peptide sequences by signalling protein from sheep mammary gland (SPS-40): Crystal structure of the complex of SPS-40 with a peptide Trp-Pro-Trp at 2.9A resolution 7QXD ; 1.649 ; Recognition of Staphylococcus aureus wall teichoic acid analogue SA475 (compound 2) by Fab4497 7QXC ; 1.452 ; Recognition of Staphylococcus aureus wall teichoic acid analogue SA533 (compound 1) by Fab4461 7QXE ; 1.84 ; Recognition of Staphylococcus aureus wall teichoic acid analogue TB87 (compound 3) by Fab4497 4V7P ; 3.62 ; Recognition of the amber stop codon by release factor RF1. 6IYC ; 2.6 ; Recognition of the Amyloid Precursor Protein by Human gamma-secretase 4K5U ; 1.698 ; Recognition of the BG-H Antigen by a Lamprey Variable Lymphocyte Receptor 3QIS ; 2.3 ; Recognition of the F&H motif by the Lowe Syndrome protein OCRL 3QSY ; 3.2 ; Recognition of the methionylated initiator tRNA by the translation initiation factor 2 in Archaea 5J6G ; 3.3 ; Recognition of the MHC class Ib molecule H2-Q10 by the natural killer cell receptor Ly49C 5J6H ; 2.3 ; Recognition of the MHC class Ib molecule H2-Q10 by the natural killer cell receptor Ly49C 1KNZ ; 2.45 ; Recognition of the rotavirus mRNA 3' consensus by an asymmetric NSP3 homodimer 4K79 ; 2.2 ; Recognition of the Thomsen-Friedenreich Antigen by a Lamprey Variable Lymphocyte Receptor 1AHQ ; 2.3 ; RECOMBINANT ACTOPHORIN 7EPP ; 2.4 ; Recombinant Alfalfa Mosaic virus coat protein virus-like particle (rAMV-CP VLP) 8VY8 ; 2.4 ; Recombinant alpha bungarotoxin complexed with HAP peptide 7ULG ; 1.57 ; recombinant alpha cobra toxin 1VNS ; 1.66 ; RECOMBINANT APO-CHLOROPEROXIDASE FROM CURVULARIA INAEQUALIS 1RAV ; 2.2 ; RECOMBINANT AVIDIN 7KG4 ; 3.3 ; Recombinant Beta-2-Glycoprotein I antibody recognition loop mutant 6XST ; 2.92 ; Recombinant Beta-2-Glycoprotein I with putative membrane insertion loop 1BFA ; 2.2 ; RECOMBINANT BIFUNCTIONAL HAGEMAN FACTOR/AMYLASE INHIBITOR FROM MAIZE 5HTE ; 2.4 ; Recombinant bovine beta-lactoglobulin variant L1A/I2S (sBlgB#2) 5HTD ; 2.5 ; Recombinant bovine beta-lactoglobulin variant L1A/I2S with endogenous ligand (sBlgB#1) 5K06 ; 2.5 ; Recombinant bovine beta-lactoglobulin with uncleaved N-terminal methionine (rBlgB) 5KN1 ; 2.137 ; Recombinant bovine skeletal calsequestrin, high-Ca2+ form 5KN3 ; 1.849 ; Recombinant bovine skeletal calsequestrin, low-Ca2+ form 3FUC ; 1.45 ; Recombinant calf purine nucleoside phosphorylase in a binary complex with multisubstrate analogue inhibitor 9-(5',5'-difluoro-5'-phosphonopentyl)-9-deazaguanine structure in a new space group with one full trimer in the asymmetric unit 1CKI ; 2.3 ; RECOMBINANT CASEIN KINASE I DELTA TRUNCATION MUTANT CONTAINING RESIDUES 1-317 1MIT ; ; RECOMBINANT CUCURBITA MAXIMA TRYPSIN INHIBITOR V (RCMTI-V) (NMR, MINIMIZED AVERAGE STRUCTURE) 1RMH ; 2.4 ; RECOMBINANT CYCLOPHILIN A FROM HUMAN T CELL 5T8A ; ; Recombinant cytotoxin-I from the venom of cobra N. oxiana 8PDZ ; 3.32 ; Recombinant Ena3A L-Type endospore appendages 3ERA ; 1.7 ; RECOMBINANT ERABUTOXIN A (S8T MUTANT) 2ERA ; 1.81 ; RECOMBINANT ERABUTOXIN A, S8G MUTANT 5AX8 ; 2.989 ; Recombinant expression, purification and preliminary crystallographic studies of the mature form of human mitochondrial aspartate aminotransferase 1HMK ; 2.0 ; RECOMBINANT GOAT ALPHA-LACTALBUMIN 1FKV ; 2.0 ; RECOMBINANT GOAT ALPHA-LACTALBUMIN T29I 1FKQ ; 1.8 ; RECOMBINANT GOAT ALPHA-LACTALBUMIN T29V 7ULQ ; 2.2 ; Recombinant Hannalgesin 7EGY ; 4.201 ; Recombinant head-to-tail dimeric E2 protein 5LDU ; 2.3 ; Recombinant high-redox potential laccase from Basidiomycete Trametes hirsuta 2ZA6 ; 1.75 ; recombinant horse L-chain apoferritin 2ZA7 ; 1.4 ; recombinant horse L-chain apoferritin N-terminal deletion mutant (residues 1-4) 2ZA8 ; 1.4 ; recombinant horse L-chain apoferritin N-terminal deletion mutant (residues 1-8) 6ATJ ; 2.0 ; RECOMBINANT HORSERADISH PEROXIDASE C COMPLEX WITH FERULIC ACID 1ATJ ; 2.15 ; RECOMBINANT HORSERADISH PEROXIDASE C1A 1GWU ; 1.31 ; RECOMBINANT HORSERADISH PEROXIDASE C1A ALA140GLY 1GWO ; 2.07 ; Recombinant horseradish peroxidase C1A ALA170GLN 7ATJ ; 1.47 ; RECOMBINANT HORSERADISH PEROXIDASE C1A COMPLEX WITH CYANIDE AND FERULIC ACID 1GWT ; 1.7 ; RECOMBINANT HORSERADISH PEROXIDASE C1A PHE221MET 1GW2 ; 2.15 ; RECOMBINANT HORSERADISH PEROXIDASE C1A THR171SER IN COMPLEX WITH FERULIC ACID 2ATJ ; 2.0 ; RECOMBINANT HORSERADISH PEROXIDASE COMPLEX WITH BENZHYDROXAMIC ACID 1GX2 ; 2.2 ; Recombinant horseradish peroxidase Phe209Ser complex with benzhydroxamic acid 3LII ; 3.2 ; Recombinant human acetylcholinesterase 6XTA ; 2.5 ; Recombinant human butyrylcholinesterase in complex with (2S)-N-[2-(1-benzylazepan-4-yl)ethyl]-2-(butylamino)-3-(1H-indol-3-yl)propanamide 4AB1 ; 2.2 ; Recombinant Human Carboxylesterase 1 from whole Cabbage Loopers 1F13 ; 2.1 ; RECOMBINANT HUMAN CELLULAR COAGULATION FACTOR XIII 1FIE ; 2.5 ; RECOMBINANT HUMAN COAGULATION FACTOR XIII 1B0L ; 2.2 ; RECOMBINANT HUMAN DIFERRIC LACTOFERRIN 1QMT ; 2.4 ; Recombinant Human Eosinophil Cationic Protein 7QU4 ; 1.66 ; Recombinant Human Fetal Hemoglobin mutant - alpha subunit mutations K11E,K56E,N78D,K90E 1FIB ; 2.1 ; RECOMBINANT HUMAN GAMMA-FIBRINOGEN CARBOXYL TERMINAL FRAGMENT (RESIDUES 143-411) BOUND TO CALCIUM AT PH 6.0 3FIB ; 2.1 ; RECOMBINANT HUMAN GAMMA-FIBRINOGEN CARBOXYL TERMINAL FRAGMENT (RESIDUES 143-411) BOUND TO CALCIUM AT PH 6.0: A FURTHER REFINEMENT OF PDB ENTRY 1FIB, AND DIFFERS FROM 1FIB BY THE MODELLING OF A CIS PEPTIDE BOND BETWEEN RESIDUES K338 AND C339 2FIB ; 2.01 ; RECOMBINANT HUMAN GAMMA-FIBRINOGEN CARBOXYL TERMINAL FRAGMENT (RESIDUES 143-411) COMPLEXED TO THE PEPTIDE GLY-PRO-ARG-PRO AT PH 6.0 7AS4 ; 4.13 ; Recombinant human gTuRC 2CLU ; 2.1 ; Recombinant human H ferritin, K86Q and E107D mutant 2CN6 ; 2.2 ; Recombinant human H ferritin, K86Q and E107D mutant, soaked with Zn ions 2CHI ; 1.6 ; Recombinant human H ferritin, K86Q and E27D mutant 2CIH ; 1.5 ; Recombinant human H ferritin, K86Q and E27D mutant, soaked with Zn 2CEI ; 1.8 ; Recombinant human H ferritin, K86Q mutant, soaked with Zn 2CN7 ; 1.75 ; Recombinant human H ferritin, K86Q, E27D and E107D mutant 2IU2 ; 1.8 ; Recombinant human H ferritin, K86Q, E27D and E107D mutant, soaked with Zn ions 1U31 ; 2.2 ; recombinant human heart transhydrogenase dIII bound with NADPH 1HKC ; 2.8 ; RECOMBINANT HUMAN HEXOKINASE TYPE I COMPLEXED WITH GLUCOSE AND PHOSPHATE 6O17 ; 1.58 ; Recombinant Human Insulin 1RH2 ; 2.9 ; RECOMBINANT HUMAN INTERFERON-ALPHA 2B 1WAR ; 2.22 ; Recombinant Human Purple Acid Phosphatase expressed in Pichia Pastoris 3SQJ ; 2.05 ; Recombinant human serum albumin from transgenic plant 4BKE ; 2.35 ; Recombinant human serum albumin with palmitic acid. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin 1INO ; 2.2 ; RECOMBINANT INORGANIC PYROPHOSPHATASE FROM ESCHERICHIA COLI 5C5V ; 2.35 ; Recombinant Inorganic Pyrophosphatase from T brucei brucei 7ULR ; 1.8 ; recombinant kappa-bungarotoxin 1KIV ; 2.1 ; RECOMBINANT KRINGLE IV-10/M66 VARIANT OF HUMAN APOLIPOPROTEIN(A) 3KIV ; 1.8 ; RECOMBINANT KRINGLE IV-10/M66 VARIANT OF HUMAN APOLIPOPROTEIN(A) 4KIV ; 2.2 ; RECOMBINANT KRINGLE IV-10/W72R MUTANT OF HUMAN APOLIPOPROTEIN(A) 2LVE ; 2.7 ; RECOMBINANT LEN 1ZIS ; 2.9 ; Recombinant Lumazine synthase (hexagonal form) 6BP8 ; 4.9 ; Recombinant major vault protein [Rattus norvegicus] structure in solution: conformation 1 6BP7 ; 4.9 ; Recombinant major vault protein [Rattus norvegicus] structure in solution: conformation 2 7ULB ; 2.49 ; recombinant Mambalgin-1 3VM5 ; 2.85 ; Recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris 6DST ; ; Recombinant melittin 1H96 ; 1.6 ; recombinant mouse L-chain ferritin 5LSD ; ; recombinant mouse Nerve Growth Factor 8DTY ; 3.5 ; Recombinant mouse RyR2 triple phosphomimetic mutant S2807D/S2813D/S2030D in complex with FKBP12.6 and nanodisc under closed-state conditions 8DVV ; 3.68 ; Recombinant mouse RyR2 triple phosphomimetic mutant S2807D/S2813D/S2030D in complex with FKBP12.6 and nanodisc under open-state conditions 8DTZ ; 3.6 ; Recombinant mouse RyR2 triple phosphonull mutant S2807A/S2813A/S2030A in complex with FKBP12.6 and nanodisc under closed-state conditions 1J4B ; 2.5 ; Recombinant Mouse-Muscle Adenylosuccinate Synthetase 7ULS ; 1.8 ; Recombinant muscarinic toxin alpha 1A90 ; ; RECOMBINANT MUTANT CHICKEN EGG WHITE CYSTATIN, NMR, 31 STRUCTURES 3ZQV ; 0.84 ; RECOMBINANT NATIVE CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS AT 0.84 A RESOLUTION: NON-RESTRAINED REFINEMENT 2YKZ ; 0.84 ; RECOMBINANT NATIVE CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS AT 0.84 A RESOLUTION: RESTRAINED REFINEMENT 2YLI ; 1.45 ; RECOMBINANT NATIVE CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS IN ITS FERROUS FORM AT 1.45 A 2YLD ; 1.25 ; RECOMBINANT NATIVE CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: CARBON MONOOXIDE BOUND AT 1.25 A 3ZWI ; 1.25 ; RECOMBINANT NATIVE CYTOCHROME C PRIME FROM ALCALIGENES XYLOSOXIDANS: CARBON MONOOXIDE BOUND AT 1.25 A:UNRESTRAINT REFINEMENT 2ETE ; 1.75 ; Recombinant oxalate oxidase in complex with glycolate 3PMS ; 1.57 ; Recombinant peptide: N-glycanase F (PNGase F) 2E9Q ; 2.2 ; Recombinant pro-11S globulin of pumpkin 4FKC ; 2.6 ; Recombinant prolidase from Thermococcus sibiricus 6RL0 ; 1.78 ; Recombinant Pseudomonas stutzeri nitrous oxide reductase, form I 6RKZ ; 1.601 ; Recombinant Pseudomonas stutzeri nitrous oxide reductase, form II 1F3W ; 3.0 ; RECOMBINANT RABBIT MUSCLE PYRUVATE KINASE 3US3 ; 1.738 ; Recombinant rabbit skeletal calsequestrin-MPD complex 1BC1 ; 2.05 ; RECOMBINANT RAT ANNEXIN V, QUADRUPLE MUTANT (T72K, S144K, S228K, S303K) 1BCW ; 2.1 ; RECOMBINANT RAT ANNEXIN V, T72A MUTANT 1BCY ; 1.95 ; RECOMBINANT RAT ANNEXIN V, T72K MUTANT 1BCZ ; 2.2 ; RECOMBINANT RAT ANNEXIN V, T72S MUTANT 1BC3 ; 1.95 ; RECOMBINANT RAT ANNEXIN V, TRIPLE MUTANT (T72K, S144K, S228K) 1BC0 ; 2.0 ; RECOMBINANT RAT ANNEXIN V, W185A MUTANT 1AFS ; 2.5 ; RECOMBINANT RAT LIVER 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE (3-ALPHA-HSD) COMPLEXED WITH NADP AND TESTOSTERONE 1RNW ; 1.8 ; RECOMBINANT RIBONUCLEASE A CRYSTALLIZED FROM 80% AMMONIUM SULPHATE 1BJ4 ; 2.65 ; RECOMBINANT SERINE HYDROXYMETHYLTRANSFERASE (HUMAN) 1EJI ; 2.9 ; RECOMBINANT SERINE HYDROXYMETHYLTRANSFERASE (MOUSE) 2MBW ; 1.5 ; RECOMBINANT SPERM WHALE MYOGLOBIN (MET) 1OBM ; 1.85 ; RECOMBINANT SPERM WHALE MYOGLOBIN 29F/64Q/68F/122N MUTANT (MET) 1LTW ; 1.7 ; RECOMBINANT SPERM WHALE MYOGLOBIN 29W MUTANT (OXY) 1OFK ; 1.8 ; RECOMBINANT SPERM WHALE MYOGLOBIN F43H, H64L MUTANT (MET) 1LUE ; 1.7 ; RECOMBINANT SPERM WHALE MYOGLOBIN H64D/V68A/D122N MUTANT (MET) 1O16 ; 1.95 ; RECOMBINANT SPERM WHALE MYOGLOBIN H64D/V68S/D122N MUTANT (MET) 1DTI ; 1.7 ; Recombinant sperm whale myoglobin h97d, d122n mutant (met) 1CH7 ; 1.9 ; RECOMBINANT SPERM WHALE MYOGLOBIN H97F MUTANT (MET) 1CH9 ; 1.8 ; RECOMBINANT SPERM WHALE MYOGLOBIN H97Q MUTANT (MET) 1CH5 ; 2.1 ; RECOMBINANT SPERM WHALE MYOGLOBIN H97V MUTANT (MET) 1CIK ; 1.7 ; RECOMBINANT SPERM WHALE MYOGLOBIN I99A MUTANT (MET) 1CIO ; 1.6 ; RECOMBINANT SPERM WHALE MYOGLOBIN I99V MUTANT (MET) 1J52 ; 1.9 ; Recombinant sperm whale myoglobin in the presence of 7atm xenon 1CO8 ; 1.8 ; RECOMBINANT SPERM WHALE MYOGLOBIN L104A MUTANT (MET) 1CP5 ; 2.1 ; RECOMBINANT SPERM WHALE MYOGLOBIN L104F MUTANT (MET) 1CP0 ; 2.0 ; RECOMBINANT SPERM WHALE MYOGLOBIN L104N MUTANT (MET) 1CO9 ; 1.6 ; RECOMBINANT SPERM WHALE MYOGLOBIN L104V MUTANT (MET) 1CPW ; 2.2 ; RECOMBINANT SPERM WHALE MYOGLOBIN L104W MUTANT (MET) 1OFJ ; 1.8 ; RECOMBINANT SPERM WHALE MYOGLOBIN L29H/H64L/D122N MUTANT (WITH INITIATOR MET) 1CH2 ; 1.8 ; RECOMBINANT SPERM WHALE MYOGLOBIN L89F MUTANT (MET) 1CH1 ; 1.9 ; Recombinant sperm whale myoglobin L89G mutatnt (MET) 1CH3 ; 2.0 ; RECOMBINANT SPERM WHALE MYOGLOBIN L89W MUTANT (MET) 4PNJ ; 1.36 ; Recombinant Sperm Whale P6 Myoglobin Solved with Single Pulse Free Electron Laser Data 6U7D ; 3.0 ; Recombinant stem bromelain precursor 1OS8 ; 1.55 ; RECOMBINANT STREPTOMYCES GRISEUS TRYPSIN 1X35 ; 4.1 ; Recombinant T=3 capsid of a site specific mutant of SeMV CP 6L55 ; 1.78305 ; Recombinant Tegillarca granosa ferritin 3VJQ ; 1.0 ; Recombinant thaumatin at pH 8.0 with hydrogen atoms 5X9L ; 0.9 ; Recombinant thaumatin I at 0.9 Angstrom 3AL7 ; 1.1 ; Recombinant thaumatin I at 1.1 A 3VHG ; 1.0 ; Recombinant thaumatin I at PH 8.0 3X3O ; 1.48 ; Recombinant thaumatin in the presence of 0.5M PST at 298K 3X3P ; 1.48 ; Recombinant thaumatin in the presence of 0.75M PST at 293K 3X3R ; 1.52 ; Recombinant thaumatin in the presence of 1.0M PST and soaked 1 hr at 293K 3X3S ; 1.46 ; Recombinant thaumatin in the presence of 1.5M PST at 293K 3X3T ; 1.501 ; Recombinant thaumatin in the presence of 1.5M PST at 293K 4XVB ; 1.52 ; Recombinant thaumatin in the presence of 1.5M PST at 293K 2GHO ; 5.0 ; Recombinant Thermus aquaticus RNA polymerase for Structural Studies 2DXB ; 2.25 ; Recombinant thiocyanate hydrolase comprising partially-modified cobalt centers 2ZZD ; 1.78 ; Recombinant thiocyanate hydrolase, air-oxidized form of holo-enzyme 2DXC ; 1.9 ; Recombinant thiocyanate hydrolase, fully-matured form 8BCK ; 1.96 ; Recombinant Tipula oleracea Nudivirus polyhedrin 8BC5 ; 1.91 ; Recombinant Tipula oleracea Nudivirus Polyhedrin - Selenomethionine 8BCL ; 2.8 ; Recombinant Tipula oleracea Nudivirus polyhedrin Expanded unit cell 1UP8 ; 2.2 ; Recombinant vanadium-dependent bromoperoxidase from red algae Corallina pilulifera 2V02 ; 2.2 ; Recombinant vertebrate calmodulin complexed with Ba 2V01 ; 2.15 ; Recombinant vertebrate calmodulin complexed with Pb 4JCG ; 1.63 ; Recombinant wild type Nitrosomonas europaea cytochrome c552 1YFM ; 2.6 ; RECOMBINANT YEAST FUMARASE 8P8Q ; 1.792 ; Recombinant Ym1 crystal structure 8P8S ; 1.17 ; Recombinant Ym2 crystal structure 6ELV ; 1.05 ; Recombinantly expressed C-terminal domain of MdPPO1 (Csole-domain) 4Z14 ; 2.53 ; Recombinantly expressed latent aurone synthase (polyphenol oxidase) 4Z12 ; 1.85 ; Recombinantly expressed latent aurone synthase (polyphenol oxidase) co-crystallized with hexatungstotellurate(VI) 4Z13 ; 1.78 ; Recombinantly expressed latent aurone synthase (polyphenol oxidase) co-crystallized with hexatungstotellurate(VI) and soaked in H2O2 6R6O ; 1.9 ; Recombinantly produced Kusta0087/Kusta0088 Complex, C32G/wt mutant 6R6N ; 2.0 ; Recombinantly produced Kusta0087/Kusta0088 Complex, C32M/C101M mutant 2F1J ; 2.3 ; Recombinase in Complex with ADP 3FYH ; 1.9 ; Recombinase in complex with ADP and metatungstate 2F1I ; 2.9 ; Recombinase in Complex with AMP-PNP 2F1H ; 2.7 ; RECOMBINASE IN COMPLEX WITH AMP-PNP and Potassium 2O5V ; 1.61 ; Recombination mediator RecF 192D ; 1.92 ; RECOMBINATION-LIKE STRUCTURE OF D(CCGCGG) 1U5K ; 2.0 ; Recombinational repair protein RecO 1ZXI ; 1.7 ; Reconstituted CO dehydrogenase from Oligotropha carboxidovorans 6OBP ; 2.7 ; Reconstituted PP1 holoenzyme 6J5T ; 3.4 ; Reconstitution and structure of a plant NLR resistosome conferring immunity 6J6I ; 3.7 ; Reconstitution and structure of a plant NLR resistosome conferring immunity 7FC0 ; 2.643 ; Reconstitution of MbnABC complex from Rugamonas rubra ATCC-43154 (GroupIII) 7KCN ; 1.46 ; Reconstructed ancestor of HIUases and Transthyretins 7KJJ ; 1.55 ; Reconstructed ancestor of HIUases and Transthyretins 4UUP ; 1.543 ; Reconstructed ancestral trichomonad malate dehydrogenase in complex with NADH, SO4, and PO4 6TH8 ; ; Reconstructing the Origins of the HemD-like fold 7SYF ; 4.2 ; Reconstruction of full-length Prex-1 (PtdIns(3,4,5)P3-dependent Rac Exchanger 1) 7F6D ; 3.85 ; Reconstruction of the HerA-NurA complex from Deinococcus radiodurans 7MUQ ; 4.6 ; Reconstruction of the Legionella pneumophila Dot/Icm T4SS 3DVA Map 1 7MUS ; 4.6 ; Reconstruction of the Legionella pneumophila Dot/Icm T4SS 3DVA Map 2 7MUV ; 4.6 ; Reconstruction of the Legionella pneumophila Dot/Icm T4SS 3DVA Map 3 7MUW ; 4.6 ; Reconstruction of the Legionella pneumophila Dot/Icm T4SS 3DVA Map 4 7MUY ; 4.6 ; Reconstruction of the Legionella pneumophila Dot/Icm T4SS 3DVA Map 5 3J5R ; 4.2 ; Reconstruction of TRPV1 ion channel in complex with capsaicin by single particle cryo-microscopy 2KMU ; ; RecQL4 Amino-terminal Domain 1C1N ; 1.4 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1O ; 1.4 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1P ; 1.37 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1Q ; 1.37 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1R ; 1.37 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1S ; 1.63 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1T ; 1.37 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1U ; 1.75 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1V ; 1.98 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C1W ; 1.9 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2D ; 1.65 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2E ; 1.65 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2F ; 1.7 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2G ; 1.65 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2H ; 1.4 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2I ; 1.47 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2J ; 1.4 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2K ; 1.65 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2L ; 1.5 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 1C2M ; 1.4 ; RECRUITING ZINC TO MEDIATE POTENT, SPECIFIC INHIBITION OF SERINE PROTEASES 2RPH ; ; RecT-bound ssDNA 2HMS ; 2.7 ; Rectangular-shaped octameric ring structure of an RCK domain with NADH bound 5UTG ; ; Red abalone lysin F104A 7BLZ ; 3.1 ; Red alga C.merolae Photosystem I 6MRM ; 2.9 ; Red Clover Necrotic Mosaic Virus 1IBY ; 1.65 ; RED COPPER PROTEIN NITROSOCYANIN FROM NITROSOMONAS EUROPAEA 1IBZ ; 2.3 ; RED COPPER PROTEIN NITROSOCYANIN FROM NITROSOMONAS EUROPAEA 1IC0 ; 2.1 ; RED COPPER PROTEIN NITROSOCYANIN FROM NITROSOMONAS EUROPAEA 1GGX ; 1.9 ; RED FLUORESCENT PROTEIN (FP583 OR DSRED(CLONTECH)) FROM DISCOSOMA SP. 7X2B ; 1.63 ; Red fluorescent protein from Diadumene lineata 3IR8 ; 1.63 ; Red fluorescent protein mKeima at pH 7.0 2ICR ; 1.51 ; Red fluorescent protein zRFP574 from Zoanthus sp. 6G46 ; 2.4 ; Red kidney bean purple acid phosphatase in complex with 2-(Naphthalen-1-yl)thiazole-4-carboxylic acid 6HWR ; 1.95 ; Red kidney bean purple acid phosphatase in complex with adenosine divanadate 6BHN ; ; Red Light-Absorbing State of NpR6012g4, a Red/Green Cyanobacteriochrome 7QUU ; ; Red1-Iss10 complex 4BAA ; 2.5 ; Redesign of a Phenylalanine Aminomutase into a beta-Phenylalanine Ammonia Lyase 4BAB ; 2.56 ; Redesign of a Phenylalanine Aminomutase into a beta-Phenylalanine Ammonia Lyase 1CVC ; 2.3 ; REDESIGNING THE ZINC BINDING SITE OF HUMAN CARBONIC ANHYDRASE II: STRUCTURE OF A HIS2ASP-ZN2+ METAL COORDINATION POLYHEDRON 3QMW ; 2.5 ; RedJ with PEG molecule bound in the active site 3QMV ; 2.12 ; RedJ-Thioesterase from the Prodiginine biosynthetic pathway in Streptomyces coelicolor 3CYT ; 1.8 ; REDOX CONFORMATION CHANGES IN REFINED TUNA CYTOCHROME C 2KSU ; ; Redox linked conformational changes in cytochrome C3 from Desulfovibrio desulfuricans ATCC 27774 8DIK ; 2.4 ; Redox properties and PAS domain structure of the E. coli Energy Sensor Aer indicate a multi-state sensing mechanism 5E37 ; 1.6 ; Redox protein from Chlamydomonas reinhardtii 6J13 ; 2.4 ; Redox protein from Chlamydomonas reinhardtii 6OID ; 2.365 ; Redox Regulation of FN3K from Arabidopsis thaliana 3NTJ ; 3.0 ; Redox regulation of Plasmodium falciparum ornithine delta-aminotransferase 4A5M ; 3.0 ; Redox regulator HypR in its oxidized form 1DCU ; 2.2 ; REDOX SIGNALING IN THE CHLOROPLAST: STRUCTURE OF OXIDIZED PEA FRUCTOSE-1,6-BISPHOSPHATE PHOSPHATASE 5ZZ5 ; 2.0 ; Redox-sensing transcriptional repressor Rex 5ZZ6 ; 2.2 ; Redox-sensing transcriptional repressor Rex 5ZZ7 ; 2.45 ; Redox-sensing transcriptional repressor Rex 4A5N ; 1.81 ; Redoxregulator HypR in its reduced form 2FKZ ; 2.0 ; Reduced (All Ferrous) form of the Azotobacter vinelandii bacterioferritin 3PHM ; 2.1 ; REDUCED (CU+) PEPTIDYLGLYCINE ALPHA-HYDROXYLATING MONOOXYGENASE (PHM) 3MLL ; 3.25 ; Reduced (Cu+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound azide 3MLJ ; 2.15 ; Reduced (Cu+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound carbon monooxide (CO) 3MLK ; 3.1 ; Reduced (Cu+) peptidylglycine alpha-hydroxylating monooxygenase (PHM) with bound nitrite 1SDW ; 1.85 ; Reduced (Cu+) peptidylglycine alpha-hydroxylating monooxygenase with bound peptide and dioxygen 2B08 ; 1.9 ; Reduced acetamide-bound M150G Nitrite Reductase from Alcaligenes faecalis 3WFD ; 2.3 ; Reduced and acetaldoxime-bound cytochrome c-dependent nitric oxide reductase (cNOR) from Pseudomonas aeruginosa in complex with antibody fragment 3WFC ; 2.5 ; Reduced and carbonmonoxide-bound cytochrome c-dependent nitric oxide reductase (cNOR) from Pseudomonas aeruginosa in complex with antibody fragment 2L8M ; ; Reduced and CO-bound cytochrome P450cam (CYP101A1) 2LQD ; ; Reduced and CO-bound cytochrome P450cam (CYP101A1) 3WFE ; 2.49 ; Reduced and cyanide-bound cytochrome c-dependent nitric oxide reductase (cNOR) from Pseudomonas aeruginosa in complex with antibody fragment 1DZ0 ; 1.75 ; REDUCED AZURIN II FROM ALCALIGENES XYLOSOXIDANS 1FOL ; 2.2 ; REDUCED BOVINE ENDOTHELIAL NITRIC OXIDE SYNTHASE HEME DOMAIN COMPLEXED WITH L-ARG(H4B-FREE) 1SXN ; 1.9 ; REDUCED BOVINE SUPEROXIDE DISMUTASE AT PH 5.0 1SXZ ; 2.05 ; Reduced bovine superoxide dismutase at pH 5.0 complexed with azide 1SXS ; 2.0 ; Reduced bovine superoxide dismutase at pH 5.0 complexed with thiocyanate 1JCV ; 1.55 ; REDUCED BRIDGE-BROKEN YEAST CU/ZN SUPEROXIDE DISMUTASE LOW TEMPERATURE (-180C) STRUCTURE 2JCW ; 1.7 ; REDUCED BRIDGE-BROKEN YEAST CU/ZN SUPEROXIDE DISMUTASE ROOM TEMPERATURE (298K) STRUCTURE 3VMG ; 1.95 ; Reduced carbazole-bound complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 6GT2 ; 1.6 ; Reduced copper nitrite reductase from Achromobacter cycloclastes determined by serial femtosecond rotation crystallography 4KNS ; 2.2 ; Reduced crystal structure of the Nitrosomonas europaea copper nitrite reductase at pH 6.5 2GBA ; 0.92 ; Reduced Cu(I) form at pH 4 of P52G mutant of amicyanin 4YAW ; 2.0 ; Reduced CYPOR mutant - G141del 4YAU ; 2.2 ; Reduced CYPOR mutant - G141del/E142N 4YAO ; 2.5 ; Reduced CYPOR mutant - G143del 4YAL ; 1.88 ; Reduced CYPOR with 2'-AMP 3WFB ; 2.7 ; Reduced cytochrome c-dependent nitric oxide reductase (cNOR) from Pseudomonas aeruginosa in complex with antibody fragment 1DDO ; 3.1 ; REDUCED D-AMINO ACID OXIDASE FROM PIG KIDNEY IN COMPLEX WITH IMINO-TRP 4DMR ; 1.9 ; REDUCED DMSO REDUCTASE FROM RHODOBACTER CAPSULATUS WITH BOUND DMSO SUBSTRATE 1A2L ; 2.7 ; REDUCED DSBA AT 2.7 ANGSTROMS RESOLUTION 3WU5 ; 2.07 ; Reduced E.coli Lon Proteolytic domain 2FZU ; 1.25 ; Reduced enolate chromophore intermediate for GFP variant 2FWQ ; 1.4 ; Reduced enolate chromophore intermediate for Y66H GFP variant 7VKD ; 1.58 ; Reduced enzyme of FAD-dpendent Glucose Dehydrogenase at pH6.5 7VKF ; 1.6 ; Reduced enzyme of FAD-dpendent Glucose Dehydrogenase complex with D-glucono-1,5-lactone at pH8.5 1UWM ; 2.0 ; reduced ferredoxin 6 from Rhodobacter capsulatus 7BUH ; 1.79 ; Reduced ferredoxin of carbazole 1,9a-dioxygenase 1RZ1 ; 2.1 ; Reduced flavin reductase PheA2 in complex with NAD 1YPN ; 2.3 ; REDUCED FORM HYDROXYMETHYLBILANE SYNTHASE (K59Q MUTANT) CRYSTAL STRUCTURE AFTER 2 HOURS IN A FLOW CELL DETERMINED BY TIME-RESOLVED LAUE DIFFRACTION 2GTJ ; ; Reduced form of ADAP hSH3-N-domain 4Y2K ; 1.7 ; reduced form of apo-GolB 4IHU ; 1.896 ; Reduced form of disulfide bond oxdioreductase (DsbG) from Mycobacterium tuberculosis 1AA6 ; 2.3 ; REDUCED FORM OF FORMATE DEHYDROGENASE H FROM E. COLI 3S61 ; 3.03 ; Reduced Form of Ornithine Hydroxylase (PvdA) from Pseudomonas aeruginosa 1KDI ; 1.8 ; REDUCED FORM OF PLASTOCYANIN FROM DRYOPTERIS CRASSIRHIZOMA 5X0V ; 1.6 ; Reduced form of regulatory domain of OxyR2 from Vibrio vulnificus 7PXZ ; 1.75 ; Reduced form of SARS-CoV-2 Main Protease determined by XFEL radiation 1DXM ; 2.6 ; Reduced form of the H protein from glycine decarboxylase complex 5HS7 ; 1.7 ; Reduced form of the transcriptional regulator YodB from B. subtilis 1AH5 ; 2.4 ; REDUCED FORM SELENOMETHIONINE-LABELLED HYDROXYMETHYLBILANE SYNTHASE DETERMINED BY MAD 2PPE ; 1.75 ; Reduced H145A mutant of AfNiR exposed to NO 3WSE ; 2.5 ; Reduced HcgD from Methanocaldococcus jannaschii 3WSG ; 1.996 ; Reduced HcgD from Methanocaldococcus jannaschii with citrate 4OOI ; 2.2 ; Reduced HlyU from Vibrio cholerae N16961 1LT8 ; 2.05 ; Reduced Homo sapiens Betaine-Homocysteine S-Methyltransferase in Complex with S-(delta-carboxybutyl)-L-Homocysteine 7KIZ ; 1.7 ; reduced human peroxiredoxin 2 1OA1 ; 1.55 ; REDUCED HYBRID CLUSTER PROTEIN (HCP) FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH STRUCTURE AT 1.55A RESOLUTION USING SYNCHROTRON RADIATION. 1OA0 ; 1.25 ; REDUCED HYBRID CLUSTER PROTEIN FROM DESULFOVIBRIO DESULFURICANS X-RAY STRUCTURE AT 1.25A RESOLUTION 2PPF ; 1.65 ; Reduced mutant D98N of AfNiR exposed to nitric oxide 5PAZ ; 1.76 ; REDUCED MUTANT P80A PSEUDOAZURIN FROM A. FAECALIS 7PAZ ; 2.0 ; REDUCED MUTANT P80I PSEUDOAZURIN FROM A. FAECALIS 3QQX ; 1.5 ; Reduced Native Intermediate of the Multicopper Oxidase CueO 3PAZ ; 1.73 ; REDUCED NATIVE PSEUDOAZURIN FROM A. FAECALIS 7BUG ; 1.6 ; Reduced oxygenase of carbazole 1,9a-dioxygenase 1M1R ; 1.02 ; Reduced p222 crystal structure of the tetraheme cytochrome c of Shewanella oneidensis MR1 1YJK ; 2.0 ; Reduced Peptidylglycine Alpha-Hydroxylating Monooxygenase (PHM) in a New Crystal Form 1YJL ; 2.4 ; Reduced Peptidylglycine alpha-Hydroxylating Monooxygenase in a new crystal form 6KEV ; 2.50614 ; Reduced phosphoribulokinase from Synechococcus elongatus PCC 7942 complexed with adenosine diphosphate and glucose 6-phosphate 1BXV ; 1.8 ; REDUCED PLASTOCYANIN FROM SYNECHOCOCCUS SP. 1H6A ; 2.5 ; Reduced Precursor Form of Glucose-Fructose Oxidoreductase from Zymomonas mobilis 1H6B ; 2.6 ; Reduced Precursor Form of Glucose-Fructose Oxidoreductase from Zymomonas mobilis complexed with glycerol 1BQR ; 1.6 ; REDUCED PSEUDOAZURIN 1ZIB ; 2.0 ; REDUCED PSEUDOAZURIN 4ZVN ; 1.866 ; Reduced quinone reductase 2 in complex with acridine orange 4FGL ; 1.2 ; Reduced quinone reductase 2 in complex with chloroquine 4U7F ; 1.8 ; Reduced quinone reductase 2 in complex with CK2 inhibitor DMAT 4ZVK ; 1.867 ; Reduced quinone reductase 2 in complex with ethidium 1A3Z ; 1.9 ; REDUCED RUSTICYANIN AT 1.9 ANGSTROMS 1CUR ; ; REDUCED RUSTICYANIN, NMR 1H32 ; 1.5 ; Reduced SoxAX complex from Rhodovulum sulfidophilum 1SFH ; 1.05 ; Reduced state of amicyanin mutant P94F 1FT6 ; 1.8 ; REDUCED STATE OF CYTOCHROME C554 FROM NITROSOMONAS EUROPAEA 1GMB ; 2.0 ; Reduced structure of CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 at pH 7.6 1UP9 ; 1.35 ; REDUCED STRUCTURE OF CYTOCHROME C3 FROM DESULFOVIBRIO DESULFURICANS ATCC 27774 AT PH 7.6 2XLH ; 1.14 ; REDUCED STRUCTURE OF R124A MUTANT OF CYTOCHROME C' FROM ALCALIGENES XYLOSOXIDANS 2XL8 ; 1.14 ; REDUCED STRUCTURE OF R124F MUTANT OF CYTOCHROME C' FROM ALCALIGENES XYLOSOXIDANS 7TXN ; 1.95 ; Reduced Structure of RexT 3CAR ; 1.9 ; REDUCED STRUCTURE OF THE ACIDIC CYTOCHROME C3 FROM DESULFOVIBRIO AFRICANUS 2W3F ; 1.6 ; Reduced structure of the first GAF domain of Mycobacterium tuberculosis DosS 1SU9 ; 1.95 ; Reduced structure of the soluble domain of ResA 3PXM ; 1.8 ; Reduced sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix 3PYJ ; 2.0 ; Reduced sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix 3Q2P ; 2.341 ; Reduced sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix 2XPD ; 2.0 ; Reduced Thiol peroxidase (Tpx) from yersinia Pseudotuberculosis 3ZRE ; 2.35 ; Reduced Thiol peroxidase (Tpx) from yersinia Pseudotuberculosis 6MVE ; 2.55 ; Reduced X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit with TTP, ATP, and ADP 2MJE ; ; Reduced Yeast Adrenodoxin Homolog 1 3WU3 ; 1.82 ; Reduced-form structure of E.coli Lon Proteolytic domain 8AEP ; 2.3 ; Reductase domain of the carboxylate reductase of Neurospora crassa 3ZYY ; 2.2 ; Reductive activator for corrinoid,iron-sulfur protein 6EOH ; 1.85 ; Reductive Aminase from Aspergillus terreus in complex with NADPH and ethyl levulinate 6EOI ; 1.76 ; Reductive Aminase from Aspergillus terreus in complex with NADPH and ethyl-5-oxohexanoate 6H7P ; 1.79 ; Reductive Aminase from Aspergillus terreus in complex with NADPH4, cyclohexanone and allyl amine 4RAS ; 2.3 ; Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation 8G21 ; ; Reelin C-Terminal Region 7LYU ; 3.0 ; Reelin repeat 8 3PLW ; 1.4 ; Ref protein from P1 bacteriophage 6JNL ; 2.15 ; REF6 ZnF2-4-NAC004 complex 6JNN ; 2.6 ; REF6 ZnF2-4-NAC004-mC1 complex 6JNM ; 2.05 ; REF6 ZnF2-4-NAC004-mC3 complex 6SVN ; 1.16 ; Reference structure of bovine trypsin (even frames of crystal x28) 6SVU ; 1.15 ; Reference structure of bovine trypsin (even frames of crystal x30) 6SVW ; 1.16 ; Reference structure of bovine trypsin (even frames of crystal x33) 6SVZ ; 1.15 ; Reference structure of bovine trypsin (even frames of crystal x34) 6SVR ; 1.16 ; Reference structure of bovine trypsin (odd frames of crystal x28) 6SVV ; 1.15 ; Reference structure of bovine trypsin (odd frames of crystal x30) 6SVX ; 1.16 ; Reference structure of bovine trypsin (odd frames of crystal x33) 6SW0 ; 1.15 ; Reference structure of bovine trypsin (odd frames of crystal x34) 2ILI ; 1.05 ; Refine atomic structure of human carbonic anhydrase II 1LMB ; 1.8 ; REFINED 1.8 ANGSTROM CRYSTAL STRUCTURE OF THE LAMBDA REPRESSOR-OPERATOR COMPLEX 1EPT ; 1.8 ; REFINED 1.8 ANGSTROMS RESOLUTION CRYSTAL STRUCTURE OF PORCINE EPSILON-TRYPSIN 1MAR ; 1.8 ; REFINED 1.8 ANGSTROMS STRUCTURE OF HUMAN ALDOSE REDUCTASE COMPLEXED WITH THE POTENT INHIBITOR ZOPOLRESTAT 1DMB ; 1.8 ; REFINED 1.8 ANGSTROMS STRUCTURE REVEALS THE MECHANISM OF BINDING OF A CYCLIC SUGAR, BETA-CYCLODEXTRIN, TO THE MALTODEXTRIN BINDING PROTEIN 1IAD ; 2.3 ; REFINED 1.8 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF ASTACIN, A ZINC-ENDOPEPTIDASE FROM THE CRAYFISH ASTACUS ASTACUS L. STRUCTURE DETERMINATION, REFINEMENT, MOLECULAR STRUCTURE AND COMPARISON TO THERMOLYSIN 1IAC ; 2.1 ; REFINED 1.8 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF ASTACIN, A ZINC-ENDOPEPTIDASE FROM THE CRAYFISH ASTACUS ASTACUS L. STRUCTURE DETERMINATION, REFINEMENT, MOLECULAR STRUCTURE AND COMPARISON WITH THERMOLYSIN 5TIM ; 1.83 ; REFINED 1.83 ANGSTROMS STRUCTURE OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE, CRYSTALLIZED IN THE PRESENCE OF 2.4 M-AMMONIUM SULPHATE. A COMPARISON WITH THE STRUCTURE OF THE TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE-GLYCEROL-3-PHOSPHATE COMPLEX 1HSL ; 1.89 ; REFINED 1.89 ANGSTROMS STRUCTURE OF THE HISTIDINE-BINDING PROTEIN COMPLEXED WITH HISTIDINE AND ITS RELATIONSHIP WITH MANY OTHER ACTIVE TRANSPORT(SLASH)CHEMOSENSORY RECEPTORS 6I2I ; 3.6 ; Refined 13pf Hela Cell Tubulin microtubule (EML4-NTD decorated) 2PKA ; 2.05 ; REFINED 2 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF PORCINE PANCREATIC KALLIKREIN A, A SPECIFIC TRYPSIN-LIKE SERINE PROTEINASE. CRYSTALLIZATION, STRUCTURE DETERMINATION, CRYSTALLOGRAPHIC REFINEMENT, STRUCTURE AND ITS COMPARISON WITH BOVINE TRYPSIN 1ETR ; 2.2 ; REFINED 2.3 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF BOVINE THROMBIN COMPLEXES FORMED WITH THE BENZAMIDINE AND ARGININE-BASED THROMBIN INHIBITORS NAPAP, 4-TAPAP AND MQPA: A STARTING POINT FOR IMPROVING ANTITHROMBOTICS 1ETS ; 2.3 ; REFINED 2.3 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF BOVINE THROMBIN COMPLEXES FORMED WITH THE BENZAMIDINE AND ARGININE-BASED THROMBIN INHIBITORS NAPAP, 4-TAPAP AND MQPA: A STARTING POINT FOR IMPROVING ANTITHROMBOTICS 1ETT ; 2.5 ; REFINED 2.3 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF BOVINE THROMBIN COMPLEXES FORMED WITH THE BENZAMIDINE AND ARGININE-BASED THROMBIN INHIBITORS NAPAP, 4-TAPAP AND MQPA: A STARTING POINT FOR IMPROVING ANTITHROMBOTICS 2KAI ; 2.5 ; REFINED 2.5 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF THE COMPLEX FORMED BY PORCINE KALLIKREIN A AND THE BOVINE PANCREATIC TRYPSIN INHIBITOR. CRYSTALLIZATION, PATTERSON SEARCH, STRUCTURE DETERMINATION, REFINEMENT, STRUCTURE AND COMPARISON WITH ITS COMPONENTS AND WITH THE BOVINE TRYPSIN-PANCREATIC TRYPSIN INHIBITOR COMPLEX 2JNC ; ; Refined 3D NMR structure of ECD1 of mCRF-R2beta at pH 5 5LAM ; ; Refined 3D NMR structure of the cytoplasmic rhodanese domain of the inner membrane protein YgaP from Escherichia coli 1IFB ; 1.96 ; REFINED APOPROTEIN STRUCTURE OF RAT INTESTINAL FATTY ACID BINDING PROTEIN PRODUCED IN ESCHERICHIA COLI 2GLS ; 3.5 ; REFINED ATOMIC MODEL OF GLUTAMINE SYNTHETASE AT 3.5 ANGSTROMS RESOLUTION 3SC2 ; 2.2 ; REFINED ATOMIC MODEL OF WHEAT SERINE CARBOXYPEPTIDASE II AT 2.2-ANGSTROMS RESOLUTION 3NN9 ; 2.3 ; REFINED ATOMIC STRUCTURES OF N9 SUBTYPE INFLUENZA VIRUS NEURAMINIDASE AND ESCAPE MUTANTS 4NN9 ; 2.3 ; REFINED ATOMIC STRUCTURES OF N9 SUBTYPE INFLUENZA VIRUS NEURAMINIDASE AND ESCAPE MUTANTS 5NN9 ; 2.3 ; REFINED ATOMIC STRUCTURES OF N9 SUBTYPE INFLUENZA VIRUS NEURAMINIDASE AND ESCAPE MUTANTS 6NN9 ; 2.3 ; REFINED ATOMIC STRUCTURES OF N9 SUBTYPE INFLUENZA VIRUS NEURAMINIDASE AND ESCAPE MUTANTS 7TAU ; 3.38 ; Refined capsid structure of human adenovirus D26 at 3.4 A resolution 2WBC ; 2.3 ; REFINED CRYSTAL STRUCTURE (2.3 ANGSTROM) OF A WINGED BEAN CHYMOTRYPSIN INHIBITOR AND LOCATION OF ITS SECOND REACTIVE SITE 1GCD ; 1.9 ; REFINED CRYSTAL STRUCTURE OF ""AGED"" AND ""NON-AGED"" ORGANOPHOSPHORYL CONJUGATES OF GAMMA-CHYMOTRYPSIN 1GMH ; 2.1 ; REFINED CRYSTAL STRUCTURE OF ""AGED"" AND ""NON-AGED"" ORGANOPHOSPHORYL CONJUGATES OF GAMMA-CHYMOTRYPSIN 2IMM ; 2.0 ; Refined crystal structure of a recombinant immunoglobulin domain and a complementarity-determining region 1-grafted mutant 2IMN ; 1.97 ; Refined crystal structure of a recombinant immunoglobulin domain and a complementarity-determining region 1-grafted mutant 1AGX ; 2.9 ; REFINED CRYSTAL STRUCTURE OF ACINETOBACTER GLUTAMINASIFICANS GLUTAMINASE-ASPARAGINASE 1JUY ; 2.5 ; REFINED CRYSTAL STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI COMPLEXED WITH HYDANTOCIDIN 5'-PHOSPHATE GDP, HPO4(2-), MG2+, AND HADACIDIN 1D92 ; 2.25 ; REFINED CRYSTAL STRUCTURE OF AN OCTANUCLEOTIDE DUPLEX WITH G.T MISMATCHED BASE-PAIRS 1D90 ; 1.7 ; REFINED CRYSTAL STRUCTURE OF AN OCTANUCLEOTIDE DUPLEX WITH I.T MISMATCHED BASE PAIRS 1AOZ ; 1.9 ; REFINED CRYSTAL STRUCTURE OF ASCORBATE OXIDASE AT 1.9 ANGSTROMS RESOLUTION 1FR1 ; 2.0 ; REFINED CRYSTAL STRUCTURE OF BETA-LACTAMASE FROM CITROBACTER FREUNDII INDICATES A MECHANISM FOR BETA-LACTAM HYDROLYSIS 1FR6 ; 2.5 ; REFINED CRYSTAL STRUCTURE OF BETA-LACTAMASE FROM CITROBACTER FREUNDII INDICATES A MECHANISM FOR BETA-LACTAM HYDROLYSIS 3BLM ; 2.0 ; REFINED CRYSTAL STRUCTURE OF BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS PC1 AT 2.0 1BU3 ; 1.65 ; REFINED CRYSTAL STRUCTURE OF CALCIUM-BOUND SILVER HAKE (PI 4.2) PARVALBUMIN AT 1.65 A. 4CPV ; 1.5 ; REFINED CRYSTAL STRUCTURE OF CALCIUM-LIGANDED CARP PARVALBUMIN 4.25 AT 1.5-ANGSTROMS RESOLUTION 1DGR ; 2.6 ; Refined crystal structure of canavalin from jack bean 5CPA ; 1.54 ; REFINED CRYSTAL STRUCTURE OF CARBOXYPEPTIDASE A AT 1.54 ANGSTROMS RESOLUTION. 2OXI ; 2.1 ; REFINED CRYSTAL STRUCTURE OF CU-SUBSTITUTED ALCOHOL DEHYDROGENASE AT 2.1 ANGSTROMS RESOLUTION 1HH7 ; 1.4 ; REFINED CRYSTAL STRUCTURE OF CYTOCHROME C2 FROM RHODOPSEUDOMONAS PALUSTRIS AT 1.4 ANGSTROM RESOLUTION 4MDH ; 2.5 ; REFINED CRYSTAL STRUCTURE OF CYTOPLASMIC MALATE DEHYDROGENASE AT 2.5-ANGSTROMS RESOLUTION 1HBS ; 3.0 ; REFINED CRYSTAL STRUCTURE OF DEOXYHEMOGLOBIN S. I. RESTRAINED LEAST-SQUARES REFINEMENT AT 3.0-ANGSTROMS RESOLUTION 1LDM ; 2.1 ; Refined crystal structure of dogfish M4 apo-lactate dehydrogenase 6LDH ; 2.0 ; REFINED CRYSTAL STRUCTURE OF DOGFISH M4 APO-LACTATE DEHYDROGENASE 8LDH ; 2.8 ; REFINED CRYSTAL STRUCTURE OF DOGFISH M4 APO-LACTATE DEHYDROGENASE 1FXD ; 1.7 ; REFINED CRYSTAL STRUCTURE OF FERREDOXIN II FROM DESULFOVIBRIO GIGAS AT 1.7 ANGSTROMS 2GCH ; 1.9 ; REFINED CRYSTAL STRUCTURE OF GAMMA-CHYMOTRYPSIN AT 1.9 ANGSTROMS RESOLUTION 3PBH ; 2.5 ; REFINED CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN B AT 2.5 ANGSTROM RESOLUTION 1C8M ; 2.8 ; REFINED CRYSTAL STRUCTURE OF HUMAN RHINOVIRUS 16 COMPLEXED WITH VP63843 (PLECONARIL), AN ANTI-PICORNAVIRAL DRUG CURRENTLY IN CLINICAL TRIALS 1GPR ; 1.9 ; REFINED CRYSTAL STRUCTURE OF IIA DOMAIN OF THE GLUCOSE PERMEASE OF BACILLUS SUBTILIS AT 1.9 ANGSTROMS RESOLUTION 3LAD ; 2.2 ; REFINED CRYSTAL STRUCTURE OF LIPOAMIDE DEHYDROGENASE FROM AZOTOBACTER VINELANDII AT 2.2 ANGSTROMS RESOLUTION. A COMPARISON WITH THE STRUCTURE OF GLUTATHIONE REDUCTASE 2OHX ; 1.8 ; REFINED CRYSTAL STRUCTURE OF LIVER ALCOHOL DEHYDROGENASE-NADH COMPLEX AT 1.8 ANGSTROMS RESOLUTION 1PMY ; 1.5 ; REFINED CRYSTAL STRUCTURE OF PSEUDOAZURIN FROM METHYLOBACTERIUM EXTORQUENS AM1 AT 1.5 ANGSTROMS RESOLUTION 1FNB ; 1.7 ; REFINED CRYSTAL STRUCTURE OF SPINACH FERREDOXIN REDUCTASE AT 1.7 ANGSTROMS RESOLUTION: OXIDIZED, REDUCED, AND 2'-PHOSPHO-5'-AMP BOUND STATES 1FNC ; 2.0 ; REFINED CRYSTAL STRUCTURE OF SPINACH FERREDOXIN REDUCTASE AT 1.7 ANGSTROMS RESOLUTION: OXIDIZED, REDUCED, AND 2'-PHOSPHO-5'-AMP BOUND STATES 1FND ; 1.7 ; REFINED CRYSTAL STRUCTURE OF SPINACH FERREDOXIN REDUCTASE AT 1.7 ANGSTROMS RESOLUTION: OXIDIZED, REDUCED, AND 2'-PHOSPHO-5'-AMP BOUND STATES 1SGT ; 1.7 ; REFINED CRYSTAL STRUCTURE OF STREPTOMYCES GRISEUS TRYPSIN AT 1.7 ANGSTROMS RESOLUTION 1FDN ; 1.84 ; REFINED CRYSTAL STRUCTURE OF THE 2[4FE-4S] FERREDOXIN FROM CLOSTRIDIUM ACIDURICI AT 1.84 ANGSTROMS RESOLUTION 2SIC ; 1.8 ; REFINED CRYSTAL STRUCTURE OF THE COMPLEX OF SUBTILISIN BPN' AND STREPTOMYCES SUBTILISIN INHIBITOR AT 1.8 ANGSTROMS RESOLUTION 2FBJ ; 1.95 ; REFINED CRYSTAL STRUCTURE OF THE GALACTAN-BINDING IMMUNOGLOBULIN FAB J539 AT 1.95-ANGSTROMS RESOLUTION 1S72 ; 2.4 ; REFINED CRYSTAL STRUCTURE OF THE HALOARCULA MARISMORTUI LARGE RIBOSOMAL SUBUNIT AT 2.4 ANGSTROM RESOLUTION 4BV6 ; 1.8 ; Refined crystal structure of the human Apoptosis inducing factor 1NCA ; 2.5 ; REFINED CRYSTAL STRUCTURE OF THE INFLUENZA VIRUS N9 NEURAMINIDASE-NC41 FAB COMPLEX 1NCD ; 2.9 ; REFINED CRYSTAL STRUCTURE OF THE INFLUENZA VIRUS N9 NEURAMINIDASE-NC41 FAB COMPLEX 2MCP ; 3.1 ; REFINED CRYSTAL STRUCTURE OF THE MC/PC603 FAB-PHOSPHOCHOLINE COMPLEX AT 3.1 ANGSTROMS RESOLUTION 6GPB ; 2.86 ; REFINED CRYSTAL STRUCTURE OF THE PHOSPHORYLASE-HEPTULOSE 2-PHOSPHATE-OLIGOSACCHARIDE-AMP COMPLEX 4CPA ; 2.5 ; REFINED CRYSTAL STRUCTURE OF THE POTATO INHIBITOR COMPLEX OF CARBOXYPEPTIDASE A AT 2.5 ANGSTROMS RESOLUTION 1SRY ; 2.5 ; REFINED CRYSTAL STRUCTURE OF THE SERYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS AT 2.5 ANGSTROMS RESOLUTION 5P21 ; 1.35 ; REFINED CRYSTAL STRUCTURE OF THE TRIPHOSPHATE CONFORMATION OF H-RAS P21 AT 1.35 ANGSTROMS RESOLUTION: IMPLICATIONS FOR THE MECHANISM OF GTP HYDROLYSIS 5TNC ; 2.0 ; REFINED CRYSTAL STRUCTURE OF TROPONIN C FROM TURKEY SKELETAL MUSCLE AT 2.0 ANGSTROMS RESOLUTION 3CLA ; 1.75 ; REFINED CRYSTAL STRUCTURE OF TYPE III CHLORAMPHENICOL ACETYLTRANSFERASE AT 1.75 ANGSTROMS RESOLUTION 8DFR ; 1.7 ; REFINED CRYSTAL STRUCTURES OF CHICKEN LIVER DIHYDROFOLATE REDUCTASE. 3 ANGSTROMS APO-ENZYME AND 1.7 ANGSTROMS NADPH HOLO-ENZYME COMPLEX 1GLM ; 2.4 ; REFINED CRYSTAL STRUCTURES OF GLUCOAMYLASE FROM ASPERGILLUS AWAMORI VAR. X100 3GLY ; 2.2 ; REFINED CRYSTAL STRUCTURES OF GLUCOAMYLASE FROM ASPERGILLUS AWAMORI VAR. X100 1SBN ; 2.1 ; REFINED CRYSTAL STRUCTURES OF SUBTILISIN NOVO IN COMPLEX WITH WILD-TYPE AND TWO MUTANT EGLINS. COMPARISON WITH OTHER SERINE PROTEINASE INHIBITOR COMPLEXES 1SIB ; 2.4 ; REFINED CRYSTAL STRUCTURES OF SUBTILISIN NOVO IN COMPLEX WITH WILD-TYPE AND TWO MUTANT EGLINS. COMPARISON WITH OTHER SERINE PROTEINASE INHIBITOR COMPLEXES 1OVT ; 2.4 ; REFINED CRYSTALLOGRAPHIC STRUCTURE OF HEN OVOTRANSFERRIN AT 2.4 ANGSTROMS RESOLUTION 3EOH ; 3.125 ; Refined group II intron structure 6UT8 ; 3.68 ; Refined half-complex from tetradecameric assembly of Thermococcus gammatolerans McrB AAA+ hexamers with bound McrC 2LOY ; ; Refined Miminal Constraint Solution NMR Structure of Translationally-controlled tumor protein (TCTP) from Caenorhabditis elegans, Northeast Structural Genomics Consortium Target WR73 2ZJR ; 2.91 ; Refined native structure of the large ribosomal subunit (50S) from Deinococcus radiodurans 2M54 ; ; Refined NMR solution structure of metal-modified DNA 1DV0 ; ; Refined NMR solution structure of the C-terminal UBA domain of the human homologue of RAD23A (HHR23A) 2HID ; ; REFINED NMR STRUCTURE OF PHOSPHOCARRIER HISTIDINE CONTAINING PROTEIN FROM BACILLUS SUBTILIS 1J4O ; ; REFINED NMR STRUCTURE OF THE FHA1 DOMAIN OF YEAST RAD53 1K3J ; ; Refined NMR Structure of the FHA1 Domain of Yeast Rad53 1Y1V ; 3.8 ; Refined RNA Polymerase II-TFIIS complex 6TIQ ; ; Refined solution NMR structure of hVDAC-1 in detergent micelles 2M6Q ; ; Refined Solution NMR Structure of Staphylococcus aureus protein SAV1430. Northeast Strucutral Genomics Consortium Target ZR18 2LP6 ; ; Refined Solution NMR Structure of the 50S ribosomal protein L35Ae from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target (NESG) PfR48 1Q2N ; ; REFINED Solution NMR structure of the Z domain of STAPHYLOCOCCAL PROTEIN A 2LZJ ; ; Refined solution structure and dynamics of First Catalytic Cysteine Half-domain from mouse E1 enzyme 1PDC ; ; REFINED SOLUTION STRUCTURE AND LIGAND-BINDING PROPERTIES OF PDC-109 DOMAIN B. A COLLAGEN-BINDING TYPE II DOMAIN 1F3C ; ; REFINED SOLUTION STRUCTURE OF 8KDA DYNEIN LIGHT CHAIN (DLC8) 2KOI ; ; Refined solution structure of a cyanobacterial phytochrome GAF domain in the red light-absorbing ground state 2LB9 ; ; Refined solution structure of a cyanobacterial phytochrome gaf domain in the red light-absorbing ground state (corrected pyrrole ring planarity) 2KEI ; ; Refined Solution Structure of a Dimer of LAC repressor DNA-Binding domain complexed to its natural operator O1 1F71 ; ; REFINED SOLUTION STRUCTURE OF CALMODULIN C-TERMINAL DOMAIN 1F70 ; ; REFINED SOLUTION STRUCTURE OF CALMODULIN N-TERMINAL DOMAIN 1WRF ; ; Refined solution structure of Der f 2, The Major Mite Allergen from Dermatophagoides farinae 2KGQ ; ; Refined solution structure of des-pyro Glu brazzein 1KA5 ; ; Refined Solution Structure of Histidine Containing Phosphocarrier Protein from Staphyloccocus aureus 2M6Z ; ; Refined solution structure of Human Adult Hemoglobin in the Carbonmonoxy Form 1GD3 ; ; refined solution structure of human cystatin A 1PFL ; ; REFINED SOLUTION STRUCTURE OF HUMAN PROFILIN I 1CW6 ; ; REFINED SOLUTION STRUCTURE OF LEUCOCIN A 2KHL ; ; Refined solution structure of Methanosarcina thermophila protein MC1 5X3Y ; ; Refined solution structure of musashi1 RBD2 2RLK ; ; Refined solution structure of porcine peptide YY (PYY) 2LY5 ; ; Refined solution structure of recombinant brazzein 2LY6 ; ; Refined solution structure of recombinant brazzein at low temperature 2RVK ; ; Refined solution structure of Schizosaccharomyces pombe Sin1 CRIM domain 1FMF ; ; REFINED SOLUTION STRUCTURE OF THE (13C,15N-LABELED) B12-BINDING SUBUNIT OF GLUTAMATE MUTASE FROM CLOSTRIDIUM TETANOMORPHUM 2DMO ; ; Refined solution structure of the 1st SH3 domain from human Neutrophil cytosol factor 2 (NCF-2) 156D ; ; REFINED SOLUTION STRUCTURE OF THE DIMERIC QUADRUPLEX FORMED FROM THE OXYTRICHA TELOMERIC OLIGONUCLEOTIDE D(GGGGTTTTGGGG) 1FHQ ; ; REFINED SOLUTION STRUCTURE OF THE FHA2 DOMAIN OF RAD53 2RUG ; ; Refined solution structure of the first RNA recognition motif domain in CPEB3 1GDC ; ; REFINED SOLUTION STRUCTURE OF THE GLUCOCORTICOID RECEPTOR DNA-BINDING DOMAIN 2GDA ; ; REFINED SOLUTION STRUCTURE OF THE GLUCOCORTICOID RECEPTOR DNA-BINDING DOMAIN 1O7B ; ; Refined solution structure of the human TSG-6 Link module 1DK2 ; ; REFINED SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA 1DK3 ; ; REFINED SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA 2RP0 ; ; Refined solution structure of the PEMV-1 mRNA pseudoknot, 28 lowest energy structures 2RP1 ; ; Refined solution structure of the PEMV-1 mRNA pseudoknot, regularized average structure 1SY4 ; ; Refined solution structure of the S. cerevisiae U6 INTRAMOLECULAR STEM LOOP (ISL) RNA USING RESIDUAL DIPOLAR COUPLINGS (RDCS) 2GVA ; ; REFINED SOLUTION STRUCTURE OF THE TYR 41--> HIS MUTANT OF THE M13 GENE V PROTEIN. A COMPARISON WITH THE CRYSTAL STRUCTURE 2GVB ; ; REFINED SOLUTION STRUCTURE OF THE TYR 41--> HIS MUTANT OF THE M13 GENE V PROTEIN. A COMPARISON WITH THE CRYSTAL STRUCTURE 2LB5 ; ; Refined Structural Basis for the Photoconversion of A Phytochrome to the Activated FAR-RED LIGHT-ABSORBING Form 1JJZ ; ; REFINED STRUCTURE AND DISULFIDE PAIRING OF THE KALATA B1 PEPTIDE 1K48 ; ; REFINED STRUCTURE AND DISULFIDE PAIRING OF THE KALATA B1 PEPTIDE 1DOG ; 2.3 ; REFINED STRUCTURE FOR THE COMPLEX OF 1-DEOXYNOJIRIMYCIN WITH GLUCOAMYLASE FROM (ASPERGILLUS AWAMORI) VAR. X100 TO 2.4 ANGSTROMS RESOLUTION 1AGM ; 2.3 ; Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. x100 to 2.4 angstroms resolution 1SHI ; ; REFINED STRUCTURE IN SOLUTION OF THE SEA ANEMONE NEUROTOXIN SHI 1JFF ; 3.5 ; Refined structure of alpha-beta tubulin from zinc-induced sheets stabilized with taxol 2ALP ; 1.7 ; REFINED STRUCTURE OF ALPHA-LYTIC PROTEASE AT 1.7 ANGSTROMS RESOLUTION. ANALYSIS OF HYDROGEN BONDING AND SOLVENT STRUCTURE 1ALC ; 1.7 ; REFINED STRUCTURE OF BABOON ALPHA-LACTALBUMIN AT 1.7 ANGSTROMS RESOLUTION. COMPARISON WITH C-TYPE LYSOZYME 4TNC ; 2.0 ; REFINED STRUCTURE OF CHICKEN SKELETAL MUSCLE TROPONIN C IN THE TWO-CALCIUM STATE AT 2-ANGSTROMS RESOLUTION 5CNA ; 2.0 ; REFINED STRUCTURE OF CONCANAVALIN A COMPLEXED WITH ALPHA-METHYL-D-MANNOPYRANOSIDE AT 2.0 ANGSTROMS RESOLUTION AND COMPARISON WITH THE SACCHARIDE-FREE STRUCTURE 5CRO ; 2.3 ; REFINED STRUCTURE OF CRO REPRESSOR PROTEIN FROM BACTERIOPHAGE LAMBDA 2CDV ; 1.8 ; REFINED STRUCTURE OF CYTOCHROME C3 AT 1.8 ANGSTROMS RESOLUTION 5NPN ; ; Refined structure of cytotoxin I 1LTS ; 1.95 ; REFINED STRUCTURE OF E. COLI HEAT LABILE ENTEROTOXIN, A CLOSE RELATIVE OF CHOLERA TOXIN 2RC5 ; 2.431 ; Refined structure of FNR from Leptospira interrogans 2RC6 ; 2.7 ; Refined structure of FNR from Leptospira interrogans bound to NADP+ 3GRS ; 1.54 ; REFINED STRUCTURE OF GLUTATHIONE REDUCTASE AT 1.54 ANGSTROMS RESOLUTION 2KPE ; ; Refined structure of Glycophorin A transmembrane segment dimer in DPC micelles 1CA2 ; 2.0 ; REFINED STRUCTURE OF HUMAN CARBONIC ANHYDRASE II AT 2.0 ANGSTROMS RESOLUTION 4CAC ; 2.2 ; REFINED STRUCTURE OF HUMAN CARBONIC ANHYDRASE II AT 2.0 ANGSTROMS RESOLUTION 5CAC ; 2.2 ; REFINED STRUCTURE OF HUMAN CARBONIC ANHYDRASE II AT 2.0 ANGSTROMS RESOLUTION 1N4Y ; ; REFINED STRUCTURE OF KISTRIN 1MLD ; 1.83 ; REFINED STRUCTURE OF MITOCHONDRIAL MALATE DEHYDROGENASE FROM PORCINE HEART AND THE CONSENSUS STRUCTURE FOR DICARBOXYLIC ACID OXIDOREDUCTASES 2MNH ; ; Refined structure of outer membrane protein x in nanodisc by measuring residual dipolar couplings 1R9U ; ; Refined structure of peptaibol zervamicin IIB in methanol solution from trans-hydrogen bond J couplings 3AV8 ; 1.46 ; Refined Structure of Plant-type [2Fe-2S] Ferredoxin I from Aphanothece sacrum at 1.46 A Resolution 3ADK ; 2.1 ; REFINED STRUCTURE OF PORCINE CYTOSOLIC ADENYLATE KINASE AT 2.1 ANGSTROMS RESOLUTION 2PSG ; 1.8 ; REFINED STRUCTURE OF PORCINE PEPSINOGEN AT 1.8 ANGSTROMS RESOLUTION 1PRN ; 1.96 ; REFINED STRUCTURE OF PORIN FROM RHODOPSEUDOMONAS BLASTICA AND COMPARISON WITH THE PORIN FROM RHODOBACTER CAPSULATUS 1PVV ; 1.87 ; Refined Structure of Pyrococcus furiosus Ornithine Carbamoyltransferase at 1.87 A 1CCD ; 3.0 ; REFINED STRUCTURE OF RAT CLARA CELL 17 KDA PROTEIN AT 3.0 ANGSTROMS RESOLUTION 2RU7 ; ; Refined structure of RNA aptamer in complex with the partial binding peptide of prion protein 1NO3 ; 2.15 ; REFINED STRUCTURE OF SOYBEAN LIPOXYGENASE-3 WITH 4-NITROCATECHOL AT 2.15 ANGSTROM RESOLUTION 1GOX ; 2.0 ; REFINED STRUCTURE OF SPINACH GLYCOLATE OXIDASE AT 2 ANGSTROMS RESOLUTION 2VIL ; ; REFINED STRUCTURE OF THE ACTIN-SEVERING DOMAIN VILLIN 14T, DETERMINED BY SOLUTION NMR, 11 STRUCTURES 2VIK ; ; REFINED STRUCTURE OF THE ACTIN-SEVERING DOMAIN VILLIN 14T, DETERMINED BY SOLUTION NMR, MINIMIZED AVERAGE STRUCTURE 7JSQ ; ; Refined structure of the C-terminal domain of DNAJB6b 1GKY ; 2.0 ; REFINED STRUCTURE OF THE COMPLEX BETWEEN GUANYLATE KINASE AND ITS SUBSTRATE GMP AT 2.0 ANGSTROMS RESOLUTION 1EYF ; ; REFINED STRUCTURE OF THE DNA METHYL PHOSPHOTRIESTER REPAIR DOMAIN OF E. COLI ADA 3QJO ; 4.0 ; Refined Structure of the functional unit (KLH1-H) of keyhole limpet hemocyanin 2GN5 ; 2.3 ; REFINED STRUCTURE OF THE GENE 5 DNA BINDING PROTEIN FROM BACTERIOPHAGE FD 5JJ3 ; 7.0 ; Refined Structure of the Mature Virion Conformation of P22 Portal Protein 2BG9 ; 4.0 ; REFINED STRUCTURE OF THE NICOTINIC ACETYLCHOLINE RECEPTOR AT 4A RESOLUTION. 1COL ; 2.4 ; REFINED STRUCTURE OF THE PORE-FORMING DOMAIN OF COLICIN A AT 2.4 ANGSTROMS RESOLUTION 1PYA ; 2.5 ; REFINED STRUCTURE OF THE PYRUVOYL-DEPENDENT HISTIDINE DECARBOXYLASE FROM LACTOBACILLUS 30A 7QBY ; ; Refined structure of the T193A mutant in the C-terminal domain of DNAJB6b 1TRK ; 2.0 ; REFINED STRUCTURE OF TRANSKETOLASE FROM SACCHAROMYCES CEREVISIAE AT 2.0 ANGSTROMS RESOLUTION 3ENL ; 2.25 ; REFINED STRUCTURE OF YEAST APO-ENOLASE AT 2.25 ANGSTROMS RESOLUTION 2XOK ; 3.01 ; Refined structure of yeast F1c10 ATPase complex to 3 A resolution 1HUJ ; 2.1 ; REFINED STRUCTURE OF YEAST INORGANIC PYROPHOSPHATASE AND ITS K61R MUTANT 1HUK ; 2.2 ; REFINED STRUCTURE OF YEAST INORGANIC PYROPHOSPHATASE AND ITS K61R MUTANT 1HPC ; 2.0 ; REFINED STRUCTURES AT 2 ANGSTROMS AND 2.2 ANGSTROMS OF THE TWO FORMS OF THE H-PROTEIN, A LIPOAMIDE-CONTAINING PROTEIN OF THE GLYCINE DECARBOXYLASE 1HTP ; 2.2 ; REFINED STRUCTURES AT 2 ANGSTROMS AND 2.2 ANGSTROMS OF THE TWO FORMS OF THE H-PROTEIN, A LIPOAMIDE-CONTAINING PROTEIN OF THE GLYCINE DECARBOXYLASE COMPLEX 1CZN ; 1.7 ; REFINED STRUCTURES OF OXIDIZED FLAVODOXIN FROM ANACYSTIS NIDULANS 1CZU ; 2.0 ; REFINED STRUCTURES OF OXIDIZED FLAVODOXIN FROM ANACYSTIS NIDULANS 1D03 ; 1.85 ; REFINED STRUCTURES OF OXIDIZED FLAVODOXIN FROM ANACYSTIS NIDULANS 1THY ; 2.9 ; REFINED STRUCTURES OF SUBSTRATE-BOUND AND PHOSPHATE-BOUND THYMIDYLATE SYNTHASE FROM LACTOBACILLUS CASEI 1SPH ; 2.0 ; REFINED STRUCTURES OF THE ACTIVE S83C AND IMPAIRED S46D HPRS: EVIDENCE THAT PHOSPHORYLATION DOES NOT REQUIRE A BACKBONE CONFORMATIONAL TRANSITION 1MDP ; 2.3 ; REFINED STRUCTURES OF TWO INSERTION(SLASH)DELETION MUTANTS PROBE FUNCTION OF THE MALTODEXTRIN BINDING PROTEIN 1MDQ ; 1.9 ; REFINED STRUCTURES OF TWO INSERTION(SLASH)DELETION MUTANTS PROBE FUNCTION OF THE MALTODEXTRIN BINDING PROTEIN 1CXN ; ; REFINED THREE-DIMENSIONAL SOLUTION STRUCTURE OF A SNAKE CARDIOTOXIN: ANALYSIS OF THE SIDE-CHAIN ORGANISATION SUGGESTS THE EXISTENCE OF A POSSIBLE PHOSPHOLIPID BINDING SITE 1CXO ; ; REFINED THREE-DIMENSIONAL SOLUTION STRUCTURE OF A SNAKE CARDIOTOXIN: ANALYSIS OF THE SIDE-CHAIN ORGANISATION SUGGESTS THE EXISTENCE OF A POSSIBLE PHOSPHOLIPID BINDING SITE 1ICA ; ; REFINED THREE-DIMENSIONAL STRUCTURE OF INSECT DEFENSIN A 1GIG ; 2.3 ; REFINED THREE-DIMENSIONAL STRUCTURE OF THE FAB FRAGMENT OF A MURINE IGG1, LAMBDA ANTIBODY 3OVO ; 1.55 ; REFINED X-RAY CRYSTAL STRUCTURES OF THE REACTIVE SITE MODIFIED OVOMUCOID INHIBITOR THIRD DOMAINS FROM SILVER PHEASANT (OMSVP3(ASTERISK)) AND FROM JAPANESE QUAIL (OMJPQ3(ASTERISK)) 4OVO ; 2.5 ; REFINED X-RAY CRYSTAL STRUCTURES OF THE REACTIVE SITE MODIFIED OVOMUCOID INHIBITOR THIRD DOMAINS FROM SILVER PHEASANT (OMSVP3(ASTERISK)) AND FROM JAPANESE QUAIL (OMJPQ3(ASTERISK)) 1NPK ; 1.8 ; REFINED X-RAY STRUCTURE OF DICTYOSTELIUM NUCLEOSIDE DIPHOSPHATE KINASE AT 1,8 ANGSTROMS RESOLUTION 1PE6 ; 2.1 ; REFINED X-RAY STRUCTURE OF PAPAIN(DOT)E-64-C COMPLEX AT 2.1-ANGSTROMS RESOLUTION 1RTP ; 2.0 ; REFINED X-RAY STRUCTURE OF RAT PARVALBUMIN, A MAMMALIAN ALPHA-LINEAGE PARVALBUMIN, AT 2.0 A RESOLUTION 1EDE ; 1.9 ; REFINED X-RAY STRUCTURES OF HALOALKANE DEHALOGENASE AT PH 6.2 AND PH 8.2 AND IMPLICATIONS FOR THE REACTION MECHANISM 3CD4 ; 2.2 ; REFINEMENT AND ANALYSIS OF THE FIRST TWO DOMAINS OF HUMAN CD4 1AJR ; 1.74 ; REFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATE 1AJS ; 1.6 ; REFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATE 3EBX ; 1.4 ; REFINEMENT AT 1.4 ANGSTROMS RESOLUTION OF A MODEL OF ERABUTOXIN B. TREATMENT OF ORDERED SOLVENT AND DISCRETE DISORDER 1I1P ; 1.63 ; REFINEMENT INCLUDING EXPERIMENTAL MAD PHASES ALLOWS AN EXHAUSTIVE STUDY OF ORDERED SOLVENT MOLECULES FOR A PLATINATED DECANUCLEOTIDE 2LHB ; 2.0 ; REFINEMENT OF A MOLECULAR MODEL FOR LAMPREY HEMOGLOBIN FROM PETROMYZON MARINUS 1THB ; 1.5 ; REFINEMENT OF A PARTIALLY OXYGENATED T STATE HAEMOGLOBIN AT 1.5 ANGSTROMS RESOLUTION 1P2Z ; 2.2 ; Refinement of Adenovirus Type 2 Hexon with CNS 1P30 ; 2.5 ; Refinement of Adenovirus Type 5 Hexon with CNS 1HEW ; 1.75 ; REFINEMENT OF AN ENZYME COMPLEX WITH INHIBITOR BOUND AT PARTIAL OCCUPANCY. HEN EGG-WHITE LYSOZYME AND TRI-N-ACETYLCHITOTRIOSE AT 1.75 ANGSTROMS RESOLUTION 1LXI ; 2.0 ; Refinement of BMP7 crystal structure 1PQT ; ; REFINEMENT OF d(GCGAAGC) HAIRPIN STRUCTURE USING ONE- AND TWO-BOND RESIDUAL DIPOLAR COUPLINGS 1KR8 ; ; Refinement of d(GCGAAGC) Hairpin Structure Using One-and Two-Bonds Residual Dipolar Couplings 2RSL ; 2.3 ; REFINEMENT OF GAMMA DELTA RESOLVASE REVEALS A STRIKINGLY FLEXIBLE MOLECULE 6XIA ; 1.65 ; REFINEMENT OF GLUCOSE ISOMERASE FROM STREPTOMYCES ALBUS AT 1.65 ANGSTROMS WITH DATA FROM AN IMAGING PLATE 1GQZ ; 1.75 ; Refinement of Haemophilus influenzae Diaminopimelate epimerase at 1.7A 1LZ1 ; 1.5 ; REFINEMENT OF HUMAN LYSOZYME AT 1.5 ANGSTROMS RESOLUTION. ANALYSIS OF NON-BONDED AND HYDROGEN-BOND INTERACTIONS 4MBN ; 2.0 ; REFINEMENT OF MYOGLOBIN AND CYTOCHROME C 5CYT ; 1.5 ; REFINEMENT OF MYOGLOBIN AND CYTOCHROME C 5MBN ; 2.0 ; REFINEMENT OF MYOGLOBIN AND CYTOCHROME C 101D ; 2.25 ; REFINEMENT OF NETROPSIN BOUND TO DNA: BIAS AND FEEDBACK IN ELECTRON DENSITY MAP INTERPRETATION 2CD1 ; ; Refinement of P4 stemloop structure using residual dipolar coupling data 1XX2 ; 1.88 ; Refinement of P99 beta-lactamase from Enterobacter cloacae 3MK0 ; 1.9 ; Refinement of placental alkaline phosphatase complexed with nitrophenyl 3MK1 ; 1.57 ; Refinement of placental alkaline phosphatase complexed with nitrophenyl 4OFV ; 3.1 ; Refinement of RAGE-DNA complex in 3S58 without DNA 4OF5 ; 2.803 ; Refinement of RAGE-DNA complex in 3S59 without DNA 1RRO ; 1.3 ; REFINEMENT OF RECOMBINANT ONCOMODULIN AT 1.30 ANGSTROMS RESOLUTION 2RQ4 ; ; Refinement of RNA binding domain 3 in CUG triplet repeat RNA-binding protein 1 2RRB ; ; Refinement of RNA binding domain in human Tra2 beta protein 2CD3 ; ; Refinement of RNase P P4 stemloop structure using residual dipolar coupling data - C70U mutant 2CD6 ; ; Refinement of RNase P P4 stemloop structure using residual dipolar coupling data, C70U mutant cobalt(III) hexammine complex 2CD5 ; ; Refinement of RNase P P4 stemloop structure using residual dipolar couplings - cobalt(III) hexammine complex structure 8RXN ; 1.0 ; REFINEMENT OF RUBREDOXIN FROM DESULFOVIBRIO VULGARIS AT 1.0 ANGSTROMS WITH AND WITHOUT RESTRAINTS 1UTG ; 1.34 ; REFINEMENT OF THE C2221 CRYSTAL FORM OF OXIDIZED UTEROGLOBIN AT 1.34 ANGSTROMS RESOLUTION 2C2C ; 2.0 ; REFINEMENT OF THE CRYSTAL STRUCTURE OF OXIDIZED RHODOSPIRILLUM RUBRUM CYTOCHROME C2 3C2C ; 1.68 ; REFINEMENT OF THE CRYSTAL STRUCTURE OF OXIDIZED RHODOSPIRILLUM RUBRUM CYTOCHROME C2 1RNU ; 1.6 ; REFINEMENT OF THE CRYSTAL STRUCTURE OF RIBONUCLEASE S. COMPARISON WITH AND BETWEEN THE VARIOUS RIBONUCLEASE A STRUCTURES 1RNV ; 1.6 ; REFINEMENT OF THE CRYSTAL STRUCTURE OF RIBONUCLEASE S. COMPARISON WITH AND BETWEEN THE VARIOUS RIBONUCLEASE A STRUCTURES 2RNS ; 1.6 ; REFINEMENT OF THE CRYSTAL STRUCTURE OF RIBONUCLEASE S. COMPARISON WITH AND BETWEEN THE VARIOUS RIBONUCLEASE A STRUCTURES 2HMG ; 3.0 ; REFINEMENT OF THE INFLUENZA VIRUS HEMAGGLUTININ BY SIMULATED ANNEALING 3HMG ; 2.9 ; REFINEMENT OF THE INFLUENZA VIRUS HEMAGGLUTININ BY SIMULATED ANNEALING 4HMG ; 3.0 ; REFINEMENT OF THE INFLUENZA VIRUS HEMAGGLUTININ BY SIMULATED ANNEALING 5HMG ; 3.2 ; REFINEMENT OF THE INFLUENZA VIRUS HEMAGGLUTININ BY SIMULATED ANNEALING 2ABK ; 1.85 ; REFINEMENT OF THE NATIVE STRUCTURE OF ENDONUCLEASE III TO A RESOLUTION OF 1.85 ANGSTROM 1ACP ; ; REFINEMENT OF THE NMR STRUCTURES FOR ACYL CARRIER PROTEIN WITH SCALAR COUPLING DATA 1PVC ; 2.4 ; REFINEMENT OF THE SABIN STRAIN OF TYPE 3 POLIOVIRUS AT 2.4 ANGSTROMS AND THE CRYSTAL STRUCTURES OF ITS VARIANTS AT 2.9 ANGSTROMS RESOLUTION 1GRM ; ; REFINEMENT OF THE SPATIAL STRUCTURE OF THE GRAMICIDIN A TRANSMEMBRANE ION-CHANNEL (RUSSIAN) 1FGA ; 2.2 ; REFINEMENT OF THE STRUCTURE OF HUMAN BASIC FIBROBLAST GROWTH FACTOR AT 1.6 ANGSTROMS RESOLUTION AND ANALYSIS OF PRESUMED HEPARIN BINDING SITES BY SELENATE SUBSTITUTION 4FGF ; 1.6 ; REFINEMENT OF THE STRUCTURE OF HUMAN BASIC FIBROBLAST GROWTH FACTOR AT 1.6 ANGSTROMS RESOLUTION AND ANALYSIS OF PRESUMED HEPARIN BINDING SITES BY SELENATE SUBSTITUTION 1PAZ ; 1.55 ; REFINEMENT OF THE STRUCTURE OF PSEUDOAZURIN FROM ALCALIGENES FAECALIS S-6 AT 1.55 ANGSTROMS RESOLUTION 1IFC ; 1.19 ; REFINEMENT OF THE STRUCTURE OF RECOMBINANT RAT INTESTINAL FATTY ACID-BINDING APOPROTEIN AT 1.2 ANGSTROMS RESOLUTION 3CI2 ; ; REFINEMENT OF THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF BARLEY SERINE PROTEINASE INHIBITOR 2 AND COMPARISON WITH THE STRUCTURES IN CRYSTALS 1LZT ; 1.97 ; REFINEMENT OF TRICLINIC LYSOZYME 3LZT ; 0.925 ; REFINEMENT OF TRICLINIC LYSOZYME AT ATOMIC RESOLUTION 2LZT ; 1.97 ; REFINEMENT OF TRICLINIC LYSOZYME. II. THE METHOD OF STEREOCHEMICALLY RESTRAINED LEAST-SQUARES 1LEN ; 1.8 ; REFINEMENT OF TWO CRYSTAL FORMS OF LENTIL LECTIN AT 1.8 ANGSTROMS RESOLUTION 5L6Q ; 1.4 ; Refolded AL protein from cardiac amyloidosis 1CPI ; 2.05 ; REGIOSELECTIVE STRUCTURAL AND FUNCTIONAL MIMICRY OF PEPTIDES. DESIGN OF HYDROLYTICALLY STABLE CYCLIC PEPTIDOMIMETIC INHIBITORS OF HIV-1 PROTEASE 7JKM ; 1.78 ; REGN1 Human Fab in complex with anti-Kappa VHH domain 2N5L ; ; Regnase-1 C-terminal domain 2N5J ; ; Regnase-1 N-terminal domain 2N5K ; ; Regnase-1 Zinc finger domain 2NUU ; 2.5 ; Regulating the Escherichia coli ammonia channel: the crystal structure of the AmtB-GlnK complex 5ICD ; 2.5 ; REGULATION OF AN ENZYME BY PHOSPHORYLATION AT THE ACTIVE SITE 6ICD ; 2.8 ; REGULATION OF AN ENZYME BY PHOSPHORYLATION AT THE ACTIVE SITE 7ICD ; 2.4 ; REGULATION OF AN ENZYME BY PHOSPHORYLATION AT THE ACTIVE SITE 8ICD ; 2.5 ; REGULATION OF AN ENZYME BY PHOSPHORYLATION AT THE ACTIVE SITE 1UTX ; 1.9 ; Regulation of Cytolysin Expression by Enterococcus faecalis: Role of CylR2 1LX8 ; ; Regulation of directionality in bacteriophage lambda site-specific recombination: structure of the Xis protein 4ICD ; 2.5 ; REGULATION OF ISOCITRATE DEHYDROGENASE BY PHOSPHORYLATION INVOLVES NO LONG-RANGE CONFORMATIONAL CHANGE IN THE FREE ENZYME 1OYO ; 2.02 ; Regulation of protease activity by melanin: Crystal structure of the complex formed between proteinase K and melanin monomers at 2.0 resolution 3CVB ; 1.4 ; Regulation of Protein Function: Crystal Packing Interfaces and Conformational Dimerization 3CVC ; 1.72 ; Regulation of Protein Function: Crystal Packing Interfaces and Conformational Dimerization 3CVD ; 1.5 ; Regulation of Protein Function: Crystal Packing Interfaces and Conformational Dimerization 5TWF ; 3.136 ; Regulation of protein interactions by MOB1 phosphorylation 1ZVD ; 2.1 ; Regulation of Smurf2 Ubiquitin Ligase Activity by Anchoring the E2 to the HECT domain 2IU6 ; 2.0 ; REGULATION OF THE DHA OPERON OF LACTOCOCCUS LACTIS 4CXG ; 8.7 ; Regulation of the mammalian elongation cycle by 40S subunit rolling: a eukaryotic-specific ribosome rearrangement 4CXH ; 8.9 ; Regulation of the mammalian elongation cycle by 40S subunit rolling: a eukaryotic-specific ribosome rearrangement 4UJE ; 6.9 ; Regulation of the mammalian elongation cycle by 40S subunit rolling: a eukaryotic-specific ribosome rearrangement 1B9M ; 1.75 ; REGULATOR FROM ESCHERICHIA COLI 1B9N ; 2.09 ; REGULATOR FROM ESCHERICHIA COLI 1A12 ; 1.7 ; REGULATOR OF CHROMOSOME CONDENSATION (RCC1) OF HUMAN 6AM3 ; 1.53 ; Regulator of G protein signaling (RGS) 17 in complex with Ca2+ 2BV1 ; 2.0 ; Regulator of G-protein Signalling 1 (Human) 1GRO ; 2.5 ; REGULATORY AND CATALYTIC MECHANISMS IN ESCHERICHIA COLI ISOCITRATE DEHYDROGENASE: MULTIPLE ROLES FOR N115 1GRP ; 2.5 ; REGULATORY AND CATALYTIC MECHANISMS IN ESCHERICHIA COLI ISOCITRATE DEHYDROGENASE: MULTIPLE ROLES FOR N115 2AAO ; 2.0 ; Regulatory apparatus of Calcium Dependent protein kinase from Arabidopsis thaliana 1C7Z ; 2.6 ; REGULATORY COMPLEX OF FRUCTOSE-2,6-BISPHOSPHATASE 1C80 ; 2.2 ; REGULATORY COMPLEX OF FRUCTOSE-2,6-BISPHOSPHATASE 3T9O ; 2.2 ; Regulatory CZB domain of DgcZ 7QRI ; ; Regulatory domain dimer of tryptophan hydroxylase 2 in complex with L-Phe 5FHK ; 1.905 ; Regulatory domain of AphB in Vibrio vulnificus 5X0O ; 2.402 ; Regulatory domain of AphB treated with Cumene hydroperoxide from Vibrio vulnificus 1SPY ; ; REGULATORY DOMAIN OF HUMAN CARDIAC TROPONIN C IN THE CALCIUM-FREE STATE, NMR, 40 STRUCTURES 1AP4 ; ; REGULATORY DOMAIN OF HUMAN CARDIAC TROPONIN C IN THE CALCIUM-SATURATED STATE, NMR, 40 STRUCTURES 5YDO ; 2.0 ; Regulatory domain of HypT from Salmonella typhimurium (apo-form) 5YER ; 2.301 ; Regulatory domain of HypT from Salmonella typhimurium (Bromide ion-bound) 5YDV ; 1.752 ; Regulatory domain of HypT from Salmonella typhimurium complexed with HOCl (HOCl-bound form) 5YEZ ; 2.6 ; Regulatory domain of HypT M206Q mutant from Salmonella typhimurium 5X0N ; 2.993 ; Regulatory domain of variant C227S AphB from Vibrio vulnificus 4AB5 ; 2.51 ; Regulatory domain structure of NMB2055 (MetR) a LysR family regulator from N. meningitidis 4AB6 ; 2.8 ; Regulatory domain structure of NMB2055 (MetR), C103S C106S mutant, a LysR family regulator from N. meningitidis 1QAW ; 2.5 ; Regulatory Features of the TRP Operon and the Crystal Structure of the TRP RNA-Binding Attenuation Protein from Bacillus Stearothermophilus. 3MEI ; 1.968 ; Regulatory motif from the thymidylate synthase mRNA 1MC0 ; 2.86 ; Regulatory Segment of Mouse 3',5'-Cyclic Nucleotide Phosphodiesterase 2A, Containing the GAF A and GAF B Domains 6FLO ; 2.13869 ; Regulatory subunit of a cAMP-independent protein kinase A from Trypanosoma brucei at 2.1 Angstrom resolution 6H4G ; 2.14352 ; Regulatory subunit of a cAMP-independent protein kinase A from Trypanosoma brucei: E311A, T318R, V319A mutant bound to cAMP in the A site 6FTF ; 1.09152 ; Regulatory subunit of a cAMP-independent protein kinase A from Trypanosoma cruzi at 1.09 A resolution 6HYI ; 1.39945 ; Regulatory subunit of a cAMP-independent protein kinase A from Trypanosoma cruzi at 1.4 A resolution in complex with inosine 6HYQ ; 2.08 ; Regulatory subunit of a cAMP-independent protein kinase A from Trypanosoma cruzi bound to guanosine 1RGS ; 2.8 ; REGULATORY SUBUNIT OF CAMP DEPENDENT PROTEIN KINASE 6RSX ; 1.6 ; Regulatory Subunit of cAMP-dependant Protein Kinase A from Euglena gracilis at 1.6 A resolution 1YUP ; 2.1 ; Reindeer beta-lactoglobulin 2IV2 ; 2.27 ; Reinterpretation of reduced form of formate dehydrogenase H from E. coli 3QBA ; 1.4 ; Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Z-DNA (X-ray) 3QBA ; 1.53 ; Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Z-DNA (X-ray) 1KSB ; ; Relationship of Solution and Protein-Bound Structures of DNA Duplexes with the Major Intrastrand Cross-Link Lesions Formed on Cisplatin Binding to DNA 3CTI ; ; RELAXATION MATRIX REFINEMENT OF THE SOLUTION STRUCTURE OF SQUASH TRYPSIN INHIBITOR 1ARQ ; ; RELAXATION MATRIX REFINEMENT OF THE SOLUTION STRUCTURE OF THE ARC REPRESSOR 1ARR ; ; RELAXATION MATRIX REFINEMENT OF THE SOLUTION STRUCTURE OF THE ARC REPRESSOR 1M9L ; ; Relaxation-based Refined Structure Of Chlamydomonas Outer Arm Dynein Light Chain 1 5XK5 ; ; Relaxed state of S65-phosphorylated ubiquitin 6KOX ; ; Relaxed state of S65/T66 double-phosphorylated ubiquitin 8G8Q ; 2.6 ; RelB NLS in complex with Importin alpha 2 8G8R ; 2.6 ; RelB NLS in complex with Importin alpha 2 6ORE ; 2.9 ; Release complex 70S 6SZS ; 3.06 ; Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis 482D ; 1.54 ; RELEASE OF THE CYANO MOIETY IN THE CRYSTAL STRUCTURE OF N-CYANOMETHYL-N-(2-METHOXYETHYL)-DAUNOMYCIN COMPLEXED WITH D(CGATCG) 1BRA ; 2.2 ; RELOCATING A NEGATIVE CHARGE IN THE BINDING POCKET OF TRYPSIN 1BRC ; 2.5 ; RELOCATING A NEGATIVE CHARGE IN THE BINDING POCKET OF TRYPSIN 3AH6 ; 2.4 ; Remarkable improvement of the heat stability of CutA1 from E.coli by rational protein designing 6OBI ; ; Remarkable rigidity of the single alpha-helical domain of myosin-VI revealed by NMR spectroscopy 6DFY ; 2.623 ; Remodeled crystal structure of DNA-bound DUX4-HD2 5YDT ; 4.5 ; Remodeled Utp30 in 90S pre-ribosome (Mtr4-depleted, Enp1-TAP) 3J0S ; 9.0 ; Remodeling of actin filaments by ADF cofilin proteins 8E4G ; 3.2 ; Remodeling of the bacteriophage T7 during initial infection 2WQY ; 2.1 ; Remodelling of carboxin binding to the Q-site of avian respiratory complex II 3K0V ; 1.91 ; Removal of sugars and sugars-like molecules from the solution by C-lobe of lactoferrin: Crystal structure of the complex of C-lobe with beta-D-glucopyranosyl-(1->4)-beta-D-galactopyranosyl-(1->4)-alpha-D-glucopyranose at 1.9 A resolution 4ZCD ; 1.6605 ; Renalase in complex with NAD+ 4ZCC ; 1.997 ; Renalase in complex with NADH 5KRQ ; 2.086 ; Renalase in complex with NADPH 4XX4 ; 2.4 ; Renin in complex with (4S)-4-isopropyl-4-methyl-6-oxo-1-(3-(2-oxo-4-phenylpyrrolidin-1-yl)benzyl)tetrahydropyrimidin-2(1H)-iminium 4XX3 ; 2.4 ; Renin in complex with (S)-1-(3-(benzylcarbamoyl)benzyl)-4-isopropyl-4-methyl-6-oxotetrahydropyrimidin-2(1H)-iminium 4S1G ; 2.1 ; Renin in complex with (S)-1-(3-fluoro-5-(((S)-1-phenylethyl)carbamoyl)benzyl)-4-isopropyl-4-methyl-6-oxotetrahydropyrimidin-2(1H)-iminium 4RZ1 ; 2.6 ; RENIN IN COMPLEXED WITH (3S,4S)-4-({[4-methoxy-3-(3-methoxypropoxy)benzoyl](propan-2-yl)amino}methyl)pyrrolidin-3-yl benzylcarbamate INHIBITOR 4RYC ; 2.45 ; RENIN IN COMPLEXED WITH 4-methoxy-3-(3-methoxypropoxy)-N-{[(3S,4S)-4-{[(4-methylphenyl)sulfonyl]amino}pyrrolidin-3-yl]methyl}-N-(propan-2-yl)benzamide INHIBITOR 4RYG ; 2.65 ; RENIN IN COMPLEXED WITH N-({(3S,4S)-4-[(benzylsulfonyl)amino]pyrrolidin-3-yl}methyl)-4-methoxy-3-(3-methoxypropoxy)-N-(propan-2-yl)benzamide INHIBITOR 6TIF ; 1.6 ; ReoM- Listeria monocytogenes 1EJ6 ; 3.6 ; Reovirus core 1MUK ; 2.5 ; reovirus lambda3 native structure 1UON ; 7.6 ; REOVIRUS POLYMERASE LAMBDA-3 LOCALIZED BY ELECTRON CRYOMICROSCOPY OF VIRIONS AT 7.6-A RESOLUTION 1MWH ; 2.5 ; REOVIRUS POLYMERASE LAMBDA3 BOUND TO MRNA CAP ANALOG 1N38 ; 2.8 ; reovirus polymerase lambda3 elongation complex with one phosphodiester bond formed 6ROR ; 2.601 ; REP related 18-mer DNA 6ROS ; 2.7 ; REP related 18-mer DNA 6ROU ; 2.902 ; REP related 18-mer DNA 7Z7L ; 2.5 ; REP-related Chom18 variant with double AC mismatch 7Z82 ; 3.2 ; REP-related Chom18 variant with double AG mismatch 7Z7K ; 2.7 ; REP-related Chom18 variant with double AT base pairing 7Z7M ; 2.6 ; REP-related Chom18 variant with double CC mismatch 7Z7U ; 2.75 ; REP-related Chom18 variant with double CG base pair 7Z7W ; 2.75 ; REP-related Chom18 variant with double GC base pairing 7Z7Y ; 2.7 ; REP-related Chom18 variant with double GT mismatch 7Z7Z ; 2.9 ; REP-related Chom18 variant with double TA base pair 7Z81 ; 2.75 ; REP-related Chom18 variant with double TC mismatch 3PPT ; 1.28 ; REP1-NXSQ fatty acid transporter 3PP6 ; 1.9 ; REP1-NXSQ fatty acid transporter Y128F mutant 3URE ; 1.49 ; Repack mutant (T181I, W199L, Q210I) of alpha-Lytic Protease 1PQK ; 2.0 ; Repacking of the Core of T4 Lysozyme by Automated Design 8AMV ; 2.77 ; RepB pMV158 hexamer 8AMU ; 3.0 ; RepB pMV158 OBD domain bound to DDR region 4NI6 ; 1.1 ; Repeat domain 1 of Clostridium perfringens CPE0147 4MKM ; 1.75 ; Repeat domains 1 & 2 of Clostridium perfringens Cpe0147 6GBJ ; 1.63 ; Repertoires of functionally diverse enzymes through computational design at epistatic active-site positions 6GBK ; 1.9 ; Repertoires of functionally diverse enzymes through computational design at epistatic active-site positions 6GBL ; 1.95 ; Repertoires of functionally diverse enzymes through computational design at epistatic active-site positions 2LYI ; ; Repetitive domain (RP) of aciniform spidroin 1 from Nephila antipodiana 2UUE ; 2.06 ; REPLACE: A strategy for Iterative Design of Cyclin Binding Groove Inhibitors 2V22 ; 2.6 ; REPLACE: A strategy for Iterative Design of Cyclin Binding Groove Inhibitors 1DUR ; 2.0 ; Replacement for 1FDX 2(4FE4S) ferredoxin from (NOW) Peptostreptococcus asaccharolyticus 1CIA ; 2.5 ; REPLACEMENT OF CATALYTIC HISTIDINE-195 OF CHLORAMPHENICOL ACETYLTRANSFERASE: EVIDENCE FOR A GENERAL BASE ROLE FOR GLUTAMATE 3EAW ; 1.86 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3EBU ; 2.05 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3ED7 ; 1.56 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3EDW ; 1.75 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3EF9 ; 3.2 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3EJL ; 3.2 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3GG5 ; 2.77 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3GH0 ; 1.56 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 3GH2 ; 1.75 ; Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability 1CSU ; 1.81 ; REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C 1CSV ; 1.9 ; REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C 1CSW ; 1.9 ; REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C 1CSX ; 1.9 ; REPLACEMENTS IN A CONSERVED LEUCINE CLUSTER IN THE HYDROPHOBIC HEME POCKET OF CYTOCHROME C 1L25 ; 1.8 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L26 ; 1.7 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L27 ; 1.8 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L28 ; 1.9 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L29 ; 1.7 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L30 ; 1.7 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L31 ; 1.8 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 1L32 ; 1.7 ; REPLACEMENTS OF PRO86 IN PHAGE T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY 2CHQ ; 3.5 ; Replication Factor C ADPNP complex 2CHV ; 4.0 ; Replication Factor C ADPNP complex 2CHG ; 2.1 ; Replication Factor C domains 1 and 2 3R8F ; 3.366 ; Replication initiator DnaA bound to AMPPCP and single-stranded DNA 7SGC ; 2.7 ; Replication Initiator Protein REPE54 and cognate DNA sequence with terminal five prime phosphates. 7SPM ; 3.28 ; Replication Initiator Protein REPE54 and cognate DNA sequence with terminal three prime phosphates chemically crosslinked (30 mg/mL EDC, 12 hours, 2 doses). 7SOZ ; 3.14 ; Replication Initiator Protein REPE54 and cognate DNA sequence with terminal three prime phosphates chemically crosslinked (5 mg/mL EDC, 12 hours). 7SDP ; 3.01 ; Replication Initiator Protein REPE54 and cognate DNA sequence with terminal three prime phosphates. 1RYR ; 2.28 ; REPLICATION OF A CIS-SYN THYMINE DIMER AT ATOMIC RESOLUTION 1RYS ; 2.03 ; REPLICATION OF A CIS-SYN THYMINE DIMER AT ATOMIC RESOLUTION 3V6H ; 2.3 ; Replication of N2,3-Ethenoguanine by DNA Polymerases 3V6J ; 2.3 ; Replication of N2,3-Ethenoguanine by DNA Polymerases 3V6K ; 3.6 ; Replication of N2,3-Ethenoguanine by DNA Polymerases 1BM9 ; 2.0 ; REPLICATION TERMINATOR PROTEIN FROM BACILLUS SUBTILIS 5IOH ; 2.566 ; RepoMan-PP1a (protein phosphatase 1, alpha isoform) holoenzyme complex 5INB ; 1.3 ; RepoMan-PP1g (protein phosphatase 1, gamma isoform) holoenzyme complex 8FV5 ; 4.21 ; Representation of 16-mer phiPA3 PhuN Lattice, p2 5UJL ; ; Representative 1-conformer ensembles of K27-linked Ub2 from RDC data 5UJN ; ; Representative 2-conformer ensembles of K27-linked Ub2 from RDC data 1R9K ; ; Representative solution structure of the catalytic domain of SopE2 7SQ2 ; 2.6 ; Reprocessed and refined structure of Phospholipase C-beta and Gq signaling complex 6Z3G ; 2.78 ; Repulsive Guidance Molecule A (RGMA) in complex with Growth Differentiation Factor 5 (GDF5) 6Z3J ; 1.65 ; Repulsive Guidance Molecule B (RGMB) in complex with Growth Differentiation Factor 5 (GDF5) (crystal form 1) 6Z3H ; 3.158 ; Repulsive Guidance Molecule B (RGMB) in complex with Growth Differentiation Factor 5 (GDF5) (crystal form 2) 6Z3M ; 5.501 ; Repulsive Guidance Molecule B (RGMB) in complex with Growth Differentiation Factor 5 (GDF5) and Neogenin 1 (NEO1). 6Z3L ; 2.513 ; Repulsive Guidance Molecule C (RGMC, Hemojuvelin, HJV, HFE2) in complex with Growth Differentiation Factor 5 (GDF5) 6NR7 ; 3.0 ; Rerefinement of chicken vinculin 2H1A ; 2.4 ; ResA C74A Variant 2H1G ; 3.1 ; ResA C74A/C77A 2H1B ; 1.95 ; ResA E80Q 2H1D ; 2.6 ; ResA pH 9.25 1ZRR ; ; Residual Dipolar Coupling Refinement of Acireductone Dioxygenase from Klebsiella 1GFY ; 2.13 ; RESIDUE 259 IS A KEY DETERMINANT OF SUBSTRATE SPECIFICITY OF PROTEIN-TYROSINE PHOSPHATASE 1B AND ALPHA 6BYO ; 3.6 ; Residue assignment correction to the voltage gated calcium Cav1.1 rabbit alpha 1 subunit PDB entries 3JBR & 5GJV 2AUP ; 1.8 ; Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin 2AUO ; 1.53 ; Residue F4 plays a key role in modulating the oxygen affinity and cooperatrivity in Scapharca dimeric hemoglobin 7W91 ; 3.292 ; Residues 440-490 of centrosomal protein 63 2MU8 ; ; Residues belonging the n-terminal region derived of merozoite surface protein-2 of plasmodium falciparum 1M07 ; 1.8 ; RESIDUES INVOLVED IN THE CATALYSIS AND BASE SPECIFICITY OF CYTOTOXIC RIBONUCLEASE FROM BULLFROG (RANA CATESBEIANA) 6N86 ; 3.9 ; Resistance to inhibitors of cholinesterase 8A (Ric8A) protein 6N85 ; 2.5 ; Resistance to inhibitors of cholinesterase 8A (Ric8A) protein in complex with MBP-tagged transducin-alpha residues 327-350 1Z3Q ; 1.7 ; Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7A 4MAB ; 1.9 ; Resolving Cys to Ala variant of Salmonella Alkyl Hydroperoxide Reductase C in its substrate-ready conformation 4BXC ; 2.86 ; Resolving the activation site of positive regulators in plant phosphoenolpyruvate carboxylase 4BXH ; 2.24 ; Resolving the activation site of positive regulators in plant phosphoenolpyruvate carboxylase 2MH9 ; ; Resonance assignment of RQC domain of human Bloom syndrome protein 5I1X ; ; Resonance assignments and NMR structure determination of tarantula toxin, F8A mutant of beta-TRTX-Pre1a 5I2P ; ; Resonance assignments and NMR structure determination of tarantula toxin- W7A mutant of mu-TRTX-Pre1a (W6A in native sequence numbering) 2MZV ; ; Resonance assignments and secondary structure of a phytocystatin from Sesamum indicum 1SXL ; ; RESONANCE ASSIGNMENTS AND SOLUTION STRUCTURE OF THE SECOND RNA-BINDING DOMAIN OF SEX-LETHAL DETERMINED BY MULTIDIMENSIONAL HETERONUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2NBC ; ; Resonance assignments and structure determination of poneritoxin, omega-PONTX-Ae1a, from Anochetus emarginatus 4TVW ; 3.505 ; Resorufin ligase with bound resorufin-AMP analog 2IX9 ; 1.7 ; Respective role of protein folding and glycosylation in the thermal stability of recombinant Feruloyl Esterase A 6ADQ ; 3.5 ; Respiratory Complex CIII2CIV2SOD2 from Mycobacterium smegmatis 7NYR ; 3.3 ; Respiratory complex I from Escherichia coli - conformation 1 7NYU ; 3.8 ; Respiratory complex I from Escherichia coli - conformation 2 7NYV ; 3.7 ; Respiratory complex I from Escherichia coli - conformation 3 7NZ1 ; 2.1 ; Respiratory complex I from Escherichia coli - focused refinement of cytoplasmic arm 7NYH ; 3.6 ; Respiratory complex I from Escherichia coli - focused refinement of membrane arm 6Y11 ; 3.109 ; Respiratory complex I from Thermus thermophilus 6Q8W ; 3.4 ; Respiratory complex I from Thermus thermophilus with bound Aureothin. 6I0D ; 3.6 ; Respiratory complex I from Thermus thermophilus with bound Decyl-Ubiquinone 6I1P ; 3.207 ; Respiratory complex I from Thermus thermophilus with bound NADH 6Q8O ; 3.605 ; Respiratory complex I from Thermus thermophilus with bound Piericidin A 6Q8X ; 3.508 ; Respiratory complex I from Thermus thermophilus with bound Pyridaben. 6ZJL ; 4.3 ; Respiratory complex I from Thermus thermophilus, NAD+ dataset, major state 6ZJY ; 5.5 ; Respiratory complex I from Thermus thermophilus, NAD+ dataset, minor state 6ZIY ; 4.25 ; Respiratory complex I from Thermus thermophilus, NADH dataset, major state 6ZJN ; 6.1 ; Respiratory complex I from Thermus thermophilus, NADH dataset, minor state 1QLB ; 2.33 ; respiratory complex II-like fumarate reductase from Wolinella succinogenes 2WJ8 ; 3.29 ; Respiratory Syncitial Virus RiboNucleoProtein 6OJ7 ; 1.45 ; Respiratory syncytial virus fusion glycoprotein N-terminal heptad repeat domain+VIQKI I456F 6NTX ; 2.2 ; Respiratory syncytial virus fusion protein N-terminal heptad repeat domain+VIQKI 8IUO ; 3.96 ; respiratory syncytial virus nucleocapsid-like assembly 1BN9 ; ; RESPONSE ELEMENT OF THE ORPHAN NUCLEAR RECEPTOR REV-ERB BETA 1I3C ; 1.9 ; RESPONSE REGULATOR FOR CYANOBACTERIAL PHYTOCHROME, RCP1 1W25 ; 2.7 ; Response regulator PleD in complex with c-diGMP 3AHC ; 1.7 ; Resting form of Phosphoketolase from Bifidobacterium Breve 2IWF ; 1.86 ; Resting form of pink nitrous oxide reductase from Achromobacter Cycloclastes 4WHP ; 1.541 ; Resting Protocatechuate 3,4-dioxygenase (pseudomonas putida) at pH 6.5 4WHO ; 1.83 ; Resting Protocatechuate 3,4-dioxygenase (pseudomonas putida) at pH 8.5 5ONX ; 1.6 ; Resting state copper nitrite reductase determined by serial femtosecond rotation crystallography 7OCA ; 3.4 ; Resting state full-length GluA1/A2 heterotertramer in complex with TARP gamma 8 and CNIH2 7OCE ; 3.1 ; Resting state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and CNIH2 (LBD-TMD) 8AYM ; 3.3 ; Resting state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and ligand JNJ-55511118 8AYL ; 3.2 ; Resting state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and ligand JNJ-61432059 8AYN ; 2.8 ; Resting state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and ligand LY3130481 7OCD ; 3.5 ; Resting state GluA1/A2 heterotetramer in complex with auxiliary subunit TARP gamma 8 (LBD-TMD) 8C1Q ; 2.82 ; Resting state homomeric GluA1 AMPA receptor in complex with TARP gamma 3 8C1R ; 3.2 ; Resting state homomeric GluA2 F231A mutant AMPA receptor in complex with TARP gamma-2 4AQ2 ; 1.95 ; resting state of homogentisate 1,2-dioxygenase 4KWJ ; 1.75 ; Resting state of rat cysteine dioxygenase 4YYO ; 1.77 ; Resting state of rat cysteine dioxygenase C164S variant 4UBG ; 1.9 ; Resting state of rat cysteine dioxygenase C93G variant 4YSF ; 1.94 ; Resting state of rat cysteine dioxygenase H155N variant 5EFU ; 2.8 ; Resting state of rat cysteine dioxygenase H155Q variant 6U1M ; 1.61 ; Resting state of rat cysteine dioxygenase R60E variant 4UBH ; 1.81 ; Resting state of rat cysteine dioxygenase Y157F variant 6S6V ; 3.5 ; Resting state of the E. coli Mre11-Rad50 (SbcCD) head complex bound to ATPgS 5F7B ; 1.56 ; Resting state structure of CuNiR form Alcaligenes faecalis determined at 293 K 6ZWZ ; 1.2 ; Resting state structure of the OMPD-domain of human UMPS variant (K314AcK) at 1.2 Angstroms resolution 1RPO ; 1.4 ; RESTORED HEPTAD PATTERN CONTINUITY DOES NOT ALTER THE FOLDING OF A 4-ALPHA-HELICAL BUNDLE 2M8W ; ; Restrained CS-Rosetta Solution NMR Structure of Staphylococcus aureus protein SAV1430. Northeast Structural Genomics Target ZR18. Structure determination 2M8X ; ; Restrained CS-Rosetta Solution NMR structure of the CARDB domain of PF1109 from Pyrococcus furiosus. Northeast Structural Genomics Consortium target PfR193A 3AIT ; ; RESTRAINED ENERGY REFINEMENT WITH TWO DIFFERENT ALGORITHMS AND FORCE FIELDS OF THE STRUCTURE OF THE ALPHA-AMYLASE INHIBITOR TENDAMISTAT DETERMINED BY NMR IN SOLUTION 4AIT ; ; RESTRAINED ENERGY REFINEMENT WITH TWO DIFFERENT ALGORITHMS AND FORCE FIELDS OF THE STRUCTURE OF THE ALPHA-AMYLASE INHIBITOR TENDAMISTAT DETERMINED BY NMR IN SOLUTION 1CDP ; 1.6 ; RESTRAINED LEAST SQUARES REFINEMENT OF NATIVE (CALCIUM) AND CADMIUM-SUBSTITUTED CARP PARVALBUMIN USING X-RAY CRYSTALLOGRAPHIC DATA AT 1.6-ANGSTROMS RESOLUTION 5CPV ; 1.6 ; RESTRAINED LEAST SQUARES REFINEMENT OF NATIVE (CALCIUM) AND CADMIUM-SUBSTITUTED CARP PARVALBUMIN USING X-RAY CRYSTALLOGRAPHIC DATA AT 1.6-ANGSTROMS RESOLUTION 1RNT ; 1.9 ; RESTRAINED LEAST-SQUARES REFINEMENT OF THE CRYSTAL STRUCTURE OF THE RIBONUCLEASE T1(ASTERISK)2(PRIME)-GUANYLIC ACID COMPLEX AT 1.9 ANGSTROMS RESOLUTION 1PPD ; 2.0 ; RESTRAINED LEAST-SQUARES REFINEMENT OF THE SULFHYDRYL PROTEASE PAPAIN TO 2.0 ANGSTROMS 1TRA ; 3.0 ; RESTRAINED REFINEMENT OF THE MONOCLINIC FORM OF YEAST PHENYLALANINE TRANSFER RNA. TEMPERATURE FACTORS AND DYNAMICS, COORDINATED WATERS, AND BASE-PAIR PROPELLER TWIST ANGLES 2TRA ; 3.0 ; RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS 3TRA ; 3.0 ; RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS 4TRA ; 3.0 ; RESTRAINED REFINEMENT OF TWO CRYSTALLINE FORMS OF YEAST ASPARTIC ACID AND PHENYLALANINE TRANSFER RNA CRYSTALS 7KRT ; 2.79 ; Restraining state of a truncated Hsp70 DnaK 7KO2 ; 2.64 ; Restraining state of near full-length Hsp70 DnaK 4JKP ; 2.82 ; Restricting HIV-1 Pathways for Escape using Rationally-Designed Anti-HIV-1 Antibodies 1ESG ; 1.9 ; RESTRICTION ENDONUCLEASE BAMHI BOUND TO A NON-SPECIFIC DNA. 1BHM ; 2.2 ; RESTRICTION ENDONUCLEASE BAMHI COMPLEX WITH DNA 2BAM ; 2.0 ; RESTRICTION ENDONUCLEASE BAMHI COMPLEX WITH DNA AND CALCIUM IONS (PRE-REACTIVE COMPLEX). 3BAM ; 1.8 ; RESTRICTION ENDONUCLEASE BAMHI COMPLEX WITH DNA AND MANGANESE IONS (POST-REACTIVE COMPLEX) 2Q10 ; 1.75 ; RESTRICTION ENDONUCLEASE BcnI (WILD TYPE)-COGNATE DNA SUBSTRATE COMPLEX 2ODH ; 1.6 ; Restriction Endonuclease BCNI in the Absence of DNA 2ODI ; 1.45 ; Restriction Endonuclease BCNI-Cognate DNA Substrate Complex 4ESJ ; 2.05 ; RESTRICTION ENDONUCLEASE DpnI IN COMPLEX WITH TARGET DNA 4KYW ; 2.35 ; Restriction endonuclease DPNI in complex with two DNA molecules 1B94 ; 1.9 ; RESTRICTION ENDONUCLEASE ECORV WITH CALCIUM 3OR3 ; 1.95 ; Restriction endonuclease HPY188I in complex with product DNA 3OQG ; 1.75 ; Restriction endonuclease HPY188I in complex with substrate DNA 3NDH ; 1.3 ; Restriction endonuclease in complex with substrate DNA 2OA9 ; 1.5 ; Restriction endonuclease MvaI in the absence of DNA 2OAA ; 1.5 ; Restriction endonuclease MvaI-cognate DNA substrate complex 3BM3 ; 1.7 ; Restriction endonuclease PspGI-substrate DNA complex 1DC1 ; 1.7 ; RESTRICTION ENZYME BSOBI/DNA COMPLEX STRUCTURE: ENCIRCLEMENT OF THE DNA AND HISTIDINE-CATALYZED HYDROLYSIS WITHIN A CANONICAL RESTRICTION ENZYME FOLD 5TGQ ; 1.88 ; Restriction-modification system Type II R.SwaI, DNA free 5TGX ; 2.3 ; Restriction/modification system-Type II R-SwaI complexed with partially cleaved DNA 5TH3 ; 2.33 ; Restriction/modification system-Type II R.SwaI cleaved DNA complex 7BWU ; 1.87 ; Restructuring hemagglutinin-neuraminidase (HN) of Newcastle disease virus produced from Oryza sativa 6UR5 ; 4.0 ; Resurfaced influenza hemagglutinin in complex with a broadly neutralizing antibody 5TDX ; 1.96 ; Resurrected Ancestral Hydroxynitrile Lyase from Flowering Plants 3Q8G ; 1.8 ; Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution 7YS5 ; ; RET G-quadruplex in 10mM Na+ 7YS7 ; ; RET oncogene primer G4-DNA in 100mMNa+ 4UX8 ; 24.0 ; RET recognition of GDNF-GFRalpha1 ligand by a composite binding site promotes membrane-proximal self-association 7AML ; 3.5 ; RET/GDNF/GFRa1 extracellular complex Cryo-EM structure 8CEU ; 1.83 ; Retapamulin and Capreomycin bound to the 50S subunit 1BI9 ; 2.7 ; RETINAL DEHYDROGENASE TYPE TWO WITH NAD BOUND 6G7K ; 1.9 ; Retinal isomerization in bacteriorhodopsin revealed by a femtosecond X-ray laser: 10 ps state structure 6G7J ; 1.9 ; Retinal isomerization in bacteriorhodopsin revealed by a femtosecond X-ray laser: 457-646 fs state structure 6G7I ; 1.9 ; Retinal isomerization in bacteriorhodopsin revealed by a femtosecond X-ray laser: 49-406 fs state structure 6G7L ; 1.9 ; Retinal isomerization in bacteriorhodopsin revealed by a femtosecond X-ray laser: 8.3 ms state structure 6G7H ; 1.5 ; Retinal isomerization in bacteriorhodopsin revealed by a femtosecond X-ray laser: resting state structure 1GH6 ; 3.2 ; RETINOBLASTOMA POCKET COMPLEXED WITH SV40 LARGE T ANTIGEN 2VE3 ; 2.1 ; Retinoic acid bound cyanobacterial CYP120A1 4OC7 ; 2.5 ; Retinoic acid receptor alpha in complex with (E)-3-(3'-allyl-6-hydroxy-[1,1'-biphenyl]-3-yl)acrylic acid and a fragment of the coactivator TIF2 5EC9 ; 2.3 ; Retinoic acid receptor alpha in complex with chiral dihydrobenzofuran benzoic acid 9a and a fragment of the coactivator TIF2 7WQQ ; 1.9 ; Retinoic acid receptor alpha mutant - N299H 6UCG ; 2.87 ; Retinoic acid receptor-related orphan receptor (ROR) gamma in complex with allosteric compound 28 2NLL ; 1.9 ; RETINOID X RECEPTOR-THYROID HORMONE RECEPTOR DNA-BINDING DOMAIN HETERODIMER BOUND TO THYROID RESPONSE ELEMENT DNA 1RLB ; 3.1 ; RETINOL BINDING PROTEIN COMPLEXED WITH TRANSTHYRETIN 1AQB ; 1.65 ; RETINOL-BINDING PROTEIN (RBP) FROM PIG PLASMA 5N6W ; 4.2 ; Retinoschisin R141H Mutant 5XK4 ; ; Retracted state of S65-phosphorylated ubiquitin 6KOW ; ; Retracted state of S65/T66 double-phosphorylated ubiquitin 2LUF ; ; Retro Trp-cage peptide 1LO2 ; 2.0 ; Retro-Diels-Alderase Catalytic Antibody 1LO4 ; 2.4 ; Retro-Diels-Alderase Catalytic antibody 9D9 1LO3 ; 2.3 ; Retro-Diels-Alderase Catalytic Antibody: Product Analogue 1BFW ; ; RETRO-INVERSO ANALOGUE OF THE G-H LOOP OF VP1 IN FOOT-AND-MOUTH-DISEASE (FMD) VIRUS, NMR, 10 STRUCTURES 6DN0 ; 2.0 ; Retrofitted antibodies with stabilizing mutations: Herceptin scFv mutant with VH K30D and VL S52D. 4X4X ; 2.25 ; Retrofitting antibodies with stabilizing mutations. Herceptin scFv mutant. 4X4Z ; 1.8 ; Retrofitting antibodies with stabilizing mutations. Herceptin VL mutant F53D. 6DK7 ; 2.6 ; RetS histidine kinase region with cobalt 6DK8 ; 3.8 ; RetS kinase region without cobalt 1ETG ; ; REV RESPONSE ELEMENT (RRE) RNA COMPLEXED WITH REV PEPTIDE, NMR, 19 STRUCTURES 1ETF ; ; REV RESPONSE ELEMENT (RRE) RNA COMPLEXED WITH REV PEPTIDE, NMR, MINIMIZED AVERAGE STRUCTURE 6X76 ; 2.53 ; Rev1 L325G Mn2+-facilitated Product Complex with second dCTP bound 6X71 ; 1.78 ; Rev1 Mg2+-facilitated Intermediate complex with reactant dCTP and product dCMP 6X74 ; 1.69 ; Rev1 Mg2+-facilitated Product Complex with no monophosphates 6X73 ; 2.05 ; Rev1 Mg2+-facilitated Product Complex with one monophosphate 6X72 ; 2.19 ; Rev1 Mg2+-facilitated Product Complex with two monophosphates 6X75 ; 1.95 ; Rev1 Mn2+-facilitated Product Complex with second dCTP bound 6X77 ; 1.64 ; Rev1 R518A Ternary Complex with dCTP and Ca2+ 7T1A ; 1.81 ; Rev1 Ternary Complex with dATP and Ca2+ 6X6Z ; 1.4 ; Rev1 Ternary Complex with dCTP and Ca2+ 7T19 ; 2.01 ; Rev1 Ternary Complex with dGTP and Ca2+ 7T18 ; 1.7 ; Rev1 Ternary Complex with dTTP and Ca2+ 7T1B ; 1.75 ; Rev1 Ternary Complex with rCTP and Ca2+ 6ASR ; 2.356 ; REV1 UBM2 domain complex with ubiquitin 6X70 ; 2.05 ; Rev1-DNA Binary Complex 4DQM ; 2.75 ; Revealing a marine natural product as a novel agonist for retinoic acid receptors with a unique binding mode and antitumor activity 3QT0 ; 2.496 ; Revealing a steroid receptor ligand as a unique PPARgamma agonist 5C7R ; 1.94 ; Revealing surface waters on an antifreeze protein by fusion protein crystallography 4REU ; 2.5 ; Revelation of Endogenously bound Fe2+ ions in the Crystal Structure of Ferritin from Escherichia coli 1A6Y ; 2.3 ; REVERBA ORPHAN NUCLEAR RECEPTOR/DNA COMPLEX 4YGV ; 1.76 ; Reversal Agent for Dabigatran 4YHI ; 1.9 ; Reversal Agent for Dabigatran 4YHK ; 2.21 ; Reversal Agent for Dabigatran 4YHL ; 2.09 ; Reversal Agent for Dabigatran 4YHM ; 2.16 ; Reversal Agent for Dabigatran 4YHO ; 1.82 ; Reversal Agent for Dabigatran 3PLF ; 1.92 ; Reverse Binding Mode of MetRD peptide complexed with c-Cbl TKB domain 1GKU ; 2.7 ; Reverse gyrase from Archaeoglobus fulgidus 4MLB ; 2.349 ; Reverse polarity of binding pocket suggests different function of a MOP superfamily transporter from Pyrococcus furiosus Vc1 (DSM3638) 1P43 ; 1.8 ; REVERSE PROTONATION IS THE KEY TO GENERAL ACID-BASE CATALYSIS IN ENOLASE 1P48 ; 2.0 ; REVERSE PROTONATION IS THE KEY TO GENERAL ACID-BASE CATALYSIS IN ENOLASE 6VUN ; 1.4 ; Reverse Transcriptase Diabody with R83C Mutation 7KBM ; 2.0 ; Reverse Transcriptase Diabody with R83C Mutation Crystallized in C2 6VRP ; 1.6 ; Reverse Transcriptase Diabody with R83T Mutation 6VUP ; 1.4 ; Reverse Transcriptase Diabody with R83T/E85C Mutations 7KBO ; 2.2 ; Reverse Transcriptase Diabody with S82bC, R83T Mutations Crystallized in C2 6VUO ; 1.449 ; Reverse Transcriptase Diabody with S82bC/R83T Mutation 5HHL ; 2.1 ; Reverse transcriptase domain of group II intron maturase from Eubacterium rectale in P21 space group 5IRF ; 1.6 ; Reverse transcriptase domain of group II intron maturase from Roseburia intestinalis in P1 space group 5HHJ ; 1.2 ; Reverse transcriptase domain of group II intron maturase from Roseburia intestinalis in P21 space group 5HHK ; 1.4 ; Reverse transcriptase domain of group II intron maturase from Roseburia intestinalis in P21 space group (Se-MET) 5IRG ; 2.3 ; Reverse transcriptase domain of group II intron maturase from Roseburia intestinalis in P212121 space group 3BNA ; 3.0 ; REVERSIBLE BENDING AND HELIX GEOMETRY IN A B-DNA DODECAMER: CGCGAATTBRCGCG 4BNA ; 2.3 ; REVERSIBLE BENDING AND HELIX GEOMETRY IN A B-DNA DODECAMER: CGCGAATTBRCGCG 6CYM ; 2.9 ; Reversible Covalent Direct Thrombin Inhibitors 7FIC ; 2.32 ; Reversible lysine-targeted probes reveal residence time-based kinase selectivity in vivo 4WKX ; 1.94 ; Reversible S-Nitrosylation in an Engineered Mutant of Pseudomonas aeruginosa Azurin with Red Copper Site 7O76 ; 1.131 ; Reversible supramolecular assembly of the anti-microbial peptide plectasin 3A3K ; 2.5 ; Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain 5EXU ; 1.65 ; Reversibly photoswitching protein Dathail, Ensemble refinement 1C94 ; 2.08 ; REVERSING THE SEQUENCE OF THE GCN4 LEUCINE ZIPPER DOES NOT AFFECT ITS FOLD. 3PEP ; 2.3 ; REVISED 2.3 ANGSTROMS STRUCTURE OF PORCINE PEPSIN. EVIDENCE FOR A FLEXIBLE SUBDOMAIN 2C7E ; 14.9 ; REVISED ATOMIC STRUCTURE FITTING INTO A GROEL(D398A)-ATP7 CRYO-EM MAP (EMD 1047) 6RVD ; 3.5 ; Revised cryo-EM structure of the human 2:1 Ptch1-Shh complex 4K6A ; 1.8 ; Revised Crystal Structure of apo-form of Triosephosphate Isomerase (tpiA) from Escherichia coli at 1.8 Angstrom Resolution. 6CGV ; 3.8 ; Revised crystal structure of human adenovirus 5LXG ; 2.73 ; Revised crystal structure of the human adiponectin receptor 1 in an open conformation 5LWY ; 2.4 ; Revised crystal structure of the human adiponectin receptor 2 in complex with a C18 free fatty acid 5WFN ; 3.0 ; Revised model of leiomodin 2-mediated actin regulation (alternate refinement of PDB 4RWT) 1ZUE ; ; Revised Solution Structure of DLP-2 4MZ9 ; 2.2 ; Revised structure of E. coli SSB 2P0M ; 2.4 ; Revised structure of rabbit reticulocyte 15S-lipoxygenase 3C98 ; 2.601 ; Revised structure of the munc18a-syntaxin1 complex 8FFR ; 3.49 ; Revised structure of the rabies virus nucleoprotein-RNA complex 4EXO ; 1.9 ; Revised, rerefined crystal structure of PDB entry 2QHK, methyl accepting chemotaxis protein 5FL2 ; 6.2 ; Revisited cryo-EM structure of Inducible lysine decarboxylase complexed with LARA domain of RavA ATPase 2XB6 ; 2.6 ; Revisited crystal structure of Neurexin1beta-Neuroligin4 complex 6RH8 ; 1.9 ; Revisiting pH-gated conformational switch. Complex HK853 mutant H260A -RR468 mutant D53A pH 5.3 6RH7 ; 2.0 ; Revisiting pH-gated conformational switch. Complex HK853 mutant H260A -RR468 mutant D53A pH 7.5 6RH2 ; 2.0 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 D53A pH 5.3 6RH1 ; 2.0 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 D53A pH 7 6RH0 ; 2.87 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 pH 5.5 6RGZ ; 2.35 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 pH 6.5 6RFV ; 2.83 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 pH 7 6RGY ; 2.2 ; Revisiting pH-gated conformational switch. Complex HK853-RR468 pH 7.5 6OSK ; 3.6 ; RF1 accommodated 70S complex at 60 ms 6OSQ ; 3.5 ; RF1 accommodated state bound Release complex 70S at long incubation time point 6ORL ; 3.5 ; RF1 pre-accommodated 70S complex at 24 ms 6OUO ; 3.7 ; RF2 accommodated state bound 70S complex at long incubation time 6OT3 ; 3.9 ; RF2 accommodated state bound Release complex 70S at 24 ms 2IHR ; 2.5 ; RF2 of Thermus thermophilus 6OST ; 4.2 ; RF2 pre-accommodated state bound Release complex 70S at 24ms 8B4J ; 1.58 ; Rfa1-N-terminal domain in complex with phosphorylated Ddc2 8B4K ; 1.55 ; Rfa1-N-terminal domain in complex with phosphorylated Ddc2 5OND ; 2.1 ; RfaH from Escherichia coli in complex with ops DNA 7U1P ; 3.0 ; RFC:PCNA bound to DNA with a ssDNA gap of five nucleotides 7U1A ; 3.3 ; RFC:PCNA bound to dsDNA with a ssDNA gap of six nucleotides 7U19 ; 3.7 ; RFC:PCNA bound to nicked DNA 7KWO ; 2.9 ; rFVIIIFc-VWF-XTEN (BIVV001) 6MEW ; 1.78 ; RFXANK ankyrin repeats in complex with a RFX7 peptide 7ZCV ; 1.9 ; Rgg144 of Streptococcus pneumoniae 6K88 ; 1.788 ; RGLG1 MIDAS binds calcium ion 6K82 ; 1.402 ; RGLG1 mutant-D338A E378A 6K8A ; 2.4 ; RGLG1 VWA domain with MIDAS is occupied by water 1FQI ; 1.94 ; RGS9 RGS DOMAIN 2O1I ; 1.1 ; RH(BPY)2CHRYSI complexed to mismatched DNA 1TGG ; 2.0 ; RH3 DESIGNED RIGHT-HANDED COILED COIL TRIMER 1RH4 ; 1.9 ; RH4 DESIGNED RIGHT-HANDED COILED COIL TETRAMER 2O6N ; 1.1 ; RH4B: designed right-handed coiled coil tetramer with all biological amino acids 1DEO ; 1.55 ; RHAMNOGALACTURONAN ACETYLESTERASE FROM ASPERGILLUS ACULEATUS AT 1.55 A RESOLUTION WITH SO4 IN THE ACTIVE SITE 1DEX ; 1.9 ; RHAMNOGALACTURONAN ACETYLESTERASE FROM ASPERGILLUS ACULEATUS AT 1.9 A RESOLUTION 1K7C ; 1.12 ; Rhamnogalacturonan acetylesterase with seven N-linked carbohydrate residues distributed at two N-glycosylation sites refined at 1.12 A resolution 5OLQ ; 1.48 ; Rhamnogalacturonan lyase 5OLR ; 1.07 ; Rhamnogalacturonan lyase 5OLS ; 2.2 ; Rhamnogalacturonan lyase 1NKG ; 1.5 ; Rhamnogalacturonan lyase from Aspergillus aculeatus 2XHN ; 1.52 ; Rhamnogalacturonan lyase from Aspergillus aculeatus K150A active site mutant 3NJV ; 2.4 ; Rhamnogalacturonan lyase from Aspergillus aculeatus K150A substrate complex 3NJX ; 1.94 ; Rhamnogalacturonan Lyase from Aspergillus aculeatus mutant H210A 1RMG ; 2.0 ; RHAMNOGALACTURONASE A FROM ASPERGILLUS ACULEATUS 2ZX0 ; 1.9 ; Rhamnose-binding lectin CSL3 2ZX1 ; 1.9 ; Rhamnose-binding lectin CSL3 2ZX2 ; 1.8 ; Rhamnose-binding lectin CSL3 2ZX3 ; 2.1 ; Rhamnose-binding lectin CSL3 2ZX4 ; 2.7 ; Rhamnose-binding lectin CSL3 4XHC ; 2.7 ; rhamnosidase from Klebsiella oxytoca with rhamnose bound 1YBK ; 1.45 ; RHCC cocrystallized with CAPB 5JR5 ; 1.9 ; RHCC in Complex with Elemental Sulfur 5VKF ; 2.752 ; RHCC in complex with Naphthalene 7R6H ; 2.2 ; RHCC in complex with o-carborane 5VH0 ; 2.055 ; RHCC in complex with pyrene 6BRI ; 3.266 ; RHCC with unreduced and reduced Mercury complexes 6MNQ ; 1.804 ; Rhesus macaque anti-HIV V3 antibody DH727.2 with gp120 V3 ZAM18 peptide 6MNR ; 2.201 ; Rhesus macaque anti-HIV V3 antibody DH753 with gp120 V3 ZAM18 peptide 6MNS ; 2.7 ; Rhesus macaque anti-HIV V3 antibody DH753 with gp120 V3 ZAM18 peptide 3RWE ; 2.4 ; rhesus macaque MHC class I molecule Mamu-B*17-FW9 3RWI ; 2.009 ; Rhesus macaque MHC class I molecule Mamu-B*17-GW10 3RWJ ; 2.7 ; Rhesus macaque MHC class I molecule Mamu-B*17-HW8 3RWD ; 2.602 ; rhesus macaque MHC class I molecule Mamu-B*17-IW11 3RWH ; 2.6 ; Rhesus macaque MHC class I molecule Mamu-B*17-MF8 3RWG ; 2.1 ; Rhesus macaque MHC class I molecule Mamu-B*17-MW9 3RWF ; 2.6 ; Rhesus macaque MHC class I molecule Mamu-B*17-QW9 5K3Q ; 1.8 ; Rhesus macaques Trim5alpha Bbox2 domain 7N0X ; 2.0 ; Rhesusized RV144 DH827 Fab bound to HIV-1 Env V2 peptide 7N8Q ; 2.9 ; Rhesusized RV305 DH677.3 Fab bound to Clade A/E 93TH057 HIV-1 gp120 core. 1RUF ; 2.9 ; RHINOVIRUS 14 (HRV14) (MUTANT WITH ASN 1 219 REPLACED BY ALA (N219A IN CHAIN 1) 7NUO ; 3.9 ; Rhinovirus 14 empty particle at pH 6.2 7NUN ; 3.6 ; Rhinovirus 14 ICAM-1 virion-like particle at pH 6.2 1RUC ; 3.1 ; RHINOVIRUS 14 MUTANT N1105S COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52035 1RUD ; 2.9 ; RHINOVIRUS 14 MUTANT N1105S COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52084 1RUG ; 3.0 ; RHINOVIRUS 14 MUTANT N1219S COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52035 1RUH ; 3.0 ; RHINOVIRUS 14 MUTANT N1219S COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52084 1RUI ; 3.0 ; RHINOVIRUS 14 MUTANT S1223G COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52084 1RUJ ; 3.0 ; RHINOVIRUS 14 MUTANT WITH SER 1 223 REPLACED BY GLY (S1223G) 1RUE ; 2.9 ; RHINOVIRUS 14 SITE DIRECTED MUTANT N1219A COMPLEXED WITH ANTIVIRAL COMPOUND WIN 52035 7NUQ ; 2.8 ; Rhinovirus 14 virion-like at pH 6.2 4K50 ; 2.93 ; Rhinovirus 16 polymerase elongation complex (r1_form) 7ARA ; 2.243 ; Rhinovirus A2 2A protease in complex with zVAM.fmk 6PPO ; 3.2 ; Rhinovirus C15 complexed with domain I of receptor CDHR3 6PSF ; 3.5 ; Rhinovirus C15 complexed with domains I and II of receptor CDHR3 7NUL ; 4.0 ; Rhinovirus-14 ICAM-1 activated particle at pH 6.2 7NUM ; 3.9 ; Rhinovirus-14 ICAM-1 empty particle at pH 6.2 5VJV ; 1.95 ; Rhizobiales-like phosphatase 2 6QPP ; 1.49 ; Rhizomucor miehei lipase propeptide complex, native 6QPR ; 1.45 ; Rhizomucor miehei lipase propeptide complex, Ser95/Ile96 deletion mutant 8IK2 ; 2.151 ; RhlA exhibits dual thioesterase and acyltransferase activities during rhamnolipid biosynthesis 5JJK ; 3.15 ; Rho transcription termination factor bound to rA7 and 6 ADP-BeF3 molecules 3ICE ; 2.8 ; Rho transcription termination factor bound to RNA and ADP-BeF3 5JJI ; 2.601 ; Rho transcription termination factor bound to rU7 and 6 ADP-BeF3 molecules 5JJL ; 3.2 ; Rho transcription termination factor bound to rU8 and 5 ADP-BeF3 molecules 2A8V ; 2.4 ; RHO TRANSCRIPTION TERMINATION FACTOR/RNA COMPLEX 5HVU ; 2.8 ; Rho-associated protein kinase 1 (ROCK 1) in complex with a pyridine thiazole piperidine inhibitor 3TWJ ; 2.9 ; Rho-associated protein kinase 1 (ROCK 1) IN COMPLEX WITH RKI1447 1TX4 ; 1.65 ; RHO/RHOGAP/GDP(DOT)ALF4 COMPLEX 5C4M ; 1.3 ; RhoA GDP with novel switch II conformation 5ENS ; 2.8 ; Rhodamine bound structure of bacterial efflux pump. 2ORA ; 1.99 ; RHODANESE (THIOSULFATE: CYANIDE SULFURTRANSFERASE) 2JTQ ; ; Rhodanese from E.coli 2JTR ; ; rhodanese persulfide from E. coli 2JTS ; ; rhodanese with anions from E. coli 1ZRT ; 3.51 ; Rhodobacter capsulatus cytochrome bc1 complex with stigmatellin bound 5AWH ; 2.0 ; Rhodobacter sphaeroides Argonaute in complex with guide RNA/target DNA heteroduplex 6NHH ; 3.0 ; Rhodobacter sphaeroides bc1 with azoxystrobin 5KKZ ; 2.97 ; Rhodobacter sphaeroides bc1 with famoxadone 6NIN ; 3.6 ; Rhodobacter sphaeroides bc1 with STIGMATELLIN A 5KLI ; 2.996 ; Rhodobacter sphaeroides bc1 with stigmatellin and antimycin 1JO5 ; ; Rhodobacter sphaeroides Light Harvesting 1 beta Subunit in Detergent Micelles 6NHG ; 2.8 ; Rhodobacter sphaeroides Mitochondrial respiratory chain complex 7TLJ ; 2.91 ; Rhodobacter sphaeroides Mitochondrial respiratory chain complex 5THP ; 3.006 ; Rhodocetin in complex with the integrin alpha2-A domain 6ND8 ; 2.9 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN AND BARIUM 6NDA ; 3.15 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN AND CADMIUM 6NDB ; 3.2 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN AND COBALT 6NDH ; 2.9 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN AND ZINC 6ND9 ; 2.9 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH CALCIUM 6NDC ; 3.35 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH CHROMIUM BOUND 6NDD ; 3.05 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH MANGANESE BOUND 6NDE ; 3.5 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH PRASEDYMIUM 6NDF ; 3.05 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH STRONTIUM 6NDG ; 3.15 ; RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DOMAIN WITH YTTRIUM BOUND 3VEC ; 2.6 ; Rhodococcus jostii RHA1 DypB D153A variant in complex with heme 3VED ; 2.5 ; Rhodococcus jostii RHA1 DypB D153H variant in complex with heme 3VEE ; 2.4 ; Rhodococcus jostii RHA1 DypB N246A variant in complex with heme 3VEF ; 2.64 ; Rhodococcus jostii RHA1 DypB N246H variant in complex with heme 3VEG ; 2.35 ; Rhodococcus jostii RHA1 DypB R244L variant in complex with heme 7ORX ; 2.6 ; Rhodococcus jostii RHA1 thiamine diphosphate-dependent 4-hydroxybenzoylformate decarboxylase 2PRN ; 1.93 ; RHODOPSEUDOMONAS BLASTICA PORIN, TRIPLE MUTANT E1M, E99W, A116W 4JB2 ; 2.1 ; Rhodopseudomonas palustris (strain CGA009) Rp1789 4JB0 ; 1.91 ; Rhodopseudomonas palustris (strain CGA009) Rp1789 transport protein 1I8O ; 1.15 ; RHODOPSEUDOMONAS PALUSTRIS CYT C2 AMMONIA COMPLEX AT 1.15 ANGSTROM RESOLUTION 2I4L ; 2.0 ; Rhodopseudomonas palustris prolyl-tRNA synthetase 2I4O ; 2.4 ; Rhodopseudomonas palustris prolyl-tRNA synthetase in complex with ATP 2I4N ; 2.85 ; Rhodopseudomonas palustris prolyl-tRNA synthetase in complex with CysAMS 2I4M ; 2.8 ; Rhodopseudomonas palustris prolyl-tRNA synthetase in complex with ProAMS 7MT9 ; 7.0 ; Rhodopsin kinase (GRK1) in complex with rhodopsin 3T8O ; 2.5 ; Rhodopsin kinase (GRK1) L166K mutant at 2.5A resolution 7MT8 ; 5.8 ; Rhodopsin kinase (GRK1)-S5E/S488E/T489E in complex with rhodopsin 7MTA ; 4.1 ; Rhodopsin kinase (GRK1)-S5E/S488E/T489E in complex with rhodopsin and Fab1 7MTB ; 4.0 ; Rhodopsin kinase (GRK1)-S5E/S488E/T489E in complex with rhodopsin and Fab6 6CMO ; 4.5 ; Rhodopsin-Gi complex 6QNO ; 4.38 ; Rhodopsin-Gi protein complex 6Y8V ; ; Rhodospirillum rubrum oxidized CooT solution structure 6Y8W ; ; Rhodospirillum rubrum reduced CooT solution structure 8XX9 ; 1.55 ; Rhodothermus marinus alpha-amylase RmGH13_47A CBM48-A-B-C domains 8XXA ; 1.55 ; Rhodothermus marinus alpha-amylase RmGH13_47A CBM48-A-B-C domains in complex with branched pentasaccharide 4CSW ; 2.821 ; Rhodothermus marinus YCFD-like ribosomal protein L16 Arginyl hydroxylase 4CUG ; 2.96 ; Rhodothermus marinus YCFD-like ribosomal protein L16 Arginyl hydroxylase in complex substrate fragment 5JCP ; 2.1 ; RhoGAP domain of ARAP3 in complex with RhoA in the transition state 5T81 ; 2.604 ; Rhombohedral crystal form of the EpoB NRPS cyclization-docking bidomain from Sorangium cellulosum 6XTD ; 1.3 ; Rhs1-CT in complex with cognate immunity protein RhsI1 6O6H ; 2.5 ; RIAM cc-RA-PH structure in the P21212 space group 6OLU ; 1.9 ; RIAM RA-PH core structure in the P212121 space group 7UF1 ; 1.95 ; RibB from Vibrio cholera bound with D-Ribose-5-phosphate (D-R5P) and manganese 7UF0 ; 1.8 ; RibB from Vibrio cholera bound with D-ribulose-5-phosphate (D-Ru5P) 7UF2 ; 2.0 ; RibB from Vibrio cholera bound with D-xylulose-5-phosphate (D-Xy5P) and manganese 7UF4 ; 2.2 ; RibB from Vibrio cholera bound with intermediate 1 of the reaction cycle and D-ribulose-5-phosphate (D-Ru5P) 7UF5 ; 2.1 ; RibB from Vibrio cholera bound with intermediate 2 in the reaction cycle and the products DHBP and formate 7UF3 ; 2.0 ; RibB from Vibrio cholera bound with L-xylulose-5-phosphate (L-Xy5P) and manganese 1RMV ; 2.9 ; RIBGRASS MOSAIC VIRUS, FIBER DIFFRACTION 2VBU ; 1.7 ; Riboflavin kinase Mj0056 from Methanocaldococcus jannaschii in complex with CDP 2VBV ; 2.4 ; Riboflavin kinase Mj0056 from Methanocaldococcus jannaschii in complex with CDP and FMN 2VBT ; 2.7 ; Riboflavin kinase Mj0056 from Methanocaldococcus jannaschii in complex with CDP and PO4 2VBS ; 3.0 ; Riboflavin kinase Mj0056 from Methanocaldococcus jannaschii in complex with PO4 1KZL ; 2.1 ; Riboflavin Synthase from S.pombe bound to Carboxyethyllumazine 5ZWY ; 1.95 ; Ribokinase from Leishmania donovani 6A8C ; 1.98 ; Ribokinase from Leishmania donovani with ADP 6A8B ; 2.01 ; Ribokinase from Leishmania donovani with AMPPCP 6A8A ; 1.8 ; Ribokinase from Leishmania donovani with ATP 8CQX ; 2.27 ; Ribokinase from T.sp mutant A92G 6ZNX ; 2.4 ; Ribokinase from Thermus Species 1RSN ; 2.0 ; RIBONUCLEASE (RNASE SA) (E.C.3.1.4.8) COMPLEXED WITH EXO-2',3'-CYCLOPHOSPHOROTHIOATE 1BU4 ; 1.9 ; RIBONUCLEASE 1 COMPLEX WITH 2'GMP 1E21 ; 1.9 ; Ribonuclease 1 des1-7 Crystal Structure at 1.9A 1RBX ; 1.69 ; RIBONUCLEASE A (E.C.3.1.27.5) CONTROL 1RBW ; 1.69 ; RIBONUCLEASE A (E.C.3.1.27.5) WITH GUANIDINIUM 3I6J ; 1.3 ; Ribonuclease A by Classical hanging drop method after high X-Ray dose on ESRF ID14-2 beamline 3I6F ; 1.3 ; Ribonuclease A by Classical hanging drop method before high X-Ray dose on ESRF ID14-2 beamline 3I67 ; 1.3 ; Ribonuclease A by LB nanotemplate method after high X-Ray dose on ESRF ID14-2 beamline 3I6H ; 1.3 ; Ribonuclease A by LB nanotemplate method before high X-Ray dose on ESRF ID14-2 beamline 1RNM ; 2.0 ; RIBONUCLEASE A COMPLEX WITH CYTIDYLIC ACID (5'CMP) CRYSTALLIZED FROM 80% AMMONIUM SULPHATE 1RNN ; 1.8 ; RIBONUCLEASE A COMPLEX WITH CYTIDYLIC ACID (5'CMP) CRYSTALLIZED FROM 8M SODIUM FORMATE 1AQP ; 2.0 ; RIBONUCLEASE A COPPER COMPLEX 1RNZ ; 1.9 ; RIBONUCLEASE A CRYSTALLIZED FROM 2.5M SODIUM CHLORIDE, 3.3M SODIUM FORMATE 1RNY ; 2.0 ; RIBONUCLEASE A CRYSTALLIZED FROM 3M CESIUM CHLORIDE, 30% AMMONIUM SULFATE 1RNX ; 1.9 ; RIBONUCLEASE A CRYSTALLIZED FROM 3M SODIUM CHLORIDE, 30% AMMONIUM SULFATE 1RNO ; 1.9 ; RIBONUCLEASE A CRYSTALLIZED FROM 80% AMMONIUM SULPHATE 1RNQ ; 2.0 ; RIBONUCLEASE A CRYSTALLIZED FROM 8M SODIUM FORMATE 1RRA ; 2.5 ; RIBONUCLEASE A FROM RATTUS NORVEGICUS (COMMON RAT) 1O0H ; 1.2 ; Ribonuclease A in complex with 5'-ADP 1AFL ; 1.7 ; RIBONUCLEASE A IN COMPLEX WITH 5'-DIPHOSPHOADENOSINE 2'-PHOSPHATE AT 1.7 ANGSTROM RESOLUTION 1O0O ; 1.2 ; Ribonuclease A in complex with adenosine-2',5'-diphosphate 1O0M ; 1.5 ; Ribonuclease A in complex with uridine-2'-phosphate 1O0N ; 1.5 ; Ribonuclease A in complex with uridine-3'-phosphate 3DXH ; 1.4 ; Ribonuclease A uridine 5' diphosphate complex 1LSQ ; 1.9 ; RIBONUCLEASE A WITH ASN 67 REPLACED BY A BETA-ASPARTYL RESIDUE 1Z6S ; 1.5 ; Ribonuclease A- AMP complex 1Z6D ; 1.54 ; Ribonuclease A- IMP complex 3DXG ; 1.39 ; Ribonuclease A- uridine 5' phosphate complex 1RUV ; 1.25 ; RIBONUCLEASE A-URIDINE VANADATE COMPLEX: HIGH RESOLUTION RESOLUTION X-RAY STRUCTURE (1.3 A) 1RBJ ; 2.7 ; RIBONUCLEASE B COMPLEX WITH D(TETRA-(DEOXY-ADENYLATE)) 1GOV ; 2.0 ; RIBONUCLEASE BI(G SPECIFIC ENDONUCLEASE) COMPLEXED WITH SULFATE IONS 1GOU ; 1.65 ; Ribonuclease Binase (G Specific Endonuclease) Unliganded Form 1E44 ; 2.4 ; ribonuclease domain of colicin E3 in complex with its immunity protein 1TFO ; 2.3 ; Ribonuclease from Escherichia coli complexed with its inhibitor protein 1TFK ; 2.1 ; Ribonuclease from Escherichia coli complexed with its inhibtor protein 5GY6 ; 1.5 ; Ribonuclease from Hericium erinaceus (RNase He1) 6LS1 ; 1.58 ; Ribonuclease from Hericium erinaceus active and GMP binding form 1DFJ ; 2.5 ; RIBONUCLEASE INHIBITOR COMPLEXED WITH RIBONUCLEASE A 1A4Y ; 2.0 ; RIBONUCLEASE INHIBITOR-ANGIOGENIN COMPLEX 1BK7 ; 1.75 ; RIBONUCLEASE MC1 FROM THE SEEDS OF BITTER GOURD 1VD3 ; 1.8 ; Ribonuclease NT in complex with 2'-UMP 1AY7 ; 1.7 ; RIBONUCLEASE SA COMPLEX WITH BARSTAR 5HOH ; 2.0 ; RIBONUCLEASE T1 (ASN9ALA/THR93ALA DOUBLEMUTANT) COMPLEXED WITH 2'GMP 2HOH ; 1.9 ; RIBONUCLEASE T1 (N9A MUTANT) COMPLEXED WITH 2'GMP 4HOH ; 2.05 ; RIBONUCLEASE T1 (THR93ALA MUTANT) COMPLEXED WITH 2'GMP 3HOH ; 1.95 ; RIBONUCLEASE T1 (THR93GLN MUTANT) COMPLEXED WITH 2'GMP 1BVI ; 1.9 ; RIBONUCLEASE T1 (WILDTYPE) COMPLEXED WITH 2'GMP 1DET ; 1.8 ; RIBONUCLEASE T1 CARBOXYMETHYLATED AT GLU 58 IN COMPLEX WITH 2'GMP 2BU4 ; 1.95 ; RIBONUCLEASE T1 COMPLEX WITH 2'GMP 3BU4 ; 1.77 ; RIBONUCLEASE T1 COMPLEX WITH 2'GMP 4BU4 ; 1.8 ; RIBONUCLEASE T1 COMPLEX WITH 2'GMP 5BU4 ; 1.77 ; RIBONUCLEASE T1 COMPLEX WITH 2'GMP 3GSP ; 1.9 ; RIBONUCLEASE T1 COMPLEXED WITH 2',3'-CGPS + 3'-GMP, 4 DAYS 4GSP ; 1.65 ; RIBONUCLEASE T1 COMPLEXED WITH 2',3'-CGPS + 3'-GMP, 7 DAYS 1GSP ; 2.2 ; RIBONUCLEASE T1 COMPLEXED WITH 2',3'-CGPS, 1 DAY 1RHL ; 1.95 ; RIBONUCLEASE T1 COMPLEXED WITH 2'GMP/G23A MUTANT 1I0V ; 1.234 ; Ribonuclease T1 in complex with 2'GMP (form I crystal) 1I0X ; 1.65 ; RIBONUCLEASE T1 IN COMPLEX WITH 2'GMP (FORM II CRYSTAL) 1HZ1 ; 1.8 ; RIBONUCLEASE T1 V16A MUTANT IN COMPLEX WITH MG2+ 1HYF ; 1.7 ; RIBONUCLEASE T1 V16A MUTANT IN COMPLEX WITH SR2+ 1I2E ; 1.8 ; Ribonuclease T1 V16A mutant, form I 1I2F ; 1.95 ; Ribonuclease T1 V16A mutant, form II 1FYS ; 2.0 ; Ribonuclease T1 V16C mutant 1G02 ; 1.86 ; Ribonuclease T1 V16S mutant 1I2G ; 1.85 ; Ribonuclease T1 V16T mutant 1I3I ; 1.76 ; Ribonuclease T1 V78T mutant 1I3F ; 2.35 ; Ribonuclease T1 V89S mutant 9RNT ; 1.5 ; RIBONUCLEASE T1 WITH FREE RECOGNITION AND CATALYTIC SITE: CRYSTAL STRUCTURE ANALYSIS AT 1.5 ANGSTROMS RESOLUTION 1BIR ; 1.8 ; RIBONUCLEASE T1, PHE 100 TO ALA MUTANT COMPLEXED WITH 2' GMP 2GSP ; 1.8 ; RIBONUCLEASE T1/2',3'-CGPS AND 3'-GMP, 2 DAYS 7GSP ; 2.0 ; RIBONUCLEASE T1/2',3'-CGPS, NON-PRODUCTIVE 6GSP ; 2.2 ; RIBONUCLEASE T1/3'-GMP, 15 WEEKS 5GSP ; 1.8 ; RIBONUCLEASE T1/3'-GMP, 9 WEEKS 4BIR ; 1.7 ; RIBONUCLEASE T1: FREE HIS92GLN MUTANT 1PFR ; 2.2 ; RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 1 BETA CHAIN 1XIK ; 1.7 ; RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 1 BETA CHAIN 1BIQ ; 2.05 ; RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 1 BETA CHAIN MUTANT E238A 2L7D ; ; Ribonucleotide Perturbation of DNA Structure: Solution Structure of [d(CGC)r(G)d(AATTCGCG)]2 7Q3C ; 2.15 ; Ribonucleotide Reductase AaR2 protein from Aquifex aeolicus 5CI4 ; 2.05 ; Ribonucleotide reductase beta subunit 2BQ1 ; 3.99 ; Ribonucleotide reductase class 1b holocomplex R1E,R2F from Salmonella typhimurium 8BT3 ; 1.5 ; Ribonucleotide Reductase class Ie R2 from Mesoplasma florum, catalytically active radical state solved by XFEL 6GP2 ; 1.48 ; Ribonucleotide Reductase class Ie R2 from Mesoplasma florum, DOPA-active form 6GP3 ; 1.23 ; Ribonucleotide Reductase class Ie R2 from Mesoplasma florum, inactive form 8BT4 ; 1.35 ; Ribonucleotide Reductase class Ie R2 from Mesoplasma florum, radical-lost ground state 3N37 ; 1.65 ; Ribonucleotide Reductase Dimanganese(II)-NrdF from Escherichia coli 3N39 ; 2.5 ; Ribonucleotide Reductase Dimanganese(II)-NrdF from Escherichia coli in Complex with NrdI 3N3A ; 1.99 ; Ribonucleotide Reductase Dimanganese(II)-NrdF from Escherichia coli in Complex with Reduced NrdI 3N3B ; 2.36 ; Ribonucleotide Reductase Dimanganese(II)-NrdF from Escherichia coli in Complex with Reduced NrdI with a Trapped Peroxide 5R1R ; 3.1 ; RIBONUCLEOTIDE REDUCTASE E441A MUTANT R1 PROTEIN FROM ESCHERICHIA COLI 6R1R ; 3.1 ; RIBONUCLEOTIDE REDUCTASE E441D MUTANT R1 PROTEIN FROM ESCHERICHIA COLI 7R1R ; 3.1 ; RIBONUCLEOTIDE REDUCTASE E441Q MUTANT R1 PROTEIN FROM ESCHERICHIA COLI 3N38 ; 1.9 ; Ribonucleotide Reductase NrdF from Escherichia coli Soaked with Ferrous Ions 1PEM ; 2.99 ; Ribonucleotide Reductase Protein R1E from Salmonella typhimurium 1PEO ; 3.0 ; Ribonucleotide Reductase Protein R1E from Salmonella typhimurium 1PEQ ; 2.8 ; Ribonucleotide Reductase Protein R1E from Salmonella typhimurium 1PEU ; 3.2 ; Ribonucleotide Reductase Protein R1E from Salmonella typhimurium 7AGJ ; 2.7 ; Ribonucleotide Reductase R1 protein from Aquifex aeolicus 1R1R ; 2.9 ; RIBONUCLEOTIDE REDUCTASE R1 PROTEIN MUTANT Y730F WITH A REDUCED ACTIVE SITE FROM ESCHERICHIA COLI 3R1R ; 3.0 ; RIBONUCLEOTIDE REDUCTASE R1 PROTEIN WITH AMPPNP OCCUPYING THE ACTIVITY SITE FROM ESCHERICHIA COLI 2R1R ; 3.0 ; RIBONUCLEOTIDE REDUCTASE R1 PROTEIN WITH DTTP OCCUPYING THE SPECIFICITY SITE FROM ESCHERICHIA COLI 4R1R ; 3.2 ; RIBONUCLEOTIDE REDUCTASE R1 PROTEIN WITH SUBSTRATE, GDP AND EFFECTOR DTTP FROM ESCHERICHIA COLI 2X0X ; 2.3 ; Ribonucleotide reductase R1 subunit of E. coli to 2.3 A resolution 1PIZ ; 1.9 ; RIBONUCLEOTIDE REDUCTASE R2 D84E MUTANT SOAKED WITH FERROUS IONS AT NEUTRAL PH 2ALX ; 2.6 ; Ribonucleotide Reductase R2 from Escherichia coli in space group P6(1)22 7AIK ; 2.1 ; Ribonucleotide Reductase R2 protein from Aquifex aeolicus 1PIY ; 1.68 ; RIBONUCLEOTIDE REDUCTASE R2 SOAKED WITH FERROUS ION AT NEUTRAL PH 6ZJK ; 2.0 ; Ribonucleotide reductase R2 subunit from Clostridium botulinum 1AV8 ; 2.8 ; RIBONUCLEOTIDE REDUCTASE R2 SUBUNIT FROM E. COLI 1PJ0 ; 1.9 ; RIBONUCLEOTIDE REDUCTASE R2-D84E/W48F MUTANT SOAKED WITH FERROUS IONS AT NEUTRAL PH 1PJ1 ; 1.95 ; RIBONUCLEOTIDE REDUCTASE R2-D84E/W48F SOAKED WITH FERROUS IONS AT PH 5 1R2F ; 2.1 ; RIBONUCLEOTIDE REDUCTASE R2F PROTEIN FROM SALMONELLA TYPHIMURIUM 2R2F ; 2.25 ; RIBONUCLEOTIDE REDUCTASE R2F PROTEIN FROM SALMONELLA TYPHIMURIUM (OXIDIZED) 7AIL ; 1.73 ; Ribonucleotide Reductase R2m protein from Aquifex aeolicus 7Q39 ; 2.1 ; Ribonucleotide Reductase R2_genomic protein from Aquifex aeolicus 5CI3 ; 2.401 ; Ribonucleotide reductase Y122 2,3,5-F3Y variant 5CI2 ; 2.25 ; Ribonucleotide reductase Y122 2,3,6-F3Y variant 5CI1 ; 1.95 ; Ribonucleotide reductase Y122 2,3-F2Y variant 5CI0 ; 2.25 ; Ribonucleotide reductase Y122 3,5-F2Y variant 2XOF ; 2.2 ; Ribonucleotide reductase Y122NO2Y modified R2 subunit of E. coli 1JK0 ; 2.8 ; Ribonucleotide reductase Y2Y4 heterodimer 2XO4 ; 2.5 ; RIBONUCLEOTIDE REDUCTASE Y730NH2Y MODIFIED R1 SUBUNIT OF E. COLI 2XAY ; 2.65 ; Ribonucleotide reductase Y730NO2Y and C439A modified R1 subunit of E. coli 2XAZ ; 2.6 ; Ribonucleotide reductase Y730NO2Y and C439S modified R1 subunit of E. coli 2XAX ; 2.75 ; Ribonucleotide reductase Y730NO2Y and Y731A modified R1 subunit of E. coli 2XAW ; 3.1 ; Ribonucleotide reductase Y730NO2Y and Y731F modified R1 subunit of E. coli 2XAK ; 2.8 ; Ribonucleotide reductase Y730NO2Y modified R1 subunit of E. coli 2XO5 ; 2.7 ; RIBONUCLEOTIDE REDUCTASE Y731NH2Y MODIFIED R1 SUBUNIT OF E. COLI 2XAV ; 2.8 ; Ribonucleotide reductase Y731NO2Y and Y730F modified R1 subunit of E. coli 2XAP ; 2.1 ; Ribonucleotide reductase Y731NO2Y modified R1 subunit of E. coli to 2. 1 A resolution 2F8M ; 2.087 ; Ribose 5-phosphate isomerase from Plasmodium falciparum 6X8Y ; 1.0 ; Ribose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 1DGZ ; ; RIBOSMAL PROTEIN L36 FROM THERMUS THERMOPHILUS: NMR STRUCTURE ENSEMBLE 2BM1 ; 2.6 ; Ribosomal elongation factor G (EF-G) Fusidic acid resistant mutant G16V 2BM0 ; 2.4 ; Ribosomal elongation factor G (EF-G) Fusidic acid resistant mutant T84A 1W3E ; 1.77 ; Ribosomal L30e of Thermococcus celer, P59A mutant 1S7N ; 2.1 ; Ribosomal L7/L12 alpha-N-protein acetyltransferase in complex with Coenzyme A (CoA free sulfhydryl) 7O5H ; 3.1 ; Ribosomal methyltransferase KsgA bound to small ribosomal subunit 1DWU ; 2.8 ; Ribosomal protein L1 4F9T ; 1.46 ; Ribosomal protein L1 from Thermus thermophilus with substitution Thr217Ala 1AD2 ; 1.9 ; RIBOSOMAL PROTEIN L1 MUTANT WITH SERINE 179 REPLACED BY CYSTEINE 1ZAV ; 1.9 ; Ribosomal Protein L10-L12(NTD) Complex, Space Group P21 1ZAW ; 2.3 ; Ribosomal Protein L10-L12(NTD) Complex, Space Group P212121, Form A 1ZAX ; 2.1 ; Ribosomal Protein L10-L12(NTD) Complex, Space Group P212121, Form B 5COL ; 2.25 ; RIBOSOMAL PROTEIN L11 FROM METHANOCOCCUS JANNASCHII 2K3F ; ; Ribosomal protein L11 from Thermotoga maritima 3CJT ; 2.3 ; Ribosomal protein L11 methyltransferase (PrmA) in complex with dimethylated ribosomal protein L11 3CJQ ; 2.7 ; Ribosomal protein L11 methyltransferase (PrmA) in complex with dimethylated ribosomal protein L11 in space group P212121 3CJR ; 2.05 ; Ribosomal protein L11 methyltransferase (PrmA) in complex with ribosomal protein L11 (K39A) and inhibitor Sinefungin. 3EGV ; 1.75 ; Ribosomal protein L11 methyltransferase (PrmA) in complex with trimethylated ribosomal protein L11 1WHI ; 1.5 ; RIBOSOMAL PROTEIN L14 1RL2 ; 2.3 ; RIBOSOMAL PROTEIN L2 RNA-BINDING DOMAIN FROM BACILLUS STEAROTHERMOPHILUS 1BXE ; 1.9 ; RIBOSOMAL PROTEIN L22 FROM THERMUS THERMOPHILUS 1H7M ; 1.96 ; Ribosomal Protein L30e from Thermococcus celer 1RL6 ; 2.0 ; RIBOSOMAL PROTEIN L6 1DIV ; 2.6 ; RIBOSOMAL PROTEIN L9 6I7V ; 2.9 ; Ribosomal protein paralogs bL31 and bL36 1A32 ; 2.1 ; RIBOSOMAL PROTEIN S15 FROM BACILLUS STEAROTHERMOPHILUS 2FKX ; ; Ribosomal protein s15 from thermus thermophilus, nmr recalculated structure 1AB3 ; ; RIBOSOMAL PROTEIN S15 FROM THERMUS THERMOPHILUS, NMR, 26 STRUCTURES 1RIP ; ; RIBOSOMAL PROTEIN S17: CHARACTERIZATION OF THE THREE-DIMENSIONAL STRUCTURE BY 1H-AND 15N-NMR 1LOU ; 1.95 ; RIBOSOMAL PROTEIN S6 1HUS ; 2.5 ; RIBOSOMAL PROTEIN S7 6JMK ; 1.8 ; Ribosomal protein S7 from Mycobacterium tuberculosis 1RSS ; 1.9 ; RIBOSOMAL PROTEIN S7 FROM THERMUS THERMOPHILUS 1AN7 ; 2.9 ; RIBOSOMAL PROTEIN S8 FROM THERMUS THERMOPHILUS 4WCW ; 2.1 ; Ribosomal silencing factor during starvation or stationary phase (RsfS) from Mycobacterium tuberculosis 5SUM ; 2.8 ; Ribosome assembly factor NSA1 5SUI ; 1.3 ; Ribosome assembly factor NSA1: C-terminal truncation 7AFQ ; ; Ribosome binding factor A (RbfA) 1JOS ; 1.7 ; Ribosome Binding Factor A(rbfA) 1P9Y ; 2.15 ; Ribosome binding of E. coli Trigger Factor mutant F44L. 2B7U ; 1.6 ; Ribosome inactivating protein type 1 from Charybdis maritima AGG 8BDV ; ; Ribosome maturation factor P (RimP) from Staphylococcus aureus 7AFR ; ; Ribosome maturation factor RimP (apo) 6S0K ; 3.1 ; Ribosome nascent chain in complex with SecA 1EH1 ; 2.6 ; RIBOSOME RECYCLING FACTOR FROM THERMUS THERMOPHILUS 5ZLU ; 3.6 ; Ribosome Structure bound to ABC-F protein. 4GMQ ; 1.3 ; Ribosome-binding domain of Zuo1 6R7L ; 6.0 ; Ribosome-bound SecYEG translocon in a nanodisc 5M5H ; 4.5 ; RIBOSOME-BOUND YIDC INSERTASE 3BO0 ; 9.6 ; Ribosome-SecY complex 3BO1 ; 9.6 ; Ribosome-SecY complex 4V7I ; 9.6 ; Ribosome-SecY complex. 8BDB ; 1.7 ; Ribulose-1,5-bisphosphate carboxylase/oxygenase from Griffithsia monilis 8I3X ; 1.78 ; Rice APIP6-RING homodimer 2RGL ; 2.2 ; Rice BGlu1 beta-glucosidase, a plant exoglucanase/beta-glucosidase 2RGM ; 1.55 ; Rice BGlu1 beta-glucosidase, a plant exoglucanase/beta-glucosidase 4BQK ; 1.997 ; rice importin_alpha : VirD2NLS complex 4BPL ; 2.3 ; rice importin_alpha in complex with nucleoplasmin NLS 3FR8 ; 2.8 ; rice Ketolacid reductoisomerase in complex with Mg2+-NADPH 7EZI ; 1.2 ; Rice L-galactose dehydrogenase (apo form) 7EZL ; 1.8 ; Rice L-galactose dehydrogenase (holo form) 1RZL ; 1.6 ; RICE NONSPECIFIC LIPID TRANSFER PROTEIN 3WBE ; 1.97 ; Rice Os3BGlu6 Beta-Glucosidase E178Q mutant in a covalent complex with Glc from GA4GE. 3WBA ; 1.9 ; Rice Os3BGlu6 E178Q with Covalent Glucosyl Moiety from p-nitrophenyl glucopyranoside. 6KYI ; 1.75 ; Rice Rubisco in complex with sulfate ions 6IR8 ; 2.3 ; Rice WRKY/DNA complex 1F2N ; 2.8 ; RICE YELLOW MOTTLE VIRUS 6K9N ; 2.27 ; Rice_OTUB_like_catalytic domain 1BR5 ; 2.5 ; RICIN A CHAIN (RECOMBINANT) COMPLEX WITH NEOPTERIN 1BR6 ; 2.3 ; RICIN A CHAIN (RECOMBINANT) COMPLEX WITH PTEROIC ACID 6OBC ; 1.762 ; Ricin A chain bound to camelid 4LGP ; 2.4 ; Ricin A chain bound to camelid nanobody (VHH1) 4Z9K ; 1.5 ; Ricin A chain bound to camelid nanobody (VHH2)(F5) 4LGR ; 1.65 ; Ricin A chain bound to camelid nanobody (VHH3) 4LGS ; 2.7 ; Ricin A chain bound to camelid nanobody (VHH4) 4LHJ ; 1.8 ; Ricin A chain bound to camelid nanobody (VHH5) 4LHQ ; 2.3 ; Ricin A chain bound to camelid nanobody (VHH8) 5BOZ ; 3.1 ; Ricin A chain bound to camelid nanobody (VHH9)(E1) 6OCA ; 2.113 ; Ricin A chain bound to VHH antibody V2G10 6OBO ; 1.9 ; Ricin A chain bound to VHH antibody V6A6 6OBM ; 2.495 ; Ricin A chain bound to VHH antibody V6A7 6OCD ; 2.103 ; Ricin A chain bound to VHH antibody V6D4 6OBE ; 1.732 ; Ricin A chain bound to VHH antibody V6H8 6OBG ; 1.996 ; Ricin A chain bound to VHH antibody V8E6 1IFT ; 1.8 ; RICIN A-CHAIN (RECOMBINANT) 1J1M ; 1.5 ; Ricin A-Chain (Recombinant) at 100K 2R3D ; 2.09 ; Ricin A-chain (recombinant) complex with Acetamide 2P8N ; 1.94 ; Ricin a-chain (recombinant) complex with adenine 1IFS ; 2.0 ; RICIN A-CHAIN (RECOMBINANT) COMPLEX WITH ADENOSINE (ADENOSINE BECOMES ADENINE IN THE COMPLEX) 1IFU ; 2.4 ; RICIN A-CHAIN (RECOMBINANT) COMPLEX WITH FORMYCIN 2PJO ; 1.8 ; Ricin a-chain (recombinant) complex with n-methylurea 2R2X ; 2.4 ; Ricin A-chain (recombinant) complex with Urea 2VC4 ; 1.39 ; Ricin A-Chain (Recombinant) E177D Mutant 2VC3 ; 1.6 ; Ricin A-Chain (Recombinant) E177D Mutant with a bound acetate 1UQ5 ; 1.4 ; RICIN A-CHAIN (RECOMBINANT) N122A MUTANT 1UQ4 ; 1.9 ; RICIN A-CHAIN (RECOMBINANT) R213D MUTANT 3LC9 ; 2.28 ; Ricin A-chain variant 1-33/44-198 with engineered disulfide bond 4IMV ; 2.25 ; Ricin A-chain variant 1-33/44-198 with engineered disulfide bond, R48C/T77C/D75N 7KD2 ; 2.55 ; Ricin bound to VHH antibody V11B2 7KD0 ; 2.768 ; Ricin bound to VHH antibody V2C11 7KBI ; 3.049 ; Ricin bound to VHH antibody V5E1 7KDU ; 2.809 ; Ricin bound to VHH antibody V5E4 7KC9 ; 2.301 ; Ricin bound to VHH antibody V5G1 7KDM ; 2.301 ; Ricin bound to VHH antibody V5G6 7KBK ; 2.091 ; Ricin bound to VHH antibody V6E11 6CWG ; 2.6 ; Ricin catalytic subunit bound go A9 VHH antibody 5E1H ; 2.032 ; Ricin toxin in complex with neutralizing single chain monoclonal antibodies (VHHs) 4LQ8 ; 2.2 ; Rickettsia rickettsii cell surface antigen 4 (sca4) head domain (residues 21-360) 7QWT ; 3.712 ; Rieske non-heme iron monooxygenase for guaiacol O-demethylation 1RFS ; 1.83 ; RIESKE SOLUBLE FRAGMENT FROM SPINACH 5HV2 ; 2.912 ; Rifampin phosphotransferase G527Y mutant from Listeria monocytogenes 5HV3 ; 3.118 ; Rifampin phosphotransferase G527Y mutant in complex with AMPPNP from Listeria monocytogenes 5HV1 ; 3.103 ; Rifampin phosphotransferase in complex with AMPPNP and rifampin from Listeria monocytogenes 6ZDX ; 3.0 ; RIFIN variable region bound to LILRB1 ectodomain 3VN9 ; 2.6 ; Rifined Crystal structure of non-phosphorylated MAP2K6 in a putative auto-inhibition state 3FLA ; 1.8 ; RifR - Type II thioesterase from Rifamycin NRPS/PKS biosynthetic pathway - Form 1 3FLB ; 1.8 ; RifR - Type II thioesterase from Rifamycin NRPS/PKS biosynthetic pathway - Form 2 6I9I ; 1.98 ; Rift valley fever virus Gn in complex with a neutralizing antibody fragment 7WFE ; 3.25 ; Right PSI in the cyclic electron transfer supercomplex NDH-PSI from Arabidopsis 8PDR ; 4.0 ; Rigid body fit of assembled HMPV N-RNA spiral bound to the C-terminal region of P 8VRD ; 7.0 ; Rigid body fitted model for free recombinant gamma tubulin ring complex. 8VRJ ; 7.7 ; Rigid body fitted model for gamma tubulin ring complex capped microtubule 8VRK ; 8.5 ; Rigid body fitted model for refined density map of gamma tubulin ring complex capped microtubule 6PWB ; 9.83 ; Rigid body fitting of flagellin FlaB, and flagellar coiling proteins, FcpA and FcpB, into a 10 Angstrom structure of the asymmetric flagellar filament purified from Leptospira biflexa Patoc WT cells resolved via subtomogram averaging 2JYH ; ; Rigid-body refinement of the tetraloop-receptor RNA complex 7N0W ; 2.46 ; Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of alpha-conotoxin AusIA 7N0Y ; 2.58 ; Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of alpha-conotoxin AusIA 4ATX ; 8.2 ; Rigor kinesin motor domain with an ordered neck-linker, docked on tubulin dimer, modelled into the 8A cryo-EM map of doublecortin- microtubules decorated with kinesin 5KG8 ; 9.1 ; Rigor myosin X co-complexed with an actin filament 2OS8 ; 3.27 ; Rigor-like structures of muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor 2OTG ; 3.12 ; Rigor-like structures of muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor 2V9U ; 2.59 ; Rim domain of main porin from Mycobacteria smegmatis 2CNM ; 2.6 ; RimI - Ribosomal S18 N-alpha-protein acetyltransferase in complex with a bisubstrate inhibitor (Cterm-Arg-Arg-Phe-Tyr-Arg-Ala-N-alpha- acetyl-S-CoA). 2CNS ; 2.5 ; RimI - Ribosomal S18 N-alpha-protein acetyltransferase in complex with acetylCoA. 2CNT ; 2.4 ; RimI - Ribosomal S18 N-alpha-protein acetyltransferase in complex with CoenzymeA. 4IWX ; 2.854 ; Rimk structure at 2.85A 1S7K ; 1.8 ; RimL- Ribosomal L7/L12 alpha-N-protein acetyltransferase crystal form 2 (apo) 1S7F ; 2.0 ; RimL- Ribosomal L7/L12 alpha-N-protein acetyltransferase crystal form I (apo) 1S7L ; 2.3 ; RimL- Ribosomal L7/L12 alpha-N-protein acetyltransferase in complex with Coenzyme A (CoA-Cys134 Disulfide) 4B8J ; 2.001 ; rImp_alpha1a 4B8P ; 2.3 ; rImp_alpha_A89NLS 2YNS ; 2.1 ; rImp_alpha_B54NLS 4B8O ; 2.084 ; rImp_alpha_SV40TAgNLS 4J3H ; 1.5002 ; Ring cycle for dilating and constricting the nuclear pore: structure of a Nup54 homo-tetramer. 2XEU ; 1.5 ; Ring domain 8A38 ; 2.196 ; RING domain of human TRIM2 6Y5N ; 1.88 ; RING-DTC domain of Deltex1 6Y5P ; 1.74 ; RING-DTC domain of Deltex1 bound to NAD 6Y3J ; 2.6 ; RING-DTC domains of Deltex 2, bound to ADP-ribose 6Y22 ; 2.069 ; RING-DTC domains of Deltex 2, Form 1 6Y2X ; 1.77 ; RING-DTC domains of Deltex 2, Form 2 1IYM ; ; RING-H2 finger domain of EL5 6SA8 ; 2.4 ; ring-like DARPin-Armadillo fusion H83_D01 4JV0 ; 2.95 ; Ring-Opening of the -OH-PdG Adduct in Ternary Complexes with the Sulfolobus solfataricus DNA polymerase Dpo4 3GS2 ; 1.699 ; Ring1B C-terminal domain/Cbx7 Cbox Complex 3IXS ; 1.7 ; Ring1B C-terminal domain/RYBP C-terminal domain Complex 2CKL ; 2.0 ; Ring1b-Bmi1 E3 catalytic domain structure 6WI7 ; 1.702 ; RING1B-BMI1 fusion in closed conformation 4ZQY ; 2.9515 ; Ringhalexin from hemachatus haemachatus: A novel inhibitor of extrinsic tenase complex 6FDN ; 2.9 ; Rio2 structure 6FDO ; 2.6 ; Rio2 structure 1N6X ; 1.4 ; RIP-phasing on Bovine Trypsin 1N6Y ; 1.4 ; RIP-phasing on Bovine Trypsin 1N7A ; 1.2 ; RIP-Radiation-damage Induced Phasing 1N7B ; 1.4 ; RIP-Radiation-damage Induced Phasing 5TX5 ; 2.56 ; Rip1 Kinase ( flag 1-294, C34A, C127A, C233A, C240A) with GSK772 5AR2 ; 2.44 ; RIP2 Kinase Catalytic Domain (1 - 310) 5AR3 ; 3.23 ; RIP2 Kinase Catalytic Domain (1 - 310) complex with AMP-PCP 5AR5 ; 2.66 ; RIP2 Kinase Catalytic Domain (1 - 310) complex with Benzimidazole 5AR7 ; 2.71 ; RIP2 Kinase Catalytic Domain (1 - 310) complex with Biaryl Urea 5AR8 ; 2.79 ; RIP2 Kinase Catalytic Domain (1 - 310) complex with Biphenylsulfonamide 5AR4 ; 2.7 ; RIP2 Kinase Catalytic Domain (1 - 310) complex with SB-203580 6UL8 ; 2.68 ; RIP2 kinase catalytic domain complex with (5S,6S,8R)-2-(benzo[d]thiazol-5-yl)-6-hydroxy-4,5,6,7,8,9-hexahydro-5,8-methanopyrazolo[1,5-a][1,3]diazocine-3-carboxamide 6RN8 ; 2.69 ; RIP2 Kinase Catalytic Domain complex with 2(4[(1,3benzothiazol5yl)amino]6(2methylpropane2sulfonyl)quinazolin7yl)oxy)ethyl phosphate 6RNA ; 2.62 ; RIP2 Kinase Catalytic Domain complex with 2({4[(1,3benzothiazol5yl)amino]6(2methylpropane2sulfonyl)quinazolin7yl}oxy)ethan1ol 6SZE ; 2.94 ; RIP2 Kinase Catalytic Domain complex with 5-Amino-1-Phenylpyrazole-4-Carboxamide. 6SZJ ; 2.53 ; RIP2 Kinase Catalytic Domain complex with 5amino1tertbutyl3(3methoxyphenyl)1H pyrazole4carboxamide. 6HMX ; 2.53 ; RIP2 Kinase Catalytic Domain complex with N(4,5dimethyl1Hpyrazol3yl)7methoxy6(2methylpropane2sulfonyl)quinolin4amine 6EWY ; 2.2 ; RipA Peptidoglycan hydrolase (Rv1477, Mycobacterium tuberculosis) N-terminal domain 4LJ1 ; 1.17 ; RipD (Rv1566c) from Mycobacterium tuberculosis: a non-catalytic NlpC/p60 domain protein with two penta-peptide repeat units (PVQQA-PVQPA) 4JXB ; 1.56 ; RipD (Rv1566c) from Mycobacterium tuberculosis: a non-catalytic NlpC/p60 domain protein, adaptation to peptidoglycan-binding function 5VFA ; 1.452 ; RitR Mutant - C128D 5U8K ; 1.69 ; RitR mutant - C128S 6EUE ; 2.0 ; Rivastigmine analogue bound to Tc ACHE. 6YLG ; 3.0 ; Rix1-Rea1 pre-60S particle - 60S core, body 1 (rigid body refinement) 6YLH ; 3.1 ; Rix1-Rea1 pre-60S particle - full composite structure 6YLF ; 4.2 ; Rix1-Rea1 pre-60S particle - Rea1, body 3 (rigid body refinement, composite structure of Rea1 ring and tail) 6YLE ; 3.3 ; Rix1-Rea1 pre-60S particle - Rix1-subcomplex, body 3 (rigid body refinement) 6KGI ; 1.04 ; RLGS-yUbr1 Ubr box 6LHN ; 2.5 ; RLGSGG-AtPRT6 UBR box 7Y6Y ; 1.543 ; RLGSGG-AtPRT6 UBR box (C121) 7XWF ; 1.451 ; RLGSGG-AtPRT6 UBR box (highest resolution) 7Y6Z ; 1.598 ; RLGSGG-AtPRT6 UBR box (I222) 7Y70 ; 1.801 ; RLGSGG-AtPRT6 UBR box (P4332) 2MBG ; ; Rlip76 (gap-gbd) 5IQK ; 1.75 ; Rm3 metallo-beta-lactamase 8ERA ; 2.86 ; RMC-5552 in complex with mTORC1 and FKBP12 1RTV ; 2.5 ; RmlC (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) crystal structure from Pseudomonas aeruginosa, apo structure 1PM7 ; 2.2 ; RmlC (dTDP-6-DEOXY-D-XYLO-4-HEXULOSE 3,5-EPIMERASE)STRUCTURE FROM MYCOBACTERIUM TUBERCULOSIS AND INHIBITOR DESIGN. THE APO STRUCTURE. 1DZR ; 2.17 ; RmlC from Salmonella typhimurium 1DZT ; 2.2 ; RMLC FROM SALMONELLA TYPHIMURIUM 2IXC ; 1.79 ; RmlC M. tuberculosis with dTDP-rhamnose 2IXJ ; 2.54 ; RmlC P aeruginosa native 2IXK ; 1.7 ; RmlC P aeruginosa with dTDP-4-keto rhamnnose (the product of the reaction) 2IXH ; 2.0 ; RmlC P aeruginosa with dTDP-rhamnose 2IXI ; 1.8 ; RmlC P aeruginosa with dTDP-xylose 2IXL ; 1.6 ; RmlC S. suis with dTDP-rhamnose 6CI9 ; 1.9 ; RMM microcompartment-associated aminopropanol dehydrogenase NADP + aminoacetone holo-structure 2RMP ; 2.7 ; RMP-pepstatin A complex 8JKM ; 3.98 ; RN-1747 bound state of mTRPV4 4MSR ; 1.2 ; RNA 10mer duplex with six 2'-5'-linkages 4MSB ; 1.55 ; RNA 10mer duplex with two 2'-5'-linkages 5KRG ; 1.6 ; RNA 15mer duplex binding with PZG monomer 4IQS ; 2.6 ; RNA 8mer duplex modified with 4-Se-Uridine 2RSK ; ; RNA aptamer against prion protein in complex with the partial binding peptide 1KOC ; ; RNA APTAMER COMPLEXED WITH ARGININE, NMR 1KOD ; ; RNA APTAMER COMPLEXED WITH CITRULLINE, NMR 1ULL ; ; RNA APTAMER COMPLEXED WITH HIV-1 REV PEPTIDE, NMR, 7 STRUCTURES 2LUN ; ; RNA Aptamer for B. anthracis Ribosomal Protein S8 1ZDI ; 2.7 ; RNA BACTERIOPHAGE MS2 COAT PROTEIN/RNA COMPLEX 2U1A ; ; RNA BINDING DOMAIN 2 OF HUMAN U1A PROTEIN, NMR, 20 STRUCTURES 4OZS ; 2.17 ; RNA binding protein 4B8T ; ; RNA BINDING PROTEIN Solution structure of the third KH domain of KSRP in complex with the G-rich target sequence. 2NCI ; ; RNA Bulge Loop that Specifically Binds Metal Ions 7EEM ; 2.593 ; RNA bulged-G motif 7M3V ; 2.19 ; RNA bulged-G motif 6WLH ; ; RNA complex of WT1 zinc finger transcription factor 3S49 ; 2.3 ; RNA crystal structure with 2-Se-uridine modification 5TDK ; 1.43 ; RNA decamer duplex with eight 2'-5'-linkages 5TDJ ; 1.5 ; RNA decamer duplex with four 2'-5'-linkages 5H0R ; 3.9 ; RNA dependent RNA polymerase ,vp4,dsRNA 1HHS ; 2.0 ; RNA dependent RNA polymerase from dsRNA bacteriophage phi6 1HI8 ; 2.5 ; RNA dependent RNA polymerase from dsRNA bacteriophage phi6 1HI1 ; 3.0 ; RNA dependent RNA polymerase from dsRNA bacteriophage phi6 plus bound NTP 1HI0 ; 3.0 ; RNA dependent RNA polymerase from dsRNA bacteriophage phi6 plus initiation complex 1HHT ; 2.9 ; RNA dependent RNA polymerase from dsRNA bacteriophage phi6 plus template 5FSW ; 3.19 ; RNA dependent RNA polymerase QDE-1 from Thielavia terrestris 7LO9 ; 1.78 ; RNA dodecamer containing a GNA A residue 6XUR ; 1.1 ; RNA dodecamer with a 6-hydrazino-2-aminopurine modified base 6XUS ; 1.1 ; RNA dodecamer with a 6-hydrazino-2-aminopurine modified base 8SX6 ; 1.45 ; RNA duplex bound with GMP and AMP monomers 8SWG ; 1.5 ; RNA duplex bound with GpppA dinucleotide ligand 8SY1 ; 1.76 ; RNA duplex bound with imidazolium bridged GA dinucleotide 6U8U ; 2.4 ; RNA duplex bound with TNA 3'-3' imidazolium dimer 1RRR ; ; RNA DUPLEX CONTAINING A PURINE-RICH STRAND, NMR, 10 STRUCTURES 7ECM ; 1.51 ; RNA duplex containing C-A base pair 7ECJ ; 3.1 ; RNA duplex containing C-A base pairs 7ECL ; 3.01 ; RNA duplex containing C-Ag-A and U-Ag-A base pair 7ECK ; 2.79 ; RNA duplex containing C-Ag-A and U-Ag-A base pairs 7ECN ; 1.6 ; RNA duplex containing C-Ag-A base pairs 7ECP ; 2.91 ; RNA duplex containing C-Ag-U 7EDU ; 2.3 ; RNA duplex containing C-Au-C base pair 7EDT ; 1.2 ; RNA duplex containing CC mispairs 6N8H ; ; RNA Duplex containing the internal loop 5'-GCAU/3'-UACG 6N8F ; ; RNA Duplex containing the internal loop 5'-GCUU/3'-UUCG 6N8I ; ; RNA Duplex containing the internal loop 5'-UUCG/3'-GCUU 7ECO ; 1.81 ; RNA duplex containing U-Ag-U base pairs 4U38 ; 1.8 ; RNA duplex containing UU mispair 5LQO ; 1.87 ; RNA duplex has central consecutive GA pairs flanked by G-C basepairs 5LQT ; 1.5 ; RNA duplex has central consecutive GA pairs flanked by G-C basepairs 5LR3 ; 1.65 ; RNA duplex has central consecutive GA pairs flanked by G-U basepairs 5LR4 ; 1.8 ; RNA duplex has central consecutive GA pairs flanked by G-U basepairs with a methyl group on the adenine N6 5V0J ; 1.5 ; RNA duplex with 2-MeImpG analogue bound-2 binding sites 5V0K ; 1.6 ; RNA duplex with 2-MeImpG analogue bound-3 binding sites 5V0H ; 1.9 ; RNA duplex with 2-MeImpG analogue bound-one binding site 7A3Y ; ; RNA duplex with a cytosine bulge in complex with berberine 6U89 ; 2.36 ; RNA duplex, bound with TNA monomer 2LA5 ; ; RNA Duplex-Quadruplex Junction Complex with FMRP RGG peptide 5HZD ; 1.6 ; RNA Editing TUTase 1 from Trypanosoma brucei 5IDO ; 2.2 ; RNA Editing TUTase 1 from Trypanosoma brucei in complex with UTP 5I49 ; 1.8 ; RNA Editing TUTase 1 from Trypanosoma brucei in complex with UTP analog UMPNPP 8Q4O ; ; RNA G-quadruplex from the 5'-UTR of human tyrosine kinase 2 (TYK2) 6AZ4 ; 2.98 ; RNA hairpin complex with guanosine dinucleotide ligand G(5')ppp(5')G 6BMD ; 3.0 ; RNA hairpin containing GpppG-oligo to mimic intermediate formed by activated monomer and activated downstream helper 5UZ6 ; 2.1 ; RNA hairpin structure containing 2-MeImp-oligo analogue 5V0O ; 2.7 ; RNA hairpin structure containing 2-MeImpG analogue bound 5V9Z ; 2.51 ; RNA hairpin structure containing 2-MeImpG analogue bound 5UX3 ; 2.5 ; RNA hairpin structure containing 2-MeImpG monomer analogue and 2-MeImp-oligomer analogue 6U7Z ; 2.71 ; RNA hairpin structure containing one TNA nucleotide as primer 6U7Y ; 2.95 ; RNA hairpin structure containing one TNA nucleotide as template 5VGW ; 2.42 ; RNA hairpin structure containing tetraloop/receptor motif 5VCF ; 2.8 ; RNA hairpin structure containing tetraloop/receptor motif, complexed with 2-MeImpG analogue 5VCI ; 2.6 ; RNA hairpin structure containing tetraloop/receptor motif, complexed with 2-MeImpG analogue 6U8F ; 2.81 ; RNA hairpin, bound with TNA monomer 5TKO ; 1.52 ; RNA heptamer duplex with one 2'-5'-linkage 259D ; 1.46 ; RNA HYDRATION: A DETAILED LOOK 7EFG ; 2.6 ; RNA kink-turn motif 7EFH ; 2.7 ; RNA kink-turn motif 7EFI ; 2.9 ; RNA kink-turn motif composed of RNA, DNA and 2'-O-methyl RNA 7EI7 ; 3.2 ; RNA kink-turn motif with 2-aminopurine 7EI8 ; 3.1 ; RNA kink-turn motif with 2-aminopurine 7F8Z ; 3.0 ; RNA kink-turn motif with 2-aminopurine 7EI9 ; 2.7 ; RNA kink-turn motif with pyrrolo cytosine 7EIA ; 3.0 ; RNA kink-turn motif with pyrrolo cytosine 8DCA ; 2.43 ; RNA ligase RtcB from Pyrococcus horikoshii in complex with Co2+ and GTP 8DCF ; 2.42 ; RNA ligase RtcB from Pyrococcus horikoshii in complex with Cu2+ and GTP 8DC9 ; 2.47 ; RNA ligase RtcB from Pyrococcus horikoshii in complex with Mn2+ and GTP 8DCB ; 2.6 ; RNA ligase RtcB from Pyrococcus horikoshii in complex with Ni2+ and GTP 8DCD ; 2.22 ; RNA ligase RtcB from Pyrococcus horikoshii in complex with Zn2+ and GTP 4ISZ ; 2.303 ; RNA ligase RtcB in complex with GTP alphaS and Mn(II) 4ISJ ; 2.344 ; RNA Ligase RtcB in complex with Mn(II) 4DWQ ; 2.25 ; RNA ligase RtcB-GMP/Mn(2+) complex 4DWR ; 1.48 ; RNA ligase RtcB/Mn2+ complex 1BJ2 ; ; RNA LOOP-LOOP COMPLEX: THE COLE1 INVERTED LOOP SEQUENCE, NMR, 8 STRUCTURES 2BJ2 ; ; RNA LOOP-LOOP COMPLEX: THE COLE1 INVERTED LOOP SEQUENCE, NMR, MINIMIZED AVERAGE STRUCTURE 7CV6 ; 3.01 ; RNA methyltransferase METTL4 7CV7 ; 2.3 ; RNA methyltransferase METTL4 7CV8 ; 2.37 ; RNA methyltransferase METTL4 7CV9 ; 2.455 ; RNA methyltransferase METTL4 7CVA ; 2.5 ; RNA methyltransferase METTL4 7DPE ; 2.751 ; RNA methyltransferase METTL4 6YU8 ; 1.841 ; RNA Methyltransferase of Sudan Ebola Virus 5D8T ; 1.2 ; RNA octamer containing (S)-5' methyl, 2'-F U. 6CXZ ; 1.5 ; RNA octamer containing 2'-F, 4'-Calpha-Me U. 6CY0 ; 2.398 ; RNA octamer containing 2'-F, 4'-Cbeta-OMe U. 5VR4 ; 1.5 ; RNA octamer containing 2'-F-4'-OMe U. 6CY4 ; 1.851 ; RNA octamer containing 2'-OMe, 4'- Cbeta-OMe U. 6CY2 ; 1.4 ; RNA octamer containing 2'-OMe, 4'Calpha-OMe U. 5DEK ; 1.993 ; RNA octamer containing dT 5V2H ; 1.08001 ; RNA octamer containing glycol nucleic acid, SgnT 1G2J ; 1.97 ; RNA OCTAMER R(CCCP*GGGG) CONTAINING PHENYL RIBONUCLEOTIDE 5DER ; 1.8 ; RNA oligonucleotide containing (R)-C5'-ME-2'F U 8SKQ ; 1.35 ; RNA oligonucleotide containing an alpha-(L)-threofuranosyl nucleic acid (TNA) 6OWL ; 2.0 ; RNA oligonucleotides with 3'-arabino guanosine co-crystallized with GMP 8TVZ ; 5.94 ; RNA origami 3-helix tile Traptamer 7PTQ ; 4.08 ; RNA origami 5-helix tile 7PTS ; 5.71 ; RNA origami 5-helix tile 5VVS ; 6.4 ; RNA pol II elongation complex 6DRD ; 3.9 ; RNA Pol II(G) 3N97 ; 3.252 ; RNA polymerase alpha C-terminal domain (E. coli) and sigma region 4 (T. aq. mutant) bound to (UP,-35 element) DNA 8AC1 ; 4.06 ; RNA polymerase at U-rich pause bound to non-regulatory RNA - inactive, open clamp state 8ABZ ; 3.4 ; RNA polymerase at U-rich pause bound to non-regulatory RNA - pause prone, closed clamp state 8AC0 ; 4.1 ; RNA polymerase at U-rich pause bound to regulatory RNA putL - active, closed clamp state 8ACP ; 4.5 ; RNA polymerase at U-rich pause bound to regulatory RNA putL - inactive, open clamp state 8AD1 ; 4.1 ; RNA polymerase at U-rich pause bound to RNA putL triple mutant - pause prone, closed clamp state 8ABY ; 3.7 ; RNA polymerase bound to purified in vitro transcribed regulatory RNA putL - pause prone, closed clamp state 7Q0K ; 4.0 ; RNA polymerase elongation complex in less-swiveled conformation 7Q0J ; 4.3 ; RNA polymerase elongation complex in more-swiveled conformation 6RQH ; 3.7 ; RNA Polymerase I Closed Conformation 1 (CC1) 6RQL ; 2.9 ; RNA Polymerase I Closed Conformation 2 (CC2) 5M5X ; 4.0 ; RNA Polymerase I elongation complex 1 5M5Y ; 4.0 ; RNA Polymerase I elongation complex 2 5M64 ; 4.6 ; RNA Polymerase I elongation complex with A49 tandem winged helix domain 5W5Y ; 3.8 ; RNA polymerase I Initial Transcribing Complex 5W64 ; 4.2 ; RNA Polymerase I Initial Transcribing Complex State 1 5W65 ; 4.3 ; RNA polymerase I Initial Transcribing Complex State 2 5W66 ; 3.9 ; RNA polymerase I Initial Transcribing Complex State 3 5N61 ; 3.4 ; RNA polymerase I initially transcribing complex 5M5W ; 3.8 ; RNA Polymerase I open complex 6RUO ; 3.5 ; RNA Polymerase I Open Complex conformation 1 6RWE ; 3.0 ; RNA Polymerase I Open Complex conformation 2 5OA1 ; 4.4 ; RNA polymerase I pre-initiation complex 6RRD ; 3.1 ; RNA Polymerase I Pre-initiation complex DNA opening intermediate 1 6RUI ; 2.7 ; RNA Polymerase I Pre-initiation complex DNA opening intermediate 2 4YM7 ; 5.5 ; RNA polymerase I structure with an alternative dimer hinge 5G5L ; 4.8 ; RNA polymerase I-Rrn3 complex at 4.8 A resolution 6RQT ; 4.0 ; RNA Polymerase I-tWH-Rrn3-DNA 4A3I ; 3.8 ; RNA Polymerase II binary complex with DNA 1TWH ; 3.4 ; RNA polymerase II complexed with 2'dATP 1TWA ; 3.2 ; RNA polymerase II complexed with ATP 1TWG ; 3.3 ; RNA polymerase II complexed with CTP 1TWC ; 3.0 ; RNA polymerase II complexed with GTP 1TWF ; 2.3 ; RNA polymerase II complexed with UTP at 2.3 A resolution 8S5N ; 3.4 ; RNA polymerase II core initially transcribing complex with an ordered RNA of 12 nt 7NVT ; 2.9 ; RNA polymerase II core pre-initiation complex with closed promoter DNA in distal position 7NVS ; 2.8 ; RNA polymerase II core pre-initiation complex with closed promoter DNA in proximal position 7NVU ; 2.5 ; RNA polymerase II core pre-initiation complex with open promoter DNA 8BZ1 ; 3.8 ; RNA polymerase II core pre-initiation complex with the proximal +1 nucleosome (cPIC-Nuc10W) 1I3Q ; 3.1 ; RNA POLYMERASE II CRYSTAL FORM I AT 3.1 A RESOLUTION 1I50 ; 2.8 ; RNA POLYMERASE II CRYSTAL FORM II AT 2.8 A RESOLUTION 7OZN ; 3.5 ; RNA Polymerase II dimer (Class 1) 7OZO ; 3.8 ; RNA Polymerase II dimer (Class 2) 7OZP ; 3.8 ; RNA Polymerase II dimer (Class 3) 1I6H ; 3.3 ; RNA POLYMERASE II ELONGATION COMPLEX 6O6C ; 3.1 ; RNA polymerase II elongation complex arrested at a CPD lesion 2E2H ; 3.95 ; RNA polymerase II elongation complex at 5 mM Mg2+ with GTP 3M4O ; 3.57 ; RNA polymerase II elongation complex B 6IR9 ; 3.8 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-1) of the nucleosome 6J4X ; 4.3 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-1) of the nucleosome (+1A) 6J4Y ; 4.3 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-1) of the nucleosome (+1B) 7WBX ; 4.0 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-3) of the nucleosome 7WBW ; 7.1 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-3.5) of the nucleosome 7WBV ; 4.1 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-4) of the nucleosome 6J4W ; 7.9 ; RNA polymerase II elongation complex bound with Elf1 and Spt4/5, stalled at SHL(-5) of the nucleosome 8JH2 ; 5.7 ; RNA polymerase II elongation complex bound with Elf1, Spt4/5 and foreign DNA, stalled at SHL(-1) of the nucleosome 8HE5 ; 6.95 ; RNA polymerase II elongation complex bound with Rad26 and Elf1, stalled at SHL(-3.5) of the nucleosome 6J4Z ; 4.1 ; RNA polymerase II elongation complex bound with Spt4/5 and foreign DNA, stalled at SHL(-1) of the nucleosome 6J50 ; 4.7 ; RNA polymerase II elongation complex bound with Spt4/5 and foreign DNA, stalled at SHL(-1) of the nucleosome (tilted conformation) 6J51 ; 4.2 ; RNA polymerase II elongation complex bound with Spt4/5 and foreign DNA, stalled at SHL(-1) of the nucleosome, weak Elf1 (+1 position) 5XON ; 3.83 ; RNA Polymerase II elongation complex bound with Spt4/5 and TFIIS 5XOG ; 3.0 ; RNA Polymerase II elongation complex bound with Spt5 KOW5 and Elf1 3M3Y ; 3.18 ; RNA polymerase II elongation complex C 8JH3 ; 3.7 ; RNA polymerase II elongation complex containing 40 bp upstream DNA loop, stalled at SHL(-1) of the nucleosome 8JH4 ; 3.2 ; RNA polymerase II elongation complex containing 60 bp upstream DNA loop, stalled at SHL(-1) of the nucleosome 4A93 ; 3.4 ; RNA Polymerase II elongation complex containing a CPD Lesion 7XN7 ; 3.1 ; RNA polymerase II elongation complex containing Spt4/5, Elf1, Spt6, Spn1 and Paf1C 2NVQ ; 2.9 ; RNA Polymerase II Elongation Complex in 150 mM Mg+2 with 2'dUTP 2NVT ; 3.36 ; RNA Polymerase II Elongation Complex in 150 mM Mg+2 with GMPCPP 2YU9 ; 3.4 ; RNA polymerase II elongation complex in 150 mm MG+2 with UTP 2E2I ; 3.41 ; RNA polymerase II elongation complex in 5 mM Mg+2 with 2'-dGTP 2NVX ; 3.6 ; RNA polymerase II elongation complex in 5 mM Mg+2 with 2'-dUTP 2E2J ; 3.5 ; RNA polymerase II elongation complex in 5 mM Mg+2 with GMPCPP 5OT2 ; 3.2 ; RNA polymerase II elongation complex in the presence of 3d-Napht-A 7RIQ ; 3.0 ; RNA polymerase II elongation complex scaffold 1 without polyamide 7RIW ; 3.2 ; RNA polymerase II elongation complex scaffold 2, without polyamide 6A5T ; 6.7 ; RNA polymerase II elongation complex stalled at SHL(-1) of the nucleosome 6A5L ; 5.6 ; RNA polymerase II elongation complex stalled at SHL(-1) of the nucleosome, with foreign DNA 6INQ ; 6.9 ; RNA polymerase II elongation complex stalled at SHL(-1) of the nucleosome, with foreign DNA (+1 position) 6A5U ; 7.6 ; RNA polymerase II elongation complex stalled at SHL(-1) of the nucleosome, with foreign DNA, tilt conformation 6A5R ; 8.7 ; RNA polymerase II elongation complex stalled at SHL(-2) of the nucleosome 6A5P ; 7.0 ; RNA polymerase II elongation complex stalled at SHL(-5) of the nucleosome 6A5O ; 9.9 ; RNA polymerase II elongation complex stalled at SHL(-6) of the nucleosome 7XSZ ; 3.4 ; RNA polymerase II elongation complex transcribing a nucleosome (EC115) 7XSE ; 3.6 ; RNA polymerase II elongation complex transcribing a nucleosome (EC42) 7XSX ; 3.8 ; RNA polymerase II elongation complex transcribing a nucleosome (EC49) 7XT7 ; 4.2 ; RNA polymerase II elongation complex transcribing a nucleosome (EC49B) 7XTI ; 3.9 ; RNA polymerase II elongation complex transcribing a nucleosome (EC58hex) 7XTD ; 3.9 ; RNA polymerase II elongation complex transcribing a nucleosome (EC58oct) 6UPX ; 3.4 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 1 6UPY ; 3.4 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 2E 6UPZ ; 3.1 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 3 6UQ0 ; 3.56 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 4 6UQ3 ; 3.47 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 5 6UQ1 ; 3.6 ; RNA polymerase II elongation complex with 5-guanidinohydantoin lesion in state 6 6UQ2 ; 3.2 ; RNA polymerase II elongation complex with dG in state 1 7RIM ; 2.9 ; RNA polymerase II elongation complex with hairpin polyamide Py-Im 1, scaffold 1 7RIP ; 3.3 ; RNA polymerase II elongation complex with hairpin polyamide Py-Im 1, scaffold 1 soaked with CTP 7RIX ; 3.4 ; RNA polymerase II elongation complex with hairpin polyamide Py-Im 1, scaffold 2 7RIY ; 3.7 ; RNA polymerase II elongation complex with hairpin polyamide Py-Im 1, scaffold 2 soaked with UTP 7KED ; 3.6 ; RNA polymerase II elongation complex with unnatural base dTPT3 7KEF ; 3.89 ; RNA polymerase II elongation complex with unnatural base dTPT3, rNaM in swing state 7KEE ; 3.45 ; RNA polymerase II elongation complex with unnatural base dTPT3, rNaMTP bound to E-site 2NVZ ; 4.3 ; RNA Polymerase II elongation complex with UTP, updated 11/2006 2NVY ; 3.4 ; RNA Polymerase II form II in 150 mM Mn+2 5X4Z ; 7.8 ; RNA Polymerase II from Komagataella Pastoris (Type-1 crystal) 5X50 ; 4.293 ; RNA Polymerase II from Komagataella Pastoris (Type-2 crystal) 5X51 ; 6.996 ; RNA Polymerase II from Komagataella Pastoris (Type-3 crystal) 3H0G ; 3.65 ; RNA Polymerase II from Schizosaccharomyces pombe 4A3G ; 3.5 ; RNA Polymerase II initial transcribing complex with a 2nt DNA-RNA hybrid 4A3J ; 3.7 ; RNA Polymerase II initial transcribing complex with a 2nt DNA-RNA hybrid and soaked with GMPCPP 4A3B ; 3.5 ; RNA Polymerase II initial transcribing complex with a 4nt DNA-RNA hybrid 4A3M ; 3.9 ; RNA Polymerase II initial transcribing complex with a 4nt DNA-RNA hybrid and soaked with AMPCPP 4A3C ; 3.5 ; RNA Polymerase II initial transcribing complex with a 5nt DNA-RNA hybrid 4A3E ; 3.4 ; RNA Polymerase II initial transcribing complex with a 5nt DNA-RNA hybrid and soaked with AMPCPP 4A3D ; 3.4 ; RNA Polymerase II initial transcribing complex with a 6nt DNA-RNA hybrid 4A3F ; 3.5 ; RNA Polymerase II initial transcribing complex with a 6nt DNA-RNA hybrid and soaked with AMPCPP 4A3K ; 3.5 ; RNA Polymerase II initial transcribing complex with a 7nt DNA-RNA hybrid 4A3L ; 3.5 ; RNA Polymerase II initial transcribing complex with a 7nt DNA-RNA hybrid and soaked with AMPCPP 7ML4 ; 3.1 ; RNA polymerase II initially transcribing complex (ITC) 3RZO ; 3.0 ; RNA Polymerase II Initiation Complex with a 4-nt RNA 3S1Q ; 3.3 ; RNA Polymerase II Initiation Complex with a 5-nt 3'-deoxy RNA soaked with ATP 3S1R ; 3.2 ; RNA Polymerase II Initiation Complex with a 5-nt 3'-deoxy RNA soaked with GTP 3RZD ; 3.3 ; RNA Polymerase II Initiation Complex with a 5-nt RNA 3S1M ; 3.13 ; RNA Polymerase II Initiation Complex with a 5-nt RNA (variant 1) 3S1N ; 3.1 ; RNA Polymerase II Initiation Complex with a 5-nt RNA (variant 2) 3S2D ; 3.2 ; RNA Polymerase II Initiation Complex with a 5-nt RNA containing a 5Br-U 3S14 ; 2.85 ; RNA Polymerase II Initiation Complex with a 6-nt RNA 3S2H ; 3.3 ; RNA Polymerase II Initiation Complex with a 6-nt RNA containing a 2[prime]-iodo ATP 3S15 ; 3.3 ; RNA Polymerase II Initiation Complex with a 7-nt RNA 3S17 ; 3.2 ; RNA Polymerase II Initiation Complex with a 9-nt RNA 3S16 ; 3.241 ; RNA Polymerase II Initiation Complex with an 8-nt RNA 7ML0 ; 3.0 ; RNA polymerase II pre-initiation complex (PIC1) 7ML1 ; 4.0 ; RNA polymerase II pre-initiation complex (PIC2) 7ML2 ; 3.4 ; RNA polymerase II pre-initiation complex (PIC3) 7NVZ ; 7.2 ; RNA polymerase II pre-initiation complex with closed promoter DNA in distal position 7NVY ; 7.3 ; RNA polymerase II pre-initiation complex with closed promoter DNA in proximal position 7NW0 ; 6.6 ; RNA polymerase II pre-initiation complex with open promoter DNA 8BVW ; 4.0 ; RNA polymerase II pre-initiation complex with the distal +1 nucleosome (PIC-Nuc18W) 8BYQ ; 4.1 ; RNA polymerase II pre-initiation complex with the proximal +1 nucleosome (PIC-Nuc10W) 1SFO ; 3.61 ; RNA POLYMERASE II STRAND SEPARATED ELONGATION COMPLEX 1R9S ; 4.25 ; RNA POLYMERASE II STRAND SEPARATED ELONGATION COMPLEX, MATCHED NUCLEOTIDE 1R9T ; 3.5 ; RNA POLYMERASE II STRAND SEPARATED ELONGATION COMPLEX, MISMATCHED NUCLEOTIDE 1R5U ; 4.5 ; RNA POLYMERASE II TFIIB COMPLEX 8H0V ; 3.8 ; RNA polymerase II transcribing a chromatosome (type I) 8H0W ; 4.6 ; RNA polymerase II transcribing a chromatosome (type II) 3QT1 ; 4.3 ; RNA polymerase II variant containing A Chimeric RPB9-C11 subunit 4BXZ ; 4.8 ; RNA Polymerase II-Bye1 complex 7NKX ; 2.9 ; RNA polymerase II-Spt4/5-nucleosome-Chd1 structure 7NKY ; 3.2 ; RNA Polymerase II-Spt4/5-nucleosome-FACT structure 1PQV ; 3.8 ; RNA polymerase II-TFIIS complex 1Y1Y ; 4.0 ; RNA Polymerase II-TFIIS-DNA/RNA complex 6EU1 ; 3.4 ; RNA Polymerase III - open DNA complex (OC-POL3). 6F42 ; 5.5 ; RNA Polymerase III closed complex CC1. 6F44 ; 4.2 ; RNA Polymerase III closed complex CC2. 7DU2 ; 3.35 ; RNA polymerase III EC complex in post-translocation state 6F41 ; 4.3 ; RNA Polymerase III initially transcribing complex 6F40 ; 3.7 ; RNA Polymerase III open complex 6EU0 ; 4.0 ; RNA Polymerase III open pre-initiation complex (OC-PIC) 8IUE ; 4.1 ; RNA polymerase III pre-initiation complex melting complex 1 8IUH ; 3.4 ; RNA polymerase III pre-initiation complex open complex 1 4NJC ; 2.3 ; RNA Polymerase interacting protein YkzG from Geobacillus stearothermophilus 5EZK ; 8.5 ; RNA polymerase model placed by Molecular replacement into X-ray diffraction map of DNA-bound RNA Polymerase-Sigma 54 holoenzyme complex. 8AC2 ; 3.7 ; RNA polymerase- post-terminated, open clamp state 3AOH ; 4.1 ; RNA polymerase-Gfh1 complex (Crystal type 1) 3AOI ; 4.3 ; RNA polymerase-Gfh1 complex (Crystal type 2) 3WOD ; 3.6 ; RNA polymerase-gp39 complex 5HBW ; 1.9 ; RNA primer-template complex with 2-methylimidazole-activated monomer analogue 5HBX ; 1.7 ; RNA primer-template complex with 2-methylimidazole-activated monomer analogue-2 binding sites 5HBY ; 1.18 ; RNA primer-template complex with 2-methylimidazole-activated monomer analogue-3 binding sites 5UEG ; 2.6 ; RNA primer-template complex with guanosine dinucleotide G(5')pppp(5')G ligand 5UED ; 1.5 ; RNA primer-template complex with guanosine dinucleotide ligand G(5')pp(5')G 5UEE ; 1.9 ; RNA primer-template complex with guanosine dinucleotide ligand G(5')ppp(5')G 5UEF ; 2.1 ; RNA primer-template complex with guanosine dinucleotide p(5')G(3')p(5')G ligand 387D ; 3.1 ; RNA Pseudoknot with 3D Domain Swapping 2GJW ; 2.85 ; RNA Recognition and Cleavage by an Splicing Endonuclease 2B6G ; ; RNA recognition by the Vts1 SAM domain 2B2E ; 3.15 ; RNA stemloop from bacteriophage MS2 complexed with an N87S,E89K mutant MS2 capsid 1ZSE ; 3.0 ; RNA stemloop from bacteriophage Qbeta complexed with an N87S mutant MS2 Capsid 2B2D ; 2.9 ; RNA stemloop operator from bacteriophage QBETA complexed with an N87S,E89K mutant MS2 capsid 2LRX ; ; RNA structural dynamics are modulated through anti-folding by chaperones 4GXY ; 3.05 ; RNA structure 2G3S ; 1.499 ; RNA structure containing GU base pairs 2N0R ; ; RNA structure determination by solid-state NMR spectroscopy 8PFK ; 1.321 ; RNA structure with 1-methylpseudoridine, C2 space group 8PFQ ; 1.01 ; RNA structure with 1-methylpseudoridine, P1 space group 4JIY ; 1.91 ; RNA three-way junction stabilized by a supramolecular di-iron(II) cylinder drug 8SXL ; 1.9 ; RNA UU template binding to AMP monomer 6C8J ; 1.5 ; RNA-activated 2-AIpG monomer complex, 15 min soaking 6C8L ; 2.25 ; RNA-activated 2-AIpG monomer complex, 1h soaking 6C8N ; 1.9 ; RNA-activated 2-AIpG monomer complex, 2h soaking 6C8K ; 2.259 ; RNA-activated 2-AIpG monomer complex, 30 min soaking 6C8I ; 1.77 ; RNA-activated 2-AIpG monomer complex, 5 min soaking 6C8M ; 2.4 ; RNA-activated 2-AIpG monomer, 1.5h soaking 6C8O ; 1.85 ; RNA-activated 2-AIpG monomer, 3h soaking 2GUN ; 2.8 ; RNA-Binding Affinities and Crystal Structure of Oligonucleotides containing Five-Atom Amide-Based Backbone Structures 1NS1 ; ; RNA-BINDING DOMAIN OF NON-STRUCTURAL PROTEIN 1 FROM INFLUENZA VIRUS, NMR, 16 STRUCTURES 6TGJ ; 1.5 ; RNA-binding domain of RNase M5 1FHT ; ; RNA-BINDING DOMAIN OF THE U1A SPLICEOSOMAL PROTEIN U1A117, NMR, 43 STRUCTURES 2LHN ; ; RNA-binding zinc finger protein 7QDY ; 3.1 ; RNA-bound human SKI complex 2EC0 ; 2.75 ; RNA-dependent RNA polymerase of foot-and-mouth disease virus in complex with a template-primer RNA and ATP 3JA4 ; 4.8 ; RNA-dependent RNA polymerases of transcribing cypoviruses 6C8D ; 1.92 ; RNA-dGMP complex with Mg ion 6CAB ; 2.5 ; RNA-dGMP complex with Sr ion 5U0Q ; 1.43 ; RNA-DNA heptamer duplex with one 2'-5'-linkage 8E27 ; 3.4 ; RNA-free Human Dis3L2 7OG5 ; 3.37 ; RNA-free Ribonuclease P from Halorhodospira halophila 6C8E ; 1.8 ; RNA-imidazolium-bridged intermediate complex, 4h soaking 7SP1 ; 3.4 ; RNA-induced tau amyloid fibril 6U6J ; 1.6 ; RNA-monomer complex containing pyrophosphate linkage 1I6U ; 2.6 ; RNA-PROTEIN INTERACTIONS: THE CRYSTAL STRUCTURE OF RIBOSOMAL PROTEIN S8/RRNA COMPLEX FROM METHANOCOCCUS JANNASCHII 6DBP ; 1.603 ; RNA-recognition motif 1 of human MSI2 5NEW ; 2.511 ; RNA-RNA base stacking in the crystal structure of an Hfq6:RNA dimer 1OKA ; ; RNA/DNA CHIMERA, NMR 1DNX ; 1.7 ; RNA/DNA DODECAMER R(G)D(CGTATACGC) WITH MAGNESIUM BINDING SITES 1DNT ; 1.7 ; RNA/DNA DODECAMER R(GC)D(GTATACGC) WITH MAGNESIUM BINDING SITES 1G4Q ; 1.15 ; RNA/DNA HYBRID DECAMER OF CAAAGAAAAG/CTTTTCTTTG 1PJG ; 1.15 ; RNA/DNA Hybrid Decamer of CAAAGAAAAG/CTTTTCTTTG 4AYB ; 3.202 ; RNAP at 3.2Ang 6YMT ; 1.58 ; RNASE 3/1 version1 6YBE ; 1.14 ; RNASE 3/1 version2 6YBC ; 1.49 ; RNASE 3/1 version2 phosphate complex 6SSN ; 1.511 ; RNASE 3/1 version3 1O0F ; 1.5 ; RNASE A in complex with 3',5'-ADP 6PVW ; 1.6 ; RNase A in complex with cp4pA 6PVU ; 1.49 ; RNase A in complex with hexametaphosphate 6PVV ; 1.65 ; RNase A in complex with p5A 6PVX ; 1.55 ; RNase A in complex with p5U 3D6P ; 1.6 ; RNase A- 5'-Deoxy-5'-N-morpholinouridine complex 3D8Y ; 1.72 ; RNase A- 5'-Deoxy-5'-N-piperidinothymidine complex 3D8Z ; 1.98 ; RNase A- 5'-Deoxy-5'-N-pyrrolidinothymidine complex 2W5G ; 1.7 ; RNASE A-5'-ATP COMPLEX 8S96 ; 1.68 ; RNase A-Adenosine 5'-Heptaphosphate (RNaseA.p7A) 8GGG ; 1.86 ; RNase A-Adenosine 5'-Hexaphosphate (RNaseA.p6A) 2W5I ; 2.4 ; RNASE A-AP3A COMPLEX 2W5L ; 1.7 ; RNASE A-NADP COMPLEX 2W5K ; 1.7 ; RNASE A-NADPH COMPLEX 2W5M ; 1.8 ; RNASE A-PYROPHOSPHATE ION COMPLEX 8GC9 ; 1.85 ; RNase A-Uridine 5'-Heptaphosphate (RNase A.p7U) 8FHM ; 1.79 ; RNase A-Uridine 5'-Hexaphosphate (RNaseA.p6U) 2BLZ ; 1.4 ; RNAse after a high dose X-ray ""burn"" 2BLP ; 1.4 ; RNase before unattenuated X-RAY burn 3MZQ ; 1.5 ; RNase crystals grown by the hanging drop method 3MZR ; 1.5 ; RNase crystals grown in loops/micromounts 6G63 ; 3.95 ; RNase E in complex with sRNA RrpA 1TFR ; 2.06 ; RNASE H FROM BACTERIOPHAGE T4 4Z0U ; 2.0 ; RNase HI/SSB-Ct complex 1I39 ; 1.95 ; RNASE HII FROM ARCHAEOGLOBUS FULGIDUS 1I3A ; 2.15 ; RNASE HII FROM ARCHAEOGLOBUS FULGIDUS WITH COBALT HEXAMMINE CHLORIDE 2IX0 ; 2.44 ; RNase II 2IX1 ; 2.74 ; RNase II D209N mutant 7WNT ; 2.44 ; RNase J from Mycobacterium tuberculosis 6TPQ ; 3.07 ; RNase M5 bound to 50S ribosome with precursor 5S rRNA 1A6F ; 2.6 ; RNASE P PROTEIN FROM BACILLUS SUBTILIS 1D6T ; ; RNASE P PROTEIN FROM STAPHYLOCOCCUS AUREUS 1NZ0 ; 1.2 ; RNASE P PROTEIN FROM THERMOTOGA MARITIMA 6CQC ; 1.54 ; RNase P protein from Thermotoga maritima in complex with 1-(4-Fluorophenyl)-2-thiourea 2BR2 ; 2.8 ; RNase PH core of the archaeal exosome 2C38 ; 3.1 ; RNase PH core of the archaeal exosome in complex with A5 RNA 2C39 ; 3.3 ; RNase PH core of the archaeal exosome in complex with ADP 2C37 ; 2.8 ; RNASE PH CORE OF THE ARCHAEAL EXOSOME IN COMPLEX WITH U8 RNA 3WR2 ; 1.75 ; RNase Po1 complexed with 3'GMP 8CDU ; 3.1 ; Rnase R bound to a 30S degradation intermediate (main state) 8CEC ; 3.57 ; Rnase R bound to a 30S degradation intermediate (State I - head-turning) 8CED ; 4.15 ; Rnase R bound to a 30S degradation intermediate (State I - head-turning) 8CEE ; 3.7 ; Rnase R bound to a 30S degradation intermediate (State I - head-turning) 8CDV ; 4.73 ; Rnase R bound to a 30S degradation intermediate (state II) 4OKF ; 1.54 ; RNase S in complex with an artificial peptide 4YGW ; 2.18 ; RNase S in complex with stabilized S peptide 1D5H ; 2.25 ; Rnase s(f8a). mutant ribonucleasE S. 1RGK ; 1.87 ; RNASE T1 MUTANT GLU46GLN BINDS THE INHIBITORS 2'GMP AND 2'AMP AT THE 3' SUBSITE 1RGL ; 2.0 ; RNASE T1 MUTANT GLU46GLN BINDS THE INHIBITORS 2'GMP AND 2'AMP AT THE 3' SUBSITE 1FZU ; 1.8 ; RNAse T1 V78A mutant 1Q9E ; 1.7 ; RNase T1 variant with adenine specificity 1CH0 ; 2.3 ; RNASE T1 VARIANT WITH ALTERED GUANINE BINDING SEGMENT 2VQ8 ; 1.35 ; RNASE ZF-1A 2VQ9 ; 1.85 ; RNASE ZF-3E 1YQT ; 1.9 ; RNase-L Inhibitor 1JY5 ; 2.05 ; RNase-related protein from Calystegia sepium 5GAE ; 3.33 ; RNC in complex with a translocating SecYEG 5GAF ; 4.3 ; RNC in complex with SRP 5GAH ; 3.8 ; RNC in complex with SRP with detached NG domain 5GAG ; 3.8 ; RNC in complex with SRP-SR in the closed state 7OBR ; 2.8 ; RNC-SRP early complex 5GAD ; 3.7 ; RNC-SRP-SR complex early state 7YLE ; 2.052 ; RnDmpX in complex with DMSP 6W9D ; 3.19 ; RNF12 RING domain in complex with a Ube2d2~Ub conjugate 6W7Z ; 1.8 ; RNF12 RING domain in complex with Ube2d2 6W9A ; 2.3 ; RNF12 RING domain in complex with Ube2e2 6CF6 ; 1.93 ; RNF146 TBM-Tankyrase ARC2-3 complex 8IEJ ; 3.12 ; RNF20-RNF40/hRad6A-Ub/nucleosome complex 8EB0 ; 3.03 ; RNF216/E2-Ub/Ub transthiolation complex 4V3L ; 1.53 ; RNF38-UB-UbcH5B-Ub complex 4V3K ; 2.04 ; RNF38-UbcH5B-UB complex 4AP4 ; 2.21 ; Rnf4 - ubch5a - ubiquitin heterotrimeric complex 4AYC ; 1.9 ; RNF8 RING domain structure 4CD1 ; 2.0 ; RnNTPDase2 in complex with PSB-071 4CD3 ; 2.19 ; RnNTPDase2 X4 variant in complex with PSB-071 1YVR ; 1.95 ; Ro autoantigen 1YVP ; 2.2 ; Ro autoantigen complexed with RNAs 7YH1 ; 2.69 ; Roadblock from Candidatus Prometheoarchaeum syntrophicum strain MK-D1 7F8F ; 1.83 ; Roadblock from Odinarchaeota LCB_4 7F8M ; 2.14 ; Roadblock from Thorarchaeota SMTZ1-45 6F1Z ; 3.4 ; Roadblock-1 region of the dynein tail/dynactin/BICDR1 complex 5O5G ; 3.03 ; Robo1 Ig1 to 4 crystal form 1 5OPE ; 2.54 ; Robo1 Ig1-4 crystals form 2 5O5I ; 3.01 ; Robo1 Ig5 2J9N ; 1.5 ; Robotically harvested Trypsin complexed with Benzamidine containing polypeptide mediated crystal contacts 3NXF ; 2.4 ; Robust computational design, optimization, and structural characterization of retroaldol enzymes 3O6Y ; 2.091 ; Robust computational design, optimization, and structural characterization of retroaldol enzymes 8J0A ; 3.0 ; Robust design of effective allosteric activator UbV R4 for Rsp5 E3 ligase using the machine-learning tool ProteinMPNN 3DPU ; 2.9 ; RocCOR domain tandem of Rab family protein (Roco) 5BML ; 2.95 ; ROCK 1 bound to a pyridine thiazole inhibitor 5KKS ; 3.3 ; ROCK 1 bound to azaindole thiazole inhibitor 5KKT ; 2.8 ; ROCK 1 bound to azaindole thiazole piperazine inhibitor 4YVE ; 3.4 ; ROCK 1 bound to methoxyphenyl thiazole inhibitor 4YVC ; 3.2 ; ROCK 1 bound to thiazole inhibitor 7S25 ; 2.337 ; ROCK1 IN COMPLEX WITH LIGAND G4998 7S26 ; 2.744 ; ROCK1 IN COMPLEX WITH LIGAND G5018 4WOT ; 2.93 ; ROCK2 IN COMPLEX WITH 1426382-07-1 4L6Q ; 2.79 ; ROCK2 in complex with benzoxaborole 7P6N ; 3.0 ; ROCK2 IN COMPLEX WITH COMPOUND 12 6LS0 ; 1.87 ; rod-shaped crystal of TmFtn mutant-T4FY stimulited by PLL15 2AH8 ; 2.24 ; roGFP1-R7. Cystal structure analysis of a rate-enhanced variant of redox-sensitive green fluorescent protein in the oxidized form. 5F7P ; 2.84 ; Rok Repressor Lmo0178 from Listeria monocytogenes 5F7R ; 1.85 ; ROK repressor Lmo0178 from Listeria monocytogenes bound to inducer 5F7Q ; 2.4 ; ROK repressor Lmo0178 from Listeria monocytogenes bound to operator 1POV ; 2.8 ; ROLE AND MECHANISM OF THE MATURATION CLEAVAGE OF VP0 IN POLIOVIRUS ASSEMBLY: STRUCTURE OF THE EMPTY CAPSID ASSEMBLY INTERMEDIATE AT 2.9 ANGSTROMS RESOLUTION 3C3S ; 2.5 ; Role of a Glutamate Bridge Spanning the Dimeric Interface of Human Manganese Superoxide Dismutase 3C3T ; 2.2 ; Role of a Glutamate Bridge Spanning the Dimeric Interface of Human Manganese Superoxide Dismutase 1HHQ ; 2.1 ; Role of active site resiude Lys16 in Nucleoside Diphosphate Kinase 1DI3 ; 1.8 ; ROLE OF AMINO ACID RESIDUES AT TURNS IN THE CONFORMATIONAL STABILITY AND FOLDING OF HUMAN LYSOZYME 1DI4 ; 2.0 ; ROLE OF AMINO ACID RESIDUES AT TURNS IN THE CONFORMATIONAL STABILITY AND FOLDING OF HUMAN LYSOZYME 1DI5 ; 2.2 ; ROLE OF AMINO ACID RESIDUES AT TURNS IN THE CONFORMATIONAL STABILITY AND FOLDING OF HUMAN LYSOZYME 133L ; 1.77 ; ROLE OF ARG 115 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME. X-RAY STRUCTURE OF HIS 115 AND GLU 115 MUTANTS 134L ; 1.77 ; ROLE OF ARG 115 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME. X-RAY STRUCTURE OF HIS 115 AND GLU 115 MUTANTS 3BLP ; 1.6 ; Role of aromatic residues in human salivary alpha-amylase 3BLK ; 2.0 ; Role of aromatic residues in starch binding 1SPA ; 2.0 ; ROLE OF ASP222 IN THE CATALYTIC MECHANISM OF ESCHERICHIA COLI ASPARTATE AMINOTRANSFERASE: THE AMINO ACID RESIDUE WHICH ENHANCES THE FUNCTION OF THE ENZYME-BOUND COENZYME PYRIDOXAL 5'-PHOSPHATE 1IZA ; 2.5 ; ROLE OF B13 GLU IN INSULIN ASSEMBLY: THE HEXAMER STRUCTURE OF RECOMBINANT MUTANT (B13 GLU-> GLN) INSULIN 1IZB ; 2.0 ; ROLE OF B13 GLU IN INSULIN ASSEMBLY: THE HEXAMER STRUCTURE OF RECOMBINANT MUTANT (B13 GLU-> GLN) INSULIN 140L ; 2.1 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 141L ; 2.0 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 142L ; 2.0 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 143L ; 2.0 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 144L ; 2.1 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 145L ; 2.0 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 146L ; 1.85 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 147L ; 2.0 ; ROLE OF BACKBONE FLEXIBILITY IN THE ACCOMMODATION OF VARIANTS THAT REPACK THE CORE OF T4 LYSOZYME 6UBF ; 4.597 ; Role of Beta-hairpin motifs in the DNA duplex opening by the Rad4/XPC nucleotide excision repair complex 6UIN ; 3.348 ; Role of Beta-hairpin motifs in the DNA duplex opening by the Rad4/XPC nucleotide excision repair complex 1NUF ; 2.7 ; Role of Calcium Ions in the Activation and Activity of the Transglutaminase 3 Enzyme 1NUG ; 2.4 ; Role of Calcium Ions in the Activation and Activity of the Transglutaminase 3 Enzyme (2 calciums, 1 Mg, inactive form) 1NUD ; 2.7 ; Role of Calcium Ions in the Activation and Activity of the Transglutaminase 3 Enzyme (3 calciums, active form) 6NQB ; 3.8 ; Role of Era in Assembly and Homeostasis of the Ribosomal Small Subunit 1JXK ; 1.9 ; Role of ethe mobile loop in the mehanism of human salivary amylase 1L9C ; 1.9 ; Role of Histidine 269 in Catalysis by Monomeric Sarcosine Oxidase 1L9D ; 1.95 ; Role of Histidine 269 in Catalysis by Monomeric Sarcosine Oxidase 1L9E ; 1.85 ; Role of Histidine 269 in Catalysis by Monomeric Sarcosine Oxidase 1SZX ; 1.95 ; Role Of Hydrogen Bonding In The Active Site Of Human Manganese Superoxide Dismutase 3DV7 ; 1.7 ; Role of Hydrophilic Residues in Proton Transfer During Catalysis by Human Carbonic Anhydrase II (N62A) 2CEP ; 2.2 ; ROLE OF MET-230 IN INTRAMOLECULAR ELECTRON TRANSFER BETWEEN THE OXYFERRYL HEME AND TRP 191 IN CYTOCHROME C PEROXIDASE COMPOUND II 1JXJ ; 1.99 ; Role of mobile loop in the mechanism of human salivary amylase 3PRJ ; 3.1 ; Role of Packing Defects in the Evolution of Allostery and Induced Fit in Human UDP-Glucose Dehydrogenase. 3PTZ ; 2.5 ; Role of Packing Defects in the Evolution of Allostery and Induced Fit in Human UDP-Glucose Dehydrogenase. 1LHH ; 1.8 ; ROLE OF PROLINE RESIDUES IN HUMAN LYSOZYME STABILITY: A SCANNING CALORIMETRIC STUDY COMBINED WITH X-RAY STRUCTURE ANALYSIS OF PROLINE MUTANTS 1LHI ; 1.8 ; ROLE OF PROLINE RESIDUES IN HUMAN LYSOZYME STABILITY: A SCANNING CALORIMETRIC STUDY COMBINED WITH X-RAY STRUCTURE ANALYSIS OF PROLINE MUTANTS 1LHJ ; 1.8 ; ROLE OF PROLINE RESIDUES IN HUMAN LYSOZYME STABILITY: A SCANNING CALORIMETRIC STUDY COMBINED WITH X-RAY STRUCTURE ANALYSIS OF PROLINE MUTANTS 1LHK ; 1.8 ; ROLE OF PROLINE RESIDUES IN HUMAN LYSOZYME STABILITY: A SCANNING CALORIMETRIC STUDY COMBINED WITH X-RAY STRUCTURE ANALYSIS OF PROLINE MUTANTS 1LHL ; 1.8 ; ROLE OF PROLINE RESIDUES IN HUMAN LYSOZYME STABILITY: A SCANNING CALORIMETRIC STUDY COMBINED WITH X-RAY STRUCTURE ANALYSIS OF PROLINE MUTANTS 1A3P ; ; ROLE OF THE 6-20 DISULFIDE BRIDGE IN THE STRUCTURE AND ACTIVITY OF EPIDERMAL GROWTH FACTOR, NMR, 20 STRUCTURES 1R68 ; 1.2 ; Role of the amino sugar in DNA binding of disaccharide anthracyclines: crystal structure of MAR70/d(CGATCG) complex 4GXF ; 2.734 ; Role of the biradical intermediate observed during the turnover of SLAC: A two-domain laccase from Streptomyces coelicolor 4GY4 ; 2.67 ; Role of the biradical intermediate observed during the turnover of SLAC: A two-domain laccase from Streptomyces coelicolor 6KBB ; 2.365 ; Role of the DEF/Y motif of Swc5 in histone H2A.Z deposition 6M7W ; 1.98 ; Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins 4KU1 ; 1.9 ; Role of the hinge and C-gamma-2/C-gamma-3 interface in immunoglobin G1 Fc domain motions: implications for Fc engineering 3BP2 ; 2.1 ; ROLE OF THE N-TERMINUS IN THE INTERACTION OF PANCREATIC PHOSPHOLIPASE A2 WITH AGGREGATED SUBSTRATES. PROPERTIES AND CRYSTAL STRUCTURE OF TRANSAMINATED PHOSPHOLIPASE A2 1VZU ; 1.97 ; Roles of active site tryptophans in substrate binding and catalysis by ALPHA-1,3 GALACTOSYLTRANSFERASE 1VZX ; 1.97 ; Roles of active site tryptophans in substrate binding and catalysis by ALPHA-1,3 GALACTOSYLTRANSFERASE 1OLS ; 1.85 ; Roles of His291-alpha and His146-beta' in the reductive acylation reaction catalyzed by human branched-chain alpha-ketoacid dehydrogenase 1OLU ; 1.9 ; Roles of His291-alpha and His146-beta' in the reductive acylation reaction catalyzed by human branched-chain alpha-ketoacid dehydrogenase 1OLX ; 2.25 ; Roles of His291-alpha and His146-beta' in the reductive acylation reaction catalyzed by human branched-chain alpha-ketoacid dehydrogenase 1O7O ; 1.97 ; Roles of Individual Residues of Alpha-1,3 Galactosyltransferases in Substrate Binding and Catalysis 1O7Q ; 1.3 ; Roles of Individual Residues of Alpha-1,3 Galactosyltransferases in Substrate Binding and Catalysis 1VZT ; 2.0 ; ROLES OF INDIVIDUAL RESIDUES OF ALPHA-1,3 GALACTOSYLTRANSFERASES IN SUBSTRATE BINDING AND CATALYSIS 5NJN ; 1.6 ; Roll out the beta-barrel: structure and mechanism of Pac13, a unique nucleoside dehydratase 5NJO ; 1.55 ; Roll out the beta-barrel: structure and mechanism of Pac13, a unique nucleoside dehydratase 3PLS ; 2.24 ; RON in complex with ligand AMP-PNP 4Z5R ; 3.0 ; Rontalizumab Fab bound to Interferon-a2 7DTB ; 1.65 ; Room tempeature structure of lysozyme by fixed-target serial crystallography 5V5D ; 2.104 ; Room temperature (280K) crystal structure of Kaposi's sarcoma-associated herpesvirus protease in complex with allosteric inhibitor (compound 250) 5V5E ; 2.299 ; Room temperature (280K) crystal structure of Kaposi's sarcoma-associated herpesvirus protease in complex with allosteric inhibitor (compound 733) 1I1O ; 2.0 ; ROOM TEMPERATURE CRYSTAL STRUCTURE FLAVODOXIN D. VULGARIS MUTANT Y98H AT 2.0 ANG. RESOLUTION 8CTS ; 1.6 ; Room temperature crystal structure of a K+ selective NaK mutant (NaK2K) 4J5O ; 1.11 ; Room temperature crystal structure of a RNA binding motif protein 39 (Rbm39) from Mus musculus at 1.11 A resolution 8BRL ; 1.88 ; Room temperature crystal structure of cytochrome c' from Hydrogenophilus thermoluteolus 8BRK ; 1.75 ; Room temperature crystal structure of cytochrome c' from Thermus thermophilus 2WT4 ; 1.8 ; Room temperature crystal structure of Helicobacter pylori L- asparaginase at 1.8 A resolution 4N0X ; 1.63 ; Room temperature crystal structure of human carbonic anhydrase II in complex with thiophene-2-sulfonamide 4WG1 ; 1.7 ; Room temperature crystal structure of lysozyme determined by serial synchrotron crystallography (micro focused beam - crystFEL) 7JIB ; 2.65 ; Room Temperature Crystal Structure of Nsp10/Nsp16 from SARS-CoV-2 with Substrates and Products of 2'-O-methylation of the Cap-1 7ZCK ; 1.8 ; Room temperature crystal structure of PhnD from Synechococcus MITS9220 in complex with phosphate 4OP8 ; 1.95 ; Room temperature crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying G238S mutation 4OPY ; 1.75 ; Room temperature crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S mutation 4OPQ ; 1.7 ; Room temperature crystal structure of stabilized TEM-1 beta-lactamase variant v.13 carrying R164S/G238S mutations 1LR4 ; 2.0 ; Room Temperature Crystal Structure of the Apo-form of the catalytic subunit of protein kinase CK2 from Zea mays 8A97 ; 2.897 ; ROOM TEMPERATURE CRYSTAL STRUCTURE OF THE COFACTOR-DEVOID 1-H-3-HYDROXY-4- OXOQUINALDINE 2,4-DIOXYGENASE (HOD) UNDER XENON PRESSURE (30 bar) 4UTS ; 2.03 ; Room temperature crystal structure of the fast switching M159T mutant of fluorescent protein Dronpa 8QFI ; 1.9 ; Room temperature crystal structure of the Photoactivated Adenylate Cyclase OaPAC after blue light excitation at 1.8 us delay 8QFJ ; 1.9 ; Room temperature crystal structure of the Photoactivated Adenylate Cyclase OaPAC after blue light excitation at 2.3 us delay 8QFH ; 1.8 ; Room temperature crystal structure of the Photoactivated Adenylate Cyclase OaPAC with ATP bound 6RHL ; 1.299 ; Room temperature data of Galectin-3C in complex with a pair of enantiomeric ligands: R enantiomer 6RHM ; 1.596 ; Room temperature data of Galectin-3C in complex with a pair of enantiomeric ligands: S enantiomer 7UD0 ; 3.5 ; Room Temperature Drosophila Cryptochrome 3TGP ; 1.3075 ; Room temperature H-ras 7QT8 ; 2.01 ; Room temperature In-situ SARS-CoV-2 MPRO with bound ABT-957 7QT6 ; 2.11 ; Room temperature In-situ SARS-CoV-2 MPRO with bound Z1367324110 7QT5 ; 2.26 ; Room temperature In-situ SARS-CoV-2 MPRO with bound Z31792168 7QT7 ; 2.25 ; Room temperature In-situ SARS-CoV-2 MPRO with bound Z4439011520 7QT9 ; 2.43 ; Room temperature In-situ SARS-CoV-2 MPRO with bound Z4439011584 5NE0 ; 1.57 ; Room temperature in-situ structure of hen egg-white lysozyme from crystals enclosed between ultrathin silicon nitride membranes 4O34 ; 2.09 ; Room temperature macromolecular serial crystallography using synchrotron radiation 4KJL ; 1.38 ; Room Temperature N23PPS148A DHFR 4Q49 ; 1.8 ; Room temperature neutron crystal structure of apo human carbonic anhydrase at pH 7.5 8DYK ; 2.1 ; Room temperature neutron structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold 3KCJ ; 1.8 ; Room temperature neutron structure of apo-D-Xylose Isomerase (refined jointly with X-ray structure 3KBJ) 3KCJ ; 2.0 ; Room temperature neutron structure of apo-D-Xylose Isomerase (refined jointly with X-ray structure 3KBJ) 3KCL ; 2.0 ; Room temperature neutron structure of D-Xylose Isomerase in complex with two Cd2+ cations and d12-D-alpha-glucose in the ring form (refined jointly with X-ray structure 3KBM) 3KCL ; 2.0 ; Room temperature neutron structure of D-Xylose Isomerase in complex with two Cd2+ cations and d12-D-alpha-glucose in the ring form (refined jointly with X-ray structure 3KBM) 3KCO ; 1.8 ; Room temperature neutron structure of D-Xylose Isomerase in complex with two Ni2+ cations and d12-D-glucose in the linear form (refined jointly with X-ray structure 3KBN) 3KCO ; 1.53 ; Room temperature neutron structure of D-Xylose Isomerase in complex with two Ni2+ cations and d12-D-glucose in the linear form (refined jointly with X-ray structure 3KBN) 6BBR ; 2.3 ; Room temperature neutron/X-ray structure of AAC-VIa 6BBR ; 2.002 ; Room temperature neutron/X-ray structure of AAC-VIa 6BBZ ; 2.2 ; Room temperature neutron/X-ray structure of sisomicin bound AAC-VIa 6BBZ ; 1.9 ; Room temperature neutron/X-ray structure of sisomicin bound AAC-VIa 7KFM ; 1.75 ; Room temperature oxyferrous Dehaloperoxidase B 8A7V ; 1.46 ; Room temperature rsEGFP2 in its OFF-state obtained with SFX 8A6S ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 1 microsecond after Photoexcitation 8A6R ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 100 ps after Photoexcitation 8A6N ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 300 fs after Photoexcitation 8A6Q ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 5 ps after photoexcitation 8A6O ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 600 fs after Photoexcitation 8A6P ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore 900 fs after photoexcitation 8A6G ; 1.63 ; Room temperature rsEGFP2 with a chlorinated chromophore in the non-fluorescent OFF-state 7TSU ; 1.75 ; Room temperature rsEospa Cis-state structure at pH 5.5 7TSR ; 1.75 ; Room temperature rsEospa Cis-state structure at pH 8.4 7TSV ; 1.75 ; Room temperature rsEospa Trans-state structure at pH 5.5 7TSS ; 1.75 ; Room temperature rsEospa Trans-state structure at pH 8.4 7RGG ; 3.0 ; Room temperature serial crystal structure of Glutaminase C in complex with inhibitor BPTES 7REN ; 2.8 ; Room temperature serial crystal structure of Glutaminase C in complex with inhibitor UPGL-00004 7ZPV ; 1.4 ; Room temperature SSX crystal structure of CTX-M-14 8AF7 ; 1.55 ; Room temperature SSX crystal structure of CTX-M-14 (10K dataset) 8AF8 ; 1.55 ; Room temperature SSX crystal structure of CTX-M-14 (5K dataset) 7ZQ0 ; 1.9 ; Room temperature SSX structure of GH11 xylanase from Nectria haematococca (1000 frames) 8AF5 ; 1.63 ; Room temperature SSX structure of GH11 xylanase from Nectria haematococca (10000 frames) 8AF6 ; 1.7 ; Room temperature SSX structure of GH11 xylanase from Nectria haematococca (4000 frames) 8AF4 ; 1.51 ; Room temperature SSX structure of GH11 xylanase from Nectria haematococca (40000 frames) 5TRX ; 2.38 ; Room temperature structure of an extradiol ring-cleaving dioxygenase from B.fuscum determined using serial femtosecond crystallography 7PXR ; 1.8 ; Room temperature structure of an LPMO. 7ZY3 ; 1.8 ; Room temperature structure of Archaerhodopsin-3 obtained 110 ns after photoexcitation 6GUY ; 2.2 ; Room temperature structure of Archaerhodopsin-3 via LCP extruder using synchrotron radiation 8A4E ; 1.96 ; Room temperature structure of AtPhot2LOV2 in a photostationary equilibrium 7F8K ; 2.2 ; Room temperature structure of bacterial copper amine oxidase determined by serial femtosecond crystallography 4X31 ; 2.4 ; Room temperature structure of bacteriorhodopsin from lipidic cubic phase obtained with serial millisecond crystallography using synchrotron radiation 6O52 ; 3.2 ; Room temperature structure of binary complex of native hAChE with BW284c51 6O5R ; 2.8 ; Room temperature structure of binary complex of native hAChE with oxime reactivator RS-170B 6QQK ; 2.4 ; Room temperature structure of blue light-irradiated AtPhot2LOV2 recorded after an accumulated dose of 34 kGy 1QGL ; 2.66 ; Room temperature structure of concanavalin A complexed to bivalent ligand 4YSD ; 1.35 ; Room temperature structure of copper nitrite reductase from Geobacillus thermodenitrificans 3K0N ; 1.391 ; Room temperature structure of CypA 3K0O ; 1.55 ; Room temperature structure of CypA mutant Ser99Thr 3KBV ; 1.8 ; Room temperature structure of D-Xylose Isomerase in complex with 2Ni(2+) co-factors 3KBN ; 1.53 ; Room temperature structure of D-Xylose Isomerase in complex with 2Ni(2+) co-factors and d12-D-glucose in the linear form 7FAG ; 1.3 ; Room temperature structure of elastase with high-strength agarose hydrogel 8IH1 ; 1.75 ; Room temperature structure of GH11 from Thermoanaerobacterium saccharolyticum by serial crystallography 7E03 ; 1.6 ; Room temperature structure of glucose isomerase delivered in beef tallow by serial millisecond crystallography 6KD2 ; 1.7 ; Room temperature structure of glucose isomerase delivered in gelatin by serial millisecond crystallography 7CK0 ; 1.8 ; Room temperature structure of glucose isomerase delivered in lard by serial millisecond crystallography 6KCA ; 1.9 ; Room temperature structure of glucose isomerase delivered in shortening A by serial millisecond crystallography 6KCC ; 2.0 ; Room temperature structure of glucose isomerase delivered in shortening B by serial millisecond crystallography 7RB5 ; 2.8 ; Room temperature structure of hAChE in complex with substrate analog 4K-TMA 7RB7 ; 2.6 ; Room temperature structure of hAChE in complex with substrate analog 4K-TMA and MMB4 oxime 6QQF ; 1.95 ; Room temperature structure of Hen Egg White Lysozyme recorded after an accumulated dose of 100 kGy 6QQE ; 1.37 ; Room temperature structure of Hen Egg White Lysozyme recorded after an accumulated dose of 20 kGy 6JCG ; 2.5 ; Room temperature structure of HIV-1 Integrase catalytic core domain by serial femtosecond crystallography. 6YXD ; 2.9 ; Room temperature structure of human adiponectin receptor 2 (ADIPOR2) at 2.9 A resolution determined by Serial Crystallography (SSX) using CrystalDirect 5LG1 ; 2.7 ; Room temperature structure of human IgG4-Fc from crystals analysed in situ 5FVF ; 2.75 ; Room temperature structure of IrisFP determined by serial femtosecond crystallography. 6HW1 ; 2.5 ; ROOM TEMPERATURE STRUCTURE OF LIPASE FROM T. LANUGINOSA AT 2.5 A RESOLUTION IN CHIPX MICROFLUIDIC DEVICE 7DTF ; 1.85 ; Room temperature structure of lysozyme by serial millisecond crystallography 6KD1 ; 1.85 ; Room temperature structure of lysozyme delivered in agarose by serial millisecond crystallography 7E02 ; 1.55 ; Room temperature structure of lysozyme delivered in beef tallow by serial millisecond crystallography 7CJZ ; 1.75 ; Room temperature structure of lysozyme delivered in lard by serial millisecond crystallography 6JXP ; 1.56 ; Room temperature structure of lysozyme delivered in LCP by serial millisecond crystallography 6JXQ ; 1.76 ; Room temperature structure of lysozyme delivered in polyacrylamide by serial millisecond crystallography 6KCB ; 1.8 ; Room temperature structure of lysozyme delivered in shortening A by serial millisecond crystallography 6KCD ; 1.5 ; Room temperature structure of lysozyme delivered in shortening B by serial millisecond crystallography 7WKR ; 1.6 ; Room temperature structure of lysozyme solved by serial synchrotron crystallography 7K9P ; 2.6 ; Room temperature structure of NSP15 Endoribonuclease from SARS CoV-2 solved using SFX. 5BN2 ; 1.3 ; Room Temperature Structure of Pichia pastoris aquaporin at 1.3 A 7Q79 ; 1.55 ; Room temperature structure of RNase A at 100 MPa helium gas pressure in a sapphire capillary 7Q7A ; 1.56 ; Room temperature structure of RNase A at 120 MPa helium gas pressure in a sapphire capillary 7Q76 ; 1.48 ; Room temperature structure of RNase A at 22 MPa helium gas pressure in a sapphire capillary 7Q77 ; 1.6 ; Room temperature structure of RNase A at 50 MPa helium gas pressure in a sapphire capillary 7Q78 ; 1.52 ; Room temperature structure of RNase A at 72 MPa helium gas pressure in a sapphire capillary 7Q75 ; 1.64 ; Room temperature structure of RNase A at atmospheric pressure 7Q7B ; 1.78 ; Room temperature structure of RNase A at atmospheric pressure in a sapphire capillary after high helium gas pressure release 7KOA ; 2.4 ; Room Temperature Structure of SARS-CoV-2 Nsp10/16 Methyltransferase in a Complex with Cap-0 and SAM Determined by Pink-Beam Serial Crystallography 7JHE ; 2.25 ; Room Temperature Structure of SARS-CoV-2 Nsp10/Nsp16 Methyltransferase in a Complex with 2'-O-methylated m7GpppA Cap-1 and SAH Determined by Fixed-Target Serial Crystallography 7JPE ; 2.18 ; Room Temperature Structure of SARS-CoV-2 Nsp10/Nsp16 Methyltransferase in a Complex with m7GpppA Cap-0 and SAM Determined by Fixed-Target Serial Crystallography 6XKM ; 2.25 ; Room Temperature Structure of SARS-CoV-2 NSP10/NSP16 Methyltransferase in a Complex with SAM Determined by Fixed-Target Serial Crystallography 1TR5 ; 2.1 ; Room temperature structure of Staphylococcal nuclease variant truncated Delta+PHS I92E 6HEF ; 3.538 ; Room temperature structure of the (SR)Ca2+-ATPase Ca2-E1-CaAMPPCP form 6S45 ; 2.2 ; Room temperature structure of the dark state of the LOV2 domain of phototropin-2 from Arabidopsis thaliana determined with a serial crystallography approach 6QQB ; 2.45 ; Room temperature structure of the fluorescent protein Cerulean recorded after an accumulated dose of 147 kGy 6QQA ; 1.66 ; Room temperature structure of the fluorescent protein Cerulean recorded after an accumulated dose of 21 kGy 8A2W ; 2.04 ; Room temperature structure of the ground state of AtPhot2LOV2 in space group P212121, as recovered 1620 seconds after light irradiation 8A2V ; 1.59 ; Room temperature structure of the ground state of AtPhot2LOV2 in space group P43212 6QQJ ; 2.08 ; Room temperature structure of the ground state of AtPhot2LOV2 recorded after an accumulated dose of 354 kGy 7FG5 ; 1.3 ; Room temperature structure of the human heart fatty acid-binding protein complexed with capric acid 7FCX ; 1.15 ; Room temperature structure of the human heart fatty acid-binding protein complexed with hexanoic acid 7Q7C ; 2.85 ; Room temperature structure of the human Serine/Threonine Kinase 17B (STK17B/DRAK2) in complex with ADP at atmospheric pressure 7Q7D ; 2.6 ; Room temperature structure of the human Serine/Threonine Kinase 17B (STK17B/DRAK2) in complex with ATP/ADP at 111 MPa helium gas pressure in a sapphire capillary 7Q7E ; 2.85 ; Room temperature structure of the human Serine/Threonine Kinase 17B (STK17B/DRAK2) in complex with ATP/ADP at atmospheric pressure in a sapphire capillary after high helium gas pressure release 6S46 ; 2.75 ; Room temperature structure of the LOV2 domain of phototropin-2 from Arabidopsis thaliana 4158 ms after initiation of illumination, determined with a serial crystallography approach 7Q7M ; 2.55 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at 100 MPa helium gas pressure in a sapphire capillary 7Q7N ; 2.87 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at 120 MPa helium gas pressure in a sapphire capillary 7Q7G ; 2.69 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at 30 MPa helium gas pressure in a sapphire capillary 7Q7H ; 2.49 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at 51 MPa helium gas pressure in a sapphire capillary 7Q7J ; 2.69 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at 75 MPa helium gas pressure in a sapphire capillary 7Q7F ; 2.75 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at atmospheric pressure 7Q7O ; 2.65 ; Room temperature structure of the Rhodobacter Sphaeroides Photosynthetic Reaction Center F(M197)H mutant at atmospheric pressure after high helium gas pressure release 8YEA ; 2.85 ; Room temperature structure of TsaGH11 determined by macromolecular crystallography 8YPX ; 2.7 ; Room temperature structure of TsaGH11 determined by MX 5TOF ; 1.12 ; Room temperature structure of ubiquitin variant u7ub25 5TOG ; 1.08 ; Room temperature structure of ubiquitin variant u7ub25.2540 6O5S ; 2.801 ; Room temperature structure of VX-phosphonylated hAChE in complex with oxime reactivator RS-170B 8YJI ; 2.1 ; Room temperature structure of xylanase from Trichoderma longibrachiatum 3KMF ; 2.0 ; Room Temperature Time-of-Flight Neutron Diffraction Study of Deoxy Human Normal Adult Hemoglobin 3U7T ; 0.85 ; Room temperature ultra-high resolution time-of-flight neutron and X-ray diffraction studies of H/D exchanged crambin 4KJK ; 1.351 ; Room Temperature WT DHFR 8V2Y ; 2.86 ; Room temperature X-ray Crystal Structure of FMN-bound long-chain flavodoxin from Rhodopseudomonas palustris 5VG0 ; 1.1 ; Room temperature X-ray crystallographic structure of a Jonesia denitrificans lytic polysaccharide monooxygenase at 1.1 angstrom resolution. 6XB0 ; 1.8 ; Room temperature X-ray crystallography reveals catalytic cysteine in the SARS-CoV-2 3CL Mpro is highly reactive: Insights for enzyme mechanism and drug design 6XB1 ; 1.8 ; Room temperature X-ray crystallography reveals catalytic cysteine in the SARS-CoV-2 3CL Mpro is highly reactive: Insights for enzyme mechanism and drug design 6XB2 ; 2.1 ; Room temperature X-ray crystallography reveals catalytic cysteine in the SARS-CoV-2 3CL Mpro is highly reactive: Insights for enzyme mechanism and drug design 6XHU ; 1.8 ; Room temperature X-ray crystallography reveals oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL Mpro: Insights for enzyme mechanism and drug design 4G49 ; 2.4 ; Room temperature X-ray diffraction of cisplatin binding to HEWL in aqueous media after 15 months of crystal storage 5LAF ; 1.5 ; Room temperature X-ray diffraction of tetragonal HEWL with 1M of uridine. First data set (0.31 MGy) 5LAG ; 1.6 ; Room temperature X-ray diffraction of tetragonal HEWL with 1M of uridine. Second data set (0.62 MGy) 5LAN ; 1.65 ; Room temperature X-ray diffraction of tetragonal HEWL with 1M of uridine. Third data set (0.93 MGy) 5L9J ; 1.5 ; Room temperature X-ray diffraction of tetragonal HEWL. First data set (0.31 MGy) 5LA5 ; 1.7 ; Room temperature X-ray diffraction of tetragonal HEWL. Second data set (0.62 MGy) 5LA8 ; 2.0 ; Room temperature X-ray diffraction of tetragonal HEWL. Third data set (0.93 MGy) 4YEN ; 2.0 ; Room temperature X-ray diffraction studies of cisplatin binding to HEWL in DMSO media after 14 months of crystal storage - new refinement 4GCC ; 2.0 ; Room temperature X-ray diffraction study of a 6-fold molar excess of a cisplatin/carboplatin mixture binding to HEWL, Dataset 1 4GCD ; 2.8 ; Room temperature X-ray diffraction study of a 6-fold molar excess of a cisplatin/carboplatin mixture binding to HEWL, Dataset 2 4GCE ; 2.9 ; Room temperature X-ray diffraction study of a 6-fold molar excess of a cisplatin/carboplatin mixture binding to HEWL, Dataset 3 4GCF ; 3.5 ; Room temperature X-ray diffraction study of a 6-fold molar excess of a cisplatin/carboplatin mixture binding to HEWL, Dataset 4 4G4C ; 2.0 ; Room temperature X-ray diffraction study of carboplatin binding to HEWL in DMSO media after 13 months of crystal storage 4G4B ; 2.1 ; Room temperature X-ray diffraction study of cisplatin binding to HEWL in DMSO media with NAG after 7 months of crystal storage 3KBW ; 1.6 ; Room temperature X-ray mixed-metal structure of D-Xylose Isomerase in complex with Ni(2+) and Mg(2+) co-factors 3KBJ ; 2.0 ; Room temperature X-ray structure of apo-D-Xylose Isomerase 4DH5 ; 2.2 ; Room temperature X-ray structure of cAMP dependent Protein Kinase A catalytic subunit with high Mg2+, ADP, Phosphate, and IP20 4DH8 ; 2.3 ; Room temperature X-ray structure of cAMP dependent Protein Kinase A catalytic subunit with high Mg2+, AMP-PNP and IP20 4IAF ; 2.2 ; Room temperature X-ray Structure OF cAMP dependent protein kinase A in complex with high Mg2+ concentration, ADP and phosphorylated peptide pSP20 4IAY ; 2.0 ; Room temperature X-ray Structure of cAMP dependent protein kinase A in complex with high Sr2+ concentration, ADP and phosphorylated peptide pSP20 3KBM ; 2.0 ; Room Temperature X-ray structure of D-Xylose Isomerase complexed with 2Cd(2+) co-factors and d12-D-alpha-glucose in the cyclic form 3QYS ; 1.85 ; Room Temperature X-ray Structure of D-Xylose Isomerase in complex with 0.6Ni2+ cation bound in M2 metal binding site at pH=5.8 3KBS ; 1.8 ; Room Temperature X-ray structure of D-Xylose Isomerase in complex with 2Cd(2+) co-factors 4QE1 ; 1.55 ; Room temperature X-ray structure of D-xylose isomerase in complex with two Cd2+ ions and L-ribulose 4QEH ; 1.55 ; Room temperature X-ray structure of D-xylose isomerase in complex with two Mg2+ ions and L-ribose 4QE5 ; 1.56 ; Room temperature X-ray structure of D-xylose isomerase in complex with two Mg2+ ions and L-ribulose 4QEE ; 1.6 ; Room temperature X-ray structure of D-xylose isomerase in complex with two Ni2+ ions and L-ribose 4QE4 ; 1.7 ; Room temperature X-ray structure of D-xylose isomerase in complex with two Ni2+ ions and L-ribulose 7B7F ; 1.6 ; Room temperature X-ray structure of H/D-exchanged PLL lectin in complex with L-fucose 6PU8 ; 1.8 ; Room temperature X-ray structure of HIV-1 protease triple mutant (V32I,I47V,V82I) with tetrahedral intermediate of keto-darunavir 7PXS ; 1.9 ; Room temperature X-ray structure of LPMO at 1.91x10^3 Gy 7B7E ; 1.6 ; Room temperature X-ray structure of perdeuterated PLL lectin 7B7C ; 1.55 ; Room temperature X-ray structure of perdeuterated PLL lectin in complex with L-fucose 7TEH ; 1.8 ; Room temperature X-ray structure of SARS-CoV-2 main protease (3CL Mpro) in complex with BBH-2 7TFR ; 1.8 ; Room temperature X-ray structure of SARS-CoV-2 main protease (3CL Mpro) in complex with NBH-2 7RNH ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-45 7RME ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-52 7RMZ ; 2.1 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-63 7RLS ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-68 7RN4 ; 1.85 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-69 7RMT ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-70 7RNK ; 2.1 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-71 7RMB ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with HL-3-78 7RM2 ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with Mcule-CSR-494190-S1 7SI9 ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease (Mpro) in complex with PF-07321332 7S3K ; 1.9 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound Z1530718726 7S3S ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound Z1530724813 7S4B ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound Z1530724963 8DL9 ; 1.9 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound Z199538122 8DLB ; 1.9 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound Z2799209083 8DMD ; 2.0 ; Room temperature X-ray structure of SARS-CoV-2 main protease in complex with compound ZZ4461624291 2XR0 ; 2.2 ; Room temperature X-ray structure of the perdeuterated Toho-1 R274N R276N double mutant beta-lactamase 8GFK ; 2.0 ; Room temperature X-ray structure of truncated SARS-CoV-2 main protease C145A mutant, residues 1-304 8GFN ; 1.8 ; Room temperature X-ray structure of truncated SARS-CoV-2 main protease C145A mutant, residues 1-304, in complex with BBH1 8GFO ; 2.0 ; Room temperature X-ray structure of truncated SARS-CoV-2 main protease C145A mutant, residues 1-304, in complex with GC373 8GFR ; 2.0 ; Room temperature X-ray structure of truncated SARS-CoV-2 main protease C145A mutant, residues 1-304, in complex with NBH2 8GFU ; 1.8 ; Room temperature X-ray structure of truncated SARS-CoV-2 main protease C145A mutant, residues 1-304, in complex with nirmatrelvir (NMV) 7M75 ; 2.75 ; Room Temperature XFEL Crystallography reveals asymmetry in the vicinity of the two phylloquinones in Photosystem I 7M76 ; 3.0 ; Room Temperature XFEL Crystallography reveals asymmetry in the vicinity of the two phylloquinones in Photosystem I 7M78 ; 3.0 ; Room Temperature XFEL Crystallography reveals asymmetry in the vicinity of the two phylloquinones in Photosystem I 6ZAF ; 1.4001 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and ACV after exposure to dioxygen for 400ms. 6ZAL ; 1.83 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and ACV after exposure to dioxygen for 500ms without glycerol. 6ZAG ; 1.4001 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and ACV after exposure to dioxygen for 500ms. 6ZAH ; 1.43 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and ACV after exposure to dioxygen for 800ms. 6ZAE ; 1.4 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and ACV under anaerobic conditions. 6ZAQ ; 1.6 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe and IPN after dioxygen exposure 6ZAI ; 1.5501 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe, O2 and ACV after exposure to dioxygen for 1600ms. 6ZAJ ; 1.5301 ; Room temperature XFEL Isopenicillin N synthase structure in complex with Fe, O2 and ACV after exposure to dioxygen for 3000ms. 6ZAK ; 1.54 ; Room temperature XFEL Isopenicillin N synthase structure in complex with the Fe(IV)=O mimic VO and ACV. 5TIS ; 2.25 ; Room temperature XFEL structure of the native, doubly-illuminated photosystem II complex 7BH6 ; 1.65 ; Room temperature, serial X-ray structure of CTX-M-15 collected on fixed target chips at Diamond Light Source I24 7BH7 ; 1.65 ; Room temperature, serial X-ray structure of the ertapenem-derived acylenzyme of CTX-M-15 (10 min soak) collected on fixed target chips at Diamond Light Source I24 3BDQ ; 2.0 ; Room Tempreture Crystal Structure of Sterol Carrier Protein-2 Like-2 7S8Z ; 1.64 ; Room-temperature apo Human Hsp90a-NTD 4WL7 ; 1.95 ; Room-temperature crystal structure of lysozyme determined by serial synchrotron crystallography using a micro focused beam (Conventional resolution cut-off) 4WG7 ; 1.7 ; Room-temperature crystal structure of lysozyme determined by serial synchrotron crystallography using a nano focused beam. 7S95 ; 1.71 ; Room-temperature Human Hsp90a-NTD bound to adenine 7S9G ; 1.79 ; Room-temperature Human Hsp90a-NTD bound to BIIB021 7S9I ; 1.75 ; Room-temperature Human Hsp90a-NTD bound to EC144 7S99 ; 1.52 ; Room-temperature Human Hsp90a-NTD bound to N6M 4DVO ; 2.0 ; Room-temperature joint X-ray/neutron structure of D-xylose isomerase in complex with 2Ni2+ and per-deuterated D-sorbitol at pH 5.9 5FB6 ; 1.901 ; Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering 8DU7 ; 2.4 ; Room-temperature serial synchrotron crystallography (SSX) structure of apo PTP1B 6MYB ; 1.899 ; Room-temperature structure of deuterated Tetdron (isomorph 1) 6MYC ; 2.396 ; Room-temperature structure of deuterated Tetdron (isomorph 2) 6MXW ; 2.049 ; Room-temperature structure of hydrogenated Tetdron (isomorph 1) 8H8W ; 1.7 ; Room-temperature structure of lysozyme by pink-beam serial crystallography (100 ms, center) 8H8V ; 1.7 ; Room-temperature structure of lysozyme by pink-beam serial crystallography (100 ms, edge) 8H8U ; 1.7 ; Room-temperature structure of lysozyme by pink-beam serial crystallography (50 ms, center) 8H8T ; 1.7 ; Room-temperature structure of lysozyme by pink-beam serial crystallography (50 ms, edge) 7WUC ; 2.1 ; Room-temperature structure of lysozyme by serial femtosecond crystallography (BITS) 8BRZ ; 1.7 ; Room-temperature structure of Pedobacter heparinus N-acetylglucosamine 2-epimerase at 52 MPa helium gas pressure in a sapphire capillary 8BS0 ; 1.7 ; Room-temperature structure of Pedobacter heparinus N-acetylglucosamine 2-epimerase at 80 MPa helium gas pressure in a sapphire capillary 8BRY ; 1.5 ; Room-temperature structure of Pedobacter heparinus N-acetylglucosamine 2-epimerase at atmospheric pressure 8BS2 ; 2.35 ; Room-temperature structure of SARS-CoV-2 Main protease at 104 MPa helium gas pressure in a sapphire capillary 8BS1 ; 2.05 ; Room-temperature structure of SARS-CoV-2 Main protease at atmospheric pressure 8A2P ; 3.5 ; Room-temperature structure of the stabilised A2A-LUAA47070 complex determined by synchrotron serial crystallography 8A2O ; 3.45 ; Room-temperature structure of the stabilised A2A-Theophylline complex determined by synchrotron serial crystallography 4P3Q ; 1.351 ; Room-temperature WT DHFR, time-averaged ensemble 6XQU ; 2.2 ; Room-temperature X-ray Crystal structure of SARS-CoV-2 main protease in complex with Boceprevir 6XCH ; 2.2 ; Room-temperature X-ray Crystal structure of SARS-CoV-2 main protease in complex with Leupeptin 6XQT ; 2.3 ; Room-temperature X-ray Crystal structure of SARS-CoV-2 main protease in complex with Narlaprevir 6XQS ; 1.9 ; Room-temperature X-ray Crystal structure of SARS-CoV-2 main protease in complex with Telaprevir 4DUO ; 2.0 ; Room-temperature X-ray structure of D-Xylose Isomerase in complex with 2Mg2+ ions and xylitol at pH 7.7 8SSJ ; 2.5 ; Room-temperature X-ray structure of human mitochondrial serine hydroxymethyltransferase (hSHMT2) 7UJG ; 1.8 ; Room-temperature X-ray structure of monomeric SARS-CoV-2 main protease catalytic domain (MPro1-196) in complex with GC-376 7UJU ; 1.85 ; Room-temperature X-ray structure of monomeric SARS-CoV-2 main protease catalytic domain (MPro1-196) in complex with nirmatrelvir 7UJ9 ; 2.25 ; Room-temperature X-ray structure of monomeric SARS-CoV-2 main protease catalytic domain (MPro1-199) 7LTJ ; 1.8 ; Room-temperature X-ray structure of SARS-CoV-2 main protease (3CL Mpro) in complex with a non-covalent inhibitor Mcule-5948770040 7N89 ; 2.0 ; Room-temperature X-ray structure of SARS-CoV-2 main protease C145A mutant in complex with substrate Ac-SAVLQSGF-CONH2 8FIG ; 1.75 ; Room-temperature X-ray structure of SARS-CoV-2 main protease double mutant E290A/R298A in complex with GC373 8E4J ; 1.9 ; Room-temperature X-ray structure of SARS-CoV-2 main protease H41A miniprecursor mutant 8E4R ; 1.8 ; Room-temperature X-ray structure of SARS-CoV-2 main protease H41A miniprecursor mutant in complex with GC373 7UKK ; 2.0 ; Room-temperature X-ray structure of SARS-CoV-2 main protease in complex with GC-376 8SSY ; 1.8 ; Room-temperature X-ray structure of Thermus thermophilus serine hydroxymethyltransferase (SHMT) bound with D-Ser in a pseudo-Michaelis complex 7CWJ ; 1.61 ; Root induced Secreted protein Tsp1 from Biocontrol fungi Trichoderma virens 7CWP ; 2.1 ; Root induced Secreted protein Tsp1 from Biocontrol fungi Trichoderma virens 7ESW ; 1.25 ; Root induced Secreted protein Tsp1 from Biocontrol fungi Trichoderma virens 7KAE ; 1.6 ; Rop protein variant with a buried tryptophan 4JRN ; 2.71 ; ROP18 kinase domain in complex with AMP-PNP and sucrose 2W1Z ; 1.97 ; ROP2 from Toxoplasma gondii: A virulence factor with a protein- kinase fold and no enzymatic activity. 2NTY ; 3.1 ; Rop4-GDP-PRONE8 7KCO ; 1.86 ; ROR gamma in complex with SCR2 and compound 3 6T4T ; 1.62 ; ROR(gamma)t ligand binding domain in complex with 20-alpha-hydroxycholesterol and allosteric ligand FM26 6T4W ; 1.71 ; ROR(gamma)t ligand binding domain in complex with 20-alpha-hydroxycholesterol and allosteric ligand Glenmark 6T4U ; 2.0 ; ROR(gamma)t ligand binding domain in complex with 20-alpha-hydroxycholesterol and allosteric ligand MRL871 6T4X ; 1.48 ; ROR(gamma)t ligand binding domain in complex with 25-hydroxycholesterol and allosteric ligand FM26 6T50 ; 1.87 ; ROR(gamma)t ligand binding domain in complex with 25-hydroxycholesterol and allosteric ligand Glenmark 6T4Y ; 1.95 ; ROR(gamma)t ligand binding domain in complex with 25-hydroxycholesterol and allosteric ligand MRL871 6TLM ; 2.321 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand compound 13 (Glenmark) 7NPC ; 1.47 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand FM156 7NP5 ; 1.55 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand FM216 7NEC ; 1.95 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand FM217 7NP6 ; 1.84 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand FM257 6SAL ; 1.61 ; ROR(gamma)t ligand binding domain in complex with allosteric ligand FM26 6T4G ; 1.93 ; ROR(gamma)t ligand binding domain in complex with cholesterol and allosteric ligand FM26 6TLQ ; 1.761 ; ROR(gamma)t ligand binding domain in complex with cholesterol and allosteric ligand Glenmark 6T4I ; 1.84 ; ROR(gamma)t ligand binding domain in complex with cholesterol and allosteric ligand MRL871 6T4J ; 1.79 ; ROR(gamma)t ligand binding domain in complex with desmosterol and allosteric ligand FM26 6TLT ; 2.11 ; ROR(gamma)t ligand binding domain in complex with desmosterol and allosteric ligand Glenmark 6T4K ; 1.89 ; ROR(gamma)t ligand binding domain in complex with desmosterol and allosteric ligand MRL871 6CN6 ; 2.45 ; RORC2 LBD complexed with compound 34 6Q6M ; 2.35 ; RORCVAR2 (RORGT, 264-499) IN COMPLEX WITH COMPOUND 1: Identification of N-aryl imidazoles as potent and selective RORgt inhibitors 6Q6O ; 2.3 ; RORCVAR2 (RORGT, 264-499) IN COMPLEX WITH COMPOUND 2 AT 2.3A: Identification of N-aryl imidazoles as potent and selective RORgt inhibitors 6Q7A ; 2.2 ; RORCVAR2 (RORGT, 264-499) IN COMPLEX WITH COMPOUND 4 AT 2.2A: Identification of N-aryl imidazoles as potent and selective RORgt inhibitors 6Q7H ; 2.3 ; RORCVAR2 (RORGT, 264-499) IN COMPLEX WITH COMPOUND 9 AT 2.3A: Identification of N-aryl imidazoles as potent and selective RORgt inhibitors 4XT9 ; 2.25 ; RORgamma (263-509) complexed with GSK2435341A and SRC2 5YP6 ; 2.2 ; RORgamma (263-509) complexed with SRC2 and Compound 6 5IZ0 ; 2.635 ; RORgamma in complex with agonist BIO592 and Coactivator EBI96 4ZJW ; 2.5 ; RORgamma in complex with inverse agonist 16 4ZJR ; 2.702 ; RORgamma in complex with inverse agonist 48 4ZOM ; 2.27 ; RORgamma in complex with inverse agonist 4j. 5IXK ; 2.35 ; RORgamma in complex with inverse agonist BIO399. 7E3M ; 2.8 ; RORgamma LBD complexed with Panaxatriol and SRC2.2 6NWS ; 2.44 ; RORgamma Ligand Binding Domain 6NWT ; 2.35 ; RORgamma Ligand Binding Domain 6NWU ; 3.2 ; RORgamma Ligand Binding Domain 6J3N ; 1.99 ; RORgammat LBD complexed with Ursonic Acid and SRC2.2 6G05 ; 1.9 ; RORGT (264-518;C455S) IN COMPLEX WITH INVERSE AGONIST ""CPD-2"" AND RIP140 PEPTIDE AT 1.90A 6G07 ; 1.66 ; RORGT (264-518;C455S) IN COMPLEX WITH INVERSE AGONIST ""CPD-9"" AND RIP140 PEPTIDE AT 1.66A 6FZU ; 1.8 ; RORGT (264-518;C455S) IN COMPLEX WITH THE FRAGMENT (""CPD-1"") AND RIP140 PEPTIDE AT 1.80A 5ETH ; 2.803 ; RORy in complex with inverse agonist 3. 5EJV ; 2.58 ; RORy in complex with T090131718 and Coactivator peptide EBI96 7Z5W ; 2.254 ; ROS1 with AstraZeneca ligand 1 7Z5X ; 2.035 ; ROS1 with AstraZeneca ligand 2 8B59 ; 3.3 ; Rosellinia necatrix megabirnavirus 1-W779 Crown protein 8B4Z ; 3.2 ; Rosellinia necatrix megabirnavirus 1-W779 full capsid 5X4V ; 2.0 ; Roseoflavin substituted OaPAC 1C3T ; ; ROTAMER STRAIN AS A DETERMINANT OF PROTEIN STRUCTURAL SPECIFICITY 7JT3 ; 3.7 ; Rotated 70S ribosome stalled on long mRNA with ArfB-1 and ArfB-2 bound in the A site (+9-IV) 1T34 ; 2.95 ; ROTATION MECHANISM FOR TRANSMEMBRANE SIGNALING BY THE ATRIAL NATRIURETIC PEPTIDE RECEPTOR 1N6M ; 2.5 ; Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd 4KPI ; 1.58 ; Rotational order-disorder structure of reversibly photoswitchable red fluorescent protein rsTagRFP 8APA ; 3.7 ; rotational state 1a of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APB ; 3.8 ; rotational state 1b of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APC ; 3.5 ; rotational state 1c of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APD ; 3.7 ; rotational state 1d of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APE ; 3.7 ; rotational state 1e of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APF ; 4.3 ; rotational state 2a of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APG ; 3.5 ; rotational state 2b of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APH ; 3.8 ; rotational state 2c of the Trypanosoma brucei mitochondrial ATP synthase dimer 8APJ ; 3.8 ; rotational state 2d of Trypanosoma brucei mitochondrial ATP synthase 8APK ; 3.7 ; rotational state 3 of the Trypanosoma brucei mitochondrial ATP synthase dimer 6O6B ; 2.7 ; Rotavirus A-VP3 (RVA-VP3) 6CYA ; 2.6 ; Rotavirus SA11 NSP2 S313A mutant 3DE5 ; 2.1 ; roteinase K by Classical hanging drop method after the second step of high X-Ray dose on ESRF ID23-1 beamline 3ZRY ; 6.5 ; Rotor architecture in the F(1)-c(10)-ring complex of the yeast F-ATP synthase 8AP9 ; 3.7 ; rotor of the Trypanosoma brucei mitochondrial ATP synthase dimer 8UQW ; 1.5 ; Round 18 Arylesterase Variant of Apo-Phosphotriesterase Measured at 13 keV 8UQX ; 1.52 ; Round 18 Arylesterase Variant of Apo-Phosphotriesterase Measured at 9.5 keV 4GY0 ; 1.85 ; Round 18 Arylesterase Variant of Phosphotriesterase 8UQY ; 1.78 ; Round 18 Arylesterase Variant of Phosphotriesterase Bound to Europium(III) Measured at 9.5 keV 8UQZ ; 1.61 ; Round 18 Arylesterase Variant of Phosphotriesterase Bound to Gadolinium(III) Measured at 9.5 keV 4GY1 ; 1.5 ; Round 18 Arylesterase Variant of Phosphotriesterase with Bound Cacodylate 4E3T ; 1.65 ; Round 18 Arylesterase Variant of Phosphotriesterase with Bound Transition State Analog 8CEP ; 2.04 ; Round2 30S head (no antibiotic) 1EOQ ; ; ROUS SARCOMA VIRUS CAPSID PROTEIN: C-TERMINAL DOMAIN 1EM9 ; 2.05 ; ROUS SARCOMA VIRUS CAPSID PROTEIN: N-TERMINAL DOMAIN 1FIG ; 3.0 ; ROUTES TO CATALYSIS: STRUCTURE OF A CATALYTIC ANTIBODY AND COMPARISON WITH ITS NATURAL COUNTERPART 6XZ5 ; 2.3 ; RovC - regulator of virulence interconnected with the Csr system 1GPL ; 2.01 ; RP2 LIPASE 8C5Y ; 3.35 ; RPA tetrameric supercomplex from Pyrococcus abyssi 8C5Z ; 3.8 ; RPA tetrameric supercomplex with AROD-OB-1 8JZV ; 1.5 ; RPA70N-ETAA1 fusion 8K00 ; 1.4 ; RPA70N-MRE11 fusion 8JZY ; 1.5 ; RPA70N-RAD9 fusion 6FM8 ; 1.78 ; RPAP3 c-terminus 1DZF ; 1.9 ; RPB5 from S.cerevisiae 4E04 ; 1.79 ; RpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis. 8TOF ; 2.8 ; Rpd3S bound to an H3K36Cme3 modified nucleosome 8IHT ; 3.72 ; Rpd3S bound to the nucleosome 8KC7 ; 3.46 ; Rpd3S histone deacetylase complex 8KD2 ; 3.02 ; Rpd3S in complex with 187bp nucleosome 8KD7 ; 3.09 ; Rpd3S in complex with nucleosome with H3K36MLA modification and 167bp DNA 8KD4 ; 2.93 ; Rpd3S in complex with nucleosome with H3K36MLA modification and 187bp DNA, class1 8KD5 ; 2.9 ; Rpd3S in complex with nucleosome with H3K36MLA modification and 187bp DNA, class2 8KD6 ; 3.07 ; Rpd3S in complex with nucleosome with H3K36MLA modification and 187bp DNA, class3 8KD3 ; 2.9 ; Rpd3S in complex with nucleosome with H3K36MLA modification, H3K9Q mutation and 187bp DNA 3UK0 ; 1.49 ; RPD_1889 protein, an extracellular ligand-binding receptor from Rhodopseudomonas palustris. 6FJU ; 1.65 ; Rpn11 homolog from Caldiarchaeum Subterraneum 6FJV ; 1.35 ; Rpn11 homolog from Caldiarchaeum Subterraneum, truncated 6OI4 ; 1.76 ; RPN13 (19-132)-RPN2 (940-952) pY950-Ub complex 5W83 ; 1.554 ; Rpn8/Rpn11 dimer complex 6AX5 ; ; RPT1 region of INI1/SNF5/SMARCB1_HUMAN - SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1. 7OPE ; 3.2 ; RqcH DR variant bound to 50S-peptidyl-tRNA-RqcP RQC complex (rigid body refinement) 6N4P ; 1.851 ; RQEFEV, crystal structure of the N-terminal segment RQEFEV from protein tau 7LQ4 ; 2.9 ; Rr (RsiG)2-(c-di-GMP)2-WhiG complex 8FFN ; 2.96 ; RR-bound wildtype rabbit TRPV5 in nanodiscs 2A9R ; 2.342 ; RR02-Rec Phosphate in the active site 1Y69 ; 3.33 ; RRF domain I in complex with the 50S ribosomal subunit from Deinococcus radiodurans 7XWE ; 1.598 ; RRGSGG-AtPRT6 UBR box 7Y6W ; 1.95 ; RRGSGG-AtPRT6 UBR box (I222) 7Y6X ; 2.196 ; RRGSGG-AtPRT6 UBR box (P32) 4CH0 ; ; RRM domain from C. elegans SUP-12 4CH1 ; ; RRM domain from C. elegans SUP-12 bound to GGTGTGC DNA 4CIO ; ; RRM domain from C. elegans SUP-12 bound to GGUGUGC RNA 2M8H ; ; RRM domain of human RBM7 2KT5 ; ; RRM domain of mRNA export adaptor REF2-I bound to HSV-1 ICP27 peptide 2YKA ; ; RRM domain of mRNA export adaptor REF2-I bound to HVS ORF57 peptide 2GO9 ; ; RRM domains 1 and 2 of Prp24 from S. cerevisiae 5B88 ; ; RRM-like domain of DEAD-box protein, CsdA 4UQT ; ; RRM-peptide structure in RES complex 6TQO ; 3.8 ; rrn anti-termination complex 6TQN ; 3.8 ; rrn anti-termination complex without S4 1O9G ; 1.5 ; rRNA methyltransferase aviRa from Streptomyces viridochromogenes at 1.5A 1O9H ; 2.4 ; rRNA methyltransferase aviRa from Streptomyces viridochromogenes at 2.4A 5GU4 ; 1.55 ; rRNA N-glycosylase RTA 5NLG ; 2.35 ; RRP5 C-terminal domain 8WZB ; 3.28 ; RS head-neck monomer 8IMM ; 2.76 ; Rs2'I-Rs2'II, Rs1'I-Rs1'II, Rb'I-Rb'II cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster E) 8IML ; 2.74 ; Rs2I-Rs2II, Rs1I-Rs1II, RbI-RbII cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster D) 6D8A ; 2.251 ; RsAgo Ternary Complex with guide RNA and Target DNA Containing A-A Bulge Within the Seed Segment of the Target Strand 6D8F ; 2.15 ; RsAgo Ternary Complex with Guide RNA and Target DNA Containing T-T Bulge Within the Seed Segment 6V8O ; 3.07 ; RSC core 6K15 ; 3.4 ; RSC substrate-recruitment module 6V92 ; 20.0 ; RSC-NCP 7A7L ; 1.3 ; rsEGFP in the green-off state 7A7K ; 1.55 ; rsEGFP in the green-on state 8AHA ; 2.38 ; rsEGFP2 photoswitched to its off-state at 100K 8AHB ; 1.79 ; rsEGFP2 photoswitched to its off-state at room temperature and back-switched to its on-state at 100K 6PFR ; 1.51 ; rsEGFP2 with a chlorinated chromophore in the fluorescent on-state 6PFS ; 1.759 ; rsEGFP2 with a chlorinated chromophore in the fluorescent on-state in a contracted unit cell 8A83 ; 1.81 ; rsEGFP2 with a chlorinated chromophore in the fluorescent ON-state in a crystal dehydrated after illumination 6PFT ; 1.45 ; rsEGFP2 with a chlorinated chromophore in the non-fluorescent off-state 6PFU ; 1.619 ; rsEGFP2 with a chlorinated chromophore in the non-fluorescent off-state in a contracted unit cell 5NO4 ; 5.16 ; RsgA-GDPNP bound to the 30S ribosomal subunit (RsgA assembly intermediate with uS3) 5NO3 ; 5.16 ; RsgA-GDPNP bound to the 30S ribosomal subunit (RsgA assembly intermediate without uS3) 5NO2 ; 5.16 ; RsgA-GDPNP bound to the 30S ribosomal subunit (RsgA assembly intermediate) 7A7X ; 1.85 ; rsGreen0.7-F145M in the green-off state 7A7W ; 1.3 ; rsGreen0.7-F145M partially in the green-on state 7A7Y ; 0.97 ; rsGreen0.7-F145Q in the green-on state 7A7O ; 1.8 ; rsGreen0.7-K206A in the green-on state 7A7P ; 1.48 ; rsGreen0.7-K206A partially in the green-off state 7A7Z ; 1.1 ; rsGreen0.7-K206A-E222G in the green-on state 7A80 ; 2.05 ; rsGreen0.7-K206A-E222V in the green-on state 7A82 ; 1.9 ; rsGreen0.7-K206A-F145A partially in the green-off state 7A81 ; 1.7 ; rsGreen0.7-K206A-F145A partially in the green-on state 7A83 ; 1.73 ; rsGreen0.7-K206A-F145H in the green-on-state 7A84 ; 2.1 ; rsGreen0.7-K206A-F145H partially in the green-off state 7A85 ; 1.52 ; rsGreen0.7-K206A-F145L in the green-on state 7A86 ; 1.9 ; rsGreen0.7-K206A-F145L partially in the green-off state 7A88 ; 1.95 ; rsGreen0.7-K206A-F145M in the green-off state 7A87 ; 1.75 ; rsGreen0.7-K206A-F145M in the green-on state 7A89 ; 2.5 ; rsGreen0.7-K206A-F145Q in the green-on state 7A8A ; 1.93 ; rsGreen0.7-K206A-F145Q partially in the green-off state 7A8C ; 2.13 ; rsGreen0.7-K206A-F145S in the green-off state 7A8B ; 1.55 ; rsGreen0.7-K206A-F145S partially in the green-on state 7A8F ; 2.27 ; rsGreen0.7-K206A-F165L in the green-on state 7A8E ; 2.2 ; rsGreen0.7-K206A-F165W partially in the green-off state 7A8D ; 1.65 ; rsGreen0.7-K206A-F165W partially in the green-on state 7A8G ; 2.0 ; rsGreen0.7-K206A-H148G in the green-on state 7A8H ; 1.7 ; rsGreen0.7-K206A-H148S in the green-on state 7A8I ; 2.0 ; rsGreen0.7-K206A-H148S partially in the green-off state 7A8J ; 1.85 ; rsGreen0.7-K206A-H148V in the green-on state 7A8K ; 2.25 ; rsGreen0.7-K206A-H148V partially in the green-off state 7A8L ; 1.75 ; rsGreen0.7-K206A-N205C in the green-on state 7A8M ; 1.6 ; rsGreen0.7-K206A-N205G in the green-on state 7A8N ; 2.1 ; rsGreen0.7-K206A-N205L in the green-on state 7A8O ; 1.6 ; rsGreen0.7-K206A-N205S in the green-on state 7A7N ; 1.2 ; rsGreen0.7b in the green-off state 7A7M ; 1.6 ; rsGreen0.7b in the green-on state 7A7U ; 2.15 ; rsGreen1 in the green-on state 7A7V ; 2.0 ; rsGreen1-K206A partially in the green-off state 7A7S ; 1.73 ; rsGreenF in the green-on state 7A7T ; 1.58 ; rsGreenF partially in the green-off state 7A7R ; 2.35 ; rsGreenF-K206A in the green-off state 7A7Q ; 2.0 ; rsGreenF-K206A in the green-on state 7XWG ; 1.832 ; RSGSGG-AtPRT6 UBR box 4D9T ; 2.4 ; Rsk2 C-terminal Kinase Domain with inhibitor (E)-methyl 3-(4-amino-7-(3-hydroxypropyl)-5-p-tolyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-2-cyanoacrylate 4D9U ; 2.4 ; Rsk2 C-terminal Kinase Domain, (E)-tert-butyl 3-(4-amino-7-(3-hydroxypropyl)-5-p-tolyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)-2-cyanoacrylate 4JG6 ; 2.6 ; RSK2 CTD bound to 2-cyano-3-(1H-indazol-5-yl)acrylamide 7OPO ; 2.75 ; RSK2 N-terminal kinase domain in complex with ORF45 4NW6 ; 1.74 ; Rsk2 N-terminal kinase in complex with 2-amino-7-substituted benzoxazole compound 27 4NW5 ; 1.94 ; Rsk2 N-terminal kinase in complex with 2-amino-7-substituted benzoxazole compound 8 5D9K ; 2.55 ; Rsk2 N-terminal Kinase in Complex with BI-D1870 5D9L ; 2.15 ; Rsk2 N-terminal Kinase in Complex with bis-phenol pyrazole 4NUS ; 2.39 ; Rsk2 N-terminal kinase in complex with LJH685 4M8T ; 3.0 ; RSK2 T493M C-Terminal Kinase Domain in complex with 3-(3-(1H-pyrazol-4-yl)phenyl)-2-cyanoacrylamide 4MAO ; 2.6 ; RSK2 T493M C-Terminal Kinase Domain in Complex with RMM58 6G77 ; 2.499 ; RSK4 N-terminal Kinase Domain in complex with AMP-PNP 6G78 ; 2.5 ; RSK4 N-terminal Kinase Domain S232E in complex with AMP-PNP 7QLO ; 1.31 ; rsKiiro pump dump probe structure by TR-SFX 7QLN ; 1.5 ; rsKiiro pump probe structure by TR-SFX 7QLL ; 1.324 ; rsKiiro Thermal annealing at 290K of 200K Cis intermediate 7QLM ; 1.3 ; rsKiiro trans chromophore dark structure by SFX 8E7X ; 2.1 ; RsTSPO A138F with one Heme bound 8E7Y ; 2.3 ; RsTSPO A138F with two heme bound 8E7W ; 2.1 ; RsTSPO A139T with Heme 8E7Z ; 2.6 ; RsTSPO mutant -A138F 8DZW ; 2.46 ; RSV F trimer bound to RSV-199 Fab 6BLH ; 2.0 ; RSV G central conserved region bound to Fab CB017.5 6BLI ; 2.12 ; RSV G peptide bound to Fab CB002.5 4D4T ; 1.9 ; RSV Matrix protein 4V23 ; 1.7 ; RSV Matrix protein 6DC3 ; 3.501 ; RSV prefusion F bound to RSD5 Fab 6DC5 ; 3.5 ; RSV prefusion F in complex with AM22 Fab 6DC4 ; 1.7 ; RSV-neutralizing human antibody AM22 4IXQ ; 5.7 ; RT fs X-ray diffraction of Photosystem II, dark state 4IXR ; 5.9 ; RT fs X-ray diffraction of Photosystem II, first illuminated state 6YBO ; 1.06 ; RT structure of Glucose Isomerase obtained at 1.06 A resolution from crystal grown in a Kapton microchip. 6YBR ; 1.2 ; RT structure of Glucose Isomerase obtained at 1.20 A resolution from crystal grown in a Mylar microchip. 6YBI ; 1.12 ; RT structure of HEW Lysozyme obtained at 1.12 A resolution from crystal grown in a Mylar microchip. 6YBF ; 1.13 ; RT structure of HEW Lysozyme obtained at 1.13 A resolution from crystal grown in a Kapton microchip. 6Q88 ; 1.74007 ; RT structure of HEWL at 5 kGy 6YBX ; 1.14 ; RT structure of Thaumatin obtained at 1.14 A resolution from crystal grown in a Mylar microchip. 6YC5 ; 1.35 ; RT structure of Thaumatin obtained at 1.35 A resolution from crystal grown in a Kapton microchip. 6U5E ; 1.56 ; RT XFEL structure of CypA solved using celloluse carrier media 6U5D ; 1.65 ; RT XFEL structure of CypA solved using LCP injection system 6U5C ; 1.62 ; RT XFEL structure of CypA solved using MESH injection system 7RF2 ; 2.08 ; RT XFEL structure of dark-stable state of Photosystem II (0F, S1 rich) at 2.08 Angstrom 8F4H ; 2.1 ; RT XFEL structure of Photosystem II 1200 microseconds after the third illumination at 2.10 Angstrom resolution 6W1R ; 2.23 ; RT XFEL structure of Photosystem II 150 microseconds after the second illumination at 2.23 Angstrom resolution 7RF5 ; 2.23 ; RT XFEL structure of Photosystem II 150 microseconds after the second illumination at 2.23 Angstrom resolution 6DHG ; 2.5 ; RT XFEL structure of Photosystem II 150 microseconds after the second illumination at 2.5 Angstrom resolution 8F4I ; 2.0 ; RT XFEL structure of Photosystem II 2000 microseconds after the third illumination at 2.00 Angstrom resolution 4TNK ; 5.2 ; RT XFEL structure of Photosystem II 250 microsec after the third illumination at 5.2 A resolution 6W1T ; 2.01 ; RT XFEL structure of Photosystem II 250 microseconds after the second illumination at 2.01 Angstrom resolution 7RF6 ; 2.01 ; RT XFEL structure of Photosystem II 250 microseconds after the second illumination at 2.01 Angstrom resolution 8F4E ; 2.09 ; RT XFEL structure of Photosystem II 250 microseconds after the third illumination at 2.09 Angstrom resolution 6W1U ; 2.09 ; RT XFEL structure of Photosystem II 400 microseconds after the second illumination at 2.09 Angstrom resolution 7RF7 ; 2.09 ; RT XFEL structure of Photosystem II 400 microseconds after the second illumination at 2.09 Angstrom resolution 6DHH ; 2.2 ; RT XFEL structure of Photosystem II 400 microseconds after the second illumination at 2.2 Angstrom resolution 8F4J ; 2.0 ; RT XFEL structure of Photosystem II 4000 microseconds after the third illumination at 2.00 Angstrom resolution 6W1Q ; 2.27 ; RT XFEL structure of Photosystem II 50 microseconds after the second illumination at 2.27 Angstrom resolution 7RF4 ; 2.27 ; RT XFEL structure of Photosystem II 50 microseconds after the second illumination at 2.27 Angstrom resolution 8F4D ; 2.15 ; RT XFEL structure of Photosystem II 50 microseconds after the third illumination at 2.15 Angstrom resolution 8F4F ; 2.03 ; RT XFEL structure of Photosystem II 500 microseconds after the third illumination at 2.03 Angstrom resolution 4TNJ ; 4.5 ; RT XFEL structure of Photosystem II 500 ms after the 2nd illumination (2F) at 4.5 A resolution 4TNI ; 4.6 ; RT XFEL structure of Photosystem II 500 ms after the third illumination at 4.6 A resolution 8F4G ; 2.03 ; RT XFEL structure of Photosystem II 730 microseconds after the third illumination at 2.03 Angstrom resolution 7RF1 ; 1.89 ; RT XFEL structure of Photosystem II averaged across all S-states at 1.89 Angstrom resolution 5KAF ; 3.00001 ; RT XFEL structure of Photosystem II in the dark state at 3.0 A resolution 4TNH ; 4.90001 ; RT XFEL structure of Photosystem II in the dark state at 4.9 A resolution 6DHE ; 2.05 ; RT XFEL structure of the dark-stable state of Photosystem II (0F, S1-rich) at 2.05 Angstrom resolution 6W1O ; 2.08 ; RT XFEL structure of the dark-stable state of Photosystem II (0F, S1-rich) at 2.08 Angstrom resolution 6DHF ; 2.08 ; RT XFEL structure of the one-flash state of Photosystem II (1F, S2-rich) at 2.08 Angstrom resolution 6W1P ; 2.26 ; RT XFEL structure of the one-flash state of Photosystem II (1F, S2-rich) at 2.26 Angstrom resolution 7RF3 ; 2.26 ; RT XFEL structure of the one-flash state of Photosystem II (1F, S2-rich) at 2.26 Angstrom resolution 6DHP ; 2.04 ; RT XFEL structure of the three-flash state of Photosystem II (3F, S0-rich) at 2.04 Angstrom resolution 8F4K ; 2.16 ; RT XFEL structure of the three-flash state of Photosystem II (3F, S0-rich) at 2.16 Angstrom resolution 8F4C ; 2.0 ; RT XFEL structure of the two-flash state of Photosystem II (2F, S3-rich) at 2.00 Angstrom resolution 6DHO ; 2.07 ; RT XFEL structure of the two-flash state of Photosystem II (2F, S3-rich) at 2.07 Angstrom resolution 6W1V ; 2.09 ; RT XFEL structure of the two-flash state of Photosystem II (2F, S3-rich) at 2.09 Angstrom resolution 7RF8 ; 2.09 ; RT XFEL structure of the two-flash state of Photosystem II (2F, S3-rich) at 2.09 Angstrom resolution 8EZ5 ; 2.09 ; RT XFEL structure of the two-flash state of Photosystem II (2F, S3-rich) at 2.09 Angstrom resolution 8IMO ; 3.08 ; Rt1'I-Rt1'II, Rt2I-Rt2II, Rt3'I-Rt3'II cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster G) 8IMN ; 3.07 ; Rt1I-Rt1II, Rt2'I-Rt2'II, Rt3I-Rt3II cylinder in cyanobacterial phycobilisome from Anthocerotibacter panamensis (Cluster F) 2FJV ; 2.05 ; RT29 Bound to D(CTTAATTCGAATTAAG) in complex with MMLV RT Catalytic Fragment 2FJX ; 1.8 ; RT29 bound to D(CTTGAATGCATTCAAG) in complex with MMLV RT catalytic fragment 3PX8 ; 1.29 ; RTA in complex with 7-carboxy-pterin 3PX9 ; 1.89 ; RTA in complex with N-(furanylmethyl)-7-carbamoyl-pterin 5J56 ; 1.8 ; RTA-V1C7 5U4M ; 2.5 ; RTA-V1C7-G29R-no_salt 5U4L ; 2.5 ; RTA-V1C7_G29R-high-salt 5SV3 ; 2.73 ; RTA1-33/44-198 (RVEC) bound to Single Domain Antibody A3C8 6TT9 ; 1.9 ; rTBL Recombinant Lectin From Tepary Bean 1HVZ ; ; RTD-1, A CYCLIC ANTIMICROBIAL DEFENSIN FROM RHESUS MACAQUE LEUKOCYTES 3GYP ; 2.406 ; Rtt106p 8GQ3 ; 1.767 ; RTT109 mutant from Candida albicans 6F0Y ; ; Rtt109 peptide bound to Asf1 6WYA ; 2.41 ; RTX (Reverse Transcription Xenopolymerase) in complex with a DNA duplex and dAMPNPP 6WYB ; 2.5 ; RTX (Reverse Transcription Xenopolymerase) in complex with an RNA/DNA hybrid 2BT6 ; 1.5 ; Ru(bpy)2(mbpy)-Modified Bovine Adrenodoxin 3M0B ; 2.0 ; Ru-Porphyrin Protein Scaffolds for Sensing O2 2W8Y ; 1.8 ; RU486 bound to the progesterone receptor in a destabilized agonistic conformation 8P0C ; 1.72 ; Rubella virus p150 macro domain (apo) 8P0E ; 1.59 ; Rubella virus p150 macro domain in complex with ADP-ribose 4IBL ; 1.8 ; Rubidium Sites in Blood Coagulation Factor VIIa 6UEW ; 2.4 ; Rubisco / CsoS2 N-peptide complex responsible for alpha-carboxysome cargo loading 4W5W ; 2.9 ; Rubisco activase from Arabidopsis thaliana 5IU0 ; 1.499 ; Rubisco from Arabidopsis thaliana 1GK8 ; 1.4 ; Rubisco from Chlamydomonas reinhardtii 1IWA ; 2.6 ; RUBISCO FROM GALDIERIA PARTITA 7YK5 ; 2.0 ; Rubisco from Phaeodactylum tricornutum bound to PYCO1(452-592) 6FTL ; 2.6 ; Rubisco from Skeletonema marinoi 5MZ2 ; 1.9 ; Rubisco from Thalassiosira antarctica 5N9Z ; 1.899 ; Rubisco from Thalassiosira hyalina 7JN4 ; 2.68 ; Rubisco in the apo state 1BQ9 ; 1.2 ; Rubredoxin (Formyl Methionine Mutant) from Pyrococcus Furiosus 1BQ8 ; 1.1 ; Rubredoxin (Methionine Mutant) from Pyrococcus Furiosus 1IRO ; 1.1 ; RUBREDOXIN (OXIDIZED, FE(III)) AT 1.1 ANGSTROMS RESOLUTION 1BRF ; 0.95 ; Rubredoxin (Wild Type) from Pyrococcus Furiosus 1IRN ; 1.2 ; RUBREDOXIN (ZN-SUBSTITUTED) AT 1.2 ANGSTROMS RESOLUTION 1S24 ; ; Rubredoxin domain II from Pseudomonas oleovorans 1RDG ; 1.4 ; RUBREDOXIN FROM DESULFOVIBRIO GIGAS. A MOLECULAR MODEL OF THE OXIDIZED FORM AT 1.4 ANGSTROMS RESOLUTION 2RDV ; 1.9 ; RUBREDOXIN FROM DESULFOVIBRIO VULGARIS MIYAZAKI F, MONOCLINIC CRYSTAL FORM 1RDV ; 2.0 ; RUBREDOXIN FROM DESULFOVIBRIO VULGARIS MIYAZAKI F, TRIGONAL CRYSTAL FORM 1RB9 ; 0.92 ; RUBREDOXIN FROM DESULFOVIBRIO VULGARIS REFINED ANISOTROPICALLY AT 0.92 ANGSTROMS RESOLUTION 1DX8 ; ; Rubredoxin from Guillardia theta 1H7V ; ; Rubredoxin from Guillardia Theta 1E5D ; 2.5 ; RUBREDOXIN OXYGEN:OXIDOREDUCTASE (ROO) FROM ANAEROBE DESULFOVIBRIO GIGAS 2M4Y ; ; Rubredoxin type protein from Mycobacterium ulcerans 1C09 ; 1.6 ; RUBREDOXIN V44A CP 1QCV ; ; RUBREDOXIN VARIANT (PFRD-XC4) FOLDS WITHOUT IRON 1B71 ; 1.9 ; RUBRERYTHRIN 1DVB ; 1.9 ; RUBRERYTHRIN 1RYT ; 2.1 ; RUBRERYTHRIN 8FUH ; 1.852 ; Rubrerythrin from B. pseudomallei: apo form 8FVV ; 1.93 ; Rubrerythrin from B. pseudomallei: iron-bound 8FXD ; 1.58 ; Rubrerythrin from B. pseudomallei: manganese-bound 1NNQ ; 2.35 ; rubrerythrin from Pyrococcus furiosus Pfu-1210814 7MN1 ; ; Rules for designing protein fold switches and their implications for the folding code 7MN2 ; ; Rules for designing protein fold switches and their implications for the folding code 7MP7 ; ; Rules for designing protein fold switches and their implications for the folding code 7MQ4 ; ; Rules for designing protein fold switches and their implications for the folding code 7LSA ; 1.76 ; Ruminococcus bromii Amy12 with maltoheptaose 7LSU ; 1.95 ; Ruminococcus bromii Amy12-D392A with 63-a-D-glucosyl-maltotriose 7LST ; 2.05 ; Ruminococcus bromii Amy12-D392A with 63-a-D-glucosyl-maltotriosyl-maltotriose 7LSR ; 2.42 ; Ruminococcus bromii Amy12-D392A with maltoheptaose 7JJT ; 1.66 ; Ruminococcus bromii amylase Amy5 (RBR_07800) 8AJY ; 1.71 ; Ruminococcus flavefaciens Cohesin-Dockerin structure: dockerin from ScaH adaptor scaffoldin in complex with the cohesin from ScaE anchoring scaffoldin 7PMO ; 2.1 ; Ruminococcus gnavus ATC29149 endo-beta-1,4-galactosidase (RgGH98) 7Q1W ; 1.65 ; Ruminococcus gnavus ATC29149 endo-beta-1,4-galactosidase (RgGH98) E411A in complex with blood group A (BgA II) tetrasaccharide 7Q20 ; 1.95 ; Ruminococcus gnavus ATC29149 endo-beta-1,4-galactosidase (RgGH98) in complex with blood group A trisaccharide 6EC6 ; 2.85 ; Ruminococcus gnavus Beta-glucuronidase 6TR4 ; 1.45 ; Ruminococcus gnavus GH29 fucosidase E1_10125 D221A mutant in complex with fucose 6TR3 ; 1.7 ; Ruminococcus gnavus GH29 fucosidase E1_10125 in complex with fucose 6ER2 ; 1.73 ; Ruminococcus gnavus IT-sialidase CBM40 6ER3 ; 1.37 ; Ruminococcus gnavus IT-sialidase CBM40 bound to alpha2,3 sialyllactose 6ER4 ; 1.3 ; Ruminococcus gnavus IT-sialidase CBM40 bound to alpha2,6 sialyllactose 6RB7 ; 1.6 ; Ruminococcus gnavus sialic acid aldolase catalytic lysine mutant 6RD1 ; 1.892 ; Ruminococcus gnavus sialic acid aldolase catalytic lysine mutant in complex with sialic acid 6RAB ; 1.96 ; Ruminococcus gnavus sialic acid aldolase Wild Type 4OBV ; 2.84 ; Ruminococcus gnavus tryptophan decarboxylase RUMGNA_01526 (alpha-FMT) 4OBU ; 2.804 ; Ruminococcus gnavus tryptophan decarboxylase RUMGNA_01526 (apo) 2CXF ; 3.07 ; RUN domain of Rap2 interacting protein x, crystallized in C2 space group 2CXL ; 3.2 ; RUN domain of Rap2 interacting protein x, crystallized in I422 space group 2DWG ; 3.22 ; RUN domain of Rap2 interacting protein x, crystallized in P2(1)2(1)2(1) space group 3S9A ; 1.9 ; Russell's viper venom serine proteinase, RVV-V (closed-form) 3S9B ; 1.9 ; Russell's viper venom serine proteinase, RVV-V (open-form) 3SBK ; 2.55 ; Russell's viper venom serine proteinase, RVV-V (PPACK-bound form) 3S9C ; 1.8 ; Russell's viper venom serine proteinase, RVV-V in complex with the fragment (residues 1533-1546) of human factor V 1RCY ; 1.9 ; RUSTICYANIN (RC) FROM THIOBACILLUS FERROOXIDANS 8BYW ; 1.59 ; Rut B structure 2HTO ; 1.54 ; Ruthenium hexammine ion interactions with Z-DNA 2HTT ; 2.6 ; Ruthenium Hexammine ion interactions with Z-DNA 7OTB ; 1.6 ; Ruthenium polypridyl complex bound to a unimolecular chair-form G-quadruplex 8CMM ; 0.9 ; ruthenium polypyridyl complexes bound to DNA mismatch oligonucleotide 5V4H ; 1.22 ; Ruthenium(II)(cymene)(chlorido)2-lysozyme adduct formed when ruthenium(II)(cymene)(bromido)2 underwent ligand exchange, resulting in one binding site 5V4G ; 1.2 ; Ruthenium(II)(cymene)(chlorido)2-lysozyme adduct with two binding sites 7OA5 ; 2.378 ; RUVA COMPLEXED TO A HOLLIDAY JUNCTION. 2H5X ; 2.7 ; RuvA from Mycobacterium tuberculosis 8GH8 ; 4.3 ; RuvA Holliday junction DNA complex 1IXR ; 3.3 ; RuvA-RuvB complex 7PBU ; 3.3 ; RuvAB branch migration motor complexed to the Holliday junction - RuvA-HJ core [t2 dataset] 7PBS ; 3.3 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s0+A [t1 dataset] 7PBQ ; 3.1 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s0+A [t2 dataset] 7PBR ; 3.0 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s0-A [t2 dataset] 7PBT ; 3.3 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s1 [t1 dataset] 7PBL ; 3.2 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s1 [t2 dataset] 7PBM ; 3.2 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s2 [t2 dataset] 7PBN ; 3.2 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s3 [t2 dataset] 7PBO ; 2.9 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s4 [t2 dataset] 7PBP ; 3.2 ; RuvAB branch migration motor complexed to the Holliday junction - RuvB AAA+ state s5 [t2 dataset] 7AHO ; 4.18 ; RUVBL1-RUVBL2 heterohexameric ring after binding of RNA helicase DHX34 6K0R ; 2.502 ; Ruvbl1-Ruvbl2 with truncated domain II in complex with phosphorylated Cordycepin 2LC1 ; ; Rv0020c_FHA Structure 2LC0 ; ; Rv0020c_Nter structure 3B18 ; 2.75 ; Rv0098 of Mycobacterium tuberculosis with ordered loop between beta-4 and beta-5 2BI0 ; 1.9 ; RV0216, A conserved hypothetical protein from Mycobacterium tuberculosis that is essential for bacterial survival during infection, has a double hotdogfold 3H87 ; 1.49 ; Rv0301 Rv0300 Toxin Antitoxin Complex from Mycobacterium tuberculosis 3HZO ; 2.6 ; Rv0554 from Mycobacterium tuberculosis - the structure solved from the tetragonal crystal form 2L26 ; ; Rv0899 from Mycobacterium tuberculosis contains two separated domains 2VG0 ; 1.7 ; Rv1086 citronellyl pyrophosphate complex 2VG1 ; 1.7 ; Rv1086 E,E-farnesyl diphosphate complex 2VFW ; 2.3 ; Rv1086 native 8IHE ; 2.74 ; Rv1122(gnd2) in Mycobacterium tuberculosis 1Q7T ; 1.9 ; Rv1170 (MshB) from Mycobacterium tuberculosis 2K3M ; ; Rv1761c 1NFQ ; 2.4 ; Rv2002 gene product from Mycobacterium tuberculosis 1NFR ; 2.1 ; Rv2002 gene product from Mycobacterium tuberculosis 5F8E ; 2.9 ; Rv2258c-SAH 5F8F ; 1.9 ; Rv2258c-SFG 5F8C ; 1.83 ; Rv2258c-unbound 2VG4 ; 2.6 ; Rv2361 native 2VG3 ; 1.8 ; Rv2361 with citronellyl pyrophosphate 2VG2 ; 1.95 ; Rv2361 with IPP 6IME ; 1.55 ; Rv2361c complex with substrate analogues 4L69 ; 2.9 ; Rv2372c of Mycobacterium tuberculosis is RsmE like methyltransferse 4NXI ; 1.698 ; Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating Mycobacterium tuberculosis 3P9N ; 1.9 ; Rv2966c of M. tuberculosis is a RsmD-like methyltransferase 7F72 ; 1.64 ; Rv3094c in complex with FAD and ETH. 7F74 ; 2.0 ; Rv3094c in complex with FMN. 7JLS ; 1.52 ; RV3666c bound to tripeptide 5C6U ; 1.83 ; Rv3722c aminotransferase from Mycobacterium tuberculosis 6U78 ; 2.6 ; Rv3722c in complex with glutamic acid 6U7A ; 2.22 ; Rv3722c in complex with kynurenine 4O6G ; 1.55 ; Rv3902c from M. tuberculosis 6JTQ ; 2.48 ; RVD HA specifically contacts 5mC through van der Waals interactions 6JVZ ; 2.48 ; RVD HA specifically contacts 5mC through van der Waals interactions 6LEW ; 2.48 ; RVD HA specifically contacts 5mC through van der Waals interactions 6JW5 ; 2.99 ; RVD Q* recognizes 5hmC through water-mediated H bonds 5Y0Y ; 3.398 ; RVFV GN-AU 8AWM ; 3.5 ; RVFV GnH with Fab268 bound 7R4E ; 3.00001 ; RVX-inhibited acetylcholinesterase in complex with 2-((hydroxyimino)methyl)-1-(5-(4-methyl-3-nitrobenzamido)pentyl)pyridinium 6RQS ; ; RW16 peptide 2M7P ; ; RXFP1 utilises hydrophobic moieties on a signalling surface of the LDLa module to mediate receptor activation 4ZSH ; 1.8 ; RXR LBD in complex with 9-cis-13,14-dihydroretinoic acid 6JNO ; 2.65 ; RXRa structure complexed with CU-6PMN 6JNR ; 2.3 ; RXRa structure complexed with CU-6PMN and SRC1 peptide. 6FEZ ; 2.3 ; Ryegrass mottle virus protease domain 6FF0 ; 2.1 ; Ryegrass mottle virus serine protease domain fused with VPg domain 7YZV ; 1.6 ; Ryegrass mottle virus serine protease domain S159A mutant 8DVE ; 3.84 ; RyR1 in presence of IpCa-T26E phosphomimetic and activating ligands 8E77 ; 1.0 ; rystal structure of Pcryo_0616, the aminotransferase required to synthesize UDP-N-acetyl-3-amino-D-glucosaminuronic acid (UDP-GlcNAc3NA), incomplete with its external aldimine reaction intermediate 7DBA ; 2.461 ; RYX in complex with tubulin 7WWM ; 2.8 ; S protein of Delta variant in complex with ZWC6 7WWL ; 3.0 ; S protein of Delta variant in complex with ZWD12 7DX3 ; 3.5 ; S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 1 (1 up RBD and no PD bound) 7DX5 ; 3.3 ; S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 2 (1 up RBD and 1 PD bound) 7DX6 ; 3.0 ; S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 3 (2 up RBD and 1 PD bound) 7DX1 ; 3.1 ; S protein of SARS-CoV-2 D614G mutant 7C2L ; 3.1 ; S protein of SARS-CoV-2 in complex bound with 4A8 7D00 ; 3.0 ; S protein of SARS-CoV-2 in complex bound with FabP5A-1B8 7D03 ; 3.2 ; S protein of SARS-CoV-2 in complex bound with FabP5A-2G7 7CZP ; 3.0 ; S protein of SARS-CoV-2 in complex bound with P2B-1A1 7CZQ ; 2.8 ; S protein of SARS-CoV-2 in complex bound with P2B-1A10 7FAF ; 3.69 ; S protein of SARS-CoV-2 in complex bound with P36-5D2 (state1) 7FAE ; 3.65 ; S protein of SARS-CoV-2 in complex bound with P36-5D2(state2) 7CZU ; 3.4 ; S protein of SARS-CoV-2 in complex bound with P5A-1B6_2B 7CZV ; 3.3 ; S protein of SARS-CoV-2 in complex bound with P5A-1B6_3B 7CZR ; 3.5 ; S protein of SARS-CoV-2 in complex bound with P5A-1B8_2B 7CZS ; 3.6 ; S protein of SARS-CoV-2 in complex bound with P5A-1B8_3B 7CZX ; 2.8 ; S protein of SARS-CoV-2 in complex bound with P5A-1B9 7CZY ; 3.3 ; S protein of SARS-CoV-2 in complex bound with P5A-2F11_2B 7CZZ ; 3.2 ; S protein of SARS-CoV-2 in complex bound with P5A-2F11_3B 7CZW ; 2.8 ; S protein of SARS-CoV-2 in complex bound with P5A-2G7 7CZT ; 2.7 ; S protein of SARS-CoV-2 in complex bound with P5A-2G9 7D0C ; 3.4 ; S protein of SARS-CoV-2 in complex bound with P5A-3A1 7D0B ; 3.9 ; S protein of SARS-CoV-2 in complex bound with P5A-3C12_1B 7D0D ; 3.8 ; S protein of SARS-CoV-2 in complex bound with P5A-3C12_2B 7CT5 ; 4.0 ; S protein of SARS-CoV-2 in complex bound with T-ACE2 7X08 ; 2.7 ; S protein of SARS-CoV-2 in complex with 2G1 7EPX ; 3.0 ; S protein of SARS-CoV-2 in complex with GW01 7DWZ ; 3.3 ; S protein of SARS-CoV-2 in the active conformation 7DWY ; 2.7 ; S protein of SARS-CoV-2 in the locked conformation 7W7H ; 2.6 ; S Suis FakA-FakB2 complex structure 7SAC ; 3.69 ; S-(+)-ketamine bound GluN1a-GluN2B NMDA receptors at 3.69 Angstrom resolution 7DK5 ; 13.5 ; S-2H2-F1 structure, one RBD is up and two RBDs are down, only up RBD binds with a 2H2 Fab 7DK6 ; 4.3 ; S-2H2-F2 structure, two RBDs are up and one RBD is down, each up RBD binds with a 2H2 Fab. 7DK4 ; 3.8 ; S-2H2-F3a structure, two RBDs are up and one RBD is down, each RBD binds with a 2H2 Fab. 7DK7 ; 9.7 ; S-2H2-F3b structure, three RBDs are up and each RBD binds with a 2H2 Fab. 7DD8 ; 7.5 ; S-3C1-F1 structure, one RBD is up and two RBDs are down, the up RBD binds with a 3C1 fab 7DD2 ; 5.6 ; S-3C1-F2 structure, two RBDs are up and one RBD is down, the two up RBD bind with a 3C1 fab. 7DCX ; 5.9 ; S-3C1-F3a structure, two RBDs are up and one RBD is down, each RBD binds with a 3C1 fab. 7DCC ; 4.3 ; S-3C1-F3b structure, all the three RBDs are in the up conformation and each of them associates with a 3C1 Fab 3H9U ; 1.9 ; S-adenosyl homocysteine hydrolase (SAHH) from Trypanosoma brucei 7LOO ; 1.95 ; S-adenosyl methionine transferase cocrystallized with ATP 5M5K ; 1.84 ; S-adenosyl-L-homocysteine hydrolase from Bradyrhizobium elkanii in complex with adenosine and cordycepin 2Z6A ; 2.88 ; S-Adenosyl-L-methionine-Dependent Methyl Transfer: Observable Precatalytic Intermediates during DNA Cytosine Methylation 2H5L ; 2.8 ; S-Adenosylhomocysteine hydrolase containing NAD and 3-deaza-D-eritadenine 1KY4 ; 2.8 ; S-Adenosylhomocysteine hydrolase refined with noncrystallographic restraints 7YRI ; 2.61 ; S-adenosylmethionine sensor upstream of mTORC1 7YRJ ; 2.35 ; S-adenosylmethionine sensor upstream of mTORC1 1FUG ; 3.2 ; S-ADENOSYLMETHIONINE SYNTHETASE 7LOW ; 2.39 ; S-adenosylmethionine synthetase 7LOZ ; 2.25 ; S-adenosylmethionine synthetase 1XRB ; 3.0 ; S-adenosylmethionine synthetase (MAT, ATP: L-methionine S-adenosyltransferase, E.C.2.5.1.6) in which MET residues are replaced with selenomethionine residues (MSE) 7LL3 ; 2.24 ; S-adenosylmethionine synthetase co-crystallized with UppNHp 7LNH ; 2.5 ; S-adenosylmethionine synthetase co-crystallized with UppNHp 7LO2 ; 1.89 ; S-adenosylmethionine synthetase cocrystallized with CTP 1P7L ; 2.5 ; S-Adenosylmethionine synthetase complexed with AMPPNP and Met. 1RG9 ; 2.5 ; S-Adenosylmethionine synthetase complexed with SAM and PPNP 7R3B ; 2.82 ; S-adenosylmethionine synthetase from Lactobacillus plantarum complexed with AMPPNP, methionine and SAM 1MXC ; 3.0 ; S-ADENOSYLMETHIONINE SYNTHETASE WITH 8-BR-ADP 1MXB ; 2.8 ; S-ADENOSYLMETHIONINE SYNTHETASE WITH ADP 1MXA ; 2.8 ; S-ADENOSYLMETHIONINE SYNTHETASE WITH PPI 1C53 ; 1.8 ; S-CLASS CYTOCHROMES C HAVE A VARIETY OF FOLDING PATTERNS: STRUCTURE OF CYTOCHROME C-553 FROM DESULFOVIBRIO VULGARIS DETERMINED BY THE MULTI-WAVELENGTH ANOMALOUS DISPERSION METHOD 7Y1Y ; 3.3 ; S-ECD (Omicron BA.2) in complex with PD of ACE2 8I9B ; 3.5 ; S-ECD (Omicron BA.2.75) in complex with PD of ACE2 7Y1Z ; 3.4 ; S-ECD (Omicron BA.3) in complex with three PD of ACE2 7Y20 ; 3.8 ; S-ECD (Omicron BA.3) in complex with two PD of ACE2 7Y21 ; 2.8 ; S-ECD (Omicron BA.5) in complex with PD of ACE2 8I9C ; 3.85 ; S-ECD (Omicron BF.7) in complex with PD of ACE2 8I9D ; 3.95 ; S-ECD (Omicron XBB.1) in complex with PD of ACE2 7XID ; 3.3 ; S-ECD (Omicron) in complex with PD of ACE2 7XIC ; 3.3 ; S-ECD (Omicron) in complex with STS165 6SMT ; 1.55 ; S-enantioselective imine reductase from Mycobacterium smegmatis 8ILJ ; 1.73 ; S-formylglutathione hydrolase (BuSFGH) from Burkholderiaceae sp. 7YVT ; 2.38 ; S-formylglutathione hydrolase from Variovorax sp. PAMC 28711 6JZL ; 2.32 ; S-formylglutathione hydrolase homolog from a psychrophilic bacterium of Shewanella frigidimarina 4FOL ; 2.07 ; S-formylglutathione hydrolase Variant H160I 4FLM ; 2.41 ; S-formylglutathione Hydrolase W197I Variant containing Copper 4MA4 ; 2.23 ; S-glutathionylated PFKFB3 7ZGX ; 2.88 ; S-layer Deinoxanthin Binding Complex, C1 symmetry 7ZGY ; 2.54 ; S-layer Deinoxanthin Binding Complex, C3 symmetry 8ACQ ; 2.54 ; S-layer Deinoxanthin-Binding Complex (SDBC), subunit DR_2577 assembled with its SOD DR_0644 5N8P ; 2.7 ; S-layer protein RsaA from C. crescentus 8AN2 ; 3.2 ; S-layer protein SlaA from Sulfolobus acidocaldarius at pH 10.0 7ZCX ; 3.1 ; S-layer protein SlaA from Sulfolobus acidocaldarius at pH 4.0 8AN3 ; 3.9 ; S-layer protein SlaA from Sulfolobus acidocaldarius at pH 7.0 8Q1O ; 3.401 ; S-layer protein SlpA from Lactobacillus amylovorus, domain I (aa 32-209), important for Self-assembly 3OZ5 ; 1.36 ; S-Methyl Carbocyclic LNA 8Q9V ; 2.2 ; S-methylthiourocanate hydratase from Variovorax sp. RA8 in complex with NAD+ and imidazolone propionate 8Q9U ; 2.0 ; S-methylthiourocanate hydratase, variant R450A, from Variovorax sp. RA8 in complex with NAD+ 3QJ5 ; 1.9 ; S-nitrosoglutathione reductase (GSNOR) in complex with N6022 5LAO ; ; S-nitrosylated 3D NMR structure of the cytoplasmic rhodanese domain of the inner membrane protein YgaP from Escherichia coli 2NRM ; 1.09 ; S-nitrosylated blackfin tuna myoglobin 2Y33 ; 2.0 ; S-nitrosylated PHD2 (GSNO soaked) in complex with Zn(II) and UN9 2Y34 ; 2.01 ; S-nitrosylated PHD2 (NO exposed) in complex with Fe(II) and UN9 8I9F ; 2.9 ; S-RBD (Omicron BA.2.75) in complex with PD of ACE2 8I9G ; 3.2 ; S-RBD (Omicron BF.7) in complex with PD of ACE2 8I9H ; 3.6 ; S-RBD (Omicron XBB.1) in complex with PD of ACE2 8I9E ; 3.2 ; S-RBD(Omicron BA.3) in complex with PD of ACE2 4XCH ; 2.2 ; S-ribosylhomocysteinase from Streptococcus suis 1Q5C ; 30.0 ; S-S-lambda-shaped TRANS and CIS interactions of cadherins model based on fitting C-cadherin (1L3W) to 3D map of desmosomes obtained by electron tomography 4R8U ; 2.3 ; S-SAD structure of DINB-DNA Complex 3WWO ; 2.55 ; S-selective hydroxynitrile lyase from Baliospermum montanum (apo1) 3WWP ; 1.9 ; S-selective hydroxynitrile lyase from Baliospermum montanum (apo2) 1Q5A ; 30.0 ; S-shaped trans interactions of cadherins model based on fitting C-cadherin (1L3W) to 3D map of desmosomes obtained by electron tomography 7OZ3 ; 4.46 ; S. agalactiae BusR in complex with its busA-promotor DNA 7B5Y ; 7.1 ; S. agalactiae BusR in complex with its busAB-promotor DNA 7B5T ; 2.8 ; S. agalactiae BusR transcription factor 1W9B ; 1.7 ; S. alba myrosinase in complex with carba-glucotropaeolin 1W9D ; 1.6 ; S. alba myrosinase in complex with S-ethyl phenylacetothiohydroximate- O-sulfate 5ETR ; 1.32 ; S. aureus 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.32 angstrom resolution 5ETT ; 1.55 ; S. aureus 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.55 angstrom resolution 5ETV ; 1.72 ; S. aureus 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.72 angstrom resolution 5ETS ; 1.95 ; S. aureus 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.95 angstrom resolution 5ETQ ; 1.96 ; S. aureus 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase complexed with AMPCPP and inhibitor at 1.96 angstrom resolution 6N80 ; 1.96 ; S. aureus ClpP bound to anti-4a 4NAU ; 2.33 ; S. aureus CoaD with Inhibitor 3FRD ; 2.1 ; S. aureus DHFR complexed with NADPH and folate 3FRF ; 2.2 ; S. aureus DHFR complexed with NADPH and iclaprim 3FRE ; 2.2 ; S. aureus DHFR complexed with NADPH and TMP 6PR8 ; 2.01 ; S. aureus dihydrofoate reductase co-crystallized with 3,5-dimethylphenyl-dihydropthalazine inhibitor and NADP(H) 6PR9 ; 2.01 ; S. aureus dihydrofolate reductase co-crystallized with 1-ethylpropyl-dihydropthalazine inhibitor and NADP(H) 6PR7 ; 2.01 ; S. aureus dihydrofolate reductase co-crystallized with benzyl-dihydropthalazine inhibitor and NADP(H) 6PRB ; 2.0 ; S. aureus dihydrofolate reductase co-crystallized with cyclopropyl-dimethyoxydihydropthalazine inhibitor and NADP(H) 4FGH ; 2.5 ; S. aureus dihydrofolate reductase co-crystallized with ethyl-DAP isobutenyl-dihydrophthalazine inhibitor 6PRD ; 2.01 ; S. aureus dihydrofolate reductase co-crystallized with para-methoxyphenyl-dimethyoxydihydropthalazine inhibitor and NADP(H) 6PR6 ; 2.01 ; S. aureus dihydrofolate reductase co-crystallized with para-tolyl-dihydropthalazine inhibitor and NADP(H) 4FGG ; 2.3 ; S. aureus dihydrofolate reductase co-crystallized with propyl-DAP isobutenyl-dihydrophthalazine inhibitor 3SQY ; 1.5 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SR5 ; 1.68 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SRQ ; 1.69 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SRR ; 1.7 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SRS ; 1.7 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SRU ; 1.7 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 3SRW ; 1.7 ; S. aureus Dihydrofolate Reductase complexed with novel 7-aryl-2,4-diaminoquinazolines 6PRA ; 2.01 ; S. aureus dihydrofolate reductase with NADP(H) and empty folate pocket 3FRB ; 2.0 ; S. aureus F98Y DHFR complexed with TMP 5MN6 ; 3.2 ; S. aureus FtsZ 12-316 F138A GDP Closed form (3FCm) 5MN4 ; 1.5 ; S. aureus FtsZ 12-316 F138A GDP Open form (1FOf) 5MN7 ; 3.3 ; S. aureus FtsZ 12-316 F138A GTP Closed form (3FCm) 5MN8 ; 3.5 ; S. aureus FtsZ 12-316 F138A GTP Closed form (5FCm) 5MN5 ; 2.802 ; S. aureus FtsZ 12-316 T66W GTP Closed form (2TCm) 6KVP ; 1.4 ; S. aureus FtsZ in complex with 3-(1-(5-bromo-4-(4-(trifluoromethyl)phenyl)oxazol-2-yl)ethoxy)-2,6-difluorobenzamide (compound 2) 6KVQ ; 1.6 ; S. aureus FtsZ in complex with BOFP (compound 3) 7TF7 ; 2.13 ; S. aureus GS(12) - apo 7TF6 ; 2.15 ; S. aureus GS(12)-Q-GlnR peptide 4P8O ; 2.4 ; S. aureus gyrase bound to an aminobenzimidazole urea inhibitor 3U2K ; 1.64 ; S. aureus GyrB ATPase domain in complex with a small molecule inhibitor 3U2D ; 1.85 ; S. aureus GyrB ATPase domain in complex with small molecule inhibitor 5DLO ; 1.401 ; S. aureus MazF in complex with substrate analogue 5FFZ ; 2.585 ; S. aureus MepR bound to ethidium bromide 5FB2 ; 1.8 ; S. aureus MepR F27L Mutant bound to oligodeoxyribonucleotide 5FFX ; 1.47 ; S. aureus MepR G34K Mutant 5F6F ; 1.751 ; S. aureus MepR G34R Mutant 5ENZ ; 1.91 ; S. aureus MnaA-UDP co-structure 3HZS ; 2.1 ; S. aureus monofunctional glycosyltransferase (MtgA)in complex with moenomycin 4B19 ; ; S. aureus pepA1 NMR structure 7NS1 ; ; S. aureus pepG1 NMR solution structure 7D8J ; 2.88 ; S. aureus SsbB with 5-FU 7DEP ; 3.094 ; S. aureus SsbB with 5-FU 8VA1 ; 3.4 ; S. aureus TarL H300N in complex with CDP-ribitol (single tetramer) 2O7K ; 2.2 ; S. aureus thioredoxin 2O87 ; 2.4 ; S. aureus thioredoxin P31S mutant 2O85 ; 2.2 ; S. Aureus thioredoxin P31T mutant 2O89 ; 2.55 ; S. aureus thioredoxin P31T/C32S mutant 8QEC ; 3.3 ; S. cerevisia Niemann-Pick type C protein NCR1 in GDN at pH 5.5 8QEB ; 3.3 ; S. cerevisia Niemann-Pick type C protein NCR1 in GDN at pH 7.5 8QED ; 3.27 ; S. cerevisia Niemann-Pick type C protein NCR1 in LMNG at pH 5.5 8QEE ; 2.43 ; S. cerevisia Niemann-Pick type C protein NCR1 in Peptidisc at pH 7.5 3J6Y ; 6.1 ; S. cerevisiae 80S ribosome bound with Taura syndrome virus (TSV) IRES, 2 degree rotation (Class I) 3J6X ; 6.1 ; S. cerevisiae 80S ribosome bound with Taura syndrome virus (TSV) IRES, 5 degree rotation (Class II) 8A3T ; 3.5 ; S. cerevisiae APC/C-Cdh1 complex 8A61 ; 5.4 ; S. cerevisiae apo phosphorylated APC/C 8A5Y ; 4.9 ; S. cerevisiae apo unphosphorylated APC/C. 7PSL ; 3.3 ; S. cerevisiae Atm1 in MSP1D1 nanodiscs in nucleotide-free state 7PSM ; 3.4 ; S. cerevisiae Atm1 in MSP1D1 nanodiscs with bound AMP-PNP and Mg2+ 7PSN ; 2.9 ; S. cerevisiae Atm1 in MSP1E3D1 nanodiscs with bound AMP-PNP and Mg2+ 8K3Q ; 2.6 ; S. cerevisiae Chs1 in apo state 8K3R ; 3.51 ; S. cerevisiae Chs1 in apo state incubated with GlcNAc 8K3X ; 2.86 ; S. cerevisiae Chs1 in complex with Nikkomycin Z 8K3P ; 3.64 ; S. cerevisiae Chs1 in complex with polyoxin B 8K3T ; 3.57 ; S. cerevisiae Chs1 in complex with UDP 8K3U ; 3.06 ; S. cerevisiae Chs1 in complex with UDP and GlcNAc 8K3V ; 3.1 ; S. cerevisiae Chs1 in complex with UDP-GlcNAc 8K3W ; 2.91 ; S. cerevisiae Chs1 in complex with UDP-GlcNAc and GlcNAc 6HV9 ; 4.98 ; S. cerevisiae CMG-Pol epsilon-DNA 7Z13 ; 3.4 ; S. cerevisiae CMGE dimer nucleating origin DNA melting 7QHS ; 3.3 ; S. cerevisiae CMGE nucleating origin DNA melting 8DL4 ; 1.91 ; S. CEREVISIAE CYP51 COMPLEXED WITH Courmarin-containing INHIBITOR 4WMZ ; 2.05 ; S. cerevisiae CYP51 complexed with fluconazole in the active site 6E8Q ; 2.2 ; S. CEREVISIAE CYP51 COMPLEXED WITH Posaconazole 7RYX ; 2.1 ; S. CEREVISIAE CYP51 COMPLEXED WITH VT-1129 5UL0 ; 2.2 ; S. CEREVISIAE CYP51 COMPLEXED WITH VT-1161 7RYA ; 2.1 ; S. CEREVISIAE CYP51 I471T MUTANT COMPLEXED WITH ITRACONAZOLE 7RY9 ; 2.4 ; S. CEREVISIAE CYP51 I471T mutant COMPLEXED WITH Voriconazole 7RY8 ; 1.98 ; S. CEREVISIAE CYP51 Y140H mutant COMPLEXED WITH Voriconazole 7RYB ; 2.9 ; S. CEREVISIAE CYP51 Y140H/I471T - double mutant COMPLEXED WITH Voriconazole 3PEY ; 1.401 ; S. cerevisiae Dbp5 bound to RNA and ADP BeF3 5ELX ; 1.81 ; S. cerevisiae Dbp5 bound to RNA and mant-ADP BeF3 3RRN ; 4.001 ; S. cerevisiae dbp5 l327v bound to gle1 h337r and ip6 3RRM ; 2.9 ; S. cerevisiae dbp5 l327v bound to nup159, gle1 h337r, ip6 and adp 3PEW ; 1.501 ; S. cerevisiae Dbp5 L327V bound to RNA and ADP BeF3 3PEV ; 2.499 ; S. cerevisiae Dbp5 L327V C-terminal domain bound to Gle1 and IP6 3PEU ; 2.6 ; S. cerevisiae Dbp5 L327V C-terminal domain bound to Gle1 H337R and IP6 2PFV ; 2.1 ; S. cerevisiae Exo70 with additional residues to 2.1 Angrstrom resolution 2Z50 ; 2.01 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with BPH-28 2E93 ; 2.12 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with BPH-629 2ZEU ; 2.0 ; S. Cerevisiae Geranylgeranyl Pyrophosphate Synthase in Complex with BPH-715 2Z78 ; 2.1 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with BPH-806 2Z7H ; 2.08 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with inhibitor BPH-210 2Z7I ; 2.1 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with inhibitor BPH-742 2Z52 ; 2.13 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-23 2Z4Y ; 2.1 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-252 2Z4X ; 1.9 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-252 (P21) 2E92 ; 2.31 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-261 2E94 ; 2.18 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-364 2E95 ; 2.2 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-675 2Z4W ; 2.45 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-749 2E91 ; 2.14 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-91 2Z4Z ; 2.09 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and BPH-sc01 2Z4V ; 1.86 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and GGPP (inhibitory site) 2E8X ; 2.04 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and GPP 2E8W ; 2.35 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and IPP 2E8U ; 2.08 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium and IPP (P21) 2E8T ; 2.13 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium, FsPP and IPP 2ZEV ; 2.23 ; S. Cerevisiae Geranylgeranyl Pyrophosphate Synthase in Complex with Magnesium, IPP and BPH-715 2E90 ; 2.55 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with magnesium, pyrophosphate and FPP 2E8V ; 1.8 ; S. cerevisiae geranylgeranyl pyrophosphate synthase in complex with product GGPP (P21) 3ZS8 ; 3.0 ; S. cerevisiae Get3 complexed with a cytosolic Get1 fragment 3ZS9 ; 2.095 ; S. cerevisiae Get3-ADP-AlF4- complex with a cytosolic Get2 fragment 1C3G ; 2.7 ; S. CEREVISIAE HEAT SHOCK PROTEIN 40 SIS1 5VY8 ; 5.6 ; S. cerevisiae Hsp104-ADP complex 5VYA ; 4.0 ; S. cerevisiae Hsp104:casein complex, Extended Conformation 5VY9 ; 6.7 ; S. cerevisiae Hsp104:casein complex, Middle Domain Conformation 6F0L ; 4.77 ; S. cerevisiae MCM double hexamer bound to duplex DNA 7TJF ; 2.6 ; S. cerevisiae ORC bound to 84 bp ARS1 DNA 7TJJ ; 2.7 ; S. cerevisiae ORC bound to 84 bp ARS1 DNA and Cdc6 (state 1) with docked Orc6 N-terminal domain 7TJH ; 2.5 ; S. cerevisiae ORC bound to 84 bp ARS1 DNA and Cdc6 (state 1) with flexible Orc6 N-terminal domain 7TJK ; 2.7 ; S. cerevisiae ORC bound to 84 bp ARS1 DNA and Cdc6 (state 2) with docked Orc6 N-terminal domain 7TJI ; 2.7 ; S. cerevisiae ORC bound to 84 bp ARS1 DNA and Cdc6 (state 2) with flexible Orc6 N-terminal domain 2PRZ ; 1.895 ; S. cerevisiae orotate phosphoribosyltransferase complexed with OMP 2PS1 ; 1.75 ; S. cerevisiae orotate phosphoribosyltransferase complexed with orotic acid and PRPP 8U0V ; 3.89 ; S. cerevisiae Pex1/Pex6 with 1 mM ATP 8B9C ; 4.6 ; S. cerevisiae pol alpha - replisome complex 5I8Q ; 4.2 ; S. cerevisiae Prp43 in complex with RNA and ADPNP 8B9A ; 3.5 ; S. cerevisiae replisome + Ctf4, bound by pol alpha primase. Complex engaged with a fork DNA substrate containing a 60 nucleotide lagging strand. 8B9B ; 3.5 ; S. cerevisiae replisome + Ctf4, bound by pol alpha. Complex engaged with a fork DNA substrate containing a 60 nucleotide lagging strand. 7PMK ; 3.2 ; S. cerevisiae replisome-SCF(Dia2) complex bound to double-stranded DNA (conformation I) 7PMN ; 3.2 ; S. cerevisiae replisome-SCF(Dia2) complex bound to double-stranded DNA (conformation II) 1Z1A ; 2.5 ; S. cerevisiae Sir1 ORC-interaction domain 2FL7 ; 1.85 ; S. cerevisiae Sir3 BAH domain 6N7P ; 3.6 ; S. cerevisiae spliceosomal E complex (UBC4) 5M5P ; 4.2 ; S. cerevisiae spliceosomal helicase Brr2 (271-end) in complex with the Jab/MPN domain of S. cerevisiae Prp8 6BK8 ; 3.3 ; S. cerevisiae spliceosomal post-catalytic P complex 6BL7 ; 2.5 ; S. cerevisiae stu2 coiled coil domain 1SW6 ; 2.1 ; S. CEREVISIAE SWI6 ANKYRIN-REPEAT FRAGMENT 7NLH ; 2.8 ; S. cerevisiae Ty1 p22 restriction factor, Gag CA-CTD, AUG1 variant 7NLI ; 3.119 ; S. cerevisiae Ty1 p22 restriction factor, Gag CA-CTD, AUG2 variant 7NLG ; 3.528 ; S. cerevisiae Ty1 p22 restriction factor, Gag CA-CTD, AUG2 variant A273V mutant 6N7X ; 3.6 ; S. cerevisiae U1 snRNP 3O2U ; 2.003 ; S. cerevisiae Ubc12 5OJW ; 2.0 ; S. cerevisiae UBC13 - MMs2 complex 4FH1 ; 2.61 ; S. cerevisiae Ubc13-N79A 5L6U ; 1.6 ; S. ENTERICA HISA MUTANT - D10G, DUP13-15, Q24L, G102A 5L9F ; 2.594 ; S. enterica HisA mutant - D10G, G11D, dup13-15, G44E, G102A 5G5I ; 2.001 ; S. enterica HisA mutant D10G 5G4E ; 2.65 ; S. enterica HisA mutant D10G, Dup13-15, Q24L, G102A, V106L 5G1Y ; 1.798 ; S. enterica HisA mutant D10G, dup13-15,V14:2M, Q24L, G102 5G2W ; 2.099 ; S. enterica HisA mutant D10G, G102A 5G4W ; 2.3 ; S. enterica HisA mutant D7N, D10G, Dup13-15 (VVR) with substrate ProFAR 5G2I ; 1.601 ; S. enterica HisA mutant Dup13-15(VVR) 5G1T ; 1.7 ; S. enterica HisA mutant dup13-15, D10G 5G2H ; 1.9 ; S. enterica HisA with mutation L169R 5AC8 ; 1.699 ; S. enterica HisA with mutations D10G, dup13-15, G102A 5AC7 ; 1.904 ; S. enterica HisA with mutations D7N, D10G, dup13-15 8T53 ; 4.1 ; S. enterica WbaP in a styrene maleic acid liponanoparticle 5DJ7 ; 0.87 ; S. erythraea trypsin acyl-enzyme 5KWM ; 0.777 ; S. erythraea trypsin long construct apoenzyme 5DKM ; 0.92 ; S. erythraea trypsin Michaelis-Menten complex 5DK1 ; 0.938 ; S. erythraea trypsin mixed catalytic intermediate 5BQS ; 1.9 ; S. Pneumoniae Fabh with small molecule inhibitor 4 4HSB ; 1.9 ; S. pombe 3-methyladenine DNA glycosylase-like protein Mag2 bound to damaged DNA 4X01 ; 2.201 ; S. pombe Ctp1 tetramerization domain 5MJS ; 4.6 ; S. pombe microtubule copolymerized with GTP and Mal3-143 6S8M ; 4.5 ; S. pombe microtubule decorated with Cut7 motor domain in the AMPPNP state 4GQ2 ; 2.4 ; S. pombe Nup120-Nup37 complex 6OP8 ; 1.703 ; S. pombe Ubc7/U7BR complex 6O82 ; 2.604 ; S. pombe ubiquitin E1 complex with a ubiquitin-AMP mimic 6O83 ; 3.153 ; S. pombe ubiquitin E1~ubiquitin-AMP tetrahedral intermediate mimic 5LW7 ; 17.0 ; S. solfataricus ABCE1 post-splitting state 5TNU ; 3.05 ; S. tokodaii XPB II crystal structure at 3.0 Angstrom resolution 7KGN ; 3.6 ; S. Typhi YcbB - ertapenem complex 4IDJ ; 3.36 ; S.Aureus a-hemolysin monomer in complex with Fab 6EM9 ; 8.4 ; S.aureus ClpC resting state, asymmetric map 6EM8 ; 8.4 ; S.aureus ClpC resting state, C2 symmetrised 5Z9N ; 2.54 ; S.aureus GyrB ATPase domain in complex with 4,6-dichloro-2-(methylthio)pyrimidine 2AI9 ; 2.5 ; S.aureus Polypeptide Deformylase 4QG7 ; 1.67 ; S.aureus TMK in complex with a potent inhibitor compound 18, 2-(3-CHLOROPHENOXY)-3-METHOXY-4-{[(3S)-3-(5-METHYL-2,4-DIOXO-3,4-DIHYDROPYRIMIDIN-1(2H)-YL)PIPERIDIN-1-YL]METHYL}BENZOIC ACID 4QGA ; 1.94 ; S.aureus TMK in complex with potent inhibitor compound 19, 2-(3-CHLOROPHENOXY)-3-FLUORO-4-{[(3S)-3-(5-METHYL-2,4-DIOXO-3,4-DIHYDROPYRIMIDIN-1(2H)-YL)PIPERIDIN-1-YL]METHYL}BENZOIC ACID 4QGH ; 1.78 ; S.aureus TMK in complex with potent inhibitor compound 47 4QGF ; 1.83 ; S.aureus TMK in complex with the potent inhibitor compound 38, 2-(3-CHLOROPHENOXY)-3-METHOXY-4-{(1R)-1-[(3S)-3-(5-METHYL-2,4-DIOXO-3,4-DIHYDROPYRIMIDIN-1(2H)-YL)PIPERIDIN-1-YL]PROPYL}BENZOIC ACID 7QEN ; 3.46 ; S.c. Condensin core in DNA- and ATP-bound state 7QFW ; 3.86 ; S.c. Condensin peripheral Ycg1 subcomplex bound to DNA 6TRQ ; 2.944 ; S.c. Scavenger Decapping Enzyme DcpS in complex with the capped RNA dinucleotide m7G-GU 5AC6 ; 1.993 ; S.enterica HisA mutant D10G, dup13-15, Q24L, G102A 5AB3 ; 1.803 ; S.enterica HisA mutant D7N, D10G, dup13-15, Q24L, G102A 5ABT ; 1.65 ; S.enterica HisA mutant D7N, G102A, V106M, D176A 5G5Y ; 1.73 ; S.pneumoniae ABC-transporter substrate binding protein FusA apo structure 5G62 ; 1.99 ; S.pneumoniae ABC-transporter substrate binding protein FusA EF-hand mutant in complex with fructo-nystose 5G61 ; 2.4 ; S.pneumoniae ABC-transporter substrate binding protein FusA in complex with fructo-nystose 5G5Z ; 2.01 ; S.pneumoniae ABC-transporter substrate binding protein FusA in complex with kestose 5G60 ; 1.99 ; S.pneumoniae ABC-transporter substrate binding protein FusA in complex with nystose 1G97 ; 1.96 ; S.PNEUMONIAE GLMU COMPLEXED WITH UDP-N-ACETYLGLUCOSAMINE AND MG2+ 4AAW ; 2.2 ; S.pneumoniae GlmU in complex with an antibacterial inhibitor 4AC3 ; 2.1 ; S.pneumoniae GlmU in complex with an antibacterial inhibitor 2AIA ; 1.7 ; S.pneumoniae PDF complexed with SB-543668 2AI7 ; 2.0 ; S.pneumoniae Polypeptide Deformylase complexed with SB-485345 2AIE ; 1.7 ; S.pneumoniae polypeptide deformylase complexed with SB-505684 4FCX ; 3.0 ; S.pombe Mre11 apoenzym 5FBC ; 1.75 ; S1 nuclease from Aspergillus oryzae in complex with 2'-deoxyadenosine-5'-thio-monophosphate (5'dAMP(S)). 7QTB ; 1.04 ; S1 nuclease from Aspergillus oryzae in complex with cytidine-5'-monophosphate 5FBA ; 1.8 ; S1 nuclease from Aspergillus oryzae in complex with phosphate 5FBD ; 1.75 ; S1 nuclease from Aspergillus oryzae in complex with phosphate and 2'-deoxycytidine 5FBB ; 1.75 ; S1 nuclease from Aspergillus oryzae in complex with phosphate and adenosine 5'-monophosphate 5FBF ; 1.04 ; S1 nuclease from Aspergillus oryzae in complex with two molecules of 2'-deoxycytidine-5'-monophosphate 7QTA ; 1.06 ; S1 nuclease from Aspergillus oryzae in complex with uridine 5FB9 ; 1.5 ; S1 nuclease from Aspergillus oryzae with unoccupied active site 5FBG ; 1.97 ; S1 nuclease from Aspergillus oryzae, mutant D65N, in complex with phosphate, 2'-deoxycytidine and 2'-deoxyguanosine. 1SRO ; ; S1 RNA BINDING DOMAIN, NMR, 20 STRUCTURES 7VHK ; 3.6 ; S1-S2 deletion S-2P trimer(3 down) 2WC8 ; 1.88 ; S100A12 complex with zinc in the absence of calcium 2WCB ; 1.73 ; S100A12 complex with zinc in the absence of calcium 2K8M ; ; S100A13-C2A binary complex structure 1CFP ; ; S100B (S100BETA) NMR DATA WAS COLLECTED FROM A SAMPLE OF CALCIUM FREE PROTEIN AT PH 6.3 AND A TEMPERATURE OF 311 K AND 1.7-6.9 MM CONCENTRATION, 25 STRUCTURES 5CSF ; 2.4 ; S100B-RSK1 crystal structure A 5CSI ; 2.13 ; S100B-RSK1 crystal structure A' 5CSJ ; 2.7 ; S100B-RSK1 crystal structure B 5CSN ; 2.95 ; S100B-RSK1 crystal structure C 1QLS ; 2.3 ; S100C (S100A11),OR CALGIZZARIN, IN COMPLEX WITH ANNEXIN I N-TERMINUS 2Y5I ; 2.03 ; S100Z from zebrafish in complex with calcium 6LQ9 ; 2.5 ; S109 in complex with CRM1-Ran-RanBP1 8AI9 ; 1.7 ; S10T variant of glutathione transferase Chi 1 from Synechocystis sp. PCC 6803 in complex with glutathione 3NJI ; 1.8 ; S114A mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis. 2HVE ; 2.402 ; S120G mutant of human nucleoside diphosphate kinase A complexed with ADP 1GN2 ; 3.4 ; S123C mutant of the iron-superoxide dismutase from Mycobacterium tuberculosis. 8SOQ ; 3.1 ; S127A variant of LarB, a carboxylase/hydrolase involved in synthesis of the cofactor for lactate racemase, in complex with authentic substrate NaAD 8STD ; 2.65 ; S127A variant of LarB, a carboxylase/hydrolase involved in synthesis of the cofactor for lactate racemase, in complex with authentic substrate NaAD and soaked with CS2 4Z7U ; 2.7 ; S13 complex 1GT6 ; 2.2 ; S146A mutant of Thermomyces (Humicola) lanuginosa lipase complex with oleic acid 8AAB ; 1.6 ; S148F mutant of blue-to-red fluorescent timer mRubyFT 1Q5P ; 1.6 ; S156E/S166D variant of Bacillus lentus subtilisin 4OZH ; 2.8 ; S16 protein complex 2UYB ; 2.1 ; S161A mutant of Bacillus subtilis Oxalate Decarboxylase OxdC 4IST ; 2.6 ; S177A Kluyveromyces lactis Allophanate Hydrolase 6CX2 ; 3.101 ; S177G Mutant of Yeast PCNA 6CX3 ; 3.101 ; S179T Mutant of Yeast PCNA 3UB4 ; 3.1 ; S180L variant of TIR domain of Mal/TIRAP 3TGJ ; 2.2 ; S195A TRYPSINOGEN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) 4MK4 ; 2.5 ; S197C variant of human ferrochelatase. 4PEL ; 2.8 ; S1C mutant of Penicillin G acylase from Kluyvera citrophila 5EUD ; 2.24 ; S1P Lyase Bacterial Surrogate bound to N-(1-(4-(3-hydroxyprop-1-yn-1-yl)phenyl)-2-((4-methoxy-2,5-dimethylbenzyl)amino)ethyl)-5-methylisoxazole-3-carboxamide 5EUE ; 2.83 ; S1P Lyase Bacterial Surrogate bound to N-(2-((4-methoxy-2,5-dimethylbenzyl)amino)-1-phenylethyl)-5-methylisoxazole-3-carboxamide 7YUB ; 3.22 ; S1P-bound human SPNS2 2DCO ; ; S1P4 First Extracellular Loop Peptidomimetic 8UDG ; 4.98 ; S1V2-72 Fab bound to EHA2 from influenza B/Malaysia/2506/2004 4OZI ; 3.2 ; S2 protein complex 6UCX ; 0.85 ; S2 symmetric peptide design number 1, Wednesday 6UD9 ; 1.1 ; S2 symmetric peptide design number 2, Morticia 6UDR ; 1.0 ; S2 symmetric peptide design number 3 crystal form 1, Lurch 6UDW ; 1.1 ; S2 symmetric peptide design number 3 crystal form 2, Lurch 6UDZ ; 1.1 ; S2 symmetric peptide design number 4 crystal form 1, Pugsley 6UF4 ; 1.1 ; S2 symmetric peptide design number 4 crystal form 2, Pugsley 6UF7 ; 0.8 ; S2 symmetric peptide design number 5, Uncle Fester 6UF8 ; 0.8 ; S2 symmetric peptide design number 6, London Bridge 1ES5 ; 1.4 ; S216A MUTANT OF STREPTOMYCES K15 DD-TRANSPEPTIDASE 3ZGJ ; 1.95 ; S221M V223F Y359A mutant of 4-Hydroxymandelate synthase from Streptomyces coelicolor 1ESU ; 2.0 ; S235A MUTANT OF TEM1 BETA-LACTAMASE 1Q9K ; 1.96 ; S25-2 Fab Unliganded 1 1Q9L ; 2.28 ; S25-2 Fab Unliganded 2 3T77 ; 1.739 ; S25-2- A(2-4)KDO disaccharide complex 3SY0 ; 1.489 ; S25-2- A(2-8)-A(2-4)KDO trisaccharide complex 3T65 ; 1.45 ; S25-2- A(2-8)KDO disaccharide complex 3T4Y ; 1.73 ; S25-2- KDO monosaccharide complex 6C5J ; 2.29 ; S25-23 Fab in complex with Chlamydiaceae LPS (Crystal form 1) 6C5K ; 1.75 ; S25-23 Fab in complex with Chlamydiaceae LPS (Crystal form 2) 6C5H ; 1.99 ; S25-5 Fab in complex with Chlamydiaceae-specific LPS antigen 1PQE ; 1.95 ; S25A mutant of pyruvoyl dependent aspartate decarboxylase 3WZX ; 1.9 ; S266A mutant 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 0.1MPa - complex with IPM and Mg 3WZY ; 1.55 ; S266A mutant 3-isopropylmalate dehydrogenase from Shewanella oneidensis MR-1 at 580MPa - complex with IPM and Mg 4JCF ; 2.2 ; S268F Variant of JC Polyomavirus Major Capsid Protein VP1 in Complex with LSTc 4JCD ; 2.0 ; S268Y Variant of JC Polyomavirus Major Capsid Protein VP1 4AHG ; 2.448 ; S28N - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 8U8P ; 2.2 ; S292F Streptomyces coelicolor Laccase 7RNJ ; 2.67 ; S2P6 Fab fragment bound to the SARS-CoV/SARS-CoV-2 spike stem helix peptide 2KIH ; ; S31N mutant of M2 proton channel 5L02 ; 1.9 ; S324T variant of B. pseudomallei KatG 2KZQ ; ; s34r Structure 1XT6 ; 1.8 ; S35C Flavodoxin Mutant in the semiquinone state 6UF9 ; 1.1 ; S4 symmetric peptide design number 1, Tim apo form 6UFA ; 0.77 ; S4 symmetric peptide design number 1, Tim zinc-bound form 1F3X ; 2.8 ; S402P MUTANT OF RABBIT MUSCLE PYRUVATE KINASE 7X26 ; 3.685 ; S41 neutralizing antibody Fab(MERS-CoV) 2GKO ; 1.4 ; S41 Psychrophilic Protease 5CC1 ; 2.302 ; S425G Glucocorticoid receptor DNA binding domain - (+)GRE complex 3G2G ; 2.0 ; S437Y Mutant of human muscle pyruvate kinase, isoform M2 1Q9W ; 1.75 ; S45-18 Fab pentasaccharide bisphosphate complex 1Q9O ; 1.79 ; S45-18 Fab Unliganded 1DF8 ; 1.51 ; S45A MUTANT OF STREPTAVIDIN IN COMPLEX WITH BIOTIN 7U9N ; 2.2 ; S48A Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 7UQ9 ; 1.4 ; S48T Horse Liver Alcohol Dehydrogenase in Complex with NADH and N-Cyclohexylformamide 1G88 ; 3.0 ; S4AFL3ARG515 MUTANT 2LXE ; ; S4wyild 7ZB1 ; 2.0 ; S580A with 18mer 4B2V ; ; S64, a spider venom toxin peptide from Sicarius dolichocephalus 1C96 ; 1.81 ; S642A:CITRATE COMPLEX OF ACONITASE 1B0K ; 2.5 ; S642A:FLUOROCITRATE COMPLEX OF ACONITASE 1C97 ; 1.98 ; S642A:ISOCITRATE COMPLEX OF ACONITASE 5N38 ; 2.6 ; S65DParkin and pUB complex 1Q4B ; 1.48 ; S65T Q80R Green Fluorescent Protein (GFP) pH 5.5 1Q4A ; 1.45 ; S65T Q80R Green Fluorescent Protein (GFP) pH 8.5 1Q4D ; 1.58 ; S65T Q80R T203C Green Fluorescent Protein (GFP) pH 5.5 1Q4C ; 1.55 ; S65T Q80R T203C Green Fluorescent Protein (GFP) pH 8.5 1Q4E ; 1.38 ; S65T Q80R Y145C Green Fluorescent Protein (GFP) pH 8.5 1Q73 ; 1.6 ; S65T Q80R Y145C T203C Green Fluorescent Protein (GFP) pH 8.5 3V92 ; 2.74 ; S663A Stable-5-LOX 3V98 ; 2.07 ; S663D Stable-5-LOX 3V99 ; 2.252 ; S663D Stable-5-LOX in complex with Arachidonic Acid 4B2U ; ; S67, A spider venom toxin peptide from Sicarius dolichocephalus 8D0Z ; 3.7 ; S728-1157 IgG in complex with SARS-CoV-2-6P-Mut7 Spike protein (focused refinement) 2GC6 ; 1.9 ; S73A mutant of L. casei FPGS 3QEN ; 1.997 ; S74E dCK in complex with 5-bromodeoxycytidine and UDP 3QEJ ; 2.49 ; S74E-dCK mutant in complex with UDP 3QEO ; 1.897 ; S74E-R104M-D133A dCK variant in complex with L-deoxythymidine and UDP 6OC9 ; ; S8 phosphorylated beta amyloid 40 fibrils 1BGZ ; ; S8 RRNA BINDING SITE FROM E. COLI, NMR, 6 STRUCTURES 6KYW ; 2.60113 ; S8-mSRK-S8-SP11 complex 1GKL ; 1.4 ; S954A mutant of the feruloyl esterase module from clostridium thermocellum complexed with ferulic acid 1WB4 ; 1.4 ; S954A mutant of the feruloyl esterase module from clostridium thermocellum complexed with sinapinate 1WB5 ; 1.4 ; S954A mutant of the feruloyl esterase module from clostridium thermocellum complexed with syringate 1WB6 ; 1.4 ; S954A mutant of the feruloyl esterase module from clostridium thermocellum complexed with vanillate 1ES2 ; 1.55 ; S96A mutant of streptomyces K15 DD-transpeptidase 1TPU ; 1.9 ; S96P CHANGE IS A SECOND-SITE SUPPRESSOR FOR H95N SLUGGISH MUTANT TRIOSEPHOSPHATE ISOMERASE 1TPV ; 1.9 ; S96P CHANGE IS A SECOND-SITE SUPPRESSOR FOR H95N SLUGGISH MUTANT TRIOSEPHOSPHATE ISOMERASE 6WJD ; 4.8 ; SA-like state of human 26S Proteasome with non-cleavable M1-linked hexaubiquitin and E3 ubiquitin ligase E6AP/UBE3A 6CY9 ; 2.615 ; SA11 Rotavirus NSP2 with disulfide bridge 2H5S ; 1.28 ; SA2-13 penam sulfone complexed to wt SHV-1 beta-lactamase 7U97 ; 2.66 ; SAAV pH 4.0 capsid structure 7U96 ; 2.14 ; SAAV pH 5.5 capsid structure 7U95 ; 2.73 ; SAAV pH 6.0 capsid structure 7U94 ; 3.25 ; SAAV pH 7.4 capsid structure 3FWB ; 2.5 ; Sac3:Sus1:Cdc31 complex 3FWC ; 2.7 ; Sac3:Sus1:Cdc31 complex 4MBE ; 2.612 ; Sac3:Sus1:Cdc31:Nup1 complex 3T5V ; 2.9 ; Sac3:Thp1:Sem1 complex 4X2H ; 1.8 ; Sac3N peptide bound to Mex67:Mtr2 4X2O ; 1.85 ; Sac3N peptide bound to Mex67:Mtr2 5LSF ; 2.1 ; Sacbrood honeybee virus 5OYP ; 3.22 ; Sacbrood virus of honeybee 6EGV ; 3.18 ; Sacbrood virus of honeybee 6EGX ; 4.06 ; Sacbrood virus of honeybee - expansion state I 6EH1 ; 7.25 ; Sacbrood virus of honeybee - expansion state II 6EIW ; 3.87 ; Sacbrood virus of honeybee empty particle 1TOB ; ; SACCHARIDE-RNA RECOGNITION IN AN AMINOGLYCOSIDE ANTIBIOTIC-RNA APTAMER COMPLEX, NMR, 7 STRUCTURES 1NEM ; ; Saccharide-RNA recognition in the neomycin B / RNA aptamer complex 1YPR ; 2.3 ; SACCHAROMYCES CEREVISIAE (YEAST) PROFILIN 6S47 ; 3.28 ; Saccharomyces cerevisiae 80S ribosome bound with ABCF protein New1 5JUO ; 4.0 ; Saccharomyces cerevisiae 80S ribosome bound with elongation factor eEF2-GDP-sordarin and Taura Syndrome Virus IRES, Structure I (fully rotated 40S subunit) 5JUP ; 3.5 ; Saccharomyces cerevisiae 80S ribosome bound with elongation factor eEF2-GDP-sordarin and Taura Syndrome Virus IRES, Structure II (mid-rotated 40S subunit) 5JUS ; 4.2 ; Saccharomyces cerevisiae 80S ribosome bound with elongation factor eEF2-GDP-sordarin and Taura Syndrome Virus IRES, Structure III (mid-rotated 40S subunit) 5JUT ; 4.0 ; Saccharomyces cerevisiae 80S ribosome bound with elongation factor eEF2-GDP-sordarin and Taura Syndrome Virus IRES, Structure IV (almost non-rotated 40S subunit) 5JUU ; 4.0 ; Saccharomyces cerevisiae 80S ribosome bound with elongation factor eEF2-GDP-sordarin and Taura Syndrome Virus IRES, Structure V (least rotated 40S subunit) 5IMS ; 1.984 ; Saccharomyces cerevisiae acetohydroxyacid synthase 6BD3 ; 2.28 ; Saccharomyces cerevisiae acetohydroxyacid synthase 6BD9 ; 1.982 ; Saccharomyces cerevisiae acetohydroxyacid synthase 6U9D ; 3.194 ; Saccharomyces cerevisiae acetohydroxyacid synthase 5FEM ; 2.168 ; Saccharomyces cerevisiae Acetohydroxyacid Synthase in complex with bensulfuron methyl 5WKC ; 2.334 ; Saccharomyces cerevisiae acetohydroxyacid synthase in complex with the herbicide penoxsulam 1MR3 ; 1.6 ; Saccharomyces cerevisiae ADP-ribosylation Factor 2 (ScArf2) complexed with GDP-3'P at 1.6A resolution 3KYH ; 3.0 ; Saccharomyces cerevisiae Cet1-Ceg1 capping apparatus 5HS1 ; 2.1 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) complexed with Voriconazole 5ESJ ; 2.15 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G464S mutant complexed with fluconazole 5ESK ; 2.24 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G464S mutant complexed with itraconazole 5ESF ; 2.25 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G73E mutant complexed with fluconazole 5ESG ; 1.981 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G73E mutant complexed with itraconazole 5ESE ; 2.2 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G73R mutant complexed with fluconazole 5ESI ; 2.1 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G73W mutant 5ESH ; 2.15 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) G73W mutant in complex with itraconazole 5ESM ; 2.0 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) T322I mutant complexed with fluconazole 5ESL ; 2.35 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) T322I mutant complexed with itraconazole 5ESN ; 2.35 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) T322I mutant structure 4ZDZ ; 2.3 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) Y140F mutant complexed with fluconazole 4ZDY ; 2.02 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) Y140F mutant complexed with itraconazole 4ZE0 ; 2.2 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) Y140F mutant complexed with Voriconazole 4ZE3 ; 2.2 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) Y140H mutant complexed with fluconazole 4ZE2 ; 2.3 ; Saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) Y140H mutant complexed with itraconazole 5EAH ; 2.541 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor Difenoconazole 5EAF ; 2.65 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor Fluquinconazole 5EAG ; 2.4 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor Prochloraz 5EAE ; 2.11 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor R-desthio-prothioconazole 5EAC ; 2.26 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor R-tebuconazole 5EAD ; 2.0 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor S-desthio-prothioconazole 5EAB ; 2.6 ; Saccharomyces cerevisiae CYP51 complexed with the plant pathogen inhibitor S-tebuconazole 4ZE1 ; 2.05 ; Saccharomyces cerevisiae CYP51 Y140F mutant complexed with posaconazole in the active site 2QB8 ; 1.9 ; Saccharomyces cerevisiae cytosolic exopolyphosphatase, ATP complex 2QB7 ; 1.6 ; Saccharomyces cerevisiae cytosolic exopolyphosphatase, phosphate complex 2QB6 ; 1.8 ; Saccharomyces cerevisiae cytosolic exopolyphosphatase, sulfate complex 3HMJ ; 4.0 ; Saccharomyces cerevisiae FAS type I 5FIH ; 1.8 ; SACCHAROMYCES CEREVISIAE GAS2P (E176Q MUTANT) IN COMPLEX WITH LAMINARITETRAOSE AND LAMINARIPENTAOSE 2W61 ; 1.62 ; Saccharomyces cerevisiae Gas2p apostructure (E176Q mutant) 2W62 ; 1.85 ; Saccharomyces cerevisiae Gas2p in complex with laminaripentaose 2W63 ; 1.9 ; SACCHAROMYCES CEREVISIAE GAS2P IN COMPLEX WITH LAMINARITRIOSE AND LAMINARITETRAOSE 3IG5 ; 2.1 ; Saccharomyces cerevisiae glutamate cysteine ligase in complex with Mg2+ and L-glutamate 3IG8 ; 2.69 ; Saccharomyces cerevisiae glutamate cysteine ligase in complex with Mg2+, L-glutamate and ADP 2JKZ ; 3.45 ; SACCHAROMYCES CEREVISIAE HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE IN COMPLEX WITH GMP (GUANOSINE 5'- MONOPHOSPHATE) (ORTHORHOMBIC CRYSTAL FORM) 2JKY ; 2.3 ; SACCHAROMYCES CEREVISIAE HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE IN COMPLEX WITH GMP (GUANOSINE 5'- MONOPHOSPHATE) (TETRAGONAL CRYSTAL FORM) 2XBU ; 1.8 ; Saccharomyces cerevisiae hypoxanthine-guanine phosphoribosyltransferase in complex with GMP (monoclinic crystal form) 7ZTS ; 16.0 ; Saccharomyces cerevisiae L-BC virus, open particle, asymmetric reconstruction 7ZUF ; 10.0 ; Saccharomyces cerevisiae L-BC virus, open particle, C5 reconstruction 4LXJ ; 1.9 ; Saccharomyces cerevisiae lanosterol 14-alpha demethylase with lanosterol bound 3B54 ; 3.1 ; Saccharomyces cerevisiae nucleoside diphosphate kinase 5V4V ; 1.798 ; Saccharomyces cerevisiae Old Yellow Enzyme 3 5ZR1 ; 3.0 ; Saccharomyces Cerevisiae Origin Recognition Complex Bound to a 72-bp Origin DNA containing ACS and B1 element 5V4P ; 1.88 ; Saccharomyces cerevisiae OYE 3 soaked with p-hydroxybenzaldehyde 7T9X ; 1.52 ; Saccharomyces cerevisiae Pex12 RING domain 4PGM ; 2.3 ; SACCHAROMYCES CEREVISIAE PHOSPHOGLYCERATE MUTASE 5PGM ; 2.12 ; SACCHAROMYCES CEREVISIAE PHOSPHOGLYCERATE MUTASE 1BQ4 ; 2.5 ; SACCHAROMYCES CEREVISIAE PHOSPHOGLYCERATE MUTASE IN COMPLEX WITH BENZENE HEXACARBOXYLATE 1BQ3 ; 2.7 ; SACCHAROMYCES CEREVISIAE PHOSPHOGLYCERATE MUTASE IN COMPLEX WITH INOSITOL HEXAKISPHOSPHATE 6GIQ ; 3.23 ; Saccharomyces cerevisiae respiratory supercomplex III2IV 6N7R ; 3.2 ; Saccharomyces cerevisiae spliceosomal E complex (ACT1) 7OQE ; 5.9 ; Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1) 3FPZ ; 1.82 ; Saccharomyces cerevisiae THI4p is a suicide thiamin thiazole synthase 8DAW ; 3.6 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex bound to three ubiquitin moieties and one unfolded ubiquitin in presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP, state 2 (uD) 8DAT ; 3.8 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex bound to three ubiquitin moieties in presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP, state 1 (intB) 8DAU ; 3.7 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex bound to two folded ubiquitin moieties and one unfolded ubiquitin in presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP, state 1 (uA) 8DAV ; 3.5 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex bound to two ubiquitin moieties and one unfolded ubiquitin in presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP, state 2 (uC) 8DAS ; 3.5 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex bound to two ubiquitin moieties in presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP, state 1 (intA) 8DAR ; 3.0 ; Saccharomyces cerevisiae Ufd1/Npl4/Cdc48 complex unbound but in the presence of SUMO-ubiquitin(K48polyUb)-mEOS and ATP 6O7V ; 6.6 ; Saccharomyces cerevisiae V-ATPase Stv1-V1VO State 1 6O7W ; 7.0 ; Saccharomyces cerevisiae V-ATPase Stv1-V1VO State 2 6O7X ; 8.7 ; Saccharomyces cerevisiae V-ATPase Stv1-V1VO State 3 6O7U ; 3.1 ; Saccharomyces cerevisiae V-ATPase Stv1-VO 6O7T ; 3.2 ; Saccharomyces cerevisiae V-ATPase Vph1-VO 8J2W ; 1.7 ; Saccharothrix syringae photocobilins protein, dark state 8J2X ; 1.98 ; Saccharothrix syringae photocobilins protein, light state 3UL5 ; 2.3 ; Saccharum officinarum canecystatin-1 in space group C2221 3UL6 ; 2.63 ; Saccharum officinarum canecystatin-1 in space group P6422 4GLE ; 2.7 ; SacUVDE in complex with 6-4PP-containing DNA 6H6S ; 1.45 ; Sad phasing on nickel-substituted human carbonic anhydrase II 2FPD ; 2.05 ; Sad structure determination: crystal structure of the intrinsic dimerization sh3 domain of the ib1 scaffold protein 6SIJ ; 1.61018 ; SAD structure of Hen Egg White Lysozyme recovered by continuous rotation data collection and multivariate analysis of Friedel pairs 6SIK ; 1.61007 ; SAD structure of Hen Egg White Lysozyme recovered by continuous rotation data collection and univariate analysis 6SIL ; 1.61018 ; SAD structure of Hen Egg White Lysozyme recovered by inverse beam geometry data collection and multivariate analysis of Friedel pairs 6SIM ; 1.61018 ; SAD structure of Hen Egg White Lysozyme recovered by inverse beam geometry data collection and univariate analysis 6SHO ; 3.20008 ; SAD structure of Human Survivin recovered by continuous rotation data collection and multivariate analysis of Friedel pairs 5A3Y ; 1.27 ; SAD structure of Thermolysin obtained by multi crystal data collection 3L1K ; 1.55 ; SAD structure solution of proteinase K grown in potassium tellurate solution 2V8B ; 0.94 ; SAD Structure solution of Proteinase K grown in selenate solution 2V0B ; 1.65 ; SAD Structure solution porcine pancreatic elastase from a Selenate derivative 4WXO ; 2.805 ; SadC (300-487) from Pseudomonas aeruginosa PAO1 4WXW ; 1.8 ; SadC (323-487) from Pseudomonas aeruginosa PAO1 6EN8 ; 3.29 ; SaFadR in complex with dsDNA 6EL2 ; 1.9 ; SaFadR_lauroyl_CoA complex 7ON4 ; 1.79 ; SaFtsZ complexed with GDP (co-crystalization with 1mM EDTA) 7OI2 ; 1.9 ; SaFtsz complexed with GDP (NaCl purification) 7ON3 ; 2.32 ; SaFtsZ complexed with GDP (soak 10 mM EGTA) 7ON2 ; 1.69 ; SaFtsZ complexed with GDP (soaking in 10 mM CyDTA) 7OHH ; 1.45 ; SaFtsZ complexed with GDP and BeF3- 7OHN ; 1.62 ; SaFtsZ complexed with GDP, AlF4- and Mg2+ 7OHK ; 1.75 ; SaFtsZ complexed with GDP, BeF3- and Mg2+ 7OHL ; 1.75 ; SaFtsZ complexed with GDP, BeF3- and Mn2+ 7OMJ ; 1.57 ; SaFtsZ complexed with GDPPCP 7OMP ; 1.52 ; SaFtsZ complexed with GDPPCP and Mg2+ 7OMQ ; 1.45 ; SaFtsZ complexed with GDPPCP and Mn2+ 7OJZ ; 1.65 ; SaFtsZ complexed with GMPCP 7OJA ; 2.22 ; SaFtsZ(D210N) complexed with GDP 7OJD ; 1.82 ; SaFtsZ(D46A) complexed with GDP 7OJC ; 1.95 ; SaFtsZ(Q48A) complexed with GDP 7OJB ; 1.7 ; SaFtsZ(R143K) complexed with GDP 6YD1 ; 1.7 ; SaFtsZ-DFMBA 6RVQ ; 1.136 ; SaFtsz-GDP-EthGLy 6RVP ; 1.16 ; SaFtsz-GDP-MetPyr 6YD5 ; 1.55 ; SaFtsZ-UCM151 (comp. 18) 6YD6 ; 1.7 ; SaFtsZ-UCM152 (comp.20) 6T9K ; 3.3 ; SAGA Core module 6T9L ; 3.6 ; SAGA DUB module bound to a ubiqitinated nucleosome 6AQR ; 2.1 ; SAGA DUB module Ubp8(C146A)/Sgf11/Sus1/Sgf73 bound to monoubiquitin 4ZUX ; 3.82 ; SAGA DUB module Ubp8/Sgf11/Sus1/Sgf73 bound to ubiqitinated nucleosome 6T9J ; 3.4 ; SAGA Tra1 module 5FAD ; 1.87 ; SAH complex with aKMT from the hyperthermophilic archaeon Sulfolobus islandicus 8HAR ; 2.12 ; SAH-bound C-Methyltransferase Fur6 from Streptomyces sp. KO-3988 1A48 ; 1.9 ; SAICAR SYNTHASE 4O81 ; 2.1 ; SAICAR synthetase (Type-1) in complex with ADP AND AMP 4O82 ; 2.16 ; SAICAR synthetase (Type-1) in complex with ADP AND AMP in both chains 4O83 ; 2.05 ; SAICAR synthetase (Type-1) in complex with ADP/AMP 4O84 ; 2.09 ; SAICAR synthetase (Type-1) in complex with GMP 4O7L ; 2.1 ; SAICAR synthetase (Type-2) in complex with ADP 4O7N ; 2.16 ; SAICAR synthetase (Type-2) in complex with ADP 4O86 ; 2.2 ; SAICAR synthetase (Type-2) in complex with ADP and CDP 4O7V ; 2.3 ; SAICAR synthetase (Type-2) in complex with ADP and UDP/UMP 4O7T ; 2.1 ; SAICAR synthetase (Type-2) in complex with ADP, ASP and TMP 4O7W ; 2.2 ; SAICAR synthetase (Type-2) in complex with ATP and TDP 4O7Y ; 2.0 ; SAICAR synthetase (Type-2) in complex with CMP 4O7Z ; 2.3 ; SAICAR synthetase (Type-2) in complex with GMP 4O7S ; 2.24 ; SAICAR synthetase (Type-2) in complex with TMP/TDP 4O7R ; 2.35 ; SAICAR synthetase (Type-2) in complex with UMP/UDP 2GQR ; 2.0 ; SAICAR Synthetase Complexed with ADP-Mg2+ 2GQS ; 2.05 ; SAICAR Synthetase Complexed with CAIR-Mg2+ and ADP 1OBD ; 1.4 ; SAICAR-synthase complexed with ATP 1OBG ; 2.05 ; SAICAR-synthase complexed with ATP 2CNV ; 2.0 ; SAICAR-synthase from Saccharomyces cerevisiae complexed SAICAR 7CYB ; 1.6 ; Saimiri boliviensis boliviensis galectin-13 with glycerol 7CYA ; 1.71 ; Saimiri boliviensis boliviensis galectin-13 with lactose 1OHM ; ; Sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. 8F9Y ; 2.6 ; SAL1 from Arabidopsis thaliana 8S9R ; 2.6 ; SAL2, Staphylococcus aureus lipase 2 (geh, lip2), apo form 7TZ4 ; 1.69 ; Salicylate Adenylate PchD from Pseudomonas aeruginosa containing 4-cyanosalicyl-AMS 7TYB ; 2.11 ; Salicylate Adenylate PchD from Pseudomonas aeruginosa containing salicyl-AMS 3RET ; 1.79 ; Salicylate and Pyruvate Bound Structure of the Isochorismate-Pyruvate Lyase K42E Mutant from Pseudomonas aerugionsa 5EVY ; 2.47 ; Salicylate hydroxylase substrate complex 3SKV ; 2.49 ; Salicylyl-Acyltransferase SsfX3 from a Tetracycline Biosynthetic Pathway 5ODN ; 2.598 ; Salinibacter ruber Single-Strand Binding protein 5ODP ; 2.535 ; Salinibacter ruber Single-Strand Binding protein D17K D71K mutant 7KC8 ; 2.3 ; Salivary protein from Culex quinquefasciatus that belongs to the Cysteins and Tryptophan-Rich (CWRC) family 7KCG ; 1.87 ; Salivary protein from Culex quiquefasciatus that belongs to the Cysteine and Tryptophan-Rich (CWRC) family 3Q6K ; 2.52 ; Salivary protein from Lutzomyia longipalpis 3Q6T ; 2.93 ; Salivary protein from Lutzomyia longipalpis, Ligand free 3Q6P ; 2.75 ; Salivary protein from Lutzomyia longipalpis. Selenomethionine derivative 2Q6L ; 2.72 ; SalL double mutant Y70T/G131S with CLDA and L-MET 2Q6K ; 1.55 ; SalL with adenosine 6RZ2 ; 1.77 ; SalL with Chloroadenosine 2Q6I ; 2.6 ; salL with ClDA and LMet 6RYZ ; 1.5 ; SalL with S-adenosyl methionine 2Q6O ; 2.0 ; SalL-Y70T with SAM and Cl 6Z12 ; 4.6 ; Salmonella AcrB solubilised in the SMA copolymer 8GJH ; 3.6 ; Salmonella ArnA 6RAD ; 2.796 ; Salmonella ATPase InvC with ADP 6SDX ; 2.645 ; Salmonella ATPase InvC with ATP gamma S 5LQ7 ; 1.6 ; Salmonella effector SpvD - G161 variant 5LQ6 ; 1.48 ; Salmonella effector SpvD - R161 variant 6AYH ; 2.05 ; Salmonella enterica GusR 7ZHL ; 2.2 ; Salmonella enterica Rhs1 C-terminal toxin TreTu 7ZHM ; 2.7 ; Salmonella enterica Rhs1 C-terminal toxin TreTu complex with TriTu immunity protein 2YO1 ; 3.1 ; Salmonella enterica SadA 1049-1304 fused to GCN4 adaptors (SadAK9- cfII) 2YO0 ; 2.8 ; Salmonella enterica SadA 1049-1304 fused to GCN4 adaptors (SadAK9-cfI) 2YO3 ; 2.0 ; Salmonella enterica SadA 1185-1386 fused to GCN4 adaptors (SadAK14) 2YNY ; 1.35 ; Salmonella enterica SadA 255-302 fused to GCN4 adaptors (SadAK1) 2YO2 ; 2.0 ; Salmonella enterica SadA 255-358 fused to GCN4 adaptors (SadAK12) 3ZMF ; 1.85 ; Salmonella enterica SadA 303-358 fused to GCN4 adaptors (SadAK2) 2WPQ ; 1.85 ; Salmonella enterica SadA 479-519 fused to GCN4 adaptors (SadAK3, in- register fusion) 2WPR ; 2.65 ; Salmonella enterica SadA 483-523 fused to GCN4 adaptors (SadAK3b-V1, out-of-register fusion) 2WPS ; 2.6 ; Salmonella enterica SadA 483-523 fused to GCN4 adaptors (SadAK3b-V2, out-of-register fusion) 2YNZ ; 1.4 ; Salmonella enterica SadA 823-947 fused to a GCN4 adaptor (SadAK5) 2CO4 ; 1.85 ; Salmonella enterica SafA pilin in complex with a 19-residue SafA Nte peptide 2CO1 ; 2.4 ; Salmonella enterica SafA pilin in complex with a 19-residue SafA Nte peptide (F17A mutant) 2CO2 ; 2.3 ; Salmonella enterica SafA pilin in complex with a 19-residue SafA Nte peptide (F3A mutant) 2CNY ; 1.9 ; Salmonella enterica SafA pilin in complex with a 19-residue SafA Nte peptide (I15A mutant) 2CNZ ; 1.8 ; Salmonella enterica SafA pilin in complex with a 19-residue SafA Nte peptide (V13A mutant) 2CO6 ; 2.0 ; Salmonella enterica SafA pilin in complex with the SafB chaperone (Type I) 2CO7 ; 1.8 ; Salmonella enterica SafA pilin in complex with the SafB chaperone (Type II) 2CO3 ; 1.78 ; Salmonella enterica SafA pilin, head-to-tail swapped dimer of Ntd1 mutant 4C47 ; 2.448 ; Salmonella enterica trimeric lipoprotein SadB 8VL8 ; 2.5 ; Salmonella enterica Typhimurium taxis to serine and repellents (Tsr) ligand-binding domain with L-Ser, pH 7 7BIN ; 3.2 ; Salmonella export gate and rod refined in focussed C1 map 7BJ2 ; 3.0 ; Salmonella flagellar basal body assembly intermediate - P ring alone structure 7NVG ; 3.7 ; Salmonella flagellar basal body refined in C1 map 7BK0 ; 3.8 ; Salmonella FliF ring (34mer) in intact basal body - C1 5I5F ; 1.84 ; Salmonella global domain 191 5I5D ; 1.64 ; Salmonella global domain 245 6K3I ; 2.86 ; Salmonella hook in curved state - 66 subunit models 7BGL ; 2.2 ; Salmonella LP ring 26 mer refined in C26 map 4KR4 ; 3.8 ; Salmonella typhi OmpF complex with Ampicillin 4KRA ; 3.32 ; Salmonella typhi OmpF complex with Ciprofloxacin 4KR8 ; 3.1 ; Salmonella typhi OmpF complex with Daunomycin 3UU2 ; 3.59 ; Salmonella typhi osmoporin(OmpC):an Outer Membrane Protein 6P4P ; 2.0 ; Salmonella typhi PltB Homopentamer N29K Mutant 6P4Q ; 1.77 ; Salmonella typhi PltB Homopentamer N29K Mutant with Neu5Ac-alpha-2-3-Gal-beta-1-4-GlcNAc Glycans 6P4R ; 1.87 ; Salmonella typhi PltB Homopentamer N29K Mutant with Neu5Ac-alpha-2-6-Gal-beta-1-4-GlcNAc glycans 6P4S ; 2.0 ; Salmonella typhi PltB Homopentamer T65I Mutant 6P4T ; 2.17 ; Salmonella typhi PltB Homopentamer T65I Mutant with Neu5Ac-alpha-2-3-Gal-beta-1-4-GlcNAc Glycans 6TYO ; 2.04 ; Salmonella Typhi PltB Homopentamer with Neu-5NAc-4OAc-alpha-2-3-Gal-beta-1-4-GlcNAc Glycans 6TYN ; 2.33 ; Salmonella Typhi PltB Homopentamer with Neu-5NAc-9OAc-alpha-2-3-Gal-beta-1-4-GlcNAc Glycans 6TYQ ; 1.88 ; Salmonella Typhi PltB Homopentamer with Neu-5NAc-9OAc-alpha-2-6-Gal-beta-1-4-GlcNAc Glycans 6P4M ; 1.802 ; Salmonella typhi PltB Homopentamer with Neu5Ac-alpha-2-3-Gal-beta-1-4-GlcNAc Glycans 6P4N ; 1.7 ; Salmonella typhi PltB Homopentamer with Neu5Ac-alpha-2-6-Gal-beta-1-4-GlcNAc Glycans 6A02 ; 1.4 ; Salmonella Typhi YfdX in the F222 space group at 1.4 A resolution 6A07 ; 1.501 ; Salmonella Typhi YfdX in the F222 space group at 1.5 A resolution 6A09 ; 2.293 ; Salmonella Typhi YfdX in the P222 space group 4XS4 ; 2.65 ; Salmonella typhimurium AhpC C165S mutant 5UKA ; 1.9 ; Salmonella typhimurium AhpC E49Q mutant 4XTS ; 2.704 ; Salmonella typhimurium AhpC T43A mutant 4XRA ; 1.75 ; Salmonella typhimurium AhpC T43S mutant 4XS1 ; 2.1 ; Salmonella typhimurium AhpC T43V mutant 4XRD ; 2.3 ; Salmonella typhimurium AhpC W169F mutant 4XS6 ; 3.35 ; Salmonella typhimurium AhpC W81F mutant 8T0J ; 2.59 ; Salmonella Typhimurium ArnD 4D92 ; 2.22 ; Salmonella typhimurium D-Cysteine desulfhydrase soaked with beta-chloro-D-alanine shows pyruvate bound 4 A away from active site 4D8W ; 2.01 ; Salmonella typhimurium D-Cysteine desulfhydrase soaked with D-cys shows pyruvate bound 4 A away from active site 4D97 ; 1.77 ; Salmonella typhimurium D-Cysteine desulfhydrase with D-ser bound at active site 4D99 ; 2.01 ; Salmonella typhimurium D-Cysteine desulfhydrase with L-ser bound non-covalently at the active site 8EWH ; 2.33 ; Salmonella typhimurium GTPase BIPA 2I8A ; 1.64 ; Salmonella typhimurium liganded by phosphate ion at 1.64A resolution 6TVI ; 1.0 ; Salmonella typhimurium mutant neuraminidase (D100S)+ DANA 7AEY ; 0.919 ; Salmonella typhimurium neuraminidase in complex with isocarba-DANA. 6TRG ; 1.0 ; Salmonella typhimurium neuraminidase mutant (D100S) 7AF2 ; 0.792 ; Salmonella typhimurium neuraminidase mutant (D62G) 6XE3 ; 1.55 ; Salmonella typhimurium Tryptophan Synthase beta-S377A mutant in complex with inhibitor F9 at the enzyme alpha-site, cesium ion at the metal coordination site and carbanion III E(C3) at the enzyme beta-site. 6XOY ; 1.64 ; Salmonella typhimurium tryptophan synthase complexed with D-tryptophan and D-glycerol-3-phosphate 6XT0 ; 1.37 ; Salmonella typhimurium tryptophan synthase complexed with dioxindolyl-L-alanine and D-glycerol-3-phosphate 6XNC ; 2.11 ; Salmonella typhimurium tryptophan synthase complexed with L-tryptophan and D-glycerol-3-phosphate 6XRH ; 1.44 ; Salmonella typhimurium tryptophan synthase complexed with oxindolyl-L-alanine and D-glycerol-3-phosphate 5IHF ; 1.576 ; Salmonella Typhimurium VirG-like (STV) protein 5IO8 ; 2.192 ; Salmonella Typhimurium VirG-like (STV) protein at 2.19 Angstrom resolution solved by Iodine SAD. 6SA4 ; 1.77 ; SALSA / DMBT1 / GP340 SRCR domain 1 6SA5 ; 1.29 ; SALSA / DMBT1 / GP340 SRCR domain 8 6SAN ; 1.36 ; SALSA / DMBT1 / GP340 SRCR domain 8 soaked in calcium and magnesium 8R4O ; 2.725 ; Salt inducible kinase 3 in complex with inhibitor 8R4Q ; 2.838 ; Salt inducible kinase 3 in complex with inhibitor 8OKU ; 3.1 ; Salt-Inducible Kinase 3 in complex with an inhibitor 6BN1 ; 2.6 ; Salvador Hippo SARAH domain complex 7X2Q ; 3.68 ; Salvia miltiorrhiza CYP76AH3 5FA8 ; 1.3 ; SAM complex with aKMT from the hyperthermophilic archaeon Sulfolobus islandicu 1UQV ; ; SAM domain from Ste50p 3BQ7 ; 2.9 ; SAM domain of Diacylglycerol Kinase delta1 (E35G) 3HIL ; 2.0 ; SAM Domain of Human Ephrin Type-A Receptor 1 (EphA1) 3H8M ; 2.1 ; SAM domain of human ephrin type-a receptor 7 (EPHA7) 5D4U ; 2.0 ; SAM-bound HcgC from Methanocaldococcus jannaschii 6UET ; 4.1 ; SAM-bound SAM-IV riboswitch 8TJK ; 1.85 ; SAM-dependent methyltransferase RedM bound to SAH 8TJJ ; 1.82 ; SAM-dependent methyltransferase RedM bound to SAM 8TJI ; 1.73 ; SAM-dependent methyltransferase RedM, apo 4B5R ; 2.95 ; SAM-I riboswitch bearing the H. marismortui K-t-7 5FK5 ; 3.315 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is AA 5FK6 ; 2.5 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is CA 5FK3 ; 2.5 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is CC 5FKG ; 2.95 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is CG 5FKH ; 2.65 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is CU 5FK2 ; 2.6 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is GG 5FKE ; 2.8 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is GU 5FKD ; 3.0 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is UA 5FKF ; 2.8 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is UC 5FK1 ; 2.5 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is UG 5FK4 ; 2.43 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant 3bn is UU 5FJC ; 1.71 ; SAM-I riboswitch bearing the H. marismortui Kt-7 variant C-2bU 4AOB ; 2.95 ; SAM-I riboswitch containing the T. solenopsae Kt-23 in complex with S- adenosyl methionine 3IQP ; 2.9 ; SAM-I riboswitch from T. tencongensis variant A94G apo form 3IQR ; 2.55 ; SAM-I riboswitch from T. tencongensis variant A94G bound with SAM 2YGH ; 2.6 ; SAM-I riboswitch with a G2nA mutation in the Kink turn in complex with S-adenosylmethionine 2QWY ; 2.8 ; SAM-II riboswitch bound to S-adenosylmethionine 6C27 ; 3.601 ; SAM-III riboswitch ON-state 6WLR ; 4.8 ; SAM-IV riboswitch with SAM models, 4.8 Angstrom resolution 7Z89 ; 2.76 ; Sam68 7Z8A ; 2.06 ; Sam68 7Z9A ; 2.57 ; Sam68 7Z9B ; 3.333 ; Sam68 7ZAB ; 2.46 ; Sam68 7ZAC ; 2.08 ; Sam68 7ZAF ; 2.71 ; Sam68 7ZAM ; 2.79 ; Sam68 3CA0 ; 1.95 ; Sambucus nigra agglutinin II (SNA-II), hexagonal crystal form 3C9Z ; 1.35 ; Sambucus nigra agglutinin II (SNA-II), tetragonal crystal form 3CA1 ; 1.55 ; Sambucus nigra agglutinin II (SNA-II)- tetragonal crystal form- complexed to galactose 3CA6 ; 1.4 ; Sambucus nigra agglutinin II (SNA-II)- tetragonal crystal form- complexed to Tn antigen 3CA4 ; 1.55 ; Sambucus nigra agglutinin II, tetragonal crystal form- complexed to lactose 3CAH ; 1.55 ; Sambucus nigra aggutinin II. tetragonal crystal form- complexed to fucose 6DW4 ; 1.99 ; SAMHD1 Bound to Cladribine-TP in the Catalytic Pocket and Allosteric Pocket 6DWD ; 1.7 ; SAMHD1 Bound to Clofarabine-TP in the Catalytic Pocket and Allosteric Pocket 6DW3 ; 2.2 ; SAMHD1 Bound to Cytarabine-TP in the Catalytic Pocket 6DWK ; 2.3 ; SAMHD1 Bound to Fludarabine-TP in the Catalytic Pocket 6DW5 ; 1.93 ; SAMHD1 Bound to Gemcitabine-TP in the Catalytic Pocket 6DWJ ; 2.5 ; SAMHD1 Bound to Vidarabine-TP in the Catalytic Pocket 7S2Y ; 2.8 ; SAMHD1 HD domain bound to CNDAC 6CM2 ; 2.14 ; SAMHD1 HD domain bound to decitabine triphosphate 6DW7 ; 2.5 ; SAMHD1 without Catalytic Nucleotides 7LTT ; 1.9 ; SAMHD1(113-626) H206R D207N R366C 7LU5 ; 3.57 ; SAMHD1(113-626) H206R D207N R366H 8D94 ; 2.44 ; SAMHD1-DNA complex 8D9J ; 2.82 ; SAMHD1-DNA complex 7TJQ ; 3.13 ; SAN27-14 bound to a antigenic site V on prefusion-stabilized hMPV F 5EZ2 ; 1.849 ; Sandercyanin Fluorescent Protein (SFP) 7YX1 ; 2.65 ; Sandercyanin fluorescent protein - Y142A variant bound to BV 5F6Z ; 2.248 ; Sandercyanin Fluorescent Protein purified from Sander vitreus 7O2Y ; 2.5 ; Sandercyanin Fluorescent Protein variant V71E bound to biliverdin IX-alpha 7VNS ; 1.95 ; Sandercyanin mutant E79A-Biliverdin complex 7VNL ; 1.93 ; Sandercyanin mutant-F55A-Biliverdin complex 1MJ0 ; 2.031 ; SANK E3_5: an artificial Ankyrin repeat protein 3HM5 ; 1.8 ; SANT domain of human DNA methyltransferase 1 associated protein 1 2NOG ; 2.0 ; SANT Domain Structure of Xenopus Remodeling Factor ISWI 2WQG ; ; SAP domain from Tho1: L31W (fluorophore) mutant 1KA6 ; ; SAP/SH2D1A bound to peptide n-pY 1KA7 ; ; SAP/SH2D1A bound to peptide n-Y-c 8VD4 ; 3.1 ; SaPI1 mature capsid structure containing DNA 8VD5 ; 3.2 ; SaPI1 mature capsid structure without DNA 8VD8 ; 3.2 ; SaPI1 portal structure in mature capsids containing DNA 8VDC ; 3.5 ; SaPI1 portal structure in mature capsids without DNA 8VDE ; 3.4 ; SaPI1 portal-capsid interface in mature capsids with DNA 7RWZ ; 4.0 ; SaPIbov5 procapsid structure including size redirecting protein Ccm 3S64 ; 2.301 ; Saposin-like protein Ac-SLP-1 3S63 ; 2.7 ; Saposin-like protein Na-SLP-1 3TYQ ; 1.6 ; SAR development and discovery of potent indole-based inhibitors of the hepatitis c virus NS5B polymerase 3TYV ; 1.65 ; SAR development and discovery of potent indole-based inhibitors of the hepatitis C virus NS5B polymerase 4UYN ; 1.9 ; SAR156497 an exquisitely selective inhibitor of Aurora kinases 4UZD ; 3.2 ; SAR156497 an exquisitely selective inhibitor of Aurora kinases 4UZH ; 2.0 ; SAR156497 an exquisitely selective inhibitor of Aurora kinases 8ULD ; 1.8 ; SARA CoV-2 3C-like protease in complex with GSK3487016A 6Y0T ; 1.393 ; Sarcin Ricin Loop, mutant C2666A U2653G C2667A 6Y0Y ; 0.95 ; Sarcin Ricin Loop, mutant C2666U 6ZXZ ; 2.44 ; Sarcin-Ricin Loop RNA from Ecoli with a A2670-2'-OCF3 modification 6ZYB ; 0.9 ; Sarcin-Ricin Loop RNA from Ecoli with a C2667-2'-OCF3 modification 7JJE ; 1.25 ; Sarcin-ricin loop with guanosine dithiophosphate residue. 7JJD ; 1.21 ; Sarcin-ricin loop with guanosine monothiophosphate residue. 7JJF ; 1.2 ; Sarcin-ricin loop with modified residue. 8BFA ; 3.0 ; Sarkosyl-extracted AppNL-G-F Abeta42 fibril structure 8BFB ; 3.2 ; Sarkosyl-extracted AppNL-G-F Abeta42 fibril structure (Methoxy-X04-labelled mice) 6WPK ; 3.3 ; SARM1 Autoinhibited Conformation 7KNQ ; 3.4 ; SARM1 Octamer 6QWV ; 2.47 ; SARM1 SAM1-2 domains 6ZG0 ; 7.7 ; SARM1 SAM1-2 domains 6ZG1 ; 3.77 ; SARM1 SAM1-2 domains 1HSJ ; 2.3 ; SARR MBP FUSION STRUCTURE 2FE8 ; 1.85 ; SARS coronavirus papain-like protease: structure of a viral deubiquitinating enzyme 7MPB ; 2.3 ; SARS Coronavirus-2 Main Protease 3CL-pro binding Ascorbate 2KQV ; ; SARS coronavirus-unique domain (SUD): Three-domain molecular architecture in solution and RNA binding. I: Structure of the SUD-M domain of SUD-MC 2KQW ; ; SARS coronavirus-unique domain (SUD): Three-domain molecular architecture in solution and RNA binding. II: Structure of the SUD-C domain of SUD-MC 7ZH2 ; 2.71 ; SARS CoV Spike protein, Closed C1 conformation 7ZH1 ; 2.48 ; SARS CoV Spike protein, Closed C3 conformation 7ZH5 ; 3.3 ; SARS CoV Spike protein, Open conformation 7JVZ ; 2.5 ; SARS CoV-2 MAIN PROTEASE 3CLpro, ROOM TEMPERATURE, DAMAGE FREE XFEL MONOCLINIC STRUCTURE 8GWJ ; 2.9 ; SARS CoV-2 Mpro 1-302 C145A in complex with peptide 7 8GVY ; 2.5 ; SARS CoV-2 Mpro in complex with D-3-149 7CJM ; 3.2 ; SARS CoV-2 PLpro in complex with GRL0617 7TZJ ; 2.66 ; SARS CoV-2 PLpro in complex with inhibitor 3k 6XA9 ; 2.9 ; SARS CoV-2 PLpro in complex with ISG15 C-terminal domain propargylamide 6XAA ; 2.7 ; SARS CoV-2 PLpro in complex with ubiquitin propargylamide 7ODL ; 3.03 ; SARS CoV-2 Spike protein, Bristol UK Deletion variant, Closed conformation, C1 symmetry 7OD3 ; 2.8 ; SARS CoV-2 Spike protein, Bristol UK Deletion variant, Closed conformation, C3 symmetry 6ZB4 ; 3.03 ; SARS CoV-2 Spike protein, Closed conformation, C1 symmetry 6ZB5 ; 2.85 ; SARS CoV-2 Spike protein, Closed conformation, C3 symmetry 7T2V ; 2.47 ; SARS CoV2 Mpro C145S mutant 7JWB ; 3.2 ; SARS CoV2 Spike ectodomain with engineered trimerized VH binder 8A99 ; 2.5 ; SARS Cov2 Spike in 1-up conformation complex with Fab47 8A94 ; 2.4 ; SARS CoV2 Spike in the 2-up state in complex with Fab47. 8A95 ; 2.64 ; SARS Cov2 Spike RBD in complex with Fab47 8A96 ; 2.7 ; SARS Cov2 Spike RBD in complex with Fab47 6CS2 ; 4.4 ; SARS Spike Glycoprotein - human ACE2 complex, Stabilized variant, all ACE2-bound particles 6CRV ; 3.2 ; SARS Spike Glycoprotein, Stabilized variant, C3 symmetry 6CRW ; 3.9 ; SARS Spike Glycoprotein, Stabilized variant, single upwards S1 CTD conformation 6CRX ; 3.9 ; SARS Spike Glycoprotein, Stabilized variant, two S1 CTDs in the upwards conformation 6CRZ ; 3.3 ; SARS Spike Glycoprotein, Trypsin-cleaved, Stabilized variant, C3 symmetry 6CS0 ; 3.8 ; SARS Spike Glycoprotein, Trypsin-cleaved, Stabilized variant, one S1 CTD in an upwards conformation 6CS1 ; 4.6 ; SARS Spike Glycoprotein, Trypsin-cleaved, Stabilized variant, two S1 CTDs in an upwards conformation 6NUR ; 3.1 ; SARS-Coronavirus NSP12 bound to NSP7 and NSP8 co-factors 6NUS ; 3.5 ; SARS-Coronavirus NSP12 bound to NSP8 co-factor 7L3N ; 3.27 ; SARS-CoV 2 Spike Protein bound to LY-CoV555 6NB6 ; 4.2 ; SARS-CoV complex with human neutralizing S230 antibody Fab fragment (state 1) 6NB7 ; 4.5 ; SARS-CoV complex with human neutralizing S230 antibody Fab fragment (state 2) 8CB3 ; 1.572 ; SARS-CoV Macro domain complexed with 3-(N-morpholino)propanesulfonic acid 3M3T ; 2.9 ; SARS-CoV main protease monomeric Arg298Ala mutant with N-terminal additional residues (Gly-Ser) 3M3V ; 2.7 ; SARS-CoV main protease triple mutant STI/A with two N-terminal additional residue (Gly-Ser) 5NFY ; 3.382 ; SARS-CoV nsp10/nsp14 dynamic complex 8C0G ; 1.88 ; SARS-CoV nsp16-nsp10 complexed with N7-GTP 5WRG ; 4.3 ; SARS-CoV spike glycoprotein 7LMJ ; 1.686 ; SARS-CoV-1 3CLPro in complex with 2-(1H-benzo[d][1,2,3]triazol-1-yl)-N-(3-chlorobenzyl)-N-(4-(2-oxo-1,2-dihydropyridin-3-yl)phenyl)acetamide 7LMH ; 1.85 ; SARS-CoV-1 3CLPro in complex with 2-(1H-benzo[d][1,2,3]triazol-1-yl)-N-(4-(pyridin-3-yl)phenyl)-N-(thiophen-3-ylmethyl)acetamide 7LMG ; 1.6 ; SARS-CoV-1 3CLPro in complex with N-(4-(1H-imidazol-4-yl)phenyl)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-N-(thiophen-3-ylmethyl)acetamide 7LMI ; 1.707 ; SARS-CoV-1 3CLPro in complex with N-(4-(1H-pyrazol-4-yl)phenyl)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-N-(thiophen-3-ylmethyl)acetamide 8UYP ; 7.1 ; SARS-CoV-1 5' proximal stem-loop 5 7WZ2 ; 2.7 ; SARS-CoV-2 (D614G) Spike trimer 6M2Q ; 1.7 ; SARS-CoV-2 3CL protease (3CL pro) apo structure (space group C21) 6M2N ; 2.198 ; SARS-CoV-2 3CL protease (3CL pro) in complex with a novel inhibitor 7DPV ; 2.35 ; SARS-CoV-2 3CL protease (3CLpro) in complex with 7-O-methyl-dihydromyricetin 7DPU ; 1.75 ; SARS-CoV-2 3CL protease (3CLpro) in complex with 7-O-methyl-myricetin 7VVT ; 2.51 ; SARS-CoV-2 3CL protease (3CLpro) in complex with a covalent inhibitor 8IFP ; 1.78 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 1 8IFT ; 1.8 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 10 8IFQ ; 1.96 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 2 8IFR ; 1.66 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 3 8HTV ; 2.04 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 3a 7X6J ; 1.5 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 3af 7X6K ; 2.34 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 3w 8IFS ; 2.46 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 7 8IGX ; 1.9 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound 9 (simnotrelvir, SIM0417, SSD8432) 8GTV ; 1.8 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound JZD-07 8GTW ; 1.85 ; SARS-CoV-2 3CL protease (3CLpro) in complex with compound JZD-26 7DPP ; 2.1 ; SARS-CoV-2 3CL protease (3CLpro) in complex with myricetin 8IGY ; 1.96 ; SARS-CoV-2 3CL protease (3CLpro) in complex with nirmatrelvir 8HI9 ; 2.28 ; SARS-CoV-2 3CL protease (3CLpro) in complex with Robinetin 7JR3 ; 1.55 ; SARS-CoV-2 3CL protease crystallized under reducing conditions 7JR4 ; 1.55 ; SARS-CoV-2 3CL protease with alternative conformation of the active site promoted by methylene-bridged cysteine and lysine residues 7WO3 ; 2.01 ; SARS-CoV-2 3CLpro 7WOF ; 1.72 ; SARS-CoV-2 3CLpro 7WOH ; 1.72 ; SARS-CoV-2 3CLpro 8GZB ; 2.7 ; SARS-CoV-2 3CLpro 7LMF ; 2.2 ; SARS-CoV-2 3CLPro in complex with 2-(benzotriazol-1-yl)-N-[4-(1H-imidazol-4-yl)phenyl]-N-(3-thienylmethyl)acetamide 7LMD ; 1.96 ; SARS-CoV-2 3CLPro in complex with 2-(benzotriazol-1-yl)-N-[4-(1H-pyrazol-4-yl)phenyl]-N-(3-thienylmethyl)acetamide 7TEL ; 2.4 ; SARS-CoV-2 3CLPro in complex with N-(4-(1H-imidazol-4-yl)phenyl)-N-(3-chloro-5-fluorobenzyl)-2-(isoquinolin-4-yl)acetamide 7TEK ; 2.2 ; SARS-CoV-2 3CLPro in complex with N-(4-(1H-pyrazol-4-yl)phenyl)-N-(3-chlorobenzyl)-2-(pyridin-3-yl)acetamide 7LME ; 2.1 ; SARS-CoV-2 3CLPro in complex with N-[4-[[2-(benzotriazol-1-yl)acetyl]-(3-thienylmethyl)amino]phenyl]cyclopropanecarboxamide 7WO2 ; 1.96 ; SARS-CoV-2 3CLPro Peptidomimetic Inhibitor TPM5 8UYS ; 4.7 ; SARS-CoV-2 5' proximal stem-loop 5 7FEM ; 4.1 ; SARS-CoV-2 B.1.1.7 S-ACE2 complex 7FET ; 3.7 ; SARS-CoV-2 B.1.1.7 Spike Glycoprotein trimer 7YBL ; 3.6 ; SARS-CoV-2 B.1.620 variant spike (close state) 7YBK ; 3.9 ; SARS-CoV-2 B.1.620 variant spike (open state) 8ERQ ; 3.3 ; SARS-CoV-2 BA.1 spike ectodomain trimer in complex with the S2X324 neutralizing antibody Fab fragment (local refinement of the RBD and S2X324) 8GSB ; 3.99 ; SARS-COV-2 BA.1 Spike incomplex with VacBB-665 7XJ6 ; 3.29 ; SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab and 58G6 Fab in the class 1 conformation 7XJ8 ; 3.3 ; SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab and 58G6 Fab in the class 2 conformation 7WWI ; 3.5 ; SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab in the class 1 conformation 7WWJ ; 3.5 ; SARS-CoV-2 BA.1 Spike trimer in complex with 55A8 Fab in the class 2 conformation 8H08 ; 3.2 ; SARS-CoV-2 BA.1 variants S ectodomain trimer in complex with neutralizing antibody 10-5B and 6-2C 8GS9 ; 2.66 ; SARS-CoV-2 BA.2 spike RBD in complex bound with VacBB-551 7X6A ; 3.5 ; SARS-CoV-2 BA.2 variant spike protein in complex with Fab BD55-5840 8BH5 ; 2.38 ; SARS-CoV-2 BA.2.12.1 RBD in complex with Beta-27 Fab and C1 nanobody 7YQT ; 3.45 ; SARS-CoV-2 BA.2.75 S Trimer (1 RBD Up) 7YQU ; 3.19 ; SARS-CoV-2 BA.2.75 S Trimer (3 RBD Down) 7YQW ; 3.51 ; SARS-CoV-2 BA.2.75 S Trimer (3 RBD Down) 7YR4 ; 4.12 ; SARS-CoV-2 BA.2.75 S Trimer in complex with ACE2(interface) 7YR2 ; 3.3 ; SARS-CoV-2 BA.2.75 S Trimer in complex with ACE2(state1) 7YR3 ; 3.52 ; SARS-CoV-2 BA.2.75 S Trimer in complex with ACE2(state2) 7YR0 ; 3.98 ; SARS-CoV-2 BA.2.75 S Trimer in complex with S309 (interface) 7YQX ; 3.72 ; SARS-CoV-2 BA.2.75 S Trimer in complex with S309 (state1) 7YQY ; 3.74 ; SARS-CoV-2 BA.2.75 S Trimer in complex with S309 (state2) 7YQZ ; 3.84 ; SARS-CoV-2 BA.2.75 S Trimer in complex with S309 (state3) 7YR1 ; 3.62 ; SARS-CoV-2 BA.2.75 S Trimer in complex with XG2v024 8H07 ; 2.9 ; SARS-CoV-2 BA.4 variants S ectodomain trimer in complex with neutralizing antibody 10-5B and 6-2C 8DF5 ; 2.7 ; SARS-CoV-2 Beta RBD in complex with human ACE2 and S304 Fab and S309 Fab 7ZFC ; 3.24 ; SARS-CoV-2 Beta RBD in complex with nanobody C1, Omi-18 and Omi-31 Fabs 7WCZ ; 3.5 ; SARS-CoV-2 Beta spike in complex with one S5D2 Fab 7WD9 ; 3.7 ; SARS-CoV-2 Beta spike in complex with three S3H3 Fabs 7WD7 ; 3.5 ; SARS-CoV-2 Beta spike in complex with three S5D2 Fabs 7WDF ; 3.9 ; SARS-CoV-2 Beta spike in complex with two S3H3 Fabs 7WD0 ; 3.3 ; SARS-CoV-2 Beta spike in complex with two S5D2 Fabs 7WD8 ; 4.3 ; SARS-CoV-2 Beta spike SD1 in complex with S3H3 Fab 7VX1 ; 3.5 ; SARS-CoV-2 Beta variant spike protein in open state 7WEV ; 3.6 ; SARS-COV-2 BETA VARIANT SPIKE PROTEIN IN TRANSITION STATE 8S9G ; 3.0 ; SARS-CoV-2 BN.1 spike RBD bound to the human ACE2 ectodomain and the S309 neutralizing antibody Fab fragment 8FXC ; 3.2 ; SARS-CoV-2 BQ.1.1 spike RBD bound to the human ACE2 ectodomain and the S309 neutralizing antibody Fab fragment 7YBM ; 3.45 ; SARS-CoV-2 C.1.2 variant spike (Close state) 7YBN ; 3.82 ; SARS-CoV-2 C.1.2 variant spike (Open state) 7KDL ; 2.96 ; SARS-CoV-2 D614G 1-RBD up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G) 7KDJ ; 3.49 ; SARS-CoV-2 D614G 1-RBD-up Spike Protein Trimer fully cleaved by furin without the P986-P987 stabilizing mutations (S-RRAR-D614G) 7KEA ; 3.33 ; SARS-CoV-2 D614G 1-RBD-up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G sub classification) 7KE9 ; 3.08 ; SARS-CoV-2 D614G 1-RBD-up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G sub-classification) 7KEC ; 3.84 ; SARS-CoV-2 D614G 1-RBD-up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G Sub-Classification) 7KEB ; 3.48 ; SARS-CoV-2 D614G 1RBD up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G sub-classification) 7KDI ; 3.26 ; SARS-CoV-2 D614G 3 RBD down Spike Protein Trimer fully cleaved by furin without the P986-P987 stabilizing mutations (S-RRAR-D614G) 7KE4 ; 3.21 ; SARS-CoV-2 D614G 3 RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G Sub-class) 7KE6 ; 3.1 ; SARS-CoV-2 D614G 3 RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G sub-classification) 7KE8 ; 3.26 ; SARS-CoV-2 D614G 3 RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G sub-classification) 7KDK ; 2.8 ; SARS-CoV-2 D614G 3 RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G) 7KE7 ; 3.32 ; SARS-CoV-2 D614G 3-RBD-down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-D614G Sub-Classification) 7X7D ; 2.92 ; SARS-CoV-2 Delta RBD and Nb22 8QZR ; 3.77 ; SARS-CoV-2 delta RBD complexed with BA.4/5-9 Fab 7W9E ; 3.1 ; SARS-CoV-2 Delta S-8D3 7W98 ; 3.6 ; SARS-CoV-2 Delta S-ACE2-C1 7W99 ; 3.4 ; SARS-CoV-2 Delta S-ACE2-C2a 7W9B ; 3.4 ; SARS-CoV-2 Delta S-ACE2-C2b 7W9C ; 3.2 ; SARS-CoV-2 Delta S-ACE2-C3 7W9F ; 3.6 ; SARS-CoV-2 Delta S-RBD-8D3 7W9I ; 3.4 ; SARS-CoV-2 Delta S-RBD-ACE2 8HRL ; 2.8 ; SARS-CoV-2 Delta S-RBD-ACE2 8HRK ; 3.3 ; SARS-CoV-2 Delta S-RBD-ACE2 complex 8HHX ; 3.62 ; SARS-CoV-2 Delta Spike in complex with FP-12A 8HHY ; 2.77 ; SARS-CoV-2 Delta Spike in complex with IS-9A 8HRI ; 2.9 ; SARS-CoV-2 Delta variant spike protein 8HRJ ; 3.1 ; SARS-CoV-2 Delta variant spike protein 8BBN ; 3.58 ; SARS-CoV-2 Delta-RBD complexed with BA.2-10 and EY6A Fabs 8C3V ; 2.74 ; SARS-CoV-2 Delta-RBD complexed with BA.2-13 Fab and C1 nanobody 8BBO ; 2.75 ; SARS-CoV-2 Delta-RBD complexed with BA.2-36 Fab 8CBD ; 3.52 ; SARS-CoV-2 Delta-RBD complexed with BA.4/5-1 and EY6A Fabs 8CBE ; 3.16 ; SARS-CoV-2 Delta-RBD complexed with BA.4/5-2 and Beta-49 Fabs 8CMA ; 3.29 ; SARS-CoV-2 Delta-RBD complexed with BA.4/5-35 Fab 8BCZ ; 2.9 ; SARS-CoV-2 Delta-RBD complexed with Fabs BA.2-36, BA.2-23, EY6A and COVOX-45 8CBF ; 2.33 ; SARS-CoV-2 Delta-RBD complexed with Omi-42 and Beta-49 Fabs 8GWM ; 2.64 ; SARS-CoV-2 E-RTC bound with MMP-nsp9 and GMPPNP 8GWB ; 2.75 ; SARS-CoV-2 E-RTC complex with RNA-nsp9 8GWE ; 2.66 ; SARS-CoV-2 E-RTC complex with RNA-nsp9 and GMPPNP 7TPK ; 3.4 ; SARS-CoV-2 E406W mutant RBD - Local Refinement 7TPI ; 2.3 ; SARS-CoV-2 E406W mutant Spike ectodomain 7TJ2 ; 3.2 ; SARS-CoV-2 endoribonuclease Nsp15 bound to dsRNA 7TQV ; 3.43 ; SARS-CoV-2 endoribonuclease Nsp15 bound to dsRNA 8U1T ; ; SARS-CoV-2 Envelope Protein Transmembrane Domain: Dimeric Structure Determined by Solid-State NMR 7K3G ; ; SARS-CoV-2 Envelope Protein Transmembrane Domain: Pentameric Structure Determined by Solid-State NMR 8VCI ; 6.1 ; SARS-CoV-2 Frameshift Stimulatory Element with Upstream Multibranch Loop 7LYJ ; 2.11 ; SARS-CoV-2 frameshifting pseudoknot RNA 7MKY ; 1.31 ; SARS-CoV-2 frameshifting pseudoknot RNA 8FDO ; 2.2 ; SARS-CoV-2 fusion peptide epitope scaffold FP15 bound to DH1058 6XKL ; 3.21 ; SARS-CoV-2 HexaPro S One RBD up 7VXB ; 3.9 ; SARS-CoV-2 Kappa variant spike protein in C2b state 7VXC ; 3.9 ; SARS-CoV-2 Kappa variant spike protein in C3 state 7VXA ; 3.9 ; SARS-CoV-2 Kappa variant spike protein in complex with ACE2, state C2a 7VX9 ; 4.0 ; SARS-CoV-2 Kappa variant spike protein in complex wth ACE2, state C1 7VXE ; 3.2 ; SARS-CoV-2 Kappa variant spike protein in open state 7VXI ; 3.4 ; SARS-CoV-2 Kappa variant spike protein in transition state 7YBH ; 3.5 ; SARS-CoV-2 lambda variant spike 7VGR ; 2.7 ; SARS-CoV-2 M protein dimer (long form) in complex with YN7756_1 Fab 7VGS ; 2.8 ; SARS-CoV-2 M protein dimer (short form) in complex with YN7717_9 Fab 6Z6I ; 2.0 ; SARS-CoV-2 Macrodomain in complex with ADP-HPD 6Z72 ; 2.3 ; SARS-CoV-2 Macrodomain in complex with ADP-HPM 6Z5T ; 1.571 ; SARS-CoV-2 Macrodomain in complex with ADP-ribose 7QG7 ; 1.72 ; SARS-CoV-2 macrodomain Nsp3b bound to the remdesivir nucleoside GS-441524 7CAM ; 2.85 ; SARS-CoV-2 main protease (Mpro) apo structure (space group P212121) 7MB9 ; 1.81 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp10/11 (P6-P1) 7MB4 ; 1.83 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp4/5 (P6-P1) 7MB5 ; 1.6 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp5/6 (P6-P1) 7MB6 ; 2.21 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp6/7 (P6-P1) 7MB7 ; 2.02 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp7/8 (P6-P1) 7MB8 ; 1.62 ; SARS-CoV-2 Main Protease (Mpro) C145A in Complex with Cleavage Site Nsp8/9 (P6-P1) 8UAB ; 1.781 ; SARS-CoV-2 main protease (Mpro) complex with AC1115 7Z59 ; 2.0 ; SARS-CoV-2 main protease (Mpro) covalently modified with a penicillin derivative 8DDL ; 1.95 ; SARS-CoV-2 Main Protease (Mpro) H163A Mutant Apo Structure 8DD6 ; 2.3 ; SARS-CoV-2 Main Protease (Mpro) H163A Mutant in Complex with GC376 8SG6 ; 2.49 ; SARS-CoV-2 Main Protease (Mpro) H163A Mutant Reduced with 20mM TCEP 8DD1 ; 2.03 ; SARS-CoV-2 Main Protease (Mpro) H164N Mutant in Complex with Inhibitor GC376 7NIJ ; 1.58 ; SARS-CoV-2 main protease (Mpro) in a novel conformational state. 7MAV ; 1.91 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor dFFCit-yne 7MAT ; 2.74 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor dFFR 7MAU ; 1.95 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor dFFR-yne 7MAW ; 2.07 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM129 7MAX ; 1.98 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM137 7MAZ ; 1.7 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM139 7MB0 ; 1.54 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM141 7MB1 ; 1.43 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM143 7MB2 ; 1.89 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM144 7MB3 ; 1.81 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Covalent Inhibitor SM145 7SET ; 1.7 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML1000 7SF1 ; 1.85 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML1001 7U92 ; 1.8 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML1006a 7SF3 ; 1.75 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML1006m 7SFB ; 1.9 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML101 7SFH ; 1.4 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML102 7SFI ; 1.95 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML104 7SGH ; 1.85 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML124N 7L0D ; 2.39 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML188 8EZV ; 1.8 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML2006a 8EZZ ; 1.85 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML2006a2 8F02 ; 2.0 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML2006a4 8F2C ; 1.95 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML3006a 8F2D ; 1.95 ; SARS-CoV-2 Main Protease (Mpro) in Complex with ML4006a 8B2T ; 1.893 ; SARS-CoV-2 Main Protease (Mpro) in complex with nirmatrelvir alkyne 7L8I ; 2.1 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Rupintrivir (P21) 7L8J ; 2.45 ; SARS-CoV-2 Main Protease (Mpro) in Complex with Rupintrivir (P21212) 8B0S ; 2.42 ; SARS-COV-2 Main Protease adduct with Au(NHC)Cl 8B0T ; 2.4 ; SARS-CoV-2 Main Protease adduct with Au(PEt3)Br 7N5Z ; 1.76 ; SARS-CoV-2 Main protease C145S mutant 7N6N ; 2.8 ; SARS-CoV-2 Main protease C145S mutant in complex with N and C-terminal residues 7K6D ; 1.48 ; SARS-CoV-2 Main Protease Co-Crystal Structure with Telaprevir Determined from Crystals Grown with 40 nL Acoustically Ejected Mpro Droplets at 1.48 A Resolution (Cryo-protected) 7K6E ; 1.63 ; SARS-CoV-2 Main Protease Co-Crystal Structure with Telaprevir Determined from Crystals Grown with 40 nL Acoustically Ejected Mpro Droplets at 1.63 A Resolution (Direct Vitrification) 8AEB ; 1.83 ; SARS-CoV-2 Main Protease complexed with N-(pyridin-3-ylmethyl)thioformamide 7KFI ; 1.6 ; SARS-CoV-2 Main protease immature form - apo structure 7LFE ; 2.79 ; SARS-CoV-2 Main protease immature form - F2X Entry Library E03 fragment 7LDX ; 2.23 ; SARS-CoV-2 Main protease immature form - F2X Entry Library E06 fragment 7LFP ; 2.2 ; SARS-CoV-2 Main protease immature form - F2X Entry Library G05 fragment 7KVL ; 2.09 ; SARS-CoV-2 Main protease immature form - FMAX Library E01 fragment 7KVR ; 2.12 ; SARS-CoV-2 Main protease immature form - FMAX Library E09 fragment 7AEH ; 1.3 ; SARS-CoV-2 main protease in a covalent complex with a pyridine derivative of ABT-957, compound 1 7AEG ; 1.7 ; SARS-CoV-2 main protease in a covalent complex with SDZ 224015 derivative, compound 5 7RNW ; 2.35 ; SARS-CoV-2 Main Protease in complex with a cyclic peptide inhibitor 8FY6 ; 2.0 ; SARS-CoV-2 main protease in complex with covalent inhibitor 8FY7 ; 1.94 ; SARS-CoV-2 main protease in complex with covalent inhibitor 7MGS ; 1.84 ; SARS-CoV-2 main protease in complex with N-terminal autoprocessing substrate 7MGR ; 1.94 ; SARS-CoV-2 main protease in complex with nsp8/9 substrate peptide 7WQA ; 1.8 ; SARS-CoV-2 main protease in complex with Z-VAD-FMK 7KPH ; 1.46 ; SARS-CoV-2 Main Protease in mature form 7MBG ; 1.86 ; SARS-CoV-2 Main protease in orthorhombic space group 7WQB ; 1.87 ; SARS-CoV-2 main protease mutant (P168A) in complex with MG-132 7UUG ; 2.0 ; SARS-CoV-2 Main Protease S144A (Mpro S144A) in Complex with ML1006a 7UUP ; 2.0 ; SARS-CoV-2 Main Protease S144A (Mpro S144A) in Complex with Nirmatrelvir (PF-07321332) 8VSG ; 2.071 ; SARS-CoV-2 main protease with covalent inhibitor 6Y84 ; 1.39 ; SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19) 6YB7 ; 1.25 ; SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). 7EIN ; 1.7 ; SARS-CoV-2 main proteinase complex with microbial metabolite leupeptin 9EML ; 2.4 ; SARS-CoV-2 methyltransferase nsp10-16 in complex with SAM and m7GpppA (Cap0-analog)/m7GpppAm (Cap1-analog) 9EMJ ; 1.79 ; SARS-CoV-2 methyltransferase nsp10-16 in complex with Toyocamycin and m7GpppA (Cap0-analog) 8R19 ; 1.91 ; SARS-CoV-2 Mpro (Omicron, P132H) free enzyme 8R0V ; 2.48 ; SARS-CoV-2 Mpro (Omicron, P132H) in complex with alpha-ketoamide 13b-K at pH 6.5 8GWS ; 2.9 ; SARS-CoV-2 Mpro 1-302 c145a in complex with peptide 4 8GW4 ; 2.9 ; SARS-CoV-2 Mpro 1-302/C145A in complex with peptide 8-1 8H7K ; 1.45 ; SARS-CoV-2 Mpro Double Mutant (H41A and T21I) in complex with nsp4/5 peptidyl substrate 8GVD ; 2.0 ; SARS-CoV-2 Mpro in complex with D-4-38 8JPQ ; 2.7 ; SARS-CoV-2 Mpro in complex with D-5-96 7DW0 ; 1.81 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp14|15 peptidyl substrate 7DW6 ; 1.7 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp15|16 peptidyl substrate 7DVP ; 1.69 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp4|5 peptidyl substrate 7DVW ; 1.49 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp5|6 peptidyl substrate 7DVX ; 1.8 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp6|7 peptidyl substrate 7DVY ; 1.8 ; SARS-CoV-2 Mpro mutant (H41A) in complex with nsp9|10 peptidyl substrate 7YBI ; 4.1 ; SARS-CoV-2 Mu variant spike (open state) 7YBJ ; 3.73 ; SARS-CoV-2 Mu variant spike(close state) 8BZN ; 2.19 ; SARS-CoV-2 non-structural protein 10 (nsp10) variant T102I 8AZ8 ; 1.18 ; SARS-CoV-2 non-structural protein-1 (nsp1) in complex with 2-(benzylamino)ethan-1-ol 8AYS ; 1.37 ; SARS-CoV-2 non-structural protein-1 (nsp1) in complex with 4-(2-aminothiazol-4-yl)phenol 8A4Y ; 1.099 ; SARS-CoV-2 non-structural protein-1 (nsp1) in complex with N-(2,3-dihydro-1H-inden-5-yl)acetamide 7JQB ; 2.7 ; SARS-CoV-2 Nsp1 and rabbit 40S ribosome complex 6ZON ; 3.0 ; SARS-CoV-2 Nsp1 bound to a human 43S preinitiation ribosome complex - state 1 6ZP4 ; 2.9 ; SARS-CoV-2 Nsp1 bound to a human 43S preinitiation ribosome complex - state 2 6ZMT ; 3.0 ; SARS-CoV-2 Nsp1 bound to a pre-40S-like ribosome complex 6ZN5 ; 3.2 ; SARS-CoV-2 Nsp1 bound to a pre-40S-like ribosome complex - state 2 6ZLW ; 2.6 ; SARS-CoV-2 Nsp1 bound to the human 40S ribosomal subunit 6ZM7 ; 2.7 ; SARS-CoV-2 Nsp1 bound to the human CCDC124-80S-EBP1 ribosome complex 6ZME ; 3.0 ; SARS-CoV-2 Nsp1 bound to the human CCDC124-80S-eERF1 ribosome complex 6ZMI ; 2.6 ; SARS-CoV-2 Nsp1 bound to the human LYAR-80S ribosome complex 6ZMO ; 3.1 ; SARS-CoV-2 Nsp1 bound to the human LYAR-80S-eEF1a ribosome complex 7K5I ; 2.9 ; SARS-COV-2 nsp1 in complex with human 40S ribosome 7JQC ; 3.3 ; SARS-CoV-2 Nsp1, CrPV IRES and rabbit 40S ribosome complex 8OV3 ; 1.82 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with 5-Iodotubercidin 8BZV ; 1.8 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with adenosine 8OV1 ; 1.67 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with ADP 8OTO ; 1.8 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with AMP 8OSX ; 1.83 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with ATP 8C5M ; 1.9 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with MTA 8OT0 ; 2.21 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with MTA and glycine 8OTR ; 1.77 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with SAM analog BDH 33959089 8OV2 ; 1.86 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with Sangivamycin 9EMV ; 2.34 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with Sangivamycin and m7GpppA (Cap0-analog)/m7GpppAm (Cap1-analog) 8S8W ; 2.1 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with Sangivamycin and m7GpppA-RNA (Cap0-RNA) 8OV4 ; 1.93 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with Toyocamycin 8S8X ; 1.99 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with Toyocamycin and m7GpppA-RNA (Cap0-RNA) 8BSD ; 1.95 ; SARS-CoV-2 nsp10-16 methyltransferase in complex with tubercidin 7THM ; 3.18 ; SARS-CoV-2 nsp12/7/8 complex with a native N-terminus nsp9 7N06 ; 2.2 ; SARS-CoV-2 Nsp15 endoribonuclease post-cleavage state 7N33 ; 2.5 ; SARS-CoV-2 Nsp15 endoribonuclease pre-cleavage state 8RV5 ; 2.05 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 1 8RZE ; 2.0 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 10 8RZC ; 2.35 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 11 8RV4 ; 2.35 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 2 8RV6 ; 2.25 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 2 8RV7 ; 1.9 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 4 8RV8 ; 1.7 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 5 8RV9 ; 1.9 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 6 8RVA ; 1.8 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 7 8RVB ; 1.95 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 8 8RZD ; 2.1 ; SARS-CoV-2 nsp16-nsp10 in complex with SAM derivative inhibitor 9 7MSX ; 3.15 ; SARS-CoV-2 Nsp2 8C19 ; 1.95 ; SARS-CoV-2 NSP3 macrodomain in complex with 1-methyl-4-[5-(morpholin-4-ylcarbonyl)-2-furyl]-1H-pyrrolo[2,3-b]pyridine 8C1A ; 1.9 ; SARS-CoV-2 NSP3 macrodomain in complex with aztreonam 6WXD ; 2.0 ; SARS-CoV-2 Nsp9 RNA-replicase 7E8F ; 3.18 ; SARS-CoV-2 NTD in complex with N9 Fab 8FG2 ; 6.0 ; SARS-CoV-2 Nucleocapsid dimer structure determined from COVID-19 patients 7SD4 ; ; SARS-CoV-2 Nucleocapsid N-terminal domain (N-NTD) protein 7QIK ; 2.01 ; SARS-CoV-2 Nucleocapsid phosphopeptide 193-200 bound to human 14-3-3 sigma 7QIP ; 2.65 ; SARS-CoV-2 Nucleocapsid phosphopeptide 201-210 bound to human 14-3-3 sigma 7F2E ; 3.1 ; SARS-CoV-2 nucleocapsid protein C-terminal domain (dodecamer) 7TGE ; 3.68 ; SARS-CoV-2 Omicron 1-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron) 7TEI ; 3.4 ; SARS-CoV-2 Omicron 1-RBD up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron) 7TL9 ; 3.5 ; SARS-CoV-2 Omicron 1-RBD up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron) 7YCY ; 3.74 ; SARS-CoV-2 Omicron 1-RBD up Spike trimer complexed with three XG005 molecules 7YD0 ; 3.58 ; SARS-CoV-2 Omicron 1-RBD up spike trimer complexed with two XG005 Fab 7YCZ ; 3.24 ; SARS-CoV-2 Omicron 2-RBD up Spike trimer complexed with three XG005 molecules 7TF8 ; 3.36 ; SARS-CoV-2 Omicron 3-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron) 7TL1 ; 3.5 ; SARS-CoV-2 Omicron 3-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron) 8ERR ; 3.1 ; SARS-CoV-2 Omicron BA.1 spike ectodomain trimer in complex with the S2X324 neutralizing antibody Fab fragment 8H01 ; 3.7 ; SARS-CoV-2 Omicron BA.1 Spike glycoprotein in complex with rabbit monoclonal antibody 1H1 Fab in class 2 conformation 8H00 ; 3.41 ; SARS-CoV-2 Omicron BA.1 Spike glycoprotein in complex with rabbit monoclonal antibody 1H1 Fab in the class 1 conformation 8ITU ; 3.68 ; SARS-CoV-2 Omicron BA.1 Spike glycoprotein in complex with rabbit monoclonal antibody 1H1 IgG. 8HHZ ; 4.28 ; SARS-CoV-2 Omicron BA.1 Spike in complex with IY-2A 8HFY ; 3.21 ; SARS-CoV-2 Omicron BA.1 spike protein receptor-binding domain in complex with white-tailed deer ACE2 8HC7 ; 4.54 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) complex with YB9-258 Fab, focused refinement of RBD-dimer region 8HC2 ; 6.21 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with 1 YB9-258 Fab (1 RBD up) 8HC3 ; 4.35 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with 2 YB9-258 Fabs (2 RBD up) 8HCA ; 4.35 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with 3 YB13-292 Fabs (1 RBD up) 8HCB ; 4.18 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with 3 YB13-292 Fabs (2 RBD up) 8HC9 ; 6.03 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with 3 YB13-292 Fabs (3 RBD down) 8HC8 ; 3.95 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with YB13-292 Fab, focused refinement of Fab region 8HC6 ; 4.69 ; SARS-CoV-2 Omicron BA.1 spike trimer (6P) in complex with YB9-258 Fab, focused refinement of Fab region 7XO6 ; 2.6 ; SARS-CoV-2 Omicron BA.1 Variant RBD with mouse ACE2 Bound 7XO5 ; 3.13 ; SARS-CoV-2 Omicron BA.1 Variant Spike Trimer with one mouse ACE2 Bound 7XO4 ; 3.24 ; SARS-CoV-2 Omicron BA.1 Variant Spike Trimer with two mouse ACE2 Bound 8HWT ; 2.91 ; SARS-CoV-2 Omicron BA.2 RBD complexed with BD-604 and S304 Fab 7ZF7 ; 3.46 ; SARS-CoV-2 Omicron BA.2 RBD in complex with ACE2 7ZF8 ; 2.95 ; SARS-CoV-2 Omicron BA.2 RBD in complex with COVOX-150 Fab 7ZF9 ; 3.25 ; SARS-CoV-2 Omicron BA.2 RBD in complex with COVOX-150 Fab (P21) 7XO9 ; 3.0 ; SARS-CoV-2 Omicron BA.2 Variant RBD complexed with human ACE2 7XOC ; 3.0 ; SARS-CoV-2 Omicron BA.2 Variant RBD complexed with mouse ACE2 7XIW ; 3.62 ; SARS-CoV-2 Omicron BA.2 variant spike (state 1) 7XIX ; 3.25 ; SARS-CoV-2 Omicron BA.2 variant spike (state 2) 7XOA ; 3.2 ; SARS-CoV-2 Omicron BA.2 Variant Spike Trimer with one mouse ACE2 Bound 7XO8 ; 3.48 ; SARS-CoV-2 Omicron BA.2 Variant Spike Trimer with three human ACE2 Bound 7XOD ; 3.27 ; SARS-CoV-2 Omicron BA.2 Variant Spike Trimer with three JMB2002 Fab Bound 7XO7 ; 3.38 ; SARS-CoV-2 Omicron BA.2 Variant Spike Trimer with two human ACE2 Bound 7XOB ; 3.3 ; SARS-CoV-2 Omicron BA.2 Variant Spike Trimer with two mouse ACE2 Bound 7XNR ; 3.49 ; SARS-CoV-2 Omicron BA.2.13 variant spike 8ASY ; 2.85 ; SARS-CoV-2 Omicron BA.2.75 RBD in complex with ACE2 7XIY ; 3.07 ; SARS-CoV-2 Omicron BA.3 variant spike 7XIZ ; 3.74 ; SARS-CoV-2 Omicron BA.3 variant spike (local) 7XNQ ; 3.52 ; SARS-CoV-2 Omicron BA.4 variant spike 7XNS ; 3.48 ; SARS-CoV-2 Omicron BA.4 variant spike 7ZXU ; 1.89 ; SARS-CoV-2 Omicron BA.4/5 RBD in complex with Beta-27 Fab and C1 nanobody 7WKA ; 3.64 ; SARS-CoV-2 Omicron closed state spike protein in complex with S3H3 Fab 7WK9 ; 3.48 ; SARS-CoV-2 Omicron open state spike protein in complex with S3H3 Fab 7TN0 ; 2.85 ; SARS-CoV-2 Omicron RBD in complex with human ACE2 and S304 Fab and S309 Fab 7ZFB ; 3.08 ; SARS-CoV-2 Omicron RBD in complex with nanobody C1, Omi-18 and Omi-31 Fabs 7ZF5 ; 5.32 ; SARS-CoV-2 Omicron RBD in complex with Omi-12 and Beta-54 Fabs 7ZFD ; 3.39 ; SARS-CoV-2 Omicron RBD in complex with Omi-25 Fab 7ZF3 ; 3.15 ; SARS-CoV-2 Omicron RBD in complex with Omi-3 and EY6A Fabs 7ZFE ; 3.25 ; SARS-CoV-2 Omicron RBD in complex with Omi-32 Fab and nanobody C1 7ZFA ; 4.24 ; SARS-CoV-2 Omicron RBD in complex with Omi-6 and COVOX-150 Fabs 7ZF4 ; 4.18 ; SARS-CoV-2 Omicron RBD in complex with Omi-9 Fab and nanobody F2 7WOG ; 4.06 ; SARS-CoV-2 Omicron S monomer complexed with 553-49 7WK2 ; 3.1 ; SARS-CoV-2 Omicron S-close 7WK3 ; 3.4 ; SARS-CoV-2 Omicron S-open 7WVN ; 3.4 ; SARS-CoV-2 Omicron S-open 7WVO ; 3.41 ; SARS-CoV-2 Omicron S-open-2 7WK8 ; 3.61 ; SARS-CoV-2 Omicron spike protein SD1 in complex with S3H3 Fab 7WZ1 ; 3.4 ; SARS-CoV-2 Omicron Spike trimer 7WPB ; 2.79 ; SARS-CoV-2 Omicron Variant RBD complexed with ACE2 7WPD ; 3.18 ; SARS-CoV-2 Omicron Variant S Trimer complexed with one JMB2002 Fab 7WPF ; 2.92 ; SARS-CoV-2 Omicron Variant S Trimer complexed with three JMB2002 Fab 7WPE ; 2.69 ; SARS-CoV-2 Omicron Variant S Trimer complexed with two JMB2002 Fab 7WT7 ; 3.4 ; SARS-CoV-2 Omicron variant spike in complex with Fab 9A8 (State 1) 7WT8 ; 3.6 ; SARS-CoV-2 Omicron variant spike in complex with Fab 9A8 (State 2) 7WTF ; 3.0 ; SARS-CoV-2 Omicron variant spike in complex with Fab XGv051 7WTI ; 3.8 ; SARS-CoV-2 Omicron variant spike in complex with Fab XGv264 7WTK ; 3.6 ; SARS-CoV-2 Omicron variant spike in complex with Fab XGv286 7WI0 ; 3.82 ; SARS-CoV-2 Omicron variant spike in complex with three human neutralizing antibodies 7WE8 ; 3.5 ; SARS-CoV-2 Omicron variant spike protein in complex with Fab XGv265 7WE7 ; 3.8 ; SARS-CoV-2 Omicron variant spike protein in complex with Fab XGv282 7WE9 ; 3.6 ; SARS-CoV-2 Omicron variant spike protein in complex with Fab XGv289 7WEA ; 3.3 ; SARS-CoV-2 Omicron variant spike protein in complex with two XGv347 binding to one close state RBD and one open state RBD 7WEC ; 3.3 ; SARS-CoV-2 Omicron variant spike protein with three XGv347 Fabs binding to three closed state RBDs 7WEB ; 3.7 ; SARS-CoV-2 Omicron variant spike protein with two XGv347 binding to two open state RBDs 7WT9 ; 4.3 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab 9A8 7WTG ; 3.8 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv051 7WTH ; 4.3 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv264 7WEE ; 4.0 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv265 7WLC ; 4.0 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv282 7WTJ ; 4.2 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv286 7WEF ; 3.8 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv289 7WED ; 3.5 ; SARS-CoV-2 Omicron variant spike RBD in complex with Fab XGv347 7WPA ; 2.77 ; SARS-CoV-2 Omicron Variant SPIKE trimer complexed with ACE2 7WP9 ; 2.56 ; SARS-CoV-2 Omicron Variant SPIKE trimer, all RBDs down 7UB0 ; 3.31 ; SARS-CoV-2 Omicron-BA.2 3-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron-BA.2) 7UB5 ; 3.35 ; SARS-CoV-2 Omicron-BA.2 3-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron-BA.2) 7UB6 ; 3.52 ; SARS-CoV-2 Omicron-BA.2 3-RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS-Omicron-BA.2) 8T5Q ; 1.9 ; SARS-CoV-2 ORF3a peptide in complex with TRAF2 TRAF domain 8T5P ; 2.5 ; SARS-CoV-2 ORF3a peptide in complex with TRAF3 TRAF domain 7F5F ; 1.62 ; SARS-CoV-2 ORF8 S84 7LBS ; 2.8 ; SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-24 7LOS ; 2.9 ; SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-65 7LLZ ; 2.9 ; SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-69 7LLF ; 2.3 ; SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-83 7LBR ; 2.2 ; SARS-CoV-2 papain-like protease (PLpro) bound to inhibitor XR8-89 8UVM ; 2.85 ; SARS-CoV-2 papain-like protease (PLpro) complex with covalent inhibitor Jun11313 8UUY ; 3.05 ; SARS-CoV-2 papain-like protease (PLpro) complex with inhibitor Jun12129 8UUF ; 2.84 ; SARS-CoV-2 papain-like protease (PLpro) with inhibitor Jun11941 8UUW ; 3.2 ; SARS-CoV-2 papain-like protease (PLpro) with inhibitor Jun12145 8UUU ; 3.01 ; SARS-Cov-2 papain-like protease (PLpro) with inhibitor Jun12162 8UUV ; 3.01 ; SARS-CoV-2 papain-like protease (PLpro) with inhibitor Jun12197 8UUH ; 2.8 ; SARS-CoV-2 papain-like protease (PLpro) with inhibitor Jun12199 8UUG ; 2.74 ; SARS-CoV-2 papain-like protease (PLpro) with inhibitor Jun12303 8UOB ; 2.52 ; SARS-CoV-2 Papain-like protease (PLpro) with Inhibitor Jun12682 8EIR ; 2.49 ; SARS-CoV-2 polyprotein substrate regulates the stepwise Mpro cleavage reaction 7MLX ; 2.09 ; SARS-CoV-2 programmed -1 frameshifting element three stem H-type pseudoknot 7X7E ; 2.67 ; SARS-CoV-2 RBD and Nb22 8EL2 ; 2.89 ; SARS-CoV-2 RBD bound to neutralizing antibody Fab ICO-hu23 7KDG ; 3.01 ; SARS-CoV-2 RBD down Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS) 7Y7K ; 4.4 ; SARS-CoV-2 RBD in complex with 1F Fab 8BE1 ; 1.98 ; SARS-CoV-2 RBD in complex with a Fab fragment of a neutralising antibody mRBD2 7F3Q ; 3.3 ; SARS-CoV-2 RBD in complex with A5-10 Fab and A34-2 Fab 7KLG ; 3.2 ; SARS-CoV-2 RBD in complex with Fab 15033 7KLH ; 3.0 ; SARS-CoV-2 RBD in complex with Fab 15033-7 8E1G ; 2.57 ; SARS-CoV-2 RBD in complex with Omicron-neutralizing antibody 2A10 7KDH ; 3.33 ; SARS-CoV-2 RBD up Spike Protein Trimer without the P986-P987 stabilizing mutations (S-GSAS) 7BH9 ; 2.9 ; SARS-CoV-2 RBD-62 in complex with ACE2 peptidase domain 7DTE ; 3.0 ; SARS-CoV-2 RdRP catalytic complex with T33-1 RNA 7L1F ; 3.89 ; SARS-CoV-2 RdRp in complex with 4 Remdesivir monophosphate 7OZU ; 3.3 ; SARS-CoV-2 RdRp with Molnupiravir/ NHC in the template strand base-paired with A 7OZV ; 3.2 ; SARS-CoV-2 RdRp with Molnupiravir/ NHC in the template strand base-paired with G 6XQB ; 3.4 ; SARS-CoV-2 RdRp/RNA complex 7MZL ; 3.7 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 210 7MZM ; 2.3 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 215 7RR0 ; 3.12 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 222 7MZN ; 3.1 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 231 7MZF ; 2.493 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 37 7MZG ; 2.0 ; SARS-CoV-2 receptor binding domain bound to Fab PDI 42 7MZH ; 2.1 ; SARS-CoV-2 receptor binding domain bound to Fab WCSL 119 7MZI ; 1.85 ; SARS-CoV-2 receptor binding domain bound to Fab WCSL 129 7MZJ ; 2.4 ; SARS-CoV-2 receptor binding domain bound to Fab WCSL 129 and Fab PDI 93 7MZK ; 2.25 ; SARS-CoV-2 receptor binding domain bound to Fab WCSL 129 and Fab PDI 96 7TE1 ; 3.5 ; SARS-CoV-2 Receptor Binding Domain in Complex with Ab17 8DAD ; 3.85 ; SARS-CoV-2 receptor binding domain in complex with AZ090 Fab 7LDJ ; 2.36 ; SARS-CoV-2 receptor binding domain in complex with WNb-2 8DCE ; 2.0 ; SARS-CoV-2 Receptor-Binding Domain SPEEDesign Immunogen 1 Bound to C144 scFv 8DCC ; 2.6 ; SARS-CoV-2 Receptor-Binding Domain SPEEDesign Immunogen 3 Bound to P2B-2F6 Fab 7UO7 ; 3.09 ; SARS-CoV-2 replication-transcription complex bound to ATP, in a pre-catalytic state 7UOE ; 2.67 ; SARS-CoV-2 replication-transcription complex bound to CTP, in a pre-catalytic state 7UOB ; 2.68 ; SARS-CoV-2 replication-transcription complex bound to GTP, in a pre-catalytic state 7RE2 ; 3.17 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(1)-RTC 7RE1 ; 2.91 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC (composite) 7RDZ ; 3.6 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC - apo class 7RDY ; 3.1 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC - engaged class 7RDX ; 3.1 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC - open class 7RE0 ; 3.5 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC - swiveled class 7RE3 ; 3.33 ; SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC dimer 8SQ9 ; 2.9 ; SARS-CoV-2 replication-transcription complex bound to nsp9 and UMPCPP, as a pre-catalytic NMPylation intermediate 7UO4 ; 3.38 ; SARS-CoV-2 replication-transcription complex bound to Remdesivir triphosphate, in a pre-catalytic state 8SQK ; 3.01 ; SARS-CoV-2 replication-transcription complex bound to RNA-nsp9 and GDP-betaS, as a pre-catalytic deRNAylation/mRNA capping intermediate 8SQJ ; 3.06 ; SARS-CoV-2 replication-transcription complex bound to RNA-nsp9, as a noncatalytic RNA-nsp9 binding mode 7UO9 ; 3.13 ; SARS-CoV-2 replication-transcription complex bound to UTP, in a pre-catalytic state 7N1B ; 2.81 ; SARS-CoV-2 RLQ peptide binds to HLA-A2 7N1C ; 1.881 ; SARS-CoV-2 RLQ peptide-specific TCR pRLQ3 7N1E ; 2.3 ; SARS-CoV-2 RLQ peptide-specific TCR pRLQ3 binds to RLQ-HLA-A2 8GWK ; 2.72 ; SARS-CoV-2 RNA E-RTC complex with RMP-nsp9 and GMPPNP 6M71 ; 2.9 ; SARS-Cov-2 RNA-dependent RNA polymerase in complex with cofactors 7BTF ; 2.95 ; SARS-CoV-2 RNA-dependent RNA polymerase in complex with cofactors in reduced condition 6X29 ; 2.7 ; SARS-CoV-2 rS2d Down State Spike Protein Trimer 7N8I ; 3.0 ; SARS-CoV-2 S (B.1.429 / epsilon variant) + S2M11 + S2L20 (Local Refinement of the NTD/S2L20) 7N8H ; 2.3 ; SARS-CoV-2 S (B.1.429 / epsilon variant) + S2M11 + S2L20 Global Refinement 8VYE ; 2.7 ; SARS-CoV-2 S (C.37 Lambda variant) plus S309, S2L20, and S2X303 Fabs 7T67 ; 3.0 ; SARS-CoV-2 S (Spike Glycoprotein) D614G with One(1) RBD Up 7T3M ; 3.0 ; SARS-CoV-2 S (Spike Glycoprotein) D614G with Three (3) RBDs Up, Bound to Antibody 2-7 scFv, composite map 7TLY ; 3.0 ; SARS-CoV-2 S B.1.1.529 Omicron variant (RBD + S309 Local Refinement) 7TM0 ; 3.1 ; SARS-CoV-2 S B.1.1.529 Omicron variant + S309 + S2L20 Global Refinement 7SOE ; 2.8 ; SARS-CoV-2 S B.1.617.1 kappa variant + S2X303 Global Refinement 7SOB ; 2.4 ; SARS-CoV-2 S B.1.617.1 kappa variant + S309 + S2L20 Global Refinement 7SO9 ; 2.4 ; SARS-CoV-2 S B.1.617.2 delta variant + S2M11 + S2L20 Global Refinement 7RAL ; ; SARS-CoV-2 S bound to S2X259 Fab (local refinement of the RBD/S2X259 variable domains) 7XD2 ; 3.3 ; SARS-CoV-2 S ectodomain trimer in complex with neutralizing antibody 10-5B 7RA8 ; 3.1 ; SARS-CoV-2 S glycoprotein in complex with S2X259 Fab 8VYF ; 3.2 ; SARS-CoV-2 S NTD (C.37 Lambda variant) plus S2L20 and S2X303 Fabs, local refinement 7TLZ ; 3.3 ; SARS-CoV-2 S NTD B.1.1.529 Omicron variant + S309 Local Refinement 7SOD ; 3.2 ; SARS-CoV-2 S NTD B.1.617.1 kappa variant S2L20 Local Refinement 7SOF ; 3.6 ; SARS-CoV-2 S NTD B.1.617.1 kappa variant S2X303 Local Refinement 7SOA ; 3.1 ; SARS-CoV-2 S NTD B.1.617.2 delta variant + S2L20 Local Refinement 7QO7 ; 3.02 ; SARS-CoV-2 S Omicron Spike B.1.1.529 7QTI ; 3.04 ; SARS-CoV-2 S Omicron Spike B.1.1.529 - 3-P2G3 and 1-P5C3 Fabs (Global) 7QO9 ; 3.88 ; SARS-CoV-2 S Omicron Spike B.1.1.529 - RBD and NTD (Local) 7QTK ; 3.84 ; SARS-CoV-2 S Omicron Spike B.1.1.529 - RBD down - 1-P2G3 Fab (Local) 7QTJ ; 4.01 ; SARS-CoV-2 S Omicron Spike B.1.1.529 - RBD up - 1-P2G3 and 1-P5C3 Fabs (Local) 8QPR ; 3.8 ; SARS-CoV-2 S protein bound to human neutralising antibody UZGENT_G5 8QQ0 ; 3.5 ; SARS-CoV-2 S protein bound to neutralising antibody UZGENT_A3 8BG6 ; 4.11 ; SARS-CoV-2 S protein in complex with pT1644 Fab 8BG8 ; 3.64 ; SARS-CoV-2 S protein in complex with pT1696 Fab 7F7E ; 2.49 ; SARS-CoV-2 S protein RBD in complex with A5-10 Fab 7F7H ; 3.19 ; SARS-CoV-2 S protein RBD in complex with A8-1 Fab 7QDG ; 3.4 ; SARS-CoV-2 S protein S:A222V + S:D614G mutant 1-up 7QDH ; 4.2 ; SARS-CoV-2 S protein S:D614G mutant 1-up 8P9Y ; 4.3 ; SARS-CoV-2 S protein S:D614G mutant in 3-down with binding site of an entry inhibitor 8VYG ; 3.1 ; SARS-CoV-2 S RBD (C.37 Lambda variant) plus S309 Fab, local refinement 7SOC ; 3.3 ; SARS-CoV-2 S RBD B.1.617.1 kappa variant S309 Local Refinement 7S3N ; 1.9 ; SARS-CoV-2 S stem helix peptide bound to Fab22 7Y7J ; 3.8 ; SARS-CoV-2 S trimer in complex with 1F Fab 7E5S ; 3.6 ; SARS-CoV-2 S trimer with four-antibody cocktail complex 7CAC ; 3.55 ; SARS-CoV-2 S trimer with one RBD in the open state and complexed with one H014 Fab. 7CAK ; 3.58 ; SARS-CoV-2 S trimer with three RBD in the open state and complexed with three H014 Fab 7E5R ; 3.6 ; SARS-CoV-2 S trimer with three-antibody cocktail complex 7CAI ; 3.49 ; SARS-CoV-2 S trimer with two RBDs in the open state and complexed with two H014 Fab 7DF3 ; 2.7 ; SARS-CoV-2 S trimer, S-closed 7DK3 ; 6.0 ; SARS-CoV-2 S trimer, S-open 7E8C ; 3.16 ; SARS-CoV-2 S-6P in complex with 9 Fabs 7DF4 ; 3.8 ; SARS-CoV-2 S-ACE2 complex 7M8J ; 3.48 ; SARS-CoV-2 S-NTD + Fab CM25 8P99 ; 3.4 ; SARS-CoV-2 S-protein:D614G mutant in 1-up conformation 7T01 ; 2.69 ; SARS-CoV-2 S-RBD + Fab 54042-4 8C1V ; 2.9 ; SARS-CoV-2 S-trimer (3 RBDs up) bound to TriSb92, fitted into cryo-EM map 7LXZ ; 2.6 ; SARS-CoV-2 S/S2M11/S2L28 Global Refinement 7LXX ; 3.0 ; SARS-CoV-2 S/S2M11/S2L28 Local Refinement 7LY2 ; 2.5 ; SARS-CoV-2 S/S2M11/S2M28 Global Refinement 7LY0 ; 2.6 ; SARS-CoV-2 S/S2M11/S2M28 Local Refinement 7LXY ; 2.2 ; SARS-CoV-2 S/S2M11/S2X333 Global Refinement 7LXW ; 2.8 ; SARS-CoV-2 S/S2M11/S2X333 Local Refinement 8F5H ; 2.3 ; SARS-CoV-2 S2 helix epitope scaffold 8F5I ; 1.9 ; SARS-CoV-2 S2 helix epitope scaffold bound by antibody DH1057.1 8GOP ; 2.8 ; SARS-CoV-2 specific private TCR RLQ7 8GOM ; 2.783 ; SARS-CoV-2 specific private TCR RLQ7 in complex with RLQ-HLA-A2 8GON ; 2.601 ; SARS-CoV-2 specific private TCR RLQ7 in complex with RLQ-T1006I-HLA-A2 8DNT ; 3.18 ; SARS-CoV-2 specific T cell receptor 7N62 ; 4.0 ; SARS-CoV-2 Spike (2P) in complex with C12C9 Fab (NTD local reconstruction) 7N64 ; 4.2 ; SARS-CoV-2 Spike (2P) in complex with G32R7 Fab (RBD and NTD local reconstruction) 7YDY ; 4.75 ; SARS-CoV-2 Spike (6P) in complex with 1 R1-32 Fab 7YE5 ; 6.75 ; SARS-CoV-2 Spike (6P) in complex with 2 R1-32 Fabs 7YE9 ; 4.17 ; SARS-CoV-2 Spike (6P) in complex with 3 R1-32 Fabs 7YEG ; 3.73 ; SARS-CoV-2 Spike (6P) in complex with 3 R1-32 Fabs and 3 ACE2 7YDI ; 3.98 ; SARS-CoV-2 Spike (6P) in complex with 3 R1-32 Fabs and 3 ACE2, focused refinement of RBD region 7NS6 ; 3.18 ; SARS-CoV-2 Spike (dimers) in complex with six Fu2 nanobodies 6XS6 ; 3.7 ; SARS-CoV-2 Spike D614G variant, minus RBD 6VYB ; 3.2 ; SARS-CoV-2 spike ectodomain structure (open state) 7Q0A ; 4.8 ; SARS-CoV-2 Spike ectodomain with Fab FI3A 6ZDH ; 3.7 ; SARS-CoV-2 Spike glycoprotein in complex with a neutralizing antibody EY6A Fab 8ELJ ; 3.6 ; SARS-CoV-2 spike glycoprotein in complex with the ICO-hu23 neutralizing antibody Fab fragment 7Y71 ; 3.12 ; SARS-CoV-2 spike glycoprotein trimer complexed with Fab fragment of anti-RBD antibody E7 7Y72 ; 4.03 ; SARS-CoV-2 spike glycoprotein trimer complexed with Fab fragment of anti-RBD antibody E7 (focused refinement on Fab-RBD interface) 7WGV ; 3.2 ; SARS-CoV-2 spike glycoprotein trimer in closed state 7WGX ; 3.5 ; SARS-CoV-2 spike glycoprotein trimer in closed state after treatment with Cathepsin L 7WGY ; 4.0 ; SARS-CoV-2 spike glycoprotein trimer in Intermediate state 7WGZ ; 4.5 ; SARS-CoV-2 spike glycoprotein trimer in open state 7A94 ; 3.9 ; SARS-CoV-2 Spike Glycoprotein with 1 ACE2 Bound 7A96 ; 4.8 ; SARS-CoV-2 Spike Glycoprotein with 1 ACE2 Bound and 1 RBD Erect in Anticlockwise Direction 7A95 ; 4.3 ; SARS-CoV-2 Spike Glycoprotein with 1 ACE2 Bound and 1 RBD Erect in Clockwise Direction 7A97 ; 4.4 ; SARS-CoV-2 Spike Glycoprotein with 2 ACE2 Bound 7A93 ; 5.9 ; SARS-CoV-2 Spike Glycoprotein with 2 RBDs Erect 7A98 ; 5.4 ; SARS-CoV-2 Spike Glycoprotein with 3 ACE2 Bound 7KJ2 ; 3.6 ; SARS-CoV-2 Spike Glycoprotein with one ACE2 Bound 7KJ4 ; 3.4 ; SARS-CoV-2 Spike Glycoprotein with three ACE2 Bound 7KJ3 ; 3.7 ; SARS-CoV-2 Spike Glycoprotein with two ACE2 Bound 7KJ5 ; 3.6 ; SARS-CoV-2 Spike Glycoprotein, prefusion with one RBD up conformation 7KQE ; 2.88 ; SARS-CoV-2 spike glycoprotein:Fab 3D11 complex 7KQB ; 2.42 ; SARS-CoV-2 spike glycoprotein:Fab 5A6 complex I 8GB0 ; 4.1 ; SARS-CoV-2 Spike H655Y variant, One RBD Open 7UHC ; 3.1 ; SARS-CoV-2 spike in complex with AHB2-2GS-SB175 7UHB ; 3.0 ; SARS-CoV-2 spike in complex with AHB2-2GS-SB175 (local refinement of the RBD and AHB2) 7WUH ; 4.7 ; SARS-CoV-2 Spike in complex with Fab of m31A7 7WO4 ; 4.47 ; SARS-CoV-2 Spike in complex with IgG 553-15 (S-553-15 dimer trimer ) 7WO5 ; 3.45 ; SARS-CoV-2 Spike in complex with IgG 553-15 (S-553-15 trimer) 7WOA ; 3.25 ; SARS-CoV-2 Spike in complex with IgG 553-60 (1-up trimer) 7WOB ; 3.25 ; SARS-CoV-2 Spike in complex with IgG 553-60 (2-up trimer) 7JZL ; 2.7 ; SARS-CoV-2 spike in complex with LCB1 (2RBDs open) 7JZU ; 3.1 ; SARS-CoV-2 spike in complex with LCB1 (local refinement of the RBD and LCB1) 7JZN ; 3.1 ; SARS-CoV-2 spike in complex with LCB3 (2RBDs open) 7JZM ; 3.5 ; SARS-CoV-2 spike in complex with LCB3 (local refinement of the RBD and LCB3) 7KSG ; 3.33 ; SARS-CoV-2 spike in complex with nanobodies E 8HGL ; 2.9 ; SARS-CoV-2 spike in complex with neutralizing antibody NIV-11 7YH7 ; 3.3 ; SARS-CoV-2 spike in complex with neutralizing antibody NIV-8 (state 2) 7K9H ; 3.2 ; SARS-CoV-2 Spike in complex with neutralizing Fab 2B04 (one up, two down conformation) 7K9J ; 3.0 ; SARS-CoV-2 Spike in complex with neutralizing Fab 2H04 (three down conformation) 7MKL ; 3.2 ; SARS-CoV-2 Spike in complex with neutralizing Fab SARS2-38 (three down conformation) 7SWX ; 3.13 ; SARS-CoV-2 Spike in complex with neutralizing Fab SARS2-57 (three down conformation) 7KKL ; 2.85 ; SARS-CoV-2 Spike in complex with neutralizing nanobody mNb6 7KKK ; 3.03 ; SARS-CoV-2 Spike in complex with neutralizing nanobody Nb6 7RBU ; 3.7 ; SARS-CoV-2 Spike in complex with PVI.V6-14 Fab 7RBV ; 3.6 ; SARS-CoV-2 Spike in complex with PVI.V6-14 Fab 8C89 ; 4.41 ; SARS-CoV-2 spike in complex with the 17T2 neutralizing antibody Fab fragment (local refinement of RBD and Fab) 7E3C ; 4.2 ; SARS-CoV-2 spike in complex with the Ab1 neutralizing antibody (focused refinement on Fab-RBD) 7E39 ; 3.7 ; SARS-CoV-2 spike in complex with the Ab4 neutralizing antibody (State 3) 7E3B ; 4.2 ; SARS-Cov-2 spike in complex with the Ab5 neutralizing antibody (focused refinement on Fab-RBD) 7E23 ; 3.3 ; SARS-CoV-2 spike in complex with the CA521 neutralizing antibody Fab (focused refinement on Fab-RBD) 7JVC ; 3.3 ; SARS-CoV-2 spike in complex with the S2A4 neutralizing antibody Fab fragment 7JVA ; 3.6 ; SARS-CoV-2 spike in complex with the S2A4 neutralizing antibody Fab fragment (local refinement of the receptor-binding domain and Fab variable domains) 7R7N ; 3.95 ; SARS-CoV-2 spike in complex with the S2D106 neutralizing antibody Fab fragment (local refinement of the RBD and S2D106) 7K4N ; 3.3 ; SARS-CoV-2 spike in complex with the S2E12 neutralizing antibody Fab fragment 7K45 ; 3.7 ; SARS-CoV-2 spike in complex with the S2E12 neutralizing antibody Fab fragment (local refinement of the RBD and Fab variable domains) 7JV6 ; 3.0 ; SARS-CoV-2 spike in complex with the S2H13 neutralizing antibody (closed conformation) 7JV4 ; 3.4 ; SARS-CoV-2 spike in complex with the S2H13 neutralizing antibody (one RBD open) 7JV2 ; 3.5 ; SARS-CoV-2 spike in complex with the S2H13 neutralizing antibody Fab fragment (local refinement of the receptor-binding motif and Fab variable domains) 7TAS ; 3.2 ; SARS-CoV-2 spike in complex with the S2K146 neutralizing antibody Fab fragment (local refinement of the RBD and S2K146) 7TAT ; 3.2 ; SARS-CoV-2 spike in complex with the S2K146 neutralizing antibody Fab fragment (two receptor-binding domains open) 7K43 ; 2.6 ; SARS-CoV-2 spike in complex with the S2M11 neutralizing antibody Fab fragment 7JW0 ; 4.3 ; SARS-CoV-2 spike in complex with the S304 neutralizing antibody Fab fragment 7WHD ; 2.65 ; SARS-CoV-2 spike in complex with the ZB8 neutralizing antibody Fab (2u1d) 7WHB ; 2.67 ; SARS-CoV-2 spike in complex with the ZB8 neutralizing antibody Fab (3U) 7WH8 ; 3.11 ; SARS-CoV-2 spike in complex with the ZB8 neutralizing antibody Fab (focused refinement on Fab-RBD) 6ZOW ; 3.0 ; SARS-CoV-2 spike in prefusion state 6ZP5 ; 3.1 ; SARS-CoV-2 spike in prefusion state (flexibility analysis, 1-up closed conformation) 6ZP7 ; 3.3 ; SARS-CoV-2 spike in prefusion state (flexibility analysis, 1-up open conformation) 7SWW ; 3.13 ; SARS-CoV-2 Spike NTD in complex with neutralizing Fab SARS2-57 (local refinement) 7CWL ; 3.8 ; SARS-CoV-2 spike protein and P17 fab complex with one RBD in close state 8EYH ; 3.75 ; SARS-CoV-2 spike protein bound with a nanobody 8EYG ; 3.73 ; SARS-CoV-2 spike protein complexed with two nanobodies 7FB0 ; 3.4 ; SARS-CoV-2 spike protein in closed state 8CXQ ; 2.3 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 1-22 8CY9 ; 2.9 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 1-23 8CYB ; 2.7 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 1-8 8CY7 ; 2.9 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-34 8CYC ; 2.9 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-34 8CYD ; 2.6 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-45 8CXN ; 2.9 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-57 8CY6 ; 3.2 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-65 8CYA ; 2.7 ; SARS-CoV-2 Spike protein in complex with a pan-sarbecovirus nanobody 2-67 7VXD ; 4.0 ; SARS-CoV-2 spike protein in complex with ACE2, Beta variant, C1 state 7VXK ; 3.7 ; SARS-CoV-2 spike protein in complex with ACE2, Beta variant, C2A state 7VXF ; 3.6 ; SARS-CoV-2 spike protein in complex with ACE2, Beta variant, C2B state 7VXM ; 3.6 ; SARS-CoV-2 spike protein in complex with ACE2, Beta variant, C3 state 7KXK ; 5.0 ; SARS-CoV-2 spike protein in complex with Fab 15033-7, 2-""up""-1-""down"" conformation 7KXJ ; 6.4 ; SARS-CoV-2 spike protein in complex with Fab 15033-7, 3-""up"", asymmetric 7CWT ; 3.7 ; SARS-CoV-2 Spike protein in complex with hb27 and fc05 Fab cocktail 7P7B ; 3.13 ; SARS-CoV-2 spike protein in complex with sybody no68 in a 1up/2down conformation 7P78 ; 3.32 ; SARS-CoV-2 spike protein in complex with sybody#15 and sybody#68 in a 1up/1up-out/1down conformation 7P77 ; 2.98 ; SARS-CoV-2 spike protein in complex with sybody#15 and sybody#68 in a 3up conformation 7P7A ; 4.76 ; SARS-CoV-2 spike protein in complex with sybody#68 in a 2up/1flexible conformation 7P79 ; 4.0 ; SARS-CoV-2 spike protein in complex with sybodyb#15 in a 1up/1up-out/1down conformation. 7ZCE ; 3.5 ; SARS-CoV-2 Spike protein in complex with the single chain fragment scFv76 7WHZ ; 3.42 ; SARS-CoV-2 spike protein in complex with three human neutralizing antibodies 7FB1 ; 3.7 ; SARS-CoV-2 spike protein in one-RBD open state 7FB3 ; 3.1 ; SARS-CoV-2 spike protein in one-RBD weak state after CTSL-treatment 7FB4 ; 3.4 ; SARS-CoV-2 spike protein in two-RBD weak state after CTSL-treatment 7E7X ; 2.78 ; SARS-CoV-2 Spike Protein N terminal domain in Complex with N11 Fab 7CWO ; 3.9 ; SARS-CoV-2 spike protein RBD and P17 fab complex 7LC8 ; ; SARS-CoV-2 spike Protein TM domain 8F4P ; 3.7 ; SARS-CoV-2 spike protein trimer (down conformation) bound with a nanobody 7LJR ; 3.66 ; SARS-CoV-2 Spike Protein Trimer bound to DH1043 fab 7CWS ; 3.4 ; SARS-CoV-2 Spike Proteins Trimer in Complex with FC05 and H014 Fabs Cocktail 7CWU ; 3.5 ; SARS-CoV-2 spike proteins trimer in complex with P17 and FC05 Fabs cocktail 7NLL ; 2.89 ; SARS-CoV-2 Spike RBD (dimer) in complex with two Fu2 nanobodies 8D8R ; 4.1 ; SARS-CoV-2 Spike RBD in complex with DMAb 2196 8D8Q ; 4.2 ; SARS-CoV-2 Spike RBD in complex with DMAbs 2130 and 2196 7X7O ; 3.75 ; SARS-CoV-2 spike RBD in complex with neutralizing antibody UT28K 7K9I ; 3.3 ; SARS-CoV-2 Spike RBD in complex with neutralizing Fab 2B04 (local refinement) 7K9K ; 3.14 ; SARS-CoV-2 Spike RBD in complex with neutralizing Fab 2H04 (local refinement) 7MKM ; 3.16 ; SARS-CoV-2 Spike RBD in complex with neutralizing Fab SARS2-38 (local refinement) 7ZCF ; 4.0 ; SARS-CoV-2 Spike RBD in complex with the single chain fragment scFv76 (Focused Refinement) 7FDH ; 3.72 ; SARS-COV-2 Spike RBDMACSp25 binding to hACE2 7FDI ; 3.12 ; SARS-COV-2 Spike RBDMACSp36 binding to hACE2 7FDK ; 3.69 ; SARS-COV-2 Spike RBDMACSp36 binding to mACE2 7FDG ; 3.69 ; SARS-COV-2 Spike RBDMACSp6 binding to hACE2 7R6X ; 2.95 ; SARS-CoV-2 spike receptor-binding domain (RBD) in complex with S2E12 Fab, S309 Fab, and S304 Fab 7R6W ; 1.83 ; SARS-CoV-2 spike receptor-binding domain (RBD) in complex with S2X35 Fab and S309 Fab 7LO4 ; 2.465 ; SARS-CoV-2 spike receptor-binding domain with a G485R mutation in complex with human ACE2 8HEB ; 3.53 ; SARS-CoV-2 Spike trimer in complex with RmAb 9H1 Fab in the class 1 conformation 8HEC ; 3.5 ; SARS-CoV-2 Spike trimer in complex with RmAb 9H1 Fab in the class 2 conformation 7V2A ; 3.4 ; SARS-CoV-2 Spike trimer in complex with XG014 Fab 7U9P ; 3.5 ; SARS-CoV-2 spike trimer RBD in complex with Fab NA8 7U9O ; 3.4 ; SARS-CoV-2 spike trimer RBD in complex with Fab NE12 7QUR ; 2.27 ; SARS-CoV-2 Spike with ethylbenzamide-tri-iodo Siallyllactose, C3 symmetry 7QUS ; 2.39 ; SARS-CoV-2 Spike, C3 symmetry 7SA2 ; 1.85 ; SARS-CoV-2 spike-derived peptide S1060-1068 (VVFLHVTYV) presented by HLA-A*02:01 7U1R ; 1.8 ; SARS-CoV-2 Spike-derived peptide S1185-1193 K1191N mutant (RLNEVANNL) presented by HLA-A*02:01 7UR1 ; 2.17 ; SARS-CoV-2 Spike-derived peptide S1215-1224 (YIWLGFIAGL) presented by HLA-A*02:01 7RTD ; 2.05 ; SARS-CoV-2 Spike-derived peptide S269-277 (YLQPRTFLL) presented by HLA-A*02:01 7UM2 ; 1.63 ; SARS-CoV-2 Spike-derived peptide S417-425 K417T mutant (TIADYNYKL) presented by HLA-A*02:01 7TLT ; 2.3 ; SARS-CoV-2 Spike-derived peptide S489-497 (YFPLQSYGF) presented by HLA-A*29:02 7SIS ; 1.9 ; SARS-CoV-2 Spike-derived peptide S976-984 (VLNDILSRL) presented by HLA-A*02:01 8G70 ; 3.4 ; SARS-CoV-2 spike/nanobody mixture complex 8G72 ; 5.6 ; SARS-CoV-2 spike/Nb2 complex with 1 RBD up (local refinement at 5.6 A) 8G74 ; 2.5 ; SARS-CoV-2 spike/Nb3 complex with 1 RBD up and 2 Nb3 8G7B ; 3.2 ; SARS-CoV-2 spike/Nb3 complex with 1 RBD up and 2 Nb3 (local refinement) 8G7A ; 3.3 ; SARS-CoV-2 spike/Nb3 complex with 2 RBDs up and 3 Nb3 (local refinement) 8G73 ; 2.5 ; SARS-CoV-2 spike/Nb3 complex with 2 RBDs up and 3 Nb3 bound at 2.5 A 8G75 ; 3.4 ; SARS-CoV-2 spike/Nb4 complex with 2 RBDs up and 3 Nb4 bound 8G76 ; 3.8 ; SARS-CoV-2 spike/Nb5 complex 8G77 ; 2.8 ; SARS-CoV-2 spike/Nb6 complex 7M71 ; 2.66 ; SARS-CoV-2 Spike:5A6 Fab complex I focused refinement 7M7B ; 2.95 ; SARS-CoV-2 Spike:Fab 3D11 complex focused refinement 6X2A ; 3.3 ; SARS-CoV-2 u1S2q 1-RBD Up Spike Protein Trimer 6X2B ; 3.6 ; SARS-CoV-2 u1S2q 2-RBD Up Spike Protein Trimer 6X2C ; 3.2 ; SARS-CoV-2 u1S2q All Down RBD State Spike Protein Trimer 7M0J ; 3.52 ; SARS-CoV-2 u1S2q All Down RBD State Spike Protein Trimer - asymmetric refinement 8HC5 ; 3.43 ; SARS-CoV-2 wildtype S1 in complex with YB9-258 Fab and R1-32 Fab 8HC4 ; 3.54 ; SARS-CoV-2 wildtype spike trimer (6P) in complex with 3 YB9-258 Fabs and 3 R1-32 Fabs (3 RBD up) 7Y0N ; 3.8 ; SARS-CoV-2 WT Spike in complex with R15 Fab and P14 Nanobody 8DV2 ; 3.5 ; SARS-CoV-2 Wuhan-hu-1-Spike-RBD bound to computationally engineered ACE2 mimetic CVD293 8DV1 ; 3.4 ; SARS-CoV-2 Wuhan-hu-1-Spike-RBD bound to linker variant of affinity matured ACE2 mimetic CVD432 8PSD ; 2.9 ; SARS-CoV-2 XBB 1.0 closed conformation. 8FXB ; 3.1 ; SARS-CoV-2 XBB.1 spike RBD bound to the human ACE2 ectodomain and the S309 neutralizing antibody Fab fragment 8WRH ; 3.08 ; SARS-CoV-2 XBB.1.5.70 in complex with ACE2 7N1A ; 2.065 ; SARS-CoV-2 YLQ peptide binds to HLA-A2 7N1D ; 2.35 ; SARS-CoV-2 YLQ peptide-specific TCR pYLQ7 7N1F ; 2.393 ; SARS-CoV-2 YLQ peptide-specific TCR pYLQ7 binds to YLQ-HLA-A2 7S6I ; 3.2 ; SARS-CoV-2-6P-Mut2 S protein 7RU2 ; 3.0 ; SARS-CoV-2-6P-Mut7 S protein (asymmetric) 7RU1 ; 2.8 ; SARS-CoV-2-6P-Mut7 S protein (C3 symmetry) 7XIL ; 2.91 ; SARS-CoV-2-Beta-RBD and B38-GWP/P-VK antibody complex 7X63 ; 2.24 ; SARS-CoV-2-Beta-RBD and BD-236-GWP/P-VK antibody complex 7XEG ; 2.69 ; SARS-CoV-2-Beta-RBD and CB6-092-Fab complex 6ZOJ ; 2.8 ; SARS-CoV-2-Nsp1-40S complex, composite map 6ZOK ; 2.8 ; SARS-CoV-2-Nsp1-40S complex, focused on body 6ZOL ; 2.8 ; SARS-CoV-2-Nsp1-40S complex, focused on head 7XIK ; 2.89 ; SARS-CoV-2-Omicron-RBD and B38-GWP/P-VK antibody complex 7X66 ; 2.4 ; SARS-CoV-2-Omicron-RBD and BD-236-GWP/P-VK antibody complex 7XEI ; 2.76 ; SARS-CoV-2-prototyped-RBD and CB6-092-Fab complex 7B18 ; 2.62 ; SARS-CoV-spike bound to two neutralising nanobodies 7B17 ; 4.01 ; SARS-CoV-spike RBD bound to two neutralising nanobodies. 7T2U ; 2.1 ; SARS-CoV2 3C-Like protease complexed with Nemo peptide 7URB ; 2.14 ; Sars-Cov2 Main Protease in complex with CDD-1733 7US4 ; 2.07 ; Sars-Cov2 Main Protease in complex with CDD-1819 7UR9 ; 2.16 ; SARS-Cov2 Main protease in complex with inhibitor CDD-1845 7Z0P ; 2.52 ; SARS-COV2 Main Protease in complex with inhibitor MG-131 7QL8 ; 1.807 ; SARS-COV2 Main Protease in complex with inhibitor MG78 7T2T ; 1.45 ; SARS-CoV2 Mpro native form 8OKC ; 2.0 ; SARS-CoV2 NSP5 in complex with a GC-376 based peptidomimetic PROTAC 8OKB ; 2.31 ; SARS-CoV2 NSP5 in complex with a peptidomimetic ligand 7NWX ; 1.8 ; SARS-COV2 NSP5 in the presence of Zn2+ 7UPL ; 4.1 ; SARS-Cov2 Omicron varient S protein structure in complex with neutralizing monoclonal antibody 002-S21F2 7WPH ; 2.89 ; SARS-CoV2 RBD bound to Fab06 7DDD ; 3.0 ; SARS-Cov2 S protein at close state 7DDN ; 6.3 ; SARS-Cov2 S protein at open state 7U0Q ; 3.86 ; SARS-Cov2 S protein structure in complex with neutralizing monoclonal antibody 002-02 7U0X ; 3.82 ; SARS-Cov2 S protein structure in complex with neutralizing monoclonal antibody 002-13 8GDR ; 3.6 ; SARS-Cov2 S protein structure in complex with neutralizing monoclonal antibody 002-S21B10 7U0P ; 3.76 ; SARS-Cov2 S protein structure in complex with neutralizing monoclonal antibody 002-S21F2 7UOW ; 4.4 ; SARS-Cov2 S protein structure in complex with neutralizing monoclonal antibody 034_32 6X45 ; 2.2 ; SARS-CoV2 spike glycoprotein N-terminal heptad repeat domain + SARS-CoV2(QEYKKEKE) 5UTV ; ; SARS-unique fold in the Rousettus Bat Coronavirus HKU9 4BY2 ; 2.57 ; SAS-4 (dCPAP) TCP domain in complex with a Proline Rich Motif of Ana2 (dSTIL) of Drosophila Melanogaster 7UWW ; 1.61 ; Sas6 with alpha-cyclodextrin 1STM ; 1.9 ; SATELLITE PANICUM MOSAIC VIRUS 7JW1 ; 4.19 ; Satellite phage P4 procapsid including size determination (Sid) protein 4NIA ; 1.82 ; Satellite Tobacco Mosaic Virus Refined at room temperature to 1.8 A Resolution using NCS Restraints 4OQ8 ; 1.45 ; Satellite Tobacco Mosaic Virus Refined to 1.4 A Resolution using icosahedral constraints 4OQ9 ; 1.45 ; Satellite Tobacco Mosaic Virus Refined to 1.4 A Resolution using non-crystallographic symmetry restraints 1A34 ; 1.81 ; SATELLITE TOBACCO MOSAIC VIRUS/RNA COMPLEX 2BUK ; 2.45 ; SATELLITE TOBACCO NECROSIS VIRUS 4BCU ; 2.29 ; Satellite Tobacco Necrosis Virus (STNV) virus like particle in complex with the B3 aptamer 2QUE ; 2.25 ; Saturation of substrate-binding site using two natural ligands: Crystal structure of a ternary complex of phospholipase A2 with anisic acid and ajmaline at 2.25 A resolution 7ALX ; 1.8 ; Sav-SOD: Chimeric Streptavidin-cSOD as Host for Artificial Metalloenzymes 5XR2 ; 2.6 ; SAV0551 5XR3 ; 3.01 ; SAV0551 with glyoxylate 4Y0N ; 2.1 ; SAV1875 4Y1E ; 1.8 ; SAV1875-C105D 4Y1R ; 1.65 ; SAV1875-cysteinesulfonic acid 4Y1F ; 1.8 ; SAV1875-E17D 4Y1G ; 1.9 ; SAV1875-E17N 1SVN ; 1.4 ; SAVINASE 4CFY ; 1.17 ; SAVINASE CRYSTAL STRUCTURES FOR COMBINED SINGLE CRYSTAL DIFFRACTION AND POWDER DIFFRACTION ANALYSIS 4CFZ ; 1.57 ; SAVINASE CRYSTAL STRUCTURES FOR COMBINED SINGLE CRYSTAL DIFFRACTION AND POWDER DIFFRACTION ANALYSIS 4CG0 ; 1.36 ; Savinase crystal structures for combined single crystal diffraction and powder diffraction analysis 6O0D ; 2.5 ; Saxiphilin Apo structure 6O0F ; 2.12 ; Saxiphilin:STX complex, co-crystal 6O0E ; 2.5 ; Saxiphilin:STX complex, soaking 8I0D ; 1.43 ; Sb3GT1 375S/Q377H mutant complex with UDP-Glc 8I0E ; 1.9 ; Sb3GT1 complex with UDP 4KEC ; 2.4 ; SbHCT-complex form 5UJD ; 2.1 ; SbnI from Staphylococcus pseudintermedius 5UJE ; 2.5 ; SbnI with C-terminal truncation from Staphylococcus aureus 6PQL ; 2.65 ; SBP RafE in complex with raffinose 6PRG ; 2.35 ; SBP RafE in complex with stachyose 6PRE ; 2.4 ; SBP RafE in complex with verbascose 7WAR ; 2.101 ; SbSOMT in complex with pinostilbene and nicotinamide adenine dinucleotide(NAD+) 7WAS ; 2.401 ; SbSOMT in complex with pterostilbene and nicotinamide adenine dinucleotide(NAD+) 7WAQ ; 2.56 ; SbSOMT in complex with resveratrol 7VB8 ; 1.72 ; SbSOMT in complex with resveratrol and nicotinamide adenine dinucleotide(NAD+) 1W1W ; 2.9 ; Sc Smc1hd:Scc1-C complex, ATPgS 6R8E ; ; SC14 G-hairpin 6VPA ; 1.5 ; Scabin (N110A) toxin from Streptomyces scabies 6VUV ; 1.55 ; Scabin (S117A) toxin from Streptomyces scabies 6VV4 ; 1.7 ; Scabin (V109G) toxin from Streptomyces scabies 6APY ; 1.5 ; Scabin (W128Y) toxin from Streptomyces scabies 5UVQ ; 1.6 ; Scabin (W155A) toxin from Streptomyces scabies 6VVF ; 1.75 ; Scabin (Y129H) toxin from Streptomyces scabies 5EWY ; 1.4 ; Scabin toxin from Streptomyces Scabies in complex with inhibitor P6E 5EWK ; 1.6 ; Scabin toxin from Streptomyces Scabies in complex with inhibitor PJ34 5TLB ; 1.7 ; Scabin toxin from Streptomyces scabies in complex with NADH 4BHZ ; 2.85 ; Scaffold Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitor 4BI0 ; 2.84 ; Scaffold Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitor 4BI1 ; 2.7 ; Scaffold Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitor 4BI2 ; 3.11 ; Scaffold Focused Virtual Screening: Prospective Application to the Discovery of TTK Inhibitor 8D95 ; 2.166 ; Scaffold Hopping via Ring Opening Enables Identification of Acyclic Compounds as New Complement Factor D Inhibitors 8DEA ; 2.214 ; Scaffold Hopping via Ring Opening Enables Identification of Acyclic Compounds as New Complement Factor D Inhibitors 8DG6 ; 1.986 ; Scaffold Hopping via Ring Opening Enables Identification of Acyclic Compounds as New Complement Factor D Inhibitors 8PHT ; 6.37 ; Scaffold rings inside the Borrelia bacteriophage BB1 procapsid 3V1S ; 2.328 ; Scaffold tailoring by a newly detected Pictet-Spenglerase ac-tivity of strictosidine synthase (STR1): from the common tryp-toline skeleton to the rare piperazino-indole framework 6Y3E ; 1.45 ; Scaffold-ligand complex with ligand unmodelled 6YBM ; 1.41 ; Scaffold-ligand complex with ligand unmodelled. 4FL4 ; 2.8 ; Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome 8DT0 ; 2.46 ; Scaffolding protein functional sites using deep learning 8E1E ; 4.27 ; Scaffolding protein functional sites using deep learning 8AYI ; 2.2 ; Scalindua brodae amxFabZ H48N mutant 8AYC ; 1.75 ; Scalindua brodae amxFabZ, I69G mutant 1KK8 ; 2.3 ; SCALLOP MYOSIN (S1-ADP-BeFx) IN THE ACTIN-DETACHED CONFORMATION 1KK7 ; 3.2 ; SCALLOP MYOSIN IN THE NEAR RIGOR CONFORMATION 1WDC ; 2.0 ; SCALLOP MYOSIN REGULATORY DOMAIN 1DFL ; 4.2 ; SCALLOP MYOSIN S1 COMPLEXED WITH MGADP:VANADATE-TRANSITION STATE 1L2O ; 2.8 ; SCALLOP MYOSIN S1-ADP-p-PDM IN THE ACTIN-DETACHED CONFORMATION 1KQM ; 3.0 ; SCALLOP MYOSIN S1-AMPPNP IN THE ACTIN-DETACHED CONFORMATION 1KWO ; 3.8 ; SCALLOP MYOSIN S1-ATPgammaS-p-PDM IN THE ACTIN-DETACHED CONFORMATION 5HBI ; 1.6 ; SCAPHARCA DIMERIC HEMOGLOBIN, MUTANT T72I, CO-LIGANDED FORM 4HBI ; 1.6 ; SCAPHARCA DIMERIC HEMOGLOBIN, MUTANT T72I, DEOXY FORM 7HBI ; 1.6 ; SCAPHARCA DIMERIC HEMOGLOBIN, MUTANT T72V, CO-LIGANDED FORM 6HBI ; 1.8 ; SCAPHARCA DIMERIC HEMOGLOBIN, MUTANT T72V, DEOXY FORM 4HRR ; 1.25 ; Scapharca tetrameric hemoglobin, CO-state 4HRT ; 1.46 ; Scapharca tetrameric hemoglobin, unliganded 5DGK ; 2.895 ; SCCmec type IV Cch - active helicase 6BTC ; 2.17741 ; SCCmec type IV LP1413 - nucleic acids binding protein 4TXE ; 1.8 ; ScCTS1 in complex with compound 5 2UY3 ; 1.9 ; ScCTS1_8-chlorotheophylline crystal structure 2UY4 ; 1.75 ; ScCTS1_acetazolamide crystal structure 2UY2 ; 1.6 ; ScCTS1_apo crystal structure 2UY5 ; 1.6 ; ScCTS1_kinetin crystal structure 7JIZ ; 1.85 ; ScDLH 6S50 ; 2.0 ; scdSav(SARK)mv2 - Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes 6S4Q ; 1.85 ; scdSav(SASK) - Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes 5I4F ; 1.549 ; scFv 2D10 complexed with alpha 1,6 mannobiose 5VF2 ; 1.55 ; scFv 2D10 re-refined as a complex with trehalose replacing the original alpha-1,6-mannobiose 6EHV ; 2.54 ; scFv AbVance: increasing our knowledge of antibody structural space to enable faster and better decision making in drug discovery 6EHW ; 2.19 ; scFv AbVance: increasing our knowledge of antibody structural space to enable faster and better decision making in drug discovery 6EHX ; 2.2 ; scFv AbVance: increasing our knowledge of antibody structural space to enable faster and better decision making in drug discovery 6EHY ; 2.25 ; scFv AbVance: increasing our knowledge of antibody structural space to enable faster and better decision making in drug discovery 4KV5 ; 3.0 ; scFv GC1009 in complex with TGF-beta1. 6TGG ; 2.0 ; scFv-1SM3 in complex with glycopeptide containing an sp2-imino sugar 3UMT ; 1.798 ; scFv12, Anti-BclA antibody single chain variable fragment 1EUA ; 1.95 ; SCHIFF BASE INTERMEDIATE IN KDPG ALDOLASE FROM ESCHERICHIA COLI 1H7P ; 1.64 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH 4-KETO-5-AMINO-HEXANOIC (KAH) AT 1.64 A RESOLUTION 1GJP ; 1.8 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH 4-OXOSEBACIC ACID 1H7O ; 1.75 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH 5-AMINOLAEVULINIC ACID AT 1.7 A RESOLUTION 1YLV ; 2.15 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH LAEVULINIC ACID 1H7N ; 1.6 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH LAEVULINIC ACID AT 1.6 A RESOLUTION 1H7R ; 2.0 ; SCHIFF-BASE COMPLEX OF YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE WITH SUCCINYLACETONE AT 2.0 A RESOLUTION. 5TIV ; 1.43 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase 6B53 ; 1.6 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase, S166T Mutant 6B51 ; 2.05 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase, Y54F Mutant 6UUY ; 1.37 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/Hycanthone Complex 6B54 ; 1.8 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/Oxamniquine Complex, S166T Mutant 6B52 ; 1.8 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/Oxamniquine Complex, Y54F Mutant 5TIX ; 1.78 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/R-oxamniquine Complex 5TIW ; 1.66 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/Racemic Oxamniquine Complex 5TIY ; 1.76 ; Schistosoma haematobium (Blood Fluke) Sulfotransferase/S-oxamniquine Complex 5TIZ ; 2.87 ; Schistosoma japonicum (Blood Fluke) Sulfotransferase 4MUA ; 1.95 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase 6B4X ; 1.46 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase, F39Y Mutant 6B4Z ; 1.74 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase, T157S Mutant 6BDP ; 1.43 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0000071 (Compound 9c) Complex 6BDQ ; 1.83 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0000074 (Compound 10a) Complex 6BDS ; 1.53 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0000204 (Compound 11f) Complex 6BDR ; 1.66 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0000206 (Compound 9f) Complex 6MFE ; 1.444 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0000773 (Compound 11g) Complex 8E5Q ; 1.33 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0150303 Complex 8E5R ; 1.4 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/CIDD-0150610 Complex 6UUX ; 1.5 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/Hycanthone Complex 4MUB ; 1.75 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/Oxamniquine Complex 6B4Y ; 1.95 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/Oxamniquine Complex, F39Y Mutant 6B50 ; 1.87 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/Oxamniquine Complex, T157S Mutant 5BYJ ; 1.8 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/R-oxamniquine Complex 5BYK ; 1.28 ; Schistosoma mansoni (Blood Fluke) Sulfotransferase/S-oxamniquine Complex 3UMF ; 2.047 ; Schistosoma mansoni adenylate kinase 7YZH ; 1.79 ; Schistosoma Mansoni Carbonic Anhydrase in complex with 4-oxo-N-(4-sulfamoylphenethyl)-1,3,4,6,7,11b-hexahydro-2H-pyrazino[2,1-a]isoquinoline-2-carbothioamide 3VCO ; 1.946 ; Schistosoma mansoni Dihydrofolate reductase 1VYG ; 2.4 ; schistosoma mansoni fatty acid binding protein in complex with arachidonic acid 1VYF ; 1.85 ; schistosoma mansoni fatty acid binding protein in complex with oleic acid 6EZU ; 2.04 ; Schistosoma mansoni Phosphodiesterase 4A 6FG5 ; 2.35 ; Schistosoma mansoni Phosphodiesterase 4A 2POA ; ; Schistosoma mansoni Sm14 Fatty Acid-Binding Protein: improvement of protein stability by substitution of the single Cys62 residue 3IEX ; 2.05 ; Schistosoma Purine nucleoside phosphorylase in complex with guanosine 3S6I ; 2.28 ; Schizosaccaromyces pombe 3-methyladenine DNA glycosylase (Mag1) in complex with abasic-DNA. 6O2D ; 2.52 ; Schizosaccharomyces pombe Cnp3 Cupin Domain 4QYT ; 1.05 ; Schizosaccharomyces pombe DJ-1 4GE0 ; 1.45 ; Schizosaccharomyces pombe DJ-1 T114P mutant 4GE3 ; 1.5 ; Schizosaccharomyces pombe DJ-1 T114V mutant 3DAV ; 2.2 ; Schizosaccharomyces Pombe Profilin crystallized from Sodium formate 7AOD ; 4.5 ; Schizosaccharomyces pombe RNA polymerase I (dimer) 7AOE ; 3.9 ; Schizosaccharomyces pombe RNA polymerase I (elongation complex) 7AOC ; 3.84 ; Schizosaccharomyces pombe RNA polymerase I (monomer) 7A56 ; 1.85 ; Schmallenberg Virus Envelope Glycoprotein Gc Fusion Domains in Postfusion Conformation 6H3T ; 2.836 ; Schmallenberg Virus Glycoprotein Gc Head Domain in Complex with scFv 1C11 6H3U ; 3.168 ; Schmallenberg Virus Glycoprotein Gc Head Domain in Complex with scFv 4B6 6H3S ; 2.023 ; Schmallenberg Virus Glycoprotein Gc Head/Stalk Domains 4JNG ; 2.12 ; Schmallenberg virus nucleoprotein-RNA complex 4Z2F ; 2.5 ; Sclerotium Rolfsii lectin variant (SSR2) with fine carbohydrate specificity 1PK3 ; 1.85 ; Scm SAM domain 4I52 ; 2.35 ; scMenB im complex with 1-hydroxy-2-naphthoyl-CoA 7MEL ; 1.75 ; Sco GlgEI-V279S in complex with 4-alpha-glucoside of validamine 7MGY ; 1.83 ; Sco GlgEI-V279S in complex with 4-alpha-glucoside of valienamine 5VSJ ; 2.456 ; Sco GlgEI-V279S in complex with a pyrolidene-based ethyl-phosphonate compound 5VT4 ; 3.205 ; Sco GlgEI-V279S in complex with a pyrolidene-based methyl-phosphonate compound 7UVD ; 2.73 ; Sco GlgEI-V279S in complex with cyclohexyl carbasugar 8D6K ; 2.73 ; Sco GlgEI-V279S in complex with cyclohexyl carbasugar 4U31 ; 1.849 ; Sco GlgEI-V279S in Complex with maltose-C-phosphonate 4U2Y ; 2.483 ; Sco GlgEI-V279S in Complex with Reaction Intermediate Azasugar 7PT0 ; 1.89 ; SCO3201 with putative ligand 3D7J ; 1.45 ; SCO6650, a 6-pyruvoyltetrahydropterin synthase homolog from Streptomyces coelicolor 6XO3 ; 1.85 ; ScoE with alpha-ketoglutarate in an off-site 6XPA ; 2.1 ; ScoE with oxovanadium and the CABA substrate bound and His299 and Arg157 flipped out 6XOJ ; 1.45 ; ScoE with the CABA substrate bound and alpha-ketoglutarate in an off-site 6XN6 ; 1.7 ; ScoE with the CABA substrate bound and His299 and Arg157 flipped out 3IXW ; 8.0 ; Scorpion Hemocyanin activated state pseudo atomic model built based on cryo-EM density map 3IXV ; 6.8 ; Scorpion Hemocyanin resting state pseudo atomic model built based on cryo-EM density map 1WMT ; ; Scorpion toxin (IsTX) from Opisthacanthus madagascariensis 1TXM ; ; SCORPION TOXIN (MAUROTOXIN) FROM SCORPIO MAURUS, NMR, 35 STRUCTURES 1SXM ; ; SCORPION TOXIN (NOXIUSTOXIN) WITH HIGH AFFINITY FOR VOLTAGE DEPENDENT POTASSIUM CHANNEL AND LOW AFFINITY FOR CALCIUM DEPENDENT POTASSIUM CHANNEL (NMR AT 20 DEGREES, PH3.5, 39 STRUCTURES) 1SCO ; ; SCORPION TOXIN (OSK1 TOXIN) WITH HIGH AFFINITY FOR SMALL CONDUCTANCE CA(2+)-ACTIVATED K+ CHANNEL IN NEUROBLASTOMA-X-GLUOMA NG 108-15 HYBRID CELLS, NMR, 30 STRUCTURES 1TSK ; ; SCORPION TOXIN (TS KAPPA) FROM TITYUS SERRULATUS ACTIVE ON SMALL CONDUCTANCE POTASSIUM CHANNEL, NMR, 30 STRUCTURES 1BCG ; 2.1 ; SCORPION TOXIN BJXTR-IT 1BIG ; ; SCORPION TOXIN BMTX1 FROM BUTHUS MARTENSII KARSCH, NMR, 25 STRUCTURES 2BMT ; ; SCORPION TOXIN BMTX2 FROM BUTHUS MARTENSII KARSCH, NMR, 25 STRUCTURES 2ASC ; 1.1 ; Scorpion toxin LQH-alpha-IT 6NEI ; 1.85 ; Scoulerine 9-O-methyltransferase from Thalictrum flavum 6NEJ ; 1.6 ; scoulerine 9-O-methyltransferase from Thalictrum flavum complexed (13aS)-3,10-dimethoxy-5,8,13,13a-tetrahydro-6H-isoquino[3,2-a]isoquinoline-2,9-diol and with S-ADENOSYL-L-HOMOCYSTEINE 7EGD ; 6.75 ; SCP promoter-bound TFIID-TFIIA in initial TBP-loading state 7EGJ ; 8.64 ; SCP promoter-bound TFIID-TFIIA in post TBP-loading state 7YZX ; 1.9 ; ScpA from Streptococcus pyogenes, D783A mutant. 7BJ3 ; 2.6 ; ScpA from Streptococcus pyogenes, S512A active site mutant 2QZF ; 14.0 ; SCR1 of DAF from 1ojv fitted into cryoEM density 2QZH ; 14.0 ; SCR2/3 of DAF from the NMR structure 1nwv fitted into a cryoEM reconstruction of CVB3-RD complexed with DAF 2VXL ; 2.7 ; Screening a Limited Structure-based Library Identifies UDP-GalNAc- Specific Mutants of alpha-1,3 Galactosyltransferase 2VXM ; 2.82 ; Screening a Limited Structure-based Library Identifies UDP-GalNAc- Specific Mutants of alpha-1,3 Galactosyltransferase 1WCC ; 2.2 ; screening for fragment binding by X-ray crystallography 2X0Y ; 2.25 ; Screening-based discovery of drug-like O-GlcNAcase inhibitor scaffolds 8HOA ; 1.676 ; ScRIPK mutant K124R 8HOD ; 1.95 ; ScRIPK MUTANT-S253A, T254A 8HO6 ; 2.1 ; ScRIPK WT 4NPA ; 2.1 ; Scrystal structure of protein with unknown function from Vibrio cholerae at P22121 spacegroup 7AWA ; 3.5 ; SctV (SsaV) cytoplasmic domain 7TUS ; 2.4 ; Sculpting a uniquely reactive cysteine residue for site-specific antibody conjugation 3STD ; 1.65 ; SCYTALONE DEHYDRATASE AND CYANOCINNOLINE INHIBITOR 2STD ; 2.1 ; SCYTALONE DEHYDRATASE COMPLEXED WITH TIGHT-BINDING INHIBITOR CARPROPAMID 5STD ; 1.95 ; SCYTALONE DEHYDRATASE PLUS INHIBITOR 2 6STD ; 1.8 ; SCYTALONE DEHYDRATASE PLUS INHIBITOR 3 7STD ; 1.8 ; SCYTALONE DEHYDRATASE PLUS INHIBITOR 4 7PLH ; 3.57 ; Scytonema hofmannii TnsC bound to AMPPNP and DNA 6WJN ; 5.7 ; SD-like state of human 26S Proteasome with non-cleavable M1-linked hexaubiquitin and E3 ubiquitin ligase E6AP/UBE3A 8R1C ; 2.2 ; SD1-2 Fab in complex with SARS-CoV-2 BA.2.12.1 Spike Glycoprotein 8R1D ; 2.37 ; SD1-3 Fab in complex with SARS-CoV-2 BA.2.12.1 Spike Glycoprotein 8D48 ; 3.7 ; sd1.040 Fab in complex with SARS-CoV-2 Spike 2P glycoprotein 8ACA ; 2.54 ; SDBC DR_0644 subunit, only-Cu Superoxide Dismutase 6CP0 ; 3.01 ; SdcA in complex with the E2, UbcH5C 7FT8 ; 2.4 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with NCL-00024671 7FT6 ; 1.85 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with POB0008 7FT5 ; 1.77 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with POB0093 7FSY ; 2.8 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1148165337 7FTB ; 2.22 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1198269757 7FSX ; 1.91 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1328078283 7FSQ ; 2.07 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1429867185 7FSV ; 2.25 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1454310449 7FTC ; 1.87 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1509711879 7FSP ; 1.86 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1650168321 7FSW ; 2.14 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z169675004 7FSI ; 2.31 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z18197050 7FSK ; 2.4 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z1954800564 7FSO ; 1.9 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z198195770 7FT1 ; 2.11 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z2204875953 7FTA ; 2.03 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z228589380 7FT2 ; 2.04 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z235449082 7FSN ; 2.4 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z254580486 7FST ; 1.98 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z26968795 7FTD ; 1.8 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z27782662 7FT3 ; 2.05 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z291279160 7FSZ ; 2.05 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z3006151474 7FSH ; 2.11 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z32367954 7FT9 ; 1.77 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z45636695 7FT4 ; 2.17 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z48847594 7FSR ; 2.29 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z54615640 7FT0 ; 2.45 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z56767614 7FSG ; 2.02 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z56772132 7FT7 ; 1.78 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z57127349 7FSJ ; 1.97 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z57744712 7FSU ; 1.97 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z729726784 7FSL ; 2.38 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z730649594 7FSM ; 2.1 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z763030030 7FSS ; 2.11 ; SDCBP PanDDA analysis group deposition -- The PDZ domans of SDCBP in complex with Z839706072 7N99 ; ; SDE2 SAP domain apo structure 6WTG ; 2.63 ; SdeA DUB Domain in complex with Ubiquitin 5YSK ; 2.403 ; SdeA mART-C domain EE/AA apo 5YSI ; 1.546 ; SdeA mART-C domain EE/AA NCA complex 5YSJ ; 2.059 ; SdeA mART-C domain WT apo 1A15 ; 2.2 ; SDF-1ALPHA 6C12 ; 2.15 ; SDHA-SDHE complex 4Y15 ; 2.835 ; SdiA in complex with 3-oxo-C6-homoserine lactone 4Y17 ; 2.84 ; SdiA in complex with 3-oxo-C8-homoserine lactone 4Y13 ; 3.096 ; SdiA in complex with octanoyl-rac-glycerol 7XSI ; 2.7 ; SdnG, a Diels Alderase catalyzed the formation of norbornene skeleton in Sordarin biosynthetic pathway 7BSX ; 2.0 ; SDR protein NapW-NADP 7BTM ; 2.08312 ; SDR protein/resistance protein NapW 5AJL ; 3.45 ; Sdsa sulfatase tetragonal 5A23 ; 2.41 ; SdsA sulfatase triclinic form 7MY6 ; 2.02 ; Se-CrtE C-term His-tag with IPP added 7MY7 ; 2.36 ; Se-CrtE N-term His-tag structure 7E1D ; 2.002 ; Se-DBD 8K5U ; 2.15 ; Se-glycosyltransferase RsSenB 7QE3 ; 2.2 ; Se-M variant of B-trefoil lectin from Salpingoeca rosetta in complex with GalNAc 7QOC ; 2.3 ; Se-Met derivative structure of a small alarmone hydrolase (RelH) from Corynebacterium glutamicum 4A7P ; 3.403 ; Se-Met derivatized UgdG, UDP-glucose dehydrogenase from Sphingomonas elodea 2Y3G ; 1.91 ; Se-Met form of Cupriavidus metallidurans CH34 CnrXs 6IQO ; 2.11 ; Se-Met L45M Programmed Cell Death 5 protein from Sulfolobus solfataricus 8Q28 ; 1.8 ; Se-Met labelled TtX122A - A domain of unknown function from the Teredinibacter turnerae protein TERTU_3803 3GYO ; 3.1 ; Se-Met Rtt106p 6OI7 ; 2.9 ; Se-Met structure of apo- Escherichia coli dGTPase 4ZE9 ; 2.65 ; Se-PBP AccA from A. tumefaciens C58 in complex with agrocinopine A 5OQ2 ; 2.3 ; Se-SAD structure of the functional region of Cwp19 from Clostridium difficile 1BGK ; ; SEA ANEMONE TOXIN (BGK) WITH HIGH AFFINITY FOR VOLTAGE DEPENDENT POTASSIUM CHANNEL, NMR, 15 STRUCTURES 7MI2 ; 1.4 ; Seb1-G476S RNA binding domain 3JRP ; 2.6 ; SEC13 with NUP145C (AA109-179) insertion blade 3MZK ; 2.69 ; Sec13/Sec16 complex, S.cerevisiae 3MZL ; 2.8 ; Sec13/Sec31 edge element, loop deletion mutant 2E2X ; 2.5 ; Sec14 Homology Module of Neurofibromin in complex with phosphatitylethanolamine 1IFQ ; 2.4 ; Sec22b N-terminal domain 3DKN ; 8.7 ; Sec61 in the Canine ribosome-channel complex from the endoplasmic reticulum 4JMI ; 1.5 ; Sec7 domain of ARNO, an exchange factor, at 1.5 Angstrom resolution 1R8M ; 1.7 ; SEC7 DOMAIN OF THE ARF EXCHANGE FACTOR ARNO WITH BREFELDIN A-SENSITIZING MUTATIONS 1PBV ; 2.0 ; SEC7 DOMAIN OF THE EXCHANGE FACTOR ARNO 6GOX ; 3.5 ; SecA 5K9T ; 2.6 ; SecA-N68, a C-terminal truncation of the SecA ATPase from E. coli 2CG6 ; 1.55 ; Second and third fibronectin type I module pair (crystal form I). 2CG7 ; 1.2 ; SECOND AND THIRD FIBRONECTIN TYPE I MODULE PAIR (CRYSTAL FORM II). 1VRY ; ; Second and Third Transmembrane Domains of the Alpha-1 Subunit of Human Glycine Receptor 1QI6 ; 2.5 ; SECOND APO FORM OF AN NADP DEPENDENT ALDEHYDE DEHYDROGENASE WITH GLU250 SITUATED 3.7 A FROM CYS284 2K2W ; ; Second BRCT domain of NBS1 5N18 ; 1.45 ; Second Bromodomain (BD2) from Candida albicans Bdf1 bound to an imidazopyridine (compound 2) 5N13 ; 1.2 ; Second Bromodomain (BD2) from Candida albicans Bdf1 in the unbound form 5TCK ; 1.95 ; Second Bromodomain from Leishmania donovani LdBPK.091320 complexed with Bromosporine 7UG5 ; 1.8 ; Second bromodomain of BRD3 liganded with BMS-536924 5U9N ; 2.4 ; Second Bromodomain of cdg4_1340 from Cryptosporidium parvum, complexed with bromosporine 6DBC ; 1.05 ; Second bromodomain of Human BRD2 with a Tetrahydroquinoline analogue 5I1Q ; 1.5 ; Second bromodomain of TAF1 bound to a pyrrolopyridone compound 2KLT ; ; Second Ca2+ binding domain of NCX1.3 2FWU ; ; Second Ca2+ binding domain of the Na,Ca-exchanger (NCX1) 1BHD ; 2.0 ; SECOND CALPONIN HOMOLOGY DOMAIN FROM UTROPHIN 7URP ; 1.03 ; Second cohesin module from Sca5 of Ruminococcus bromii 7ZVC ; 1.85 ; Second crystal form of the mature glutamic-class prolyl-endopeptidase neprosin at 1.85 A resolution. 6YET ; ; Second EH domain of AtEH1/Pan1 6YEU ; ; Second EH domain of AtEH1/Pan1 2V9S ; 2.0 ; Second LRR domain of human Slit2 1Q8L ; ; Second Metal Binding Domain of the Menkes ATPase 1CX1 ; ; SECOND N-TERMINAL CELLULOSE-BINDING DOMAIN FROM CELLULOMONAS FIMI BETA-1,4-GLUCANASE C, NMR, 22 STRUCTURES 4E4P ; 1.92 ; Second native structure of Xylanase A1 from Paenibacillus sp. JDR-2 6GVK ; 1.55 ; Second pair of Fibronectin type III domains of integrin beta4 (T1663R mutant) bound to the bullous pemphigoid antigen BP230 (BPAG1e) 6GVL ; 2.05 ; Second pair of Fibronectin type III domains of integrin beta4 bound to the bullous pemphigoid antigen BP230 (BPAG1e) 2KQC ; ; Second PBZ domain of human APLF protein 2KQE ; ; Second PBZ domain of human APLF protein in complex with ribofuranosyladenosine 1GM1 ; ; Second PDZ Domain (PDZ2) of PTP-BL 3LNX ; 1.642 ; Second PDZ domain from human PTP1E 3LNY ; 1.3 ; Second PDZ domain from human PTP1E in complex with RA-GEF2 peptide 5E11 ; 1.8 ; Second PDZ domain of Ligand of Numb protein X 2 by Laue crystallography (no electric field) 1QG9 ; ; SECOND REPEAT (IS2MIC) FROM VOLTAGE-GATED SODIUM CHANNEL 1LDR ; ; SECOND REPEAT OF THE LDL RECEPTOR LIGAND-BINDING DOMAIN 7RCD ; 2.448 ; Second stage reengineered variant of I-OnuI targeting human PD1 gene with activity enhancing substitutions 4CGW ; 3.001 ; Second TPR of Spaghetti (RPAP3) bound to HSP90 peptide SRMEEVD 5M9Z ; ; Second zinc-binding domain from yeast Pcf11 2XPC ; 1.49 ; Second-generation sulfonamide inhibitors of MurD: Activity optimisation with conformationally rigid analogues of D-glutamic acid 4PZY ; 1.88 ; Second-site screening of K-Ras in the presence of covalently attached first-site ligands 4PZZ ; 1.403 ; Second-site screening of K-Ras in the presence of covalently attached first-site ligands 4Q01 ; 1.291 ; Second-site screening of K-Ras in the presence of covalently attached first-site ligands 4Q02 ; 1.702 ; Second-site screening of K-Ras in the presence of covalently attached first-site ligands 4Q03 ; 1.201 ; Second-site screening of K-Ras in the presence of covalently attached first-site ligands 1CNW ; 2.0 ; SECONDARY INTERACTIONS SIGNIFICANTLY REMOVED FROM THE SULFONAMIDE BINDING POCKET OF CARBONIC ANHYDRASE II INFLUENCE BINDING CONSTANTS 1CNX ; 1.9 ; SECONDARY INTERACTIONS SIGNIFICANTLY REMOVED FROM THE SULFONAMIDE BINDING POCKET OF CARBONIC ANHYDRASE II INFLUENCE BINDING CONSTANTS 1CNY ; 2.3 ; SECONDARY INTERACTIONS SIGNIFICANTLY REMOVED FROM THE SULFONAMIDE BINDING POCKET OF CARBONIC ANHYDRASE II INFLUENCE BINDING CONSTANTS 1NTX ; ; SECONDARY STRUCTURE DETERMINATION FOR ALPHA-NEUROTOXIN FROM DENDROASPIS POLYLEPIS POLYLEPIS BASED ON SEQUENCE SPECIFIC PROTON NUCLEAR MAGNETIC RESONANCE ASSIGNMENTS 8BAV ; 2.3 ; Secretagogin (human) in complex with its target peptide from SNAP-25 8BAN ; 2.35 ; Secretagogin (mouse) in complex with its target peptide from SNAP-25 8BBJ ; 2.65 ; Secretagogin (mouse) in complex with its target peptide from Syntaxin-4 3FV3 ; 1.85 ; Secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A 3PVK ; 1.27 ; Secreted aspartic protease 2 in complex with benzamidine 1ZAP ; 2.5 ; SECRETED ASPARTIC PROTEASE FROM C. ALBICANS 3Q70 ; 1.4 ; Secreted aspartic protease in complex with ritonavir 2QZW ; 2.05 ; Secreted aspartic proteinase (Sap) 1 from Candida albicans 2H6S ; 2.2 ; Secreted aspartic proteinase (Sap) 3 from Candida albicans 2H6T ; 1.9 ; Secreted aspartic proteinase (Sap) 3 from Candida albicans complexed with pepstatin A 2QZX ; 2.5 ; Secreted aspartic proteinase (Sap) 5 from Candida albicans 1EAG ; 2.1 ; Secreted aspartic proteinase (SAP2) from Candida albicans complexed with A70450 4JDN ; 2.0 ; Secreted Chlamydial Protein PGP3, C-terminal Domain 4JDO ; 2.3 ; Secreted chlamydial protein pgp3, coiled-coil deletion 4JDM ; 3.1 ; Secreted Chlamydial Protein PGP3, full-length 2FP1 ; 1.55 ; Secreted Chorismate Mutase from Mycobacterium tuberculosis 2FP2 ; 1.64 ; Secreted Chorismate Mutase from Mycobacterium tuberculosis 7VS2 ; 2.5 ; secreted fungal effector protein MoErs1 5HZL ; 2.75 ; Secreted Internalin-like protein Lmo2445 from Listeria monocytogenes 6G5J ; 1.85 ; Secreted phospholipase A2 type X in complex with ligand 3HE1 ; 2.098 ; Secreted protein Hcp3 from Pseudomonas aeruginosa. 6BQM ; 2.2 ; Secreted serine protease VesC from Vibrio cholerae 6I1M ; 1.6 ; Secreted type 1 cystatin from Fasciola hepatica 7JG2 ; 3.3 ; Secretory Immunoglobin A (SIgA) 1AWT ; 2.55 ; SECYPA COMPLEXED WITH HAGPIA 1AWS ; 2.55 ; SECYPA COMPLEXED WITH HAGPIA (PSEUDO-SYMMETRIC MONOMER) 6CQS ; 1.7 ; Sediminispirochaeta smaragdinae SPS-1 metallo-beta-lactamase 5BY2 ; 2.8 ; Sedoheptulose 7-phosphate isomerase from Colwellia psychrerythraea strain 34H 8OT4 ; 2.97 ; seeded Abeta(1-40) amyloid fibril (morphology I) 2K3B ; ; Seeing the Invisible: Structures of Excited Protein States by Relaxation Dispersion NMR 6N3B ; 3.8 ; SegA-asym, conformation of TDP-43 low complexity domain segment A asym 6N3A ; 3.3 ; SegA-long, conformation of TDP-43 low complexity domain segment A long 6N37 ; 3.8 ; SegA-sym, conformation of TDP-43 low complexity domain segment A sym 6N3C ; 3.3 ; SegB, conformation of TDP-43 low complexity domain segment A 6CB9 ; 1.1 ; Segment AALQSS from the low complexity domain of TDP-43, residues 328-333 6CEW ; 1.2 ; Segment AMMAAA from the low complexity domain of TDP-43, residues 321-326 6AXZ ; 0.75 ; Segment from bank vole prion protein 168-176 QYNNQNNFV 6BTK ; 1.1 ; Segment from bank vole prion protein 168-176 QYNNQNNFV 7RVI ; 1.05 ; Segment from naked mole rat (elk T174S) prion protein 168-176 QYNNQNSFV 7RVG ; 1.0 ; Segment from rabbit/pig prion protein 168-176 QYSNQNSFV 7RVC ; 1.002 ; Segment from the human prion protein 168-176 EYSNQNNFV 7RVJ ; 1.0 ; Segment from the human prion protein 169-175 YSNQNNF 7RVD ; 1.003 ; Segment from the mouse/cow prion protein 168-176 QYSNQNNFV 7RVE ; 0.85 ; Segment from the S170N mutant of the human prion protein 168-176 EYNNQNNFV 7RVF ; 1.0 ; Segment from the Y169F mutant of the bank vole prion protein 168-176 QFNNQNNFV 7RVL ; 1.0 ; Segment from the Y169F mutant of the human prion protein 168-176 EFSNQNNFV 7RVK ; 1.0 ; Segment from Y169G mutant of the human prion protein 169-175 GSNQNNF 6CF4 ; 0.75 ; Segment NFGTFS, with familial mutation A315T and phosphorylated threonine, from the low complexity domain of TDP-43, residues 312-317 6QY3 ; 9.1 ; Segment of the Cas1-Cas2-Csn2-DNA filament complex from the Type II-A CRISPR-Cas system 3DG1 ; 1.66 ; Segment SSTNVG derived from IAPP 2JVO ; ; Segmental isotope labeling of Npl3 2JVR ; ; Segmental Isotope Labeling of Npl3p 3RN3 ; 1.45 ; SEGMENTED ANISOTROPIC REFINEMENT OF BOVINE RIBONUCLEASE A BY THE APPLICATION OF THE RIGID-BODY TLS MODEL 7RSL ; 3.45 ; Seipin forms a flexible cage at lipid droplet formation sites 8PC2 ; 2.8 ; SelDeg51 in complex with FKBP51FK1 domain and pVHL:EloB:EloC 1KMB ; 2.1 ; SELECTIN-LIKE MUTANT OF MANNOSE-BINDING PROTEIN A 3L9J ; 2.1 ; Selection of a novel highly specific TNFalpha antagonist: Insight from the crystal structure of the antagonist-TNFalpha complex 4X0M ; 1.68 ; Selection of fragments for kinase inhibitor design: decoration is key 4X2F ; 1.49 ; Selection of fragments for kinase inhibitor design: decoration is key 4X2G ; 1.51 ; Selection of fragments for kinase inhibitor design: decoration is key 4X2J ; 1.69 ; Selection of fragments for kinase inhibitor design: decoration is key 4X2K ; 1.69 ; Selection of fragments for kinase inhibitor design: decoration is key 4X2N ; 1.8 ; Selection of fragments for kinase inhibitor design: decoration is key 4X3J ; 2.5 ; Selection of fragments for kinase inhibitor design: decoration is key 4JW2 ; 1.9 ; Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep) 4JW3 ; 2.6 ; Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep) 4I5M ; 1.801 ; Selective & Brain-Permeable Polo-like Kinase-2 (Plk-2) Inhibitors that Reduce -Synuclein Phosphorylation in Rat Brain 4I5P ; 1.738 ; Selective & Brain-Permeable Polo-like Kinase-2 (Plk-2) Inhibitors that Reduce -Synuclein Phosphorylation in Rat Brain 4I6B ; 1.8 ; Selective & Brain-Permeable Polo-like Kinase-2 (Plk-2) Inhibitors that Reduce -Synuclein Phosphorylation in Rat Brain 4I6F ; 2.9 ; Selective & Brain-Permeable Polo-like Kinase-2 (Plk-2) Inhibitors that Reduce -Synuclein Phosphorylation in Rat Brain 4I6H ; 1.91 ; Selective & Brain-Permeable Polo-like Kinase-2 (Plk-2) Inhibitors that Reduce alpha-Synuclein Phosphorylation in Rat Brain 4MGI ; 2.8 ; Selective activation of Epac1 and Epac2 4MGK ; 2.7 ; Selective activation of Epac1 and Epac2 4MGY ; 2.6 ; Selective activation of Epac1 and Epac2 4MGZ ; 3.0 ; Selective activation of Epac1 and Epac2 4MH0 ; 2.4 ; Selective activation of Epac1 and Epac2 6ST2 ; 1.79 ; Selective Affimers Recognize BCL-2 Family Proteins Through Non-Canonical Structural Motifs 6STJ ; 2.2 ; Selective Affimers Recognize BCL-2 Family Proteins Through Non-Canonical Structural Motifs 2GMX ; 3.5 ; Selective Aminopyridine-Based C-Jun N-terminal Kinase inhibitors with cellular activity 2UWL ; 1.9 ; Selective and Dual Action Orally Active Inhibitors of Thrombin and Factor Xa 2UWO ; 1.75 ; Selective and Dual Action Orally Active Inhibitors of Thrombin and Factor Xa 5KEZ ; 1.83 ; Selective and potent inhibition of the glycosidase human amylase by the short and extremely compact peptide piHA from mRNA display 3LC5 ; 2.62 ; Selective Benzothiophine Inhibitors of Factor IXa 5FQP ; 1.88 ; Selective estrogen receptor downregulator antagonists: Tetrahydroisoquinoline phenols 1. 5FQR ; 1.88 ; Selective estrogen receptor downregulator antagonists: Tetrahydroisoquinoline phenols 2. 5FQS ; 1.94 ; Selective estrogen receptor downregulator antagonists: Tetrahydroisoquinoline phenols 3. 5FQT ; 1.99 ; Selective estrogen receptor downregulator antagonists: Tetrahydroisoquinoline phenols 4. 5FQV ; 1.74 ; Selective estrogen receptor downregulator antagonists: Tetrahydroisoquinoline phenols 5. 6I1J ; 2.35 ; Selective formation of trinuclear transition metal centers in a trimeric helical peptide 5KXA ; 2.59 ; Selective Inhibition of Autotaxin is Effective in Mouse Models of Liver Fibrosis 6NLV ; 1.794 ; Selective inhibition of carbonic anhydrase IX activity, using compound SLC-149, displays limited anticancer effects in breast cancer cell lines 6NM0 ; 1.44 ; Selective inhibition of carbonic anhydrase IX activity, using compound SLC-149, displays limited anticancer effects in breast cancer cell lines 4MYQ ; 1.9 ; Selective Inhibition of the Catalytic Domain Of Human Phosphodiesterase 4B With A-33 1WO9 ; ; Selective inhibition of trypsins by insect peptides: role of P6-P10 loop 4C1I ; 2.4 ; Selective Inhibitors of PDE2, PDE9, and PDE10: Modulators of Activity of the Central Nervous System 1C4U ; 2.1 ; SELECTIVE NON ELECTROPHILIC THROMBIN INHIBITORS WITH CYCLOHEXYL MOIETIES. 1C4V ; 2.1 ; SELECTIVE NON ELECTROPHILIC THROMBIN INHIBITORS WITH CYCLOHEXYL MOIETIES. 1C4Y ; 2.7 ; SELECTIVE NON-ELECTROPHILIC THROMBIN INHIBITORS 2WHW ; 2.2 ; Selective oxidation of carbolide C-H bonds by engineered macrolide P450 monooxygenase 2WI9 ; 2.0 ; Selective oxidation of carbolide C-H bonds by engineered macrolide P450 monooxygenase 5CFW ; 1.15 ; Selective pharmacological inhibition of the CREB binding protein bromodomain regulates inflammatory cytokines in macrophages and RGS4 in neurons 5CGP ; 1.96 ; Selective pharmacological inhibition of the CREB binding protein bromodomain regulates inflammatory cytokines in macrophages and RGS4 in neurons 6DGT ; 2.601 ; Selective PI3K beta inhibitor bound to PI3K delta 3H4V ; 2.4 ; Selective screening and design to identify inhibitors of leishmania major pteridine reductase 1 5C45 ; 2.93 ; Selective Small Molecule Inhibition of the FMN Riboswitch 5KX9 ; 2.9 ; Selective Small Molecule Inhibition of the FMN Riboswitch 4AOF ; 3.3 ; Selective small molecule inhibitor discovered by chemoproteomic assay platform reveals regulation of Th17 cell differentiation by PI3Kgamma 3TC5 ; 1.4 ; Selective targeting of disease-relevant protein binding domains by O-phosphorylated natural product derivatives 8GT9 ; 2.0 ; Selective targeting of the Beclin 2-Atg14L coiled coil complex by stapled peptides promotes autophagy and endolysosomal trafficking of GPCRs 8GU7 ; 2.6 ; Selective targeting of the Beclin 2-Atg14L coiled coil complex by stapled peptides promotes autophagy and endolysosomal trafficking of GPCRs 1GJ4 ; 1.81 ; SELECTIVITY AT S1, H2O DISPLACEMENT, UPA, TPA, SER190/ALA190 PROTEASE, STRUCTURE-BASED DRUG DESIGN 1GJ5 ; 1.73 ; SELECTIVITY AT S1, H2O DISPLACEMENT, UPA, TPA, SER190/ALA190 PROTEASE, STRUCTURE-BASED DRUG DESIGN 4TPG ; 3.91 ; Selectivity mechanism of a bacterial homologue of the human drug peptide transporters PepT1 and PepT2 4TPH ; 3.155 ; Selectivity mechanism of a bacterial homologue of the human drug peptide transporters PepT1 and PepT2 4TPJ ; 3.201 ; Selectivity mechanism of a bacterial homologue of the human drug peptide transporters PepT1 and PepT2 316D ; 3.0 ; Selectivity of F8-actinomycin D for RNA:DNA hybrids and its anti-leukemia activity 2R8G ; 2.7 ; Selectivity of Nucleoside Triphosphate Incorporation Opposite 1,N2-Propanodeoxyguanosine (PdG) by the Sulfolobus solfataricus DNA Polymerase Dpo4 Polymerase 2R8H ; 2.48 ; Selectivity of Nucleoside Triphosphate Incorporation Opposite 1,N2-Propanodeoxyguanosine (PdG) by the Sulfolobus solfataricus DNA Polymerase Dpo4 Polymerase 2R8I ; 2.38 ; Selectivity of Nucleoside Triphosphate Incorporation Opposite 1,N2-Propanodeoxyguanosine (PdG) by the Sulfolobus solfataricus DNA Polymerase Dpo4 Polymerase 5TO8 ; 1.9849 ; Selectivity switch between FAK and Pyk2: Macrocyclization of FAK inhibitors improves Pyk2 potency 5TOB ; 2.117 ; Selectivity switch between FAK and Pyk2: Macrocyclization of FAK inhibitors improves Pyk2 potency 3TWH ; 1.79 ; Selenium Derivatized RNA/DNA Hybrid in complex with RNase H Catalytic Domain D132N Mutant 2R7Y ; 1.8 ; Selenium Derivatized RNA/DNA Hybrid in complex with RNase H CATALYTIC DOMAIN MUTANT D132N 6OP2 ; 1.9 ; Selenium incorporated FeMo-cofactor of nitrogenase from azotobacter vinelandii at high concentration of selenium 6OP3 ; 1.6 ; Selenium incorporated FeMo-cofactor of nitrogenase from Azotobacter vinelandii with low concentration of selenium 5BVG ; 1.6 ; Selenium incorporated nitrogenase MoFe-protein (Av1-Se2B) from A. vinelandii 6OP1 ; 1.7 ; Selenium incorporated, carbon monoxide inhibited FeMo-cofactor of azotobacter vinelandii 3QMP ; 1.1 ; Selenium SAD structure solution of proteinase K grown in SO4-less solution and soaked in selenate. 3U5S ; 1.5 ; Selenium Substituted Human Augmenter of Liver Regeneration 1VRO ; 1.1 ; Selenium-Assisted Nucleic Acid Crystallography: Use of Phosphoroselenoates for MAD Phasing of a DNA Structure 7TPW ; 1.18 ; Selenium-free nitrogenase Fe protein (Av2) from A. vinelandii 7TPX ; 1.35 ; Selenium-free nitrogenase Fe protein (Av2) from A. vinelandii 7TPV ; 1.49 ; Selenium-free nitrogenase Fe protein (Av2) from A. vinelandii (5mM KSeCN Soaked) 7TPY ; 1.48 ; Selenium-free nitrogenase Fe protein (Av2) from A. vinelandii (nucleotide control) 7TPZ ; 1.71 ; Selenium-free nitrogenase Fe protein (Av2) from A. vinelandii (nucleotide control) 7TQJ ; 1.48 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (1 mM KSeCN) 7TQK ; 1.48 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (1 mM KSeCN) 7TPN ; 1.38 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (11 mM KSeCN) 7TQH ; 1.49 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (11 mM KSeCN) 7TQI ; 1.47 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (11 mM KSeCN) 7TNE ; 1.39 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN) 7TQC ; 1.53 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN) 7TQE ; 1.59 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN) 7TQF ; 1.45 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN) 7T4H ; 1.51 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN, with Av1) 7TQ0 ; 1.81 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN, with Av1) 7TQ9 ; 1.6 ; Selenium-incorporated nitrogenase Fe protein (Av2-Se) from A. vinelandii (22 mM KSeCN, with Av1) 7TPO ; 1.35 ; Selenium-incorporated nitrogenase Fe-protein (Av2-Se) from A. vinelandii (1 mM KSeCN) 6OP4 ; 2.3 ; Selenium-incorporated, carbon monoxide-inhibited, reactivated FeMo-cofactor of nitrogenase from Azotobacter vinelandii 6JKW ; 2.29 ; Seleno-methionine PNGM-1 from deep-sea sediment metagenome 5T9E ; 2.03 ; Seleno-methionine Prephenate Dehydrogenase from Soybean 4EM2 ; 2.08 ; seleno-methionine staphylococcus aureus MarR in complex with salicylate 7QBH ; 1.223 ; Selenocarbamates as a novel prodrug-based approach towards Carbonic Anhydrase inhibition (hCA II) 6SWM ; 2.77 ; selenol bound carbonic anhydrase I 6HWZ ; 1.64 ; Selenols: a new class of Carbonic Anhydrase inhibitors 6HX5 ; 1.44 ; Selenols: a new class of Carbonic Anhydrase inhibitors 7ENM ; 1.696 ; Selenomethionine anti-Cas protein 5CK1 ; 1.835 ; selenomethionine BT4246 5E1N ; 1.0 ; Selenomethionine Ca2+-Calmodulin from Paramecium tetraurelia qFit disorder model 5E1K ; 1.0 ; Selenomethionine Ca2+-Calmodulin from Paramecium tetraurelia SAD data 7OC6 ; 2.01 ; Selenomethionine derivative of alpha-humulene synthase AsR6 from Sarocladium schorii 6Y8G ; 1.8 ; selenomethionine derivative of ferulic acid esterase (FAE) 2GUX ; 2.0 ; Selenomethionine derivative of griffithsin 6HNL ; 2.2 ; Selenomethionine derivative of IdmH 96-104 loop truncation variant 3BU9 ; 1.4 ; Selenomethionine derivative of monomine L57,63,87,146M mutant 4ACY ; 1.69 ; Selenomethionine derivative of the GH99 endo-alpha-mannosidase from Bacteroides thetaiotaomicron 6SWF ; 2.601 ; Selenomethionine derivative of the REC domain of AraT, a response regulator from Geobacillus stearothermophilus 4WMO ; 2.3 ; Selenomethionine derivative of Xenopus laevis embryonic epidermal lectin carbohydrate-binding domain 6E9C ; 3.2 ; Selenomethionine Derivative Structure of A Bacterial Homolog to Human Lysosomal Transporter, Spinster 8GLB ; 2.1 ; Selenomethionine Derivatized Citrate Synthase (CitA) in Mycobacterium tuberculosis with Pyruvate 4N7D ; 2.1 ; Selenomethionine incorporated Bla g 4 7EEH ; 2.0 ; Selenomethionine labeled Fe(II)/(alpha)ketoglutarate-dependent dioxygenase TqaL 7TXO ; 2.5 ; Selenomethionine Labeled Structure of RexT 5NYF ; 2.2 ; Selenomethionine labelled Anbu (Gly-1) mutant from Hyphomicrobium sp. strain MC1 6CHE ; 1.1 ; Selenomethionine mutant (A34Sem) of protein GB1 examined by X-ray diffraction 6CPZ ; 1.12 ; Selenomethionine mutant (I6Sem) of protein GB1 examined by X-ray diffraction 7V9F ; 2.5 ; Selenomethionine mutant (L740Sem) of BEN4 domain of protein Bend3 with DNA 6C9O ; 1.2 ; Selenomethionine mutant (V29Sem) of protein GB1 examined by X-ray diffraction 6CT8 ; 2.62 ; Selenomethionine structure of N-truncated R2-type pyocin tail fiber at 2.6 angstrom resolution 1GSJ ; 1.85 ; Selenomethionine substituted N-acetyl-L-glutamate kinase from Escherichia coli complexed with its substrate n-acetyl-L-glutamate and its substrate analog AMPPNP 4PHS ; 1.54 ; Selenomethionine substituted structure of domain of unknown function 1792 (DUF1792) 1JJK ; 3.0 ; Selenomethionine Substitution of Orotidine-5'-monophosphate Decarboxylase from E. coli Causes a Change in Crystal Contacts and Space Group 6CNE ; 1.2 ; Selenomethionine variant (V29SeM) of protein GB1 6R7U ; 1.6 ; Selenomethionine variant of Tannerella forsythia promirolysin mutant E225A 5XMW ; 3.0 ; Selenomethionine-derivated ZHD 7VJP ; 1.594 ; Selenomethionine-derived Pectobacterium phage ZF40 apo-Aca2 7FA3 ; 1.847 ; Selenomethionine-derived structure of Aca1 in Pseudomonas phage JBD30 8HN2 ; 2.3 ; Selenomethionine-labelled soluble domain of Rieske iron-sulfur protein from chlorobaculum tepidum 6TVH ; 2.651 ; Selenomethionine-substituted HPF1 from Nematostella vectensis 7EWF ; 2.85 ; Selenomethionine-substituted structure of S. cerevisiae Csn12 in complex with Thp3 and Sem1 6CCR ; 1.6 ; Selenomethionyl derivative of a GID4 fragment 1UBN ; 2.4 ; SELENOSUBTILISIN BPN 8FBX ; 2.25 ; Selenosugar synthase SenB from Variovorax paradoxus 2ZFN ; 1.9 ; Self-acetylation mediated histone H3 lysine 56 acetylation by rtt109 7R96 ; 5.68 ; Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 5MUE ; 2.397 ; Self-assembled alpha-Tocopherol Transfer Protein Nanoparticles Promote Vitamin E Delivery Across an Endothelial Barrier 5MUG ; 2.42 ; Self-assembled alpha-Tocopherol Transfer Protein Nanoparticles Promote Vitamin E Delivery Across an Endothelial Barrier 7OPU ; 1.7 ; Self-assembled crystal structure of the computationally designed SAKe6BE-3HH protein 5LVS ; 1.42 ; Self-assembled protein-aromatic foldamer complexes with 2:3 and 2:2:1 stoichiometries 7URK ; 3.12 ; Self-assembling DNA tensegrity triangle motif with intercalating internal Cy3 modification 6WSQ ; 2.807 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J10 immobile Holliday junction 6WSR ; 2.85 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J10 immobile Holliday junction 6WSS ; 3.001 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J15 immobile Holliday junction 6WST ; 3.055 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J16 immobile Holliday junction 6WSU ; 2.756 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J19 immobile Holliday junction 6WSV ; 3.101 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J20 immobile Holliday junction 6WSW ; 3.12 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J21 immobile Holliday junction 6WSX ; 3.122 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J22 immobile Holliday junction 6WSY ; 3.053 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J23 immobile Holliday junction 6WSZ ; 3.053 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J24 immobile Holliday junction 6WT0 ; 3.106 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J25 immobile Holliday junction 6WRJ ; 3.129 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J26 immobile Holliday junction 6WRI ; 3.057 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J28 immobile Holliday junction 6WT1 ; 3.11 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J29 immobile Holliday junction 6WQG ; 3.003 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J3 immobile Holliday junction 6WRC ; 3.178 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J31 immobile Holliday junction 6WR9 ; 3.071 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J32 immobile Holliday junction 6WR7 ; 3.11 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J33 immobile Holliday junction 6WRA ; 3.0 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J34 immobile Holliday junction 6WR5 ; 3.063 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J35 immobile Holliday junction 6WR3 ; 3.173 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J36 immobile Holliday junction 6WRB ; 3.15 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J5 immobile Holliday junction 6X8B ; 2.899 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J6 immobile Holliday junction 6WSN ; 3.052 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J7 immobile Holliday junction 6WSO ; 3.106 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J8 immobile Holliday junction 6WSP ; 3.049 ; Self-assembly of a 3D DNA crystal lattice (4x5 duplex version) containing the J9 immobile Holliday junction 6X8C ; 3.098 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J1 immobile Holliday junction 6XEJ ; 2.807 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J10 immobile Holliday junction 6XEK ; 2.85 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J14 immobile Holliday junction 6XEL ; 3.001 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J15 immobile Holliday junction 6XEM ; 3.055 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J16 immobile Holliday junction 6XFC ; 2.756 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J19 immobile Holliday junction 6XFD ; 3.101 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J20 immobile Holliday junction 6XFE ; 3.12 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J21 immobile Holliday junction 6XFF ; 3.122 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J22 immobile Holliday junction 6XFG ; 3.053 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J23 immobile Holliday junction 6XFW ; 3.053 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J24 immobile Holliday junction 6XGM ; 3.11 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J25 immobile Holliday junction 6XFX ; 3.129 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J26 immobile Holliday junction 6XFY ; 3.057 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J28 immobile Holliday junction 6XFZ ; 3.113 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J29 immobile Holliday junction 6XDV ; 3.003 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J3 immobile Holliday junction 6XG0 ; 3.178 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J31 immobile Holliday junction 6XGJ ; 3.071 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J32 immobile Holliday junction 6XGN ; 3.12 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J33 immobile Holliday junction 6XGO ; 3.0 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J34 immobile Holliday junction 6XGK ; 3.063 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J35 immobile Holliday junction 6XGL ; 3.173 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J36 immobile Holliday junction 6XDW ; 3.148 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J5 immobile Holliday junction 6XDX ; 2.899 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J6 immobile Holliday junction 6XDY ; 3.06 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J7 immobile Holliday junction 6XDZ ; 3.106 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J8 immobile Holliday junction 6XEI ; 3.049 ; Self-assembly of a 3D DNA crystal lattice (4x5 junction version) containing the J9 immobile Holliday junction 7JP8 ; 3.103 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J10 immobile Holliday junction 7JP7 ; 3.207 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J16 immobile Holliday junction 7JPB ; 3.158 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J2 immobile Holliday junction 7JP6 ; 3.087 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J20 immobile Holliday junction 7JP5 ; 3.094 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J22 immobile Holliday junction 7JON ; 3.107 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J23 immobile Holliday junction 7JOL ; 3.114 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J24 immobile Holliday junction 7JOK ; 3.11 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J26 immobile Holliday junction 7JOJ ; 3.108 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J28 immobile Holliday junction 7JOI ; 3.148 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J30 immobile Holliday junction 7JOH ; 4.195 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J31 immobile Holliday junction 7JS0 ; 3.19 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J31 immobile Holliday junction with R3 symmetry 7JOG ; 3.101 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J33 immobile Holliday junction 7JS1 ; 3.152 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J33 immobile Holliday junction with R3 symmetry 7JS2 ; 3.058 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J36 immobile Holliday junction with R3 symmetry 7JRY ; 3.158 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J4 immobile Holliday junction with R3 symmetry 7JPA ; 3.164 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J5 immobile Holliday junction 7JRZ ; 3.096 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J5 immobile Holliday junction with R3 symmetry 7JPC ; 3.1 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J7 immobile Holliday junction 7JP9 ; 3.157 ; Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the J8 immobile Holliday junction 6XNA ; 3.05 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J1 immobile Holliday junction 7JFW ; 3.012 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J10 immobile Holliday junction 7JFX ; 3.21 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J16 immobile Holliday junction 7JFT ; 3.158 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J2 immobile Holliday junction 7JH8 ; 3.087 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J20 immobile Holliday junction 7JH9 ; 3.094 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J22 immobile Holliday junction 7JHA ; 3.107 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J23 immobile Holliday junction 7JHB ; 3.114 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J24 immobile Holliday junction 7JHC ; 3.11 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J26 immobile Holliday junction 6XO6 ; 3.108 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J28 immobile Holliday junction 6XO7 ; 3.105 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J30 immobile Holliday junction 6XO8 ; 4.195 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J31 immobile Holliday junction 7JHT ; 3.19 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J31 immobile Holliday junction with R3 symmetry 6XO9 ; 3.103 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J33 immobile Holliday junction 7JHU ; 3.152 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J33 immobile Holliday junction with R3 symmetry 7JHV ; 3.058 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J36 immobile Holliday junction with R3 symmetry 7JHR ; 3.158 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J4 immobile Holliday junction with R3 symmetry 7JFU ; 3.164 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J5 immobile Holliday junction 7JHS ; 3.096 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J5 immobile Holliday junction with R3 symmetry 7JFV ; 3.1 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J7 immobile Holliday junction 6XO5 ; 3.157 ; Self-assembly of a 3D DNA crystal lattice (4x6 junction version) containing the J8 immobile Holliday junction 7JKD ; 3.058 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J1 immobile Holliday junction 7JKK ; 2.794 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J10 immobile Holliday junction with R3 symmetry 7JL9 ; 3.022 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J14 immobile Holliday junction with R3 symmetry 7JLA ; 3.0 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J16 immobile Holliday junction with R3 symmetry 7JLB ; 3.007 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J19 immobile Holliday junction with R3 symmetry 7JKE ; 3.068 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J2 immobile Holliday junction 7JLC ; 3.06 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J21 immobile Holliday junction with R3 symmetry 7JLD ; 3.163 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J22 immobile Holliday junction with R3 symmetry 7JLE ; 3.017 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J23 immobile Holliday junction with R3 symmetry 7JLF ; 2.909 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J24 immobile Holliday junction with R3 symmetry 7JNJ ; 3.015 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J26 immobile Holliday junction with R3 symmetry 7JKG ; 2.851 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J3 immobile Holliday junction with R3 symmetry 7JSB ; 3.103 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J30 immobile Holliday junction with R3 symmetry 7JSC ; 2.95 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J31 immobile Holliday junction with R3 symmetry 7JNK ; 3.105 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J33 immobile Holliday junction with R3 symmetry 7JNL ; 3.005 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J34 immobile Holliday junction with R3 symmetry 7JNM ; 2.702 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J36 immobile Holliday junction with R3 symmetry 7JKH ; 3.107 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J5 immobile Holliday junction with R3 symmetry 7JKI ; 3.019 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J7 immobile Holliday junction with R3 symmetry 7JKJ ; 3.077 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble duplex version) containing the J8 immobile Holliday junction with R3 symmetry 7JK0 ; 3.058 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J1 immobile Holliday junction 7JJ5 ; 2.794 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J10 immobile Holliday junction with R3 symmetry 7JJ4 ; 3.022 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J14 immobile Holliday junction with R3 symmetry 7JJ3 ; 2.987 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J16 immobile Holliday junction with R3 symmetry 7JJ2 ; 3.007 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J19 immobile Holliday junction with R3 symmetry 7JJZ ; 3.068 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J2 immobile Holliday junction 7JIQ ; 3.06 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J21 immobile Holliday junction with R3 symmetry 7JIP ; 3.163 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J22 immobile Holliday junction with R3 symmetry 7JIO ; 3.02 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J23 immobile Holliday junction with R3 symmetry 7JIN ; 2.909 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J24 immobile Holliday junction with R3 symmetry 7JIM ; 3.015 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J26 immobile Holliday junction with R3 symmetry 7JJY ; 2.851 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J3 immobile Holliday junction with R3 symmetry 7JI9 ; 3.103 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J30 immobile Holliday junction with R3 symmetry 7JI8 ; 2.95 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J31 immobile Holliday junction with R3 symmetry 7JI7 ; 3.105 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J33 immobile Holliday junction with R3 symmetry 7JI6 ; 3.005 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J34 immobile Holliday junction with R3 symmetry 7JI5 ; 2.702 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J36 immobile Holliday junction with R3 symmetry 7JJX ; 3.107 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J5 immobile Holliday junction with R3 symmetry 7JJW ; 3.019 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J7 immobile Holliday junction with R3 symmetry 7JJ6 ; 3.077 ; Self-assembly of a 3D DNA crystal lattice (4x6 scramble junction version) containing the J8 immobile Holliday junction with R3 symmetry 2NRN ; 1.4 ; Self-assembly of coiled-coil tetramers in the 1.40 A structure of a leucine-zipper mutant 3LR2 ; 1.7 ; Self-assembly of spider silk proteins is controlled by a pH-sensitive relay 3LR6 ; 2.2 ; Self-assembly of spider silk proteins is controlled by a pH-sensitive relay 3LR8 ; 2.3 ; Self-assembly of spider silk proteins is controlled by a pH-sensitive relay 3LRD ; 2.15 ; Self-assembly of spider silk proteins is controlled by a pH-sensitive relay 1BKL ; 2.1 ; SELF-ASSOCIATED APO SRC SH2 DOMAIN 184D ; 1.8 ; SELF-ASSOCIATION OF A DNA LOOP CREATES A QUADRUPLEX: CRYSTAL STRUCTURE OF D(GCATGCT) AT 1.8 ANGSTROMS RESOLUTION 1HVV ; 2.4 ; SELF-ASSOCIATION OF THE H3 REGION OF SYNTAXIN 1A: IMPLICATIONS FOR SNARE COMPLEX ASSEMBLY 1BUF ; ; SELF-COMPLEMENTARY DNA 5'-D(CAATTG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQC ; ; SELF-COMPLEMENTARY DNA 5'-D(CACGTG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQB ; ; SELF-COMPLEMENTARY DNA 5'-D(CAGCTG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQA ; ; SELF-COMPLEMENTARY DNA 5'-D(CATATG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQD ; ; SELF-COMPLEMENTARY DNA 5'-D(CGATCG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQG ; ; SELF-COMPLEMENTARY DNA 5'-D(CGCGCG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQF ; ; SELF-COMPLEMENTARY DNA 5'-D(CGGCCG)2, NMR, MINIMIZED AVERAGE STRUCTURE 1UQE ; ; SELF-COMPLEMENTARY DNA 5'-D(CGTACG)2, NMR, MINIMIZED AVERAGE STRUCTURE 6S7D ; 1.45 ; Self-complementary duplex DNA containing an internucleoside phosphoroselenolate 6ERJ ; 1.69 ; Self-complemented FimA subunit from Salmonella enterica 2JTY ; ; Self-complemented variant of FimA, the main subunit of type 1 pilus 5L00 ; 1.25 ; Self-complimentary RNA 15mer binding with GMP monomers 4OKM ; 2.1 ; Selinadiene Synthase apo and in complex with diphosphate 4OKZ ; 1.9 ; Selinadiene Synthase in complex with dihydrofarnesyl pyrophosphate 2SEM ; 2.2 ; SEM5 SH3 DOMAIN COMPLEXED WITH PEPTOID INHIBITOR 3SEM ; 2.2 ; SEM5 SH3 DOMAIN COMPLEXED WITH PEPTOID INHIBITOR 7KI0 ; 2.5 ; Semaglutide-bound Glucagon-Like Peptide-1 (GLP-1) Receptor in Complex with Gs protein 7Y4Q ; 4.7 ; Semaphorin 6D in complex with Plexin A1 8CKM ; 2.72 ; Semaphorin-5A TSR 3-4 domains 8CKK ; 1.56 ; Semaphorin-5A TSR 3-4 domains in complex with nitrate 8CKL ; 2.56 ; Semaphorin-5A TSR 3-4 domains in complex with sucrose octasulfate (SOS) 8CKG ; 1.714 ; Semaphorin-5A TSR 3-4 domains in complex with sulfate 1USZ ; 3.28 ; SeMet AfaE-3 adhesin from Escherichia Coli 7LNI ; 2.68 ; SeMet CamA Adenine Methyltransferase Complexed to Cognate Substrate DNA 6LIY ; 1.761 ; SeMet CRL Protein of Arabidopsis 5FRK ; 2.12 ; SeMet crystal structure of Erwinia amylovora AmyR amylovoran repressor, a member of the YbjN protein family 5V0M ; 1.407 ; SeMet crystal structure of the Neisseria meningitidis non-core minor pilin PilV in the monoclinic form 5V23 ; 1.956 ; SeMet crystal structure of the Neisseria meningitidis non-core minor pilin PilV in the orthorhombic form 1W3Z ; 3.2 ; SeMet derivative of BbCRASP-1 from Borrelia Burgdorferi 3OUV ; 2.004 ; SeMet Derivative of L512M mutant of PASTA domain 3 of Mycobacterium tuberculosis PknB 1E3H ; 2.6 ; SeMet derivative of Streptomyces antibioticus PNPase/GPSI enzyme 7F91 ; 1.401 ; SeMet derivative of Thrombocorticin 4KRG ; 1.68 ; SeMet Haemonchus contortus Phosphoethanolamine N-methyltransferase 1 in complex with phosphoethanolamine and S-adenosylhomocysteine 4KRH ; 3.0 ; SeMet Haemonchus contortus Phosphoethanolamine N-methyltransferase 2 in complex with S-adenosyl-L-methionine 5LAC ; 1.94 ; SeMet Labeled Derivative of Cavally Virus 3CL Protease 3JYY ; 2.1 ; SeMet LinB complexed with PPi 3UJ6 ; 1.974 ; SeMet Phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with SAM and PO4 4DWP ; 2.35 ; SeMet protelomerase tela covalently complexed with substrate DNA 5FHP ; 2.65 ; SeMet regulator of nicotine degradation 4V18 ; 2.28 ; SeMet structure of a novel carbohydrate binding module from glycoside hydrolase family 5 glucanase from Ruminococcus flavefaciens FD-1 4V1K ; 1.6 ; SeMet structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1 4D3L ; 2.0 ; SeMet structure of a novel carbohydrate binding module from glycoside hydrolase family 9 (Cel9A) from Ruminococcus flavefaciens FD-1 in the orthorhombic form 2JAA ; 3.1 ; SeMet substituted Shigella Flexneri Ipad 6ECU ; 1.96 ; SeMet substituted StiD O-MT residues 976-1266 7RFO ; 3.02 ; SeMet Tailspike protein 4 (TSP4) phage CBA120, residues 1-335, obtained in the presence of LiSO4 4EBF ; 2.3 ; SeMet thermostable phosphite dehydrogenase Glu175-Ala mutant 4AY8 ; 2.1 ; SeMet-derivative of a methyltransferase from M. mazei 8AQQ ; 1.68 ; SeMet-derived crystal structure of the N-terminal beta-hairpin docking (bHD) domain of the AerJ halogenase, from the aeruginosin biosynthetic assembly line 4FFR ; 1.8 ; SeMet-labeled PylC (remote) 5D5T ; 2.4 ; SeMet-labelled HcgC from Methanocaldococcus jannaschii in P1 space group 5D4T ; 2.9 ; SeMet-labelled HcgC from Methanocaldococcus jannaschii in space group P212121 3WVA ; 1.4 ; SeMet-labelled HcgF from Methanocaldococcus jannaschii 4YT8 ; 1.902 ; SeMet-labelled HmdII from Methanocaldococcus jannaschii 6XIV ; 2.8 ; SeMet-Rns, in complex with potential inhibitor 2Q6U ; 1.75 ; SeMet-substituted form of NikD 4ISS ; 2.5 ; SeMet-substituted Kluyveromyces lactis Allophanate Hydrolase 4IWY ; 2.9 ; SeMet-substituted RimK structure 3AHV ; 1.89 ; Semi-active E176Q mutant of rice bglu1 covalent complex with 2-deoxy-2-fluoroglucoside 3F4V ; 1.65 ; Semi-active E176Q mutant of rice BGlu1, a plant exoglucanase/beta-glucosidase 3F5J ; 1.95 ; Semi-active E176Q mutant of rice BGlu1, a plant exoglucanase/beta-glucosidase 3F5K ; 1.8 ; Semi-active E176Q mutant of rice BGlu1, a plant exoglucanase/beta-glucosidase 3F5L ; 1.37 ; Semi-active E176Q mutant of rice BGlu1, a plant exoglucanase/beta-glucosidase 1I8X ; ; SEMI-AUTOMATIC STRUCTURE DETERMINATION OF THE CG1 1-30 PEPTIDE BASED ON ARIA 1I8Y ; ; SEMI-AUTOMATIC STRUCTURE DETERMINATION OF THE CG1 3-30 PEPTIDE BASED ON ARIA 1ZVO ; ; Semi-extended solution structure of human myeloma immunoglobulin D determined by constrained X-ray scattering 6J1Y ; 2.55 ; Semi-open conformation E3 ligase 1XSS ; 1.6 ; Semi-rational engineering of a green-emitting coral fluorescent protein into an efficient highlighter. 1JH6 ; 1.8 ; Semi-reduced Cyclic Nucleotide Phosphodiesterase from Arabidopsis thaliana 1JH7 ; 2.4 ; Semi-reduced Inhibitor-bound Cyclic Nucleotide Phosphodiesterase from Arabidopsis thaliana 2WRX ; 1.5 ; Semi-synthetic analogue of human insulin NMeAlaB26-insulin at pH 3.0 2WS0 ; 2.1 ; Semi-synthetic analogue of human insulin NMeAlaB26-insulin at pH 7.5 2WS6 ; 1.5 ; Semi-synthetic analogue of human insulin NMeTyrB26-insulin in hexamer form 2WS1 ; 1.6 ; Semi-synthetic analogue of human insulin NMeTyrB26-insulin in monomer form 2WS7 ; 2.59 ; Semi-synthetic analogue of human insulin ProB26-DTI 2WS4 ; 1.9 ; Semi-synthetic analogue of human insulin ProB26-DTI in monomer form 8G0L ; 3.39 ; Semi-synthetic CoA-alpha-Synuclein Constructs Trap N-terminal Acetyltransferase NatB for Binding Mechanism Studies 2WRW ; 2.41 ; Semi-synthetic highly active analogue of human insulin D-ProB26-DTI- NH2 2WRU ; 1.57 ; Semi-synthetic highly active analogue of human insulin NMeAlaB26-DTI- NH2 2WRV ; 2.15 ; Semi-synthetic highly active analogue of human insulin NMeHisB26-DTI- NH2 3OR0 ; 2.3 ; Semi-synthetic ribonuclease S: cyanylated homocysteine at position 13 3OQZ ; 2.5 ; Semi-synthetic ribonuclease S: meta-cyano-phenylalanine at position 8 3OQY ; 1.494 ; Semi-synthetic ribonuclease S: para-cyano-phenylalanine at position 8 4O37 ; 1.4 ; seminsynthetic RNase S1-15-3Pl-7/11 4O36 ; 1.22 ; Semisynthetic RNase S1-15-H7/11-Q10 6H63 ; 2.08 ; Semisynthetic [FeFe]-hydrogenase CpI with ethanedithiolate [2Fe] cofactor 5BYQ ; 1.73 ; Semisynthetic [FeFe]-hydrogenase CpI with oxodithiolato-bridged [2Fe] cofactor 5BYR ; 1.82 ; Semisynthetic [FeFe]-hydrogenase CpI with propane-dithiolato-bridged [2Fe] cofactor 5BYS ; 1.93 ; Semisynthetic [FeFe]-hydrogenase CpI with sulfur-dithiolato-bridged [2Fe] cofactor 1VCP ; 3.0 ; SEMLIKI FOREST VIRUS CAPSID PROTEIN (CRYSTAL FORM I) 1VCQ ; 3.1 ; SEMLIKI FOREST VIRUS CAPSID PROTEIN (CRYSTAL FORM II) 8JBF ; 3.0 ; Senktide bound to active human neurokinin 3 receptor in complex with Gq 2IY1 ; 2.46 ; SENP1 (mutant) full length SUMO1 2IY0 ; 2.77 ; SENP1 (mutant) SUMO1 RanGAP 2IYD ; 3.2 ; SENP1 covalent complex with SUMO-2 2IYC ; 2.45 ; SENP1 native structure 2CKH ; 3.2 ; SENP1-SUMO2 complex 2V09 ; 1.8 ; SENS161-164DSSN mutant of Bacillus subtilis Oxalate Decarboxylase OxdC 3QYL ; 1.79 ; Sensitivity of receptor internal motions to ligand binding affinity and kinetic off-rate 3QYO ; 2.09 ; Sensitivity of receptor internal motions to ligand binding affinity and kinetic off-rate 6EU6 ; 1.98 ; Sensor Amt Protein 1P0Z ; 1.6 ; Sensor Kinase CitA binding domain 2YKF ; 2.0 ; Sensor region of a sensor histidine kinase 2YKH ; 2.78 ; Sensor region of a sensor histidine kinase 1OJG ; ; Sensory domain of the membraneous two-component fumarate sensor DcuS of E. coli 1GU8 ; 2.27 ; SENSORY RHODOPSIN II 1GUE ; 2.27 ; SENSORY RHODOPSIN II 1H68 ; 2.1 ; sensory rhodopsin II 1LU3 ; 16.8 ; Separate Fitting of the Anticodon Loop Region of tRNA (nucleotide 26-42) in the Low Resolution Cryo-EM Map of an EF-Tu Ternary Complex (GDP and Kirromycin) Bound to E. coli 70S Ribosome 6A4F ; 2.21 ; Separated uridine bound Oligoribonuclease (ORN) from Colwellia psychrerythraea strain 34H 2XHI ; 1.55 ; Separation-of-function mutants unravel the dual reaction mode of human 8-oxoguanine DNA glycosylase 5GVB ; 2.75 ; SepB domain of human AND-1 3ZIE ; 2.0 ; SepF-like protein from Archaeoglobus fulgidus 3ZIG ; 2.5 ; SepF-like protein from Pyrococcus furiosus 1NAS ; 2.1 ; SEPIAPTERIN REDUCTASE COMPLEXED WITH N-ACETYL SEROTONIN 6I6F ; 1.94 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 1 6I6C ; 1.72 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 2 6I6P ; 1.62 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 3 6I79 ; 1.63 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 4 6I6T ; 1.79 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 5 6I6V ; 1.43 ; SEPIAPTERIN REDUCTASE IN COMPLEX WITH COMPOUND 6 5C9E ; 3.21 ; SepL 1FE5 ; 2.45 ; SEQUENCE AND CRYSTAL STRUCTURE OF A BASIC PHOSPHOLIPASE A2 FROM COMMON KRAIT (BUNGARUS CAERULEUS) AT 2.4 RESOLUTION: IDENTIFICATION AND CHARACTERIZATION OF ITS PHARMACOLOGICAL SITES. 4RNK ; 2.08 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGAAAATTTGGAG) 4RO4 ; 2.04 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGAAACGTTGGAG) 4RO7 ; 2.03 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGAAAGCTTGGAG) 4RO8 ; 2.08 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGAATCGATGGAG) 4ROG ; 2.08 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACACGTGGGAG) 4ROK ; 2.16 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACAGCTGGGAG) 4RON ; 2.39 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACCATGGGGAG) 4ROO ; 2.37 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACCGCGGGGAG) 4ROY ; 2.09 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACGATCGGGAG) 4ROZ ; 2.08 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGACGGCCGGGAG) 4RP0 ; 2.19 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGATAATTAGGAG) 4RP1 ; 2.27 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGATACGTAGGAG) 4RP2 ; 2.32 ; Sequence and structure of a self-assembled 3-D DNA crystal: D(GGATAGCTAGGAG) 2R2V ; 1.9 ; Sequence Determinants of the Topology of the Lac Repressor Tetrameric Coiled Coil 5APU ; 1.35 ; Sequence IANKEDKAD inserted between GCN4 adaptors - Structure A9b black 5APV ; 2.0 ; Sequence IANKEDKAD inserted between GCN4 adaptors - Structure A9b grey 5APQ ; 2.1 ; Sequence IENKAD inserted between GCN4 adaptors - Structure A6 5APT ; 1.8 ; Sequence IENKADKAD inserted between GCN4 adaptors - Structure A9 5APS ; 1.37 ; Sequence IENKKAD inserted between GCN4 adaptors - Structure A7 6UG1 ; 2.833 ; Sequence impact in DNA duplex opening by the Rad4/XPC nucleotide excision repair complex 1G2X ; 2.5 ; Sequence induced trimerization of krait PLA2: crystal structure of the trimeric form of krait PLA2 5APW ; 1.6 ; Sequence MATKDD inserted between GCN4 adaptors - Structure T6 5APX ; 1.8 ; Sequence MATKDDIAN inserted between GCN4 adaptors - Structure T9(6) 5APY ; 2.0 ; Sequence MATKDDIAN inserted between GCN4 adaptors - Structure T9(9) 6DNW ; 2.849 ; Sequence Requirements of the Listeria innocua prophage attP site 8TC6 ; 2.45 ; Sequence specific (AATT and TGTCA) orientation of netropsin and ImPyPy molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x5) 8TB3 ; 3.0 ; Sequence specific (AATT) orientation of DAPI molecules at a unique minor groove binding site (position1) within a self-assembled 3D DNA lattice (4x5) 8TA9 ; 2.8 ; Sequence specific (AATT) orientation of DAPI molecules at a unique minor groove binding site (position1) within a self-assembled 3D DNA lattice (4x6) 8TB4 ; 3.11 ; Sequence specific (AATT) orientation of DAPI molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x5) 8TDT ; 3.007 ; Sequence specific (AATT) orientation of DAPI molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x6) 8T7X ; 3.07 ; Sequence specific (AATT) orientation of DAPI molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x5) 8TB8 ; 2.95 ; Sequence specific (AATT) orientation of Hoechst molecules at a unique minor groove binding site (position1) within a self-assembled 3D DNA lattice (4x5) 8TBD ; 3.0 ; Sequence specific (AATT) orientation of Hoechst molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x5) 8TAQ ; 2.951 ; Sequence specific (AATT) orientation of Hoechst molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x6) 8T80 ; 2.91 ; Sequence specific (AATT) orientation of Hoechst molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x5) 8TAM ; 2.95 ; Sequence specific (AATT) orientation of Hoechst molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x6) 8TBO ; 2.599 ; Sequence specific (AATT) orientation of netropsin molecules at a unique minor groove binding site (position1) within a self-assembled 3D DNA lattice (4x5) 8TAJ ; 2.9 ; Sequence specific (AATT) orientation of netropsin molecules at a unique minor groove binding site (position1) within a self-assembled 3D DNA lattice (4x6) 8T7B ; 3.05 ; Sequence specific (AATT) orientation of netropsin molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x5) 8TAP ; 3.11 ; Sequence specific (AATT) orientation of netropsin molecules at a unique minor groove binding site (position2) within a self-assembled 3D DNA lattice (4x6) 8TC2 ; 3.05 ; Sequence specific (AATT) orientation of netropsin molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x5) 8TA8 ; 3.05 ; Sequence specific (AATT) orientation of netropsin molecules at two unique minor groove binding sites within a self-assembled 3D DNA lattice (4x6) 8TC4 ; 3.06 ; Sequence specific (TGTCA) orientation of ImPyPy molecules at a unique minor groove binding site within a self-assembled 3D DNA lattice (4x5) 2F8K ; 2.0 ; Sequence specific recognition of RNA hairpins by the SAM domain of Vts1 185D ; ; SEQUENCE SPECIFICITY OF QUINOXALINE ANTIBIOTICS. 1. SOLUTION STRUCTURE OF A 1:1 COMPLEX BETWEEN TRIOSTIN A AND [D(GACGTC)]2 AND COMPARISON WITH THE SOLUTION STRUCTURE OF THE [N-MECYS3, N-MECYS7]TANDEM-[D(GATATC)]2 COMPLEX 1VJ4 ; 1.8 ; SEQUENCE-DEPENDENT CONFORMATION OF AN A-DNA DOUBLE HELIX: THE CRYSTAL STRUCTURE OF THE OCTAMER D(G-G-T-A-T-A-C-C) 102D ; 2.2 ; SEQUENCE-DEPENDENT DRUG BINDING TO THE MINOR GROOVE OF DNA: THE CRYSTAL STRUCTURE OF THE DNA DODECAMER D(CGCAAATTTGCG)2 COMPLEXED WITH PROPAMIDINE 296D ; 2.25 ; SEQUENCE-DEPENDENT EFFECTS IN DRUG-DNA INTERACTION: THE CRYSTAL STRUCTURE OF HOECHST 33258 BOUND TO THE D(CGCAAATTTGCG)2 DUPLEX 180D ; 2.5 ; SEQUENCE-DEPENDENT MICROHETEROGENEITY OF Z-DNA: THE CRYSTAL AND MOLECULAR STRUCTURES OF D(CACGCG).D(CGCGTG) AND D(CGCACG).D(CGTGCG) 181D ; 1.6 ; SEQUENCE-DEPENDENT MICROHETEROGENEITY OF Z-DNA: THE CRYSTAL AND MOLECULAR STRUCTURES OF D(CACGCG).D(CGCGTG) AND D(CGCACG).D(CGTGCG) 3GPX ; 1.78 ; Sequence-matched MutM Interrogation Complex 4 (IC4) 3GQ5 ; 1.9 ; Sequence-matched MutM Interrogation Complex 5 (IC5) 3GPY ; 1.85 ; Sequence-matched MutM Lesion Recognition Complex 3 (LRC3) 3GQ4 ; 1.7 ; Sequence-matched MutM Lesion Recognition Complex 5 (LRC5) 1EGR ; ; SEQUENCE-SPECIFIC 1H N.M.R. ASSIGNMENTS AND DETERMINATION OF THE THREE-DIMENSIONAL STRUCTURE OF REDUCED ESCHERICHIA COLI GLUTAREDOXIN 1BBA ; ; SEQUENCE-SPECIFIC 1H NMR ASSIGNMENTS AND SOLUTION STRUCTURE OF BOVINE PANCREATIC POLYPEPTIDE 2YHX ; 2.1 ; SEQUENCING A PROTEIN BY X-RAY CRYSTALLOGRAPHY. II. REFINEMENT OF YEAST HEXOKINASE B CO-ORDINATES AND SEQUENCE AT 2.1 ANGSTROMS RESOLUTION 1KDU ; ; SEQUENTIAL 1H NMR ASSIGNMENTS AND SECONDARY STRUCTURE OF THE KRINGLE DOMAIN FROM UROKINASE 1AKP ; ; SEQUENTIAL 1H,13C AND 15N NMR ASSIGNMENTS AND SOLUTION CONFORMATION OF APOKEDARCIDIN 1OMA ; ; SEQUENTIAL ASSIGNMENT AND STRUCTURE DETERMINATION OF SPIDER TOXIN OMEGA-AGA-IVB 1OMB ; ; SEQUENTIAL ASSIGNMENT AND STRUCTURE DETERMINATION OF SPIDER TOXIN OMEGA-AGA-IVB 2B7X ; 3.0 ; Sequential reorganization of beta-sheet topology by insertion of a single strand 3JR6 ; 3.0 ; Sequential reorganization of beta-sheet topology by insertion of a single strand 1L7Q ; 1.76 ; Ser117Ala Mutant of Bacterial Cocaine Esterase cocE 1ZDG ; 2.3 ; Ser159 mutant of glycogenin complexed with UDP-glucose and manganese 1ZDF ; 2.45 ; Ser162 mutant of glycogenin complexed with UDP-glucose and manganese 1DM4 ; 2.5 ; SER195ALA MUTANT OF HUMAN THROMBIN COMPLEXED WITH FIBRINOPEPTIDE A (7-16) 5K9P ; 1.55 ; Ser20 phosphorylated ubiquitin 5J85 ; 2.6 ; Ser480Ala mutant of L-arabinonate dehydratase 4WZP ; 1.9 ; Ser65 phosphorylated ubiquitin, major conformation 4BEW ; 2.5 ; SERCA bound to phosphate analogue 3B9R ; 3.0 ; SERCA Ca2+-ATPase E2 aluminium fluoride complex without thapsigargin 2YFY ; 3.1 ; SERCA in the HnE2 State Complexed With Debutanoyl Thapsigargin 5MPM ; 3.3 ; SERCA2a from pig heart 6HXB ; 4.0 ; SERCA2a from pig heart 1FYL ; 2.1 ; SERENDIPITOUS CRYSTAL STRUCTURE CONTAINING THE HEAT SHOCK TRANSCRIPTION FACTOR'S DNA BINDING DOMAIN AND COGNATE DNA IN A HEAD-TO-HEAD ORIENTATION 1FYM ; 2.2 ; SERENDIPITOUS CRYSTAL STRUCTURE CONTAINING THE HEAT SHOCK TRANSCRIPTION FACTOR'S DNA BINDING DOMAIN AND COGNATE DNA IN A TAIL-TO-TAIL ORIENTATION 1FYK ; 2.5 ; SERENDIPITOUS CRYSTAL STRUCTURE CONTAINING THE HEAT SHOCK TRANSCRIPTION FACTOR'S DNA BINDING DOMAIN AND COGNATE DNA THAT IS TRANSLATIONALLY DISORDERED 8C7E ; 2.8 ; Serendipitous cyanase structure from Serratia-like contamination 2V3Q ; 1.89 ; Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein 6UQS ; 1.37 ; Serendipitous Discovery of Aryl Boronic Acids as beta-Lactamase Inhibitors 6UQT ; 1.25 ; Serendipitous Discovery of Aryl Boronic Acids as beta-Lactamase Inhibitors 6UQU ; 1.0902 ; Serendipitous Discovery of Aryl Boronic Acids as beta-Lactamase Inhibitors 6UR3 ; 1.423 ; Serendipitous Discovery of Aryl Boronic Acids as beta-Lactamase Inhibitors 8C7L ; 3.52 ; Serendipitous structure of OmpF contaminant in space group P21. 7QAR ; 2.3 ; Serial crystallography structure of cofactor-free urate oxidase in complex with the 5-peroxo derivative of 9-methyl uric acid at room temperature 5N8I ; 1.4 ; Serial Cu nitrite reductase structures at elevated cryogenic temperature, 100K reference dataset. 5N8F ; 1.38 ; Serial Cu nitrite reductase structures at elevated cryogenic temperature, 240K. Dataset 1. 5N8G ; 1.47 ; Serial Cu nitrite reductase structures at elevated cryogenic temperature, 240K. Dataset 2. 5N8H ; 1.65 ; Serial Cu nitrite reductase structures at elevated cryogenic temperature, 240K. Dataset 3. 5B35 ; 2.35 ; Serial Femtosecond Crystallography (SFX) of Ground State Bacteriorhodopsin Crystallized from Bicelles Determined Using 7-keV X-ray Free Electron Laser (XFEL) at SACLA 7VSO ; 2.35 ; Serial Femtosecond Crystallography (SFX) of Ground State Bacteriorhodopsin Crystallized from Bicelles in Complex with HAD16 Determined Using 7-keV X-ray Free Electron Laser (XFEL) at SACLA 5B34 ; 2.1 ; Serial Femtosecond Crystallography (SFX) of Ground State Bacteriorhodopsin Crystallized from Bicelles in Complex with Iodine-labeled Detergent HAD13a Determined Using 7-keV X-ray Free Electron Laser (XFEL) at SACLA 6FTR ; 1.76 ; Serial Femtosecond Crystallography at Megahertz pulse rates 6GTH ; 1.69 ; Serial Femtosecond Crystallography at Megahertz pulse rates 4ZIZ ; 1.75 ; Serial Femtosecond Crystallography of Soluble Proteins in Lipidic Cubic Phase (C-Phycocyanin from T. elongatus) 4CAS ; 3.5 ; Serial femtosecond crystallography structure of a photosynthetic reaction center 8AJZ ; 2.0 ; Serial femtosecond crystallography structure of CO bound ba3- type cytochrome c oxidase at 2 milliseconds after irradiation by a 532 nm laser 8K65 ; 2.0 ; Serial femtosecond crystallography structure of CO bound ba3- type cytochrome c oxidase without pump laser irradiation 6QWG ; 1.9 ; Serial Femtosecond Crystallography Structure of Cu Nitrite Reductase from Achromobacter cycloclastes: Nitrite complex at Room Temperature 8K6Y ; 2.0 ; Serial femtosecond crystallography structure of photo dissociated CO from ba3- type cytochrome c oxidase determined by extrapolation method 6CAS ; 3.5 ; Serial Femtosecond X-ray Crystal Structure of 30S ribosomal subunit from Thermus thermophilus in complex with N1MS 6CAR ; 3.4 ; Serial Femtosecond X-ray Crystal Structure of 30S ribosomal subunit from Thermus thermophilus in complex with Sisomicin 6NA6 ; 2.1 ; Serial Femtosecond X-ray Crystallography Structure of ECR in complex with NADPH 5XFC ; 1.4 ; Serial femtosecond X-ray structure of a stem domain of human O-mannose beta-1,2-N-acetylglucosaminyltransferase solved by Se-SAD using XFEL (refined against 13,000 patterns) 5XFD ; 1.5 ; Serial femtosecond X-ray structure of Agrocybe cylindracea galectin with lactose solved by Se-SAD using XFEL (refined against 60,000 patterns) 8K6U ; 1.9 ; Serial Femtosecond X-ray structure of E.coli Cyanase with un-modeled density at active site 3WXQ ; 1.6 ; Serial femtosecond X-ray structure of human fatty acid-binding protein type-3 (FABP3) in complex with stearic acid (C18:0) determined using X-ray free-electron laser at SACLA 7ADQ ; 2.01 ; Serial Laue crystallography structure of dehaloperoxidase B from Amphitrite ornata 7S4R ; 2.1 ; Serial Macromolecular Crystallography at ALBA Synchrotron Light Source - alpha Spectrin-SH3 domain 7S4Y ; 1.71 ; Serial Macromolecular Crystallography at ALBA Synchrotron Light Source - Insulin 7S4W ; 2.1 ; Serial Macromolecular Crystallography at ALBA Synchrotron Light Source - Lysozyme 7S50 ; 2.1 ; Serial Macromolecular Crystallography at ALBA Synchrotron Light Source - Phycocyanin 7S4Z ; 1.9 ; Serial Macromolecular Crystallography at ALBA Synchrotron Light Source - Proteinase K 5UVI ; 3.2 ; Serial Millisecond Crystallography of Membrane and Soluble Protein Micro-crystals using Synchrotron Radiation 5UVJ ; 2.05 ; Serial Millisecond Crystallography of Membrane and Soluble Protein Micro-crystals using Synchrotron Radiation 5UVK ; 3.1 ; Serial Millisecond Crystallography of Membrane and Soluble Protein Micro-crystals using Synchrotron Radiation 5UVL ; 2.65 ; Serial Millisecond Crystallography of Membrane and Soluble Protein Micro-crystals using Synchrotron Radiation 7QUT ; 2.24 ; serial synchrotron crystallographic structure of Drosophila Melanogaster (6-4) photolyase 8HUA ; 2.12 ; Serial synchrotron crystallography structure of ba3-type cytochrome c oxidase from Thermus thermophilus using a goniometer compatible flow-cell 8RGS ; 1.79 ; Serial synchrotron in plate room temperature structure of Dye Type Peroxidase Aa 8RGW ; 1.88 ; Serial synchrotron in plate room temperature structure of Dye Type Peroxidase Aa, 12 drops merged 8RGY ; 2.07 ; Serial synchrotron in plate room temperature structure of Dye Type Peroxidase Aa, 8 drops merged 8RGE ; 1.88 ; Serial synchrotron in plate room temperature structure of Lysozyme. 7ACP ; 1.45 ; Serial synchrotron structure of dehaloperoxidase B 4RVY ; 5.5 ; Serial Time resolved crystallography of Photosystem II using a femtosecond X-ray laser. The S state after two flashes (S3) 4PBU ; 5.0 ; Serial Time-resolved crystallography of Photosystem II using a femtosecond X-ray laser The S1 state 2M3B ; ; Serine 16 phosphorylated phospholamban pentamer, Hybrid solution and solid-state NMR structural ensemble 1PQH ; 1.29 ; Serine 25 to Threonine mutation of aspartate decarboxylase 1SSM ; 2.15 ; Serine Acetyltransferase- Apoenzyme (truncated) 1SST ; 2.0 ; Serine Acetyltransferase- Complex with CoA 1SSQ ; 1.85 ; Serine Acetyltransferase- Complex with Cysteine 6JN3 ; 2.216 ; Serine Beta-Lactamase KPC-2 in Complex with Dual MBL/SBL Inhibitor MS05 6JN5 ; 1.97 ; Serine Beta-Lactamase KPC-2 in Complex with Dual MBL/SBL Inhibitor MS23 6J8Q ; 1.787 ; Serine Beta-Lactamase KPC-2 in Complex with Dual MBL/SBL Inhibitor WL-001 6JN4 ; 1.9 ; Serine Beta-Lactamase KPC-2 in Complex with Dual MBL/SBL Inhibitor WL-001 7V1Y ; 2.82 ; Serine beta-lactamase-like protein LACTB in complex with inhibitor 2RKB ; 2.8 ; Serine dehydratase like-1 from human cancer cells 3GBX ; 1.8 ; Serine hydroxymethyltransferase from Salmonella typhimurium 3PGY ; 1.92 ; Serine hydroxymethyltransferase from Staphylococcus aureus, S95P mutant. 3G8M ; 3.3 ; Serine Hydroxymethyltransferase Y55F Mutant 8H1W ; 1.4 ; Serine Palmitoyltransferase from Sphingobacterium multivorum 8H20 ; 1.45 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with Glycine 8H21 ; 1.54 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with L-alanine 8H1Y ; 1.55 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with L-homoserine 8H1Q ; 1.5 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with L-serine 8H29 ; 1.45 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with L-threonine 8GUH ; 1.65 ; Serine Palmitoyltransferase from Sphingobacterium multivorum complexed with Tris 4BMK ; 1.62 ; Serine Palmitoyltransferase K265A from S. paucimobilis with bound PLP- Myriocin Aldimine 1HXE ; 2.1 ; SERINE PROTEASE 4RI0 ; 3.272 ; Serine Protease HtrA3, mutationally inactivated 1P01 ; 2.0 ; Serine protease mechanism. structure of an inhibitory complex oF ALPHA-LYTIC Protease and a tightly bound peptide boronic acid 1AH2 ; ; SERINE PROTEASE PB92 FROM BACILLUS ALCALOPHILUS, NMR, 18 STRUCTURES 2VID ; 1.8 ; Serine protease SplB from Staphylococcus aureus at 1.8A resolution 2SFA ; 1.6 ; SERINE PROTEINASE FROM STREPTOMYCES FRADIAE ATCC 14544 5JPF ; 2.3993 ; Serine/Threonine phosphatase Z1 (Candida albicans) binds to inhibitor microcystin-LR 5L2Q ; 2.53 ; Serine/threonine-protein kinase 40 (STK40) kinase homology domain 4ZLO ; 2.5 ; Serine/threonine-protein kinase PAK1 complexed with a dibenzodiazepine: identification of an allosteric site on PAK1 5C1Q ; 3.0 ; Serine/threonine-protein kinase pim-1 7E32 ; 2.9 ; Serotonin 1D (5-HT1D) receptor-Gi protein complex 7E33 ; 2.9 ; Serotonin 1E (5-HT1E) receptor-Gi protein complex 7XTA ; 3.2 ; Serotonin 4 (5-HT4) receptor-Gi-scFv16 complex 7XT9 ; 3.2 ; Serotonin 4 (5-HT4) receptor-Gs complex 7XT8 ; 3.1 ; Serotonin 4 (5-HT4) receptor-Gs-Nb35 complex 7X5H ; 3.1 ; Serotonin 5A (5-HT5A) receptor-Gi protein complex 7XTB ; 3.3 ; Serotonin 6 (5-HT6) receptor-Gs-Nb35 complex 7XTC ; 3.2 ; Serotonin 7 (5-HT7) receptor-Gs-Nb35 complex 1CJW ; 1.8 ; SEROTONIN N-ACETYLTRANSFERASE COMPLEXED WITH A BISUBSTRATE ANALOG 6Y5A ; 2.8 ; Serotonin-bound 5-HT3A receptor in Salipro 7E2Y ; 3.0 ; Serotonin-bound Serotonin 1A (5-HT1A) receptor-Gi protein complex 3STO ; 2.41 ; Serpin from the trematode Schistosoma Haematobium 1YXA ; 2.1 ; Serpina3n, a murine orthologue of human antichymotrypsin 3WD2 ; 2.2 ; Serratia marcescens Chitinase B complexed with azide inhibitor 3WD3 ; 2.2 ; Serratia marcescens Chitinase B complexed with azide inhibitor 3WD4 ; 2.0 ; Serratia marcescens Chitinase B complexed with azide inhibitor and quinoline compound 4Z2G ; 2.6 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 26 4Z2H ; 2.35 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 29 4Z2I ; 2.0 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 30 4Z2J ; 2.6 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 31 4Z2K ; 2.3 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 32 4Z2L ; 2.3 ; Serratia marcescens Chitinase B complexed with macrolide inhibitor 33 3WD1 ; 2.3 ; Serratia marcescens Chitinase B complexed with syn-triazole inhibitor 3WD0 ; 1.7 ; Serratia marcescens Chitinase B, tetragonal form 5WUL ; 1.87 ; Serratia marcescens short-chain dehydrogenase/reductase F98A/F202L 5WUW ; 1.9 ; Serratia marcescens short-chain dehydrogenase/reductase F98L/F202L mutant 5WVA ; 1.47 ; Serratia marcescens short-chain dehydrogenase/reductase F98Y/F202Y mutant 7ZGW ; 1.83 ; Serratia NucC apo form 7ZGV ; 1.48 ; Serratia NucC bound to cA3 1AF0 ; 1.8 ; SERRATIA PROTEASE IN COMPLEX WITH INHIBITOR 6TV0 ; 1.96 ; Serratia spp. cyanase hydratase 1GYK ; 2.2 ; Serum Amyloid P Component co-crystallised with MOBDG at neutral pH 1V04 ; 2.2 ; serum paraoxonase by directed evolution 3SRE ; 1.99 ; Serum paraoxonase-1 by directed evolution at pH 6.5 3SRG ; 2.19 ; Serum paraoxonase-1 by directed evolution at pH 6.5 in complex with 2-hydroxyquinoline 4HHQ ; 2.3 ; Serum paraoxonase-1 by directed evolution with the H115Q and H134Q mutations 4HHO ; 2.1 ; Serum paraoxonase-1 by directed evolution with the H115W mutation 4Q1U ; 2.302 ; Serum paraoxonase-1 by directed evolution with the K192Q mutation 6H0A ; 2.1 ; Serum paraoxonase-1 by directed evolution with the L69G/H115W/H134R/F222S/T332S mutations 6GMU ; 2.7 ; Serum paraoxonase-1 by directed evolution with the L69G/H134R/F222S/T332S mutations 6G82 ; 2.401 ; Serum paraoxonase-1 by directed evolution with the L69S/H115W/F222S mutations 1SRS ; 3.2 ; SERUM RESPONSE FACTOR (SRF) CORE COMPLEXED WITH SPECIFIC SRE DNA 1BC7 ; 2.01 ; SERUM RESPONSE FACTOR ACCESSORY PROTEIN 1A (SAP-1)/DNA COMPLEX 2WLP ; 2.65 ; Sesbania mosaic virus capsid protein dimer mutant (rCP-DEL-N65-W170K) 4DLY ; 1.57 ; Set 1 CaCl2/DTT, ordered off 5WCG ; 2.02 ; SET and MYND Domain Containing protein 2 2JV0 ; ; SET domain of RIZ1 tumor suppressor (PRDM2) 6NZO ; 3.8 ; Set2 bound to nucleosome 6PX1 ; 3.3 ; Set2 bound to nucleosome 6PX3 ; 4.1 ; Set2 bound to nucleosome 5TDR ; 1.42 ; Set3 PHD finger in complex with histone H3K4me2 5TDW ; 1.7 ; Set3 PHD finger in complex with histone H3K4me3 4E47 ; 2.0 ; SET7/9 in complex with inhibitor (R)-(3-(3-cyanophenyl)-1-oxo-1-(pyrrolidin-1-yl)propan-2-yl)-1,2,3,4-tetrahydroisoquinoline-6- sulfonamide and S-adenosylmethionine 3M53 ; 1.85 ; SET7/9 in complex with TAF10 peptide and AdoHcy 4J8O ; 1.63 ; SET7/9 in complex with TAF10K189A peptide and AdoHcy 4J83 ; 1.7 ; SET7/9 in complex with TAF10K189A peptide and AdoMet 5EG2 ; 1.55 ; SET7/9 N265A in complex with AdoHcy and TAF10 peptide 3M57 ; 1.7 ; SET7/9 Y245A in complex with TAF10 peptide and AdoHcy 3M58 ; 1.4 ; SET7/9 Y245A in complex with TAF10-K189me1 peptide and AdoHcy 3M59 ; 1.7 ; SET7/9 Y245A in complex with TAF10-K189me2 peptide and AdoHcy 3M5A ; 1.75 ; SET7/9 Y245A in complex with TAF10-K189me3 peptide and AdoHcy 3M54 ; 1.6 ; SET7/9 Y305F in complex with TAF10 peptide and AdoHcy 3M55 ; 1.55 ; SET7/9 Y305F in complex with TAF10-K189me1 peptide and AdoHcy 3M56 ; 1.65 ; SET7/9 Y305F in complex with TAF10-K189me2 peptide and AdoHcy 3OS5 ; 1.69 ; SET7/9-Dnmt1 K142me1 complex 3CBO ; 1.65 ; SET7/9-ER-AdoHcy complex 3CBM ; 1.69 ; SET7/9-ER-AdoMet complex 3CBP ; 1.42 ; Set7/9-ER-Sinefungin complex 4J7I ; 2.56 ; SET7/9Y335F in complex with TAF10 peptide and AdoHcy 4J7F ; 1.59 ; SET7/9Y335pAF in complex with TAF10 peptide and AdoHcy 6VDB ; 2.3 ; SETD2 in complex with a H3-variant super-substrate peptide 6V62 ; 2.36 ; SETD3 double mutant (N255F/W273A) in Complex with an Actin Peptide with His73 Replaced with Lysine 6OX3 ; 1.785 ; SETD3 in Complex with an Actin Peptide with His73 Replaced with Lysine 6WK1 ; 1.89 ; SETD3 in Complex with an Actin Peptide with His73 Replaced with Methionine 6OX0 ; 1.755 ; SETD3 in Complex with an Actin Peptide with Sinefungin Replacing SAH as Cofactor 6OX1 ; 1.949 ; SETD3 in Complex with an Actin Peptide with Target Histidine Partially Methylated 6WK2 ; 1.76 ; SETD3 mutant (N255V) in Complex with an Actin Peptide with His73 Replaced with Methionine 6V63 ; 2.02 ; SETD3 WT in Complex with an Actin Peptide with His73 Replaced with Glutamine 6MBK ; 1.69 ; SETD3, a Histidine Methyltransferase, in Complex with an Actin Peptide and SAH, First P212121 Crystal Form 6MBJ ; 1.78 ; SETD3, a Histidine Methyltransferase, in Complex with an Actin Peptide and SAH, P21 Crystal Form 6MBL ; 2.197 ; SETD3, a Histidine Methyltransferase, in Complex with an Actin Peptide and SAH, Second P212121 Crystal Form 6OX2 ; 2.089 ; SETD3in Complex with an Actin Peptide with the Target Histidine Fully Methylated 4JLG ; 1.896 ; SETD7 in complex with inhibitor (R)-PFI-2 and S-adenosyl-methionine 4JDS ; 1.7 ; SETD7 in complex with inhibitor PF-5426 and S-adenosyl-methionine 5W1Y ; 1.7 ; SETD8 in complex with a covalent inhibitor 5KH6 ; 2.05 ; SETDB1 in complex with a fragment candidate 5KCO ; 1.47 ; SETDB1 in complex with an early stage, low affinity fragment candidate modelled at reduced occupancy 5KCH ; 1.7 ; SETDB1 in complex with an early stage, low affinity fragment candidate modelled at reduced occupancy into weak electron density 8FTM ; 3.01 ; Setx-ssRNA-ADP-SO4 complex 487D ; 7.5 ; SEVEN RIBOSOMAL PROTEINS FITTED TO A CRYO-ELECTRON MICROSCOPIC MAP OF THE LARGE 50S SUBUNIT AT 7.5 ANGSTROMS RESOLUTION 1B1Y ; 2.5 ; SEVENFOLD MUTANT OF BARLEY BETA-AMYLASE 3V3M ; 1.96 ; Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease in Complex with N-[(1R)-2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl]-N-(4-tert-butylphenyl)furan-2-carboxamide inhibitor. 3MJ5 ; 2.63 ; Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation 7ALP ; 3.4 ; Severe fever with thrombocytopenia syndrome virus (Phenuiviridae) L protein 1SVY ; 1.75 ; SEVERIN DOMAIN 2, 1.75 ANGSTROM CRYSTAL STRUCTURE 6LF2 ; 1.6 ; SeviL bound to asialo-GM1 saccharide 6LF1 ; 1.7 ; SeviL, a GM1b/asialo-GM1 binding lectin 6ULB ; 1.75 ; Sex Hormone-binding globulin mutant E176K in complex with Danazol 6PYB ; 1.8 ; Sex Hormone-binding globulin mutant E176K in complex with DVT 6PYF ; 1.73 ; Sex Hormone-binding globulin mutant E176K in complex with Estradiol 6PYA ; 1.71 ; Sex Hormone-binding globulin mutant E176K in complex with IPI 2SXL ; ; SEX-LETHAL RBD1, NMR, MINIMIZED AVERAGE STRUCTURE 3SXL ; 2.7 ; SEX-LETHAL RNA RECOGNITION DOMAINS 1 AND 2 FROM DROSOPHILA MELANOGASTER 3FLE ; 2.009 ; SE_1780 protein of unknown function from Staphylococcus epidermidis. 8SEI ; 2.9 ; SF Tau from Down Syndrome 3F7D ; 2.2 ; SF-1 LBD bound by phosphatidylcholine 5Y5H ; 1.5 ; SF-ROX structure of cytochrome P450nor (NO-bound state) determined at SACLA 6EN4 ; 3.08 ; SF3b core in complex with a splicing modulator 5ZYA ; 3.95 ; SF3b spliceosomal complex bound to E7107 5HY7 ; 2.9 ; SF3B10-SF3B130 from Chaetomium thermophilum 6MPO ; ; Sf6 coat protein I-domain 8SMA ; 2.18 ; SfbO with di-Manganese cofactor 4BJI ; 1.45 ; Sfc1-DBD 4BJJ ; 2.4 ; Sfc1-Sfc7 dimerization module 5NI3 ; 1.28 ; sfGFP 204-204 mutant dimer 8BXP ; 1.79 ; SfGFP C148 F206 mutant 8C1X ; 1.89 ; sfGFP C148 F206 mutant 6DQ0 ; 2.048 ; sfGFP D133 mutated to 4-nitro-L-phenylalanine 5DPI ; 2.54 ; sfGFP double mutant - 133/149 p-cyano-L-phenylalanine 5DPJ ; 2.5 ; sfGFP double mutant - 133/149 p-ethynyl-L-phenylalanine 5DPG ; 1.85 ; sfGFP mutant - 133 p-cyano-L-phenylalanine 5DPH ; 1.42 ; sfGFP mutant - 149 p-cyano-L-phenylalanine 5EHU ; 1.45 ; sfGFP mutant with unnatural amino acid 4-azidoethoxy-L-phenylalanine incorporated at the 149 site 6DQ1 ; 1.598 ; sfGFP N149 mutated to 4-nitro-L-phenylalanine 6GU1 ; 1.7 ; SFI3 effector protein from the oomycete plant pathogen Phytophthora infestans 7UN9 ; 3.3 ; SfSTING with c-di-GMP double fiber 7UN8 ; 3.3 ; SfSTING with c-di-GMP single fiber 7UNA ; 4.0 ; SfSTING with cGAMP (masked) 6BVU ; ; SFTI-HFRW-1 6BVX ; ; SFTI-HFRW-2 6BVW ; ; SFTI-HFRW-3 6BVY ; ; SFTI-HFRW-4 7X6W ; 5.18 ; SFTSV 2 fold hexamer 7X6U ; 4.5 ; SFTSV 3 fold hexmer 7X72 ; 7.2 ; SFTSV 5 fold pentamer 5Y10 ; 2.6 ; SFTSV Gn head domain 5Y11 ; 2.1 ; SFTSV GN with neutralizing antibody MAb4-5 6NTV ; 2.4 ; SFTSV L endonuclease domain 7VJ7 ; 2.3 ; SFX structure of archaeal class II CPD photolyase from Methanosarcina mazei in the fully reduced state 7VJ8 ; 2.1 ; SFX structure of archaeal class II CPD photolyase from Methanosarcina mazei in the oxidized state 7VJ6 ; 2.1 ; SFX structure of archaeal class II CPD photolyase from Methanosarcina mazei in the semiquinone state 5JD2 ; 1.9 ; SFX structure of corestreptavidin-selenobiotin complex 5MND ; 2.56 ; SFX structure of Cydia pomonella granulovirus using a double flow-focusing nozzle 5Y5M ; 2.1 ; SFX structure of cytochrome P450nor: a complete dark data without pump laser (resting state) 8C1U ; 1.7 ; SFX structure of D.m(6-4)photolyase 6I43 ; 1.88 ; SFX Structure of Damage Free Ferric State of Dye Type Peroxidase Aa from Streptomyces lividans 7ADF ; 1.85 ; SFX structure of dehaloperoxidase B in the ferric form 7ADX ; 1.85 ; SFX structure of dehaloperoxidase B in the oxyferrous form 7QZH ; 1.92 ; SFX structure of dye-type peroxidase DtpB D152A variant in the ferric state 7QZE ; 1.9 ; SFX structure of dye-type peroxidase DtpB D152A variant in the ferryl state 7QZF ; 2.2 ; SFX structure of dye-type peroxidase DtpB D152A/N245A variant in the ferric state 6YRJ ; 1.85 ; SFX structure of dye-type peroxidase DtpB in the ferric state 6YRD ; 1.75 ; SFX structure of dye-type peroxidase DtpB in the ferryl state 7QZG ; 2.1 ; SFX structure of dye-type peroxidase DtpB N245A variant in the ferric state 7ZMJ ; 2.0 ; SFX structure of dye-type peroxidase DtpB R243A variant in the ferric state 8OEI ; 1.65 ; SFX structure of FutA after an accumulated dose of 350 kGy 8C4Y ; 1.6 ; SFX structure of FutA bound to Fe(III) 8GCQ ; 2.38 ; SFX structure of oxidized cytochrome c oxidase at 2.38 Angstrom resolution 6NMP ; 2.9 ; SFX structure of oxidized cytochrome c oxidase at room temperature 6NMF ; 2.8 ; SFX structure of reduced cytochrome c oxidase at room temperature 8OET ; 2.11 ; SFX structure of the class II photolyase complexed with a thymine dimer 7L6W ; 2.3 ; SFX structure of the MyD88 TIR domain higher-order assembly 7BER ; 2.3 ; SFX structure of the MyD88 TIR domain higher-order assembly (solved, rebuilt and refined using an identical protocol to the MicroED structure of the MyD88 TIR domain higher-order assembly) 5DLH ; 2.2501 ; SFX structure of thermolysin 8TDQ ; 1.65 ; SFX-XFEL structure of CYP121 cocrystallized with substrate cYY 7K44 ; 1.45 ; SGBP-B from a complex xyloglucan utilization locus in Bacteroides uniformis 3KIK ; 2.1 ; Sgf11:Sus1 complex 3KJL ; 2.7 ; Sgf11:Sus1 complex 8BBL ; 2.711 ; SGL a GH20 family sulfoglycosidase 7K3X ; 1.705 ; SGMGCIT segment 58-64 from Keratin-8 with G62C mutation 7K3C ; 1.1 ; SGMGGIT segment 58-64 from Keratin-8 3N7B ; 2.65 ; SgrAI bound to secondary site DNA and Ca(II) 3N78 ; 2.95 ; SgrAI bound to Secondary Site DNA and Mg(II) 3MQY ; 2.0 ; SgrAI with cleaved DNA and Magnesium bound 3DVO ; 1.892 ; SgrAI with cognate DNA and calcium bound 3DW9 ; 2.2 ; SgrAI with cognate DNA and manganese bound 3DPG ; 1.91 ; SgrAI with noncognate DNA bound 2RJS ; 2.4 ; SgTAM bound to substrate mimic 2MF3 ; ; SGTX-Sf1a 8FTV ; 2.04 ; SgvM methyltransferase triple variant (M144V/F329V/T331A) with SAH and 2-oxo-4-phenylbutanoic acid 8FTR ; 2.13 ; SgvM methyltransferase with MTA and alpha-ketoleucine 8FTS ; 2.2 ; SgvM methyltransferase with SAH and alpha-ketoleucine 1LCJ ; 1.8 ; SH2 (SRC HOMOLOGY-2) DOMAIN OF HUMAN P56-LCK TYROSINE KINASE COMPLEXED WITH THE 11 RESIDUE PHOSPHOTYROSYL PEPTIDE EPQPYEEIPIYL 2EYV ; ; SH2 domain of CT10-Regulated Kinase 7RNV ; 2.15 ; SH2 domain of guanine nucleotide exchange factor Vav2 in complex with an actin peptide with phosphorylated tyrosine 53 2CI8 ; 1.8 ; sh2 domain of human nck1 adaptor protein - uncomplexed 5W3R ; 1.386 ; SH2B1 SH2 Domain 4M4Z ; 2.1 ; SH3 and SH2 domains of human Src-like adaptor protein 2 (SLAP2) 1AWW ; ; SH3 DOMAIN FROM BRUTON'S TYROSINE KINASE, NMR, 42 STRUCTURES 1AWX ; ; SH3 DOMAIN FROM BRUTON'S TYROSINE KINASE, NMR, MINIMIZED AVERAGE STRUCTURE 1ARK ; ; SH3 DOMAIN FROM HUMAN NEBULIN, NMR, 15 STRUCTURES 1NEB ; ; SH3 DOMAIN FROM HUMAN NEBULIN, NMR, MINIMIZED AVERAGE STRUCTURE 5NVJ ; 1.18 ; SH3 domain from Mouse cortactin (C 1 2 1 crystal form) 5NV1 ; 1.51 ; SH3 domain from Mouse cortactin (C 2 2 21 crystal form) 5NXJ ; 2.282 ; SH3 domain from Mouse cortactin (P 1 21 1 crystal form) 2IIM ; 1.0 ; SH3 Domain of Human Lck 1H92 ; ; SH3 domain of human Lck tyrosine kinase 1W1F ; ; SH3 DOMAIN OF HUMAN LYN TYROSINE KINASE 1WA7 ; ; SH3 DOMAIN OF HUMAN LYN TYROSINE KINASE IN COMPLEX WITH A HERPESVIRAL LIGAND 1S1N ; ; SH3 domain of human nephrocystin 1UG1 ; ; SH3 domain of Hypothetical protein BAA76854.1 7NYK ; 1.45 ; SH3 domain of JNK-interacting Protein 1 (JIP1) 1KIK ; ; SH3 Domain of Lymphocyte Specific Kinase (LCK) 7CFZ ; 1.89 ; SH3 domain of NADPH oxidase activator 1 1W70 ; 1.46 ; SH3 domain of p40phox complexed with C-terminal polyProline region of p47phox 1W6X ; 2.0 ; SH3 domain of p40phox, component of the NADPH oxidase 1YN8 ; 1.7 ; SH3 domain of yeast NBP2 1YNZ ; 2.2 ; SH3 domain of yeast Pin3 8CF4 ; ; SH3 domain solved by the exact solid-state method from the Bruker Dynamics Center using the combined correction method with PDB 2NUZ 8CHG ; ; SH3 domain solved by the exact solid-state method from the Bruker Dynamics Center using the correction for dipolar truncation with PDB 2NUZ 8CHH ; ; SH3 domain solved by the exact solid-state method from the Bruker Dynamics Center using the correction method for spin-diffusion with PDB 2NUZ as reference 1KJW ; 1.8 ; SH3-Guanylate Kinase Module from PSD-95 4Z89 ; 2.64 ; SH3-II of Drosophila Rim-binding protein bound to a Cacophony derived peptide 4Z88 ; 2.09 ; SH3-II of Drosophila Rim-binding protein with Aplip1 peptide 4Z8A ; 1.759 ; SH3-III of Drosophila Rim-binding protein bound to a Cacophony derived peptide 8B2F ; 1.183 ; SH3-like cell wall binding domain of the GH24 family muramidase from Trichophaea saccata in complex with triglycine 8B2G ; 1.5 ; SH3-like domain from Penicillium virgatum muramidase 2ABL ; 2.5 ; SH3-SH2 DOMAIN FRAGMENT OF HUMAN BCR-ABL TYROSINE KINASE 1LCK ; 2.5 ; SH3-SH2 DOMAIN FRAGMENT OF HUMAN P56-LCK TYROSINE KINASE COMPLEXED WITH THE 10 RESIDUE SYNTHETIC PHOSPHOTYROSYL PEPTIDE TEGQPYQPQPA 6SCW ; ; SH3-subunit of chicken alpha spectrin solved by NMR 2R9R ; 2.4 ; Shaker family voltage dependent potassium channel (kv1.2-kv2.1 paddle chimera channel) in association with beta subunit 8TEO ; 2.39 ; Shaker in low K+ (4mM K+) 4MWL ; 1.8 ; Shanghai N9 4MWY ; 1.8 ; Shanghai N9-laninamivir 4MWW ; 1.9 ; Shanghai N9-oseltamivir carboxylate 4MX0 ; 2.101 ; Shanghai N9-peramivir 4MWX ; 1.801 ; Shanghai N9-zanamivir 4HGK ; 3.04 ; Shark IgNAR variable domain 4HGM ; 2.34 ; Shark IgNAR Variable Domain 2LNY ; ; ShB peptide structure bound to negatively charged lipid-bilayer after Molecular Dynamics refinement 1SHC ; ; SHC PTB DOMAIN COMPLEXED WITH A TRKA RECEPTOR PHOSPHOPEPTIDE, NMR, MINIMIZED AVERAGE STRUCTURE 2L1C ; ; Shc-PTB:biphosphorylated integrin beta3 cytoplasmic tail complex (1:1) 1MUV ; ; Sheared A(anti)-A(anti) Base Pairs in a Destabilizing 2x2 Internal Loop: The NMR Structure of 5'(rGGCAAGCCU)2 1P0U ; ; Sheared G/C Base Pair 5ABM ; 1.7 ; Sheep aldehyde dehydrogenase 1A1 5AC1 ; 2.08 ; Sheep aldehyde dehydrogenase 1A1 with duocarmycin analog inhibitor 7JKC ; 1.9 ; Sheep Connexin-46 at 1.9 angstroms resolution by CryoEM 7JMD ; 2.5 ; Sheep Connexin-46 at 2.5 angstroms resolution, Lipid Class 1 7JN0 ; 2.5 ; Sheep Connexin-46 at 2.5 angstroms resolution, Lipid Class 2 7JN1 ; 2.5 ; Sheep Connexin-46 at 2.5 angstroms resolution, Lipid Class 3 7JJP ; 1.94 ; Sheep Connexin-50 at 1.9 angstroms resolution by CryoEM 7JM9 ; 2.5 ; Sheep Connexin-50 at 2.5 angstroms reoslution, Lipid Class 2 7JLW ; 2.5 ; Sheep Connexin-50 at 2.5 angstroms resolution, Lipid Class 1 7JMC ; 2.5 ; Sheep Connexin-50 at 2.5 angstroms resolution, Lipid Class 3 6N3R ; 2.397 ; Sheep Galectin-11 (LGALS11) complex with galactose 6N44 ; 2.0 ; Sheep Galectin-11 (LGALS11) complex with glycerol 1BXS ; 2.35 ; SHEEP LIVER CLASS 1 ALDEHYDE DEHYDROGENASE WITH NAD BOUND 3QE3 ; 1.9 ; Sheep liver sorbitol dehydrogenase 7B6S ; 1.923 ; Sheep Polyomavirus VP1 in complex with 10 mM Forssman antigen pentaose 7B6T ; 1.701 ; Sheep Polyomavirus VP1 in complex with 10 mM globo-N-tetraose 7B6V ; 1.798 ; Sheep Polyomavirus VP1 in complex with 5 mM Forssman antigen pentaose and 20 mM 3'-sialyllactosamine 7B6U ; 1.901 ; Sheep Polyomavirus VP1 in complex with 5 mM Forssman antigen pentaose and 20 mM 6'-sialyllactosamine 4S1P ; 1.45 ; Shel_16390 protein, a putative SGNH hydrolase from Slackia heliotrinireducens 4PFM ; 2.327 ; SHEWANELLA BENTHICA DHDPS WITH LYSINE AND PYRUVATE 5NC8 ; 3.09 ; Shewanella denitrificans Kef CTD in AMP bound form 5I5I ; 2.14 ; Shewanella denitrificans nitrous oxide reductase, app form 5I5M ; 1.37 ; Shewanella denitrificans nitrous oxide reductase, Ca2+-reconstituted form 5I5J ; 2.55 ; Shewanella denitrificans nitrous oxide reductase, reduced apo form 6BG8 ; 1.59713 ; Shewanella frigidimarina ice-binding protein_1 DUF3494 Domain 4PU4 ; 3.786 ; Shewanella oneidensis MR-1 Toxin Antitoxin System HipA, HipB and its operator DNA complex (space group P21) 4PU3 ; 3.39 ; Shewanella oneidensis MR-1 Toxin Antitoxin System HipA, HipB and its operator DNA complex (space group P212121) 4PU7 ; 1.85 ; Shewanella oneidensis Toxin Antitoxin System Antitoxin Protein HipB Resolution 1.85 4PU8 ; 2.35 ; Shewanella oneidensis Toxin Antitoxin System Antitoxin Protein HipB Resolution 2.35 4PU5 ; 1.834 ; Shewanella oneidensis Toxin Antitoxin System Toxin Protein HipA Bound with AMPPNP and Mg 2MUA ; ; Shifting the Polarity of some Critical Residues in Malarial Peptides Binding to Host Cells is a Key Factor in Breaking Conserved Antigens 1DM0 ; 2.5 ; SHIGA TOXIN 1R4Q ; 2.5 ; Shiga toxin 1R4P ; 1.77 ; Shiga toxin type 2 2C5C ; 2.94 ; Shiga-like toxin 1 B subunit complexed with a bivalent inhibitor 1BOS ; 2.8 ; SHIGA-LIKE TOXIN COMPLEXED WITH ITS RECEPTOR 1QNU ; 2.23 ; Shiga-Like Toxin I B Subunit Complexed with the Bridged-Starfish Inhibitor 4Q5H ; 1.999 ; Shigella Effector Kinase OspG bound to AMPPNP and E2-Ub UbcH7-Ub Conjugate 4Q5E ; 1.869 ; Shigella Effector Kinase OspG bound to E2-Ub UbcH7-Ub Conjugate 5KH1 ; 3.4 ; Shigella flexneri Effector IpaH1880 4XZX ; 2.2 ; Shigella flexneri effector OspI C62S mutant 2J0O ; 3.0 ; Shigella Flexneri IpaD 4ZM5 ; 2.47 ; Shigella flexneri lipopolysaccharide O-antigen chain-length regulator WzzBSF - A107P mutant 4ZM1 ; 2.55 ; Shigella flexneri lipopolysaccharide O-antigen chain-length regulator WzzBSF - wild type 2VJ5 ; 3.0 ; Shigella flexneri MxiC 3RF3 ; 1.61 ; Shigella IpaA-VBS3 in complex with human vinculin 5NL1 ; 2.5 ; Shigella IpaA-VBS3/TBS in complex with the Talin VBS1 domain 488-512 3LXR ; 1.68 ; Shigella IpgB2 in complex with human RhoA and GDP (complex C) 3LW8 ; 1.85 ; Shigella IpgB2 in complex with human RhoA, GDP and Mg2+ (complex A) 3LWN ; 2.28 ; Shigella IpgB2 in complex with human RhoA, GDP and Mg2+ (complex B) 3PHJ ; 2.3 ; Shikimate 5-Dehydrogenase (aroE) from Helicobacter pylori in complex with 3-Dehydroshikimate 3PHH ; 1.42 ; Shikimate 5-Dehydrogenase (aroE) from Helicobacter pylori in complex with Shikimate 3PHI ; 2.04 ; Shikimate 5-Dehydrogenase (aroE) from Helicobacter pylori in complex with Shikimate and NADPH 1NYT ; 1.5 ; SHIKIMATE DEHYDROGENASE AroE COMPLEXED WITH NADP+ 4Y0A ; 1.911 ; Shikimate kinase from Acinetobacter baumannii in complex with shikimate 3MUF ; 2.3 ; Shikimate kinase from Helicobacter pylori in complex with shikimate-3-phosphate and ADP 2IYU ; 1.85 ; Shikimate kinase from Mycobacterium tuberculosis in complex with ADP, open LID (conf. A) 2IYV ; 1.35 ; Shikimate kinase from Mycobacterium tuberculosis in complex with ADP, open LID (conf. B) 2IYW ; 1.85 ; Shikimate kinase from Mycobacterium tuberculosis in complex with MgATP, open LID (conf. B) 2IYR ; 1.98 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate 2IYQ ; 1.8 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate and ADP 2IYX ; 1.49 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate and SO4 2IYS ; 1.4 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate, open LID (conf. A) 2IYZ ; 2.3 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate-3-phosphate and ADP 2IYY ; 1.62 ; Shikimate kinase from Mycobacterium tuberculosis in complex with shikimate-3-phosphate and SO4 2IYT ; 1.47 ; Shikimate kinase from Mycobacterium tuberculosis in unliganded state, open LID (conf. A) 1BEI ; ; Shk-dnp22: A Potent Kv1.3-specific immunosuppressive polypeptide, NMR, 20 structures 6YRW ; 2.5 ; SHMT from Streptococcus thermophilus Tyr55Ser variant as internal aldimine and as non-covalent complex with D-Ser 6TI4 ; 1.93 ; SHMT from Streptococcus thermophilus Tyr55Ser variant in complex with PLP/D-Serine/Lys230 gem diamine complex 6TI1 ; 2.0 ; SHMT from Streptococcus thermophilus Tyr55Ser variant in complex with PLP/L-Threonine/Lys230 gem diamine complex 6TGH ; 2.12 ; SHMT from Streptococcus thermophilus Tyr55Thr variant in complex with D-Serine both as external aldimine and as non-covalent complex 8J84 ; 3.3 ; Short ago complexed with TIR-APAZ 4BMS ; 2.89 ; Short chain alcohol dehydrogenase from Ralstonia sp. DSM 6428 in complex with NADPH 7VYQ ; 3.13 ; Short chain dehydrogenase (SCR) cryoEM structure with NADP and ethyl 4-chloroacetoacetate 7DLM ; 1.59 ; Short chain dehydrogenase (SCR) crystal structure with NADPH 7DMG ; 1.79 ; Short chain dehydrogenase 2 (SCR2) crystal structure with NADP 7DLL ; 1.89 ; Short chain dehydrogenase 2 (SCR2) crystal structure with NADPH 2NWQ ; 2.3 ; Short chain dehydrogenase from Pseudomonas aeruginosa 3T4X ; 2.8 ; Short chain dehydrogenase/reductase family oxidoreductase from Bacillus anthracis str. Ames Ancestor 5T2U ; 2.2 ; short chain dehydrogenase/reductase family protein 2IX6 ; 3.9 ; SHORT CHAIN SPECIFIC ACYL-COA OXIDASE FROM ARABIDOPSIS THALIANA, ACX4 2IX5 ; 2.7 ; Short chain specific acyl-CoA oxidase from Arabidopsis thaliana, ACX4 in complex with acetoacetyl-CoA 1YGC ; 2.0 ; Short Factor VIIa with a small molecule inhibitor 7TVC ; 1.19 ; Short form D7 protein from Aedes aegypti 7TVY ; 1.98 ; Short form D7 protein from Culex quinquefasciatus 1YC0 ; 2.6 ; short form HGFA with first Kunitz domain from HAI-1 2R0L ; 2.2 ; Short Form HGFA with Inhibitory Fab75 5LUV ; 2.5 ; Short LOV protein W619_1 in apo-state 5VLA ; 2.4 ; Short PCSK9 delta-P' complex with Fusion2 peptide 5VLH ; 2.86 ; Short PCSK9 delta-P' complex with peptide Pep1 5VLL ; 2.37 ; Short PCSK9 delta-P' complex with peptide Pep3 5VLK ; 2.2 ; Short PCSK9 delta-P' complex with shrunken peptide bearing homo-Arginine 3VU6 ; 2.324 ; Short peptide HIV entry inhibitor MT-SC22EK with a M-T hook 3VU5 ; 2.087 ; Short peptide HIV entry Inhibitor SC22EK 8PXS ; ; Short RNA binding to peptide amyloids 7XGS ; 2.21 ; Short vegetative phase protein 7P8Y ; 2.18 ; Short wilavidin apo form 7P8Z ; 1.67 ; Short wilavidin biotin complex 4BMV ; 2.5 ; Short-chain dehydrogenase from Sphingobium yanoikuyae in complex with NADPH 8EH2 ; 2.4 ; Short-chain dehydrogenase/reductase (SDR) from Acinetobacter baumannii 8GBB ; 2.4 ; Short-chain dehydrogenase/reductase (SDR) from multi-drug resistant Acinetobacter baumannii 4ZGW ; 1.47 ; Short-chain dehydrogenase/reductase from Serratia marcescens BCRC 10948 4FN4 ; 1.75 ; short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius 2MU7 ; ; Shortening and modifying the 1513 MSP-1 peptide's alpha-helical region induces protection against malaria 4UZM ; ; Shotgun proteolysis: A practical application 4HJQ ; 1.8013 ; SHP-1 catalytic domain WPD loop closed 4HJP ; 1.3994 ; SHP-1 catalytic domain WPD loop open 7PPN ; 1.9 ; SHP2 catalytic domain in complex with CD28 (183-198) phosphopeptide (pTyr-191, p-Thr-195) 7PPL ; 1.53 ; SHP2 catalytic domain in complex with IRS1 (625-639) phosphopeptide (pTyr-632, pSer-636) 7PPM ; 1.48 ; SHP2 catalytic domain in complex with IRS1 (889-901) phosphopeptide (pSer-892, pTyr-896) 8CBH ; 2.24 ; SHP2 in complex with a novel allosteric inhibitor 8B5Y ; 1.83 ; SHP2 in complex with allosteric imidazopyrazine inhibitor 4QSY ; 2.1 ; SHP2 SH2 domain in complex with GAB1 peptide 7DLV ; 2.525 ; shrimp dUTPase in complex with Stl 6LBD ; 1.386 ; shrimp ferritin T158R G159R 6LBC ; 1.801 ; shrimp ferritin-T158R 6KCU ; 1.65 ; Shuguo PWWP domain 6KD6 ; 1.58 ; Shuguo PWWP domain 6KCO ; 2.4 ; Shuguo PWWP in complex with ssDNA 6KCP ; 1.8 ; Shuguo PWWP in complex with ssDNA 3MXR ; 1.3 ; SHV-1 beta-lactamase complex with compound 1 3MXS ; 1.24 ; SHV-1 beta-lactamase complex with compound 2 3MKF ; 1.33 ; SHV-1 beta-lactamase complex with GB0301 3D4F ; 1.55 ; SHV-1 beta-lactamase complex with LN1-255 3MKE ; 1.75 ; SHV-1 beta-lactamase complex with LP06 4GD6 ; 1.53 ; SHV-1 beta-lactamase in complex with penam sulfone SA1-204 4GD8 ; 1.6 ; SHV-1 beta-lactamase in complex with penam sulfone SA3-53 1ONG ; 1.1 ; SHV-1 beta-lactamase with a penem inhibitor 2ZD8 ; 1.05 ; SHV-1 class A beta-lactamase complexed with meropenem 1Q2P ; 2.0 ; SHV-1 class A beta-lactamase complexed with penem WAY185229 4GDB ; 1.84 ; SHV-1 in complex with 4H-pyrazolo[1,5-c][1,3]thiazole containing penem inhibitor 6U2A ; 2.3 ; ShyA endopeptidase from Vibrio cholera (open form) 6UE4 ; 2.08 ; ShyA Endopeptidase from Vibrio cholerae (Closed form) 1AB1 ; 0.89 ; SI FORM CRAMBIN 6K4E ; 2.094 ; SiaA-PP2C domain of Pseudomonas aeruginosa 6K4F ; 1.735 ; SiaC of Pseudomonas aeruginosa 1K2F ; 2.6 ; siah, Seven In Absentia Homolog 4I7B ; 3.0 ; Siah1 bound to synthetic peptide (ACE)KLRPV(ABA)MVRPTVR 4I7D ; 2.4 ; Siah1 bound to synthetic peptide (ACE)KLRPVAMVRP(PRK)VR 4I7C ; 2.8 ; Siah1 mutant bound to synthetic peptide (ACE)KLRPV(23P)MVRPWVR 6VS7 ; 2.0 ; Sialic acid binding region of Streptococcus Sanguinis SK1 adhesin 6VU6 ; 2.1 ; Sialic acid binding region of Streptococcus Sanguinis SK1 adhesin bound to 3'sLn 6VT2 ; 1.52 ; Sialic acid binding region of Streptococcus sanguinis SK1 adhesin bound to sTa 1EUR ; 1.82 ; SIALIDASE 5MQR ; 2.2 ; Sialidase BT_1020 5MQS ; 3.0 ; Sialidase BT_1020 1EUS ; 2.0 ; SIALIDASE COMPLEXED WITH 2-DEOXY-2,3-DEHYDRO-N-ACETYLNEURAMINIC ACID 3SIL ; 1.05 ; SIALIDASE FROM SALMONELLA TYPHIMURIUM 1DIL ; 1.9 ; SIALIDASE FROM SALMONELLA TYPHIMURIUM COMPLEXED WITH APANA AND EPANA INHIBITORS 1DIM ; 1.6 ; SIALIDASE FROM SALMONELLA TYPHIMURIUM COMPLEXED WITH EPANA INHIBITOR 1SLL ; 2.0 ; SIALIDASE L FROM LEECH MACROBDELLA DECORA 1EUU ; 2.5 ; SIALIDASE OR NEURAMINIDASE, LARGE 68KD FORM 1EUT ; 2.5 ; SIALIDASE, LARGE 68KD FORM, COMPLEXED WITH GALACTOSE 7MHU ; 2.0 ; Sialidase24 apo 6MRX ; 2.0 ; Sialidase26 apo 6MRV ; 1.8 ; Sialidase26 co-crystallized with DANA 6MYV ; 2.2 ; Sialidase26 co-crystallized with DANA-Gc 8AXI ; 1.25 ; Sialidases and Fucosidases of Akkermansia muciniphila are key for rapid growth on colonic mucin and nutrient sharing amongst mucin-associated human gut microbiota 8AXS ; 1.3 ; Sialidases and Fucosidases of Akkermansia muciniphila are key for rapid growth on colonic mucin and nutrient sharing amongst mucin-associated human gut microbiota 8AXT ; 1.59 ; Sialidases and Fucosidases of Akkermansia muciniphila are key for rapid growth on colonic mucin and nutrient sharing amongst mucin-associated human gut microbiota 8AYR ; 2.7 ; Sialidases and Fucosidases of Akkermansia muciniphila are key for rapid growth on colonic mucin and nutrient sharing amongst mucin-associated human gut microbiota 6H75 ; 1.45 ; SiaP A11N in complex with Neu5Ac (RT) 2XWV ; 1.05 ; SiaP complex 2XXK ; 1.48 ; SiaP complex 6H76 ; 1.5 ; SiaP in complex with Neu5Ac (RT) 2WYK ; 1.5 ; SiaP in complex with Neu5Gc 2XWK ; 1.49 ; SiaP R147A mutant in complex with Neu5Ac 2XWO ; 1.54 ; SiaP R147E mutant in complex with sialylamide 2XWI ; 2.195 ; SiaP R147K mutant in complex with Neu5Ac 7EAU ; ; SIB1, an effector of Colletotrichum orbiculare 5CIV ; 1.384 ; Sibling Lethal Factor Precursor - DfsB 6QWT ; 2.3 ; Sicinivirus 3Dpol RNA dependent RNA polymerase 4ZUZ ; 2.86 ; SidC 1-871 6CP2 ; 2.9 ; SidC in complex with UbcH7~Ub 6RRE ; 3.586 ; SidD, deAMPylase from Legionella pneumophila 5ZQ2 ; 2.704 ; SidE apo form 159D ; 1.8 ; SIDE BY SIDE BINDING OF TWO DISTAMYCIN A DRUGS IN THE MINOR GROOVE OF AN ALTERNATING B-DNA DUPLEX 304D ; 1.9 ; SIDE-BY-SIDE BINDING OF DISTAMYCIN MOLECULES TO D(ICATATIC) IN THE MONOCLINIC FORM 305D ; 2.17 ; SIDE-BY-SIDE BINDING OF DISTAMYCIN MOLECULES TO D(ICATATIC) IN THE TETRAGONAL FORM 306D ; 1.6 ; SIDE-BY-SIDE BINDING OF DISTAMYCIN MOLECULES TO D(ICITACIC) 3DR1 ; 2.7 ; Side-chain fluorine atoms of non-steroidal vitamin D3 analogs stabilize helix 12 of vitamin D receptor 3AT5 ; 2.2 ; Side-necked turtle (Pleurodira, Chelonia, REPTILIA) hemoglobin: cDNA-derived primary structures and X-ray crystal structures of Hb A 3AT6 ; 2.35 ; Side-necked turtle (Pleurodira, Chelonia, REPTILIA) hemoglobin: cDNA-derived primary structures and X-ray crystal structures of Hb A 5ZQ5 ; 2.487 ; SidE-Ubi 5ZQ6 ; 3.009 ; SidE-Ubi-ADPr 5ZQ7 ; 2.847 ; SidE-Ubi-NAD 2N7J ; ; Sidechain chi1 distribution in B3 domain of protein G from extensive sets of residual dipolar couplings 5K6Z ; 2.7 ; Sidekick chimera containing sidekick-2 immunoglobulin domains 1-2 and sidekick-1 immunoglobulin domains 3-4 5K6U ; 2.201 ; Sidekick-1 immunoglobulin domains 1-4, crystal form 1 5K6V ; 3.208 ; Sidekick-1 immunoglobulin domains 1-4, crystal form 2 5K6W ; 3.5 ; Sidekick-1 immunoglobulin domains 1-5 5K70 ; 2.7 ; Sidekick-2 immunoglobulin domains 1-4 H18R/N22S mutant 5K6X ; 2.7 ; Sidekick-2 immunoglobulin domains 1-4, crystal form 1 5K6Y ; 3.2 ; Sidekick-2 immunoglobulin domains 1-4, crystal form 2 2LBV ; ; Siderocalin Q83 reveals a dual ligand binding mode 3PEC ; 2.19 ; Siderocalin Recognitin of Carboxymycobactins: Interference by the immune system in intracellular iron acquisition by Mycobacteria tuberculosis 3PED ; 2.3 ; Siderocalin Recognitin of Carboxymycobactins: Interference by the immune system in intracellular iron acquisition by Mycobacteria tuberculosis 4ZFX ; 2.55 ; Siderocalin-mediated recognition and cellular uptake of actinides 4ZHC ; 2.04 ; Siderocalin-mediated recognition and cellular uptake of actinides 4ZHD ; 2.05 ; Siderocalin-mediated recognition and cellular uptake of actinides 4ZHF ; 2.45 ; Siderocalin-mediated recognition and cellular uptake of actinides 4ZHG ; 2.05 ; Siderocalin-mediated recognition and cellular uptake of actinides 4ZHH ; 2.04 ; Siderocalin-mediated recognition and cellular uptake of actinides 6GUO ; 1.75 ; Siderophore hydrolase EstA from Aspergillus nidulans 6GUD ; 1.7 ; Siderophore hydrolase EstB from Aspergillus fumigatus 6GUP ; 1.85 ; Siderophore hydrolase EstB from Aspergillus fumigatus 6GUR ; 2.1 ; Siderophore hydrolase EstB from Aspergillus fumigatus in complex with TAFC 6GUN ; 2.0 ; Siderophore hydrolase EstB from Aspergillus nidulans 6GUL ; 2.3 ; Siderophore hydrolase EstB mutant E211Q from Aspergillus fumigatus 6GUI ; 1.7 ; Siderophore hydrolase EstB mutant H267N from Aspergillus fumigatus 6GUG ; 1.45 ; Siderophore hydrolase EstB mutant S148A from Aspergillus fumigatus 7Y68 ; 2.87 ; SIDT2-pH5.5 plus miRNA 8B3Z ; 2.38 ; SigE N-terminal Domain 2HRL ; 1.85 ; Siglec-7 in complex with GT1b 7QUH ; 2.867 ; Siglec-8 in complex with therapeutic Fab AK002. 6PMI ; 3.86 ; Sigm28-transcription initiation complex with specific promoter at the state 1 6PMJ ; 3.91 ; Sigm28-transcription initiation complex with specific promoter at the state 2 1SC5 ; 3.26 ; Sigma-28(FliA)/FlgM complex 5MWW ; ; Sigma1.1 domain of sigmaA from Bacillus subtilis 5IPL ; 3.6 ; SigmaS-transcription initiation complex with 4-nt nascent RNA 5IPM ; 4.2 ; SigmaS-transcription initiation complex with 4-nt nascent RNA 5IPN ; 4.61 ; SigmaS-transcription initiation complex with 4-nt nascent RNA 8F1K ; 2.8 ; SigN RNA polymerase early-melted intermediate bound to full duplex DNA fragment dhsU36 (-12T) 8F1J ; 2.6 ; SigN RNA polymerase early-melted intermediate bound to mismatch DNA fragment dhsU36mm2 (-12A) 8F1I ; 3.0 ; SigN RNA polymerase early-melted intermediate bound to mismatch fragment dhsU36mm1 (-12T) 7ZL3 ; 3.2 ; Signal peptide mimicry primes Sec61 for client-selective inhibition 1914 ; 2.53 ; SIGNAL RECOGNITION PARTICLE ALU RNA BINDING HETERODIMER, SRP9/14 1J8M ; 2.0 ; Signal Recognition Particle conserved GTPase domain from A. ambivalens 1J8Y ; 2.0 ; Signal Recognition Particle conserved GTPase domain from A. ambivalens T112A mutant 1NRJ ; 1.7 ; Signal Recognition Particle Receptor Beta-Subunit in Complex with the SRX Domain from the Alpha-Subunit 2GED ; 2.2 ; Signal Recognition Particle Receptor Beta-Subunit in nucleotide-free dimerized form 1FTS ; 2.2 ; SIGNAL RECOGNITION PARTICLE RECEPTOR FROM E. COLI 5CK4 ; 1.89 ; Signal recognition particle receptor SRb-GDP from Chaetomium thermophilum 5CK5 ; 2.4 ; Signal recognition particle receptor SRb-GDP-Mg from Chaetomium thermophilum 5CK3 ; 3.2 ; Signal recognition particle receptor SRb-GTP/SRX complex from Chaetomium thermophilum 5NIY ; 1.7 ; Signal recognition particle-docking protein FtsY 6L7I ; 2.9 ; Signal substraction of TcdB1-TccC2 and part of TcdA1 6Y5L ; 3.6 ; Signal Subtracted Extended Intermediate form of X-31 Influenza Haemagglutinin at pH 5 (State IV) 7MI3 ; 3.5 ; Signal subtracted reconstruction of AAA2, AAA3, and AAA4 domains of dynein in the presence of a pyrazolo-pyrimidinone-based compound, Model 4 7MI8 ; 3.7 ; Signal subtracted reconstruction of AAA5 and AAA6 domains of dynein in the presence of a pyrazolo-pyrimidinone-based compound, Model 5 1TZE ; 2.1 ; SIGNAL TRANSDUCTION ADAPTOR GROWTH FACTOR, GRB2 SH2 DOMAIN COMPLEXED WITH PHOSPHOTYROSYL HEPTAPEPTIDE LYS-PRO-PHE-PTYR-VAL-ASN-VAL-NH2 (KFPPYVNC-NH2) 1BAK ; ; SIGNAL TRANSDUCTION PLECKSTRIN HOMOLOGY DOMAIN OF G-PROTEIN COUPLED RECEPTOR KINASE 2 (BETA-ADRENERGIC RECEPTOR KINASE 1), C-TERMINAL EXTENDED, NMR, 20 STRUCTURES 1YMU ; 2.3 ; SIGNAL TRANSDUCTION PROTEIN CHEY MUTANT WITH MET 17 REPLACED BY GLY (M17G) 1YMV ; 1.9 ; SIGNAL TRANSDUCTION PROTEIN CHEY MUTANT WITH PHE 14 REPLACED BY GLY, SER 15 REPLACED BY GLY, AND MET 17 REPLACED BY GLY 4XCO ; 2.9 ; Signal-sequence induced conformational changes in the signal recognition particle 2KX6 ; ; Signaling state of Photoactive Yellow Protein 7YNS ; 3.0 ; SIL5-bound alpha-synuclein fibrils 7DKI ; 2.0 ; Silk worm FKBP, isoform-1 6VM7 ; 2.41 ; SILv44 T cell receptor bound to HLA-A2 presenting gp100 peptide (ITDQVPFSV) 6VM8 ; 2.41 ; SILv44 T cell receptor bound to HLA-A2 presenting gp100T2M peptide (IMDQVPFSV) 3NSD ; 2.0 ; Silver bound to the multicopper oxidase CueO (untagged) 8C2Q ; ; Silver ion-bound structure of the silver specific chaperone SilF needed for bacterial silver resistance 3RU5 ; 1.35 ; Silver Metallated Hen Egg White Lysozyme at 1.35 A 3UGE ; 1.7 ; Silver Metallated Pseudomonas aeruginosa Azurin at 1.70 A 7CGC ; 2.548 ; Silver-bound E. coli Malate dehydrogenase (C113 and C251) 6KA0 ; 2.22 ; Silver-bound E.coli Malate dehydrogenase 7CGD ; 2.06 ; Silver-bound E.coli malate dehydrogenase 6IO4 ; 3.1 ; Silver-bound Glyceraldehyde-3-phosphate dehydrogenase A 6IO6 ; 2.64 ; Silver-bound Glyceraldehyde-3-phosphate dehydrogenase A at non-catalytic site 1SVA ; 3.1 ; SIMIAN VIRUS 40 1L85 ; 2.0 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L86 ; 1.8 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L87 ; 1.8 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L88 ; 1.85 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L89 ; 1.9 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L90 ; 1.75 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L91 ; 1.8 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L92 ; 1.7 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L93 ; 1.8 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L94 ; 1.8 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 1L95 ; 2.0 ; SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU 99 AND PHE 153 WITHIN THE CORE OF T4 LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES 2CPL ; 1.63 ; SIMILARITIES AND DIFFERENCES BETWEEN HUMAN CYCLOPHILIN A AND OTHER BETA-BARREL STRUCTURES. STRUCTURAL REFINEMENT AT 1.63 ANGSTROMS RESOLUTION 2Y31 ; 2.3 ; Simocyclinone C4 bound form of TetR-like repressor SimR 2Y30 ; 2.3 ; Simocyclinone D8 bound form of TetR-like repressor SimR 1EQV ; 1.94 ; SIMPLIFICATION OF A PROTEIN LOOP IN STAPHYLOCOCCAL NUCLEASE 1F2M ; 2.0 ; SIMPLIFICATION OF A PROTEIN LOOP IN STAPHYLOCOCCAL NUCLEASE 1F2Y ; 2.0 ; SIMPLIFICATION OF A PROTEIN LOOP IN STAPHYLOCOCCAL NUCLEASE 1F2Z ; 1.8 ; SIMPLIFICATION OF A PROTEIN LOOP IN STAPHYLOCOCCAL NUCLEASE 7CKB ; 3.24 ; Simplified Alpha-Carboxysome, T=3 7CKC ; 2.9 ; Simplified Alpha-Carboxysome, T=4 3AUD ; 1.943 ; Simplified BPTI variant with poly Asn amino acid tag (C5N) at the C-terminus 1XQQ ; ; Simultaneous determination of protein structure and dynamics 2NMQ ; ; Simultaneous determination of protein structure and dynamics using rdcs 3FO7 ; 1.4 ; Simultaneous inhibition of anti-coagulation and inflammation: Crystal structure of phospholipase A2 complexed with indomethacin at 1.4 A resolution reveals the presence of the new common ligand binding site 3H1X ; 1.4 ; Simultaneous inhibition of anti-coagulation and inflammation: Crystal structure of phospholipase A2 complexed with indomethacin at 1.4 A resolution reveals the presence of the new common ligand binding site 2KDQ ; ; Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimic of Tat protein 3HLC ; 2.0 ; Simvastatin Synthase (LovD) from Aspergillus terreus, S5 mutant, unliganded 3HL9 ; 3.4 ; Simvastatin Synthase (LovD) from Aspergillus terreus, unliganded 3HLB ; 2.5 ; Simvastatin Synthase (LovD) from Aspergillus terreus, unliganded, selenomethionyl derivative 4LCL ; 1.8 ; Simvastatin Synthase (LOVD), from Aspergillus Terreus, LovD6 mutant (simh6208) 4LCM ; 3.19 ; Simvastatin Synthase (LOVD), from Aspergillus Terreus, LovD9 mutant (simh9014) 3HLD ; 2.0 ; Simvastatin Synthase (LovD), from Aspergillus terreus, S5 mutant complex with monacolin J acid 3HLG ; 2.01 ; Simvastatin Synthase (LovD), from Aspergillus terreus, S5 mutant, S76A mutant, complex with lovastatin 3HLE ; 2.06 ; Simvastatin Synthase (LovD), from Aspergillus terreus, S5 mutant, S76A mutant, complex with monacolin J acid 3HLF ; 2.0 ; Simvastatin Synthase (LovD), from Aspergillus terreus, S5 mutant, S76A mutant, complex with simvastatin 8AHN ; 1.8 ; Sin Nombre virus Gn in complex with Fab SNV-42 1YQX ; 2.5 ; Sinapyl Alcohol Dehydrogenase at 2.5 Angstrom Resolution 1YQD ; 1.65 ; Sinapyl Alcohol Dehydrogenase complexed with NADP+ 3J0F ; 7.0 ; Sindbis virion 1KXC ; 3.1 ; SINDBIS VIRUS CAPSID (N190K MUTANT), TETRAGONAL CRYSTAL FORM 1KXD ; 3.0 ; SINDBIS VIRUS CAPSID (N222L MUTANT), TETRAGONAL CRYSTAL FORM 1KXB ; 2.9 ; SINDBIS VIRUS CAPSID (S215A MUTANT), TETRAGONAL CRYSTAL FORM 1KXE ; 3.2 ; SINDBIS VIRUS CAPSID (Y180S, E183G DOUBLE MUTANT), TETRAGONAL CRYSTAL FORM 1SVP ; 2.0 ; SINDBIS VIRUS CAPSID PROTEIN 1WYK ; 2.0 ; SINDBIS VIRUS CAPSID PROTEIN (114-264) 2SNW ; 2.7 ; SINDBIS VIRUS CAPSID PROTEIN, TYPE3 CRYSTAL FORM 1KXF ; 2.38 ; SINDBIS VIRUS CAPSID, (WILD-TYPE) RESIDUES 1-264, TETRAGONAL CRYSTAL FORM (FORM II) 1KXA ; 3.1 ; SINDBIS VIRUS CAPSID, (WILD-TYPE) RESIDUES 106-264, TETRAGONAL CRYSTAL FORM 5LSN ; ; SINEB2 element of the long non-coding RNA activator of translation AS Uchl1 5MPR ; 1.6 ; Single Amino Acid Variant of Human Mitochondrial Branched Chain Amino Acid Aminotransferase 2 1AP2 ; 2.36 ; SINGLE CHAIN FV OF C219 1MVU ; 1.78 ; SINGLE CHAIN FV OF C219 HEAVY CHAIN V101L MUTANT IN COMPLEX WITH SYNTHETIC EPITOPE PEPTIDE 2AP2 ; 2.4 ; SINGLE CHAIN FV OF C219 IN COMPLEX WITH SYNTHETIC EPITOPE PEPTIDE 2IIF ; 2.72 ; single chain Integration Host Factor mutant protein (scIHF2-K45aE) in complex with DNA 2IIE ; 2.41 ; single chain Integration Host Factor protein (scIHF2) in complex with DNA 5HKJ ; 1.35 ; Single Chain Recombinant Globular Head of the Complement System Protein C1q 5HZF ; 1.55 ; Single Chain Recombinant Globular Head of the Complement System Protein C1q in complex with magnesium 7SR0 ; 2.54 ; Single chain trimer HLA-A*02:01 (H98L, Y108C) with HPV.16 E7 peptide YMLDLQPET 7SR3 ; 2.49 ; Single chain trimer HLA-A*02:01 (H98L, Y108C) with HPV.16 E7 peptide YMLDLQPETTDL 7SR4 ; 2.59 ; Single chain trimer HLA-A*02:01 (H98L, Y108C) with HPV.16 E7 peptide YMLDLQPETTDLYC 7SSH ; 2.73 ; Single chain trimer HLA-A*02:01 (Y108A) with HPV.16 E7 peptide YMLDLQPETTDLYC 7SQP ; 2.53 ; Single chain trimer HLA-A*02:01 (Y108C) with HPV.16 E7 peptide YMLDLQPETTDL 7SR5 ; 2.35 ; Single chain trimer HLA-A*02:01 (Y108C, A163C) with Wilms tumor protein peptide RMFPNAPYL 7SRK ; 2.5 ; Single chain trimer HLA-A*24:02 (Y108C, A163C) with 8mer peptide YPPVPETF 1AOH ; 1.7 ; SINGLE COHESIN DOMAIN FROM THE SCAFFOLDING PROTEIN CIPA OF THE CLOSTRIDIUM THERMOCELLUM CELLULOSOME 4NX7 ; 1.15 ; single cryogenic temperature model of DHFR 251D ; 1.9 ; SINGLE CRYSTAL AND MOLECULAR STRUCTURE OF D(CTCGAG) 6RHR ; 1.06 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by chloride anions at sub-atomic resolution. First structure of the series with 15 KGy dose. 6RI0 ; 1.0 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by chloride anions at sub-atomic resolution. Ninth structure of the series with 1215 KGy dose. 6RHU ; 0.96 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by chloride anions at sub-atomic resolution. Second structure of the series with 165 KGy dose. 6RHX ; 0.96 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by chloride anions at sub-atomic resolution. Third structure of the series with 315 KGy dose. 6RI2 ; 1.09 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by chloride anions at sub-atomic resolution. Twentieth structure of the series with 4065 KGy dose. 6RI4 ; 1.08 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. First structure of the series with 13 KGy dose. 6RIL ; 1.34 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. Fourteenth structure of the series with 5600 KGy dose (data was collected after refreezing). 6RII ; 0.97 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. Fourth structure of the series with 1200 KGy dose. 6RI6 ; 0.93 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. Second structure of the series with 400 KGy dose. 6RI8 ; 0.95 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. Third structure of the series with 800 KGy dose. 6RIK ; 1.2 ; Single crystal serial study of the inhibition of laccases from Steccherinum murashkinskyi by fluoride anions at sub-atomic resolution. Thirteenth structure of the series with 5200 KGy dose. 6RGH ; 1.08 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. First structure of the series with 15 KGy dose. 6RHI ; 1.01 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. Ninth structure of the series with 1215 KGy dose. 6RGP ; 0.97 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. Second structure of the series with 165 KGy dose. 6RHH ; 0.97 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. Third structure of the series with 315 KGy dose. 6RHO ; 1.07 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. Twentieth structure of the series with 4065 KGy dose. 6RHP ; 1.6 ; Single crystal serial study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi at sub-atomic resolution. Twenty first structure of the series with 4415 KGy dose (collected after refreezing). 1EDG ; 1.6 ; SINGLE CRYSTAL STRUCTURE DETERMINATION OF THE CATALYTIC DOMAIN OF CELCCA CARRIED OUT AT 15 DEGREE C 1H2A ; 1.8 ; SINGLE CRYSTALS OF HYDROGENASE FROM DESULFOVIBRIO VULGARIS 2M4W ; ; single G-bulge in a conserved regulatory region of the HEV genome 3G93 ; 3.2 ; Single ligand occupancy crystal structure of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole 7B71 ; ; Single modified phosphoryl guanidine DNA duplex, Sp diastereomer 2UYF ; 2.2 ; Single mutant F111L DntR from Burkholderia sp. strain DNT in complex with thiocyanate 2XKY ; 17.2 ; Single particle analysis of Kir2.1NC_4 in negative stain 2XKX ; 22.9 ; Single particle analysis of PSD-95 in negative stain 6FBV ; 3.52 ; Single particle cryo em structure of Mycobacterium tuberculosis RNA polymerase in complex with Fidaxomicin 8P1I ; 2.97 ; Single particle cryo-EM co-structure of Klebsiella pneumoniae AcrB with the BDM91288 efflux pump inhibitor at 2.97 Angstrom resolution 6GSR ; 5.5 ; Single Particle Cryo-EM map of human Transferrin receptor 1 - H-Ferritin complex at 5.5 Angstrom resolution. 6H5I ; 3.9 ; Single Particle Cryo-EM map of human Transferrin receptor 1 - H-Ferritin complex. 8A9B ; 4.0 ; Single Particle cryo-EM of the empty lipid binding protein P116 (MPN213) from Mycoplasma pneumoniae at 4 Angstrom resolution 8A9A ; 3.3 ; Single Particle cryo-EM of the lipid binding protein P116 (MPN213) from Mycoplasma pneumoniae at 3.3 Angstrom resolution. 8PBX ; 3.3 ; Single particle cryo-EM of the P140-P110 heterodimer of Mycoplasma genitalium at 3.3 Angstrom resolution. 8PBY ; 3.7 ; Single particle cryo-EM of the P140-P110 heterodimer with an alternative conformation in the P140 stalk of Mycoplasma genitalium at a resolution of 3.7 Angstrom. 6B9Q ; 3.17 ; Single particle cryo-EM structure determination of the LuIII capsid protein 8P5W ; 2.26 ; Single particle cryo-EM structure of homohexameric 2-oxoglutarate dehydrogenase OdhA from Corynebacterium glutamicum following reaction with the 2-oxoglutarate analogue succinyl phosphonate 8P5V ; 2.07 ; Single particle cryo-EM structure of homohexameric 2-oxoglutarate dehydrogenase OdhA from Corynebacterium glutamicum in complex with the product succinyl-CoA 8P5U ; 2.17 ; Single particle cryo-EM structure of homohexameric 2-oxoglutarate dehydrogenase OdhA from Corynebacterium glutamicum with Coenzyme A bound to the E2o domain 6UWM ; 5.9 ; Single particle cryo-EM structure of KvAP 7Q57 ; 13.0 ; Single Particle Cryo-EM structure of photosynthetic A10B10 glyceraldehyde-3-phospahte dehydrogenase from Spinacia oleracea. 7Q53 ; 6.3 ; Single Particle Cryo-EM structure of photosynthetic A2B2 glyceraldehyde 3-phosphate dehydrogenase from Spinacia oleracia 7Q54 ; 8.9 ; Single Particle Cryo-EM structure of photosynthetic A4B4-glyceraldehyde 3-phosphate dehydrogenase from Spinacia oleracia. 7Q56 ; 7.1 ; Single Particle Cryo-EM structure of photosynthetic A8B8 glyceraldehyde-3-phosphate dehydrogenase (minor conformer) from Spinacia oleracea. 7Q55 ; 5.7 ; Single Particle Cryo-EM structure of photosynthetic A8B8 glyceraldehyde-3-phosphate dehydrogenase hexadecamer (major conformer) from Spinacia oleracia. 3J9S ; 2.6 ; Single particle cryo-EM structure of rotavirus VP6 at 2.6 Angstrom resolution 7MVY ; 2.39 ; Single particle cryo-EM structure of the Chaetomium thermophilum Nup188-Nic96 complex (Nup188 residues 1-1858; Nic96 residues 240-301) 7MVZ ; 2.81 ; Single particle cryo-EM structure of the Chaetomium thermophilum Nup188-Nic96-Nup145N complex (Nup188 residues 1-1858; Nic96 residues 240-301; Nup145N residues 640-732) 7MVU ; 3.77 ; Single particle cryo-EM structure of the Chaetomium thermophilum Nup192-Nic96 complex (Nup192 residues 1-1756; Nic96 residues 240-301) 7MVV ; 3.22 ; Single particle cryo-EM structure of the Chaetomium thermophilum Nup192-Nic96-Nup53-Nup145N complex (Nup192 residues 1-1756; Nic96 residues 240-301; Nup53 31-67; Nup145N 616-683) 8P5X ; 2.29 ; Single particle cryo-EM structure of the complex between Corynebacterium glutamicum homohexameric 2-oxoglutarate dehydrogenase OdhA and the FHA-protein inhibitor OdhI 8P5T ; 2.17 ; Single particle cryo-EM structure of the homohexameric 2-oxoglutarate dehydrogenase OdhA from Corynebacterium glutamicum 6PBY ; 3.67 ; Single particle cryo-EM structure of the voltage-gated K+ channel Eag1 3-13 deletion mutant bound to calmodulin (conformation 1) 6PBX ; 4.0 ; Single particle cryo-EM structure of the voltage-gated K+ channel Eag1 3-13 deletion mutant bound to calmodulin (conformation 2) 5K7L ; 3.78 ; Single particle cryo-EM structure of the voltage-gated K+ channel Eag1 bound to the channel inhibitor calmodulin 6MWQ ; 3.0 ; Single particle cryoEM structure of a DARPin-aldolase platform in complex with GFP 6W6M ; 2.7 ; Single particle cryoEM structure of V. cholerae Type IV competence pilus secretin PilQ 4AV2 ; 26.0 ; Single particle electron microscopy of PilQ dodecameric complexes from Neisseria meningitidis. 6NHV ; 3.5 ; Single particle reconstruction of DARPin and its bound GFP on a symmetric scaffold 6VRS ; 2.7 ; Single particle reconstruction of glucose isomerase from Streptomyces rubiginosus based on data acquired in the presence of substantial aberrations 6VSA ; 2.32 ; Single particle reconstruction of HemQ from Geobacillus based on data acquired in the presence of substantial aberrations 6VSC ; 2.6 ; Single particle reconstruction of HemQ from Geobacillus based on data acquired in the presence of substantial aberrations 6PCV ; 3.2 ; Single Particle Reconstruction of Phosphatidylinositol (3,4,5) trisphosphate-dependent Rac exchanger 1 bound to G protein beta gamma subunits 5LK8 ; 3.42 ; single particle reconstruction of slow bee paralysis virus empty particle 5LK7 ; 3.42 ; Single particle reconstruction of slow bee paralysis virus virion at pH 5.5 6NHT ; 2.9 ; Single particle reconstruction of the symmetric core an engineered protein scaffold 8AFX ; 4.8 ; Single particle structure of Atg18-WT 6CSX ; 3.0 ; Single particles Cryo-EM structure of AcrB D407A associated with lipid bilayer at 3.0 Angstrom 4A73 ; 3.001 ; SINGLE POINT MUTANT OF THERMUS THERMOPHILUS LACTATE DEHYDROGENASE 4NX6 ; 1.35 ; single room temperature model of DHFR 8BZ0 ; 1.2 ; single soak stabilizer for ERa - 14-3-3 interaction (AZ275) 8BZ9 ; 1.3 ; single soak stabilizer for ERa - 14-3-3 interaction (AZ354) 8BZA ; 1.25 ; single soak stabilizer for ERa - 14-3-3 interaction (AZ555) 1EQQ ; 3.2 ; SINGLE STRANDED DNA BINDING PROTEIN AND SSDNA COMPLEX 2VW9 ; 2.3 ; Single stranded DNA binding protein complex from Helicobacter pylori 7R4W ; 2.3 ; Single stranded DNA binding protein SSB M5 from Fervidobacterium gondwanense 1JMC ; 2.4 ; SINGLE STRANDED DNA-BINDING DOMAIN OF HUMAN REPLICATION PROTEIN A BOUND TO SINGLE STRANDED DNA, RPA70 SUBUNIT, RESIDUES 183-420 1URJ ; 3.0 ; Single stranded DNA-binding protein(ICP8) from Herpes simplex virus-1 4WBB ; 2.8 ; Single Turnover Autophosphorylation Cycle of the PKA RIIb Holoenzyme 6K4Z ; 1.65 ; Single-chain Fv antibody of C6 COMPLEXED WITH 2-(4-HYDROXY-3-NITROPHENYL)ACETIC ACID 4ZCH ; 2.43 ; Single-chain human APRIL-BAFF-BAFF Heterotrimer 7U23 ; 4.6 ; Single-chain LCDV-1 viral insulin-like peptide bound to IGF-1R ectodomain, leucine-zippered form 3GVW ; 2.8 ; Single-chain UROD F217Y (YF) mutation 3GVR ; 2.2 ; Single-chain UROD Y164G (GY) mutation 3GVV ; 2.8 ; Single-chain UROD Y164G (GY) mutation 7YD3 ; 2.16 ; Single-chain variable fragment of app 3D1 antibody 6EGC ; 1.74 ; Single-chain version of 2L4HC2_23 (PDB 5J0K) 7TGI ; 2.104 ; Single-domain VHH intrabodies neutralize ricin toxin 7TH2 ; 1.838 ; Single-domain VHH intrabodies neutralize ricin toxin 7TH3 ; 2.292 ; Single-domain VHH intrabodies neutralize ricin toxin 7TGF ; 1.347 ; Single-domain VHH intrabodies neutralize ricin toxin. 5A7U ; 4.8 ; Single-particle cryo-EM of co-translational folded adr1 domain inside the E. coli ribosome exit tunnel. 6W98 ; 2.9 ; Single-Particle Cryo-EM Structure of Arabinofuranosyltransferase AftD from Mycobacteria 6WBX ; 3.5 ; Single-Particle Cryo-EM Structure of Arabinofuranosyltransferase AftD from Mycobacteria, Mutant R1389S Class 1 6WBY ; 3.4 ; Single-Particle Cryo-EM Structure of Arabinofuranosyltransferase AftD from Mycobacteria, Mutant R1389S Class 2 6X0O ; 3.3 ; Single-Particle Cryo-EM Structure of Arabinosyltransferase EmbB from Mycobacterium smegmatis 7TPT ; 3.9 ; Single-particle Cryo-EM structure of Arp2/3 complex at branched-actin junction. 7MJS ; 3.03 ; Single-Particle Cryo-EM Structure of Major Facilitator Superfamily Domain containing 2A in complex with LPC-18:3 8J5A ; 1.19 ; Single-particle cryo-EM structure of mouse apoferritin at 1.19 Angstrom resolution (Dataset A) 6UKJ ; 3.3 ; Single-Particle Cryo-EM Structure of Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) 7G8 Isoform 7TPJ ; 3.46 ; Single-Particle Cryo-EM Structure of the WaaL O-antigen ligase in its apo state 7TPG ; 3.23 ; Single-Particle Cryo-EM Structure of the WaaL O-antigen ligase in its ligand bound state 5M3L ; 3.8 ; Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris hemoglobin 6C9K ; 3.49 ; Single-Particle reconstruction of DARP14 - A designed protein scaffold displaying ~17kDa DARPin proteins 6C9I ; 3.09 ; Single-Particle reconstruction of DARP14 - A designed protein scaffold displaying ~17kDa DARPin proteins - Scaffold 5MJJ ; 1.75009 ; Single-shot pink beam serial crystallography: Lysozyme 5MJM ; 2.302 ; Single-shot pink beam serial crystallography: Phycocyanin (Five chips merged) 5MJQ ; 2.7 ; Single-shot pink beam serial crystallography: Phycocyanin (One chip) 5O7M ; 2.46 ; Single-shot pink beam serial crystallography: Phycocyanin (One chip, chip_1) 5MJL ; 2.21014 ; Single-shot pink beam serial crystallography: Proteinase K 5MJG ; 2.1 ; Single-shot pink beam serial crystallography: Thaumatin 6BY4 ; ; Single-State 14-mer UUCG Tetraloop calculated from Exact NOEs 7WCG ; ; Single-Stranded DNA binding protein of Sulfolobus Solfataricus structure at high-temperature 5ODJ ; 1.5 ; Single-stranded DNA-binding protein from bacteriophage Enc34 5ODL ; 1.56 ; Single-stranded DNA-binding protein from bacteriophage Enc34 in complex with ssDNA 5ODK ; 1.34 ; Single-stranded DNA-binding protein from bacteriophage Enc34, C-terminal truncation 2FXQ ; 1.85 ; Single-stranded DNA-binding protein from Thermus aquaticus 8BTZ ; 5.39 ; Single-stranded Paranemic Crossover RNA Triangle (PXT) 6VHA ; 4.3 ; Singlet Tau Fibril from Corticobasal Degeneration Human Brain Tissue 6BGO ; 4.2 ; Singly PafE-capped 20S CP in Mycobacterium tuberculosis 5CVU ; 1.8 ; sinpyl alcohol bound monolignol 4-O-methyltransferase 5 1B0N ; 1.9 ; SINR PROTEIN/SINI PROTEIN COMPLEX 2YAL ; 2.27 ; SinR, Master Regulator of biofilm formation in Bacillus subtilis 8QXI ; ; SipA solution structure 2YM9 ; 3.0 ; SipD from Salmonella typhimurium 3RIQ ; 1.5 ; Siphovirus 9NA tailspike receptor binding domain 3JR3 ; 1.5 ; Sir2 bound to acetylated peptide 4BUZ ; 1.9 ; SIR2 COMPLEX STRUCTURE MIXTURE OF EX-527 INHIBITOR AND REACTION PRODUCTS OR OF REACTION SUBSTRATES P53 PEPTIDE AND NAD 2H59 ; 1.9 ; Sir2 H116A-deacetylated p53 peptide-3'-o-acetyl ADP ribose 2H4H ; 1.99 ; Sir2 H116Y mutant-p53 peptide-NAD 1M2K ; 1.47 ; Sir2 homologue F159A mutant-ADP ribose complex 1M2J ; 1.7 ; Sir2 homologue H80N mutant-ADP ribose complex 1M2H ; 1.8 ; Sir2 homologue S24A mutant-ADP ribose complex 1M2G ; 1.7 ; Sir2 homologue-ADP ribose complex 1M2N ; 2.6 ; Sir2 homologues (D102G/F159A/R170A) mutant-2'-O-acetyl ADP ribose complex 2H4J ; 2.1 ; Sir2-deacetylated peptide (from enzymatic turnover in crystal) 2H4F ; 2.0 ; Sir2-p53 peptide-NAD+ 1YC5 ; 1.4 ; Sir2-p53 peptide-nicotinamide 3D81 ; 2.5 ; Sir2-S-alkylamidate complex crystal structure 1YC2 ; 2.4 ; Sir2Af2-NAD-ADPribose-nicotinamide 2CGI ; 1.35 ; Siras structure of tetragonal lysozyme using derivative data collected at the high energy remote Holmium Kedge 5ZT8 ; 2.0 ; SirB from Bacillus subtilis 5ZT7 ; 2.94 ; SirB from Bacillus subtilis with Co2+ 5ZTA ; 3.07 ; SirB from Bacillus subtilis with Fe3+ 5ZT9 ; 2.8 ; SirB from Bacillus subtilis with Ni2+ 3DFZ ; 2.3 ; SirC, precorrin-2 dehydrogenase 4CZD ; 2.23 ; Sirohaem decarboxylase AhbA/B - an enzyme with structural homology to the Lrp/AsnC transcription factor family that is part of the alternative haem biosynthesis pathway. 4UN1 ; 1.97 ; Sirohaem decarboxylase AhbA/B - an enzyme with structural homology to the Lrp/AsnC transcription factor family that is part of the alternative haem biosynthesis pathway. 6M28 ; 3.0 ; Sirohydrochlorin nickelochelatase CfbA in complex with Co2+ 6M29 ; 2.9 ; Sirohydrochlorin nickelochelatase CfbA in complex with Co2+ and formate 6M2G ; 2.8 ; Sirohydrochlorin nickelochelatase CfbA in complex with cobalt-sirohydrochlorin 6M27 ; 2.6 ; Sirohydrochlorin nickelochelatase CfbA in complex with Ni2+ 6M2F ; 2.4 ; Sirohydrochlorin nickelochelatase CfbA in complex with nickel-sirohydrochlorin 6M2E ; 2.6 ; Sirohydrochlorin nickelochelatase CfbA in complex with sirohydrochlorin 6M26 ; 2.61 ; Sirohydrochlorin nickelochelatase CfbA in P212121 space group 6M25 ; 2.5 ; Sirohydrochlorin nickelochelatase CfbA in P41 space group 6P5X ; 1.97 ; Sirohydrochlorin-bound S. typhimurium siroheme synthase 6BIT ; 2.191 ; SIRPalpha antibody complex 4ZZH ; 3.1001 ; SIRT1/Activator Complex 4ZZI ; 2.7346 ; SIRT1/Activator/Inhibitor Complex 4ZZJ ; 2.7403 ; SIRT1/Activator/Substrate Complex 5FYQ ; 3.0 ; Sirt2 in complex with a 13-mer trifluoroacetylated Ran peptide 4X3O ; 1.5 ; Sirt2 in complex with a myristoyl peptide 4X3P ; 1.8 ; Sirt2 in complex with a myristoyl peptide 6NR0 ; 2.45 ; SIRT2(56-356) with covalent intermediate between mechanism-based inhibitor Glucose-TM-1beta and 1'-SH ADP-ribose 3RIG ; 2.0 ; Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase 3RIY ; 1.55 ; Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase 5X16 ; 1.97 ; Sirt6 apo structure 8F86 ; 3.1 ; SIRT6 bound to an H3K9Ac nucleosome 6L72 ; 2.501 ; Sirtuin 2 demyristoylation native final product 6L71 ; 2.109 ; Sirtuin 2 demyristoylation native intermediate I & II mixture 6L65 ; 1.8 ; Sirtuin 2 protein with H3K18 myristoylated peptide 6L66 ; 2.169 ; Sirtuin 2 protein with H3K18 myristoylated peptide and intact NAD molecule 5OJN ; 1.8 ; Sirtuin 4 from Xenopus tropicalis in complex with thioacetyl-ADP-ribose 5OJ7 ; 1.58 ; Sirtuin 4 orthologue from Xenopus Tropicalis in complex with ADP-ribose 5OJO ; 3.1 ; Sirtuin 5 from Danio rerio in complex with 3-hydroxy-3-methylglutaryl-CPS1 peptide 7Y4G ; 1.97 ; sit-bound btDPP4 7Y75 ; 3.1 ; SIT1-ACE2-BA.2 RBD 7Y76 ; 3.2 ; SIT1-ACE2-BA.5 RBD 8DI2 ; ; Site 2 insulin receptor binding peptide IM459N21 2IU7 ; 1.91 ; Site directed mutagenesis of key residues involved in the catalytic mechanism of Cyanase 2IUO ; 1.9 ; Site Directed Mutagenesis of Key Residues Involved in the Catalytic Mechanism of Cyanase 2IV1 ; 1.88 ; SITE DIRECTED MUTAGENESIS OF KEY RESIDUES INVOLVED IN THE CATALYTIC MECHANISM OF CYANASE 2IVB ; 1.95 ; SITE DIRECTED MUTAGENESIS OF KEY RESIDUES INVOLVED IN THE CATALYTIC MECHANISM OF CYANASE 2IVG ; 1.87 ; SITE DIRECTED MUTAGENESIS OF KEY RESIDUES INVOLVED IN THE CATALYTIC MECHANISM OF CYANASE 2IVQ ; 2.1 ; SITE DIRECTED MUTAGENESIS OF KEY RESIDUES INVOLVED IN THE CATALYTIC MECHANISM OF CYANASE 1CGV ; 2.5 ; SITE DIRECTED MUTATIONS OF THE ACTIVE SITE RESIDUE TYROSINE 195 OF CYCLODEXTRIN GLYCOSYLTRANSFERASE FROM BACILLUS CIRCULANS STRAIN 251 AFFECTING ACTIVITY AND PRODUCT SPECIFICITY 1CGW ; 2.5 ; SITE DIRECTED MUTATIONS OF THE ACTIVE SITE RESIDUE TYROSINE 195 OF CYCLODEXTRIN GLYCOSYLTRANSFERASE FROM BACILLUS CIRCULANS STRAIN 251 AFFECTING ACTIVITY AND PRODUCT SPECIFICITY 1CGX ; 2.5 ; SITE DIRECTED MUTATIONS OF THE ACTIVE SITE RESIDUE TYROSINE 195 OF CYCLODEXTRIN GLYXOSYLTRANSFERASE FROM BACILLUS CIRCULANS STRAIN 251 AFFECTING ACTIVITY AND PRODUCT SPECIFICITY 1CGY ; 2.5 ; SITE DIRECTED MUTATIONS OF THE ACTIVE SITE RESIDUE TYROSINE 195 OF CYCLODEXTRIN GLYXOSYLTRANSFERASE FROM BACILLUS CIRCULANS STRAIN 251 AFFECTING ACTIVITY AND PRODUCT SPECIFICITY 1PON ; ; SITE III-SITE IV TROPONIN C HETERODIMER, NMR 1MOO ; 1.05 ; Site Specific Mutant (H64A) of Human Carbonic Anhydrase II at high resolution 3B4R ; 3.3 ; Site-2 Protease from Methanocaldococcus jannaschii 1FD2 ; 1.9 ; SITE-DIRECTED MUTAGENESIS OF AZOTOBACTER VINELANDII FERREDOXIN I. (FE-S) CLUSTER-DRIVEN PROTEIN REARRANGEMENT 1UI7 ; 2.0 ; Site-directed mutagenesis of His433 involved in binding of copper ion in Arthrobacter globiformis amine oxidase 1UI8 ; 1.8 ; Site-directed mutagenesis of His592 involved in binding of copper ion in Arthrobacter globiformis amine oxidase 2VKA ; 2.0 ; Site-Directed Mutagenesis of the Catalytic Tryptophan Environment in Pleurotus eryngii Versatile Peroxidase 1CPY ; 2.6 ; SITE-DIRECTED MUTAGENESIS ON (SERINE) CARBOXYPEPTIDASE Y FROM YEAST. THE SIGNIFICANCE OF THR 60 AND MET 398 IN HYDROLYSIS AND AMINOLYSIS REACTIONS 3CIU ; 3.5 ; Site-Selective Glycosylation of Cysteine-93 beta on the Surface of Bovine Hemoglobin and its Application as a Novel Oxygen Therapeutic 3PI8 ; 2.2 ; Site-specific Glycosylation of Hemoglobin Utilizing Oxime Ligation Chemistry as a Viable Alternative to PEGylation 3PI9 ; 2.9 ; Site-specific Glycosylation of Hemoglobin Utilizing Oxime Ligation Chemistry as a Viable Alternative to PEGylation 3PIA ; 2.1 ; Site-specific Glycosylation of Hemoglobin Utilizing Oxime Ligation Chemistry as a Viable Alternative to PEGylation 6U85 ; 2.78 ; Site-specific lysine arylation as an alternative bioconjugation strategy for chemically programmed antibodies and antibody-drug conjugates 1G0F ; 1.6 ; SITE-SPECIFIC MUTANT (HIS64 REPLACED WITH ALA) OF HUMAN CARBONIC ANHYDRASE II 1G0E ; 1.6 ; SITE-SPECIFIC MUTANT (HIS64 REPLACED WITH ALA) OF HUMAN CARBONIC ANHYDRASE II COMPLEXED WITH 4-METHYLIMIDAZOLE 1LZV ; 2.3 ; Site-Specific Mutant (Tyr7 replaced with His) of Human Carbonic Anhydrase II 1A0P ; 2.5 ; SITE-SPECIFIC RECOMBINASE, XERD 1PB3 ; 1.7 ; Sites of binding and orientation in a four location model for protein stereospecificity. 8DUA ; 4.32 ; SIV E660.CR54 SOS-2P Env Trimer with ITS92.02 2SIV ; 2.2 ; SIV GP41 CORE STRUCTURE 1C6V ; 3.0 ; SIV INTEGRASE (CATALYTIC DOMAIN + DNA BIDING DOMAIN COMPRISING RESIDUES 50-293) MUTANT WITH PHE 185 REPLACED BY HIS (F185H) 1TCW ; 2.4 ; SIV PROTEASE COMPLEXED WITH INHIBITOR SB203386 1YTG ; 2.3 ; SIV PROTEASE CRYSTALLIZED WITH PEPTIDE PRODUCT 1YTH ; 2.2 ; SIV PROTEASE CRYSTALLIZED WITH PEPTIDE PRODUCT 1YTI ; 2.2 ; SIV PROTEASE CRYSTALLIZED WITH PEPTIDE PRODUCT 1YTJ ; 2.5 ; SIV PROTEASE CRYSTALLIZED WITH PEPTIDE PRODUCT 4HTW ; 2.9 ; SIVmac239 capsid N-terminal domain 3IOZ ; 3.699 ; SIVmac239 Nef in complex with a TCR zeta polypeptide DP1 (L51-D93) 3IK5 ; 2.05 ; SIVmac239 Nef in complex with TCR zeta ITAM 1 polypeptide (A63-R80) 6RWL ; 3.36 ; SIVrcm intasome 6RWO ; 3.05 ; SIVrcm intasome (Q148H/G140S) in complex with bictegravir 6RWM ; 2.81 ; SIVrcm intasome in complex with bictegravir 6RWN ; 3.1 ; SIVrcm intasome in complex with dolutegravir 3F3M ; 2.4 ; Six Crystal Structures of Two Phosphopantetheine Adenylyltransferases Reveal an Alternative Ligand Binding Mode and an Associated Structural Change 7YWI ; 8.0 ; Six DNA duplex bundle nanopore - State 2 7YWH ; 8.0 ; Six DNA Helix Bundle nanopore - State 1 7YWL ; 8.0 ; Six DNA Helix Bundle nanopore - State 3 7YWN ; 8.0 ; Six DNA Helix Bundle nanopore - State 4 7YWO ; 8.0 ; Six DNA Helix Bundle nanopore - State 5 2LLF ; ; Sixth Gelsolin-like domain of villin in 5 mM CaCl2 6I36 ; 1.59 ; SIXTY MINUTES IRON LOADED FROG M FERRITIN 4MJY ; 1.4 ; Sixty minutes iron loaded frog M ferritin mutant H54Q 5JAC ; 1.18 ; Sixty minutes iron loaded Rana Catesbeiana H' ferritin variant E57A/E136A/D140A 6IAJ ; 1.62 ; Sixty minutes iron loaded Rana Catesbeiana H' ferritin variant H54N 7URX ; 3.4 ; SJ25C1 Fab in complex with soluble CD19 6HCZ ; 2.3 ; Sjoegren syndrome/scleroderma autoantigen 1 (SSSCA1) 6EFI ; 1.715 ; SK678 binding region (Siglec + Unique) 7TTS ; 2.9 ; Skd3, hexamer, filtered 7TTR ; 2.96 ; Skd3_ATPyS_FITC-casein Hexamer, AAA+ only 4V10 ; ; Skelemin Association with alpha2b,beta3 Integrin: A Structural Model 2JTD ; ; Skelemin Immunoglobulin C2 like domain 4 6YSY ; 3.246 ; Skeletal Myosin bound to MPH-220, MgADP-VO4 5C4V ; 2.6 ; Ski-like protein 4NLH ; 1.9 ; SKICH domain of human TAX1BP1 3VVV ; 1.35 ; Skich domain of NDP52 8WUI ; 3.4 ; SKOR D312N L271P double mutation 5IBK ; 2.503 ; Skp1-F-box in complex with a ubiquitin variant 2JD5 ; 2.5 ; Sky1p bound to Npl3p-derived substrate peptide 1BN0 ; ; SL3 HAIRPIN FROM THE PACKAGING SIGNAL OF HIV-1, NMR, 11 STRUCTURES 2KKW ; ; SLAS-micelle bound alpha-synuclein 8JZX ; 2.5 ; SLC15A4 inhibitor complex 8JZU ; 3.05 ; SLC15A4_TASL complex 6URS ; ; Sleeping Beauty transposase PAI subdomain mutant - H19Y 8DKD ; 3.2 ; Sliding clamp from M. thermoresistibile 1B8H ; 3.0 ; SLIDING CLAMP, DNA POLYMERASE 1LT1 ; 1.91 ; SLIDING HELIX INDUCED CHANGE OF COORDINATION GEOMETRY IN A MODEL DI-MN(II) PROTEIN 8DK9 ; 2.5 ; Sliding-clamp-DinX peptide 8DJQ ; 2.8 ; Sliding-clamp-DnaE1 peptide 8DJ6 ; 2.5 ; Sliding-clamp-ImuB peptide 5X4A ; 3.4 ; SLL-2-Forssman antigen tetrasaccharides complex 8C7A ; ; Slow cation movements within tetramolecular G-quadruplex: vacant cation binding sites in addition to all syn G-quartet 8C7B ; ; Slow cation movements within tetramolecular G-quadruplex: vacant cation binding sites in addition to all syn G-quartet 1SHH ; 1.55 ; Slow form of Thrombin Bound with PPACK 4TMN ; 1.7 ; SLOW-AND FAST-BINDING INHIBITORS OF THERMOLYSIN DISPLAY DIFFERENT MODES OF BINDING. CRYSTALLOGRAPHIC ANALYSIS OF EXTENDED PHOSPHONAMIDATE TRANSITION-STATE ANALOGUES 5TMN ; 1.6 ; Slow-and fast-binding inhibitors of thermolysin display different modes of binding. crystallographic analysis of extended phosphonamidate transition-state analogues 6XF7 ; 6.6 ; SLP 7ACV ; 2.4 ; SLPL/HID (LMW SLP complex with HMW SLP interacting domain - HID) from C. difficile (R7404 strain) 1G8T ; 1.1 ; SM ENDONUCLEASE FROM SERATIA MARCENSCENS AT 1.1 A RESOLUTION 1QL0 ; 1.1 ; Sm Endonuclease from Seratia marcenscens at atomic resolution 6XM1 ; 2.8 ; SM Protein Vps45 in Complex with Qa SNARE Tlg2 6XMD ; 3.9 ; SM Protein Vps45 in Complex with Qa SNARE Tlg2 (1-310) 5H3U ; 2.499 ; Sm RNA bound to GEMIN5-WD 2OPY ; 2.8 ; Smac mimic bound to BIR3-XIAP 1KHU ; 2.5 ; Smad1 crystal structure reveals the details of BMP signaling pathway 1MK2 ; 2.74 ; SMAD3 SBD complex 7RAZ ; 3.4 ; Small conductance mechanosensitive channel MscS 7A46 ; 3.0 ; small conductance mechanosensitive channel YbiO 6NUE ; 3.3 ; Small conformation of apo CRISPR_Csm complex 6NUD ; 3.5 ; Small conformation of ssRNA-bound CRISPR_Csm complex 8GRT ; 2.59 ; Small Dipeptide Analogues developed by Co-crystal Structure of Stenotrophomonas maltophilia Dipeptidyl Peptidase 7 1E0S ; 2.28 ; small G protein Arf6-GDP 1MH1 ; 1.38 ; SMALL G-PROTEIN 4ZJ9 ; 2.0 ; Small heat shock protein AgsA from Salmonella typhimurium: Alpha crystallin domain 4ZJA ; 4.101 ; Small heat shock protein AgsA from Salmonella typhimurium: C-terminal truncated construct 4ZJD ; 7.5 ; Small heat shock protein AgsA from Salmonella typhimurium: Truncations at N- and C- termini 5ZS3 ; 2.001 ; Small heat shock protein from M. marinum:Form-1 1SHS ; 2.9 ; SMALL HEAT SHOCK PROTEIN FROM METHANOCOCCUS JANNASCHII 5ZUL ; 3.75 ; Small heat shock protein from Mycobacterium marinum M : Form-3 3VQL ; 1.9 ; Small heat shock protein hsp14.0 of C-terminal deletion variant 3VQM ; 2.55 ; Small heat shock protein hsp14.0 of C-terminal deletion variant with C-terminal peptide 3VQK ; 4.5 ; Small heat shock protein hsp14.0 of wild type 3AAB ; 1.851 ; Small heat shock protein hsp14.0 with the mutations of I120F and I122F in the form I crystal 3AAC ; 2.4 ; Small heat shock protein hsp14.0 with the mutations of I120F and I122F in the form II crystal 7TUK ; 6.3 ; Small hepatitis B virus surface protein without cytosolic and antigenic loops 3T9W ; 1.5 ; Small laccase from Amycolatopsis sp. ATCC 39116 3TA4 ; 2.35 ; Small laccase from Amycolatopsis sp. ATCC 39116 complexed with 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane 3TAS ; 2.3 ; Small laccase from Streptomyces viridosporus T7A 3TBC ; 2.7 ; Small laccase from Streptomyces viridosporus T7A; alternate crystal form complexed with acetovanillone. 3TBB ; 2.3 ; Small laccase from Streptomyces viridosporus T7A; alternate crystal form. 4NEJ ; 1.919 ; Small molecular fragment bound to crystal contact interface of Interleukin-2 4NEM ; 1.934 ; Small molecular fragment bound to crystal contact interface of Interleukin-2 8ATR ; 1.7 ; Small molecular stabilizer for C-RAF (pS259) and 14-3-3 (1075297) 8ATS ; 1.4 ; Small molecular stabilizer for C-RAF (pS259) and 14-3-3 (1075306) 8AV7 ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1074202 - non covalent) 8AV3 ; 1.8 ; Small molecular stabilizer for ERalpha and 14-3-3 (1075299) 8AV8 ; 1.8 ; Small molecular stabilizer for ERalpha and 14-3-3 (1075300) 8AV4 ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3 (1075305) 8ALW ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1075310) 8ALT ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1075311) 8ARR ; 1.35 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076394) 8AM7 ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076397) 8AS1 ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076398) 8ARW ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076402) 8ALV ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076403) 8ARG ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1076405) 8AR5 ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080265) 8ARQ ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080266) 8AQZ ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080267) 8ALR ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080272) 8ARY ; 1.45 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080273) 8ARO ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080291) 8AU2 ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080293) 8AQC ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080294) 8AQE ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080295) 8AUS ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080297) 8B39 ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080299) 8AR4 ; 1.5 ; Small molecular stabilizer for ERalpha and 14-3-3 (1080300) 8APS ; 1.2 ; Small molecular stabilizer for ERalpha and 14-3-3 (1083744) 8ARX ; 1.4 ; Small molecular stabilizer for ERalpha and 14-3-3sigma (1074378) 8AI0 ; 1.6 ; Small molecular stabilizer for ERalpha and 14-3-3sigma (1080268) 8JR9 ; 2.57 ; Small molecule agonist (PCO371) bound to human parathyroid hormone receptor type 1 (PTH1R) 3C6N ; 2.6 ; Small molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling 3C6O ; 2.7 ; Small molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling 3C6P ; 2.7 ; Small molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling 8C4F ; 1.4 ; Small molecule amidine soak in 14-3-3/ERa (AZ037) 8C4G ; 1.46 ; Small molecule amidine soak in 14-3-3/ERa (AZ132) 1CMP ; 1.9 ; SMALL MOLECULE BINDING TO AN ARTIFICIALLY CREATED CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE 1CMQ ; 2.3 ; SMALL MOLECULE BINDING TO AN ARTIFICIALLY CREATED CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE 3LKJ ; 2.5 ; Small Molecule Inhibition of the TNF Family Cyokine CD40 Ligand Through a Subunit Fracture Mechanism 5V8P ; 2.501 ; Small Molecule Inhibitor ABS-143 Bound to the Botulinum Neurotoxin Serotype A Light Chain 5V8R ; 1.9 ; Small Molecule Inhibitor ABS-143 Bound to the Botulinum Neurotoxin Serotype A Light Chain 5V8U ; 2.05 ; Small Molecule Inhibitor ABS-143 Bound to the Botulinum Neurotoxin Serotype A Light Chain 6QMC ; 1.77 ; Small molecule inhibitor of the KEAP1-NRF2 protein-protein interaction 6QMD ; 1.94 ; Small molecule inhibitor of the KEAP1-NRF2 protein-protein interaction 6QME ; 1.81 ; Small molecule inhibitor of the KEAP1-NRF2 protein-protein interaction 6QMJ ; 1.86 ; Small molecule inhibitor of the KEAP1-NRF2 protein-protein interaction 6QMK ; 1.72 ; Small molecule inhibitor of the KEAP1-NRF2 protein-protein interaction 5M6E ; 2.32 ; Small Molecule inhibitors of IAP 5M6F ; 2.39 ; Small Molecule inhibitors of IAP 5M6H ; 2.5 ; Small Molecule inhibitors of IAP 5M6L ; 2.61 ; Small Molecule inhibitors of IAP 5M6M ; 2.37 ; Small Molecule inhibitors of IAP 5M6N ; 1.8 ; Small Molecule inhibitors of IAP 3ZCM ; 1.8 ; Small molecule inhibitors of the LEDGF site of HIV integrase identified by fragment screening and structure based design. 3ZSO ; 1.75 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based design 3ZSQ ; 1.7 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSR ; 1.7 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSV ; 1.75 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSW ; 1.8 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSX ; 1.95 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSY ; 2.2 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZSZ ; 2.0 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZT0 ; 1.95 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZT1 ; 1.75 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZT2 ; 1.7 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZT3 ; 1.95 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 3ZT4 ; 2.2 ; Small molecule inhibitors of the LEDGF site of HIV type 1 integrase identified by fragment screening and structure based drug design 8ATP ; 1.4 ; Small molecule stabilizer (1075481) for ERalpha and 14-3-3 8AV0 ; 1.5 ; small molecule stabilizer (compound 1) for C-RAF pS259 and 14-3-3 8AFN ; 1.36 ; Small molecule stabilizer (compound 1) for ERalpha and 14-3-3 8A62 ; 1.6 ; Small molecule stabilizer (compound 2) for FOXO1 and 14-3-3 8A65 ; 1.6 ; Small molecule stabilizer (compound 3) for FOXO1 and 14-3-3 8A68 ; 1.6 ; Small molecule stabilizer (compound 5) for C-RAF(pS259) and 14-3-3 8A6H ; 1.6 ; Small molecule stabilizer (compound 7) for C-RAF and 14-3-3 8A6F ; 1.6 ; Small molecule stabilizer (compound 8) for C-RAF and 14-3-3 8AWG ; 1.8 ; small molecule stabilizer for ERalpha and 14-3-3 (1074202) 8AXE ; 1.8 ; Small molecule stabilizer for ERalpha and 14-3-3 (1074210) 8ANF ; 1.4 ; Small molecule stabilizer for ERalpha and 14-3-3 (1074359) 8AXU ; 1.6 ; Small molecule stabilizer for ERalpha and 14-3-3 (1075297) 8AZE ; 1.6 ; Small molecule stabilizer for ERalpha and 14-3-3 (1075306) 8AOY ; 1.4 ; Small molecule stabilizer for ERalpha and 14-3-3 (1075478) 8ARZ ; 1.5 ; Small molecule stabilizer for ERalpha and 14-3-3 (1076406) 8AT9 ; 1.4 ; Small molecule stabilizer for ERalpha and 14-3-3 (1080269) 8AUY ; 1.5 ; Small molecule stabilizer for ERalpha and 14-3-3 (1080298) 8AQ1 ; 1.4 ; small molecule stabilizer for ERalpha and 14-3-3 (1083743) 3IGE ; 2.254 ; Small outer capsid protein (Soc) from bacteriophage RB69 3IG9 ; 1.9 ; Small outer capsid protein (SOC) of bacteriophage RB69 8HDG ; 1.73 ; Small peptide enhances the binding of nutline-3a to MdmX 8IA5 ; 1.93 ; Small peptide enhances the binding of nutline-3a to N-terminal domain of MdmX 4ANG ; 3.5 ; Small RNA phage PRR1 in complex with an RNA operator fragment 3MJO ; 1.36 ; Small subunit (R2F) of native ribonucleotide reductase from Corynebacterium ammoniagenes 1AFT ; ; SMALL SUBUNIT C-TERMINAL INHIBITORY PEPTIDE OF MOUSE RIBONUCLEOTIDE REDUCTASE AS BOUND TO THE LARGE SUBUNIT, NMR, 26 STRUCTURES 5XYU ; 3.45 ; Small subunit of Mycobacterium smegmatis ribosome 7PKQ ; 4.2 ; Small subunit of the Chlamydomonas reinhardtii mitoribosome 5XXU ; 3.35 ; Small subunit of Toxoplasma gondii ribosome 5XYI ; 3.35 ; Small subunit of Trichomonas vaginalis ribosome 8OM3 ; 2.87 ; Small subunit of yeast mitochondrial ribosome in complex with IF3/Aim23. 8OM2 ; 2.57 ; Small subunit of yeast mitochondrial ribosome in complex with METTL17/Rsm22. 8OM4 ; 2.32 ; Small subunit of yeast mitochondrial ribosome. 6EE7 ; 1.394 ; Small tetraheme cytochrome c from Shewanella oneidensis 8WP9 ; 2.49 ; Small-heat shock protein from Methanocaldococcus jannaschii, Hsp16.5 7XHQ ; 2.2 ; Small-molecule Allosteric Regulation Mechanism of SHP2 8GWW ; 3.0 ; Small-molecule Allosteric Regulation Mechanism of SHP2 5NDF ; 2.3 ; Small-molecule inhibition of ppGalNAc-Ts selectively reduces mucin-type O-glycosylation 6YE9 ; 1.8 ; Small-molecule inhibitor of 14-3-3 protein-protein interactions 3T0L ; 1.6 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 3T0M ; 1.62 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHM ; 1.7 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHN ; 1.8 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHO ; 1.7 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHP ; 1.75 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHQ ; 1.75 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHR ; 1.4 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHS ; 1.74 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHT ; 1.8 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 4DHU ; 1.67 ; Small-molecule inhibitors of 14-3-3 protein-protein interactions from virtual screening 6ZBQ ; 1.43 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZBZ ; 1.6 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZC3 ; 1.67 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZC4 ; 1.85 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZC6 ; 1.58 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZC7 ; 1.48 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 6ZC8 ; 2.76 ; Small-molecule inhibitors of the PDZ domain of Dishevelled proteins interrupt Wnt signalling 4DSN ; 2.03 ; Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity 4DSO ; 1.85 ; Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity 4DST ; 2.3 ; Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity 4DSU ; 1.7 ; Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity 5EWZ ; 2.34 ; Small-molecule stabilization of the 14-3-3/Gab2 PPI interface 5EXA ; 1.95 ; Small-molecule stabilization of the 14-3-3/Gab2 PPI interface 6YGJ ; 2.07 ; small-molecule stabilizer of 14-3-3 and the Carbohydrate Response Element Binding Protein (ChREBP) protein-protein interaction 3IGC ; 2.1 ; Smallpox virus topoisomerase-DNA transition state 8HXS ; 1.35 ; Small_spotted catshark CD8alpha 6UCH ; ; SMARCB1 nucleosome-interacting C-terminal alpha helix 6K4W ; ; smart chimeric peptide SCP-A6 7AMC ; 1.22 ; SmBRD3(2), Bromodomain 2 of the Bromodomain 3 protein from Schistosoma mansoni in complex with iBET726 7AMH ; 1.863 ; SmBRD3(2), Second Bromodomain of Bromodomain 3 from Schistosoma mansoni in complex with DM-A-33, an iBET726 analogue 4IPZ ; 1.67 ; SmBz bound to Cyclophilin A 1E69 ; 3.1 ; SMC head domain from Thermotoga maritima 1GXJ ; 2.0 ; SMC hinge domain from T. maritima w/o coiled coil 1GXK ; 3.0 ; SMC hinge domain from T. maritima w/o coiled coil, P212121 crystal form 1GXL ; 3.0 ; SMC hinge domain from T. maritima with coiled coil 2WD5 ; 2.7 ; SMC hinge heterodimer (Mouse) 8T8F ; 4.8 ; Smc5/6 8mer 5Z7M ; 2.0 ; SmChiA sliding-intermediate with chitohexaose 5Z7N ; 1.7 ; SmChiA sliding-intermediate with chitopentaose 5Z7O ; 2.0 ; SmChiA sliding-intermediate with chitotetraose 5Z7P ; 2.0 ; SmChiA sliding-intermediate with chitotriose 3P9T ; 2.02 ; SmeT-Triclosan complex 5NKM ; 2.493 ; SMG8-SMG9 complex 5NKK ; 2.64 ; SMG8-SMG9 complex GDP bound 1BR2 ; 2.9 ; SMOOTH MUSCLE MYOSIN MOTOR DOMAIN COMPLEXED WITH MGADP.ALF4 1BR1 ; 3.5 ; SMOOTH MUSCLE MYOSIN MOTOR DOMAIN-ESSENTIAL LIGHT CHAIN COMPLEX WITH MGADP.ALF4 BOUND AT THE ACTIVE SITE 1BR4 ; 3.62 ; SMOOTH MUSCLE MYOSIN MOTOR DOMAIN-ESSENTIAL LIGHT CHAIN COMPLEX WITH MGADP.BEF3 BOUND AT THE ACTIVE SITE 6Z47 ; 6.3 ; Smooth muscle myosin shutdown state heads region 1L2N ; ; Smt3 Solution Structure 1SMT ; 2.2 ; SMTB REPRESSOR FROM SYNECHOCOCCUS PCC7942 2LTX ; ; Smurf1 WW2 domain in complex with a Smad7 derived peptide 2LTZ ; ; Smurf2 WW3 domain in complex with a Smad7 derived peptide 6FZO ; 2.3 ; SMURFP-Y56F mutant 6FZN ; 2.5 ; SMURFP-Y56R mutant in complex with biliverdin 5KJK ; 1.93 ; SMYD2 in complex with AZ370 5KJL ; 2.7 ; SMYD2 in complex with AZ378 5KJN ; 2.72 ; SMYD2 in complex with AZ506 5KJM ; 2.19 ; SMYD2 in complex with AZ931 5ARG ; 1.99 ; SMYD2 in complex with SGC probe BAY-598 5ARF ; 1.92 ; SMYD2 in complex with small molecule inhibitor compound-2 8OWO ; 1.8 ; SMYD3 in complex with fragment FL01507 7QNR ; 1.57 ; SMYD3 in complex with fragment FL01791 7QLB ; 1.8 ; SMYD3 in complex with fragment FL06268 7QNU ; 1.64 ; SMYD3 in complex with fragment FL08619 8HRH ; 2.07 ; SN-131/1B2 anti-MUC1 antibody with a glycopeptide 7M17 ; 3.65 ; SN-407-LRRC8A in MSP1E3D1 lipid nanodiscs (Pose-1) 7M19 ; 3.69 ; SN-407-LRRC8A in MSP1E3D1 lipid nanodiscs (Pose-2) 6X84 ; 1.25 ; Sn-glycerol-3-phosphate binding periplasmic protein UgpB from Escherichia coli - W169S, W172S 2SOB ; ; SN-OB, OB-FOLD SUB-DOMAIN OF STAPHYLOCOCCAL NUCLEASE, NMR, 10 STRUCTURES 7QEE ; 2.374 ; SN243 mutant D415N bound to para-nitrophenyl-Beta-D-glucuronide 1NHL ; 2.3 ; SNAP-23N Structure 3ZD6 ; 2.8 ; Snapshot 1 of RIG-I scanning on RNA duplex 3ZD7 ; 2.5 ; Snapshot 3 of RIG-I scanning on RNA duplex 3OJU ; 2.0 ; Snapshot of the large fragment of DNA polymerase I from Thermus Aquaticus processing c5 modified thymidies 4ELT ; 2.2 ; Snapshot of the large fragment of DNA polymerase I from Thermus Aquaticus processing modified pyrimidines 4ELU ; 1.8 ; Snapshot of the large fragment of DNA polymerase I from Thermus Aquaticus processing modified pyrimidines 4ELV ; 1.9 ; Snapshot of the large fragment of DNA polymerase I from Thermus Aquaticus processing modified pyrimidines 2ZZ1 ; 1.57 ; Snapshot of the reaction from 6-CN-UMP to BMP catalyzed by Orotidine Monophosphate Deacarboxylase from M. thermoautotrophicum 2RDI ; 1.92 ; Snapshots of a Y-family DNA polymerase in replication: Dpo4 in apo and binary/ternary complex forms 2RDJ ; 2.2 ; Snapshots of a Y-family DNA polymerase in replication: Dpo4 in apo and binary/ternary complex forms 3DUF ; 2.5 ; Snapshots of catalysis in the E1 subunit of the pyruvate dehydrogenase multi-enzyme complex 3DV0 ; 2.5 ; Snapshots of catalysis in the E1 subunit of the pyruvate dehydrogenase multi-enzyme complex 3DVA ; 2.35 ; Snapshots of catalysis in the E1 subunit of the pyruvate dehydrogenase multi-enzyme complex 2YLW ; 2.9 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: Arg337Lys MUTANT IN COMPLEX WITH MES 2YM1 ; 2.28 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: Arg337Lys MUTANT IN COMPLEX WITH NADP 2YM2 ; 2.7 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: Arg337Lys MUTANT REDUCED STATE WITH NADP 2YLX ; 2.2 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: Asp66Ala MUTANT IN COMPLEX WITH NADP AND MES 2YLR ; 2.26 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: COMPLEX WITH NADP 2YLT ; 2.65 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: COMPLEX WITH NADP and MES 2YLZ ; 2.0 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: Met446Gly MUTANT 2YLS ; 2.26 ; SNAPSHOTS OF ENZYMATIC BAEYER-VILLIGER CATALYSIS: OXYGEN ACTIVATION AND INTERMEDIATE STABILIZATION: REDUCED ENZYME BOUND TO NADP 3DKR ; 1.6 ; Snapshots of esterase D from lactobacillus rhamnosus: Insights into a rotation driven catalytic mechanism 3DLT ; 1.9 ; Snapshots of esterase D from lactobacillus rhamnosus: Insights into a rotation driven catalytic mechanism 3DYI ; 1.72 ; Snapshots of esterase D from lactobacillus rhamnosus: Insights into a rotation driven catalytic mechanism 3DYV ; 1.81 ; Snapshots of esterase D from lactobacillus rhamnosus: Insights into a rotation driven catalytic mechanism 3E1G ; 2.2 ; Snapshots of esterase D from lactobacillus rhamnosus: Insights into a rotation driven catalytic mechanism 7VXV ; 2.23 ; Snapshots of Human PSMD10(Gankyrin) unfolding by urea: 0 hours incubation / Native 7VXW ; 2.22 ; Snapshots of Human PSMD10(Gankyrin) unfolding by urea: 1 hour incubation 7VY4 ; 2.22 ; Snapshots of Human PSMD10(Gankyrin) unfolding by urea: 2 hours incubation 7VY7 ; 2.23 ; Snapshots of Human PSMD10(Gankyrin) unfolding by urea: 3 hours incubation 1S0N ; 2.8 ; Snapshots of replication through an abasic lesion: structural basis for base substitution and frameshift 1S0O ; 2.1 ; Snapshots of replication through an abasic lesion: structural basis for base substitution and frameshift 1S10 ; 2.1 ; Snapshots of replication through an abasic lesion: structural basis for base substitution and frameshift 1HAX ; 1.6 ; Snapshots of serine protease catalysis: (A) acyl-enzyme intermediate between porcine pancreatic elastase and human beta-casomorphin-7 at pH 5 1HAY ; 1.7 ; Snapshots of serine protease catalysis: (B) acyl-enzyme intermediate between porcine pancreatic elastase and human beta-casomorphin-7 jumped to pH 10 for 10 seconds 1HAZ ; 1.4 ; Snapshots of serine protease catalysis: (C) acyl-enzyme intermediate between porcine pancreatic elastase and human beta-casomorphin-7 jumped to pH 9 for 1 minute 1HB0 ; 2.05 ; Snapshots of serine protease catalysis: (D) acyl-enzyme intermediate between porcine pancreatic elastase and human beta-casomorphin-7 jumped to pH 10 for 2 minutes 3OJS ; 1.9 ; Snapshots of the large fragment of DNA polymerase I from Thermus Aquaticus processing C5 modified thymidines 3D9I ; 1.907 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9J ; 1.6 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9K ; 2.2 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9L ; 2.2 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9M ; 1.75 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9N ; 1.6 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9O ; 2.0 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 3D9P ; 2.1 ; Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the Carboxy-Terminal Domain of RNA-Polymerase II 7EG6 ; 3.1 ; Snf5 Finger Helix bound to the nucleosome 6ISK ; 1.77 ; SnoaL-like cyclase XimE 6ISL ; 1.77 ; SnoaL-like cyclase XimE with its product xiamenmycin B 7E85 ; 2.424 ; SnoaL-like domain-containing protein 3BOG ; 1.2 ; Snow Flea Antifreeze Protein Quasi-racemate 3BOI ; 1.0 ; Snow Flea Antifreeze Protein Racemate 2MY2 ; ; Snu17p-Bud13p structure intermediate during RES complex assembly 2MY3 ; ; Snu17p-Pml1p structure intermediate during RES complex assembly 3N55 ; 1.57 ; SO1698 protein, an aspartic peptidase from Shewanella oneidensis. 2RAJ ; 2.45 ; SO4 bound PX-BAR membrane remodeling unit of Sorting Nexin 9 6ZLR ; 3.1 ; Soaking competent crystal form of the SARS-CoV-2 Receptor Binding Domain (RBD):CR3022 complex. 2JZ3 ; ; SOCS box elonginBC ternary complex 5AG2 ; 1.77 ; SOD-3 azide complex 5O40 ; 1.5 ; SOD1 bound to Ebselen 5O3Y ; 1.3 ; SOD1 bound to Ebsulfur 1BYY ; ; SODIUM CHANNEL IIA INACTIVATION GATE 2FMQ ; 2.2 ; Sodium in active site of DNA Polymerase Beta 1PLY ; 3.2 ; SODIUM IONS AND WATER MOLECULES IN THE STRUCTURE OF POLY D(A)(DOT)POLY D(T) 8A1T ; 3.37 ; Sodium pumping NADH-quinone oxidoreductase 8A1X ; 3.2 ; Sodium pumping NADH-quinone oxidoreductase with inhibitor DQA 8A1Y ; 3.3 ; Sodium pumping NADH-quinone oxidoreductase with inhibitor HQNO 8A1W ; 2.56 ; Sodium pumping NADH-quinone oxidoreductase with substrate Q1 8A1V ; 2.73 ; Sodium pumping NADH-quinone oxidoreductase with substrate Q2 8A1U ; 2.86 ; Sodium pumping NADH-quinone oxidoreductase with substrates NADH and Q2 3BJH ; 1.6 ; Soft-SAD crystal structure of a pheromone binding protein from the honeybee Apis mellifera L. 7XJI ; 3.9 ; Solabegron-activated dog beta3 adrenergic receptor 1ZN5 ; ; Solid State NMR Structure of the low-temperature form of the Pf1 Major Coat Protein in Magnetically Aligned Bacteriophage 2L0J ; ; Solid State NMR structure of the M2 proton channel from Influenza A Virus in hydrated lipid bilayer 1PJF ; ; Solid State NMR structure of the Pf1 Major Coat Protein in Magnetically Aligned Bacteriophage 5JZR ; ; Solid-state MAS NMR structure of Acinetobacter phage 205 (AP205) coat protein in assembled capsid particles 5JXV ; ; Solid-state MAS NMR structure of immunoglobulin beta 1 binding domain of protein G (GB1) 1M8M ; ; SOLID-STATE MAS NMR STRUCTURE OF THE A-SPECTRIN SH3 DOMAIN 2RLZ ; ; Solid-State MAS NMR structure of the dimer Crh 6EKA ; ; Solid-state MAS NMR structure of the HELLF prion amyloid fibrils 8ACZ ; ; Solid-State NMR Atomic-Resolution Structure of the Protein Encoded by Gene V of fd Bacteriophage in Complex with Viral ssDNA 8H1D ; ; Solid-state NMR Structure of Aquaporin Z in its Native Cellular Membranes 2JZZ ; ; Solid-State NMR Structure of Microcrystalline Ubiquitin 6QWR ; ; Solid-state NMR structure of outer membrane protein AlkL in DMPC lipid bilayers 5MWV ; ; Solid-state NMR Structure of outer membrane protein G in lipid bilayers 2MCV ; ; Solid-state NMR structure of piscidin 1 in aligned 1:1 phosphatidylethanolamine/phosphoglycerol lipid bilayers 2MCU ; ; Solid-state NMR structure of piscidin 1 in aligned 3:1 phosphatidylcholine/phosphoglycerol lipid bilayers 6PF0 ; ; SOLID-STATE NMR STRUCTURE OF PISCIDIN 1 IN ALIGNED 4:1 PHOSPHATIDYLCHOLINE/CHOLESTEROL LIPID BILAYERS 2MCX ; ; Solid-state NMR structure of piscidin 3 in aligned 1:1 phosphatidylethanolamine/phosphoglycerol lipid bilayers 2MCW ; ; Solid-state NMR structure of piscidin 3 in aligned 3:1 phosphatidylcholine/phosphoglycerol lipid bilayers 6PEZ ; ; SOLID-STATE NMR STRUCTURE OF PISCIDIN 3 IN ALIGNED 4:1 PHOSPHATIDYLCHOLINE/CHOLESTEROL LIPID BILAYERS 7QGV ; ; Solid-state NMR structure of Teixobactin-Lipid II. 7WEM ; ; Solid-state NMR Structure of TFo c-Subunit Ring 2KLR ; ; Solid-state NMR structure of the alpha-crystallin domain in alphaB-crystallin oligomers 6YFY ; ; Solid-state NMR structure of the D-Arg4,L10-teixobactin - Lipid II complex in lipid bilayers. 2KQT ; ; Solid-state NMR structure of the M2 transmembrane peptide of the influenza A virus in DMPC lipid bilayers bound to deuterated amantadine 2LME ; ; Solid-state NMR structure of the membrane anchor domain of the trimeric autotransporter YadA 2MSG ; ; Solid-state NMR structure of ubiquitin 2N28 ; ; Solid-state NMR structure of Vpu 1RLD ; 2.5 ; SOLID-STATE PHASE TRANSITION IN THE CRYSTAL STRUCTURE OF RIBULOSE 1,5-BIPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE 2JU6 ; ; Solid-State Protein Structure Determination with Proton-Detected Triple Resonance 3D Magic-Angle Spinning NMR Spectroscopy 8P1O ; 2.17 ; Solubilizer tag effect on PD-L1/inhibitor binding properties for m-terphenyl derivatives 1WC0 ; 2.4 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with alpha, beta-methylene-ATP 1WC4 ; 3.0 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with alpha, beta-methylene-ATP and Europium 1WC3 ; 1.9 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with alpha, beta-methylene-ATP and Strontium 1WC5 ; 2.3 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with alpha, beta-methylene-ATP in presence of bicarbonate 1WC1 ; 1.93 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with Rp- ATPalphaS 1WC6 ; 2.51 ; Soluble adenylyl cyclase CyaC from S. platensis in complex with Rp- ATPalphaS in presence of bicarbonate 4Z7E ; 1.5 ; Soluble binding domain of Lmo1422 ABC-transporter 7BWH ; 1.4 ; Soluble cytochrome b5 from Ramazzottius varieornatus 8HN3 ; 1.65 ; Soluble domain of cytochrome c-556 from Chlorobaculum tepidum 2NVE ; 1.5 ; Soluble domain of Rieske Iron Sulfur Protein 2NWF ; 1.1 ; Soluble domain of Rieske Iron Sulfur Protein 2NVG ; 1.35 ; Soluble domain of Rieske Iron Sulfur protein. 2NUM ; 1.5 ; Soluble domain of Rieske Iron-Sulfur Protein 2NVF ; 1.5 ; Soluble domain of Rieske Iron-Sulfur protein. 2NUK ; 1.2 ; Soluble Domain of the Rieske Iron-Sulfur Protein from Rhodobacter sphaeroides 4JNC ; 1.96 ; Soluble Epoxide Hydrolase complexed with a carboxamide inhibitor 6HGX ; 2.16 ; Soluble epoxide hydrolase in complex with 1-(4-((4-(tert-butyl)morpholin-2-yl)methoxy)phenyl)-3-cyclohexylurea 6HGW ; 2.407 ; Soluble epoxide hydrolase in complex with 2-(4-fluorophenyl)-N-(4-phenoxybenzyl)ethanamine 6YL4 ; 2.001 ; Soluble epoxide hydrolase in complex with 3-((R)-3-(1-hydroxyureido)but-1-yn-1-yl)-N-((S)-3-phenyl-3-(4-trifluoromethoxy)phenyl)propyl)benzamide 8QZD ; 1.3 ; Soluble epoxide hydrolase in complex with Epoxykinin 7P4K ; 2.15 ; Soluble epoxide hydrolase in complex with FL217 6FR2 ; 2.262 ; Soluble epoxide hydrolase in complex with LK864 3OTQ ; 3.0 ; Soluble Epoxide Hydrolase in complex with pyrazole antagonist 8QN0 ; 1.49 ; Soluble epoxide hydrolase in complex with RK3 8QMZ ; 1.47 ; Soluble epoxide hydrolase in complex with RK4 6HGV ; 2.0 ; Soluble epoxide hydrolase in complex with talinolol 7A7G ; 2.4 ; Soluble epoxide hydrolase in complex with TK90 1XU5 ; 1.96 ; Soluble methane monooxygenase hydroxylase-phenol soaked 1XU3 ; 2.3 ; Soluble methane monooxygenase hydroxylase-soaked with bromophenol 1XVE ; 2.4 ; soluble methane monooxygenase hydroxylase: 3-bromo-3-butenol soaked structure 1XVD ; 2.3 ; Soluble methane monooxygenase hydroxylase: 4-fluorophenol soaked structure 1XVB ; 1.8 ; soluble methane monooxygenase hydroxylase: 6-bromohexanol soaked structure 1XVC ; 2.0 ; soluble methane monooxygenase hydroxylase: 8-bromooctanol soaked structure 1XVG ; 1.96 ; soluble methane monooxygenase hydroxylase: bromoethanol soaked structure 1XVF ; 2.0 ; soluble methane monooxygenase hydroxylase: chloropropanol soaked structure 6L2U ; 1.5 ; Soluble methane monooxygenase reductase FAD-binding domain from Methylosinus sporium. 6PTT ; 1.84 ; Soluble model of Arabidopsis thaliana CuA (Tt3LAt) 6PTY ; 1.98 ; Soluble model of human CuA (Tt3Lh) 4XA7 ; 1.56 ; Soluble part of holo NqrC from V. harveyi 1F97 ; 2.5 ; SOLUBLE PART OF THE JUNCTION ADHESION MOLECULE FROM MOUSE 1QBI ; 1.72 ; SOLUBLE QUINOPROTEIN GLUCOSE DEHYDROGENASE FROM ACINETOBACTER CALCOACETICUS 1CRU ; 1.5 ; SOLUBLE QUINOPROTEIN GLUCOSE DEHYDROGENASE FROM ACINETOBACTER CALCOACETICUS IN COMPLEX WITH PQQ AND METHYLHYDRAZINE 1CQ1 ; 1.9 ; Soluble Quinoprotein Glucose Dehydrogenase from Acinetobacter Calcoaceticus in Complex with PQQH2 and Glucose 4XBH ; 2.114 ; Soluble rabbit neprilysin 4ZR5 ; 2.8016 ; Soluble rabbit neprilysin in complex with phosphoramidon 5V48 ; 2.9965 ; Soluble rabbit neprilysin in complex with thiorphan 1WJZ ; ; Soluiotn structure of J-domain of mouse DnaJ like protein 2DIG ; ; Solusion structure of the Todor domain of human Lamin-B receptor 7ZZY ; 3.3 ; Solution BcsD structure 226D ; ; SOLUTION CONFORMATION OF A BIZELESIN A-TRACT DUPLEX ADDUCT, NMR, 1 STRUCTURE 2JXZ ; ; Solution Conformation of A Non-Amyloidogenic Analogue of Human Calcitonin in Sodium Dodecyl Sulfate Micelles 1DG2 ; ; SOLUTION CONFORMATION OF A-CONOTOXIN AUIB 1WZ4 ; ; Solution Conformation of adr subtype HBV Pre-S2 Epitope 1UL2 ; ; Solution Conformation of alpha-Conotoxin GIC 1ZLC ; ; Solution Conformation of alpha-conotoxin PIA 1PQR ; ; Solution Conformation of alphaA-Conotoxin EIVA 1ANP ; ; SOLUTION CONFORMATION OF AN ATRIAL NATRIURETIC PEPTIDE VARIANT SELECTIVE FOR THE TYPE-A RECEPTOR 1COD ; ; SOLUTION CONFORMATION OF COBROTOXIN: A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 1COE ; ; SOLUTION CONFORMATION OF COBROTOXIN: A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 5UHU ; ; Solution conformation of cytochrome P450 MycG with mycinamicin IV bound 1BUS ; ; SOLUTION CONFORMATION OF PROTEINASE INHIBITOR IIA FROM BULL SEMINAL PLASMA BY 1H NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY 2BUS ; ; SOLUTION CONFORMATION OF PROTEINASE INHIBITOR IIA FROM BULL SEMINAL PLASMA BY 1H NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY 1D18 ; ; SOLUTION CONFORMATION OF PURINE-PYRIMIDINE DNA OCTAMERS USING NUCLEAR MAGNETIC RESONANCE, RESTRAINED MOLECULAR DYNAMICS AND NOE-BASED REFINEMENT 1D19 ; ; SOLUTION CONFORMATION OF PURINE-PYRIMIDINE DNA OCTAMERS USING NUCLEAR MAGNETIC RESONANCE, RESTRAINED MOLECULAR DYNAMICS AND NOE-BASED REFINEMENT 2JX2 ; ; Solution conformation of RNA-bound NELF-E RRM 2GLH ; ; Solution Conformation of Salmon Calcitonin in Sodium Dodecyl Sulfate Micelles 2KS9 ; ; Solution conformation of substance P in water complexed with NK1R 1CR3 ; ; SOLUTION CONFORMATION OF THE (+)TRANS-ANTI-BENZO[G]CHRYSENE-DA ADDUCT OPPOSITE DT IN A DNA DUPLEX 1AXL ; ; SOLUTION CONFORMATION OF THE (-)-TRANS-ANTI-[BP]DG ADDUCT OPPOSITE A DELETION SITE IN DNA DUPLEX D(CCATC-[BP]G-CTACC)D(GGTAG--GATGG), NMR, 6 STRUCTURES 2I8F ; ; Solution Conformation of the H47A Mutant of Pseudomonas stutzeri ZoBell Ferrocytochrome c-551 1I34 ; ; SOLUTION DNA QUADRUPLEX WITH DOUBLE CHAIN REVERSAL LOOP AND TWO DIAGONAL LOOPS CONNECTING GGGG TETRADS FLANKED BY G-(T-T) TRIAD AND T-T-T TRIPLE 1D6D ; ; SOLUTION DNA STRUCTURE CONTAINING (A-A)-T TRIADS INTERDIGITATED BETWEEN A-T BASE PAIRS AND GGGG TETRADS; NMR, 8 STRUCT. 1MZI ; ; Solution ensemble structures of HIV-1 gp41 2F5 mAb epitope 2K7Y ; ; Solution fold of HIV-1 Virus protein U cytoplasmic domain in the presence of DPC micelles 2JQR ; ; Solution model of crosslinked complex of cytochrome c and adrenodoxin 2M0Q ; ; Solution NMR analysis of intact KCNE2 in detergent micelles demonstrate a straight transmembrane helix 6XMN ; ; Solution NMR CXCL8-CXCR1 N-domain complex structure 6QH2 ; ; Solution NMR ensemble for a chimeric KH-S1 domain construct of exosomal polynucleotide phosphrylase at 298K compiled using the CoMAND method 6QF8 ; ; Solution NMR ensemble for human ubiquitin at 298K compiled using the CoMAND method 6QFP ; ; Solution NMR ensemble for MlbQ at 298K compiled using the CoMAND method 6VHJ ; ; Solution NMR of Prochlorosin 1.1 produced by Prochlorococcus MIT 9313 6VLJ ; ; Solution NMR of Prochlorosin 2.8 produced by Prochlorococcus MIT 9313 2KVV ; ; Solution NMR of Putative excisionase from Klebsiella pneumoniae, Northeast Structural Genomics Consortium Target Target KpR49 6QYU ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Mutacin I Ring A 6QYV ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Mutacin I Ring A (Ser2, Ala5, Ala8) analogue 6QYT ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Mutacin I Ring A truncated analogue 6QTF ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Mutacin I Ring B, major conformer 6QYR ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Mutacin I Ring B, minor conformer 6QYW ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - nisin ring A 6QYS ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Nisin Ring B 6QM1 ; ; Solution NMR of synthetic analogues of nisin and mutacin ring A and ring B - Nisin Ring B (Lan8,11) analogue 2KW2 ; ; Solution NMR of the specialized acyl carrier protein (RPA2022) from Rhodopseudomonas palustris, Northeast Structural Genomics Consortium Target RpR324 2LPK ; ; Solution NMR of the specialized apo-acyl carrier protein (RPA2022) from Rhodopseudomonas palustris, Northeast Structural Genomics Consortium Target RpR324 7TZD ; ; Solution NMR of the specialized apo-acyl carrier protein (RPA2022) from Rhodopseudomonas palustris, refined without RDCs. Northeast Structural Genomics Consortium Target RpR324 2M30 ; ; Solution NMR refinement of a metal ion bound protein using quantum mechanical/molecular mechanical and molecular dynamics methods 7RY6 ; ; Solution NMR structural bundle of the first cyclization domain from yersiniabactin synthetase (Cy1) impacted by dynamics 5YQ3 ; ; Solution NMR Structure and Backbone Dynamics of the Partially Disordered Arabidopsis thaliana Phloem Protein 16-1, A Putative mRNA Transporter 7JYZ ; ; Solution NMR structure and dynamics of human Brd3 ET in complex with MLV IN CTD 1SX0 ; ; Solution NMR Structure and X-Ray Absorption Analysis of the C-Terminal Zinc-Binding Domain of the SecA ATPase 1SX1 ; ; Solution NMR Structure and X-ray Absorption Analysis of the C-Terminal Zinc-Binding Domain of the SecA ATPase 6LMS ; ; Solution NMR structure cold shock domain of YB1 from Homo sapiens 2M5O ; ; Solution NMR Structure CTD domain of NFU1 Iron-Sulfur Cluster Scaffold Homolog from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR2876C 2LVB ; ; Solution NMR Structure DE NOVO DESIGNED PFK fold PROTEIN, Northeast Structural Genomics Consortium (NESG) Target OR250 2LV8 ; ; Solution NMR Structure de novo designed rossmann 2x2 fold protein, Northeast Structural Genomics Consortium (NESG) Target OR16 6CMY ; ; Solution NMR Structure Determination of Mouse Melanoregulin 2MPE ; ; Solution NMR structure for B. pseudomallei BPSL1050 6BR0 ; ; Solution NMR structure for CcoTx-I 6NU0 ; ; Solution NMR structure of 1918 NS1 effector domain 2KRK ; ; Solution NMR Structure of 26S protease regulatory subunit 8 from H.sapiens, Northeast Structural Genomics Consortium Target Target HR3102A 6U79 ; ; Solution NMR structure of 5' UTR stem loop B from West Nile Virus 6W3M ; ; Solution NMR Structure of 5'UTR Stem Loop B in DENV4 Flavivirus. 7UBF ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in 50% d6-DMSO and 50% water with cis/trans switching (CC conformation, 50%) 8CUN ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in 50% d6-DMSO and 50% water with cis/trans switching (CC conformation, 50%) 8CWA ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in CDCl3 with cis/trans switching (TC conformation, 53%) 7UBI ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in CDCl3 with cis/trans switching (TT conformation, 47%) 7UBE ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.21 in d6-DMSO with cis/trans switching 7UBH ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.31 in CDCl3 with cis/trans switching 7UBD ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.31 in d6-DMSO with cis/trans switching (A-CC conformation) 8CTO ; ; Solution NMR structure of 8-residue Rosetta-designed cyclic peptide D8.31 in d6-DMSO with cis/trans switching (B-CT conformation) 7UBG ; ; Solution NMR structure of 9-residue Rosetta-designed cyclic peptide D9.16 in CDCl3 with cis/trans switching (A-TT conformation) 7UZL ; ; Solution NMR structure of 9-residue Rosetta-designed cyclic peptide D9.16 in CDCl3 with cis/trans switching (B-TC conformation) 7UBC ; ; Solution NMR structure of 9-residue Rosetta-designed cyclic peptide D9.16 in d6-DMSO with cis/trans switching 5ZLD ; ; SOLUTION NMR STRUCTURE OF A 14-MER DOUBLE STRANDED DNA DUPLEX CGCGAAATTTCGCG 6IJV ; ; Solution NMR structure of a 14-mer dsDNA complexed with a novel NIR fluorescent probe QCy-DT 5B81 ; ; Solution NMR structure of a 16-mer DNA duplex containing quadruple GC mismatches showing staggered base pairing, and consequent rescue of canonical double helical characteristics 2KPN ; ; Solution NMR structure of a Bacterial Ig-like (Big_3) domain from Bacillus cereus. Northeast Structural Genomics Consortium target BcR147A 6E98 ; ; Solution NMR Structure of a Class I Hydrophobin from Phanerochaete carnosa 5W0Y ; ; Solution NMR Structure of a Class I Hydrophobin from Serpula lacrymans 6E9M ; ; Solution NMR Structure of a Class I Hydrophobin from Wallemia ichthyophaga 8EP5 ; ; Solution NMR structure of a computationally designed mastoparan-like peptide, mastoparan-R1 8ERU ; ; Solution NMR structure of a computationally designed mastoparan-like peptide, mastoparan-R4 2KRT ; ; Solution NMR Structure of a Conserved Hypothetical Membrane Lipoprotein Obtained from Ureaplasma parvum: Northeast Structural Genomics Consortium Target UuR17A (139-239) 6E5C ; ; Solution NMR structure of a de novo designed double-stranded beta-helix 2KKE ; ; Solution NMR Structure of a dimeric protein of unknown function from Methanobacterium thermoautotrophicum, Northeast Structural Genomics Consortium Target TR5 2LIA ; ; Solution NMR structure of a DNA dodecamer containing the 7-aminomethyl-7-deaza-2'-deoxyguanosine adduct 8X4F ; ; Solution NMR structure of a DNA hairpin formed by pure CTG repeats 6IJW ; ; SOLUTION NMR STRUCTURE OF A DODECAMERIC dsDNA COMPLEXED WITH A NIR FLUORESCENT PROBE QCy-DT 2KEY ; ; Solution NMR structure of a domain from a putative phage integrase protein BF2284 from Bacteroides fragilis, Northeast Structural Genomics Consortium Target BfR257C 2KJ5 ; ; Solution NMR structure of a domain from a putative phage integrase protein Nmul_A0064 from Nitrosospira multiformis, Northeast Structural Genomics Consortium Target NmR46C 2KQ8 ; ; Solution NMR structure of a domain from BT9727_4915 from Bacillus thuringiensis, Northeast Structural Genomics Consortium Target BuR95A 2KYW ; ; Solution NMR Structure of a domain of adhesion exoprotein from Pediococcus pentosaceus, Northeast Structural Genomics Consortium Target PtR41O 2KTA ; ; Solution NMR structure of a domain of protein A6KY75 from Bacteroides vulgatus, Northeast Structural Genomics target BvR106A 2LGO ; ; Solution NMR structure of a FKBP-type peptidyl-prolyl cis-trans isomerase from Giardia lamblia, Seattle Structural Genomics Center for Infectious Disease target GilaA.00840.a 2LC3 ; ; Solution NMR structure of a helical bundle domain from human E3 ligase HECTD1. Northeast structural genomics consortium (NESG) target HT6305A 1W6B ; ; Solution NMR Structure of a Long Neurotoxin from the Venom of the Asian Cobra, 20 Structures 2MJX ; ; Solution NMR structure of a mismatch DNA 2LFI ; ; Solution NMR structure of a MucBP domain (fragment 187-294) of the protein LBA1460 from Lactobacillus acidophilus, Northeast structural genomics consortium target LaR80A 6QJY ; ; Solution NMR structure of a mutant major ampullate spidroin 1 N-terminal domain 5ZCN ; ; Solution NMR structure of a new lasso peptide brevunsin 6AK0 ; ; Solution NMR structure of a new lasso peptide specialicin 5GVO ; ; Solution NMR structure of a new lasso peptide sphaericin 5XM4 ; ; Solution NMR structure of a new lasso peptide subterisin 2LS6 ; ; Solution NMR Structure of a Non-canonical galactose-binding CBM32 from Clostridium perfringens 2MW7 ; ; Solution NMR structure of a novel cysteine framework containing Conus peptide Mo3964 2KHQ ; ; Solution NMR structure of a phage integrase SSP1947 fragment 59-159 from Staphylococcus saprophyticus, Northeast Structural Genomics Consortium Target SyR103B 2LXF ; ; Solution NMR structure of a potential acylphosphatase from Giardia lamblia, Seattle Structural Genomics Center for Infectious Disease target GilaA.01396.a 2MIY ; ; Solution NMR structure of a preQ1 Class II riboswitch from Streptococcus pneumoniae 2LCH ; ; Solution NMR Structure of a Protein With a Redesigned Hydrophobic Core, Northeast Structural Genomics Consortium Target OR38 6ALI ; ; Solution NMR structure of a putative thioredoxin (ECH_0218) in the oxidized state from Ehrlichia chaffeensis, the etiological agent responsible for human monocytic ehrlichiosis. Seattle Structural Genomics Center for Infectious Disease target EhchA.00546.a 6AMR ; ; Solution NMR structure of a putative thioredoxin (ECH_0218) in the reduced state from Ehrlichia chaffeensis, the etiological agent responsible for human monocytic ehrlichiosis. Seattle Structural Genomics Center for Infectious Disease target EhchA.00546.a 6MZA ; ; Solution NMR structure of a putative thioredoxin (trxA) in the reduced state from Rickettsia prowazekii, the etiological agent responsible for typhus. Seattle Structural Genomics Center for Infectious Disease target RiprA.00029.a 2L3F ; ; Solution NMR Structure of a putative Uracil DNA glycosylase from Methanosarcina acetivorans, Northeast Structural Genomics Consortium Target MvR76 6OQH ; ; Solution NMR structure of a quiet outer membrane protein G Nanopore (OmpG mutant: Delta-L6-D215) 8TB1 ; ; Solution NMR structure of a RiPP proteusin precursor protein 2LUG ; ; Solution NMR structure of a S72-S107 peptide of 18.5kDa murine myelin basic protein (MBP) in association with dodecylphosphocholine micelles 2KQ5 ; ; Solution NMR structure of a section of the repeat domain of the type III effector protein PthA 2A9L ; ; SOLUTION NMR STRUCTURE OF A SUBSTRATE FOR THE ARCHAEAL PRE-TRNA SPLICING ENDONUCLEASES: THE BULGE-HELIX-BULGE MOTIF, MINIMIZED AVERAGE STRUCTURE 2LEK ; ; Solution NMR structure of a Thiamine Biosynthesis (ThiS) Protein RPA3574 from Rhodopseudomonas palustris refined with NH RDCs. Northeast Structural Genomics Consortium target RpR325 2NEO ; ; SOLUTION NMR STRUCTURE OF A TWO-BASE DNA BULGE COMPLEXED WITH AN ENEDIYNE CLEAVING ANALOG, 11 STRUCTURES 1YFC ; ; Solution nmr structure of a yeast iso-1-ferrocytochrome C 2KZX ; ; Solution NMR Structure of A3DHT5 from Clostridium thermocellum, Northeast Structural Genomics Consortium Target CmR116 8AHK ; ; Solution NMR structure of AG41, a 41-amino acid insecticidal protein extracted from Medicago truncatula 1MR0 ; ; SOLUTION NMR STRUCTURE OF AGRP(87-120; C105A) 2K4Z ; ; Solution NMR Structure of Allochromatium vinosum DsrR: Northeast Structural Genomics Consortium Target OP5 8OJR ; ; Solution NMR Structure of Alpha-Synuclein 1-25 Peptide in 50% TFE. 2MI7 ; ; Solution NMR structure of alpha3Y 2LJW ; ; Solution NMR structure of Alr2454 protein from Nostoc sp. strain PCC 7120, Northeast Structural Genomics Consortium Target NsR264 1BJB ; ; SOLUTION NMR STRUCTURE OF AMYLOID BETA[E16], RESIDUES 1-28, 14 STRUCTURES 1BJC ; ; SOLUTION NMR STRUCTURE OF AMYLOID BETA[F16], RESIDUES 1-28, 15 STRUCTURES 1AFZ ; ; SOLUTION NMR STRUCTURE OF AN 11 BASE-PAIR OLIGONUCLEOTIDE FROM THE HUMAN N-RAS PROTOONCOGENE ENCODING FOR AMINO ACIDS 11-13 OF P21, MINIMIZED AVERAGE STRUCTURE 1KOS ; ; SOLUTION NMR STRUCTURE OF AN ANALOG OF THE YEAST TRNA PHE T STEM LOOP CONTAINING RIBOTHYMIDINE AT ITS NATURALLY OCCURRING POSITION 7LZL ; ; Solution NMR structure of an avian defensin, AvBD3, from mallard 2KKV ; ; Solution NMR structure of an integrase domain from protein SPA4288 from Salmonella enterica, Northeast Structural Genomics Consortium Target SlR105H 2KIF ; ; Solution NMR structure of an O6-methylguanine DNA methyltransferase family protein from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium target VpR247. 1GUC ; ; SOLUTION NMR STRUCTURE OF AN RNA WITH TANDEM, SYMMETRIC GU MISMATCHES, 30 STRUCTURES 2N9B ; ; Solution NMR Structure of Antiparallel Myosin-10:GCN4 Tandem Coiled-Coil 2KSH ; ; Solution NMR structure of apo Sterol Carrier Protein - 2 from Aedes aegypti (AeSCP-2) 2LTD ; ; Solution NMR Structure of apo YdbC from Lactococcus lactis, Northeast Structural Genomics Consortium (NESG) Target KR150 2L53 ; ; Solution NMR Structure of apo-calmodulin in complex with the IQ motif of Human Cardiac Sodium Channel NaV1.5 6YHI ; ; Solution NMR Structure of APP G38L mutant TMD 6YHO ; ; Solution NMR Structure of APP G38P mutant TM 6YHX ; ; Solution NMR Structure of APP I45T mutant TMD 6YHF ; ; Solution NMR Structure of APP TMD 6YHP ; ; Solution NMR Structure of APP V44M mutant TMD 7P2K ; ; Solution NMR Structure of Arginine to Cysteine mutant of Arkadia RING domain. 2KRX ; ; Solution NMR Structure of asl3597 from Nostoc sp. PCC7120. Northeast Structural Genomics Consortium Target ID Nsr244. 2LQA ; ; Solution NMR structure of Asteropsin A from marine sponge Asteropus sp. 2LZX ; ; Solution NMR structure of Asteropsin B from a marine sponge Asteropus sp. 2LZY ; ; Solution NMR structure of asteropsin c from a marine sponge asteropus sp. 2N2G ; ; SOLUTION NMR STRUCTURE of ASTEROPSIN F FROM MARINE SPONGE ASTEROPUS 2N3P ; ; SOLUTION NMR STRUCTURE of ASTEROPSIN G from MARINE SPONGE ASTEROPUS 1YDU ; ; Solution NMR structure of At5g01610, an Arabidopsis thaliana protein containing DUF538 domain 1AX3 ; ; SOLUTION NMR STRUCTURE OF B. SUBTILIS IIAGLC, 16 STRUCTURES 2KC7 ; ; Solution NMR structure of Bacteroides fragilis protein BF1650. Northeast Structural Genomics Consortium target BfR218 7SAG ; ; Solution NMR structure of barrettide C 2KN1 ; ; Solution NMR Structure of BCMA 6B7G ; ; Solution NMR structure of BCoR in complex with AF9 (BCoR-AF9) 2MJ7 ; ; Solution NMR structure of beta-adaptin appendage domain of human adaptor protein complex 4 subunit beta, Northeast Structural Genomics Consortium (NESG) Target HR8998C 2LIO ; ; Solution NMR Structure of BfR322 from Bacteroides fragilis, Northeast Structural Genomics Consortium Target BfR322 2JZ8 ; ; Solution NMR structure of BH09830 from Bartonella henselae modeled with one Zn+2 bound. Northeast Structural Genomics Consortium target BnR55 2KA1 ; ; Solution NMR structure of BNIP3 transmembrane peptide dimer in detergent micelles 2KA2 ; ; Solution NMR structure of BNIP3 transmembrane peptide dimer in detergent micelles with His173-Ser172 intermonomer hydrogen bond restraints 2JS4 ; ; Solution NMR Structure of Bordetella bronchiseptica protein BB2007. Northeast Structural Genomics Consortium target BoR54 2K2E ; ; Solution NMR structure of Bordetella pertussis protein BP2786, a Mth938-like domain. Northeast Structural Genomics Consortium target BeR31 1BVM ; ; SOLUTION NMR STRUCTURE OF BOVINE PANCREATIC PHOSPHOLIPASE A2, 20 STRUCTURES 1L7B ; ; Solution NMR Structure of BRCT Domain of T. Thermophilus: Northeast Structural Genomics Consortium Target WR64TT 6BGH ; ; Solution NMR structure of Brd3 ET domain bound to Brg1 peptide 2L5Q ; ; Solution NMR Structure of BVU_3817 from Bacteroides vulgatus, Northeast Structural Genomics Consortium Target BvR159 2K2D ; ; Solution NMR structure of C-terminal domain of human pirh2. Northeast Structural Genomics Consortium (NESG) target HT2C 2LLL ; ; Solution NMR structure of C-terminal globular domain of human Lamin-B2, Northeast Structural Genomics Consortium target HR8546A 1L7Y ; ; Solution NMR Structure of C. elegans Protein ZK652.3. NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET WR41. 2LV2 ; ; Solution NMR structure of C2H2-type Zinc-fingers 4 and 5 from human Insulinoma-associated protein 1 (fragment 424-497), Northeast Structural Genomics Consortium Target HR7614B 1MUX ; ; SOLUTION NMR STRUCTURE OF CALMODULIN/W-7 COMPLEX: THE BASIS OF DIVERSITY IN MOLECULAR RECOGNITION, 30 STRUCTURES 2LUZ ; ; Solution NMR Structure of CalU16 from Micromonospora echinospora, Northeast Structural Genomics Consortium (NESG) Target MiR12 2LL6 ; ; Solution NMR structure of CaM bound to iNOS CaM binding domain peptide 2LL7 ; ; Solution NMR structure of CaM bound to the eNOS CaM binding domain peptide 2JRS ; ; Solution NMR Structure of CAPER RRM2 Domain. Northeast Structural Genomics Target HR4730A 2LR8 ; ; Solution NMR Structure of CASP8-associated protein 2 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8150A 6FFQ ; ; Solution NMR structure of CBM64 from S.thermophila 6FFU ; ; Solution NMR structure of CBM64 from S.thermophila using 20% 13C, 100% 15N 2N4Q ; ; Solution NMR structure of CBX8 in complex with AF9 (CBX8-AF9) 2JQN ; ; Solution NMR structure of CC0527 from Caulobacter crescentus. Northeast Structural Genomics Target CCR55 7KNV ; ; Solution NMR structure of CDHR3 extracellular domain EC1 8X3A ; ; Solution NMR structure of cellulosomal double-dockerin module of Clo1313_0689 from Clostridium thermocellum 2K8Y ; ; Solution NMR Structure of Cgi121 from Methanococcus jannaschii. Northeast Structural Genomics Consortium Target MJ0187 2L3G ; ; Solution NMR Structure of CH domain of Rho guanine nucleotide exchange factor 7 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4495E 2MF6 ; ; Solution NMR structure of Chimeric Avidin, ChiAVD(I117Y), in the biotin bound form 8K3N ; ; Solution NMR structure of cis X-Pro peptide bond conformer of a single disulfide conopeptide Mo1853 2KOB ; ; Solution NMR structure of CLOLEP_01837 (fragment 61-160) from Clostridium leptum. Northeast Structural Genomics Consortium Target QlR8A 1IIY ; ; Solution NMR Structure of Complex of 1:2 Cyanovirin-N:Man-Alpha1,2-Man-Alpha Restrained Regularized Mean Coordinates 2L7Q ; ; Solution NMR structure of conjugate transposon protein BVU_1572(27-141) from Bacteroides Vulgatus, Northeast Structural Genomics Consortium Target BvR155 6CEI ; ; Solution NMR Structure of Conotoxin GXIA from Conus geographus 2HGA ; ; Solution NMR Structure of Conserved protein MTH1368, Northeast Structural Genomics Consortium Target TT821A 2N24 ; ; Solution NMR structure of Contryphan-Vc1 2KZV ; ; Solution NMR structure of CV_0373(175-257) protein from Chromobacterium violaceum, Northeast Structural Genomics Consortium Target CvR118A 2EZN ; ; SOLUTION NMR STRUCTURE OF CYANOVIRIN-N ENSEMBLE OF 40 SIMULATED ANNEALING STRUCTURES 2EZM ; ; SOLUTION NMR STRUCTURE OF CYANOVIRIN-N, RESTRAINED REGULARIZED MEAN COORDINATES 2KW6 ; ; Solution NMR Structure of Cyclin-dependent kinase 2-associated protein 1 (CDK2-associated protein 1; oral cancer suppressor Deleted in oral cancer 1, DOC-1) from H.sapiens, Northeast Structural Genomics Consortium Target Target HR3057H 2M1L ; ; Solution NMR Structure of Cyclin-dependent kinase 2-associated protein 2 (CDK2AP2, DOC-1R) from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8910C 5WOV ; ; Solution NMR structure of cyclotide MCoTI-I 5WOW ; ; Solution NMR structure of cyclotide MCoTI-I 6BYV ; ; Solution NMR structure of cysteine-rich calcium bound domains of very low density lipoprotein receptor 6NJF ; ; Solution NMR Structure of DANCER3-F34A, a rigid and natively folded single mutant of the dynamic protein DANCER-3 2N2U ; ; Solution NMR Structure of DE NOVO DESIGNED Ferredoxin Fold PROTEIN sfr3, Northeast Structural Genomics Consortium (NESG) Target OR358 2KL8 ; ; Solution NMR Structure of de novo designed ferredoxin-like fold protein, Northeast Structural Genomics Consortium Target OR15 2LSE ; ; Solution NMR Structure of De Novo Designed Four Helix Bundle Protein, Northeast Structural Genomics Consortium (NESG) Target OR188 2MTL ; ; Solution NMR Structure of De novo designed FR55, Northeast Structural Genomics Consortium (NESG) Target OR109 5GAJ ; ; Solution NMR structure of De novo designed PLOOP2X3_50 fold protein, Northeast Structural Genomics Consortium (NESG) target OR258 2N2T ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN (FDA_60), Northeast Structural Genomics Consortium (NESG) Target OR303 7M5T ; ; Solution NMR structure of de novo designed protein 0515 2MQ8 ; ; Solution NMR Structure of De novo designed protein LFR1 1 with ferredoxin fold, Northeast Structural Genomics Consortium (NESG) Target OR414 2N76 ; ; Solution NMR Structure of De novo designed protein LFR1 1 with ferredoxin fold, Northeast Structural Genomics Consortium (NESG) Target OR414 2N41 ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN Top7NNSTYCC, Northeast Structural Genomics Consortium (NESG) Target OR34 2N4E ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN Top7NNSTYCC, Northeast Structural Genomics Consortium (NESG) Target OR34 2LN3 ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN, IF3-like fold, Northeast Structural Genomics Consortium Target OR135 (CASD target) 2MR5 ; ; Solution NMR Structure of De novo designed Protein, Northeast Structural Genomics Consortium (NESG) Target OR457 2MRA ; ; Solution NMR Structure of De novo designed protein, Northeast Structural Genomics Consortium (NESG) Target OR459 2MR6 ; ; Solution NMR Structure of De novo designed protein, Northeast Structural Genomics Consortium (NESG) Target OR462 2LR0 ; ; Solution NMR structure of de novo designed protein, p-loop ntpase fold, northeast structural genomics consortium target or136 2LRH ; ; Solution NMR structure of de novo designed protein, p-loop ntpase fold, Northeast Structural Genomics Consortium target or137 2L69 ; ; Solution NMR Structure of de novo designed protein, P-loop NTPase fold, Northeast Structural Genomics Consortium Target OR28 2L82 ; ; Solution NMR Structure of de novo designed protein, P-loop NTPase fold, Northeast Structural Genomics Consortium Target OR32 2LCI ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN, P-LOOP NTPASE FOLD, Northeast Structural Genomics Consortium Target OR36 (CASD Target) 2LND ; ; Solution NMR Structure of DE NOVO DESIGNED PROTEIN, PFK fold, Northeast Structural Genomics Consortium Target OR134 2LTA ; ; Solution NMR structure of De novo designed protein, rossmann 3x1 fold, Northeast Structural Genomics Consortium target OR157 2N3Z ; ; Solution NMR Structure of de novo designed protein, Rossmann2x2 Fold, Northeast Structural Genomics Consortium (NESG) Target OR446 2N75 ; ; Solution NMR Structure of De novo designed protein, Rossmann2x2 Fold, Northeast Structural Genomics Consortium (NESG) Target OR446 2KPO ; ; Solution NMR structure of de novo designed rossmann 2x2 fold protein, Northeast Structural Genomics Consortium target OR16 6XEH ; ; Solution NMR Structure of DE NOVO DESIGNED Rossmann 2x3 Fold Protein r2x3_168, Northeast Structural Genomics Consortium (NESG) Target OR386 7KBQ ; ; Solution NMR Structure of DE NOVO DESIGNED Rossmann 3x3 Fold Protein r3x3_bp3, Northeast Structural Genomics Consortium (NESG) Target OR689 6X1K ; ; Solution NMR structure of de novo designed TMB2.3 2MBL ; ; Solution NMR Structure of De novo designed Top7 Fold Protein Top7m13, Northeast Structural Genomics Consortium (NESG) Target OR33 2MBM ; ; Solution NMR Structure of De novo designed Top7 Fold Protein Top7m13, Northeast Structural Genomics Consortium (NESG) Target OR33 6LLQ ; ; Solution NMR structure of de novo Rossmann2x2 fold with most of the core mutated to valine, R2x2_VAL88 5KPH ; ; Solution NMR Structure of Denovo Beta Sheet Design Protein, Northeast Structural Genomics Consortium (NESG) Target OR485 5KPE ; ; Solution NMR Structure of Denovo Beta Sheet Design Protein, Northeast Structural Genomics Consortium (NESG) Target OR664 7JS6 ; ; Solution NMR structure of des-citrulassin F 8T62 ; ; Solution NMR structure of designed peptide BH21 (TMIEDPEAGHFHTSSA) 8TXS ; ; Solution NMR structure of designed peptide BH26 (RGVTVPHNGESKDYSV) 8T61 ; ; Solution NMR structure of designed peptide BH33 (RHYYKFNSTGRHYHYY) 8T63 ; ; Solution NMR structure of designed peptide PH1 (WHMWNTVPNAKQVIAA) 2N8I ; ; Solution NMR Structure of Designed Protein DA05, Northeast Structural Genomics Consortium (NESG) Target OR626 2N8W ; ; Solution NMR Structure of Designed Protein DA05R1, Northeast Structural Genomics Consortium (NESG) Target OR690 6V88 ; ; Solution NMR structure of Dictyostelium discoideum Skp1A (truncated) dimer 2LFD ; ; Solution NMR structure of Diiron protein in presence of 2 eq Zn2+, Northeast Structural Genomics Consortium Target OR21 2K8S ; ; Solution NMR structure of dimeric thioredoxin-like protein NE0084 from Nitrosomonas europea: Northeast Structural Genomics Target NeT6 2MO2 ; ; Solution NMR structure of DNA dodecamer containing the 5-hydroxycytosine 2MO7 ; ; Solution NMR structure of DNA dodecamer with A:C mismatch 5X1X ; ; Solution NMR Structure of DNA Mismatch Repair Protein MutT (Family Nudix Hydrolase) from Methicillin Resistant Staphylococcus aureus 252 8XEQ ; ; Solution NMR structure of DNA sequence d(CGATCG)2 7CFV ; ; Solution NMR structure of DnaX mini intein from Spirulina platensis 1OP1 ; ; Solution NMR structure of domain 1 of receptor associated protein 2F88 ; ; Solution NMR structure of domain 5 from the Pyaiella littoralis (PL) group II intron 2MV7 ; ; Solution NMR structure of DOT1L in complex with AF9 (DOT1L-AF9) 2L33 ; ; Solution NMR Structure of DRBM 2 domain of Interleukin enhancer-binding factor 3 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4527E 5OAP ; ; Solution NMR structure of DREB2A(255-272) bound to RCD1-RST 2K74 ; ; Solution NMR structure of DsbB-ubiquinone complex 2KYI ; ; Solution NMR structure of Dsy0195(21-82) protein from Desulfitobacterium Hafniense. Northeast Structural Genomics Consortium Target DhR8C 2N2F ; ; Solution NMR structure of Dynorphin 1-13 bound to Kappa Opioid Receptor 2L5T ; ; Solution NMR structure of E2 lipoyl domain from Thermoplasma acidophilum 2M9A ; ; Solution NMR Structure of E3 ubiquitin-protein ligase ZFP91 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR7784A 6EVI ; ; solution NMR structure of EB1 C terminus (191-260) 6EVQ ; ; solution NMR structure of EB1 C terminus (191-260) with a small molecule bound into the SxIP binding site 2EZP ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, MODELS 1-10 OF AN ENSEMBLE OF 40 SIMULATED ANNEALING STRUCTURES 2EZQ ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, MODELS 11-20 OF AN ENSEMBLE OF 40 SIMULATED ANNEALING STRUCTURES 2EZR ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, MODELS 21-30 OF AN ENSEMBLE OF 40 SIMULATED ANNEALING STRUCTURES 2EZS ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, MODELS 31-40 OF AN ENSEMBLE OF 40 SIMULATED ANNEALING STRUCTURES 2EZO ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, RESTRAINED REGULARIZED MEAN STRUCTURE 1QCE ; ; SOLUTION NMR STRUCTURE OF ECTODOMAIN OF SIV GP41, RESTRAINED REGULARIZED MEAN STRUCTURE PLUS 29 SIMULATED ANNEALING STRUCTURES 2M7T ; ; Solution NMR Structure of Engineered Cystine Knot Protein 2.5D 6MM4 ; ; Solution NMR Structure of Engineered Cystine Knot Protein 2.5F 6VGT ; ; Solution NMR structure of enterococcal cytolysin L (CylLL"") produced by Enterococcus faecalis 6VE9 ; ; Solution NMR structure of enterococcal cytolysin S (CylLS"") produced by Enterococcus faecalis 2KB5 ; ; Solution NMR Structure of Eosinophil Cationic Protein/RNase 3 1EOT ; ; SOLUTION NMR STRUCTURE OF EOTAXIN, MINIMIZED AVERAGE STRUCTURE 2N9U ; ; Solution NMR structure of Erythrobacter litoralis PhyR response regulator REC domain 7VQH ; ; Solution NMR structure of Escherichia coli Total Lipid Extract Bicelle bound VR18 Antimicrobial Peptide 2KD7 ; ; Solution NMR structure of F5/8 type C-terminal domain of a putative chitobiase from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium target BtR324B 5LNF ; ; Solution NMR structure of farnesylated PEX19, C-terminal domain 2L8E ; ; Solution NMR structure of FCS domain of Human Polyhomeotic Homolog 1 (HPH1) 2K5F ; ; Solution NMR structure of FeoA protein from Chlorobium tepidum. Northeast Structural Genomics Consortium target CtR121 2KKL ; ; Solution NMR structure of FHA domain of Mb1858 from Mycobacterium bovis. Northeast Structural Genomics Consortium Target MbR243C (24-155). 2AAV ; ; Solution NMR structure of Filamin A domain 17 7BQM ; ; Solution NMR structure of fold-0 Chantal; de novo designed protein with an asymmetric all-alpha topology 7BQN ; ; Solution NMR structure of fold-C Rei; de novo designed protein with an asymmetric all-alpha topology 7BQR ; ; Solution NMR structure of fold-K Mussoc; de novo designed protein with an asymmetric all-alpha topology 7BQS ; ; Solution NMR structure of fold-U Nomur; de novo designed protein with an asymmetric all-alpha topology 7BQQ ; ; Solution NMR structure of fold-Z Gogy; de novo designed protein with an asymmetric all-alpha topology 8AOU ; ; Solution NMR structure of full-length Nsp1 from SARS-CoV-2. 2M33 ; ; Solution NMR structure of full-length oxidized microsomal rabbit cytochrome b5 2LFC ; ; Solution NMR Structure of Fumarate reductase flavoprotein subunit from Lactobacillus plantarum, Northeast Structural Genomics Consortium Target LpR145J 5TLR ; ; Solution NMR structure of gHwTx-IV 2LXN ; ; Solution NMR structure of glutamine amido transferase subunit of gaunosine monophosphate synthetase from Methanocaldococcus jannaschii 2MK3 ; ; Solution NMR structure of gp41 ectodomain monomer on a DPC micelle 2KTM ; ; Solution NMR structure of H2H3 domain of ovine prion protein (residues 167-234) 7QIL ; ; Solution NMR structure of halophilic DnaE intein 2JY0 ; ; Solution NMR structure of HCV NS2 protein, membrane segment (1-27) 7MLA ; ; Solution NMR structure of HDMX in complex with Zn and MCo-52-2 2LDU ; ; Solution NMR Structure of Heat shock factor protein 1 DNA binding domain from homo sapiens, Northeast Structural Genomics Consortium Target HR3023C 7UQT ; ; Solution NMR structure of hexahistidine tagged QseM (6H-QseM) 2JUZ ; ; Solution NMR structure of HI0947 from Haemophilus influenzae, Northeast Structural Genomics Consortium Target IR123 5VEY ; ; Solution NMR structure of histone H2A-H2B mono-ubiquitylated at H2A Lys15 in complex with RNF169 (653-708) 5MPG ; ; Solution NMR structure of hnRNP A1 RRM1 in complex with 5'-UUAGGUC-3' RNA 2LML ; ; Solution NMR structure of holo acyl carrier protein from geobacter Metallireducens refined with nh rdcs, Northeast Structural Genomics consortium target gmr141 2LKI ; ; Solution NMR structure of holo acyl carrier protein NE2163 from nitrosomonas europaea. Northeast structural genomics consortium target NET1. 2LY9 ; ; Solution NMR Structure of Homeobox 2 Domain from Human ZHX1 repressor, Northeast Structural Genomics Consortium (NESG) Target HR7907F 2LK2 ; ; Solution NMR structure of homeobox domain (171-248) of human homeobox protein TGIF1, Northeast Structural Genomics Consortium Target HR4411B 2L9R ; ; Solution NMR Structure of Homeobox domain of Homeobox protein Nkx-3.1 from homo sapiens, Northeast Structural Genomics Consortium Target HR6470A 2M0C ; ; Solution NMR Structure of Homeobox Domain of Human ALX4, Northeast Structural Genomics Consortium (NESG) Target HR4490C 2JR2 ; ; Solution NMR structure of homodimer CPS_2611 from Colwellia psychrerythraea. Northeast Structural Genomics Consortium target CsR4. 2L3A ; ; Solution NMR structure of homodimer protein SP_0782 (7-79) from Streptococcus pneumoniae Northeast Structural Genomics Consortium Target SpR104 . 2JPQ ; ; Solution NMR structure of homodimer VP2129 from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium target VpR61. 2LF6 ; ; Solution NMR structure of HopABPph1448_220_320 from Pseudomonas syringae pv. phaseolicola str. 1448A, Midwest Center for Structural Genomics target APC40132.4 and Northeast Structural Genomics Consortium target PsT3A 2LF3 ; ; Solution NMR structure of HopPmaL_281_385 from Pseudomonas syringae pv. maculicola str. ES4326, Midwest Center for Structural Genomics target APC40104.5 and Northeast Structural Genomics Consortium target PsT2A 2K9Q ; ; Solution NMR structure of HTH_XRE family transcriptional regulator BT_p548217 from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR244. 2L86 ; ; Solution NMR structure of human amylin in SDS micelles at pH 7.3 6CKV ; ; Solution NMR structure of human BOK 7JYN ; ; Solution NMR structure of human Brd3 ET complexed with NSD3(148-184) peptide 7JMY ; ; Solution NMR structure of human Brd3 ET domain 7JQ8 ; ; Solution NMR structure of human Brd3 ET domain 8V9U ; ; Solution NMR structure of human DNMT1 N-terminal alpha-helical domain 2K07 ; ; Solution NMR structure of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1). Northeast Structural Genomics Consortium target HR41 5O9B ; ; Solution NMR structure of human GATA2 C-terminal zinc finger domain 6ZFV ; ; Solution NMR structure of human GATA2 N-terminal zinc finger domain 5KNW ; ; Solution NMR structure of human LARP7 xRRM2 2JS7 ; ; Solution NMR structure of human myeloid differentiation primary response (MyD88). Northeast Structural Genomics target HR2869A 2L76 ; ; Solution NMR structure of human NFATC2IP ubiquitin-like domain, NFATC2IP_244_338, NESG target HT65A/OCSP target hs00387_244_338/SGC-toronto 2L0F ; ; Solution NMR structure of human polymerase iota UBM2 (P692A mutant) in complex with ubiquitin 2KTF ; ; Solution NMR structure of human polymerase iota UBM2 in complex with ubiquitin 2KEO ; ; Solution NMR structure of human protein HS00059, cytochrome-b5-like domain of the HERC2 E3 ligase. Northeast structural genomics consortium (NESG) target ht98a 1XPW ; ; Solution NMR Structure of human protein HSPCO34. Northeast Structural Genomics Target HR1958 5VF0 ; ; Solution NMR structure of human RAD18 (198-240) in complex with ubiquitin 2MV1 ; ; Solution NMR structure of Human Relaxin-2 5VZM ; ; Solution NMR structure of human Rev1 (932-1039) in complex with ubiquitin 1DVD ; ; SOLUTION NMR STRUCTURE OF HUMAN STEFIN A AT PH 5.5 AND 308K, NMR, 17 STRUCTURES 1DVC ; ; SOLUTION NMR STRUCTURE OF HUMAN STEFIN A AT PH 5.5 AND 308K, NMR, MINIMIZED AVERAGE STRUCTURE 2LW4 ; ; Solution NMR Structure of Human Transcription Elongation Factor A protein 2, Central Domain, Northeast Structural Genomics Consortium (NESG) Target HR8682B 2L2D ; ; Solution NMR Structure of human UBA-like domain of OTUD7A_11_83, NESG target HT6304A/OCSP target OTUD7A_11_83/SGC-Toronto 2KVR ; ; Solution NMR structure of human ubiquitin specific protease Usp7 UBL domain (residues 537-664). NESG target hr4395c/ SGC-Toronto 5GIW ; ; Solution NMR structure of Humanin containing a D-isomerized serine residue 1PAV ; ; SOLUTION NMR STRUCTURE OF HYPOTHETICAL PROTEIN TA1414 OF THERMOPLASMA ACIDOPHILUM 2LU7 ; ; Solution NMR Structure of Ig like domain (1277-1357) of Obscurin-like protein 1 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8578D 2LVC ; ; Solution NMR Structure of Ig like domain (805-892) of Obscurin-like protein 1 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8578K 7SJL ; ; Solution NMR Structure of Immunoglobulin-like Domain of Human Neuregulin-1 2K73 ; ; Solution NMR structure of integral membrane protein DsbB 6CGW ; ; Solution NMR structure of JzTx-V, a Nav 1.7 inhibitory peptide 5ZYX ; ; Solution NMR structure of K30 peptide in 10 mM dioctanoyl phosphatidylglycerol (D8PG) 8UBH ; ; Solution NMR structure of KaiB variant from Thermosynechococcus elongatus vestitus (KaiBTV-4) 2LT7 ; ; Solution NMR structure of Kaiso zinc finger DNA binding domain in complex with Kaiso binding site DNA 2KCX ; ; Solution NMR Structure of Kazal-1 Domain of Human Follistatin-related protein 3 (FSTL-3). Northeast Structural Genomics Target HR6186A. 5UI6 ; ; Solution NMR Structure of Lasso Peptide Acinetodin 5UI7 ; ; Solution NMR Structure of Lasso Peptide Klebsidin 2NBM ; ; Solution NMR structure of ligand free sterol carrier protein 2 like 2 from Aedes aegypti 2KPP ; ; Solution NMR structure of Lin0431 protein from Listeria innocua. Northeast Structural Genomics Consortium Target LkR112 2MFN ; ; SOLUTION NMR STRUCTURE OF LINKED CELL ATTACHMENT MODULES OF MOUSE FIBRONECTIN CONTAINING THE RGD AND SYNERGY REGIONS, 10 STRUCTURES 1MFN ; ; SOLUTION NMR STRUCTURE OF LINKED CELL ATTACHMENT MODULES OF MOUSE FIBRONECTIN CONTAINING THE RGD AND SYNERGY REGIONS, 20 STRUCTURES 2K1G ; ; Solution NMR structure of lipoprotein spr from Escherichia coli K12. Northeast Structural Genomics target ER541-37-162 2LM1 ; ; Solution NMR Structure of Lysine-specific demethylase lid from Drosophila melanogaster, Northeast Structural Genomics Consortium Target FR824D 2K4M ; ; Solution NMR Structure of M. thermoautotrophicum protein MTH_1000, Northeast Structural Genomics Consortium Target TR8 2MV0 ; ; Solution NMR Structure of Maltose-binding protein from Escherichia coli, Northeast Structural Genomics Consortium (NESG) Target ER690 2MS8 ; ; Solution NMR structure of MAVS CARD 7OVZ ; ; SOLUTION NMR STRUCTURE OF MAXIMIN 1 IN 50% TRIFLUOROETHANOL 6HZ2 ; ; SOLUTION NMR STRUCTURE OF MAXIMIN 3 IN 50% TRIFLUOROETHANOL 2L6U ; ; Solution NMR Structure of Med25(391-543) Comprising the Activator-Interacting Domain (ACID) of Human Mediator Subuniti 25. Northeast Structural Genomics Consortium Target HR6188A 2M9X ; ; Solution NMR Structure of Microtubule-associated serine/threonine-protein kinase 1 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR9151A 2LM4 ; ; Solution NMR Structure of mitochondrial succinate dehydrogenase assembly factor 2 from Saccharomyces cerevisiae, Northeast Structural Genomics Consortium Target YT682A 2LAH ; ; Solution NMR Structure of Mitotic checkpoint serine/threonine-protein kinase BUB1 N-terminal domain from Homo sapiens, Northeast Structural Genomics Consortium Target HR5460A (Methods Development) 2RVF ; ; Solution NMR structure of Monosiga brevicollis CRK/CRKL homolog (crka1) SH2 domain 2KZ8 ; ; Solution NMR structure of MqsA, a protein from E. coli, containing a Zinc finger, N-terminal and a Helix Turn-Helix C-terminal domain 2KT7 ; ; Solution NMR structure of mucin-binding domain of protein lmo0835 from Listeria monocytogenes, Northeast Structural Genomics Consortium Target LmR64A 2L2E ; ; Solution NMR structure of myristoylated NCS1p in apo form 7Z0B ; ; Solution NMR structure of N-acetylglucosaminyltransferase V (GnTV) G22L and G26L double mutant TMD 7Z08 ; ; Solution NMR structure of N-acetylglucosaminyltransferase V (GnTV) G22L mutant TMD 7Z07 ; ; Solution NMR structure of N-acetylglucosaminyltransferase V (GnTV) G26P mutant TMD 7YYI ; ; Solution NMR structure of N-acetylglucosaminyltransferase V (GnTV) TMD 2LNB ; ; Solution NMR structure of N-terminal domain (6-74) of human ZBP1 protein, Northeast Structural Genomics Consortium Target HR8174A. 2MK2 ; ; Solution NMR structure of N-terminal domain (SH2 domain) of human Inositol polyphosphate phosphatase-like protein 1 (INPPL1) (fragment 20-117), Northeast Structural Genomics Consortium Target HR9134A 2LFE ; ; Solution NMR structure of N-terminal domain of human E3 ubiquitin-protein ligase HECW2, Northeast structural genomics consortium (NESG) target ht6306A 2K2C ; ; Solution NMR structure of N-terminal domain of human pirh2. Northeast Structural Genomics Consortium (NESG) target HT2A 2LEZ ; ; Solution NMR structure of N-terminal domain of Salmonella effector protein PipB2. Northeast structural genomics consortium (NESG) target stt318a 8GS7 ; ; SOLUTION NMR STRUCTURE OF N-TERMINAL DOMAIN OF TRICONEPHILA CLAVIPES MAJOR AMPULLATE SPIDROIN 2 2L7R ; ; Solution NMR structure of N-terminal Ubiquitin-like domain of FUBI, a ribosomal protein S30 precursor from Homo sapiens. NorthEast Structural Genomics consortium (NESG) target HR6166 5UB0 ; ; Solution NMR Structure of NERD-C, a natively folded tetramutant of the B1 domain of streptococcal protein G (GB1) 5UBS ; ; Solution NMR Structure of NERD-S, a natively folded pentamutant of the B1 domain of streptococcal protein G (GB1) with a solvent-exposed Trp43 7JGX ; ; Solution NMR structure of neuroVAL, a derived peptide from wasp 7BPL ; ; Solution NMR structure of NF1; de novo designed protein with a novel fold 7BPM ; ; Solution NMR structure of NF2; de novo designed protein with a novel fold 7BQE ; ; Solution NMR structure of NF3; de novo designed protein with a novel fold 7BQC ; ; Solution NMR structure of NF4; de novo designed protein with a novel fold 7BPP ; ; Solution NMR structure of NF5; de novo designed protein with a novel fold 7BQB ; ; Solution NMR structure of NF6; de novo designed protein with a novel fold 7BPN ; ; Solution NMR structure of NF7; de novo designed protein with a novel fold 7BQD ; ; Solution NMR structure of NF8 (knot fold); de novo designed protein with a novel fold 2LTM ; ; Solution NMR Structure of NFU1 Iron-Sulfur Cluster Scaffold Homolog from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR2876B 2LTL ; ; Solution NMR Structure of NifU-like protein from Saccharomyces cerevisiae, Northeast Structural Genomics Consortium (NESG) Target YR313A 2JZA ; ; Solution NMR structure of nitrite reductase [NAD(P)H] small subunit from Erwinia carotovora. Northeast Structural Genomics Consortium target EwR120 2L08 ; ; Solution NMR Structure of Nonsense mRNA reducing factor 3A from H. Sapiens, Northeast Structural Genomics Consortium Target HR4714B 2LNC ; ; Solution NMR structure of Norwalk virus protease 8ORZ ; ; Solution NMR structure of Notch1 G1740-1743 TMD 8ORY ; ; Solution NMR structure of Notch1 L1740-1743 TMD 8OR5 ; ; Solution NMR structure of Notch1 TMD 8OS0 ; ; Solution NMR structure of Notch3 WT TMD 2N5Y ; ; Solution NMR structure of octyl-tridecaptin A1 in DPC micelles containing Gram-negative lipid II 2KF2 ; ; Solution NMR structure of of Streptomyces coelicolor polyketide cyclase SCO5315. Northeast Structural Genomics Consortium target RR365 6QAM ; ; Solution NMR structure of outer membrane protein AlkL 2N6L ; ; Solution NMR structure of Outer Membrane Protein G from Pseudomonas aeruginosa 2N6P ; ; Solution NMR structure of Outer Membrane Protein G P92A mutant from Pseudomonas aeruginosa 1ACW ; ; SOLUTION NMR STRUCTURE OF P01, A NATURAL SCORPION PEPTIDE STRUCTURALLY ANALOGOUS TO SCORPION TOXINS SPECIFIC FOR APAMIN-SENSITIVE POTASSIUM CHANNEL, 25 STRUCTURES 2LCJ ; ; Solution NMR structure of Pab PolII Intein 2NBN ; ; Solution NMR structure of palmitated SCP2L2 from Aedes aegypti 7P4X ; ; SOLUTION NMR STRUCTURE OF PALUSTRIN-CA IN 50% TRIFLUOROETHANOL 2L79 ; ; Solution NMR structure of PAP248-286 in 30% TFE 2L77 ; ; Solution NMR structure of PAP248-286 in 50% TFE 5WE3 ; ; Solution NMR structure of PaurTx-3 7M25 ; ; Solution NMR Structure of PawL-Derived Peptide PLP-13 7M27 ; ; Solution NMR Structure of PawL-Derived Peptide PLP-16 7M28 ; ; Solution NMR Structure of PawL-Derived Peptide PLP-22 7M29 ; ; Solution NMR Structure of PawL-Derived Peptide PLP-29 7M2A ; ; Solution NMR Structure of PawL-Derived Peptide PLP-38 7M2B ; ; Solution NMR Structure of PawL-Derived Peptide PLP-42 7M2C ; ; Solution NMR Structure of PawL-Derived Peptide PLP-46 7M3U ; ; Solution NMR Structure of PawS-Derived Peptide PDP-24 2MZ0 ; ; Solution NMR Structure of PDFL2.1 from Arabidopsis thaliana 7RM8 ; ; Solution NMR structure of PDLIM7 PDZ bound to SNX17 peptide 2JT1 ; ; Solution NMR structure of PefI (Plasmid-Encoded Fimbriae Regulatory) protein from Salmonella typhimurium. Northeast Structural Genomics target StR82 7N87 ; ; Solution NMR structure of peptidase domain from Clostridium thermocellum PCAT1 2MOA ; ; Solution NMR structure of peptide ImI1 (peak 2) 2KZN ; ; Solution NMR Structure of Peptide methionine sulfoxide reductase msrB from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR10 6M56 ; ; Solution NMR Structure of Peptide P9R 5X0S ; ; Solution NMR structure of peptide toxin SsTx from Scolopendra subspinipes mutilans 2LUL ; ; Solution NMR Structure of PH Domain of Tyrosine-protein kinase Tec from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR3504C 2HG7 ; ; Solution NMR structure of Phage-like element PBSX protein xkdW, Northeast Structural Genomics Consortium Target SR355 2MIQ ; ; Solution NMR Structure of PHD Type 1 Zinc Finger Domain 1 of Lysine-specific Demethylase Lid from Drosophila melanogaster, Northeast Structural Genomics Consortium (NESG) Target FR824J 2MA5 ; ; Solution NMR structure of PHD type Zinc finger domain of Lysine-specific demethylase 5B (PLU-1/JARID1B) from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR7375C 5TBN ; ; Solution NMR structure of PHF20 PHD domain in complex with a histone H3K4me2 peptide 1N7L ; ; Solution NMR structure of phospholamban in detergent micelles 2KVO ; ; Solution NMR structure of Photosystem II reaction center Psb28 protein from Synechocystis sp.(strain PCC 6803), Northeast Structural Genomics Consortium Target SgR171 6I2O ; ; Solution NMR structure of PilE1 from Streptococcus sanguinis 2RQX ; ; Solution NMR structure of PMRD from klebsiella pneumoniae 2KT9 ; ; Solution NMR Structure of Probable 30S Ribosomal Protein PSRP-3 (Ycf65-like protein) from Synechocystis sp. (strain PCC 6803), Northeast Structural Genomics Consortium Target Target SgR46 6VJQ ; ; Solution NMR structure of Prochlorosin 2.1 produced by Prochlorococcus MIT 9313 7JVF ; ; Solution NMR structure of Prochlorosin 2.10 produced by Prochlorococcus MIT 9313 7JU9 ; ; Solution NMR structure of Prochlorosin 2.11 (Pcn2.11) produced by Prochlorococcus MIT 9313 2LDK ; ; Solution NMR Structure of Protein AAur_3427 from Arthrobacter aurescens, Northeast Structural Genomics Consortium Target AaR96 2KK4 ; ; Solution NMR structure of protein AF2094 from Archaeoglobus fulgidus. Northeast Structural Genomics Consotium (NESG) target GT2 1NWB ; ; Solution NMR Structure of Protein AQ_1857 from Aquifex aeolicus: Northeast Structural Genomics Consortium Target QR6. 2L09 ; ; Solution NMR Structure of Protein asr4154 from Nostoc sp. PCC7120 Northeast Structural Genomics Consortium target ID NsR143 2KJZ ; ; Solution NMR structure of protein ATC0852 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium (NESG) target AtT2. 2K7I ; ; Solution NMR structure of protein ATU0232 from AGROBACTERIUM TUMEFACIENS. Northeast Structural Genomics Consortium (NESG) target AtT3. Ontario Center for Structural Proteomics target ATC0223. 2K54 ; ; Solution NMR structure of protein Atu0742 from Agrobacterium Tumefaciens. Northeast Structural Genomics Consortium (NESG0) target AtT8. Ontario Center for Structural Proteomics target ATC0727 . 2K2P ; ; Solution NMR structure of protein Atu1203 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium (NESG) target AtT10, Ontario Center for Structural Proteomics target ATC1183 2K0S ; ; Solution NMR structure of protein BC066483 2L02 ; ; Solution NMR Structure of protein BT2368 from Bacteroides thetaiotaomicron, Northeast Structural Genomics Consortium Target BtR375 2L01 ; ; Solution NMR Structure of protein BVU3908 from Bacteroides vulgatus, Northeast Structural Genomics Consortium Target BvR153 2L7K ; ; Solution NMR Structure of protein CD1104.2 from Clostridium difficile, Northeast Structural Genomics Consortium Target CfR130 2JN6 ; ; Solution NMR structure of Protein Cgl2762 from Corynebacterium Glutamicum: Northeast Structural Genomics Consortium Target CgR3 2KP6 ; ; Solution NMR structure of protein CV0237 from Chromobacterium violaceum. Northeast Structural Genomics Consortium (NESG) target CvT1 2B95 ; ; Solution NMR structure of protein dynein light chain 2A, cytoplasmic; Northeast structural genomics consortium TARGET HR2106 2K5G ; ; Solution NMR structure of protein encoded by gene BPP1335 from Bordetella parapertussis: Northeast Structural Genomics Target BpR195 2K5H ; ; Solution NMR structure of protein encoded by MTH693 from Methanobacterium thermoautotrophicum: Northeast Structural Genomics Consortium target tt824a 2K5L ; ; Solution NMR Structure of Protein FeoA from Clostridium thermocellum, Northeast Structural Genomics Consortium Target CmR17 2K0Z ; ; Solution NMR structure of protein hp1203 from Helicobacter pylori 26695. Northeast Structural Genomics Consortium (NESG) target PT1/Ontario Center for Structural Proteomics target hp1203 2L5P ; ; Solution NMR structure of protein lipocalin 12 from rat epididymis 1RYJ ; ; Solution NMR Structure of Protein Mth1743 from Methanobacterium thermoautotrophicum. Ontario Centre for Structural Proteomics target MTH1743_1_70; Northeast Structural Genomics Consortium Target TT526. 2FGX ; ; Solution NMR Structure of Protein Ne2328 from Nitrosomonas europaea. Northeast Structural Genomics Consortium Target NeT3. 1PUZ ; ; Solution NMR Structure of Protein NMA1147 from Neisseria meningitidis. Northeast Structural Genomics Consortium Target MR19 2KHV ; ; Solution NMR structure of protein Nmul_A0922 from Nitrosospira multiformis. Northeast Structural Genomics Consortium target NmR38B. 2K8E ; ; Solution NMR Structure of protein of unknown function yegP from E. coli. Ontario Center for Structural Proteomics target EC0640_1_123 Northeast Structural Genomics Consortium Target ET102. 2HG6 ; ; Solution NMR Structure of Protein PA1123 from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium Target PaT4; Ontario Centre for Structural Proteomics Target PA1123. 2GPF ; ; Solution NMR Structure of Protein PA22412 from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium Target PaT86, Ontario Centre for Structural Proteomics Target PA2412. 2H3J ; ; Solution NMR Structure of Protein PA4359 from Pseudomonas aeruginosa: Northeast Structural Genomics Consortium Target PaT89 1S04 ; ; Solution NMR Structure of Protein PF0455 from Pyrococcus furiosus. Northeast Structural Genomics Consortium Target PfR13 2GMG ; ; Solution NMR Structure of protein PF0610 from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfG3 6E4J ; ; Solution NMR Structure of Protein PF2048.1 2LCG ; ; Solution NMR structure of protein Rmet_5065 from Ralstonia metallidurans, Northeast Structural Genomics Consortium Target CrR115 2JN4 ; ; Solution NMR Structure of Protein RP4601 from Rhodopseudomonas palustris. Northeast Structural Genomics Consortium Target RpT2; Ontario Center for Structural Proteomics Target RP4601. 2HFV ; ; Solution NMR Structure of Protein RPA1041 from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium Target PaT90. 2IDA ; ; Solution NMR Structure of Protein RPA1320 from Rhodopseudomonas Palustris. Northeast Structural Genomics Consortium Target RpT3; Ontario Center for Structural Proteomics Target RP1313. 2L0C ; ; Solution NMR Structure of protein STY4237 (residues 36-120) from Salmonella enterica, Northeast Structural Genomics Consortium Target SlR115 1X9B ; ; Solution NMR Structure of Protein Ta0354 from Thermoplasma acidophilum. Ontario Center for Structural Proteomics target TA0354_69_121; Northeast Structural Genomics Consortium Target TaT38. 1X9A ; ; Solution NMR Structure of Protein Tm0979 from Thermotoga maritima. Ontario Center for Structural Proteomics Target TM0979_1_87; Northeast Structural Genomics Consortium Target VT98. 1LKN ; ; Solution NMR Structure of Protein TM_1112 from Thermotoga maritima. Ontario Centre for Structural Proteomics Target TM1112_1_89; Northeast Structural Genomics Consortium Target VT74. 2JNY ; ; Solution NMR structure of protein Uncharacterized BCR, Northeast Structural Genomics Consortium target CgR1 2JRX ; ; Solution NMR structure of protein YejL from E. coli. Northeast Structural Genomics target ER309 1N91 ; ; Solution NMR Structure of Protein yggU from Escherichia coli. Northeast Structural Genomics Consortium Target ER14. 1YH5 ; ; Solution NMR Structure of Protein yggU from Escherichia coli. Northeast Structural Genomics Consortium Target ER14. 1NYN ; ; Solution NMR Structure of Protein YHR087W from Saccharomyces cerevisiae. Northeast Structural Genomics Consortium Target YTYST425. 2K3I ; ; Solution NMR structure of protein yiiS from Shigella flexneri. Northeast Structural Genomics Consortium target SfR90 2HJJ ; ; Solution NMR structure of protein ykfF from Escherichia coli. Northeast Structural Genomics target ER397. 1WPI ; ; Solution NMR Structure of Protein YKR049C from Saccharomyces cerevisiae. Ontario Centre for Structural Proteomics target YST0250_1_133; Northeast Structural Genomics Consortium YTYst250 1N6Z ; ; Solution NMR Structure of Protein YML108W from Saccharomyces cerevisiae. A novel member of the split bab fold. Northeast Structural Genomics Consortium Target YT601. 2GRG ; ; Solution NMR Structure of Protein YNR034W-A from Saccharomyces cerevisiae. Northeast Structural Genomics Consortium Target YT727; Ontario Center for Structural Proteomics Target yst6499. 1NEI ; ; Solution NMR Structure of Protein yoaG from Escherichia coli. Ontario Centre for Structural Proteomics Target EC0264_1_60; Northeast Structural Genomics Consortium Target ET94. 2HFI ; ; Solution NMR Structure of Protein yppE from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR213 2HGK ; ; Solution NMR Structure of protein YqcC from E. coli: Northeast Structural Genomics Consortium target ER225 1TE7 ; ; Solution NMR Structure of Protein yqfB from Escherichia coli. Northeast Structural Genomics Consortium Target ET99 1XHS ; ; Solution NMR Structure of Protein ytfP from Escherichia coli. Northeast Structural Genomics Consortium Target ER111. 2KL5 ; ; Solution NMR Structure of protein yutD from B.subtilis, Northeast Structural Genomics Consortium Target SR232 2HC5 ; ; Solution NMR Structure of Protein yvyC from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR482. 2JOZ ; ; Solution NMR structure of protein yxeF, Northeast Structural Genomics Consortium target Sr500a 2L6X ; ; Solution NMR Structure of Proteorhodopsin. 7JGY ; ; Solution NMR structure of protonectin, a peptide from wasp 7JHF ; ; Solution NMR structure of protonectin-F, a derived peptide from wasp 7VQI ; ; Solution NMR structure of Pseudomonas aeruginosa Lipopolysaccharide (LPS) Bicelle bound VR18 Antimicrobial Peptide 1YWU ; ; Solution NMR structure of Pseudomonas Aeruginosa protein PA4608. Northeast Structural Genomics target PaT7 6FIP ; ; Solution NMR structure of Pseudomonas aeruginosa TonB CTD 2KFP ; ; Solution NMR structure of PSPTO_3016 from Pseudomonas syringae. Northeast Structural Genomics Consortium target PsR293. 5J3G ; ; Solution NMR structure of PT-free dsDNA from Streptomyces lividans 8J3N ; ; Solution NMR structure of purS subunit of phosphoribosylformylglycinamidine synthase enzyme from Staphylococcus aureus 2L0D ; ; Solution NMR Structure of putative cell surface protein MA_4588 (272-376 domain) from Methanosarcina acetivorans, Northeast Structural Genomics Consortium Target MvR254A 2K5W ; ; Solution NMR Structure of Putative Lipoprotein from Bacillus cereus Ordered Locus BC_2438. Northeast Structural Genomics Target BcR103A. 2K57 ; ; Solution NMR Structure of Putative Lipoprotein from Pseudomonas syringae Gene Locus PSPTO2350. Northeast Structural Genomics Target PsR76A. 2K5T ; ; Solution NMR Structure of Putative N-Acetyl Transferase YhhK from E. coli Bound to Coenzyme A: Northeast Structural Genomics Consortium Target ET106 2L9P ; ; Solution NMR Structure of Q5HLI9 from Staphylococcus epidermidis, Northeast Structural Genomics Consortium Target SeR147 2JRR ; ; Solution NMR Structure of Q5LLS5 from Silicibacter pomeroyi. Northeast Structural Genomics Consortium target SiR90 2KZW ; ; Solution NMR Structure of Q8PSA4 from Methanosarcina mazei, Northeast Structural Genomics Consortium Target MaR143A 2GZP ; ; Solution NMR structure of Q8ZP25 from Salmonella typhimurium LT2; Northeast Structural Genomics Consortium Target STR70 2JZT ; ; Solution NMR structure of Q8ZP25_SALTY from Salmonella typhimurium. Northeast Structural Genomics Consortium target StR70 2JN8 ; ; Solution NMR structure of Q8ZRJ2 from Salmonella typhimurium. Northeast Structural Genomics target StR65. 2MFU ; ; Solution NMR structure of quadruplex d(TGGGTTTGGGTTGGGTTTGGG) in sodium conditions 6XN9 ; ; Solution NMR structure of recifin, a cysteine-rich tyrosyl-DNA Phosphodiesterase I modulatory peptide from the marine sponge Axinella sp. 1CYU ; ; SOLUTION NMR STRUCTURE OF RECOMBINANT HUMAN CYSTATIN A UNDER THE CONDITION OF PH 3.8 AND 310K 1CYV ; ; SOLUTION NMR STRUCTURE OF RECOMBINANT HUMAN CYSTATIN A UNDER THE CONDITION OF PH 3.8 AND 310K 1JIC ; ; SOLUTION NMR STRUCTURE OF RECOMBINANT SSO7D WITH RNASE ACTIVITY, MINIMIZED AVERAGE STRUCTURE 1B10 ; ; SOLUTION NMR STRUCTURE OF RECOMBINANT SYRIAN HAMSTER PRION PROTEIN RPRP(90-231) , 25 STRUCTURES 1A24 ; ; SOLUTION NMR STRUCTURE OF REDUCED DSBA FROM ESCHERICHIA COLI, FAMILY OF 20 STRUCTURES 1A23 ; ; SOLUTION NMR STRUCTURE OF REDUCED DSBA FROM ESCHERICHIA COLI, MINIMIZED AVERAGE STRUCTURE 2JVM ; ; Solution NMR structure of Rhodobacter sphaeroides protein RHOS4_26430. Northeast Structural Genomics Consortium target RhR95 1RCH ; ; SOLUTION NMR STRUCTURE OF RIBONUCLEASE HI FROM ESCHERICHIA COLI, 8 STRUCTURES 2KCO ; ; Solution NMR structure of ribosomal protein sso0164 from Sulfolobus solfataricus. Northeast Structural Genomics Consortium (NESG) target SsT4. 2JRM ; ; Solution NMR structure of ribosome modulation factor VP1593 from Vibrio parahaemolyticus. Northeast Structural Genomics target VpR55 6KRA ; ; Solution NMR Structure of RMAD4 alpha Defensin 1XV0 ; ; Solution NMR structure of RNA internal loop with three consecutive sheared GA pairs in 5'GGUGGAGGCU/3'PCCGAAGCCG 2LA6 ; ; Solution NMR Structure of RRM domain of RNA-binding protein FUS from homo sapiens, Northeast Structural Genomics Consortium Target HR6430A 1MWN ; ; Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12 5TVZ ; ; Solution NMR structure of Saccharomyces cerevisiae Pom152 Ig-like repeat, residues 718-820 2M46 ; ; Solution NMR structure of SACOL0876 from Staphylococcus aureus COL, NESG target ZR353 and CSGID target IDP00841 2K5D ; ; SOLUTION NMR STRUCTURE OF SAG0934 from Streptococcus agalactiae. NORTHEAST STRUCTURAL GENOMICS TARGET SaR32[1-108]. 2MA8 ; ; Solution NMR Structure of Salmonella typhimurium LT2 Secreted Protein SrfN: Northeast Structural Genomics Consortium Target StR109 2JNA ; ; Solution NMR Structure of Salmonella typhimurium LT2 Secreted Protein STM0082: Northeast Structural Genomics Consortium Target StR109 2MZ8 ; ; Solution NMR structure of Salmonella Typhimurium transcriptional regulator protein Crl 2KW9 ; ; Solution NMR Structure of SAP domain of MKL/myocardin-like protein 1 from H.sapiens, Northeast Structural Genomics Consortium Target HR4547E 2KVU ; ; Solution NMR Structure of SAP domain of MKL/myocardin-like protein 1 from H.sapiens, Northeast Structural Genomics Consortium Target Target HR4547E 2JZ7 ; ; Solution NMR structure of selenium-binding protein from Methanococcus Vannielii 1HZ2 ; ; SOLUTION NMR STRUCTURE OF SELF-COMPLEMENTARY DUPLEX 5'-D(AGGCG*CCT)2 CONTAINING A TRIMETHYLENE CROSSLINK AT THE N2 POSITION OF G*. MODEL OF A MALONDIALDEHYDE CROSSLINK 1LUH ; ; SOLUTION NMR STRUCTURE OF SELF-COMPLIMENTARY DUPLEX 5'-D(TCCG*CGGA)2 CONTAINING A TRIMETHYLENE CROSSLINK AT THE N2 POSITION OF G* 2KSY ; ; Solution nmr structure of sensory rhodopsin II 2K1H ; ; Solution NMR structure of SeR13 from Staphylococcus epidermidis. Northeast Structural Genomics Consortium target SeR13 2MIO ; ; Solution NMR Structure of SH3 Domain 1 of Rho GTPase-activating Protein 10 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR9129A 2KRS ; ; Solution NMR structure of SH3 domain from CPF_0587 (fragment 415-479) from Clostridium perfringens. Northeast Structural Genomics Consortium (NESG) Target CpR74A. 2LX7 ; ; Solution NMR structure of SH3 domain of growth arrest-specific protein 7 (GAS7) (fragment 1-60) from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8574A 5WAH ; ; SOLUTION NMR STRUCTURE OF SIGLEC-5 BINDING DOMAIN FROM STREPTOCOCCAL BETA PROTEIN 2L0A ; ; Solution NMR Structure of Signal transducing adapter molecule 1 STAM-1 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4479E 2MEM ; ; Solution NMR structure of SLED domain of Scml2 6A5J ; ; solution NMR Structure of small peptide 2JRO ; ; Solution NMR Structure of SO0334 from Shewanella oneidensis. Northeast Structural Genomics Target SoR75 6MK4 ; ; Solution NMR structure of spider toxin analogue [E17K]ProTx-II 6MK5 ; ; Solution NMR structure of spider toxin analogue [F5A,M6F,T26L,K28R]GpTx-1 2JZ2 ; ; Solution NMR structure of Ssl0352 protein from Synechocystis sp. PCC 6803. Northeast Structural Genomics Consortium target SgR42 2KCD ; ; Solution NMR structure of SSP0047 from Staphylococcus saprophyticus. Northeast Structural Genomics Consortium Target SyR6. 1PQX ; ; Solution NMR Structure of Staphylococcus aureus protein SAV1430. Northeast Structural Genomics Consortium Target ZR18. 2KSI ; ; Solution NMR structure of Sterol Carrier Protein - 2 from Aedes aegypti (AeSCP-2) complex with C16 fatty acid (palmitate) 2KPI ; ; Solution NMR structure of Streptomyces coelicolor SCO3027 modeled with Zn+2 bound, Northeast Structural Genomics Consortium Target RR58 2LNI ; ; Solution NMR Structure of Stress-induced-phosphoprotein 1 STI1 from Homo sapiens, Northeast Structural Genomics Consortium Target HR4403E 2SDF ; ; SOLUTION NMR STRUCTURE OF STROMAL CELL-DERIVED FACTOR-1 (SDF-1), 30 STRUCTURES 7S5J ; ; Solution NMR structure of substrate bound peptidase domain from PCAT1 1KMR ; ; Solution NMR Structure of Surfactant Protein B (11-25) (SP-B11-25) 2LQ3 ; ; Solution NMR Structure of syc0711_d from Synechococcus sp., Northeast Structural Genomics Consortium (NESG) Target SnR212 5KMZ ; ; Solution NMR structure of Tetrahymena telomerase RNA pseudoknot 2KCL ; ; Solution NMR structure of tetratricopeptide repeat domain protein SrU_0103 from Salinibacter ruber, Northeast Structural Genomics Consortium (NESG) Target SrR115C 2KCV ; ; Solution nmr structure of tetratricopeptide repeat domain protein sru_0103 from salinibacter ruber, northeast structural genomics consortium (nesg) target srr115c 2LE1 ; ; Solution NMR Structure of Tfu_2981 from Thermobifida fusca, Northeast Structural Genomics Consortium Target TfR85A 2N0J ; ; Solution NMR Structure of the 27 nucleotide engineered neomycin sensing riboswitch RNA-ribostamycin complex 2KXM ; ; Solution NMR Structure of the 27 nucleotide engineered neomycin sensing riboswitch RNA-ribostmycin complex 1QSX ; ; SOLUTION NMR STRUCTURE OF THE 2:1 HOECHST 33258-D(CTTTTGCAAAAG)2 COMPLEX 2LT1 ; ; Solution NMR structure of the 72-residue N-terminal domain of Myxococcus xanthus CarD 2KO1 ; ; Solution NMR structure of the ACT domain from GTP pyrophosphokinase of Chlorobium tepidum. Northeast Structural Genomics Consortium Target CtR148A 2LGH ; ; Solution NMR structure of the AHSA1-like protein AHA_2358 from Aeromonas hydrophila refined with NH RDCs, Northeast Structural Genomics Consortium Target AhR99. 2LF2 ; ; Solution NMR structure of the AHSA1-like protein CHU_1110 from Cytophaga hutchinsonii, Northeast Structural Genomics Consortium Target ChR152 2LAK ; ; Solution NMR structure of the AHSA1-like protein RHE_CH02687 (1-152) from Rhizobium etli, Northeast Structural Genomics Consortium Target ReR242 2KQ2 ; ; Solution NMR structure of the apo form of a ribonuclease H domain of protein DSY1790 from Desulfitobacterium hafniense, Northeast Structural Genomics target DhR1A 2LU3 ; ; Solution NMR structure of the apo-form of the beta2 carbohydrate module of AMP-activated protein kinase 2HPU ; ; Solution NMR structure of the apo-NosL protein from Achromobacter cycloclastes 2HQ3 ; ; Solution NMR structure of the apo-NosL protein from Achromobacter cycloclastes 2KXI ; ; Solution NMR structure of the apoform of NarE (NMB1343) 2LU4 ; ; Solution NMR structure of the beta2 carbohydrate module of AMP-activated protein kinase bound to glucosyl-cyclodextrin 5VX7 ; ; Solution NMR structure of the BRCT domain of S. cerevisiae Rev1 2L3B ; ; Solution NMR structure of the BT_0084 lipoprotein from Bacteroides thetaiotaomicron, Northeast Structural Genomics Consortium Target BtR376 6YJL ; ; Solution NMR structure of the C-terminal arm of RSV nucleoprotein 2M9U ; ; Solution NMR structure of the C-terminal domain (CTD) of Moloney murine leukemia virus integrase, Northeast Structural Genomics Target OR41A 2LT3 ; ; Solution NMR structure of the C-terminal domain of CdnL from Myxococcus xanthus 3GAT ; ; SOLUTION NMR STRUCTURE OF THE C-TERMINAL DOMAIN OF CHICKEN GATA-1 BOUND TO DNA, 34 STRUCTURES 5NOC ; ; Solution NMR Structure of the C-terminal domain of ParB (Spo0J) 2KCZ ; ; Solution NMR structure of the C-terminal domain of protein DR_A0006 from Deinococcus radiodurans. Northeast Structural Genomics Consortium Target DrR147D 2HJ8 ; ; Solution NMR structure of the C-terminal domain of the interferon alpha-inducible ISG15 protein from Homo sapiens. Northeast Structural Genomics target HR2873B 2KBI ; ; Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5 2YOM ; ; Solution NMR structure of the C-terminal extension of two bacterial light, oxygen, voltage (LOV) photoreceptor proteins from Pseudomonas putida 2YON ; ; Solution NMR structure of the C-terminal extension of two bacterial light, oxygen, voltage (LOV) photoreceptor proteins from Pseudomonas putida 5VNT ; ; Solution NMR Structure of the C-terminal Headpiece Domain of Villin 4 from A.thaliana, the First Non-Vertebrate Headpiece Structure 2MFS ; ; Solution NMR structure of the cactus-derived antimicrobial peptide Ep-AMP1 2KL6 ; ; Solution NMR structure of the CARDB domain of PF1109 from Pyrococcus furiosus. Northeast Structural Genomics Consortium target PfR193A 2L11 ; ; Solution NMR structure of the Cbx3 in complex with H3K9me3 peptide 1L4T ; ; SOLUTION NMR STRUCTURE OF THE CCK2E3 2KXO ; ; Solution NMR structure of the cell division regulator MinE protein from Neisseria gonorrhoeae 2K28 ; ; Solution NMR structure of the chromo domain of the chromobox protein homolog 4 2K1B ; ; Solution NMR structure of the chromo domain of the chromobox protein homolog 7 2L12 ; ; Solution NMR structure of the chromobox protein 7 with H3K9me3 2L1B ; ; Solution NMR structure of the chromobox protein Cbx7 with H3K27me3 7K3S ; ; Solution NMR Structure of the Coiled-coil BRCA1-PALB2 Heterodimer 1G6P ; ; SOLUTION NMR STRUCTURE OF THE COLD SHOCK PROTEIN FROM THE HYPERTHERMOPHILIC BACTERIUM THERMOTOGA MARITIMA 6E4H ; ; Solution NMR Structure of the Colied-coil PALB2 Homodimer 1BXP ; ; SOLUTION NMR STRUCTURE OF THE COMPLEX OF ALPHA-BUNGAROTOXIN WITH A LIBRARY DERIVED PEPTIDE, 20 STRUCTURES 2BTX ; ; SOLUTION NMR STRUCTURE OF THE COMPLEX OF ALPHA-BUNGAROTOXIN WITH A LIBRARY DERIVED PEPTIDE, NMR, MINIMIZED AVERAGE STRUCTURE 1GCC ; ; SOLUTION NMR STRUCTURE OF THE COMPLEX OF GCC-BOX BINDING DOMAIN OF ATERF1 AND GCC-BOX DNA, MINIMIZED AVERAGE STRUCTURE 1A66 ; ; SOLUTION NMR STRUCTURE OF THE CORE NFATC1/DNA COMPLEX, 18 STRUCTURES 2KT8 ; ; Solution NMR structure of the CPE1231(468-535) protein from Clostridium perfringens, Northeast Structural Genomics Consortium Target CpR82B 7L55 ; ; Solution NMR structure of the cyclic plant protein PDP-23 in DPC micelles 7L54 ; ; Solution NMR structure of the cyclic plant protein PDP-23 in SDS micelles 2M6W ; ; Solution NMR structure of the d(GGGGTTGGGGTTTTGGGGAAGGGG) quadruplex in sodium conditions 2M6V ; ; Solution NMR structure of the d(GGGTTGGGTTTTGGGTGGG) quadruplex in sodium conditions 2MFT ; ; Solution NMR structure of the d(GGGTTTTGGGTGGGTTTTGGG) quadruplex in sodium conditions 5UYO ; ; Solution NMR structure of the de novo mini protein HEEH_rd4_0097 6U6R ; ; Solution NMR Structure Of The delta30-ngMinE Protein From Neisseria gonorrheae 7L51 ; ; Solution NMR structure of the dimeric form of the cyclic plant protein PDP-23 in H2O 1HBW ; ; Solution nmr structure of the dimerization domain of the yeast transcriptional activator Gal4 (residues 50-106) 2LZ1 ; ; Solution NMR Structure of the DNA-Binding Domain of Human NF-E2-Related Factor 2, Northeast Structural Genomics Consortium (NESG) Target HR3520O 6U3S ; ; Solution NMR structure of the DNAJB6b deltaST variant (Aligned on the CTD domain) 6U3R ; ; Solution NMR structure of the DNAJB6b deltaST variant (Aligned on the J domain) 2KIW ; ; Solution NMR structure of the domain N-terminal to the integrase domain of SH1003 from Staphylococcus haemolyticus. Northeast Structural Genomics Consortium Target ShR105F (64-166). 2C7H ; ; Solution NMR structure of the DWNN domain from human RBBP6 2KL7 ; ; Solution NMR Structure of the EGF-like 1 Domain of Human Fibulin-4. Northeast Structural Genomics Target HR6275 2L2T ; ; Solution NMR structure of the ErbB4 dimeric membrane domain 2LXU ; ; Solution NMR Structure of the eukaryotic RNA recognition motif, RRM1, from the heterogeneous nuclear ribonucleoprotein H from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8614A 2K9U ; ; Solution NMR structure of the Filamin-migfilin complex 2OPU ; ; Solution NMR Structure of the First Domain of KSRP 2K3D ; ; Solution NMR structure of the folded 79 residue fragment of Lin0334 from Listeria innocua. Northeast Structural Genomics Consortium target LkR15 2K1S ; ; Solution NMR structure of the folded C-terminal fragment of YiaD from Escherichia coli. Northeast Structural Genomics Consortium target ER553. 2JVD ; ; Solution NMR structure of the folded N-terminal fragment of UPF0291 protein ynzC from Bacillus subtilis. Northeast Structural Genomics target SR384-1-46 6U6P ; ; Solution NMR Structure Of The Full Length Latent Form MinE Protein From Neisseria gonorrheae 6WA5 ; ; Solution NMR Structure of the G4L/Q5K/G6S (NOS) Unmyristoylated Feline Immunodeficiency Virus Matrix Protein 1YUJ ; ; SOLUTION NMR STRUCTURE OF THE GAGA FACTOR/DNA COMPLEX, 50 STRUCTURES 1YUI ; ; SOLUTION NMR STRUCTURE OF THE GAGA FACTOR/DNA COMPLEX, REGULARIZED MEAN STRUCTURE 2LSO ; ; Solution NMR Structure of the Globular Domain of Human Histone H1x, Northeast Structural Genomics Consortium (NESG) Target HR7057A 2FN2 ; ; SOLUTION NMR STRUCTURE OF THE GLYCOSYLATED SECOND TYPE TWO MODULE OF FIBRONECTIN, 20 STRUCTURES 2GBQ ; ; SOLUTION NMR STRUCTURE OF THE GRB2 N-TERMINAL SH3 DOMAIN COMPLEXED WITH A TEN-RESIDUE PEPTIDE DERIVED FROM SOS DIRECT REFINEMENT AGAINST NOES, J-COUPLINGS, AND 1H AND 13C CHEMICAL SHIFTS, 15 STRUCTURES 4GBQ ; ; SOLUTION NMR STRUCTURE OF THE GRB2 N-TERMINAL SH3 DOMAIN COMPLEXED WITH A TEN-RESIDUE PEPTIDE DERIVED FROM SOS DIRECT REFINEMENT AGAINST NOES, J-COUPLINGS, AND 1H AND 13C CHEMICAL SHIFTS, 15 STRUCTURES 1GBQ ; ; SOLUTION NMR STRUCTURE OF THE GRB2 N-TERMINAL SH3 DOMAIN COMPLEXED WITH A TEN-RESIDUE PEPTIDE DERIVED FROM SOS DIRECT REFINEMENT AGAINST NOES, J-COUPLINGS, AND 1H AND 13C CHEMICAL SHIFTS, MINIMIZED AVERAGE STRUCTURE 3GBQ ; ; SOLUTION NMR STRUCTURE OF THE GRB2 N-TERMINAL SH3 DOMAIN COMPLEXED WITH A TEN-RESIDUE PEPTIDE DERIVED FROM SOS DIRECT REFINEMENT AGAINST NOES, J-COUPLINGS, AND 1H AND 13C CHEMICAL SHIFTS, MINIMIZED AVERAGE STRUCTURE 5LWJ ; ; Solution NMR structure of the GTP binding Class II RNA aptamer-ligand-complex containing a protonated adenine nucleotide with a highly shifted pKa. 1R9P ; ; Solution NMR Structure Of The Haemophilus Influenzae Iron-Sulfur Cluster Assembly Protein U (IscU) with Zinc Bound at the Active Site. Northeast Structural Genomics Consortium Target IR24. 1Q48 ; ; Solution NMR Structure of The Haemophilus Influenzae Iron-Sulfur Cluster Assembly Protein U (IscU) with Zinc Bound at the Active Site. Northeast Structural Genomics Consortium Target IR24. This protein is not apo, it is a model without zinc binding constraints. 2LFH ; ; Solution NMR Structure of the Helix-loop-Helix Domain of Human ID3 Protein, Northeast Structural Genomics Consortium Target HR3111A 4C26 ; ; Solution NMR structure of the HicA toxin from Burkholderia pseudomallei 2LDL ; ; Solution NMR Structure of the HIV-1 Exon Splicing Silencer 3 5VWE ; ; Solution NMR structure of the HMG domain of human FACT complex subunit SSRP1 2KW4 ; ; Solution NMR Structure of the Holo Form of a Ribonuclease H domain from D.hafniense, Northeast Structural Genomics Consortium Target DhR1A 2JS1 ; ; Solution NMR structure of the homodimer protein YVFG from Bacillus subtilis, Northeast Structural Genomics Consortium Target SR478 2KKO ; ; Solution NMR structure of the homodimeric winged helix-turn-helix DNA-binding domain (fragment 1-100) Mb0332 from Mycobacterium bovis, a possible ArsR-family transcriptional regulator. Northeast Structural Genomics Consortium Target MbR242E. 7ZBS ; ; Solution NMR structure of the HTH_8cm consensus miniprotein in 30% TFE at 278K 2STT ; ; SOLUTION NMR STRUCTURE OF THE HUMAN ETS1/DNA COMPLEX, 25 STRUCTURES 2STW ; ; SOLUTION NMR STRUCTURE OF THE HUMAN ETS1/DNA COMPLEX, RESTRAINED REGULARIZED MEAN STRUCTURE 1HPJ ; ; SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, 12 STRUCTURES 1HPK ; ; SOLUTION NMR STRUCTURE OF THE HUMAN PLASMINOGEN KRINGLE 1 DOMAIN COMPLEXED WITH 6-AMINOHEXANOIC ACID AT PH 5.3, 310K, DERIVED FROM RANDOMLY GENERATED STRUCTURES USING SIMULATED ANNEALING, MINIMIZED AVERAGE STRUCTURE 6U6S ; ; Solution NMR Structure Of The I24N-delta10-ngMinE Protein From Neisseria gonorrheae 2EZL ; ; SOLUTION NMR STRUCTURE OF THE IBETA SUBDOMAIN OF THE MU END DNA BINDING DOMAIN OF PHAGE MU TRANSPOSASE, 29 STRUCTURES 2EZK ; ; SOLUTION NMR STRUCTURE OF THE IBETA SUBDOMAIN OF THE MU END DNA BINDING DOMAIN OF PHAGE MU TRANSPOSASE, REGULARIZED MEAN STRUCTURE 2KKQ ; ; Solution NMR Structure of the Ig-like C2-type 2 Domain of Human Myotilin. Northeast Structural Genomics Target HR3158. 2EZI ; ; SOLUTION NMR STRUCTURE OF THE IGAMMA SUBDOMAIN OF THE MU END DNA BINDING DOMAIN OF MU PHAGE TRANSPOSASE, 30 STRUCTURES 2EZH ; ; SOLUTION NMR STRUCTURE OF THE IGAMMA SUBDOMAIN OF THE MU END DNA BINDING DOMAIN OF MU PHAGE TRANSPOSASE, MINIMIZED AVERAGE STRUCTURE 1BRV ; ; SOLUTION NMR STRUCTURE OF THE IMMUNODOMINANT REGION OF PROTEIN G OF BOVINE RESPIRATORY SYNCYTIAL VIRUS, 48 STRUCTURES 2LY0 ; ; Solution NMR structure of the influenza A virus S31N mutant (19-49) in presence of drug M2WJ332 2KD1 ; ; Solution NMR structure of the integrase-like domain from Bacillus cereus ordered locus BC_1272. Northeast Structural Genomics Consortium Target BcR268F 6YTC ; ; Solution NMR structure of the isolated NTE domain of BT1762-63 levan transporter 6MIE ; ; Solution NMR structure of the KCNQ1 voltage-sensing domain 2LPE ; ; Solution NMR Structure of the KSR1 CA1-CA1a domain 7GAT ; ; SOLUTION NMR STRUCTURE OF THE L22V MUTANT DNA BINDING DOMAIN OF AREA COMPLEXED TO A 13 BP DNA CONTAINING A TGATA SITE, 34 STRUCTURES 6GAT ; ; SOLUTION NMR STRUCTURE OF THE L22V MUTANT DNA BINDING DOMAIN OF AREA COMPLEXED TO A 13 BP DNA CONTAINING A TGATA SITE, REGULARIZED MEAN STRUCTURE 2N5C ; ; Solution NMR structure of the lasso peptide chaxapeptin 2MW3 ; ; Solution NMR structure of the lasso peptide streptomonomicin 2K13 ; ; Solution NMR Structure of the Leech Protein Saratin, a Novel Inhibitor of Haemostasis 2L2J ; ; Solution NMR structure of the lower part of the R/G stem loop RNA 5UCE ; ; Solution NMR structure of the major species of DANCER-2, a dynamic and natively folded pentamutant of the B1 domain of streptococcal protein G (GB1) 6GMS ; ; Solution NMR structure of the major type IV pilin PpdD from enterohemorrhagic Escherichia coli (EHEC) 5VWL ; ; Solution NMR Structure of the Membrane Associated Segment of HIV-1 gp41 Cytoplasmic Tail 5VKV ; ; Solution NMR structure of the membrane electron transporter CcdA 2N9V ; ; Solution NMR Structure of the membrane localization domain from Pasteurella multocida toxin 2N9W ; ; Solution NMR Structure of the membrane localization domain from the Ras/Rap1-specific endopeptidase (RRSP) of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxins (MARTX) toxin 1ZZA ; ; Solution NMR Structure of the Membrane Protein Stannin 2BAU ; ; Solution NMR structure of the micelle-bound myristoylated N-terminal Arf6 2NBA ; ; Solution NMR structure of the minor DNA-uptake pilin ComP from Neisseri subflava 2LNA ; ; Solution NMR Structure of the mitochondrial inner membrane domain (residues 164-251), FtsH_ext, from the paraplegin-like protein AFG3L2 from Homo sapiens, Northeast Structural Genomics Consortium Target HR6741A 1OM2 ; ; SOLUTION NMR STRUCTURE OF THE MITOCHONDRIAL PROTEIN IMPORT RECEPTOR TOM20 FROM RAT IN A COMPLEX WITH A PRESEQUENCE PEPTIDE DERIVED FROM RAT ALDEHYDE DEHYDROGENASE (ALDH) 7L53 ; ; Solution NMR structure of the monomeric form of the cyclic plant protein PDP-23 in CD3CN/H2O 2KKZ ; ; Solution NMR structure of the monomeric W187R mutant of A/Udorn NS1 effector domain. Northeast Structural Genomics target OR8C[W187R]. 2KP7 ; ; Solution NMR structure of the Mus81 N-terminal HhH. Northeast Structural Genomics Consortium target MmT1A 6WA3 ; ; Solution NMR structure of the myristoylated feline immunodeficiency virus matrix protein 2BAO ; ; Solution NMR structure of the myristoylated N-terminal fragment of Arf6 7NWJ ; ; Solution NMR structure of the N-terminal domain of CEP164 (1-109) 2KPT ; ; Solution NMR structure of the N-terminal domain of cg2496 protein from Corynebacterium glutamicum. Northeast Structural Genomics Consortium Target CgR26A 2K5N ; ; Solution NMR Structure of the N-Terminal Domain of Protein ECA1580 from Erwinia carotovora, Northeast Structural Genomics Consortium Target EwR156A 2KW7 ; ; Solution NMR Structure of the N-terminal domain of protein PG_0361 from P.gingivalis, Northeast Structural Genomics Consortium Target PgR37A 2KYY ; ; Solution NMR Structure of the N-terminal Domain of Putative ATP-dependent DNA Helicase RecG-related Protein from Nitrosomonas europaea, Northeast Structural Genomics Consortium Target NeR70A 2M2J ; ; Solution NMR structure of the N-terminal domain of STM1478 from Salmonella typhimurium LT2: Target STR147A of the Northeast Structural Genomics consortium (NESG), and APC101565 of the Midwest Center for Structural Genomics (MCSG). 6VTI ; ; Solution NMR structure of the N-terminal domain of the Serine/threonine-protein phosphatase 1 regulatory subunit 10, PPP1R10 7N45 ; ; Solution NMR structure of the N-terminal globular domain of the endemic HKU1 coronavirus nucleocapsid protein 2L1A ; ; Solution NMR structure of the N-terminal GTPase-like domain of dictyostelium discoideum Fomin C 6L7Z ; ; Solution NMR structure of the N-terminal immunoglobulin variable domain of BTNL2 2LLK ; ; Solution NMR structure of the N-terminal myb-like 1 domain of the human cyclin-D-binding transcription factor 1 (hDMP1), Northeast Structural Genomics Consortium (NESG) target ID hr8011a 2KCM ; ; Solution NMR structure of the N-terminal OB-domain of SO_1732 from Shewanella oneidensis. Northeast Structural Genomics Consortium Target SoR210A. 2L0W ; ; Solution NMR structure of the N-terminal PAS domain of HERG potassium channel 2KJR ; ; Solution NMR structure of the N-terminal Ubiquitin-like Domain from Tubulin-binding Cofactor B, CG11242, from Drosophila melanogaster. Northeast Structural Genomics Consortium Target FR629A (residues 8-92) 6XXU ; ; Solution NMR structure of the native form of UbcH7 (UBE2L3) 7O7B ; ; Solution NMR Structure of the Neh1 Domain of Human Nuclear factor erythroid 2-related factor 2 (NRF2) 6U6G ; ; Solution NMR structure of the nodule-specific cysteine-rich peptide NCR044 from Medicago truncatula 2JZO ; ; Solution NMR structure of the non-productive complex between IIAMannose and IIBMannose of the mannose transporter of the E. coli phosphotransferase system 2LMZ ; ; Solution NMR structure of the novel conotoxin im23a from Conus imperialis 2KBN ; ; Solution NMR structure of the OB domain (residues 67-166) of MM0293 from Methanosarcina mazei. Northeast Structural Genomics Consortium target MaR214a. 2KEN ; ; Solution NMR structure of the OB domain (residues 67-166) of MM0293 from Methanosarcina mazei. Northeast Structural Genomics Consortium target MaR214a. 2K75 ; ; Solution NMR structure of the OB domain of Ta0387 from Thermoplasma acidophilum. Northeast Structural Genomics Consortium target TaR80b. 2KCT ; ; Solution nmr structure of the ob-fold domain of heme chaperone ccme from desulfovibrio vulgaris. northeast structural genomics target dvr115g. 2MXW ; ; Solution NMR Structure of the OCRE Domain of RBM10 6YP5 ; ; Solution NMR structure of the oligomerization domain of respiratory syncytial virus phosphoprotein 6CEG ; ; Solution NMR structure of the omega conotoxin MoVIB from Conus moncuri 6WPV ; ; Solution NMR structure of the orbitide xanthoxycyclin D 1MM4 ; ; Solution NMR structure of the outer membrane enzyme PagP in DPC micelles 1MM5 ; ; Solution NMR structure of the outer membrane enzyme PagP in OG micelles 2MH0 ; ; Solution NMR structure of the p300 Taz2:ETAD1 complex 2KNB ; ; Solution NMR structure of the parkin Ubl domain in complex with the endophilin-A1 SH3 domain 6U6Q ; ; Solution NMR Structure Of The Partially Activated MTS Deleted Form MinE Protein (delta10-ngMinE) From Neisseria gonorrheae 2KY4 ; ; Solution NMR structure of the PBS linker domain of phycobilisome linker polypeptide from Anabaena sp. Northeast Structural Genomics Consortium Target NsR123E 2L3W ; ; Solution NMR Structure of the PBS linker domain of phycobilisome rod linker polypeptide from Synechococcus elongatus, Northeast Structural Genomics Consortium Target SnR168A 7TZ8 ; ; Solution NMR structure of the PBS linker polypeptide domain (fragment 254-400) of phycobilisome linker protein ApcE from Synechocystis sp. PCC 6803 refined with NH RDCs. Northeast Structural Genomics Consortium Target SgR209C 2L06 ; ; Solution NMR structure of the PBS linker polypeptide domain (fragment 254-400) of phycobilisome linker protein ApcE from Synechocystis sp. PCC 6803. Northeast Structural Genomics Consortium Target SgR209C 2KRU ; ; Solution NMR structure of the PCP_red domain of light-independent protochlorophyllide reductase subunit B from Chlorobium tepidum. Northeast Structural Genomics Consortium Target CtR69A 6RSM ; ; Solution NMR structure of the peptide 12530 from medicinal leech Hirudo medicinalis in dodecylphosphocholine micelles 6RRL ; ; Solution NMR structure of the peptide 3967 from medicinal leech Hirudo medicinalis in dodecylphosphocholine micelles 6RRO ; ; Solution NMR structure of the peptide 536_2 from medicinal leech Hirudo medicinalis in dodecylphosphocholine micelles 1ZZV ; ; Solution NMR Structure of the Periplasmic Signaling Domain of the Outer Membrane Iron Transporter FecA from Escherichia coli. 2A02 ; ; Solution NMR Structure of the Periplasmic Signaling Domain of the Outer Membrane Iron Transporter PupA from Pseudomonas putida. 2KKP ; ; Solution NMR structure of the phage integrase SAM-like Domain from Moth 1796 from Moorella thermoacetica. Northeast Structural Genomics Consortium Target MtR39K (residues 64-171). 2LV9 ; ; Solution NMR structure of the PHD domain of human MLL5, Northeast structural genomics consortium target HR6512A 2L8V ; ; Solution NMR structure of the phycobilisome linker polypeptide domain of CpcC (20-153) from Thermosynechococcus elongatus, Northeast Structural Genomics Consortium Target TeR219A 1ZU2 ; ; Solution NMR structure of the plant Tom20 mitochondrial import receptor from Arabidopsis thaliana 7LQT ; ; Solution NMR structure of the PNUTS amino-terminal Domain fused to Myc Homology Box 0 2M47 ; ; Solution NMR structure of the Polyketide_cyc-like protein Cgl2372 from Corynebacterium glutamicum, Northeast Structural Genomics Consortium Target CgR160 1VSQ ; ; Solution NMR structure of the productive complex between IIAMannose and IIBMannose of the mannose transporter of the E. coli phosphotransferase system 2JZN ; ; Solution NMR structure of the productive complex between IIAMannose and IIBMannose of the mannose transporter of the E. coli phosphotransferase system 2JWN ; ; Solution NMR structure of the protease-resistent domain of Xenopus laevis ePABP2 1YWL ; ; Solution NMR structure of the protein EF2693 from E. faecalis: Northeast Structural Genomics Consortium target EFR36 2L1N ; ; Solution NMR structure of the protein YP_399305.1 2KZC ; ; Solution NMR structure of the protein YP_510488.1 2G7J ; ; Solution NMR structure of the putative cytoplasmic protein ygaC from Salmonella typhimurium. Northeast Structural Genomics target StR72. 2KS0 ; ; Solution NMR structure of the Q251Q8_DESHY(21-82) protein from Desulfitobacterium Hafniense, Northeast Structural Genomics Consortium Target DhR8C 2L2K ; ; Solution NMR structure of the R/G STEM LOOP RNA-ADAR2 DSRBM2 Complex 2K9N ; ; Solution NMR structure of the R2R3 DNA binding domain of Myb1 protein from protozoan parasite Trichomonas vaginalis 2L05 ; ; Solution NMR Structure of the Ras-binding domain of Serine/threonine-protein kinase B-raf from Homo sapiens, Northeast Structural Genomics Consortium Target HR4694F 2MNS ; ; Solution NMR structure of the reovirus p15 fusion-associated small transmembrane (FAST) protein fusion-inducing lipid packing sensor (FLiPS) motif in dodecyl phosphocholine (DPC) micelles 2K50 ; ; Solution NMR Structure of the replication Factor A Related Protein from Methanobacterium thermoautotrophicum. Northeast Structural Genomics Target TR91A. 2KL3 ; ; Solution NMR structure of the Rhodanese-like domain from Anabaena sp Alr3790 protein. Northeast Structural Genomics Consortium Target NsR437A 2MA6 ; ; Solution NMR Structure of the RING finger domain from the Kip1 ubiquitination-promoting E3 complex protein 1 (KPC1/RNF123) from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR8700A 7EB1 ; ; Solution NMR structure of the RRM domain of RNA binding protein RBM3 from homo sapiens 2M96 ; ; Solution NMR structure of the RXFP2 LDLa module 6XWI ; ; Solution NMR structure of the S0_2.126 designed protein 2LE7 ; ; Solution nmr structure of the S4S5 linker of herg potassium channel 2M2E ; ; Solution NMR structure of the SANT domain of human DNAJC2, Northeast structural genomics consortium target HR8254a 2JVZ ; ; Solution NMR Structure of the Second and Third KH Domains of KSRP 2OPV ; ; Solution NMR Structure of the Second Domain of KSRP 2K5V ; ; SOLUTION NMR STRUCTURE OF the second OB-fold domain of replication protein A from Methanococcus maripaludis. NORTHEAST STRUCTURAL GENOMICS TARGET MrR110B. 2L81 ; ; Solution NMR Structure of the serine-rich domain of hEF1 (Enhancer of filamentation 1) from Homo sapiens, Northeast Structural Genomics Consortium Target HR5554A 2KT1 ; ; Solution NMR Structure of the SH3 Domain from the p85beta subunit of Phosphatidylinositol 3-kinase from H.sapiens, Northeast Structural Genomics Consortium Target HR5531E 7ATY ; ; Solution NMR structure of the SH3 domain of human Caskin1 1TCE ; ; SOLUTION NMR STRUCTURE OF THE SHC SH2 DOMAIN COMPLEXED WITH A TYROSINE-PHOSPHORYLATED PEPTIDE FROM THE T-CELL RECEPTOR, MINIMIZED AVERAGE STRUCTURE 8B1X ; ; Solution NMR structure of the single alpha helix peptide (P3-7)2 1PFS ; ; SOLUTION NMR STRUCTURE OF THE SINGLE-STRANDED DNA BINDING PROTEIN OF THE FILAMENTOUS PSEUDOMONAS PHAGE PF3, MINIMIZED AVERAGE STRUCTURE 2KW5 ; ; Solution NMR Structure of the Slr1183 protein from Synechocystis sp. PCC 6803, Northeast Structural Genomics Consortium Target SgR145 2LTE ; ; Solution NMR structure of the specialized acyl carrier protein PA3334 (apo) from Pseudomonas aeruginosa, Northeast Structural Genomics Consortium Target PaT415 2LL8 ; ; Solution NMR structure of the specialized holo-acyl carrier protein RPA2022 from Rhodopseudomonas palustris refined with NH RDCs, Northeast Structural Genomics Consortium Target RpR324 2BRZ ; ; SOLUTION NMR STRUCTURE OF THE SWEET PROTEIN BRAZZEIN, MINIMIZED AVERAGE STRUCTURE 2MM3 ; ; Solution NMR structure of the ternary complex of human ileal bile acid-binding protein with glycocholate and glycochenodeoxycholate 6GZK ; ; Solution NMR structure of the tetramethylrhodamine (TMR) aptamer 3 in complex with 5-TAMRA 6GZR ; ; Solution NMR structure of the tetramethylrhodamine (TMR) aptamer 3 in complex with 5-TAMRA 2KMM ; ; Solution NMR structure of the TGS domain of PG1808 from Porphyromonas gingivalis. Northeast Structural Genomics Consortium Target PgR122A (418-481) 2KZF ; ; Solution NMR structure of the thermotoga maritima protein TM0855 a putative ribosome binding factor A 2MQT ; ; Solution NMR structure of the U5-primer binding site (U5-PBS) domain of murine leukemia virus RNA genome 2MQV ; ; Solution NMR structure of the U5-primer binding site (U5-PBS) domain of murine leukemia virus RNA genome bound to the retroviral nucleocapsid protein 2LNU ; ; Solution NMR Structure of the uncharacterized protein from gene locus rrnAC0354 of Haloarcula marismortui, Northeast Structural Genomics Consortium Target HmR11 2LOK ; ; Solution NMR Structure of the uncharacterized protein from gene locus VNG_0733H of Halobacterium salinarium, Northeast Structural Genomics Consortium Target HsR50 2K0M ; ; Solution NMR structure of the uncharacterized protein from Rhodospirillum rubrum gene locus Rru_A0810. Northeast Structural Genomics Target RrR43 6WA4 ; ; Solution NMR structure of the unmyristoylated feline immunodeficiency virus matrix protein 1ZG2 ; ; Solution NMR structure of the UPF0213 protein BH0048 from Bacillus halodurans. Northeast Structural Genomics target BhR2. 2HEP ; ; Solution NMR structure of the UPF0291 protein ynzC from Bacillus subtilis. Northeast Structural Genomics target SR384. 2FJ6 ; ; Solution NMR structure of the UPF0346 protein yozE from Bacillus subtilis. Northeast Structural Genomics target SR391. 2M8T ; ; Solution NMR structure of the V209M variant of the human prion protein (residues 90-231) 5GAT ; ; SOLUTION NMR STRUCTURE OF THE WILD TYPE DNA BINDING DOMAIN OF AREA COMPLEXED TO A 13BP DNA CONTAINING A CGATA SITE, 35 STRUCTURES 4GAT ; ; SOLUTION NMR STRUCTURE OF THE WILD TYPE DNA BINDING DOMAIN OF AREA COMPLEXED TO A 13BP DNA CONTAINING A CGATA SITE, REGULARIZED MEAN STRUCTURE 5LXJ ; ; Solution NMR structure of the X domain of Peste des Petits Ruminants phosphoprotein 7MU9 ; ; Solution NMR structure of the XVIPCD region from the T4SS effector X-Tfe(XAC2609) from Xanthomonas citri 2HH8 ; ; Solution NMR structure of the ydfO protein from Escherichia coli. Northeast Structural Genomics target ER251. 2JN0 ; ; Solution NMR structure of the ygdR protein from Escherichia coli. Northeast Structural Genomics target ER382A. 2HGC ; ; Solution NMR structure of the YjcQ protein from Bacillus subtilis. Northeast Structural Genomics target SR346. 2KZY ; ; Solution NMR structure of the ZNF216 A20 zinc finger 1AXU ; ; SOLUTION NMR STRUCTURE OF THE [AP]DG ADDUCT OPPOSITE DA IN A DNA DUPLEX, NMR, 9 STRUCTURES 1AXV ; ; SOLUTION NMR STRUCTURE OF THE [BP]DA ADDUCT OPPOSITE DT IN A DNA DUPLEX, 6 STRUCTURES 2KKN ; ; Solution NMR structure of Themotoga maritima protein TM1076: Northeast Structural Genomics Consortium target VT57 2RQ8 ; ; Solution NMR structure of titin I27 domain mutant 6YJ0 ; ; Solution NMR structure of titin N2A region Ig domain I83 6S3W ; ; Solution NMR Structure of TolAIII Bound to a Peptide Derived from the N-terminus of TolB 1TXB ; ; SOLUTION NMR STRUCTURE OF TOXIN B, A LONG NEUROTOXIN FROM THE VENOM OF THE KING COBRA, 10 STRUCTURES 1TXA ; ; SOLUTION NMR STRUCTURE OF TOXIN B, A LONG NEUROTOXIN FROM THE VENOM OF THE KING COBRA, MINIMIZED AVERAGE STRUCTURE 2K72 ; ; Solution NMR structure of toxin-like potassium channel blocking domain in MMP23 8K3M ; ; Solution NMR structure of trans X-Pro peptide bond conformer of a single disulfide conopeptide Mo1853 2K8T ; ; Solution NMR structure of trans-4-hydroxynonenal derived dG adduct of (6R,8S,11R)-configuration opposite dC 2K8U ; ; Solution NMR structure of trans-4-hydroxynonenal derived dG adduct of (6S,8R,11S)-configuration matched with dC 2M9W ; ; Solution NMR Structure of Transcription Factor GATA-4 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR4783B 2KZ5 ; ; Solution NMR Structure of Transcription factor NF-E2 subunit's DNA binding domain from Homo sapiens, Northeast Structural Genomics Consortium Target HR4653B 2L8S ; ; Solution NMR Structure of Transmembrane and Cytosolic Regions of Integrin Alpha1 in Detergent Micelles 2LZ4 ; ; Solution NMR structure of transmembrane domain of amyloid precursor protein V44M 2LZ3 ; ; Solution NMR structure of transmembrane domain of amyloid precursor protein WT 2MS1 ; ; Solution NMR structure of tRNApro:MLV Nucleocapsid Protein (1:1) Complex 5OQK ; ; Solution NMR structure of truncated, human Hv1/VSOP (Voltage-gated proton channel) 5LG0 ; ; Solution NMR structure of Tryptophan to Alanine mutant of Arkadia RING domain. 5LG7 ; ; Solution NMR structure of Tryptophan to Arginine mutant of Arkadia RING domain 2LOJ ; ; Solution NMR structure of TSTM1273 from Salmonella typhimurium LT2, NESG target STT322, CSGID target IDP01027 and OCSP target TSTM1273 2JRF ; ; Solution NMR structure of Tubulin polymerization-promoting protein family member 3 from Homo sapiens. Northeast Structural Genomics target HR387. 1A5E ; ; SOLUTION NMR STRUCTURE OF TUMOR SUPPRESSOR P16INK4A, 18 STRUCTURES 1DC2 ; ; SOLUTION NMR STRUCTURE OF TUMOR SUPPRESSOR P16INK4A, 20 STRUCTURES 2A5E ; ; SOLUTION NMR STRUCTURE OF TUMOR SUPPRESSOR P16INK4A, RESTRAINED MINIMIZED MEAN STRUCTURE 2KI8 ; ; Solution NMR structure of tungsten formylmethanofuran dehydrogenase subunit D from Archaeoglobus fulgidus, Northeast Structural Genomics Consortium target AtT7 6YTS ; ; Solution NMR structure of type-I ribosome-inactivating protein trichobakin (TBK) 2MJB ; ; Solution nmr structure of ubiquitin refined against dipolar couplings in 4 media 2KZR ; ; Solution NMR Structure of Ubiquitin thioesterase OTU1 (EC 3.1.2.-) from Mus musculus, Northeast Structural Genomics Consortium Target MmT2A 2L0G ; ; Solution NMR structure of ubiquitin-binding motif (UBM2) of human polymerase iota 2KAN ; ; Solution NMR structure of ubiquitin-like domain of Arabidopsis thaliana protein At2g32350. Northeast Structural Genomics Consortium target AR3433A 6B9K ; ; Solution NMR Structure of Unbound P18-I10 2JXP ; ; Solution NMR structure of uncharacterized lipoprotein B from Nitrosomonas europaea. Northeast Structural Genomics target NeR45A 2JWY ; ; Solution NMR structure of uncharacterized lipoprotein yajI from Escherichia coli. Northeast Structural Genomics target ER540 2X8N ; ; Solution NMR structure of uncharacterized protein CV0863 from Chromobacterium violaceum. NORTHEAST STRUCTURAL GENOMICS TARGET (NESG) target CvT3. OCSP target CV0863. 2KPM ; ; Solution NMR Structure of uncharacterized protein from gene locus NE0665 of Nitrosomonas europaea. Northeast Structural Genomics Target NeR103A 2JVW ; ; Solution NMR structure of uncharacterized protein Q5E7H1 from Vibrio fischeri. Northeast Structural Genomics target VfR117 6BI6 ; ; Solution NMR structure of uncharacterized protein YejG 7S3E ; ; Solution NMR structure of uperin 3.5 in SDS micelles 2HI6 ; ; Solution NMR structure of UPF0107 protein AF_0055, Northeast Structural Genomics Consortium Target GR101 2K49 ; ; Solution NMR structure of UPF0339 protein SO3888 from Shewanella oneidensis. Northeast Structural Genomics Consortium target SoR190 2KXP ; ; Solution NMR structure of V-1 bound to capping protein (CP) 8GQO ; ; Solution NMR structure of vaccinia virus protein A28: an entry-fusion complex component 2KHD ; ; Solution NMR structure of VC_A0919 from Vibrio cholerae. Northeast Structural Genomics Consortium Target VcR52 4ULL ; ; SOLUTION NMR STRUCTURE OF VEROTOXIN-1 B-SUBUNIT FROM E. COLI, 5 STRUCTURES 7U37 ; ; Solution NMR structure of Vibrio cholerae ferrous iron transport protein C (FeoC) 2M4E ; ; Solution NMR structure of VV2_0175 from Vibrio vulnificus, NESG target VnR1 and CSGID target IDP91333 2KN0 ; ; Solution NMR Structure of xenopus Fn14 2K5R ; ; Solution NMR Structure of XF2673 from Xylella fastidiosa. Northeast Structural Genomics Consortium Target XfR39 2MA4 ; ; Solution NMR Structure of yahO protein from Salmonella typhimurium, Northeast Structural Genomics Consortium (NESG) Target StR106 2KVT ; ; solution NMR structure of yaiA from Escherichia Eoli. Northeast Structural Genomics Target ER244 2LTT ; ; Solution NMR Structure of YdbC:dT19G1 complex. Northeast Structural Genomics Consortium (NESG) Target KR150 2KY9 ; ; Solution NMR Structure of ydhK C-terminal Domain from B.subtilis, Northeast Structural Genomics Consortium Target Target SR518 2KKM ; ; Solution NMR structure of yeast protein YOR252W [residues 38-178]: Northeast Structural Genomics Consortium target YT654 2E2Z ; ; Solution NMR structure of yeast Tim15, co-chaperone of mitochondrial Hsp70 2JRP ; ; Solution NMR Structure of YfgJ from Salmonella typhimurium Modeled with Two Zn+2 Bound, Northeast Structural Genomics Consortium Target StR86 2KR1 ; ; Solution NMR structure of zinc binding N-terminal domain of ubiquitin-protein ligase E3A from Homo Sapiens. Northeast Structural Genomics Consortium (NESG) target HR3662 2L0B ; ; Solution NMR structure of zinc finger domain of E3 ubiquitin-protein ligase praja-1 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) target HR4710B 2MDG ; ; Solution NMR Structure of Zinc finger protein 423 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR7298F 2MA7 ; ; Solution NMR Structure of Zinc finger protein Eos from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR7992A 1LV3 ; ; Solution NMR Structure of Zinc Finger Protein yacG from Escherichia coli. Northeast Structural Genomics Consortium Target ET92. 2KGO ; ; Solution NMR structure of Zn finger protein YBIL from Escherichia coli. NESG target ET107, OCSP target EC0402 7RC7 ; ; Solution NMR Structure of [Ala19]Crp4 7RC8 ; ; Solution NMR Structure of [D-Ala19]Crp4 2MS0 ; ; Solution NMR structure pf tRNApro:MLV-Nucleocapsid (1:2) Complex 2N03 ; ; Solution NMR Structure plectin repeat domain 6 (4403-4606) of Plectin from Homo sapiens, Northeast Structural Genomics Consortium (NESG) Target HR6354E 1RYK ; ; Solution NMR Structure Protein yjbJ from Escherichia coli. Northeast Structural Genomics Consortium Target ET93; Ontario Centre for Structural Proteomics target EC0298_1_69; 2OA4 ; ; Solution NMR Structure: Northeast Structural Genomics Consortium Target SiR5 6BTV ; ; Solution NMR structures for CcoTx-II 2NDF ; ; Solution NMR structures of AF9 yeats domain in complex with histon H3 acetylation at K18 2NDG ; ; Solution NMR structures of AF9 yeats domain in complex with histone H3 crotonylation at K18 2NCZ ; ; Solution NMR structures of BRD4 ET domain in complex with NSD3_1 peptide 2ND1 ; ; Solution NMR structures of BRD4 ET domain in complex with NSD3_3 peptide 6BNH ; ; Solution NMR structures of BRD4 ET domain with JMJD6 peptide 2ND0 ; ; Solution NMR structures of BRD4 ET domain with LANA peptide 5Z9C ; ; Solution NMR structures of BRD4 first bromodomain with small compound MMQO 2L84 ; ; Solution NMR structures of CBP bromodomain with small molecule j28 2L85 ; ; Solution NMR structures of CBP bromodomain with small molecule of HBS 6M0C ; ; Solution NMR Structures of DNA minidumbbell formed by 5'-CTTG CATG-3'. 6M0B ; ; Solution NMR structures of DNA minidumbbell formed by 5'-CTTG CGTG-3'. 7VM9 ; ; Solution NMR structures of DNA minidumbbell formed with two regular CTTTG pentaloops 2KEF ; ; Solution NMR structures of human hepcidin at 325K 6BGG ; ; Solution NMR structures of the BRD3 ET domain in complex with a CHD4 peptide 2CPB ; ; SOLUTION NMR STRUCTURES OF THE MAJOR COAT PROTEIN OF FILAMENTOUS BACTERIOPHAGE M13 SOLUBILIZED IN DODECYLPHOSPHOCHOLINE MICELLES, 25 LOWEST ENERGY STRUCTURES 2CPS ; ; SOLUTION NMR STRUCTURES OF THE MAJOR COAT PROTEIN OF FILAMENTOUS BACTERIOPHAGE M13 SOLUBILIZED IN SODIUM DODECYL SULPHATE MICELLES, 25 LOWEST ENERGY STRUCTURES 5TM0 ; ; Solution NMR structures of two alternative conformations of E. coli tryptophan repressor in dynamic equilibrium 2JWS ; ; Solution NMR structures of two designed proteins with 88% sequence identity but different fold and function 2JWU ; ; Solution NMR structures of two designed proteins with 88% sequence identity but different fold and function 2LVW ; ; Solution NMR studies of the dimeric regulatory subunit IlvN of the E.coli Acetohydroxyacid synthase I (AHAS I) 2LD5 ; ; Solution NMR-derived complex structure of Hoxa13 DNA binding domain bound to DNA 1Y8B ; ; Solution NMR-Derived Global Fold of Malate Synthase G from E.coli 5UCF ; ; Solution NMR-derived model of the minor species of DANCER-2, a dynamic and natively folded pentamutant of the B1 domain of streptococcal protein G (GB1) 5T0X ; ; Solution NMR-derived structure of calmodulin bound with ER alpha peptides 2LLQ ; ; Solution nmr-derived structure of calmodulin c-lobe bound with er alpha peptide 2LLO ; ; Solution NMR-derived structure of calmodulin N-lobe bound with ER alpha peptide 2MXS ; ; Solution NMR-structure of the neomycin sensing riboswitch RNA bound to paromomycin 1LMR ; ; Solution of ADO1, a Toxin from the Assassin Bugs Agriosphodrus dohrni that Blocks the Voltage Sensitive Calcium Channel L-type 5DOW ; 1.7 ; Solution of the Variably-Twinned Structure of a Novel Calmodulin-Peptide Complex in a Novel Configuration 2D1A ; ; Solution RNA structure model of the HIV-1 dimerization initiation site in the extended-duplex dimer 2D1B ; ; Solution RNA structure model of the HIV-1 dimerization initiation site in the kissing-loop dimer 2D18 ; ; Solution RNA structure of loop region of the HIV-1 dimerization initiation site in the extended-duplex dimer 2D19 ; ; Solution RNA structure of loop region of the HIV-1 dimerization initiation site in the kissing-loop dimer 2D17 ; ; Solution RNA structure of stem-bulge-stem region of the HIV-1 dimerization initiation site 6Q2I ; ; Solution state NMR structures of the RNA recognition motif (RRM) domain of human CstF-64 2MHO ; ; Solution State Structure PSD-95 PDZ1 with 5HT2C Receptor peptide 7CNF ; ; Solution strcture of HsTFIIS LW domain 1WFH ; ; Solution structrue of the zf-AN1 domain from Arabidopsis thaliana At2g36320 protein 8EF4 ; ; Solution structural bundle of bivalirudin - a bivalent hirudin based thrombin inhibitor 2MZB ; ; Solution structural studies of GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) from Methanocaldococcus jannaschii 1OWA ; ; Solution Structural Studies on Human Erythrocyte Alpha Spectrin N Terminal Tetramerization Domain 1DK9 ; ; SOLUTION STRUCTURE ANALYSIS OF THE DNA DUPLEX D(CATGAGTAC)D(GTACTCATG) 2LIX ; ; Solution structure Analysis of the ImKTx104 1D7N ; ; SOLUTION STRUCTURE ANALYSIS OF THE MASTOPARAN WITH DETERGENTS 2HX6 ; ; Solution structure analysis of the phage T4 endoribonuclease RegB 2K23 ; ; Solution Structure Analysis of the rLcn2 1XS3 ; ; Solution Structure Analysis of the XC975 protein 6RH5 ; ; Solution structure and 1H, 13C and 15N chemical shift assignments for NECAP1 PHear domain 6RH6 ; ; Solution structure and 1H, 13C and 15N chemical shift assignments for the complex of NECAP1 PHear domain with phosphorylated AP2 mu2 148-163 6TL0 ; ; Solution structure and 1H, 13C and 15N chemical shift assignments for the complex of VPS29 with VARP 687-747 1FJN ; ; SOLUTION STRUCTURE AND ACTIVITY OF THE FOUR DISULFIDE BOND MEDITERRANEAN MUSSEL DEFENSIN MGD-1 2M8V ; ; Solution Structure and Activity Study of Bovicin HJ50, a Particular Type AII Lantibiotic 2GX1 ; ; Solution structure and alanine scan of a spider toxin that affects the activation of mammalian sodium channels 1HZ8 ; ; SOLUTION STRUCTURE AND BACKBONE DYNAMICS OF A CONCATEMER OF EGF-HOMOLOGY MODULES OF THE HUMAN LOW DENSITY LIPOPROTEIN RECEPTOR 1I0U ; ; SOLUTION STRUCTURE AND BACKBONE DYNAMICS OF A CONCATEMER OF EGF-HOMOLOGY MODULES OF THE HUMAN LOW DENSITY LIPOPROTEIN RECEPTOR 1FUW ; ; SOLUTION STRUCTURE AND BACKBONE DYNAMICS OF A DOUBLE MUTANT SINGLE-CHAIN MONELLIN(SCM) DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2AL3 ; ; Solution structure and backbone dynamics of an N-terminal ubiquitin-like domain in the GLUT4-tethering protein, TUG 1KRW ; ; SOLUTION STRUCTURE AND BACKBONE DYNAMICS OF BERYLLOFLUORIDE-ACTIVATED NTRC RECEIVER DOMAIN 1KLV ; ; Solution Structure and Backbone Dynamics of GABARAP, GABAA Receptor associated protein 1KM7 ; ; Solution Structure and Backbone Dynamics of GABARAP, GABAA Receptor Associated Protein 3LRI ; ; Solution structure and backbone dynamics of long-[Arg(3)]insulin-like growth factor-I 1S6O ; ; Solution structure and backbone dynamics of the apo-form of the second metal-binding domain of the Menkes protein ATP7A 1S6U ; ; Solution structure and backbone dynamics of the Cu(I) form of the second metal-binding domain of the Menkes protein ATP7A 1J7Q ; ; Solution structure and backbone dynamics of the defunct EF-hand domain of Calcium Vector Protein 1J7R ; ; Solution structure and backbone dynamics of the defunct EF-hand domain of Calcium Vector Protein 2KIU ; ; Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: Insight into its domain swapping 1RJA ; ; Solution Structure and Backbone Dynamics of the Nonreceptor Tyrosine Kinase PTK6/Brk SH2 Domain 2KJW ; ; Solution structure and backbone dynamics of the permutant P54-55 2KJV ; ; Solution structure and backbone dynamics of the ribosomal protein S6wt 1P7M ; ; SOLUTION STRUCTURE AND BASE PERTURBATION STUDIES REVEAL A NOVEL MODE OF ALKYLATED BASE RECOGNITION BY 3-METHYLADENINE DNA GLYCOSYLASE I 2OSG ; ; Solution Structure and Binding Property of the Domain-swapped Dimer of ZO2PDZ2 2LK0 ; ; Solution structure and binding studies of the RanBP2-type zinc finger of RBM5 2LK1 ; ; Solution structure and binding studies of the RanBP2-type zinc finger of RBM5 2E6W ; ; Solution structure and calcium binding properties of EF-hands 3 and 4 of calsenilin 2OJM ; ; Solution structure and cell selectivity of Piscidin 1 and its analogues 2OJN ; ; Solution structure and cell selectivity of Piscidin 1 and its analogues 2OJO ; ; Solution structure and cell selectivity of Piscidin 1 and its analogues 1J6Q ; ; Solution structure and characterization of the heme chaperone CcmE 1LM0 ; ; Solution structure and characterization of the heme chaperone CcmE 2MSK ; ; Solution Structure and Chemical Shift Assignments for BeF3 activated Receiver Domain of Nitrogen Regulatory Protein C (NtrC) at 35C 2MSL ; ; Solution Structure and Chemical Shift Assignments for the Apo form of the Receiver Domain of Nitrogen Regulatory Protein C (NTRC) at 35C 2JTZ ; ; Solution structure and chemical shift assignments of the F104-to-5-flurotryptophan mutant of cardiac troponin C 1UMQ ; ; solution structure and DNA binding of the effector domain from the global regulator PrrA(RegA) from R. sphaeroides: Insights into DNA binding specificity 1SSO ; ; SOLUTION STRUCTURE AND DNA-BINDING PROPERTIES OF A THERMOSTABLE PROTEIN FROM THE ARCHAEON SULFOLOBUS SOLFATARICUS 2LJ6 ; ; Solution Structure and DNA-binding Properties of the Phosphoesterase Domain of DNA Ligase D 2KY8 ; ; Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target methylated DNA sequence 2L72 ; ; Solution structure and dynamics of ADF from Toxoplasma gondii (TgADF) 1FZT ; ; SOLUTION STRUCTURE AND DYNAMICS OF AN OPEN B-SHEET, GLYCOLYTIC ENZYME-MONOMERIC 23.7 KDA PHOSPHOGLYCERATE MUTASE FROM SCHIZOSACCHAROMYCES POMBE 5WBT ; ; Solution Structure and Dynamics of an Ultra-Stable Single-Chain Insulin Analog STUDIES OF AN ENGINEERED MONOMER AND IMPLICATIONS FOR RECEPTOR BINDING 2A3S ; ; Solution structure and Dynamics of DNA-Binding Domain of Myocyte Nuclear Factor 2LP2 ; ; Solution structure and dynamics of human S100A1 protein modified at cysteine 85 with homocysteine disulfide bond formation in calcium saturated form 2M0R ; ; Solution structure and dynamics of human S100A14 1Y6D ; ; Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing 2RQY ; ; Solution structure and dynamics of mouse ARMET 1Q80 ; ; Solution structure and dynamics of Nereis sarcoplasmic calcium binding protein 1PCE ; ; SOLUTION STRUCTURE AND DYNAMICS OF PEC-60, A PROTEIN OF THE KAZAL TYPE INHIBITOR FAMILY, DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2KAX ; ; Solution structure and dynamics of S100A5 in the apo and Ca2+ -bound states 2KAY ; ; Solution structure and dynamics of S100A5 in the Ca2+ -bound states 2K5Z ; ; Solution structure and dynamics of the apical stem-loop of Duck hepatitis B virus 2D2W ; ; Solution structure and Dynamics of the DNA-Binding Domain of Myocyte Nuclear Factor 1P9J ; ; Solution structure and dynamics of the EGF/TGF-alpha chimera T1E 1M7T ; ; Solution Structure and Dynamics of the Human-Escherichia coli Thioredoxin Chimera: Insights into Thermodynamic Stability 5MCS ; ; Solution structure and dynamics of the outer membrane cytochrome OmcF from Geobacter sulfurreducens 2GT3 ; ; Solution structure and dynamics of the reduced form of Methionine Sulfoxide Reductase A from Escherichia coli, a 23 kDa protein 2KE5 ; ; Solution structure and dynamics of the small GTPase Ralb in its active conformation: significance for effector protein binding 6YDH ; ; Solution structure and dynamics of Zn-Finger HVO_2753 protein 1IB8 ; ; SOLUTION STRUCTURE AND FUNCTION OF A CONSERVED PROTEIN SP14.3 ENCODED BY AN ESSENTIAL STREPTOCOCCUS PNEUMONIAE GENE 1Q3T ; ; Solution structure and function of an essential CMP kinase of Streptococcus pneumoniae 2KNF ; ; Solution structure and functional characterization of human plasminogen kringle 5 177D ; ; SOLUTION STRUCTURE AND HYDRATION PATTERNS OF A PYRIMIDINE(DOT)PURINE(DOT)PYRIMIDINE DNA TRIPLEX CONTAINING A NOVEL T(DOT)CG TRIPLE 2BN8 ; ; Solution Structure and interactions of the E .coli Cell Division Activator Protein CedA 1GFC ; ; SOLUTION STRUCTURE AND LIGAND-BINDING SITE OF THE C-TERMINAL SH3 DOMAIN OF GRB2 1GFD ; ; SOLUTION STRUCTURE AND LIGAND-BINDING SITE OF THE C-TERMINAL SH3 DOMAIN OF GRB2 1PNJ ; ; SOLUTION STRUCTURE AND LIGAND-BINDING SITE OF THE SH3 DOMAIN OF THE P85ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL 3-KINASE 2PNI ; ; SOLUTION STRUCTURE AND LIGAND-BINDING SITE OF THE SH3 DOMAIN OF THE P85ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL 3-KINASE 2MOQ ; ; Solution Structure and Molecular determinants of Hemoglobin Binding of the first NEAT Domain of IsdB in Staphylococcus aureus 1G9E ; ; SOLUTION STRUCTURE AND RELAXATION MEASUREMENTS OF AN ANTIGEN-FREE HEAVY CHAIN VARIABLE DOMAIN (VHH) FROM LLAMA 2JP2 ; ; Solution structure and resonance assignment of the N-terminal EVH1 domain from the human Spred2 protein (Sprouty-related protein with EVH1 domain isoform 2) 2J76 ; ; Solution structure and RNA interactions of the RNA recognition motif from eukaryotic translation initiation factor 4B 2RSM ; ; Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65 (ICT2) 2KD4 ; ; Solution structure and thermodynamics of 2',5' RNA intercalation 2JQV ; ; Solution structure At3g28950.1 from Arabidopsis thaliana 1V90 ; ; Solution structure by NMR means of delta-paluIT1-NH2 1EQX ; ; SOLUTION STRUCTURE DETERMINATION AND MUTATIONAL ANALYSIS OF THE PAPILLOMAVIRUS E6-INTERACTING PEPTIDE OF E6AP 1A1U ; ; SOLUTION STRUCTURE DETERMINATION OF A P53 MUTANT DIMERIZATION DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 1L3O ; ; SOLUTION STRUCTURE DETERMINATION OF THE FULLY OXIDIZED DOUBLE MUTANT K9-10A CYTOCHROME C7 FROM DESULFUROMONAS ACETOXIDANS, ENSEMBLE OF 35 STRUCTURES 1KWJ ; ; solution structure determination of the fully oxidized double mutant K9-10A cytochrome c7 from Desulfuromonas acetoxidans, minimized average structure 4A5V ; ; Solution structure ensemble of the two N-terminal apple domains (residues 58-231) of Toxoplasma gondii microneme protein 4 8TZM ; ; Solution structure for a putative Type I site-specific deoxyribonuclease from Neisseria gonorrhoeae (NCCP11945). Seattle Structural Genomics Center for Infectious Disease target NegoA.19201.a 7TXX ; ; Solution structure for Bartonella henselae BamE, a component of the beta-barrel assembly machinery complex. Seattle Structural Genomics Center for Infectious Disease target BaheA.17605.a 2MVZ ; ; Solution Structure for Cyclophilin A from Geobacillus Kaustophilus 6AAS ; ; Solution Structure for helix 45 in 3' end of 12S rRNA 5XI9 ; ; Solution structure for human HSP70 substrate binding domain 5XIR ; ; Solution structure for human HSP70 substrate binding domain L542Y mutant 6AAU ; ; Solution Structure for m62A helix 45 in 3' end of 12S rRNA 2AKL ; ; Solution structure for phn-A like protein PA0128 from Pseudomonas aeruginosa 2N6C ; ; Solution structure for quercetin complexed with c-myc G-quadruplex DNA 5Z80 ; ; Solution structure for the 1:1 complex of a platinum(II)-based tripod bound to a hybrid-1 human telomeric G-quadruplex 1PUL ; ; Solution structure for the 21KDa caenorhabditis elegans protein CE32E8.3. NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET WR33 2EXN ; ; Solution structure for the protein coded by gene locus BB0938 of Bordetella bronchiseptica. Northeast Structural Genomics target BoR11. 5Z8F ; ; Solution structure for the unique dimeric 4:2 complex of a platinum(II)-based tripod bound to a hybrid-1 human telomeric G-quadruplex 2MPF ; ; Solution structure human HCN2 CNBD in the cAMP-unbound state 2MT8 ; ; Solution structure MTAbl13, a grafted MCoTI-II 1CDN ; ; Solution structure of (CD2+)1-calbindin D9K reveals details of the stepwise structural changes along the apo--> (CA2+)II1--> (CA2+)I,II2 binding pathway 2M9N ; ; Solution Structure of (HhH)2 domain of human FAAP24 2LEY ; ; Solution structure of (R7G)-Crp4 2F3W ; ; solution structure of 1-110 fragment of staphylococcal nuclease in 2M TMAO 1RKN ; ; Solution structure of 1-110 fragment of Staphylococcal Nuclease with G88W mutation 2F3V ; ; Solution structure of 1-110 fragment of staphylococcal nuclease with V66W mutation 2K6B ; ; Solution structure of 1-112 fragment of human programmed cell death 5 protein 1YYB ; ; Solution structure of 1-26 fragment of human programmed cell death 5 protein 7PNG ; ; Solution structure of 1:1 complex of an indoloquinoline derivative SYUIQ-5 to parallel quadruplex-duplex (Q-D) hybrid 2LSC ; ; Solution structure of 2'F-ANA and ANA self-complementary duplex 1I5V ; ; SOLUTION STRUCTURE OF 2-(PYRIDO[1,2-E]PURIN-4-YL)AMINO-ETHANOL INTERCALATED IN THE DNA DUPLEX D(CGATCG)2 7CK5 ; ; Solution structure of 28 amino acid polypeptide (354-381) in Plantago asiatica mosaic virus replicase bound to SDS micelle 2CKU ; ; Solution structure of 2F13F1 from human fibronectin 2YUW ; ; Solution Structure of 2nd Fibronectin Domain of Slow Type Myosin-Binding Protein C 2YUV ; ; Solution Structure of 2nd Immunoglobulin Domain of Slow Type Myosin-Binding Protein C 1EDV ; ; SOLUTION STRUCTURE OF 2ND INTRADISKAL LOOP OF BOVINE RHODOPSIN (RESIDUES 172-205) 1IEZ ; ; Solution Structure of 3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase of Riboflavin Biosynthesis 1LMZ ; ; Solution Structure of 3-Methyladenine DNA Glycosylase I (TAG) 2K4X ; ; Solution structure of 30S ribosomal protein S27A from Thermoplasma acidophilum 1QXF ; ; SOLUTION STRUCTURE OF 30S RIBOSOMAL PROTEIN S27E FROM ARCHAEOGLOBUS FULGIDUS: GR2, A NESG TARGET PROTEIN 2KCP ; ; SOLUTION STRUCTURE OF 30S RIBOSOMAL PROTEIN S8E; FROM Methanothermobacter thermautotrophicus, NORTHEASTSTRUCTURAL GENOMICS CONSORTIUM (NESG) TARGET Tr71d 2YUX ; ; Solution Structure of 3rd Fibronectin type three Domain of slow type Myosin-Binding Protein C 2DJ7 ; ; Solution Structure of 3rd LIM Domain of Actin-binding LIM Protein 3 2YUZ ; ; Solution Structure of 4th Immunoglobulin Domain of Slow Type Myosin-Binding Protein C 2JZ6 ; ; Solution structure of 50S ribosomal protein L28 from Thermotoga maritima. Northeast Structural Genomics Consortium target VR97 2AYJ ; ; Solution structure of 50S ribosomal protein L40e from Sulfolobus solfataricus 2JXT ; ; Solution structure of 50S ribosomal protein LX from Methanobacterium thermoautotrophicum. Northeast Structural Genomics Consortium (NESG) target TR80 2MWO ; ; Solution structure of 53BP1 tandem Tudor domains in complex with a p53K370me2 peptide 2MWP ; ; Solution structure of 53BP1 tandem Tudor domains in complex with a p53K382me2 peptide 2FXY ; ; Solution structure of 55-72 segment of staphylococcal nuclease 1EQ0 ; ; SOLUTION STRUCTURE OF 6-HYDROXYMETHYL-7,8-DIHYDROPTERIN PYROPHOSPHOKINASE COMPLEXED WITH MGAMPPCP 2MKW ; ; Solution Structure of 6aJl2 and 6aJL2-R24G Amyloidogenics Light Chain Proteins 1E88 ; ; Solution structure of 6F11F22F2, a compact three-module fragment of the gelatin-binding domain of human fibronectin 1E8B ; ; Solution structure of 6F11F22F2, a compact three-module fragment of the gelatin-binding domain of human fibronectin 8OQB ; ; Solution structure of 6xHIS-tagged wild-type Gaussia luciferase 6MCI ; ; Solution structure of 7SK stem-loop 1 7T1N ; ; Solution structure of 7SK stem-loop 1 with HEXIM Arginine Rich Motif 7T1P ; ; Solution structure of 7SK stem-loop 1 with HIV-1 Tat Finland Arginine Rich Motif 6MCF ; ; Solution structure of 7SK stem-loop 1 with HIV-1 Tat RNA Binding Domain 7T1O ; ; Solution structure of 7SK stem-loop 1 with HIV-1 Tat Subtype G Arginine Rich Motif 1N2W ; ; Solution Structure of 8OG:G mismatch containing duplex 2FXZ ; ; Solution structure of 97-109 segment of staphylococcal nuclease 6CEJ ; ; Solution structure of a 14mer fragment of the p21 protein 1KBD ; ; SOLUTION STRUCTURE OF A 16 BASE-PAIR DNA RELATED TO THE HIV-1 KAPPA B SITE 1F9L ; ; Solution Structure of a 22-Nucleotide Hairpin Similar to the P5ABC Region of a Group I Ribozyme with Cobalt(III)hexammine Complexed to the GAAA Tetraloop 2K4L ; ; Solution structure of a 2:1C2-(2-naphthyl)pyrrolo[2,1-c][1,4]benzodiazepine (PBD) DNA adduct: molecular basis for unexpectedly high DNA helix stabilization. 1GH9 ; ; SOLUTION STRUCTURE OF A 8.3 KDA PROTEIN (GENE MTH1184) FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 2VAI ; ; Solution structure of a B-DNA hairpin at high pressure 2VAH ; ; Solution structure of a B-DNA hairpin at low pressure. 2HNA ; ; Solution Structure of a bacterial apo-flavodoxin 2MYJ ; ; Solution structure of a bacterial chaperone 2K0G ; ; Solution Structure of a Bacterial Cyclic Nucleotide-Activated K+ Channel Binding Domain in Complex with cAMP 2KXL ; ; Solution structure of a bacterial cyclic nucleotide-activated K+ channel binding domain in the unliganded state 2HNB ; ; Solution Structure of a bacterial holo-flavodoxin 2MQG ; ; Solution structure of a bacterial immunoglobulin-like domain form a surface protein of Leptospira 1QBH ; ; SOLUTION STRUCTURE OF A BACULOVIRAL INHIBITOR OF APOPTOSIS (IAP) REPEAT 1K3K ; ; Solution Structure of a Bcl-2 Homolog from Kaposi's Sarcoma Virus 6BF2 ; ; Solution structure of a Bcl-xL S62E mutant 2M7J ; ; Solution Structure of a Beta-Hairpin Peptidomimetic antibiotic that target LptD in Pseudomonas sp. 2M7I ; ; Solution structure of a Beta-Hairpin Peptidomimetic antibiotic that targets LptD in Pseudomonas sp. 2NS4 ; ; Solution structure of a Beta-Hairpin Peptidomimetic Inhibitor of the BIV Tat-Tar Interaction 1B3C ; ; SOLUTION STRUCTURE OF A BETA-NEUROTOXIN FROM THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 2B3C ; ; SOLUTION STRUCTURE OF A BETA-NEUROTOXIN FROM THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 8QKX ; ; Solution structure of a bimolecular quadruplex-duplex hybrid containing a V-shaped loop 2ERM ; ; Solution structure of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue 1HT4 ; ; SOLUTION STRUCTURE OF A BISTRAND ABASIC SITE LESION STAGGERED IN A 3'-ORIENTATION. 2KZ0 ; ; Solution structure of a BolA protein (ECH_0303) from Ehrlichia chaffeensis. Seattle Structural Genomics Center for Infectious Disease target EhchA.10365.a 1V9J ; ; Solution structure of a BolA-like protein from Mus musculus 2G4A ; ; Solution structure of a Bromodomain from RING3 protein 2MJU ; ; Solution structure of a C terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB) 6MXQ ; ; Solution structure of a c-JUN 5' UTR stem-loop associated with specialized cap-dependent translation initiation 1TIZ ; ; Solution Structure of a Calmodulin-Like Calcium-Binding Domain from Arabidopsis thaliana 2BBM ; ; SOLUTION STRUCTURE OF A CALMODULIN-TARGET PEPTIDE COMPLEX BY MULTIDIMENSIONAL NMR 2BBN ; ; SOLUTION STRUCTURE OF A CALMODULIN-TARGET PEPTIDE COMPLEX BY MULTIDIMENSIONAL NMR 1HOV ; ; SOLUTION STRUCTURE OF A CATALYTIC DOMAIN OF MMP-2 COMPLEXED WITH SC-74020 1M36 ; ; Solution Structure of a CCHC Zinc Finger from MOZ 1JN7 ; ; Solution Structure of a CCHH mutant of the ninth CCHC Zinc Finger of U-shaped 1PXE ; ; Solution Structure of a CCHHC Domain of Neural Zinc Finger Factor-1 1EXG ; ; SOLUTION STRUCTURE OF A CELLULOSE BINDING DOMAIN FROM CELLULOMONAS FIMI BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1EXH ; ; SOLUTION STRUCTURE OF A CELLULOSE BINDING DOMAIN FROM CELLULOMONAS FIMI BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2M1N ; ; Solution structure of a chaperone in type III secretion system 2M62 ; ; Solution Structure of a Chi/Lambda Conotoxin fron Conus araneosus 1UUC ; ; solution structure of a chimeric LEKTI-domain 8P25 ; ; Solution structure of a chimeric U2AF2 RRM2 / FUBP1 N-Box 1ON5 ; ; SOLUTION STRUCTURE OF A CHOLIC ACID-CAPPED DNA DUPLEX 2M99 ; ; Solution structure of a chymotrypsin inhibitor from the Taiwan cobra 1M3B ; ; Solution structure of a circular form of the N-terminal SH3 domain (A134C, E135G, R191G mutant) from oncogene protein c-Crk. 1M3C ; ; Solution structure of a circular form of the N-terminal SH3 domain (E132C, E133G, R191G mutant) from oncogene protein c-Crk 1M3A ; ; Solution structure of a circular form of the truncated N-terminal SH3 domain from oncogene protein c-Crk. 1N02 ; ; Solution Structure of a Circular-Permuted Variant of the Potent HIV-inactivating Protein Cyanovirin-N 1N8C ; ; Solution Structure of a Cis-Opened (10R)-N6-Deoxyadenosine Adduct of (9S,10R)-(9,10)-Epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in a DNA Duplex 1DDP ; ; Solution structure of a CISPLATIN-INDUCED [CATAGCTATG]2 Interstrand cross-link 2DA8 ; ; SOLUTION STRUCTURE OF A COMPLEX BETWEEN (N-MECYS3,N-MECYS7)TANDEM AND (D(GATATC))2 1CX3 ; ; SOLUTION STRUCTURE OF A COMPLEX BETWEEN D(ATGCAT)2 AND THE ANTITUMOR BISNAPHTHALIMIDE LU-79553 2M3M ; ; Solution structure of a complex consisting of hDlg/SAP-97 residues 318-406 and HPV51 oncoprotein E6 residues 141-151 2EZE ; ; SOLUTION STRUCTURE OF A COMPLEX OF THE SECOND DNA BINDING DOMAIN OF HUMAN HMG-I(Y) BOUND TO DNA DODECAMER CONTAINING THE PRDII SITE OF THE INTERFERON-BETA PROMOTER, NMR, 35 STRUCTURES 2EZD ; ; SOLUTION STRUCTURE OF A COMPLEX OF THE SECOND DNA BINDING DOMAIN OF HUMAN HMG-I(Y) BOUND TO DNA DODECAMER CONTAINING THE PRDII SITE OF THE INTERFERON-BETA PROMOTER, NMR, MINIMIZED AVERAGE STRUCTURE 2EZG ; ; SOLUTION STRUCTURE OF A COMPLEX OF THE THIRD DNA BINDING DOMAIN OF HUMAN HMG-I(Y) BOUND TO DNA DODECAMER CONTAINING THE PRDII SITE OF THE INTERFERON-BETA PROMOTER, NMR, 35 STRUCTURES 2EZF ; ; SOLUTION STRUCTURE OF A COMPLEX OF THE THIRD DNA BINDING DOMAIN OF HUMAN HMG-I(Y) BOUND TO DNA DODECAMER CONTAINING THE PRDII SITE OF THE INTERFERON-BETA PROMOTER, NMR, MINIMIZED AVERAGE STRUCTURE 2LUD ; ; Solution structure of a conformational mutant of the adhesion protein delta-Bd37 from Babesia divergens 140D ; ; SOLUTION STRUCTURE OF A CONSERVED DNA SEQUENCE FROM THE HIV-1 GENOME: RESTRAINED MOLECULAR DYNAMICS SIMULATION WITH DISTANCE AND TORSION ANGLE RESTRAINTS DERIVED FROM TWO-DIMENSIONAL NMR SPECTRA 141D ; ; SOLUTION STRUCTURE OF A CONSERVED DNA SEQUENCE FROM THE HIV-1 GENOME: RESTRAINED MOLECULAR DYNAMICS SIMULATION WITH DISTANCE AND TORSION ANGLE RESTRAINTS DERIVED FROM TWO-DIMENSIONAL NMR SPECTRA 142D ; ; SOLUTION STRUCTURE OF A CONSERVED DNA SEQUENCE FROM THE HIV-1 GENOME: RESTRAINED MOLECULAR DYNAMICS SIMULATION WITH DISTANCE AND TORSION ANGLE RESTRAINTS DERIVED FROM TWO-DIMENSIONAL NMR SPECTRA 2FDT ; ; Solution structure of a conserved RNA hairpin of eel LINE UnaL2 2GQB ; ; Solution Structure of a conserved unknown protein RPA2825 from Rhodopseudomonas palustris; (Northeast Structural Genomics Consortium Target RpT4; Ontario Centre for Structural Proteomics Target rp2812 ) 2L8Q ; ; Solution Structure of a control DNA Duplex 2KTT ; ; Solution Structure of a Covalently Bound Pyrrolo[2,1-c][1,4]benzodiazepine-Benzimidazole Hybrid to a 10mer DNA Duplex 1OTR ; ; Solution Structure of a CUE-Ubiquitin Complex 1SB6 ; ; Solution structure of a cyanobacterial copper metallochaperone, ScAtx1 2K2N ; ; Solution structure of a cyanobacterial phytochrome GAF domain in the red light-absorbing ground state 7V5F ; ; Solution structure of a Cysteine rich peptide from Withania somnifera (Indian ginseng) 2MTQ ; ; Solution Structure of a De Novo Designed Peptide that Sequesters Toxic Heavy Metals 2A3D ; ; SOLUTION STRUCTURE OF A DE NOVO DESIGNED SINGLE CHAIN THREE-HELIX BUNDLE (A3D) 2OEY ; ; Solution Structure of a Designed Spirocyclic Helical Ligand Binding at a Two-Base Bulge Site in DNA 2KIR ; ; Solution structure of a designer toxin, mokatoxin-1 1U7J ; ; Solution structure of a diiron protein model 1U7M ; ; Solution structure of a diiron protein model: Due Ferri(II) turn mutant 1L1M ; ; SOLUTION STRUCTURE OF A DIMER OF LAC REPRESSOR DNA-BINDING DOMAIN COMPLEXED TO ITS NATURAL OPERATOR O1 2KEJ ; ; Solution structure of a dimer of LAC repressor DNA-binding domain complexed to its natural operator O2 2KEK ; ; Solution structure of a dimer of LAC repressor DNA-binding domain complexed to its natural operator O3 1OSL ; ; Solution structure of a dimeric lactose DNA-binding domain complexed to a nonspecific DNA sequence 1GJZ ; ; Solution structure of a dimeric N-terminal fragment of human ubiquitin 2N54 ; ; Solution structure of a disulfide stabilized XCL1 dimer 2KUA ; ; Solution structure of a divergent Bcl-2 protein 7BZH ; ; Solution structure of a DNA binding protein from Sulfolobus islandicus 2LL9 ; ; Solution structure of a DNA containing a thymime-thymine mismatch 1AC9 ; ; SOLUTION STRUCTURE OF A DNA DECAMER CONTAINING THE ANTIVIRAL DRUG GANCICLOVIR: COMBINED USE OF NMR, RESTRAINED MOLECULAR DYNAMICS, AND FULL RELAXATION REFINEMENT, 6 STRUCTURES 1BJD ; ; SOLUTION STRUCTURE OF A DNA DODECAMER CONTAINING SINGLE G*T MISMATCHES USING RELAXATION MATRIX ANALYSIS AND RESTRAINED MOLECULAR DYNAMICS, NMR, 1 STRUCTURE 170D ; ; SOLUTION STRUCTURE OF A DNA DODECAMER CONTAINING THE ANTI-NEOPLASTIC AGENT ARABINOSYLCYTOSINE: COMBINED USE OF NMR, RESTRAINED MOLECULAR DYNAMICS AND FULL RELAXATION MATRIX REFINEMENT 171D ; ; SOLUTION STRUCTURE OF A DNA DODECAMER CONTAINING THE ANTI-NEOPLASTIC AGENT ARABINOSYLCYTOSINE: COMBINED USE OF NMR, RESTRAINED MOLECULAR DYNAMICS AND FULL RELAXATION MATRIX REFINEMENT 6ALU ; ; Solution structure of a DNA dodecamer with 5-methylcytosine at the 3rd and 8-oxoguanine at the 4th position 6ALT ; ; Solution structure of a DNA dodecamer with 5-methylcytosine at the 3rd and 9th position 5UZ2 ; ; Solution Structure of a DNA Dodecamer with 5-methylcytosine at the 3rd and 9th position and 8-oxoguanine at the 10th position 6ALS ; ; Solution structure of a DNA dodecamer with 5-methylcytosine at the 3rd and 9th position and 8-oxoguanine at the 4th position 5L06 ; ; Solution Structure of a DNA Dodecamer with 5-methylcytosine at the 3rd Position 5UZ1 ; ; Solution Structure of a DNA Dodecamer with 5-methylcytosine at the 3rd position and 8-oxoguanine at the 10th position 5L2G ; ; Solution Structure of a DNA Dodecamer with 5-methylcytosine at the 9th Position 5UZ3 ; ; Solution Structure of a DNA Dodecamer with 5-methylcytosine at the 9th position and 8-oxoguanine at the 10th position 5TRN ; ; Solution Structure of a DNA Dodecamer with 8-oxoguanine at the 4th position and 5-methylcytosine at the 9th position 1BW7 ; ; SOLUTION STRUCTURE OF A DNA DUPLEX CONTAINING A REPLICABLE DIFLUOROTOLUENE-ADENINE PAIR 1ONM ; ; Solution Structure of a DNA duplex containing A:G mismatch. d(GCTTCAGTCGT):d(ACGACGGAAGC) 1S0T ; ; Solution structure of a DNA duplex containing an alpha-anomeric adenosine: insights into substrate recognition by endonuclease IV 1S74 ; ; SOLUTION STRUCTURE OF A DNA DUPLEX CONTAINING AN ALPHA-ANOMERIC ADENOSINE: INSIGHTS INTO SUBSTRATE RECOGNITION BY ENDONUCLEASE IV 1S75 ; ; SOLUTION STRUCTURE OF A DNA DUPLEX CONTAINING AN ALPHA-ANOMERIC ADENOSINE: INSIGHTS INTO SUBSTRATE RECOGNITION BY ENDONUCLEASE IV 2LHO ; ; Solution Structure of a DNA duplex Containing an Unnatural, Hydrophobic Base Pair 1K29 ; ; Solution Structure of a DNA Duplex Containing M1G Opposite a 2 Base Pair Deletion 1DA4 ; ; Solution structure of a DNA duplex containing the CIS-PT(NH3)2[D(-GTG-)-N7-(G)-N7(G)N7(G)]Adduct as determined with high field NMR and molecular mechanics/dynamics 1DA5 ; ; Solution structure of a DNA Duplex containing the CIS-PT(NH3)2[D(-GTG-)-N7-(G)-N7(G)N7(G)]Adduct as determined with high field NMR And molecular mechanics/dynamics 2L8P ; ; Solution Structure of a DNA Duplex Containing the Potent Anti-Poxvirus Agent Cidofovir 2O4Y ; ; Solution structure of a DNA duplex containing the universal base 5-nitroindole-3-carboxamide 2F1Q ; ; Solution structure of a DNA Holliday Junction 1D70 ; ; SOLUTION STRUCTURE OF A DNA OCTAMER CONTAINING THE PRIBNOW BOX VIA RESTRAINED MOLECULAR DYNAMICS SIMULATION WITH DISTANCE AND TORSION ANGLE CONSTRAINTS DERIVED FROM TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE SPECTRAL FITTING 1EZN ; ; SOLUTION STRUCTURE OF A DNA THREE-WAY JUNCTION 1C2Q ; ; SOLUTION STRUCTURE OF A DNA.RNA HYBRID CONTAINING AN ALPHAT-ANOMERIC THYMIDINE AND POLARITY REVERSALS 2JNK ; ; Solution structure of a dockerin-containing modular pair from a family 84 glycoside hydrolase 2JN5 ; ; Solution Structure of a Dodecapeptide from Alpha-Synuclein Bound with Synphilin-1 2N2P ; ; Solution structure of a double base-pair inversion mutant of murine tumour necrosis factor alpha CDE-23 RNA 2JYL ; ; Solution Structure of A Double Mutant of The Carboxy-terminal Dimerization Domain of The HIV-1 Capsid Protein 2M0N ; ; Solution structure of a DUF3349 annotated protein from Mycobacterium abscessus, MAB_3403c. Seattle Structural Genomics Center for Infectious Disease target MyabA.17112.a.A2 1DSI ; ; Solution structure of a duocarmycin sa-indole-alkylated dna dupleX 7VF1 ; ; Solution structure of a duplex-quadruplex hybrid formed by d[G4C2] repeats 2MHH ; ; Solution structure of a EF-hand domain from sea urchin polycystin-2 2LVZ ; ; Solution structure of a Eosinophil Cationic Protein-trisaccharide heparin mimetic complex 2JNW ; ; Solution structure of a ERCC1-XPA heterodimer 1NVO ; ; Solution structure of a four-helix bundle model, apo-DF1 2KWG ; ; Solution structure of a fully modified 2'-F/2'-OMe siRNA construct 1NWV ; ; SOLUTION STRUCTURE OF A FUNCTIONALLY ACTIVE COMPONENT OF DECAY ACCELERATING FACTOR 2MS9 ; ; Solution structure of a G-quadruplex 2MGN ; ; Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC3 2KBP ; ; Solution structure of a G-quadruplex of human telomeric RNA 2F87 ; ; Solution structure of a GAAG tetraloop in SRP RNA from Pyrococcus furiosus 6U46 ; ; Solution Structure of a Heat-Resistant Long-Acting Insulin Analog 1JHI ; ; Solution Structure of a Hedamycin-DNA complex 7DO1 ; ; Solution structure of a heteromolecular telomeric (3+1) G-quadruplex containing right loop progression 1EC4 ; ; SOLUTION STRUCTURE OF A HEXITOL NUCLEIC ACID DUPLEX WITH FOUR CONSECUTIVE T:T BASE PAIRS 1AUL ; ; SOLUTION STRUCTURE OF A HIGHLY STABLE DNA DUPLEX CONJUGATED TO A MINOR GROOVE BINDER, NMR, MINIMIZED AVERAGE STRUCTURE 5WQZ ; ; Solution structure of a histone binding domain 1EJZ ; ; SOLUTION STRUCTURE OF A HNA-RNA HYBRID 1RJJ ; ; Solution structure of a homodimeric hypothetical protein, At5g22580, a structural genomics target from Arabidopsis thaliana 1ZR9 ; ; Solution Structure of a Human C2H2-type Zinc Finger Protein 2I3B ; ; Solution Structure of a Human Cancer-Related Nucleoside Triphosphatase 5MVB ; ; Solution structure of a human G-Quadruplex hybrid-2 form in complex with a Gold-ligand. 1CQ0 ; ; SOLUTION STRUCTURE OF A HUMAN HYPOCRETIN-2/OREXIN-B'SOLUTION STRUCTURE OF A HUMAN HYPOCRETIN-2/OREXIN-B ' 2LAT ; ; Solution structure of a Human minimembrane protein OST4 1ZKH ; ; Solution structure of a human ubiquitin-like domain in SF3A1 1J5B ; ; Solution structure of a hydrophobic analogue of the winter flounder antifreeze protein 1MY9 ; ; Solution structure of a K+ cation stabilized dimeric RNA quadruplex containing two G:G(:A):G:G(:A) hexads, G:G:G:G tetrads and UUUU loops 1JLZ ; ; Solution Structure of a K+-Channel Blocker from the Scorpion Toxin of Tityus cambridgei 2K44 ; ; Solution structure of a K+-channel voltage-sensor paddle domain 2JMZ ; ; Solution structure of a KlbA intein precursor from Methanococcus jannaschii 2JNQ ; ; Solution Structure of a KlbA Intein Precursor from Methanococcus jannaschii 1J9V ; ; Solution structure of a lactam analogue (DabD) of HIV gp41 600-612 loop. 7QB3 ; ; Solution structure of a lanthanide-binding DNA aptamer 6FE6 ; ; Solution structure of a last generation P2-P4 macrocyclic inhibitor 2JXV ; ; Solution structure of a let-7 miRNA:lin-41 mRNA complex from C. elegans 1N89 ; ; Solution structure of a liganded type 2 wheat non-specific Lipid Transfer Protein 2IT8 ; ; Solution structure of a linear analog of the cyclic squash trypsin inhibitor MCoTI-II 1KQE ; ; Solution structure of a linked shortened gramicidin A in benzene/acetone 10:1 1TKQ ; ; SOLUTION STRUCTURE OF A LINKED UNSYMMETRIC GRAMICIDIN IN A MEMBRANE-ISOELECTRICAL SOLVENTS MIXTURE IN THE PRESENCE OF CsCl 1SPW ; ; Solution Structure of a Loop Truncated Mutant from D. gigas Rubredoxin, NMR 1BVH ; ; SOLUTION STRUCTURE OF A LOW MOLECULAR WEIGHT PROTEIN TYROSINE PHOSPHATASE 1ZGG ; ; Solution structure of a low molecular weight protein tyrosine phosphatase from Bacillus subtilis 2LPD ; ; Solution structure of a MbtH-like protein from Burkholderia pseudomallei, the etiological agent responsible for melioidosis, Seattle Structural Genomics Center for Infectious Disease target BupsA.13472.b 1VM3 ; ; Solution structure of a membrane-targeting peptide designed based on the N-terminal sequence of E. coli enzyme IIA (Glucose) 2LSX ; ; Solution structure of a mini i-motif 1D5Q ; ; SOLUTION STRUCTURE OF A MINI-PROTEIN REPRODUCING THE CORE OF THE CD4 SURFACE INTERACTING WITH THE HIV-1 ENVELOPE GLYCOPROTEIN 2LC9 ; ; Solution Structure of a Minor and Transiently Formed State of a T4 Lysozyme Mutant 2LCB ; ; Solution Structure of a Minor and Transiently Formed State of a T4 Lysozyme Mutant 8DOA ; ; Solution structure of a model HEEH mini-protein (HEEH_TK_rd5_0958) 1G22 ; ; SOLUTION STRUCTURE OF A MODIFIED HUMAN CENTROMERIC FRAGMENT 1EL2 ; ; SOLUTION STRUCTURE OF A MODIFIED HUMAN TELOMERE FRAGMENT (STRUCTURE ""A"") 1ELN ; ; SOLUTION STRUCTURE OF A MODIFIED HUMAN TELOMERE FRAGMENT (STRUCTURE ""S"") 2LTK ; ; Solution structure of a monomeric truncated mutant of Trypanosoma brucei 1-C-Grx1 1Y4O ; ; Solution structure of a mouse cytoplasmic Roadblock/LC7 dynein light chain 2AXL ; ; Solution structure of a multifunctional DNA- and protein-binding domain of human Werner syndrome protein 1UGJ ; ; Solution structure of a murine hypothetical protein from RIKEN cDNA 2310057J16 2LZZ ; ; Solution structure of a mutant of the triheme cytochrome PpcA from Geobacter sulfurreducens sheds light on the role of the conserved aromatic residue F15 1EXE ; ; SOLUTION STRUCTURE OF A MUTANT OF TRANSCRIPTION FACTOR 1. 1V6E ; ; Solution Structure of a N-terminal Ubiquitin-like Domain in Mouse Tubulin-specific Chaperone B 1A8N ; ; SOLUTION STRUCTURE OF A NA+ CATION STABILIZED DNA QUADRUPLEX CONTAINING G.G.G.G AND G.C.G.C TETRADS FORMED BY G-G-G-C REPEATS OBSERVED IN AAV AND HUMAN CHROMOSOME 19, NMR, 8 STRUCTURES 1T12 ; ; Solution Structure of a new LTP1 1M2S ; ; Solution Structure of A New Potassium Channels Blocker from the Venom of Chinese Scorpion Buthus martensi Karsch 2P0X ; ; solution structure of a non-biological ATP-binding protein 7B2B ; ; Solution structure of a non-covalent extended docking domain complex of the Pax NRPS: PaxA T1-CDD/PaxB NDD 2L6K ; ; Solution Structure of a Nonphosphorylated Peptide Recognizing Domain 1EEK ; ; SOLUTION STRUCTURE OF A NONPOLAR, NON HYDROGEN BONDED BASE PAIR SURROGATE IN DNA. 2LZ5 ; ; Solution structure of a Novel Alpha-Conotoxin TxIB 5X3L ; ; Solution structure of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula 1WF9 ; ; Solution structure of a novel beta-grasp fold like domain of Hypothetical protein (Arabidopsis thaliana) 2BEY ; ; Solution Structure of a Novel C2 Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1 1J5I ; ; Solution Structure of a Novel Chromoprotein Derived from Apo-Neocarzinostatin and a Synthetic Chromophore 2JQB ; ; Solution structure of a novel D-amiNo acid containing conopeptide, conomarphin at pH 5 2KTC ; ; Solution Structure of a Novel hKv1.1 inhibiting scorpion toxin from Mesibuthus tamulus 2RPS ; ; Solution structure of a novel insect chemokine isolated from integument 1X22 ; ; Solution structure of a novel moricin analogue, an antibacterial peptide from a lepidopteran insect, Spodoptera litura 2K89 ; ; Solution structure of a novel Ubiquitin-binding domain from Human PLAA (PFUC, Gly76-Pro77 cis isomer) 2K8A ; ; Solution structure of a novel Ubiquitin-binding domain from Human PLAA (PFUC, Gly76-Pro77 trans isomer) 1HFH ; ; SOLUTION STRUCTURE OF A PAIR OF COMPLEMENT MODULES BY NUCLEAR MAGNETIC RESONANCE 1HFI ; ; SOLUTION STRUCTURE OF A PAIR OF COMPLEMENT MODULES BY NUCLEAR MAGNETIC RESONANCE 1QO6 ; ; Solution structure of a pair of modules from the gelatin-binding domain of fibronectin 1HKY ; ; Solution structure of a PAN module from Eimeria tenella 139D ; ; SOLUTION STRUCTURE OF A PARALLEL-STRANDED G-QUADRUPLEX DNA 2LUJ ; ; Solution structure of a parallel-stranded oligoisoguanine DNA pentaplex formed by d(T(iG)4T) in the presence of Cs ions 2K76 ; ; Solution structure of a paralog-specific Mena binder by NMR 2KHA ; ; Solution Structure of a Pathogen Recognition Domain from a Lepidopteran Insect, Plodia interpunctella 2KG2 ; ; Solution structure of a PDZ protein 2B0Y ; ; Solution Structure of a peptide mimetic of the fourth cytoplasmic loop of the G-protein coupled CB1 cannabinoid receptor 2K4G ; ; Solution Structure of a Peptide Nucleic Acid Duplex, 10 structures 1KAT ; ; Solution Structure of a Phage-Derived Peptide Antagonist in Complex with Vascular Endothelial Growth Factor 8ABN ; ; Solution structure of a phenyl-indoloquinoline intercalating into a quadruplex-duplex hybrid 6C2U ; ; Solution structure of a phosphate-loop protein 6C2V ; ; Solution structure of a phosphate-loop protein 1D0T ; ; SOLUTION STRUCTURE OF A PHOSPHOROTHIOATE MODIFIED RNA BINDING SITE FOR PHAGE MS2 COAT PROTEIN 1XRW ; ; Solution Structure of a Platinum-Acridine Modified Octamer 1PLS ; ; SOLUTION STRUCTURE OF A PLECKSTRIN HOMOLOGY DOMAIN 1PSM ; ; SOLUTION STRUCTURE OF A POLYPEPTIDE CONTAINING FOUR HEPTAD REPEATS FROM A MEROZOITE SURFACE ANTIGEN OF PLASMODIUM FALCIPARUM 2GIP ; ; Solution structure of a portion of the 5'UTR of HspA mRNA from Bradyrhizobium janponicum having deleted G83 2GIO ; ; Solution Structure of a portion of the 5'UTR of HspA mRNA of Bradyrhizobium japonicum 1HDP ; ; SOLUTION STRUCTURE OF A POU-SPECIFIC HOMEODOMAIN: 3D-NMR STUDIES OF HUMAN B-CELL TRANSCRIPTION FACTOR OCT-2 2L1V ; ; Solution structure of a preQ1 riboswitch (Class I) aptamer bound to preQ1 1F16 ; ; SOLUTION STRUCTURE OF A PRO-APOPTOTIC PROTEIN BAX 2MRI ; ; Solution structure of a proteasome related subunit C terminal domain 2MQW ; ; Solution structure of a proteasome related subunit N terminal domain 2MKZ ; ; solution structure of a protein C-terminal domain 2MK5 ; ; Solution structure of a protein domain 2GVO ; ; Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides 134D ; ; SOLUTION STRUCTURE OF A PURINE(DOT)PURINE(DOT)PYRIMIDINE DNA TRIPLEX CONTAINING G(DOT)GC AND T(DOT)AT TRIPLES 135D ; ; SOLUTION STRUCTURE OF A PURINE(DOT)PURINE(DOT)PYRIMIDINE DNA TRIPLEX CONTAINING G(DOT)GC AND T(DOT)AT TRIPLES 136D ; ; SOLUTION STRUCTURE OF A PURINE(DOT)PURINE(DOT)PYRIMIDINE DNA TRIPLEX CONTAINING G(DOT)GC AND T(DOT)AT TRIPLES 2ENK ; ; Solution structure of a putativ DNA-binding domain of the humansolute carrier family 30 (zinc transporter) protein 2L4B ; ; Solution structure of a putative acyl carrier protein from Anaplasma phagocytophilum. Seattle Structural Genomics Center for Infectious Disease target AnphA.01018.a 2MU0 ; ; Solution structure of a putative arsenate reductase from Brucella melitensis. Seattle Structural Genomics Center for Infectious Disease target BrabA.00073.a 2KUC ; ; Solution Structure of a putative disulphide-isomerase from Bacteroides thetaiotaomicron 1YYC ; ; Solution Structure of a putative late embryogenesis abundant (LEA) protein At2g46140.1 1J26 ; ; Solution structure of a putative peptidyl-tRNA hydrolase domain in a mouse hypothetical protein 2LS5 ; ; Solution structure of a putative protein disulfide isomerase from Bacteroides thetaiotaomicron 1PA4 ; ; Solution structure of a putative ribosome-binding factor from Mycoplasma pneumoniae (MPN156) 1J03 ; ; Solution structure of a putative steroid-binding protein from Arabidopsis 2L7Y ; ; Solution structure of a putative surface protein 2LJA ; ; Solution Structure of a putative thiol-disulfide oxidoreductase from Bacteroides vulgatus 2L5O ; ; Solution Structure of a Putative Thioredoxin from Neisseria meningitidis 2NAS ; ; Solution structure of a PWWP doamin from Trypanosoma brucei 1H3Z ; ; Solution structure of a PWWP domain from Schizosaccharomyces Pombe 2M1H ; ; Solution structure of a PWWP domain from Trypanosoma brucei 149D ; ; SOLUTION STRUCTURE OF A PYRIMIDINE(DOT)PURINE(DOT) PYRIMIDINE DNA TRIPLEX CONTAINING T(DOT)AT, C+(DOT)GC AND G(DOT)TA TRIPLES 1C38 ; ; SOLUTION STRUCTURE OF A QUADRUPLEX FORMING DNA AND ITS INTERMEDIATE 1C32 ; ; SOLUTION STRUCTURE OF A QUADRUPLEX FORMING DNA AND ITS INTERMIDIATE 1C34 ; ; SOLUTION STRUCTURE OF A QUADRUPLEX FORMING DNA AND ITS INTERMIDIATE 1C35 ; ; SOLUTION STRUCTURE OF A QUADRUPLEX FORMING DNA AND ITS INTERMIDIATE 1KSE ; ; Solution Structure of a quinolone-capped DNA duplex 193D ; ; SOLUTION STRUCTURE OF A QUINOMYCIN BISINTERCALATOR-DNA COMPLEX 1DF3 ; ; SOLUTION STRUCTURE OF A RECOMBINANT MOUSE MAJOR URINARY PROTEIN 1Y03 ; ; Solution structure of a recombinant type I sculpin antifreeze protein 1Y04 ; ; Solution structure of a recombinant type I sculpin antifreeze protein 7JH1 ; ; Solution structure of a reconstructed XCL1 ancestor 2RT9 ; ; Solution structure of a regulatory domain of meiosis inhibitor 5KIZ ; ; Solution Structure of a repacked version of HIF-2 alpha PAS-B 1XSF ; ; Solution structure of a resuscitation promoting factor domain from Mycobacterium tuberculosis 2RVO ; ; Solution structure of a reverse transcriptase recognition site of a LINE RNA from zebrafish 2MMP ; ; Solution structure of a ribosomal protein 2LVY ; ; Solution Structure of a RNA Duplex Containing a 2'-O-Pivaloyloxymethyl Modification 6J9P ; ; Solution structure of a salt-resistant antimicrobial peptide, RR12 2KH2 ; ; Solution structure of a scFv-IL-1B complex 2N4J ; ; Solution structure of a self complementary Xylonucleic Acid duplex 1ZXF ; ; Solution structure of a self-sacrificing resistance protein, CalC from Micromonospora echinospora 1CFA ; ; SOLUTION STRUCTURE OF A SEMI-SYNTHETIC C5A RECEPTOR ANTAGONIST AT PH 5.2, 303K, NMR, 20 STRUCTURES 2LDS ; ; Solution Structure of a Short-chain LaIT1 from the Venom of Scorpion Liocheles australasiae 2LI4 ; ; Solution structure of a shortened antiterminator hairpin from a Mg2+ riboswitch 1IEH ; ; SOLUTION STRUCTURE OF A SOLUBLE SINGLE-DOMAIN ANTIBODY WITH HYDROPHOBIC RESIDUES TYPICAL OF A VL/VH INTERFACE 1MSE ; ; SOLUTION STRUCTURE OF A SPECIFIC DNA COMPLEX OF THE MYB DNA-BINDING DOMAIN WITH COOPERATIVE RECOGNITION HELICES 1MSF ; ; SOLUTION STRUCTURE OF A SPECIFIC DNA COMPLEX OF THE MYB DNA-BINDING DOMAIN WITH COOPERATIVE RECOGNITION HELICES 2A63 ; ; Solution structure of a stably monomeric mutant of lambda Cro produced by substitutions in the ball-and-socket interface 2MB4 ; ; Solution structure of a stacked dimeric G-quadruplex formed by a segment of the human CEB1 minisatellite 1A9L ; ; SOLUTION STRUCTURE OF A SUBSTRATE FOR THE ARCHAEAL PRE-TRNA SPLICING ENDONUCLEASES: THE BULGE-HELIX-BULGE MOTIF, NMR, 12 STRUCTURES 2F3I ; ; Solution Structure of a Subunit of RNA Polymerase II 2RPQ ; ; Solution Structure of a SUMO-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3 1POQ ; ; Solution Structure of a Superantigen from Yersinia pseudotuberculosis 1TBA ; ; SOLUTION STRUCTURE OF A TBP-TAFII230 COMPLEX: PROTEIN MIMICRY OF THE MINOR GROOVE SURFACE OF THE TATA BOX UNWOUND BY TBP, NMR, 25 STRUCTURES 2K3V ; ; Solution Structure of a Tetrahaem Cytochrome from Shewanella Frigidimarina 2LRN ; ; Solution structure of a thiol:disulfide interchange protein from Bacteroides sp. 2LST ; ; Solution structure of a thioredoxin from Thermus thermophilus 2B5Y ; ; Solution Structure of a Thioredoxin-like Protein in the Oxidized Form 2B5X ; ; Solution Structure of a Thioredoxin-like Protein in the Reduced Form 2LLP ; ; Solution structure of a THP type 1 alpha 1 collagen fragment (772-786) 1J1H ; ; Solution structure of a tmRNA-binding protein, SmpB, from Thermus thermophilus 1LUP ; ; Solution structure of a toxin (GsMTx2) from the tarantula, Grammostola spatulata, which inhibits mechanosensitive ion channels 1HP2 ; ; SOLUTION STRUCTURE OF A TOXIN FROM THE SCORPION TITYUS SERRULATUS (TSTX-K ALPHA) DETERMINED BY NMR. 1TYK ; ; SOLUTION STRUCTURE OF A TOXIN FROM THE TARANTULA, GRAMMOSTOLA SPATULATA, WHICH INHIBITS MECHANOSENSITIVE ION CHANNELS 1JDG ; ; Solution Structure of a Trans-Opened (10S)-dA Adduct of (+)-(7S,8R,9S,10R)-7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in a fully Complementary DNA Duplex 1PCP ; ; SOLUTION STRUCTURE OF A TREFOIL-MOTIF-CONTAINING CELL GROWTH FACTOR, PORCINE SPASMOLYTIC PROTEIN 5T3M ; ; Solution structure of a triple mutant of HwTx-IV - a potent blocker of Nav1.7 4CRP ; ; Solution structure of a TrkAIg2 domain construct for use in drug discovery 1UUB ; ; Solution structure of a truncated bovine pancreatic trypsin inhibitor mutant, 3-58 BPTI (K15R, R17A, R42S) 1UUA ; ; Solution structure of a truncated bovine pancreatic trypsin inhibitor, 3-58 BPTI. 1Y7X ; ; Solution structure of a two-repeat fragment of major vault protein 1T0Y ; ; Solution Structure of a Ubiquitin-Like Domain from Tubulin-binding Cofactor B 2LRW ; ; Solution structure of a ubiquitin-like protein from Trypanosoma brucei 2KDI ; ; Solution structure of a Ubiquitin/UIM fusion protein 6D2U ; ; Solution structure of a ultra-high affinity macrocycle bound to HIV-1 TAR RNA 1DGO ; ; SOLUTION STRUCTURE OF A URACIL CONTAINING HAIRPIN DNA 1QE7 ; ; SOLUTION STRUCTURE OF A URACIL CONTAINING HAIRPIN DNA 1P96 ; ; Solution Structure of a Wedge-Shaped Synthetic Molecule at a Two-Base Bulge Site in DNA 7D11 ; ; Solution structure of a WKRY DNA-binding domain 1ZW8 ; ; Solution structure of a ZAP1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae 1CO4 ; ; SOLUTION STRUCTURE OF A ZINC DOMAIN CONSERVED IN YEAST COPPER-REGULATED TRANSCRIPTION FACTORS 2L0Z ; ; Solution structure of a zinc-binding domain from the Junin virus envelope glycoprotein 2K8D ; ; Solution structure of a zinc-binding methionine sulfoxide reductase 2FJ4 ; ; SOLUTION STRUCTURE OF a-domain of HUMAN Metallothionein-3 (MT-3) 7B7O ; ; Solution structure of A. thaliana core TatA in DHPC micelles 1ZXG ; ; Solution structure of A219 1JEX ; ; SOLUTION STRUCTURE OF A67V MUTANT OF RAT FERRO CYTOCHROME B5 6NK9 ; ; Solution structure of AcaTx1, a potassium channel inhibitor from the sea anemone Antopleura cascaia 1XWU ; ; Solution structure of ACAUAGA loop 2MWR ; ; Solution Structure of Acidocin B, a Circular Bacteriocin from Lactobacillus acidophilus M46 7D37 ; ; Solution structure of Acm2-precursor peptide of Heat-stable enterotoxin produced by Enterotoxigenic Escherichia coli 1VDJ ; ; Solution structure of actin-binding domain of troponin in Ca2+-bound state 1VDI ; ; Solution structure of actin-binding domain of troponin in Ca2+-free state 2RU0 ; ; Solution structure of actinomycesin 2JU1 ; ; Solution structure of acyl carrier protein domain from module 2 of 6-deoxyerythronolide B synthase (DEBS) 2KWL ; ; Solution Structure of acyl carrier protein from Borrelia burgdorferi 2N98 ; ; Solution structure of acyl carrier protein LipD from Actinoplanes friuliensis 2LBB ; ; Solution structure of acyl CoA binding protein from Babesia bovis T2Bo 1ST7 ; ; Solution structure of Acyl Coenzyme A Binding Protein from yeast 2L3C ; ; Solution structure of ADAR2 dsRBM1 bound to LSL RNA 2MP4 ; ; Solution Structure of ADF like UNC-60A Protein of Caenorhabditis elegans 2KVK ; ; Solution structure of ADF/cofilin (LDCOF) from Leishmania donovani 2LJ8 ; ; Solution structure of ADF/Cofilin from trypanosoma brucei 2MMF ; ; Solution structure of AGA modified 2E2S ; ; Solution structure of agelenin, an insecticidal peptide from the venom of Agelena opulenta 6BZJ ; ; Solution structure of AGL55 6UZ4 ; ; Solution structure of AGL55-Kringle 2 complex 2LNS ; ; Solution structure of AGR2 residues 41-175 2MMQ ; ; Solution structure of AGT FAPY Modified duplex 2M8B ; ; Solution structure of AhPDF1 from Arabidopsis halleri 1IJP ; ; Solution Structure of Ala20Pro/Pro64Ala substituted subunit c of Escherichia coli ATP synthase 1GV6 ; ; Solution structure of alfa-L-LNA:DNA duplex 2ML1 ; ; Solution Structure of AlgE6R1 subunit from the Azotobacter vinelandii Mannuronan C5-epimerase 2ML2 ; ; Solution Structure of AlgE6R2 subunit from the Azotobacter vinelandii Mannuronan C5-epimerase 2ML3 ; ; Solution Structure of AlgE6R3 subunit from the Azotobacter vinelandii Mannuronan C5-epimerase 2L88 ; ; Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence 2MI9 ; ; Solution structure of allatide C4, conformation 1 2MIA ; ; Solution structure of allatide C4, conformation 2 1Q3J ; ; Solution structure of ALO3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus 2MM6 ; ; solution structure of alpha amylase inhibitor peptide aS1 from Allatide scholaris 1Q8K ; ; Solution structure of alpha subunit of human eIF2 2MM5 ; ; solution structure of alpha-amylase inhibitor peptide aS4 from Allatide scholaris 2MAU ; ; Solution structure of alpha-amylase inhibitor wrightide R1 (wR1) peptide from Wrightia religiosa 1KFH ; ; Solution Structure of alpha-Bungarotoxin by NMR Spectroscopy 1LXH ; ; Solution structure of alpha-cobratoxin complexed with a cognate peptide (minimized average structure) 1LXG ; ; Solution structure of alpha-cobratoxin complexed with a cognate peptide (structure ensemble) 1MXN ; ; Solution structure of alpha-conotoxin AuIB 2I28 ; ; Solution Structure of alpha-Conotoxin BuIA 1IMI ; ; SOLUTION STRUCTURE OF ALPHA-CONOTOXIN IM1 1MII ; ; SOLUTION STRUCTURE OF ALPHA-CONOTOXIN MII 2GCZ ; ; Solution Structure of alpha-Conotoxin OmIA 1QMW ; ; Solution structure of alpha-conotoxin SI 2H8S ; ; Solution structure of alpha-conotoxin Vc1.1 6MZT ; ; Solution structure of alpha-KTx-6.21 (UroTx) from Urodacus yaschenkoi 2KZB ; ; Solution structure of alpha-mannosidase binding domain of Atg19 2KZK ; ; Solution structure of alpha-mannosidase binding domain of Atg34 2RMO ; ; Solution structure of alpha-spectrin_SH3-bergerac from Chicken 1QP6 ; ; SOLUTION STRUCTURE OF ALPHA2D 2M0W ; ; Solution structure of ALPS-23 peptide in SDS micelles 1YZ2 ; ; Solution structure of Am2766 6CJZ ; ; Solution Structure of Amebosin 1EDX ; ; SOLUTION STRUCTURE OF AMINO TERMINUS OF BOVINE RHODOPSIN (RESIDUES 1-40) 2KBE ; ; solution structure of amino-terminal domain of Dbp5p 2V6Z ; ; Solution Structure of Amino-Terminal Domain of Human DNA Polymerase Epsilon Subunit B 2GFR ; ; Solution structure of Amphibian tachykinin Uperolein bound to DPC micelles 1KB1 ; ; SOLUTION STRUCTURE OF AN 11-MER DNA DUPLEX CONTAINING 6-THIOGUANINE OPPOSITE CYTOSINE 1KBM ; ; SOLUTION STRUCTURE OF AN 11-MER DNA DUPLEX CONTAINING 6-THIOGUANINE OPPOSITE THYMINE 2KLW ; ; Solution structure of an abc collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions 2MD9 ; ; Solution Structure of an Active Site Mutant Pepitdyl Carrier Protein 1JBN ; ; Solution structure of an acyclic permutant of SFTI-1, A trypsin inhibitor from sunflower seeds 2KR5 ; ; Solution Structure of an Acyl Carrier Protein Domain from Fungal Type I Polyketide Synthase 7X31 ; ; solution structure of an anti-CRISPR protein 1VM4 ; ; Solution structure of an antibacterial and antitumor peptide designed based on the N-terminal membrane anchor of E. coli enzyme IIA (Glucose) 1VM2 ; ; Solution structure of an anticancer peptide designed based on the N-terminal sequence of E. coli enzyme IIA (Glucose) 2JOB ; ; Solution structure of an antilipopolysaccharide factor from shrimp and its possible Lipid A binding site 2LP8 ; ; SOLUTION STRUCTURE OF AN APOPTOSIS ACTIVATING PHOTOSWITCHABLE BAK PEPTIDE BOUND to BCL-XL 5VFK ; ; Solution structure of an archaeal DUF61 family protein SSO0941 2KJG ; ; Solution structure of an archaeal protein SSO6904 from hyperthermophilic Sulfolobus solfataricus 2KOK ; ; Solution structure of an arsenate reductase (ArsC) related protein from Brucella melitensis. Seattle Structural Genomics Center for Infectious Disease target BrabA.00007.a. 2LW6 ; ; Solution structure of an avirulence protein AvrPiz-t from pathogen Magnaportheoryzae 1W86 ; ; Solution structure of an dsDNA:LNA triplex 1CEJ ; ; SOLUTION STRUCTURE OF AN EGF MODULE PAIR FROM THE PLASMODIUM FALCIPARUM MEROZOITE SURFACE PROTEIN 1 1Z6C ; ; Solution structure of an EGF pair (EGF34) from vitamin K-dependent protein S 2FLG ; ; Solution structure of an EGF-LIKE domain from the Plasmodium falciparum merozoite surface protein 1 2KML ; ; Solution structure of an endopeptidase from Escherichia coli 2I8L ; ; Solution Structure of an endopeptidase HycI from Escherichia coli 1JR6 ; ; Solution Structure of an Engineered Arginine-rich Subdomain 2 of the Hepatitis C Virus NS3 RNA Helicase 1ONB ; ; Solution structure of an engineered arginine-rich subdomain 2 of the hepatitis C virus NS3 RNA helicase 2V9H ; ; Solution Structure of an Escherichia coli YaeT tandem POTRA domain 1ALG ; ; SOLUTION STRUCTURE OF AN HGR INHIBITOR, NMR, 10 STRUCTURES 1IE2 ; ; Solution Structure of an In Vitro Selected RNA which is Sequence Specifically Recognized by RBD12 of Hamster Nucleolin.sNRE (anti) 6A7Y ; ; Solution structure of an intermolecular leaped V-shape G-quadruplex 2MB3 ; ; Solution structure of an intramolecular (3+1) human telomeric G-quadruplex bound to a telomestatin derivative 7CLS ; ; Solution structure of an intramolecular G-quadruplex containing a duplex bulge 2M4P ; ; Solution structure of an intramolecular propeller-type G-quadruplex containing a single bulge 7QA2 ; ; Solution structure of an intramolecular RNA G-quadruplex formed by the 6A mutant from a 22mer guanine-rich sequence within the 5'UTR of BCL-2 proto-oncogene 7Q6L ; ; Solution structure of an intramolecular RNA G-quadruplex formed by the 6A8A17U mutant from a 22mer guanine-rich sequence within the 5'UTR of BCL-2 proto-oncogene 7Q48 ; ; Solution structure of an intramolecular RNA G-quadruplex formed by the 6A8U17U mutant from a 22mer guanine-rich sequence within the 5'UTR of BCL-2 proto onco-gene 1MAJ ; ; SOLUTION STRUCTURE OF AN ISOLATED ANTIBODY VL DOMAIN 1MAK ; ; SOLUTION STRUCTURE OF AN ISOLATED ANTIBODY VL DOMAIN 2WCN ; ; Solution structure of an LNA-modified quadruplex 2EFZ ; ; Solution Structure of an M-1 Conotoxin with a novel disulfide linkage 2N6G ; ; Solution structure of an MbtH-like protein from Mycobacterium avium, Seattle Structural Genomics Center for Infectious Disease target MyavA.01649.c 2MYY ; ; Solution structure of an MbtH-like protein from Mycobacterium marinum, Seattle Structural Genomics Center for Infectious Disease target MymaA.01649.c 2K33 ; ; Solution structure of an N-glycosylated protein using in vitro glycosylation 1PYJ ; ; Solution Structure of an O6-[4-oxo-4-(3-pyridyl)butyl]guanine adduct in an 11mer DNA duplex 5HV8 ; ; Solution structure of an octanoyl- loaded acyl carrier protein domain from module MLSA2 of the mycolactone polyketide synthase. 1NRA ; ; SOLUTION STRUCTURE OF AN OLD WORLD-LIKE NEUROTOXIN FROM THE VENOM OF THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 1NRB ; ; SOLUTION STRUCTURE OF AN OLD WORLD-LIKE NEUROTOXIN FROM THE VENOM OF THE NEW WORLD SCORPION CENTRUROIDES SCULPTURATUS EWING 1U6N ; ; Solution Structure of an Oligodeoxynucleotide Containing a Butadiene Derived N1 b-Hydroxyalkyl Adduct on Deoxyinosine in the Human N-ras Codon 61 Sequence 6UHW ; ; Solution structure of an organic hydroperoxide resistance protein from Burkholderia pseudomallei. Seattle Structural Genomics Center for Infectious Disease target BupsA.00074.a. 2IEM ; ; Solution structure of an oxidized form (Cys51-Cys198) of E. coli Methionine Sulfoxide Reductase A (MsrA) 2MP9 ; ; Solution structure of an potent antifungal peptide Cm-p5 derived from C. muricatus 1FUV ; ; SOLUTION STRUCTURE OF AN RGD PEPTIDE ISOMER-A 1FUL ; ; SOLUTION STRUCTURE OF AN RGD PEPTIDE ISOMER-B 1NAO ; ; SOLUTION STRUCTURE OF AN RNA 2'-O-METHYLATED RNA DUPLEX CONTAINING AN RNA/DNA HYBRID SEGMENT AT THE CENTER, NMR, MINIMIZED AVERAGE STRUCTURE 1D0U ; ; SOLUTION STRUCTURE OF AN RNA BINDING SITE FOR PHAGE MS2 COAT PROTEIN 7DD4 ; ; Solution structure of an RNA derived from the joint region of the TAR and PolyA stems of HIV-1 genomic RNA 1C4L ; ; SOLUTION STRUCTURE OF AN RNA DUPLEX INCLUDING A C-U BASE-PAIR 1IK1 ; ; Solution Structure of an RNA Hairpin from HRV-14 1WKS ; ; Solution structure of an RNA stem-loop derived from the 3' conserved region of eel LINE UnaL2 1AC3 ; ; SOLUTION STRUCTURE OF AN RNA-DNA HYBRID DUPLEX CONTAINING A 3'-THIOFORMACETAL LINKER AND AN RNA A-TRACT, NMR, 8 STRUCTURES 1YUB ; ; SOLUTION STRUCTURE OF AN RRNA METHYLTRANSFERASE (ERMAM) THAT CONFERS MACROLIDE-LINCOSAMIDE-STREPTOGRAMIN ANTIBIOTIC RESISTANCE, NMR, MINIMIZED AVERAGE STRUCTURE 2PCV ; ; Solution Structure of an rRNA Substrate Bound to the Pseudouridylation Pocket of a Box H/ACA snoRNA 2PCW ; ; Solution Structure of an rRNA Substrate Bound to the Pseudouridylation Pocket of a Box H/ACA snoRNA 2L57 ; ; Solution Structure of an Uncharacterized Thioredoin-like Protein from Clostridium perfringens 1RAU ; ; SOLUTION STRUCTURE OF AN UNUSUALLY STABLE RNA TETRAPLEX CONTAINING G-AND U-QUARTET STRUCTURES 5IJ4 ; ; Solution structure of AN1-type zinc finger domain from Cuz1 (Cdc48 associated ubiquitin-like/zinc-finger protein-1) 1CZ6 ; ; SOLUTION STRUCTURE OF ANDROCTONIN 1Y1B ; ; Solution structure of Anemonia elastase inhibitor 1Y1C ; ; Solution structure of Anemonia elastase inhibitor analogue 2MAR ; ; Solution structure of Ani s 5 Anisakis simplex allergen 2KCR ; ; Solution structure of anntoxin 1QWV ; ; Solution structure of Antheraea polyphemus pheromone binding protein (ApolPBP) 6M3N ; ; Solution structure of anti-CRISPR AcrIF7 2LW5 ; ; Solution structure of anti-CRISPR protein Acr30-35 from Pseudomonas aeruginosa Phage JBD30 6LKF ; ; Solution structure of Anti-CRISPR protein AcrIIA5 1GQ0 ; ; Solution structure of Antiamoebin I, a membrane channel-forming polypeptide; NMR, 20 structures 1KV4 ; ; Solution structure of antibacterial peptide (Moricin) 5KQJ ; ; Solution Structure of Antibiotic-Resistance Factor ANT(2'')-Ia Reveals Substrate-Regulated Conformation Dynamics 1V95 ; ; Solution Structure of Anticodon Binding Domain from Nuclear Receptor Coactivator 5 (Human KIAA1637 Protein) 1IYC ; ; Solution structure of antifungal peptide, scarabaecin 6VPN ; ; Solution structure of antifungal plant defensin PvD1 5OQS ; ; Solution structure of antifungal protein NFAP 1XV7 ; ; Solution structure of antimicrobial and endotoxin-neutralizing peptide Lf11 in DPC micelles 1XV4 ; ; Solution structure of antimicrobial and endotoxin-neutralizing peptide Lf11 in SDS micelles 7OSC ; ; Solution structure of antimicrobial peptide cathelicidin-1 PcDode from sperm whale Physeter catodon 2HFR ; ; solution structure of antimicrobial peptide Fowlicidin 3 6TWG ; ; Solution structure of antimicrobial peptide, crabrolin Plus in the presence of Lipopolysaccharide 2CK4 ; ; Solution Structure of aOSK1 1C15 ; ; SOLUTION STRUCTURE OF APAF-1 CARD 2F1E ; ; Solution structure of ApaG protein 1WQK ; ; Solution structure of APETx1, a specific peptide inhibitor of human Ether-a-go-go-related gene potassium channels from the venom of the sea anemone Anthopleura elegantissima: a new fold for an HERG toxin 1WXN ; ; Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels 5TTB ; ; Solution structure of apo ArCP from yersiniabactin synthetase 1RK7 ; ; Solution structure of apo Cu,Zn Superoxide Dismutase: role of metal ions in protein folding 1GR5 ; 7.9 ; Solution Structure of apo GroEL by Cryo-Electron microscopy 2GT5 ; ; Solution structure of apo Human Sco1 1SKT ; ; SOLUTION STRUCTURE OF APO N-DOMAIN OF TROPONIN C, NMR, 40 STRUCTURES 5U3H ; ; Solution structure of apo PCP1 from yersiniabactin synthetase 2L50 ; ; Solution structure of apo S100A16 1U97 ; ; Solution Structure of Apo Yeast Cox17 1Z2G ; ; Solution structure of apo, oxidized yeast Cox17 3BDO ; ; SOLUTION STRUCTURE OF APO-BIOTINYL DOMAIN FROM ACETYL COENZYME A CARBOXYLASE OF ESCHERICHIA COLI DETERMINED BY TRIPLE-RESONANCE NMR SPECTROSCOPY 1YG0 ; ; Solution structure of apo-CopP from Helicobacter pylori 2JQA ; ; Solution structure of apo-DR1885 from Deinococcus radiodurans 2KCW ; ; Solution structure of Apo-form YjaB from Escherichia coli 2KQK ; ; Solution structure of apo-IscU(D39A) 2L4X ; ; Solution Structure of apo-IscU(WT) 1J5H ; ; Solution Structure of Apo-Neocarzinostatin 2LKP ; ; solution structure of apo-NmtR 2LVI ; ; Solution structure of apo-Phl p 7 1YUS ; ; Solution structure of apo-S100A13 1YUR ; ; Solution structure of apo-S100A13 (minimized mean structure) 1IT5 ; ; Solution structure of apo-type PLA2 from Streptomyces violaceruber A-2688. 7F7N ; ; Solution structure of apo-WhiB4 from Mycobacterium tuberculosis 6K3J ; ; Solution structure of APOBEC3G-CD2 with ssDNA, Product A 6K3K ; ; Solution structure of APOBEC3G-CD2 with ssDNA, Product B 2AJ0 ; ; Solution structure of apoCadA 2AJ1 ; ; Solution structure of apoCadA 1M42 ; ; Solution structure of apoCopC from Pseudomonas syringae 1SP0 ; ; Solution Structure of apoCox11 1SO9 ; ; Solution Structure of apoCox11, 30 structures 1APC ; ; SOLUTION STRUCTURE OF APOCYTOCHROME B562 1TL5 ; ; Solution structure of apoHAH1 2EW9 ; ; Solution structure of apoWLN5-6 2MTB ; ; Solution structure of apo_FldB 5SYQ ; ; Solution structure of Aquifex aeolicus Aq1974 2LOW ; ; Solution structure of AR55 in 50% HFIP 2I9Y ; ; Solution structure of Arabidopsis thaliana protein At1g70830, a member of the major latex protein family 1Y9X ; ; Solution structure of Archaeon DNA-binding protein ssh10b 2JSB ; ; Solution structure of arenicin-1 5Y0I ; ; Solution structure of arenicin-3 derivative N1 5Y0J ; ; Solution structure of arenicin-3 derivative N2 5Y0H ; ; Solution structure of arenicin-3 derivative N6 5V11 ; ; Solution structure of arenicin-3 synthetic analog. 5V0Y ; ; Solution structure of arenicin-3. 2CRR ; ; Solution structure of ArfGap domain from human SMAP1 1KN5 ; ; SOLUTION STRUCTURE OF ARID DOMAIN OF ADR6 FROM SACCHAROMYCES CEREVISIAE 7DM4 ; ; Solution structure of ARID4B Tudor domain 2KIZ ; ; Solution structure of Arkadia RING-H2 finger domain 1IRZ ; ; Solution structure of ARR10-B belonging to the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators 6I9F ; ; Solution structure of As-p18 reveals that nematode fatty acid binding proteins exhibit unusual structural features 2L9G ; ; Solution structure of AS1p-Tar in 10% negatively charged bicelles 2D56 ; ; Solution Structure of ASABF, Antibacterial Peptide Isolated from a Nematode, Ascaris Suum 2HM2 ; ; Solution structure of ASC2 1IW4 ; ; Solution structure of ascidian trypsin inhibitor 2KZA ; ; Solution structure of ASIP(80-132, P103A, P105A, Q115Y, S124Y) 2AFD ; ; Solution Structure of Asl1650, an Acyl Carrier Protein from Anabaena sp. PCC 7120 with a Variant Phosphopantetheinylation-Site Sequence 2AFE ; ; Solution Structure of Asl1650, an Acyl Carrier Protein from Anabaena sp. PCC 7120 with a Variant Phosphopantetheinylation-Site Sequence 2UWQ ; ; Solution structure of ASPP2 N-terminus 1XO8 ; ; Solution structure of AT1g01470 from Arabidopsis Thaliana 2KMW ; ; Solution structure of At3g03773.1 protein from Arabidopsis thaliana 1XOY ; ; Solution structure of At3g04780.1, an Arabidopsis ortholog of the C-terminal domain of human thioredoxin-like protein 2G0Q ; ; Solution structure of At5g39720.1 from Arabidopsis thaliana 1TQ1 ; ; Solution structure of At5g66040, a putative protein from Arabidosis Thaliana 7DHT ; ; Solution structure of ATG8f of Arabidopsis thaliana 8IEX ; ; Solution structure of AtWRKY11-DBD 2Y95 ; ; Solution structure of AUCG tetraloop hairpin found in human Xist RNA A-repeats essential for X-inactivation 1XWP ; ; Solution structure of AUCGCA loop 2LTU ; ; Solution Structure of autoinhibitory domain of human AMP-activated protein kinase catalytic subunit 6M5C ; ; Solution structure of avenatide aV1 2KQY ; ; Solution structure of Avian Thymic Hormone 2N37 ; ; Solution structure of AVR-Pia 2NAR ; ; Solution structure of AVR3a_60-147 from Phytophthora infestans 2CQY ; ; Solution structure of B domain from human propionyl-CoA carboxylase alpha subunit 1HY8 ; ; SOLUTION STRUCTURE OF B. SUBTILIS ACYL CARRIER PROTEIN 5N7Y ; ; Solution structure of B. subtilis Sigma G inhibitor CsfB 1N53 ; ; SOLUTION STRUCTURE OF B. SUBTILIS T BOX ANTITERMINATOR RNA 2MPI ; ; Solution structure of B24G insulin 2KGK ; ; Solution structure of Bacillus anthracis dihydrofolate reductase 2KW8 ; ; Solution Structure of Bacillus anthracis Sortase A (SrtA) Transpeptidase 1XN5 ; ; Solution Structure of Bacillus halodurans Protein BH1534: The Northeast Structural Genomics Consortium Target BhR29 2FHM ; ; Solution Structure of Bacillus subtilis Acylphosphatase 2HLT ; ; Solution Structure of Bacillus subtilis Acylphosphatase 2HLU ; ; Solution Structure of Bacillus subtilis Acylphosphatase 1Z2E ; ; Solution Structure of Bacillus subtilis ArsC in oxidized state 1Z2D ; ; Solution Structure of Bacillus subtilis ArsC in reduced state 2B8F ; ; solution structure of Bacillus subtilis BLAP Apo form (energy minimized mean structure) 1Z7T ; ; Solution structure of Bacillus subtilis BLAP apo-form 1Z6H ; ; Solution Structure of Bacillus subtilis BLAP biotinylated-form 2B8G ; ; solution structure of Bacillus subtilis BLAP biotinylated-form (energy minimized mean structure) 2M4I ; ; Solution structure of Bacillus subtilis MinC N-terminal domain 1ZTS ; ; Solution Structure of Bacillus Subtilis Protein YQBG: Northeast Structural Genomics Consortium Target SR215 1XN8 ; ; Solution Structure of Bacillus subtilis Protein yqbG: The Northeast Structural Genomics Consortium Target SR215 1YX0 ; ; Solution Structure of Bacillus subtilis Protein ysnE: The Northeast Structural Genomics Consortium Target SR220 2L16 ; ; Solution structure of Bacillus subtilits TatAd protein in DPC micelles 2LWY ; ; Solution Structure of Bacterial Intein-Like domain from Clostridium thermocellum 1E68 ; ; Solution structure of bacteriocin AS-48 1K0H ; ; Solution structure of bacteriophage lambda gpFII 2KX4 ; ; Solution structure of Bacteriophage Lambda gpFII 1HYW ; ; SOLUTION STRUCTURE OF BACTERIOPHAGE LAMBDA GPW 1L0M ; ; Solution structure of Bacteriorhodopsin 2KM7 ; ; Solution Structure of BamE, a component of the outer membrane protein assembly machinery in Escherichia coli 2K18 ; ; Solution structure of bb' domains of human protein disulfide isomerase 2GOW ; ; Solution structure of BC059385 from Homo sapiens 6IJQ ; ; Solution structure of BCL-XL bound to P73-TAD peptide 2ME9 ; ; Solution structure of BCL-xL containing the alpha1-alpha2 disordered loop determined with selective isotope labelling of I,L,V sidechains 2M03 ; ; Solution structure of BCL-xL determined with selective isotope labelling of I,L,V sidechains 2M04 ; ; Solution structure of BCL-xL in complex with PUMA BH3 peptide 2ME8 ; ; Solution Structure of BCL-xL in its p53-bound conformation determined with selective isotope labelling of I,L,V sidechains 7OXF ; ; Solution structure of bee apamin 1DJM ; ; SOLUTION STRUCTURE OF BEF3-ACTIVATED CHEY FROM ESCHERICHIA COLI 2KFK ; ; Solution structure of Bem1p PB1 domain complexed with Cdc24p PB1 domain 2RQW ; ; Solution structure of Bem1p SH3CI domain complexed with Ste20p-PRR peptide 7MSV ; ; Solution Structure of Berberine Bound to a dGMP Fill-in G-Quadruplex in the PDGFR-b Promoter 1KRX ; ; SOLUTION STRUCTURE OF BERYLLOFLUORIDE-ACTIVATED NTRC RECEIVER DOMAIN: MODEL STRUCTURES INCORPORATING ACTIVE SITE CONTACTS 1J8Z ; ; Solution structure of beta3 analogue peptide (HCYS) of HIV gp41 600-612 loop. 1J8N ; ; Solution structure of beta3-analogue peptide corresponding to the gp41 600-612 loop of HIV. 1K09 ; ; Solution structure of BetaCore, A Designed Water Soluble Four-Stranded Antiparallel b-sheet Protein 6IMG ; ; Solution Structure of Bicyclic Peptide pb-13 6IMH ; ; Solution Structure of Bicyclic Peptide pb-18 2RNG ; ; Solution structure of big defensin 2KCC ; ; Solution Structure of biotinoyl domain from human acetyl-CoA carboxylase 2 6R3C ; ; Solution structure of birch pollen allergen Bet v 1a 1ZBN ; ; Solution structure of BIV TAR hairpin complexed to JDV Tat arginine-rich motif 2MFJ ; ; Solution structure of Blo t 19, a minor dust mite allergen from Blomia tropicalis 5VTO ; ; Solution Structure of BlsM 2KET ; ; solution structure of BMAP-27 2NDC ; ; Solution Structure of BMAP-28(1-18) 1Q2K ; ; Solution structure of BmBKTx1 a new potassium channel blocker from the Chinese Scorpion Buthus martensi Karsch 2KBK ; ; Solution Structure of BmK-M10 2E0H ; ; Solution Structure of BmKalphaIT01, an alpha-insect toxin from the Venom of the Chinese Scorpion Buthus martensi Karsch 2KBH ; ; solution structure of BmKalphaTx11 (major conformation) 2KBJ ; ; solution structure of BmKalphaTx11 (minor conformation) 1S8K ; ; Solution Structure of BmKK4, A Novel Potassium Channel Blocker from Scorpion Buthus martensii Karsch, 25 structures 2MLA ; ; Solution structure of BmKTX-D19K 2MLD ; ; Solution structure of BmKTX-D19K/K6D 1RJI ; ; Solution Structure of BmKX, a novel potassium channel blocker from the Chinese Scorpion Buthus martensi Karsch 1WM7 ; ; Solution Structure of BmP01 from the Venom of Scorpion Buthus martensii Karsch, 9 structures 1DU9 ; ; SOLUTION STRUCTURE OF BMP02, A NATURAL SCORPION TOXIN WHICH BLOCKS APAMIN-SENSITIVE CALCIUM-ACTIVATED POTASSIUM CHANNELS, 25 STRUCTURES 1WM8 ; ; Solution Structure of BmP03 from the Venom of Scorpion Buthus martensii Karsch, 10 structures 1PVZ ; ; Solution Structure of BmP07, A Novel Potassium Channel Blocker from Scorpion Buthus martensi Karsch, 15 structures 1WT8 ; ; Solution Structure of BmP08 from the Venom of Scorpion Buthus martensii Karsch, 20 structures 5LCI ; ; Solution structure of BOLA1 from Homo sapiens 1V60 ; ; Solution structure of BolA1 protein from Mus musculus 2NCL ; ; Solution structure of BOLA3 from Homo sapiens 2AP7 ; ; Solution structure of bombinin H2 in DPC micelles 2AP8 ; ; Solution structure of bombinin H4 in DPC micelles 7NY0 ; ; Solution structure of Boskar4; a de novo designed G-CSF agonist 2N3F ; ; Solution structure of both dsRBDs of DRB4 along with linker (viz. DRB4(1-153)) 6KH9 ; ; Solution structure of bovine insulin amyloid intermediate-1 6KHA ; ; Solution structure of bovine insulin amyloid intermediate-2 1BNB ; ; SOLUTION STRUCTURE OF BOVINE NEUTROPHIL BETA-DEFENSIN 12: THE PEPTIDE FOLD OF THE BETA-DEFENSINS IS IDENTICAL TO THAT OF THE CLASSICAL DEFENSINS 2KGH ; ; Solution structure of Brachyperma ruhnaui toxin 2 2HDL ; ; Solution structure of Brak/CXCL14 8R63 ; ; Solution structure of branaplam bound to the RNA duplex formed upon 5'-splice site recognition 2DUN ; ; Solution structure of BRCT domain of DNA polymerase mu 2COK ; ; Solution structure of BRCT domain of poly(ADP-ribose) polymerase-1 2COE ; ; Solution structure of BRCT domain of terminal deoxynucleotidyltransferase 2KU3 ; ; Solution structure of BRD1 PHD1 finger 2LQ6 ; ; Solution structure of BRD1 PHD2 finger 1HX2 ; ; SOLUTION STRUCTURE OF BSTI, A TRYPSIN INHIBITOR FROM BOMBINA BOMBINA. 1IJC ; ; Solution Structure of Bucandin, a Neurotoxin from the Venom of the Malayan Krait 2MY1 ; ; Solution structure of Bud31p 1JC6 ; ; SOLUTION STRUCTURE OF BUNGARUS FACIATUS IX, A KUNITZ-TYPE CHYMOTRYPSIN INHIBITOR 1WT7 ; ; Solution structure of BuTX-MTX: a butantoxin-maurotoxin chimera 2KRA ; ; Solution structure of Bv8 2KNG ; ; Solution structure of C-domain of Lsr2 2FCE ; ; Solution structure of C-lobe Myosin Light Chain from Saccharomices cerevisiae 2HD7 ; ; Solution structure of C-teminal domain of twinfilin-1. 2MJG ; ; Solution Structure of C-terminal AbrB 1NMR ; ; Solution Structure of C-terminal Domain from Trypanosoma cruzi Poly(A)-Binding Protein 2JYW ; ; Solution structure of C-terminal domain of APOBEC3G 2JO8 ; ; Solution structure of C-terminal domain of human mammalian sterile 20-like kinase 1 (MST1) 2CRV ; ; Solution structure of C-terminal domain of mitochondrial translational initiationfactor 2 1TH5 ; ; Solution structure of C-terminal domain of NifU-like protein from Oryza sativa 2JNV ; ; Solution structure of C-terminal domain of NifU-like protein from Oryza sativa 2KKY ; ; Solution Structure of C-terminal domain of oxidized NleG2-3 (residue 90-191) from Pathogenic E. coli O157:H7. Northeast Structural Genomics Consortium and Midwest Center for Structural Genomics target ET109A 1IFW ; ; SOLUTION STRUCTURE OF C-TERMINAL DOMAIN OF POLY(A) BINDING PROTEIN FROM SACCHAROMYCES CEREVISIAE 2KKX ; ; Solution Structure of C-terminal domain of reduced NleG2-3 (residues 90-191) from Pathogenic E. coli O157:H7. Northeast Structural Genomics Consortium and Midwest Center for Structural Genomics target ET109A 2CRQ ; ; Solution structure of C-terminal domain of RIKEN cDNA 2810012L14 2K7X ; ; solution structure of C-terminal domain of SARS-CoV main protease 5XME ; ; Solution structure of C-terminal domain of TRADD 2KK1 ; ; Solution structure of C-terminal Domain of Tyrosine-protein kinase ABL2 from Homo sapiens, Northeast Structural Genomics Consortium (NESG) target HR5537A 1F7W ; ; SOLUTION STRUCTURE OF C-TERMINAL DOMAIN ZIPA 1F7X ; ; SOLUTION STRUCTURE OF C-TERMINAL DOMAIN ZIPA 2JZY ; ; Solution structure of C-terminal effector domain of putative two-component-system response regulator involved in copper resistance from Klebsiella pneumoniae 2NB8 ; ; Solution structure of C-terminal extramembrane domain of SH protein 1WFT ; ; Solution structure of C-terminal fibronectin type III domain of mouse 1700129L13Rik protein 2LMB ; ; Solution Structure of C-terminal RAGE (ctRAGE) 7BBB ; ; Solution structure of C-terminal RecA and RRM domains of the DEAD box helicase DbpA 1KFZ ; ; Solution Structure of C-terminal Sem-5 SH3 Domain (Ensemble of 16 Structures) 1WH3 ; ; Solution structure of C-terminal ubiquitin like domain of human 2'-5'-oligoadenylate synthetase-like protain (p59 OASL) 2RU3 ; ; Solution structure of c.elegans SUP-12 RRM in complex with RNA 1FYB ; ; SOLUTION STRUCTURE OF C1-T1, A TWO-DOMAIN PROTEINASE INHIBITOR DERIVED FROM THE CIRCULAR PRECURSOR PROTEIN NA-PROPI FROM NICOTIANA ALATA 5W4S ; ; Solution structure of C2 domain from protein kinase C alpha in ternary complex with calcium and V5-pHM peptide 5MYE ; ; Solution structure of C20S variant of Dehydroascorbate reductase 3A from Populus trichocarpa in complex with dehydroascorbic acid. 2LHA ; ; Solution structure of C2B with IP6 2YSV ; ; Solution structure of C2H2 type Zinc finger domain 17 in Zinc finger protein 473 2YTA ; ; Solution structure of C2H2 type Zinc finger domain 3 in Zinc finger protein 32 2YT9 ; ; Solution structure of C2H2 type Zinc finger domain 345 in Zinc finger protein 278 2YTB ; ; Solution structure of C2H2 type Zinc finger domain 5 in Zinc finger protein 32 2JYY ; ; Solution structure of C8A/C37A-T1 from Nicotiana alata 1QLK ; ; SOLUTION STRUCTURE OF CA(2+)-LOADED RAT S100B (BETABETA) NMR, 20 STRUCTURES 2LVK ; ; Solution structure of Ca-bound Phl p 7 2LNK ; ; Solution structure of Ca-bound S100A4 in complex with non-muscle myosin IIA 2KYC ; ; solution structure of Ca-free chicken parvalbumin 3 (CPV3) 2KIS ; ; Solution structure of CA150 FF1 domain and FF1-FF2 interdomain linker 2NCE ; ; Solution Structure of Ca2+-bound C2 domain from Protein Kinase C alpha in the form of complex with V5-pHM peptide 2LV7 ; ; Solution structure of Ca2+-bound CaBP7 N-terminal doman 2B1O ; ; Solution Structure of Ca2+-bound DdCAD-1 1I56 ; ; SOLUTION STRUCTURE OF CA2+-BOUND STATE OF CANINE MILK LYSOZYME 2LHH ; ; Solution structure of Ca2+-bound yCaM 2LM5 ; ; Solution structure of Ca2+-CIB1 in complex with the cytoplasmic domain of the integrin aIIb subunit 1YHP ; ; Solution Structure of Ca2+-free DdCAD-1 2K2F ; ; Solution structure of Ca2+-S100A1-RyRP12 1NWD ; ; Solution Structure of Ca2+/Calmodulin bound to the C-terminal Domain of Petunia Glutamate Decarboxylase 2L7L ; ; Solution structure of Ca2+/calmodulin complexed with a peptide representing the calmodulin-binding domain of calmodulin kinase I 2LGF ; ; Solution structure of Ca2+/calmodulin complexed with a peptide representing the calmodulin-binding domain of L-selectin 2LHI ; ; Solution structure of Ca2+/CNA1 peptide-bound yCaM 6KG8 ; ; Solution structure of CaCohA2 from Clostridium acetobutylicum 6KG9 ; ; Solution structure of CaDoc0917 from Clostridium acetobutylicum 2JSA ; ; Solution structure of Caenopore-5 (81 Pro Trans confomer) 2L51 ; ; Solution structure of calcium bound S100A16 2RO9 ; ; Solution structure of calcium bound soybean calmodulin isoform 1 C-terminal domain 2RO8 ; ; Solution structure of calcium bound soybean calmodulin isoform 1 N-terminal domain 2ROB ; ; Solution structure of calcium bound soybean calmodulin isoform 4 C-terminal domain 2ROA ; ; Solution structure of calcium bound soybean calmodulin isoform 4 N-terminal domain 1J7P ; ; Solution structure of Calcium calmodulin C-terminal domain 5T7C ; ; Solution structure of calcium free, myristoylated visinin-like protein 3 2JTT ; ; Solution structure of calcium loaded S100A6 bound to C-terminal Siah-1 interacting protein 1PSB ; ; Solution structure of calcium loaded S100B complexed to a peptide from N-Terminal regulatory domain of NDR kinase. 1LA0 ; ; Solution Structure of Calcium Saturated Cardiac Troponin C in the Troponin C-Troponin I Complex 2KYF ; ; solution structure of calcium-bound CPV3 2M9G ; ; Solution structure of calcium-bound human S100A12 1J7O ; ; Solution structure of Calcium-calmodulin N-terminal domain 2NLN ; ; Solution Structure of Calcium-free Rat Beta-parvalbumin 1YUU ; ; Solution structure of Calcium-S100A13 1YUT ; ; Solution structure of Calcium-S100A13 (minimized mean structure) 2MG5 ; ; Solution Structure of Calmodulin bound to the target peptide of Endothelial Nitrogen Oxide Synthase phosphorylated at Thr495 2B1U ; ; Solution structure of Calmodulin-like Skin Protein C terminal domain 2DK9 ; ; Solution structure of Calponin Homology domain of Human MICAL-1 2RR8 ; ; Solution structure of calponin homology domain of IQGAP1 1K9C ; ; Solution Structure of Calreticulin P-domain subdomain (residues 189-261) 1K91 ; ; Solution Structure of Calreticulin P-domain subdomain (residues 221-256) 2K61 ; ; Solution structure of CaM complexed to DAPk peptide 2K0J ; ; Solution structure of CaM complexed to DRP1p 6FEG ; ; Solution Structure of CaM/Kv7.2-hAB Complex 6FEH ; ; Solution Structure of CaM/Kv7.2-hAB Complex 6K2I ; ; Solution structure of camelid nanobody Nb11 against aflatoxin B1 6IYN ; ; Solution structure of camelid nanobody Nb26 against aflatoxin B1 1JGK ; ; SOLUTION STRUCTURE OF CANDOXIN 1TKN ; ; Solution structure of CAPPD*, an independently folded extracellular domain of human Amyloid-beta Precursor Protein 1MYF ; ; SOLUTION STRUCTURE OF CARBONMONOXY MYOGLOBIN DETERMINED FROM NMR DISTANCE AND CHEMICAL SHIFT CONSTRAINTS 2KBF ; ; solution structure of carboxyl-terminal domain of Dbp5p 2JXL ; ; Solution structure of cardiac N-domain troponin C mutant F77W-V82A 1KBS ; ; SOLUTION STRUCTURE OF CARDIOTOXIN IV, NMR, 1 STRUCTURE 1KBT ; ; SOLUTION STRUCTURE OF CARDIOTOXIN IV, NMR, 12 STRUCTURES 1CW5 ; ; SOLUTION STRUCTURE OF CARNOBACTERIOCIN B2 8C18 ; ; Solution structure of carotenoid-binding protein AstaPo1 in complex with astaxanthin 2I3E ; ; Solution structure of catalytic domain of goldfish RICH protein 2ILX ; ; Solution structure of catalytic domain of rat 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) protein 2JVB ; ; Solution Structure of Catalytic Domain of yDcp2 2IGR ; ; Solution structure of CB1a, a novel anticancer peptide derived from natural antimicrobial peptide cecropin B 1V46 ; ; Solution Structure of CCAP (Crustacean Cardioactive Peptide) from Drosophila melanogaster 1Y49 ; ; Solution Structure of CCAP (Crustacean Cardioactive Peptide) from Drosophila melanogaster 2D9N ; ; Solution structure of CCCH type zinc-finger domain 2 in Cleavage and polyadenylation specificity factor 2D9M ; ; Solution structure of CCCH type zinc-finger domain 3 in zinc finger CCCH-type domain containing 7A 2LIQ ; ; Solution structure of CCL2 in complex with glycan 4B2R ; ; Solution structure of CCP modules 10-11 of complement factor H 4B2S ; ; Solution structure of CCP modules 11-12 of complement factor H 2LMA ; ; Solution structure of CD4+ T cell derived peptide Thp5 1CEE ; ; SOLUTION STRUCTURE OF CDC42 IN COMPLEX WITH THE GTPASE BINDING DOMAIN OF WASP 1EES ; ; SOLUTION STRUCTURE OF CDC42HS COMPLEXED WITH A PEPTIDE DERIVED FROM P-21 ACTIVATED KINASE, NMR, 20 STRUCTURES 2MJ8 ; ; Solution structure of CDYL2 chromodomain 1D9L ; ; SOLUTION STRUCTURE OF CECROPIN A(1-8)-MAGAININ 2 HYBRID PEPTIDE ANALOGUE(P1) 1D9M ; ; SOLUTION STRUCTURE OF CECROPIN A(1-8)-MAGAININ 2 HYBRID PEPTIDE ANALOGUE(P2) 1D9J ; ; SOLUTION STRUCTURE OF CECROPIN A(1-8)-MAGAININ 2(1-12) HYBRID PEPTIDE 1D9O ; ; SOLUTION STRUCTURE OF CECROPIN A(1-8)-MAGAININ 2(1-12) HYBRID PEPTIDE ANALOGUE(P3) 1D9P ; ; SOLUTION STRUCTURE OF CECROPIN A(1-8)-MAGAININ 2(1-12) HYBRID PEPTIDE ANALOGUE(P4) 7DEH ; ; Solution structure of cecropin P1 in dodecylphosphocholine micelles 2N92 ; ; Solution structure of cecropin P1 with LPS 7VOZ ; ; Solution structure of cecropin P1(1-29) in dodecylphosphocholine micelles 2D35 ; ; Solution structure of Cell Division Reactivation Factor, CedA 2L2Q ; ; Solution Structure of cellobiose-specific phosphotransferase IIB component protein from Borrelia burgdorferi 1KGL ; ; Solution structure of cellular retinol binding protein type-I in complex with all-trans-retinol 1JBH ; ; Solution structure of cellular retinol binding protein type-I in the ligand-free state 1E5G ; ; Solution structure of central CP module pair of a pox virus complement inhibitor 5ZOR ; ; Solution structure of centrin4 from Trypanosoma brucei 4BIT ; ; solution structure of cerebral dopamine neurotrophic factor (CDNF) 1Z2F ; ; solution structure of CfAFP-501 1CS9 ; ; SOLUTION STRUCTURE OF CGGIRGERA IN CONTACT WITH THE MONOCLONAL ANTIBODY MAB 4X11, NMR, 7 STRUCTURES 1CT6 ; ; SOLUTION STRUCTURE OF CGGIRGERG IN CONTACT WITH THE MONOCLONAL ANTIBODY MAB 4X11, NMR, 11 STRUCTURES 2K31 ; ; Solution Structure of cGMP-binding GAF domain of Phosphodiesterase 5 2LQL ; ; Solution structure of CHCH5 2LQT ; ; Solution structure of CHCHD7 2L75 ; ; Solution structure of CHD4-PHD2 in complex with H3K9me3 2HO9 ; ; Solution Structure of chemotaxi protein CheW from Escherichia coli 1TVJ ; ; Solution Structure of chick cofilin 3ZOB ; ; Solution structure of chicken Engrailed 2 homeodomain 2LBA ; ; Solution structure of chicken ileal BABP in complex with glycochenodeoxycholic acid 2JM0 ; ; Solution structure of chicken villin headpiece subdomain containing a fluorinated side chain in the core 2RV9 ; ; Solution structure of chitosan-binding module 1 derived from chitosanase/glucanase from Paenibacillus sp. IK-5 2RVA ; ; Solution structure of chitosan-binding module 2 derived from chitosanase/glucanase from Paenibacillus sp. IK-5 1DS9 ; ; SOLUTION STRUCTURE OF CHLAMYDOMONAS OUTER ARM DYNEIN LIGHT CHAIN 1 1W9R ; ; Solution Structure of Choline Binding Protein A, Domain R2, the Major Adhesin of Streptococcus pneumoniae 2L8O ; ; Solution structure of Chr148 from Cytophaga hutchinsonii, Northeast Structural Genomics Consortium Target Chr148 2EPB ; ; Solution structure of chromo domain 2 in Chromodomain-helicase-DNA-binding protein 6 2KVB ; ; Solution structure of CI-MPR domain 5 bound to N-acetylglucosaminyl 6-phosphomethylmannoside 2KVA ; ; SOLUTION STRUCTURE OF CI-MPR ligand-free domain 5 2ERI ; ; Solution structure of circulin B 2M6G ; ; Solution structure of cis(C2-P3) trans (D5-P6) form of lO959 in water 2KH5 ; ; Solution Structure of cis-5R,6S-thymine glycol opposite complementary adenine in duplex DNA 2KH6 ; ; Solution Structure of cis-5R,6S-thymine glycol opposite complementary adenine in duplex DNA 2KH7 ; ; Solution Structure of cis-5R,6S-thymine glycol opposite complementary guanine in duplex DNA 2KH8 ; ; Solution Structure of cis-5R,6S-thymine glycol opposite complementary guanine in duplex DNA 1J3G ; ; Solution structure of Citrobacter Freundii AmpD 2JMY ; ; Solution structure of CM15 in DPC micelles 6NW8 ; ; SOLUTION STRUCTURE OF CN29, A TOXIN FROM CENTRUROIDES NOXIUS SCORPION VENOM 1UDM ; ; Solution structure of Coactosin-like protein (Cofilin family) from Mus Musculus 2LXX ; ; Solution structure of cofilin like UNC-60B protein from Caenorhabditis elegans 5HUZ ; ; Solution structure of coiled coil domain of myosin binding subunit of myosin light chain phosphatase 6LMR ; ; Solution structure of cold shock domain and ssDNA complex 2L15 ; ; Solution Structure of Cold Shock Protein CspA Using Combined NMR and CS-Rosetta method 2F52 ; ; Solution structure of cold shock protein CspB from Bacillus subtilis in complex with heptathymidine 5XV9 ; ; Solution Structure of Cold Shock Protein from Colwellia psychrerythraea 6Y6M ; ; solution structure of cold-shock domain 1 and 2 of drosophila Upstream of N-Ras (Unr) 6Y4H ; ; Solution structure of cold-shock domain 7 and 8 of drosophila Upstream of N-Ras (Unr) 6Y96 ; ; solution structure of cold-shock domain 9 of drosophila Upstream of N-Ras (Unr) 5NCA ; ; Solution structure of ComGC from Streptococcus pneumoniae 2KNX ; ; Solution Structure of complement repeat CR17 from LRP-1 2N21 ; ; Solution structure of complex between DNA G-quadruplex and G-quadruplex recognition domain of RHAU 1VRE ; ; SOLUTION STRUCTURE OF COMPONENT IV GLYCERA DIBRANCHIATA MONOMERIC HEMOGLOBIN-CO 1VRF ; ; SOLUTION STRUCTURE OF COMPONENT IV GLYCERA DIBRANCHIATA MONOMERIC HEMOGLOBIN-CO 6PPC ; ; Solution structure of conotoxin MiXXVIIA 1RMK ; ; Solution structure of conotoxin MrVIB 2FQC ; ; Solution structure of conotoxin pl14a 6BX9 ; ; Solution structure of conotoxin reg3b 1EYO ; ; SOLUTION STRUCTURE OF CONOTOXIN TVIIA FROM CONUS TULIPA 1AS5 ; ; SOLUTION STRUCTURE OF CONOTOXIN Y-PIIIE FROM CONUS PURPURASCENS, NMR, 14 STRUCTURES 1K6G ; ; Solution Structure of Conserved AGNN Tetraloops: Insights into Rnt1p RNA Processing 1K6H ; ; Solution Structure of Conserved AGNN Tetraloops: Insights into Rnt1p RNA processing 2OTR ; ; Solution Structure of Conserved Hypothetical Protein HP0892 from Helicobacter pylori 1RWU ; ; Solution structure of conserved protein YbeD from E. coli 1NXN ; ; SOLUTION STRUCTURE OF CONTRYPHAN-VN 2K0Q ; ; Solution structure of CopK, a periplasmic protein involved in copper resistance in Cupriavidus metallidurans CH34 1OQ6 ; ; solution structure of Copper-S46V CopA from Bacillus subtilis 2L6I ; ; Solution structure of coronaviral stem-loop 2 (SL2) 1V5A ; ; Solution Structure of Covalitoxin I 2MKE ; ; Solution structure of CPEB1 ZZ domain in the free state 1J2M ; ; Solution structure of CPI-17(22-120) 1J2N ; ; Solution structure of CPI-17(22-120) T38D 2KYB ; ; Solution structure of CpR82G from Clostridium perfringens. North East Structural Genomics Consortium Target CpR82g 1W2R ; ; Solution structure of CR2 SCR 1-2 by X-ray scattering 1W2S ; ; Solution structure of CR2 SCR 1-2 in its complex with C3d by X-ray scattering 1YV8 ; ; Solution structure of crambin in acetone/water mixed solvent 2MYI ; ; Solution Structure of Crc from P. syringae Lz4W 1K1C ; ; Solution Structure of Crh, the Bacillus subtilis Catabolite Repression HPr 2LQN ; ; Solution structure of CRKL 1Z99 ; ; Solution structure of Crotamine, a myotoxin from Crotalus durissus terrificus 1H5O ; ; Solution structure of Crotamine, a neurotoxin from Crotalus durissus terrificus 2HLI ; ; Solution structure of Crotonaldehyde-Derived N2-[3-Oxo-1(S)-methyl-propyl]-dG DNA Adduct in the 5'-CpG-3' Sequence 5XS1 ; ; Solution structure of Crustacean Hyperglycemic Hormone-like (CHH-L) from the Scylla Olivacea 1TV0 ; ; Solution structure of cryptdin-4, the most potent alpha-defensin from mouse Paneth cells 2HUA ; ; Solution Structure of CSFV IRES Domain IIa 5M1U ; ; Solution structure of CsgF in DHPC micelles 2A1C ; ; Solution structure of CSP1 1T3O ; ; Solution structure of CsrA, a bacterial carbon storage regulatory protein 2LI7 ; ; Solution Structure of CssII 2LJM ; ; Solution Structure of CssII 2KW1 ; ; Solution structure of CTD 1TL4 ; ; Solution structure of Cu(I) HAH1 2RLI ; ; Solution structure of Cu(I) human Sco2 2HRF ; ; Solution Structure of Cu(I) P174L HSco1 2HRN ; ; Solution Structure of Cu(I) P174L-HSco1 1NM4 ; ; Solution structure of Cu(I)-CopC from Pseudomonas syringae 1OT4 ; ; Solution structure of Cu(II)-CopC from Pseudomonas syringae 1WGL ; ; Solution Structure of CUE domain in the C-terminal of Human Toll-interacting Protein (Tollip) 5M8I ; ; Solution structure of CUG-BP2 RRM3 in complex with 5'-UUUAA-3' RNA 1X9L ; ; Solution structure of CuI-DR1885 from Deinococcus Radiodurans 2LUA ; ; Solution structure of CXC domain of MSL2 2MGS ; ; Solution structure of CXCL5 2LNJ ; ; Solution Structure of Cyanobacterial PsbP (CyanoP) from Synechocystis sp. PCC 6803 1I5T ; ; SOLUTION STRUCTURE OF CYANOFERRICYTOCHROME C 2RP3 ; ; Solution Structure of Cyanovirin-N Domain B Mutant 2JRW ; ; Solution structure of Cyclic extended Pep1(Cyc.ext.Pep.1) for autoimmune myasthenia gravis 1XWN ; ; solution structure of cyclophilin like 1(PPIL1) and insights into its interaction with SKIP 2KCG ; ; Solution structure of cycloviolacin O2 2N5Q ; ; Solution structure of cystein-rich peptide jS1 from Jasminum sambac 8HJC ; ; Solution structure of cysteine-rich peptide Bidentatide (Achyranthes bidentata peptide) 8HJD ; ; Solution structure of cysteine-rich peptide Bidentatide (Achyranthes bidentata peptide) with glycation 1I5U ; ; SOLUTION STRUCTURE OF CYTOCHROME B5 TRIPLE MUTANT (E48A/E56A/D60A) 2MHM ; ; Solution structure of cytochrome c Y67H 1AYG ; ; SOLUTION STRUCTURE OF CYTOCHROME C-552, NMR, 20 STRUCTURES 2AI5 ; ; Solution Structure of Cytochrome C552, determined by Distributed Computing Implementation for NMR data 2E4H ; ; Solution structure of cytoskeletal protein in complex with tubulin tail 2MVL ; ; Solution structure of cytosolic part of Trop2 1M58 ; ; Solution Structure of Cytotoxic RC-RNase2 1KVZ ; ; Solution Structure of Cytotoxic RC-RNase4 2L95 ; ; Solution Structure of Cytotoxic T-Lymphocyte Antigent-2(Ctla protein), Crammer at pH 6.0 2KJB ; ; Solution structure of CzrA in the DNA bound state 2KJC ; ; Solution structure of CzrA in the Zn(II) state 1Q2T ; ; Solution structure of d(5mCCTCTCC)4 8XGW ; ; Solution structure of d(CGATCG)2-Baicalein complex 1JRV ; ; SOLUTION STRUCTURE OF DAATAA DNA BULGE 1JRW ; ; Solution Structure of dAATAA DNA Bulge 1JS5 ; ; Solution Structure of dAAUAA DNA Bulge 1JS7 ; ; Solution Structure of dAAUAA DNA Bulge 1V5N ; ; Solution Structure of DC1 Domain of PDI-like Hypothetical Protein from Arabidopsis thaliana 2LQ0 ; ; Solution structure of de novo designed antifreeze peptide 1m 2LQ1 ; ; Solution structure of de novo designed antifreeze peptide 3 2LQ2 ; ; Solution structure of de novo designed peptide 4m 6BEQ ; ; Solution structure of de novo macrocycle design10.1 6BER ; ; Solution structure of de novo macrocycle design10.2 6BES ; ; Solution structure of de novo macrocycle design11_ss 6BET ; ; Solution structure of de novo macrocycle design12_ss 6BEU ; ; Solution structure of de novo macrocycle design14_ss 6BE9 ; ; Solution structure of de novo macrocycle design7.1 6BEW ; ; Solution structure of de novo macrocycle design7.2 6BF3 ; ; Solution structure of de novo macrocycle design7.3a 6BF5 ; ; Solution structure of de novo macrocycle design7.3a 6BE7 ; ; Solution structure of de novo macrocycle Design8.1 6BEN ; ; Solution structure of de novo macrocycle design8.2 6BEO ; ; Solution structure of de novo macrocycle design9.1 2KK0 ; ; Solution structure of dead ringer-like protein 1 (at-rich interactive domain-containing protein 3a) from homo sapiens, northeast structural genomics consortium (NESG) target hr4394c 2MVG ; ; Solution structure of decorin binding protein B from Borrelia burgdorferi 1D6B ; ; SOLUTION STRUCTURE OF DEFENSIN-LIKE PEPTIDE-2 (DLP-2) FROM PLATYPUS VENOM 2CK5 ; ; Solution structure of Delta 1-7 aOSK1 1BUQ ; ; SOLUTION STRUCTURE OF DELTA-5-3-KETOSTEROID ISOMERASE COMPLEXED WITH THE STEROID 19-NORTESTOSTERONE-HEMISUCCINATE 6V6T ; ; Solution structure of delta-theraphotoxin-Hm1b from Heteroscodra maculata 1R6R ; ; Solution Structure of Dengue Virus Capsid Protein Reveals a New Fold 2A0A ; ; Solution Structure of Der f 13, Group 13 Allergen from House Dust Mites 2DD6 ; ; Solution structure of Dermaseptin antimicrobial peptide truncated, mutated analog, K4-S4(1-13)a 2KSG ; ; Solution structure of dermcidin-1L, a human antibiotic peptide 1ICO ; ; SOLUTION STRUCTURE OF DESIGNED BETA-SHEET MINI-PROTEIN TH10BOX 1ICL ; ; SOLUTION STRUCTURE OF DESIGNED BETA-SHEET MINI-PROTEIN TH1OX 1WO5 ; ; Solution structure of Designed Functional Finger 2 (DFF2): Designed mutant based on non-native CHANCE domain 1WO6 ; ; Solution structure of Designed Functional Finger 5 (DFF5): Designed mutant based on non-native CHANCE domain 1WO7 ; ; Solution structure of Designed Functional Finger 7 (DFF7): Designed mutant based on non-native CHANCE domain 2L6C ; ; Solution structure of desulfothioredoxin from Desulfovibrio vulgaris Hildenborough in its oxidized form 2L6D ; ; Solution structure of desulfothioredoxin from Desulfovibrio vulgaris Hildenborough in its reduced form 1QN1 ; ; SOLUTION STRUCTURE OF DESULFOVIBRIO GIGAS FERRICYTOCHROME C3, NMR, 15 STRUCTURES 1QN0 ; ; SOLUTION STRUCTURE OF DESULFOVIBRIO GIGAS FERROCYTOCHROME C3, NMR, 20 STRUCTURES 1E8J ; ; SOLUTION STRUCTURE OF DESULFOVIBRIO GIGAS ZINC RUBREDOXIN, NMR, 20 STRUCTURES 2BPN ; ; SOLUTION STRUCTURE OF DESULFOVIBRIO VULGARIS (HILDENBOROUGH) FERRICYTOCHROME C3, NMR, 20 STRUCTURES 1A2I ; ; SOLUTION STRUCTURE OF DESULFOVIBRIO VULGARIS (HILDENBOROUGH) FERROCYTOCHROME C3, NMR, 20 STRUCTURES 5NF8 ; ; Solution structure of detergent-solubilized Rcf1, a yeast mitochondrial inner membrane protein involved in respiratory Complex III/IV supercomplex formation 1LUD ; ; SOLUTION STRUCTURE OF DIHYDROFOLATE REDUCTASE COMPLEXED WITH TRIMETHOPRIM AND NADPH, 24 STRUCTURES 2HM9 ; ; Solution structure of dihydrofolate reductase complexed with trimethoprim, 33 structures 2LFF ; ; Solution structure of Diiron protein in presence of 8 eq Zn2+, Northeast Structural Genomics consortium target OR21 1W0R ; ; Solution structure of dimeric form of properdin by X-ray solution scattering and analytical ultracentrifugation 1MNT ; ; SOLUTION STRUCTURE OF DIMERIC MNT REPRESSOR (1-76) 1X9X ; ; Solution Structure of Dimeric SAM Domain from MAPKKK Ste11 2MN6 ; ; Solution structure of dimeric TatA of twin-arginine translocation system from E. coli 1GHH ; ; SOLUTION STRUCTURE OF DINI 6IRR ; ; Solution structure of DISC1/ATF4 complex 2AXK ; ; Solution structure of discrepin, a scorpion venom toxin blocking K+ channels. 2JVU ; ; Solution Structure of Dispersin from Enteroaggregative Escherichia coli 6M6F ; ; Solution structure of disulfide bond mutaion of the core domain of Fibroblast growth factor 21 (FGF21) 2AF2 ; ; Solution structure of disulfide reduced and copper depleted Human Superoxide Dismutase 2KAP ; ; Solution structure of DLC1-SAM 1ZUF ; ; Solution Structure of DLP-4 1YNX ; ; Solution structure of DNA binding domain A (DBD-A) of S.cerevisiae Replication Protein A (RPA) 2K9S ; ; Solution structure of dna binding domain of E. coli arac 2JUH ; ; Solution structure of DNA binding domain of ngTRF1 2JXH ; ; Solution Structure of DNA binding domain of Proline Utilization A (PutA) for Psuedomonas putida 2KD9 ; ; Solution Structure of DNA Containing Alpha-OH-PdG: the Mutagenic Adduct Produced by Acrolein 2KDA ; ; Solution Structure of DNA Containing Alpha-OH-PdG: the Mutagenic Adduct Produced by Acrolein 1PIB ; ; Solution structure of DNA containing CPD opposited by GA 2RVP ; ; Solution structure of DNA Containing Metallo-Base-Pair 1AU6 ; ; SOLUTION STRUCTURE OF DNA D(CATGCATG) INTERSTRAND-CROSSLINKED BY BISPLATIN COMPOUND (1,1/T,T), NMR, MINIMIZED AVERAGE STRUCTURE 5IZP ; ; Solution Structure of DNA Dodecamer with 8-oxoguanine at 10th Position 5IV1 ; ; Solution Structure of DNA Dodecamer with 8-oxoguanine at 4th Position 7NBK ; ; Solution structure of DNA duplex containing a 2'-deoxy-2'2'-difluorodeoxycytidine (gemcitabine) modification 7NBP ; ; Solution structure of DNA duplex containing a 7,8-dihydro-8-oxo-1,N6-ethenoadenine base modification that induces exclusively A->T transversions in Escherichia coli 2MH6 ; ; Solution structure of DNA duplex containing N3T-ethylene-N1I interstrand cross-link 1JAJ ; ; Solution Structure of DNA Polymerase X from the African Swine Fever Virus 1NYD ; ; Solution structure of DNA quadruplex GCGGTGGAT 1F3S ; ; Solution Structure of DNA Sequence GGGTTCAGG Forms GGGG Tetrade and G(C-A) Triad. 1K9L ; ; Solution Structure of DNA TATGAGCGCTCATA 1HG9 ; ; Solution structure of DNA:RNA hybrid 7NBL ; ; Solution structure of DNA:RNA hybrid containing a 2'-deoxy-2'2'-difluorodeoxycytidine (gemcitabine) modification 7NEJ ; ; Solution structure of DNA:RNA hybrid duplex 2KEQ ; ; Solution structure of DnaE intein from Nostoc punctiforme 2KQ9 ; ; Solution structure of DnaK suppressor protein from Agrobacterium tumefaciens C58. Northeast Structural Genomics Consortium target AtT12/Ontario Center for Structural Proteomics Target atc0888 2MTE ; ; Solution structure of Doc48S 6TRP ; ; Solution Structure of Docking Domain Complex of Pax NRPS: PaxC NDD - PaxB CDD 6EWV ; ; Solution Structure of Docking Domain Complex of RXP NRPS: Kj12C NDD - Kj12B CDD 1YSX ; ; Solution structure of domain 3 from human serum albumin complexed to an anti-apoptotic ligand directed against Bcl-xL and Bcl-2 2FTU ; ; solution structure of domain 3 of RAP 1R2P ; ; Solution structure of domain 5 from the ai5(gamma) group II intron 2AHT ; ; Solution structure of domain 6 from the ai5(gamma)group II intron 2O2O ; ; Solution structure of domain B from human CIN85 PROTEIN 2RO2 ; ; Solution structure of domain I of the negative polarity CChMVd hammerhead ribozyme 2RPK ; ; Solution Structure of Domain II of the Positive Polarity CCHMVD Hammerhead Ribozyme 5OMZ ; ; Solution structure of domain III (DIII)of Zika virus Envelope protein 2L3U ; ; Solution Structure of Domain IV from the YbbR family protein of Desulfitobacterium hafniense: Northeast Structural Genomics Consortium target DhR29A 2MJA ; ; Solution Structure of Domain-Swapped GLPG 2ROP ; ; Solution structure of domains 3 and 4 of human ATP7B 6CUC ; ; Solution structure of double knot toxin (DkTx) 3K2S ; ; Solution structure of double super helix model 2LBS ; ; Solution structure of double-stranded RNA binding domain of S. cerevisiae RNase III (Rnt1p) in complex with AAGU tetraloop hairpin 1T4L ; ; Solution structure of double-stranded RNA binding domain of S. cerevisiae RNase III (Rnt1p) in complex with the 5' terminal RNA hairpin of snR47 precursor 2LUQ ; ; Solution structure of double-stranded RNA binding domain of S.cerevisiae RNase III (rnt1p) 2N3G ; ; Solution structure of DRB4 dsRBD1 (viz. DRB4(1-72)) 2N3H ; ; Solution structure of DRB4 dsRBD2 (viz. DRB4(81-151)) 1MYN ; ; SOLUTION STRUCTURE OF DROSOMYCIN, THE FIRST INDUCIBLE ANTIFUNGAL PROTEIN FROM INSECTS, NMR, 15 STRUCTURES 5NPG ; ; Solution structure of Drosophila melanogaster Loquacious dsRBD1 5NPA ; ; Solution structure of Drosophila melanogaster Loquacious dsRBD2 2K3K ; ; Solution structure of Drosophila melanogaster SNF RBD1 2AYM ; ; Solution Structure of Drosophila melanogaster SNF RBD2 2B0G ; ; Solution Structure of Drosophila melanogaster SNF RBD2 2E2F ; ; Solution structure of DSP 1X47 ; ; Solution structure of DSRM domain in DGCR8 protein 2DMY ; ; Solution structure of DSRM domain in Spermatid perinuclear RNA-bind protein 1UHZ ; ; Solution structure of dsRNA binding domain in Staufen homolog 2 2M2C ; ; Solution structure of Duplex DNA 2LWM ; ; Solution Structure of Duplex DNA Containing a b-Carba-Fapy-dG Lesion 2LWN ; ; Solution Structure of Duplex DNA Containing a b-Carba-Fapy-dG Lesion 2LWO ; ; Solution Structure of Duplex DNA Containing a b-Carba-Fapy-dG Lesion 2K1Y ; ; Solution Structure of Duplex DNA Containing the Mutagenic Lesion: 1,N2-Etheno-2'-deoxyguanine 2E8J ; ; Solution structure of dynein light chain 2A 1F95 ; ; SOLUTION STRUCTURE OF DYNEIN LIGHT CHAIN 8 (DLC8) AND BIM PEPTIDE COMPLEX 1F96 ; ; SOLUTION STRUCTURE OF DYNEIN LIGHT CHAIN 8 (DLC8) AND NNOS PEPTIDE COMPLEX 2AVX ; ; solution structure of E coli SdiA1-171 2JVV ; ; Solution Structure of E. coli NusG carboxyterminal domain 2KNQ ; ; Solution structure of E.Coli GspH 5WYO ; ; Solution structure of E.coli HdeA 1XN7 ; ; Solution Structure of E.Coli Protein yhgG: The Northeast Structural Genomics Consortium Target ET95 1XSG ; ; Solution structure of E.coli RNase P RNA P4 stem oligoribonucleotide, U69A mutation 1XSH ; ; Solution structure of E.coli RNase P RNA P4 stem oligoribonucleotide, U69C/C70U mutation 1XST ; ; Solution structure of E.coli RNase P RNA P4 stem, U69A mutation, complexed with cobalt (III) hexammine. 1XSU ; ; Solution structure of E.coli RNase P RNA P4 stem, U69C/C70U mutation, complexed with cobalt (III) hexammine. 2K8I ; ; Solution structure of E.Coli SlyD 1ECU ; ; SOLUTION STRUCTURE OF E2F BINDING DNA FRAGMENT GCGCGAAAC-T-GTTTCGCGC 2KRE ; ; Solution structure of E4B/UFD2A U-Box domain 2MQ9 ; ; Solution structure of E55Q mutant of eRF1 N-domain 2LNT ; ; Solution structure of E60A mutant AGR2 2K3X ; ; Solution structure of EAF3 chromo barrel domain 2K3Y ; ; Solution structure of EAF3 chromo barrel domain bound to histone h3 with a dimethyllysine analog H3K36ME2 2K6A ; ; Solution structure of EAS D15 truncation mutant 1JE3 ; ; Solution Structure of EC005 from Escherichia coli 2G3Q ; ; Solution Structure of Ede1 UBA-ubiquitin complex 2MVM ; ; Solution structure of eEF1Bdelta CAR domain 2MVN ; ; Solution structure of eEF1Bdelta CAR domain in TCTP-bound state 2KRB ; ; Solution structure of EIF3B-RRM bound to EIF3J peptide 4B6U ; ; Solution structure of eIF4E3 in complex with m7GDP 6JPP ; ; Solution structure of ELMO1 RBD 1V6R ; ; Solution Structure of Endothelin-1 with its C-terminal Folding 1ZTR ; ; Solution structure of Engrailed homeodomain L16A mutant 2JWT ; ; Solution structure of Engrailed homeodomain WT 2M2L ; ; Solution structure of Entamoeba histolytica HP1 chromodomain 2N4K ; ; Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by Enterococcus faecium M3K31 2KYR ; ; Solution structure of Enzyme IIB subunit of PTS system from Escherichia coli K12. Northeast Structural Genomics Consortium target ER315/Ontario Center for Structural Proteomics target ec0544 2EOT ; ; SOLUTION STRUCTURE OF EOTAXIN, AN ENSEMBLE OF 32 NMR SOLUTION STRUCTURES 1G2S ; ; SOLUTION STRUCTURE OF EOTAXIN-3 1G2T ; ; SOLUTION STRUCTURE OF EOTAXIN-3 2M9M ; ; Solution Structure of ERCC4 domain of human FAAP24 2LX9 ; ; Solution Structure of Escherichia coli Ferrous Iron transport protein A (FeoA) 1EY1 ; ; SOLUTION STRUCTURE OF ESCHERICHIA COLI NUSB 2MQE ; ; Solution structure of Escherichia coli Outer membrane protein A C-terminal domain 1XX3 ; ; Solution Structure of Escherichia coli TonB-CTD 1E52 ; ; Solution structure of Escherichia coli UvrB C-terminal domain 2RU1 ; ; Solution structure of esf3 2LEO ; ; Solution structure of esophageal cancer-related gene 2 2PP4 ; ; Solution Structure of ETO-TAFH refined in explicit solvent 2DAO ; ; Solution structure of ETS domain Transcriptional factor ETV6 protein 5W3G ; ; Solution Structure of ETS Transcription Factor PU.1 7MLL ; ; Solution structure of Exenatide (exendin-4) in 30-vol% trifluoroethanol using CS-Rosetta 1JRJ ; ; Solution structure of exendin-4 in 30-vol% trifluoroethanol 1R4T ; ; Solution structure of exoenzyme S 2KJD ; ; Solution structure of extended PDZ2 domain from NHERF1 (150-270) 2JT0 ; ; Solution structure of F104W cardiac troponin C 2JT3 ; ; Solution Structure of F153W cardiac troponin C 1IB7 ; ; SOLUTION STRUCTURE OF F35Y MUTANT OF RAT FERRO CYTOCHROME B5, A CONFORMATION, ENSEMBLE OF 20 STRUCTURES 2MWJ ; ; Solution structure of Family 1 Carbohydrate-Binding Module from Trichoderma reesei Cel7A with O-mannose residues at Thr1 and Ser3 2KCJ ; ; solution structure of FAPP1 PH domain 1KTM ; ; SOLUTION STRUCTURE OF FAT DOMAIN OF FOCAL ADHESION KINASE 2PAC ; ; SOLUTION STRUCTURE OF FE(II) CYTOCHROME C551 FROM PSEUDOMONAS AERUGINOSA AS DETERMINED BY TWO-DIMENSIONAL 1H NMR 2E45 ; ; Solution structure of Fe65 WW domain 2GCX ; ; Solution Structure of Ferrous Iron Transport Protein A (FeoA) of Klebsiella pneumoniae 2B9Z ; ; Solution structure of FHV B2, a viral suppressor of RNAi 1WK0 ; ; Solution structure of Fibronectin type III domain derived from human KIAA0970 protein 1WFU ; ; Solution structure of fibronectin type III domain of mouse hypothetical protein 2M5G ; ; Solution structure of FimA wt 2DAR ; ; Solution structure of first LIM domain of Enigma-like PDZ and LIM domains protein 2EEH ; ; Solution Structure of First PDZ domain of PDZ Domain Containing Protein 7 2JS2 ; ; Solution structure of first SH3 domain of adaptor Nck 2OFN ; ; Solution structure of FK506-binding domain (FKBD)of FKBP35 from Plasmodium falciparum 1FKR ; ; SOLUTION STRUCTURE OF FKBP, A ROTAMASE ENZYME AND RECEPTOR FOR FK506 AND RAPAMYCIN 1FKS ; ; SOLUTION STRUCTURE OF FKBP, A ROTAMASE ENZYME AND RECEPTOR FOR FK506 AND RAPAMYCIN 1FKT ; ; SOLUTION STRUCTURE OF FKBP, A ROTAMASE ENZYME AND RECEPTOR FOR FK506 AND RAPAMYCIN 1F40 ; ; SOLUTION STRUCTURE OF FKBP12 COMPLEXED WITH GPI-1046, A NEUROTROPHIC LIGAND 2LPV ; ; Solution Structure of FKBP12 from Aedes aegypti 2JNF ; ; Solution structure of fly troponin C, isoform F1 1VD7 ; ; Solution structure of FMBP-1 tandem repeat 1 1VD8 ; ; Solution structure of FMBP-1 tandem repeat 2 1VD9 ; ; Solution structure of FMBP-1 tandem repeat 3 1VDA ; ; Solution structure of FMBP-1 tandem repeat 4 1FMN ; ; SOLUTION STRUCTURE OF FMN-RNA APTAMER COMPLEX, NMR, 5 STRUCTURES 2RPJ ; ; Solution structure of Fn14 CRD domain 1UG7 ; ; Solution structure of four helical up-and-down bundle domain of the hypothetical protein 2610208M17Rik similar to the protein FLJ12806 2EEJ ; ; Solution Structure of Fourth PDZ domain of PDZ Domain Containing Protein 1 2AMN ; ; Solution structure of Fowlicidin-1, a novel Cathelicidin antimicrobial peptide from chicken 2K86 ; ; Solution Structure of FOXO3a Forkhead domain 1QYT ; ; Solution structure of fragment (25-35) of beta amyloid peptide in SDS micellar solution 1EMZ ; ; SOLUTION STRUCTURE OF FRAGMENT (350-370) OF THE TRANSMEMBRANE DOMAIN OF HEPATITIS C ENVELOPE GLYCOPROTEIN E1 2F05 ; ; Solution structure of free PAH2 domain of mSin3B 8HWU ; ; Solution structure of frog peptide LL-TIL 1FME ; ; SOLUTION STRUCTURE OF FSD-EY, A NOVEL PEPTIDE ASSUMING A BETA-BETA-ALPHA FOLD 6BUT ; ; Solution structure of full-length apo mammalian calmodulin bound to the IQ motif of the human voltage-gated sodium channel NaV1.2 1PM6 ; ; Solution Structure of Full-Length Excisionase (Xis) from Bacteriophage HK022 2KFW ; ; Solution structure of full-length SlyD from E.coli 2RMQ ; ; Solution structure of fully modified 4'-thioDNA with the sequence of d(CGCGAATTCGCG) 6GBM ; ; Solution structure of FUS-RRM bound to stem-loop RNA 6G99 ; ; Solution structure of FUS-ZnF bound to UGGUG 2LCW ; ; solution structure of FUS/TLS RRM domain 2RUM ; ; Solution structure of Fusion peptide 5ZEV ; ; Solution structure of G-quadruplex formed in vegfr-2 proximal promoter sequence 2N16 ; ; Solution structure of G-quadruplex recognition domain of RHAU 1HU6 ; ; SOLUTION STRUCTURE OF G10 NOVISPIRIN 1M9G ; ; Solution structure of G16A-MNEI, a structural mutant of single chain monellin MNEI 5Z2O ; ; solution structure of G2,7,13A SMAP-18 analogue 1CMZ ; ; SOLUTION STRUCTURE OF GAIP (GALPHA INTERACTING PROTEIN): A REGULATOR OF G PROTEIN SIGNALING 1GPS ; ; SOLUTION STRUCTURE OF GAMMA 1-H AND GAMMA 1-P THIONINS FROM BARLEY AND WHEAT ENDOSPERM DETERMINED BY 1H-NMR: A STRUCTURAL MOTIF COMMON TO TOXIC ARTHROPOD PROTEINS 1GPT ; ; SOLUTION STRUCTURE OF GAMMA 1-H AND GAMMA 1-P THIONINS FROM BARLEY AND WHEAT ENDOSPERM DETERMINED BY 1H-NMR: A STRUCTURAL MOTIF COMMON TO TOXIC ARTHROPOD PROTEINS 1MR6 ; ; Solution Structure of gamma-Bungarotoxin:Implication for the role of the Residues Adjacent to RGD in Integrin Binding 2KLJ ; ; Solution Structure of gammaD-Crystallin with RDC and SAXS 2M3C ; ; Solution Structure of gammaM7-Crystallin 7D2O ; ; Solution structure of Gaussia Luciferase by NMR 2RMM ; ; Solution structure of GB1 A34F mutant 2KLK ; ; Solution structure of GB1 A34F mutant with RDC and SAXS 2J52 ; ; Solution Structure of GB1 domain Protein G and low and high pressure. 2J53 ; ; Solution Structure of GB1 domain Protein G and low and high pressure. 2RPV ; ; Solution Structure of GB1 with LBT probe 2L5M ; ; Solution structure of GF-17 in complex with micelles 2OBU ; ; Solution structure of GIP in TFE/water 1T5Q ; ; Solution Structure of GIP(1-30)amide in TFE/Water 1RRZ ; ; Solution structure of GlgS protein from E. coli 5YNR ; ; Solution Structure of glia maturation factor from Caenorhabditis elegans 1V6F ; ; Solution Structure of Glia Maturation Factor-beta from Mus Musculus 1WFS ; ; Solution Structure of Glia Maturation Factor-gamma from Mus Musculus 2B5Q ; ; Solution structure of globular conformation of CMrVIA lambda conotoxin 1D0R ; ; SOLUTION STRUCTURE OF GLUCAGON-LIKE PEPTIDE-1-(7-36)-AMIDE IN TRIFLUOROETHANOL/WATER 2B4N ; ; Solution Structure of Glucose-Dependent Insulinotropic Polypeptide 2KLX ; ; Solution structure of glutaredoxin from Bartonella henselae str. Houston 2KHP ; ; Solution structure of Glutaredoxin from Brucella melitensis 2KUT ; ; Solution Structure of GmR58A from Geobacter metallireducens. Northeast Structural Genomics Consortium Target GmR58A 6MY1 ; ; Solution structure of gomesin at 278 K 6MY2 ; ; Solution structure of gomesin at 298 K 6MY3 ; ; Solution structure of gomesin at 310K 2WNM ; ; Solution structure of Gp2 2LSM ; ; Solution structure of gpFI C-terminal domain 2LCF ; ; Solution structure of GppNHp-bound H-RasT35S mutant protein 1MSG ; ; SOLUTION STRUCTURE OF GRO(SLASH)MELANOMA GROWTH STIMULATORY ACTIVITY DETERMINED BY 1H NMR SPECTROSCOPY 1MSH ; ; SOLUTION STRUCTURE OF GRO(SLASH)MELANOMA GROWTH STIMULATORY ACTIVITY DETERMINED BY 1H NMR SPECTROSCOPY 1GRU ; 12.5 ; SOLUTION STRUCTURE OF GROES-ADP7-GROEL-ATP7 COMPLEX BY CRYO-EM 2EQH ; ; Solution structure of growth-blocking peptide of the armyworm, Pseudaletia separata 2EQQ ; ; Solution structure of growth-blocking peptide of the armyworm, Pseudaletia separata 2DJ9 ; ; Solution structure of growth-blocking peptide of the cabbage armyworm, Mamestra brassicae 2DJC ; ; Solution structure of growth-blocking peptide of the tobacco cutworm, Spodoptera litura 1YKA ; ; Solution structure of Grx4, a monothiol glutaredoxin from E. coli. 2KY3 ; ; Solution structure of GS-alfa-Ktx5.4 synthetic scorpion like 1LU8 ; ; Solution structure of GsMTx-4 2K4K ; ; Solution structure of GSP13 from Bacillus subtilis 2LNV ; ; Solution structure of GspC-HR of typeII secretion system 2KL1 ; ; Solution structure of GtR34C from Geobacillus thermodenitrificans. Northeast Structural Genomics Consortium Target GtR34C 2WH9 ; ; Solution structure of GxTX-1E 5ZC6 ; ; Solution structure of H-RasT35S mutant protein in complex with KBFM123 2LWI ; ; Solution structure of H-RasT35S mutant protein in complex with Kobe2601 1WJF ; ; SOLUTION STRUCTURE OF H12C MUTANT OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE COMPLEXED TO CADMIUM, NMR, 40 STRUCTURES 1WJE ; ; SOLUTION STRUCTURE OF H12C MUTANT OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE COMPLEXED TO CADMIUM, NMR, MINIMIZED AVERAGE STRUCTURE 1D1H ; ; SOLUTION STRUCTURE OF HANATOXIN 1 2KBQ ; ; Solution structure of harmonin N terminal domain 2LSR ; ; Solution structure of harmonin N terminal domain in complex with a exon68 encoded peptide of cadherin23 2KBR ; ; Solution structure of harmonin N terminal domain in complex with a internal peptide of cadherin23 2KBS ; ; Solution structure of harmonin PDZ2 in complex with the carboxyl tail peptide of cadherin23 5Y7L ; ; Solution structure of Hbeta4 extracellular loop of BK potassium channel 1S5R ; ; Solution Structure of HBP1 SID-mSin3A PAH2 Complex 1UFZ ; ; Solution structure of HBS1-like domain in hypothetical protein BAB28515 1P5O ; ; Solution Structure of HCV IRES Domain II 1P5P ; ; Solution Structure of HCV IRES Domain II (minimized average structure) 1P5M ; ; Solution Structure of HCV IRES Domain IIa 1P5N ; ; Solution Structure of HCV IRES Domain IIb 1F84 ; ; SOLUTION STRUCTURE OF HCV IRES RNA DOMAIN IIID 1F85 ; ; SOLUTION STRUCTURE OF HCV IRES RNA DOMAIN IIIE 2KDR ; ; Solution structure of HCV NS4B(227-254) 2K8J ; ; Solution structure of HCV p7 tm2 2HDP ; ; Solution Structure of Hdm2 RING Finger Domain 2M86 ; ; Solution structure of Hdm2 with engineered cyclotide 2KR7 ; ; solution structure of Helicobacter pylori SlyD 1JUR ; ; Solution Structure of Helix III in Xenopus Oocyte 5S rRNA. 2LV0 ; ; Solution Structure of Helix-35 Stem-loop from E. coli 23S rRNA 2LDR ; ; Solution structure of Helix-RING domain of Cbl-b in the Tyr363 phosphorylated form 2LVJ ; ; solution structure of hemi-Mg-bound Phl p 7 1JW2 ; ; SOLUTION STRUCTURE OF HEMOLYSIN EXPRESSION MODULATING PROTEIN Hha FROM ESCHERICHIA COLI. Ontario Centre for Structural Proteomics target EC0308_1_72; Northeast Structural Genomics Target ET88 3IRI ; ; Solution Structure of Heparin dp18 3IRJ ; ; Solution Structure of Heparin dp24 3IRK ; ; Solution Structure of Heparin dp30 3IRL ; ; Solution Structure of Heparin dp36 1M4E ; ; Solution Structure of Hepcidin-20 1M4F ; ; Solution Structure of Hepcidin-25 1NE5 ; ; Solution Structure of HERG Specific Scorpion Toxin CnErg1 1J5J ; ; Solution structure of HERG-specific scorpion toxin BeKm-1 1LGL ; ; Solution structure of HERG-specific scorpion toxin BeKm-1 5X9X ; ; Solution structure of heterodimeric coiled-coil domain of Drosophila GABAB receptor 1 and 2 5GWM ; ; Solution structure of heterodimeric coiled-coil domain of Drosophila GABAB receptor 1 and 3 5IPO ; ; Solution Structure of Hge36: Scorpine-like Peptide from Hadrurus Gertschi 5JYH ; ; Solution Structure of Hge36: Scorpine-like Peptide from Hadrurus Gertschi 1IMU ; ; Solution Structure of HI0257, a Ribosome Binding Protein 1J7H ; ; Solution Structure of HI0719, a Hypothetical Protein From Haemophilus Influenzae 2OUT ; ; Solution Structure of HI1506, a Novel Two Domain Protein from Haemophilus influenzae 6L7K ; ; solution structure of hIFABP V60C/Y70C variant. 2KAA ; ; Solution Structure of Hirsutellin A from Hirsutella thompsonii 1QR5 ; ; SOLUTION STRUCTURE OF HISTIDINE CONTAINING PROTEIN (HPR) FROM STAPHYLOCOCCUS CARNOSUS 2LD6 ; ; Solution Structure of Histidine Phosphotransfer Domain of CheA 2PJV ; ; solution structure of hiv-1 gp41 fusion domain bound to DPC micelle 6B3U ; ; Solution Structure of HIV-1 GP41 Transmembrane Domain in Bicelles 2H3Q ; ; Solution structure of HIV-1 myrMA bound to di-C4-phosphatidylinositol-(4,5)-bisphosphate 484D ; ; SOLUTION STRUCTURE OF HIV-1 REV PEPTIDE-RNA APTAMER COMPLEX 1N8X ; ; Solution structure of HIV-1 Stem Loop SL1 6MCE ; ; Solution structure of HIV-1 TAR with Tat RNA Binding Domain 1FI0 ; ; SOLUTION STRUCTURE OF HIV-1 VPR (13-33) PEPTIDE IN MICELLS 1JTJ ; ; Solution structure of HIV-1Lai mutated SL1 hairpin 2K4I ; ; Solution structure of HIV-2 myrMA bound to di-C4-PI(4,5)P2 1L8Y ; ; Solution structure of HMG box 5 in human upstream binding factor 1L8Z ; ; Solution structure of HMG box 5 in human upstream binding factor 2AUV ; ; Solution Structure of HndAc : A Thioredoxin-like [2Fe-2S] Ferredoxin Involved in the NADP-reducing Hydrogenase Complex 1S7E ; ; Solution structure of HNF-6 2MXY ; ; Solution structure of hnRNP C RRM in complex with 5'-AUUUUUC-3' RNA 2MZ1 ; ; Solution structure of hnRNP C RRM in complex with 5'-UUUUC-3' RNA 2MB0 ; ; Solution structure of hnRNP G RRM in complex with the RNA 5'-AUCAAA-3' 8GSA ; ; Solution structure of holo acyl carrier protein A from Enterococcus faecalis 6LVT ; ; Solution structure of holo acyl carrier protein from Thermotoga maritima 2N6Y ; ; Solution structure of holo ArCP from yersiniabactin synthetase 2M5R ; ; Solution structure of holo-acyl carrier protein of Leishmania major 2BDO ; ; SOLUTION STRUCTURE OF HOLO-BIOTINYL DOMAIN FROM ACETYL COENZYME A CARBOXYLASE OF ESCHERICHIA COLI DETERMINED BY TRIPLE-RESONANCE NMR SPECTROSCOPY 1O5P ; ; Solution Structure of holo-Neocarzinostatin 2MT9 ; ; Solution structure of holo_FldB 1WH7 ; ; Solution structure of homeobox domain of Arabidopsis thaliana hypothetical protein F22K18.140 1WH5 ; ; Solution structure of homeobox domain of Arabidopsisthaliana zinc finger homeobox family protein 7YB4 ; ; Solution structure of homeodomain of EXTRADENTICLE 7YWQ ; ; Solution structure of homodimeric Capsid protein (residues 17-95) of Tick-borne encephalitis virus (d16-TBEVC) 1HLY ; ; SOLUTION STRUCTURE OF HONGOTOXIN 1 2MSY ; ; Solution structure of Hox homeodomain 2MX0 ; ; Solution structure of HP0268 from Helicobacter pylori 1ZHC ; ; Solution structure of HP1242 from Helicobacter pylori 2LXR ; ; Solution structure of HP1264 from Helicobacter pylori 2EVQ ; ; Solution structure of HP7, a 12-residue beta hairpin 2JX8 ; ; Solution structure of hPCIF1 WW domain 2F65 ; ; Solution structure of HPPK in complex with inhibitor analog AMPCPP 2F63 ; ; Solution structure of HPPK in complex with inhibitor analogs AMPCPP and HP-1 1EMX ; ; SOLUTION STRUCTURE OF HPTX2, A TOXIN FROM HETEROPODA VENATORIA SPIDER VENOM THAT BLOCKS KV4.2 POTASSIUM CHANNEL 2MA1 ; ; Solution structure of HRDC1 domain of RecQ helicase from Deinococcus radiodurans 1Y2P ; ; Solution structure of Hstx3P 1EXY ; ; SOLUTION STRUCTURE OF HTLV-1 PEPTIDE BOUND TO ITS RNA APTAMER TARGET 1QRJ ; ; Solution structure of htlv-i capsid protein 2L97 ; ; Solution structure of HtrA PDZ domain from Streptococcus pneumoniae 2LVM ; ; Solution structure of human 53BP1 tandem Tudor domains in complex with a histone H4K20me2 peptide 2RQ9 ; ; Solution structure of human acidic fibroblast growth factor (aFGF) in the presence of a protein stabilizer NDSB-new 2K8R ; ; Solution structure of human acidic fibroblast growth factor in complex with anti-angiogenic drug inositol hexaphosphate (IP6) 7X7S ; ; Solution structure of human adenylate kinase 1 (hAK1) 7DME ; ; Solution structure of human Aha1 7DMD ; ; Solution structure of human Aha1 N-terminal domain 1RK9 ; ; Solution Structure of Human alpha-Parvalbumin (Minimized Average Structure) 1RJV ; ; Solution Structure of Human alpha-Parvalbumin refined with a paramagnetism-based strategy 2L67 ; ; Solution Structure of Human Apo L-FABP 2GVP ; ; Solution structure of Human apo Sco1 2LLS ; ; solution structure of human apo-S100A1 C85M 2L0P ; ; Solution structure of human apo-S100A1 protein by NMR spectroscopy 8BFG ; ; Solution structure of human apo/Calmodulin G113R (G114R) 2RN9 ; ; Solution structure of human apoCox17 1JFN ; ; SOLUTION STRUCTURE OF HUMAN APOLIPOPROTEIN(A) KRINGLE IV TYPE 6 2EZZ ; ; SOLUTION STRUCTURE OF HUMAN BARRIER-TO-AUTOINTEGRATION FACTOR BAF NMR, ENSEMBLE OF 20 SIMULATED ANNEALING STRUCTURES 2EZY ; ; SOLUTION STRUCTURE OF HUMAN BARRIER-TO-AUTOINTEGRATION FACTOR BAF, NMR, ENSEMBLE OF 20 SIMULATED ANNEALING STRUCTURES 2EZX ; ; SOLUTION STRUCTURE OF HUMAN BARRIER-TO-AUTOINTEGRATION FACTOR BAF, NMR, REGULARIZED MEAN STRUCTURE 1QCK ; ; SOLUTION STRUCTURE OF HUMAN BARRIER-TO-AUTOINTEGRATION FACTOR BAF, NMR, REGULARIZED MEAN STRUCTURE PLUS 20 INDIVIDUAL SIMULATED ANNEALING STRUCTURES 1MK3 ; ; SOLUTION STRUCTURE OF HUMAN BCL-W PROTEIN 1TTX ; ; Solution Structure of human beta parvalbumin (oncomodulin) refined with a paramagnetism based strategy 1KJ5 ; ; Solution Structure of Human beta-defensin 1 1KJ6 ; ; Solution Structure of Human beta-Defensin 3 1FQQ ; ; SOLUTION STRUCTURE OF HUMAN BETA-DEFENSIN-2 2IZ3 ; ; Solution structure of human beta-microseminoprotein 2H60 ; ; Solution Structure of Human Brg1 Bromodomain 2LS8 ; ; Solution structure of human C-type lectin domain family 4 member D 2MRD ; ; Solution structure of human Ca2+-loaded S100A4 cys-free mutant 5I8N ; ; Solution Structure of human calcium-binding S100A9 (C3S) protein 6NL3 ; ; Solution structure of human Coa6 1TMW ; ; Solution structure of Human Coactosin Like Protein D123N 3GAV ; ; Solution structure of Human Complement Factor H in 137 mM NaCl buffer 3GAW ; ; Solution structure of Human Complement Factor H in 250 mM NaCl buffer 3GAU ; ; Solution structure of Human Complement Factor H in 50 mM NaCl buffer 2GT6 ; ; Solution structure of Human Cu(I) Sco1 2GQM ; ; Solution structure of Human Cu(I)-Sco1 2RNB ; ; Solution structure of human Cu(I)Cox17 2JR7 ; ; Solution structure of human DESR1 1YHO ; ; Solution structure of human dihydrofolate reductase complexed with trimethoprim and nadph, 25 structures 2QTJ ; ; Solution structure of human dimeric immunoglobulin A 5MS9 ; ; Solution structure of Human Fibrillin-1 EGF2-EGF3-Hybrid1-cbEGF1 four domain fragment 2MPH ; ; Solution Structure of human FK506 binding Protein 25 2RSV ; ; Solution structure of human full-length vaccinia related kinase 1 (VRK1) 1KOT ; ; Solution Structure of Human GABA Receptor Associated Protein GABARAP 5H3M ; ; Solution structure of human Gelsolin protein domain 1 at pH 5.0 5H3N ; ; Solution structure of human Gelsolin protein domain 1 at pH 7.3 1G5W ; ; SOLUTION STRUCTURE OF HUMAN HEART-TYPE FATTY ACID BINDING PROTEIN 2L68 ; ; Solution Structure of Human Holo L-FABP 2MBC ; ; Solution Structure of human holo-PRL-3 in complex with vanadate 2L2O ; ; Solution structure of human HSPC280 protein 1IJZ ; ; Solution Structure of Human IL-13 1IK0 ; ; Solution Structure of Human IL-13 2EC7 ; ; Solution Structure of Human Immunodificiency Virus Type-2 Nucleocapsid Protein 2RCJ ; ; Solution structure of human Immunoglobulin M 2MVC ; ; Solution structure of human insulin at pH 1.9 2GF1 ; ; SOLUTION STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR 1: A NUCLEAR MAGNETIC RESONANCE AND RESTRAINED MOLECULAR DYNAMICS STUDY 3GF1 ; ; SOLUTION STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR 1: A NUCLEAR MAGNETIC RESONANCE AND RESTRAINED MOLECULAR DYNAMICS STUDY 1IGL ; ; SOLUTION STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR II RELATIONSHIP TO RECEPTOR AND BINDING PROTEIN INTERACTIONS 2KBC ; ; Solution structure of human insulin-like peptide 5 (INSL5) 2KKI ; ; Solution structure of human Interleukin 1a 1IRP ; ; SOLUTION STRUCTURE OF HUMAN INTERLEUKIN-1 RECEPTOR ANTAGONIST PROTEIN 2OQP ; ; Solution structure of human interleukin-21 2KLL ; ; Solution structure of human interleukin-33 7OX6 ; ; Solution structure of human interleukin-9 1KZW ; ; Solution structure of Human Intestinal Fatty acid binding protein 1KZX ; ; Solution structure of human intestinal fatty acid binding protein with a naturally-occurring single amino acid substitution (A54T) 2L6L ; ; Solution structure of human J-protein co-chaperone, Dph4 1R21 ; ; Solution Structure of human Ki67 FHA Domain 2L1Q ; ; Solution structure of human Liver Expressed Antimicrobial Peptide 2 2PY1 ; ; Solution structure of human liver fatty acid binding protein 2LMF ; ; Solution structure of human LL-23 bound to membrane-mimetic micelles 1J8I ; ; Solution Structure of Human Lymphotactin 1J9O ; ; SOLUTION STRUCTURE OF HUMAN LYMPHOTACTIN 2Z2D ; ; Solution structure of human macrophage elastase (MMP-12) catalytic domain complexed with a gamma-keto butanoic acid inhibitor 4D4W ; ; Solution structure of human MBD1 CXXC1 domain 2KBW ; ; Solution Structure of human Mcl-1 complexed with human Bid_BH3 peptide 2PPH ; ; solution structure of human MEKK3 PB1 domain 2JRH ; ; Solution structure of human MEKK3 PB1 domain cis isomer 1PC2 ; ; Solution structure of human mitochondria fission protein Fis1 5YFG ; ; SOLUTION STRUCTURE OF HUMAN MOG1 1FWQ ; ; SOLUTION STRUCTURE OF HUMAN MSS4, A GUANINE NUCLEOTIDE EXCHANGE FACTOR FOR RAB PROTEINS 6O6W ; ; Solution structure of human myeloid-derived growth factor 6E5N ; ; Solution structure of human Myosin VI isoform 3 (1050-1131) in complex with Clathrin light chain a (46-61) 2N12 ; ; Solution structure of human Myosin VI isoform3 (1050-1131) 2N11 ; ; Solution structure of human Myosin VI isoform3 (998-1071) 2JVX ; ; Solution Structure of human NEMO zinc finger 2GQK ; ; Solution structure of Human Ni(II)-Sco1 2GQL ; ; Solution structure of Human Ni(II)-Sco1 2H35 ; ; Solution structure of Human normal adult hemoglobin 2MWC ; ; Solution structure of human obscurin Ig58 1TR4 ; ; Solution structure of human oncogenic protein gankyrin 1R02 ; ; Solution structure of Human Orexin-A:Regulator of Appetite and Wakefulness 1V66 ; ; Solution structure of human p53 binding domain of PIAS-1 2FEJ ; ; Solution structure of human p53 DNA binding domain. 2HP8 ; ; SOLUTION STRUCTURE OF HUMAN P8-MTCP1, A CYSTEINE-RICH PROTEIN ENCODED BY THE MTCP1 ONCOGENE,REVEALS A NEW ALPHA-HELICAL ASSEMBLY MOTIF, NMR, 30 STRUCTURES 1HP8 ; ; SOLUTION STRUCTURE OF HUMAN P8-MTCP1, A CYSTEINE-RICH PROTEIN ENCODED BY THE MTCP1 ONCOGENE,REVEALS A NEW ALPHA-HELICAL ASSEMBLY MOTIF, NMR, MINIMIZED AVERAGE STRUCTURE 2K11 ; ; Solution structure of human pancreatic ribonuclease 2K27 ; ; Solution structure of Human Pax8 Paired Box Domain 2LDM ; ; Solution structure of human PHF20 Tudor2 domain bound to a p53 segment containing a dimethyllysine analog p53K370me2 2AI6 ; ; Solution structure of human phosphohistidine phosphatase 1 2OZX ; ; Solution structure of human phosphohistidine phosphatase 1 in phosphate free form 2OZW ; ; Solution structure of human phosphohistidine phosphatase 1 with phosphate ligand 1NMV ; ; Solution structure of human Pin1 2RUR ; ; Solution structure of Human Pin1 PPIase C113S mutant 2RUQ ; ; solution structure of human Pin1 PPIase mutant C113A 2L0S ; ; Solution Structure of Human Plasminogen Kringle 3 1R6H ; ; Solution Structure of human PRL-3 1O8R ; ; Solution structure of human proguanylin 1T0C ; ; Solution Structure of Human Proinsulin C-Peptide 1RW5 ; ; Solution structure of human prolactin 2L8R ; ; Solution structure of human protein C6orf130 in complex with ADP-ribose 2LGR ; ; Solution structure of human protein C6orf130, a putative macro domain 2DF0 ; ; Solution structure of human PYY3-36 2FHW ; ; Solution structure of human relaxin-3 4BEH ; ; Solution structure of human ribosomal protein P1.P2 heterodimer 7VB2 ; ; Solution structure of human ribosomal protein uL11 2LUC ; ; Solution Structure of human S100 calcium-binding protein A11 2HDE ; ; Solution Structure of Human SAP18 2KOL ; ; Solution structure of human SDF1-alpha H25R 2OCW ; ; Solution structure of human secretory component 3CHN ; ; Solution structure of human secretory IgA1 1RL1 ; ; Solution structure of human Sgt1 CS domain 3CM9 ; ; Solution Structure of Human SIgA2 2AWT ; ; Solution Structure of Human Small Ubiquitin-Like Modifier Protein Isoform 2 (SUMO-2) 2KRG ; ; Solution Structure of human sodium/ hydrogen exchange regulatory factor 1(150-358) 2ETT ; ; Solution Structure of Human Sorting Nexin 22 PX Domain 2LEA ; ; Solution structure of human SRSF2 (SC35) RRM 2LEB ; ; Solution structure of human SRSF2 (SC35) RRM in complex with 5'-UCCAGU-3' 2LEC ; ; Solution structure of human SRSF2 (SC35) RRM in complex with 5'-UGGAGU-3' 2KT0 ; ; Solution structure of human stem cell transcription factor Nanog homeodomain fragment 7WH3 ; ; Solution structure of human stomatin SPFH domain in a phosphate buffer 1YZS ; ; Solution structure of human sulfiredoxin (srx) 2B6F ; ; Solution structure of human sulfiredoxin (SRX) 1WZ0 ; ; Solution Structure of Human SUMO-2 (SMT3B), a Ubiquitin-like Protein 1U4A ; ; Solution structure of human SUMO-3 C47S 2N1V ; ; Solution structure of human SUMO1 2N1W ; ; Solution structure of human SUMO2 2K6M ; ; Solution Structure of Human Supervillin Headpiece 2K6N ; ; Solution Structure of Human Supervillin Headpiece, Minimized Average 1XOX ; ; SOLUTION STRUCTURE OF HUMAN SURVIVIN 1DL6 ; ; SOLUTION STRUCTURE OF HUMAN TFIIB N-TERMINAL DOMAIN 1B4Q ; ; Solution structure of human thioltransferase complex with glutathione 2HR9 ; ; Solution structure of human translationally controlled tumor protein 1VF9 ; ; Solution Structure Of Human Trf2 2Y4W ; ; Solution structure of human ubiquitin conjugating enzyme Rad6b 2KLY ; ; Solution structure of human ubiquitin conjugating enzyme Ube2g2 2YUJ ; ; Solution structure of human ubiquitin fusion degradation protein 1 homolog UFD1 5ZD0 ; ; Solution structure of human ubiquitin with three alanine mutations in living eukaryotic cells by in-cell NMR spectroscopy 2KDB ; ; Solution Structure of human ubiquitin-like domain of Herpud2_9_85, Northeast Structural Genomics Consortium (NESG) target HT53A 2KUL ; ; Solution structure of human vaccinia related kinase 1(VRK1) 2KTY ; ; Solution Structure of human Vaccinia Related Kinase-1 2K4T ; ; Solution structure of human VDAC-1 in LDAO micelles 2HF6 ; ; Solution structure of human zeta-COP 2KOM ; ; Solution structure of humar Par-3b PDZ2 (residues 451-549) 1QK6 ; ; Solution structure of huwentoxin-I by NMR 2KC5 ; ; Solution Structure of HybE from Escherichia coli 1S6W ; ; Solution Structure of hybrid white striped bass hepcidin 2KDX ; ; Solution structure of HypA protein 2OT2 ; ; Solution Structure of HypC 1Q53 ; ; SOLUTION STRUCTURE OF HYPOTHETICAL ARABIDOPSIS THALIANA PROTEIN AT3G17210. CENTER FOR EUKARYOTIC STRUCTURAL GENOMICS TARGET 13081 1WJK ; ; Solution structure of hypothetical protein C330018D20Rik from Mus musculus 1WJJ ; ; Solution structure of hypothetical protein F20O9.120 from Arabidopsis thaliana 1EO1 ; ; Solution structure of hypothetical protein MTH1175 from Methanobacterium thermoautotrophicum 1EIW ; ; Solution structure of hypothetical protein MTH538 from Methanobacterium thermoautotrophicum 2H9Z ; ; Solution structure of hypothetical protein, HP0495 from Helicobacter pylori 2K6P ; ; Solution Structure of hypothetical protein, HP1423 2M48 ; ; Solution Structure of IBR-RING2 Tandem Domain from Parkin 1DGN ; ; SOLUTION STRUCTURE OF ICEBERG, AN INHIBITOR OF INTERLEUKIN-1BETA GENERATION 1ZYI ; ; Solution structure of ICLN, a multifunctional protein involved in regulatory mechanisms as different as cell volume regulation and rna splicing 6JHD ; ; Solution structure of IFN alpha8 2K3T ; ; Solution Structure of IG-Like Domain 23 from Human Filamin A 1ZFL ; ; Solution structure of III-A, the major intermediate in the oxidative folding of leech carboxypeptidase inhibitor 2L5X ; ; Solution structure of IL1A-S100A13 complex 2KBX ; ; Solution structure of ILK-PINCH complex 1UFG ; ; Solution structure of immunoglobulin like domain of mouse nuclear lamin 1IE6 ; ; SOLUTION STRUCTURE OF IMPERATOXIN A 2LA8 ; ; Solution structure of INAD PDZ5 complexed with Kon-tiki peptide 1MFY ; ; SOLUTION STRUCTURE OF INFLUENZA A VIRUS C4 PROMOTER 1JO7 ; ; Solution Structure of Influenza A Virus Promoter 1V91 ; ; Solution structure of insectidal toxin delta-paluIT2-NH2 2H8B ; ; Solution structure of INSL3 2K8O ; ; Solution structure of integrin Alpha L 5ZAZ ; ; Solution structure of integrin b2 monomer tranmembrane domain in bicelle 2KMQ ; ; Solution structure of intermediate IIb of Leech-derived tryptase inhibitor, LDTI. 2KMR ; ; Solution structure of intermediate IIc of Leech-derived tryptase inhibitor, LDTI. 2KMP ; ; Solution structure of intermeidate IIa of Leeck-derived tryptase inhibitor, LDTI. 2RUO ; ; Solution Structure of Internal Fusion Peptide 1EDS ; ; SOLUTION STRUCTURE OF INTRADISKAL LOOP 1 OF BOVINE RHODOPSIN (RHODOPSIN RESIDUES 92-123) 1AU5 ; ; SOLUTION STRUCTURE OF INTRASTRAND CISPLATIN-CROSSLINKED DNA OCTAMER D(CCTG*G*TCC):D(GGACCAGG), NMR, MINIMIZED AVERAGE STRUCTURE 2JUB ; ; Solution structure of IPI* 2K5I ; ; SOLUTION STRUCTURE OF IRON(II) TRANSPORT PROTEIN A FROM CLOSTRIDIUM THERMOCELLUM , NORTHEAST STRUCTURAL GENOMICS CONSORTIUM (NESG) TARGET VR131 1XJS ; ; Solution structure of Iron-Sulfur cluster assembly protein IscU from Bacillus subtilis, with Zinc bound at the active site. Northeast Structural Genomics Consortium Target SR17 2AZH ; ; Solution structure of iron-sulfur cluster assembly protein SUFU from Bacillus subtilis, with zinc bound at the active site. Northeast Structural Genomics Consortium target SR17 1WFZ ; ; Solution structure of Iron-sulfur cluster protein U (IscU) 2RSX ; ; Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis 5M0A ; ; Solution structure of isolated 15th Fibronectin III domain from human fibronectin 7PJ1 ; ; Solution structure of isolated Drosophila histone H2A-H2B heterodimer 1X4T ; ; Solution structure of Isy1 domain in hypothetical protein 1SZY ; ; Solution structure of ITALY1 (""Initiator tRNA Anticodon Loop from Yeast""), an unmodified 21-nt RNA with the sequence of the anticodon stem-loop of yeast initiator tRNA 2CTP ; ; Solution structure of J-domain from human DnaJ subfamily B menber 12 2CTR ; ; Solution structure of J-domain from human DnaJ subfamily B menber 9 2CTQ ; ; Solution structure of J-domain from human DnaJ subfamily C menber 12 2CTW ; ; Solution structure of J-domain from mouse DnaJ subfamily C menber 5 2DN9 ; ; Solution structure of J-domain from the DnaJ homolog, human Tid1 protein 8S9E ; ; Solution structure of jarastatin (rJast), a disintegrin from Bothrops jararaca 2KGG ; ; Solution Structure of JARID1A C-terminal PHD finger 2KGI ; ; Solution structure of JARID1A C-terminal PHD finger in complex with H3(1-9)K4me3 2W9O ; ; Solution structure of jerdostatin from Trimeresurus jerdonii 2W9V ; ; Solution structure of jerdostatin from Trimeresurus jerdonii with end C-terminal residues N45G46 deleted 2W9U ; ; Solution structure of jerdostatin mutant R24K from Trimeresurus jerdonii 2W9W ; ; Solution structure of jerdostatin mutant R24K from Trimeresurus jerdonii with end C-terminal residues N45G46 deleted 2I1T ; ; Solution structure of Jingzhaotoxin-III, a novel toxin inhibiting both Nav and Kv channels 1ZJQ ; ; Solution structure of Jingzhaotoxin-VII 2AAP ; ; Solution structure of jingzhaotoxin-vii 2RQF ; ; Solution structure of juvenile hormone binding protein from silkworm in complex with JH III 2N9Z ; ; Solution structure of K1 lobe of double-knot toxin 2KE6 ; ; Solution Structure of K10 TLS RNA 2KUW ; ; Solution Structure of K10 TLS RNA (A-form mutant in lower helix) 2KUR ; ; Solution Structure of K10 TLS RNA (AU mutant in upper helix) 2KUV ; ; Solution Structure of K10 TLS RNA (GC mutant in lower helix) 2KUU ; ; Solution Structure of K10 TLS RNA (GC mutant in upper helix) 2NAJ ; ; Solution structure of K2 lobe of double-knot toxin 2KVX ; ; Solution structure of kalata B12 2MN1 ; ; Solution Structure of kalata B1[W23WW] 2M9O ; ; Solution structure of kalata B7 2B38 ; ; Solution structure of kalata B8 5WLX ; ; Solution structure of kappa-theraphotoxin-Aa1a 1X4M ; ; Solution structure of KH domain in Far upstream element binding protein 1 1X4N ; ; Solution structure of KH domain in FUSE binding protein 1 1WE8 ; ; Solution structure of KH domain in protein BAB28342 1UL7 ; ; Solution structure of kinase associated domain 1 of mouse MAP/microtubule affinity-regulating kinase 3 1V5S ; ; Solution structure of kinase associated domain 1 of mouse MAP/microtubule affinity-regulating kinase 3 2LIF ; ; Solution Structure of KKGF 1Z09 ; ; Solution structure of km23 2MY5 ; ; Solution Structure of KstB-PCP in kosinostatin biosynthesis 5WPX ; ; Solution Structure of KstB-PCP loaded with nicotinic acid in kosinostatin biosynthesis 5WPY ; ; Solution Structure of KstB-PCP loaded with nicotinic acid in kosinostatin biosynthesis 6BZK ; ; Solution structure of KTI55 6UZ5 ; ; Solution structure of KTI55-Kringle 2 complex 2M01 ; ; Solution structure of Kunitz-type neurotoxin LmKKT-1a from scorpion venom 1T1T ; ; Solution Structure of Kurtoxin 2NAU ; ; Solution structure of KYE28A in lipopolysachharide 2LF1 ; ; Solution structure of L. casei dihydrofolate reductase complexed with NADPH, 30 structures 2HQP ; ; Solution structure of L.casei dihydrofolate reductase complexed with NADPH, 32 structures 2KLM ; ; Solution Structure of L11 with SAXS and RDC 2NV3 ; ; Solution structure of L8A mutant of HIV-1 myristoylated matrix protein 2LGP ; ; Solution structure of LA45 from LDLR 1JAA ; ; Solution structure of lactam analogue (DapE) of HIV gp41 600-612 loop. 1JAR ; ; Solution structure of lactam analogue (DDab)of HIV gp41 600-612 loop. 1JC8 ; ; Solution structure of lactam analogue (DDap) of gp41 600-612 loop of HIV 1JDK ; ; solution structure of lactam analogue (EDap) of HIV gp41 600-612 loop. 1JD8 ; ; Solution structure of lactam analogue DapD of HIV gp41 600-612 loop 1D0W ; ; SOLUTION STRUCTURE OF LACTAM-BRIDGED C-TERMINAL ANALOGUE-I OF NEUROPEPTIDE Y 1D1E ; ; SOLUTION STRUCTURE OF LACTAM-BRIDGED C-TERMINAL ANALOGUE-II OF NEUROPEPTIDE Y 1D1F ; ; SOLUTION STRUCTURE OF LACTAM-BRIDGED C-TERMINAL ANALOGUE-III OF NEUROPEPTIDE Y 2N8P ; ; Solution Structure of Lacticin Q 2L28 ; ; Solution structure of lactobacillus casei dihydrofolate reductase apo-form, 25 conformers 2MK1 ; ; Solution structure of Lactodifucotetraose (LDFT) beta anomer 2L99 ; ; Solution structure of LAK160-P10 2L9A ; ; Solution structure of LAK160-P12 2L96 ; ; Solution structure of LAK160-P7 7K1Q ; ; Solution structure of lantibiotic from Paenibacillus sp. 2OMJ ; ; solution structure of LARG PDZ domain 2OS6 ; ; Solution structure of LARG PDZ domain in complex with C-terminal octa-peptide of Plexin B1 3ZPM ; ; Solution structure of latherin 2N93 ; ; Solution structure of lcFABP 2B9K ; ; Solution structure of LCI, an AMP from Bacillus subtilis 1WK1 ; ; Solution structure of Lectin C-type domain derived from a hypothetical protein from C. elegans 2MSR ; ; Solution structure of LEDGF/p75 IBD in complex with MLL1 peptide (140-160) 2N3A ; ; Solution structure of LEDGF/p75 IBD in complex with POGZ peptide (1389-1404) 1JU8 ; ; Solution structure of Leginsulin, a plant hormon 7OIO ; ; Solution structure of Legionella pneumophila LspC 7PMP ; ; Solution structure of Legionella pneumophila LspD 6XTT ; ; Solution structure of Legionella pneumophila NttA 2N7S ; ; Solution Structure of Leptospiral LigA4 Big Domain 2RQA ; ; Solution structure of LGP2 CTD 1X4L ; ; Solution structure of LIM domain in Four and a half LIM domains protein 2 1X4K ; ; Solution structure of LIM domain in LIM-protein 3 2LZU ; ; Solution structure of LIMD2 2KHB ; ; Solution structure of linear kalata B1 (loop 6) 1DWM ; ; Solution structure of Linum usitatissinum trypsin inhibitor (LUTI) 5OVM ; ; Solution structure of lipase binding domain LID1 of foldase from Pseudomonas aeruginosa 6GSF ; ; Solution structure of lipase binding domain LID1 of foldase from Pseudomonas aeruginosa 2MAL ; ; Solution structure of Lipid Transfer Protein from Lentil Lens Culinaris 2N81 ; ; Solution Structure of Lipid Transfer Protein From Pea Pisum Sativum 2M5Q ; ; Solution structure of lipidated glucagon analog in d-TFE 2M5P ; ; Solution structure of lipidated glucagon analog in water 8J3Q ; ; Solution structure of LL-TILmut1 1HHW ; ; Solution structure of LNA1:RNA hybrid 1HHX ; ; Solution structure of LNA3:RNA hybrid 6PK9 ; ; Solution Structure of lncRNA (LINK-A) 20-nt Hexaloop Hairpin 2N8X ; ; Solution structure of LptE from Pseudomonas Aerigunosa 8BO0 ; ; Solution structure of Lqq4 toxin from Leiurus quinquestriatus quinquestriatus 5GHC ; ; SOLUTION STRUCTURE OF LYS33 ACETYLATED HUMAN SUMO2 5B7A ; ; SOLUTION STRUCTURE OF LYS37 ACETYLATED HUMAN SUMO1 5GHD ; ; SOLUTION STRUCTURE OF LYS39 ACETYLATED HUMAN SUMO1 5GHB ; ; SOLUTION STRUCTURE OF LYS42 ACETYLATED HUMAN SUMO2 2MI8 ; ; Solution structure of lysine-free (K0) ubiquitin 5YZ6 ; ; Solution structure of LysM domain from a chitinase derived from Volvox carteri 5YZK ; ; Solution structure of LysM domain from a chitinase derived from Volvox carteri 2MKX ; ; Solution structure of LysM the peptidoglycan binding domain of autolysin AtlA from Enterococcus faecalis 1GXV ; ; Solution structure of lysozyme at low and high pressure 1GXX ; ; Solution structure of lysozyme at low and high pressure 2MYW ; ; Solution structure of M. oryzae protein AVR-PIA 2MYV ; ; Solution structure of M. oryzae protein AVR1-CO39 2JVF ; ; Solution structure of M7, a computationally-designed artificial protein 6TG5 ; ; Solution structure of MacpD, a acyl carrier protein, from Pseudomonas fluorescens involved in Mupirocin biosynthesis. 1S5Q ; ; Solution Structure of Mad1 SID-mSin3A PAH2 Complex 6AX2 ; ; Solution structure of Magi3 a specific insect toxin from the spider Macrothele gigas 2ROO ; ; Solution structure of Magi4, a spider toxin from Macrothele gigas 2RRT ; ; Solution structure of Magnesium-bound form of calmodulin C-domain E104D/E140D mutant 2FQ0 ; ; Solution structure of major conformation of holo-acyl carrier protein from malaria parasite plasmodium falciparum 2JQX ; ; Solution structure of Malate Synthase G from joint refinement against NMR and SAXS data 2H25 ; ; Solution Structure of Maltose Binding Protein complexed with beta-cyclodextrin 2B19 ; ; Solution Structure of mammalian tachykinin peptide, Neuropeptide K 2JR8 ; ; Solution structure of Manduca sexta moricin 2ND9 ; ; Solution structure of MapZ extracellular domain first subdomain 2NDA ; ; Solution structure of MapZ extracellular domain second subdomain 2M3J ; ; Solution Structure of Marine Sponge-Derived Asteropsin E Which is Highly Resistant to Gastrointestinal Proteases 1IXU ; ; Solution structure of marinostatin, a protease inhibitor, containing two ester linkages 2RTZ ; ; Solution structure of MarkTX-7 2KYL ; ; Solution structure of MAST2-PDZ complexed with the C-terminus of PTEN 2KQF ; ; Solution structure of MAST205-PDZ complexed with the C-terminus of a rabies virus G protein 2DDY ; ; Solution Structure of Matrilysin (MMP-7) Complexed to Constraint Conformational Sulfonamide Inhibitor 1YCM ; ; Solution Structure of matrix metalloproteinase 12 (MMP12) in the presence of N-Isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH) 2JT6 ; ; Solution structure of matrix metalloproteinase 3 (MMP-3) in the presence of 3-4'-cyanobyphenyl-4-yloxy)-n-hdydroxypropionamide (MMP-3 inhibitor VII) 2JT5 ; ; solution structure of matrix metalloproteinase 3 (MMP-3) in the presence of n-hydroxy-2-[n-(2-hydroxyethyl)biphenyl-4-sulfonamide] hydroxamic acid (MLC88) 2JNP ; ; Solution structure of matrix metalloproteinase 3 (MMP-3) in the presence of N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH) 1R05 ; ; Solution Structure of Max B-HLH-LZ 2MB7 ; ; Solution structure of MBD3 methylcytosine binding domain 2MOE ; ; Solution structure of MBD4 methyl-cytosine binding domain bound to methylated DNA 2M2Q ; ; Solution structure of MCh-1: A novel inhibitor cystine knot peptide from Momordica charantia 2M2R ; ; Solution structure of MCh-2: A novel inhibitor cystine knot peptide from Momordica charantia 2MRW ; ; Solution Structure of MciZ from Bacillus subtilis 1WSX ; ; Solution structure of MCL-1 2ROD ; ; Solution Structure of MCL-1 Complexed with NoxaA 2JM6 ; ; Solution structure of MCL-1 complexed with NOXAB 2ROC ; ; Solution structure of Mcl-1 Complexed with Puma 1IB9 ; ; SOLUTION STRUCTURE OF MCOTI-II, A MACROCYCLIC TRYPSIN INHIBITOR 2LJS ; ; Solution structure of MCoTI-V 2RQB ; ; Solution structure of MDA5 CTD 6LCI ; ; Solution structure of mdaA-1 domain 1MC7 ; ; Solution Structure of mDvl1 PDZ domain 6H0I ; ; Solution structure of Melampsora larici-populina MlpP4.1 1K0X ; ; Solution Structure of Melanoma Inhibitory Activity Protein 1FW5 ; ; SOLUTION STRUCTURE OF MEMBRANE BINDING PEPTIDE OF SEMLIKI FOREST VIRUS MRNA CAPPING ENZYME NSP1 1S6L ; ; Solution structure of MerB, the Organomercurial Lyase involved in the bacterial mercury resistance system 1JW3 ; ; Solution Structure of Methanobacterium Thermoautotrophicum Protein 1598. Ontario Centre for Structural Proteomics target MTH1598_1_140; Northeast Structural Genomics Target TT6 1YWX ; ; Solution Structure of Methanococcus maripaludis Protein MMP0443: The Northeast Structural Genomics Consortium Target MrR16 1XN9 ; ; Solution Structure of Methanosarcina mazei Protein RPS24E: The Northeast Structural Genomics Consortium Target MaR11 1E8E ; ; Solution Structure of Methylophilus methylotrophus Cytochrome c''. Insights into the Structural Basis of Haem-Ligand Detachment 8BVC ; ; Solution structure of Metridium senile toxin Ms13-1 with the unique fold 2KFE ; ; Solution structure of meucin-24 6THI ; ; Solution structure of MeuNaTxalpha-1 toxin from Mesobuthus Eupeus 2M0A ; ; Solution structure of MHV nsp3a 1C01 ; ; SOLUTION STRUCTURE OF MIAMP1, A PLANT ANTIMICROBIAL PROTEIN 2DK3 ; ; Solution structure of Mib-herc2 domain in HECT domain containing protein 1 5YAM ; ; Solution structure of mice Met-CCL5/RANTES 1VM5 ; ; Solution structure of micelle-bound aurein 1.2, an antimicrobial and anticancer peptide from an Australian frog 2ARI ; ; Solution structure of micelle-bound fusion domain of HIV-1 gp41 2KCH ; ; Solution structure of micelle-bound kalata B2 2N7X ; ; Solution structure of microRNA 20b pre-element 1V49 ; ; Solution structure of microtubule-associated protein light chain-3 1WO3 ; ; Solution structure of Minimal Mutant 1 (MM1): Multiple alanine mutant of non-native CHANCE domain 1WO4 ; ; Solution structure of Minimal Mutant 2 (MM2): Multiple alanine mutant of non-native CHANCE domain 2FQ2 ; ; Solution structure of minor conformation of holo-acyl carrier protein from malaria parasite plasmodium falciparum 2CPT ; ; Solution structure of MIT domain from human SKD1 2CRB ; ; Solution structure of MIT domain from mouse NRBF-2 207D ; ; SOLUTION STRUCTURE OF MITHRAMYCIN DIMERS BOUND TO PARTIALLY OVERLAPPING SITES ON DNA 7CLV ; ; Solution structure of mitochondrial Tim23 channel in complex with a signaling peptide 2LVU ; ; Solution structure of Miz-1 zinc finger 10 7MC1 ; ; Solution structure of Miz-1 Zinc finger 10 7MC2 ; ; Solution structure of Miz-1 Zinc finger 11 H586Y 7MC3 ; ; Solution structure of Miz-1 zinc finger 12 5ION ; ; Solution Structure of Miz-1 Zinc Finger 13 2N25 ; ; Solution structure of Miz-1 zinc finger 2 2M0D ; ; Solution Structure of Miz-1 zinc finger 5 2M0E ; ; Solution Structure of Miz-1 zinc finger 6 2M0F ; ; Solution Structure of Miz-1 zinc finger 7 2LVR ; ; Solution structure of Miz-1 zinc finger 8 2LVT ; ; Solution structure of Miz-1 zinc finger 9 2N26 ; ; Solution structure of Miz-1 zinc fingers 3 and 4 2P3M ; ; Solution structure of Mj0056 1Y74 ; ; Solution Structure of mLin-2/mLin-7 L27 Domain Complex 6ZPR ; ; Solution structure of MLKL executioner domain in complex with a covalent inhibitor 7NM2 ; ; Solution structure of MLKL executioner domain in complex with a fragment 7NM4 ; ; Solution structure of MLKL executioner domain in complex with a fragment 7NM5 ; ; Solution structure of MLKL executioner domain in complex with a fragment 2JYI ; ; Solution structure of MLL CXXC domain 2KKF ; ; Solution structure of MLL CXXC domain in complex with palindromic CPG DNA 2MTN ; ; Solution structure of MLL-IBD complex 2KU7 ; ; Solution structure of MLL1 PHD3-Cyp33 RRM chimeric protein 6O7G ; ; Solution structure of MLL4 PHD6 domain in complex with histone H4K16ac peptide 1S9S ; ; SOLUTION STRUCTURE OF MLV PSI SITE 1Z3J ; ; Solution Structure of MMP12 in the presence of N-isobutyl-N-4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH) 2JSD ; ; Solution structure of MMP20 complexed with NNGH 1FA3 ; ; SOLUTION STRUCTURE OF MNEI, A SWEET PROTEIN 5ZKV ; ; Solution structure of molten globule state of L94G mutant of horse cytochrome-c 2G0U ; ; Solution Structure of Monomeric BsaL, the Type III Secretion Needle Protein of Burkholderia pseudomallei 7CJW ; ; Solution structure of monomeric superoxide dismutase 1 with an additional mutation H46W in a crowded environment 7CJV ; ; Solution structure of monomeric superoxide dismutase 1 with an additional mutation H46W in a dilute environment 2MN7 ; ; Solution structure of monomeric TatA of twin-arginine translocation system from E. coli 1WLM ; ; Solution structure of mouse CGI-38 protein 1WM4 ; ; Solution structure of mouse coactosin, an actin filament binding protein 1WWQ ; ; Solution Structure of Mouse ER 2YUG ; ; Solution structure of mouse FRG1 protein 1UHS ; ; Solution structure of mouse homeodomain-only protein HOP 1J0G ; ; Solution Structure of Mouse Hypothetical 9.1 kDa Protein, A Ubiquitin-like Fold 1UG2 ; ; Solution Structure of Mouse Hypothetical Gene (2610100B20Rik) Product Homologous to Myb DNA-binding Domain 1V2Y ; ; Solution Structure of Mouse Hypothetical Gene (RIKEN cDNA 3300001G02) Product Homologous to Ubiquitin Fold 1WGK ; ; Solution Structure of Mouse Hypothetical Protein 2900073H19RIK 1WIA ; ; Solution structure of mouse hypothetical ubiquitin-like protein BAB25500 2L3Y ; ; Solution structure of mouse IL-6 2E4J ; ; Solution Structure of mouse Lipocalin-type Prostaglandin D Synthase 2KTD ; ; Solution structure of mouse lipocalin-type prostaglandin D synthase / substrate analog (U-46619) complex 2RQ0 ; ; Solution Structure of Mouse Lipocalin-type Prostaglandin D Synthase Possessing the Intrinsic Disulfide Bond 1IVM ; ; Solution structure of mouse lysozyme M 1WFD ; ; Solution structure of mouse MIT domain 2KOJ ; ; Solution structure of mouse Par-3 PDZ2 (residues 450-558) 2LMK ; ; Solution Structure of Mouse Pheromone ESP1 1WYJ ; ; Solution structure of mouse protocadherin beta 14 (26-137) 1V9W ; ; Solution structure of mouse putative 42-9-9 protein 2BBU ; ; solution structure of mouse socs3 in complex with a phosphopeptide from the gp130 receptor 2YRU ; ; Solution structure of mouse Steroid receptor RNA activator 1 (SRA1) protein 1WGH ; ; Solution Structure of Mouse Ubiquitin-like 3 Protein 2EW4 ; ; Solution structure of MrIA 1IEO ; ; SOLUTION STRUCTURE OF MRIB-NH2 2L36 ; ; Solution structure of MSI-594 derived mutant peptide MSI594F5A in Lipopolysaccharide Micelles 2RMR ; ; Solution structure of mSin3A PAH1 domain 2LKY ; ; Solution structure of MSMEG_1053, the second DUF3349 annotated protein in the genome of Mycobacterium smegmatis, Seattle Structural Genomics Center for Infectious Disease target MysmA.17112.b 2LGJ ; ; Solution structure of MsPTH 1Z9V ; ; Solution Structure of MTH0776 from Methanobacterium thermoautotrophicum (strain H) 1JCU ; ; Solution Structure of MTH1692 Protein from Methanobacterium thermoautotrophicum 1TE4 ; ; Solution structure of MTH187. Ontario Centre for Structural Proteomics target MTH0187_1_111; Northeast Structural Genomics Target TT740 1IQO ; ; Solution structure of MTH1880 from methanobacterium thermoautotrophicum 2RUJ ; ; Solution structure of MTSL spin-labeled Schizosaccharomyces pombe Sin1 CRIM domain 2MZ4 ; ; Solution Structure of mu-SLPTX-Ssm6a 2MUN ; ; Solution structure of mu-SLPTX3-Ssm6a 8FD4 ; ; Solution structure of mu-theraphotoxin Cg4a from Chinese tarantula Chilobrachys jingzhao 8CM3 ; ; Solution structure of Mu3.1 from Conus mucronatus 6K2K ; ; Solution structure of MUL1-RING domain 6FNV ; ; Solution structure of mule deer prion protein with polymorphism S138 1FYJ ; ; SOLUTION STRUCTURE OF MULTI-FUNCTIONAL PEPTIDE MOTIF-1 PRESENT IN HUMAN GLUTAMYL-PROLYL TRNA SYNTHETASE (EPRS). 1EGF ; ; SOLUTION STRUCTURE OF MURINE EPIDERMAL GROWTH FACTOR DETERMINED BY NMR SPECTROSCOPY AND REFINED BY ENERGY MINIMIZATION WITH RESTRAINTS 3EGF ; ; SOLUTION STRUCTURE OF MURINE EPIDERMAL GROWTH FACTOR DETERMINED BY NMR SPECTROSCOPY AND REFINED BY ENERGY MINIMIZATION WITH RESTRAINTS 2L3O ; ; Solution structure of murine interleukin 3 1MI2 ; ; SOLUTION STRUCTURE OF MURINE MACROPHAGE INFLAMMATORY PROTEIN-2, NMR, 20 STRUCTURES 2L90 ; ; Solution structure of murine myristoylated msrA 2GOV ; ; Solution structure of Murine p22HBP 5X3Z ; ; Solution structure of musashi1 RBD2 in complex with RNA 6C8U ; ; Solution structure of Musashi2 RRM1 2LWE ; ; Solution structure of mutant (T170E) second CARD of human RIG-I 2NDE ; ; Solution Structure of Mutant of BMAP-28(1-18) 6A4C ; ; Solution structure of MXAN_0049 1FEX ; ; SOLUTION STRUCTURE OF MYB-DOMAIN OF HUMAN RAP1 1XG1 ; ; Solution structure of Myb-domain of human TRF2 1P4S ; ; Solution structure of Mycobacterium tuberculosis adenylate kinase 1G91 ; ; SOLUTION STRUCTURE OF MYELOID PROGENITOR INHIBITORY FACTOR-1 (MPIF-1) 2K5U ; ; Solution structure of myirstoylated yeast ARF1 protein, GDP-bound 2KIA ; ; Solution structure of Myosin VI C-terminal cargo-binding domain 2LD3 ; ; Solution structure of myosin VI lever arm extension 1MYO ; ; SOLUTION STRUCTURE OF MYOTROPHIN, NMR, 44 STRUCTURES 2MYO ; ; SOLUTION STRUCTURE OF MYOTROPHIN, NMR, MINIMIZED AVERAGE STRUCTURE 2MV4 ; ; Solution structure of myristoylated Y28F/Y67F mutant of the Mason-Pfizer monkey virus matrix protein 2N0Z ; ; Solution structure of MyUb (1080-1122) of human Myosin VI 2N10 ; ; Solution structure of MyUb (1080-1131) of human Myosin VI 1JJG ; ; Solution Structure of Myxoma Virus Protein M156R 2MQK ; ; Solution structure of N terminal domain of the MuB AAA+ ATPase 2NC3 ; ; Solution Structure of N-Allosylated Pin1 WW Domain 2NC4 ; ; Solution Structure of N-Galactosylated Pin1 WW Domain 2NC6 ; ; Solution Structure of N-L-idosylated Pin1 WW Domain 2FCD ; ; Solution structure of N-lobe Myosin Light Chain from Saccharomices cerevisiae 2LEP ; ; Solution Structure of N-terminal Cytosolic Domain of Rhomboid Intramembrane Protease from Escherichia Coli 7WJ0 ; ; Solution structure of N-terminal domain (nMazE6) of mycobacterial antitoxin MazE6 from MazEF6 TA system 2KW0 ; ; Solution structure of N-terminal domain of CcmH from Escherichia.coli 2CS4 ; ; Solution structure of N-terminal domain of chromosome 12 open reading frame 2 2LPN ; ; Solution Structure of N-Terminal domain of human Conserved Dopamine Neurotrophic Factor (CDNF) 2MY9 ; ; Solution structure of N-terminal domain of human TIG3 2LKT ; ; Solution structure of N-terminal domain of human TIG3 in 2 M UREA 2CR2 ; ; Solution structure of N-terminal domain of speckle-type POZ protein 2NB7 ; ; Solution structure of N-terminal extramembrane domain of SH protein 2CSJ ; ; Solution structure of N-terminal PDZ domain from mouse TJP2 1M30 ; ; Solution structure of N-terminal SH3 domain from oncogene protein c-Crk 1K1Z ; ; Solution structure of N-terminal SH3 domain mutant(P33G) of murine Vav 2DJM ; ; Solution structure of N-terminal starch-binding domain of glucoamylase from Rhizopus oryzae 1WJU ; ; Solution structure of N-terminal ubiquitin-like domain of human NEDD8 ultimate buster-1 2NC5 ; ; Solution Structure of N-Xylosylated Pin1 WW Domain 1MR4 ; ; Solution Structure of NaD1 from Nicotiana alata 8AO1 ; ; solution structure of nanoFAST fluorogen-activating protein in the apo state 8AO0 ; ; Solution structure of nanoFAST/HBR-DOM2 complex 2KOZ ; ; Solution structure of nasonin-1 2KP0 ; ; Solution structure of nasonin-1M 2KMO ; ; Solution structure of native Leech-derived tryptase inhibitor, LDTI 2RTY ; ; Solution structure of navitoxin 1UDK ; ; Solution Structure of Nawaprin 1ESK ; ; SOLUTION STRUCTURE OF NCP7 FROM HIV-1 7CKD ; ; Solution structure of NCR169 oxidized form 1 from Medicago truncatula 7CKE ; ; Solution structure of NCR169 oxidized form 2 from Medicago truncatula 2MXP ; ; Solution structure of NDP52 ubiquitin-binding zinc finger 1TQZ ; ; Solution structure of NECAP1 protein 5GO0 ; ; Solution structure of nedd8 from Trypanosoma brucei 2BZ2 ; ; Solution structure of NELF E RRM 2G0K ; ; Solution Structure of Neocarzinostatin Apo-Protein 2G0L ; ; Solution Structure of Neocarzinostatin Apo-Protein with bound Flavone 2JPU ; ; solution structure of NESG target SsR10, Orf c02003 protein 2GLE ; ; Solution structure of neurabin SAM domain 1OP4 ; ; Solution Structure of Neural Cadherin Prodomain 1C98 ; ; SOLUTION STRUCTURE OF NEUROMEDIN B 1C9A ; ; SOLUTION STRUCTURE OF NEUROMEDIN B 1SH1 ; ; SOLUTION STRUCTURE OF NEUROTOXIN I FROM THE SEA ANEMONE STICHODACTYLA HELIANTHUS. A NUCLEAR MAGNETIC RESONANCE, DISTANCE GEOMETRY AND RESTRAINED MOLECULAR DYNAMICS STUDY 2SH1 ; ; SOLUTION STRUCTURE OF NEUROTOXIN I FROM THE SEA ANEMONE STICHODACTYLA HELIANTHUS. A NUCLEAR MAGNETIC RESONANCE, DISTANCE GEOMETRY AND RESTRAINED MOLECULAR DYNAMICS STUDY 1FMM ; ; SOLUTION STRUCTURE OF NFGF-1 2NOR ; ; Solution structure of NK1 agonist Phyllomedusin bound to DPC micelles 1XN6 ; ; Solution Structure of Northeast Structural Genomics Target Protein BcR68 encoded in gene Q816V6 of B. cereus 1XPV ; ; Solution Structure of Northeast Structural Genomics Target Protein XcR50 from X. Campestris 1L3X ; ; Solution Structure of Novel Disintegrin Salmosin 7UGA ; ; Solution structure of NPSL2 2KWT ; ; Solution structure of NS2 [27-59] 2KWZ ; ; Solution structure of NS2 [60-99] 2CR0 ; ; Solution structure of nuclear move domain of nuclear distribution gene C 2DHS ; ; Solution Structure of Nucleic Acid Binding Protein CUGBP1ab and its Binding Study with DNA and RNA 1FJ7 ; ; SOLUTION STRUCTURE OF NUCLEOLIN RBD1 1FJE ; ; SOLUTION STRUCTURE OF NUCLEOLIN RBD12 IN COMPLEX WITH SNRE RNA 1FJC ; ; SOLUTION STRUCTURE OF NUCLEOLIN RBD2 2JR0 ; ; Solution structure of NusB from Aquifex Aeolicus 2MEW ; ; Solution Structure of NusE (S10) from Thermotoga maritima 2KVQ ; ; Solution structure of NusE:NusG-CTD complex 7L7A ; ; Solution Structure of NuxVA 7YHI ; ; Solution structure of O-di-mannosylated carbohydrate binding module (CBM) of the glycoside hydrolase Family 7 cellobiohydrolase from Trichoderma reesei 1OCP ; ; SOLUTION STRUCTURE OF OCT3 POU-HOMEODOMAIN 1SS3 ; ; Solution structure of Ole e 6, an allergen from olive tree pollen 1JYT ; ; Solution structure of olfactory marker protein from rat 6PQG ; ; Solution structure of OlvA(BC) 6PQF ; ; Solution structure of OlvA(BCS) 1FYG ; ; Solution structure of omega conotoxin SO3 determined by 1H-NMR 1OMC ; ; SOLUTION STRUCTURE OF OMEGA-CONOTOXIN GVIA USING 2-D NMR SPECTROSCOPY AND RELAXATION MATRIX ANALYSIS 1FEO ; ; Solution structure of omega-conotoxin MVIIA with C-terminal Gly 1OMN ; ; SOLUTION STRUCTURE OF OMEGA-CONOTOXIN MVIIC, A HIGH AFFINITY OF P-TYPE CALCIUM CHANNELS, USING 1H NMR SPECTROSCOPY AND COMPLETE RELAXATION MATRIX ANALYSIS 1KOZ ; ; SOLUTION STRUCTURE OF OMEGA-GRAMMOTOXIN SIA 2JPB ; ; Solution Structure of OMPR-C DNA Binding Protein 1IY6 ; ; Solution structure of OMSVP3 variant, P14C/N39C 2KB6 ; ; Solution structure of onconase C87A/C104A 2MAF ; ; Solution structure of opa60 from n. gonorrhoeae 2L2G ; ; Solution structure of Opossum Domain 11 2MK4 ; ; Solution structure of ORF2 1EQK ; ; SOLUTION STRUCTURE OF ORYZACYSTATIN-I, A CYSTEINE PROTEINASE INHIBITOR OF THE RICE, ORYZA SATIVA L. JAPONICA 2LHF ; ; Solution structure of outer membrane protein H (OprH) from P. aeruginosa in DHPC micelles 2M4F ; ; Solution Structure of Outer surface protein E 2N53 ; ; Solution structure of ovis aries prp 2MV8 ; ; Solution structure of Ovis Aries PrP with mutation delta190-197 2MV9 ; ; Solution structure of Ovis Aries PrP with mutation delta193-196 1HU5 ; ; SOLUTION STRUCTURE OF OVISPIRIN-1 1OMU ; ; SOLUTION STRUCTURE OF OVOMUCOID (THIRD DOMAIN) FROM DOMESTIC TURKEY (298K, PH 4.1) (NMR, 50 STRUCTURES) (REFINED MODEL USING NETWORK EDITING ANALYSIS) 1OMT ; ; SOLUTION STRUCTURE OF OVOMUCOID (THIRD DOMAIN) FROM DOMESTIC TURKEY (298K, PH 4.1) (NMR, 50 STRUCTURES) (STANDARD NOESY ANALYSIS) 2K8V ; ; Solution structure of Oxidised ERp18 5FRH ; ; Solution structure of oxidised RsrA 5MGQ ; ; Solution structure of oxidized and amidated human IAPP (1-37), the diabetes II peptide. 1NX7 ; ; Solution Structure of Oxidized Bovine Microsomal Cytochrome B5 1F03 ; ; SOLUTION STRUCTURE OF OXIDIZED BOVINE MICROSOMAL CYTOCHROME B5 MUTANT (E44A, E48A, E56A, D60A) AND ITS INTERACTION WITH CYTOCHROME C 1F04 ; ; SOLUTION STRUCTURE OF OXIDIZED BOVINE MICROSOMAL CYTOCHROME B5 MUTANT (E44A, E48A, E56A, D60A) AND ITS INTERACTION WITH CYTOCHROME C 1SH4 ; ; Solution structure of oxidized bovine microsomal cytochrome B5 Mutant V45H 1J0Q ; ; Solution Structure of Oxidized Bovine Microsomal Cytochrome b5 mutant V61H 7O9U ; ; Solution structure of oxidized cytochrome c552 from Thioalkalivibrio paradoxus 2MIT ; ; Solution structure of oxidized dimeric form of human defensin 5 1QPU ; ; SOLUTION STRUCTURE OF OXIDIZED ESCHERICHIA COLI CYTOCHROME B562 1AKK ; ; SOLUTION STRUCTURE OF OXIDIZED HORSE HEART CYTOCHROME C, NMR, MINIMIZED AVERAGE STRUCTURE 2N9J ; ; Solution structure of oxidized human cytochrome c 2RTU ; ; Solution structure of oxidized human HMGB1 A box 1DO9 ; ; SOLUTION STRUCTURE OF OXIDIZED MICROSOMAL RABBIT CYTOCHROME B5. FACTORS DETERMINING THE HETEROGENEOUS BINDING OF THE HEME. 1J5C ; ; SOLUTION STRUCTURE OF OXIDIZED PARAMAGNETIC CU(II) PLASTOCYANIN FROM SYNECHOCYSTIS PCC6803 1J5D ; ; SOLUTION STRUCTURE OF OXIDIZED PARAMAGNETIC CU(II) PLASTOCYANIN FROM SYNECHOCYSTIS PCC6803-MINIMIZED AVERAGE STRUCTURE 1BLV ; ; SOLUTION STRUCTURE OF OXIDIZED RAT MICROSOMAL CYTOCHROME B5 IN THE PRESENCE OF 2 M GUANIDINIUM CHLORIDE: MONITORING THE EARLY STEPS IN PROTEIN UNFOLDING 2MZ9 ; ; Solution structure of oxidized triheme cytochrome PpcA from Geobacter sulfurreducens 2MH7 ; ; Solution structure of oxidized [2Fe-2S] ferredoxin PetF from Chlamydomonas reinhardtii 1NQ4 ; ; Solution Structure of Oxytetracycline Acyl Carrier Protein 2LP4 ; ; Solution structure of P1-CheY/P2 complex in bacterial chemotaxis 1BU9 ; ; SOLUTION STRUCTURE OF P18-INK4C, 21 STRUCTURES 1RZS ; ; Solution structure of P22 Cro 1GD4 ; ; SOLUTION STRUCTURE OF P25S CYSTATIN A 2L3E ; ; Solution structure of P2a-J2a/b-P2b of human telomerase RNA 5KQE ; ; Solution structure of P2a-J2a/b-P2b of medaka telomerase RNA 6FGN ; ; Solution Structure of p300Taz2-p63TA 6FGS ; ; Solution structure of p300Taz2-p73TA1 2IB1 ; ; Solution structure of p45 Death Domain 5HOU ; ; Solution Structure of p53TAD-TAZ1 1P8B ; ; SOLUTION STRUCTURE OF PA1B, A 37-AMINO ACID INSECTICIDAL PROTEIN EXTRACTED FROM PEA SEEDS (PISUM SATIVUM) 1DKC ; ; SOLUTION STRUCTURE OF PAFP-S, AN ANTIFUNGAL PEPTIDE FROM THE SEEDS OF PHYTOLACCA AMERICANA 2LA2 ; ; Solution structure of papiliocin isolated from the swallowtail butterfly, Papilio xuthus 2K1Z ; ; Solution structure of Par-3 PDZ3 2K20 ; ; Solution structure of Par-3 PDZ3 in complex with PTEN peptide 2LC6 ; ; Solution structure of Par-6 Q144C/L164C 5TGG ; ; Solution structure of parallel stranded adenosine duplex 1IRR ; ; Solution structure of paralytic peptide of the silkworm, Bombyx mori 1V28 ; ; Solution structure of paralytic peptide of the wild Silkmoth, Antheraea yamamai 2KGJ ; ; Solution structure of parvulin domain of PpiD from E.Coli 1Y76 ; ; Solution Structure of Patj/Pals1 L27 Domain Complex 7QB0 ; ; Solution structure of paxillin LIM2/3 6U4M ; ; Solution structure of paxillin LIM4 6U4N ; ; Solution structure of paxillin LIM4 in complex with kindlin-2 F0 1DNY ; ; SOLUTION STRUCTURE OF PCP, A PROTOTYPE FOR THE PEPTIDYL CARRIER DOMAINS OF MODULAR PEPTIDE SYNTHETASES 6TVJ ; ; Solution structure of PD-i3 peptide inhibitor of the human PD-1 extracellular domain 6TT6 ; ; Solution structure of PD-i6 peptide inhibitor of the human PD-1 extracellular domain 2L89 ; ; Solution structure of Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA 2DC2 ; ; Solution Structure of PDZ Domain 2N7P ; ; Solution structure of PDZ domain 1WG6 ; ; Solution structure of PDZ domain in protein XP_110852 1V5L ; ; Solution structure of PDZ domain of mouse Alpha-actinin-2 associated LIM protein 1WJL ; ; Solution structure of PDZ domain of mouse Cypher protein 2EEG ; ; Solution Structure of PDZ domain of PDZ and LIM domain protein 2CS5 ; ; Solution structure of PDZ domain of Protein tyrosine phosphatase, non-receptor type 4 2YUY ; ; Solution Structure of PDZ domain of Rho GTPase Activating Protein 21 2MHV ; ; Solution Structure of Penicillium Antifungal Protein PAF 5ZV6 ; ; Solution structure of peptide cQ2 from Chenopodium quinoa 2KMN ; ; Solution structure of peptide deformylase complexed with actinonin 7R6P ; ; Solution structure of peptide toxin MIITX2-Mg1a from the venom of the Australian giant red bull ant Myrmecia gulosa 2AIZ ; ; Solution structure of peptidoglycan associated lipoprotein from Haemophilus influenza bound to UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine 2KE0 ; ; Solution structure of peptidyl-prolyl cis-trans isomerase from Burkholderia pseudomallei 2L2S ; ; Solution structure of peptidyl-prolyl cis-trans isomerase from Burkholderia pseudomallei complexed with 1-{[(4-methylphenyl)thio]acetyl}piperidine 2KO7 ; ; Solution structure of peptidyl-prolyl cis-trans isomerase from Burkholderia pseudomallei complexed with Cycloheximide-N-ethylethanoate 5ZR0 ; ; Solution structure of peptidyl-prolyl cis/trans isomerase domain of Trigger Factor in complex with MBP 2NAF ; ; Solution structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis 2JRC ; ; Solution structure of Peptidyl-tRNA Hydrolase from Mycobacterium tuberculosis H37Rv. 2MJL ; ; Solution structure of peptidyl-tRNA hyrolase from Vibrio cholerae 2JWL ; ; Solution Structure of periplasmic domain of TolR from H. influenzae with SAXS data 2L9S ; ; Solution structure of Pf1 SID1-mSin3A PAH2 Complex 2KDN ; ; Solution structure of PFE0790c, a putative bolA-like protein from the protozoan parasite Plasmodium falciparum. 2LSN ; ; Solution structure of PFV RNase H domain 2M3X ; ; Solution structure of Ph1500: a homohexameric protein centered on a 12-bladed beta-propeller 5W96 ; ; Solution structure of phage derived peptide inhibitor of frizzled 7 receptor 1D20 ; ; SOLUTION STRUCTURE OF PHAGE LAMBDA HALF-OPERATOR DNA 1A4T ; ; SOLUTION STRUCTURE OF PHAGE P22 N PEPTIDE-BOX B RNA COMPLEX, NMR, 20 STRUCTURES 2XC7 ; ; Solution Structure of PHAX-RBD in complex with ssRNA 1WEM ; ; Solution structure of PHD domain in death inducer-obliterator 1(DIO-1) 1WEW ; ; Solution structure of PHD domain in DNA-binding family protein AAM98074 1WEU ; ; Solution structure of PHD domain in ING1-like protein BAC25009 1WEN ; ; Solution structure of PHD domain in ING1-like protein BAC25079 1WES ; ; Solution structure of PHD domain in inhibitor of growth family, member 1-like 1X4I ; ; Solution structure of PHD domain in inhibitor of growth protein 3 (ING3) 1WE9 ; ; Solution structure of PHD domain in nucleic acid binding protein-like NP_197993 1WEE ; ; Solution structure of PHD domain in PHD finger family protein 1WEQ ; ; Solution structure of PHD domain in PHD finger protein 7 1WEP ; ; Solution structure of PHD domain in PHF8 1WEV ; ; Solution structure of PHD domain in protein NP_082203 8ABD ; ; Solution structure of Phen-DC3 intercalating into a quadruplex-duplex hybrid 2JNZ ; ; Solution structure of phl p 3, a major allergen from timothy grass pollen 2AKK ; ; Solution structure of phnA-like protein rp4479 from Rhodopseudomonas palustris 1N3K ; ; Solution structure of phosphoprotein enriched in astrocytes 15 kDa (PEA-15) 2LQW ; ; Solution structure of phosphorylated CRKL 2MVK ; ; Solution structure of phosphorylated cytosolic part of Trop2 1V50 ; ; Solution structure of phosphorylated N-terminal fragment of S100C/A11 protein 1WJ1 ; ; Solution structure of phosphotyrosine interaction domain of mouse Numb protein 1QP2 ; ; SOLUTION STRUCTURE OF PHOTOSYSTEM I ACCESSORY PROTEIN E FROM THE CYANOBACTERIUM NOSTOC SP. STRAIN PCC 8009 1QP3 ; ; SOLUTION STRUCTURE OF PHOTOSYSTEM I ACCESSORY PROTEIN E FROM THE CYANOBACTERIUM NOSTOC SP. STRAIN PCC 8009 1V7F ; ; Solution structure of phrixotoxin 1 1WZ5 ; ; Solution structure of Pi1-3p 1N8M ; ; Solution structure of Pi4, a four disulfide bridged scorpion toxin active on potassium channels 7ZRU ; ; Solution structure of Pi6, a low affinity blocking kappa-K+-channel peptide from the scorpion Pandinus imperator 1QKY ; ; Solution structure of PI7, a non toxic peptide isolated from the scorpion Pandinus Imperator. 2PKU ; ; Solution structure of PICK1 PDZ in complex with the carboxyl tail peptide of GluR2 2LC4 ; ; Solution Structure of PilP from Pseudomonas aeruginosa 1I6C ; ; SOLUTION STRUCTURE OF PIN1 WW DOMAIN 1I8G ; ; SOLUTION STRUCTURE OF PIN1 WW DOMAIN COMPLEXED WITH CDC25 PHOSPHOTHREONINE PEPTIDE 1I8H ; ; SOLUTION STRUCTURE OF PIN1 WW DOMAIN COMPLEXED WITH HUMAN TAU PHOSPHOTHREONINE PEPTIDE 1J6Y ; ; Solution structure of Pin1At from Arabidopsis thaliana 2JOS ; ; Solution structure of piscidin in presence of DPC micelles 2K8B ; ; Solution structure of PLAA family ubiquitin binding domain (PFUC) cis isomer in complex with ubiquitin 2K8C ; ; Solution structure of PLAA family ubiquitin binding domain (PFUC) trans isomer in complex with ubiquitin 1TI5 ; ; Solution structure of plant defensin 1L6H ; ; Solution Structure of Plant nsLTP2 purified from Rice (oryza Sativa) 1HN6 ; ; SOLUTION STRUCTURE OF PLASMODIUM FALCIPARUM APICAL MEMBRANE ANTIGEN 1 (RESIDUES 436-545) 2N7C ; ; Solution structure of Plasmodium falciparum SR1-RRM1 in complex with ACAUCA RNA 1WG7 ; ; Solution structure of pleckstrin homology domain from human KIAA1058 protein 1WJM ; ; Solution structure of pleckstrin homology domain of human beta III spectrin. 6K51 ; ; Solution structure of plectasin derivative MP1102 6K50 ; ; Solution structure of plectasin derivative NZ2114 8FEY ; ; Solution structure of Pmu1a 1PNH ; ; SOLUTION STRUCTURE OF PO5-NH2, A SCORPION TOXIN ANALOG WITH HIGH AFFINITY FOR THE APAMIN-SENSITIVE POTASSIUM CHANNEL 1ITP ; ; Solution Structure of POIA1 8TNS ; ; Solution structure of poly(UG) RNA (GU)12 G-quadruplex 2LSI ; ; Solution structure of polymerase-interacting domain of human Rev1 in complex with translesional synthesis polymerase kappa 2AD9 ; ; Solution structure of Polypyrimidine Tract Binding protein RBD1 complexed with CUCUCU RNA 2ADB ; ; Solution structure of Polypyrimidine Tract Binding protein RBD2 complexed with CUCUCU RNA 2ADC ; ; Solution structure of Polypyrimidine Tract Binding protein RBD34 complexed with CUCUCU RNA 2RQO ; ; Solution structure of Polytheonamide B 1G92 ; ; SOLUTION STRUCTURE OF PONERATOXIN 1XHH ; ; Solution Structure of porcine beta-microseminoprotein 2IZ4 ; ; Solution structure of porcine beta-microseminoprotein 5ID5 ; ; Solution structure of porcine lactoferricin 1PIR ; ; SOLUTION STRUCTURE OF PORCINE PANCREATIC PHOSPHOLIPASE A2 1PIS ; ; SOLUTION STRUCTURE OF PORCINE PANCREATIC PHOSPHOLIPASE A2 1PCN ; ; SOLUTION STRUCTURE OF PORCINE PANCREATIC PROCOLIPASE AS DETERMINED FROM 1H HOMONUCLEAR TWO-AND THREE-DIMENSIONAL NMR 1PCO ; ; SOLUTION STRUCTURE OF PORCINE PANCREATIC PROCOLIPASE AS DETERMINED FROM 1H HOMONUCLEAR TWO-AND THREE-DIMENSIONAL NMR 1RU5 ; ; Solution structure of porcine peptide YY (pPYY) 1RUU ; ; Solution structure of porcine peptide YY (pPYY) bound to DPC micelles 6NZL ; ; Solution structure of POS-1, a CCCH-type Tandem Zinc Finger protein from C. elegans 2RUN ; ; Solution Structure of Pre Transmembrane domain 2KR6 ; ; Solution structure of presenilin-1 CTF subunit 2CRU ; ; Solution structure of programmed cell death 5 2PQE ; ; Solution structure of proline-free mutant of staphylococcal nuclease 2KKU ; ; Solution structure of protein af2351 from Archaeoglobus fulgidus. Northeast Structural Genomics Consortium target AtT9/Ontario Center for Structural Proteomics Target af2351 6SFT ; ; Solution structure of protein ARR_CleD in complex with c-di-GMP 2KNR ; ; Solution structure of protein Atu0922 from A. tumefaciens. Northeast Structural Genomics Consortium target AtT13. Ontario Center for Structural Proteomics target ATC0905 2KQ1 ; ; Solution Structure Of Protein BH0266 From Bacillus halodurans. Northeast Structural Genomics Consortium Target BhR97a 2KAT ; ; Solution structure of protein BPP2914 from Bordetella parapertussis. Northeast Structural Genomics Consortium target BpR206 2KZ6 ; ; Solution structure of protein CV0426 from Chromobacterium violaceum, Northeast structural genomics consortium (NESG) target CVT2 2KKS ; ; Solution Structure Of Protein DSY2949 From Desulfitobacterium hafniense. Northeast Structural Genomics Consortium Target DhR27 2JOQ ; ; Solution Structure of Protein HP0495 from H. pylori; Northeast structural genomics consortium target PT2; Ontario Centre for Structural Proteomics target HP0488 2KGR ; ; Solution structure of protein ITSN1 from Homo sapiens. Northeast Structural Genomics Consortium target HR5524A 2JV8 ; ; Solution structure of protein NE1242 from Nitrosomonas europaea. Northeast Structural Genomics Consortium Target NeT4 2KJQ ; ; Solution Structure Of Protein NMB1076 From Neisseria meningitidis. Northeast Structural Genomics Consortium Target MR101B. 2JTV ; ; Solution Structure of protein RPA3401, Northeast Structural Genomics Consortium Target RpT7, Ontario Center for Structural Proteomics Target RP3384 2KZ4 ; ; Solution structure of protein SF1141 from Shigella flexneri 2a, Northeast structural genomics consortium (NESG) target SFT2 2KO6 ; ; Solution structure of protein sf3929 from Shigella flexneri 2a. Northeast Structural Genomics Consortium target SfR81/Ontario Center for Structural Proteomics Target sf3929 2KPJ ; ; Solution Structure Of Protein SOS-response transcriptional repressor, LexA From Eubacterium rectale. Northeast Structural Genomics Consortium Target ErR9A 1KVV ; ; Solution Structure Of Protein SRP19 Of The Archaeoglobus fulgidus Signal Recognition Particle, Minimized Average Structure 1KVN ; ; Solution Structure Of Protein SRP19 Of The Arhaeoglobus fulgidus Signal Recognition Particle, 10 Structures 2KCQ ; ; Solution structure of protein SRU_2040 from Salinibacter ruber (strain DSM 13855) . Northeast Structural Genomics Consortium target SrR106 2K5J ; ; Solution structure of protein yiiF from Shigella flexneri serotype 5b (strain 8401) . Northeast Structural Genomics Consortium target sft1 2KJP ; ; Solution structure of protein YlbL (BSU15050) from Bacillus subtilis, Northeast Structural Genomics Consortium target sr713a 1NY8 ; ; Solution structure of Protein yrbA from Escherichia Coli: Northeast Structural Genomics Consortium target ER115 2M9L ; ; Solution structure of protoxin-1 2KMF ; ; Solution Structure of Psb27 from cyanobacterial photosystem II 2MWQ ; ; Solution structure of PsbQ from spinacia oleracea 2FS1 ; ; solution structure of PSD-1 2KA9 ; ; Solution structure of PSD-95 PDZ12 complexed with cypin peptide 2NCY ; ; Solution structure of pseudin-2 analog (Ps-P) 2NCX ; ; Solution structure of pseudin-2 isolated from the skin of paradoxical frog, Pseudis paradoxa 6VRJ ; ; Solution structure of Pseudomonas aeruginosa IF3 C-terminal domain 1YWY ; ; Solution Structure of Pseudomonas aeruginosa Protein PA2021. The Northeast Structural Genomics Consortium Target Pat85. 2AWQ ; ; Solution Structure of pseudouridine-32 modified anticodon stem-loop of E. coli tRNAPhe 1LMM ; ; Solution Structure of Psmalmotoxin 1, the First Characterized Specific Blocker of ASIC1a NA+ channel 1I26 ; ; SOLUTION STRUCTURE OF PTU-1, A TOXIN FROM THE ASSASSIN BUGS PEIRATES TURPIS THAT BLOCKS THE VOLTAGE SENSITIVE CALCIUM CHANNEL N-TYPE 2ITA ; ; Solution structure of PufX from Rhodobacter sphaeroides 2NRG ; ; Solution Structure of PufX from Rhodobacter Sphaeroides (minimised average) 1SBO ; ; Solution Structure of putative anti sigma factor antagonist from Thermotoga maritima (TM1442) 2DUW ; ; Solution structure of putative CoA-binding protein of Klebsiella pneumoniae 1V9V ; ; Solution structure of putative domain of human KIAA0561 protein 2K02 ; ; Solution Structure of Putative Ferrous Iron Transport Protein C (FeoC) of Klebsiella pneumoniae 2LJU ; ; Solution structure of putative oxidoreductase from Ehrlichia chaffeensis, Seattle Structural Genomics Center for Infectious Disease (SSGCID) 2NOC ; ; Solution Structure of Putative periplasmic protein: Northest Structural Genomics Target StR106 2E7G ; ; Solution structure of putative ribosome-binding factor A (RbfA) from human mutochondrial precursor 2K5E ; ; SOLUTION STRUCTURE OF PUTATIVE UNCHARACTERIZED PROTEIN GSU1278 FROM METHANOCALDOCOCCUS JANNASCHII, NORTHEAST STRUCTURAL GENOMICS CONSORTIUM (NESG) TARGET GsR195 1X4Q ; ; Solution structure of PWI domain in U4/U6 small nuclear ribonucleoprotein Prp3(hPrp3) 2CSK ; ; Solution structure of PX domain from human SNX12 1JI8 ; ; Solution Structure of Pyrobaculum Aerophilum DsrC/gamma subunit of dissimilatory sulfite reductase 1XNE ; ; Solution Structure of Pyrococcus furiosus Protein PF0470: The Northeast Structural Genomics Consortium Target PfR14 2NB4 ; ; Solution structure of Q388A3 PDZ domain 2REL ; ; SOLUTION STRUCTURE OF R-ELAFIN, A SPECIFIC INHIBITOR OF ELASTASE, NMR, 11 STRUCTURES 1K5E ; ; Solution Structure of R-styrene Adduct in the Ras61 Sequence 2N59 ; ; Solution Structure of R. palustris CsgH 1NSH ; ; Solution Structure of Rabbit apo-S100A11 (19 models) 2L3N ; ; Solution structure of Rap1-Taz1 fusion protein 6BA6 ; ; Solution structure of Rap1b/talin complex 5J17 ; ; Solution structure of Ras Binding Domain (RBD) of B-Raf 5J2R ; ; Solution structure of Ras Binding Domain (RBD) of B-Raf 5J18 ; ; Solution structure of Ras Binding Domain (RBD) of B-Raf complexed with Rigosertib (Complex I) 1WXA ; ; Solution Structure of Ras-binding Domain in Mouse AF-6 Protein 2MA2 ; ; Solution structure of RasGRP2 EF hands bound to calcium 1B4C ; ; SOLUTION STRUCTURE OF RAT APO-S100B USING DIPOLAR COUPLINGS 1U3O ; ; Solution structure of rat Kalirin N-terminal SH3 domain 2RUP ; ; Solution structure of rat P2X4 receptor head domain 6GWM ; ; Solution structure of rat RIP2 caspase recruitment domain 5GWG ; ; Solution structure of rattusin 2LCC ; ; Solution structure of RBBP1 chromobarrel domain 2MGZ ; ; Solution structure of RBFOX family ASD-1 RRM and SUP-12 RRM in ternary complex with RNA 7VRL ; ; Solution structure of Rbfox RRM bound to a non-cognate RNA 6DZ9 ; ; Solution structure of Rbfox2 RRM mimetic peptide CPfox2 6DZA ; ; Solution structure of Rbfox2 RRM mimetic peptide CPfox4 6DZB ; ; Solution structure of Rbfox2 RRM mimetic peptide CPfox5 6DZC ; ; Solution structure of Rbfox2 RRM mimetic peptide CPfox6 6DZE ; ; Solution structure of Rbfox2 RRM mimetic peptide CPfox7 7ZAP ; ; Solution structure of RBM39 RRM1 bound to U1 snRNA stem loop 3 7Q33 ; ; Solution structure of RBM39 RRM2 bound to 5'-AGCUUUG-3 2KHZ ; ; Solution Structure of RCL 2LTS ; ; Solution structure of RDE-4(150-235) 2LTR ; ; Solution structure of RDE-4(32-136) 1TUS ; ; SOLUTION STRUCTURE OF REACTIVE-SITE HYDROLYZED TURKEY OVOMUCOID THIRD DOMAIN BY NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY METHODS 7BWI ; ; Solution structure of recombinant APETx1 2HIR ; ; SOLUTION STRUCTURE OF RECOMBINANT HIRUDIN AND THE LYS-47 (RIGHT ARROW) GLU MUTANT. A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 4HIR ; ; SOLUTION STRUCTURE OF RECOMBINANT HIRUDIN AND THE LYS-47 (RIGHT ARROW) GLU MUTANT. A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 5HIR ; ; SOLUTION STRUCTURE OF RECOMBINANT HIRUDIN AND THE LYS-47 (RIGHT ARROW) GLU MUTANT. A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 6HIR ; ; SOLUTION STRUCTURE OF RECOMBINANT HIRUDIN AND THE LYS-47 (RIGHT ARROW) GLU MUTANT. A NUCLEAR MAGNETIC RESONANCE AND HYBRID DISTANCE GEOMETRY-DYNAMICAL SIMULATED ANNEALING STUDY 1JJX ; ; Solution Structure of Recombinant Human Brain-type Fatty acid Binding Protein 1JJJ ; ; SOLUTION STRUCTURE OF RECOMBINANT HUMAN EPIDERMAL-TYPE FATTY ACID BINDING PROTEIN 1LA3 ; ; Solution structure of recoverin mutant, E85Q 5FRF ; ; Solution structure of reduced and zinc-bound RsrA 2MM9 ; ; Solution structure of reduced BolA2 from Arabidopsis thaliana 1BFY ; ; SOLUTION STRUCTURE OF REDUCED CLOSTRIDIUM PASTEURIANUM RUBREDOXIN, NMR, 20 STRUCTURES 1JXD ; ; SOLUTION STRUCTURE OF REDUCED CU(I) PLASTOCYANIN FROM SYNECHOCYSTIS PCC6803 1JXF ; ; SOLUTION STRUCTURE OF REDUCED CU(I) PLASTOCYANIN FROM SYNECHOCYSTIS PCC6803 1Z7P ; ; Solution structure of reduced glutaredoxin C1 from Populus tremula x tremuloides 1Z7R ; ; Solution Structure of reduced glutaredoxin C1 from Populus tremula x tremuloides 1LC2 ; ; Solution Structure Of Reduced Horse Heart Cytochrome c in 30% Acetonitrile Solution, NMR 30 Structures 1LC1 ; ; Solution Structure Of Reduced Horse Heart Cytochrome c in 30% Acetonitrile Solution, NMR Minimized Average Structure 2GIW ; ; SOLUTION STRUCTURE OF REDUCED HORSE HEART CYTOCHROME C, NMR, 40 STRUCTURES 1GIW ; ; SOLUTION STRUCTURE OF REDUCED HORSE HEART CYTOCHROME C, NMR, MINIMIZED AVERAGE STRUCTURE 2N9I ; ; Solution structure of reduced human cytochrome c 2HMR ; ; Solution structure of reduced interstrand cross-link arising from S-alpha-methyl-gamma-OH-1,N2-propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence 1AQA ; ; SOLUTION STRUCTURE OF REDUCED MICROSOMAL RAT CYTOCHROME B5, NMR, MINIMIZED AVERAGE STRUCTURE 1FO5 ; ; SOLUTION STRUCTURE OF REDUCED MJ0307 2LKU ; ; Solution structure of reduced poplar apo GrxS14 1J3S ; ; Solution Structure of Reduced Recombinant Human Cytochrome c 1AMB ; ; SOLUTION STRUCTURE OF RESIDUES 1-28 OF THE AMYLOID BETA-PEPTIDE 1AMC ; ; SOLUTION STRUCTURE OF RESIDUES 1-28 OF THE AMYLOID BETA-PEPTIDE 1S34 ; ; Solution structure of residues 907-929 from Rous Sarcoma Virus 5T3Y ; ; Solution structure of response regulator protein from Burkholderia multivorans 6TF4 ; ; Solution structure of RfaH C-terminal domain from Vibrio cholerae 2LCL ; ; Solution Structure of RfaH carboxyterminal domain 2I59 ; ; Solution structure of RGS10 6EWS ; ; Solution Structure of Rhabdopeptide NRPS Docking Domain Kj12A-NDD 6EWT ; ; Solution Structure of Rhabdopeptide NRPS Docking Domain Kj12B-NDD 6EWU ; ; Solution Structure of Rhabdopeptide NRPS Docking Domain Kj12C-NDD 2PJF ; ; Solution structure of rhodostomin 2PJG ; ; Solution structure of rhodostomin D51E mutant 2LJV ; ; Solution structure of Rhodostomin G50L mutant 2PJI ; ; Solution structure of rhodostomin P48A mutant 2K5K ; ; Solution structure of RhR2 from Rhodobacter Sphaeroides. Northeast Structural Genomics Consortium 2NS3 ; ; Solution structure of ribbon BuIA 2B5P ; ; Solution structure of ribbon isoform of CMrVIA lambda conotoxin 1C54 ; ; SOLUTION STRUCTURE OF RIBONUCLEASE SA 2H8W ; ; Solution structure of ribosomal protein L11 1WKI ; ; solution structure of ribosomal protein L16 from thermus thermophilus HB8 1OVY ; ; Solution Structure of Ribosomal Protein L18 from Bacillus stearothermophilus 1ILY ; ; Solution Structure of Ribosomal Protein L18 of Thermus thermophilus 1B75 ; ; SOLUTION STRUCTURE OF RIBOSOMAL PROTEIN L25 FROM ESCHERICHIA COLI 1RQ6 ; ; Solution structure of ribosomal protein S17E from Methanobacterium Thermoautotrophicum, Northeast Structural Genomics Consortium Target TT802 / Ontario Center for Structural Proteomics Target Mth0803 2G1D ; ; Solution Structure of Ribosomal Protein S24E from Thermoplasma acidophilum 1NE3 ; ; Solution structure of ribosomal protein S28E from Methanobacterium Thermoautotrophicum. Ontario Centre for Structural Proteomics target MTH0256_1_68; Northeast Structural Genomics Target TT744 1C06 ; ; SOLUTION STRUCTURE OF RIBOSOMAL PROTEIN S4 DELTA 41, REFINED WITH DIPOLAR COUPLINGS (ENSEMBLE OF 16 STRUCTURES) 1C05 ; ; SOLUTION STRUCTURE OF RIBOSOMAL PROTEIN S4 DELTA 41, REFINED WITH DIPOLAR COUPLINGS (MINIMIZED AVERAGE STRUCTURE) 2KCY ; ; SOLUTION STRUCTURE OF RIBOSOMAL PROTEIN S8E FROM Methanothermobacter thermautotrophicus, NORTHEASTSTRUCTURAL GENOMICS CONSORTIUM (NESG) TARGET TR71D 1L4S ; ; Solution structure of ribosome associated factor Y 2RMJ ; ; Solution structure of RIG-I C-terminal domain 2A20 ; ; Solution structure of Rim2 Zinc Finger Domain 2M6M ; ; Solution structure of RING domain of E3 ubiquitin ligase Doa10 2EP4 ; ; solution structure of RING finger from human RING finger protein 24 1X4J ; ; Solution structure of RING finger in RING finger protein 38 1WEO ; ; Solution structure of RING-finger in the catalytic subunit (IRX3) of cellulose synthase 2LWR ; ; Solution Structure of RING2 Domain from Parkin 2N7Z ; ; Solution structure of RIP2 CARD 8R62 ; ; Solution structure of Risdiplam bound to the RNA duplex formed upon 5'-splice site recognition 2RRC ; ; Solution Structure of RNA aptamer against AML1 Runt domain 2DNQ ; ; Solution structure of RNA binding domain 1 in RNA-binding protein 30 2E5I ; ; Solution structure of RNA binding domain 2 in Heterogeneous nuclear ribonucleoprotein L-like 2DNP ; ; Solution structure of RNA binding domain 2 in RNA-binding protein 14 2CPZ ; ; solution structure of RNA binding domain 3 in CUG triplet repeat RNA-binding protein 1 2CPY ; ; solution structure of RNA binding domain 3 in RNA binding motif protein 12 2D9P ; ; Solution structure of RNA binding domain 4 in Polyadenylation binding protein 3 1WG1 ; ; Solution structure of RNA binding domain in BAB13405(homolog EXC-7) 2DNK ; ; Solution structure of RNA binding domain in Bruno-like 4 RNA binding protein 2DNH ; ; Solution structure of RNA binding domain in Bruno-like 5 RNA binding protein 2DNL ; ; Solution structure of RNA binding domain in Cytoplasmic polyadenylation element binding protein 3 2CQ0 ; ; solution structure of RNA binding domain in eukaryotic translation initiation factor 3 subunit 4 2DNG ; ; Solution structure of RNA binding domain in Eukaryotic translation initiation factor 4H 2RRA ; ; Solution structure of RNA binding domain in human Tra2 beta protein in complex with RNA (GAAGAA) 2D9O ; ; Solution structure of RNA binding domain in Hypothetical protein FLJ10634 2CPX ; ; solution structure of RNA binding domain in Hypothetical protein FLJ11016 2CQ2 ; ; solution structure of RNA binding domain in Hypothetical protein LOC91801 2E44 ; ; Solution structure of RNA binding domain in Insulin-like growth factor 2 mRNA binding protein 3 2E5J ; ; Solution structure of RNA binding domain in Methenyltetrahydrofolate synthetase domain containing 1WEL ; ; Solution structure of RNA binding domain in NP_006038 2YTC ; ; Solution structure of RNA binding domain in Pre-mRNA-splicing factor RBM22 2CQ1 ; ; solution structure of RNA binding domain in PTB-like protein L 2E5G ; ; Solution structure of RNA binding domain in RNA binding motif protein 21 2CQ4 ; ; solution structure of RNA binding domain in RNA binding motif protein 23 2CQ3 ; ; solution structure of RNA binding domain in RNA binding motif protein 9 2DNN ; ; Solution structure of RNA binding domain in RNA-binding protein 12 2DNM ; ; Solution structure of RNA binding domain in SRp46 splicing factor 2DNR ; ; Solution structure of RNA binding domain in Synaptojanin 1 2DNO ; ; Solution structure of RNA binding domain in Trinucleotide repeat containing 4 variant 2E5H ; ; Solution structure of RNA binding domain in Zinc finger CCHC-type and RNA binding motif 1 1HS8 ; ; SOLUTION STRUCTURE OF RNA HAIRPIN LOOP UCAAUU AS PART OF HAIRPIN R(GCGUCAAUUCGCA) 1HS4 ; ; SOLUTION STRUCTURE OF RNA HAIRPIN LOOP UUAAAU AS PART OF HAIRPIN R(GCGUUAAAUCGCA) 1HS1 ; ; SOLUTION STRUCTURE OF RNA HAIRPIN LOOP UUAACU AS PART OF HAIRPIN R(GCGUUAACUCGCA) 1HS2 ; ; SOLUTION STRUCTURE OF RNA HAIRPIN LOOP UUAAGU AS PART OF HAIRPIN R(GCGUUAAGUCGCA) 1HS3 ; ; SOLUTION STRUCTURE OF RNA HAIRPIN LOOP UUAAUU AS PART OF HAIRPIN R(GCGUUAAUUCGCA) 1HMJ ; ; SOLUTION STRUCTURE OF RNA POLYMERASE SUBUNIT H 1EIK ; ; Solution Structure of RNA Polymerase Subunit RPB5 from Methanobacterium Thermoautotrophicum 2KDV ; ; Solution structure of RNA Pyrophosphohydrolase RppH from Escherichia coli 2MYF ; ; Solution structure of RNA recognition motif of a cyclophilin33-like protein from Plasmodium falciparum 2N3L ; ; Solution structure of RNA recognition motif-1 of Plasmodium falciparum serine/arginine-rich protein 1. 2RQC ; ; Solution Structure of RNA-binding domain 3 of CUGBP1 in complex with RNA (UG)3 2JNB ; ; Solution Structure of RNA-binding protein 15.5K 1F79 ; ; SOLUTION STRUCTURE OF RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT(III) HEXAMMINE, NMR, MINIMIZED AVERAGE STRUCTURE 1F78 ; ; SOLUTION STRUCTURE OF RNASE P RNA (M1 RNA) P4 STEM OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE, NMR, MINIMIZED AVERAGE STRUCTURE 2N9O ; ; Solution structure of RNF126 N-terminal zinc finger domain 2N9P ; ; Solution structure of RNF126 N-terminal zinc finger domain in complex with BAG6 Ubiquitin-like domain 1UFW ; ; Solution structure of RNP domain in Synaptojanin 2 1T4N ; ; Solution structure of Rnt1p dsRBD 1QDP ; ; SOLUTION STRUCTURE OF ROBUSTOXIN, THE LETHAL NEUROTOXIN FROM THE FUNNEL WEB SPIDER ATRAX ROBUSTUS, NMR, 20 STRUCTURES 7BCJ ; ; Solution Structure of RoxP 1RPB ; ; SOLUTION STRUCTURE OF RP 71955, A NEW 21 AMINO ACID TRICYCLIC PEPTIDE ACTIVE AGAINST HIV-1 VIRUS 1RPC ; ; SOLUTION STRUCTURE OF RP 71955, A NEW 21 AMINO ACID TRICYCLIC PEPTIDE ACTIVE AGAINST HIV-1 VIRUS 2JQ5 ; ; Solution structure of RPA3114, a SEC-C motif containing protein from Rhodopseudomonas palustris; Northeast Structural Genomics Consortium target RpT5 / Ontario Center for Structural Proteomics target RP3097 7DTH ; ; Solution structure of RPB6, common subunit of RNA polymerases I, II, and III 2DK8 ; ; Solution structure of rpc34 subunit in RNA polymerase III from mouse 2KDW ; ; Solution structure of RppH mutant E53A from Escherichia coli 1X5S ; ; Solution structure of RRM domain in A18 hnRNP 1WEY ; ; Solution structure of RRM domain in calcipressin 1 1X4B ; ; Solution structure of RRM domain in Heterogeneous nuclear ribonucleaoproteins A2/B1 1WEZ ; ; Solution structure of RRM domain in heterogeneous nuclear ribonucleoprotein H' 2DK2 ; ; Solution structure of RRM domain in heterogeneous nuclear ribonucleoprotein R (hnRNP R) 1WF2 ; ; Solution structure of RRM domain in HNRPC protein 1X4D ; ; Solution structure of RRM domain in Matrin 3 1X4G ; ; Solution structure of RRM domain in Nucleolysin TIAR 1X5P ; ; Solution structure of RRM domain in Parp14 1WEX ; ; Solution structure of RRM domain in protein BAB28521 1WG4 ; ; Solution structure of RRM domain in protein BAB31986 1X5O ; ; Solution structure of RRM domain in RNA binding motif, single-stranded interacting protein 1 1X4E ; ; Solution structure of RRM domain in RNA binding motif, single-stranded interacting protein 2 1X4H ; ; Solution structure of RRM domain in RNA-binding protein 28 1WF1 ; ; Solution structure of RRM domain in RNA-binding protein NP_057951 1X4C ; ; Solution structure of RRM domain in splicing factor 2 1X4A ; ; Solution structure of RRM domain in splicing factor SF2 1WF0 ; ; Solution structure of RRM domain in TAR DNA-binding protein-43 5ZUH ; ; Solution structure of RRM domian of La protein from Trypanosoma brucei 7XX8 ; ; Solution structure of RRM1 of Human SART3 2K8G ; ; Solution structure of RRM2 domain of PABP1 7XX9 ; ; Solution structure of RRM2 of Human SART3 1IYG ; ; Solution structure of RSGI RUH-001, a Fis1p-like and CGI-135 homologous domain from a mouse cDNA 1UHC ; ; Solution Structure of RSGI RUH-002, a SH3 Domain of KIAA1010 protein [Homo sapiens] 1UJD ; ; Solution Structure of RSGI RUH-003, a PDZ domain of hypothetical KIAA0559 protein from human cDNA 1Q60 ; ; Solution Structure of RSGI RUH-004, a GTF2I domain in Mouse cDNA 1UHP ; ; Solution structure of RSGI RUH-005, a PDZ domain in human cDNA, KIAA1095 1UIT ; ; Solution structure of RSGI RUH-006, The third PDZ domain OF hDlg5 (KIAA0583) protein [Homo sapiens] 1UM1 ; ; Solution Structure of RSGI RUH-007, PDZ domain in Human cDNA 1V5J ; ; Solution Structure of RSGI RUH-008, fn3 domain in Human cDNA 1VCS ; ; Solution Structure of RSGI RUH-009, an N-Terminal Domain of Vti1a [Mus musculus] 1SPK ; ; Solution Structure of RSGI RUH-010, an SH3 Domain from Mouse cDNA 1VEK ; ; Solution Structure of RSGI RUH-011, a UBA Domain from Arabidopsis cDNA 1VEG ; ; Solution Structure of RSGI RUH-012, a UBA Domain from Mouse cDNA 1VDL ; ; Solution Structure of RSGI RUH-013, a UBA domain in Mouse cDNA 1VG5 ; ; Solution Structure of RSGI RUH-014, a UBA domain from Arabidopsis cDNA 1WJ7 ; ; Solution structure of RSGI RUH-015, a UBA domain from mouse cDNA 1VEJ ; ; Solution Structure of RSGI RUH-016, a UBA Domain from mouse cDNA 1VEH ; ; Solution structure of RSGI RUH-018, a NifU-like domain of hirip5 protein from mouse cDNA 1WIG ; ; Solution structure of RSGI RUH-019, a LIM domain of actin binding LIM protein 2 (KIAA1808 protein) from human cDNA 1WIH ; ; Solution structure of RSGI RUH-021, a domain II of ribosome recycling factor from mouse cDNA 1WGX ; ; Solution structure of RSGI RUH-022, a myb DNA-binding domain in human cDNA 1WIV ; ; solution structure of RSGI RUH-023, a UBA domain from Arabidopsis cDNA 1WJ6 ; ; Solution structure of RSGI RUH-024, a PB1 domain in human cDNA, KIAA0049 1WII ; ; Solution structure of RSGI RUH-025, a DUF701 domain from mouse cDNA 1WHC ; ; Solution Structure of RSGI RUH-027, a UBA domain from Mouse cDNA 2E1O ; ; Solution structure of RSGI RUH-028, a homeobox domain from human cDNA 1WVO ; ; Solution structure of RSGI RUH-029, an antifreeze protein like domain in human N-acetylneuraminic acid phosphate synthase gene. 2CPC ; ; Solution structure of RSGI RUH-030, an Ig like domain from human cDNA 2CPW ; ; Solution structure of RSGI RUH-031, a UBA domain from human cDNA 2CQ7 ; ; Solution structure of RSGI RUH-032, a cystein-rich domain of CRISP-2 from human cDNA 2CQ8 ; ; Solution structure of RSGI RUH-033, a pp-binding domain of 10-FTHFDH from human cDNA 2CQX ; ; Solution structure of RSGI RUH-034, a homeodomain from mouse cDNA 2CON ; ; Solution Structure of RSGI RUH-035, a Zn-ribbon module in Mouse cDNA 2CRE ; ; Solution structure of RSGI RUH-036, an SH3 domain from human cDNA 2CQQ ; ; Solution Structure of RSGI RUH-037, a myb DNA-binding domain in human cDNA 2COS ; ; Solution structure of RSGI RUH-038, a UBA domain from Mouse LATS2 (Large Tumor Suppressor homolog 2) 2CQA ; ; Solution structure of RSGI RUH-039, a fragment of C-terminal domain of RuvB-like 2 from human cDNA 2COP ; ; Solution structure of RSGI RUH-040, an ACBP domain from human cDNA 2CQW ; ; Solution structure of RSGI RUH-041, a SMB-like domain from mouse cDNA 2CP9 ; ; Solution structure of RSGI RUH-042, a UBA domain from human mitochondrial elongation factor Ts 2CQR ; ; Solution structure of RSGI RUH-043, a myb DNA-binding domain in human cDNA 2CQ9 ; ; Solution structure of RSGI RUH-044, an N-terminal domain of Glutaredoxin 2 from human cDNA 2CQU ; ; Solution Structure of RSGI RUH-045, a Human Acyl-CoA Binding Protein 2D99 ; ; Solution Structure of RSGI RUH-048, a GTF2I domain in human cDNA 2D9S ; ; Solution structure of RSGI RUH-049, a UBA domain from mouse cDNA 2D9A ; ; Solution Structure of RSGI RUH-050, a myb DNA-binding domain in mouse cDNA 2DB6 ; ; Solution structure of RSGI RUH-051, a C1 domain of STAC3 from human cDNA 2D9B ; ; Solution Structure of RSGI RUH-052, a GTF2I domain in human cDNA 2DN8 ; ; Solution Structure of RSGI RUH-053, an Apo-Biotin Carboxy Carrier Protein from Human Transcarboxylase 2DNC ; ; Solution Structure of RSGI RUH-054, a lipoyl domain from human 2-oxoacid dehydrogenase 2DNV ; ; Solution Structure of RSGI RUH-055, a Chromo Domain from Mus musculus cDNA 2DNA ; ; Solution Structure of RSGI RUH-056, a UBA domain from mouse cDNA 2DN5 ; ; Solution Structure of RSGI RUH-057, a GTF2I domain in human cDNA 2DNE ; ; Solution Structure of RSGI RUH-058, a lipoyl domain of human 2-oxoacid dehydrogenase 2DNW ; ; Solution structure of RSGI RUH-059, an ACP domain of acyl carrier protein, mitochondrial [Precursor] from human cDNA 2DN4 ; ; Solution Structure of RSGI RUH-060, a GTF2I domain in human cDNA 2DNU ; ; Solution structure of RSGI RUH-061, a SH3 domain from human 2DNF ; ; Solution structure of RSGI RUH-062, a DCX domain from human 2DNX ; ; Solution structure of RSGI RUH-063, an N-terminal domain of Syntaxin 12 from human cDNA 2DNT ; ; Solution Structure of RSGI RUH-064, a Chromo Domain from Human cDNA 2DO6 ; ; Solution structure of RSGI RUH-065, a UBA domain from human cDNA 2DZQ ; ; Solution Structure of RSGI RUH-066, a GTF2I domain in human cDNA 2DZR ; ; Solution Structure of RSGI RUH-067, a GTF2I domain in human cDNA 2E3L ; ; Solution Structure of RSGI RUH-068, a GTF2I domain in human cDNA 2ED2 ; ; Solution Structure of RSGI RUH-069, a GTF2I domain in human cDNA 2EDU ; ; Solution structure of RSGI RUH-070, a C-terminal domain of kinesin-like protein KIF22 from human cDNA 2EJE ; ; Solution Structure of RSGI RUH-071, a GTF2I domain in human cDNA 2KM4 ; ; Solution structure of Rtt103 CTD interacting domain 2L0I ; ; Solution structure of Rtt103 CTD-interacting domain bound to a Ser2 phosphorylated CTD peptide 5M9D ; ; Solution structure of Rtt103 CTD-interacting domain bound to a Ser2Ser7 phosphorylated CTD peptide 5LVF ; ; Solution structure of Rtt103 CTD-interacting domain bound to a Thr4 phosphorylated CTD peptide 2D9F ; ; Solution structure of RUH-047, an FKBP domain from human cDNA 2EJM ; ; Solution structure of RUH-072, an apo-biotnyl domain form human acetyl coenzyme A carboxylase 2EKO ; ; Solution structure of RUH-073, a Pseudo Chromo Domain from Human cDNA 2EKK ; ; Solution structure of RUH-074, a human UBA domain 2EKF ; ; Solution structure of RUH-075, a human CUE domain 2EJS ; ; Solution structure of RUH-076, a human CUE domain 2KGY ; ; Solution structure of Rv0603 protein from Mycobacterium tuberculosis H37Rv 5IRD ; ; Solution structure of Rv1466 from Mycobacterium tuberculosis, a protein associated with [Fe-S] complex assembly and repair - Seattle Structural Genomics Center for Infectious Disease target MytuD.17486.a 2KHR ; ; Solution structure of Rv2377c, a MbtH-like protein from Mycobacterium tuberculosis 2YZ0 ; ; Solution Structure of RWD/GI domain of Saccharomyces cerevisiae GCN2 1P68 ; ; Solution structure of S-824, a de novo designed four helix bundle 7YHH ; ; Solution structure of S-di-mannosylated S3C mutant of carbohydrate binding module (CBM) of the glycoside hydrolase Family 7 cellobiohydrolase from Trichoderma reesei 7YHG ; ; Solution structure of S-mono-mannosylated S3C mutant of carbohydrate binding module (CBM) of the glycoside hydrolase Family 7 cellobiohydrolase from Trichoderma reesei 2LZN ; ; Solution structure of S. aureus primase C-terminal domain 2JZV ; ; Solution structure of S. aureus PrsA-PPIase 2JXN ; ; Solution Structure of S. cerevisiae PDCD5-like Protein Ymr074cp 1ZFS ; ; Solution structure of S100A1 bound to calcium 2LP3 ; ; Solution structure of S100A1 Ca2+ 2KOT ; ; Solution structure of S100A13 with a drug amlexanox 7YHF ; ; Solution structure of S3C mutant of carbohydrate binding module (CBM) of the glycoside hydrolase Family 7 cellobiohydrolase from Trichoderma reesei 1YX5 ; ; Solution Structure of S5a UIM-1/Ubiquitin Complex 1YX6 ; ; Solution Structure of S5a UIM-2/Ubiquitin Complex 1UGL ; ; Solution structure of S8-SP11 2JQQ ; ; Solution structure of Saccharomyces cerevisiae conserved oligomeric Golgi subunit 2 protein (Cog2p) 1L4V ; ; SOLUTION STRUCTURE OF SAPECIN 7LHQ ; ; Solution structure of SARS-CoV-2 nonstructural protein 7 at pH 7.0 2MW8 ; ; Solution structure of SATB1 homeodomain 2KKR ; ; Solution structure of SCA7 zinc finger domain from human ataxin-7 protein 2MVT ; ; Solution structure of scoloptoxin SSD609 from Scolopendra mutilans 6OHX ; ; Solution structure of scorpion Hottentotta jayakari venom toxin Hj1a 2JMV ; ; Solution structure of scytovirin refined against residual dipolar couplings 5IEB ; ; Solution structure of SdrG from Sphingomonas melonis Fr1 7SXI ; ; Solution Structure of Sds3 Capped Tudor Domain 2N2H ; ; Solution structure of Sds3 in complex with Sin3A 2RRN ; ; Solution structure of SecDF periplasmic domain P4 2LWD ; ; Solution structure of second CARD of human RIG-I 2CUQ ; ; Solution Structure of Second Lim Domain from Human Skeletal Muscle Lim-Protein 2 2EEI ; ; Solution Structure of Second PDZ domain of PDZ Domain Containing Protein 1 2DAQ ; ; Solution structure of second PWWP domain of WHSC1L1 protein 2JS0 ; ; Solution structure of second SH3 domain of adaptor Nck 1QK7 ; ; Solution structure of Selenocosmia huwena lectin-I(SHL-I) by 2D-NMR 2A2P ; ; Solution structure of SelM from Mus musculus 1SS6 ; ; Solution structure of SEP domain from human p47 2A4H ; ; Solution structure of Sep15 from Drosophila melanogaster 5TR5 ; ; Solution structure of Serine 65 phosphorylated UBL domain from parkin 2LF0 ; ; Solution structure of sf3636, a two-domain unknown function protein from Shigella flexneri 2a, determined by joint refinement of NMR, residual dipolar couplings and small-angle X-ray scattering, NESG target SfR339/OCSP target sf3636 1O8Z ; ; Solution structure of SFTI-1(6,5), an acyclic permutant of the proteinase inhibitor SFTI-1, cis-trans-trans conformer (ct-A) 1O8Y ; ; Solution structure of SFTI-1(6,5), an acyclic permutant of the proteinase inhibitor SFTI-1, trans-trans-trans conformer (tt-A) 1JBL ; ; Solution structure of SFTI-1, A cyclic trypsin inhibitor from sunflower seeds 6NOX ; ; Solution structure of SFTI-KLK5 inhibitor 2LO2 ; ; Solution structure of Sgf11(63-99) zinc finger domain 2LO3 ; ; Solution structure of Sgf73(59-102) zinc finger domain 1LA4 ; ; Solution Structure of SGTx1 2KK6 ; ; Solution structure of sh2 domain of proto-oncogene tyrosine-protein kinase fer from homo sapiens, northeast structural genomics consortium (nesg) target hr3461d 6CPI ; ; Solution structure of SH3 domain from Shank1 6CPJ ; ; Solution structure of SH3 domain from Shank2 6CPK ; ; Solution structure of SH3 domain from Shank3 1UJY ; ; Solution structure of SH3 domain in Rac/Cdc42 guanine nucleotide exchange factor(GEF) 6 2EPD ; ; Solution structure of SH3 domain in Rho-GTPase-activating protein 4 2E5K ; ; Solution structure of SH3 domain in Suppressor of T-cell receptor signaling 1 1WFW ; ; Solution structure of SH3 domain of mouse Kalirin-9a protein 1Z9Q ; ; Solution structure of SH3 domain of p40phox 2KGT ; ; Solution structure of SH3 domain of PTK6 2RQV ; ; Solution structure of SH3CI domain of Bem1p 2KR3 ; ; Solution structure of SHA-D 2K4P ; ; Solution Structure of Ship2-Sam 2MD0 ; ; Solution structure of ShK-like immunomodulatory peptide from Ancylostoma caninum (hookworm) 2MCR ; ; Solution structure of ShK-like immunomodulatory peptide from Brugia malayi (filarial worm) 1TTY ; ; Solution structure of sigma A region 4 from Thermotoga maritima 2JYS ; ; Solution structure of Simian Foamy Virus (mac) protease 5TMX ; ; Solution Structure of SinI, antagonist to the master biofilm-regulator SinR in Bacillus subtilis 2CUR ; ; Solution structure of Skeletal muscle LIM-protein 1 5XYL ; ; Solution Structure of Skp1 from Homo sapiens 2HBP ; ; Solution Structure of Sla1 Homology Domain 1 2KJM ; ; Solution structure of SLBP RNA binding domain fragment 2LWK ; ; Solution structure of small molecule-influenza RNA complex 5Z26 ; ; solution structure of SMAP-18 4A4G ; ; Solution structure of SMN Tudor domain in complex with asymmetrically dimethylated arginine 4A4E ; ; Solution structure of SMN Tudor domain in complex with symmetrically dimethylated arginine 8R8P ; ; Solution structure of SMN-CX bound to the RNA helix formed upon SMN2 exon7 5'-splice site recognition 2MAH ; ; Solution structure of Smoothened 2KXQ ; ; Solution Structure of Smurf2 WW2 and WW3 bound to Smad7 PY motif containing peptide 2DJY ; ; Solution structure of Smurf2 WW3 domain-Smad7 PY peptide complex 2KHS ; ; Solution structure of SNase121:SNase(111-143) complex 2KQ3 ; ; Solution structure of SNase140 2FJ5 ; ; SOLUTION STRUCTURE OF sole a-domain of HUMAN Metallothionein-3 (MT-3) 1ON4 ; ; Solution structure of soluble domain of Sco1 from Bacillus Subtilis 6R1V ; ; Solution structure of sortase A from S. aureus in complex with 2-(aminomethyl)-3-hydroxy-4H-pyran-4-one based prodrug 2MLM ; ; Solution structure of sortase A from S. aureus in complex with benzo[d]isothiazol-3-one based inhibitor 6LAG ; ; Solution structure of SPA-2 SHD 4A4H ; ; Solution structure of SPF30 Tudor domain in complex with asymmetrically dimethylated arginine 4A4F ; ; Solution structure of SPF30 Tudor domain in complex with symmetrically dimethylated arginine 1UT3 ; ; Solution Structure of Spheniscin-2, a beta-Defensin from Penguin Stomach Preserving Food 7SKC ; ; Solution structure of spider toxin Ssp1a 2MT7 ; ; Solution structure of spider-venom peptide Hs1a 1ZRW ; ; solution structure of spinigerin in H20/TFE 10% 1ZRV ; ; solution structure of spinigerin in H20/TFE 50% 2DK4 ; ; Solution structure of Splicing Factor Motif in Pre-mRNA splicing factor 18 (hPRP18) 1BUZ ; ; SOLUTION STRUCTURE OF SPOIIAA, A PHOSPHORYLATABLE COMPONENT OF THE SYSTEM THAT REGULATES TRANSCRIPTION FACTOR SIGMA-F OF BACILLUS SUBTILIS NMR, MINIMIZED AVERAGE STRUCTURE 1AUZ ; ; SOLUTION STRUCTURE OF SPOIIAA, A PHOSPHORYLATABLE COMPONENT OF THE SYSTEM THAT REGULATES TRANSCRIPTION FACTOR SIGMA-F OF BACILLUS SUBTILIS, NMR, 24 STRUCTURES 1EWW ; ; SOLUTION STRUCTURE OF SPRUCE BUDWORM ANTIFREEZE PROTEIN AT 30 DEGREES CELSIUS 1N4I ; ; Solution structure of spruce budworm antifreeze protein at 5 degrees celsius 1LWA ; ; Solution Structure of SRY_DNA 1N2Y ; ; SOLUTION STRUCTURE OF SS-CYCLIZED CATESTATIN FRAGMENT FROM CHROMOGRANIN A 2KI2 ; ; Solution Structure of ss-DNA Binding Protein 12RNP2 Precursor, HP0827(O25501_HELPY) form Helicobacter pylori 2JTM ; ; Solution structure of Sso6901 from Sulfolobus solfataricus P2 1XXZ ; ; Solution structure of sst1-selective somatostatin (SRIF) analog 1OH1 ; ; Solution structure of staphostatin A form Staphylococcus aureus confirms the discovery of a novel class of cysteine proteinase inhibitors. 2M00 ; ; Solution structure of staphylococcal nuclease E43S mutant in the presence of ssDNA and Cd2+ 2LHR ; ; Solution structure of Staphylococcus aureus IsdH linker domain 2MOU ; ; Solution structure of StAR-related lipid transfer domain protein 6 (STARD6) 2KLN ; ; Solution Structure of STAS domain of RV1739c from M. tuberculosis 6SDW ; ; Solution structure of Staufen1 dsRBD3+4 - hARF1 SBS dsRNA complex. 6SDY ; ; Solution structure of Staufen1 dsRBD4 - hARF1 SBS dsRNA complex. 2L4U ; ; Solution structure of Ste5PM24 in the presence of SDS micelle 2KGN ; ; Solution structure of Ste5PM24 in the zwitterionic DPC micelle 2AVA ; ; Solution Structure of Stearoyl-Acyl Carrier Protein 2JYM ; ; Solution structure of stem-loop alpha of the hepatitis B virus post-transcriptional regulatory element 1X02 ; ; Solution structure of stereo array isotope labeled (SAIL) calmodulin 2JW8 ; ; Solution structure of stereo-array isotope labelled (SAIL) C-terminal dimerization domain of SARS coronavirus nucleocapsid protein 2FF0 ; ; Solution Structure of Steroidogenic Factor 1 DNA Binding Domain Bound to its Target Sequence in the Inhibin alpha-subunit Promoter 1ZRX ; ; solution structure of stomoxyn in H20/TFE 50% 2LPX ; ; Solution Structure of Strawberry Allergen Fra a 1e 1V4R ; ; Solution structure of Streptmycal repressor TraR 4CA3 ; ; SOLUTION STRUCTURE OF STREPTOMYCES VIRGINIAE VIRA ACP5B 1SDF ; ; SOLUTION STRUCTURE OF STROMAL CELL-DERIVED FACTOR-1 (SDF-1), NMR, MINIMIZED AVERAGE STRUCTURE 2LGZ ; ; Solution structure of STT3P 1WU0 ; ; Solution structure of subunit c of F1Fo-ATP synthase from the thermophilic bacillus PS3 7VIL ; ; Solution structure of subunit epsilon of the Mycobacterium abscessus F-ATP synthase 7XKZ ; ; Solution structure of subunit epsilon of the Mycobacterium abscessus F-ATP synthase 1VZS ; ; Solution structure of subunit F6 from the peripheral stalk region of ATP synthase from bovine heart mitochondria 2KSK ; ; Solution Structure of Sugarcane defensin 5 2MP2 ; ; Solution structure of SUMO dimer in complex with SIM2-3 from RNF4 5GJL ; ; Solution structure of SUMO from Plasmodium falciparum 2K8H ; ; Solution structure of SUMO from Trypanosoma brucei 2ASQ ; ; Solution Structure of SUMO-1 in Complex with a SUMO-binding Motif (SBM) 2KXY ; ; Solution structure of SuR18C from Streptococcus thermophilus. Northeast Structural Genomics Consortium Target SuR18C 1UG0 ; ; Solution structure of SURP domain in BAB30904 1X4P ; ; Solution structure of SURP domain in SFRS14 protei 1X4O ; ; Solution structure of SURP domain in splicing factor 4 2CUJ ; ; Solution structure of SWIRM domain of mouse transcriptional adaptor 2-like 1NLA ; ; Solution Structure of Switch Arc, a Mutant with 3(10) Helices Replacing a Wild-Type Beta-Ribbon 2KSC ; ; Solution structure of Synechococcus sp. PCC 7002 hemoglobin 1S4T ; ; Solution structure of synthetic 21mer peptide spanning region 135-155 (in human numbering) of sheep prion protein 2RMW ; ; Solution structure of synthetic 26-mer peptide containing 142-166 sheep prion protein segment and C-terminal cysteine with R156A mutation 2RMV ; ; Solution structure of synthetic 26-mer peptide containing 142-166 sheep prion protein segment and C-terminal cysteine with Y155A mutation 1G04 ; ; SOLUTION STRUCTURE OF SYNTHETIC 26-MER PEPTIDE CONTAINING 145-169 SHEEP PRION PROTEIN SEGMENT AND C-TERMINAL CYSTEINE 1IM7 ; ; Solution structure of synthetic cyclic peptide mimicking the loop of HIV-1 gp41 glycoprotein envelope 2MJY ; ; Solution structure of synthetic Mamba-1 peptide 1ID7 ; ; SOLUTION STRUCTURE OF SYR6 1Q68 ; ; Solution structure of T-cell surface glycoprotein CD4 and Proto-oncogene tyrosine-protein kinase LCK fragments 1Q69 ; ; Solution structure of T-cell surface glycoprotein CD8 alpha chain and Proto-oncogene tyrosine-protein kinase LCK fragments 7XRW ; ; Solution structure of T. brucei RAP1 1TKV ; ; Solution Structure of T4 AsiA Dimer 2JPN ; ; Solution Structure of T4 Bacteriophage Helicase Uvsw.1 1TL6 ; ; Solution structure of T4 bacteriphage AsiA monomer 1SJG ; ; Solution Structure of T4moC, the Rieske Ferredoxin Component of the Toluene 4-Monooxygenase Complex 1HU7 ; ; SOLUTION STRUCTURE OF T7 NOVISPIRIN 2ABY ; ; Solution structure of TA0743 from Thermoplasma acidophilum 2G1E ; ; Solution Structure of TA0895 2JMK ; ; Solution structure of ta0956 1DQC ; ; SOLUTION STRUCTURE OF TACHYCITIN, AN ANTIMICROBIAL PROTEIN WITH CHITIN-BINDING FUNCTION 1WO0 ; ; Solution structure of tachyplesin I in H2O 1MA4 ; ; Solution Structure of Tachyplesin I Mutant TPY4 in water 1XUT ; ; Solution structure of TACI-CRD2 6LQZ ; ; Solution structure of Taf14ET-Sth1EBMC 2LY3 ; ; Solution structure of TamA POTRA domain I 2CS8 ; ; Solution structure of tandem repeat of the fifth and sixth zinc-finger C2HC domains from human ST18 2CSH ; ; Solution structure of tandem repeat of the zf-C2H2 domains of human zinc finger protein 297B 2MKH ; ; Solution structure of tandem RRM domains of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in free state 2MKI ; ; Solution structure of tandem RRM domains of cytoplasmic polyadenylation element binding protein 4 (CPEB4) in complex with RNA 2MKJ ; ; Solution structure of tandem RRM domains of cytoplasmic polyadenylation element binding protein 4 (CPEB4) in free state 8B8S ; ; Solution structure of tandem RRM1 and RRM2 domains of yeast NPL3 2L3T ; ; Solution structure of tandem SH2 domain from Spt6 2MOX ; ; solution structure of tandem SH3 domain of Sorbin and SH3 domain-containing protein 1 2LBC ; ; solution structure of tandem UBA of USP13 1Q0V ; ; Solution Structure of Tandem UIMs of Vps27 2RPP ; ; Solution structure of Tandem zinc finger domain 12 in Muscleblind-like protein 2 7LVN ; ; Solution structure of tarantula toxin omega-Avsp1a 2M7Q ; ; Solution structure of TAX1BP1 UBZ1+2 5HP0 ; ; Solution Structure of TAZ2-p53AD2 5HPD ; ; Solution Structure of TAZ2-p53TAD 5MRG ; ; Solution structure of TDP-43 (residues 1-102) 2N3X ; ; Solution Structure of TDP-43 Amyloidogenic Core Region 6B1G ; ; Solution structure of TDP-43 N-terminal domain dimer. 7ELK ; ; Solution structure of Terfa derived from Danio rerio 1MM0 ; ; Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger 1TER ; ; SOLUTION STRUCTURE OF TERTIAPIN DETERMINED USING NUCLEAR MAGNETIC RESONANCE AND DISTANCE GEOMETRY 7X5C ; ; Solution structure of Tetrahymena p75OB1-p50PBM 1TLR ; ; SOLUTION STRUCTURE OF TETRALOOP RECEPTOR RNA, NMR, 20 STRUCTURES 2MG8 ; ; Solution structure of TFF1 Estrogen Response Element complexed with DNA Bis-intercalating Anticancer Drug XR5944 (MLN944) 1KLC ; ; SOLUTION STRUCTURE OF TGF-B1, NMR, MINIMIZED AVERAGE STRUCTURE 1KLA ; ; SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 1-17 OF 33 STRUCTURES 1KLD ; ; SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 18-33 OF 33 STRUCTURES 7DOJ ; ; Solution structure of TGS domain of the Mycobacterium tuberculosis Rel protein 8ONU ; ; Solution structure of thanatin analogue 7 in complex with LptAm(Ab)1.0 8BSS ; ; Solution Structure of thanatin-like derivative 5 in complex with E. coli LptA mutant Q62L 7QS6 ; ; Solution structure of thanatin-like derivative 7 in complex with E.coli LptA 7ZED ; ; Solution structure of thanatin-like derivative 7 in complex with E.coli LptA mutant Q62L 7ZAX ; ; Solution structure of thanatin-like derivative 7 in complex with K. pneumoniae LptA 2EPY ; ; Solution structure of the 10th C2H2 type zinc finger domain of Zinc finger protein 268 2ELM ; ; Solution structure of the 10th C2H2 zinc finger of human Zinc finger protein 406 2DIA ; ; Solution structure of the 10th filamin domain from human Filamin-B 2EQ4 ; ; Solution structure of the 11th C2H2 type zinc finger domain of Zinc finger protein 224 2ELN ; ; Solution structure of the 11th C2H2 zinc finger of human Zinc finger protein 406 2DIB ; ; Solution structure of the 11th filamin domain from human Filamin-B 2EC3 ; ; Solution structure of the 11th FN1 domain from human Fibronectin 1 2ELO ; ; Solution structure of the 12th C2H2 zinc finger of human Zinc finger protein 406 2DIC ; ; Solution structure of the 12th filamin domain from human Filamin-B 2CTK ; ; Solution structure of the 12th KH type I domain from human Vigilin 2ELP ; ; Solution structure of the 13th C2H2 zinc finger of human Zinc finger protein 406 2DJ4 ; ; Solution structure of the 13th filamin domain from human Filamin-B 2CTL ; ; Solution structure of the 13th KH type I domain from human Vigilin 2ELQ ; ; Solution structure of the 14th C2H2 zinc finger of human Zinc finger protein 406 2D7M ; ; Solution structure of the 14th Filamin domain from human Filamin C 2E9J ; ; Solution structure of the 14th filamin domain from human Filamin-B 2DM7 ; ; Solution structure of the 14th Ig-like domain of human KIAA1556 protein 2CTM ; ; Solution structure of the 14th KH type I domain from human Vigilin 2ELR ; ; Solution structure of the 15th C2H2 zinc finger of human Zinc finger protein 406 1UVG ; ; Solution structure of the 15th Domain of LEKTI 2DMB ; ; Solution structure of the 15th Filamin domain from human Filamin-B 2GQH ; ; Solution structure of the 15th Ig-like domain of human KIAA1556 protein 2EL4 ; ; Solution structure of the 15th zf-C2H2 domain from human Zinc finger protein 268 2EQ2 ; ; Solution structure of the 16th C2H2 type zinc finger domain of Zinc finger protein 347 2D7N ; ; Solution structure of the 16th Filamin domain from human Filamin C 2EE9 ; ; Solution structure of the 16th filamin domain from human Filamin-B 1IR5 ; ; Solution Structure of the 17mer TF1 Binding Site 2EQ3 ; ; Solution structure of the 17th C2H2 type zinc finger domain of Zinc finger protein 347 2D7O ; ; Solution structure of the 17th Filamin domain from human Filamin C 2EEA ; ; Solution structure of the 17th filamin domain from human Filamin-B 2ELZ ; ; Solution structure of the 17th zf-C2H2 domain from human Zinc finger protein 224 1T17 ; ; Solution Structure of the 18 kDa Protein CC1736 from Caulobacter crescentus: The Northeast Structural Genomics Consortium Target CcR19 2DMC ; ; Solution structure of the 18th Filamin domain from human Filamin-B 2EM0 ; ; Solution structure of the 18th zf-C2H2 domain from human Zinc finger protein 224 2EL5 ; ; Solution structure of the 18th zf-C2H2 domain from human Zinc finger protein 268 2DI8 ; ; Solution structure of the 19th filamin domain from human Filamin-B 2CP2 ; ; Solution structure of the 1st CAP-Gly domain in human CLIP-115/CYLN2 2CP0 ; ; Solution structure of the 1st CAP-Gly domain in human CLIP-170-related protein CLIPR59 2CP5 ; ; Solution structure of the 1st CAP-Gly domain in human CLIP-170/restin 1WHL ; ; Solution structure of the 1st CAP-Gly domain in human cylindromatosis tumor suppressor CYLD 1WHJ ; ; Solution structure of the 1st CAP-Gly domain in mouse 1700024K14Rik hypothetical protein 2CP7 ; ; Solution structure of the 1st CAP-Gly domain in mouse CLIP-170/restin 2KDG ; ; Solution Structure of the 1st Ig domain of Myotilin 2CTE ; ; Solution structure of the 1st KH type I domain from human Vigilin 2YRM ; ; Solution structure of the 1st zf-C2H2 domain from Human B-cell lymphoma 6 protein 2FYH ; ; Solution structure of the 2'-5' RNA ligase-like protein from Pyrococcus furiosus 2EPV ; ; Solution structure of the 20th C2H2 type zinc finger domain of Zinc finger protein 268 2DLG ; ; Solution structure of the 20th Filamin domain from human Filamin-B 2L0X ; ; Solution structure of the 21 kDa GTPase RHEB bound to GDP 2EE6 ; ; Solution structure of the 21th filamin domain from human Filamin-B 2EL6 ; ; Solution structure of the 21th zf-C2H2 domain from human Zinc finger protein 268 2D7P ; ; Solution structure of the 22th Filamin domain from human Filamin C 2EEB ; ; Solution structure of the 22th filamin domain from human Filamin-B 2D7Q ; ; Solution structure of the 23th Filamin domain from human Filamin C 2EEC ; ; Solution structure of the 23th filamin domain from human Filamin-B 2EPW ; ; Solution structure of the 24th C2H2 type zinc finger domain of Zinc finger protein 268 2EED ; ; Solution structure of the 24th filamin domain from human Filamin-B 1H7J ; ; Solution structure of the 26 aa presequence of 5-ALAS 2M5T ; ; Solution structure of the 2A proteinase from a common cold agent, human rhinovirus RV-C02, strain W12 2ELS ; ; Solution structure of the 2nd C2H2 zinc finger of human Zinc finger protein 406 2CP3 ; ; Solution structure of the 2nd CAP-Gly domain in human CLIP-115/CYLN2 2CP6 ; ; Solution structure of the 2nd CAP-Gly domain in human CLIP-170/restin 1WHM ; ; Solution structure of the 2nd CAP-Gly domain in human cylindromatosis tumor suppressor CYLD 1WHH ; ; Solution structure of the 2nd CAP-Gly domain in mouse CLIP170-related 59kDa protein CLIPR-59 1X4Z ; ; Solution structure of the 2nd fibronectin type III domain from mouse biregional cell adhesion molecule-related/down-regulated oncogenes (Cdon) binding protein 1WJR ; ; Solution structure of the 2nd mbt domain from human KIAA1617 protein 1MM2 ; ; Solution structure of the 2nd PHD domain from Mi2b 1MM3 ; ; Solution structure of the 2nd PHD domain from Mi2b with C-terminal loop replaced by corresponding loop from WSTF 1WFE ; ; Solution structure of the 2nd zf-AN1 domain of mouse RIKEN cDNA 2310008M20 protein 2P89 ; ; Solution structure of the 3' pseudouridyation pocket of U65 snoRNA with bound substrate 1YBN ; ; Solution structure of the 3'E topology of the i-motif tetramer of d(CCCCAA) 2MVU ; ; Solution Structure of the 3,7-dioxo-octyl Actinorhodin Acyl Carrier Protein from Streptomyces coelicolor 1QXN ; ; Solution Structure of the 30 kDa Polysulfide-sulfur Transferase Homodimer from Wolinella Succinogenes 2Q7Z ; ; Solution Structure of the 30 SCR domains of human Complement Receptor 1 1NY4 ; ; Solution structure of the 30S ribosomal protein S28E from Pyrococcus horikoshii. Northeast Structural Genomics Consortium target JR19. 2CUH ; ; Solution structure of the 31st fibronectin type III domain of the human tenascin X 2CUI ; ; Solution structure of the 31st fibronectin type III domain of the human tenascin X 1N9J ; ; Solution Structure of the 3D domain swapped dimer of Stefin A 2ELT ; ; Solution structure of the 3rd C2H2 zinc finger of human Zinc finger protein 406 1WHK ; ; Solution structure of the 3rd CAP-Gly domain in mouse 1700024K14Rik hypothetical protein 1X4Y ; ; Solution structure of the 3rd fibronectin type III domain from mouse biregional cell adhesion molecule-related/down-regulated oncogenes (Cdon) binding protein 1V64 ; ; Solution structure of the 3rd HMG box of mouse UBF1 1V62 ; ; Solution structure of the 3rd PDZ domain of GRIP2 2RQ1 ; ; Solution structure of the 4.1R FERM alpha lobe domain 1H7D ; ; Solution structure of the 49 aa presequence of 5-ALAS 2EPZ ; ; Solution structure of the 4th C2H2 type zinc finger domain of Zinc finger protein 28 homolog 1WGF ; ; Solution structure of the 4th HMG-box of mouse UBF1 2CTF ; ; Solution structure of the 4th KH type I domain from human Vigilin 2EPS ; ; Solution structure of the 4th zinc finger domain of Zinc finger protein 278 1YBR ; ; Solution structure of the 5'E topology of the i-motif tetramer of d(CCCCAA) 2MVV ; ; Solution Structure of the 5-phenyl-3-oxo-pentyl Actinorhodin Acyl Carrier Protein from Streptomyces coelicolor 1SQR ; ; Solution Structure of the 50S Ribosomal Protein L35AE from Pyrococcus furiosus. Northeast Structural Genomics Consortium Target PfR48. 2ELU ; ; Solution structure of the 5th C2H2 zinc finger of human Zinc finger protein 406 2ELW ; ; Solution structure of the 5th C2H2 zinc finger of mouse Zinc finger protein 406 2EQW ; ; Solution structure of the 6th C2H2 type zinc finger domain of Zinc finger protein 484 2ELV ; ; Solution structure of the 6th C2H2 zinc finger of human Zinc finger protein 406 1X4X ; ; Solution structure of the 6th fibronectin type III domain from human fibronectin type III domain containing protein 3 1V63 ; ; Solution structure of the 6th HMG box of mouse UBF1 2E7B ; ; Solution structure of the 6th Ig-like domain from human KIAA1556 2E7C ; ; Solution structure of the 6th Ig-like domain from human Myosin-binding protein C, fast-type 2EQF ; ; Solution structure of the 7th A20-type zinc finger domain from human tumor necrosis factor, alpha-induced protein3 2DAZ ; ; Solution structure of the 7th PDZ domain of InaD-like protein 1MK6 ; ; SOLUTION STRUCTURE OF THE 8,9-DIHYDRO-8-(N7-GUANYL)-9-HYDROXY-AFLATOXIN B1 ADDUCT MISPAIRED WITH DEOXYADENOSINE 8OR8 ; ; Solution structure of the 8-17 DNAzyme in presence of Zn2+ 2EQ0 ; ; Solution structure of the 8th C2H2 type zinc finger domain of Zinc finger protein 347 2ELX ; ; Solution structure of the 8th C2H2 zinc finger of mouse Zinc finger protein 406 2CTJ ; ; Solution structure of the 8th KH type I domain from human Vigilin 2EQ1 ; ; Solution structure of the 9th C2H2 type zinc finger domain of Zinc finger protein 347 2DI9 ; ; Solution structure of the 9th filamin domain from human Filamin-B 2M71 ; ; Solution structure of the a C-terminal domain of translation initiation factor IF-3 from Campylobacter jejuni 1I3X ; ; SOLUTION STRUCTURE OF THE A LOOP OF 23S RIBOSOMAL RNA 1I3Y ; ; SOLUTION STRUCTURE OF THE A LOOP OF 23S RIBOSOMAL RNA. 2RUE ; ; Solution structure of the a' domain of thermophilic fungal protein disulfide (oxidized form, 303K) 2RUF ; ; Solution structure of the a' domain of thermophilic fungal protein disulfide (reduced form, 303K) 2DJJ ; ; Solution structure of the a' domain of thermophilic fungal protein disulfide isomerase 2KP1 ; ; Solution structure of the a' domain of thermophilic fungal protein disulfide isomerase 1E9J ; ; SOLUTION STRUCTURE OF THE A-SUBUNIT OF HUMAN CHORIONIC GONADOTROPIN [INCLUDING A SINGLE GLCNAC RESIDUE AT ASN52 AND ASN78] 1HD4 ; ; SOLUTION STRUCTURE OF THE A-SUBUNIT OF HUMAN CHORIONIC GONADOTROPIN [MODELED WITH DIANTENNARY GLYCAN AT ASN78] 1DZ7 ; ; Solution structure of the a-subunit of human chorionic gonadotropin [modeled without carbohydrate residues] 2N02 ; ; Solution structure of the A147T variant of the mitochondrial translocator protein (tspo) in complex with pk11195 2EEE ; ; Solution structure of the A1pp domain from human protein C6orf130 2J8J ; ; Solution Structure of the A4 Domain of Blood Coagulation Factor XI 1X26 ; ; Solution structure of the AA-mismatch DNA complexed with naphthyridine-azaquinolone 2N73 ; ; Solution structure of the ACBD3:PI4KB complex 2KG6 ; ; Solution Structure of the acetyl Actinorhodin Acyl Carrier Protein from Streptomyces coelicolor 1TJZ ; ; Solution Structure of the Active Site Stem-Loop of the VS Ribozyme 1TXE ; ; Solution structure of the active-centre mutant Ile14Ala of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus carnosus 2KIJ ; ; Solution structure of the Actuator domain of the copper-transporting ATPase ATP7A 1ORX ; ; Solution Structure of the acyclic permutant des-(24-28)-kalata B1. 2LBM ; ; Solution structure of the ADD domain of ATRX complexed with histone tail H3 1-15 K9me3 2JO7 ; ; Solution structure of the adhesion protein Bd37 from Babesia divergens 2AIN ; ; Solution structure of the AF-6 PDZ domain complexed with the C-terminal peptide from the Bcr protein 2LM0 ; ; Solution structure of the AF4-AF9 complex 2M89 ; ; Solution structure of the Aha1 dimer from Colwellia psychrerythraea 2KQN ; ; Solution structure of the AL-09 H87Y immunoglobulin light chain variable domain 1GJS ; ; Solution structure of the Albumin binding domain of Streptococcal Protein G 1GJT ; ; Solution structure of the Albumin binding domain of Streptococcal Protein G 2MUI ; ; Solution structure of the AlgH protein from Pseudomonas aeruginosa, PA0405, UPF0301 2RN4 ; ; Solution structure of the alkaline proteinase inhibitor APRin from Pseudomonas aeruginosa 2JUE ; ; Solution structure of the all-D kalata B1 2E9G ; ; Solution structure of the alpha adaptinC2 domain from human Adapter-related protein complex 1 gamma 2 subunit 1M0G ; ; Solution structure of the alpha domain of mt_nc 2KUB ; ; Solution structure of the alpha subdomain of the major non-repeat unit of Fap1 fimbriae of Streptococcus parasanguis 7KNN ; ; Solution structure of the alpha-conotoxin analogue [2-8]-alkyne Vc1.1 2N3J ; ; Solution Structure of the alpha-crystallin domain from the redox-sensitive chaperone, HSPB1 2F5H ; ; Solution structure of the alpha-domain of human Metallothionein-3 1DFS ; ; SOLUTION STRUCTURE OF THE ALPHA-DOMAIN OF MOUSE METALLOTHIONEIN-1 1JI9 ; ; Solution structure of the alpha-domain of mouse metallothionein-3 1WHU ; ; Solution structure of the alpha-helical domain from mouse hypothetical PNPase 2JP1 ; ; Solution structure of the alternative conformation of XCL1/Lymphotactin 1Q7X ; ; Solution structure of the alternatively spliced PDZ2 domain (PDZ2b) of PTP-Bas (hPTP1E) 1IYT ; ; Solution structure of the Alzheimer's disease amyloid beta-peptide (1-42) 1URK ; ; SOLUTION STRUCTURE OF THE AMINO TERMINAL FRAGMENT OF UROKINASE-TYPE PLASMINOGEN ACTIVATOR 2KGS ; ; Solution structure of the amino-terminal domain of OmpATb, a pore forming protein from Mycobacterium tuberculosis 1C95 ; ; Solution structure of the aminoacyl-capped oligodeoxyribonucleotide duplex TRP-D(TGCGCAC)2 2KWP ; ; Solution structure of the aminoterminal domain of E. coli NusA 2K06 ; ; Solution structure of the aminoterminal domain of E. coli NusG 1KDL ; ; Solution structure of the amphipathic domain of YopD from Yersinia 6SZF ; ; Solution structure of the amyloid beta-peptide (1-42) 2MUB ; ; Solution structure of the analgesic sea anemone peptide APETx2 1CW8 ; ; SOLUTION STRUCTURE OF THE ANALOGUE RETRO-INVERSO (mA-R)REGRIGGC IN CONTACT WITH THE MONOCLONAL ANTIBODY MAB 4X11, NMR, 6 STRUCTURES 1CWZ ; ; Solution structure of the analogue retro-inverso (MA-S)REGRIGGC in contact with the monoclonal antibody MAB 4X11, NMR, 7 structures 1CVQ ; ; SOLUTION STRUCTURE OF THE ANALOGUE RETRO-INVERSO MGREGRIGGC IN CONTACT WITH THE MONOCLONAL ANTIBODY MAB 4X11, NMR, 7 STRUCTURES 1YSW ; ; Solution structure of the anti-apoptotic protein Bcl-2 complexed with an acyl-sulfonamide-based ligand 2O21 ; ; Solution structure of the anti-apoptotic protein Bcl-2 in complex with an acyl-sulfonamide-based ligand 2O22 ; ; Solution structure of the anti-apoptotic protein Bcl-2 in complex with an acyl-sulfonamide-based ligand 2O2F ; ; Solution structure of the anti-apoptotic protein Bcl-2 in complex with an acyl-sulfonamide-based ligand 1YSN ; ; Solution structure of the anti-apoptotic protein Bcl-xL complexed with an acyl-sulfonamide-based ligand 1YSG ; ; Solution Structure of the Anti-apoptotic Protein Bcl-xL in Complex with ""SAR by NMR"" Ligands 1YSI ; ; Solution structure of the anti-apoptotic protein Bcl-xL in complex with an acyl-sulfonamide-based ligand 2O1Y ; ; Solution structure of the anti-apoptotic protein Bcl-xL in complex with an acyl-sulfonamide-based ligand 2O2M ; ; Solution structure of the anti-apoptotic protein Bcl-xL in complex with an acyl-sulfonamide-based ligand 2O2N ; ; Solution structure of the anti-apoptotic protein Bcl-xL in complex with an acyl-sulfonamide-based ligand 2LR3 ; ; Solution structure of the anti-fungal defensin DEF4 (MTR_8g070770) from Medicago truncatula (barrel clover) 1JR5 ; ; Solution Structure of the Anti-Sigma Factor AsiA Homodimer 1B03 ; ; SOLUTION STRUCTURE OF THE ANTIBODY-BOUND HIV-1IIIB V3 PEPTIDE 1KRS ; ; SOLUTION STRUCTURE OF THE ANTICODON BINDING DOMAIN OF ESCHERICHIA COLI LYSYL-TRNA SYNTHETASE AND STUDIES OF ITS INTERACTIONS WITH TRNA-LYS 1KRT ; ; SOLUTION STRUCTURE OF THE ANTICODON BINDING DOMAIN OF ESCHERICHIA COLI LYSYL-TRNA SYNTHETASE AND STUDIES OF ITS INTERACTIONS WITH TRNA-LYS 2G1G ; ; Solution structure of the anticodon loop of S. Pombe tRNAi including the naturally occurring N6-threonyl adenine 1AFP ; ; SOLUTION STRUCTURE OF THE ANTIFUNGAL PROTEIN FROM ASPERGILLUS GIGANTEUS. EVIDENCE FOR DISULPHIDE CONFIGURATIONAL ISOMERISM 2KCN ; ; Solution structure of the antifungal protein PAF from Penicillium chrysogenum 6TRM ; ; Solution structure of the antifungal protein PAFC 1YS5 ; ; Solution structure of the antigenic domain of GNA1870 of Neisseria meningitidis 1NYO ; ; Solution structure of the antigenic TB protein MPT70/MPB70 1KFP ; ; Solution structure of the antimicrobial 18-residue gomesin 2M2Y ; ; Solution structure of the antimicrobial peptide Btd-2[3,4] 8HVS ; ; Solution Structure of the Antimicrobial Peptide HT-2 2LXZ ; ; Solution Structure of the Antimicrobial Peptide Human Defensin 5 2M2G ; ; Solution structure of the antimicrobial peptide [Aba3,16]BTD-2 2M2X ; ; Solution structure of the antimicrobial peptide [Aba3,5,7,12,14,16]BTD-2 2M2H ; ; Solution structure of the antimicrobial peptide [Aba3,7,12,16]BTD-2 2M2S ; ; Solution structure of the antimicrobial peptide [Aba5,7,12,14]BTD-2 2IXY ; ; Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal 2IXZ ; ; Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal 2K2A ; ; Solution Structure of the Apo C terminal domain of Lethocerus troponin C isoform F1 5Y08 ; ; Solution structure of the apo doublet acyl carrier protein from prodigiosin biosynthesis 1QJT ; ; SOLUTION STRUCTURE OF THE APO EH1 DOMAIN OF MOUSE EPIDERMAL GROWTH FACTOR RECEPTOR SUBSTRATE 15, EPS15 2MMZ ; ; Solution structure of the apo form of human glutaredoxin 5 1Y3K ; ; Solution structure of the apo form of the fifth domain of Menkes protein 1YJR ; ; Solution structure of the apo form of the sixth soluble domain A69P mutant of Menkes protein 1YJU ; ; Solution structure of the apo form of the sixth soluble domain of Menkes protein 2G9O ; ; Solution structure of the apo form of the third metal-binding domain of ATP7A protein (Menkes Disease protein) 1FES ; ; SOLUTION STRUCTURE OF THE APO FORM OF THE YEAST METALLOCHAPERONE, ATX1 1F54 ; ; SOLUTION STRUCTURE OF THE APO N-TERMINAL DOMAIN OF YEAST CALMODULIN 5HVC ; ; Solution structure of the apo state of the acyl carrier protein from the MLSA2 subunit of the mycolactone polyketide synthase 2JT2 ; ; Solution Structure of the Aquifex aeolicus LpxC- CHIR-090 complex 6NU4 ; ; Solution structure of the Arabidopsis thaliana RALF8 peptide 2AJE ; ; Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain 1GH8 ; ; SOLUTION STRUCTURE OF THE ARCHAEAL TRANSLATION ELONGATION FACTOR 1BETA FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 2CRW ; ; Solution structure of the ArfGap domain of ADP-ribosylation factor GTPaseactivating protein 3 (ArfGap 3) 2D9L ; ; Solution structure of the ArfGap domain of human RIP 2EQY ; ; Solution structure of the ARID domain of Jarid1b protein 2YQE ; ; Solution structure of the ARID domain of JARID1D protein 6QXZ ; ; Solution structure of the ASHH2 CW domain with the N-terminal histone H3 tail mimicking peptide monomethylated on lysine 4 2RQ5 ; ; Solution structure of the AT-rich interaction domain (ARID) of Jumonji/JARID2 2GGP ; ; Solution structure of the Atx1-Cu(I)-Ccc2a complex 2JSN ; ; Solution structure of the atypical PDZ-like domain of synbindin 1EJ5 ; ; SOLUTION STRUCTURE OF THE AUTOINHIBITED CONFORMATION OF WASP 2KQ7 ; ; Solution structure of the Autophagy-Related Protein Atg8 2NCN ; ; Solution Structure of the Autophagy-Related Protein LC3C 2M41 ; ; Solution Structure of the AXH domain of Ataxin-1 in complex with ligand peptide from Capicua 2L4C ; ; Solution Structure of the b domain of Human ERp27 2DJK ; ; Solution structure of the b' domain of thermophilic fungal protein disulfide isomerase 2KP2 ; ; Solution structure of the b' domain of thermophilic fungal protein disulfide isomerase 2YRG ; ; Solution structure of the B-box domain from tripartite motif-containing protein 5 2DJA ; ; Solution structure of the B-box domain of the human Midline-2 protein 2D8U ; ; Solution structure of the B-box domain of the human tripartite motif-containing 63 protein 2D8V ; ; Solution structure of the B-box domain of the zinc finger FYVE domain-containing protein 19 from Mus musculus 1LAI ; ; Solution Structure of the B-DNA Duplex CGCGGTGTCCGCG. 1LAQ ; ; Solution Structure of the B-DNA Duplex CGCGGTXTCCGCG (X=PdG) Containing the 1,N2-propanodeoxyguanosine Adduct with the Deoxyribose at C20 Opposite PdG in the C2' Endo Conformation. 1LAS ; ; Solution Structure of the B-DNA Duplex CGCGGTXTCCGCG (X=PdG) Containing the 1,N2-propanodeoxyguanosine Adduct with the Deoxyribose at C20 Opposite PdG in the C3' Endo Conformation. 2GDY ; ; Solution structure of the B. brevis TycC3-PCP in A-state 2GDW ; ; Solution structure of the B. brevis TycC3-PCP in A/H-state 2GDX ; ; Solution structure of the B. brevis TycC3-PCP in H-state 5MSL ; ; Solution structure of the B. subtilis anti-sigma-F factor, FIN 1WID ; ; Solution Structure of the B3 DNA-Binding Domain of RAV1 2VKC ; ; Solution structure of the B3BP Smr domain 2RUI ; ; Solution Structure of the Bacillus anthracis Sortase A-substrate Complex 2M5C ; ; Solution Structure of the Bacillus cereus Metallo-Beta-Lactamase BcII 2M5D ; ; Solution Structure of the Bacillus cereus Metallo-Beta-Lactamase BcII in Complex with R-Thiomandelic Acid 2P7C ; ; Solution structure of the bacillus licheniformis BlaI monomeric form in complex with the blaP half-operator. 2EQX ; ; Solution structure of the BACK domain of Kelch repeat and BTB domain-containing protein 4 2AN7 ; ; Solution structure of the bacterial antidote ParD 2ADL ; ; Solution structure of the bacterial antitoxin CcdA: Implications for DNA and toxin binding 2ADN ; ; Solution structure of the bacterial antitoxin CcdA: Implications for DNA and toxin binding 1SOY ; ; Solution structure of the bacterial frataxin orthologue, CyaY 5LBJ ; ; Solution structure of the bacterial toxin LdrD in Tetrafluorethanol 2KHE ; ; Solution Structure of the Bacterial Toxin Rele from Thermus Thermophilus HB8 1NYB ; ; SOLUTION STRUCTURE OF THE BACTERIOPHAGE PHI21 N PEPTIDE-BOXB RNA COMPLEX 2D9D ; ; Solution structure of the BAG domain (275-350) of BAG-family molecular chaperone regulator-5 1M62 ; ; Solution structure of the BAG domain from BAG4/SODD 1WIN ; ; Solution Structure of the Band 7 Domain of the mouse Flotillin 2 Protein 8SQX ; ; Solution structure of the basal pilin SpaB from Corynebacterium diphtheriae 2PON ; ; Solution structure of the Bcl-xL/Beclin-1 complex 2N1L ; ; Solution structure of the BCOR PUFD 5IEJ ; ; Solution structure of the BeF3-activated conformation of SdrG from Pseudomonas melonis Fr1 2KYM ; ; Solution structure of the Bem1p SH3-CI domain from L.elongisporus in complex with Ste20p peptide 2JRL ; ; Solution structure of the beryllofluoride-activated NtrC4 receiver domain dimer 1M0J ; ; solution structure of the beta domain of mt_nc 1DFT ; ; SOLUTION STRUCTURE OF THE BETA-DOMAIN OF MOUSE METALLOTHIONEIN-1 2KAK ; ; Solution structure of the beta-E-domain of wheat Ec-1 metallothionein 1Q59 ; ; Solution Structure of the BHRF1 Protein From Epstein-Barr Virus, a Homolog of Human Bcl-2 2MH4 ; ; Solution structure of the Big domain from Leptospira interrogans 2K79 ; ; Solution Structure of the binary complex between the SH3 and SH2 domain of interleukin-2 tyrosine kinase 1H4B ; ; SOLUTION STRUCTURE OF THE BIRCH POLLEN ALLERGEN BET V 4 2JPW ; ; Solution structure of the bisphosphorylated cardiac specific N-extension of cardiac troponin I 2BUN ; ; Solution structure of the BLUF domain of AppA 5-125 2DHM ; ; Solution structure of the BolA protein from Escherichia coli 2RSC ; ; Solution Structure of the bombyx mori lysozyme 1XFR ; ; Solution structure of the Bombyx mori pheromone-binding protein fragment BmPBP(1-128) at pH 6.5 2LVF ; ; Solution structure of the Brazil Nut 2S albumin Ber e 1 1JM7 ; ; Solution structure of the BRCA1/BARD1 RING-domain heterodimer 2EBW ; ; Solution structure of the BRCT domain from human DNA repair protein REV1 2EP8 ; ; Solution structure of the BRCT domain from human Pescadillo homolog 1 2EBU ; ; Solution structure of the BRCT domain from human replication factor C large subunit 1 1OQA ; ; Solution structure of the BRCT-c domain from human BRCA1 2JRZ ; ; Solution structure of the Bright/ARID domain from the human JARID1C protein. 2GLO ; ; Solution structure of the Brinker DNA binding domain in complex with the omb enhancer 2E7O ; ; Solution structure of the Bromodomain from human Bromodomain adjacent to zinc finger domain 2B 2YW5 ; ; Solution structure of the bromodomain from human bromodomain containing protein 3 2I7K ; ; Solution Structure of the Bromodomain of Human BRD7 Protein 2RS9 ; ; Solution structure of the bromodomain of human BRPF1 in complex with histone H4K5ac peptide 2DKW ; ; Solution structure of the bromodomain of human protein KIAA1240 2DAT ; ; Solution structure of the Bromodomain of human SWI/SNF related matrix associated actin dependent regulator of cromatin subfamily A member 2 2D9E ; ; Solution structure of the Bromodomain of Peregrin 2N9G ; ; Solution structure of the bromodomain of Trypanosoma brucei Bromodomain Factor 2(BDF2) 2JNS ; ; Solution structure of the Bromodomain-containing protein 4 ET domain 1X3A ; ; Solution structure of the BSD domain of human Synapse associated protein 1 2DII ; ; Solution structure of the BSD domain of human TFIIH basal transcription factor complex p62 subunit 2YS2 ; ; Solution structure of the BTK motif of human Cytoplasmic tyrosine-protein kinase BMX 2E6I ; ; Solution structure of the BTK motif of tyrosine-protein kinase ITK from human 6CKQ ; ; Solution structure of the Burkholderia thailandensis transcription antitermination protein NusB (BTH_I1529) - Seattle Structural Genomics Center for Infectious Disease target ButhA.17903.a 2LCA ; ; Solution structure of the C domain of RV0899 from mycobacterium tuberculosis 2LBT ; ; Solution structure of the C domain of RV0899(D236A) from mycobacterium tuberculosis 1M8B ; ; Solution structure of the C State of turkey ovomucoid at pH 2.5 7QA5 ; ; Solution structure of the C terminal domain of MgtC (PA4635) from Pseudomonas aeruginosa 1F6V ; ; SOLUTION STRUCTURE OF THE C TERMINAL OF MU B TRANSPOSITION PROTEIN 7DTA ; ; Solution structure of the C-clamp domain from human HDBP1 in complex with DNA 2AYA ; ; Solution Structure of the C-Terminal 14 kDa Domain of the tau subunit from Escherichia coli DNA Polymerase III 2RNQ ; ; Solution structure of the C-terminal acidic domain of TFIIE alpha 1R48 ; ; Solution structure of the C-terminal cytoplasmic domain residues 468-497 of Escherichia coli protein ProP 2LMG ; ; Solution Structure of The C-terminal Domain (537-610) of Human Heat Shock Protein 70 2EWL ; ; Solution structure of the C-terminal domain (monomer) of the HPV45 oncoprotein E7 2A4J ; ; Solution structure of the C-terminal domain (T94-Y172) of the human centrin 2 in complex with a 17 residues peptide (P1-XPC) from xeroderma pigmentosum group C protein 2K3P ; ; Solution structure of the C-terminal domain (TUSP1-C) of the egg case silk from Nephila antipodiana 2GAT ; ; SOLUTION STRUCTURE OF THE C-TERMINAL DOMAIN OF CHICKEN GATA-1 BOUND TO DNA, NMR, REGULARIZED MEAN STRUCTURE 1QW1 ; ; Solution Structure of the C-Terminal Domain of DtxR residues 110-226 1Z00 ; ; Solution structure of the C-terminal domain of ERCC1 complexed with the C-terminal domain of XPF 2L92 ; ; Solution structure of the C-terminal domain of H-NS like protein Bv3F 2L5V ; ; Solution structure of the C-terminal domain of hRpn13 1DPU ; ; SOLUTION STRUCTURE OF THE C-TERMINAL DOMAIN OF HUMAN RPA32 COMPLEXED WITH UNG2(73-88) 2H7T ; ; Solution Structure of the C-terminal Domain of Insulin-like Growth Factor Binding Protein 2 (IGFBP-2) 1WJW ; ; Solution structure of the C-terminal domain of mouse phosphoacetylglucosamine mutase (PAGM) 2MXE ; ; Solution structure of the C-terminal domain of MvaT 7CQ1 ; ; Solution structure of the C-terminal domain of Mycobacterium Tuberculosis ribosome maturation factor protein RimM 1RG6 ; ; Solution structure of the C-terminal domain of p63 2L9W ; ; Solution Structure of the C-terminal domain of Prp24 2M5Y ; ; Solution Structure of the C-terminal domain of RV0431 5NKO ; ; Solution structure of the C-terminal domain of S. aureus Hibernating Promoting Factor (CTD-SaHPF) 2L93 ; ; Solution structure of the C-terminal domain of Salmonella H-NS 2L55 ; ; Solution structure of the C-terminal domain of SilB from Cupriavidus metallidurans 2KN2 ; ; Solution structure of the C-terminal domain of soybean calmodulin isoform 4 fused with the calmodulin-binding domain of NtMKP1 2LSL ; ; Solution structure of the C-terminal domain of Tetrahymena telomerase protein p65 2RRL ; ; Solution structure of the C-terminal domain of the FliK 1J3C ; ; Solution structure of the C-terminal domain of the HMGB2 1J3D ; ; Solution structure of the C-terminal domain of the HMGB2 1PBU ; ; Solution structure of the C-terminal domain of the human eEF1Bgamma subunit 2LQJ ; ; Solution structure of the C-terminal domain of the MgtC protein from Mycobacterium tuberculosis 6ZXP ; ; Solution structure of the C-terminal domain of the vaccinia virus DNA polymerase processivity factor component A20 fused to a short peptide from the viral DNA polymerase E9. 6ZYC ; ; Solution structure of the C-terminal domain of the vaccinia virus DNA polymerase processivity factor component A20. 1Q6A ; ; Solution Structure of the C-terminal Domain of Thermosynechococcus elongatus KaiA (ThKaiA180C); Averaged Minimized Structure 1Q6B ; ; Solution Structure of the C-terminal Domain of Thermosynechococcus elongatus KaiA (ThKaiA180C); Ensemble of 25 Structures 1KFT ; ; Solution Structure of the C-Terminal domain of UvrC from E-coli 2JON ; ; Solution structure of the C-terminal domain Ole e 9 1M39 ; ; Solution structure of the C-terminal fragment (F86-I165) of the human centrin 2 in calcium saturated form 2FCG ; ; Solution structure of the C-terminal fragment of human LL-37 1X50 ; ; Solution structure of the C-terminal gal-bind lectin domain from human galectin-4 2YRO ; ; Solution structure of the C-terminal Gal-bind lectin protein from Human Galectin-8 2O13 ; ; Solution structure of the C-terminal LIM domain of MLP/CRP3 2HM8 ; ; Solution Structure of the C-terminal MA-3 domain of Pdcd4 5TN2 ; ; Solution Structure of the C-terminal multimerization domain of the master biofilm-regulator SinR from Bacillus subtilis 2K47 ; ; Solution structure of the C-terminal N-RNA binding domain of the Vesicular Stomatitis Virus Phosphoprotein 1DT7 ; ; SOLUTION STRUCTURE OF THE C-TERMINAL NEGATIVE REGULATORY DOMAIN OF P53 IN A COMPLEX WITH CA2+-BOUND S100B(BB) 2LNM ; ; Solution structure of the C-terminal NP-repeat domain of Tic40, a co-chaperone during protein import into chloroplasts 1PQS ; ; Solution structure of the C-terminal OPCA domain of yCdc24p 1JH4 ; ; Solution structure of the C-terminal PABC domain of human poly(A)-binding protein in complex with the peptide from Paip1 1JGN ; ; Solution structure of the C-terminal PABC domain of human poly(A)-binding protein in complex with the peptide from Paip2 2E6J ; ; Solution structure of the C-terminal PapD-like domain from human HYDIN protein 2LWX ; ; Solution structure of the C-terminal Pdr1-activating domain of the J-protein Zuo1 2COC ; ; Solution structure of the C-terminal PH domain of FYVE, RhoGEF and PH domain containing protein 3 (FGD3) from human 1X05 ; ; Solution structure of the C-terminal PH domain of human pleckstrin 1X1G ; ; Solution structure of the C-terminal PH domain of human pleckstrin 2 2COF ; ; Solution structure of the C-terminal PH domain of hypothetical protein KIAA1914 from human 1WGU ; ; Solution Structure of the C-terminal Phosphotyrosine Interaction Domain of APBB2 from Mouse 1V5U ; ; Solution Structure of the C-terminal Pleckstrin Homology Domain of Sbf1 from Mouse 2YUH ; ; Solution structure of the C-terminal region in human tubulin folding cofactor C 1WD2 ; ; Solution Structure of the C-terminal RING from a RING-IBR-RING (TRIAD) motif 2DH9 ; ; Solution structure of the C-terminal RNA binding domain in Heterogeneous nuclear ribonucleoprotein M 2DHG ; ; Solution structure of the C-terminal RNA recognition motif in tRNA selenocysteine associated protein 2CPH ; ; Solution structure of the C-terminal RNA recognition motif of hypothetical RNA-binding protein RBM19 1IQT ; ; Solution structure of the C-terminal RNA-binding domain of heterogeneous nuclear ribonucleoprotein D0 (AUF1) 1UTA ; ; Solution structure of the C-terminal RNP domain from the divisome protein FtsN 2AHQ ; ; Solution Structure of the C-terminal RpoN Domain of Sigma-54 from Aquifex aeolicus 1OWX ; ; Solution structure of the C-terminal RRM of human La (La225-334) 2E8N ; ; Solution structure of the C-terminal SAM-domain of EphaA2: Ephrin type-A receptor 2 precursor (EC 2.7.10.1) 2E8M ; ; Solution structure of the C-terminal SAM-domain of epidermal growth receptor pathway substrate 8 2EAO ; ; Solution structure of the C-terminal SAM-domain of mouse ephrin type-B receptor 1 precursor (EC 2.7.1.112) 2QFH ; ; Solution Structure of the C-terminal SCR-16/20 fragment of Complement Factor H. 1K76 ; ; Solution Structure of the C-terminal Sem-5 SH3 Domain (Minimized Average Structure) 1BFI ; ; SOLUTION STRUCTURE OF THE C-TERMINAL SH2 DOMAIN OF THE P85ALPHA REGULATORY SUBUNIT OF PHOSPHOINOSITIDE 3-KINASE, NMR, 30 STRUCTURES 1BFJ ; ; SOLUTION STRUCTURE OF THE C-TERMINAL SH2 DOMAIN OF THE P85ALPHA REGULATORY SUBUNIT OF PHOSPHOINOSITIDE 3-KINASE, NMR, MINIMIZED AVERAGE STRUCTURE 2GGR ; ; Solution structure of the C-terminal SH3 domain of c-CrkII 1K4U ; ; Solution structure of the C-terminal SH3 domain of p67phox complexed with the C-terminal tail region of p47phox 1X3U ; ; Solution structure of the C-terminal transcriptional activator domain of FixJ from Sinorhizobium melilot 2DAH ; ; Solution Structure of the C-terminal UBA Domain in the Human Ubiquilin 3 1WJN ; ; Solution structure of the C-terminal ubiquitin-like domain of mouse tubulin-specific chaperone e 1WJ2 ; ; Solution Structure of the C-terminal WRKY Domain of AtWRKY4 2FK4 ; ; Solution structure of the C-terminal zinc binding domain of the HPV16 E6 oncoprotein 6PMG ; ; Solution structure of the C-terminal zinc finger of the C. elegans protein MEX-5 2M3L ; ; Solution structure of the C-terminal zinc-binding domain of HPV51 oncoprotein E6 2MFO ; ; Solution structure of the C-terminally encoded peptide of the model plant host Medicago truncatula - CEP1 2MFM ; ; Solution structure of the C-terminally encoded peptide of the plant parasitic nematode Meloidogyne hapla - CEP11 1RFH ; ; Solution structure of the C1 domain of Nore1, a novel Ras effector 1R79 ; ; Solution Structure of The C1 Domain of The Human Diacylglycerol Kinase Delta 1Z9B ; ; Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2 2K0R ; ; Solution structure of the C103S mutant of the N-terminal Domain of DsbD from Neisseria meningitidis 2ENQ ; ; Solution structure of the C2 domain from human PI3-kinase p110 subunit alpha 2ENJ ; ; Solution structure of the C2 domain from human protein kinase C theta 2JQZ ; ; Solution Structure of the C2 domain of human Smurf2 2AP0 ; ; Solution Structure of the C27A ScYLV P1-P2 Frameshifting Pseudoknot, 20 Lowest Energy Structures 2AP5 ; ; Solution Structure of the C27A ScYLV P1-P2 Frameshifting Pseudoknot, Average Structure 2EN8 ; ; Solution structure of the C2H2 type zinc finger (region 171-203) of human Zinc finger protein 224 2EM6 ; ; Solution structure of the C2H2 type zinc finger (region 199-231) of human Zinc finger protein 224 2YTT ; ; Solution structure of the C2H2 type zinc finger (region 204-236) of human Zinc finger protein 473 2EOR ; ; Solution structure of the C2H2 type zinc finger (region 255-287) of human Zinc finger protein 224 2EMX ; ; Solution structure of the C2H2 type zinc finger (region 273-303) of human Zinc finger protein 268 2EOQ ; ; Solution structure of the C2H2 type zinc finger (region 283-315) of human Zinc finger protein 224 2EN4 ; ; Solution structure of the C2H2 type zinc finger (region 284-316) of human Zinc finger protein 347 2EMW ; ; Solution structure of the C2H2 type zinc finger (region 301-331) of human Zinc finger protein 268 2ENA ; ; Solution structure of the C2H2 type zinc finger (region 311-343) of human Zinc finger protein 224 2EMA ; ; Solution structure of the C2H2 type zinc finger (region 312-344) of human Zinc finger protein 347 2EOX ; ; Solution structure of the C2H2 type zinc finger (region 315-345) of human Zinc finger protein 473 2EOI ; ; Solution structure of the C2H2 type zinc finger (region 329-359) of human Zinc finger protein 268 2EM7 ; ; Solution structure of the C2H2 type zinc finger (region 339-371) of human Zinc finger protein 224 2ENF ; ; Solution structure of the C2H2 type zinc finger (region 340-372) of human Zinc finger protein 347 2EOM ; ; Solution structure of the C2H2 type zinc finger (region 341-373) of human Zinc finger protein 95 homolog 2EMB ; ; Solution structure of the C2H2 type zinc finger (region 342-372) of human Zinc finger protein 473 2EOJ ; ; Solution structure of the C2H2 type zinc finger (region 355-385) of human Zinc finger protein 268 2EM9 ; ; Solution structure of the C2H2 type zinc finger (region 367-399) of human Zinc finger protein 224 2EOW ; ; Solution structure of the C2H2 type zinc finger (region 368-400) of human Zinc finger protein 347 2YTG ; ; Solution structure of the C2H2 type zinc finger (region 369-401) of human Zinc finger protein 95 homolog 2EOU ; ; Solution structure of the C2H2 type zinc finger (region 370-400) of human Zinc finger protein 473 2EMF ; ; Solution structure of the C2H2 type zinc finger (region 379-411) of human Zinc finger protein 484 2EN0 ; ; Solution structure of the C2H2 type zinc finger (region 385-413) of human Zinc finger protein 268 2ENC ; ; Solution structure of the C2H2 type zinc finger (region 395-427) of human Zinc finger protein 224 2YTK ; ; Solution structure of the C2H2 type zinc finger (region 396-428) of human Zinc finger protein 347 2EON ; ; Solution structure of the C2H2 type zinc finger (region 397-429) of human Zinc finger protein 95 homolog 2EOF ; ; Solution structure of the C2H2 type zinc finger (region 411-441) of human Zinc finger protein 268 2EN9 ; ; Solution structure of the C2H2 type zinc finger (region 415-447) of human Zinc finger protein 28 homolog 2EM8 ; ; Solution structure of the C2H2 type zinc finger (region 423-455) of human Zinc finger protein 224 2EOO ; ; Solution structure of the C2H2 type zinc finger (region 425-457) of human Zinc finger protein 95 homolog 2YTD ; ; Solution structure of the C2H2 type zinc finger (region 426-458) of human Zinc finger protein 473 2EP1 ; ; Solution structure of the C2H2 type zinc finger (region 435-467) of human Zinc finger protein 484 2EOK ; ; Solution structure of the C2H2 type zinc finger (region 441-469) of human Zinc finger protein 268 2EMG ; ; Solution structure of the C2H2 type zinc finger (region 463-495) of human Zinc finger protein 484 2YTH ; ; Solution structure of the C2H2 type zinc finger (region 479-511) of human Zinc finger protein 224 2YTE ; ; Solution structure of the C2H2 type zinc finger (region 484-512) of human Zinc finger protein 473 2EMH ; ; Solution structure of the C2H2 type zinc finger (region 491-523) of human Zinc finger protein 484 2EN7 ; ; Solution structure of the C2H2 type zinc finger (region 495-525) of human Zinc finger protein 268 2YSP ; ; Solution structure of the C2H2 type zinc finger (region 507-539) of human Zinc finger protein 224 2EOE ; ; Solution structure of the C2H2 type zinc finger (region 508-540) of human Zinc finger protein 347 2EOV ; ; Solution structure of the C2H2 type zinc finger (region 519-551) of human Zinc finger protein 484 2EP0 ; ; Solution structure of the C2H2 type zinc finger (region 528-560) of human Zinc finger protein 28 homolog 2EMP ; ; Solution structure of the C2H2 type zinc finger (region 536-568) of human Zinc finger protein 347 2EMM ; ; Solution structure of the C2H2 type zinc finger (region 544-576) of human Zinc finger protein 95 homolog 2EMI ; ; Solution structure of the C2H2 type zinc finger (region 547-579) of human Zinc finger protein 484 2EMY ; ; Solution structure of the C2H2 type zinc finger (region 551-583) of human Zinc finger protein 268 2ENH ; ; Solution structure of the C2H2 type zinc finger (region 556-588) of human Zinc finger protein 28 homolog 2EOY ; ; Solution structure of the C2H2 type zinc finger (region 557-589) of human Zinc finger protein 473 2EN1 ; ; Solution structure of the C2H2 type zinc finger (region 563-595) of human Zinc finger protein 224 2YTI ; ; Solution structure of the C2H2 type zinc finger (region 564-596) of human Zinc finger protein 347 2EOL ; ; Solution structure of the C2H2 type zinc finger (region 581-609) of human Zinc finger protein 268 2EM2 ; ; Solution structure of the C2H2 type zinc finger (region 584-616) of human Zinc finger protein 28 homolog 2ENE ; ; Solution structure of the C2H2 type zinc finger (region 592-624) of human Zinc finger protein 347 2EN2 ; ; Solution structure of the C2H2 type zinc finger (region 598-626) of human B-cell lymphoma 6 protein 2EP2 ; ; Solution structure of the C2H2 type zinc finger (region 603-635) of human Zinc finger protein 484 2YTF ; ; Solution structure of the C2H2 type zinc finger (region 607-639) of human Zinc finger protein 268 2EMJ ; ; Solution structure of the C2H2 type zinc finger (region 612-644) of human Zinc finger protein 28 homolog 2EOS ; ; Solution structure of the C2H2 type zinc finger (region 626-654) of human B-cell lymphoma 6 protein 2EMZ ; ; Solution structure of the C2H2 type zinc finger (region 628-660) of human Zinc finger protein 95 homolog 2EP3 ; ; Solution structure of the C2H2 type zinc finger (region 631-663) of human Zinc finger protein 484 2EM1 ; ; Solution structure of the C2H2 type zinc finger (region 637-667) of human Zinc finger protein 268 2EM3 ; ; Solution structure of the C2H2 type zinc finger (region 640-672) of human Zinc finger protein 28 homolog 2EMC ; ; Solution structure of the C2H2 type zinc finger (region 641-673) of human Zinc finger protein 473 2YU8 ; ; Solution structure of the C2H2 type zinc finger (region 648-680) of human Zinc finger protein 347 2YSO ; ; Solution structure of the C2H2 type zinc finger (region 656-688) of human Zinc finger protein 95 homolog 2YTO ; ; Solution structure of the C2H2 type zinc finger (region 659-691) of human Zinc finger protein 484 2EMK ; ; Solution structure of the C2H2 type zinc finger (region 668-700) of human Zinc finger protein 28 homolog 2YTP ; ; Solution structure of the C2H2 type zinc finger (region 687-719) of human Zinc finger protein 484 2EOG ; ; Solution structure of the C2H2 type zinc finger (region 693-723) of human Zinc finger protein 268 2YTM ; ; Solution structure of the C2H2 type zinc finger (region 696-728) of human Zinc finger protein 28 homolog 2YTS ; ; Solution structure of the C2H2 type zinc finger (region 715-747) of human Zinc finger protein 484 2EOP ; ; Solution structure of the C2H2 type zinc finger (region 719-751) of human Zinc finger protein 268 2EM4 ; ; Solution structure of the C2H2 type zinc finger (region 724-756) of human Zinc finger protein 28 homolog 2EME ; ; Solution structure of the C2H2 type zinc finger (region 725-757) of human Zinc finger protein 473 2YTN ; ; Solution structure of the C2H2 type zinc finger (region 732-764) of human Zinc finger protein 347 2EML ; ; Solution structure of the C2H2 type zinc finger (region 752-784) of human Zinc finger protein 28 homolog 2YTR ; ; Solution structure of the C2H2 type zinc finger (region 760-792) of human Zinc finger protein 347 2EM5 ; ; Solution structure of the C2H2 type zinc finger (region 768-800) of human Zinc finger protein 95 homolog 2YTJ ; ; Solution structure of the C2H2 type zinc finger (region 771-803) of human Zinc finger protein 484 2YTQ ; ; Solution structure of the C2H2 type zinc finger (region 775-807) of human Zinc finger protein 268 2EOH ; ; Solution structure of the C2H2 type zinc finger (region 780-812) of human Zinc finger protein 28 homolog 2EN3 ; ; Solution structure of the C2H2 type zinc finger (region 796-828) of human Zinc finger protein 95 homolog 2EOZ ; ; Solution structure of the C2H2 type zinc finger (region 809-841) of human Zinc finger protein 473 2EMV ; ; Solution structure of the C2H2 type zinc finger (region 859-889) of human Zinc finger protein 268 2EN6 ; ; Solution structure of the C2H2 type zinc finger (region 887-919) of human Zinc finger protein 268 1X3C ; ; Solution structure of the C2H2 type zinc-binding domain of human zinc finger protein 292 1X5W ; ; Solution structure of the C2H2 type zinc-binding domain of human zinc finger protein 64, isoforms 1 and 2 1WIR ; ; Solution structure of the C2H2 zinc finger domain of the protein arginine N-methyltransferase 3 from Mus musculus 2YRH ; ; Solution structure of the C2H2-type zinc finger domain (699-729) from zinc finger protein 473 2YRJ ; ; Solution structure of the C2H2-type zinc finger domain (781-813) from zinc finger protein 473 2C6A ; ; Solution structure of the C4 zinc-finger domain of HDM2 2C6B ; ; Solution structure of the C4 zinc-finger domain of HDM2 2ENV ; ; Solution structure of the C4-type zinc finger domain from human Peroxisome proliferator-activated receptor delta 1YTP ; ; Solution structure of the C4A/C41A variant of the Nicotiana alata proteinase inhibitor T1 8HTA ; ; Solution Structure of the C65A/C167A Mutant of Human Lipocalin-type Prostaglandin D Synthase 1J9W ; 2.6 ; Solution Structure of the CAI Michigan 1 Variant 2KLD ; ; Solution Structure of the Calcium Binding Domain of the C-terminal Cytosolic Domain of Polycystin-2 1F55 ; ; SOLUTION STRUCTURE OF THE CALCIUM BOUND N-TERMINAL DOMAIN OF YEAST CALMODULIN 5TP5 ; ; Solution structure of the calcium deficient mutant calmodulin CaM1234 1BYN ; ; SOLUTION STRUCTURE OF THE CALCIUM-BOUND FIRST C2-DOMAIN OF SYNAPTOTAGMIN I 2AMI ; ; Solution Structure Of The Calcium-loaded N-Terminal Sensor Domain Of Centrin 1KKD ; ; Solution structure of the calmodulin binding domain (CaMBD) of small conductance Ca2+-activated potassium channels (SK2) 2M7E ; ; solution structure of the calmodulin-binding domain of plant calcium-ATPase ACA2 2M73 ; ; solution structure of the calmodulin-binding domain of plant calcium-ATPase ACA8 5TP6 ; ; Solution structure of the CaM34 with the iNOS CaM binding domain peptide 2ROK ; ; Solution structure of the cap-binding domain of PARN complexed with the cap analog 1IXD ; ; Solution structure of the CAP-GLY domain from human cylindromatosis tomour-suppressor CYLD 2COZ ; ; Solution structure of the CAP-Gly domain in human centrosome-associated protein CAP350 2COY ; ; Solution structure of the CAP-Gly domain in human Dynactin 1 2COW ; ; Solution structure of the CAP-Gly domain in human Kinesin-like protein KIF13B 1WHG ; ; Solution structure of the CAP-Gly domain in mouse tubulin specific chaperone B 6GSE ; ; Solution structure of the capsid domain from the activity-regulated cytoskeleton-associated protein, Arc 2M83 ; ; Solution structure of the carbohydrate binding module of the muscle glycogen-targeting subunit of Protein Phosphatase-1 1Y00 ; ; Solution structure of the Carbon Storage Regulator protein CsrA 2MI6 ; ; Solution structure of the carboxy terminal domain of NusG from Mycobacterium tuberculosis 1Z60 ; ; Solution structure of the carboxy-terminal domain of human TFIIH P44 subunit 2KGW ; ; Solution Structure of the carboxy-terminal domain of OmpATb, a pore forming protein from Mycobacterium tuberculosis 1UC6 ; ; Solution Structure of the Carboxyl Terminal Domain of the Ciliary Neurotrophic Factor Receptor 2DBH ; ; Solution structure of the carboxyl-terminal CARD-like domain in human TNFR-related death receptor-6 1NHA ; ; Solution Structure of the Carboxyl-Terminal Domain of RAP74 and NMR Characterization of the FCP-Binding Sites of RAP74 and CTD of RAP74, the subunit of Human TFIIF 1X0H ; ; Solution structure of the carboxyl-terminal RGC domain in human IQGAP1 2DBD ; ; Solution structure of the CARD domain in human caspase recruitment domain protein 4 (Nod1 protein) 2KZ7 ; ; Solution structure of the CARMIL CAH3a/b domain bound to capping protein (CP) 1CWW ; ; SOLUTION STRUCTURE OF THE CASPASE RECRUITMENT DOMAIN (CARD) FROM APAF-1 1GHT ; ; SOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF GAMMA DELTA RESOLVASE 1HX7 ; ; SOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF GAMMA DELTA RESOLVASE 2M9Y ; ; Solution Structure of the Catalytic Domain of HHARI 1EUB ; ; SOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN COLLAGENASE-3 (MMP-13) COMPLEXED TO A POTENT NON-PEPTIDIC SULFONAMIDE INHIBITOR 1BM6 ; ; SOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN STROMELYSIN-1 COMPLEXED TO A POTENT NON-PEPTIDIC INHIBITOR, NMR, 20 STRUCTURES 1M3G ; ; SOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF MAPK PHOSPHATASE PAC-1: INSIGHTS INTO SUBSTRATE-INDUCED ENZYMATIC ACTIVATION 2K7Z ; ; Solution Structure of the Catalytic Domain of Procaspase-8 1R6E ; ; Solution structure of the catalytic domain of SopE2 5KVP ; ; Solution structure of the catalytic domain of zoocin A 1FLS ; ; SOLUTION STRUCTURE OF THE CATALYTIC FRAGMENT OF HUMAN COLLAGENASE-3 (MMP-13) COMPLEXED WITH A HYDROXAMIC ACID INHIBITOR 1FM1 ; ; SOLUTION STRUCTURE OF THE CATALYTIC FRAGMENT OF HUMAN COLLAGENASE-3 (MMP-13) COMPLEXED WITH A HYDROXAMIC ACID INHIBITOR 1N5P ; ; Solution structure of the cathelin-like domain of protegrins (all amide bonds involving proline residues are in trans conformation) 1N5H ; ; Solution structure of the cathelin-like domain of protegrins (the R87-P88 and D118-P119 amide bonds are in the cis conformation) 2EEF ; ; Solution structure of the CBM_21 domain from human protein phosphatase 1, regulatory (inhibitor) subunit 3B 2KVM ; ; Solution structure of the CBX7 chromodomain in complex with a H3K27me2 peptide 6QK6 ; ; Solution Structure of the Cd-loaded form of a Metallothionein from Helix Pomatia 1S40 ; ; SOLUTION STRUCTURE OF THE CDC13 DNA-BINDING DOMAIN COMPLEXED WITH A SINGLE-STRANDED TELOMERIC DNA 11-MER 1KXL ; ; Solution Structure of the Cdc13 DNA-binding Domain in a Complex with Single-Stranded Telomeric DNA (DNA structure not modeled) 4BMF ; ; Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello- oligosaccharides 2ELH ; ; Solution structure of the CENP-B N-terminal DNA-binding domain of fruit fly distal antenna CG11849-PA 1KWE ; ; SOLUTION STRUCTURE OF THE CENTRAL CONSERVED REGION OF HUMAN RESPIRATORY SYNCYTIAL VIRUS ATTACHMENT GLYCOPROTEIN G 1KWD ; ; SOLUTION STRUCTURE OF THE CENTRAL CONSERVED REGION OF HUMAN RESPIRATORY SYNCYTIAL VIRUS ATTACHMENT GLYCOPROTEIN G 187 1D8J ; ; SOLUTION STRUCTURE OF THE CENTRAL CORE DOMAIN OF TFIIE BETA 1D8K ; ; SOLUTION STRUCTURE OF THE CENTRAL CORE DOMAIN OF TFIIE BETA 1YSV ; ; Solution structure of the central region of the human GluR-B R/G pre-mRNA 1S79 ; ; Solution structure of the central RRM of human La protein 2RSG ; ; Solution structure of the CERT PH domain 1WA8 ; ; Solution Structure of the CFP-10.ESAT-6 Complex. Major Virulence Determinants of Pathogenic Mycobacteria 2D89 ; ; Solution structure of the CH domain from human EH domain binding protein 1 2E9K ; ; Solution structure of the CH domain from human MICAL-2 2D88 ; ; Solution structure of the CH domain from human MICAL-3 protein 2YRN ; ; Solution structure of the CH domain from Human Neuron navigator 2 2D87 ; ; Solution structure of the CH domain from human Smoothelin splice isoform L2 2EE7 ; ; Solution structure of the CH domain from human Sperm flagellar protein 1 2D86 ; ; Solution structure of the CH domain from human Vav-3 protein 1V5K ; ; Solution structure of the CH domain from mouse EB-1 1UJO ; ; Solution Structure of the CH domain from Mouse Trangelin 1WYP ; ; Solution structure of the CH domain of human Calponin 1 1WYN ; ; Solution structure of the CH domain of human calponin-2 1WYO ; ; Solution structure of the CH domain of human microtubule-associated protein RP/EB family member 3 1WYL ; ; Solution structure of the CH domain of human NEDD9 interacting protein with calponin homology and LIM domains 1WYR ; ; Solution structure of the CH domain of human Rho guanine nucleotide exchange factor 6 1WYM ; ; Solution structure of the CH domain of human transgelin-2 1DLZ ; ; SOLUTION STRUCTURE OF THE CHANNEL-FORMER ZERVAMICIN IIB (PEPTAIBOL ANTIBIOTIC) 2L4N ; ; Solution Structure of the Chemokine CCL21 1HUM ; ; SOLUTION STRUCTURE OF THE CHEMOKINE HMIP-1BETA(SLASH)ACT-2 BY MULTI-DIMENSIONAL NMR: A NOVEL CHEMOKINE DIMER 1HUN ; ; SOLUTION STRUCTURE OF THE CHEMOKINE HMIP-1BETA(SLASH)ACT-2 BY MULTI-DIMENSIONAL NMR: A NOVEL CHEMOKINE DIMER 1XEE ; ; Solution structure of the Chemotaxis Inhibitory Protein of Staphylococcus aureus 1K0S ; ; Solution structure of the chemotaxis protein CheW from the thermophilic organism Thermotoga maritima 1B8T ; ; SOLUTION STRUCTURE OF THE CHICKEN CRP1 2YSZ ; ; Solution structure of the chimera of the C-terminal PID domain of Fe65L and the C-terminal tail peptide of APP 2YT0 ; ; Solution structure of the chimera of the C-terminal tail peptide of APP and the C-terminal PID domain of Fe65L 2YT1 ; ; Solution structure of the chimera of the C-terminal tail peptide of APP and the C-terminal PID domain of Fe65L 2KUQ ; ; Solution structure of the chimera of the PTB domain of SNT-2 and 19-residue peptide (aa 1571-1589) of HALK 2YT2 ; ; Solution structure of the chimera of the PTB domain of SNT-2 and 19-residue peptide (aa 1571-1589) of hALK 2LFR ; ; Solution structure of the chimeric Af1503 HAMP- EnvZ DHp homodimer 2LFS ; ; Solution structure of the chimeric Af1503 HAMP- EnvZ DHp homodimer; A219F variant 4BWH ; ; Solution structure of the chimeric hydrophobin NChi2 1R4D ; ; Solution structure of the chimeric L/D DNA oligonucleotide d(C8metGCGC(L)G(L)CGCG)2 7PRD ; ; Solution structure of the chimeric Nrd1-Nab3 heterodimerization domains 7VH9 ; ; Solution structure of the chimeric peptide of the first SURP domain of Human SF3A1 and the interacting region of SF1. 1ED7 ; ; SOLUTION STRUCTURE OF THE CHITIN-BINDING DOMAIN OF BACILLUS CIRCULANS WL-12 CHITINASE A1 2RTT ; ; Solution structure of the chitin-binding domain of Chi18aC from Streptomyces coelicolor 2CZN ; ; Solution structure of the chitin-binding domain of hyperthermophilic chitinase from pyrococcus furiosus 2D49 ; ; Solution structure of the Chitin-Binding Domain of Streptomyces griseus Chitinase C 2MQH ; ; Solution structure of the Chlamydomonas reinhardtii NAB1 cold shock domain, CSD1 7BGH ; ; Solution structure of the chloroplast outer envelope channel OEP21 2YRT ; ; Solution structure of the CHORD domain of human CHORD-containing protein 1 2D9U ; ; Solution structure of the Chromo domain of chromobox homolog 2 from human 2EFI ; ; Solution structure of the chromo domain of Mortality factor 4-like protein 1 from human 2RSN ; ; Solution structure of the chromodomain of Chp1 in complex with H3K9me3 peptide 2RVN ; ; Solution structure of the chromodomain of HP1a with the phosphorylated N-terminal tail complexed with H3K9me3 peptide 2RVL ; ; Solution structure of the chromodomain of HP1alpha with the N-terminal tail 2RVM ; ; Solution structure of the chromodomain of HP1alpha with the phosphorylated N-terminal tail 2RSO ; ; Solution structure of the chromodomain of Swi6 6K5W ; ; Solution structure of the chromodomain of yeast Eaf3 2M1B ; ; Solution structure of the CHXR DNA-binding domain 2DKT ; ; Solution structure of the CHY zinc finger domain of the RING finger and CHY zinc finger domain-containing protein 1 from Mus musculus 2EEL ; ; Solution structure of the CIDE-N domain of human cell death activator CIDE-A 5MNW ; ; Solution structure of the cinaciguat bound human beta1 H-NOX. 2MFP ; ; Solution structure of the circular g-domain analog from the wheat metallothionein Ec-1 1W09 ; ; Solution structure of the cis form of the human alpha-hemoglobin stabilizing protein (AHSP) 1P4Q ; ; Solution structure of the CITED2 transactivation domain in complex with the p300 CH1 domain 2LSH ; ; Solution structure of the class I hydrophobin DewA 2FMC ; ; Solution structure of the class I hydrophobin EAS 4AOG ; ; Solution structure of the Class II hydrophobin NC2 2MID ; ; Solution structure of the CLAVATA encoded peptide of Arabidopsis thaliana - AtCLE10 2MIE ; ; Solution structure of the CLAVATA encoded peptide of Arabidopsis thaliana - AtCLE44 2MIF ; ; Solution structure of the CLAVATA-like encoded peptide of Meloidogyne hapla - MhCLE4 2MIG ; ; Solution structure of the CLAVATA-like encoded peptide of Meloidogyne hapla - MhCLE5 2MIH ; ; Solution structure of the CLAVATA-like encoded peptide of Meloidogyne hapla - MhCLE6/7 2YH0 ; ; Solution structure of the closed conformation of human U2AF65 tandem RRM1 and RRM2 domains 1G6Z ; ; SOLUTION STRUCTURE OF THE CLR4 CHROMO DOMAIN 1WGP ; ; Solution structure of the cNMP-binding domain from Arabidopsis thaliana cyclic nucleotide-regulated ion channel 2D93 ; ; Solution structure of the cNMP_binding domain of human Rap guanine nucleotide exchange factor 6 1X67 ; ; Solution structure of the cofilin homology domain of HIP-55 (drebrin-like protein) 2L2L ; ; Solution structure of the coiled-coil complex between MBD2 and p66alpha 1ZXA ; ; Solution Structure of the Coiled-Coil Domain of cGMP-dependent Protein Kinase Ia 2KES ; ; Solution Structure of the Coiled-coil Domain of Synphilin-1 1M7L ; ; Solution Structure of the Coiled-Coil Trimerization Domain from Lung Surfactant Protein D 1M82 ; ; SOLUTION STRUCTURE OF THE COMPLEMENTARY RNA PROMOTER OF INFLUENZA A VIRUS 2GHF ; ; Solution structure of the complete zinc-finger region of human zinc-fingers and homeoboxes 1 (ZHX1) 2MEJ ; ; Solution Structure of the Complex Between BCL-xL and the p53 Core Domain determined with PRE restraints 5GOW ; ; Solution structure of the complex between DP1 acidic region and TFIIH p62 PH domain 2JZB ; ; Solution structure of the complex between E.coli NusA-AR2 and RNAP-aCTD 2RR3 ; ; Solution structure of the complex between human VAP-A MSP domain and human OSBP FFAT motif 5L85 ; ; Solution structure of the complex between human ZNHIT3 and NUFIP1 proteins 2ESG ; ; Solution structure of the complex between immunoglobulin IgA1 and human serum albumin 2P80 ; ; Solution structure of the complex between nitrite reductase and pseudoazurin from A. faecalis 2RUK ; ; Solution structure of the complex between p53 transactivation domain 2 and TFIIH p62 PH domain 7CSQ ; ; Solution structure of the complex between p75NTR-DD and TRADD-DD 7QDW ; ; Solution structure of the complex between plasmodial ZNHIT3 and NUFIP1 proteins 2FIN ; ; Solution Structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta, ensemble structure 2FFK ; ; Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta, minimized average structure 7DTI ; ; Solution structure of the complex between RNA polymerase subunit RPB6 and TFIIH p62 PH domain 2RNR ; ; Solution structure of the complex between TFIIE alpha C-terminal acidic domain and TFIIH p62 PH domain 2RQU ; ; Solution structure of the complex between the DDEF1 SH3 domain and the APC SAMP1 motif 2LXC ; ; Solution structure of the complex between the Sgt2 homodimerization domain and the Get5 UBL domain 2MJF ; ; Solution structure of the complex between the yeast Rsa1 and Hit1 proteins 5XV8 ; ; Solution structure of the complex between UVSSA acidic region and TFIIH p62 PH domain 2RVB ; ; Solution structure of the complex between XPC acidic domain and TFIIH p62 PH domain 2GB8 ; ; Solution structure of the complex between yeast iso-1-cytochrome c and yeast cytochrome c peroxidase 1R4E ; ; Solution structure of the Complex Formed between a Left-Handed Wedge-Shaped Spirocyclic Molecule and Bulged DNA 2MAP ; ; Solution structure of the complex formed by the region 2 of E. coli sigmaE and its cognate -10 promoter element non template strand TGTCAAA. 1RKJ ; ; Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target 1O9A ; ; Solution structure of the complex of 1F12F1 from fibronectin with B3 from FnBB from S. dysgalactiae 2N82 ; ; solution structure of the complex of microRNA 20b pre-element with Rbfox RRM 6OQJ ; ; SOLUTION STRUCTURE OF THE COMPLEX OF MUTANT VEK50[RH1/AA] AND PLASMINOGEN KRINGLE 2 6OQK ; ; SOLUTION STRUCTURE OF THE COMPLEX OF MUTANT VEK50[RH2/AA] AND PLASMINOGEN KRINGLE 2 6IZP ; ; Solution structure of the complex of naphthyridine carbamate dimer and an RNA with UGGAA-UGGAA pentad 2KUP ; ; Solution structure of the complex of the PTB domain of SNT-2 and 19-residue peptide (aa 1571-1589) of HALK 2YS5 ; ; Solution structure of the complex of the PTB domain of SNT-2 and 19-residue peptide (aa 1571-1589) of hALK 5OEO ; ; Solution structure of the complex of TRPV5(655-725) with a Calmodulin E32Q/E68Q double mutant 2L0T ; ; Solution structure of the complex of ubiquitin and the VHS domain of Stam2 2JY6 ; ; Solution structure of the complex of ubiquitin and ubiquilin 1 UBA domain 2KJ4 ; ; Solution structure of the complex of VEK-30 and plasminogen kringle 2 5OAO ; ; Solution structure of the complexed RCD1-RST 2KDD ; ; Solution structure of the conserved C-terminal dimerization domain of Borealin 2A7Y ; ; Solution Structure of the Conserved Hypothetical Protein Rv2302 from the Bacterium Mycobacterium tuberculosis 1WFR ; ; Solution structure of the conserved hypothetical protein TT1886, possibly sterol carrier protein, from Thermus Thermophilus HB8 1Z8M ; ; Solution structure of the conserved hypothtical protein HP0894 from Helicobacter pylori 1YEZ ; ; Solution structure of the conserved protein from the gene locus MM1357 of Methanosarcina mazei. Northeast Structural Genomics target MaR30. 1YVC ; ; Solution structure of the conserved protein from the gene locus MMP0076 of Methanococcus maripaludis. Northeast Structural Genomics target MrR5. 1DPQ ; ; SOLUTION STRUCTURE OF THE CONSTITUTIVELY ACTIVE MUTANT OF THE INTEGRIN ALPHA IIB CYTOPLASMIC DOMAIN. 1Y3J ; ; Solution structure of the copper(I) form of the fifth domain of Menkes protein 2GA7 ; ; Solution structure of the copper(I) form of the third metal-binding domain of ATP7A protein (menkes disease protein) 2M4H ; ; Solution structure of the Core Domain (10-76) of the Feline Calicivirus VPg protein 2M4G ; ; Solution structure of the Core Domain (11-85) of the Murine Norovirus VPg protein 1X5M ; ; Solution structure of the core domain of calcyclin binding protein; siah-interacting protein (SIP) 6M6E ; ; Solution structure of the core domain of Fibroblast growth factor 21 (FGF21) 2LEH ; ; Solution structure of the core SMN-Gemin2 complex 7K7F ; ; Solution Structure of the Corynebacterium diphtheriae SpaA Pilin-Signal Peptide Complex 107D ; ; SOLUTION STRUCTURE OF THE COVALENT DUOCARMYCIN A-DNA DUPLEX COMPLEX 2MHI ; ; Solution structure of the CR4/5 domain of medaka telomerase RNA 2QH2 ; ; Solution structure of the CR7 terminal hairpin loop from human telomerase RNA 6G8O ; ; Solution structure of the cross-linked SAM domain dimer of murine SLy1 1WGV ; ; Solution Structure of the CS Domain of Human KIAA1068 Protein 1WH0 ; ; Solution structure of the CS domain of human USP19 6K7W ; ; Solution Structure of the CS1 Domain of USP19 6KHV ; ; Solution Structure of the CS2 Domain of USP19 1KVJ ; ; Solution Structure of the Cu(I) bound form of the first heavy metal binding motif of the Menkes protein 1YJT ; ; Solution structure of the Cu(I) form of the sixth soluble domain A69P mutant of Menkes protein 1YJV ; ; Solution structure of the Cu(I) form of the sixth soluble domain of Menkes protein 1FD8 ; ; SOLUTION STRUCTURE OF THE CU(I) FORM OF THE YEAST METALLOCHAPERONE, ATX1 2DI0 ; ; Solution Structure of the CUE Domain in the Human Activating Signal Cointegrator 1 Complex Subunit 2 (ASCC2) 2DHY ; ; Solution Structure of the CUE Domain in the Human CUE Domain Containing Protein 1 (CUEDC1) 2JNG ; ; Solution structure of the CUL7-CPH domain from Homo Sapiens; Northeast Structural Genomics Consortium target HT1. 1IUY ; ; Solution structure of the cullin-3 homologue 1X2L ; ; Solution structure of the CUT domain of human homeobox protein Cux-2 (Cut-like 2) 1RNG ; ; SOLUTION STRUCTURE OF THE CUUG HAIRPIN: A NOVEL RNA TETRALOOP MOTIF 2E62 ; ; Solution structure of the cwf21 domain in protein AAK25922 1B2T ; ; SOLUTION STRUCTURE OF THE CX3C CHEMOKINE DOMAIN OF FRACTALKINE 2N5U ; ; Solution structure of the cyanobacterial cytochrome b6f complex subunit PetP 6UXS ; ; Solution structure of the cyclic peptide 3.1B 6DNY ; ; Solution structure of the cyclic tetrapeptide, PYPV 2MHF ; ; Solution structure of the cyclic-nucleotide binding homology domain of a KCNH channel 2KNM ; ; Solution structure of the cyclotide cycloviolacin O2 2KNN ; ; Solution structure of the cyclotide cycloviolacin O2 with Glu6 methylated (cyO2Me) 2KUX ; ; Solution structure of the cyclotide kalata B5 from Oldenlandia affinis 1R1F ; ; Solution Structure of the Cyclotide Palicourein: Implications for the development of pharmaceutical and agricultural applications 7K7X ; ; Solution structure of the cyclotide pase A 1YP8 ; ; Solution structure of the cyclotide tricyclon A 1KBE ; ; Solution structure of the cysteine-rich C1 domain of Kinase Suppressor of Ras 1KBF ; ; Solution Structure of the Cysteine-Rich C1 Domain of Kinase Suppressor of Ras 1EXK ; ; SOLUTION STRUCTURE OF THE CYSTEINE-RICH DOMAIN OF THE ESCHERICHIA COLI CHAPERONE PROTEIN DNAJ. 2ORL ; ; Solution structure of the cytochrome c- para-aminophenol adduct 1PLP ; ; SOLUTION STRUCTURE OF THE CYTOPLASMIC DOMAIN OF PHOSPHOLAMBAN 1DPK ; ; SOLUTION STRUCTURE OF THE CYTOPLASMIC DOMAIN OF THE INTEGRIN ALPHA-IIB SUBUNIT 1JO6 ; ; Solution structure of the cytoplasmic N-terminus of the BK beta-subunit KCNMB2 2E30 ; ; Solution structure of the cytoplasmic region of Na+/H+ exchanger 1 complexed with essential cofactor calcineurin B homologous protein 1 2L58 ; ; Solution structure of the cytosolic fragment 22-53 of Bcl-2 member Harakiri 1Z5F ; ; Solution Structure of the Cytotoxic RC-RNase 3 with a Pyroglutamate Residue at the N-terminus 1DE3 ; ; SOLUTION STRUCTURE OF THE CYTOTOXIC RIBONUCLEASE ALPHA-SARCIN 179D ; ; SOLUTION STRUCTURE OF THE D(T-C-G-A) DUPLEX AT ACIDIC PH: A PARALLEL-STRANDED HELIX CONTAINING C+.C, G.G AND A.A PAIRS 1WVZ ; ; Solution Structure of the D2 Domain of the Fibroblast Growth Factor 5N6R ; ; Solution structure of the Dbl-homology domain of Bcr-Abl 5UP1 ; ; Solution structure of the de novo mini protein EEHEE_rd3_1049 5UP5 ; ; Solution structure of the de novo mini protein EHEE_rd1_0284 5JI4 ; ; Solution structure of the de novo mini protein gEEHE_02 2ND3 ; ; Solution structure of the de novo mini protein gEEH_04 5JHI ; ; Solution structure of the de novo mini protein gEHE_06 5W9F ; ; Solution structure of the de novo mini protein gHEEE_02 2ND2 ; ; Solution structure of the de novo mini protein gHHH_06 5TX8 ; ; Solution structure of the de novo mini protein gHH_44 5UOI ; ; Solution structure of the de novo mini protein HHH_rd1_0142 2CW1 ; ; Solution structure of the de novo-designed lambda Cro fold protein 1KQQ ; ; Solution Structure of the Dead ringer ARID-DNA Complex 2JW6 ; ; Solution structure of the DEAF1 MYND domain 2DBF ; ; Solution structure of the Death domain in human Nuclear factor NF-kappa-B p105 subunit 2YQF ; ; Solution structure of the death domain of Ankyrin-1 1WH4 ; ; Solution structure of the DEATH domain of Interleukin-1 receptor-associated kinase4 (IRAK4) from Mus musculus 2D96 ; ; Solution structure of the Death domain of Nuclear factor NF-kappa-B p100 1WXP ; ; Solution structure of the death domain of nuclear matrix protein p84 2N5F ; ; Solution structure of the dehydroascorbate reductase 3A from Populus trichocarpa 1R4Y ; ; SOLUTION STRUCTURE OF THE DELETION MUTANT DELTA(7-22) OF THE CYTOTOXIC RIBONUCLEASE ALPHA-SARCIN 2M4K ; ; Solution structure of the delta subunit of RNA polymerase from Bacillus subtilis 2NC1 ; ; Solution structure of the delta-J-delta-K domain of EMCV IRES 1JUA ; ; Solution Structure of the Deoxyribose HIV-1Lai Initiation Sequence Stable Dimer 2YSR ; ; Solution structure of the DEP domain from human DEP domain-containing protein 1 2CSO ; ; Solution structure of the DEP domain of human pleckstrin 1UHW ; ; Solution structure of the DEP domain of mouse pleckstrin 1V3F ; ; Solution structure of the DEP domain of mouse pleckstrin2 7R0R ; ; Solution structure of the designed Armadillo repeat protein N(A4)M4C(AII) refined by pseudocontact shifts 1UD7 ; ; SOLUTION STRUCTURE OF THE DESIGNED HYDROPHOBIC CORE MUTANT OF UBIQUITIN, 1D7 2M8U ; ; Solution structure of the Dictyostelium discodieum Myosin Light Chain, MlcC 2LBH ; ; Solution Structure of the Dimeric Form of a Unliganded Bovine Neurophysin, Minimized Average Structure 2LBF ; ; Solution structure of the dimerization domain of human ribosomal protein P1/P2 heterodimer 5YI4 ; ; Solution Structure of the DISC1/Ndel1 complex 2Z4F ; ; Solution structure of the Discoidin Domain of DDR2 1PE3 ; ; Solution structure of the disulphide-linked dimer of human intestinal trefoil factor (TFF3) 2MYG ; ; Solution structure of the dithiolic glutaredoxin 2-C-Grx1 from the pathogen Trypanosoma brucei brucei 1LAE ; ; Solution Structure of the DNA 13-mer Hairpin CGCGGTXTCCGCG (X=PdG) Containing the 1,N2-propanodeoxyguanosine Adduct at the Seventh Position 1DB6 ; ; SOLUTION STRUCTURE OF THE DNA APTAMER 5'-CGACCAACGTGTCGCCTGGTCG-3' COMPLEXED WITH ARGININAMIDE 2K6G ; ; Solution structure of the DNA binding BRCT domain from the large subunit of human Replication Factor C 2JR1 ; ; Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from the phytopathogen Xylella fastidiosa. 1IHW ; ; SOLUTION STRUCTURE OF THE DNA BINDING DOMAIN OF HIV-1 INTEGRASE, NMR, 40 STRUCTURES 1IHV ; ; SOLUTION STRUCTURE OF THE DNA BINDING DOMAIN OF HIV-1 INTEGRASE, NMR, MINIMIZED AVERAGE STRUCTURE 1ITY ; ; Solution structure of the DNA binding domain of human TRF1 2JXG ; ; Solution Structure of the DNA Binding domain of Proline Utilization A (PutA) 1E17 ; ; Solution structure of the DNA binding domain of the human Forkhead transcription factor AFX (FOXO4) 1P6R ; ; Solution structure of the DNA binding domain of the repressor BlaI. 1DP3 ; ; SOLUTION STRUCTURE OF THE DNA BINDING DOMAIN OF THE TRAM PROTEIN 1I11 ; ; SOLUTION STRUCTURE OF THE DNA BINDING DOMAIN, SOX-5 HMG BOX FROM MOUSE 1IV6 ; ; Solution Structure of the DNA Complex of Human TRF1 1VFC ; ; Solution Structure Of The DNA Complex Of Human Trf2 2Z33 ; ; Solution structure of the DNA complex of PhoB DNA-binding/transactivation Domain 5ZUX ; ; Solution Structure of the DNA complex of the C-terminal Domain of Rok 1SNH ; ; Solution structure of the DNA Decamer Duplex Containing Double TG Mismatches of Cis-syn Cyclobutane Pyrimidine Dimer 1RVI ; ; SOLUTION STRUCTURE OF THE DNA DODECAMER CGTTTTAAAACG 1RVH ; ; SOLUTION STRUCTURE OF THE DNA DODECAMER GCAAAATTTTGC 2BQ2 ; ; Solution Structure of the DNA Duplex ACGCGU-NA with a 2' Amido-Linked Nalidixic Acid Residue at the 3' Terminal Nucleotide 1IEY ; ; SOLUTION STRUCTURE OF THE DNA DUPLEX D(CCACCGGAAC).(GTTCCGGTGG) WITH A CHIRAL ALKYL-PHOSPHONATE MOIETY (DIAESTEREOISOMER R) 1IEK ; ; SOLUTION STRUCTURE OF THE DNA DUPLEX D(CCACCGGAAC).(GTTCCGGTGG) WITH A CHIRAL ALKYL-PHOSPHONATE MOIETY (DIAESTEREOISOMER S) 1X6W ; ; Solution Structure of the DNA Duplex TGCGCA:TGCGCA Capped by Trimethoxystilbene Residues 1LA8 ; ; Solution structure of the DNA hairpin 13-mer CGCGGTGTCCGCG 1ADN ; ; SOLUTION STRUCTURE OF THE DNA METHYLPHOSPHOTRIESTER REPAIR DOMAIN OF ESCHERICHIA COLI ADA 1SNJ ; ; Solution structure of the DNA three-way junction with the A/C-stacked conformation 1XPA ; ; SOLUTION STRUCTURE OF THE DNA-AND RPA-BINDING DOMAIN OF THE HUMAN REPAIR FACTOR XPA, NMR, 1 STRUCTURE 1QQI ; ; SOLUTION STRUCTURE OF THE DNA-BINDING AND TRANSACTIVATION DOMAIN OF PHOB FROM ESCHERICHIA COLI 1C20 ; ; SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN FROM THE DEAD RINGER PROTEIN 1KKX ; ; Solution structure of the DNA-binding domain of ADR6 1HKS ; ; SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN OF DROSOPHILA HEAT SHOCK TRANSCRIPTION FACTOR 1HKT ; ; SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN OF DROSOPHILA HEAT SHOCK TRANSCRIPTION FACTOR 1WIJ ; ; Solution Structure of the DNA-Binding Domain of Ethylene-Insensitive3-Like3 1JXS ; ; Solution Structure of the DNA-Binding Domain of Interleukin Enhancer Binding Factor 1K1V ; ; Solution Structure of the DNA-Binding Domain of MafG 1NTC ; ; SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN OF NTRC WITH THREE ALANINE SUBSTITUTIONS 2JXI ; ; Solution structure of the DNA-binding domain of Pseudomonas putida Proline utilization A (putA) bound to GTTGCA DNA sequence 5ZUZ ; ; Solution Structure of the DNA-Binding Domain of Rok 1WJ0 ; ; Solution Structure of the DNA-Binding Domain of Squamosa Promoter Binding Protein-Like 12 Lacking the Second Zinc-Binding Site 1UL4 ; ; Solution structure of the DNA-binding domain of squamosa promoter binding protein-like 4 1UL5 ; ; Solution structure of the DNA-binding domain of squamosa promoter binding protein-like 7 1P4W ; ; Solution structure of the DNA-binding domain of the Erwinia amylovora RcsB protein 1G2H ; ; SOLUTION STRUCTURE OF THE DNA-BINDING DOMAIN OF THE TYRR PROTEIN OF HAEMOPHILUS INFLUENZAE 7QYI ; ; Solution structure of the DNA-binding minor pilin FimT from Legionella pneumophila 6TEY ; ; Solution Structure of the DNA-binding TubR fragment from Clostridium Botulinum 1X95 ; ; Solution structure of the DNA-hexamer ATGCAT complexed with DNA Bis-intercalating Anticancer Drug XR5944 (MLN944) 2YUA ; ; Solution structure of the DnaJ domain from human Williams-Beuren syndrome chromosome region 18 protein 2EJ7 ; ; Solution structure of the DnaJ domain of the human protein HCG3, a hypothetical protein tmp_locus_21 2YS8 ; ; Solution structure of the DnaJ-like domain from human ras-associated protein Rap1 2EZ5 ; ; Solution Structure of the dNedd4 WW3* Domain- Comm LPSY Peptide Complex 1L6E ; ; Solution structure of the docking and dimerization domain of protein kinase A II-alpha (RIIalpha D/D). Alternatively called the N-terminal dimerization domain of the regulatory subunit of protein kinase A. 2EZW ; ; Solution structure of the docking and dimerization domain of the type I alpha regulatory subunit of protein kinase A (RIalpha D/D) 1PJW ; ; Solution Structure of the Domain III of the Japan Encephalitis Virus Envelope Protein 2YU3 ; ; Solution structure of the domain swapped WingedHelix in DNA-directed RNA polymerase III 39 kDa polypeptide 2K9D ; ; Solution structure of the domain X of measle phosphoprotein 2KWN ; ; Solution structure of the double PHD (plant homeodomain) fingers of human transcriptional protein DPF3b bound to a histone H4 peptide containing acetylation at Lysine 16 2KWO ; ; Solution structure of the double PHD (plant homeodomain) fingers of human transcriptional protein DPF3b bound to a histone H4 peptide containing N-terminal acetylation at Serine 1 2DB2 ; ; Solution structure of the double-stranded RNA binding domain in KIAA0890 protein 1R4K ; ; Solution Structure of the Drosophila Argonaute 1 PAZ Domain 1WHN ; ; Solution structure of the dsRBD from hypothetical protein BAB26260 2DIX ; ; Solution structure of the DSRM domain of Protein activator of the interferon-induced protein kinase 1WWY ; ; Solution structure of the DUF1000 domain of a thioredoxin-like protein 1 2GE2 ; ; Solution structure of the Duplex DNA Containing the 3-(Deoxyguanosin-N2-yl)-2-Acetoaminofluorene 1W6V ; ; Solution structure of the DUSP domain of hUSP15 7KRB ; ; Solution Structure of the Dysferlin C2A Domain in its Calcium-bound State 7K6B ; ; Solution Structure of the Dysferlin C2A Domain in its Calcium-free State 1Q75 ; ; Solution structure of the dyskeratosis congenita mutant P2b hairpin from human telomerase RNA 2KRW ; ; Solution structure of the E coli tRNA-Arg1 (ACG) containing the 2-thiocytidine modification in position 32 1SE7 ; ; Solution structure of the E. coli bacteriophage P1 encoded HOT protein: a homologue of the theta subunit of E. coli DNA polymerase III 2RRK ; ; Solution structure of the E. coli ORF135 protein 2L8Y ; ; Solution structure of the E. coli outer membrane protein RcsF (periplasmatic domain) 2RQL ; ; Solution structure of the E. coli ribosome hibernation promoting factor HPF 2JSX ; ; Solution structure of the E. coli Tat proofreading chaperone protein NapD 2MI2 ; ; Solution structure of the E. coli TatB protein in DPC micelles 2KRV ; ; Solution structure of the E. coli tRNA-Arg1 (ICG) ASL containing the 2-thiocytidine modification 2KRP ; ; Solution structure of the E. coli tRNA-Arg2(acg) anticodon stem and loop 2AYY ; ; Solution structure of the E.coli RcsC C-terminus (residues 700-816) containing linker region 2AYX ; ; Solution structure of the E.coli RcsC C-terminus (residues 700-949) containing linker region and phosphoreceiver domain 2AYZ ; ; Solution structure of the E.coli RcsC C-terminus (residues 817-949) containing phosphoreceiver domain 2KX7 ; ; Solution structure of the E.coli RcsD-ABL domain (residues 688-795) 2COO ; ; Solution structure of the e3_binding domain of dihydrolipoamide branched chaintransacylase 2MKF ; ; Solution structure of the E81 deletion mutant of the tandem UIMs of RAP80 2L1M ; ; Solution structure of the eag domain of the hERG (Kv11.1) K+ channel 2N2J ; ; Solution structure of the EBNA-2 N-terminal Dimerization (END) domain from the Epstein-barr virus 2JVY ; ; Solution Structure of the EDA-ID-related C417F mutant of human NEMO zinc finger 1HYJ ; ; SOLUTION STRUCTURE OF THE EEA1 FYVE DOMAIN 1HYI ; ; SOLUTION STRUCTURE OF THE EEA1 FYVE DOMAIN COMPLEXED WITH INOSITOL 1,3-BISPHOSPHATE 2Y4Q ; ; Solution structure of the EF-hand domain of Human Polycystin 2 2RNL ; ; Solution structure of the EGF-like domain from human Amphiregulin 2E9H ; ; Solution structure of the eIF-5_eIF-2B domain from human Eukaryotic translation initiation factor 5 2CQV ; ; Solution structure of the eighth Ig-like domain of human myosin light chain kinase 2DM8 ; ; Solution structure of the eighth PDZ domain of human InaD-like protein 2E5N ; ; Solution structure of the ELL_N2 domain of target of RNA polymerase II elongation factor ELL2 1EGX ; ; SOLUTION STRUCTURE OF THE ENA-VASP HOMOLOGY 1 (EVH1) DOMAIN OF HUMAN VASODILATOR-STIMULATED PHOSPHOPROTEIN (VASP) 2LCQ ; ; Solution structure of the endonuclease Nob1 from P.horikoshii 1RXL ; ; Solution structure of the engineered protein Afae-dsc 2XDF ; ; Solution Structure of the Enzyme I Dimer Complexed with HPr Using Residual Dipolar Couplings and Small Angle X-Ray Scattering 2KX9 ; ; Solution Structure of the Enzyme I dimer Using Residual Dipolar Couplings and Small Angle X-Ray Scattering 1HRE ; ; SOLUTION STRUCTURE OF THE EPIDERMAL GROWTH FACTOR-LIKE DOMAIN OF HEREGULIN-ALPHA, A LIGAND FOR P180ERB4 1HRF ; ; SOLUTION STRUCTURE OF THE EPIDERMAL GROWTH FACTOR-LIKE DOMAIN OF HEREGULIN-ALPHA, A LIGAND FOR P180ERB4 1IQ3 ; ; SOLUTION STRUCTURE OF THE EPS15 HOMOLOGY DOMAIN OF A HUMAN POB1 2RQ7 ; ; Solution structure of the epsilon subunit chimera combining the N-terminal beta-sandwich domain from T. Elongatus bp-1 f1 and the C-terminal alpha-helical domain from spinach chloroplast F1 2RQ6 ; ; Solution structure of the epsilon subunit of the F1-atpase from thermosynechococcus elongatus BP-1 1BSH ; ; SOLUTION STRUCTURE OF THE EPSILON SUBUNIT OF THE F1-ATPSYNTHASE FROM ESCHERICHIA COLI AND ORIENTATION OF THE SUBUNIT RELATIVE TO THE BETA SUBUNITS OF THE COMPLEX 1BSN ; ; SOLUTION STRUCTURE OF THE EPSILON SUBUNIT OF THE F1-ATPSYNTHASE FROM ESCHERICHIA COLI AND ORIENTATION OF THE SUBUNIT RELATIVE TO THE BETA SUBUNITS OF THE COMPLEX 1INZ ; ; SOLUTION STRUCTURE OF THE EPSIN N-TERMINAL HOMOLOGY (ENTH) DOMAIN OF HUMAN EPSIN 2K84 ; ; Solution Structure of the equine infectious anemia virus p9 GAG protein 2JPD ; ; Solution structure of the ERCC1 central domain 2EV8 ; ; Solution structure of the erythroid p55 PDZ domain 2M6K ; ; Solution structure of the Escherichia coli apo ferric enterobactin binding protein 2M6L ; ; Solution structure of the Escherichia coli holo ferric enterobactin binding protein 1S62 ; ; Solution structure of the Escherichia coli TolA C-terminal domain 1SR2 ; ; Solution structure of the Escherichia coli YojN Histidine-Phosphotransferase (HPt) domain 1EF4 ; ; SOLUTION STRUCTURE OF THE ESSENTIAL RNA POLYMERASE SUBUNIT RPB10 FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 2LDC ; ; Solution structure of the estrogen receptor-binding stapled peptide SP1 (Ac-HXILHXLLQDS-NH2) 2LDA ; ; Solution structure of the estrogen receptor-binding stapled peptide SP2 (Ac-HKXLHQXLQDS-NH2) 2LDD ; ; Solution structure of the estrogen receptor-binding stapled peptide SP6 (Ac-EKHKILXRLLXDS-NH2) 2H7B ; ; Solution structure of the eTAFH domain from the human leukemia-associated fusion protein AML1-ETO 1WWX ; ; Solution structure of the ETS-domain of the Ets domain transcription factor 2DGY ; ; Solution structure of the eukaryotic initiation factor 1A in MGC11102 protein 1KD6 ; ; Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II 1B8Q ; ; SOLUTION STRUCTURE OF THE EXTENDED NEURONAL NITRIC OXIDE SYNTHASE PDZ DOMAIN COMPLEXED WITH AN ASSOCIATED PEPTIDE 1XHP ; ; Solution Structure of the Extended U6 ISL as Observed in the U2/U6 complex from Saccharomyces cerevisiae 1OSX ; ; Solution Structure of the Extracellular Domain of BLyS Receptor 3 (BR3) 2KJX ; ; Solution structure of the extracellular domain of JTB 2JVE ; ; Solution structure of the extracellular domain of Prod1, a protein implicated in proximodistal identity during amphibian limb regeneration 2L5S ; ; Solution structure of the extracellular domain of the TGF-beta type I receptor 1ZLG ; ; Solution structure of the extracellular matrix protein anosmin-1 2MJ6 ; ; Solution structure of the extracellular sensor domain of DraK histidine kinase 6CUI ; ; Solution structure of the Extraterminal (ET) Domain of BRD2 1ZZP ; ; Solution structure of the F-actin binding domain of Bcr-Abl/c-Abl 2JT8 ; ; Solution structure of the F153-to-5-flurotryptophan mutant of human cardiac troponin C 2MUT ; ; Solution structure of the F231L mutant ERCC1-XPF dimerization region 2NBO ; ; Solution structure of the F87M/L110M variant of transthyretin in the monomeric state 2KC0 ; ; Solution structure of the factor H binding protein 5X39 ; ; Solution structure of the Family 1 carbohydrate-binding module Q2A mutant with mannosylated Ser3 5X38 ; ; Solution structure of the Family 1 carbohydrate-binding module with glucosylated Ser3 5X37 ; ; Solution structure of the Family 1 carbohydrate-binding module with mannosylated Ser14 5X36 ; ; Solution structure of the Family 1 carbohydrate-binding module with mannosylated Ser3 5X35 ; ; Solution structure of the Family 1 carbohydrate-binding module with mannosylated Thr1 5X3C ; ; Solution structure of the Family 1 carbohydrate-binding module Y5A mutant with mannosylated Ser3 5X34 ; ; Solution structure of the Family 1 carbohydrate-binding module, unglycosylated form 1X3B ; ; Solution structure of the FAS1 domain of human transforming growth factor-beta induced protein IG-H3 1QVX ; ; SOLUTION STRUCTURE OF THE FAT DOMAIN OF FOCAL ADHESION KINASE 2W0T ; ; Solution structure of the FCS zinc finger domain of human LMBL2 2KIQ ; ; Solution structure of the FF Domain 2 of human transcription elongation factor CA150 2CQN ; ; Solution structure of the FF domain of human Formin-binding protein 3 2EH0 ; ; Solution structure of the FHA domain from human Kinesin-like protein KIF1B 1UHT ; ; Solution Structure of The FHA Domain of Arabidopsis thaliana Hypothetical Protein 2CSW ; ; Solution structure of the FHA domain of human ubiquitin ligase protein RNF8 1WLN ; ; Solution structure of the FHA domain of mouse Afadin 6 2N84 ; ; Solution structure of the FHA domain of TbPar42 1J4L ; ; SOLUTION STRUCTURE OF THE FHA2 DOMAIN OF RAD53 COMPLEXED WITH A PHOSPHOTHREONYL PEPTIDE DERIVED FROM RAD9 1K2N ; ; Solution Structure of the FHA2 domain of Rad53 Complexed with a Phosphothreonyl Peptide Derived from Rad9 1FHR ; ; SOLUTION STRUCTURE OF THE FHA2 DOMAIN OF RAD53 COMPLEXED WITH A PHOSPHOTYROSYL PEPTIDE 1J4K ; ; SOLUTION STRUCTURE OF THE FHA2 DOMAIN OF RAD53 COMPLEXED WITH A PHOSPHOTYROSYL PEPTIDE DERIVED FROM RAD9 1K2M ; ; Solution Structure of the FHA2 Domain of Rad53 Complexed with a Phosphotyrosyl Peptide Derived from Rad9 1TPM ; ; SOLUTION STRUCTURE OF THE FIBRIN BINDING FINGER DOMAIN OF TISSUE-TYPE PLASMINOGEN ACTIVATOR DETERMINED BY 1H NUCLEAR MAGNETIC RESONANCE 1TPN ; ; SOLUTION STRUCTURE OF THE FIBRIN BINDING FINGER DOMAIN OF TISSUE-TYPE PLASMINOGEN ACTIVATOR DETERMINED BY 1H NUCLEAR MAGNETIC RESONANCE 1K85 ; ; Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 Chitinase A1. 2YRZ ; ; Solution structure of the fibronectin type III domain of human Integrin beta-4 1X5X ; ; Solution structure of the fibronectin type-III domain of human fibronectin type III domain containing protein 3 1X3D ; ; Solution structure of the fibronectin type-III domain of human fibronectin type-III domain containing protein 3a 2DOC ; ; Solution structure of the Fibronectin type-III domain of human Neural cell adhesion molecule 2 1X5Z ; ; Solution structure of the fibronectin type-III domain of human protein tyrosine phosphatase, receptor type, D isoform 4 variant 1X5Y ; ; Solution structure of the fibronectin type-III domain of mouse myosin-binding protein C, Fast-type homolog 2YQD ; ; Solution structure of the fifth bromodomain from mouse polybromo-1 2YTV ; ; Solution structure of the fifth cold-shock domain of the human KIAA0885 protein (unr protein) 2DAD ; ; Solution structure of the fifth crystall domain of the non-lens protein, Absent in melanoma 1 2EDD ; ; Solution structure of the fifth fibronectin type III domain of human Netrin receptor DCC 2RPR ; ; Solution structure of the fifth FLYWCH domain of FLYWCH-type zinc finger-containing protein 1 1WIS ; ; Solution structure of the fifth FNIII domain from human KIAA1514 protein 2CRZ ; ; Solution structure of the fifth FNIII domain of human fibronectin type III domain containing protein 3a 2EO9 ; ; Solution structure of the fifth ig-like domain from human Roundabout homo1 2EDJ ; ; Solution structure of the fifth ig-like domain from human Roundabout homolog 2 2CRY ; ; Solution structure of the fifth ig-like domain of human kin of IRRE like 3 2E70 ; ; Solution structure of the fifth KOW motif of human transcription elongation factor SPT5 1WFV ; ; Solution structure of the fifth PDZ domain of human membrane associated guanylate kinase inverted-2 (KIAA0705 protein) 2D92 ; ; Solution structure of the fifth PDZ domain of InaD-like protein 2EGC ; ; Solution structure of the fifth SH3 domain from human KIAA0418 protein 2DI7 ; ; Solution structure of the filamin domain from human BK158_1 protein 2DS4 ; ; Solution structure of the filamin domain from human tripartite motif protein 45 3ZPD ; ; Solution structure of the FimH adhesin carbohydrate-binding domain 2EQG ; ; Solution structure of the first A20-type zinc finger domain from human tumor necrosis factor, alpha-induced protein3 2COT ; ; Solution structure of the first and second zf-C2H2 domain of Zinc finger protein 435 2EPA ; ; Solution structure of the first and second zf-C2H2 domains from human Krueppel-like factor 10 2DLK ; ; Solution structure of the first and the second zf-C2H2 domains of zinc finger protein 692 2DMI ; ; Solution structure of the first and the second zf-C2H2 like domains of human Teashirt homolog 3 2D8M ; ; Solution structure of the first BRCT domain of DNA-repair protein XRCC1 2E2W ; ; Solution structure of the first BRCT domain of human DNA ligase IV 2DL6 ; ; Solution structure of the first BRK domain from human chromodomain-helicase-DNA-binding protein 8 2ENN ; ; Solution structure of the first C1 domain from human protein kinase C theta 2ENP ; ; Solution structure of the first C2 domain from human B/K protein 2YRB ; ; Solution structure of the first C2 domain from human KIAA1005 protein 2DMH ; ; Solution structure of the first C2 domain of human myoferlin 1V27 ; ; Solution structure of the first C2 domain of RIM2 1UGK ; ; Solution structure of the first C2 domain of synaptotagmin IV from human fetal brain (KIAA1342) 2D8K ; ; Solution structure of the first C2 domain of synaptotagmin VII 2EPP ; ; Solution structure of the first C2H2 type zinc finger domain of Zinc finger protein 278 2EPT ; ; Solution structure of the first C2H2 type zinc finger domain of Zinc finger protein 32 2YQG ; ; Solution structure of the first cadherin domain from human Desmoglein-2 2DY7 ; ; Solution structure of the first chromodomain of yeast Chd1 2IKD ; ; Solution Structure of the first Clip domain in PAP2 1WFQ ; ; Solution structure of the first cold-shock domain of the human KIAA0885 protein (UNR protein) 1WIZ ; ; Solution structure of the first CUT domain of KIAA1034 protein 1X49 ; ; Solution structure of the first DSRM domain in Interferon-induced, double-stranded RNA-activated protein kinase 2DOD ; ; Solution structure of the first FF domain of human transcription factor CA150 1UEY ; ; Solution Structure of The First Fibronectin Type III Domain of Human KIAA0343 protein 1UEM ; ; Solution Structure of the First Fibronectin Type III domain of human KIAA1568 Protein 2ED7 ; ; Solution structure of the first fibronectin type III domain of human Netrin receptor DCC 1WF5 ; ; Solution structure of the first Fn3 domain of Sidekick-2 protein 1K99 ; ; Solution Structure of the first HMG box in human Upstream binding factor 2EQZ ; ; Solution structure of the first HMG-box domain from high mobility group protein B3 2DA1 ; ; Solution structure of the first homeobox domain of AT-binding transcription factor 1 (ATBF1) 2DM2 ; ; Solution structure of the first ig domain of human palladin 2EDO ; ; Solution structure of the first ig-like domain from human CD48 antigen 2EDN ; ; Solution structure of the first ig-like domain from human Myosin-binding protein C, fast-type 2DKS ; ; Solution structure of the first IG-like domain of human carcinoembryonic antigen related cell adhesion molecule 8 2CR3 ; ; Solution structure of the first Ig-like domain of human fibroblast growth factor receptor 1 2DAV ; ; Solution structure of the first ig-like domain of Myosin-binding protein C, slow-type 2D9C ; ; Solution structure of the first ig-like domain of signal-regulatory protein beta-1 (SIRP-beta-1) 2EHE ; ; Solution structure of the first LIM domain from human four and a half LIM domains protein 3 1X61 ; ; Solution structure of the first LIM domain of thyroid receptor interacting protein 6 (TRIP6) 1WJS ; ; Solution structure of the first mbt domain from human KIAA1798 protein 1UGO ; ; Solution structure of the first Murine BAG domain of Bcl2-associated athanogene 5 2H3K ; ; Solution Structure of the first NEAT domain of IsdH 2CR7 ; ; Solution structure of the first PAH domain of the mouse transcriptional repressor SIN3B 1X45 ; ; Solution structure of the first PDZ domain of amyloid beta A4 precursor protein-binding family A, member 1 1UEQ ; ; Solution Structure of The First PDZ domain of Human Atrophin-1 Interacting Protein 1 (KIAA0705 protein) 1UEZ ; ; Solution structure of the first PDZ domain of human KIAA1526 protein 2DB5 ; ; Solution structure of the first PDZ domain of InaD-like protein 1X5Q ; ; Solution structure of the first PDZ domain of scribble homolog protein (hScrib) 2YUU ; ; Solution structure of the first Phorbol esters/diacylglycerol binding domain of human Protein kinase C, delta 7FBR ; ; Solution structure of The first RNA binding domain of Matrin-3 1D8Z ; ; SOLUTION STRUCTURE OF THE FIRST RNA-BINDING DOMAIN (RBD1) OF HU ANTIGEN C (HUC) 1U2F ; ; SOLUTION STRUCTURE OF THE FIRST RNA-BINDING DOMAIN OF HU2AF65 1WG5 ; ; Solution structure of the first RRM domain in heterogeneous nuclear ribonucleoprotein H 5GVQ ; ; Solution structure of the first RRM domain of human spliceosomal protein SF3b49 2LMR ; ; Solution structure of the first sam domain of odin 2EQR ; ; Solution structure of the first SANT domain from human nuclear receptor corepressor 1 2EGA ; ; Solution structure of the first SH3 domain from human KIAA0418 protein 1UFF ; ; Solution structure of the first SH3 domain of human intersectin2 (KIAA1256) 2DL5 ; ; Solution structure of the first SH3 domain of human KIAA0769 protein 2DL3 ; ; Solution structure of the first SH3 domain of human sorbin and Sh3 domain-containing protein 1 2DLM ; ; Solution structure of the first SH3 domain of human vinexin 2NWM ; ; Solution structure of the first SH3 domain of human Vinexin and its interaction with the peptides from Vinculin 1WIE ; ; Solution structure of the first SH3 domain of KIAA0318 protein 2DL4 ; ; Solution structure of the first SH3 domain of Stac protein 2B86 ; ; Solution structure of the first Src homology 3 domain of Nck2 5WQ1 ; ; Solution Structure of the first stem-loop of Escherichia coli DsrA RNA 2DT6 ; ; Solution structure of the first SURP domain of human splicing factor SF3a120 2KXF ; ; Solution structure of the first two RRM domains of FBP-interacting repressor (FIR) 2KXH ; ; Solution structure of the first two RRM domains of FIR in the complex with FBP Nbox peptide 1OWW ; ; Solution structure of the first type III module of human fibronectin determined by 1H, 15N NMR spectroscopy 2DAI ; ; Solution Structure of the First UBA Domain in the Human Ubiquitin Associated Domain Containing 1 (UBADC1) 2DAG ; ; Solution Structure of the First UBA Domain in the Human Ubiquitin Specific Protease 5 (Isopeptidase 5) 2YSD ; ; Solution structure of the first WW domain from the human membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1. MAGI-1 2YSB ; ; Solution structure of the first WW domain from the mouse salvador homolog 1 protein (SAV1) 2YSI ; ; Solution structure of the first WW domain from the mouse transcription elongation regulator 1, transcription factor CA150 1ZR7 ; ; Solution structure of the first WW domain of FBP11 2DYF ; ; Solution structure of the first WW domain of FBP11 / HYPA (FBP11 WW1) complexed with a PL (PPLP) motif peptide ligand 1WR3 ; ; Solution structure of the first WW domain of Nedd4-2 1WYS ; ; Solution structure of the first zf-AN1 domain of mouse RIKEN cDNA 2310008M20 protein 2DMJ ; ; Solution structure of the first zf-PARP domain of human Poly(ADP-ribose)polymerase-1 1FV5 ; ; SOLUTION STRUCTURE OF THE FIRST ZINC FINGER FROM THE DROSOPHILA U-SHAPED TRANSCRIPTION FACTOR 1N0Z ; ; Solution structure of the first zinc-finger domain from ZNF265 1V9X ; ; Solution structure of the first Zn-finger domain of poly(ADP-ribose) polymerase-1 2F2D ; ; Solution structure of the FK506-binding domain of human FKBP38 2UZ5 ; ; Solution structure of the fkbp-domain of Legionella pneumophila Mip 2VCD ; ; Solution structure of the FKBP-domain of Legionella pneumophila Mip in complex with rapamycin 1YKG ; ; Solution structure of the flavodoxin-like domain from the Escherichia coli sulfite reductase 7AVA ; ; Solution structure of the fluorogen-activating protein FAST in complex with the ligand N871b 7AVB ; ; Solution structure of the fluorogen-activating protein FAST in the apo state 1D1N ; ; SOLUTION STRUCTURE OF THE FMET-TRNAFMET BINDING DOMAIN OF BECILLUS STEAROTHERMOPHILLUS TRANSLATION INITIATION FACTOR IF2 2CSP ; ; Solution structure of the FNIII domain of human RIM-binding protein 2 1R5E ; ; Solution structure of the folded core of Pseudomonas syringae effector protein, AvrPto 2K2Y ; ; Solution structure of the folded domain of intermediate IIIa of Tick Carboxypeptidase Inhibitor 2K2Z ; ; Solution structure of the folded domain of intermediate IIIb of Tick Carboxypeptidase Inhibitor 2MBF ; ; Solution structure of the forkhead domain of Brugia malayi DAF-16a 1D5V ; ; SOLUTION STRUCTURE OF THE FORKHEAD DOMAIN OF THE ADIPOCYTE-TRANSCRIPTION FACTOR FREAC-11 (S12) 2D9H ; ; Solution structure of the forth and fifth zf-C2H2 domains of zinc finger protein 692 1WJO ; ; Solution structure of the forth CH domain from human plastin 3 T-isoform 2CRM ; ; Solution structure of the forth FNIII domain of human 1UEW ; ; Solution Structure of The forth PDZ Domain of Human Atrophin-1 Interacting Protein 1 (KIAA0705 Protein) 6CGH ; ; Solution structure of the four-helix bundle region of human J-protein Zuotin, a component of ribosome-associated complex (RAC) 2EQE ; ; Solution structure of the fourth A20-type zinc finger domain from human tumor necrosis factor, alpha-induced protein3 2D85 ; ; Solution structure of the fourth CH domain from human L-plastin 2YTY ; ; Solution structure of the fourth cold-shock domain of the human KIAA0885 protein (UNR protein) 2MKL ; ; Solution structure of the fourth constant immunoglobulin domain of nurse shark IgNAR 2DOF ; ; Solution structure of the fourth FF domain of human transcription factor CA150 2EDB ; ; Solution structure of the fourth fibronectin type III domain of human Netrin receptor DCC 2DLE ; ; Solution structure of the fourth fn3 domain of human receptor-type tyrosine-protein phosphatase eta 1WJ3 ; ; Solution structure of the fourth fn3 domain of KIAA1496 protein 2YR3 ; ; Solution structure of the fourth Ig-like domain from myosin light chain kinase, smooth muscle 2HH2 ; ; Solution structure of the fourth KH domain of KSRP 2EGQ ; ; Solution structure of the fourth LIM domain from human four and a half LIM domains 1 1X5R ; ; Solution structure of the fourth PDZ domain of Glutamate receptor interacting protein 2 1UJU ; ; Solution structure of the fourth PDZ domain of human scribble (KIAA0147 protein) 1WH1 ; ; Solution structure of the fourth PDZ domain of KIAA1095 protein 1UE9 ; ; Solution structure of the fourth SH3 domain of human intersectin 2 (KIAA1256) 2YSF ; ; Solution structure of the fourth WW domain from the human E3 ubiquitin-protein ligase Itchy homolog, ITCH 6RSS ; ; Solution structure of the fourth WW domain of WWP2 with GB1-tag 2EBR ; ; Solution structure of the fourth zf-RanBP domain from human Nuclear pore complex protein Nup153 2JTP ; ; Solution Structure of the Frameshift-Inducing RNA Stem-Loop in SIV 6QVW ; ; Solution structure of the free FOXO1 DNA binding domain 2K16 ; ; Solution structure of the free TAF3 PHD domain 2MXC ; ; Solution structure of the full length sorting nexin 3 1I6E ; ; SOLUTION STRUCTURE OF THE FUNCTIONAL DOMAIN OF PARACOCCUS DENITRIFICANS CYTOCHROME C552 IN THE OXIDIZED STATE 1C7M ; ; SOLUTION STRUCTURE OF THE FUNCTIONAL DOMAIN OF PARACOCCUS DENITRIFICANS CYTOCHROME C552 IN THE REDUCED STATE 1I6D ; ; SOLUTION STRUCTURE OF THE FUNCTIONAL DOMAIN OF PARACOCCUS DENITRIFICANS CYTOCHROME C552 IN THE REDUCED STATE 1ZAE ; ; Solution structure of the functional domain of phi29 replication organizer p16.7c 6SNJ ; ; Solution structure of the FUS/TLS RNA recognition motif in complex with U1 snRNA stem loop III 1X4U ; ; Solution structure of the FYVE domain from human FYVE domain containing 27 isoform b protein 2YQM ; ; Solution structure of the FYVE domain in zinc finger FYVE domain-containing protein 12 6W9N ; ; Solution structure of the FYVE domain of ALFY 2N4G ; ; Solution Structure of the G335D Mutant of TDP-43 Amyloidogenic Core Region 2JX9 ; ; Solution structure of the Gal_lectin domain of mouse Latrophilin-1 GPCR 1V5R ; ; Solution Structure of the Gas2 Domain of the Growth Arrest Specific 2 Protein 2N1H ; ; Solution structure of the GBII-beta MRH domain W409A point mutant 3GCC ; ; SOLUTION STRUCTURE OF THE GCC-BOX BINDING DOMAIN, NMR, 46 STRUCTURES 2GCC ; ; SOLUTION STRUCTURE OF THE GCC-BOX BINDING DOMAIN, NMR, MINIMIZED MEAN STRUCTURE 2EDG ; ; Solution structure of the GCV_H domain from mouse glycine 2F09 ; ; Solution Structure of the gene product of E. coli gene ydhA 2LO0 ; ; Solution structure of the Get5 carboxyl domain from A. fumigatus 2LNZ ; ; Solution structure of the Get5 carboxyl domain from S. cerevisiae 2LXA ; ; Solution structure of the Get5 ubiquitin-like domain 2RTX ; ; Solution structure of the GGQ domain of YaeJ protein from Escherichia coli 2MJH ; ; Solution structure of the GLD-1 RNA-binding domain in complex with RNA 6HQ1 ; ; Solution structure of the globular domain from human histone H1.0 1UHM ; ; Solution structure of the globular domain of linker histone homolog Hho1p from S. cerevisiae 2K42 ; ; Solution Structure of the GTPase Binding Domain of WASP in Complex with EspFU, an EHEC Effector 1B64 ; ; SOLUTION STRUCTURE OF THE GUANINE NUCLEOTIDE EXCHANGE FACTOR DOMAIN FROM HUMAN ELONGATION FACTOR-ONE BETA, NMR, 20 STRUCTURES 2E29 ; ; Solution structure of the GUCT domain from human ATP-dependent RNA helicase DDX50, DEAD box protein 50 1WH2 ; ; Solution structure of the GYF domain of a hypothetical protein from Arabidopsis thaliana 6OCV ; ; Solution structure of the H-NOX protein from Shewanella woodyi in the Fe(II)CO ligation state 2KYT ; ; Solution structure of the H-REV107 N-terminal domain 2L5H ; ; Solution Structure of the H189Q mutant of the Enzyme I dimer Using Residual Dipolar Couplings and Small Angle X-Ray Scattering 8DWQ ; ; Solution Structure of the H3 protein 2HVA ; ; Solution Structure of the haem-binding protein p22HBP 1B36 ; ; SOLUTION STRUCTURE OF THE HAIRPIN RIBOZYME LOOP B DOMAIN RNA, NMR, 10 STRUCTURES 2M19 ; ; Solution structure of the Haloferax volcanii HVO 2177 protein 6GQ9 ; ; Solution structure of the hazel allergen Cor a 1.0401 1QQV ; ; SOLUTION STRUCTURE OF THE HEADPIECE DOMAIN OF CHICKEN VILLIN 2DOA ; ; Solution structure of the helical domain in human Eleven-nineteen lysine-rich leukemia protein ELL 2DGZ ; ; Solution structure of the Helicase and RNase D C-terminal domain in Werner syndrome ATP-dependent helicase 2HAJ ; ; Solution structure of the helicase-binding domain of Escherichia coli primase 2M22 ; ; Solution structure of the helix II template boundary element from Tetrahymena telomerase RNA 1SR3 ; ; Solution structure of the heme chaperone CcmE of Escherichia coli 2JXY ; ; Solution structure of the hemopexin-like domain of MMP12 1CWX ; ; SOLUTION STRUCTURE OF THE HEPATITIS C VIRUS N-TERMINAL CAPSID PROTEIN 2-45 [C-HCV(2-45)] 1UJL ; ; Solution Structure of the HERG K+ channel S5-P extracellular linker 1F4I ; ; SOLUTION STRUCTURE OF THE HHR23A UBA(2) MUTANT P333E, DEFICIENT IN BINDING THE HIV-1 ACCESSORY PROTEIN VPR 2IC4 ; ; Solution structure of the His402 allotype of the Factor H SCR6-SCR7-SCR8 fragment 1FR0 ; ; SOLUTION STRUCTURE OF THE HISTIDINE-CONTAINING PHOSPHOTRANSFER DOMAIN OF ANAEROBIC SENSOR KINASE ARCB FROM ESCHERICHIA COLI. 1Z2J ; ; Solution structure of the HIV-1 frameshift inducing element 1PJY ; ; Solution structure of the HIV-1 frameshift inducing stem-loop RNA 1Z9E ; ; Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75 2N4L ; ; Solution Structure of the HIV-1 Intron Splicing Silencer and its Interactions with the UP1 Domain of hnRNP A1 2H3F ; ; Solution structure of the HIV-1 MA protein 2H3I ; ; Solution structure of the HIV-1 myristoylated Matrix protein 2EXF ; ; Solution structure of the HIV-1 nucleocapsid (NCp7(12-55)) complexed with the DNA (-) Primer Binding Site 7LVA ; ; Solution structure of the HIV-1 PBS-segment 2K4H ; ; Solution structure of the HIV-2 myristoylated Matrix protein 2K4E ; ; Solution structure of the HIV-2 UNMYRISTOYLATED MATRIX PROTEIN 2LE4 ; ; Solution structure of the HMG box DNA-binding domain of human stem cell transcription factor Sox2 2E6O ; ; Solution structure of the HMG box domain from human HMG-box transcription factor 1 2D7L ; ; Solution structure of the HMG box domain from human WD repeat and HMG-box DNA binding protein 1 2CTO ; ; Solution structure of the HMG box like domain from human hypothetical protein FLJ14904 2YUK ; ; Solution structure of the HMG box of human Myeloid/lymphoid or mixed-lineage leukemia protein 3 homolog 2YUL ; ; Solution structure of the HMG box of human Transcription factor SOX-17 2CS1 ; ; Solution structure of the HMG domain of human DNA mismatch repair protein 2CRJ ; ; Solution structure of the HMG domain of mouse HMG domain protein HMGX2 1WXL ; ; Solution Structure of the HMG-box domain in the SSRP1 subunit of FACT 1WZ6 ; ; Solution Structure of the HMG_box Domain of Murine Bobby Sox Homolog 2CO9 ; ; Solution structure of the HMG_box domain of thymus high mobility group box protein TOX from mouse 1IRY ; ; Solution structure of the hMTH1, a nucleotide pool sanitization enzyme 1OR5 ; ; SOLUTION STRUCTURE OF THE HOLO-FORM OF THE FRENOLICIN ACYL CARRIER PROTEIN, MINIMIZED MEAN STRUCTURE 2E19 ; ; Solution structure of the homeobox domain from human NIL-2-A zinc finger protein, transcription factor 8 2DA6 ; ; Solution structure of the homeobox domain of Hepatocyte nuclear factor 1-beta (HNF-1beta) 2DMT ; ; Solution structure of the homeobox domain of Homeobox protein BarH-like 1 2DMU ; ; Solution structure of the homeobox domain of Homeobox protein goosecoid 2DMS ; ; Solution structure of the homeobox domain of Homeobox protein OTX2 2CRA ; ; Solution structure of the homeobox domain of human homeo box B13 1X2N ; ; Solution structure of the homeobox domain of human homeobox protein PKNOX1 2DMQ ; ; Solution structure of the homeobox domain of LIM/homeobox protein Lhx9 1X2M ; ; Solution structure of the homeobox domain of mouse LAG1 longevity assurance homolog 6 2CUF ; ; Solution structure of the homeobox domain of the human hypothetical protein FLJ21616 2CUE ; ; Solution structure of the homeobox domain of the human paired box protein Pax-6 2DA4 ; ; Solution structure of the homeobox domain of the hypothetical protein, DKFZp686K21156 2DA7 ; ; Solution structure of the homeobox domain of Zinc finger homeobox protein 1b (Smad interacting protein 1) 1WI3 ; ; Solution structure of the homeodomain of KIAA1034 protein 2HI3 ; ; Solution structure of the homeodomain-only protein HOP 1JOY ; ; SOLUTION STRUCTURE OF THE HOMODIMERIC DOMAIN OF ENVZ FROM ESCHERICHIA COLI BY MULTI-DIMENSIONAL NMR. 1TUJ ; ; Solution structure of the honey bee general odorant binding protein ASP2 in complex with trimethylsilyl-d4 propionate 1NIQ ; ; Solution Structure of the HOO-Bm bound BLMT, Transposon Tn5-encoding Bleomycin-binding Protein 2CPR ; ; Solution structure of the HRDC domain of human Exosome component 10 6T3I ; ; Solution structure of the HRP2 IBD 3ZEH ; ; Solution structure of the Hs. PSIP1 PWWP domain 2A7O ; ; Solution Structure of the hSet2/HYPB SRI domain 1FNX ; ; SOLUTION STRUCTURE OF THE HUC RBD1-RBD2 COMPLEXED WITH THE AU-RICH ELEMENT 2ECD ; ; Solution structure of the human ABL2 SH2 domain 1UND ; ; Solution structure of the human advillin C-terminal headpiece subdomain 2LG1 ; ; Solution structure of the human AKAP13 PH domain and stabilizing DH helix 1W0B ; ; Solution structure of the human alpha-hemoglobin stabilizing protein (AHSP) P30A mutant 1KUN ; ; SOLUTION STRUCTURE OF THE HUMAN ALPHA3-CHAIN TYPE VI COLLAGEN C-TERMINAL KUNITZ DOMAIN, NMR, 20 STRUCTURES 2L9E ; ; Solution Structure of the human Anti-codon Stem and loop(hASL) of transfer RNA Lysine 3 (tRNALys3) 2D46 ; ; Solution Structure of the Human Beta4a-A Domain 2KV2 ; ; Solution Structure of the human BLM HRDC domain 2EKX ; ; Solution structure of the human BMX SH2 domain 1EL0 ; ; SOLUTION STRUCTURE OF THE HUMAN CC CHEMOKINE, I-309 1WBR ; ; SOLUTION STRUCTURE OF THE HUMAN CD4 (403-419) RECEPTOR PEPTIDE, NMR, 32 STRUCTURES 2MP1 ; ; Solution structure of the human chemokine CCL19 2KUM ; ; Solution structure of the human chemokine CCL27 1EIG ; ; SOLUTION STRUCTURE OF THE HUMAN CHEMOKINE EOTAXIN-2 1EIH ; ; SOLUTION STRUCTURE OF THE HUMAN CHEMOKINE EOTAXIN-2 2HCC ; ; SOLUTION STRUCTURE OF THE HUMAN CHEMOKINE HCC-2, NMR, 30 STRUCTURES 2RQT ; ; Solution structure of the human DDEF1 SH3 domain 1E4S ; ; Solution structure of the human defensin hBD-1 1E4Q ; ; Solution structure of the human defensin hBD-2 2MUQ ; ; Solution Structure of the Human FAAP20 UBZ 2MUR ; ; Solution Structure of the Human FAAP20 UBZ-Ubiquitin Complex 1WQU ; ; Solution structure of the human FES SH2 domain 2JP3 ; ; Solution Structure of the human FXYD4 (CHIF) protein in SDS micelles 1MW4 ; ; Solution structure of the human Grb7-SH2 domain in complex with a 10 amino acid peptide pY1139 2AQ0 ; ; Solution structure of the human homodimeric dna repair protein XPF 2C55 ; ; Solution Structure of the Human Immunodeficiency Virus Type 1 p6 Protein 1J0S ; ; Solution structure of the human interleukin-18 1IY4 ; ; Solution structure of the human lysozyme at 35 degree C 1IY3 ; ; Solution Structure of the Human lysozyme at 4 degree C 2CH0 ; ; Solution structure of the human MAN1 C-terminal domain (residues 655- 775) 2KRZ ; ; Solution structure of the Human Mitochondrial tRNAMet 2KRY ; ; Solution structure of the human mitochondrial tRNAMet ASL containing the 5-formylcytidine modification in position 34 1ZGU ; ; Solution structure of the human Mms2-Ubiquitin complex 2JRJ ; ; Solution structure of the human Pirh2 RING-H2 domain. Northeast Structural Genomics Consortium Target HT2B 2MBB ; ; Solution Structure of the human Polymerase iota UBM1-Ubiquitin Complex 2KHW ; ; Solution Structure of the human Polymerase iota UBM2-Ubiquitin Complex 2LFG ; ; Solution structure of the human prolactin receptor ecd domain d2 2L7W ; ; Solution structure of the human Raf-1 kinase inhibitor protein 7P08 ; ; Solution structure of the human SF3A1 ubiquitin-like domain 2YSX ; ; Solution structure of the human SHIP SH2 domain 2N7A ; ; Solution structure of the human Siglec-8 lectin domain 2N7B ; ; Solution structure of the human Siglec-8 lectin domain in complex with 6'sulfo sialyl Lewisx 5L7B ; ; Solution structure of the human SNF5/INI1 domain 1H5P ; ; Solution structure of the human Sp100b SAND domain by heteronuclear NMR. 2EL8 ; ; Solution structure of the human STAP2 SH2 domain 143D ; ; SOLUTION STRUCTURE OF THE HUMAN TELOMERIC REPEAT D(AG3[T2AG3]3) OF THE G-QUADRUPLEX 1O7C ; ; Solution structure of the human TSG-6 Link module in the presence of a hyaluronan octasaccharide 2MT6 ; ; Solution structure of the human ubiquitin conjugating enzyme Ube2w 2HLW ; ; Solution Structure of the Human Ubiquitin-conjugating Enzyme Variant Uev1a 1UNC ; ; Solution structure of the human villin C-terminal headpiece subdomain 2KAV ; ; Solution structure of the human Voltage-gated Sodium Channel, brain isoform (Nav1.2) 2MDX ; ; Solution structure of the human wild type FAPP1-PH domain 1POZ ; ; SOLUTION STRUCTURE OF THE HYALURONAN BINDING DOMAIN OF HUMAN CD44 2NBH ; ; Solution structure of the HYD1 hydrophobin from Schizophyllum commune 2N4O ; ; Solution structure of the hydrophobin MPG1 from the rice blast fungus Magnaporthe oryzae 1WJ5 ; ; Solution structure of the hypothetical domain of RIKEN cDNA 0610009H20 2NNZ ; ; Solution structure of the hypothetical protein AF2241 from Archaeoglobus fulgidus 1WLO ; ; Solution structure of the hypothetical protein from thermus thermophilus HB8 1PU1 ; ; Solution structure of the Hypothetical protein mth677 from Methanothermobacter Thermautotrophicus 1RQ8 ; ; Solution structure of the hypothetical protein SAV1595 from Staphylococcus aureus, a putative RNA binding protein 1OVQ ; ; Solution structure of the hypothetical protein YqgF from Escherichia coli 2EDW ; ; Solution structure of the I-set domain (3537-3630) of human obscurin 2CT7 ; ; Solution Structure of the IBR domain of the RING finger protein 31 protein 2M12 ; ; Solution structure of the ID3 stem loop of domain 1 of the ai5gamma group II intron 2CR6 ; ; Solution structure of the Ig domain (2998-3100) of human obscurin 2EO1 ; ; Solution structure of the ig domain of human OBSCN protein 2ENY ; ; Solution structure of the ig-like domain (2735-2825) of human obscurin 2EDR ; ; Solution structure of the ig-like domain (3361-3449) of human obscurin 2EDT ; ; Solution structure of the ig-like domain (3449-3537) from human Obscurin 2EDQ ; ; Solution structure of the ig-like domain (3713-3806) of human obscurin 2EDL ; ; Solution structure of the ig-like domain (3801-3897) of human obscurin 2E6Q ; ; Solution structure of the Ig-like domain (615-713) from human Obscurin-like protein 1 2E6P ; ; Solution structure of the Ig-like domain (714-804) from human Obscurin-like protein 1 2DL9 ; ; Solution structure of the Ig-like domain of human Leucine-rich repeat-containing protein 4 2DLT ; ; Solution structure of the Ig-like domain(433- 525) of murine myosin-binding protein C, fast-type 5XF0 ; ; Solution structure of the IgI domain of CD147 1FI7 ; ; Solution structure of the imidazole complex of cytochrome C 1FI9 ; ; SOLUTION STRUCTURE OF THE IMIDAZOLE COMPLEX OF CYTOCHROME C 1NMI ; ; Solution structure of the imidazole complex of iso-1 cytochrome c 2MF7 ; ; Solution structure of the ims domain of the mitochondrial import protein TIM21 from S. cerevisiae 2K2O ; ; Solution Structure of the inner DysF domain of human myoferlin 1G9P ; ; SOLUTION STRUCTURE OF THE INSECTICIDAL CALCIUM CHANNEL BLOCKER OMEGA-ATRACOTOXIN-HV2A 1DL0 ; ; SOLUTION STRUCTURE OF THE INSECTICIDAL NEUROTOXIN J-ATRACOTOXIN-HV1C 2M36 ; ; Solution structure of the insecticidal spider-venom peptide Aps III 2EO2 ; ; Solution structure of the insertion region (510-573) of FTHFS domain from mouse methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like protein 2MAM ; ; Solution structure of the interdigitated double Tudor domain of RBBP1 2ERS ; ; Solution structure of the Interleukin-15 receptor sushi domain 6K8Q ; ; Solution structure of the intermembrane space domain of the mitochondrial import protein Tim21 from S. cerevisiae 2MX7 ; ; Solution structure of the internal EH domain of gamma-synergin 2EUY ; ; Solution structure of the internal loop of human U65 H/ACA snoRNA 3' hairpin 1IFY ; ; Solution Structure of the Internal UBA Domain of HHR23A 5US5 ; ; Solution structure of the IreB homodimer 2DLL ; ; Solution structure of the IRF domain of human interferon regulator factors 4 2DLW ; ; Solution structure of the IRS domain of human docking protein 2, isoform a 2K78 ; ; Solution Structure of the IsdC NEAT domain bound to Zinc Protoporphyrin 2RVQ ; ; Solution structure of the isolated histone H2A-H2B heterodimer 2LC7 ; ; Solution structure of the isolated Par-6 PDZ domain 6WQE ; ; Solution Structure of the IWP-051-bound H-NOX from Shewanella woodyi in the Fe(II)CO ligation state 2DMX ; ; Solution structure of the J domain of DnaJ homolog subfamily B member 8 2NBY ; ; Solution structure of the J domain of EMCV IRES 2LGW ; ; Solution Structure of the J Domain of HSJ1a 2CUG ; ; Solution structure of the J domain of the pseudo DnaJ protein, mouse hypothetical mKIAA0962 6IWS ; ; Solution structure of the J-domain of Tid1, a Mitochondrial Hsp40/DnaJ Protein 2NBX ; ; Solution structure of the J-K region of EMCV IRES 2ADZ ; ; solution structure of the joined PH domain of alpha1-syntrophin 1YZB ; ; Solution structure of the Josephin domain of Ataxin-3 2JRI ; ; Solution structure of the Josephin domain of Ataxin-3 in complex with ubiquitin molecule. 2NBZ ; ; Solution structure of the K domain of EMCV IRES 1RQM ; ; SOLUTION STRUCTURE OF THE K18G/R82E ALICYCLOBACILLUS ACIDOCALDARIUS THIOREDOXIN MUTANT 2LQ9 ; ; Solution structure of the K60A mutant of Atox1 2YQR ; ; Solution structure of the KH domain in KIAA0907 protein 1WH9 ; ; Solution structure of the KH domain of human ribosomal protein S3 2BL5 ; ; Solution structure of the KH-QUA2 region of the Xenopus STAR-GSG Quaking protein. 2KQM ; ; Solution structure of the KI O18/O8 Y87H immunoglobulin light chain variable domain 1F5U ; ; SOLUTION STRUCTURE OF THE KISSING DIMER OF H3 GACG STEM-LOOP IN THE 5'-END DIMERIZATION SIGNAL OF MOLONEY MURINE LEUKEMIA VIRUS GENOMIC RNA 1SB0 ; ; Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb 2RO0 ; ; Solution structure of the knotted tudor domain of the yeast histone acetyltransferase, Esa1 1V65 ; ; Solution structure of the Kruppel-associated box (KRAB) domain 1VYX ; ; Solution structure of the KSHV K3 N-terminal domain 2CQK ; ; Solution structure of the La domain of c-Mpl binding protein 2MTF ; ; Solution structure of the La motif of human LARP6 1XFE ; ; Solution structure of the LA7-EGFA pair from the LDL receptor 1JCP ; ; Solution structure of the lactam analogue EDap of HIV gp41 600-612 loop. 1KJK ; ; Solution structure of the lambda integrase amino-terminal domain 2MVO ; ; Solution structure of the lantibiotic self-resistance lipoprotein MlbQ from Microbispora ATCC PTA-5024 6MK7 ; ; Solution structure of the large extracellular loop of FtsX in Streptococcus pneumoniae 1LDZ ; ; SOLUTION STRUCTURE OF THE LEAD-DEPENDENT RIBOZYME, NMR, 25 STRUCTURES 2LDZ ; ; SOLUTION STRUCTURE OF THE LEAD-DEPENDENT RIBOZYME, NMR, MINIMIZED AVERAGE STRUCTURE 2KYA ; ; Solution structure of the leader sequence of the patellamide precursor peptide, PatE1-34 6EMR ; ; Solution structure of the LEDGF/p75 IBD - IWS1 (aa 446-548) complex 6EMO ; ; Solution structure of the LEDGF/p75 IBD - JPO2 (aa 1-32) complex 5YI9 ; ; Solution structure of the LEDGF/p75 IBD - JPO2 (aa 56-91) complex 6EMQ ; ; Solution structure of the LEDGF/p75 IBD - MLL1 (aa 111-160) complex 6EMP ; ; Solution structure of the LEDGF/p75 IBD - POGZ (aa 1370-1404) complex 1ZFI ; ; Solution structure of the leech carboxypeptidase inhibitor 5YHN ; ; Solution structure of the LEKTI Domain 4 2ELL ; ; Solution structure of the Leucine Rich Repeat of human Acidic leucine-rich nuclear phosphoprotein 32 family member B 2RR6 ; ; Solution structure of the leucine rich repeat of human acidic leucine-rich nuclear phosphoprotein 32 family member B 1LEA ; ; SOLUTION STRUCTURE OF THE LEXA REPRESSOR DNA BINDING DETERMINED BY 1H NMR SPECTROSCOPY 1LEB ; ; SOLUTION STRUCTURE OF THE LEXA REPRESSOR DNA BINDING DETERMINED BY 1H NMR SPECTROSCOPY 1WYH ; ; Solution structure of the LIM domain from human Skeletal muscle LIM-protein 2 1X64 ; ; Solution structure of the LIM domain of alpha-actinin-2 associated LIM protein 1X62 ; ; Solution structure of the LIM domain of carboxyl terminal LIM domain protein 1 2D8Y ; ; Solution structure of the LIM domain of Epithelial protein lost in neoplasm 2CU8 ; ; Solution structure of the LIM domain of human Cysteine-rich protein 2 1X3H ; ; Solution structure of the LIM domain of human Leupaxin 1V6G ; ; Solution Structure of the LIM Domain of the Human Actin Binding LIM Protein 2 2N40 ; ; Solution structure of the link module of human tsg-6 in presence of a chondroitin 4-sulfate hexasaccharide 5A4H ; ; Solution structure of the lipid droplet anchoring peptide of CGI-58 bound to DPC micelles 1K8M ; ; Solution Structure of the Lipoic Acid-Bearing Domain of the E2 component of Human, Mitochondrial Branched-Chain alpha-Ketoacid Dehydrogenase 1K8O ; ; Solution Structure of the Lipoic Acid-Bearing Domain of the E2 component of Human, Mitochondrial Branched-Chain alpha-Ketoacid Dehydrogenase 1GHK ; ; SOLUTION STRUCTURE OF THE LIPOYL DOMAIN OF THE 2-OXOGLUTARATE DEHYDROGENASE COMPLEX FROM AZOTOBACTER VINELAND II, NMR, 25 STRUCTURES 1GHJ ; ; SOLUTION STRUCTURE OF THE LIPOYL DOMAIN OF THE 2-OXOGLUTARATE DEHYDROGENASE COMPLEX FROM AZOTOBACTER VINELAND II, NMR, MINIMIZED AVERAGE STRUCTURE 1GJX ; ; Solution structure of the lipoyl domain of the chimeric dihydrolipoyl dehydrogenase P64K from Neisseria meningitidis 2FBS ; ; Solution structure of the LL-37 core peptide bound to detergent micelles 2F3A ; ; Solution structure of the LL-37-derived aurein 1.2 analog (LLAA) in membrane-mimetic micelles 2LDE ; ; Solution structure of the long sarafotoxin srtx-i3 2LDF ; ; Solution structure of the long sarafotoxin srtx-m 2DMW ; ; Solution structure of the LONGIN domain of Synaptobrevin-like protein 1 2KFJ ; ; Solution structure of the loop deletion mutant of PB1 domain of Cdc24p 2GI4 ; ; Solution Structure of the Low Molecular Weight Protein Tyrosine Phosphatase from Campylobacter jejuni. 1P8A ; ; Solution structure of the low molecular weight protein tyrosine phosphatase from Tritrichomonas foetus 2RM4 ; ; Solution Structure of the LSM Domain of Dm EDC3 (Enhancer of DECAPPING 3) 2VXE ; ; SOLUTION STRUCTURE OF THE LSM DOMAIN OF DROSOPHILA MELANOGASTER TRAL (TRAILER HITCH) 2VXF ; ; Solution structure of the LSm-domain of zebrafish RAP55 1NZP ; ; Solution Structure of the Lyase Domain of Human DNA Polymerase Lambda 2MPW ; ; Solution structure of the LysM region of the E. coli Intimin periplasmic domain 5LMY ; ; Solution structure of the m-pmv myristoylated matrix protein 2F76 ; ; Solution structure of the M-PMV wild type matrix protein (p10) 1FI3 ; ; SOLUTION STRUCTURE OF THE M61H MUTANT OF PSEUDOMONAS STUTZERI SUBSTRAIN ZOBELL FERROCYTOCHROME C-551 2GGF ; ; Solution structure of the MA3 domain of human Programmed cell death 4 1HTX ; ; SOLUTION STRUCTURE OF THE MAIN ALPHA-AMYLASE INHIBITOR FROM AMARANTH SEEDS 2KPY ; ; Solution Structure of the major allergen of Artemisia vulgaris (Art v 1) 1E09 ; ; Solution Structure of the Major Cherry Allergen Pru av 1 1H2O ; ; SOLUTION STRUCTURE OF THE MAJOR CHERRY ALLERGEN PRU AV 1 MUTANT E45W 2MHP ; ; Solution structure of the major factor VIII binding region on von Willebrand factor 2MHQ ; ; Solution structure of the major factor VIII binding region on von Willebrand factor 5XND ; ; Solution structure of the major fish allergen parvalbumin Sco j 1 derived from the Pacific mackerel 7KBX ; ; Solution structure of the major MYC promoter G-quadruplex in complex with NSC85697, a quinoline derivative 7KBW ; ; Solution structure of the major MYC promoter G-quadruplex with a wild-type flanking in complex with NSC85697, a quinoline derivative 7KBV ; ; Solution structure of the major MYC promoter G-quadruplex with a wild-type flanking sequence 1Q8N ; ; Solution Structure of the Malachite Green RNA Binding Aptamer 2OQ3 ; ; Solution Structure of the mannitol- specific cryptic phosphotransferase enzyme IIA CmtB from Escherichia coli 1YSE ; ; Solution structure of the MAR-binding domain of SATB1 1F43 ; ; SOLUTION STRUCTURE OF THE MATA1 HOMEODOMAIN 1UB1 ; ; Solution structure of the matrix attachment region-binding domain of chicken MeCP2 2MMM ; ; Solution structure of the mature form, GK cecropin-like peptide from Ae. aegypti mosquito 1Q9P ; ; Solution structure of the mature HIV-1 protease monomer 4D7X ; ; Solution Structure of the Mediator Gall11 KIX Domain of C. Glabrata 2N2Y ; ; Solution structure of the meiosis-expressed gene 1 (Meig1) 1KUP ; ; Solution Structure of the Membrane Proximal Regions of alpha-IIb and beta-3 Integrins 1KUZ ; ; Solution Structure of the Membrane Proximal Regions of alpha-IIb and beta-3 Integrins 202D ; ; SOLUTION STRUCTURE OF THE MENOGARIL-DNA COMPLEX 1IX5 ; ; Solution structure of the Methanococcus thermolithotrophicus FKBP 1BA6 ; ; SOLUTION STRUCTURE OF THE METHIONINE-OXIDIZED AMYLOID BETA-PEPTIDE (1-40). DOES OXIDATION AFFECT CONFORMATIONAL SWITCHING? NMR, 10 STRUCTURES 7D8K ; ; Solution structure of the methyl-CpG binding domain of MBD6 from Arabidopsis thaliana 1IG4 ; ; Solution Structure of the Methyl-CpG-Binding Domain of Human MBD1 in Complex with Methylated DNA 1D9N ; ; SOLUTION STRUCTURE OF THE METHYL-CPG-BINDING DOMAIN OF THE METHYLATION-DEPENDENT TRANSCRIPTIONAL REPRESSOR MBD1/PCM1 2L7T ; ; Solution structure of the MFS-bound Sans CEN2 peptide 5IM8 ; ; Solution Structure of the Microtubule-Targeting COS Domain of MID1 2DQ5 ; ; solution structure of the Mid1 B Box2 Chc(D/C)C2H2 Zinc-Binding Domain: insights into an evolutionary conserved ring fold 2HST ; ; Solution structure of the middle domain of human eukaryotic translation termination factor eRF1 1EV0 ; ; SOLUTION STRUCTURE OF THE MINE TOPOLOGICAL SPECIFICITY DOMAIN 2DL1 ; ; Solution structure of the MIT domain from human Spartin 146D ; ; SOLUTION STRUCTURE OF THE MITHRAMYCIN DIMER-DNA COMPLEX 2CQM ; ; Solution structure of the mitochondrial ribosomal protein L17 isolog 2MGY ; ; Solution structure of the mitochondrial translocator protein (TSPO) in complex with its high-affinity ligand PK11195 2MSV ; ; Solution structure of the MLKL N-terminal domain 2LC8 ; ; Solution structure of the MLV readthrough pseudoknot 2L9Y ; ; Solution structure of the MoCVNH-LysM module from the rice blast fungus Magnaporthe oryzae protein (MGG_03307) 7T2F ; ; Solution structure of the model HEEH mini protein homodimer HEEH_TK_rd5_0341 6TO6 ; ; Solution structure of the modulator of repression (MOR) of the temperate bacteriophage TP901-1 from Lactococcus lactis 1PT4 ; ; Solution structure of the Moebius cyclotide kalata B2 199D ; ; Solution structure of the monoalkylated mitomycin c-DNA complex 1DON ; ; SOLUTION STRUCTURE OF THE MONOCYTE CHEMOATTRACTANT PROTEIN-1 DIMER USING HETERONUCLEAR, NMR, 20 STRUCTURES 1DOM ; ; SOLUTION STRUCTURE OF THE MONOCYTE CHEMOATTRACTANT PROTEIN-1 DIMER USING HETERONUCLEAR, NMR, MINIMIZED AVERAGE STRUCTURE 2LFJ ; ; Solution structure of the monomeric derivative of BS-RNase 1L5C ; ; Solution Structure of the Monomeric Form of a Mutant Unliganded Bovine Neurophysin, 20 Structures 1L5D ; ; Solution Structure of the Monomeric Form of a Mutant Unliganded Bovine Neurophysin, Minimized Average Structure 2RPZ ; ; Solution structure of the monomeric form of mouse APOBEC2 1QWQ ; ; Solution structure of the monomeric N67D mutant of Bovine Seminal Ribonuclease 1JE4 ; ; Solution structure of the monomeric variant of the chemokine MIP-1beta 1JCO ; ; Solution structure of the monomeric [Thr(B27)->Pro,Pro(B28)->Thr] insulin mutant (PT insulin) 1SSF ; ; Solution structure of the mouse 53BP1 fragment (residues 1463-1617) 1E4T ; ; Solution structure of the mouse defensin mBD-7 1E4R ; ; Solution structure of the mouse defensin mBD-8 1WGE ; ; Solution structure of the mouse DESR1 8IM5 ; ; Solution structure of the mouse HOIL1-L NZF domain in the free form 1KN6 ; ; Solution Structure of the Mouse Prohormone Convertase 1 Pro-Domain 2LSG ; ; Solution structure of the mouse Rev1 C-terminal domain 2LSJ ; ; Solution structure of the mouse Rev1 CTD in complex with the Rev1-interacting Region (RIR)of Pol Kappa 2N1D ; ; Solution structure of the MRG15-MRGBP complex 6F99 ; ; Solution structure of the MRH domain of Yos9 6F9A ; ; Solution structure of the MRH domain of Yos9 complexed with alpha3,alpha6-Man5 2RMS ; ; Solution structure of the mSin3A PAH1-SAP25 SID complex 2LD7 ; ; Solution structure of the mSin3A PAH3-SAP30 SID complex 2CRI ; ; Solution structure of the MSP domain of mouse VAMP-associated proteinA 1WIC ; ; Solution structure of the MSP domain of RIKEN cDNA 6030424E15 1NEQ ; ; SOLUTION STRUCTURE OF THE MU NER PROTEIN BY MULTIDIMENSIONAL NMR 1NER ; ; SOLUTION STRUCTURE OF THE MU NER PROTEIN BY MULTIDIMENSIONAL NMR 1Y8F ; ; Solution structure of the munc13-1 C1-domain 1UK5 ; ; Solution structure of the Murine BAG domain of Bcl2-associated athanogene 3 1UH6 ; ; Solution Structure of the murine ubiquitin-like 5 protein from RIKEN cDNA 0610031K06 1PPX ; ; Solution Structure of the MutT Pyrophosphohydrolase Complexed with Mg(2+) and 8-oxo-dGMP, a Tightly-bound Product 1PUN ; ; Solution Structure of the MutT Pyrophosphohydrolase Complexed with Mg(2+) and 8-oxo-dGMP, a Tightly-bound Product 1PUQ ; ; Solution Structure of the MutT Pyrophosphohydrolase Complexed with Mg(2+) and 8-oxo-dGMP, a Tightly-bound Product 1PUS ; ; Solution Structure of the MutT Pyrophosphohydrolase Complexed with Mg(2+) and 8-oxo-dGMP, a Tightly-bound Product 1X41 ; ; Solution structure of the Myb-like DNA binding domain of human Transcriptional adaptor 2-like, isoform B 2YUM ; ; Solution structure of the Myb-like DNA-binding domain of human ZZZ3 protein 2CRG ; ; Solution structure of the myb-like DNA-binding domain of mouse MTA3 protein 2DIM ; ; Solution structure of the Myb_DNA-binding domain of human Cell division cycle 5-like protein 2DIN ; ; Solution structure of the Myb_DNA-binding domain of human Cell division cycle 5-like protein 5W77 ; ; Solution structure of the MYC G-quadruplex bound to small molecule DC-34 7N7D ; ; Solution structure of the MYC promoter G-quadruplex in complex with berberine: conformer A 7N7E ; ; Solution structure of the MYC promoter G-quadruplex in complex with berberine: conformer B 2KVC ; ; Solution structure of the Mycobacterium tuberculosis protein Rv0543c, a member of the DUF3349 superfamily. Seattle Structural Genomics Center for Infectious Disease target MytuD.17112.a 2ODD ; ; Solution structure of the MYND domain from AML1-ETO complexed with SMRT, a corepressor 2OD1 ; ; Solution structure of the MYND domain from human AML1-ETO 2D8Q ; ; Solution structure of the MYND domain of the human zinc finger MYND domain-containing protein 10 8IMH ; ; Solution structure of the N terminal domain of MazE9 antitoxin (nMazE9) from Mycobacterium tuberculosis 1HN3 ; ; SOLUTION STRUCTURE OF THE N-TERMINAL 37 AMINO ACIDS OF THE MOUSE ARF TUMOR SUPPRESSOR PROTEIN 2DMD ; ; Solution structure of the N-terminal C2H2 type zinc-binding domain of the Zinc finger protein 64, isoforms 1 and 2 2DAE ; ; Solution Structure of the N-terminal CUE Domain in the Human Mitogen-activated Protein Kinase Kinase Kinase 7 Interacting Protein 2 (MAP3K7IP2) 1UF0 ; ; Solution structure of the N-terminal DCX domain of human doublecortin-like kinase 4ASV ; ; Solution structure of the N-terminal dimerisation domain of Sgt2 2FY9 ; ; Solution Structure of the N-Terminal DNA Recognition Domain of the Bacillus Subtilis Transcription-State Regulator ABH 1Z0R ; ; Solution Structure of the N-terminal DNA Recognition Domain of the Bacillus subtilis Transcription-State Regulator AbrB 5TN0 ; ; Solution Structure of the N-terminal DNA-binding domain of the master biofilm-regulator SinR from Bacillus subtilis 1ZMZ ; ; Solution structure of the N-terminal domain (M1-S98) of human centrin 2 2KQR ; ; Solution structure of the N-terminal domain (residues 1-111) of Brugia malayi asparaginyl-tRNA synthetase 2K3Q ; ; Solution structure of the n-terminal domain (TUSP1-N) of the egg case silk from Nephila antipodiana 1WIB ; ; Solution structure of the N-terminal domain from mouse hypothetical protein BAB22488 1WJT ; ; Solution structure of the N-terminal Domain I of mouse transcription elongation factor S-II protein 3 2YUI ; ; Solution structure of the N-terminal domain in human cytokine-induced apoptosis inhibitor anamorsin 1KQK ; ; Solution Structure of the N-terminal Domain of a Potential Copper-translocating P-type ATPase from Bacillus subtilis in the Cu(I)loaded State 2KRC ; ; Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase 2JML ; ; Solution structure of the N-terminal domain of CarA repressor 2H2M ; ; Solution Structure of the N-terminal domain of COMMD1 (Murr1) 2KSN ; ; Solution Structure of the N-terminal Domain of DC-UbP/UBTD2 2LD4 ; ; Solution structure of the N-terminal domain of human anamorsin 2MF9 ; ; Solution structure of the N-terminal domain of human FKBP38 (FKBP38NTD) 1SW8 ; ; Solution structure of the N-terminal domain of Human N60D calmodulin refined with paramagnetism based strategy 2LLX ; ; Solution structure of the N-terminal domain of human polypeptide chain release factor eRF1 2CQL ; ; Solution structure of the N-terminal domain of human ribosomal protein L9 7OZ0 ; ; Solution structure of the N-terminal domain of human telomeric Repeat-binding factor 2-interacting protein 1 (hRap1): implication for Rap1-TRF2 interaction in Human. 2LD0 ; ; Solution structure of the N-terminal domain of huntingtin (htt17) in 50 % TFE 2LD2 ; ; Solution structure of the N-terminal domain of huntingtin (htt17) in presence of DPC micelles 2KMC ; ; Solution Structure of the N-terminal domain of kindlin-1 1WGW ; ; Solution Structure of the N-terminal Domain of Mouse Putative Signal Recognition Particle 54 (SRP54) 2L1T ; ; Solution Structure of the N-terminal Domain of NP_954075.1 2MT4 ; ; Solution structure of the N-terminal domain of NUSA from B. Subtilis 5LGF ; ; Solution structure of the N-terminal domain of Ogataea polymorpha telomerase reverse transcriptase 2JV2 ; ; Solution Structure of the N-terminal Domain of PH1500 1IWF ; ; Solution structure of the N-terminal domain of pig gastric H/K-ATPase 2GQC ; ; Solution structure of the N-terminal domain of Rhomboid Intramembrane Protease from P. aeruginosa 1HZE ; ; SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF RIBOFLAVIN SYNTHASE FROM E. COLI 1I18 ; ; SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF RIBOFLAVIN SYNTHASE FROM E. COLI 1CQU ; ; SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF RIBOSOMAL PROTEIN L9 2DOG ; ; Solution structure of the N-terminal domain of RimM from Thermus thermophilus HB8 1M2E ; ; Solution structure of the N-terminal domain of Synechococcus elongatus KaiA (KaiA135N); Average minimized structure. 1M2F ; ; Solution structure of the N-terminal domain of Synechococcus elongatus KaiA (KaiA135N); Family of 25 structures 1T4Z ; ; Solution structure of the N-terminal domain of Synechococcus elongatus SasA (25-structures ensemble) 1T4Y ; ; Solution structure of the N-terminal domain of Synechococcus elongatus SasA (average minimized structure) 2N4P ; ; Solution structure of the n-terminal domain of tdp-43 5X4F ; ; Solution Structure of the N-terminal Domain of TDP-43 6IVS ; ; Solution structure of the N-terminal domain of the anti-sigma factor RsgI1 from Clostridium thermocellum 2GCF ; ; Solution structure of the N-terminal domain of the coppper(I) ATPase PacS in its apo form 6B3N ; ; Solution structure of the N-terminal domain of the effector NleG5-1 from Escherichia coli O157:H7 str. Sakai 1J3X ; ; Solution structure of the N-terminal domain of the HMGB2 1G25 ; ; SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF THE HUMAN TFIIH MAT1 SUBUNIT 2XXS ; ; Solution structure of the N-terminal domain of the Shigella type III secretion protein MxiG 6QBZ ; ; Solution structure of the N-terminal domain of the Staphylococcus aureus Hibernation Promoting Factor 1F2H ; ; SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF THE TNFR1 ASSOCIATED PROTEIN, TRADD. 2KM1 ; ; Solution structure of the N-terminal domain of the yeast protein Dre2 5ZMR ; ; Solution Structure of the N-terminal Domain of the Yeast Rpn5 2OFG ; ; Solution structure of the n-terminal domain of the zinc(II) ATPase ziaa in its apo form 2OFH ; ; Solution structure of the n-terminal domain of the zinc(II) ATPase ziaa in its apo form 1MWY ; ; Solution structure of the N-terminal domain of ZntA in the apo-form 1MWZ ; ; Solution structure of the N-terminal domain of ZntA in the Zn(II)-form 1WHQ ; ; Solution structure of the N-terminal dsRBD from hypothetical protein BAB28848 2RS6 ; ; Solution structure of the N-terminal dsRBD from RNA helicase A 2E9I ; ; Solution structure of the N-terminal extended 20th Filamin domain from human Filamin-B 6J3L ; ; Solution structure of the N-terminal extended protuberant domain of eukaryotic ribosomal stalk protein P0 2V37 ; ; Solution structure of the N-terminal extracellular domain of human T- cadherin 2JOP ; ; Solution structure of the N-terminal extracellular domain of the lymphocyte receptor CD5 (CD5 domain 1) 2JP0 ; ; Solution structure of the N-terminal extraceullular domain of the lymphocyte receptor CD5 calculated using inferential structure determination (ISD) 1QGB ; ; SOLUTION STRUCTURE OF THE N-TERMINAL F1 MODULE PAIR FROM HUMAN FIBRONECTIN 2FBU ; ; Solution structure of the N-terminal fragment of human LL-37 1V4Z ; ; Solution structure of the N-terminal fragment of S100C/A11 protein 6VWB ; ; Solution structure of the N-terminal helix-hairpin-helix domain of human MUS81 2CPQ ; ; Solution structure of the N-terminal KH domain of human FXR1 2O10 ; ; Solution structure of the N-terminal LIM domain of MLP/CRP3 1O53 ; ; Solution structure of the N-terminal membrane anchor of E. coli enzyme IIA(Glucose) 2YS4 ; ; Solution structure of the N-terminal PapD-like domain of HYDIN protein from human 2COD ; ; Solution structure of the N-terminal PH domain of ARAP2 protein from human 1PFJ ; ; Solution structure of the N-terminal PH/PTB domain of the TFIIH P62 subunit 1V5P ; ; Solution Structure of the N-terminal Pleckstrin Homology Domain Of TAPP2 from Mouse 2D5U ; ; Solution structure of the N-terminal portion of the PUB domain of mouse peptide:N-glycanase 1WXM ; ; Solution Structure of the N-terminal Ras-binding Domain (RBD) in Human a-Raf Kinase 1NTR ; ; SOLUTION STRUCTURE OF THE N-TERMINAL RECEIVER DOMAIN OF NTRC 5O57 ; ; Solution Structure of the N-terminal Region of Dkk4 1WHW ; ; Solution structure of the N-terminal RNA binding domain from hypothetical protein BAB23448 2DGP ; ; Solution structure of the N-terminal RNA binding domain in Bruno-like 4 RNA-binding protein 2DGQ ; ; Solution structure of the N-terminal RNA binding domain in Bruno-like 6 RNA-binding protein 2DH8 ; ; Solution structure of the N-terminal RNA binding domain in DAZ-associated protein 1 2CPJ ; ; Solution structure of the N-terminal RNA recognition motif of NonO 2RS8 ; ; Solution structure of the N-terminal RNA recognition motif of NonO 1UAW ; ; Solution structure of the N-terminal RNA-binding domain of mouse Musashi1 2EAM ; ; Solution structure of the N-terminal SAM-domain of a human putative 47 kDa protein 2E8P ; ; Solution structure of the N-terminal SAM-domain of E74-like factor 3 2EAN ; ; Solution structure of the N-terminal SAM-domain of human KIAA0902 protein (connector enhancer of kinase suppressor of ras 2) 2EAP ; ; Solution structure of the N-terminal SAM-domain of human lymphocyte cytosolic protein 2 2E8O ; ; Solution structure of the N-terminal SAM-domain of the SAM domain and HD domain containing protein 1 (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5) 2RNO ; ; Solution Structure of the N-terminal SAP Domain of SUMO E3 Ligases from Oryza sativa 2RNN ; ; Solution Structure of the N-terminal SAP Domain of SUMO E3 Ligases from Saccharomyces cerevisiae 2QFG ; ; Solution Structure of the N-terminal SCR-1/5 fragment of Complement Factor H. 2A36 ; ; Solution structure of the N-terminal SH3 domain of DRK 2RML ; ; Solution structure of the N-terminal soluble domains of Bacillus subtilis CopA 1ND9 ; ; Solution Structure of the N-terminal Subdomain of Translation Initiation Factor IF2 1WY8 ; ; Solution Structure of the N-terminal Ubiquitin-like Domain in Human Np95/ICBP90-like Ring Finger Protein (NIRF) 1X1M ; ; Solution Structure of the N-terminal Ubiquitin-like Domain in Mouse Ubiquitin-like Protein SB132 1WX8 ; ; Solution Structure of the N-terminal Ubiquitin-like Domain in the 4931431F19Rik Protein 1WX9 ; ; Solution Structure of the N-terminal Ubiquitin-like Domain in the Human BAT3 Protein 1WX7 ; ; Solution Structure of the N-terminal Ubiquitin-like Domain in the Human Ubiquilin 3 (UBQLN3) 1WGG ; ; Solution Structure of the N-terminal Ubiquitin-like Domain of Mouse Ubiquitin Specific Protease 14 (USP14) 1WJV ; ; Solution structure of the N-terminal zinc finger domain of mouse cell growth regulating nucleolar protein LYAR 1GNF ; ; SOLUTION STRUCTURE OF THE N-TERMINAL ZINC FINGER OF MURINE GATA-1, NMR, 25 STRUCTURES 1ZU1 ; ; Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double stranded RNA binding protein ZFa 1WJB ; ; SOLUTION STRUCTURE OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE (D FORM), NMR, 40 STRUCTURES 1WJA ; ; SOLUTION STRUCTURE OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE (D FORM), NMR, REGULARIZED MEAN STRUCTURE 1WJD ; ; SOLUTION STRUCTURE OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE (E FORM), NMR, 38 STRUCTURES 1WJC ; ; SOLUTION STRUCTURE OF THE N-TERMINAL ZN BINDING DOMAIN OF HIV-1 INTEGRASE (E FORM), NMR, REGULARIZED MEAN STRUCTURE 2EE5 ; ; Solution structure of the N-teruminus extended RhoGAP domain from human Rho GTPase activating protein 5 variant 1NZ9 ; ; Solution Structure of the N-utilization substance G (NusG) C-terminal (NGC) domain from Thermus thermophilus 1NZ8 ; ; Solution Structure of the N-utilization substance G (NusG) N-terminal (NGN) domain from Thermus thermophilus 1E3T ; ; Solution Structure of the NADP(H) binding Component (dIII) of Proton-Translocating Transhydrogenase from Rhodospirillum rubrum 2EQN ; ; Solution structure of the NAF1 domain of Hypothetical protein BC008207 [Homo sapiens] 1PX9 ; ; Solution structure of the native CnErg1 Ergtoxin, a highly specific inhibitor of HERG channel 1LWR ; ; Solution structure of the NCAM fibronectin type III module 2 2YUF ; ; Solution structure of the NCD2 domain in human transcriptional repressor Nab1 protein 2MXA ; ; Solution structure of the NDH-1 complex subunit CupS from Thermosynechococcus elongatus 1IIJ ; ; SOLUTION STRUCTURE OF THE NEU/ERBB-2 MEMBRANE SPANNING SEGMENT 1YN2 ; ; Solution structure of the Neurospora VS ribozyme stem-loop V in the presence of MgCl2 with modeling of bound manganese ions 8GDH ; ; Solution structure of the Neutrophil Serine Protease Inhibitor, EapH1 8GDG ; ; Solution structure of the Neutrophil Serine Protease Inhibitor, EapH2 2YUE ; ; Solution structure of the NEUZ (NHR) domain in Neuralized from Drosophila melanogaster 2E63 ; ; Solution structure of the NEUZ domain in KIAA1787 protein 6G81 ; ; Solution structure of the Ni metallochaperone HypA from Helicobacter pylori 1FU9 ; ; SOLUTION STRUCTURE OF THE NINTH ZINC-FINGER DOMAIN OF THE U-SHAPED TRANSCRIPTION FACTOR 1S9N ; ; Solution structure of the nitrous acid (G)-(G) cross-linked DNA dodecamer duplex GCATCC(G)GATGC 1S9O ; ; Solution structure of the nitrous acid induced DNA interstrand cross-linked dodecamer duplex CGCTAC(G)TAGCG with the cross-linked guanines denoted (G) 2B1W ; ; Solution structure of the NOD1 Caspase Activating and Recruitment Domain 2L00 ; ; Solution structure of the non-covalent complex of the ZNF216 A20 domain with ubiquitin 2N05 ; ; Solution Structure of the non-phosphorylated N-terminal region of Human Cysteine String Protein (CSP) 1J5N ; ; Solution Structure of the Non-Sequence-Specific HMGB protein NHP6A in complex with SRY DNA 1JLO ; ; Solution Structure of the Noncompetitive Skeletal Muscle Nicotinic Acetylcholine Receptor Antagonist Psi-conotoxin PIIIE 1JLP ; ; Solution Structure of the Noncompetitive Skeletal Muscle Nicotinic Acetylcholine Receptor Antagonist Psi-conotoxin PIIIF 2J2S ; ; Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase 2DAM ; ; Solution Structure of the Novel Identified UBA-like Domain in the N-terminal of Human ETEA Protein 2DAL ; ; Solution Structure of the Novel Identified UBA-like Domain in the N-terminal of Human Fas Associated Factor 1 Protein 2DAJ ; ; Solution Structure of the Novel Identified Ubiquitin-like Domain in the Human COBL-like 1 Protein 2DAF ; ; Solution Structure of the Novel Identified Ubiquitin-like Domain in the Human Hypothetical Protein FLJ35834 7PRE ; ; Solution structure of the NRDI domain of Nab3 2CZY ; ; Solution structure of the NRSF/REST-mSin3B PAH1 complex 4C7Q ; ; Solution structure of the Nt. GR-RBP1 RRM domain 2KKJ ; ; Solution structure of the Nuclear coactivator binding domain of CBP 1NO8 ; ; SOLUTION STRUCTURE OF THE NUCLEAR FACTOR ALY RBD DOMAIN 1J9N ; ; Solution Structure of the Nucleopeptide [AC-LYS-TRP-LYS-HSE(p3*dGCATCG)-ALA]-[p5*dCGTAGC] 2KMX ; ; Solution structure of the nucleotide binding domain of the human Menkes protein in the ATP-bound form 2KMV ; ; Solution structure of the nucleotide binding domain of the human Menkes protein in the ATP-free form 1X51 ; ; Solution structure of the NUDIX domain from human A/G-specific adenine DNA glycosylase alpha-3 splice isoform 1JKN ; ; Solution Structure of the Nudix Enzyme Diadenosine Tetraphosphate Hydrolase from Lupinus angustifolius Complexed with ATP 1F3Y ; ; SOLUTION STRUCTURE OF THE NUDIX ENZYME DIADENOSINE TETRAPHOSPHATE HYDROLASE FROM LUPINUS ANGUSTIFOLIUS L. 1DDM ; ; SOLUTION STRUCTURE OF THE NUMB PTB DOMAIN COMPLEXED TO A NAK PEPTIDE 1POG ; ; SOLUTION STRUCTURE OF THE OCT-1 POU-HOMEO DOMAIN DETERMINED BY NMR AND RESTRAINED MOLECULAR DYNAMICS 2RP5 ; ; Solution structure of the oligomerization domain in CEP-1 2RP4 ; ; Solution Structure of the oligomerization domain in Dmp53 1LR1 ; ; Solution Structure of the Oligomerization Domain of the Bacterial Chromatin-Structuring Protein H-NS 1Z3R ; ; Solution structure of the Omsk Hemhorraghic Fever Envelope Protein Domain III 2LJK ; ; Solution structure of the oncogenic-potential MIEN1 protein 1QTT ; ; SOLUTION STRUCTURE OF THE ONCOPROTEIN P13MTCP1 1QTU ; ; SOLUTION STRUCTURE OF THE ONCOPROTEIN P13MTCP1 7C4O ; ; Solution structure of the Orange domain from human protein HES1 1TBD ; ; SOLUTION STRUCTURE OF THE ORIGIN DNA BINDING DOMAIN OF SV40 T-ANTIGEN, NMR, MINIMIZED AVERAGE STRUCTURE 1FVY ; ; SOLUTION STRUCTURE OF THE OSTEOGENIC 1-31 FRAGMENT OF THE HUMAN PARATHYROID HORMONE 2MMO ; ; Solution Structure of the oxidised Thioredoxin from Plasmodium falciparum 2JZR ; ; Solution structure of the oxidized form (Cys67-Cys70) of the N-terminal domain of PilB from N. meningitidis. 1SSE ; ; Solution structure of the oxidized form of the Yap1 redox domain 5UJ5 ; ; Solution structure of the oxidized iron-sulfur protein adrenodoxin from Encephalitozoon cuniculi. Seattle Structural Genomics Center for Infectious Disease target EncuA.00705.a 2I96 ; ; Solution structure of the oxidized microsomal human cytochrome b5 201D ; ; SOLUTION STRUCTURE OF THE OXYTRICHA TELOMERIC REPEAT D[G4(T4G4)3] G-TETRAPLEX 1WLP ; ; Solution Structure Of The P22Phox-P47Phox Complex 2MNW ; ; Solution structure of the P22S mutant of N-terminal CS domain of human Shq1 1NA2 ; ; Solution structure of the p2b hairpin from human telomerase RNA 1YMO ; ; Solution structure of the P2b-P3 pseudoknot from human telomerase RNA 1XZY ; ; Solution structure of the P30-trans form of Alpha Hemoglobin Stabilizing Protein (AHSP) 1C0O ; ; SOLUTION STRUCTURE OF THE P5 HAIRPIN FROM A GROUP I INTRON COMPLEXED WITH COBALT (III) HEXAMMINE, NMR, 19 CONVERGED STRUCTURES 2EJY ; ; Solution structure of the p55 PDZ T85C domain complexed with the glycophorin C F127C peptide 1AJF ; ; SOLUTION STRUCTURE OF THE P5B STEM LOOP FROM A GROUP I INTRON COMPLEXED WITH COBALT (III) HEXAMMINE, NMR, MINIMIZED AVERAGE STRUCTURE 2JNJ ; ; Solution structure of the p8 TFIIH subunit 2DYD ; ; Solution structure of the PABC domain from Triticum aevestium poly(A)-binding protein 1G9L ; ; SOLUTION STRUCTURE OF THE PABC DOMAIN OF HUMAN POLY(A) BINDING PROTEIN 2KV5 ; ; Solution structure of the par toxin Fst in DPC micelles 7FHQ ; ; Solution structure of the pathogenic mutant G131V of Human prion protein (91-231) 7B2F ; ; Solution structure of the Pax NRPS docking domain PaxB NDD 1IP9 ; ; SOLUTION STRUCTURE OF THE PB1 DOMAIN OF BEM1P 1IPG ; ; SOLUTION STRUCTURE OF THE PB1 DOMAIN OF BEM1P 1Q1O ; ; Solution Structure of the PB1 Domain of Cdc24p (Long Form) 1TZ1 ; ; Solution structure of the PB1 domain of CDC24P (short form) 2CU1 ; ; Solution structure of the PB1 domain of human protein kinase MEKK2b 1WI0 ; ; Solution structure of the PB1 domain of mouse mitogen activated protein kinase kinase 5 (MAP2K5) 1VD2 ; ; Solution Structure of the PB1 domain of PKCiota 1UFM ; ; Solution structure of the PCI domain 1WI9 ; ; Solution structure of the PCI domain from mouse hypothetical protein AAH51541 2EDH ; ; Solution structure of the PDZ domain (3614- 3713 ) from human obscurin 2EDV ; ; Solution structure of the PDZ domain from human FERM and PDZ domain containing 1 2DKR ; ; Solution structure of the PDZ domain from human Lin-7 homolog B 2E7K ; ; Solution structure of the PDZ domain from Human MAGUK p55 subfamily member 2 2EDP ; ; Solution structure of the PDZ domain from human Shroom family member 4 2ENO ; ; Solution structure of the PDZ domain from human Synaptojanin 2 binding protein 1V5Q ; ; Solution Structure of the PDZ Domain from Mouse Glutamate Receptor Interacting Protein 1A-L (GRIP1) Homolog 2YUB ; ; Solution structure of the PDZ domain from mouse LIM domain kinase 1WI2 ; ; Solution structure of the PDZ domain from RIKEN cDNA 2700099C19 1T2M ; ; Solution Structure Of The Pdz Domain Of AF-6 1Z86 ; ; Solution structure of the PDZ domain of alpha-syntrophin 2YT7 ; ; Solution structure of the PDZ domain of Amyloid beta A4 precursor protein-binding family A member 3 2YT8 ; ; Solution structure of the PDZ domain of Amyloid beta A4 precursor protein-binding family A member 3 (Neuron- specific X11L2 protein) (Neuronal Munc18-1-interacting protein 3) (Mint-3) (Adapter protein X11gamma) 1WF7 ; ; Solution structure of the PDZ domain of Enigma homologue protein 2CSS ; ; Solution structure of the PDZ domain of human KIAA0340 protein 2DLS ; ; Solution structure of the PDZ domain of human Rho guanine nucleotide exchange factor 11 1VAE ; ; Solution structure of the PDZ domain of mouse Rhophilin-2 1VA8 ; ; Solution structure of the PDZ domain of Pals1 protein 1VB7 ; ; Solution structure of the PDZ domain of PDZ and LIM domain 2 1WHD ; ; Solution structure of the PDZ domain of RGS3 1WF8 ; ; Solution structure of the PDZ domain of Spinophilin/NeurabinII protein 1WI4 ; ; Solution structure of the PDZ domain of syntaxin binding protein 4 2D8I ; ; Solution structure of the PDZ domain of T-cell lymphoma invasion and metastasis 1 varian 2YTW ; ; Solution structure of the PDZ-domain of human protease HTRA 1 precursor 3PDZ ; ; SOLUTION STRUCTURE OF THE PDZ2 DOMAIN FROM HUMAN PHOSPHATASE HPTP1E 1D5G ; ; SOLUTION STRUCTURE OF THE PDZ2 DOMAIN FROM HUMAN PHOSPHATASE HPTP1E COMPLEXED WITH A PEPTIDE 2KY5 ; ; Solution structure of the PECAM-1 cytoplasmic tail with DPC 1YGO ; ; Solution Structure of the pelle Death Domain 2CPF ; ; Solution structure of the penultimate RNA recognition motif of hypothetical RNA-binding protein RBM19 8PWT ; ; Solution structure of the peptide U11-MYRTX-Tb1a from the venom of the ant Tetramorium bicarinatum 1X60 ; ; Solution structure of the peptidoglycan binding domain of B. subtilis cell wall lytic enzyme CwlC 2RUD ; ; Solution structure of the peptidyl prolyl cis-trans isomerase domain of C113D mutant human Pin1 with sulfate ion 2RUC ; ; Solution structure of the peptidyl prolyl cis-trans isomerase domain of human Pin1 with sulfate ion 8HER ; ; Solution structure of the periplasmic domain of RsgI6 from Clostridium thermocellum 8HEP ; ; Solution structure of the periplasmic domain of the anti-sigma factor RsgI1 from Clostridium thermocellum 8HEQ ; ; Solution structure of the periplasmic domain of the anti-sigma factor RsgI2 from Clostridium thermocellum 2JWK ; ; Solution Structure of the periplasmic domain of TolR from Haemophilus influenzae 2D1U ; ; Solution structure of the periplasmic signaling domain of FecA from Escherichia coli 2M5J ; ; Solution structure of the periplasmic signaling domain of HasR, a TonB-dependent outer membrane heme transporter 1FHO ; ; Solution Structure of the PH Domain from the C. Elegans Muscle Protein UNC-89 8I53 ; ; Solution structure of the PH domain from the Tfb1 subunit of fission yeast TFIIH 2D9W ; ; Solution structure of the PH domain of Docking protein 2 from human 2YS1 ; ; Solution structure of the PH domain of Dynamin-2 from human 2DHI ; ; Solution structure of the PH domain of Evectin-2 from mouse 1WI1 ; ; Solution structure of the PH domain of human calcium-dependent activator protein for secretion (CAPS) 1X1F ; ; Solution structure of the PH domain of human Docking protein BRDG1 2DN6 ; ; Solution structure of the PH domain of KIAA0640 protein from human 2YS3 ; ; Solution structure of the PH domain of Kindlin-3 from human 2D9X ; ; Solution structure of the PH domain of Oxysterol binding protein-related protein 11 from human 2D9Y ; ; Solution structure of the PH domain of PEPP-3 from human 2DA0 ; ; Solution structure of the PH domain of PIP2-dependent ARF1 GTPase-activating protein from human 2YRY ; ; Solution structure of the PH domain of Pleckstrin homology domain-containing family A member 6 from human 2DKP ; ; Solution structure of the PH domain of pleckstrin homology domain-containing protein family A member 5 from human 2D9V ; ; Solution structure of the PH domain of Pleckstrin homology domain-containing protein family B member 1 from mouse 2COA ; ; Solution structure of the PH domain of protein kinase C, D2 type from human 2D9Z ; ; Solution structure of the PH domain of Protein kinase C, nu type from human 2DHJ ; ; Solution structure of the PH domain of Rho GTPase activating protein 21 from human 2DHK ; ; Solution structure of the PH domain of TBC1 domain family member 2 protein from human 1FP0 ; ; SOLUTION STRUCTURE OF THE PHD DOMAIN FROM THE KAP-1 COREPRESSOR 2YQL ; ; Solution structure of the PHD domain in PHD finger protein 21A 2E6S ; ; Solution structure of the PHD domain in RING finger protein 107 2E6R ; ; Solution structure of the PHD domain in SmcY protein 2YT5 ; ; Solution structure of the PHD domain of Metal-response element-binding transcription factor 2 2MUM ; ; Solution structure of the PHD domain of Yeast YNG2 6VFO ; ; Solution structure of the PHD of mouse UHRF1 (NP95) 7KLO ; ; Solution structure of the PHD1 domain of histone demethylase KDM5A 7KLR ; ; Solution structure of the PHD1 domain of histone demethylase KDM5A in complex with a histone H3(1-10) peptide 2JTF ; ; Solution Structure of the PHF20L1 MBT domain 2RV8 ; ; Solution Structure of the PhoP DNA-Binding Domain from Mycobacterium tuberculosis 2E73 ; ; Solution structure of the phorbol esters/diacylglycerol binding domain of protein kinase C gamma 7TOD ; ; Solution structure of the phosphatidylinositol 3-phosphate binding domain from the Legionella effector SetA 2N04 ; ; Solution Structure of the phosphorylated N-terminal region of Human Cysteine String Protein (CSP) 1WIK ; ; Solution Structure of the PICOT homology 2 domain of the mouse PKC-interacting cousin of thioredoxin protein 2L74 ; ; Solution structure of the PilZ domain protein PA4608 complex with c-di-GMP identifies charge clustering as molecular readout 5GPH ; ; Solution structure of the Pin1-PPIase (S138A) mutant 2L7F ; ; Solution Structure of the Pitx2 Homeodomain 2L7M ; ; Solution Structure of the Pitx2 Homeodomain R24H mutant 2E7M ; ; Solution structure of the PKD domain (329-428) from human KIAA0319 1WGO ; ; Solution structure of the PKD domain from human VPS10 domain-containing receptor SorCS2 2YRL ; ; Solution structure of the PKD domain from KIAA 1837 protein 2RSD ; ; Solution structure of the plant homeodomain (PHD) of the E3 SUMO ligase Siz1 from rice 1V61 ; ; Solution Structure of the Pleckstrin Homology Domain of alpha-Pix 1V89 ; ; Solution Structure of the Pleckstrin Homology Domain of Human KIAA0053 Protein 1P6S ; ; Solution Structure of the Pleckstrin Homology Domain of Human Protein Kinase B beta (Pkb/Akt) 1V5M ; ; Solution Structure of the Pleckstrin Homology Domain of Mouse APS 1WGQ ; ; Solution Structure of the Pleckstrin Homology Domain of Mouse Ethanol Decreased 4 Protein 1V88 ; ; Solution Structure of the Pleckstrin Homology Domain of Oxysterol-Binding Protein-Related Protein 8 (KIAA1451 Protein) 2DB9 ; ; Solution structure of the plus-3 domain of human KIAA0252 protein 2L47 ; ; Solution structure of the PlyG catalytic domain 2L48 ; ; Solution structure of the PlyG cell wall binding domain 1SXD ; ; Solution Structure of the Pointed (PNT) Domain from mGABPa 2GRW ; ; Solution structure of the poliovirus 3'-UTR Y-stem 2GV4 ; ; Solution structure of the poliovirus 3'-UTR Y-stem 1OF9 ; ; Solution structure of the pore forming toxin of entamoeba histolytica (Amoebapore A) 5ID3 ; ; Solution structure of the pore-forming region of C. elegans Mitochondrial Calcium Uniporter (MCU) 1AGT ; ; SOLUTION STRUCTURE OF THE POTASSIUM CHANNEL INHIBITOR AGITOXIN 2: CALIPER FOR PROBING CHANNEL GEOMETRY 1QUZ ; ; Solution structure of the potassium channel scorpion toxin HSTX1 1H20 ; ; Solution structure of the potato carboxypeptidase inhibitor 2MDI ; ; Solution structure of the PP2WW mutant (KPP2WW) of HYPB 1L1P ; ; Solution Structure of the PPIase Domain from E. coli Trigger Factor 2LKN ; ; Solution structure of the PPIase domain of human aryl-hydrocarbon receptor-interacting protein (AIP) 1NMW ; ; Solution structure of the PPIase domain of human Pin1 2N87 ; ; Solution structure of the PPIase domain of TbPar42 2K7N ; ; Solution structure of the PPIL1 bound to a fragment of SKIP 2MPL ; ; Solution structure of the PR domain of FOG-1 2RNZ ; ; Solution structure of the presumed chromodomain of the yeast histone acetyltransferase, Esa1 2NCJ ; ; Solution Structure of the PriC DNA replication restart protein 2BZM ; ; Solution structure of the primary host recognition region of complement factor H 1IT4 ; ; Solution structure of the prokaryotic Phospholipase A2 from Streptomyces violaceoruber 2KR0 ; ; Solution structure of the proteasome ubiquitin receptor Rpn13 2JMB ; ; Solution structure of the protein Atu4866 from Agrobacterium tumefaciens 1NR3 ; ; SOLUTION STRUCTURE OF THE PROTEIN MTH0916: THE NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET TT212 2L9D ; ; Solution structure of the protein YP_546394.1, the first structural representative of the pfam family PF12112 1O6W ; ; Solution Structure of the Prp40 WW Domain Pair of the Yeast Splicing Factor Prp40 5WLP ; ; Solution structure of the pseudo-receiver domain of Atg32 1E95 ; ; Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting 2KYE ; ; Solution structure of the pseudouridine modified P6.1 hairpin of human telomerase RNA 1SSL ; ; Solution structure of the PSI domain from the Met receptor 2M1M ; ; Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response 2DKQ ; ; Solution structure of the PTB domain of KIAA1075 protein from human 7ZE0 ; ; Solution structure of the PulM C-terminal domain from Klebsiella oxytoca 2L3M ; ; Solution structure of the putative copper-ion-binding protein from Bacillus anthracis str. Ames 2M4N ; ; Solution structure of the putative Ras interaction domain of AFD-1, isoform a from Caenorhabditis elegans 1MP1 ; ; Solution structure of the PWI motif from SRm160 1N27 ; ; Solution structure of the PWWP domain of mouse Hepatoma-derived growth factor, related protein 3 1GD5 ; ; SOLUTION STRUCTURE OF THE PX DOMAIN FROM HUMAN P47PHOX NADPH OXIDASE 2CZO ; ; Solution Structure of the PX Domain of Bem1p 2I4K ; ; Solution Structure of the PX domain of Sorting Nexin 1 2DBG ; ; Solution structure of the Pyrin (PAAD-DAPIN) domain in human Myeloid cell nuclear differentiation antigen 2MPC ; ; Solution structure of the pyrin domain of human Pyrin 2DO9 ; ; Solution structure of the Pyrin/PAAD-DAPIN domain in mouse NALP10 (NACHT, leucine rich repeat and PYD containing 10) 2N72 ; ; Solution structure of the Q domain from ACBD3 2N4H ; ; Solution Structure of the Q343R Mutant of TDP-43 Amyloidogenic Core Region 2YMJ ; ; Solution structure of the QUA1 dimerization domain of pXqua, the Xenopus ortholog of Quaking. 1DVV ; ; SOLUTION STRUCTURE OF THE QUINTUPLE MUTANT OF CYTOCHROME C-551 FROM PSEUDOMONAS AERUGINOSA 6GE1 ; ; Solution structure of the r(UGGUGGU)4 RNA quadruplex 2AGM ; ; Solution structure of the R-module from AlgE4 2LSS ; ; Solution structure of the R. rickettsii cold shock-like protein 2KVP ; ; Solution Structure of the R10 Domain of Talin 2JSW ; ; Solution Structure of the R13 Domain of Talin 1SJ8 ; 2.6 ; Solution Structure of the R1R2 Domains of Talin 7KWI ; ; Solution Structure of the R2ab Repeat Domain from Staph. epidermidis Autolysin (AtlE) 2L7A ; ; Solution Structure of the R3 Domain of Talin 1WHR ; ; Solution structure of the R3H domain from human hypothetical protein BAA76846 1MSZ ; ; Solution structure of the R3H domain from human Smubp-2 2LRR ; ; Solution structure of the R3H domain from human Smubp-2 in complex with 2'-deoxyguanosine-5'-monophosphate 2CPM ; ; Solution structure of the R3H domain of human sperm-associated antigen 7 2LQG ; ; Solution Structure of the R4 domain of talin 2L7N ; ; Solution Structure of the R5 Domain of Talin 2F77 ; ; Solution structure of the R55F mutant of M-PMV matrix protein (p10) 2L10 ; ; Solution Structure of the R6 Domain of Talin 2KBB ; ; Solution Structure of the R9 Domain of Talin 2DHZ ; ; Solution Structure of the RA Domain in the Human Link Guanine Nucleotide Exchange Factor II (Link-GEFII) 1WGR ; ; Solution Structure of the RA Domain of Human Grb7 Protein 2NBU ; ; Solution structure of the Rad23 ubiquitin-like (UBL) domain 2EC1 ; ; Solution structure of the RanBD1 domain from human Nucleoporin 50 kDa 2CRF ; ; Solution structure of the Ran_BP1 domain of RAN-binding protein-3 1WFY ; ; Solution structure of the Ras-binding domain of mouse RGS14 1EF5 ; ; SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF RGL 1I35 ; ; SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF THE PROTEIN KINASE BYR2 FROM SCHIZOSACCHAROMYCES POMBE 2B3A ; ; Solution structure of the Ras-binding domain of the Ral Guanosine Dissociation Stimulator 1Y9J ; ; Solution structure of the rat Sly1 N-terminal domain 6U19 ; ; Solution Structure of the RAZUL domain from 26S proteasome subunit hRpn10/S5a complexed with the AZUL domain from E3 ligase E6AP/UBE3A 2YRV ; ; Solution structure of the RBB1NT domain of human RB(retinoblastoma)-binding protein 1 2FFW ; ; Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING 2KRR ; ; Solution structure of the RBD1,2 domains from human nucleolin 5MF9 ; ; Solution structure of the RBM5 OCRE domain in complex with polyproline SmN peptide. 2K96 ; ; Solution structure of the RDC-refined P2B-P3 pseudoknot from human telomerase RNA (delta U177) 2B68 ; ; Solution structure of the recombinant Crassostrea gigas defensin 1MWB ; ; Solution structure of the recombinant hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 in its hemichrome state 1SM7 ; ; Solution structure of the recombinant pronapin precursor, BnIb. 1KVI ; ; Solution Structure of the Reduced Form of the First Heavy Metal Binding Motif of the Menkes Protein 2JZS ; ; Solution structure of the reduced form of the N-terminal domain of PilB from N. meningitidis. 2MMN ; ; Solution Structure of the Reduced Thioredoxin from Plasmodium falciparum 2V1N ; ; SOLUTION STRUCTURE OF THE REGION 51-160 OF HUMAN KIN17 REVEALS A WINGED HELIX FOLD 2KRD ; ; Solution Structure of the Regulatory Domain of Human Cardiac Troponin C in Complex with the Switch Region of cardiac Troponin I and W7 2K6T ; ; Solution structure of the relaxin-like factor 1FI6 ; ; SOLUTION STRUCTURE OF THE REPS1 EH DOMAIN 3KPE ; 1.47 ; Solution structure of the respiratory syncytial virus (RSV)six-helix bundle complexed with TMC353121, a small-moleucule inhibitor of RSV 1UHU ; ; Solution structure of the retroviral Gag MA-like domain of RIKEN cDNA 3110009E22 2EBZ ; ; Solution structure of the RGS domain from human Regulator of G-protein signaling 12 (RGS12) 2JM5 ; ; Solution Structure of the RGS domain from human RGS18 2OWI ; ; Solution structure of the RGS domain from human RGS18 2DLR ; ; Solution structure of the RGS domain of human Regulator of G-protein signaling 10 2DLV ; ; Solution structure of the RGS domain of human regulator of G-protein signaling 18 2JNU ; ; Solution structure of the RGS domain of human RGS14 2D9J ; ; Solution structure of the RGS domain of Regulator of G-protein signaling 7 2CRP ; ; Solution structure of the RGS domain of regulator of G-protein signalling 5 (RGS 5) 2MRM ; ; Solution structure of the rhodanese domain of YgaP from E. coli 1WHB ; ; Solution structure of the Rhodanese-like domain in human ubiquitin specific protease 8 (UBP8) 2DW3 ; ; Solution structure of the Rhodobacter sphaeroides PufX membrane protein 2EE4 ; ; Solution structure of the RhoGAP domain from human Rho GTPase activating protein 5 variant 1MXP ; ; Solution structure of the ribbon disulfide bond isomer of alpha-conotoxin AuIB 1EMW ; ; SOLUTION STRUCTURE OF THE RIBOSOMAL PROTEIN S16 FROM THERMUS THERMOPHILUS 1QKF ; ; SOLUTION STRUCTURE OF THE RIBOSOMAL PROTEIN S19 FROM THERMUS THERMOPHILUS 1QKH ; ; SOLUTION STRUCTURE OF THE RIBOSOMAL PROTEIN S19 FROM THERMUS THERMOPHILUS 6RK3 ; ; Solution structure of the ribosome Elongation Factor P (EF-P) from Staphylococcus aureus 1GE9 ; ; SOLUTION STRUCTURE OF THE RIBOSOME RECYCLING FACTOR 1N3G ; ; Solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli 1ZUB ; ; Solution Structure of the RIM1alpha PDZ Domain in Complex with an ELKS1b C-terminal Peptide 2YSJ ; ; Solution structure of the RING domain (1-56) from tripartite motif-containing protein 31 2YSL ; ; Solution structure of the RING domain (1-66) from tripartite motif-containing protein 31 2JMD ; ; Solution Structure of the Ring Domain of Human TRAF6 2ECG ; ; Solution structure of the ring domain of the Baculoviral IAP repeat-containing protein 4 from Homo sapiens 6F98 ; ; Solution structure of the RING domain of the E3 ubiquitin ligase HRD1 2EA5 ; ; Solution Structure of the RING domain of the human Cell growth regulator with RING finger domain 1 protein 2D8S ; ; Solution structure of the RING domain of the human cellular modulator of immune recognition protein 2DJB ; ; Solution structure of the RING domain of the human Polycomb group RING finger protein 6 2ECN ; ; Solution structure of the RING domain of the human RING finger protein 141 2D8T ; ; Solution structure of the RING domain of the human RING finger protein 146 2EA6 ; ; Solution Structure of the RING domain of the human ring finger protein 4 2ECL ; ; Solution Structure of the RING domain of the human RING-box protein 2 2ECI ; ; Solution structure of the RING domain of the human TNF receptor-associated factor 6 protein 2ECJ ; ; Solution structure of the RING domain of the human tripartite motif-containing protein 39 2CT0 ; ; Solution structure of the RING domain of the Non-SMC element 1 protein 2ECM ; ; Solution structure of the RING domain of the RING finger and CHY zinc finger domain-containing protein 1 from Mus musculus 2CSZ ; ; Solution Structure of the RING domain of the Synaptotagmin-like protein 4 2CT2 ; ; Solution Structure of the RING domain of the Tripartite motif protein 32 2CSY ; ; Solution structure of the RING domain of the Zinc finger protein 183-like 1 1WIL ; ; Solution Structure of the RING Finger Domain of the Human KIAA1045 Protein 1WIM ; ; Solution Structure of the RING finger Domain of the human UbcM4-interacting Protein 4 2YUR ; ; Solution structure of the Ring finger of human Retinoblastoma-binding protein 6 3ZTG ; ; Solution structure of the RING finger-like domain of Retinoblastoma Binding Protein-6 (RBBP6) 2EGP ; ; Solution structure of the RING-finger domain from human Tripartite motif protein 34 1V87 ; ; Solution Structure of the Ring-H2 Finger Domain of Mouse Deltex Protein 2 2LDY ; ; Solution structure of the RMM-CTD domains of human LINE-1 ORF1p 1WHV ; ; Solution structure of the RNA binding domain from hypothetical protein BAB23382 1WI6 ; ; Solution structure of the RNA binding domain from mouse hypothetical protein BAB23670 2DGO ; ; Solution structure of the RNA binding domain in cytotoxic granule-associated RNA binding protein 1 2DB1 ; ; Solution structure of the RNA binding domain in heterogeneous nuclear ribonucleoprotein F homolog 2DGV ; ; Solution structure of the RNA binding domain in Heterogeneous nuclear ribonucleoprotein M 2DGU ; ; Solution structure of the RNA binding domain in Heterogeneous nuclear ribonucleoprotein Q 1WI8 ; ; Solution structure of the RNA binding domain of eukaryotic initiation factor 4B 2DO0 ; ; Solution structure of the RNA binding domain of heterogeneous nuclear ribonucleoprotein M 2CQH ; ; Solution structure of the RNA binding domain of IGF-II mRNA-binding protein 2 5O1T ; ; Solution structure of the RNA binding domain of Nrd1 2CQI ; ; Solution structure of the RNA binding domain of Nucleolysin TIAR 2CQP ; ; Solution structure of the RNA binding domain of RNA-binding protein 12 2DO4 ; ; Solution structure of the RNA binding domain of squamous cell carcinoma antigen recognized by T cells 3 2CQG ; ; Solution structure of the RNA binding domain of TAR DNA-binding protein-43 6HMI ; ; Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon7 6HMO ; ; Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon7 in complex with the SMN-C5 splicing modifier 6NOA ; ; Solution Structure of the RNA element that recruits eIF3 to the 5'-UTR of c-Jun and regulates specialized translation initiation (apical loop) 8CF2 ; ; Solution structure of the RNA helix formed by the 5'-end of U1 snRNA and an A-1 bulged 5'-splice site in complex with SMN-CY 1WHY ; ; Solution structure of the RNA recognition motif from hypothetical RNA binding protein BC052180 2CQC ; ; Solution Structure of the RNA recognition motif in Arginine/serine-rich splicing factor 10 2DGX ; ; Solution structure of the RNA recognition motif in KIAA0430 protein 2CQB ; ; Solution Structure of the RNA recognition motif in Peptidyl-prolyl cis-trans isomerase E 2CQD ; ; Solution Structure of the RNA recognition motif in RNA-binding region containing protein 1 2CPI ; ; Solution structure of the RNA recognition motif of CNOT4 2CPE ; ; Solution structure of the RNA recognition motif of Ewing Sarcoma(EWS) protein 2CPD ; ; Solution structure of the RNA recognition motif of human APOBEC-1 complementation factor, ACF 2MMY ; ; Solution structure of the RNA recognition motif of human TAF15 2N74 ; ; Solution Structure of the RNA-Binding domain of non-structural protein 1 from the 1918 H1N1 influenza virus 1AUU ; ; SOLUTION STRUCTURE OF THE RNA-BINDING DOMAIN OF THE ANTITERMINATOR PROTEIN SACY, NMR, 10 STRUCTURES 1O1W ; ; SOLUTION STRUCTURE OF THE RNASE H DOMAIN OF THE HIV-1 REVERSE TRANSCRIPTASE IN THE PRESENCE OF MAGNESIUM 1F6Z ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE 1F7I ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE ,NMR, ENSEMBLE OF 12 STRUCTURES 1F7G ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM C70U MUTANT OLIGORIBONUCLEOTIDE, ENSEMBLE OF 17 STRUCTURES 1F6X ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM OLIGORIBONUCLEOTIDE 1F7H ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM OLIGORIBONUCLEOTIDE COMPLEXED WITH COBALT (III) HEXAMINE, NMR, ENSEMBLE OF 11 STRUCTURES 1F7F ; ; SOLUTION STRUCTURE OF THE RNASE P RNA (M1 RNA) P4 STEM OLIGORIBONUCLEOTIDE, NMR, ENSEMBLE OF 9 STRUCTURES 2N8S ; ; Solution Structure of the rNedd4 WW1 Domain by NMR 2N8U ; ; Solution Structure of the rNedd4 WW2 Domain by NMR 2N8T ; ; Solution Structure of the rNedd4 WW2 Domain-Cx43CT Peptide Complex by NMR 1I5H ; ; SOLUTION STRUCTURE OF THE RNEDD4 WWIII DOMAIN-RENAL BP2 PEPTIDE COMPLEX 6GCJ ; ; Solution structure of the RodA hydrophobin from Aspergillus fumigatus 2IHX ; ; Solution Structure of the Rous Sarcoma Virus Nucleocapsid Protein:uPsi RNA Packaging Signal Complex 2N3T ; ; Solution structure of the Rpn1 substrate receptor site toroid 1 (T1) 2N3U ; ; Solution structure of the Rpn1 T1 site engaging two monoubiquitin molecules 2N3W ; ; Solution structure of the Rpn1 T1 site with K48-linked diubiquitin in the contracted binding mode 2N3V ; ; Solution structure of the Rpn1 T1 site with K48-linked diubiquitin in the extended binding mode 2NBW ; ; Solution structure of the Rpn1 T1 site with the Rad23 UBL domain 2KQZ ; ; Solution structure of the Rpn13 DEUBAD domain 2NBV ; ; Solution structure of the Rpn13 Pru domain engaging the hPLIC2 UBL domain 2DIW ; ; Solution structure of the RPR domain of Putative RNA-binding protein 16 2DHX ; ; Solution Structure of the RRM Domain in the Human Poly (ADP-ribose) Polymerase Family, Member 10 Variant 2KYX ; ; Solution structure of the RRM domain of CYP33 2NLW ; ; Solution structure of the RRM domain of human eukaryotic initiation factor 3b 2DIU ; ; Solution structure of the RRM domain of KIAA0430 protein 2HVZ ; ; Solution structure of the RRM domain of SR rich factor 9G8 2M4M ; ; Solution structure of the RRM domain of the hypothetical protein CAGL0M09691g from Candida glabrata 2DIV ; ; Solution structure of the RRM domain of TRNA selenocysteine associated protein 2DIS ; ; Solution structure of the RRM domain of unnamed protein product 2I38 ; ; Solution structure of the RRM of SRp20 2I2Y ; ; Solution structure of the RRM of SRp20 bound to the RNA CAUC 2MTG ; ; Solution structure of the RRM1 of human LARP6 2DIT ; ; Solution structure of the RRM_1 domain of HIV TAT specific factor 1 variant 2FC8 ; ; Solution structure of the RRM_1 domain of NCL protein 2FC9 ; ; Solution structure of the RRM_1 domain of NCL protein 2CP8 ; ; Solution structure of the RSGI RUH-046, a UBA domain from human Next to BRCA1 gene 1 protein (KIAA0049 protein) R923H variant 2DAX ; ; Solution structure of the RWD domain of human protein C21orf6 2DAY ; ; Solution structure of the RWD domain of human ring finger protein 25 2EBM ; ; Solution structure of the RWD domain of human RWD domain containing protein 1 2EBK ; ; Solution structure of the RWD domain of human RWD domain containing protein 3 2DAW ; ; Solution structure of the RWD domain of human RWD omain containing protein 2 1UKX ; ; Solution structure of the RWD domain of mouse GCN2 2LC2 ; ; Solution structure of the RXLR effector P. capsici AVR3a4 1K5F ; ; SOLUTION STRUCTURE OF THE S-STYRENE ADDUCT IN THE RAS61 SEQUENCE 2KID ; ; Solution Structure of the S. Aureus Sortase A-substrate Complex 2LBX ; ; Solution structure of the S. cerevisiae H/ACA RNP protein Nhp2p 2LBW ; ; Solution structure of the S. cerevisiae H/ACA RNP protein Nhp2p-S82W mutant 1SYZ ; ; Solution structure of the S. Cerevisiae U6 intramolecular stem loop (ISL) RNA at pH 5.7 1NZ1 ; ; Solution structure of the S. cerevisiae U6 Intramolecular stem-loop containing an SP phosphorothioate at nucleotide U80 1SLJ ; ; Solution structure of the S1 domain of RNase E from E. coli 1WI5 ; ; Solution structure of the S1 RNA binding domain from human hypothetical protein BAA11502 2EQS ; ; Solution structure of the S1 RNA binding domain of human ATP-dependent RNA helicase DHX8 2CQO ; ; Solution structure of the S1 RNA binding domain of human hypothetical protein FLJ11067 2CQJ ; ; Solution structure of the S4 domain of U3 small nucleolar ribonucleoprotein protein IMP3 homolog 2N6Z ; ; Solution structure of the salicylate-loaded ArCP from yersiniabactin synthetase 2GYT ; ; Solution structure of the SAM (sterile alpha motif) domain of DLC1 (deleted in liver cancer 1) 1X40 ; ; Solution structure of the SAM domain of human ARAP2 1WWV ; ; Solution structure of the SAM domain of human connector enhancer of KSR-like protein CNK1 2D8C ; ; Solution structure of the sam-domain of mouse phosphatidyl ceramidecholinephosphotransferase 1 2DKY ; ; Solution structure of the SAM-domain of Rho-GTPase-activating protein 7 2DL0 ; ; Solution structure of the SAM-domain of the SAM and SH3 domain containing protein 1 1WWU ; ; Solution structure of the SAM_PNT domain of human protein FLJ21935 2DKX ; ; Solution structure of the SAM_PNT-domain of ETS transcription factor PDEF (Prostate ets) 1X66 ; ; Solution structure of the SAM_PNT-domain of the human friend LEUKEMIAINTEGRATION 1 transcription factor 2YTU ; ; Solution structure of the SAM_PNT-domain of the human friend LEUKEMIAINTEGRATION 1 transcription factor 2DKZ ; ; Solution structure of the SAM_PNT-domain of the hypothetical protein LOC64762 1UFN ; ; Solution structure of the SAND domain of the putative nuclear protein homolog (5830484A20Rik) 2YQK ; ; Solution structure of the SANT domain in Arginine-glutamic acid dipeptide (RE) repeats 2ELK ; ; Solution structure of the SANT domain of fission yeast SPCC24B10.08c protein 2CU7 ; ; Solution structure of the SANT domain of human KIAA1915 protein 2YUS ; ; Solution structure of the SANT domain of human SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1 2LTP ; ; Solution structure of the SANT2 domain of the human nuclear receptor corepressor 2 (NCoR2), Northeast Structural Genomics Consortium (NESG) target ID HR4636E 1ZRJ ; ; Solution structure of the SAP domain of human E1B-55kDa-associated protein 5 isoform c 2DO1 ; ; Solution structure of the SAP domain of human nuclear protein Hcc-1 2DO5 ; ; Solution structure of the SAP domain of human splicing factor 3B subunit 2 2KDP ; ; Solution Structure of the SAP30 zinc finger motif 1YO4 ; ; Solution Structure of the SARS Coronavirus ORF 7a coded X4 protein 2FXP ; ; Solution Structure of the SARS-Coronavirus HR2 Domain 2KAF ; ; Solution structure of the SARS-unique domain-C from the nonstructural protein 3 (nsp3) of the severe acute respiratory syndrome coronavirus 5Z8Q ; ; Solution structure of the SBDalpha domain of yeast Ssa1 5Z8I ; ; Solution structure of the SBDbeta domain of yeast Ssa1 2KKT ; ; Solution structure of the SCA7 domain of human Ataxin-7-L3 protein 2FI2 ; ; Solution structure of the SCAN homodimer from MZF-1/ZNF42 2K4U ; ; Solution structure of the SCORPION TOXIN ADWX-1 1NM7 ; ; Solution structure of the ScPex13p SH3 domain 1YG3 ; ; Solution Structure of the ScYLV P1-P2 Frameshifting Pseudoknot, 20 Lowest Energy Structures 1YG4 ; ; Solution Structure of the ScYLV P1-P2 Frameshifting Pseudoknot, Regularized Average Structure 1IVZ ; ; Solution structure of the SEA domain from murine hypothetical protein homologous to human mucin 16 2ACM ; ; Solution structure of the SEA domain of human mucin 1 (MUC1) 2VDA ; ; Solution structure of the SecA-signal peptide complex 2YSM ; ; Solution structure of the second and third PHD domain from Histone-lysine N-methyltransferase 2C (KMT2C/MLL3) 2COU ; ; Solution structure of the second BRCT domain of epithelial cell transforming 2 2E7N ; ; Solution structure of the second Bromodomain from human Bromodomain-containing protein 3 2I8N ; ; Solution structure of the second bromodomain of Brd4 2KTB ; ; Solution Structure of the Second Bromodomain of Human Polybromo in complex with an acetylated peptide from Histone 3 2ENZ ; ; Solution structure of the second C1 domain from human protein kinase C theta 2EP6 ; ; Solution structure of the second C2 domain from human MCTP2 protein 2ENT ; ; Solution structure of the second C2H2-type zinc finger domain from human Krueppel-like factor 15 1WYQ ; ; Solution structure of the second CH domain of human spectrin beta chain, brain 2 2DY8 ; ; Solution structure of the second chromodomain of yeast Chd1 2IKE ; ; Solution Structure of the second Clip domain in PAP2 2YTX ; ; Solution structure of the second cold-shock domain of the human KIAA0885 protein (UNR protein) 1SS2 ; ; Solution structure of the second complement control protein (CCP) module of the GABA(B)R1a receptor, Pro-119 cis conformer 1SRZ ; ; Solution structure of the second complement control protein (CCP) module of the GABA(B)R1a receptor, Pro-119 trans conformer 1WH6 ; ; Solution structure of the second CUT domain of human Homeobox protein Cux-2 2CSF ; ; Solution structure of the second CUT domain of human SATB2 2KJK ; ; Solution structure of the second domain of the listeria protein Lin2157, Northeast Structural Genomics Consortium target Lkr136b 2RS7 ; ; Solution structure of the second dsRBD from RNA helicase A 2L2M ; ; Solution structure of the second dsRBD of HYL1 2CPN ; ; Solution structure of the second dsRBD of TAR RNA-binding protein 2 1X48 ; ; Solution structure of the second DSRM domain in Interferon-induced, double-stranded RNA-activated protein kinase 2E71 ; ; Solution structure of the second FF domain of human transcription factor CA150 1UJT ; ; Solution structure of the second fibronectin Type III domain of human KIAA1568 protein 2ED8 ; ; Solution structure of the second fibronectin type III domain of human Netrin receptor DCC 2KBG ; ; Solution structure of the second Fibronectin type-III module of NCAM2 2E7H ; ; Solution structure of the second fn3 domain from human Ephrin type-B receptor 4 1X5L ; ; Solution structure of the second fn3 domain of Eph receptor A8 protein 2DLH ; ; Solution structure of the second fn3 domain of human receptor-type tyrosine-protein phosphatase delta 2DM4 ; ; Solution structure of the second fn3 domain of human sorLA/LR11 1VA9 ; ; Solution structure of the second FNIII domain of DSCAML1 protein 2YQI ; ; Solution structure of the second HMG-box domain from high mobility group protein B3 2DA2 ; ; Solution structure of the second homeobox domain of AT-binding transcription factor 1 (ATBF1) 2ECC ; ; Solution Structure of the second Homeobox Domain of Human Homeodomain Leucine Zipper-Encoding Gene (Homez) 2DN0 ; ; Solution structure of the second homeobox domain of human zinc fingers and homeoboxes protein 3 2DA5 ; ; Solution structure of the second homeobox domain of Zinc fingers and homeoboxes protein 3 (Triple homeobox 1 protein) 2DM3 ; ; Solution structure of the second ig domain of human palladin 2EDF ; ; Solution structure of the second ig-like domain(2826-2915) from human Obscurin 2DGR ; ; Solution structure of the second KH domain in ring finger and KH domain containing protein 1 2E6Z ; ; Solution structure of the second KOW motif of human transcription elongation factor SPT5 2DLO ; ; Solution structure of the second LIM domain of human Thyroid receptor-interacting protein 6 2D8X ; ; Solution structure of the second LIM domain of particularly interesting new Cys-His protein (PINCH) 1X63 ; ; Solution structure of the second LIM domain of skeletal muscle LIM protein 1 2JWE ; ; Solution structure of the second PDZ domain from human zonula occludens-1: A dimeric form with 3D domain swapping 1X5N ; ; Solution structure of the second PDZ domain of harmonin protein 2DLU ; ; Solution structure of the second PDZ domain of human InaD-like protein 1UF1 ; ; Solution structure of the second PDZ domain of human KIAA1526 protein 1UJV ; ; Solution structure of the second PDZ domain of human membrane associated guanylate kinase inverted-2 (MAGI-2) 1WHA ; ; Solution structure of the second PDZ domain of human scribble (KIAA0147 protein). 2OGP ; ; Solution structure of the second PDZ domain of Par-3 1QLC ; ; Solution structure of the second PDZ domain of Postsynaptic Density-95 1Y7N ; ; Solution structure of the second PDZ domain of the human neuronal adaptor X11alpha 2ELI ; ; Solution structure of the second Phorbol esters/diacylglycerol binding domain of human Protein kinase C alpha type 1XKE ; ; Solution structure of the second Ran-binding domain from human RanBP2 1WHX ; ; Solution structure of the second RNA binding domain from hypothetical protein BAB23448 2DGS ; ; Solution structure of the second RNA binding domain in DAZ-associated protein 1 2DH7 ; ; Solution structure of the second RNA binding domain in Nucleolysin TIAR 2DGT ; ; Solution structure of the second RNA binding domain in RNA-binding protein 30 2DNZ ; ; Solution structure of the second RNA binding domain of RNA binding motif protein 23 2RNE ; ; Solution structure of the second RNA recognition motif (RRM) of TIA-1 2DHA ; ; Solution structure of the second RNA recognition motif in Hypothetical protein FLJ201171 2DGW ; ; Solution structure of the second RNA recognition motif in RNA-binding protein 19 1D9A ; ; SOLUTION STRUCTURE OF THE SECOND RNA-BINDING DOMAIN (RBD2) OF HU ANTIGEN C (HUC) 2U2F ; ; SOLUTION STRUCTURE OF THE SECOND RNA-BINDING DOMAIN OF HU2AF65 1X4F ; ; Solution structure of the second RRM domain in Matrin 3 1X5T ; ; Solution structure of the second RRM domain in splicing factor = 3B 2RT3 ; ; Solution structure of the second RRM domain of Nrd1 2LKZ ; ; Solution structure of the second RRM domain of RBM5 2EOB ; ; Solution structure of the second SH2 domain from rat PLC gamma-2 2GSB ; ; Solution structure of the second SH2 domain of human Ras GTPase-activating protein 1 2FRW ; ; Solution structure of the second SH3 domain of human adaptor protein NCK2 2FEI ; ; Solution structure of the second SH3 domain of Human CMS protein 1J3T ; ; Solution structure of the second SH3 domain of human intersectin 2 (KIAA1256) 2DL7 ; ; Solution structure of the second SH3 domain of human KIAA0769 protein 2DM1 ; ; Solution structure of the second SH3 domain of human protein vav-2 2CSQ ; ; Solution structure of the second SH3 domain of human RIM-binding protein 2 2YUP ; ; Solution structure of the second SH3 domain of human Vinexin 2DT7 ; ; Solution structure of the second SURP domain of human splicing factor SF3a120 in complex with a fragment of human splicing factor SF3a60 2D8B ; ; Solution structure of the second tandem cofilin-domain of mouse twinfilin 2H45 ; ; Solution structure of the second type III domain of human Fibronectin: ensemble of 25 structures 2H41 ; ; Solution structure of the second type III domain of human Fibronectin: minimized average structure 2DAK ; ; Solution Structure of the Second UBA Domain in the Human Ubiquitin Specific Protease 5 (Isopeptidase 5) 2DWV ; ; Solution structure of the second WW domain from mouse salvador homolog 1 protein (mWW45) 2YSE ; ; Solution structure of the second WW domain from the human membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1. MAGI-1 2DMV ; ; Solution structure of the second ww domain of Itchy homolog E3 ubiquitin protein ligase (Itch) 1WR4 ; ; Solution structure of the second WW domain of Nedd4-2 1WMV ; ; Solution structure of the second WW domain of WWOX 2EBQ ; ; Solution structure of the second zf-RanBP domain from human Nuclear pore complex protein Nup153 2K1P ; ; Solution structure of the second zinc finger domain of ZRANB2/ZNF265 2CS2 ; ; Solution structure of the second Zn-finger domain of poly(ADP-ribose) polymerase-1 2EPU ; ; Solution structure of the secound C2H2 type zinc finger domain of Zinc finger protein 32 2EPR ; ; Solution structure of the secound zinc finger domain of Zinc finger protein 278 6WQL ; ; Solution structure of the seed peptide C2 (VBP-1) from pumpkin 1R4G ; ; Solution structure of the Sendai virus protein X C-subdomain 7CG1 ; ; Solution structure of the sensor domain of the anti-sigma factor RsgI4 in Pseudobacteroides cellulosolvens 1LWM ; ; Solution Structure of the Sequence-Non-Specific HMGB protein NHP6A 2LAQ ; ; Solution structure of the Sex Peptide from Drosophila melanogaster 2LXB ; ; Solution structure of the Sgt2 homodimerization domain 4CPG ; ; Solution structure of the SGTA N-terminal domain 2EO3 ; ; Solution structure of the SH2 domain from human Crk-like protein 2EO6 ; ; Solution structure of the SH2 domain from mouse B-cell linker protein BLNK 2RSY ; ; Solution structure of the SH2 domain of Csk in complex with a phosphopeptide from Cbp 2CS0 ; ; Solution structure of the SH2 domain of human HSH2D protein 2DLZ ; ; Solution structure of the SH2 domain of human protein vav-2 2CRH ; ; Solution structure of the SH2 domain of human proto-oncogene protein VAV1 2CR4 ; ; Solution structure of the SH2 domain of human SH3BP2 protein 2DM0 ; ; Solution structure of the SH2 domain of human Tyrosine-protein kinase TXK 2DLY ; ; Solution structure of the SH2 domain of murine Fyn-related kinase 1J0F ; ; Solution Structure of the SH3 Domain Binding Glutamic Acid-rich Protein Like 3 1JEG ; ; Solution structure of the SH3 domain from C-terminal Src Kinase complexed with a peptide from the tyrosine phosphatase PEP 1WXB ; ; Solution structure of the SH3 domain from human epidermal growth factor receptor pathway substrate 8-like protein 2EBP ; ; Solution structure of the SH3 domain from human SAM and SH3 domain containing protein 1 2ENM ; ; Solution structure of the SH3 domain from mouse sorting nexin-9 2EQI ; ; Solution structure of the SH3 domain from Phospholipase C, gamma 2 2YSQ ; ; Solution structure of the SH3 domain from Rho guanine nucleotide exchange factor 9 2ED1 ; ; Solution structure of the SH3 domain of 130 kDa phosphatidylinositol 4,5-biphosphate-dependent ARF1 GTPase-activating protein 2ED0 ; ; Solution structure of the SH3 domain of Abl interactor 2 (Abelson interactor 2) 2M0Y ; ; Solution structure of the SH3 domain of DOCK180 1X43 ; ; Solution structure of the SH3 domain of Endophilin B1 (Sh3g1b1) 2D8J ; ; Solution structure of the SH3 domain of Fyn-related kinase 1WXT ; ; Solution structure of the SH3 domain of human hypothetical protein FLJ21522 2DLP ; ; Solution structure of the SH3 domain of human KIAA1783 protein 2YUN ; ; Solution structure of the SH3 domain of human Nostrin 1UGV ; ; Solution structure of the SH3 domain of human olygophrein-1 like protein (KIAA0621) 1X2K ; ; Solution Structure of the SH3 Domain of Human osteoclast stimulating factor 1 (OSTF1) 2GQI ; ; Solution structure of the SH3 domain of human Ras GTPase-activating protein 1 2EW3 ; ; Solution Structure Of The SH3 Domain Of Human SH3GL3 2DL8 ; ; Solution structure of the SH3 domain of human SLIT-ROBO Rho GTPase-activating protein 2 2YUQ ; ; Solution structure of the SH3 domain of human Tyrosine-protein kinase ITK/TSK 2D8H ; ; Solution structure of the SH3 domain of Hypothetical protein SH3YL1 1WXU ; ; Solution structure of the SH3 domain of mouse peroxisomal biogenesis factor 13 2YUO ; ; Solution structure of the SH3 domain of mouse RUN and TBC1 domain containing 3 1V1C ; ; Solution Structure of the SH3 domain of Obscurin 1HSQ ; ; SOLUTION STRUCTURE OF THE SH3 DOMAIN OF PHOSPHOLIPASE CGAMMA 2HSP ; ; SOLUTION STRUCTURE OF THE SH3 DOMAIN OF PHOSPHOLIPASE CGAMMA 1WI7 ; ; Solution structure of the SH3 domain of SH3-domain kinase binding protein 1 2ECZ ; ; Solution structure of the SH3 domain of Sorbin and SH3 domain-containing protein 1 2CUB ; ; Solution structure of the SH3 domain of the human cytoplasmic protein Nck1 1WX6 ; ; Solution structure of the SH3 domain of the human cytoplasmic protein NCK2 2DIL ; ; Solution structure of the SH3 domain of the human Proline-serine-threonine phosphatase-interacting protein 1 2CUD ; ; Solution structure of the SH3 domain of the human SRC-like adopter protein (SLAP) 2CUC ; ; Solution structure of the SH3 domain of the mouse hypothetical protein SH3RF2 1X2P ; ; Solution structure of the SH3 domain of the Protein arginine N-methyltransferase 2 1X2Q ; ; Solution structure of the SH3 domain of the Signal transducing adaptor molecule 2 2CT3 ; ; Solution Structure of the SH3 domain of the Vinexin protein 1WRY ; ; Solution structure of the SH3 domain-binding glutamic acid-rich-like protein 2CT6 ; ; solution structure of the sh3 domain-binding glutamic acid-rich-like protein 2 2YT6 ; ; Solution structure of the SH3_1 domain of Yamaguchi sarcoma viral (v-yes) oncogene homolog 1 1XYU ; ; Solution structure of the sheep prion protein with polymorphism H168 2ZAJ ; ; Solution structure of the short-isoform of the second WW domain from the human membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1 (MAGI-1) 2RMX ; ; Solution structure of the SHP-1 C-terminal SH2 domain complexed with a tyrosine-phosphorylated peptide from NKG2A 2YU7 ; ; Solution structure of the SHP-1 C-terminal SH2 domain complexed with a tyrosine-phosphorylated peptide from NKG2A 6IVU ; ; Solution structure of the Sigma-anti-sigma factor complex RsgI1N-SigI1C from Clostridium thermocellum 2RQE ; ; Solution structure of the silkworm bGRP/GNBP3 N-terminal domain reveals the mechanism for b-1,3-glucan specific recognition 1H95 ; ; Solution structure of the single-stranded DNA-binding Cold Shock Domain (CSD) of human Y-box protein 1 (YB1) determined by NMR (10 lowest energy structures) 2EDE ; ; Solution structure of the sixth fibronectin type III domain of human Netrin receptor DCC 2EHR ; ; Solution structure of the sixth PDZ domain of human InaD-like protein 2YEN ; ; Solution structure of the skeletal muscle and neuronal voltage gated sodium channel antagonist mu-conotoxin CnIIIC 2CUP ; ; Solution structure of the Skeletal muscle LIM-protein 1 2JT4 ; ; Solution Structure of the Sla1 SH3-3-Ubiquitin Complex 2N99 ; ; Solution structure of the SLURP-2, a secreted isoform of Lynx1 2L52 ; ; Solution structure of the small archaeal modifier protein 1 (SAMP1) from Methanosarcina acetivorans 2M1U ; ; Solution structure of the small dictyostelium discoideium myosin light chain mlcb provides insights into iq-motif recognition of class i myosin myo1b 1KGM ; ; SOLUTION STRUCTURE OF THE SMALL SERINE PROTEASE INHIBITOR SGCI 1KIO ; ; SOLUTION STRUCTURE OF THE SMALL SERINE PROTEASE INHIBITOR SGCI[L30R, K31M] 1KJ0 ; ; SOLUTION STRUCTURE OF THE SMALL SERINE PROTEASE INHIBITOR SGTI 5AJ1 ; ; Solution Structure of the Smarc Domain 2D9I ; ; Solution structure of the SMR domain of NEDD4-binding protein 2 1XC5 ; ; Solution Structure of the SMRT Deacetylase Activation Domain 1M7K ; ; Solution Structure of the SODD BAG Domain 2MPQ ; ; Solution structure of the sodium channel toxin Hd1a 2LW3 ; ; Solution structure of the soluble domain of MmpS4 from Mycobacterium tuberculosis 2K14 ; ; Solution structure of the soluble domain of the NfeD protein YuaF from Bacillus subtilis 2JQ8 ; ; Solution structure of the Somatomedin B domain from vitronectin produced in Pichia pastoris 2YS0 ; ; Solution structure of the Somatomedin B domain of human Ectonucleotide pyrophosphatase/phosphodiesterase family member 3ZKT ; ; SOLUTION STRUCTURE OF THE SOMATOSTATIN SST3 RECEPTOR ANTAGONIST TAU- CONOTOXIN CnVA 5WOE ; ; Solution structure of the sorting nexin 25 phox-homology domain 2YU4 ; ; Solution structure of the SP-RING domain in non-SMC element 2 homolog (MMS21, S. cerevisiae) 1GAT ; ; SOLUTION STRUCTURE OF THE SPECIFIC DNA COMPLEX OF THE ZINC CONTAINING DNA BINDING DOMAIN OF THE ERYTHROID TRANSCRIPTION FACTOR GATA-1 BY MULTIDIMENSIONAL NMR 1GAU ; ; SOLUTION STRUCTURE OF THE SPECIFIC DNA COMPLEX OF THE ZINC CONTAINING DNA BINDING DOMAIN OF THE ERYTHROID TRANSCRIPTION FACTOR GATA-1 BY MULTIDIMENSIONAL NMR 1AJ3 ; ; SOLUTION STRUCTURE OF THE SPECTRIN REPEAT, NMR, 20 STRUCTURES 1DUJ ; ; SOLUTION STRUCTURE OF THE SPINDLE ASSEMBLY CHECKPOINT PROTEIN HUMAN MAD2 2FJL ; ; Solution Structure of the Split PH domain in Phospholipase C-gamma1 1Z87 ; ; solution structure of the split PH-PDZ Supramodule of alpha-Syntrophin 2LFV ; ; Solution Structure of the SPOR domain from E. coli DamX 2IT7 ; ; Solution structure of the squash trypsin inhibitor EETI-II 1HA9 ; ; SOLUTION STRUCTURE OF THE SQUASH TRYPSIN INHIBITOR MCoTI-II, NMR, 30 STRUCTURES. 2NC0 ; ; Solution structure of the St domain of EMCV IRES 5IXF ; ; Solution structure of the STAM2 SH3 with AMSH derived peptide complex 1XHJ ; ; Solution Structure Of The Staphylococcus Epidermidis Protein SE0630. Northest Structural Genomics Consortium Target SeR8. 2KD8 ; ; Solution structure of the stem-loop IIId of GBV-B IRES 1V38 ; ; Solution structure of the Sterile Alpha Motif (SAM) domain of mouse SAMSN1 4UEI ; ; Solution structure of the sterol carrier protein domain 2 of Helicoverpa armigera 2MAK ; ; Solution structure of the STIM1 CC1-CC2 homodimer in complex with two Orai1 C-terminal domains. 2MAJ ; ; Solution Structure of the STIM1 CC1-CC2 homodimer. 2EQP ; ; Solution structure of the stn_TNFRSF12A_TNFR domain of Tumor necrosis factor receptor superfamily member 12A precursor 2EQO ; ; Solution structure of the stn_TRAF3IP1_nd domain of interleukin 13 receptor alpha 1-binding protein-1 [Homo sapiens] 2L4O ; ; Solution structure of the Streptococcus pneumoniae RrgB pilus backbone D1 domain 1UVF ; ; Solution Structure of the structured part of the 15th Domain of LEKTI 2JMF ; ; Solution structure of the Su(dx) WW4- Notch PY peptide complex 1ZWV ; ; Solution Structure of the subunit binding domain (hbSBD) of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase 1MHJ ; ; SOLUTION STRUCTURE OF THE SUPERACTIVE MONOMERIC DES-[PHE(B25)] HUMAN INSULIN MUTANT. ELUCIDATION OF THE STRUCTURAL BASIS FOR THE MONOMERIZATION OF THE DES-[PHE(B25)] INSULIN AND THE DIMERIZATION OF NATIVE INSULIN 2E60 ; ; Solution structure of the surp1 domain in splicing factor, arginine/serine-rich 8 2E5Z ; ; Solution structure of the surp2 domain in splicing factor, arginine/serine-rich 8 6HKC ; ; Solution structure of the Sushi 1 domain of GABAbR1a 1BRZ ; ; SOLUTION STRUCTURE OF THE SWEET PROTEIN BRAZZEIN, NMR, 43 STRUCTURES 1RYU ; ; Solution Structure of the SWI1 ARID 1UHR ; ; Solution structure of the SWIB domain of mouse BRG1-associated factor 60a 1V32 ; ; Solution structure of the SWIB/MDM2 domain of the hypothetical protein At5g08430 from Arabidopsis thaliana 1V31 ; ; Solution structure of the SWIB/MDM2 domain of the hypothetical protein At5g14170 from Arabidopsis thaliana 2ELJ ; ; Solution structure of the SWIRM domain of baker's yeast Transcriptional adapter 2 2DCE ; ; Solution structure of the SWIRM domain of human KIAA1915 protein 1EJP ; ; SOLUTION STRUCTURE OF THE SYNDECAN-4 WHOLE CYTOPLASMIC DOMAIN 1EJQ ; ; SOLUTION STRUCTURE OF THE SYNDECAN-4 WHOLE CYTOPLASMIC DOMAIN IN THE PRESENCE OF PHOSPHATIDYLINOSITOL 4,5-BISPHOSPHATE 1J5M ; ; SOLUTION STRUCTURE OF THE SYNTHETIC 113CD_3 BETA_N DOMAIN OF LOBSTER METALLOTHIONEIN-1 2EEM ; ; Solution structure of the synthetic mytilin 2PDZ ; ; SOLUTION STRUCTURE OF THE SYNTROPHIN PDZ DOMAIN IN COMPLEX WITH THE PEPTIDE GVKESLV, NMR, 15 STRUCTURES 1M8C ; ; SOLUTION STRUCTURE OF THE T State OF TURKEY OVOMUCOID AT PH 2.5 5ZCZ ; ; Solution structure of the T. Thermophilus HB8 TTHA1718 protein in living eukaryotic cells by in-cell NMR spectroscopy 2NBP ; ; Solution structure of the T119M variant of transthyretin in its monomeric state 2AZV ; ; Solution structure of the T22G mutant of N-terminal SH3 domain of DRK (calculated without NOEs) 2A37 ; ; Solution structure of the T22G mutant of N-terminal SH3 domain of DRK (DRKN SH3 DOMAIN) 1MXQ ; ; Solution Structure of the Tachykinin Peptide Eledoisin 1N6T ; ; Solution Structure of the Tachykinin Peptide Neurokinin A 2K17 ; ; Solution structure of the TAF3 PHD domain in complex with a H3K4me3 peptide 7AC1 ; ; Solution structure of the TAF4-RST domain 2H7D ; ; Solution structure of the talin F3 domain in complex with a chimeric beta3 integrin-PIP kinase peptide 2H7E ; ; Solution structure of the talin F3 domain in complex with a chimeric beta3 integrin-PIP kinase peptide- minimized average structure 2K00 ; ; Solution structure of the talin F3 in complex with layilin cytodomain 5AGQ ; ; Solution structure of the TAM domain of human TIP5 BAZ2A involved in epigenetic regulation of rRNA genes 2DLQ ; ; Solution structure of the tandem four zf-C2H2 domain repeats of murine GLI-Kruppel family member HKR3 2YRQ ; ; Solution structure of the tandem HMG box domain from Human High mobility group protein B1 1KN7 ; ; Solution structure of the tandem inactivation domain (residues 1-75) of potassium channel RCK4 (Kv1.4) 7BUL ; ; Solution structure of the tandem PH and BSD1 domains of TFIIH p62 6L87 ; ; Solution structure of the tandem PWWP-ARID domains of human RBBP1 2KLZ ; ; Solution Structure of the Tandem UIM Domain of Ataxin-3 Complexed with Ubiquitin 2MKG ; ; Solution structure of the tandem UIMs of RAP80 2L5F ; ; Solution structure of the tandem WW domains from HYPA/FBP11 2JXW ; ; Solution Structure of the Tandem WW Domains of FBP21 2RPC ; ; Solution structure of the tandem zf-C2H2 domains from the human zinc finger protein ZIC 3 2LUY ; ; Solution structure of the tandem zinc finger domain of fission yeast Stc1 2LS0 ; ; Solution Structure of the Target Recognition Domain of Zoocin A 6VA1 ; ; Solution Structure of the Tau pre-mRNA Exon 10 Splicing Regulatory Element 6VA2 ; ; Solution Structure of the Tau pre-mRNA Exon 10 Splicing Regulatory Element Bound to MH5 6VA4 ; ; Solution Structure of the Tau pre-mRNA Exon 10 Splicing Regulatory Element Bound to MIP 6VA3 ; ; Solution Structure of the Tau pre-mRNA Exon 10 Splicing Regulatory Element Bound to MQC 1F81 ; ; SOLUTION STRUCTURE OF THE TAZ2 DOMAIN OF THE TRANSCRIPTIONAL ADAPTOR PROTEIN CBP 2LJ4 ; ; Solution structure of the TbPIN1 1XDX ; ; Solution Structure of the Tctex1 Light Chain From Chlamydomonas Inner Dynein Arm I1 1L1I ; ; Solution Structure of the Tenebrio molitor Antifreeze Protein 2M0P ; ; Solution structure of the tenth complement type repeat of human megalin 2MOG ; ; Solution structure of the terminal Ig-like domain from Leptospira interrogans LigB 2M21 ; ; Solution structure of the Tetrahymena telomerase RNA stem IV terminal loop 186D ; ; SOLUTION STRUCTURE OF THE TETRAHYMENA TELOMERIC REPEAT D(T2G4)4 G-TETRAPLEX 2DME ; ; Solution structure of the TFIIS domain II of human PHD finger protein 3 1WWT ; ; Solution structure of the TGS domain from human threonyl-tRNA synthetase 2JM3 ; ; Solution structure of the THAP domain from C. elegans C-terminal binding protein (CtBP) 2D8R ; ; Solution structure of the thap domain of the human thap domain-containing protein 2 2KO0 ; ; Solution structure of the THAP zinc finger of THAP1 in complex with its DNA target 2LAU ; ; Solution structure of the THAP-zinc finger domain 1-81 from the cell growth suppressor human THAP11 protein 2JTG ; ; Solution structure of the THAP-zinc finger of THAP1 1DU2 ; ; SOLUTION STRUCTURE OF THE THETA SUBUNIT OF DNA POLYMERASE III 2AE9 ; ; Solution Structure of the theta subunit of DNA polymerase III from E. coli 2AXD ; ; solution structure of the theta subunit of escherichia coli DNA polymerase III in complex with the epsilon subunit 2ROQ ; ; Solution Structure of the thiolation-thioesterase di-domain of enterobactin synthetase component F 1QUW ; ; SOLUTION STRUCTURE OF THE THIOREDOXIN FROM BACILLUS ACIDOCALDARIUS 1TI3 ; ; Solution structure of the Thioredoxin h1 from poplar, a CPPC active site variant 6NE8 ; ; Solution Structure of the Thioredoxin-like Domain of Arabidopsis NCP (NUCLEAR CONTROL OF PEP ACTIVITY) 2DBC ; ; Solution structure of the Thioredoxin-like domain of Phosducin-like protein 2(PDCL2) 2DMG ; ; Solution structure of the third C2 domain of KIAA1228 protein 2EPX ; ; Solution structure of the third C2H2 type zinc finger domain of Zinc finger protein 28 homolog 2YST ; ; Solution structure of the third cadherin domain from human protocadherin 7 1X65 ; ; Solution structure of the third cold-shock domain of the human KIAA0885 protein (UNR PROTEIN) 1WH8 ; ; Solution structure of the third CUT domain of human Homeobox protein Cux-2 2MDR ; ; Solution structure of the third double-stranded RNA-binding domain (dsRBD3) of human adenosine-deaminase ADAR1 2DOE ; ; Solution structure of the third FF domain of human transcription factor CA150 1UEN ; ; Solution Structure of The Third Fibronectin III Domain of Human KIAA0343 Protein 2ED9 ; ; Solution structure of the third fibronectin type III domain of human Netrin receptor DCC 1KZ0 ; ; Solution structure of the third helix of Antennapedia homeodomain 1KZ2 ; ; Solution structure of the third helix of Antennapedia homeodomain derivative [W6F,W14F] 1KZ5 ; ; Solution structure of the third helix of Antennapedia homeodomain derivatives (RQIKIWFRKWKK) 2DA3 ; ; Solution structure of the third homeobox domain of AT-binding transcription factor 1 (ATBF1) 2DMP ; ; Solution structure of the third homeobox domain of Zinc fingers and homeoboxes protein 2 2ENS ; ; Solution structure of the third ig-like domain from human Advanced glycosylation end product-specific receptor 2EDK ; ; Solution structure of the third ig-like domain from human Myosin-binding protein C, fast-type 2DKU ; ; Solution structure of the third Ig-like domain of human KIAA1556 protein 1X44 ; ; Solution structure of the third ig-like domain of Myosin-dinding protein C, slow-type 2L7J ; ; Solution structure of the third Immunoglobulin-like domain of nectin-1 2HH3 ; ; Solution structure of the third KH domain of KSRP 2DO3 ; ; Solution structure of the third KOW motif of transcription elongation factor SPT5 2D8Z ; ; Solution structure of the third LIM domain of Four and a half LIM domains protein 2 (FHL-2) 2COR ; ; Solution structure of the third LIM domain of particularly interesting new Cys-His protein 1WJQ ; ; Solution structure of the third mbt domain from human KIAA1798 protein 1UEP ; ; Solution Structure of The Third PDZ Domain of Human Atrophin-1 Interacting Protein 1 (KIAA0705 Protein) 2DMZ ; ; Solution structure of the third PDZ domain of human InaD-like protein 1UFX ; ; Solution structure of the third PDZ domain of human KIAA1526 protein 1V6B ; ; Solution structure of the third PDZ domain of mouse harmonin 2D90 ; ; Solution structure of the third PDZ domain of PDZ domain containing protein 1 1UM7 ; ; Solution structure of the third PDZ domain of synapse-associated protein 102 2DNY ; ; Solution structure of the third RNA binding domain of FBP-interacting repressor, SIAHBP1 1O0P ; ; Solution Structure of the third RNA Recognition Motif (RRM) of U2AF65 in complex with an N-terminal SF1 peptide 1OPI ; ; SOLUTION STRUCTURE OF THE THIRD RNA RECOGNITION MOTIF (RRM) OF U2AF65 IN COMPLEX WITH AN N-TERMINAL SF1 PEPTIDE 2EGE ; ; Solution structure of the third SH3 domain from human KIAA1666 protein 1UHF ; ; Solution Structure of the third SH3 domain of human intersectin 2(KIAA1256) 2FRY ; ; Solution structure of the third SH3 domain of human NCK2 adaptor protein 2CSI ; ; Solution structure of the third SH3 domain of human RIM-binding protein 2 2DA9 ; ; Solution structure of the third SH3 domain of SH3-domain kinase binding protein 1 (Regulator of ubiquitous kinase, Ruk) 2K9G ; ; Solution structure of the third SH3 domain of the Cin85 adapter protein 1WLX ; ; Solution structure of the third spectrin repeat of alpha-actinin-4 2EHF ; ; Solution structure of the third Sushi domain from human CUB and sushi domain-containing protein 1 1WR7 ; ; Solution structure of the third WW domain of Nedd4-2 2ELY ; ; Solution structure of the third zf-C2H2 domain from human Zinc finger protein 224 2EBV ; ; Solution structure of the third zf-RanBP domain from human Nuclear pore complex protein Nup153 1SRK ; ; Solution structure of the third zinc finger domain of FOG-1 2EPQ ; ; Solution structure of the third zinc finger domain of Zinc finger protein 278 1P7A ; ; Solution Structure of the Third Zinc Finger from BKLF 2DIR ; ; Solution structure of the THUMP domain of THUMP domain-containing protein 1 2YRP ; ; Solution structure of the TIG domain from Human Nuclear factor of activated T-cells, cytoplasmic 4 2Z5V ; ; Solution structure of the TIR domain of human MyD88 1PK2 ; ; SOLUTION STRUCTURE OF THE TISSUE-TYPE PLASMINOGEN ACTIVATOR KRINGLE 2 DOMAIN COMPLEXED TO 6-AMINOHEXANOIC ACID AN ANTIFIBRINOLYTIC DRUG 132D ; ; SOLUTION STRUCTURE OF THE TN AN DNA DUPLEX GCCGTTAACGGC CONTAINING THE HPA I RESTRICTION SITE 2TOB ; ; SOLUTION STRUCTURE OF THE TOBRAMYCIN-RNA APTAMER COMPLEX, NMR, 13 STRUCTURES 7CSS ; ; Solution structure of the topological isomer of Heat-stable enterotoxin produced by Enterotoxigenic Escherichia coli 2NDI ; ; Solution structure of the toxin ISTX-I from Ixodes scapularis 2MVA ; ; Solution structure of the toxin, RhTx 2BUG ; ; Solution structure of the TPR domain from Protein phosphatase 5 in complex with Hsp90 derived peptide 6G5S ; ; Solution structure of the TPR domain of the cell division coordinator, CpoB 1TRF ; ; SOLUTION STRUCTURE OF THE TR1C FRAGMENT OF SKELETAL MUSCLE TROPONIN-C 2YUC ; ; Solution structure of the TRAF-type zinc finger domains (102-164) from human TNF receptor associated factor 4 1W0A ; ; Solution structure of the trans form of the human alpha-hemoglobin stabilizing protein (AHSP) 2GUT ; ; Solution structure of the trans-activation domain of the human co-activator ARC105 2M0S ; ; Solution Structure of the trans-membrane domain of the NS2A of dengue virus 1I1S ; ; SOLUTION STRUCTURE OF THE TRANSCRIPTIONAL ACTIVATION DOMAIN OF THE BACTERIOPHAGE T4 PROTEIN MOTA 2MV6 ; ; Solution structure of the transmembrane domain and the juxta-membrane domain of the Erythropoietin Receptor in micelles 2L5B ; ; Solution structure of the transmembrane domain of Bcl-2 member Harakiri in micelles 2MFR ; ; Solution structure of the transmembrane domain of the insulin receptor in micelles 2KNU ; ; Solution structure of the transmembrane proximal region of the hepatis C virus E1 glycoprotein 1MH6 ; ; Solution Structure of the Transposon Tn5-encoding Bleomycin-binding Protein, BLMT 2MVW ; ; Solution structure of the TRIM19 B-box1 (B1) of human promyelocytic leukemia (PML) 5JPX ; ; Solution structure of the TRIM21 B-box2 (B2) 2KRQ ; ; Solution structure of the tRNA-Arg2 (ICG) ASL. 1DU6 ; ; SOLUTION STRUCTURE OF THE TRUNCATED PBX HOMEODOMAIN 2FO8 ; ; Solution structure of the Trypanosoma cruzi cysteine protease inhibitor chagasin 6VEE ; ; Solution structure of the TTD and linker region of mouse UHRF1 (NP95) 6VED ; ; Solution structure of the TTD and linker region of UHRF1 2XK0 ; ; Solution structure of the Tudor domain from Drosophila Polycomblike (Pcl) 1WGS ; ; Solution Structure of the Tudor Domain from Mouse Hypothetical Protein Homologous to Histone Acetyltransferase 2EQJ ; ; Solution structure of the TUDOR domain of Metal-response element-binding transcription factor 2 2E5P ; ; Solution structure of the TUDOR domain of PHD finger protein 1 (PHF1 protein) 2E5Q ; ; Solution structure of the TUDOR domain of PHD finger protein 19, isoform b [Homo sapiens] 2EQU ; ; Solution structure of the tudor domain of PHD finger protein 20-like 1 2EQM ; ; Solution structure of the TUDOR domain of PHD finger protein 20-like 1 [Homo sapiens] 6NNB ; ; Solution structure of the Tudor domain of PSHCP 2E6N ; ; Solution structure of the TUDOR domain of Staphylococcal nuclease domain-containing protein 1 1G5V ; ; SOLUTION STRUCTURE OF THE TUDOR DOMAIN OF THE HUMAN SMN PROTEIN 2DIQ ; ; Solution structure of the TUDOR domain of Tudor and KH domain containing protein 2D9T ; ; Solution structure of the Tudor domain of Tudor domain containing protein 3 from mouse 2EQK ; ; Solution structure of the TUDOR domain of Tudor domain-containing protein 4 1ICH ; ; SOLUTION STRUCTURE OF THE TUMOR NECROSIS FACTOR RECEPTOR-1 DEATH DOMAIN 1U5L ; ; Solution Structure of the turtle prion protein fragment (121-226) 2I1P ; ; Solution structure of the twelfth cysteine-rich ligand-binding repeat in rat megalin 2A55 ; ; Solution structure of the two N-terminal CCP modules of C4b-binding protein (C4BP) alpha-chain. 2LYV ; ; Solution structure of the two RRM domains of hnRNP A1 (UP1) using segmental isotope labeling 2GQJ ; ; Solution structure of the two zf-C2H2 like domains(493-575) of human zinc finger protein KIAA1196 1ZDX ; ; Solution Structure of the type 1 pilus assembly platform FimD(25-125) 1ZDV ; ; Solution Structure of the type 1 pilus assembly platform FimD(25-139) 2K3N ; ; Solution structure of the type 1 repetitive domain (TUSP1-RP1) of the egg case silk from Nephila Antipodiana 2K3O ; ; Solution structure of the type 2 repetitive domain (TUSP1-RP2) of the egg case silk from Nephila Antipodiana 1DAV ; ; SOLUTION STRUCTURE OF THE TYPE I DOCKERIN DOMAIN FROM THE CLOSTRIDIUM THERMOCELLUM CELLULOSOME (20 STRUCTURES) 1DAQ ; ; SOLUTION STRUCTURE OF THE TYPE I DOCKERIN DOMAIN FROM THE CLOSTRIDIUM THERMOCELLUM CELLULOSOME (MINIMIZED AVERAGE STRUCTURE) 1WGM ; ; Solution structure of the U-box in human ubiquitin conjugation factor E4A 1N87 ; ; Solution structure of the U-box of Prp19 1LC6 ; ; Solution Structure of the U6 Intramolecular Stem-loop RNA 2QH3 ; ; Solution structure of the U64 H/ACA snoRNA 3' terminal hairpin loop 2QH4 ; ; Solution structure of the U85 C/D-H/ACA scaRNA 5' terminal hairpin loop 2EC4 ; ; Solution structure of the UAS domain from human FAS-associated factor 1 2DLX ; ; Solution structure of the UAS domain of human UBX domain-containing protein 7 2JUJ ; ; Solution Structure of the UBA domain from c-Cbl 2JNH ; ; Solution Structure of the UBA Domain from Cbl-b 1V92 ; ; Solution structure of the UBA domain from p47, a major cofactor of the AAA ATPase p97 2DZL ; ; Solution Structure of the UBA domain in Human Protein FAM100B 1PGY ; ; Solution structure of the UBA domain in Saccharomyces cerevisiae protein, Swa2p 2DKL ; ; Solution Structure of the UBA Domain in the Human Trinucleotide Repeat Containing 6C Protein (hTNRC6C) 2MGW ; ; Solution Structure of the UBA Domain of Human NBR1 1WJI ; ; Solution Structure of the UBA Domain of Human Tudor Domain Containing Protein 3 2CRN ; ; Solution structure of the UBA domain of human UBASH3A protein 2RRU ; ; Solution structure of the UBA omain of p62 and its interaction with ubiquitin 2FUH ; ; Solution Structure of the UbcH5c/Ub Non-covalent Complex 1V86 ; ; Solution structure of the ubiquitin domain from mouse D7Wsu128e protein 2JX5 ; ; Solution structure of the ubiquitin domain N-terminal to the S27a ribosomal subunit of Giardia lamblia 1WXV ; ; Solution structure of the ubiquitin domain of BCL-2 binding athanogene-1 2CWB ; ; Solution Structure of the Ubiquitin-Associated Domain of Human BMSC-UbP and its Complex with Ubiquitin 2DEN ; ; Solution Structure of the Ubiquitin-Associated Domain of Human BMSC-UbP and its Complex with Ubiquitin 2KHU ; ; Solution Structure of the Ubiquitin-Binding Motif of Human Polymerase Iota 2I5O ; ; Solution Structure of the Ubiquitin-Binding Zinc Finger (UBZ) Domain of the Human DNA Y-Polymerase Eta 1V5O ; ; Solution Structure of the Ubiquitin-like Domain from Mouse Hypothetical 1700011N24Rik Protein 1V5T ; ; Solution Structure of the Ubiquitin-like Domain from Mouse Hypothetical 8430435I17Rik Protein 2DZM ; ; Solution Structure of the Ubiquitin-like Domain in Human FAS-associated factor 1 (hFAF1) 1J8C ; ; Solution Structure of the Ubiquitin-like Domain of hPLIC-2 1TTN ; ; Solution structure of the ubiquitin-like domain of human DC-UBP from dendritic cells 2N7D ; ; Solution structure of the UBL domain of human Ddi2 6KQV ; ; Solution Structure of the UbL Domain of USP19 2N7E ; ; Solution structure of the UBL domain of yeast Ddi1 1WGD ; ; Solution structure of the Ubl-domain of Herp 2MUL ; ; Solution Structure of the UBM1 domain of human HUWE1/ARF-BP1 2CR5 ; ; Solution structure of the UBX domain of D0H8S2298E protein 1WJ4 ; ; Solution structure of the UBX domain of KIAA0794 protein 1I4V ; ; SOLUTION STRUCTURE OF THE UMUD' HOMODIMER 2LRT ; ; Solution structure of the uncharacterized thioredoxin-like protein BVU_1432 from Bacteroides vulgatus 1N4B ; ; Solution Structure of the undecamer CGAAAC*TTTCG 1J4Y ; ; Solution Structure of the Unmodified Anticodon Stem-loop from E. coli tRNA(Phe) 1KKA ; ; Solution Structure of the Unmodified Anticodon Stem-loop from E. coli tRNA(Phe) 1LMV ; ; Solution structure of the unmodified U2 snRNA-intron branch site helix from S. cerevisiae 2EDI ; ; Solution structure of the UQ_con domain from human NEDD8-conjugating enzyme NCE2 1KMD ; ; SOLUTION STRUCTURE OF THE VAM7P PX DOMAIN 2LCT ; ; Solution structure of the Vav1 SH2 domain complexed with a Syk-derived doubly phosphorylated peptide 2MC1 ; ; Solution structure of the Vav1 SH2 domain complexed with a Syk-derived singly phosphorylated peptide 2ROR ; ; Solution structure of the VAV1 SH2 domain complexed with a tyrosine-phosphorylated peptide from SLP76 1UJS ; ; Solution structure of the Villin headpiece domain of human actin-binding LIM protein homologue (KIAA0843 protein) 1JMN ; ; Solution Structure of the Viscotoxin A2 1JMP ; ; Solution Structure of the Viscotoxin B 2KYH ; ; Solution structure of the voltage-sensing domain of KvAP 1YN1 ; ; Solution structure of the VS ribozyme stem-loop V in the presence of MgCl2 1HWQ ; ; SOLUTION STRUCTURE OF THE VS RIBOZYME SUBSTRATE STEM-LOOP 2FE9 ; ; Solution structure of the Vts1 SAM domain in the presence of RNA 2JYG ; ; Solution Structure of the W184A/M185A Mutant of the Carboxy-terminal Dimerization Domain of the HIV-1 Capsid Protein 1I87 ; ; SOLUTION STRUCTURE OF THE WATER-SOLUBLE FRAGMENT OF RAT HEPATIC APOCYTOCHROME B5 1I8C ; ; SOLUTION STRUCTURE OF THE WATER-SOLUBLE FRAGMENT OF RAT HEPATIC APOCYTOCHROME B5 6IB6 ; ; Solution structure of the water-soluble LU-domain of human Lypd6 protein 6ZSO ; ; Solution structure of the water-soluble LU-domain of human Lypd6b protein 2EOC ; ; Solution structure of the WGR domain from human poly [ADP-ribose] polymerase-3 8E4V ; ; Solution structure of the WH domain of MORF 2K2G ; ; Solution structure of the wild-type catalytic domain of human matrix metalloproteinase 12 (MMP-12) in complex with a tight-binding inhibitor 2K95 ; ; Solution structure of the wild-type P2B-P3 pseudoknot of human telomerase RNA 2ARF ; ; Solution structure of the Wilson ATPase N-domain in the presence of ATP 2DO7 ; ; Solution structure of the winged helix-turn-helix motif of human CUL-4B 1T84 ; ; Solution structure of the Wiskott-Aldrich Syndrome Protein (WASP) autoinhibited core domain complexed with (S)-wiskostatin, a small molecule inhibitor 2LRU ; ; Solution Structure of the WNK1 Autoinhibitory Domain 2YSC ; ; Solution structure of the WW domain from the human amyloid beta A4 precursor protein-binding family B member 3, APBB3 2YSH ; ; Solution structure of the WW domain from the human growth-arrest-specific protein 7, GAS-7 2YSG ; ; Solution structure of the WW domain from the human syntaxin-binding protein 4 2MDC ; ; Solution structure of the WW domain of HYPB 1TP4 ; ; Solution structure of the XPC binding domain of hHR23A protein 1FVS ; ; SOLUTION STRUCTURE OF THE YEAST COPPER TRANSPORTER DOMAIN CCC2A IN THE APO AND CU(I) LOAD STATES 1FVQ ; ; SOLUTION STRUCTURE OF THE YEAST COPPER TRANSPORTER DOMAIN CCC2A IN THE APO AND CU(I) LOADED STATES 5KES ; ; Solution structure of the yeast Ddi1 HDD domain 2JTI ; ; Solution structure of the yeast iso-1-cytochrome c (T12A) : yeast cytochrome c peroxidase complex 1LPW ; ; Solution structure of the yeast spliceosomal U2 snRNA-intron branch site helix featuring a conserved pseudouridine 2LLV ; ; Solution structure of the yeast Sti1 DP1 domain 2LLW ; ; Solution structure of the yeast Sti1 DP2 domain 1RF8 ; ; Solution structure of the yeast translation initiation factor eIF4E in complex with m7GDP and eIF4GI residues 393 to 490 1M94 ; ; Solution Structure of the Yeast Ubiquitin-Like Modifier Protein Hub1 1IV0 ; ; Solution structure of the YqgF-family protein (N-terminal fragment) 6LR2 ; ; SOLUTION STRUCTURE OF THE YTH DOMAIN IN YTH DOMAIN-2 CONTAINING PROTEIN 2 2YUD ; ; Solution structure of the YTH domain in YTH domain-containing protein 1 (Putative splicing factor YT521) 2YU6 ; ; Solution structure of the YTH domain in YTH domain-containing protein 2 2MTV ; ; Solution Structure of the YTH Domain of YT521-B in complex with N6-Methyladenosine containing RNA 1OYI ; ; Solution structure of the Z-DNA binding domain of the vaccinia virus gene E3L 2L54 ; ; Solution structure of the Zalpha domain mutant of ADAR1 (N43A,Y47A) 2L4M ; ; Solution structure of the Zbeta domain of human DAI and its binding modes to B- and Z-DNA 6CKU ; ; Solution structure of the zebrafish granulin AaE 1WFP ; ; Solution structure of the zf-AN1 domain from Arabiopsis thaliana F5O11.17 protein 1X4W ; ; Solution structure of the zf-AN1 domain from human hypothetical protein FLJ13222 1X4V ; ; Solution structure of the zf-AN1 domain from human hypothetical protein LOC130617 1WFF ; ; Solution structure of the zf-AN1 domain from mouse RIKEN cDNA 2810002D23 protein 1WFL ; ; Solution structure of the zf-AN1 domain from mouse zinc finger protein 216 2EGM ; ; Solution structure of the zf-B_box domain from human Tripartite motif protein 41 2CSV ; ; Solution structure of the zf-B_box type2 domain of human tripartite motif protein TRIM29 isoform alpha 2YU5 ; ; Solution structure of the zf-C2H2 domain (669-699AA) in zinc finger protein 473 2YRK ; ; Solution structure of the zf-C2H2 domain in zinc finger homeodomain 4 2CS3 ; ; Solution structure of the zf-C3HC4 domain of human KIAA1865 2FC6 ; ; Solution structure of the zf-CCCH domain of target of EGR1, member 1 (Nuclear) 2E5S ; ; Solution structure of the zf-CCCHx2 domain of muscleblind-like 2, isoform 1 [Homo sapiens] 2E61 ; ; Solution structure of the zf-CW domain in zinc finger CW-type PWWP domain protein 1 2YQP ; ; Solution structure of the zf-HIT domain in DEAD (Asp-Glu-Ala-Asp) box polypeptide 59 2YQQ ; ; Solution structure of the zf-HIT domain in zinc finger HIT domain-containing protein 3 (TRIP-3) 2CR8 ; ; Solution structure of the zf-RanBP domain of p53-binding protein Mdm4 2CRC ; ; Solution structure of the zf-RanBP domain of the protein HBV associated factor 2D9G ; ; Solution structure of the zf-RanBP domain of YY1-associated factor 2 2YRC ; ; Solution structure of the zf-Sec23_Sec24 from human Sec23A 2YRD ; ; Solution structure of the zf-Sec23_Sec24 from human Sec23A mutant V69A 2D9K ; ; Solution structure of the zf-TRAF domain of FLN29 gene product 2KZI ; ; Solution structure of the ZHER2 Affibody 2KZJ ; ; Solution structure of the ZHER2 Affibody (alternative) 2LVH ; ; Solution structure of the zinc finger AFV1p06 protein from the hyperthermophilic archaeal virus AFV1 2CT5 ; ; Solution Structure of the zinc finger BED domain of the zinc finger BED domain containing protein 1 2YSA ; ; Solution structure of the zinc finger CCHC domain from the human retinoblastoma-binding protein 6 (Retinoblastoma-binding Q protein 1, RBQ-1) 2E72 ; ; Solution structure of the zinc finger domain of human KIAA0461 7SEK ; ; Solution structure of the zinc finger domain of murine MetAP1, complexed with ZNG N-terminal peptide 1VD4 ; ; Solution structure of the zinc finger domain of TFIIE alpha 2CT1 ; ; Solution Structure of the zinc finger domain of Transcriptional repressor CTCF protein 2L80 ; ; Solution Structure of the Zinc Finger Domain of USP13 2YRA ; ; Solution structure of the zinc finger domains (1-87) from human F-box only protein 2YRE ; ; Solution structure of the zinc finger domains (1-87) from human F-box only protein 2ECT ; ; Solution structure of the Zinc finger, C3HC4 type (RING finger) domain of RING finger protein 126 2ECV ; ; Solution structure of the Zinc finger, C3HC4 type (RING finger) domain of Tripartite motif-containing protein 5 2ECW ; ; Solution structure of the Zinc finger, C3HC4 type (RING finger) domain Tripartite motif protein 30 2ECY ; ; Solution structure of the Zinc finger, C3HC4 type (RING finger)"" domain of TNF receptor-associated factor 3 2EBL ; ; Solution structure of the Zinc finger, C4-type domain of human COUP transcription factor 1 5U6H ; ; Solution structure of the zinc fingers 1 and 2 of MBNL1 5U9B ; ; Solution structure of the zinc fingers 1 and 2 of MBNL1 in complex with human cardiac troponin T pre-mRNA 5U6L ; ; Solution structure of the zinc fingers 3 and 4 of MBNL1 1UW0 ; ; Solution structure of the zinc-finger domain from DNA ligase IIIa 2CQE ; ; Solution Structure of the Zinc-finger domain in KIAA1064 protein 2CQF ; ; Solution Structure of the Zinc-finger domain in LIN-28 2BL6 ; ; Solution structure of the Zn complex of EIAV NCp11(22-58) peptide, including two CCHC Zn-binding motifs. 2IWJ ; ; SOLUTION STRUCTURE OF THE ZN COMPLEX OF HIV-2 NCP(23-49) PEPTIDE, ENCOMPASSING PROTEIN CCHC-LINKER, DISTAL CCHC ZN-BINDING MOTIF AND C- TERMINAL TAIL. 2LK5 ; ; Solution structure of the Zn(II) form of Desulforedoxin 6QK5 ; ; Solution Structure of the Zn-loaded form of a Metallothionein from Helix Pomatia 6KCZ ; ; Solution structure of the ZnF-UBP domain of USP20/VDU2 2E5R ; ; Solution structure of the ZZ domain of Dystrobrevin alpha (Dystrobrevin-alpha) 2DIP ; ; Solution structure of the ZZ domain of Zinc finger SWIM domain containing protein 2 2FC7 ; ; Solution structure of the ZZ domain of ZZZ3 protein 1AX6 ; ; SOLUTION STRUCTURE OF THE [AF]-C8-DG ADDUCT OPPOSITE A-2 DELETION SITE IN THE NARI HOT SPOT SEQUENCE CONTEXT; NMR, 6 STRUCTURES 1AX7 ; ; SOLUTION STRUCTURE OF THE [AF]-C8-DG ADDUCT POSITIONED AT A TEMPLATE-PRIMER JUNCTION, NMR, 6 STRUCTURES 1C0Y ; ; SOLUTION STRUCTURE OF THE [AF]-C8-DG ADDUCT POSITIONED OPPOSITE DA AT A TEMPLATE-PRIMER JUNCTION 2MPG ; ; Solution structure of the [AibB8,LysB28,ProB29]-insulin analogue 1UEO ; ; Solution structure of the [T8A]-Penaeidin-3 1S7P ; ; Solution structure of thermolysin digested microcin J25 2LLN ; ; Solution structure of Thermus thermophilus apo-CuA 2ROG ; ; Solution structure of Thermus thermophilus HB8 TTHA1718 protein in living E. coli cells 2ROE ; ; Solution structure of thermus thermophilus HB8 TTHA1718 protein in vitro 1PJZ ; ; Solution structure of thiopurine methyltransferase from Pseudomonas syringae 2HSY ; ; Solution structure of Thioredoxin 2 from Saccharomyces cerevisiae 2L5L ; ; Solution Structure of Thioredoxin from Bacteroides Vulgatus 1XFL ; ; Solution Structure of Thioredoxin h1 from Arabidopsis Thaliana 1GL8 ; ; Solution structure of thioredoxin m from spinach, oxidized form 1WMJ ; ; Solution structure of Thioredoxin type h from Oryza sativa 5ZPV ; ; Solution Structure of Thioredoxin-Like Effector Protein (TRX3) from Edwardsiella piscicida 1EDW ; ; SOLUTION STRUCTURE OF THIRD INTRADISKAL LOOP OF BOVINE RHODOPSIN (RESIDUES 268-293) 1F0Z ; ; SOLUTION STRUCTURE OF THIS, THE SULFUR CARRIER PROTEIN IN E.COLI THIAMIN BIOSYNTHESIS 2EBT ; ; Solution structure of three tandem repeats of zf-C2H2 domains from human Kruppel-like factor 5 2EE8 ; ; Solution structure of three zf-C2H2 domains from mouse protein odd-skipped-related 2 splicing isoform 2 7V3T ; ; Solution structure of thrombin binding aptamer G-quadruplex bound a self-adaptive small molecule with rotated ligands 1IEN ; ; SOLUTION STRUCTURE OF TIA 2JTO ; ; Solution Structure of Tick Carboxypeptidase Inhibitor 2K2X ; ; Solution Structure of Tick Carboxypeptidase Inhibitor at pH 3.5 5H2S ; ; Solution structure of Tilapia Piscidin 4 (TP4) from Oreochromis niloticus 7QXJ ; ; Solution structure of Tk-hefu-11 8AR0 ; ; Solution structure of TLR2 transmembrane and cytoplasmic juxtamembrane regions 8AR1 ; ; Solution structure of TLR3 transmembrane and cytoplasmic juxtamembrane regions 8AR2 ; ; Solution structure of TLR5 transmembrane and cytoplasmic juxtamembrane regions 8AR3 ; ; Solution structure of TLR9 transmembrane and cytoplasmic juxtamembrane regions 1JDQ ; ; Solution Structure of TM006 Protein from Thermotoga maritima 1T6R ; ; Solution structure of TM1442, a putative anti sigma factor antagonist in phosphorylated state 1R73 ; ; Solution Structure of TM1492, the L29 ribosomal protein from Thermotoga maritima 1TVI ; ; Solution structure of TM1509 from Thermotoga maritima: VT1, a NESGC target protein 2JTW ; ; Solution structure of TM7 bound to DPC micelles 7NT7 ; ; Solution structure of toll like receptor 1 (TLR1) TIR domain 1CN2 ; ; SOLUTION STRUCTURE OF TOXIN 2 FROM CENTRUROIDES NOXIUS HOFFMANN, A BETA SCORPION NEUROTOXIN ACTING ON SODIUM CHANNELS, NMR, 15 STRUCTURES 1PE4 ; ; SOLUTION STRUCTURE OF TOXIN CN12 FROM CENTRUROIDES NOXIUS ALFA SCORPION TOXIN ACTING ON SODIUM CHANNELS. NMR STRUCTURE 2MHJ ; ; Solution structure of TpsB4 N-terminal POTRA domain from Pseudomonas aeruginosa 2JSY ; ; Solution structure of Tpx in the oxidized state 2JSZ ; ; Solution structure of Tpx in the reduced state 2EOD ; ; Solution structure of TRAF-type zinc finger domains (190- 248) from human TNF receptor-associated factor 4 2M6H ; ; Solution structure of trans(C2-P3) trans (D5-P6) of LO959 in methanol 1VA1 ; ; Solution Structure of Transcription Factor Sp1 DNA Binding Domain (Zinc Finger 1) 1VA2 ; ; Solution Structure of Transcription Factor Sp1 DNA Binding Domain (Zinc Finger 2) 1VA3 ; ; Solution Structure of Transcription Factor Sp1 DNA Binding Domain (Zinc Finger 3) 2N8N ; ; Solution structure of translation initiation factor 6C00 ; ; Solution structure of translation initiation factor 1 from Clostridium difficile 2NCH ; ; Solution structure of translation initiation factor IF1 from wolbachia endosymbiont strain TRS of Brugia malayi 6J2Y ; ; Solution structure of translationally controlled tumor protein from photosynthetic microalga Nannochloropsis oceanica 2DAS ; ; Solution structure of TRASH domain of zinc finger MYM-type protein 5 6D6S ; ; Solution structure of Trigger Factor dimer 2LDO ; ; Solution structure of triheme cytochrome PpcA from Geobacter sulfurreducens reveals the structural origin of the redox-Bohr effect 6I9H ; ; Solution structure of TRIM28 RING domain 1W0S ; ; Solution structure of trimeric form of properdin by X-ray solution scattering and analytical ultracentrifugation 2L5K ; ; Solution structure of truncated 23-mer DNA MUC1 aptamer 6OKY ; ; Solution structure of truncated peptide from PAMap53 5YOZ ; ; Solution structure of truncated Rab5a from Leishmania donovani 2IPA ; ; solution structure of Trx-ArsC complex 1TUR ; ; SOLUTION STRUCTURE OF TURKEY OVOMUCOID THIRD DOMAIN AS DETERMINED FROM NUCLEAR MAGNETIC RESONANCE DATA 2MV2 ; ; Solution structure of Twinstar from Drosophila melanogastor 2CTD ; ; Solution structure of two zf-C2H2 domains from human Zinc finger protein 512 2FZ5 ; ; Solution structure of two-electron reduced Megasphaera elsdenii flavodoxin 1E8R ; ; SOLUTION STRUCTURE OF TYPE X CBD 1QLD ; ; Solution structure of type X CBM 2M3V ; ; Solution structure of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonas aeruginosa 1JH3 ; ; Solution structure of tyrosyl-tRNA synthetase C-terminal domain. 7AEP ; ; Solution structure of U1-A RRM2 (190-282) 2M0X ; ; Solution structure of U14Ub1, an engineered ubiquitin variant with increased affinity for USP14 2O32 ; ; Solution structure of U2 snRNA stem I from human, containing modified nucleotides 2O33 ; ; Solution structure of U2 snRNA stem I from S. cerevisiae 6TR0 ; ; Solution structure of U2AF2 RRM1,2 1WGN ; ; Solution Structure of UBA domain of Human Ubiquitin Associated Protein 1 (UBAP1) 2KNA ; ; Solution structure of UBA domain of XIAP 1XO3 ; ; Solution Structure of Ubiquitin like protein from Mus Musculus 8HW9 ; ; Solution structure of ubiquitin-like domain (UBL) of human ZFAND1 1WE7 ; ; Solution structure of Ubiquitin-like domain in SF3a120 1WE6 ; ; Solution structure of Ubiquitin-like domain in splicing factor AAL91182 1UEL ; ; Solution structure of ubiquitin-like domain of hHR23B complexed with ubiquitin-interacting motif of proteasome subunit S5a 1IYF ; ; Solution structure of ubiquitin-like domain of human parkin 2MQJ ; ; Solution structure of ubiquitin-like protein from Caldiarchaeum subterraneum 2L32 ; ; solution structure of ubiquitin-like small archaeal modifier protein in Haloferax volcanii 1P0R ; ; Solution Structure of UBL5 a human Ubiquitin-Like Protein 2KWV ; ; Solution Structure of UBM1 of murine Polymerase iota in Complex with Ubiquitin 2KWU ; ; Solution Structure of UBM2 of murine Polymerase iota in Complex with Ubiquitin 2I50 ; ; Solution Structure of Ubp-M Znf-UBP domain 2KXJ ; ; Solution structure of UBX domain of human UBXD2 protein 2LEN ; ; Solution structure of UCHL1 S18Y variant 6IZG ; ; Solution structure of Ufm1 protein from Trypanosoma brucei 1WXS ; ; Solution Structure of Ufm1, a ubiquitin-fold modifier 2M1Z ; ; Solution structure of uncharacterized protein lmo0427 2K4V ; ; Solution structure of uncharacterized protein PA1076 from Pseudomonas aeruginosa. Northeast Structural Genomics Consortium (NESG) target PaT3, Ontario Center for Structural Proteomics target PA1076 . 2M72 ; ; Solution structure of uncharacterized thioredoxin-like protein PG_2175 from Porphyromonas gingivalis 6ZLE ; ; Solution structure of unliganded MLKL executioner domain 2DO8 ; ; Solution Structure of UPF0301 protein HD_1794 2JR5 ; ; Solution structure of UPF0350 protein VC_2471. Northeast Structural Genomics Target VcR36 2JR6 ; ; Solution structure of UPF0434 protein NMA0874. Northeast Structural Genomics Target MR32 2AX5 ; ; Solution Structure of Urm1 from Saccharomyces Cerevisiae 2K9X ; ; Solution structure of Urm1 from Trypanosoma brucei 2HDM ; ; Solution structure of V21C/V59C Lymphotactin/XCL1 2NBE ; ; Solution structure of V26A mutant of Ubiquitin at pH 2.0 2NBD ; ; Solution structure of V26A mutant of Ubiquitin at pH 6.0 2JMG ; ; Solution structure of V7R mutant of HIV-1 myristoylated matrix protein 1VFI ; ; Solution Structure of Vanabin2 (RUH-017), a Vanadium-binding Protein from Ascidia sydneiensis samea 2E5E ; ; Solution Structure of Variable-type Domain of Human Receptor for Advanced Glycation Endproducts 2K7G ; ; Solution Structure of varv F 2LNX ; ; Solution structure of Vav2 SH2 domain 1U89 ; ; Solution structure of VBS2 fragment of talin 2B0H ; ; Solution structure of VBS3 fragment of talin 6OKW ; ; Solution structure of VEK50 6OQ9 ; ; Solution structure of VEK50 in the bound form with plasminogen kringle 2 6OKX ; ; Solution structure of VEK50RH1/AA 6BZL ; ; Solution structure of VEK75 2LHT ; ; Solution structure of Venturia inaequalis cellophane-induced 1 protein (ViCin1) domains 1 and 2 2LUW ; ; Solution structure of vEP C-ter 100 2N9N ; ; solution structure of VG16KRKP in C.neoformans (conformation 1) 2KUK ; ; Solution structure of vhl-2 1VB8 ; ; solution structure of vhr1, the first cyclotide from root tissue 1NXI ; ; Solution structure of Vibrio cholerae protein VC0424 6WQJ ; ; Solution structure of vicilin-buried peptide-10 from cucumber 1HHV ; ; SOLUTION STRUCTURE OF VIRUS CHEMOKINE VMIP-II 5V4U ; ; Solution structure of VKK38 bound to plasminogen kringle 2 2K9O ; ; Solution structure of Vm24 synthetic scorpion toxin 2MXD ; ; Solution structure of VPg of porcine sapovirus 1Q0W ; ; Solution structure of Vps27 amino-terminal UIM-ubiquitin complex 1S6X ; ; Solution structure of VSTx 2N1N ; ; Solution structure of VSTx1 2VB5 ; ; Solution structure of W60G mutant of human beta2-microglobulin 2CR9 ; ; Solution structure of WGR domain of poly(ADP-ribose) polymerase-1 1CZ2 ; ; SOLUTION STRUCTURE OF WHEAT NS-LTP COMPLEXED WITH PROSTAGLANDIN B2. 1IY5 ; ; Solution structure of wild type OMSVP3 1KQ8 ; ; Solution Structure of Winged Helix Protein HFH-1 2DK5 ; ; Solution structure of Winged-Helix domain in RNA polymerase III 39KDa polypeptide 2DK7 ; ; Solution structure of WW domain in transcription elongation regulator 1 2DK1 ; ; Solution structure of WW domain in WW domain binding protein 4 (WBP-4) 2MDJ ; ; Solution structure of WW domain with polyproline stretch (PP2WW) of HYPB 1UJR ; ; Solution structure of WWE domain in BAB28015 1X4R ; ; Solution structure of WWE domain in Parp14 protein 2DK6 ; ; Solution structure of WWE domain in poly (ADP-ribose) polymerase family, member 11 (PARP 11) 2KEP ; ; Solution structure of XcpT, the main component of the type 2 secretion system of Pseudomonas aeruginosa 1R3B ; ; Solution structure of xenopus laevis Mob1 1XU0 ; ; Solution structure of Xenopus leavis prion protein 1PVE ; ; Solution structure of XPC binding domain of hHR23B 5W8Y ; ; Solution Structure of XPH1, a Hybrid Sequence of Xfaso 1 and Pfl 6, Two Cro Proteins With Different Folds 5W8Z ; ; Solution Structure of XPH2, a Hybrid Sequence of Xfaso 1 and Pfl 6, Two Cro Proteins With Different Folds 2ORU ; ; Solution structure of xtz1-peptide, a beta-hairpin peptide with a structured extension 2MQ6 ; ; Solution structure of Y125F mutant of eRF1 N-domain 1SG5 ; ; Solution structure of Yaeo, a Rho-specific inhibitor of transcription termination 1YWS ; ; Solution structure of YBL071w-A from Saccharomyces cerevisiae. 2ASY ; ; Solution Structure of ydhR protein from Escherichia coli 1U96 ; ; Solution Structure of Yeast Cox17 with Copper Bound 2M80 ; ; Solution structure of yeast dithiol glutaredoxin Grx8 2OGH ; ; Solution structure of yeast eIF1 1HV2 ; ; SOLUTION STRUCTURE OF YEAST ELONGIN C IN COMPLEX WITH A VON HIPPEL-LINDAU PEPTIDE 5Y4B ; ; Solution structure of yeast Fra2 2K0N ; ; Solution Structure of Yeast Gal11p kix domain 6ALY ; ; Solution structure of yeast Med15 ABD2 residues 277-368 1Y8M ; ; Solution Structure of Yeast Mitochondria Fission Protein Fis1 2KH9 ; ; Solution structure of yeast Prp24-RRM2 bound to a fragment of U6 RNA 1XS8 ; ; Solution Structure of YGGX protein of salmonella enterica 1DCJ ; ; SOLUTION STRUCTURE OF YHHP, A NOVEL ESCHERICHIA COLI PROTEIN IMPLICATED IN THE CELL DIVISION 1H8M ; ; Solution structure of ykt6 1IOU ; ; SOLUTION STRUCTURE OF YKT6P (1-140) 2ML9 ; ; Solution structure of YSCUCN in a micellar complex with SDS 2RVC ; ; Solution structure of Zalpha domain of goldfish ZBP-containing protein kinase 1RGW ; ; Solution Structure of ZASP's PDZ domain 1WG2 ; ; Solution structure of zf-AN1 domain from Arabidopsis thaliana 1WJP ; ; Solution structure of zf-C2H2 domains from human Zinc finger protein 295 2DJ8 ; ; Solution Structure of zf-MYND Domain of Protein CBFA2TI (Protein MTG8) 7YAB ; ; Solution structure of zinc finger domain 1 of human ZFAND1 7Y7L ; ; Solution structure of zinc finger domain 2 of human ZFAND1 2EPC ; ; Solution structure of Zinc finger domain 7 in Zinc finger protein 32 2CTT ; ; Solution structure of zinc finger domain from human DnaJ subfamily A menber 3 2CTU ; ; Solution structure of zinc finger domain from human Zn finger protein 483 1X4S ; ; Solution structure of zinc finger HIT domain in protein FON 1M60 ; ; Solution Structure of Zinc-substituted cytochrome c 2KN9 ; ; Solution structure of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis. Seattle Structural Genomics Center for Infectious Disease target MytuD.01635.a 8COO ; ; Solution structure of Zipcode binding protein 1 (ZBP1) KH3(DD)KH4 domains in complex with N6-Methyladenosine containing RNA 2NB9 ; ; Solution structure of ZitP zinc finger 6DMZ ; ; Solution structure of ZmD32 2N6J ; ; Solution structure of Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile 6KH8 ; ; Solution structure of Zn free Bovine Pancreatic Insulin in 20% acetic acid-d4 (pH 1.9) 2ODX ; ; Solution structure of Zn(II)Cox4 6E83 ; ; Solution structure of ZZZ3 ZZ domain in complex with histone H3 tail 6E86 ; ; Solution structure of ZZZ3 ZZ domain in complex with histone H3K4ac peptide 1C2U ; ; SOLUTION STRUCTURE OF [ABU3,35]SHK12-28,17-32 2N2V ; ; Solution structure of [B26-B29 triazole cross-linked]-insulin analogue at pH 1.9 2N2W ; ; Solution structure of [B26-B29 triazole cross-linked]-insulin analogue at pH 8.0 1D69 ; ; SOLUTION STRUCTURE OF [D(ATGAGCGAATA)]2: ADJACENT G:A MISMATCHES STABILIZED BY CROSS-STRAND BASE-STACKING AND BII PHOSPHATE GROUPS 1D68 ; ; SOLUTION STRUCTURE OF [D(GCGTATACGC)]2 1D42 ; ; SOLUTION STRUCTURE OF [D(GTATATAC)]2 VIA RESTRAINED MOLECULAR DYNAMICS SIMULATIONS WITH NUCLEAR MAGNETIC RESONANCE CONSTRAINTS DERIVED FROM RELAXATION MATRIX ANALYSIS OF TWO-DIMENSIONAL NUCLEAR OVERHAUSER EFFECT EXPERIMENTS 2MVD ; ; Solution structure of [GlnB22]-insulin mutant at pH 1.9 2N2X ; ; Solution structure of [GlyB24,B27-B29 triazole cross-linked]-insulin analogue at pH 1.9 2F2I ; ; Solution structure of [P20D,V21K]-kalata B1 2BC7 ; ; Solution structure of [Sec2,8]-ImI 2F2J ; ; Solution structure of [W19K, P20N, V21K]-kalata B1 2KV8 ; ; Solution structure ofRGS12 PDZ domain 1GK5 ; ; Solution Structure the mEGF/TGFalpha44-50 chimeric growth factor 2LRO ; ; Solution structure, dynamics and binding studies of CtCBM11 2LRP ; ; Solution structure, dynamics and binding studies of CtCBM11 2AB3 ; ; Solution structures and characterization of HIV RRE IIB RNA targeting zinc finger proteins 2AB7 ; ; Solution structures and characterization of HIV RRE IIB RNA targeting zinc finger proteins 7YRV ; ; Solution structures of a disulfide-directed multicyclic peptide with affinity for FGFR1 7YRW ; ; Solution structures of a disulfide-directed multicyclic peptide with affinity for HER2 7YRX ; ; Solution structures of a disulfide-directed multicyclic peptide with affinity for HER3 7W8Z ; ; Solution structures of a disulfide-rich peptide designed through sequence grafting 8GUC ; ; Solution structures of a disulfide-rich peptide selected via Cellular Protein Quality Control 7WE3 ; ; Solution structures of a disulfide-rich peptide that can bind CD28 7WEI ; ; Solution structures of a disulfide-rich peptide that can bind CD28 7W8T ; ; Solution structures of a disulfide-rich peptide that can bind KEAP1 7W96 ; ; Solution structures of a disulfide-rich peptide that can bind KEAP1 7W8K ; ; Solution structures of a disulfide-rich peptide that can bind mdm2 7W8O ; ; Solution structures of a disulfide-rich peptide that can bind mdm2 7W8R ; ; Solution structures of a disulfide-rich peptide that can bind mdm2 2NQ1 ; ; Solution Structures of a DNA Dodecamer Duplex 2NQ4 ; ; Solution Structures of a DNA Dodecamer Duplex 2NPW ; ; Solution Structures of a DNA Dodecamer Duplex with a Cisplatin 1,2-d(GG) Intrastrand Cross-Link 2NQ0 ; ; Solution Structures of a DNA Dodecamer Duplex with a Cisplatin 1,2-d(GG) Intrastrand Cross-Link 2MM0 ; ; Solution Structures of active Ptr ToxB and its inactive homolog highlight protein dynamics as a modulator of toxin activity 2MM2 ; ; Solution Structures of Active Ptr ToxB and its inactive Homolog highlight Protein Dynamics as a Modulator of Toxin activity. 2K6Y ; ; Solution structures of apo form PCuA (cis conformation of the peptide bond involving the nitrogen of P14) 2K6W ; ; Solution structures of apo PCuA (trans conformation of the peptide bond involving the nitrogen of P14) 2K6V ; ; Solution structures of apo Sco1 protein from Thermus Thermophilus 7Y0I ; ; Solution structures of ASH1L PHD domain in complex with H3K4me2 peptide 5U5S ; ; Solution structures of Brd2 second bromodomain in complex with stat3 peptide 2LSP ; ; solution structures of BRD4 second bromodomain with NF-kB-K310ac peptide 1HZK ; ; SOLUTION STRUCTURES OF C-1027 APOPROTEIN AND ITS COMPLEX WITH THE AROMATIZED CHROMOPHORE 1HZL ; ; SOLUTION STRUCTURES OF C-1027 APOPROTEIN AND ITS COMPLEX WITH THE AROMATIZED CHROMOPHORE 2K70 ; ; Solution structures of copper loaded form PCuA (cis conformation of the peptide bond involving the nitrogen of P14) 2K6Z ; ; Solution structures of copper loaded form PCuA (trans conformation of the peptide bond involving the nitrogen of P14) 1IT1 ; ; Solution structures of ferrocytochrome c3 from Desulfovibrio vulgaris Miyazaki F 7KYZ ; ; Solution structures of full-length K-RAS bound to GDP 1R8T ; ; Solution structures of high affinity miniprotein ligands to Streptavidin 7P3M ; ; Solution structures of HIV-1 and SIVmac p6 and their interaction with accessory proteins Vpr and Vpx in the presence of DPC micelles 7P3O ; ; Solution structures of HIV-1 and SIVmac p6 and their interaction with accessory proteins Vpr and Vpx in the presence of DPC micelles 7P3P ; ; Solution structures of HIV-1 and SIVmac p6 and their interaction with accessory proteins Vpr and Vpx in the presence of DPC micelles 2L5C ; ; Solution structures of human PIWI-like 1 PAZ domain 2L5D ; ; Solution Structures of human PIWI-like 1 PAZ domain with ssRNA (5'-pUGACA) 4TGF ; ; SOLUTION STRUCTURES OF HUMAN TRANSFORMING GROWTH FACTOR ALPHA DERIVED FROM 1*H NMR DATA 2LPU ; ; Solution structures of KmAtg10 2G6U ; ; Solution structures of MP-2: a high affinity miniprotein ligand to Streptavidin 2L4Q ; ; Solution Structures of Oxidized and Reduced Thioredoxin C from M. tb 2L59 ; ; Solution Structures of Oxidized and Reduced Thioredoxin C from M. tb 2LQM ; ; Solution Structures of RadA intein from Pyrococcus horikoshii 2MJV ; ; Solution structures of second bromodomain of Brd4 with di-acetylated Twist peptide 1ID6 ; ; SOLUTION STRUCTURES OF SYR6 2DN7 ; ; Solution structures of the 6th fn3 domain of human receptor-type tyrosine-protein phosphatase F 5KH8 ; ; Solution structures of the apo state fluoride riboswitch 2CKA ; ; Solution structures of the BRK domains of the human Chromo Helicase Domain 7 and 8, reveals structural similarity with GYF domain suggesting a role in protein interaction 2CKC ; ; Solution structures of the BRK domains of the human Chromo Helicase Domain 7 and 8, reveals structural similarity with GYF domain suggesting a role in protein interaction 1BYM ; ; SOLUTION STRUCTURES OF THE C-TERMINAL DOMAIN OF DIPHTHERIA TOXIN REPRESSOR 1X52 ; ; Solution structures of the C-terminal domain of the human Pelota homolog (CGI-17) 1X68 ; ; Solution structures of the C-terminal LIM domain of human FHL5 protein 1X6H ; ; Solution structures of the C2H2 type zinc finger domain of human Transcriptional repressor CTCF 2DJR ; ; Solution structures of the C2H2 type zinc finger domain of human zinc finger BED domain containing protein 2 1X6E ; ; Solution structures of the C2H2 type zinc finger domain of human Zinc finger protein 24 1X6F ; ; Solution structures of the C2H2 type zinc finger domain of human Zinc finger protein 462 2EE0 ; ; Solution structures of the CA domain of human protocadherin 9 2EE1 ; ; Solution structures of the Chromo domain of human chromodomain helicase-DNA-binding protein 4 2RUY ; ; Solution structures of the DNA-binding domain (ZF10) of immune-related zinc-finger protein ZFAT 2RUZ ; ; Solution structures of the DNA-binding domain (ZF11) of immune-related zinc-finger protein ZFAT 2RV0 ; ; Solution structures of the DNA-binding domain (ZF12) of immune-related zinc-finger protein ZFAT 2RV1 ; ; Solution structures of the DNA-binding domain (ZF13) of immune-related zinc-finger protein ZFAT 2RV2 ; ; Solution structures of the DNA-binding domain (ZF14) of immune-related zinc-finger protein ZFAT 2RV3 ; ; Solution structures of the DNA-binding domain (ZF15) of immune-related zinc-finger protein ZFAT 2RUT ; ; Solution structures of the DNA-binding domain (ZF2) of immune-related zinc-finger protein ZFAT 2RUU ; ; Solution structures of the DNA-binding domain (ZF3) of immune-related zinc-finger protein ZFAT 2RUV ; ; Solution structures of the DNA-binding domain (ZF4) of immune-related zinc-finger protein ZFAT 2RUW ; ; Solution structures of the DNA-binding domain (ZF5) of immune-related zinc-finger protein ZFAT 2RV4 ; ; Solution structures of the DNA-binding domain (ZF5) of mouse immune-related zinc-finger protein ZFAT 2RUX ; ; Solution structures of the DNA-binding domain (ZF6) of immune-related zinc-finger protein ZFAT 2RV5 ; ; Solution structures of the DNA-binding domain (ZF8) of mouse immune-related zinc-finger protein ZFAT 2RV6 ; ; Solution structures of the DNA-binding domains (ZF2-ZF3-ZF4) of immune-related zinc-finger protein ZFAT 2RV7 ; ; Solution structures of the DNA-binding domains (ZF3-ZF4-ZF5) of immune-related zinc-finger protein ZFAT 2RSH ; ; Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT 2RSI ; ; Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT 2RSJ ; ; Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT 2KWJ ; ; Solution structures of the double PHD fingers of human transcriptional protein DPF3 bound to a histone peptide containing acetylation at lysine 14 2KWK ; ; Solution structures of the double PHD fingers of human transcriptional protein DPF3b bound to a H3 peptide wild type 2JSF ; ; Solution structures of the envelope protein domain III from the dengue-2 virus 2DKM ; ; Solution structures of the fn3 domain of human collagen alpha-1(XX) chain 2EE3 ; ; Solution structures of the fn3 domain of human collagen alpha-1(XX) chain 2EKJ ; ; Solution structures of the fn3 domain of human collagen alpha-1(XX) chain 2EE2 ; ; Solution structures of the fn3 domain of human contactin 1 2DJS ; ; Solution structures of the fn3 domain of human ephrin type-B receptor 1 2DBJ ; ; Solution structures of the fn3 domain of human Proto-oncogene tyrosine-protein kinase MER precursor 2DJU ; ; Solution structures of the fn3 domain of human receptor-type tyrosine-protein phosphatase F 2EDX ; ; Solution structures of the fn3 domain of human receptor-type tyrosine-protein phosphatase F 2EDY ; ; Solution structures of the fn3 domain of human receptor-type tyrosine-protein phosphatase F 2DB8 ; ; Solution structures of the fn3 domain of human Tripartite motif protein 9 1X57 ; ; Solution structures of the HTH domain of human EDF-1 protein 2COB ; ; Solution structures of the HTH domain of human LCoR protein 105D ; ; SOLUTION STRUCTURES OF THE I-MOTIF TETRAMERS OF D(TCC), D(5MCCT) AND D(T5MCC). NOVEL NOE CONNECTIONS BETWEEN AMINO PROTONS AND SUGAR PROTONS 106D ; ; Solution structures of the i-motif tetramers of D(TCC), D(5MCCT) and D(T5MCC). Novel NOE connections between amino protons and sugar protons 2LRK ; ; Solution Structures of the IIA(Chitobiose)-HPr complex of the N,N'-Diacetylchitobiose 2LRL ; ; Solution Structures of the IIA(Chitobiose)-HPr complex of the N,N'-Diacetylchitobiose Branch of the Escherichia coli Phosphotransferase System 2CO8 ; ; Solution structures of the LIM domain of human NEDD9 interacting protein with calponin homology and LIM domains 1X58 ; ; Solution structures of the myb-like DNA binding domain of 4930532D21Rik protein 2GZZ ; ; solution structures of the oxidized form of thioredoxin from Bacillus subtilis 1VAZ ; ; Solution structures of the p47 SEP domain 2YU0 ; ; Solution structures of the PAAD_DAPIN domain of mus musculus interferon-activatable protein 205 1X6D ; ; Solution structures of the PDZ domain of human Interleukin-16 2DJT ; ; Solution structures of the PDZ domain of human unnamed protein product 2EDZ ; ; Solution structures of the PDZ domain of mus musculus PDZ domain-containing protein 1 2GZY ; ; solution structures of the reduced form of thioredoxin from Bacillus subtilis 1X6A ; ; Solution structures of the second LIM domain of human LIM-kinase 2 (LIMK2) 2GE9 ; ; Solution Structures of the SH2 domain of Bruton's Tyrosine Kinase 1X6C ; ; Solution structures of the SH2 domain of human protein-tyrosine phosphatase SHP-1 2DBK ; ; Solution structures of the SH3 domain of human Crk-like protein 2EKH ; ; Solution structures of the SH3 domain of human KIAA0418 1X6G ; ; Solution structures of the SH3 domain of human megakaryocyte-associated tyrosine-protein kinase. 1X6B ; ; Solution structures of the SH3 domain of human rho guanine exchange factor (GEF) 16 2DBM ; ; Solution structures of the SH3 domain of human SH3-containing GRB2-like protein 2 1X69 ; ; Solution structures of the SH3 domain of human Src substrate cortactin 2EKI ; ; Solution structures of the TGS domain of human developmentally-regulated GTP-binding protein 1 1X59 ; ; Solution structures of the WHEP-TRS domain of human histidyl-tRNA synthetase 2DJV ; ; Solution structures of the WHEP-TRS domain of human methionyl-tRNA synthetase 1V80 ; ; Solution structures of ubiquitin at 30 bar and 3 kbar 1V81 ; ; Solution structures of ubiquitin at 30 bar and 3 kbar 230D ; ; SOLUTION STRUCTURES OF UNIMOLECULAR QUADRUPLEXES FORMED BY OLIGONUCLEOTIDES CONTAINING OXYTRICHA TELOMERE REPEATS 7E42 ; ; Solution strucutre of holo acyl carrier protein from Acinetobacter baumannii 2LAA ; ; Solution Strucuture of the CBM25-1 of beta/alpha-amylase from Paenibacillus polymyxa 2LAB ; ; Solution Strucuture of the CBM25-2 of beta/alpha-amylase from Paenibacillus polymyxa 2CT4 ; ; Solution Strutcure of the SH3 domain of the Cdc42-interacting protein 4 2N68 ; ; Solution study of Astexin1 2N6U ; ; Solution study of Astexin2-dC4 2N6V ; ; Solution study of Astexin3 2MSQ ; ; Solution study of cBru9a 2MSO ; ; Solution study of cGm9a 5T1O ; ; Solution-state NMR and SAXS structural ensemble of NPr (1-85) in complex with EIN-Ntr (170-424) 6UD0 ; ; Solution-state NMR structural ensemble of human Tsg101 UEV in complex with K63-linked diubiquitin 5VKG ; ; Solution-state NMR structural ensemble of human Tsg101 UEV in complex with tenatoprazole 5T1N ; ; Solution-state NMR structural ensemble of NPr (1-85) refined with RDCs and PCS 2M3U ; ; Solution-state NMR structure of cataract-related human gamma(S)-crystallin point variant G18V 6IF9 ; ; Solution-state NMR structure of G57W human gammaS crystallin 2LV1 ; ; Solution-state NMR structure of prion protein mutant V210I at neutral pH 2LSB ; ; Solution-state NMR structure of the human prion protein 2N29 ; ; Solution-state NMR structure of Vpu cytoplasmic domain 2M3T ; ; Solution-state NMR structure of wild-type human gamma(S)-crystallin 2JU3 ; ; Solution-state NMR structures of apo-LFABP (Liver Fatty Acid-Binding Protein) 1ZRP ; ; SOLUTION-STATE STRUCTURE BY NMR OF ZINC-SUBSTITUTED RUBREDOXIN FROM THE MARINE HYPERTHERMOPHILIC ARCHAEBACTERIUM PYROCOCCUS FURIOSUS 1TTD ; ; SOLUTION-STATE STRUCTURE OF A DNA DODECAMER DUPLEX CONTAINING A CIS-SYN THYMINE CYCLOBUTANE DIMER 1COC ; ; SOLUTION-STATE STRUCTURE OF A DNA DODECAMER DUPLEX CONTAINING A CIS-SYN THYMINE CYCLOBUTANE DIMER. 2LOD ; ; Solution-state structure of an intramolecular G-quadruplex with propeller, diagonal and edgewise loops 2JU8 ; ; Solution-State Structures of Oleate-Liganded LFABP, Major Form of 1:2 Protein-Ligand Complex 2JU7 ; ; Solution-State Structures of Oleate-Liganded LFABP, Protein Only 1B1G ; ; SOLVATED REFINEMENT OF CA-LOADED CALBINDIN D9K 2I08 ; 2.0 ; Solvation effect in conformational changes of EF-hand proteins: X-ray structure of Ca2+-saturated double mutant Q41L-K75I of N-domain of calmodulin 1DN4 ; 1.6 ; SOLVATION OF THE LEFT-HANDED HEXAMER D(5BRC-G-5BRC-G-5BRC-G) IN CRYSTALS GROWN AT TWO TEMPERATURES 1DN5 ; 1.4 ; SOLVATION OF THE LEFT-HANDED HEXAMER D(5BRC-G-5BRC-G-5BRC-G) IN CRYSTALS GROWN AT TWO TEMPERATURES 2BCN ; 1.7 ; Solvent isotope effects on interfacial protein electron transfer between cytochrome c and cytochrome c peroxidase 1ENN ; 0.89 ; SOLVENT ORGANIZATION IN AN OLIGONUCLEOTIDE CRYSTAL: THE STRUCTURE OF D(GCGAATTCG)2 AT ATOMIC RESOLUTION 3JS8 ; 1.54 ; Solvent-stable cholesterol oxidase 1FHA ; 2.4 ; SOLVING THE STRUCTURE OF HUMAN H FERRITIN BY GENETICALLY ENGINEERING INTERMOLECULAR CRYSTAL CONTACTS 1S4G ; ; Somatomedin-B Domain of human plasma vitronectin. 2MI1 ; ; Somatostatin-14 solution structure in 5% D-mannitol 7BWT ; 2.3 ; SopD-Rab8 complex structure 5HIW ; 1.85 ; Sorangium cellulosum So Ce56 cytochrome P450 260B1 3WSZ ; 3.201 ; SorLA Vps10p domain in complex with Abeta-derived peptide 3WSY ; 3.11 ; SorLA Vps10p domain in complex with its own propeptide fragment 3WSX ; 2.35 ; SorLA Vps10p domain in ligand-free form 6WTB ; 2.58 ; Sort-Tagged Drosophila Cryptochrome 5K9A ; 2.1 ; Sortase A from Corynebacterium diphtheriae 6BWE ; 1.85 ; Sortase A from Corynebacterium diphtheriae, lid mutant 7S54 ; 1.794 ; Sortase A from Streptococcus agalactiae with the deltaN188 b7-b8 loop sequence from Staphylococcus aureus Sortase A 7S56 ; 1.4 ; Sortase A from Streptococcus agalactiae, residues 79-247 5JCV ; 2.23 ; Sortase B from Listeria monocytogenes. 4G1J ; 1.75 ; Sortase C1 of GBS Pilus Island 1 6X48 ; 2.9 ; Sortilin-Progranulin Interaction With Compound 17 6X3L ; 2.7 ; Sortilin-Progranulin Interaction With Compound 2 6X4H ; 2.9 ; Sortilin-Progranulin Interaction With Compound 24 6SCM ; 1.866 ; SOS1 in Complex with Inhibitor BI-3406 6SFR ; 1.917 ; SOS1 in Complex with Inhibitor BI-68BS 8UH0 ; 2.73 ; SOS2 co-crystal structure with fragment bound (compound 10) 8T5G ; 1.92 ; SOS2 co-crystal structure with fragment bound (compound 12) 8UC9 ; 2.44 ; SOS2 co-crystal structure with fragment bound (compound 9) 8T5R ; 2.12 ; SOS2 crystal structure with fragment bound (compound 13) 8T5M ; 1.79 ; SOS2 crystal structure with fragment bound (compound 14) 6RSN ; 1.7 ; SOSEKI polymerising domain (SOK4 D85A mutant) 7LYN ; 3.32 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the 1-RBD-up conformation 7LYO ; 3.32 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the 1-RBD-up conformation 7LYP ; 4.05 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the 1-RBD-up conformation 7LYQ ; 3.34 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the 1-RBD-up conformation 7LYK ; 3.65 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the 2-RBD-up conformation 7LYL ; 3.72 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the RBD-down conformation 7LYM ; 3.57 ; South African (B.1.351) SARS-CoV-2 spike protein variant (S-GSAS-B.1.351) in the RBD-down conformation 1VKA ; 1.6 ; Southeast Collaboratory for Structural Genomics: Hypothetical Human Protein Q15691 N-Terminal Fragment 2JQE ; ; Soution Structure of Af54 M-domain 6WX7 ; 2.7 ; SOX2 bound to Importin-alpha 2 6WX8 ; 2.3 ; SOX2 bound to Importin-alpha 3 6WX9 ; 2.8 ; SOX2 bound to Importin-alpha 5 1SBF ; 2.43 ; SOYBEAN AGGLUTININ 1SBD ; 2.52 ; SOYBEAN AGGLUTININ COMPLEXED WITH 2,4-PENTASACCHARIDE 2SBA ; 2.6 ; SOYBEAN AGGLUTININ COMPLEXED WITH 2,6-PENTASACCHARIDE 1SBE ; 2.8 ; SOYBEAN AGGLUTININ FROM GLYCINE MAX 4D69 ; 2.7 ; SOYBEAN AGGLUTININ FROM GLYCINE MAX IN COMPLEX WITH THE ANTIGEN Tn 4MAF ; 2.48 ; Soybean ATP Sulfurylase 1RRL ; 2.09 ; Soybean Lipoxygenase (LOX-3) at 93K at 2.0 A resolution 1RRH ; 2.0 ; Soybean Lipoxygenase (LOX-3) at ambient temperatures at 2.0 A resolution 5EEO ; 2.1 ; soybean lipoxygenase(L1)-T756R 3PZW ; 1.4 ; Soybean lipoxygenase-1 - re-refinement 6J4J ; 2.101 ; soybean seed H-2 ferritin 4N6A ; 1.75 ; Soybean Serine Acetyltransferase Apoenzyme 4N6B ; 3.005 ; Soybean Serine Acetyltransferase Complexed with CoA 4N69 ; 1.8 ; Soybean Serine Acetyltransferase Complexed with Serine 1BA7 ; 2.5 ; SOYBEAN TRYPSIN INHIBITOR 2AM1 ; 2.5 ; sp protein ligand 1 2AM2 ; 2.8 ; sp protein ligand 2 5T3N ; 2.4 ; Sp-2Cl-cAMPS bound to PKAR CBD2 2M1T ; ; SP-B C-terminal (residues 59-80) peptide in DPC micelles 2M0H ; ; SP-B C-terminal (residues 59-80) peptide in methanol 1RG4 ; ; SP-B C-terminal peptide in organic solvent (HFIP) 1RG3 ; ; SP-B C-terminal peptide in SDS micelles 6G8R ; 2.74 ; SP140 PHD-Bromodomain complex with scFv 4L37 ; 2.9 ; SP2-SP3 - a complex of two storage proteins from Bombyx mori hemolymph 2BLC ; 2.25 ; SP21 double mutant P. vivax Dihydrofolate reductase in complex with des-chloropyrimethamine 2BLA ; 2.5 ; SP21 double mutant P. vivax Dihydrofolate reductase in complex with pyrimethamine 7RMI ; 3.2 ; SP6-11 biased agonist bound to active human neurokinin 1 receptor in complex with miniGs/q70 8BP8 ; 2.7 ; SPA of Trypsin untreated Rotavirus TLP spike 1RY9 ; 1.82 ; Spa15, a Type III Secretion Chaperone from Shigella flexneri 6PHY ; 2.0 ; SpAga D472N structure in complex alpha 1,3 galactobiose 6PHW ; 2.2 ; SpAga D472N structure in complex with melibiose 6PHX ; 2.0 ; SpAga D472N structure in complex with raffinose 6PHV ; 2.1 ; SpAga galactose product complex structure 6PHU ; 2.2 ; SpAga wild type apo structure 4YX5 ; 2.9001 ; SpaO(SPOA1,2) 4YX1 ; 1.35 ; SpaO(SPOA2) 2K2B ; ; Sparse-constraint solution NMR structure of micelle-solublized cytosolic amino terminal domain of C. elegans mechanosensory ion channel subunit MEC-4. New York Consortium on Membrane Protein Structure (NYCOMPS) 5TTT ; ; Sparse-restraint solution NMR structure of micelle-solubilized cytosolic amino terminal domain of C. elegans mechanosensory ion channel MEC-4 refined by restrained Rosetta 8J9P ; 3.4 ; SPARTA dimer bound with guide-target 8J8H ; 3.4 ; SPARTA monomer bound with guide-target, state 2 3B9P ; 2.7 ; Spastin 5Z6R ; 3.0 ; SPASTIN AAA WITH ATP 6P07 ; 3.2 ; Spastin hexamer in complex with substrate 1RQV ; ; Spatial model of L7 dimer from E.coli with one hinge region in helical state 2PCO ; ; Spatial Structure and Membrane Permeabilization for Latarcin-1, a Spider Antimicrobial Peptide 8BVZ ; ; Spatial structure of amyloidogenic SEM1(49-67) peptide 5M9U ; ; Spatial structure of antimicrobial peptide arenicin-1 mutant V8R 2L8X ; ; Spatial structure of antimicrobial peptide Arenicin-2 dimer in DPC micelles 2JNI ; ; Spatial structure of antimicrobial peptide arenicin-2 in aqueous solution 2KUS ; ; Spatial structure of Antimicrobial Peptide Sm-AMP-1.1a 2N1S ; ; Spatial Structure of Antimicrobial Peptide SmAMP2-2c from Seeds of Stellaria media 2L9U ; ; Spatial structure of dimeric ErbB3 transmembrane domain 2M59 ; ; Spatial structure of dimeric VEGFR2 membrane domain in DPC micelles 2N5S ; ; Spatial structure of EGFR transmembrane and juxtamembrane domains in DPC micelles 2N2A ; ; Spatial structure of HER2/ErbB2 dimeric transmembrane domain in the presence of cytoplasmic juxtamembrane domains 2MQU ; ; Spatial structure of Hm-3, a membrane-active spider toxin affecting sodium channels 1SIS ; ; SPATIAL STRUCTURE OF INSECTOTOXIN I5A BUTHUS EUPEUS BY 1H NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (RUSSIAN) 8C5J ; ; Spatial structure of Lch-alpha peptide from two-component lantibiotic system Lichenicidin VK21 2KTO ; ; Spatial structure of Lch-beta peptide from two-component lantibiotic Lichenicidin VK21 2MJ0 ; ; Spatial structure of P33A mutant of non-conventional toxin WTX from Naja kaouthia 2LZO ; ; Spatial structure of Pi-AnmTX Ugr 9a-1 2KGU ; ; Spatial structure of purotoxin-1 in water 2KPF ; ; Spatial structure of the dimeric transmembrane domain of glycophorin A in bicelles soluton 2MK9 ; ; Spatial structure of the dimeric transmembrane domain of Toll-like receptor 3 2LCX ; ; Spatial Structure of the ErbB4 dimeric TM domain 5LQV ; ; Spatial structure of the lentil lipid transfer protein in complex with anionic lysolipid LPPG 4MN0 ; 1.9 ; Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state 2MKA ; ; Spatial structure of the Toll-like receptor 3 transmembrane domain in the trimeric state 2L03 ; ; Spatial structure of water-soluble Lynx1 8BOO ; ; Spatials structure of amyloidogenic SEM1(45-67) peptide 7ZRF ; ; Spatials structure of amyloidogenic SEM1(68-85) peptide 3WPL ; 2.0 ; SPATIOTEMPORAL DEVELOPMENT of SOAKED PROTEIN CRYSTAL; 2510 SEC 3WPK ; 2.0 ; SPATIOTEMPORAL DEVELOPMENT of SOAKED PROTEIN CRYSTAL; 750 SEC 3WU8 ; 2.0 ; Spatiotemporal development of soaked protein crystal; derivative 1080 sec 3WU9 ; 2.0 ; Spatiotemporal development of soaked protein crystal; derivative 1580 sec 3WU7 ; 2.0 ; Spatiotemporal development of soaked protein crystal; derivative 250 sec 3WUA ; 2.0 ; Spatiotemporal development of soaked protein crystal; derivative 3610 sec 3WPJ ; 2.0 ; SPATIOTEMPORAL DEVELOPMENT of SOAKED PROTEIN CRYSTAL; NATIVE 7Z4K ; 3.81 ; SpCas9 bound to 10-nucleotide complementary DNA substrate 7Z4G ; 3.64 ; SpCas9 bound to 12-nucleotide complementary DNA substrate 7Z4H ; 3.49 ; SpCas9 bound to 14-nucleotide complementary DNA substrate 7Z4I ; 3.12 ; SpCas9 bound to 16-nucleotide complementary DNA substrate 7Z4J ; 2.99 ; SpCas9 bound to 18-nucleotide complementary DNA substrate in the catalytic state 7Z4L ; 2.54 ; SpCas9 bound to 18-nucleotide complementary DNA substrate in the checkpoint state 7Z4C ; 3.87 ; SpCas9 bound to 6 nucleotide complementary DNA substrate 7Z4E ; 4.14 ; SpCas9 bound to 8-nucleotide complementary DNA substrate 7QQO ; 3.0 ; SpCas9 bound to AAVS1 off-target1 DNA substrate 7QR7 ; 3.0 ; SpCas9 bound to AAVS1 off-target2 DNA substrate 7QQP ; 2.6 ; SpCas9 bound to AAVS1 off-target3 DNA substrate 7QQQ ; 2.65 ; SpCas9 bound to AAVS1 off-target4 DNA substrate 7QQR ; 2.75 ; SpCas9 bound to AAVS1 off-target5 DNA substrate 7ZO1 ; 2.4 ; SpCas9 bound to CD34 off-target9 DNA substrate 7QQT ; 2.5 ; SpCas9 bound to FANCF off-target1 DNA substrate 7QQU ; 2.45 ; SpCas9 bound to FANCF off-target2 DNA substrate 7QQV ; 2.25 ; SpCas9 bound to FANCF off-target3 DNA substrate 7QQW ; 3.1 ; SpCas9 bound to FANCF off-target4 DNA substrate 7QQX ; 2.4 ; SpCas9 bound to FANCF off-target5 DNA substrate 7QR5 ; 3.3 ; SpCas9 bound to FANCF off-target6 DNA substrate 7QQZ ; 2.25 ; SpCas9 bound to FANCF off-target7 DNA substrate 7QQS ; 2.4 ; SpCas9 bound to FANCF on-target DNA substrate 7QR8 ; 2.75 ; SpCas9 bound to PTPRC off-target1 DNA substrate 7QR0 ; 2.3 ; SpCas9 bound to TRAC off-target1 DNA substrate 7QR1 ; 2.6 ; SpCas9 bound to TRAC off-target2 DNA substrate 8FZT ; 3.03 ; SpCas9 with dual-guide RNA and target DNA 8G1I ; 3.12 ; SpCas9 with sgRNA and target DNA 5ZY5 ; 2.295 ; spCOMT apo structure 7D9I ; 2.1 ; SpdH Spermidine dehydrogenase D282A mutant 7D9H ; 2.31 ; SpdH Spermidine dehydrogenase N33 truncation structure 7D9G ; 2.4 ; SpdH Spermidine dehydrogenase native structure 7D9F ; 1.85 ; SpdH Spermidine dehydrogenase SeMet Structure 7D9J ; 2.19 ; SpdH Spermidine dehydrogenase Y443A mutant 2BJM ; 2.15 ; SPE7:Anthrone Complex 4P8Z ; 3.85 ; Speciation of a group I intron into a lariat capping ribozyme 4P9R ; 2.703 ; Speciation of a group I intron into a lariat capping ribozyme (Heavy atom derivative) 2B17 ; 2.71 ; Specific binding of non-steroidal anti-inflammatory drugs (NSAIDs) to phospholipase A2: Crystal structure of the complex formed between phospholipase A2 and diclofenac at 2.7 A resolution: 1QID ; 2.05 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT A) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIE ; 2.1 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT B) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIF ; 2.1 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT C) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIG ; 2.3 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT D) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIH ; 2.5 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT E) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QII ; 2.65 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT F) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIJ ; 2.8 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT G) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIK ; 2.9 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT H) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIM ; 3.0 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE AT NINE TIME POINTS (POINT I) CAUSED BY INTENSE SYNCHROTRON RADIATION TO TORPEDO CALIFORNICA ACETYLCHOLINESTERASE 1QIO ; 1.2 ; SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE CAUSED BY INTENSE SYNCHROTRON RADIATION TO HEN EGG WHITE LYSOZYME 8AO2 ; 1.796 ; Specific covalent inhibitor (3) of ERK2 8AO4 ; 1.825 ; Specific covalent inhibitor (5) of ERK2 8AO5 ; 1.595 ; Specific covalent inhibitor (6) of ERK2 8AO7 ; 1.61 ; Specific covalent inhibitor (8) of ERK2 8AO3 ; 1.778 ; Specific covalent inhibitor of ERK2 8AOC ; 1.62 ; Specific covalent inhibitor of ERK2 8AOJ ; 1.12 ; Specific covalent inhibitor of ERK2 8AO9 ; 1.624 ; Specific covalent inhibitor(10) of ERK2 8AOB ; 1.623 ; Specific covalent inhibitor(12) of ERK2 8AOD ; 1.62 ; Specific covalent inhibitor(14) of ERK2 8AOE ; 1.687 ; Specific covalent inhibitor(15) of ERK2 8AOF ; 1.615 ; Specific covalent inhibitor(16) of ERK2 8AOH ; 1.6 ; Specific covalent inhibitor(18) of ERK2 8AOI ; 1.602 ; Specific covalent inhibitor(19) of ERK2 8AO8 ; 1.697 ; Specific covalent inhibitor(9) of ERK2 6SX0 ; 1.75 ; Specific dsRNA recognition by wild type H7N1 NS1 RNA-binding domain 7QIZ ; 2.38 ; Specific features and methylation sites of a plant 80S ribosome 7QIX ; 2.53 ; Specific features and methylation sites of a plant ribosome. 40S body ribosomal subunit. 7QIY ; 2.58 ; Specific features and methylation sites of a plant ribosome. 40S head ribosomal subunit. 7QIW ; 2.35 ; Specific features and methylation sites of a plant ribosome. 60S ribosomal subunit. 7LMV ; 1.9 ; SPECIFIC INHIBITOR OF INTEGRIN ALPHA-V BETA-6 2KPA ; ; Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO 2KPB ; ; Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO 1G0Z ; 2.18 ; SPECIFIC MUTATIONS IN KRAIT PLA2 LEAD TO DIMERIZATION OF PROTEIN MOLECULES: CRYSTAL STRUCTURE OF KRAIT PLA2 AT 2.1 RESOLUTION 6EZ0 ; ; Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding 5E08 ; 2.38 ; Specific Recognition of a Single-stranded RNA Sequence by an Engineered Synthetic Antibody Fragment 3RU7 ; 2.6 ; Specific recognition of N-acetylated substrates and domain flexibility in WbgU: a UDP-GalNAc 4-epimerase 3RU9 ; 2.21 ; Specific recognition of N-acetylated substrates and domain flexibility in WbgU: a UDP-GalNAc 4-epimerase 3RUA ; 2.1 ; Specific recognition of N-acetylated substrates and domain flexibility in WbgU: a UDP-GalNAc 4-epimerase 3RUC ; 2.1 ; Specific recognition of N-acetylated substrates and domain flexibility in WbgU: a UDP-GalNAc 4-epimerase 5LME ; ; Specific-DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase 1W9V ; 2.0 ; Specificity and affinity of natural product cyclopentapeptide argifin against Aspergillus fumigatus 1WAW ; 1.75 ; Specificity and affinity of natural product cyclopentapeptide inhibitor Argadin against human chitinase 1WB0 ; 1.65 ; specificity and affinity of natural product cyclopentapeptide inhibitor Argifin against human chitinase 1W9P ; 1.7 ; Specificity and affinity of natural product cyclopentapeptide inhibitors against Aspergillus fumigatus, human and bacterial chitinaseFra 1W9U ; 1.85 ; Specificity and affnity of natural product cyclopentapeptide inhibitor Argadin against Aspergillus fumigatus chitinase 2Q8E ; 2.05 ; Specificity and Mechanism of JMJD2A, a Trimethyllysine-Specific Histone Demethylase 1OJO ; 1.75 ; SPECIFICITY AND MECHANISM OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE: COMPLEX OF THE TYR408PHE MUTANT WITH 4-SULPHATED CHONDROITIN DISACCHARIDE 1OJN ; 1.6 ; SPECIFICITY AND MECHANISM OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE: COMPLEX OF THE TYR408PHE MUTANT WITH 6-SULPHATED CHONDROITIN DISACCHARIDE 1OJP ; 1.9 ; SPECIFICITY AND MECHANISM OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE: COMPLEX WITH 6-SULPHATED CHONDROITIN DISACCHARIDE 1OJM ; 1.78 ; SPECIFICITY AND MECHANISM OF STREPTOCOCCUS PNEUMONIAE HYALURONATE LYASE: COMPLEX WITH UNSULPHATED CHONDROITIN DISACCHARIDE 4FAO ; 3.357 ; Specificity and Structure of a high affinity Activin-like 1 (ALK1) signaling complex 1TKA ; 2.7 ; SPECIFICITY OF COENZYME BINDING IN THIAMIN DIPHOSPHATE DEPENDENT ENZYMES: CRYSTAL STRUCTURES OF YEAST TRANSKETOLASE IN COMPLEX WITH ANALOGS OF THIAMIN DIPHOSPHATE 1TKB ; 2.3 ; SPECIFICITY OF COENZYME BINDING IN THIAMIN DIPHOSPHATE DEPENDENT ENZYMES: CRYSTAL STRUCTURES OF YEAST TRANSKETOLASE IN COMPLEX WITH ANALOGS OF THIAMIN DIPHOSPHATE 1TKC ; 2.7 ; SPECIFICITY OF COENZYME BINDING IN THIAMIN DIPHOSPHATE DEPENDENT ENZYMES: CRYSTAL STRUCTURES OF YEAST TRANSKETOLASE IN COMPLEX WITH ANALOGS OF THIAMIN DIPHOSPHATE 181L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 182L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 183L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 184L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 185L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 186L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 187L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 188L ; 1.8 ; SPECIFICITY OF LIGAND BINDING IN A BURIED NON-POLAR CAVITY OF T4 LYSOZYME: LINKAGE OF DYNAMICS AND STRUCTURAL PLASTICITY 1NHB ; 1.8 ; Specificity of ligand binding in a buried non-polar cavity of t4 lysozyme: linkage of dynamics and structural plasticity 1AA4 ; 2.1 ; SPECIFICITY OF LIGAND BINDING IN A BURIED POLAR CAVITY OF CYTOCHROME C PEROXIDASE 1AEU ; 2.1 ; SPECIFICITY OF LIGAND BINDING IN A POLAR CAVITY OF CYTOCHROME C PEROXIDASE (2-METHYLIMIDAZOLE) 1AEJ ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (1-VINYLIMIDAZOLE) 1AEH ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (2-AMINO-4-METHYLTHIAZOLE) 1AEN ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (2-AMINO-5-METHYLTHIAZOLE) 1AEO ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (2-AMINOPYRIDINE) 1AED ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (3,4-DIMETHYLTHIAZOLE) 1AEF ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (3-AMINOPYRIDINE) 1AEB ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (3-METHYLTHIAZOLE) 1AEG ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (4-AMINOPYRIDINE) 1AEE ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (ANILINE) 1AES ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (IMIDAZOLE) 1AEM ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (IMIDAZO[1,2-A]PYRIDINE) 1AEK ; 2.1 ; SPECIFICITY OF LIGAND BINDING TO A BURIED POLAR CAVITY AT THE ACTIVE SITE OF CYTOCHROME C PEROXIDASE (INDOLINE) 2C21 ; 2.0 ; Specificity of the Trypanothione-dependednt Leishmania major Glyoxalase I: Structure and biochemical comparison with the human enzyme 2HLA ; 2.6 ; SPECIFICITY POCKETS FOR THE SIDE CHAINS OF PEPTIDE ANTIGENS IN HLA-AW68 2KZL ; ; Specifier domain and GA motif region of B. subtilis tyrS T box leader RNA 2KHY ; ; Specifier Domain of B. subtilis tyrS T box leader RNA 1VR1 ; 1.9 ; Specifity for Plasminogen Activator Inhibitor-1 6UC3 ; 1.84 ; Spectroscopic and structural characterization of a genetically encoded direct sensor for protein-ligand interactions 6UD1 ; 1.55 ; Spectroscopic and structural characterization of a genetically encoded direct sensor for protein-ligand interactions 6UD6 ; 1.502 ; Spectroscopic and structural characterization of a genetically encoded direct sensor for protein-ligand interactions 6UDB ; 1.55 ; Spectroscopic and structural characterization of a genetically encoded direct sensor for protein-ligand interactions 6UDC ; 2.1 ; Spectroscopic and structural characterization of a genetically encoded direct sensor for protein-ligand interactions 6FLL ; 1.79 ; SPECTROSCOPIC AND STRUCTURAL STUDY OF QW, A EGFP MUTANT SHOWING PHOTOSWITCHING PROPERTIES 2H6V ; 1.47 ; Spectroscopic and structural study of the heterotropic linkage between halide and proton ion binding to GFP proteins- E2(GFP) APO FORM 2O29 ; 1.8 ; Spectroscopic and Structural Study of the Heterotropic Linkage between Halide and Proton Ion Binding to Gfp Proteins: E2(GFP)-BR Complex 2O24 ; 1.45 ; Spectroscopic and Structural Study of the Heterotropic Linkage between Halide and Proton Ion Binding to Gfp Proteins: E2(GFP)-Cl Complex 2O2B ; 1.94 ; Spectroscopic and Structural Study of the Heterotropic Linkage between Halide and Proton Ion Binding to Gfp Proteins: E2(GFP)-I Complex 4CJG ; 1.26 ; Spectroscopically validated structure of the 5 coordinate proximal NO adduct of cytochrome c prime from Alcaligenes xylosoxidans 4CDV ; 1.17 ; Spectroscopically-validated structure of cytochrome c prime from Alcaligenes xylosoxidans, reduced by X-ray irradiation at 100K 4CDY ; 1.77 ; Spectroscopically-validated structure of cytochrome c prime from Alcaligenes xylosoxidans, reduced by X-ray irradiation at 160K 6YRC ; 1.99 ; Spectroscopically-validated structure of DtpB from Streptomyces lividans in the ferric state 4CDA ; 1.3 ; Spectroscopically-validated structure of ferric cytochrome c prime from Alcaligenes xylosoxidans 4CJO ; 1.55 ; Spectroscopically-validated structure of ferrous cytochrome c prime from Alcaligenes xylosoxidans, reduced at 180K using X-rays 4CIP ; 1.22 ; Spectroscopically-validated structure of ferrous cytochrome c prime from Alcaligenes xylosoxidans, reduced using ascorbate 7KX3 ; 2.67 ; SpeG Spermidine N-acetyltransferase F149G mutant from Vibrio cholerae 8FV0 ; 2.65 ; SpeG spermidine N-acetyltransferase from Staphylococcus aureus in complex with spermine 8FV1 ; 2.95 ; SpeG spermidine N-acetyltransferase from Staphylococcus aureus in complex with spermine 1JP9 ; 1.7 ; Sperm Whale met-Myoglobin (low temperature; high pressure) 1JPB ; 1.7 ; Sperm Whale met-Myoglobin (low temperature; high pressure) 1JP8 ; 2.3 ; Sperm Whale met-Myoglobin (room temperature; high pressure) 1JP6 ; 2.3 ; Sperm Whale met-Myoglobin (room temperature; room pressure) 1EBC ; 1.8 ; SPERM WHALE MET-MYOGLOBIN:CYANIDE COMPLEX 1DUO ; 2.0 ; SPERM WHALE METAQUOMYOGLOBIN PROXIMAL HISTIDINE MUTANT H93G WITH 1-METHYLIMIDAZOLE AS PROXIMAL LIGAND. 8QBA ; 1.39 ; Sperm whale myoblogin mutant H64V V68A in complex with glycine ethyl ester 1HJT ; 1.7 ; SPERM WHALE MYOGLOBIN (FERROUS, NITRIC OXIDE BOUND) 1JDO ; 1.9 ; SPERM WHALE MYOGLOBIN (FERROUS, NITRIC OXIDE BOUND) 1MCY ; 1.7 ; SPERM WHALE MYOGLOBIN (MUTANT WITH INITIATOR MET AND WITH HIS 64 REPLACED BY GLN, LEU 29 REPLACED BY PHE 6E04 ; 2.0 ; sperm whale myoglobin 1-nitrosopropane 109M ; 1.83 ; SPERM WHALE MYOGLOBIN D122N ETHYL ISOCYANIDE AT PH 9.0 110M ; 1.77 ; SPERM WHALE MYOGLOBIN D122N METHYL ISOCYANIDE AT PH 9.0 111M ; 1.88 ; SPERM WHALE MYOGLOBIN D122N N-BUTYL ISOCYANIDE AT PH 9.0 112M ; 2.34 ; SPERM WHALE MYOGLOBIN D122N N-PROPYL ISOCYANIDE AT PH 9.0 101M ; 2.07 ; SPERM WHALE MYOGLOBIN F46V N-BUTYL ISOCYANIDE AT PH 9.0 102M ; 1.84 ; SPERM WHALE MYOGLOBIN H64A AQUOMET AT PH 9.0 103M ; 2.07 ; SPERM WHALE MYOGLOBIN H64A N-BUTYL ISOCYANIDE AT PH 9.0 5VZO ; 1.78 ; Sperm whale myoglobin H64A with nitric oxide 5UT9 ; 1.85 ; Sperm whale myoglobin H64A with nitrite 5KD1 ; 1.7 ; Sperm whale myoglobin H64A with nitrosoamphetamine 5VZP ; 1.78 ; Sperm whale myoglobin H64Q with nitric oxide 5UTA ; 1.81 ; Sperm whale myoglobin H64Q with nitrite 6CF0 ; 1.64 ; Sperm Whale Myoglobin H64V Mutant with Nitrite 6Z4T ; 1.23 ; sperm whale myoglobin mutant (H64V V64A) bearing the non-canonical amino acid 2-Amino-3-(thiazol-5-yl)propanoic acid as axial heme ligand 6Z4R ; 1.96 ; sperm whale myoglobin mutant (H64V V64A) bearing the non-canonical amino acid 3-thienylalanine as axial heme ligand 3NML ; 1.68 ; Sperm whale myoglobin mutant H64W carbonmonoxy-form 3OGB ; 1.6 ; Sperm whale myoglobin mutant H64W deoxy-form 8EKO ; 1.34 ; Sperm whale myoglobin mutant L29H F33W F43H (F33W CuBMb) 5HAV ; 1.268 ; Sperm whale myoglobin mutant L29H F33Y F43H (F33Y CuBMb) with oxygen bound 1H1X ; 1.4 ; Sperm whale Myoglobin mutant T67R S92D 104M ; 1.71 ; SPERM WHALE MYOGLOBIN N-BUTYL ISOCYANIDE AT PH 7.0 105M ; 2.02 ; SPERM WHALE MYOGLOBIN N-BUTYL ISOCYANIDE AT PH 9.0 6E03 ; 1.76 ; sperm whale myoglobin nitrosoethane adduct 5YCE ; 0.77 ; Sperm whale myoglobin swMb 4NXC ; 1.55 ; SPERM WHALE MYOGLOBIN UNDER 30 BAR NITROUS Oxide 4NXA ; 1.6 ; SPERM WHALE MYOGLOBIN UNDER XENON PRESSURE 30 Bar 5VZQ ; 1.79 ; Sperm whale myoglobin V68A/I107Y with nitric oxide 5UTD ; 1.78 ; Sperm whale myoglobin V68A/I107Y with nitrite 106M ; 1.99 ; SPERM WHALE MYOGLOBIN V68F ETHYL ISOCYANIDE AT PH 9.0 108M ; 2.67 ; SPERM WHALE MYOGLOBIN V68F N-BUTYL ISOCYANIDE AT PH 7.0 107M ; 2.09 ; SPERM WHALE MYOGLOBIN V68F N-BUTYL ISOCYANIDE AT PH 9.0 1SPE ; 2.0 ; SPERM WHALE NATIVE CO MYOGLOBIN AT PH 4.0, TEMP 4C 4NCZ ; 1.89 ; Spermidine N-acetyltransferase from Vibrio cholerae in complex with 2-[n-cyclohexylamino]ethane sulfonate. 7KX2 ; 2.6 ; Spermidine N-acetyltransferase SpeG F149A mutant from Vibrio cholerae 7KWJ ; 2.58 ; Spermidine N-acetyltransferase SpeG K23-Q34 chimera from Vibrio cholerae and hSSAT 7KWH ; 2.9 ; Spermidine N-acetyltransferase SpeG K23-Y30 chimera from Vibrio cholerae and hSSAT 7KWX ; 2.42 ; Spermidine N-acetyltransferase SpeG N152L mutant from Vibrio cholerae 7KWQ ; 2.3 ; Spermidine N-acetyltransferase SpeG R149-K152 chimera from Vibrio cholerae and hSSAT 8IYI ; 1.9 ; Spermidine synthase from Kluyveromyces lactis 1POY ; 2.5 ; SPERMIDINE/PUTRESCINE-BINDING PROTEIN COMPLEXED WITH SPERMIDINE (DIMER FORM) 1POT ; 1.8 ; SPERMIDINE/PUTRESCINE-BINDING PROTEIN COMPLEXED WITH SPERMIDINE (MONOMER FORM) 2B3V ; 1.95 ; Spermine spermidine acetyltransferase in complex with acetylcoa, K26R mutant 3BJ7 ; 2.2 ; Spermine/spermidine N1-acetyltransferase from mouse: Crystal structure of a ternary complex reveals solvent-mediated spermine binding 3BJ8 ; 2.3 ; Spermine/spermidine N1-acetyltransferase from mouse: Crystal structure of a ternary complex reveals solvent-mediated spermine binding 4FVF ; 2.46 ; SPFH domain of mouse stomatin (Crystal form 1) 4FVG ; 1.8 ; SPFH domain of mouse stomatin (Crystal form 3) 8GN9 ; 2.5 ; SPFH domain of Pyrococcus horikoshii stomatin 4FVJ ; 2.69 ; SPFH domain of the mouse stomatin (Crystal form 2) 1EA7 ; 0.93 ; Sphericase 2IXT ; 0.8 ; SPHERICASE 6GSB ; 1.45 ; Sphingobacterium sp. T2 manganese superoxide dismutase catalyses the oxidative demethylation of polymeric lignin via generation of hydroxyl radical 6GSC ; 1.32 ; Sphingobacterium sp. T2 manganese superoxide dismutase catalyses the oxidative demethylation of polymeric lignin via generation of hydroxyl radical 2X8U ; 2.1 ; Sphingomonas wittichii Serine palmitoyltransferase 2I7F ; 1.9 ; Sphingomonas yanoikuyae B1 ferredoxin 4V24 ; 1.8 ; Sphingosine kinase 1 in complex with PF-543 7TD3 ; 3.0 ; Sphingosine-1-phosphate receptor 1-Gi complex bound to S1P 7TD4 ; 2.6 ; Sphingosine-1-phosphate receptor 1-Gi complex bound to Siponimod 7C4S ; 3.2 ; Sphingosine-1-phosphate receptor 3 with a natural ligand. 8BWB ; ; Spider toxin Pha1b (PnTx3-6) from Phoneutria nigriventer targeting CaV2.x calcium channels and TRPA1 channel 2MU3 ; ; Spider wrapping silk fibre architecture arising from its modular soluble protein precursor 7VHN ; 3.8 ; Spike of SARS-CoV-2 spike protein(1 up) 7DZY ; 3.6 ; Spike protein from SARS-CoV2 with Fab fragment of enhancing antibody 2490 7DZX ; 3.53 ; Spike protein from SARS-CoV2 with Fab fragment of enhancing antibody 8D2 6ZGF ; 3.1 ; Spike Protein of RaTG13 Bat Coronavirus in Closed Conformation 8G71 ; 2.1 ; Spike/Nb2 complex with 1 RBD up 7PSW ; 1.21 ; Spin labeled IPNS S55C variant in complex with Fe and ACV under anaerobic conditions 7POY ; 1.75 ; Spin labeled IPNS S55C variant in complex with Fe, ACV and NO 6NJR ; 2.7 ; Spin-Labeled T177C/A637C Mutant of Rat CYPOR 6V51 ; 1.5 ; Spin-labeled T4 Lysozyme (9/131FnbY)-(4-Amino-TEMPO) 5JGV ; 1.732 ; Spin-Labeled T4 Lysozyme Construct A73V1 5JGN ; 1.534 ; Spin-Labeled T4 Lysozyme Construct I9V1 5KGR ; 1.473 ; Spin-Labeled T4 Lysozyme Construct I9V1/V131V1 (30 days) 5JGR ; 1.46 ; Spin-Labeled T4 Lysozyme Construct K43V1 5JGU ; 1.468 ; Spin-Labeled T4 Lysozyme Construct R119V1 5JGZ ; 1.534 ; Spin-Labeled T4 Lysozyme Construct T151V1 5JGX ; 1.533 ; Spin-Labeled T4 Lysozyme Construct V131V1 8AMZ ; 3.3 ; Spinach 19S proteasome 7QVE ; 3.3 ; Spinach 20S proteasome 1A70 ; 1.7 ; SPINACH FERREDOXIN 1F56 ; 2.05 ; SPINACH PLANTACYANIN 1UPP ; 2.3 ; SPINACH RUBISCO IN COMPLEX WITH 2-CARBOXYARABINITOL 2 BISPHOSPHATE and Calcium. 1RBO ; 2.3 ; SPINACH RUBISCO IN COMPLEX WITH THE INHIBITOR 2-CARBOXYARABINITOL-1,5-DIPHOSPHATE 1RCO ; 2.3 ; SPINACH RUBISCO IN COMPLEX WITH THE INHIBITOR D-XYLULOSE-2,2-DIOL-1,5-BISPHOSPHATE 7L0Z ; 2.1 ; Spinach variant bound to DFHBI-1T 2G5M ; ; Spinophilin PDZ domain 4LDP ; 2.5 ; Spinosyn Forosaminyltransferase SpnP 4LEI ; 3.15 ; Spinosyn Forosaminyltransferase SpnP 3TSA ; 1.7 ; Spinosyn Rhamnosyltransferase SpnG 3UYK ; 1.7 ; Spinosyn Rhamnosyltransferase SpnG complexed with spinosyn aglycone 3UYL ; 1.85 ; Spinosyn Rhamnosyltransferase SpnG complexed with thymidine diphosphate 5JCY ; 1.8 ; Spir2-GTBM bound to MyoVa-GTD 7YPI ; 3.8 ; Spiral hexamer of the substrate-free Lon protease with a Y224S mutation 8PDN ; 4.7 ; Spiral of assembled human metapneumovirus (HMPV) N-RNA 7YPJ ; 3.8 ; Spiral pentamer of the substrate-free Lon protease with a S678A mutation 6Q7L ; 7.6 ; Spiral structure of E. coli RavA in the RavA-LdcI cage-like complex 6Q7M ; 7.8 ; Spiral structure of E. coli RavA in the RavA-LdcI cage-like complex 5E9O ; 2.1 ; Spirochaeta thermophila X module - CBM64 - mutant G504A 5E9P ; 1.2 ; Spirochaeta thermophila X module - CBM64 - wildtype 3QKK ; 2.3 ; Spirochromane Akt Inhibitors 3QKL ; 1.9 ; Spirochromane Akt Inhibitors 4JOO ; 1.8 ; Spirocyclic Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors 4JP9 ; 1.8 ; Spirocyclic Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors 4JPC ; 1.8 ; Spirocyclic Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors 4JPE ; 1.8 ; Spirocyclic Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors 3QKM ; 2.2 ; Spirocyclic sulfonamides as AKT inhibitors 1A8I ; 1.78 ; SPIROHYDANTOIN INHIBITOR OF GLYCOGEN PHOSPHORYLASE 7YSZ ; 2.30004 ; Spiroplasma melliferum FtsZ bound to GDP 7YOP ; 2.20003 ; Spiroplasma melliferum FtsZ bound to GMPPNP 8GRW ; 2.40005 ; Spiroplasma melliferum FtsZ F224M bound to GDP 6M5M ; 1.7 ; SPL-1 - GlcNAc complex 2W7S ; 1.8 ; SplA serine protease of Staphylococcus aureus (1.8A) 2W7U ; 2.43 ; SplA serine protease of Staphylococcus aureus (2.4A) 2P5H ; ; sPLA2 inhibitor 9 2P5J ; ; sPLA2 inhibitor pip 17 6OE5 ; 4.1 ; Splayed open prefusion RSV F captured by CR9501 and motavizumab Fabs 4WZJ ; 3.6 ; Spliceosomal U4 snRNP core domain 4ZB4 ; 2.3 ; Spliceosome component 5M88 ; 2.8 ; Spliceosome component 5M89 ; 1.605 ; Spliceosome component 5M8C ; 2.3 ; Spliceosome component 3AJV ; 1.7 ; Splicing endonuclease from Aeropyrum pernix 6YAK ; 1.34 ; Split gene transketolase, active alpha2beta2 heterotetramer 6YAJ ; 1.9 ; Split gene transketolase, inactive beta4 tetramer 2RLO ; ; Split PH domain of PI3-kinase enhancer 8IA9 ; 2.5 ; SpnK Methyltransferase from the Spinosyn Biosynthetic Pathway in Complex with Mg 8IAA ; 2.1 ; SpnK Methyltransferase from the Spinosyn Biosynthetic Pathway in Complex with SAH 6L6V ; ; SPO1 Gp44 N-terminal region (1-55) 3DNX ; 1.94 ; SPO1766 protein of unknown function from Silicibacter pomeroyi. 5HY6 ; 2.186 ; Spodoptera frugiperda eukaryotic translation initiation factor EIF5A 5WC3 ; 3.5 ; SpoIIIAG 4O1V ; 2.0 ; SPOP Promotes Tumorigenesis by Acting as a Key Regulatory Hub in Kidney Cancer 8DWU ; 3.4 ; SPOP W22R Form 1 8DWT ; 6.2 ; SPOP W22R Form 2 6ZTG ; ; Spor protein DedD 4FHC ; 2.2 ; Spore photoproduct lyase 4FHE ; 2.0 ; Spore photoproduct lyase C140A mutant 4FHF ; 2.3 ; Spore photoproduct lyase C140A mutant with dinucleoside spore photoproduct 4RH0 ; 2.1 ; Spore photoproduct lyase C140A/S76C mutant with bound AdoMet 4RH1 ; 2.6 ; Spore photoproduct lyase C140A/S76C mutant with bound AdoMet and dinucleoside spore photoproduct 4FHG ; 2.0 ; Spore photoproduct lyase C140S mutant 4FHD ; 2.0 ; Spore photoproduct lyase complexed with dinucleoside spore photoproduct 4K9R ; 2.3 ; Spore photoproduct lyase Y98F mutant 7ZCY ; 1.54 ; Sporosarcina pasteurii urease (SPU) co-crystallized in the presence of an Ebselen-derivative and bound to Se atoms 6G48 ; 1.91 ; Sporosarcina pasteurii urease inhibited by silver 4U5A ; 2.75 ; Sporozoite Protein for Cell Traversal 4TPS ; 1.65 ; Sporulation Inhibitor of DNA Replication, SirA, in complex with Domain I of DnaA 4I0I ; 2.2 ; SPR and structural analysis yield insight towards mechanism of inhibition of BACE inhibitors 4I0J ; 1.99 ; SPR and structural analysis yield insight towards mechanism of inhibition of BACE inhibitors 4I0H ; 2.2 ; SPR and structural analysis yield insight towards mechanism of inhibition of BACE inhibitors. 7QCA ; 2.79 ; Spraguea lophii ribosome 8P60 ; 14.3 ; Spraguea lophii ribosome dimer 8P5D ; 10.8 ; Spraguea lophii ribosome in the closed conformation by cryo sub tomogram averaging 2AFJ ; ; SPRY domain-containing SOCS box protein 2 (SSB-2) 6DN8 ; 1.75 ; SPRY domain-containing SOCS box protein 2 complexed with (GZJ)VDINNN(CY3) Cyclic peptide inhibitor 6DN6 ; 1.59 ; SPRY domain-containing SOCS box protein 2 complexed with INNN(ABU) cyclic peptide inhibitor 6DN5 ; 2.4 ; SPRY domain-containing SOCS box protein 2 complexed with WDINNN(BAL) cyclic peptide inhibitor 6DN7 ; 1.4 ; SPRY domain-containing SOCS box protein 2 complexed with WDINNN(BAL) Cyclic peptide inhibitor 3EK9 ; 2.6 ; SPRY Domain-containing SOCS Box Protein 2: Crystal Structure and Residues Critical for Protein Binding 2W8T ; 1.25 ; SPT with PLP, N100C 2W8V ; 1.43 ; SPT with PLP, N100W 2W8U ; 1.5 ; SPT with PLP, N100Y 2W8J ; 1.5 ; SPT with PLP-ser 4WNN ; 1.8 ; SPT16-H2A-H2B FACT HISTONE Complex 5VKO ; 1.8 ; SPT6 tSH2-RPB1 1468-1500 pT1471, pS1493 5VKL ; 2.198 ; SPT6 tSH2-RPB1 1476-1500 pS1493 7FCB ; 1.4 ; SptF 9 residues truncated mutant 7D53 ; 1.6 ; SpuA mutant - H221N with Glu 7D50 ; 1.77 ; SpuA mutant - H221N with glutamyl-thioester 7D4R ; 1.6 ; SpuA native structure 2GWJ ; 1.9 ; SpvB ADP-ribosylated actin: hexagonal crystal form 2GWK ; 2.0 ; SpvB ADP-ribosylated actin: orthorhombic crystal form 6OWY ; 2.07 ; Spy H96L:Im7 K20pI-Phe complex; multiple anomalous datasets contained herein for element identification 6OWX ; 2.06 ; Spy H96L:Im7 L18pI-Phe complex; multiple anomalous datasets contained herein for element identification 6OWZ ; 2.05 ; Spy H96L:Im7 L19pI-Phe complex; multiple anomalous datasets contained herein for element identification 1H3B ; 2.8 ; Squalene-Hopene Cyclase 1O6H ; 2.8 ; Squalene-Hopene Cyclase 3SQC ; 2.8 ; SQUALENE-HOPENE CYCLASE 2SQC ; 2.0 ; SQUALENE-HOPENE CYCLASE FROM ALICYCLOBACILLUS ACIDOCALDARIUS 1SQC ; 2.85 ; SQUALENE-HOPENE-CYCLASE FROM ALICYCLOBACILLUS ACIDOCALDARIUS 6S5D ; 3.393 ; Square conformation of KtrA R16A mutant ring with bound ATP 6S2J ; 2.67 ; Square conformation of KtrA R16K mutant ring with bound ATP 6S5C ; 3.0 ; Square conformation of KtrA WT ring with bound ATP and calcium 2HMW ; 3.0 ; Square-shaped octameric ring structure of an RCK domain with ATP bound 4J90 ; 3.24 ; Square-shaped octameric structure of KtrA with ATP bound 8OWA ; 2.85 ; SR Ca(2+)-ATPase in the E2 state complexed with the photoswitch-thapsigargin derivative AzTG-4 8OWL ; 3.02 ; SR Ca(2+)-ATPase in the E2 state complexed with the photoswitch-thapsigargin derivative AzTG-6 3NAN ; 3.1 ; SR Ca(2+)-ATPase in the HnE2 state complexed with a Thapsigargin derivative Boc-(phi)Tg 2BY4 ; 3.3 ; SR Ca(2+)-ATPase in the HnE2 state complexed with the thapsigargin derivative Boc-12ADT. 3NAM ; 3.1 ; SR Ca(2+)-ATPase in the HnE2 state complexed with the Thapsigargin derivative dOTg 3NAL ; 2.65 ; SR Ca(2+)-ATPase in the HnE2 state complexed with the Thapsigargin derivative DTB 6FAD ; 2.801 ; SR protein kinase 1 (SRPK1) in complex with the RGG-box of HSV1 ICP27 8EFL ; 3.2 ; SR17018-bound mu-opioid receptor-Gi complex 6VCS ; 1.7 ; SRA domain of UHRF1 in complex with DNA 1BU1 ; 2.6 ; SRC FAMILY KINASE HCK SH3 DOMAIN 2C0I ; 2.3 ; Src family kinase Hck with bound inhibitor A-420983 2C0T ; 2.15 ; Src family kinase Hck with bound inhibitor A-641359 2C0O ; 2.85 ; Src family kinase Hck with bound inhibitor A-770041 1AD5 ; 2.6 ; SRC FAMILY KINASE HCK-AMP-PNP COMPLEX 2HCK ; 3.0 ; SRC FAMILY KINASE HCK-QUERCETIN COMPLEX 3U51 ; 2.241 ; Src in complex with DNA-templated macrocyclic inhibitor MC1 5BMM ; 2.5 ; Src in complex with DNA-templated macrocyclic inhibitor MC25b 3U4W ; 1.9 ; Src in complex with DNA-templated macrocyclic inhibitor MC4b 6ATE ; 2.402 ; SRC kinase bound to covalent inhibitor 7NG7 ; 1.5 ; Src kinase bound to eCF506 trapped in inactive conformation 7OTE ; 2.49 ; Src Kinase Domain in complex with ponatinib 2H8H ; 2.2 ; Src kinase in complex with a quinazoline inhibitor 5J5S ; 2.153 ; Src kinase in complex with a sulfonamide inhibitor 2BDF ; 2.1 ; Src kinase in complex with inhibitor AP23451 2BDJ ; 2.5 ; Src kinase in complex with inhibitor AP23464 4MXY ; 2.582 ; Src M314L T338M double mutant bound to kinase inhibitor bosutinib 4MXZ ; 2.582 ; Src M314L T338M double mutant bound to kinase inhibitor bosutinib 1F2F ; 1.7 ; SRC SH2 THREF1TRP MUTANT 1F1W ; 2.1 ; SRC SH2 THREF1TRP MUTANT COMPLEXED WITH THE PHOSPHOPEPTIDE S(PTR)VNVQN 3G6H ; 2.35 ; Src Thr338Ile inhibited in the DFG-Asp-Out conformation 3ZMQ ; 3.3 ; Src-derived mutant peptide inhibitor complex of PTP1B 3ZMP ; 2.619 ; Src-derived peptide inhibitor complex of PTP1B 3LQX ; 1.93 ; SRP ribonucleoprotein core complexed with cobalt hexammine 7OBQ ; 3.9 ; SRP-SR at the distal site conformation 5IJ3 ; 1.7 ; SrpA adhesin in complex with sialyl T antigen 5IJ2 ; 1.683 ; SrpA adhesin in complex with sialyllactosamine 5IJ1 ; 1.8 ; SrpA adhesin in complex with sialyllactose 5IIY ; 1.888 ; SrpA adhesin in complex with the Neu5Ac-galactoside disaccharide 5KIQ ; 1.638 ; SrpA with sialyl LewisX 1WBP ; 2.4 ; SRPK1 bound to 9mer docking motif peptide 5XV7 ; 2.32 ; SRPK1 in complex with Alectinib 7ZKS ; 2.28 ; SRPK1 IN COMPLEX WITH INHIBITOR 7PQS ; 2.2 ; SRPK1 in complex with MSC2711186 7ZKX ; 2.06 ; SRPK2 IN COMPLEX WITH INHIBITOR 5UTT ; 1.7 ; SrtA sortase from Actinomyces oris 5UUS ; 2.02 ; SrtF sortase from Corynebacterium diphtheriae 5HP5 ; 3.198 ; Srtucture of human peptidylarginine deiminase type I (PAD1) 2B58 ; 1.95 ; SSAT with coa_sp, spermine disordered, K26R mutant 2B4B ; 2.0 ; SSAT+COA+BE-3-3-3, K26R mutant 2B4D ; 2.0 ; SSAT+COA+SP- SP disordered 5YWL ; 2.098 ; SsCR_L211H 5YWN ; 2.039 ; SsCR_L211H-NADP+ 1FGU ; 2.5 ; SSDNA-BINDING DOMAIN OF THE LARGE SUBUNIT OF REPLICATION PROTEIN A 7DBB ; 2.805 ; SSE in complex with tubulin 2MUZ ; ; ssNMR structure of a designed rocker protein 5V7Z ; ; SSNMR Structure of the Human RIP1/RIP3 Necrosome 2XVO ; 2.08 ; SSO1725, a protein involved in the CRISPR/Cas pathway 1BNZ ; 2.0 ; SSO7D HYPERTHERMOPHILE PROTEIN/DNA COMPLEX 8BMW ; 3.5 ; SsoCsm 8EAF ; 2.62 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 12-mer oligo-dT. Class 1 8EAG ; 3.01 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 12-mer oligo-dT. Class 2 8EAH ; 2.48 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 16-mer oligo-dT. Class 1 8EAI ; 2.76 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 16-mer oligo-dT. Class 2 8EAJ ; 2.45 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 46-mer DNA strand. Class 1 8EAK ; 2.67 ; SsoMCM hexamer bound to Mg/ADP-BeFx and 46-mer DNA strand. Class 2 8EAL ; 2.34 ; SsoMCM hexamer bound to Mg/ADP-BeFx and DNA. Class 1. Merged particles from datasets with 3 different DNA entities 8EAM ; 2.59 ; SsoMCM hexamer bound to Mg/ADP-BeFx and DNA. Class 2. Merged particles from datasets with 3 different DNA entities 6M4J ; 1.8 ; SspA in complex with cysteine 6JUF ; 1.587 ; SspB crystal structure 1TWB ; 1.9 ; SspB disulfide crosslinked to an ssrA degradation tag 6JIV ; 3.31 ; SspE crystal structure 2JPC ; ; SSRB DNA Binding Protein 8TDV ; 3.44 ; ssRNA bound SAMHD1 T closed 8TDW ; 3.04 ; ssRNA bound SAMHD1 T open 6NPW ; 2.486 ; SSu72/Sympk in complex with Ser2/Ser5 phosphorylated peptide 3VCF ; 2.7 ; SSV1 integrase C-terminal catalytic domain (174-335aa) 8S2X ; 2.5 ; SSX structure of Arabidopsis thaliana Pdx1.3 grown in microfluidic droplets 8S2W ; 2.5 ; SSX structure of Arabidopsis thaliana Pdx1.3 grown in seeded batch conditions 8S2U ; 1.8 ; SSX structure of Lysozyme grown in batch conditions 8S2V ; 1.8 ; SSX structure of Lysozyme grown in microfluidic droplets 6H79 ; 2.1 ; SSX structure of Lysozyme in flow - metal-kapton microfluidic device 7UHT ; 2.2 ; SSX Structure of Metallo Beta-Lactamase L1 with One Zinc in the Active Site 7UHS ; 2.2 ; SSX Structure of Metallo Beta-Lactamase L1 with Two Water Molecules in the Active Site 1CPR ; 2.1 ; ST. LOUIS CYTOCHROME C' FROM THE PURPLE PHOTOTROPIC BACTERIUM, RHODOBACTER CAPSULATUS 5Z0A ; 2.09 ; ST0452(Y97N)-GlcNAc binding form 5Z09 ; 2.91 ; ST0452(Y97N)-UTP binding form 8JLZ ; 3.09 ; ST1936-5HT6R complex 6GWX ; ; Stabilising and Understanding a Miniprotein by Rational Design. 1N0C ; ; Stability of cyclic beta-hairpins: Asymmetric contibutions from side chains of hydrogen bonded cross-strand residue pair 1N0D ; ; Stability of cyclic beta-hairpins: Asymmetric contibutions from side chains of hydrogen bonded cross-strand residue pair 3AKY ; 2.23 ; STABILITY, ACTIVITY AND STRUCTURE OF ADENYLATE KINASE MUTANTS 1KDA ; 1.9 ; STABILIZATION OF A STRAINED PROTEIN LOOP CONFORMATION THROUGH PROTEIN ENGINEERING 1KDB ; 1.9 ; STABILIZATION OF A STRAINED PROTEIN LOOP CONFORMATION THROUGH PROTEIN ENGINEERING 1KDC ; 2.0 ; STABILIZATION OF A STRAINED PROTEIN LOOP CONFORMATION THROUGH PROTEIN ENGINEERING 1UR5 ; 1.75 ; Stabilization of a Tetrameric Malate Dehydrogenase by Introduction of a Disulfide Bridge at the Dimer/Dimer Interface 1LAV ; 1.8 ; STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY CAVITY-FILLING MUTATIONS WITHIN A HYDROPHOBIC CORE 1LAW ; 1.8 ; STABILIZATION OF ESCHERICHIA COLI RIBONUCLEASE HI BY CAVITY-FILLING MUTATIONS WITHIN A HYDROPHOBIC CORE 1IOQ ; 1.79 ; STABILIZATION OF HEN EGG WHITE LYSOZYME BY A CAVITY-FILLING MUTATION 1IOR ; 1.76 ; STABILIZATION OF HEN EGG WHITE LYSOZYME BY A CAVITY-FILLING MUTATION 1IOS ; 1.76 ; STABILIZATION OF HEN EGG WHITE LYSOZYME BY A CAVITY-FILLING MUTATION 1IOT ; 1.75 ; STABILIZATION OF HEN EGG WHITE LYSOZYME BY A CAVITY-FILLING MUTATION 1BZU ; ; STABILIZATION OF THE ANTICODON STEM-LOOP OF TRNALYS, 3 BY AN A+C BASE PAIR AND BY PSEUDOURIDINE, NMR, 1 STRUCTURE 1BZ2 ; ; STABILIZATION OF THE ANTICODON STEM-LOOP OF TRNALYS,3 BY AN A+C BASE PAIR AND BY PSEUDOURIDINE, NMR, 1 STRUCTURE 1BZ3 ; ; STABILIZATION OF THE ANTICODON STEM-LOOP OF TRNALYS,3 BY AN A+C BASE PAIR AND BY PSEUDOURIDINE, NMR, 1 STRUCTURE 1BZT ; ; STABILIZATION OF THE ANTICODON STEM-LOOP OF TRNALYS,3 BY AN A+C BASE PAIR AND BY PSEUDOURIDINE, NMR, 1 STRUCTURE 1JCI ; 1.9 ; Stabilization of the Engineered Cation-binding Loop in Cytochrome c Peroxidase (CcP) 1D41 ; 1.3 ; STABILIZATION OF Z-DNA BY DEMETHYLATION OF THYMINE BASES: 1.3 ANGSTROMS SINGLE-CRYSTAL STRUCTURE OF D(M5CGUAM5CG) 6NI2 ; 4.0 ; Stabilized beta-arrestin 1-V2T subcomplex of a GPCR-G protein-beta-arrestin mega-complex 3MK9 ; 2.08 ; Stabilized Ricin Immunogen 1-33/44-198 1KNI ; 1.7 ; Stabilizing Disulfide Bridge Mutant of T4 Lysozyme 168D ; 2.0 ; STABILIZING EFFECTS OF THE RNA 2'-SUBSTITUENT: CRYSTAL STRUCTURE OF AN OLIGODEOXYNUCLEOTIDE DUPLEX CONTAINING 2'-O-METHYLATED ADENOSINES 1U0P ; ; Stable A-state hairpin of T4 fibritin foldon 7LUR ; 1.95 ; Stable Effector Functionless 2 (SEFL2) IgG1 Fc Scaffold Bound to a Minimized Version of the B-domain (Mini-Z) from Protein A Called Z34C 200D ; 1.85 ; STABLE LOOP IN THE CRYSTAL STRUCTURE OF THE INTERCALATED FOUR-STRANDED CYTOSINE-RICH METAZOAN TELOMERE 5HQ3 ; 2.6 ; Stable, high-expression variant of human acetylcholinesterase 3O8Y ; 2.389 ; Stable-5-Lipoxygenase 7TTK ; 1.98 ; Stable-5-LOX 7TTJ ; 2.1 ; Stable-5-LOX elongated Ha2 7TTL ; 2.43 ; Stable-5-LOX elongated Ha2 (4 copies ASU) 7PIN ; 3.6 ; Stacked compact Dunaliella PSII 7PIW ; 4.0 ; Stacked stretched Dunaliella PSII 8OP2 ; 2.8 ; Stacks of nucleocapsid rings of the N1-370 mutant of the human Respiratory Syncytial Virus 6BS9 ; 2.32 ; Stage III sporulation protein AB (SpoIIIAB) 6DCS ; 2.7 ; Stage III sporulation protein AF (SpoIIIAF) 2EH1 ; 2.25 ; Stage V Sporolation Protein S (SpoVS) from Thermus thermophilus 2EK0 ; 1.9 ; Stage V Sporolation Protein S (SPOVS) from Thermus thermophilus Zinc form 7CG3 ; 5.1 ; Staggered ring conformation of CtHsp104 (Hsp104 from Chaetomium Thermophilum) 7O3V ; 3.7 ; Stalk complex structure (TrwJ/VirB5-TrwI/VirB6) from the fully-assembled R388 type IV secretion system determined by cryo-EM. 7JTS ; 6.1 ; Stalk of radial spoke 1 attached with doublet microtubule from Chlamydomonas reinhardtii 6T8G ; 4.34 ; Stalled FtsK motor domain bound to dsDNA 6T8O ; 3.99 ; Stalled FtsK motor domain bound to dsDNA end 3FYW ; 2.1 ; Staph. aureus DHFR complexed with NADPH and AR-101 3FYV ; 2.2 ; Staph. aureus DHFR complexed with NADPH and AR-102 3FY9 ; 2.25 ; Staph. aureus DHFR F98Y complexed with AR-102 3NUC ; 1.9 ; STAPHLOCOCCAL NUCLEASE, 1-N-PROPANE THIOL DISULFIDE TO V23C VARIANT 2NUC ; 2.0 ; STAPHLOCOCCAL NUCLEASE, ETHANE THIOL DISULFIDE TO V23C VARIANT 1CV8 ; 1.75 ; STAPHOPAIN, CYSTEINE PROTEINASE FROM STAPHYLOCOCCUS AUREUS V8 1NYC ; 1.4 ; Staphostatins resemble lipocalins, not cystatins in fold. 2A1D ; 3.5 ; Staphylocoagulase bound to bovine thrombin 1NU9 ; 2.2 ; Staphylocoagulase-Prethrombin-2 complex 1NU7 ; 2.2 ; Staphylocoagulase-Thrombin Complex 4YHD ; 2.801 ; Staphylococcal alpha-hemolysin H35A mutant monomer 4DXD ; 2.01 ; Staphylococcal Aureus FtsZ in complex with 723 3NMS ; 4.1 ; Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement C3c 3L5N ; 7.536 ; Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement Component C3b 3L3O ; 3.405 ; Staphylococcal Complement Inhibitor (SCIN) in complex with Human Complement Component C3c 1ESF ; 1.9 ; STAPHYLOCOCCAL ENTEROTOXIN A 1DYQ ; 1.5 ; STAPHYLOCOCCAL ENTEROTOXIN A MUTANT VACCINE 3SEB ; 1.48 ; STAPHYLOCOCCAL ENTEROTOXIN B 5XZ0 ; 3.002 ; Staphylococcal Enterotoxin B (SEB) mutant S19 - N23A, Y90A, R110A and F177A 1SE3 ; 2.3 ; STAPHYLOCOCCAL ENTEROTOXIN B COMPLEXED WITH GM3 TRISACCHARIDE 1SE4 ; 1.9 ; STAPHYLOCOCCAL ENTEROTOXIN B COMPLEXED WITH LACTOSE 3GP7 ; 1.9 ; Staphylococcal Enterotoxin B mutant N23YK97SK98S 1STE ; 2.0 ; STAPHYLOCOCCAL ENTEROTOXIN C2 FROM STAPHYLOCOCCUS AUREUS 1SE2 ; 2.7 ; STAPHYLOCOCCAL ENTEROTOXIN C2, MONOCLINIC FORM 1I4X ; 2.4 ; STAPHYLOCOCCAL ENTEROTOXIN C2, MONOCLINIC FORM CRYSTALLIZED AT PH 8.0 1F77 ; 2.4 ; STAPHYLOCOCCAL ENTEROTOXIN H DETERMINED TO 2.4 A RESOLUTION 1SXT ; 2.7 ; STAPHYLOCOCCAL ENTEROTOXIN TYPE A (SEA) CO-CRYSTALLISED WITH ZINC 1SND ; 1.84 ; STAPHYLOCOCCAL NUCLEASE DIMER CONTAINING A DELETION OF RESIDUES 114-119 COMPLEXED WITH CALCIUM CHLORIDE AND THE COMPETITIVE INHIBITOR DEOXYTHYMIDINE-3',5'-DIPHOSPHATE 4G57 ; 1.81 ; Staphylococcal Nuclease double mutant I72L, I92L 4WOR ; 1.596 ; Staphylococcal nuclease in complex with Ca2+ and thymidine-3'-5'-diphosphate (pdTp) at room temperature 2LKV ; ; Staphylococcal Nuclease PHS variant 5NUC ; 2.1 ; STAPHYLOCOCCAL NUCLEASE, 1-N-PENTANE THIOL DISULFIDE TO V23C VARIANT 1A2T ; 1.96 ; STAPHYLOCOCCAL NUCLEASE, B-MERCAPTOETHANOL DISULFIDE TO V23C VARIANT 1A3U ; 2.05 ; STAPHYLOCOCCAL NUCLEASE, CYCLOHEXANE THIOL DISULFIDE TO V23C VARIANT 1A3V ; 2.2 ; STAPHYLOCOCCAL NUCLEASE, CYCLOPENTANE THIOL DISULFIDE TO V23C VARIANT 1AEX ; 2.1 ; STAPHYLOCOCCAL NUCLEASE, METHANE THIOL DISULFIDE TO V23C VARIANT 1NUC ; 1.9 ; STAPHYLOCOCCAL NUCLEASE, V23C VARIANT 1A2U ; 2.0 ; STAPHYLOCOCCAL NUCLEASE, V23C VARIANT, COMPLEX WITH 1-N-BUTANE THIOL AND 3',5'-THYMIDINE DIPHOSPHATE 1A3T ; 2.1 ; STAPHYLOCOCCAL NUCLEASE, V23C VARIANT, COMPLEX WITH 2-FLUOROETHANE THIOL AND 3',5'-THYMIDINE DIPHOSPHATE 2SNS ; 1.5 ; STAPHYLOCOCCAL NUCLEASE. PROPOSED MECHANISM OF ACTION BASED ON STRUCTURE OF ENZYME-THYMIDINE 3(PRIME),5(PRIME)-BIPHOSPHATE-CALCIUM ION COMPLEX AT 1.5-ANGSTROMS RESOLUTION 1EDL ; ; STAPHYLOCOCCAL PROTEIN A E-DOMAIN (-60), NMR, 22 STRUCTURES 1EDK ; ; STAPHYLOCOCCAL PROTEIN A E-DOMAIN (-60), NMR, MINIMIZED AVERAGE STRUCTURE 1EDJ ; ; STAPHYLOCOCCAL PROTEIN A E-DOMAIN (180), NMR, 20 STRUCTURES 1EDI ; ; STAPHYLOCOCCAL PROTEIN A E-DOMAIN (180), NMR, MINIMIZED AVERAGE STRUCTURE 1SS1 ; ; STAPHYLOCOCCAL PROTEIN A, B-DOMAIN, Y15W MUTANT, NMR, 25 STRUCTURES 2SPZ ; ; STAPHYLOCOCCAL PROTEIN A, Z-DOMAIN, NMR, 10 STRUCTURES 1V1O ; 2.75 ; staphylococcal superantigen-like protein 7 1TXT ; 2.501 ; Staphylococcus aureus 3-hydroxy-3-methylglutaryl-CoA synthase 7KWG ; 3.75 ; Staphylococcus aureus 30S ribosomal subunit in presence of spermidine 7BGD ; 3.2 ; Staphylococcus aureus 30S ribosomal subunit in presence of spermidine (body only) 7BGE ; 3.6 ; Staphylococcus aureus 30S ribosomal subunit in presence of spermidine (head only) 7ASN ; 2.73 ; Staphylococcus aureus 50S after 30 minutes incubation a 37C 7ASM ; 2.48 ; Staphylococcus aureus 50S after 30 minutes incubation at 37C 4CYU ; 2.7 ; Staphylococcus aureus 7,8-Dihydro-6-hydroxymethylpterin- pyrophosphokinase in complex with AMPCPP 4CRJ ; 2.0 ; Staphylococcus aureus 7,8-Dihydro-6-hydroxymethylpterin- pyrophosphokinase in complex with AMPCPP and an inhibitor 4CWB ; 1.56 ; Staphylococcus aureus 7,8-Dihydro-6-hydroxymethylpterin- pyrophosphokinase in complex with AMPCPP and an inhibitor 7ASO ; 3.11 ; Staphylococcus aureus 70S after 30 minutes incubation at 37C 7ASP ; 2.86 ; Staphylococcus aureus 70S after 50 minutes incubation at 37C 2X75 ; 2.5 ; Staphylococcus aureus adenylosuccinate lyase 6M3A ; ; Staphylococcus aureus Bap-C1 5N57 ; 2.3 ; Staphylococcus aureus cambialistic superoxide dismutase SodM 6EX4 ; 2.4 ; Staphylococcus aureus cambialistic superoxide dismutase SodM 5W18 ; 2.44 ; Staphylococcus aureus ClpP in complex with (S)-N-((2R,6S,8aS,14aS,20S,23aS)-2,6-dimethyl-5,8,14,19,23-pentaoxooctadecahydro-1H,5H,14H,19H-pyrido[2,1-i]dipyrrolo[2,1-c:2',1'-l][1]oxa[4,7,10,13]tetraazacyclohexadecin-20-yl)-3-phenyl-2-(3-phenylureido)propanamide 8E7P ; 1.68 ; Staphylococcus aureus ClpP in complex with compound 3421 8E71 ; 1.57 ; Staphylococcus aureus ClpP in complex with compound 3471 8R03 ; 2.0 ; Staphylococcus aureus ClpP in complex with the natural product beta-lactone inhibitor Cystargolide A at 2.0 A resolution 8OLL ; 2.7 ; Staphylococcus aureus ClpP in complex with the natural product beta-lactone inhibitor Cystargolide A at 2.7 A resolution 5C90 ; 1.75 ; Staphylococcus aureus ClpP mutant - Y63A 8EF8 ; 2.17 ; Staphylococcus aureus ClpP Y63W in complex with compound 3471 2WY8 ; 1.7 ; Staphylococcus aureus complement subversion protein Sbi-IV in complex with complement fragment C3d 2WY7 ; 1.7 ; Staphylococcus aureus complement subversion protein Sbi-IV in complex with complement fragment C3d revealing an alternative binding mode 7U9K ; 2.0 ; Staphylococcus aureus D-alanine-D-alanine ligase in complex with ATP, D-ala-D-ala, Mg2+ and K+ 5JG0 ; 1.879 ; Staphylococcus aureus Dihydrofolate Reductase complexed with beta-NADPH and UCP1191 5HF0 ; 2.245 ; Staphylococcus aureus Dihydrofolate Reductase complexed with beta-NADPH, cyclic alpha-NADPH anomer and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid (UCP1106) 5IST ; 1.723 ; Staphylococcus aureus Dihydrofolate Reductase complexed with beta-NADPH, cyclic alpha-NADPH anomer and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid (UCP1106) 5HF2 ; 1.81 ; Staphylococcus aureus Dihydrofolate Reductase complexed with cyclized alpha-NADPH anomer and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-5'-methoxy-[1,1'-biphenyl]-4-carboxylic acid (UCP1175) 3FQ0 ; 1.69 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-(3-(2,5-dimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120B) 3FQC ; 2.35 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-[3-(3,4,5-trimethoxyphenyl)pent-1-ynyl]-6-methylpyrimidine (UCP115A) 3FQZ ; 1.72 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-[3-(3-methoxy-4-phenylphenyl)but-1-ynyl]-6-methylpyrimidine 3F0Q ; 2.08 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-(2,6-dimethylphenyl)phenyl)but-1-ynyl]-6-methylpyrimidine 3F0S ; 2.7 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-(3,5-dimethylphenyl)phenyl)but-1-ynyl]-6-methylpyrimidine 3F0B ; 2.1 ; Staphylococcus aureus dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-phenylphenyl)but-1-ynyl]-6-methylpyrimidine 3SH2 ; 2.999 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ethyl-5-(3-(4-methoxybiphenyl-3-yl)prop-1-ynyl)pyrimidine-2,4-diamine (UCP120J) 6ND2 ; 2.243 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ETHYL-5-[(3R)-3-[2-METHOXY-5-(PYRIDIN-4-YL)PHENYL]BUT-1-YN-1-YL]PYRIMIDINE-2,4-DIAMINE (UCP1063) 4XE6 ; 2.692 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ETHYL-5-[(3R)-3-[3-METHOXY-5-(PYRIDIN-4-YL)PHENYL]BUT-1-YN-1-YL]PYRIMIDINE-2,4-DIAMINE (UCP1061) 4XEC ; 2.692 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ETHYL-5-[(3R)-3-[3-METHOXY-5-(PYRIDIN-4-YL)PHENYL]BUT-1-YN-1-YL]PYRIMIDINE-2,4-DIAMINE (UCP1061) 3SGY ; 2.598 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ETHYL-5-[(3S)-3-[3-METHOXY-5-(PYRIDIN-4-YL)PHENYL]BUT-1-YN-1-YL]PYRIMIDINE-2,4-DIAMINE (UCP1006) 4TU5 ; 2.161 ; Staphylococcus aureus Dihydrofolate Reductase complexed with NADPH and 6-ETHYL-5-[(3S)-3-[3-METHOXY-5-(PYRIDIN-4-YL)PHENYL]BUT-1-YN-1-YL]PYRIMIDINE-2,4-DIAMINE (UCP1062) 6P9Z ; 1.86 ; Staphylococcus aureus Dihydrofolate reductase in complex with NADPH and Methotrexate 6PBO ; 1.649 ; Staphylococcus aureus Dihydrofolate reductase in complex with NADPH and UCP1232 6CLU ; 1.95 ; Staphylococcus aureus Dihydropteroate Synthase (saDHPS) F17L E208K double mutant structure 6CLV ; 2.3 ; Staphylococcus aureus Dihydropteroate Synthase (saDHPS) F17L E208K double mutant structure 8AXY ; 1.05 ; Staphylococcus aureus endonuclease IV orthorhombic crystal form 8EDD ; 1.5 ; Staphylococcus aureus endonuclease IV Y33F mutant 3FRA ; 2.35 ; Staphylococcus aureus F98Y DHFR complexed with iclaprim 5ISP ; 1.84 ; Staphylococcus aureus F98Y Dihydrofolate Reductase mutant complexed with beta-NADPH and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid (UCP1106) 4Q67 ; 2.04 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH 3FQO ; 2.09 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-[3-(2,5-dimethoxyphenyl)prop-1-ynyl]-6-ethylpyrimidine (UCP120B) 3FQF ; 1.77 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-[3-(3,4,5-trimethoxyphenyl)pent-1-ynyl]-6-methylpyrimidine (UCP115A) 3FQV ; 1.85 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-diamino-5-[3-(3-methoxy-4-phenylphenyl)but-1-ynyl]-6-methylpyrimidine 3F0V ; 2.35 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-(2,6-dimethylphenyl)phenyl)but-1-ynyl]-6-methylpyrimidine 3F0X ; 2.6 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-(3,5-dimethylphenyl)phenyl)but-1-ynyl]-6-methylpyrimidine 3F0U ; 1.6 ; Staphylococcus aureus F98Y mutant dihydrofolate reductase complexed with NADPH and 2,4-Diamino-5-[3-(3-methoxy-5-phenylphenyl)but-1-ynyl]-6-methylpyrimidine 6KVS ; 2.3 ; Staphylococcus aureus FabH with covalent inhibitor Oxa1 3WQT ; 2.2 ; Staphylococcus aureus FtsA complexed with AMPPNP 3WQU ; 2.8 ; Staphylococcus aureus FtsA complexed with ATP 5XDU ; 2.0 ; Staphylococcus aureus FtsZ 12-316 complexed with TXA6101 5XDT ; 1.3 ; Staphylococcus aureus FtsZ 12-316 complexed with TXA707 8HTB ; 1.3 ; Staphylococcus aureus FtsZ 12-316 complexed with TXH9179 5XDW ; 2.0 ; Staphylococcus aureus FtsZ 12-316 G196S 5XDV ; 1.7 ; Staphylococcus aureus FtsZ 12-316 G196S complexed with TXA6101 3VOA ; 1.73 ; Staphylococcus aureus FtsZ 12-316 GDP-form 3VPA ; 2.487 ; Staphylococcus aureus FtsZ apo-form 3VO9 ; 2.706 ; Staphylococcus aureus FtsZ apo-form (SeMet) 3WGN ; 2.606 ; STAPHYLOCOCCUS AUREUS FTSZ bound with GTP-gamma-S 3VO8 ; 2.255 ; Staphylococcus aureus FtsZ GDP-form 3WGJ ; 2.179 ; STAPHYLOCOCCUS AUREUS FTSZ T7 chimera mutant, T7Bs 3WGK ; 2.799 ; STAPHYLOCOCCUS AUREUS FTSZ T7 mutant substituted for GAG, DeltaT7GAG-GDP 3WGL ; 3.066 ; STAPHYLOCOCCUS AUREUS FTSZ T7 mutant substituted for GAN bound with GDP, DeltaT7GAN-GDP 3WGM ; 2.091 ; STAPHYLOCOCCUS AUREUS FTSZ T7 mutant substituted for GAN bound with GTP, DeltaT7GAN-GTP 3VOB ; 2.703 ; Staphylococcus aureus FtsZ with PC190723 5H5G ; 2.2 ; Staphylococcus aureus FtsZ-GDP in T and R states 5H5I ; 1.9 ; Staphylococcus aureus FtsZ-GDP R29A mutant in R state 5H5H ; 1.7 ; Staphylococcus aureus FtsZ-GDP R29A mutant in T state 2MZW ; ; Staphylococcus aureus FusB:EF-GC3 complex 3G7B ; 2.3 ; Staphylococcus aureus Gyrase B co-complex with METHYL ({5-[4-(4-HYDROXYPIPERIDIN-1-YL)-2-PHENYL-1,3-THIAZOL-5-YL]-1H-PYRAZOL-3-YL}METHYL)CARBAMATE inhibitor 3I8A ; 2.41 ; Staphylococcus aureus H30N, F98Y Dihydrofolate Reductase complexed with NADPH and 2,4-diamino-5-(3-(2,5-dimethoxyphenyl)prop-1-ynyl)-6-ethylpyrimidine (UCP120B) 5ISQ ; 1.9 ; Staphylococcus aureus H30N, F98Y Dihydrofolate Reductase mutant complexed with beta-NADPH and 3'-(3-(2,4-diamino-6-ethylpyrimidin-5-yl)prop-2-yn-1-yl)-4'-methoxy-[1,1'-biphenyl]-4-carboxylic acid (UCP1106) 3RTL ; 1.453 ; Staphylococcus aureus heme-bound IsdB-N2 3RUR ; 1.7 ; Staphylococcus aureus heme-bound selenomethionine-labeled IsdB-N2 3QZM ; 1.25 ; Staphylococcus aureus IsdA NEAT domain H83A variant in complex with heme 3QZP ; 1.9 ; Staphylococcus aureus IsdA NEAT domain in complex with cobalt-protoporphyrin IX 3QZO ; 1.952 ; Staphylococcus aureus IsdA NEAT domain in complex with heme, reduced crystal 3QZL ; 1.3 ; Staphylococcus aureus IsdA NEAT domain K75A variant in complex with heme 3QZN ; 2.0 ; Staphylococcus aureus IsdA NEAT domain Y166A variant in complex with heme 5VMM ; 3.6 ; Staphylococcus aureus IsdB bound to human hemoglobin 6KSI ; 2.08 ; Staphylococcus aureus lipase - native 6KSL ; 2.59 ; Staphylococcus aureus lipase - S116A inactive mutant 6KSM ; 2.23 ; Staphylococcus aureus lipase -Orlistat complex 4EM0 ; 2.9 ; staphylococcus aureus MarR in complex with salicylate and kanamycin 4EM1 ; 3.0 ; staphylococcus aureus MarR native 5N56 ; 2.07 ; Staphylococcus aureus Mn-dependent superoxide dismutase SodA 2QIE ; 2.5 ; Staphylococcus aureus molybdopterin synthase in complex with precursor Z 6FTB ; 2.1 ; Staphylococcus aureus monofunctional glycosyltransferase in complex with moenomycin 7CTO ; 3.47 ; Staphylococcus aureus MsrB 5IIP ; 2.5 ; Staphylococcus aureus OpuCA 2L8T ; ; Staphylococcus aureus pathogenicity island 1 protein gp6, an internal scaffold in size determination 3HL6 ; 2.5 ; Staphylococcus aureus pathogenicity island 3 ORF9 protein 2CD7 ; 1.5 ; Staphylococcus aureus pI258 arsenate reductase (ArsC) H62Q mutant 1BDC ; ; STAPHYLOCOCCUS AUREUS PROTEIN A, IMMUNOGLOBULIN-BINDING B DOMAIN, NMR, 10 STRUCTURES 1BDD ; ; STAPHYLOCOCCUS AUREUS PROTEIN A, IMMUNOGLOBULIN-BINDING B DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 7P48 ; 2.9 ; Staphylococcus aureus ribosome in complex with Sal(B) 5Y9P ; 2.2 ; Staphylococcus aureus RNase HII 2W9T ; 2.35 ; Staphylococcus aureus S1:DHFR 2W9S ; 1.8 ; Staphylococcus aureus S1:DHFR in complex with trimethoprim 4LFD ; 2.49 ; Staphylococcus aureus sortase B-substrate complex 6EX3 ; 2.2 ; Staphylococcus aureus superoxide dismutase SodA 6QV9 ; 1.8 ; Staphylococcus aureus superoxide dismutase SodA double mutant 6QV8 ; 1.5 ; Staphylococcus aureus superoxide dismutase SodM double mutant 6LEB ; 1.54 ; Staphylococcus aureus surface protein SdrC mutant-P366H 6LXH ; 2.07 ; Staphylococcus aureus surface protein-sdrc 6EX5 ; 1.75 ; Staphylococcus aureus triple mutant of superoxide dismutase SodM 4M7X ; 1.42 ; Staphylococcus aureus Type II pantothenate kinase in complex with a pantothenate analog 4M7Y ; 1.8 ; Staphylococcus aureus Type II pantothenate kinase in complex with a pantothenate analog 5ELZ ; 1.8 ; Staphylococcus aureus Type II pantothenate kinase in complex with a pantothenate analog 5JIC ; 1.4 ; Staphylococcus aureus Type II pantothenate kinase in complex with a pantothenate analog 6AWJ ; 2.5 ; Staphylococcus aureus Type II pantothenate kinase in complex with ADP and pantothenate analog Deoxy-MeO-N5Pan with pantothenate present in reaction 6AWI ; 1.8 ; Staphylococcus aureus Type II pantothenate kinase in complex with ADP and pantothenate analog Deoxy-N5Pan 6EBV ; 3.0 ; Staphylococcus aureus Type II pantothenate kinase in complex with ADP and pantothenate analog Deoxy-N7-Pan 6AVP ; 2.3 ; Staphylococcus aureus Type II pantothenate kinase in complex with ADP and pantothenate analog Phosphate-MeO-N5Pan 6AWH ; 1.9 ; Staphylococcus aureus Type II pantothenate kinase in complex with ATP and pantothenate analog Deoxy-MeO-N5Pan 6AWG ; 2.4 ; Staphylococcus aureus Type II pantothenate kinase in complex with nucleotides and pantothenate analog Deoxy-N190Pan 3WDF ; 1.48 ; Staphylococcus aureus UDG 3WDG ; 2.2 ; Staphylococcus aureus UDG / UGI complex 4Q6A ; 2.099 ; Staphylococcus aureus V31L, F98Y Mutant Dihydrofolate Reductase Complexed with NADPH 3LG4 ; 3.15 ; Staphylococcus aureus V31Y, F92I mutant dihydrofolate reductase complexed with NADPH and 5-[(3S)-3-(5-methoxy-2',6'-dimethylbiphenyl-3-yl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine 5CCT ; 2.4 ; Staphylococcus bacteriophage 80alpha dUTPase G164S mutant with dUpNHpp. 5CCO ; 2.33 ; Staphylococcus bacteriophage 80alpha dUTPase with dUMP. 5M95 ; 3.4 ; STAPHYLOCOCCUS CAPITIS DIVALENT METAL ION TRANSPORTER (DMT) IN COMPLEX WITH MANGANESE 3KP3 ; 3.2 ; Staphylococcus epidermidis in complex with ampicillin 7UZY ; 4.05 ; Staphylococcus epidermidis RP62A CRISPR effector complex with non-self target RNA 2 7UZW ; 3.55 ; Staphylococcus epidermidis RP62a CRISPR effector subcomplex 7UZX ; 3.49 ; Staphylococcus epidermidis RP62a CRISPR effector subcomplex with non-self target RNA bound 7V02 ; 4.97 ; Staphylococcus epidermidis RP62A CRISPR short effector complex 7V01 ; 3.67 ; Staphylococcus epidermidis RP62a CRISPR short effector complex with self RNA target and ATP 7UZZ ; 4.45 ; Staphylococcus epidermidis RP62a CRISPR tall effector complex 7V00 ; 3.87 ; Staphylococcus epidermidis RP62a CRISPR tall effector complex with bound ATP 3KP7 ; 2.3 ; Staphylococcus epidermidis TcaR (apo form) 4EJU ; 2.4 ; Staphylococcus epidermidis TcaR full length 4EJV ; 2.9 ; Staphylococcus epidermidis TcaR in complex with chloramphenicol 3KP5 ; 3.0 ; Staphylococcus epidermidis TcaR in complex with kanamycin 3KP4 ; 2.84 ; Staphylococcus epidermidis TcaR in complex with methicillin 3KP2 ; 2.55 ; Staphylococcus epidermidis TcaR in complex with penicillin G 4EJT ; 3.0 ; Staphylococcus epidermidis TcaR in complex with RNA 3KP6 ; 2.45 ; Staphylococcus epidermidis TcaR in complex with salicylate 4EJW ; 2.8 ; Staphylococcus epidermidis TcaR in complex with streptomycin 6E0U ; 2.75 ; Staphylococcus pseudintermedius exfoliative toxin EXI 5D85 ; 1.92 ; Staphyloferrin B precursor biosynthetic enzyme SbnA bound to aminoacrylate intermediate 5D84 ; 1.45 ; Staphyloferrin B precursor biosynthetic enzyme SbnA bound to PLP 5D86 ; 1.5 ; Staphyloferrin B precursor biosynthetic enzyme SbnA Y152F variant 5D87 ; 1.5 ; Staphyloferrin B precursor biosynthetic enzyme SbnA Y152F/S185G variant 4MPD ; 2.101 ; Staphyloferrin B precursor biosynthetic enzyme SbnB bound a-ketoglutarate and NAD+ 4MP6 ; 2.1 ; Staphyloferrin B precursor biosynthetic enzyme SbnB bound to citrate and NAD+ 4MP8 ; 1.85 ; Staphyloferrin B precursor biosynthetic enzyme SbnB bound to malonate and NAD+ 4MP3 ; 2.11 ; Staphyloferrin B precursor biosynthetic enzyme selenomethionine-labeled SbnB 1C77 ; 2.3 ; STAPHYLOKINASE (SAK) DIMER 1C78 ; 2.3 ; STAPHYLOKINASE (SAK) DIMER 1C79 ; 2.3 ; STAPHYLOKINASE (SAK) DIMER 1C76 ; 2.25 ; STAPHYLOKINASE (SAK) MONOMER 2SAK ; 1.8 ; STAPHYLOKINASE (SAKSTAR VARIANT) 1SSN ; ; STAPHYLOKINASE, SAKSTAR VARIANT, NMR, 20 STRUCTURES 6C4R ; 2.288 ; Staphylopine dehydrogenase (SaODH) - Apo 6C4T ; 2.49 ; Staphylopine dehydrogenase (SaODH) - NADP+ bound 6GMZ ; 2.22 ; Staphylopine dehydrogenase in complex with Histidine tag and citrate 6H3F ; 2.21 ; Staphylopine dehydrogenase in complex with staphylopine and NADP+ 6H3D ; 2.05 ; Staphylopine dehydrogenase in complex with xNA 6H31 ; 2.3 ; Staphylopine dehydrogenase in the apo state 7E1Y ; 2.9 ; Staphylothermus marinus amylopullulanase -SmApu 8GJS ; 1.75 ; Stapled Peptide ALRN-6924 Bound to MDMX 2YJD ; 1.93 ; Stapled peptide bound to Estrogen Receptor Beta 7F7I ; 2.595 ; Stapled Peptide Inhibitor in complex with PSD95 GK domain 8C3J ; 3.02 ; Stapled peptide SP2 in complex with humanised RadA mutant HumRadA22 8BR9 ; 1.63 ; Stapled peptide SP24 in complex with humanised RadA mutant HumRadA22 8C3N ; 1.21 ; Stapled peptide SP30 in complex with humanised RadA mutant HumRadA22 2YJA ; 1.82 ; Stapled Peptides binding to Estrogen Receptor alpha. 7V1A ; 1.845 ; Stapled TBS peptide from RIAM bound to talin R7R8 domains 5ZJY ; 1.59 ; Stapled-peptides tailored against initiation of translation 5ZJZ ; 1.67 ; Stapled-peptides tailored against initiation of translation 5ZK5 ; 2.25 ; Stapled-peptides tailored against initiation of translation 5ZK7 ; 2.12 ; Stapled-peptides tailored against initiation of translation 5ZK9 ; 1.76 ; Stapled-peptides tailored against initiation of translation 5ZML ; 1.8 ; Stapled-peptides tailored against initiation of translation 4MCV ; 2.73 ; Star 12 bound to analog-sensitive Src kinase 1EM2 ; 2.2 ; Star-related lipid transport domain of MLN64 7UWU ; 2.19 ; Starch adherence system protein 6 (Sas6) 1CQY ; 1.95 ; STARCH BINDING DOMAIN OF BACILLUS CEREUS BETA-AMYLASE 5TD4 ; 2.3 ; Starch binding sites on the Human pancreatic alpha amylase D300N variant complexed with an octaose substrate. 2C4M ; 1.9 ; Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. 3NY7 ; 1.922 ; STAS domain of YchM bound to ACP 1BGF ; 1.45 ; STAT-4 N-DOMAIN 6NJS ; 2.7 ; Stat3 Core in complex with compound SD36 6NUQ ; 3.15 ; Stat3 Core in complex with compound SI109 7TVA ; 2.835 ; Stat5a Core in complex with AK2292 7TVB ; 2.653 ; Stat5A Core in Complex with AK305 7UC6 ; 3.101 ; Stat5a Core in complex with Compound 12 7UC7 ; 3.102 ; Stat5a Core in complex with Compound 17 7UBT ; 2.352 ; Stat5a Core in complex with Compound 18 7N95 ; 4.1 ; state 1 of TcdB and FZD2 at pH5 6RBD ; 3.47 ; State 1 of yeast Tsr1-TAP Rps20-Deltaloop pre-40S particles 7N97 ; 5.1 ; State 2 of TcdB and FZD2 at pH5 6RBE ; 3.8 ; State 2 of yeast Tsr1-TAP Rps20-Deltaloop pre-40S particles 7N9Q ; 4.6 ; State 3 of TcdB and FZD2 at pH5 7N9R ; 5.9 ; state 4 of TcdB and FZD2 at pH5 6EM3 ; 3.2 ; State A architectural model (Nsa1-TAP Flag-Ytm1) - Visualizing the assembly pathway of nucleolar pre-60S ribosomes 7ODR ; 2.9 ; State A of the human mitoribosomal large subunit assembly intermediate 6YXX ; 3.9 ; State A of the Trypanosoma brucei mitoribosomal large subunit assembly intermediate 6EM4 ; 4.1 ; State B architectural model (Nsa1-TAP Flag-Ytm1) - Visualizing the assembly pathway of nucleolar pre-60S ribosomes 7ODS ; 3.1 ; State B of the human mitoribosomal large subunit assembly intermediate 6YXY ; 3.1 ; State B of the Trypanosoma brucei mitoribosomal large subunit assembly intermediate 6EM1 ; 3.6 ; State C (Nsa1-TAP Flag-Ytm1) - Visualizing the assembly pathway of nucleolar pre-60S ribosomes 7ODT ; 3.1 ; State C of the human mitoribosomal large subunit assembly intermediate 6EM5 ; 4.3 ; State D architectural model (Nsa1-TAP Flag-Ytm1) - Visualizing the assembly pathway of nucleolar pre-60S ribosomes 6ELZ ; 3.3 ; State E (TAP-Flag-Ytm1 E80A) - Visualizing the assembly pathway of nucleolar pre-60S ribosomes 7R7A ; 3.04 ; State E1 nucleolar 60S ribosome biogenesis intermediate - Composite model 7R72 ; 3.07 ; State E1 nucleolar 60S ribosome biogenesis intermediate - Spb4 local model 7NAC ; 3.04 ; State E2 nucleolar 60S ribosomal biogenesis intermediate - Composite model 7R7C ; 3.71 ; State E2 nucleolar 60S ribosomal biogenesis intermediate - L1 stalk local model 7NAF ; 3.13 ; State E2 nucleolar 60S ribosomal biogenesis intermediate - Spb1-MTD local model 7NAD ; 3.04 ; State E2 nucleolar 60S ribosomal biogenesis intermediate - Spb4 local refinement model 7R6K ; 3.17 ; State E2 nucleolar 60S ribosomal intermediate - Model for Noc2/Noc3 region 7R6Q ; 2.98 ; State E2 nucleolar 60S ribosome biogenesis intermediate - Foot region model 7U0H ; 2.76 ; State NE1 nucleolar 60S ribosome biogenesis intermediate - Overall model 7DZ7 ; 2.84 ; State transition supercomplex PSI-LHCI-LHCII from double phosphatase mutant pph1;pbcp of green alga Chlamydomonas reinhardtii 7DZ8 ; 3.16 ; State transition supercomplex PSI-LHCI-LHCII from the LhcbM1 lacking mutant of Chlamydomonas reinhardtii 5KSQ ; 2.63 ; Stationary phase survival protein E (SurE) from Xylella fastidiosa 5KSS ; 2.82 ; Stationary phase survival protein E (SurE) from Xylella fastidiosa - XFSurE-Ds (Dimer Smaller) 5KSR ; 1.96 ; Stationary phase survival protein E (SurE) from Xylella fastidiosa - XFSurE-TB (Tetramer Bigger). 5KST ; 2.759 ; Stationary phase Survival protein E (SurE) from Xylella fastidiosa- XfSurE-TSAmp (Tetramer Smaller - crystallization with 3'AMP). 4WLI ; 1.76 ; Stationary Phase Survival Protein YuiC from B.subtilis 4WJT ; 1.21 ; Stationary Phase Survival Protein YuiC from B.subtilis complexed with NAG 4WLK ; 2.03 ; Stationary Phase Survival Protein YuiC from B.subtilis complexed with reaction product 8BEM ; 2.6 ; STE20-like serine/threonine-protein kinase (SLK) in complex with Tivozanib 6RQO ; 2.0 ; Steady-state-SMX activated state structure of bacteriorhodopsin 6RQP ; 1.8 ; Steady-state-SMX dark state structure of bacteriorhodopsin 1AFR ; 2.4 ; STEAROYL-ACYL CARRIER PROTEIN DESATURASE FROM CASTOR SEEDS 8JBI ; 2.356 ; SteC 202-375 mutant- C276S 5E9N ; 0.95 ; Steccherinum murashkinskyi laccase at 0.95 resolution 2OCT ; 1.4 ; Stefin B (Cystatin B) tetramer 2U2A ; ; STEM LOOP IIA FROM U2 SNRNA OF SACCHAROMYCES CEREVISIAE, NMR, MINIMIZED AVERAGE STRUCTURE 1U2A ; ; STEM LOOP IIA FROM U2SNRNA OF SACCHAROMYCES CEREVISIAE, NMR, MINIMIZED AVERAGE STRUCTURE 8CQ1 ; ; Stem-Loop 4 of the 5'-UTR of the SARS-CoV2 genomic RNA 1TXS ; ; STEM-LOOP D OF THE CLOVERLEAF DOMAIN OF ENTEROVIRAL 5'UTR RNA 7DKD ; 1.92 ; Stenotrophomonas maltophilia DPP7 in complex with Asn-Tyr 7DKE ; 1.91 ; Stenotrophomonas maltophilia DPP7 in complex with Phe-Tyr 7DKC ; 1.86 ; Stenotrophomonas maltophilia DPP7 in complex with Tyr-Tyr 7DKB ; 2.03 ; Stenotrophomonas maltophilia DPP7 in complex with Val-Tyr 8GMM ; 1.8 ; Stenotrophomonas maltophilia Holo HphA 2QJS ; 2.25 ; Stenotrophomonas maltophilia L1 metallo-beta-lactamase Asp-120 Asn mutant 2QIN ; 1.76 ; Stenotrophomonas maltophilia L1 Metallo-beta-Lactamase Asp-120 Cys mutant 1W54 ; 2.2 ; Stepwise introduction of a zinc binding site into Porphobilinogen synthase from Pseudomonas aeruginosa (mutation D139C) 1W56 ; 1.7 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations A129C and D131C) 1W5M ; 1.6 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations A129C and D139C) 1W5O ; 1.85 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations A129C, D131C and D139C) 1W5P ; 1.55 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations A129C, D131C, D139C, P132E) 1W5Q ; 1.4 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations A129C, D131C, D139C, P132E, K229R) 1W5N ; 1.65 ; Stepwise introduction of zinc binding site into porphobilinogen synthase of Pseudomonas aeruginosa (mutations D131C and D139C) 3LX4 ; 1.97 ; Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(deltaEFG) 2HMD ; ; Stereochemistry Modulates Stability of Reduced Inter-Strand Cross-Links Arising From R- and S-alpha-methyl-gamma-OH-1,N2-propano-2'-Deoxyguanine in the 5'-CpG-3' DNA Sequence 5C1R ; 1.802 ; Stereoisomer of PRPP bound in the active site of Mycobacterium tuberculosis anthranilate phosphoribosyl (AnPRT; trpD) 4A4Q ; 1.8 ; Stereoselective Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Lactam Based HIV-1 Protease Inhibitors 4A6B ; 1.8 ; Stereoselective Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Lactam Based HIV-1 Protease Inhibitors 4A6C ; 1.5 ; Stereoselective Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Lactam Based HIV-1 Protease Inhibitors 2ROU ; ; Stereospecific Conformations of N2-dG 1R-trans-anti-Benzo[c]phenanthrene DNA Adducts: 3'-Intercalation of the 1R Adduct and 5'-Minor Groove Orientation of the 1S Adduct in an Iterated (CG)3 Repeat 1JIM ; 2.31 ; STEREOSPECIFIC REACTION OF 3-METHOXY-4-CHLORO-7-AMINOISOCOUMARIN WITH CRYSTALLINE PORCINE PANCREATIC ELASTASE 1AMI ; 2.0 ; STERIC AND CONFORMATIONAL FEATURES OF THE ACONITASE MECHANISM 1AMJ ; 2.0 ; STERIC AND CONFORMATIONAL FEATURES OF THE ACONITASE MECHANISM 1UCV ; ; Sterile alpha motif (SAM) domain of ephrin type-A receptor 8 1V85 ; ; Sterile alpha motif (SAM) domain of mouse bifunctional apoptosis regulator 8E1F ; 2.16 ; Sterile Alpha Motif Domain of Human Translocation ETS Leukemia, Non-Polymer Crystal Form 8FZ3 ; 2.784 ; Sterile Alpha Motif of Human Translocation ETS Leukemia, Non-Polymer Crystal Form 6V0M ; 1.8 ; Sterile alpha-motif from apoptosis signal-regulating kinase 3 4NZ6 ; 2.0 ; Steroid receptor RNA Activator (SRA) modification by the human Pseudouridine Synthase 1 (hPus1p): RNA binding, activity, and atomic model 4NZ7 ; 2.7 ; Steroid receptor RNA Activator (SRA) modification by the human Pseudouridine Synthase 1 (hPus1p): RNA binding, activity, and atomic model 1ESS ; ; STEROID TETHERED DNA, NMR, MINIMIZED AVERAGE STRUCTURE 3ZG2 ; 2.8 ; Sterol 14 alpha-demethylase (CYP51) from Trypanosoma cruzi in complex with the pyridine inhibitor (S)-2-(4-chlorophenyl)-2-(pyridin-3-yl)-1- (4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)ethanone (EPL-BS1246,UDO) 3TIK ; 2.05 ; Sterol 14-alpha demethylase (CYP51) from Trypanosoma brucei in complex with the tipifarnib derivative 6-((4-chlorophenyl)(methoxy)(1-methyl-1H-imidazol-5-yl)methyl)-4-(2,6-difluorophenyl)-1-methylquinolin-2(1H)-one 4G3J ; 1.83 ; Sterol 14-alpha demethylase (CYP51) from Trypanosoma brucei in complex with the VNI derivative (R)-N-(1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide [R-VNI-triazole (VNT)] 4G7G ; 2.05 ; Sterol 14-alpha demethylase (CYP51) from Trypanosoma brucei in complex with the VNI derivative (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide [VNI/VNF (VFV)] 5AJR ; 2.75 ; Sterol 14-alpha demethylase (CYP51) from Trypanosoma cruzi in complex with the 1-tetrazole derivative VT-1161 ((R)-2-(2,4-Difluorophenyl)-1, 1-difluoro-3-(1H-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl) pyridin-2-yl)propan-2-ol) 4CK8 ; 2.62 ; STEROL 14-ALPHA DEMETHYLASE (CYP51)FROM TRYPANOSOMA CRUZI IN COMPLEX WITH (R)-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl 4-(4-(3,4- dichlorophenyl)piperazin-1-yl)phenylcarbamate (LFD) 4CK9 ; 2.74 ; STEROL 14-ALPHA DEMETHYLASE (CYP51)FROM TRYPANOSOMA CRUZI IN COMPLEX WITH (S)-1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethyl 4- isopropylphenylcarbamate (LFT) 4CKA ; 2.7 ; STEROL 14-ALPHA DEMETHYLASE (CYP51)FROM TRYPANOSOMA CRUZI IN COMPLEX WITH (S)-1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethyl 4- isopropylphenylcarbamate (LFS) 4H6O ; 2.8 ; Sterol 14-alpha demethylase (CYP51)from Trypanosoma cruzi in complex with the inhibitor NEU321 (1-(3-(4-chloro-3,5-dimethylphenoxy)benzyl)-1H-imidazole 3ZG3 ; 2.9 ; STEROL 14-ALPHA DEMETHYLASE (CYP51)FROM TRYPANOSOMA CRUZI IN COMPLEX WITH THE PYRIDINE INHIBITOR N-(1-(5-(trifluoromethyl)(pyridin-2-yl)) piperidin-4yl)-N-(4-(trifluoromethyl)phenyl)pyridin-3-amine (EPL- BS967, UDD) 7RTQ ; 2.11 ; Sterol 14alpha demethylase (CYP51) from Naegleria fowleri in complex with an inhibitor R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide 3P99 ; 3.0 ; Sterol 14alpha-demethylase (CYP51) from Trypanosoma brucei in complex with delta7-14alpha-methylene-cyclopropyl-dihydrolanosterol 5XVM ; 2.77 ; Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 5GL5 ; 1.9 ; Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c): UDPG complex 1C44 ; 1.8 ; STEROL CARRIER PROTEIN 2 (SCP2) FROM RABBIT 6OVP ; 1.991 ; Sterol Carrier Protein 2 from Yarrowia Lipolytica (apo form) 8AF3 ; 1.52 ; Sterol carrier protein Artifical metalloenzyme incorporating Q111C mutation coupled to 2,2'-bipyridine 1QND ; ; STEROL CARRIER PROTEIN-2, NMR, 20 STRUCTURES 2MLG ; ; Stf76 from the Sulfolobus islandicus plasmid-virus pSSVx 6BZP ; 1.1 ; STGGYG from low-complexity domain of FUS, residues 77-82 7TKT ; 3.6 ; SthK closed state, cAMP-bound in the presence of detergent 7TJ5 ; 2.41 ; SthK closed state, cAMP-bound in the presence of POPA 7TJ6 ; 2.9 ; SthK open state, cAMP-bound in the presence of POPA 6VY0 ; 6.68 ; SthK P300A cyclic nucleotide-gated potassium channel in a putative active state, in complex with cAMP 6VXZ ; 3.42 ; SthK P300A cyclic nucleotide-gated potassium channel in the closed state, in complex with cAMP 7RTF ; 2.9 ; SthK R120A Closed State 7RU0 ; 4.3 ; SthK R120A Open State 1 7RYS ; 3.7 ; SthK R120A Open State 2 7RYR ; 3.6 ; SthK R120A Open State 3 7RTJ ; 3.8 ; SthK Y26F Activated State 7RSH ; 3.0 ; SthK Y26F Closed State 6ECW ; 1.7 ; StiD O-MT residues 956-1266 6ECV ; 1.798 ; StiD O-MT residues 976-1266 6ECX ; 1.9 ; StiE O-MT residues 942-1257 6ECT ; 1.42 ; StiE O-MT residues 961-1257 7KDQ ; ; StigA15 6BAY ; 3.15 ; Stigmatella aurantiaca bacterial phytochrome P1, PAS-GAF-PHY T289H mutant, room temperature structure 6BAP ; 2.65 ; Stigmatella aurantiaca bacterial phytochrome PAS-GAF-PHY, T289H mutant 6BAO ; 2.18 ; Stigmatella aurantiaca phytochrome photosensory core module, wild type 3BCC ; 3.7 ; STIGMATELLIN AND ANTIMYCIN BOUND CYTOCHROME BC1 COMPLEX FROM CHICKEN 3H1I ; 3.53 ; Stigmatellin and antimycin bound cytochrome bc1 complex from chicken 2BCC ; 3.5 ; STIGMATELLIN-BOUND CYTOCHROME BC1 COMPLEX FROM CHICKEN 3H1J ; 3.0 ; Stigmatellin-bound cytochrome bc1 complex from chicken 6VL2 ; ; Stigmurin 2N19 ; ; STIL binding to the Polo-box domain 3 of PLK4 regulates centriole duplication 7QR6 ; 2.9 ; Stilbene dioxygenase (NOV1) from Novosphingobium aromaticivorans: Ser283Phe mutant 7OSU ; 1.37 ; sTIM11noCys-SB, a de novo designed TIM barrel with a salt-bridge cluster (crystal form 1) 7OT7 ; 1.51 ; sTIM11noCys-SB, a de novo designed TIM barrel with a salt-bridge cluster (crystal form 2) 7KRU ; 1.82 ; Stimulating state of a truncated Hsp70 DnaK fused with a substrate peptide 7KRV ; 1.92 ; Stimulating state of disulfide-bridged Hsp70 DnaK 7KRW ; 7.7 ; Stimulating state of near full-length Hsp70 DnaK fused with a substrate peptide 3KJT ; 1.5 ; Stimulation of the maltose transporter by a mutant sucrose binding protein gives insights into ABC transporter coupling 6CFF ; 2.396 ; Stimulator of Interferon Genes Human 6Z80 ; 3.0 ; stimulatory human GTP cyclohydrolase I - GFRP complex 7LLI ; 3.2 ; Stimulatory immune receptor protein complex 6UKW ; 1.97 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 10 6UKX ; 1.93 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 11 6UKY ; 1.95 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 12 6UKU ; 1.68 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 3 6UL0 ; 1.76 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 4 6UKZ ; 1.52 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 6 6UKV ; 1.83 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound 9 6UKM ; 1.74 ; STING C-terminal Domain Complexed with Non-cyclic Dinucleotide Compound MSA-2 7QGP ; 1.9 ; STK10 (LOK) bound to Macrocycle CKJB51 8TUQ ; 2.0 ; STL Polyomavirus LTA NLS bound to importin alpha 2 7OUG ; 3.1 ; STLV-1 intasome:B56 in complex with the strand-transfer inhibitor raltegravir 7MPI ; 3.05 ; Stm1 bound vacant 80S structure isolated from cbf5-D95A 7MPJ ; 2.7 ; Stm1 bound vacant 80S structure isolated from wild-type 5HXG ; 1.998 ; STM1697-FlhD complex 6IAI ; 2.54 ; StoD is a novel Salmonella Typhi type III secretion system E3 ubiquitin ligase effector 1JXE ; 2.85 ; STOFFEL FRAGMENT OF TAQ DNA POLYMERASE I 4WVM ; 3.1 ; Stonustoxin structure 1MZ9 ; 1.7 ; Storage function of COMP:the crystal structure of the coiled-coil domain in complex with vitamin D3 2V6X ; 1.98 ; Stractural insight into the interaction between ESCRT-III and Vps4 8UZ0 ; 2.8 ; Straight actin filament from Arp2/3 branch junction sample (ADP) 8UZ1 ; 3.6 ; Straight actin filament from Arp2/3 branch junction sample (ADP-BeFx) 8D17 ; 3.69 ; Straight ADP-F-actin 1 8D18 ; 3.66 ; Straight ADP-F-actin 2 8HRE ; 5.5 ; Straight fiber of DT57C bacteriophage in the full state 6VI3 ; 3.3 ; Straight Filament from Alzheimer's Disease Human Brain Tissue 7NRX ; 3.55 ; Straight filament from Alzheimer's disease with PET ligand APN-1607 6HRF ; 3.3 ; Straight filament from sporadic Alzheimer's disease brain 5O3T ; 3.4 ; Straight filament in Alzheimer's disease brain 7MKG ; 3.07 ; Straight tau filament extracted from PrP-CAA Patient brain tissue | tau filament | SF Tau 7SVW ; 3.69 ; Strand-transfer complex of TnsB from ShCAST 7CC2 ; 2.723 ; Strategic design of catalytic lysine-targeting reversible covalent BCR-ABL Inhibitors 7DT2 ; 2.3 ; Strategic design of catalytic lysine-targeting reversible covalent BCR-ABL Inhibitors 1PFG ; 2.5 ; Strategy to design inhibitors: Structure of a complex of Proteinase K with a designed octapeptide inhibitor N-Ac-Pro-Ala-Pro-Phe-DAla-Ala-Ala-Ala-NH2 at 2.5A resolution 2PJH ; ; Strctural Model of the p97 N domain- npl4 UBD complex 2G6N ; 1.9 ; Strcture of rat nNOS heme domain (BH2 bound) complexed with CO 2MTD ; ; Strcucture of Decorin Binding Protein A from strain PBr of Borrelia garinii 5Y2V ; 2.6 ; Strcutrue of the full-length CcmR complexed with 2-OG from Synechocystis PCC6803 3SW8 ; 1.702 ; Strep Peptide Deformylase with a time dependent dichlorobenzamide-reverse hydroxamic acid 3SVJ ; 1.55 ; Strep Peptide Deformylase with a time dependent thiazolidine amide 3STR ; 1.75 ; Strep Peptide Deformylase with a time dependent thiazolidine hydroxamic acid 7R4V ; 1.3 ; Strep-tag FtrA-P19 from Rubrivivax gelatinosus in complex with an endogenous CU1 7R5P ; 1.68 ; Strep-tag FtrA-P19 from Rubrivivax gelatinosus in complex with copper and iron 7R4Z ; 2.75 ; Strep-tag FtrA-P19 from Rubrivivax gelatinosus in complex with iron and copper 1MC9 ; 1.7 ; STREPROMYCES LIVIDANS XYLAN BINDING DOMAIN CBM13 IN COMPLEX WITH XYLOPENTAOSE 4EKV ; 2.0 ; Streptavidin 8-aa-loop H127C mutein with reversible biotin binding 4CPI ; 1.54 ; streptavidin A86D mutant with love-hate ligand 4 6AVK ; 1.4 ; Streptavidin bound to peptide-like compound KPM-6 4JO6 ; 1.75 ; Streptavidin complex with SBP-Tag 1VWP ; 1.75 ; STREPTAVIDIN COMPLEXED WITH CYCLO-AC-[CHPQGPPC]-NH2 MONOMER, PH 2.5 1VWO ; 1.65 ; STREPTAVIDIN COMPLEXED WITH CYCLO-AC-[CHPQGPPC]-NH2 MONOMER, PH 2.85 1VWF ; 1.92 ; STREPTAVIDIN COMPLEXED WITH CYCLO-AC-[CHPQGPPC]-NH2 MONOMER, PH 3.67 1VWG ; 1.46 ; STREPTAVIDIN COMPLEXED WITH THE HEAD-TO-TAIL DISULFIDE-BONDED PEPTIDE DIMER OF CYCLO-AC-[CHPQGPPC]-NH2, PH 2.5 1VWH ; 1.48 ; STREPTAVIDIN COMPLEXED WITH THE HEAD-TO-TAIL DISULFIDE-BONDED PEPTIDE DIMER OF CYCLO-AC-[CHPQGPPC]-NH2, PH 3.5 1STR ; 1.8 ; STREPTAVIDIN DIMERIZED BY DISULFIDE-BONDED PEPTIDE AC-CHPQNT-NH2 DIMER 1STS ; 1.95 ; STREPTAVIDIN DIMERIZED BY DISULFIDE-BONDED PEPTIDE FCHPQNT-NH2 DIMER 2G5L ; 1.15 ; Streptavidin in complex with Nanotag 7ZOF ; 1.74 ; Streptavidin Iron-Porphyrin 6VJL ; 1.3 ; Streptavidin mutant M112 (G26C/A46C) 6VJK ; 1.6 ; Streptavidin mutant M88 (N49C/A86C) 1N4J ; 2.18 ; STREPTAVIDIN MUTANT N23A AT 2.18A 1N43 ; 1.89 ; Streptavidin Mutant N23A with biotin at 1.89A 1N7Y ; 1.96 ; STREPTAVIDIN MUTANT N23E AT 1.96A 8AQY ; 1.65 ; streptavidin mutant S112A with an iridium catalyst for CH activation 8BY0 ; 2.1 ; streptavidin mutant S112I K121R with an iridium catalyst for CH activation 8AQX ; 1.85 ; streptavidin mutant S112I with an iridium catalyst for CH activation 6Y2M ; 1.95 ; Streptavidin mutant S112R with a biotC4-1 cofactor - an artificial iron hydroxylase 6Y33 ; 1.49 ; Streptavidin mutant S112R with a biotC5-1 cofactor - an artificial iron hydroxylase 6Y25 ; 1.95 ; Streptavidin mutant S112R,K121E with a biotC4-1 cofactor - an artificial iron hydroxylase 6Y3Q ; 1.95 ; Streptavidin mutant S112R_K121E with a biotC5-1 cofactor - an artificial iron hydroxylase 1N9Y ; 1.53 ; Streptavidin Mutant S27A at 1.5A Resolution 1N9M ; 1.6 ; Streptavidin Mutant S27A with Biotin at 1.6A Resolution 1MM9 ; 1.66 ; Streptavidin Mutant with Insertion of Fibronectin Hexapeptide, including RGD 1MOY ; 1.55 ; Streptavidin Mutant with Osteopontin Hexapeptide Insertion Including RGD 1NBX ; 1.7 ; Streptavidin Mutant Y43A at 1.70A Resolution 1NC9 ; 1.8 ; STREPTAVIDIN MUTANT Y43A WITH IMINOBIOTIN AT 1.8A RESOLUTION 1SWU ; 1.14 ; STREPTAVIDIN MUTANT Y43F 1NDJ ; 1.81 ; Streptavidin Mutant Y43F with Biotin at 1.81A Resolution 8CRN ; 2.0 ; Streptavidin S112Y Co-TAML artificial metalloenzyme 8OJX ; 1.6 ; Streptavidin S112YK121E artificial metalloenzyme for carboamination 6T1E ; 1.3 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T1G ; 1.9 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T1K ; 1.2 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T2L ; 1.0 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T2Y ; 1.8 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T2Z ; 1.35 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T30 ; 1.8 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T31 ; 1.35 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6T32 ; 1.75 ; Streptavidin variants harbouring an artificial organocatalyst based cofactor 6Y2T ; 1.55 ; Streptavidin wildtype with a biotC4-1 cofactor - an artificial iron hydroxylase 6Y34 ; 1.307 ; Streptavidin wildtype with a biotC5-1 cofactor - an artificial iron hydroxylase 8AQO ; 1.9 ; Streptavidin with a bisbiothinilated Fe4S4 cluster 7ZX9 ; 1.546 ; Streptavidin with a fluorescent substrate 8QQ3 ; 1.6 ; Streptavidin with a Ni-cofactor 8BY1 ; 1.486 ; streptavidin with an iridium catalyst for CH activation 8OJW ; 1.484 ; Streptavidin WT artificial metalloenzyme for carboamination 8CRP ; 2.0 ; Streptavidin WT Co-TAML artificial metalloenzyme 1SLE ; 2.0 ; STREPTAVIDIN, PH 5.0, BOUND TO CYCLIC PEPTIDE AC-CHPQGPPC-NH2 1SLG ; 1.76 ; STREPTAVIDIN, PH 5.6, BOUND TO PEPTIDE FCHPQNT 1SLD ; 2.5 ; STREPTAVIDIN, PH 7.5, BOUND TO CYCLIC DISULFIDE-BONDED PEPTIDE LIGAND AC-CHPQFC-NH2 2RTN ; 1.8 ; STREPTAVIDIN-2-IMINOBIOTIN COMPLEX, PH 2.0, SPACE GROUP I222 2RTO ; 1.58 ; STREPTAVIDIN-2-IMINOBIOTIN COMPLEX, PH 2.6, SPACE GROUP I222 2RTP ; 1.5 ; STREPTAVIDIN-2-IMINOBIOTIN COMPLEX, PH 3.25, SPACE GROUP I222 2RTQ ; 1.39 ; STREPTAVIDIN-2-IMINOBIOTIN COMPLEX, PH 3.25, SPACE GROUP I222, CRYSTALLIZED FROM 4.3 M AMMONIUM SULFATE 2RTR ; 1.62 ; STREPTAVIDIN-2-IMINOBIOTIN COMPLEX, PH 4.0, SPACE GROUP I222 2IZL ; 1.48 ; STREPTAVIDIN-2-IMINOBIOTIN PH 7.3 I222 COMPLEX 2RTL ; 1.41 ; STREPTAVIDIN-2-IMINOBIOTIN-SULFATE COMPLEX, PH 2.50, SPACE GROUP I4122 2RTM ; 1.3 ; STREPTAVIDIN-2-IMINOBIOTIN-SULFATE COMPLEX, PH 3.50, SPACE GROUP I4122 1LCZ ; 1.95 ; streptavidin-BCAP complex 2RTD ; 1.65 ; STREPTAVIDIN-BIOTIN COMPLEX, PH 1.39, SPACE GROUP I222 2RTE ; 1.5 ; STREPTAVIDIN-BIOTIN COMPLEX, PH 1.90, SPACE GROUP I222 2RTF ; 1.47 ; STREPTAVIDIN-BIOTIN COMPLEX, PH 2.00, SPACE GROUP I222 2RTG ; 1.39 ; STREPTAVIDIN-BIOTIN COMPLEX, PH 2.40, SPACE GROUP I222 2IZH ; 1.36 ; STREPTAVIDIN-BIOTIN PH 10.44 I222 COMPLEX 2IZG ; 1.36 ; STREPTAVIDIN-BIOTIN PH 2.0 I222 COMPLEX 2IZI ; 1.5 ; STREPTAVIDIN-BIOTIN PH 2.53 I4122 STRUCTURE 2IZJ ; 1.3 ; STREPTAVIDIN-BIOTIN PH 3.50 I4122 STRUCTURE 2IZF ; 1.58 ; STREPTAVIDIN-BIOTIN PH 4.0 I222 COMPLEX 1VWB ; 1.82 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 11.8 1VWC ; 1.86 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 2.0 1VWD ; 1.87 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 3.0 1VWE ; 1.5 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 3.6 1VWM ; 1.6 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 4.2 1VWN ; 1.85 ; STREPTAVIDIN-CYCLO-AC-[CHPQFC]-NH2, PH 4.8 1VWK ; 1.45 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2 1VWI ; 1.5 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2, PH 1.5, I222 COMPLEX 1VWJ ; 1.45 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2, PH 2.5, I222 COMPLEX 1VWQ ; 1.7 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2, PH 2.5, I4122 COMPLEX 1VWL ; 1.45 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2, PH 3.5, I222 COMPLEX 1VWR ; 1.5 ; STREPTAVIDIN-CYCLO-[5-S-VALERAMIDE-HPQGPPC]K-NH2, PH 3.5, I4122 COMPLEX 1VWA ; 1.85 ; STREPTAVIDIN-FSHPQNT 2RTH ; 1.56 ; STREPTAVIDIN-GLYCOLURIL COMPLEX, PH 2.50, SPACE GROUP I222 2RTI ; 1.4 ; STREPTAVIDIN-GLYCOLURIL COMPLEX, PH 2.50, SPACE GROUP I222 2RTJ ; 1.4 ; STREPTAVIDIN-GLYCOLURIL COMPLEX, PH 2.50, SPACE GROUP I4122 2RTK ; 1.82 ; STREPTAVIDIN-GLYCOLURIL COMPLEX, PH 2.58, SPACE GROUP I4122 PREPARED FROM AN APOSTREPTAVIDIN CRYSTAL 2IZK ; 1.3 ; STREPTAVIDIN-GLYCOLURIL PH 2.58 I4122 COMPLEX 1LCW ; 2.2 ; streptavidin-homobiotin complex 4GJS ; 1.85 ; Streptavidin-K121H 1LCV ; 2.3 ; streptavidin-norbiotin complex 4GJV ; 2.4 ; Streptavidin-S112H 5CSE ; 1.792 ; Streptavidin-S112Y-K121E Complexed with Palladium-Containing Biotin Ligand 7AVK ; 0.82 ; Streptococcal High Identity Repeats in Tandem (SHIRT) domain 10 from cell surface protein SGO_0707 7AVJ ; 0.95 ; Streptococcal High Identity Repeats in Tandem (SHIRT) domain 2 from cell surface protein SGO_0707 7AVH ; 1.35 ; Streptococcal High Identity Repeats in Tandem (SHIRT) domains 3-4 from cell surface protein SGO_0707 1B1Z ; 2.57 ; STREPTOCOCCAL PYROGENIC EXOTOXIN A1 1BXT ; 1.85 ; STREPTOCOCCAL SUPERANTIGEN (SSA) FROM STREPTOCOCCUS PYOGENES 5L2D ; 2.66 ; Streptococcal surface adhesin - CshA NR2 6YZG ; 1.4 ; Streptococcal surface adhesin - CshB NR2 5DZA ; 2.19 ; Streptococcus agalactiae AgI/II polypeptide BspA C terminal domain (WT) 5DZ9 ; 1.89 ; Streptococcus agalactiae AgI/II polypeptide BspA C-terminal domain (Mut) 5DZ8 ; 2.41 ; Streptococcus agalactiae AgI/II polypeptide BspA variable (V) domain 6AZ6 ; 1.909 ; Streptococcus agalactiae GntR 2J4X ; 1.95 ; Streptococcus dysgalactiae-derived mitogen (SDM) 7L0O ; 2.7 ; Streptococcus gordonii C123 Domain(s)-Structural and Functional Analysis 6M9M ; 1.401 ; Streptococcus mutans AlkD2 bound to inosine-5'-monophosphate 7WJG ; 2.42 ; Streptococcus mutans BusR transcriptional factor 7LGR ; 1.6 ; Streptococcus mutans Collagen binding Protein CNM - N2 Domain 1I74 ; 2.2 ; STREPTOCOCCUS MUTANS INORGANIC PYROPHOSPHATASE 5LJI ; 2.07 ; Streptococcus pneumonia TIGR4 flavodoxin: structural and biophysical characterization of a novel drug target 5LJL ; 1.6 ; Streptococcus pneumonia TIGR4 flavodoxin: structural and biophysical characterization of a novel drug target 8OFH ; 1.64 ; Streptococcus pneumoniae CdaA 8OFG ; 2.4 ; Streptococcus pneumoniae CdaA in complex with c-di-amp 7PAF ; 3.75 ; Streptococcus pneumoniae choline importer LicB in lipid nanodiscs 5M6D ; 2.0 ; Streptococcus pneumoniae Glyceraldehyde-3-Phosphate Dehydrogenase (SpGAPDH) crystal structure 1N7O ; 1.5 ; Streptococcus pneumoniae Hyaluronate Lyase F343V Mutant 1LOH ; 2.0 ; Streptococcus pneumoniae Hyaluronate Lyase in Complex with Hexasaccharide Hyaluronan Substrate 1LXK ; 1.53 ; Streptococcus pneumoniae Hyaluronate Lyase in Complex with Tetrasaccharide Hyaluronan Substrate 1N7Q ; 2.3 ; Streptococcus pneumoniae Hyaluronate Lyase W291A/W292A Double Mutant complex with hyaluronan hexasacchride 1N7R ; 2.2 ; Streptococcus pneumoniae Hyaluronate Lyase W291A/W292A/F343V Mutant complex with hexasaccharide hyaluronan 1N7N ; 1.55 ; Streptococcus pneumoniae Hyaluronate Lyase W292A Mutant 1N7P ; 1.55 ; Streptococcus pneumoniae Hyaluronate Lyase W292A/F343V Double Mutant 6XJA ; 4.0 ; Streptococcus Pneumoniae IgA1 Protease with IgA1 substrate 2OI2 ; 2.5 ; Streptococcus pneumoniae Mevalonate Kinase in Complex with Diphosphomevalonate 3GON ; 1.9 ; Streptococcus pneumoniae Phosphomevalonate Kinase in Complex with Phosphomevalonate and AMPPNP 4YW4 ; 2.2 ; Streptococcus pneumoniae sialidase NanC 7PKJ ; 1.989 ; Streptococcus pyogenes apo GapN 7PKC ; 1.5 ; Streptococcus pyogenes Apo-GapN C284S variant 6DQ3 ; 1.78 ; Streptococcus pyogenes deacetylase PplD in complex with acetate 2WLA ; 2.0 ; Streptococcus pyogenes Dpr 6DGM ; 1.49 ; Streptococcus pyogenes phosphoglycerol transferase GacH in complex with sn-glycerol-1-phosphate 5WCX ; 2.0 ; Streptococcus pyogenes phosphoglycerol transferase GacH in complex with sn-glycerol-1-phosphate, crystal form 1 8SNQ ; 1.5 ; Streptococcus pyogenes Sortase A (SrtA) with the F145E mutation 6YRO ; 2.05 ; Streptococcus suis SadP mutant - N285D 8HI1 ; 3.09 ; Streptococcus thermophilus Cas1-Cas2- prespacer ternary complex 6FJW ; 2.7 ; Streptococcus thermophilus Cas6 2QC5 ; 1.8 ; Streptogramin B lyase structure 4OPE ; 2.58 ; Streptomcyes albus JA3453 oxazolomycin ketosynthase domain OzmH KS7 4OPF ; 2.12 ; Streptomcyes albus JA3453 oxazolomycin ketosynthase domain OzmH KS8 4WKY ; 2.0 ; Streptomcyes albus JA3453 oxazolomycin ketosynthase domain OzmN KS2 4OQJ ; 1.904 ; Streptomcyes albus JA3453 oxazolomycin ketosynthase domain OzmQ KS1 6B9R ; 1.802 ; Streptomyces albus HEPD with substrate 2-hydroxyethylphosphonate (2-HEP) and Fe(II) bound 4OQZ ; 1.96 ; Streptomyces aurantiacus imine reductase 4ZBO ; 1.4 ; Streptomyces bingchenggensis acetoacetate decarboxylase in non-covalent complex with potassium formate 6EEJ ; 1.892 ; Streptomyces bingchenggensis Aldolase-Dehydratase in covalent complex with dienone product. 4ZBT ; 1.8 ; Streptomyces bingchenggensis aldolase-dehydratase in Schiff base complex with pyruvate 7P37 ; 2.96 ; Streptomyces coelicolor ATP-loaded NrdR 7P3F ; 3.31 ; Streptomyces coelicolor dATP/ATP-loaded NrdR in complex with its cognate DNA 7P3Q ; 3.12 ; Streptomyces coelicolor dATP/ATP-loaded NrdR octamer 6WF6 ; 1.39 ; Streptomyces coelicolor methylmalonyl-CoA epimerase 6XBR ; 1.55 ; Streptomyces coelicolor methylmalonyl-CoA epimerase (E43L) in complex with 2-nitronate-propionyl-CoA 6XBS ; 1.5 ; Streptomyces coelicolor methylmalonyl-CoA epimerase (E43Q) in complex with 2-nitronate-propionyl-CoA 6XBT ; 1.49 ; Streptomyces coelicolor methylmalonyl-CoA epimerase (Q60A) in complex with 2-nitronate-propionyl-CoA 6XBV ; 1.5 ; Streptomyces coelicolor methylmalonyl-CoA epimerase (S115T) in complex with 2-nitronate-propionyl-CoA 6XBQ ; 1.64 ; Streptomyces coelicolor methylmalonyl-CoA epimerase in complex with carboxy-carba(dethia)-CoA 6WFH ; 1.84 ; Streptomyces coelicolor methylmalonyl-CoA epimerase substrate complex 5FGM ; 2.6 ; Streptomyces coelicolor SigR region 4 7VO9 ; 3.8 ; Streptomyces coelicolor zinc uptake regulator complexed with zinc and DNA (dimer of dimers) 7VO0 ; 3.4 ; Streptomyces coelicolor zinc uptake regulator complexed with zinc and DNA (trimer of dimers) 4M7G ; 0.81 ; Streptomyces Erythraeus Trypsin 4I4K ; 1.7 ; Streptomyces globisporus C-1027 9-membered enediyne conserved protein SgcE6 4OO2 ; 2.63 ; Streptomyces globisporus C-1027 FAD dependent (S)-3-chloro-β-tyrosine-S-SgcC2 C-5 hydroxylase SgcC apo form 4HX6 ; 1.89 ; Streptomyces globisporus C-1027 NADH:FAD oxidoreductase SgcE6 4R82 ; 1.659 ; Streptomyces globisporus C-1027 NADH:FAD oxidoreductase SgcE6 in complex with NAD and FAD fragments 1TKJ ; 1.15 ; Streptomyces griseus aminopeptidase complexed with D-Methionine 1TKH ; 1.25 ; Streptomyces griseus aminopeptidase complexed with D-Phenylalanine 1TKF ; 1.2 ; Streptomyces griseus aminopeptidase complexed with D-tryptophan 1TF8 ; 1.3 ; Streptomyces griseus aminopeptidase complexed with L-tryptophan 1QQ9 ; 1.53 ; STREPTOMYCES GRISEUS AMINOPEPTIDASE COMPLEXED WITH METHIONINE 1XBU ; 1.2 ; Streptomyces griseus aminopeptidase complexed with p-iodo-D-phenylalanine 1TF9 ; 1.3 ; Streptomyces griseus aminopeptidase complexed with P-Iodo-L-Phenylalanine 6R01 ; 1.18 ; Streptomyces lividans Ccsp mutant - H107A/H111A 6QYB ; 1.18 ; Streptomyces lividans Ccsp mutant - H111A 6QVH ; 1.28 ; Streptomyces lividans Ccsp mutant - H113A 2NLR ; 1.2 ; STREPTOMYCES LIVIDANS ENDOGLUCANASE (EC: 3.2.1.4) COMPLEX WITH MODIFIED GLUCOSE TRIMER 1KNL ; 1.2 ; Streptomyces lividans Xylan Binding Domain cbm13 1KNM ; 1.2 ; Streptomyces lividans Xylan Binding Domain cbm13 in Complex with Lactose 1CHK ; 2.4 ; STREPTOMYCES N174 CHITOSANASE PH5.5 298K 5OO8 ; 1.78 ; Streptomyces PAC13 (H42Q) with uridine 5OO9 ; 1.59 ; Streptomyces PAC13 (Y55F) with uridine 5OOA ; 1.6 ; Streptomyces PAC13 (Y89F) with uridine 5OO4 ; 1.6 ; Streptomyces PAC13 with uridine 5OO5 ; 1.78 ; Streptomyces PAC13 with uridine uronic acid 5NTB ; 1.5 ; Streptomyces papain inhibitor (SPI) 5IT1 ; 2.1 ; Streptomyces peucetius CYP105P2 complex with biphenyl compound 4ZXV ; 3.0 ; Streptomyces peucetius nitrososynthase DnmZ in ligand-free state 4ZYJ ; 2.736 ; Streptomyces peucetius nitrososynthase dnmZ in TDP-bound state 4QYR ; 2.902 ; Streptomyces platensis isomigrastatin ketosynthase domain MgsE KS3 4ZDN ; 2.509 ; Streptomyces platensis isomigrastatin ketosynthase domain MgsF KS4 4TKT ; 2.4289 ; Streptomyces platensis isomigrastatin ketosynthase domain MgsF KS6 1HP5 ; 2.1 ; STREPTOMYCES PLICATUS BETA-N-ACETYLHEXOSAMINIDASE COMPLEXED WITH INTERMEDIATE ANALOUGE NAG-THIAZOLINE 1JAK ; 1.75 ; Streptomyces plicatus beta-N-acetylhexosaminidase in Complex with (2R,3R,4S,5R)-2-acetamido-3,4-dihydroxy-5-hydroxymethyl-piperidinium chloride (IFG) 5FD0 ; 2.0 ; Streptomyces plicatus N-acetyl-beta-hexosaminidase in complex with NAGlucal 5FCZ ; 2.45 ; Streptomyces plicatus N-acetyl-beta-hexosaminidase in complex with Thio-NAglucal (TNX) 5UUJ ; 2.299 ; Streptomyces sahachiroi DNA glycosylase AlkZ 4OQY ; 1.9 ; Streptomyces sp. GF3546 imine reductase 5MGZ ; 1.9 ; Streptomyces Spheroides NovO (8-demethylnovbiocic acid methyltransferase) with SAH 8DY7 ; 3.18 ; Streptomyces venezuelae RNAP transcription open promoter complex with WhiA and WhiB transcription factors 8DY9 ; 3.12 ; Streptomyces venezuelae RNAP unconstrained open promoter complex with WhiA and WhiB transcription factors 8CAI ; 2.08 ; Streptomycin and Hygromycin B bound to the 30S body 8CGJ ; 1.79 ; Streptomycin bound to the 30S body 1KAA ; 1.9 ; STRESS AND STRAIN IN STAPHYLOCOCCAL NUCLEASE 1KAB ; 1.8 ; STRESS AND STRAIN IN STAPHYLOCOCCAL NUCLEASE 7XNJ ; 2.1 ; Stress Response Facilitator A SrfA 4YDZ ; 3.6 ; Stress-induced protein 1 from Caenorhabditis elegans 4YE0 ; 2.1 ; Stress-induced protein 1 truncation mutant (43 - 140) from Caenorhabditis elegans 2RME ; ; Stressin 7B0U ; 3.86 ; Stressosome complex from Listeria innocua 6ZEA ; 1.54 ; Strictosidine Synthase from Catharanthus roseus in complex with racemic 1-methyl-2,3,4,9-tetrahydro-1H-beta-carboline 6S5J ; 2.42 ; Strictosidine Synthase from Ophiorrhiza pumila in complex with (S)-1-Ethyl-2,3,4,9-tetrahydro-1H-beta-carboline 6S5Q ; 2.01 ; Strictosidine Synthase from Ophiorrhiza pumila in complex with (S)-1-isobutyl-2,3,4,9-tetrahydro-1H-beta-carboline 6S5M ; 1.9 ; Strictosidine Synthase from Ophiorrhiza pumila in complex with (S)-1-n-propyl-2,3,4,9-tetrahydro-1H-beta-carboline 6S5U ; 2.03 ; Strictosidine Synthase from Ophiorrhiza pumila in complex with N-[2-(1H-Indol-3-yl)ethyl]-3-methyl-1-butanamine 7WA8 ; 2.33 ; Strigolactone receptors in Striga ShHTL7 6HTQ ; 4.5 ; Stringent response control by a bifunctional RelA enzyme in the presence and absence of the ribosome 1QG7 ; 2.0 ; STROMA CELL-DERIVED FACTOR-1ALPHA (SDF-1ALPHA) 1VMC ; ; STROMA CELL-DERIVED FACTOR-1ALPHA (SDF-1ALPHA) 6YEL ; ; Stromal interaction molecule 1 coiled-coil 1 fragment 1B3D ; 2.3 ; STROMELYSIN-1 2D1O ; 2.02 ; Stromelysin-1 (MMP-3) complexed to a hydroxamic acid inhibitor 1UMT ; ; Stromelysin-1 catalytic domain with hydrophobic inhibitor bound, ph 7.0, 32oc, 20 mm cacl2, 15% acetonitrile; nmr average of 20 structures minimized with restraints 1UMS ; ; STROMELYSIN-1 CATALYTIC DOMAIN WITH HYDROPHOBIC INHIBITOR BOUND, PH 7.0, 32OC, 20 MM CACL2, 15% ACETONITRILE; NMR ENSEMBLE OF 20 STRUCTURES 1M6F ; 1.78 ; Strong Binding in the DNA Minor Groove by an Aromatic Diamidine With a Shape That Does Not Match the Curvature of the Groove 1OTD ; 1.25 ; STRONG HYDROGEN BONDS IN PHOTOACTIVE YELLOW PROTEIN AND THEIR ROLE IN ITS PHOTOCYCLE 1ZND ; 1.6 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 1ZNE ; 2.0 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 1ZNG ; 1.6 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 1ZNH ; 2.1 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 1ZNK ; 1.6 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 1ZNL ; 1.7 ; Strong Solute-Solute Dispersive Interactions in a Protein-Ligand Complex 3GOO ; 2.5 ; Strontium bound to the Holliday junction sequence d(TCGGCGCCGA)4 1NVY ; 1.5 ; Strontium bound to the Holliday junction sequence d(TCGGTACCGA)4 3PBX ; 1.879 ; Strontium bound to the sequence d(CCGGCGCCGG) 2WOH ; 2.7 ; Strontium soaked E. coli copper amine oxidase 1U2D ; 3.0 ; Structre of transhydrogenaes (dI.NADH)2(dIII.NADPH)1 asymmetric complex 5D8W ; 2.86 ; Structrue of a lucidum protein 5D8Z ; 2.7 ; Structrue of a lucidum protein 1QX4 ; 1.8 ; Structrue of S127P mutant of cytochrome b5 reductase 3W30 ; 2.99 ; Structual basis for the recognition of Ubc13 by the Shigella flexneri effector OspI 3W31 ; 2.96 ; Structual basis for the recognition of Ubc13 by the Shigella flexneri effector OspI 2YXN ; 1.8 ; Structual basis of azido-tyrosine recognition by engineered bacterial Tyrosyl-tRNA synthetase 2ZP1 ; 1.7 ; Structual basis of iodo-tyrosine recognition by engineered archeal tyrosyl-tRNA synthetase 1QY6 ; 1.9 ; Structue of V8 Protease from Staphylococcus aureus 3TP0 ; 1.9 ; Structural activation of the transcriptional repressor EthR from M. tuberculosis by single amino-acid change mimicking natural and synthetic ligands 3CCO ; 2.2 ; Structural adaptation and conservation in quadruplex-drug recognition 3CDM ; 2.1 ; Structural adaptation and conservation in quadruplex-drug recognition 2PU3 ; 1.5 ; Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida 1AXO ; ; STRUCTURAL ALIGNMENT OF THE (+)-TRANS-ANTI-[BP]DG ADDUCT POSITIONED OPPOSITE DC AT A DNA TEMPLATE-PRIMER JUNCTION, NMR, 6 STRUCTURES 3UD6 ; 2.091 ; Structural analyses of covalent enzyme-substrate analogue complexes reveal strengths and limitations of de novo enzyme design 2DQP ; 2.1 ; Structural analyses of DNA:DNA and RNA:DNA duplexes containing 5-(N-aminohexyl)carbamoyl modified uridines 1DNU ; 1.85 ; STRUCTURAL ANALYSES OF HUMAN MYELOPEROXIDASE-THIOCYANATE COMPLEX 4A5K ; 1.76 ; Structural analyses of Slm1-PH domain demonstrate ligand binding in the non-canonical site 5LGA ; 2.5 ; Structural analysis and biological activities of BXL0124, a Gemini analog of Vitamin D 5I97 ; 2.441 ; Structural analysis and inhibition of TraE from the pKM101 type IV secretion system 4JHO ; 2.21 ; Structural analysis and insights into glycon specificity of the rice GH1 Os7BGlu26 beta-D-mannosidase 4JIE ; 2.45 ; Structural analysis and insights into glycon specificity of the rice GH1 Os7BGlu26 beta-D-mannosidase 8A5K ; 2.3 ; Structural analysis of 1-deoxy-D-xylulose 5-phosphate synthase from Pseudomonas aeruginosa and Klebsiella pneumoniae reveals conformational changes upon cofactor binding 8A45 ; 2.0 ; Structural analysis of 1-deoxy-D-xylulose 5-phosphate synthase from Pseudomonas aeruginosa with 2-acetyl thiamine diphosphate 3WDP ; 1.7 ; Structural analysis of a beta-glucosidase mutant derived from a hyperthermophilic tetrameric structure 2LHK ; ; Structural analysis of a chaperone in type III secretion system 3Q50 ; 2.75 ; Structural analysis of a class I PreQ1 riboswitch aptamer in the metabolite-bound state 3Q51 ; 2.85 ; Structural analysis of a class I PreQ1 riboswitch aptamer in the metabolite-free state. 2PG1 ; 2.8 ; Structural analysis of a cytoplasmic dynein Light Chain-Intermediate Chain complex 3D84 ; 1.9 ; Structural Analysis of a Holo Enzyme Complex of Mouse Dihydrofolate Reductase with NADPH and a Ternary Complex with the Potent and Selective Inhibitor 2.4-Diamino-6-(-2'-hydroxydibenz[b,f]azepin-5-yl)methylpteridine 3D80 ; 1.4 ; Structural Analysis of a Holo Enzyme Complex of Mouse Dihydrofolate Reductase with NADPH and a Ternary Complex wtih the Potent and Selective Inhibitor 2,4-Diamino-6-(2'-hydroxydibenz[b,f]azepin-5-yl)methylpteridine 1Y1X ; 1.95 ; Structural analysis of a homolog of programmed cell death 6 protein from Leishmania major Friedlin 3POT ; 1.2 ; Structural analysis of a Ni(III)-methyl species in methyl-coenzyme M reductase from Methanothermobacter marburgensis 6NZJ ; 2.4 ; Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO2 Capture by a Surface-Exposed [Fe4S4] Cluster 4L4L ; 2.122 ; Structural Analysis of a Phosphoribosylated Inhibitor in Complex with Human Nicotinamide Phosphoribosyltransferase 4L4M ; 2.445 ; Structural Analysis of a Phosphoribosylated Inhibitor in Complex with Human Nicotinamide Phosphoribosyltransferase 1TC5 ; 1.93 ; Structural Analysis of a probable eukaryotic D-amino acid tRNA deacylase 1TYA ; 2.8 ; STRUCTURAL ANALYSIS OF A SERIES OF MUTANTS OF TYROSYL-TRNA SYNTHETASE: ENHANCEMENT OF CATALYSIS BY HYDROPHOBIC INTERACTIONS 1TYB ; 2.5 ; STRUCTURAL ANALYSIS OF A SERIES OF MUTANTS OF TYROSYL-TRNA SYNTHETASE: ENHANCEMENT OF CATALYSIS BY HYDROPHOBIC INTERACTIONS 1TYC ; 2.5 ; STRUCTURAL ANALYSIS OF A SERIES OF MUTANTS OF TYROSYL-TRNA SYNTHETASE: ENHANCEMENT OF CATALYSIS BY HYDROPHOBIC INTERACTIONS 5IC0 ; 1.97 ; Structural analysis of a talin triple domain module 5IC1 ; 2.2 ; Structural analysis of a talin triple domain module, E1794Y, E1797Y, Q1801Y mutant 2A9M ; 2.1 ; Structural Analysis of a Tight-binding Fluorescein-scFv; apo form 6JSJ ; 3.2 ; Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1 3PRM ; 2.3 ; Structural analysis of a viral OTU domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with human ubiquitin 3PRP ; 1.699 ; Structural analysis of a viral OTU domain protease from the Crimean-Congo Hemorrhagic Fever virus in complex with human ubiquitin 1FX2 ; 1.46 ; STRUCTURAL ANALYSIS OF ADENYLATE CYCLASES FROM TRYPANOSOMA BRUCEI IN THEIR MONOMERIC STATE 3TVY ; 2.0 ; Structural Analysis of Adhesive Tip pilin, GBS104 from Group B Streptococcus agalactiae 3TW0 ; 2.0 ; Structural Analysis of Adhesive Tip pilin, GBS104 from Group B Streptococcus agalactiae 3TXA ; 2.619 ; Structural Analysis of Adhesive Tip pilin, GBS104 from Group B Streptococcus agalactiae 6JPV ; 2.15001 ; Structural analysis of AIMP2-DX2 and HSP70 interaction 6K39 ; 1.39814 ; Structural analysis of AIMP2-DX2 and HSP70 interaction 3R07 ; 2.7 ; Structural analysis of an archaeal lipoylation system. A bi-partite lipoate protein ligase and its E2 lipoyl domain from Thermoplasma acidophilum 3VWX ; 1.8 ; Structural analysis of an epsilon-class glutathione S-transferase from housefly, Musca domestica 4BQ2 ; 1.9 ; Structural analysis of an exo-beta-agarase 4BQ3 ; 2.1 ; Structural analysis of an exo-beta-agarase 4BQ4 ; 2.05 ; Structural analysis of an exo-beta-agarase 4BQ5 ; 2.3 ; Structural analysis of an exo-beta-agarase 1R08 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2R04 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2R06 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2R07 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2RM2 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2RR1 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2RS1 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2RS3 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2RS5 ; 3.0 ; STRUCTURAL ANALYSIS OF ANTIVIRAL AGENTS THAT INTERACT WITH THE CAPSID OF HUMAN RHINOVIRUSES 2FLE ; 1.9 ; Structural analysis of asymmetric inhibitor bound to the HIV-1 Protease V82A mutant 4PD4 ; 3.04 ; Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action 4WU0 ; 1.6 ; Structural Analysis of C. acetobutylicum ATCC 824 Glycoside Hydrolase From Family 105 2XK9 ; 2.35 ; Structural analysis of checkpoint kinase 2 (Chk2) in complex with inhibitor PV1533 2YIQ ; 1.89 ; Structural analysis of checkpoint kinase 2 in complex with inhibitor PV1322 2YIR ; 2.1 ; Structural analysis of checkpoint kinase 2 in complex with inhibitor PV1352 2YIT ; 2.2 ; Structural analysis of checkpoint kinase 2 in complex with PV1162, a novel inhibitor 5HV0 ; 1.63 ; Structural Analysis of Cofactor Binding of a Prolyl 4-Hydroxylase from the Pathogenic Bacterium Bacillus anthracis 1TE0 ; 2.2 ; Structural analysis of DegS, a stress sensor of the bacterial periplasm 3KF4 ; 1.9 ; Structural analysis of DFG-in and DFG-out dual Src-Abl inhibitors sharing a common vinyl purine template 3KFA ; 1.22 ; Structural analysis of DFG-in and DFG-out dual Src-Abl inhibitors sharing a common vinyl purine template 1ZFN ; 2.75 ; Structural Analysis of Escherichia coli ThiF 1ZKM ; 2.95 ; Structural Analysis of Escherichia Coli ThiF 5DU2 ; 2.7 ; Structural analysis of EspG2 glycosyltransferase 5GP9 ; 1.755 ; Structural analysis of fatty acid degradation regulator FadR from Bacillus halodurans 5GPA ; 2.051 ; Structural analysis of fatty acid degradation regulator FadR from Bacillus halodurans 5GPC ; 2.8 ; Structural analysis of fatty acid degradation regulator FadR from Bacillus halodurans 5UC1 ; 2.351 ; Structural Analysis of Glucocorticoid Receptor beta Ligand Binding Domain Complexed with Glucocorticoid Antagonist RU-486: Implication of Helix 12 in Antagonism 1DC3 ; 2.5 ; STRUCTURAL ANALYSIS OF GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE FROM ESCHERICHIA COLI: DIRECT EVIDENCE FOR SUBSTRATE BINDING AND COFACTOR-INDUCED CONFORMATIONAL CHANGES 1DC4 ; 2.5 ; STRUCTURAL ANALYSIS OF GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE FROM ESCHERICHIA COLI: DIRECT EVIDENCE FOR SUBSTRATE BINDING AND COFACTOR-INDUCED CONFORMATIONAL CHANGES 1DC5 ; 2.0 ; STRUCTURAL ANALYSIS OF GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE FROM ESCHERICHIA COLI: DIRECT EVIDENCE FOR SUBSTRATE BINDING AND COFACTOR-INDUCED CONFORMATIONAL CHANGES 1DC6 ; 2.0 ; STRUCTURAL ANALYSIS OF GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE FROM ESCHERICHIA COLI: DIRECT EVIDENCE FOR SUBSTRATE BINDING AND COFACTOR-INDUCED CONFORMATIONAL CHANGES. 2VRZ ; 1.9 ; Structural analysis of homodimeric staphylococcal aureus EsxA 2VS0 ; 1.4 ; Structural analysis of homodimeric staphylococcal aureus virulence factor EsxA 4GGA ; 2.044 ; Structural Analysis of Human Cdc20 Supports Multi-site Degron Recognition by APC/C 4GGC ; 1.35 ; Structural Analysis of Human Cdc20 Supports Multi-site Degron Recognition by APC/C 4GGD ; 2.435 ; Structural analysis of human Cdc20 supports multisite degron recognition by APC/C. 1H3W ; 2.85 ; Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity 8COK ; 2.91 ; Structural analysis of ING3 protein and its binding to histone H3 1IMA ; 2.3 ; STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES 1IMB ; 2.2 ; STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES 1Q7I ; ; Structural Analysis of Integrin alpha IIb beta 3- Disintegrin with the AKGDWN Motif 1Q7J ; ; Structural Analysis of Integrin alpha IIb beta 3- Disintegrin with the AKGDWN Motif 5H38 ; 1.7 ; Structural analysis of KSHV thymidylate synthase 5H39 ; 2.0 ; Structural analysis of KSHV thymidylate synthase 5H3A ; 2.4 ; Structural analysis of KSHV thymidylate synthase 1X6O ; 1.6 ; Structural Analysis of Leishmania braziliensis eukaryotic initiation factor 5a 1XTP ; 1.94 ; Structural Analysis of Leishmania major LMAJ004091AAA, a SAM-dependent methyltransferase of the DUF858/Pfam05891 family 1YF9 ; 2.0 ; Structural analysis of Leishmania major ubiquitin conjugating enzyme E2 1XTD ; 2.7 ; Structural Analysis of Leishmania mexicana eukaryotic initiation factor 5a 2CZP ; ; Structural analysis of membrane-bound mastoparan-X by solid-state NMR 6JBZ ; 2.603 ; Structural analysis of molybdopterin synthases from two mycobacteria pathogens 6JC0 ; 2.1 ; Structural analysis of molybdopterin synthases from two mycobacteria pathogens 1HLB ; 2.5 ; Structural analysis of monomeric hemichrome and dimeric cyanomet hemoglobins from Caudina arenicola 5AIR ; 2.53 ; Structural analysis of mouse GSK3beta fused with LRP6 peptide. 4Y7T ; 1.8 ; Structural analysis of MurU 4Y7U ; 1.7 ; Structural analysis of MurU 4Y7V ; 1.8 ; Structural analysis of MurU 3DTF ; 2.2 ; Structural analysis of mycobacterial branched chain aminotransferase- implications for inhibitor design 3DTG ; 1.9 ; Structural analysis of mycobacterial branched chain aminotransferase- implications for inhibitor design 1R1H ; 1.95 ; STRUCTURAL ANALYSIS OF NEPRILYSIN WITH VARIOUS SPECIFIC AND POTENT INHIBITORS 1R1I ; 2.6 ; STRUCTURAL ANALYSIS OF NEPRILYSIN WITH VARIOUS SPECIFIC AND POTENT INHIBITORS 1R1J ; 2.35 ; STRUCTURAL ANALYSIS OF NEPRILYSIN WITH VARIOUS SPECIFIC AND POTENT INHIBITORS 2B94 ; 1.85 ; Structural analysis of P knowlesi homolog of P falciparum PNP 2YYR ; 2.5 ; Structural analysis of PHD domain of Pygopus complexed with trimethylated histone H3 peptide 1B9X ; 3.0 ; STRUCTURAL ANALYSIS OF PHOSDUCIN AND ITS PHOSPHORYLATION-REGULATED INTERACTION WITH TRANSDUCIN 1B9Y ; 3.0 ; STRUCTURAL ANALYSIS OF PHOSDUCIN AND ITS PHOSPHORYLATION-REGULATED INTERACTION WITH TRANSDUCIN BETA-GAMMA 2R9B ; 2.8 ; Structural Analysis of Plasmepsin 2 from Plasmodium falciparum complexed with a peptide-based inhibitor 1Y13 ; 2.2 ; Structural Analysis of Plasmodium falciparum 6-pyruvoyl tetrahydropterin synthase (PTPS) 8Q1K ; 1.51 ; Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5' exonuclease-mediated nucleic acid degradation 8Q1X ; 1.85 ; Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5' exonuclease-mediated nucleic acid degradation 3NZD ; 1.8 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Five 5-(omega-carboxy(alkyloxy(pyrido[2,3-d]pyrimidine Derivatives 3NZC ; 2.0 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Five Potent 5-(omega-carboxy(alkyloxy)pyrido[2,3-d]pyridine Derivativea 3NZ6 ; 2.0 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Five Potent 5-(omega-Carboxy(alkyloxy)Pyrido[2,3-d]pyrimidine Derivatives 3NZ9 ; 1.8 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Five Potent 5-(omega-Carboxy(alkyloxy)Pyrido[2,3-d]pyrimidine Derivatives 3NZA ; 1.9 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Five Potent 5-(omega-Carboxy(alkyloxy)pyrido[2,3-d]pyrimidine Derivatives 3NZB ; 1.45 ; Structural Analysis of Pneumocystis carinii and Human DHFR Complexes with NADPH and a Series of Potent 5-(omega-carboxyl(alkyloxy)pyrido[2,-d]pyrimidine Derivatives 3TD8 ; 1.8 ; Structural Analysis of Pneumocystis carinii Dihydrofolate Reductase Complex with NADPH and 2,4-diamino-5-methyl-6-[2'-(4-carboxy-1-pentynyl)-5'-methoxybenzyl]pyrido[2,3-d]pyrimidine 1W8X ; 4.2 ; Structural analysis of PRD1 3PR9 ; 1.95 ; Structural analysis of protein folding by the Methanococcus jannaschii chaperone FKBP26 3PRA ; 2.4 ; Structural analysis of protein folding by the Methanococcus jannaschii chaperone FKBP26 3PRB ; 2.2 ; Structural analysis of protein folding by the Methanococcus jannaschii chaperone FKBP26 3PRD ; 3.3 ; Structural analysis of protein folding by the Methanococcus jannaschii chaperone FKBP26 1LA2 ; 2.65 ; Structural analysis of Saccharomyces cerevisiae myo-inositol phosphate synthase 1SRP ; 2.0 ; STRUCTURAL ANALYSIS OF SERRATIA PROTEASE 4EQM ; 3.0 ; Structural analysis of Staphylococcus aureus serine/threonine kinase PknB 2BC1 ; 2.15 ; Structural Analysis of Streptococcus pyogenes NADH oxidase: C44S Nox 2BCP ; 2.1 ; Structural Analysis of Streptococcus pyogenes NADH oxidase: C44S Nox with Azide 2BC0 ; 2.0 ; Structural Analysis of Streptococcus pyogenes NADH oxidase: Wild-type Nox 4RZQ ; 1.98 ; Structural Analysis of Substrate, Reaction Intermediate and Product Binding in Haemophilus influenzae Biotin Carboxylase 4UMA ; 1.76 ; Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3 deoxy D arabino heptulosonate 7 phosphate synthase the importance of accommodating the active site water 4UMB ; 2.17 ; Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase - the importance of accommodating the active site water 4UMC ; 2.34 ; Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase - the importance of accommodating the active site water 1ELD ; 2.0 ; Structural analysis of the active site of porcine pancreatic elastase based on the x-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors 1ELE ; 2.0 ; STRUCTURAL ANALYSIS OF THE ACTIVE SITE OF PORCINE PANCREATIC ELASTASE BASED ON THE X-RAY CRYSTAL STRUCTURES OF COMPLEXES WITH TRIFLUOROACETYL-DIPEPTIDE-ANILIDE INHIBITORS 4Q6M ; 1.6 ; Structural analysis of the apo-form of Helicobacter pylori Csd4, a D,L-carboxypeptidase 3EWI ; 1.9 ; Structural analysis of the C-terminal domain of murine CMP-Sialic acid Synthetase 1YVG ; 2.6 ; Structural analysis of the catalytic domain of tetanus neurotoxin 3HCQ ; 2.89 ; Structural analysis of the choline binding protein ChoX in a semi-closed and ligand-free conformation 1MKY ; 1.9 ; Structural Analysis of the Domain Interactions in Der, a Switch Protein Containing Two GTPase Domains 5UQZ ; 1.149 ; Structural Analysis of the Glucan Binding Protein C of Streptococcus mutans Provides Evidence that it Mediates both Sucrose-Independent and -Dependent Adherence 4TYI ; 3.4 ; Structural analysis of the human Fibroblast Growth Factor Receptor 4 4TYE ; 2.8 ; Structural analysis of the human Fibroblast Growth Factor Receptor 4 Kinase 4TYG ; 2.4 ; Structural analysis of the human Fibroblast Growth Factor Receptor 4 Kinase 4TYJ ; 2.45 ; Structural analysis of the human Fibroblast Growth Factor Receptor 4 Kinase 7TLN ; 2.3 ; STRUCTURAL ANALYSIS OF THE INHIBITION OF THERMOLYSIN BY AN ACTIVE-SITE-DIRECTED IRREVERSIBLE INHIBITOR 1QPC ; 1.6 ; STRUCTURAL ANALYSIS OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH NON-SELECTIVE AND SRC FAMILY SELECTIVE KINASE INHIBITORS 1QPD ; 2.0 ; STRUCTURAL ANALYSIS OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH NON-SELECTIVE AND SRC FAMILY SELECTIVE KINASE INHIBITORS 1QPE ; 2.0 ; STRUCTURAL ANALYSIS OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH NON-SELECTIVE AND SRC FAMILY SELECTIVE KINASE INHIBITORS 4Q6O ; 1.41 ; Structural analysis of the mDAP-bound form of Helicobacter pylori Csd4, a D,L-carboxypeptidase 4LD1 ; 1.44 ; Structural analysis of the microcephaly protein CPAP G-box domain suggests a role in centriole elongation. 4LD3 ; 2.44 ; Structural analysis of the microcephaly protein CPAP G-box domain suggests a role in centriole elongation. 2CMM ; 1.8 ; STRUCTURAL ANALYSIS OF THE MYOGLOBIN RECONSTITUTED WITH IRON PORPHINE 2J82 ; 1.28 ; Structural analysis of the PP2C Family Phosphatase tPphA from Thermosynechococcus elongatus 2J86 ; 3.05 ; Structural analysis of the PP2C Family Phosphatase tPphA of Thermosynechococcus elongatus 6RAE ; 2.049 ; Structural analysis of the Salmonella type III secretion system ATPase InvC 1RO7 ; 1.8 ; Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analogue, CMP-3FNeuAc. 1RO8 ; 2.05 ; Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analogue, cytidine-5'-monophosphate 1KVP ; 27.0 ; STRUCTURAL ANALYSIS OF THE SPIROPLASMA VIRUS, SPV4, IMPLICATIONS FOR EVOLUTIONARY VARIATION TO OBTAIN HOST DIVERSITY AMONG THE MICROVIRIDAE, ELECTRON MICROSCOPY, ALPHA CARBONS ONLY 2VL6 ; 2.8 ; STRUCTURAL ANALYSIS OF THE SULFOLOBUS SOLFATARICUS MCM PROTEIN N- TERMINAL DOMAIN 1L16 ; 1.7 ; STRUCTURAL ANALYSIS OF THE TEMPERATURE-SENSITIVE MUTANT OF BACTERIOPHAGE T4 LYSOZYME, GLYCINE 156 (RIGHT ARROW) ASPARTIC ACID 6GHD ; 2.1 ; Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases 4Q6N ; 1.55 ; Structural analysis of the tripeptide-bound form of Helicobacter pylori Csd4, a D,L-carboxypeptidase 2R8N ; 1.2 ; Structural Analysis of the Unbound Form of HIV-1 Subtype C Protease 4RIR ; 2.5 ; Structural Analysis of the Unmutated Ancestor of the HIV-1 Envelope V2 Region Antibody CH58 Isolated From an RV144 HIV-1 Vaccine Efficacy Trial Vaccinee and Associated with Decreased Transmission Risk 4RIS ; 2.3 ; Structural Analysis of the Unmutated Ancestor of the HIV-1 Envelope V2 Region Antibody CH58 Isolated From an RV144 HIV-1 Vaccine Efficacy Trial Vaccinee and Associated with Decreased Transmission Risk 1T3S ; 2.3 ; Structural Analysis of the Voltage-Dependent Calcium Channel Beta Subunit Functional Core 1T3L ; 2.2 ; Structural Analysis of the Voltage-Dependent Calcium Channel Beta Subunit Functional Core in Complex with Alpha1 Interaction Domain 1JO8 ; 1.3 ; Structural analysis of the yeast actin binding protein Abp1 SH3 domain 1CAI ; 1.8 ; STRUCTURAL ANALYSIS OF THE ZINC HYDROXIDE-THR 199-GLU 106 HYDROGEN BONDING NETWORK IN HUMAN CARBONIC ANHYDRASE II 1CAJ ; 1.9 ; STRUCTURAL ANALYSIS OF THE ZINC HYDROXIDE-THR 199-GLU 106 HYDROGEN BONDING NETWORK IN HUMAN CARBONIC ANHYDRASE II 1CAK ; 1.9 ; STRUCTURAL ANALYSIS OF THE ZINC HYDROXIDE-THR 199-GLU 106 HYDROGEN BONDING NETWORK IN HUMAN CARBONIC ANHYDRASE II 1CAL ; 2.2 ; STRUCTURAL ANALYSIS OF THE ZINC HYDROXIDE-THR 199-GLU 106 HYDROGEN BONDING NETWORK IN HUMAN CARBONIC ANHYDRASE II 1CAM ; 1.7 ; STRUCTURAL ANALYSIS OF THE ZINC HYDROXIDE-THR 199-GLU 106 HYDROGEN BONDING NETWORK IN HUMAN CARBONIC ANHYDRASE II 4Q6P ; 2.62 ; Structural analysis of the Zn-form I of Helicobacter pylori Csd4, a D,L-carboxypeptidase 4Q6Q ; 2.4 ; Structural analysis of the Zn-form II of Helicobacter pylori Csd4, a D,L-carboxypeptidase 3T8I ; 1.8 ; Structural analysis of thermostable S. solfataricus purine-specific nucleoside hydrolase 3T8J ; 1.6 ; Structural analysis of thermostable S. solfataricus pyrimidine-specific nucleoside hydrolase 4WY5 ; 2.43 ; Structural analysis of two fungal esterases from Rhizomucor miehei explaining their substrate specificity 4WY8 ; 2.27 ; Structural analysis of two fungal esterases from Rhizomucor miehei explaining their substrate specificity 2OIV ; 1.95 ; Structural Analysis of Xanthomonas XopD Provides Insights Into Substrate Specificity of Ubiquitin-like Protein Proteases 1WG3 ; 3.0 ; Structural analysis of yeast nucleosome-assembly factor CIA1p 5T9P ; 2.0 ; Structural analysis reveals the flexible C-terminus of Nop15 undergoes rearrangement to recognize a pre-ribosomal RNA folding intermediate 2F6B ; 2.8 ; Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). 4O0Z ; 2.049 ; Structural and Biochemical Analyses of the Catalysis and Potency Impact of Inhibitor Phosphoribosylation by Human Nicotinamide Phosphoribosyltransferase 4O10 ; 1.55 ; Structural and Biochemical Analyses of the Catalysis and Potency Impact of Inhibitor Phosphoribosylation by Human Nicotinamide Phosphoribosyltransferase 4O12 ; 2.498 ; Structural and Biochemical Analyses of the Catalysis and Potency Impact of Inhibitor Phosphoribosylation by Human Nicotinamide Phosphoribosyltransferase 2OBL ; 1.8 ; Structural and biochemical analysis of a prototypical ATPase from the type III secretion system of pathogenic bacteria 2OBM ; 2.25 ; Structural and biochemical analysis of a prototypical ATPase from the type III secretion system of pathogenic bacteria 2W5E ; 2.0 ; Structural and biochemical analysis of human pathogenic astrovirus serine protease at 2.0 Angstrom resolution 1YEP ; 2.5 ; Structural and biochemical analysis of the link between enzymatic activity and olgomerization in AhpC, a bacterial peroxiredoxin. 1YEX ; 2.3 ; Structural and biochemical analysis of the link between enzymatic activity and oligomerization in AhpC, a bacterial peroxiredoxin. 1YF0 ; 2.5 ; Structural and biochemical analysis of the link between enzymatic activity and oligomerization in AhpC, a bacterial peroxiredoxin. 1YF1 ; 2.6 ; Structural and biochemical analysis of the link between enzymatic activity and oligomerization in AhpC, a bacterial peroxiredoxin. 4MMN ; 2.6 ; Structural and biochemical analysis of type II free methionine-R-sulfoxide reductase from Thermoplasma acidophilum 4MN7 ; 2.0 ; Structural and biochemical analysis of type II free methionine-R-sulfoxide reductase from Thermoplasma acidophilum 1ZGY ; 1.8 ; Structural and Biochemical Basis for Selective Repression of the Orphan Nuclear Receptor LRH-1 by SHP 1ZH7 ; 2.5 ; Structural and Biochemical Basis for Selective Repression of the Orphan Nuclear Receptor LRH-1 by SHP 3CS8 ; 2.3 ; Structural and Biochemical Basis for the Binding Selectivity of PPARg to PGC-1a 4M6R ; 2.0 ; Structural and biochemical basis for the inhibition of cell death by APIP, a methionine salvage enzyme 4HY7 ; 1.2 ; Structural and biochemical characterization of a cytosolic wheat cyclophilin TaCypA-1 1H56 ; 3.0 ; Structural and biochemical characterization of a new magnesium ion binding site near Tyr94 in the restriction endonuclease PvuII 5BK6 ; 1.59 ; Structural and biochemical characterization of a non-canonical biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841 6AZN ; 1.75 ; Structural and biochemical characterization of a non-canonical biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841 6AZO ; 2.46 ; Structural and biochemical characterization of a non-canonical biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841 6AZQ ; 2.22 ; Structural and biochemical characterization of a non-canonical biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841 6AZS ; 1.59 ; Structural and biochemical characterization of a non-canonical biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841 4Z7A ; 1.98 ; Structural and biochemical characterization of a non-functionally redundant M. tuberculosis (3,3) L,D-Transpeptidase, LdtMt5. 4AEK ; 1.75 ; Structural and biochemical characterization of a novel Carbohydrate Binding Module of endoglucanase Cel5A from Eubacterium cellulosolvens 4AEM ; 2.1 ; Structural and biochemical characterization of a novel Carbohydrate Binding Module of endoglucanase Cel5A from Eubacterium cellulosolvens 4AFD ; 1.34 ; Structural and biochemical characterization of a novel Carbohydrate Binding Module of endoglucanase Cel5A from Eubacterium cellulosolvens with a partially bound cellotetraose moeity. 4AFM ; 1.25 ; Structural and biochemical characterization of a novel Carbohydrate Binding Module of endoglucanase Cel5A from Eubacterium cellulosolvens. 3ASW ; 2.6 ; Structural and biochemical characterization of ClfB:ligand interactions 3AT0 ; 2.5 ; Structural and biochemical characterization of ClfB:ligand interactions 3AU0 ; 2.45 ; Structural and biochemical characterization of ClfB:ligand interactions 5YVD ; 2.7 ; Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East Respiratory Syndrome Coronavirus 2VR3 ; 1.95 ; Structural and Biochemical Characterization of Fibrinogen binding to ClfA from Staphylocccus aureus 2KI3 ; ; Structural and biochemical characterization of FK506 binding domain from Plasmodium vivax 3UI3 ; 2.8 ; Structural and Biochemical Characterization of HP0315 from Helicobacter pylori as a VapD Protein with an Endoribonuclease Activity 4FFX ; 2.7 ; Structural and Biochemical Characterization of Human Adenylosuccinate Lyase (ADSL) and the R303C ADSL Deficiency Associated Mutation 4FLC ; 2.6 ; Structural and Biochemical Characterization of Human Adenylosuccinate Lyase (ADSL) and the R303C ADSL Deficiency Associated Mutation 2MM8 ; ; Structural and biochemical characterization of Jaburetox 8DC1 ; 1.62 ; Structural and biochemical characterization of L. interrogans Lsa45 reveals a penicillin-binding protein with esterase activity 1DJQ ; 2.2 ; STRUCTURAL AND BIOCHEMICAL CHARACTERIZATION OF RECOMBINANT C30A MUTANT OF TRIMETHYLAMINE DEHYDROGENASE FROM METHYLOPHILUS METHYLOTROPHUS (SP. W3A1) 1DJN ; 2.2 ; STRUCTURAL AND BIOCHEMICAL CHARACTERIZATION OF RECOMBINANT WILD TYPE TRIMETHYLAMINE DEHYDROGENASE FROM METHYLOPHILUS METHYLOTROPHUS (SP. W3A1) 5EO2 ; 2.5 ; Structural and biochemical characterization of the hypothetical protein SAV2348 from Staphylococcus aureus in complex with CoA. 5EO4 ; 2.0 ; Structural and biochemical characterization of the hypothetical protein SAV2348 from Staphylococcus aureus. 4UTU ; 1.45 ; Structural and biochemical characterization of the N- acetylmannosamine-6-phosphate 2-epimerase from Clostridium perfringens 3RSE ; 2.65 ; Structural and biochemical characterization of two binding sites for nucleation promoting factor WASp-VCA on Arp2/3 complex 3GX8 ; 1.673 ; Structural and biochemical characterization of yeast monothiol glutaredoxin Grx5 1SU1 ; 2.25 ; Structural and biochemical characterization of Yfce, a phosphoesterase from E. coli 2VJX ; 1.85 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VL4 ; 1.9 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VMF ; 2.1 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VO5 ; 2.3 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VOT ; 1.95 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VQT ; 2.1 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 2VQU ; 1.9 ; Structural and biochemical evidence for a boat-like transition state in beta-mannosidases 1SSU ; ; Structural and biochemical evidence for disulfide bond heterogeneity in active forms of the somatomedin B domain of human vitronectin 3JYI ; 2.703 ; Structural and biochemical evidence that a TEM-1 {beta}-lactamase Asn170Gly active site mutant acts via substrate-assisted catalysis 1N39 ; 2.2 ; Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase 1N3A ; 2.2 ; Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase 1N3C ; 2.7 ; Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase 1XDQ ; 2.55 ; Structural and Biochemical Identification of a Novel Bacterial Oxidoreductase 1XDY ; 2.2 ; Structural and Biochemical Identification of a Novel Bacterial Oxidoreductase, W-containing cofactor 7LW0 ; 2.32 ; Structural and Biochemical Insight into Assembly of Molecular Motors Involved in Viral DNA Packaging 7LWR ; 2.35 ; Structural and Biochemical Insight into Assembly of Molecular Motors Involved in Viral DNA Packaging 7LXS ; 2.21 ; Structural and Biochemical Insight into Assembly of Molecular Motors Involved in Viral DNA Packaging 5FYD ; 1.6 ; Structural and biochemical insights into 7beta-hydroxysteroid dehydrogenase stereoselectivity 3P4F ; 2.35 ; Structural and biochemical insights into MLL1 core complex assembly and regulation. 8USP ; 3.3 ; Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway 8USQ ; 12.77 ; Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway 2A3I ; 1.95 ; Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor 8TYL ; 2.85 ; Structural and biochemical rationale for Beta variant protein booster vaccine broad cross-neutralization of SARS-CoV-2 8TYO ; 2.75 ; Structural and biochemical rationale for Beta variant protein booster vaccine broad cross-neutralization of SARS-CoV-2 1Y7H ; 2.52 ; Structural and biochemical studies identify tobacco SABP2 as a methylsalicylate esterase and further implicate it in plant innate immunity, Northeast Structural Genomics Target AR2241 1Y7I ; 2.1 ; Structural and biochemical studies identify tobacco SABP2 as a methylsalicylate esterase and further implicate it in plant innate immunity, Northeast Structural Genomics Target AR2241 4RG8 ; 2.12 ; Structural and biochemical studies of a moderately thermophilic Exonuclease I from Methylocaldum szegediense 1VYJ ; 2.8 ; Structural and biochemical studies of human PCNA complexes provide the basis for association with CDK/cyclin and rationale for inhibitor design 3G5C ; 2.36 ; Structural and biochemical studies on the ectodomain of human ADAM22 3WVT ; 1.601 ; Structural and biochemical study of equine lentivirus receptor 1 4I1L ; 2.1 ; Structural and Biological Features of FOXP3 Dimerization Relevant to Regulatory T Cell Function 5BTS ; 1.77 ; Structural and biophysical characterization of a covalent insulin dimer formed during storage of neutral formulation of human insulin 2HLE ; 2.05 ; Structural and biophysical characterization of the EPHB4-EPHRINB2 protein protein interaction and receptor specificity. 2MF2 ; ; Structural and biophysical characterization of the mRNA interferase SaMazF from Staphylococcus aureus. 4FL1 ; 1.79 ; Structural and Biophysical Characterization of the Syk Activation Switch 4FL2 ; 2.19 ; Structural and Biophysical Characterization of the Syk Activation Switch 4FL3 ; 1.9 ; Structural and Biophysical Characterization of the Syk Activation Switch 3GQF ; 2.2 ; Structural and Biophysical Properties of the Pathogenic SOD1 Variant H46R/H48Q 6K5G ; 1.574 ; Structural and catalytic analysis of two diverse uridine phosphorylases in the oomycete Phytophthora capsici 6K5H ; 2.503 ; Structural and catalytic analysis of two diverse uridine phosphorylases in the oomycete Phytophthora capsici. 6K5K ; 2.097 ; Structural and catalytic analysis of two diverse uridine phosphorylases in the oomycete Phytophthora capsici. 6K8P ; 1.965 ; Structural and catalytic analysis of two diverse uridine phosphorylases in the oomycete Phytophthora capsici. 6KD3 ; 2.764 ; Structural and catalytic analysis of two diverse uridine phosphorylases in the oomycete Phytophthora capsici. 4HBA ; 1.762 ; Structural and Catalytic Characterization of a Thermal and Acid Stable Variant of Human Carbonic Anhydrase II Containing an Engineered Disulfide Bond 4UB9 ; 2.27 ; Structural and catalytic characterization of molinate hydrolase 4QK2 ; 1.519 ; Structural and Catalytic Effects of Proline Substitution and Surface Loop Deletion in the Extended Active Site of Human Carbonic Anhydrase II - E234P 4QK1 ; 1.599 ; Structural and Catalytic Effects of Proline Substitution and Surface Loop Deletion in the Extended Active Site of Human Carbonic Anhydrase II - K170P 4QK3 ; 1.345 ; Structural and Catalytic Effects of Proline Substitution and Surface Loop Deletion in the Extended Active Site of Human Carbonic Anhydrase II - [delta]230-240 6W6C ; 2.38 ; Structural and catalytic roles of human 18S rRNA methyltransferases DIMT1 in ribosome assembly and translation 6W6F ; 3.2 ; Structural and catalytic roles of human 18S rRNA methyltransferases DIMT1 in ribosome assembly and translation 6TOB ; ; Structural and DNA Binding Properties of Mycobacterial Integration Host Factor mIHF 6YJ2 ; 2.0 ; Structural and DNA binding studies of the transcriptional repressor Rv2506 (BkaR) from Mycobacterium tuberculosis supports a role in L-Leucine catabolism 6YL2 ; 3.15 ; Structural and DNA binding studies of the transcriptional repressor Rv2506 (BkaR) from Mycobacterium tuberculosis supports a role in L-Leucine catabolism 5DDO ; 3.1 ; Structural and Dynamic Basis for Low Affinity-High Selectivity Binding of L-glutamine by the Gln-riboswitch 6S0M ; 2.0 ; Structural and dynamic studies provide insights into specificity and allosteric regulation of Ribonuclease AS, a key enzyme in mycobacterial virulence 2I7U ; ; Structural and Dynamical Analysis of a Four-Alpha-Helix Bundle with Designed Anesthetic Binding Pockets 1YBJ ; ; Structural and Dynamics studies of both apo and holo forms of the hemophore HasA 5H58 ; 3.991 ; Structural and dynamics studies of the TetR family protein, CprB from Streptomyces coelicolor in complex with its biological operator sequence 1HVD ; 2.0 ; STRUCTURAL AND ELECTROPHYSIOLOGICAL ANALYSIS OF ANNEXIN V MUTANTS. MUTAGENESIS OF HUMAN ANNEXIN V, AN IN VITRO VOLTAGE-GATED CALCIUM CHANNEL, PROVIDES INFORMATION ABOUT THE STRUCTURAL FEATURES OF THE ION PATHWAY, THE VOLTAGE SENSOR AND THE ION SELECTIVITY FILTER 1HVE ; 2.3 ; STRUCTURAL AND ELECTROPHYSIOLOGICAL ANALYSIS OF ANNEXIN V MUTANTS. MUTAGENESIS OF HUMAN ANNEXIN V, AN IN VITRO VOLTAGE-GATED CALCIUM CHANNEL, PROVIDES INFORMATION ABOUT THE STRUCTURAL FEATURES OF THE ION PATHWAY, THE VOLTAGE SENSOR AND THE ION SELECTIVITY FILTER 1HVF ; 2.0 ; STRUCTURAL AND ELECTROPHYSIOLOGICAL ANALYSIS OF ANNEXIN V MUTANTS. MUTAGENESIS OF HUMAN ANNEXIN V, AN IN VITRO VOLTAGE-GATED CALCIUM CHANNEL, PROVIDES INFORMATION ABOUT THE STRUCTURAL FEATURES OF THE ION PATHWAY, THE VOLTAGE SENSOR AND THE ION SELECTIVITY FILTER 1HVG ; 3.0 ; STRUCTURAL AND ELECTROPHYSIOLOGICAL ANALYSIS OF ANNEXIN V MUTANTS. MUTAGENESIS OF HUMAN ANNEXIN V, AN IN VITRO VOLTAGE-GATED CALCIUM CHANNEL, PROVIDES INFORMATION ABOUT THE STRUCTURAL FEATURES OF THE ION PATHWAY, THE VOLTAGE SENSOR AND THE ION SELECTIVITY FILTER 1HQ1 ; 1.52 ; STRUCTURAL AND ENERGETIC ANALYSIS OF RNA RECOGNITION BY A UNIVERSALLY CONSERVED PROTEIN FROM THE SIGNAL RECOGNITION PARTICLE 3FIL ; 0.88 ; Structural and energetic determinants for hyperstable variants of GB1 obtained from in-vitro evolution 1BSU ; 2.0 ; STRUCTURAL AND ENERGETIC ORIGINS OF INDIRECT READOUT IN SITE-SPECIFIC DNA CLEAVAGE BY A RESTRICTION ENDONUCLEASE 1BUA ; 2.15 ; STRUCTURAL AND ENERGETIC ORIGINS OF INDIRECT READOUT IN SITE-SPECIFIC DNA CLEAVAGE BY A RESTRICTION ENDONUCLEASE 6EB3 ; 2.35 ; Structural and enzymatic characterization of an esterase from a metagenomic library 1MPF ; 3.0 ; STRUCTURAL AND FUNCTIONAL ALTERATIONS OF A COLICIN RESISTANT MUTANT OF OMPF-PORIN FROM ESCHERICHIA COLI 3LKZ ; 2.0 ; Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase 1LZ5 ; 1.8 ; STRUCTURAL AND FUNCTIONAL ANALYSES OF THE ARG-GLY-ASP SEQUENCE INTRODUCED INTO HUMAN LYSOZYME 1LZ6 ; 1.8 ; STRUCTURAL AND FUNCTIONAL ANALYSES OF THE ARG-GLY-ASP SEQUENCE INTRODUCED INTO HUMAN LYSOZYME 3ZXP ; 2.495 ; Structural and Functional Analyses of the Bro1 Domain Protein BROX 3DR2 ; 1.67 ; Structural and Functional Analyses of XC5397 from Xanthomonas campestris: A Gluconolactonase Important in Glucose Secondary Metabolic Pathways 3FAK ; 1.9 ; Structural and Functional Analysis of a Hormone-Sensitive Lipase like EstE5 from a Metagenome Library 4RL1 ; 2.0 ; Structural and functional analysis of a loading acyltransferase from the avermectin modular polyketide synthase 4RGY ; 1.4 ; Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library 5FJQ ; 1.85 ; Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus 2LI3 ; ; Structural and functional analysis of a novel potassium toxin argentinean scorpion Tityus trivittatus reveals a new kappa sub-family 6WS6 ; 3.3 ; Structural and functional analysis of a potent sarbecovirus neutralizing antibody 4KY9 ; 2.23 ; Structural and Functional Analysis of a Putative Substrate Access Tunnel in the Cytosolic Domain of Human Anion Exchanger 1 2AQE ; ; Structural and functional analysis of ada2 alpha swirm domain 2AQF ; ; Structural and functional analysis of ADA2 alpha swirm domain 3PTJ ; 2.6 ; Structural and functional Analysis of Arabidopsis thaliana thylakoid lumen protein AtTLP18.3 3PVH ; 1.6 ; Structural and Functional Analysis of Arabidopsis thaliana thylakoid lumen protein AtTLP18.3 3PW9 ; 2.1 ; Structural and functional Analysis of Arabidopsis thaliana thylakoid lumen protein AtTLP18.3 2GIZ ; 1.68 ; Structural and functional analysis of Natrin, a member of crisp-3 family blocks a variety of ion channels 3PO8 ; 1.5 ; Structural and functional analysis of phosphothreonine-dependent FHA domain interactions 3POA ; 2.01 ; Structural and functional analysis of phosphothreonine-dependent FHA domain interactions 3V3V ; 2.7 ; Structural and functional analysis of quercetagetin, a natural JNK1 inhibitor 2HJN ; 2.0 ; Structural and functional analysis of Saccharomyces cerevisiae Mob1 7CK4 ; 7.0 ; Structural and functional analysis of small heat shock protein from Synechococcus phage S-ShM2 3DWH ; 1.95 ; Structural and Functional Analysis of SRA domain 1TUW ; 1.9 ; Structural and Functional Analysis of Tetracenomycin F2 Cyclase from Streptomyces glaucescens: A Type-II Polyketide Cyclase 4A24 ; ; Structural and functional analysis of the DEAF-1 and BS69 MYND domains 5E1L ; 2.15 ; Structural and functional analysis of the E. coli FtsZ interacting protein, ZapC, reveals insight into molecular properties of a novel Z ring stabilizing protein 3D3B ; 1.3 ; Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. 3D3C ; 2.6 ; Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. 2MPU ; ; Structural and Functional analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA binding protein implicated in the regulation of barley leaf senescence and environmental adaptation 3MMY ; 1.65 ; Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1 7PB3 ; 2.841 ; Structural and Functional analysis of the Proline Racemase (ProR) from the Gram-positive bacterium Acetoanaerobium sticklandii 8CIB ; 1.78 ; Structural and functional analysis of the Pseudomonas aeruginosa PA1677 protein 2L0E ; ; Structural and functional analysis of tm vi of the nhe1 isoform of the na+/h+ exchanger 2KBV ; ; Structural and functional analysis of TM XI of the NHE1 isoform of thE NA+/H+ exchanger 2M7X ; ; Structural and Functional Analysis of Transmembrane Segment IV of the Salt Tolerance Protein Sod2 5CFI ; 2.6 ; Structural and functional attributes of malaria parasite Ap4A hydrolase 5CFJ ; 1.25 ; Structural and functional attributes of malaria parasite Ap4A hydrolase 6K60 ; 3.149 ; Structural and functional basis for HLA-G isoform recognition of immune checkpoint receptor LILRBs 6EVG ; 1.1 ; Structural and Functional Characterisation of a Bacterial Laccase-like Multi-copper Oxidase CueO from Lignin-Degrading Bacterium Ochrobactrum sp. with Oxidase Activity towards Lignin Model Compounds and Lignosulfonate 6FCO ; 2.03 ; Structural and functional characterisation of Frataxin (FXN) like protein from Chaetomium thermophilum 2J6Y ; 1.85 ; Structural and Functional Characterisation of partner switching regulating the environmental stress response in Bacillus subtilis 2J6Z ; 1.95 ; Structural and functional characterisation of partner-switching regulating the environmental stress response in B. subtilis 2J70 ; 1.95 ; Structural and functional characterisation of partner-switching regulating the environmental stress response in B. subtilis 4BBK ; 2.1 ; Structural and functional characterisation of the kindlin-1 pleckstrin homology domain 6SAO ; 1.2 ; Structural and functional characterisation of three novel fungal amylases with enhanced stability and pH tolerance 6SAV ; 1.4 ; Structural and functional characterisation of three novel fungal amylases with enhanced stability and pH tolerance 6SAU ; 1.35 ; Structural and functional characterisation of three novel fungal amylases with enhanced stability and pH tolerance. 8SEM ; ; Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni 4O7I ; 2.11 ; Structural and functional characterization of 3'(2'),5'-bisphosphate nucleotidase1 from Entamoeba histolytica 1U3F ; 2.5 ; Structural and Functional Characterization of a 5,10-Methenyltetrahydrofolate Synthetase from Mycoplasma pneumoniae (GI: 13508087) 1U3G ; 2.5 ; Structural and Functional Characterization of a 5,10-Methenyltetrahydrofolate Synthetase from Mycoplasma pneumoniae (GI: 13508087) 5CBF ; 3.61 ; Structural and Functional Characterization of a Calcium-activated Cation channel from Tsukamurella Paurometabola 5CBH ; 3.37 ; Structural and Functional Characterization of a Calcium-activated Cation channel from Tsukamurella Paurometabola 5AA7 ; 1.55 ; Structural and functional characterization of a chitin-active 15.5 kDa lytic polysaccharide monooxygenase domain from a modular chitinase from Jonesia denitrificans 4KUJ ; 1.99 ; Structural and functional characterization of a novel Alpha Kinase from Entamoeba histolytica 4NL0 ; 2.41 ; Structural and functional characterization of a novel Alpha Kinase in complex with ADP from Entamoeba histolytica 1S3L ; 2.4 ; Structural and Functional Characterization of a Novel Archaeal Phosphodiesterase 1S3M ; 2.5 ; Structural and Functional Characterization of a Novel Archaeal Phosphodiesterase 1S3N ; 2.5 ; Structural and Functional Characterization of a Novel Archaeal Phosphodiesterase 3RJ2 ; 2.2 ; Structural and functional characterization of a novel histone H3 binding protein ORF158L from the Singapore grouper iridovirus (SGIV) 3HH7 ; 1.55 ; Structural and Functional Characterization of a Novel Homodimeric Three-finger Neurotoxin from the Venom of Ophiophagus hannah (King Cobra) 4V00 ; 1.82 ; Structural and functional characterization of a novel monotreme- specific protein from the milk of the platypus 4V3J ; 1.97 ; Structural and functional characterization of a novel monotreme- specific protein from the milk of the platypus 1NHO ; ; Structural and Functional characterization of a Thioredoxin-like Protein from Methanobacterium thermoautotrophicum 3SKJ ; 2.5 ; Structural And Functional Characterization of an Agonistic Anti-Human EphA2 Monoclonal Antibody 3UGD ; 1.45 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase C delta 3UGI ; 1.361 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase C delta 3UGL ; 1.357 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase C delta 3UEJ ; 1.301 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase Cdelta 3UEY ; 1.301 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase Cdelta 3UFF ; 1.3 ; Structural and functional characterization of an anesthetic binding site in the second cysteine-rich domain of protein kinase Cdelta 7F0H ; 1.695 ; Structural and functional characterization of bovine G1P[5] rotavirus VP8* protein 2Q8R ; 1.82 ; Structural and Functional Characterization of CC Chemokine CCL14 3TDG ; 2.1 ; Structural and functional characterization of Helicobacter pylori DsbG 7C8P ; 2.6 ; Structural and functional characterization of human group A rotavirus P[25] VP8* 4FVK ; 2.198 ; Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus 5MNV ; 2.97 ; Structural and functional characterization of OleP in complex with 6DEB in PEG 5MNS ; 2.62 ; Structural and functional characterization of OleP in complex with 6DEB in sodium formate 5DWZ ; 2.04 ; Structural and functional characterization of PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal 4KNC ; 2.141 ; Structural and functional characterization of Pseudomonas aeruginosa AlgX 7ZJB ; 1.37 ; Structural and functional characterization of the bacterial lytic polysaccharide Monooxygenase ScLPMO10D 8BPD ; 1.8 ; Structural and Functional Characterization of the Novel Endo-alpha(1,4)-Fucoidanase Mef1 from the Marine Bacterium Muricauda eckloniae 2JP6 ; ; Structural and functional characterization of the recombinant form of the Kv1.3 channel blocker Tc32 3RKG ; 1.28 ; Structural and Functional Characterization of the Yeast Mg2+ Channel Mrs2 2K3C ; ; Structural and Functional Characterization of TM IX of the NHE1 Isoform of the Na+/H+ Exchanger 2HTG ; ; Structural and functional characterization of TM VII of the NHE1 isoform of the Na+/H+ exchanger 3FOT ; 1.75 ; Structural and Functional Characterization of TRI3 Trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides 3FP0 ; 1.9 ; Structural and Functional Characterization of TRI3 Trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides 4FYB ; 2.2 ; Structural and functional characterizations of a thioredoxin-fold protein from Helicobacter pylori 4FYC ; 2.31 ; Structural and functional characterizations of a thioredoxin-fold protein from Helicobacter pylori 1BSQ ; 2.22 ; STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF POINT MUTATIONS OF VARIANTS A AND B OF BOVINE BETA-LACTOGLOBULIN 1C49 ; ; STRUCTURAL AND FUNCTIONAL DIFFERENCES OF TWO TOXINS FROM THE SCORPION PANDINUS IMPERATOR 1MLF ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLG ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLH ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLJ ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLK ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLL ; 1.7 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLM ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLN ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLO ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLQ ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLR ; 2.0 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF APOLAR MUTATIONS OF VAL68(E11) IN MYOGLOBIN 1MLS ; 1.7 ; Structural and functional effects of apolar mutations of val68(e11) in myoglobin 1CIE ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF MULTIPLE MUTATIONS AT DISTAL SITES IN CYTOCHROME C 1CIF ; 1.9 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF MULTIPLE MUTATIONS AT DISTAL SITES IN CYTOCHROME C 1CIG ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF MULTIPLE MUTATIONS AT DISTAL SITES IN CYTOCHROME C 1CIH ; 1.8 ; STRUCTURAL AND FUNCTIONAL EFFECTS OF MULTIPLE MUTATIONS AT DISTAL SITES IN CYTOCHROME C 3OLY ; 2.05 ; Structural and functional effects of substitution at position T+1 in CheY: CheYA88M-BeF3-Mn complex 3OLX ; 2.1 ; Structural and functional effects of substitution at position T+1 in CheY: CheYA88S-BeF3-Mn complex 3OLW ; 2.304 ; Structural and functional effects of substitution at position T+1 in CheY: CheYA88T-BeF3-Mn complex 3OLV ; 1.697 ; Structural and functional effects of substitution at position T+1 in CheY: CheYA88V-BeF3-Mg complex 7TNW ; 3.1 ; Structural and functional impact by SARS-CoV-2 Omicron spike mutations 7TO4 ; 3.4 ; Structural and functional impact by SARS-CoV-2 Omicron spike mutations 1CVA ; 2.25 ; STRUCTURAL AND FUNCTIONAL IMPORTANCE OF A CONSERVED HYDROGEN BOND NETWORK IN HUMAN CARBONIC ANHYDRASE II 1CVB ; 2.4 ; STRUCTURAL AND FUNCTIONAL IMPORTANCE OF A CONSERVED HYDROGEN BOND NETWORK IN HUMAN CARBONIC ANHYDRASE II 1P8Q ; 2.95 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Cluster of Arginase I. 1P8M ; 2.84 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 1P8N ; 2.9 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 1P8O ; 2.96 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 1P8P ; 2.5 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 1P8R ; 2.5 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 1P8S ; 3.2 ; Structural and Functional Importance of First-Shell Metal Ligands in the Binuclear Manganese Cluster of Arginase I. 6M31 ; 2.3 ; Structural and Functional Insights into an Archaeal Lipid Synthase 6M34 ; 2.9 ; Structural and functional insights into an Archaeal synthase 5WOS ; 2.45 ; Structural and functional insights into Canarypox Virus CNP058 regulation of apoptosis 2JK0 ; 2.5 ; Structural and functional insights into Erwinia carotovora L- asparaginase 7EKZ ; 1.43 ; Structural and functional insights into Hydra Actinoporin-Like Toxin 1 (HALT-1) 6LKV ; 2.2 ; Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum 6LKW ; 3.2 ; Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum 6LR3 ; 1.77 ; Structural and functional insights into macrophage migration inhibitory factor from Oncomelania hupensis, the intermediate host of Schistosoma japonicum 3NCU ; 2.55 ; Structural and functional insights into pattern recognition by the innate immune receptor RIG-I 4ZG5 ; 1.9 ; Structural and functional insights into Survival endonuclease, an important virulence factor of Brucella abortus 6Q6E ; ; Structural and functional insights into the condensin ATPase cycle 2GJK ; 2.6 ; Structural and functional insights into the human Upf1 helicase core 2GK6 ; 2.4 ; Structural and Functional insights into the human Upf1 helicase core 2GK7 ; 2.8 ; Structural and Functional insights into the human Upf1 helicase core 3EYB ; 2.79 ; Structural and functional insights into the ligand binding domain of a non-duplicated RXR from the invertebrate chordate amphioxus 3OOB ; 1.89 ; Structural and functional insights of directly targeting Pin1 by Epigallocatechin-3-gallate 2YEU ; 2.0 ; Structural and functional insights of DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans, complex with Gd 2YFD ; 1.767 ; STRUCTURAL AND FUNCTIONAL INSIGHTS OF DR2231 PROTEIN, THE MAZG-LIKE NUCLEOSIDE TRIPHOSPHATE PYROPHOSPHOHYDROLASE FROM DEINOCOCCUS RADIODURANS, COMPLEXED WITH Mg and dUMP 2YFC ; 2.01 ; STRUCTURAL AND FUNCTIONAL INSIGHTS OF DR2231 PROTEIN, THE MAZG-LIKE NUCLEOSIDE TRIPHOSPHATE PYROPHOSPHOHYDROLASE FROM DEINOCOCCUS RADIODURANS, COMPLEXED WITH Mn and dUMP 2YF9 ; 1.899 ; STRUCTURAL AND FUNCTIONAL INSIGHTS OF DR2231 PROTEIN, THE MAZG-LIKE NUCLEOSIDE TRIPHOSPHATE PYROPHOSPHOHYDROLASE FROM DEINOCOCCUS RADIODURANS, NATIVE FORM 5M11 ; 2.9 ; Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. 3RG0 ; 2.57 ; Structural and functional relationships between the lectin and arm domains of calreticulin 8YE5 ; 1.49 ; Structural and functional research of Reductive Dehalogenases TmrC using a cell-free expression system for heterologous expression 7M1D ; ; Structural and functional studies about scorpine showed the presence of blocking channel and cytolytic activities as well as two different structural domains 7M1E ; ; Structural and functional studies about scorpine showed the presence of blocking channel and cytolytic activities as well as two different structural domains 4X4J ; 2.65 ; Structural and Functional Studies of BexE: Insights into Oxidation During BE-7585A Biosynthesis 3PBK ; 3.0 ; Structural and Functional Studies of Fatty Acyl-Adenylate Ligases from E. coli and L. pneumophila 5JU6 ; 2.2 ; Structural and Functional Studies of Glycoside Hydrolase Family 3 beta-Glucosidase Cel3A from the Moderately Thermophilic Fungus Rasamsonia emersonii 3OTW ; 1.8 ; Structural and Functional Studies of Helicobacter pylori Wild-Type and Mutated Proteins Phosphopantetheine adenylyltransferase 4DVC ; 1.2 ; Structural and functional studies of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera toxin production 2VXW ; 1.7 ; Structural and Functional Studies of the Potent Anti-HIV Chemokine Variant P2-RANTES 4D8P ; 3.05 ; Structural and functional studies of the trans-encoded HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) molecule 3HGQ ; 3.0 ; Structural and functional studies of the yeast class II Hda1 HDAC complex 3HGT ; 2.2 ; Structural and functional studies of the yeast class II Hda1 HDAC complex 4CG1 ; 1.4 ; Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca 4CG2 ; 1.437 ; Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca 4CG3 ; 1.55 ; Structural and functional studies on a thermostable polyethylene therephtalate degrading hydrolase from Thermobifida fusca 4O6P ; 3.0 ; Structural and functional studies the characterization of C58G/C70G mutant in Cys4 Zinc-finger motif in the recombination mediator protein RecR 4O6O ; 3.0 ; Structural and functional studies the characterization of Cys4 Zinc-finger motif in the recombination mediator protein RecR 5GUY ; 2.399 ; Structural and functional study of chuY from E. coli CFT073 strain 4ADB ; 2.2 ; Structural and functional study of succinyl-ornithine transaminase from E. coli 4ADC ; 2.3 ; Structural and functional study of succinyl-ornithine transaminase from E. coli 4ADD ; 2.45 ; Structural and functional study of succinyl-ornithine transaminase from E. coli 4ADE ; 2.75 ; Structural and functional study of succinyl-ornithine transaminase from E. coli 2MSA ; ; Structural and immunological analysis of circumsporozoite protein peptides: a further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. 6FRR ; 1.948 ; Structural and immunological properties of the allergen Art v 3 8C4A ; 2.675 ; Structural and interactional insights into the glideosome-associated connector from Toxoplasma gondii 1DAZ ; 1.55 ; Structural and kinetic analysis of drug resistant mutants of HIV-1 protease 1DW6 ; 1.88 ; Structural and kinetic analysis of drug resistant mutants of HIV-1 protease 1EBK ; 2.06 ; Structural and kinetic analysis of drug resistant mutants of HIV-1 protease 2HFW ; 2.5 ; Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III 3RGP ; 1.88 ; Structural and Kinetic Analysis of the Beef liver Catalase complexed with Nitric Oxide 3RE8 ; 1.9 ; Structural and Kinetic Analysis of the Beef liver Catalase interacting with Nitric Oxide 3RGS ; 1.99 ; Structural and kinetic analysis of the beef liver catalase with the ammonia as a ligand 3WT4 ; 2.3 ; Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa 4NJQ ; 2.702 ; Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa 4NJR ; 2.3 ; Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa 4OID ; 2.3 ; Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa 4OIW ; 2.44 ; Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa 2BNQ ; 1.7 ; Structural and kinetic basis for heightened immunogenicity of T cell vaccines 2BNR ; 1.9 ; Structural and kinetic basis for heightened immunogenicity of T cell vaccines 2BNU ; 1.4 ; Structural and kinetic basis for heightened immunogenicity of T cell vaccines 7CJE ; 1.95001 ; Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase 7CJG ; 2.0 ; Structural and kinetic characterization of Porphyromonas gingivalis glutaminyl cyclase 3OAF ; 1.7 ; Structural and Kinetic Data for Antifolate Interactions Against Pneumocystis jirovecii, Pneumocystis carinii and Human Dihydrofolate Reductase and Thier Active Site Mutants 2NWO ; 1.7 ; Structural and kinetic effect of hydrophobic mutations in the active site of human carbonic anhydrase II 2NWP ; 1.8 ; Structural and kinetic effects of hydrophobic mutations in the active site of human carbonic anhydrase II 2NXS ; 1.8 ; Structural and kinetic effects of hydrophobic mutations in the active site of human carbonic anhydrase II 2NXT ; 1.15 ; Structural and kinetic effects of hydrophobic mutations in the active site of human carbonic anhydrase II 2NWY ; 1.65 ; Structural and kinetic effects of hydrophobic mutations on the active site of human carbonic anhydrase II 2NWZ ; 1.8 ; Structural and kinetic effects of hydrophobic mutations on the active site of human carbonic anhydrase II 6Y4I ; 1.16 ; Structural and Kinetic Evaluation of Phosphoramidate Inhibitors on Thermolysin 6YI6 ; 1.44 ; Structural and Kinetic Evaluation of Phosphoramidate Inhibitors on Thermolysin 6YMR ; 1.6 ; Structural and Kinetic Evaluation of Phosphoramidate Inhibitors on Thermolysin 6YMS ; 1.32 ; Structural and Kinetic Evaluation of Phosphoramidate Inhibitors on Thermolysin 3CKY ; 2.3 ; Structural and Kinetic Properties of a beta-hydroxyacid dehydrogenase involved in nicotinate fermentation 4ILZ ; 1.91 ; Structural and kinetic study of an internal substrate binding site of dehaloperoxidase-hemoglobin A from Amphitrite ornata 3E4D ; 2.01 ; Structural and Kinetic Study of an S-Formylglutathione Hydrolase from Agrobacterium tumefaciens 2QKA ; 2.2 ; Structural and Kinetic Study of the Differences between Human and E.coli Manganese Superoxide Dismutases 2QKC ; 2.3 ; Structural and Kinetic Study of the Differences between Human and E.coli Manganese Superoxide Dismutases 4IY0 ; 1.9 ; Structural and ligand binding properties of the Bateman domain of human magnesium transporters CNNM2 and CNNM4 4IY2 ; 3.6 ; Structural and ligand binding properties of the Bateman domain of human magnesium transporters CNNM2 and CNNM4 4IY4 ; 2.9 ; Structural and ligand binding properties of the Bateman domain of human magnesium transporters CNNM2 and CNNM4 4IYS ; 1.8 ; Structural and ligand binding properties of the Bateman domain of human magnesium transporters CNNM2 and CNNM4 7WZF ; 1.4 ; Structural and mechanism analysis of YunM 5YEU ; 3.001 ; Structural and mechanistic analyses reveal a unique Cas4-like protein in the mimivirus virophage resistance element system 5K9N ; 2.3 ; Structural and Mechanistic Analysis of Drosophila melanogaster Polyamine N acetyltransferase, an enzyme that Catalyzes the Formation of N acetylagmatine 2XLQ ; 2.22 ; Structural and Mechanistic Analysis of the Magnesium-Independent Aromatic Prenyltransferase CloQ from the Clorobiocin Biosynthetic Pathway 2XLY ; 3.1 ; Structural and Mechanistic Analysis of the Magnesium-Independent Aromatic Prenyltransferase CloQ from the Clorobiocin Biosynthetic Pathway 2XM5 ; 1.85 ; Structural and Mechanistic Analysis of the Magnesium-Independent Aromatic Prenyltransferase CloQ from the Clorobiocin Biosynthetic Pathway 2XM7 ; 2.22 ; Structural and Mechanistic Analysis of the Magnesium-Independent Aromatic Prenyltransferase CloQ from the Clorobiocin Biosynthetic Pathway 3EJ3 ; 1.7 ; Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity 3EJ7 ; 1.9 ; Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity 3EJ9 ; 1.5 ; Structural and mechanistic analysis of trans-3-chloroacrylic acid dehalogenase activity 1YR2 ; 1.8 ; Structural and Mechanistic Analysis of Two Prolyl Endopeptidases: Role of Inter-Domain Dynamics in Catalysis and Specificity 2BKL ; 1.5 ; Structural and Mechanistic Analysis of Two Prolyl Endopeptidases: Role of Inter-Domain Dynamics in Catalysis and Specificity 4V43 ; 3.52 ; Structural and mechanistic basis for allostery in the bacterial chaperonin GroEL 2JCH ; 2.4 ; Structural and mechanistic basis of penicillin binding protein inhibition by lactivicins 2JE5 ; 2.6 ; STRUCTURAL AND MECHANISTIC BASIS OF PENICILLIN BINDING PROTEIN INHIBITION BY LACTIVICINS 4G1P ; 2.547 ; Structural and Mechanistic Basis of Substrate Recognition by Novel Di-peptidase Dug1p From Saccharomyces cerevisiae 2EF9 ; 2.0 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase 2NWS ; 1.8 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase 2NX1 ; 1.8 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase 2NX3 ; 2.1 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase 2NXG ; 1.95 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase. 2NXH ; 2.11 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase. 2NXI ; 2.3 ; Structural and mechanistic changes along an engineered path from metallo to non-metallo KDO8P synthase. 8J5Y ; 3.07 ; Structural and mechanistic insight into ribosomal ITS2 RNA processing by nuclease-kinase machinery 8J60 ; 3.39 ; Structural and mechanistic insight into ribosomal ITS2 RNA processing by nuclease-kinase machinery 6O0B ; 1.6 ; Structural and Mechanistic Insights into CO2 Activation by Nitrogenase Iron Protein 2WVB ; 1.9 ; Structural and mechanistic insights into Helicobacter pylori NikR function 2WVC ; 2.1 ; Structural and mechanistic insights into Helicobacter pylori NikR function 2WVD ; 2.65 ; Structural and mechanistic insights into Helicobacter pylori NikR function 2WVE ; 2.3 ; Structural and mechanistic insights into Helicobacter pylori NikR function 2WVF ; 1.6 ; Structural and mechanistic insights into Helicobacter pylori NikR function 5UCU ; 1.797 ; STRUCTURAL AND MECHANISTIC INSIGHTS INTO HEMOGLOBIN-CATALYZED HYDROGEN SULFIDE OXIDATION AND THE FATE OF POLYSULFIDE PRODUCTS 4RL0 ; 1.3 ; Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins 4RL2 ; 2.008 ; Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins 4RM5 ; 2.1 ; Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins 5GTU ; 1.5 ; Structural and mechanistic insights into regulation of the retromer coat by TBC1d5 7BPU ; 3.32 ; Structural and mechanistic insights into the biosynthesis of Digeranylgeranylglyceryl phosphate synthase in membranes 2LK4 ; ; Structural and mechanistic insights into the interaction between PAT Pyk2 and Paxillin LD motif 7EQK ; 2.04001 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 7EU6 ; 2.05011 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 7EUE ; 2.08757 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 7EUP ; 2.11043 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 7EUZ ; 1.91028 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 7F6X ; 2.16 ; Structural and mechanistic studies of a novel non-heme iron epimerase/lyase and its utilization in chemoselective synthesis. 3V5O ; 2.5 ; Structural and Mechanistic Studies of Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase 2XEP ; 1.5 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 2XF3 ; 1.55 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 2XFS ; 1.8 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 2XFT ; 1.8 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 2XGN ; 1.7 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 2XH9 ; 1.8 ; Structural and mechanistic studies on a cephalosporin esterase from the clavulanic acid biosynthesis pathway 5H43 ; 2.3 ; Structural and mechanistical studies of the nuclear import by Importin-alpha 2OHE ; 2.7 ; Structural and mutational analysis of tRNA-Intron splicing endonuclease from Thermoplasma acidophilum DSM 1728 2OHC ; 2.5 ; structural and mutational analysis of tRNA-intron splicing endonuclease from Thermoplasma acidophilum DSM1728 4CB8 ; 2.9 ; Structural and mutational analysis reveals that CTNNBL1 binds NLSs in a manner distinct from that of its closest armadillo-relative, karyopherin alpha 1S5O ; 1.8 ; Structural and Mutational Characterization of L-carnitine Binding to Human carnitine Acetyltransferase 2A8K ; 1.5 ; Structural and Mutational Studies of the Catalytic Domain of Colicin E5a tRNA-Specific Ribonuclease 3UE4 ; 2.424 ; Structural and spectroscopic analysis of the kinase inhibitor bosutinib binding to the Abl tyrosine kinase domain 2VZX ; 2.0 ; Structural and spectroscopic characterization of photoconverting fluorescent protein Dendra2 2ET7 ; 1.7 ; Structural and spectroscopic insights into the mechanism of oxalate oxidase 3GUZ ; 1.67 ; Structural and substrate-binding studies of pantothenate synthenate (PS)provide insights into homotropic inhibition by pantoate in PS's 1AZY ; 3.0 ; STRUCTURAL AND THEORETICAL STUDIES SUGGEST DOMAIN MOVEMENT PRODUCES AN ACTIVE CONFORMATION OF THYMIDINE PHOSPHORYLASE 1OTP ; 2.8 ; STRUCTURAL AND THEORETICAL STUDIES SUGGEST DOMAIN MOVEMENT PRODUCES AN ACTIVE CONFORMATION OF THYMIDINE PHOSPHORYLASE 2TPT ; 2.6 ; STRUCTURAL AND THEORETICAL STUDIES SUGGEST DOMAIN MOVEMENT PRODUCES AN ACTIVE CONFORMATION OF THYMIDINE PHOSPHORYLASE 2YV0 ; 1.4 ; Structural and Thermodynamic Analyses of E. coli ribonuclease HI Variant with Quintuple Thermostabilizing Mutations 1HEL ; 1.7 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HEM ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HEN ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HEO ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HEP ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HEQ ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1HER ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME 1L48 ; 1.7 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 1L49 ; 1.8 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 1L50 ; 1.85 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 1L51 ; 1.9 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 1L52 ; 1.7 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 1L53 ; 1.85 ; STRUCTURAL AND THERMODYNAMIC ANALYSIS OF THE PACKING OF TWO ALPHA-HELICES IN BACTERIOPHAGE T4 LYSOZYME 4ONS ; 2.8 ; Structural and thermodynamic characterization of cadherin-beta-catenin-alpha-catenin complex formation 3LXK ; 2.0 ; Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6 3LXL ; 1.74 ; Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6 3LXN ; 2.5 ; Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6 3LXP ; 1.65 ; Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6 2WMA ; 2.8 ; Structural and thermodynamic consequences of cyclization of peptide ligands for the recruitment site of cyclin A 2WMB ; 2.6 ; Structural and thermodynamic consequences of cyclization of peptide ligands for the recruitment site of cyclin A 1OH4 ; 1.35 ; Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate-binding module 1OF3 ; 2.0 ; Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate-binding module, TmCBM27 1OF4 ; 1.6 ; Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate-binding module, TmCBM27 4BPT ; 2.5 ; Structural and thermodynamic insight into phenylalanine hydroxylase from the human pathogen Legionella pneumophila 6HM1 ; 1.54 ; Structural and thermodynamic signatures of ligand binding to an enigmatic chitinase-D from Serratia proteamaculans 4QC8 ; 3.2 ; Structural annotation of pathogenic bovine Parvovirus-1 6YP6 ; 0.97 ; Structural annotation of the conserved carbohydrate esterase vb_24B_21 from Shiga toxin-encoding bacteriophage phi24B 8TN9 ; 3.05 ; Structural architecture of the acidic region of the B domain of coagulation factor V 1TLM ; 1.9 ; STRUCTURAL ASPECTS OF INOTROPIC BIPYRIDINE BINDING: CRYSTAL STRUCTURE DETERMINATION TO 1.9 ANGSTROMS OF THE HUMAN SERUM TRANSTHYRETIN-MILRINONE COMPLEX 1FPD ; 2.1 ; STRUCTURAL ASPECTS OF THE ALLOSTERIC INHIBITION OF FRUCTOSE-1,6-BISPHOSPHATASE BY AMP: THE BINDING OF BOTH THE SUBSTRATE ANALOGUE 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND CATALYTIC METAL IONS MONITORED BY X-RAY CRYSTALLOGRAPHY 1FPE ; 2.2 ; STRUCTURAL ASPECTS OF THE ALLOSTERIC INHIBITION OF FRUCTOSE-1,6-BISPHOSPHATASE BY AMP: THE BINDING OF BOTH THE SUBSTRATE ANALOGUE 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND CATALYTIC METAL IONS MONITORED BY X-RAY CRYSTALLOGRAPHY 1FPF ; 2.1 ; STRUCTURAL ASPECTS OF THE ALLOSTERIC INHIBITION OF FRUCTOSE-1,6-BISPHOSPHATASE BY AMP: THE BINDING OF BOTH THE SUBSTRATE ANALOGUE 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND CATALYTIC METAL IONS MONITORED BY X-RAY CRYSTALLOGRAPHY 1FPG ; 2.3 ; STRUCTURAL ASPECTS OF THE ALLOSTERIC INHIBITION OF FRUCTOSE-1,6-BISPHOSPHATASE BY AMP: THE BINDING OF BOTH THE SUBSTRATE ANALOGUE 2,5-ANHYDRO-D-GLUCITOL-1,6-BISPHOSPHATE AND CATALYTIC METAL IONS MONITORED BY X-RAY CRYSTALLOGRAPHY 3EDD ; 2.65 ; Structural base for cyclodextrin hydrolysis 3EDE ; 1.71 ; Structural base for cyclodextrin hydrolysis 3EDF ; 1.65 ; Structural base for cyclodextrin hydrolysis 3EDJ ; 1.69 ; Structural base for cyclodextrin hydrolysis 3EDK ; 1.77 ; Structural base for cyclodextrin hydrolysis 1LAF ; 2.06 ; STRUCTURAL BASES FOR MULTIPLE LIGAND SPECIFICITY OF THE PERIPLASMIC LYSINE-, ARGININE-, ORNITHINE-BINDING PROTEIN 1LAG ; 2.06 ; STRUCTURAL BASES FOR MULTIPLE LIGAND SPECIFICITY OF THE PERIPLASMIC LYSINE-, ARGININE-, ORNITHINE-BINDING PROTEIN 1LAH ; 2.06 ; STRUCTURAL BASES FOR MULTIPLE LIGAND SPECIFICITY OF THE PERIPLASMIC LYSINE-, ARGININE-, ORNITHINE-BINDING PROTEIN 6LP3 ; 3.547 ; Structural basis and functional analysis epo1-bem3p complex for bud growth 6LP4 ; 2.049 ; Structural basis and functional analysis epo1-bem3p complex for bud growth 4HYF ; 2.8 ; Structural basis and SAR for OD 270, a lead stage 1,2,4-triazole based specific Tankyrase1/2 inhibitor 6P2H ; 2.803 ; Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches 1T2R ; ; Structural basis for 3' end recognition of nucleic acids by the Drosophila Argonaute 2 PAZ domain 1T2S ; ; Structural basis for 3' end recognition of nucleic acids by the Drosophila Argonaute 2 PAZ domain 1OT7 ; 2.9 ; Structural Basis for 3-deoxy-CDCA Binding and Activation of FXR 1YTU ; 2.5 ; Structural basis for 5'-end-specific recognition of the guide RNA strand by the A. fulgidus PIWI protein 7KFV ; 2.102 ; Structural basis for a germline-biased antibody response to SARS-CoV-2 (RBD:C1A-B12 Fab) 7KFW ; 2.792 ; Structural basis for a germline-biased antibody response to SARS-CoV-2 (RBD:C1A-B3 Fab) 7KFX ; 2.226 ; Structural basis for a germline-biased antibody response to SARS-CoV-2 (RBD:C1A-C2 Fab) 7KFY ; 2.157 ; Structural basis for a germline-biased antibody response to SARS-CoV-2 (RBD:C1A-F10 Fab) 2CJS ; 1.78 ; Structural Basis for a Munc13-1 Homodimer - Munc13-1 - RIM Heterodimer Switch: C2-domains as Versatile Protein-Protein Interaction Modules 2CJT ; 1.44 ; Structural Basis for a Munc13-1 Homodimer - Munc13-1 - RIM Heterodimer Switch: C2-domains as Versatile Protein-Protein Interaction Modules 3NF6 ; 1.9 ; Structural basis for a new mechanism of inhibition of HIV integrase identified by fragment screening and structure based design 3NF7 ; 1.8 ; Structural basis for a new mechanism of inhibition of HIV integrase identified by fragment screening and structure based design 3NF8 ; 1.9 ; Structural basis for a new mechanism of inhibition of HIV integrase identified by fragment screening and structure based design 3NF9 ; 1.95 ; Structural basis for a new mechanism of inhibition of HIV integrase identified by fragment screening and structure based design 3NFA ; 1.95 ; Structural basis for a new mechanism of inhibition of HIV integrase identified by fragment screening and structure based design 5D46 ; 2.8 ; Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination 5D49 ; 1.99 ; Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination 5D4B ; 2.66 ; Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination 2XYO ; 3.0 ; Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase 2P4R ; 2.001 ; Structural basis for a novel interaction between AIP4 and beta-PIX 1U9L ; 1.9 ; Structural basis for a NusA- protein N interaction 5WZX ; 2.95 ; Structural basis for a pentacyclic oleanane-type triterpenoid as a ligand of FXR 5VBS ; 1.749 ; Structural basis for a six letter alphabet including GATCKX 5ZY9 ; 2.5 ; Structural basis for a tRNA synthetase 5BN5 ; 2.997 ; Structural basis for a unique ATP synthase core complex from Nanoarcheaum equitans 2QKW ; 3.2 ; Structural basis for activation of plant immunity by bacterial effector protein AvrPto 4K2R ; 3.0 ; Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker 6IYZ ; 2.2 ; Structural basis for activity of TRIC counter-ion channels in calcium release 6IZ3 ; 3.791 ; Structural basis for activity of TRIC counter-ion channels in calcium release 6IZF ; 2.0 ; Structural basis for activity of TRIC counter-ion channels in calcium release 5INF ; 2.751 ; Structural basis for acyl-CoA carboxylase-mediated assembly of unusual polyketide synthase extender units incorporated into the stambomycin antibiotics 5INI ; 2.85 ; Structural basis for acyl-CoA carboxylase-mediated assembly of unusual polyketide synthase extender units incorporated into the stambomycin antibiotics 3KTA ; 1.627 ; Structural Basis for Adenylate Kinase Activity in ABC ATPases 3ZR7 ; 1.65 ; Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators 3ZRA ; 1.9 ; Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators 3ZRB ; 1.8 ; Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators 4H6B ; 1.35 ; Structural basis for allene oxide cyclization in moss 1UXN ; 2.3 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXP ; 2.55 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXQ ; 2.4 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXR ; 2.3 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXT ; 2.2 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXU ; 2.25 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1UXV ; 2.35 ; Structural basis for allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Thermoproteus tenax 1H7B ; 2.45 ; Structural basis for allosteric substrate specificity regulation in class III ribonucleotide reductases, native NRDD 1H7A ; 2.75 ; Structural basis for allosteric substrate specificity regulation in class III ribonucleotide reductases: NRDD in complex with dATP 1H78 ; 2.5 ; STRUCTURAL BASIS FOR ALLOSTERIC SUBSTRATE SPECIFICITY REGULATION IN CLASS III RIBONUCLEOTIDE REDUCTASES: NRDD IN COMPLEX WITH DCTP. 1HK8 ; 2.45 ; STRUCTURAL BASIS FOR ALLOSTERIC SUBSTRATE SPECIFICITY REGULATION IN CLASS III RIBONUCLEOTIDE REDUCTASES: NRDD IN COMPLEX WITH DGTP 1H79 ; 2.9 ; STRUCTURAL BASIS FOR ALLOSTERIC SUBSTRATE SPECIFICITY REGULATION IN CLASS III RIBONUCLEOTIDE REDUCTASES: NRDD IN COMPLEX WITH DTTP 1TYE ; 2.9 ; Structural basis for allostery in integrins and binding of ligand-mimetic therapeutics to the platelet receptor for fibrinogen 1WZE ; 2.0 ; Structural basis for alteration of cofactor specificity of Malate dehydrogenase from Thermus flavus 1WZI ; 2.0 ; Structural basis for alteration of cofactor specificity of Malate dehydrogenase from Thermus flavus 1LE2 ; 3.0 ; STRUCTURAL BASIS FOR ALTERED FUNCTION IN THE COMMON MUTANTS OF HUMAN APOLIPOPROTEIN-E 1LE4 ; 2.5 ; STRUCTURAL BASIS FOR ALTERED FUNCTION IN THE COMMON MUTANTS OF HUMAN APOLIPOPROTEIN-E 2XZE ; 1.75 ; Structural basis for AMSH-ESCRT-III CHMP3 interaction 5ZMA ; 3.175 ; Structural basis for an allosteric Eya2 phosphatase inhibitor 4JYO ; 2.5 ; Structural basis for angiopoietin-1 mediated signaling initiation 4K0V ; 4.51 ; Structural basis for angiopoietin-1 mediated signaling initiation 5U68 ; 3.083 ; Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus 5VK2 ; 3.201 ; Structural basis for antibody-mediated neutralization of Lassa virus 5MGP ; 3.1 ; Structural basis for ArfA-RF2 mediated translation termination on stop-codon lacking mRNAs 5NJ8 ; 3.3 ; Structural basis for aryl hydrocarbon receptor mediated gene activation 3LRA ; 2.95 ; Structural Basis for Assembling a Human Tripartite Complex Dlg1-MPP7-Mals3 4LG4 ; 2.42 ; Structural Basis for Autoactivation of Human Mst2 Kinase and Its Regulation by RASSF5 4LGD ; 3.05 ; Structural Basis for Autoactivation of Human Mst2 Kinase and Its Regulation by RASSF5 4BHW ; 2.799 ; Structural basis for autoinhibition of the acetyltransferase activity of p300 2LO8 ; ; Structural Basis for Bifunctional Zn(II) Macrocyclic Complex Recognition of Thymine Bulges in DNA 2LOA ; ; Structural Basis for Bifunctional Zn(II) Macrocyclic Complex Recognition of Thymine Bulges in DNA 2LO5 ; ; Structural Basis for Bifunctional Zn(II) Macrocyclic Complex Recognition of Thymine Bulges in DNA, Structure of a Thymine bulge 1OSV ; 2.5 ; STRUCTURAL BASIS FOR BILE ACID BINDING AND ACTIVATION OF THE NUCLEAR RECEPTOR FXR 4CYK ; ; Structural basis for binding of Pan3 to Pan2 and its function in mRNA recruitment and deadenylation 7N09 ; 2.0 ; Structural basis for branched substrate selectivity in a ketoreductase from Ascaris suum 3V7A ; 3.297 ; Structural basis for broad detection of genogroup II noroviruses by a monoclonal antibody that binds to a site occluded in the viral particle 2A3V ; 2.8 ; Structural basis for broad DNA-specificity in integron recombination 6EAY ; 3.72 ; Structural Basis for Broad Neutralization of Ebolaviruses by an Antibody Targeting the Glycoprotein Fusion Loop 2LPR ; 2.25 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 3LPR ; 2.15 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 5LPR ; 2.13 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 6LPR ; 2.1 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 7LPR ; 2.05 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 8LPR ; 2.25 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 9LPR ; 2.2 ; STRUCTURAL BASIS FOR BROAD SPECIFICITY IN ALPHA-LYTIC PROTEASE MUTANTS 2GD5 ; 2.8 ; Structural basis for budding by the ESCRTIII factor CHMP3 4MTG ; 3.296 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MTO ; 3.402 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVM ; 3.1997 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVO ; 3.296 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVQ ; 3.4 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVR ; 3.196 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVS ; 3.299 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVU ; 3.198 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MVZ ; 3.3 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MW3 ; 3.2997 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4MW8 ; 3.256 ; Structural Basis for Ca2+ Selectivity of a Voltage-gated Calcium Channel 4Y1S ; 1.611 ; Structural basis for Ca2+-mediated interaction of the perforin C2 domain with lipid membranes 4Y1T ; 2.666 ; Structural basis for Ca2+-mediated interaction of the perforin C2 domain with lipid membranes 3Q6J ; 1.92 ; Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M Oxidoreductase/Carboxylase 5G4Y ; 2.0 ; Structural basis for carboxylic acid recognition by a Cache chemosensory domain. 5G4Z ; 1.98 ; Structural basis for carboxylic acid recognition by a Cache chemosensory domain. 3PKZ ; 1.8 ; Structural basis for catalytic activation of a serine recombinase 1XPY ; 2.3 ; Structural Basis for Catalytic Racemization and Substrate Specificity of an N-Acylamino Acid Racemase Homologue from Deinococcus radiodurans 1XS2 ; 2.3 ; Structural Basis for Catalytic Racemization and Substrate Specificity of an N-Acylamino Acid Racemase Homologue from Deinococcus radiodurans 7UPZ ; 2.487 ; Structural basis for cell type specific DNA binding of C/EBPbeta: the case of cell cycle inhibitor p15INK4b promoter 6MG8 ; 3.6 ; Structural basis for cholesterol transport-like activity of the Hedgehog receptor Patched 6PPT ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PQ2 ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PQE ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PQM ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PRI ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PRJ ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PRP ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PRQ ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 6PSI ; ; Structural Basis for Client Recognition and Activity of Hsp40 Chaperones 5WUC ; 1.6 ; Structural basis for conductance through TRIC cation channels 5WUD ; 1.9 ; Structural basis for conductance through TRIC cation channels 5WUE ; 2.4 ; Structural basis for conductance through TRIC cation channels 5WUF ; 2.401 ; Structural basis for conductance through TRIC cation channels 6SRN ; 1.5 ; Structural basis for control of antibiotic production by bacterial hormones 2PJY ; 3.0 ; Structural basis for cooperative assembly of the TGF-beta signaling complex 6PW2 ; 3.01 ; Structural Basis for Cooperative Binding of EBNA1 to the Epstein-Barr Virus Dyad Symmetry Minimal Origin of Replication 2BNW ; 2.45 ; Structural basis for cooperative binding of Ribbon-Helix-Helix Omega repressor to direct DNA heptad repeats 2BNZ ; 2.6 ; Structural basis for cooperative binding of Ribbon-Helix-Helix Omega repressor to inverted DNA heptad repeats 2CAX ; 2.9 ; STRUCTURAL BASIS FOR COOPERATIVE BINDING OF RIBBON-HELIX-HELIX REPRESSOR OMEGA TO MUTATED DIRECT DNA HEPTAD REPEATS 2AGH ; ; Structural basis for cooperative transcription factor binding to the CBP coactivator 2IW5 ; 2.57 ; Structural Basis for CoREST-Dependent Demethylation of Nucleosomes by the Human LSD1 Histone Demethylase 7C8J ; 3.18 ; Structural basis for cross-species recognition of COVID-19 virus spike receptor binding domain to bat ACE2 7C8K ; 3.2 ; Structural basis for cross-species recognition of COVID-19 virus spike receptor binding domain to bat ACE2 7ML7 ; 3.17 ; Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection 3OMJ ; 0.95 ; Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding 4IG8 ; 2.7 ; Structural basis for cytosolic double-stranded RNA surveillance by human OAS1 1T21 ; 2.19 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9, monoclinic crystal 1T22 ; 2.2 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9, orthorhombic crystal 1S8D ; 2.2 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-3A 1T1W ; 2.2 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-3F6I8V 1T1X ; 2.2 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-4L 1T1Y ; 2.0 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-5V 1T1Z ; 1.9 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-6A 1T20 ; 2.2 ; Structural basis for degenerate recognition of HIV peptide variants by cytotoxic lymphocyte, variant SL9-6I 1R1P ; 1.8 ; Structural Basis for Differential Recognition of Tyrosine Phosphorylated Sites in the Linker for Activation of T cells (LAT) by the Adaptor Protein Gads 1R1Q ; 1.8 ; Structural Basis for Differential Recognition of Tyrosine Phosphorylated Sites in the Linker for Activation of T cells (LAT) by the Adaptor Protein Gads 1R1S ; 1.9 ; Structural Basis for Differential Recognition of Tyrosine Phosphorylated Sites in the Linker for Activation of T cells (LAT) by the Adaptor Protein Gads 3COQ ; 2.4 ; Structural Basis for Dimerization in DNA Recognition by Gal4 5H31 ; 3.16954 ; Structural basis for dimerization of the death effector domains of Caspase-8 5H33 ; 3.60014 ; Structural basis for dimerization of the death effector domains of Caspase-8 3TVT ; 1.6 ; Structural basis for Discs Large interaction with Pins 1JGU ; 1.8 ; STRUCTURAL BASIS FOR DISFAVORED ELIMINATION REACTION IN CATALYTIC ANTIBODY 1D4 1JGV ; 1.85 ; STRUCTURAL BASIS FOR DISFAVORED ELIMINATION REACTION IN CATALYTIC ANTIBODY 1D4 2BZF ; 2.87 ; Structural basis for DNA bridging by barrier-to-autointegration factor (BAF) 3QSV ; 2.708 ; Structural basis for DNA recognition by constitutive Smad4 MH1 dimers 7XVN ; 2.302 ; Structural basis for DNA recognition feature of retinoid-related orphan receptors 5A9K ; 19.0 ; Structural basis for DNA strand separation by a hexameric replicative helicase 6L3G ; 3.3 ; Structural Basis for DNA Unwinding at Forked dsDNA by two coordinating Pif1 helicases 3GOD ; 2.17 ; Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated antiviral defense 6KDU ; 2.2 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6KJM ; 2.2 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6KKV ; 2.56 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6KRH ; 2.6 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6KSC ; 2.4 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6KSD ; 2.5 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 6LW8 ; 2.401 ; Structural basis for domain rotation during adenylation of active site K123 and fragment library screening against NAD+ -dependent DNA ligase from Mycobacterium tuberculosis 2V5M ; 1.95 ; Structural basis for Dscam isoform specificity 2V5R ; 3.0 ; Structural basis for Dscam isoform specificity 2V5S ; 2.3 ; Structural basis for Dscam isoform specificity 4GL2 ; 3.557 ; Structural Basis for dsRNA duplex backbone recognition by MDA5 2ZKO ; 1.7 ; Structural basis for dsRNA recognition by NS1 protein of human influenza virus A 3QTL ; 2.6 ; Structural Basis for Dual-inhibition Mechanism of a Non-classical Kazal-type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin 5T0C ; 3.8 ; Structural basis for dynamic regulation of the human 26S proteasome 5T0G ; 4.4 ; Structural basis for dynamic regulation of the human 26S proteasome 5T0H ; 6.8 ; Structural basis for dynamic regulation of the human 26S proteasome 5T0I ; 8.0 ; Structural basis for dynamic regulation of the human 26S proteasome 5T0J ; 8.0 ; Structural basis for dynamic regulation of the human 26S proteasome 1KPS ; 2.5 ; Structural Basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin conjugating enzyme Ubc9 and RanGAP1 5NV8 ; 2.294 ; Structural basis for EarP-mediated arginine glycosylation of translation elongation factor EF-P 4HRL ; 2.55 ; Structural Basis for Eliciting a Cytotoxic Effect in HER2-Overexpressing Cancer Cells via Binding to the Extracellular Domain of HER2 4HRM ; 3.2 ; Structural Basis for Eliciting a Cytotoxic Effect in HER2-Overexpressing Cancer Cells via Binding to the Extracellular Domain of HER2 4HRN ; 2.65 ; Structural Basis for Eliciting a Cytotoxic Effect in HER2-Overexpressing Cancer Cells via Binding to the Extracellular Domain of HER2 7N1Q ; 2.9 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1T ; 3.11 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1U ; 3.14 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1V ; 3.21 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1W ; 3.33 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1X ; 4.0 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 7N1Y ; 4.3 ; Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants 2O3Q ; 1.98 ; Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38 2O3R ; 1.75 ; Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38 2O3S ; 1.5 ; Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38 2O3T ; 1.68 ; Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38 2O3U ; 2.11 ; Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38 4P3N ; 2.6 ; Structural Basis for Full-Spectrum Inhibition of Threonyl-tRNA Synthetase by Borrelidin 1 4P3O ; 2.505 ; Structural Basis for Full-Spectrum Inhibition of Threonyl-tRNA Synthetase by Borrelidin 2 4P3P ; 2.1 ; Structural Basis for Full-Spectrum Inhibition of Threonyl-tRNA Synthetase by Borrelidin 3 365D ; 2.0 ; STRUCTURAL BASIS FOR G C RECOGNITION IN THE DNA MINOR GROOVE 5T15 ; 3.6 ; Structural basis for gating and activation of RyR1 (30 uM Ca2+ dataset, all particles) 7XDT ; 3.31 ; Structural basis for Gemin5 decamer-mediated mRNA binding 4CI4 ; 2.302 ; Structural basis for GL479 a dual Peroxisome Proliferator-Activated Receptor alpha agonist 4CI5 ; 1.77 ; Structural basis for GL479 a dual Peroxisome Proliferator-Activated Receptor gamma agonist 2OHV ; 2.5 ; Structural Basis for Glutamate Racemase Inhibition 2OHO ; 2.25 ; Structural Basis for Glutamate Racemase Inhibitor 2OHG ; 2.5 ; Structural Basis for Glutamte Racemase Inhibition 1KP8 ; 2.0 ; Structural Basis for GroEL-assisted Protein Folding from the Crystal Structure of (GroEL-KMgATP)14 at 2.0 A Resolution 5YEW ; 3.2 ; Structural basis for GTP hydrolysis and conformational change of mitofusin 1 in mediating mitochondrial fusion 8I17 ; 1.98 ; Structural basis for H2A-H2B recognitions by human Spt16 1TFZ ; 1.8 ; Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases 1L8C ; ; STRUCTURAL BASIS FOR HIF-1ALPHA/CBP RECOGNITION IN THE CELLULAR HYPOXIC RESPONSE 2Y7I ; 1.9 ; Structural basis for high arginine specificity in Salmonella typhimurium periplasmic binding protein STM4351. 2L43 ; ; Structural basis for histone code recognition by BRPF2-PHD1 finger 2XA6 ; ; Structural basis for homodimerization of the Src-associated during mitosis, 68 kD protein (Sam68) Qua1 domain 4K12 ; 1.079 ; Structural Basis for Host Specificity of Factor H Binding by Streptococcus pneumoniae 6NZK ; 2.8 ; Structural basis for human coronavirus attachment to sialic acid receptors 6OHW ; 2.9 ; Structural basis for human coronavirus attachment to sialic acid receptors. Apo-HCoV-OC43 S 3SP6 ; 2.21 ; Structural basis for iloprost as a dual PPARalpha/delta agonist 3SP9 ; 2.3 ; Structural basis for iloprost as a dual PPARalpha/delta agonist 3RKI ; 3.2 ; Structural basis for immunization with post-fusion RSV F to elicit high neutralizing antibody titers 2H9V ; 3.1 ; Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y27632 4QOK ; 3.0 ; Structural basis for ineffective T-cell responses to MHC anchor residue improved heteroclitic peptides 3BA9 ; 1.9 ; Structural Basis for Inhbition of NAD-Dependent Ligase 5TIH ; 2.44 ; Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA 5TIK ; 3.09 ; Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA 4ZG6 ; 1.8 ; Structural basis for inhibition of human autotaxin by four novel compounds 4ZG7 ; 1.75 ; Structural basis for inhibition of human autotaxin by four novel compounds 4ZG9 ; 2.95 ; Structural basis for inhibition of human autotaxin by four novel compounds 4ZGA ; 2.6 ; Structural basis for inhibition of human autotaxin by four novel compounds 2CM7 ; 2.1 ; Structural Basis for Inhibition of Protein Tyrosine Phosphatase 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics 2CM8 ; 2.1 ; Structural Basis for Inhibition of Protein Tyrosine Phosphatase 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics 2CMA ; 2.3 ; Structural Basis for Inhibition of Protein Tyrosine Phosphatase 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics 2CMB ; 1.7 ; Structural Basis for Inhibition of Protein Tyrosine Phosphatase 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics 2CMC ; 2.2 ; Structural Basis for Inhibition of Protein Tyrosine Phosphatase 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics 1SQD ; 1.8 ; Structural basis for inhibitor selectivity revealed by crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases 1SQI ; 2.15 ; Structural basis for inhibitor selectivity revealed by crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases 5HOT ; 4.4 ; Structural Basis for Inhibitor-Induced Aggregation of HIV-1 Integrase 2OM7 ; 7.3 ; Structural Basis for Interaction of the Ribosome with the Switch Regions of GTP-bound Elongation Factors 1XX1 ; 1.75 ; Structural basis for ion-coordination and the catalytic mechanism of sphingomyelinases D 3OF9 ; 1.761 ; Structural Basis for Irreversible Inhibition of Human Cathepsin L by a Diazomethylketone Inhibitor 6B5C ; 2.4 ; Structural Basis for Katanin Self-Assembly 6B5D ; 3.1 ; Structural Basis for Katanin Self-Assembly 2NDJ ; ; Structural Basis for KCNE3 and Estrogen Modulation of the KCNQ1 Channel 3ZS5 ; 1.6 ; Structural basis for kinase selectivity of three clinical p38alpha inhibitors 2ORX ; 2.4 ; Structural Basis for Ligand Binding and Heparin Mediated Activation of Neuropilin 2ORZ ; 2.15 ; Structural Basis for Ligand Binding and Heparin Mediated Activation of Neuropilin 7DPT ; 2.48 ; Structural basis for ligand binding modes of CTP synthase 7DPW ; 2.65 ; Structural basis for ligand binding modes of CTP synthase 7WIZ ; 3.2 ; Structural basis for ligand binding modes of CTP synthase 7WJ4 ; 3.15 ; Structural basis for ligand binding modes of CTP synthase 3QG6 ; 2.5 ; Structural Basis for Ligand Recognition and Discrimination of a Quorum Quenching Antibody 3QG7 ; 2.78 ; Structural Basis for Ligand Recognition and Discrimination of a Quorum Quenching Antibody 7MDH ; 2.4 ; STRUCTURAL BASIS FOR LIGHT ACITVATION OF A CHLOROPLAST ENZYME. THE STRUCTURE OF SORGHUM NADP-MALATE DEHYDROGENASE IN ITS OXIDIZED FORM 2PR5 ; 1.45 ; Structural Basis for Light-dependent Signaling in the Dimeric LOV Photosensor YtvA (Dark Structure) 2PR6 ; 1.95 ; Structural Basis for Light-dependent Signaling in the Dimeric LOV Photosensor YtvA (Light Structure) 5NUO ; 3.2 ; Structural basis for maintenance of bacterial outer membrane lipid asymmetry 5NUP ; 2.9 ; Structural basis for maintenance of bacterial outer membrane lipid asymmetry 5NUQ ; 3.2 ; Structural basis for maintenance of bacterial outer membrane lipid asymmetry 5NUR ; 3.29 ; Structural basis for maintenance of bacterial outer membrane lipid asymmetry 4GHL ; 2.02 ; Structural Basis for Marburg virus VP35 mediate immune evasion mechanisms 3EY9 ; 2.9 ; Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli 3EYA ; 2.5 ; Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli 1A2O ; 2.4 ; STRUCTURAL BASIS FOR METHYLESTERASE CHEB REGULATION BY A PHOSPHORYLATION-ACTIVATED DOMAIN 5BRM ; 2.651 ; Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling 2LKM ; ; Structural Basis for Molecular Interactions Involving MRG Domains: Implications in Chromatin Biology 2B87 ; ; Structural basis for molecular recognition in an affibody:affibody complex 2B88 ; ; Structural basis for molecular recognition in an affibody:affibody complex 2B89 ; ; Structural basis for molecular recognition in an affibody:affibody complex 3VIB ; 2.4 ; Structural basis for multidrug recognition and antimicrobial resistance by MTRR, an efflux pump regulator from Neisseria Gonorrhoeae 6OF0 ; 2.0 ; Structural basis for multidrug recognition and antimicrobial resistance by MTRR, an efflux pump regulator from Neisseria Gonorrhoeae 4X1L ; 2.16 ; Structural basis for mutation-induced destabilization of Profilin 1 in ALS 4X1M ; 2.17 ; Structural basis for mutation-induced destabilization of Profilin 1 in ALS 4X25 ; 2.23 ; Structural basis for mutation-induced destabilization of Profilin 1 in ALS 2VC5 ; 2.6 ; Structural basis for natural lactonase and promiscuous phosphotriesterase activities 2VC7 ; 2.05 ; Structural basis for natural lactonase and promiscuous phosphotriesterase activities 8BOB ; 2.94 ; Structural basis for negative regulation of the maltose system 7CAB ; 3.52 ; Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody 1SZC ; 1.75 ; Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases 1SZD ; 1.5 ; Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases 2OD9 ; 2.05 ; Structural Basis for Nicotinamide Inhibition and Base Exchange in Sir2 Enzymes 1WK9 ; 1.75 ; Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain 1WKA ; 1.7 ; Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain 2J0F ; 2.31 ; Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implication for drug design 3RY8 ; 1.4 ; Structural basis for norovirus inhibition and fucose mimicry by citrate 5KW9 ; 2.3 ; Structural Basis for Norovirus Neutralization by a HBGA Blocking Human IgA Antibody 1SK7 ; 1.6 ; Structural Basis for Novel Delta-Regioselective Heme Oxygenation in the Opportunistic Pathogen Pseudomonas aeruginosa 2H3A ; ; Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA 2H3C ; ; Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA 5OFT ; 3.2 ; Structural basis for OXA-48 dimerization 6GOA ; 2.55 ; Structural basis for OXA-48 dimerization - R189A mutant 4I7H ; 2.0 ; Structural basis for peroxide sensing and gene regulation by PerR from Streptococcus pyogenes 1Y19 ; 2.6 ; Structural basis for phosphatidylinositol phosphate kinase type I-gamma binding to talin at focal adhesions 4MXP ; 1.83 ; Structural Basis for PI(4)P-Specific Membrane Recruitment of the Legionella pneumophila Effector DrrA/SidM 1IDX ; ; Structural Basis for Poor Excision from Hairpin DNA: NMR Study 1II1 ; ; Structural Basis for Poor Uracil Excision from Hairpin DNA: NMR Study 6C6K ; 2.54 ; Structural basis for preferential recognition of cap 0 RNA by a human IFIT1-IFIT3 protein complex 4ZTU ; 3.299 ; Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase 4ZTZ ; 3.442 ; Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase 3NGD ; 2.8 ; Structural Basis for Proficient Incorporation of dTTP Opposite O6-methylguanine by Human DNA Polymerase Iota 3OSN ; 1.9 ; Structural Basis for Proficient Incorporation of dTTP Opposite O6-Methylguanine by Human DNA Polymerase Iota 3AKA ; 1.8 ; Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium-binding protein 3AKB ; 1.5 ; Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium-binding protein 6DB8 ; 1.86541 ; Structural basis for promiscuous binding and activation of fluorogenic dyes by DIR2s RNA aptamer 6DB9 ; 2.025 ; Structural basis for promiscuous binding and activation of fluorogenic dyes by DIR2s RNA aptamer 2XU7 ; 1.9 ; Structural basis for RbAp48 binding to FOG-1 5ZMC ; 2.99 ; Structural Basis for Reactivation of -146C>T Mutant TERT Promoter by cooperative binding of p52 and ETS1/2 1PKH ; 1.42 ; STRUCTURAL BASIS FOR RECOGNITION AND CATALYSIS BY THE BIFUNCTIONAL DCTP DEAMINASE AND DUTPASE FROM METHANOCOCCUS JANNASCHII 1PKJ ; 2.1 ; Structural basis for recognition and catalysis by the bifunctional dCTP deaminase and dUTPase from Methanococcus jannaschii 1PKK ; 1.77 ; Structural basis for recognition and catalysis by the bifunctional dCTP deaminase and dUTPase from Methanococcus jannaschii 6RA2 ; 2.3 ; Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqDC 6RA3 ; 2.0 ; Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqDC in complex with its product 6RB3 ; 2.3 ; Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC variant in complex with its substrate 407D ; 2.2 ; STRUCTURAL BASIS FOR RECOGNITION OF A-T AND T-A BASE PAIRS IN THE MINOR GROOVE OF B-DNA 408D ; 2.1 ; STRUCTURAL BASIS FOR RECOGNITION OF A-T AND T-A BASE PAIRS IN THE MINOR GROOVE OF B-DNA 5W6Q ; 2.66 ; Structural basis for recognition of artificial DNA by an evolved KlenTaq variant 2L5A ; ; Structural basis for recognition of centromere specific histone H3 variant by nonhistone Scm3 6C0B ; 2.5 ; Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B 5YU0 ; 1.92 ; Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase 5YU1 ; 1.923 ; Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase 5YU3 ; 1.79 ; Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase 5YU4 ; 2.144 ; Structural basis for recognition of L-lysine, L-ornithine, and L-2,4-diamino butyric acid by lysine cyclodeaminase 2IAL ; 1.92 ; Structural basis for recognition of mutant self by a tumor-specific, MHC class II-restricted TCR 2IAM ; 2.8 ; Structural basis for recognition of mutant self by a tumor-specific, MHC class II-restricted TCR 2IAN ; 2.8 ; Structural basis for recognition of mutant self by a tumor-specific, MHC class II-restricted TCR 2BBQ ; 2.3 ; STRUCTURAL BASIS FOR RECOGNITION OF POLYGLUTAMYL FOLATES BY THYMIDYLATE SYNTHASE 1K1G ; ; STRUCTURAL BASIS FOR RECOGNITION OF THE INTRON BRANCH SITE RNA BY SPLICING FACTOR 1 1RGO ; ; Structural Basis for Recognition of the mRNA Class II AU-Rich Element by the Tandem Zinc Finger Domain of TIS11d 1EI2 ; ; STRUCTURAL BASIS FOR RECOGNITION OF THE RNA MAJOR GROOVE IN THE TAU EXON 10 SPLICING REGULATORY ELEMENT BY AMINOGLYCOSIDE ANTIBIOTICS 1YTY ; 2.29 ; Structural basis for recognition of UUUOH 3'-terminii of nascent RNA pol III transcripts by La autoantigen 1ZH5 ; 1.85 ; Structural basis for recognition of UUUOH 3'-terminii of nascent RNA pol III transcripts by La autoantigen 4HMY ; 7.0 ; Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1 1Y8X ; 2.4 ; Structural basis for recruitment of Ubc12 by an E2-binding domain in NEDD8's E1 4LC9 ; 3.4 ; Structural Basis for Regulation of Human Glucokinase by Glucokinase Regulatory Protein 4O14 ; 1.871 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 4O16 ; 1.783 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 4O17 ; 1.82 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 4O18 ; 1.92 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 4O1D ; 1.705 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 4O28 ; 2.0 ; Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors 3OF8 ; 2.2 ; Structural Basis for Reversible and Irreversible Inhibition of Human Cathepsin L by their Respective Dipeptidyl Glyoxal and Diazomethylketone Inhibitors 5E3H ; 2.7 ; Structural Basis for RNA Recognition and Activation of RIG-I 2DB3 ; 2.2 ; Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa 7M4R ; 3.65 ; Structural basis for SARS-CoV-2 envelope protein in recognition of human cell junction protein PALS1 6H8Q ; 3.631 ; Structural basis for Scc3-dependent cohesin recruitment to chromatin 2E31 ; 2.4 ; Structural basis for selection of glycosylated substrate by SCFFbs1 ubiquitin ligase 2E32 ; 3.52 ; Structural basis for selection of glycosylated substrate by SCFFbs1 ubiquitin ligase 2E33 ; 2.7 ; Structural basis for selection of glycosylated substrate by SCFFbs1 ubiquitin ligase 1C5L ; 1.47 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5M ; 1.95 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5N ; 1.5 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5O ; 1.9 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5P ; 1.43 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5Q ; 1.43 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5R ; 1.47 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5S ; 1.36 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5T ; 1.37 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5U ; 1.37 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5V ; 1.48 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5W ; 1.94 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5X ; 1.75 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5Y ; 1.65 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 1C5Z ; 1.85 ; STRUCTURAL BASIS FOR SELECTIVITY OF A SMALL MOLECULE, S1-BINDING, SUB-MICROMOLAR INHIBITOR OF UROKINASE TYPE PLASMINOGEN ACTIVATOR 5WE0 ; 2.3 ; Structural Basis for Shelterin Bridge Assembly 5WE1 ; 3.202 ; Structural Basis for Shelterin Bridge Assembly 1ZUH ; 1.8 ; Structural Basis for Shikimate-binding Specificity of Helicobacter pylori Shikimate Kinase 1ZUI ; 2.3 ; Structural Basis for Shikimate-binding Specificity of Helicobacter pylori Shikimate Kinase 4XW2 ; 2.001 ; Structural basis for simvastatin competitive antagonism of complement receptor 3 4OIV ; 1.7 ; Structural basis for small molecule NDB as a selective antagonist of FXR 1PFB ; 1.4 ; Structural Basis for specific binding of polycomb chromodomain to histone H3 methylated at K27 6UMX ; 2.79 ; Structural basis for specific inhibition of extracellular activation of pro/latent myostatin by SRK-015 5Z82 ; 1.694 ; Structural basis for specific inhibition of highly sensitive ShHTL7 receptor 5Z89 ; 1.42 ; Structural basis for specific inhibition of highly sensitive ShHTL7 receptor 5Z8P ; 1.35 ; Structural basis for specific inhibition of highly sensitive ShHTL7 receptor 5Z95 ; 1.2 ; Structural basis for specific inhibition of highly sensitive ShHTL7 receptor 1H3H ; ; Structural Basis for Specific Recognition of an RxxK-containing SLP-76 peptide by the Gads C-terminal SH3 domain 3A7Q ; 2.6 ; Structural basis for specific recognition of reelin by its receptors 5EFT ; 2.5 ; Structural Basis for Specific Recognition of ssDNA by SRBSDV P9-1 Octamers 3DEO ; 1.5 ; Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43 3DEP ; 2.7 ; Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43 1A94 ; 2.0 ; STRUCTURAL BASIS FOR SPECIFICITY OF RETROVIRAL PROTEASES 2KGP ; ; Structural basis for stabilization of the tau pre-mRNA splicing regulatory element by Novantrone (Mitoxantrone) 2CFC ; 1.8 ; structural basis for stereo selectivity in the (R)- and (S)- hydroxypropylethane thiosulfonate dehydrogenases 3B96 ; 1.91 ; Structural Basis for Substrate Fatty-Acyl Chain Specificity: Crystal Structure of Human Very-Long-Chain Acyl-CoA Dehydrogenase 3NVK ; 3.209 ; Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle 3NVM ; 3.408 ; Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle 4ICQ ; 2.25 ; Structural basis for substrate recognition and reaction mechanism of bacterial aminopeptidase peps 4ICR ; 2.17 ; Structural basis for substrate recognition and reaction mechanism of bacterial aminopeptidase peps 4FYF ; 2.424 ; Structural basis for substrate recognition by a novel Legionella phosphoinositide phosphatase 4FYG ; 2.822 ; Structural basis for substrate recognition by a novel Legionella phosphoinositide phosphatase 2Y24 ; 1.39 ; STRUCTURAL BASIS FOR SUBSTRATE RECOGNITION BY ERWINIA CHRYSANTHEMI GH5 GLUCURONOXYLANASE 2WN4 ; 1.85 ; Structural Basis for Substrate Recognition in the Enzymatic Component of ADP-ribosyltransferase Toxin CDTa from Clostridium difficile 2WN5 ; 1.9 ; Structural Basis for Substrate Recognition in the Enzymatic Component of ADP-ribosyltransferase Toxin CDTa from Clostridium difficile 2WN6 ; 1.96 ; Structural Basis for Substrate Recognition in the Enzymatic Component of ADP-ribosyltransferase Toxin CDTa from Clostridium difficile 2WN7 ; 2.25 ; Structural Basis for Substrate Recognition in the Enzymatic Component of ADP-ribosyltransferase Toxin CDTa from Clostridium difficile 2WN8 ; 2.0 ; Structural Basis for Substrate Recognition in the Enzymatic Component of ADP-ribosyltransferase Toxin CDTa from Clostridium difficile 1S0V ; 3.2 ; Structural basis for substrate selection by T7 RNA polymerase 4EIR ; 1.1 ; Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases (PMO-2) 4EIS ; 1.37 ; Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases (PMO-3) 1MAL ; 3.1 ; STRUCTURAL BASIS FOR SUGAR TRANSLOCATION THROUGH MALTOPORIN CHANNELS AT 3.1 ANGSTROMS RESOLUTION 7OAS ; 1.819 ; Structural basis for targeted p97 remodeling by ASPL as prerequisite for p97 trimethylation by METTL21D 7OAT ; 2.995 ; Structural basis for targeted p97 remodelling by ASPL as prerequisite for p97 trimethylation by METTL21D 4UE4 ; 7.0 ; Structural basis for targeting and elongation arrest of Bacillus signal recognition particle 4UE5 ; 9.0 ; Structural basis for targeting and elongation arrest of Bacillus signal recognition particle 4NNG ; 2.02 ; Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide 4NNH ; 2.3 ; Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide 4NNI ; 2.64 ; Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide 4NNK ; 2.31 ; Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide 5WE2 ; 2.5 ; Structural Basis for Telomere Length Regulation by the Shelterin Bridge 3J25 ; 7.2 ; Structural basis for TetM-mediated tetracycline resistance 1Q2J ; ; Structural basis for tetrodotoxin-resistant sodium channel binding by mu-conotoxin SmIIIA 6UML ; 3.58 ; Structural Basis for Thalidomide Teratogenicity Revealed by the Cereblon-DDB1-SALL4-Pomalidomide Complex 1K2G ; ; Structural basis for the 3'-terminal guanosine recognition by the group I intron 4G1D ; 2.9 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G1Y ; 2.85 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G1Z ; 2.5 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G20 ; 2.9 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G21 ; 2.9 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G2H ; 2.5 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 4G2I ; 1.8 ; Structural basis for the accommodation of bis- and tris-aromatic derivatives in Vitamin D Nuclear Receptor 2A5D ; 1.8 ; Structural basis for the activation of cholera toxin by human ARF6-GTP 1PYG ; 2.87 ; STRUCTURAL BASIS FOR THE ACTIVATION OF GLYCOGEN PHOSPHORYLASE B BY ADENOSINE MONOPHOSPHATE 6PBC ; 2.46 ; Structural basis for the activation of PLC-gamma isozymes by phosphorylation and cancer-associated mutations 4E7X ; 3.2 ; Structural Basis for the Activity of a Cytoplasmic RNA Terminal U-transferase 4E80 ; 3.02 ; Structural Basis for the Activity of a Cytoplasmic RNA Terminal U-transferase 4E8F ; 2.6 ; Structural Basis for the Activity of a Cytoplasmic RNA Terminal U-transferase 2QIA ; 1.74 ; Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine Acyltransferase 2QIV ; 1.85 ; Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase 2Y0R ; 2.85 ; Structural basis for the allosteric interference of myosin function by mutants G680A and G680V of Dictyostelium myosin-2 2Y8I ; 3.132 ; Structural basis for the allosteric interference of myosin function by mutants G680A and G680V of Dictyostelium myosin-2 2Y9E ; 3.397 ; Structural basis for the allosteric interference of myosin function by mutants G680A and G680V of Dictyostelium myosin-2 1GOZ ; 2.0 ; Structural basis for the altered T-cell receptor binding specificty in a superantigenic staphylococcus aureus Enterotoxin-B mutant 3UYU ; 1.57 ; Structural basis for the antifreeze activity of an ice-binding protein (LeIBP) from Arctic yeast 4PXT ; 2.9 ; Structural basis for the assembly of the mitotic motor kinesin-5 into bipolar tetramers 4PXU ; 2.601 ; Structural basis for the assembly of the mitotic motor kinesin-5 into bipolar tetramers 4QQB ; 2.8 ; Structural basis for the assembly of the SXL-UNR translation regulatory complex 1OPJ ; 1.75 ; Structural basis for the auto-inhibition of c-Abl tyrosine kinase 1OPK ; 1.8 ; Structural basis for the auto-inhibition of c-Abl tyrosine kinase 1OPL ; 3.42 ; Structural basis for the auto-inhibition of c-Abl tyrosine kinase 1T45 ; 1.9 ; STRUCTURAL BASIS FOR THE AUTOINHIBITION AND STI-571 INHIBITION OF C-KIT TYROSINE KINASE 1T46 ; 1.6 ; STRUCTURAL BASIS FOR THE AUTOINHIBITION AND STI-571 INHIBITION OF C-KIT TYROSINE KINASE 3H90 ; 2.9 ; Structural basis for the autoregulation of the zinc transporter YiiP 5GP7 ; 1.502 ; Structural basis for the binding between Tankyrase-1 and USP25 1FV1 ; 1.9 ; STRUCTURAL BASIS FOR THE BINDING OF AN IMMUNODOMINANT PEPTIDE FROM MYELIN BASIC PROTEIN IN DIFFERENT REGISTERS BY TWO HLA-DR2 ALLELES 6WN4 ; 2.8 ; Structural basis for the binding of monoclonal antibody 5D2 to the tryptophan-rich lipid-binding loop in lipoprotein lipase 6WT3 ; 2.85 ; Structural basis for the binding of monoclonal antibody 5D2 to the tryptophan-rich lipid-binding loop in lipoprotein lipase 3IE3 ; 1.8 ; Structural basis for the binding of the anti-cancer compound 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) to human glutathione S-transferases 2QDT ; 2.0 ; Structural Basis for the Broad-Spectrum Inhibition of Metallo-{Beta}-Lactamases: L1- IS38 Complex 3OTF ; 2.4 ; Structural basis for the cAMP-dependent gating in human HCN4 channel 1AKA ; 2.1 ; STRUCTURAL BASIS FOR THE CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE K258H LACKING ITS PYRIDOXAL-5'-PHOSPHATE-BINDING LYSINE RESIDUE 1AKB ; 2.3 ; STRUCTURAL BASIS FOR THE CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE K258H LACKING ITS PYRIDOXAL-5'-PHOSPHATE-BINDING LYSINE RESIDUE 1AKC ; 2.3 ; Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking its pyridoxal-5'-phosphate-binding lysine residue 1AIA ; 2.2 ; STRUCTURAL BASIS FOR THE CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE K258H LACKING THE PYRIDOXAL-5'-PHOSPHATE BINDING LYSINE RESIDUE 1AIB ; 2.8 ; STRUCTURAL BASIS FOR THE CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE K258H LACKING THE PYRIDOXAL-5'-PHOSPHATE BINDING LYSINE RESIDUE 1AIC ; 2.4 ; STRUCTURAL BASIS FOR THE CATALYTIC ACTIVITY OF ASPARTATE AMINOTRANSFERASE K258H LACKING THE PYRIDOXAL-5'-PHOSPHATE BINDING LYSINE RESIDUE 5JXU ; 1.751 ; Structural basis for the catalytic activity of Thermomonospora curvata heme-containing DyP-type peroxidase. 2Z8M ; 2.0 ; Structural basis for the catalytic mechanism of phosphothreonine lyase 2Z8N ; 1.8 ; Structural basis for the catalytic mechanism of phosphothreonine lyase 2Z8O ; 2.4 ; Structural basis for the catalytic mechanism of phosphothreonine lyase 2Z8P ; 1.8 ; Structural basis for the catalytic mechanism of phosphothreonine lyase 3GEQ ; 2.2 ; Structural basis for the chemical rescue of Src kinase activity 7V1M ; 2.834 ; Structural basis for the co-chaperone relationship of sNASP and ASF1b 4A5T ; 3.49 ; STRUCTURAL BASIS FOR THE CONFORMATIONAL MODULATION 1JMK ; 1.71 ; Structural Basis for the Cyclization of the Lipopeptide Antibiotic Surfactin by the Thioesterase Domain SrfTE 1X2J ; 1.6 ; Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2 1X2R ; 1.7 ; Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2 4FVU ; 2.91 ; Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease 5ZWQ ; 1.797 ; Structural Basis for the Enantioselectivity of Est-Y29 toward (S)-ketoprofen 5ZWR ; 1.69 ; Structural Basis for the Enantioselectivity of Est-Y29 toward (S)-ketoprofen 5ZWV ; 2.099 ; Structural Basis for the Enantioselectivity of Est-Y29 toward (S)-ketoprofen 4OW5 ; 1.9 ; Structural basis for the enhancement of virulence by entomopoxvirus fusolin and its in vivo crystallization into viral spindles 4X27 ; 2.4 ; Structural basis for the enhancement of virulence by entomopoxvirus fusolin and its in vivo crystallization into viral spindles (complex with Copper) 4X29 ; 2.405 ; Structural basis for the enhancement of virulence by entomopoxvirus fusolin and its in vivo crystallization into viral spindles (complex with Zinc) 1RQ5 ; 2.4 ; Structural Basis for the Exocellulase Activity of the Cellobiohydrolase CbhA from C. thermocellum 1UT9 ; 2.1 ; Structural Basis for the Exocellulase Activity of the Cellobiohydrolase CbhA from C. thermocellum 1ZKJ ; 1.55 ; Structural Basis for the Extended Substrate Spectrum of CMY-10, a Plasmid-Encoded Class C beta-lactamase 1ESM ; 2.5 ; STRUCTURAL BASIS FOR THE FEEDBACK REGULATION OF ESCHERICHIA COLI PANTOTHENATE KINASE BY COENZYME A 1ESN ; 2.6 ; STRUCTURAL BASIS FOR THE FEEDBACK REGULATION OF ESCHERICHIA COLI PANTOTHENATE KINASE BY COENZYME A 3QLE ; 1.831 ; Structural Basis for the Function of Tim50 in the Mitochondrial Presequence Translocase 3S35 ; 2.2 ; Structural basis for the function of two anti-VEGF receptor antibodies 3S36 ; 3.2 ; Structural basis for the function of two anti-VEGF receptor antibodies 3S37 ; 2.7 ; Structural basis for the function of two anti-VEGF receptor antibodies 1GS4 ; 1.95 ; Structural basis for the glucocorticoid response in a mutant human androgen receptor (ARccr) derived from an androgen-independent prostate cancer 2ZS0 ; 1.6 ; Structural Basis for the Heterotropic and Homotropic Interactions of Invertebrate Giant Hemoglobin 2ZS1 ; 1.7 ; Structural Basis for the Heterotropic and Homotropic Interactions of Invertebrate Giant Hemoglobin 5JH5 ; 2.55 ; Structural Basis for the Hierarchical Assembly of the Core of PRC1.1 3UIM ; 2.2 ; Structural basis for the impact of phosphorylation on plant receptor-like kinase BAK1 activation 1BLP ; 2.3 ; STRUCTURAL BASIS FOR THE INACTIVATION OF THE P54 MUTANT OF BETA-LACTAMASE FROM STAPHYLOCOCCUS AUREUS PC1 5DIN ; 1.864 ; Structural Basis for the Indispensable Role of a Unique Zinc Finger Motif in LNX2 Ubiquitination 2NP8 ; 2.25 ; Structural Basis for the Inhibition of Aurora A Kinase by a Novel Class of High Affinity Disubstituted Pyrimidine Inhibitors 3W9H ; 3.05 ; Structural basis for the inhibition of bacterial multidrug exporters 3W9I ; 2.71 ; Structural basis for the inhibition of bacterial multidrug exporters 3W9J ; 3.15 ; Structural basis for the inhibition of bacterial multidrug exporters 3BA8 ; 1.9 ; Structural Basis for the Inhibition of Bacterial NAD+ Dependent DNA Ligase 3BAA ; 1.9 ; Structural Basis for the Inhibition of Bacterial NAD+ Dependent DNA Ligase 3BAB ; 2.5 ; Structural Basis for the Inhibition of Bacterial NAD+ Dependent DNA Ligase 3BAC ; 3.0 ; Structural Basis for the Inhibition of Bacterial NAD+ Dependent DNA Ligase 6G9F ; 2.35 ; Structural basis for the inhibition of E. coli PBP2 6G9P ; 2.101 ; Structural basis for the inhibition of E. coli PBP2 6G9S ; 2.001 ; Structural basis for the inhibition of E. coli PBP2 2DSP ; 2.5 ; Structural Basis for the Inhibition of Insulin-like Growth Factors by IGF Binding Proteins 2DSQ ; 2.8 ; Structural Basis for the Inhibition of Insulin-like Growth Factors by IGF Binding Proteins 2DSR ; 2.1 ; Structural Basis for the Inhibition of Insulin-like Growth Factors by IGF Binding Proteins 1U0H ; 2.9 ; STRUCTURAL BASIS FOR THE INHIBITION OF MAMMALIAN ADENYLYL CYCLASE BY MANT-GTP 4GSQ ; 1.8 ; Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains 4GSR ; 1.79 ; Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains 4GSU ; 2.0 ; Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains 2N8H ; ; Structural basis for the inhibition of voltage-gated sodium channels with conotoxin-muOxi-GVIIJ 3ITF ; 1.45 ; Structural basis for the inhibitory function of the CPXP adaptor protein 5SXP ; 1.65 ; STRUCTURAL BASIS FOR THE INTERACTION BETWEEN ITCH PRR AND BETA-PIX 5WFU ; 1.97 ; Structural basis for the interaction of 14-3-3beta with Tricarboxylic Acid Cycle intermediate Malate 5WFX ; 1.651 ; Structural basis for the interaction of 14-3-3beta with Tricarboxylic Acid Cycle intermediate Malate 1J5A ; 3.5 ; STRUCTURAL BASIS FOR THE INTERACTION OF ANTIBIOTICS WITH THE PEPTIDYL TRANSFERASE CENTER IN EUBACTERIA 1JZX ; 3.1 ; Structural Basis for the Interaction of Antibiotics with the Peptidyl Transferase Center in Eubacteria 1JZY ; 3.5 ; Structural Basis for the Interaction of Antibiotics with the Peptidyl Transferase Center in Eubacteria 1JZZ ; 3.8 ; Structural Basis for the Interaction of Antibiotics with the Peptidyl Transferase Center in Eubacteria 1K01 ; 3.5 ; Structural Basis for the Interaction of Antibiotics with the Peptidyl Transferase Center in Eubacteria 2LWL ; ; Structural Basis for the Interaction of Human β-Defensin 6 and Its Putative Chemokine Receptor CCR2 and Breast Cancer Microvesicles 2X71 ; 2.1 ; Structural basis for the interaction of lactivicins with serine beta- lactamases 3U3F ; 3.101 ; Structural basis for the interaction of Pyk2 PAT domain with paxillin LD motifs 2EVA ; 2.0 ; Structural Basis for the Interaction of TAK1 Kinase with its Activating Protein TAB1 1TDQ ; 2.6 ; Structural basis for the interactions between tenascins and the C-type lectin domains from lecticans: evidence for a cross-linking role for tenascins 4ANI ; 4.094 ; Structural basis for the intermolecular communication between DnaK and GrpE in the DnaK chaperone system from Geobacillus kaustophilus HTA426 3BVE ; 1.8 ; Structural basis for the iron uptake mechanism of Helicobacter pylori ferritin 3BVF ; 1.5 ; Structural basis for the iron uptake mechanism of Helicobacter pylori ferritin 3BVI ; 2.0 ; Structural basis for the iron uptake mechanism of Helicobacter pylori ferritin 3BVK ; 1.5 ; Structural basis for the iron uptake mechanism of Helicobacter pylori ferritin 3BVL ; 1.8 ; Structural basis for the iron uptake mechanism of Helicobacter pylori ferritin 5JT8 ; 2.1 ; Structural basis for the limited antibody cross reactivity between the mite allergens Blo t 1 and Der p 1 1S7G ; 2.3 ; Structural Basis for the Mechanism and Regulation of Sir2 Enzymes 2I65 ; 1.9 ; Structural Basis for the Mechanistic Understanding Human CD38 Controlled Multiple Catalysis 2I66 ; 1.7 ; Structural Basis for the Mechanistic Understanding Human CD38 Controlled Multiple Catalysis 2I67 ; 1.71 ; Structural Basis for the Mechanistic Understanding Human CD38 Controlled Multiple Catalysis 4C9Y ; 2.01 ; Structural Basis for the microtubule binding of the human kinetochore Ska complex 4CA0 ; 2.259 ; Structural Basis for the microtubule binding of the human kinetochore Ska complex 4MN4 ; 2.3 ; Structural Basis for the MukB-topoisomerase IV Interaction 3M4W ; 2.3 ; Structural basis for the negative regulation of bacterial stress response by RseB 1F8A ; 1.84 ; STRUCTURAL BASIS FOR THE PHOSPHOSERINE-PROLINE RECOGNITION BY GROUP IV WW DOMAINS 2KLI ; ; Structural Basis for the Photoconversion of A Phytochrome to the Activated FAR-RED LIGHT-ABSORBING Form 1QXD ; 2.25 ; Structural Basis for the Potent Antisickling Effect of a Novel Class of 5-Membered Heterocyclic Aldehydic Compounds 1QXE ; 1.85 ; Structural Basis for the Potent Antisickling Effect of a Novel Class of 5-Membered Heterocyclic Aldehydic Compounds 1PEG ; 2.59 ; Structural basis for the product specificity of histone lysine methyltransferases 2C26 ; 2.1 ; Structural basis for the promiscuous specificity of the carbohydrate- binding modules from the beta-sandwich super family 2C4X ; 2.0 ; Structural basis for the promiscuous specificity of the carbohydrate- binding modules from the beta-sandwich super family 2B4J ; 2.02 ; Structural basis for the recognition between HIV-1 integrase and LEDGF/p75 1JN5 ; 2.8 ; Structural basis for the recognition of a nucleoporin FG-repeat by the NTF2-like domain of TAP-p15 mRNA export factor 1JKG ; 1.9 ; Structural basis for the recognition of a nucleoporin FG-repeat by the NTF2-like domain of TAP-p15 mRNA nuclear export factor 3RMP ; 2.21 ; Structural basis for the recognition of attP substrates by P4-like integrases 3D7T ; 2.899 ; Structural basis for the recognition of c-Src by its inactivator Csk 3D7U ; 4.111 ; Structural basis for the recognition of c-Src by its inactivator Csk 4OT1 ; 2.11 ; Structural Basis for the Recognition of Human Cytomegalovirus Glycoprotein B by the Neutralizing Human Antibody SM5-1 2DOS ; ; Structural basis for the recognition of Lys48-linked polyubiquitin chain by the Josephin domain of ataxin-3, a putative deubiquitinating enzyme 4E41 ; 2.6 ; Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor G4 4E42 ; 2.7 ; Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor G4 4QLB ; 2.6 ; Structural Basis for the Recruitment of Glycogen Synthase by Glycogenin 6KEY ; 1.24 ; Structural basis for the regulation of inducible nitric oxide synthase (iNOS) by the SPRY domain-containing SOCS box protein 2 (SPSB2) 1WQJ ; 1.6 ; Structural Basis for the Regulation of Insulin-Like Growth Factors (IGFs) by IGF Binding Proteins (IGFBPs) 2RD5 ; 2.51 ; Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana 2K8F ; ; Structural Basis for the Regulation of p53 Function by p300 2FCI ; ; Structural basis for the requirement of two phosphotyrosines in signaling mediated by Syk tyrosine kinase 1UKH ; 2.35 ; Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125 1UKI ; 2.7 ; Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125 5CM8 ; 2.6 ; Structural Basis for the Selectivity of Guanine Nucleotide Exchange Factors for the small G-protein Ral 5CM9 ; 2.6 ; Structural Basis for the Selectivity of Guanine Nucleotide Exchange Factors for the small G-protein Ral 3EYY ; 2.4 ; Structural basis for the specialization of Nur, a nickel-specific Fur homologue, in metal sensing and DNA recognition 1CKA ; 1.5 ; STRUCTURAL BASIS FOR THE SPECIFIC INTERACTION OF LYSINE-CONTAINING PROLINE-RICH PEPTIDES WITH THE N-TERMINAL SH3 DOMAIN OF C-CRK 1CKB ; 1.9 ; STRUCTURAL BASIS FOR THE SPECIFIC INTERACTION OF LYSINE-CONTAINING PROLINE-RICH PEPTIDES WITH THE N-TERMINAL SH3 DOMAIN OF C-CRK 2G99 ; 1.9 ; Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5 2G9A ; 2.7 ; Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5 1CMX ; 2.25 ; STRUCTURAL BASIS FOR THE SPECIFICITY OF UBIQUITIN C-TERMINAL HYDROLASES 2HWQ ; 1.97 ; Structural basis for the structure-activity relationships of Peroxisome Proliferator-Activated Receptor agonists 2HWR ; 2.34 ; Structural basis for the structure-activity relationships of Peroxisome Proliferator-Activated Receptor agonists 1JT2 ; 1.8 ; STRUCTURAL BASIS FOR THE SUBSTRATE SPECIFICITY OF THE FERUL DOMAIN OF THE CELLULOSOMAL XYLANASE Z FROM C. THERMOCELLUM 1JJF ; 1.75 ; STRUCTURAL BASIS FOR THE SUBSTRATE SPECIFICITY OF THE FERULOYL ESTERASE DOMAIN OF THE CELLULOSOMAL XYLANASE Z OF CLOSTRIDIUM THERMOCELLUM 3HSQ ; 2.1 ; Structural Basis for the Sugar Nucleotide and Acyl Chain Selectivity of Leptospira interrogans LpxA 3I3A ; 2.12 ; Structural Basis for the Sugar Nucleotide and Acyl Chain Selectivity of Leptospira interrogans LpxA 3I3X ; 2.1 ; Structural Basis for the Sugar Nucleotide and Acyl Chain Selectivity of Leptospira interrogans LpxA 6J4K ; 1.58 ; Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response 1 6J4R ; 2.8 ; Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response regulator 1 6J5B ; 2.7 ; Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response regulator 1 7EPT ; 3.0 ; Structural basis for the tethered peptide activation of adhesion GPCRs 1H75 ; 1.7 ; Structural basis for the thioredoxin-like activity profile of the glutaredoxin-like protein NrdH-redoxin from Escherichia coli. 1MSW ; 2.1 ; Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase 3KWV ; 3.101 ; Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers 5IEC ; ; Structural basis for therapeutic inhibition of complement C5 1GUY ; 2.2 ; Structural Basis for Thermophilic Protein Stability: Structures of Thermophilic and Mesophilic Malate Dehydrogenases 1GUZ ; 2.0 ; Structural Basis for Thermophilic Protein Stability: Structures of Thermophilic and Mesophilic Malate Dehydrogenases 1GV0 ; 2.5 ; Structural Basis for Thermophilic Protein Stability: Structures of Thermophilic and Mesophilic Malate Dehydrogenases 1GV1 ; 2.5 ; Structural Basis for Thermophilic Protein Stability: Structures of Thermophilic and Mesophilic Malate Dehydrogenases 4OFA ; 1.55 ; Structural basis for thymine glycosylase activity on T:O6-methylG mismatch by methyl-CpG binding domain protein 4: Implications for roles of Arg468 in mismatch recognition and catalysis 4OFE ; 2.15 ; Structural basis for thymine glycosylase activity on T:O6-methylG mismatch by methyl-CpG binding domain protein 4: Implications for roles of Arg468 in mismatch recognition and catalysis 4OFH ; 2.22 ; Structural basis for thymine glycosylase activity on T:O6-methylG mismatch by methyl-CpG binding domain protein 4: Implications for roles of Arg468 in mismatch recognition and catalysis 4S20 ; 4.7 ; Structural basis for transcription reactivation by RapA 1SMY ; 2.7 ; Structural basis for transcription regulation by alarmone ppGpp 1GTS ; 2.8 ; STRUCTURAL BASIS FOR TRANSFER RNA AMINOACEYLATION BY ESCHERICHIA COLI GLUTAMINYL-TRNA SYNTHETASE 4V63 ; 3.207 ; Structural basis for translation termination on the 70S ribosome. 5J13 ; 2.298 ; Structural basis for TSLP antagonism by the therapeutic antibody Tezepelumab (MEDI9929 / AMG-157) 2HTH ; 2.7 ; Structural basis for ubiquitin recognition by the human EAP45/ESCRT-II GLUE domain 5XDA ; 3.285 ; Structural basis for Ufm1 recognition by UfSP 2B4V ; 1.8 ; Structural Basis for UTP Specificity of RNA Editing TUTases From Trypanosoma Brucei 2B51 ; 2.05 ; Structural Basis for UTP Specificity of RNA Editing TUTases from Trypanosoma Brucei 2B56 ; 1.97 ; Structural Basis for UTP Specificity of RNA Editing TUTases From Trypanosoma Brucei 1P69 ; 3.1 ; STRUCTURAL BASIS FOR VARIATION IN ADENOVIRUS AFFINITY FOR THE CELLULAR RECEPTOR CAR (P417S MUTANT) 1P6A ; 2.9 ; STRUCTURAL BASIS FOR VARIATION IN ADENOVIRUS AFFINITY FOR THE CELLULAR RECEPTOR CAR (S489Y MUTANT) 3K8P ; 2.6 ; Structural basis for vesicle tethering by the Dsl1 complex 7O3W ; 4.9 ; Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity 7O3X ; 3.9 ; Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity 7O3Y ; 3.8 ; Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity 7O3Z ; 5.0 ; Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity 7O40 ; 4.3 ; Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity 4FUM ; 2.4 ; Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms 4FUN ; 2.31 ; Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms 4FUO ; 1.97 ; Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms 4FUP ; 2.51 ; Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms 3IU0 ; 1.9 ; Structural basis for zymogen activation and substrate binding of transglutaminase from Streptomyces mobaraense 2X2V ; 2.5 ; Structural basis of a novel proton-coordination type in an F1Fo-ATP synthase rotor ring 4R4Y ; 2.1 ; Structural basis of a point mutation that causes the genetic disease Aspartylglucosaminuria 4JAS ; 3.0 ; Structural basis of a rationally rewired protein-protein interface (HK853mutant A268V, A271G, T275M, V294T and D297E and RR468mutant V13P, L14I, I17M and N21V) 4JAU ; 2.7 ; Structural basis of a rationally rewired protein-protein interface (HK853mutant A268V, A271G, T275M, V294T and D297E) 4JAV ; 3.1 ; Structural basis of a rationally rewired protein-protein interface (HK853wt and RR468mutant V13P, L14I, I17M and N21V) 4JA2 ; 1.79 ; Structural basis of a rationally rewired protein-protein interface (RR468mutant V13P, L14I, I17M and N21V) 7YPP ; 2.2 ; Structural basis of a superoxide dismutase from a tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1. 7YPR ; 2.101 ; Structural basis of a superoxide dismutase from a tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1. 2MC0 ; ; Structural Basis of a Thiopeptide Antibiotic Multidrug Resistance System from Streptomyces lividans:Nosiheptide in Complex with TipAS 2MBZ ; ; Structural Basis of a Thiopeptide Antibiotic Multidrug Resistance System from Streptomyces lividans:Promothiocin A in Complex with TipAS 1T44 ; 2.0 ; Structural basis of actin sequestration by thymosin-B4: Implications for arp2/3 activation 5DZ7 ; 2.5 ; STRUCTURAL BASIS OF ACYL TRANSFER IN A TRANS-AT POLYKETIDE SYNTHASE 8P66 ; ; Structural basis of aggregate binding/recognition by the AAA+ disaggregase ClpG 6IM4 ; 1.93 ; Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages 107L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 108L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 109L ; 1.85 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 110L ; 1.7 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 111L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 112L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 113L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 114L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 115L ; 1.8 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 216L ; 2.1 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 217L ; 1.7 ; STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME 6WVT ; 3.56 ; Structural basis of alphaE-catenin - F-actin catch bond behavior 137L ; 1.85 ; STRUCTURAL BASIS OF AMINO ACID ALPHA HELIX PROPENSITY 1GTR ; 2.5 ; STRUCTURAL BASIS OF ANTICODON LOOP RECOGNITION BY GLUTAMINYL-TRNA SYNTHETASE 2AAB ; 2.5 ; Structural basis of antigen mimicry in a clinically relevant melanoma antigen system 4ZCF ; 2.6 ; Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I 3HVT ; 2.9 ; STRUCTURAL BASIS OF ASYMMETRY IN THE HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 REVERSE TRANSCRIPTASE HETERODIMER 3KTR ; 1.7 ; Structural basis of ataxin-2 recognition by poly(A)-binding protein 3OPE ; 2.9 ; Structural Basis of Auto-inhibitory mechanism of Histone methyltransferase 4LOO ; 1.95 ; Structural basis of autoactivation of p38 alpha induced by TAB1 (Monoclinic crystal form) 4LOQ ; 2.319 ; Structural basis of autoactivation of p38 alpha induced by TAB1 (Tetragonal crystal form with bound sulphate) 4LOP ; 2.049 ; Structural basis of autoactivation of p38 alpha induced by TAB1 (Tetragonal crystal form) 5HLE ; 2.9 ; Structural basis of backwards motion in kinesin-14: minus-end directed nKn664 in the ADP state 5HNW ; 6.6 ; Structural basis of backwards motion in kinesin-14: minus-end directed nKn664 in the AMPPNP state 5HNX ; 6.6 ; Structural basis of backwards motion in kinesin-14: minus-end directed nKn664 in the nucleotide-free state 5HNY ; 6.3 ; Structural basis of backwards motion in kinesin-14: plus-end directed nKn669 in the AMPPNP state 5HNZ ; 5.8 ; Structural basis of backwards motion in kinesin-14: plus-end directed nKn669 in the nucleotide-free state 4N75 ; 2.604 ; Structural Basis of BamA-mediate Outer Membrane Protein Biogenesis 4MS2 ; 2.75 ; Structural basis of Ca2+ selectivity of a voltage-gated calcium channel 4MTF ; 3.2 ; Structural Basis of Ca2+ Selectivity of a Voltage-gated Calcium Channel 2FMD ; 1.9 ; Structural basis of carbohydrate recognition by Bowringia milbraedii seed agglutinin 3O0W ; 1.95 ; Structural basis of carbohydrate recognition by calreticulin 3O0X ; 2.01 ; Structural basis of carbohydrate recognition by calreticulin 2GTX ; 2.0 ; Structural Basis of Catalysis by Mononuclear Methionine Aminopeptidase 1NCG ; 2.1 ; STRUCTURAL BASIS OF CELL-CELL ADHESION BY CADHERINS 1NCH ; 2.1 ; STRUCTURAL BASIS OF CELL-CELL ADHESION BY CADHERINS 1NCI ; 2.1 ; STRUCTURAL BASIS OF CELL-CELL ADHESION BY CADHERINS 4TNY ; 2.6 ; Structural basis of cellular dNTP regulation, SAMHD1-dGTP-dATP-dGTP complex 4TO3 ; 2.2 ; Structural basis of cellular dNTP regulation, SAMHD1-dGTP-dGTP-dCTP complex 4TNP ; 2.0 ; Structural basis of cellular dNTP regulation, SAMHD1-GTP-dCTP-cCTP complex 4TNQ ; 2.55 ; Structural basis of cellular dNTP regulation, SAMHD1-GTP-dTTP-dTTP complex 7ZJS ; 3.24 ; Structural basis of centromeric cohesion protection by SGO1 4P4K ; 2.8 ; Structural Basis of Chronic Beryllium Disease: Bridging the Gap Between allergic hypersensitivity and auto immunity 4P4R ; 3.0 ; Structural Basis of Chronic Beryllium Disease: Bridging the Gap Between Allergic Hypersensitivity and Autoimmunity 4P5M ; 1.7 ; Structural Basis of Chronic Beryllium Disease: Bridging the Gap Between Allergic Hypersensitivity and Autoimmunity 4P5K ; 2.59 ; Structural Basis of Chronic Beryllium Disease: Bridging the Gap Between Allergy and Autoimmunity 1LZW ; 2.5 ; Structural basis of ClpS-mediated switch in ClpA substrate recognition 5U4I ; 3.5 ; Structural Basis of Co-translational Quality Control by ArfA and RF2 Bound to Ribosome 5U4J ; 3.7 ; Structural Basis of Co-translational Quality Control by ArfA and RF2 Bound to Ribosome 5FC3 ; 3.1 ; Structural basis of cohesin cleavage by separase 6QPW ; 3.3 ; Structural basis of cohesin ring opening 1G9W ; 1.3 ; STRUCTURAL BASIS OF COLLAGEN STABILIZATION INDUCED BY PROLINE HYDROXYLATION 6UGM ; 3.7 ; Structural basis of COMPASS eCM recognition of an unmodified nucleosome 6UH5 ; 3.5 ; Structural basis of COMPASS eCM recognition of the H2Bub nucleosome 3IXE ; 1.9 ; Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase 4N19 ; 1.2 ; Structural basis of conformational transitions in the active site and 80 s loop in the FK506 binding protein FKBP12 6MEO ; 3.9 ; Structural basis of coreceptor recognition by HIV-1 envelope spike 6MET ; 4.5 ; Structural basis of coreceptor recognition by HIV-1 envelope spike 6R6H ; 8.4 ; Structural basis of Cullin-2 RING E3 ligase regulation by the COP9 signalosome 6R7F ; 8.2 ; Structural basis of Cullin-2 RING E3 ligase regulation by the COP9 signalosome 6R7H ; 8.8 ; Structural basis of Cullin-2 RING E3 ligase regulation by the COP9 signalosome 6R7I ; 5.9 ; Structural basis of Cullin-2 RING E3 ligase regulation by the COP9 signalosome 6R7N ; 6.5 ; Structural basis of Cullin-2 RING E3 ligase regulation by the COP9 signalosome 3RLN ; 2.251 ; Structural Basis of Cytosolic DNA Recognition by Innate Immune Receptors 3RN2 ; 2.55 ; Structural Basis of Cytosolic DNA Recognition by Innate Immune Receptors 3RN5 ; 2.5 ; Structural basis of cytosolic DNA recognition by innate immune receptors 3RLO ; 1.8 ; Structural Basis of Cytosolic DNA Recognition by Innate Receptors 3RNU ; 2.502 ; Structural Basis of Cytosolic DNA Sensing by Innate Immune Receptors 1D06 ; 1.4 ; STRUCTURAL BASIS OF DIMERIZATION AND SENSORY MECHANISMS OF OXYGEN-SENSING DOMAIN OF RHIZOBIUM MELILOTI FIXL DETERMINED AT 1.4A RESOLUTION 2FDC ; 3.3 ; Structural Basis of DNA Damage Recognition and Processing by UvrB: crystal structure of a UvrB/DNA complex 1AW4 ; ; STRUCTURAL BASIS OF DNA FOLDING AND RECOGNITION IN AMP-DNA APTAMER COMPLEX, NMR, 7 STRUCTURES 4B20 ; 2.75 ; Structural basis of DNA loop recognition by Endonuclease V 2AC0 ; 1.8 ; Structural Basis of DNA Recognition by p53 Tetramers (complex I) 2ATA ; 2.2 ; Structural Basis of DNA Recognition by p53 Tetramers (complex II) 2AHI ; 1.85 ; Structural Basis of DNA Recognition by p53 Tetramers (complex III) 2ADY ; 2.5 ; Structural Basis of DNA Recognition by p53 Tetramers (complex IV) 2M87 ; ; Structural Basis of DNA Recognition by the Effector Domain of Klebsiella pneumoniae PmrA 1CF7 ; 2.6 ; STRUCTURAL BASIS OF DNA RECOGNITION BY THE HETERODIMERIC CELL CYCLE TRANSCRIPTION FACTOR E2F-DP 1HVS ; 2.25 ; STRUCTURAL BASIS OF DRUG RESISTANCE FOR THE V82A MUTANT OF HIV-1 PROTEASE: BACKBONE FLEXIBILITY AND SUBSITE REPACKING 1T3E ; 3.25 ; Structural basis of dynamic glycine receptor clustering 5F18 ; 2.0 ; Structural basis of Ebola virus entry: viral glycoprotein bound to its endosomal receptor Niemann-Pick C1 5F1B ; 2.3 ; Structural basis of Ebola virus entry: viral glycoprotein bound to its endosomal receptor Niemann-Pick C1 4O6F ; 2.822 ; Structural Basis of Estrogen Receptor Alpha Methylation Mediated by Histone Methyltransferase SmyD2 2QXV ; 1.82 ; Structural basis of EZH2 recognition by EED 6O3T ; 3.06 ; Structural basis of FOXC2 and DNA interactions 6LDM ; 2.4 ; Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1 1AFA ; 2.0 ; STRUCTURAL BASIS OF GALACTOSE RECOGNITION IN C-TYPE ANIMAL LECTINS 1AFB ; 1.9 ; STRUCTURAL BASIS OF GALACTOSE RECOGNITION IN C-TYPE ANIMAL LECTINS 1AFD ; 2.0 ; STRUCTURAL BASIS OF GALACTOSE RECOGNITION IN C-TYPE ANIMAL LECTINS 3HYT ; 2.74 ; Structural Basis of GDP Release and Gating in G Protein Coupled Fe2+ Transport 2XG8 ; 3.2 ; Structural basis of gene regulation by protein PII: The crystal complex of PII and PipX from Synechococcus elongatus PCC 7942 5MPF ; 2.918 ; Structural Basis of Gene Regulation by the Grainyhead Transcription Factor Superfamily 5MPH ; 2.337 ; Structural Basis of Gene Regulation by the Grainyhead Transcription Factor Superfamily 5MPI ; 2.345 ; Structural Basis of Gene Regulation by the Grainyhead Transcription Factor Superfamily 2ZSH ; 1.8 ; Structural basis of gibberellin(GA3)-induced DELLA recognition by the gibberellin receptor 2ZSI ; 1.8 ; Structural basis of gibberellin(GA4)-induced DELLA recognition by the gibberellin receptor 6K2N ; 1.8 ; Structural basis of glycan recognition in globally predominant human P[8] rotavirus 6K2O ; 2.296 ; Structural basis of glycan recognition in globally predominant human P[8] rotavirus 4YFW ; 1.66 ; Structural basis of glycan recognition in neonate-specific rotaviruses 4YFZ ; 1.5 ; Structural basis of glycan recognition in neonate-specific rotaviruses 4YG0 ; 1.285 ; Structural basis of glycan recognition in neonate-specific rotaviruses 4YG3 ; 2.285 ; Structural basis of glycan recognition in neonate-specific rotaviruses 4YG6 ; 1.46 ; Structural basis of glycan recognition in neonate-specific rotaviruses 5YMS ; 2.1 ; Structural basis of glycan specificity and identification of a novel glycan binding cavity in human P[19] rotavirus 3AJN ; 1.05 ; Structural basis of glycine amide on suppression of protein aggregation by high resolution X-ray analysis 3KTP ; 1.5 ; Structural basis of GW182 recognition by poly(A)-binding protein 5CHL ; 1.892 ; Structural basis of H2A.Z recognition by YL1 histone chaperone component of SRCAP/SWR1 chromatin remodeling complex 2HAN ; 1.95 ; Structural basis of heterodimeric ecdysteroid receptor interaction with natural response element hsp27 gene promoter 2UXN ; 2.72 ; Structural Basis of Histone Demethylation by LSD1 Revealed by Suicide Inactivation 4KHA ; 2.35 ; Structural basis of histone H2A-H2B recognition by the essential chaperone FACT 3C99 ; 2.9 ; Structural Basis of Histone H4 Recognition by p55 3C9C ; 3.2 ; Structural Basis of Histone H4 Recognition by p55 4WYM ; 2.6 ; Structural basis of HIV-1 capsid recognition by CPSF6 2X7A ; 2.77 ; Structural basis of HIV-1 tethering to membranes by the Bst2-tetherin ectodomain 7E9B ; 1.78 ; Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy 6GIS ; 2.82 ; Structural basis of human clamp sliding on DNA 4UDF ; 20.0 ; STRUCTURAL BASIS OF HUMAN PARECHOVIRUS NEUTRALIZATION BY HUMAN MONOCLONAL ANTIBODIES 7YK1 ; 3.08 ; Structural basis of human PRPS2 filaments 2JK2 ; 1.7 ; STRUCTURAL BASIS OF HUMAN TRIOSEPHOSPHATE ISOMERASE DEFICIENCY. CRYSTAL STRUCTURE OF THE WILD TYPE ENZYME. 2VOM ; 1.85 ; Structural basis of human triosephosphate isomerase deficiency. Mutation E104D and correlation to solvent perturbation. 1T0P ; 1.66 ; Structural Basis of ICAM recognition by integrin alpahLbeta2 revealed in the complex structure of binding domains of ICAM-3 and alphaLbeta2 at 1.65 A 6MNX ; 2.2 ; Structural basis of impaired hydrolysis in KRAS Q61H mutant 1YDA ; 2.1 ; STRUCTURAL BASIS OF INHIBITOR AFFINITY TO VARIANTS OF HUMAN CARBONIC ANHYDRASE II 1YDB ; 1.9 ; STRUCTURAL BASIS OF INHIBITOR AFFINITY TO VARIANTS OF HUMAN CARBONIC ANHYDRASE II 1YDC ; 1.95 ; STRUCTURAL BASIS OF INHIBITOR AFFINITY TO VARIANTS OF HUMAN CARBONIC ANHYDRASE II 1YDD ; 2.1 ; STRUCTURAL BASIS OF INHIBITOR AFFINITY TO VARIANTS OF HUMAN CARBONIC ANHYDRASE II 7PKS ; 3.6 ; Structural basis of Integrator-mediated transcription regulation 7WG3 ; 2.19 ; Structural basis of interleukin-17B receptor in complex with a neutralizing antibody D9 for guiding humanization and affinity maturation for cancer therapy 7R0G ; 4.01 ; STRUCTURAL BASIS OF ION UPTAKE IN COPPER-TRANSPORTING P1B-TYPE ATPASES 7R0H ; 3.31 ; STRUCTURAL BASIS OF ION UPTAKE IN COPPER-TRANSPORTING P1B-TYPE ATPASES 7R0I ; 2.7 ; STRUCTURAL BASIS OF ION UPTAKE IN COPPER-TRANSPORTING P1B-TYPE ATPASES 3EGM ; 2.1 ; Structural basis of iron transport gating in Helicobacter pylori ferritin 3UGC ; 1.34 ; Structural basis of Jak2 inhibition by the type II inhibtor NVP-BBT594 3DD4 ; 3.0 ; Structural Basis of KChIP4a Modulation of Kv4.3 Slow Inactivation 5XPY ; 2.099 ; Structural basis of kindlin-mediated integrin recognition and activation 5XPZ ; 2.601 ; Structural basis of kindlin-mediated integrin recognition and activation 5XQ0 ; 2.75 ; Structural basis of kindlin-mediated integrin recognition and activation 5XQ1 ; 2.954 ; Structural basis of kindlin-mediated integrin recognition and activation 4PGZ ; 2.4 ; Structural basis of KIT activation by oncogenic mutations in the extracellular region reveals a zipper-like mechanism for ligand-dependent or oncogenic receptor tyrosine kinase activation 4AZJ ; 1.5 ; Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase 4AZK ; 1.595 ; Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase 5FQD ; 2.45 ; Structural basis of Lenalidomide induced CK1a degradation by the crl4crbn ubiquitin ligase 4ZH7 ; 2.12 ; Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin BabA 7DTY ; 2.98 ; Structural basis of ligand selectivity conferred by the human glucose-dependent insulinotropic polypeptide receptor 2V1D ; 3.1 ; Structural basis of LSD1-CoREST selectivity in histone H3 recognition 5E38 ; 3.0 ; Structural basis of mapping the spontaneous mutations with 5-flourouracil in uracil phosphoribosyltransferase from Mycobacterium tuberculosis 5V8F ; 3.9 ; Structural basis of MCM2-7 replicative helicase loading by ORC-Cdc6 and Cdt1 3L4C ; 2.37 ; Structural basis of membrane-targeting by Dock180 8DGI ; 3.94 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex Ia 8DGJ ; 4.02 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex Ib 8DFV ; 3.06 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex IIa 8DG5 ; 3.26 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex IIb 8DG7 ; 3.32 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex III 8DGA ; 3.73 ; Structural Basis of MicroRNA Biogenesis by Dicer-1 and Its Partner Protein Loqs-PB - complex IV 2QJX ; 1.9 ; Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170 and EB1 2QJZ ; 1.25 ; Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170 and EB1 2QK0 ; 2.0 ; Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170 and EB1 2QK1 ; 1.7 ; Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170 and EB1 2QK2 ; 2.1 ; Structural Basis of Microtubule Plus End Tracking by XMAP215, CLIP-170 and EB1 5WP9 ; 4.22 ; Structural Basis of Mitochondrial Receptor Binding and Constriction by Dynamin-Related Protein 1 2X43 ; ; STRUCTURAL BASIS OF MOLECULAR RECOGNITION BY SHERP AT MEMBRANE SURFACES 1T9T ; 3.23 ; Structural Basis of Multidrug transport by the AcrB Multidrug Efflux Pump 1T9U ; 3.11 ; Structural Basis of Multidrug Transport by the AcrB Multidrug Efflux Pump 1T9V ; 3.8 ; Structural Basis of Multidrug Transport by the AcrB Multidrug Efflux Pump 1T9W ; 3.23 ; Structural Basis of Multidrug Transport by the AcrB Multidrug Efflux Pump 1T9X ; 3.08 ; Structural Basis of Multidrug Transport by the AcrB Multidrug Efflux Pump 1T9Y ; 3.64 ; Structural Basis of Multidrug Transport by the AcrB Multidrug Efflux Pump 1OYD ; 3.8 ; Structural Basis of Multiple Binding Capacity of the AcrB multidrug Efflux Pump 1OYE ; 3.48 ; Structural Basis of Multiple Binding Capacity of the AcrB multidrug Efflux Pump 1OY8 ; 3.63 ; Structural Basis of Multiple Drug Binding Capacity of the AcrB Multidrug Efflux Pump 1OY9 ; 3.8 ; Structural Basis of Multiple Drug Binding Capacity of the AcrB Multidrug Efflux Pump 1WDW ; 3.0 ; Structural basis of mutual activation of the tryptophan synthase a2b2 complex from a hyperthermophile, Pyrococcus furiosus 2W9R ; 1.7 ; Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS 2WA8 ; 2.15 ; Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS - The Phe peptide structure 2WA9 ; 2.9 ; Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS - Trp peptide structure 2OCV ; 2.2 ; Structural basis of Na+ activation mimicry in murine thrombin 6N4I ; 3.541 ; Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin 5AOQ ; 2.7 ; Structural basis of neurohormone perception by the receptor tyrosine kinase Torso 1FK6 ; 1.9 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH ALPHA-LINOLENIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK0 ; 1.8 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH CAPRIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK1 ; 1.8 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH LAURIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK2 ; 1.8 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH MYRISTIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK5 ; 1.3 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH OLEIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK3 ; 1.8 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH PALMITOLEIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK7 ; 1.9 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH RICINOLEIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 1FK4 ; 1.8 ; STRUCTURAL BASIS OF NON-SPECIFIC LIPID BINDING IN MAIZE LIPID-TRANSFER PROTEIN COMPLEXES WITH STEARIC ACID REVEALED BY HIGH-RESOLUTION X-RAY CRYSTALLOGRAPHY 6LC1 ; 3.12 ; Structural basis of NR4A1 bound to the human pituitary proopiomelanocortin gene promoter 6L6L ; 2.781 ; Structural basis of NR4A2 homodimers binding to selective Nur-responsive elements 6L6Q ; 2.601 ; Structural basis of NR4A2 homodimers binding to selective Nur-responsive elements 3UVU ; 2.38 ; Structural basis of nuclear import of Flap endonuclease 1 (FEN1) 2QHS ; 1.5 ; Structural Basis of Octanoic Acid Recognition by Lipoate-Protein Ligase B 2QHT ; 1.5 ; Structural Basis of Octanoic Acid Recognition by Lipoate-Protein Ligase B 2QHU ; 1.9 ; Structural Basis of Octanoic Acid Recognition by Lipoate-Protein Ligase B 2QHV ; 1.6 ; Structural Basis of Octanoic Acid Recognition by Lipoate-Protein Ligase B 3LJB ; 2.4 ; Structural basis of oligomerisation in the MxA stalk 7YJ0 ; 2.43 ; Structural basis of oxepinone formation by a flavin-monooxygenase VibO 2Y9T ; ; Structural basis of p63a SAM domain mutants involved in AEC syndrome 2Y9U ; 1.6 ; Structural basis of p63a SAM domain mutants involved in AEC syndrome 1PZ5 ; 1.8 ; Structural basis of peptide-carbohydrate mimicry in an antibody combining site 8TJ3 ; 3.2 ; Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex 1T2V ; 3.3 ; Structural basis of phospho-peptide recognition by the BRCT domain of BRCA1, structure with phosphopeptide 2LKO ; ; Structural Basis of Phosphoinositide Binding to Kindlin-2 Pleckstrin Homology Domain in Regulating Integrin Activation 1T2U ; 2.8 ; Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1: structure of BRCA1 missense variant V1809F 6X24 ; 3.25 ; Structural basis of plant blue light photoreceptor 3FGA ; 2.7 ; Structural Basis of PP2A and Sgo interaction 3BJI ; 2.6 ; Structural Basis of Promiscuous Guanine Nucleotide Exchange by the T-Cell Essential Vav1 1XPX ; 2.8 ; Structural basis of prospero-DNA interaction; implications for transcription regulation in developing cells 4NND ; 2.502 ; Structural basis of PTPN18 fingerprint on distinct HER2 tyrosine phosphorylation sites 2K2M ; ; Structural Basis of PxxDY Motif Recognition in SH3 Binding 2ROL ; ; Structural Basis of PxxDY motif recognition in SH3 binding 1ZBD ; 2.6 ; STRUCTURAL BASIS OF RAB EFFECTOR SPECIFICITY: CRYSTAL STRUCTURE OF THE SMALL G PROTEIN RAB3A COMPLEXED WITH THE EFFECTOR DOMAIN OF RABPHILIN-3A 7CWH ; ; Structural basis of RACK7 PHD to read a pediatric glioblastoma-associated histone mutation H3.3G34R 7B4B ; 1.76 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273C mutant bound to MQ: R273C-MQ (I) 7B4C ; 1.71 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273C mutant bound to MQ: R273C-MQ (II) 7B4D ; 1.85 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273C/S240R double mutant bound to DNA and MQ: R273C/S240R-DNA-MQ 7B49 ; 1.42 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273H mutant bound to DNA and MQ: R273H-DNA-MQ 7B4A ; 1.9 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273H mutant bound to DNA: R273H-DNA 7B47 ; 1.8 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273H mutant bound to MQ: R273H-MQ (I) 7B48 ; 2.05 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R273H mutant bound to MQ: R273H-MQ (II) 7B4E ; 1.58 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R282W mutant bound to DNA and MQ: R282W-DNA-MQ 7B4F ; 1.78 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R282W mutant bound to DNA: R282W-MQ (I) 7B4G ; 1.86 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human p53DBD-R282W mutant bound to DNA: R282W-MQ (II) 6ZNC ; 1.64 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human wild-type p53DBD bound to DNA and MQ: wt-DNA-MQ (I) 7B4N ; 1.32 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human wild-type p53DBD bound to DNA and MQ: wt-DNA-MQ (II) 7B4H ; 1.39 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human wild-type p53DBD bound to DNA and MQ: wt-DNA-MQ (III) 7B46 ; 2.02 ; Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Human wild-type p53DBD bound to DNA and MQ: wt-DNA-MQ (P1) 2MPM ; ; Structural Basis of Receptor Sulfotyrosine Recognition by a CC Chemokine: the N-terminal Region of CCR3 Bound to CCL11/Eotaxin-1 3RT4 ; 1.7 ; Structural Basis of Recognition of Pathogen-associated Molecular Patterns and Inhibition of Proinflammatory Cytokines by Camel Peptidoglycan Recognition Protein 4GMN ; 2.95 ; Structural basis of Rpl5 recognition by Syo1 2JPP ; ; Structural basis of RsmA/CsrA RNA recognition: Structure of RsmE bound to the Shine-Dalgarno sequence of hcnA mRNA 6WPG ; 2.283 ; Structural Basis of Salicylic Acid Perception by Arabidopsis NPR Proteins 6TL8 ; 2.8 ; Structural basis of SALM3 dimerization and adhesion complex formation with the presynaptic receptor protein tyrosine phosphatases 3FHV ; 1.9 ; Structural basis of Salmonella typhi type IVb PilS and cystic fibrosis transmembrane conductance regulator (CFTR) interaction 7DRV ; 3.09 ; Structural basis of SARS-CoV-2-closely-related bat coronavirus RaTG13 to hACE2 3QMI ; 2.1 ; Structural Basis of Selective Binding of Non-Methylated CpG islands (DNA-ACGT) by the CXXC Domain of CFP1 3QMH ; 2.5 ; Structural Basis of Selective Binding of Non-Methylated CpG islands (DNA-TCGA) by the CXXC Domain of CFP1 3QMG ; 2.3 ; Structural Basis of Selective Binding of Non-Methylated CpG islands by the CXXC Domain of CFP1 3QMB ; 2.06 ; Structural Basis of Selective Binding of Nonmethylated CpG Islands by the CXXC Domain of CFP1 3QMC ; 2.1 ; Structural Basis of Selective Binding of Nonmethylated CpG Islands by the CXXC Domain of CFP1 3QMD ; 1.9 ; Structural Basis of Selective Binding of Nonmethylated CpG Islands by the CXXC Domain of CFP1 1N6J ; 2.2 ; Structural basis of sequence-specific recruitment of histone deacetylases by Myocyte Enhancer Factor-2 3ZN8 ; 12.0 ; Structural Basis of Signal Sequence Surveillance and Selection by the SRP-SR Complex 1XR0 ; ; Structural Basis of SNT PTB Domain Interactions with Distinct Neurotrophic Receptors 4OWT ; 2.0 ; Structural basis of SOSS1 complex assembly 4OWX ; 2.3 ; Structural basis of SOSS1 in complex with a 12nt ssDNA 4OWW ; 2.3 ; Structural basis of SOSS1 in complex with a 35nt ssDNA 4TQJ ; 2.0 ; Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lection 4TQK ; 2.1 ; Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lection 4TQM ; 2.0 ; Structural basis of specific recognition of non-reducing terminal N-acetylglucosamine by an Agrocybe aegerita lection 3S7B ; 2.42 ; Structural Basis of Substrate Methylation and Inhibition of SMYD2 3S7D ; 2.3 ; Structural Basis of Substrate Methylation and Inhibition of SMYD2 3S7F ; 2.85 ; Structural Basis of Substrate Methylation and Inhibition of SMYD2 3S7J ; 3.04 ; Structural Basis of Substrate Methylation and Inhibition of SMYD2 4IMQ ; 1.5 ; Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus 4IMZ ; 1.7 ; Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus 4IN1 ; 2.05 ; Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus 4IN2 ; 2.401 ; Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus 4INH ; 1.7 ; Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus 4LC5 ; 1.97 ; Structural basis of substrate specificity of CDA superfamily guanine deaminase 4BWG ; 2.6 ; Structural basis of subtilase cytotoxin SubAB assembly 1UMH ; 2.0 ; Structural basis of sugar-recognizing ubiquitin ligase 1UMI ; 2.4 ; Structural basis of sugar-recognizing ubiquitin ligase 2AKR ; 1.9 ; Structural basis of sulfatide presentation by mouse CD1d 2IJ0 ; 2.25 ; Structural basis of T cell specificity and activation by the bacterial superantigen toxic shock syndrome toxin-1 5C9H ; 3.0 ; Structural Basis of Template Boundary Definition in Tetrahymena Telomerase 1NGA ; 2.18 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGB ; 2.18 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGC ; 2.2 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGD ; 2.18 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGE ; 2.05 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGF ; 2.17 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGG ; 2.19 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGH ; 2.23 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGI ; 2.15 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 1NGJ ; 2.1 ; STRUCTURAL BASIS OF THE 70-KILODALTON HEAT SHOCK COGNATE PROTEIN ATP HYDROLYTIC ACTIVITY, II. STRUCTURE OF THE ACTIVE SITE WITH ADP OR ATP BOUND TO WILD TYPE AND MUTANT ATPASE FRAGMENT 7JJO ; 2.6 ; Structural Basis of the Activation of Heterotrimeric Gs-protein by Isoproterenol-bound Beta1-Adrenergic Receptor 7O7F ; 3.15 ; Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist 3KX7 ; 1.7 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA FlK - apo wild type FlK 3KVU ; 2.0 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA FlK - T42S mutant in complex with Acetyl-CoA 3KW1 ; 1.9 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA FlK - Wild type FlK in complex with FAcOPan 3KVZ ; 2.1 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thiesterase FlK - wild type FlK in complex with FAcCPan 3KX8 ; 2.35 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thioesterase FlK 3KVI ; 1.76 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thioesterase FlK - T42A mutant in complex with fluoro-acetate 3KUV ; 1.5 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thioesterase FlK - T42S mutant in complex with acetate. 3KV7 ; 1.56 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thioesterase FlK - wild type FlK in complex with acetate 3KV8 ; 1.85 ; Structural basis of the activity and substrate specificity of the fluoroacetyl-CoA thioesterase FlK - Wild type FlK in complex with fluoro-acetate 3KUW ; 1.9 ; Structural basis of the activity ans substrate specificity of the fluoroacetyl-CoA thioesterase FlK - T42S mutant in complex with Fluoro-acetate 4A53 ; ; Structural basis of the Dcp1:Dcp2 mRNA decapping complex activation by Edc3 and Scd6 4A54 ; ; Structural basis of the Dcp1:Dcp2 mRNA decapping complex activation by Edc3 and Scd6 8HBM ; 3.3 ; Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA 5H7R ; 1.7 ; Structural basis of the flanking zinc-finger motifs crucial for the E3 ligase activity of the LNX1 RING domain 5H7S ; 3.49 ; Structural basis of the flanking zinc-finger motifs crucial for the E3 ligase activity of the LNX1 RING domain 5Z1P ; 1.89 ; Structural basis of the improved sweetness and stability of the single-chain sweet-tasting protein monellin (MNEI) 3SVL ; 2.2 ; Structural basis of the improvement of ChrR - a multi-purpose enzyme 3CFS ; 2.4 ; Structural basis of the interaction of RbAp46/RbAp48 with histone H4 3CFV ; 2.6 ; Structural basis of the interaction of RbAp46/RbAp48 with histone H4 1H0J ; 1.9 ; Structural Basis of the Membrane-induced Cardiotoxin A3 Oligomerization 1OY6 ; 3.68 ; Structural Basis of the Multiple Binding Capacity of the AcrB Multidrug Efflux Pump 2KDU ; ; Structural basis of the Munc13-1/Ca2+-Calmodulin interaction: A novel 1-26 calmodulin binding motif with a bipartite binding mode 1I92 ; 1.7 ; STRUCTURAL BASIS OF THE NHERF PDZ1-CFTR INTERACTION 2MF0 ; ; Structural basis of the non-coding RNA RsmZ acting as protein sponge: Conformer L of RsmZ(1-72)/RsmE(dimer) 1to3 complex 2MF1 ; ; Structural basis of the non-coding RNA RsmZ acting as protein sponge: Conformer R of RsmZ(1-72)/RsmE(dimer) 1to3 complex 2C96 ; 1.8 ; Structural basis of the nucleotide driven conformational changes in the AAA domain of transcription activator PspF 2C98 ; 1.9 ; Structural basis of the nucleotide driven conformational changes in the AAA domain of transcription activator PspF 2C99 ; 1.9 ; Structural basis of the nucleotide driven conformational changes in the AAA domain of transcription activator PspF 2C9C ; 2.1 ; Structural basis of the nucleotide driven conformational changes in the AAA domain of transcription activator PspF 3IB0 ; 1.4 ; Structural basis of the prevention of NSAID-induced damage of the gastrointestinal tract by C-terminal half (C-lobe) of bovine colostrum protein lactoferrin: Binding and structural studies of C-lobe complex with diclofenac 3IB1 ; 2.2 ; Structural basis of the prevention of NSAID-induced damage of the gastrointestinal tract by C-terminal half (C-lobe) of bovine colostrum protein lactoferrin: Binding and structural studies of C-lobe complex with indomethacin 3IAZ ; 2.0 ; Structural basis of the prevention of NSAID-induced damage of the gastrointestinal tract by C-terminal half (C-lobe) of bovine colostrum protein lactoferrin: Binding and structural studies of the C-lobe complex with aspirin 5CIU ; 2.24 ; Structural basis of the recognition of H3K36me3 by DNMT3B PWWP domain 5CIY ; 1.594 ; Structural basis of the recognition of H3K36me3 by DNMT3B PWWP domain 1FSH ; ; STRUCTURAL BASIS OF THE RECOGNITION OF THE DISHEVELLED DEP DOMAIN IN THE WNT SIGNALING PATHWAY 7DEE ; ; Structural Basis of the regulation of DISC Assembly by the interaction of c-FLIPs with Procaspase-8 2C1C ; 2.3 ; Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors 5GT5 ; 1.449 ; Structural basis of the specific activity and thermostability of pectate lyase (pelN) from Paenibacillus sp. 0602 8IQK ; 2.879 ; Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival proteins 8IQL ; 2.9577 ; Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival proteins 8IQM ; 1.967 ; Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival proteins 3BLG ; 2.56 ; STRUCTURAL BASIS OF THE TANFORD TRANSITION OF BOVINE BETA-LACTOGLOBULIN FROM CRYSTAL STRUCTURES AT THREE PH VALUES; PH 6.2 1BSY ; 2.24 ; STRUCTURAL BASIS OF THE TANFORD TRANSITION OF BOVINE BETA-LACTOGLOBULIN FROM CRYSTAL STRUCTURES AT THREE PH VALUES; PH 7.1 2BLG ; 2.46 ; STRUCTURAL BASIS OF THE TANFORD TRANSITION OF BOVINE BETA-LACTOGLOBULIN FROM CRYSTAL STRUCTURES AT THREE PH VALUES; PH 8.2 5YKJ ; 1.53 ; Structural basis of the thiol resolving mechanism in yeast mitochondrial 1-Cys peroxiredoxin via glutathione/thioredoxin systems 5YKW ; 2.08 ; Structural basis of the thiol resolving mechanism in yeast mitochondrial 1-Cys peroxiredoxin via glutathione/thioredoxin systems 3D2G ; 2.25 ; Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch 3P6Z ; 1.7 ; Structural basis of thrombin mediated factor V activation: essential role of the hirudin-like sequence Glu666-Glu672 for processing at the heavy chain-B domain junction 3P70 ; 2.55 ; Structural basis of thrombin-mediated factor V activation: essential role of the hirudin-like sequence Glu666-Glu672 for processing at the heavy chain-B domain junction 2MPO ; ; Structural basis of Toxoplasma gondii MIC2-Associated Protein interaction with MIC2 2W2H ; 3.25 ; Structural basis of transcription activation by the Cyclin T1-Tat-TAR RNA complex from EIAV 6R9G ; 3.7 ; Structural basis of transcription inhibition by the DNA mimic Ocr protein of bacteriophage T7 8JO2 ; 2.74 ; Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA 3VEM ; 3.2 ; Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1 8WKP ; 4.62 ; Structural basis of translation inhibition by a valine tRNA-derived fragment 8WQ2 ; 4.1 ; Structural basis of translation inhibition by a valine tRNA-derived fragment 8WQ4 ; 4.53 ; Structural basis of translation inhibition by a valine tRNA-derived fragment 2XL1 ; ; Structural basis of translational stalling by human cytomegalovirus (hCMV) and fungal arginine attenuator peptide (AAP) 7D42 ; 2.697 ; Structural basis of tropifexor as a potent and selective agonist for farnesoid X receptor 6JZC ; 2.201 ; Structural basis of tubulin detyrosination 6J4O ; 2.3 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6J4P ; 1.599 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6J4Q ; 2.7 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6J4S ; 2.8 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6J4U ; 1.998 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6J4V ; 2.1 ; Structural basis of tubulin detyrosination by vasohibins-SVBP enzyme complex and functional implications 6MZE ; 3.6 ; Structural Basis of Tubulin Recruitment and Assembly by Microtubule Polymerases with Tumor Overexpressed Gene (TOG) Domain Arrays 6MZF ; 4.4 ; Structural Basis of Tubulin Recruitment and Assembly by Microtubule Polymerases with Tumor Overexpressed Gene (TOG) Domain Arrays 6MZG ; 3.208 ; Structural Basis of Tubulin Recruitment and Assembly by Microtubule Polymerases with Tumor Overexpressed Gene (TOG) Domain Arrays 3OQ3 ; 2.1 ; Structural Basis of Type-I Interferon Sequestration by a Poxvirus Decoy Receptor 7YTW ; 3.2 ; Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter 3EMH ; 1.37 ; Structural basis of WDR5-MLL interaction 3S2K ; 2.8 ; Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. 3JUA ; 3.0 ; Structural basis of YAP recognition by TEAD4 in the Hippo pathway 2HRK ; 2.05 ; Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes 2HSM ; 3.0 ; Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes 2HSN ; 2.2 ; Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes 5LBS ; 2.41 ; structural basis of Zika and Dengue virus potent antibody cross-neutralization 5LBV ; 2.2 ; Structural basis of zika and dengue virus potent antibody cross-neutralization 5LCV ; 2.64 ; Structural basis of Zika and Dengue virus potent antibody cross-neutralization 5MRK ; 1.9 ; Structural basis of Zika virus methyltransferase inhibition by sinefungin 3WR5 ; 2.142 ; Structural basis on the efficient CO2 reduction of acidophilic formate dehydrogenase 7QS9 ; 1.8 ; Structural basis on the interaction of Scribble PDZ domains with the Tick Born encephalitis virus (TBEV) NS5 protein 7QSA ; 2.02 ; Structural basis on the interaction of Scribble PDZ domains with the Tick Born encephalitis virus (TBEV) NS5 protein 7QSB ; 1.84 ; Structural basis on the interaction of Scribble PDZ domains with the Tick Born encephalitis virus (TBEV) NS5 protein 5YBB ; 3.2 ; Structural basis underlying complex assembly andconformational transition of the type I R-M system 4WUJ ; 2.23 ; Structural Biochemistry of a Fungal LOV Domain Photoreceptor Reveals an Evolutionarily Conserved Pathway Integrating Blue-Light and Oxidative Stress 1XEW ; 2.0 ; Structural biochemistry of ATP-driven dimerization and DNA stimulated activation of SMC ATPases. 1XEX ; 2.5 ; Structural biochemistry of ATP-driven dimerization and DNA stimulated activation of SMC ATPases. 7QTO ; 3.5 ; Structural biology of the NS1 avian influenza protein subversion on the Scribble cell polarity module 7QTP ; 1.9 ; Structural biology of the NS1 avian influenza protein subversion on the Scribble cell polarity module 7QTU ; 2.84 ; Structural biology of the NS1 avian influenza protein subversion on the Scribble cell polarity module 1DV9 ; ; STRUCTURAL CHANGES ACCOMPANYING PH-INDUCED DISSOCIATION OF THE B-LACTOGLOBULIN DIMER 4LW2 ; 1.8 ; Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration 4LW4 ; 2.01 ; Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration 2JPT ; ; Structural changes induced in apo-s100a1 protein by the disulphide formation between its CYS85 residue and b-mercaptoethanol 1LZR ; 1.5 ; STRUCTURAL CHANGES OF THE ACTIVE SITE CLEFT AND DIFFERENT SACCHARIDE BINDING MODES IN HUMAN LYSOZYME CO-CRYSTALLIZED WITH HEXA-N-ACETYL-CHITOHEXAOSE AT PH 4.0 1LZS ; 1.6 ; STRUCTURAL CHANGES OF THE ACTIVE SITE CLEFT AND DIFFERENT SACCHARIDE BINDING MODES IN HUMAN LYSOZYME CO-CRYSTALLIZED WITH HEXA-N-ACETYL-CHITOHEXAOSE AT PH 4.0 3SRN ; 2.0 ; STRUCTURAL CHANGES THAT ACCOMPANY THE REDUCED CATALYTIC EFFICIENCY OF TWO SEMISYNTHETIC RIBONUCLEASE ANALOGS 4SRN ; 2.0 ; STRUCTURAL CHANGES THAT ACCOMPANY THE REDUCED CATALYTIC EFFICIENCY OF TWO SEMISYNTHETIC RIBONUCLEASE ANALOGS 1H3P ; 2.6 ; STRUCTURAL CHARACTERISATION OF A MONOCLONAL ANTIBODY SPECIFIC FOR THE PRES1 REGION OF THE HEPATITIS B VIRUS 261L ; 2.5 ; STRUCTURAL CHARACTERISATION OF AN ENGINEERED TANDEM REPEAT CONTRASTS THE IMPORTANCE OF CONTEXT AND SEQUENCE IN PROTEIN FOLDING 262L ; 2.5 ; STRUCTURAL CHARACTERISATION OF AN ENGINEERED TANDEM REPEAT CONTRASTS THE IMPORTANCE OF CONTEXT AND SEQUENCE IN PROTEIN FOLDING 2J66 ; 1.65 ; Structural characterisation of BtrK decarboxylase from butirosin biosynthesis 5K3W ; 2.503 ; Structural characterisation of fold IV-transaminase, CpuTA1, from Curtobacterium pusillum 5T02 ; 2.8 ; Structural characterisation of mutant Asp39Ala of thioesterase (NmACH) from Neisseria meningitidis 4UTT ; 1.71 ; Structural characterisation of NanE, ManNac6P C2 epimerase, from Clostridium perfingens 4UTW ; 1.9 ; Structural characterisation of NanE, ManNac6P C2 epimerase, from Clostridium perfingens 3RKW ; 2.5 ; Structural characterisation of staphylococcus aureus biotin protein ligase 3RKX ; 2.1 ; Structural characterisation of staphylococcus aureus biotin protein ligase 3RKY ; 3.232 ; Structural characterisation of staphylococcus aureus biotin protein ligase 4L4R ; 2.1 ; Structural Characterisation of the Apo-form of Human Lactate Dehydrogenase M Isozyme 1DA1 ; 2.25 ; STRUCTURAL CHARACTERISATION OF THE BROMOURACIL-GUANINE BASE PAIR MISMATCH IN A Z-DNA FRAGMENT 1NVN ; 1.8 ; Structural Characterisation of the Holliday junction formed by the sequence CCGGTACCGG at 1.8 A 1NT8 ; 2.0 ; Structural Characterisation of the Holliday junction formed by the sequence CCGGTACCGG at 2.00 A 1NQS ; 1.97 ; Structural Characterisation of the Holliday Junction formed by the sequence d(TCGGTACCGA) at 1.97 A 1M6G ; 1.652 ; Structural Characterisation of the Holliday Junction TCGGTACCGA 4L4S ; 2.9 ; Structural characterisation of the NADH binary complex of human lactate dehydrogenase M isozyme 7AXS ; 1.88 ; Structural characterisation of WDR5:CS-VIP8 interaction in cis state 1 7AXP ; 2.432 ; Structural characterisation of WDR5:CS-VIP8 interaction in cis state 2 1ETL ; 0.89 ; STRUCTURAL CHARACTERISTICS FOR BIOLOGICAL ACTIVITY OF HEAT-STABLE ENTEROTOXIN PRODUCED BY ENTEROTOXIGENIC ESCHERICHIA COLI: X-RAY CRYSTALLOGRAPHY OF WEAKLY TOXIC AND NONTOXIC ANALOGS 1ETM ; 0.89 ; STRUCTURAL CHARACTERISTICS FOR BIOLOGICAL ACTIVITY OF HEAT-STABLE ENTEROTOXIN PRODUCED BY ENTEROTOXIGENIC ESCHERICHIA COLI: X-RAY CRYSTALLOGRAPHY OF WEAKLY TOXIC AND NONTOXIC ANALOGS 3WBH ; 2.1 ; Structural characteristics of alkaline phosphatase from a moderately halophilic bacteria Halomonas sp.593 1VTU ; 2.2 ; Structural characteristics of enantiomorphic DNA: Crystal analysis of racemates of the D(CGCGCG) duplex 3HU7 ; 2.0 ; Structural characterization and binding studies of a plant pathogenesis related protein heamanthin from haemanthus multiflorus reveal its dual inhibitory effects against xylanase and alpha-amylase 5BWJ ; 2.054 ; Structural characterization and modeling of the Borrelia burgdorferi hybrid histidine kinase Hk1 periplasmic sensor 2HN8 ; ; Structural characterization and oligomerization of PB1-F2, a pro-apoptotic influenza A virus protein 3IKJ ; 2.4 ; Structural characterization for the nucleotide binding ability of subunit A mutant S238A of the A1AO ATP synthase 3ND8 ; 2.4 ; Structural characterization for the nucleotide binding ability of subunit A of the A1AO ATP synthase 3ND9 ; 3.1 ; Structural characterization for the nucleotide binding ability of subunit A of the A1AO ATP synthase 3I73 ; 2.4 ; Structural characterization for the nucleotide binding ability of subunit A with ADP of the A1AO ATP synthase 3I4L ; 2.4 ; Structural characterization for the nucleotide binding ability of subunit A with AMP-PNP of the A1AO ATP synthase 3I72 ; 2.47 ; Structural characterization for the nucleotide binding ability of subunit A with SO4 of the A1AO ATP synthase 2YI0 ; 1.6 ; Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors. 2YI5 ; 2.5 ; Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors. 2YI6 ; 1.8 ; Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors. 2YI7 ; 1.4 ; Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors. 1NCP ; ; STRUCTURAL CHARACTERIZATION OF A 39 RESIDUE SYNTHETIC PEPTIDE CONTAINING THE TWO ZINC BINDING DOMAINS FROM THE HIV-1 P7 NUCLEOCAPSID PROTEIN BY CD AND NMR SPECTROSCOPY 2IYO ; 2.4 ; Structural characterization of a bacterial 6PDH reveals aspects of specificity, mechanism and mode of inhibition 2IB5 ; 1.8 ; Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone cnidopus japonicus 2IB6 ; 2.0 ; Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone cnidopus japonicus 5MLT ; 1.61 ; Structural characterization of a carbohydrate substrate binding protein from Streptococcus pneumoniae 2MKR ; ; Structural Characterization of a Complex Between the Acidic Transactivation Domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. 3SJP ; 2.004 ; Structural characterization of a GII.4 2004 norovirus variant (TCH05) 3SKB ; 3.22 ; Structural characterization of a GII.4 2004 norovirus variant (TCH05) 3SLD ; 2.679 ; Structural characterization of a GII.4 2004 norovirus variant (TCH05) bound to A trisaccharide 3SLN ; 2.841 ; Structural characterization of a GII.4 2004 norovirus variant (TCH05) bound to H pentasaccharide 3SEJ ; 3.041 ; Structural characterization of a GII.4 2004 norovirus variant (TCH05) bound to Secretor Lewis HBGA (LeB) 3C2S ; 2.3 ; Structural Characterization of a Human Fc Fragment Engineered for Lack of Effector Functions 6QPS ; 1.287 ; Structural characterization of a mannuronic acid specific polysaccharide family 6 lyase enzyme from human gut microbiota 2QL1 ; 2.534 ; Structural Characterization of a Mutated, ADCC-Enhanced Human Fc Fragment 5C3C ; 2.8 ; Structural characterization of a newly identified component of alpha-carboxysomes: The AAA+ domain Protein cso-CbbQ 6B4M ; 2.5 ; Structural characterization of a novel monotreme-specific protein from the milk of the platypus 3CSX ; 1.84 ; Structural characterization of a protein in the DUF683 family- crystal structure of cce_0567 from the cyanobacterium Cyanothece 51142. 3E3K ; 2.8 ; Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA (butane-1,2,4-tricarboxylate without nickel form) 3DP8 ; 2.5 ; Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA (nickel butane-1,2,4-tricarboxylate form) 2YJL ; 1.81 ; Structural characterization of a secretin pilot protein from the type III secretion system (T3SS) of Pseudomonas aeruginosa 4YEB ; 3.19 ; Structural characterization of a synaptic adhesion complex 3UX1 ; 2.8 ; Structural Characterization of Adeno-Associated Virus Serotype 9 3CRT ; 1.9 ; Structural characterization of an engineered allosteric protein 3CRU ; 2.3 ; Structural characterization of an engineered allosteric protein 2LQ4 ; ; Structural Characterization of an LPA1 Second Extracellular Loop Mimetic with a Self-Assembling Coiled-Coil Folding Constraint 2YDM ; 2.44 ; Structural characterization of angiotensin-I converting enzyme in complex with a selenium analogue of captopril 2G15 ; 2.15 ; Structural Characterization of autoinhibited c-Met kinase 6PMU ; 2.1 ; Structural Characterization of Beta Cyanoalanine Synthase from Tetranychus Urticae 7MFJ ; 2.351 ; Structural Characterization of Beta Cyanoalanine Synthase from Tetranychus Urticae 6XO2 ; 1.6 ; Structural Characterization of Beta Cyanoalanine Synthase from Tetranychus Urticae (two-spotted spider mite) 8QME ; 2.25 ; Structural characterization of beta-xyloxidase XynB2 from Geobacillus stearothermophilus CECT43 1K2L ; 2.4 ; STRUCTURAL CHARACTERIZATION OF BISINTERCALATION IN HIGHER-ORDER DNA AT A JUNCTION-LIKE QUADRUPLEX 4E8E ; 2.51 ; Structural characterization of Bombyx mori glutathione transferase BmGSTD1 3WYW ; 1.7 ; Structural characterization of catalytic site of a Nilaparvata lugens delta-class glutathione transferase 6HVM ; 2.0 ; Structural characterization of CdaA-APO 5HDI ; 1.54 ; Structural characterization of CYP144A1, a Mycobacterium tuberculosis cytochrome P450 3II1 ; 2.25 ; Structural characterization of difunctional glucanase-xylanse CelM2 6JZB ; 2.754 ; Structural characterization of DnaJ from Streptococcus pneumonia presents a new tetramer of Hsp40 family 3VP6 ; 2.1 ; Structural characterization of Glutamic Acid Decarboxylase; insights into the mechanism of autoinactivation 4G0R ; 2.7 ; Structural characterization of H-1 Parvovirus: comparison of infectious virions to replication defective particles 4GBT ; 3.2 ; Structural characterization of H-1 Parvovirus: comparison of infectious virions to replication defective particles 3KWQ ; 3.5 ; Structural characterization of H3K56Q nucleosomes and nucleosomal arrays 3KXB ; 3.2 ; Structural characterization of H3K56Q nucleosomes and nucleosomal arrays 1YMA ; 2.0 ; STRUCTURAL CHARACTERIZATION OF HEME LIGATION IN THE HIS64-->TYR VARIANT OF MYOGLOBIN 4JS9 ; 2.784 ; Structural Characterization of Inducible Nitric Oxide Synthase Substituted With Mesoheme 2MKN ; ; Structural Characterization of Interactions between the Double-Stranded RNA-Binding Zinc Finger Protein JAZ and dsRNA 5DZZ ; 2.6 ; Structural characterization of intermediate filaments binding domain of desmoplakin 5EK5 ; 2.26 ; STRUCTURAL CHARACTERIZATION OF IRMA FROM ESCHERICHIA COLI 7A6G ; 1.95 ; Structural characterization of L-proline amide hydrolase from Pseudomonas syringae 2M0M ; ; Structural Characterization of Minor Ampullate Spidroin Domains and their Distinct Roles in Fibroin Solubility and Fiber Formation 4V6N ; 12.1 ; Structural characterization of mRNA-tRNA translocation intermediates (50S ribosome of class2 of the six classes) 4V6S ; 13.1 ; Structural characterization of mRNA-tRNA translocation intermediates (class 3 of the six classes) 4V6O ; 14.7 ; Structural characterization of mRNA-tRNA translocation intermediates (class 4a of the six classes) 4V6P ; 13.5 ; Structural characterization of mRNA-tRNA translocation intermediates (class 4b of the six classes) 4V6Q ; 11.5 ; Structural characterization of mRNA-tRNA translocation intermediates (class 5 of the six classes) 4V6R ; 11.5 ; Structural characterization of mRNA-tRNA translocation intermediates (class 6 of the six classes) 5Y05 ; 2.799 ; Structural characterization of msmeg_4306 from Mycobacterium smegmatis 5Y06 ; 2.606 ; Structural characterization of msmeg_4306 from Mycobacterium smegmatis 6IZJ ; 2.1 ; Structural characterization of mutated NreA protein in nitrate binding site from Staphylococcus aureus 6IZK ; 2.29 ; Structural characterization of mutated NreA protein in nitrate binding site from Staphylococcus aureus 6K2H ; 1.8 ; structural characterization of mutated NreA protein in nitrate binding site from staphylococcus aureus. 1GEI ; 1.6 ; STRUCTURAL CHARACTERIZATION OF N-BUTYL-ISOCYANIDE COMPLEXES OF CYTOCHROMES P450NOR AND P450CAM 1GEJ ; 1.5 ; STRUCTURAL CHARACTERIZATION OF N-BUTYL-ISOCYANIDE COMPLEXES OF CYTOCHROMES P450NOR AND P450CAM 1GEK ; 1.7 ; STRUCTURAL CHARACTERIZATION OF N-BUTYL-ISOCYANIDE COMPLEXES OF CYTOCHROMES P450NOR AND P450CAM 1GEM ; 2.0 ; STRUCTURAL CHARACTERIZATION OF N-BUTYL-ISOCYANIDE COMPLEXES OF CYTOCHROMES P450NOR AND P450CAM 1Y2Y ; ; Structural Characterization of Nop10p using Nuclear Magnetic Resonance Spectroscopy 6VY7 ; ; Structural characterization of novel conotoxin MIIIB derived from Conus magus 3PGA ; 2.0 ; STRUCTURAL CHARACTERIZATION OF PSEUDOMONAS 7A GLUTAMINASE-ASPARAGINASE 2L9Q ; ; Structural Characterization of small heat shock protein (Hsp12) 3IJT ; 2.377 ; Structural Characterization of SMU.440, a Hypothetical Protein from Streptococcus mutans 3EKL ; 1.51 ; Structural Characterization of tetrameric Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase - substrate binding and catalysis mechanism of a class IIa bacterial aldolase 3EKZ ; 2.07 ; Structural Characterization of tetrameric Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase - substrate binding and catalysis mechanism of a class IIa bacterial aldolase 3ELF ; 1.31 ; Structural Characterization of tetrameric Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase - substrate binding and catalysis mechanism of a class IIa bacterial aldolase 7TB9 ; ; Structural characterization of the biological synthetic peptide pCEMP1 3PM0 ; 2.7 ; Structural Characterization of the Complex between Alpha-Naphthoflavone and Human Cytochrome P450 1B1 (CYP1B1) 1I9F ; ; STRUCTURAL CHARACTERIZATION OF THE COMPLEX OF THE REV RESPONSE ELEMENT RNA WITH A SELECTED PEPTIDE 6AD3 ; 1.79 ; Structural characterization of the condensation domain from Monacolin K polyketide synthase MokA 3OAH ; 3.0 ; Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6 2M0T ; ; Structural characterization of the extended PDZ1 domain from NHERF1 5O3X ; 2.55 ; Structural characterization of the fast and promiscuous macrocyclase from plant - apo PCY1 5O3W ; 2.0 ; Structural characterization of the fast and promiscuous macrocyclase from plant - PCY1-S562A bound to Presegetalin A1 5O3V ; 2.17 ; Structural characterization of the fast and promiscuous macrocyclase from plant - PCY1-S562A bound to Presegetalin B1 5O3U ; 1.86 ; Structural characterization of the fast and promiscuous macrocyclase from plant - PCY1-S562A bound to Presegetalin F1 4ZMR ; 2.001 ; Structural characterization of the full-length response regulator spr1814 in complex with a phosphate analogue reveals a novel conformational plasticity of the linker region 5ZHY ; 2.441 ; Structural characterization of the HCoV-229E fusion core 8OUP ; 1.7 ; Structural characterization of the hexa-coordinated globin from Spisula solidissima 3QDR ; 2.65 ; Structural characterization of the interaction of colicin A, colicin N, and TolB with the TolAIII translocon 3QDP ; 2.15 ; Structural characterization of the interaction of colicin A, colicin N, and TolB with TolAIII translocon 4WAI ; 2.427 ; Structural characterization of the late competence protein ComFB from Bacillus subtilis. 2MMG ; ; Structural Characterization of the Mengovirus Leader Protein Bound to Ran GTPase by Nuclear Magnetic Resonance 1WR0 ; ; Structural characterization of the MIT domain from human Vps4b 6F2X ; ; Structural characterization of the Mycobacterium tuberculosis Protein Tyrosine Kinase A (PtkA) 1DLP ; 3.3 ; STRUCTURAL CHARACTERIZATION OF THE NATIVE FETUIN-BINDING PROTEIN SCILLA CAMPANULATA AGGLUTININ (SCAFET): A NOVEL TWO-DOMAIN LECTIN 1T6C ; 1.53 ; Structural characterization of the Ppx/GppA protein family: crystal structure of the Aquifex aeolicus family member 3MFY ; 2.35 ; Structural characterization of the subunit A mutant F236A of the A-ATP synthase from Pyrococcus horikoshii 3SDZ ; 2.53 ; Structural characterization of the subunit A mutant F427W of the A-ATP synthase from Pyrococcus horikoshii 3SE0 ; 2.62 ; Structural characterization of the subunit A mutant F508W of the A-ATP synthase from Pyrococcus horikoshii 3M4Y ; 2.38 ; Structural characterization of the subunit A mutant P235A of the A-ATP synthase 2EJN ; 1.64 ; Structural characterization of the tetrameric form of the major cat allergen fel D 1 5JO9 ; 2.894 ; Structural characterization of the thermostable Bradyrhizobium japonicum d-sorbitol dehydrogenase 2JW1 ; ; Structural characterization of the type III pilotin-secretin interaction in Shigella flexneri by NMR spectroscopy 6XFL ; ; Structural characterization of the type III secretion system pilotin-secretin complex InvH-InvG by NMR spectroscopy 2F5U ; 2.1 ; Structural Characterization of the UL25 DNA Packaging Protein from Herpes Simplex Virus Type 1 4FN6 ; 2.69 ; Structural Characterization of Thiaminase type II TenA from Staphylococcus aureus 7PBH ; ; Structural characterization of Thorarchaeota profilin indicates a eukaryotic-like fold but with an extended N-terminus 7LGL ; ; Structural characterization of two b-KTx scorpion toxins. One of them blocks human KCNQ1 potassium channels 6PNT ; 1.85 ; Structural Characterization of UDP-glycosyltransferase from Tetranychus Urticae 4BYZ ; 1.55 ; Structural characterization using Sulfur-SAD of the cytoplasmic domain of Burkholderia pseudomallei PilO2Bp, an actin-like protein component of a Type IVb R64-derivative pilus machinery. 4BZ0 ; 1.76 ; Structural characterization using Sulfur-SAD of the cytoplasmic domain of Burkholderia pseudomallei PilO2Bp, an actin-like protein component of a Type IVb R64-derivative pilus machinery. 3D0Z ; 2.5 ; Structural charcaterization of an engineered allosteric protein 2VXK ; 1.8 ; Structural comparison between Aspergillus fumigatus and human GNA1 249D ; 2.25 ; STRUCTURAL COMPARISON BETWEEN THE D(CTAG) SEQUENCE IN OLIGONUCLEOTIDES AND TRP AND MET REPRESSOR-OPERATOR COMPLEXES 250D ; 2.47 ; STRUCTURAL COMPARISON BETWEEN THE D(CTAG) SEQUENCE IN OLIGONUCLEOTIDES AND TRP AND MET REPRESSOR-OPERATOR COMPLEXES 1B0W ; 1.8 ; Structural comparison of amyloidogenic light chain dimer in two crystal forms with nonamyloidogenic counterparts 1D10 ; 1.5 ; STRUCTURAL COMPARISON OF ANTICANCER DRUG-DNA COMPLEXES. ADRIAMYCIN AND DAUNOMYCIN 1D12 ; 1.7 ; STRUCTURAL COMPARISON OF ANTICANCER DRUG-DNA COMPLEXES. ADRIAMYCIN AND DAUNOMYCIN 7A9Y ; 1.64 ; Structural comparison of cellular retinoic acid binding protein I and II in the presence and absence of natural and synthetic ligands 7A9Z ; 2.41 ; Structural comparison of cellular retinoic acid binding protein I and II in the presence and absence of natural and synthetic ligands 7AA0 ; 1.82 ; Structural comparison of cellular retinoic acid binding protein I and II in the presence and absence of natural and synthetic ligands 7AA1 ; 1.71 ; Structural comparison of cellular retinoic acid binding proteins I and II in the presence and absence of natural and synthetic ligands 1WG0 ; 2.53 ; Structural comparison of Nas6p protein structures in two different crystal forms 1CPS ; 2.25 ; STRUCTURAL COMPARISON OF SULFODIIMINE AND SULFONAMIDE INHIBITORS IN THEIR COMPLEXES WITH ZINC ENZYMES 2GC4 ; 1.9 ; Structural comparison of the oxidized ternary electron transfer complex of methylamine dehydrogenase, amicyanin and cytochrome c551i from Paracoccus denitrificans with the substrate-reduced, copper free complex at 1.9 A resolution. 1ENX ; 1.5 ; STRUCTURAL COMPARISON OF TWO MAJOR ENDO-1,4-BETA-XYLANASES FROM TRICHODREMA REESEI 1XYN ; 2.0 ; STRUCTURAL COMPARISON OF TWO MAJOR ENDO-1,4-BETA-XYLANASES FROM TRICHODREMA REESEI 1XYO ; 1.5 ; STRUCTURAL COMPARISON OF TWO MAJOR ENDO-1,4-BETA-XYLANASES FROM TRICHODREMA REESEI 1XYP ; 1.5 ; STRUCTURAL COMPARISON OF TWO MAJOR ENDO-1,4-BETA-XYLANASES FROM TRICHODREMA REESEI 2SEC ; 1.8 ; STRUCTURAL COMPARISON OF TWO SERINE PROTEINASE-PROTEIN INHIBITOR COMPLEXES. EGLIN-C-SUBTILISIN CARLSBERG AND CI-2-SUBTILISIN NOVO 2SNI ; 2.1 ; STRUCTURAL COMPARISON OF TWO SERINE PROTEINASE-PROTEIN INHIBITOR COMPLEXES. EGLIN-C-SUBTILISIN CARLSBERG AND CI-2-SUBTILISIN NOVO 1ZWZ ; 1.9 ; Structural comparison of Yeast snoRNP and splicesomal protein snu13p with its homologs 8TLN ; 1.6 ; STRUCTURAL COMPARISON SUGGESTS THAT THERMOLYSIN AND RELATED NEUTRAL PROTEASES UNDERGO HINGE-BENDING MOTION DURING CATALYSIS 4ZS3 ; 2.45 ; Structural complex of 5-aminofluorescein bound to the FTO protein 7CKK ; 2.35 ; Structural complex of FTO bound with Dac51 4ZS2 ; 2.16 ; Structural complex of FTO/fluorescein 1N5O ; 2.8 ; Structural consequences of a cancer-causing BRCA1-BRCT missense mutation 1D85 ; 2.5 ; STRUCTURAL CONSEQUENCES OF A CARCINOGENIC ALKYLATION LESION ON DNA: EFFECT OF O6-ETHYL-GUANINE ON THE MOLECULAR STRUCTURE OF D(CGC[E6G]AATTCGCG)-NETROPSIN COMPLEX 1D86 ; 2.2 ; STRUCTURAL CONSEQUENCES OF A CARCINOGENIC ALKYLATION LESION ON DNA: EFFECT OF O6-ETHYL-GUANINE ON THE MOLECULAR STRUCTURE OF D(CGC[E6G]AATTCGCG)-NETROPSIN COMPLEX 3ICV ; 1.49 ; Structural Consequences of a Circular Permutation on Lipase B from Candida Antartica 1EI8 ; 2.0 ; STRUCTURAL CONSEQUENCES OF A DISCONTINUITY IN THE REPEATING TRIPEPTIDE SEQUENCE OF A COLLAGEN-LIKE TRIPLE-HELICAL PEPTIDE 1P2I ; 1.65 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2J ; 1.35 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2K ; 1.6 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2M ; 1.75 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2N ; 1.8 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2O ; 2.0 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 1P2Q ; 1.8 ; Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin 4AT1 ; 2.6 ; STRUCTURAL CONSEQUENCES OF EFFECTOR BINDING TO THE T STATE OF ASPARTATE CARBAMOYLTRANSFERASE. CRYSTAL STRUCTURES OF THE UNLIGATED AND ATP-, AND CTP-COMPLEXED ENZYMES AT 2.6-ANGSTROMS RESOLUTION 5AT1 ; 2.6 ; STRUCTURAL CONSEQUENCES OF EFFECTOR BINDING TO THE T STATE OF ASPARTATE CARBAMOYLTRANSFERASE. CRYSTAL STRUCTURES OF THE UNLIGATED AND ATP-, AND CTP-COMPLEXED ENZYMES AT 2.6-ANGSTROMS RESOLUTION 6AT1 ; 2.6 ; STRUCTURAL CONSEQUENCES OF EFFECTOR BINDING TO THE T STATE OF ASPARTATE CARBAMOYLTRANSFERASE. CRYSTAL STRUCTURES OF THE UNLIGATED AND ATP-, AND CTP-COMPLEXED ENZYMES AT 2.6-ANGSTROMS RESOLUTION 1HEB ; 2.0 ; STRUCTURAL CONSEQUENCES OF HYDROPHILIC AMINO-ACID SUBSTITUTIONS IN THE HYDROPHOBIC POCKET OF HUMAN CARBONIC ANHYDRASE II 1HEC ; 2.0 ; STRUCTURAL CONSEQUENCES OF HYDROPHILIC AMINO-ACID SUBSTITUTIONS IN THE HYDROPHOBIC POCKET OF HUMAN CARBONIC ANHYDRASE II 1HED ; 2.0 ; STRUCTURAL CONSEQUENCES OF HYDROPHILIC AMINO-ACID SUBSTITUTIONS IN THE HYDROPHOBIC POCKET OF HUMAN CARBONIC ANHYDRASE II 1CVD ; 2.2 ; STRUCTURAL CONSEQUENCES OF REDESIGNING A PROTEIN-ZINC BINDING SITE 1CVE ; 2.25 ; STRUCTURAL CONSEQUENCES OF REDESIGNING A PROTEIN-ZINC BINDING SITE 1CVF ; 2.25 ; STRUCTURAL CONSEQUENCES OF REDESIGNING A PROTEIN-ZINC BINDING SITE 1CVH ; 2.3 ; STRUCTURAL CONSEQUENCES OF REDESIGNING A PROTEIN-ZINC BINDING SITE 132L ; 1.8 ; STRUCTURAL CONSEQUENCES OF REDUCTIVE METHYLATION OF LYSINE RESIDUES IN HEN EGG WHITE LYSOZYME: AN X-RAY ANALYSIS AT 1.8 ANGSTROMS RESOLUTION 6PL5 ; 3.5 ; Structural coordination of polymerization and crosslinking by a peptidoglycan synthase complex 6PL6 ; 3.3 ; Structural coordination of polymerization and crosslinking by a peptidoglycan synthase complex 3F91 ; 1.9 ; Structural Data for Human Active Site Mutant Enzyme Complexes 5YY5 ; 2.8 ; Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein 5ZXV ; 4.482 ; Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein 6XRQ ; 1.21 ; Structural descriptions of ligand interactions to DNA and RNA quadruplexes folded from the non-coding region of Pseudorabies virus 2RN2 ; 1.48 ; STRUCTURAL DETAILS OF RIBONUCLEASE H FROM ESCHERICHIA COLI AS REFINED TO AN ATOMIC RESOLUTION 1ETU ; 2.9 ; STRUCTURAL DETAILS OF THE BINDING OF GUANOSINE DIPHOSPHATE TO ELONGATION FACTOR TU FROM E. COLI AS STUDIED BY X-RAY CRYSTALLOGRAPHY 5B6C ; 1.55 ; Structural Details of Ufd1 binding to p97 1TAG ; 1.8 ; STRUCTURAL DETERMINANTS FOR ACTIVATION OF THE ALPHA-SUBUNIT OF A HETEROTRIMERIC G PROTEIN 2K3H ; ; Structural determinants for Ca2+ and PIP2 binding by the C2A domain of rabphilin-3A 2XEE ; 2.1 ; Structural Determinants for Improved Thermal Stability of Designed Ankyrin Repeat Proteins With a Redesigned C-capping Module. 2XEH ; 1.81 ; Structural Determinants for Improved Thermal Stability of Designed Ankyrin Repeat Proteins With a Redesigned C-capping Module. 2XEN ; 2.2 ; Structural Determinants for Improved Thermal Stability of Designed Ankyrin Repeat Proteins With a Redesigned C-capping Module. 6DRX ; 3.1 ; Structural Determinants of Activation and Biased Agonism at the 5-HT2B Receptor 6DRY ; 2.918 ; Structural Determinants of Activation and Biased Agonism at the 5-HT2B Receptor 6DRZ ; 3.102 ; Structural Determinants of Activation and Biased Agonism at the 5-HT2B Receptor 6DS0 ; 3.188 ; Structural Determinants of Activation and Biased Agonism at the 5-HT2B Receptor 1MYM ; 1.7 ; STRUCTURAL DETERMINANTS OF CO STRETCHING VIBRATION FREQUENCIES IN MYOGLOBIN 4BHT ; 2.5 ; Structural Determinants of Cofactor Specificity and Domain Flexibility in Bacterial Glutamate Dehydrogenases 8PUO ; 1.8 ; Structural determinants of cold-activity and glucose tolerance of a family 1 glycoside hydrolase (GH1) from Antarctic Marinomonas Ef 1 1SEM ; 2.0 ; STRUCTURAL DETERMINANTS OF PEPTIDE-BINDING ORIENTATION AND OF SEQUENCE SPECIFICITY IN SH3 DOMAINS 2W07 ; 2.2 ; Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF 2YKU ; 1.9 ; Structural Determinants of the Beta-Selectivity of a Bacterial Aminotransferase 2YKV ; 1.9 ; Structural Determinants of the Beta-Selectivity of a Bacterial Aminotransferase 2YKX ; 1.85 ; Structural Determinants of the Beta-Selectivity of a Bacterial Aminotransferase 2YKY ; 1.69 ; Structural Determinants of the Beta-Selectivity of a Bacterial Aminotransferase 4AO4 ; 1.95 ; Structural Determinants of the beta-Selectivity of a Bacterial Aminotransferase 1GQ5 ; 2.2 ; Structural Determinants of the NHERF Interaction with beta2-AR and PDGFR 1GQ4 ; 1.9 ; STRUCTURAL DETERMINANTS OF THE NHERF INTERACTION WITH BETA2AR AND PDGFR 1Z14 ; 3.25 ; Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute Virus of Mice 1Z1C ; 3.5 ; Structural Determinants of Tissue Tropism and In Vivo Pathogenicity for the Parvovirus Minute virus of Mice 3U91 ; 1.45 ; Structural Determinants of Trimerization Specificity in HIV-1 gp41 Protein 3UIA ; 2.0 ; Structural Determinants of Trimerization Specificity in HIV-1 gp41 Protein 4HLR ; 1.57 ; Structural Determinants of Trimerization Specificity in HIV-1 gp41 Protein 7A6P ; 1.93 ; Structural determinants underlying the adduct lifetime in a short LOV protein PpSB2-LOV 5EII ; 2.44 ; Structural determination of an protein complex of a Fab with increased solubility 4M1B ; 1.99 ; Structural Determination of BA0150, a Polysaccharide Deacetylase from Bacillus anthracis 4JAD ; 1.9 ; STRUCTURAL DETERMINATION OF THE A50T:S279G:S280K:V281K:K282E:H283N VARIANT OF CITRATE SYNTHASE from E. COLI 4JAF ; 2.3 ; STRUCTURAL DETERMINATION OF THE A50T:S279G:S280K:V281K:K282E:H283N VARIANT OF CITRATE SYNTHASE FROM E. COLI COMPLEXED with NADH 4JAG ; 2.1 ; STRUCTURAL DETERMINATION OF THE A50T:S279G:S280K:V281K:K282E:H283N VARIANT OF CITRATE SYNTHASE FROM E. COLI COMPLEXED WITH oxaloacetate 4JAE ; 2.7 ; STRUCTURAL DETERMINATION OF THE A50T:S279G:S280K:V281K:K282E:H283N VARIANT OF CITRATE SYNTHASE FROM E. COLI complexed WITH S-CARBOXYMETHYL-COA 6NZY ; 1.9 ; Structural Determination of the Carboxy-terminal portion of ATP-citrate lyase 2M70 ; ; Structural determination of the Citrus sinensis Poly(A)-Binding Protein CsPABP1 1T4W ; 2.1 ; Structural Differences in the DNA Binding Domains of Human p53 and its C. elegans Ortholog Cep-1: Structure of C. elegans Cep-1 1SKX ; 2.8 ; Structural Disorder in the Complex of Human PXR and the Macrolide Antibiotic Rifampicin 3DBH ; 2.85 ; Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8's E1 (APPBP1-UBA3Arg190Ala-NEDD8Ala72Arg) 3DBR ; 3.05 ; Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8's E1 (APPBP1-UBA3Arg190Gln-NEDD8Ala72Arg) 3DBL ; 2.9 ; Structural Dissection of a Gating Mechanism Preventing Misactivation of Ubiquitin by NEDD8's E1 (APPBP1-UBA3Arg190wt-NEDD8Ala72Gln) 2ZOQ ; 2.39 ; Structural dissection of human mitogen-activated kinase ERK1 2B2B ; 1.5 ; Structural distortions in psoralen cross-linked DNA 2C52 ; ; Structural diversity in CBP p160 complexes 3G51 ; 1.8 ; Structural diversity of the active conformation of the N-terminal kinase domain of p90 ribosomal S6 kinase 2 2O6Q ; 2.5 ; Structural diversity of the hagfish Variable Lymphocyte Receptors A29 2O6S ; 1.5 ; Structural diversity of the hagfish Variable Lymphocyte Receptors B59 2O6R ; 2.3 ; Structural diversity of the hagfish Variable Lymphocyte Receptors B61 6FHN ; 2.0 ; Structural dynamics and catalytic properties of a multi-modular xanthanase (Pt derivative) 6FHJ ; 2.04 ; Structural dynamics and catalytic properties of a multi-modular xanthanase, native. 2MS5 ; ; Structural dynamics of double-helical RNA having CAG motif 3J3R ; 9.4 ; Structural dynamics of the MecA-ClpC complex revealed by cryo-EM 3J3S ; 11.0 ; Structural dynamics of the MecA-ClpC complex revealed by cryo-EM 3J3T ; 9.0 ; Structural dynamics of the MecA-ClpC complex revealed by cryo-EM 3J3U ; 10.0 ; Structural dynamics of the MecA-ClpC complex revealed by cryo-EM 3CNZ ; 2.9 ; Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein 3COB ; 2.2 ; Structural Dynamics of the Microtubule binding and regulatory elements in the Kinesin-like Calmodulin binding protein 1HKG ; 3.5 ; STRUCTURAL DYNAMICS OF YEAST HEXOKINASE DURING CATALYSIS 1AAL ; 1.6 ; STRUCTURAL EFFECTS INDUCED BY MUTAGENESIS AFFECTED BY CRYSTAL PACKING FACTORS: THE STRUCTURE OF A 30-51 DISULFIDE MUTANT OF BASIC PANCREATIC TRYPSIN INHIBITOR 7PTI ; 1.6 ; STRUCTURAL EFFECTS INDUCED BY REMOVAL OF A DISULFIDE BRIDGE. THE X-RAY STRUCTURE OF THE C30A(SLASH)C51A MUTANT OF BASIC PANCREATIC TRYPSIN INHIBITOR AT 1.6 ANGSTROMS 2NXR ; 1.7 ; Structural effects of hydrophobic mutations on the active site of human carbonic anhydrase II 7POF ; ; Structural effects of m6A modification of the Xist A repeat AUCG tetraloop and its recognition by YTHDC1 1B0D ; 1.84 ; Structural effects of monovalent anions on polymorphic lysozyme crystals 1B2K ; 1.6 ; Structural effects of monovalent anions on polymorphic lysozyme crystals 1HF4 ; 1.45 ; STRUCTURAL EFFECTS OF MONOVALENT ANIONS ON POLYMORPHIC LYSOZYME CRYSTALS 3U6M ; 2.1 ; Structural effects of sequence context on lesion recognition by MutM 6V7O ; 2.9 ; Structural Elucidation of Peptide Binding to KLHL-12, a Substrate Specific Adapter Protein in a Cul3-Ring E3 Ligase Complex 6OOL ; 2.8 ; Structural elucidation of the Ectodomain of mouse UNC5H2 2N6M ; ; Structural elucidation of the frog skin-derived peptide Esculentin-1a[Esc(1-21)NH2] inLipopolysaccharide and correlation with their function 2N0T ; ; Structural ensemble of the enzyme cyclophilin reveals an orchestrated mode of action at atomic resolution 4M4U ; 1.84 ; Structural evaluation D84A mutant of the aspergillus fumigatus kdnase (sialidase) 4M4V ; 1.84 ; Structural evaluation R171L mutant of the aspergillus fumigatus kdnase (sialidase) 4M4N ; 1.84 ; Structural evaluation the Y358H mutant of the aspergillus fumigatus kdnase (sialidase) 2JHF ; 1.0 ; Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase 2JHG ; 1.2 ; Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase 1NNT ; 2.3 ; STRUCTURAL EVIDENCE FOR A PH-SENSITIVE DI-LYSINE TRIGGER IN THE HEN OVOTRANSFERRIN N-LOBE: IMPLICATIONS FOR TRANSFERRIN IRON RELEASE 1K9V ; 2.4 ; Structural evidence for ammonia tunelling across the (beta-alpha)8-barrel of the imidazole glycerol phosphate synthase bienzyme complex 3ZR4 ; 2.41 ; STRUCTURAL EVIDENCE FOR AMMONIA TUNNELING ACROSS THE (BETA-ALPHA)8 BARREL OF THE IMIDAZOLE GLYCEROL PHOSPHATE SYNTHASE BIENZYME COMPLEX 1GPW ; 2.4 ; Structural evidence for ammonia tunneling across the (beta/alpha)8 barrel of the imidazole glycerol phosphate synthase bienzyme complex. 4N1C ; 1.7 ; Structural evidence for antigen receptor evolution 4N1E ; 2.23 ; Structural evidence for antigen receptor evolution 1NVU ; 2.2 ; Structural evidence for feedback activation by RasGTP of the Ras-specific nucleotide exchange factor SOS 1NVV ; 2.18 ; Structural evidence for feedback activation by RasGTP of the Ras-specific nucleotide exchange factor SOS 1NVW ; 2.7 ; Structural evidence for feedback activation by RasGTP of the Ras-specific nucleotide exchange factor SOS 1NVX ; 3.2 ; Structural evidence for feedback activation by RasGTP of the Ras-specific nucleotide exchange factor SOS 1HIM ; 2.9 ; STRUCTURAL EVIDENCE FOR INDUCED FIT AS A MECHANISM FOR ANTIBODY-ANTIGEN RECOGNITION 1HIN ; 3.1 ; STRUCTURAL EVIDENCE FOR INDUCED FIT AS A MECHANISM FOR ANTIBODY-ANTIGEN RECOGNITION 1HIL ; 2.0 ; STRUCTURAL EVIDENCE FOR INDUCED FIT AS A MECHANISM FOR ANTIGEN-ANTIBODY RECOGNITION 3ORD ; 2.22 ; Structural Evidence for Stabilization of Inhibitor Binding by a Protein Cavity in the Dehaloperoxidase-Hemoglobin from Amphitrite ornata 1PCH ; 1.8 ; STRUCTURAL EVIDENCE FOR THE EVOLUTIONARY DIVERGENCE OF MYCOPLASMA FROM GRAM-POSITIVE BACTERIA: THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN 7AAF ; ; Structural evolution of the tissue-specific U2AF2 paralog and alternative splicing factor LS2 7AAO ; ; Structural evolution of the tissue-specific U2AF2 paralog and alternative splicing factor LS2 2JL9 ; 3.2 ; Structural explanation for the role of Mn in the activity of phi6 RNA- dependent RNA polymerase 2JLF ; 3.2 ; STRUCTURAL EXPLANATION FOR THE ROLE OF MN IN THE ACTIVITY OF PHI6 RNA- DEPENDENT RNA POLYMERASE 2JLG ; 2.8 ; STRUCTURAL EXPLANATION FOR THE ROLE OF MN IN THE ACTIVITY OF PHI6 RNA-DEPENDENT RNA POLYMERASE 2PLV ; 2.88 ; STRUCTURAL FACTORS THAT CONTROL CONFORMATIONAL TRANSITIONS AND SEROTYPE SPECIFICITY IN TYPE 3 POLIOVIRUS 1D99 ; 2.5 ; STRUCTURAL FEATURES AND HYDRATION OF A DODECAMER DUPLEX CONTAINING TWO C.A MISPAIRS 2MXL ; ; Structural features of a 3' splice site in influenza A: 39-nt hairpin 2MXJ ; ; Structural features of a 3' splice site influenza A: 11-nt hairpin 2MXK ; ; Structural features of a 3' splice site influenza A: 19-nt duplex 1HA5 ; 2.82 ; Structural features of a zinc-binding site in the superantigen streptococcal pyrogenic exotoxin A (SpeA1): implications for MHC class II recognition. 1AZU ; 2.7 ; STRUCTURAL FEATURES OF AZURIN AT 2.7 ANGSTROMS RESOLUTION 2WK5 ; 2.99 ; Structural features of native human thymidine phosphorylase and in complex with 5-iodouracil 2WK6 ; 2.5 ; Structural features of native human thymidine phosphorylase and in complex with 5-iodouracil 4AGH ; 1.787 ; Structural features of ssDNA binding protein MoSub1 from Magnaporthe oryzae 2K9F ; ; Structural features of the complex between the DsbD N-terminal and the PilB N-terminal domains from Neisseria meningitidis 1AC7 ; ; STRUCTURAL FEATURES OF THE DNA HAIRPIN D(ATCCTAGTTATAGGAT): THE FORMATION OF A G-A BASE PAIR IN THE LOOP, NMR, 10 STRUCTURES 1HLP ; 3.2 ; STRUCTURAL FEATURES STABILIZING HALOPHILIC MALATE DEHYDROGENASE FROM AN ARCHAEBACTERIUM 2YPK ; 1.95 ; Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms 2YPL ; 2.4 ; Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms 3O2R ; 1.251 ; Structural flexibility in region involved in dimer formation of nuclease domain of Ribonuclase III (rnc) from Campylobacter jejuni 8RCQ ; 3.8 ; Structural flexibility of Nucleoprotein of the Toscana virus in the presence of a nanobody. 3QJM ; 2.311 ; Structural flexibility of Shank PDZ domain is important for its binding to different ligands 3QJN ; 2.71 ; Structural flexibility of Shank PDZ domain is important for its binding to different ligands 1ML8 ; 2.6 ; structural genomics 1R9H ; 1.8 ; Structural Genomics of C.elegans: FKBP-type Peptidylprolyl Isomerase 1OOJ ; 2.11 ; Structural genomics of Caenorhabditis elegans : Calmodulin 1OOE ; 1.65 ; Structural Genomics of Caenorhabditis elegans : Dihydropteridine reductase 1YIS ; 2.4 ; Structural genomics of Caenorhabditis elegans: adenylosuccinate lyase 1LPL ; 1.77 ; Structural Genomics of Caenorhabditis elegans: CAP-Gly domain of F53F4.3 1TOV ; 1.77 ; Structural genomics of Caenorhabditis elegans: CAP-GLY domain of F53F4.3 1YQ1 ; 3.0 ; Structural Genomics Of Caenorhabditis Elegans: glutathione S-Transferase 1QWK ; 1.6 ; Structural genomics of Caenorhabditis Elegans: Hypothetical 35.2 kDa protein (aldose reductase family member) 1T9F ; 2.0 ; Structural genomics of Caenorhabditis elegans: Structure of a protein with unknown function 1T7S ; 2.8 ; Structural Genomics of Caenorhabditis elegans: Structure of BAG-1 protein 1MO0 ; 1.7 ; Structural Genomics Of Caenorhabditis Elegans: Triose Phosphate Isomerase 1PGV ; 1.8 ; Structural Genomics of Caenorhabditis elegans: tropomodulin C-terminal domain 1Y9W ; 1.9 ; Structural Genomics, 1.9A crystal structure of an acetyltransferase from Bacillus cereus ATCC 14579 1SR8 ; 1.9 ; Structural Genomics, 1.9A crystal structure of cobalamin biosynthesis protein (cbiD) from Archaeoglobus fulgidus 1S7H ; 2.2 ; Structural Genomics, 2.2A crystal structure of protein YKOF from Bacillus subtilis 1RLJ ; 2.0 ; Structural Genomics, a Flavoprotein NrdI from Bacillus subtilis 1T5B ; 1.4 ; Structural genomics, A protein from Salmonella typhimurium similar to E. coli acyl carrier protein phosphodiesterase 1NQK ; 2.2 ; Structural Genomics, Crystal structure of Alkanesulfonate monooxygenase 1L7A ; 1.5 ; structural Genomics, crystal structure of Cephalosporin C deacetylase 1T8Q ; 2.0 ; Structural genomics, Crystal structure of Glycerophosphoryl diester phosphodiesterase from E. coli 1SQU ; 2.4 ; Structural Genomics, Crystal structure of the CheX protein from Thermotoga maritima 1I60 ; 1.6 ; Structural genomics, IOLI protein 1PC6 ; 2.51 ; Structural Genomics, NinB 1KTN ; 1.4 ; Structural Genomics, Protein EC1535 1K4N ; 1.6 ; Structural Genomics, Protein EC4020 1OTK ; 2.0 ; Structural Genomics, Protein paaC 1K7J ; 1.4 ; Structural Genomics, protein TF1 1KUT ; 2.2 ; Structural Genomics, Protein TM1243, (SAICAR synthetase) 1NMO ; 2.2 ; Structural genomics, protein ybgI, unknown function 1Q8B ; 1.9 ; Structural Genomics, protein YJCS 1PF5 ; 2.5 ; Structural Genomics, Protein YJGH 1NN4 ; 2.2 ; Structural Genomics, RpiB/AlsB 2O3G ; 2.55 ; Structural Genomics, the crystal structure of a conserved putative domain from Neisseria meningitidis MC58 2P0T ; 2.19 ; Structural Genomics, the crystal structure of a conserved putative protein from Pseudomonas syringae pv. tomato str. DC3000 2AO9 ; 1.9 ; Structural Genomics, The crystal structure of a Phage protein (phBC6A51) from Bacillus cereus ATCC 14579 2GEN ; 1.7 ; Structural Genomics, the crystal structure of a probable transcriptional regulator from Pseudomonas aeruginosa PAO1 2PMA ; 1.89 ; Structural Genomics, the crystal structure of a protein Lpg0085 with unknown function (DUF785) from Legionella pneumophila subsp. pneumophila str. Philadelphia 1. 2P0S ; 1.6 ; Structural Genomics, the crystal structure of a putative ABC transporter domain from Porphyromonas gingivalis W83 2OR0 ; 2.1 ; Structural Genomics, the crystal structure of a putative hydroxylase from Rhodococcus sp. RHA1 2AN1 ; 2.0 ; Structural Genomics, The crystal structure of a putative kinase from Salmonella typhimurim LT2 2OQT ; 2.41 ; Structural Genomics, the crystal structure of a putative PTS IIA domain from Streptococcus pyogenes M1 GAS 2HKU ; 2.0 ; Structural Genomics, the crystal structure of a putative transcriptional regulator from Rhodococcus sp. RHA1 2HXI ; 1.7 ; Structural Genomics, the crystal structure of a putative transcriptional regulator from Streptomyces coelicolor A3(2) 2HS5 ; 2.2 ; Structural Genomics, the crystal structure of a putative transcriptional regulator GntR from Rhodococcus sp. RHA1 1T33 ; 2.2 ; Structural Genomics, The crystal structure of a putative transcriptional repressor (TetR/AcrR family) from Salmonella typhimurim LT2 2GUP ; 2.01 ; Structural Genomics, the crystal structure of a ROK family protein from Streptococcus pneumoniae TIGR4 in complex with sucrose 2OF7 ; 2.3 ; Structural Genomics, the crystal structure of a tetR-family transcriptional regulator from Streptomyces coelicolor A3 2GNP ; 1.65 ; Structural Genomics, the crystal structure of a transcriptional regulator from Streptococcus pneumoniae TIGR4 1XIZ ; 2.0 ; Structural Genomics, The crystal structure of domain IIA of putative phosphotransferase system specific for mannitol/fructose from Salmonella typhimurium 2I9Z ; 2.3 ; Structural Genomics, the Crystal structure of full-length SpoVG from Staphylococcus epidermidis ATCC 12228 2NR7 ; 1.3 ; Structural Genomics, the crystal structure of putative secretion activator protein from Porphyromonas gingivalis W83 2I9X ; 1.8 ; Structural Genomics, the crystal structure of SpoVG conserved domain from Staphylococcus epidermidis ATCC 12228 2IA9 ; 3.0 ; Structural Genomics, the crystal structure of SpoVG from Bacillus subtilis subsp. subtilis str. 168 1Z9U ; 2.2 ; Structural Genomics, The crystal structure of the acetyl transferase, modifies N-terminal serine of 50S ribosomal subunit protein L7/L12 from Salmonella typhimurium 2PKH ; 1.95 ; Structural Genomics, the crystal structure of the C-terminal domain of histidine utilization repressor from Pseudomonas syringae pv. tomato str. DC3000 2IKK ; 1.8 ; Structural Genomics, the crystal structure of the C-terminal domain of Yurk from Bacillus subtilis subsp. subtilis str. 168 2PLS ; 2.15 ; Structural Genomics, the crystal structure of the CorC/HlyC transporter associated domain of a CBS domain protein from Chlorobium tepidum TLS 2PQQ ; 2.0 ; Structural Genomics, the crystal structure of the N-terminal domain of a transcriptional regulator from Streptomyces coelicolor A3(2) 2O3F ; 1.75 ; Structural Genomics, the crystal structure of the N-terminal domain of the putative transcriptional regulator ybbH from Bacillus subtilis subsp. subtilis str. 168. 1OJ7 ; 2.0 ; STRUCTURAL GENOMICS, UNKNOWN FUNCTION CRYSTAL STRUCTURE OF E. COLI K-12 YQHD 1NMP ; 2.2 ; Structural genomics, ybgI protein, unknown function 2FB5 ; 1.99 ; Structural Genomics; The crystal structure of the hypothetical membrane spanning protein from Bacillus cereus 2KT6 ; ; Structural homology between the C-terminal domain of the PapC usher and its plug 1PZD ; 2.31 ; Structural Identification of a conserved appendage domain in the carboxyl-terminus of the COPI gamma-subunit. 4UUY ; 2.14 ; Structural Identification of the Vps18 beta-propeller reveals a critical role in the HOPS complex stability and function. 5KGV ; ; Structural impact of single ribonucleotides in DNA 5KI4 ; ; Structural impact of single ribonucleotides in DNA 5KI5 ; ; Structural impact of single ribonucleotides in DNA 5KI7 ; ; Structural impact of single ribonucleotides in DNA 5KIB ; ; Structural impact of single ribonucleotides in DNA 5KIE ; ; Structural impact of single ribonucleotides in DNA 5KIF ; ; Structural impact of single ribonucleotides in DNA 5KIH ; ; Structural impact of single ribonucleotides in DNA 7KRQ ; 3.4 ; Structural impact on SARS-CoV-2 spike protein by D614G substitution 7KRR ; 3.5 ; Structural impact on SARS-CoV-2 spike protein by D614G substitution 7KRS ; 3.2 ; Structural impact on SARS-CoV-2 spike protein by D614G substitution 1FFF ; 1.9 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE : HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES. 1FEJ ; 1.78 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES 1FFI ; 1.7 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES 1FG6 ; 1.8 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES 1FG8 ; 1.85 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES 1FGC ; 1.9 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES 1FF0 ; 1.85 ; STRUCTURAL IMPLICATIONS OF DRUG RESISTANT MUTANTS OF HIV-1 PROTEASE: HIGH RESOLUTION CRYSTAL STRUCTURES OF THE MUTANT PROTEASE/SUBSTRATE ANALOG COMPLEXES. 5CV2 ; 2.693 ; Structural implications of homo-pyrimidine base pairs on the parallel-stranded d(GAY) motif 4ZYM ; 2.53 ; Structural implications of homo-pyrimidine base pairs on the parallel-stranded d(GAY) motif. 4L5W ; 1.7 ; Structural implications of the secondary CO2 binding pocket in human carbonic anhydrase II 2NCR ; ; Structural insight for dynamics of r(CGG) motif RNA found in Fragile X syndrome/ Fragile X tremor ataxia at 25 degree C 7YUA ; 2.5 ; Structural Insight into a Metal-Dependent Mutase MtdL Revealing an Arginine Residue Covalently Mediated Interconversion between Nucleotide-Based furanose and pyranose 7YV0 ; 2.34 ; Structural Insight into a Metal-Dependent Mutase MtdL Revealing an Arginine Residue Covalently Mediated Interconversion between Nucleotide-Based furanose and pyranose 6EHN ; 1.9 ; Structural insight into a promiscuous CE15 esterase from the marine bacterial metagenome 7YEQ ; 2.32 ; Structural insight into African Swine Fever Virus CP312R protein reveals it as a single-stranded DNA binding protein 2MVF ; ; Structural insight into an essential assembly factor network on the pre-ribosome 5GUF ; 2.397 ; Structural insight into an intramembrane enzyme for archaeal membrane lipids biosynthesis 2JL1 ; 1.96 ; Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase 4M7E ; 3.602 ; Structural insight into BL-induced activation of the BRI1-BAK1 complex 3RGX ; 2.47 ; Structural insight into brassinosteroid perception by BRI1 3RGZ ; 2.281 ; Structural insight into brassinosteroid perception by BRI1 7E8I ; 3.1 ; Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin 5GVX ; 2.596 ; Structural insight into dephosphorylation by Trehalose 6-phosphate Phosphatase (OtsB2) from Mycobacterium Tuberculosis 4MZ7 ; 1.8 ; Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase 4YW6 ; 1.4 ; Structural Insight into Divalent Galactoside Binding to Pseudomonas aeruginosa lectin LecA 4YW7 ; 1.82 ; Structural Insight into Divalent Galactoside Binding to Pseudomonas aeruginosa lectin LecA 4YWA ; 1.192 ; Structural Insight into Divalent Galactoside Binding to Pseudomonas aeruginosa lectin LecA 3HYR ; 2.2 ; Structural Insight into G Protein Coupling and Regulation of Fe2+ Membrane Transport 4KFV ; 2.2 ; Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 4KFW ; 2.7 ; Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 5IRB ; 2.0 ; Structural insight into host cell surface retention of a 1.5-MDa bacterial ice-binding adhesin 2MPV ; ; Structural insight into host recognition and biofilm formation by aggregative adherence fimbriae of enteroaggregative Esherichia coli 3M1V ; 1.45 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 3M2R ; 1.3 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 3M2U ; 1.4 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 3M2V ; 1.8 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 3M30 ; 1.45 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 3M32 ; 1.35 ; Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues 4QQR ; 2.7 ; Structural insight into nucleotide rhamnose synthase/epimerase-reductase from Arabidopsis thaliana 6IWM ; 1.98 ; Structural insight into probable lipid transfer mechanism of non-specific lipid transfer protein via intermediate structures in Solanum melongena 6IWN ; 2.408 ; Structural insight into probable lipid transfer mechanism of non-specific lipid transfer protein via intermediate structures in Solanum melongena 6IWO ; 2.35 ; Structural insight into probable lipid transfer mechanism of non-specific lipid transfer protein via intermediate structures in Solanum melongena 6IWP ; 2.4 ; Structural insight into probable lipid transfer mechanism of non-specific lipid transfer protein via intermediate structures in Solanum melongena 3FDS ; 2.05 ; Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA 4LMZ ; 2.78 ; Structural insight into RNA recognition by RRM1+2 domain of human ETR-3 protein 2GKD ; ; Structural insight into self-sacrifice mechanism of enediyne resistance 6XY4 ; 2.04623 ; Structural insight into sheep-pox virus mediated inhibition of apoptosis 6XY6 ; 2.91415 ; Structural insight into sheep-pox virus mediated inhibition of apoptosis 6TQP ; 1.84941 ; Structural insight into tanapoxvirus mediated inhibition of apoptosis 6TQQ ; 3.0018 ; Structural insight into tanapoxvirus mediated inhibition of apoptosis 6TRR ; 2.12007 ; Structural insight into tanapoxvirus mediated inhibition of apoptosis 5YJ7 ; 1.61 ; Structural insight into the beta-GH1 glucosidase BGLN1 from oleaginous microalgae Nannochloropsis 1Z3K ; ; Structural Insight into the Binding Diversity between the Tyr-Phosphorylated Human EphrinBs and Nck2 SH2 Domain 6LYW ; 1.7 ; Structural insight into the biological functions of Arabidopsis thaliana ACHT1 5EC3 ; 2.1 ; Structural insight into the catalyitc mechanism of human 4-Hydroxyphenylpyruvate dioxygenase 2Q8Y ; 2.0 ; Structural insight into the enzymatic mechanism of the phophothreonine lyase 2J9W ; 1.3 ; Structural insight into the ESCRT-I-II link and its role in MVB trafficking 4PJ3 ; 2.3 ; Structural insight into the function and evolution of the spliceosomal helicase Aquarius, Structure of Aquarius in complex with AMPPNP 2YN3 ; 2.12 ; Structural insight into the giant calcium-binding adhesin SiiE: implications for the adhesion of Salmonella enterica to polarized epithelial cells 2YN5 ; 1.85 ; Structural insight into the giant calcium-binding adhesin SiiE: implications for the adhesion of Salmonella enterica to polarized epithelial cells 2W2U ; 2.2 ; STRUCTURAL INSIGHT INTO THE INTERACTION BETWEEN ARCHAEAL ESCRT-III AND AAA-ATPASE 5Y3D ; 3.14 ; Structural insight into the interaction between RNA polymerase and VPg for norovirus replication 7XIV ; 2.498 ; Structural insight into the interactions between Lloviu virus VP30 and nucleoprotein 3C7U ; 2.2 ; Structural Insight into the Kinetics and Cp of interactions between TEM-1-Lactamase and BLIP 3C7V ; 2.07 ; Structural Insight into the Kinetics and Delta-Cp of interactions between TEM-1 Beta-Lactamase and BLIP 3A36 ; 2.8 ; Structural insight into the membrane insertion of tail-anchored proteins by Get3 3A37 ; 3.0 ; Structural insight into the membrane insertion of tail-anchored proteins by Get3 3FOE ; 4.001 ; Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases 3FOF ; 4.0 ; Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases 8K1C ; 1.894 ; Structural insight into the role of acetyl-CoA acetyltransferase from Fusobacterium nucleatum 7QRS ; 1.77 ; Structural insight into the Scribble PDZ domains interaction with the oncogenic Human T-cell lymphotrophic virus-1 (HTLV-1) Tax1 7QRT ; 1.9 ; Structural insight into the Scribble PDZ domains interaction with the oncogenic Human T-cell lymphotrophic virus-1 (HTLV-1) Tax1 7QS8 ; 1.85 ; Structural insight into the Scribble PDZ domains interaction with the oncogenic Human T-cell lymphotrophic virus-1 (HTLV-1) Tax1 3LEL ; 2.95 ; Structural Insight into the Sequence-Dependence of Nucleosome Positioning 4YWU ; 2.4 ; Structural insight into the substrate inhibition mechanism of NADP+-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes 4YWV ; 2.4 ; Structural insight into the substrate inhibition mechanism of NADP+-dependent succinic semialdehyde dehydrogenase from Streptococcus pyogenes 2OLU ; 2.9 ; Structural Insight Into the Transglycosylation Step Of Bacterial Cell Wall Biosynthesis : Apoenzyme 2OLV ; 2.8 ; Structural Insight Into the Transglycosylation Step Of Bacterial Cell Wall Biosynthesis : Donor Ligand Complex 2LHU ; ; Structural Insight into the Unique Cardiac Myosin Binding Protein-C Motif: A Partially Folded Domain 5Z0R ; 2.05 ; Structural insight into the Zika virus capsid encapsulating the viral genome 5Z0V ; 2.913 ; Structural insight into the Zika virus capsid encapsulating the viral genome 5MUN ; 1.8 ; Structural insight into zymogenic latency of gingipain K from Porphyromonas gingivalis. 5E09 ; 2.347 ; Structural Insight of a Trimodular Halophilic Cellulase with a Family 46 Carbohydrate-Binding Module 5E0C ; 2.351 ; Structural Insight of a Trimodular Halophilic Cellulase with a Family 46 Carbohydrate-Binding Module 5XI1 ; ; Structural Insight of Flavonoids binding to CAG repeat RNA that causes Huntington's Disease (HD) and Spinocerebellar Ataxia (SCAs) 7VUE ; 2.601 ; Structural insight of the molecular mechanism of cilofexor bound to FXR 3QDK ; 2.31 ; Structural insight on mechanism and diverse substrate selection strategy of ribulokinase 4YN6 ; 2.301 ; Structural Insight reveals dynamics in repeating r(CAG) transcript found in Huntington's disease (HD) and Spinocerebellar ataxias (SCAs) 1T1U ; 1.55 ; Structural Insights and Functional Implications of Choline Acetyltransferase 1XXS ; 1.8 ; Structural insights for fatty acid binding in a Lys49 phospholipase A2: crystal structure of myotoxin II from Bothrops moojeni complexed with stearic acid 3QO2 ; 2.49 ; Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9 6AGS ; 2.31 ; Structural insights for non-natural cofactor binding by the L310R/Q401C mutant of malic enzyme from Escherichia coli 4REB ; 4.2 ; Structural Insights into 5' Flap DNA Unwinding and Incision by the Human FAN1 Dimer 7E43 ; 2.2 ; Structural insights into a bifunctional peptide methionine sulfoxide reductase MsrA/B fusion protein from Helicobacter pylori 7CZL ; 3.78 ; Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus vulcanus 5JVK ; 2.5 ; Structural insights into a family 39 glycoside hydrolase from the gut symbiont Bacteroides cellulosilyticus WH2. 3UX9 ; 2.8 ; Structural insights into a human anti-IFN antibody exerting therapeutic potential for systemic lupus erythematosus 6INX ; 1.429 ; Structural insights into a novel glycoside hydrolase family 18 N-acetylglucosaminidase from Paenibacillus barengoltzii 6GIG ; ; Structural insights into AapA1 toxin 2MJW ; ; Structural Insights into Calcium Bound S100P - V Domain of the receptor for advanced glycation end products (RAGE) Complex 3OWV ; 1.75 ; Structural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae 2XNQ ; 1.3 ; Structural insights into cis element recognition of non- polyadenylated RNAs by the Nab3-RRM 2XNR ; 1.6 ; Structural insights into cis element recognition of non- polyadenylated RNAs by the Nab3-RRM 3VZ0 ; 2.3 ; Structural insights into cofactor and substrate selection by Gox0499 4V6K ; 8.25 ; Structural insights into cognate vs. near-cognate discrimination during decoding. 4V6L ; 13.2 ; Structural insights into cognate vs. near-cognate discrimination during decoding. 6TXR ; 2.5 ; Structural insights into cubane-modified aptamer recognition of a malaria biomarker 2Z7J ; 2.4 ; Structural insights into de multifunctional VP3 protein of birnaviruses:gold derivative 6OBT ; 1.8 ; Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases 6OBV ; 2.01 ; Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases 6JTG ; 2.4 ; Structural insights into G domain dimerization and pathogenic mutations of OPA1 4P7T ; 1.72 ; Structural insights into higher-order assembly and function of the bacterial microcompartment protein PduA 4P7V ; 1.93 ; Structural insights into higher-order assembly and function of the bacterial microcompartment protein PduA 7XOU ; 3.2 ; Structural insights into human brain gut peptide cholecystokinin receptors 7XOV ; 3.0 ; Structural insights into human brain gut peptide cholecystokinin receptors 7XOW ; 3.1 ; Structural insights into human brain gut peptide cholecystokinin receptors 8IA7 ; 3.1 ; Structural insights into human brain gut peptide cholecystokinin receptors 8P4A ; 3.6 ; Structural insights into human co-transcriptional capping - structure 1 8P4B ; 3.2 ; Structural insights into human co-transcriptional capping - structure 2 8P4C ; 3.8 ; Structural insights into human co-transcriptional capping - structure 3 8P4D ; 3.6 ; Structural insights into human co-transcriptional capping - structure 4 8P4E ; 3.9 ; Structural insights into human co-transcriptional capping - structure 5 8P4F ; 4.0 ; Structural insights into human co-transcriptional capping - structure 6 2M49 ; ; Structural Insights into Human S100B and Basic Fibroblast Growth Factor (FGF2) Interaction 8CLL ; 3.4 ; Structural insights into human TFIIIC promoter recognition 5UC6 ; 2.1 ; Structural insights into IL-1 alpha recognition by a naphthyl-modified aptamer that mimics IL-1RI Domain III 4GPQ ; 1.46 ; Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia 2NAT ; ; Structural insights into interaction of KYE28 and lipopolysachharide 5VRG ; 2.518 ; Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase 3F9Z ; 1.6 ; Structural Insights into Lysine Multiple Methylation by SET Domain Methyltransferases, SET8-Y245F / H4-Lys20 / AdoHcy 3F9W ; 1.6 ; Structural Insights into Lysine Multiple Methylation by SET Domain Methyltransferases, SET8-Y334F / H4-Lys20 / AdoHcy 3F9Y ; 1.5 ; Structural Insights into Lysine Multiple Methylation by SET Domain Methyltransferases, SET8-Y334F / H4-Lys20me1 / AdoHcy 3F9X ; 1.25 ; Structural Insights into Lysine Multiple Methylation by SET Domain Methyltransferases, SET8-Y334F / H4-Lys20me2 / AdoHcy 7D6D ; 9.0 ; Structural insights into membrane remodeling by SNX1 7D6E ; 10.0 ; Structural insights into membrane remodeling by SNX1 6IW7 ; 2.69212 ; structural insights into Mycobacterium tuberculosis ClpP1P2 inhibition by Cediranib: implications for developing antimicrobial agents targeting Clp protease 7X8X ; 3.24 ; structural insights into Mycobacterium tuberculosis ClpP1P2 inhibition by Cediranib: implications for developing antimicrobial agents targeting Clp protease 3DQV ; 3.0 ; Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation 3DPL ; 2.6 ; Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation. 7CXW ; 2.2 ; Structural insights into novel mechanisms of inhibition of the major b-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus (C116 flipped form) 7CXX ; 2.0 ; Structural insights into novel mechanisms of inhibition of the major b-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus (disulfide-bonded form) 7CXY ; 2.2 ; Structural insights into novel mechanisms of inhibition of the major b-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus (zinc-bound form) 7BP4 ; 2.1 ; Structural insights into nucleosome reorganization by NAP1-RELATED PROTEIN 1 (NRP1) 7BP5 ; 1.9 ; Structural insights into nucleosome reorganization by NAP1-RELATED PROTEIN 1 (NRP1) 7BP6 ; 1.58 ; Structural insights into nucleosome reorganization by NAP1-RELATED PROTEIN 1 (NRP1) 7C7X ; 3.0 ; Structural insights into nucleosome reorganization by NAP1-RELATED PROTEIN 1 (NRP1) 4IS0 ; 1.721 ; Structural Insights into Omega-Class Glutathione Transferases: A Snapshot of Enzyme Reduction and Identification of the Non-Catalytic Ligandin Site. 5YJG ; 2.399 ; Structural insights into periostin functions 5YJH ; 2.957 ; Structural insights into periostin functions 1E8X ; 2.2 ; STRUCTURAL INSIGHTS INTO PHOSHOINOSITIDE 3-KINASE ENZYMATIC MECHANISM AND SIGNALLING 3L4Q ; 2.3 ; Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein 8J5K ; 2.93 ; Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana 6TE4 ; 2.29 ; Structural insights into Pseudomonas aeruginosa Type six secretion system exported effector 8: Tse8 in complex with a peptide 6YHV ; 1.893 ; Structural insights into Pseudomonas aeruginosa Type six secretion system exported effector 8: unliganded Tse8 4FDF ; 2.202 ; Structural insights into putative molybdenum cofactor biosynthesis protein C (MoaC2) from Mycobacterium tuberculosis H37Rv 3VYX ; 2.29 ; Structural insights into RISC assembly facilitated by dsRNA binding domains of human RNA helicase (DHX9) 3VYY ; 2.9 ; Structural insights into RISC assembly facilitated by dsRNA binding domains of human RNA helicase A (DHX9) 2YKG ; 2.5 ; Structural insights into RNA recognition by RIG-I 4BPB ; 2.584 ; STRUCTURAL INSIGHTS INTO RNA RECOGNITION BY RIG-I 3VNB ; 1.5 ; Structural insights into small RNA sorting and mRNA binding by Arabidopsis Ago domains 3VNA ; 2.0 ; Structural insights into small RNA sorting and mRNA binding by Arabidopsis Ago Mid domains 3VZ2 ; 2.5 ; Structural insights into substrate and cofactor selection by sp2771 3VZ3 ; 1.69 ; Structural insights into substrate and cofactor selection by sp2771 3VZ1 ; 2.1 ; Structural insights into substrate and cofactor selelction by sp2771 5WMV ; 2.6 ; Structural Insights into Substrate and Inhibitor Binding Sites in Human Indoleamine 2,3-Dioxygenase 1 5WMW ; 3.03 ; Structural Insights into Substrate and Inhibitor Binding Sites in Human Indoleamine 2,3-Dioxygenase 1 5WMX ; 2.69 ; Structural Insights into Substrate and Inhibitor Binding Sites in Human Indoleamine 2,3-Dioxygenase 1 5WN8 ; 2.5 ; Structural Insights into Substrate and Inhibitor Binding Sites in Human Indoleamine 2,3-Dioxygenase 1 5WMU ; 2.4 ; Structural Insights into Substrate and Inhibitor Binding Sites in Human Indoleamine 2,3-Dioxygenase I 4RW3 ; 1.72 ; Structural insights into substrate binding of brown spider venom class II phospholipases D 4RW5 ; 1.64 ; Structural insights into substrate binding of brown spider venom class II phospholipases D 4LEP ; 3.2 ; Structural insights into substrate recognition in proton dependent oligopeptide transporters 3KRG ; 1.9 ; Structural insights into substrate specificity and the anti beta-elimination mechanism of pectate lyase 6KKS ; 2.15 ; Structural insights into target DNA recognition by R2R3-type MYB transcription factor 5CO4 ; 1.7 ; Structural insights into the 2-OH methylation of C/U34 on tRNA 3M4F ; 1.89 ; Structural insights into the acidophilic pH adaptation of a novel endo-1,4-beta-xylanase from Scytalidium acidophilum 7E6T ; 3.0 ; Structural insights into the activation of human calcium-sensing receptor 4DKI ; 2.9 ; Structural Insights into the Anti- Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole 8A3L ; 3.42 ; Structural insights into the binding of bS1 to the ribosome 2XAC ; 2.71 ; Structural Insights into the Binding of VEGF-B by VEGFR-1D2: Recognition and Specificity 5ZRC ; 1.1 ; Structural insights into the catalysis mechanism of M. smegmatis antimutator protein MutT2 2XD5 ; 2.5 ; Structural insights into the catalytic mechanism and the role of Streptococcus pneumoniae PBP1b 3P5S ; 1.95 ; Structural insights into the catalytic mechanism of CD38: Evidence for a conformationally flexible covalent enzyme-substrate complex 3GC6 ; 1.51 ; Structural insights into the catalytic mechanism of CD38: Evidence for a conformationally flexible covalent enzyme-substrate complex. 3GH3 ; 1.8 ; Structural insights into the catalytic mechanism of CD38: Evidence for a conformationally flexible covalent enzyme-substrate complex. 3GHH ; 1.94 ; Structural insights into the catalytic mechanism of CD38: Evidence for a conformationally flexible covalent enzyme-substrate complex. 3KOU ; 1.78 ; Structural insights into the catalytic mechanism of CD38: Evidence for a conformationally flexible covalent enzyme-substrate complex. 5YJD ; 2.26 ; Structural insights into the CRISPR-Cas-associated ribonuclease activity of Staphylococcus epidermidis Csm3 5YJC ; 2.007 ; Structural insights into the CRISPR-Cas-associated ribonuclease activity of Staphylococcus epidermidis Csm6 2D7D ; 2.1 ; Structural insights into the cryptic DNA dependent ATP-ase activity of UvrB 2L4L ; ; Structural insights into the cTAR DNA recognition by the HIV-1 Nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC 2CNE ; 1.8 ; Structural Insights into the Design of Nonpeptidic Isothiazolidinone- Containing Inhibitors of Protein Tyrosine Phosphatase 1B 2CNF ; 2.2 ; Structural Insights into the Design of Nonpeptidic Isothiazolidinone- Containing Inhibitors of Protein Tyrosine Phosphatase 1B 2CNG ; 1.9 ; Structural Insights into the Design of Nonpeptidic Isothiazolidinone- Containing Inhibitors of Protein Tyrosine Phosphatase 1B 2CNH ; 1.8 ; Structural Insights into the Design of Nonpeptidic Isothiazolidinone- Containing Inhibitors of Protein Tyrosine Phosphatase 1B 2CNI ; 2.0 ; Structural Insights into the Design of Nonpeptidic Isothiazolidinone- Containing Inhibitors of Protein Tyrosine Phosphatase 1B 2MH2 ; ; Structural insights into the DNA recognition and protein interaction domains reveal fundamental homologous DNA pairing properties of HOP2 4GF9 ; 2.8 ; Structural insights into the dual strategy of recognition of peptidoglycan recognition protein, PGRP-S: ternary complex of PGRP-S with LPS and fatty acid 5X9R ; 3.98 ; Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS 5XAR ; 3.62 ; Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS 5XAS ; 3.47 ; Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS 5XAT ; 3.76 ; Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS 2P05 ; 2.8 ; Structural Insights into the Evolution of a Non-Biological Protein 2P09 ; 1.65 ; Structural Insights into the Evolution of a Non-Biological Protein 5TUD ; 3.0 ; Structural Insights into the Extracellular Recognition of the Human Serotonin 2B Receptor by an Antibody 6B0T ; 2.8 ; Structural Insights into the Induced-fit Inhibition of Fascin by a Small Molecule 1P1D ; ; Structural Insights into the Inter-domain Chaperoning of Tandem PDZ Domains in Glutamate Receptor Interacting Proteins 1P1E ; ; Structural Insights into the Inter-domain Chaperoning of Tandem PDZ Domains in Glutamate Receptor Interacting Proteins 5GLF ; 2.25 ; Structural insights into the interaction of p97 N-terminal domain and SHP motif in Derlin-1 rhomboid pseudoprotease 5EPP ; 1.88 ; Structural Insights into the Interaction of p97 N-terminus Domain and VBM Motif in Rhomboid Protease, RHBDL4 5AMV ; 1.57 ; Structural insights into the loss of catalytic competence in pectate lyase at low pH 5CB3 ; 1.8 ; Structural Insights into the Mechanism of Escherichia coli Ymdb 5CB5 ; 2.8 ; Structural Insights into the Mechanism of Escherichia coli Ymdb 5CMS ; 2.98 ; Structural Insights into the Mechanism of Escherichia coli Ymdb 7VHP ; 3.27 ; Structural insights into the membrane microdomain organization by SPFH family proteins 7VHQ ; 3.27 ; Structural insights into the membrane microdomain organization by SPFH family proteins 3LAH ; 2.0 ; Structural insights into the molecular mechanism of H-NOX activation 3LAI ; 2.144 ; Structural insights into the molecular mechanism of H-NOX activation 3CVZ ; 2.4 ; Structural insights into the molecular organization of the S-layer from Clostridium difficile 2R18 ; 2.3 ; Structural insights into the multifunctional protein VP3 of Birnaviruses 4CID ; 3.0 ; Structural insights into the N-terminus of the EHD2 ATPase 4YPG ; 3.0 ; Structural Insights Into the Neutralization Properties of a Human Anti-Interferon Monoclonal Antibody 5O7J ; ; Structural insights into the periplasmic sensor domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa 5WBX ; 1.9 ; Structural insights into the potency of SK/IK channel positive modulators 5WC5 ; 2.3 ; Structural insights into the potency of SK/IK channel positive modulators 2WVA ; 2.2 ; Structural insights into the pre-reaction state of pyruvate decarboxylase from Zymomonas mobilis 2WVG ; 1.75 ; Structural insights into the pre-reaction state of pyruvate decarboxylase from Zymomonas mobilis 2WVH ; 2.3 ; Structural insights into the pre-reaction state of pyruvate decarboxylase from Zymomonas mobilis 1NHC ; 1.7 ; Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger 2ZKS ; 2.7 ; Structural insights into the proteolytic machinery of apoptosis-inducing Granzyme M 5DWX ; 2.71 ; Structural Insights into the Quadruplex-Duplex 3' Interface formed from a Telomeric Repeat - TLOOP 5DWW ; 2.79 ; Structural Insights into the Quadruplex-Duplex 3' Interface formed from a Telomeric Repeat - TTLOOP 5A3D ; 1.8 ; Structural insights into the recognition of cisplatin and AAF-dG lesions by Rad14 (XPA) 2V3S ; 1.7 ; Structural insights into the recognition of substrates and activators by the OSR1 kinase 2RT5 ; ; Structural insights into the recruitment of SMRT by the co-repressor SHARP under phosphorylative regulation 5C8B ; 2.7 ; Structural insights into the redesign of a sucrose phosphorylase by induced loop repositioning 4HA7 ; 2.1 ; Structural insights into the reduction mechanism of Saccharomyces cerevisia Riboflavin Biosynthesis Reductase Rib7 4HA9 ; 2.35 ; Structural insights into the reduction mechanism of Saccharomyces cerevisia Riboflavin Biosynthesis Reductase Rib7 5C6G ; 2.6 ; Structural Insights into the Scc2-Scc4 Cohesin Loader 2L9C ; ; Structural insights into the specificity of darcin, an atypical major urinary protein. 7V58 ; 1.84 ; Structural insights into the substrate selectivity of acyl-CoA transferase 7V5I ; 3.08 ; Structural insights into the substrate selectivity of acyl-CoA transferase 7EE2 ; 1.37012 ; Structural insights into the substrate-binding mechanism of a glycoside hydrolase family 12 beta-1,3-1,4-glucanase from Chaetomium sp.CQ31 6AID ; 1.3 ; Structural insights into the unique polylactate degrading mechanism of Thermobifida alba cutinase 4LJK ; 2.354 ; Structural insights into the unique single-stranded DNA binding mode of DNA processing protein A from Helicobacter pylori 4LJL ; 2.2 ; Structural insights into the unique single-stranded DNA binding mode of DNA processing protein A from Helicobacter pylori 4LJR ; 1.8 ; Structural insights into the unique single-stranded DNA binding mode of DNA processing protein A from Helicobacter pylori 5WGG ; 2.036 ; Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides 5WHY ; 2.692 ; Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides 3SF8 ; 1.56 ; Structural insights into thiol stabilization of DJ-1 3UL3 ; 2.905 ; Structural insights into thioredoxin-2: a component of malaria parasite protein secretion machinery 4CSF ; 2.598 ; Structural insights into Toscana virus RNA encapsidation 4CSG ; 3.32 ; Structural insights into Toscana virus RNA encapsidation 6NU2 ; 3.9 ; Structural insights into unique features of the human mitochondrial ribosome recycling 6NU3 ; 4.4 ; Structural insights into unique features of the human mitochondrial ribosome recycling 7DOP ; 2.38 ; Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1 4BQO ; 1.56 ; Structural insights into WcbI, a novel polysaccharide biosynthesis enzyme. Native protein without disulfide bond between COA and Cys14. 4BQN ; 1.38 ; Structural insights into WcbI, a novel polysaccharide biosynthesis enzyme. Native protein. 4NQ0 ; 2.1 ; Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones 4HGD ; 2.04 ; Structural insights into yeast Nit2: C169S mutant of yeast Nit2 in complex with an endogenous peptide-like ligand 4H5U ; 1.92 ; Structural insights into yeast Nit2: wild-type yeast Nit2 4HG3 ; 1.93 ; Structural insights into yeast Nit2: wild-type yeast Nit2 in complex with alpha-ketoglutarate 4HG5 ; 1.91 ; Structural insights into yeast Nit2: wild-type yeast Nit2 in complex with oxaloacetate 3NTT ; 3.45 ; Structural insights of Adeno-Associated virus 5. A gene therapy Vector for Cystic Fibrosis 6IOZ ; 3.1 ; Structural insights of idursulfase beta 5E9H ; 2.3 ; Structural insights of isocitrate lyases from Fusarium graminearum 5E9F ; 2.8 ; Structural insights of isocitrate lyases from Magnaporthe oryzae 5E9G ; 2.1 ; Structural insights of isocitrate lyases from Magnaporthe oryzae 4KTV ; 3.3 ; Structural insights of MAT enzymes: MATa2b complexed with adenosine and pyrophosphate 4KTT ; 2.59 ; Structural insights of MAT enzymes: MATa2b complexed with SAM 4NDN ; 2.34 ; Structural insights of MAT enzymes: MATa2b complexed with SAM and PPNP 2NCQ ; ; Structural insights of r(CGG) motif found in Fragile X Syndrome and Fragile-X associated tremor/ataxia syndrome (FXTAS) at 45 degree C 3EKI ; 1.6 ; Structural insights of the Mycoplasma hyorhinis protein Mh-p37: A putative thiamine pyrophosphate transporter 5IUY ; 2.29 ; Structural insights of the outer-membrane channel OprN 2MOF ; ; Structural insights of TM domain of LAMP-2A in DPC micelles 2MOM ; ; Structural insights of TM domain of LAMP-2A in DPC micelles 2PFF ; 4.0 ; Structural Insights of Yeast Fatty Acid Synthase 6O9N ; 2.598 ; Structural insights on a new fungal aryl-alcohol oxidase 8AU4 ; ; Structural insights reveal a heterotetramer between oncogenic K-Ras4BG12V and Rgl2, a RalA/B activator 4DEN ; 1.6 ; Structural insightsinto potent, specific anti-HIV property of actinohivin; Crystal structure of actinohivin in complex with alpha(1-2) mannobiose moiety of high-mannose type glycan of gp120 3AJF ; 2.0 ; Structural insigths into dsRNA binding and RNA silencing suppression by NS3 protein of rice hoja blanca tenuivirus 1ATL ; 1.8 ; Structural interaction of natural and synthetic inhibitors with the VENOM METALLOPROTEINASE, ATROLYSIN C (FORM-D) 1HTD ; 2.1 ; STRUCTURAL INTERACTION OF NATURAL AND SYNTHETIC INHIBITORS WITH THE VENOM METALLOPROTEINASE, ATROLYSIN C (HT-D) 5MDM ; 2.998 ; Structural intermediates in the fusion associated transition of vesiculovirus glycoprotein 4DQJ ; 1.23 ; Structural Investigation of Bacteriophage Phi6 Lysin (in complex with chitotetraose) 4DQ7 ; 1.4 ; Structural Investigation of Bacteriophage Phi6 Lysin (V207F mutant) 4DQ5 ; 1.395 ; Structural Investigation of Bacteriophage Phi6 Lysin (WT) 2MQL ; ; Structural Investigation of hnRNP L 2MQM ; ; Structural Investigation of hnRNP L 2MQN ; ; Structural Investigation of hnRNP L 4QPT ; 1.351 ; Structural Investigation of hnRNP L 2MQO ; ; Structural Investigation of hnRNP L bound to RNA 2MQP ; ; Structural Investigation of hnRNP L bound to RNA 2MQQ ; ; Structural Investigation of hnRNP L bound to RNA 1JH8 ; 1.8 ; Structural Investigation of the Biosynthesis of Alternative Lower Ligands for Cobamides by Nicotinate Mononucleotide:5,6-Dimethylbenzimidazole Phosphoribosyltransferase (CobT) from Salmonella enterica 1JHA ; 2.0 ; Structural Investigation of the Biosynthesis of Alternative Lower Ligands for Cobamides by Nicotinate Mononucleotide:5,6-Dimethylbenzimidazole Phosphoribosyltransferase (CobT) from Salmonella enterica 2NZ4 ; 2.498 ; Structural investigation of the GlmS ribozyme bound to its catalytic cofactor 6HQC ; 1.28 ; Structural investigation of the TasA anchoring protein TapA from Bacillus subtilis 6QAY ; ; Structural investigation of the TasA anchoring protein TapA from Bacillus subtilis 4C5R ; 2.14 ; Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-Aminomutase from Taxus chinensis 4C5S ; 1.85 ; Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-Aminomutase from Taxus chinensis 4C5U ; 2.19 ; Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-Aminomutase from Taxus chinensis 4C6G ; 2.1 ; Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-Aminomutase from Taxus chinensis 4CQ5 ; 1.9 ; Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-Aminomutase from Taxus chinensis 7OBN ; 2.45 ; Structural investigations of a new L3 DNA ligase: structure-function analysis 5VVO ; 2.6 ; Structural Investigations of the Substrate Specificity of Human O-GlcNAcase 5VVT ; 2.8 ; Structural Investigations of the Substrate Specificity of Human O-GlcNAcase 5VVU ; 2.7 ; Structural Investigations of the Substrate Specificity of Human O-GlcNAcase 5VVV ; 2.8 ; Structural Investigations of the Substrate Specificity of Human O-GlcNAcase 5VVX ; 2.9 ; Structural Investigations of the Substrate Specificity of Human O-GlcNAcase 4WI2 ; 1.9 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc (wild-type) 4WI5 ; 2.8 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation H310A 4WI7 ; 1.9 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation H435A 4WI3 ; 2.703 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation I253A 4WI9 ; 2.65 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation I253A/H310A 4WI6 ; 2.201 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation N434A 4WI4 ; 2.8 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation S254A 4WI8 ; 2.8 ; Structural mapping of the human IgG1 binding site for FcRn: hu3S193 Fc mutation Y436A 7BP2 ; 1.58 ; Structural mechanism directing nucleosome reorganization by NAP1-RELATED PROTEIN 1 (NRP1) 2LR1 ; ; Structural Mechanism for Bax Inhibition by Cytomegalovirus Protein vMIA 1GPA ; 2.9 ; STRUCTURAL MECHANISM FOR GLYCOGEN PHOSPHORYLASE CONTROL BY PHOSPHORYLATION AND AMP 7GPB ; 2.9 ; STRUCTURAL MECHANISM FOR GLYCOGEN PHOSPHORYLASE CONTROL BY PHOSPHORYLATION AND AMP 8GPB ; 2.2 ; STRUCTURAL MECHANISM FOR GLYCOGEN PHOSPHORYLASE CONTROL BY PHOSPHORYLATION AND AMP 2NZU ; 2.5 ; Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors G6P and FBP 2NZV ; 3.0 ; Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors G6P and FBP 2OEN ; 3.17 ; Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose-6-phosphate and fructose-1,6-bisphosphate 1UNL ; 2.2 ; Structural mechanism for the inhibition of CD5-p25 from the roscovitine, aloisine and indirubin. 1UNG ; 2.3 ; Structural mechanism for the inhibition of CDK5-p25 by roscovitine, aloisine and indirubin. 1UNH ; 2.35 ; Structural mechanism for the inhibition of CDK5-p25 by roscovitine, aloisine and indirubin. 1XJF ; 2.4 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dATP complex 1XJN ; 2.25 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dATP-CDP complex 1XJG ; 2.5 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dATP-UDP complex 1XJJ ; 1.86 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dGTP complex 1XJK ; 2.12 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dGTP-ADP complex 1XJM ; 2.4 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dTTP complex 1XJE ; 1.9 ; Structural mechanism of allosteric substrate specificity in a ribonucleotide reductase: dTTP-GDP complex 1J04 ; 2.6 ; Structural mechanism of enzyme mistargeting in hereditary kidney stone disease in vitro 4U6P ; 2.593 ; Structural mechanism of error-free bypass of major benzo[a]pyrene adduct by human polymerase kappa 4YIA ; 1.58 ; Structural mechanism of hormone release in thyroxine binding globulin 1XPU ; 3.05 ; Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic 5a-(3-formylphenylsulfanyl)-dihydrobicyclomycin (FPDB) 1XPR ; 3.15 ; Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic 5a-formylbicyclomycin (FB) 1XPO ; 3.15 ; Structural mechanism of inhibition of the Rho transcription termination factor by the antibiotic bicyclomycin 5DE2 ; 2.78 ; Structural mechanism of Nek7 activation by Nek9-induced dimerisation 6M4D ; 4.4 ; Structural mechanism of nucleosome dynamics governed by human histone variants H2A.B and H2A.Z.2.2 6M4G ; 2.8 ; Structural mechanism of nucleosome dynamics governed by human histone variants H2A.B and H2A.Z.2.2 6M4H ; 3.9 ; Structural mechanism of nucleosome dynamics governed by human histone variants H2A.B and H2A.Z.2.2 6THK ; 2.2 ; Structural mechanism of pyocin S5 import into Pseudomonas aeruginosa 3J67 ; 34.0 ; Structural mechanism of the dynein powerstroke (post-powerstroke state) 3J68 ; 30.0 ; Structural mechanism of the dynein powerstroke (pre-powerstroke state) 4I5L ; 2.43 ; Structural mechanism of trimeric PP2A holoenzyme involving PR70: insight for Cdc6 dephosphorylation 4I5N ; 2.8 ; Structural mechanism of trimeric PP2A holoenzyme involving PR70: insight for Cdc6 dephosphorylation 5T90 ; 2.8 ; Structural mechanisms for alpha-conotoxin selectivity at the human alpha3beta4 nicotinic acetylcholine receptor 1RR8 ; 2.6 ; Structural Mechanisms of Camptothecin Resistance by Mutations in Human Topoisomerase I 1RRJ ; 2.3 ; Structural Mechanisms of Camptothecin Resistance by Mutations in Human Topoisomerase I 5JDH ; 2.203 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 10 mM Na+ and 10mM Ca2+ 5JDN ; 2.3 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 10 mM Na+ and 10mM Sr2+ 5HWY ; 2.098 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 10 mM Na+ and zero Ca2+ 5JDQ ; 2.5 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 100 mM Na+ and 10mM Sr2+ 5HXE ; 2.288 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 100 mM Na+ and zero Ca2+ 5JDG ; 2.407 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 0.1mM Ca2+ 5JDM ; 2.558 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 0.1mM Sr2+ 5HXR ; 2.463 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 10mM Ca2+ 5HXS ; 2.789 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 10mM Sr2+ 5JDF ; 2.65 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 1mM Ca2+ 5JDL ; 2.904 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and 1mM Sr2+ 5HWX ; 2.4 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 2.5 mM Na+ and zero Ca2+ 5HXC ; 2.101 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with 20 mM Na+ and zero Ca2+ 5HXH ; 2.804 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchanger NCX_Mj soaked with zero Na+ and Ca2+ 5HYA ; 1.897 ; Structural mechanisms of extracellular ion exchange and induced binding-site occlusion in the sodium-calcium exchangerNCX_Mj soaked with 150 mM Na+ and nominal Ca2+ 4JBJ ; 2.692 ; Structural mimicry for functional antagonism 4ZS7 ; 2.93 ; Structural mimicry of receptor interaction by antagonistic IL-6 antibodies 5XAJ ; 2.5 ; Structural mimicry of the dengue virus envelope glycoprotein revealed by the crystallographic study of an idiotype-anti-idiotype Fab complex. 2LMQ ; ; Structural Model for a 40-residue Beta-Amyloid Fibril with Three-Fold Symmetry, Negative Stagger 2LMP ; ; Structural Model for a 40-residue Beta-Amyloid Fibril with Three-Fold Symmetry, Positive Stagger 2LMO ; ; Structural Model for a 40-Residue Beta-Amyloid Fibril with Two-Fold Symmetry, Negative Stagger 2LMN ; ; Structural Model for a 40-Residue Beta-Amyloid Fibril with Two-Fold Symmetry, Positive Stagger 1LMS ; ; Structural model for an alkaline form of ferricytochrome c 7JXG ; ; Structural model for Fe-containing human acireductone dioxygenase 2VER ; ; Structural model for the complex between the Dr adhesins and carcinoembryonic antigen (CEA) 2HJI ; ; Structural model for the Fe-containing isoform of acireductone dioxygenase 1Z1D ; ; Structural Model for the interaction between RPA32 C-terminal domain and SV40 T antigen origin binding domain. 2FTC ; 12.1 ; Structural Model for the Large Subunit of the Mammalian Mitochondrial Ribosome 8IS3 ; ; Structural model for the micelle-bound indolicidin-like peptide in solution 2NCA ; ; Structural Model for the N-terminal Domain of Human Cdc37 5KGF ; 4.54 ; Structural model of 53BP1 bound to a ubiquitylated and methylated nucleosome, at 4.5 A resolution 5JS7 ; ; Structural model of a apo G-protein alpha subunit determined with NMR residual dipolar couplings and SAXS 5JS8 ; ; Structural Model of a Protein alpha subunit in complex with GDP obtained with SAXS and NMR residual couplings 2LWB ; ; Structural model of BAD-1 repeat loop by NMR 1ZY3 ; ; Structural model of complex of Bcl-w protein with Bid BH3-peptide 1M11 ; 16.0 ; structural model of human decay-accelerating factor bound to echovirus 7 from cryo-electron microscopy 4A6J ; 7.2 ; Structural model of ParM filament based on CryoEM map 3IKU ; 18.0 ; Structural model of ParM filament in closed state from cryo-EM 3IKY ; 18.0 ; Structural model of ParM filament in the open state by cryo-EM 5HQ2 ; 4.5 ; Structural model of Set8 histone H4 Lys20 methyltransferase bound to nucleosome core particle 2MKK ; ; Structural model of tandem RRM domains of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in complex with RNA 1E08 ; ; Structural model of the [Fe]-Hydrogenase/cytochrome c553 complex combining NMR and soft-docking 2K92 ; ; Structural modification of acyl carrier protein by butyryl group 2K93 ; ; Structural modification of acyl carrier protein by butyryl group 2K94 ; ; Structural modification of acyl carrier protein by butyryl group 2MUD ; ; Structural modifications to a high-activity binding peptide located whitin the PfEMP1 NTS domain induce protection against P. falciparum malaria in Aotus monkeys 5Z87 ; 2.3 ; Structural of a novel b-glucosidase EmGH1 at 2.3 angstrom from Erythrobacter marinus 2J5S ; 1.57 ; Structural of ABDH, a beta-diketone hydrolase from the Cyanobacterium Anabaena sp. PCC 7120 bound to (S)-3-oxocyclohexyl acetic acid 4BMA ; 2.08 ; structural of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase 4E8H ; 2.12 ; Structural of Bombyx mori glutathione transferase BmGSTD1 complex with GTT 4CBA ; 3.1 ; Structural of delta 1-76 CTNNBL1 in space group I222 8T9Z ; 2.995 ; Structural of M8C10 Fab in complex human metapneumovirus fusion protein 2FYZ ; 2.2 ; Structural of Mumps virus fusion protein core 5WYD ; 2.101 ; Structural of Pseudomonas aeruginosa DspI 5YLO ; 2.39 ; Structural of Pseudomonas aeruginosa PA4980 5Z8O ; 1.95 ; Structural of START superfamily protein MSMEG_0129 from Mycobacterium smegmatis 7W85 ; 2.94 ; Structural of the filamentous Escherichia coli glutamine synthetase 5YBH ; 2.5 ; Structural of the highly conserved ATPase from type III secretion system of bacterial pathogens 3L1A ; 2.69 ; Structural ordering of disordered ligand binding loops of biotin protein ligase into active conformations as a consequence of dehydration 7QTT ; 3.1 ; Structural organization of a late activated human spliceosome (Baqr, core region) 4IFF ; 2.3 ; Structural organization of FtsB, a transmembrane protein of the bacterial divisome 1STP ; 2.6 ; STRUCTURAL ORIGINS OF HIGH-AFFINITY BIOTIN BINDING TO STREPTAVIDIN 2HPA ; 2.9 ; STRUCTURAL ORIGINS OF L(+)-TARTRATE INHIBITION OF HUMAN PROSTATIC ACID PHOSPHATASE 1D9H ; 1.6 ; Structural origins of the exonuclease resistance of a zwitterionic RNA 337D ; 1.85 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 338D ; 1.85 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 339D ; 2.2 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 340D ; 1.6 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 341D ; 1.75 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 342D ; 2.1 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 343D ; 2.1 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 345D ; 1.85 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 346D ; 2.1 ; STRUCTURAL PARAMETERS FROM SINGLE-CRYSTAL STRUCTURES FOR ACCURATE MODELS OF A-DNA 1P09 ; 2.2 ; STRUCTURAL PLASTICITY AS A DETERMINANT OF ENZYME SPECIFICITY. CREATING BROADLY SPECIFIC PROTEASES 1P10 ; 2.25 ; STRUCTURAL PLASTICITY AS A DETERMINANT OF ENZYME SPECIFICITY. CREATING BROADLY SPECIFIC PROTEASES 1AXI ; 2.1 ; STRUCTURAL PLASTICITY AT THE HGH:HGHBP INTERFACE 2OZ4 ; 2.7 ; Structural Plasticity in IgSF Domain 4 of ICAM-1 Mediates Cell Surface Dimerization 1KFR ; 1.85 ; Structural plasticity in the eight-helix fold of a trematode hemoglobin 4UD4 ; 1.74 ; Structural Plasticity of Cid1 Provides a Basis for its RNA Terminal Uridylyl Transferase Activity 4UD5 ; 2.52 ; Structural Plasticity of Cid1 Provides a Basis for its RNA Terminal Uridylyl Transferase Activity 3J89 ; 3.6 ; Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies 2LEW ; ; Structural Plasticity of Paneth cell alpha-Defensins: Characterization of Salt-Bridge Deficient Analogues of Mouse Cryptdin-4 4DDQ ; 3.3 ; Structural plasticity of the Bacillus subtilis GyrA homodimer 6WQF ; 2.3 ; Structural Plasticity of the SARS-CoV-2 3CL Mpro Active Site Cavity Revealed by Room Temperature X-ray Crystallography 4N8M ; 1.802 ; Structural polymorphism in the N-terminal oligomerization domain of NPM1 1W8P ; 2.08 ; Structural properties of the B25Tyr-NMe-B26Phe insulin mutant. 4Q2R ; 1.65 ; Structural Proteomics From Crude Native Rod Outer Segments 1XUW ; 1.25 ; Structural rationalization of a large difference in RNA affinity despite a small difference in chemistry between two 2'-O-modified nucleic acid analogs 1XUX ; 1.3 ; Structural rationalization of a large difference in RNA affinity despite a small difference in chemistry between two 2'-O-modified nucleic acid analogs 4N7C ; 1.75 ; Structural re-examination of native Bla g 4 1TA8 ; 1.8 ; Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal 1TAE ; 2.7 ; Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal 3D5O ; 2.8 ; Structural recognition and functional activation of FcrR by innate pentraxins 2MEV ; 3.0 ; STRUCTURAL REFINEMENT AND ANALYSIS OF MENGO VIRUS 6POJ ; ; STRUCTURAL REFINEMENT OF AQUAPORIN 1 VIA SSNMR 1REW ; 1.863 ; Structural refinement of the complex of bone morphogenetic protein 2 and its type IA receptor 1NFP ; 1.6 ; STRUCTURAL REFINEMENT OF THE NON-FLUORESCENT FLAVOPROTEIN FROM PHOTOBACTERIUM LEIOGNATHI AT 1.60 ANGSTROMS RESOLUTION 2KHH ; ; Structural requirements for the UBA domain of the mRNA export factor Mex67 to bind its specific targets, the transcription elongation Tho complex component Hpr1 and nucleoporin FxFG repeats 1B27 ; 2.1 ; STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE 1B2S ; 1.82 ; STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE 1B2U ; 2.1 ; STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE 1B3S ; 2.39 ; STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE 1R63 ; ; STRUCTURAL ROLE OF A BURIED SALT BRIDGE IN THE 434 REPRESSOR DNA-BINDING DOMAIN, NMR, 20 STRUCTURES 2R63 ; ; STRUCTURAL ROLE OF A BURIED SALT BRIDGE IN THE 434 REPRESSOR DNA-BINDING DOMAIN, NMR, 20 STRUCTURES 2I9V ; 2.2 ; Structural role of Y98 in PYP: effects on fluorescence, gateway and photocycle recovery 6QUP ; 1.871 ; Structural signatures in EPR3 define a unique class of plant carbohydrate receptors 5H4P ; 3.07 ; Structural snapshot of cytoplasmic pre-60S ribosomal particles bound with Nmd3, Lsg1, Tif6 and Reh1 4AOH ; 1.041 ; Structural snapshots and functional analysis of human angiogenin variants associated with Amyotrophic Lateral Sclerosis (ALS) 7M2H ; 2.642 ; Structural Snapshots of Intermediates in the Gating of a K+ Channel 7M2I ; 2.695 ; Structural Snapshots of Intermediates in the Gating of a K+ Channel 7M2J ; 3.201 ; Structural Snapshots of Intermediates in the Gating of a K+ Channel 7RP0 ; 2.48 ; Structural Snapshots of Intermediates in the Gating of a K+ Channel 6H3I ; 3.5 ; Structural snapshots of the Type 9 protein translocon 6H3J ; 3.7 ; Structural snapshots of the Type 9 protein translocon Plug-complex 5NTI ; 2.4 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NTK ; 1.9 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NTN ; 1.9 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NTP ; 1.7 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NTQ ; 2.26 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NTW ; 1.64 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 5NU1 ; 1.85 ; Structural states of RORgt: X-ray elucidation of molecular mechanisms and binding interactions for natural and synthetic compounds 7LUW ; ; Structural studies about ScnTx neurotoxin using Solution NMR 2D and 3D 4FRF ; 2.9 ; Structural Studies and Protein Engineering of Inositol Phosphate Multikinase 2FFZ ; 2.05 ; Structural Studies Examining the Substrate Specificity Profiles of PC-PLCBc Protein Variants 2FGN ; 2.04 ; Structural Studies Examining the Substrate Specificity Profiles of PC-PLCBc Protein Variants 2HUC ; 1.9 ; Structural Studies Examining the Substrate Specificity Profiles of PC-PLCBc Protein Variants 1EZE ; ; STRUCTURAL STUDIES OF A BABOON (PAPIO SP.) PLASMA PROTEIN INHIBITOR OF CHOLESTERYL ESTER TRANSFERASE. 5NBS ; 2.25 ; Structural studies of a Glycoside Hydrolase Family 3 beta-glucosidase from the Model Fungus Neurospora crassa 1BE5 ; ; STRUCTURAL STUDIES OF A STABLE PARALLEL-STRANDED DNA DUPLEX INCORPORATING ISOGUANINE:CYTOSINE AND ISOCYTOSINE:GUANINE BASE PAIRS BY NMR, MINIMIZED AVERAGE STRUCTURE 4UHD ; 1.07 ; Structural studies of a thermophilic esterase from Thermogutta terrifontis (acetate bound) 4UHH ; 1.06 ; Structural studies of a thermophilic esterase from Thermogutta terrifontis (cacodylate complex) 4UHF ; 1.08 ; Structural studies of a thermophilic esterase from Thermogutta terrifontis (L37A mutant with butyrate bound) 4UHE ; 1.16 ; Structural studies of a thermophilic esterase from Thermogutta terrifontis (malate bound) 4UHC ; 1.03 ; Structural studies of a thermophilic esterase from Thermogutta terrifontis (Native) 5DCX ; 2.6 ; Structural studies of AAV2 Rep68 reveal a partially structured linker and compact domain conformation 3RA2 ; 2.7 ; Structural studies of AAV8 capsid transitions associated with endosomal trafficking 3RA4 ; 2.7 ; Structural studies of AAV8 capsid transitions associated with endosomal trafficking 3RA8 ; 2.7 ; Structural studies of AAV8 capsid transitions associated with endosomal trafficking 3RA9 ; 2.7 ; Structural studies of AAV8 capsid transitions associated with endosomal trafficking 3RAA ; 3.2 ; Structural studies of AAV8 capsid transitions associated with endosomal trafficking 3BGT ; 2.1 ; Structural Studies of Acetoacetate Decarboxylase 3BH2 ; 2.4 ; Structural Studies of Acetoacetate Decarboxylase 1F1O ; 3.25 ; STRUCTURAL STUDIES OF ADENYLOSUCCINATE LYASES 7UIJ ; 2.701 ; Structural studies of B5-OspC complex 1M0F ; 16.0 ; Structural Studies of Bacteriophage alpha3 Assembly, Cryo-electron microscopy 1M06 ; 3.5 ; Structural Studies of Bacteriophage alpha3 Assembly, X-Ray Crystallography 1BNS ; 2.05 ; STRUCTURAL STUDIES OF BARNASE MUTANTS 4QO6 ; 2.26 ; Structural studies of CdsD, a structural protein of the Type III secretion system (TTSS) of Chlamydia trachomatis 1I9A ; 2.5 ; STRUCTURAL STUDIES OF CHOLESTEROL BIOSYNTHESIS: MEVALONATE 5-DIPHOSPHATE DECARBOXYLASE AND ISOPENTENYL DIPHOSPHATE ISOMERASE 1UGT ; ; Structural Studies of Cu(I)-Bleomycin 1BH1 ; ; STRUCTURAL STUDIES OF D-PRO MELITTIN, NMR, 20 STRUCTURES 1Y47 ; 2.7 ; Structural studies of designed alpha-helical hairpins 6GP9 ; 3.1 ; Structural studies of hepatitis C virus non-structural protein-5b of genotype 4a 5FIV ; 1.9 ; STRUCTURAL STUDIES OF HIV AND FIV PROTEASES COMPLEXED WITH AN EFFICIENT INHIBITOR OF FIV PR 6FIV ; 1.9 ; STRUCTURAL STUDIES OF HIV AND FIV PROTEASES COMPLEXED WITH AN EFFICIENT INHIBITOR OF FIV PR 3TLH ; 2.0 ; STRUCTURAL STUDIES OF HIV AND FIV PROTEASES COMPLEXED WITHAN EFFICIENT INHIBITOR OF FIV PR 1TIV ; ; STRUCTURAL STUDIES OF HIV-1 TAT PROTEIN 7VCE ; 2.6 ; Structural studies of human inositol monophosphatase-1 inhibition by ebselen 8Q3F ; 3.77 ; Structural studies of human serum albumin using cryo-EM up to 0.38 nm resolution 5WSL ; 1.5 ; Structural studies of keratinase from Meiothermus taiwanensis WR-220 1IMC ; 2.6 ; STRUCTURAL STUDIES OF METAL BINDING BY INOSITOL MONOPHOSPHATASE: EVIDENCE FOR TWO-METAL ION CATALYSIS 1IMD ; 2.6 ; STRUCTURAL STUDIES OF METAL BINDING BY INOSITOL MONOPHOSPHATASE: EVIDENCE FOR TWO-METAL ION CATALYSIS 1IME ; 2.25 ; STRUCTURAL STUDIES OF METAL BINDING BY INOSITOL MONOPHOSPHATASE: EVIDENCE FOR TWO-METAL ION CATALYSIS 1IMF ; 2.5 ; STRUCTURAL STUDIES OF METAL BINDING BY INOSITOL MONOPHOSPHATASE: EVIDENCE FOR TWO-METAL ION CATALYSIS 3LZM ; 1.7 ; STRUCTURAL STUDIES OF MUTANTS OF T4 LYSOZYME THAT ALTER HYDROPHOBIC STABILIZATION 1L01 ; 1.7 ; STRUCTURAL STUDIES OF MUTANTS OF THE LYSOZYME OF BACTERIOPHAGE T4. THE TEMPERATURE-SENSITIVE MUTANT PROTEIN THR157 (RIGHT ARROW) ILE 1L10 ; 1.7 ; STRUCTURAL STUDIES OF MUTANTS OF THE LYSOZYME OF BACTERIOPHAGE T4. THE TEMPERATURE-SENSITIVE MUTANT PROTEIN THR157 (RIGHT ARROW) ILE 2YW6 ; 2.53 ; Structural studies of N terminal deletion mutant of Dps from Mycobacterium smegmatis 2JJ8 ; 2.8 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP0 ; 2.2 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP2 ; 2.5 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP4 ; 2.2 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP5 ; 2.3 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP6 ; 3.0 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VP9 ; 2.9 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 2VQS ; 2.9 ; Structural Studies of Nucleoside Analog and Feedback Inhibitor Binding to Drosophila Melanogaster Multisubstrate Deoxyribonucleoside Kinase 1Q4N ; 2.07 ; Structural studies of Phe256Trp of human salivary alpha-amylase: implications for the role of a conserved water molecule and its associated chain in enzyme activity 2WU8 ; 2.25 ; Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv 4XTT ; 2.708 ; Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP) 2I4H ; 2.15 ; Structural studies of protein tyrosine phosphatase beta catalytic domain co-crystallized with a sulfamic acid inhibitor 2I4G ; 1.65 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with a sulfamic acid (soaking experiment) 2H02 ; 2.3 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with inhibitors 2H03 ; 1.65 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with inhibitors 2H04 ; 2.3 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with inhibitors 2I3U ; 1.85 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with inhibitors 2I4E ; 1.75 ; Structural studies of protein tyrosine phosphatase beta catalytic domain in complex with inhibitors 3H21 ; 2.32 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H22 ; 2.4 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H23 ; 2.2 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H24 ; 2.5 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H26 ; 2.5 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2A ; 2.4 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2C ; 2.6 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2E ; 2.0 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2F ; 2.2 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2M ; 2.31 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2N ; 2.4 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 3H2O ; 2.7 ; Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase 4CWE ; 3.0 ; Structural studies of rolling circle replication initiation protein from Staphylococcus aureus 1RF6 ; 1.9 ; Structural Studies of Streptococcus pneumoniae EPSP Synthase in S3P-GLP Bound State 1RF5 ; 2.3 ; Structural Studies of Streptococcus pneumoniae EPSP Synthase in Unliganded State 1RF4 ; 2.2 ; Structural Studies of Streptococcus pneumoniae EPSP Synthase, Tetrahedral intermediate Bound State 5LVY ; ; Structural studies of the Aggregative Adherence Fimbriae of Enteroaggregative Escherichia coli 1AFC ; 2.7 ; STRUCTURAL STUDIES OF THE BINDING OF THE ANTI-ULCER DRUG SUCROSE OCTASULFATE TO ACIDIC FIBROBLAST GROWTH FACTOR 1ENH ; 2.1 ; STRUCTURAL STUDIES OF THE ENGRAILED HOMEODOMAIN 1MVP ; 2.2 ; STRUCTURAL STUDIES OF THE RETROVIRAL PROTEINASE FROM AVIAN MYELOBLASTOSIS ASSOCIATED VIRUS 1CHH ; 1.97 ; STRUCTURAL STUDIES OF THE ROLES OF RESIDUES 82 AND 85 AT THE INTERACTIVE FACE OF CYTOCHROME C 1CHI ; 2.0 ; STRUCTURAL STUDIES OF THE ROLES OF RESIDUES 82 AND 85 AT THE INTERACTIVE FACE OF CYTOCHROME C 1CHJ ; 1.9 ; STRUCTURAL STUDIES OF THE ROLES OF RESIDUES 82 AND 85 AT THE INTERACTIVE FACE OF CYTOCHROME C 4EIX ; 2.9 ; Structural Studies of the ternary complex of Phaspholipase A2 with nimesulide and indomethacin 5KBD ; 2.8 ; Structural Studies of Transcription Factor p73 DNA Binding Domain Bound to PA26 20-mer Response Element 4ZFY ; 2.42 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with ALPHA-METHYL-D-GALACTOSIDE 4ZBV ; 2.0 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with benzyl T-antigen 4ZFW ; 2.54 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with galactose. 4ZLB ; 2.55 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with lactose 4ZFU ; 2.53 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with N-acetyl D galactosamine 4ZGR ; 1.97 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd) in complex with T-Antigen. 4Z8S ; 2.36 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd)-Native-1 4Z9W ; 1.77 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd)-Native-2 4ZA3 ; 1.67 ; Structural studies on a non-toxic homologue of type II RIPs from Momordica charantia (bitter gourd)-Native-3 1IDT ; 2.0 ; STRUCTURAL STUDIES ON A PRODRUG-ACTIVATING SYSTEM-CB1954 AND FMN-DEPENDENT NITROREDUCTASE 1VJ3 ; 2.1 ; STRUCTURAL STUDIES ON BIO-ACTIVE COMPOUNDS. CRYSTAL STRUCTURE AND MOLECULAR MODELING STUDIES ON THE PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE COFACTOR COMPLEX WITH TAB, A HIGHLY SELECTIVE ANTIFOLATE. 1CNE ; 3.0 ; STRUCTURAL STUDIES ON CORN NITRATE REDUCTASE: REFINED STRUCTURE OF THE CYTOCHROME B REDUCTASE FRAGMENT AT 2.5 ANGSTROMS, ITS ADP COMPLEX AND AN ACTIVE SITE MUTANT AND MODELING OF THE CYTOCHROME B DOMAIN 1CNF ; 2.7 ; STRUCTURAL STUDIES ON CORN NITRATE REDUCTASE: REFINED STRUCTURE OF THE CYTOCHROME B REDUCTASE FRAGMENT AT 2.5 ANGSTROMS, ITS ADP COMPLEX AND AN ACTIVE SITE MUTANT AND MODELING OF THE CYTOCHROME B DOMAIN 2CND ; 2.5 ; STRUCTURAL STUDIES ON CORN NITRATE REDUCTASE: REFINED STRUCTURE OF THE CYTOCHROME B REDUCTASE FRAGMENT AT 2.5 ANGSTROMS, ITS ADP COMPLEX AND AN ACTIVE SITE MUTANT AND MODELING OF THE CYTOCHROME B DOMAIN 1PJH ; 2.1 ; Structural studies on delta3-delta2-enoyl-CoA isomerase: the variable mode of assembly of the trimeric disks of the crotonase superfamily 2MCC ; ; Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an anti-parallel folded human telomere sequence 2MCO ; ; Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an anti-parallel folded human telomere sequence 265D ; 2.01 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 266D ; 2.03 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 267D ; 2.0 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 268D ; 2.02 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 269D ; 2.15 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 270D ; 2.01 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 271D ; 2.02 ; STRUCTURAL STUDIES ON NUCLEIC ACIDS 2NPR ; ; Structural Studies on Plasmodium vivax Merozoite Surface Protein-1 1SXG ; 2.75 ; Structural studies on the apo transcription factor form B. megaterium 1BNX ; ; STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS. 1BZK ; ; STRUCTURAL STUDIES ON THE EFFECTS OF THE DELETION IN THE RED CELL ANION EXCHANGER (BAND3, AE1) ASSOCIATED WITH SOUTH EAST ASIAN OVALOCYTOSIS. 2CNR ; ; Structural studies on the interaction of ScFAS ACP with ACPS 1K6A ; 1.14 ; Structural studies on the mobility in the active site of the Thermoascus aurantiacus xylanase I 1LLW ; 2.7 ; Structural studies on the synchronization of catalytic centers in glutamate synthase: complex with 2-oxoglutarate 1LM1 ; 2.8 ; Structural studies on the synchronization of catalytic centers in glutamate synthase: native enzyme 1LLZ ; 3.0 ; Structural studies on the synchronization of catalytic centers in glutamate synthase: reduced enzyme 2QBT ; 1.75 ; Structural Studies Reveal The Inactivation of E. coli L-aspartate aminotransferase by (S)-4,5-amino-dihydro-2-thiophenecarboxylic acid (SADTA) via Two Mechanisms (at pH 8.0) 2QA3 ; 1.75 ; Structural Studies Reveal the Inactivation of E. coli L-aspartate aminotransferase by (S)-4,5-amino-dihydro-2-thiophenecarboxylic acid (SADTA) via two mechanisms (at pH6.5) 2QB3 ; 1.45 ; Structural Studies Reveal the Inactivation of E. coli L-Aspartate Aminotransferase by (s)-4,5-dihydro-2-thiophenecarboxylic acid (SADTA) via Two Mechanisms (at pH 7.5) 2QB2 ; 1.7 ; Structural Studies Reveal the Inactivation of E. coli L-aspartate aminotransferase by (s)-4,5-dihydro-2thiophenecarboylic acid (SADTA) via two mechanisms (at pH 7.0). 2Q7W ; 1.4 ; Structural Studies Reveals the Inactivation of E. coli L-aspartate aminotransferase (S)-4,5-amino-dihydro-2-thiophenecarboxylic acid (SADTA) via two mechanisms at pH 6.0 4JOU ; 2.7 ; Structural study of Bacillus subtilis HmoB in complex with heme 3HE8 ; 1.9 ; Structural study of Clostridium thermocellum Ribose-5-Phosphate Isomerase B 3HEE ; 2.0 ; Structural study of Clostridium thermocellum Ribose-5-Phosphate Isomerase B and ribose-5-phosphate 1OSR ; ; Structural study of dna duplex containaing a n-(2-deoxy-beta-erytho-pentofuranosyl) formamide frameshift by nmr and restrained molecular dynamics 8IZN ; 6.67 ; Structural study of Interferon-induced, double-stranded RNA-activated protein kinase (PKR) and Non-structural protein 1 (NS1) complex 7UPS ; 2.43 ; Structural study of Legionella pneumophila effector DotY (Lpg0294) 1RBR ; 1.8 ; STRUCTURAL STUDY OF MUTANTS OF ESCHERICHIA COLI RIBONUCLEASE HI WITH ENHANCED THERMOSTABILITY 1RBS ; 1.8 ; STRUCTURAL STUDY OF MUTANTS OF ESCHERICHIA COLI RIBONUCLEASE HI WITH ENHANCED THERMOSTABILITY 1RBT ; 1.8 ; STRUCTURAL STUDY OF MUTANTS OF ESCHERICHIA COLI RIBONUCLEASE HI WITH ENHANCED THERMOSTABILITY 1RBU ; 1.8 ; STRUCTURAL STUDY OF MUTANTS OF ESCHERICHIA COLI RIBONUCLEASE HI WITH ENHANCED THERMOSTABILITY 1RBV ; 1.8 ; STRUCTURAL STUDY OF MUTANTS OF ESCHERICHIA COLI RIBONUCLEASE HI WITH ENHANCED THERMOSTABILITY 9EST ; 1.9 ; STRUCTURAL STUDY OF PORCINE PANCREATIC ELASTASE COMPLEXED WITH 7-AMINO-3-(2-BROMOETHOXY)-4-CHLOROISOCOUMARIN AS A NONREACTIVATABLE DOUBLY COVALENT ENZYME-INHIBITOR COMPLEX 2EP7 ; 2.3 ; Structural study of Project ID aq_1065 from Aquifex aeolicus VF5 2EKC ; 2.0 ; Structural study of Project ID aq_1548 from Aquifex aeolicus VF5 2EKD ; 2.3 ; Structural study of Project ID PH0250 from Pyrococcus horikoshii OT3 1WNG ; 2.1 ; Structural study of project ID PH0725 from Pyrococcus horikoshii OT3 2E8R ; 2.0 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 2E8S ; 2.5 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 2EK2 ; 2.2 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (E140M) 2E8Q ; 2.5 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (K19M) 2EK7 ; 2.0 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L163M) 2EL2 ; 2.3 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L185M) 2EKA ; 2.3 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L202M) 2EL0 ; 2.4 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L21M) 2EL3 ; 2.4 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L242M) 2EK3 ; 2.8 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L3M) 2EL1 ; 2.2 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L44M) 2EK4 ; 2.2 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (L8M) 2EJZ ; 1.85 ; Structural study of Project ID PH0725 from Pyrococcus horikoshii OT3 (Y11M) 2EP5 ; 2.4 ; Structural study of Project ID ST1242 from Sulfolobus tokodaii strain7 2EER ; 2.1 ; Structural study of Project ID ST2577 from Sulfolobus tokodaii strain7 2EKB ; 1.7 ; Structural study of Project ID TTHB049 from Thermus thermophilus HB8 (L19M) 2EKZ ; 1.85 ; Structural study of Project ID TTHB049 from Thermus thermophilus HB8 (L52M) 2EOA ; 1.75 ; Structural study of Project ID TTHB049 from Thermus thermophilus HB8 (W85H) 2J4R ; 2.71 ; Structural Study of the Aquifex aeolicus PPX-GPPA enzyme 7WUZ ; 1.93 ; Structural study of the complex of cblC methylmalonic aciduria and homocysteinuria-related protein MMACHC with cyanocobalamin 5MEJ ; 1.5 ; Structural study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi. First structure of the series with 3 min total X-ray exposition time. 2D3K ; 1.9 ; Structural study on Project ID PH1539 from Pyrococcus horikoshii OT3 2D29 ; 1.65 ; Structural study on project ID TT0172 from Thermus thermophilus HB8 1T5N ; ; Structural transitions as determinants of calcium-dependent antibiotic daptomycin 1T5M ; ; Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin 5M4R ; 3.1 ; Structural tuning of CD81LEL (space group C2) 5M33 ; 1.28 ; Structural tuning of CD81LEL (space group P21) 5M3D ; 2.38 ; Structural tuning of CD81LEL (space group P31) 5M2C ; 1.961 ; Structural tuning of CD81LEL (space group P32 1 2) 5M3T ; 2.021 ; Structural tuning of CD81LEL (space group P64) 390D ; 2.0 ; STRUCTURAL VARIABILITY AND NEW INTERMOLECULAR INTERACTIONS OF Z-DNA IN CRYSTALS OF D(PCPGPCPGPCPG) 391D ; 2.75 ; STRUCTURAL VARIABILITY AND NEW INTERMOLECULAR INTERACTIONS OF Z-DNA IN CRYSTALS OF D(PCPGPCPGPCPG) 392D ; 3.0 ; STRUCTURAL VARIABILITY AND NEW INTERMOLECULAR INTERACTIONS OF Z-DNA IN CRYSTALS OF D(PCPGPCPGPCPG) 368D ; 1.6 ; STRUCTURAL VARIABILITY OF A-DNA IN CRYSTALS OF THE OCTAMER D(PCPCPCPGPCPGPGPG) 369D ; 1.9 ; STRUCTURAL VARIABILITY OF A-DNA IN CRYSTALS OF THE OCTAMER D(PCPCPCPGPCPGPGPG) 370D ; 1.67 ; STRUCTURAL VARIABILITY OF A-DNA IN CRYSTALS OF THE OCTAMER D(PCPCPCPGPCPGPGPG) 371D ; 1.9 ; STRUCTURAL VARIABILITY OF A-DNA IN CRYSTALS OF THE OCTAMER D(PCPCPCPGPCPGPGPG) 372D ; 2.6 ; STRUCTURAL VARIABILITY OF A-DNA IN CRYSTALS OF THE OCTAMER D(PCPCPCPGPCPGPGPG) 1D93 ; 2.15 ; STRUCTURAL VARIATION IN D(CTCTAGAG). IMPLICATIONS FOR PROTEIN-DNA INTERACTIONS 4RJ1 ; 0.92 ; Structural variations and solvent structure of UGGGGU quadruplexes stabilized by Sr2+ ions 4RKV ; 0.88 ; Structural variations and solvent structure of UGGGGU quadruplexes stabilized by Sr2+ ions 4RNE ; 1.01 ; Structural variations and solvent structure of UGGGGU quadruplexes stabilized by Sr2+ ions 4X2Z ; 2.15 ; Structural view and substrate specificity of papain-like protease from Avian Infectious Bronchitis Virus 1O9C ; 2.6 ; Structural view of a fungal toxin acting on a 14-3-3 regulatory complex 1O9D ; 2.3 ; Structural view of a fungal toxin acting on a 14-3-3 regulatory complex 1O9E ; 2.6 ; Structural view of a fungal toxin acting on a 14-3-3 regulatory complex 1O9F ; 2.7 ; Structural view of a fungal toxin acting on a 14-3-3 regulatory complex 3UT4 ; 2.03 ; Structural view of a non Pfam singleton and crystal packing analysis 3UT7 ; 3.01 ; Structural view of a non Pfam singleton and crystal packing analysis 3UT8 ; 2.168 ; Structural view of a non Pfam singleton and crystal packing analysis 4D70 ; 1.99 ; Structural, biophysical and biochemical analyses of a Clostridium perfringens Sortase D5 transpeptidase 3L3R ; 2.0 ; Structural, Computational and Kinetic Data for Antifolate Interactions Against Pneumocystis jirovecii, Pneumocystis carinii and Human Dihydrofolate Reductase and Their Active Site Mutants 5GO1 ; 2.5 ; Structural, Functional characterization and discovery of novel inhibitors of Leishmania amazonensis Nucleoside Diphosphatase Kinase (NDK) 7TVK ; 2.35 ; Structural, Kinetic, and Mechanistic Analysis of the Wild-Type and Inactivated Malonate Semialdehyde Decarboxylase: A Structural Basis for the Decarboxylase and Hydratase Activities 2D55 ; 3.0 ; Structural, physical and biological characteristics of RNA.DNA binding agent N8-actinomycin D 209D ; 3.0 ; Structural, physical and biological characteristics of RNA:DNA binding agent N8-actinomycin D 3QHY ; 2.06 ; Structural, thermodynamic and kinetic analysis of the picomolar binding affinity interaction of the beta-lactamase inhibitor protein-II (BLIP-II) with class A beta-lactamases 3QI0 ; 2.8 ; Structural, thermodynamic and kinetic analysis of the picomolar binding affinity interaction of the beta-lactamase inhibitor protein-II (BLIP-II) with class A beta-lactamases 4OKA ; 2.505 ; Structural-, Kinetic- and Docking Studies of Artificial Imine Reductases Based on the Biotin-Streptavidin Technology: An Induced Lock-and-Key Hypothesis 1RF3 ; 3.5 ; Structurally Distinct Recognition Motifs in Lymphotoxin-B Receptor and CD40 for TRAF-mediated Signaling 8HKP ; 3.6 ; Structurally hetero-junctional human Cx36/GJD2 gap junction channel in detergents (C6 symmetry) 7XNV ; 3.4 ; Structurally hetero-junctional human Cx36/GJD2 gap junction channel in soybean lipids (C6 symmetry) 2G8G ; 3.2 ; Structurally mapping the diverse phenotype of Adeno-Associated Virus serotype 4 6NQ6 ; 1.5 ; Structure & function of a new Aspartylglucosaminuria variant 1X6Z ; 0.78 ; Structure 1: cryocooled crystal structure of the truncated pak pilin from Pseudomonas aeruginosa at 0.78A resolution 1X6X ; 0.96 ; Structure 2: cryocolled crystal structure of the truncated pak pilin from Pseudomonas aeruginosa at 0.95A resolution 1X6Q ; 1.51 ; Structure 3: cryocooled crystal structure of the truncated pak pilin from Pseudomonas aeruginosa at 1.51A resolution 1X6P ; 1.63 ; Structure 4; room temperature crystal structure of truncated pak pilin from Pseudomonas aeruginosa at 1.63A resolution 1X6R ; 1.82 ; Structure 5: room temperature crystal structure of the truncated pak pilin from Pseudomonas aeruginosa at 1.80A resolution 1X6Y ; 1.55 ; Structure 6: room temperature crystal structure of the truncated pak pilin from Pseudomonas aeruginosa at 1.80A resolution 4G79 ; 1.8 ; Structure a C. elegans SAS-6 variant 8P37 ; 1.219 ; Structure a catalytically inactive mutant of the IMP dehydrogenase related protein GUAB3 from Synechocystis PCC 6803 2Y9H ; 2.5 ; Structure A of CRISPR endoribonuclease Cse3 bound to 19 nt RNA 5G2X ; 3.8 ; Structure a of Group II Intron Complexed with its Reverse Transcriptase 5G2Y ; 4.5 ; Structure a of Group II Intron Complexed with its Reverse Transcriptase 4ZUL ; 1.76 ; Structure ALDH7A1 complexed with alpha-aminoadipate 4ZUK ; 2.001 ; Structure ALDH7A1 complexed with NAD+ 4X0U ; 1.95 ; Structure ALDH7A1 inactivated by 4-diethylaminobenzaldehyde 4X0T ; 2.4 ; Structure ALDH7A1 inactivated by 4-diethylaminobenzaldehyde and complexed with NAD+ 1KWH ; 2.0 ; Structure Analysis AlgQ2, a Macromolecule(alginate)-Binding Periplasmic Protein of Sphingomonas sp. A1. 2DRX ; 1.4 ; Structure Analysis of (POG)4-(LOG)2-(POG)4 2DRT ; 1.6 ; Structure Analysis of (POG)4-LOG-(POG)5 3U1R ; 2.0 ; Structure Analysis of A New Psychrophilic Marine Protease 3R50 ; 2.27 ; Structure analysis of a wound-inducible lectin ipomoelin from sweet potato 3R51 ; 2.1 ; Structure analysis of a wound-inducible lectin ipomoelin from sweet potato 3R52 ; 2.1 ; Structure analysis of a wound-inducible lectin ipomoelin from sweet potato 4DDN ; 1.9 ; Structure analysis of a wound-inducible lectin ipomoelin from sweet potato 3KL5 ; 2.59 ; Structure Analysis of a Xylanase From Glycosyl Hydrolase Family Thirty: Carbohydrate Ligand Complexes Reveal this Family of Enzymes Unique Mechanism of Substrate Specificity and Recognition 1FX4 ; 1.9 ; STRUCTURE ANALYSIS OF ADENYLATE CYCLASES FROM TRYPANOSOMA BRUCEI IN THEIR MONOMERIC STATE 1J1N ; 1.6 ; Structure Analysis of AlgQ2, A Macromolecule(Alginate)-Binding Periplasmic Protein Of Sphingomonas Sp. A1., Complexed with an Alginate Tetrasaccharide 4GS8 ; 2.99 ; Structure analysis of cysteine free insulin degrading enzyme (ide) with compound bdm43079 [{[(s)-2-(1h-imidazol-4-yl)-1-methylcarbamoyl-ethylcarbamoyl]-methyl}-(3-phenyl-propyl)-amino]-acetic acid 3QV2 ; 2.15 ; Structure Analysis of Entamoeba histolytica methyltransferase EhMeth 6UKO ; 4.4 ; Structure analysis of full-length mouse bcs1 complex 5B4N ; 2.3 ; Structure analysis of function associated loop mutant of substrate recognition domain of Fbs1 ubiquitin ligase 4F85 ; 2.2 ; Structure analysis of Geranyl diphosphate methyltransferase 4F86 ; 3.0 ; Structure analysis of Geranyl diphosphate methyltransferase in complex with GPP and sinefungin 4F84 ; 2.2 ; Structure analysis of Geranyl diphosphate methyltransferase in complex with SAM 4GSC ; 2.81 ; Structure analysis of insulin degrading enzyme with compound bdm41559 ((s)-2-[2-(carboxymethyl-phenethyl-amino)-acetylamino]-3-(1h-imidazol-4-yl)-propionic acid methyl ester) 4KMC ; 2.15 ; Structure analysis of M. Tuberculosis rRNA transcriptional regulator CarD and its interaction with T. Aquaticus RNA polymerase-BETA1 domain 3TN2 ; 1.6 ; structure analysis of MIP1-beta P8A 1WS0 ; 1.7 ; Structure analysis of peptide deformylase from Bacillus cereus 1WS1 ; 2.0 ; Structure analysis of peptide deformylase from Bacillus cereus 1R9L ; 1.59 ; structure analysis of ProX in complex with glycine betaine 1R9Q ; 2.05 ; structure analysis of ProX in complex with proline betaine 4V8D ; 3.0 ; Structure analysis of ribosomal decoding (cognate tRNA-tyr complex). 1P02 ; 2.0 ; STRUCTURE ANALYSIS OF SPECIFICITY. ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGUES OF REACTION INTERMEDIATES 1P03 ; 2.15 ; STRUCTURE ANALYSIS OF SPECIFICITY. ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGUES OF REACTION INTERMEDIATES 1P04 ; 2.55 ; STRUCTURE ANALYSIS OF SPECIFICITY. ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGUES OF REACTION INTERMEDIATES 1P05 ; 2.1 ; STRUCTURE ANALYSIS OF SPECIFICITY. ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGUES OF REACTION INTERMEDIATES 1P06 ; 2.34 ; STRUCTURE ANALYSIS OF SPECIFICITY. ALPHA-LYTIC PROTEASE COMPLEXES WITH ANALOGUES OF REACTION INTERMEDIATES 1V8L ; 2.1 ; Structure Analysis of the ADP-ribose pyrophosphatase complexed with ADP-ribose 4F1R ; 2.201 ; Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginos 4RA8 ; 2.6 ; Structure analysis of the Mip1a P8A mutant 2N9D ; ; Structure analysis of the Tom1 GAT domain reveals distinct ligand-specific conformational states 3L8Q ; 1.57 ; Structure analysis of the type II cohesin dyad from the adaptor ScaA scaffoldin of Acetivibrio cellulolyticus 2BKN ; 2.6 ; STRUCTURE ANALYSIS OF UNKNOWN FUNCTION PROTEIN 2BKO ; 1.9 ; STRUCTURE ANALYSIS OF UNKNOWN FUNCTION PROTEIN 2BKP ; 2.2 ; STRUCTURE ANALYSIS OF UNKNOWN FUNCTION PROTEIN 2N8J ; ; Structure and 15N relaxation data of Calmodulin bound to the endothelial Nitric Oxide Synthase Calmodulin Binding Domain Peptide at Physiological Calcium Concentration 1U7H ; 1.8 ; Structure and a Proposed Mechanism for Ornithine Cyclodeaminase from Pseudomonas putida 3E1T ; 2.05 ; Structure and action of the myxobacterial chondrochloren halogenase CndH, a new variant of FAD-dependent halogenases 3I6U ; 3.0 ; Structure and Activation Mechanism of the CHK2 DNA-Damage Checkpoint Kinase 3I6W ; 3.25 ; Structure and Activation Mechanism of the CHK2 DNA-Damage Checkpoint Kinase 3P43 ; 2.1 ; Structure and Activities of Archaeal Members of the LigD 3' Phosphoesterase DNA Repair Enzyme Superfamily 2C9Z ; 2.1 ; Structure and activity of a flavonoid 3-0 glucosyltransferase reveals the basis for plant natural product modification 2C1X ; 1.9 ; Structure and activity of a flavonoid 3-O glucosyltransferase reveals the basis for plant natural product modification 2C1Z ; 1.9 ; Structure and activity of a flavonoid 3-O glucosyltransferase reveals the basis for plant natural product modification 4D05 ; 1.65 ; Structure and activity of a minimal-type ATP-dependent DNA ligase from a psychrotolerant bacterium 4GLK ; 2.16 ; Structure and activity of AbiQ, a lactococcal anti-phage endoribonuclease belonging to the type-III toxin-antitoxin system 2W7O ; 3.16 ; Structure and Activity of Bypass Synthesis by Human DNA Polymerase Kappa Opposite the 7,8-Dihydro-8-oxodeoxyguanosine Adduct 2W7P ; 3.71 ; Structure and Activity of Bypass Synthesis by Human DNA Polymerase Kappa Opposite the 7,8-Dihydro-8-oxodeoxyguanosine Adduct 3G5K ; 1.7 ; Structure and activity of human mitochondrial peptide deformylase, a novel cancer target 3G5P ; 1.7 ; Structure and activity of human mitochondrial peptide deformylase, a novel cancer target 7EN0 ; 2.97 ; Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves 4N31 ; 2.2 ; Structure and activity of Streptococcus pyogenes SipA: a signal peptidase homologue essential for pilus polymerisation 4C7D ; 1.85 ; Structure and activity of the GH20 beta-N-acetylhexosaminidase from Streptomyces coelicolor A3(2) 4C7F ; 2.0 ; Structure and activity of the GH20 beta-N-acetylhexosaminidase from Streptomyces coelicolor A3(2) 4C7G ; 1.8 ; Structure and activity of the GH20 beta-N-acetylhexosaminidase from Streptomyces coelicolor A3(2) 6YXZ ; 1.75 ; Structure and activity of the GH20 beta-N-beta-N-acetylhexosaminidase from Bifidobacterium bifidum 2WFW ; 1.6 ; Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases - The Arc domain structure 4GCH ; 1.9 ; STRUCTURE AND ACTIVITY OF TWO PHOTOREVERSIBLE CINNAMATES BOUND TO CHYMOTRYPSIN 8J6H ; 2.44074 ; Structure and allosteric regulation of the inosine 5'-monophosphate-specific phosphatase ISN1 from Saccharomyces cerevisiae 8JB3 ; 1.77382 ; Structure and allosteric regulation of the inosine 5'-monophosphate-specific phosphatase ISN1 from Saccharomyces cerevisiae 3NWY ; 2.54 ; Structure and allosteric regulation of the uridine monophosphate kinase from Mycobacterium tuberculosis 4BV4 ; 2.35 ; Structure and allostery in Toll-Spatzle recognition 3TNP ; 2.3 ; Structure and Allostery of the PKA RIIb Tetrameric Holoenzyme 3TNQ ; 3.097 ; Structure and Allostery of the PKA RIIb Tetrameric Holoenzyme 5K79 ; 1.6 ; Structure and anti-HIV activity of CYT-CVNH, a new cyanovirin-n homolog 5T5H ; 2.54 ; Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit 2YMS ; 2.101 ; Structure and assembly of a b-propeller with nine blades and a new conserved repetitive sequence motif 2N1F ; 4.0 ; Structure and assembly of the mouse ASC filament by combined NMR spectroscopy and cryo-electron microscopy 3ZXA ; 3.2 ; Structure and Assembly of Turnip Crinkle Virus I. X-ray Crystallographic Structure Analysis at 3.2 A Resolution 3J92 ; 3.6 ; Structure and assembly pathway of the ribosome quality control complex 4NFW ; 2.3 ; Structure and atypical hydrolysis mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli 4NFX ; 2.69 ; Structure and atypical hydrolysis mechanism of the Nudix hydrolase Orf153 (YmfB) from Escherichia coli 1Q14 ; 2.5 ; Structure and autoregulation of the yeast Hst2 homolog of Sir2 1I5K ; 2.7 ; STRUCTURE AND BINDING DETERMINANTS OF THE RECOMBINANT KRINGLE-2 DOMAIN OF HUMAN PLASMINOGEN TO AN INTERNAL PEPTIDE FROM A GROUP A STREPTOCOCCAL SURFACE PROTEIN 2LUV ; ; Structure and Binding Interface of the Cytosolic Tails of aXb2 Integrin 2CDE ; 3.5 ; Structure and binding kinetics of three different human CD1d-alpha- Galactosylceramide specific T cell receptors - iNKT-TCR 2CDG ; 2.6 ; Structure and binding kinetics of three different human CD1d-alpha- Galactosylceramide-specific T cell receptors (TCR 5B) 2CDF ; 2.25 ; Structure and binding kinetics of three different human CD1d-alpha- Galactosylceramide-specific T cell receptors (TCR 5E) 3PVS ; 2.5 ; Structure and biochemical activities of Escherichia coli MgsA 3VDP ; 2.451 ; Structure and biochemical studies of the recombination mediator protein RecR in RecFOR pathway 8DAJ ; 1.2 ; Structure and Biochemistry of a Promiscuous Thermophilic Polyhydroxybutyrate Depolymerase from Lihuaxuella thermophilia 3O4G ; 2.5 ; Structure and Catalysis of Acylaminoacyl Peptidase 3O4H ; 1.82 ; Structure and Catalysis of Acylaminoacyl Peptidase 3O4I ; 2.7 ; Structure and Catalysis of Acylaminoacyl Peptidase 3O4J ; 2.5 ; Structure and Catalysis of Acylaminoacyl Peptidase 1MLV ; 2.6 ; Structure and Catalytic Mechanism of a SET Domain Protein Methyltransferase 3OT4 ; 2.4 ; Structure and Catalytic Mechanism of Bordetella bronchiseptica nicF 1DEA ; 2.1 ; STRUCTURE AND CATALYTIC MECHANISM OF GLUCOSAMINE 6-PHOSPHATE DEAMINASE FROM ESCHERICHIA COLI AT 2.1 ANGSTROMS RESOLUTION 1HOR ; 2.4 ; STRUCTURE AND CATALYTIC MECHANISM OF GLUCOSAMINE 6-PHOSPHATE DEAMINASE FROM ESCHERICHIA COLI AT 2.1 ANGSTROMS RESOLUTION 5JCI ; 1.7 ; Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica 5JCK ; 2.0 ; Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica 5JCL ; 1.8 ; Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica 5JCM ; 1.9 ; Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica 5JCN ; 2.29 ; Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica 3UAO ; 2.399 ; Structure and Catalytic Mechanism of the Vitamin B3 Degradative Enzyme Maleamate Amidohydrolase from Bordetalla bronchiseptica RB50 8IWH ; 2.68 ; Structure and characteristics of a photosystem II supercomplex containing monomeric LHCX and dimeric FCPII antennae from the diatom Thalassiosira pseudonana 1CXY ; 1.65 ; STRUCTURE AND CHARACTERIZATION OF ECTOTHIORHODOSPIRA VACUOLATA CYTOCHROME B558, A PROKARYOTIC HOMOLOGUE OF CYTOCHROME B5 2LU5 ; ; Structure and chemical shifts of Cu(I),Zn(II) superoxide dismutase by solid-state NMR 4GOP ; 3.1 ; Structure and Conformational Change of a Replication Protein A Heterotrimer Bound to ssDNA 5TF6 ; 2.3 ; Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core 4V8V ; 20.0 ; Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex 4V8W ; 17.5 ; Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex 3P8C ; 2.29 ; Structure and Control of the Actin Regulatory WAVE Complex 2XJH ; 0.92 ; Structure and Copper-binding Properties of Methanobactins from Methylosinus trichosporium OB3b 2XJI ; 1.0 ; Structure and Copper-binding Properties of Methanobactins from Methylosinus trichosporium OB3b 2C5Z ; ; Structure and CTD binding of the Set2 SRI domain 3QBC ; 1.65 ; Structure and design of a new pterin site inhibitor of S. aureus HPPK 2FH9 ; 2.8 ; Structure and dimerization of the kinase domain from yeast Snf1 4M4X ; 2.551 ; Structure and Dimerization Properties of the Aryl Hydrocarbon Receptor (AHR) PAS-A Domain 6ES5 ; ; Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins 6ES6 ; ; Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins 6ES7 ; ; Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins 2K71 ; ; Structure and dynamics of a DNA GNRA hairpin solved vy high-sensitivity NMR with two independent converging methods, simulated annealing (DYANA) and mesoscopic molecular modelling (BCE/AMBER) 2M3O ; ; Structure and dynamics of a human Nedd4 WW domain-ENaC complex 1HIS ; ; Structure and dynamics of des-pentapeptide-insulin in solution: the molten-globule hypothesis. 1DVH ; ; STRUCTURE AND DYNAMICS OF FERROCYTOCHROME C553 FROM DESULFOVIBRIO VULGARIS STUDIED BY NMR SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS 2JQ3 ; ; Structure and Dynamics of Human Apolipoprotein C-III 1N9C ; ; Structure and dynamics of reduced Bacillus pasteurii cytochrome c: oxidation state dependent properties and implications for electron transfer processes 5VH7 ; ; Structure and dynamics of RNA repeat expansions that cause Huntington's Disease and myotonic dystrophy type 1 5VH8 ; ; Structure and dynamics of RNA repeat expansions that cause Huntington's Disease and myotonic dystrophy type 1 5JCO ; 4.0 ; Structure and dynamics of single-isoform recombinant neuronal human tubulin 2NPV ; ; Structure and dynamics of surfactin studied by NMR in micellar media 2MZP ; ; Structure and dynamics of the acidosis-resistant a162H mutant of the switch region of troponin I bound to the regulatory domain of troponin C 1GNC ; ; STRUCTURE AND DYNAMICS OF THE HUMAN GRANULOCYTE COLONY-STIMULATING FACTOR DETERMINED BY NMR SPECTROSCOPY. LOOP MOBILITY IN A FOUR-HELIX-BUNDLE PROTEIN 2KSJ ; ; Structure and Dynamics of the Membrane-bound form of Pf1 Coat Protein: Implications for Structural Rearrangement During Virus Assembly 6FWN ; ; Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor 1N17 ; ; Structure and Dynamics of Thioguanine-modified Duplex DNA 1N14 ; ; Structure and Dynamics of Thioguanine-modified Duplex DNA in Comparison with Unmodified DNA; Structure of Unmodified Duplex DNA 1MUA ; 1.7 ; STRUCTURE AND ENERGETICS OF A NON-PROLINE CIS-PEPTIDYL LINKAGE IN AN ENGINEERED PROTEIN 2KG7 ; ; Structure and features of the complex formed by the tuberculosis virulence factors Rv0287 and Rv0288 7OSR ; ; Structure and folding of a 600-million-year-old nuclear coactivator binding domain suggest conservation of dynamic properties 7OSW ; ; Structure and folding of a 600-million-year-old nuclear coactivator binding domain suggest conservation of dynamic properties 4V14 ; 2.42 ; Structure and function analysis of MutT from the psychrofile fish pathogen Aliivibrio salmonicida and the mesophile Vibrio cholerae 1OXN ; 2.2 ; Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP) 1OXQ ; 2.3 ; Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP) 1OY7 ; 2.7 ; Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP) 5FMG ; 3.6 ; Structure and function based design of Plasmodium-selective proteasome inhibitors 3AQO ; 2.6 ; Structure and function of a membrane component SecDF that enhances protein export 5YQW ; 1.36 ; Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria 4RCN ; 3.01 ; Structure and function of a single-chain, multi-domain long-chain acyl-coa carboxylase 3OLM ; 2.495 ; Structure and Function of a Ubiquitin Binding Site within the Catalytic Domain of a HECT Ubiquitin Ligase 1KPT ; 1.75 ; STRUCTURE AND FUNCTION OF A VIRALLY ENCODED FUNGAL TOXIN FROM USTILAGO MAYDIS: A FUNGAL AND MAMMALIAN CALCIUM CHANNEL INHIBITOR 6FJX ; 2.25 ; Structure and function of aldehyde dehydrogenase from Thermus thermophilus: An enzyme with an evolutionarily-distinct C-terminal arm (Native protein) 6FK3 ; 2.3 ; Structure and function of aldehyde dehydrogenase from Thermus thermophilus: An enzyme with an evolutionarily-distinct C-terminal arm (Recombinant full-length protein in complex with propanal) 6FKV ; 2.9 ; Structure and function of aldehyde dehydrogenase from Thermus thermophilus: An enzyme with an evolutionarily-distinct C-terminal arm (Recombinant protein with shortened C-terminal, ADH508) 6FKU ; 2.4 ; Structure and function of aldehyde dehydrogenase from Thermus thermophilus: An enzyme with an evolutionarily-distinct C-terminal arm (Recombinant protein with shortened C-terminal, in complex with NADP) 4BI3 ; 1.85 ; Structure and function of amidase toxin - antitoxin combinations associated with the type VI secretion system of Serratia marcescens. 4BI4 ; 2.21 ; Structure and function of amidase toxin - antitoxin combinations associated with the type VI secretion system of Serratia marcescens. 4C3O ; 3.2 ; Structure and function of an oxygen tolerant NiFe hydrogenase from Salmonella 4HV0 ; 2.6 ; Structure and Function of AvtR, a Novel Transcriptional Regulator from a Hyperthermophilic Archaeal Lipothrixvirus 1CRM ; 2.0 ; STRUCTURE AND FUNCTION OF CARBONIC ANHYDRASES 3FEW ; 2.45 ; Structure and Function of Colicin S4, a colicin with a duplicated receptor binding domain 2GUI ; 1.6 ; Structure and Function of Cyclized Versions of the Proofreading Exonuclease Subunit of E. coli DNA Polymerase III 1PJQ ; 2.21 ; Structure and function of CysG, the multifunctional methyltransferase/dehydrogenase/ferrochelatase for siroheme synthesis 7DFX ; 2.996 ; Structure and function of Diadenylate cyclase DacM in Mycoplasma ovipneumoniae 7DG0 ; 1.895 ; Structure and function of Diadenylate cyclase DacM in Mycoplasma ovipneumoniae 5YB1 ; 2.616 ; Structure and function of human serum albumin-metal agent complex 8CHX ; 1.8 ; Structure and function of LolA from Vibrio cholerae 4R1I ; 3.959 ; Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps 1U1V ; 1.7 ; Structure and function of phenazine-biosynthesis protein PhzF from Pseudomonas fluorescens 2-79 1U1W ; 1.35 ; Structure and function of phenazine-biosynthesis protein PhzF from Pseudomonas fluorescens 2-79 1U1X ; 1.88 ; Structure and function of phenazine-biosynthesis protein PhzF from Pseudomonas fluorescens 2-79 6QVV ; 2.4 ; Structure and function of phenuiviridae cap snatching endonucleases 2C2I ; 1.8 ; Structure and function of Rv0130, a conserved hypothetical protein from M.tuberculosis 4I5S ; 3.3 ; Structure and function of sensor histidine kinase 1NXB ; 1.38 ; STRUCTURE AND FUNCTION OF SNAKE VENOM CURARIMIMETIC NEUROTOXINS 1AN4 ; 2.9 ; STRUCTURE AND FUNCTION OF THE B/HLH/Z DOMAIN OF USF 1P5S ; 2.22 ; STRUCTURE AND FUNCTION OF THE CALPONIN-HOMOLOGY DOMAIN OF AN IQGAP PROTEIN FROM SCHIZOSACCHAROMYCES POMBE 1CEH ; 1.9 ; STRUCTURE AND FUNCTION OF THE CATALYTIC SITE MUTANT ASP99ASN OF PHOSPHOLIPASE A2: ABSENCE OF CONSERVED STRUCTURAL WATER 5UL7 ; 2.8 ; Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant 5UL9 ; 2.78 ; Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant 5ULD ; 2.78 ; Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant 5ULE ; 2.8 ; Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant 2OXL ; 1.8 ; Structure and Function of the E. coli Protein YmgB: a Protein Critical for Biofilm Formation and Acid Resistance 1RIB ; 2.2 ; STRUCTURE AND FUNCTION OF THE ESCHERICHIA COLI RIBONUCLEOTIDE REDUCTASE PROTEIN R2 5BY4 ; 1.702 ; Structure and function of the Escherichia coli Tol-Pal stator protein TolR 2WJG ; 2.2 ; Structure and function of the FeoB G-domain from Methanococcus jannaschii 2WJH ; 2.1 ; Structure and function of the FeoB G-domain from Methanococcus jannaschii 2WJI ; 1.903 ; Structure and function of the FeoB G-domain from Methanococcus jannaschii 2WJJ ; 2.405 ; Structure and function of the FeoB G-domain from Methanococcus jannaschii 4AE9 ; 2.3 ; Structure and function of the Human Sperm-Specific Isoform of Protein Kinase A (PKA) Catalytic Subunit C alpha 2 4AE6 ; 2.1 ; Structure and Function of the Human Sperm-Specific Isoform of Protein Kinase A (PKA) Catalytic Subunit Calpha 2 4YHJ ; 2.6 ; Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4 (GRK4) 2RRE ; ; Structure and function of the N-terminal nucleolin binding domain of nuclear valocine containing protein like 2 (NVL2) harboring a nucleolar localization signal 1XUA ; 1.9 ; Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens 1XUB ; 1.3 ; Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens 3NYB ; 2.7007 ; Structure and function of the polymerase core of TRAMP, a RNA surveillance complex 4AUI ; 3.2 ; STRUCTURE AND FUNCTION OF THE PORB PORIN FROM DISSEMINATING N. GONORRHOEAE 2XNH ; 2.8 ; Structure and function of the Rad9-binding region of the DNA damage checkpoint adaptor TopBP1 2XNK ; 2.6 ; Structure and function of the Rad9-binding region of the DNA damage checkpoint adaptor TopBP1 2FQ3 ; 1.4 ; Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes 6QW5 ; 1.988 ; Structure and function of the toscana virus cap snatching endonuclease 5XI8 ; 1.7 ; Structure and function of the TPR domain 6QW0 ; 1.5 ; Structure and function of toscana virus cap snatching endonucleases 1R8G ; 2.15 ; Structure and function of YbdK 2NZ5 ; 2.35 ; Structure and Function Studies of Cytochrome P450 158A1 from Streptomyces coelicolor A3(2) 2NZA ; 2.9 ; Structure and Function Studies of Cytochrome P450 158A1 from Streptomyces coelicolor A3(2) 2QN4 ; 1.8 ; Structure and function study of rice bifunctional alpha-amylase/subtilisin inhibitor from Oryza sativa 3RHZ ; 1.898 ; Structure and functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesions 4DTD ; 2.5 ; Structure and functional characterization of a Vibrio cholerae toxin from the MARTX/VgrG family. 3MME ; 3.97 ; Structure and functional dissection of PG16, an antibody with broad and potent neutralization of HIV-1 2VT2 ; 2.3 ; Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex 2VT3 ; 2.0 ; Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex 3NE0 ; 1.0 ; Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation 5A8F ; 10.6 ; Structure and genome release mechanism of human cardiovirus Saffold virus-3 4LOW ; 1.3 ; Structure and identification of a pterin dehydratase-like protein as a RuBisCO assembly factor in the alpha-carboxysome 2KUO ; ; Structure and identification of ADP-ribose recognition motifs of APLF and role in the DNA damage response 2ESY ; ; Structure and influence on stability and activity of the N-terminal propetide part of lung surfactant protein C 2ZCG ; 2.223 ; Structure and inhibition of orotidine 5'-phosphate decarboxylase from plasmodium falciparum 2W3N ; 2.05 ; Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans 2W3Q ; 1.34 ; Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans 1YXE ; ; Structure and inter-domain interactions of domain II from the blood stage malarial protein, apical membrane antigen 1 1BLQ ; ; STRUCTURE AND INTERACTION SITE OF THE REGULATORY DOMAIN OF TROPONIN-C WHEN COMPLEXED WITH THE 96-148 REGION OF TROPONIN-I, NMR, 29 STRUCTURES 7LXC ; ; Structure and Interactions of DED1 of human cFLIP 1LL8 ; ; Structure and interactions of PAS kinase N-terminal PAS domain: Model for intramolecular kinase regulation 4GZK ; 1.69 ; Structure and interactions of the RNA-dependent RNA polymerase from bacteriophage phi12 4IEG ; 2.1 ; Structure and interactions of the RNA-dependent RNA polymerase from bacteriophage phi12 (P1 crystal form) 4JGT ; 2.161 ; Structure and kinetic analysis of H2S production by human Mercaptopyruvate Sulfurtransferase 2BKV ; 1.5 ; Structure and kinetics of a monomeric glucosamine-6-phosphate deaminase: missing link of the NagB superfamily 2BKX ; 1.4 ; Structure and kinetics of a monomeric glucosamine-6-phosphate deaminase: missing link of the NagB superfamily 5SVG ; 2.5 ; Structure and kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis 5SVU ; 2.601 ; Structure and kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis 5SVV ; 2.101 ; Structure and kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis 5HPG ; 1.66 ; STRUCTURE AND LIGAND DETERMINANTS OF THE RECOMBINANT KRINGLE 5 DOMAIN OF HUMAN PLASMINOGEN 1N72 ; ; Structure and Ligand of a Histone Acetyltransferase Bromodomain 2OLP ; 1.932 ; Structure and ligand selection of hemoglobin II from Lucina pectinata 1N7Z ; 2.0 ; Structure and location of gene product 8 in the bacteriophage T4 baseplate 5IAO ; 2.598 ; Structure and mapping of spontaneous mutational sites of PyrR from Mycobacterium tuberculosis 3OTK ; 2.3 ; Structure and mechanisim of core 2 beta1,6-n-acetylglucosaminyltransferase: a Metal-ion independent gt-a glycosyltransferase 4Q1G ; 2.1 ; Structure and mechanism of a dehydratase/decarboxylase enzyme couple involved in polyketide beta-branching 4Q1H ; 1.93 ; Structure and mechanism of a dehydratase/decarboxylase enzyme couple involved in polyketide beta-branching 4Q1I ; 2.1 ; Structure and mechanism of a dehydratase/decarboxylase enzyme couple involved in polyketide beta-branching 4Q1J ; 2.17 ; Structure and mechanism of a dehydratase/decarboxylase enzyme couple involved in polyketide beta-branching 4Q1K ; 1.75 ; Structure and mechanism of a dehydratase/decarboxylase enzyme couple involved in polyketide beta-branching 5COT ; 1.69 ; Structure and mechanism of a eukaryal nick-sealing RNA ligase 5COU ; 1.9 ; Structure and mechanism of a eukaryal nick-sealing RNA ligase K170M+ATP 5COV ; 2.2 ; Structure and mechanism of a eukaryal nick-sealing RNA ligase K170M+Mn 7XBK ; 3.7 ; Structure and mechanism of a mitochondrial AAA+ disaggregase CLPB 6O07 ; 2.702 ; Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex 1OW2 ; 2.0 ; STRUCTURE AND MECHANISM OF ACTION OF ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE: COMPLEX OF C67A MUTANT WITH EIPP 1NFZ ; 1.97 ; STRUCTURE AND MECHANISM OF ACTION OF ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE: COMPLEX WITH EIPP 1NFS ; 1.96 ; STRUCTURE AND MECHANISM OF ACTION OF ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE: COMPLEX WITH NIPP 1Q54 ; 1.93 ; STRUCTURE AND MECHANISM OF ACTION OF ISOPENTENYLPYROPHOSPHATE-DIMETHYLALLYLPYROPHOSPHATE ISOMERASE: COMPLEX WITH THE BROMOHYDRINE OF IPP 4OR1 ; 3.0 ; Structure and mechanism of fibronectin binding and biofilm formation of enteroaggregative Escherischia coli AAF fimbriae 1B4Y ; ; STRUCTURE AND MECHANISM OF FORMATION OF THE H-Y5 ISOMER OF AN INTRAMOLECULAR DNA TRIPLE HELIX. 1ICE ; 2.6 ; STRUCTURE AND MECHANISM OF INTERLEUKIN-1BETA CONVERTING ENZYME 2OJT ; 1.95 ; Structure and mechanism of kainate receptor modulation by anions 2EUA ; 2.5 ; Structure and Mechanism of MenF, the Menaquinone-Specific Isochorismate Synthase from Escherichia Coli 1RI1 ; 2.5 ; Structure and mechanism of mRNA cap (guanine N-7) methyltransferase 1RI2 ; 2.7 ; Structure and mechanism of mRNA cap (guanine N-7) methyltransferase 1RI3 ; 2.5 ; Structure and mechanism of mRNA cap (guanine N-7) methyltransferase 1RI4 ; 2.4 ; Structure and mechanism of mRNA cap (guanine N-7) methyltransferase 1RI5 ; 2.1 ; Structure and mechanism of mRNA cap (guanine N-7) methyltransferase 2I6Y ; 2.5 ; Structure and Mechanism of Mycobacterium tuberculosis Salicylate Synthase, MbtI 1S68 ; 1.9 ; Structure and Mechanism of RNA Ligase 6BZ5 ; 2.006 ; Structure and mechanism of salicylate hydroxylase from Pseudomonas putida G7 1LY1 ; 2.0 ; Structure and Mechanism of T4 Polynucleotide Kinase 4AXH ; 2.7 ; Structure and mechanism of the first inverting alkylsulfatase specific for secondary alkylsulfatases 3KSO ; 4.367 ; Structure and Mechanism of the Heavy Metal Transporter CusA 3KSS ; 3.88 ; Structure and Mechanism of the Heavy Metal Transporter CusA 1BY4 ; 2.1 ; STRUCTURE AND MECHANISM OF THE HOMODIMERIC ASSEMBLY OF THE RXR ON DNA 3P5N ; 3.6 ; Structure and mechanism of the S component of a bacterial ECF transporter 2K9B ; ; Structure and membrane interactions of the antibiotic peptide dermadistinctin K by multidimensional solution and oriented 15N and 31P solid-state NMR spectroscopy 2JX6 ; ; Structure and membrane interactions of the antibiotic peptide dermadistinctin k by solution and oriented 15N and 31P solid-state NMR spectroscopy 2PRS ; 1.7 ; Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli 2PS0 ; 2.0 ; Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli 2PS3 ; 2.47 ; Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli 2PS9 ; 2.15 ; Structure and metal binding properties of ZnuA, a periplasmic zinc transporter from Escherichia coli 2XLF ; 2.3 ; Structure and metal-loading of a soluble periplasm cupro-protein: apo- CucA-closed (SeMet) 2XLA ; 1.93 ; Structure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-closed 2XL7 ; 2.4 ; Structure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-closed (SeMet) 2XLG ; 1.8 ; Structure and metal-loading of a soluble periplasm cupro-protein: Cu- CucA-open 2XL9 ; 2.06 ; Structure and metal-loading of a soluble periplasm cupro-protein: Zn- CucA-closed (SeMet) 1AJY ; ; STRUCTURE AND MOBILITY OF THE PUT3 DIMER: A DNA PINCER, NMR, 13 STRUCTURES 2VSA ; 2.89 ; Structure and mode of action of a mosquitocidal holotoxin 2VSE ; 2.5 ; Structure and mode of action of a mosquitocidal holotoxin 4FAJ ; 1.9 ; Structure and mode of peptide binding of pheromone receptor PrgZ 6TAA ; 2.1 ; STRUCTURE AND MOLECULAR MODEL REFINEMENT OF ASPERGILLUS ORYZAE (TAKA) ALPHA-AMYLASE: AN APPLICATION OF THE SIMULATED-ANNEALING METHOD 3TGL ; 1.9 ; STRUCTURE AND MOLECULAR MODEL REFINEMENT OF RHIZOMUCOR MIEHEI TRIACYLGLYCERIDE LIPASE: A CASE STUDY OF THE USE OF SIMULATED ANNEALING IN PARTIAL MODEL REFINEMENT 7ESO ; 2.45 ; Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY 7ESP ; 2.43 ; Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY 7ESQ ; 1.85 ; Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY 7ESV ; 2.18 ; Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY 1W7W ; 2.8 ; Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase: identification of residues involved in serine phosphorylation and oligomerization. 2MH5 ; ; Structure and NMR assignments of lantibiotic NAI-107 in DPC micelles 2MDL ; ; Structure and NMR assignments of Scylla Serrata anti lipopolysaccharide Factor-24 (SsALF-24) 1VYN ; ; STRUCTURE AND NUCLEIC ACID BINDING OF THE DROSOPHILA ARGONAUTE2 PAZ DOMAIN 2LQY ; ; Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system. 1KF1 ; 2.1 ; Structure and Packing of Human Telomeric DNA 2TAA ; 3.0 ; STRUCTURE AND POSSIBLE CATALYTIC RESIDUES OF TAKA-AMYLASE A 2N4Y ; ; Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome 1FRX ; 2.5 ; STRUCTURE AND PROPERTIES OF C20S FDI MUTANT 4ALO ; 2.37 ; STRUCTURE AND PROPERTIES OF H1 CRUSTACYANIN FROM LOBSTER HOMARUS AMERICANUS 1NRG ; 1.95 ; Structure and Properties of Recombinant Human Pyridoxine-5'-Phosphate Oxidase 1MA1 ; 2.6 ; Structure and properties of the atypical iron superoxide dismutase from Methanobacterium thermoautotrophicum 2Y7Z ; 1.84 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs 2Y80 ; 1.9 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs 2Y81 ; 1.7 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs 2Y82 ; 2.2 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with aminoindane and phenylpyrrolidine P4 motifs 2VH6 ; 1.95 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with biaryl P4 motifs 2WYG ; 1.88 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with monoaryl P4 motifs 2WYJ ; 2.38 ; Structure and property based design of factor Xa inhibitors: pyrrolidin-2-ones with monoaryl P4 motifs 2VH0 ; 1.7 ; Structure and property based design of factor Xa inhibitors:biaryl pyrrolidin-2-ones incorporating basic heterocyclic motifs 1S18 ; 1.7 ; Structure and protein design of human apyrase 1S1D ; 1.6 ; Structure and protein design of human apyrase 6GEH ; 1.15 ; Structure and reactivity of a siderophore-interacting protein from the marine bacterium Shewanella reveals unanticipated functional versatility. 2PTM ; 1.93 ; Structure and rearrangements in the carboxy-terminal region of SpIH channels 2Q0A ; 2.25 ; Structure and rearrangements in the carboxy-terminal region of SpIH channels 4WE7 ; 2.5 ; Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins 4WEA ; 2.2 ; Structure and receptor binding prefereneces of recombinant human A(H3N2) virus hemagglutinins 4KPQ ; 2.502 ; Structure and receptor binding specificity of the hemagglutinin H13 from avian influenza A virus H13N6 4KPS ; 2.587 ; Structure and receptor binding specificity of the hemagglutinin H13 from avian influenza A virus H13N6 2APR ; 1.8 ; STRUCTURE AND REFINEMENT AT 1.8 ANGSTROMS RESOLUTION OF THE ASPARTIC PROTEINASE FROM RHIZOPUS CHINENSIS 1MBO ; 1.6 ; Structure and refinement of oxymyoglobin at 1.6 angstroms resolution 3APP ; 1.8 ; STRUCTURE AND REFINEMENT OF PENICILLOPEPSIN AT 1.8 ANGSTROMS RESOLUTION 2UTG ; 1.64 ; STRUCTURE AND REFINEMENT OF THE OXIDIZED P21 FORM OF UTEROGLOBIN AT 1.64 ANGSTROMS RESOLUTION 1H4L ; 2.65 ; Structure and regulation of the CDK5-p25(nck5a) complex 3GVO ; 1.6 ; Structure and RNA binding of the mouse Pumilio-2 Puf Domain 3GVT ; 2.8 ; Structure and RNA binding of the mouse Pumilio-2 Puf Domain 1F5V ; 1.7 ; STRUCTURE AND SITE-DIRECTED MUTAGENESIS OF A FLAVOPROTEIN FROM ESCHERICHIA COLI THAT REDUCES NITROCOMPOUNDS. ALTERATION OF PYRIDINE NUCLEOTIDE BINDING BY A SINGLE AMINO ACID SUBSTITUTION 2JRY ; ; Structure and Sodium Channel Activity of an Excitatory I1-Superfamily Conotoxin 2P4L ; ; Structure and sodium channel activity of an excitatory I1-superfamily conotoxin 4QR7 ; 2.303 ; Structure and specificity of L-D-Transpeptidase from Mycobacterium tuberculosis and antibiotic resistance: Calcium binding promotes dimer formation 4QRA ; 2.29 ; Structure and specificity of L-D-Transpeptidase from Mycobacterium tuberculosis and antibiotic resistance: Calcium binding promotes dimer formation 4QRB ; 1.64 ; Structure and specificity of L-D-Transpeptidase from Mycobacterium tuberculosis and antibiotic resistance: Calcium binding promotes dimer formation 4QTF ; 2.0 ; Structure and specificity of L-D-Transpeptidase from Mycobacterium tuberculosis and antibiotic resistance: Calcium binding promotes dimer formation 1BSX ; 3.7 ; STRUCTURE AND SPECIFICITY OF NUCLEAR RECEPTOR-COACTIVATOR INTERACTIONS 1IBG ; 2.7 ; STRUCTURE AND SPECIFICITY OF THE ANTI-DIGOXIN ANTIBODY 40-50 2LSF ; ; Structure and Stability of Duplex DNA Containing (5'S) 5',8-Cyclo-2'-Deoxyadenosine: An Oxidative Lesion Repair by NER 2MVY ; ; Structure and Stability of RNAs Containing N6-Methyl-adenosine 1S5P ; 1.96 ; Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Eschericia coli. 4BPQ ; 6.0 ; Structure and substrate induced conformational changes of the secondary citrate-sodium symporter CitS revealed by electron crystallography 1N3J ; ; Structure and Substrate of a Histone H3 Lysine Methyltransferase from Paramecium Bursaria Chlorella Virus 1 4R8Q ; 2.31 ; Structure and substrate recruitment of the human spindle checkpoint kinase bub1 145D ; 1.25 ; Structure and thermodynamics of nonalternating C/G base pairs in Z-DNA: the 1.3 angstroms crystal structure of the asymmetric hexanucleotide D(M(5)CGGGM(5) CG)/D(M(5)CGCCM(5)CG) 2VSN ; 2.75 ; Structure and topological arrangement of an O-GlcNAc transferase homolog: insight into molecular control of intracellular glycosylation 1EPS ; 3.0 ; STRUCTURE AND TOPOLOGICAL SYMMETRY OF THE GLYPHOSPHATE 5-ENOL-PYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE: A DISTINCTIVE PROTEIN FOLD 1PJD ; ; Structure and Topology of a Peptide Segment of the 6th Transmembrane Domain of the Saccharomyces cerevisiae alpha-Factor Receptor in Phospholipid Bilayers 7MPA ; ; Structure and topology of DWORF in bicelles by oriented solid-state NMR 1NJ3 ; ; Structure and Ubiquitin Interactions of the Conserved NZF Domain of Npl4 6LDY ; 1.77 ; Structure antibody D6 in complex with methylated peptide 6LDX ; 1.8 ; Structure antibody E6 in complex with methylated peptide 6LDV ; 1.9 ; Structure antibody F9 in complex with methylated peptide 5EPQ ; 1.752 ; Structure at 1.75 A resolution of a glycosylated, lipid-binding, lipocalin-like protein 1KV9 ; 1.9 ; Structure at 1.9 A Resolution of a Quinohemoprotein Alcohol Dehydrogenase from Pseudomonas putida HK5 4MTY ; 1.0 ; Structure at 1A resolution of a helical aromatic foldamer-protein complex. 5CDF ; 2.3 ; Structure at 2.3 A of the alpha/beta monomer of the F-ATPase from Paracoccus denitrificans 8HVP ; 2.5 ; STRUCTURE AT 2.5-ANGSTROMS RESOLUTION OF CHEMICALLY SYNTHESIZED HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 PROTEASE COMPLEXED WITH A HYDROXYETHYLENE*-BASED INHIBITOR 1AR1 ; 2.7 ; Structure at 2.7 Angstrom Resolution of the Paracoccus Denitrificans two-subunit Cytochrome C Oxidase Complexed with an Antibody Fv Fragment 1FER ; 2.3 ; STRUCTURE AT PH 6.5 OF FERREDOXIN I FROM AZOTOBACTER VINELANDII AT 2.3 ANGSTROMS RESOLUTION 5G15 ; 2.06 ; Structure Aurora A (122-403) bound to activating monobody Mb1 and AMPPCP 2Y8Y ; 1.44 ; Structure B of CRISPR endoribonuclease Cse3 bound to 19 nt RNA 6C4D ; 2.52 ; Structure based design of RIP1 kinase inhibitors 4GQP ; 2.0 ; Structure based design of sub-nanomolar affinity anti-methamphetamine single chain antibodies. 3QBH ; 2.24 ; Structure based design, synthesis and SAR of cyclic hydroxyethylamine (HEA) BACE-1 inhibitors 1UNT ; 2.07 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNU ; 2.07 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNV ; 2.14 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNW ; 2.2 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNX ; 2.4 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNY ; 2.3 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UNZ ; 2.3 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO0 ; 2.4 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO1 ; 2.5 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO2 ; 1.99 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO3 ; 1.92 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO4 ; 1.7 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 1UO5 ; 2.07 ; Structure Based Engineering of Internal Molecular Surfaces Of Four Helix Bundles 4JNJ ; 1.902 ; Structure based engineering of streptavidin monomer with a reduced biotin dissociation rate 5HXL ; 1.97 ; Structure based function annotation of a hypothetical protein MGG_01005 related to the development of rice blast fungus 5HYC ; 2.4 ; Structure based function annotation of a hypothetical protein MGG_01005 related to the development of rice blast fungus 6RSB ; 1.8 ; Structure based optimization of JAK1-ATP binding pocket Inhibitors in the aminopyrazole class 6RSC ; 1.85 ; Structure based optimization of JAK1-ATP binding pocket Inhibitors in the aminopyrazole class 6RSD ; 1.76 ; Structure based optimization of JAK1-ATP binding pocket Inhibitors in the aminopyrazole class 6RSE ; 1.8 ; Structure based optimization of JAK1-ATP binding pocket Inhibitors in the aminopyrazole class 6RSH ; 1.71 ; Structure based optimization of JAK1-ATP binding pocket Inhibitors in the aminopyrazole class 8GSQ ; 2.1 ; Structure based studies reveal an atypical antipsychotic drug candidate - Paliperidone as a potent hSOD1 modulator with implications in ALS treatment. 6KEB ; 3.2 ; Structure basis for Diltiazem block of a voltage-gated calcium channel 1ZB1 ; 1.95 ; Structure basis for endosomal targeting by the Bro1 domain 4FF5 ; 1.86 ; Structure basis of a novel virulence factor GHIP a glycosyl hydrolase 25 of Streptococcus pneumoniae participating in host cell invasion 3R1G ; 2.8 ; Structure Basis of Allosteric Inhibition of BACE1 by an Exosite-Binding Antibody 4TO6 ; 2.33 ; Structure basis of cellular dNTP regulation, SAMHD1-dGTP-dATP-dTTP/dGTP complex 4TO2 ; 2.27 ; Structure basis of cellular dNTP regulation, SAMHD1-dGTP-dGTP-dGTP/dTTP complex 4TNR ; 2.75 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dATP-dATP complex 4TO0 ; 2.3 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dATP-dCTP complex 4TNZ ; 2.38 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dATP-dTTP complex 4TO1 ; 2.55 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dATP/dCTP-dCTP complex 4TNX ; 2.31 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dGTP complex 4TO4 ; 2.1 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dGTP-dCTP complex 4TO5 ; 2.8 ; Structure basis of cellular dNTP regulation, SAMHD1-GTP-dTTP-dCTP complex 3WUT ; 2.301 ; Structure basis of inactivating cell abscission 3WUU ; 2.904 ; Structure basis of inactivating cell abscission with chimera peptide 1 3WUV ; 2.79 ; Structure basis of inactivating cell abscission with chimera peptide 2 4N4R ; 2.8 ; Structure basis of lipopolysaccharide biogenesis 1YHN ; 3.0 ; Structure basis of RILP recruitment by Rab7 1XT3 ; 2.4 ; Structure Basis of Venom Citrate-Dependent Heparin Sulfate-Mediated Cell Surface Retention of Cobra Cardiotoxin A3 1U2N ; ; Structure CBP TAZ1 Domain 4ZGN ; 2.9 ; Structure Cdc123 complexed with the C-terminal domain of eIF2gamma 4ALE ; 1.48 ; Structure changes of Polysaccharide monooxygenase CBM33A from Enterococcus faecalis by X-ray induced photoreduction. 2JV4 ; ; Structure Characterisation of PINA WW Domain and Comparison with other Group IV WW Domains, PIN1 and ESS1 1P6T ; ; Structure characterization of the water soluble region of P-type ATPase CopA from Bacillus subtilis 4G2V ; 2.4 ; Structure complex of LGN binding with FRMPD1 2W44 ; 2.0 ; Structure DeltaA1-A4 insulin 1E7U ; 2.0 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1E7V ; 2.4 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1E8W ; 2.5 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1E8Y ; 2.0 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1E8Z ; 2.4 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1E90 ; 2.7 ; Structure determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin and staurosporine 1EB8 ; 2.1 ; Structure Determinants of Substrate Specificity of Hydroxynitrile Lyase from Manihot esculenta 1EB9 ; 2.1 ; Structure Determinants of Substrate Specificity of Hydroxynitrile Lyase from Manihot esculenta 1YEA ; 1.9 ; STRUCTURE DETERMINATION AND ANALYSIS OF YEAST ISO-2-CYTOCHROME C AND A COMPOSITE MUTANT PROTEIN 1YEB ; 1.95 ; STRUCTURE DETERMINATION AND ANALYSIS OF YEAST ISO-2-CYTOCHROME C AND A COMPOSITE MUTANT PROTEIN 1GKG ; ; Structure Determination and Rational Mutagenesis reveal binding surface of immune adherence receptor, CR1 (CD35) 1GKN ; ; Structure Determination and Rational Mutagenesis reveal binding surface of immune adherence receptor, CR1 (CD35) 1X1N ; 1.8 ; Structure determination and refinement at 1.8 A resolution of Disproportionating Enzyme from Potato 1TJ7 ; 2.44 ; Structure determination and refinement at 2.44 A resolution of Argininosuccinate lyase from E. coli 1LDB ; 2.8 ; STRUCTURE DETERMINATION AND REFINEMENT OF BACILLUS STEAROTHERMOPHILUS LACTATE DEHYDROGENASE 2LDB ; 3.0 ; STRUCTURE DETERMINATION AND REFINEMENT OF BACILLUS STEAROTHERMOPHILUS LACTATE DEHYDROGENASE 1ITH ; 2.5 ; STRUCTURE DETERMINATION AND REFINEMENT OF HOMOTETRAMERIC HEMOGLOBIN FROM URECHIS CAUPO AT 2.5 ANGSTROMS RESOLUTION 1GUH ; 2.6 ; Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the MU and PI class enzymes 1RBL ; 2.2 ; STRUCTURE DETERMINATION AND REFINEMENT OF RIBULOSE 1,5 BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE FROM SYNECHOCOCCUS PCC6301 1OMS ; 2.3 ; Structure determination by MAD: E.coli Trigger Factor binding at the ribosomal exit tunnel. 2N6N ; ; Structure Determination for spider toxin, U4-agatoxin-Ao1a 1A8Z ; 2.1 ; STRUCTURE DETERMINATION OF A 16.8KDA COPPER PROTEIN RUSTICYANIN AT 2.1A RESOLUTION USING ANOMALOUS SCATTERING DATA WITH DIRECT METHODS 6EBX ; 1.7 ; STRUCTURE DETERMINATION OF A DIMERIC FORM OF ERABUTOXIN B, CRYSTALLIZED FROM THIOCYANATE SOLUTION 5TH6 ; 1.7 ; Structure determination of a potent, selective antibody inhibitor of human MMP9 (apo MMP9) 5TH9 ; 2.999 ; Structure determination of a potent, selective antibody inhibitor of human MMP9 (GS-5745 bound to MMP-9) 5KEK ; 3.098 ; Structure Determination of a Self-Assembling DNA Crystal 5KEO ; 3.15 ; Structure Determination of a Self-Assembling DNA Crystal 6BO3 ; 1.83 ; Structure Determination of A223, a turret protein in Sulfolobus turreted icosahedral virus, using an iterative hybrid approach 6TMO ; 2.1 ; Structure determination of an enhanced affinity TCR, a24b17, in complex with HLA-A*02:01 presenting a MART-1 peptide, EAAGIGILTV 1FOR ; 2.75 ; STRUCTURE DETERMINATION OF AN FAB FRAGMENT THAT NEUTRALIZES HUMAN RHINOVIRUS AND ANALYSIS OF THE FAB-VIRUS COMPLEX 4BPD ; 3.3 ; Structure determination of an integral membrane kinase 4YCR ; 2.3 ; Structure determination of an integral membrane protein at room temperature from crystals in situ 1HRI ; 3.0 ; STRUCTURE DETERMINATION OF ANTIVIRAL COMPOUND SCH 38057 COMPLEXED WITH HUMAN RHINOVIRUS 14 2PGH ; 2.8 ; STRUCTURE DETERMINATION OF AQUOMET PORCINE HEMOGLOBIN AT 2.8 ANGSTROM RESOLUTION 2W1C ; 3.24 ; Structure determination of Aurora Kinase in complex with inhibitor 2W1D ; 2.97 ; Structure determination of Aurora Kinase in complex with inhibitor 2W1E ; 2.93 ; Structure determination of Aurora Kinase in complex with inhibitor 2W1F ; 2.85 ; Structure determination of Aurora Kinase in complex with inhibitor 2W1G ; 2.71 ; Structure determination of Aurora Kinase in complex with inhibitor 2W1I ; 2.6 ; Structure determination of Aurora Kinase in complex with inhibitor 6JLC ; 1.847 ; Structure determination of CAMP factor of Mobiluncus curtisii and insight into structural dynamics 1CGM ; 3.4 ; STRUCTURE DETERMINATION OF CUCUMBER GREEN MOTTLE MOSAIC VIRUS BY X-RAY FIBER DIFFRACTION. SIGNIFICANCE FOR THE EVOLUTION OF TOBAMOVIRUSES 4L0O ; 2.76 ; Structure determination of cystathionine gamma-synthase from Helicobacter pylori 3H8O ; 2.0 ; Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked host-guest system 3H8R ; 1.77 ; Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked host-guest system 3H8X ; 1.95 ; Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked host-guest system 3ZYT ; 2.45 ; Structure Determination of EstA from Arthrobacter nitroguajacolicus Rue61a 1FPV ; 3.3 ; STRUCTURE DETERMINATION OF FELINE PANLEUKOPENIA VIRUS EMPTY PARTICLES 1PRY ; 1.97 ; Structure Determination of Fibrillarin Homologue From Hyperthermophilic Archaeon Pyrococcus furiosus (Pfu-65527) 1DXI ; 2.6 ; STRUCTURE DETERMINATION OF GLUCOSE ISOMERASE FROM STREPTOMYCES MURINUS AT 2.6 ANGSTROMS RESOLUTION 1S0H ; 3.0 ; Structure determination of haemoglobin from Donkey(equus asinus) at 3.0 Angstrom resolution 2QMB ; 2.8 ; Structure determination of haemoglobin from Turkey(meleagris gallopavo) at 2.8 Angstrom resolution 6QAN ; ; Structure determination of N-terminal fragment of UL49.5 protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics 2PLT ; 1.5 ; STRUCTURE DETERMINATION OF PLASTOCYANIN FROM A CRYSTAL SPECIMEN WITH HEMIHEDRAL TWINNING FRACTION OF ONE-HALF 2MVH ; ; Structure determination of Stage V sporulation protein M (SpoVM) 2MK6 ; ; Structure determination of substrate binding domain of MecA 1S3W ; 1.9 ; Structure Determination of Tetrahydroquinazoline Antifoaltes in Complex with Human and Pneumocystis carinii Dihydrofolate Reductase: Correlations of Enzyme Selectivity and Stereochemistry 1S3U ; 2.5 ; Structure Determination of Tetrahydroquinazoline Antifolates in Complex with Human and Pneumocystis carinii Dihydrofolate Reductase: Correlations of Enzyme Selectivity and Stereochemistry 1S3V ; 1.8 ; Structure Determination of Tetrahydroquinazoline Antifolates in Complex with Human and Pneumocystis carinii Dihydrofolate Reductase: Correlations of Enzyme Selectivity and Stereochemistry 1S3Y ; 2.25 ; Structure Determination of Tetrahydroquinazoline Antifolates in Complex with Human and Pneumocystis carinii Dihydrofolate Reductase: Correlations of Enzyme Selectivity and Stereochemistry 1LLC ; 3.0 ; STRUCTURE DETERMINATION OF THE ALLOSTERIC L-LACTATE DEHYDROGENASE FROM LACTOBACILLUS CASEI AT 3.0 ANGSTROMS RESOLUTION 2HOA ; ; STRUCTURE DETERMINATION OF THE ANTP(C39->S) HOMEODOMAIN FROM NUCLEAR MAGNETIC RESONANCE DATA IN SOLUTION USING A NOVEL STRATEGY FOR THE STRUCTURE CALCULATION WITH THE PROGRAMS DIANA, CALIBA, HABAS AND GLOMSA 3E78 ; 1.9 ; Structure determination of the cancer-associated Mycoplasma hyorhinis protein Mh-p37 3E79 ; 1.9 ; Structure determination of the cancer-associated Mycoplasma hyorhinis protein Mh-p37 1CEI ; 1.8 ; STRUCTURE DETERMINATION OF THE COLICIN E7 IMMUNITY PROTEIN (IMME7) THAT BINDS SPECIFICALLY TO THE DNASE-TYPE COLICIN E7 AND INHIBITS ITS BACTERIOCIDAL ACTIVITY 1R11 ; 2.7 ; Structure Determination of the Dimeric Endonuclease in a Pseudo-face-centerd P21 space group 1R0V ; 2.0 ; Structure Determination of the Dimeric Endonuclease in a Pseudo-face-centerd P21212 space group 4AV7 ; 3.0 ; Structure determination of the double mutant S233Y F250G from the sec- alkyl sulfatase PisA1 1FJ0 ; 1.7 ; STRUCTURE DETERMINATION OF THE FERRICYTOCHROME C2 FROM RHODOPSEUDOMONAS PALUSTRIS 1I8P ; 1.95 ; STRUCTURE DETERMINATION OF THE FERROCYTOCHROME C2 FROM RHODOPSEUDOMONAS PALUSTRIS 7FAU ; 2.08 ; Structure Determination of the NB1B11-RBD Complex 1RLF ; ; STRUCTURE DETERMINATION OF THE RAS-BINDING DOMAIN OF THE RAL-SPECIFIC GUANINE NUCLEOTIDE EXCHANGE FACTOR RLF, NMR, 10 STRUCTURES 7FAT ; 1.99 ; Structure Determination of the RBD-NB1A7 2MHY ; ; Structure determination of the salamander courtship pheromone Plethodontid Modulating Factor 1A5R ; ; STRUCTURE DETERMINATION OF THE SMALL UBIQUITIN-RELATED MODIFIER SUMO-1, NMR, 10 STRUCTURES 2YHE ; 2.7 ; Structure determination of the stereoselective inverting sec- alkylsulfatase Pisa1 from Pseudomonas sp. 6R8N ; 4.1 ; STRUCTURE DETERMINATION OF THE TETRAHEDRAL AMINOPEPTIDASE TET2 FROM P. HORIKOSHII BY USE OF COMBINED SOLID-STATE NMR, SOLUTION-STATE NMR AND EM DATA 4.1 A, FOLLOWED BY REAL_SPACE_REFINEMENT AT 4.1 A 1OI6 ; 1.4 ; Structure determination of the TMP-complex of EvaD 2KPC ; ; Structure determination of the top-loop of the conserved 3 terminal secondary structure in the genome of YFV 2KPD ; ; Structure determination of the top-loop of the conserved 3 terminal secondary structure in the genome of YFV-mutant 6T58 ; 3.1 ; Structure determination of the transactivation domain of p53 in complex with S100A4 using annexin A2 as a crystallization chaperone 6QBJ ; ; Structure determination of transmembrane- C-terminal fragment of UL49.5 protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics 3LZ2 ; 2.5 ; STRUCTURE DETERMINATION OF TURKEY EGG WHITE LYSOZYME USING LAUE DIFFRACTION 1UMU ; 2.5 ; STRUCTURE DETERMINATION OF UMUD' BY MAD PHASING OF THE SELENOMETHIONYL PROTEIN 5UF3 ; ; Structure Effects of the Four-Adenine Loop of the Coliphage GA Replicase RNA Operator 5XPX ; 2.77 ; Structure elucidation of truncated AMS3 lipase from an Antarctic Pseudomonas 5MWJ ; 2.04 ; Structure Enabled Discovery of a Stapled Peptide Inhibitor to Target the Oncogenic Transcriptional Repressor TLE1 2K36 ; ; Structure ensemble Backbone and side-chain 1H, 13C, and 15N Chemical Shift Assignments, 1H-15N RDCs and 1H-1H nOe restraints for protein K7 from the Vaccinia virus 2HOU ; ; Structure ensembles of duplex DNA containing a 4'-oxidized abasic site. 1XGP ; 2.1 ; Structure for antibody HyHEL-63 Y33A mutant complexed with hen egg lysozyme 1XGU ; 2.1 ; Structure for antibody HyHEL-63 Y33F mutant complexed with hen egg lysozyme 1XGR ; 2.1 ; Structure for antibody HyHEL-63 Y33I mutant complexed with hen egg lysozyme 1XGT ; 2.1 ; Structure for antibody HyHEL-63 Y33L mutant complexed with hen egg lysozyme 1XGQ ; 2.1 ; Structure for antibody HyHEL-63 Y33V mutant complexed with hen egg lysozyme 2JMP ; ; Structure for the N-terminus of chromosomal replication initiation protein dnaA from M. genitalium 5YJ4 ; ; structure for the protective mutant G127V of Human prion protein 5YJ5 ; ; structure for wildtype Human prion protein (M129) 3FUY ; 2.0 ; Structure from the mobile metagenome of Cole Harbour Salt Marsh: Integron Cassette Protein HFX_CASS1 3IF4 ; 2.181 ; Structure from the mobile metagenome of North West Arm Sewage Outfall: Integron Cassette Protein Hfx_Cass5 3EY7 ; 1.6 ; Structure from the mobile metagenome of V. Cholerae. Integron cassette protein VCH_CASS1 3FY6 ; 2.1 ; Structure from the mobile metagenome of V. Cholerae. Integron cassette protein VCH_CASS3 3JRT ; 2.3 ; Structure from the mobile metagenome of V. paracholerae: Integron cassette protein Vpc_cass2 3EY8 ; 1.6 ; Structure from the mobile metagenome of V. Pseudocholerae. VPC_CASS1 3I9S ; 2.2 ; Structure from the mobile metagenome of V.cholerae. Integron cassette protein VCH_CASS6 3IMO ; 1.8 ; Structure from the mobile metagenome of Vibrio cholerae. Integron cassette protein VCH_CASS14 3G1J ; 1.7 ; Structure from the mobile metagenome of Vibrio cholerae. Integron cassette protein VCH_CASS4. 5HJX ; 1.799 ; Structure function studies of R. palustris RubisCO (A47V mutant; CABP-bound) 5HK4 ; 2.15 ; Structure function studies of R. palustris RubisCO (A47V-M331A mutant) 5HQL ; 2.53 ; Structure function studies of R. palustris RubisCO (A47V-M331A mutant; CABP-bound; no expression tag) 5HJY ; 2.3 ; Structure function studies of R. palustris RubisCO (I165T mutant; CABP-bound) 5KOZ ; 2.3 ; Structure function studies of R. palustris RubisCO (K192C mutant; CABP-bound) 5HAO ; 2.182 ; Structure function studies of R. palustris RubisCO (M331A mutant; CABP-bound) 5HQM ; 1.95 ; Structure function studies of R. palustris RubisCO (R. palustris/R. rubrum chimera) 5HAN ; 2.04 ; Structure function studies of R. palustris RubisCO (S59F mutant; CABP-bound) 5HAT ; 2.0 ; Structure function studies of R. palustris RubisCO (S59F/M331A mutant; CABP-bound) 3KEA ; 2.3 ; Structure function studies of vaccinia virus host-range protein K1 reveal a novel ankyrin repeat interaction surface for K1s function 1KR4 ; 1.4 ; Structure Genomics, Protein TM1056, cutA 5G5W ; 2.2 ; Structure guided design and discovery of Indazole ethers as highly potent, non-steroidal Glucocorticoid receptor modulators 6HY2 ; 1.6 ; Structure guided design of an antibacterial peptide that targets UDP-N-acetylglucosamine acyltransferase 3UWK ; 1.91 ; Structure Guided Development of Novel Thymidine Mimetics targeting Pseudomonas aeruginosa Thymidylate Kinase: from Hit to Lead Generation 3UWO ; 1.7 ; Structure Guided Development of Novel Thymidine Mimetics targeting Pseudomonas aeruginosa Thymidylate Kinase: from Hit to Lead Generation 3UXM ; 1.95 ; Structure Guided Development of Novel Thymidine Mimetics targeting Pseudomonas aeruginosa Thymidylate Kinase: from Hit to Lead Generation 5EV1 ; 2.037 ; Structure I of Intact U2AF65 Recognizing a 3' Splice Site Signal 5EV2 ; 1.86 ; Structure II of Intact U2AF65 Recognizing the 3' Splice Site Signal 5EV3 ; 1.5 ; Structure III of Intact U2AF65 Recognizing the 3' Splice Site Signal 2MUE ; ; Structure Immunogenicity and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues 6HLZ ; 1.89 ; Structure in C2 form of the PBP AgtB from A.tumefacien R10 in complex with agropinic acid 6HM2 ; 1.74 ; Structure in P1 form of the PBP AgtB in complex with agropinic acid from A.tumefacien R10 6TFX ; 1.56 ; Structure in P21 form of the PBP/SBP MoaA in complex with mannopinic acid from A.tumefacien R10 6HLY ; 1.4 ; Structure in P212121 form of the PBP AgtB in complex with agropinic acid from A.tumefacien R10 6TFS ; 2.0 ; Structure in P3212 form of the PBP/SBP MoaA in complex with glucopinic acid from A.tumefacien R10 6TFQ ; 2.05 ; Structure in P3212 form of the PBP/SBP MoaA in complex with mannopinic acid from A.tumefacien R10 1S6D ; ; Structure in solution of a methionine-rich 2S Albumin protein from Sunflower Seed 6HNF ; ; Structure in solution of human fibronectin type III-domain 14 7R3M ; ; Structure in solution of the TANGO1 cargo-binding domain (21-131) 6AE8 ; 1.65 ; Structure insight into histone chaperone Chz1-mediated H2A.Z recognition and replacement 8IY8 ; 1.5 ; Structure insight into substrate recognition and catalysis by feruloyl esterase from Aspergillus sydowii 8IYB ; 1.5 ; Structure insight into substrate recognition and catalysis by feruloyl esterase from Aspergillus sydowii 8IYC ; 1.55 ; Structure insight into substrate recognition and catalysis by feruloyl esterase from Aspergillus sydowii 3T0H ; 1.2 ; Structure insights into mechanisms of ATP hydrolysis and the activation of human Hsp90 8J6E ; 2.05 ; Structure insights into the NADPH quinone oxidoreductase from Leishmania donovani 6QKF ; ; Structure investigations of Protegrin-4 by High resolution NMR spectroscopy 5EV4 ; 1.57 ; Structure IV of Intact U2AF65 Recognizing the 3' Splice Site Signal 5YYR ; 1.07 ; Structure K106A thaumatin 5YYP ; 1.01 ; Structure K137A thaumatin 5YYQ ; 1.07 ; Structure K78A thaumatin 4KZT ; 2.8 ; Structure mmNAGS bound with L-arginine 5B7J ; ; Structure model of Sap1-DNA complex 1OC6 ; 1.5 ; structure native of the D405N mutant of the CELLOBIOHYDROLASE CEL6A FROM HUMICOLA INSOLENS at 1.5 angstrom resolution 8BZ3 ; 1.31 ; Structure od the carbohydrate reconition domain of Gal3 in comples with SAF-2-010 6RQY ; 1.9 ; Structure of % reduced KpDyP 3KDI ; 2.379 ; Structure of (+)-ABA bound PYL2 6BG3 ; 1.05 ; Structure of (3S,4S)-1-benzyl-4-(3-(3-(trifluoromethyl)phenyl)ureido)piperidin-3-yl acetate bound to DCN1 1YFV ; ; STRUCTURE OF (5'-R(GP*GP*CP*GP*AP*GP*CP*C)-3')2 BY 2-D NMR, 1 STRUCTURE 3DNF ; 1.65 ; Structure of (E)-4-Hydroxy-3-methyl-but-2-enyl Diphosphate Reductase, the Terminal Enzyme of the Non-Mevalonate Pathway 3A08 ; 1.22 ; Structure of (PPG)4-OOG-(PPG)4, monoclinic, twinned crystal 3A19 ; 1.55 ; Structure of (PPG)4-OOG-(PPG)4_H monoclinic, twinned crystal 3A0A ; 1.36 ; Structure of (PPG)4-OPG-(PPG)4, monoclinic, twinned crystal 3A0M ; 1.02 ; Structure of (PPG)4-OVG-(PPG)4, monoclinic, twinned crystal 3RR3 ; 2.842 ; Structure of (R)-flurbiprofen bound to mCOX-2 3Q7D ; 2.4 ; Structure of (R)-naproxen bound to mCOX-2. 2C9M ; 3.0 ; Structure of (SR) Calcium-ATPase in the Ca2E1 state solved in a P1 crystal form. 2MT3 ; ; Structure of -24 DNA binding domain of sigma 54 from E.coli 5LON ; 3.5 ; Structure of /K. lactis/ Dcp1-Dcp2 decapping complex. 1G42 ; 1.8 ; STRUCTURE OF 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE (LINB) FROM SPHINGOMONAS PAUCIMOBILIS COMPLEXED WITH 1,2-DICHLOROPROPANE 6BG5 ; 1.1 ; Structure of 1-(benzo[d][1,3]dioxol-5-ylmethyl)-1-(1-propylpiperidin-4-yl)-3-(3-(trifluoromethyl)phenyl)urea bound to DCN1 3D2A ; 1.73 ; Structure of 1-17A4, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution 5KHD ; 1.7501 ; Structure of 1.75 A BldD C-domain-c-di-GMP complex 6RR1 ; 1.9 ; Structure of 10% reduced KpDyP 6RR6 ; 1.9 ; Structure of 100% reduced KpDyP 6RR8 ; 1.9 ; Structure of 100% reduced KpDyP (final wedges) 7X4E ; 2.32 ; Structure of 10635-DndE 2FVE ; ; Structure of 10:0-ACP (protein alone) 2FVF ; ; Structure of 10:0-ACP (protein with docked fatty acid) 1D14 ; 1.5 ; STRUCTURE OF 11-DEOXYDAUNOMYCIN BOUND TO DNA CONTAINING A PHOSPHOROTHIOATE 6A5Q ; 2.0 ; Structure of 14-3-3 beta in complex with TFEB 14-3-3 binding motif 6BYK ; 3.0 ; Structure of 14-3-3 beta/alpha bound to O-ClcNAc peptide 7NMZ ; 2.303 ; Structure of 14-3-3 eta in complex with Nedd4-2(335-455) containing two 14-3-3 binding motifs Ser342 and Ser448 6BYL ; 3.35 ; Structure of 14-3-3 gamma bound to O-GlcNAcylated thr peptide 6FEL ; 2.84 ; Structure of 14-3-3 gamma in complex with CaMKK2 14-3-3 binding motif Ser511 6GKF ; 2.598 ; Structure of 14-3-3 gamma in complex with caspase-2 14-3-3 binding motif Ser139 6GKG ; 2.847 ; Structure of 14-3-3 gamma in complex with caspase-2 14-3-3 binding motif Ser164 6S9K ; 1.6 ; Structure of 14-3-3 gamma in complex with caspase-2 peptide containing 14-3-3 binding motif Ser139 and NLS 7A6R ; 2.7 ; Structure of 14-3-3 gamma in complex with DAPK2 peptide containing the 14-3-3 binding motif 7A6Y ; 2.5 ; Structure of 14-3-3 gamma in complex with DAPK2 peptide stabilized by FC-A 6SAD ; 2.753 ; Structure of 14-3-3 gamma in complex with double phosphorylated caspase-2 peptide on Ser139 and Ser164 6ZBT ; 1.79949 ; Structure of 14-3-3 gamma in complex with Nedd4-2 14-3-3 binding motif Ser342 6ZC9 ; 1.89896 ; Structure of 14-3-3 gamma in complex with Nedd4-2 14-3-3 binding motif Ser448 6A5S ; 2.099 ; Structure of 14-3-3 gamma in complex with TFEB 14-3-3 binding motif 6BZD ; 2.67 ; Structure of 14-3-3 gamma R57E mutant bound to GlcNAcylated peptide 3E6Y ; 2.5 ; Structure of 14-3-3 in complex with the differentiation-inducing agent Cotylenin A 3O8I ; 2.0 ; Structure of 14-3-3 isoform sigma in complex with a C-Raf1 peptide and a stabilizing small molecule fragment 8C2F ; 2.3 ; Structure of 14-3-3 sigma delta C with electrophilic peptide 3MHR-5 8C2E ; 2.2 ; Structure of 14-3-3 sigma delta C with electrophilic peptide 4IEA-5 4DAU ; 2.0 ; Structure of 14-3-3 sigma in complex with PADI6 14-3-3 binding motif I 4DAT ; 1.4 ; Structure of 14-3-3 sigma in complex with PADI6 14-3-3 binding motif II 6EJL ; 2.382 ; Structure of 14-3-3 zeta in complex with ASK1 14-3-3 binding motif 6EWW ; 2.679 ; Structure of 14-3-3 zeta in complex with CaMKK2 14-3-3 binding motif 4C3I ; 3.0 ; Structure of 14-subunit RNA polymerase I at 3.0 A resolution, crystal form C2-100 4C3H ; 3.27 ; Structure of 14-subunit RNA polymerase I at 3.27 A resolution, crystal form C2-93 4C3J ; 3.35 ; Structure of 14-subunit RNA polymerase I at 3.35 A resolution, crystal form C2-90 2X9O ; 1.55 ; STRUCTURE OF 15, 16- DIHYDROBILIVERDIN:FERREDOXIN OXIDOREDUCTASE (PebA) 7U0J ; 2.7 ; Structure of 162bp LIN28b nucleosome 1PBR ; ; STRUCTURE OF 16S RIBOSOMAL RNA, NMR, MINIMIZED AVERAGE STRUCTURE 1EMI ; 7.5 ; STRUCTURE OF 16S RRNA IN THE REGION AROUND RIBOSOMAL PROTEIN S8. 2J7Y ; 1.8 ; STRUCTURE OF 17-EPIESTRIOL-BOUND ESTROGEN RECEPTOR BETA LBD IN COMPLEX WITH LXXLL MOTIF FROM NCOA5 2LB6 ; ; Structure of 18694Da MUP, typical to the major urinary protein family: MUP9, MUP11, MUP15, MUP18 & MUP19 8DK5 ; 2.71 ; Structure of 187bp LIN28b nucleosome with site 0 mutation 2FVA ; ; Structure of 18:0-ACP with docked fatty acid 7Y5N ; 3.45 ; Structure of 1:1 PAPP-A.ProMBP complex(half map) 7Y5Q ; 3.8 ; Structure of 1:1 PAPP-A.STC2 complex(half map) 6OOR ; 2.45 ; Structure of 1B1 bound to mouse CD1d 8EZ7 ; 2.6 ; Structure of 1F04 Fab in complex with A/Moscow/10/1999 (H3N2) influenza virus neuraminidase 3IBT ; 2.6 ; Structure of 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) 7ZK3 ; 2.85 ; Structure of 1PBC- and calcium-bound mTMEM16A(ac) chloride channel at 2.85 A resolution 2M58 ; ; Structure of 2'-5' AG1 lariat forming ribozyme in its inactive state 2KP4 ; ; Structure of 2'F-ANA/RNA hybrid duplex 2M84 ; ; Structure of 2'F-RNA/2'F-ANA chimeric duplex 360D ; 1.85 ; STRUCTURE OF 2,5-BIS{[4-(N-ETHYLAMIDINO)PHENYL]}FURAN COMPLEXED TO 5'-D(CPGPCPGPAPAPTPTPCPGPCPG)-3'. A MINOR GROOVE DRUG COMPLEX, SHOWING PATTERNS OF GROOVE HYDRATION 7CUP ; 2.0 ; Structure of 2,5-dihydroxypridine Dioxygenase from Pseudomonas putida KT2440 7CNT ; 2.28 ; Structure of 2,5-dihydroxypridine Dioxygenase from Pseudomonas putida KT2440 in complex with product N-formylmaleamic acid formed via in crystallo reaction with 2,5-dihydroxypridine 2VOU ; 2.6 ; Structure of 2,6-dihydroxypyridine-3-hydroxylase from Arthrobacter nicotinovorans 6BNG ; 2.2 ; Structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Acinetobacter baumannii 1VCV ; 2.0 ; Structure of 2-deoxyribose-5-phosphate aldolase from Pyrobaculum aerophilum 8EA2 ; 2.394 ; Structure of 2-hydroxyisoflavanone dehydratase from Pueraria lobate 8E83 ; 2.0 ; Structure of 2-hydroxyisoflavanone synthase from Medicago truncatula 1KGA ; 3.5 ; STRUCTURE OF 2-KETO-3-DEOXY-6-PHOSPHOGLUCONATE ALDOLASE AT 2.8 ANGSTROMS RESOLUTION 1EUN ; 2.0 ; STRUCTURE OF 2-KETO-3-DEOXY-6-PHOSPHOGLUCONATE ALDOLASE FROM ESCHERICHIA COLI 4BVL ; 2.002 ; Structure of 202-208 deletion mutant of PhaZ7 PHB depolymerase 5N9I ; 1.91 ; STRUCTURE OF 206-GVVTSE-211, THE STERIC ZIPPER THAT SUPPORTS THE SELF-ASSOCIATION OF P. STUARTII OMP-PST1 INTO DIMERS OF TRIMERS 1L8F ; 1.8 ; Structure of 20K-endoglucanase from Melanocarpus albomyces at 1.8 A 4E48 ; 2.5 ; Structure of 20mer double-helical RNA composed of CUG/CUG-repeats 3J96 ; 7.6 ; Structure of 20S supercomplex determined by single particle cryoelectron microscopy (State I) 3J97 ; 7.8 ; Structure of 20S supercomplex determined by single particle cryoelectron microscopy (State II) 3J98 ; 8.4 ; Structure of 20S supercomplex determined by single particle cryoelectron microscopy (State IIIa) 3J99 ; 8.2 ; Structure of 20S supercomplex determined by single particle cryoelectron microscopy (State IIIb) 1MT4 ; ; Structure of 23S ribosomal RNA hairpin 35 2O43 ; 3.6 ; Structure of 23S rRNA of the large ribosomal subunit from Deinococcus radiodurans in complex with the macrolide erythromycylamine 2O44 ; 3.3 ; Structure of 23S rRNA of the large ribosomal subunit from Deinococcus radiodurans in complex with the macrolide josamycin 6RR4 ; 1.9 ; Structure of 25% reduced KpDyP 5N9H ; 0.997 ; STRUCTURE OF 283-LGNY-286, THE STERIC ZIPPER THAT SUPPORTS THE SELF-ASSOCIATION OF P. STUARTII OMP-PST2 INTO DIMERS OF TRIMERS 6QP4 ; 2.5 ; Structure of 299-452 fragment of the UspA1 protein from Moraxella catarrhalis 6E1H ; 3.5 ; Structure of 2:1 human Ptch1-Shh-N complex 8HGG ; 3.64 ; Structure of 2:2 PAPP-A.ProMBP complex 8HGH ; 4.16 ; Structure of 2:2 PAPP-A.STC2 complex 7BNY ; 2.62 ; Structure of 2A protein from encephalomyocarditis virus (EMCV) 7NBV ; 1.87 ; Structure of 2A protein from Theilers murine encephalomyelitis virus (TMEV) 2AMT ; 2.3 ; Structure of 2C-Methyl-D-Erythritol 2,4-Clycodiphosphate Synthase complexed with a CDP derived fluorescent inhibitor 2GZL ; 2.5 ; Structure of 2C-methyl-D-erythritol 2,4-clycodiphosphate synthase complexed with a CDP derived fluorescent inhibitor 1JN1 ; 2.9 ; Structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Haemophilus influenzae (HI0671) 2PMP ; 2.3 ; Structure of 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from the isoprenoid biosynthetic pathway of Arabidopsis thaliana 1GX1 ; 1.8 ; Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase 1IV1 ; 1.65 ; Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase 1IV2 ; 1.55 ; Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase (bound form CDP) 1IV3 ; 1.52 ; Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase (bound form MG atoms) 1IV4 ; 1.55 ; Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase (bound form Substrate) 3D2B ; 1.95 ; Structure of 2D9, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution 4NHH ; 6.5 ; Structure of 2G12 IgG Dimer 7KGU ; 2.4 ; Structure of 2Q1-Fab, an antibody selective for IDH2R140Q-HLA-B*07:02 6IX1 ; 1.28 ; Structure of 2S albumin seed protein from Dolichos 6FK5 ; 2.02 ; Structure of 3' phosphatase NExo (D146N) from Neisseria bound to DNA substrate in presence of magnesium ion 6FKE ; 2.151 ; Structure of 3' phosphatase NExo (D146N) from Neisseria bound to product DNA hairpin 6FK4 ; 2.297 ; Structure of 3' phosphatase NExo (WT) from Neisseria bound to DNA substrate 4F2Y ; 1.59 ; Structure of 3'-Fluoro Cyclohexenyl Nucleic Acid Decamer 4F2X ; 1.57 ; Structure of 3'-Fluoro Cyclohexenyl Nucleic Acid Heptamer 1DIC ; 1.8 ; STRUCTURE OF 3,4-DICHLOROISOCOUMARIN-INHIBITED FACTOR D 6J75 ; 2.695 ; Structure of 3,6-anhydro-L-galactose Dehydrogenase 6J76 ; 2.368 ; Structure of 3,6-anhydro-L-galactose Dehydrogenase in Complex with NAP 4PH6 ; 2.2 ; Structure of 3-Dehydroquinate Dehydratase from Enterococcus faecalis 5EKS ; 1.85 ; Structure of 3-dehydroquinate synthase from Acinetobacter baumannii in complex with NAD 3ZOK ; 2.4 ; Structure of 3-Dehydroquinate Synthase from Actinidia chinensis in complex with NAD 3PFP ; 2.35 ; Structure of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis in complex with an active site inhibitor 1OSI ; 3.0 ; STRUCTURE OF 3-ISOPROPYLMALATE DEHYDROGENASE 1OSJ ; 2.35 ; STRUCTURE OF 3-ISOPROPYLMALATE DEHYDROGENASE 1HEX ; 2.5 ; STRUCTURE OF 3-ISOPROPYLMALATE DEHYDROGENASE IN COMPLEX WITH NAD+: LIGAND-INDUCED LOOP-CLOSING AND MECHANISM FOR COFACTOR SPECIFICITY 2ZTW ; 2.79 ; Structure of 3-isopropylmalate dehydrogenase in complex with the inhibitor and NAD+ 3R8W ; 2.25 ; Structure of 3-isopropylmalate dehydrogenase isoform 2 from Arabidopsis thaliana at 2.2 angstrom resolution 1V7L ; 1.98 ; Structure of 3-isopropylmalate isomerase small subunit from Pyrococcus horikoshii 1XBX ; 1.81 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase E112D/R139V/T169A mutant with bound D-ribulose 5-phosphate 1XBY ; 1.58 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase E112D/T169A mutant with bound D-ribulose 5-phosphate 1Q6O ; 1.202 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-gulonaet 6-phosphate 1Q6L ; 1.8 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-threonohydroxamate 4-phosphate 1Q6R ; 1.76 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase with bound L-xylulose 5-phosphate 1Q6Q ; 1.695 ; Structure of 3-keto-L-gulonate 6-phosphate decarboxylase with bound xylitol 5-phosphate 3RSH ; 1.95 ; Structure of 3-ketoacyl-(acyl-carrier-protein)reductase (FabG) from Vibrio cholerae O1 complexed with NADP+ (space group P62) 6IJB ; 2.111 ; Structure of 3-methylmercaptopropionate CoA ligase mutant K523A in complex with AMP and MMPA 3LYL ; 1.95 ; Structure of 3-oxoacyl-acylcarrier protein reductase, FabG from Francisella tularensis 7P97 ; 2.35 ; Structure of 3-phospho-D-glycerate guanylyltransferase with product 3-GPPG bound 6AWD ; 8.1 ; Structure of 30S (S1 depleted) ribosomal subunit and RNA polymerase complex 1SEI ; 1.9 ; STRUCTURE OF 30S RIBOSOMAL PROTEIN S8 6AWB ; 6.7 ; Structure of 30S ribosomal subunit and RNA polymerase complex in non-rotated state 6AWC ; 7.9 ; Structure of 30S ribosomal subunit and RNA polymerase complex in rotated state 4TOY ; 1.551 ; Structure of 35O22 Fab, a HIV-1 neutralizing antibody 8EZ3 ; 2.5 ; Structure of 3A10 Fab in complex with A/Moscow/10/1999 (H3N2) influenza virus neuraminidase 8EZ8 ; 2.78 ; Structure of 3C08 Fab in complex with A/Moscow/10/1999 (H3N2) influenza virus neuraminidase 6PYD ; 2.0 ; Structure of 3E9 antibody Fab bound to marinobufagenin 4LGG ; 2.41 ; Structure of 3MB-PP1 bound to analog-sensitive Src kinase 2XH5 ; 2.72 ; Structure of 4-(4-tert-Butylbenzyl)-1-(7H-pyrrolo(2,3-d)pyrimidin-4- yl)piperidin-4-amine bound to PKB 2X39 ; 1.93 ; Structure of 4-Amino-N-(4-chlorobenzyl)-1-(7H-pyrrolo(2,3-d)pyrimidin- 4-yl)piperidine-4-carboxamide bound to PKB 1H3M ; 2.4 ; Structure of 4-diphosphocytidyl-2C-methyl-D-erythritol synthetase 3M6Y ; 1.45 ; Structure of 4-hydroxy-2-oxoglutarate aldolase from bacillus cereus at 1.45 a resolution. 5TJY ; 2.4 ; Structure of 4-Hydroxy-tetrahydrodipicolinate Reductase from Mycobacterium tuberculosis with 2,6 Pyridine Dicarboxylic Acid and NADH 5TEJ ; 2.5 ; Structure of 4-Hydroxy-tetrahydrodipicolinate Reductase from Vibrio vulnificus with 2,5 Furan Dicarboxylic and NADH 5TEN ; 2.45 ; Structure of 4-Hydroxy-tetrahydrodipicolinate Reductase from Vibrio vulnificus with 2,5 Furan Dicarboxylic and NADH with Intact Polyhistidine Tag 5TEM ; 2.2 ; Structure of 4-Hydroxy-tetrahydrodipicolinate Reductase from Vibrio vulnificus with 2,6 Pyridine Dicarboxylic and NADH 1RM6 ; 1.6 ; Structure of 4-hydroxybenzoyl-CoA reductase from Thauera aromatica 1SB3 ; 2.2 ; Structure of 4-hydroxybenzoyl-CoA reductase from Thauera aromatica 6EB0 ; 2.37 ; STRUCTURE OF 4-HYDROXYPHENYLACETATE 3-MONOOXYGENASE (HPAB), OXYGENASE COMPONENT FROM ESCHERICHIA COLI 6B1B ; 1.944 ; STRUCTURE OF 4-HYDROXYPHENYLACETATE 3-MONOOXYGENASE (HPAB), OXYGENASE COMPONENT FROM ESCHERICHIA COLI MUTANT XS6 (APO Enzyme) 5TJZ ; 1.5 ; Structure of 4-Hydroxytetrahydrodipicolinate Reductase from Mycobacterium tuberculosis with NADPH and 2,6 Pyridine Dicarboxylic Acid 5D6C ; 1.72 ; Structure of 4497 Fab bound to synthetic wall teichoic acid fragment 3RVU ; 2.5 ; Structure of 4C1 Fab in C2221 space group 3RVT ; 2.05 ; Structure of 4C1 Fab in P212121 space group 3D2C ; 2.18 ; Structure of 4D3, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution 6RPE ; 1.8 ; Structure of 5% reduced KpDyP in complex with cyanide 1VTF ; 2.0 ; STRUCTURE OF 5'-D(*(BRO)CP*GP*(BRO)CP*G)-3' IN COMPLEX WITH PROFLAVINE 1V4N ; 2.45 ; Structure of 5'-deoxy-5'-methylthioadenosine phosphorylase homologue from Sulfolobus tokodaii 1ZOS ; 1.6 ; Structure of 5'-methylthionadenosine/S-Adenosylhomocysteine nucleosidase from S. pneumoniae with a transition-state inhibitor MT-ImmA 4HTU ; 1.489 ; Structure of 5-chlorouracil modified A:U base pair 4HUF ; 1.69 ; Structure of 5-chlorouracil modified A:U base pair 4HUG ; 1.64 ; Structure of 5-chlorouracil modified A:U base pairs 4HUE ; 1.561 ; Structure of 5-chlorouracil modified G:U base pair 6RR5 ; 1.9 ; Structure of 50% reduced KpDyP 6MXX ; 2.298 ; Structure of 53BP1 tandem Tudor domains in complex with small molecule UNC2991 6MXY ; 1.624 ; Structure of 53BP1 tandem Tudor domains in complex with small molecule UNC3351 6MY0 ; 2.2 ; Structure of 53BP1 Tandem Tudor domains with E1549P and D1550N mutations 6MXZ ; 2.5 ; Structure of 53BP1 Tudor domains in complex with small molecule UNC3474 2IG0 ; 1.7 ; Structure of 53BP1/methylated histone peptide complex 4CKL ; 2.05 ; Structure of 55 kDa N-terminal domain of E. coli DNA gyrase A subunit with simocyclinone D8 bound 8P8A ; 3.2 ; Structure of 5D3-Fab and nanobody(Nb17)-bound ABCG2 8P7W ; 3.04 ; Structure of 5D3-Fab and nanobody(Nb8)-bound ABCG2 8P8J ; 3.49 ; Structure of 5D3-Fab and nanobody(Nb96)-bound ABCG2 6D7G ; 2.75 ; Structure of 5F3 TCR in complex with HLA-A2/MART-1 2A59 ; 2.7 ; Structure of 6,7-Dimethyl-8-ribityllumazine synthase from Schizosaccharomyces pombe mutant W27Y with bound ligand 5-nitroso-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 2A58 ; 2.8 ; Structure of 6,7-Dimethyl-8-ribityllumazine synthase from Schizosaccharomyces pombe mutant W27Y with bound riboflavin 2A57 ; 2.75 ; Structure of 6,7-Dimthyl-8-ribityllumazine synthase from Schizosaccharomyces pombe mutant W27Y with bound ligand 6-carboxyethyl-7-oxo-8-ribityllumazine 3A2P ; 1.9 ; Structure of 6-aminohexanoate cyclic dimer hydrolase 3A2Q ; 1.8 ; Structure of 6-aminohexanoate cyclic dimer hydrolase complexed with substrate 1WYB ; 1.8 ; Structure of 6-aminohexanoate-dimer hydrolase 2ZM2 ; 1.55 ; Structure of 6-aminohexanoate-dimer hydrolase, A61V/A124V/R187S/F264C/G291R/G338A/D370Y mutant (Hyb-S4M94) 2ZM9 ; 1.5 ; Structure of 6-Aminohexanoate-dimer Hydrolase, A61V/S112A/A124V/R187S/F264C/G291R/G338A/D370Y mutant (Hyb-S4M94) with Substrate 2E8I ; 1.45 ; Structure of 6-aminohexanoate-dimer hydrolase, D1 mutant 2ZLY ; 1.58 ; Structure of 6-aminohexanoate-dimer hydrolase, D370Y mutant 1WYC ; 1.58 ; Structure of 6-aminohexanoate-dimer hydrolase, DN mutant 2ZM0 ; 1.5 ; Structure of 6-aminohexanoate-dimer hydrolase, G181D/H266N/D370Y mutant 2ZM8 ; 1.55 ; Structure of 6-Aminohexanoate-dimer Hydrolase, S112A/D370Y Mutant Complexed with 6-Aminohexanoate-dimer 2ZM7 ; 1.6 ; Structure of 6-Aminohexanoate-dimer Hydrolase, S112A/G181D Mutant Complexed with 6-Aminohexanoate-dimer 3AXG ; 2.0 ; Structure of 6-aminohexanoate-oligomer hydrolase 5XYG ; 1.6 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72. 5XYO ; 2.0 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D122G mutant 5Y0L ; 1.385 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D122G/H130Y mutant 5XYQ ; 1.1 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D122K mutant 5XYP ; 1.2 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D122R mutant 5XYS ; 1.05 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D122V mutant 5Y0M ; 1.03 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., D36A/D122G/H130Y/E263Q mutant 5XYT ; 1.9 ; Structure of 6-aminohexanoate-oligomer hydrolase from Arthrobacter sp. KI72., H130Y mutant 7YU1 ; 1.13 ; Structure of 6-aminohexanoate-oligomer hydrolase NylC precursor, D122G/H130Y/T267C mutant 7YU0 ; 1.35 ; Structure of 6-aminohexanoate-oligomer hydrolase NylC precursor, H130Y/N266A/T267A mutant 7YU2 ; 1.21 ; Structure of 6-aminohexanoate-oligomer hydrolase NylC, D122G/H130Y/T267C mutant, hydroxylamine-treated 7V0F ; 2.35 ; Structure of 6-carboxy-5,6,7,8-tetrahydropterin synthase paralog QueD2 from Acinetobacter baumannii 7DA9 ; 2.108 ; Structure of 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase (HspB) from Pseudomonas putida S16 6L6J ; 2.6 ; Structure of 6-hydroxypseudooxynicotine (6-HPON) amine oxidase (HisD) from Pseudomonas geniculata N1 3NTB ; 2.27 ; Structure of 6-methylthio naproxen analog bound to mCOX-2. 3QN0 ; 2.34 ; Structure of 6-pyruvoyltetrahydropterin synthase 7ZS5 ; 3.2 ; Structure of 60S ribosomal subunit from S. cerevisiae with eIF6 and tRNA 3QMM ; 1.89 ; Structure of 6B, a thermostable mutant of Bacillus subtilis lipase obtained through directed evolution 5MYJ ; 5.6 ; Structure of 70S ribosome from Lactococcus lactis 5XK0 ; 1.451 ; Structure of 8-mer DNA2 5XK1 ; 1.501 ; Structure of 8-mer DNA3 8V8B ; 2.4 ; Structure of 80alpha portal protein expressed in E. coli 6ISH ; 3.3 ; Structure of 9N-I DNA polymerase incorporation with 3'-AL in the active site 6ISI ; 3.2 ; Structure of 9N-I DNA polymerase incorporation with 3'-CL in the active site 6IS7 ; 2.8 ; Structure of 9N-I DNA polymerase incorporation with dA in the active site 6ISG ; 3.401 ; Structure of 9N-I DNA polymerase incorporation with dG in the active site 6ISF ; 2.8 ; Structure of 9N-I DNA polymerase incorporation with dT in the active site 1KG9 ; 1.81 ; Structure of a ""mock-trapped"" early-M intermediate of bacteriorhosopsin 2KZD ; ; Structure of a (3+1) G-quadruplex formed by hTERT promoter sequence 6AC7 ; ; Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter 1MXD ; 2.0 ; Structure of a (Ca,Zn)-dependent alpha-amylase from the hyperthermophilic archaeon Pyrococcus woesei 7JY7 ; 2.9 ; Structure of a 12 base pair RecA-D loop complex 5C0W ; 4.6 ; Structure of a 12-subunit nuclear exosome complex bound to single-stranded RNA substrates 5C0X ; 3.812 ; Structure of a 12-subunit nuclear exosome complex bound to structured RNA 8F0U ; 3.1 ; Structure of a 12mer DegP cage bound to the client protein hTRF1 3VDX ; 3.002 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains 4D9J ; 3.92 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains 4QES ; 4.193 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, quadruple mutant, I222 form 4QF0 ; 6.494 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, quadruple mutant, P21212 form 4QFF ; 7.811 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, quadruple mutant, P212121 form 4IVJ ; 7.351 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, triple mutant, I222 form 4IQ4 ; 3.495 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, triple mutant, P21212 form 4ITV ; 3.598 ; Structure of a 16 nm protein cage designed by fusing symmetric oligomeric domains, triple mutant, P212121 form 5GOU ; 2.91 ; Structure of a 16-mer protein nanocage fabricated from its 24-mer analogue by subunit interface redesign 405D ; 2.5 ; STRUCTURE OF A 16-MER RNA DUPLEX R(GCAGACUUAAAUCUGC)2 WITH WOBBLE LIKE A.C MISMATCHES 3TK8 ; 1.8 ; Structure of a 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase from Burkholderia pseudomallei 8F1U ; 13.8 ; Structure of a 24mer DegP cage bound to the client protein hTRF1 3TR1 ; 2.0 ; Structure of a 3-phosphoshikimate 1-carboxyvinyltransferase (aroA) from Coxiella burnetii 8F21 ; 14.1 ; Structure of a 30mer DegP cage bound to the client protein hTRF1 4IXT ; 2.49 ; Structure of a 37-fold mutant of halohydrin dehalogenase (HheC) bound to ethyl (R)-4-cyano-3-hydroxybutyrate 4IY1 ; 2.1 ; Structure of a 37-fold mutant of halohydrin dehalogenase (HheC) with chloride bound 5GN8 ; 2.805 ; Structure of a 48-mer protein nanocage fabricated from its 24-mer analogue by subunit interface redesign 2L8F ; ; Structure of a 4X4 Nucleotide RNA Internal Loop from an R2 Retrotransposon 3TY2 ; 1.885 ; Structure of a 5'-nucleotidase (surE) from Coxiella burnetii 5KPY ; 2.0 ; Structure of a 5-hydroxytryptophan aptamer 1PY2 ; 2.8 ; Structure of a 60 nM Small Molecule Bound to a Hot Spot on IL-2 8F26 ; 9.7 ; Structure of a 60mer DegP cage bound to the client protein hTRF1 7JY9 ; 2.7 ; Structure of a 9 base pair RecA-D loop complex 2JE6 ; 1.6 ; Structure of a 9-subunit archaeal exosome 2JEB ; 2.4 ; Structure of a 9-subunit archaeal exosome bound to Mn ions 2JEA ; 2.33 ; Structure of a 9-subunit archaeal exosome bound to RNA 3TQW ; 2.0 ; Structure of a ABC transporter, periplasmic substrate-binding protein from Coxiella burnetii 2HQN ; ; Structure of a Atypical Orphan Response Regulator Protein Revealed a New Phosphorylation-Independent Regulatory Mechanism 2HQO ; ; Structure of a Atypical Orphan Response Regulator Protein Revealed a New Phosphorylation-Independent Regulatory Mechanism 2HQR ; ; Structure of a Atypical Orphan Response Regulator Protein Revealed a New Phosphorylation-Independent Regulatory Mechanism 2BNA ; 2.7 ; STRUCTURE OF A B-DNA DODECAMER AT 16 KELVIN 1BNA ; 1.9 ; STRUCTURE OF A B-DNA DODECAMER. CONFORMATION AND DYNAMICS 8F2W ; 1.3 ; Structure of a B-Form Dodecamer: 5'-CGCGAATTCGCG-3 7BIZ ; 1.53 ; Structure of a B12 binding lipoprotein from Bacteroides thetaiotaomicron 6CSJ ; 2.395 ; Structure of a Bacillus coagulans polyol dehydrogenase double mutant with an acquired D-lactate dehydrogenase activity 5NNV ; 3.295 ; Structure of a Bacillus subtilis Smc coiled coil middle fragment 7YLR ; 1.68 ; Structure of a bacteria protein 7YLT ; 2.3 ; Structure of a bacteria protein 7YLS ; 1.8 ; Structure of a bacteria protein complex 6QUL ; 3.0 ; Structure of a bacterial 50S ribosomal subunit in complex with the novel quinoxolidinone antibiotic cadazolid 6MVR ; 1.95 ; Structure of a bacterial ALDH16 6MVU ; 1.488 ; Structure of a bacterial ALDH16 active site mutant C295A complexed with p-nitrophenylacetate 6MVS ; 1.65 ; Structure of a bacterial ALDH16 complexed with NAD 6MVT ; 2.3 ; Structure of a bacterial ALDH16 complexed with NADH 6VQU ; 3.88 ; Structure of a bacterial Atm1-family ABC exporter 6PAN ; 3.4 ; Structure of a bacterial Atm1-family ABC exporter with ATP bound 6PAO ; 3.65 ; Structure of a bacterial Atm1-family ABC exporter with ATP bound 6PAQ ; 3.301 ; Structure of a bacterial Atm1-family ABC exporter with ATP bound 6VQT ; 3.03 ; Structure of a bacterial Atm1-family ABC exporter with MgADPVO4 bound 6PAR ; 3.35 ; Structure of a bacterial Atm1-family ABC exporter with MgAMPPNP bound 4MRN ; 2.5 ; Structure of a bacterial Atm1-family ABC transporter 4MRP ; 2.5 ; Structure of a bacterial Atm1-family ABC transporter 4MRR ; 2.97 ; Structure of a bacterial Atm1-family ABC transporter 4MRS ; 2.35 ; Structure of a bacterial Atm1-family ABC transporter 4MRV ; 2.5 ; Structure of a bacterial Atm1-family ABC transporter 6PAM ; 3.7 ; Structure of a bacterial Atm1-family ABC transporter with MgADP bound 4B7G ; 1.9 ; Structure of a bacterial catalase 3BEH ; 3.1 ; Structure of a Bacterial Cyclic Nucleotide Regulated Ion Channel 2ZD9 ; 4.0 ; Structure of a Bacterial Cyclic-Nucleotide Regulated Ion Channel 8SS1 ; 1.88 ; Structure of a bacterial death-like domain from Azospirillum sp. 8SRZ ; 1.25 ; Structure of a bacterial death-like domain from Lysobacter enzymogenes 3C23 ; 2.5 ; Structure of a bacterial DNA damage sensor protein with non-reactive Ligand 3C21 ; 2.7 ; Structure of a bacterial DNA damage sensor protein with reaction product 4HZU ; 3.53 ; Structure of a bacterial energy-coupling factor transporter 3ICD ; 2.5 ; STRUCTURE OF A BACTERIAL ENZYME REGULATED BY PHOSPHORYLATION, ISOCITRATE DEHYDROGENASE 7SZO ; 2.8 ; Structure of a bacterial fimbrial tip containing FocH 7N50 ; 1.5 ; Structure of a bacterial gasdermin from Bradyrhizobium tropiciagri 7N52 ; 2.9 ; Structure of a bacterial gasdermin from Runella zeae 7N51 ; 1.67 ; Structure of a bacterial gasdermin from Vitiosangium sp. 8SL0 ; 3.3 ; Structure of a bacterial gasdermin slinky-like oligomer 3KP9 ; 3.6 ; Structure of a bacterial homolog of vitamin K epoxide reductase 5MBG ; 2.3 ; Structure of a bacterial light-regulated adenylyl cyclase 5MBH ; 2.4 ; Structure of a bacterial light-regulated adenylyl cyclase 5MBJ ; 2.3 ; Structure of a bacterial light-regulated adenylyl cyclase 5M27 ; 2.0 ; Structure of a bacterial light-regulated adenylyl cylcase 5M2A ; 1.8 ; Structure of a bacterial light-regulated adenylyl cylcase 5MBB ; 3.1 ; Structure of a bacterial light-regulated adenylyl cylcase 5MBC ; 1.8 ; Structure of a bacterial light-regulated adenylyl cylcase 5MBD ; 2.25 ; Structure of a bacterial light-regulated adenylyl cylcase 5MBE ; 2.4 ; Structure of a bacterial light-regulated adenylyl cylcase 5MBK ; 2.4 ; Structure of a bacterial light-regulated adenylyl cylcase 5NBY ; 2.5 ; Structure of a bacterial light-regulated adenylyl cylcase 6BTX ; 3.2 ; Structure of a bacterial metal transporter 2J62 ; 2.26 ; Structure of a bacterial O-glcnacase in complex with glcnacstatin 2AW6 ; 3.0 ; Structure of a bacterial peptide pheromone/receptor complex and its mechanism of gene regulation 5WC6 ; 2.2 ; Structure of a bacterial polysialyltransferase at 2.2 Angstrom resolution 5WC8 ; 2.75 ; Structure of a bacterial polysialyltransferase at 2.75 Angstrom resolution 5WCN ; 3.0 ; Structure of a bacterial polysialyltransferase in complex with CDP 5WD7 ; 3.1 ; Structure of a bacterial polysialyltransferase in complex with fondaparinux 3Q1Q ; 3.8 ; Structure of a Bacterial Ribonuclease P Holoenzyme in Complex with tRNA 4KH3 ; 2.5 ; Structure of a bacterial self-associating protein 8GXV ; 2.2 ; Structure of a bacterial serpin Choloropin derived from Cholorobium limicola 6WT5 ; 2.8 ; Structure of a bacterial STING receptor from Capnocytophaga granulosa 6WT4 ; 1.78 ; Structure of a bacterial STING receptor from Flavobacteriaceae sp. in complex with 3',3'-cGAMP 4GW9 ; 2.9 ; Structure of a bacteriophytochrome and light-stimulated protomer swapping with a gene repressor 7PZJ ; 2.1 ; Structure of a bacteroidetal polyethylene terephthalate (PET) esterase 7RI5 ; 4.0 ; Structure of a BAM in MSP1E3D1 nanodiscs at 4 Angstrom resolution 7RI4 ; 3.4 ; Structure of a BAM/EspP(beta9-12) hybrid-barrel intermediate 1JIA ; 2.13 ; STRUCTURE OF A BASIC PHOSPHOLIPASE A2 FROM AGKISTRODON HALYS PALLAS AT 2.13A RESOLUTION 2Y6W ; 2.0 ; Structure of a Bcl-w dimer 5JAW ; 1.6 ; Structure of a beta galactosidase with inhibitor 6TBF ; 1.5 ; Structure of a beta galactosidase with inhibitor 6TBG ; 1.5 ; Structure of a beta galactosidase with inhibitor 6TBH ; 1.5 ; Structure of a beta galactosidase with inhibitor 6TBI ; 1.46 ; Structure of a beta galactosidase with inhibitor 6TBJ ; 1.5 ; Structure of a beta galactosidase with inhibitor 6TBK ; 1.6 ; Structure of a beta galactosidase with inhibitor 1W9S ; 1.59 ; Structure of a beta-1,3-glucan binding CBM6 from Bacillus halodurans 1W9W ; 2.1 ; Structure of a beta-1,3-glucan binding CBM6 from Bacillus halodurans in complex with laminarihexaose 1W9T ; 1.62 ; Structure of a beta-1,3-glucan binding CBM6 from Bacillus halodurans in complex with xylobiose 5JU9 ; 1.18 ; Structure of a beta-1,4-mannanase, SsGH134, in complex with Man3. 5JTS ; 1.09 ; Structure of a beta-1,4-mannanase, SsGH134. 6VU4 ; 2.077 ; Structure of a beta-hairpin peptide mimic derived from Abeta 14-36 4HES ; 1.9 ; Structure of a Beta-Lactamase Class A-like Protein from Veillonella parvula. 2JE8 ; 1.7 ; Structure of a beta-mannosidase from Bacteroides thetaiotaomicron 1P22 ; 2.95 ; Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity on the SCFbeta-TrCP1 ubiquitin ligase 4MLX ; 1.65 ; Structure of a bidentate 3-hydroxy-4H-pyran-4-thione ligand bound to hCAII 1BVD ; 1.4 ; STRUCTURE OF A BILIVERDIN APOMYOGLOBIN COMPLEX (FORM B) AT 98 K 1BVC ; 1.5 ; STRUCTURE OF A BILIVERDIN APOMYOGLOBIN COMPLEX (FORM D) AT 118 K 4M3C ; 2.5 ; Structure of a binary complex between homologous tetrameric legume lectins from Butea monosperma and Spatholobus parviflorus seeds 3C5F ; 2.25 ; Structure of a binary complex of the R517A Pol lambda mutant 3MBU ; 1.05 ; Structure of a bipyridine-modified PNA duplex 2LLJ ; ; Structure of a bis-naphthalene bound to a thymine-thymine DNA mismatch 4GCZ ; 2.3 ; Structure of a blue-light photoreceptor 6AAA ; 1.9 ; Structure of a blue-shifted Luciferase from Amydetes vivianii 2H0D ; 2.5 ; Structure of a Bmi-1-Ring1B Polycomb group ubiquitin ligase complex 3TR3 ; 2.456 ; Structure of a bolA protein homologue from Coxiella burnetii 6YIE ; 3.49 ; Structure of a Borealin-INCENP-Survivin complex 7TWK ; 1.79 ; Structure of a borosin methyltransferase from Mycena rosella with native peptide (MroMA1) in complex with SAH 7TWL ; 1.86 ; Structure of a borosin methyltransferase from Mycena rosella with peptide A2 (MroMA2) in complex with SAH 7TWM ; 1.93 ; Structure of a borosin methyltransferase from Mycena rosella with peptide CspL(MroMCspL) in complex with SAH 2ZVX ; 1.09 ; Structure of a BPTI-[5,55] variant containing Gly/Val at the 14/38th positions 1IYJ ; 3.4 ; STRUCTURE OF A BRCA2-DSS1 COMPLEX 1MIU ; 3.1 ; Structure of a BRCA2-DSS1 complex 1MJE ; 3.5 ; STRUCTURE OF A BRCA2-DSS1-SSDNA COMPLEX 3IRW ; 2.7 ; Structure of a c-di-GMP riboswitch from V. cholerae 3Q3Z ; 2.51 ; Structure of a c-di-GMP-II riboswitch from C. acetobutylicum bound to c-di-GMP 1PKG ; 2.9 ; Structure of a c-Kit Kinase Product Complex 3U9C ; 3.2 ; Structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit with the ATP-competitive inhibitor resorufin 2ZK7 ; 2.71 ; Structure of a C-terminal deletion mutant of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) 3GAJ ; 1.38 ; Structure of a C-terminal deletion variant of a PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri complexed with cobalamin and ATP 5MUZ ; 1.776 ; Structure of a C-terminal domain of a reptarenavirus L protein 5MUY ; 1.99 ; Structure of a C-terminal domain of a reptarenavirus L protein with m7GTP 3NS4 ; 2.9 ; Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of GARP to a family of tethering complexes 5KE1 ; 1.9 ; Structure of a C-terminal fragment of the IcsA/VirG passenger-domain 5ZA3 ; 1.5 ; Structure of a C-terminal S. mutans response regulator VicR domain 1L2G ; 2.85 ; Structure of a C-terminally truncated form of glycoprotein D from HSV-1 5DN5 ; 2.15 ; Structure of a C-terminally truncated glycoside hydrolase domain from Salmonella typhimurium FlgJ 1EGG ; 2.3 ; STRUCTURE OF A C-TYPE CARBOHYDRATE-RECOGNITION DOMAIN (CRD-4) FROM THE MACROPHAGE MANNOSE RECEPTOR 1EGI ; 2.3 ; STRUCTURE OF A C-TYPE CARBOHYDRATE-RECOGNITION DOMAIN (CRD-4) FROM THE MACROPHAGE MANNOSE RECEPTOR 2MSB ; 1.7 ; STRUCTURE OF A C-TYPE MANNOSE-BINDING PROTEIN COMPLEXED WITH AN OLIGOSACCHARIDE 4JND ; 1.652 ; Structure of a C.elegans sex determining protein 3W56 ; 1.6 ; Structure of a C2 domain 3W57 ; 1.662 ; Structure of a C2 domain 5DBV ; 1.77 ; Structure of a C269A mutant of propionaldehyde dehydrogenase from the Clostridium phytofermentans fucose utilisation bacterial microcompartment 3H4W ; 1.5 ; Structure of a Ca+2 dependent Phosphatidylinositol-specific phospholipase C (PI-PLC) Enzyme from Streptomyces antibioticus 3H4X ; 1.23 ; Structure of a Ca+2 dependent Phosphatidylinositol-specific phospholipase C (PI-PLC) Enzyme from Streptomyces antibioticus 3VF1 ; 2.473 ; Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca-regulation 3BYA ; 1.85 ; Structure of a Calmodulin Complex 4PTC ; 2.711 ; Structure of a carboxamide compound (3) (2-{2-[(CYCLOPROPYLCARBONYL)AMINO]PYRIDIN-4-YL}-4-OXO-4H-1LAMBDA~4~,3-THIAZOLE-5-CARBOXAMIDE) to GSK3b 4PTG ; 2.361 ; Structure of a carboxamine compound (26) (2-{2-[(CYCLOPROPYLCARBONYL)AMINO]PYRIDIN-4-YL}-4-METHOXYPYRIMIDINE-5-CARBOXAMIDE) to GSK3b 1R1D ; 2.0 ; Structure of a Carboxylesterase from Bacillus stearothermophilus 3R9S ; 2.2 ; Structure of a carnitinyl-CoA dehydratase from Mycobacterium avium 104 4PTE ; 2.033 ; Structure of a carvoxamide compound (15) (N-[4-(ISOQUINOLIN-7-YL)PYRIDIN-2-YL]CYCLOPROPANECARBOXAMIDE) to GSK3b 1YEC ; 1.9 ; STRUCTURE OF A CATALYTIC ANTIBODY IGG2A FAB FRAGMENT (D2.3) 1YED ; 3.1 ; STRUCTURE OF A CATALYTIC ANTIBODY IGG2A FAB FRAGMENT (D2.4) 1YEE ; 2.2 ; STRUCTURE OF A CATALYTIC ANTIBODY, IGG2A FAB FRAGMENT (D2.5) 1RTD ; 3.2 ; STRUCTURE OF A CATALYTIC COMPLEX OF HIV-1 REVERSE TRANSCRIPTASE: IMPLICATIONS FOR NUCLEOSIDE ANALOG DRUG RESISTANCE 6A7W ; 2.988 ; Structure of a catalytic domain of the colistin resistance enzyme 1N31 ; 2.2 ; Structure of A Catalytically Inactive Mutant (K223A) of C-DES with a Substrate (Cystine) Linked to the Co-Factor 4L2H ; 1.46 ; Structure of a catalytically inactive PARG in complex with a poly-ADP-ribose fragment 3MKT ; 3.65 ; Structure of a Cation-bound Multidrug and Toxin Compound Extrusion (MATE) transporter 3MKU ; 4.2 ; Structure of a Cation-bound Multidrug and Toxin Compound Extrusion (MATE) transporter 2IWE ; 2.83 ; Structure of a cavity mutant (H117G) of Pseudomonas aeruginosa azurin 5X40 ; 1.45 ; Structure of a CbiO dimer bound with AMPPCP 1FBV ; 2.9 ; STRUCTURE OF A CBL-UBCH7 COMPLEX: RING DOMAIN FUNCTION IN UBIQUITIN-PROTEIN LIGASES 2CDP ; 1.59 ; Structure of a CBM6 in complex with neoagarohexaose 5OCD ; 3.06 ; structure of a CDPS from Fluoribacter dumoffii 5CXX ; 1.55 ; Structure of a CE1 ferulic acid esterase, AmCE1/Fae1A, from Anaeromyces mucronatus in complex with Ferulic acid 2A5Y ; 2.6 ; Structure of a CED-4/CED-9 complex 1RJ4 ; 2.0 ; Structure of a Cell Wall Invertase Inhibitor from Tobacco in Complex with Cd2+ 7S78 ; 3.72 ; Structure of a cell-entry defective human adenovirus provides insights into precursor proteins and capsid maturation 4HG6 ; 3.25 ; Structure of a cellulose synthase - cellulose translocation intermediate 3R45 ; 2.6 ; Structure of a CENP-A-Histone H4 Heterodimer in complex with chaperone HJURP 5W2L ; 1.86 ; Structure of a central domain of human Ctc1 8GJW ; 1.93 ; Structure of a cGAS-like receptor Cv-cGLR1 from C. virginica 8GJY ; 1.5 ; Structure of a cGAS-like receptor Sp-cGLR1 from S. pistillata 8RW2 ; ; Structure of a chair-type antiparallel quadruplex-duplex hybrid at pH 6 7FBS ; 3.4 ; structure of a channel 6O38 ; 2.595 ; Structure of a chaperone-substrate complex 5FLU ; 3.8 ; Structure of a Chaperone-Usher pilus reveals the molecular basis of rod uncoilin 5OJM ; 3.3 ; Structure of a chimaeric beta3-alpha5 GABAA receptor in complex with nanobody Nb25 5O8F ; 3.2 ; Structure of a chimaeric beta3-alpha5 GABAA receptor in complex with nanobody Nb25 and pregnanolone 3U87 ; 2.9 ; Structure of a chimeric construct of human CK2alpha and human CK2alpha' in complex with a non-hydrolysable ATP-analogue 2YFH ; 2.695 ; Structure of a Chimeric Glutamate Dehydrogenase 3BQL ; 2.0 ; Structure of a chondroitin sulphate binding DBL3X domain from a var2csa encoded PfEMP1 protein 3BQI ; 2.2 ; Structure of a chondroitin sulphate binding DBL3X from a var2csa encoded PfEMP1 protein 3BQK ; 1.8 ; Structure of a chondroitin sulphate binding DBL3X from a var2csa encoded PfEMP1 protein in complex with sulphate 1U5M ; ; Structure of a Chordin-like Cysteine-rich Repeat (VWC module) from Collagen IIA 3P28 ; 1.8 ; Structure of a Circular Permutant of Green Fluorescent Protein 3ICW ; 1.69 ; Structure of a Circular Permutation on Lipase B from Candida Antartica with Bound Suicide Inhibitor 1KH8 ; 2.0 ; Structure of a cis-proline (P114) to glycine variant of Ribonuclease A 4MYY ; 1.68 ; Structure of a class 2 docking domain complex from modules CurG and CurH of the curacin A polyketide synthase 4MYZ ; 1.5 ; Structure of a class 2 docking domain complex from modules CurK and CurL of the curacin A polyketide synthase 8U1U ; 3.1 ; Structure of a class A GPCR/agonist complex 8TLM ; 2.9 ; Structure of a class A GPCR/Fab complex 3TV2 ; 2.1 ; Structure of a class II fumarate hydratase from Burkholderia pseudomallei 4JF2 ; 2.28 ; Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold 2O26 ; 2.5 ; Structure of a class III RTK signaling assembly 2O27 ; 2.2 ; Structure of a class III RTK signaling assembly 4UX7 ; 2.55 ; Structure of a Clostridium difficile sortase 7B4Q ; 1.61 ; Structure of a cold active HSL family esterase reveals mechanisms of low temperature adaptation and substrate specificity 1H12 ; 1.2 ; Structure of a cold-adapted family 8 xylanase 1H13 ; 1.3 ; Structure of a cold-adapted family 8 xylanase 1H14 ; 1.5 ; Structure of a cold-adapted family 8 xylanase 1XW2 ; 1.76 ; Structure Of A Cold-Adapted Family 8 Xylanase 1XWQ ; 1.88 ; Structure Of A Cold-Adapted Family 8 Xylanase 1XWT ; 1.3 ; Structure Of A Cold-Adapted Family 8 Xylanase 2A8Z ; 3.2 ; Structure Of A Cold-Adapted Family 8 Xylanase 2B4F ; 1.95 ; Structure Of A Cold-Adapted Family 8 Xylanase in complex with substrate 7AKK ; 3.395 ; Structure of a complement factor-receptor complex 4AYE ; 2.8 ; Structure of a complex between CCPs 6 and 7 of Human Complement Factor H and Neisseria meningitidis FHbp Variant 1 E283AE304A mutant 4AYD ; 2.4 ; Structure of a complex between CCPs 6 and 7 of Human Complement Factor H and Neisseria meningitidis FHbp Variant 1 R106A mutant 4AYM ; 3.0 ; Structure of a complex between CCPs 6 and 7 of Human Complement Factor H and Neisseria meningitidis FHbp Variant 3 P106A mutant 4AYI ; 2.31 ; Structure of a complex between CCPs 6 and 7 of Human Complement Factor H and Neisseria meningitidis FHbp Variant 3 Wild type 2KRI ; ; Structure of a complex between domain V of beta2-glycoprotein I and the fourth ligand-binding module from LDLR determined with Haddock 4RT6 ; 2.8 ; Structure of a complex between hemopexin and hemopexin binding protein 2W80 ; 2.35 ; Structure of a complex between Neisseria meningitidis factor H binding protein and CCPs 6-7 of human complement factor H 2W81 ; 2.35 ; Structure of a complex between Neisseria meningitidis factor H binding protein and CCPs 6-7 of human complement factor H 5KTB ; 3.05 ; Structure of a complex between S. cerevisiae Csm1 and Mam1 6C6W ; 2.23 ; Structure of a Complex Between Thaumatin and Thioflavin T 2PKG ; 3.3 ; Structure of a complex between the A subunit of protein phosphatase 2A and the small t antigen of SV40 1EEL ; 2.4 ; STRUCTURE OF A COMPLEX BETWEEN THE DNA SEQUENCE DCGCGAATTCGCG AND BIS[PIPERIDINO-ETHYL]-FURAMIDINE 1EFX ; 3.0 ; STRUCTURE OF A COMPLEX BETWEEN THE HUMAN NATURAL KILLER CELL RECEPTOR KIR2DL2 AND A CLASS I MHC LIGAND HLA-CW3 2FCW ; 1.26 ; Structure of a Complex Between the Pair of the LDL Receptor Ligand-Binding Modules 3-4 and the Receptor Associated Protein (RAP). 1P7V ; 1.08 ; Structure of a complex formed between Proteinase K and a designed heptapeptide inhibitor Pro-Ala-Pro-Phe-Ala-Ala-Ala at atomic resolution 8AW4 ; 2.21 ; Structure of a complex of biosynthetic proteins bB-E3 and bGFPD-YY 2O1L ; 1.97 ; Structure of a complex of C-terminal lobe of bovine lactoferrin with disaccharide at 1.97 A resolution 4GRW ; 2.55 ; Structure of a complex of human IL-23 with 3 Nanobodies (Llama vHHs) 6IB8 ; 1.646 ; Structure of a complex of SuhB and NusA AR2 domain 2GZK ; ; Structure of a complex of tandem HMG boxes and DNA 1UPT ; 1.7 ; Structure of a complex of the golgin-245 GRIP domain with Arl1 2D2O ; 2.1 ; Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft 5IER ; 2.005 ; Structure of a computationally designed 17-OHP binder 5IF6 ; 2.501 ; Structure of a computationally designed 17-OHP binder 1LMT ; 1.6 ; STRUCTURE OF A CONFORMATIONALLY CONSTRAINED ARG-GLY-ASP SEQUENCE INSERTED INTO HUMAN LYSOZYME 1FXT ; ; STRUCTURE OF A CONJUGATING ENZYME-UBIQUITIN THIOLESTER COMPLEX 5ZXE ; 1.3 ; Structure of a consensus sequence derived from the FGF family 2VT8 ; 2.6 ; Structure of a conserved dimerisation domain within Fbox7 and PI31 2AU5 ; 2.1 ; Structure of a conserved domain from locus EF2947 from Enterococcus faecalis V583 2MM4 ; ; Structure of a Conserved Golgi Complex-targeting Signal in Coronavirus Envelope Proteins 1RLH ; 1.8 ; Structure of a conserved protein from Thermoplasma acidophilum 2IJC ; 2.05 ; Structure of a Conserved Protein of Unknown Function PA0269 from Pseudomonas aeruginosa 1Q7H ; 2.1 ; Structure of a Conserved PUA Domain Protein from Thermoplasma acidophilum 2L1F ; ; Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography 6TWR ; ; Structure of a constitutively active CAT-PRD1 mutant of the antiterminator LicT protein. 5KO3 ; 1.949 ; Structure of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design 1Y80 ; 1.7 ; Structure of a corrinoid (factor IIIm)-binding protein from Moorella thermoacetica 6HAA ; 1.7 ; Structure of a covalent complex of endo-Xyloglucanase from Cellvibrio japonicus after reacting with XXXG(2F)-beta-DNP 2OWC ; 2.05 ; Structure of a covalent intermediate in Thermus thermophilus amylomaltase 6VZX ; 1.37 ; Structure of a Covalently Captured Collagen Triple Helix using Lysine-Glutamate Pairs 3OQ2 ; 1.35 ; Structure of a CRISPR associated protein Cas2 from Desulfovibrio vulgaris 7A1G ; 3.0 ; Structure of a crosslinked yeast ABCE1-bound 43S pre-initiation complex 3ODQ ; 3.1 ; Structure of a Crystal Form of Human Methemoglobin Indicative of Fiber Formation 4QCC ; 7.078 ; Structure of a cube-shaped, highly porous protein cage designed by fusing symmetric oligomeric domains 3ETI ; 2.2 ; Structure of a cubic crystal form of X (ADRP) domain from FCoV 3JZT ; 3.91 ; Structure of a cubic crystal form of X (ADRP) domain from FCoV with ADP-ribose 3RPJ ; 1.9 ; Structure of a curlin genes transcriptional regulator protein from Proteus mirabilis HI4320. 1X0P ; 2.0 ; Structure of a cyanobacterial BLUF protein, Tll0078 8BI8 ; 1.59 ; Structure of a cyclic beta-hairpin peptide derived from neuronal nitric oxide synthase 8BI9 ; 1.44 ; Structure of a cyclic beta-hairpin peptide derived from neuronal nitric oxide synthase (T112W/T116E variant) 1QX9 ; ; Structure of a cyclic indolicidin peptide derivative with higher charge 4JJM ; 2.09 ; Structure of a cyclophilin from Citrus sinensis (CsCyp) in complex with cyclosporin A 4OQR ; 1.81 ; Structure of a CYP105AS1 mutant in complex with compactin 1G2D ; 2.2 ; STRUCTURE OF A CYS2HIS2 ZINC FINGER/TATA BOX COMPLEX (CLONE #2) 1G2F ; 2.0 ; STRUCTURE OF A CYS2HIS2 ZINC FINGER/TATA BOX COMPLEX (TATAZF;CLONE #6) 5HA8 ; 2.054 ; Structure of a cysteine hydrolase 5HWG ; 1.99 ; Structure of a cysteine hydrolase with a negative substrate 5HWH ; 1.79 ; Structure of a cysteine hydrolase with a positive substrate 3RR2 ; 1.95 ; Structure of a Cysteine synthase (O-Acetylserine Sulfhydrylase (OASS)) from Mycobacterium marinum ATCC BAA-535 / M 6OEW ; 1.85 ; Structure of a Cytidylyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) 3OZZ ; 1.7 ; Structure of a cytochrome b5 core-swap mutant 1S6V ; 1.88 ; Structure of a cytochrome c peroxidase-cytochrome c site specific cross-link 3QT2 ; 2.55 ; Structure of a cytokine ligand-receptor complex 4NKQ ; 3.301 ; Structure of a Cytokine Receptor Complex 5JEA ; 2.65 ; Structure of a cytoplasmic 11-subunit RNA exosome complex including Ski7, bound to RNA 3LW9 ; 1.85 ; Structure of a Cytoplasmic Domain of Salmonella InvA 7R0U ; 2.5 ; Structure of a cytosolic sulfotransferase of Anopheles gambiae (AGAP001425) in complex with 3'-phosphoadenosine 5-phosphate and vanillin. 7R0S ; 2.1 ; Structure of a cytosolic sulfotransferase of Anopheles gambiae (AGAP001425) in complex with vanillin 7R0O ; 2.0 ; Structure of a cytosolic sulfotransferase of Anopheles gambiae (AGAP001425). 328D ; 2.6 ; STRUCTURE OF A D(CGCGAATTCGCG)2-SN7167 COMPLEX 6VMS ; 3.8 ; Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane 2R6X ; 2.61 ; Structure of a D35N variant PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri complexed with ATP 6GHV ; 2.1 ; Structure of a DC-SIGN CRD in complex with high affinity glycomimetic. 6DG6 ; 1.999 ; Structure of a de novo designed Interleukin-2/Interleukin-15 mimetic 6DG5 ; 2.516 ; Structure of a de novo designed Interleukin-2/Interleukin-15 mimetic complex with IL-2Rb and IL-2Rg 6JCC ; 1.45 ; structure of a de novo protein D_1CY5_M1 1QVF ; 3.1 ; Structure of a deacylated tRNA minihelix bound to the E site of the large ribosomal subunit of Haloarcula marismortui 3R5Y ; 1.801 ; Structure of a Deazaflavin-dependent nitroreductase from Nocardia farcinica, with co-factor F420 3R5Z ; 1.503 ; Structure of a Deazaflavin-dependent reductase from Nocardia farcinica, with co-factor F420 7A7E ; 2.8 ; Structure of a delta-N mutant - E232start - of PA1120 (TpbB or YfiN) from Pseudomonas aeruginosa (PAO1) comprising only the GGDEF domain 3TQZ ; 1.75 ; Structure of a deoxyuridine 5'-triphosphate nucleotidohydrolase (dut) from Coxiella burnetii 2Y7S ; 1.9 ; Structure of a designed meningococcal antigen (factor H binding protein, mutant G1) inducing broad protective immunity 4D2C ; 2.47 ; Structure of a di peptide bound POT family peptide transporter 5HA4 ; 1.85 ; Structure of a diaminopimelate epimerase from Acinetobacter baumannii 1LEX ; 2.25 ; STRUCTURE OF A DICATIONIC MONOIMIDAZOLE LEXITROPSIN BOUND TO DNA (ORIENTATION 1) 1LEY ; 2.25 ; STRUCTURE OF A DICATIONIC MONOIMIDAZOLE LEXITROPSIN BOUND TO DNA (ORIENTATION 2) 3TR9 ; 1.895 ; Structure of a dihydropteroate synthase (folP) in complex with pteroic acid from Coxiella burnetii 4QAG ; 1.712 ; Structure of a dihydroxycoumarin active-site inhibitor in complex with the RNASE H domain of HIV-1 reverse transcriptase 6WNZ ; 2.0 ; Structure of a dimer of the Sulfolobus solfataricus MCM N-terminal domain reveals potential role in MCM ring opening 2LE6 ; ; Structure of a dimeric all-parallel-stranded G-quadruplex stacked via the 5'-to-5' interface 3QYC ; 1.6 ; Structure of a dimeric anti-HER2 single domain antibody 3P3W ; 4.2 ; Structure of a dimeric GluA3 N-terminal domain (NTD) at 4.2 A resolution 1JYE ; 1.7 ; Structure of a Dimeric Lac Repressor with C-terminal Deletion and K84L Substitution 2AK7 ; 2.0 ; structure of a dimeric P-Ser-Crh 7VW0 ; 1.447 ; Structure of a dimeric periplasmic protein 7VW2 ; 2.186 ; Structure of a dimeric periplasmic protein bound with cupric ions 7VW1 ; 2.494 ; Structure of a dimeric periplasmic protein bound with cuprous ions 8EQM ; 2.6 ; Structure of a dimeric photosystem II complex acclimated to far-red light 4D60 ; 3.3 ; Structure of a dimeric Plasmodium falciparum profilin mutant 6E7L ; 2.59 ; Structure of a dimerized UUCG motif 4BIK ; 3.494 ; Structure of a disulfide locked mutant of Intermedilysin with human CD59 1AAR ; 2.3 ; STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2) 307D ; 1.85 ; Structure of a DNA analog of the primer for HIV-1 RT second strand synthesis 2VQC ; 2.3 ; Structure of a DNA binding winged-helix protein, F-112, from Sulfolobus Spindle-shaped Virus 1. 1HT7 ; ; STRUCTURE OF A DNA DUPLEX CONTAINING A BISTRAND ABASIC SITE LESION STAGGERED IN A 5'-ORIENTATION. 401D ; 2.2 ; STRUCTURE OF A DNA IN LOW SALT CONDITIONS D(GACCGCGGTC) 6D0Q ; 2.80051 ; Structure of a DNA retention-prone PCNA variant 6D0R ; 2.85857 ; Structure of a DNA retention-prone PCNA variant 1AGL ; 2.2 ; STRUCTURE OF A DNA-BISDAUNOMYCIN COMPLEX 6OBJ ; 3.5 ; Structure of a DNA-bound dimer extracted from filamentous SgrAI endonuclease in its activated form 7P5Z ; 3.3 ; Structure of a DNA-loaded MCM double hexamer engaged with the Dbf4-dependent kinase 231D ; 2.4 ; STRUCTURE OF A DNA-PORPHYRIN COMPLEX 124D ; ; STRUCTURE OF A DNA:RNA HYBRID DUPLEX: WHY RNASE H DOES NOT CLEAVE PURE RNA 8FDR ; 1.55 ; Structure of a dodecamer complex: 5'-CGCGAAAAGCCG-3-DB1476 4ZC0 ; 6.7 ; Structure of a dodecameric bacterial helicase 2Y4Y ; 1.7 ; Structure of a domain from the type IV pilus biogenesis lipoprotein PilP, from Pseudomonas aeruginosa 2Y4X ; 1.7 ; Structure of a domain from the type IV pilus biogenesis lipoprotein PilP, from Pseudomonas aeruginosa PA01 2P3P ; 1.76 ; Structure of a domain of an uncharacterized protein PG_1388 from Porphyromonas gingivalis W83 3QRF ; 2.8 ; Structure of a domain-swapped FOXP3 dimer 3CUS ; 2.2 ; Structure of a double ILE/PHE mutant of NI-FE hydrogenase refined at 2.2 angstrom resolution 3CUR ; 2.4 ; Structure of a double methionine mutant of NI-FE hydrogenase 5LUK ; 1.45 ; Structure of a double variant of cutinase 2 from Thermobifida cellulosilytica 6XA1 ; 2.8 ; Structure of a drug-like compound stalled human translation termination complex 7LT2 ; 1.58 ; Structure of a dsRNA-sensing cGAS-like receptor from the beetle Tribolium castaneum 6BQO ; 2.8 ; Structure of a dual topology fluoride channel with monobody S8 2H1Z ; ; Structure of a dual-target spider toxin 3AXB ; 1.92 ; Structure of a dye-linked L-proline dehydrogenase from the aerobic hyperthermophilic archaeon, Aeropyrum pernix 3VQR ; 2.01 ; Structure of a dye-linked L-proline dehydrogenase mutant from the aerobic hyperthermophilic archaeon, Aeropyrum pernix 1EG3 ; 2.0 ; STRUCTURE OF A DYSTROPHIN WW DOMAIN FRAGMENT IN COMPLEX WITH A BETA-DYSTROGLYCAN PEPTIDE 1EG4 ; 2.0 ; STRUCTURE OF A DYSTROPHIN WW DOMAIN FRAGMENT IN COMPLEX WITH A BETA-DYSTROGLYCAN PEPTIDE 2X9K ; 2.18 ; Structure of a E.coli porin 5H3O ; 3.5 ; Structure of a eukaryotic cyclic nucleotide-gated channel 6FAI ; 3.4 ; Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit 4U04 ; 2.48 ; Structure of a eukaryotic fic domain containing protein 4HCW ; 2.705 ; Structure of a eukaryotic thiaminase-I 4HCY ; 2.75 ; Structure of a eukaryotic thiaminase-I bound to the thiamin analogue 3-deazathiamin 5X0M ; 3.8 ; Structure of a eukaryotic voltage-gated sodium channel at near atomic resolution 3GAI ; 1.48 ; Structure of a F112A variant PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri complexed with cobalamin and ATP 3GAH ; 1.17 ; Structure of a F112H variant PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri complexed with cobalamin and ATP 8BF0 ; 1.75 ; Structure of a Fab portion from TKH2 2V8I ; 1.5 ; Structure of a Family 2 Pectate Lyase in a Native Form 2V8J ; 2.01 ; Structure of a Family 2 Pectate Lyase in Complex with a Transition Metal 2V8K ; 2.1 ; Structure of a Family 2 Pectate Lyase in Complex with Trigalacturonic Acid 2V3G ; 1.2 ; Structure of a family 26 lichenase in complex with noeuromycin 1XSI ; 2.2 ; Structure of a Family 31 alpha glycosidase 1XSJ ; 2.1 ; Structure of a Family 31 alpha glycosidase 1XSK ; 2.2 ; Structure of a Family 31 alpha glycosidase glycosyl-enzyme intermediate 2W3J ; 1.7 ; Structure of a family 35 carbohydrate binding module from an environmental isolate 2J13 ; 1.7 ; Structure of a family 4 carbohydrate esterase from Bacillus anthracis 2V5D ; 3.3 ; Structure of a Family 84 Glycoside Hydrolase and a Family 32 Carbohydrate-Binding Module in Tandem from Clostridium perfringens. 2JKP ; 1.99 ; Structure of a family 97 alpha-glucosidase from Bacteroides thetaiotaomicron in complex with castanospermine 2JKE ; 1.7 ; Structure of a family 97 alpha-glucosidase from Bacteroides thetaiotaomicron in complex with deoxynojirimycin 2WAA ; 1.8 ; Structure of a family two carbohydrate esterase from Cellvibrio japonicus 2WAO ; 1.8 ; Structure of a family two carbohydrate esterase from Clostridium thermocellum in complex with cellohexaose 6HRK ; 2.52 ; Structure of a far-red fluorescent biliprotein derived from a far-red induced allophycocyanin F subunit from a thermophilic cyanobacterium Chroococcidiopsis thermalis 8OR7 ; 2.8 ; Structure of a far-red induced allophycocyanin from Chroococcidiopsis thermalis sp. PCC 7203 1GOJ ; 2.3 ; Structure of a fast kinesin: Implications for ATPase mechanism and interactions with microtubules 5TPS ; 2.7 ; Structure of a Fc heterodimer 6F2Z ; 2.3 ; Structure of a Fc mutant 7LB8 ; 3.4 ; Structure of a ferrichrome importer FhuCDB from E. coli 5NQX ; 3.66 ; Structure of a fHbp(V1.1):PorA(P1.16) chimera. Fusion at fHbp position 294. 5NQZ ; 1.63 ; Structure of a fHbp(V1.1):PorA(P1.16) chimera. Fusion at fHbp position 309. 5NQP ; 2.86 ; Structure of a fHbp(V1.4):PorA(P1.16) chimera. Fusion at fHbp position 151. 5NQY ; 2.6 ; Structure of a fHbp(V1.4):PorA(P1.16) chimera. Fusion at fHbp position 309. 1TEN ; 1.8 ; STRUCTURE OF A FIBRONECTIN TYPE III DOMAIN FROM TENASCIN PHASED BY MAD ANALYSIS OF THE SELENOMETHIONYL PROTEIN 7CB8 ; 2.6 ; Structure of a FIC-domain protein from Mycobacterium marinum in complex with CDP 8AN1 ; 3.93 ; Structure of a first level Sierpinski triangle formed by a citrate synthase 8RJL ; 3.34 ; Structure of a first order Sierpinski triangle formed by the H369R mutant of the citrate synthase from Synechococcus elongatus 5B3D ; 2.3 ; Structure of a flagellar type III secretion chaperone, FlgN 6JSX ; 2.7 ; Structure of a flagellin protein, HpFlaG 1G28 ; 2.73 ; STRUCTURE OF A FLAVIN-BINDING DOMAIN, LOV2, FROM THE CHIMERIC PHYTOCHROME/PHOTOTROPIN PHOTORECEPTOR PHY3 2ARK ; 2.4 ; Structure of a flavodoxin from Aquifex aeolicus 5WID ; 1.681 ; Structure of a flavodoxin from the domain Archaea 1DCW ; 2.1 ; STRUCTURE OF A FOUR-WAY JUNCTION IN AN INVERTED REPEAT SEQUENCE. 6R6K ; 2.1 ; Structure of a FpvC mutant from pseudomonas aeruginosa 6XAY ; 2.48 ; Structure of a fragment of human fibronectin containing the 10th, 11th and 12th type III domains 6XAX ; 2.4 ; Structure of a fragment of human fibronectin containing the 11th type III domain, extra domain A, and the 12th type III domain 4QJ3 ; 3.0 ; Structure of a fragment of human phospholipase C-beta3 delta472-559, in complex with Galphaq 4QJ4 ; 3.3 ; Structure of a fragment of human phospholipase C-beta3 delta472-569, bound to IP3 and in complex with Galphaq 4QJ5 ; 3.41 ; Structure of a fragment of human phospholipase C-beta3 delta472-581, bound to IP3 and in complex with Galphaq 4GDO ; 1.7 ; Structure of a fragment of the rod domain of plectin 6HTN ; 1.55 ; Structure of a fucose lectin from Kordia zhangzhouensis in complex with methyl-fucoside 3SW1 ; 2.63 ; Structure of a full-length bacterial LOV protein 2IG9 ; 1.9 ; Structure of a full-length Homoprotocatechuate 2,3-Dioxygenase from B. fuscum in a new spacegroup. 7PHR ; 3.08 ; Structure of a fully assembled T-cell receptor engaging a tumor-associated peptide-MHC I 7SHQ ; 2.34 ; Structure of a functional construct of eukaryotic elongation factor 2 kinase in complex with calmodulin. 2XHL ; 2.8 ; Structure of a functional derivative of Clostridium botulinum neurotoxin type B 6SEJ ; 3.501 ; Structure of a functional monomeric properdin lacking TSR3 6HWH ; 3.3 ; Structure of a functional obligate respiratory supercomplex from Mycobacterium smegmatis 6RUS ; 2.8 ; Structure of a functional properdin monomer 3HJW ; 2.35 ; Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA 3HJY ; 3.65 ; Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA 1JS8 ; 2.3 ; Structure of a Functional Unit from Octopus Hemocyanin 8JZN ; 2.47 ; Structure of a fungal 1,3-beta-glucan synthase 8B4G ; 1.496 ; Structure of a fungal LPMO bound to ligands 4FPQ ; 2.3 ; Structure of a fungal protein 4FPR ; 2.402 ; Structure of a fungal protein 7PUO ; 2.35 ; Structure of a fused 4-OT variant engineered for asymmetric Michael addition reactions 4ZSV ; 4.2 ; Structure of a fusion protein with a helix linker, 2ARH-3-3KAW-1.0 4ZSX ; 2.19 ; Structure of a fusion protein with a helix linker, 2ARH-3-3KAW-2.0 4ZSZ ; 4.251 ; Structure of a fusion protein with a helix linker, 2ARH-3-3KAW-3.0 3ONW ; 2.38 ; Structure of a G-alpha-i1 mutant with enhanced affinity for the RGS14 GoLoco motif. 2MAY ; ; Structure of a G-quadruplex containing a single LNA modification 5V2R ; ; Structure of a GA Rich 8x8 Nucleotide RNA Internal Loop 1G8X ; 2.8 ; STRUCTURE OF A GENETICALLY ENGINEERED MOLECULAR MOTOR 8OS6 ; 2.66 ; Structure of a GFRA1/GDNF LICAM complex 7CUK ; ; Structure of a GG mismatch-containing duplex formed by G4C2 repeats 7AYP ; 1.70001 ; Structure of a GH11 domain refined from the X-ray diffraction data of a GH11-CBM36-1 crystal. 5K6M ; 2.17 ; Structure of a GH3 b-glIcosidase from cow rumen metagenome in complex with glucose 5K6N ; 2.08 ; Structure of a GH3 b-glicosidase from cow rumen metagenome in complexed with xylose 5K6L ; 1.83 ; Structure of a GH3 b-glucosidase from cow rumen metagenome 5K6O ; 2.29 ; Structure of a GH3 b-glucosidase from cow rumen metagenome in complex with galactose 4M29 ; 2.1 ; Structure of a GH39 Beta-xylosidase from Caulobacter crescentus 4X0V ; 2.798 ; Structure of a GH5 family lichenase from Caldicellulosiruptor sp. F32 4F52 ; 3.0 ; Structure of a Glomulin-RBX1-CUL1 complex 1BH0 ; 3.0 ; STRUCTURE OF A GLUCAGON ANALOG 7XHP ; 2.78 ; Structure of a Glucose 6-Phosphate Dehydrogenase from Zymomonas mobilis 3WIE ; 2.33 ; Structure of a glucose dehydrogenase T277F mutant in complex with D-glucose and NAADP 3WID ; 2.25 ; Structure of a glucose dehydrogenase T277F mutant in complex with NADP 7DMM ; 0.99 ; Structure of a glucose isomerase crystal grown in an aqueous glycerol solution without any precipitants 4QFH ; 1.8 ; Structure of a glucose-6-phosphate isomerase from Trypanosoma cruzi 1GR2 ; 1.9 ; STRUCTURE OF A GLUTAMATE RECEPTOR LIGAND BINDING CORE (GLUR2) COMPLEXED WITH KAINATE 6GMG ; 2.25 ; Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase 2H8N ; 2.6 ; Structure of a glutamine-rich domain from histone deacetylase 4 6K5J ; 1.903 ; Structure of a glycoside hydrolase family 3 beta-N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7 4P8R ; 2.2 ; Structure of a glycosomal glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma brucei 2JWG ; ; Structure of a Glycosylphosphatidylinositol-anchored Domain from a Trypanosome Variant Surface Glycoprotein 2JWH ; ; Structure of a Glycosylphosphatidylinositol-anchored Domain from a Trypanosome Variant Surface Glycoprotein 6EJI ; 2.3 ; Structure of a glycosyltransferase 6EJK ; 3.3 ; Structure of a glycosyltransferase 6EJJ ; 2.7 ; Structure of a glycosyltransferase / state 2 6P61 ; 1.95 ; Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) 5CXY ; 2.15 ; Structure of a Glycosyltransferase in Complex with Inhibitor 5JQ4 ; 1.8 ; Structure of a GNAT acetyltransferase SACOL1063 from Staphylococcus aureus 5JPH ; 1.46 ; Structure of a GNAT acetyltransferase SACOL1063 from Staphylococcus aureus in complex with CoA 6EDV ; 1.35 ; Structure of a GNAT superfamily acetyltransferase PA3944 in complex with CoA 7KPS ; 1.8 ; Structure of a GNAT superfamily PA3944 acetyltransferase in complex with AcCoA 7KYE ; 1.93 ; Structure of a GNAT superfamily PA3944 acetyltransferase in complex with CHES 7KYJ ; 2.0 ; Structure of a GNAT superfamily PA3944 acetyltransferase in complex with zinc 8HQC ; 3.89 ; Structure of a GPCR-G protein in complex with a natural peptide agonist 3BJX ; 2.3 ; Structure of a Group I haloacid dehalogenase from Pseudomonas putida strain PP3 6MEC ; 3.6 ; Structure of a group II intron retroelement after DNA integration 6ME0 ; 3.6 ; Structure of a group II intron retroelement prior to DNA integration 8T2T ; 3.0 ; Structure of a group II intron ribonucleoprotein in the post-ligation (post-2F) state 8T2S ; 3.0 ; Structure of a group II intron ribonucleoprotein in the pre-branching (pre-1F) state 8T2R ; 3.1 ; Structure of a group II intron ribonucleoprotein in the pre-ligation (pre-2F) state 3MJK ; 2.4 ; Structure of a growth factor precursor 2BE3 ; 2.4 ; Structure of a GTP Pyrophosphokinase Family Protein from Streptococcus pneumoniae 2ZCI ; 2.3 ; Structure of a GTP-dependent bacterial PEP-carboxykinase from Corynebacterium glutamicum 5T83 ; 2.71 ; Structure of a guanidine-I riboswitch from S. acidophilus 2GJE ; 3.37 ; Structure of a guideRNA-binding protein complex bound to a gRNA 2PAE ; 2.5 ; Structure of a H49N mutant dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from Aneurinibacillus thermoaerophilus in complex with TDP 2PAM ; 2.5 ; Structure of a H49N, H51N double mutant dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from Aneurinibacillus thermoaerophilus complexed with TDP 2PAK ; 2.4 ; Structure of a H51N mutant dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from Aneurinibacillus thermoaerophilus complexed with TDP 6OM5 ; 1.6 ; Structure of a haemophore from Haemophilus haemolyticus 2AZ1 ; 2.35 ; Structure of a halophilic nucleoside diphosphate kinase from Halobacterium salinarum 2AZ3 ; 2.2 ; Structure of a halophilic nucleoside diphosphate kinase from Halobacterium salinarum in complex with CDP 3TQU ; 1.9 ; Structure of a HAM1 protein from Coxiella burnetii 2HAP ; 2.5 ; STRUCTURE OF A HAP1-18/DNA COMPLEX REVEALS THAT PROTEIN/DNA INTERACTIONS CAN HAVE DIRECT ALLOSTERIC EFFECTS ON TRANSCRIPTIONAL ACTIVATION 1HWT ; 2.5 ; STRUCTURE OF A HAP1/DNA COMPLEX REVEALS DRAMATICALLY ASYMMETRIC DNA BINDING BY A HOMODIMERIC PROTEIN 1RI9 ; ; Structure of a helically extended SH3 domain of the T cell adapter protein ADAP 1Y12 ; 1.95 ; Structure of a hemolysin-coregulated protein from Pseudomonas aeruginosa 1QA9 ; 3.2 ; Structure of a Heterophilic Adhesion Complex Between the Human CD2 and CD58(LFA-3) Counter-Receptors 8PFB ; 3.67 ; Structure of a heteropolymeric type 4 pilus from a monoderm bacterium 2OT4 ; 1.5 ; Structure of a hexameric multiheme c nitrite reductase from the extremophile bacterium Thiolkalivibrio nitratireducens 3SXQ ; 1.9 ; Structure of a hexameric multiheme c nitrite reductase from the extremophile bacterium Thiolkalivibrio paradoxus 1U7K ; 1.85 ; Structure of a hexameric N-terminal domain from murine leukemia virus capsid 4Q79 ; 3.1 ; Structure of a HG-derivative CsgG 6H4N ; 3.0 ; Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1 - 70S Hibernating E. coli Ribosome 6H58 ; 7.9 ; Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1 - Full 100S Hibernating E. coli Ribosome 1LM8 ; 1.85 ; Structure of a HIF-1a-pVHL-ElonginB-ElonginC Complex 2JWV ; ; Structure of a high affinity anti-NFkB RNA aptamer 2E7L ; 2.5 ; Structure of a high-affinity mutant of the 2C TCR in complex with Ld/QL9 1XC9 ; 1.9 ; Structure of a high-fidelity polymerase bound to a benzo[a]pyrene adduct that blocks replication 4B7H ; 1.39 ; Structure of a highdose liganded bacterial catalase 1Z5L ; 2.2 ; Structure of a highly potent short-chain galactosyl ceramide agonist bound to CD1D 2YMU ; 1.794 ; Structure of a highly repetitive propeller structure 1L96 ; 2.0 ; STRUCTURE OF A HINGE-BENDING BACTERIOPHAGE T4 LYSOZYME MUTANT, ILE3-> PRO 1L97 ; 2.0 ; STRUCTURE OF A HINGE-BENDING BACTERIOPHAGE T4 LYSOZYME MUTANT, ILE3-> PRO 3DGE ; 2.8 ; Structure of a histidine kinase-response regulator complex reveals insights into Two-component signaling and a novel cis-autophosphorylation mechanism 3DGF ; 2.0 ; Structure of a histidine kinase-response regulator complex reveals insights into Two-component signaling and a novel cis-autophosphorylation mechanism 1PAA ; ; STRUCTURE OF A HISTIDINE-X4-HISTIDINE ZINC FINGER DOMAIN: INSIGHTS INTO ADR1-UAS1 PROTEIN-DNA RECOGNITION 7K7L ; 2.539 ; Structure of a hit for G Protein Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure 7K7Z ; 2.60609 ; Structure of a hit for G Protein Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure 3CMY ; 1.95 ; Structure of a homeodomain in complex with DNA 2QS6 ; 3.08 ; Structure of a Hoogsteen antiparallel duplex with extra-helical thymines 3SIV ; 3.304 ; Structure of a hPrp31-15.5K-U4atac 5' stem loop complex, dimeric form 3SIU ; 2.626 ; Structure of a hPrp31-15.5K-U4atac 5' stem loop complex, monomeric form 2BRC ; 1.6 ; Structure of a Hsp90 Inhibitor bound to the N-terminus of Yeast Hsp90. 2BRE ; 2.0 ; STRUCTURE OF A HSP90 INHIBITOR BOUND TO THE N-TERMINUS OF YEAST HSP90. 8OZ0 ; 3.5 ; Structure of a human 48S translation initiation complex with eIF4F and eIF4A 6ZMW ; 3.7 ; Structure of a human 48S translational initiation complex 6YBW ; 3.1 ; Structure of a human 48S translational initiation complex - 40S body 6YBV ; 3.8 ; Structure of a human 48S translational initiation complex - eIF2-TC 6YBD ; 3.3 ; Structure of a human 48S translational initiation complex - eIF3 6YBT ; 6.0 ; Structure of a human 48S translational initiation complex - eIF3bgi 6YBS ; 3.1 ; Structure of a human 48S translational initiation complex - head 5ANR ; 2.102 ; Structure of a human 4E-T - DDX6 - CNOT1 complex 1XFD ; 3.0 ; Structure of a human A-type Potassium Channel Accelerating factor DPPX, a member of the dipeptidyl aminopeptidase family 6ZVJ ; 3.8 ; Structure of a human ABCE1-bound 43S pre-initiation complex - State II 7A09 ; 3.5 ; Structure of a human ABCE1-bound 43S pre-initiation complex - State III 2I32 ; 2.7 ; Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly 5FII ; 1.8 ; Structure of a human aspartate kinase, chorismate mutase and TyrA domain. 1LGV ; 1.95 ; Structure of a Human Bence-Jones Dimer Crystallized in U.S. Space Shuttle Mission STS-95: 100K 1LHZ ; 2.3 ; Structure of a Human Bence-Jones Dimer Crystallized in U.S. Space Shuttle Mission STS-95: 293K 4OGW ; 2.05 ; Structure of a human CD38 mutant complexed with NMN 3OFM ; 2.0 ; Structure of a human CK2alpha prime, the paralog isoform of the catalytic subunit of protein kinase CK2 from Homo sapiens 8EOI ; 3.4 ; Structure of a human EMC:human Cav1.2 channel complex in GDN detergent 4DGJ ; 1.9 ; Structure of a human enteropeptidase light chain variant 6QX9 ; 3.28 ; Structure of a human fully-assembled precatalytic spliceosome (pre-B complex). 7W72 ; 3.1 ; Structure of a human glycosylphosphatidylinositol (GPI) transamidase 7OF2 ; 2.7 ; Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with GTPBP6. 7OF0 ; 2.2 ; Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with MTERF4-NSUN4 (dataset1). 7OF3 ; 2.7 ; Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with MTERF4-NSUN4 (dataset2). 7OF7 ; 2.5 ; Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with MTERF4-NSUN4 and GTPBP5 (dataset1). 7OF5 ; 2.9 ; Structure of a human mitochondrial ribosome large subunit assembly intermediate in complex with MTERF4-NSUN4 and GTPBP5 (dataset2). 1DFB ; 2.7 ; STRUCTURE OF A HUMAN MONOCLONAL ANTIBODY FAB FRAGMENT AGAINST GP41 OF HUMAN IMMUNODEFICIENCY VIRUS TYPE I 7DSV ; 3.4 ; Structure of a human NHE1-CHP1 complex under pH 6.5 7DSW ; 3.3 ; Structure of a human NHE1-CHP1 complex under pH 7.5 7DSX ; 3.5 ; Structure of a human NHE1-CHP1 complex under pH 7.5, bound by cariporide 7X2U ; 3.2 ; Structure of a human NHE3-CHP1 complex in the autoinhibited state 6T79 ; 3.2 ; Structure of a human nucleosome at 3.2 A resolution 2RD0 ; 3.05 ; Structure of a human p110alpha/p85alpha complex 1UMW ; 1.9 ; Structure of a human Plk1 Polo-box domain/phosphopeptide complex 2OZB ; 2.6 ; Structure of a human Prp31-15.5K-U4 snRNA complex 1JL0 ; 1.5 ; Structure of a Human S-Adenosylmethionine Decarboxylase Self-processing Ester Intermediate and Mechanism of Putrescine Stimulation of Processing as Revealed by the H243A Mutant 5GWI ; 2.737 ; Structure of a Human topoisomerase IIbeta fragment in complex with DNA and E7873R 5GWJ ; 2.566 ; Structure of a Human topoisomerase IIbeta fragment in complex with DNA and E7873S 4U3X ; 2.26 ; Structure of a human VH antibody domain binding to the cleft of hen egg lysozyme 7ZEK ; ; Structure of a hybrid-type G-quadruplex with a snapback loop (hybrid 1R') 7ZEO ; ; Structure of a hybrid-type G-quadruplex with a snapback loop and an all-syn G-column (hybrid-1R) 5FKY ; 1.8 ; Structure of a hydrolase bound with an inhibitor 5FL0 ; 1.95 ; Structure of a hydrolase with an inhibitor 5FL1 ; 1.95 ; Structure of a hydrolase with an inhibitor 2HNF ; 1.8 ; Structure of a Hyper-cleavable Monomeric Fragment of Phage lambda Repressor Containing the Cleavage Site Region 2HO0 ; 2.5 ; Structure of a Hyper-cleavable Monomeric Fragment of Phage Lambda Repressor Containing the Cleavage Site Region 1AOR ; 2.3 ; STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE 6EKI ; 2.555 ; Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney 6J8O ; 1.855 ; Structure of a hypothetical protease 6J91 ; 3.5 ; Structure of a hypothetical protease 1P9Q ; 2.0 ; Structure of a hypothetical protein AF0491 from Archaeoglobus fulgidus 2H8P ; 2.25 ; Structure of a K channel with an amide to ester substitution in the selectivity filter 3OUF ; 1.55 ; Structure of a K+ selective NaK mutant 8CU2 ; 2.01 ; Structure of a K+ selective NaK mutant (NaK2K, Laue diffraction) in the presence of an electric field of ~0.8MV/cm along the crystallographic z axis, 100ns, with eightfold extrapolation of structure factor differences 8CU4 ; 2.01 ; Structure of a K+ selective NaK mutant (NaK2K, Laue diffraction) in the presence of an electric field of ~0.8MV/cm along the crystallographic z axis, 1us, with eightfold extrapolation of structure factor differences 8CU3 ; 2.01 ; Structure of a K+ selective NaK mutant (NaK2K, Laue diffraction) in the presence of an electric field of ~0.8MV/cm along the crystallographic z axis, 200ns, with eightfold extrapolation of structure factor differences 8CU1 ; 2.01 ; Structure of a K+ selective NaK mutant (NaK2K, Laue diffraction) in the presence of an electric field of ~0.8MV/cm along the crystallographic z axis, 500ns, with eightfold extrapolation of structure factor differences 8CTN ; 2.01 ; Structure of a K+ selective NaK mutant (NaK2K, Laue diffraction, no electric field) 6LDR ; 1.79 ; Structure of a K245A mutant of a Group II PLP dependent decarboxylase from Methanocaldococcus jannaschii, in complex with PLP 6LDS ; 1.8 ; Structure of a K245A mutant of L-tyrosine decarboxylase from Methanocaldococcus jannaschii complexed with L-Tyr: External aldimine form 4MZ0 ; 2.8 ; Structure of a ketosynthase-acyltransferase di-domain from module CurL of the curacin A polyketide synthase 7QHY ; 2.45 ; Structure of a Kluyveromyces lactis protein involved in RNA decay 5NXN ; 3.12 ; Structure of a L5-deletion mutant of Providencia stuartii Omp-Pst1 3G39 ; 1.55 ; Structure of a lamprey variable lymphocyte receptor 3G3A ; 2.2 ; Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen 3G3B ; 2.4 ; Structure of a lamprey variable lymphocyte receptor mutant in complex with a protein antigen 5DCM ; 1.6 ; Structure of a lantibiotic response regulator: C-terminal domain of the nisin resistance regulator NsrR 5DCL ; 1.41 ; Structure of a lantibiotic response regulator: N terminal domain of the nisin resistance regulator NsrR 5OWF ; 1.91 ; Structure of a LAO-binding protein mutant with glutamine 8CH6 ; 5.9 ; Structure of a late-stage activated spliceosome (BAqr) arrested with a dominant-negative Aquarius mutant (state B complex). 8JMP ; 1.9 ; Structure of a leaf-branch compost cutinase, ICCG in complex with 1,4-butanediol terephthalate 8JMO ; 1.95 ; Structure of a leaf-branch compost cutinase, ICCG in complex with 4-((4-Hydroxybutoxy)carbonyl)benzoic acid 4U2A ; 1.74 ; Structure of a lectin from the seeds of Vatairea macrocarpa complexed with GalNAc 4U5M ; 1.5 ; Structure of a left-handed DNA G-quadruplex 6GZ6 ; 2.006 ; Structure of a left-handed G-quadruplex 5YIM ; 3.394 ; Structure of a Legionella effector 5YIK ; 3.102 ; Structure of a Legionella effector with its substrate 5YIJ ; 3.18 ; Structure of a Legionella effector with substrates 1LTE ; 2.0 ; STRUCTURE OF A LEGUME LECTIN WITH AN ORDERED N-LINKED CARBOHYDRATE IN COMPLEX WITH LACTOSE 8A19 ; 2.358 ; Structure of a leucinostatin derivative determined by host lattice display : L1E4V1 construct 8A1A ; 2.05 ; Structure of a leucinostatin derivative determined by host lattice display : L1F11V1 construct 4D2B ; 2.35 ; Structure of a ligand free POT family peptide transporter 4B7F ; 1.76 ; Structure of a liganded bacterial catalase 1HA7 ; 2.2 ; STRUCTURE OF A LIGHT-HARVESTING PHYCOBILIPROTEIN, C-PHYCOCYANIN FROM SPIRULINA PLATENSIS AT 2.2A RESOLUTION 2IYI ; 2.95 ; structure of a light-induced intermediate of the BLUF domain of the rhodobacterial protein AppA 1W66 ; 1.08 ; Structure of a lipoate-protein ligase b from Mycobacterium tuberculosis 5CYB ; 2.1 ; Structure of a lipocalin lipoprotein affecting virulence in Streptococcus pneumoniae 4Y68 ; 2.21 ; Structure of a lipoprotein from Streptococcus agalactiae 4R96 ; 3.31 ; Structure of a Llama Glama Fab 48A2 against human cMet 1U0Q ; 1.6 ; Structure of a Llama VHH domain raised against a carbazole molecule 2K01 ; ; Structure of a locked SDF1 dimer 3CP1 ; 2.0 ; Structure of a longer thermalstable core domain of HIV-1 gp41 containing the enfuvirtide resistance mutation N43D 3CYO ; 2.1 ; Structure of a longer thermalstable core domain of HIV-1 GP41 containing the enfuvirtide resistance mutation N43D and complementary mutation E137K 3M3N ; 7.0 ; Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains 2VH4 ; 2.45 ; Structure of a loop C-sheet serpin polymer 1WOB ; 2.8 ; Structure of a loop6 hinge mutant of Plasmodium falciparum Triosephosphate Isomerase, W168F, complexed to sulfate 4G22 ; 1.7 ; Structure of a Lys-HCT mutant from Coffea canephora (Crystal form 1) 4G2M ; 2.5 ; Structure of a Lys-HCT mutant from Coffea canephora (Crystal form 2) 4TSB ; 1.95 ; Structure of a lysozyme antibody complex 4TSC ; 1.92 ; Structure of a lysozyme antibody complex 4TTD ; 2.15 ; Structure of a lysozyme antibody complex 4TSA ; 2.27 ; Structure of a lysozyme FAb complex 3VEH ; 2.0 ; Structure of a M. tuberculosis salicylate synthase, MbtI, in complex with an inhibitor methylAMT 3RV8 ; 2.29 ; Structure of a M. tuberculosis Salicylate Synthase, MbtI, in Complex with an Inhibitor with Cyclopropyl R-Group 3RV9 ; 2.14 ; Structure of a M. tuberculosis Salicylate Synthase, MbtI, in Complex with an Inhibitor with Ethyl R-Group 3RV7 ; 2.5 ; Structure of a M. tuberculosis Salicylate Synthase, MbtI, in Complex with an Inhibitor with Isopropyl R-Group 3RV6 ; 2.04 ; Structure of a M. tuberculosis Salicylate Synthase, MbtI, in Complex with an Inhibitor with Phenyl R-Group 3ST6 ; 1.75 ; Structure of a M. tuberculosis Synthase, MbtI, in Complex with an Isochorismate Analogue Inhibitor 2QP2 ; 2.0 ; Structure of a MACPF/perforin-like protein 1FOD ; 2.6 ; STRUCTURE OF A MAJOR IMMUNOGENIC SITE ON FOOT-AND-MOUTH DISEASE VIRUS 4AE5 ; 1.85 ; STRUCTURE OF A MAJOR REGULATOR OF STAPHYLOCOCCAL PATHOGENESIS 4O2X ; 2.7 ; Structure of a malarial protein 4O32 ; 2.196 ; Structure of a malarial protein 4XBI ; 2.013 ; Structure Of A Malarial Protein Involved in Proteostasis 6P5N ; 3.2 ; Structure of a mammalian 80S ribosome in complex with a single translocated Israeli Acute Paralysis Virus IRES and eRF1 6P5I ; 3.1 ; Structure of a mammalian 80S ribosome in complex with the Israeli Acute Paralysis Virus IRES (Class 1) 6P5J ; 3.1 ; Structure of a mammalian 80S ribosome in complex with the Israeli Acute Paralysis Virus IRES (Class 2) 6P5K ; 3.1 ; Structure of a mammalian 80S ribosome in complex with the Israeli Acute Paralysis Virus IRES (Class 3) 4V5Z ; 8.7 ; Structure of a mammalian 80S ribosome obtained by docking homology models of the RNA and proteins into an 8.7 A cryo-EM map 3JAG ; 3.65 ; Structure of a mammalian ribosomal termination complex with ABCE1, eRF1(AAQ), and the UAA stop codon 3JAH ; 3.45 ; Structure of a mammalian ribosomal termination complex with ABCE1, eRF1(AAQ), and the UAG stop codon 3JAI ; 3.65 ; Structure of a mammalian ribosomal termination complex with ABCE1, eRF1(AAQ), and the UGA stop codon 6P4G ; 3.1 ; Structure of a mammalian small ribosomal subunit in complex with the Israeli Acute Paralysis Virus IRES (Class 1) 6P4H ; 3.2 ; Structure of a mammalian small ribosomal subunit in complex with the Israeli Acute Paralysis Virus IRES (Class 2) 6FUV ; 2.001 ; Structure of a manno-oligosaccharide specific solute binding protein, BlMnBP2 from Bifidobacterium animalis subsp. lactis ATCC 27673 in complex with mannotriose 1XXQ ; 1.8 ; Structure of a mannose-specific jacalin-related lectin from Morus nigra 1XXR ; 2.0 ; Structure of a mannose-specific jacalin-related lectin from Morus Nigra in complex with mannose 6NYB ; 4.1 ; Structure of a MAPK pathway complex 6Q0J ; 4.9 ; Structure of a MAPK pathway complex 6Q0K ; 6.8 ; Structure of a MAPK pathway complex 6Q0T ; 5.7 ; Structure of a MAPK pathway complex 6SHL ; 3.1 ; Structure of a marine algae virus of the order Picornavirales 5UJB ; 2.7 ; Structure of a Mcl-1 Inhibitor Binding to Site 3 of Human Serum Albumin 5VKQ ; 3.55 ; Structure of a mechanotransduction ion channel Drosophila NOMPC in nanodisc 5AYW ; 3.555 ; Structure of a membrane complex 4NYK ; 3.0 ; Structure of a membrane protein 4Q35 ; 2.393 ; Structure of a membrane protein 4U9L ; 2.3 ; Structure of a membrane protein 4U9N ; 2.2 ; Structure of a membrane protein 7WSO ; 3.03 ; Structure of a membrane protein G 7WSP ; 4.09 ; Structure of a membrane protein M 7XT6 ; 3.63 ; Structure of a membrane protein M3 7XE4 ; 3.4 ; structure of a membrane-bound glycosyltransferase 7XS7 ; 3.2 ; structure of a membrane-integrated glycosyltransferase 7XS6 ; 2.9 ; structure of a membrane-integrated glycosyltransferase with inhibitor 3WYB ; 2.4 ; Structure of a meso-diaminopimelate dehydrogenase 3WYC ; 2.07 ; Structure of a meso-diaminopimelate dehydrogenase in complex with NADP 2WYM ; 2.6 ; Structure of a metallo-b-lactamase 4TYF ; 1.1 ; Structure of a Metallo-beta-lactamase 6WT6 ; 2.41 ; Structure of a metazoan TIR-STING receptor from C. gigas 6WT7 ; 2.9 ; Structure of a metazoan TIR-STING receptor from C. gigas in complex with 2',3'-cGAMP 8DOT ; 3.05 ; Structure of a methane clathrate binding protein 5Y4R ; 2.298 ; Structure of a methyltransferase complex 5Y4S ; 3.405 ; Structure of a methyltransferase complex 4O1E ; 1.61 ; Structure of a methyltransferase component in complex with MTHF involved in O-demethylation 4O1F ; 1.8 ; Structure of a methyltransferase component in complex with THF involved in O-demethylation 7QNG ; 2.7 ; Structure of a MHC I-Tapasin-ERp57 complex 2FIK ; 1.8 ; Structure of a microbial glycosphingolipid bound to mouse CD1d 5NUS ; 2.2 ; Structure of a minimal complex between p44 and p34 from Chaetomium thermophilum 2C5D ; 3.3 ; Structure of a minimal Gas6-Axl complex 7O1V ; 4.31 ; Structure of a Minimal Photosystem I 6RHZ ; 3.2 ; Structure of a minimal photosystem I from a green alga 7B91 ; 3.0 ; Structure of a minimal SF3B core in complex with pladienolide D (form I) 7B9C ; 2.4 ; Structure of a minimal SF3B core in complex with spliceostatin A (form I) 7B0I ; 3.0 ; Structure of a minimal SF3B core in complex with spliceostatin A (form II) 7OMF ; 3.0 ; Structure of a minimal SF3B core in complex with sudemycin D6 (form I) 7B92 ; 3.0 ; Structure of a minimal SF3B core in complex with sudemycin D6 (form II) 7OPI ; 3.1 ; Structure of a minimal SF3B core in complex with the inactive modulator spliceostatin E (form I) 4EU1 ; 2.3 ; Structure of a mitochondrial aspartate aminotransferase from Trypanosoma brucei 4W5K ; 1.7 ; Structure of a mitochondrial aspartate aminotransferase from Trypanosoma brucei, K237A mutant 6XQN ; 3.3 ; Structure of a mitochondrial calcium uniporter holocomplex (MICU1, MICU2, MCU, EMRE) in low Ca2+ 2PWJ ; 2.8 ; Structure of a mitochondrial type II peroxiredoxin from Pisum sativum 4UBU ; 3.0 ; Structure of a modified C93S variant of the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis in complex with CoA 5OBB ; 2.65 ; Structure of a modified mouse H chain ferritin with a lanthanide binding motif in complex with Terbium 5OBA ; 2.85 ; Structure of a modified mouse H-chain ferritin with a lanthanide binding motif 6FHK ; 1.657 ; Structure of a modified protein containing a genetically encoded phosphoserine 1UUX ; 1.6 ; Structure of a molybdopterin-bound cnx1g domain links molybdenum and copper metabolism 1UUY ; 1.45 ; Structure of a molybdopterin-bound cnx1g domain links molybdenum and copper metabolism 2B3Y ; 1.85 ; Structure of a monoclinic crystal form of human cytosolic aconitase (IRP1) 3UO1 ; 1.641 ; Structure of a monoclonal antibody complexed with its MHC-I antigen 3UYR ; 1.7 ; Structure of a monoclonal antibody complexed with its MHC-I antigen 3V4U ; 1.64 ; Structure of a monoclonal antibody complexed with its MHC-I antigen 3V52 ; 1.697 ; Structure of a monoclonal antibody complexed with its MHC-I antigen 4MLT ; 2.0 ; Structure of a monodentate 3-hydroxy-4H-pyran-4-thione ligand bound to hCAII 2LF4 ; ; Structure of a monomeric mutant of the HIV-1 capsid protein 7SA3 ; 2.25 ; Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light 7O3K ; 2.75 ; Structure of a monomeric variant (L135E) of Sandercyanin fluorescent protein bound to biliverdin IX-alpha 6XKE ; 1.55 ; Structure of a mosquito complement inhibitor from Anopheles albimanus 6XL7 ; 1.42 ; Structure of a mosquito complement inhibitor from Anopheles freeborni 8VEV ; 3.06 ; Structure of a mouse IgG antibody antigen-binding fragment (Fab) targeting N6-methyladenosine (m6A), an RNA modification, m6A nucleoside ligand 8TCA ; 2.02 ; Structure of a mouse IgG antibody antigen-binding fragment (Fab) targeting N6-methyladenosine (m6A), an RNA modification, no ligand 8SIP ; 1.94 ; Structure of a mouse IgG antibody fragment that binds Inosine, an RNA modification 5AMO ; 2.4 ; Structure of a mouse Olfactomedin-1 disulfide-linked dimer of the Olfactomedin domain and part of the coiled coil 1AQ4 ; 3.0 ; STRUCTURE OF A MS2 COAT PROTEIN MUTANT IN COMPLEX WITH AN RNA OPERATOR 3AW5 ; 2.0 ; Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum 1DVR ; 2.36 ; STRUCTURE OF A MUTANT ADENYLATE KINASE LIGATED WITH AN ATP-ANALOGUE SHOWING DOMAIN CLOSURE OVER ATP 3C9M ; 3.4 ; Structure of a mutant bovine rhodopsin in hexagonal crystal form 6ARP ; 1.7 ; Structure of a mutant Cetuximab Fab fragment 2ATK ; 2.5 ; Structure of a mutant KcsA K+ channel 3H97 ; 1.7 ; Structure of a mutant methionyl-tRNA synthetase with modified specificity 3H9B ; 1.5 ; Structure of a mutant methionyl-tRNA synthetase with modified specificity complexed with azidonorleucine 3H99 ; 1.4 ; Structure of a mutant methionyl-tRNA synthetase with modified specificity complexed with methionine 7FJR ; 2.6 ; Structure of a mutant of OspA 3ZKP ; 2.0 ; Structure of a mutant of P450 EryK in complex with erythromycin B. 2H0M ; 2.26 ; Structure of a Mutant of Rat Annexin A5 3PO4 ; 1.8 ; Structure of a mutant of the large fragment of DNA polymerase I from Thermus aquaticus in complex with a blunt-ended DNA and ddATP 3PO5 ; 2.39 ; Structure of a mutant of the large fragment of DNA polymerase I from Thermus Auqaticus in complex with an abasic site and ddATP 3NKY ; 2.28 ; Structure of a mutant P44S of Foot-and-mouth disease Virus RNA-dependent RNA polymerase 1FN0 ; 2.0 ; STRUCTURE OF A MUTANT WINGED BEAN CHYMOTRYPSIN INHIBITOR PROTEIN, N14D. 7YUY ; 3.5 ; Structure of a mutated membrane-bound glycosyltransferase 2WMZ ; 2.9 ; Structure of a mutated TolC 5VI8 ; 2.76 ; Structure of a mycobacterium smegmatis transcription initiation complex with an upstream-fork promoter fragment 2ASB ; 1.5 ; Structure of a Mycobacterium tuberculosis NusA-RNA complex 2ATW ; 2.25 ; Structure of a Mycobacterium tuberculosis NusA-RNA complex 7C72 ; 3.00004 ; Structure of a mycobacterium tuberculosis puromycin-hydrolyzing peptidase 1THT ; 2.1 ; STRUCTURE OF A MYRISTOYL-ACP-SPECIFIC THIOESTERASE FROM VIBRIO HARVEYI 6PSL ; 2.1 ; Structure of a N-Me-D-Gln4,D-aza-Thr8,Arg10-teixobactin analogue 8U78 ; 1.5 ; Structure of a N-Me-D-Gln4,Lys10-teixobactin analogue 6E00 ; 2.2 ; Structure of a N-Me-p-iodo-D-Phe1,N-Me-D-Gln4,Lys10-teixobactin analogue 5TUA ; 3.3 ; structure of a Na+-selective mutant of two-pore channel from Arabidopsis thaliana AtTPC1 6PFZ ; 3.10004 ; Structure of a NAD-Dependent Persulfide Reductase from A. fulgidus 4ZJU ; 1.2 ; Structure of a NADH-dependent enoyl-ACP reductase from Acinetobacter baumannii in complex with NAD 4LT5 ; 2.893 ; Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA 5E7B ; 1.1 ; Structure of a nanobody (vHH) from camel against phage Tuc2009 RBP (BppL, ORF53) 5DA4 ; 2.4 ; Structure of a nanobody recognizing the fumarate transporter SLC26Dg 4XT1 ; 2.886 ; Structure of a nanobody-bound viral GPCR bound to human chemokine CX3CL1 3P0G ; 3.5 ; Structure of a nanobody-stabilized active state of the beta2 adrenoceptor 7B3Y ; 3.7 ; Structure of a nanoparticle for a COVID-19 vaccine candidate 8ED3 ; 3.5 ; Structure of a nanoparticle with icosahedral symmetry 7TAK ; 2.79828 ; Structure of a NAT transporter 5OOL ; 3.06 ; Structure of a native assembly intermediate of the human mitochondrial ribosome with unfolded interfacial rRNA 5OOM ; 3.03 ; Structure of a native assembly intermediate of the human mitochondrial ribosome with unfolded interfacial rRNA 7NRU ; 1.21998 ; Structure of a natural chimera of meningococcal factor H binding protein belonging to NL096 strain 6ABH ; 3.05 ; Structure of a natural red emitting luciferase from Phrixothrix hirtus (P1 crystal form) 6AC3 ; 3.6 ; Structure of a natural red emitting luciferase from Phrixothrix hirtus (P3121 crystal form) 2EUW ; 1.68 ; Structure of a Ndt80-DNA complex (MSE mutant mA4T) 2EVF ; 1.56 ; Structure of a Ndt80-DNA complex (MSE mutant mA6T) 2EVH ; 1.989 ; Structure of a Ndt80-DNA complex (MSE mutant mA7G) 2EVG ; 1.55 ; Structure of a Ndt80-DNA complex (MSE mutant mA7T) 2EVI ; 1.8 ; Structure of a Ndt80-DNA complex (MSE mutant mA8T) 2EUZ ; 1.56 ; Structure of a Ndt80-DNA complex (MSE mutant mC5T) 2EUX ; 1.57 ; Structure of a Ndt80-DNA complex (MSE VARIANT vA4G) 7O6Z ; 2.3 ; Structure of a neodymium-containing, XoxF1-type methanol dehydrogenase 6P2S ; 1.65 ; Structure of a nested set of N-terminally extended MHC I-peptides provide novel insights into antigen processing and presentation 6P23 ; 1.595 ; Structure of a nested set of N-terminally extended MHC I-peptides provide novel insights into antigen processing presentation 6P27 ; 1.593 ; Structure of a nested set of N-terminally extended MHC I-peptides provides novel insights into antigen processing and presentation 6P2C ; 1.396 ; Structure of a nested set of N-terminally extended MHC I-peptides provides novel insights into antigen processing and presentation 6P2F ; 1.482 ; Structure of a nested set of N-terminally extended MHC I-peptides provides novel insights into antigen processing and presentation 4GEZ ; 2.5 ; Structure of a neuraminidase-like protein from A/bat/Guatemala/164/2009 1QFA ; ; STRUCTURE OF A NEUROPEPTIDE Y Y2 AGONIST 6JEP ; 2.316 ; Structure of a neutralizing antibody bound to the Zika envelope protein domain III 1F9J ; 2.7 ; STRUCTURE OF A NEW CRYSTAL FORM OF TETRAUBIQUITIN 3LTJ ; 1.8 ; Structure of a new family of artificial alpha helicoidal repeat proteins (alpha-Rep) based on thermostable HEAT-like repeats 3LTM ; 2.15 ; Structure of a new family of artificial alpha helicoidal repeat proteins (alpha-Rep) based on thermostable HEAT-like repeats 5UAS ; 1.6 ; Structure of a new family of Polysaccharide lyase PL25-Ulvanlyase bound to -[GlcA(1-4)Rha3S]- 5UAM ; 1.45 ; Structure of a new family of Polysaccharide lyase PL25-Ulvanlyase. 6BUC ; ; Structure of a new ShKT peptide from the sea anemone Oulactis sp. 6CKD ; ; Structure of a new ShKT peptide from the sea anemone Oulactis sp: OspTx2a-p1 6CKF ; ; Structure of a new ShKT peptide from the sea anemone Oulactis sp: OspTx2a-p2 8SED ; ; Structure of a new ShKT peptide from the sea anemone Telmatactis stephensoni: ShKT-Ts1 6YRS ; 1.7 ; Structure of a new variant of GNCA ancestral beta-lactamase 4U4V ; 2.35 ; Structure of a nitrate/nitrite antiporter NarK in apo inward-open state 4U4T ; 2.4 ; Structure of a nitrate/nitrite antiporter NarK in nitrate-bound inward-open state 4U4W ; 2.4 ; Structure of a nitrate/nitrite antiporter NarK in nitrate-bound occluded state 1M7V ; 1.95 ; STRUCTURE OF A NITRIC OXIDE SYNTHASE HEME PROTEIN FROM BACILLUS SUBTILIS WITH TETRAHYDROFOLATE AND ARGININE BOUND 3SDO ; 2.0 ; Structure of a Nitrilotriacetate monooxygenase from Burkholderia pseudomallei 5XU1 ; 3.3 ; Structure of a non-canonical ABC transporter from Streptococcus pneumoniae R6 5CE7 ; 2.0 ; Structure of a non-canonical CID of Ctk3 8BDK ; 1.88 ; Structure of a non-canonical histone from archaea 1P59 ; 2.5 ; Structure of a non-covalent Endonuclease III-DNA Complex 1AID ; 2.2 ; STRUCTURE OF A NON-PEPTIDE INHIBITOR COMPLEXED WITH HIV-1 PROTEASE: DEVELOPING A CYCLE OF STRUCTURE-BASED DRUG DESIGN 2AID ; 1.9 ; STRUCTURE OF A NON-PEPTIDE INHIBITOR COMPLEXED WITH HIV-1 PROTEASE: DEVELOPING A CYCLE OF STRUCTURE-BASED DRUG DESIGN 3J45 ; 9.5 ; Structure of a non-translocating SecY protein channel with the 70S ribosome 6IBQ ; 1.55 ; Structure of a nonameric RNA duplex at room temperature in ChipX microfluidic device 5H2B ; 2.001 ; Structure of a novel antibody G196 6XFQ ; 3.3 ; Structure of a novel antithrombotic agent Agkisacucetin in complex with the platelet glycoprotein Ib receptor 4N2O ; 2.442 ; Structure of a novel autonomous cohesin protein from Ruminococcus flavefaciens 2RHE ; 1.6 ; STRUCTURE OF A NOVEL BENCE-JONES PROTEIN (RHE) FRAGMENT AT 1.6 ANGSTROMS RESOLUTION 7DVZ ; 2.0 ; Structure of a novel beta-mannanase BaMan113A from Bacillus sp. N16-5, N236Y mutation. 7DV7 ; 1.44 ; Structure of a novel beta-mannanase BaMan113A from Bacillus sp. N16-5. 7DW8 ; 1.9 ; Structure of a novel beta-mannanase BaMan113A with mannobiose, N236Y mutation. 7DWA ; 1.62 ; Structure of a novel beta-mannanase BaMan113A with mannotriose, N236Y mutation 4V17 ; 2.0 ; Structure of a novel carbohydrate binding module from glycoside hydrolase family 5 glucanase from Ruminococcus flavefaciens FD-1 4V1I ; 2.59 ; Structure of a novel carbohydrate binding module from glycoside hydrolase family 5 glucanase from Ruminococcus flavefaciens FD-1 at medium resolution 4V1B ; 2.69 ; Structure of a novel carbohydrate binding module from glycoside hydrolase family 5 glucanase from Ruminococcus flavefaciens FD-1 collected at the Zn edge 5AOS ; 1.29 ; Structure of a novel carbohydrate binding module from Ruminococcus flavefaciens FD-1 endoglucanase Cel5A solved at the As edge 7Y3Z ; 2.3 ; Structure of a novel carboxylesterase FEH from Acinetobacter sp. DL-2 2L8A ; ; Structure of a novel CBM3 lacking the calcium-binding site 4M1R ; 1.8 ; Structure of a novel cellulase 5 from a sugarcane soil metagenomic library 1SRA ; 2.0 ; STRUCTURE OF A NOVEL EXTRACELLULAR CA2+-BINDING MODULE IN BM-40(SLASH)SPARC(SLASH)OSTEONECTIN 4K68 ; 2.74 ; Structure of a novel GH10 endoxylanase retrieved from sugarcane soil metagenome 2YCD ; 1.4 ; Structure of a novel Glutathione Transferase from Agrobacterium tumefaciens. 4UFQ ; 1.45 ; Structure of a novel Hyaluronidase (Hyal_Sk) from Streptomyces koganeiensis. 6Z5Y ; 1.01 ; Structure of a novel LPMO from Phytophthora infestans 2V4I ; 2.2 ; Structure of a novel N-acyl-enzyme intermediate of an N-terminal nucleophile (Ntn) hydrolase, OAT2 3VPS ; 1.9 ; Structure of a novel NAD dependent-NDP-hexosamine 5,6-dehydratase, TunA, involved in tunicamycin biosynthesis 5N0J ; 1.949 ; Structure of a novel oxidoreductase from Gloeobacter violaceus 5ODE ; 2.196 ; Structure of a novel oxidoreductase from Gloeobacter violaceus 1IXT ; ; Structure of a Novel P-Superfamily Spasmodic Conotoxin Reveals an Inhibitory Cystine Knot Motif 1YRX ; 2.3 ; Structure of a novel photoreceptor: the BLUF domain of AppA from Rhodobacter sphaeroides 5C74 ; 1.9 ; Structure of a novel protein arginine methyltransferase 2F40 ; ; Structure of a Novel Protein from Backbone-Centered NMR Data and NMR-Assisted Structure Prediction 3TJ2 ; 2.1 ; Structure of a novel submicromolar MDM2 inhibitor 4MDN ; 1.905 ; Structure of a novel submicromolar MDM2 inhibitor 4MDQ ; 2.119 ; Structure of a novel submicromolar MDM2 inhibitor 4J19 ; 2.9 ; Structure of a novel telomere repeat binding protein bound to DNA 7DBE ; 1.9 ; Structure of a novel transaminase 2MIX ; ; Structure of a novel venom peptide toxin from sample limited terebrid marine snail 7CDV ; 2.1 ; STRUCTURE OF A NOVEL VIRULENCE REGULATION FACTOR SghR 5FFJ ; 2.84 ; Structure of a nuclease-deletion mutant of the Type ISP restriction-modification enzyme LlaGI in complex with a DNA substrate mimic 8QKT ; 3.261 ; Structure of a nucleosome composed of a palindromic 167-base pair blunt-ended DNA fragment 5LI9 ; 1.79 ; Structure of a nucleotide-bound form of PKCiota core kinase domain 1K26 ; 1.85 ; Structure of a Nudix Protein from Pyrobaculum aerophilum Solved by the Single Wavelength Anomolous Scattering Method 3TR6 ; 2.7 ; Structure of a O-methyltransferase from Coxiella burnetii 5X7F ; 1.997 ; Structure of a O-methyltransferase from Mycobacterium tuberculosis at 2.0 resolution 6EYG ; 1.42 ; Structure of a OpuBC mutant with bound Glycine betaine 6EYH ; 1.6 ; Structure of a OpuBC mutant with bound Glycine betaine 3TR2 ; 2.001 ; Structure of a orotidine 5'-phosphate decarboxylase (pyrF) from Coxiella burnetii 7XPI ; 2.0 ; Structure of a oxidoreductase 7YTL ; 2.62 ; Structure of a oxidoreductase in complex with quinone 1G3N ; 2.9 ; STRUCTURE OF A P18(INK4C)-CDK6-K-CYCLIN TERNARY COMPLEX 2YIH ; 1.7 ; Structure of a Paenibacillus polymyxa Xyloglucanase from GH family 44 with Xyloglucan 2YJQ ; 2.25 ; Structure of a Paenibacillus Polymyxa Xyloglucanase from Glycoside Hydrolase Family 44 2YKK ; 1.79 ; Structure of a Paenibacillus Polymyxa Xyloglucanase from Glycoside Hydrolase Family 44 3ZQ9 ; 1.86 ; Structure of a Paenibacillus Polymyxa Xyloglucanase from Glycoside Hydrolase Family 44 1JFH ; 2.03 ; STRUCTURE OF A PANCREATIC ALPHA-AMYLASE BOUND TO A SUBSTRATE ANALOGUE AT 2.03 ANGSTROM RESOLUTION 5WUA ; 5.6 ; Structure of a Pancreatic ATP-sensitive Potassium Channel 4RFS ; 3.232 ; Structure of a pantothenate energy coupling factor transporter 5LI1 ; 2.0 ; Structure of a Par3-inhibitory peptide bound to PKCiota core kinase domain 6ZL2 ; ; Structure of a parallel c-Myc modified with 3' duplex stem-loop overhang 6ZTE ; ; Structure of a parallel c-myc modified with 5' duplex stem-loop and 3' diagonal snap-back loop 6ZL9 ; ; Structure of a parallel c-Myc modified with 5' duplex stem-loop overhang 5A8B ; 2.791 ; Structure of a parallel dimer of the aureochrome 1a LOV domain from Phaeodactylum tricornutum 7ZEM ; ; Structure of a parallel G-quadruplex with a snapback loop 2O4F ; 1.5 ; Structure of a parallel-stranded guanine tetraplex crystallised with monovalent ions 1HRL ; ; STRUCTURE OF A PARALYTIC PEPTIDE FROM AN INSECT, MANDUCA SEXTA 2NTZ ; 3.35 ; Structure of a ParB-DNA complex reveals a double B-box interaction 3JAP ; 4.9 ; Structure of a partial yeast 48S preinitiation complex in closed conformation 6GSN ; 5.75 ; Structure of a partial yeast 48S preinitiation complex in closed conformation 6GSM ; 5.15 ; Structure of a partial yeast 48S preinitiation complex in open conformation. 6FYX ; 3.5 ; Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (model C1) 6FYY ; 3.02 ; Structure of a partial yeast 48S preinitiation complex with eIF5 N-terminal domain (model C2) 7SHT ; 7.29 ; Structure of a partially disrupted IgE high affinity receptor complex bound to an omalizumab variant 3QHR ; 2.17 ; Structure of a pCDK2/CyclinA transition-state mimic 3QHW ; 1.91 ; Structure of a pCDK2/CyclinA transition-state mimic 5WQL ; 2.3 ; Structure of a PDZ-protease bound to a substrate-binding adaptor 1R76 ; 2.65 ; Structure of a pectate lyase from Azospirillum irakense 2JDA ; 1.35 ; Structure of a pectin binding carbohydrate binding module determined in an monoclinic crystal form. 2JD9 ; 1.8 ; Structure of a pectin binding carbohydrate binding module determined in an orthorhombic crystal form. 1PSA ; 2.9 ; STRUCTURE OF A PEPSIN(SLASH)RENIN INHIBITOR COMPLEX REVEALS A NOVEL CRYSTAL PACKING INDUCED BY MINOR CHEMICAL ALTERATIONS IN THE INHIBITOR 3TR5 ; 2.11 ; Structure of a peptide chain release factor 3 (prfC) from Coxiella burnetii 2OD8 ; 2.8 ; Structure of a peptide derived from Cdc9 bound to PCNA 2RPW ; ; Structure of a peptide derived from H+-V-ATPase subunit a 6N9T ; 2.576 ; Structure of a peptide-based photo-affinity cross-linker with Herceptin Fc 5LIH ; 3.25 ; Structure of a peptide-substrate bound to PKCiota core kinase domain 1X3W ; 3.0 ; Structure of a peptide:N-glycanase-Rad23 complex 1X3Z ; 2.8 ; Structure of a peptide:N-glycanase-Rad23 complex 3V2I ; 1.65 ; Structure of a Peptidyl-tRNA hydrolase (PTH) from Burkholderia thailandensis 2MMJ ; ; Structure of a peptoid analogue of maculatin G15 in DPC micelles 3WZ3 ; 1.5 ; Structure of a periplasmic fragment of TraM 2UVG ; 2.2 ; Structure of a periplasmic oligogalacturonide binding protein from Yersinia enterocolitica 2UVI ; 2.3 ; Structure of a periplasmic oligogalacturonide binding protein from Yersinia enterocolitica in complex with 4,5-unsaturated digalacturonic acid 2UVH ; 2.2 ; Structure of a periplasmic oligogalacturonide binding protein from Yersinia enterocolitica in complex with saturated digalacturonic acid 2UVJ ; 1.8 ; Structure of a periplasmic oligogalacturonide binding protein from Yersinia enterocolitica in complex with trigalacturonic acid 8UPI ; 1.55 ; Structure of a periplasmic peptide binding protein from Mesorhizobium sp. AP09 bound to aminoserine 2DVZ ; 2.3 ; Structure of a periplasmic transporter 6ARZ ; 2.5 ; Structure of a phage anti-CRISPR protein 6AS3 ; 2.0 ; Structure of a phage anti-CRISPR protein 6AS4 ; 2.0 ; Structure of a phage anti-CRISPR protein 6V7U ; 2.08 ; Structure of a phage-encoded quorum sensing anti-activator, Aqs1 6V7V ; 2.3 ; Structure of a phage-encoded quorum sensing anti-activator, Aqs1 6V7X ; 2.9 ; Structure of a phage-encoded quorum sensing anti-activator, Aqs1 bound to LasR 5ED4 ; 2.4 ; Structure of a PhoP-DNA complex 6WM5 ; 1.961 ; Structure of a phosphatidylinositol-phosphate synthase (PIPS) from Mycobacterium kansasii 6WMV ; 2.142 ; Structure of a phosphatidylinositol-phosphate synthase (PIPS) from Mycobacterium kansasii with evidence of substrate binding 5D91 ; 2.501 ; Structure of a phosphatidylinositolphosphate (PIP) synthase from Renibacterium Salmoninarum 5D92 ; 3.62 ; Structure of a phosphatidylinositolphosphate (PIP) synthase from Renibacterium Salmoninarum 3I3W ; 2.3 ; Structure of a phosphoglucosamine mutase from Francisella tularensis 3TRJ ; 2.8 ; Structure of a phosphoheptose isomerase from Francisella tularensis 2V1Y ; 2.4 ; Structure of a phosphoinositide 3-kinase alpha adaptor-binding domain (ABD) in a complex with the iSH2 domain from p85 alpha 4XIZ ; 2.0 ; Structure of a phospholipid trafficking complex with substrate 4XHR ; 2.55 ; Structure of a phospholipid trafficking complex, native 6SQ2 ; 1.684 ; Structure of a phosphomimetic switch 2 variant of Rab8a in complex with the phospho-Rab binding domain of RILPL2 1BLH ; 2.3 ; STRUCTURE OF A PHOSPHONATE-INHIBITED BETA-LACTAMASE. AN ANALOG OF THE TETRAHEDRAL TRANSITION STATE(SLASH)INTERMEDIATE OF BETA-LACTAM HYDROLYSIS 5ODS ; 3.09 ; Structure of a phosphoprotein-protein complex 3TRH ; 2.203 ; Structure of a phosphoribosylaminoimidazole carboxylase catalytic subunit (purE) from Coxiella burnetii 3R9R ; 1.849 ; Structure of a Phosphoribosylaminoimidazole-succinocarboxamide synthase from Mycobacterium abscessus ATCC 19977 / DSM 44196 2WKP ; 1.9 ; Structure of a photoactivatable Rac1 containing Lov2 Wildtype 2WKQ ; 1.6 ; Structure of a photoactivatable Rac1 containing the Lov2 C450A Mutant 2WKR ; 2.2 ; Structure of a photoactivatable Rac1 containing the Lov2 C450M Mutant 4LJB ; 1.9019 ; Structure of a photobleached state of IrisFP under high intensity laser-light 4LJD ; 2.5 ; Structure of a photobleached state of IrisFP under low intensity laser-light 1HPW ; ; STRUCTURE OF A PILIN MONOMER FROM PSEUDOMONAS AERUGINOSA: IMPLICATIONS FOR THE ASSEMBLY OF PILI. 6IJZ ; 3.68 ; Structure of a plant cation channel 3NME ; 2.4 ; Structure of a plant phosphatase 4RJ9 ; 1.63 ; Structure of a plant specific C2 domain protein, OsGAP1 from rice 2J5L ; 2.9 ; Structure of a Plasmodium falciparum apical membrane antigen 1-Fab F8. 12.19 complex 6ZYV ; 2.15 ; Structure of a Plasmodium PIR protein ectodomain 2J4W ; 2.5 ; Structure of a Plasmodium vivax apical membrane antigen 1-Fab F8.12.19 complex 2X32 ; 1.55 ; Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown 2X34 ; 1.9 ; Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown 7UBX ; 1.81 ; Structure of a pore forming fragment of Clostridium difficile toxin A in complex with VHH AA6 1XQA ; 1.8 ; Structure of a possible Glyoxalase from Bacillus cereus 1RZ3 ; 1.9 ; Structure of a Possible Uridine Kinase from Bacillus stearothermophilus 4HVT ; 1.7 ; Structure of a Post-proline cleaving enzyme from Rickettsia typhi 3BES ; 2.2 ; Structure of a Poxvirus ifngbp/ifng Complex 5NRL ; 7.2 ; Structure of a pre-catalytic spliceosome. 5FPP ; 2.4 ; Structure of a pre-reaction ternary complex between sarin- acetylcholinesterase and HI-6 4V4V ; 15.0 ; Structure of a pre-translocational E. coli ribosome obtained by fitting atomic models for RNA and protein components into cryo-EM map EMD-1056 6FRK ; 3.7 ; Structure of a prehandover mammalian ribosomal SRP and SRP receptor targeting complex 5B01 ; 3.45 ; Structure of a prenyltransferase in its unbound form 5XK6 ; 1.58 ; Structure of a prenyltransferase soaked with IPP 4HYG ; 3.32 ; Structure of a presenilin family intramembrane aspartate protease in C222 space group 4HYD ; 3.8 ; Structure of a presenilin family intramembrane aspartate protease in C2221 space group 4HYC ; 3.95 ; Structure of a presenilin family intramembrane aspartate protease in P2 space group 3W1C ; 1.3 ; Structure of a pressure sensitive YFP variant YFP-G1 3W1D ; 1.5 ; Structure of a pressure sensitive YFP variant YFP-G3 4TUT ; 0.9 ; Structure of a Prion peptide 3TX2 ; 1.5 ; Structure of a Probable 6-phosphogluconolactonase from Mycobacterium abscessus 3ZQU ; 1.5 ; STRUCTURE OF A PROBABLE AROMATIC ACID DECARBOXYLASE 3R9Q ; 2.1 ; Structure of a probable enoyl-coa hydratase/isomerase from Mycobacterium abscessus ATCC 19977 / DSM 44196 1PSQ ; 2.3 ; Structure of a probable thiol peroxidase from Streptococcus pneumoniae 4RKK ; 2.4 ; Structure of a product bound phosphatase 4KYQ ; 1.64 ; Structure of a product bound plant phosphatase 4KYR ; 2.3 ; Structure of a product bound plant phosphatase 6JD8 ; 1.457 ; Structure of a proline specific mutant of human cathepsin L 2GC8 ; 2.2 ; Structure of a Proline Sulfonamide Inhibitor Bound to HCV NS5b Polymerase 4C3S ; 1.64 ; Structure of a propionaldehyde dehydrogenase from the Clostridium phytofermentans fucose utilisation bacterial microcompartment 3KQX ; 2.01 ; Structure of a protease 1 3KQZ ; 2.39 ; Structure of a protease 2 3KR4 ; 2.0 ; Structure of a protease 3 3KR5 ; 2.56 ; Structure of a protease 4 1MVA ; 3.0 ; STRUCTURE OF A PROTEIN CAPSID OF THE T45A MUTANT OF PHAGE MS2 1MVB ; 3.0 ; STRUCTURE OF A PROTEIN CAPSID OF THE T59S MUTANT OF PHAGE MS2 7EL1 ; 2.22 ; Structure of a protein from bacteria 2LJI ; ; Structure of a protein from Haloferax volcanii 5WQT ; 2.64 ; Structure of a protein involved in pyroptosis 2FG1 ; 1.25 ; Structure of a Protein of Unknown Function from Bacteroides thetaiotaomicron. 3DW8 ; 2.85 ; Structure of a Protein Phosphatase 2A Holoenzyme with B55 subunit 2FEK ; ; Structure of a protein tyrosine phosphatase 3ON2 ; 1.96 ; Structure of a protein with unknown function from Rhodococcus sp. RHA1 2Z3X ; 2.1 ; Structure of a Protein-DNA Complex Essential for DNA Protection in Spore of Bacillus Species 7MK1 ; 1.9 ; Structure of a protein-modified aptamer complex 6TPH ; ; Structure of a protein-RNA complex by ssNMR 2BEZ ; 1.6 ; Structure of a proteolitically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein 2BEQ ; 1.6 ; Structure of a Proteolytically Resistant Core from the Severe Acute Respiratory Syndrome Coronavirus S2 Fusion Protein 6YKR ; 3.0 ; Structure of a protonation mimic of unplugged C. jejuni MotAB 6VR7 ; 2.5 ; Structure of a pseudomurein peptide ligase type C from Methanothermus fervidus 7TZI ; 2.911 ; Structure of a pseudomurein peptide ligase type E from Methanothermobacter thermautotrophicus 6VR8 ; 1.9 ; Structure of a pseudomurein peptide ligase type E from Methanothermus fervidus 7UFP ; 2.0 ; Structure of a pseudomurein peptide ligase type E from Methanothermus fervidus 6IBP ; 2.536 ; Structure of a psychrophilic CCA-adding enzyme at room temperature in ChipX microfluidic device 7OTL ; 2.8 ; Structure of a psychrophilic CCA-adding enzyme crystallized by counter-diffusion 6TVZ ; 2.28 ; Structure of a psychrophilic CCA-adding enzyme crystallized in the XtalController device 6Q52 ; 2.3 ; Structure of a psychrophilic CCA-adding enzyme in complex with CMPcPP at room temperature in ChipX microfluidic device 4NX8 ; 1.698 ; Structure of a PTP-like phytase from Bdellovibrio bacteriovorus 8D38 ; 1.72 ; Structure of a purine nucleoside phosphorylase from Geobacillus stearothermophilus 2JLM ; 2.35 ; Structure of a Putative Acetyltransferase (ACIAD1637) from Acinetobacter baylyi ADP1 2VI7 ; 2.25 ; Structure of a Putative Acetyltransferase (PA1377)from Pseudomonas aeruginosa 4HR3 ; 1.8 ; Structure of a putative acyl-CoA dehydrogenase from Mycobacterium abscessus 3IG4 ; 2.89 ; Structure of a putative aminopeptidase P from Bacillus anthracis 3G27 ; 2.1 ; Structure of a putative bacteriophage protein from Escherichia coli str. K-12 substr. MG1655 4PYR ; 1.45 ; Structure of a putative branched-chain amino acid ABC transporter from Chromobacterium violaceum ATCC 12472 3FX3 ; 2.2 ; Structure of a putative cAMP-binding regulatory protein from Silicibacter pomeroyi DSS-3 2G03 ; 2.2 ; Structure of a putative cell filamentation protein from Neisseria meningitidis. 3LZ8 ; 2.9 ; Structure of a putative chaperone dnaj from klebsiella pneumoniae subsp. pneumoniae mgh 78578 at 2.9 a resolution. 3I38 ; 2.3 ; Structure of a putative chaperone protein dnaj from klebsiella pneumoniae subsp. pneumoniae mgh 78578 4B9E ; 1.4 ; Structure of a putative epoxide hydrolase from Pseudomonas aeruginosa, with bound MFA. 4B9A ; 1.45 ; Structure of a putative epoxide hydrolase from Pseudomonas aeruginosa. 4BB0 ; 1.77 ; Structure of a putative epoxide hydrolase Q244E mutant from Pseudomonas aeruginosa, with bound MFA. 4BAZ ; 1.35 ; Structure of a putative epoxide hydrolase Q244E mutant from Pseudomonas aeruginosa. 4BAU ; 1.55 ; Structure of a putative epoxide hydrolase t131d mutant from Pseudomonas aeruginosa, with bound MFA 4BAT ; 1.3 ; Structure of a putative epoxide hydrolase t131d mutant from Pseudomonas aeruginosa. 3S4K ; 1.7 ; Structure of a putative esterase Rv1847/MT1895 from Mycobacterium tuberculosis 1XC3 ; 2.1 ; Structure of a Putative Fructokinase from Bacillus subtilis 4S1W ; 1.65 ; Structure of a putative Glutamine--Fructose-6-Phosphate Aminotransferase from Staphylococcus aureus subsp. aureus Mu50 3I4Q ; 1.63 ; Structure of a putative inorganic pyrophosphatase from the oil-degrading bacterium Oleispira antarctica 1RI6 ; 2.0 ; Structure of a putative isomerase from E. coli 4RSH ; 2.19 ; Structure of a putative lipolytic protein of G-D-S-L family from Desulfitobacterium hafniense DCB-2 3QFG ; 3.08 ; Structure of a putative lipoprotein from Staphylococcus aureus subsp. aureus NCTC 8325 1YB2 ; 2.01 ; Structure of a putative methyltransferase from Thermoplasma acidophilum. 3F0A ; 2.5 ; Structure of a putative n-acetyltransferase (ta0374) in complex with acetyl-coa from thermoplasma acidophilum 3NUQ ; 1.7 ; Structure of a putative nucleotide phosphatase from Saccharomyces cerevisiae 4L82 ; 2.0 ; Structure of a putative oxidoreductase from Rickettsia felis 4R3J ; 2.44 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with cefapirin 4R0Q ; 2.0 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with cephalothin 4R1G ; 1.92 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with cloxacillin 4R23 ; 1.84 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with dicloxacillin 4RA7 ; 1.94 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with nafcillin 4N1X ; 2.0 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with penicillin G 4QJG ; 1.85 ; Structure of a putative peptidoglycan glycosyltransferase from Atopobium parvulum in complex with penicillin V 4PM4 ; 2.2 ; Structure of a putative periplasmic iron siderophore binding protein (Rv0265c) from Mycobacterium tuberculosis H37Rv 4YL5 ; 1.7 ; Structure of a putative phosphomethylpyrimidine kinase from Acinetobacter baumannii 4YWR ; 1.65 ; Structure of a putative phosphomethylpyrimidine kinase from Acinetobacter baumannii in non-covalent complex with pyridoxal phosphate 2FYF ; 1.5 ; Structure of a putative phosphoserine aminotransferase from Mycobacterium Tuberculosis 3VOM ; 2.1 ; Structure of a putative phosphoserine aminotransferase from mycobacterium tuberculosis 3IC3 ; 1.8 ; Structure of a putative pyruvate dehydrogenase from the photosynthetic bacterium Rhodopseudomonas palustrus CGA009 4MHB ; 1.75 ; Structure of a putative reductase from Yersinia pestis 2FCK ; 1.7 ; Structure of a putative ribosomal-protein-serine acetyltransferase from Vibrio cholerae. 3I1J ; 1.9 ; Structure of a putative short chain dehydrogenase from Pseudomonas syringae 3KKD ; 2.1 ; Structure of a putative tetr transcriptional regulator (pa3699) from pseudomonas aeruginosa pa01 4GCV ; 2.3 ; Structure of a Putative transcription factor (PA1374)from Pseudomonas aeruginosa 1Z72 ; 1.45 ; Structure of a putative transcriptional regulator from Streptococcus pneumoniae 4KMR ; 1.45 ; Structure of a putative transcriptional regulator of LacI family from Sanguibacter keddieii DSM 10542. 4L83 ; 1.7 ; Structure of a putative Ubiquitin-conjugating enzyme E2 from Brugia malayi 3RR6 ; 1.58 ; Structure of a putative uncharacterized protein from Mycobacterium abscessus ATCC 19977 / DSM 44196 5JWZ ; 1.695 ; Structure of a Putative Xyloglucanase from the Cellulolytic Bacteria Streptomyces sp. SirexAA-E 3K29 ; 2.0 ; Structure of a putative YscO homolog CT670 from Chlamydia trachomatis 1KZH ; 2.55 ; Structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi 3TRI ; 2.5 ; Structure of a pyrroline-5-carboxylate reductase (proC) from Coxiella burnetii 6FTU ; 2.95 ; Structure of a Quadruplex forming sequence from D. discoideum 8S1W ; ; Structure of a quadruplex-duplex hybrid with a (-pd+l) loop progression 1JJU ; 2.05 ; Structure of a Quinohemoprotein Amine Dehydrogenase with a Unique Redox Cofactor and Highly Unusual Crosslinking 1YF6 ; 2.25 ; Structure of a quintuple mutant of photosynthetic reaction center from rhodobacter sphaeroides 2R2D ; 1.75 ; Structure of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens 2R6T ; 2.61 ; Structure of a R132K variant PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri complexed with ATP 6M4Y ; 2.1 ; Structure of a R371A mutant of a Group II PLP dependent decarboxylase from Methanocaldococcus jannaschii 4C4W ; 2.95 ; Structure of a rare, non-standard sequence k-turn bound by L7Ae protein 1S4R ; 1.9 ; Structure of a reaction intermediate in the photocycle of PYP extracted by a SVD-driven analysis 4CLN ; 2.2 ; STRUCTURE OF A RECOMBINANT CALMODULIN FROM DROSOPHILA MELANOGASTER REFINED AT 2.2-ANGSTROMS RESOLUTION 8UYO ; 3.3 ; Structure of a recombinant human PNMA2 capsid 1EYL ; 1.9 ; STRUCTURE OF A RECOMBINANT WINGED BEAN CHYMOTRYPSIN INHIBITOR 6CZJ ; 2.1 ; Structure of a redesigned beta barrel, b10 6CZG ; 2.2 ; Structure of a redesigned beta barrel, b11L5F_LGL 6CZH ; 1.8 ; Structure of a redesigned beta barrel, mFAP0, bound to DFHBI 6CZI ; 2.3 ; Structure of a redesigned beta barrel, mFAP1, bound to DFHBI 5AAM ; 2.49 ; Structure of a redesigned cross-reactive antibody to dengue virus with increased in vivo potency 5AAW ; 3.27 ; Structure of a redesigned cross-reactive antibody to dengue virus with increased in vivo potency 1DW3 ; 2.1 ; STRUCTURE OF A REDUCED OXYGEN BINDING CYTOCHROME C 4F2L ; 1.5 ; Structure of a regulatory domain of AMPK 2QG9 ; 2.7 ; Structure of a regulatory subunit mutant D19A of ATCase from E. coli 3C71 ; 1.9 ; Structure of a ResA variant with a DsbA-like active site motif (CPHC) 1HDT ; 2.6 ; STRUCTURE OF A RETRO-BINDING PEPTIDE INHIBITOR COMPLEXED WITH HUMAN ALPHA-THROMBIN 6DUQ ; 3.7 ; Structure of a Rho-NusG KOW domain complex 1NPQ ; ; structure of a rhodamine-labeled N-domain Troponin C mutant (Ca2+ saturated) in complex with skeletal Troponin I 115-131 3M4X ; 2.28 ; Structure of a ribosomal methyltransferase 7UPH ; 4.18 ; Structure of a ribosome with tethered subunits 3TZR ; 2.212 ; Structure of a Riboswitch-like RNA-ligand complex from the Hepatitis C Virus Internal Ribosome Entry Site 6EFN ; 1.291 ; Structure of a RiPP maturase, SkfB 2IJK ; 1.55 ; Structure of a Rom protein dimer at 1.55 angstrom resolution 3QVO ; 2.3 ; Structure of a Rossmann-fold NAD(P)-binding family protein from Shigella flexneri. 3S82 ; 1.73 ; Structure of a S-adenosylmethionine synthetase from Mycobacterium avium 8SLV ; 2.32 ; Structure of a salivary alpha-glucosidase from the mosquito vector Aedes aegypti. 3ZEU ; 1.653 ; Structure of a Salmonella typhimurium YgjD-YeaZ heterodimer bound to ATPgammaS 3ZET ; 2.31 ; Structure of a Salmonella typhimurium YgjD-YeaZ heterodimer. 3LCC ; 1.8 ; Structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana 2SAS ; 2.4 ; STRUCTURE OF A SARCOPLASMIC CALCIUM-BINDING PROTEIN FROM AMPHIOXUS REFINED AT 2.4 ANGSTROMS RESOLUTION 2SCP ; 2.0 ; STRUCTURE OF A SARCOPLASMIC CALCIUM-BINDING PROTEIN FROM NEREIS DIVERSICOLOR REFINED AT 2.0 ANGSTROMS RESOLUTION 2XBT ; 1.832 ; Structure of a scaffoldin carbohydrate-binding module family 3b from the cellulosome of Bacteroides cellulosolvens: Structural diversity and implications for carbohydrate binding 4V4W ; 15.0 ; Structure of a SecM-stalled E. coli ribosome complex obtained by fitting atomic models for RNA and protein components into cryo-EM map EMD-1143 4MOY ; 2.1953 ; Structure of a second nuclear PP1 Holoenzyme, crystal form 1 4MP0 ; 2.1003 ; Structure of a second nuclear PP1 Holoenzyme, crystal form 2 2VRK ; 2.2 ; Structure of a seleno-methionyl derivative of wild type arabinofuranosidase from Thermobacillus xylanilyticus 4V1R ; 1.8 ; Structure of a selenomethionine derivative of the GH76 alpha- mannanase BT2949 Bacteroides thetaiotaomicron 6BCM ; 2.1 ; Structure of a Self-inhibited N475A variant of the Venezuelan Equine Encephalitis Virus (VEEV) nsP2 cysteine protease 4L9F ; 2.5 ; Structure of a SeMet derivative of PpsR Q-PAS1 from Rb. sphaeroides 5UHS ; 2.8 ; Structure of a SemiSWEET D57A mutant 5UHQ ; 2.78 ; Structure of a SemiSWEET Q20A mutant 4UV0 ; 2.49 ; Structure of a semisynthetic phosphorylated DAPK 5FC2 ; 1.84 ; Structure of a separase in complex with a pAMK peptide containing a phospho-serine 4HVL ; 2.0 ; Structure of a serine protease MycP1, an essential component of the type VII (ESX-1) secretion system 1IC6 ; 0.98 ; STRUCTURE OF A SERINE PROTEASE PROTEINASE K FROM TRITIRACHIUM ALBUM LIMBER AT 0.98 A RESOLUTION 3TRF ; 2.6 ; Structure of a shikimate kinase (aroK) from Coxiella burnetii 5VEG ; 1.99 ; Structure of a Short-Chain Flavodoxin Associated with a Non-Canonical PDU Bacterial Microcompartment 3SVT ; 2.0 ; Structure of a short-chain type dehydrogenase/reductase from Mycobacterium ulcerans 3TL3 ; 1.85 ; Structure of a short-chain type dehydrogenase/reductase from Mycobacterium ulcerans 1EYR ; 2.2 ; Structure of a sialic acid activating synthetase, CMP acylneuraminate synthetase in the presence and absence of CDP 1EZI ; 2.0 ; Structure of a sialic acid activating synthetase, CMP acylneuraminate synthetase in the presence and absence of CDP 2CEX ; 2.2 ; Structure of a sialic acid binding protein (SiaP) in the presence of the sialic acid acid analogue Neu5Ac2en 5LWF ; 2.56 ; Structure of a single domain camelid antibody fragment cAb-G10S in complex with the BlaP beta-lactamase from Bacillus licheniformis 4M3K ; 1.48 ; Structure of a single domain camelid antibody fragment cAb-H7S in complex with the BlaP beta-lactamase from Bacillus licheniformis 2X6M ; 1.62 ; Structure of a single domain camelid antibody fragment in complex with a C-terminal peptide of alpha-synuclein 4YCB ; 1.35 ; Structure of a single tryptophan mutant of Acetobacter aceti PurE 5CTJ ; 1.928 ; Structure of a single tryptophan mutant of Acetobacter aceti PurE containing 5-fluorotryptophan 5CVT ; 1.78 ; Structure of a single tryptophan mutant of Acetobacter aceti PurE containing 5-fluorotryptophan, pH 5.4 4YCD ; 1.643 ; Structure of a single tryptophan mutant of Acetobacter aceti PurE with Y154F 4YCC ; 2.257 ; Structure of a single tryptophan mutant of Acetobacter aceti PurE with Y154L mutation 6BXJ ; 2.092 ; Structure of a single-chain beta3 integrin 1MFA ; 1.7 ; STRUCTURE OF A SINGLE-CHAIN FV FRAGMENT COMPLEXED WITH A CARBOHYDRATE ANTIGEN AT 1.7 ANGSTROMS RESOLUTION 4N1H ; 3.0 ; Structure of a single-domain camelid antibody fragment cAb-F11N in complex with the BlaP beta-lactamase from Bacillus licheniformis 4M3J ; 1.95 ; Structure of a single-domain camelid antibody fragment cAb-H7S specific of the BlaP beta-lactamase from Bacillus licheniformis 3TQY ; 2.6001 ; Structure of a single-stranded DNA-binding protein (ssb), from Coxiella burnetii 1MA3 ; 2.0 ; Structure of a Sir2 enzyme bound to an acetylated p53 peptide 1NFH ; 2.65 ; Structure of a Sir2 substrate, alba, reveals a mechanism for deactylation-induced enhancement of DNA-binding 1NFJ ; 2.0 ; Structure of a Sir2 substrate, alba, reveals a mechanism for deactylation-induced enhancement of DNA-binding 3BEP ; 1.92 ; Structure of a sliding clamp on DNA 3Q17 ; 3.6 ; Structure of a slow CLC Cl-/H+ antiporter from a cyanobacterium in Bromide 7QOE ; 1.2 ; Structure of a small alarmone hydrolase from Leptospira levettii 3D1G ; 1.64 ; Structure of a small molecule inhibitor bound to a DNA sliding clamp 2XM9 ; 2.5 ; Structure of a small molecule inhibitor with the kinase domain of Chk2 3Q4J ; 2.3 ; Structure of a small peptide ligand bound to E.coli DNA sliding clamp 3Q4K ; 2.6 ; Structure of a small peptide ligand bound to E.coli DNA sliding clamp 3Q4L ; 1.95 ; Structure of a small peptide ligand bound to E.coli DNA sliding clamp 6V8Y ; 1.53 ; Structure of a Sodium Potassium ion Channel 6R4P ; 3.1 ; Structure of a soluble domain of adenylyl cyclase bound to an activated stimulatory G protein 5URO ; 1.701 ; Structure of a soluble epoxide hydrolase identified in Trichoderma reesei 1CQ3 ; 1.85 ; STRUCTURE OF A SOLUBLE SECRETED CHEMOKINE INHIBITOR, VCCI, FROM COWPOX VIRUS 1CDQ ; ; STRUCTURE OF A SOLUBLE, GLYCOSYLATED FORM OF THE HUMAN COMPLEMENT REGULATORY PROTEIN CD59 1CDR ; ; STRUCTURE OF A SOLUBLE, GLYCOSYLATED FORM OF THE HUMAN COMPLEMENT REGULATORY PROTEIN CD59 1CDS ; ; STRUCTURE OF A SOLUBLE, GLYCOSYLATED FORM OF THE HUMAN COMPLEMENT REGULATORY PROTEIN CD59 7VQ6 ; 1.39 ; Structure of a specialized glyoxalase from Gossypium hirsutum 5MPS ; 3.85 ; Structure of a spliceosome remodeled for exon ligation 5MQ0 ; 4.17 ; Structure of a spliceosome remodeled for exon ligation 5M1G ; ; Structure of a Spumaretrovirus Gag central domain reveals an ancient retroviral capsid 5M1H ; ; Structure of a Spumaretrovirus Gag central domain reveals an ancient retroviral capsid 5XRZ ; 3.6 ; Structure of a ssDNA bound to the inner DNA binding site of RAD52 5XS0 ; 3.0 ; Structure of a ssDNA bound to the outer DNA binding site of RAD52 4GEU ; 2.65 ; Structure of a stabilised ceSAS-6 dimer 4GEX ; 2.8 ; Structure of a stabilised ceSAS-6 dimer, second crystal form 5M1W ; ; Structure of a stable G-hairpin 6XAH ; ; Structure of a Stable Interstrand DNA Crosslink Involving an dA Amino Group and an Abasic Site 4UMN ; 1.99 ; Structure of a stapled peptide antagonist bound to Nutlin-resistant Mdm2. 6Y4Q ; 1.63 ; Structure of a stapled peptide bound to MDM2 1I6X ; 2.2 ; STRUCTURE OF A STAR MUTANT CRP-CAMP AT 2.2 A 8GJZ ; 2.92 ; Structure of a STING receptor from S. pistillata Sp-STING1 bound to 2'3'-cUA 6WT8 ; 1.52 ; Structure of a STING-associated CdnE c-di-GMP synthase from Flavobacteriaceae sp. 2X44 ; 2.6 ; Structure of a strand-swapped dimeric form of CTLA-4 2W3Z ; 1.45 ; Structure of a Streptococcus mutans CE4 esterase 2W92 ; 1.65 ; Structure of a Streptococcus pneumoniae family 85 glycoside hydrolase, Endo-D, in complex with NAG-thiazoline. 2W91 ; 1.4 ; Structure of a Streptococcus pneumoniae family 85 glycoside hydrolase, Endo-D. 2J1R ; 1.54 ; Structure of a Streptococcus pneumoniae fucose binding module 2J1S ; 1.5 ; Structure of a Streptococcus pneumoniae fucose binding module in complex with fucose 2J1U ; 1.8 ; Structure of a Streptococcus pneumoniae fucose binding module in complex with the blood group A-tetrasaccharide 2J1V ; 1.45 ; Structure of a Streptococcus pneumoniae fucose binding module in complex with the blood group H-trisaccharide 2J1T ; 1.6 ; Structure of a Streptococcus pneumoniae fucose binding module in complex with the Lewis Y antigen 2J22 ; 1.8 ; Structure of a Streptococcus pneumoniae fucose binding module, SpX-3 2W7Y ; 2.35 ; Structure of a Streptococcus pneumoniae solute-binding protein in complex with the blood group A-trisaccharide. 6ITC ; 3.45 ; Structure of a substrate engaged SecA-SecY protein translocation machine 6WCQ ; 8.5 ; Structure of a substrate-bound DQC ubiquitin ligase 3WIC ; 2.6 ; Structure of a substrate/cofactor-unbound glucose dehydrogenase 2EKE ; 1.9 ; Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a noncovalent Ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway 1ZYF ; ; Structure of a Supercoiling Responsive DNA Site 1ZYG ; ; Structure of a Supercoiling Responsive DNA Site 1ZYH ; ; Structure of a Supercoiling Responsive DNA site 4GF3 ; 1.9 ; Structure of a SycH-YopH Chaperone-Effector Complex 8BWT ; ; Structure of a symmetrical internal loop motif with three consecutive U:U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV2 genomic RNA 1ZR2 ; 3.9 ; Structure of a Synaptic gamma-delta Resolvase Tetramer Covalently Linked to two Cleaved DNAs 1ZR4 ; 3.4 ; Structure of a Synaptic gamma-delta Resolvase Tetramer Covalently linked to two Cleaved DNAs 6OWF ; 3.0 ; Structure of a synthetic beta-carboxysome shell, T=3 6OWG ; 2.6 ; Structure of a synthetic beta-carboxysome shell, T=4 2OQF ; 2.3 ; Structure of a synthetic, non-natural analogue of RNase A: [N71K(Ade), D83A]RNase A 1D16 ; 2.1 ; STRUCTURE OF A T4 HAIRPIN LOOP ON A Z-DNA STEM AND COMPARISON WITH A-RNA AND B-DNA LOOPS 8AF9 ; 2.5 ; Structure of a T4SS effector from Brucella sp. 1H38 ; 2.9 ; Structure of a T7 RNA polymerase elongation complex at 2.9A resolution 6F1J ; 1.25 ; Structure of a Talaromyces pinophilus GH62 Arabinofuranosidase in complex with AraDNJ at 1.25A resolution 2V1Z ; 1.6 ; Structure of a TEM-1 beta-lactamase insertant allosterically regulated by kanamycin and anions. 2V20 ; 1.67 ; Structure of a TEM-1 beta-lactamase insertant allosterically regulated by kanamycin and anions. Complex with sulfate. 1LDN ; 2.5 ; STRUCTURE OF A TERNARY COMPLEX OF AN ALLOSTERIC LACTATE DEHYDROGENASE FROM BACILLUS STEAROTHERMOPHILUS AT 2.5 ANGSTROMS RESOLUTION 1PJ8 ; 2.2 ; Structure of a ternary complex of proteinase K, mercury and a substrate-analogue hexapeptide at 2.2 A resolution 3C5G ; 2.2 ; Structure of a ternary complex of the R517K Pol lambda mutant 4LG0 ; 2.19 ; Structure of a ternary FOXO1-ETS1 DNA complex 7KFZ ; 3.47 ; Structure of a ternary KRas(G13D)-SOS complex 6CHA ; 1.8 ; STRUCTURE OF A TETRAHEDRAL TRANSITION STATE COMPLEX OF ALPHA-*CHYMOTRYPSIN AT 1.8-*ANGSTROMS RESOLUTION 4AGG ; 2.98 ; Structure of a tetrameric galectin from Cinachyrella sp. (Ball sponge) 4AGR ; 2.1 ; Structure of a tetrameric galectin from Cinachyrella sp. (Ball sponge) 4AGV ; 2.65 ; Structure of a tetrameric galectin from Cinachyrella sp. (Ball sponge) 3HZQ ; 3.82 ; Structure of a tetrameric MscL in an expanded intermediate state 2RFM ; 1.65 ; Structure of a Thermophilic Ankyrin Repeat Protein 4IPA ; 2.3 ; Structure of a thermophilic Arx1 5FRD ; 1.4 ; Structure of a thermophilic esterase 1SNG ; 1.76 ; Structure of a Thermophilic Serpin in the Native State 7C3V ; 2.20043 ; Structure of a thermostable Alcohol dehydrogenase from Kluyveromyces polyspora(KpADH) 1L35 ; 1.8 ; STRUCTURE OF A THERMOSTABLE DISULFIDE-BRIDGE MUTANT OF PHAGE T4 LYSOZYME SHOWS THAT AN ENGINEERED CROSSLINK IN A FLEXIBLE REGION DOES NOT INCREASE THE RIGIDITY OF THE FOLDED PROTEIN 1T4M ; 2.0 ; STRUCTURE OF A THERMOSTABLE DOUBLE MUTANT OF BACILLUS SUBTILIS LIPASE OBTAINED THROUGH DIRECTED EVOLUTION 4R9L ; 1.8 ; Structure of a thermostable elevenfold mutant of limonene epoxide hydrolase from Rhodococcus erythropolis, containing two stabilizing disulfide bonds 6AR5 ; 2.413 ; Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications (Duplex Only) 6AR1 ; 3.01 ; Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications (RT/Duplex (Nat)) 6AR3 ; 3.41 ; Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications (RT/Duplex (Se-Met)) 1KEA ; 2.0 ; STRUCTURE OF A THERMOSTABLE THYMINE-DNA GLYCOSYLASE 1T2N ; 1.8 ; Structure of a thermostable triple mutant of Bacillus subtilis lipase obtained through directed evolution 1Q98 ; 1.9 ; Structure of a Thiol Peroxidase from Haemophilus influenzae Rd 6VTJ ; 1.95 ; Structure of a thiolation-reductase di-domain from an archaeal non-ribosomal peptide synthetase 6VTZ ; 2.65 ; Structure of a thiolation-reductase di-domain from an archaeal non-ribosomal peptide synthetase 5J60 ; 1.9 ; Structure of a thioredoxin reductase from Gloeobacter violaceus 1F37 ; 2.3 ; STRUCTURE OF A THIOREDOXIN-LIKE [2FE-2S] FERREDOXIN FROM AQUIFEX AEOLICUS 6CIU ; 1.7 ; Structure of a Thr-rich interface in an Azami Green tetramer 5XWE ; 1.8 ; Structure of a three finger toxin from Ophiophagus hannah venom 3SAE ; 1.96 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 3SDQ ; 2.14 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 3SDR ; 1.86 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 3SDT ; 1.89 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 3SDU ; 1.89 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 3SDV ; 2.2 ; Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production 2HMF ; 2.7 ; Structure of a Threonine Sensitive Aspartokinase from Methanococcus jannaschii Complexed with Mg-ADP and Aspartate 1UX6 ; 1.9 ; Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats 2UUY ; 1.15 ; Structure of a tick tryptase inhibitor in complex with bovine trypsin 3Q8X ; 2.7 ; Structure of a toxin-antitoxin system bound to its substrate 5VNZ ; 3.41 ; Structure of a TRAF6-Ubc13~Ub complex 5VO0 ; 3.9 ; Structure of a TRAF6-Ubc13~Ub complex 7LY6 ; 2.73 ; Structure of a trans-acting NRPS oxidase, BmdC, involved in bacillamide biosynthesis 6W8N ; 3.2 ; Structure of a trans-membrane protein 3M16 ; 2.79 ; Structure of a Transaldolase from Oleispira antarctica 3J17 ; 4.1 ; Structure of a transcribing cypovirus by cryo-electron microscopy 7B0Y ; 3.6 ; Structure of a transcribing RNA polymerase II-U1 snRNP complex 1QLN ; 2.4 ; STRUCTURE OF A TRANSCRIBING T7 RNA POLYMERASE INITIATION COMPLEX 5GNJ ; 2.7 ; Structure of a transcription factor and DNA complex 7VP1 ; 2.902 ; Structure of a transcription factor and DNA complex 7VP2 ; 1.92 ; Structure of a transcription factor and DNA complex 7VP3 ; 3.003 ; Structure of a transcription factor and DNA complex 7VP4 ; 3.04 ; Structure of a transcription factor and DNA complex 7VP5 ; 2.992 ; Structure of a transcription factor and DNA complex 7VP6 ; 2.57 ; Structure of a transcription factor and DNA complex 7VP7 ; 2.653 ; Structure of a transcription factor and DNA complex 1XMA ; 2.301 ; Structure of a transcriptional regulator from Clostridium thermocellum Cth-833 5IT2 ; 1.7 ; Structure of a transglutaminase 2-specific autoantibody 693-10-B06 Fab fragment 4ZD3 ; 2.4 ; Structure of a transglutaminase 2-specific autoantibody Fab fragment 3CR3 ; 2.1 ; Structure of a transient complex between Dha-kinase subunits DhaM and DhaL from Lactococcus lactis 1DC7 ; ; STRUCTURE OF A TRANSIENTLY PHOSPHORYLATED ""SWITCH"" IN BACTERIAL SIGNAL TRANSDUCTION 1DC8 ; ; STRUCTURE OF A TRANSIENTLY PHOSPHORYLATED ""SWITCH"" IN BACTERIAL SIGNAL TRANSDUCTION 3TRE ; 2.899 ; Structure of a translation elongation factor P (efp) from Coxiella burnetii 4L0J ; 1.85 ; Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems 1ORP ; 2.2 ; Structure of a Trapped Endonuclease III-DNA Covalent Intermediate: Estranged-Adenine Complex 1ORN ; 1.7 ; Structure of a Trapped Endonuclease III-DNA Covalent Intermediate: Estranged-Guanine Complex 4D2D ; 2.522 ; Structure of a tri peptide bound POT family peptide transporter 4AV5 ; 1.4 ; Structure of a triclinic crystal of the FimH lectin domain in complex with a propynyl biphenyl alpha-D-mannoside, at 1.4 A resolution 5EIK ; 2.3 ; Structure of a Trimeric Intracellular Cation channel from C. elegans in the absence of Ca2+ 5EGI ; 3.3 ; Structure of a Trimeric Intracellular Cation channel from C. elegans with bound Ca2+ 4UZV ; 3.4 ; Structure of a triple mutant of ASV-TfTrHb 4ATV ; 3.5 ; STRUCTURE OF A TRIPLE MUTANT OF THE NHAA DIMER, CRYSTALLISED AT LOW PH 5LUL ; 1.9 ; Structure of a triple variant of cutinase 2 from Thermobifida cellulosilytica 7CWK ; 1.539 ; Structure of a triple-helix region of human collagen type I 8K4W ; 1.5 ; Structure of a triple-helix region of human collagen type I from Trautec 6JEC ; 2.049 ; Structure of a triple-helix region of human collagen type II 6JKL ; 2.148 ; Structure of a triple-helix region of human collagen type II 6A0A ; 1.502 ; Structure of a triple-helix region of human collagen type III 6A0C ; 1.501 ; Structure of a triple-helix region of human collagen type III 7WWR ; 1.3 ; Structure of a triple-helix region of human collagen type III from Trautec 7WWS ; 1.3 ; Structure of a triple-helix region of human collagen type III from Trautec 7XAN ; 1.5 ; Structure of a triple-helix region of human collagen type III from Trautec 7Y37 ; 1.45 ; Structure of a triple-helix region of human collagen type V 7F01 ; 1.63 ; Structure of a triple-helix region of human collagen type XVII 8K4X ; 1.45 ; Structure of a triple-helix region of human Collagen type XVII from Trautec 8K4Y ; 1.5 ; Structure of a triple-helix region of human ReCol 3 from Trautec 6R4O ; 4.2 ; Structure of a truncated adenylyl cyclase bound to MANT-GTP, forskolin and an activated stimulatory Galphas protein 3ZYL ; 1.7 ; Structure of a truncated CALM (PICALM) ANTH domain 3T4A ; 3.4 ; Structure of a truncated form of Staphylococcal Complement Inhibitor B bound to human C3c at 3.4 Angstrom resolution 3E9C ; 2.0 ; Structure of a tryptic core fragment of TIGAR from Danio rerio 3CEP ; 2.1 ; Structure of a tryptophan synthase quinonoid intermediate 1TLG ; 2.2 ; STRUCTURE OF A TUNICATE C-TYPE LECTIN COMPLEXED WITH D-GALACTOSE 5VR1 ; ; Structure of a Turripeptide from Unedogemmula bisaya venom 5VZJ ; 3.3 ; STRUCTURE OF A TWELVE COMPONENT MPP6-NUCLEAR RNA EXOSOME COMPLEX BOUND TO RNA 2Z43 ; 1.93 ; Structure of a twinned crystal of RadA 3RG2 ; 3.1 ; Structure of a two-domain NRPS fusion protein containing the EntE adenylation domain and EntB aryl-carrier protein from enterobactin biosynthesis 2KOW ; ; Structure of a two-G-tetrad basket-type intramolecular G-quadruplex formed by Giardia telomeric repeat d(TAGGG)4 in K+ solution (with G18-to-INO substitution) 2KF8 ; ; Structure of a two-G-tetrad basket-type intramolecular G-quadruplex formed by human telomeric repeats in K+ solution 2KF7 ; ; Structure of a two-G-tetrad basket-type intramolecular G-quadruplex formed by human telomeric repeats in K+ solution (with G7-to-BRG substitution) 1W4R ; 1.83 ; Structure of a type II thymidine kinase with bound dTTP 6SCE ; 1.83 ; Structure of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate 3EAA ; 2.794 ; Structure of a type six secretion system protein 4KT3 ; 1.4362 ; Structure of a type VI secretion system effector-immunity complex from Pseudomonas protegens 4TQ5 ; 3.2023 ; Structure of a UbiA homolog from Archaeoglobus fulgidus 4TQ6 ; 3.0678 ; Structure of a UbiA homolog from Archaeoglobus fulgidus bound to Cd2+ 4TQ4 ; 2.5025 ; Structure of a UbiA homolog from Archaeoglobus fulgidus bound to DMAPP and Mg2+ 4TQ3 ; 2.4076 ; Structure of a UbiA homolog from Archaeoglobus fulgidus bound to GPP and Mg2+ 5IA8 ; 2.0 ; Structure of a Ubiquitin like protein with an E1 fragment 3VTF ; 2.0 ; Structure of a UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum 6OE6 ; 1.7 ; Structure of a Uncharacterized protein from Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni (strain Fiocruz L1-130) 5BN3 ; 2.0 ; Structure of a unique ATP synthase NeqA-NeqB in complex with ADP from Nanoarcheaum equitans 5BN4 ; 2.699 ; Structure of a unique ATP synthase NeqA-NeqB in complex with ANP from Nanoarcheaum equitans 5BO5 ; 2.808 ; Structure of a unique ATP synthase subunit NeqB from Nanoarcheaum equitans 3TR7 ; 2.1958 ; Structure of a uracil-DNA glycosylase (ung) from Coxiella burnetii 2GWF ; 2.3 ; Structure of a USP8-NRDP1 complex 4XSQ ; 1.79 ; Structure of a variable lymphocyte receptor-like protein Bf66946 from Branchiostoma floridae 4LMO ; 2.37 ; Structure of a vertebrate RNA binding domain of telomerase (TRBD) 2M6J ; ; Structure of a vertebrate toxin from the badge huntsman spider 4E1F ; 2.1 ; Structure of a VgrG Vibrio cholerae toxin ACD domain Glu16Gln mutant in complex with ADP and Mn++ 4E1C ; 2.25 ; Structure of a VgrG Vibrio cholerae toxin ACD domain in complex with ADP and Mg++ 4E1D ; 2.49 ; Structure of a VgrG Vibrio cholerae toxin ACD domain in complex with ADP and Mn++ 4DTF ; 2.12 ; Structure of a VgrG Vibrio cholerae toxin ACD domain in complex with AMP-PNP and Mg++ 4DTH ; 1.78 ; Structure of a VgrG Vibrio cholerae toxin ACD domain in complex with ATP and Mg++ 4DTL ; 2.39 ; Structure of a VgrG Vibrio cholerae toxin ACD domain in complex with ATP and Mn++ 8GBE ; 1.46 ; Structure of a viral gasdermin protein A47 from Eptesipox virus 4XT3 ; 3.801 ; Structure of a viral GPCR bound to human chemokine CX3CL1 3PSE ; 2.3 ; Structure of a viral OTU domain protease bound to interferon-stimulated gene 15 (ISG15) 3PT2 ; 2.5 ; Structure of a viral OTU domain protease bound to Ubiquitin 1QRQ ; 2.8 ; STRUCTURE OF A VOLTAGE-DEPENDENT K+ CHANNEL BETA SUBUNIT 6FNW ; 1.8 ; Structure of a volume-regulated anion channel of the LRRC8 family 2F6M ; 2.1 ; Structure of a Vps23-C:Vps28-N subcomplex 1RIE ; 1.5 ; STRUCTURE OF A WATER SOLUBLE FRAGMENT OF THE RIESKE IRON-SULFUR PROTEIN OF THE BOVINE HEART MITOCHONDRIAL CYTOCHROME BC1-COMPLEX 4QTQ ; 2.0 ; Structure of a Xanthomonas Type IV Secretion System related protein 8CZE ; 2.58 ; Structure of a Xenopus Nucleosome with Widom 601 DNA 3S4Z ; 7.8 ; Structure of a Y DNA-FANCI complex 3CXU ; 2.0 ; Structure of a Y149F mutant of epoxide hydrolase from Solanum tuberosum 8BIP ; 3.1 ; Structure of a yeast 80S ribosome-bound N-Acetyltransferase B complex 8BJQ ; 3.8 ; Structure of a yeast 80S ribosome-bound N-Acetyltransferase B complex 6ZCE ; 5.3 ; Structure of a yeast ABCE1-bound 43S pre-initiation complex 6ZU9 ; 6.2 ; Structure of a yeast ABCE1-bound 48S initiation complex 6UPH ; 2.7 ; Structure of a Yeast Centromeric Nucleosome at 2.7 Angstrom resolution 6GYK ; 5.1 ; Structure of a yeast closed complex (core CC1) 6GYM ; 6.7 ; Structure of a yeast closed complex with distorted DNA (CCdist) 6GYL ; 4.8 ; Structure of a yeast closed complex with distorted DNA (core CCdist) 1RM1 ; 2.5 ; Structure of a Yeast TFIIA/TBP/TATA-box DNA Complex 4F3Q ; 2.15 ; Structure of a YebC family protein (CBU_1566) from Coxiella burnetii 1DN8 ; 1.5 ; STRUCTURE OF A Z-DNA WITH TWO DIFFERENT BACKBONE CHAIN CONFORMATIONS. STABILIZATION OF THE DECADEOXYOLIGONUCLEOTIDE D(CGTACGTACG) BY (CO(NH3)6)3+ BINDING TO THE GUANINE 1BMC ; 2.5 ; STRUCTURE OF A ZINC METALLO-BETA-LACTAMASE FROM BACILLUS CEREUS 6KSN ; 2.15 ; Structure of a Zn-bound camelid single domain antibody 6ZQ0 ; 1.54 ; Structure of a-l-AraAZI-Bound MgGH51 a-L-Arabinofuranosidase Crystal Type 1 6ZPZ ; 1.71 ; Structure of a-l-AraCS-Bound MgGH51 a-L-Arabinofuranosidase Crystal Type 1 3MJC ; 1.48 ; Structure of A-type Ketoreductases from Modular Polyketide Synthase 3MJE ; 1.36 ; Structure of A-type Ketoreductases from Modular Polyketide Synthase 3MJS ; 1.4 ; Structure of A-type Ketoreductases from Modular Polyketide Synthase 3MJT ; 1.6 ; Structure of A-type Ketoreductases from Modular Polyketide Synthase 3MJV ; 1.46 ; Structure of A-type Ketoreductases from Modular Polyketide Synthase 3GZK ; 1.8 ; Structure of A. Acidocaldarius Cellulase CelA 3H2W ; 2.66 ; Structure of A. acidocaldarius cellulase CelA in complex with cellobiose 3H3K ; 2.1 ; Structure of A. acidocaldarius cellulase CelA in complex with cellotetraose 2GSZ ; 4.2 ; Structure of A. aeolicus PilT with 6 monomers per asymmetric unit 5OOK ; 2.1 ; Structure of A. marina Phycocyanin contains overlapping isoforms 6TIB ; 1.07 ; Structure of A. niger Fdc I327S variant in complex with 2 naphthoic acid 6TIC ; 1.281 ; Structure of A. niger Fdc I327S variant in complex with benzothiophene 2 carboxylic acid 6TIE ; 1.06 ; Structure of A. niger Fdc I327S variant in complex with indol-2-carboxylic acid 7NF4 ; 1.69 ; Structure of A. niger Fdc T395M R435P P438W variant (AnFdcII) in complex with prFMN 7NF3 ; 1.1 ; Structure of A. niger Fdc T395M variant (AnFdcI) in complex with prFMN 6TIH ; 1.021 ; Structure of A. niger Fdc WT in complex with benzothiophene 2 carboxylic acid 6TIL ; 1.42 ; Structure of A. niger Fdc WT in complex with FMN and 2 naphthoic acid 6TIO ; 1.54 ; Structure of A. niger Fdc Wt in complex with FMN and benzothiophene 2 carboxylic acid 6TIN ; 1.28 ; Structure of A. niger Fdc WT in complex with FMN and indole 2 carboxylic acid 6TIJ ; 1.12 ; Structure of A. niger Fdc WT in complex with indol-2-carboxylic acid 4ZAA ; 1.242 ; Structure of A. niger Fdc1 in complex with 4-vinyl guaiacol 4ZA9 ; 1.01 ; Structure of A. niger fdc1 in complex with a phenylpyruvate derived adduct to the prenylated flavin cofactor 4ZAB ; 1.16 ; Structure of A. niger Fdc1 in complex with alpha-fluoro cinnamic acid 4ZA7 ; 1.1 ; Structure of A. niger Fdc1 in complex with alpha-methyl cinnamic acid 4ZA5 ; 1.1 ; Structure of A. niger Fdc1 with the prenylated-flavin cofactor in the iminium and ketimine forms. 4ZA4 ; 1.22 ; Structure of A. niger Fdc1 with the prenylated-flavin cofactor in the iminium form. 2PYW ; 1.9 ; Structure of A. thaliana 5-methylthioribose kinase in complex with ADP and MTR 8DQ6 ; 1.56 ; Structure of A. thaliana MIF/D-DT-like protein-1 (MDL1) 8AP3 ; 1.4 ; Structure of A. thaliana MIF/D-DT-like protein-2 (MDL2) 8DQA ; 2.0 ; Structure of A. thaliana MIF/D-DT-like protein-3 (MDL3) 5N9Q ; ; Structure of A. thaliana RCD1(468-567) 6UEP ; 2.05 ; Structure of A. thaliana TBP bound to a DNA site with a C-C mismatch 6UEO ; 2.0 ; Structure of A. thaliana TBP-AC mismatch DNA site 4KWM ; 2.7 ; Structure of a/anhui/5/2005 h5 ha 4KW1 ; 2.5 ; Structure of a/egypt/n03072/2010 h5 ha 4KTH ; 2.6 ; Structure of A/Hubei/1/2010 H5 HA 4DIF ; 1.521 ; Structure of A1-type ketoreductase 2RK3 ; 1.05 ; Structure of A104T DJ-1 3B38 ; 1.85 ; Structure of A104V DJ-1 7CMA ; 2.01 ; Structure of A151R from African swine fever virus Georgia 5YOJ ; 1.5 ; Structure of A17 HIV-1 Protease in Complex with Inhibitor KNI-1657 5LRX ; 2.85 ; Structure of A20 OTU domain bound to ubiquitin 8PWN ; 2.4 ; Structure of A2A adenosine receptor A2AR-StaR2-bRIL, solved at wavelength 2.75 A 8HDP ; 3.2 ; Structure of A2BR bound to endogenous agonists adenosine 8HDO ; 2.87 ; Structure of A2BR bound to synthetic agonists BAY 60-6583 6FT5 ; 1.94 ; Structure of A3_A3, an artificial bi-domain protein based on two identical alphaRep A3 domains 6FSQ ; 2.79 ; Structure of A3_bGFPD, an artificial bi-domain protein based on two different alphaRep domains : A3 and a GFP binding domain (bGFPD) 6HWP ; 2.547 ; Structure of A3_bGFPD, an artificial bi-domain protein based on two different alphaRep domains : A3 and a GFP binding domain (bGFPD) 4D5S ; 3.0 ; Structure of A49 from Vaccinia Virus Western Reserve 8OH7 ; ; Structure of A4M4C bound to (KR)4 Solution backbone structure refined by PCS 6BR8 ; 2.3 ; Structure of A6 reveals a novel lipid transporter 6BR9 ; 2.2 ; Structure of A6 reveals a novel lipid transporter 1QSF ; 2.8 ; STRUCTURE OF A6-TCR BOUND TO HLA-A2 COMPLEXED WITH ALTERED HTLV-1 TAX PEPTIDE Y8A 1V0C ; 2.2 ; Structure of AAC(6')-Ib in complex with Kanamycin C and AcetylCoA. 2VQY ; 1.8 ; Structure of AAC(6')-Ib in complex with Parmomycin and AcetylCoA. 2BUE ; 1.7 ; Structure of AAC(6')-Ib in complex with Ribostamycin and Coenzyme A. 2VBQ ; 2.0 ; Structure of AAC(6')-Iy in complex with bisubstrate analog CoA-S- monomethyl-acetylneamine. 3RX8 ; 2.56 ; structure of AaCel9A in complex with cellobiose-like isofagomine 3RX7 ; 2.02 ; Structure of AaCel9A in complex with cellotetraose-like isofagomine 3RX5 ; 1.99 ; structure of AaCel9A in complex with cellotriose-like isofagomine 7TWD ; 2.11 ; Structure of AAGAB C-terminal dimerization domain 5MQ7 ; 5.2 ; Structure of AaLS-13 5MQ3 ; 5.4 ; Structure of AaLS-neg 5MPP ; 3.9 ; Structure of AaLS-wt 8DEO ; 2.3 ; Structure of AAP A domain and B-repeats (residues 351-813) from Staphylococcus epidermidis 7SIE ; 1.3 ; Structure of AAP A-domain (residues 351-605) from Staphylococcus epidermidis 3J1Q ; 4.5 ; Structure of AAV-DJ, a Retargeted Gene Therapy Vector: Cryo-Electron Microscopy at 4.5A resolution 2OGW ; 1.83 ; Structure of ABC type zinc transporter from E. coli 7OTI ; 4.2 ; Structure of ABCB1/P-glycoprotein in apo state 7OTG ; 5.4 ; Structure of ABCB1/P-glycoprotein in the presence of the CFTR potentiator ivacaftor 6VXH ; 4.0 ; Structure of ABCG2 bound to imatinib 6VXI ; 3.7 ; Structure of ABCG2 bound to mitoxantrone 6VXJ ; 4.1 ; Structure of ABCG2 bound to SN38 5ZJT ; 2.4 ; Structure of AbdB/Exd complex bound to a 'Black14' DNA sequence 5ZJS ; 2.896 ; Structure of AbdB/Exd complex bound to a 'Blue14' DNA sequence 5ZJR ; 3.03 ; Structure of AbdB/Exd complex bound to a 'Magenta14' DNA sequence 5ZJQ ; 2.443 ; Structure of AbdB/Exd complex bound to a 'Red14' DNA sequence 3K5V ; 1.74 ; Structure of Abl kinase in complex with imatinib and GNF-2 5HP6 ; 2.093 ; Structure of AbnA, a GH43 extracellular arabinanase from Geobacillus stearothermophilus (a new conformational state) 8H2X ; 2.69 ; Structure of Acb2 8J8O ; 2.24 ; Structure of Acb2 complexed with 2',3'-cGAMP 8IXZ ; 2.33 ; Structure of Acb2 complexed with 3',2'-cGAMP 8H2J ; 2.4 ; Structure of Acb2 complexed with 3',3'-cGAMP 8IY2 ; 2.76 ; Structure of Acb2 complexed with 3',3'-cGAMP and cAAA 8H39 ; 2.01 ; Structure of Acb2 complexed with c-di-AMP 8IY0 ; 2.26 ; Structure of Acb2 complexed with cAAA 8IY1 ; 2.1 ; Structure of Acb2 complexed with cAAG 7AC7 ; 3.08 ; Structure of accomodated trans-translation complex on E. Coli stalled ribosome. 2N30 ; ; Structure of Ace-pvhct-NH2 2H12 ; 1.85 ; Structure of Acetobacter aceti citrate synthase complexed with oxaloacetate and carboxymethyldethia coenzyme A (CMX) 4YCJ ; 1.845 ; Structure of Acetobacter aceti PurE Y154F 4Z7J ; 1.502 ; Structure of Acetobacter aceti PurE-S57A 5BOS ; 1.712 ; Structure of Acetobacter aceti PurE-S57C, partly oxidized form 5BOR ; 2.0 ; Structure of Acetobacter aceti PurE-S57C, sulfonate form 4ZK2 ; 2.749 ; Structure of Acetobacter aceti PurE-S57D 4ZJY ; 1.791 ; Structure of Acetobacter aceti PurE-S57N 4ZC8 ; 1.754 ; Structure of Acetobacter aceti PurE-S57T 4ZMB ; 1.808 ; Structure of Acetobacter aceti PurE-S57V,Y154F 5M45 ; 1.87 ; Structure of Acetone Carboxylase purified from Xanthobacter autotrophicus 6ISV ; 2.5 ; Structure of acetophenone reductase from Geotrichum candidum NBRC 4597 in complex with NAD 7N7Z ; 2.02 ; Structure of Acetyl-CoA acetyltransferase from Syntrophomonas wolfei 3S2X ; 2.35 ; Structure of acetyl-Coenzyme A synthase Alpha subunit C-terminal domain 5GOL ; 2.11 ; Structure of acetyl-Coenzyme A synthase Alpha subunit C-terminal domain F598H mutant 5H6W ; 2.2 ; Structure of acetyl-Coenzyme A synthase Alpha subunit C-terminal domain F598H mutant 8DVX ; 1.5 ; Structure of acetylated Pig somatic Cytochrome c (Aly39) at 1.5A 1OED ; 4.0 ; STRUCTURE OF ACETYLCHOLINE RECEPTOR PORE FROM ELECTRON IMAGES 1H22 ; 2.15 ; Structure of acetylcholinesterase (E.C. 3.1.1.7) complexed with (S,S)-(-)-bis(10)-hupyridone at 2.15A resolution 1H23 ; 2.15 ; Structure of acetylcholinesterase (E.C. 3.1.1.7) complexed with (S,S)-(-)-bis(12)-hupyridone at 2.15A resolution 1ODC ; 2.2 ; STRUCTURE OF ACETYLCHOLINESTERASE (E.C. 3.1.1.7) COMPLEXED WITH N-4'-QUINOLYL-N'-9""-(1"",2"",3"",4""-TETRAHYDROACRIDINYL)-1,8- DIAMINOOCTANE AT 2.2A RESOLUTION 1UT6 ; 2.4 ; Structure of acetylcholinesterase (E.C. 3.1.1.7) complexed with N-9-(1',2',3',4'-Tetrahydroacridinyl)-1,8- diaminooctane at 2.4 angstroms resolution. 1GPK ; 2.1 ; Structure of Acetylcholinesterase Complex with (+)-Huperzine A at 2.1A Resolution 1DX6 ; 2.3 ; STRUCTURE OF ACETYLCHOLINESTERASE COMPLEXED WITH (-)-GALANTHAMINE AT 2.3A RESOLUTION 1E66 ; 2.1 ; STRUCTURE OF ACETYLCHOLINESTERASE COMPLEXED WITH (-)-HUPRINE X AT 2.1A RESOLUTION 1GPN ; 2.35 ; STRUCTURE OF ACETYLCHOLINESTERASE COMPLEXED WITH HUPERZINE B AT 2.35A RESOLUTION 2F7V ; 1.75 ; Structure of acetylcitrulline deacetylase complexed with one Co 2F8H ; 1.75 ; Structure of acetylcitrulline deacetylase from Xanthomonas campestris in metal-free form 3FFE ; 2.25 ; Structure of Achromobactin Synthetase Protein D, (AcsD) 2NT1 ; 2.3 ; Structure of acid-beta-glucosidase at neutral pH 6MOZ ; 2.1 ; Structure of acid-beta-glucosidase in complex with an aromatic pyrrolidine iminosugar inhibitor 2NSX ; 2.11 ; Structure of acid-beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease 4NTW ; 2.07 ; Structure of acid-sensing ion channel in complex with snake toxin 4NTX ; 2.27 ; Structure of acid-sensing ion channel in complex with snake toxin and amiloride 8D2L ; 2.21 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Cleavage Intermediate 1) 8D2K ; 2.43 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Cleavage Intermediate 2) 8D2Q ; 2.58 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Post-cleavage 1) 8D2O ; 2.66 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Post-cleavage 2) 8D2N ; 2.88 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Pre-cleavage) 8D2P ; 2.78 ; Structure of Acidothermus cellulolyticus Cas9 ternary complex (Target bound) 6WAM ; 2.6 ; Structure of Acinetobacter baumannii Cap4 SAVED/CARF-domain containing receptor 6VM6 ; 2.1 ; Structure of Acinetobacter baumannii Cap4 SAVED/CARF-domain containing receptor with the cyclic trinucleotide 2'3'3'-cAAA 6WAN ; 2.4 ; Structure of Acinetobacter baumannii Cap4 SAVED/CARF-domain containing receptor with the cyclic trinucleotide 3'3'3'-cAAA 5WI3 ; 1.81 ; Structure of Acinetobacter baumannii carbapenemase OXA-239 K82D bound to cefotaxime 5WI7 ; 1.861 ; Structure of Acinetobacter baumannii carbapenemase OXA-239 K82D bound to doripenem 5WIB ; 1.87 ; Structure of Acinetobacter baumannii carbapenemase OXA-239 K82D bound to imipenem 6EU4 ; 1.794 ; Structure of Acinetobacter phage vb_AbaP_AS12 gp42 tailspike 8JER ; 3.45 ; Structure of Acipimox-GPR109A-G protein complex 7KP6 ; 1.79 ; Structure of Ack1 kinase in complex with a selective inhibitor 7RMP ; 2.7 ; Structure of ACLY D1026A - substrates-asym 7RKZ ; 2.6 ; Structure of ACLY D1026A-substrates-asym-int 6POE ; 3.5 ; Structure of ACLY in complex with CoA 6UUZ ; 3.0 ; Structure of ACLY in the presence of citrate and CoA 8G1F ; 2.4 ; Structure of ACLY-D1026A-products 8G5D ; 2.5 ; Structure of ACLY-D1026A-products, local refinement of ASH domain 8G1E ; 2.8 ; Structure of ACLY-D1026A-products-asym 7RIG ; 2.2 ; Structure of ACLY-D1026A-substrates 8G5C ; 2.2 ; Structure of ACLY-D1026A-substrates, local refinement of ASH domain 6FLY ; 2.749 ; Structure of AcmJRL, a mannose binding jacalin related lectin from Ananas comosus, in complex with mannose. 6FLZ ; 1.895 ; Structure of AcmJRL, a mannose binding jacalin related lectin from Ananas comosus, in complex with methyl-mannose. 6FLW ; 1.8 ; Structure of AcmJRL, a mannose binding jacalin related lectin from Ananas comosus. 6XB3 ; 1.9 ; Structure of AcNPV poxin in post-reactive state with Gp[2'-5']Ap[3'] 7FI4 ; 3.03 ; Structure of AcrIF13 7FIA ; 2.13 ; Structure of AcrIF23 6UX5 ; ; Structure of acrorhagin I from the sea anemone Actinia equina 5XZD ; 1.9 ; Structure of acryloyl-CoA hydratase AcuH from Roseovarius nubinhibens ISM 5GXD ; 2.001 ; Structure of acryloyl-CoA lyase PrpE from Dinoroseobacter shibae DFL 12 4RWT ; 2.98 ; Structure of actin-Lmod complex 4HIV ; 2.6 ; Structure of actinomycin D d(ATGCGGCAT) complex 1W4Z ; 2.5 ; Structure of actinorhodin polyketide (actIII) Reductase 5ACN ; 2.1 ; STRUCTURE OF ACTIVATED ACONITASE. FORMATION OF THE (4FE-4S) CLUSTER IN THE CRYSTAL 6ACN ; 2.5 ; STRUCTURE OF ACTIVATED ACONITASE. FORMATION OF THE (4FE-4S) CLUSTER IN THE CRYSTAL 1O6K ; 1.7 ; Structure of activated form of PKB kinase domain S474D with GSK3 peptide and AMP-PNP 2G83 ; 2.8 ; Structure of activated G-alpha-i1 bound to a nucleotide-state-selective peptide: Minimal determinants for recognizing the active form of a G protein alpha subunit 3ZXW ; 2.1 ; STRUCTURE OF ACTIVATED RUBISCO FROM THERMOSYNECHOCOCCUS ELONGATUS COMPLEXED WITH 2-CARBOXYARABINITOL-1,5-DIPHOSPHATE 8TL0 ; 3.1 ; Structure of activated SAVED-CHAT filament 6GMH ; 3.1 ; Structure of activated transcription complex Pol II-DSIF-PAF-SPT6 4JQI ; 2.6 ; Structure of active beta-arrestin1 bound to a G protein-coupled receptor phosphopeptide 1GIA ; 2.0 ; STRUCTURE OF ACTIVE CONFORMATIONS OF GIA1 AND THE MECHANISM OF GTP HYDROLYSIS 1GIL ; 2.3 ; STRUCTURE OF ACTIVE CONFORMATIONS OF GIA1 AND THE MECHANISM OF GTP HYDROLYSIS 5OHX ; 3.2 ; Structure of active cystathionine B-synthase from Apis mellifera 6SWY ; 3.2 ; Structure of active GID E3 ubiquitin ligase complex minus Gid2 and delta Gid9 RING domain 4MQS ; 3.5 ; Structure of active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo 4MQT ; 3.7 ; Structure of active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo and allosteric modulator LY2119620 3F7T ; 1.8 ; Structure of active IspH shows a novel fold with a [3Fe-4S] cluster in the catalytic centre 7T6F ; 3.6 ; Structure of active Janus Kinase (JAK) dimer complexed with cytokine receptor intracellular domain 7OL0 ; 3.0 ; Structure of active transcription elongation complex Pol II-DSIF (SPT5-KOW5) 7OKX ; 3.3 ; Structure of active transcription elongation complex Pol II-DSIF (SPT5-KOW5)-ELL2-EAF1 (composite structure) 7OKY ; 4.14 ; Structure of active transcription elongation complex Pol II-DSIF-ELL2-EAF1(composite structure) 3BBA ; 3.2 ; Structure of active wild-type Prevotella intermedia interpain A cysteine protease 7WQW ; 3.2 ; Structure of Active-EP 4XEE ; 2.9 ; Structure of active-like neurotensin receptor 4XES ; 2.6 ; Structure of active-like neurotensin receptor 7WQZ ; 3.7 ; Structure of Active-mutEP 1DSS ; 1.88 ; STRUCTURE OF ACTIVE-SITE CARBOXYMETHYLATED D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM PALINURUS VERSICOLOR 6PYM ; 1.20002 ; Structure of active-site serine mutant of ESP, serine protease from Staphylococcus epidermidis 7OLY ; 3.265 ; Structure of activin A in complex with an ActRIIB-Alk4 fusion reveal insight into activin receptor interactions 2FHS ; 2.7 ; Structure of Acyl Carrier Protein Bound to FabI, the Enoyl Reductase from Escherichia Coli 8H6S ; 3.0 ; Structure of acyltransferase VinK in complex with the loading acyl carrier protein of vicenistatin PKS 2B7T ; ; Structure of ADAR2 dsRBM1 2B7V ; ; Structure of ADAR2 dsRBM2 7FH5 ; 2.0 ; Structure of AdaV 7V52 ; 2.38 ; Structure of AdaV 7V54 ; 2.12 ; Structure of AdaV 7V56 ; 2.27 ; Structure of AdaV 7V57 ; 2.35 ; Structure of AdaV 4QD4 ; 1.8 ; Structure of ADC-68, a Novel Carbapenem-Hydrolyzing Class C Extended-Spectrum -Lactamase from Acinetobacter baumannii 4U0X ; 2.03 ; Structure of ADC-7 beta-lactamase in complex with boronic acid inhibitor S02030 3U4Q ; 2.8 ; Structure of AddAB-DNA complex at 2.8 angstroms 1AQI ; 2.6 ; STRUCTURE OF ADENINE-N6-DNA-METHYLTRANSFERASE TAQI 1AQJ ; 2.6 ; STRUCTURE OF ADENINE-N6-DNA-METHYLTRANSFERASE TAQI 2QA0 ; 2.6 ; Structure of Adeno-Associated virus serotype 8 7WJW ; 3.87 ; Structure of Adeno-associated virus serotype 9 7WQO ; 2.85 ; Structure of Adeno-associated virus serotype PHP.eB 5IPI ; 3.8 ; Structure of Adeno-associated virus type 2 VLP 3J1S ; 8.5 ; Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20 4BWV ; 1.8 ; Structure of Adenosine 5-prime-phosphosulfate Reductase apr-b from Physcomitrella Patens 5CB6 ; 2.79 ; Structure of adenosine-5'-phosphosulfate kinase 6F6O ; 1.49 ; Structure of Adenovirus 3 fiber head V239D mutant 2C95 ; 1.71 ; Structure of adenylate kinase 1 in complex with P1,P4-di(adenosine) tetraphosphate 2BWJ ; 2.3 ; Structure of adenylate kinase 5 7APU ; 1.36 ; Structure of Adenylate kinase from Escherichia coli in complex with two ADP molecules refined at 1.36 A resolution. 2HVQ ; 2.4 ; Structure of Adenylated full-length T4 RNA Ligase 2 7WEW ; 2.3 ; Structure of adenylation domain of epsilon-poly-L-lysine synthase 3UQ8 ; 1.7 ; Structure of adenylation domain of Haemophilus influenzae DNA ligases bound to NAD+ in adenylated state. 5N9W ; 2.456 ; Structure of adenylation domain THR1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces SP.OH-5093, apo structure 5N9X ; 2.396 ; Structure of adenylation domain THR1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces SP.OH-5093, ligand bound structure 1ADI ; 2.5 ; STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE AT PH 6.5 AND 25 DEGREES CELSIUS 1CH8 ; 2.5 ; STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH A STRINGENT EFFECTOR, PPG2':3'P 1CIB ; 2.3 ; STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH GDP, IMP, HADACIDIN, AND NO3 1CG0 ; 2.5 ; STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH HADACIDIN, GDP, 6-PHOSPHORYL-IMP, AND MG2+ 1ADE ; 2.0 ; STRUCTURE OF ADENYLOSUCCINATE SYNTHETASE PH 7 AT 25 DEGREES CELSIUS 8BUZ ; 3.5 ; Structure of Adenylyl cyclase 8 bound to stimulatory G-protein, Ca2+/Calmodulin, Forskolin and MANT-GTP 7PDG ; 4.3 ; structure of adenylyl cyclase 9 in complex with DARPin C4 and ATP-aS 7PDH ; 4.0 ; structure of adenylyl cyclase 9 in complex with DARPin C4 and ATP-aS 7PD8 ; 4.2 ; Structure of Adenylyl cyclase 9 in complex with DARPin C4 and MANT-GTP 7PDE ; 4.5 ; Structure of Adenylyl cyclase 9 in complex with Gs protein alpha subunit and MANT-GTP 7PD4 ; 4.9 ; structure of Adenylyl cyclase 9 in complex with MANT-GTP 6YC7 ; 1.8 ; Structure of adenylylated C. glutamicum GlnK 1JNR ; 1.6 ; Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6 resolution 1JNZ ; 2.5 ; Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6 resolution 3JV7 ; 2.0 ; Structure of ADH-A from Rhodococcus ruber 6SCG ; 1.65 ; Structure of AdhE form 1 6SCI ; 1.95 ; Structure of AdhE form 1 3OB6 ; 3.0 ; Structure of AdiC(N101A) in the open-to-out Arg+ bound conformation 8UYI ; 3.13 ; Structure of ADP-bound and phosphorylated Pediculus humanus (Ph) PINK1 dimer 2WQN ; 2.3 ; Structure of ADP-bound human Nek7 3J95 ; 7.6 ; Structure of ADP-bound N-ethylmaleimide sensitive factor determined by single particle cryoelectron microscopy 1ZM2 ; 3.07 ; Structure of ADP-ribosylated eEF2 in complex with catalytic fragment of ETA 7Z7I ; 3.5 ; Structure of ADP-ribosylated F-actin 1E1N ; 2.4 ; Structure of adrenodoxin reductase at 2.4 Angstrom in crystal form A' 1E1L ; 2.3 ; STRUCTURE OF ADRENODOXIN REDUCTASE IN COMPLEX WITH NADP obtained by cocrystallisation 1CJC ; 1.7 ; STRUCTURE OF ADRENODOXIN REDUCTASE OF MITOCHONDRIAL P450 SYSTEMS 8JNI ; 3.2 ; Structure of AE2 in complex with PIP2 6OG0 ; 1.85 ; Structure of Aedes aegypti OBP22 6OPB ; 2.0 ; Structure of Aedes aegypti OBP22 in the complex with arachidic acid 6NBN ; ; Structure of Aedes aegypti OBP22 in the complex with arachidonic acid 6OII ; 1.85 ; Structure of Aedes aegypti OBP22 in the complex with arachidonic acid 6OTL ; 2.59 ; Structure of Aedes aegypti OBP22 in the complex with benzaldehyde 6P2E ; 1.9 ; Structure of Aedes aegypti OBP22 in the complex with benzaldehyde 6OGH ; 1.85 ; Structure of Aedes aegypti OBP22 in the complex with linoleic acid 6OMW ; 2.1 ; Structure of Aedes aegypti OBP22 in the complex with palmitoleic acid 6LH8 ; 1.729 ; Structure of aerolysin-like protein (Bombina maxima) 6LHZ ; 2.52 ; Structure of aerolysin-like protein (Bombina maxima) 4KRX ; 1.8 ; Structure of Aes from E. coli 4KRY ; 2.3 ; Structure of Aes from E. coli in covalent complex with PMS 1XZ9 ; ; Structure of AF-6 PDZ domain 4Q7C ; 3.102 ; Structure of AF2299, a CDP-alcohol phosphotransferase 4O6N ; 2.1 ; Structure of AF2299, a CDP-alcohol phosphotransferase (CDP-bound) 4O6M ; 1.901 ; Structure of AF2299, a CDP-alcohol phosphotransferase (CMP-bound) 3ZC0 ; 2.982 ; Structure of AfC3PO - duplex RNA complex 6R80 ; 2.2 ; Structure of AFF4 C-terminal homology domain 6Z0O ; 2.5974 ; Structure of Affimer-NP bound to Crimean-Congo Haemorrhagic Fever Virus Nucleocapsid Protein 8KGL ; 4.3 ; Structure of African swine fever virus topoisomerase II 8KGM ; 4.8 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGN ; 5.9 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGO ; 3.4 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGP ; 3.3 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGQ ; 5.6 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGR ; 3.2 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGS ; 2.603 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 8KGT ; 2.3 ; Structure of African swine fever virus topoisomerase II in complex with dsDNA 1K4A ; ; STRUCTURE OF AGAA RNA TETRALOOP, NMR, 20 STRUCTURES 4FQT ; 2.2 ; Structure of AgamOBP1 Bound to 6-methyl-5-hepten-2-one 2CDO ; 1.64 ; structure of agarase carbohydrate binding module in complex with neoagarohexaose 7MTD ; 3.5 ; Structure of aged SARS-CoV-2 S2P spike at pH 7.4 5LJ7 ; 3.25 ; Structure of Aggregatibacter actinomycetemcomitans MacB bound to ATP (P21) 5LIL ; 3.35 ; Structure of Aggregatibacter actinomycetemcomitans MacB bound to ATPyS (P21) 5LJ6 ; 3.9 ; Structure of Aggregatibacter actinomycetemcomitans MacB bound to ATPyS (P6522) 4XYO ; 2.0 ; Structure of AgrA LytTR domain 4XXE ; 3.2 ; Structure of AgrA LytTR domain in complex with promoters 4XYQ ; 2.4 ; Structure of AgrA LytTR domain in complex with promoters 6HQH ; 1.8 ; Structure of Agrobacterium tumefaciens B6 strain PBP SocA complexed with Deoxyfructosylglutamine (DFG) at 1.8 A resolution 8FOY ; 2.9 ; Structure of Agrobacterium tumefaciens bacteriophage Milano contracted tail-sheath 8FOU ; 3.3 ; Structure of Agrobacterium tumefaciens bacteriophage Milano contracted tail-tube 8FOP ; 3.2 ; Structure of Agrobacterium tumefaciens bacteriophage Milano curved tail 5L9S ; 2.49 ; Structure of Agrobacterium tumefaciens C58 strain PBP AttC in open unliganded conformation 2CC3 ; 2.2 ; Structure of Agrobacterium tumefaciens VirB8 protein 1K4B ; ; STRUCTURE OF AGUU RNA TETRALOOP, NMR, 20 STRUCTURES 8PVE ; 3.3 ; Structure of AHIR determined by cryoEM at 100 keV 1KNC ; 2.0 ; Structure of AhpD from Mycobacterium tuberculosis, a novel enzyme with thioredoxin-like activity. 6M0U ; 2.29 ; Structure of AhSYMRK kinase domain mutant - K625E 4RD4 ; 1.3 ; Structure of aIF2 gamma from sulfolobus solfataricus bound to gdpnp 4RD0 ; 1.713 ; Structure of aIF2-gamma D19A variant from Sulfolobus solfataricus bound to GDP 4RCZ ; 1.429 ; Structure of aIF2-gamma D19A variant from Sulfolobus solfataricus bound to GDPNP 4RCY ; 1.65 ; Structure of aIF2-gamma D19A variant from Sulfolobus solfataricus bound to GTP 4RD6 ; 1.944 ; Structure of aIF2-gamma from Sulfolobus solfataricus bound to GDP 4RD3 ; 1.69 ; Structure of aIF2-gamma H97A variant from Sulfolobus solfataricus bound to GDP and Pi 4RD2 ; 1.585 ; Structure of aIF2-gamma H97A variant from Sulfolobus solfataricus bound to GDPNP 4RD1 ; 1.5 ; Structure of aIF2-gamma H97A variant from Sulfolobus solfataricus bound to GTP 7YYP ; 2.9 ; Structure of aIF5B from Pyrococcus abyssi complexed with GDP 4UE2 ; 2.02 ; Structure of air-treated anaerobically purified D. fructosovorans NiFe-hydrogenase 8BBS ; 1.4 ; Structure of AKR1C3 in complex with a bile acid fused tetrazole inhibitor 2OON ; ; Structure of Ala14-PYY in aqueous solution 1L6T ; ; STRUCTURE OF ALA24/ASP61 TO ASP24/ASN61 SUBSTITUTED SUBUNIT C OF ESCHERICHIA COLI ATP SYNTHASE 4BHY ; 3.25 ; Structure of alanine racemase from Aeromonas hydrophila 5TXR ; 1.9 ; Structure of ALAS from S. cerevisiae non-covalently bound to PLP cofactor 8EIM ; 2.1 ; Structure of ALAS with C-terminal truncation from S. cerevisiae 1H0X ; 2.6 ; Structure of Alba: an archaeal chromatin protein modulated by acetylation 1H0Y ; 2.8 ; Structure of Alba: an archaeal chromatin protein modulated by acetylation 2AFN ; 2.0 ; STRUCTURE OF ALCALIGENES FAECALIS NITRITE REDUCTASE AND A COPPER SITE MUTANT, M150E, THAT CONTAINS ZINC 1AS7 ; 2.0 ; STRUCTURE OF ALCALIGENES FAECALIS NITRITE REDUCTASE AT CRYO TEMPERATURE 1NTD ; 2.3 ; STRUCTURE OF ALCALIGENES FAECALIS NITRITE REDUCTASE MUTANT M150E THAT CONTAINS ZINC 1AQ8 ; 2.0 ; STRUCTURE OF ALCALIGENES FAECALIS NITRITE REDUCTASE REDUCED WITH ASCORBATE 2VM3 ; 1.8 ; Structure of Alcaligenes xylosoxidans in space group R3 - 1 of 2 2VM4 ; 1.9 ; Structure of Alcaligenes xylosoxidans nitrite reductase in space group R3 - 2 of 2 7YMB ; 1.8 ; Structure of Alcohol dehydrogenase from Candida glabrata(CgADH)complexed with NADPH 3RJ5 ; 1.45 ; Structure of alcohol dehydrogenase from Drosophila lebanonesis T114V mutant complexed with NAD+ 3RJ9 ; 1.98 ; Structure of alcohol dehydrogenase from Drosophila lebanonesis T114V mutant complexed with NAD+ 5Z2X ; 1.98 ; Structure of Alcohol dehydrogenase from Kluyveromyces polyspora(KpADH) 7YMU ; 1.9 ; Structure of Alcohol dehydrogenase from [Candida] glabrata 7BU2 ; 1.553 ; Structure of alcohol dehydrogenase YjgB from Escherichia coli 7BU3 ; 2.0 ; Structure of alcohol dehydrogenase YjgB in complex with NADP from Escherichia coli 6D97 ; 2.2 ; Structure of aldehyde dehydrogenase 12 (ALDH12) from Zea mays 4QF6 ; 1.9 ; Structure of Aldehyde Dehydrogenase from Bacillus cereus, E194S mutant 4QET ; 2.6 ; Structure of Aldehyde Dehydrogenase from Bacillus cereus, G224D mutant 3H4G ; 1.85 ; Structure of aldehyde reductase holoenzyme in complex with potent aldose reductase inhibitor Fidarestat: Implications for inhibitor binding and selectivity 5L2M ; 1.7 ; Structure of ALDH1A1 in complex with BUC11 5L2N ; 1.7 ; Structure of ALDH1A1 in complex with BUC25 7RLU ; 2.9 ; Structure of ALDH1L1 (10-formyltetrahydrofolate dehydrogenase) in complex with NADP 5L13 ; 2.4 ; Structure of ALDH2 in complex with 2P3 7MES ; 1.37 ; Structure of ALDH4A1 complexed with trans-4-Hydroxy-D-proline 7MER ; 1.74 ; Structure of ALDH4A1 complexed with trans-4-Hydroxy-L-proline 8OF1 ; 1.81 ; Structure of ALDH5F1 from moss Physcomitrium patens in complex with NAD+ in the contracted conformation 6O4H ; 2.05 ; Structure of ALDH7A1 mutant A171V complexed with NAD 6O4I ; 1.75 ; Structure of ALDH7A1 mutant E399D complexed with alpha-aminoadipate 6O4L ; 1.85 ; Structure of ALDH7A1 mutant E399D complexed with NAD 6U2X ; 2.15 ; Structure of ALDH7A1 mutant E399G complexed with NAD 6O4K ; 2.06 ; Structure of ALDH7A1 mutant E399Q complexed with NAD 6O4F ; 1.9 ; Structure of ALDH7A1 mutant N167S complexed with alpha-aminoadipate 6O4E ; 1.75 ; Structure of ALDH7A1 mutant N167S complexed with NAD 6O4G ; 2.05 ; Structure of ALDH7A1 mutant P169S complexed with alpha-aminoadipate 6V0Z ; 2.02 ; Structure of ALDH7A1 mutant R441C complexed with NAD 6O4D ; 1.88 ; Structure of ALDH7A1 mutant W175A complexed with L-pipecolic acid 6O4C ; 1.7 ; Structure of ALDH7A1 mutant W175A complexed with NAD 6O4B ; 1.85 ; Structure of ALDH7A1 mutant W175G complexed with NAD 6VWF ; 2.64 ; Structure of ALDH9A1 complexed with NAD+ in space group C222 6VR6 ; 2.5 ; Structure of ALDH9A1 complexed with NAD+ in space group P1 8RB6 ; 2.0 ; Structure of Aldo-Keto Reductase 1C3 (AKR1C3) in complex with an inhibitor M689, with the 3-hydroxy-benzoisoxazole moiety. Resolution 2.0A 3KRB ; 1.75 ; Structure of Aldose Reductase from Giardia Lamblia at 1.75A Resolution 4ZGX ; 3.2 ; Structure of aldosterone synthase (CYP11B2) in complex with (+)-(R)-N-(4-(4-chloro-3-fluorophenyl)-5,6,7,8-tetrahydroisoquinolin-8-yl)propionamide 6XZ9 ; 2.77 ; Structure of aldosterone synthase (CYP11B2) in complex with 5-chloro-3,3-dimethyl-2-[5-[1-(1-methylpyrazole-4-carbonyl)azetidin-3-yl]oxy-3-pyridyl]isoindolin-1-one 6XZ8 ; 3.0 ; Structure of aldosterone synthase (CYP11B2) in complex with N-[(1R)-1-[5-(6-chloro-1,1-dimethyl-3-oxo-isoindolin-2-yl)-3-pyridyl]ethyl]methanesulfonamide 3LRK ; 1.95 ; Structure of alfa-galactosidase (MEL1) from Saccharomyces cerevisiae 3LRL ; 2.4 ; Structure of alfa-galactosidase (MEL1) from Saccharomyces cerevisiae with melibiose 3LRM ; 2.7 ; Structure of alfa-galactosidase from Saccharomyces cerevisiae with raffinose 5GQQ ; 2.2 ; Structure of ALG-2/HEBP2 Complex 3RBH ; 2.301 ; Structure of alginate export protein AlgE from Pseudomonas aeruginosa 6KCW ; 2.28 ; Structure of alginate lyase Aly36B 6KZK ; 2.789 ; Structure of alginate lyase Aly36B mutant K143A/M171A in complex with alginate trisaccharide 6KCV ; 2.282 ; Structure of alginate lyase Aly36B mutant K143A/Y185A in complex with alginate tetrasaccharide 7C8G ; 2.1 ; Structure of alginate lyase AlyC3 7C8F ; 1.461 ; Structure of alginate lyase AlyC3 in complex with dimannuronate(2M) 8PZ4 ; 1.77 ; Structure of alginate transporter, AlgE, solved at wavelength 2.755 A 5H6U ; 2.006 ; Structure of alginate-binding protein AlgQ2 in complex with an alginate pentasaccharide 5H71 ; 1.549 ; Structure of alginate-binding protein AlgQ2 in complex with an alginate trisaccharide 1Y3Q ; 1.9 ; Structure of AlgQ1, alginate-binding protein 1Y3N ; 1.6 ; Structure of AlgQ1, alginate-binding protein, complexed with an alginate disaccharide 1Y3P ; 2.0 ; Structure of AlgQ1, alginate-binding protein, complexed with an alginate tetrasaccharide 2OEW ; 2.55 ; Structure of ALIX/AIP1 Bro1 Domain 2OEX ; 2.58 ; Structure of ALIX/AIP1 V Domain 3HMM ; 1.7 ; Structure of Alk5 + GW855857 4Y7P ; 2.1 ; Structure of alkaline D-peptidase from Bacillus cereus 1ZEF ; 1.9 ; structure of alkaline phosphatase from human placenta in complex with its uncompetitive inhibitor L-Phe 2IUC ; 1.95 ; Structure of alkaline phosphatase from the Antarctic bacterium TAB5 1BSL ; 1.95 ; STRUCTURE OF ALKANAL MONOOXYGENASE BETA CHAIN 1SG3 ; 2.6 ; Structure of allantoicase 3J7I ; 8.9 ; Structure of alpha- and beta- tubulin in GMPCPP-microtubules 4CHA ; 1.68 ; STRUCTURE OF ALPHA-*CHYMOTRYPSIN REFINED AT 1.68 ANGSTROMS RESOLUTION 3JAE ; 3.9 ; Structure of alpha-1 glycine receptor by single particle electron cryo-microscopy, glycine-bound state 3JAF ; 3.8 ; Structure of alpha-1 glycine receptor by single particle electron cryo-microscopy, glycine/ivermectin-bound state 3JAD ; 3.9 ; Structure of alpha-1 glycine receptor by single particle electron cryo-microscopy, strychnine-bound state 2PLH ; 2.5 ; STRUCTURE OF ALPHA-1-PUROTHIONIN AT ROOM TEMPERATURE AND 2.8 ANGSTROMS RESOLUTION 1VJS ; 1.7 ; STRUCTURE OF ALPHA-AMYLASE PRECURSOR 6ZFM ; 1.9 ; Structure of alpha-Cobratoxin with a peptide inhibitor 4LFT ; 1.7 ; Structure of alpha-elapitoxin-Dpp2d isolated from Black Mamba (Dendroaspis polylepis) venom 2XN2 ; 1.58 ; Structure of alpha-galactosidase from Lactobacillus acidophilus NCFM with galactose 2XN1 ; 2.3 ; Structure of alpha-galactosidase from Lactobacillus acidophilus NCFM with TRIS 2XN0 ; 2.5 ; Structure of alpha-galactosidase from Lactobacillus acidophilus NCFM, PtCl4 derivative 5VCJ ; 3.16 ; Structure of alpha-galactosylphytosphingosine bound by CD1d and in complex with the Va14Vb8.2 TCR 6CW9 ; 2.0 ; Structure of alpha-GC[8,16P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CW6 ; 2.85 ; Structure of alpha-GC[8,18] bound by CD1d and in complex with the Va14Vb8.2 TCR 2RGH ; 2.3 ; Structure of Alpha-Glycerophosphate Oxidase from Streptococcus sp.: A Template for the Mitochondrial Alpha-Glycerophosphate Dehydrogenase 2RGO ; 2.4 ; Structure of Alpha-Glycerophosphate Oxidase from Streptococcus sp.: A Template for the Mitochondrial Alpha-Glycerophosphate Dehydrogenase 6CX7 ; 2.6 ; Structure of alpha-GSA[12,6P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CX9 ; 2.36 ; Structure of alpha-GSA[16,6P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CXA ; 2.65 ; Structure of alpha-GSA[20,6P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CXE ; 2.05 ; Structure of alpha-GSA[26,6P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CXF ; 2.5 ; Structure of alpha-GSA[26,P5p] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CWB ; 2.85 ; Structure of alpha-GSA[8,4P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CWE ; 2.2 ; Structure of alpha-GSA[8,6P] bound by CD1d and in complex with the Va14Vb8.2 TCR 6CX5 ; 2.4 ; Structure of alpha-GSA[8,8P] bound by CD1d and in complex with the Va14Vb8.2 TCR 8I0A ; 2.01 ; Structure of alpha-L-Arabinofuranosidase from Trametes hirsuta 6I60 ; 2.743 ; Structure of alpha-L-rhamnosidase from Dictyoglumus thermophilum 6H6B ; 3.4 ; Structure of alpha-synuclein fibrils 8FPT ; ; STRUCTURE OF ALPHA-SYNUCLEIN FIBRILS DERIVED FROM HUMAN LEWY BODY DEMENTIA TISSUE 4BXL ; ; Structure of alpha-synuclein in complex with an engineered binding protein 8V2I ; 2.9 ; Structure of alpha1B and betaI/IVb microtubule bound to GMPCPP 7CEC ; 3.9 ; Structure of alpha6beta1 integrin in complex with laminin-511 7P2D ; 3.2 ; Structure of alphaMbeta2/Cd11bCD18 headpiece in complex with a nanobody 7OG6 ; 3.3 ; Structure of Alternanthera Mosaic VLP by cryoEM 6BTM ; 3.4 ; Structure of Alternative Complex III from Flavobacterium johnsoniae (Wild Type) 2OTK ; ; Structure of Alzheimer Ab peptide in complex with an engineered binding protein 3QAC ; 2.275 ; Structure of amaranth 11S proglobulin seed storage protein from Amaranthus hypochondriacus L. 8U4P ; 3.15 ; Structure of AMD3100-bound CXCR4/Gi complex 7ZNP ; 2.15 ; Structure of AmedSP 7WA3 ; 2.28 ; Structure of American mink ACE2 7L0J ; 2.6 ; Structure of AMH bound to AMHR2-ECD 8C0J ; 3.381 ; Structure of AmiB enzymatic domain bound to the EnvC LytM domain 6SQ8 ; 2.59 ; Structure of amide bond synthetase McbA from Marinactinospora thermotolerans 6H1B ; 2.8 ; Structure of amide bond synthetase Mcba K483A mutant from Marinactinospora thermotolerans 6IAQ ; 1.91 ; Structure of Amine Dehydrogenase from Mycobacterium smegmatis 6GIO ; 1.87 ; Structure of Amino Acid Amide Racemase from Ochrobactrum anthropi 8J1C ; 2.2 ; Structure of amino acid dehydrogenase in complex with NADP 8J1G ; 2.5 ; Structure of amino acid dehydrogenase in complex with NADPH 8HYE ; 2.2 ; Structure of amino acid dehydrogenase-2752 with ligand 8HYH ; 2.39 ; Structure of amino acid dehydrogenase3448 5WYF ; 2.12 ; Structure of amino acid racemase, 2.12 A 5WYA ; 2.65 ; Structure of amino acid racemase, 2.65 A 4YSV ; 2.77 ; Structure of aminoacid racemase in apo-form 4YSN ; 1.94 ; Structure of aminoacid racemase in complex with PLP 2J6L ; 1.3 ; Structure of aminoadipate-semialdehyde dehydrogenase 2BYD ; 2.0 ; Structure of aminoadipate-semialdehyde dehydrogenase- phosphopantetheinyl transferase 2C43 ; 1.93 ; STRUCTURE OF AMINOADIPATE-SEMIALDEHYDE DEHYDROGENASE- PHOSPHOPANTETHEINYL TRANSFERASE IN COMPLEX WITH COENZYME A 2CG5 ; 2.7 ; Structure of aminoadipate-semialdehyde dehydrogenase- phosphopantetheinyl transferase in complex with cytosolic acyl carrier protein and coenzyme A 4I9B ; 1.9 ; Structure of aminoaldehyde dehydrogenase 1 from Solanum lycopersium (SlAMADH1) with a thiohemiacetal intermediate 7QU9 ; 2.14 ; Structure of aminodeoxychorismate synthase component 1 (PabB) from Bacillus subtilis spizizenii. 1UA1 ; 2.0 ; Structure of aminofluorene adduct paired opposite cytosine at the polymerase active site. 6FUC ; 1.17 ; Structure of aminoglycoside phosphotransferase APH(3'')-Id from Streptomyces rimosus ATCC10970 6FUX ; 1.65 ; Structure of aminoglycoside phosphotransferase APH(3'')-Id from Streptomyces rimosus ATCC10970 in complex with ADP and streptomycin 1XJO ; 1.75 ; STRUCTURE OF AMINOPEPTIDASE 2HPO ; 1.65 ; Structure of Aminopeptidase N from E. coli Suggests a Compartmentalized, Gated Active Site 1WL9 ; 1.9 ; Structure of aminopeptidase P from E. coli 7VNO ; 1.8 ; Structure of aminotransferase 2O1B ; 1.95 ; Structure of aminotransferase from Staphylococcus aureus 4JXU ; 2.4 ; Structure of aminotransferase ilvE2 from Sinorhizobium meliloti complexed with PLP 7VNT ; 1.92 ; Structure of aminotransferase-substrate complex 7VO1 ; 2.99 ; Structure of aminotransferase-substrate complex 6BLA ; 1.55 ; Structure of AMM01 Fab, an anti EBV gH/gL neutralizing antibody 8UYH ; 2.84 ; Structure of AMP-PNP-bound Pediculus humanus (Ph) PINK1 dimer 8SS8 ; 2.81 ; Structure of AMPA receptor GluA2 complex with auxiliary subunit TARP gamma-5 bound to competitive antagonist ZK and antiepileptic drug perampanel (closed state) 8SS2 ; 3.58 ; Structure of AMPA receptor GluA2 complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to competitive antagonist ZK and channel blocker spermidine (closed state) 8SS6 ; 3.01 ; Structure of AMPA receptor GluA2 complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to competitive antagonist ZK, channel blocker spermidine and antiepileptic drug perampanel (closed state) 8SS7 ; 2.76 ; Structure of AMPA receptor GluA2 complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to competitive antagonist ZK, channel blocker spermidine and antiepileptic drug perampanel (closed state) 8SSA ; 3.88 ; Structure of AMPA receptor GluA2 complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to glutamate and channel blocker spermidine (desensitized state) 5VOT ; 4.9 ; Structure of AMPA receptor-TARP complex 5VOU ; 6.4 ; Structure of AMPA receptor-TARP complex 5VOV ; 7.7 ; Structure of AMPA receptor-TARP complex 2P9V ; 1.8 ; Structure of AmpC beta-lactamase with cross-linked active site after exposure to small molecule inhibitor 4XUX ; 1.75 ; Structure of ampC bound to RPX-7009 at 1.75 A 7TI1 ; 2.0 ; Structure of AmpC bound to RPX-7063 at 2.0A 5XPW ; 2.003 ; Structure of amphioxus IgVJ-C2 molecule 5UFU ; 3.45 ; Structure of AMPK bound to activator 6E4T ; 3.4 ; Structure of AMPK bound to activator 6E4U ; 3.27 ; Structure of AMPK bound to activator 6E4W ; 3.35 ; Structure of AMPK bound to activator 4QFS ; 3.55 ; Structure of AMPK in complex with Br2-A769662core activator and STAUROSPORINE inhibitor 4QFR ; 3.34 ; Structure of AMPK in complex with Cl-A769662 activator and STAUROSPORINE inhibitor 4QFG ; 3.46 ; Structure of AMPK in complex with STAUROSPORINE inhibitor and in the absence of a synthetic activator 2HCB ; 3.51 ; Structure of AMPPCP-bound DnaA from Aquifex aeolicus 6KNY ; 2.1 ; Structure of Amuc_1100 without transmembrane region from Akkermansia muciniphila 2MXX ; ; Structure of Amylase binding Protein A of Streptococcous gordonii: a potential receptor for human salivary amylase enzyme 5E5V ; 1.24 ; Structure of amyloid forming peptide NFGAILS (residues 22-28) from Islet Amyloid Polypeptide 2LLM ; ; Structure of amyloid precursor protein's transmembrane domain 5TXD ; 1.452 ; Structure of amyloid-beta derived peptide - NKGAIF 5E61 ; 1.79 ; Structure of amyloid-forming peptide FGAILSS (residues 23-29) from islet amyloid polypeptide 3DVF ; 1.8 ; Structure of amyloidogenic kappa 1 Bence Jones protein 1FP9 ; 3.1 ; STRUCTURE OF AMYLOMALTASE FROM THERMUS THERMOPHILUS HB8 IN SPACE GROUP C2 1EXL ; ; STRUCTURE OF AN 11-MER DNA DUPLEX CONTAINING THE CARBOCYCLIC NUCLEOTIDE ANALOG: 2'-DEOXYARISTEROMYCIN 8F1T ; 12.1 ; Structure of an 18mer DegP cage bound to the client protein hTRF1 8F20 ; 2.23 ; Structure of an A-tract B-DNA Dodecamer: 5'-CGCAAAAAAGCG-3 5IJU ; 1.7 ; Structure of an AA10 Lytic Polysaccharide Monooxygenase from Bacillus amyloliquefaciens with Cu(II) bound 7ZE9 ; 2.646 ; Structure of an AA16 LPMO-like protein 1OU8 ; 1.6 ; structure of an AAA+ protease delivery protein in complex with a peptide degradation tag 5NJ3 ; 3.78 ; Structure of an ABC transporter: complete structure 5NJG ; 3.78 ; Structure of an ABC transporter: part of the structure that could be built de novo 4ZJP ; 1.63 ; Structure of an ABC-Transporter Solute Binding Protein (SBP_IPR025997) from Actinobacillus Succinogenes (Asuc_0197, TARGET EFI-511067) with bound beta-D-ribopyranose 5VFY ; 2.49 ; Structure of an accessory protein of the pCW3 relaxosome 5VFX ; 2.81 ; Structure of an accessory protein of the pCW3 relaxosome in complex with the origin of transfer (oriT) DNA 2R10 ; 2.2 ; Structure of an acetylated Rsc4 tandem bromodomain Histone Chimera 6AVE ; 3.7 ; Structure of an acid sensing ion channel in a resting state at high pH 5WKU ; 2.95 ; Structure of an acid sensing ion channel in a resting state with barium 5WKV ; 3.2 ; Structure of an acid sensing ion channel in a resting state with calcium 2QTS ; 1.9 ; Structure of an acid-sensing ion channel 1 at 1.9 A resolution and low pH 6VTK ; 2.82 ; Structure of an acid-sensing ion channel solubilized by styrene maleic acid and in a desensitized state at low pH 6VTL ; 3.65 ; Structure of an acid-sensing ion channel solubilized by styrene maleic acid and in a resting state at high pH 1M8T ; 2.1 ; Structure of an acidic Phospholipase A2 from the venom of Ophiophagus hannah at 2.1 resolution from a hemihedrally twinned crystal form 7DTR ; 2.1 ; Structure of an AcrIF protein 1UUR ; 2.7 ; Structure of an activated Dictyostelium STAT in its DNA-unbound form 1UUS ; 2.8 ; Structure of an activated Dictyostelium STAT in its DNA-unbound form 4CFH ; 3.24 ; Structure of an active form of mammalian AMPK 4LJO ; 1.564 ; Structure of an active ligase (HOIP)/ubiquitin transfer complex 4LJP ; 2.15 ; Structure of an active ligase (HOIP-H889A)/ubiquitin transfer complex 2WAB ; 1.9 ; Structure of an active site mutant of a family two carbohydrate esterase from Clostridium thermocellum in complex with celluohexase 2X5K ; 2.37 ; Structure of an active site mutant of the D-Erythrose-4-Phosphate Dehydrogenase from E. coli 32C2 ; 3.0 ; STRUCTURE OF AN ACTIVITY SUPPRESSING FAB FRAGMENT TO CYTOCHROME P450 AROMATASE 6OR3 ; 1.45 ; Structure of an Acyl Intermediate of Thermomyces Lanuginosa Lipase With Palmitic Acid in an Orthorhombic Crystal 1GBT ; 2.0 ; STRUCTURE OF AN ACYL-ENZYME INTERMEDIATE DURING CATALYSIS: (GUANIDINOBENZOYL) TRYPSIN 3TRG ; 1.601 ; Structure of an acylphosphatase from Coxiella burnetii 3TRB ; 2.001 ; Structure of an addiction module antidote protein of a HigA (higA) family from Coxiella burnetii 4Y0V ; 1.8 ; Structure of an ADP ribosylation factor from Entamoeba histolytica HM-1:IMSS bound to Mg-GDP 4YLG ; 1.8 ; Structure of an ADP ribosylation factor from Entamoeba histolytica HM-1:IMSS bound to Mg-GDP 5T5W ; 2.847 ; Structure of an affinity matured lambda-IFN/IFN-lambdaR1/IL-10Rbeta receptor complex 4K65 ; 2.9 ; Structure of an airborne transmissible avian influenza H5 hemagglutinin mutant from the influenza virus A/Indonesia/5/2005 4K66 ; 3.005 ; Structure of an airborne transmissible avian influenza H5 hemagglutinin mutant from the influenza virus A/Indonesia/5/2005 complexed with avian receptor analog LSTa 4K67 ; 2.7 ; Structure of an airborne transmissible avian influenza H5 hemagglutinin mutant from the influenza virus A/Indonesia/5/2005 complexed with human receptor analog LSTc 1GAB ; ; STRUCTURE OF AN ALBUMIN-BINDING DOMAIN, NMR, 20 STRUCTURES 1PRB ; ; STRUCTURE OF AN ALBUMIN-BINDING DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE 2KZE ; ; Structure of an all-parallel-stranded G-quadruplex formed by hTERT promoter sequence 7MQQ ; 1.15 ; Structure of an allelic variant of Puccinia graminis f. sp. tritici (Pgt) effector AvrSr50 (QCMJC) 6KQI ; 3.245 ; Structure of an allosteric modulator bound to the CB1 cannabinoid receptor 8P5Q ; 2.14 ; Structure of an ALOG domain from Arabidopsis thaliana in complex with DNA 3VM7 ; 2.25 ; Structure of an Alpha-Amylase from Malbranchea cinnamomea 3TRD ; 1.5 ; Structure of an alpha-beta serine hydrolase homologue from Coxiella burnetii 5UBJ ; 1.7 ; Structure of an alpha-L-arabinofuranosidase (GH62) from Aspergillus nidulans 8FB4 ; 1.49 ; Structure of an alternating AT 16-mer bound by diamidine DB1476: 5'-GCTGGATATATCCAGC-3 8F94 ; 1.08 ; Structure of an alternating AT 16-mer: 5'-GCTGGATATATCCAGC-3 8F2Y ; 1.78 ; Structure of an alternating AT dodecamer: 5'-CGCGATATCGCG-3 1DN9 ; 2.2 ; STRUCTURE OF AN ALTERNATING-B DNA HELIX AND ITS RELATIONSHIP TO A-TRACT DNA 5WEC ; 1.563 ; Structure of an alternative pilotin from the type II secretion system of Vibrio cholerae 7ZNJ ; 2.4 ; Structure of an ALYREF-exon junction complex hexamer 2YB1 ; 1.898 ; Structure of an amidohydrolase from Chromobacterium violaceum (EFI target EFI-500202) with bound Mn, AMP and phosphate. 2YB4 ; 2.2 ; Structure of an amidohydrolase from Chromobacterium violaceum (EFI target EFI-500202) with bound SO4, no metal 3UWC ; 1.8 ; Structure of an aminotransferase (DegT-DnrJ-EryC1-StrS family) from Coxiella burnetii in complex with PMP 4XFN ; 1.85 ; Structure of an Amyloid forming peptide AEVVFT from Human Transthyretin 3PZZ ; 1.29 ; Structure of an amyloid forming peptide GAIIGL (29-34) from amyloid beta 3OVJ ; 1.8 ; Structure of an amyloid forming peptide KLVFFA from amyloid beta in complex with orange G 3OW9 ; 1.8 ; Structure of an amyloid forming peptide KLVFFA from amyloid beta, alternate polymorph II 3Q2X ; 1.451 ; Structure of an amyloid forming peptide NKGAII (residues 27-32) from amyloid beta 3FTR ; 1.61 ; Structure of an amyloid forming peptide SSTNVG from IAPP (alternate polymorph) 2ON9 ; 1.51 ; Structure of an amyloid forming peptide VQIVYK from the repeat region of Tau 4NP8 ; 1.51 ; Structure of an amyloid forming peptide VQIVYK from the second repeat region of tau (alternate polymorph) 3OVL ; 1.81 ; Structure of an amyloid forming peptide VQIVYK from the TAU protein in complex with orange G 4XFO ; 1.35 ; Structure of an amyloid-forming segment TAVVTN from human Transthyretin 6Z1M ; 2.45 ; Structure of an Ancestral glycosidase (family 1) bound to heme 6OYU ; 2.95 ; Structure of an ancestral-reconstructed cytochrome P450 1B1 with alpha-naphthoflavone 6OYV ; 3.101 ; Structure of an ancestral-reconstructed cytochrome P450 1B1 with estradiol 8IDE ; 3.21 ; Structure of an ancient TsaD-TsaC-SUA5-TcdA modular enzyme (TsaN) 6XMB ; 2.31 ; Structure of an anophensin from Anopheles stephensi 7F45 ; 3.52 ; Structure of an Anti-CRISPR protein 1BQL ; 2.6 ; STRUCTURE OF AN ANTI-HEL FAB FRAGMENT COMPLEXED WITH BOBWHITE QUAIL LYSOZYME 6QB9 ; 1.85 ; Structure of an anti-Mcl1 scFv 6QF9 ; 1.43 ; Structure of an anti-Mcl1 scFv 6QFC ; 1.96 ; Structure of an anti-Mcl1 scFv 3QXT ; 1.7 ; Structure of an Anti-Methotrexate CDR1-3 Graft VHH Antibody in Complex with Methotrexate 3QXV ; 2.5 ; Structure of an Anti-Methotrexate CDR1-4 Graft VHH Antibody in Complex with Methotrexate 2HH0 ; 2.85 ; Structure of an Anti-PrP Fab, P-Clone, in Complex with its Cognate Bovine Peptide Epitope. 3P2E ; 1.68 ; Structure of an antibiotic related Methyltransferase 3P2I ; 2.4 ; Structure of an antibiotic related Methyltransferase 3P2K ; 2.7 ; Structure of an antibiotic related Methyltransferase 3PB3 ; 1.9 ; Structure of an Antibiotic Related Methyltransferase 3HFM ; 3.0 ; STRUCTURE OF AN ANTIBODY-ANTIGEN COMPLEX. CRYSTAL STRUCTURE OF THE HY/HEL-10 FAB-LYSOZYME COMPLEX 2IFF ; 2.65 ; STRUCTURE OF AN ANTIBODY-LYSOZYME COMPLEX: EFFECT OF A CONSERVATIVE MUTATION 2MBJ ; ; Structure of an antiparallel (2+2) G-quadruplex formed by human telomeric repeats in Na+ solution (with G22-to-BrG substitution) 2VOA ; 1.7 ; Structure of an AP Endonuclease from Archaeoglobus fulgidus 4YII ; 1.804 ; Structure of an APC2-UBCH10 complex reveals distinctive cullin-RING ligase mechanism for Anaphase-promoting complex/Cyclosome 6W8O ; 3.4 ; Structure of an Apo membrane protein 4X57 ; 2.8 ; Structure of an Arabidopsis E2 / Membrane-anchored Ubiquitin-fold Protein Complex 6TMF ; 2.8 ; Structure of an archaeal ABCE1-bound ribosomal post-splitting complex 2YCE ; 1.93 ; Structure of an Archaeal fructose-1,6-bisphosphate aldolase with the catalytic Lys covalently bound to the carbinolamine intermediate of the substrate. 2QMU ; 3.2 ; Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states 2QN6 ; 2.15 ; Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states 4Y7K ; 3.5 ; Structure of an archaeal mechanosensitive channel in closed state 4Y7J ; 4.1 ; Structure of an archaeal mechanosensitive channel in expanded state 2IZO ; 2.9 ; Structure of an Archaeal PCNA1-PCNA2-FEN1 Complex 1GO3 ; 1.75 ; Structure of an archeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex 3HXM ; 3.1 ; Structure of an argonaute complexed with guide DNA and target RNA duplex containing two mismatches. 3GD1 ; 3.5 ; Structure of an Arrestin/Clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking 6LMH ; 2.805 ; Structure of an ASFV-derived histone-like protein pA104R 5CD1 ; 3.6 ; Structure of an asymmetric tetramer of human tRNA m1A58 methyltransferase in a complex with SAH and tRNA3Lys 4BND ; 1.5 ; Structure of an atypical alpha-phosphoglucomutase similar to eukaryotic phosphomannomutases 3T7Y ; 2.1 ; Structure of an autocleavage-inactive mutant of the cytoplasmic domain of CT091, the YscU homologue of Chlamydia trachomatis 2W59 ; 1.75 ; STRUCTURE OF AN AVIAN IGY-FC 3-4 FRAGMENT 3D6R ; 1.997 ; Structure of an avian influenza A virus NS1 protein effector domain 7DEA ; 2.84 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus A/duck Northern China/22/2017 (H5N6) 7DEB ; 2.6 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus A/duck/Eastern China/L0230/2010 (H5N2) 7WL5 ; 2.8 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus A/Equine/Guangxi/25/2010(H5N1) and A/Equine/Guangxi/68/2010(H5N1) 4K62 ; 2.502 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus A/Indonesia/5/2005 4K63 ; 3.1 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus complexed with avian receptor analog LSTa 4K64 ; 2.604 ; Structure of an avian influenza H5 hemagglutinin from the influenza virus complexed with human receptor analog LSTc 1U6Z ; 1.9 ; Structure of an E. coli Exopolyphosphatase: Insight into the processive hydrolysis of polyphosphate and its regulation 6QF6 ; 2.59 ; Structure of an E.coli expressed anti-Mcl1 scFv 5L4O ; 2.799 ; Structure of an E.coli initiator tRNAfMet A1-U72 variant 7K5J ; 3.42 ; Structure of an E1-E2-ubiquitin thioester mimetic 4CCG ; 2.4 ; Structure of an E2-E3 complex 6FWL ; 1.12 ; Structure of an E333Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex alpha-Glc-1,3-(1,2-anhydro-carba-mannose) 6FWQ ; 1.65 ; Structure of an E333Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-1,3-mannobiose and alpha-1,2-mannobiose 5MEL ; 1.2 ; Structure of an E333Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with Glc-alpha-1,3-(3R,4R,5R)-5-(hydroxymethyl)cyclohex-1,2-ene-3,4-diol 4V28 ; 1.2 ; Structure of an E333Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with Man-Man-Methylumbelliferone 6FWG ; 1.07 ; Structure of an E333Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with tetramannoside yeast mannan fragment 6FWO ; 1.34 ; Structure of an E336Q variant of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-1,2-anhydro-mannose hydrolyzed by enzyme 1C4Z ; 2.6 ; STRUCTURE OF AN E6AP-UBCH7 COMPLEX: INSIGHTS INTO THE UBIQUITINATION PATHWAY 4KDT ; 2.6 ; Structure of an early native-like intermediate of beta2-microglobulin amyloidosis 2OWH ; 2.5 ; Structure of an early-microsecond photolyzed state of CO-bjFixLH 2OWJ ; 2.5 ; Structure of an early-microsecond photolyzed state of CO-bjFixLH, dark state 2Y6S ; 2.8 ; Structure of an Ebolavirus-protective antibody in complex with its mucin-domain linear epitope 1RSC ; 2.3 ; STRUCTURE OF AN EFFECTOR INDUCED INACTIVATED STATE OF RIBULOSE BISPHOSPHATE CARBOXYLASE(SLASH)OXYGENASE: THE BINARY COMPLEX BETWEEN ENZYME AND XYLULOSE BISPHOSPHATE 5K36 ; 3.1 ; Structure of an eleven component nuclear RNA exosome complex bound to RNA 3RTY ; 2.85 ; Structure of an Enclosed Dimer Formed by The Drosophila Period Protein 6HA9 ; 2.0 ; Structure of an endo-Xyloglucanase from Cellvibrio japonicus complexed with XXXG(2F)-beta-DNP 7JPT ; 3.2 ; Structure of an endocytic receptor 7JPU ; 5.0 ; Structure of an endocytic receptor 7ZNK ; 3.9 ; Structure of an endogenous human TREX complex bound to mRNA 3ZZJ ; 2.5 ; Structure of an engineered aspartate aminotransferase 3ZZK ; 1.78 ; Structure of an engineered aspartate aminotransferase 4A00 ; 2.34 ; Structure of an engineered aspartate aminotransferase 5DII ; 1.804 ; Structure of an engineered bacterial microcompartment shell protein binding a [4Fe-4S] cluster 7AUD ; 2.96 ; Structure of an engineered helicase domain construct for human Bloom syndrome protein (BLM) 1DCA ; 2.2 ; STRUCTURE OF AN ENGINEERED METAL BINDING SITE IN HUMAN CARBONIC ANHYDRASE II REVEALS THE ARCHITECTURE OF A REGULATORY CYSTEINE SWITCH 1DCB ; 2.1 ; STRUCTURE OF AN ENGINEERED METAL BINDING SITE IN HUMAN CARBONIC ANHYDRASE II REVEALS THE ARCHITECTURE OF A REGULATORY CYSTEINE SWITCH 5A5C ; 2.097 ; Structure of an engineered neuronal LRRTM2 adhesion molecule 1QW7 ; 1.9 ; Structure of an Engineered Organophosphorous Hydrolase with Increased Activity Toward Hydrolysis of Phosphothiolate Bonds 6CO2 ; 2.49 ; Structure of an engineered protein (NUDT16TI) in complex with 53BP1 Tudor domains 2L8L ; ; Structure of an engineered splicing intein mutant based on Mycobacterium tuberculosis RecA 3TQP ; 2.2 ; Structure of an enolase (eno) from Coxiella burnetii 6P5U ; 2.1 ; Structure of an enoyl-CoA hydratase/aldolase isolated from a lignin-degrading consortium 2O6I ; 2.55 ; Structure of an Enterococcus Faecalis HD Domain Phosphohydrolase 3IRH ; 2.4 ; Structure of an Enterococcus Faecalis HD-domain protein complexed with dGTP and dATP 4LRL ; 2.35 ; Structure of an Enterococcus Faecalis HD-domain protein complexed with dGTP and dTTP 6IX4 ; 1.511 ; Structure of an epoxide hydrolase from Aspergillus usamii E001 (AuEH2) at 1.51 Angstroms resolution 7ZTA ; 2.7 ; Structure of an Escherichia coli 70S ribosome stalled by Tetracenomycin X during translation of an MAAAPQK(C) peptide 2BON ; 1.9 ; Structure of an Escherichia coli lipid kinase (YegS) 3I6Y ; 1.75 ; Structure of an esterase from the oil-degrading bacterium Oleispira antarctica 6H6X ; 2.25 ; Structure of an evolved dimeric form of the UbiD-class enzyme HmfF from Pelotomaculum thermopropionicum in complex with prFMN 1T0Z ; 2.6 ; Structure of an Excitatory Insect-specific Toxin with an Analgesic Effect on Mammalian from Scorpion Buthus martensii Karsch 2OG4 ; 2.0 ; Structure of an expanded Jab1-MPN-like domain of splicing factor Prp8p from yeast 3D30 ; 1.9 ; Structure of an expansin like protein from Bacillus Subtilis at 1.9A resolution 7JQE ; 2.4 ; Structure of an extracellular fragment of EsaA from Streptococcus gallolyticus 2D2M ; 2.85 ; Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi 2D2N ; 3.2 ; Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi 2IYL ; 2.1 ; Structure of an FtsY:GDP complex 6HKT ; 9.7 ; Structure of an H1-bound 6-nucleosome array 4Y9S ; 2.0 ; structure of an H300N mutant of potato epoxide hydrolase, StEH1 3RU8 ; 2.07 ; Structure of an HIV epitope scaffold in complex with neutralizing antibody b12 Fab 6NDS ; 1.65 ; Structure of an HMG-CoA lyase from Acenitobacter baumannii in complex with coenzyme A and 3-methylmalate 7KD3 ; 2.3 ; Structure of an HxlR/DUF24 family transcription regulator, CdTR_3200 from hypervirulent Clostridioides difficile R20291 8OFC ; ; Structure of an i-motif domain with the cytosine analog 1,3-diaza-2-oxophenoxacione (tC) at neutral pH 2Z8V ; 2.35 ; Structure of an IgNAR-AMA1 complex 2Z8W ; 2.45 ; Structure of an IgNAR-AMA1 complex 5JUG ; 0.96 ; Structure of an inactive (E45Q) variant of a beta-1,4-mannanase, SsGH134, in complex with Man5 6ZFN ; 1.1 ; Structure of an inactive E404Q variant of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with 1-methyl alpha-1,2-mannobiose 6ZJ1 ; 1.957 ; Structure of an inactive E404Q variant of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with tetrasaccharide N-glycan fragment and hexatungstotellurate(VI) TEW 3OJG ; 1.6 ; Structure of an inactive lactonase from Geobacillus kaustophilus with bound N-butyryl-DL-homoserine lactone 2VRQ ; 2.0 ; STRUCTURE OF AN INACTIVE MUTANT OF ARABINOFURANOSIDASE FROM THERMOBACILLUS XYLANILYTICUS IN COMPLEX WITH A PENTASACCHARIDE 3BXM ; 1.71 ; Structure of an inactive mutant of human glutamate carboxypeptidase II [GCPII(E424A)] in complex with N-acetyl-Asp-Glu (NAAG) 6Q4Z ; 1.55 ; Structure of an inactive variant (D94N) of MPT-2, a GDP-Man-dependent mannosyltransferase from Leishmania mexicana, in complex with beta-1,2-mannobiose 1QXQ ; ; STRUCTURE OF AN INDOLICIDIN PEPTIDE DERIVATIVE WITH HIGHER CHARGE 1HR1 ; ; Structure of an indolicidin peptide derivative with P-->A substitution 6WKO ; 2.401 ; Structure of an influenza C virus hemagglutinin-esterase-fusion (HEF2) intermediate 7PWD ; 2.6 ; Structure of an inhibited GRK2-G-beta and G-gamma complex 1FIV ; 2.0 ; STRUCTURE OF AN INHIBITOR COMPLEX OF PROTEINASE FROM FELINE IMMUNODEFICIENCY VIRUS 6FFC ; 3.56 ; Structure of an inhibitor-bound ABC transporter 4BBS ; 3.6 ; Structure of an initially transcribing RNA polymerase II-TFIIB complex 6V8Q ; 2.69958 ; Structure of an inner membrane protein required for PhoPQ regulated increases in outer membrane cardiolipin 3TR4 ; 2.0 ; Structure of an inorganic pyrophosphatase (ppa) from Coxiella burnetii 1XNQ ; 3.05 ; Structure of an Inosine-Adenine Wobble Base Pair Complex in the Context of the Decoding Center 7NP7 ; 4.03 ; Structure of an intact ESX-5 inner membrane complex, Composite C1 model 7NPR ; 3.82 ; Structure of an intact ESX-5 inner membrane complex, Composite C3 model 4QUV ; 2.743 ; Structure of an integral membrane delta(14)-sterol reductase 7U6P ; 2.35 ; Structure of an intellectual disability-associated ornithine decarboxylase variant G84R 7U6U ; 1.85 ; Structure of an intellectual disability-associated ornithine decarboxylase variant G84R in complex with PLP 6KVB ; ; Structure of an intra-locked G-quadruplex 2KM3 ; ; Structure of an intramolecular G-quadruplex containing a G.C.G.C tetrad formed by human telomeric variant CTAGGG repeats 8B28 ; 1.75 ; Structure of an intron-retention variant of the plant immune signalling protein EDS1 from Vitis vinifera 3TXY ; 1.7 ; Structure of an Isochorismatase family protein (BTH_II2229) from Burkholderia thailandensis 7WW2 ; 2.7 ; Structure of an Isocytosine specific deaminase Vcz 8IS4 ; 1.9 ; Structure of an Isocytosine specific deaminase Vcz in complexed with 5-FU 8IS5 ; 2.1 ; Structure of an Isocytosine specific deaminase Vcz with close state 6JYV ; 1.651 ; Structure of an isopenicillin N synthase from Pseudomonas aeruginosa PAO1 7PYL ; 1.7 ; Structure of an LPMO (expressed in E.coli) at 1.49x10^4 Gy 7PYU ; 1.4 ; Structure of an LPMO (expressed in E.coli) at 1.49x10^4 Gy 7PYP ; 1.6 ; Structure of an LPMO (expressed in E.coli) at 2.13x10^6 Gy 7PYN ; 1.4 ; Structure of an LPMO (expressed in E.coli) at 2.31x10^5 Gy 7PYO ; 1.4 ; Structure of an LPMO (expressed in E.coli) at 2.31x10^5 Gy 7PYM ; 1.75 ; Structure of an LPMO (expressed in E.coli) at 5.61x10^4 Gy 7PYQ ; 1.6 ; Structure of an LPMO (expressed in E.coli) at 6.35x10^6 Gy 7PZ7 ; 1.8 ; Structure of an LPMO at 1.13x10^6 Gy 7PZ4 ; 1.85 ; Structure of an LPMO at 2.07x10^4 Gy 7PZ6 ; 1.45 ; Structure of an LPMO at 2.22x10^5 Gy 7PZ8 ; 1.4 ; Structure of an LPMO at 3.12x10^6 Gy 7PZ3 ; 1.9 ; Structure of an LPMO at 5.37x10^3 Gy 7PZ5 ; 1.45 ; Structure of an LPMO at 9.56x10^4 Gy 7PXT ; 2.4 ; Structure of an LPMO, collected from serial synchrotron crystallography data. 2BNG ; 2.5 ; Structure of an M.tuberculosis LEH-like epoxide hydrolase 2I3H ; 1.62 ; Structure of an ML-IAP/XIAP chimera bound to a 4-mer peptide (AVPW) 1TW6 ; 1.713 ; Structure of an ML-IAP/XIAP chimera bound to a 9mer peptide derived from Smac 2I3I ; 2.3 ; Structure of an ML-IAP/XIAP chimera bound to a peptidomimetic 3F7H ; 1.8 ; Structure of an ML-IAP/XIAP chimera bound to a peptidomimetic 3F7I ; 1.9 ; Structure of an ML-IAP/XIAP chimera bound to a peptidomimetic 3GT9 ; 1.7 ; Structure of an ML-IAP/XIAP chimera bound to a peptidomimetic 3GTA ; 1.7 ; Structure of an ML-IAP/XIAP chimera bound to a peptidomimetic 1P16 ; 2.7 ; Structure of an mRNA capping enzyme bound to the phosphorylated carboxyl-terminal domain of RNA polymerase II 5MV0 ; 1.93 ; Structure of an N-terminal domain of a reptarenavirus L protein 2N5N ; ; Structure of an N-terminal domain of CHD4 4CKN ; 2.9 ; Structure of an N-terminal fragment of Leishmania SAS-6 containing parts of its coiled coil domain, F257E mutant 4CKP ; 3.45 ; Structure of an N-terminal fragment of Leishmania SAS-6 that contains part of its coiled coil domain 2N58 ; ; Structure of an N-terminal membrane-anchoring region of the glycosyltransferase WaaG 2YEP ; 2.7 ; STRUCTURE OF AN N-TERMINAL NUCLEOPHILE (NTN) HYDROLASE, OAT2, IN COMPLEX WITH GLUTAMATE 2OZK ; 2.9 ; Structure of an N-Terminal Truncated Form of Nendou (NSP15) From SARS-CORONAVIRUS 3E1S ; 2.2 ; Structure of an N-terminal truncation of Deinococcus radiodurans RecD2 2W4E ; 2.0 ; Structure of an N-terminally truncated Nudix hydrolase DR2204 from Deinococcus radiodurans 6ULO ; 1.3 ; Structure of an N-terminally truncated uncharacterized protein from Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni (strain Fiocruz L1-130) 2EVJ ; 1.89 ; Structure of an Ndt80-DNA complex (MSE mutant mA9C) 5HGV ; 2.05 ; Structure of an O-GlcNAc transferase point mutant, D554N in complex with peptide 2G7H ; ; Structure of an O6-Methylguanine DNA Methyltransferase from Methanococcus jannaschii (MJ1529) 472D ; 1.9 ; STRUCTURE OF AN OCTAMER RNA WITH TANDEM GG/UU MISPAIRS 4J8R ; 2.303 ; Structure of an octapeptide repeat of the prion protein bound to the POM2 Fab antibody fragment 3TR8 ; 2.503 ; Structure of an oligoribonuclease (orn) from Coxiella burnetii 4GRX ; 2.6 ; Structure of an omega-aminotransferase from Paracoccus denitrificans 3LWW ; 3.15 ; Structure of an open and closed conformation of Human Importin Beta bound to the Snurportin1 IBB-domain trapped in the same crystallographic asymmetric unit 5CSC ; 2.8 ; STRUCTURE OF AN OPEN FORM OF CHICKEN HEART CITRATE SYNTHASE AT 2.8 ANGSTROMS RESOLUTION 8AXV ; 2.8 ; Structure of an open form of CHIKV nsP1 capping pores 7WZ4 ; 3.0 ; Structure of an orphan GPCR-G protein signaling complex 8EY0 ; 2.4 ; Structure of an orthogonal PYR1*:HAB1* chemical-induced dimerization module in complex with mandipropamid 2B3X ; 2.54 ; Structure of an orthorhombic crystal form of human cytosolic aconitase (IRP1) 5C4I ; 2.274 ; Structure of an Oxalate Oxidoreductase 5K0A ; 1.706 ; Structure of an oxidoreductase from Synechocystis sp. PCC6803 5JRI ; 1.952 ; Structure of an oxidoreductase SeMet-labelled from Synechocystis sp. PCC6803 3K2O ; 1.75 ; Structure of an oxygenase 4P5O ; 3.1071 ; Structure of an RBX1-UBC12~NEDD8-CUL1-DCN1 complex: a RING-E3-E2~ubiquitin-like protein-substrate intermediate trapped in action 3TQM ; 2.45 ; Structure of an ribosomal subunit interface protein from Coxiella burnetii 205D ; 2.64 ; STRUCTURE OF AN RNA DOUBLE HELIX INCLUDING URACIL-URACIL BASE PAIRS IN AN INTERNAL LOOP 438D ; 2.5 ; STRUCTURE OF AN RNA DUPLEX R(GGGCGCUCC)2 WITH NON-ADJACENT G.U BASE PAIRS 1UUU ; ; STRUCTURE OF AN RNA HAIRPIN LOOP WITH A 5'-CGUUUCG-3' LOOP MOTIF BY HETERONUCLEAR NMR SPECTROSCOPY AND DISTANCE GEOMETRY, 15 STRUCTURES 5OIK ; 3.7 ; Structure of an RNA polymerase II-DSIF transcription elongation complex 3DS7 ; 1.85 ; Structure of an RNA-2'-deoxyguanosine complex 6HMJ ; 2.51 ; Structure of an RNA-binding Light-Oxygen-Voltage Receptor 4OO1 ; 3.3 ; Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA 4LCD ; 3.1 ; Structure of an Rsp5xUbxSna3 complex: Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3 3SZQ ; 2.353 ; Structure of an S. pombe APTX/DNA/AMP/Zn complex 2WND ; 1.6 ; Structure of an S100A7 triple mutant 5AN3 ; 2.82 ; Structure of an Sgt1-Skp1 Complex 2PNA ; ; STRUCTURE OF AN SH2 DOMAIN OF THE P85 ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL-3-OH KINASE 2PNB ; ; STRUCTURE OF AN SH2 DOMAIN OF THE P85 ALPHA SUBUNIT OF PHOSPHATIDYLINOSITOL-3-OH KINASE 7DU0 ; 1.96 ; Structure of an type I-F anti-crispr protein 4NQK ; 3.7 ; Structure of an Ubiquitin complex 3H36 ; 1.8 ; Structure of an uncharacterized domain in polyribonucleotide nucleotidyltransferase from Streptococcus mutans UA159 6OHZ ; 2.05 ; Structure of an uncharacterized protein from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) 6OKH ; 1.85 ; Structure of an uncharacterized protein from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) 2BF1 ; 4.0 ; Structure of an unliganded and fully-glycosylated SIV gp120 envelope glycoprotein 2YG8 ; 2.0 ; Structure of an unusual 3-Methyladenine DNA Glycosylase II (Alka) from Deinococcus radiodurans 2YG9 ; 1.95 ; Structure of an unusual 3-Methyladenine DNA Glycosylase II (Alka) from Deinococcus radiodurans 4LE5 ; 1.7 ; Structure of an Unusual S-adenosylmethionine synthetase from Campylobacter jejuni 4LJC ; 1.86 ; Structure of an X-ray-induced photobleached state of IrisFP 2KP3 ; ; Structure of ANA-RNA hybrid duplex 5HGR ; 1.681 ; Structure of Anabaena (Nostoc) sp. PCC 7120 Orange Carotenoid Protein binding canthaxanthin 5FCY ; 2.508 ; Structure of Anabaena (Nostoc) sp. PCC 7120 Red Carotenoid Protein binding a mixture of carotenoids 5FCX ; 3.206 ; Structure of Anabaena (Nostoc) sp. PCC 7120 Red Carotenoid Protein binding canthaxanthin 2M3G ; ; Structure of Anabaena Sensory Rhodopsin Determined by Solid State NMR Spectroscopy 5UK6 ; ; Structure of Anabaena Sensory Rhodopsin Determined by Solid State NMR Spectroscopy and DEER 4UD2 ; 2.3 ; Structure of anaerobically purified D. fructosovorans NiFe- hydrogenase 8OVY ; 1.537 ; Structure of analogue of superfolded GFP 5J6Z ; ; Structure of anastellin bound to beta-strands A and B from the third type III domain of fibronectin 4P80 ; 1.6 ; Structure of ancestral PyrR protein (AncGREENPyrR) 4P81 ; 1.8 ; Structure of ancestral PyrR protein (AncORANGEPyrR) 4P3K ; 1.7 ; Structure of ancestral PyrR protein (PLUMPyrR) 6Y6Q ; 2.7 ; Structure of Andes virus envelope glycoprotein Gc in postfusion conformation 7T83 ; 2.1 ; Structure of angiotensin II type I receptor (AT1R) nanobody antagonist AT118i4h32 7T84 ; 1.6 ; Structure of angiotensin II type I receptor (AT1R) nanobody antagonist AT118i4h32 G26D T57I variant 3CCR ; 3.0 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation A2488C. Density for anisomycin is visible but not included in the model. 3CCQ ; 2.9 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation A2488U 3CC7 ; 2.7 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation C2487U 3CCJ ; 3.3 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation C2534U 3CCS ; 2.95 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2482A 3CCU ; 2.8 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2482C 3CCM ; 2.55 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2611U 3CCV ; 2.9 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation G2616A 3CCE ; 2.75 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation U2535A 3CCL ; 2.9 ; Structure of Anisomycin resistant 50S Ribosomal Subunit: 23S rRNA mutation U2535C. Density for Anisomycin is visible but not included in model. 4O60 ; 2.52 ; Structure of ankyrin repeat protein 2CH1 ; 2.4 ; Structure of Anopheles gambiae 3-hydroxykynurenine transaminase 4F7F ; 1.8 ; Structure of Anopheles gambiae odorant binding protein 20 3V2L ; 1.8 ; Structure of Anopheles gambiae odorant binding protein 20 bound to polyethylene glycol 4GTN ; 2.032 ; Structure of anthranilate phosphoribosyl transferase from acinetobacter baylyi 5CWA ; 2.1 ; Structure of Anthranilate Synthase Component I (TrpE) from Mycobacterium tuberculosis with inhibitor bound 1S26 ; 3.0 ; Structure of Anthrax Edema Factor-Calmodulin-alpha,beta-methyleneadenosine 5'-triphosphate Complex Reveals an Alternative Mode of ATP Binding to the Catalytic Site 3BKM ; 1.6 ; Structure of anti-amyloid-beta Fab WO2 (Form A, P212121) 5XLI ; 1.696 ; Structure of anti-Angiotensin II type2 receptor antibody (D5711-4A03) 7UE9 ; 1.75 ; Structure of anti-C3d Fab(3d8b) in complex with C3d 2VL5 ; 2.1 ; Structure of anti-collagen type II FAb CIIC1 6JHV ; 2.321 ; Structure of anti-CRISPR AcrIIC3 6JHW ; 2.04 ; Structure of anti-CRISPR AcrIIC3 and NmeCas9 HNH 7MSL ; 1.73 ; Structure of anti-CRISPR AcrIIC4 from Haemophilus parainfluenzae 6N05 ; 2.5 ; Structure of anti-crispr protein, AcrIIC2 6W4V ; 2.1 ; Structure of anti-ferroportin Fab45D8 2G60 ; 1.85 ; Structure of anti-FLAG M2 Fab domain 7BG1 ; 1.86 ; Structure of anti-FLAG M2 Fab domain remodeled based on proteomic sequencing 6KS2 ; 1.753 ; Structure of anti-Ghrelin receptor antibody 6UUP ; 2.20002 ; Structure of anti-hCD33 conditional scFv 6UY3 ; 2.0 ; Structure of anti-hCD33 conditional scFv with methotrexate 6KVF ; 2.79 ; Structure of anti-hCXCR2 abN48 in complex with its CXCR2 epitope 6KVA ; 2.2 ; Structure of anti-hCXCR2 abN48-2 in complex with its CXCR2 epitope 5UXQ ; 2.415 ; Structure of anti-HIV trimer apex antibody PGT143 3LRG ; 2.05 ; Structure of anti-huntingtin VL domain 3LRH ; 2.6 ; Structure of anti-huntingtin VL domain in complex with huntingtin peptide 7S8G ; 2.57 ; Structure of anti-LASV Fab 25.10C with FNQI mutation 6QBC ; 1.56 ; structure of anti-Mcl1 Fab 6K84 ; ; Structure of anti-prion RNA aptamer 7KKJ ; 2.05 ; Structure of anti-SARS-CoV-2 Spike nanobody mNb6 5E2U ; 2.4 ; Structure of anti-TAU AT8 FAB in the presence of phosphopeptide 8TFN ; 2.54 ; Structure of anti-TCRvbeta6-5 antibody in complex with the cognate TCR 4K23 ; 1.6 ; Structure of anti-uPAR Fab ATN-658 4K24 ; 4.5 ; Structure of anti-uPAR Fab ATN-658 in complex with uPAR 1PP5 ; ; Structure of Antibacterial Peptide Microcin J25: a 21-Residue Lariat Protoknot 7BWL ; 2.25 ; Structure of antibiotic sequester from Pseudomonas aerurinosa 5WN9 ; 1.551 ; Structure of antibody 2D10 bound to the central conserved region of RSV G 5WNA ; 2.4 ; Structure of antibody 3D3 bound to the central conserved region of RSV G 5WNB ; 2.4 ; Structure of antibody 3D3 bound to the linear epitope of RSV G 7T8W ; 3.1 ; Structure of antibody 3G12 bound to Respiratory Syncytial Virus G central conserved domain mutant S177Q 6UVO ; 2.9 ; Structure of antibody 3G12 bound to the central conserved domain of RSV G 6LDW ; 1.6 ; Structure of antibody C9 in complex with methylated peptide 5N47 ; 3.0 ; Structure of Anticalin N7E in complex with the three-domain fragment Fn7B8 of human oncofetal fibronectin 5N48 ; 1.6 ; Structure of Anticalin N9B in complex with extra-domain B of human oncofetal fibronectin 1MSI ; 1.25 ; STRUCTURE OF ANTIFREEZE GLYCOPROTEIN QAE(HPLC 12) 5UEK ; 1.7 ; Structure of antigen-Fab 12E complex with Histone chaperone ASF1 5UCB ; 1.521 ; Structure of antigen-Fab complex with engineered switch residue region. 5UEA ; 1.701 ; Structure of antigen-Fab complex with Histone chaperone ASF1 2MJQ ; ; Structure of antimicrobial peptide anoplin in DPC micelles 1OT0 ; ; Structure of Antimicrobial Peptide, HP (2-20) and its Analogues Derived from Helicobacter pylori, as Determined by 1H NMR Spectroscopy 1P0G ; ; Structure of Antimicrobial Peptide, HP (2-20) and its Analogues Derived from Helicobacter pylori, as Determined by 1H NMR Spectroscopy 2R9Y ; 2.65 ; Structure of antiplasmin 5VBL ; 2.6 ; Structure of apelin receptor in complex with agonist peptide 2RH5 ; 2.48 ; Structure of Apo Adenylate Kinase from Aquifex Aeolicus 2RH8 ; 2.22 ; Structure of apo anthocyanidin reductase from vitis vinifera 3HFS ; 3.17 ; Structure of apo anthocyanidin reductase from vitis vinifera 4PRS ; 1.47 ; Structure of apo ArgBP from T. maritima 5W56 ; 2.03 ; Structure of Apo AztC 6N01 ; 1.98 ; Structure of apo AztD from Citrobacter koseri 5A9V ; 3.31 ; Structure of apo BipA 3QDS ; 1.15 ; Structure of apo Boletus edulis lectin 4GGT ; 1.693 ; Structure of apo Bradavidin2 (Form B) 5HT1 ; 2.651 ; Structure of apo C. glabrata FKBP12 3OO0 ; 1.55 ; Structure of apo CheY A113P 6Y9I ; 1.9 ; Structure of apo Chimpanzee Polyomavirus VP1 8U4N ; 2.72 ; Structure of Apo CXCR4/Gi complex 4ELX ; 2.191 ; Structure of apo E.coli. 1,4-dihydroxy-2- naphthoyl CoA synthases with Cl 6Y67 ; 2.618 ; Structure of apo Finch Polyomavirus VP1 5I98 ; 1.999 ; Structure of apo FKBP12(P104G) from C. albicans 4Z1A ; 2.0 ; Structure of apo form KDO8PS from H.pylori 3MD9 ; 1.5 ; Structure of apo form of a periplasmic heme binding protein 2WK7 ; 2.5 ; Structure of apo form of Vibrio cholerae CqsA 2Q9A ; 2.24 ; Structure of Apo FTSY 6Y65 ; 1.45 ; Structure of apo Goose Hemorrhagic Polyomavirus VP1 6CPY ; 1.7 ; Structure of apo GRMZM2G135359 pseudokinase 3MOK ; 1.55 ; Structure of Apo HasAp from Pseudomonas aeruginosa to 1.55A Resolution 6QYH ; 1.94 ; Structure of Apo HPAB from E.coli 4ZVW ; 2.4 ; Structure of apo human ALDH7A1 in space group C2 4ZVX ; 1.9 ; Structure of apo human ALDH7A1 in space group P4212 6W4S ; 3.2 ; Structure of apo human ferroportin in lipid nanodisc 2WQM ; 2.1 ; Structure of apo human Nek7 6Y5Z ; 1.549 ; Structure of apo Human Polyomavirus 12 VP1 5UAX ; 1.85 ; Structure of apo human PYCR-1 crystallized in space group C2 5UAW ; 1.85 ; Structure of apo human PYCR-1 crystallized in space group P21212 6TEJ ; 2.7 ; Structure of apo IrtAB devoid SID in complex with sybody Syb_NL5 5YBJ ; 2.341 ; Structure of apo KANK1 ankyrin domain 6WU1 ; 3.09 ; Structure of apo LaINDY 6KLC ; 3.9 ; Structure of apo Lassa virus polymerase 6KLD ; 3.58 ; Structure of apo Machupo virus polymerase 4WMS ; 1.9 ; STRUCTURE OF APO MBP-MCL1 AT 1.9A 6Y5X ; 2.3 ; Structure of apo New Jersey Polyomavirus VP1 5I4Z ; 1.95 ; Structure of apo OmoMYC 5IY2 ; 1.15 ; Structure of apo OXA-143 carbapenemase 5HTG ; 2.4 ; Structure of apo P1 form of Candida albicans FKBP12 4FD8 ; 1.52 ; Structure of apo S70C SHV beta-lactamase 7AR6 ; 1.4 ; Structure of apo SARS-CoV-2 Main Protease with large beta angle, space group C2. 7AR5 ; 1.4 ; Structure of apo SARS-CoV-2 Main Protease with small beta angle, space group C2. 8H3D ; 3.27 ; Structure of apo SARS-CoV-2 spike protein with one RBD up 6Y61 ; 2.45 ; Structure of apo Sheep Polyomavirus VP1 3SZI ; 1.4 ; Structure of apo shwanavidin (P21 form) 2Q5R ; 2.3 ; Structure of apo Staphylococcus aureus D-tagatose-6-phosphate kinase 5M0X ; 1.8 ; Structure of apo structure of GH36 alpha-galactosidase from Thermotoga maritima 2R60 ; 1.8 ; Structure of apo Sucrose Phosphate Synthase (SPS) of Halothermothrix orenii 6E4O ; 1.8 ; Structure of apo T. brucei RRM: P4(1)2(1)2 form 1LIO ; 2.5 ; STRUCTURE OF APO T. GONDII ADENOSINE KINASE 8R5Q ; 2.62 ; Structure of apo TDO with a bound inhibitor 8R5R ; 3.078 ; Structure of apo TDO with a bound inhibitor 6ZD1 ; 2.47 ; Structure of apo telomerase from Candida Tropicalis 6ZD6 ; 2.64 ; Structure of apo telomerase from Candida Tropicalis 6ZD2 ; 2.84 ; Structure of apo telomerase from Candida Tropicalis truncated from C-terminal domain 8OX0 ; 2.52 ; Structure of apo telomeric nucleosome 1SXI ; 3.0 ; Structure of apo transcription regulator B. megaterium 6UPB ; 1.89 ; Structure of apo trehalose-6-phosphate phosphatase from Salmonella typhimurium 1P4O ; 1.5 ; Structure of Apo unactivated IGF-1R KInase domain at 1.5A resolution. 6W3B ; 2.57 ; Structure of apo unphosphorylated IRE1 7K57 ; 3.7 ; Structure of apo VCP dodecamer generated from bacterially recombinant VCP/p97 7K59 ; 4.2 ; Structure of apo VCP hexamer generated from bacterially recombinant VCP/p97 6K20 ; 2.58 ; Structure of Apo YdiU 8EZW ; 2.0 ; Structure of Apo ZrgA deletion 124-184 from Vibrio cholerae 6CPE ; 2.45 ; Structure of apo, dephosphorylated Aurora A (122-403) in an active conformation 5UL2 ; 2.552 ; Structure of Apo, SeMet-labeled Cobalamin-dependent S-adenosylmethionine radical enzyme OxsB 1WFC ; 2.3 ; STRUCTURE OF APO, UNPHOSPHORYLATED, P38 MITOGEN ACTIVATED PROTEIN KINASE P38 (P38 MAP KINASE) THE MAMMALIAN HOMOLOGUE OF THE YEAST HOG1 PROTEIN 1BI0 ; 2.3 ; STRUCTURE OF APO-AND HOLO-DIPHTHERIA TOXIN REPRESSOR 1BI1 ; 2.2 ; STRUCTURE OF APO-AND HOLO-DIPHTHERIA TOXIN REPRESSOR 1BI2 ; 2.3 ; STRUCTURE OF APO-AND HOLO-DIPHTHERIA TOXIN REPRESSOR 1BI3 ; 2.4 ; STRUCTURE OF APO-AND HOLO-DIPHTHERIA TOXIN REPRESSOR 1AIZ ; 1.8 ; STRUCTURE OF APO-AZURIN FROM ALCALIGENES DENITRIFICANS AT 1.8 ANGSTROMS RESOLUTION 1AZB ; 2.2 ; STRUCTURE OF APO-AZURIN FROM ALCALIGENES DENITRIFICANS AT 1.8 ANGSTROMS RESOLUTION 1AZC ; 1.8 ; STRUCTURE OF APO-AZURIN FROM ALCALIGENES DENITRIFICANS AT 1.8 ANGSTROMS RESOLUTION 8I97 ; 3.19 ; Structure of Apo-C3aR-Go complex (Glacios) 8I9S ; 3.26 ; Structure of Apo-C3aR-Go complex (Titan) 2IX7 ; 2.5 ; Structure of apo-calmodulin bound to unconventional myosin V 3U9B ; 3.2 ; Structure of apo-CATI 6EDM ; 1.4 ; Structure of apo-CDD-1 beta-lactamase 7LNO ; 1.58 ; Structure of apo-CDD-1 beta-lactamase in imidazole and MPD 6VXF ; 3.5 ; Structure of apo-closed ABCG2 6YWP ; 2.25 ; Structure of apo-CutA 5IQY ; 2.4 ; Structure of apo-Dehydroascorbate Reductase from Pennisetum Glaucum phased by Iodide-SAD method 1BYI ; 0.97 ; STRUCTURE OF APO-DETHIOBIOTIN SYNTHASE AT 0.97 ANGSTROMS RESOLUTION 7QIA ; 3.5 ; Structure of apo-EleNRMT in complex with two nanobodies at 3.5A 3V8Y ; 2.15 ; Structure of apo-glycogenin truncated at residue 270 3V8Z ; 2.2 ; Structure of apo-glycogenin truncated at residue 270 complexed with UDP 7XPZ ; 3.4 ; Structure of Apo-hSLC19A1 7VQ1 ; 3.76 ; Structure of Apo-hsTRPM2 channel 7VQ2 ; 3.68 ; Structure of Apo-hsTRPM2 channel TM domain 6RWV ; 1.63864 ; Structure of apo-LmCpfC 5MYP ; 1.95 ; Structure of apo-TbALDH3 4CVP ; 2.11 ; Structure of Apobacterioferritin 4CVR ; 1.1 ; Structure of Apobacterioferritin Y25F variant 4CVS ; 1.392 ; Structure of Apobacterioferritin Y45F variant 4CVT ; 1.794 ; Structure of Apobacterioferritin Y58F variant 8FIM ; 2.22 ; Structure of APOBEC3A (E72A inactive mutant) in complex with TTC-hairpin DNA substrate 7V66 ; 1.89 ; Structure of Apoferritin 1FTG ; 2.0 ; STRUCTURE OF APOFLAVODOXIN: CLOSURE OF A TYROSINE/TRYPTOPHAN AROMATIC GATE LEADS TO A COMPACT FOLD 2YG2 ; 1.7 ; Structure of apolioprotein M in complex with Sphingosine 1-Phosphate 3GAD ; 1.8 ; Structure of apomif 1OWL ; 1.8 ; Structure of apophotolyase from Anacystis nidulans 1HQV ; 2.3 ; STRUCTURE OF APOPTOSIS-LINKED PROTEIN ALG-2 1TT5 ; 2.6 ; Structure of APPBP1-UBA3-Ubc12N26: a unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8 2NVU ; 2.8 ; Structure of APPBP1-UBA3~NEDD8-NEDD8-MgATP-Ubc12(C111A), a trapped ubiquitin-like protein activation complex 5WZK ; 2.8 ; Structure of APUM23-deletion-of-insert-region-GGAAUUGACGG 5WZG ; 2.55 ; Structure of APUM23-GAAUUGACGG 5WZH ; 2.509 ; Structure of APUM23-GGAAUUGACGG 5WZI ; 2.75 ; Structure of APUM23-GGAGUUGACGG 5WZJ ; 2.101 ; Structure of APUM23-GGAUUUGACGG 8SYJ ; 2.2 ; Structure of apurinic/apyrimidinic DNA lyase TK0353 from Thermococcus kodakarensis (Iodide crystal form) 8GM7 ; 1.75 ; Structure of apurinic/apyrimidinic DNA Lyase TK0353 from Thermococcus kodakarensis (Native Crystal Form) 8GM6 ; 1.98 ; Structure of apurinic/apyrimidinic DNA lyase TK0353 from Thermococcus kodakarensis (Selenomethionine) 2E55 ; 2.15 ; Structure of AQ2163 protein from Aquifex aeolicus 7CJS ; 1.8 ; structure of aquaporin 1FQY ; 3.8 ; STRUCTURE OF AQUAPORIN-1 AT 3.8 A RESOLUTION BY ELECTRON CRYSTALLOGRAPHY 3IYZ ; 10.0 ; Structure of Aquaporin-4 S180D mutant at 10.0 A resolution from electron micrograph 2ZZ9 ; 2.8 ; Structure of aquaporin-4 S180D mutant at 2.8 A resolution by electron crystallography 2NUB ; 3.2 ; Structure of Aquifex aeolicus Argonuate 2PNF ; 1.8 ; Structure of Aquifex Aeolicus FabG 3-oxoacyl-(acyl-carrier protein) reductase 2ZXH ; 3.2 ; Structure of Aquifex aeolicus GidA in the form I crystal 2ZXI ; 2.3 ; Structure of Aquifex aeolicus GidA in the form II crystal 8YT4 ; 1.42 ; Structure of Aquifex aeolicus Lumazine Synthase by Cryo-Electron Microscopy to 1.42 Angstrom Resolution 4TYX ; 1.64 ; Structure of aquoferric sperm whale myoglobin L29H/F33Y/F43H/S92A mutant 4MQI ; 1.92 ; Structure of Aquomet Hemoglobin Bristol-Alesha alphawtbetaV67M 4MQH ; 2.5 ; Structure of Aquomet Hemoglobin Evans alphaV62Mbetawt 3V49 ; 1.7 ; Structure of ar lbd with activator peptide and sarm inhibitor 1 3V4A ; 1.95 ; Structure of ar lbd with activator peptide and sarm inhibitor 2 3LE2 ; 2.2 ; Structure of Arabidopsis AtSerpin1. Native Stressed Conformation 5LAL ; 1.4 ; Structure of Arabidopsis dirigent protein AtDIR6 6DHV ; 2.099 ; Structure of Arabidopsis Fatty Acid Amide Hydrolase 6DII ; 3.2 ; Structure of Arabidopsis Fatty Acid Amide Hydrolase in Complex with methyl linolenyl fluorophosphonate 3ADG ; 1.7 ; Structure of Arabidopsis HYL1 and its molecular implications for miRNA processing 3ADI ; 3.2 ; Structure of Arabidopsis HYL1 and its molecular implications for miRNA processing 3ADJ ; 3.0 ; Structure of Arabidopsis HYL1 and its molecular implications for miRNA processing 2QSU ; 2.0 ; Structure of Arabidopsis thaliana 5'-Methylthioadenosine nucleosidase in apo form 7XA9 ; 2.84 ; Structure of Arabidopsis thaliana CLCa 6R88 ; 1.6 ; Structure of Arabidopsis thaliana GLR3.3 ligand-binding domain in complex with glycine 6R89 ; 2.5 ; Structure of Arabidopsis thaliana GLR3.3 ligand-binding domain in complex with L-cysteine 6R85 ; 2.0 ; Structure of Arabidopsis thaliana GLR3.3 ligand-binding domain in complex with L-glutamate 6R8A ; 3.1 ; Structure of Arabidopsis thaliana GLR3.3 ligand-binding domain in complex with L-methionine 6ILT ; 2.2 ; Structure of Arabidopsis thaliana Ribokinase complexed with ATP and Magnesium ion 6ILS ; 1.8 ; Structure of Arabidopsis thaliana Ribokinase complexed with Ribose and ATP 6ILR ; 1.972 ; Structure of Arabidopsis thaliana Ribokinase in unligand form 7LHV ; 2.75 ; Structure of Arabidopsis thaliana sulfate transporter AtSULTR4;1 6ZPY ; 1.27 ; Structure of Arabinose-Bound MgGH51 a-L-Arabinofuranosidase Crystal Type 1 6ZQ1 ; 1.7 ; Structure of AraDNJ-Bound MgGH51 a-L-Arabinofuranosidase Crystal Type 1 2KY6 ; ; Structure of ARC92VBD/MED25ACID 3PEN ; 2.3005 ; Structure of archaeal initiation factor aIF2gamma subunit delta 37-47 from Sulfolobus solfataricus in the GDP-bound form. 1WNU ; 2.8 ; Structure of Archaeal Trans-Editing Protein AlaX in complex with L-serine 1WXO ; 1.88 ; Structure of Archaeal Trans-Editing Protein AlaX in complex with zinc 1NEE ; ; Structure of archaeal translation factor aIF2beta from Methanobacterium thermoautrophicum 2FWR ; 2.6 ; Structure of Archaeoglobus Fulgidis XPB 6FSW ; 1.9 ; Structure of Archaeoglobus fulgidus SBDS protein at 1.9 Angstrom 6ZXY ; 2.75 ; Structure of Archaeoglobus fulgidus Trm11 m2G10 tRNA methyltransferase enzyme 6ZXV ; 1.88 ; Structure of Archaeoglobus fulgidus Trm11 m2G10 tRNA methyltransferase enzyme bound to sinefungin 6ZXW ; 2.19 ; Structure of Archaeoglobus fulgidus Trm11-Trm112 m2G10 tRNA methyltransferase complex bound to sinefungin 1YAR ; 1.9 ; Structure of Archeabacterial 20S proteasome mutant D9S- PA26 complex 1YAU ; 2.4 ; Structure of Archeabacterial 20S proteasome- PA26 complex 4N2P ; 1.435 ; Structure of Archease from Pyrococcus horikoshii 6HU6 ; 1.904 ; Structure of ARF1 RNA 1RE0 ; 2.4 ; Structure of ARF1-GDP bound to Sec7 domain complexed with Brefeldin A 5MDV ; 2.97 ; Structure of ArfA and RF2 bound to the 70S ribosome (accommodated state) 5MDY ; 3.35 ; Structure of ArfA and TtRF2 bound to the 70S ribosome (pre-accommodated state) 5MDW ; 3.06 ; Structure of ArfA(A18T) and RF2 bound to the 70S ribosome (pre-accommodated state) 8ACI ; 1.85 ; Structure of ARG-117 Fab in complex with a fragment of complement C2, neutral pH 3L1L ; 3.002 ; Structure of Arg-bound Escherichia coli AdiC 8E5N ; 2.538 ; Structure of ARG1 complex with pyrrolidine-based non-boronic acid inhibitor 10 8E5M ; 1.84 ; Structure of ARG1 complex with pyrrolidine-based non-boronic acid inhibitor 6 6SS6 ; 3.25 ; Structure of arginase-2 in complex with the inhibitory human antigen-binding fragment Fab C0020187 6SS2 ; 2.4 ; Structure of arginase-2 in complex with the inhibitory human antigen-binding fragment Fab C0021158 6SS4 ; 2.9 ; Structure of arginase-2 in complex with the inhibitory human antigen-binding fragment Fab C0021181 1RXX ; 2.45 ; Structure of arginine deiminase 1SD0 ; 2.3 ; Structure of arginine kinase C271A mutant 1P52 ; 1.9 ; Structure of Arginine kinase E314D mutant 6KY3 ; 1.34 ; Structure of arginine kinase H284A mutant 6GVC ; 2.6 ; Structure of ArhGAP12 bound to G-Actin 3LNQ ; 2.25 ; Structure of Aristaless homeodomain in complex with DNA 3UKU ; 2.75 ; Structure of Arp2/3 complex with bound inhibitor CK-869 8A5D ; 2.9 ; Structure of Arp4-Ies4-N-actin-Arp8-Ino80HSA subcomplex (A-module) of Chaetomium thermophilum INO80 8A5P ; 3.4 ; Structure of Arp4-Ies4-N-actin-Arp8-Ino80HSA subcomplex (A-module) of Chaetomium thermophilum INO80 on curved DNA 8A5Q ; 3.3 ; Structure of Arp4-Ies4-N-actin-Arp8-Ino80HSA subcomplex (A-module) of Chaetomium thermophilum INO80 on straight DNA 8A5A ; 3.3 ; Structure of Arp4-Ies4-N-actin-Arp8-Ino80HSA subcomplex (A-module) of INO80 8A5O ; 3.2 ; Structure of Arp4-Ies4-N-actin-Arp8-Ino80HSA subcomplex (A-module) of S. cerevisiae INO80 4I6M ; 2.801 ; Structure of Arp7-Arp9-Snf2(HSA)-RTT102 subcomplex of SWI/SNF chromatin remodeler. 8AS2 ; 3.2 ; Structure of arrestin2 in complex with 4P CCR5 phosphopeptide and Fab30 8AS3 ; 3.5 ; Structure of arrestin2 in complex with 6P CCR5 phosphopeptide and Fab30 6X8W ; 1.972 ; Structure of ArrX Y138A mutant protein bound to sulfate from Chrysiogenes arsenatis 3GXQ ; 2.35 ; Structure of ArtA and DNA complex 6F5F ; 2.98 ; Structure of ARTD2/PARP2 WGR domain bound to double strand DNA with 5 nucleotide overhang and 5'phosphate 6F1K ; 2.2 ; Structure of ARTD2/PARP2 WGR domain bound to double strand DNA without 5'phosphate 6F5B ; 2.8 ; Structure of ARTD2/PARP2 WGR domain bound to double stranded DNA with 5'phosphate 7APV ; 1.95 ; Structure of Artemis/DCLRE1C/SNM1C in complex with Ceftriaxone 1J4U ; 2.9 ; Structure of Artocarpin Complexed with Me-alpha-Mannose 1J4S ; 2.5 ; Structure of Artocarpin: a Lectin with Mannose Specificity (Form 1) 1J4T ; 2.4 ; Structure of Artocarpin: a Lectin with Mannose Specificity (Form 2) 5L2P ; 2.56 ; Structure of arylesterase 2J6P ; 2.15 ; STRUCTURE OF AS-SB REDUCTASE FROM LEISHMANIA MAJOR 6K99 ; 4.1 ; Structure of ASC CARD filament 6O22 ; ; Structure of Asf1-H3:H4-Rtt109-Vps75 histone chaperone-lysine acetyltransferase complex with the histone substrate. 6VRE ; 2.29 ; Structure of ASK1 bound to BIO-1772961 6NDK ; 3.64 ; Structure of ASLSufA6 A37.5 bound to the 70S A site 5K5O ; 3.2 ; Structure of AspA-26mer DNA complex 5K5Q ; 2.649 ; Structure of AspA-DNA complex: novel centromere bindng protein-centromere complex 1IVR ; 2.4 ; STRUCTURE OF ASPARTATE AMINOTRANSFERASE 4F5F ; 2.25 ; Structure of Aspartate Aminotransferase Conversion to Tyrosine Aminotransferase: Chimera P1. 2GYY ; 2.1 ; Structure of aspartate semialdehyde dehydrogenase (ASADH) from Streptococcus pneumoniae 2GZ2 ; 2.1 ; Structure of Aspartate Semialdehyde Dehydrogenase (ASADH) from Streptococcus pneumoniae complexed with 2',5'-ADP 2GZ1 ; 1.8 ; Structure of Aspartate Semialdehyde Dehydrogenase (ASADH) from Streptococcus pneumoniae complexed with NADP 2GZ3 ; 2.1 ; Structure of Aspartate Semialdehyde Dehydrogenase (ASADH) from Streptococcus pneumoniae complexed with NADP and aspartate-semialdehyde 8CP2 ; 2.1 ; Structure of Aspartate-N-hydroxylase (FzmM)from Streptomyces sp. V2: complex with NADPH and L-aspartate 8CP5 ; 2.54 ; Structure of Aspartate-N-hydroxylase (FzmM)from Streptomyces sp. V2: complex with NADPH and Sulphate 1YS4 ; 2.29 ; Structure of Aspartate-Semialdehyde Dehydrogenase from Methanococcus jannaschii 5CKU ; 2.1 ; Structure of Aspergillus fumigatus ornithine hydroxylase (SidA) mutant N323A bound to NADP and ornithine 5DXL ; 1.573 ; Structure of Aspergillus fumigatus trehalose-6-phosphate phosphatase crystal form 1 5DXN ; 1.65 ; Structure of Aspergillus fumigatus trehalose-6-phosphate phosphatase crystal form 2 5DXO ; 1.9 ; Structure of Aspergillus fumigatus trehalose-6-phosphate phosphatase crystal form 3 5HVM ; 2.815 ; Structure of Aspergillus fumigatus trehalose-6-phosphate synthase A in complex with UDP and validoxylamine A 5HVO ; 2.467 ; Structure of Aspergillus fumigatus trehalose-6-phosphate synthase B in complex with UDP and validoxylamine A 4U8I ; 2.05 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant F66A 4U8N ; 2.3 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant F66A complexed with UDP 4WX1 ; 2.2 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant F66A determined from a crystal soaked with UDP-Galactopyranose 4U8L ; 2.3 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant N207A 4U8O ; 2.3 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant N207A complexed with UDP 4U8K ; 2.2 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant Q107A 4U8J ; 2.3 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant Y104A 4U8M ; 2.3 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant Y317A 4U8P ; 2.05 ; Structure of Aspergillus fumigatus UDP-Galactopyranose mutase mutant Y317A complexed with UDP 1KS5 ; 2.1 ; Structure of Aspergillus niger endoglucanase 1QO7 ; 1.8 ; Structure of Aspergillus niger epoxide hydrolase 4MAI ; 1.4 ; Structure of Aspergillus oryzae AA11 Lytic Polysaccharide Monooxygenase with Cu(I) 4MAH ; 1.55 ; Structure of Aspergillus oryzae AA11 Lytic Polysaccharide Monooxygenase with Zn 3QPD ; 1.571 ; Structure of Aspergillus oryzae cutinase expressed in Pichia pastoris, crystallized in the presence of Paraoxon 3N8Y ; 2.6 ; Structure of Aspirin Acetylated Cyclooxygenase-1 in Complex with Diclofenac 1AST ; 1.8 ; STRUCTURE OF ASTACIN AND IMPLICATIONS FOR ACTIVATION OF ASTACINS AND ZINC-LIGATION OF COLLAGENASES 1QJJ ; 1.86 ; Structure of astacin with a hydroxamic acid inhibitor 1QJI ; 2.14 ; Structure of astacin with a transition-state analogue inhibitor 5J67 ; 3.16 ; Structure of Astrotactin-2, a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development 5J68 ; 5.221 ; Structure of Astrotactin-2, a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development 5J69 ; 3.63 ; Structure of Astrotactin-2, a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development 5TXT ; 2.7 ; Structure of asymmetric apo/holo ALAS dimer from S. cerevisiae 1SE9 ; ; Structure of At3g01050, a ubiquitin-fold protein from Arabidopsis thaliana 7N5A ; 3.95 ; Structure of AtAtm3 in the closed conformation 7N58 ; 3.4 ; Structure of AtAtm3 in the inward-facing conformation 7N59 ; 3.6 ; Structure of AtAtm3 in the inward-facing conformation with GSSG bound 7N5B ; 3.8 ; Structure of AtAtm3 in the outward-facing conformation 4HWC ; 1.798 ; Structure of ATBAG1 6HYN ; 1.14 ; Structure of ATG13 LIR motif bound to GABARAP 6HOL ; 1.4 ; Structure of ATG14 LIR motif bound to GABARAPL1 8W9O ; 2.8 ; structure of AtHKT1;1 in KCl at 2.8 Angstroms resolution 8W9N ; 2.7 ; Structure of AtHKT1;1 in NaCl at 2.7 Angstroms resolution 7VO8 ; 1.75 ; Structure of AtHPPD complexed with LSY-1 6Y8X ; 2.25 ; Structure of Atlantic Herring (Clupea Harengus) Phosphoglucomutase 5 (PGM5) 7TLM ; 1.8 ; Structure of Atopobium parvulum SufS 7TLR ; 2.1 ; Structure of Atopobium parvulum SufS A34Y mutant 7TLQ ; 2.2 ; Structure of Atopobium parvulum SufS C375S 7TLP ; 2.99 ; Structure of Atopobium parvulum SufS K235R 6JPF ; 3.52 ; Structure of atOSCA1.1 channel at 3.52A 5Z1F ; 4.8 ; Structure of atOSCA3.1 channel 7UXW ; 2.57 ; Structure of ATP and GTP bind to Cyclic GMP AMP synthase (cGAS) through Mg coordination 4RVC ; 1.77 ; Structure of ATP binding subunit of ABC transporter 6RMD ; 2.8 ; Structure of ATP bound Plasmodium falciparum IMP-nucleotidase 4GXR ; 2.0 ; Structure of ATP bound RpMatB-BxBclM chimera B3 6HXJ ; 2.58 ; Structure of ATP citrate lyase from Chlorobium limicola in complex with citrate and coenzyme A. 6HXI ; 2.1 ; Structure of ATP citrate lyase from Methanothrix soehngenii in complex with citrate and coenzyme A 6UIA ; 4.3 ; Structure of ATP citrate lyase with CoA in a partially open conformation 3WVQ ; 1.955 ; Structure of ATP grasp protein 3WVR ; 2.175 ; Structure of ATP grasp protein with AMP 7LKZ ; 3.27 ; Structure of ATP-bound human ABCA4 3J94 ; 4.2 ; Structure of ATP-bound N-ethylmaleimide sensitive factor determined by single particle cryoelectron microscopy 6QV0 ; 3.12 ; Structure of ATP-bound outward-facing TM287/288 in complex with sybody Sb_TM35 7LKP ; 3.27 ; Structure of ATP-free human ABCA4 7DRO ; 3.25 ; Structure of ATP-grasp ligase PsnB complexed with minimal precursor 7DRM ; 3.28 ; Structure of ATP-grasp ligase PsnB complexed with minimal precursor, Mg, and ADP 7DRP ; 2.98 ; Structure of ATP-grasp ligase PsnB complexed with phosphomimetic variant of minimal precursor, Mg, and ADP 7DRN ; 3.56 ; Structure of ATP-grasp ligase PsnB complexed with precursor peptide PsnA2 and AMPPNP 1Q1K ; 2.9 ; Structure of ATP-phosphoribosyltransferase from E. coli complexed with PR-ATP 7XUN ; 3.4 ; Structure of ATP7B C983S/C985S/D1027A mutant 7XUK ; 3.3 ; Structure of ATP7B C983S/C985S/D1027A mutant in presence of ATOX1 8IOY ; 4.0 ; Structure of ATP7B C983S/C985S/D1027A mutant with AMP-PNP 7XUO ; 3.6 ; Structure of ATP7B C983S/C985S/D1027A mutant with cisplatin in presence of ATOX1 7XUM ; 3.8 ; Structure of ATP7B C983S/C985S/D1027A mutant with Cu+ in presence of ATOX1 7SI6 ; 3.32 ; Structure of ATP7B in state 1 7SI7 ; 3.49 ; Structure of ATP7B in state 2 4HUT ; 1.95 ; Structure of ATP:co(I)rrinoid adenosyltransferase (CobA) from Salmonella enterica in complex with four and five-coordinate cob(II)alamin and ATP 6O09 ; 2.06 ; Structure of AtPCNA in complex with the PIP motif of ATXR6 6QV2 ; 4.23 ; Structure of ATPgS-bound outward-facing TM287/288 in complex with nanobody Nb_TM#2 6QV1 ; 3.48 ; Structure of ATPgS-bound outward-facing TM287/288 in complex with nanobody Nb_TM1 6QUZ ; 3.21 ; Structure of ATPgS-bound outward-facing TM287/288 in complex with sybody Sb_TM35 6QIM ; 3.7 ; Structure of AtPIP2;4 4GR2 ; 2.0 ; Structure of AtRbcX1 from Arabidopsis thaliana. 7AL8 ; 2.85 ; Structure of ATSI with bovine trypsin 7FHN ; 3.3 ; Structure of AtTPC1 D240A/D454A/E528A mutant with 1 mM Ca2+ 7FHO ; 2.8 ; Structure of AtTPC1 D240A/D454A/E528A mutant with 50 mM Ca2+ 6CX0 ; 3.501 ; Structure of AtTPC1 D376A 7FHK ; 3.3 ; Structure of AtTPC1 with 1 mM Ca2+ 7FHL ; 3.1 ; Structure of AtTPC1 with 50 mM Ca2+ 6E1N ; 3.7 ; Structure of AtTPC1(DDE) in state 1 6E1P ; 3.7 ; Structure of AtTPC1(DDE) in state 2 6E1M ; 3.3 ; Structure of AtTPC1(DDE) reconstituted in saposin A 6E1K ; 3.3 ; Structure of AtTPC1(DDE) reconstituted in saposin A with cat06 Fab 3IPC ; 1.3 ; Structure of ATU2422-GABA F77A mutant receptor in complex with leucine 3IP5 ; 1.35 ; Structure of Atu2422-GABA receptor in complex with alanine 3IPA ; 1.55 ; Structure of ATU2422-GABA receptor in complex with alanine 3IP9 ; 1.8 ; Structure of Atu2422-GABA receptor in complex with GABA 3IP6 ; 1.4 ; Structure of Atu2422-GABA receptor in complex with proline 3IP7 ; 1.7 ; Structure of Atu2422-GABA receptor in complex with valine 4EQ7 ; 1.91 ; Structure of Atu4243-GABA receptor 4EUO ; 1.28 ; Structure of Atu4243-GABA sensor 8UOO ; 1.65 ; Structure of atypical asparaginase from Rhodospirillum rubrum 8UPC ; 1.2 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant K158M) 8UP7 ; 1.7 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant K19A) 8UP6 ; 1.7 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant K19A) in complex with L-Asp 8UOR ; 1.45 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant K19E) 8UP9 ; 1.47 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant K19Q) 8UOW ; 1.6 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant Y21A) 8UP3 ; 1.76 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant Y21F) 8UP8 ; 1.9 ; Structure of atypical asparaginase from Rhodospirillum rubrum (mutant Y21F, complex with L-Asp) 8UOU ; 1.35 ; Structure of atypical asparaginase from Rhodospirillum rubrum in complex with L-Asp 6C83 ; 2.55 ; Structure of Aurora A (122-403) bound to inhibitory Monobody Mb2 and AMPPCP 2X81 ; 2.91 ; STRUCTURE OF AURORA A IN COMPLEX WITH MLN8054 4DHF ; 2.8 ; Structure of Aurora A mutant bound to Biogenidec cpd 15 2VRX ; 1.86 ; Structure of Aurora B kinase in complex with ZM447439 3W18 ; 2.5 ; Structure of Aurora kinase A complexed to benzoimidazole-indazole inhibitor XIII 3W2C ; 2.45 ; Structure of Aurora kinase A complexed to benzoimidazole-indazole inhibitor XV 3W16 ; 2.8 ; Structure of Aurora kinase A complexed to pyrazole-aminoquinoline inhibitor III 8GUW ; 2.7 ; Structure of Aurora Kinase A in complex with activator peptide 2J4Z ; 2.0 ; Structure of Aurora-2 in complex with PHA-680626 2J50 ; 3.0 ; Structure of Aurora-2 in complex with PHA-739358 1OL5 ; 2.5 ; Structure of Aurora-A 122-403, phosphorylated on Thr287, Thr288 and bound to TPX2 1-43 2XNG ; 2.605 ; Structure of Aurora-A bound to a selective imidazopyrazine inhibitor 2XNE ; 2.8 ; Structure of Aurora-A bound to an imidazopyrazine inhibitor 3EFW ; 2.29 ; Structure of AuroraA with pyridyl-pyrimidine urea inhibitor 5X9K ; 1.798 ; Structure of AusH from Aspergillus nidulans 3PL6 ; 2.55 ; Structure of Autoimmune TCR Hy.1B11 in complex with HLA-DQ1 and MBP 85-99 7APJ ; 2.05 ; Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation 7RX9 ; 3.22 ; Structure of autoinhibited P-Rex1 1NG2 ; 1.7 ; Structure of autoinhibited p47phox 5LQQ ; 2.4 ; Structure of Autotaxin (ENPP2) with LM350 6WPA ; 3.09 ; Structure of AvaR1 bound to DNA half-site 1JSO ; 2.4 ; STRUCTURE OF AVIAN H5 HAEMAGGLUTININ BOUND TO LSTC RECEPTOR ANALOG 1JSN ; 2.4 ; STRUCTURE OF AVIAN H5 HAEMAGGLUTININ COMPLEXED WITH LSTA RECEPTRO ANALOG 2VRS ; 1.75 ; Structure of avian reovirus sigmaC117-326, C2 crystal form 2JJL ; 2.3 ; Structure of avian reovirus sigmaC117-326, P321 crystal form 4HEF ; 1.86 ; Structure of avibactam bound to Pseudomonas aeruginosa AmpC 2A5C ; 2.5 ; Structure of Avidin in complex with the ligand 8-oxodeoxyadenosine 2A8G ; 1.99 ; Structure of Avidin in complex with the ligand deoxyguanosine 1NQN ; 1.8 ; Structure of Avm-W110K (W110K mutant of avidin) 5BN1 ; 1.6 ; Structure of Axe2-W215I, an acetyl xylan esterase from Geobacillus stearothermophilus 8JTK ; 1.57 ; Structure of AYWB phytoplasma SAP05 recognizing AtRpn10 8I4K ; 1.84 ; Structure of Azami Red1.0, a red fluorescent protein engineered from Azami Green 6QU0 ; 1.8 ; Structure of azoreductase from Bacillus sp. A01 6S6T ; 4.1 ; Structure of Azospirillum brasilense Glutamate Synthase in a4b3 oligomeric state 6S6S ; 3.9 ; Structure of Azospirillum brasilense Glutamate Synthase in a4b4 oligomeric state. 6S6U ; 3.5 ; Structure of Azospirillum brasilense Glutamate Synthase in a6b4 oligomeric state. 6S6X ; 3.5 ; Structure of Azospirillum brasilense Glutamate Synthase in a6b6 oligomeric state. 5NSF ; 2.426 ; Structure of AzuAla 2AZA ; 1.8 ; STRUCTURE OF AZURIN FROM ALCALIGENES DENITRIFICANS. REFINEMENT AT 1.8 ANGSTROMS RESOLUTION AND COMPARISON OF THE TWO CRYSTALLOGRAPHICALLY INDEPENDENT MOLECULES 7ALO ; 1.8 ; Structure of B*27:09/photoRL9 3EIL ; 2.6 ; Structure of B-DNA d(CGTTAATTAACG)2 in the presence of Manganese 4MBZ ; 1.75 ; Structure of B-Lymphotropic Polyomavirus VP1 in complex with 3'-sialyllactosamine 4MBY ; 1.48 ; Structure of B-Lymphotropic Polyomavirus VP1 in complex with 3'-sialyllactose 3BP9 ; 2.6 ; Structure of B-tropic MLV capsid N-terminal domain 5F51 ; 2.53 ; Structure of B. abortus WrbA-related protein A (apo) 5F4B ; 2.498 ; Structure of B. abortus WrbA-related protein A (WrpA) 1YQY ; 2.3 ; Structure of B. Anthrax Lethal factor in complex with a hydroxamate inhibitor 5HDJ ; 1.89 ; Structure of B. megaterium NfrA1 5HEI ; 2.84 ; Structure of B. megaterium NfrA2 5VMA ; 1.95 ; Structure of B. pumilus GH48 in complex with a cellobio-derived isofagomine 4APZ ; 2.01 ; Structure of B. subtilis genomic dUTPase YncF in complex with dU, PPi and Mg in P1 4R25 ; 2.5193 ; Structure of B. subtilis GlnK 4RX6 ; 2.5994 ; Structure of B. subtilis GlnK-ATP complex to 2.6 Angstrom 1T4A ; 2.0 ; Structure of B. Subtilis PurS C2 Crystal Form 2OGG ; 2.5 ; Structure of B. subtilis trehalose repressor (TreR) effector binding domain 1PUJ ; 2.0 ; Structure of B. subtilis YlqF GTPase 2CFX ; 2.4 ; Structure of B.subtilis LrpC 4FQM ; 3.45 ; Structure of B/Brisbane/60/2008 Influenza Hemagglutinin 6FYW ; 2.2 ; Structure of B/Brisbane/60/2008 Influenza Hemagglutinin in complex with SD83 7LSB ; 2.492 ; Structure of B1, a monoclonal VEGFR2 antibody parental of KD035 1ZEG ; 1.6 ; STRUCTURE OF B28 ASP INSULIN IN COMPLEX WITH PHENOL 5NDC ; 2.3 ; Structure of ba3-type cytochrome c oxidase from Thermus thermophilus by serial femtosecond crystallography 3HVG ; 2.26 ; Structure of bace (beta secretase) in Complex with EV0 3MSJ ; 1.8 ; Structure of bace (beta secretase) in complex with inhibitor 3HW1 ; 2.48 ; Structure of Bace (beta secretase) in complex with ligand EV2 4DJY ; 1.86 ; Structure of BACE Bound to (R)-5-cyclopropyl-2-imino-3-methyl-5-(3-(5-(prop-1-yn-1-yl)pyridin-3-yl)phenyl)imidazolidin-4-one 4HA5 ; 1.83 ; Structure of BACE Bound to (S)-3-(5-(2-imino-1,4-dimethyl-6-oxohexahydropyrimidin-4-yl)thiophen-3-yl)benzonitrile 4FS4 ; 1.74 ; Structure of BACE Bound to (S)-4-(3'-methoxy-[1,1'-biphenyl]-3-yl)-1,4-dimethyl-6-oxotetrahydropyrimidin-2(1H)-iminium 4H3G ; 1.85 ; Structure of BACE Bound to 2-((7aR)-7a-(4-(3-cyanophenyl)thiophen-2-yl)-2-imino-3-methyl-4-oxohexahydro-1H-pyrrolo[3,4-d]pyrimidin-6(2H)-yl)nicotinonitrile 4H3J ; 1.6 ; Structure of BACE Bound to 2-fluoro-5-(5-(2-imino-3-methyl-4-oxo-6-phenyloctahydro-1H-pyrrolo[3,4-d]pyrimidin-7a-yl)thiophen-2-yl)benzonitrile 4DJU ; 1.8 ; Structure of BACE Bound to 2-imino-3-methyl-5,5-diphenylimidazolidin-4-one 4DJW ; 1.9 ; Structure of BACE Bound to 2-imino-3-methyl-5-phenyl-5-(3-(pyridin-3-yl)phenyl)imidazolidin-4-one 4DJV ; 1.73 ; Structure of BACE Bound to 2-imino-5-(3'-methoxy-[1,1'-biphenyl]-3-yl)-3-methyl-5-phenylimidazolidin-4-one 4H3I ; 1.96 ; Structure of BACE Bound to 3-(5-((7aR)-2-imino-6-(3-methoxypyridin-2-yl)-3-methyl-4-oxooctahydro-1H-pyrrolo[3,4-d]pyrimidin-7a-yl)thiophen-3-yl)benzonitrile 4H3F ; 1.7 ; Structure of BACE Bound to 3-(5-((7aR)-2-imino-6-(6-methoxypyridin-2-yl)-3-methyl-4-oxooctahydro-1H-pyrrolo[3,4-d]pyrimidin-7a-yl)thiophen-3-yl)benzonitrile 4DJX ; 1.5 ; Structure of BACE Bound to 5-(3-(5-chloropyridin-3-yl)phenyl)-5-cyclopropyl-2-imino-3-methylimidazolidin-4-one 3KMY ; 1.9 ; Structure of BACE bound to SCH12472 3KMX ; 1.7 ; Structure of BACE bound to SCH346572 3L58 ; 1.8 ; Structure of BACE Bound to SCH589432 3KN0 ; 1.9 ; Structure of BACE bound to SCH708236 3CIC ; 1.75 ; Structure of BACE Bound to SCH709583 3L59 ; 2.0 ; Structure of BACE Bound to SCH710413 3L5B ; 1.8 ; Structure of BACE Bound to SCH713601 2QMD ; 1.65 ; Structure of BACE Bound to SCH722924 3L5C ; 1.8 ; Structure of BACE Bound to SCH723871 3L5D ; 1.75 ; Structure of BACE Bound to SCH723873 3CID ; 1.8 ; Structure of BACE Bound to SCH726222 3CIB ; 1.72 ; Structure of BACE Bound to SCH727596 2QP8 ; 1.5 ; Structure of BACE Bound to SCH734723 2QMF ; 1.75 ; Structure of BACE Bound to SCH735310 3L5E ; 1.53 ; Structure of BACE Bound to SCH736062 3L5F ; 1.7 ; Structure of BACE Bound to SCH736201 3LPJ ; 1.79 ; Structure of BACE Bound to SCH743641 3LNK ; 1.8 ; Structure of BACE bound to SCH743813 3LPI ; 2.05 ; Structure of BACE Bound to SCH745132 2QMG ; 1.89 ; Structure of BACE Bound to SCH745966 3LPK ; 1.93 ; Structure of BACE Bound to SCH747123 2Q11 ; 2.4 ; Structure of BACE complexed to compound 1 2Q15 ; 2.4 ; Structure of BACE complexed to compound 3a 4FRS ; 1.7 ; Structure of BACE in complex with (S)-4-(3-chloro-5-(5-(prop-1-yn-1-yl)pyridin-3-yl)thiophen-2-yl)-1,4-dimethyl-6-oxotetrahydropyrimidin-2(1H)-iminium 4DH6 ; 2.5 ; Structure of Bace-1 (Beta-Secretase) in Complex with (2R)-N-((2S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-3-hydroxy-4-((S)-6'-neopentyl-3',4'-dihydrospiro[cyclobutane-1,2'-pyrano[2,3-b]pyridine]-4'-ylamino)butan-2-yl)-2-methoxypropanamide 3RSV ; 2.5 ; Structure of Bace-1 (Beta-Secretase) in complex with (R)-3-(2-amino-6-o-tolylquinolin-3-yl)-N-((R)-2,2-dimethyltetrahydro-2H-pyran-4-yl)-2-methylpropanamide 3RVI ; 2.65 ; Structure of Bace-1 (Beta-Secretase) in Complex with 2-((2-Amino-6-o-tolylquinolin-3-yl)methyl)-N-(cyclohexylmethyl)pentanamide 3RTN ; 2.7 ; Structure of Bace-1 (Beta-Secretase) in Complex with 3-(2-Amino-6-o-tolylquinolin-3-yl)-N-cyclohexylpropanamide 3RU1 ; 2.3 ; Structure of Bace-1 (Beta-Secretase) in Complex with 3-(2-Aminoquinolin-3-yl)-N-(cyclohexylmethyl)propanamide 3RTM ; 2.76 ; Structure of Bace-1 (Beta-Secretase) in Complex with 3-(2-Aminoquinolin-3-yl)-N-cyclohexyl-N-methylpropanamide 3RTH ; 2.7 ; Structure of Bace-1 (Beta-Secretase) in Complex with 6-(2-(3,3-Dimethylbut-1-ynyl)phenyl)quinolin-2-amine 3RSX ; 2.48 ; Structure of Bace-1 (Beta-Secretase) in Complex with 6-(Thiophen-3-yl)quinolin-2-amine 6C2I ; 1.95 ; Structure of Bace-1 (Beta-Secretase) in complex with : N-(3-((1R,5S,6R)-3-amino-5-methyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-5-yl)-4-fluorophenyl)-5-methoxypyrazine-2-carboxamide 4DUS ; 2.5 ; Structure of Bace-1 (Beta-Secretase) in complex with N-((2S,3R)-1-(4-fluorophenyl)-3-hydroxy-4-((6'-neopentyl-3',4'-dihydrospiro[cyclobutane-1,2'-pyrano[2,3-b]pyridin]-4'-yl)amino)butan-2-yl)acetamide 4H1E ; 1.9 ; Structure of BACE-1 Bound to (7aR)-6-benzoyl-7a-(4-(3-cyanophenyl)thiophen-2-yl)-3-methyl-4-oxohexahydro-1H-pyrrolo[3,4-d]pyrimidin-2(3H)-iminium 6OD6 ; 2.0 ; Structure of BACE-1 in complex with Ligand 13 6E3Z ; 1.94 ; Structure of Bace-1 in complex with Ligand 8 2QK5 ; 2.2 ; Structure of BACE1 bound to SCH626485 4TRZ ; 3.25 ; Structure of BACE1 complex with 2-thiophenyl HEA-type inhibitor 4TRY ; 2.75 ; Structure of BACE1 complex with a HEA-type inhibitor 4TRW ; 2.85 ; Structure of BACE1 complex with a syn-HEA-type inhibitor 5YGX ; 2.2 ; Structure of BACE1 in complex with N-(3-((4R,5R,6S)-2-amino-6-(1,1-difluoroethyl)-5-fluoro-4-methyl-5,6-dihydro-4H-1,3-oxazin-4-yl)-4-fluorophenyl)-5-(fluoromethoxy)pyrazine-2-carboxamide 2IFY ; 2.38 ; Structure of Bacillus anthracis cofactor-independent phosphoglucerate mutase 5V8E ; 2.2 ; Structure of Bacillus cereus PatB1 5V8D ; 2.001 ; Structure of Bacillus cereus PatB1 with sulfonyl adduct 8SM3 ; 3.0 ; Structure of Bacillus cereus VD045 Gabija GajA-GajB Complex 2GJR ; 2.1 ; Structure of bacillus halmapalus alpha-amylase without any substrate analogues 2GJP ; 1.9 ; Structure of Bacillus halmapalus alpha-amylase, crystallized with the substrate analogue acarbose and maltose 5J21 ; 2.0 ; Structure of Bacillus NanoRNase A (WT) 5IPP ; 1.95 ; Structure of Bacillus NanoRNase A active site mutant bound to a mononucleotide 4UBP ; 1.55 ; STRUCTURE OF BACILLUS PASTEURII UREASE INHIBITED WITH ACETOHYDROXAMIC ACID AT 1.55 A RESOLUTION 7QRU ; 2.24 ; Structure of Bacillus pseudofirmus Mrp antiporter complex, monomer 4QOL ; 1.65 ; Structure of Bacillus pumilus catalase 4QON ; 1.8 ; Structure of Bacillus pumilus catalase with catechol bound. 4QOR ; 1.95 ; Structure of Bacillus pumilus catalase with chlorophenol bound. 4QOQ ; 1.7 ; Structure of Bacillus pumilus catalase with guaiacol bound 4QOP ; 1.9 ; Structure of Bacillus pumilus catalase with hydroquinone bound. 4QOO ; 1.75 ; Structure of Bacillus pumilus catalase with resorcinol bound. 7S3L ; 2.6 ; Structure of Bacillus subtilis CcrZ (previously called YtmP) 2C6X ; 3.4 ; Structure of Bacillus subtilis citrate synthase 3TVZ ; 2.0 ; Structure of Bacillus subtilis HmoB 7BZE ; 1.658 ; Structure of Bacillus subtilis HxlR, K13A mutant 7BZD ; 2.612 ; Structure of Bacillus subtilis HxlR, wild type 7BZG ; 2.9 ; Structure of Bacillus subtilis HxlR, wild type in complex with formaldehyde and DNA 5VX6 ; 3.197 ; Structure of Bacillus subtilis Inhibitor of motility (MotI/DgrA) 1WPM ; 2.05 ; Structure of Bacillus subtilis inorganic pyrophosphatase 1X37 ; ; Structure of Bacillus subtilis Lon protease SSD domain 2WHK ; 1.7 ; Structure of Bacillus subtilis mannanase man26 4OYH ; 2.409 ; Structure of Bacillus subtilis MobB 1KAM ; 2.1 ; Structure of Bacillus subtilis Nicotinic Acid Mononucleotide Adenylyl Transferase 1KAQ ; 3.2 ; Structure of Bacillus subtilis Nicotinic Acid Mononucleotide Adenylyl Transferase 4D3U ; 1.981 ; Structure of Bacillus subtilis Nitric Oxide Synthase H128S in complex with N-{3-[(1S)-2-(3-{(Z)-[amino(thiophen-2-yl)methylidene]amino}phenoxy)-1-hydroxyethyl]phenyl}thiophene-2-carboximidamide 4D7I ; 1.96 ; Structure of Bacillus subtilis nitric oxide synthase I218V in complex with 6-(4-(((3-Fluorophenethyl)amino)methyl)phenyl)-4-methylpyridin-2- amine 5G6K ; 1.951 ; Structure of Bacillus subtilis Nitric Oxide Synthase I218V in complex with 7-((3-(2-(Methylamino)ethyl)phenoxy)methyl)quinolin-2- amine 5G6I ; 1.981 ; Structure of Bacillus subtilis Nitric Oxide Synthase I218V in complex with 7-((3-(Methylamino)methyl)phenoxy)methyl)quinolin-2-amine 5G6C ; 2.13 ; Structure of Bacillus subtilis Nitric Oxide Synthase I218V in complex with 7-((3-Fluorophenethylamino)ethyl)quinolin-2-amine 5G6P ; 2.18 ; Structure of Bacillus subtilis Nitric Oxide Synthase I218V in complex with 7-((4-(Dimethylamino)methyl)phenoxy)methyl)quinolin-2- amine 4D3V ; 1.88 ; Structure of Bacillus subtilis Nitric Oxide Synthase I218V in complex with N-{3-[(1S)-2-(3-{(Z)-[amino(thiophen-2-yl)methylidene]amino}phenoxy)-1-hydroxyethyl]phenyl}thiophene-2-carboximidamide 4LWA ; 2.06 ; Structure of Bacillus subtilis nitric oxide synthase in complex with ((2S, 3S)-1,3-bis((6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methoxy)-2-aminobutane 4UGG ; 2.356 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with (R)-6-(2-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenyl) ethyl)-4-methylpyridin-2-amine 4UGN ; 2.09 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with (S)-N-(3-(((Pyrrolidin-2-ylmethyl)amino)methyl)phenyl)thiophene-2- carboximidamide 4UG7 ; 1.76 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 3,5-bis(2-(6-amino-4-methylpyridin-2-yl)ethyl)benzonitrile 4D3N ; 2.13 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-((2-(pyridin-2-yl)ethyl)amino)benzonitrile 4D3M ; 1.741 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(2-(4-methyl-6-(methylamino)pyridin-2-yl)ethyl)benzonitrile 4UGJ ; 1.78 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(methyl(2-(methylamino) ethyl)amino)benzonitrile 4UQS ; 2.15 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 3-Bromo-7-Nitroindazole 4UGE ; 2.14 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 4-methyl-6-((3-(piperidin-4-ylmethoxy)phenoxy)methyl)pyridin-2-amine 5G66 ; 1.76 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 4-methylquinolin-2-amine 4UGC ; 1.801 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6,6'-(((2S)-3-aminopropane-1,2-diyl)bis(oxymethanediyl))bis(4- methylpyridin-2-amine) 4UG9 ; 1.841 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6,6'-((4-(3-aminopropyl)benzene-1,3-diyl)diethane-2,1-diyl)bis(4- methylpyridin-2-amine) 4D3K ; 2.017 ; Structure of Bacillus subtilis nitric oxide synthase in complex with 6,6'-((5-(3-aminopropyl)-1,3-phenylene)bis(ethane-2,1-diyl))bis(4- methylpyridin-2-amine) 4D3I ; 2.09 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6,6'-((5-(aminomethyl)-1,3-phenylene)bis(ethane-2,1-diyl))bis(4- methylpyridin-2-amine) 4D3J ; 1.67 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4- methylpyridin-2-amine) 4UG6 ; 1.81 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6,6'-(pyridine-3,5-diyldiethane-2,1-diyl)bis(4-methylpyridin-2-amine) 4UGD ; 2.03 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-((((2S)-1-amino-4-((6-amino-4-methylpyridin-2-yl)methoxy)butan-2-yl) oxy)methyl)-4-methylpyridin-2-amine 4LWB ; 2.15 ; Structure of Bacillus subtilis nitric oxide synthase in complex with 6-((((3R,5S)-5-(((6-amino-4-methylpyridin-2-yl)methoxy)methyl)pyrrolidin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 4UGF ; 1.81 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-((((3S, 5R)-5-(((6-amino-4-methylpyridin-2-yl)methoxy)methyl) pyrrolidin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 4UGB ; 1.912 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-(((5-(((2-(3-fluorophenyl)ethyl)amino)methyl)pyridin-3-yl)oxy) methyl)-4-methylpyridin-2-amine 4UGA ; 1.9 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-((3-(((2-(3-fluorophenyl)ethyl)amino)methyl)phenoxy)methyl)-4- methylpyridin-2-amine 4UG5 ; 2.352 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-(2-(5-(2-(2-amino-6-methylpyridin-4-yl)ethyl)pyridin-3-yl)ethyl)-4- methylpyridin-2-amine 4UGK ; 1.62 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-(2-(5-(2-(Dimethylamino)ethyl)pyridin-3-yl)ethyl)-4-methylpyridin-2- amine 4D3O ; 1.9 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-(3-(2-(1H-Pyrrolo(2,3-b)pyridin-6-yl)ethyl)-5-(aminomethyl) phenethyl)-4-methylpyridin-2-amine 4D7J ; 1.55 ; Structure of Bacillus subtilis nitric oxide synthase in complex with 6-(4-(((3-Fluorophenethyl)amino)methyl)phenyl)-4-methylpyridin-2- amine 4UG8 ; 1.888 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 6-(5-((3R,4R)-4-((6-azanyl-4-methyl-pyridin-2-yl)methyl)pyrrolidin-3- yl)oxypentyl)-4-methyl-pyridin-2-amine 5G6F ; 2.26 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(((3-((Dimethylamino)methyl)phenyl)amino)methyl) quinolin-2-amine 5G6D ; 1.821 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(((3-(Dimethylamino)benzyl)amino)methyl)quinolin-2-amine 5G6E ; 2.111 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(((3-(Pyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5G6Q ; 2.03 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(((5-((Methylamino)methyl)pyridin-3-yl)oxy)methyl) quinolin-2-amine 5G6G ; 1.981 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((2-((Methylamino)methyl)phenoxy)methyl)quinolin-2-amine 6XK8 ; 2.25 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-((((6-aminopyridin-2-yl)methyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 5G6J ; 1.88 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-(2-(Methylamino)ethyl)phenoxy)methyl)quinolin-2- amine 5G6H ; 1.911 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-(Methylamino)methyl)phenoxy)methyl)quinolin-2-amine 5G6M ; 1.77 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-Aminomethyl)phenoxy)methyl)quinolin-2-amine 5G6A ; 1.92 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-Fluorophenethylamino)ethyl)quinolin-2-amine 5G67 ; 1.97 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((3-Fluorophenethylamino)methyl)quinolin-2-amine 5G6N ; 1.91 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((4-(Dimethylamino)methyl)phenoxy)methyl)quinolin-2- amine 5G6L ; 2.034 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-((4-Chloro-3-((methylamino)methyl)phenoxy)methyl) quinolin-2-amine 4D7H ; 2.02 ; Structure of Bacillus subtilis nitric oxide synthase in complex with 7-(2-(3-(3-Fluorophenyl(propylamino)ethyl))quinolin-2- amine 5G68 ; 1.63 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(2-(3-(3-Fluorophenyl(propylamino)methyl))quinolin-2- amine 5G69 ; 2.016 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with 7-(2-(3-Fluorobenzylamino)ethyl)quinolin-2-amine 4UGP ; 1.8 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N',N'-(((2R)-3-aminopropane-1,2-diyl)bis(oxymethanediylbenzene-3,1- diyl))dithiophene-2-carboximidamide 4UGU ; 1.801 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N'-(4-(((2S,4R)-4-(3-((C-thiophen-2-ylcarbonimidoyl)amino)phenoxy) pyrrolidin-2-yl)methoxy)phenyl)thiophene-2-carboximidamide 4UGQ ; 1.85 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N,N''-(((2S)-3-aminopropane-1,2-diyl)bis(oxymethanediylbenzene-3,1- diyl))dithiophene-2-carboximidamide 4UGS ; 1.99 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N,N'-(ethane-1,2-diylbis(oxybenzene-3,1-diyl))dithiophene-2- carboximidamide 4UGM ; 2.09 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N,N'-(ethane-1,2-diyldibenzene-3,1-diyl)dithiophene-2-carboximidamide 4UGR ; 2.09 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-(3-(((2S,4S)-4-((3-((C-thiophen-2-ylcarbonimidoyl)amino)phenyl) methoxy)pyrrolidin-2-yl)methoxymethyl)phenyl)thiophene-2- carboximidamide 4UGX ; 1.86 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-(3-((ethyl(2-(3-fluorophenyl)ethyl)amino)methyl)phenyl)thiophene-2- carboximidamide 4UGT ; 2.03 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-(3-((pyrrolidin-3-yloxy)methyl)phenyl)thiophene-2-carboximidamide 4UGO ; 2.38 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-(4-(2-(ethyl(3-(((E)-imino(thiophen-2-yl)methyl)amino)benzyl)amino) ethyl)phenyl)thiophene-2-carboximidamide 4UQR ; 1.72 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-omega-Nitro-L-Arginine 4D3T ; 1.55 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N-{3-[(1S)-2-(3-{(Z)-[amino(thiophen-2-yl)methylidene]amino}phenoxy)-1-hydroxyethyl]phenyl}thiophene-2-carboximidamide 4UGL ; 1.82 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-fluorophenyl)-N1- cyclopropyl-N2-methylethane-1,2-diamine 4UGH ; 1.994 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)phenyl)-N1,N2- dimethylethane-1,2-diamine 4UGY ; 1.801 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N1-(5-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)-N1,N2- dimethylethane-1,2-diamine 4UGI ; 1.801 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with N1-(6-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-2-yl)-N1,N2- dimethylethane-1,2-diamine 5G65 ; 2.03 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with quinolin-2-amine 5G6B ; 1.801 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with two molecules of 7-((3-Fluorophenethylamino)ethyl)quinolin-2-amine 5G6O ; 1.719 ; Structure of Bacillus subtilis Nitric Oxide Synthase in complex with two molecules of 7-((4-(Dimethylamino)methyl)phenoxy)methyl)quinolin- 2- amine 1W1A ; 2.25 ; Structure of Bacillus subtilis PdaA in complex with NAG, a family 4 Carbohydrate esterase. 1W1B ; 2.1 ; Structure of Bacillus subtilis PdaA with Cadmium, a family 4 Carbohydrate esterase. 1W17 ; 1.9 ; Structure of Bacillus subtilis PdaA, a family 4 Carbohydrate esterase. 8ACU ; 2.97 ; Structure of Bacillus subtilis Rel in complex with DarB 1KYH ; 1.6 ; Structure of Bacillus subtilis YxkO, a Member of the UPF0031 Family and a Putative Kinase 7SNO ; 2.1 ; Structure of Bacple_01701(H214N), a 6-O-galactose porphyran sulfatase 7SNJ ; 1.74 ; Structure of Bacple_01701, a 6-O-galactose porphyran sulfatase 7SNK ; 2.0 ; Structure of Bacple_01702, a GH29 family glycoside hydrolase 8EP4 ; 1.94 ; Structure of Bacple_01703 8EW1 ; 1.8 ; Structure of Bacple_01703-E145L 5LMV ; 4.9 ; Structure of bacterial 30S-IF1-IF2-IF3-mRNA-tRNA translation pre-initiation complex(state-III) 5LMN ; 3.55 ; Structure of bacterial 30S-IF1-IF3-mRNA translation pre-initiation complex (state-1A) 5LMO ; 4.3 ; Structure of bacterial 30S-IF1-IF3-mRNA translation pre-initiation complex (state-1B) 5LMP ; 5.35 ; Structure of bacterial 30S-IF1-IF3-mRNA translation pre-initiation complex (state-1C) 5LMR ; 4.45 ; Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex(state-2B) 5LMS ; 5.1 ; Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex(state-2C) 5LMT ; 4.15 ; Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex(state-3) 5LMQ ; 4.2 ; Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex, open form (state-2A) 5LMU ; 4.0 ; Structure of bacterial 30S-IF3-mRNA-tRNA translation pre-initiation complex, closed form (state-4) 4P02 ; 2.65 ; Structure of Bacterial Cellulose Synthase with cyclic-di-GMP bound. 3C1Y ; 2.1 ; Structure of bacterial DNA damage sensor protein with co-purified and co-crystallized ligand 5FPO ; 1.83 ; Structure of Bacterial DNA Ligase with small-molecule ligand 1H- indazol-7-amine (AT4213) in an alternate binding site. 5FPR ; 2.0 ; Structure of Bacterial DNA Ligase with small-molecule ligand pyrimidin-2-amine (AT371) in an alternate binding site. 4IT9 ; 1.7 ; Structure of Bacterial Enzyme 4ITA ; 1.4 ; Structure of bacterial enzyme in complex with cofactor 4ITB ; 1.4 ; Structure of bacterial enzyme in complex with cofactor and substrate 6SIH ; 4.7 ; Structure of bacterial flagellar capping protein FliD 2WY4 ; 1.35 ; Structure of bacterial globin from Campylobacter jejuni at 1.35 A resolution 8PX7 ; 3.4 ; Structure of Bacterial Multidrug Efflux transporter AcrB, solved at wavelength 3.02 A 5OGL ; 2.7 ; Structure of bacterial oligosaccharyltransferase PglB in complex with an acceptor peptide and an lipid-linked oligosaccharide analog 4QM7 ; 1.8 ; Structure of bacterial polynucleotide kinase bound to GTP and pDNA 4QM6 ; 1.5 ; Structure of bacterial polynucleotide kinase bound to GTP and RNA 4MDF ; 1.727 ; Structure of bacterial polynucleotide kinase Michaelis complex bound to GTP and DNA 4MDE ; 1.8 ; Structure of bacterial polynucleotide kinase product complex bound to GDP and DNA 3AQK ; 3.65 ; Structure of bacterial protein (apo form I) 3AQL ; 3.0 ; Structure of bacterial protein (apo form II) 3AQM ; 3.15 ; Structure of bacterial protein (form II) 8PVA ; 4.5 ; Structure of bacterial ribosome determined by cryoEM at 100 keV 7RFQ ; 1.27 ; STRUCTURE OF BACTERIAL SYLF DOMAIN CONTAINING PROTEIN, BETA CELL EXPANSION FACTOR A (BEFA) 5WED ; 2.15 ; Structure of bacterial type II NADH dehydrogenase from Caldalkalibacillus thermarum at 2.15A resolution 4NWZ ; 2.5 ; Structure of bacterial type II NADH dehydrogenase from Caldalkalibacillus thermarum at 2.5A resolution 6BDO ; 2.8 ; Structure of bacterial type II NADH dehydrogenase from Caldalkalibacillus thermarum complexed with a quinone inhibitor HQNO at 2.8A resolution 7UM1 ; 4.2 ; Structure of bacteriophage AR9 non-virion RNAP polymerase holoenzyme determined by cryo-EM 1ZDJ ; 2.9 ; STRUCTURE OF BACTERIOPHAGE COAT PROTEIN-LOOP RNA COMPLEX 1ZDK ; 2.86 ; STRUCTURE OF BACTERIOPHAGE COAT PROTEIN-LOOP RNA COMPLEX 2OB9 ; 2.3 ; Structure of bacteriophage HK97 tail assembly chaperone 1RIO ; 2.3 ; Structure of bacteriophage lambda cI-NTD in complex with sigma-region4 of Thermus aquaticus bound to DNA 1ZPQ ; 2.8 ; STRUCTURE OF BACTERIOPHAGE LAMBDA CII protein 1ZS4 ; 1.7 ; Structure of bacteriophage lambda cII protein in complex with DNA 7T4F ; 2.7 ; Structure of bacteriophage lambda tube protein V in C3 7T2E ; 2.7 ; Structure of bacteriophage lambda tube protein V in C6 7UYX ; 2.63 ; Structure of bacteriophage PA1c gp2 3A9L ; 1.9 ; Structure of Bacteriophage poly-gamma-glutamate hydrolase 1DWN ; 3.5 ; Structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7 A resolution 4OK7 ; 1.9 ; Structure of bacteriophage SPN1S endolysin from Salmonella typhimurium 2LFP ; ; Structure of bacteriophage SPP1 gp17 protein 5A20 ; 7.6 ; Structure of bacteriophage SPP1 head-to-tail interface filled with DNA and tape measure protein 5A21 ; 7.2 ; Structure of bacteriophage SPP1 head-to-tail interface without DNA and tape measure protein 2WSH ; 1.9 ; Structure of bacteriophage T4 EndoII E118A mutant 1EL6 ; 2.0 ; STRUCTURE OF BACTERIOPHAGE T4 GENE PRODUCT 11, THE INTERFACE BETWEEN THE BASEPLATE AND SHORT TAIL FIBERS 5IW9 ; 2.47 ; Structure of bacteriophage T4 gp25, sheath polymerization initiator 2LZM ; 1.7 ; STRUCTURE OF BACTERIOPHAGE T4 LYSOZYME REFINED AT 1.7 ANGSTROMS RESOLUTION 6N7N ; 3.5 ; Structure of bacteriophage T7 E343Q mutant gp4 helicase-primase in complex with ssDNA, dTTP, AC dinucleotide and CTP (form I) 6N7S ; 4.6 ; Structure of bacteriophage T7 E343Q mutant gp4 helicase-primase in complex with ssDNA, dTTP, AC dinucleotide and CTP (form II) 6N7T ; 3.9 ; Structure of bacteriophage T7 E343Q mutant gp4 helicase-primase in complex with ssDNA, dTTP, AC dinucleotide and CTP (form III) 6N7I ; 3.2 ; Structure of bacteriophage T7 E343Q mutant gp4 helicase-primase in complex with ssDNA, dTTP, AC dinucleotide and CTP (gp4(5)-DNA) 6N7V ; 3.8 ; Structure of bacteriophage T7 gp4 (helicase-primase, E343Q mutant) in complex with ssDNA, dTTP, AC dinucleotide, and CTP (from multiple lead complexes) 6N9V ; 4.0 ; Structure of bacteriophage T7 lagging-strand DNA polymerase (D5A/E7A) and gp4 (helicase/primase) bound to DNA including RNA/DNA hybrid, and an incoming dTTP (LagS1) 6N9W ; 4.0 ; Structure of bacteriophage T7 lagging-strand DNA polymerase (D5A/E7A) and gp4 (helicase/primase) bound to DNA including RNA/DNA hybrid, and an incoming dTTP (LagS2) 6N9X ; 4.1 ; Structure of bacteriophage T7 lagging-strand DNA polymerase (D5A/E7A) and gp4 (helicase/primase) bound to DNA including RNA/DNA hybrid, and an incoming dTTP (LagS3) 6N9U ; 3.7 ; Structure of bacteriophage T7 lagging-strand DNA polymerase (D5A/E7A) interacting with primase domains of two gp4 subunits bound to an RNA/DNA hybrid and dTTP (from LagS1) 6N7W ; 4.5 ; Structure of bacteriophage T7 leading-strand DNA polymerase (D5A/E7A)/Trx in complex with a DNA fork and incoming dTTP (from multiple lead complexes) 4OV0 ; 2.0 ; Structure of Bacteriorhdopsin Transferred from Amphipol A8-35 to a Lipidic Mesophase 1QM8 ; 2.5 ; Structure of Bacteriorhodopsin at 100 K 2AT9 ; 3.0 ; STRUCTURE OF BACTERIORHODOPSIN AT 3.0 ANGSTROM BY ELECTRON CRYSTALLOGRAPHY 1AT9 ; 2.8 ; STRUCTURE OF BACTERIORHODOPSIN AT 3.0 ANGSTROM DETERMINED BY ELECTRON CRYSTALLOGRAPHY 5BR2 ; 1.8 ; Structure of bacteriorhodopsin crystallized from ND-MSP1 5BR5 ; 2.0 ; Structure of bacteriorhodopsin crystallized from ND-MSP1E3D1 5VN7 ; 2.7 ; Structure of bacteriorhodopsin from crystals grown at 20 deg Celcius using GlyNCOC15+4 as an LCP host lipid 5VN9 ; 2.594 ; Structure of bacteriorhodopsin from crystals grown at 4 deg C using GlyNCOC15+4 as an LCP host lipid 3NSB ; 1.78 ; Structure of bacteriorhodopsin ground state before and after X-ray modification 5A44 ; 2.29 ; Structure of Bacteriorhodopsin obtained from 20um crystals by multi crystal data collection 5A45 ; 2.57 ; Structure of Bacteriorhodopsin obtained from 5um crystals by multi crystal data collection 2ZZL ; 2.03 ; Structure of bacteriorhodopsin's M intermediate at pH 7 3MBV ; 2.0 ; Structure of bacterirhodopsin crystallized in betta-XylOC(16+4) meso phase 8SWT ; 1.66 ; Structure of Bacteroides fragilis PNP bound to transition state analog IMMUCILLIN H and sulfate 5FHD ; 2.0 ; Structure of Bacteroides sp Pif1 complexed with tailed dsDNA resulting in ssDNA bound complex 1TN0 ; 2.5 ; Structure of bacterorhodopsin mutant A51P 1TN5 ; 2.2 ; Structure of bacterorhodopsin mutant K41P 3P0K ; 1.47 ; Structure of Baculovirus Sulfhydryl Oxidase Ac92 3QZY ; 2.14 ; Structure of Baculovirus Sulfhydryl Oxidase Ac92 1TUH ; 1.85 ; Structure of Bal32a from a Soil-Derived Mobile Gene Cassette 6Y8Z ; 2.05 ; Structure of Baltic Herring (Clupea Harengus) Phosphoglucomutase 5 (PGM5) 6Y8Y ; 1.95 ; Structure of Baltic Herring (Clupea Harengus) Phosphoglucomutase 5 (PGM5) with bound Glucose-1-Phosphate 7RI6 ; 5.9 ; Structure of BAM in MSP1E3D1 nanodiscs prepared from E. coli outer membranes 4PK1 ; 3.1 ; Structure of BamB fused to a BamA POTRA domain fragment 3ZW0 ; 1.6 ; Structure of BambL lectin from Burkholderia ambifaria 3ZW1 ; 1.6 ; Structure of Bambl lectine in complex with lewix x antigen 3ZWE ; 1.75 ; Structure of BambL, a lectin from Burkholderia ambifaria, complexed with blood group B epitope 2YHC ; 1.8 ; Structure of BamD from E. coli 5WAQ ; 2.501 ; Structure of BamD from Neisseria gonorrhoeae 5WAM ; 2.45 ; Structure of BamE from Neisseria gonorrhoeae 3MIV ; 3.5 ; Structure of Banana lectin - Glc-alpha(1,2)-Glc complex 1X1V ; 2.45 ; Structure Of Banana Lectin- Methyl-Alpha-Mannose Complex 3MIT ; 2.32 ; Structure of Banana lectin-alpha-D-mannose complex 3MIU ; 2.63 ; Structure of Banana Lectin-pentamannose complex 8K4A ; 2.64 ; Structure of Banna virus core 8W9R ; 4.8 ; Structure of Banna virus core 1W9Z ; 2.56 ; Structure of Bannavirus VP9 8OFF ; 3.4 ; Structure of BARD1 ARD-BRCTs in complex with H2AKc15ub nucleosomes (Map1) 6BNO ; 5.5 ; Structure of bare actin filament 6BNU ; 7.5 ; Structure of bare actin filament, backbone-averaged with sidechains truncated to alanine 4A7N ; 8.9 ; Structure of bare F-actin filaments obtained from the same sample as the Actin-Tropomyosin-Myosin Complex 4HLN ; 2.7 ; Structure of barley starch synthase I in complex with maltooligosaccharide 8J9K ; 3.5 ; Structure of basal beta-arrestin2 3O83 ; 1.9 ; Structure of BasE N-terminal domain from Acinetobacter baumannii bound to 2-(4-n-dodecyl-1,2,3-triazol-1-yl)-5'-O-[N-(2-hydroxybenzoyl)sulfamoyl]adenosine 3O82 ; 2.7 ; Structure of BasE N-terminal domain from Acinetobacter baumannii bound to 5'-O-[N-(2,3-dihydroxybenzoyl)sulfamoyl] adenosine 3U17 ; 2.1 ; Structure of BasE N-terminal domain from Acinetobacter baumannii bound to 6-(p-benzoyl)phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid 3U16 ; 2.1 ; Structure of BasE N-terminal domain from Acinetobacter baumannii bound to 6-(p-benzyloxy)phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid. 3O84 ; 2.1 ; Structure of BasE N-terminal domain from Acinetobacter baumannii bound to 6-phenyl-1-(pyridin-4-ylmethyl)-1H-pyrazolo[3,4-b]pyridine-4-carboxylic acid. 8FQC ; 3.2 ; Structure of baseplate with receptor binding complex of Agrobacterium phage Milano 7W6R ; 2.6 ; Structure of Bat coronavirus RaTG13 spike receptor-binding domain complexed with its receptor equine ACE2 5D79 ; 1.849 ; Structure of BBE-like #28 from Arabidopsis thaliana 2AUA ; 2.35 ; Structure of BC2332: A Protein of Unknown Function from Bacillus cereus 2YQ7 ; 1.901 ; Structure of Bcl-xL bound to BimLOCK 2YQ6 ; 1.799 ; Structure of Bcl-xL bound to BimSAHB 1BXL ; ; STRUCTURE OF BCL-XL/BAK PEPTIDE COMPLEX, NMR, MINIMIZED AVERAGE STRUCTURE 1PBW ; 2.0 ; STRUCTURE OF BCR-HOMOLOGY (BH) DOMAIN 6EA5 ; 4.75 ; Structure of BDBV GPcl in complex with the pan-ebolavirus mAb ADI-15878 7OC9 ; 1.5 ; Structure of Bdellovibrio bacteriovorus Bd0675 7O21 ; 1.34 ; Structure of Bdellovibrio bacteriovorus Bd1075 6HOK ; 1.61 ; Structure of Beclin1 LIR (S96E) motif bound to GABARAP 6HOJ ; 1.51 ; Structure of Beclin1 LIR motif bound to GABARAP 6HOI ; 1.14 ; Structure of Beclin1 LIR motif bound to GABARAPL1 5YR0 ; 1.9 ; Structure of Beclin1-UVRAG coiled coil domain complex 8EYU ; 1.95 ; Structure of Beetroot dimer bound to DFAME 8EYV ; 2.55 ; Structure of Beetroot dimer bound to DFHO 7Z39 ; 1.6 ; Structure of Belumosudil bound to CK2alpha 3IAE ; 2.3 ; Structure of benzaldehyde lyase A28S mutant with benzoylphosphonate 3IAF ; 2.8 ; Structure of benzaldehyde lyase A28S mutant with monomethyl benzoylphosphonate 6A50 ; 1.8 ; structure of benzoylformate decarboxylases in complex with cofactor TPP 3D2H ; 1.65 ; Structure of berberine bridge enzyme from Eschscholzia californica, monoclinic crystal form 3D2J ; 2.05 ; Structure of berberine bridge enzyme from Eschscholzia californica, tetragonal crystal form 3D2D ; 2.796 ; Structure of berberine bridge enzyme in complex with (S)-reticuline 3FW9 ; 1.489 ; Structure of berberine bridge enzyme in complex with (S)-scoulerine 3GSY ; 1.63 ; Structure of berberine bridge enzyme in complex with dehydroscoulerine 3FW8 ; 1.5 ; Structure of berberine bridge enzyme, C166A variant 3FWA ; 1.496 ; Structure of berberine bridge enzyme, C166A variant in complex with (S)-reticuline 3FW7 ; 1.825 ; Structure of berberine bridge enzyme, H104A variant 4EC3 ; 2.6501 ; Structure of berberine bridge enzyme, H174A variant in complex with (S)-reticuline 4KKU ; 2.35 ; Structure of BesA (Selenomethinone derivative - P212121) 1BTV ; ; STRUCTURE OF BET V 1, NMR, 20 STRUCTURES 5IDI ; 1.9 ; Structure of beta glucosidase 1A from Thermotoga neapolitana, mutant E349A 3K55 ; 3.35 ; Structure of beta hairpin deletion mutant of beta toxin from Staphylococcus aureus 2CCR ; 2.3 ; Structure of Beta-1,4-Galactanase 2J74 ; 2.6 ; Structure of Beta-1,4-Galactanase 8GP3 ; 4.8 ; Structure of beta-arrestin1 in complex with a phosphopeptide corresponding to the human C-X-C chemokine receptor type 4, CXCR4 8I0Q ; 4.45 ; Structure of beta-arrestin1 in complex with a phosphopeptide corresponding to the human C-X-C chemokine receptor type 4, CXCR4 (Local refine) 8GO8 ; 3.41 ; Structure of beta-arrestin1 in complex with a phosphopeptide corresponding to the human C5a anaphylatoxin chemotactic receptor 1, C5aR1 8I0N ; 3.26 ; Structure of beta-arrestin1 in complex with a phosphopeptide corresponding to the human C5a anaphylatoxin chemotactic receptor 1, C5aR1 (Local refine) 8JA3 ; 3.94 ; Structure of beta-arrestin1 in complex with C3aRpp 8J8Z ; 3.4 ; Structure of beta-arrestin1 in complex with D6Rpp 8GO9 ; 3.35 ; Structure of beta-arrestin2 in complex with a phosphopeptide corresponding to the human Atypical chemokine receptor 2, ACKR2 (D6R) 8GOO ; 4.4 ; Structure of beta-arrestin2 in complex with a phosphopeptide corresponding to the human C5a anaphylatoxin chemotactic receptor 1, C5aR1 8I0Z ; 4.33 ; Structure of beta-arrestin2 in complex with a phosphopeptide corresponding to the human C5a anaphylatoxin chemotactic receptor 1, C5aR1 (Local refine) 8GOC ; 4.18 ; Structure of beta-arrestin2 in complex with a phosphopeptide corresponding to the human Vasopressin V2 receptor, V2R 8I10 ; 3.96 ; Structure of beta-arrestin2 in complex with a phosphopeptide corresponding to the human Vasopressin V2 receptor, V2R (Local refine) 8J8V ; 3.22 ; Structure of beta-arrestin2 in complex with D6Rpp (Local Refine) 8J8R ; 2.9 ; Structure of beta-arrestin2 in complex with M2Rpp 4DJS ; 3.029 ; Structure of beta-catenin in complex with a stapled peptide inhibitor 7UWI ; 2.32 ; Structure of beta-catenin in complex with FP01567, a Helicon Polypeptide 7UWO ; 2.75 ; Structure of beta-catenin in complex with FP05874, a Helicon Polypeptide 3OUW ; 2.91 ; Structure of beta-catenin with Lef-1 3OUX ; 2.4 ; Structure of beta-catenin with phosphorylated Lef-1 6XXW ; 1.851 ; Structure of beta-D-Glucuronidase for Dictyoglomus thermophilum. 6S2B ; 1.88 ; Structure of beta-fructofuranosidase from Schwanniomyces occidentalis complexed with fructosyl-erythritol 6S1T ; 2.09 ; Structure of beta-fructofuranosidase from Schwanniomyces occidentalis complexed with sucrose 3J7H ; 3.2 ; Structure of beta-galactosidase at 3.2-A resolution obtained by cryo-electron microscopy 5IFP ; 1.71 ; STRUCTURE OF BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER 6S6Z ; 2.0 ; Structure of beta-Galactosidase from Thermotoga maritima 6SD0 ; 3.7 ; Structure of beta-galactosidase from Thermotoga maritima. 2X42 ; 2.099 ; Structure of beta-glucosidase 3B from Thermotoga neapolitana in complex with alpha-D-glucose 2X41 ; 2.05 ; Structure of beta-glucosidase 3B from Thermotoga neapolitana in complex with glucose 2X40 ; 2.313 ; Structure of beta-glucosidase 3B from Thermotoga neapolitana in complex with glycerol 6R4K ; 2.13 ; Structure of beta-glucosidase A from Paenibacillus polymyxa complexed with a monovalent inhibitor 6QWI ; 2.85 ; Structure of beta-glucosidase A from Paenibacillus polymyxa complexed with multivalent inhibitors. 1UG6 ; 0.99 ; Structure of beta-glucosidase at atomic resolution from thermus thermophilus HB8 4HA4 ; 1.37 ; Structure of beta-glycosidase from Acidilobus saccharovorans in complex with glycerol 4HA3 ; 1.46 ; Structure of beta-glycosidase from Acidilobus saccharovorans in complex with Tris 1UWQ ; 2.02 ; Structure of beta-glycosidase from Sulfolobus solfataricus 1UWR ; 2.14 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with 2-deoxy-2-fluoro-galactose 1UWS ; 1.95 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with 2-deoxy-2-fluoro-glucose 7UZ1 ; 1.58 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with C5a-bromo-valienide. 7UZ2 ; 1.83 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with C5a-fluoro-valienide. 1UWT ; 1.95 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with D-galactohydroximo-1,5-lactam 1UWU ; 1.95 ; Structure of beta-glycosidase from Sulfolobus solfataricus in complex with D-glucohydroximo-1,5-lactam 1TR9 ; 1.8 ; Structure of beta-hexosaminidase from Vibrio cholerae 3SJ7 ; 2.5 ; Structure of beta-ketoacetyl-CoA reductase (FabG) from Staphylococcus aureus complex with NADPH 4XOX ; 2.01 ; Structure of beta-ketoacyl-ACP synthase I (FabB) from Vibrio Cholerae 6NFJ ; 3.19 ; Structure of Beta-Klotho in Complex with FGF19 C-terminal peptide 1KGF ; 2.2 ; STRUCTURE OF BETA-LACTAMASE ASN 170 GLN MUTANT 1KGE ; 2.0 ; STRUCTURE OF BETA-LACTAMASE ASN 170 MET MUTANT 1GHI ; 2.3 ; STRUCTURE OF BETA-LACTAMASE GLU166ASP:ASN170GLN MUTANT 1KGG ; 2.3 ; STRUCTURE OF BETA-LACTAMASE GLU166GLN:ASN170ASP MUTANT 2NYP ; 1.84 ; Structure of beta-lactamase II from Bacillus cereus. R121H, C221D doble mutant with two zinc ions. 2NZF ; 2.28 ; Structure of beta-lactamase II from Bacillus cereus. R121H, C221S double mutant. Space group C2. 2NZE ; 1.8 ; Structure of beta-lactamase II from Bacillus cereus. R121H, C221S double mutant. Space group P3121. 1DJA ; 1.9 ; STRUCTURE OF BETA-LACTAMASE PRECURSOR, K73H MUTANT, AT 298K 1DJC ; 2.0 ; STRUCTURE OF BETA-LACTAMASE PRECURSOR, S70A MUTANT, AT 120K 1DJB ; 2.1 ; STRUCTURE OF BETA-LACTAMASE PRECURSOR, S70A MUTANT, AT 298K 7QOR ; 1.999 ; Structure of beta-lactamase TEM-171 7QLP ; 2.3 ; Structure of beta-lactamase TEM-171 complexed with tazobactam intermediate at 2.3 A resolution 7QNK ; 2.5 ; Structure of beta-lactamase TEM-171 complexed with tazobactam intermediate at 2.5 A resolution 1XPB ; 1.9 ; STRUCTURE OF BETA-LACTAMASE TEM1 7DVJ ; 1.65 ; Structure of beta-mannanase BaMan113A with mannobiose 5O6P ; 2.2 ; Structure of beta-phosphoglucomutase D10N mutant in complex with glucose-1,6-bisphosphate 5O6R ; 1.36 ; Structure of beta-phosphoglucomutase D10N mutant in complex with glucose-1-phosphate and aluminium tetrafluoride 4C4T ; 1.5 ; Structure of beta-phosphoglucomutase in complex with a phosphonate analogue of beta-glucose-1-phosphate and aluminium tetrafluoride 4C4R ; 1.1 ; Structure of beta-phosphoglucomutase in complex with a phosphonate analogue of beta-glucose-1-phosphate and magnesium trifluoride 4C4S ; 1.5 ; Structure of beta-phosphoglucomutase in complex with an alpha- fluorophosphonate analogue of beta-glucose-1-phosphate and magnesium trifluoride 2WFA ; 1.65 ; Structure of Beta-Phosphoglucomutase inhibited with Beryllium trifluoride, in an open conformation. 2WF9 ; 1.4 ; Structure of Beta-Phosphoglucomutase inhibited with Glucose-6- phosphate, and Beryllium trifluoride, crystal form 2 2WF8 ; 1.2 ; Structure of Beta-Phosphoglucomutase inhibited with Glucose-6- phosphate, Glucose-1-phosphate and Beryllium trifluoride 2WF7 ; 1.05 ; Structure of Beta-Phosphoglucomutase inhibited with Glucose-6- phosphonate and Aluminium tetrafluoride 2WF6 ; 1.4 ; Structure of Beta-Phosphoglucomutase inhibited with Glucose-6-phosphate and Aluminium tetrafluoride 2WF5 ; 1.3 ; Structure of Beta-Phosphoglucomutase inhibited with Glucose-6-phosphate and trifluoromagnesate 1Z4O ; 1.9 ; Structure of beta-phosphoglucomutase with inhibitor bound alpha-galactose 1-phosphate 1Z4N ; 1.97 ; Structure of beta-phosphoglucomutase with inhibitor bound alpha-galactose 1-phosphate cocrystallized with Fluoride 6XHE ; 1.88 ; Structure of beta-prolinyl 5'-O-adenosine phosphoramidate 1BHP ; 1.7 ; STRUCTURE OF BETA-PUROTHIONIN AT ROOM TEMPERATURE AND 1.7 ANGSTROMS RESOLUTION 1FKN ; 1.9 ; Structure of Beta-Secretase Complexed with Inhibitor 4GID ; 2.0 ; Structure of beta-secretase complexed with inhibitor 6IFA ; 1.9 ; Structure of beta-trefoil lectin from Entamoeba histolytica 6N48 ; 3.2 ; Structure of beta2 adrenergic receptor bound to BI167107, Nanobody 6B9, and a positive allosteric modulator 6E67 ; 3.7 ; Structure of beta2 adrenergic receptor fused to a Gs peptide 4QKX ; 3.3 ; Structure of beta2 adrenoceptor bound to a covalent agonist and an engineered nanobody 4LDO ; 3.2 ; Structure of beta2 adrenoceptor bound to adrenaline and an engineered nanobody 4LDE ; 2.79 ; Structure of beta2 adrenoceptor bound to BI167107 and an engineered nanobody 5X7D ; 2.703 ; Structure of beta2 adrenoceptor bound to carazolol and an intracellular allosteric antagonist 5JQH ; 3.2 ; Structure of beta2 adrenoceptor bound to carazolol and inactive-state stabilizing nanobody, Nb60 4LDL ; 3.1 ; Structure of beta2 adrenoceptor bound to hydroxybenzylisoproterenol and an engineered nanobody 1BUN ; 2.45 ; STRUCTURE OF BETA2-BUNGAROTOXIN: POTASSIUM CHANNEL BINDING BY KUNITZ MODULES AND TARGETED PHOSPHOLIPASE ACTION 6BFT ; 2.55 ; Structure of Bevacizumab Fab mutant in complex with VEGF 7SUK ; 3.99 ; Structure of Bfr2-Lcp5 Complex Observed in the Small Subunit Processome Isolated from R2TP-depleted Yeast Cells 7BBS ; 2.3 ; Structure of Bg10: an alcohol-tolerant and glucose-stimulated B-glucosidase 5WH9 ; 2.3 ; Structure of BH1999 gentisyl-coenzyme A thioesterase 1MPV ; ; Structure of bhpBR3, the BAFF-binding loop of BR3 embedded in a beta-hairpin peptide 6Z14 ; 1.67 ; Structure of Bifidobacterium bifidum GH20 beta-N-beta-N-acetylhexosaminidase E553Q variant in complex with 4MU-6SGlcNAc-derived oxazoline 6LD6 ; 2.204 ; Structure of Bifidobacterium dentium beta-glucuronidase 6LD0 ; 1.901 ; Structure of Bifidobacterium dentium beta-glucuronidase complexed with C6-hexyl uronic isofagomine 6LDC ; 2.181 ; Structure of Bifidobacterium dentium beta-glucuronidase complexed with C6-nonyl uronic isofagomine 6LDD ; 2.205 ; Structure of Bifidobacterium dentium beta-glucuronidase complexed with C6-propyl uronic isofagomine 5Z1B ; 1.45 ; Structure of Bifidobacterium dentium beta-glucuronidase complexed with coumarin-3-O-glucuronide 6LDB ; 1.651 ; Structure of Bifidobacterium dentium beta-glucuronidase complexed with uronic isofagomine 4A0H ; 2.808 ; Structure of bifunctional DAPA aminotransferase-DTB synthetase from Arabidopsis thaliana bound to 7-keto 8-amino pelargonic acid (KAPA) 4A0R ; 2.68 ; Structure of bifunctional DAPA aminotransferase-DTB synthetase from Arabidopsis thaliana bound to dethiobiotin (DTB). 4A0G ; 2.502 ; Structure of bifunctional DAPA aminotransferase-DTB synthetase from Arabidopsis thaliana in its apo form. 4CXP ; 1.22 ; Structure of bifunctional endonuclease (AtBFN2) from Arabidopsis thaliana in complex with sulfate 4CXV ; 2.0 ; Structure of bifunctional endonuclease (AtBFN2) in complex with phosphate. 3R1M ; 1.5 ; Structure of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase (aldolase form) 3CL9 ; 3.3 ; Structure of bifunctional TcDHFR-TS in complex with MTX 3CLB ; 3.0 ; Structure of bifunctional TcDHFR-TS in complex with TMQ 1AKN ; 2.8 ; STRUCTURE OF BILE-SALT ACTIVATED LIPASE 1LC0 ; 1.2 ; Structure of Biliverdin Reductase and the Enzyme-NADH Complex 7RBW ; 2.05 ; Structure of Biliverdin-binding Serpin of Boana punctata (polka-dot tree frog) 4K96 ; 2.084 ; Structure of Binary Complex of cGAS with Bound dsDNA 1BUJ ; ; STRUCTURE OF BINASE IN SOLUTION 2RBI ; 2.2 ; STRUCTURE OF BINASE MUTANT HIS 101 ASN 2PB0 ; 1.96 ; Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding 2PB2 ; 1.91 ; Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding 2EVB ; 1.55 ; Structure of Biotin Carboxyl Carrier Protein (74Val start) from Pyrococcus horikoshi OT3 Ligand Free Form I 2D5D ; 1.55 ; Structure of Biotin Carboxyl Carrier Protein (74Val start) from Pyrococcus horikoshi OT3 Ligand Free Form II 5GU9 ; 1.9 ; Structure of biotin carboxyl carrier protein from pyrococcus horikoshi OT3 (delta N79) A138I mutant 5GUA ; 1.5 ; Structure of biotin carboxyl carrier protein from pyrococcus horikoshi OT3 (delta N79) A138Y mutant 5GU8 ; 1.8 ; Structure of biotin carboxyl carrier protein from pyrococcus horikoshi OT3 (delta N79) wild type 1DV1 ; 1.9 ; STRUCTURE OF BIOTIN CARBOXYLASE (APO) 3M1D ; 2.0 ; Structure of BIR1 from cIAP1 4AUQ ; 2.176 ; Structure of BIRC7-UbcH5b-Ub complex. 8FIS ; 3.18 ; Structure of Bispecific CAP256V2LS-J3 Fab in complex with BG505 DS-SOSIP.664 6IFJ ; 2.4 ; Structure of bispecific Fc 2MOP ; ; Structure of Bitistatin A 2MP5 ; ; Structure of Bitistatin B 1XJ6 ; 1.9 ; Structure of bjFixLH in the unliganded ferrous form 6H2G ; 2.8 ; Structure of BlaC from Mycobacterium tuberculosis bound to the propionaldehyde ester adduct of clavulanic acid. 6H2C ; 1.93 ; Structure of BlaC from Mycobacterium tuberculosis bound to the trans-enamine adduct derived from clavulanic acid. 6H2K ; 1.9 ; Structure of BlaC from Mycobacterium tuberculosis bound to the trans-enamine adduct of sulbactam. 6H2I ; 2.72 ; Structure of BlaC from Mycobacterium tuberculosis bound to the trans-enamine adduct of tazobactam. 6H2H ; 1.62 ; Structure of BlaC from Mycobacterium tuberculosis covalently bound to avibactam. 8BV4 ; 1.95 ; Structure of BlaC from Mycobacterium tuberculosis in complex with vaborbactam 5MQC ; 3.4 ; Structure of black queen cell virus 3WE2 ; 2.7 ; Structure of BLM RQC domain bound to a phosphate ion 3WE3 ; 2.9 ; Structure of BLM RQC domain bound to an arsenate ion 4NEO ; 2.1 ; Structure of BlmI, a type-II acyl-carrier-protein from Streptomyces verticillus involved in bleomycin biosynthesis 7K66 ; 3.92 ; Structure of Blood Coagulation Factor VIII in Complex with an Anti-C1 Domain Pathogenic Antibody Inhibitor 5OXB ; 1.38 ; Structure of blue-light irradiated Cerulean 6HN8 ; 1.997 ; Structure of BM3 heme domain in complex with troglitazone 3UST ; 2.1 ; Structure of BmNPV ORF075 (p33) 2WC5 ; 1.9 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) 2WCM ; 1.5 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) with (10E)-hexadecen-12-yn-1-ol 2WCJ ; 1.4 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) with (10E,12Z)-tetradecadien-1-ol 2WCL ; 1.61 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) with (8E, 10Z)-hexadecadien-1-ol 2WCH ; 1.7 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) with bombykal 2WC6 ; 1.9 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) with bombykol and water to Arg 110 2WCK ; 1.61 ; Structure of BMori GOBP2 (General Odorant Binding Protein 2) without ligand 6ANY ; 2.25 ; Structure of BmVAL-1 3QDU ; 2.0 ; Structure of Boletus edulis lectin in complex with N,N-diacetyl chitobiose 3QDT ; 1.3 ; Structure of Boletus edulis lectin in complex with T-antigen disaccharide 2JNT ; ; Structure of Bombyx mori Chemosensory Protein 1 in Solution 6DKK ; 2.7 ; Structure of BoNT 6MHJ ; 3.019 ; Structure of BoNT mutant 2NM1 ; 2.15 ; Structure of BoNT/B in complex with its protein receptor 4J38 ; 2.83 ; Structure of Borrelia burgdorferi Outer surface protein E in complex with Factor H domains 19-20 3ULE ; 2.5 ; Structure of Bos taurus Arp2/3 complex with bound inhibitor CK-869 and ATP 3DXK ; 2.7 ; Structure of Bos Taurus Arp2/3 Complex with Bound Inhibitor CK0944636 3DXM ; 2.85 ; Structure of Bos taurus Arp2/3 Complex with Bound Inhibitor CK0993548 5KLV ; 2.652 ; Structure of bos taurus cytochrome bc1 with fenamidone inhibited 4KBB ; 2.3 ; Structure of Botulinum neurotoxin B binding domain in complex with both synaptotagmin II and GD1a 2QN0 ; 1.75 ; Structure of Botulinum neurotoxin serotype C1 light chain protease 6BVD ; 2.09 ; Structure of Botulinum Neurotoxin Serotype HA Light Chain 1HB6 ; 2.0 ; Structure of bovine Acyl-CoA binding protein in orthorhombic crystal form 1HB8 ; 2.0 ; Structure of bovine Acyl-CoA binding protein in tetragonal crystal form 6QN8 ; 2.12 ; Structure of bovine anti-RSV Fab B13 6QN9 ; 1.89 ; Structure of bovine anti-RSV Fab B4 6QNA ; 2.62 ; Structure of bovine anti-RSV hybrid Fab B13HC-B4LC 6QN7 ; 2.15 ; Structure of bovine anti-RSV hybrid Fab B4HC-B13LC 2P9S ; 2.68 ; Structure of bovine Arp2/3 complex co-crystallized with ATP/Mg2+ 1HLU ; 2.65 ; STRUCTURE OF BOVINE BETA-ACTIN-PROFILIN COMPLEX WITH ACTIN BOUND ATP PHOSPHATES SOLVENT ACCESSIBLE 8CI3 ; 2.33 ; Structure of bovine CD46 ectodomain (SCR 1-2) 8CJV ; 2.84 ; Structure of bovine CD46 ectodomain (SCR 1-4) 4KCP ; 2.07 ; Structure of bovine endotheial nitric oxide synthase heme domain in complex with N-(4-(2-((3-(thiophene-2-carboximidamido)benzyl)amino)ethyl)phenyl)thiophene-2-carboximidamide 4CVG ; 2.31 ; Structure of bovine endothelial nitric oxide synthase heme domain (H4B-free) supplemented with 50uM Zn acetate and with poor binding of 6-acetyl-2-amino-7,7-dimethyl-7,8-dihydropteridin-4(3H)-one. 4K5K ; 2.0 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with ((2S, 3S)-1,3-bis((6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methoxy)-2-aminobutane 4D38 ; 2.3 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (1R,2R)-2-(3-fluorobenzyl)-N-{2-[2-(1H-imidazol-1-yl)pyrimidin-4-yl]ethyl}cyclopropanamine 4CUM ; 2.33 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (9aS)-2-amino-9a-methyl-6,7,8,9,9a,10-hexahydrobenzo[g]pteridin-4(3H)-one 4CUN ; 2.48 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (9aS)-2-amino-9a-methyl-8,9,9a,10-tetrahydrobenzo[g]pteridine-4,6(3H,7H)-dione 4D33 ; 2.087 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (N1-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N2-(3- fluorophenethyl)ethane-1,2-diamine 4K5I ; 2.08 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (R)-1,2-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-propan-3-amine 4CTY ; 2.3 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (R)-6-(2-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl) ethyl)phenyl)ethyl)-4-methylpyridin-2-amine 4CU0 ; 2.08 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (R)-6-(3-amino-2-(5-(2-(6-amino-4-methylpyridin-2-yl) ethyl)pyridin-3-yl)propyl)-4-methylpyridin-2-amine 4K5H ; 2.25 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (S)-1,2-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-propan-3-amine 4K5J ; 2.36 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (S)-1,3-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-butan-4-amine 4CTZ ; 2.01 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with (S)-6-(2-amino-2-(3-(2-(4-methylpyridin-2-yl)ethyl)phenyl)ethyl)-4-methylpyridin-2-amine 4D34 ; 2.25 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N-(3- fluorophenethyl)ethan-1-amine 4IMX ; 2.25 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 3,5-bis(2-(6-amino-4-methylpyridin-2-yl)ethyl)benzonitrile 4UHA ; 2.2 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(methyl(2-(methylamino)ethyl)amino)benzonitrile 4D3A ; 2.252 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 3-(3-fluorophenyl)-N-2-(2-(5-methyl-1H-imidazol-1-yl) pyrimidin-4-yl)ethylpropan-1-amine 5UOD ; 2.01 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 3-[(2-Amino-4-methylquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5VVA ; 2.55 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VV9 ; 2.5 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)benzonitrile 5VVG ; 2.3 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-chlorobenzonitrile 5VV8 ; 2.15 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VVN ; 2.4 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)benzonitrile 4CWW ; 2.16 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4-METHYLPYRIDIN-2-YL)PENTYL) OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 4CWV ; 2.34 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(PYRIDIN-2-YL)PENTYL)OXY) PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 5FVY ; 2.098 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(2-(5-(4-methylpiperazin-1-yl)pyridin-3-yl) ethyl)pyridin-2-amine 4JSL ; 2.04 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6,6'-(heptane-1,7-diyl)bis(4-methylpyridin-2-amine) 4JSK ; 2.28 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6,6'-(pentane-1,5-diyl)bis(4-methylpyridin-2-amine) 4LUW ; 2.25 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-((((3R,5S)-5-(((6-amino-4-methylpyridin-2-yl)methoxy)methyl)pyrrolidin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 4C3A ; 2.2 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-((((3S, 5R)-5-(((6-amino-4-methylpyridin-2-yl)methoxy) methyl)pyrrolidin-3-yl)oxy) methyl)-4-methylpyridin-2-amine 3PNH ; 1.93 ; Structure of Bovine Endothelial Nitric Oxide Synthase Heme Domain in complex with 6-(((3R,4R)-4-(2-((2-FLUORO-2-(3-FLUOROPHENYL) ETHYL)AMINO)ETHOXY)PYRROLIDIN-3-YL)METHYL)-4-METHYLPYRIDIN-2-AMINE 4JSM ; 2.25 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-(((5-(((3-fluorophenethyl)amino)methyl)pyridin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 5FVZ ; 2.048 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-(2-(5-(3-(dimethylamino)propyl)pyridin-3-yl)ethyl)-4-methylpyridin-2-amine 4CWY ; 2.15 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-(5-(((3R,4R)-4-((6-AMINO-4-METHYLPYRIDIN-2-YL)METHYL) PYRROLIDIN-3-YL)OXY)PENTYL)-4-METHYLPYRIDIN-2-AMINE 4CX2 ; 2.04 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-(5-(((3R,4R)-4-((6-AMINO-4-METHYLPYRIDIN-2-YL)METHYL) PYRROLIDIN-3-YL)OXY)PENTYL)-4-METHYLPYRIDIN-2-AMINE 4CUL ; 2.23 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-acetyl-2-amino-7,7-dimethyl-7,8-dihydropteridin-4(3H)-one 4CU1 ; 1.89 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 6-[(2S)-3-amino-2-{5-[2-(6-amino-4-methylpyridin-2-yl)ethyl]pyridin-3-yl}propyl]-4-methylpyridin-2-amine 5ADN ; 2.0 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-(((3-((Dimethylamino)methyl)phenyl)amino)methyl) quinolin-2-amine 5VV7 ; 2.2 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-(((3-(Pyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VV6 ; 2.0 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-(((4-(Dimethylamino)phenethyl)amino)methyl)quinolin-2-amine 5ADJ ; 2.217 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-(2-(Methylamino)ethyl)phenoxy)methyl)quinolin-2- amine 5ADK ; 1.805 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-(Dimethylamino)methyl)phenoxy)methyl)quinolin-2- amine 5ADL ; 2.205 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-(Methylamino)methyl)phenoxy)methyl)quinolin-2- amine 5ADM ; 2.196 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-Aminomethyl)phenoxy)methyl)quinolin-2-amine 4CFT ; 1.79 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-Fluorophenethylamino)ethyl)quinolin-2-amine 4CAR ; 2.05 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((3-Fluorophenethylamino)methyl)quinolin-2-amine 5FJ2 ; 2.05 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((4-CHLORO-3-((METHYLAMINO)METHYL) PHENOXY)METHYL)QUINOLIN-2-AMINE 5FJ3 ; 2.2 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with 7-((4-CHLORO-3-((METHYLAMINO)METHYL) PHENOXY)METHYL)QUINOLIN-2-AMINE in the absence of acetate 4UPQ ; 2.03 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N',N'-{[(2R)-3-aminopropane-1,2-diyl]bis(oxymethanediylbenzene-3,1-diyl)}dithiophene-2-carboximidamide 4UPT ; 2.2 ; structure of bovine endothelial nitric oxide synthase heme domain in complex with n'-[4-[[(2s,4r)-4-[3-[(c-thiophen-2-ylcarbonimidoyl)amino]phenoxy]pyrrolidin-2-yl]methoxy]phenyl]thiophene-2-carboximidamide 4UPR ; 1.93 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N,N''-{[(2S)-3-aminopropane-1,2-diyl]bis(oxymethanediylbenzene-3,1-diyl)}dithiophene-2-carboximidamide 4KCR ; 2.09 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-(3-(((3-fluorophenethyl)amino)methyl)phenyl)thiophene-2-carboximidamide 4KCS ; 2.05 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-(3-((ethyl(3-fluorophenethyl)amino)methyl)phenyl)thiophene-2-carboximidamide 4KCQ ; 2.03 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-(4-(2-(ethyl(3-(thiophene-2-carboximidamido)benzyl)amino)ethyl)phenyl)thiophene-2-carboximidamide 4D36 ; 2.052 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(3- chlorophenyl)propan-1-amine 4D35 ; 2.18 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(3- fluorophenyl)propan-1-amine 4UPS ; 1.95 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-[3-({[(3S,5S)-5-{[(3-{[(Z)-imino(thiophen-2-yl)methyl]amino}benzyl)oxy]methyl}pyrrolidin-3-yl]oxy}methyl) phenyl]thiophene-2-carboximidamide 4D37 ; 2.1 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N-{[(1R,2R)-2-(3-fluorophenyl)cyclopropyl]methyl}-2-[2-(1H-imidazol-1-yl) pyrimidin-4-yl]ethanamine 4UH9 ; 2.14 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5- fluorophenyl)-N1,N2-dimethylethane-1,2-diamine 4UH7 ; 2.235 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)phenyl)-N1, N2-dimethylethane-1,2-diamine 4UH8 ; 2.3 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with N1-(5-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-3- yl)-N1,N2-dimethylethane-1,2-diamine 4D39 ; 2.0 ; Structure of bovine endothelial nitric oxide synthase heme domain in complex with2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N-(3-cyanobenzyl) ethan-1-amine 4CX1 ; 2.13 ; Structure of bovine endothelial nitric oxide synthase L111A mutant heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4- METHYLPYRIDIN-2-YL)PENTYL)OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 4CWZ ; 2.08 ; Structure of bovine endothelial nitric oxide synthase Y477A mutant heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4- METHYLPYRIDIN-2-YL)PENTYL)OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 4CX0 ; 2.2 ; Structure of bovine endothelial nitric oxide synthase Y477A mutant heme domain in complex with 6-((((3S, 5R)-5-(((6-AMINO-4- METHYLPYRIDIN-2-YL)METHOXY)METHYL)PYRROLIDIN-3-YL)OXY)METHYL)-4- METHYLPYRIDIN-2-AMINE 2G6O ; 1.9 ; Structure of bovine eNOS heme domain (BH4-free) complexed with CO 3E7S ; 2.5 ; Structure of bovine eNOS oxygenase domain with inhibitor AR-C95791 3JCZ ; 3.26 ; Structure of bovine glutamate dehydrogenase in the unliganded state 1OCC ; 2.8 ; STRUCTURE OF BOVINE HEART CYTOCHROME C OXIDASE AT THE FULLY OXIDIZED STATE 5GLS ; 1.93 ; Structure of bovine Lactoperoxidase with a partially modified covalent bond with heme moiety 6M7E ; 2.42 ; Structure of bovine lactoperoxidase with multiple iodide ions in the distaline heme cavity. 1RHD ; 2.5 ; STRUCTURE OF BOVINE LIVER RHODANESE. I. STRUCTURE DETERMINATION AT 2.5 ANGSTROMS RESOLUTION AND A COMPARISON OF THE CONFORMATION AND SEQUENCE OF ITS TWO DOMAINS 1L0L ; 2.35 ; structure of bovine mitochondrial cytochrome bc1 complex with a bound fungicide famoxadone 8CEM ; 3.0 ; Structure of bovine native C3, re-refinement 1BP2 ; 1.7 ; STRUCTURE OF BOVINE PANCREATIC PHOSPHOLIPASE A2 AT 1.7 ANGSTROMS RESOLUTION 1U1B ; 2.0 ; Structure of bovine pancreatic Ribonuclease A in complex with 3'-phosphothymidine (3'-5')-pyrophosphate adenosine 3'-phosphate 5PTI ; 1.0 ; STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR. RESULTS OF JOINT NEUTRON AND X-RAY REFINEMENT OF CRYSTAL FORM II 1ZWC ; ; STRUCTURE OF BOVINE PARATHYROID HORMONE FRAGMENT 1-37, NMR, 10 STRUCTURES 8SF8 ; 1.7 ; Structure of bovine PKA bound to (R)-N-(4-(1H-pyrrolo[2,3-b]pyridin-4-yl)phenyl)-2-amino-4-methylpentanamide 2PF1 ; 2.8 ; STRUCTURE OF BOVINE PROTHROMBIN FRAGMENT 1 REFINED AT 2.25 ANGSTROMS RESOLUTION 1JFP ; ; Structure of bovine rhodopsin (dark adapted) 1LN6 ; ; STRUCTURE OF BOVINE RHODOPSIN (Metarhodopsin II) 1GZM ; 2.65 ; Structure of Bovine Rhodopsin in a Trigonal Crystal Form 4PEQ ; 2.211 ; Structure of bovine ribonuclease inhibitor complexed with bovine ribonuclease I 3OSL ; 6.0 ; Structure of bovine thrombin-activatable fibrinolysis inhibitor in complex with tick carboxypeptidase inhibitor 3I26 ; 1.8 ; Structure of bovine torovirus Hemagglutinin-Esterase 3I27 ; 2.0 ; Structure of bovine torovirus Hemagglutinin-Esterase in complex with receptor 7AYS ; 2.1 ; Structure of bovine trypsin determined from single femtosecond snapshots per orientation at room temperature 4XOJ ; 0.91 ; Structure of bovine trypsin in complex with analogues of sunflower inhibitor 1 (SFTI-1) 3ITI ; 1.55 ; Structure of bovine trypsin with the MAD triangle B3C 1TGN ; 1.65 ; STRUCTURE OF BOVINE TRYPSINOGEN AT 1.9 ANGSTROMS RESOLUTION 7ZAO ; 2.2 ; Structure of BPP43_05035 of Brachyspira pilosicoli 5BU6 ; 1.951 ; Structure of BpsB deaceylase domain from Bordetella bronchiseptica 1LD5 ; ; STRUCTURE OF BPTI MUTANT A16V 1LD6 ; ; STRUCTURE OF BPTI_8A MUTANT 5CTM ; 1.0 ; Structure of BPu1 beta-lactamase 5CTN ; 1.35 ; Structure of BPu1 beta-lactamase 4WBR ; 1.4 ; Structure of Bradyrhizobium japonicum ScoI with copper bound 8QQG ; 2.979 ; Structure of BRAF in Complex With Exarafenib (KIN-2787). 4Y18 ; 3.5 ; Structure of BRCA1 BRCT domains in complex with Abraxas double phosphorylated peptide 4Y2G ; 2.5 ; Structure of BRCA1 BRCT domains in complex with Abraxas single phosphorylated peptide 4LR6 ; 1.29 ; Structure of BRD4 bromodomain 1 with a 3-methyl-4-phenylisoxazol-5-amine fragment 4LRG ; 2.21 ; Structure of BRD4 bromodomain 1 with a dimethyl thiophene isoxazole azepine carboxamide 2WP1 ; 2.1 ; Structure of Brdt bromodomain 2 bound to an acetylated histone H3 peptide 2WP2 ; 2.37 ; Structure of Brdt bromodomain BD1 bound to a diacetylated histone H4 peptide. 4R7E ; 2.251 ; Structure of Bre1 RING domain 8T3Y ; 3.47 ; Structure of Bre1-nucleosome complex - state1 8T3W ; 3.25 ; Structure of Bre1-nucleosome complex - state2 8T3T ; 3.21 ; Structure of Bre1-nucleosome complex - state3 4BF5 ; 1.45 ; Structure of broad spectrum racemase from Aeromonas hydrophila 6WOS ; 1.645 ; Structure of broadly neutralizing antibody AR3B 5UIY ; 1.687 ; Structure of Bromodomain from human BAZ1A 5TB6 ; 1.79 ; Structure of bromodomain of CREBBP with a pyrazolo[4,3-c]pyridin fragment 4U83 ; 1.8 ; Structure of Brucella Abortus Butyryl-CoA dehydrogenase 7DPY ; 1.8 ; Structure of Brucella abortus PhiA 7DNP ; 2.0 ; Structure of Brucella abortus SagA 4X0G ; 3.2065 ; Structure of Bsg25A binding with DNA 4I94 ; 1.8 ; Structure of BSK8 in complex with AMP-PNP 2LK9 ; ; Structure of BST-2/Tetherin Transmembrane Domain 7NZJ ; 1.98 ; Structure of bsTrmB apo 3ZOR ; 2.95 ; Structure of BsUDG 3ZOQ ; 1.45 ; Structure of BsUDG-p56 complex 3EHM ; 2.0 ; Structure of BT1043 7NWR ; 2.0 ; Structure of BT1526, a myo-inositol-1-phosphate synthase 5G2U ; 1.43 ; Structure of BT1596,a 2-O GAG sulfatase 5G2V ; 1.39 ; Structure of BT4656 in complex with its substrate D-Glucosamine-2-N, 6-O-disulfate. 4AK1 ; 1.95 ; Structure of BT4661, a SusE-like surface located polysaccharide binding protein from the Bacteroides thetaiotaomicron heparin utilisation locus 4AK2 ; 1.35 ; Structure of BT4661, a SusE-like surface located polysaccharide binding protein from the Bacteroides thetaiotaomicron heparin utilisation locus 1CS3 ; 2.0 ; STRUCTURE OF BTB/POZ TRANSCRIPTION REPRESSION DOMAIN FROM PROMELOCYTIC LEUKEMIA ZINC FINGER ONCOPROTEIN 7DXF ; 2.9 ; Structure of BTDM-bound human TRPC6 nanodisc at 2.9 angstrom in high calcium state 3CXI ; 1.83 ; Structure of BthTX-I complexed with alpha-tocopherol 8FD9 ; 1.7 ; Structure of BTK kinase domain with the second-generation inhibitor acalabrutinib 8FF0 ; 2.6 ; Structure of BTK kinase domain with the second-generation inhibitor tirabrutinib 5P9G ; 1.75 ; Structure of BTK with RN486 2BTO ; 2.5 ; Structure of BtubA from Prosthecobacter dejongeii 2BTQ ; 3.2 ; Structure of BtubAB heterodimer from Prosthecobacter dejongeii 4QPM ; 2.202 ; Structure of Bub1 kinase domain 2QPQ ; 1.92 ; Structure of Bug27 from Bordetella pertussis 5K1R ; 2.104 ; Structure of Burkholderia pseudomallei K96243 sphingosine-1-phosphate lyase Bpss2021 3B1P ; 1.7 ; Structure of Burkholderia thailandensis nucleoside kinase (BthNK) in complex with ADP-inosine 3B1N ; 1.55 ; Structure of Burkholderia thailandensis nucleoside kinase (BthNK) in complex with ADP-mizoribine 3B1R ; 2.0 ; Structure of Burkholderia thailandensis nucleoside kinase (BthNK) in complex with AMP-Mg-AMP 3B1Q ; 1.7 ; Structure of Burkholderia thailandensis nucleoside kinase (BthNK) in complex with inosine 3B1O ; 2.1 ; Structure of Burkholderia thailandensis nucleoside kinase (BthNK) in ligand-free form 7VEN ; 1.45 ; Structure of burosumab Fab 1X9J ; 3.0 ; Structure of butyrate kinase 2 reveals both open- and citrate-induced closed conformations: implications for substrate-induced fit conformational changes 2YQ3 ; 3.29 ; Structure of BVDV1 envelope glycoprotein E2, pH5 2YQ2 ; 2.58 ; Structure of BVDV1 envelope glycoprotein E2, pH8 4EUU ; 1.8 ; Structure of BX-795 Complexed with Human TBK1 Kinase Domain Phosphorylated on Ser172 4EUT ; 2.6 ; Structure of BX-795 Complexed with Unphosphorylated Human TBK1 Kinase-ULD Domain 7WH0 ; 1.8 ; structure of C elegans BCMO-1 7WH1 ; 1.9 ; structure of C elegans BCMO-2 5J3X ; 2.822 ; Structure of c-CBL Y371F 2Y1N ; 1.999 ; Structure of c-Cbl-ZAP-70 peptide complex 6HH1 ; 2.25 ; Structure of c-Kit with allosteric inhibitor 3G8 3EFK ; 2.2 ; Structure of c-Met with pyrimidone inhibitor 50 3EFJ ; 2.6 ; Structure of c-Met with pyrimidone inhibitor 7 5TOU ; 2.04 ; STRUCTURE OF C-PHYCOCYANIN FROM ARCTIC PSEUDANABAENA SP. LW0831 2W0I ; 1.8 ; Structure Of C-Terminal Actin Depolymerizing Factor Homology (Adf-H) Domain Of Human Twinfilin-2 4L9U ; 1.6014 ; Structure of C-terminal coiled coil of RasGRP1 2KTL ; ; Structure of C-terminal domain from mtTyrRS of A. nidulans 4OGP ; 2.15 ; Structure of C-terminal domain from S. cerevisiae Pat1 decapping activator (Space group : P21) 4OJJ ; 2.32 ; Structure of C-terminal domain from S. cerevisiae Pat1 decapping activator (Space group : P212121) 5LMG ; 1.89 ; Structure of C-terminal domain from S. cerevisiae Pat1 decapping activator bound to Dcp2 HLM10 peptide (region 954-970) 5LM5 ; 2.6 ; Structure of C-terminal domain from S. cerevisiae Pat1 decapping activator bound to Dcp2 HLM2 peptide (region 435-451) 5LMF ; 2.15 ; Structure of C-terminal domain from S. cerevisiae Pat1 decapping activator bound to Dcp2 HLM3 peptide (region 484-500) 2FZL ; 2.9 ; Structure of C-terminal domain of Archaeoglobus fulgidus XPB 2N1G ; ; Structure of C-terminal domain of human polymerase Rev1 in complex with PolD3 RIR-motif 2LYC ; ; Structure of C-terminal domain of Ska1 4RXI ; 1.9 ; Structure of C-terminal domain of uncharacterized protein from Legionella pneumophila 8S94 ; 3.94 ; Structure of C-terminal domains of Walker B mutated MCM8/9 heterohexamer complex with ADP 2L6M ; ; Structure of C-terminal dsRBD of the Fission Yeast DICER (Dcr1) 6VLS ; 3.2 ; Structure of C-terminal fragment of Vip3A toxin 8TZE ; 2.9 ; Structure of C-terminal half of LRRK2 bound to GZD-824 3OUE ; 2.15 ; Structure of C-terminal hexaheme fragment of GSU1996 8TXZ ; 3.05 ; Structure of C-terminal LRRK2 bound to MLi-2 8TZC ; 2.7 ; Structure of C-terminal LRRK2 bound to MLi-2 (G2019S mutant) 8TZG ; 2.7 ; Structure of C-terminal LRRK2 bound to MLi-2 (I2020T mutant) 2JDL ; 2.2 ; Structure of C-terminal region of acidic P2 ribosomal protein complexed with trichosanthin 2RQQ ; ; Structure of C-terminal region of Cdt1 7XQF ; 2.3 ; Structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE/CHS nanodiscs 7XQD ; 2.7 ; Structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel in POPE/CHS nanodiscs (C1 symmetry) 7F94 ; 3.6 ; Structure of C-terminal truncated connexin43/Cx43/GJA1 gap junction intercellular channel with two conformationally different hemichannels 6RNH ; 3.7 ; Structure of C-terminal truncated Plasmodium falciparum IMP-nucleotidase 7YZN ; 1.7 ; Structure of C-terminally truncated aIF5B from Pyrococcus abyssi complexed with GTP 4ZGO ; 2.063 ; Structure of C-terminally truncated Cdc123 from Schizosaccharomyces pombe 7TUI ; 2.66 ; Structure of C. albicans FAS in an inhibited state 5DXI ; 2.0 ; Structure of C. albicans Trehalose-6-phosphate phosphatase C-terminal domain 6CG8 ; 2.299 ; Structure of C. crescentus GapR-DNA 2QAZ ; 2.7 ; Structure of C. crescentus SspB ortholog 4ZAD ; 2.46 ; Structure of C. dubliensis Fdc1 with the prenylated-flavin cofactor in the iminium form. 4TRK ; 1.751 ; Structure of C. elegans HIM-3 4TZJ ; 2.851 ; Structure of C. elegans HIM-3 bound to HTP-3 closure motif-4 4TZO ; 2.4 ; Structure of C. elegans HTP-1 bound to HIM-3 closure motif 4TZQ ; 2.3 ; Structure of C. elegans HTP-1 bound to HTP-3 motif-1 4TZL ; 2.537 ; Structure of C. elegans HTP-2 bound to HIM-3 closure motif, P21 form 4TZS ; 2.55 ; Structure of C. elegans HTP-2 bound to HIM-3 closure motif, P212121 form 4DHI ; 1.8 ; Structure of C. elegans OTUB1 bound to human UBC13 4XGU ; 2.301 ; Structure of C. elegans PCH-2 7USY ; 3.54 ; Structure of C. elegans TMC-1 complex with ARRD-6 8EDC ; 2.89 ; Structure of C. elegans UNC-5 IG 1+2 Domains 8EDI ; 2.11 ; Structure of C. elegans UNC-5 IG 1+2 Domains bound to Heparin dp4 8EDK ; 2.5 ; Structure of C. elegans UNC-6 LamN and EGF domains 6PWY ; 1.81 ; Structure of C. elegans ZK177.8, SAMHD1 ortholog 5HUA ; 1.3 ; Structure of C. glabrata FKBP12-FK506 complex 4XHG ; 2.15 ; Structure of C. glabrata Hrr25 bound to ADP (formate condition) 4XH0 ; 1.99 ; Structure of C. glabrata Hrr25 bound to ADP (SO4 condition) 4XHH ; 2.908 ; Structure of C. glabrata Hrr25, Apo state 6YC6 ; 2.2 ; Structure of C. glutamicum GlnK 6SX4 ; 2.796 ; Structure of C. glutamicum mycoloyltransferase A 1LL4 ; 2.8 ; STRUCTURE OF C. IMMITIS CHITINASE 1 COMPLEXED WITH ALLOSAMIDIN 6YKM ; 3.1 ; Structure of C. jejuni MotAB 4QL6 ; 2.97 ; Structure of C. trachomatis CT441 4F9V ; 2.1 ; Structure of C113A/C136A mutant variant of glycosylated glutaminyl cyclase from Drosophila melanogaster 2YJS ; 1.9 ; Structure of C1156Y Mutant Anaplastic Lymphoma Kinase 5AAC ; 1.7 ; Structure of C1156Y Mutant Human Anaplastic Lymphoma Kinase in Complex with Crizotinib 5A9U ; 1.6 ; Structure of C1156Y Mutant Human Anaplastic Lymphoma Kinase in Complex with PF-06463922 ((10R)-7-amino-12-fluoro-2,10,16-trimethyl- 15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecine-3-carbonitrile). 5AAB ; 2.2 ; Structure of C1156Y,L1198F Mutant Human Anaplastic Lymphoma Kinase in Complex with Crizotinib 5AA8 ; 1.86 ; Structure of C1156Y,L1198F Mutant Human Anaplastic Lymphoma Kinase in Complex with PF-06463922 ((10R)-7-amino-12-fluoro-2,10,16-trimethyl- 15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecine-3-carbonitrile). 2GMC ; ; Structure of C12-LF11 bound to the DPC micelles 2GMD ; ; Structure of C12-LF11 bound to the SDS micelles 3PWA ; 2.04 ; Structure of C126A mutant of Plasmodium falciparum triosephosphate isomerase 3PY2 ; 1.93 ; Structure of C126S mutant of Plasmodium falciparum triosephosphate isomerase 3PVF ; 1.73 ; Structure of C126S mutant of Plasmodium falciparum triosephosphate isomerase complexed with PGA 4FF7 ; 1.86 ; Structure of C126S mutant of Saccharomyces cerevisiae triosephosphate isomerase 7N61 ; 3.5 ; structure of C2 projections and MIPs 7S51 ; 1.4 ; Structure of C208A Sortase A from Streptococcus pyogenes bound to LPATA peptide 7S4O ; 1.396 ; Structure of C208A Sortase A from Streptococcus pyogenes bound to LPATS peptide 4L6P ; 2.68 ; Structure of C22Y Mutant PCNA protein defective in DNA mismatch repair 6J3Z ; 3.6 ; Structure of C2S1M1-type PSII-FCPII supercomplex from diatom 6J3Y ; 3.3 ; Structure of C2S2-type PSII-FCPII supercomplex from diatom 7OUI ; 2.79 ; Structure of C2S2M2-type Photosystem supercomplex from Arabidopsis thaliana (digitonin-extracted) 6J40 ; 3.8 ; Structure of C2S2M2-type PSII-FCPII supercomplex from diatom 7VD5 ; 2.5 ; Structure of C2S2M2-type PSII-FCPII supercomplex from diatom 2JVH ; ; Structure of C3-binding domain 4 of S. aureus protein Sbi 2JVG ; ; Structure of C3-binding domain 4 of Staphylococcus aureus protein Sbi 7FF1 ; 1.689 ; Structure of C34E136G/N36 6JQK ; 1.498 ; Structure of C34M/N36 6KTS ; 1.65 ; Structure of C34N126K/N36 5AK8 ; 1.48 ; Structure of C351A mutant of Porphyromonas gingivalis peptidylarginine deiminase 8I9L ; 3.18 ; Structure of C3a-C3aR-Go complex (Composite map) 2A9G ; 2.3 ; Structure of C406A arginine deiminase in complex with L-arginine 2N63 ; ; Structure of C4VG16KRKP 8IA2 ; 3.21 ; Structure of C5a bound human C5aR1 in complex with Go (Composite map) 1XF1 ; 1.9 ; Structure of C5a peptidase- a key virulence factor from Streptococcus 8HPT ; 3.39 ; Structure of C5a-pep bound mouse C5aR1 in complex with Go 4L60 ; 3.003 ; Structure of C81R Mutant PCNA Protein Defective in Mismatch Repair 2QQH ; 2.5 ; Structure of C8a-MACPF reveals mechanism of membrane attack in complement immune defense 7MGE ; 3.94 ; Structure of C9orf72:SMCR8:WDR41 in complex with ARF1 5ZTF ; 3.45 ; Structure of Ca2+ ATPase 6JJU ; 3.2 ; Structure of Ca2+ ATPase 7DD6 ; 3.2 ; Structure of Ca2+/L-Trp-bonnd Calcium-Sensing Receptor in active state 2YEV ; 2.36 ; Structure of caa3-type cytochrome oxidase 3DWT ; 2.9 ; Structure of CabBCII-10 nanobody 4Z1C ; 1.93 ; Structure of Cadmium bound KDO8PS from H.pylori 1C1J ; 2.8 ; STRUCTURE OF CADMIUM-SUBSTITUTED PHOSPHOLIPASE A2 FROM AGKISTRONDON HALYS PALLAS AT 2.8 ANGSTROMS RESOLUTION 3QSL ; 2.0 ; Structure of CAE31940 from Bordetella bronchiseptica RB50 2JS9 ; ; Structure of caenopore-5 (81 Pro cis conformer) 2G64 ; 1.8 ; Structure of Caenorhabditis elegans 6-pyruvoyl tetrahydropterin synthase 1OHU ; 2.03 ; Structure of Caenorhabditis elegans CED-9 7YVZ ; 1.7 ; Structure of Caenorhabditis elegans CISD-1/mitoNEET 2HB6 ; 2.0 ; Structure of Caenorhabditis elegans leucine aminopeptidase (LAP1) 2HC9 ; 1.85 ; Structure of Caenorhabditis elegans leucine aminopeptidase-zinc complex (LAP1) 2O3J ; 1.88 ; Structure of Caenorhabditis Elegans UDP-Glucose Dehydrogenase 3CWY ; 2.75 ; Structure of CagD from H. pylori pathogenicity island crystallized in the presence of Cu(II) ions 6OEE ; 3.8 ; Structure of CagT from a cryo-EM reconstruction of a T4SS 6OEG ; 3.8 ; Structure of CagX from a cryo-EM reconstruction of a T4SS 6ODI ; 3.8 ; Structure of CagY from a cryo-EM reconstruction of a T4SS 6UUQ ; 1.849 ; Structure of Calcineurin bound to RCAN1 5SVE ; 2.596 ; Structure of Calcineurin in complex with NFATc1 LxVP peptide 6NUC ; 1.9 ; Structure of Calcineurin in complex with NHE1 peptide 6NUF ; 1.9 ; Structure of Calcineurin in complex with NHE1 peptide 6NUU ; 2.3 ; Structure of Calcineurin mutant in complex with NHE1 peptide 3QJK ; 3.001 ; Structure of Calcium Binding Protein-1 from Entamoeba histolytica in complex with Lead 3PX1 ; 3.0 ; Structure of Calcium Binding Protein-1 from Entamoeba histolytica in complex with Strontium 3WYN ; 1.68 ; Structure of calcium bound cutinase Est119 from Thermobifida alba. 2NBF ; ; Structure of calcium-bound form of Penicillium antifungal protein (PAF) 5OYB ; 3.75 ; Structure of calcium-bound mTMEM16A chloride channel at 3.75 A resolution 7B5C ; 3.7 ; Structure of calcium-bound mTMEM16A(ac) chloride channel at 3.7 A resolution 7B5E ; 4.1 ; Structure of calcium-bound mTMEM16A(ac)-I551A chloride channel at 4.1 A resolution 8QZC ; 3.29 ; Structure of calcium-bound mTMEM16A(ac)-L647V/I733V chloride channel at 3.29 A resolution 4ZCU ; 2.1 ; Structure of calcium-bound regulatory domain of the human ATP-Mg/Pi carrier in the P2 form 4ZCV ; 2.8 ; Structure of calcium-bound regulatory domain of the human ATP-Mg/Pi carrier in the P212121 form 5OYG ; 4.06 ; Structure of calcium-free mTMEM16A chloride channel at 4.06 A resolution 7B5D ; 3.3 ; Structure of calcium-free mTMEM16A(ac)-I551A chloride channel at 3.3 A resolution 1AJ4 ; ; STRUCTURE OF CALCIUM-SATURATED CARDIAC TROPONIN C, NMR, 1 STRUCTURE 2CTN ; ; STRUCTURE OF CALCIUM-SATURATED CARDIAC TROPONIN C, NMR, 30 STRUCTURES 3CTN ; ; STRUCTURE OF CALCIUM-SATURATED CARDIAC TROPONIN C, NMR, 30 STRUCTURES 7DD7 ; 3.2 ; Structure of Calcium-Sensing Receptor in complex with Evocalcet 7DD5 ; 3.2 ; Structure of Calcium-Sensing Receptor in complex with NPS-2143 6D5B ; 2.0 ; Structure of Caldicellulosiruptor danielii CBM3 module of glycoside hydrolase WP_045175321 6D5C ; 1.9 ; Structure of Caldicellulosiruptor danielii GH10 module of glycoside hydrolase WP_045175321 6D5D ; 1.9 ; Structure of Caldicellulosiruptor danielii GH48 module of glycoside hydrolase WP_045175321 5F6T ; 2.201 ; Structure of calexcitin-Gd3+ complex. 3ZYK ; 1.8 ; Structure of CALM (PICALM) ANTH domain 3ZYM ; 2.03 ; Structure of CALM (PICALM) in complex with VAMP8 2F2O ; 2.17 ; Structure of calmodulin bound to a calcineurin peptide: a new way of making an old binding mode 2F2P ; 2.6 ; Structure of calmodulin bound to a calcineurin peptide: a new way of making an old binding mode 4Q5U ; 1.95 ; Structure of calmodulin bound to its recognition site from calcineurin 7KL5 ; 1.65 ; Structure of Calmodulin Bound to the Cardiac Ryanodine Receptor (RyR2) at Residues: Phe4246 to Val4271 1SY9 ; ; Structure of calmodulin complexed with a fragment of the olfactory CNG channel 3IF7 ; 1.6 ; Structure of Calmodulin complexed with its first endogenous inhibitor, sphingosylphosphorylcholine 2JZI ; ; Structure of Calmodulin complexed with the Calmodulin Binding Domain of Calcineurin 5J8H ; ; Structure of calmodulin in a complex with a peptide derived from a calmodulin-dependent kinase 1XA5 ; 2.12 ; Structure of Calmodulin in complex with KAR-2, a bis-indol alkaloid 3CLN ; 2.2 ; STRUCTURE OF CALMODULIN REFINED AT 2.2 ANGSTROMS RESOLUTION 6M7H ; 1.6 ; Structure of calmodulin with KN93 1NX0 ; 2.3 ; Structure of Calpain Domain 6 in Complex with Calpastatin DIC 6VQP ; 2.0 ; Structure of CalU17 from the Calicheamicin Biosynthesis Pathway of Micromonospora echinospora 7ML6 ; 2.1 ; Structure of CalU17 from the Calicheamicin Biosynthesis Pathway of Micromonospora echinospora 7MSY ; 2.21 ; Structure of CalU17 from the Calicheamicin Biosynthesis Pathway of Micromonospora echinospora 6HGC ; 3.02 ; Structure of Calypso in complex with DEUBAD of ASX 1DTZ ; 2.65 ; STRUCTURE OF CAMEL APO-LACTOFERRIN DEMONSTRATES ITS DUAL ROLE IN SEQUESTERING AND TRANSPORTING FERRIC IONS SIMULTANEOUSLY:CRYSTAL STRUCTURE OF CAMEL APO-LACTOFERRIN AT 2.6A RESOLUTION. 5YV8 ; 1.927 ; Structure of CaMKK2 in complex with CKI-002 5YV9 ; 2.53 ; Structure of CaMKK2 in complex with CKI-009 5YVA ; 2.574 ; Structure of CaMKK2 in complex with CKI-010 5YVB ; 2.02 ; Structure of CaMKK2 in complex with CKI-011 5YVC ; 2.02 ; Structure of CaMKK2 in complex with CKI-012 4IB3 ; 2.2 ; Structure of cAMP dependent protein kinase A in complex with ADP, phosphorylated peptide pSP20, and no metal 4IAZ ; 1.85 ; Structure of cAMP dependent protein kinase A in complex with high Ba2+ concentration, ADP and phosphorylated peptide pSP20 4IB1 ; 1.63 ; Structure of cAMP dependent protein kinase A in complex with high K+ concentration, ADP and phosphorylated peptide pSP20 2C1B ; 2.0 ; Structure of cAMP-dependent protein kinase complexed with (4R,2S)-5'-(4-(4-Chlorobenzyloxy)pyrrolidin-2-ylmethanesulfonyl)isoquinoline 2JDS ; 2.0 ; Structure of cAMP-dependent protein kinase complexed with A-443654 2C1A ; 1.95 ; Structure of cAMP-dependent protein kinase complexed with Isoquinoline-5-sulfonic acid (2-(2-(4-chlorobenzyloxy)ethylamino) ethyl)amide 7V0G ; 1.63 ; Structure of cAMP-dependent protein kinase using a MD-MX procedure, produced using 1.63 Angstrom data 7UJX ; 2.4 ; Structure of cAMP-dependent protein kinase using a MD-MX procedure, produced using 2.4 Angstrom data 1YDR ; 2.2 ; STRUCTURE OF CAMP-DEPENDENT PROTEIN KINASE, ALPHA-CATALYTIC SUBUNIT IN COMPLEX WITH H7 PROTEIN KINASE INHIBITOR 1-(5-ISOQUINOLINESULFONYL)-2-METHYLPIPERAZINE 1YDS ; 2.2 ; Structure of CAMP-dependent protein kinase, alpha-catalytic subunit in complex with H8 protein kinase inhibitor [N-(2-methylamino)ethyl]-5-isoquinolinesulfonamide 1YDT ; 2.3 ; STRUCTURE OF CAMP-DEPENDENT PROTEIN KINASE, ALPHA-CATALYTIC SUBUNIT IN COMPLEX WITH H89 PROTEIN KINASE INHIBITOR N-[2-(4-BROMOCINNAMYLAMINO)ETHYL]-5-ISOQUINOLINE 4C9N ; 2.2 ; Structure of camphor and hydroxycamphor bound D259N mutant of CYP101D1 4C9K ; 2.18 ; Structure of Camphor and Hydroxycamphor bound wild type CYP101D1 4C9P ; 1.799 ; Structure of camphor bound T260A mutant of CYP101D1 8G1N ; 2.74 ; Structure of Campylobacter concisus PglC I57M/Q175M Variant with modeled C-terminus 8E37 ; 3.01 ; Structure of Campylobacter concisus wild-type SeMet PglC 7BDV ; 2.02 ; Structure of Can2 from Sulfobacillus thermosulfidooxidans in complex with cyclic tetra-adenylate (cA4) 8Q5I ; 2.45 ; Structure of Candida albicans 80S ribosome in complex with cephaeline 7Q08 ; 2.56 ; Structure of Candida albicans 80S ribosome in complex with cycloheximide 7Q0F ; 2.64 ; Structure of Candida albicans 80S ribosome in complex with phyllanthoside 7V6F ; 2.98 ; Structure of Candida albicans Fructose-1,6-bisphosphate aldolase complexed with G3P 7V6G ; 2.343 ; Structure of Candida albicans Fructose-1,6-bisphosphate aldolase mutation C157S with CN39 4H1G ; 2.15 ; Structure of Candida albicans Kar3 motor domain fused to maltose-binding protein 5HUS ; 1.751 ; Structure of Candida albicans trehalose synthase regulatory protein C-terminal domain 5DXF ; 2.563 ; Structure of Candida albicans trehalose-6-phosphate phosphatase N-terminal domain 5HUV ; 2.002 ; Structure of Candida albicans trehalose-6-phosphate synthase E341R/E346R in complex with UDP-glucose 5HUU ; 2.37 ; Structure of Candida albicans trehalose-6-phosphate synthase in complex with UDP and glucose-6-phosphate 5HVL ; 1.796 ; Structure of Candida albicans trehalose-6-phosphate synthase in complex with UDP and validoxylamine A 5HUT ; 1.9 ; Structure of Candida albicans trehalose-6-phosphate synthase in complex with UDP-glucose 6ISP ; 1.88 ; structure of Candida antarctica Lipase B mutant 6MJE ; 2.5 ; Structure of Candida glabrata Csm1: S. cerevisiae Dsn1 complex 6MJB ; 2.27 ; Structure of Candida glabrata Csm1:Dsn1(14-72) complex 6MJC ; 1.79 ; Structure of Candida glabrata Csm1:Dsn1(43-67DD) complex 6MJ8 ; 3.03 ; Structure of Candida glabrata Csm1:Mam1 complex 6OAS ; 3.0 ; Structure of canine parvovirus in complex with transferrin receptor type-1 6Z3T ; 2.69 ; Structure of canine Sec61 inhibited by mycolactone 7V3Z ; 3.29 ; Structure of cannabinoid receptor type 1(CB1) 7RWK ; 2.39 ; Structure of Cap5 from Asticcacaulis sp. 7RWM ; 3.4 ; Structure of Cap5 from Lactococcus lactis 7PDZ ; 3.8 ; Structure of capping protein bound to the barbed end of a cytoplasmic actin filament 5OSW ; 1.78 ; Structure of caprine serum albumin in complex with 3,5-diiodosalicylic acid 5ORI ; 1.94 ; Structure of caprine serum albumin in orthorhombic crystal system 5OTB ; 2.5 ; Structure of caprine serum albumin in P1 space group 8FXP ; 4.04 ; Structure of capsid of Agrobacterium phage Milano 4AXS ; 2.5 ; Structure of Carbamate Kinase from Mycoplasma penetrans 1BXR ; 2.1 ; STRUCTURE OF CARBAMOYL PHOSPHATE SYNTHETASE COMPLEXED WITH THE ATP ANALOG AMPPNP 8AI7 ; 2.13 ; Structure of carbamoylated human butyrylcholinesterase upon reaction with 3-(((2-cycloheptylethyl)(methyl)amino)methyl)-1H-indol-7-yl N,N-dimethylcarbamate 6NZ8 ; 1.2 ; Structure of carbamylated apo OXA-231 carbapenemase 1NX8 ; 2.3 ; Structure of carbapenem synthase (CarC) complexed with N-acetyl proline 6RYM ; 1.46 ; Structure of carbohydrate recognition domain with GlcNAc bound 4MQG ; 1.68 ; Structure of Carbonmonoxy Adult Hemoglobin Bristol-Alesha alphawtbetaV67M 4C4O ; 2.05 ; Structure of carbonyl reductase CPCR2 from Candida parapsilosis in complex with NADH 1YME ; 1.53 ; STRUCTURE OF CARBOXYPEPTIDASE 1CPB ; 2.8 ; STRUCTURE OF CARBOXYPEPTIDASE B AT 2.8 ANGSTROMS RESOLUTION 7KO5 ; 7.8 ; Structure of cardiac native thin filament at pCa=5.8 having upper and lower troponins in Ca2+ bound state 7KO4 ; 8.0 ; Structure of cardiac native thin filament at pCa=5.8 having upper and lower troponins in Ca2+ free state 7KOR ; 7.8 ; Structure of cardiac native thin filament at pCa=5.8 having upper troponin in Ca2+ bound state and lower troponin in Ca2+ free state 1MXL ; ; STRUCTURE OF CARDIAC TROPONIN C-TROPONIN I COMPLEX 8D49 ; 3.2 ; Structure of Cas12a2 binary complex 8D4B ; 2.92 ; Structure of Cas12a2 ternary complex 7WAH ; 2.45 ; Structure of Cas7-11 in complex with guide RNA and target RNA 7Y8T ; 2.9 ; Structure of Cas7-11-crRNA in complex with TPR-CHAT 7Y8Y ; 3.0 ; Structure of Cas7-11-crRNA-tgRNA in complex with TPR-CHAT 2C47 ; 2.4 ; Structure of casein kinase 1 gamma 2 2CHL ; 1.95 ; Structure of casein kinase 1 gamma 3 2IZR ; 1.3 ; Structure of casein kinase gamma 3 in complex with inhibitor 2IZS ; 1.95 ; Structure of casein kinase gamma 3 in complex with inhibitor 2IZT ; 2.0 ; Structure of casein kinase gamma 3 in complex with inhibitor 2IZU ; 1.85 ; Structure of casein kinase gamma 3 in complex with inhibitor 3SEN ; 3.1 ; Structure of Caskin1 Tandem SAMs 1NME ; 1.6 ; Structure of Casp-3 with tethered salicylate 6VIE ; 3.4 ; Structure of caspase-1 in complex with gasdermin D 7P16 ; 4.3 ; Structure of caspase-3 cleaved rXKR9 in complex with a sybody at 4.3A 1NW9 ; 2.4 ; STRUCTURE OF CASPASE-9 IN AN INHIBITORY COMPLEX WITH XIAP-BIR3 7YOJ ; 3.36 ; Structure of CasPi with guide RNA and target DNA 8PVD ; 3.4 ; Structure of catalase determined by cryoEM at 100 keV 1IPH ; 2.8 ; STRUCTURE OF CATALASE HPII FROM ESCHERICHIA COLI 2IYE ; 2.6 ; Structure of catalytic CPx-ATPase domain CopB-B 2I0E ; 2.6 ; Structure of catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor 1KFW ; 1.74 ; Structure of catalytic domain of psychrophilic chitinase B from Arthrobacter TAD20 7YZ9 ; 1.97 ; Structure of catalytic domain of Rv1625c bound to nanobody NB4 5UBW ; 2.394 ; Structure of catalytic domain of Ssel 2GJZ ; 2.65 ; Structure of Catalytic Elimination Antibody 13G5 from a crystal in space group P2(1) 2GK0 ; 2.45 ; Structure of Catalytic Elimination Antibody 13G5 from a twinned crystal in space group C2 5GYJ ; 2.801 ; Structure of catalytically active sortase from Clostridium difficile 2NOE ; 2.2 ; Structure of catalytically inactive G42A human 8-oxoguanine glycosylase complexed to 8-oxoguanine DNA 2NOB ; 2.1 ; Structure of catalytically inactive H270A human 8-oxoguanine glycosylase crosslinked to 8-oxoguanine DNA 2NOL ; 2.57 ; Structure of catalytically inactive human 8-oxoguanine glycosylase distal crosslink to oxoG DNA 2NOH ; 2.01 ; Structure of catalytically inactive Q315A human 8-oxoguanine glycosylase complexed to 8-oxoguanine DNA 1DLM ; 2.0 ; STRUCTURE OF CATECHOL 1,2-DIOXYGENASE FROM ACINETOBACTER CALCOACETICUS NATIVE DATA 1DLQ ; 2.3 ; STRUCTURE OF CATECHOL 1,2-DIOXYGENASE FROM ACINETOBACTER SP. ADP1 INHIBITED BY BOUND MERCURY 1DMH ; 1.7 ; STRUCTURE OF CATECHOL 1,2-DIOXYGENASE FROM ACINETOBACTER SP. ADP1 WITH BOUND 4-METHYLCATECHOL 1DLT ; 1.9 ; STRUCTURE OF CATECHOL 1,2-DIOXYGENASE FROM ACINETOBACTER SP. ADP1 WITH BOUND CATECHOL 1MPY ; 2.8 ; STRUCTURE OF CATECHOL 2,3-DIOXYGENASE (METAPYROCATECHASE) FROM PSEUDOMONAS PUTIDA MT-2 6RT8 ; 2.19 ; Structure of catharanthine synthase - an alpha-beta hydrolase from Catharanthus roseus with a cleaviminium intermediate bound 6AY2 ; 1.6 ; Structure of CathB with covalently linked Compound 28 6YI7 ; 1.29 ; Structure of cathepsin B1 from Schistosoma mansoni (SmCB1) in complex with an azanitrile inhibitor 3QSD ; 1.3 ; Structure of cathepsin B1 from Schistosoma mansoni in complex with CA074 inhibitor 3S3Q ; 1.8 ; Structure of cathepsin B1 from Schistosoma mansoni in complex with K11017 inhibitor 3S3R ; 2.64 ; Structure of cathepsin B1 from Schistosoma mansoni in complex with K11777 inhibitor 5OGR ; 1.55 ; Structure of cathepsin B1 from Schistosoma mansoni in complex with WRR286 inhibitor 5OGQ ; 1.91 ; Structure of cathepsin B1 from Schistosoma mansoni in complex with WRR391 inhibitor 4OBZ ; 2.9 ; Structure of Cathepsin D with inhibitor 2-(3,4-dimethoxyphenyl)-N-[N-(4-methylbenzyl)carbamimidoyl]acetamide 4OC6 ; 2.64 ; Structure of Cathepsin D with inhibitor 2-bromo-N-[(2S,3S)-4-{[2-(2,4-dichlorophenyl)ethyl][3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propanoyl]amino}-3-hydroxy-1-(3-phenoxyphenyl)butan-2-yl]-4,5-dimethoxybenzamide 4OD9 ; 1.9 ; Structure of Cathepsin D with inhibitor N-(3,4-dimethoxybenzyl)-Nalpha-{N-[(3,4-dimethoxyphenyl)acetyl]carbamimidoyl}-D-phenylalaninamide 7QBL ; 2.0 ; Structure of cathepsin K in complex with the 3-cyano-3-aza-beta-amino acid inhibitor Gu2602 7QBN ; 1.55 ; Structure of cathepsin K in complex with the azadipeptide nitrile inhibitor Gu1303 4N79 ; 2.62 ; Structure of Cathepsin K-dermatan sulfate complex 6YYO ; 1.5 ; Structure of Cathepsin S in complex with Compound 1 6YYN ; 2.22 ; Structure of Cathepsin S in complex with Compound 14 6YYP ; 2.05 ; Structure of Cathepsin S in complex with Compound 2 6YYR ; 1.3 ; Structure of Cathepsin S in complex with Compound 20b 6YYQ ; 2.51 ; Structure of Cathepsin S in complex with Compound 3 3U9F ; 2.9 ; Structure of CATI in complex with chloramphenicol 1C39 ; 1.85 ; STRUCTURE OF CATION-DEPENDENT MANNOSE 6-PHOSPHATE RECEPTOR BOUND TO PENTAMANNOSYL PHOSPHATE 3KWB ; 2.02 ; Structure of CatK covalently bound to a dioxo-triazine inhibitor 7RGV ; 2.63 ; Structure of Caulobacter crescentus Suppressor of copper sensitivity protein C 5K8J ; 1.6 ; Structure of Caulobacter crescentus VapBC1 (apo form) 5L6M ; 1.9 ; Structure of Caulobacter crescentus VapBC1 (VapB1deltaC:VapC1 form) 5L6L ; 2.7 ; Structure of Caulobacter crescentus VapBC1 bound to operator DNA 5KMD ; 3.2 ; Structure of CavAb in complex with amlodipine 5KLS ; 3.299 ; Structure of CavAb in complex with Br-dihydropyridine derivative UK-59811 5KMH ; 3.2 ; Structure of CavAb in complex with Br-verapamil 6KE5 ; 2.803 ; Structure of CavAb in complex with Diltiazem and Amlodipine 6JUH ; 3.0 ; structure of CavAb in complex with efonidipine 5KMF ; 3.2 ; Structure of CavAb in complex with nimodipine 5KLG ; 3.3 ; Structure of CavAb(W195Y) in complex with Br-dihydropyridine derivative UK-59811 8FMH ; 1.87 ; Structure of CBASS Cap5 from Pseudomonas syringae as an activated tetramer with the cyclic dinucleotide 3'2'-c-dGAMP ligand (2 tetramers in the AU) 8FMF ; 2.1 ; Structure of CBASS Cap5 from Pseudomonas syringae as an activated tetramer with the cyclic dinucleotide 3'2'-c-diAMP ligand (1 tetramer in the AU) 8FMG ; 1.79 ; Structure of CBASS Cap5 from Pseudomonas syringae as an activated tetramer with the cyclic dinucleotide 3'2'-c-diAMP ligand (3 tetramers in the AU) 8FM1 ; 3.16 ; Structure of CBASS Cap5 from Pseudomonas syringae in the absence of a ligand (apo form dimer) 3GFO ; 2.3 ; Structure of cbiO1 from clostridium perfringens: Part of the ABC transporter complex cbiONQ. 6XAR ; 2.501 ; Structure of CBL tyrosine kinase binding domain (TKBD) with C-terminal tail of Src-like kinase protein 2 (SLAP2) 4GPL ; 3.0 ; Structure of Cbl(TKB) bound to a phosphorylated pentapeptide 7ZVO ; 1.65 ; Structure of CBM BT0996-C from Bacteroides thetaiotaomicron 7BLK ; 1.06 ; Structure of CBM BT3015C from Bacteroides thetaiotaomicron 7BLG ; 1.18 ; Structure of CBM BT3015C from Bacteroides thetaiotaomicron in complex with galactose 7BLH ; 1.79 ; Structure of CBM BT3015C from Bacteroides thetaiotaomicron in complex with O-GalNAc core 1-Thr 7BLJ ; 1.76 ; Structure of CBM BT3015C from Bacteroides thetaiotaomicron in complex with O-GalNAc core 2-Thr 2C3W ; 1.81 ; Structure of CBM25 from Bacillus halodurans amylase in complex with maltotetraose 2C3G ; 2.0 ; Structure of CBM26 from Bacillus halodurans amylase 2C3H ; 2.24 ; Structure of CBM26 from Bacillus halodurans amylase in complex with maltose 2J1A ; 1.49 ; Structure of CBM32 from Clostridium perfringens beta-N- acetylhexosaminidase GH84C in complex with galactose 4LPL ; 1.35 ; Structure of CBM32-1 from a family 31 glycoside hydrolase from Clostridium perfringens 4LQR ; 1.58 ; Structure of CBM32-3 from a family 31 glycoside hydrolase from Clostridium perfringens 4LKS ; 1.5 ; Structure of CBM32-3 from a family 31 glycoside hydrolase from Clostridium perfringens in complex with galactose 4P5Y ; 2.5 ; Structure of CBM32-3 from a family 31 glycoside hydrolase from Clostridium perfringens in complex with N-acetylgalactosamine 4QB1 ; 2.19 ; Structure of CBM35 from Paenibacillus barcinonensis 4QB6 ; 1.35 ; Structure of CBM35 in complex with aldouronic acid 4QB2 ; 1.5 ; Structure of CBM35 in complex with glucuronic acid 3ZQW ; 1.07 ; Structure of CBM3b of major scaffoldin subunit ScaA from Acetivibrio cellulolyticus 3ZUC ; 1.001 ; Structure of CBM3b of major scaffoldin subunit ScaA from Acetivibrio cellulolyticus determined from the crystals grown in the presence of Nickel 3ZU8 ; 1.801 ; STRUCTURE OF CBM3B OF MAJOR SCAFFOLDIN SUBUNIT SCAA FROM ACETIVIBRIO CELLULOLYTICUS DETERMINED ON THE NIKEL ABSORPTION EDGE 5KLC ; 1.746 ; Structure of CBM_E1, a novel carbohydrate-binding module found by sugar cane soil metagenome 5KLE ; 1.5 ; Structure of CBM_E1, a novel carbohydrate-binding module found by sugar cane soil metagenome, complexed with cellopentaose 5KLF ; 1.801 ; Structure of CBM_E1, a novel carbohydrate-binding module found by sugar cane soil metagenome, complexed with cellopentaose and gadolinium ion 2L14 ; ; Structure of CBP nuclear coactivator binding domain in complex with p53 TAD 6JYX ; 2.0 ; Structure of CbpJ from Streptococcus Pneumoniae TIGR4 5T1A ; 2.806 ; Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists 8B45 ; 1.6 ; Structure of CC-Tri with Aib@b,c: CC-Tri-(UbUc)4 1QVG ; 2.9 ; Structure of CCA oligonucleotide bound to the tRNA binding sites of the large ribosomal subunit of Haloarcula marismortui 7EOF ; 2.733 ; Structure of CCDC25-DNA complex 6LAN ; 1.41 ; Structure of CCDC50 and LC3B complex 2NAX ; ; Structure of CCHC zinc finger domain of Pcf11 6KFS ; 1.2 ; Structure of CCM related protein 6SCR ; 1.8 ; Structure of CcmK4 from Synechocystis sp. PCC6803 2JGW ; ; Structure of CCP module 7 of complement factor H - The AMD at risk varient (402H) 2JGX ; ; Structure of CCP module 7 of complement factor H - The AMD Not at risk varient (402Y) 3OQN ; 3.3 ; Structure of ccpa-hpr-ser46-p-gntr-down cre 3OQM ; 2.96 ; structure of ccpa-hpr-ser46p-ackA2 complex 6IXI ; 2.07 ; structure of Cd-bound periplasmic metal binding protein from candidatus liberibacter asiaticus 7U08 ; 3.30692 ; Structure of CD148 fibronectin type III domain 1 and 2 7U01 ; 2.29708 ; Structure of CD148 fibronectin type III domain 2 6VJA ; 3.3 ; Structure of CD20 in complex with rituximab Fab 2JXB ; ; Structure of CD3epsilon-Nck2 first SH3 domain complex 7LO6 ; 3.9 ; Structure of CD4 mimetic BNM-III-170 in complex with BG505 SOSIP.664 HIV-1 Env trimer and 17b Fab 7LOK ; 3.9 ; Structure of CD4 mimetic M48U1 in complex with BG505 SOSIP.664 HIV-1 Env trimer and 17b Fab 1I9R ; 3.1 ; STRUCTURE OF CD40L IN COMPLEX WITH THE FAB FRAGMENT OF HUMANIZED 5C8 ANTIBODY 8G94 ; 3.15 ; Structure of CD69-bound S1PR1 coupled to heterotrimeric Gi 4ZGQ ; 3.0 ; Structure of Cdc123 bound to eIF2-gammaDIII domain 4ZGP ; 1.85 ; Structure of Cdc123 from Schizosaccharomyces pombe 6G84 ; 2.47 ; Structure of Cdc14 bound to CBK1 PxL motif 6G85 ; 1.528 ; Structure of Cdc14 bound to CBK1 PxL motif 6G86 ; 1.74 ; Structure of Cdc14 bound to SIC1 PxL motif 1OHD ; 2.6 ; structure of cdc14 in complex with tungstate 1OHE ; 2.2 ; Structure of cdc14b phosphatase with a peptide ligand 5UNP ; 2.92 ; Structure of CDC2-Like Kinase 2 (CLK2) in Complex with Compound T-025 [N2-methyl-N4-(pyrimidin-2-ylmethyl)-5-(quinolin-6-yl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine] 1NF3 ; 2.1 ; Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6 1BD8 ; 1.8 ; STRUCTURE OF CDK INHIBITOR P19INK4D 6CKX ; 2.8 ; Structure of CDK12/CycK in complex with a small molecule inhibitor N-(4-(1-methyl-1H-pyrazol-4-yl)phenyl)-N-((1r,4r)-4-(quinazolin-2-ylamino)cyclohexyl)acetamide 1VYZ ; 2.21 ; Structure of CDK2 complexed with PNU-181227 2BTR ; 1.85 ; STRUCTURE OF CDK2 COMPLEXED WITH PNU-198873 2BTS ; 1.99 ; STRUCTURE OF CDK2 COMPLEXED WITH PNU-230032 4BZD ; 1.83 ; Structure of CDK2 in complex with a benzimidazopyrimidine 3PJ8 ; 1.96 ; Structure of CDK2 in complex with a Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine. 2W05 ; 1.9 ; Structure of CDK2 in complex with an imidazolyl pyrimidine, compound 5b 2W06 ; 2.04 ; Structure of CDK2 in complex with an imidazolyl pyrimidine, compound 5c 4BCK ; 2.052 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCM ; 2.45 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCN ; 2.1 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCO ; 2.05 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCP ; 2.26 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCQ ; 2.4 ; Structure of CDK2 in complex with cyclin A and a 2-amino-4-heteroaryl- pyrimidine inhibitor 7UXI ; 2.07 ; Structure of CDK2 in complex with FP19711, a Helicon Polypeptide 7UXK ; 2.63 ; Structure of CDK2 in complex with FP24322, a Helicon Polypeptide 2DUV ; 2.2 ; Structure of CDK2 with a 3-hydroxychromones 2WIP ; 2.8 ; STRUCTURE OF CDK2-CYCLIN A COMPLEXED WITH 8-ANILINO-1-METHYL-4,5-DIHYDRO- 1H-PYRAZOLO[4,3-H] QUINAZOLINE-3-CARBOXYLIC ACID 2WXV ; 2.6 ; Structure of CDK2-CYCLIN A with a Pyrazolo(4,3-h) quinazoline-3- carboxamide inhibitor 2BKZ ; 2.6 ; STRUCTURE OF CDK2-CYCLIN A WITH PHA-404611 2C4G ; 2.7 ; STRUCTURE OF CDK2-CYCLIN A WITH PHA-533514 2BPM ; 2.4 ; STRUCTURE OF CDK2-CYCLIN A WITH PHA-630529 2WIH ; 2.5 ; STRUCTURE OF CDK2-CYCLIN A WITH PHA-848125 3TNW ; 2.0 ; Structure of CDK2/cyclin A in complex with CAN508 6SG4 ; 2.43 ; Structure of CDK2/cyclin A M246Q, S247EN 1VYW ; 2.3 ; Structure of CDK2/Cyclin A with PNU-292137 7SJ3 ; 2.51 ; Structure of CDK4-Cyclin D3 bound to abemaciclib 7CNG ; 3.49 ; Structure of CDK5R1 bound FEM1B 6LDP ; 2.35 ; Structure of CDK5R1-bound FEM1C 8I0M ; 2.7772 ; Structure of CDK6 in complex with inhibitor 4BCF ; 3.011 ; Structure of CDK9 in complex with cyclin T and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCG ; 3.085 ; Structure of CDK9 in complex with cyclin T and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCH ; 2.958 ; Structure of CDK9 in complex with cyclin T and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCI ; 3.1 ; Structure of CDK9 in complex with cyclin T and a 2-amino-4-heteroaryl- pyrimidine inhibitor 4BCJ ; 3.162 ; Structure of CDK9 in complex with cyclin T and a 2-amino-4-heteroaryl- pyrimidine inhibitor 3TNI ; 3.234 ; structure of CDK9/cyclin T F241L 8I0L ; 3.6 ; Structure of CDK9/cyclin T1 in complex with inhibitor 3LQ5 ; 3.0 ; Structure of CDK9/CyclinT in complex with S-CR8 3MY1 ; 2.8 ; Structure of CDK9/cyclinT1 in complex with DRB 5IEN ; 2.089 ; Structure of CDL2.2, a computationally designed Vitamin-D3 binder 5IEO ; 1.851 ; Structure of CDL2.3a, a computationally designed Vitamin-D3 binder 5IEP ; 1.893 ; Structure of CDL2.3b, a computationally designed Vitamin-D3 binder 3KZ5 ; 1.58 ; Structure of cdomain 1WVG ; 1.8 ; Structure of CDP-D-glucose 4,6-dehydratase from Salmonella typhi 5MLQ ; 3.18 ; Structure of CDPS from Nocardia brasiliensis 5MLP ; 1.99 ; Structure of CDPS from Rickettsiella grylli 6EZ3 ; 3.0 ; Structure of CDPS from Staphylococcus haemolyticus 2F1N ; 1.73 ; Structure of CdtB, the biologically active subunit of Cytolethal Distending Toxin 7Q3O ; 2.78 ; Structure of CDX1 bound to hydroxymethylated DNA 6ES2 ; 2.95 ; Structure of CDX2-DNA(CAA) 6ES3 ; 2.57 ; Structure of CDX2-DNA(TCG) 5A3M ; 1.75 ; Structure of Cea1A in complex with Chitobiose 5A3L ; 1.66 ; Structure of Cea1A in complex with N-Acetylglucosamine 8BW0 ; 3.11 ; Structure of CEACAM5 A3-B3 domain in Complex with Tusamitamab Fab 3LQR ; 3.896 ; Structure of CED-4:CED-3 complex 6PQC ; 2.1 ; Structure of cefotaxime-CDD-1 beta-lactamase complex 2MGQ ; ; Structure of CEH37 Homeodomain 3C73 ; 2.5 ; Structure of CEHC variant ResA 2L7U ; ; Structure of CEL-PEP-RAGE V domain complex 3LN1 ; 2.4 ; Structure of celecoxib bound at the COX-2 active site 2F6S ; 2.5 ; Structure of cell filamentation protein (fic) from Helicobacter pylori 2XSP ; 1.7 ; Structure of Cellobiohydrolase 1 (Cel7A) from Heterobasidion annosum 5ZHB ; 1.85 ; Structure of Cellobiose 2-Epimerase from Bacillus thermoamylovorans B4167 4OY7 ; 1.5 ; Structure of cellulose active LPMO CelS2 (ScLPMO10C) in complex with Copper. 1GYD ; 2.05 ; Structure of Cellvibrio cellulosa alpha-L-arabinanase 1GYE ; 2.5 ; Structure of Cellvibrio cellulosa alpha-L-arabinanase complexed with Arabinohexaose 6M4I ; 1.9 ; Structure of CENP-E motor domain at 1.9 angstrom resolution 1WRU ; 2.1 ; Structure of central hub elucidated by X-ray analysis of gene product 44; baseplate component of bacteriophage Mu 7JLH ; 1.57 ; Structure of Centromeric Satellite III Non-canonical Duplex 1JW0 ; 2.5 ; Structure of cephalosporin acylase in complex with glutarate 1JVZ ; 2.6 ; Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid 6TJJ ; 1.59 ; Structure of Cerezyme at pH 4.6 5OXC ; 1.02 ; Structure of Cerulean Fluorescent Protein at 1.02 Angstrom resolution 2WSO ; 1.15 ; Structure of Cerulean Fluorescent Protein at physiological pH 4EJX ; 4.69 ; Structure of ceruloplasmin-myeloperoxidase complex 6ARU ; 3.2 ; Structure of Cetuximab Fab mutant in complex with EGFR extracellular domain 5I2I ; 2.551 ; Structure of cetuximab Fab with cyclic F3Q variant of the meditope 6AYN ; 2.48 ; Structure of cetuximab with aminoheptanoic acid-linked N-(3-aminopropyl)-L-arginine meditope variant 6AZK ; 2.477 ; Structure of cetuximab with aminoheptanoic acid-linked N-(3-hydroxypropyl)-L-arginine meditope variant 6AU5 ; 2.484 ; Structure of cetuximab with aminoheptanoic acid-linked n-butylarginine meditope variant 6AZL ; 2.482 ; Structure of cetuximab with aminoheptanoic acid-linked N-carboxyethylarginine meditope variant 6AXP ; 2.484 ; Structure of cetuximab with aminoheptanoic acid-linked n-octylarginine meditope variant 5LRU ; 2.2 ; Structure of Cezanne/OTUD7B OTU domain 5LRV ; 2.8 ; Structure of Cezanne/OTUD7B OTU domain bound to Lys11-linked diubiquitin 5LRW ; 2.0 ; Structure of Cezanne/OTUD7B OTU domain bound to ubiquitin 4Y2O ; 2.419 ; Structure of CFA/I pili chaperone-major subunit complex (CfaA-CfaB) 4Y2L ; 1.746 ; Structure of CFA/I pili major subunit CfaB trimer 4Y2N ; 2.4 ; Structure of CFA/I pili major subunit CfaB trimer 5CW5 ; 2.736 ; Structure of CfBRCC36-CfKIAA0157 complex (QSQ mutant) 5CW4 ; 2.543 ; Structure of CfBRCC36-CfKIAA0157 complex (Selenium Edge) 5CW3 ; 2.55 ; Structure of CfBRCC36-CfKIAA0157 complex (Zn Edge) 8OKX ; 3.51 ; Structure of cGAS in complex with SPSB3-ELOBC 7P43 ; 1.93 ; Structure of CgGBE in complex with maltotriose 7P44 ; 2.4 ; Structure of CgGBE in P21212 space group 7P45 ; 2.09 ; Structure of CgGBE in P212121 space group 6WEK ; 2.7 ; Structure of cGMP-bound WT TAX-4 reconstituted in lipid nanodiscs 6WEL ; 2.5 ; Structure of cGMP-unbound F403V/V407A mutant TAX-4 reconstituted in lipid nanodiscs 6WEJ ; 2.6 ; Structure of cGMP-unbound WT TAX-4 reconstituted in lipid nanodiscs 4XM4 ; 2.95 ; Structure of Chaetomium Mex67:Mtr2 subunits 5JM6 ; 2.758 ; Structure of Chaetomium thermophilum mApe1 5HAZ ; 2.1 ; Structure of Chaetomium thermophilum Nup170 CTD 5D5Y ; 1.03 ; Structure of Chaetomium thermophilum Skn7 coiled-coil domain, crystal form I 5D5Z ; 1.7 ; Structure of Chaetomium thermophilum Skn7 coiled-coil domain, crystal form II 5D60 ; 1.9 ; Structure of Chaetomium thermophilum Skn7 coiled-coil domain, crystal form III 4O9I ; 2.6 ; Structure of CHD4 double chromodomains depicts cooperative folding for DNA binding 6Q3M ; 2.52 ; Structure of CHD4 PHD2 - tandem chromodomains 6GUU ; 2.95 ; Structure of CHD5 PHD2 - tandem chromodomains 1I5C ; 1.9 ; STRUCTURE OF CHEA DOMAIN P4 IN COMPLEX WITH ADP 1I5A ; 1.9 ; STRUCTURE OF CHEA DOMAIN P4 IN COMPLEX WITH ADPCP AND MANGANESE 1I5B ; 1.94 ; STRUCTURE OF CHEA DOMAIN P4 IN COMPLEX WITH ADPNP AND MANGANESE 6MI6 ; 2.95 ; STRUCTURE OF CHEA DOMAIN P4 IN COMPLEX WITH AN ADP ANALOG 1I5D ; 2.9 ; STRUCTURE OF CHEA DOMAIN P4 IN COMPLEX WITH TNP-ATP 1WVP ; 1.53 ; Structure of chemically modified myoglobin with distal N-tetrazolyl-histidine E7(64) 2NWD ; 1.04 ; Structure of chemically synthesized human lysozyme at 1 Angstrom resolution 5CHY ; 2.0 ; STRUCTURE OF CHEMOTAXIS PROTEIN CHEY 6CHY ; 2.33 ; STRUCTURE OF CHEMOTAXIS PROTEIN CHEY 1AB5 ; 2.4 ; STRUCTURE OF CHEY MUTANT F14N, V21T 1AB6 ; 2.2 ; STRUCTURE OF CHEY MUTANT F14N, V86T 3RVO ; 1.55 ; Structure of CheY-Mn2+ Complex with substitutions at 59 and 89: N59D E89Y 8R42 ; 2.32 ; Structure of CHI3L1 in complex with inhibititor 2 8R41 ; 2.25 ; Structure of CHI3L1 in complex with inhibitor 1 3S3W ; 2.6 ; Structure of chicken acid-sensing ion channel 1 at 2.6 a resolution and ph 7.5 3S3X ; 2.99 ; Structure of chicken acid-sensing ion channel 1 AT 3.0 A resolution in complex with psalmotoxin 1ALA ; 2.25 ; STRUCTURE OF CHICKEN ANNEXIN V AT 2.25-ANGSTROMS RESOLUTION 3DBX ; 2.0 ; Structure of chicken CD1-2 with bound fatty acid 7JM6 ; 2.92 ; Structure of chicken CLC-7 5JAJ ; 1.5 ; Structure of chicken LGP2 witha 5'p 10-mer dsRNA and ADP-AlF4-Mg. 6NF6 ; 3.32 ; Structure of chicken Otop3 in nanodiscs 1TOP ; 1.78 ; STRUCTURE OF CHICKEN SKELETAL MUSCLE TROPONIN-C AT 1.78 ANGSTROMS RESOLUTION 5TGB ; 2.741 ; Structure of chimeric 02-CB Fab, a VRC01-like germline antibody 5TF1 ; 1.858 ; Structure of chimeric 02-CC Fab, a VRC01-like germline antibody 5TFS ; 2.319 ; Structure of chimeric 02-K Fab, a VRC01-like germline antibody 7RQQ ; 1.89 ; Structure of chimeric antibody F10heavy_L9light with PfCSP peptide NANPNVDP 7RQR ; 2.23 ; Structure of chimeric antibody L9heavy_F10light with PfCSP peptide NANPNVDP 8ESH ; 2.72 ; Structure of chimeric HLA-A*02:01 bound to CMV peptide 8ERX ; 2.07 ; Structure of chimeric HLA-A*11:01-A*02:01 bound to HIV-1 RT peptide 2ROT ; ; Structure of chimeric variant of SH3 domain- SHH 3FJO ; 2.5 ; Structure of chimeric YH CPR 7ZYA ; 1.12 ; Structure of Chit33 from Trichoderma harzianum. 6EPB ; 1.75 ; Structure of Chitinase 42 from Trichoderma harzianum 4LGX ; 1.49 ; Structure of Chitinase D from Serratia proteamaculans revealed an unusually constrained substrate binding site 2Y8V ; 1.99 ; Structure of chitinase, ChiC, from Aspergillus fumigatus. 8R4X ; 1.54 ; Structure of Chitinase-3-like protein 1 in complex with inhibitor 30 5OPR ; 1.95 ; Structure of CHK1 10-pt. mutant complex with aminopyridine LRRK2 inhibitor 5OP4 ; 2.0 ; Structure of CHK1 10-pt. mutant complex with aminopyrimidine LRRK2 inhibitor 5OOT ; 2.1 ; Structure of CHK1 10-pt. mutant complex with aminopyrimido-benzodiazepinone LRRK2 inhibitor 5OOP ; 1.7 ; Structure of CHK1 10-pt. mutant complex with AMP-PNP 5OP2 ; 1.9 ; Structure of CHK1 10-pt. mutant complex with arylbenzamide LRRK2 inhibitor 5OPB ; 1.55 ; Structure of CHK1 10-pt. mutant complex with indazole LRRK2 inhibitor 7SUF ; 1.48 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 06 7SUG ; 1.48 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 09 7SUH ; 2.46 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 15 7MCK ; 1.65 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 18 7SUI ; 2.119 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 22 7SUJ ; 2.299 ; Structure of CHK1 10-pt. mutant complex with LRRK2 inhibitor 24 5OPS ; 2.0 ; Structure of CHK1 10-pt. mutant complex with pyrrolopyridine LRRK2 inhibitor 5OPU ; 1.55 ; Structure of CHK1 10-pt. mutant complex with pyrrolopyridine LRRK2 inhibitor 5OPV ; 1.9 ; Structure of CHK1 10-pt. mutant complex with pyrrolopyridine LRRK2 inhibitor 5OP5 ; 1.9 ; Structure of CHK1 10-pt. mutant complex with pyrrolopyrimidine LRRK2 inhibitor 5OP7 ; 1.8 ; Structure of CHK1 10-pt. mutant complex with pyrrolopyrimidine LRRK2 inhibitor 5OOR ; 1.9 ; Structure of CHK1 10-pt. mutant complex with staurosporine 5OQ6 ; 1.95 ; Structure of CHK1 12-pt. mutant complex with aminopyrimido-benzodiazepinone LRRK2 inhibitor 5OQ8 ; 2.0 ; Structure of CHK1 12-pt. mutant complex with arylbenzamide LRRK2 inhibitor 5OQ5 ; 1.4 ; Structure of CHK1 8-pt. mutant complex with aminopyrimido-benzodiazepinone LRRK2 inhibitor 5OQ7 ; 2.1 ; Structure of CHK1 8-pt. mutant complex with arylbenzamide LRRK2 inhibitor 6GZU ; 1.47 ; Structure of Chlamydia abortus effector protein ChlaDUB 6FDU ; 2.3 ; Structure of Chlamydia trachomatis effector protein Cdu1 bound to Compound 3 6FDQ ; 2.3 ; Structure of Chlamydia trachomatis effector protein Cdu1 bound to Compound 5 6FDK ; 1.6 ; Structure of Chlamydia trachomatis effector protein Cdu1 bound to ubiquitin 5HAG ; 2.1 ; Structure of Chlamydia trachomatis effector protein ChlaDUB1 6GZT ; 2.1 ; Structure of Chlamydia trachomatis effector protein ChlaDUB1 bound to Coenzyme A 6GZS ; 1.9 ; Structure of Chlamydia trachomatis effector protein ChlaDUB1 bound to ubiquitin 6FQ4 ; 2.89 ; Structure of Chlamydial virulence factor TarP and vinculin head domain 4XDI ; 1.893 ; Structure of Chlamydomonas reinhardtii THB1 1NJI ; 3.0 ; Structure of chloramphenicol bound to the 50S ribosomal subunit 2Q2T ; 2.3 ; Structure of Chlorella virus DNA ligase-adenylate bound to a 5' phosphorylated nick 2Q2U ; 3.0 ; Structure of Chlorella virus DNA ligase-product DNA complex 7CRT ; 1.85 ; Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 100 ps after light activation (0.17mJ/mm2) 7CRS ; 1.85 ; Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 100 ps after light activation (0.90mJ/mm2) 7CRX ; 1.85 ; Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 100 ps after light activation (2.63mJ/mm2) 7CRY ; 1.85 ; Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 100 ps after light activation (6.49 mJ/mm2) 7CRL ; 1.85 ; Structure of Chloride ion pumping rhodopsin (ClR) with NTQ motif 50 ps after light activation 7L22 ; 1.925 ; Structure of chloride soak form of ArrX from Chrysiogenes arsenatis 3NN2 ; 1.94 ; Structure of chlorite dismutase from Candidatus Nitrospira defluvii in complex with cyanide 3NN1 ; 1.85 ; Structure of chlorite dismutase from Candidatus Nitrospira defluvii in complex with imidazole 3NN3 ; 2.6 ; Structure of chlorite dismutase from Candidatus Nitrospira defluvii R173A mutant 3NN4 ; 2.7 ; Structure of chlorite dismutase from Candidatus Nitrospira defluvii R173K mutant 4WWS ; 2.0 ; Structure of Chlorite dismutase-like Protein from Listeria monocytogenes 6RHG ; 1.22 ; Structure of Chloroflexus aggregans Cagg_3753 LOV domain 6Y7R ; 1.6 ; Structure of Chloroflexus aggregans Cagg_3753 LOV domain C85A A56P variant (CagFbFP) 6Y7U ; 1.6 ; Structure of Chloroflexus aggregans Cagg_3753 LOV domain C85A A95P variant (CagFbFP) 6RHF ; 1.07 ; Structure of Chloroflexus aggregans Cagg_3753 LOV domain C85A variant (CagFbFP) 7AB7 ; 1.8 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) I52T Q148K variant 7AB6 ; 1.9 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) I52T variant 6YWH ; 1.07 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148D variant 6YWI ; 1.13 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148E variant 6YWQ ; 1.27 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148H variant 6YWR ; 1.5 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148H variant (space group C2) 6YX6 ; 1.5 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148K variant (no morpholine) 6YXB ; 1.5 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148K variant (space group P21) 6YX4 ; 1.36 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148K variant with morpholine 6YWG ; 1.45 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148N variant 6YXC ; 1.65 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148R variant 8PKY ; 1.4 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) Q148V variant 8PM1 ; 1.5 ; Structure of Chloroflexus aggregans flavin based fluorescent protein (CagFbFP) variant I52V A85Q 7OO9 ; 1.2 ; Structure of Chloroflexus islandicus LOV domain C85A variant (CisFbFP) 2J5M ; 1.75 ; Structure of Chloroperoxidase Compound 0 8FJD ; 4.46 ; Structure of chlorophyllase from Triticum aestivum 4AK9 ; 1.8 ; Structure of chloroplast FtsY from Physcomitrella patens 4N16 ; 1.54 ; Structure of cholate bound to human carbonic anhydrase II 7N4V ; 3.58 ; Structure of cholesterol-bound human NPC1L1 6WHP ; 2.25 ; Structure of Choline kinase from Cryptococcus neoformans var. grubii serotype A 2D8D ; 1.15 ; Structure of Chorismate Mutase (Form I) from Thermus Thermophilus HB8 2D8E ; 1.75 ; Structure of Chorismate Mutase (Form II) from Thermus Thermophilus HB8 6YIF ; 1.81 ; Structure of Chromosomal Passenger Complex (CPC) bound to phosphorylated Histone 3 peptide at 1.8 A. 6YIH ; 2.55 ; Structure of Chromosomal Passenger Complex (CPC) bound to phosphorylated Histone 3 peptide at 2.6 A. 5IHS ; 1.1 ; Structure of CHU_2103 from Cytophaga hutchinsonii 6GCH ; 2.1 ; STRUCTURE OF CHYMOTRYPSIN-*TRIFLUOROMETHYL KETONE INHIBITOR COMPLEXES. COMPARISON OF SLOWLY AND RAPIDLY EQUILIBRATING INHIBITORS 7GCH ; 1.8 ; STRUCTURE OF CHYMOTRYPSIN-*TRIFLUOROMETHYL KETONE INHIBITOR COMPLEXES. COMPARISON OF SLOWLY AND RAPIDLY EQUILIBRATING INHIBITORS 6W74 ; 2.11 ; Structure of cIAP with compound 15 2L9M ; ; Structure of cIAP1 CARD 8DSF ; 1.5 ; Structure of cIAP1 with BCCov 8DSO ; 2.334 ; Structure of cIAP1, BTK and BCCov 4KMN ; 1.523 ; Structure of cIAP1-BIR3 and inhibitor 5GYL ; 2.2 ; Structure of Cicer arietinum 11S gloubulin 4NKU ; 1.94 ; Structure of Cid1 in complex with its short product ApU 4NKT ; 1.9 ; Structure of Cid1 in complex with the UTP analog UMPNPP 3L6J ; 2.3 ; Structure of cinaciguat (bay 58-2667) bound to nostoc H-NOX domain 4GM7 ; 2.6 ; Structure of cinnamic acid bound bovine lactoperoxidase at 2.6A resolution. 2DDE ; ; Structure of cinnamycin complexed with lysophosphatidylethanolamine 8T05 ; 3.22 ; Structure of Ciona Myomaker bound to Fab1A1 4WU9 ; 2.6 ; Structure of cisPtNAP-NCP145 1U5V ; 1.85 ; Structure of CitE complexed with triphosphate group of ATP form Mycobacterium tuberculosis 1U5H ; 1.65 ; Structure of Citrate Lyase beta subunit from Mycobacterium tuberculosis 4TVM ; 2.6 ; Structure of Citrate Synthase from Mycobacterium tuberculosis 4YBO ; 2.179 ; Structure of Citrate Synthase from the Thermoacidophilic Euryarchaeon Thermolasma acidophilum 8GM9 ; 2.4 ; Structure of Citrate Synthase(CitA) in Mycobacterium Tuberculosis 2J80 ; 1.6 ; Structure of Citrate-bound Periplasmic Domain of Sensor Histidine Kinase CitA 2V9A ; 2.0 ; Structure of Citrate-free Periplasmic Domain of Sensor Histidine Kinase CitA 6HXP ; 1.45 ; Structure of citryl-CoA lyase from Hydrogenobacter thermophilus 6HXQ ; 2.91 ; Structure of citryl-CoA synthetase from Hydrogenobacter thermophilus 7X39 ; 2.85 ; Structure of CIZ1 bound ERH 5FV8 ; 1.99 ; Structure of cJun-FosW coiled coil complex. 1RQF ; 2.89 ; Structure of CK2 beta subunit crystallized in the presence of a p21WAF1 peptide 7XTO ; 2.48 ; Structure of ClA2 reveal the Mechanism of soil bacterial derived chlorinase 1HZO ; 1.75 ; STRUCTURE OF CLASS A CEPHALOSPORINASE FROM PROTEUS VULGARIS K1 7T8Y ; 1.8 ; Structure of Class A sortase from Streptococcus pyogenes bound to lipid II mimetic, LPATA: Thr-in conformation 7T8Z ; 1.9 ; Structure of Class A sortase from Streptococcus pyogenes bound to lipid II mimetic, LPATA: Thr-out conformation 3C4U ; 1.83 ; Structure of class II fructose-biphosphate aldolase from helicobacter pylori 6EEU ; 1.93 ; Structure of class II HMG-CoA reductase from Delftia acidovorans 6EEV ; 1.49 ; Structure of class II HMG-CoA reductase from Delftia acidovorans with mevalonate bound 6DIO ; 2.14 ; Structure of class II HMG-CoA reductase from Delftia acidovorans with NAD bound 4KK6 ; 3.183 ; Structure of CLC-ec1 deltaNC construct in 20mM Bromide 8H4X ; 1.93 ; Structure of cleaved Serpin B9 1JXQ ; 2.8 ; Structure of cleaved, CARD domain deleted Caspase-9 6LOM ; 3.73 ; Structure of CLHM1 from Caenorhabditis Elegans 3H6S ; 2.22 ; Structure of clitocypin - cathepsin V complex 6Q8P ; 3.0 ; Structure of CLK1 with bound N-methyl-10-nitropyrido[3,4-g]quinazolin-2-amine 2JJN ; 1.59 ; Structure of closed cytochrome P450 EryK 6NNH ; 1.523 ; Structure of Closed state of Dihydrofolate reductase from Mycobacterium tuberculosis in complex with NADPH and cycloguanil 6NNI ; 1.561 ; Structure of closed state of Dihydrofolate reductase from Mycobacterium tuberculosis in complex with NADPH and pyrimethamine 4JEN ; 3.0 ; Structure of Clostridium botulinum CMP N-glycosidase, BcmB 7UAV ; 2.2 ; Structure of Clostridium botulinum prophage Tad1 in apo state 7UAW ; 1.72 ; Structure of Clostridium botulinum prophage Tad1 in complex with 1''-2' gcADPR 8SMD ; 2.1 ; Structure of Clostridium botulinum prophage Tad1 in complex with 1''-3' gcADPR 6QZK ; 3.548 ; Structure of Clostridium butyricum Argonaute bound to a guide DNA (5' deoxycytidine) and a 19-mer target DNA 4P5H ; 3.38 ; Structure of Clostridium perfringens Enterotoxin with a peptide derived from a modified version of ECL-2 of Claudin 2 8SWU ; 2.34 ; Structure of Clostridium perfringens PNP bound to transition state analog IMMUCILLIN H and sulfate 4JT2 ; 2.49 ; Structure of Clostridium thermocellum polynucleotide kinase bound to CTP 4JT4 ; 2.01 ; Structure of Clostridium thermocellum polynucleotide kinase bound to dATP 4JSY ; 2.14 ; Structure of Clostridium thermocellum polynucleotide kinase bound to GTP 4JST ; 2.03 ; Structure of Clostridium thermocellum polynucleotide kinase bound to UTP 8B9U ; 2.25 ; Structure of ClpC1 NTD from Mycobacterium tuberculosis 6PBA ; 1.77 ; Structure of ClpC1-NTD 6PBQ ; 1.6 ; Structure of ClpC1-NTD 7AA4 ; 1.68 ; Structure of ClpC1-NTD bound to a CymA analogue 6PBS ; 2.5 ; Structure of ClpC1-NTD in complex with Ecumicin 6UCR ; 2.3 ; Structure of ClpC1-NTD L92S L96P 3TT7 ; 2.558 ; Structure of ClpP from Bacillus subtilis in complex with DFP 3TT6 ; 2.592 ; Structure of ClpP from Bacillus subtilis in compressed state 3KTG ; 2.4 ; Structure of ClpP from Bacillus subtilis in monoclinic crystal form 3KTH ; 3.0 ; Structure of ClpP from Bacillus subtilis in orthorombic crystal form 3MT6 ; 1.901 ; Structure of ClpP from Escherichia coli in complex with ADEP1 6TTY ; 1.9 ; Structure of ClpP from Staphylococcus aureus (apo, closed state) 7WGS ; 2.11 ; Structure of ClpP from Staphylococcus aureus in complex with (S)-ZG197 5VZ2 ; 2.26 ; Structure of ClpP from Staphylococcus aureus in complex with Acyldepsipeptide 6PMD ; 2.21 ; Structure of ClpP from Staphylococcus aureus in complex with Acyldepsipeptide 6PKA ; 2.25 ; Structure of ClpP from Staphylococcus aureus in complex with ureadepsipeptide 3KTI ; 2.0 ; Structure of ClpP in complex with ADEP1 3KTJ ; 2.6 ; Structure of ClpP in complex with ADEP2 in monoclinic crystal form 3KTK ; 2.6 ; Structure of ClpP in complex with ADEP2 in triclinic crystal form 5IKJ ; 2.3 ; Structure of Clr2 bound to the Clr1 C-terminus 6Z2A ; 2.456 ; Structure of Clr4 mutant - F256A/F310A/F427A bound to SAH 8JQE ; 2.31 ; Structure of CmCBDA in complex with Mn2+ and glycerol 8JQF ; 1.85 ; Structure of CmCBDA in complex with Ni2+ and Glycerol 4P5N ; 1.49 ; Structure of CNAG_02591 from Cryptococcus neoformans 4CXF ; 1.75 ; Structure of CnrH in complex with the cytosolic domain of CnrY 5L26 ; 3.4 ; Structure of CNTnw in an inward-facing substrate-bound state 5L27 ; 4.1 ; Structure of CNTnw N149L in the intermediate 1 state 5L24 ; 4.1 ; Structure of CNTnw N149L in the intermediate 2 state 5U9W ; 3.555 ; Structure of CNTnw N149L in the intermediate 3 state 5L2B ; 3.8 ; Structure of CNTnw N149S, E332A in an outward-facing state 5L2A ; 3.45 ; Structure of CNTnw N149S,F366A in an outward-facing state 1XMH ; 2.32 ; Structure of Co(II) reconstituted methane monooxygenase hydroxylase from M. capsulatus (Bath) 3OJJ ; 1.72 ; Structure of Co-substituted Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.72 Ang resolution 3OJK ; 1.68 ; Structure of Co-substituted Homoprotocatechuate 2,3-Dioxygenase in complex with 4-nitrocatechol at 1.68 Ang resolution 5DSO ; 1.4 ; Structure of CO2 bound apo-form of human carbonic anhydrase II with 0 sec (no) warming 5DSR ; 1.3 ; Structure of CO2 released apo-form of human carbonic anhydrase II with 10 min warming 5DSQ ; 1.5 ; Structure of CO2 released apo-form of human carbonic anhydrase II with 3 min warming 5DSP ; 1.4 ; Structure of CO2 released apo-form of human carbonic anhydrase II with 40 sec warming 5DSL ; 1.45 ; Structure of CO2 released holo-form of human carbonic anhydrase II with 10 min warming 5DSM ; 1.3 ; Structure of CO2 released holo-form of human carbonic anhydrase II with 25 min warming 5DSK ; 1.3 ; Structure of CO2 released holo-form of human carbonic anhydrase II with 3 min warming 2BB6 ; 2.0 ; Structure of Cobalamin-complexed Bovine Transcobalamin in Monoclinic Crystal Form 2BBC ; 2.4 ; Structure of Cobalamin-complexed Bovine Transcobalamin in trigonal crystal form 8G3H ; 3.6 ; Structure of cobalamin-dependent methionine synthase (MetH) in a resting state 5UL4 ; 1.85 ; Structure of Cobalamin-dependent S-adenosylmethionine radical enzyme OxsB with aqua-cobalamin and S-adenosylmethionine bound 5UL3 ; 1.8 ; Structure of Cobalamin-dependent S-adenosylmethionine radical enzyme OxsB with aqua-cobalamin bound 1CAH ; 1.88 ; STRUCTURE OF COBALT CARBONIC ANHYDRASE COMPLEXED WITH BICARBONATE 8OGE ; 1.46 ; Structure of cobalt(II) substituted double mutant human carbonic anhydrase II bound to thiocyanate 5M2Q ; 1.7 ; Structure of cobinamide-bound BtuF mutant W66F, the periplasmic vitamin B12 binding protein in E.coli 5M3B ; 1.5 ; Structure of cobinamide-bound BtuF mutant W66L, the periplasmic vitamin B12 binding protein in E.coli 5M34 ; 1.6 ; Structure of cobinamide-bound BtuF mutant W66Y, the periplasmic vitamin B12 binding protein in E.coli 5M29 ; 1.5 ; Structure of cobinamide-bound BtuF, the periplasmic vitamin B12 binding protein in E.coli 2CDX ; ; STRUCTURE OF COBRA CARDIOTOXIN CTXI AS DERIVED FROM NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND DISTANCE GEOMETRY CALCULATIONS 4JRB ; 2.414 ; Structure of Cockroach Allergen Bla g 1 Tandem Repeat as a EGFP fusion 7QOA ; 2.4 ; Structure of CodB, a cytosine transporter in an outward-facing conformation 1YQZ ; 1.54 ; Structure of Coenzyme A-Disulfide Reductase from Staphylococcus aureus refined at 1.54 Angstrom resolution 1F07 ; 2.0 ; STRUCTURE OF COENZYME F420 DEPENDENT TETRAHYDROMETHANOPTERIN REDUCTASE FROM METHANOBACTERIUM THERMOAUTOTROPHICUM 1EZW ; 1.65 ; STRUCTURE OF COENZYME F420 DEPENDENT TETRAHYDROMETHANOPTERIN REDUCTASE FROM METHANOPYRUS KANDLERI 1JAX ; 1.8 ; Structure of Coenzyme F420H2:NADP+ Oxidoreductase (FNO) 1JAY ; 1.65 ; Structure of Coenzyme F420H2:NADP+ Oxidoreductase (FNO) with its substrates bound 7S3G ; 1.66 ; Structure of cofactor pyridoxal 5-phosphate bound human ornithine decarboxylase in complex with citrate at the catalytic center 7S3F ; 2.49 ; Structure of cofactor pyridoxal 5-phosphate bound human ornithine decarboxylase in complex with its inhibitor 1-amino-oxy-3-aminopropane 4KEF ; 1.098 ; Structure of Cofilin Mutant (cof1-159p) 5TDY ; 2.105 ; Structure of cofolded FliFc:FliGn complex from Thermotoga maritima 3OGK ; 2.8 ; Structure of COI1-ASK1 in complex with coronatine and an incomplete JAZ1 degron 3OGM ; 3.34 ; Structure of COI1-ASK1 in complex with coronatine and the JAZ1 degron 3OGL ; 3.18 ; Structure of COI1-ASK1 in complex with JA-isoleucine and the JAZ1 degron 3V5B ; 3.0 ; Structure of Coil 2b of human lamin 5CX2 ; 2.21 ; Structure of coiled coil domain of Leishmania donovani coronin 7DGX ; 2.06 ; Structure of coiled coil domain of Trypanosoma brucei coronin 4NQJ ; 2.152 ; Structure of coiled-coil domain 4YTO ; 2.0 ; Structure of coiled-coil domain of SYCP1 7OWX ; 1.929 ; Structure of coiled-coil tetramer from SARS-CoV-2 spike stalk region 3I2Z ; 1.1 ; Structure of cold shock protein E from Salmonella typhimurium 1UNK ; 1.8 ; STRUCTURE OF COLICIN E7 IMMUNITY PROTEIN 5D5G ; 1.74 ; Structure of colocasia esculenta agglutinin 5D9Z ; 1.85 ; Structure of Colocasia Esculenta Agglutinin with mannose bound 2BHV ; 3.0 ; Structure of ComB10 of the Com Type IV secretion system of Helicobacter pylori 3PVM ; 4.3 ; Structure of Complement C5 in Complex with CVF 3PRX ; 4.3 ; Structure of Complement C5 in Complex with CVF and SSL7 5I5K ; 4.2 ; Structure of complement C5 in complex with eculizumab 8AYH ; 3.35 ; Structure of Complement C5 in Complex with small molecule inhibitor and CVF 3KLS ; 3.6 ; Structure of complement C5 in complex with SSL7 3KM9 ; 4.2 ; Structure of complement C5 in complex with the C-terminal beta-grasp domain of SSL7 3KXV ; 2.004 ; Structure of complement Factor H variant Q1139A 3KZJ ; 1.65 ; Structure of complement Factor H variant R1203A 5O35 ; 4.2 ; Structure of complement proteins complex 3R62 ; 1.52 ; Structure of complement regulator Factor H mutant, T1184R. 4BOB ; 2.53 ; Structure of Complement regulator-acquiring surface protein 3 (CRASP- 3, ErpP or BBN38) from Borrelia burgdorferi 3FCS ; 2.55 ; Structure of complete ectodomain of integrin aIIBb3 6TED ; 3.1 ; Structure of complete, activated transcription complex Pol II-DSIF-PAF-SPT6 uncovers allosteric elongation activation by RTF1 1FMS ; 1.9 ; Structure of complex between cyclohexyl-bis-furamidine and d(CGCGAATTCGCG) 2B3T ; 3.1 ; Structure of complex between E. coli translation termination factor RF1 and the PrmC methyltransferase 2IYB ; 2.35 ; Structure of complex between the 3rd LIM domain of TES and the EVH1 domain of Mena 8G0M ; 2.25 ; Structure of complex between TV6.6 and CD98hc ECD 3CX5 ; 1.9 ; Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. 2MPS ; ; Structure of complex of MDM2(3-109) and P73 TAD(10-25) 4HVP ; 2.3 ; Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Angstroms resolution 6OHP ; 2.6 ; Structure of compound 1 (halopemide) bound human Phospholipase D2 catalytic domain 8CNC ; 1.46 ; Structure of compound 1 bound KMT9 8R14 ; 1.336 ; Structure of compound 11 bound to SARS-CoV-2 main protease 8R16 ; 1.3 ; Structure of compound 12 bound to SARS-CoV-2 main protease 8AEM ; 1.6 ; Structure of Compound 13 bound to CK2alpha 8SIX ; 1.55 ; Structure of Compound 13 bound to the CHK1 10-point mutant 8AEK ; 1.65 ; Structure of Compound 14 bound to CK2alpha 8AEC ; 1.09 ; Structure of Compound 17 bound to CK2alpha 8SIV ; 1.759 ; Structure of Compound 2 bound to the CHK1 10-point mutant 6OHS ; 3.2 ; Structure of compound 3 (ML299) bound human Phospholipase D2 catalytic domain 7SVP ; 2.9 ; Structure of compound 34 bound to human Phospholipase D2 catalytic domain 6OHQ ; 2.694 ; Structure of compound 4 bound human Phospholipase D2 catalytic domain 6OHR ; 3.2 ; Structure of compound 5 bound human Phospholipase D1 catalytic domain 8SIW ; 1.877 ; Structure of Compound 5 bound to the CHK1 10-point mutant 3LN0 ; 2.2 ; Structure of compound 5c-S bound at the active site of COX-2 7ZYD ; 1.404 ; Structure of Compound 6 Bound to CK2alpha 8R11 ; 1.31 ; Structure of compound 7 bound to SARS-CoV-2 main protease 8R12 ; 1.587 ; Structure of compound 8 bound to SARS-CoV-2 main protease 8WMK ; 2.17 ; Structure of ConA/Man2 8WMG ; 1.97 ; Structure of ConA/Man3 4P9X ; 2.06 ; Structure of ConA/Rh3Glu complex 4P9W ; 2.11 ; Structure of ConA/Rh3Man 4P9Y ; 1.89 ; Structure of ConA/Rh4man 3CNA ; 2.4 ; STRUCTURE OF CONCANAVALIN A AT 2.4 ANGSTROMS RESOLUTION 1TEI ; 2.7 ; STRUCTURE OF CONCANAVALIN A COMPLEXED TO BETA-D-GLCNAC (1,2)ALPHA-D-MAN-(1,6)[BETA-D-GLCNAC(1,2)ALPHA-D-MAN (1,6)]ALPHA-D-MAN 6RYJ ; 1.25 ; structure of conglutinin carbohydrate recognition domain with ethylene glycol bound 6RYN ; 1.0 ; Structure of conglutinin carbohydrate recognition domain with GlcNAc-alpha-1-phosphate bound 6MHQ ; 3.4 ; Structure of connexin-46 intercellular gap junction channel at 3.4 angstrom resolution by cryoEM 6MHY ; 3.4 ; Structure of connexin-50 intercellular gap junction channel at 3.4 angstrom resolution by cryoEM 7XQ9 ; 3.3 ; Structure of connexin43/Cx43/GJA1 gap junction intercellular channel in GDN detergents at pH ~8.0 7F92 ; 3.1 ; Structure of connexin43/Cx43/GJA1 gap junction intercellular channel in LMNG/CHS detergents at pH ~8.0 7F93 ; 3.6 ; Structure of connexin43/Cx43/GJA1 gap junction intercellular channel in nanodiscs with soybean lipids at pH ~8.0 7XQB ; 3.0 ; Structure of connexin43/Cx43/GJA1 gap junction intercellular channel in POPE/CHS nanodiscs at pH ~8.0 7LQR ; ; Structure of conotoxin CIC 1WVQ ; 1.45 ; Structure of conserved hypothetical protein PAE2307 from Pyrobaculum aerophilum 1I36 ; 2.0 ; Structure of Conserved Protein MTH1747 of Unknown Function Reveals Structural Similarity with 3-Hydroxyacid Dehydrogenases 2FB6 ; 1.46 ; Structure of Conserved Protein of Unknown Function BT1422 from Bacteroides thetaiotaomicron 2NN5 ; 1.45 ; Structure of Conserved Protein of Unknown Function EF2215 from Enterococcus faecalis 1Z6M ; 1.3 ; Structure of Conserved Protein of Unknown Function from Enterococcus faecalis V583 2D9R ; 2.01 ; Structure of Conserved Protein of Unknown Function PG0164 from Porphyromonas gingivalis [W83] 1RLK ; 1.95 ; Structure of Conserved Protein of Unknown Function TA0108 from Thermoplasma acidophilum 1ZKI ; 1.7 ; Structure of conserved protein PA5202 from Pseudomonas aeruginosa 1Y9B ; 2.2 ; Structure of Conserved Putative Transcriptional Factor from Vibrio cholerae O1 biovar eltor str. N16961 5T04 ; 3.3 ; STRUCTURE OF CONSTITUTIVELY ACTIVE NEUROTENSIN RECEPTOR 2N55 ; ; Structure of constitutively monomeric CXCL12 in complex with the CXCR4 N-terminus 7USX ; 3.09 ; Structure of Contracted C. elegans TMC-1 complex 5JYQ ; 1.95 ; Structure of Conus Geographus insulin G1 2HKX ; 2.3 ; Structure of CooA mutant (N127L/S128L) from Carboxydothermus hydrogenoformans 4QFT ; 1.76 ; Structure of COP9 signalosome complex subunit 6 7L5C ; 2.55 ; Structure of copper bound MEMO1 8UM6 ; 1.95 ; Structure of copper bound to YcnI W137F 7MEK ; 2.11 ; Structure of copper bound to Ycnl 4YSR ; 1.34 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 16.6 MGy 4YSS ; 1.5 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 16.7 MGy 4YST ; 1.34 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 24.9 MGy 4YSU ; 1.5 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 25.0 MGy 4YSP ; 1.34 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 8.32 MGy 4YSQ ; 1.5 ; Structure of copper nitrite reductase from Geobacillus thermodenitrificans - 8.38 MGy 3X1E ; 1.25 ; Structure of copper-containing nitrite reductase from Geobacillus thermodenitrificans without chloride 4B3E ; 2.15 ; Structure of copper-zinc superoxide dismutase complexed with bicarbonate. 5LOQ ; 1.69 ; Structure of coproheme bound HemQ from Listeria monocytogenes 6XUC ; 1.8702 ; Structure of coproheme decarboxylase from Corynebacterium diphteriae in complex with coproheme 6XUB ; 1.78 ; Structure of coproheme decarboxylase from Corynebacterium diphteriae in complex with monovinyl monopropionyl deuteroheme 7Q4F ; 2.15 ; Structure of coproheme decarboxylase from Corynebacterium dipththeriae W183Y mutant in complex with coproheme 7Q4G ; 1.82 ; Structure of coproheme decarboxylase from Corynebacterium dipththeriae Y135A mutant in complex with coproheme 6FXQ ; 1.69 ; Structure of coproheme decarboxylase from Listeria monocytogenes during turnover 6FXJ ; 1.79 ; Structure of coproheme decarboxylase from Listeria monocytogenes in complex with iron coproporphyrin III 6SV3 ; 1.64001 ; Structure of coproheme-LmCpfC 8AT8 ; 1.51 ; Structure of coproporphyrin III-LmCpfC 8AW7 ; 2.64 ; Structure of coproporphyrin III-LmCpfC R45L 8EFM ; 2.13 ; Structure of coral STING receptor from Stylophora pistillata in complex with 2',3'-cGAMP 2CK2 ; 2.0 ; Structure of core-swapped mutant of fibronectin 3CL5 ; 1.8 ; Structure of coronavirus hemagglutinin-esterase in complex with 4,9-O-diacetyl sialic acid 1LVO ; 1.96 ; Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain 7BBH ; 2.9 ; Structure of Coronavirus Spike from Smuggled Guangdong Pangolin 2V95 ; 1.93 ; Structure of Corticosteroid-Binding Globulin in complex with Cortisol 8AU6 ; 2.0 ; Structure of Corynebacterium glutamicum Cg1604, a cell division regulator 8FU7 ; 3.21 ; Structure of Covid Spike variant deltaN135 in fully closed form 8FU8 ; 3.08 ; Structure of Covid Spike variant deltaN135 with one erect RBD 8FU9 ; 3.52 ; Structure of Covid Spike variant deltaN25 with one erect RBD 6W63 ; 2.1 ; Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77 7DOK ; 2.73 ; Structure of COVID-19 RNA-dependent RNA polymerase (extended conformation) bound to penciclovir 7DFG ; 2.7 ; Structure of COVID-19 RNA-dependent RNA polymerase bound to favipiravir 7DOI ; 2.6 ; Structure of COVID-19 RNA-dependent RNA polymerase bound to penciclovir. 7DFH ; 2.97 ; Structure of COVID-19 RNA-dependent RNA polymerase bound to ribavirin 7D4F ; 2.57 ; Structure of COVID-19 RNA-dependent RNA polymerase bound to suramin 7BZ5 ; 1.84 ; Structure of COVID-19 virus spike receptor-binding domain complexed with a neutralizing antibody 5KTH ; 2.21 ; Structure of cow mincle complexed with brartemicin 5KTI ; 1.8 ; Structure of cow mincle complexed with KMJ1 4ZRW ; 2.6 ; Structure of cow mincle complexed with trehalose 4ZRV ; 2.095 ; Structure of cow mincle CRD complexed with trehalose mono butyrate 4HKJ ; 3.0 ; Structure of Cowpox CPXV203 in complex with MHCI (H-2Kb) 6SMG ; 3.5 ; Structure of Coxsackievirus A10 6SNB ; 4.4 ; Structure of Coxsackievirus A10 A-particle 6SNW ; 3.9 ; Structure of Coxsackievirus A10 complexed with its receptor KREMEN1 8F7Y ; 2.8 ; Structure of Coxsackievirus A10 frozen at -183 degree embedded in crystalline ice 8POA ; 1.6 ; Structure of Coxsackievirus A16 (G-10) 2A protease 5ABJ ; 2.75 ; Structure of Coxsackievirus A16 in complex with GPP3 5XS4 ; 3.1 ; Structure of Coxsackievirus A6 (CVA6) virus A-particle 5XS7 ; 3.8 ; Structure of Coxsackievirus A6 (CVA6) virus A-particle in complex with the neutralizing antibody fragment 1D5 5XS5 ; 3.3 ; Structure of Coxsackievirus A6 (CVA6) virus procapsid particle 5NFS ; 1.8 ; Structure of coxsackievirus B3 3C protease in complex with the alpha-ketoamide (S)-N-benzyl-3-((S)-2-cinnamamido-3-phenylpropanamido)-2-oxo-4-((S)-2-oxopyrrolidin-3-yl)butanamide (cinnamoyl-phenylalanine-GlnLactam-CO-CO-NH-benzyl) 8R5Y ; 2.7 ; Structure of coxsackievirus B5 capsid (mutant CVB5F.cas.genogroupB) - A particle 8R5Z ; 2.6 ; Structure of coxsackievirus B5 capsid (mutant CVB5F.cas.genogroupB) - E particle 8R5X ; 3.6 ; Structure of coxsackievirus B5 capsid (mutant CVB5F.cas.genogroupB) - F particle 5ID6 ; 2.382 ; Structure of Cpf1/RNA Complex 5YR2 ; 1.799 ; Structure of cpGFP66BPA 6PV4 ; 2.2 ; Structure of CpGH84A 6PV5 ; 2.18 ; Structure of CpGH84B 6PWI ; 2.65 ; Structure of CpGH84D 4AVT ; 3.2 ; Structure of CPHPC bound to Serum Amyloid P Component 4AVV ; 1.6 ; Structure of CPHPC bound to Serum Amyloid P Component 5D4P ; 2.2 ; Structure of CPII bound to ADP and bicarbonate, from Thiomonas intermedia K12 5D4N ; 1.6 ; Structure of CPII bound to ADP, AMP and acetate, from Thiomonas intermedia K12 5D4O ; 1.8 ; Structure of CPII, a nitrogen regulatory PII-like protein from Thiomonas intermedia K12, bound to ADP, AMP and bicarbonate. 7XSS ; 3.2 ; Structure of Craspase-CTR 7XT4 ; 3.08 ; Structure of Craspase-NTR 7XSR ; 2.97 ; Structure of Craspase-target RNA 2JZJ ; ; Structure of CrCVNH (C. richardii CVNH) 6QST ; 2.1 ; Structure of CREBBP bromodomain with compound 2 bound 4CJ7 ; 3.2 ; Structure of Crenactin, an archeal actin-like protein 3HHF ; 2.3 ; Structure of CrgA regulatory domain, a LysR-type transcriptional regulator from Neisseria meningitidis. 2MMU ; ; Structure of CrgA, a Cell Division Structural and Regulatory Protein from Mycobacterium tuberculosis, in Lipid Bilayers 3HHG ; 3.2 ; Structure of CrgA, a LysR-type transcriptional regulator from Neisseria meningitidis. 3NKD ; 1.95 ; Structure of CRISP-associated protein Cas1 from Escherichia coli str. K-12 2Y8W ; 1.8 ; Structure of CRISPR endoribonuclease Cse3 bound to 20 nt RNA 8E2W ; 2.95 ; Structure of CRISPR-Associated DinG 3QHQ ; 2.0 ; Structure of CRISPR-associated protein Csn2 8JAL ; 3.3 ; Structure of CRL2APPBP2 bound with RxxGP degron (dimer) 8JAQ ; 3.26 ; Structure of CRL2APPBP2 bound with RxxGP degron (tetramer) 8JAR ; 3.3 ; Structure of CRL2APPBP2 bound with RxxGPAA degron (dimer) 8JAS ; 3.54 ; Structure of CRL2APPBP2 bound with RxxGPAA degron (tetramer) 8JAU ; 3.22 ; Structure of CRL2APPBP2 bound with the C-degron of MRPL28 (dimer) 8JAV ; 3.44 ; Structure of CRL2APPBP2 bound with the C-degron of MRPL28 (tetramer) 7Z8B ; 2.8 ; Structure of CRL7FBXW8 reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation 2UWI ; 2.0 ; Structure of CrmE, a poxvirus TNF receptor 6ZSV ; 2.3 ; Structure of crocagin biosynthetic protein CgnB 8A2N ; 2.35 ; Structure of crocagin biosynthetic protein CgnD 6ZSU ; 2.0 ; Structure of crocagin biosynthetic protein CgnE 6JCJ ; 2.5 ; Structure of crolibulin in complex with tubulin 4G37 ; 2.396 ; Structure of cross-linked firefly luciferase in second catalytic conformation 4Q4J ; 3.2 ; Structure of crosslinked TM287/288_S498C_S520C mutant 4Y0K ; 2.203 ; Structure of crotonyl-CoA carboxylase/reductase AntE in complex with NADP 4Y1B ; 1.5 ; Structure of crotonyl-CoA carboxylase/reductase AntE V350A in complex with NADP 1I5Z ; 1.9 ; STRUCTURE OF CRP-CAMP AT 1.9 A 6O2X ; 1.193 ; Structure of cruzain bound to MMTS inhibitor 2VTB ; 2.01 ; Structure of cryptochrome 3 - DNA complex 6LZ3 ; 3.2 ; Structure of cryptochrome in active conformation 3K8G ; 1.95 ; Structure of crystal form I of TP0453 3K8H ; 2.39 ; Structure of crystal form I of TP0453 3K8J ; 2.2 ; Structure of crystal form III of TP0453 3K8I ; 2.2 ; Structure of crystal form IV of TP0453 7Z3J ; 2.0 ; Structure of crystallisable rat Phospholipase C gamma 1 in complex with inositol 1,4,5-trisphosphate 1O8S ; 1.15 ; Structure of CsCBM6-3 from Clostridium stercorarium in complex with cellobiose 1OD3 ; 1.0 ; Structure of CSCBM6-3 From Clostridium stercorarium in complex with laminaribiose 1NAE ; 2.05 ; Structure of CsCBM6-3 from Clostridium stercorarium in complex with xylotriose 8T0P ; 1.73 ; Structure of Cse4 bound to Ame1 and Okp1 8CGC ; 1.925 ; Structure of CSF1R in complex with a pyrollopyrimidine (compound 23) 3N4S ; 2.35 ; Structure of Csm1 C-terminal domain, P21212 form 3N4R ; 2.602 ; Structure of Csm1 C-terminal domain, R3 form 3N4X ; 3.408 ; Structure of Csm1 full-length 3N7N ; 3.9 ; Structure of Csm1/Lrs4 complex 8PCW ; 3.54 ; Structure of Csm6' from Streptococcus thermophilus 8PE3 ; 1.96 ; Structure of Csm6' from Streptococcus thermophilus in complex with cyclic hexa-adenylate (cA6) 6JY5 ; 2.15 ; Structure of CsoS4B from Halothiobacillus neapolitanus 4B9I ; 1.5 ; Structure of CssA subunit complemented with donor strand from CssB subunit of enterotoxigenic Escherichia coli colonization factor CS6 2N6S ; ; Structure of CssA4 (bottom stem) of CssA thermometer 4B9G ; 1.04 ; Structure of CssB subunit complemented with donor strand from CssA subunit of enterotoxigenic Escherichia coli colonization factor CS6 6YUD ; 1.84 ; Structure of Csx3/Crn3 from Archaeoglobus fulgidus in complex with cyclic tetra-adenylate (cA4) 7ELM ; 2.88 ; Structure of Csy-AcrIF24 7ELN ; 3.0 ; Structure of Csy-AcrIF24-dsDNA 7WE6 ; 3.2 ; Structure of Csy-AcrIF24-dsDNA 7YHS ; 3.37 ; Structure of Csy-AcrIF4-dsDNA 7EQG ; 3.2 ; Structure of Csy-AcrIF5 6K5V ; 2.69 ; Structure of CSY4 Apo-form 7PQX ; 3.08 ; Structure of CtAtm1 in the inward-facing open conformation 7PRU ; 3.2 ; Structure of CtAtm1 in the inward-facing partially occluded with cargo bound 7PRO ; 3.0 ; Structure of CtAtm1 in the inward-open with Glutathione-complexed [2Fe-2S] cluster bound 7PR1 ; 2.81 ; Structure of CtAtm1 in the occluded conformation with ATP bound 7PSD ; 3.0 ; Structure of CtAtm1(E603Q) in the inward-facing open conformation 7UF8 ; 2.5 ; Structure of CtdP in complex with penicimutamide E and NADP+ 6PTJ ; 3.8 ; Structure of Ctf4 trimer in complex with one CMG helicase 6PTO ; 7.0 ; Structure of Ctf4 trimer in complex with three CMG helicases 6PTN ; 5.8 ; Structure of Ctf4 trimer in complex with two CMG helicases 2Y8K ; 1.47 ; Structure of CtGH5-CBM6, an arabinoxylan-specific xylanase. 5KKL ; 2.94 ; Structure of ctPRC2 in complex with H3K27me3 and H3K27M 6AF0 ; 2.88 ; Structure of Ctr9, Paf1 and Cdc73 ternary complex from Myceliophthora thermophila 6V7H ; 1.0 ; Structure of CTX-M-14 bound to Vaborbactam at 1.0 A 4XUZ ; 1.5 ; Structure of CTX-M-15 bound to RPX-7009 at 1.5 A 7TI0 ; 1.5 ; Structure of CTX-M-15 bound to RPX-7063 at 1.5A 6Z7J ; 1.14 ; Structure of CTX-M-15 crystallised in the presence of enmetazobactam (AAI101) 7BDS ; 0.91 ; Structure of CTX-M-15 crystallised in the presence of tazobactam 6Z7H ; 1.42 ; Structure of CTX-M-15 E166Q mutant crystallised in the presence of enmetazobactam (AAI101) 7BDR ; 0.91 ; Structure of CTX-M-15 E166Q mutant crystallised in the presence of tazobactam (AAI101) 7QQC ; 0.95 ; Structure of CTX-M-15 K73A mutant 7QQ5 ; 0.95 ; Structure of CTX-M-15 K73A mutant crystallised in the presence of enmetazobactam (AAI101) 2QDW ; 0.92 ; Structure of Cu(I) form of the M51A mutant of amicyanin 2FT7 ; 1.4 ; Structure of Cu(I)azurin at pH 6, with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CTPHPM"" 2FT8 ; 1.55 ; Structure of Cu(I)azurin, pH8, with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CTPHPM"" 2LEL ; ; Structure of Cu(I)Cu(II)-CopK from Cupriavidus metallidurans CH34 2FTA ; 1.61 ; Structure of Cu(II)azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CTPHPFM"" 2FT6 ; 1.25 ; Structure of Cu(II)azurin with the metal-binding loop sequence ""CTFPGHSALM"" replaced with ""CTPHPM"" 5B7F ; 1.45 ; Structure of CueO - the signal peptide was truncated by HRV3C protease 6GDU ; 1.75 ; Structure of CutA from Synechococcus elongatus PCC7942 6GDW ; 1.8 ; Structure of CutA from Synechococcus elongatus PCC7942 complexed with 2 molecules of Bis-Tris 6GDX ; 1.17 ; Structure of CutA from Synechococcus elongatus PCC7942 complexed with 3 molecules of Bis-Tris 6GDV ; 2.0 ; Structure of CutA from Synechococcus elongatus PCC7942 complexed with Bis-Tris molecule 5A0U ; 2.4 ; Structure of CutC choline lyase choline bound form from Klebsiella pneumoniae. 5A0Z ; 3.0 ; STRUCTURE OF CUTC CHOLINE LYASE CHOLINE FREE FORM FROM KLEBSIELLA PNEUMONIAE 1CEX ; 1.0 ; STRUCTURE OF CUTINASE 1OXM ; 2.3 ; STRUCTURE OF CUTINASE 5LUI ; 1.5 ; Structure of cutinase 1 from Thermobifida cellulosilytica 5LUJ ; 2.2 ; Structure of cutinase 2 from Thermobifida cellulosilytica 4PSC ; 1.15 ; Structure of cutinase from Trichoderma reesei in its native form. 7RKF ; 4.0 ; Structure of CX3CL1-US28-G11iN18-scFv16 in TL-state 7RKM ; 3.5 ; Structure of CX3CL1-US28-Gi-scFv16 in C-state 7RKN ; 3.6 ; Structure of CX3CL1-US28-Gi-scFv16 in OC-state 8U4O ; 3.29 ; Structure of CXCL12-bound CXCR4/Gi complex 2NWG ; 2.07 ; Structure of CXCL12:heparin disaccharide complex 8K2W ; 3.0 ; Structure of CXCR3 complexed with antagonist AMG487 8HNN ; 3.6 ; Structure of CXCR3 complexed with antagonist SCH546738 7O74 ; 1.61 ; Structure of cyanase from Pseudomonas lactis 1DW9 ; 1.65 ; Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site 1DWK ; 1.65 ; STRUCTURE OF CYANASE WITH THE DI-ANION OXALATE BOUND AT THE ENZYME ACTIVE SITE 4C9O ; 1.977 ; Structure of Cyanide and Camphor bound D259N mutant of CYP101D1 4L4D ; 2.104 ; Structure of cyanide and camphor bound P450cam mutant L358A 4L4E ; 1.261 ; Structure of cyanide and camphor bound P450cam mutant L358A/K178G 4L4F ; 1.294 ; Structure of cyanide and camphor bound P450cam mutant L358A/K178G/D182N 4L4G ; 1.55 ; Structure of cyanide and camphor bound P450cam mutant L358P/K178G 4C9L ; 1.801 ; Structure of Cyanide and Camphor bound wild type CYP101D1 6KIG ; 2.9 ; Structure of cyanobacterial photosystem I-IsiA supercomplex 6KIF ; 3.3 ; Structure of cyanobacterial photosystem I-IsiA-flavodoxin supercomplex 7COU ; 2.25 ; Structure of cyanobacterial photosystem II in the dark S1 state 6NOP ; 1.7 ; Structure of Cyanothece McdA(D38A)-ATP complex 6NOO ; 2.5 ; Structure of Cyanothece McdA-AMPPNP complex 6NOY ; 3.46 ; Structure of Cyanothece McdB 6NON ; 2.68 ; Structure of Cyanthece apo McdA 2AK0 ; ; Structure of cyclic conotoxin MII-7 6ANN ; 0.76 ; Structure of cyclic D-Leu-N-methyl-D-Phe-2-Abz-D-Ala at 0.76 Angstrom 4K8V ; 2.0 ; Structure of cyclic GMP-AMP Synthase (cGAS) 5D1I ; 2.0 ; Structure of Cyclic nucleotide-binding-like protein from Brucella abortus bv. 1 str. 9-941 1FOZ ; ; STRUCTURE OF CYCLIC PEPTIDE INHIBITORS OF MAMMALIAN RIBONUCLEOTIDE REDUCTASE 1JKW ; 2.6 ; STRUCTURE OF CYCLIN MCS2 5FP6 ; 1.85 ; Structure of cyclin-dependent kinase 2 with small-molecule ligand 3-(4,7-dichloro-1H-indol-3-yl)prop-2-yn-1-ol (AT17833) in an alternate binding site. 5FP5 ; 2.16 ; Structure of cyclin-dependent kinase 2 with small-molecule ligand 4- fluorobenzoic acid (AT222) in an alternate binding site. 2G6E ; 1.3 ; Structure of cyclized F64L S65A Y66S GFP variant 8CGT ; 2.4 ; STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE COMPLEXED WITH A THIO-MALTOHEXAOSE 9CGT ; 2.5 ; STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE COMPLEXED WITH A THIO-MALTOPENTAOSE 3CGT ; 2.4 ; STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE COMPLEXED WITH ITS MAIN PRODUCT BETA-CYCLODEXTRIN 1CGT ; 2.0 ; STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE REFINED AT 2.0 ANGSTROMS RESOLUTION 6Y4B ; 5.0 ; Structure of cyclodipeptide synthase from Candidatus Glomeribacter gigasporarum bound to Phe-tRNAPhe 7P9A ; 1.5 ; Structure of cyclohex-1-ene-1-carboxyl-CoA dehydrogenase complexed with cyclohex-1,5-diene-1-carboxyl-CoA 7P9X ; 1.65 ; Structure of cyclohex-1-ene-1-carboxyl-CoA dehydrogenase complexed with cyclohex-1-ene-1-carboxyl-CoA 7V4X ; 2.33 ; Structure of cyclohexanone monooxygenase mutant from Acinetobacter calcoaceticus 7V50 ; 2.3 ; Structure of cyclohexanone monooxygenase mutant from Acinetobacter calcoaceticus 5LUD ; 1.25 ; Structure of Cyclophilin A in complex with 2,3-Diaminopyridine 5NOX ; 1.49 ; Structure of cyclophilin A in complex with 2-chloropyridin-3-amine 5NOY ; 1.43 ; Structure of cyclophilin A in complex with 3,4-diaminobenzamide 5NOZ ; 1.61 ; Structure of cyclophilin A in complex with 3,4-diaminobenzohydrazide 5NOS ; 1.35 ; Structure of cyclophilin A in complex with 3-amino-1H-pyridin-2-one 5NOQ ; 1.6 ; Structure of cyclophilin A in complex with 3-chloropyridin-2-amine 5NOR ; 1.8 ; Structure of cyclophilin A in complex with 3-methylpyridin-2-amine 5NOT ; 1.45 ; Structure of cyclophilin A in complex with 4-chloropyrimidin-5-amine 4N1N ; 1.5 ; Structure of Cyclophilin A in complex with Benzamide. 4N1R ; 1.8 ; Structure of Cyclophilin A in complex with benzenesulfonohydrazide. 4N1S ; 1.47 ; Structure of Cyclophilin A in complex with benzohydrazide. 4N1Q ; 1.65 ; Structure of Cyclophilin A in complex with cyclohexanecarboxamide. 4N1M ; 1.15 ; Structure of Cyclophilin A in complex with GlyPro. 5NOU ; 1.3 ; Structure of cyclophilin A in complex with hexahydropyrimidin-2-one 5NOV ; 2.0 ; Structure of cyclophilin A in complex with hexahydropyrimidine-2-thione 4N1P ; 1.9 ; Structure of Cyclophilin A in complex with Picolinamide. 5NOW ; 1.48 ; Structure of cyclophilin A in complex with pyridine-3,4-diamine 4N1O ; 1.75 ; Structure of Cyclophilin A in complex with Saccharin. 4JCP ; 1.65 ; Structure of Cyclophilin B from Brugia malayi 1VBS ; 2.0 ; STRUCTURE OF CYCLOPHILIN COMPLEXED WITH (D)ALA CONTAINING TETRAPEPTIDE 1VBT ; 2.3 ; Structure of cyclophilin complexed with sulfur-substituted tetrapeptide AAPF 7TGT ; 1.06 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor A26 7TGU ; 1.21 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B1 7TGV ; 1.46 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B2 7TH6 ; 0.97 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B21 7TH7 ; 1.3 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B23 7THC ; 1.57 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B25 7TH1 ; 1.52 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B3 7THD ; 1.16 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B52 7THF ; 1.1 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor B53 7TGS ; 1.75 ; Structure of Cyclophilin D Peptidyl-Prolyl Isomerase Domain bound to Macrocyclic Inhibitor JOMBt 1ZNU ; ; Structure of cyclotide Kalata B1 in DPC micelles solution 7OWD ; 1.71 ; Structure of CYLD CAP-Gly3 (467-552) bound to Ub; tetragonal space group 7OWC ; 1.85 ; Structure of CYLD CAP-Gly3 (467-565) bound to Ub; orthorhobic space group 5XNT ; 2.7 ; Structure of CYP106A2 from Bacillus sp. PAMC 23377 5CJE ; 2.5 ; Structure of CYP107L2 5CWE ; 2.39 ; Structure of CYP107L2 from Streptomyces avermitilis with lauric acid 5BV5 ; 2.7 ; Structure of CYP119 with T213A and C317H mutations 4G48 ; 1.5 ; Structure of CYP121 in complex with 4-(4-phenoxy-1H-pyrazol-3-yl)benzene-1,3-diol 1N4G ; 1.8 ; Structure of CYP121, a Mycobacterial P450, in Complex with Iodopyrazole 6G71 ; 1.7 ; Structure of CYP1232A24 from Arthrobacter sp. 7P5T ; 1.3 ; Structure of CYP142 from Mycobacterium tuberculosis in complex with inhibitor MEK216 5FYF ; 2.04 ; Structure of CYP153A from Marinobacter aquaeolei 5FYG ; 2.22 ; Structure of CYP153A from Marinobacter aquaeolei in complex with hydroxydodecanoic acid 7ANT ; 1.52 ; Structure of CYP153A from Polaromonas sp. 7AO7 ; 2.55 ; Structure of CYP153A from Polaromonas sp. in complex with octan-1-ol 5EM4 ; 3.02 ; Structure of CYP2B4 F244W in a ligand free conformation 4ZV8 ; 2.24 ; Structure of CYP2B6 (Y226H/K262R) with additional mutation Y244W in complex with alpha-Pinene 5V5Z ; 2.9 ; Structure of CYP51 from the pathogen Candida albicans 5JLC ; 2.4 ; Structure of CYP51 from the pathogen Candida glabrata 6A15 ; 1.79 ; Structure of CYP90B1 in complex with cholesterol 6YJK ; 2.37 ; Structure of CYRI-B (FAM49B) from Rhincodon typus 6YJJ ; 2.4 ; Structure of CYRI-B (FAM49B) from Rhincodon typus (selenomethionine derivative) 1AG0 ; 2.4 ; STRUCTURE OF CYS 112 ASP AZURIN FROM PSEUDOMONAS AERUGINOSA 5NA6 ; 1.9 ; Structure of Cys-null Se-Met DPP III from Bacteroides thetaiotaomicron 7BA4 ; 2.0 ; Structure of Cystathionine gamma-lyase from Pseudomonas aeruginosa 3ELP ; 2.4 ; Structure of cystationine gamma lyase 4DWK ; 3.0 ; Structure of cystein free insulin degrading enzyme with compound bdm41671 ((s)-2-{2-[carboxymethyl-(3-phenyl-propyl)-amino]-acetylamino}-3-(1h-imidazol-4-yl)-propionic acid methyl ester) 4LTE ; 2.705 ; Structure of Cysteine-free Human Insulin Degrading Enzyme in Complex with Macrocyclic Inhibitor 6EDS ; 3.18072 ; Structure of Cysteine-free Human Insulin-Degrading Enzyme in complex with Glucagon and Substrate-selective Macrocyclic Inhibitor 63 6MQ3 ; 3.56915 ; Structure of Cysteine-free Human Insulin-Degrading Enzyme in complex with Substrate-selective Macrocycle Inhibitor 63 6BYZ ; 2.95625 ; Structure of Cysteine-free Human Insulin-Degrading Enzyme in complex with Substrate-selective Macrocyclic Inhibitor 37 6D9Z ; 3.40213 ; Structure of CysZ, a sulfate permease from Pseudomonas Denitrificans 6D79 ; 3.501 ; Structure of CysZ, a sulfate permease from Pseudomonas Fragi 4E22 ; 2.323 ; Structure of cytidine monophosphate kinase from Yersinia pseudotuberculosis 7BBT ; 3.023 ; Structure of cytochrome c in complex with a p-benzyl-sulfonato-calix[8]arene-PEG pseudorotaxane 1M57 ; 3.0 ; Structure of cytochrome c oxidase from Rhodobacter sphaeroides (EQ(I-286) mutant)) 1M56 ; 2.3 ; Structure of cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type) 2V23 ; 1.8 ; Structure of cytochrome c peroxidase mutant N184R Y36A 1JDL ; 1.7 ; Structure of cytochrome c2 from Rhodospirillum Centenum 6Q2U ; 1.85 ; Structure of Cytochrome C4 from Pseudomonas aeruginosa 351C ; 1.6 ; STRUCTURE OF CYTOCHROME C551 FROM P. AERUGINOSA REFINED AT 1.6 ANGSTROMS RESOLUTION AND COMPARISON OF THE TWO REDOX FORMS 451C ; 1.6 ; STRUCTURE OF CYTOCHROME C551 FROM P. AERUGINOSA REFINED AT 1.6 ANGSTROMS RESOLUTION AND COMPARISON OF THE TWO REDOX FORMS 4G45 ; 1.53 ; Structure of cytochrome CYP121 in complex with 2-methylquinolin-6-amine 1EWH ; 2.35 ; STRUCTURE OF CYTOCHROME F FROM CHLAMYDOMONAS REINHARDTII 1FAG ; 2.7 ; STRUCTURE OF CYTOCHROME P450 1FAH ; 2.3 ; STRUCTURE OF CYTOCHROME P450 2Q6N ; 3.2 ; Structure of Cytochrome P450 2B4 with Bound 1-(4-cholorophenyl)imidazole 2BDM ; 2.3 ; Structure of Cytochrome P450 2B4 with Bound Bifonazole 5TFT ; 2.71 ; Structure of cytochrome P450 2D6 (CYP2D6) BACE1 inhibitor complex 5TFU ; 2.75 ; Structure of cytochrome P450 2D6 (CYP2D6) BACE1 inhibitor complex 5T6Q ; 2.701 ; Structure of cytochrome P450 4B1 (CYP4B1) complexed with octane: An n-Alkane and fatty acid omega-hydroxylase with a covalently bound heme 6C94 ; 2.72 ; Structure Of Cytochrome P450 4B1 (CYP4B1) Complexed with the Inhibitor HET0016 6IAO ; 2.16 ; Structure of Cytochrome P450 BM3 M11 mutant in complex with DTT at resolution 2.16A 6GMF ; 1.55 ; Structure of Cytochrome P450 CYP109Q5 from Chondromyces apiculatus 4G47 ; 1.34 ; Structure of cytochrome P450 CYP121 in complex with 4-(1H-1,2,4-triazol-1-yl)phenol 4G46 ; 1.52 ; Structure of cytochrome P450 CYP121 in complex with 4-oxo-4,5,6,7-tetrahydrobenzofuran-3-carboxylate 2XFH ; 1.9 ; Structure of cytochrome P450 EryK cocrystallized with inhibitor clotrimazole. 2JJP ; 2.1 ; Structure of cytochrome P450 EryK in complex with inhibitor ketoconazole (KC) 2JJO ; 1.99 ; Structure of cytochrome P450 EryK in complex with its natural substrate erD 4L54 ; 2.3 ; Structure of cytochrome P450 OleT, ligand-free 3A4H ; 3.06 ; Structure of cytochrome P450 vdh from Pseudonocardia autotrophica (orthorhombic crystal form) 3A4G ; 1.75 ; Structure of cytochrome P450 vdh from Pseudonocardia autotrophica (trigonal crystal form) 3A4Z ; 2.2 ; Structure of cytochrome P450 Vdh mutant (Vdh-K1) obtained by directed evolution 3A51 ; 2.0 ; Structure of cytochrome P450 Vdh mutant (Vdh-K1) obtained by directed evolution with bound 25-hydroxyvitamin D3 3A50 ; 2.05 ; Structure of cytochrome P450 Vdh mutant (Vdh-K1) obtained by directed evolution with bound vitamin D3 3VRM ; 2.57 ; Structure of cytochrome P450 Vdh mutant T107A with bound vitamin D3 5Y5G ; 1.36 ; Structure of cytochrome P450nor in NO-bound state: damaged by high-dose (5.7 MGy) X-ray 5Y5F ; 1.5 ; Structure of cytochrome P450nor in NO-bound state: damaged by low-dose (0.72 MGy) X-ray 8FZ8 ; 1.43 ; Structure of cytochrome P450sky2 6WPL ; 2.097 ; Structure of Cytochrome P450tcu 3MEB ; 1.9 ; Structure of cytoplasmic aspartate aminotransferase from giardia lamblia 4HHX ; 1.88 ; Structure of cytoplasmic domain of TCPE from Vibrio cholerae 3IBY ; 2.5 ; Structure of cytosolic domain of L. pneumophila FeoB 1G2R ; 1.35 ; Structure of Cytosolic Protein of Unknown Function Coded by Gene from NUSA/INFB Region, a YlxR Homologue 1NG6 ; 1.4 ; Structure of Cytosolic Protein of Unknown Function YqeY from Bacillus subtilis 1YLM ; 1.83 ; Structure of Cytosolic Protein of Unknown Function YutE from Bacillus subtilis 4V5K ; 3.2 ; Structure of cytotoxic domain of colicin E3 bound to the 70S ribosome 1KXI ; 2.19 ; STRUCTURE OF CYTOTOXIN HOMOLOG PRECURSOR 1ZAD ; ; Structure of cytotoxin I (CTI) from Naja Oxiana in complex with DPC micelle 3F8O ; 1.72 ; Structure of d(CACGCG).d(CGCGTG) with low concentration of PdCl2 317D ; 1.9 ; STRUCTURE OF D(CCTAGGG): COMPARISON WITH NINE ISOMORPHOUS OCTAMER SEQUENCES REVEALS FOUR DISTINCT PATTERNS OF SEQUENCE-DEPENDENT INTERMOLECULAR INTERACTIONS 399D ; 1.9 ; STRUCTURE OF D(CGCCCGCGGGCG) 1DXY ; 1.86 ; STRUCTURE OF D-2-HYDROXYISOCAPROATE DEHYDROGENASE 2Q2Q ; 2.02 ; Structure of D-3-Hydroxybutyrate Dehydrogenase from Pseudomonas putida 2Q2V ; 1.9 ; Structure of D-3-Hydroxybutyrate Dehydrogenase from Pseudomonas putida 2Q2W ; 2.12 ; Structure of D-3-Hydroxybutyrate Dehydrogenase from Pseudomonas putida 2YZM ; 2.21 ; Structure of D-Alanine:D-Alanine Ligase with substrate from Thermus thermophilus HB8 5GZ3 ; 1.59 ; Structure of D-amino acid dehydrogenase in complex with NADP 5GZ6 ; 1.74 ; Structure of D-amino acid dehydrogenase in complex with NADPH and 2-keto-6-aminocapronic acid 8HY5 ; 2.1 ; Structure of D-amino acid oxidase mutant R38H 6LEI ; 2.8 ; Structure of D-carbamoylase from Nitratireductor indicus 6LCG ; 2.7 ; Structure of D-carbamoylase mutant from Nitratireductor indicus 6LE2 ; 2.14 ; Structure of D-carbamoylase mutant from Nitratireductor indicus 6LED ; 2.37 ; Structure of D-carbamoylase mutant from Nitratireductor indicus 7LC0 ; 2.6 ; Structure of D-Glucosaminate-6-phosphate Ammonia-lyase 7LCE ; 2.58 ; Structure of D-Glucosaminate-6-phosphate Ammonia-lyase 1NFG ; 2.7 ; Structure of D-hydantoinase 6ANM ; 0.64 ; Structure of D-Leu-D-Phe-2-Abz-D-Ala at 0.64 Angstrom 6N2H ; 1.72 ; Structure of D-ornithine/D-lysine decarboxylase from Salmonella typhimurium 1LK7 ; 2.0 ; Structure of D-Ribose-5-Phosphate Isomerase from in complex with phospho-erythronic acid 7OOJ ; 2.6 ; Structure of D-Thr53 Ubiquitin 2F7N ; 2.0 ; Structure of D. radiodurans Dps-1 4YVB ; 1.351 ; Structure of D128N streptavidin 3SAQ ; 3.51 ; Structure of D13, the scaffolding protein of vaccinia virus 3SAM ; 2.55 ; Structure of D13, the scaffolding protein of vaccinia virus (mutant D513G) 3H8W ; 2.8 ; Structure of D132N T4 RNase H in the presence of divalent magnesium 5SYH ; 1.65 ; Structure of D141A variant of B. pseudomallei KatG 5SYI ; 1.7 ; Structure of D141A variant of B. pseudomallei KatG complexed with INH 1Y7A ; 1.77 ; Structure of D153H/K328W E. coli alkaline phosphatase in presence of cobalt at 1.77 A resolution 1GYH ; 1.89 ; Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant 3USQ ; 2.4 ; Structure of D159S/Y194F glycogenin mutant truncated at residue 270 7ZY9 ; 1.6 ; Structure of D165A/D167A double mutant of Chit33 from Trichoderma harzianum complexed with chitintetraose. 2ACI ; 2.5 ; Structure of D166A arginine deiminase 6YLJ ; 1.75 ; Structure of D169A/E171A double mutant of chitinase Chit42 from Trichoderma harzianum complexed with chitinhexaose. 7AKQ ; 2.32 ; Structure of D169A/E171A double mutant of chitinase Chit42 from Trichoderma harzianum complexed with chitintetraose obtained by soaking. 6YN4 ; 1.82 ; Structure of D169A/E171A double mutant of chitinase Chit42 from Trichoderma harzianum complexed with chitintetraose. 7A5W ; 1.4 ; Structure of D172N BlaC from Mycobacterium tuberculosis 8BTU ; 1.8 ; Structure of D179N BlaC from Mycobacterium tuberculosis 8BTV ; 1.95 ; Structure of D179N BlaC from Mycobacterium tuberculosis bound to the trans-enamine adduct of sulbactam 8BTW ; 1.9 ; Structure of D179N BlaC from Mycobacterium tuberculosis in complex with vaborbactam 8BES ; 1.86 ; Structure of D188A-fructofuranosidase from Rhodotorula dairenensis in complex with fructose 8BEU ; 2.27 ; Structure of D188A-fructofuranosidase from Rhodotorula dairenensis in complex with raffinose 8BET ; 2.38 ; Structure of D188A-fructofuranosidase from Rhodotorula dairenesis in complex with sucrose 6WAS ; 1.904 ; Structure of D19.PA8 Fab in complex with 1FD6 16055 V1V2 scaffold 3H8S ; 2.51 ; Structure of D19N T4 RNase H in the presence of divalent magnesium 2NB0 ; ; Structure of D19S variant of the Penicillium Antifungal Protein (PAF) 3CF0 ; 3.0 ; Structure of D2 subdomain of P97/VCP in complex with ADP 2W8M ; 2.4 ; Structure of D212, a nuclease from a fusselovirus. 2HSE ; 2.6 ; Structure of D236A E. coli Aspartate Transcarbamoylase in the presence of phosphonoacetamide and l-Aspartate at 2.60 A resolution 2A0F ; 2.9 ; Structure of D236A mutant E. coli Aspartate Transcarbamoylase in presence of Phosphonoacetamide at 2.90 A resolution 6S3D ; 3.0 ; Structure of D25 Fab in complex with scaffold S0_2.126 2ABR ; 2.9 ; Structure of D280A arginine deiminase with L-arginine forming a S-alkylthiouronium reaction intermediate 3WVX ; 1.58 ; Structure of D48A hen egg white lysozyme 3WVY ; 1.56 ; Structure of D48A hen egg white lysozyme in complex with (GlcNAc)4 3U14 ; 2.24 ; Structure of D50A-fructofuranosidase from Schwanniomyces occidentalis complexed with inulin 5FKB ; 1.78 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with 1-Kestose 6FJG ; 1.73 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructose and 4-nitrophenol 5FMC ; 1.84 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructose and BIS-TRIS propane buffer 6S2H ; 1.8 ; Structure Of D80A-Fructofuranosidase From Xanthophyllomyces Dendrorhous Complexed With Fructose And Catechol 6S2G ; 2.03 ; Structure Of D80A-Fructofuranosidase From Xanthophyllomyces Dendrorhous Complexed With Fructose And Epigallocatechin Gallate (Egcg) 6FJE ; 1.85 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructose and glucose 5FMB ; 1.91 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructose and HEPES buffer 6S3Z ; 1.85 ; Structure Of D80A-Fructofuranosidase From Xanthophyllomyces Dendrorhous Complexed With Fructose And hydroquinone 5NSL ; 1.7 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructose and hydroxytyrosol 5O47 ; 1.91 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with fructosyl-hydroxytyrosol 5FK8 ; 1.88 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with Neo-erlose 5FK7 ; 2.05 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with neokestose 5FMD ; 1.78 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with nystose 5FKC ; 1.82 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with Raffinose 5FIX ; 2.01 ; Structure of D80A-fructofuranosidase from Xanthophyllomyces dendrorhous complexed with sucrose 6S82 ; 1.85 ; Structure Of D80A-Fructofuranosidase From Xanthophyllomyces Dendrorhous Complexed With Tris-buffer molecule And hydroquinone 2H4C ; 2.6 ; Structure of Daboiatoxin (heterodimeric PLA2 venom) 6XTZ ; 2.21 ; Structure of Dally-like protein in complex with O-palmitoleoyl serine 6XB6 ; 1.45 ; Structure of Danaus plexippus poxin cGAMP nuclease 2Y0A ; 2.6 ; Structure of DAPK1 construct residues 1-304 8AD6 ; 1.52 ; Structure of DarB bound to c-di-AMP 3J9L ; 4.0 ; Structure of Dark apoptosome from Drosophila melanogaster 3J9K ; 4.1 ; Structure of Dark apoptosome in complex with Dronc CARD domain 7PGZ ; 0.9 ; Structure of dark-adapted AsLOV2 Q513L 7PGX ; 1.001 ; Structure of dark-adapted AsLOV2 wild type 6JYA ; 1.803 ; Structure of dark-state marine bacterial chloride importer, NM-R3, with CW laser (ND-10%) at 95K. 6JY8 ; 1.9 ; Structure of dark-state marine bacterial chloride importer, NM-R3, with CW laser (ND-3%) at 95K. 6JYC ; 1.892 ; Structure of dark-state marine bacterial chloride importer, NM-R3, with CW laser (ND-30%) at 95K. 6JYE ; 1.9 ; Structure of dark-state marine bacterial chloride importer, NM-R3, with Pulse laser (ND-1%) at 140K. 6JY6 ; 1.8 ; Structure of dark-state marine bacterial chloride importer, NM-R3, with Pulse laser (ND-1%) at 95K. 3F5C ; 3.0 ; Structure of Dax-1:LRH-1 complex 2WAU ; 3.0 ; Structure of DBL6 epsilon domain from VAR2CSA 2Y8D ; 1.84 ; STRUCTURE OF DBL6 EPSILON DOMAIN FROM VAR2CSA STRAIN FCR3 6WZY ; 1.5 ; Structure of DbNA(10) peptides bound to H-2Db MHC-I 6X00 ; 1.55 ; Structure of DbNA(11) peptides bound to H-2Db MHC-I 6MJG ; 2.123 ; Structure of dbOphMA in Complex with SAH and Methylated Peptide 6OAN ; 2.9 ; Structure of DBP in complex with human neutralizing antibody 053054 6OAO ; 3.497 ; Structure of DBP in complex with human neutralizing antibody 092096 1XPH ; 1.41 ; Structure of DC-SIGNR and a portion of repeat domain 8 5MVJ ; 2.5 ; Structure of DC8E8 Fab at pH 6.5 crystallized in space-group P1 5MTH ; 1.73 ; Structure of DC8E8 Fab at pH 6.5 crystallized in spacegroup P21 5MX3 ; 2.98 ; Structure of DC8E8 Fab crystallized at pH 8.5 5X83 ; 2.997 ; Structure of DCC FN456 domains 3LAF ; 2.4 ; Structure of DCC, a netrin-1 receptor 7YKM ; 1.5 ; Structure of DciA DUF721 domain from Deinococcus radiodurans 6P5W ; 1.69 ; Structure of DCN1 bound to 3-methyl-N-((4S,5S)-3-methyl-6-oxo-1-phenyl-4-(p-tolyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridin-5-yl)benzamide 7KWA ; 1.572 ; Structure of DCN1 bound to N-((4S,5S)-3-(aminomethyl)-7-ethyl-4-(4-fluorophenyl)-6-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridin-5-yl)-3-(trifluoromethyl)benzamide 6P5V ; 1.398 ; Structure of DCN1 bound to N-((4S,5S)-7-ethyl-4-(4-fluorophenyl)-3-methyl-6-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridin-5-yl)-3-methylbenzamide 5V88 ; 1.601 ; Structure of DCN1 bound to NAcM-COV 5V83 ; 2.002 ; Structure of DCN1 bound to NAcM-HIT 5V86 ; 1.374 ; Structure of DCN1 bound to NAcM-OPT 5V89 ; 1.55 ; Structure of DCN4 PONY domain bound to CUL1 WHB 1ST4 ; 2.02 ; Structure of DcpS bound to m7GpppA 1ST0 ; 1.9 ; Structure of DcpS bound to m7GpppG 8B8H ; 1.78 ; Structure of DCS-resistant variant D322N of alanine racemase from M. tuberculosis in complex with DCS 8AHW ; 1.58 ; Structure of DCS-resistant variant D322N of alanine racemase from Mycobacterium tuberculosis 8BU7 ; 3.245 ; Structure of DDB1 bound to 21195-engaged CDK12-cyclin K 8BUA ; 3.193 ; Structure of DDB1 bound to 919278-engaged CDK12-cyclin K 6TD3 ; 3.46 ; Structure of DDB1 bound to CR8-engaged CDK12-cyclinK 8BUC ; 3.85 ; Structure of DDB1 bound to dCeMM3-engaged CDK12-cyclin K 8BUB ; 3.42 ; Structure of DDB1 bound to dCeMM4-engaged CDK12-cyclin K 8BUI ; 3.5 ; Structure of DDB1 bound to DRF-053-engaged CDK12-cyclin K 8BUJ ; 3.62 ; Structure of DDB1 bound to DS06-engaged CDK12-cyclin K 8BUK ; 3.41 ; Structure of DDB1 bound to DS08-engaged CDK12-cyclin K 8BUL ; 3.4 ; Structure of DDB1 bound to DS11-engaged CDK12-cyclin K 8BUM ; 3.36 ; Structure of DDB1 bound to DS15-engaged CDK12-cyclin K 8BUN ; 3.08 ; Structure of DDB1 bound to DS16-engaged CDK12-cyclin K 8BU1 ; 2.98 ; Structure of DDB1 bound to DS17-engaged CDK12-cyclin K 8BU2 ; 3.13 ; Structure of DDB1 bound to DS18-engaged CDK12-cyclin K 8BU3 ; 3.42 ; Structure of DDB1 bound to DS19-engaged CDK12-cyclin K 8BU4 ; 3.09 ; Structure of DDB1 bound to DS22-engaged CDK12-cyclin K 8BUO ; 3.58 ; Structure of DDB1 bound to DS24-engaged CDK12-cyclin K 8BUP ; 3.41 ; Structure of DDB1 bound to DS30-engaged CDK12-cyclin K 8BUQ ; 3.2 ; Structure of DDB1 bound to DS43-engaged CDK12-cyclin K 8BUR ; 3.64 ; Structure of DDB1 bound to DS50-engaged CDK12-cyclin K 8BU6 ; 3.45 ; Structure of DDB1 bound to DS55-engaged CDK12-cyclin K 8BUS ; 3.26 ; Structure of DDB1 bound to DS59-engaged CDK12-cyclin K 8BUT ; 3.25 ; Structure of DDB1 bound to DS61-engaged CDK12-cyclin K 8BUG ; 3.53 ; Structure of DDB1 bound to HQ461-engaged CDK12-cyclin K 8BU9 ; 3.51 ; Structure of DDB1 bound to roscovitine-engaged CDK12-cyclin K 8BU5 ; 3.134 ; Structure of DDB1 bound to SR-4835-engaged CDK12-cyclin K 8BUH ; 3.79 ; Structure of DDB1 bound to WX3-engaged CDK12-cyclin K 8BUE ; 3.25 ; Structure of DDB1 bound to Z11-engaged CDK12-cyclin K 8BUF ; 3.3 ; Structure of DDB1 bound to Z12-engaged CDK12-cyclin K 8BUD ; 3.2 ; Structure of DDB1 bound to Z7-engaged CDK12-cyclin K 6H0F ; 3.25 ; Structure of DDB1-CRBN-pomalidomide complex bound to IKZF1(ZF2) 6Q0R ; 2.9 ; Structure of DDB1-DDA1-DCAF15 complex bound to E7820 and RBM39 6Q0W ; 2.9 ; Structure of DDB1-DDA1-DCAF15 complex bound to Indisulam and RBM39 6Q0V ; 2.9 ; Structure of DDB1-DDA1-DCAF15 complex bound to tasisulam and RBM39 4A0K ; 5.93 ; STRUCTURE OF DDB1-DDB2-CUL4A-RBX1 BOUND TO A 12 BP ABASIC SITE CONTAINING DNA-DUPLEX 4A0L ; 7.4 ; Structure of DDB1-DDB2-CUL4B-RBX1 bound to a 12 bp abasic site containing DNA-duplex 8HLE ; 1.91 ; Structure of DddY-DMSOP complex 3R5L ; 1.55 ; Structure of Ddn, the Deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824 3R5P ; 1.85 ; Structure of Ddn, the Deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824 3R5R ; 2.101 ; Structure of Ddn, the Deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824, with co-factor F420 3R5W ; 1.786 ; Structure of Ddn, the Deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824, with co-factor F420 5FDP ; 2.25 ; Structure of DDR1 receptor tyrosine kinase in complex with D2099 inhibitor at 2.25 Angstroms resolution. 5FDX ; 2.65 ; Structure of DDR1 receptor tyrosine kinase in complex with D2164 inhibitor at 2.65 Angstroms resolution. 7BE6 ; 1.87082 ; Structure of DDR1 receptor tyrosine kinase in complex with inhibitor SR159 7AZB ; 2.62 ; Structure of DDR2 DS domain in complex with VHH 7AYM ; 2.12 ; Structure of DDR2 Kinase domain in complex with IBZ3 3LJM ; 1.36 ; Structure of de novo designed apo peptide coil SER L9C 7MWR ; 2.2 ; Structure of De Novo designed beta sheet heterodimer LHD101A53/B4 7MWQ ; 2.56 ; Structure of De Novo designed beta sheet heterodimer LHD29A53/B53 7RMX ; 1.65 ; Structure of De Novo designed tunable symmetric protein pockets 5ETI ; 2.8 ; Structure of dead kinase MAPK14 5ETF ; 2.4 ; Structure of dead kinase MAPK14 with bound the KIM domain of MKK6 7F0N ; 1.6 ; Structure of deamidated Ubiquitin 2YAK ; 2.2 ; Structure of death-associated protein Kinase 1 (dapk1) in complex with a ruthenium octasporine ligand (OSV) 1XTK ; 2.4 ; structure of DECD to DEAD mutation of human UAP56 2LQU ; ; Structure of decorbin-binding protein A from Borrelia burgdorferi 2MTC ; ; Structure of decorin binding protein A from strain N40 of Borrelia burgdorferi 7RR3 ; 2.24 ; Structure of Deep-Sea Phage NrS-1 Primase-Polymerase N300 in complex with calcium and ddCTP 7RR4 ; 1.86 ; Structure of Deep-Sea Phage NrS-1 Primase-Polymerase N300 in complex with magnesium and pyrophosphate 6F5J ; 3.1 ; Structure of deformed wing virus carrying the GFP gene 5L7Q ; 3.5 ; Structure of deformed wing virus, a honeybee pathogen 5L8Q ; 3.5 ; Structure of deformed wing virus, a honeybee pathogen 5MUP ; 3.8 ; Structure of deformed wing virus, a honeybee pathogen 5MV5 ; 3.1 ; Structure of deformed wing virus, a honeybee pathogen 5MV6 ; 3.5 ; Structure of deformed wing virus, a honeybee pathogen 5B6L ; 2.801 ; Structure of Deg protease HhoA from Synechocystis sp. PCC 6803 5GND ; 2.5 ; Structure of Deg protease HhoA from Synechocystis sp. PCC 6803 8EJN ; 1.481 ; Structure of dehaloperoxidase A in complex with 2,4-dichlorophenol 7SJF ; 1.96 ; Structure of Dehaloperoxidase B in Complex with Thymol 7SJG ; 1.4 ; Structure of Dehaloperoxidase B in Complex with Thymoquinone 3GNX ; 2.0 ; Structure of dehydrated D-xylose isomerase from streptomyces rubiginosus 5EVO ; 2.51 ; Structure of Dehydroascrobate Reductase from Pennisetum Americanum in complex with two non-native ligands, Acetate in the G-site and Glycerol in the H-site 7WRW ; 3.00008 ; Structure of Deinococcus radiodurans HerA 7WRX ; 3.40004 ; Structure of Deinococcus radiodurans HerA-ADP complex 1R0M ; 1.3 ; Structure of Deinococcus radiodurans N-acylamino acid racemase at 1.3 : insights into a flexible binding pocket and evolution of enzymatic activity 3UDG ; 2.4 ; Structure of Deinococcus radiodurans SSB bound to ssDNA 2VLI ; 1.95 ; Structure of Deinococcus radiodurans tunicamycin resistance protein 7BR4 ; 1.95 ; Structure of deletion mutant of alpha-glucuronidase (TM0752) from Thermotoga maritima 8AR6 ; 2.2 ; Structure of Delta 57-NCOA7 in space group P41212 4UXX ; 2.701 ; Structure of delta4-DgkA with AMPPCP in 9.9 MAG 4UXW ; 3.15 ; Structure of delta4-DgkA-apo in 9.9 MAG 4UYO ; 2.18 ; Structure of delta7-DgkA in 7.9 MAG by serial femtosecond crystatallography to 2.18 angstrom resolution 4UXZ ; 2.18 ; Structure of delta7-DgkA-syn in 7.9 MAG to 2.18 angstrom resolution 1K4R ; 24.0 ; Structure of Dengue Virus 8FE3 ; 10.2 ; Structure of dengue virus (DENV2) in complex with prM12, an anti-PrM monoclonal antibody 8FE4 ; 9.8 ; Structure of dengue virus (DENV2) in complex with prM13, an anti-PrM monoclonal antibody 4AL8 ; 1.66 ; Structure of Dengue virus DIII in complex with Fab 2H12 4ALA ; 1.84 ; Structure of Dengue virus DIII in complex with Fab 2H12 4BZ2 ; 2.03 ; Structure of dengue virus EDIII in complex with Fab 2D73 4BZ1 ; 2.15 ; Structure of dengue virus EDIII in complex with Fab 3e31 6MO0 ; 2.7 ; Structure of dengue virus protease with an allosteric Inhibitor that blocks replication 6MO1 ; 3.0 ; Structure of dengue virus protease with an allosteric Inhibitor that blocks replication 6MO2 ; 2.8 ; Structure of dengue virus protease with an allosteric Inhibitor that blocks replication 4GT0 ; 2.57 ; Structure of dengue virus serotype 1 sE containing stem to residue 421 4AM0 ; 3.02 ; Structure of Dengue virus strain 4 DIII in complex with Fab 2H12 1NIH ; 2.6 ; Structure of deoxy-quaternary haemoglobin with liganded beta subunits 2JAQ ; 2.3 ; Structure of deoxyadenosine kinase from M. mycoides with bound dCTP 2JAS ; 2.7 ; Structure of deoxyadenosine kinase from M.mycoides with bound dATP 2JAT ; 2.6 ; Structure of deoxyadenosine kinase from M.mycoides with products dcmp and a flexible dcdp bound 1LNL ; 3.3 ; Structure of deoxygenated hemocyanin from Rapana thomasiana 1HBH ; 2.2 ; STRUCTURE OF DEOXYHAEMOGLOBIN OF THE ANTARCTIC FISH PAGOTHENIA BERNACCHII AND STRUCTURAL BASIS OF THE ROOT EFFECT 1DNP ; 2.3 ; STRUCTURE OF DEOXYRIBODIPYRIMIDINE PHOTOLYASE 4C3R ; 2.79 ; Structure of dephosphorylated Aurora A (122-403) bound to AMPPCP 6CPF ; 2.3 ; Structure of dephosphorylated Aurora A (122-403) bound to AMPPCP in an active conformation 4C3P ; 2.69 ; Structure of dephosphorylated Aurora A (122-403) bound to TPX2 and AMPPCP 6CPG ; 2.8 ; Structure of dephosphorylated Aurora A (122-403) in complex with inhibiting monobody and AT9283 in an inactive conformation 7UA5 ; 2.83 ; Structure of dephosphorylated human RyR2 in the closed state 7UA9 ; 3.59 ; Structure of dephosphorylated human RyR2 in the open state 3P4W ; 3.2 ; Structure of desflurane bound to a pentameric ligand-gated ion channel, GLIC 4J9J ; 2.3 ; Structure of designed HisF 3QBV ; 2.65 ; Structure of designed orthogonal interaction between CDC42 and nucleotide exchange domains of intersectin 5K7J ; 1.39 ; Structure of designed zinc binding protein ZE2 bound to Zn2+ 3DSQ ; 2.1 ; Structure of Desulfitobacterium hafniense PylSc, a pyrrolysyl tRNA synthetase 2XSJ ; 2.5 ; Structure of desulforubidin from Desulfomicrobium norvegicum 2A3M ; 1.5 ; Structure of Desulfovibrio desulfuricans G20 tetraheme cytochrome (oxidized form) 2A3P ; 2.3 ; Structure of Desulfovibrio desulfuricans G20 tetraheme cytochrome with bound molybdate 8DMB ; 3.1 ; Structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with omega RNA and target DNA 6K9P ; 2.047 ; Structure of Deubiquitinase 6KBE ; 2.339 ; Structure of Deubiquitinase 6RYB ; 2.315 ; Structure of deubiquitinase for PR-ubiquitination 1 -Dup1 5LDA ; 1.9 ; Structure of deubiquitinating enzyme homolog (Pyrococcus furiosus JAMM1) in complex with ubiquitin-like SAMP2. 5LD9 ; 1.733 ; Structure of deubiquitinating enzyme homolog, Pyrococcus furiosus JAMM1. 4XB3 ; 2.093 ; Structure of dextran glucosidase 4WLC ; 2.402 ; Structure of dextran glucosidase with glucose 3CT4 ; 2.498 ; Structure of Dha-kinase subunit DhaK from L. Lactis 5UII ; 1.351 ; structure of DHFR with bound buformin and NADP 5UIO ; 1.929 ; structure of DHFR with bound DAP, p-ABG and NADP 5UIP ; 1.9 ; structure of DHFR with bound DAP, p-ABG and NADP 5UIH ; 1.647 ; structure of DHFR with bound phenformin and NADP 8VHM ; 2.26 ; Structure of DHODH in Complex with Fragment 2 8VHL ; 1.93 ; Structure of DHODH in Complex with Ligand 17 4FH6 ; 1.44 ; Structure of DHP A in complex with 2,4,6-tribromophenol in 10% DMSO 4FH7 ; 1.74 ; Structure of DHP A in complex with 2,4,6-tribromophenol in 20% methanol 7U5T ; 3.43 ; Structure of DHQS/EPSPS dimer from Candida albicans Aro1 5LRM ; 1.75 ; Structure of di-zinc MCR-1 in P41212 space group 1M0O ; 2.4 ; Structure of Dialkylglycine Decarboxylase Complexed with 1-Amino-1-methylpropanephosphonate 1M0P ; 2.6 ; Structure of Dialkylglycine Decarboxylase Complexed with 1-Amino-1-phenylethanephosphonate 1M0N ; 2.2 ; Structure of Dialkylglycine Decarboxylase Complexed with 1-Aminocyclopentanephosphonate 1M0Q ; 2.0 ; Structure of Dialkylglycine Decarboxylase Complexed with S-1-aminoethanephosphonate 4JEK ; 2.4 ; Structure of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis 7DEY ; 2.897 ; Structure of Dicer from Pichia stipitis 1FCK ; 2.2 ; STRUCTURE OF DICERIC HUMAN LACTOFERRIN 4KW0 ; 1.49 ; Structure of Dickerson-Drew Dodecamer with 2'-MeSe-ara-G modification 6X5D ; 1.15 ; Structure of Dickerson-Drew Dodecamer with 2'-MeSe-ara-T modification 5Z2H ; 1.674 ; Structure of Dictyostelium discoideum mitochondrial calcium uniporter N-terminal domain(DdMCU-NTD) 5Z2I ; 2.141 ; Structure of Dictyostelium discoideum mitochondrial calcium uniporter N-ternimal domain (Se-DdMCU-NTD) 5EJY ; 1.9 ; Structure of Dictyostelium Discoideum Myosin VII MyTH4-FERM MF1 domain 5EJQ ; 2.19 ; Structure of Dictyostelium Discoideum Myosin VII MyTH4-FERM MF1 domain, mutant 2 5EJR ; 2.0 ; Structure of Dictyostelium Discoideum Myosin VII MyTH4-FERM MF2 domain 5EJS ; 2.7 ; Structure of Dictyostelium Discoideum Myosin VII MyTH4-FERM MF2 domain, mutant 1 2I0N ; ; Structure of Dictyostelium discoideum Myosin VII SH3 domain with adjacent proline rich region 2M3H ; ; Structure of Dido PHD domain 4P93 ; 1.85 ; Structure of Dienelactone Hydrolase at 1.85 A resolution crystallised in the C2 space group 7PPT ; 1.42 ; Structure of diFe-Sulerythrin at 0.26 MGy total absorbed dose 7PPU ; 1.34 ; Structure of diFe-Sulerythrin at 0.57 MGy total absorbed dose 7PPV ; 1.36 ; Structure of diFe-Sulerythrin at 2.70 MGy total absorbed dose 1BLF ; 2.8 ; STRUCTURE OF DIFERRIC BOVINE LACTOFERRIN AT 2.8 ANGSTROMS RESOLUTION 1BIY ; 3.37 ; STRUCTURE OF DIFERRIC BUFFALO LACTOFERRIN 1CE2 ; 2.5 ; STRUCTURE OF DIFERRIC BUFFALO LACTOFERRIN AT 2.5A RESOLUTION 1LFG ; 2.2 ; Structure of diferric human lactoferrin 1B1X ; 2.62 ; STRUCTURE OF DIFERRIC MARE LACTOFERRIN AT 2.62A RESOLUTION 3QT4 ; 2.11 ; Structure of digestive procathepsin L 3 of Tenebrio molitor larval midgut 3QJ3 ; 1.85 ; Structure of digestive procathepsin L2 proteinase from Tenebrio molitor larval midgut 5US6 ; 2.61 ; Structure of Dihydrodipicolinate Reductase from Vibrio vulnificus Bound to NADH and 2,6 Pyridine Dicarboxylic Acid with Intact Polyhistidine Tag 3S8H ; 2.7 ; Structure of dihydrodipicolinate synthase complexed with 3-Hydroxypropanoic acid(HPA)at 2.70 A resolution 3IRD ; 2.23 ; Structure of dihydrodipicolinate synthase from Clostridium botulinum 4FHA ; 1.88 ; Structure of Dihydrodipicolinate Synthase from Streptococcus pneumoniae,bound to pyruvate and lysine 4XKY ; 2.1 ; Structure of dihydrodipicolinate synthase from the commensal bacterium Bacteroides thetaiotaomicron at 2.1 A resolution 3TUU ; 2.2 ; Structure of dihydrodipicolinate synthase from the common grapevine 2PUR ; 1.7 ; Structure of dihydrodipicolinate synthase mutant Thr44Ser at 1.7 A. 2C29 ; 1.81 ; Structure of dihydroflavonol reductase from Vitis vinifera at 1.8 A. 1VIE ; 1.7 ; STRUCTURE OF DIHYDROFOLATE REDUCTASE 1VIF ; 1.8 ; STRUCTURE OF DIHYDROFOLATE REDUCTASE 1RF7 ; 1.8 ; STRUCTURE OF DIHYDROFOLATE REDUCTASE COMPLEXED WITH DIHYDROFOLATE 1RX7 ; 2.3 ; STRUCTURE OF DIHYDROFOLATE REDUCTASE COMPLEXED WITH FOLATE 6NND ; 1.7 ; Structure of Dihydrofolate reductase from Mycobacterium tuberculosis in complex with NADPH and dihydrofolate 6NNC ; 1.8 ; Structure of Dihydrofolate reductase from Mycobacterium tuberculosis in complex with NADPH and pemetrexed 1OJT ; 2.75 ; STRUCTURE OF DIHYDROLIPOAMIDE DEHYDROGENASE 1AJZ ; 2.0 ; STRUCTURE OF DIHYDROPTEROATE PYROPHOSPHORYLASE 2GVW ; 1.86 ; Structure of diisopropyl fluorophosphatase (DFPase) holoenzyme (RT) 2GVV ; 1.73 ; Structure of diisopropyl fluorophosphatase (DFPase) in complex with dicyclopentylphosphoroamidate (DcPPA) 2GVX ; 2.0 ; Structure of diisopropyl fluorophosphatase (DFPase), mutant D229N / N175D 1LK6 ; 2.8 ; Structure of dimeric antithrombin complexed with a P14-P9 reactive loop peptide and an exogenous tripeptide 1R1L ; 2.7 ; Structure of dimeric antithrombin complexed with a P14-P9 reactive loop peptide and an exogenous tripeptide (formyl-norleucine-LF) 6NY6 ; 3.74 ; Structure of dimeric Escherichia coli toxin YoeB bound to the Thermus thermophilus 30S ribosome 8S9K ; 2.72 ; Structure of dimeric FAM111A SPD S541A Mutant 8C06 ; 2.7 ; Structure of Dimeric HECT E3 Ubiquitin Ligase UBR5 3MOL ; 1.2 ; Structure of dimeric holo HasAp H32A Mutant from Pseudomonas aeruginosa to 1.20A Resolution 4R0B ; 2.45 ; Structure of dimeric human glycodelin 8E05 ; 4.6 ; Structure of dimeric LRRK1 8H93 ; 3.01 ; Structure of dimeric mouse SCMC core complex 7T4L ; 3.28 ; Structure of dimeric phosphorylated Pediculus humanus (Ph) PINK1 with extended alpha-C helix in chain B 7T4K ; 3.25 ; Structure of dimeric phosphorylated Pediculus humanus (Ph) PINK1 with kinked alpha-C helix in chain B 6UE7 ; 2.9 ; Structure of dimeric sIgA complex 7A0Y ; 2.45 ; Structure of dimeric sodium proton antiporter NhaA K300R variant, at pH 8.2, crystallized with chimeric Fab antibodies 7A0X ; 2.37 ; Structure of dimeric sodium proton antiporter NhaA, at pH 6.0, crystallized with chimeric Fab antibodies 7A0W ; 2.04 ; Structure of dimeric sodium proton antiporter NhaA, at pH 8.5, crystallized with chimeric Fab antibodies 7T4N ; 2.35 ; Structure of dimeric unphosphorylated Pediculus humanus (Ph) PINK1 D357A mutant 7E17 ; 2.96 ; Structure of dimeric uPAR 7V63 ; 2.906 ; Structure of dimeric uPAR at low pH 6LVC ; 3.0 ; Structure of Dimethylformamidase, dimer 6LVB ; 2.8 ; Structure of Dimethylformamidase, tetramer 6LVE ; 3.1 ; Structure of Dimethylformamidase, tetramer, E521A mutant 6LVD ; 3.2 ; Structure of Dimethylformamidase, tetramer, Y440A mutant 1PJ7 ; 2.1 ; Structure of dimethylglycine oxidase of Arthrobacter globiformis in complex with folinic acid 6FWR ; 2.5 ; Structure of DinG in complex with ssDNA 6FWS ; 2.5 ; Structure of DinG in complex with ssDNA and ADPBeF 7YWA ; 3.26 ; Structure of DinI in complex with RecA filament 1UC5 ; 2.3 ; Structure of diol dehydratase complexed with (R)-1,2-propanediol 1UC4 ; 1.8 ; Structure of diol dehydratase complexed with (S)-1,2-propanediol 3AUJ ; 2.1 ; Structure of diol dehydratase complexed with glycerol 2D0O ; 2.0 ; Structure of diol dehydratase-reactivating factor complexed with ADP and Mg2+ 2D0P ; 3.0 ; Structure of diol dehydratase-reactivating factor in nucleotide free form 6W17 ; 3.9 ; Structure of Dip1-activated Arp2/3 complex with nucleated actin filament 3IJI ; 1.6 ; Structure of dipeptide epimerase from Bacteroides thetaiotaomicron complexed with L-Ala-D-Glu; nonproductive substrate binding. 3IJQ ; 2.0 ; Structure of dipeptide epimerase from Bacteroides thetaiotaomicron complexed with L-Ala-D-Glu; productive substrate binding. 3IJL ; 1.5 ; Structure of dipeptide epimerase from Bacteroides thetaiotaomicron complexed with L-Pro-D-Glu; nonproductive substrate binding. 5ZUM ; 1.9 ; Structure of dipeptidyl-peptidase III from Corallococcus sp. strain EGB 2DTR ; 1.9 ; STRUCTURE OF DIPHTHERIA TOXIN REPRESSOR 3WYH ; 1.77 ; Structure of disulfide bond deletion mutant of ostrich egg white lysozyme 5J6E ; 3.2 ; Structure of disulfide crosslinked A. fumigatus FKBP12(V91C) 5HLI ; 2.05 ; Structure of Disulfide formed AbfR 1BED ; 2.0 ; STRUCTURE OF DISULFIDE OXIDOREDUCTASE 6ZOY ; 3.1 ; Structure of Disulphide-stabilized SARS-CoV-2 Spike Protein Trimer (x1 disulphide-bond mutant, S383C, D985C, K986P, V987P, single Arg S1/S2 cleavage site) in Closed State 6ZOZ ; 3.5 ; Structure of Disulphide-stabilized SARS-CoV-2 Spike Protein Trimer (x1 disulphide-bond mutant, S383C, D985C, K986P, V987P, single Arg S1/S2 cleavage site) in Locked State 6ZOX ; 3.0 ; Structure of Disulphide-stabilized SARS-CoV-2 Spike Protein Trimer (x2 disulphide-bond mutant, G413C, V987C, single Arg S1/S2 cleavage site) 6HSE ; 2.3 ; Structure of dithionite-reduced RsrR in spacegroup P2(1) 6X0K ; 2.231 ; Structure of dithionite-reduced SidA ornithine hydroxylase with the FAD ""in"" and complexed with L-ornithine 2ND6 ; ; Structure of DK17 in GM1 LUVS 2ND7 ; ; Structure of DK17 in POPC:POPG:Cholesterol:GM1 LUVS 1MZR ; 2.13 ; Structure of dkga from E.coli at 2.13 A resolution solved by molecular replacement 7CJQ ; 2.7 ; Structure of DLA-88*001:04 3WUR ; 1.45 ; Structure of DMP19 Complex with 18-crown-6 1DMS ; 1.88 ; STRUCTURE OF DMSO REDUCTASE 3DMR ; 2.5 ; STRUCTURE OF DMSO REDUCTASE FROM RHODOBACTER CAPSULATUS AT PH 7.0 1BAE ; ; STRUCTURE OF DNA (5'-D 5MCCTTTACC-3')2, NMR, 1 STRUCTURE 5M1L ; ; Structure of DNA AGCGA-quadruplex adopted by 15-mer d(GCGAGGGAGCGAGGG), VK34, oligonucleotide found in regulatory region of the PLEKHG3 human gene 5M4W ; ; Structure of DNA AGCGA-quadruplex adopted by 15-mer oligonucleotide found in regulatory region of the PLEKHG3 human gene with G11 to I11 mutation, d(GCGAGGGAGCIAGGG),VK34_I11 8J0L ; 1.98 ; Structure of DNA binding Domain of Human TFAP2A 8J0Q ; 2.4 ; Structure of DNA binding domain of human TFAP2B 8IK8 ; 1.8 ; Structure of DNA binding domain of McrBC endonuclease bound to DNA: L68F mutant 8IJP ; 1.55 ; Structure of DNA binding domain of McrBC endonuclease bound to DNA: L68Y mutant 8IJO ; 1.65 ; Structure of DNA binding domain of McrBC endonuclease bound to DNA: Y41F-L68F double mutant 8IKD ; 2.1 ; Structure of DNA binding domain of McrBC endonuclease bound to DNA: Y41F-L68Y double mutant 8IK4 ; 2.1 ; Structure of DNA binding domain of McrBC endonuclease bound to hemimethylated DNA: L68F mutant 7Y3I ; 2.45 ; Structure of DNA bound SALL4 4UX5 ; 2.4 ; Structure of DNA complex of PCG2 2LGM ; ; Structure of DNA Containing an Aristolactam II-dA Lesion 1XCY ; ; Structure of DNA containing the alpha-anomer of a carbocyclic abasic site 1XCZ ; ; Structure of DNA containing the beta-anomer of a carbocyclic abasic site 2N2D ; ; Structure of DNA G-quadruplex adopted by ALS and FTD related GGGGCC repeat with G21 to Br-G21 substitution 1SUU ; 1.75 ; Structure of DNA gyrase A C-terminal domain 3ILW ; 1.603 ; Structure of DNA gyrase subunit A N-terminal domain 1PJR ; 2.5 ; STRUCTURE OF DNA HELICASE 1QHG ; 2.5 ; STRUCTURE OF DNA HELICASE MUTANT WITH ADPNP 1QHH ; 2.5 ; STRUCTURE OF DNA HELICASE WITH ADPNP 7K72 ; 2.05 ; Structure of DNA ligase A from Mycobacterium tuberculosis bound to NAD 3BM0 ; 1.8 ; Structure of DNA Octamer G(dUSe)G(5-SedU)ACAC 6DJ8 ; 2.05 ; Structure of DNA polymerase III subunit beta from Borrelia burgdorferi in complex with a natural product 6DM6 ; 2.25 ; Structure of DNA polymerase III subunit beta from Rickettsia conorii in complex with a natural product 6DJK ; 1.85 ; Structure of DNA polymerase III subunit beta from Rickettsia typhi in complex with a natural product 6P81 ; 1.75 ; Structure of DNA polymerase III, beta subunit/ beta sliding clamp from Klebsiella pneumoniae, expressed with an N-terminal His-Smt3 fusion tag, in complex with Griselimycin 4U7C ; 2.8 ; Structure of DNA polymerase kappa in complex with benzopyrene adducted DNA 6V8P ; 4.1 ; Structure of DNA Polymerase Zeta (Apo) 7S0T ; 3.05 ; Structure of DNA polymerase zeta with mismatched DNA 6V93 ; 3.1 ; Structure of DNA Polymerase Zeta/DNA/dNTP Ternary Complex 1SY8 ; ; Structure of DNA sequence d-TGATCA by two-dimensional nuclear magnetic resonance spec and restrained molecular dynamics 5M2L ; ; Structure of DNA tetrameric AGCGA-quadruplex adopted by 15-mer d(GCGAGGGAGCGAGGG), VK34, oligonucleotide found in regulatory region of the PLEKHG3 human gene 2JMW ; ; Structure of DNA-Binding Domain of Arabidopsis GT-1 4IXA ; 2.15 ; Structure of DNA-binding domain of the response regulator SaeR from Staphylococcus epidermidis 2NDP ; ; Structure of DNA-binding HU protein from micoplasma Mycoplasma gallisepticum 5OGU ; ; Structure of DNA-binding HU protein from micoplasma Spiroplasma melliferum 7Z6H ; 3.59 ; Structure of DNA-bound human RAD17-RFC clamp loader and 9-1-1 checkpoint clamp 7S8D ; 2.02 ; Structure of DNA-free SgrAI 5XJZ ; 0.98 ; Structure of DNA1-Ag complex 6EPA ; 1.82 ; Structure of dNCS-1 bound to the NCS-1/Ric8a protein/protein interaction regulator IGS-1.76 5YDR ; 2.003 ; Structure of DNMT1 RFTS domain in complex with ubiquitin 6W8J ; 2.445 ; Structure of DNMT3A (R882H) in complex with CAG DNA 6W89 ; 2.499 ; Structure of DNMT3A (R882H) in complex with CGA DNA 6W8D ; 2.598 ; Structure of DNMT3A (R882H) in complex with CGT DNA 6W8B ; 2.4 ; Structure of DNMT3A in complex with CGA DNA 2QRV ; 2.89 ; Structure of Dnmt3a-Dnmt3L C-terminal domain complex 4D6K ; 2.1 ; Structure of DNTTIP1 dimerisation domain. 3DD9 ; 2.45 ; Structure of DocH66Y dimer 3DD7 ; 1.7 ; Structure of DocH66Y in complex with the C-terminal domain of Phd 3OV0 ; 3.2 ; Structure of dodecaheme cytochrome c GSU1996 8FWJ ; 2.7 ; Structure of dodecameric KaiC-RS-S413E/S414E complexed with KaiB-RS solved by cryo-EM 8FWI ; 2.9 ; Structure of dodecameric KaiC-RS-S413E/S414E solved by cryo-EM 8HRC ; 2.58 ; Structure of dodecameric RdrB cage 7T4M ; 2.48 ; Structure of dodecameric unphosphorylated Pediculus humanus (Ph) PINK1 D357A mutant 6R1E ; 2.6 ; Structure of dodecin from Streptomyces coelicolor 5HON ; 2.001 ; Structure of Domain 4 of AbnA, a GH43 extracellular arabinanase from Geobacillus stearothermophilus, in complex with arabinotriose 8T8K ; 1.88 ; Structure of Domain of Unknown Function 507 (DUF507) in Space Group C222(1) 8T8L ; 1.9 ; Structure of Domain of Unknown Function 507 (DUF507) in Space Group P3(2)21 1YQH ; 1.7 ; Structure of domain of unknown function DUF77 from Bacillus cereus 2YBY ; 1.58 ; Structure of domains 6 and 7 of the mouse complement regulator Factor H 4O9D ; 2.0 ; Structure of Dos1 propeller 6NN6 ; 3.9 ; Structure of Dot1L-H2BK120ub nucleosome complex 7BWD ; 4.32 ; Structure of Dot1L-H2BK34ub Nucleosome Complex 5X42 ; 1.8 ; Structure of DotL(590-659)-DotN derived from Legionella pneumophila 5X1E ; 1.999 ; Structure of DotL(656-783)-IcmS-IcmW derived from Legionella pneumophila 5X90 ; 2.8 ; Structure of DotL(656-783)-IcmS-IcmW-LvgA derived from Legionella pneumophila 7BWK ; 2.801 ; Structure of DotL(656-783)-IcmS-IcmW-LvgA-VpdB(461-590) derived from Legionella pneumophila 8EFY ; 3.16 ; Structure of double homo-hexameric AAA+ ATPase RuvB motors 3EJ8 ; 2.55 ; Structure of double mutant of human iNOS oxygenase domain with bound immidazole 1ZVK ; 2.04 ; Structure of Double mutant, D164N, E78H of Kumamolisin-As 6NE0 ; 3.4 ; Structure of double-stranded target DNA engaged Csy complex from Pseudomonas aeruginosa (PA-14) 2BCG ; 1.48 ; Structure of doubly prenylated Ypt1:GDI complex 8A9N ; 1.854 ; Structure of DpA polyamine acetyltransferase in complex with 1,3-DAP 5NA7 ; 2.401 ; Structure of DPP III from Bacteroides thetaiotaomicron 5NA8 ; 3.29 ; Structure of DPP III from Bacteroides thetaiotaomicron in closed form 6EOM ; 2.103 ; Structure of DPP III from Caldithrix abyssi 3CSK ; 1.95 ; Structure of DPP III from Saccharomyces cerevisiae 4EBB ; 2.0 ; Structure of DPP2 2RIP ; 2.9 ; Structure of DPPIV in complex with an inhibitor 8PV9 ; 2.7 ; Structure of DPS determined by cryoEM at 100 keV 6ZGL ; 1.9 ; Structure of DPS determined by movement-free cryoEM with zero dose extrapolation 6SEV ; 2.0 ; Structure of Dps from Listeria innocua soaked with 10 mM zinc for 120 minutes 2YJK ; 2.0 ; Structure of Dps from MICROBACTERIUM ARBORESCENS in the high iron form 2YJJ ; 2.05 ; Structure of Dps from MICROBACTERIUM ARBORESCENS in the low iron form 7STW ; 2.37 ; Structure of DPSL (DNA Protection in Starved Cells - Like) from Pyrococcus furiosus 2AXW ; 1.05 ; Structure of DraD invasin from uropathogenic Escherichia coli 3O5T ; 2.09 ; Structure of DraG-GlnZ complex with ADP 5OVO ; 1.55 ; Structure of DraG-GlnZ-delta42-54 complex from Azospirillum brasilense 7TZV ; 1.65 ; Structure of DriD C-domain bound to 9mer ssDNA 7S9W ; 3.4 ; Structure of DrmAB:ADP:DNA complex 7ALK ; 3.0 ; Structure of Drosophila C2-DSL-EGF1 3MN8 ; 2.7 ; Structure of Drosophila melanogaster carboxypeptidase D isoform 1B short 6TBU ; 3.16 ; Structure of Drosophila melanogaster Dispatched 6TD6 ; 4.76 ; Structure of Drosophila melanogaster Dispatched bound to a modified Hedgehog ligand, HhN-C85II 7DXI ; 3.53 ; Structure of Drosophila melanogaster GlcNAc-1-phosphotransferase 8W75 ; 2.85 ; Structure of Drosophila melanogaster L-2-hydroxyglutarate dehydrogenase 8W7F ; 2.299 ; Structure of Drosophila melanogaster L-2-hydroxyglutarate dehydrogenase bound with FAD and a sulfate ion 8W78 ; 2.81 ; Structure of Drosophila melanogaster L-2-hydroxyglutarate dehydrogenase in complex with FAD and 2-oxoglutarate 4BWP ; 3.6 ; Structure of Drosophila Melanogaster PAN3 pseudokinase 7RL3 ; 1.75 ; Structure of Drosophila melanogaster Plk4 PB3 3FYQ ; 1.95 ; Structure of Drosophila melanogaster talin IBS2 domain (residues 1981-2168) 7ALJ ; 1.52 ; Structure of Drosophila Notch EGF domains 11-13 7JK4 ; 3.4 ; Structure of Drosophila ORC bound to AT-rich DNA and Cdc6 7JK5 ; 3.9 ; Structure of Drosophila ORC bound to DNA 7JGR ; 3.9 ; Structure of Drosophila ORC bound to DNA (84 bp) and Cdc6 7JK3 ; 3.4 ; Structure of Drosophila ORC bound to GC-rich DNA and Cdc6 7JK2 ; 3.2 ; Structure of Drosophila ORC bound to poly(dA/dT) DNA and Cdc6 (conformation 1) 7JGS ; 3.2 ; Structure of Drosophila ORC bound to poly(dA/dT) DNA and Cdc6 (conformation 2) 7JK6 ; 4.0 ; Structure of Drosophila ORC in the active conformation 7ALT ; 2.03 ; Structure of Drosophila Serrate C2-DSL-EGF1-EGF2 7MWZ ; 2.0 ; Structure of drosophila STING in complex with 3'2'-cGAMP 6YX5 ; 2.14 ; Structure of DrrA from Legionella pneumophilia in complex with human Rab8a 6NV1 ; 2.5 ; Structure of drug-resistant V27A mutant of the influenza M2 proton channel bound to spiroadamantyl amine inhibitor 6OUG ; 3.01 ; Structure of drug-resistant V27A mutant of the influenza M2 proton channel bound to spiroadamantyl amine inhibitor, TM + cytosolic helix construct 6DEI ; 1.699 ; Structure of Dse3-Csm1 complex 6IUY ; 2.2 ; Structure of DsGPDH of Dunaliella salina 6L0Y ; 3.0 ; Structure of dsRNA with G-U wobble base pairs 5A5L ; 2.34 ; Structure of dual function FBPase SBPase from Thermosynechococcus elongatus 3R7O ; 2.3 ; Structure of dually phosphorylated c-MET receptor kinase in complex with an MK-2461 analog 4IWD ; 1.99 ; Structure of dually phosphorylated c-MET receptor kinase in complex with an MK-8033 analog 4IZA ; 1.93 ; Structure of Dually Phosphorylated ERK2 bound to the PEA-15 Death Effector Domain 3Q6W ; 1.75 ; Structure of dually-phosphorylated MET receptor kinase in complex with an MK-2461 analog with specificity for the activated receptor 5VS6 ; 2.27 ; Structure of DUB complex 5VSB ; 1.85 ; Structure of DUB complex 5VSK ; 3.33 ; Structure of DUB complex 4A2V ; 1.44 ; Structure of duck RIG-I C-terminal domain (CTD) 4A2X ; 4.0 ; Structure of duck RIG-I C-terminal domain (CTD) with 14-mer dSRNA 4A2P ; 3.0 ; Structure of duck RIG-I helicase domain 4A36 ; 3.7 ; Structure of duck RIG-I helicase domain bound to 19-mer dsRNA and ATP transition state analogue 4A2Q ; 3.4 ; Structure of duck RIG-I tandem CARDs and helicase domain 6UMQ ; 1.85 ; Structure of DUF89 6UMR ; 2.21 ; Structure of DUF89 - D291A mutant 3PT1 ; 1.773 ; Structure of DUF89 from Saccharomyces cerevisiae co-crystallized with F6P. 6RYA ; 2.21 ; Structure of Dup1 mutant H67A:Ubiquitin complex 4JMJ ; 2.382 ; Structure of dusp11 4JMK ; 1.9 ; Structure of dusp8 3TV0 ; 2.1492 ; Structure of dynactin p27 subunit 8RGH ; 3.9 ; Structure of dynein-2 intermediate chain DYNC2I1 (WDR60) in complex with the dynein-2 heavy chain DYNC2H1. 8RGG ; 4.0 ; Structure of dynein-2 intermediate chain DYNC2I2 (WDR34) in complex with dynein-2 heavy chain DYNC2H1. 6UBL ; 1.499 ; Structure of DynF from the Dynemicin Biosynthesis Pathway of Micromonospora chersina 8RGI ; 2.02 ; Structure of DYNLT1:DYNLT2B (TCTEX1:TCTEX1D2) heterodimer. 7A4O ; 1.9 ; Structure of DYRK1A in complex with AMPNP 7A5B ; 2.6 ; Structure of DYRK1A in complex with complex 10 7A4R ; 1.8 ; Structure of DYRK1A in complex with compound 1 7AJ5 ; 2.0 ; Structure of DYRK1A in complex with compound 10 7A5D ; 1.8 ; Structure of DYRK1A in complex with compound 16 7AJ7 ; 2.9 ; Structure of DYRK1A in complex with compound 16 7A4S ; 3.1 ; Structure of DYRK1A in complex with compound 2 7AJ8 ; 2.0 ; Structure of DYRK1A in complex with compound 25 7AJA ; 2.2 ; Structure of DYRK1A in complex with compound 28 7A4W ; 2.7 ; Structure of DYRK1A in complex with compound 3 7AJ2 ; 2.1 ; Structure of DYRK1A in complex with compound 3 7AJM ; 2.4 ; Structure of DYRK1A in complex with compound 32 7AJS ; 2.15 ; Structure of DYRK1A in complex with compound 33 7A5N ; 2.3 ; Structure of DYRK1A in complex with compound 34 7AJV ; 2.1 ; Structure of DYRK1A in complex with compound 38 7A4Z ; 1.9 ; Structure of DYRK1A in complex with compound 4 7AJW ; 2.8 ; Structure of DYRK1A in complex with compound 46 7A51 ; 1.9 ; Structure of DYRK1A in complex with compound 5 7AJ4 ; 2.0 ; Structure of DYRK1A in complex with compound 5 7AKL ; 2.0 ; Structure of DYRK1A in complex with compound 50 7AJY ; 2.2 ; Structure of DYRK1A in complex with compound 51 7AK2 ; 2.1 ; Structure of DYRK1A in complex with compound 53 7AKA ; 1.9 ; Structure of DYRK1A in complex with compound 54 7AKB ; 2.8 ; Structure of DYRK1A in complex with compound 56 7AKE ; 2.3 ; Structure of DYRK1A in complex with compound 58 7A52 ; 2.1 ; Structure of DYRK1A in complex with compound 6 7A53 ; 2.2 ; Structure of DYRK1A in complex with compound 7 7A55 ; 2.2 ; Structure of DYRK1A in complex with compound 8 7AKF ; 2.6 ; Structure of DYRK2 in complex with compound 50 7AKH ; 2.85 ; Structure of DYRK2 in complex with compound 58 2M92 ; ; Structure of d[AGGGTGGGTGCTGGGGCGCGAAGCATTCGCGAGG] quadruplex-duplex hybrid 2M8Y ; ; Structure of d[CGCGAAGCATTCGCG] hairpin 2M90 ; ; Structure of d[GCGCGAAGCATTCGCGGGGAGGTGGGGAAGGG] quadruplex-duplex hybrid 2M91 ; ; Structure of d[GGGAAGGGCGCGAAGCATTCGCGAGGTAGG] quadruplex-duplex hybrid 2M8Z ; ; Structure of d[GGTTGGCGCGAAGCATTCGCGGGTTGG] quadruplex-duplex hybrid 2M93 ; ; Structure of d[TTGGGTGGGCGCGAAGCATTCGCGGGGTGGGT] quadruplex-duplex hybrid 5LMM ; 1.2 ; Structure of E coli Hydrogenase Hyd-1 mutant E28Q 6GKI ; 2.23 ; Structure of E coli MlaC in Variously Loaded States 1FF5 ; 2.93 ; STRUCTURE OF E-CADHERIN DOUBLE DOMAIN 3BT7 ; 2.43 ; Structure of E. coli 5-Methyluridine Methyltransferase TrmA in complex with 19 nucleotide T-arm analogue 3LRB ; 3.61 ; Structure of E. coli AdiC 3LRC ; 4.004 ; Structure of E. coli AdiC (P1) 1PSW ; 2.0 ; Structure of E. coli ADP-heptose lps heptosyltransferase II 1Y6V ; 1.6 ; Structure of E. coli Alkaline Phosphatase in presence of cobalt at 1.60 A resolution 1ED8 ; 1.75 ; STRUCTURE OF E. COLI ALKALINE PHOSPHATASE INHIBITED BY THE INORGANIC PHOSPHATE AT 1.75A RESOLUTION 1ED9 ; 1.75 ; STRUCTURE OF E. COLI ALKALINE PHOSPHATASE WITHOUT THE INORGANIC PHOSPHATE AT 1.75A RESOLUTION 8C2O ; 2.35 ; Structure of E. coli AmiA 6T1W ; 3.79 ; Structure of E. coli BamA in complex with lipoprotein RcsF 3LPF ; 2.26 ; Structure of E. coli beta-Glucuronidase bound with a novel, potent inhibitor 1-((6,7-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-1-(2-hydroxyethyl)-3-(3-methoxyphenyl)thiourea 5CZK ; 2.39 ; Structure of E. coli beta-glucuronidase bound with a novel, potent inhibitor 1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-1-(2-hydroxyethyl)-3-(4-hydroxyphenyl)thiourea 4JHZ ; 2.831 ; Structure of E. coli beta-Glucuronidase bound with a novel, potent inhibitor 2-[4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl]-N-[(1S,2S,5S)-2,5-dimethoxycyclohexyl]acetamide 3LPG ; 2.425 ; Structure of E. coli beta-Glucuronidase bound with a novel, potent inhibitor 3-(2-fluorophenyl)-1-(2-hydroxyethyl)-1-((6-methyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)urea 6LEL ; 2.498 ; Structure of E. coli beta-glucuronidase complex with C6-hexyl uronic isofagomine 6LEM ; 3.188 ; Structure of E. coli beta-glucuronidase complex with C6-nonyl uronic isofagomine 6LEJ ; 2.617 ; Structure of E. coli beta-glucuronidase complex with C6-propyl uronic isofagomine 6LEG ; 2.603 ; Structure of E. coli beta-glucuronidase complex with uronic isofagomine 4WF2 ; 2.31 ; Structure of E. coli BirA G142A bound to biotinol-5'-AMP 7T5W ; 1.75 ; Structure of E. coli CapH C-terminal domain 7T5V ; 1.26 ; Structure of E. coli CapH C-terminal domain I99M mutant 3MYY ; 2.1 ; Structure of E. Coli CheY mutant A113P bound to Beryllium fluoride 3OO1 ; 1.7 ; Structure of E. Coli CheY mutant A113P in the absence of Sulfate 8C0I ; 1.9 ; Structure of E. coli Class 2 L-asparaginase EcAIII, mutant M200L (acyl-enzyme intermediate) 8BKF ; 1.221 ; Structure of E. coli Class 2 L-asparaginase EcAIII, mutant M200T (crystal M200T#o) 8C23 ; 1.842 ; Structure of E. coli Class 2 L-asparaginase EcAIII, mutant M200T (monoclinic form M200T#m) 8BI3 ; 1.452 ; Structure of E. coli Class 2 L-asparaginase EcAIII, mutant M200W (crystal M200W#1) 8BP9 ; 1.7 ; Structure of E. coli Class 2 L-asparaginase EcAIII, mutant M200W (crystal M200W#2) 3O2O ; 2.9 ; Structure of E. coli ClpS ring complex 1J2A ; 1.8 ; Structure of E. coli cyclophilin B K163T mutant 1VAI ; 1.8 ; Structure of e. coli cyclophilin B K163T mutant bound to n-acetyl-ala-ala-pro-ala-7-amino-4-methylcoumarin 1V9T ; 1.7 ; Structure of E. coli cyclophilin B K163T mutant bound to succinyl-ALA-PRO-ALA-P-nitroanilide 7U65 ; 2.8 ; Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 7U66 ; 3.1 ; Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 and dGTP 7U67 ; 2.5 ; Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 and GTP 3DEN ; 2.2 ; Structure of E. coli DHDPS mutant Y107W 1YXD ; 2.0 ; Structure of E. coli dihydrodipicolinate synthase bound with allosteric inhibitor (S)-lysine to 2.0 A 3C0J ; 2.4 ; Structure of E. coli dihydrodipicolinate synthase complexed with hydroxypyruvate 1YXC ; 1.9 ; Structure of E. coli dihydrodipicolinate synthase to 1.9 A 2G1P ; 1.89 ; Structure of E. coli DNA adenine methyltransferase (DAM) 1EU5 ; 1.45 ; STRUCTURE OF E. COLI DUTPASE AT 1.45 A 3ZDA ; 1.5 ; Structure of E. coli ExoIX in complex with a fragment of the Flap1 DNA oligonucleotide, potassium and magnesium 3ZDB ; 1.47 ; Structure of E. coli ExoIX in complex with the palindromic 5ov4 DNA oligonucleotide, di-magnesium and potassium 3ZDC ; 1.53 ; Structure of E. coli ExoIX in complex with the palindromic 5ov4 DNA oligonucleotide, potassium and calcium 3ZDD ; 1.5 ; Structure of E. coli ExoIX in complex with the palindromic 5ov6 oligonucleotide and potassium 4JRP ; 1.95 ; Structure of E. coli Exonuclease I in complex with a 5cy-dT13 oligonucleotide 2GFV ; 2.29 ; Structure of E. coli FabF (KASII) C163Q mutant 3HNZ ; 2.75 ; Structure of E. coli FabF(C163A) in Complex with Platensimycin 3G11 ; 2.0 ; Structure of E. coli FabF(C163Q) in complex with dihydrophenyl platensimycin 3G0Y ; 2.6 ; Structure of E. coli FabF(C163Q) in complex with dihydroplatensimycin 2GFX ; 2.59 ; Structure of E. coli FabF(C163Q) in complex with Platensimycin 2GFY ; 2.85 ; Structure of E. coli FabF(K335A) mutant with covalently linked dodecanoic acid 3IL9 ; 1.85 ; Structure of E. coli FabH 6UMK ; 1.35 ; Structure of E. coli FtsZ(L178E)-GDP complex 6UNX ; 1.4 ; Structure of E. coli FtsZ(L178E)-GTP complex 1SF2 ; 2.4 ; Structure of E. coli gamma-aminobutyrate aminotransferase 1HV9 ; 2.1 ; STRUCTURE OF E. COLI GLMU: ANALYSIS OF PYROPHOSPHORYLASE AND ACETYLTRANSFERASE ACTIVE SITES 8AB5 ; 2.4 ; Structure of E. coli GlpG in complex with peptide derived inhibitor Ac-VRHA-conh-[4-(4-butyl)-phenoxy-1-phenyl-2-butyl] 3D1R ; 1.85 ; Structure of E. coli GlpX with its substrate fructose 1,6-bisphosphate 8PVG ; 3.4 ; Structure of E. coli glutamine synthetase determined by cryoEM at 100 keV 4JXZ ; 2.4 ; Structure of E. coli glutaminyl-tRNA synthetase bound to ATP and a tRNA(Gln) acceptor containing a UUG anticodon 1GRX ; ; STRUCTURE OF E. COLI GLUTAREDOXIN 6G94 ; 2.5 ; Structure of E. coli hydrogenase-1 C19G variant in complex with cytochrome b 4GD3 ; 3.3 ; Structure of E. coli hydrogenase-1 in complex with cytochrome b 3FOZ ; 2.5 ; Structure of E. coli Isopentenyl-tRNA transferase in complex with E. coli tRNA(Phe) 1D9E ; 2.4 ; STRUCTURE OF E. COLI KDO8P SYNTHASE 7SEF ; 3.55 ; Structure of E. coli LetB delta (Ring6) mutant, Ring 1 in the open state (Model 2, Rings 1-3 only) 7SEE ; 3.2 ; Structure of E. coli LetB delta (Ring6) mutant, Ring1 in the closed state (Model 1) 2AQ9 ; 1.8 ; Structure of E. coli LpxA with a bound peptide that is competitive with acyl-ACP 4D8J ; 3.55 ; Structure of E. coli MatP-mats complex 5UW8 ; 2.15 ; Structure of E. coli MCE protein MlaD, core MCE domain 5UW2 ; 2.85 ; Structure of E. coli MCE protein MlaD, periplasmic domain 5UVN ; 3.96 ; Structure of E. coli MCE protein PqiB, periplasmic domain 1FR9 ; 1.65 ; STRUCTURE OF E. COLI MOBA 1FRW ; 1.75 ; STRUCTURE OF E. COLI MOBA WITH BOUND GTP AND MANGANESE 2WCI ; 1.9 ; Structure of E. coli monothiol glutaredoxin GRX4 homodimer 7T5U ; 1.02 ; Structure of E. coli MS115-1 CapH N-terminal domain 6P80 ; 1.5 ; Structure of E. coli MS115-1 CdnC + ATP 6U7B ; 2.09 ; Structure of E. coli MS115-1 CdnC:HORMA-deltaN complex 6P8V ; 2.64 ; Structure of E. coli MS115-1 HORMA:CdnC:Trip13 complex 6P7Q ; 1.66 ; Structure of E. coli MS115-1 NucC, 5'-pApA bound form 6P7O ; 1.752 ; Structure of E. coli MS115-1 NucC, Apo form 6P7P ; 1.665 ; Structure of E. coli MS115-1 NucC, cAAA-bound form 4K1G ; 1.9 ; Structure of E. coli Nfo(Endo IV)-H69A mutant bound to a cleaved DNA duplex containing a alphadA:T basepair 5LM9 ; 2.143 ; Structure of E. coli NusA 6YN0 ; 2.4 ; Structure of E. coli PBP1b with a FtsN peptide activating transglycosylase activity 5UWA ; 1.501 ; Structure of E. coli phospholipid binding protein MlaC 4JOM ; 2.9 ; Structure of E. coli Pol III 3mPHP mutant 3QSB ; 1.9 ; Structure of E. coli polIIIbeta with (Z)-5-(1-((4'-Fluorobiphenyl-4-yl)methoxyimino)butyl)-2,2-dimethyl-4,6-dioxocyclohexanecarbonitrile 8SUX ; 2.93 ; Structure of E. coli PtuA hexamer 2AUK ; 2.3 ; Structure of E. coli RNA polymerase beta' G/G' insert 4S2Y ; 1.6 ; Structure of E. coli RppH bound to RNA and three magnesium ions 4S2X ; 1.5 ; Structure of E. coli RppH bound to RNA and two magnesium ions 4S2W ; 1.992 ; Structure of E. coli RppH bound to sulfate ions 5OC0 ; 1.97 ; Structure of E. coli superoxide oxidase 1QF6 ; 2.9 ; STRUCTURE OF E. COLI THREONYL-TRNA SYNTHETASE COMPLEXED WITH ITS COGNATE TRNA 2O5C ; 2.35 ; Structure of E. coli topoisomerase III in complex with an 8-base single stranded oligonucleotide. Frozen in glucose pH 5.5 2O5E ; 2.5 ; Structure of E. coli topoisomerase III in complex with an 8-base single stranded oligonucleotide. Frozen in glucose pH 7.0 2O54 ; 2.5 ; Structure of E. coli topoisomerase III in complex with an 8-base single stranded oligonucleotide. Frozen in glycerol at pH 7.0 2O59 ; 2.5 ; Structure of E. coli topoisomerase III in complex with an 8-base single stranded oligonucleotide. Frozen in glycerol pH 8.0 2O19 ; 2.45 ; Structure of E. coli topoisomersae III in complex with an 8-base single stranded oligonucleotide. Frozen in glycerol at pH 5.5 2KC8 ; ; Structure of E. coli toxin RelE (R81A/R83A) mutant in complex with antitoxin RelBc (K47-L79) peptide 2KC9 ; ; Structure of E. coli toxin RelE (R81A/R83A) mutant in the free state 4JYK ; 1.7 ; Structure of E. coli Transcriptional Regulator RutR with bound uracil 1SI7 ; 2.2 ; Structure of E. coli tRNA psi 13 pseudouridine synthase TruD 3TH8 ; 2.114 ; Structure of E. coli undecaprenyl diphosphate synthase complexed with BPH-1063 4H2O ; 2.14 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-1248 4H38 ; 1.95 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-1297 4H3A ; 1.98 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-1330 4H2J ; 1.81 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-1354 4H2M ; 1.78 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-1408 3WYJ ; 2.1 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-789 5ZHE ; 2.18 ; STRUCTURE OF E. COLI UNDECAPRENYL DIPHOSPHATE SYNTHASE IN COMPLEX WITH BPH-981 4H3C ; 1.93 ; Structure of E. coli undecaprenyl diphosphate synthase in complex with BPH-987 7T2S ; 1.82 ; Structure of E. coli upec-117 Cap18 3'-5' exonuclease 1LX7 ; 2.0 ; Structure of E. coli uridine phosphorylase at 2.0A 1U1E ; 2.001 ; Structure of e. coli uridine phosphorylase complexed to 5(phenylseleno)acyclouridine (PSAU) 1U1F ; 2.3 ; Structure of e. coli uridine phosphorylase complexed to 5-(m-(benzyloxy)benzyl)acyclouridine (BBAU) 1U1G ; 1.95 ; Structure of E. coli uridine phosphorylase complexed to 5-(m-(benzyloxy)benzyl)barbituric acid (BBBA) 1U1D ; 2.001 ; Structure of e. coli uridine phosphorylase complexed to 5-(phenylthio)acyclouridine (ptau) 1U1C ; 2.2 ; Structure of E. coli uridine phosphorylase complexed to 5-benzylacyclouridine (BAU) 1TGV ; 2.2 ; Structure of E. coli Uridine Phosphorylase complexed with 5-Fluorouridine and sulfate 1TGY ; 2.2 ; Structure of E. coli Uridine Phosphorylase complexed with uracil and ribose 1-phosphate 3WDO ; 3.15 ; Structure of E. coli YajR transporter 1PUG ; 2.2 ; Structure of E. coli Ybab 5AQ6 ; 1.79 ; Structure of E. coli ZinT at 1.79 Angstrom 4ELS ; 2.303 ; Structure of E. Coli. 1,4-dihydroxy-2- naphthoyl coenzyme A synthases (MENB) in complex with bicarbonate 4ELW ; 2.551 ; Structure of E. coli. 1,4-dihydroxy-2- naphthoyl coenzyme A synthases (MENB) in complex with nitrate 3Q87 ; 1.997 ; Structure of E. cuniculi Mtq2-Trm112 complex responible for the methylation of eRF1 translation termination factor 3IL5 ; 2.6 ; Structure of E. faecalis FabH in complex with 2-({4-bromo-3-[(diethylamino)sulfonyl]benzoyl}amino)benzoic acid 3IL6 ; 2.5 ; Structure of E. faecalis FabH in complex with 2-({4-[(3R,5S)-3,5-dimethylpiperidin-1-yl]-3-phenoxybenzoyl}amino)benzoic acid 3IL4 ; 3.0 ; Structure of E. faecalis FabH in complex with acetyl CoA 3DPC ; 2.3 ; Structure of E.coli Alkaline Phosphatase Mutant in Complex with a Phosphorylated Peptide 2CG4 ; 2.4 ; Structure of E.coli AsnC 8BQO ; 2.1 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant M200I 7QSF ; 1.6 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-12 (G206C, R207T, D210A, S211A) 7QYM ; 1.2 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-18 (R207V, D210P, S211W) 7QYX ; 1.85 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-24 (R207A, D210S, S211T) 7R5C ; 2.2 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-29 (G206C, R207S, D210L, S211V) 7QTC ; 2.55 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-3 (G206H, R207T, D210P, S211Q) 7QVR ; 1.9 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-37 (G206S, R207T, D210S) 7R1G ; 1.95 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-38 (R207C, D210S, S211V) 7QQ8 ; 1.8 ; Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-8 (G206Y, R207Q, D210P, S211T) 7QY6 ; 1.65 ; Structure of E.coli Class 2 L-asparaginase EcAIII, wild type (WT EcAIII) 5FKZ ; 5.5 ; Structure of E.coli Constitutive lysine decarboxylase 6NPF ; 2.57 ; Structure of E.coli enolase in complex with an analog of the natural product SF-2312 metabolite. 2G1H ; 1.86 ; Structure of E.coli FabD complexed with glycerol 2G2Y ; 2.26 ; Structure of E.coli FabD complexed with malonate 2G2Z ; 2.8 ; Structure of E.coli FabD complexed with malonyl-CoA 2G2O ; 1.76 ; Structure of E.coli FabD complexed with sulfate 3HO2 ; 2.0 ; Structure of E.coli FabF(C163A) in complex with Platencin 3HO9 ; 1.9 ; Structure of E.coli FabF(C163A) in complex with Platencin A1 5GK7 ; 1.8 ; Structure of E.Coli fructose 1,6-bisphosphate aldolase bound to Tris 5GK8 ; 2.002 ; Structure of E.Coli fructose 1,6-bisphosphate aldolase, Acetate bound form 5GK6 ; 1.8 ; Structure of E.Coli fructose 1,6-bisphosphate aldolase, Citrate bound form 2VYN ; 2.2 ; Structure of E.Coli GAPDH Rat Sperm GAPDH heterotetramer 2VYV ; 2.38 ; Structure of E.Coli GAPDH Rat Sperm GAPDH heterotetramer 3SBO ; 3.204 ; Structure of E.coli GDH from native source 5F5B ; 2.3 ; Structure of E.Coli GlpG complexed with peptidic inhibitor Ac-VRMA-CHO 5MT8 ; 1.95 ; Structure of E.coli GlpG in complex with peptide derived inhibitor Ac-RVRHA-cmk 5MT6 ; 2.16 ; Structure of E.coli GlpG in complex with peptide derived inhibitor Ac-RVRHA-phenylethyl-ketoamide 5MT7 ; 2.05 ; Structure of E.coli GlpG in complex with peptide derived inhibitor Ac-VRHA-cmk 5F5G ; 2.3 ; Structure of E.Coli GlpG Y205F mutant complexed with peptidic inhibitor Ac-RMA-CHO in the DMPC/CHAPSO bicelle 1GSG ; 2.8 ; Structure of E.coli glutaminyl-tRNA synthetase complexed with trnagln and ATP at 2.8 Angstroms resolution 5FKX ; 6.1 ; Structure of E.coli inducible lysine decarboxylase at active pH 2BZ3 ; 2.0 ; Structure of E.coli KAS I H298E mutant in complex with C12 fatty acid 2BZ4 ; 1.86 ; structure of E.coli KAS I H298Q mutant 2BYZ ; 1.95 ; Structure of E.coli KAS I H298Q mutant in complex with C12 fatty acid 2XTU ; 1.85 ; Structure of E.coli rhomboid protease GlpG active site mutant, S201T in trigonal crystal form 3ZMI ; 2.2 ; Structure of E.coli rhomboid protease GlpG in complex with monobactam L29 3ZOT ; 2.399 ; Structure of E.coli rhomboid protease GlpG in complex with monobactam L29 (data set 2) 3ZMJ ; 2.3 ; Structure of E.coli rhomboid protease GlpG in complex with monobactam L61 3ZMH ; 2.3 ; Structure of E.coli rhomboid protease GlpG in complex with monobactam L62 2XTV ; 1.7 ; Structure of E.coli rhomboid protease GlpG, active site mutant, S201T, orthorhombic crystal form 6QE0 ; 1.394 ; Structure of E.coli RlmJ in complex with a bisubstrate analogue (BA2) 6QDX ; 2.1 ; Structure of E.coli RlmJ in complex with a bisubstrate analogue (BA4) 7P9O ; 2.095 ; Structure of E.coli RlmJ in complex with a SAM analogue (CA) 7P8Q ; 2.289 ; Structure of E.coli RlmJ in complex with an RNA conjugate (GA-SAM) 7P9I ; 1.594 ; Structure of E.coli RlmJ in complex with an RNA conjugate (GAA-SAM) 6QE5 ; 1.61 ; Structure of E.coli RlmJ in complex with the natural cofactor product S-adenosyl-homocysteine (SAH) 1Q8R ; 1.899 ; Structure of E.coli RusA Holliday junction resolvase 8EEA ; 2.6 ; Structure of E.coli Septu (PtuAB) complex 1JP3 ; 1.8 ; Structure of E.coli undecaprenyl pyrophosphate synthase 2KZ9 ; ; Structure of E1-69 of Yeast V-ATPase 1KCN ; ; Structure of e109 Zeta Peptide, an Antagonist of the High-Affinity IgE Receptor 1KCO ; ; Structure of e131 Zeta Peptide, a Potent Antagonist of the High-Affinity IgE Receptor 8FND ; 3.0 ; Structure of E138K HIV-1 intasome with Dolutegravir bound 8FNG ; 2.2 ; Structure of E138K HIV-1 intasome with Dolutegravir bound 8FNJ ; 2.4 ; Structure of E138K/G140A HIV-1 intasome with Dolutegravir bound 8FNQ ; 2.8 ; Structure of E138K/G140A/Q148K HIV-1 intasome with 4d bound 8FNN ; 2.7 ; Structure of E138K/G140A/Q148K HIV-1 intasome with Dolutegravir bound 8FNO ; 2.5 ; Structure of E138K/G140A/Q148R HIV-1 intasome with Dolutegravir bound 8FNP ; 2.2 ; Structure of E138K/G140S/Q148H HIV-1 intasome with Dolutegravir bound 8FNL ; 2.8 ; Structure of E138K/Q148K HIV-1 intasome with Dolutegravir bound 6GAM ; 1.4 ; Structure of E14Q variant of E. coli hydrogenase-2 (as-isolated enzyme) 2RK6 ; 1.15 ; Structure of E163K DJ-1 3B3A ; 1.5 ; Structure of E163K/R145E DJ-1 3EJY ; 3.2 ; Structure of E203H mutant of E.coli Cl-/H+ antiporter, CLC-ec1 3EJZ ; 2.9 ; Structure of E203V mutant E.coli Cl-/H+ exchanger, CLC-ec1 3U75 ; 2.68 ; Structure of E230A-fructofuranosidase from Schwanniomyces occidentalis complexed with fructosylnystose 6EV9 ; 1.64 ; Structure of E277D A. niger Fdc1 with prFMN in the hydroxylated form 6EVA ; 1.64 ; Structure of E277Q A. niger fdc1 in complex with a phenylpyruvate derived adduct to the prenylated flavin cofactor 6EV8 ; 1.03 ; Structure of E277Q A. niger Fdc1 with prFMN in the hydroxylated form 6EV7 ; 1.06 ; Structure of E282D A. niger Fdc1 with prFMN in the iminium form 6EVC ; 1.18 ; Structure of E282Q A. niger Fdc1 in complex with pentafluoro-cinnamic acid 6EV6 ; 1.1 ; Structure of E282Q A. niger Fdc1 with prFMN in the hydroxylated and ketimine forms 6EVB ; 1.13 ; Structure of E282Q A. niger Fdc1 with prFMN in the iminium form 6EVF ; 2.06 ; Structure of E285D S. cerevisiae Fdc1 with prFMN in the hydroxylated form 5IFT ; 2.45 ; STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH 3-b-Galactopyranosyl glucose 5MGC ; 2.3 ; STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH 4-Galactosyl-lactose 5JUV ; 2.27 ; STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH 6-b-Galactopyranosyl galactose 5MGD ; 2.15 ; STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH 6-Galactosyl-lactose 5IHR ; 2.4 ; STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH ALLOLACTOSE 4YO2 ; 3.073 ; Structure of E2F8, an atypical member of E2F family of transcription factors 8ST9 ; 2.5 ; Structure of E3 ligase NleL bound to ubiquitin 8ST8 ; 1.75 ; Structure of E3 ligase SopA bound to ubiquitin 8ST7 ; 1.44 ; Structure of E3 ligase VsHECT bound to ubiquitin 3DYC ; 2.303 ; Structure of E322Y Alkaline Phosphatase in Complex with Inorganic Phosphate 3ECK ; 1.6 ; Structure of E323L Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum in complex with putative O-O bond cleavage intermediate formed via in crystallo reaction with 4-sulfonyl catechol at low oxygen concentrations 3ECJ ; 1.65 ; Structure of E323L mutant of Homoprotocatechuate 2,3-Dioxygenase from Brevibacterium fuscum at 1.65A resolution 3V4W ; 3.7 ; Structure of E347K mutant of Lamin 2B7R ; 1.7 ; Structure of E378D mutant flavocytochrome c3 7A5U ; 1.5 ; Structure of E37A BlaC from Mycobacterium tuberculosis 4ENP ; 1.5 ; Structure of E530A variant E. coli KatE 4ENQ ; 1.9 ; Structure of E530D variant E. coli KatE 4ENR ; 1.6 ; Structure of E530I variant E. coli KatE 4ENS ; 1.6 ; Structure of E530Q variant of E. coli KatE 1D5F ; 2.8 ; STRUCTURE OF E6AP: INSIGHTS INTO UBIQUITINATION PATHWAY 6TO0 ; 1.88 ; Structure of E70A mutant of Rex8A from Paenibacillus barcinonensis complexed with 2(3)-alpha-L-arabinofuranosyl-xylotriose. 6TRH ; 1.86 ; Structure of E70A mutant of Rex8A from Paenibacillus barcinonensis complexed with 3(3)-alpha-L-arabinofuranosyl-xylotetraose. 6TOW ; 2.05 ; Structure of E70A mutant of Rex8A from Paenibacillus barcinonensis complexed with xylotetraose. 6TPP ; 2.64 ; Structure of E70A mutant of Rex8A from Paenibacillus barcinonensis. 5IBS ; 2.32 ; Structure of E76Q, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2 7ZT8 ; 2.29 ; Structure of E8 TCR in complex in human MR1 bound to 3FBA 7ZT5 ; 2.09 ; Structure of E8 TCR in complex in human MR1 bound to 3FSA 7ZT9 ; 2.13 ; Structure of E8 TCR in complex in human MR1 bound to 4FBA 7ZT7 ; 1.84 ; Structure of E8 TCR in complex in human MR1 bound to 5FSA 7ZT3 ; 2.4 ; Structure of E8 TCR in complex in human MR1 K43A 7ZT2 ; 2.4 ; Structure of E8 TCR in complex with human MR1 bound to 5-OP-RU 7ZT4 ; 2.02 ; Structure of E8 TCR in complex with human MR1 bound to 6FP 3PSV ; 2.0 ; Structure of E97D mutant of TIM from Plasmodium falciparum 3PSW ; 1.99 ; Structure of E97Q mutant of TIM from Plasmodium falciparum 6HQ2 ; 2.45 ; Structure of EAL Enzyme Bd1971 - apo form 6HQ5 ; 2.83 ; Structure of EAL Enzyme Bd1971 - cAMP and cyclic-di-GMP bound form 6HQ4 ; 2.63 ; Structure of EAL enzyme Bd1971 - cAMP bound form 6HQ7 ; 2.46 ; Structure of EAL Enzyme Bd1971 - cGMP bound form 6HQ3 ; 2.79 ; Structure of EAL Enzyme Bd1971 - halfsite-occupied form 6KTW ; 1.931 ; structure of EanB with hercynine 1N9F ; 1.8 ; Structure of earth-grown oxidized Myoglobin mutant YQR (ISS6A) 1N9I ; 1.6 ; structure of earth-grown oxidized myoglobin mutant YQR (ISS8A) 5HC1 ; 3.1 ; Structure of EAV NSP11 H141A mutant at 3.10A 5HBZ ; 3.1 ; Structure of EAV NSP11 K170A mutant at 3.10A 5F17 ; 3.2 ; Structure of EAV NSP11 K170A mutant at 3.19A 4YPI ; 3.71 ; Structure of Ebola virus nucleoprotein N-terminal fragment bound to a peptide derived from Ebola VP35 4D9O ; 2.0 ; Structure of ebolavirus protein VP24 from Reston 7SWD ; 3.59 ; Structure of EBOV GP lacking the mucin-like domain with 1C11 scFv and 1C3 Fab bound 8DPL ; 2.53 ; Structure of EBOV GP lacking the mucin-like domain with 2.1.1D5 scFv and 6D6 scFv bound 8DPM ; 3.0 ; Structure of EBOV GP lacking the mucin-like domain with 9.20.1A2 Fab and 6D6 scFv bound 6EA7 ; 4.25 ; Structure of EBOV GPcl in complex with the pan-ebolavirus mAb ADI-15878 6OHU ; 3.526 ; Structure of EBP and tamoxifen 6OHT ; 3.2 ; Structure of EBP and U18666A 7MKA ; 3.54 ; Structure of EC+EC (leading EC-focused) 1WUZ ; ; Structure of EC1 domain of CNR 7TNI ; 1.9 ; Structure of EC12 Y1392W variant of BT-R1 from Manduca sexta, a Cry1A toxin binding domain 4KK7 ; 1.68 ; Structure of EccB1 from the type VII (ESX-1) secretion system of Mycobacterium tuberculosis. 6SGY ; 4.6 ; Structure of EccB3 dimer from the ESX-3 core complex 4FG6 ; 3.019 ; Structure of EcCLC E148A mutant in Glutamate 2NDO ; ; Structure of EcDsbA-sulfonamide1 complex 3R9T ; 1.75 ; Structure of EchA1_1 from Mycobacterium paratuberculosis ATCC BAA-968 / K-10 8B9F ; 3.93 ; Structure of Echovirus 11 complexed with DAF (CD55) calculated from symmetry expansion 7B5F ; 2.9 ; Structure of echovirus 18 in complex with neonatal Fc receptor 4OXF ; 1.5 ; Structure of ECP in complex with citrate ions at 1.50 Angstroms 4OXB ; 1.5 ; Structure of ECP with sulphate anions at 1.50 Angstroms 4OWZ ; 1.47 ; Structure of ECP/H15A mutant. 4B56 ; 3.0 ; Structure of ectonucleotide pyrophosphatase-phosphodiesterase-1 (NPP1) 3HB0 ; 2.5 ; Structure of edeya2 complexed with bef3 4DK3 ; 2.76 ; Structure of Editosome protein 4DK6 ; 2.65 ; Structure of Editosome protein 4DKA ; 1.97 ; Structure of Editosome protein 4DNI ; 2.55 ; Structure of Editosome protein 7MSB ; 1.9 ; Structure of EED bound to EEDi-4259 7MSD ; 2.2 ; Structure of EED bound to EEDi-6068 6W7G ; 1.85 ; Structure of EED bound to inhibitor 1056 6W7F ; 2.2 ; Structure of EED bound to inhibitor 5285 3JZN ; 2.6 ; Structure of EED in apo form 3JZG ; 2.1 ; Structure of EED in complex with H3K27me3 2E1R ; 3.15 ; Structure of eEF2 in complex with a sordarin derivative 2NPF ; 2.9 ; Structure of eEF2 in complex with moriniafungin 1ZM9 ; 2.8 ; Structure of eEF2-ETA in complex with PJ34 5I2L ; 1.85 ; Structure of EF-hand containing protein 5I2O ; 1.952 ; Structure of EF-hand containing protein 5I2Q ; 1.935 ; Structure of EF-hand containing protein 4V6A ; 3.1 ; Structure of EF-P bound to the 70S ribosome. 6OHH ; 2.1 ; Structure of EF1p2_mFAP2b bound to DFHBI 2OKG ; 1.65 ; Structure of effector binding domain of central glycolytic gene regulator (CggR) from B. subtilis 2RGP ; 2.0 ; Structure of EGFR in complex with hydrazone, a potent dual inhibitor 7LGS ; 3.1 ; Structure of EGFR_D770_N771insNPG/V948R in complex with covalent inhibitor Osimertinib. 7C2P ; 2.1 ; Structure of Egk Peptide 6K2F ; 1.55 ; Structure of Eh TWINFILIN 2JQ6 ; ; Structure of EH-domain of EHD1 6QG0 ; 4.15 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model 1) 6QG1 ; 4.25 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model 2) 6QG2 ; 4.55 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model A) 6QG3 ; 9.4 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model B) 6QG5 ; 10.1 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model C) 6QG6 ; 10.4 ; Structure of eIF2B-eIF2 (phosphorylated at Ser51) complex (model D) 4AXG ; 2.8 ; Structure of eIF4E-Cup complex 6Z29 ; ; Structure of eIF4G1 (37-49) - PUB1 RRM3 chimera in solution 6I50 ; 1.69 ; Structure of Eiger TNF from S. frugiperda 3W0E ; 1.8 ; Structure of elastase inhibitor AFUEI (crystal form II) 3W0D ; 2.3 ; Structure of elastase inhibitor AFUEI (cyrstal form I) 7T2R ; 3.2 ; Structure of electron bifurcating Ni-Fe hydrogenase complex HydABCSL in FMN-free apo state 7T30 ; 3.0 ; Structure of electron bifurcating Ni-Fe hydrogenase complex HydABCSL in FMN/NAD(H) bound state 1VLX ; 1.9 ; STRUCTURE OF ELECTRON TRANSFER (COBALT-PROTEIN) 1O96 ; 3.1 ; Structure of electron transferring flavoprotein for Methylophilus methylotrophus. 1O97 ; 1.6 ; Structure of electron transferring flavoprotein from Methylophilus methylotrophus, recognition loop removed by limited proteolysis 8F04 ; ; Structure of elevenin-Vc1 from venom of the Australian cone snail Conus victoriae 6E0M ; 1.52 ; Structure of Elizabethkingia meningoseptica CdnE cyclic dinucleotide synthase 6E0N ; 1.5 ; Structure of Elizabethkingia meningoseptica CdnE cyclic dinucleotide synthase with GTP and Apcpp 6E0O ; 1.25 ; Structure of Elizabethkingia meningoseptica CdnE cyclic dinucleotide synthase with pppA[3'-5']pA 1Z3F ; 1.5 ; Structure of ellipticine in complex with a 6-bp DNA 7B3D ; 2.8 ; Structure of elongating SARS-CoV-2 RNA-dependent RNA polymerase with AMP at position -4 (structure 3) 7B3B ; 3.1 ; Structure of elongating SARS-CoV-2 RNA-dependent RNA polymerase with Remdesivir at position -3 (structure 1) 7B3C ; 3.4 ; Structure of elongating SARS-CoV-2 RNA-dependent RNA polymerase with Remdesivir at position -4 (structure 2) 2KA3 ; ; Structure of EMILIN-1 C1Q-like domain 2OII ; ; Structure of EMILIN-1 C1q-like domain 8BQN ; 3.1 ; Structure of empty Coxsackievirus A10 embedded in crystalline ice frozen at -140 degree 2FZ1 ; 2.9 ; Structure of Empty Head Turnip Yellow Mosaic Virus (ATC) at 100 K 2H8V ; 2.6 ; Structure of empty Pheromone Binding Protein ASP1 from the Honeybee Apis mellifera L 7T00 ; 3.91 ; Structure of EmrE-D3 mutant in complex with monobody L10 and benzyltrimethylammonium 7SVX ; 3.9 ; Structure of EmrE-D3 mutant in complex with monobody L10 and harmane 7MGX ; 3.13 ; Structure of EmrE-D3 mutant in complex with monobody L10 and methyl viologen 7SSU ; 3.22 ; Structure of EmrE-D3 mutant in complex with monobody L10 and methyltriphenylphosphonium 7SV9 ; 3.36 ; Structure of EmrE-D3 mutant in complex with monobody L10 and TPP 7MH6 ; 2.85 ; Structure of EmrE-D3 mutant in complex with monobody L10 in low pH (protonated state) 1V7P ; 1.9 ; Structure of EMS16-alpha2-I domain complex 3G02 ; 1.5 ; Structure of enantioselective mutant of epoxide hydrolase from Aspergillus niger generated by directed evolution 1UKR ; 2.4 ; STRUCTURE OF ENDO-1,4-BETA-XYLANASE C 1WZZ ; 1.65 ; Structure of endo-beta-1,4-glucanase CMCax from Acetobacter xylinum 3FHA ; 2.0 ; Structure of endo-beta-N-acetylglucosaminidase A 3FHQ ; 2.452 ; Structure of endo-beta-N-acetylglucosaminidase A 5YDZ ; 5.8 ; structure of endo-lysosomal TRPML1 channel inserting into amphipol: state 1 5YE1 ; 5.8 ; structure of endo-lysosomal TRPML1 channel inserting into amphipol: state 2 5YE5 ; 5.8 ; structure of endo-lysosomal TRPML1 channel inserting into nanodisc 2BWC ; 2.15 ; Structure of Endoglucanase 12A (Cel12A) from Rhodothermus marinus in complex with cellopentaose (5 minute soak) 2BWA ; 1.68 ; Structure of Endoglucanase 12A (Cel12A) from Rhodothermus marinus in complex with cellopentaose, 20 minute soak. 3ENG ; 1.9 ; STRUCTURE OF ENDOGLUCANASE V CELLOBIOSE COMPLEX 4ENG ; 1.9 ; STRUCTURE OF ENDOGLUCANASE V CELLOHEXAOSE COMPLEX 5GKJ ; 3.2 ; Structure of EndoMS in apo form 5GKE ; 2.4 ; Structure of EndoMS-dsDNA1 complex 5GKF ; 2.8 ; Structure of EndoMS-dsDNA1' complex 5GKG ; 2.6 ; Structure of EndoMS-dsDNA1'' complex 5GKH ; 2.9 ; Structure of EndoMS-dsDNA2 complex 5GKI ; 2.9 ; Structure of EndoMS-dsDNA3 complex 3N6C ; 3.06 ; Structure of endothelial nitric oxide synthase H373S single mutant heme domain complexed with 4-(2-(6-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-2-yl)ethyl)-6-methylpyridin-2-amine 3N6D ; 3.05 ; Structure of endothelial nitric oxide synthase H373S single mutant heme domain complexed with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N6B ; 3.1 ; Structure of endothelial nitric oxide synthase H373S single mutant heme domain complexed with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N5S ; 2.18 ; Structure of endothelial nitric oxide synthase heme domain complexed with 4-(2-(5-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)ethyl)-6-methylpyridin-2-amine 3N5P ; 2.39 ; Structure of endothelial nitric oxide synthase heme domain complexed with 4-(2-(6-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-2-yl)ethyl)-6-methylpyridin-2-amine 3N5R ; 2.57 ; Structure of endothelial nitric oxide synthase heme domain complexed with 4-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenethyl)-6-methylpyridin-2-amine 3N5Q ; 2.9 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N5T ; 2.52 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3NLE ; 1.95 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6-{{(3'R,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLF ; 2.32 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6-{{(3'R,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLG ; 2.38 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6-{{(3'S,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLD ; 2.285 ; Structure of endothelial nitric oxide synthase heme domain complexed with 6-{{(3'S,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3JWZ ; 2.4 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-[(3' S,4' R)-4'-((6""-amino-4""-methylpyridin-2""-yl)methyl)pyrrolidin-3'-yl]-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3JWX ; 2.0 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-[(3'R,4'R)-4'-((6""-amino-4""-methylpyridin-2""-yl)methyl)pyrrolidin-3'-yl]-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3JWW ; 2.2 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-[(3'S,4'S)-4'-((6""-amino-4""-methylpyridin-2""-yl)methyl)pyrrolidin-3'-yl]-N2- (3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3NLU ; 2.65 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-{(3'R,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3JWY ; 2.24 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-{(3'R,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3NLT ; 2.74 ; Structure of endothelial nitric oxide synthase heme domain complexed with N1-{(3'S,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}- N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3NLH ; 2.1 ; Structure of endothelial nitric oxide synthase heme domain N368D mutant complexed with 6-{{(3'S,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3N68 ; 2.53 ; Structure of endothelial nitric oxide synthase heme domain N368D/V106M double mutant complexed with 4-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenethyl)-6-methylpyridin-2-amine 3N6E ; 2.2 ; Structure of endothelial nitric oxide synthase N368D mutant heme domain complexed with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3NLI ; 1.98 ; Structure of endothelial nitric oxide synthase N368D mutant heme domain complexed with 6-{{(3'R,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3N6G ; 2.21 ; Structure of endothelial nitric oxide synthase N368D single mutant heme domain complexed with 4-(2-(5-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)ethyl)-6-methylpyridin-2-amine 3N6F ; 2.18 ; Structure of endothelial nitric oxide synthase N368D single mutant heme domain complexed with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N6A ; 2.49 ; Structure of endothelial nitric oxide synthase N368D/V106M double mutant heme domain complexed with 4-(2-(5-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)ethyl)-6-methylpyridin-2-amine 3N67 ; 2.09 ; Structure of endothelial nitric oxide synthase N368D/V106M double mutant heme domain complexed with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N69 ; 2.65 ; Structure of endothelial nitric oxide synthase N368D/V106M double mutant heme domain complexed with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3DQS ; 2.03 ; Structure of endothelial NOS heme domain in complex with a inhibitor (+-)-N1-{cis-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(4'-chlorobenzyl)ethane-1,2-diamine 3DQT ; 2.54 ; Structure of endothelial NOS heme domain in complex with a inhibitor (+-)-N1-{trans-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-chlorobenzyl)ethane-1,2-diamine 6UFF ; 2.007 ; Structure of Ene-reductase 1 NostocER1 from cyanobacteria 1PUI ; 2.0 ; Structure of EngB GTPase 8E01 ; 3.4 ; Structure of engineered nano-cage fusion protein 4P83 ; 2.5 ; Structure of engineered PyrR protein (PURPLE PyrR) 4P84 ; 2.2 ; Structure of engineered PyrR protein (VIOLET PyrR) 3TCX ; 3.6 ; Structure of Engineered Single Domain ICAM-1 D1 with High-Affinity aL Integrin I Domain of Native C-Terminal Helix Conformation 5OX8 ; 1.29 ; Structure of Enhanced Cyan Fluorescent Protein at pH 5.0 2WSN ; 1.37 ; Structure of Enhanced Cyan Fluorescent Protein at physiological pH 7E4X ; 3.08 ; Structure of Enolase from Mycobacterium tuberculosis 7UGU ; 2.6 ; Structure of enolase from streptococcus pyogenes 1EY3 ; 2.3 ; STRUCTURE OF ENOYL-COA HYDRATASE COMPLEXED WITH THE SUBSTRATE DAC-COA 7K73 ; 1.8 ; Structure of Enoyl-[acyl-carrier-protein] reductase [NADH] from Mycobacterium fortuitum bound to NAD 5EGE ; 2.0 ; Structure of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase 5EGH ; 1.803 ; Structure of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase in complex with phosphocholine 3PJD ; 2.5 ; Structure of ENR G93A mutant-NAD+-Triclosan complex 3PJE ; 2.5 ; Structure of ENR G93S mutant-NAD+-triclosan complex 3PJF ; 1.9 ; Structure of ENR G93V mutant-NAD+-triclosan complex 4IZ6 ; 2.4 ; Structure of EntE and EntB, an NRPS adenylation-PCP fusion protein with pseudo translational symmetry 7TSQ ; 2.11 ; Structure of Enterobacter cloacae Cap2 bound to CdnD02 C-terminus, AMP state 7TSX ; 1.77 ; Structure of Enterobacter cloacae Cap2 bound to CdnD02 C-terminus, Apo state 7TQD ; 2.9 ; Structure of Enterobacter cloacae Cap2-CdnD02 2:1 complex 7TO3 ; 2.74 ; Structure of Enterobacter cloacae Cap2-CdnD02 2:2 complex 6IL7 ; 2.5 ; Structure of Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) C503A mutant 8OFO ; 2.45 ; Structure of Enterococcus faecium CdaA 6LQD ; 3.264 ; Structure of Enterovirus 71 in complex with NLD-22 8CNY ; 1.51 ; Structure of Enterovirus A71 3C protease 8CNX ; 1.49 ; Structure of Enterovirus D68 3C protease 8J6D ; 3.1 ; Structure of EP141-C3aR-Go complex 8I95 ; 2.88 ; Structure of EP54-C3aR-Go complex 8I9A ; 3.57 ; Structure of EP54-C3aR-Gq complex 4ASL ; 1.24 ; Structure of Epa1A in complex with the T-antigen (Gal-b1-3- GalNAc) 3CF6 ; 2.2 ; Structure of Epac2 in complex with cyclic-AMP and Rap 7Q5D ; 1.8 ; Structure of EPCR in a non-canonical conformation 5YO1 ; 2.5 ; Structure of ePepN E298A mutant in complex with Puromycin 7CSO ; 2.39 ; Structure of Ephexin4 DH-PH-SH3 7CSP ; 3.0 ; Structure of Ephexin4 IDPSH 7CSR ; 3.0 ; Structure of Ephexin4 R676L 4P2K ; 1.499 ; Structure of Ephrin type-A receptor 2 4PDO ; 2.104 ; Structure of Ephrin type-A receptor 2 4TRL ; 2.452 ; Structure of Ephrin type-A receptor 2 2RR0 ; ; Structure of epidermal growth factor-like repeat 12 of mouse Notch-1 receptor 6PMH ; 2.3 ; Structure of Epimerase Mth375 from the thermophilic pseudomurein-containing methanogen Methanothermobacter thermautotrophicus 6PNL ; 2.01 ; Structure of Epimerase Mth375 from the thermophilic pseudomurein-containing methanogen Methanothermobacter thermautotrophicus 4WQQ ; 1.7 ; Structure of EPNH mutant of CEL-I 5T8Y ; 2.653 ; Structure of epoxyqueuosine reductase from Bacillus subtilis with the Asp134 catalytic loop swung out of the active site. 5D6S ; 2.65 ; Structure of epoxyqueuosine reductase from Streptococcus thermophilus. 1G6T ; 1.6 ; STRUCTURE OF EPSP SYNTHASE LIGANDED WITH SHIKIMATE-3-PHOSPHATE 1G6S ; 1.5 ; STRUCTURE OF EPSP SYNTHASE LIGANDED WITH SHIKIMATE-3-PHOSPHATE AND GLYPHOSATE 1I6B ; 3.2 ; STRUCTURE OF EQUINE APOLACTOFERRIN AT 3.2 A RESOLUTION USING CRYSTALS GROWN AT 303K 6Q0M ; 1.2 ; Structure of Erbin PDZ derivative E-14 with a high-affinity peptide 6DEX ; 2.1 ; Structure of Eremothecium gossypii Shu1:Shu2 complex 1W9G ; 2.0 ; Structure of ERH (Enhencer of Rudimentary Gene) 7EJS ; 2.387 ; Structure of ERH-2 bound to PICS-1 7EJO ; 2.191 ; Structure of ERH-2 bound to TOST-1 3R63 ; 1.7 ; Structure of ERK2 (SPE) mutant (S246E) 1HZM ; ; STRUCTURE OF ERK2 BINDING DOMAIN OF MAPK PHOSPHATASE MKP-3: STRUCTURAL INSIGHTS INTO MKP-3 ACTIVATION BY ERK2 4QTE ; 1.5 ; Structure of ERK2 in complex with VTX-11e, 4-{2-[(2-CHLORO-4-FLUOROPHENYL)AMINO]-5-METHYLPYRIMIDIN-4-YL}-N-[(1S)-1-(3-CHLOROPHENYL)-2-HYDROXYETHYL]-1H-PYRROLE-2-CARBOXAMIDE 7NSP ; 3.5 ; Structure of ErmDL-Erythromycin-stalled 70S E. coli ribosomal complex with A and P-tRNA 7NSO ; 2.9 ; Structure of ErmDL-Erythromycin-stalled 70S E. coli ribosomal complex with P-tRNA 7NSQ ; 3.1 ; Structure of ErmDL-Telithromycin-stalled 70S E. coli ribosomal complex with A and P-tRNA 1RP4 ; 2.2 ; Structure of Ero1p, Source of Disulfide Bonds for Oxidative Protein Folding in the Cell 1RQ1 ; 2.8 ; Structure of Ero1p, Source of Disulfide Bonds for Oxidative Protein Folding in the Cell 1ECA ; 1.4 ; STRUCTURE OF ERYTHROCRUORIN IN DIFFERENT LIGAND STATES REFINED AT 1.4 ANGSTROMS RESOLUTION 1ECD ; 1.4 ; STRUCTURE OF ERYTHROCRUORIN IN DIFFERENT LIGAND STATES REFINED AT 1.4 ANGSTROMS RESOLUTION 1ECN ; 1.4 ; STRUCTURE OF ERYTHROCRUORIN IN DIFFERENT LIGAND STATES REFINED AT 1.4 ANGSTROMS RESOLUTION 1ECO ; 1.4 ; STRUCTURE OF ERYTHROCRUORIN IN DIFFERENT LIGAND STATES REFINED AT 1.4 ANGSTROMS RESOLUTION 4GKV ; 2.008 ; Structure of Escherichia coli AdhP (ethanol-inducible dehydrogenase) with bound NAD 6V2M ; 1.66 ; Structure of Escherichia coli Asp269Asn mutant phosphoenolpyruvate carboxykinase 2BYW ; 1.7 ; Structure of Escherichia coli beta-ketoacyl (acyl carrier protein) synthase I LYS328ALA mutant 6OIY ; 3.29 ; Structure of Escherichia coli bound to dGTP 8FTD ; 2.76 ; Structure of Escherichia coli CedA in complex with transcription initiation complex 6OIW ; 3.35 ; Structure of Escherichia coli dGTPase bound to dGTP-1-thiol 6OIX ; 3.15 ; Structure of Escherichia coli dGTPase bound to GTP 6HDE ; 1.82 ; Structure of Escherichia coli dUTPase Q93H mutant 3JCD ; 3.7 ; Structure of Escherichia coli EF4 in posttranslocational ribosomes (Post EF4) 3JCE ; 3.2 ; Structure of Escherichia coli EF4 in pretranslocational ribosomes (Pre EF4) 2GLT ; 2.2 ; STRUCTURE OF ESCHERICHIA COLI GLUTATHIONE SYNTHETASE AT PH 6.0. 1GSH ; 2.0 ; STRUCTURE OF ESCHERICHIA COLI GLUTATHIONE SYNTHETASE AT PH 7.5 1P7T ; 1.95 ; Structure of Escherichia coli malate synthase G:pyruvate:acetyl-Coenzyme A abortive ternary complex at 1.95 angstrom resolution 4F9J ; 2.103 ; Structure of Escherichia coli PgaB 42-655 in complex with iron 4F9D ; 1.9 ; Structure of Escherichia coli PgaB 42-655 in complex with nickel 4P7R ; 1.8 ; Structure of Escherichia coli PgaB C-terminal domain in complex with a poly-beta-1,6-N-acetyl-D-glucosamine (PNAG) hexamer 4P7N ; 1.89 ; Structure of Escherichia coli PgaB C-terminal domain in complex with glucosamine 4P7Q ; 1.651 ; Structure of Escherichia coli PgaB C-terminal domain in complex with N-acetylglucosamine 4P7O ; 1.48 ; Structure of Escherichia coli PgaB C-terminal domain, P1 crystal form 4P7L ; 1.802 ; Structure of Escherichia coli PgaB C-terminal domain, P212121 crystal form 1EYZ ; 1.75 ; STRUCTURE OF ESCHERICHIA COLI PURT-ENCODED GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE COMPLEXED WITH MG AND AMPPNP 1EZ1 ; 1.75 ; STRUCTURE OF ESCHERICHIA COLI PURT-ENCODED GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE COMPLEXED WITH MG, AMPPNP, AND GAR 1O8B ; 1.25 ; Structure of Escherichia coli ribose-5-phosphate isomerase, RpiA, complexed with arabinose-5-phosphate. 1BDF ; 2.5 ; STRUCTURE OF ESCHERICHIA COLI RNA POLYMERASE ALPHA SUBUNIT N-TERMINAL DOMAIN 4LNL ; 2.1 ; Structure of Escherichia coli Threonine Aldolase in Complex with Allo-Thr 4LNM ; 2.1 ; Structure of Escherichia coli Threonine Aldolase in Complex with Serine 4LNJ ; 2.1 ; Structure of Escherichia coli Threonine Aldolase in Unliganded Form 1WPB ; 2.0 ; Structure of Escherichia coli yfbU gene product 5KOA ; 2.67 ; Structure of Escherichia coli ZapD bound to the C-terminal tail of FtsZ 8AP4 ; 3.0 ; Structure of Escherischia coli heat shock protein Hsp15 in complex with ribosomal 50S subunits bearing peptidyl-tRNA 6SP0 ; 1.77 ; Structure of Esco2 acetyltransferase in complex with CoA 4WUU ; 3.047 ; Structure of ESK1 in complex with HLA-A*0201/WT1 4JCN ; 1.8 ; Structure of ESP, serine protease from Staphylococcus epidermidis 8AKO ; 2.293 ; Structure of EspB-EspK complex: the non-identical twin of the PE-PPE-EspG secretion mechanism. 3Q1C ; 1.596 ; Structure of EspG Protein 3PCR ; 2.5 ; Structure of EspG-Arf6 complex 3PCS ; 2.86 ; Structure of EspG-PAK2 autoinhibitory Ialpha3 helix complex 5VBA ; 2.27 ; Structure of EspG1 chaperone from the type VII (ESX-1) secretion system determined with the assistance of N-terminal T4 lysozyme fusion 4L4W ; 2.036 ; Structure of EspG3 chaperone from the type VII (ESX-3) secretion system 5SXL ; 2.46 ; Structure of EspG3 chaperone from the type VII (ESX-3) secretion system, space group P3221 4RCL ; 2.7 ; Structure of EspG3 chaperone from the type VII (ESX-3) secretion system, space group P43212 7VKJ ; 1.45 ; Structure of ESRP1 qRRM3 domain 8SPU ; 2.8 ; Structure of ESRRB nucleosome bound OCT4 at site c 3K7U ; 2.1 ; Structure of essential protein from Trypanosoma brucei 3K80 ; 2.4 ; Structure of essential protein from Trypanosoma brucei 8BH9 ; 2.09 ; Structure of Est1 from Candida Tropicalis in complex with TLC1 telomerase RNA fragment 427-435 / 496-504 8BH8 ; 2.88 ; Structure of Est1 from Candida Tropicalis in complex with TLC1 telomerase RNA fragment 444-456 5AH1 ; 1.2 ; Structure of EstA from Clostridium botulinum 7ATQ ; 1.59 ; Structure of EstD11 in complex with cyclohexane carboxylic acid 7AUY ; 2.28 ; Structure of EstD11 in complex with Fluorescein 7AV5 ; 1.97 ; Structure of EstD11 in complex with Fluorescein 7AT4 ; 1.7 ; Structure of EstD11 in complex with Naproxen 7AT3 ; 1.4 ; Structure of EstD11 in complex with Naproxen and methanol 7ATF ; 1.2 ; Structure of EstD11 in complex with p-Nitrophenol 7NB5 ; 2.13 ; Structure of EstD11 S144A in complex with naproxen p-nitrophenol ester 7ZR3 ; 2.01 ; STRUCTURE OF ESTER-HYDROLASE EH0 FROM THE METAGENOME OF SORGHUM BICOLOR RHIZOSPHERE FROM THE HENFAES RESEARCH CENTRE (GWYNEDD, WALES) 6I8F ; 2.11 ; STRUCTURE OF ESTER-HYDROLASE EH1AB1 FROM THE METAGENOME OF LAKE ARREO 6RKY ; 2.79 ; STRUCTURE OF ESTER-HYDROLASE EH1AB1 FROM THE METAGENOME OF LAKE ARREO COMPLEXED WITH A DERIVATIVE OF BIPYRIDINE PHOSPHONATE 6I8D ; 3.2 ; STRUCTURE OF ESTER-HYDROLASE EH1AB1 FROM THE METAGENOME OF LAKE ARREO COMPLEXED WITH A DERIVATIVE OF BUTYL 4-NITROPHENYL HEXYLPHOSPHONATE 6RB0 ; 2.35 ; STRUCTURE OF ESTER-HYDROLASE EH1AB1 FROM THE METAGENOME OF LAKE ARREO COMPLEXED WITH A DERIVATIVE OF METHYL 4-NITROPHENYL HEXYLPHOSPHONATE 6SXP ; 2.15 ; STRUCTURE OF ESTER-HYDROLASE EH3 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) 8PC7 ; 2.4 ; STRUCTURE OF ESTER-HYDROLASE EH3 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH A DERIVATIVE OF BIPYRIDINE PHOSPHONATE 6SYL ; 2.95 ; STRUCTURE OF ESTER-HYDROLASE EH3 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH A DERIVATIVE OF BUTYL 4-NITROPHENYL HEXYLPHOSPHONATE 7PP8 ; 2.65 ; STRUCTURE OF ESTER-HYDROLASE EH7 FROM METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH A DERIVATIVE OF METHYL 4-NITROPHENYL HEXYLPHOSPHONATE 7PP3 ; 2.25 ; STRUCTURE OF ESTER-HYDROLASE EH7 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) 7PU6 ; 2.92 ; STRUCTURE OF ESTER-HYDROLASE EH7 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH A DERIVATIVE OF OCTYL 4-NITROPHENYL HEXYLPHOSPHONATE 5HC4 ; 2.0 ; Structure of esterase Est22 5HC2 ; 1.986 ; Structure of esterase Est22 mutant-S188A with p-nitrophenol 5HC0 ; 1.4 ; Structure of esterase Est22 with p-nitrophenol 7U1C ; 2.09 ; Structure of EstG crystalized with SO4 and Tris 2J7X ; 2.1 ; STRUCTURE OF ESTRADIOL-BOUND ESTROGEN RECEPTOR BETA LBD IN COMPLEX WITH LXXLL MOTIF FROM NCOA5 4XY3 ; 3.04 ; Structure of ESX-1 secreted protein EspB 6LAR ; 3.7 ; Structure of ESX-3 complex 4XP8 ; 2.03 ; Structure of EtgA D60N mutant 2QW8 ; 1.6 ; Structure of Eugenol Synthase from Ocimum basilicum 2QX7 ; 1.75 ; Structure of Eugenol Synthase from Ocimum basilicum 2QYS ; 1.8 ; Structure of Eugenol Synthase from Ocimum basilicum 2QZZ ; 1.6 ; Structure of Eugenol Synthase from Ocimum basilicum 2R6J ; 1.5 ; Structure of Eugenol Synthase from Ocimum basilicum 2R2G ; 1.8 ; Structure of Eugenol Synthase from Ocimum basilicum complexed with EMDF 5U8S ; 6.1 ; Structure of eukaryotic CMG helicase at a replication fork 5U8T ; 4.9 ; Structure of Eukaryotic CMG Helicase at a Replication Fork and Implications 4U0S ; 2.49 ; Structure of Eukaryotic fic domain containing protein with ADP 3K8T ; 2.1 ; Structure of eukaryotic rnr large subunit R1 complexed with designed adp analog compound 5K4B ; 1.399 ; Structure of eukaryotic translation initiation factor 3 subunit D (eIF3d) cap binding domain from Nasonia vitripennis, Crystal form 1 5K4C ; 1.698 ; Structure of eukaryotic translation initiation factor 3 subunit D (eIF3d) cap binding domain from Nasonia vitripennis, Crystal form 2 5K4D ; 2.0 ; Structure of eukaryotic translation initiation factor 3 subunit D (eIF3d) cap binding domain from Nasonia vitripennis, Crystal form 3 3ZWL ; 2.2 ; Structure of eukaryotic translation initiation factor eIF3i complex with eIF3b C-terminus (655-700) 3MPV ; 2.6 ; Structure of EUTL in the zinc-induced open form 3MPW ; 2.7 ; Structure of EUTM in 2-D protein membrane 3MPY ; 2.0 ; Structure of EUTM in 2-D protein membrane 3SJO ; 1.702 ; structure of EV71 3C in complex with Rupintrivir (AG7088) 6I2K ; 3.4 ; Structure of EV71 complexed with its receptor SCARB2 6Z3Q ; 2.7 ; Structure of EV71 in complex with a protective antibody 38-1-10A Fab 6Z3P ; 2.8 ; Structure of EV71 in complex with a protective antibody 38-3-11A Fab 8HI2 ; 3.2 ; Structure of EV71 VLP frozen at -183 degree embedded in crystalline ice 4BWB ; 3.57 ; Structure of Evolved Agonist-bound Neurotensin Receptor 1 Mutant without Lysozyme Fusion 6YE4 ; 3.2 ; Structure of ExbB pentamer from Serratia marcescens by single particle cryo electron microscopy 7LJ2 ; 2.4 ; Structure of Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformis in complex with neoporphyrabiose 2MHX ; ; Structure of Exocyclic R,R N6,N6-(2,3-Dihydroxy-1,4-butadiyl)-2'-Deoxyadenosine Adduct Induced by 1,2,3,4-Diepoxybutane in DNA 2MHZ ; ; Structure of Exocyclic S,S N6,N6-(2,3-Dihydroxy-1,4-butadiyl)-2'-Deoxyadenosine Adduct Induced by 1,2,3,4-Diepoxybutane in DNA 4Q66 ; 3.354 ; Structure of Exomer bound to Arf1. 6JNP ; 2.261 ; Structure of ExoT-SpcS Complex from Pseudomonas aeruginosa in 2.2 Angstrom 7USW ; 3.1 ; Structure of Expanded C. elegans TMC-1 complex 6EYO ; 3.7 ; Structure of extended IgE-Fc in complex with two anti-IgE Fabs 4B9X ; 2.8 ; Structure of extended Tudor domain TD3 from mouse TDRD1 4B9W ; 2.1 ; Structure of extended Tudor domain TD3 from mouse TDRD1 in complex with MILI peptide containing dimethylarginine 45. 3O8E ; 2.84 ; Structure of extracelllar portion of CD46 in complex with Adenovirus type 11 knob 5UMO ; 2.26 ; STRUCTURE OF EXTRACELLULAR SIGNAL-REGULATED KINASE 5L80 ; 2.8 ; Structure of Exuperantia EXO-like and SAM-like domains 5L7Z ; 2.37 ; Structure of Exuperantia EXO-like domain 2D1L ; 1.85 ; Structure of F-actin binding domain IMD of MIM (Missing In Metastasis) 5LQY ; 7.8 ; Structure of F-ATPase from Pichia angusta, in state2 5LQZ ; 7.0 ; Structure of F-ATPase from Pichia angusta, state1 5LQX ; 7.9 ; Structure of F-ATPase from Pichia angusta, state3 6ALX ; 3.3 ; Structure of F. tularensis MglA-SspA solved in the presence of polyP 2MU4 ; ; Structure of F. tularensis Virulence Determinant 2YJR ; 1.9 ; Structure of F1174L Mutant Anaplastic Lymphoma Kinase 6R0E ; 1.91 ; Structure of F11TCR in complex with DR1 MHC Class II presenting PKYVKQNTLKLAT 2IJI ; 2.3 ; Structure of F14H mutant of ColE1 Rom protein 4AK8 ; 1.4 ; Structure of F241L mutant of langerin carbohydrate recognition domain. 5I6V ; 1.87 ; Structure of F285S, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2 4CSZ ; 1.75 ; STRUCTURE OF F306C MUTANT OF NITRITE REDUCTASE FROM Achromobacter XYLOSOXIDANS WITH NITRITE BOUND 3TTT ; 1.58 ; Structure of F413Y variant of E. coli KatE 3TTU ; 1.89 ; Structure of F413Y/H128N double variant of E. coli KatE 7KL8 ; 2.469 ; Structure of F420 binding protein Rv1558 from Mycobacterium tuberculosis with F420 bound 4ZKY ; 1.65 ; Structure of F420 binding protein, MSMEG_6526, from Mycobacterium smegmatis 5JV4 ; 1.7 ; Structure of F420 binding protein, MSMEG_6526, from Mycobacterium smegmatis with F420 bound 3IQF ; 2.1 ; Structure of F420 dependent methylene-tetrahydromethanopterin dehydrogenase in complex with methenyl-tetrahydromethanopterin 3IQZ ; 2.1 ; Structure of F420 dependent methylene-tetrahydromethanopterin dehydrogenase in complex with methylene-tetrahydromethanopterin 3IQE ; 1.8 ; Structure of F420 dependent methylene-tetrahydromethanopterin dehydrogenase in complex with methylene-tetrahydromethanopterin and coenzyme F420 6WTA ; 1.67 ; Structure of F420-H2 Dependent Oxidoreductase (FDOR-A) MSMEG_2027 in complex with F420 4Y9I ; 1.498 ; Structure of F420-H2 Dependent Reductase (FDR-A) msmeg_2027 6FRN ; 1.74 ; Structure of F420H2 oxidase (FprA) co-crystallized with 10mM Tb-Xo4 and calcium chloride 1MX2 ; 2.25 ; Structure of F71N mutant of p18INK4c 4DO3 ; 2.25 ; Structure of FAAH with a non-steroidal anti-inflammatory drug 2LYH ; ; Structure of Faap24 residues 141-215 2I9L ; 3.1 ; Structure of Fab 7D11 from a neutralizing antibody against the poxvirus L1 protein 7ST5 ; 2.2 ; Structure of Fab CC-95251 in complex with SIRP-alpha 2FR4 ; 1.95 ; Structure of Fab DNA-1 complexed with a stem-loop DNA ligand 1XF2 ; 2.3 ; Structure of Fab DNA-1 complexed with dT3 3S62 ; 4.01 ; Structure of Fab fragment of malaria transmission blocking antibody 2A8 against P. vivax P25 protein 2W9D ; 1.57 ; Structure of Fab fragment of the ICSM 18 - anti-Prp therapeutic antibody at 1.57 A resolution. 6VI1 ; 2.4 ; Structure of Fab4 bound to P22 TerL(1-33) 6XMI ; 1.51 ; Structure of Fab4 bound to P22 TerL(1-33) 5GVJ ; 1.9 ; Structure of FabK (M276A) mutant from Thermotoga maritima 5GVH ; 2.294 ; Structure of FabK from Thermotoga maritima 7YF1 ; 1.7 ; Structure of FABP at 1.7 Angstroms resolution. 2XQW ; 2.306 ; Structure of Factor H domains 19-20 in complex with complement C3d 4Z1V ; 2.1 ; Structure of Factor Inhibiting HIF (FIH) in complex with Fe, NO, and NOG 4JYU ; 1.8 ; Structure of factor VIIA in complex with the inhibitor (2R)-2-[(1-AMINOISOQUINOLIN-6-YL)AMINO]-2-[3-ETHOXY-4-(PROPAN-2-YLOXY)PHENYL]-N-(PHENYLSULFONYL)ETHANAMIDE 4JYV ; 2.19 ; Structure of factor VIIA in complex with the inhibitor (2R)-2-[3-ETHOXY-4-(PROPAN-2-YLOXY)PHENYL]-2-(ISOQUINOLIN-6-YLAMINO)-N-[(3-SULFAMOYLPHENYL)SULFONYL]ETHANAMIDE 4ISI ; 1.94 ; Structure of FACTOR VIIA in complex with the inhibitor (6S)-N-(4-CARBAMIMIDOYLBENZYL)-1-CHLORO-3-(CYCLOBUTYLAMINO)-8,8-DIETHYL-4-OXO-4,6,7,8-TETRAHYDROPYRROLO[1,2-A]PYRAZINE-6-CARBOXAMIDE 4JZE ; 1.52 ; Structure of factor VIIA in complex with the inhibitor 2-{2-[(1-aminoisoquinolin-6-yl)carbamoyl]-6-methoxypyridin-3-yl}-5-{[(2S)-1-hydroxy-3,3-dimethylbutan-2-yl]carbamoyl}benzoic acid 4JZF ; 1.84 ; Structure of factor VIIA in complex with the inhibitor 2-{2-[(3-carbamoylphenyl)carbamoyl]-6-methoxypyridin-3-yl}-5-{[(2S)-1-hydroxy-3,3-dimethylbutan-2-yl]carbamoyl}benzoic acid 4JZD ; 2.2 ; Structure of factor VIIA in complex with the inhibitor 2-{2-[(4-carbamimidoylphenyl)carbamoyl]-6-methoxypyridin-3-yl}-5-{[(2S)-1-hydroxy-3,3-dimethylbutan-2-yl]carbamoyl}benzoic acid 4ISH ; 1.82 ; Structure of FACTOR VIIA in complex with the inhibitor BMS-593214 also known as 2'-[(6R,6AR,11BR)-2-CARBAMIMIDOYL-6,6A,7,11B-TETRAHYDRO-5H-INDENO[2,1-C]QUINOLIN-6-YL]-5'-HYDROXY-4'-METHOXYBIPHENYL-4-CARBOXYLIC ACID 6UPK ; 4.9 ; Structure of FACT_subnucleosome complex 1 6UPL ; 7.4 ; Structure of FACT_subnucleosome complex 2 5EY9 ; 2.5 ; Structure of FadD32 from Mycobacterium marinum complexed to AMPC12 5EY8 ; 3.5 ; Structure of FadD32 from Mycobacterium smegmatis complexed to AMPC20 6FJ4 ; 1.7 ; Structure of FAE solved by SAD from data collected at the peak of the Selenium absorption edge on ID30B 5FXM ; 1.99 ; Structure of FAE solved by SAD from data collected by Direct Data Collection (DDC) using the ESRF RoboDiff goniometer 3ZI7 ; 2.3 ; STRUCTURE OF FAE SOLVED BY SAD FROM DATA COLLECTED BY DIRECT DATA COLLECTION (DDC) USING THE GROB ROBOT GONIOMETER 8GT0 ; 3.28 ; Structure of falcipain and human Stefin A complex 8GT7 ; 3.28 ; Structure of falcipain and human Stefin A mutant complex 1J83 ; 1.7 ; STRUCTURE OF FAM17 CARBOHYDRATE BINDING MODULE FROM CLOSTRIDIUM CELLULOVORANS 1J84 ; 2.02 ; STRUCTURE OF FAM17 CARBOHYDRATE BINDING MODULE FROM CLOSTRIDIUM CELLULOVORANS WITH BOUND CELLOTETRAOSE 2YOQ ; 2.35 ; Structure of FAM3B PANDER E30 construct 2WC3 ; 2.0 ; Structure of family 1 beta-glucosidase from Thermotoga maritima in complex with 3-imino-2-oxa-(+)-8-epi-castanospermine 2WBG ; 1.85 ; Structure of family 1 beta-glucosidase from Thermotoga maritima in complex with 3-imino-2-oxa-(+)-castanospermine 2WC4 ; 1.7 ; Structure of family 1 beta-glucosidase from Thermotoga maritima in complex with 3-imino-2-thia-(+)-castanospermine 2WYN ; 2.1 ; Structure of family 37 trehalase from Escherichia coli in complex with a casuarine-6-O-a-D-glucoside analogue 2W9M ; 2.46 ; Structure of family X DNA polymerase from Deinococcus radiodurans 6LHV ; 4.59 ; Structure of FANCA and FANCG Complex 6TNI ; 3.4 ; Structure of FANCD2 homodimer 6TNG ; 4.1 ; Structure of FANCD2 in complex with FANCI 3S51 ; 3.3 ; Structure of FANCI 3RGU ; 3.0 ; Structure of Fap-NRa at pH 5.0 8PXC ; 1.973 ; Structure of Fap1, a domain of the accessory Sec-dependent serine-rich glycoprotein adhesin from Streptococcus oralis, solved at wavelength 3.06 A 2R2L ; 2.23 ; Structure of Farnesyl Protein Transferase bound to PB-93 1UBV ; 2.5 ; STRUCTURE OF FARNESYL PYROPHOSPHATE SYNTHETASE 1UBW ; 2.5 ; STRUCTURE OF FARNESYL PYROPHOSPHATE SYNTHETASE 1UBX ; 2.5 ; STRUCTURE OF FARNESYL PYROPHOSPHATE SYNTHETASE 1UBY ; 2.4 ; STRUCTURE OF FARNESYL PYROPHOSPHATE SYNTHETASE 3P53 ; 2.0 ; Structure of fascin 5NCC ; 3.12 ; Structure of Fatty acid Photodecarboxylase in complex with FAD and palmitic acid 6QL6 ; 2.9 ; Structure of Fatty acid synthase complex from Saccharomyces cerevisiae at 2.9 Angstrom 6QL9 ; 2.82 ; Structure of Fatty acid synthase complex from Saccharomyces cerevisiae at 2.9 Angstrom 6QL5 ; 2.8 ; Structure of fatty acid synthase complex with bound gamma subunit from Saccharomyces cerevisiae at 2.8 angstrom 6QL7 ; 4.6 ; Structure of fatty acid synthase complex with bound gamma subunit from Saccharomyces cerevisiae at 4.6 angstrom 3V5X ; 1.85 ; Structure of FBXL5 hemerythrin domain, C2 cell 3V5Z ; 2.1847 ; Structure of FBXL5 hemerythrin domain, C2 cell, grown anaerobically 3V5Y ; 2.1 ; Structure of FBXL5 hemerythrin domain, P2(1) cell 4X4M ; 3.485 ; Structure of FcgammaRI in complex with Fc reveals the importance of glycan recognition for high affinity IgG binding 8J7Z ; 2.72 ; Structure of FCP trimer in Cyclotella meneghiniana 5U8Z ; 1.9 ; Structure of Fe-CAO1 in complex with beta-fluororesveratrol 1T47 ; 2.5 ; Structure of fe2-HPPD bound to NTBC 1B11 ; 1.9 ; STRUCTURE OF FELINE IMMUNODEFICIENCY VIRUS PROTEASE COMPLEXED WITH TL-3-093 6LF0 ; 2.11 ; Structure of FEM1C 3B8M ; 2.7 ; Structure of FepE- Bacterial Polysaccharide Co-polymerase 3B8N ; 3.1 ; Structure of FepE- Bacterial Polysaccharide Co-polymerase 7C3M ; 3.6 ; Structure of FERM protein 1XER ; 2.0 ; STRUCTURE OF FERREDOXIN 2CJO ; ; STRUCTURE OF FERREDOXIN, NMR, 10 STRUCTURES 2CJN ; ; STRUCTURE OF FERREDOXIN, NMR, MINIMIZED AVERAGE STRUCTURE 1GR1 ; 2.5 ; Structure of Ferredoxin-NADP+ Reductase with Glu 139 replaced by Lys (E139K) 1GO2 ; 1.7 ; Structure of Ferredoxin-NADP+ Reductase with Lys 72 replaced by Glu (K72E) 1H5A ; 1.6 ; STRUCTURE OF FERRIC HORSERADISH PEROXIDASE C1A IN COMPLEX WITH ACETATE 5NHK ; 1.8 ; Structure of Ferric uptake regulator from francisella tularensis with Iron 6H1C ; 2.34 ; Structure of Ferric uptake regulator from Pseudomonas aeruginosa with manganese. 2CCY ; 1.67 ; STRUCTURE OF FERRICYTOCHROME C(PRIME) FROM RHODOSPIRILLUM MOLISCHIANUM AT 1.67 ANGSTROMS RESOLUTION 1V3W ; 1.5 ; Structure of Ferripyochelin binding protein from Pyrococcus horikoshii OT3 1V67 ; 2.3 ; Structure of ferripyochelin binding protein from pyrococcus horikoshii OT3 1C9E ; 2.3 ; STRUCTURE OF FERROCHELATASE WITH COPPER(II) N-METHYLMESOPORPHYRIN COMPLEX BOUND AT THE ACTIVE SITE 1H58 ; 1.7 ; STRUCTURE OF FERROUS HORSERADISH PEROXIDASE C1A 6RPD ; 1.52 ; Structure of ferrous KpDyP in complex with cyanide 4XAE ; 2.769 ; Structure of Feruloyl-CoA 6-hydroxylase (F6H) from Arabidopsis thaliana 5ABR ; 2.11 ; Structure of FeSI protein from Azotobacter vinelandii 6YAV ; 1.65 ; Structure of FeSII (Shethna) protein from Azotobacter vinelandii 8EIT ; 2.8 ; Structure of FFAR1-Gq complex bound to DHA 8EJC ; 3.0 ; Structure of FFAR1-Gq complex bound to TAK-875 8EJK ; 3.4 ; Structure of FFAR1-Gq complex bound to TAK-875 in a lipid nanodisc 6YJI ; 1.64 ; Structure of FgCelDH7C 6YJO ; 2.38 ; Structure of FgChi7B 4WUN ; 1.65 ; Structure of FGFR1 in complex with AZD4547 (N-{3-[2-(3,5-DIMETHOXYPHENYL)ETHYL]-1H-PYRAZOL-5-YL}-4-[(3R,5S)-3,5-DIMETHYLPIPERAZIN-1-YL]BENZAMIDE) at 1.65 angstrom 2MIU ; ; Structure of FHL2 LIM adaptor and its Interaction with Ski 4FIL ; 2.4 ; Structure of FhuD2 from Staphylococcus Aureus with Bound Ferrioxamine B 1G82 ; 2.6 ; STRUCTURE OF FIBROBLAST GROWTH FACTOR 9 8AFO ; 1.99 ; Structure of fibronectin 2 and 3 of L1CAM at 2.0 Angstrom 8AFP ; 3.0 ; Structure of fibronectin 2 and 3 of L1CAM at 3.0 Angstrom 3R8Q ; 2.4 ; Structure of Fibronectin domain 12-14 3RGH ; 2.44 ; Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens 6JZK ; 2.1 ; Structure of FimA type-1 (FimA1) prepilin of the type V major fimbrium 6JZJ ; 1.6 ; Structure of FimA type-2 (FimA2) prepilin of the type V major fimbrium 6Y6A ; 2.65 ; Structure of Finch Polyomavirus VP1 in complex with 2-O-Methyl-5-N-acetyl-alpha-D-neuraminic acid 5EU8 ; 2.447 ; Structure of FIPV main protease in complex with dual inhibitors 2V31 ; ; Structure of First Catalytic Cysteine Half-domain of mouse ubiquitin- activating enzyme 2LAX ; ; Structure of first WW domain of human YAP in complex with a human Smad1 doubly-phosphorilated derived peptide. 6S1L ; 1.94 ; Structure of fission yeast Mis16 6S1R ; 1.8 ; Structure of fission yeast Mis16 bound to histone H4 6S29 ; 1.988 ; Structure of fission yeast Mis16-Mis19 complex 4XPZ ; 1.45 ; Structure of fission yeast RNA polymerase II CTD phosphatase Fcp1-R271A bound to aluminum fluoride 4XQ0 ; 1.85 ; Structure of fission yeast RNA polymerase II CTD phosphatase Fcp1-R271A bound to beryllium fluoride 6HKG ; 1.87 ; Structure of FISW84 Fab Fragment 2H1O ; 3.0 ; Structure of FitAB bound to IR36 DNA fragment 5J90 ; 1.3932 ; Structure of Fjoh_4558, a chitin-binding SusD homolog from Flavobacterium johnsoniae 1ROU ; ; STRUCTURE OF FKBP59-I, THE N-TERMINAL DOMAIN OF A 59 KDA FK506-BINDING PROTEIN, NMR, 22 STRUCTURES 1ROT ; ; STRUCTURE OF FKBP59-I, THE N-TERMINAL DOMAIN OF A 59 KDA FK506-BINDING PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 4YG7 ; 3.77 ; Structure of FL autorepression promoter complex 8CIH ; 2.0 ; Structure of FL CINP 4USQ ; 2.39 ; Structure of flavin-containing monooxygenase from Cellvibrio sp. BR 4USR ; 1.83 ; Structure of flavin-containing monooxygenase from Pseudomonas stutzeri NF13 5BVA ; 1.873 ; Structure of flavin-dependent brominase Bmp2 5BUL ; 1.9784 ; Structure of flavin-dependent brominase Bmp2 triple mutant Y302S F306V A345W 5BUK ; 1.95 ; Structure of flavin-dependent chlorinase Mpy16 8I8Z ; 2.4 ; Structure of flavone 4'-O-glucoside 7-O-glucosyltransferase from Nemophila menziesii, apo form 8I94 ; 2.43 ; Structure of flavone 4'-O-glucoside 7-O-glucosyltransferase from Nemophila menziesii, complex with luteolin 8I90 ; 2.1 ; Structure of flavone 4'-O-glucoside 7-O-glucosyltransferase from Nemophila menziesii, complex with UDP-glucose 5J1J ; 1.55 ; Structure of FleN-AMPPNP complex 3W1E ; 2.0 ; Structure of FlgT, a flagellar basal body component protein 3AJW ; 2.1 ; Structure of FliJ, a soluble component of flagellar type III export apparatus 2HP7 ; 2.0 ; Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor 1J2O ; ; Structure of FLIN2, a complex containing the N-terminal LIM domain of LMO2 and ldb1-LID 6LEA ; 2.95 ; Structure of FliS chaperone in complex with flagellin and HP1076 3A7M ; 3.2 ; Structure of FliT, the flagellar type III chaperone for FliD 5XR1 ; ; Structure of FLN IG21 domain in complex with C-terminal peptide of beta-2 3AXY ; 2.4 ; Structure of Florigen Activation Complex Consisting of Rice Florigen Hd3a, 14-3-3 Protein GF14 and Rice FD Homolog OsFD1 5B6I ; 1.95 ; Structure of fluorinase from Streptomyces sp. MA37 1Y37 ; 1.5 ; Structure of Fluoroacetate Dehalogenase from Burkholderia sp. FA1 4GDN ; 3.2 ; Structure of FmtA-like protein 7JGU ; 1.2 ; Structure of FN3tt mut 4I4F ; 1.75 ; Structure of Focal Adhesion Kinase catalytic domain in complex with an allosteric binding pyrazolobenzothiazine compound. 4I4E ; 1.55 ; Structure of Focal Adhesion Kinase catalytic domain in complex with hinge binding pyrazolobenzothiazine compound. 4EBV ; 1.67 ; Structure of Focal Adhesion Kinase catalytic domain in complex with novel allosteric inhibitor 4EBW ; 2.65 ; Structure of Focal Adhesion Kinase catalytic domain in complex with novel allosteric inhibitor 8EE7 ; 2.72 ; Structure of focused PtuA(dimer) and PtuB(monomer) complex 4AY9 ; 2.5 ; Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor 4MQW ; 2.9 ; Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor (P31) 6PTI ; 1.7 ; STRUCTURE OF FORM III CRYSTALS OF BOVINE PANCREATIC TRYPSIN INHIBITOR 7Q1Z ; 3.4 ; Structure of formaldehyde cross-linked SARS-CoV-2 S glycoprotein 3KCU ; 2.243 ; Structure of formate channel 3KCV ; 3.198 ; Structure of formate channel 1T3T ; 1.9 ; Structure of Formylglycinamide synthetase 6S07 ; 1.04 ; Structure of formylglycine-generating enzyme at 1.04 A in complex with copper and substrate reveals an acidic pocket for binding and acti-vation of molecular oxygen. 3OEE ; 2.74 ; Structure of four mutant forms of yeast F1 ATPase: alpha-F405S 3OFN ; 3.2 ; Structure of four mutant forms of yeast F1 ATPase: alpha-N67I 3OEH ; 3.0 ; Structure of four mutant forms of yeast F1 ATPase: beta-V279F 3OE7 ; 3.19 ; Structure of four mutant forms of yeast f1 ATPase: gamma-I270T 7DJK ; 2.80145 ; Structure of four truncated and mutated forms of quenching protein 7DJL ; 2.96078 ; Structure of four truncated and mutated forms of quenching protein 7DJM ; 1.7 ; Structure of four truncated and mutated forms of quenching protein 7DJJ ; 2.69806 ; Structure of four truncated and mutated forms of quenching protein lumenal domains 7CBY ; 1.646 ; Structure of FOXG1 DNA binding domain bound to DBE2 DNA site 7FJ2 ; 3.098 ; Structure of FOXM1 homodimer bound to a palindromic DNA site 7TDW ; 4.0 ; Structure of FOXP3-DNA complex 7TDX ; 3.1 ; Structure of FOXP3-DNA complex 3KSL ; 2.05 ; Structure of FPT bound to DATFP-DH-GPP 1O1R ; 2.3 ; Structure of FPT bound to GGPP 2BED ; 2.7 ; Structure of FPT bound to inhibitor SCH207736 1O1S ; 2.3 ; Structure of FPT bound to isoprenoid analog 3b 1O1T ; 2.1 ; Structure of FPT bound to the CVIM-FPP product 1O5M ; 2.3 ; Structure of FPT bound to the inhibitor SCH66336 6K2G ; 2.22 ; Structure of FraE in the monomer state 6I70 ; 2.1 ; Structure of Fragaria ananassa O-methyltransferase - apo form 6YJW ; 2.1 ; Structure of Fragaria ananassa O-methyltransferase crystallized with PAS polypeptide 6I71 ; 1.4 ; Structure of Fragaria ananassa O-methyltransferase in complex with S-adenosylhomocysteine 6I72 ; 1.5 ; Structure of Fragaria ananassa O-methyltransferase in complex with S-adenosylhomocysteine and caffeic acid 6I73 ; 1.35 ; Structure of Fragaria ananassa O-methyltransferase in complex with S-adenosylhomocysteine and protocatechuic aldehyde 2R8U ; 1.35 ; Structure of fragment of human end-binding protein 1 (EB1) containing the N-terminal domain at 1.35 A resolution 6U9G ; 3.98 ; Structure of Francisella PdpA-VgrG Complex, half-lidded 6U9F ; 4.35 ; Structure of Francisella PdpA-VgrG Complex, Lidded 2D1G ; 1.75 ; Structure of Francisella tularensis Acid Phosphatase A (AcpA) bound to orthovanadate 5U56 ; 2.65 ; Structure of Francisella tularensis heterodimeric SspA (MglA-SspA) 5U51 ; 2.8 ; Structure of Francisella tularensis heterodimeric SspA (MglA-SspA) in complex with ppGpp 4DOV ; 1.696 ; Structure of free mouse ORC1 BAH domain 3BWQ ; 2.3 ; Structure of free SV40 VP1 pentamer 7MTC ; 2.6 ; Structure of freshly purified SARS-CoV-2 S2P spike at pH 7.4 1QMO ; 3.5 ; Structure of FRIL, a legume lectin that delays hematopoietic progenitor maturation 3RFB ; 2.3 ; Structure of fRMsr 3KSI ; 1.7 ; structure of fRMsr of Staphylococcus aureus (complex with 2-propanol) 3KSG ; 2.3 ; structure of fRMsr of Staphylococcus aureus (complex with substrate) 3KSH ; 1.5 ; Structure of fRMsr of Staphylococcus aureus (oxidized form) 3KSF ; 1.9 ; structure of fRMsr of Staphylococcus aureus (reduced form) 5XWH ; 2.0 ; Structure of FrnE, a novel disulfide oxidoreductase from Deinococcus radiodurans crystallized in the presence of GSH 8BEQ ; 2.07 ; Structure of fructofuranosidase from Rhodotorula dairenensis 3KF3 ; 1.9 ; Structure of fructofuranosidase from Schwanniomyces occidentalis complexed with fructose 5ANN ; 2.14 ; Structure of fructofuranosidase from Xanthophyllomyces dendrorhous 1DOS ; 1.67 ; STRUCTURE OF FRUCTOSE-BISPHOSPHATE ALDOLASE 4RSL ; 1.9 ; Structure of fructosyl peptide oxidase from E. terrenum 1LR9 ; 2.5 ; STRUCTURE OF Fs1, THE HEPARIN-BINDING DOMAIN OF FOLLISTATIN 5K6D ; 1.139 ; Structure of FS50 an antagonist of NaV1.5 6JZA ; 2.3 ; Structure of Fstl1 6WEG ; 2.95 ; Structure of Ft (MglA-SspA)-ppGpp-PigR peptide complex 4Y5T ; 1.949 ; Structure of FtmOx1 apo with metal Iron 4Y5S ; 2.543 ; Structure of FtmOx1 with a-Ketoglutarate as co-substrate 2Q9B ; 2.3 ; Structure of FTSY:GMPPNP Complex 2Q9C ; 2.2 ; Structure of FTSY:GMPPNP with MGCL Complex 6Q8H ; 1.707 ; Structure of Fucosylated D-antimicrobial peptide SB10 in complex with the Fucose-binding lectin PA-IIL at 1.707 Angstrom resolution 6Q87 ; 2.541 ; Structure of Fucosylated D-antimicrobial peptide SB10 in complex with the Fucose-binding lectin PA-IIL at 2.541 Angstrom resolution 6Q85 ; 1.99 ; Structure of Fucosylated D-antimicrobial peptide SB11 in complex with the Fucose-binding lectin PA-IIL at 1.990 Angstrom resolution 6Q77 ; 2.002 ; Structure of Fucosylated D-antimicrobial peptide SB12 in complex with the Fucose-binding lectin PA-IIL at 2.002 Angstrom resolution 6Q8D ; 1.63 ; Structure of Fucosylated D-antimicrobial peptide SB15 in complex with the Fucose-binding lectin PA-IIL at 1.630 Angstrom resolution 6Q86 ; 2.008 ; Structure of Fucosylated D-antimicrobial peptide SB4 in complex with the Fucose-binding lectin PA-IIL at 2.008 Angstrom resolution 6Q79 ; 2.009 ; Structure of Fucosylated D-antimicrobial peptide SB4 in complex with the Fucose-binding lectin PA-IIL at 2.009 Angstrom resolution 6Q6W ; 1.438 ; Structure of Fucosylated D-antimicrobial peptide SB5 in complex with the Fucose-binding lectin PA-IIL at 1.438 Angstrom resolution 6Q6X ; 1.525 ; Structure of Fucosylated D-antimicrobial peptide SB6 in complex with the Fucose-binding lectin PA-IIL at 1.525 Angstrom resolution 6Q8G ; 1.19 ; Structure of Fucosylated D-antimicrobial peptide SB8 in complex with the Fucose-binding lectin PA-IIL at 1.190 Angstrom resolution 8K42 ; 2.64 ; Structure of full Banna virus 8W9P ; 2.7 ; Structure of full Banna virus 7LSW ; 3.05 ; Structure of Full Beta-Hairpin LIR from FNIP2 Bound to GABARAP 4EC8 ; 3.6 ; Structure of full length CDK9 in complex with cyclinT and DRB 4W8Y ; 3.0 ; Structure of full length Cmr2 from Pyrococcus furiosus (Manganese bound form) 5LOE ; 3.0 ; Structure of full length Cody from Bacillus subtilis in complex with Ile 2O1V ; 2.45 ; Structure of full length GRP94 with ADP bound 2O1U ; 2.4 ; Structure of full length GRP94 with AMP-PNP bound 7MYJ ; 2.95 ; Structure of full length human AMPK (a2b1g1) in complex with a small molecule activator MSG011 6B2E ; 3.8 ; Structure of full length human AMPK (a2b2g1) in complex with a small molecule activator SC4. 5ISO ; 2.63 ; STRUCTURE OF FULL LENGTH HUMAN AMPK (NON-PHOSPHORYLATED AT T-LOOP) IN COMPLEX WITH A SMALL MOLECULE ACTIVATOR, A BENZIMIDAZOLE DERIVATIVE (991) 4CFE ; 3.023 ; Structure of full length human AMPK in complex with a small molecule activator, a benzimidazole derivative (991) 4CFF ; 3.924 ; Structure of full length human AMPK in complex with a small molecule activator, a thienopyridone derivative (A-769662) 8TZF ; 3.4 ; Structure of full length LRRK2 bound to GZD-824 (I2020T mutant) 7QPR ; 2.513 ; Structure of full length SpoT 2F8V ; 2.75 ; Structure of full length telethonin in complex with the N-terminus of titin 2GAJ ; 1.95 ; Structure of Full Length Topoisomerase I from Thermotoga maritima in monoclinic crystal form 2GAI ; 1.7 ; Structure of Full Length Topoisomerase I from Thermotoga maritima in triclinic crystal form 5LNH ; 3.0 ; Structure of full length Unliganded CodY from Bacillus subtilis 5LOJ ; 3.71 ; Structure of full length unliganded CodY from Bacillus subtilis 5LOO ; 4.5 ; Structure of full length unliganded CodY from Bacillus subtilis 8FO3 ; 2.0 ; Structure of full-length amyloidogenic immunoglobulin light chain H9 in complex with (E)-3-nitro-4-(2-(2-phenylpropylidene)hydrazineyl)benzenesulfonamide 8FO5 ; 1.89 ; Structure of full-length amyloidogenic immunoglobulin light chain H9 in complex with 1-(1-(phenylsulfonyl)-1H-pyrrol-3-yl)ethan-1-one 8FO4 ; 2.0 ; Structure of full-length amyloidogenic immunoglobulin light chain H9 in complex with 6-methyl-2-(2-((1E,2E)-3-(2-nitrophenyl)allylidene)hydrazineyl)pyrimidin-4-ol 1MCX ; 2.03 ; STRUCTURE OF FULL-LENGTH ANNEXIN A1 IN THE PRESENCE OF CALCIUM 8IQH ; 3.67 ; Structure of Full-Length AsfvPrimPol in Apo-Form 8IQI ; 3.32 ; Structure of Full-Length AsfvPrimPol in Complex-Form 6Y97 ; 4.33 ; Structure of full-length CD20 in complex with Obinutuzumab Fab 6Y9A ; 4.2 ; Structure of full-length CD20 in complex with Obinutuzumab Fab 6Y92 ; 4.73 ; Structure of full-length CD20 in complex with Ofatumumab Fab 6Y90 ; 3.69 ; Structure of full-length CD20 in complex with Rituximab Fab 4CB9 ; 3.0 ; Structure of full-length CTNNBL1 in P43212 space group 5NRO ; 3.25 ; Structure of full-length DnaK with bound J-domain 4GU5 ; 2.3 ; Structure of Full-length Drosophila Cryptochrome 4A2W ; 3.7 ; Structure of full-length duck RIG-I 5H7V ; 3.82 ; Structure of full-length extracellular domain of HAI-1 at pH 4.6 7LVT ; 4.6 ; Structure of full-length GluK1 with L-Glu 3E9E ; 2.1 ; Structure of full-length H11A mutant form of TIGAR from Danio rerio 6G9O ; 4.25 ; Structure of full-length homomeric mLRRC8A volume-regulated anion channel at 4.25 A resolution 6B1U ; 2.77 ; Structure of full-length human AMPK (a2b1g1) in complex with a small molecule activator SC4 2KN6 ; ; Structure of full-length human ASC (Apoptosis-associated speck-like protein containing a CARD) 6MG4 ; 1.75 ; Structure of full-length human lambda-6A light chain JTO 6MG5 ; 1.8 ; Structure of full-length human lambda-6A light chain JTO in complex with coumarin 1 6W4Y ; 1.91 ; Structure of full-length human lambda-6A light chain JTO in complex with hydantoin stabilizer 7LMN ; 2.01 ; Structure of full-length human lambda-6A light chain JTO in complex with stabilizer 26 [2-(7-(diethylamino)-4-methyl-2-oxo-2H-chromen-3-yl)ethyl (3-(1H-imidazol-4-yl)benzyl)carbamate] 7LMO ; 1.99 ; Structure of full-length human lambda-6A light chain JTO in complex with stabilizer 34 [3-(2-(7-(diethylamino)-4-methyl-2-oxo-2H-chromen-3-yl)ethyl)-7-(1H-imidazole-5-carbonyl)-1,3,7-triazaspiro[4.4]nonane-2,4-dione] 7LMP ; 2.29 ; Structure of full-length human lambda-6A light chain JTO in complex with stabilizer 36 [3-(2-(7-(diethylamino)-4-methyl-2-oxo-2H-chromen-3-yl)ethyl)-8-(1H-imidazole-4-carbonyl)-1,3,8-triazaspiro[4.5]decane-2,4-dione] 7LMQ ; 1.91 ; Structure of full-length human lambda-6A light chain JTO in complex with stabilizer 62 [4-methyl-3-(morpholinomethyl)-7-(1-phenylethoxy)-2H-chromen-2-one] 7LMR ; 2.09 ; Structure of full-length human lambda-6A light chain JTO in complex with stabilizer 63 [4-methyl-3-(morpholinomethyl)-7-(2-phenylpropoxy)-2H-chromen-2-one] 7RTP ; 2.09 ; Structure of full-length human lambda-6A light chain JTO in complex with urea stabilizer 20 [1-(2-(7-(diethylamino)-4-methyl-2-oxo-2H-chromen-3-yl)ethyl)-3-(pyridin-3-ylmethyl)urea] 5EOG ; 3.05 ; Structure of full-length human MAB21L1 5EOM ; 2.55 ; Structure of full-length human MAB21L1 with bound CTP 7K39 ; 3.0 ; Structure of full-length influenza HA with a head-binding antibody at pH 5.2, conformation A, neutral pH-like 7K3A ; 4.2 ; Structure of full-length influenza HA with a head-binding antibody at pH 5.2, conformation B, fusion peptide release 7K3B ; 3.4 ; Structure of full-length influenza HA with a head-binding antibody at pH 5.2, conformation C, central helices splay 7K37 ; 2.8 ; Structure of full-length influenza HA with a head-binding antibody at pH 7.8 6HJQ ; 4.1 ; Structure of Full-length Influenza Hemagglutinin (A/duck/Alberta/35/76) in complex with FISW84 Fab Fragment 6HJR ; 4.2 ; Structure of full-length Influenza Hemagglutinin with tilted transmembrane (A/duck/Alberta/35/76[H1N1]) 6MU1 ; 4.1 ; Structure of full-length IP3R1 channel bound with Adenophostin A 6MU2 ; 3.9 ; Structure of full-length IP3R1 channel in the Apo-state 3JAV ; 4.7 ; Structure of full-length IP3R1 channel in the apo-state determined by single particle cryo-EM 7LHE ; 3.3 ; Structure of full-length IP3R1 channel reconstituted into lipid nanodisc in the apo-state 7LHF ; 2.96 ; Structure of full-length IP3R1 channel solubilized in LNMG & lipid in the apo-state 6Z6B ; 3.961 ; Structure of full-length La Crosse virus L protein (polymerase) 8TRG ; 2.93 ; Structure of full-length LexA bound to a RecA filament 8TZH ; 3.9 ; Structure of full-length LRRK2 bound to MLi-2 (I2020T mutant) 5B5V ; 2.193 ; Structure of full-length MOB1b 3OML ; 2.15 ; Structure of full-length peroxisomal multifunctional enzyme type 2 from Drosophila melanogaster 1FBL ; 2.5 ; STRUCTURE OF FULL-LENGTH PORCINE SYNOVIAL COLLAGENASE (MMP1) REVEALS A C-TERMINAL DOMAIN CONTAINING A CALCIUM-LINKED, FOUR-BLADED BETA-PROPELLER 7P14 ; 3.66 ; Structure of full-length rXKR9 in complex with a sybody at 3.66A 3E9D ; 2.0 ; Structure of full-length TIGAR from Danio rerio 2M6B ; ; Structure of full-length transmembrane domains of human glycine receptor alpha1 monomer subunit 5U0B ; 3.0 ; Structure of full-length Zika virus NS5 6PWU ; 6.2 ; Structure of full-length, fully glycosylated, non-modified HIV-1 gp160 bound to PG16 Fab 6ULC ; 4.6 ; Structure of full-length, fully glycosylated, non-modified HIV-1 gp160 bound to PG16 Fab at a nominal resolution of 4.6 Angstrom 7Q3Y ; 4.34 ; Structure of full-length, monomeric, soluble somatic angiotensin I-converting enzyme showing the N- and C-terminal ellipsoid domains 1P9B ; 2.0 ; Structure of fully ligated Adenylosuccinate synthetase from Plasmodium falciparum 5F2U ; 1.85 ; Structure of Fully modified farnesylated INPP5E Peptide in complex with PDE6D 3T5G ; 1.7 ; Structure of fully modified farnesylated Rheb in complex with PDE6D 3T5I ; 2.1 ; Structure of Fully modified farnesylated Rheb Peptide in complex with PDE6D 5E8F ; 2.1 ; Structure of Fully modified geranylgeranylated PDE6C Peptide in complex with PDE6D 6FPW ; 1.35 ; Structure of fully reduced Hydrogenase (Hyd-1) 6FPI ; 1.5 ; Structure of fully reduced Hydrogenase (Hyd-1) variant E28Q 6GAL ; 1.25 ; Structure of fully reduced Hydrogenase (Hyd-1) variant E28Q collected at pH 10 6GAN ; 1.6 ; Structure of fully reduced Hydrogenase (Hyd-2) variant E14Q 6G7R ; 1.2 ; Structure of fully reduced variant E28Q of E. coli hydrogenase-1 at pH 8 4OSY ; 1.91 ; STRUCTURE of FULLY-CLEAVED GLYCINE-BOUND HUMAN L-ASPARAGINASE PROTEIN 1FKA ; 3.3 ; STRUCTURE OF FUNCTIONALLY ACTIVATED SMALL RIBOSOMAL SUBUNIT AT 3.3 A RESOLUTION 3Q31 ; 2.703 ; Structure of fungal alpha Carbonic Anhydrase from Aspergillus oryzae 4UOJ ; 2.5 ; Structure of Fungal beta-mannosidase (GH2) from Trichoderma harzianum 4CVU ; 1.9 ; Structure of Fungal beta-mannosidase from Glycoside Hydrolase Family 2 of Trichoderma harzianum 1BEG ; ; STRUCTURE OF FUNGAL ELICITOR, NMR, 18 STRUCTURES 6CC7 ; 1.87 ; Structure of Fungal GH62 from Thielavia terretris 7UBA ; 1.599 ; Structure of fungal Hop1 CBR domain 5WQF ; 2.001 ; Structure of fungal meroterpenoid isomerase Trt14 5WQI ; 1.899 ; Structure of fungal meroterpenoid isomerase Trt14 complexed with hydrolyzed product 5WQH ; 2.102 ; Structure of fungal meroterpenoid isomerase Trt14 complexed with substrate analog and endo-terretonin D 5WQG ; 2.3 ; Structure of fungal meroterpenoid isomerase Trt14 complexed with terretonin D 3QPA ; 0.85 ; Structure of Fusarium Solani Cutinase expressed in Pichia pastoris 3QPC ; 0.978 ; Structure of Fusarium Solani Cutinase expressed in Pichia pastoris, crystallized in the presence of Paraoxon 7QI3 ; 1.8 ; Structure of Fusarium verticillioides NAT1 (FDB2) N-malonyltransferase 1PZQ ; ; Structure of fused docking domains from the erythromycin polyketide synthase (DEBS), a model for the interaction between DEBS 2 and DEBS 3: The A domain 1PZR ; ; Structure of fused docking domains from the erythromycin polyketide synthase (DEBS), a model for the interaction between DEBS2 and DEBS3: the B domain 3F85 ; 2.1 ; Structure of fusion complex of homo trimeric major pilin subunits CfaB of CFA/I fimbirae from ETEC E. coli 3F84 ; 2.35 ; Structure of fusion complex of major pilin CfaB and major pilin CfaB of CFA/I pilus from ETEC E. coli 3F83 ; 2.3 ; Structure of fusion complex of the minor pilin CfaE and major pilin CfaB of CFA/I pili from ETEC E. coli 6OUS ; 3.4 ; Structure of fusion glycoprotein from human respiratory syncytial virus 2PT2 ; 2.0 ; Structure of FutA1 with Iron(II) 3F11 ; 2.0 ; Structure of futa1 with iron(III) 4BMY ; 1.65 ; Structure of futalosine hydrolase mutant of Helicobacter pylori strain 26695 4BMZ ; 1.79 ; Structure of futalosine hydrolase mutant of Helicobacter pylori strain 26695 4BN0 ; 2.11 ; Structure of futalosine hydrolase mutant of Helicobacter pylori strain 26695 2MRJ ; ; Structure of Fyn protein SH2 bound 6VU8 ; 4.14 ; Structure of G-alpha-i bound to its chaperone Ric-8A 1Y3A ; 2.5 ; Structure of G-Alpha-I1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange 6VU5 ; 3.5 ; Structure of G-alpha-q bound to its chaperone Ric-8A 4ANL ; 1.7 ; Structure of G1269A Mutant Anaplastic Lymphoma Kinase 4ANQ ; 1.76 ; Structure of G1269A Mutant Anaplastic Lymphoma Kinase in Complex with Crizotinib 7A74 ; 1.6 ; Structure of G132N BlaC from Mycobacterium tuberculosis 7A71 ; 1.4 ; Structure of G132S BlaC from Mycobacterium tuberculosis 7A72 ; 1.3 ; Structure of G132S BlaC from Mycobacterium tuberculosis bound to the trans-enamine adduct of sulbactam 8FNM ; 2.8 ; Structure of G140A/Q148K HIV-1 intasome with Dolutegravir bound 2NOI ; 2.35 ; Structure of G42A human 8-oxoguanine glycosylase crosslinked to undamaged G-containing DNA 2KWY ; ; Structure of G61-101 3SDN ; 1.5 ; Structure of G65I sperm whale myoglobin mutant 7SNH ; 2.2 ; Structure of G6PD-D200N tetramer bound to NADP+ 7SNI ; 2.5 ; Structure of G6PD-D200N tetramer bound to NADP+ and G6P 7UAL ; 2.9 ; Structure of G6PD-D200N tetramer bound to NADP+ and G6P with no symmetry applied 7UC2 ; 2.5 ; Structure of G6PD-D200N tetramer bound to NADP+ with no symmetry applied 7SNF ; 3.5 ; Structure of G6PD-WT dimer 7UAG ; 3.5 ; Structure of G6PD-WT dimer 7TOF ; 3.7 ; Structure of G6PD-WT dimer with no symmetry applied 7SNG ; 2.8 ; structure of G6PD-WT tetramer 7TOE ; 3.0 ; Structure of G6PD-WT tetramer with no symmetry imposed 6NE7 ; 1.99 ; Structure of G810A mutant of RET protein tyrosine kinase domain. 7XUA ; 1.87 ; Structure of G9a in complex with compound 10a 7XUB ; 2.0 ; Structure of G9a in complex with compound 10d 7XUC ; 1.67 ; Structure of G9a in complex with compound 11a 7XUD ; 1.45 ; Structure of G9a in complex with compound 26a 7X73 ; 1.49 ; Structure of G9a in complex with RK-701 5T0K ; 1.7 ; Structure of G9a SET-domain with H3K9M mutant peptide and SAM 5JHN ; 1.67 ; Structure of G9a SET-domain with Histone H3K9Ala mutant peptide and bound S-adenosylmethionine 5JIN ; 1.85 ; Structure of G9a SET-domain with Histone H3K9M mutant peptide and bound S-adenosylmethionine 5JJ0 ; 1.72 ; Structure of G9a SET-domain with Histone H3K9M peptide and excess SAH 5JIY ; 1.48 ; Structure of G9a SET-domain with Histone H3K9norLeucine mutant peptide and bound S-adenosylmethionine 4ATP ; 2.8 ; Structure of GABA-transaminase A1R958 from Arthrobacter aurescens in complex with PLP 8PVB ; 3.6 ; Structure of GABAAR determined by cryoEM at 100 keV 7CDB ; 1.949 ; Structure of GABARAPL1 in complex with GABA(A) receptor gamma 2 8WY5 ; 3.12 ; Structure of Gabija GajA in complex with DNA 8JQB ; 3.2 ; Structure of Gabija GajA-GajB 4:4 Complex 6P4Z ; 1.8 ; Structure of gadolinium-caged cobalt (III) insulin hexamer 4C57 ; 2.55 ; Structure of GAK kinase in complex with a nanobody 4C58 ; 2.16 ; Structure of GAK kinase in complex with nanobody (NbGAK_4) 4C59 ; 2.8 ; Structure of GAK kinase in complex with nanobody (NbGAK_4) 3ZR5 ; 2.1 ; STRUCTURE OF GALACTOCEREBROSIDASE FROM MOUSE 3ZR6 ; 2.44 ; STRUCTURE OF GALACTOCEREBROSIDASE FROM MOUSE IN COMPLEX WITH GALACTOSE 4AKC ; 2.3 ; Structure of Galactose Binding lectin from Champedak (CGB) with Gal(beta)1,3-GalNac 4AKB ; 1.95 ; Structure of Galactose Binding lectin from Champedak (CGB) with Galactose 4UNM ; 1.77 ; Structure of Galactose Oxidase homologue from Streptomyces lividans 6GLW ; 1.9 ; Structure of galectin-10 in complex with the Fab fragment of a Charcot-Leyden crystal solubilizing antibody, 1D11 6GLX ; 3.396 ; Structure of galectin-10 in complex with the Fab fragment of a Charcot-Leyden crystal solubilizing antibody, 4E8 6GKU ; 1.91 ; Structure of galectin-10 in complex with the Fab fragment of a Charcot-Leyden crystal solubilizing antibody, 6F5 5NF7 ; 1.59 ; Structure of Galectin-3 CRD in complex with compound 1 5NF9 ; 1.87 ; Structure of Galectin-3 CRD in complex with compound 2 5NFA ; 1.59 ; Structure of Galectin-3 CRD in complex with compound 3 5NFB ; 1.59 ; Structure of Galectin-3 CRD in complex with compound 4 5NFC ; 1.59 ; Structure of Galectin-3 CRD in complex with glycerol 6Y78 ; 1.7 ; Structure of galectin-3C in complex with lactose determined by serial crystallography using a silicon nitride membrane support 6Y4C ; 1.7 ; Structure of galectin-3C in complex with lactose determined by serial crystallography using an XtalTool support 4PER ; 1.92 ; Structure of Gallus gallus ribonuclease inhibitor complexed with Gallus gallus ribonuclease I 3GCT ; 1.6 ; STRUCTURE OF GAMMA-*CHYMOTRYPSIN IN THE RANGE $P*H 2.0 TO $P*H 10.5 SUGGESTS THAT GAMMA-CHYMOTRYPSIN IS A COVALENT ACYL-ENZYME ADDUCT AT LOW $P*H 1SFF ; 1.9 ; Structure of gamma-aminobutyrate aminotransferase complex with aminooxyacetate 2GCT ; 1.8 ; STRUCTURE OF GAMMA-CHYMOTRYPSIN IN THE RANGE PH 2.0 TO PH 10.5 SUGGESTS THAT GAMMA-CHYMOTRYPSIN IS A COVALENT ACYL-ENZYME ADDUCT AT LOW PH 1L9X ; 1.6 ; Structure of gamma-Glutamyl Hydrolase 6V5V ; 3.8 ; Structure of gamma-tubulin in the native human gamma-tubulin ring complex 5FM1 ; 8.0 ; Structure of gamma-tubulin small complex based on a cryo-EM map, chemical cross-links, and a remotely related structure 4ZEP ; 2.21 ; Structure of Gan1D, a 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-glucose 4ZE4 ; 1.92 ; Structure of Gan1D, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus 4ZEN ; 1.93 ; Structure of Gan1D, a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus, in complex with 6-phospho-beta-galactose 4ZFM ; 1.4 ; Structure of Gan1D-E170Q in complex with cellobiose-6-phosphate 4ZE5 ; 1.48 ; Structure of Gan1D-E170Q, a catalytic mutant of a putative 6-phospho-beta-galactosidase from Geobacillus stearothermophilus 3AJI ; 2.05 ; Structure of Gankyrin-S6ATPase photo-cross-linked site-specifically, and incoporated by genetic code expansion 3KTZ ; 1.6 ; Structure of GAP31 3KU0 ; 1.9 ; Structure of GAP31 with adenine at its binding pocket 3PYM ; 2.0 ; Structure of GAPDH 3 from S.cerevisiae at 2.0 A resolution 8PVF ; 2.9 ; Structure of GAPDH determined by cryoEM at 100 keV 8BR4 ; 3.29 ; Structure of GAPDH from Mycobacterium tuberculosis 3ZCX ; 2.19 ; Structure of GAPDH from Thermosynechococcus elongatus 4BOY ; 2.15 ; Structure of GAPDH from Thermosynechococcus elongatus 3ZDF ; 2.34 ; Structure of GAPDH with CP12 peptide from Thermosynechococcus elongatus 5X57 ; 1.45 ; Structure of GAR domain of ACF7 6GFF ; 3.1 ; Structure of GARP (LRRC32) in complex with latent TGF-beta1 and MHG-8 Fab 4LMY ; 1.6 ; Structure of GAS PerR-Zn-Zn 1ZQ1 ; 3.0 ; Structure of GatDE tRNA-Dependent Amidotransferase from Pyrococcus abyssi 5G47 ; 2.45 ; Structure of Gc glycoprotein from severe fever with thrombocytopenia syndrome virus in the trimeric postfusion conformation 6V6C ; 4.5 ; Structure of GCP6 in the native human gamma-tubulin ring complex 2Y0F ; 2.5 ; STRUCTURE OF GCPE (IspG) FROM THERMUS THERMOPHILUS HB27 8EXZ ; 2.82 ; Structure of GDAP1 containing CMT mutant T157P 7MRZ ; 3.0 ; Structure of GDF11 bound to fused ActRIIB-ECD and Alk4-ECD with Anti-ActRIIB Fab fragment 5A9X ; 3.8 ; Structure of GDP bound BipA 5A9W ; 3.7 ; Structure of GDPCP BipA 7XGR ; 2.6 ; Structure of Gemin5 C-terminal region (protomer) 1Y8A ; 1.4 ; Structure of gene product AF1437 from Archaeoglobus fulgidus 4H9V ; 1.971 ; Structure of Geobacillus kaustophilus lactonase, mutant E101G/R230C with Zn2+ 4H9X ; 2.201 ; Structure of Geobacillus kaustophilus lactonase, mutant E101G/R230C/D266N with Zn2+ and bound N-butyryl-DL-homoserine lactone 4H9T ; 2.097 ; Structure of Geobacillus kaustophilus lactonase, mutant E101N with bound N-butyryl-DL-homoserine lactone 4H9Z ; 2.6 ; Structure of Geobacillus kaustophilus lactonase, mutant E101N with Mn2+ 4H9Y ; 2.085 ; Structure of Geobacillus kaustophilus lactonase, mutant E101N with Zn2+ 4HA0 ; 1.902 ; Structure of Geobacillus kaustophilus lactonase, mutant R230D with Zn2+ 4H9U ; 2.099 ; Structure of Geobacillus kaustophilus lactonase, wild-type with Zn2+ 6JSU ; 1.8 ; Structure of Geobacillus kaustophilus lactonase, Y99C/D266N double mutant 6JSS ; 2.16 ; Structure of Geobacillus kaustophilus lactonase, Y99P mutant 6JST ; 1.726 ; Structure of Geobacillus kaustophilus lactonase, Y99P/D266N double mutant with bound 3-oxo-C8-HSL 7NA0 ; 1.9 ; Structure of Geobacter sulfurreducens proline utilization A (PutA) variant A206W 4PD1 ; 1.975 ; Structure of gephyrin E domain with Glycine-beta receptor peptide 4XVU ; 2.35 ; Structure of Get3 bound to the transmembrane domain of Nyv1 4XTR ; 2.05 ; Structure of Get3 bound to the transmembrane domain of Pep12 4XWO ; 2.75 ; Structure of Get3 bound to the transmembrane domain of Sec22 8ELF ; 2.0 ; Structure of Get3d, a homolog of Get3, from Arabidopsis thaliana 3P42 ; 1.91 ; Structure of GfcC (YmcB), protein encoded by the E. coli group 4 capsule operon 6GO8 ; 1.648 ; Structure of GFPmut2 crystallized at pH 6 6GO9 ; 1.672 ; Structure of GFPmut2 crystallized at pH 6 and transferred to pH 7 6GRM ; 2.3 ; Structure of GFPmut2 crystallized at pH 6 and transferred to pH 9 6GQG ; 1.792 ; Structure of GFPmut2 crystallized at pH 8.5 6GQH ; 2.4 ; Structure of GFPmut2 crystallized at pH 8.5 and transferred to pH 6 6B9O ; 1.841 ; Structure of GH 38 Jack Bean alpha-mannosidase 6B9P ; 1.996 ; Structure of GH 38 Jack Bean alpha-mannosidase in complex with a 36-valent iminosugar cluster inhibitor 8J5L ; 2.095 ; Structure of GH1 Br2 beta-glucosidase E163Q mutant from bovine rumen metagenome 8J5M ; 1.621 ; Structure of GH1 Br2 beta-glucosidase E350G mutant from bovine rumen metagenome 8J3M ; 1.999 ; Structure of GH1 Br2 beta-glucosidase from bovine rumen metagenome 4W8L ; 1.76 ; Structure of GH10 from Paenibacillus barcinonensis 5YLH ; 2.29 ; Structure of GH113 beta-1,4-mannanase 5YLL ; 1.81 ; Structure of GH113 beta-1,4-mannanase complex with M6. 6NUN ; 1.87 ; Structure of GH32 hydrolase from Bifidobacterium adolescentis in complex with frutose 5M1I ; 1.55 ; Structure of GH36 alpha-galactosidase from Thermotoga maritima in a covalent complex with a cyclopropyl carbasugar. 5M16 ; 1.62 ; Structure of GH36 alpha-galactosidase from Thermotoga maritima in complex with a hydrolysed cyclopropyl carbasugar. 5M12 ; 1.53 ; Structure of GH36 alpha-galactosidase from Thermotoga maritima in complex with intact cyclopropyl-carbasugar. 8HCJ ; 2.566 ; Structure of GH43 family enzyme, Xylan 1, 4 Beta- xylosidase from pseudopedobacter saltans 5ABE ; 2.0 ; Structure of GH84 with ligand 5ABF ; 2.1 ; Structure of GH84 with ligand 5ABG ; 2.0 ; Structure of GH84 with ligand 5ABH ; 1.95 ; Structure of GH84 with ligand 3KZF ; 3.0 ; Structure of Giardia Carbamate Kinase 2QVW ; 3.0 ; Structure of Giardia Dicer refined against twinned data 3GAK ; 2.9 ; Structure of Giardia fructose-1,6-biphosphate aldolase 3GB6 ; 2.0 ; Structure of Giardia fructose-1,6-biphosphate aldolase D83A mutant in complex with fructose-1,6-bisphosphate 3OHI ; 2.3 ; Structure of Giardia fructose-1,6-biphosphate aldolase in complex with 3-hydroxy-2-pyridone 2ISV ; 2.3 ; Structure of Giardia fructose-1,6-biphosphate aldolase in complex with phosphoglycolohydroxamate 2ISW ; 1.75 ; Structure of Giardia fructose-1,6-biphosphate aldolase in complex with phosphoglycolohydroxamate 3GAY ; 1.8 ; Structure of Giardia fructose-1,6-biphosphate aldolase in complex with tagatose-1,6-biphosphate 8EN2 ; 1.85 ; Structure of GII.10 norovirus in complex with Nanobody 34 8EMZ ; 1.4 ; Structure of GII.17 norovirus in complex with Nanobody 2 8EN3 ; 2.1 ; Structure of GII.17 norovirus in complex with Nanobody 45 8EN0 ; 2.99 ; Structure of GII.17 norovirus in complex with Nanobody 7 8EN1 ; 2.4 ; Structure of GII.4 norovirus in complex with Nanobody 30 8EN4 ; 2.3 ; Structure of GII.4 norovirus in complex with Nanobody 53 8EN5 ; 1.6 ; Structure of GII.4 norovirus in complex with Nanobody 56 8EN6 ; 1.6 ; Structure of GII.4 norovirus in complex with Nanobody 76 8EMY ; 1.7 ; Structure of GII.4 norovirus in complex with Nanobody 82 7JIE ; 2.254 ; Structure of GII.4 P-domain in Complex with NORO-320 FAB 2EEY ; 1.94 ; Structure of GK0241 protein from Geobacillus kaustophilus 6K59 ; ; Structure of Glargine insulin in 20% acetic acid-d4 (pH 1.9) 5JNB ; 2.486 ; structure of GLD-2/RNP-8 complex 5ZXL ; 2.794 ; Structure of GldA from E.coli 6YS8 ; 3.9 ; Structure of GldLM, the proton-powered motor that drives protein transport and gliding motility 7SAZ ; 3.0 ; Structure of GldLM, the proton-powered motor that drives Type IX protein secretion and gliding motility in Capnocytophaga canimorsus 7SAU ; 3.0 ; Structure of GldLM, the proton-powered motor that drives Type IX protein secretion and gliding motility in Schleiferia thermophila 7SAX ; 3.0 ; Structure of GldLM, the proton-powered motor that drives Type IX protein secretion and gliding motility in Sphingobacterium wenxiniae 1J3W ; 1.5 ; Structure of Gliding protein-mglB from Thermus Thermophilus HB8 2J9C ; 1.3 ; Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake 2J9D ; 2.1 ; Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake 2J9E ; 1.62 ; Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake 4R4E ; 2.57 ; Structure of GlnR-DNA complex 2JHH ; 1.7 ; Structure of globular heads of M-ficolin at acidic pH 2JHM ; 1.52 ; Structure of globular heads of M-ficolin at neutral pH 2JHI ; 1.8 ; Structure of globular heads of M-ficolin complexed with N-acetyl-D- galactosamine 2JHK ; 1.75 ; Structure of globular heads of M-ficolin complexed with N-acetyl-D- glucosamine 2JHL ; 1.75 ; Structure of globular heads of M-ficolin complexed with sialic acid 4JW0 ; 1.7 ; Structure of Gloeobacter violaceus CcmL 2XOW ; 2.09 ; Structure of GlpG in complex with a mechanism-based isocoumarin inhibitor 1P3E ; 1.72 ; Structure of Glu endopeptidase in complex with MPD 6HCA ; 1.882 ; STRUCTURE OF GLUA2 LIGAND-BINDING DOMAIN (S1S1J) IN COMPLEX WITH POSITIVE ALLOSTERIC MODULATOR TDPAM02 AT 1.8 A RESOLUTION 6Q54 ; 1.4 ; Structure of GluA2 ligand-binding domain (S1S2J) in complex with the agonist (S)-2-Amino-3-(1-ethyl-4-hydroxy-1H-1,2,3-triazol-5-yl)propanoic acid at 1.4 A resolution 6Q60 ; 1.55 ; Structure of GluA2 ligand-binding domain (S1S2J) in complex with the agonist (S)-2-Amino-3-(2-methyl-5-hydroxy-2H-1,2,3-triazol-4-yl)propanoic acid at 1.55 A resolution 6HCH ; 1.6 ; STRUCTURE OF GLUA2 LIGAND-BINDING DOMAIN (S1S2J-L504Y-N775S) IN COMPLEX WITH GLUTAMATE AND TDPAM01 AT 1.6 A RESOLUTION. 6HC9 ; 2.4 ; STRUCTURE OF GLUA2 LIGAND-BINDING DOMAIN (S1S2J-L504Y-N775S) IN COMPLEX WITH GLUTAMATE AND TDPAM02 AT 2.4 A RESOLUTION. 6HCB ; 1.9 ; STRUCTURE OF GLUA2 LIGAND-BINDING DOMAIN (S1S2J-N775S) IN COMPLEX WITH GLUTAMATE AND TDPAM01 AT 1.9 A RESOLUTION. 6HCC ; 1.617 ; STRUCTURE OF GLUA2 LIGAND-BINDING DOMAIN (S1S2J-N775S) IN COMPLEX WITH GLUTAMATE AND TDPAM02 AT 1.6 A RESOLUTION. 4U4G ; 4.49 ; Structure of GluA2* in complex with competitive antagonist ZK 200775 4U4F ; 4.79 ; Structure of GluA2* in complex with partial agonist (S)-5-Nitrowillardiine 4H8J ; 1.8 ; Structure of GluA2-LBD in complex with MES 6GIV ; 1.75 ; Structure of GluA2-N775S ligand-binding domain (S1S2J) in complex with glutamate and Rubidium Bromide at 1.75 A resolution 6RUQ ; 4.65 ; Structure of GluA2cryst in complex the antagonist ZK200775 and the negative allosteric modulator GYKI53655 at 4.65 A resolution 6GL4 ; 1.948 ; Structure of GluA2o ligand-binding domain (S1S2J) in complex with glutamate and sodium bromide at 1.95 A resolution 4AIE ; 2.05 ; Structure of glucan-1,6-alpha-glucosidase from Lactobacillus acidophilus NCFM 3FF1 ; 1.65 ; Structure of Glucose 6-phosphate Isomerase from Staphylococcus aureus 1O1H ; 1.4 ; STRUCTURE OF GLUCOSE ISOMERASE DERIVATIZED WITH KR. 5M2V ; 3.18 ; Structure of GluK1 ligand-binding domain (S1S2) in complex with (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid at 3.18 A resolution 4QF9 ; 2.28 ; Structure of GluK1 ligand-binding domain (S1S2) in complex with (S)-2-amino-4-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-6-yl)butanoic acid at 2.28 A resolution 5NF5 ; 2.85 ; Structure of GluK1 ligand-binding domain (S1S2) in complex with CIP-AS at 2.85 A resolution 5NEB ; 2.05 ; Structure of GluK1 ligand-binding domain (S1S2) in complex with LM-12b at 2.05 A resolution 6SBT ; 2.3 ; Structure of GluK1 ligand-binding domain (S1S2) in complex with N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl benzamide at 2.3 A resolution 6FZ4 ; 1.85 ; Structure of GluK1 ligand-binding domain in complex with N-(7-fluoro-2,3-dioxo-6-(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl)-2-hydroxybenzamide at 1.85 A resolution 4H8I ; 2.0 ; Structure of GluK2-LBD in complex with GluAzo 5NF6 ; 2.55 ; Structure of GluK3 ligand-binding domain (S1S2) in complex with CIP-AS at 2.55 A resolution 5O4F ; 2.1 ; Structure of GluK3 ligand-binding domain (S1S2) in complex with the agonist LM-12b at 2.10 A resolution 7YFO ; 6.4 ; Structure of GluN1a E698C-GluN2D NMDA receptor in cystines crosslinked state. 7YFR ; 5.1 ; Structure of GluN1a E698C-GluN2D NMDA receptor in cystines non-crosslinked state. 7YFF ; 3.6 ; Structure of GluN1a-GluN2D NMDA receptor in complex with agonist glycine and competitive antagonist CPP. 7YFL ; 3.9 ; Structure of GluN1a-GluN2D NMDA receptor in complex with agonists glycine and glutamate. 7YFM ; 5.1 ; Structure of GluN1b-GluN2D NMDA receptor in complex with agonists glycine and glutamate. 1GTM ; 2.2 ; STRUCTURE OF GLUTAMATE DEHYDROGENASE 3ETD ; 2.5 ; Structure of glutamate dehydrogenase complexed with bithionol 6H9F ; 2.1 ; Structure of glutamate mutase reconstituted with bishomo-coenzyme B12 6H9E ; 1.82 ; Structure of glutamate mutase reconstituted with homo-coenzyme B12 7LZ0 ; 2.29 ; Structure of glutamate receptor-like channel GLR3.4 ligand-binding domain in complex with glutamate 7LZ2 ; 1.5 ; Structure of glutamate receptor-like channel GLR3.4 ligand-binding domain in complex with methionine 7LZ1 ; 1.51 ; Structure of glutamate receptor-like channel GLR3.4 ligand-binding domain in complex with serine 1XFH ; 3.5 ; Structure of glutamate transporter homolog from Pyrococcus horikoshii 6XWR ; 3.22 ; Structure of glutamate transporter homologue GltTk in sodium only condition 6XWN ; 3.47 ; Structure of glutamate transporter homologue GltTk in the presence of TBOA inhibitor 6XWQ ; 3.41 ; Structure of glutamate transporter homologue GltTk in the saturated conditions 6XWO ; 3.39 ; Structure of glutamate transporter homologue GltTk in the unsaturated conditions - inward-inward-outward configuration 6XWP ; 3.38 ; Structure of glutamate transporter homologue GltTk in unsaturated conditions - outward-outward-inward configuration 7NGH ; 3.5 ; Structure of glutamate transporter homologue in complex with Sybody 4DJI ; 3.187 ; Structure of glutamate-GABA antiporter GadC 4DJK ; 3.097 ; Structure of glutamate-GABA antiporter GadC 3MDN ; 2.09 ; Structure of glutamine aminotransferase class-II domain protein (SPO2029) from silicibacter pomeroyi 5KHA ; 2.1 ; Structure of glutamine-dependent NAD+ synthetase from Acinetobacter baumannii in complex with adenosine diphosphate (ADP) 5H4V ; 3.0 ; Structure of glutamyl-tRNA synthetase (Xoo1504) from Xanthomonas oryzae pv. oryzae 3PNY ; 1.7 ; Structure of Glutamyl-tRNA synthetase from Mycobacterium tuberculosis in space group P21 8CDF ; 1.77 ; Structure of glutarate hydroxylase (GlaH) from Escherichia coli at a resolution of 1.8 angstrom obtained as a contaminant during routine use of E. coli as an expression host 2RAB ; 2.5 ; Structure of glutathione amide reductase from Chromatium gracile in complex with NAD 1GNW ; 2.2 ; STRUCTURE OF GLUTATHIONE S-TRANSFERASE 1AW9 ; 2.2 ; STRUCTURE OF GLUTATHIONE S-TRANSFERASE III IN APO FORM 3PR8 ; 1.8 ; Structure of Glutathione S-transferase(PP0183) from Pseudomonas putida in complex with GSH 1AXD ; 2.5 ; STRUCTURE OF GLUTATHIONE S-TRANSFERASE-I BOUND WITH THE LIGAND LACTOYLGLUTATHIONE 1GSA ; 2.0 ; STRUCTURE OF GLUTATHIONE SYNTHETASE COMPLEXED WITH ADP AND GLUTATHIONE 2OAD ; 2.5 ; Structure of Glutathione-S-Transferase C169A Mutant 2CAI ; 2.26 ; Structure of Glutathione-S-Transferase mutant, R21L, from Schistosoma Haematobium 7U4S ; 2.68 ; Structure of Glyceraldehyde-3-Phosphate Dehydrogenase from Candida albicans 8DE5 ; 2.02 ; Structure of glyceraldehyde-3-phosphate dehydrogenase from Paracoccidioides lutzii 5XN8 ; 2.33 ; Structure of glycerol dehydrogenase crystallised as a contaminant 1TXG ; 1.7 ; Structure of glycerol-3-phosphate dehydrogenase from Archaeoglobus fulgidus 4FGW ; 2.45 ; Structure of Glycerol-3-Phosphate Dehydrogenase, GPD1, from Sacharomyces Cerevisiae 5FB3 ; 2.45 ; Structure of glycerophosphate dehydrogenase in complex with NADPH 8YK5 ; 2.1 ; Structure of glycerophosphoethanolamine ethanolaminephosphodiesterase from Streptomyces sanglieri 6KHR ; 2.786 ; Structure of glycinamide-RNase-transformylase T from Mycobacterium tuberculosis 1NBH ; 2.8 ; Structure of glycine N-methyltransferase complexed with S-adenosylmethionine and acetate, GNMT:SAM:Ace 1RYI ; 1.8 ; STRUCTURE OF GLYCINE OXIDASE WITH BOUND INHIBITOR GLYCOLATE 6EER ; 1.82 ; Structure of glycine-bound GoxA from Pseudoalteromonas luteoviolacea 6XHC ; 1.6 ; Structure of glycinyl 5'-O-adenosine phosphoramidate 2KUY ; ; Structure of Glycocin F 2BIS ; 2.8 ; Structure of glycogen synthase from Pyrococcus abyssi 3PUP ; 2.99 ; Structure of Glycogen Synthase Kinase 3 beta (GSK3B) in complex with a ruthenium octasporine ligand (OS1) 1I09 ; 2.7 ; STRUCTURE OF GLYCOGEN SYNTHASE KINASE-3 (GSK3B) 1ZCT ; 2.6 ; structure of glycogenin truncated at residue 270 in a complex with UDP 5ZBM ; 2.8 ; Structure of glycolate oxidase containing FMN from Nicotiana benthamiana 5ZBN ; 2.32 ; Structure of glycolate oxidase without FMN from Nicotiana benthamiana 6C69 ; 1.937 ; Structure of glycolipid aGSA[12,6P] in complex with mouse CD1d 6C6A ; 2.45 ; Structure of glycolipid aGSA[16,6P] in complex with mouse CD1d 6C6C ; 2.08 ; Structure of glycolipid aGSA[20,6P] in complex with mouse CD1d 6C6E ; 2.18 ; Structure of glycolipid aGSA[26,6P] in complex with mouse CD1d 6C6F ; 1.67 ; Structure of glycolipid aGSA[26,P5p] in complex with mouse CD1d 6C5M ; 2.45 ; Structure of glycolipid aGSA[8,9] in complex with mouse CD1d 6C6H ; 2.0 ; Structure of glycolipid aGSA[8,P5m] in complex with mouse CD1d 6C6J ; 1.79 ; Structure of glycolipid aGSA[8,P5p] in complex with mouse CD1d 6OJP ; 2.17 ; Structure of glycolipid alpha-GSA[8,6P] in complex with mouse CD1d 1GWB ; 2.8 ; STRUCTURE OF GLYCOPROTEIN 1B 5ZS0 ; 3.29 ; Structure of glycoprotein B Domain IV of pseudorabies virus with 7B11 antibody 6NOB ; 2.44 ; Structure of Glycoside Hydrolase family 32 from Bifidobacterium adolescentis 2X0N ; 3.2 ; Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data 1K3T ; 1.95 ; Structure of Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase from Trypanosoma cruzi Complexed with Chalepin, a Coumarin Derivative Inhibitor 3IDS ; 1.8 ; Structure of Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase from Trypanosoma cruzi in complex with the irreversible iodoacetamide inhibitor 3DMT ; 2.3 ; Structure of Glycosomal Glyceraldehyde-3-Phosphate Dehydrogenase from Trypanosoma cruzi in complex with the irreversible iodoacetate inhibitor 4E9H ; 3.0 ; structure of glycosylase domain of MBD4 bound to 5hmU containing DNA 4F9U ; 1.8 ; Structure of glycosylated glutaminyl cyclase from Drosophila melanogaster 5LHD ; 2.6 ; Structure of glycosylated human aminopeptidase N 3SI0 ; 2.1 ; Structure of glycosylated human glutaminyl cyclase 8DGG ; 3.78 ; Structure of glycosylated LAG-3 homodimer 3SI1 ; 2.9 ; Structure of glycosylated murine glutaminyl cyclase 3SI2 ; 1.8 ; Structure of glycosylated murine glutaminyl cyclase in presence of the inhibitor PQ50 (PDBD150) 5HNS ; 2.45 ; Structure of glycosylated NPC1 luminal domain C 8IXQ ; 2.1 ; Structure of glycosyltransferase LmbT in complex with GDP and ergothioneine 3DOJ ; 2.101 ; Structure of Glyoxylate reductase 1 from Arabidopsis (AtGLYR1) 6U9U ; 2.26 ; Structure of GM9_TH8seq732127 FAB 1YJP ; 1.8 ; Structure of GNNQQNY from yeast prion Sup35 5K2G ; 1.1 ; Structure of GNNQQNY from yeast prion Sup35 in space group P21 determined by MicroED 5K2H ; 1.05 ; Structure of GNNQQNY from yeast prion Sup35 in space group P212121 determined by MicroED 8FFT ; 2.1 ; Structure of GntC, a PLP-dependent enzyme catalyzing L-enduracididine biosynthesis from (S)-4-hydroxy-L-arginine 8FFU ; 2.04 ; Structure of GntC, a PLP-dependent enzyme catalyzing L-enduracididine biosynthesis from (S)-4-hydroxy-L-arginine, with the substrate bound 5WYE ; ; Structure of gold nano particle-tagged VG16KRKP in Salmonella typhi LPS 6Y66 ; 1.95 ; Structure of Goose Hemorrhagic Polyomavirus VP1 in complex with 2-O-Methyl-5-N-acetyl-alpha-D-neuraminic acid 6BYW ; 2.05 ; Structure of GoxA from Pseudoalteromonas luteoviolacea 6HHK ; 2.38 ; Structure of gp105 of Listeria bacteriophage A511 6L1Y ; 2.469 ; structure of gp120/CD4 with a non-canonical surface 3VGX ; 1.74 ; Structure of gp41 T21/Cp621-652 2LP7 ; ; Structure of gp41-M-MAT, a membrane associated MPER trimer from HIV-1 gp41. 3J4A ; 12.0 ; Structure of gp8 connector protein 8HMV ; 2.91 ; Structure of GPR21-Gs complex 8K4N ; 2.83 ; Structure of GPR34-Gi complex 7DR2 ; 3.8 ; Structure of GraFix PSI tetramer from Cyanophora paradoxa 7XSP ; 2.89 ; Structure of gRAMP-target RNA 3FZZ ; 2.5 ; Structure of GrC 3G01 ; 2.5 ; Structure of GrC mutant E192R/E193G 3LYN ; 1.7 ; STRUCTURE OF GREEN ABALONE LYSIN DIMER 1GFL ; 1.9 ; STRUCTURE OF GREEN FLUORESCENT PROTEIN 3T15 ; 2.95 ; Structure of green-type Rubisco activase from tobacco 3PEL ; 1.9 ; Structure of Greyhound Hemoglobin: Origin of High Oxygen Affinity 4KT5 ; 2.7 ; Structure of GrlR-GrlA complex 3E3C ; 2.5 ; Structure of GrlR-lipid complex 8BL2 ; 2.3 ; Structure of GroEL-ATP complex plunge frozen 200 ms after reaction initiation 8BMD ; 2.8 ; Structure of GroEL-ATP complex under continuous turnover conditions 8BL7 ; 4.4 ; Structure of GroEL-nucleotide complex in ADP-like conformation plunged 13 ms after mixing with ATP 8BLE ; 4.0 ; Structure of GroEL-nucleotide complex in ADP-like conformation plunged 50 ms after mixing with ATP 8BMO ; 3.4 ; Structure of GroEL:GroES complex exhibiting ADP-conformation in trans ring obtained under the continuous turnover conditions 8BM0 ; 3.4 ; Structure of GroEL:GroES-ATP complex plunge frozen 200 ms after reaction initiation 8BMT ; 2.5 ; Structure of GroEL:GroES-ATP complex plunge frozen 200 ms after reaction initiation 8BM1 ; 2.7 ; Structure of GroEL:GroES-ATP complex under continuous turnover conditions 1KGB ; 1.65 ; structure of ground-state bacteriorhodopsin 3C9L ; 2.646 ; Structure of ground-state bovine rhodospin in a hexagonal crystal form 3ZLH ; 2.9 ; Structure of group A Streptococcal enolase 3ZLF ; 2.15 ; Structure of group A Streptococcal enolase K312A mutant 3ZLG ; 2.1 ; Structure of group A Streptococcal enolase K362A mutant 6ASQ ; 2.35 ; Structure of Grp94 bound to methyl 2-[2-(2-benzylpyridin-3-yl)ethyl]-3-chloro-4,6-dihydroxybenzoate, a pan-Hsp90 inhibitor 5ULS ; 2.622 ; Structure of GRP94 in the active conformation 5WMT ; 2.748 ; Structure of GRP94 N-terminal Domain bound to resorcinylic inhibitor BnIm. 6C91 ; 2.895 ; Structure of GRP94 with a resorcinylic inhibitor. 6BAW ; 2.703 ; Structure of GRP94 with a selective resorcinylic inhibitor. 6ASP ; 2.696 ; Structure of Grp94 with methyl 3-chloro-2-(2-(1-(2-ethoxybenzyl)-1 H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate, a Grp94-selective inhibitor and promising therapeutic lead for treating myocilin-associated glaucoma 4S0R ; 3.5 ; Structure of GS-TnrA complex 3LGO ; 2.85 ; Structure of Gse1p, member of the GSE/EGO complex 8IYW ; 3.45 ; Structure of GSK256073-GPR109A-G-protein complex 4E7W ; 3.3 ; Structure of GSK3 from Ustilago maydis 2RQG ; ; Structure of GSPT1/ERF3A-PABC 2RQH ; ; Structure of GSPT1/ERF3A-PABC 5UEH ; 2.0 ; Structure of GSTO1 covalently conjugated to quinolinic acid fluorosulfate 1XUE ; ; STRUCTURE OF GTGGAATGCAATGGAAC HAIRPIN, NMR, 10 STRUCTURES 7UYQ ; 2.57 ; Structure of GTP binds to Cyclic GMP AMP synthase (cGAS) through Mg coordination 1WUR ; 1.82 ; Structure of GTP cyclohydrolase I Complexed with 8-oxo-dGTP 1WUQ ; 2.0 ; Structure of GTP cyclohydrolase I Complexed with 8-oxo-GTP 1WM9 ; 2.2 ; Structure of GTP cyclohydrolase I from Thermus thermophilus HB8 1GIT ; 2.6 ; STRUCTURE OF GTP-BINDING PROTEIN 3LAW ; 2.8 ; Structure of GTP-bound L129F mutant Rab7 1Z0J ; 1.32 ; Structure of GTP-Bound Rab22Q64L GTPase in complex with the minimal Rab binding domain of Rabenosyn-5 1Z0K ; 1.92 ; Structure of GTP-Bound Rab4Q67L GTPase in complex with the central Rab binding domain of Rabenosyn-5 6N0B ; 1.739 ; Structure of GTPase Domain of Human Septin 7 at High Resolution 6N12 ; 2.23 ; Structure of GTPase Domain of Human Septin 7 at High Resolution 6QWQ ; 1.9 ; Structure of gtPebB 6QX6 ; 1.65 ; Structure of gtPebB-dihydrobiliverdin complex 1HOO ; 2.3 ; STRUCTURE OF GUANINE NUCLEOTIDE (GPPCP) COMPLEX OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI AT PH 6.5 AND 25 DEGREES CELSIUS 1HON ; 2.3 ; STRUCTURE OF GUANINE NUCLEOTIDE (GPPCP) COMPLEX OF ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI AT PH 6.5 AND 25 DEGREE CELSIUS 1HOP ; 2.3 ; STRUCTURE OF GUANINE NUCLEOTIDE (GPPCP) COMPLEX OF ADENYLOSUCCINATE SYNTHETASE FROM ESCHERICHIA COLI AT PH 6.5 AND 25 DEGREES CELSIUS 6UC7 ; 1.798 ; Structure of guanine riboswitch bound to N2-acetyl guanine 3TR0 ; 1.851 ; Structure of guanylate kinase (gmk) from Coxiella burnetii 1CKN ; 2.5 ; STRUCTURE OF GUANYLYLATED MRNA CAPPING ENZYME COMPLEXED WITH GTP 8DCG ; 2.35 ; Structure of guanylylated RNA ligase RtcB from Pyrococcus horikoshii 4YKB ; 3.5 ; Structure of GUN4 from Chlamydomonas reinhardtii 1Z3X ; 1.5 ; Structure of Gun4 from Thermosynechococcus elongatus 1Z3Y ; 1.7 ; Structure of Gun4-1 from Thermosynechococcus elongatus 5MZM ; 2.4 ; Structure of H-2Db in complex with TEIPP APL Trh4 p3P 6GB7 ; 2.15 ; Structure of H-2Db with scoop loop from tapasin 6GB5 ; 2.3 ; Structure of H-2Db with truncated SEV peptide and GL 6GB6 ; 1.78 ; Structure of H-2Kb with dipeptide GL 2E9N ; 2.5 ; Structure of h-CHK1 complexed with A767085 2E9P ; 2.6 ; Structure of h-CHK1 complexed with A771129 2E9U ; 2.0 ; Structure of h-CHK1 complexed with A780125 2E9V ; 2.0 ; Structure of h-CHK1 complexed with A859017 2E9O ; 2.1 ; Structure of h-CHK1 complexed with AA582939 3B50 ; 1.4 ; Structure of H. influenzae sialic acid binding protein bound to Neu5Ac. 6FAQ ; 1.95 ; Structure of H. salinarum RosR (vng0258) grown from KBr 6FDH ; 1.85 ; Structure of H. salinarum RosR (vng0258) grown from KCl 6EZ1 ; 1.75004 ; Structure of h. salinarum RosR (vng0258) grown from NaBr 6F5C ; 1.55 ; Structure of h. salinarum RosR (vng0258) grown from NaCl 6GME ; 1.802 ; Structure of H. sapiens SPT6 tandem SH2 domain 3LWV ; 2.499 ; Structure of H/ACA RNP bound to a substrate RNA containing 2'-deoxyuridine 3LWQ ; 2.678 ; Structure of H/ACA RNP bound to a substrate RNA containing 3MU 3LWR ; 2.203 ; Structure of H/ACA RNP bound to a substrate RNA containing 4SU 3LWP ; 2.5 ; Structure of H/ACA RNP bound to a substrate RNA containing 5BrdU 3LWO ; 2.855 ; Structure of H/ACA RNP bound to a substrate RNA containing 5BrU 6FYT ; 2.8 ; Structure of H1 (A/solomon Islands/3/06) Influenza Hemagglutinin in complex with SD38 2WRG ; 3.0 ; structure of H1 1918 hemagglutinin with human receptor 2WRH ; 3.0 ; structure of H1 duck albert hemagglutinin with human receptor 7SCO ; 3.37 ; Structure of H1 influenza hemagglutinin bound to Fab 310-39G10 7SCN ; 3.02 ; Structure of H1 NC99 influenza hemagglutinin bound to Fab 310-63E6 4QY0 ; 2.47 ; Structure of H10 from human-infecting H10N8 4QY1 ; 2.594 ; Structure of H10 from human-infecting H10N8 in complex with avian receptor 4QY2 ; 2.399 ; Structure of H10 from human-infecting H10N8 virus in complex with human receptor analog 4X08 ; 1.34 ; Structure of H128N/ECP mutant in complex with sulphate anions at 1.34 Angstroms. 7V7X ; 2.7 ; Structure of H194A AdaV 2WRF ; 3.1 ; structure of H2 avian jena hemagglutinin with human receptor 2WRD ; 3.0 ; structure of H2 japan hemagglutinin 2WRE ; 3.001 ; structure of H2 japan hemagglutinin with human receptor 4UEW ; 2.08 ; Structure of H2-treated anaerobically purified D. fructosovorans NiFe- hydrogenase 5BWG ; 1.75 ; Structure of H200C variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.75 Ang resolution 5BWH ; 1.46 ; Structure of H200C variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.46 Ang resolution 4Z6L ; 1.65 ; Structure of H200E variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.65 Ang resolution 4Z6U ; 1.48 ; Structure of H200E variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-nitrocatechol at 1.48 Ang resolution 4Z6R ; 1.7 ; Structure of H200E variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-sulfonyl catechol at 1.70 Ang resolution 4Z6O ; 1.63 ; Structure of H200E variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.63 Ang resolution 4Z6N ; 1.52 ; Structure of H200N variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.52 Ang resolution 4Z6W ; 1.57 ; Structure of H200N variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-nitrocatechol at 1.57 Ang resolution 4Z6T ; 1.5 ; Structure of H200N variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-sulfonyl catechol at 1.50 Ang resolution 4Z6Q ; 1.57 ; Structure of H200N variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.57 Ang resolution 4Z6M ; 1.35 ; Structure of H200Q variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.35 Ang resolution 4Z6V ; 1.37 ; Structure of H200Q variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-nitrocatechol at 1.37 Ang resolution 4Z6S ; 1.42 ; Structure of H200Q variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-sulfonyl catechol at 1.42 Ang resolution 4Z6P ; 1.75 ; Structure of H200Q variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.75 Ang resolution 4Z1B ; 2.4 ; Structure of H204A mutant KDO8PS from H.pylori 6JN7 ; 2.04 ; Structure of H216A mutant closed form peptidoglycan peptidase 6JN8 ; 2.106 ; Structure of H216A mutant open form peptidoglycan peptidase 6F89 ; 2.81 ; Structure of H234A/Y235A P.abyssi Sua5 6JMZ ; 1.92 ; Structure of H247A mutant open form peptidoglycan peptidase 6JN1 ; 2.382 ; Structure of H247A mutant peptidoglycan peptidase complex with penta peptide 6JN0 ; 2.164 ; Structure of H247A mutant peptidoglycan peptidase complex with tetra-tri peptide 2AAF ; 2.3 ; Structure of H278A arginine deiminase with L-arginine forming a S-alkylthiouronium reaction intermediate 1JSM ; 1.9 ; STRUCTURE OF H5 AVIAN HAEMAGGLUTININ 4GL1 ; 1.5 ; Structure of H64A/N62L/N67L Human Carbonic Anhydrase II triple mutant 6FYU ; 2.643 ; Structure of H7(A/Shanghai/2/2013) Influenza Hemagglutinin in complex SD36 5VE9 ; 2.795 ; Structure of hACF7 EF1-EF2-GAR domains 8TTO ; 2.0 ; Structure of Hachiman anti-defense 1 (Had1) 7LRW ; ; Structure of Hact-2 7LT7 ; ; Structure of Hact-3 7MJ3 ; ; Structure of Hact-4 7LX4 ; ; Structure of Hact-SCRiP1 1COH ; 2.9 ; STRUCTURE OF HAEMOGLOBIN IN THE DEOXY QUATERNARY STATE WITH LIGAND BOUND AT THE ALPHA HAEMS 3IL3 ; 2.7 ; Structure of Haemophilus influenzae FabH 1JJW ; 1.9 ; Structure of Haemophilus influenzae HslV Protein at 1.9 A Resolution 3ZTV ; 1.3 ; Structure of Haemophilus influenzae NAD nucleotidase (NadN) 3ZU0 ; 2.001 ; Structure of Haemophilus influenzae NAD nucleotidase (NadN) 1JMV ; 1.85 ; Structure of Haemophylus influenzae Universal Stress Protein At 1.85A Resolution 5V76 ; 1.55 ; Structure of Haliangium ochraceum BMC-T HO-3341 5DIH ; 2.444 ; Structure of Haliangium ochraceum BMC-T HO-5812 5V75 ; 1.7 ; Structure of Haliangium ochraceum BMC-T HO-5816 1ZMT ; 1.7 ; Structure of haloalcohol dehalogenase HheC of Agrobacterium radiobacter AD1 in complex with (R)-para-nitro styrene oxide, with a water molecule in the halide-binding site 4HZG ; 1.95 ; Structure of haloalkane dehalogenase DhaA from Rhodococcus rhodochrous 3G9X ; 0.95 ; Structure of haloalkane dehalogenase DhaA14 mutant I135F from Rhodococcus rhodochrous 8B5O ; 1.597 ; Structure of haloalkane dehalogenase DmmarA from Mycobacterium marinum at pH 5.5 8B5K ; 1.849 ; Structure of haloalkane dehalogenase DmmarA from Mycobacterium marinum at pH 6.5 3FWH ; 1.22 ; Structure of haloalkane dehalogenase mutant Dha15 (I135F/C176Y) from Rhodococcus rhodochrous 7O3O ; 1.25 ; Structure of haloalkane dehalogenase mutant DhaA80(T148L, G171Q, A172V, C176F) from Rhodococcus rhodochrous with ionic liquid 5FLK ; 0.99 ; Structure of haloalkane dehalogenase variant DhaA101 7O8B ; 1.75 ; Structure of haloalkane dehalogenase variant DhaA80 from Rhodococcus rhodochrous 5VGU ; 1.80719 ; Structure of Halothece sp. PCC 7418 CcmK4 3HJ6 ; 2.8 ; Structure of Halothermothrix orenii fructokinase (FRK) 7DHQ ; 2.7 ; Structure of Halothiobacillus neapolitanus Microcompartments Protein CsoS1D 8VXY ; 3.19 ; Structure of HamA(E138A,K140A)B-plasmid DNA complex from the Escherichia coli Hachiman defense system 8VX9 ; 2.65 ; Structure of HamAB apo complex from the Escherichia coli Hachiman defense system 8VXA ; 2.79 ; Structure of HamB-DNA complex, conformation 1, from the Escherichia coli Hachiman defense system 8VXC ; 2.93 ; Structure of HamB-DNA complex, conformation 2, from the Escherichia coli Hachiman defense system 3ZX6 ; 2.65 ; Structure of Hamp(AF1503)-Tsr fusion - Hamp (A291V) mutant 6Y6P ; 1.938 ; Structure of Hantaan virus envelope glycoprotein Gn 5LJY ; 3.0 ; Structure of hantavirus envelope glycoprotein Gc in complex with scFv A5 5LJZ ; 1.6 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation 5LK0 ; 1.8 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation in presence of 100 mM KCL 5LK1 ; 1.7 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation in presence of 200 mM KCL 5LK2 ; 1.6 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation in presence of 300 mM KCL 5LK3 ; 1.5 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation in presence of 500 mM KCL 5LJX ; 1.4 ; Structure of hantavirus envelope glycoprotein Gc in postfusion conformation in presence of 600 mM KCL 1QP9 ; 2.8 ; STRUCTURE OF HAP1-PC7 COMPLEXED TO THE UAS OF CYC7 8AUP ; 2.17 ; Structure of hARG1 with a novel inhibitor. 3K1R ; 2.3 ; Structure of harmonin NPDZ1 in complex with the SAM-PBM of Sans 4JRU ; 1.2 ; Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins 4L5H ; 1.8 ; Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins 4MBT ; 1.65 ; Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins 7JXZ ; 2.23 ; Structure of HbA with compound (S)-4 7JY1 ; 1.59 ; Structure of HbA with compound 19 7JY3 ; 1.48 ; Structure of HbA with compound 23 (PF-07059013) 7JY0 ; 1.63 ; Structure of HbA with compound 9 3PT8 ; 1.762 ; Structure of HbII-III-CN from Lucina pectinata at pH 5.0 3PT7 ; 2.15 ; Structure of HbII-III-Oxy from Lucina pectinata at pH 5.0 3TPA ; 2.0001 ; Structure of HbpA2 from Haemophilus parasuis 4IWZ ; 1.598 ; structure of hCAII in complex with an acetazolamide derivative 4K1Q ; 1.699 ; Structure of hCAIX mimic (hCAII with 5 mutations in active site) 4K0S ; 1.802 ; Structure of HCAIX mimic (HCAII with 5 mutations in active site) in complex with acetazolamide 4K0T ; 1.78 ; Structure of HCAIX mimic (HCAII with 5 mutations in active site) in complex with chlorzolamide 4K13 ; 1.6 ; Structure of HCAIX mimic (HCAII with 5 mutations in active site) in complex with dorzolamide 4K0Z ; 1.799 ; Structure of HCAIX mimic (HCAII with 5 mutations in active site) in complex with methazolamide 5HUY ; 1.979 ; Structure of HCMV Small Terminase NLS bound to importin alpha 6BDC ; 2.496 ; Structure of Hcp1 from Flavobacterium johnsoniae 3RSJ ; 2.0 ; Structure of HCRF in complex with Ganglioside GD1a 5ERW ; 2.9 ; Structure of HCV E2 glycoprotein antigenic Epitope II bound to the broadly neutralizing antibody HC84-26 3EYD ; 2.3 ; Structure of HCV NS3-4A Protease with an Inhibitor Derived from a Boronic Acid 2QE2 ; 2.9 ; Structure of HCV NS5B Bound to an Anthranilic Acid Inhibitor 2QE5 ; 2.6 ; Structure of HCV NS5B Bound to an Anthranilic Acid Inhibitor 1NS3 ; 2.8 ; STRUCTURE OF HCV PROTEASE (BK STRAIN) 6VMX ; 3.1 ; Structure of HD14 TCR in complex with HLA-B7 presenting an EBV epitope 5G1C ; 1.81 ; Structure of HDAC like protein from Bordetella Alcaligenes bound the photoswitchable pyrazole Inhibitor CEW395 5G3W ; 1.6 ; Structure of HDAC like protein from Bordetella Alcaligenes in complex with the photoswitchable inhibitor CEW65 7ZZP ; 1.52 ; Structure of HDAC2 complexed with an inhibitory ligand 7MOZ ; 1.543 ; Structure of HDAC2 in complex with a macrocyclic inhibitor (compound 25) 7MOS ; 1.704 ; Structure of HDAC2 in complex with a macrocyclic inhibitor (compound 4) 7MOX ; 1.69 ; Structure of HDAC2 in complex with an inhibitor (compound 14) 7MOY ; 1.78 ; Structure of HDAC2 in complex with an inhibitor (compound 19) 7MOT ; 1.54 ; Structure of HDAC2 in complex with an inhibitor (compound 9) 4A69 ; 2.06 ; Structure of HDAC3 bound to corepressor and inositol tetraphosphate 2VQQ ; 1.9 ; Structure of HDAC4 catalytic domain (a double cysteine-to-alanine mutant) bound to a trifluoromethylketone inhbitor 2VQM ; 1.8 ; Structure of HDAC4 catalytic domain bound to a hydroxamic acid inhbitor 2VQJ ; 2.1 ; Structure of HDAC4 catalytic domain bound to a trifluoromethylketone inhbitor 2VQO ; 2.15 ; Structure of HDAC4 catalytic domain with a gain-of-function muation bound to a trifluoromethylketone inhbitor 2VQV ; 3.3 ; Structure of HDAC4 catalytic domain with a gain-of-function mutation bound to a hydroxamic acid inhibitor 8G44 ; 1.55 ; Structure of HDAC6 zinc-finger ubiquitin binding domain in complex with 3-(3-(2-(benzylamino)-2-oxoethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propanoic acid 8G43 ; 1.55 ; Structure of HDAC6 zinc-finger ubiquitin binding domain in complex with 3-(3-(2-(methylamino)-2-oxoethyl)-4-oxo-3,4-dihydroquinazolin-2-yl)propanoic acid 8G45 ; 1.62 ; Structure of HDAC6 zinc-finger ubiquitin binding domain in complex with SGC-UBD253 chemical probe 6CE6 ; 1.6 ; Structure of HDAC6 zinc-finger ubiquitin binding domain soaked with 3,3'-(benzo[1,2-d:5,4-d']bis(thiazole)-2,6-diyl)dipropionic acid 4B6H ; 2.6 ; Structure of hDcp1a in complex with proline rich sequence of PNRC2 3VBG ; 2.8 ; Structure of hDM2 with Dimer Inducing Indolyl Hydantoin RO-2443 3U15 ; 1.8 ; Structure of hDMX with Dimer Inducing Indolyl Hydantoin RO-2443 6TJR ; 1.43 ; Structure of HdrA-like subunit from Hyphomicrobium denitrificans 6IAW ; 3.8 ; Structure of head fiber and inner core protein gp22 of native bacteriophage P68 3FCU ; 2.9 ; Structure of headpiece of integrin aIIBb3 in open conformation 5FPE ; 1.96 ; Structure of heat shock-related 70kDA protein 2 with small-molecule ligand 1H-1,2,4-triazol-3-amine (AT485) in an alternate binding site. 5FPN ; 1.96 ; Structure of heat shock-related 70kDA protein 2 with small-molecule ligand 3,5-dimethyl-1H-pyrazole-4-carboxylic acid (AT9084) in an alternate binding site. 5FPM ; 1.96 ; Structure of heat shock-related 70kDA protein 2 with small-molecule ligand 5-phenyl-1,3,4-oxadiazole-2-thiol (AT809) in an alternate binding site. 5FPD ; 1.97 ; Structure of heat shock-related 70kDA protein 2 with small-molecule ligand pyrazine-2-carboxamide (AT513) in an alternate binding site. 8C07 ; 3.3 ; Structure of HECT E3 UBR5 forming K48 linked Ubiquitin chains 7Q6Z ; 3.59 ; Structure of Hedgehog acyltransferase (HHAT) in complex with megabody 177 bound to IMP-1575 7Q1U ; 2.7 ; Structure of Hedgehog acyltransferase (HHAT) in complex with megabody 177 bound to non-hydrolysable palmitoyl-CoA (Composite Map) 6MCJ ; 1.712 ; Structure of Helical Carotenoid Protein 2 from Fremyella diplosiphon 8T8D ; 2.9 ; Structure of Helicobacter pylori adhesin A, HpaA 4ZH0 ; 1.91 ; Structure of Helicobacter pylori adhesin BabA determined by SeMet SAD 1QWL ; 1.6 ; Structure of Helicobacter pylori catalase 1QWM ; 1.6 ; Structure of Helicobacter pylori catalase with formic acid bound 4RNZ ; 1.98 ; Structure of Helicobacter pylori Csd3 from the hexagonal crystal 4RNY ; 2.0 ; Structure of Helicobacter pylori Csd3 from the orthorhombic crystal 4Y4V ; 2.04 ; Structure of Helicobacter pylori Csd6 in the D-Ala-bound state 4XZZ ; 2.03 ; Structure of Helicobacter pylori Csd6 in the ligand-free state 8DP7 ; 3.35 ; Structure of Helicobacter pylori EgtU bound to EGT 2EW5 ; 2.2 ; Structure of Helicobacter Pylori peptide deformylase in complex with inhibitor 2EW6 ; 2.2 ; Structure of Helicobacter Pylori peptide deformylase in complex with inhibitor 6IUB ; 1.902 ; Structure of Helicobacter pylori Soj protein 6IUD ; 2.506 ; Structure of Helicobacter pylori Soj-ADP complex bound to DNA 6IUC ; 3.4 ; Structure of Helicobacter pylori Soj-ATP complex bound to DNA 2XB9 ; 2.75 ; Structure of Helicobacter pylori type II dehydroquinase in complex with inhibitor compound (2R)-2-(4-methoxybenzyl)-3-dehydroquinic acid 2XDA ; 1.85 ; STRUCTURE OF HELICOBACTER PYLORI TYPE II DEHYDROQUINASE IN COMPLEX WITH INHIBITOR COMPOUND (4R,6R,7S)-2-(2-Cyclopropyl)ethyl-4,6,7- trihydroxy-4,5,6,7-tetrahydrobenzo(b)thiophene-4-carboxylic acid 2XD9 ; 1.95 ; STRUCTURE OF HELICOBACTER PYLORI TYPE II DEHYDROQUINASE IN COMPLEX WITH INHIBITOR COMPOUND (4R,6R,7S)-4,6,7-Trihydroxy-2-((E)-prop-1- enyl)-4,5,6,7-tetrahydrobenzo(b)thiophene-4-carboxylic acid 4B6R ; 2.0 ; Structure of Helicobacter pylori Type II Dehydroquinase inhibited by (2S)-2-(4-methoxy)benzyl-3-dehydroquinic acid 4B6S ; 1.9 ; Structure of Helicobacter pylori Type II Dehydroquinase inhibited by (2S)-2-Perfluorobenzyl-3-dehydroquinic acid 2WKS ; 2.95 ; Structure of Helicobacter pylori Type II Dehydroquinase with a new carbasugar-thiophene inhibitor. 2MEQ ; ; Structure of Helix 69 from Escherichia coli 23S Ribosomal RNA 2MER ; ; Structure of helix 69 from escherichia coli 23s ribosomal rna 4Q56 ; 1.38 ; Structure of Helix aspersa agglutinin with natural glycosylation and N-acetyl-alpha-D-galactosamine (GalNAc) 2CGY ; 2.8 ; STRUCTURE OF HELIX POMATIA AGGLUTININ WITH FORSMANN ANTIGEN 2CE6 ; 2.4 ; Structure of Helix Pomatia agglutinin with no ligands 2CGZ ; 2.8 ; Structure of Helix Pomatia agglutinin with Tn antigen 2CCV ; 1.3 ; Structure of Helix Pomatia agglutinin with zinc and N-acetyl-alpha-D- galactoseamine (GalNAc) 4NRJ ; 2.53 ; Structure of hemagglutinin with F95Y mutation of influenza virus B/Lee/40 4NRL ; 2.72 ; Structure of hemagglutinin with F95Y mutation of influenza virus B/Lee/40 4NRK ; 2.63 ; Structure of hemagglutinin with F95Y mutation of influenza virus B/Lee/40 complex with LSTc 5BNC ; 2.25 ; Structure of heme binding protein MSMEG_6519 from Mycobacterium smegmatis 5KZL ; 1.73 ; Structure of Heme Oxygenase from Leptospira interrogans 4WMH ; 2.5 ; Structure of heme oxygenase-2 containing residues 1-288 lacking the membrane spanning region 3QUG ; 1.7 ; Structure of heme transport protein IsdH-NEAT3 from S. aureus in complex with Gallium-porphyrin 3VTM ; 2.8 ; Structure of heme transport protein IsdH-NEAT3 from S. aureus in complex with Indium-porphyrin 3QUH ; 2.7 ; Structure of heme transport protein IsdH-NEAT3 from S. aureus in complex with Manganese(III)-porphyrin 3HX9 ; 1.75 ; Structure of heme-degrader, MhuD (Rv3592), from Mycobacterium tuberculosis with two hemes bound in its active site 7ZPB ; 2.31 ; Structure of hemiacetylated human butyrylcholinesterase upon reaction with 8-(3-(4-(prop-2-yn-1-yl)piperazin-1-yl)propoxy)quinoline-2-carbaldehyde 3WHM ; 1.85 ; Structure of Hemoglobin Complex with 18-crown-6 3A59 ; 3.41 ; Structure of Hemoglobin from flightless bird (Struthio camelus) 7SGR ; 2.9 ; Structure of hemolysin A secretion system HlyB/D complex 8DCK ; 3.4 ; Structure of hemolysin A secretion system HlyB/D complex, ATP-bound 7AC2 ; 1.507 ; Structure of Hen Egg White Lysozyme collected by rotation serial crystallography on a COC membrane at a synchrotron source 6TVY ; 1.51 ; Structure of hen egg white lysozyme crystallized in the presence of Tb-Xo4 crystallophore in the XtalController device 1YIK ; 1.75 ; Structure of Hen egg white lysozyme soaked with Cu-cyclam 1YIL ; 1.6 ; Structure of Hen egg white lysozyme soaked with Cu2-Xylylbicyclam 2H9K ; 1.75 ; Structure of Hen egg white lysozyme soaked with Ni-cyclam 2H9J ; 1.75 ; Structure of Hen egg white lysozyme soaked with Ni2-Xylylbicyclam 3E3D ; 1.55 ; Structure of hen egg white lysozyme with the magic triangle I3C 1DPX ; 1.65 ; STRUCTURE OF HEN EGG-WHITE LYSOZYME 6YJX ; 1.2 ; Structure of Hen egg-white lysozyme crystallized with PAS polypeptide 2HUB ; 1.201 ; Structure of Hen Egg-White Lysozyme Determined from crystals grown in pH 7.5 4WMG ; 2.5 ; Structure of hen egg-white lysozyme from a microfludic harvesting device using synchrotron radiation (2.5A) 7KNK ; 1.45 ; STRUCTURE OF HEN EGG-WHITE LYSOZYME grown with Kitchen recipe 1DPW ; 1.64 ; STRUCTURE OF HEN EGG-WHITE LYSOZYME IN COMPLEX WITH MPD 6JZI ; 2.0 ; Structure of hen egg-white lysozyme obtained from SFX experiments under atmospheric pressure 6B7W ; 1.482 ; Structure of hen egg-white lysozyme pre-treated with high pressure (600 MPa) under isobaric condition 6B7V ; 1.482 ; Structure of hen egg-white lysozyme pre-treated with high-pressure homogenization at 120 MPa 6B7U ; 1.581 ; Structure of hen egg-white lysozyme without high-pressure pre-treatment 3IKW ; 1.3 ; Structure of Heparinase I from Bacteroides thetaiotaomicron 3ILR ; 1.5 ; Structure of Heparinase I from Bacteroides thetaiotaomicron in complex with tetrasaccharide product 3E80 ; 2.35 ; Structure of Heparinase II complexed with heparan sulfate degradation disaccharide product 8GIH ; 2.65 ; Structure of Hepatitis B Virus Capsid Y132A mutant in complex with Compound 24 2OBO ; 2.6 ; Structure of HEPATITIS C VIRAL NS3 protease domain complexed with NS4A peptide and ketoamide SCH476776 2OC8 ; 2.66 ; Structure of Hepatitis C Viral NS3 protease domain complexed with NS4A peptide and ketoamide SCH503034 2OC7 ; 2.7 ; Structure of Hepatitis C Viral NS3 protease domain complexed with NS4A peptide and ketoamide SCH571696 5FPT ; 2.72 ; Structure of hepatitis C virus (HCV) full-length NS3 complex with small-molecule ligand 2-(1-methyl-1H-indol-3-yl)acetic acid (AT3437) in an alternate binding site. 5FPS ; 2.68 ; Structure of hepatitis C virus (HCV) full-length NS3 complex with small-molecule ligand 3-aminobenzene-1,2-dicarboxylic acid (AT1246) in an alternate binding site. 5FPY ; 2.52 ; Structure of hepatitis C virus (HCV) full-length NS3 complex with small-molecule ligand 5-bromo-1-methyl-1H-indole-2-carboxylic acid (AT21457) in an alternate binding site. 7MWW ; 2.71 ; Structure of hepatitis C virus envelope full-length glycoprotein 2 (eE2) from J6 genotype 4Z0X ; 2.0 ; Structure of Hepatitis C Virus Envelope glycoprotein E2 antigenic region 434-446 bound to the broadly neutralizing antibody HC26AM 4MWF ; 2.645 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core bound to broadly neutralizing antibody AR3C 6WO5 ; 2.619 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 1a bound to neutralizing antibody 212.1.1 and non neutralizing antibody E1 6WOQ ; 3.667 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 1a bound to neutralizing antibody HC1AM and non neutralizing antibody E1 6BKB ; 2.799 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody AR3A 6BKC ; 2.6 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody AR3B 6BKD ; 3.25 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody AR3D 6WO4 ; 2.349 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody HC11 7JTG ; 2.6 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody RM11-43 7JTF ; 3.35 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody RM2-01 6WO3 ; 2.382 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2 core from genotype 6a bound to broadly neutralizing antibody U1 6UYG ; 3.375 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2c3 core from genotype 6a bound to broadly neutralizing antibody AR3A and non neutralizing antibody E1 6UYD ; 1.897 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2mc3-v1 redesigned core from genotype 1a bound to broadly neutralizing antibody AR3C 6UYF ; 2.06 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2mc3-v1 redesigned core from genotype 6a bound to broadly neutralizing antibody AR3B 6UYM ; 2.848 ; Structure of Hepatitis C Virus Envelope Glycoprotein E2mc3-v6 redesigned core from genotype 1a bound to broadly neutralizing antibody AR3C 8DK6 ; 2.45 ; Structure of hepatitis C virus envelope N-terminal truncated glycoprotein 2 (E2) (residues 456-713) from J6 genotype 2ZKU ; 1.95 ; Structure of hepatitis C virus NS5B polymerase in a new crystal form 8HR8 ; 3.3 ; Structure of heptameric RdrA ring 8HRA ; 3.76 ; Structure of heptameric RdrA ring in RNA-loading state 3WSQ ; 3.5 ; Structure of HER2 with an Fab 8J4U ; 2.97 ; Structure of HerA-Sir2 complex from Escherichia coli Nezha system 6MH2 ; 2.8 ; Structure of Herceptin Fab without antigen 4BOM ; 27.0 ; Structure of herpesvirus fusion glycoprotein B-bilayer complex revealing the protein-membrane and lateral protein-protein interaction 5A3G ; ; Structure of herpesvirus nuclear egress complex subunit M50 2PY2 ; 1.7 ; Structure of Herring Type II Antifreeze Protein 1DXW ; ; structure of hetero complex of non structural protein (NS) of hepatitis C virus (HCV) and synthetic peptidic compound 8B41 ; 3.8 ; Structure of heteromeric LRRC8A/C (1:1 co-transfected) Volume-Regulated Anion Channel in complex with synthetic nanobody Sb1 8B42 ; 6.6 ; Structure of heteromeric LRRC8A/C Volume-Regulated Anion Channel. 3AH8 ; 2.9 ; Structure of heterotrimeric G protein Galpha-q beta gamma in complex with an inhibitor YM-254890 4MXW ; 3.6 ; Structure of heterotrimeric lymphotoxin LTa1b2 bound to lymphotoxin beta receptor LTbR and anti-LTa Fab 7KBU ; 2.27 ; Structure of Hevin FS-EC 6HT2 ; 2.6 ; STRUCTURE OF HEWL BY ELECTRON DIFFRACTION AND MICROFOCUS DIFFRACTION 6HU5 ; 2.8 ; STRUCTURE OF HEWL BY ELECTRON DIFFRACTION AND MICROFOCUS DIFFRACTION 6AGN ; 1.08 ; Structure of HEWL co-crystallised with Cinnamaldehyde 6AGR ; 1.22 ; Structure of HEWL co-crystallised with phenylethyl alcohol 6ADF ; 1.08 ; Structure of HEWL co-crystallised with TEMED 6MQV ; 2.0 ; Structure of HEWL from LCP injector using synchrotron radiation 4ZIX ; 1.89 ; Structure of HEWL using Serial Femtosecond Crystallography of Soluble Proteins in Lipidic Cubic Phase 8CD6 ; 1.85 ; structure of HEX-1 (cyto V2) from N. crassa grown in living insect cells, diffracted at 100K and resolved using CrystFEL 8CD4 ; 1.83 ; structure of HEX-1 from N. crassa crystallized in cellulo (cytosol), diffracted at 100K and resolved using CrystFEL 8CD5 ; 1.56 ; structure of HEX-1 from N. crassa crystallized in cellulo, diffracted at 100K and resolved using CrystFEL 8CGX ; 1.85 ; structure of HEX-1 from N. crassa crystallized in cellulo, diffracted at 100K and resolved using XDS 3EQ2 ; 3.401 ; Structure of Hexagonal Crystal form of Pseudomonas aeruginosa RssB 1TEW ; 1.65 ; STRUCTURE OF HEXAGONAL TURKEY EGG WHITE LYSOZYME AT 1.65 ANGSTROMS RESOLUTION 5NMU ; 2.15 ; Structure of hexameric CBS-CP12 protein from bloom-forming cyanobacteria 7PTR ; 3.46 ; Structure of hexameric S-layer protein from Haloferax volcanii archaea 8BEI ; 3.06 ; Structure of hexameric subcomplexes (Truncation Delta2-6) of the fractal citrate synthase from Synechococcus elongatus PCC7942 2KT3 ; ; Structure of Hg-NmerA, Hg(II) complex of the N-terminal domain of Tn501 Mercuric Reductase 6HB1 ; 2.33 ; Structure of Hgh1, crystal form I 6HB2 ; 2.7 ; Structure of Hgh1, crystal form I, Selenomethionine derivative 6HB3 ; 3.0 ; Structure of Hgh1, crystal form II 4KBL ; 3.3 ; Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism 4KC9 ; 3.603 ; Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism 1NO5 ; 1.8 ; Structure of HI0073 from Haemophilus influenzae, the nucleotide binding domain of the HI0073/HI0074 two protein nucleotidyl transferase. 1JOG ; 2.4 ; Structure of HI0074 from Heamophilus Influenzae reveals the fold of a substrate binding domain of a nucleotidyltransferase 1MWQ ; 0.99 ; Structure of HI0828, a Hypothetical Protein from Haemophilus influenzae with a Putative Active-Site Phosphohistidine 1JO0 ; 1.37 ; Structure of HI1333, a Hypothetical Protein from Haemophilus influenzae with Structural Similarity to RNA-binding Proteins 1MW5 ; 2.1 ; Structure of HI1480 from Haemophilus influenzae 7YKW ; 3.6 ; Structure of hIAPP fibril at 3.6 Angstroms resolution 7YL3 ; 3.2 ; Structure of hIAPP-TF-type1 7YL0 ; 3.2 ; Structure of hIAPP-TF-type2 7YL7 ; 3.3 ; Structure of hIAPP-TF-type3 8CK4 ; 2.29 ; STRUCTURE OF HIF2A-ARNT HETERODIMER IN COMPLEX WITH (4S)-1-(3,5-difluorophenyl)-5,5-difluoro-3-methanesulfonyl-4,5,6,7-tetrahydro-2-benzothiophen-4-ol 8CK3 ; 1.707 ; STRUCTURE OF HIF2A-ARNT HETERODIMER IN COMPLEX WITH (S)-1-(3,5-Difluoro-phenyl)-5,5-difluoro-3-methanesulfonyl-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ol 8CK8 ; 2.302 ; STRUCTURE OF HIF2A-ARNT HETERODIMER IN COMPLEX WITH (S)-1-Cyclohexyloxy-5,5-difluoro-3-methanesulfonyl-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ol 6ZZY ; 3.16 ; Structure of high-light grown Chlorella ohadii photosystem I 3TPT ; 2.25 ; Structure of HipA(D309Q) bound to ADP 3TPB ; 1.88 ; Structure of HipA(S150A) 3FBR ; 3.5 ; structure of HipA-amppnp-peptide 5K98 ; 3.99 ; Structure of HipA-HipB-O2-O3 complex 1CM2 ; 1.8 ; STRUCTURE OF HIS15ASP HPR AFTER HYDROLYSIS OF RINGED SPECIES. 5DRU ; 2.083 ; Structure of His387Ala mutant of the propionaldehyde dehydrogenase from the Clostridium phytofermentans fucose utilisation bacterial microcompartment 1HCD ; ; STRUCTURE OF HISACTOPHILIN IS SIMILAR TO INTERLEUKIN-1 BETA AND FIBROBLAST GROWTH FACTOR 1HCE ; ; STRUCTURE OF HISACTOPHILIN IS SIMILAR TO INTERLEUKIN-1 BETA AND FIBROBLAST GROWTH FACTOR 4EWN ; 1.903 ; Structure of HisF-D130V+D176V with bound rCdRP 4EVZ ; 1.462 ; Structure of HisF-LUCA 4RDX ; 2.55 ; Structure of histidinyl-tRNA synthetase in complex with tRNA(His) 6A58 ; 1.57 ; Structure of histone demethylase REF6 6A59 ; 1.82 ; Structure of histone demethylase REF6 at 1.8A 6A57 ; 2.7 ; Structure of histone demethylase REF6 complexed with DNA 1MUF ; 2.26 ; Structure of histone H3 K4-specific methyltransferase SET7/9 1MT6 ; 2.2 ; Structure of histone H3 K4-specific methyltransferase SET7/9 with AdoHcy 5BS7 ; 3.3 ; Structure of histone H3/H4 in complex with Spt2 5BSA ; 4.611 ; Structure of histone H3/H4 in complex with Spt2 6BX3 ; 4.3 ; Structure of histone H3k4 methyltransferase 5CEH ; 3.14 ; Structure of histone lysine demethylase KDM5A in complex with selective inhibitor 5T5K ; 4.0 ; Structure of histone-based chromatin in Archaea 6J2S ; 1.73005 ; Structure of HitA bound to gallium from Pseudomonas aeruginosa 6PUT ; 2.9 ; Structure of HIV cleaved synaptic complex (CSC) intasome bound with calcium 6PUW ; 2.9 ; Structure of HIV cleaved synaptic complex (CSC) intasome bound with magnesium and Bictegravir (BIC) 6V3K ; 3.4 ; Structure of HIV cleaved synaptic complex (CSC) intasome bound with magnesium and INSTI XZ419 (compound 4c) 6PUY ; 2.8 ; Structure of HIV cleaved synaptic complex (CSC) intasome bound with magnesium and INSTI XZ426 (compound 4d) 6PUZ ; 2.8 ; Structure of HIV cleaved synaptic complex (CSC) intasome bound with magnesium and INSTI XZ446 (compound 4f) 3T3C ; 2.1 ; Structure of HIV PR resistant patient derived mutant (comprising 22 mutations) in complex with DRV 1MRX ; 2.0 ; Structure of HIV protease (Mutant Q7K L33I L63I V82F I84V ) complexed with KNI-577 1MRW ; 2.0 ; Structure of HIV protease (Mutant Q7K L33I L63I) complexed with KNI-577 2HB2 ; 2.3 ; Structure of HIV protease 6X mutant in apo form 2HC0 ; 1.3 ; Structure of HIV protease 6X mutant in complex with AB-2. 2HB4 ; 2.15 ; Structure of HIV Protease NL4-3 in an Unliganded State 6N3D ; 1.13 ; Structure of HIV Tat-specific factor 1 U2AF Homology Motif (APO-State) 6N3F ; 2.099 ; Structure of HIV Tat-specific factor 1 U2AF Homology Motif bound to SF3b1 ULM5 6N3E ; 1.893 ; Structure of HIV Tat-specific factor 1 U2AF Homology Motif bound to U2AF ligand motif 4 8FYI ; 3.4 ; Structure of HIV-1 BG505 SOSIP-HT1 in complex with one CD4 molecule 8FYJ ; 4.0 ; Structure of HIV-1 BG505 SOSIP-HT2 in complex with two CD4 molecules (class I) 6OBH ; 2.96 ; Structure of HIV-1 CA 1/2-hexamer 6EC2 ; 3.4 ; Structure of HIV-1 CA 1/3-hexamer 6MQO ; 3.2 ; Structure of HIV-1 CA G208R 6MQA ; 3.199 ; Structure of HIV-1 CA P207S 6MQP ; 3.296 ; Structure of HIV-1 CA T210K 6RWG ; ; Structure of HIV-1 CAcSP1NC mutant(W41A,M42A) interacting with maturation inhibitor EP39 7URN ; 3.43 ; Structure of HIV-1 capsid declination 8EJL ; 3.9 ; Structure of HIV-1 capsid declination in complex with CPSF6-FG peptide 3J34 ; 8.6 ; Structure of HIV-1 Capsid Protein by Cryo-EM 3J4F ; 8.6 ; Structure of HIV-1 capsid protein by cryo-EM 3HI1 ; 2.9 ; Structure of HIV-1 gp120 (core with V3) in Complex with CD4-Binding-Site Antibody F105 3JWD ; 2.61 ; Structure of HIV-1 gp120 with gp41-Interactive Region: Layered Architecture and Basis of Conformational Mobility 3JWO ; 3.51 ; Structure of HIV-1 gp120 with gp41-Interactive Region: Layered Architecture and Basis of Conformational Mobility 3VH7 ; 2.019 ; Structure of HIV-1 gp41 NHR/fusion inhibitor complex P21 3VGY ; 2.034 ; Structure of HIV-1 gp41 NHR/fusion inhibitor complex P321 3L3V ; 2.0 ; Structure of HIV-1 integrase core domain in complex with sucrose 6VRG ; 2.4 ; Structure of HIV-1 integrase with native amino-terminal sequence 6NCJ ; 2.0 ; Structure of HIV-1 Integrase with potent 5,6,7,8-Tetrahydro-1,6-naphthyridine Derivatives Allosteric Site Inhibitors 7MRL ; 3.15 ; Structure of HIV-1 matrix domain bound to human tRNALys3 2LYB ; ; Structure of HIV-1 myr(-) matrix protein in complex with 1,2-dioctanoyl-sn-phosphatidyl-L-serine 2LYA ; ; Structure of HIV-1 myr(-) matrix protein in complex with 1,2-dioctanoyl-sn-phosphatidylcholine 2AQU ; 2.0 ; Structure of HIV-1 protease bound to atazanavir 1DMP ; 2.0 ; STRUCTURE OF HIV-1 PROTEASE COMPLEX 2NXD ; 2.0 ; Structure of HIV-1 protease D25N complexed with rt-rh analogue peptide GLY-ALA-ASP-ILE-PHE*TYR-LEU-ASP-GLY-ALA 2NXM ; 2.25 ; Structure of HIV-1 protease D25N complexed with the rt-rh analogue peptide GLY-ALA-GLN-THR-PHE*TYR-VAL-ASP-GLY-ALA 2NXL ; 2.0 ; Structure of HIV-1 protease D25N complexed with the rt-rh analogue peptide GLY-ALA-GLU-VAL-PHE*TYR-VAL-ASP-GLY-ALA 5YOK ; 0.85 ; Structure of HIV-1 Protease in Complex with Inhibitor KNI-1657 3FX5 ; 0.93 ; Structure of HIV-1 Protease in Complex with Potent Inhibitor KNI-272 Determined by High Resolution X-ray Crystallography 2ZYE ; 1.9 ; Structure of HIV-1 Protease in Complex with Potent Inhibitor KNI-272 Determined by Neutron Crystallography 2B7Z ; 2.2 ; Structure of HIV-1 protease mutant bound to indinavir 2B60 ; 2.2 ; Structure of HIV-1 protease mutant bound to Ritonavir 6OR7 ; 2.53 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with DNA AND (-)FTC-TP 6OTZ ; 2.857 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and (+)FTC-TP 6WPH ; 2.72 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and (-)-FTC 6OUN ; 2.656 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and (-)3TC-TP 6P2G ; 2.99 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and D-ddCTP 6WPF ; 2.53 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and d4T 6WPJ ; 2.73 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and d4T 6P1I ; 2.74 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and dCTP 6P1X ; 2.553 ; Structure of HIV-1 Reverse Transcriptase (RT) in complex with dsDNA and L-ddCTP 6ELI ; 2.2 ; Structure of HIV-1 reverse transcriptase (RT) in complex with rilpivirine and an RNase H inhibitor XZ462 6AMO ; 2.497 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 7.0 6AN2 ; 2.7 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 7.5 6AN8 ; 2.596 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 8.0 6ANQ ; 2.586 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 8.5 6ASW ; 2.605 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 9.0 6AVT ; 2.603 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 9.5 WITH CROSS-LINKING TO FIRST BASE TEMPLATE OVERHANG 6AVM ; 2.502 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING D4TTP AT PH 9.5 WITH CROSS-LINKING TO SECOND BASE TEMPLATE OVERHANG 5TXL ; 2.501 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING DATP 5TXM ; 2.7 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING DDATP 6BHJ ; 2.81 ; Structure of HIV-1 Reverse Transcriptase Bound to a 38-mer Hairpin Template-Primer RNA-DNA Aptamer 5D3G ; 2.3 ; Structure of HIV-1 Reverse Transcriptase Bound to a Novel 38-mer Hairpin Template-Primer DNA Aptamer 1HNI ; 2.8 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE IN A COMPLEX WITH THE NONNUCLEOSIDE INHIBITOR ALPHA-APA R 95845 AT 2.8 ANGSTROMS RESOLUTION 5HLF ; 2.95 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE In COMPLEX WITH A 38-MER HAIRPIN TEMPLATE-PRIMER DNA APTAMER AND AN ALPHA-CARBOXYPHOSPHONATE INHIBITOR 5HRO ; 2.75 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE In COMPLEX WITH A DNA aptamer and an Alpha-carboxy nucleoside phosphonate inhibitor (alpha-CNP) 5HP1 ; 2.9 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE In COMPLEX WITH A DNA aptamer and FOSCARNET, a Pyrophosphate analog 5I42 ; 3.3 ; Structure of HIV-1 Reverse Transcriptase in complex with a DNA aptamer, AZTTP, and CA(2+) ion 3QIP ; 2.0926 ; Structure of HIV-1 reverse transcriptase in complex with an RNase H inhibitor and nevirapine 6O9E ; 2.4 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA and INDOPY-1 7LRY ; 2.45 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA, (-)FTC-TP, and CA(2+) ion 7LRM ; 3.14 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA, dCTP, and CA(2+) ion 7LRI ; 3.05 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA, dTTP, and CA(2+) ion 7LRX ; 2.9 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA, L-dCTP, and CA(2+) ion 7LSK ; 2.7 ; Structure of HIV-1 Reverse Transcriptase in complex with DNA, L-dTTP, and CA(2+) ion 7KJV ; 2.8 ; Structure of HIV-1 reverse transcriptase initiation complex core 7KJW ; 2.9 ; Structure of HIV-1 reverse transcriptase initiation complex core with efavirenz 7KJX ; 3.1 ; Structure of HIV-1 reverse transcriptase initiation complex core with nevirapine 5I3U ; 3.0 ; STRUCTURE OF HIV-1 REVERSE TRANSCRIPTASE N-SITE COMPLEX; CATALYTIC INCORPORATION OF AZTMP to A DNA aptamer in CRYSTAL 6BSI ; 3.25 ; Structure of HIV-1 RT complexed with an RNA/DNA hybrid containing the polypurine-tract sequence 6BSJ ; 2.89 ; Structure of HIV-1 RT complexed with an RNA/DNA hybrid sequence non-preferred for RNA hydrolysis 6BSG ; 2.44 ; Structure of HIV-1 RT complexed with RNA/DNA hybrid in an RNA hydrolysis-off mode 6BSH ; 2.649 ; Structure of HIV-1 RT complexed with RNA/DNA hybrid in the RNA hydrolysis mode 4ZHR ; 2.601 ; Structure of HIV-1 RT Q151M mutant 1HNV ; 3.0 ; STRUCTURE OF HIV-1 RT(SLASH)TIBO R 86183 COMPLEX REVEALS SIMILARITY IN THE BINDING OF DIVERSE NONNUCLEOSIDE INHIBITORS 6XQI ; 2.34 ; Structure of HIV-1 Vpr in complex with the human nucleotide excision repair protein hHR23A 6XQJ ; ; Structure of HIV-1 Vpr in complex with the human nucleotide excision repair protein hHR23A 2B8R ; 2.6 ; Structure oF HIV-1(LAI) genomic RNA DIS 2B8S ; 2.76 ; Structure of HIV-1(MAL) genomic RNA DIS 2BB9 ; 1.35 ; Structure of HIV1 protease and AKC4p_133a complex. 2BBB ; 1.7 ; Structure of HIV1 protease and hh1_173_3a complex. 4YOI ; 1.82 ; Structure of HKU4 3CLpro bound to non-covalent inhibitor 1A 3TO2 ; 2.6 ; Structure of HLA-A*0201 complexed with peptide Md3-C9 derived from a clustering region of restricted cytotoxic T lymphocyte epitope from SARS-CoV M protein 8EB2 ; 2.9 ; Structure of HLA-A*02:01 in complex with NY-ESO-1 peptide and PA2.1 Fab 7T5M ; 1.67 ; Structure of HLA-A*02:01-FLPTPEELGLLGPPRPQVLA complex 8SBL ; 3.0 ; Structure of HLA-A*24:02 in complex with peptide, LYLPVRVLI 8SBK ; 1.8 ; Structure of HLA-A*24:02 in complex with peptide, LYLPVRVLI (ATG2A). 4WJ5 ; 1.65 ; Structure of HLA-A2 in complex with an altered peptide ligands based on Mart-1 variant epitope 4L3C ; 2.64 ; Structure of HLA-A2 in complex with D76N b2m mutant and NY-ESO1 double mutant 5E00 ; 1.7 ; Structure of HLA-A2 P130 5WSH ; 2.0 ; Structure of HLA-A2 P130 5F7D ; 2.3 ; Structure of HLA-A2:01 with peptide G11N 5EOT ; 2.1 ; Structure of HLA-A2:01 with peptide G13E 5ENW ; 1.85 ; Structure of HLA-A2:01 with peptide G9L 5FA3 ; 1.86 ; Structure of HLA-A2:01 with peptide G9V 6O51 ; 1.55 ; Structure of HLA-A2:01 with peptide MM90 6O4Y ; 1.58 ; Structure of HLA-A2:01 with peptide MM91 6O4Z ; 1.5 ; Structure of HLA-A2:01 with peptide MM92 6O53 ; 1.4 ; Structure of HLA-A2:01 with peptide MM96 5FDW ; 2.7 ; Structure of HLA-A2:01 with peptide Y10L 5FA4 ; 2.4 ; Structure of HLA-A2:01 with peptide Y16R 5F9J ; 2.51 ; Structure of HLA-A2:01 with peptide Y9L 5D9S ; 1.87 ; Structure of HLA-A2:01 with the 11-mer peptide F11V 5DDH ; 1.5 ; Structure of HLA-A2:01 with the 12-mer peptide F12K 4HX1 ; 1.802 ; Structure of HLA-A68 complexed with a tumor antigen derived peptide 4HWZ ; 2.397 ; Structure of HLA-A68 complexed with an HIV derived peptide 4I48 ; 2.799 ; Structure of HLA-A68 complexed with an HIV Env derived peptide 7S7E ; 2.04 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH DOT1L(998-1006) PEPTIDE 7S7F ; 1.88 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH DOT1L(998-1006) PHOSPHOPEPTIDE 7S8F ; 1.8 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH MLL(747-755) PEPTIDE AND BOUND GLYCEROL 7S8E ; 1.6 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH MLL(747-755) PHOSPHOPEPTIDE AND BOUND GLYCEROL 7S8A ; 2.1 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH MLL(747-755) PHOSPHOPEPTIDE, CUBIC CRYSTAL FORM 7S79 ; 1.53 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH SYNTHETIC PHOSPHONO-MLL PEPTIDE ANALOG 7S7D ; 1.56 ; STRUCTURE OF HLA-B*07:02 IN COMPLEX WITH SYNTHETIC SULFO-MLL PEPTIDE ANALOG 5IEK ; 1.8 ; Structure of HLA-B*40:02 in complex with the endogenous peptide REFSKEPEL 5IEH ; 1.5 ; Structure of HLA-B*40:02 in complex with the phosphorylated endogenous peptide REF(p)SKEPEL 4OV5 ; 2.199 ; Structure of HLA-DR1 with a bound peptide with non-optimal alanine in the P1 pocket 5V4N ; 3.405 ; Structure of HLA-DR1 with bound alpha3(135-145) peptide 5V4M ; 2.1 ; Structure of HLA-DR15 with bound alpha3(135-145) peptide 8AEU ; 2.0 ; Structure of hMDM2 in complex with Nutlin-3a-aa 6P7K ; 1.722 ; Structure of HMG-CoA reductase from Burkholderia cenocepacia 8I6K ; 2.4 ; Structure of hMNDA HIN with dsDNA 4GPH ; 1.7 ; Structure of HmuO, heme oxygenase from Corynebacterium diphtheriae, in complex with the putative reaction intermediates between Fe3+-biliverdin and biliverdin (data set IV) 6DHS ; 3.5 ; Structure of hnRNP H qRRM1,2 2I5W ; 2.6 ; Structure of hOGG1 crosslinked to DNA sampling a normal G adjacent to an oxoG 4OYK ; 2.0001 ; Structure of HOIP PUB domain bound to OTULIN PIM 3HS1 ; 2.51 ; Structure of Holliday junction formed by d(CCGGTACCGG); Crystal grown with CoCl2 4PSH ; 2.6 ; Structure of holo ArgBP from T. maritima 5W57 ; 2.3 ; Structure of Holo AztC 3NU1 ; 2.5 ; Structure of holo form of a periplasmic heme binding protein 2WK8 ; 2.1 ; Structure of holo form of Vibrio cholerae CqsA 3MOM ; 2.25 ; Structure of holo HasAp H32A mutant complexed with imidazole from Pseudomonas aeruginosa to 2.25A Resolution 1GD1 ; 1.8 ; STRUCTURE OF HOLO-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM BACILLUS STEAROTHERMOPHILUS AT 1.8 ANGSTROMS RESOLUTION 1SZJ ; 2.0 ; STRUCTURE OF HOLO-GLYCERALDEHYDE-3-PHOSPHATE-DEHYDROGENASE FROM PALINURUS VERSICOLOR REFINED 2.0 ANGSTROM RESOLUTION 4DG9 ; 2.55 ; Structure of holo-PA1221, an NRPS protein containing adenylation and PCP domains bound to vinylsulfonamide inhibitor 1Z67 ; 1.45 ; Structure of Homeodomain-like Protein of Unknown Function S4005 from Shigella flexneri 8OS9 ; 1.7 ; Structure of Homo sapiens 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 (DNPH1) 8OSC ; 1.42 ; Structure of Homo sapiens 2'-deoxynucleoside 5'-phosphate N-hydrolase 1 (DNPH1) bound to deoxyuridine 5'- monophosphate 5FPQ ; 2.4 ; Structure of Homo sapiens acetylcholinesterase phosphonylated by sarin. 7PHQ ; 8.45 ; Structure of homo-dimeric Staphylococcus capitis divalent metal ion transporter (DMT) by NabFab-fiducial assisted cryo-EM 7A0H ; 2.22 ; Structure of homodimeric actin capping protein alpha subunit from Plasmodium berghei 8CBB ; 2.71 ; Structure of homodimeric luciferase from Enhygromyxa salina 3ZDS ; 1.7 ; Structure of homogentisate 1,2-dioxygenase in complex with reaction intermediates of homogentisate with oxygen. 3KAL ; 1.9 ; Structure of homoglutathione synthetase from Glycine max in closed conformation with homoglutathione, ADP, a sulfate ion, and three magnesium ions bound 3KAK ; 2.11 ; Structure of homoglutathione synthetase from Glycine max in open conformation with gamma-glutamyl-cysteine bound. 2HL6 ; 1.55 ; Structure of homologously expressed Ferrulate esterase of Aspergillus niger in complex with CAPS 7P5V ; 3.06 ; Structure of homomeric LRRC8A Volume-Regulated Anion Channel in complex with synthetic nanobody Sb1 7P5W ; 3.5 ; Structure of homomeric LRRC8A Volume-Regulated Anion Channel in complex with synthetic nanobody Sb2 7P5Y ; 3.29 ; Structure of homomeric LRRC8A Volume-Regulated Anion Channel in complex with synthetic nanobody Sb3 7P60 ; 3.8 ; Structure of homomeric LRRC8A Volume-Regulated Anion Channel in complex with synthetic nanobody Sb4 at 1:0.5 ratio 7P6K ; 3.8 ; Structure of homomeric LRRC8A Volume-Regulated Anion Channel in complex with synthetic nanobody Sb5 8B40 ; 4.6 ; Structure of homomeric LRRC8C Volume-Regulated Anion Channel 6G9L ; 5.01 ; Structure of homomeric mLRRC8A volume-regulated anion channel at 5.01 A resolution 2IGA ; 1.95 ; Structure of Homoprotocatechuate 2,3-Dioxygenase from B. fuscum in complex with reactive intermediates formed via in crystallo reaction with 4-nitrocatechol at low oxygen concentrations. 4GHH ; 1.55 ; Structure of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-Nitrocatechol at 1.55 Ang resolution 4Z6Z ; 1.52 ; Structure of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-sulfonyl catechol at 1.52 Ang resolution 4GHG ; 1.5 ; Structure of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.50 Ang resolution 6WLB ; 3.5 ; Structure of homotrimeric poplar cellulose synthase isoform 8 3ESK ; 2.05 ; Structure of HOP TPR2A domain in complex with the non-cognate Hsc70 peptide ligand 7V4Z ; 1.16 ; Structure of Horcolin native form 6FHW ; 3.6 ; Structure of Hormoconis resinae Glucoamylase 1HCH ; 1.57 ; Structure of horseradish peroxidase C1A compound I 1H55 ; 1.61 ; STRUCTURE OF HORSERADISH PEROXIDASE C1A COMPOUND II 1H57 ; 1.6 ; Structure of horseradish peroxidase C1A compound III 8PQ4 ; 2.25 ; Structure of HosA transcriptional regulator from enteropathogenic Escherichia coli O127:H6 (strain E2348/69) 5YNY ; 2.3 ; Structure of house dust mite allergen Der F 21 in PEG2KMME 5YNX ; 1.49 ; Structure of house dust mite allergen Der f 21 in PEG400 2IBJ ; 1.55 ; Structure of House Fly Cytochrome B5 7PSX ; 2.0 ; Structure of HOXB13 bound to hydroxymethylated DNA 5EF6 ; 3.0 ; Structure of HOXB13 complex with methylated DNA 5EEA ; 2.195 ; Structure of HOXB13-DNA(CAA) complex 5EDN ; 3.2 ; Structure of HOXB13-DNA(TCG) complex 8IPG ; 1.64 ; Structure of HP101/N44 6QYI ; 1.8 ; Structure of HPAB from E.coli in complex with FAD 5MLL ; 1.9 ; Structure of HpDprA at 1.9 Angstroms resolution 2G72 ; 2.0 ; Structure of hPNMT with inhibitor 3-fluoromethyl-7-thiomorpholinosulfonamide-THIQ and AdoMet 2G71 ; 2.2 ; Structure of hPNMT with inhibitor 3-fluoromethyl-7-trifluoropropyl-THIQ and AdoHcy 2G8N ; 2.15 ; Structure of hPNMT with inhibitor 3-Hydroxymethyl-7-(N-4-chlorophenylaminosulfonyl)-THIQ and AdoHcy 2ONY ; 2.6 ; Structure of hPNMT with inhibitor 7-(N-4-chlorophenylaminosulfonyl)-THIQ and AdoHcy 6MXO ; 2.04 ; Structure of HPoleta incorporating dCTP opposite the 3-prime Pt(DACH)-GG 2DPJ ; 2.3 ; structure of hPoli with DNA and dTTP 6M6D ; 1.842 ; Structure of HPPD complexed with a synthesized inhibitor 6SJA ; 1.5 ; Structure of HPV16 E6 oncoprotein in complex with IRF3 LxxLL motif 6SIV ; 1.752 ; Structure of HPV16 E6 oncoprotein in complex with mutant IRF3 LxxLL motif 6SJV ; 2.029 ; Structure of HPV18 E6 oncoprotein in complex with mutant E6AP LxxLL motif 6SMV ; 2.14 ; Structure of HPV49 E6 protein in complex with MAML1 LxxLL motif 2RRD ; ; Structure of HRDC domain from human Bloom syndrome protein, BLM 6MUN ; ; Structure of hRpn10 bound to UBQLN2 UBL 6J7V ; 16.0 ; Structure of HRPV6 VP5 fitted in the cryoEM density of the spike 6KU7 ; 2.15 ; structure of HRV-C 3C protein 6KU8 ; 2.05 ; structure of HRV-C 3C protein with rupintrivir 3VDD ; 3.2 ; Structure of HRV2 capsid complexed with antiviral compound BTA798 4W2R ; 2.81 ; Structure of Hs/AcPRC2 in complex with 5,8-dichloro-2-[(4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl]-7-[(R)-methoxy(oxetan-3-yl)methyl]-3,4-dihydroisoquinolin-1(2H)-one 6B3W ; 3.05 ; Structure of Hs/AcPRC2 in complex with 5,8-dichloro-7-(3,5-dimethyl-1,2-oxazol-4-yl)-2-[(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl]-3,4-dihydroisoquinolin-1(2H)-one 5IJ7 ; 2.62 ; Structure of Hs/AcPRC2 in complex with a pyridone inhibitor 4XOI ; 2.092 ; Structure of hsAnillin bound with RhoA(Q63L) at 2.1 Angstroms resolution 4A08 ; 3.0 ; Structure of hsDDB1-drDDB2 bound to a 13 bp CPD-duplex (purine at D-1 position) at 3.0 A resolution (CPD 1) 3EI1 ; 2.8 ; Structure of hsDDB1-drDDB2 bound to a 14 bp 6-4 photoproduct containing DNA-duplex 4A09 ; 3.1 ; Structure of hsDDB1-drDDB2 bound to a 15 bp CPD-duplex (purine at D-1 position) at 3.1 A resolution (CPD 2) 3EI2 ; 2.6 ; Structure of hsDDB1-drDDB2 bound to a 16 bp abasic site containing DNA-duplex 4A0A ; 3.6 ; Structure of hsDDB1-drDDB2 bound to a 16 bp CPD-duplex (pyrimidine at D-1 position) at 3.6 A resolution (CPD 3) 4A0B ; 3.8 ; Structure of hsDDB1-drDDB2 bound to a 16 bp CPD-duplex (pyrimidine at D-1 position) at 3.8 A resolution (CPD 4) 6PAY ; 2.199 ; Structure of HsICDH1:Mg(II):ICT:NADPH(50%) complex reveals structural basis for observation of half-sites reactivity 7S3V ; 3.249 ; Structure of HsKYNase_66, an evolved variant of human kynureninase with greatly increased activity towards kynurenine 7XQ1 ; 3.4 ; Structure of hSLC19A1+2'3'-CDAS 7XQ2 ; 3.3 ; Structure of hSLC19A1+2'3'-cGAMP 7XQ0 ; 3.0 ; Structure of hSLC19A1+3'3'-CDA 8GOE ; 3.0 ; Structure of hSLC19A1+5-MTHF 8GOF ; 3.0 ; Structure of hSLC19A1+PMX 7BZW ; 4.6 ; Structure of Hsp21 3FT8 ; 2.0 ; Structure of HSP90 bound with a noval fragment. 3FT5 ; 1.9 ; Structure of HSP90 bound with a novel fragment 6CEO ; 1.896 ; Structure of Hsp90 NTD with a GRP94-selective resorcinylic inhibitor. 2XAB ; 1.9 ; Structure of HSP90 with an inhibitor bound 4BQG ; 1.9 ; structure of HSP90 with an inhibitor bound 4BQJ ; 2.0 ; structure of HSP90 with an inhibitor bound 4B7P ; 1.7 ; Structure of HSP90 with NMS-E973 inhibitor bound 2XDK ; 1.97 ; Structure of HSP90 with small molecule inhibitor bound 2XDL ; 1.98 ; Structure of HSP90 with small molecule inhibitor bound 2XDS ; 1.97 ; Structure of HSP90 with small molecule inhibitor bound 2XDU ; 1.74 ; Structure of HSP90 with small molecule inhibitor bound 2XDX ; 2.42 ; Structure of HSP90 with small molecule inhibitor bound 2XHR ; 2.2 ; Structure of HSP90 with small molecule inhibitor bound 2XHT ; 2.27 ; Structure of HSP90 with small molecule inhibitor bound 2XHX ; 2.801 ; Structure of HSP90 with small molecule inhibitor bound 2XJG ; 2.25 ; Structure of HSP90 with small molecule inhibitor bound 2XJJ ; 1.9 ; Structure of HSP90 with small molecule inhibitor bound 2XJX ; 1.66 ; Structure of HSP90 with small molecule inhibitor bound 2XK2 ; 1.95 ; Structure of HSP90 with small molecule inhibitor bound 6HTU ; 2.888 ; Structure of hStau1 dsRBD3-4 in complex with ARF1 RNA 7KVX ; 2.48 ; Structure of hSTING in complex with novel carbocyclic pyrimidine CDN 1 7KVZ ; 2.35 ; Structure of hSTING in complex with novel carbocyclic pyrimidine CDN-2 7KW1 ; 1.8 ; Structure of hSTING in complex with novel carbocyclic pyrimidine CDN-3 5HUW ; 1.95 ; Structure of HSV-1 Large Terminase NLS bound to importin alpha 4MYW ; 3.189 ; Structure of HSV-2 gD bound to nectin-1 6M6I ; 4.05 ; Structure of HSV2 B-capsid portal vertex 6M6H ; 4.5 ; Structure of HSV2 C-capsid portal vertex 6M6G ; 5.39 ; Structure of HSV2 viron capsid portal vertex 3TP3 ; 1.86 ; Structure of HTH-type transcriptional regulator EthR, G106W mutant 4TZN ; 3.115 ; Structure of HTP-2 bound to HTP-3 motif-6 5LVT ; 2.1 ; Structure of HU protein from Lactococcus lactis 7D9R ; 3.7 ; Structure of huamn soluble guanylate cyclase in the riociguat and NO-bound state 7D9S ; 3.9 ; Structure of huamn soluble guanylate cyclase in the YC1 and NO-bound state 3PLU ; 1.4 ; Structure of Hub-1 protein in complex with Snu66 peptide (HINDI) 3PLV ; 1.9 ; Structure of Hub-1 protein in complex with Snu66 peptide (HINDII) 2BEL ; 2.11 ; Structure of human 11-beta-hydroxysteroid dehydrogenase in complex with NADP and carbenoxolone 6BYJ ; 2.9 ; Structure of human 14-3-3 gamma bound to O-GlcNAc peptide 6V4N ; 2.5 ; Structure of human 1G05 Fab in complex with influenza virus neuraminidase from B/Phuket/3073/2013 7LXV ; 3.4 ; Structure of human 20S proteasome with bound MPI-5 6V4O ; 2.8 ; Structure of human 2E01 Fab in complex with influenza virus neuraminidase from B/Phuket/3073/2013 6MGP ; 2.13 ; Structure of human 4-1BB / 4-1BBL complex 6FIB ; 2.7 ; Structure of human 4-1BB ligand 6MGE ; 2.95 ; Structure of human 4-1BBL 1CB0 ; 1.7 ; STRUCTURE OF HUMAN 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE AT 1.7 A RESOLUTION 1CG6 ; 1.7 ; STRUCTURE OF HUMAN 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH 5'-DEOXY-5'-METHYLTHIOADENOSINE AND SULFATE AT 1.7 A RESOLUTION 1SD2 ; 2.1 ; STRUCTURE OF HUMAN 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH 5'-METHYLTHIOTUBERCIDIN 1SD1 ; 2.03 ; STRUCTURE OF HUMAN 5'-DEOXY-5'-METHYLTHIOADENOSINE PHOSPHORYLASE COMPLEXED WITH FORMYCIN A 6FCX ; 2.5 ; Structure of human 5,10-methylenetetrahydrofolate reductase (MTHFR) 3KTU ; 2.3 ; Structure of human 8-oxoGuanine Glycosylase 1 bound to fluorninated oxoG-containing DNA 7ZFW ; 3.8 ; Structure of human 80S ribosome obtained from ssDNA coated grid 6JZH ; 2.25 ; Structure of human A2A adenosine receptor in complex with ZM241385 obtained from SFX experiments under atmospheric pressure 1QSE ; 2.8 ; STRUCTURE OF HUMAN A6-TCR BOUND TO HLA-A2 COMPLEXED WITH ALTERED HTLV-1 TAX PEPTIDE V7R 4M0E ; 2.0 ; Structure of human acetylcholinesterase in complex with dihydrotanshinone I 4M0F ; 2.304 ; Structure of human acetylcholinesterase in complex with territrem B 3LMS ; 2.5 ; Structure of human activated thrombin-activatable fibrinolysis inhibitor, TAFIa, in complex with tick-derived funnelin inhibitor, TCI. 2ARV ; 2.0 ; Structure of human Activin A 8ESV ; 3.3 ; Structure of human ADAM10-Tspan15 complex bound to 11G2 vFab 7KFN ; 2.5 ; Structure of Human Adenosine Deaminase Acting on dsRNA (ADAR2) bound to dsRNA containing a 2'-deoxy Benner's Base Z opposite the edited base 1BX4 ; 1.5 ; STRUCTURE OF HUMAN ADENOSINE KINASE AT 1.50 ANGSTROMS 5FGY ; 2.1 ; Structure of human adenovirus 2 protease with cofactor pVIC 1AVP ; 2.6 ; STRUCTURE OF HUMAN ADENOVIRUS 2 PROTEINASE WITH ITS 11 AMINO ACID COFACTOR 2WGU ; 1.8 ; Structure of human adenovirus serotype 37 fibre head in complex with a sialic acid derivative, O-Methyl 5-N- methoxycarbonyl -3,5-dideoxy- D-glycero-a-D-galacto-2-nonulopyranosylonic acid 2WGT ; 1.8 ; Structure of human adenovirus serotype 37 fibre head in complex with a sialic acid derivative, O-Methyl 5-N-propaonyl-3,5-dideoxy-D- glycero-a-D-galacto-2-nonulopyranosylonic acid 2C9Y ; 2.1 ; Structure of human adenylate kinase 2 1ZD8 ; 1.48 ; Structure of human adenylate kinase 3 like 1 6G4Q ; 2.59 ; Structure of human ADP-forming succinyl-CoA ligase complex SUCLG1-SUCLA2 1Z6X ; 2.7 ; Structure Of Human ADP-Ribosylation Factor 4 2B6H ; 1.764 ; Structure of human ADP-ribosylation factor 5 1ZD9 ; 1.7 ; Structure of human ADP-ribosylation factor-like 10B 2H18 ; 1.902 ; Structure of human ADP-ribosylation factor-like 10B (ARL10B) 2AL7 ; 1.85 ; Structure Of Human ADP-Ribosylation Factor-Like 10C 1Z6Y ; 2.4 ; Structure Of Human ADP-Ribosylation Factor-Like 5 2H16 ; 2.0 ; Structure of human ADP-ribosylation factor-like 5 (ARL5) 2H17 ; 1.7 ; Structure of human ADP-ribosylation factor-like 5 (ARL5) 1YZG ; 2.0 ; Structure of Human ADP-ribosylation factor-like 8 4ILE ; 2.676 ; Structure of human ADP-ribosylation factor-like 8A binding to GDP 5HHY ; 1.7 ; Structure of human Alanine:Glyoxylate Aminotransferase major allele (AGT-Ma) showing X-Ray induced reduction of PLP internal aldimine to 4'-deoxy-piridoxine-phosphate (PLR) 6QAO ; 2.89 ; Structure of human aldehyde dehydrogenase 9A1 in P21 space group 4WP7 ; 1.8 ; Structure of human ALDH1A1 with inhibitor CM026 4X4L ; 1.85 ; Structure of human ALDH1A1 with inhibitor CM037 5TEI ; 2.1 ; Structure of human ALDH1A1 with inhibitor CM039 4WPN ; 1.95 ; Structure of human ALDH1A1 with inhibitor CM053 4OE5 ; 1.95 ; Structure of Human ALDH4A1 Crystallized in Space Group P21 4ZVY ; 1.9 ; Structure of human ALDH7A1 complexed with NAD+ in space group P4212 6QAK ; 2.5 ; Structure of human ALDH9 in P21212 space group 1XDL ; 3.0 ; Structure of human aldolase B associated with hereditary fructose intolerance (A149P), at 277K 1XDM ; 3.0 ; Structure of human aldolase B associated with hereditary fructose intolerance (A149P), at 291K 8B34 ; 0.97 ; Structure of Human Aldose Reductase Mutant A299G with a Citrate Molecule Bound in the Anion Binding Pocket 8AQP ; 0.96 ; Structure of Human Aldose Reductase Mutant A299G/L300A with a Citrate Molecule Bound in the Anion Binding Pocket 8AQG ; 0.95 ; Structure of Human Aldose Reductase Mutant A299G/L300G with a Citrate Molecule Bound in the Anion Binding Pocket 6Y03 ; 1.69 ; Structure of Human Aldose Reductase Mutant L300/301A with a Citrate Molecule Bound in the Anion Binding Pocket 6T5G ; 1.28 ; Structure of Human Aldose Reductase Mutant L300A with a Citrate Molecule Bound in the Anion Binding Pocket 8A4N ; 0.93 ; Structure of Human Aldose Reductase Mutant L300G with a Citrate Molecule Bound in the Anion Binding Pocket 6T27 ; 1.11 ; Structure of Human Aldose Reductase Mutant L301A with a Citrate Molecule Bound in the Anion Binding Pocket 4DVQ ; 2.49 ; Structure of human aldosterone synthase, CYP11B2, in complex with deoxycorticosterone 4FDH ; 2.71 ; Structure of human aldosterone synthase, CYP11B2, in complex with fadrozole 4O61 ; 1.9 ; Structure of human ALKBH5 crystallized in the presence of citrate 8IF3 ; 3.23 ; Structure of human alpha-2/delta-1 with mirogabalin 8IF4 ; 3.23 ; Structure of human alpha-2/delta-1 without mirogabalin 1R46 ; 3.25 ; Structure of human alpha-galactosidase 1R47 ; 3.45 ; Structure of human alpha-galactosidase 6CFS ; 2.07 ; Structure of Human alpha-Phosphomannomutase 1 containing mutation M186Q 6CFR ; 2.07 ; Structure of Human alpha-Phosphomannomutase 1 containing mutation R183I 6CFU ; 2.244 ; Structure of Human alpha-Phosphomannomutase 1 containing mutations R180K and R183K 6CFT ; 2.43 ; Structure of Human alpha-Phosphomannomutase 1 containing mutations R180T and R183I 6CFV ; 1.918 ; Structure of Human alpha-Phosphomannomutase 1 in complex with Inosine Monophosphate 2THF ; 2.1 ; STRUCTURE OF HUMAN ALPHA-THROMBIN Y225F MUTANT BOUND TO D-PHE-PRO-ARG-CHLOROMETHYLKETONE 1B7X ; 2.1 ; STRUCTURE OF HUMAN ALPHA-THROMBIN Y225I MUTANT BOUND TO D-PHE-PRO-ARG-CHLOROMETHYLKETONE 1THP ; 2.1 ; STRUCTURE OF HUMAN ALPHA-THROMBIN Y225P MUTANT BOUND TO D-PHE-PRO-ARG-CHLOROMETHYLKETONE 5NUB ; 1.6 ; Structure of human amniotic fluid RBP4 saturated with laurate 5NU9 ; 1.5 ; Structure of human amniotic fluid RBP4 saturated with palmitate 6CDT ; 1.8 ; Structure of Human Anaplastic Lymphoma Kinase Domain 7R7R ; 1.935 ; Structure of Human Anaplastic Lymphoma Kinase Domain in complex with ((2~{R})-2-[5-[6-amino-5-[(1~{R})-1-[5-fluoro-2-(triazol-2-yl)phenyl]ethoxy]-3-pyridyl]-4-methyl-thiazol-2-yl]propane-1,2-diol) 7R7K ; 1.831 ; Structure of Human Anaplastic Lymphoma Kinase Domain in complex with (4-[6-amino-5-[(1~{R})-1-[5-fluoro-2-(triazol-2-yl)phenyl]ethoxy]-3-pyridyl]isoindolin-1-one) 5KZ0 ; 2.3 ; Structure of Human Anaplastic Lymphoma Kinase in Complex With 2-[(1R)-1-{[2-amino-5-(1,3-dimethyl-1H-pyrazol-4-yl)pyridin-3-yl]oxy}ethyl]-4-fluoro-N,N-dimethylbenzamide 2XB7 ; 2.5 ; Structure of Human Anaplastic Lymphoma Kinase in complex with NVP- TAE684 2XBA ; 1.95 ; Structure of Human Anaplastic Lymphoma Kinase in complex with PHA- E429 1XJL ; 2.59 ; Structure of human annexin A2 in the presence of calcium ions 3LMJ ; 2.2 ; Structure of human anti HIV 21c Fab 2YK1 ; 1.85 ; Structure of human anti-nicotine Fab fragment in complex with nicotine 2YKL ; 2.1 ; Structure of human anti-nicotine Fab fragment in complex with nicotine-11-yl-methyl-(4-ethylamino-4-oxo)-butanoate 4ZGZ ; 5.81 ; STRUCTURE OF HUMAN ANTIZYME INHIBITOR IN COMPLEX WITH A C-TERMINAL FRAGMENT OF ANTIZYME 4WJ9 ; 1.74 ; Structure of Human apo ALDH1A1 8PVH ; 2.9 ; Structure of human apo ALDH1A1 determined by cryoEM at 100 keV 5WRW ; 2.91 ; Structure of human apo-SRP72 8HHS ; 2.4 ; Structure of human apoferritin embedded in crystalline ice 7ZG7 ; 1.77 ; Structure of human Apoferritin obtained from ssDNA coated grid 1CB6 ; 2.0 ; STRUCTURE OF HUMAN APOLACTOFERRIN AT 2.0 A RESOLUTION. 8BTX ; 1.84 ; Structure of human Archease 2QIU ; 2.0 ; Structure of Human Arg-Insulin 4KRE ; 1.754 ; Structure of Human Argonaute-1 bound to endogenous Sf9 RNA 4KRF ; 2.101 ; Structure of Human Argonaute-1 let-7 complex 4KXT ; 2.294 ; Structure of human ARGONAUTE1 in complex with guide RNA 6D36 ; 1.7 ; Structure of human ARH3 bound to ADP-ribose and magnesium 6D3A ; 1.60001 ; Structure of human ARH3 D314E bound to ADP-ribose and magnesium 7ARW ; 1.31 ; Structure of human ARH3 E41A bound to alpha-NAD+ and magnesium 5EE5 ; 2.279 ; Structure of human ARL1 in complex with the DCB domain of BIG1 2ASK ; 1.55 ; Structure of human Artemin 8QEY ; 4.0 ; Structure of human Asc1/CD98hc heteromeric amino acid transporter 7P4I ; 4.2 ; Structure of human ASCT1 transporter 7LO0 ; 2.71 ; Structure of human ASF1a in complex with a TLK2 peptide 2IIJ ; ; Structure of human Asf1a in complex with histone H3 4TZ8 ; 2.15 ; Structure of human ATAD2 bromodomain bound to fragment inhibitor 4WZG ; 1.9 ; Structure of human ATG101 2D1I ; 2.0 ; Structure of human Atg4b 5D7G ; 3.0 ; Structure of human ATG5 E122D-ATG16L1 complex at 3.0 Angstroms 5NPW ; 3.1 ; Structure of human ATG5-ATG16L1(ATG5BD) complex (C2) 5NPV ; 3.1 ; Structure of human ATG5-ATG16L1(ATG5BD) complex (I4) 6WQZ ; 2.8 ; Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery 6WR4 ; 2.9 ; Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery 6POF ; 4.3 ; Structure of human ATP citrate lyase 6UUW ; 2.85 ; Structure of human ATP citrate lyase E599Q mutant in complex with Mg2+, citrate, ATP and CoA 6UI9 ; 3.1 ; Structure of human ATP citrate lyase in complex with acetyl-CoA and oxaloacetate 6UV5 ; 3.4 ; Structure of human ATP citrate lyase in complex with acetyl-CoA and oxaloacetate 7LJ9 ; 3.0 ; Structure of human ATP citrate lyase in complex with acetyl-CoA and oxaloacetate 7LLA ; 2.97 ; Structure of human ATP citrate lyase in complex with acetyl-CoA and oxaloacetate (EM map was generated in Cryosparc with non-uniform refinement) 6D5X ; 2.4 ; Structure of Human ATP:Cobalamin Adenosyltransferase bound to ATP, Adenosylcobalamin, and Triphosphate 6D5K ; 2.85 ; Structure of Human ATP:Cobalamin Adenosyltransferase bound to ATP, and Adenosylcobalamin 2IDX ; 2.5 ; Structure of Human ATP:Cobalamin adenosyltransferase bound to ATP. 7RUV ; 2.1 ; Structure of Human ATP:Cobalamin Adenosyltransferase E193K bound to adenosylcobalamin 7RUU ; 1.85 ; Structure of Human ATP:Cobalamin Adenosyltransferase R190C bound to adenosylcobalamin 7RUT ; 1.5 ; Structure of Human ATP:Cobalamin Adenosyltransferase R190C bound to ATP 3QBN ; 3.5 ; Structure of Human Aurora A in Complex with a diaminopyrimidine 1OL7 ; 2.75 ; Structure of Human Aurora-A 122-403 phosphorylated on Thr287, Thr288 6YV1 ; 3.4 ; Structure of human b(0,+)AT1 7XQ8 ; 3.3 ; Structure of human B-cell antigen receptor of the IgM isotype 6LTH ; 3.0 ; Structure of human BAF Base module 7YUG ; 1.1 ; Structure of human BANP BEN domain 6QGH ; 2.0 ; Structure of human Bcl-2 in complex with ABT-263 6QGG ; 1.5 ; Structure of human Bcl-2 in complex with analogue of ABT-737 6QGJ ; 1.9 ; Structure of human Bcl-2 in complex with fragment/ABT-263 hybrid 6QG8 ; 1.9 ; Structure of human Bcl-2 in complex with PUMA BH3 peptide 6QGK ; 1.8 ; Structure of human Bcl-2 in complex with THIQ-phenyl pyrazole compound 1R2D ; 1.95 ; Structure of Human Bcl-XL at 1.95 Angstroms 7JHK ; 2.3436 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 in unliganded form 7JHI ; 2.5 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 iodide-derivative 8TIC ; 2.7 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with compound 1 8SZ3 ; 2.32 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with compound 7j 8TJC ; 2.2 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with compound 8a 7JHM ; 2.19 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with N-acetyl-lactosamine 7JHO ; 1.85 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with UDP 7JHN ; 2.2 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with UDP and trisaccharide GlcNAc-beta1-3Gal-beta1-4GlcNAc 7JHL ; 2.26 ; Structure of human beta 1,3-N-acetylglucosaminyltransferase 2 with UDP-N-acetylglucosamine 4P7H ; 3.2 ; Structure of Human beta-Cardiac Myosin Motor Domain::GFP chimera 7BU7 ; 2.6 ; Structure of human beta1 adrenergic receptor bound to BI-167107 and nanobody 6B9 7BVQ ; 2.5 ; Structure of human beta1 adrenergic receptor bound to carazolol 7BTS ; 3.13 ; Structure of human beta1 adrenergic receptor bound to epinephrine and nanobody 6B9 7BU6 ; 2.7 ; Structure of human beta1 adrenergic receptor bound to norepinephrine and nanobody 6B9 7XKA ; 3.1 ; Structure of human beta2 adrenergic receptor bound to constrained epinephrine 7XK9 ; 3.4 ; Structure of human beta2 adrenergic receptor bound to constrained isoproterenol 6LR0 ; 3.5 ; structure of human bile salt exporter ABCB11 6FNE ; 2.501 ; Structure of human Brag2 (Sec7-PH domains) with the inhibitor Bragsin bound to the PH domain 4IGK ; 1.75 ; Structure of human BRCA1 BRCT in complex with ATRIP peptide 4IFI ; 2.2 ; Structure of human BRCA1 BRCT in complex with BAAT peptide 8SB6 ; 1.8 ; Structure of human BRD2-BD1 bound to a histone H4 acetyl-methyllysine peptide 3D1N ; 2.51 ; Structure of human Brn-5 transcription factor in complex with corticotrophin-releasing hormone gene promoter 6OMU ; 1.41 ; Structure of human Bruton's Tyrosine Kinase in complex with Evobrutinib 5DMZ ; 2.4 ; Structure of human Bub1 kinase domain phosphorylated at Ser969 6SAM ; 2.5 ; Structure of human butyrylcholinesterase in complex with 1-(2,3-dihydro-1H-inden2-yl)piperidin-3-yl N-phenyl carbamate 2J4C ; 2.75 ; Structure of human Butyrylcholinesterase in complex with 10mM HgCl2 8CGO ; 2.65 ; Structure of human butyrylcholinesterase in complex with N-{[2-(benzyloxy)-3-methoxyphenyl]methyl}-N-[3-(2-fluorophenyl)propyl]cyclobutanamine 2Y1K ; 2.5 ; STRUCTURE OF HUMAN BUTYRYLCHOLINESTERASE INHIBITED BY CBDP (12H SOAK): PHOSPHOSERINE ADDUCT 4BBZ ; 2.7 ; Structure of human butyrylcholinesterase inhibited by CBDP (2-min soak): Cresyl-phosphoserine adduct 1KSW ; 2.8 ; Structure of Human c-Src Tyrosine Kinase (Thr338Gly Mutant) in Complex with N6-benzyl ADP 7QIV ; 2.8 ; Structure of human C3b in complex with the EWE nanobody 5HYP ; 3.024 ; Structure of human C4b-binding protein alpha cain CCP domains 1 and 2 in complex with the hypervariable region of group A Streptococcus M28 protein 5HYU ; 2.561 ; Structure of human C4b-binding protein alpha chain CCP domains 1 and 2 in complex with the hypervariable region of group A Streptococcus M2 protein 5HZP ; 2.74 ; Structure of human C4b-binding protein alpha chain CCP domains 1 and 2 in complex with the hypervariable region of group A Streptococcus M49 protein. 5I0Q ; 2.293 ; Structure of human C4b-binding protein alpha chain CCP domains 1 and 2 in complex with the hypervariable region of mutant group A Streptococcus M2 (K65A, N66A) protein 5HYT ; 2.54 ; Structure of human C4b-binidng protein alpha chain CCP domains 1 and 2 in complex with the hypervariable region of group A Streptococcus M22 protein 8JZZ ; 3.31 ; Structure of human C5a-desArg bound human C5aR1 in complex with Go 2VZ6 ; 2.3 ; Structure of human calcium calmodulin dependent protein kinase type II alpha (CAMK2A) in complex with Indirubin E804 2P0R ; 2.5 ; Structure of Human Calpain 9 in complex with Leupeptin 4ITP ; 1.697 ; Structure of human carbonic anhydrase II bound to a benzene sulfonamide 3OYQ ; 1.47 ; Structure of Human Carbonic Anhydrase II complexed with 5,6-DIHYDRO-BENZO[H]CINNOLIN-3-YLAMINE 4ILX ; 1.6 ; Structure of human carbonic anhydrase II in complex with an adamantyl sulfonamide inhibitor 3U3A ; 1.549 ; structure of Human Carbonic Anhydrase II V143I 1XQ0 ; 1.76 ; Structure of human carbonic anhydrase II with 4-[(3-bromo-4-O-sulfamoylbenzyl)(4-cyanophenyl)amino]-4H-[1,2,4]-triazole 1XPZ ; 2.02 ; Structure of human carbonic anhydrase II with 4-[4-O-sulfamoylbenzyl)(4-cyanophenyl)amino]-4H-[1,2,4]-triazole 1YFF ; 2.4 ; STRUCTURE OF HUMAN CARBONMONOXYHEMOGLOBIN C (BETA E6K): TWO QUATERNARY STATES (R2 and R3) IN ONE CRYSTAL 6KN8 ; 4.8 ; Structure of human cardiac thin filament in the calcium bound state 6KN7 ; 6.6 ; Structure of human cardiac thin filament in the calcium free state 1NM8 ; 1.6 ; Structure of Human Carnitine Acetyltransferase: Molecular Basis for Fatty Acyl Transfer 2CMW ; 1.75 ; Structure of Human Casein kinase 1 gamma-1 in complex with 2-(2- Hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine 7NXL ; 1.8 ; Structure of human cathepsin K in complex with the acrylamide inhibitor Gu3110 7NXM ; 1.72 ; Structure of human cathepsin K in complex with the selective activity-based probe Gu3416 6PXF ; 1.85 ; Structure of human Cathepsin K with an ectosteric inhibitor at 1.85 Angstrom resolution 7JIC ; 3.8 ; Structure of human CD19-CD81 co-receptor complex bound to coltuximab Fab fragment 4MQ7 ; 2.6032 ; Structure of human CD1d-sulfatide 3S6C ; 2.9 ; Structure of human CD1e 2JJS ; 1.85 ; Structure of human CD47 in complex with human signal regulatory protein (SIRP) alpha 2JJT ; 2.3 ; Structure of human CD47 in complex with human signal regulatory protein (SIRP) alpha 4CMM ; 1.92 ; Structure of human CD47 in complex with human Signal Regulatory Protein (SIRP) alpha v1 6HXW ; 2.78 ; structure of human CD73 in complex with antibody IPH53 8PHD ; 2.08 ; Structure of Human Cdc123 bound to domain 3 of eIF2 gamma and ATP 3NR9 ; 2.89 ; Structure of human CDC2-like kinase 2 (CLK2) 4ENZ ; 2.6 ; Structure of human ceruloplasmin at 2.6 A resolution 4LEV ; 1.952 ; Structure of human cGAS 4LEW ; 2.04 ; Structure of human cGAS 6Y5D ; 4.1 ; Structure of human cGAS (K394E) bound to the nucleosome 6Y5E ; 3.15 ; Structure of human cGAS (K394E) bound to the nucleosome (focused refinement of cGAS-NCP subcomplex) 5LTL ; 1.45 ; Structure of human chemokine CCL16 1GUV ; 2.35 ; Structure of human chitotriosidase 3FRV ; 3.7 ; Structure of Human CHMP3 (residues 1-150) 1HCN ; 2.6 ; STRUCTURE OF HUMAN CHORIONIC GONADOTROPIN AT 2.6 ANGSTROMS RESOLUTION FROM MAD ANALYSIS OF THE SELENOMETHIONYL PROTEIN 6OD0 ; 2.15 ; Structure of human CIB1 in complex with peptide inhibitor UNC10245092 6OCX ; 1.9 ; Structure of human CIB1 in complex with peptide inhibitor UNC10245109 2KDK ; ; Structure of human circadian clock protein BMAL2 C-terminal PAS domain 7L1X ; 1.8 ; Structure of human CK2 alpha kinase (catalytic subunit) with the inhibitor 108600. 3RPS ; 2.3 ; Structure of human CK2alpha in complex with the ATP-competitive inhibitor 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol 7A04 ; 2.15 ; Structure of human CKa1 in complex with compound b 7A06 ; 1.8 ; Structure of human CKa1 in complex with compound o 6MQ5 ; 2.146 ; Structure of human CLASP1 TOG1 7JM7 ; 2.82 ; Structure of human CLC-7/OSTM1 complex 2R4V ; 1.85 ; Structure of human CLIC2, crystal form A 2R5G ; 1.86 ; Structure of human CLIC2, crystal form B 5K8R ; 2.5 ; Structure of human clustered protocadherin gamma B3 EC1-4 4BEX ; 2.8 ; Structure of human Cofilin1 5JPN ; 3.6 ; Structure of human complement C4 rebuilt using iMDFF 6RQJ ; 3.5 ; Structure of human complement C5 complexed with tick inhibitors OmCI, RaCI1 and CirpT1 2G7I ; 1.75 ; Structure of Human Complement Factor H Carboxyl Terminal Domains 19-20: a Basis for Atypical Hemolytic Uremic Syndrome 8GN7 ; 3.0 ; structure of human connexin 40.1 intercellular gap junction channel by cryoEM 8GN8 ; 3.5 ; structure of human connexin 40.1 pentameric hemichannel by cryoEM 8GNB ; 3.9 ; structure of human connexin 40.1 side-by-side decamer channel by cryoEM 8UD9 ; 2.04 ; Structure of human constitutive 20S proteasome complexed with the inhibitor TDI-8304 6DEW ; 2.0 ; Structure of human COQ9 protein with bound isoprene. 6FV1 ; 2.3 ; Structure of human coronavirus NL63 main protease in complex with the alpha-ketoamide (S)-N-((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)butan-2-yl)-2-cinnamamido-4-methylpentanamide (cinnamoyl-leucine-GlnLactam-CO-CO-NH-benzyl) 6FV2 ; 2.95 ; Structure of human coronavirus NL63 main protease in complex with the alpha-ketoamide (S)-N-benzyl-3-((S)-2-cinnamamido-3-phenylpropanamido)-2-oxo-4-((S)-2-oxopyrrolidin-3-yl)butanamide (cinnamoyl-phenylalanine-GlnLactam-CO-CO-NH-benzyl) 5NH0 ; 2.35 ; Structure of human coronavirus NL63 main protease in complex with the alpha-ketoamide tert-Butyl ((S)-4-(benzylamino)-3,4-dioxo-1-((S)-2-oxopyrrolidin-3-yl)b- utan-2-yl)carbamate (tert-butyl -GlnLactam-CO-CO-NH-benzyl) 2I7T ; 2.1 ; Structure of human CPSF-73 2I7V ; 2.1 ; Structure of Human CPSF-73 1PU0 ; 1.7 ; Structure of Human Cu,Zn Superoxide Dismutase 2LNL ; ; Structure of human CXCR1 in phospholipid bilayers 4O68 ; 2.436 ; Structure of human cyclic GMP-AMP synthase (cGAS) 1YND ; 1.6 ; Structure of human cyclophilin A in complex with the novel immunosuppressant sanglifehrin A at 1.6A resolution 6M7X ; 2.095 ; Structure of human CYP11B1 in complex with fadrozole 1JBQ ; 2.6 ; STRUCTURE OF HUMAN CYSTATHIONINE BETA-SYNTHASE: A UNIQUE PYRIDOXAL 5'-PHOSPHATE DEPENDENT HEMEPROTEIN 1RN7 ; 2.5 ; Structure of human cystatin D 1ROA ; 1.8 ; Structure of human cystatin D 5Z62 ; 3.6 ; Structure of human cytochrome c oxidase 6O5Y ; 3.17 ; Structure of Human Cytochrome P450 1A1 with 5-amino-N-(5-((4R,5R)-4-amino-5-fluoroazepan-1-yl)-1-methyl-1H-pyrazol-4-yl)-2-(2,6-difluorophenyl)thiazole-4-carboxamide) 6DWM ; 2.85 ; Structure of Human Cytochrome P450 1A1 with Bergamottin 6UDL ; 2.85 ; Structure of Human Cytochrome P450 1A1 with Duocarmycin Prodrug (S) ICT-2700 6UDM ; 3.075 ; Structure of Human Cytochrome P450 1A1 with Duocarmycin Prodrug (S) ICT-2726 6DWN ; 3.0 ; Structure of Human Cytochrome P450 1A1 with Erlotinib 1OG2 ; 2.6 ; Structure of human cytochrome P450 CYP2C9 1OG5 ; 2.55 ; Structure of human cytochrome P450 CYP2C9 4JM0 ; 3.25 ; Structure of Human Cytomegalovirus Immune Modulator UL141 8DYV ; 3.97 ; Structure of human cytoplasmic dynein-1 bound to one Lis1 8DYU ; 4.0 ; Structure of human cytoplasmic dynein-1 bound to two Lis1 proteins 2I7D ; 1.2 ; Structure of Human cytosolic deoxyribonucleotidase in complex with deoxyuridine, AlF4 and Mg2+ 3CTZ ; 1.6 ; Structure of human cytosolic X-prolyl aminopeptidase 6HZZ ; 2.52 ; Structure of human D-glucuronyl C5 epimerase 6I02 ; 2.45 ; Structure of human D-glucuronyl C5 epimerase in complex with product 6I01 ; 2.1 ; Structure of human D-glucuronyl C5 epimerase in complex with substrate 6XQQ ; 2.68 ; Structure of human D462-E4 TCR 6XQP ; 2.9 ; Structure of human D462-E4 TCR in complex with human MR1-5-OP-RU 6RKF ; 3.219 ; Structure of human DASPO 1P61 ; 2.21 ; Structure of human dCK complexed with 2'-Deoxycytidine and ADP, P 43 21 2 space group 1P60 ; 1.96 ; Structure of human dCK complexed with 2'-Deoxycytidine and ADP, Space group C 2 2 21 1P5Z ; 1.6 ; Structure of human dCK complexed with cytarabine and ADP-MG 1P62 ; 1.9 ; Structure of human dCK complexed with gemcitabine and ADP-MG 7ABS ; 1.97 ; Structure of human DCLRE1C/Artemis in complex with DNA - re-evaluation of 6WO0 1XML ; 2.0 ; Structure of human Dcps 1XMM ; 2.5 ; Structure of human Dcps bound to m7GDP 8AJM ; 2.83 ; Structure of human DDB1-DCAF12 in complex with the C-terminus of CCT5 1W6U ; 1.75 ; Structure of human DECR ternary complex 2W6V ; 1.8 ; Structure of Human deoxy Hemoglobin A in complex with Xenon 4D50 ; 1.7 ; Structure of human deoxyhypusine hydroxylase 4D4Z ; 1.7 ; STRUCTURE OF HUMAN DEOXYHYPUSINE HYDROXYLASE in complex with glycerol 1HCG ; 2.2 ; STRUCTURE OF HUMAN DES(1-45) FACTOR XA AT 2.2 ANGSTROMS RESOLUTION 6BML ; 2.95 ; Structure of human DHHC20 palmitoyltransferase, irreversibly inhibited by 2-bromopalmitate 6BMM ; 2.35 ; Structure of human DHHC20 palmitoyltransferase, space group P21 6BMN ; 2.25 ; Structure of human DHHC20 palmitoyltransferase, space group P63 4NGD ; 1.958 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 12-mer siRNA having 5'-p and UU-3' ends (1.95 Angstrom resolution) 4NGC ; 2.104 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 12-mer siRNA having UA-3' ends (2.1 Angstrom resolution) 4NGB ; 2.25 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 12-mer siRNA having UU-3' ends (2.25 Angstrom resolution) 4NGG ; 2.6 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 13-mer siRNA having 5'-A and UU-3' ends (2.6 Angstrom resolution) 4NH3 ; 2.616 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 13-mer siRNA having 5'-pU and UU-3' ends (2.6 Angstrom resolution) 4NH5 ; 2.55 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 14-mer siRNA having 5'-pUU and UU-3' ends (2.55 Angstrom resolution) 4NH6 ; 2.551 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 15-mer siRNA having 5'-pUUU and UU-3' ends (2.55 Angstrom resolution) 4NHA ; 3.401 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 16-mer siRNA having 5'-p and UU-3' ends (3.4 Angstrom resolution) 4NGF ; 3.101 ; Structure of human Dicer Platform-PAZ-Connector Helix cassette in complex with 17-mer siRNA having 5'-p and UU-3' ends (3.1 Angstrom resolution) 1SQY ; 2.5 ; Structure of human diferric lactoferrin at 2.5A resolution using crystals grown at pH 6.5 5ZF4 ; 1.66 ; Structure of human dihydroorotate dehydrogenase in complex with 275-10-COOMe 5ZF8 ; 1.7 ; Structure of human dihydroorotate dehydrogenase in complex with 277-11-OAc 5ZF7 ; 1.79 ; Structure of human dihydroorotate dehydrogenase in complex with 277-9-OH 5ZF9 ; 1.77 ; Structure of human dihydroorotate dehydrogenase in complex with 280-12 5ZFA ; 1.75 ; Structure of human dihydroorotate dehydrogenase in complex with 287-12-OCOiPr 5ZFB ; 2.0 ; Structure of human dihydroorotate dehydrogenase in complex with ascofuranone (open-form) 3W7R ; 1.68 ; Structure of Human dihydroorotate dehydrogenase in complex with mii-4-097 3ZWS ; 1.6 ; Structure of Human Dihydroorotate Dehydrogenase with a Bound Inhibitor 3ZWT ; 1.55 ; Structure of Human Dihydroorotate Dehydrogenase with a Bound Inhibitor 7PWY ; 2.5 ; Structure of human dimeric ACMSD in complex with the inhibitor TES-1025 4WJL ; 3.4 ; Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels 6XE6 ; 4.53 ; Structure of Human Dispatched-1 (DISP1) 4Z6C ; 2.677 ; Structure of human DNA polymerase beta 279NA mutant complexed with G in the template base paired with incoming non-hydrolyzable CTP 4Z6D ; 2.51 ; Structure of human DNA polymerase beta 279NA mutant complexed with G in the template base paired with incoming non-hydrolyzable TTP 4Z6E ; 2.752 ; Structure of human DNA polymerase beta 279NA mutant complexed with G in the template base paired with incoming non-hydrolyzable TTP and MANGANESE 4Z6F ; 2.444 ; Structure of human DNA polymerase beta 279NA mutant complexed with G in the template base paired with incoming non-hydrolyzable TTP and MANGANESE 7MZ3 ; 2.418 ; Structure of human DNA polymerase beta complexed with 3-deaza-3-methyladenine (3dMeA) as the template base in a 1-nucleotide gapped DNA 7MZ8 ; 2.6 ; Structure of human DNA polymerase beta complexed with 3-deaza-3-methyladenine (3dMeA) at N-1 of the template base paired with incoming dTTP 7MZ4 ; 2.076 ; Structure of human DNA polymerase beta complexed with 3-deaza-3-methyladenine (3dMeA) in the template base paired with incoming dTTP 4YMM ; 2.199 ; Structure of human DNA polymerase beta complexed with 7BG as the template base in a 1-nucleotide gapped DNA 4M2Y ; 2.27 ; Structure of human DNA polymerase beta complexed with 8-BrG as the template base in a 1-nucleotide gapped DNA 6CLY ; 2.186 ; Structure of human DNA polymerase beta complexed with 8-ClG as the template base in a 1-nucleotide gapped DNA 6CUB ; 2.05 ; Structure of human DNA polymerase beta complexed with 8-ClG in the template base paired with incoming non-hydrolyzable ATP and MANGANESE 6CPQ ; 1.93 ; Structure of human DNA polymerase beta complexed with 8-ClG in the template base paired with incoming non-hydrolyzable CTP 6CU9 ; 2.04 ; Structure of human DNA polymerase beta complexed with 8-ClG in the template base paired with incoming non-hydrolyzable CTP and MANGANESE 6CRH ; 2.327 ; Structure of human DNA polymerase beta complexed with 8-ClG in the template base paired with incoming non-hydrolyzable GTP 6CUA ; 2.17 ; Structure of human DNA polymerase beta complexed with 8-ClG in the template base paired with incoming non-hydrolyzable GTP and MANGANESE 4NLK ; 2.494 ; Structure of human DNA polymerase beta complexed with 8BrG in the template base-paired with incoming non-hydrolyzable CTP 6E3R ; 2.26 ; Structure of human DNA polymerase beta complexed with 8OA as the template base in a 1-nucleotide gapped DNA 6E3X ; 2.65 ; Structure of human DNA polymerase beta complexed with 8OA in the template base paired with incoming non-hydrolyzable ATP 6E3W ; 2.02 ; Structure of human DNA polymerase beta complexed with 8OA in the template base paired with incoming non-hydrolyzable GTP 6E3V ; 1.96 ; Structure of human DNA polymerase beta complexed with 8OA in the template base paired with incoming non-hydrolyzable TTP 4PHA ; 2.52 ; Structure of human DNA polymerase beta complexed with A in the template base paired with incoming non-hydrolyzable CTP 4PHD ; 2.21 ; Structure of human DNA polymerase beta complexed with A in the template base paired with incoming non-hydrolyzable CTP and MANGANESE 4NM1 ; 2.415 ; Structure of human DNA polymerase beta complexed with a nicked DNA containing a 8BrG-C at N-1 position and G-C at N position 4NM2 ; 2.524 ; Structure of human DNA polymerase beta complexed with a nicked DNA containing a 8BrG-G at N-1 position and G-C at N position 4PH5 ; 2.55 ; Structure of human DNA polymerase beta complexed with a nicked DNA containing a AC at N-1 position and GC at N position 4PGY ; 2.26 ; Structure of human DNA polymerase beta complexed with a nicked DNA containing a GT at N-1 position and GC at N position 7MZ0 ; 2.021 ; Structure of human DNA polymerase beta complexed with dzA as the template base in a 1-nucleotide gapped DNA 7MZ2 ; 2.088 ; Structure of human DNA polymerase beta complexed with dzA at N-1 of the template base paired with incoming dTTP 7MZ1 ; 2.175 ; Structure of human DNA polymerase beta complexed with dzA in the template base paired with incoming non-hydrolyzable TTP 4PGQ ; 2.3 ; Structure of human DNA polymerase beta complexed with G in the template base paired with incoming non-hydrolyzable TTP 4PGX ; 2.077 ; Structure of human DNA polymerase beta complexed with G in the template base paired with incoming non-hydrolyzable TTP and MANGANESE 4TUP ; 1.8 ; Structure of human DNA polymerase beta complexed with GG as the template (GG0b) in a 1-nucleotide gapped DNA 4YMN ; 2.591 ; Structure of human DNA polymerase beta complexed with N7BG in the template base paired with incoming non-hydrolyzable CTP 4YMO ; 2.148 ; Structure of human DNA polymerase beta complexed with N7BG in the template opposite to incoming non-hydrolyzable CTP WITH MANGANESE IN THE ACTIVE SITE 4YN4 ; 2.243 ; Structure of human DNA polymerase beta complexed with N7BG in the template opposite to incoming non-hydrolyzable dTTP WITH MANGANESE IN THE ACTIVE SITE 4NLZ ; 2.683 ; Structure of human DNA polymerase beta complexed with nicked DNA containing a mismatched template 8BrG and incoming GTP 4MF8 ; 2.32 ; Structure of human DNA polymerase beta complexed with nicked DNA containing a mismatched template O6MG and incoming CTP 4MFA ; 2.27 ; Structure of human DNA polymerase beta complexed with nicked DNA containing a mismatched template O6MG and incoming TTP 4NLN ; 2.261 ; Structure of human DNA polymerase beta complexed with nicked DNA containing a template 8BrG and incoming CTP 4MF2 ; 2.4 ; Structure of human DNA polymerase beta complexed with O6MG as the template base in a 1-nucleotide gapped DNA 4MFC ; 2.13 ; Structure of human DNA polymerase beta complexed with O6MG in the template base paired with incoming non-hydrolyzable CTP 4MFF ; 2.55 ; Structure of human DNA polymerase beta complexed with O6MG in the template base paired with incoming non-hydrolyzable TTP 4PHE ; 2.15 ; Structure of human DNA polymerase beta complexed with T in the template base paired with incoming non-hydrolyzable GTP 4PHP ; 2.6 ; Structure of human DNA polymerase beta complexed with T in the template base paired with incoming non-hydrolyzable GTP and MANGANESE 5DBB ; 2.25 ; Structure of human DNA polymerase beta Host-Guest complex with the dG base paired with a dA 5DBC ; 2.402 ; Structure of human DNA polymerase beta Host-Guest complex with the dG base paired with a dG 5DBA ; 1.965 ; Structure of human DNA polymerase beta Host-Guest complex with the dG base paired with a dT 5DB8 ; 2.547 ; Structure of human DNA polymerase beta Host-Guest complex with the N7MG base paired with a dA 5DB6 ; 2.83 ; Structure of human DNA polymerase beta Host-Guest complex with the N7MG base paired with a dC 5DB9 ; 2.45 ; Structure of human DNA polymerase beta Host-Guest complex with the N7MG base paired with a dG 5DB7 ; 2.209 ; Structure of human DNA polymerase beta Host-Guest complex with the N7MG base paired with a dT 5HHI ; 2.517 ; Structure of human DNA polymerase beta Host-Guest complexed with CBZ-platinated N7-G 5HHH ; 2.363 ; Structure of human DNA polymerase beta Host-Guest complexed with the control G for N7-CBZ-platination 6U2O ; 2.3 ; Structure of human DNA polymerase beta misinserting dAMPNPP opposite the 5'G of the cisplatin Pt-GG intrastrand crosslink 6U6B ; 3.108 ; Structure of human DNA polymerase beta misinserting dAMPNPP opposite the 5'G of the cisplatin Pt-GG intrastrand crosslink with Manganese in the active site 6PKZ ; 2.74 ; Structure of human DNA polymerase beta N279A complexed with 8OA in the template base paired with incoming non-hydrolyzable GTP 4M47 ; 2.37 ; structure of human DNA polymerase complexed with 8-BrG in the template base paired with incoming non-hydrolyzable GTP 4O5C ; 2.363 ; Structure of human DNA polymerase complexed with N7-MG as the template base in a 1-nucleotide gapped DNA 4O5K ; 2.058 ; Structure of human DNA polymerase complexed with N7MG in the template base paired with incoming non-hydrolyzable CTP 4O5E ; 2.532 ; Structure of human DNA polymerase complexed with N7MG in the template base paired with incoming non-hydrolyzable TTP 4P2H ; 1.987 ; Structure of human DNA polymerase complexed with N7MG in the template opposite to incoming non-hydrolyzable TTP with manganese in the active site 6PLC ; 2.5 ; Structure of human DNA polymerase eta complexed with 8OA in the template base paired with incoming non-hydrolyzable GTP 6PL8 ; 2.17 ; Structure of human DNA polymerase eta complexed with 8OA in the template base paired with incoming non-hydrolyzable TTP 6PL7 ; 2.5 ; Structure of human DNA polymerase eta complexed with A in the template base paired with incoming non-hydrolyzable TTP 6UI2 ; 2.35 ; Structure of human DNA polymerase eta complexed with N7MG in the template base paired with incoming non-hydrolyzable CTP 5ULW ; 2.617 ; Structure of human DNA polymerase iota bound to template 1-methyl-deoxyadenosine 5ULX ; 1.96 ; Structure of human DNA polymerase iota bound to template 1-methyl-deoxyadenosine crystallized in the presence of dCTP 3EPG ; 2.5 ; Structure of Human DNA Polymerase Iota complexed with N2-ethylguanine 3EPI ; 2.9 ; Structure of Human DNA Polymerase Iota complexed with N2-ethylguanine and incoming TTP 5W2C ; 2.5 ; Structure of human DNA polymerase kappa in complex with Lucidin-derived DNA adduct and incoming dAMPNPP 5W2A ; 2.9 ; Structure of human DNA polymerase kappa in complex with Lucidin-derived DNA adduct and incoming dCMPNPP 3IN5 ; 3.2 ; Structure of human DNA polymerase kappa inserting dATP opposite an 8-oxoG DNA lesion 6CST ; 2.0 ; Structure of human DNA polymerase kappa with DNA 6O3O ; 2.8 ; Structure of human DNAM-1 (CD226) bound to nectin-like protein-5 (necl-5) 3SWR ; 2.49 ; Structure of human DNMT1 (601-1600) in complex with Sinefungin 1G55 ; 1.8 ; Structure of human DNMT2, an enigmatic DNA methyltransferase homologue 5SZB ; 1.2 ; Structure of human Dpf3 double-PHD domain bound to histone H3 tail peptide with acetylated K14 5SZC ; 1.193 ; Structure of human Dpf3 double-PHD domain bound to histone H3 tail peptide with monomethylated K4 and acetylated K14 3KWJ ; 2.8 ; Structure of human DPP-IV with (2S,3S,11bS)-3-(3-Fluoromethyl-phenyl)-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-2-ylamine 3OC0 ; 2.7 ; Structure of human DPP-IV with HTS hit (2S,3S,11bS)-3-butyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-2-ylamine 7OUP ; 2.65 ; Structure of human DPP3 in complex with a hydroxyethylene transition state peptidomimetic 5E2Q ; 2.404 ; Structure of human DPP3 in complex with angiotensin-II 5EHH ; 2.38 ; Structure of human DPP3 in complex with endomorphin-2. 5E3C ; 2.765 ; Structure of human DPP3 in complex with hemorphin like opioid peptide IVYPW 5E33 ; 1.837 ; Structure of human DPP3 in complex with met-enkephalin 5E3A ; 2.05 ; Structure of human DPP3 in complex with opioid peptide leu-enkephalin 3T6B ; 2.4 ; Structure of human DPPIII in complex with the opioid peptide Tynorphin, at 2.4 Angstroms 3T6J ; 2.976 ; Structure of human DPPIII in complex with the opioid peptide Tynorphin, at 3.0 Angstroms 2Y96 ; 2.38 ; Structure of human dual-specificity phosphatase 27 3DWB ; 2.38 ; structure of human ECE-1 complexed with phosphoramidon 2JGB ; 1.7 ; Structure of human eIF4E homologous protein 4EHP with m7GTP 6POW ; 2.15 ; Structure of human endotheial nitric oxide synthase heme domain in complex with 7-(5-(Aminomethyl)pyridin-3-yl)-4-methylquinolin-2-amine 8UFS ; 2.05 ; Structure of human endothelial nitric oxide synthase E361Q mutant heme domain obtain after soaking crystal with 4-methyl-7-(4-methyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin-7-yl)quinolin-2-amine dihydrochloride 7UAO ; 1.9 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (6-(3-(4,4-difluoropiperidin-1-yl)propyl)-4-methylpyridin-2-amine) 5UOB ; 2.292 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (R)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 6NH2 ; 2.29 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (R)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 5UOC ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (S)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 6NHF ; 1.83 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylazetidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NH3 ; 2.01 ; Structure of human endothelial nitric oxide synthase heme domain in complex with (S)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 5UOA ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 3-[(2-Amino-4-methylquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5UO8 ; 2.18 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 3-[(2-aminoquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 6PP2 ; 2.02 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-((4-(2-Amino-4-methylquinolin-7-yl)-2-(aminomethyl)phenoxy)methyl)benzonitrile 5VVC ; 2.4 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VVD ; 2.25 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)benzonitrile 5VVB ; 2.15 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 8FGQ ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-6-methylpyrimidin-2-amine 8FGU ; 2.0 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-(difluoromethyl)-6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine 7TSI ; 2.1 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(3-((methylamino)methyl)phenyl)pyridin-2-amine 7TSM ; 1.85 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(3-(4-methylpiperazin-1-yl)prop-1-yn-1-yl)pyridin-2-amine bishydrochloride 7TSL ; 1.9 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(3-(4-methylpiperazin-1-yl)propyl)pyridin-2-amine 7TSK ; 2.049 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(3-(methylamino)prop-1-yn-1-yl)pyridin-2-amine 7TSH ; 2.145 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-6-(3-(methylamino)propyl)pyridin-2-amine 8UFR ; 1.871 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 4-methyl-7-(4-methyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin-7-yl)quinolin-2-amine dihydrochloride 4D1P ; 1.731 ; Structure of human endothelial nitric oxide synthase heme domain IN COMPLEX WITH 6-((((3S, 5R)-5-(((6-AMINO-4-METHYLPYRIDIN-2-YL)METHOXY) METHYL)PYRROLIDIN-3-YL)OXY) METHYL)-4-METHYLPYRIDIN-2-AMINE 8FGT ; 1.9 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(2,3-difluoro-5-(2-(4-methylpiperazin-1-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 7TSN ; 2.08 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 7TSO ; 2.0 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)propyl)-4-methylpyridin-2-amine 6NH7 ; 1.9 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,5,6-trifluorophenethyl)-4-methylpyridin-2-amine 7TSP ; 2.0 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-(4,4-difluoropiperidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 7TSG ; 1.85 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-(dimethylamino)propyl)-4-methylpyridin-2-amine 6NH5 ; 1.959 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(2-((2R,4S)-4-fluoro-1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NH4 ; 2.27 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(2-((2R,4S)-4-fluoropyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NH1 ; 2.216 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-methylpyridin-2-amine 6AV6 ; 2.08 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(3-Fluoro-5-(3-(methylamino)propyl)phenethyl)-4-methylpyridin-2-amine 8FGS ; 1.8449 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(2-(diethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGP ; 1.88 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methoxypyridin-2-amine 8FGO ; 1.799 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGN ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine 8FGR ; 1.98 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(2-aminoethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 6NH8 ; 1.8 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 6-(5-(3-(dimethylamino)propyl)-2,3,4-trifluorophenethyl)-4-methylpyridin-2-amine 7M56 ; 1.957 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-((3-(3-aminophenethyl)phenoxy)methyl)quinolin-2-amine 6POV ; 2.047 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PP0 ; 1.97 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclobutylmethoxy)phenyl)-4-methylquinolin-2-amine 6PP1 ; 1.76 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclopropylmethoxy)phenyl)-4-methylquinolin-2-amine 6PP3 ; 1.95 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-2-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PP4 ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-3-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6POZ ; 2.2 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-isopropoxyphenyl)-4-methylquinolin-2-amine 6POY ; 2.3 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-propoxyphenyl)-4-methylquinolin-2-amine 6POU ; 2.194 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(4-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 8UFU ; 2.05 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-(9-amino-6,7,8,9-tetrahydro-5H-benzo[7]annulen-2-yl)-4-methylquinolin-2-amine 5UO9 ; 2.19 ; Structure of human endothelial nitric oxide synthase heme domain in complex with 7-[(3-Ethyl-5-((methylamino)methyl)phenoxy)methyl]quinolin-2-amine 6AV7 ; 1.916 ; Structure of human endothelial nitric oxide synthase heme domain in complex with HW69 6CIE ; 1.95 ; Structure of human endothelial nitric oxide synthase heme domain in complex with N-(1-(2-(Ethyl(methyl)amino)ethyl)-1,2,3,4-tetrahydroquino-lin-6-yl)thiophene-2-carboximidamide 4D1O ; 1.819 ; Structure of human endothelial nitric oxide synthase heme domain with L-Arg bound 8UFT ; 1.78 ; Structure of human endothelial nitric oxide synthase P370N mutant heme domain in complex with 4-methyl-7-(4-methyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin-7-yl)quinolin-2-amine 6POX ; 2.197 ; Structure of human endothelialnitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-ethoxyphenyl)-4-methylquinolin-2-amine 5TD9 ; 2.318 ; Structure of Human Enolase 2 5EU9 ; 2.047 ; Structure of Human Enolase 2 in complex with ((3S,5S)-1,5-dihydroxy-3-methyl-2-oxopyrrolidin-3-yl)phosphonic acid 5IDZ ; 2.63 ; Structure of Human Enolase 2 in complex with (S)-(1-hydroxy-2-oxopiperidin-3-yl)phosphonate 4ZA0 ; 2.31 ; Structure of Human Enolase 2 in complex with Phosphonoacetohydroxamate 7MBH ; 2.1 ; Structure of Human Enolase 2 in complex with phosphoserine 4ZCW ; 1.992 ; Structure of Human Enolase 2 in complex with SF2312 5TIJ ; 2.634 ; Structure of Human Enolase 2 with ((3S,5S)-1,5-dihydroxy-3-methyl-2-oxopyrrolidin-3-yl)phosphonate (purified enantiomer) 8GHR ; 3.2 ; Structure of human ENPP1 in complex with variable heavy domain VH27.2 4QTB ; 1.4 ; Structure of human ERK1 in complex with SCH772984 revealing a novel inhibitor-induced binding pocket 4QTA ; 1.45 ; Structure of human ERK2 in complex with SCH772984 revealing a novel inhibitor-induced binding pocket 8TBS ; 2.35 ; Structure of human erythrocyte pyruvate kinase in complex with an allosteric activator AG-946 8TBU ; 2.35 ; Structure of human erythrocyte pyruvate kinase in complex with an allosteric activator Compound 12 8TBT ; 2.34 ; Structure of human erythrocyte pyruvate kinase in complex with an allosteric activator Compound 2 5J4O ; 1.54 ; Structure of human erythrocytic Spectrin alpha chain repeats 16-17 6HRH ; 2.3 ; Structure of human erythroid-specific 5'-aminolevulinate synthase, ALAS2 7XR4 ; 3.4 ; Structure of human excitatory amino acid transporter 2 (EAAT2) in complex with glutamate 7XR6 ; 3.4 ; Structure of human excitatory amino acid transporter 2 (EAAT2) in complex with WAY-213613 7NSG ; 3.34 ; Structure of human excitatory amino acid transporter 3 (EAAT3) in complex with HIP-B 6S3Q ; 3.34 ; Structure of human excitatory amino acid transporter 3 (EAAT3) in complex with TFB-TBOA 1QFK ; 2.8 ; STRUCTURE OF HUMAN FACTOR VIIA AND ITS IMPLICATIONS FOR THE TRIGGERING OF BLOOD COAGULATION 6Y0F ; 2.924 ; Structure of human FAPalpha in complex with linagliptin 2HO2 ; 1.33 ; Structure of human FE65-WW domain in complex with hMena peptide. 2Y5C ; 1.7 ; Structure of human ferredoxin 2 (Fdx2)in complex with 2Fe2S cluster 2FG4 ; 2.1 ; Structure of Human Ferritin L Chain 2FG8 ; 2.5 ; Structure of Human Ferritin L Chain 2FFX ; 1.9 ; Structure of Human Ferritin L. Chain 2HRE ; 2.5 ; Structure of human ferrochelatase variant E343K with protoporphyrin IX bound 6WBV ; 2.5 ; Structure of human ferroportin bound to hepcidin and cobalt in lipid nanodisc 7TZ2 ; 2.55 ; Structure of human Fibrinogen-like protein 1 1FDH ; 2.5 ; STRUCTURE OF HUMAN FOETAL DEOXYHAEMOGLOBIN 6WW2 ; 3.7 ; Structure of human Frizzled5 by fiducial-assisted cryo-EM 4E5Y ; 2.37 ; Structure of human FX protein, the key enzyme in the biosynthesis of GDP-L-fucose 3BEJ ; 1.9 ; Structure of human FXR in complex with MFA-1 and co-activator peptide 8A3O ; 2.9 ; Structure of human Fy-4 8A3P ; 2.7 ; Structure of human Fy-5. 7T7L ; 2.2 ; Structure of human G9a SET-domain (EHMT2) in complex with covalent inhibitor (Compound 1) 5VSC ; 1.4 ; Structure of human G9a SET-domain (EHMT2) in complex with inhibitor 13 5VSE ; 1.6 ; Structure of human G9a SET-domain (EHMT2) in complex with inhibitor 17: N~2~-cyclopentyl-6,7-dimethoxy-N~2~-methyl-N~4~-(1-methylpiperidin-4-yl)quinazoline-2,4-diamine 5TUY ; 2.6 ; Structure of human G9a SET-domain (EHMT2) in complex with inhibitor MS0124 6WIV ; 3.3 ; Structure of human GABA(B) receptor in an inactive state 6ZGW ; 2.3 ; Structure of human galactokinase 1 bound with (4-chlorophenyl)methyl pyridine-3-carboxylate 6Q90 ; 2.4 ; Structure of human galactokinase 1 bound with 1-(4-Methoxyphenyl)-3-(4-pyridinyl)urea 6ZGV ; 2.3 ; Structure of human galactokinase 1 bound with 2-(4-chlorophenyl)-N-(pyrimidin-2-yl)acetamide 6ZGX ; 1.86 ; Structure of human galactokinase 1 bound with 2-(4-chlorophenyl)-N-(pyrimidin-2-yl)acetamide 6ZGY ; 2.3 ; Structure of human galactokinase 1 bound with 2-(4-chlorophenyl)-N-(pyrimidin-2-yl)acetamide 6ZGZ ; 2.3 ; Structure of human galactokinase 1 bound with 2-(4-chlorophenyl)-N-(pyrimidin-2-yl)acetamide 6ZH0 ; 2.5 ; Structure of human galactokinase 1 bound with 2-(4-chlorophenyl)-N-(pyrimidin-2-yl)acetamide 6QJE ; 2.4 ; Structure of human galactokinase 1 bound with 4-{[2-(Methylsulfonyl)-1H-imidazol-1-yl]methyl}-1,3-thiazole 6Q91 ; 2.4 ; Structure of human galactokinase 1 bound with 5-Chloro-N-isobutyl-2-methoxybenzamide 7OZX ; 2.3 ; Structure of human galactokinase 1 bound with azepan-1-yl(2,6-difluorophenyl)methanone 6Q3W ; 1.962 ; Structure of human galactokinase 1 bound with Ethyl 1-(2-pyrazinyl)-4-piperidinecarboxylate 6Q8Z ; 2.4 ; Structure of human galactokinase 1 bound with N-(Cyclobutylmethyl)-1,5-dimethyl-1H-pyrazole-4-carboxamide 6Q3X ; 2.1 ; Structure of human galactokinase in complex with galactose and 2'-(benzo[d]oxazol-2-ylamino)-7',8'-dihydro-1'H-spiro[cyclohexane-1,4'-quinazolin]-5'(6'H)-one 6ZFH ; 2.439 ; Structure of human galactokinase in complex with galactose and 2'-(benzo[d]oxazol-2-ylamino)-7',8'-dihydro-1'H-spiro[cyclopentane-1,4'-quinazolin]-5'(6'H)-one 6GR2 ; 2.49 ; Structure of human galactokinase in complex with galactose and ADP 6GQD ; 1.523 ; Structure of human galactose-1-phosphate uridylyltransferase (GALT), with crystallization epitope mutations A21Y:A22T:T23P:R25L 6M5Y ; 1.38 ; Structure of human galectin-1 tandem-repeat mutant with lactose 7XFA ; 0.98 ; Structure of human Galectin-3 CRD in complex with monosaccharide inhibitor 7CXA ; 1.97 ; Structure of human Galectin-3 CRD in complex with TD-139 belonging to P31 space group. 1FIC ; 2.5 ; STRUCTURE OF HUMAN GAMMA FIBRINOGEN 30 KD CARBOXYL TERMINAL FRAGMENT 1FID ; 2.1 ; STRUCTURE OF HUMAN GAMMA FIBRINOGEN 30 KD CARBOXYL TERMINAL FRAGMENT 4NIK ; 2.5 ; Structure of human Gankyrin in complex to the single chain antibody F5 7BBL ; 1.521 ; Structure of human Gemin6/Gemin7/Gemin8 trimeric complex 6XPB ; 1.74 ; Structure of human GGT1 in complex with 2-amino-4-(((1-((carboxymethyl)amino)-1-oxobutan-2-yl)oxy)(phenoxy)phosphoryl)butanoic acid (ACPB) molecule 7LD9 ; 1.42 ; Structure of human GGT1 in complex with ABBA 6XPC ; 2.26 ; Structure of human GGT1 in complex with full GSH molecule 7LA5 ; 2.07 ; Structure of human GGT1 in complex with Lnt1-172 compound. 7LBC ; 2.28 ; Structure of human GGT1 in complex with Lnt2-65 compound 3Q2U ; 1.85 ; Structure of Human Glioma Pathogenesis-related Protein 1 Reveals Unique loops and surface motifs. 5YBY ; 1.429 ; Structure of human Gliomedin 7T7M ; 2.85 ; Structure of human GLP SET-domain (EHMT1) in complex with covalent inhibitor (Compound 1) 5VSD ; 1.85 ; Structure of human GLP SET-domain (EHMT1) in complex with inhibitor 13 5VSF ; 1.7 ; Structure of human GLP SET-domain (EHMT1) in complex with inhibitor 17 5TUZ ; 1.95 ; Structure of human GLP SET-domain (EHMT1) in complex with inhibitor MS0124 2PVV ; 2.11 ; Structure of human glutamate carboxypeptidase II (GCPII) in complex with L-serine-O-sulfate 1L1F ; 2.7 ; Structure of human glutamate dehydrogenase-apo form 1BWC ; 2.1 ; STRUCTURE OF HUMAN GLUTATHIONE REDUCTASE COMPLEXED with AJOENE INHIBITOR AND SUBVERSIVE SUBSTRATE 3SQP ; 2.21 ; Structure of human glutathione reductase complexed with pyocyanin, an agent with antimalarial activity 2F3M ; 2.7 ; Structure of human GLUTATHIONE S-TRANSFERASE M1A-1A complexed with 1-(S-(GLUTATHIONYL)-2,4,6-TRINITROCYCLOHEXADIENATE ANION 3N9J ; 1.85 ; Structure of human Glutathione Transferase Pi class in complex with Ethacraplatin 2BLE ; 1.9 ; Structure of human guanosine monophosphate reductase GMPR1 in complex with GMP 2BWG ; 2.4 ; Structure of human guanosine monophosphate reductase GMPR1 in complex with GMP 1DG3 ; 1.8 ; STRUCTURE OF HUMAN GUANYLATE BINDING PROTEIN-1 IN NUCLEOTIDE FREE FORM 8ODO ; 2.2 ; Structure of human guanylylated RTCB in complex with Archease 6TB2 ; 2.9 ; Structure of human haptoglobin-hemoglobin bound to S. aureus IsdH 4QTC ; 1.4 ; Structure of human haspin (GSG2) in complex with SCH772984 revealing the first type-I binding mode 4OUC ; 1.9 ; Structure of human haspin in complex with histone H3 substrate 2VUW ; 1.8 ; Structure of human haspin kinase domain 6GYN ; 3.4 ; Structure of human HCN4 hyperpolarization-activated cyclic nucleotide-gated ion channel 6GYO ; 3.4 ; Structure of human HCN4 hyperpolarization-activated cyclic nucleotide-gated ion channel in complex with cAMP 7KBH ; 2.68 ; Structure of Human HDAC2 in complex with a 2-substituted benzamide inhibitor (compound 16) 7KBG ; 1.26 ; Structure of Human HDAC2 in complex with a 2-substituted benzamide inhibitor (compound 20) 6XDM ; 1.56 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH AN ARYL KETONE INHIBITOR 6WBW ; 1.46 ; Structure of Human HDAC2 in complex with an ethyl ketone inhibitor 6WBZ ; 1.32 ; Structure of Human HDAC2 in complex with an ethyl ketone inhibitor containing a spiro-bicyclic group 7JS8 ; 1.634 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH AN ETHYL KETONE INHIBITOR CONTAINING A SPIRO-BICYCLIC GROUP (COMPOUND 22) 7LTL ; 1.49 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH AN INHIBITOR LACKING A ZINC BINDING GROUP (COMPOUND 19) 7LTK ; 1.59 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH AN INHIBITOR THAT LACKS A ZINC BINDING GROUP (COMPOUND 12) 7LTG ; 1.8 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH APICIDIN 4LY1 ; 1.57 ; Structure of Human HDAC2 in complex with inhibitor 4-(acetylamino)-N-[2-amino-5-(thiophen-2-yl)phenyl]benzamide 6XEB ; 1.5 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH KETONE INHIBITOR (COMPOUND E) 6XEC ; 1.701 ; STRUCTURE OF HUMAN HDAC2 IN COMPLEX WITH KETONE INHIBITOR (COMPOUND O) 4LXZ ; 1.85 ; Structure of Human HDAC2 in complex with SAHA (vorinostat) 6GPW ; 1.6 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) 6GQ6 ; 2.25 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with ADP 6GPT ; 2.0 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with AMPCP 6GQR ; 2.05 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with AMPCPP 6GPY ; 2.25 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with AMPPNP 6GPR ; 2.35 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with cAMP 8AGI ; 2.1 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) in complex with JMC31 6GP4 ; 1.7 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A 6GP8 ; 1.75 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex AMPCPP 6GPP ; 1.51 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex with ADP 6GPH ; 1.56 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex with AMPCP 6GPF ; 1.55 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex with AMPPNP 6GPO ; 1.48 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex with cAMP 8AGJ ; 2.32 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112A in complex with JMC31 6GR4 ; 1.5 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R 6GR5 ; 1.34 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with ADP 6GQS ; 1.43 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with AMPCP 6GR1 ; 2.05 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with AMPCPP 6GR3 ; 1.88 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with AMPPNP 6GQU ; 1.72 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with cAMP 8AGL ; 2.2 ; Structure of human Heat shock protein 90-alpha N-terminal domain (Hsp90-NTD) variant K112R in complex with JMC31 3S9G ; 2.1 ; Structure of human Hexim1 (delta stammer) coiled coil domain 5NU7 ; 1.5 ; Structure of human holo plasma RBP4 5VYY ; 1.792 ; Structure of human Hsp90-alpha bound to resorcinylic inhibitor BnIm 2H55 ; 2.0 ; Structure of human Hsp90-alpha bound to the potent water soluble inhibitor PU-DZ8 2FWY ; 2.1 ; Structure of human Hsp90-alpha bound to the potent water soluble inhibitor PU-H64 2FWZ ; 2.1 ; Structure of human Hsp90-alpha bound to the potent water soluble inhibitor PU-H71 2PE4 ; 2.0 ; Structure of Human Hyaluronidase 1, a Hyaluronan Hydrolyzing Enzyme Involved in Tumor Growth and Angiogenesis 7R4O ; 1.5 ; Structure of human hydroxyacid oxidase 1 bound with 2-((4H-1,2,4-triazol-3-yl)thio)-1-(4-(3-chlorophenyl)piperazin-1-yl)ethan-1-one 7R4N ; 1.7 ; Structure of human hydroxyacid oxidase 1 bound with 5-bromo-N-methyl-1H-indazole-3-carboxamide 7R4P ; 1.37 ; Structure of human hydroxyacid oxidase 1 bound with 6-amino-1-benzyl-5-(methylamino)pyrimidine-2,4(1H,3H)-dione 6GMB ; 1.35 ; Structure of human hydroxyacid oxidase 1 bound with FMN and glycolate 2PD6 ; 2.0 ; Structure of human hydroxysteroid dehydrogenase type 8, HSD17B8 4A7U ; 0.98 ; Structure of human I113T SOD1 complexed with adrenaline in the p21 space group. 4A7Q ; 1.22 ; Structure of human I113T SOD1 mutant complexed with 4-(4-methyl-1,4- diazepan-1-yl)quinazoline in the p21 space group. 4A7G ; 1.24 ; Structure of human I113T SOD1 mutant complexed with 4-methylpiperazin- 1-yl)quinazoline in the p21 space group. 4A7S ; 1.06 ; Structure of human I113T SOD1 mutant complexed with 5-Fluorouridine in the p21 space group 4A7V ; 1.0 ; Structure of human I113T SOD1 mutant complexed with dopamine in the p21 space group 4A7T ; 1.45 ; Structure of human I113T SOD1 mutant complexed with isoproteranol in the p21 space group 7WRQ ; 3.6 ; Structure of Human IGF1/IGFBP3/ALS Ternary Complex 2V5N ; 3.2 ; STRUCTURE OF HUMAN IGF2R DOMAINS 11-12 2V5O ; 2.91 ; STRUCTURE OF HUMAN IGF2R DOMAINS 11-14 7LBL ; 2.13 ; Structure of Human IgG1 Fc 1KZS ; ; Structure of Human Immunodeficiency Virus Type 1 Vpr(34-51) Peptide in Aqueous TFE Solution 1KZV ; ; Structure of Human Immunodeficiency Virus Type 1 Vpr(34-51) Peptide in Chloroform Methanol 1KZT ; ; Structure of Human Immunodeficiency Virus Type 1 Vpr(34-51) Peptide in DPC Micelle Containing Aqueous Solution 6I0M ; 2.567 ; Structure of human IMP dehydrogenase, isoform 2, bound to GDP 6I0O ; 2.623 ; Structure of human IMP dehydrogenase, isoform 2, bound to GTP 7A62 ; 2.43796 ; Structure of human indoleamine-2,3-dioxygenase 1 (hIDO1) with a complete JK loop 7XHO ; 3.29 ; Structure of human inner kinetochore CCAN complex 7XHN ; 3.71 ; Structure of human inner kinetochore CCAN-DNA complex 4CX7 ; 3.16 ; Structure of human iNOS heme domain in complex with (R)-6-(3-AMINO-2-(5-(2-(6-AMINO-4- METHYLPYRIDIN-2-YL)ETHYL)PYRIDIN-3-YL)PROPYL)-4- METHYLPYRIDIN-2-AMINE 2ODT ; 2.01 ; Structure of human Inositol 1,3,4-trisphosphate 5/6-kinase 4AS4 ; 1.7 ; Structure of human inositol monophosphatase 1 3E7G ; 2.2 ; Structure of human INOSOX with inhibitor AR-C95791 3E7Y ; 1.6 ; Structure of human insulin 3E7Z ; 1.7 ; Structure of human insulin 2OMH ; 1.36 ; Structure of human insulin cocrystallized with ARG-12 peptide in presence of urea 2OMI ; 2.24 ; Structure of human insulin cocrystallized with protamine 2OMG ; 1.52 ; Structure of human insulin cocrystallized with protamine and urea 2OM1 ; 1.97 ; Structure of human insulin in presence of thiocyanate at pH 6.5 2OLZ ; 1.7 ; Structure of human insulin in presence of thiocyanate at pH 7.0 2OM0 ; 2.05 ; Structure of human insulin in presence of urea at pH 6.5 2OLY ; 1.7 ; Structure of human insulin in presence of urea at pH 7.0 4WMQ ; 1.8 ; Structure of Human Intelectin-1 4WMY ; 1.601 ; Structure of Human intelectin-1 in complex with allyl-beta-galactofuranose 6USC ; 1.59 ; Structure of Human Intelectin-1 in complex with KO 5K5G ; ; Structure of human islet amyloid polypeptide in complex with an engineered binding protein 2PNY ; 1.81 ; Structure of Human Isopentenyl-diphosphate Delta-isomerase 2 1IVH ; 2.6 ; STRUCTURE OF HUMAN ISOVALERYL-COA DEHYDROGENASE AT 2.6 ANGSTROMS RESOLUTION: STRUCTURAL BASIS FOR SUBSTRATE SPECIFICITY 3FRS ; 2.61 ; Structure of human IST1(NTD) (residues 1-189)(p43212) 3FRR ; 1.8 ; Structure of human IST1(NTD) - (residues 1-189)(P21) 5IXD ; 2.85 ; Structure of human JAK1 FERM/SH2 in complex with IFN lambda receptor 5IXI ; 2.57 ; Structure of human JAK1 FERM/SH2 in complex with IFNLR1/IL10RA chimera 6E2Q ; 2.65 ; Structure of human JAK2 FERM/SH2 in complex with Erythropoietin Receptor 6E2P ; 2.83 ; Structure of human JAK2 FERM/SH2 in complex with Leptin Receptor 4QTD ; 1.5 ; Structure of human JNK1 in complex with SCH772984 and the AMPPNP-hydrolysed triphosphate revealing the second type-I binding mode 6UZZ ; 3.1 ; structure of human KCNQ1-CaM complex 6V00 ; 3.1 ; structure of human KCNQ1-KCNE3-CaM complex 6V01 ; 3.9 ; structure of human KCNQ1-KCNE3-CaM complex with PIP2 7VNR ; 2.8 ; Structure of human KCNQ4-ML213 complex in digitonin 7VNQ ; 2.96 ; Structure of human KCNQ4-ML213 complex in nanodisc 7VNP ; 2.79 ; Structure of human KCNQ4-ML213 complex with PIP2 6S4L ; 2.42 ; Structure of human KCTD1 8PNR ; 2.25 ; Structure of human KCTD15 BTB domain mutant G88D crystal form 1 8PNM ; 1.94 ; Structure of human KCTD15 BTB domain mutant G88D crystal form 2 5WBM ; 2.16 ; Structure of human Ketohexokinase complexed with hits from fragment screening 5WBO ; 2.25 ; Structure of human Ketohexokinase complexed with hits from fragment screening 5WBP ; 2.74 ; Structure of human Ketohexokinase complexed with hits from fragment screening 5WBQ ; 2.4 ; Structure of human Ketohexokinase complexed with hits from fragment screening 5WBR ; 2.58 ; Structure of human Ketohexokinase complexed with hits from fragment screening 5WBZ ; 2.4 ; Structure of human Ketohexokinase complexed with hits from fragment screening 6UL7 ; 2.3 ; Structure of human ketohexokinase-C in complex with fructose, NO3, and osthole 7U5B ; 2.371 ; Structure of Human KLK5 bound to anti-KLK5 Fab 7SSX ; 2.89 ; Structure of human Kv1.3 7SSY ; 2.89 ; Structure of human Kv1.3 (alternate conformation) 7SSZ ; 3.25 ; Structure of human Kv1.3 with A0194009G09 nanobodies 8DFL ; 3.25 ; Structure of human Kv1.3 with A0194009G09 nanobodies (alternate conformation) 7SSV ; 3.39 ; Structure of human Kv1.3 with Fab-ShK fusion 4R30 ; 2.3 ; Structure of human laforin dual specificity phosphatase domain 7TZH ; 2.43 ; Structure of human LAG3 domains 3-4 in complex with antibody single chain-variable fragment 7TZG ; 3.71 ; Structure of human LAG3 in complex with antibody single-chain variable fragment 2CD0 ; 1.8 ; STRUCTURE OF HUMAN LAMBDA-6 LIGHT CHAIN DIMER WIL 1CD0 ; 1.9 ; STRUCTURE OF HUMAN LAMDA-6 LIGHT CHAIN DIMER JTO 7WZ8 ; 6.4 ; Structure of human langerin complex in Birbeck granules 3KMM ; 2.8 ; Structure of human LCK kinase with a small molecule inhibitor 6TYD ; 2.803 ; Structure of human LDB1 in complex with SSBP2 7N0A ; 3.1 ; Structure of Human Leukaemia Inhibitory Factor with Fab MSC1 5BPP ; 2.03 ; Structure of human Leukotriene A4 hydrolase in complex with inhibitor 4AZ 4DPR ; 2.02 ; Structure of human Leukotriene A4 hydrolase in complex with inhibitor captopril 5AEN ; 1.864 ; Structure of human Leukotriene A4 hydrolase in complex with inhibitor dimethyl(2- (4-phenoxyphenoxy)ethyl)amine 4R7L ; 1.66 ; Structure of Human Leukotriene A4 Hydrolase in complex with inhibitor H1 3U9W ; 1.25 ; Structure of human Leukotriene A4 hydrolase in complex with inhibitor sc57461A 3HKK ; 2.9 ; Structure of human Leukotriene C4 synthase in complex with glutathione sulfonate 3LEO ; 2.1 ; Structure of human Leukotriene C4 synthase mutant R31Q in complex with glutathione 3STN ; 2.595 ; Structure of human LFABP (apo-LFABP) 3VG7 ; 1.44 ; Structure of human LFABP at high resolution from S-SAD 3STM ; 2.216 ; Structure of human LFABP in complex with one molecule of palmitic acid 8Y6B ; 3.49 ; Structure of human LGI1-ADAM22 complex in space group P212121 1TEH ; 2.7 ; STRUCTURE OF HUMAN LIVER CHICHI ALCOHOL DEHYDROGENASE (A GLUTATHIONE-DEPENDENT FORMALDEHYDE DEHYDROGENASE) 6LS5 ; 2.031 ; Structure of human liver FBPase complexed with covalent allosteric inhibitor 2FIX ; 3.5 ; Structure of human liver FBPase complexed with potent benzoxazole allosteric inhibitiors 2FIE ; 2.81 ; Structure of human liver FBPase complexed with potent benzoxazole allosteric inhibitors 2FHY ; 2.95 ; Structure of human liver FPBase complexed with a novel benzoxazole as allosteric inhibitor 7QDN ; 1.695 ; Structure of human liver pyruvate kinase from which the B domain has been deleted 5UNJ ; 1.959 ; Structure of Human Liver Receptor Homolog 1 in complex with PGC1a and RJW100 2P85 ; 2.35 ; Structure of Human Lung Cytochrome P450 2A13 with indole bound in two alternate conformations 4DZO ; 1.76 ; Structure of Human Mad1 C-terminal Domain Reveals Its Involvement in Kinetochore Targeting 6PUL ; 1.84 ; Structure of human MAIT A-F7 TCR in complex with human MR1 3'D-5-OP-RU 6PUM ; 1.96 ; Structure of human MAIT A-F7 TCR in complex with human MR1-2'D-5-OP-RU 6PUG ; 1.8 ; Structure of human MAIT A-F7 TCR in complex with human MR1-2`OH-Ethyl-5-OP-U 6PUJ ; 1.92 ; Structure of human MAIT A-F7 TCR in complex with human MR1-3`OH-Propyl-5-OP-U 6PUE ; 1.9 ; Structure of human MAIT A-F7 TCR in complex with human MR1-4'D-5-OP-RU 6PUI ; 1.96 ; Structure of human MAIT A-F7 TCR in complex with human MR1-4'OH-Butyl-5-OP-U 6PUF ; 1.92 ; Structure of human MAIT A-F7 TCR in complex with human MR1-5'D-5-OP-RU 6PUD ; 1.8 ; Structure of human MAIT A-F7 TCR in complex with human MR1-5'OH-Pentyl-5-OP-U 6PUC ; 1.85 ; Structure of human MAIT A-F7 TCR in complex with human MR1-5-OP-RU 6PVC ; 1.96 ; Structure of human MAIT A-F7 TCR in complex with human MR1-DB28 6PUK ; 2.08 ; Structure of human MAIT A-F7 TCR in complex with human MR1-JYM72 6PVD ; 2.14 ; Structure of human MAIT A-F7 TCR in complex with human MR1-NV18.1 6PUH ; 1.88 ; Structure of human MAIT A-F7 TCR in complex with human MR1-Ribityl-less 6W9V ; 1.95 ; Structure of human MAIT A-F7 TCR in complex with patient MR1-R9H without ligand 6W9U ; 1.89 ; Structure of human MAIT A-F7 TCR in complex with patient MR1-R9H-Ac-6-FP 4L4T ; 2.0 ; Structure of human MAIT TCR in complex with human MR1-6-FP 4L4V ; 1.9 ; Structure of human MAIT TCR in complex with human MR1-RL-6-Me-7-OH 1EFK ; 2.6 ; STRUCTURE OF HUMAN MALIC ENZYME IN COMPLEX WITH KETOMALONATE 2VRL ; 2.4 ; Structure of human MAO B in complex with benzylhydrazine 2VRM ; 2.3 ; Structure of human MAO B in complex with phenyethylhydrazine 2V61 ; 1.7 ; Structure of human MAO B in complex with the selective inhibitor 7-(3- chlorobenzyloxy)-4-(methylamino)methyl-coumarin 2V60 ; 2.0 ; Structure of human MAO B in complex with the selective inhibitor 7-(3- chlorobenzyloxy)-4-carboxaldehyde-coumarin 2V5Z ; 1.6 ; Structure of human MAO B in complex with the selective inhibitor safinamide 2VRG ; ; Structure of human MCFD2 6QFI ; 2.4 ; Structure of human Mcl-1 in complex with BIM BH3 peptide 6QFQ ; 1.6 ; Structure of human Mcl-1 in complex with indole acid inhibitor 6QFM ; 2.0 ; Structure of human Mcl-1 in complex with PUMA BH3 peptide 6QGD ; 1.8 ; Structure of human Mcl-1 in complex with thienopyrimidine inhibitor 1T4E ; 2.6 ; Structure of Human MDM2 in complex with a Benzodiazepine Inhibitor 1T4F ; 1.9 ; Structure of human MDM2 in complex with an optimized p53 peptide 3G03 ; 1.8 ; Structure of human MDM2 in complex with high affinity peptide 3LBK ; 2.3 ; Structure of human MDM2 protein in complex with a small molecule inhibitor 3LBL ; 1.6 ; Structure of human MDM2 protein in complex with Mi-63-analog 2VYR ; 2.0 ; Structure of human MDM4 N-terminal domain bound to a single domain antibody 3FDO ; 1.4 ; Structure of human MDMX in complex with high affinity peptide 3LBJ ; 1.5 ; Structure of human MDMX protein in complex with a small molecule inhibitor 4IF5 ; 1.7 ; Structure of human Mec17 5IXB ; 1.39 ; Structure of human Melanoma Inhibitory Activity (MIA) Protein in complex with Pyrimidin-2-amine 3P1A ; 1.7 ; Structure of human Membrane-associated Tyrosine- and Threonine-specific cdc2-inhibitory kinase MYT1 (PKMYT1) 6GFI ; 2.3 ; Structure of Human Mesotrypsin in complex with APPI variant T11V/M17R/I18F/F34V 5D6E ; 1.49 ; Structure of human methionine aminopeptidase 2 with covalent spiroepoxytriazole inhibitor (-)-31b 5CLS ; 1.75 ; Structure of human methionine aminopeptidase-2 complexed with spiroepoxytriazole inhibitor (+)-31a 5D6F ; 1.55 ; Structure of human methionine aminopeptidase-2 complexed with spiroepoxytriazole inhibitor (+)-31b 7ZMK ; 3.4 ; Structure of human MFAP4 in complex with the Fab fragment of the AS0326 monoclonal antibody 7Y4S ; 3.5 ; Structure of human MG53 homo-dimer 4I5B ; 2.12 ; Structure of human MHC class II protein HLA-DR1 carrying an influenza hemagglutinin peptide partially filling the binding groove 3T1N ; 2.6 ; Structure of human MICROCEPHALIN (MCPH1) TANDEM BRCT domains in complex with a CDC27 phosphopeptide 3SZM ; 2.63 ; STRUCTURE OF HUMAN MICROCEPHALIN (MCPH1) TANDEM BRCT DOMAINS IN COMPLEX WITH A GAMMA-H2AX PHOSPHOPEPTIDE 3U3Z ; 1.5 ; Structure of human microcephalin (MCPH1) tandem BRCT domains in complex with an H2A.X peptide phosphorylated at Ser139 and Tyr142 4GQS ; 2.87 ; Structure of Human Microsomal Cytochrome P450 (CYP) 2C19 2HCI ; 1.81 ; Structure of Human Mip-3a Chemokine 6RW5 ; 3.14 ; Structure of human mitochondrial 28S ribosome in complex with mitochondrial IF2 and IF3 6RW4 ; 2.97 ; Structure of human mitochondrial 28S ribosome in complex with mitochondrial IF3 4L6A ; 1.4 ; Structure of human mitochondrial 5'(3')-deoxyribonucleotidase 6W1D ; 1.795 ; Structure of human mitochondrial complex Nfs1-ISCU2 (WT)-ISD11 with E.coli ACP1 at 1.8 A resolution (NIAU)2 6WI2 ; 1.95 ; Structure of human mitochondrial complex Nfs1-ISCU2-ISD11 with E.coli ACP1 at 1.95 A resolution (NIAU)2. N-terminal mutation of ISCU2 (L35) traps Nfs1 Cys loop in the active site of ISCU2 without metal present. 2C2N ; 1.55 ; Structure of human mitochondrial malonyltransferase 7A8P ; 3.5 ; Structure of human mitochondrial RNA polymerase in complex with IMT inhibitor. 7ONU ; 3.0 ; Structure of human mitochondrial RNase P in complex with mitochondrial pre-tRNA-Tyr 5OL8 ; 1.9 ; Structure of human mitochondrial transcription elongation factor (TEFM) C-terminal domain 5OL9 ; 1.302 ; Structure of human mitochondrial transcription elongation factor (TEFM) N-terminal domain 6NF8 ; 3.48 ; Structure of human mitochondrial translation initiation factor 3 bound to the small ribosomal subunit -Class I 6NEQ ; 3.32 ; Structure of human mitochondrial translation initiation factor 3 bound to the small ribosomal subunit-Class-II 5ZRV ; 7.7 ; Structure of human mitochondrial trifunctional protein, octamer 5ZQZ ; 4.2 ; Structure of human mitochondrial trifunctional protein, tetramer 2AC3 ; 2.1 ; Structure of human Mnk2 Kinase Domain 2AC5 ; 3.2 ; Structure of human Mnk2 Kinase Domain mutant D228G 6AX1 ; 2.26 ; Structure of human monoacylglycerol lipase bound to a covalent inhibitor 6BQ0 ; 2.0 ; Structure of human monoacylglycerol lipase bound to a covalent inhibitor 3W9D ; 2.32 ; Structure of Human Monoclonal Antibody E317 Fab 3W9E ; 2.3 ; Structure of Human Monoclonal Antibody E317 Fab Complex with HSV-2 gD 7LQD ; 1.95 ; Structure of Human MPS1 (TTK) covalently bound to RMS-07 inhibitor 5U16 ; 2.0 ; Structure of human MR1-2-OH-1-NA in complex with human MAIT A-F7 TCR 5U6Q ; 1.9 ; Structure of human MR1-3-F-SA in complex with human MAIT A-F7 TCR 4PJA ; 2.68 ; Structure of human MR1-5-OP-RU in complex with human MAIT B-B10 TCR 4PJB ; 2.85 ; Structure of human MR1-5-OP-RU in complex with human MAIT B-F3-C1 TCR 4PJC ; 2.5 ; Structure of human MR1-5-OP-RU in complex with human MAIT C-A11 TCR 4PJD ; 2.78 ; Structure of human MR1-5-OP-RU in complex with human MAIT C-C10 TCR 5D5M ; 2.2 ; Structure of human MR1-5-OP-RU in complex with human MAIT M33.64 TCR 5D7J ; 1.97 ; Structure of human MR1-5-OP-RU in complex with human MAIT M33.64(Y95alphaF) TCR 4PJ9 ; 2.0 ; Structure of human MR1-5-OP-RU in complex with human MAIT TRAJ20 TCR 4PJ8 ; 3.3 ; Structure of human MR1-5-OP-RU in complex with human MAIT TRBV20 TCR 4PJ7 ; 2.5 ; Structure of human MR1-5-OP-RU in complex with human MAIT TRBV6-4 TCR 5D7L ; 3.4 ; Structure of human MR1-5-OP-RU in complex with human MAV36 TCR 5U72 ; 2.5 ; Structure of human MR1-5OH-DCF in complex with human MAIT A-F7 TCR 4PJE ; 1.95 ; Structure of human MR1-Ac-6-FP in complex with human MAIT B-B10 TCR 4PJF ; 2.45 ; Structure of human MR1-Ac-6-FP in complex with human MAIT B-C10 TCR 4PJG ; 2.4 ; Structure of human MR1-Ac-6-FP in complex with human MAIT B-F3-C1 TCR 4PJH ; 2.0 ; Structure of human MR1-Ac-6-FP in complex with human MAIT B-G8 TCR 4PJX ; 2.25 ; Structure of human MR1-Ac-6-FP in complex with human MAIT C-A11 TCR 4PJI ; 2.5 ; Structure of human MR1-Ac-6-FP in complex with human MAIT C-C10 TCR 5D7I ; 2.0 ; Structure of human MR1-Ac-6-FP in complex with human MAIT M33.64 TCR 4PJ5 ; 2.0 ; Structure of human MR1-Ac-6-FP in complex with human MAIT TRBV6-1 TCR 5U17 ; 2.15 ; Structure of human MR1-DA-6-FP in complex with human MAIT A-F7 TCR 5U1R ; 2.7 ; Structure of human MR1-diclofenac in complex with human MAIT A-F7 TCR 7UFJ ; 2.5 ; Structure of human MR1-ethylvanillin in complex with human MAIT A-F7 TCR 5U2V ; 2.2 ; Structure of human MR1-HMB in complex with human MAIT A-F7 TCR 4N1T ; 1.6 ; Structure of human MTH1 in complex with TH287 4N1U ; 1.6 ; Structure of human MTH1 in complex with TH588 6S4E ; 1.9 ; Structure of human MTHFD2 in complex with TH7299 6S4A ; 1.95 ; Structure of human MTHFD2 in complex with TH9028 6S4F ; 2.2 ; Structure of human MTHFD2 in complex with TH9619 7QEI ; 2.1 ; Structure of human MTHFD2L in complex with TH7299 3HXT ; 1.9 ; Structure of human MTHFS 3HY3 ; 1.8 ; Structure of human MTHFS with 10-formyltetrahydrofolate 3HY6 ; 2.1 ; Structure of human MTHFS with ADP 3HY4 ; 2.795 ; Structure of human MTHFS with N5-iminium phosphate 4CCA ; 2.6 ; Structure of human Munc18-2 1ZJH ; 2.2 ; Structure of human muscle pyruvate kinase (PKM2) 5MV9 ; 2.6 ; Structure of human Myosin 7a C-terminal MyTH4-FERM domain in complex with harmonin-a PDZ3 domain 5MV8 ; 1.88 ; Structure of human Myosin 7b C-terminal MyTH4-FERM domain in complex with harmonin-a PDZ3 domain 5MV7 ; 2.44 ; Structure of human Myosin 7b C-terminal MyTH4-FERM MF2 domain 2VD5 ; 2.8 ; Structure of Human Myotonic Dystrophy Protein Kinase in Complex with the Bisindoylmaleide inhibitor BIM VIII 5SZK ; 2.8 ; Structure of human N-terminally engineered Rab1b in complex with the bMERB domain of Mical-cL 6FY4 ; 2.76 ; Structure of human NAD(P) H:quinone oxidoreductase in complex with N-(2-bromophenyl)pyrrolidine-1-sulfonamide 3LF5 ; 1.25 ; Structure of Human NADH cytochrome b5 oxidoreductase (Ncb5or) b5 Domain to 1.25A Resolution 4QN9 ; 2.652 ; Structure of human NAPE-PLD 8I5B ; 2.7 ; Structure of human Nav1.7 in complex with bupivacaine 8J4F ; 3.0 ; Structure of human Nav1.7 in complex with Hardwickii acid 8I5G ; 2.7 ; Structure of human Nav1.7 in complex with PF-05089771 8I5X ; 2.9 ; Structure of human Nav1.7 in complex with Vinpocetine 8I5Y ; 2.6 ; Structure of human Nav1.7 in complex with vixotrigine 8GAU ; 3.6 ; Structure of human NDS.1 Fab and 1G01 Fab in complex with influenza virus neuraminidase from A/Indiana/10/2011 (H3N2v) 8GAT ; 3.0 ; Structure of human NDS.1 Fab and 1G01 Fab in complex with influenza virus neuraminidase from A/Indiana/10/2011 (H3N2v), based on consensus cryo-EM map with only Fab 1G01 resolved 8GAV ; 2.7 ; Structure of human NDS.3 Fab in complex with influenza virus neuraminidase from A/Darwin/09/2021 (H3N2) 5LV0 ; 2.7 ; Structure of Human Neurolysin (E475Q) in complex with amyloid-beta 35-40 peptide product 5LUZ ; 2.7 ; Structure of Human Neurolysin (E475Q) in complex with neurotensin peptide products 5UO6 ; 1.96 ; Structure of human neuronal nitric oxide synthase heme domain in complex with (R)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 5UO5 ; 2.0 ; Structure of human neuronal nitric oxide synthase heme domain in complex with (RS)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 5UO7 ; 2.06 ; Structure of human neuronal nitric oxide synthase heme domain in complex with (S)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 5UO3 ; 2.2 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5UO4 ; 2.0 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)ethyl)benzonitrile 5UO1 ; 1.9 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 3-[(2-aminoquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5VV5 ; 2.15 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VV4 ; 2.1 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VV3 ; 2.18 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)benzonitrile 5VV1 ; 1.95 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-(4-Methoxypyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VV0 ; 1.8 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-(4-Methylpyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VV2 ; 2.0 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-(5-Fluoropyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUW ; 2.03 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-(Dimethylamino)benzyl)amino)methyl)quinolin-2-amine 5VUZ ; 1.97 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-(Pyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUV ; 1.983 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((3-Fluorophenyl)amino)methyl)quinolin-2-amine Dihydrochloride 5VUX ; 2.3 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((4-(Dimethylamino)benzyl)amino)methyl)quinolin-2-amine 5VUY ; 2.154 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-(((4-(Dimethylamino)phenethyl)amino)methyl)quinolin-2-amine 5UO2 ; 1.947 ; Structure of human neuronal nitric oxide synthase heme domain in complex with 7-[(3-Ethyl-5-((methylamino)methyl)phenoxy)methyl]quinolin-2-amine 6AV5 ; 1.9 ; Structure of human neuronal nitric oxide synthase R354A/G356D mutant heme domain in complex with 6-(2-(5-Fluoro-3'-((methylamino)methyl)-[1,1'-biphenyl]-3-yl)ethyl)-4-methylpyridin-2-amine 7UAM ; 1.837 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (6-(3-(4,4-difluoropiperidin-1-yl)propyl)-4-methylpyridin-2-amine) 6NGF ; 1.993 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (R)-6-(2,3-difluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NG5 ; 1.96 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (R)-6-(3-fluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NG4 ; 1.776 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (R)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NHC ; 2.16 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylazetidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGH ; 2.0 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGI ; 1.8 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(4-methylmorpholin-3-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NG6 ; 2.044 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with (S)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6AV0 ; 1.996 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(3-(methylamino)propyl)benzonitrile 6PO8 ; 1.898 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-((4-(2-Amino-4-methylquinolin-7-yl)-2-(aminomethyl)phenoxy)methyl)benzonitrile 8FGI ; 2.15 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-6-methylpyrimidin-2-amine 8FGM ; 2.1 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-(difluoromethyl)-6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine 7TS8 ; 2.3 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-chloro-6-((5-(2-(dimethylamino)ethyl)-2,3-difluorophenyl)ethynyl)pyridin-2-amine 6AV3 ; 1.95 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-Methyl-6-(2-(5-(3-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine 6AV4 ; 1.867 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-Methyl-6-(2-(5-(4-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine 7TS6 ; 1.8 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-methyl-6-(3-((methylamino)methyl)phenyl)pyridin-2-amine 6AUY ; 1.92 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-Methyl-6-(3-(3-(methylamino)propyl)phenethyl)pyridin-2-amine 7TS4 ; 1.85 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-methyl-6-(3-(4-methylpiperazin-1-yl)prop-1-yn-1-yl)pyridin-2-amine 7TS5 ; 1.84 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-methyl-6-(3-(methylamino)prop-1-yn-1-yl)pyridin-2-amine 7TS7 ; 1.9 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-methyl-6-(3-(methylamino)propyl)pyridin-2-amine 8UFP ; 1.9 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 4-methyl-7-(4-methyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin-7-yl)quinolin-2-amine dihydrochloride 8FGL ; 2.1 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(2,3-difluoro-5-(2-(4-methylpiperazin-1-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGE ; 2.102 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(2,3-difluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-methylpyridin-2-amine 7TS3 ; 2.099 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 7TS2 ; 1.9758 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)propyl)-4-methylpyridin-2-amine 6NG2 ; 1.93 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(dimethylamino)prop-1-yn-1-yl)-5-fluorophenethyl)-4-methylpyridin-2-amine 6NGC ; 1.998 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,5,6-trifluorophenethyl)-4-methylpyridin-2-amine 6NGB ; 1.9 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,5-difluorophenethyl)-4-methylpyridin-2-amine 6NGA ; 1.98 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,6-difluorophenethyl)-4-methylpyridin-2-amine 6AV2 ; 2.1 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-5-(trifluoromethyl)phenethyl)-4-methylpyridin-2-amine 6AV1 ; 2.45 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(3-(Dimethylamino)propyl)-5-fluorophenethyl)-4-methylpyridin-2-amine 7TS1 ; 2.06 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-(4,4-difluoropiperidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 6NG7 ; 2.0 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-fluoro-5-(2-((2R,4S)-4-fluoro-1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NG1 ; 2.15 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-fluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-methylpyridin-2-amine 6AUZ ; 2.0 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(3-Fluoro-5-(3-(methylamino)propyl)phenethyl)-4-methylpyridin-2-amine 7US7 ; 1.93 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(4-(dimethylamino)but-1-yn-1-yl)-4-methylpyridin-2-amine 7US8 ; 1.82 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(4-(dimethylamino)butyl)-4-methylpyridin-2-amine 6NHB ; 2.03 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-((2S,4R)-4-ethoxy-1-methylpyrrolidin-2-yl)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGK ; 2.25 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-(diethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGH ; 2.17 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methoxypyridin-2-amine 8FGJ ; 2.15 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methoxypyridin-2-amine 8FGG ; 1.859 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGF ; 1.83 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine 6NGD ; 1.8 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(3-(dimethylamino)propyl)-2,3,4-trifluorophenethyl)-4-methylpyridin-2-amine 6NG8 ; 1.9 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 6-(5-(3-(dimethylamino)propyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 6PNC ; 2.15 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PND ; 2.4 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PO5 ; 1.82 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclobutylmethoxy)phenyl)-4-methylquinolin-2-amine 6PO7 ; 1.95 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclopropylmethoxy)phenyl)-4-methylquinolin-2-amine 6POC ; 1.998 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(oxazol-4-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PO9 ; 1.808 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-2-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6POA ; 1.809 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-3-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6POB ; 1.95 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(thiazol-4-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6POT ; 2.3 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-(thiazol-5-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PNF ; 2.1 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-ethoxyphenyl)-4-methylquinolin-2-amine 6PNH ; 1.85 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-isopropoxyphenyl)-4-methylquinolin-2-amine 6PNG ; 1.775 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(3-(Aminomethyl)-4-propoxyphenyl)-4-methylquinolin-2-amine 6PNA ; 1.95 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(4-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PNB ; 2.05 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(4-(Aminomethyl)phenyl)-4-methylquinolin-2-amine 6PNE ; 2.1 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with 7-(5-(Aminomethyl)pyridin-3-yl)-4-methylquinolin-2-amine 6CID ; 1.75 ; Structure of human neuronal nitric oxide synthase R354A/G357D mutant heme domain in complex with N-(1-(Piperidin-4-yl)indolin-5-yl)thiophene-2-carboximidamide 8UFQ ; 1.98 ; Structure of human neuronal nitric oxide synthase R354A/G357D/E597Q mutant heme domain obtained after soaking crystal with 4-methyl-7-(4-methyl-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin-7-yl)quinolin-2-amine dihydrochloride 8C5G ; 2.7 ; Structure of human Neuropilin-1 b1b2 domains in complex with Chlorotoxin (Leiurus quinquestriatus) 5DQ0 ; 1.8 ; Structure of human neuropilin-2 b1 domain with novel and unique zinc binding site 1DMT ; 2.1 ; STRUCTURE OF HUMAN NEUTRAL ENDOPEPTIDASE COMPLEXED WITH PHOSPHORAMIDON 1MNC ; 2.1 ; STRUCTURE OF HUMAN NEUTROPHIL COLLAGENASE REVEALS LARGE S1' SPECIFICITY POCKET 3Q76 ; 1.861 ; Structure of human neutrophil elastase (uncomplexed) 7CBK ; 2.7 ; Structure of Human Neutrophil Elastase Ecotin complex 3Q77 ; 1.998 ; Structure of human neutrophil elastase in complex with a dihydropyrimidone inhibitor 1HNE ; 1.84 ; Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-angstroms resolution 5U74 ; 3.335 ; Structure of human Niemann-Pick C1 protein 6IAP ; 2.9 ; structure of human NKp46 in complex with antibody NKp46-1 and NKp46-4 6IAS ; 1.75 ; structure of human NKp46 in complex with antibody NKp46-1 and NKp46-4 6PAV ; 2.52 ; Structure of Human NMT1 with products CoA and myristoyl-lysine peptide with acetylated N-terminus 6PAU ; 1.93 ; Structure of Human NMT2 with myristoyl-lysine peptide and CoA products 6CHH ; 2.3 ; Structure of human NNMT in complex with bisubstrate inhibitor MS2756 7EHZ ; 2.5 ; Structure of human NNMT in complex with macrocyclic peptide 2 7EI2 ; 2.08 ; Structure of human NNMT in complex with macrocyclic peptide 8 7EGU ; 1.9 ; Structure of human NNMT in complex with macrocyclic peptide X 4D1N ; 2.03 ; Structure of human nNOS heme domain with L-Arg bound 4UCH ; 2.2 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 3-(((2-((2-(1H-IMIDAZOL-1-YL)PYRIMIDIN-4-YL)ETHYL)AMINO)METHYL) BENZONITRILE 4UH6 ; 1.98 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(methyl(2-(methylamino)ethyl)amino)benzonitrile 5FVV ; 2.05 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 4-methyl-6-(2-(5-(1-methylpiperidin-4-yl)pyridin-3-yl)ethyl) pyridin-2-amine 5FVW ; 2.2 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 4-methyl-6-(2-(5-(3-(methylamino)propyl)pyridin-3-yl)ethyl) pyridin-2-amine 5FVU ; 2.224 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 4-methyl-6-(2-(5-(4-methylpiperazin-1-yl)pyridin-3-yl)ethyl) pyridin-2-amine 5ADF ; 1.966 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 7-(((3-((Dimethylamino)methyl)phenyl)amino)methyl)quinolin-2- amine 5ADI ; 2.2 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 7-(((5-((Methylamino)methyl)pyridin-3-yl)oxy)methyl)quinolin-2- amine 5ADG ; 1.982 ; Structure of human nNOS R354A G357D mutant heme domain in complex with 7-((4-Chloro-3-((methylamino)methyl)phenoxy)methyl)quinolin-2- amine 4V3U ; 2.3 ; Structure of human nNOS R354A G357D mutant heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(pyridin-3-yl) propan-1-amine 4UH5 ; 1.983 ; Structure of human nNOS R354A G357D mutant heme domain in complex with N1-(5-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)-N1,N2- dimethylethane-1,2-diamine 5FVX ; 2.3 ; Structure of human nNOS R354A G357D mutant heme domain in complex with with 6-(2-(5-(3-(DIMETHYLAMINO)PROPYL) PYRIDIN-3-YL)ETHYL)-4-METHYLPYRIDIN-2-AMINE 6MAL ; 2.6 ; Structure of human Nocturnin C-terminal domain 4GMJ ; 2.7 ; Structure of human NOT1 MIF4G domain co-crystallized with CAF1 3V79 ; 3.85 ; Structure of human Notch1 transcription complex including CSL, RAM, ANK, and MAML-1 on HES-1 promoter DNA sequence 5KWY ; 2.405 ; Structure of human NPC1 middle lumenal domain bound to NPC2 7N4U ; 3.34 ; Structure of human NPC1L1 7N4X ; 3.33 ; Structure of human NPC1L1 mutant-W347R 7RDS ; 2.5 ; Structure of human NTHL1 7RDT ; 2.1 ; Structure of human NTHL1 - linker 1 chimera 1ZS6 ; 2.3 ; structure of human nucleoside-diphosphate kinase 3 5M7R ; 2.35 ; Structure of human O-GlcNAc hydrolase 5M7S ; 2.4 ; Structure of human O-GlcNAc hydrolase with bound transition state analog ThiametG 5M7U ; 2.3 ; Structure of human O-GlcNAc hydrolase with new iminocyclitol type inhibitor 5M7T ; 2.6 ; Structure of human O-GlcNAc hydrolase with PugNAc type inhibitor 3PE3 ; 2.78 ; Structure of human O-GlcNAc transferase and its complex with a peptide substrate 3PE4 ; 1.95 ; Structure of human O-GlcNAc transferase and its complex with a peptide substrate 8CM9 ; 2.8 ; Structure of human O-GlcNAc transferase in complex with UDP and tP11 7ZH6 ; 3.67 ; Structure of human OCT3 in complex with inhibitor Corticosterone 7ZHA ; 3.55 ; Structure of human OCT3 in complex with inhibitor decynium-22 7ZH0 ; 3.2 ; Structure of human OCT3 in lipid nanodisc 4ZGY ; 2.63 ; STRUCTURE of HUMAN ORNITHINE DECARBOXYLASE IN COMPLEX WITH A C-TERMINAL FRAGMENT OF ANTIZYME 6IYB ; 2.091 ; Structure of human ORP1 ANK - Rab7 complex 7DEI ; 2.6 ; Structure of human ORP3 ORD domain in complex with PI(4)P 7DEJ ; 2.7 ; Structure of human ORP3 ORD in apo-form 4ONI ; 1.8 ; Structure of Human Orphan Receptor LRH1 bound to two bacterial phospholipids 1W6K ; 2.1 ; Structure of human OSC in complex with Lanosterol 1W6J ; 2.2 ; Structure of human OSC in complex with Ro 48-8071 1HHO ; 2.1 ; STRUCTURE OF HUMAN OXYHAEMOGLOBIN AT 2.1 ANGSTROMS RESOLUTION 2Q0N ; 1.75 ; Structure of human p21 activating kinase 4 (PAK4) in complex with a consensus peptide 6AH4 ; 3.296 ; Structure of human P2X3 receptor in complex with ATP and Ca2+ ion 6AH5 ; 3.819 ; Structure of human P2X3 receptor in complex with ATP and Mg2+ ion 3KQ7 ; 1.8 ; Structure of human p38alpha with N-[4-methyl-3-(6-{[2-(1-methylpyrrolidin-2-yl)ethyl]amino}pyridine-3-amido)phenyl]-2-(morpholin-4-yl)pyridine-4-carboxamide 4ZTH ; 2.15 ; Structure of human p38aMAPK-arylpyridazinylpyridine fragment complex used in inhibitor discovery 7MDM ; 4.86 ; Structure of human p97 ATPase L464P mutant 7MDO ; 4.12 ; Structure of human p97 ATPase L464P mutant 7JY5 ; 2.89 ; Structure of human p97 in complex with ATPgammaS and Npl4/Ufd1 (masked around p97) 6NDU ; 2.1 ; Structure of human PACRG-MEIG1 complex 6NEP ; 2.09763 ; Structure of human PACRG-MEIG1 complex 6UCC ; 2.6 ; Structure of human PACRG-MEIG1 complex (limited proteolysis) 4M6T ; 2.498 ; Structure of human Paf1 and Leo1 complex 1B2Y ; 3.2 ; STRUCTURE OF HUMAN PANCREATIC ALPHA-AMYLASE IN COMPLEX WITH THE CARBOHYDRATE INHIBITOR ACARBOSE 2PVS ; 3.0 ; Structure of human pancreatic lipase related protein 2 mutant N336Q 7EV8 ; 3.234 ; Structure of Human Parainfluenza Virus 3 Unassembled Nucleoprotein in Complex with its viral chaperone 1HPH ; ; STRUCTURE OF HUMAN PARATHYROID HORMONE 1-37 IN SOLUTION 1ZWA ; ; STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 1-34, NMR, 10 STRUCTURES 1ZWB ; ; STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 2-37, NMR, 10 STRUCTURES 1ZWD ; ; STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 3-37, NMR, 10 STRUCTURES 1ZWE ; ; STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 4-37, NMR, 10 STRUCTURES 3C4M ; 1.95 ; Structure of human parathyroid hormone in complex with the extracellular domain of its G-protein-coupled receptor (PTH1R) 4B1J ; 2.08 ; Structure of human PARG catalytic domain in complex with ADP-HPD 4B1H ; 2.0 ; Structure of human PARG catalytic domain in complex with ADP-ribose 4B1I ; 2.14 ; Structure of human PARG catalytic domain in complex with OA-ADP-HPD 6O9X ; 1.7 ; Structure of human PARG complexed with JA2-4 6O9Y ; 2.0 ; Structure of human PARG complexed with JA2-8 6OA0 ; 2.0 ; Structure of human PARG complexed with JA2-9 6OA1 ; 1.8 ; Structure of human PARG complexed with JA2120 6OAL ; 1.6 ; Structure of human PARG complexed with JA2120 6OA3 ; 1.9 ; Structure of human PARG complexed with JA2131 6OAK ; 1.7 ; Structure of human PARG complexed with JA2131 7KG1 ; 1.65 ; Structure of human PARG complexed with PARG-002 7KG8 ; 1.43 ; Structure of human PARG complexed with PARG-061 7KFP ; 1.9 ; Structure of human PARG complexed with PARG-119 7KG0 ; 1.66 ; Structure of human PARG complexed with PARG-131 7KG7 ; 1.85 ; Structure of human PARG complexed with PARG-292 7KG6 ; 1.96 ; Structure of human PARG complexed with PARG-322 8PQ0 ; 1.48 ; Structure of human PARK7 in complex with GK16R 8PPW ; 1.53 ; Structure of human PARK7 in complex with GK16S 5C9V ; 2.35 ; Structure of human Parkin G319A 4DQY ; 3.25 ; Structure of Human PARP-1 bound to a DNA double strand break 4OPX ; 3.314 ; Structure of Human PARP-1 bound to a DNA double strand break in complex with (2R)-5-fluoro-2-methyl-2,3-dihydro-1-benzofuran-7-carboxamide 4OQA ; 3.65 ; Structure of Human PARP-1 bound to a DNA double strand break in complex with (2Z)-2-(2,4-dihydroxybenzylidene)-3-oxo-2,3-dihydro-1-benzofuran-7-carboxamide 4OQB ; 3.362 ; Structure of Human PARP-1 bound to a DNA double strand break in complex with (2Z)-2-{4-[2-(morpholin-4-yl)ethoxy]benzylidene}-3-oxo-2,3-dihydro-1-benzofuran-7-carboxamide 5WS0 ; 2.6 ; Structure of human PARP1 catalytic domain bound to a benzoimidazole inhibitor 5WS1 ; 1.9 ; Structure of human PARP1 catalytic domain bound to a benzoimidazole inhibitor 5WRZ ; 2.2 ; Structure of human PARP1 catalytic domain bound to a phthalazinone inhibitor 5KPN ; 2.3 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5KPO ; 2.65 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5KPP ; 2.33 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5KPQ ; 2.55 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5WRQ ; 2.65 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5WRY ; 2.3 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 5WTC ; 2.2 ; Structure of human PARP1 catalytic domain bound to a quinazoline-2,4(1H,3H)-dione inhibitor 4ZZZ ; 1.9 ; Structure of human PARP1 catalytic domain bound to an isoindolinone inhibitor 5A00 ; 2.75 ; Structure of human PARP1 catalytic domain bound to an isoindolinone inhibitor 7S68 ; 3.3 ; Structure of human PARP1 domains (Zn1, Zn3, WGR and HD) bound to a DNA double strand break. 7S81 ; 3.6 ; Structure of human PARP1 domains (Zn1, Zn3, WGR, HD) bound to a DNA double strand break. 4ZZY ; 2.2 ; Structure of human PARP2 catalytic domain bound to an isoindolinone inhibitor 6OEU ; 3.5 ; Structure of human Patched1 6OEV ; 3.8 ; Structure of human Patched1 in complex with native Sonic Hedgehog 3P87 ; 2.99 ; Structure of human PCNA bound to RNASEH2B PIP box peptide 5O45 ; 0.99 ; Structure of human PD-L1 in complex with inhibitor 5O4Y ; 2.3 ; Structure of human PD-L1 in complex with inhibitor 6YCR ; 1.54 ; Structure of human PD-L1 in complex with inhibitor 8ALX ; 1.1 ; Structure of human PD-L1 in complex with inhibitor 7OUN ; 1.9 ; Structure of human PD-L1 in complex with macrocyclic inhibitor 1UU8 ; 2.5 ; Structure of human PDK1 kinase domain in complex with BIM-1 1UU7 ; 1.9 ; Structure of human PDK1 kinase domain in complex with BIM-2 1UU9 ; 1.95 ; Structure of human PDK1 kinase domain in complex with BIM-3 1UVR ; 2.81 ; Structure of human PDK1 kinase domain in complex with BIM-8 1UU3 ; 1.7 ; Structure of human PDK1 kinase domain in complex with LY333531 1OKY ; 2.3 ; Structure of human PDK1 kinase domain in complex with staurosporine 1OKZ ; 2.51 ; Structure of human PDK1 kinase domain in complex with UCN-01 2UZC ; 1.5 ; Structure of human PDLIM5 in complex with the C-terminal peptide of human alpha-actinin-1 5JCG ; 2.8 ; Structure of Human Peroxiredoxin 3 as three stacked rings 7AAH ; 1.4 ; Structure of human pERp1 8WEJ ; 2.79 ; Structure of human phagocyte NADPH oxidase in the activated state 8GZ3 ; 3.3 ; Structure of human phagocyte NADPH oxidase in the resting state 8X2L ; 2.99 ; Structure of human phagocyte NADPH oxidase in the resting state in the presence of 2 mM NADPH 1LN3 ; 2.9 ; Structure of Human Phosphatidylcholine Transfer Protein in Complex with Palmitoyl-Linoleoyl Phosphatidylcholine (Seleno-Met Protein) 2JKV ; 2.532 ; Structure of human Phosphogluconate Dehydrogenase in complex with NADPH at 2.53A 6OHO ; 2.0 ; Structure of human Phospholipase D2 catalytic domain 2Y7J ; 2.5 ; Structure of human phosphorylase kinase, gamma 2 8SOR ; 3.96 ; Structure of human PI3KC3-C1 complex 5FHH ; 3.6 ; Structure of human Pif1 helicase domain residues 200-641 6WTL ; 2.85 ; Structure of Human pir-miRNA-19b-2 Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 6N5O ; 2.708 ; Structure of Human pir-miRNA-202 Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 6N5N ; 2.951 ; Structure of Human pir-miRNA-208a Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 6WTR ; 3.082 ; Structure of Human pir-miRNA-300 Apical Loop Fused to the YdaO Riboswitch Scaffold 6N5S ; 2.802 ; Structure of Human pir-miRNA-320b-2 Apical Loop and One-base-pair Stem Fused to the YdaO Riboswitch Scaffold 6N5P ; 2.991 ; Structure of Human pir-miRNA-340 Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 6N5Q ; 2.946 ; Structure of Human pir-miRNA-378a Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 6N5T ; 2.787 ; Structure of Human pir-miRNA-378a Apical Loop Fused to the YdaO Riboswitch Scaffold 6N5K ; 3.098 ; Structure of Human pir-miRNA-449c Apical Loop and One-base-pair Fused to the YdaO Riboswitch Scaffold 4GL5 ; 3.48 ; Structure of human placental aromatase complexed with designed inhibitor HDDG029 (compound 4) 4GL7 ; 3.9 ; Structure of human placental aromatase complexed with designed inhibitor HDDG046 (compound 5) 1P49 ; 2.6 ; Structure of Human Placental Estrone/DHEA Sulfatase 1A7A ; 2.8 ; STRUCTURE OF HUMAN PLACENTAL S-ADENOSYLHOMOCYSTEINE HYDROLASE: DETERMINATION OF A 30 SELENIUM ATOM SUBSTRUCTURE FROM DATA AT A SINGLE WAVELENGTH 8EG3 ; 2.04 ; Structure of human placental steroid (estrone/DHEA) sulfatase at 2.0 angstrom resolution 6X0T ; 1.388 ; Structure of human plasma factor XIIa in complex with (2S)-1-(N,3-dicyclohexyl-D-alanyl)-4-[(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-yl]-N-[(thiophen-2-yl)methyl]piperazine-2-carboxamide (compound 8h) 6X0S ; 1.898 ; Structure of human plasma factor XIIa in complex with (2S)-4-(5-chloro-1,3-benzoxazol-2-yl)-1-(N,3-dicyclohexyl-D-alanyl)-N-[(thiophen-2-yl)methyl]piperazine-2-carboxamide (compound 7) 5TJX ; 1.408 ; Structure of human plasma kallikrein 6O1S ; 1.7 ; Structure of human plasma kallikrein protease domain with inhibitor 8BJT ; 2.188 ; Structure of human PLK1 in complex with 2-Allyl-1-[6-(1-hydroxy-1-methyl-ethyl)-pyridin-2-yl]-6-[4-(4-methyl-piperazin-1-yl)-phenylamino]-1,2-dihydro-pyrazolo[3,4-d]pyrimidin-3-one 8CRC ; 1.65 ; Structure of human Plk1 PBD in complex with Allopole-A 3HIK ; 1.77 ; Structure of human Plk1-PBD in complex with PLHSpT 3HIH ; 1.7 ; Structure of human Plk1-PBD with glycerol and sulfate in the phophopeptide binding site 1YZ3 ; 2.4 ; Structure of human pnmt complexed with cofactor product adohcy and inhibitor SK&F 64139 2AN5 ; 2.5 ; Structure of human PNMT complexed with S-adenosyl-homocysteine and an inhibitor, trans-(1S,2S)-2-amino-1-tetralol 2G70 ; 2.4 ; Structure of human PNMT in complex with inhibitor 3-hydroxymethyl-7-nitro-THIQ and AdoMet (SAM) 1V3Q ; 2.8 ; Structure of human PNP complexed with DDI 5UXH ; 2.41 ; Structure of Human POFUT1 in complex with GDP-fucose 5UX6 ; 2.09 ; Structure of Human POFUT1 in its apo form 6Z9C ; 2.8 ; Structure of human POLDIP2, a multifaceted adaptor protein in metabolism and genome stability 5LS6 ; 3.47 ; Structure of Human Polycomb Repressive Complex 2 (PRC2) with inhibitor 5HYN ; 2.95 ; Structure of Human Polycomb Repressive Complex 2 (PRC2) with oncogenic histone H3K27M peptide 6Y60 ; 1.798 ; Structure of Human Polyomavirus 12 VP1 in complex with 3'-Sialyllactosamine 4PCG ; 1.8 ; Structure of Human Polyomavirus 6 (HPyV6) VP1 pentamer 4PCH ; 1.7 ; Structure of Human Polyomavirus 7 (HPyV7) VP1 pentamer 4POS ; 2.0 ; Structure of Human Polyomavirus 9 VP1 pentamer in complex with 3'-sialyllactosamine 4POR ; 2.09 ; Structure of Human Polyomavirus 9 VP1 pentamer in complex with 3'-sialyllactose 4POT ; 2.1 ; Structure of Human Polyomavirus 9 VP1 pentamer in complex with N-glycolylneuraminic acid containing 3'-sialyllactosamine 3ECR ; 2.182 ; Structure of human porphobilinogen deaminase 8SH0 ; 2.16 ; Structure of human POT1 DNA binding domain bound to a 5'-phosphorylated junction of a telomeric DNA hairpin with a 3'-overhang 8SH1 ; 2.6 ; Structure of human POT1 DNA binding domain bound to a 5'-phosphorylated junction of a telomeric double-stranded DNA duplex with a 3'-overhang 7S1O ; 2.55 ; Structure of human POT1C 7S1U ; 2.55 ; Structure of human POT1C 7AIP ; 3.12 ; Structure of Human Potassium Chloride Transporter KCC1 in NaCl (Reference Map) 7AIQ ; 3.72 ; Structure of Human Potassium Chloride Transporter KCC1 in NaCl (Subclass 1) 7AIR ; 3.66 ; Structure of Human Potassium Chloride Transporter KCC1 in NaCl (Subclass 2) 6Y5R ; 3.76 ; Structure of Human Potassium Chloride Transporter KCC3 S45D/T940D/T997D in NaCl 7AIN ; 3.2 ; Structure of Human Potassium Chloride Transporter KCC3 S45D/T940D/T997D in NaCl (Reference Map) 7AIO ; 3.31 ; Structure of Human Potassium Chloride Transporter KCC3 S45D/T940D/T997D in NaCl (Subclass) 6Y5V ; 4.08 ; Structure of Human Potassium Chloride Transporter KCC3b (S45D/T940D/T997D) in KCl 6ENQ ; 2.2 ; Structure of human PPAR gamma LBD in complex with Lanifibranor (IVA337) 7TD5 ; 2.994 ; Structure of human PRC2-EZH1 containing phosphorylated SUZ12 6BNS ; 2.56 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN BOUND TETHERED WITH SRC co-activator peptide and Compound 25a AKA BICYCLIC HEXAFLUOROISOPROPYL 2 ALCOHOL SULFONAMIDES 6NX1 ; 2.27 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN BOUND TETHERED WITH SRC CO-ACTIVATOR PEPTIDE AND COMPOUND-3 AKA 1,1,1,3,3,3-HEXAFLUORO-2-{4-[1-(4- LUOROBENZENESULFONYL)CYCLOPENTYL]PHENYL}PROPAN-2-OL 6XP9 ; 2.27 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN BOUND TETHERED WITH SRC co-activator peptide IN COMPLEX WITH (S,S)-1 4S0T ; 3.14 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN BOUND WITH ADNECTIN-1 AND COMPOUND-1 4S0S ; 2.8 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN with ADNECTIN-1 4XHD ; 2.4 ; STRUCTURE OF HUMAN PREGNANE X RECEPTOR LIGAND BINDING DOMAIN WITH COMPOUND-1 7LGW ; 2.7 ; Structure of human Prestin in nanodisc in the presence of NaCl 7LGU ; 2.3 ; Structure of human prestin in the presence of NaCl 7LH2 ; 3.43 ; Structure of human prestin in the presence of sodium salicylate and sodium sulfate 7LH3 ; 4.3 ; Structure of human prestin in the presence of sodium sulfate 1V3A ; ; Structure of human PRL-3, the phosphatase associated with cancer metastasis 6RPG ; 2.7 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with inhibitor 7BEA ; 2.45 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with inhibitor 5J89 ; 2.2 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with low molecular mass inhibitor 5J8O ; 2.3 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with low molecular mass inhibitor 5NIU ; 2.01 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with low molecular mass inhibitor 6R3K ; 2.2 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with low molecular mass inhibitor 7NLD ; 2.3 ; Structure of human Programmed cell death 1 ligand 1 (PD-L1) with low molecular mass inhibitor 3EE2 ; 1.91 ; Structure of human prostaglandin D-synthase (hGSTS1-1) in complex with nocodazole 4IB5 ; 2.2 ; Structure of human protein kinase CK2 catalytic subunit in complex with a CK2beta-competitive cyclic peptide 3NKS ; 1.9 ; Structure of human protoporphyrinogen IX oxidase 4IVM ; 2.769 ; Structure of human protoporphyrinogen IX oxidase(R59G) 4IVO ; 2.597 ; Structure of human protoporphyrinogen IX oxidase(R59Q) 8PYV ; 1.77 ; Structure of Human PS-1 GSH-analog complex, solved at wavelength 2.755 A 2IXM ; 1.5 ; Structure of human PTPA 2A0Y ; 2.28 ; Structure of human purine nucleoside phosphorylase H257D mutant 2A0X ; 2.28 ; Structure of human purine nucleoside phosphorylase H257F mutant 2A0W ; 2.28 ; Structure of human purine nucleoside phosphorylase H257G mutant 1RSZ ; 2.2 ; Structure of human purine nucleoside phosphorylase in complex with DADMe-Immucillin-H and sulfate 1RR6 ; 2.5 ; Structure of human purine nucleoside phosphorylase in complex with Immucillin-H and phosphate 1RT9 ; 2.3 ; Structure of human purine nucleoside phosphorylase in complex with Immucillin-H and sulfate 2Q7O ; 2.9 ; Structure of human purine nucleoside phosphorylase in complex with L-Immucillin-H 3BGS ; 2.099 ; Structure of human purine nucleoside phosphorylase with L-DADMe-ImmH and phosphate 1XG5 ; 1.53 ; Structure of human putative dehydrogenase MGC4172 in complex with NADP 5UAT ; 1.92 ; Structure of human PYCR-1 complexed with NADPH 5UAV ; 1.85 ; Structure of human PYCR-1 complexed with NADPH and L-tetrahydrofuroic acid 5UAU ; 1.9 ; Structure of human PYCR-1 complexed with proline 6XP3 ; 1.93 ; Structure of human PYCR1 complexed with cyclopentanecarboxylic acid 6XOZ ; 2.35 ; Structure of human PYCR1 complexed with L-tetrahydro-2-furoic acid 6XP1 ; 1.75 ; Structure of human PYCR1 complexed with L-thiazolidine-2-carboxylate 6XP2 ; 2.3 ; Structure of human PYCR1 complexed with L-thiazolidine-4-carboxylate 6XP0 ; 1.95 ; Structure of human PYCR1 complexed with N-formyl L-proline 6LHM ; 3.4 ; Structure of human PYCR2 2DEZ ; ; Structure of human PYY 7XLQ ; 3.1 ; Structure of human R-type voltage-gated CaV2.3-alpha2/delta1-beta1 channel complex in the ligand-free (apo) state 7YG5 ; 3.0 ; Structure of human R-type voltage-gated CaV2.3-alpha2/delta1-beta1 channel complex in the topiramate-bound state 5LPN ; 2.8 ; Structure of human Rab10 in complex with the bMERB domain of Mical-1 5SZJ ; 2.66 ; Structure of human Rab10 in complex with the bMERB domain of Mical-cL 5SZH ; 2.3 ; Structure of human Rab1b in complex with the bMERB domain of Mical-cL 5SZI ; 2.85 ; Structure of human Rab8a in complex with the bMERB domain of Mical-cL 6IY1 ; 2.11 ; Structure of human Ras-related protein Rab11 2WWY ; 2.9 ; Structure of human RECQ-like helicase in complex with a DNA substrate 4U7D ; 3.4 ; Structure of human RECQ-like helicase in complex with an oligonucleotide 4EKC ; 7.4 ; Structure of human regulator of G protein signaling 2 (RGS2) in complex with murine Galpha-q(R183C) 4EKD ; 2.71 ; Structure of human regulator of G protein signaling 2 (RGS2) in complex with murine Galpha-q(R183C) 8A4A ; 2.52 ; Structure of human Rep15 in complex with bovine Rab3C. 8A4C ; 2.75 ; Structure of human Rep15:Rab3B complex. 8A4B ; 2.8 ; Structure of human Rep15:Rab3B_Q81L complex. 5VJ2 ; 2.22 ; Structure of human respiratory syncytial virus non-structural protein 1 (NS1) 7LDK ; 2.82 ; Structure of human respiratory syncytial virus nonstructural protein 2 (NS2) 6DRF ; ; Structure of human Retinal Degeneration 3(RD3) Protein 3GQC ; 2.5 ; Structure of human Rev1-DNA-dNTP ternary complex 3ABD ; 1.9 ; Structure of human REV7 in complex with a human REV3 fragment in a monoclinic crystal 3ABE ; 2.6 ; Structure of human REV7 in complex with a human REV3 fragment in a tetragonal crystal 5C3Y ; 2.6 ; Structure of human ribokinase crystallized with AMPPNP 6Y0G ; 3.2 ; Structure of human ribosome in classical-PRE state 6Y57 ; 3.5 ; Structure of human ribosome in hybrid-PRE state 6Y2L ; 3.0 ; Structure of human ribosome in POST state 6OLI ; 3.5 ; Structure of human ribosome nascent chain complex selectively stalled by a drug-like small molecule (USO1-RNC) 6NW2 ; 2.0 ; Structure of human RIPK1 kinase domain in complex with compound 11 6NYH ; 2.1 ; Structure of human RIPK1 kinase domain in complex with GNE684 7MON ; 2.23 ; Structure of human RIPK3-MLKL complex 7DN3 ; 3.5 ; Structure of Human RNA Polymerase III elongation complex 4X09 ; 1.722 ; Structure of human RNase 6 in complex with sulphate anions 3ZBF ; 2.2 ; Structure of Human ROS1 Kinase Domain in Complex with Crizotinib 4UXL ; 2.4 ; Structure of Human ROS1 Kinase Domain in Complex with PF-06463922 2XV4 ; 2.95 ; Structure of Human RPC62 (partial) 8BTT ; 2.6 ; Structure of human RTCB 8ODP ; 2.3 ; Structure of human RTCB with GMPCPP in complex with Archease 6WCW ; 2.8 ; Structure of human Rubicon RH domain in complex with GTP-bound Rab7 8UQ3 ; 3.18 ; Structure of human RyR2-S2808D in the closed state in the presence of ARM210 8UQ5 ; 3.96 ; Structure of human RyR2-S2808D in the primed state in the presence of Rapamycin 8UQ2 ; 2.98 ; Structure of human RyR2-S2808D in the subprimed state 8UQ4 ; 3.64 ; Structure of human RyR2-S2808D in the subprimed state in the presence of H2O2/NOC-12/GSH 4AQI ; 1.7 ; Structure of human S100A15 bound to zinc and calcium 4AQJ ; 1.6 ; Structure of human S100A7 D24G bound to zinc and calcium 2WOS ; 1.7 ; Structure of human S100A7 in complex with 2,6 ANS 7UJN ; 2.89 ; Structure of Human SAMHD1 with Non-Hydrolysable dGTP Analog 4UEX ; 1.8 ; Structure of human Saposin A at lysosomal pH 7SN1 ; 1.467 ; Structure of human SARS-CoV-2 neutralizing antibody C1C-A3 Fab 7SN2 ; 4.3 ; Structure of human SARS-CoV-2 neutralizing antibody C1C-A3 Fab 7SN3 ; 3.1 ; Structure of human SARS-CoV-2 spike glycoprotein trimer bound by neutralizing antibody C1C-A3 Fab (variable region) 4YH1 ; 2.2 ; Structure of Human Scp1 bound to cis-proline peptidomimetic CTD phospho-Ser5 peptide 3GZC ; 2.1 ; Structure of human selenocysteine lyase 8PHV ; 1.97 ; Structure of Human selenomethionylated Cdc123 bound to domain 3 of eIF2 gamma 1TH0 ; 2.2 ; Structure of human Senp2 1TGZ ; 2.8 ; Structure of human Senp2 in complex with SUMO-1 7R2E ; 1.74 ; Structure of human Senp7 with SUMO2 2X7G ; 2.5 ; Structure of human serine-arginine-rich protein-specific kinase 2 (SRPK2) bound to purvalanol B 7TXT ; 3.0 ; Structure of human serotonin transporter bound to small molecule '8090 in lipid nanodisc and NaCl 6M4R ; 2.49 ; Structure of Human Serum Albumin 6HSC ; 1.9 ; Structure of Human Serum Albumin in complex with Aristolochic Acid at 1.9 A resolution 7OV6 ; 1.9 ; Structure of Human Serum Albumin in complex with Aristolochic Acid I at 1.9 A resolution - Optimized 7OV5 ; 1.9 ; Structure of Human Serum Albumin in complex with Aristolochic Acid II at 1.9 A resolution 3TDL ; 2.6 ; Structure of human serum albumin in complex with DAUDA 7OV1 ; 1.9 ; Structure of Human Serum Albumin in complex with Myristic Acid 2VDB ; 2.52 ; Structure of human serum albumin with S-naproxen and the GA module 7EEK ; 2.5 ; Structure of Human serum albumin-Au compound complex 4IP8 ; 2.193 ; Structure of human serum amyloid A1 5WTD ; 2.501 ; Structure of human serum transferrin bound ruthenium at N-lobe 7LMS ; 3.5 ; Structure of human SetD3 methyl-transferase in complex with 2A protease from Coxsackievirus B3 6BOZ ; 2.4 ; Structure of human SETD8 in complex with covalent inhibitor MS4138 2O3D ; ; Structure of human SF2/ASF RNA recognition motif 2 (RRM2) 5WPA ; 2.29 ; Structure of human SFPQ/PSPC1 heterodimer 7WMV ; 3.2 ; Structure of human SGLT1-MAP17 complex bound with LX2761 7YNI ; 3.26 ; Structure of human SGLT1-MAP17 complex bound with substrate 4D4FDG in the occluded conformation 7VSI ; 2.95 ; Structure of human SGLT2-MAP17 complex bound with empagliflozin 7YNJ ; 3.33 ; Structure of human SGLT2-MAP17 complex bound with substrate AMG in the occluded conformation 7YNK ; 3.48 ; Structure of human SGLT2-MAP17 complex in the apo state in the inward-facing conformation 8HDH ; 3.1 ; Structure of human SGLT2-MAP17 complex with Canagliflozin 8HEZ ; 2.8 ; Structure of human SGLT2-MAP17 complex with Dapagliflozin 8HIN ; 3.3 ; Structure of human SGLT2-MAP17 complex with Phlorizin 8HG7 ; 3.1 ; Structure of human SGLT2-MAP17 complex with Sotagliflozin 8HB0 ; 2.9 ; Structure of human SGLT2-MAP17 complex with TA1887 7L9P ; 3.6 ; Structure of human SHLD2-SHLD3-REV7-TRIP13(E253Q) complex 6FL5 ; 3.6 ; Structure of human SHMT1-H135N-R137A-E168N mutant at 3.6 Ang. resolution 5X3V ; 2.85 ; Structure of human SHMT2 protein mutant 2JIF ; 2.0 ; Structure of human short-branched chain acyl-CoA dehydrogenase (ACADSB) 7R75 ; 2.83 ; Structure of human SHP2 in complex with compound 16 7R7D ; 2.6 ; Structure of human SHP2 in complex with compound 22 7R7I ; 2.85 ; Structure of human SHP2 in complex with compound 27 7R7L ; 3.0 ; Structure of human SHP2 in complex with compound 30 6WU8 ; 2.4 ; Structure of human SHP2 in complex with inhibitor IACS-13909 6CMQ ; 2.9 ; Structure of human SHP2 without N-SH2 domain 5BO8 ; 2.7 ; Structure of human sialyltransferase ST8SiaIII 5BO6 ; 2.07 ; Structure of human sialyltransferase ST8SiaIII in complex with CDP 5BO9 ; 2.3 ; Structure of human sialyltransferase ST8SiaIII in complex with CMP-3FNeu5Ac and Sia-6S-LacNAc 5BO7 ; 1.85 ; Structure of human sialyltransferase ST8SiaIII in complex with CTP 8SKU ; 3.2 ; Structure of human SIgA1 in complex with human CD89 (FcaR1) 8SKV ; 3.1 ; Structure of human SIgA1 in complex with Streptococcus pyogenes protein M4 (Arp4) 2JJU ; 1.19 ; Structure of human signal regulatory protein (sirp) beta 2JJV ; 1.8 ; Structure of human signal regulatory protein (sirp) beta(2) 2JJW ; 1.7 ; Structure of human signal regulatory protein (sirp) gamma 5MAR ; 1.89 ; Structure of human SIRT2 in complex with 1,2,4-Oxadiazole inhibitor and ADP ribose. 3ZGV ; 2.27 ; Structure of human SIRT2 in complex with ADP-ribose 4BN4 ; 1.3 ; Structure of human SIRT3 in complex with ADP-ribose 4BN5 ; 3.25 ; Structure of human SIRT3 in complex with SRT1720 inhibitor 5MAT ; 2.069 ; Structure of human Sirtuin 2 in complex with a selective thienopyrimidinone based inhibitor 6AR0 ; 1.08 ; Structure of human SLMAP FHA domain 6AR2 ; 1.55 ; Structure of human SLMAP FHA domain in complex with pMST2 2HWX ; 1.9 ; Structure of human SMG6 E1282C PIN domain mutant. 6XBJ ; 3.88 ; Structure of human SMO-D384R complex with Gi 6XBK ; 3.24 ; Structure of human SMO-G111C/I496C complex with Gi 6XBM ; 3.14 ; Structure of human SMO-Gi complex with 24(S),25-EC 6XBL ; 3.96 ; Structure of human SMO-Gi complex with SAG 5L7D ; 3.2 ; Structure of human Smoothened in complex with cholesterol 7ZI0 ; 3.0 ; Structure of human Smoothened in complex with cholesterol and SAG 5L7I ; 3.3 ; Structure of human Smoothened in complex with Vismodegib 6OT0 ; 3.84 ; Structure of human Smoothened-Gi complex 3OMG ; 1.85 ; Structure of human SND1 extended tudor domain in complex with the symmetrically dimethylated arginine PIWIL1 peptide R14me2s 3OMC ; 1.77 ; Structure of human SND1 extended tudor domain in complex with the symmetrically dimethylated arginine PIWIL1 peptide R4me2s 4FZS ; 2.8 ; Structure of human SNX1 BAR domain 5YTU ; 1.9 ; Structure of human SOD1 complexed with isoproteranol in C2221 space group 5K02 ; 1.99 ; Structure of human SOD1 with T2D mutation 8JP0 ; 3.5 ; structure of human sodium-calciumexchanger NCX1 8IL7 ; 1.95 ; Structure of human soluble Adenylyl Cyclase in complex with lactate 7D9U ; 3.8 ; Structure of human soluble guanylate cyclase in the cinciguat-bound activated state 7D9T ; 4.1 ; Structure of human soluble guanylate cyclase in the cinciguat-bound inactive state 6JT1 ; 3.9 ; Structure of human soluble guanylate cyclase in the heme oxidised state 8HBE ; 3.2 ; Structure of human soluble guanylate cyclase in the inactive state at 3.1 angstrom 6JT2 ; 3.8 ; Structure of human soluble guanylate cyclase in the NO activated state 8HBF ; 3.1 ; Structure of human soluble guanylate cyclase in the NO+Rio state at 3.1 angstrom 8HBH ; 3.1 ; Structure of human soluble guanylate cyclase in the NO-activated state at 3.1 angstrom 6JT0 ; 4.0 ; Structure of human soluble guanylate cyclase in the unliganded state 8OPQ ; 3.28 ; Structure of Human Solute Carrier 26 family member A6 (SLC26A6) anion transporter in an inward-facing state 2C6F ; 3.01 ; Structure of human somatic angiontensin-I converting enzyme N domain 2C6N ; 3.0 ; Structure of human somatic angiontensin-I converting enzyme N domain with lisinopril 6PJV ; 1.43 ; Structure of Human Sonic Hedgehog in complex with Zinc and Magnesium 6T7A ; 3.7 ; Structure of human Sox11 transcription factor in complex with a nucleosome 6T7D ; 4.4 ; Structure of human Sox11 transcription factor in complex with a nucleosome 6T78 ; 2.504 ; Structure of human Sox11 transcription factor in complex with a short DNA fragment 6T7B ; 5.1 ; Structure of human Sox2 transcription factor in complex with a nucleosome 7S7J ; 1.15 ; Structure of Human SPASTIN-IST1 complex. 7OY0 ; 2.09 ; Structure of human Spermine Oxidase in complex with a highly selective allosteric inhibitor 5EBE ; 3.0 ; Structure of human sphingomyelinase phosphodiesterase like 3A (SMPDL3A) with 5' CMP 5EBB ; 2.6 ; Structure of human sphingomyelinase phosphodiesterase like 3A (SMPDL3A) with Zn2+ 8YJM ; 4.15 ; Structure of human SPT16 MD-CTD and MCM2 HBD chaperoning a histone H3-H4 tetramer and a single chain H2B-H2A chimera 8YJF ; 4.4 ; Structure of human SPT16 MD-CTD and MCM2 HBD chaperoning a histone H3-H4 tetramer and an H2A-H2B dimer 7YQE ; 3.5 ; Structure of human SRC regulatory domains in complex with the C-terminal PRRP motifs of GPR54. 6HPJ ; ; Structure of human SRSF1 RRM1 bound to AACAAA RNA 6L1D ; 1.95 ; Structure of human StAR-related lipid transfer protein 4 6L1M ; 1.7 ; Structure of human StAR-related lipid transfer protein 4 mutant - LWNI107-110GG 7MHC ; 2.32 ; Structure of human STING in complex with MK-1454 5W5G ; 2.48 ; Structure of Human Sts-1 histidine phosphatase domain 5VR6 ; 1.87 ; Structure of Human Sts-1 histidine phosphatase domain with sulfate bound 5WDI ; 2.43 ; Structure of Human Sts-2 histidine phosphatase domain 4FI9 ; 3.05 ; Structure of human SUN-KASH complex 3UNP ; 2.39 ; Structure of human SUN2 SUN domain 6JXR ; 3.7 ; Structure of human T cell receptor-CD3 complex 5UYX ; 3.5 ; Structure of Human T-complex protein 1 subunit epsilon (CCT5) 5UYZ ; 3.6 ; Structure of Human T-complex protein 1 subunit epsilon (CCT5) mutant His147Arg 6IP3 ; 1.4 ; Structure of human telomeric DNA at 1.4 Angstroms resolution 2LD8 ; ; Structure of Human Telomeric DNA in Crowded Solution 6IP7 ; 1.55 ; Structure of human telomeric DNA with 5-Selenophene-modified deoxyuridine at residue 11 6ISW ; 2.3 ; Structure of human telomeric DNA with 5-selenophene-modified deoxyuridine at residue 12 5C7L ; 1.862 ; Structure of human testis-specific glyceraldehyde-3-phosphate dehydrogenase apo form 5C7O ; 1.729 ; Structure of human testis-specific glyceraldehyde-3-phosphate dehydrogenase holo form with NAD+ 8J0R ; 2.1 ; Structure of human TFAP2A in complex with DNA 6ERO ; 1.75 ; Structure of human TFB2M 5FUR ; 8.5 ; Structure of human TFIID-IIA bound to core promoter DNA 3NDQ ; 1.933 ; Structure of Human TFIIS Domain II 1UVZ ; 2.01 ; structure of human thioredoxin 2 2IW6 ; 2.3 ; STRUCTURE OF HUMAN THR160-PHOSPHO CDK2-CYCLIN A COMPLEXED WITH A BISANILINOPYRIMIDINE INHIBITOR 2IW9 ; 2.0 ; STRUCTURE OF HUMAN THR160-PHOSPHO CDK2-CYCLIN A COMPLEXED WITH A BISANILINOPYRIMIDINE INHIBITOR 2IW8 ; 2.3 ; STRUCTURE OF HUMAN THR160-PHOSPHO CDK2-CYCLIN A F82H-L83V-H84D MUTANT WITH AN O6-CYCLOHEXYLMETHYLGUANINE INHIBITOR 1OGU ; 2.6 ; STRUCTURE OF HUMAN THR160-PHOSPHO CDK2/CYCLIN A COMPLEXED WITH A 2-ARYLAMINO-4-CYCLOHEXYLMETHYL-5-NITROSO-6-AMINOPYRIMIDINE INHIBITOR 1OI9 ; 2.1 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with a 6-cyclohexylmethyloxy-2-anilino-purine inhibitor 1OIU ; 2.0 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with a 6-cyclohexylmethyloxy-2-anilino-purine inhibitor 1OIY ; 2.4 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with a 6-cyclohexylmethyloxy-2-anilino-purine inhibitor 1H1P ; 2.1 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with the inhibitor NU2058 1H1R ; 2.0 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with the inhibitor NU6086 1H1Q ; 2.5 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with the inhibitor NU6094 1H1S ; 2.0 ; Structure of human Thr160-phospho CDK2/cyclin A complexed with the inhibitor NU6102 3R3G ; 1.75 ; Structure of human thrombin with residues 145-150 of murine thrombin. 4GYH ; 3.005 ; Structure of human thymidylate synthase at high salt conditions 1YPV ; 1.8 ; Structure of human thymidylate synthase at low salt conditions 4H1I ; 3.095 ; Structure of human thymidylate synthase at low salt conditions 4E28 ; 2.302 ; Structure of human thymidylate synthase in inactive conformation with a novel non-peptidic inhibitor 1HW3 ; 2.0 ; STRUCTURE OF HUMAN THYMIDYLATE SYNTHASE SUGGESTS ADVANTAGES OF CHEMOTHERAPY WITH NONCOMPETITIVE INHIBITORS 2RBA ; 2.79 ; Structure of Human Thymine DNA Glycosylase Bound to Abasic and Undamaged DNA 6D0L ; 1.97 ; Structure of human TIRR 6CO1 ; 2.179 ; Structure of human TIRR in complex with 53BP1 Tudor domains 2BB5 ; 3.2 ; Structure of Human Transcobalamin in complex with Cobalamin 7LIV ; 3.6 ; Structure of human transfer RNA visualized in the cytomegalovirus, a DNA virus 7LJ3 ; 2.9 ; Structure of human transfer RNA visualized in the cytomegalovirus, a DNA virus 1SUV ; 7.5 ; Structure of Human Transferrin Receptor-Transferrin Complex 5NV6 ; 2.93 ; Structure of human transforming growth factor beta-induced protein (TGFBIp). 6E75 ; 1.5 ; Structure of Human Transthyretin Asp38Ala Mutant 6E78 ; 1.499 ; Structure of Human Transthyretin Asp38Ala Mutant in Complex with Diflunisal 6E77 ; 1.6 ; Structure of Human Transthyretin Asp38Ala Mutant in Complex with Tafamidis 6E76 ; 1.6 ; Structure of Human Transthyretin Asp38Ala/Thr119Met Mutant 6D0W ; 1.7 ; Structure of human transthyretin complex with analgesic inhibitor 1E3F ; 1.9 ; Structure of human transthyretin complexed with bromophenols: a new mode of binding 1E4H ; 1.8 ; Structure of human transthyretin complexed with bromophenols: a new mode of binding 1E5A ; 1.8 ; Structure of human transthyretin complexed with bromophenols: a new mode of binding 4D7B ; 1.15 ; Structure of human transthyretin in complex with Tolcapone 6E74 ; 1.6 ; Structure of Human Transthyretin Leu55Pro Mutant in Complex with Tafamidis 5FO2 ; 1.449 ; Structure of human transthyretin mutant A108I 5FW6 ; 1.3 ; Structure of human transthyretin mutant A108V 5FW7 ; 1.2 ; Structure of human transthyretin mutant A109V 5FW8 ; 1.6 ; Structure of human transthyretin mutant E89K 6E73 ; 1.797 ; Structure of Human Transthyretin Val30Met Mutant in Complex with Diflunisal 6E72 ; 1.45 ; Structure of Human Transthyretin Val30Met Mutant in Complex with Tafamidis 6E71 ; 1.5 ; Structure of Human Transthyretin Val30Met/Thr119Met Mutant 7TQN ; 1.8 ; Structure of human TREX1 7TQO ; 1.25 ; Structure of human TREX1 7TQP ; 1.95 ; Structure of human TREX1 7TQQ ; 2.2 ; Structure of human TREX1-DNA complex 4ZVJ ; 1.6996 ; Structure of human triose phosphate isomerase K13M 6NLH ; 2.199 ; Structure of human triose phosphate isomerase R189A 5VQ9 ; 3.02 ; Structure of human TRIP13, Apo form 5VQA ; 2.54 ; Structure of human TRIP13, ATP-bound form 5MO9 ; 2.594 ; Structure of human TrkB receptor ligand binding domain in complex with the Fab frgment of antibody AB20 7CV1 ; 4.0 ; Structure of human tRNAHis guanylyltransferase (Thg1) in the presence of human mitochondrial tRNAHis 6X2J ; 3.0 ; Structure of human TRPA1 in complex with agonist GNE551 7JUP ; 3.05 ; Structure of human TRPA1 in complex with antagonist compound 21 6WJ5 ; 3.6 ; Structure of human TRPA1 in complex with inhibitor GDC-0334 7D4P ; 2.7 ; Structure of human TRPC5 in complex with clemizole 7D4Q ; 2.74 ; Structure of human TRPC5 in complex with HC-070 7MGL ; 2.9 ; Structure of human TRPML1 with ML-SI3 7XJ3 ; 3.54 ; Structure of human TRPV3 7XJ0 ; 2.53 ; Structure of human TRPV3 in complex with Trpvicin 6MHW ; 4.0 ; Structure of human TRPV3 in the presence of 2-APB in C2 symmetry (1) 6MHX ; 4.0 ; Structure of human TRPV3 in the presence of 2-APB in C2 symmetry (2) 6MHV ; 3.5 ; Structure of human TRPV3 in the presence of 2-APB in C4 symmetry 7XJ1 ; 2.93 ; Structure of human TRPV3_G573S in complex with Trpvicin in C2 symmetry 7XJ2 ; 3.64 ; Structure of human TRPV3_G573S in complex with Trpvicin in C4 symmetry 1H4W ; 1.7 ; Structure of human trypsin IV (brain trypsin) 2AKE ; 3.1 ; Structure of human tryptophanyl-tRNA synthetase in complex with tRNA(Trp) 2DR2 ; 3.0 ; Structure of human tryptophanyl-tRNA synthetase in complex with tRNA(Trp) 5J11 ; 2.56 ; Structure of human TSLP in complex with TSLPR and IL-7Ralpha 5J12 ; 3.55 ; Structure of human TSLP:TSLPR in complex with mouse IL-7Ralpha 3C5N ; 1.8 ; Structure of human TULP1 in complex with IP3 5M2I ; 2.15 ; Structure of human Tumor Necrosis Factor (TNF) in complex with the Llama VHH1 5W0B ; 2.614 ; Structure of human TUT7 catalytic module (CM) 5W0O ; 2.488 ; Structure of human TUT7 catalytic module (CM) in complex with dsRNA 5W0M ; 2.298 ; Structure of human TUT7 catalytic module (CM) in complex with U5 RNA 5W0N ; 2.497 ; Structure of human TUT7 catalytic module (CM) in complex with UMPNPP and U2 RNA 3NER ; 1.45 ; Structure of Human Type B Cytochrome b5 7ROU ; 1.7 ; Structure of human tyrosyl tRNA synthetase in complex with ML901-Tyr 1XTJ ; 2.7 ; structure of human UAP56 in complex with ADP 1ZUO ; 1.8 ; Structure of Human Ubiquitin-Conjugating Enzyme (UBCi) Involved in Embryo Attachment and Implantation 2AWF ; 2.1 ; Structure of human Ubiquitin-conjugating enzyme E2 G1 2CYX ; 2.56 ; Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) 8PW1 ; 2.2 ; Structure of human UCHL1 in complex with CG341 inhibitor 8HBW ; 2.57 ; Structure of human UCP1 in the ATP-bound state 8J1N ; 2.51 ; Structure of human UCP1 in the DNP-bound state 8HBV ; 2.51 ; Structure of human UCP1 in the nucleotide-free state 1EK6 ; 1.5 ; STRUCTURE OF HUMAN UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH NADH AND UDP-GLUCOSE 1EK5 ; 1.8 ; STRUCTURE OF HUMAN UDP-GALACTOSE 4-EPIMERASE IN COMPLEX WITH NAD+ 2Q3E ; 2.0 ; Structure of human UDP-glucose dehydrogenase complexed with NADH and UDP-glucose 8SOI ; 4.2 ; Structure of human ULK1 complex core (2:1:1 stoichiometry) 8SQZ ; 5.85 ; Structure of human ULK1 complex core (2:2:2 stoichiometry) in the PI3KC3-C1 mixture 8SRM ; 4.46 ; Structure of human ULK1 complex core (2:2:2 stoichiometry) of the ATG13(450-517) mutant 8SRQ ; 6.2 ; Structure of human ULK1C:PI3KC3-C1 supercomplex 6U5L ; 1.75 ; Structure of human ULK4 in complex with an inhibitor 6VBA ; 1.8 ; Structure of human Uracil DNA Glycosylase (UDG) bound to Aurintricarboxylic acid (ATA) 5NUA ; 1.6 ; Structure of human urine RBP4 saturated with laurate 5NU8 ; 1.59 ; Structure of human urine RBP4 saturated with palmitate 2FD6 ; 1.9 ; Structure of Human Urokinase Plasminogen Activator in Complex with Urokinase Receptor and an anti-upar antibody at 1.9 A 6D31 ; 1.2 ; Structure of human Usb1 with adenosine 5'-monophosphate 5V1M ; 1.47 ; Structure of human Usb1 with uridine 5'-monophosphate 6D2Z ; 1.18 ; Structure of human Usb1 with uridine-adenosine, inactive H208Q mutant 6D30 ; 1.17 ; Structure of human Usb1 with uridine-uridine, inactive H208Q mutant 6HEL ; 2.941 ; Structure of human USP25 6HEJ ; 2.79 ; Structure of human USP28 6HEK ; 3.03 ; Structure of human USP28 bound to Ubiquitin-PA 7P99 ; 1.8 ; Structure of human USPL1 in complex with SUMO2 7ZJV ; 2.4 ; Structure of human USPL1 in covalent complex with DeltaN-SUMO2/3-PA probe 7ZJU ; 2.17 ; Structure of human USPL1 in covalent complex with SUMO3-2Br probe 6VXU ; 2.0 ; Structure of Human Vaccinia-related Kinase 1 (VRK1) bound to ACH471 6VZH ; 2.55 ; Structure of Human Vaccinia-related Kinase 1 (VRK1) Bound to LDSM311 1VPF ; 2.5 ; STRUCTURE OF HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR 6J8H ; 3.2 ; Structure of human voltage-gated sodium channel Nav1.7 in complex with auxiliary beta subunits, huwentoxin-IV and saxitoxin (Y1755 down) 6J8G ; 3.2 ; Structure of human voltage-gated sodium channel Nav1.7 in complex with auxiliary beta subunits, huwentoxin-IV and saxitoxin (Y1755 up) 6J8J ; 3.2 ; Structure of human voltage-gated sodium channel Nav1.7 in complex with auxiliary beta subunits, ProTx-II and tetrodotoxin (Y1755 down) 6J8I ; 3.2 ; Structure of human voltage-gated sodium channel Nav1.7 in complex with auxiliary beta subunits, ProTx-II and tetrodotoxin (Y1755 up) 6DJB ; 4.4 ; Structure of human Volume Regulated Anion Channel composed of SWELL1 (LRRC8A) 8BB5 ; 2.2 ; Structure of human WDR5 and pVHL:ElonginC:ElonginB bound to PROTAC with Aryl linker 8BB4 ; 2.8 ; Structure of human WDR5 and pVHL:ElonginC:ElonginB bound to PROTAC with C3 linker 8BB3 ; 1.8 ; Structure of human WDR5 and pVHL:ElonginC:ElonginB bound to PROTAC with PEG linker (conformation #1) 8BB2 ; 2.05 ; Structure of human WDR5 and pVHL:ElonginC:ElonginB bound to PROTAC with PEG linker (conformation #2) 1X8B ; 1.81 ; Structure of human Wee1A kinase: kinase domain complexed with inhibitor PD0407824 7D4Y ; 2.962 ; Structure of human wild-type peptidylarginine deiminase type III (PAD3) 8TZS ; 3.84 ; Structure of human WLS 8TZR ; 3.5 ; Structure of human Wnt3a bound to WLS and CALR 8TZO ; 3.1 ; Structure of human Wnt7a bound to WLS and CALR 8TZP ; 3.23 ; Structure of human Wnt7a bound to WLS and RECK 3II6 ; 2.4 ; Structure of human Xrcc4 in complex with the tandem BRCT domains of DNA LigaseIV. 2XIK ; 1.97 ; Structure of Human YSK1 (Yeast Sps1-Ste20-related Kinase 1) 2VNA ; 2.17 ; Structure of Human Zinc-binding Alcohol Dehydrogenase 1 (ZADH1) 5J4K ; 1.346 ; Structure of humanised RadA-mutant humRadA22F in complex with 1-Indane-6-carboxylic acid 5J4H ; 1.374 ; Structure of humanised RadA-mutant humRadA22F in complex with indole-6-carboxylic acid 5JFG ; 1.77 ; Structure of humanised RadA-mutant humRadA22F in complex with peptide FHTA 6CNW ; 0.92 ; STRUCTURE OF HUMANIZED SINGLE DOMAIN ANTIBODY SD84 3P0E ; 2.0 ; Structure of hUPP2 in an active conformation with bound 5-benzylacyclouridine 3P0F ; 1.54 ; Structure of hUPP2 in an inactive conformation with bound 5-benzylacyclouridine 6GD1 ; 2.01 ; Structure of HuR RRM3 6GD2 ; 1.9 ; Structure of HuR RRM3 in complex with RNA 6GD3 ; 1.35 ; Structure of HuR RRM3 in complex with RNA (UAUUUA) 6G2K ; 2.01 ; Structure of HuR RRM3 in complex with RNA (UUUUUU) 5V00 ; 1.8 ; Structure of HutD from Pseudomonas fluorescens SBW25 (Formate condition) 5FCC ; 1.94 ; Structure of HutD from Pseudomonas fluorescens SBW25 (NaCl condition) 4OJA ; 2.277 ; Structure of Hydra Cu-Zn superoxide dismutase 1ZGT ; 1.45 ; Structure of hydrogenated rat gamma E crystallin in H2O 2AMG ; 2.0 ; STRUCTURE OF HYDROLASE (GLYCOSIDASE) 5PTP ; 1.34 ; STRUCTURE OF HYDROLASE (SERINE PROTEINASE) 3RZZ ; 2.2 ; Structure of Hydroxyethylphoshphonate Dioxygenase Y98F Mutant 3HPD ; 1.85 ; Structure of hydroxyethylthiazole kinase protein from pyrococcus horikoshii OT3 5CM5 ; 2.09 ; Structure of Hydroxyethylthiazole Kinase ThiM from Staphylococcus aureus 5COJ ; 1.9 ; Structure of Hydroxyethylthiazole kinase ThiM from Staphylococcus aureus in complex with native substrate 2-(4-methyl-1,3-thiazol-5-yl)ethanol. 5CGA ; 1.87 ; Structure of Hydroxyethylthiazole kinase ThiM from Staphylococcus aureus in complex with substrate analog 2-(1,3,5-trimethyl-1H-pyrazole-4-yl)ethanol 5CGE ; 1.62 ; Structure of Hydroxyethylthiazole Kinase ThiM from Staphylococcus aureus in complex with substrate analog 2-(2-methyl-1H-imidazole-1-yl)ethanol 2CVZ ; 1.8 ; Structure of hydroxyisobutyrate dehydrogenase from thermus thermophilus HB8 3BA1 ; 1.47 ; Structure of hydroxyphenylpyruvate reductase from coleus blumei 3BAZ ; 2.2 ; Structure of hydroxyphenylpyruvate reductase from coleus blumei in complex with NADP+ 8CVB ; 1.532 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with iron, 2-oxoglutarate, and 6-OH-hyoscyamine 8CV8 ; 1.532 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with iron, 2-oxoglutarate, and hyoscyamine 8CVA ; 1.581 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with iron, succinate, and 6-OH-hyoscyamine 8CVD ; 1.717 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with iron, succinate, and scopolamine 8CVC ; 1.791 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with vanadyl, succinate, and 6-OH-hyoscyamine 8CV9 ; 1.79 ; Structure of Hyoscyamine 6-beta Hydroxylase in complex with vanadyl, succinate, and hyoscyamine 5X9M ; 0.93 ; Structure of hyper-sweet thaumatin (D21N) 2D91 ; 2.1 ; Structure of HYPER-VIL-lysozyme 2D8P ; 2.3 ; Structure of HYPER-VIL-thaumatin 2D8W ; 2.0 ; Structure of HYPER-VIL-trypsin 7LF5 ; 2.6 ; Structure of Hyperglycosylated Human IgG1 Fc (Fc267) 7LFN ; 2.6 ; Structure of Hyperglycosylated Human IgG1 Fc (Fc267_329) 7LF9 ; 2.2 ; Structure of Hyperglycosylated Human IgG1 Fc (Fc329) 6SP5 ; 1.6 ; Structure of hyperstable haloalkane dehalogenase variant DhaA115 6SP8 ; 1.55 ; Structure of hyperstable haloalkane dehalogenase variant DhaA115 prepared by the 'soak-and-freeze' method under 150 bar of krypton pressure 8OE2 ; 1.51 ; Structure of hyperstable haloalkane dehalogenase variant DhaA223 8OE6 ; 1.31 ; Structure of hyperstable haloalkane dehalogenase variant DhaA231 3WXP ; 1.42 ; Structure of hyperthermophilic family 12 endocellulase (E197A) from Pyrococcus furiosus in complex with cellobiose 3WY6 ; 1.45 ; Structure of hyperthermophilic family 12 endocellulase (E197A) from Pyrococcus furiosus in complex with laminaribiose 3WQ1 ; 1.3 ; Structure of hyperthermophilic family 12 endocellulase from Pyrococcus furiosus in complex with cello-oligosaccharide 3WQ0 ; 1.22 ; Structure of hyperthermophilic family 12 endocellulase from Pyrococcus furiosus in complex with gluco-oligosaccharide 3WR0 ; 1.16 ; Structure of hyperthermophilic family 12 endocellulase mutant from Pyrococcus furiosus 3IWT ; 1.9 ; Structure of hypothetical molybdenum cofactor biosynthesis protein B from Sulfolobus tokodaii 4NPX ; 1.93 ; Structure of hypothetical protein Cj0539 from Campylobacter jejuni 2AR1 ; 1.602 ; Structure of Hypothetical protein from Leishmania major 2EWC ; 2.15 ; Structure of hypothetical protein from Streptococcus pyogenes M1 GAS, member of highly conserved yjgF family of proteins 4PAW ; 2.23 ; Structure of hypothetical protein HP1257. 4PAV ; 2.3 ; Structure of hypothetical protein SA1046 from S. aureus. 7WRK ; 1.78 ; Structure of hypothetical protein TTHA1873 from Thermus thermophilus 7WWN ; 2.05 ; Structure of hypothetical protein TTHA1873 from Thermus thermophilus with Potassium mercuric iodide 8GZ0 ; 2.22 ; Structure of hypothetical protein TTHA1873 with phosphate from Thermus thermophilus 5KEF ; 2.23 ; Structure of hypothetical Staphylococcus protein SA0856 with zinc 7QHP ; 1.82 ; Structure of I-Ag7 with a bound hybrid insulin peptide 3P9S ; 1.9 ; Structure of I274A variant of E. coli KatE 3P9Q ; 1.48 ; Structure of I274C variant of E. coli KatE 3PQ2 ; 1.79 ; Structure of I274C variant of E. coli KatE[] - Images 1-6 3PQ4 ; 1.79 ; Structure of I274C variant of E. coli KatE[] - Images 13-18 3PQ5 ; 1.8 ; Structure of I274C variant of E. coli KatE[] - Images 19-24 3PQ6 ; 1.8 ; Structure of I274C variant of E. coli KatE[] - Images 25-30 3PQ7 ; 1.8 ; Structure of I274C variant of E. coli KatE[] - Images 31-36 3PQ8 ; 1.8 ; Structure of I274C variant of E. coli KatE[] - Images 37-42 3PQ3 ; 1.79 ; Structure of I274C variant of E. coli KatE[] - Images 7-12 3P9R ; 1.9 ; Structure of I274G variant of E. coli KatE 3P9P ; 1.5 ; Structure of I274V variant of E. coli KatE 7SOI ; 2.0 ; Structure of I552A Soybean Lipoxygenase at 277K 6FJL ; 1.7 ; Structure of IbpS from Dickeya dadantii 6YO6 ; 6.0 ; Structure of iC3b1 4WCJ ; 1.7 ; Structure of IcaB from Ammonifex degensii 4HCX ; 2.18 ; Structure of ICDH-1 from M.tuberculosis complexed with NADPH & Mn2+ 2W9E ; 2.9 ; Structure of ICSM 18 (anti-Prp therapeutic antibody) Fab fragment complexed with human Prp fragment 119-231 5SVO ; 1.87 ; Structure of IDH2 mutant R140Q 5SVN ; 2.1 ; Structure of IDH2 mutant R172K 3DR3 ; 2.0 ; Structure of IDP00107, a potential N-acetyl-gamma-glutamylphosphate reductase from Shigella flexneri 3ERP ; 1.55 ; Structure of IDP01002, a putative oxidoreductase from and essential gene of Salmonella typhimurium 3G1Z ; 1.95 ; Structure of IDP01693/yjeA, a potential t-RNA synthetase from Salmonella typhimurium 8BEG ; 1.84 ; Structure of Ig-like domains from PrgB 6SRU ; 2.532 ; Structure of Ig-like V-type domian of mouse Programmed cell death 1 ligand 1 (PD-L1) 8C1C ; 4.1 ; Structure of IgE bound to the ectodomain of FceRIa 5HYS ; 2.5 ; Structure of IgE complexed with omalizumab 8R61 ; 3.1 ; Structure of IgE delta epsilon 3-4 in complex with a kappa binding nanobody 9EQ4 ; 8.4 ; Structure of IgE HMM5 bound to FceRIa cryo-EM class 5 9EQ3 ; 6.9 ; Structure of IgE HMM5 bound to FceRIa cryo-EM class 8 2OJ9 ; 2.0 ; Structure of IGF-1R kinase domain complexed with a benzimidazole inhibitor 7X13 ; 3.7 ; Structure of IgG-Fc hexamer 4S1D ; 2.5 ; Structure of IgG1 Fab fragment in complex with Biotincytidinamide 1YEH ; 2.55 ; STRUCTURE OF IGG2A FAB FRAGMENT 1YEG ; 2.0 ; STRUCTURE OF IGG2A FAB FRAGMENT (D2.3) COMPLEXED WITH REACTION PRODUCT 1YEF ; 2.0 ; STRUCTURE OF IGG2A FAB FRAGMENT (D2.3) COMPLEXED WITH SUBSTRATE ANALOGUE 6OL5 ; 2.9 ; Structure of iglb12 Fab in complex with anti-idiotype ib3 Fab 6OL6 ; 2.6 ; Structure of iglb12 scFv in complex with anti-idiotype ib2 Fab 6HRG ; 2.12 ; Structure of Igni18, a novel metallo hydrolase from the hyperthermophilic archaeon Ignicoccus hospitalis KIN4/I 5KYH ; 4.0 ; Structure of Iho670 Flagellar-like Filament 1VKR ; ; STRUCTURE OF IIB DOMAIN OF THE MANNITOL-SPECIFIC PERMEASE ENZYME II 2JZH ; ; structure of IIB domain of the mannose transporter of E. coli 3L7F ; 2.6 ; Structure of IL-13 antibody H2L6, A humanized variant OF C836 2VXS ; 2.63 ; Structure of IL-17A in complex with a potent, fully human neutralising antibody 4XFS ; 1.91 ; Structure of IL-18 SER Mutant I 4XFT ; 2.0 ; Structure of IL-18 SER Mutant III 4XFU ; 2.85 ; Structure of IL-18 SER Mutant V 3DGC ; 2.5 ; Structure of IL-22/IL-22R1 2BB0 ; 2.0 ; Structure of Imidazolonepropionase from Bacillus subtilis 6GRL ; 1.6 ; Structure of imine reductase (apo form) at 1.6 A resolution from Saccharomonospora xinjiangensis 4D3D ; 1.71 ; Structure of Imine Reductase BcSIRED from Bacillus cereus BAG3X2 7A3W ; 1.59 ; Structure of Imine Reductase from Pseudomonas sp. 8PUA ; 3.7 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle -05 degrees 8PU9 ; 3.7 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle -10 degrees 8PU8 ; 4.0 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle -15 degrees 8PU7 ; 4.8 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle -20 degrees 8PUB ; 4.0 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle 0 degrees 8PUC ; 4.3 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle 05 degrees 8PUD ; 4.5 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle 10 degrees 8PUE ; 6.9 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle 15 degrees 8PUF ; 6.1 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: axis angle 20 degrees 8PU6 ; 3.4 ; Structure of immature HTLV-1 CA-NTD from in vitro assembled MA126-CANC tubes: pooled class 5CD3 ; 2.9 ; Structure of immature VRC01-class antibody DRVIA7 2OF6 ; 24.0 ; Structure of immature West Nile virus 5H7Y ; 2.195 ; Structure of immunity protein TplEi of T6SS from Pseudomonas aeruginosa complexed with ""L"" peptide 1IGT ; 2.8 ; STRUCTURE OF IMMUNOGLOBULIN 1IGY ; 3.2 ; STRUCTURE OF IMMUNOGLOBULIN 6RME ; 3.4 ; Structure of IMP bound Plasmodium falciparum IMP-nucleotidase mutant D172N 5MCP ; 2.4 ; Structure of IMP dehydrogenase from Ashbya gossypii bound to ATP 5TC3 ; 2.462 ; Structure of IMP dehydrogenase from Ashbya gossypii bound to ATP and GDP 4XTI ; 1.5 ; Structure of IMP dehydrogenase of Ashbya gossypii with IMP bound to the active site 6ZYS ; 1.87001 ; Structure of IMP-1 with 2-Mercaptomethyl-thiazolidine D-syn-1b 6ZYR ; 1.87 ; Structure of IMP-1 with 2-Mercaptomethyl-thiazolidine L-anti-1b 6YI4 ; 1.7 ; Structure of IMP-13 metallo-beta-lactamase complexed with citrate anion 6S0H ; 2.85 ; Structure of IMP-13 metallo-beta-lactamase complexed with hydrolysed doripenem 6RZS ; 2.2 ; Structure of IMP-13 metallo-beta-lactamase complexed with hydrolysed ertapenem 6RZR ; 1.9 ; Structure of IMP-13 metallo-beta-lactamase complexed with hydrolysed imipenem 6R73 ; 2.3 ; Structure of IMP-13 metallo-beta-lactamase complexed with hydrolysed meropenem 6R78 ; 2.21 ; Structure of IMP-13 metallo-beta-lactamase in apo form (loop closed) 6R79 ; 1.9 ; Structure of IMP-13 metallo-beta-lactamase in apo form (loop open) 6ROL ; 2.1 ; Structure of IMP2 KH34 domains 7JTV ; 2.45 ; Structure of IMPa from Pseudomonas aeruginosa in complex with an O-glycopeptide 7LEQ ; 2.24 ; Structure of importin a2 bound to p50 NLS 7LEU ; 2.82 ; Structure of importin a2 bound to p65-NLS 7LET ; 2.4 ; Structure of importin a2 bound to the p50- and p65-NLSs 7LFC ; 2.1 ; Structure of importin a3 bound to p50 NLS 7LF4 ; 2.85 ; Structure of importin a3 bound to the p50- and p65-NLSs 3TJ3 ; 2.702 ; Structure of importin a5 bound to the N-terminus of Nup50 1QGK ; 2.5 ; STRUCTURE OF IMPORTIN BETA BOUND TO THE IBB DOMAIN OF IMPORTIN ALPHA 1QGR ; 2.3 ; STRUCTURE OF IMPORTIN BETA BOUND TO THE IBB DOMAIN OF IMPORTIN ALPHA (II CRYSTAL FORM, GROWN AT LOW PH) 7UNK ; 3.45 ; Structure of Importin-4 bound to the H3-H4-ASF1 histone-histone chaperone complex 4MZ5 ; 2.1 ; Structure of importin-alpha: dUTPase NLS complex 4MZ6 ; 1.88 ; Structure of importin-alpha: dUTPase S11E NLS mutant complex 6Z0C ; 1.85 ; Structure of in silico modelled artificial Maquette-3 protein 6HPF ; 1.36 ; Structure of Inactive E165Q mutant of fungal non-CBM carrying GH26 endo-b-mannanase from Yunnania penicillata in complex with alpha-62-61-di-galactosyl-mannotriose 7ATD ; 1.45 ; Structure of inactive EstD11 S144A in complex with methyl-naproxen 5F09 ; 1.85 ; Structure of inactive GCPII mutant in complex with beta-citryl glutamate 3IW8 ; 2.0 ; Structure of Inactive Human p38 MAP Kinase in Complex with a Thiazole-Urea 5NG3 ; 2.6 ; Structure of inactive kinase RIP2K(K47R) 5ETC ; 2.422 ; Structure of inactive MAPK14 with ordered Activation Loop 2JF6 ; 2.82 ; Structure of inactive mutant of Strictosidine Glucosidase in complex with strictosidine 7WQX ; 2.7 ; Structure of Inactive-EP 3R0H ; 2.6 ; Structure of INAD PDZ45 in complex with NG2 peptide 7VRN ; 3.4 ; Structure of infectious bursal disease virus Gt strain 7VRP ; 3.8 ; Structure of infectious bursal disease virus Gx strain 4CB6 ; 1.9 ; Structure of Influenza A H5N1 PB2 cap-binding domain with bound cap analogue (compound 11) 4CB7 ; 1.85 ; Structure of Influenza A H5N1 PB2 cap-binding domain with bound cap analogue (compound 8e) 4CB5 ; 1.5 ; Structure of Influenza A H5N1 PB2 cap-binding domain with bound cap analogue (compound 8f) 4CB4 ; 1.6 ; Structure of Influenza A H5N1 PB2 cap-binding domain with bound m7GTP 3ZTN ; 3.001 ; STRUCTURE OF INFLUENZA A NEUTRALIZING ANTIBODY SELECTED FROM CULTURES OF SINGLE HUMAN PLASMA CELLS IN COMPLEX WITH HUMAN H1 INFLUENZA HAEMAGGLUTININ. 3ZTJ ; 3.41 ; Structure of influenza A neutralizing antibody selected from cultures of single human plasma cells in complex with human H3 Influenza haemagglutinin. 7XME ; 2.521 ; Structure of Influenza A virus polymerase basic protein 2 (PB2) with an azazindole derivative 5EF9 ; 1.7 ; Structure of Influenza B Lee PB2 cap-binding domain 5EFC ; 1.9 ; Structure of Influenza B Lee PB2 cap-binding domain bound to GTP 5EFA ; 1.9 ; Structure of Influenza B Lee PB2 cap-binding domain bound to m7GTP 4ORO ; 2.4 ; Structure of Influenza B PB2 cap-binding domain complex with GDP 4OR6 ; 2.293 ; Structure of Influenza B PB2 cap-binding domain with Q325F mutation complex with GDP 4OR4 ; 2.21 ; Structure of Influenza B PB2 cap-binding domain with Q325F mutation complex with m7GDP 4NKJ ; 2.4535 ; Structure of influenza B virus hemagglutinin at membrane fusion pH 6KV5 ; 4.6 ; Structure of influenza D virus apo polymerase 6KUJ ; 3.4 ; Structure of influenza D virus polymerase bound to cRNA promoter in class 1 6KUV ; 4.1 ; Structure of influenza D virus polymerase bound to cRNA promoter in class 2 6KUK ; 3.9 ; Structure of influenza D virus polymerase bound to vRNA promoter in mode A conformation (class A1) 6KUP ; 4.3 ; Structure of influenza D virus polymerase bound to vRNA promoter in Mode A conformation(Class A2) 6KUR ; 3.7 ; Structure of influenza D virus polymerase bound to vRNA promoter in Mode B conformation (Class B1) 6KUT ; 4.1 ; Structure of influenza D virus polymerase bound to vRNA promoter in Mode B conformation (Class B2) 6KUU ; 4.0 ; Structure of influenza D virus polymerase bound to vRNA promoter in Mode B conformation (Class B3) 2WR2 ; 2.4 ; structure of influenza H2 avian hemagglutinin with avian receptor 2WR5 ; 2.65 ; structure of influenza H2 duck Ontario hemagglutinin 2WR3 ; 2.5 ; structure of influenza H2 duck Ontario hemagglutinin with avian receptor 2WR4 ; 2.5 ; structure of influenza H2 duck Ontario hemagglutinin with human receptor 2WR1 ; 2.1 ; structure of influenza H2 hemagglutinin with human receptor 1HTM ; 2.5 ; STRUCTURE OF INFLUENZA HAEMAGGLUTININ AT THE PH OF MEMBRANE FUSION 3EYJ ; 2.6 ; Structure of Influenza Haemagglutinin in complex with an inhibitor of membrane fusion 3EYK ; 2.5 ; Structure of Influenza Haemagglutinin in complex with an inhibitor of membrane fusion 3EYM ; 2.8 ; Structure of Influenza Haemagglutinin in complex with an inhibitor of membrane fusion 6HJN ; 3.3 ; Structure of Influenza Hemagglutinin ectodomain (A/duck/Alberta/35/76) 6HJP ; 3.3 ; Structure of Influenza Hemagglutinin ectodomain (A/duck/Alberta/35/76) in complex with FISW84 Fab Fragment 6D96 ; 2.15 ; Structure of influenza neuraminidase from strain A/BrevigMission/1/1918(H1N1) expressed in HEK-293E cells 4O8G ; 1.652 ; Structure of Infrared Fluorescent Protein 1.4 5AJG ; 1.11 ; Structure of Infrared Fluorescent Protein IFP1.4 AT 1.11 Angstrom resolution 4CQH ; 1.14 ; Structure of Infrared Fluorescent Protein IFP2.0 4TRN ; 1.95 ; STRUCTURE OF INHA FROM MYCOBACTERIUM TUBERCULOSIS COMPLEXED TO NADH 8OTL ; 2.108 ; structure of InhA from Mycobacterium tuberculosis in complex with 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol 8OTN ; 1.962 ; structure of InhA from mycobacterium tuberculosis in complex with inhibitor 7-((1-(3-Hydroxy-4-phenoxybenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methyl-2H-chromen-2-one 8OTM ; 1.6 ; structure of InhA from mycobacterium tuberculosis in complex with N-((1-(3-hydroxy-4-phenoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-2-oxo-2H-chromene-3-carboxamide 3EAH ; 2.44 ; Structure of inhibited human eNOS oxygenase domain 3EAI ; 2.2 ; Structure of inhibited murine iNOS oxygenase domain 3EBD ; 2.4 ; Structure of inhibited murine iNOS oxygenase domain 3EBF ; 2.29 ; Structure of inhibited murine iNOS oxygenase domain 1TRY ; 1.55 ; STRUCTURE OF INHIBITED TRYPSIN FROM FUSARIUM OXYSPORUM AT 1.55 ANGSTROMS 7WR7 ; 3.1 ; Structure of Inhibited-EP 8G92 ; 3.6 ; Structure of inhibitor 16d-bound SPNS2 2NMX ; 1.55 ; Structure of inhibitor binding to Carbonic Anhydrase I 2NN1 ; 1.65 ; Structure of inhibitor binding to Carbonic Anhydrase I 2NN7 ; 1.85 ; Structure of inhibitor binding to Carbonic Anhydrase I 2NNG ; 1.2 ; Structure of inhibitor binding to Carbonic Anhydrase II 2NNO ; 1.01 ; Structure of inhibitor binding to Carbonic Anhydrase II 2NNS ; 1.03 ; Structure of inhibitor binding to Carbonic Anhydrase II 2NNV ; 1.1 ; Structure of inhibitor binding to Carbonic Anhydrase II 3IGP ; 1.65 ; Structure of inhibitor binding to Carbonic Anhydrase II 6ETI ; 3.1 ; Structure of inhibitor-bound ABCG2 6FEQ ; 3.6 ; Structure of inhibitor-bound ABCG2 2VQW ; 3.0 ; Structure of inhibitor-free HDAC4 catalytic domain (with gain-of- function mutation His332Tyr) 4PT7 ; 2.35 ; Structure of initiator 4CAH ; 1.901 ; Structure of inner DysF domain of human dysferlin 4CAI ; 2.2 ; Structure of inner DysF domain of human dysferlin 6QLE ; 3.55 ; Structure of inner kinetochore CCAN complex 6QLF ; 3.45 ; Structure of inner kinetochore CCAN complex with mask1 6QLD ; 4.15 ; Structure of inner kinetochore CCAN-Cenp-A complex 4CHM ; 2.1 ; Structure of Inner Membrane Complex (IMC) Sub-compartment Protein 1 (ISP1) from Toxoplasma gondii 4CHJ ; 2.32 ; Structure of Inner Membrane Complex (IMC) Sub-compartment Protein 3 (ISP3) from Toxoplasma gondii 1E9G ; 1.15 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1I40 ; 1.1 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1I6T ; 1.2 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1JFD ; 2.2 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1M38 ; 1.8 ; Structure of Inorganic Pyrophosphatase 1OBW ; 1.9 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1WGI ; 2.2 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 1WGJ ; 2.0 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE 5H4F ; 2.05 ; Structure of inorganic pyrophosphatase crystallised as a contaminant 4UM4 ; 2.65 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE FROM ESCHERICHIA COLI IN COMPLEX WITH SULFATE 1MJW ; 1.95 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE MUTANT D42N 1MJX ; 2.15 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE MUTANT D65N 1MJY ; 2.1 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE MUTANT D70N 1MJZ ; 2.2 ; STRUCTURE OF INORGANIC PYROPHOSPHATASE MUTANT D97N 6KCF ; 2.55 ; Structure of Inosine 5'-monophosphate Dehydrogenase from Candidatus Liberibacter asiaticus str. psy62 5ZHH ; 1.89 ; Structure of Inositol monophosphatase from Anabaena (Nostoc) sp. PCC 7120 2HHM ; 2.1 ; STRUCTURE OF INOSITOL MONOPHOSPHATASE, THE PUTATIVE TARGET OF LITHIUM THERAPY 1Y52 ; 1.7 ; structure of insect cell (Baculovirus) expressed AVR4 (C122S)-biotin complex 3SSB ; 1.8 ; Structure of Insect Metalloproteinase Inhibitor in Complex with Thermolysin 2MI5 ; ; Structure of insect-specific sodium channel toxin mu-Dc1a 1XDA ; 1.8 ; STRUCTURE OF INSULIN 1ZEH ; 1.5 ; STRUCTURE OF INSULIN 7AC4 ; 1.46 ; Structure of insulin collected by rotation serial crystallography on a COC membrane at a synchrotron source 7PHT ; ; Structure of Insulin receptor's transmembrane domain 7PL4 ; ; Structure of Insulin receptor-related receptor's transmembrane domain 7PH8 ; ; Structure of Insulin-like growth factor 1 receptor's transmembrane domain 3INS ; 2.2 ; STRUCTURE OF INSULIN. RESULTS OF JOINT NEUTRON AND X-RAY REFINEMENT 3INS ; 1.5 ; STRUCTURE OF INSULIN. RESULTS OF JOINT NEUTRON AND X-RAY REFINEMENT 6LNR ; 1.66 ; Structure of intact chitinase with hevein domain from the plant Simarouba glauca, known for its traditional anti-inflammatory efficacy 2GF5 ; ; Structure of intact FADD (MORT1) 8RBX ; 4.1 ; Structure of Integrator-PP2A bound to a paused RNA polymerase II-DSIF-NELF-nucleosome complex 8RC4 ; 3.1 ; Structure of Integrator-PP2A complex 8RBZ ; 3.7 ; Structure of Integrator-PP2A-SOSS-CTD post-termination complex 5HGJ ; 1.399 ; Structure of integrin alpha1beta1 and alpha2beta1 I-domains explain differential calcium-mediated ligand recognition 3K72 ; 3.7 ; Structure of integrin alphaX beta2 3K71 ; 3.95 ; Structure of integrin alphaX beta2 ectodomain 3K6S ; 3.5 ; Structure of integrin alphaXbeta2 ectodomain 4HI8 ; 1.203 ; Structure of integrin-linked kinase ankyrin repeat domain in complex with PINCH1 LIM1 domain collected at high energy, wavelength 0.32800 5L04 ; 2.1 ; STRUCTURE OF INTERFERON LAMBDA 1 RECEPTOR WITH HUMAN KINASE JAK1 8QY4 ; 3.06 ; Structure of interleukin 11 (gp130 P496L mutant). 1I16 ; ; STRUCTURE OF INTERLEUKIN 16: IMPLICATIONS FOR FUNCTION, NMR, 20 STRUCTURES 4HSA ; 3.15 ; Structure of interleukin 17a in complex with il17ra receptor 2ILA ; 2.3 ; STRUCTURE OF INTERLEUKIN 1ALPHA AT 2.7-ANGSTROMS RESOLUTION 3LTQ ; 2.1 ; Structure of Interleukin 1B solved by SAD using an inserted Lanthanide Binding Tag 5NJD ; 3.9 ; Structure of Interleukin 23 in complex with Briakinumab FAb 8QY6 ; 3.16 ; Structure of interleukin 6 (gp130 P496L mutant). 8QY5 ; 3.1 ; Structure of interleukin 6. 8EPA ; 3.4 ; Structure of interleukin receptor common gamma chain (IL2Rgamma) in complex with two antibodies 5FB8 ; 2.07 ; Structure of Interleukin-16 bound to the 14.1 antibody 1Z92 ; 2.8 ; structure of interleukin-2 with its alpha receptor 3DUH ; 2.3 ; Structure of Interleukin-23 4O9H ; 2.42 ; Structure of Interleukin-6 in complex with a Camelid Fab fragment 4I05 ; 1.9 ; Structure of intermediate processing form of cathepsin B1 from Schistosoma mansoni 3KQ4 ; 3.3 ; Structure of Intrinsic Factor-Cobalamin bound to its receptor Cubilin 3KF5 ; 2.9 ; Structure of invertase from Schwanniomyces occidentalis 2C3V ; 1.39 ; Structure of iodinated CBM25 from Bacillus halodurans amylase 2C3X ; 2.7 ; Structure of iodinated CBM25 from Bacillus halodurans amylase in complex with maltotetraose 3IDE ; 3.35 ; Structure of IPNV subviral particle 8TWD ; 3.3 ; Structure of IraM-bound RssB 7EML ; 1.25 ; Structure of IrCp* immobilized apo-D38H-rHLFr 8AFK ; 2.015 ; Structure of iRFP variant C15S/N136R/V256C in complex with phycocyanobilin 5FVG ; 1.9 ; Structure of IrisFP at 100 K. 5FVI ; 2.397 ; Structure of IrisFP in mineral grease at 100 K. 6HHB ; 1.8 ; Structure of iron bound IbpS from Dickeya dadantii 7KQ8 ; 2.15 ; Structure of iron bound MEMO1 6C75 ; 2.4 ; Structure of Iron containing alcohol dehydrogenase from Thermococcus thioreducens in a monoclinic crystal form 6C7L ; 1.91 ; Structure of Iron containing alcohol dehydrogenase from Thermococcus thioreducens in a tetragonal crystal form 6C76 ; 2.1 ; Structure of Iron containing alcohol dehydrogenase from Thermococcus thioreducens in an orthorhombic crystal form 2BPI ; 2.52 ; Structure of Iron dependent superoxide dismutase from P. falciparum. 5CRY ; 2.79 ; Structure of iron-saturated C-lobe of bovine lactoferrin at pH 6.8 indicates the softening of iron coordination 7KQ4 ; 2.261 ; Structure of isethionate sulfite-lyase from Bilophila wadsworthia with glycerol bound 7KQ3 ; 2.688 ; Structure of isethionate sulfite-lyase from Bilophila wadsworthia with substrate isethionate bound 5CHW ; 2.1 ; Structure of ISG15 in space group P212121 1IKA ; 2.7 ; STRUCTURE OF ISOCITRATE DEHYDROGENASE WITH ALPHA-KETOGLUTARATE AT 2.7 ANGSTROMS RESOLUTION: CONFORMATIONAL CHANGES INDUCED BY DECARBOXYLATION OF ISOCITRATE 4WCH ; 2.05 ; Structure of Isolated D Chain of Gigant Hemoglobin from Glossoscolex paulistus 1E5W ; 2.7 ; Structure of isolated FERM domain and first long helix of moesin 5LL2 ; 2.6 ; Structure of Isoleucine 2-epimerase from Lactobacillus buchneri (apo form) 2V2E ; 1.68 ; Structure of isoniazid (INH) bound to cytochrome c peroxidase mutant N184R Y36A 2VCF ; 1.8 ; Structure of isoniazid (INH) bound to cytosolic soybean ascorbate peroxidase 2VCS ; 1.68 ; Structure of isoniazid (INH) bound to cytosolic soybean ascorbate peroxidase mutant H42A 2VCN ; 1.2 ; Structure of isoniazid (INH) bound to cytosolic soybean ascorbate peroxidase mutant W41A 6DCH ; 1.8 ; Structure of isonitrile biosynthesis enzyme ScoE 2Y3Z ; 1.83 ; Structure of Isopropylmalate dehydrogenase from Thermus thermophilus - apo enzyme 2Y41 ; 2.2 ; Structure of Isopropylmalate dehydrogenase from Thermus thermophilus - complex with IPM and MN 2Y40 ; 2.5 ; Structure of Isopropylmalate dehydrogenase from Thermus thermophilus - complex with Mn 2Y42 ; 2.5 ; Structure of Isopropylmalate dehydrogenase from Thermus thermophilus - complex with NADH and Mn 4F7I ; 2.0 ; Structure of Isopropylmalate dehydrogenase from Thermus thermophilus in complex with IPM, Mn and NADH 4OV9 ; 2.2 ; Structure of isopropylmalate synthase binding with alpha-isopropylmalate 3VE3 ; 1.6 ; Structure of IT Intermediate from time-resolved laue crystallography 6UOX ; 4.02 ; Structure of itraconazole-bound NPC1 1GPQ ; 1.6 ; Structure of ivy complexed with its target, HEWL 8FE2 ; 2.34 ; Structure of J-PKAc chimera complexed with Aplithianine A 8FE5 ; 2.51 ; Structure of J-PKAc chimera complexed with Aplithianine B 8FEC ; 2.7 ; Structure of J-PKAc chimera complexed with Aplithianine derivative 8EWY ; 5.5 ; Structure of Janus Kinase (JAK) dimer complexed with cytokine receptor intracellular domain 3Q32 ; 2.5 ; Structure of Janus kinase 2 with a pyrrolotriazine inhibitor 5WSN ; 4.3 ; Structure of Japanese encephalitis virus 4GSO ; 2.6 ; structure of Jararacussin-I 4R8T ; 2.133 ; Structure of JEV protease 5YWO ; 4.7 ; Structure of JEV-2F2 Fab complex 2WWJ ; 2.6 ; STRUCTURE OF JMJD2A COMPLEXED WITH INHIBITOR 10A 3LD8 ; 2.7 ; Structure of JMJD6 and Fab Fragments 6MEV ; 2.6 ; Structure of JMJD6 bound to Mono-Methyl Arginine. 3LDB ; 2.7 ; Structure of JMJD6 complexd with ALPHA-KETOGLUTARATE and Fab Fragment. 4PDV ; 1.821 ; Structure of K+ selective NaK mutant in barium and potassium 4PDL ; 1.7 ; Structure of K+ selective NaK mutant in caesium 5L44 ; 1.75 ; Structure of K-26-DCP in complex with the K-26 tripeptide 8SWP ; 2.1 ; Structure of K. lactis PNP bound to hypoxanthine 8SWQ ; 1.979 ; Structure of K. lactis PNP bound to transition state analog DADMe-IMMUCILLIN H and sulfate 8SWR ; 2.3 ; Structure of K. lactis PNP S42E variant bound to transition state analog DADMe-IMMUCILLIN G and sulfate 8SWS ; 1.99 ; Structure of K. lactis PNP S42E-H98R variant bound to transition state analog DADMe-IMMUCILLIN G and sulfate 5KEC ; 1.949 ; Structure of K. pneumonia MrkH in its apo state. 5KGO ; 2.9 ; Structure of K. pneumonia MrkH-c-di-GMP complex 3NOB ; 2.19 ; Structure of K11-linked di-ubiquitin 5L43 ; 1.8 ; Structure of K26-DCP 4OF9 ; 1.241 ; Structure of K42N variant of sperm whale myoglobin 4OOD ; 1.24 ; Structure of K42Y mutant of sperm whale myoglobin 8F1F ; 1.85 ; Structure of K48-linked tri-ubiquitin in complex with cyclic peptide 6Z1B ; 2.25 ; Structure of K52-acetylated RutR in complex with uracil. 2OPB ; 2.8 ; Structure of K57A hPNMT with inhibitor 3-fluoromethyl-7-thiomorpholinosulfonamide-THIQ and AdoHcy 2OBF ; 2.3 ; Structure of K57A hPNMT with inhibitor 3-Hydroxymethyl-7-(N-4-chlorophenylaminosulfonyl)-THIQ and AdoHcy (SAH) 2ONZ ; 2.8 ; Structure of K57A hPNMT with inhibitor 7-(N-4-chlorophenylaminosulfonyl)-THIQ and AdoHcy 5C5E ; 2.82 ; Structure of KaiA dimer in complex with C-terminal KaiC peptide at 2.8 A resolution 8FWQ ; 3.96 ; Structure of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 5YBE ; 2.111 ; Structure of KANK1/KIF21A complex 6PYC ; 3.6 ; Structure of kappa-on-heavy (KoH) antibody Fab bound to the cardiac hormone marinobufagenin 2XS3 ; 2.4 ; Structure of karilysin catalytic MMP domain 2XS4 ; 1.7 ; Structure of karilysin catalytic MMP domain in complex with magnesium 4IN9 ; 1.55 ; Structure of karilysin MMP-like catalytic domain in complex with inhibitory tetrapeptide SWFP 4R3V ; 2.01 ; Structure of karilysin propeptide and catalytic MMP domain 6PT7 ; 2.15 ; Structure of KatE1 catalase from Acinetobacter sp. Ver3 4LCU ; 2.752 ; Structure of KcsA with E118A mutation 5E1A ; 3.4 ; Structure of KcsA with L24C/R117C mutations 4LBE ; 2.751 ; Structure of KcsA with R122A mutation 7LSI ; 2.4 ; Structure of KD035, a VEGFR2 monoclonal antibody 8SZT ; 2.5 ; Structure of Kdac1 from Acinetobacter baumannii 8SZU ; 1.75 ; Structure of Kdac1-Citarinostat complex from Acinetobacter baumannii 7P1F ; 1.45 ; Structure of KDNase from Aspergillus terrerus in complex with 2,3-didehydro-2,3-dideoxy-D-glycero-D-galacto-nonulosonic acid. 7P1E ; 1.53 ; Structure of KDNase from Aspergillus Terrerus in complex with 2,3-difluoro-2-keto-3-deoxynononic acid 7P1D ; 1.69 ; Structure of KDNase from Aspergillus Terrerus in complex with 2-keto-3-deoxynononic acid 7P1O ; 1.6 ; Structure of KDNase from Aspergillus Terrerus in complex with 2-keto-3-deoxynononic acid 7P1S ; 1.92 ; Structure of KDNase from Trichophyton Rubrum in complex with 2,3-didehydro-2,3-dideoxy-D-glycero-D-galacto-nonulosonic acid. 7P1Q ; 0.91 ; Structure of KDNase from Trichophyton Rubrum in complex with 2-keto-3-deoxynononic acid 7P1U ; 0.99 ; Structure of KDNase from Trichophyton Rubrum in complex with 2-keto-3-deoxynononic acid 1WAU ; 2.8 ; Structure of KDPG Aldolase E45N mutant 4L7B ; 2.41 ; Structure of keap1 kelch domain with (1S,2R)-2-{[(1S)-1-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]-3,4-dihydroisoquinolin-2(1H)-yl]carbonyl}cyclohexanecarboxylic acid 4L7D ; 2.25 ; Structure of keap1 kelch domain with (1S,2R)-2-{[(1S)-5-methyl-1-[(1-oxo-1,3-dihydro-2H-isoindol-2-yl)methyl]-3,4-dihydroisoquinolin-2(1H)-yl]carbonyl}cyclohexanecarboxylic acid 4L7C ; 2.4 ; Structure of keap1 kelch domain with 2-{[(1S)-2-{[(1R,2S)-2-(1H-tetrazol-5-yl)cyclohexyl]carbonyl}-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}-1H-isoindole-1,3(2H)-dione 4N1B ; 2.55 ; STRUCTURE OF KEAP1 KELCH DOMAIN WITH(1S,2R)-2-[(1S)-1-[(1-oxo-2,3-dihydro-1H-isoindol-2-Yl)methyl]-1,2,3,4-tetrahydroisoquinoline-2-Carbonyl]cyclohexane-1-carboxylic acid 3SLK ; 3.0 ; Structure of ketoreductase and enoylreductase didomain from modular polyketide synthase 3WOH ; 2.5 ; Structure of Ketoreductase SiaM from Streptomyces sp. A7248 4W97 ; 1.6 ; Structure of ketosteroid transcriptional regulator KstR2 of Mycobacterium tuberculosis 6W0N ; 2.41 ; Structure of KHK in complex with compound 2 6W0W ; 2.8 ; Structure of KHK in complex with compound 3 6W0X ; 2.38 ; Structure of KHK in complex with compound 4 (6-[(1~{S},5~{R})-6-(hydroxymethyl)-3-azabicyclo[3.1.0]hexan-3-yl]-2-[(2~{S},3~{R})-2-methyl-3-oxidanyl-azetidin-1-yl]-4-(trifluoromethyl)pyridine-3-carbonitrile) 6W0Y ; 2.54 ; Structure of KHK in complex with compound 6 (2-[(1~{R},5~{S})-3-[5-cyano-6-[(2~{S},3~{R})-2-methyl-3-oxidanyl-azetidin-1-yl]-4-(trifluoromethyl)pyridin-2-yl]-3-azabicyclo[3.1.0]hexan-6-yl]ethanoic acid) 6W0Z ; 2.3 ; Structure of KHK in complex with compound 8 (2-[(1~{S},5~{R})-3-[2-[(2~{S})-2-methylazetidin-1-yl]-6-(trifluoromethyl)pyrimidin-4-yl]-3-azabicyclo[3.1.0]hexan-6-yl]ethanoic acid) 3KV9 ; 2.29 ; Structure of KIAA1718 Jumonji domain 3KVA ; 2.79 ; Structure of KIAA1718 Jumonji domain in complex with alpha-ketoglutarate 3KVB ; 2.69 ; Structure of KIAA1718 Jumonji domain in complex with N-oxalylglycine 3KV6 ; 2.89 ; Structure of KIAA1718, human Jumonji demethylase, in complex with alpha-ketoglutarate 3KV5 ; 2.39 ; Structure of KIAA1718, human Jumonji demethylase, in complex with N-oxalylglycine 6J69 ; 2.753 ; Structure of KIBRA and Dendrin Complex 6J68 ; 2.495 ; Structure of KIBRA and LATS1 Complex 7KPV ; 3.8 ; Structure of kinase and Central lobes of yeast CKM 6R14 ; ; Structure of kiteplatinated dsDNA 7SS6 ; 1.74 ; Structure of Klebsiella LpxH in complex with JH-LPH-45 7VUL ; 1.59 ; Structure of Klebsiella Phage P560 depolymerase 8K8K ; 1.99 ; Structure of Klebsiella pneumonia ModA 8K8L ; 1.77 ; Structure of Klebsiella pneumonia ModA with molybdate 3QVA ; 1.755 ; Structure of Klebsiella pneumoniae 5-hydroxyisourate hydrolase 3LWL ; 2.25 ; Structure of Klenow fragment of Taq polymerase in complex with an abasic site 4M9E ; 1.851 ; Structure of Klf4 zinc finger DNA binding domain in complex with methylated DNA 8EBL ; 1.37 ; Structure of KLHDC2 substrate binding domain bound to C-degron from EPHB2 8EBM ; 1.58 ; Structure of KLHDC2 substrate binding domain bound to KLHDC2's C-degron mimic 8EBN ; 2.6 ; Structure of KLHDC2-EloB/C tetrameric assembly 4EXV ; 3.0 ; Structure of Kluyveromyces lactis Hsv2p 6PFQ ; 1.8 ; Structure of Kluyveromyces marxianus Usb1 6PGL ; 1.845 ; Structure of Kluyveromyces marxianus Usb1 with uridine monophosphate 6QH8 ; 2.2 ; Structure of knotted YibK from P. aeruginosa 4PL7 ; 2.3 ; Structure of Komagataella pastoris actin-thymosin beta4 hybrid 6V1J ; 1.3 ; Structure of KPC-2 bound to QPX7728 at 1.30 A 7TI2 ; 1.75 ; Structure of KPC-2 bound to RPX-7063 at 1.75A 6V7I ; 1.25 ; Structure of KPC-2 bound to Vaborbactam at 1.25 A 7STF ; 3.14 ; Structure of KRAS G12V/HLA-A*03:01 in complex with antibody fragment V2 8DVG ; 2.594 ; Structure of KRAS WT(7-16)-HLA-A*03:01 1KRN ; 1.67 ; STRUCTURE OF KRINGLE 4 AT 4C TEMPERATURE AND 1.67 ANGSTROMS RESOLUTION 5OSG ; 2.9 ; Structure of KSRP in context of Leishmania donovani 80S 5OPT ; 4.0 ; Structure of KSRP in context of Trypanosoma cruzi 40S 2MY6 ; ; Structure of KstB-PCP(apo) 6TYZ ; 1.51077 ; Structure of Ku80 von Willebrand domain complexed with APLF Ku Binding Motif 6TYU ; 1.46863 ; Structure of Ku80 von Willebrand domain complexed with MRI Ku Binding Motif 6TYV ; 1.92611 ; Structure of Ku80 von Willebrand domain complexed with WRN Ku Binding Motif 6TYT ; 2.40349 ; Structure of Ku80 von Willebrand domain S229A mutant complexed with APLF and XLF Ku Binding Motif 6TYW ; 1.69966 ; Structure of Ku80 von Willebrand domain S229A mutant complexed with APLF Ku Binding Motif 6TYX ; 1.89944 ; Structure of Ku80 von Willebrand domain S229A mutant complexed with XLF Ku Binding Motif 8EA1 ; 2.29 ; Structure of kudzu 2-hydroxyisoflavanone dehydratase in complex with P-NITROPHENOL 1SIO ; 1.8 ; Structure of Kumamolisin-As complexed with a covalently-bound inhibitor, AcIPF 1ZVJ ; 2.03 ; Structure of Kumamolisin-AS mutant, D164N 1AQ6 ; 1.95 ; STRUCTURE OF L-2-HALOACID DEHALOGENASE FROM XANTHOBACTER AUTOTROPHICUS 1QQ5 ; 1.52 ; STRUCTURE OF L-2-HALOACID DEHALOGENASE FROM XANTHOBACTER AUTOTROPHICUS 1QQ6 ; 2.1 ; STRUCTURE OF L-2-HALOACID DEHALOGENASE FROM XANTHOBACTER AUTOTROPHICUS WITH CHLOROACETIC ACID COVALENTLY BOUND 1QQ7 ; 1.7 ; STRUCTURE OF L-2-HALOACID DEHALOGENASE FROM XANTHOBACTER AUTOTROPHICUS WITH CHLOROPROPIONIC ACID COVALENTLY BOUND 3FKK ; 2.1 ; Structure of L-2-keto-3-deoxyarabonate dehydratase 3FKR ; 1.801 ; Structure of L-2-keto-3-deoxyarabonate dehydratase complex with pyruvate 5FJM ; 2.0 ; Structure of L-Amino acid deaminase from Proteus myxofaciens 5FJN ; 1.75 ; Structure of L-Amino acid deaminase from Proteus myxofaciens in complex with anthranilate 2IID ; 1.8 ; Structure of L-amino acid oxidase from Calloselasma rhodostoma in complex with L-phenylalanine 4E0V ; 3.1 ; Structure of L-amino acid oxidase from the B. jararacussu venom 1B65 ; 1.82 ; Structure of l-aminopeptidase d-ala-esterase/amidase from ochrobactrum anthropi, a prototype for the serine aminopeptidases, reveals a new variant among the ntn hydrolase fold 1WSA ; 2.2 ; STRUCTURE OF L-ASPARAGINASE II PRECURSOR 1CHU ; 2.2 ; STRUCTURE OF L-ASPARTATE OXIDASE: IMPLICATIONS FOR THE SUCCINATE DEHYDROGENASE/ FUMARATE REDUCATSE FAMILY 7E0C ; 2.65 ; Structure of L-glutamate oxidase R305E mutant 7E0D ; 2.7 ; Structure of L-glutamate oxidase R305E mutant in complex with L-arginine 2W43 ; 1.66 ; Structure of L-haloacid dehalogenase from S. tokodaii 6OR9 ; 1.8 ; Structure of L-lactate dehydrogenase from Trichoplusia ni 3X0V ; 1.9 ; Structure of L-lysine oxidase 7C3I ; 2.3 ; Structure of L-lysine oxidase D212A/D315A 7C3J ; 2.2 ; Structure of L-lysine oxidase D212A/D315A in complex with L-phenylalanine 7C3L ; 1.8 ; Structure of L-lysine oxidase D212A/D315A in complex with L-tyrosine 7C3H ; 1.7 ; Structure of L-lysine oxidase in complex with L-lysine 7D4C ; 1.97 ; Structure of L-lysine oxidase precursor 7D4E ; 1.85 ; Structure of L-lysine oxidase precursor in complex with L-lysine (1.0 M) 7D4D ; 2.29 ; Structure of L-lysine oxidase precursor in complex with L-lysine (1.24M) 2UYT ; 1.55 ; Structure of L-rhamnulose kinase in complex with ADP and beta-L- rhamnulose. 3VYL ; 2.7 ; Structure of L-ribulose 3-epimerase 7BPF ; 1.75 ; Structure of L-threoninol nucleic acid - RNA complex 3D3W ; 1.87 ; Structure of L-Xylulose Reductase with bound coenzyme, phosphate and hydroxide. 7BJ8 ; 1.69 ; Structure of L1 with 2-Mercaptomethyl-thiazolidine D-syn-1b 2YHV ; 1.9 ; Structure of L1196M Mutant Anaplastic Lymphoma Kinase 2YFX ; 1.7 ; Structure of L1196M Mutant Anaplastic Lymphoma Kinase in Complex with Crizotinib 4CD0 ; 2.23 ; Structure of L1196M Mutant Human Anaplastic Lymphoma Kinase in Complex with 2-(5-(6-amino-5-((R)-1-(5-fluoro-2-(2H-1,2,3-triazol-2- yl)phenyl)ethoxy)pyridin-3-yl)-4-methylthiazol-2-yl)propane-1,2-diol 4CLJ ; 1.66 ; Structure of L1196M Mutant Human Anaplastic Lymphoma Kinase in Complex with PF-06463922 ((10R)-7-amino-12-fluoro-2,10,16-trimethyl- 15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecine-3-carbonitrile). 4ANS ; 1.85 ; Structure of L1196M,G1269A Double Mutant Anaplastic Lymphoma Kinase in Complex with Crizotinib 5AAA ; 1.73 ; Structure of L1198F Mutant Human Anaplastic Lymphoma Kinase in Complex with Crizotinib 5AA9 ; 1.93 ; Structure of L1198F Mutant Human Anaplastic Lymphoma Kinase in Complex with PF-06463922 ((10R)-7-amino-12-fluoro-2,10,16-trimethyl- 15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecine-3-carbonitrile). 8CVG ; 1.56 ; Structure of L289F Hyoscyamine 6-beta Hydroxylase in complex with iron, 2-oxoglutarate, and 6-OH-hyoscyamine 8CVE ; 1.53 ; Structure of L289F Hyoscyamine 6-beta Hydroxylase in complex with iron, 2-oxoglutarate, and hyoscyamine 8CVH ; 2.03 ; Structure of L289F Hyoscyamine 6-beta Hydroxylase in complex with vanadyl, succinate, and 6-OH-hyoscyamine 8CVF ; 1.532 ; Structure of L289F Hyoscyamine 6-beta Hydroxylase in complex with vanadyl, succinate, and hyoscyamine 2BLJ ; 1.8 ; Structure of L29W MbCO 6SUD ; 1.74 ; Structure of L320A mutant of Rex8A from Paenibacillus barcinonensis complexed with xylose. 6SHY ; 1.81 ; Structure of L320A/H321S double mutant of Rex8A from Paenibacillus barcinonensis 4L49 ; 2.128 ; Structure of L358A mutant of P450cam bound to camphor 4L4A ; 2.103 ; Structure of L358A/K178G mutant of P450cam bound to camphor 4L4B ; 2.099 ; Structure of L358A/K178G/D182N mutant of P450cam bound to camphor 4L4C ; 2.2 ; Structure of L358P/K178G mutant of P450cam bound to camphor 6N1Y ; 2.15 ; Structure of L509V CAO1 - growth condition 1 6N20 ; 1.95 ; Structure of L509V CAO1 - growth condition 2 1NW8 ; 2.25 ; Structure of L72P mutant beta class N6-adenine DNA methyltransferase RsrI 4X4K ; 2.3 ; Structure of laccase from Botrytis aclada with full copper content 2HG2 ; 2.2 ; Structure of Lactaldehyde Dehydrogenase 2ZFA ; 1.81 ; Structure of Lactate Oxidase at pH4.5 from AEROCOCCUS VIRIDANS 5J9G ; 2.21 ; Structure of Lactobacillus acidophilus glyceraldehyde-3-phosphate dehydrogenase at 2.21 angstrom resolution 8BLS ; 2.1 ; Structure of Lactobacillus salivarius (Ls) bile salt hydrolase(BSH) in complex with Glycocholate (GCA) 8BLT ; 2.1 ; Structure of Lactobacillus salivarius (Ls) bile salt hydrolase(BSH) in complex with taurocholate (TCA) 2BSD ; 2.3 ; Structure of Lactococcal Bacteriophage p2 Receptor Binding Protein 2BSE ; 2.7 ; Structure of Lactococcal Bacteriophage p2 Receptor Binding Protein in complex with a llama VHH domain 5YI0 ; 2.3 ; Structure of Lactococcus lactis ZitR, C30AH42A mutant 5YI1 ; 2.2 ; Structure of Lactococcus lactis ZitR, C30AH42A mutant in apo form 5YHY ; 1.65 ; Structure of Lactococcus lactis ZitR, C30S mutant 5YI3 ; 2.9 ; Structure of Lactococcus lactis ZitR, C30S mutant in complex with DNA 5YHZ ; 1.9 ; Structure of Lactococcus lactis ZitR, E41A mutant 5YHX ; 2.4 ; Structure of Lactococcus lactis ZitR, wild type 5YI2 ; 2.6 ; Structure of Lactococcus lactis ZitR, wild type in complex with DNA 6WTW ; 2.86 ; Structure of LaINDY crystallized in the presence of alpha-ketoglutarate and malate 8GMU ; 2.78 ; Structure of lambda repressor in complex with RecA filament 1IFR ; 1.4 ; Structure of Lamin A/C Globular Domain 3HJT ; 2.5 ; Structure of laminin binding protein (Lmb) of Streptococcus agalactiae A bifunctional protein with adhesin and metal transporting activity 7QPI ; 2.5 ; Structure of lamprey VDR in complex with 1,25D3 4N33 ; 1.85 ; Structure of langerin CRD complexed with GlcNAc-beta1-3Gal-beta1-4Glc-beta-CH2CH2N3 4N35 ; 1.85 ; Structure of langerin CRD I313 complexed with GlcNAc-beta1-3Gal-beta1-4Glc-beta-CH2CH2N3 4N38 ; 2.0 ; Structure of langerin CRD I313 D288 complexed with GlcNAc-beta1-3Gal-beta1-4GlcNAc-beta-CH2CH2N3 4N36 ; 1.85 ; Structure of langerin CRD I313 D288 complexed with Me-GlcNAc 4N37 ; 2.0 ; Structure of langerin CRD I313 D288 complexed with Me-Man 4N34 ; 1.75 ; Structure of langerin CRD I313 with alpha-MeGlcNAc 4N32 ; 1.75 ; Structure of langerin CRD with alpha-Me-GlcNAc. 5Z3N ; 1.91 ; Structure of large fragment of DNA Polymerase I from Thermus aquaticus Host-Guest complex with the unnatural base 5fC pair with dA 5YTG ; 2.07 ; Structure of large fragment of DNA Polymerase I from Thermus aquaticus Host-Guest complex with the unnatural base I-fC pair with dA 5YTF ; 1.98 ; Structure of large fragment of DNA Polymerase I from Thermus aquaticus Host-Guest complex with the unnatural base M-fC pair with dA 5YTH ; 2.53 ; Structure of large fragment of DNA Polymerase I from Thermus aquaticus Host-Guest complex with the unnatural base M-fC pair with dG 1DPI ; 2.8 ; STRUCTURE OF LARGE FRAGMENT OF ESCHERICHIA COLI DNA POLYMERASE I COMPLEXED WITH D/TMP 1N8R ; 3.0 ; Structure of large ribosomal subunit in complex with virginiamycin M 5OE8 ; 2.2 ; Structure of large terminase from the thermophilic bacteriophage D6E (Crystal form 2) 5OEE ; 2.6 ; Structure of large terminase from the thermophilic bacteriophage D6E (Crystal form 3) 5OEB ; 3.1 ; Structure of large terminase from the thermophilic bacteriophage D6E in complex with ADP (Crystal form 3) 5OEA ; 3.0 ; Structure of large terminase from the thermophilic bacteriophage D6E in complex with ATP-gamma-S (Crystal form 3) 5OE9 ; 2.4 ; Structure of large terminase from the thermophilic bacteriophage D6E in complex with sulfate (Crystal form 2) 8GAP ; 3.8 ; Structure of LARP7 protein p65-telomerase RNA complex in telomerase 5O0Z ; 1.28 ; Structure of laspartomycin C in complex with geranyl-phosphate 7TYV ; 2.8 ; Structure of Lassa Virus glycoprotein (Josiah) bound to Fab 25.10C 6P91 ; 4.0 ; Structure of Lassa virus glycoprotein bound to Fab 18.5C 7S8H ; 2.7 ; Structure of Lassa virus glycoprotein bound to Fab 18.5C and Fab 36.1F 6P95 ; 3.5 ; Structure of Lassa virus glycoprotein in complex with Fab 25.6A 7CKL ; 3.88 ; Structure of Lassa virus polymerase bound to Z matrix protein 7ELA ; 3.4 ; Structure of Lassa virus polymerase in complex with 3'-vRNA and Z mutant (F36A) 2M37 ; ; Structure of lasso peptide astexin-1 2LTI ; ; Structure of lasso peptide Astexin1 2M8F ; ; Structure of lasso peptide astexin3 2MLJ ; ; Structure of Lasso Peptide Caulonodin V 2LX6 ; ; Structure of Lasso Peptide Caulosegnin I 2MFV ; ; Structure of lasso peptide xanthomonin ii 3J2I ; 11.9 ; Structure of late pre-60S ribosomal subunits with nuclear export factor Arx1 bound at the peptide exit tunnel 6ELS ; 1.346 ; Structure of latent apple tyrosinase (MdPPO1) 8EFK ; 3.0 ; Structure of Lates calcarifer DNA polymerase theta polymerase domain with hairpin DNA 8EF9 ; 2.4 ; Structure of Lates calcarifer DNA polymerase theta polymerase domain with long duplex DNA, complex Ia 8EFC ; 2.8 ; Structure of Lates calcarifer DNA polymerase theta polymerase domain with long duplex DNA, complex Ia 8E2L ; 3.51 ; Structure of Lates calcarifer Twinkle helicase with ATP and DNA 5O1M ; 2.2 ; Structure of Latex Clearing Protein LCP in the closed state 5O1L ; 1.48 ; Structure of Latex Clearing Protein LCP in the open state with bound imidazole 6NME ; 5.67 ; Structure of LbCas12a-crRNA 6KL9 ; 3.25 ; Structure of LbCas12a-crRNA complex bound to AcrVA4 (form A complex) 6KLB ; 4.1 ; Structure of LbCas12a-crRNA complex bound to AcrVA4 (form B complex) 8SS5 ; 3.56 ; Structure of LBD-TMD of AMPA receptor GluA2 in complex with auxiliary subunit TARP gamma-5 (apo state) 8SS9 ; 2.72 ; Structure of LBD-TMD of AMPA receptor GluA2 in complex with auxiliary subunit TARP gamma-5 bound to competitive antagonist ZK and antiepileptic drug perampanel (closed state) 8SS4 ; 3.3 ; Structure of LBD-TMD of AMPA receptor GluA2 in complex with auxiliary subunits TARP gamma-5 and cornichon-2 (apo state) 8SS3 ; 3.21 ; Structure of LBD-TMD of AMPA receptor GluA2 in complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to competitive antagonist ZK and channel blocker spermidine (closed state) 8SSB ; 3.66 ; Structure of LBD-TMD of AMPA receptor GluA2 in complex with auxiliary subunits TARP gamma-5 and cornichon-2 bound to glutamate and channel blocker spermidine (desensitized state) 3U3G ; 1.4 ; Structure of LC11-RNase H1 Isolated from Compost by Metagenomic Approach: Insight into the Structural Bases for Unusual Enzymatic Properties of Sto-RNase H1 3ZKE ; 2.2 ; Structure of LC8 in complex with Nek9 peptide 3ZKF ; 2.6 ; Structure of LC8 in complex with Nek9 phosphopeptide 4C3F ; 1.72 ; Structure of Lck in complex with a compound discovered by Virtual Fragment Linking 4JMX ; 2.55 ; Structure of LD transpeptidase LdtMt1 in complex with imipenem 2VY2 ; 2.3 ; Structure of LEAFY transcription factor from Arabidopsis thaliana in complex with DNA from AG-I promoter 2VY1 ; 2.104 ; Structure of LEAFY transcription factor from Arabidopsis thaliana in complex with DNA from AP1 promoter 5J76 ; 2.1 ; Structure of Lectin from Colocasia esculenta(L.) Schott 6KBJ ; 2.2 ; Structure of Lectin from Pleurotus ostreatus in complex with malonate 5DUY ; 2.12 ; Structure of lectin from the sea mussel Crenomytilus grayanus 6S01 ; 3.2 ; Structure of LEDGF PWWP domain bound H3K36 methylated nucleosome 8CBN ; 3.34 ; structure of LEDGF/p75 PWWP domain bound to the H3K36 trimethylated dinucleosome 8CBQ ; 4.0 ; structure of LEDGF/p75 PWWP domain bound to the H3K36 trimethylated dinucleosome 6RVV ; 3.7 ; Structure of left-handed protein cage consisting of 24 eleven-membered ring proteins held together by gold (I) bridges. 6MCA ; 2.455 ; Structure of Legionella Effector AnkH 7KJ6 ; 2.5 ; Structure of Legionella Effector LegA15 3PV4 ; 3.1 ; Structure of Legionella fallonii DegQ (Delta-PDZ2 variant) 3PV5 ; 2.4 ; Structure of Legionella fallonii DegQ (N189G/P190G variant) 3PV3 ; 3.1 ; Structure of Legionella fallonii DegQ (S193A variant) 3PV2 ; 2.15 ; Structure of Legionella fallonii DegQ (wt) 9B8D ; 1.72 ; Structure of Legionella pneumophila Ceg10 4YO1 ; 2.8 ; Structure of Legionella pneumophila DegQ (delta PDZ2 variant) 4YNN ; 3.2 ; Structure of Legionella pneumophila DegQ (S190A variant) 5X1H ; 3.005 ; Structure of Legionella pneumophila DotN 5CDH ; 2.001 ; Structure of Legionella pneumophila Histidine Acid Phosphatase complexed with L(+)-tartrate 8Q4E ; 1.9 ; Structure of Legionella pneumophila Lcl C-terminal domain 8QK8 ; 1.9 ; Structure of Legionella pneumophila Lcl C-terminal domain bound to sulphate 7ELV ; 1.5 ; Structure of legume lectin domain from Methanocaldococcus jannaschii in apo form 7EXO ; 1.75 ; Structure of legume lectin domain from Methanocaldococcus jannaschii in mannose bound form 5ZBT ; 2.4 ; Structure of legume lectin-like domain from Entamoeba histolytica 3QW3 ; 1.7 ; Structure of Leishmania donovani OMP decarboxylase 3QW4 ; 3.0 ; Structure of Leishmania donovani UMP synthase 5OL0 ; 1.99 ; Structure of Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSIR2rp1) in complex with acetylated p53 peptide 6FXW ; 1.57 ; Structure of Leishmania infantum type B ribose 5-phosphate isomerase 5AMM ; 2.09 ; Structure of Leishmania major peroxidase D211N mutant 5AL9 ; 1.37 ; Structure of Leishmania major peroxidase D211R mutant (high res) 5ALA ; 2.73 ; Structure of Leishmania major peroxidase D211R mutant (low res) 3NGU ; 2.29 ; Structure of Leishmania NDKb complexed with ADP. 3NGT ; 2.57 ; Structure of Leishmania NDKb complexed with AMP. 3NGS ; 1.8 ; Structure of Leishmania nucleoside diphosphate kinase b with ordered nucleotide-binding loop 5CAA ; 2.3 ; Structure of Leishmania nucleoside diphosphate kinase mutant P100S/del5-Cterm 5CAB ; 2.953 ; Structure of Leishmania nucleoside diphostate kinase mutant Del5-Cterm 5C7P ; 3.144 ; Structure of Leishmania nucleoside diphostate kinase mutant P95S 6H7B ; 1.89 ; Structure of Leishmania PABP1 (domain J) complexed with a peptide containing the PAM2 motif of eIF4E4. 6H7A ; 2.03 ; Structure of Leishmania PABP1 (domain J). 8F5O ; 3.5 ; Structure of Leishmania tarentolae IFT-A (state 1) 8F5P ; 3.4 ; Structure of Leishmania tarentolae IFT-A (state 2) 8B48 ; 2.65 ; Structure of Lentithecium fluviatile carbohydrate esterase from the CE15 family (LfCE15C) 4U06 ; 1.9 ; Structure of Leptospira interrogans LRR protein LIC10831 4U08 ; 1.95 ; Structure of Leptospira interrogans LRR protein LIC11098 4TZH ; 1.39 ; Structure of Leptospira interrogans LRR protein LIC12234 4U09 ; 1.95 ; Structure of Leptospira interrogans LRR protein LIC12759 7YJW ; 3.2 ; Structure of Leptospira santarosai serovar shermani LRR protein LSS01692 6LX0 ; 1.99 ; Structure of Leptospira santarosai serovar shermani LRR protein LSS11580 8FI0 ; 3.0 ; Structure of Lettuce aptamer bound to DFAME 8FHX ; 2.5 ; Structure of Lettuce aptamer bound to DFHBI-1T 8FHV ; 2.5 ; Structure of Lettuce aptamer bound to DFHBI-1T with thallium I ions 8FHZ ; 2.6 ; Structure of Lettuce aptamer bound to DFHO 8FI1 ; 2.6 ; Structure of Lettuce C20G bound to DFHO 8FI8 ; 2.8 ; Structure of Lettuce C20T bound to DFAME 8FI2 ; 3.0 ; Structure of Lettuce C20T bound to DFHBI-1T 8FI7 ; 2.9 ; Structure of Lettuce C20T bound to DFHO 6ACF ; 3.0 ; structure of leucine dehydrogenase from Geobacillus stearothermophilus by cryo-EM 7THY ; 5.2 ; Structure of Leucine Rich Repeat Kinase 2's ROC domain interacting with the microtubule facing the minus end 7THZ ; 5.0 ; Structure of Leucine Rich Repeat Kinase 2's ROC domain interacting with the microtubule facing the plus end 5NTH ; 2.5 ; Structure of Leucyl aminopeptidase from Leishmania major in complex with actinonin 5NSQ ; 3.0 ; Structure of Leucyl aminopeptidase from Trypanosoma brucei in complex with Actinonin 5NTD ; 2.3 ; Structure of Leucyl aminopeptidase from Trypanosoma brucei in complex with Bestatin 5NTG ; 2.32 ; Structure of Leucyl aminopeptidase from Trypanosoma cruzi in complex with citrate 2DPS ; 2.4 ; Structure of Leucyl/phenylalanyl-tRNA-protein transferase 1HS6 ; 1.95 ; STRUCTURE OF LEUKOTRIENE A4 HYDROLASE COMPLEXED WITH BESTATIN. 1GW6 ; 2.2 ; STRUCTURE OF LEUKOTRIENE A4 HYDROLASE D375N MUTANT 4GAA ; 2.26 ; Structure of Leukotriene A4 hydrolase from Xenopus laevis complexed with inhibitor bestatin 8GMS ; 3.31 ; Structure of LexA in complex with RecA filament 4G5S ; 3.62 ; Structure of LGN GL3/Galphai3 complex 4G5Q ; 2.9 ; Structure of LGN GL4/Galphai1 complex 4G5R ; 3.481 ; Structure of LGN GL4/Galphai3 complex 4G5O ; 2.9 ; Structure of LGN GL4/Galphai3(Q147L) complex 2FKW ; 2.45 ; Structure of LH2 from Rps. acidophila crystallized in lipidic mesophases 5HOD ; 2.682 ; Structure of LHX4 transcription factor complexed with DNA 5E4L ; 2.44 ; Structure of ligand binding region of uPARAP at pH 5.3 5E4K ; 2.58 ; Structure of ligand binding region of uPARAP at pH 7.4 5EW6 ; 2.29 ; Structure of ligand binding region of uPARAP at pH 7.4 without calcium 4UR9 ; 2.2 ; Structure of ligand bound glycosylhydrolase 5EGY ; 2.741 ; Structure of ligand free human DPP3 in closed form. 6XKD ; 3.2 ; Structure of ligand-bound mouse cGAMP hydrolase ENPP1 7RLT ; 3.7 ; Structure of ligand-free ALDH1L1 (10-formyltetrahydrofolate dehydrogenase) 1XF4 ; 2.5 ; Structure of ligand-free Fab DNA-1 in space group P321 solved from crystals with perfect hemihedral twinning 1XF3 ; 2.3 ; Structure of ligand-free Fab DNA-1 in space group P65 8IMR ; 1.3 ; Structure of ligand-free human macrophage migration inhibitory factor 1JW4 ; 2.0 ; Structure of ligand-free maltodextrin-binding protein 4TWE ; 1.75 ; Structure of ligand-free N-acetylated-alpha-linked-acidic-dipeptidase like protein (NAALADaseL) 3KDH ; 1.653 ; Structure of ligand-free PYL2 1B33 ; 2.3 ; STRUCTURE OF LIGHT HARVESTING COMPLEX OF ALLOPHYCOCYANIN ALPHA AND BETA CHAINS/CORE-LINKER COMPLEX AP*LC7.8 7PH0 ; 0.979 ; Structure of light-adapted AsLOV2 Q513L 7PGY ; 1.09 ; Structure of light-adapted AsLOV2 wild type 6JYB ; 1.802 ; Structure of light-state marine bacterial chloride importer, NM-R3, with CW laser (ND-10%) at 95K. 6JY9 ; 1.9 ; Structure of light-state marine bacterial chloride importer, NM-R3, with CW laser (ND-3%) at 95K. 6JYD ; 2.007 ; Structure of light-state marine bacterial chloride importer, NM-R3, with CW laser (ND-30%) at 95K. 6JYF ; 2.004 ; Structure of light-state marine bacterial chloride importer, NM-R3, with Pulse laser (ND-1%) at 140K. 6JY7 ; 1.8 ; Structure of light-state marine bacterial chloride importer, NM-R3, with Pulse laser (ND-1%) at 95K. 7B8W ; 2.8 ; Structure of LIMK1 Kinase domain with allosteric inhibitor TH-470 5JPP ; 2.5 ; Structure of limonene epoxide hydrolase mutant - H-2-H5 5JPU ; 1.5 ; Structure of limonene epoxide hydrolase mutant - H-2-H5 complex with (S,S)-cyclohexane-1,2-diol 7U0I ; 2.6 ; Structure of LIN28b nucleosome bound 2 OCT4 7U0G ; 2.6 ; structure of LIN28b nucleosome bound 3 OCT4 5FD3 ; 2.42 ; Structure of Lin54 tesmin domain bound to DNA 1G5F ; 1.8 ; STRUCTURE OF LINB COMPLEXED WITH 1,2-DICHLOROETHANE 8SXU ; 3.66 ; Structure of LINE-1 ORF2p with an oligo(A) template 8SXT ; 3.3 ; Structure of LINE-1 ORF2p with template:primer hybrid 7UDS ; 3.1 ; Structure of lineage I (Pinneo) Lassa virus glycoprotein bound to Fab 25.10C 8EJE ; 3.69 ; Structure of lineage II Lassa virus glycoprotein complex (strain NIG08-A41) 8EJD ; 3.8 ; Structure of lineage IV Lassa virus glycoprotein complex (strain Josiah) 8EJF ; 3.72 ; Structure of lineage V Lassa virus glycoprotein complex (strain Soromba-R) 8EJG ; 3.13 ; Structure of lineage VII Lassa virus glycoprotein complex (strain Togo/2016/7082) 2Y5M ; 1.08 ; STRUCTURE OF LINEAR GRAMICIDIN D OBTAINED USING TYPE I CRYSTALS GROWN IN A 7.7 MONOACYLGLYCEROL LIPID CUBIC PHASE. 2Y6N ; 1.26 ; STRUCTURE OF LINEAR GRAMICIDIN D OBTAINED USING TYPE I CRYSTALS GROWN IN A 8.8 MONOACYLGLYCEROL LIPID CUBIC PHASE. 2XDC ; 1.7 ; Structure of linear gramicidin D obtained using Type I crystals grown in a lipid cubic phase. 3ZQ8 ; 1.7 ; STRUCTURE OF LINEAR GRAMICIDIN D OBTAINED USING TYPE I CRYSTALS GROWN IN A monovaccenin LIPID CUBIC PHASE 1OIL ; 2.1 ; STRUCTURE OF LIPASE 5AH0 ; 2.5 ; STRUCTURE OF LIPASE 1 FROM PELOSINUS FERMENTANS 7V6D ; 2.5 ; Structure of lipase B from Lasiodiplodia theobromae 6ISR ; 2.6 ; structure of lipase mutant with Cys-His-Asp catalytic triad 6ISQ ; 1.86 ; structure of Lipase mutant with oxided Cys-His-Asp catalytic triad 7APN ; 2.0 ; Structure of Lipase TL from bulk agarose grown crystal 7APP ; 1.7 ; Structure of Lipase TL from capillary grown crystal in the presence of agarose 5JWY ; 3.2 ; Structure of lipid phosphate phosphatase PgpB complex with PE 4UOO ; 3.0 ; Structure of lipoteichoic acid synthase LtaS from Listeria monocytogenes 4UOR ; 2.194 ; Structure of lipoteichoic acid synthase LtaS from Listeria monocytogenes in complex with glycerol phosphate 4UWX ; 1.65 ; Structure of liprin-alpha3 in complex with mDia1 Diaphanous- inhibitory domain 7FS1 ; 1.863 ; Structure of liver pyruvate kinase in complex with allosteric modulator 11 7FS2 ; 2.374 ; Structure of liver pyruvate kinase in complex with allosteric modulator 13 7FS3 ; 1.655 ; Structure of liver pyruvate kinase in complex with allosteric modulator 15 7FS4 ; 2.19 ; Structure of liver pyruvate kinase in complex with allosteric modulator 16 7FS5 ; 2.182 ; Structure of liver pyruvate kinase in complex with allosteric modulator 17 7FS6 ; 2.241 ; Structure of liver pyruvate kinase in complex with allosteric modulator 18 7FS7 ; 2.774 ; Structure of liver pyruvate kinase in complex with allosteric modulator 20 7FS8 ; 2.098 ; Structure of liver pyruvate kinase in complex with allosteric modulator 21 7FS9 ; 1.721 ; Structure of liver pyruvate kinase in complex with allosteric modulator 22 7FSA ; 1.909 ; Structure of liver pyruvate kinase in complex with allosteric modulator 24 7FRV ; 2.004 ; Structure of liver pyruvate kinase in complex with allosteric modulator 3 7FRW ; 1.737 ; Structure of liver pyruvate kinase in complex with allosteric modulator 4 7FSB ; 2.495 ; Structure of liver pyruvate kinase in complex with allosteric modulator 41 7FSC ; 1.855 ; Structure of liver pyruvate kinase in complex with allosteric modulator 42 7FSD ; 1.769 ; Structure of liver pyruvate kinase in complex with allosteric modulator 44 7FRX ; 1.847 ; Structure of liver pyruvate kinase in complex with allosteric modulator 5 7FRY ; 1.958 ; Structure of liver pyruvate kinase in complex with allosteric modulator 6 7FRZ ; 2.085 ; Structure of liver pyruvate kinase in complex with allosteric modulator 7 7FS0 ; 2.412 ; Structure of liver pyruvate kinase in complex with allosteric modulator 8 5SCL ; 2.134 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 1 5SCH ; 2.089 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 100 5SCG ; 1.937 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 101 5SCI ; 2.155 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 105 5SCJ ; 2.354 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 106 5SDT ; 1.944 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 15 5SC8 ; 1.77 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 17 5SCB ; 1.8 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 28 5SC9 ; 1.685 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 29 5SCA ; 1.918 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 36 5SCK ; 1.717 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 42 7QZU ; 1.964 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 47 5SCE ; 2.147 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 55 5SCC ; 1.885 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 57 5SCD ; 2.041 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 58 5SCF ; 2.185 ; Structure of liver pyruvate kinase in complex with anthraquinone derivative 99 3JB4 ; 3.8 ; Structure of Ljungan virus: insight into picornavirus packaging 6J3A ; 2.38 ; Structure of LmbA2991HD 6J3I ; 2.5 ; Structure of LmbA2991T421A 2R8Q ; 1.5 ; Structure of LmjPDEB1 in complex with IBMX 3LU2 ; 2.2 ; Structure of lmo2462, a Listeria monocytogenes amidohydrolase family putative dipeptidase 6LE6 ; 2.33 ; Structure of LNLPTQGRAR bound FEM1C 2OO4 ; 2.003 ; Structure of LNR-HD (Negative Regulatory Region) from human Notch 2 4CIH ; 2.22 ; Structure of LntA-K180D-K181D from Listeria monocytogenes 354D ; 1.5 ; Structure of loop E FROM E. coli 5S RRNA 6ZZX ; 2.7 ; Structure of low-light grown Chlorella ohadii Photosystem I 6LW4 ; 2.7 ; Structure of Lpg2148/Lpg2149 complex 6LP2 ; 2.479 ; Structure of Lpg2148/UBE2N-Ub complex 6FVB ; 3.297 ; Structure of Lph2 , a novel bidirectional nuclear transport receptor in S. cerevisiae 7PYX ; 1.6 ; Structure of LPMO (expressed in E.coli) with cellotriose at 2.74x10^5 Gy 7PYZ ; 1.6 ; Structure of LPMO (expressed in E.coli) with cellotriose at 2.97x10^6 Gy 7PYY ; 1.2 ; Structure of LPMO (expressed in E.coli) with cellotriose at 5.05x10^5 Gy 7PYW ; 1.4 ; Structure of LPMO (expressed in E.coli) with cellotriose at 5.62x10^4 Gy 7PZ0 ; 1.2 ; Structure of LPMO (expressed in E.coli) with cellotriose at 9.81x10^6 Gy 7PB7 ; 1.8 ; Structure of LPMO domain of colonization factor GbpA from Vibrio cholerae in the presence of calcium 7PB6 ; 1.5 ; Structure of LPMO domain of colonization factor GbpA from Vibrio cholerae in the presence of potassium 7PYF ; 1.9 ; Structure of LPMO in complex with cellotetraose at 1.39x10^5 Gy 7PYH ; 1.9 ; Structure of LPMO in complex with cellotetraose at 1.45x10^6 Gy 7PYG ; 1.9 ; Structure of LPMO in complex with cellotetraose at 3.6x10^5 Gy 7PYE ; 2.1 ; Structure of LPMO in complex with cellotetraose at 5.99x10^4 Gy 7PYI ; 2.05 ; Structure of LPMO in complex with cellotetraose at 6.65x10^6 Gy 7PYD ; 2.21 ; Structure of LPMO in complex with cellotetraose at 7.88x10^3 Gy 5OPF ; 1.081 ; Structure of LPMO10B from from Micromonospora aurantiaca 6DEH ; 1.8 ; Structure of LpnE Effector Protein from Legionella pneumophila (sp. Philadelphia) 4E6U ; 1.41 ; Structure of LpxA from Acinetobacter baumannii at 1.4A resolution (P63 form) 4E6T ; 1.8 ; Structure of LpxA from Acinetobacter baumannii at 1.8A resolution (P212121 form) 4MDT ; 2.59 ; Structure of LpxC bound to the reaction product UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine 2J65 ; 2.2 ; Structure of LpxC from Aquifex aeolicus in complex with UDP 3NZK ; 1.8 ; Structure of LpxC from Yersinia enterocolitica Complexed with CHIR090 Inhibitor 4E79 ; 2.66 ; Structure of LpxD from Acinetobacter baumannii at 2.66A resolution (P4322 form) 4E75 ; 2.85 ; Structure of LpxD from Acinetobacter baumannii at 2.85A resolution (P21 form) 4GGM ; 2.897 ; Structure of LpxI 4J6E ; 2.52 ; Structure of LPXI D225A Mutant 6H15 ; 2.6 ; Structure of LRP6 P3E3P4E4 in complex with VHH L-P2-B10 6H16 ; 2.9 ; Structure of LRP6 P3E3P4E4 in complex with VHH L-P2-D07 8DXN ; 3.4 ; Structure of LRRC8C-LRRC8A(IL125) Chimera, Class 1 8DXO ; 3.6 ; Structure of LRRC8C-LRRC8A(IL125) Chimera, Class 2 8DXP ; 3.7 ; Structure of LRRC8C-LRRC8A(IL125) Chimera, Class 3 8DXQ ; 3.8 ; Structure of LRRC8C-LRRC8A(IL125) Chimera, Class 4 8DXR ; 4.0 ; Structure of LRRC8C-LRRC8A(IL125) Chimera, Class 5 7LI4 ; 3.1 ; Structure of LRRK2 after symmetry expansion 8E80 ; 1.49 ; Structure of LRRK2-CHK1 10-pt. mutant complex with heteroaryl-1H-indazole LRRK2 inhibitor 14 8E81 ; 1.62 ; Structure of LRRK2-CHK1 10-pt. mutant complex with heteroaryl-1H-indazole LRRK2 inhibitor 25 4KUM ; 3.05 ; Structure of LSD1-CoREST-Tetrahydrofolate complex 4XBF ; 2.803 ; Structure of LSD1:CoREST in complex with ssRNA 6R1T ; 4.02 ; Structure of LSD2/NPAC-linker/nucleosome core particle complex: Class 1, free nuclesome 6R1U ; 4.36 ; Structure of LSD2/NPAC-linker/nucleosome core particle complex: Class 2 6R25 ; 4.61 ; Structure of LSD2/NPAC-linker/nucleosome core particle complex: Class 3 4EQQ ; 2.05 ; Structure of Ltp, a superinfection exclusion protein from the Streptococcus thermophilus temperate phage TP-J34 3DDY ; 2.5 ; Structure of lumazine protein, an optical transponder of luminescent bacteria 8PVJ ; 3.0 ; Structure of lumazine synthase determined by cryoEM at 100 keV 6FRI ; 2.297 ; Structure of LuxB from Photobacterium leiognathi 4YR7 ; 2.533 ; Structure of LuxP In Complex With 1-deoxy-alpha-L-xylulofuranose-1,2-borate 7AMT ; 2.6 ; Structure of LuxR with DNA (activation) 7AMN ; 2.3 ; Structure of LuxR with DNA (repression) 7FAW ; 2.438 ; Structure of LW domain from Yeast 4MXV ; 3.2 ; Structure of Lymphotoxin alpha bound to anti-LTa Fab 2QCT ; 2.8 ; Structure of Lyp with inhibitor I-C11 2YBG ; 1.9 ; Structure of Lys120-acetylated p53 core domain 5AF4 ; 1.85 ; Structure of Lys33-linked diUb 5AF6 ; 3.4 ; Structure of Lys33-linked diUb bound to Trabid NZF1 5AF5 ; 1.68 ; Structure of Lys33-linked triUb S.G. P 212121 3ZU1 ; 1.6 ; Structure of LysB29(Nepsilon omega-carboxyheptadecanoyl) des(B30) Human Insulin 7LF6 ; 3.5 ; Structure of lysosomal membrane protein 4R0F ; 1.941 ; Structure of Lysozyme Dimer at 318K 6YOB ; 1.85 ; Structure of Lysozyme from COC IMISX setup collected by rotation serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 6YOC ; 1.86 ; Structure of Lysozyme from COC IMISX setup collected by still serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 6YOD ; 1.601 ; Structure of Lysozyme from SiN IMISX setup collected by rotation serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 6YOE ; 1.85 ; Structure of Lysozyme from SiN IMISX setup collected by still serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 5IEL ; 1.15 ; Structure of Lysozyme labeled with fluorescein isothiocyanate (FITC) at 1.15 Angstroms resolution 7C09 ; 2.2 ; Structure of lysozyme obtained in SSRF using serial crystallography 7DLN ; 2.15 ; Structure of lysozyme obtained on SSRF using serial synchrotron crystallography 5FST ; 1.2 ; Structure of lysozyme prepared by the 'soak-and-freeze' method under 100 bar of krypton pressure 3J4G ; 2.9 ; Structure of lysozyme solved by MicroED to 2.9 A 1HC0 ; 1.82 ; structure of lysozyme with periodate 4C5F ; 2.34 ; Structure of Lytic Transglycosylase MltC from Escherichia coli at 2.3 A resolution. 4CFO ; 2.9 ; Structure of Lytic Transglycosylase MltC from Escherichia coli in complex with tetrasaccharide at 2.9 A resolution. 6GHY ; 2.12 ; Structure of Lytic Transglycosylase MltE inactive mutant E64Q from E.coli 6GI3 ; 1.38 ; Structure of Lytic Transglycosylase MltE mutant S73A from E.coli 6GI4 ; 1.35 ; Structure of Lytic Transglycosylase MltE mutant S75A from E.coli 6GHZ ; 2.33 ; Structure of Lytic Transglycosylase MltE mutant Y192F from E.coli 6UM2 ; 4.32 ; Structure of M-6-P/IGFII Receptor and IGFII complex 6UM1 ; 3.46 ; Structure of M-6-P/IGFII Receptor at pH 4.5 3BOW ; 2.4 ; Structure of M-calpain in complex with Calpastatin 3EJJ ; 2.4 ; Structure of M-CSF bound to the first three domains of FMS 5XNN ; 3.6 ; Structure of M-LHCII and CP24 complexes in the stacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum 5XNO ; 3.5 ; Structure of M-LHCII and CP24 complexes in the unstacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum 8SVD ; 3.49 ; Structure of M. baixiangningiae DarR-DNA complex reveals novel dimer-of-dimers DNA binding 8SUA ; 1.6 ; Structure of M. baixiangningiae DarR-ligand complex 6QE6 ; 2.36 ; Structure of M. capricolum TrmK in complex with the natural cofactor product S-adenosyl-homocysteine (SAH) 8DF9 ; 3.24 ; Structure of M. kandleri topoisomerase V in complex with DNA. 38 base pair asymmetric DNA complex 8DF7 ; 3.52 ; Structure of M. kandleri topoisomerase V in complex with DNA. 38 base pair symmetric DNA complex 8DFB ; 3.17 ; Structure of M. kandleri topoisomerase V in complex with DNA. 39 base pair symmetric DNA complex 8DF8 ; 2.92 ; Structure of M. kandleri topoisomerase V in complex with DNA. 40 base pair symmetric DNA complex 3P63 ; 2.3 ; Structure of M. laminosus Ferredoxin with a shorter L1,2 loop 8UFJ ; 2.45 ; Structure of M. mazei GS(R167L-A168G) apo form 6NF9 ; 3.89 ; Structure of M. spretus Endogenous Virus Element (EVE) Virus-like particle (VLP) 4ZFQ ; 2.799 ; Structure of M. tuberculosis (3,3) L,D-Transpeptidase, LdtMt5. (Meropenen-adduct form) 5DJF ; 1.7 ; Structure of M. tuberculosis CysQ, a PAP phosphatase - ligand-free structure 5DJI ; 1.659 ; Structure of M. tuberculosis CysQ, a PAP phosphatase with AMP, PO4, and 2Mg bound 5DJH ; 1.451 ; Structure of M. tuberculosis CysQ, a PAP phosphatase with AMP, PO4, and 3Mg bound 5DJG ; 1.951 ; Structure of M. tuberculosis CysQ, a PAP phosphatase with PAP, Mg, and Li bound 5DJK ; 1.799 ; Structure of M. tuberculosis CysQ, a PAP phosphatase with PO4 and 2Ca bound 5DJJ ; 1.501 ; Structure of M. tuberculosis CysQ, a PAP phosphatase with PO4 and 2Mg bound 1P9L ; 2.3 ; Structure of M. tuberculosis dihydrodipicolinate reductase in complex with NADH and 2,6 PDC 5HJZ ; 1.976 ; Structure of M. tuberculosis MazF-mt1 (Rv2801c) in complex with RNA 4X0E ; 2.41 ; Structure of M. tuberculosis nicotinate mono nucleotide adenylyltransferase 4QHC ; 1.899 ; Structure of M.Tuberculosis Betalactamase (Blac) with inhibitor having novel mechanism 6ZFZ ; 2.17 ; Structure of M1-StaR-T4L in complex with 77-LH-28-1 at 2.17A 6ZG9 ; 2.5 ; Structure of M1-StaR-T4L in complex with GSK1034702 at 2.5A 6ZG4 ; 2.33 ; Structure of M1-StaR-T4L in complex with HTL0009936 at 2.35A 1JWP ; 1.75 ; Structure of M182T mutant of TEM-1 beta-lactamase 4FXF ; 2.55 ; Structure of M2 pyruvate kinase in complex with phenylalanine 4FXJ ; 2.9 ; Structure of M2 pyruvate kinase in complex with phenylalanine 2RK4 ; 1.15 ; Structure of M26I DJ-1 3B36 ; 1.5 ; Structure of M26L DJ-1 1BY2 ; 2.0 ; STRUCTURE OF M2BP SCAVENGER RECEPTOR CYSTEINE-RICH DOMAIN 7RAO ; 2.29 ; Structure of M66I mutant of disulfide stabilized HIV-1 CA hexamer 8GDV ; 3.3 ; Structure of M66I mutant of disulfide stabilized HIV-1 CA hexamer in complex with CPSF6 peptide and IP6 3ZBM ; 1.87 ; Structure of M92A variant of three-domain heme-Cu nitrite reductase from Ralstonia pickettii 2IDS ; 1.0 ; Structure of M98A mutant of amicyanin, Cu(I) 2IDQ ; 0.9 ; Structure of M98A mutant of amicyanin, Cu(II) 2IDU ; 0.95 ; Structure of M98Q mutant of amicyanin, Cu(I) 2IDT ; 1.0 ; Structure of M98Q mutant of amicyanin, Cu(II) 7VQA ; 1.79 ; Structure of MA1831 from Methanosarcina acetivorans in complex with dimethylallyl diphosphate. 7VQB ; 2.11 ; Structure of MA1831 from Methanosarcina acetivorans in complex with farnesyl pyrophosphate and dimethylallyl diphosphate 7VQD ; 2.39 ; Structure of MA1831 from Methanosarcina acetivorans in complex with farnesyl pyrophosphate and geranylgeranyl pyrophosphate. 7VQ9 ; 1.89 ; Structure of MA1831 from Methanosarcina acetivorans in complex with farnesyl thiopyrophosphate and isopentyl S-thiolodiphosphate 7VQC ; 2.45 ; Structure of MA1831 from Methanosarcina acetivorans in complex with pyrophosphate 3J3Z ; 23.4 ; Structure of MA28-7 neutralizing antibody Fab fragment from electron cryo-microscopy of enterovirus 71 complexed with a Fab fragment 7ELB ; 4.1 ; Structure of Machupo virus L polymerase in complex with Z protein (dimeric form) 7EL9 ; 3.2 ; Structure of Machupo virus L polymerase in complex with Z protein and 3'-vRNA (dimeric complex) 7CKM ; 3.37 ; Structure of Machupo virus polymerase bound to Z matrix protein (monomeric complex) 5E3B ; 1.6 ; Structure of macrodomain protein from Streptomyces coelicolor 3HOF ; 1.9 ; Structure of macrophage migration inhibitory factor (MIF) with caffeic acid at 1.9A resolution 3CE4 ; 1.55 ; Structure of Macrophage Migration Inhibitory Factor Covalently Inhibited by PMSF Treatment 3T5S ; 2.3 ; Structure of macrophage migration inhibitory factor from Giardia lamblia 5MU5 ; 2.3 ; Structure of MAf glycosyltransferase from Magnetospirillum magneticum AMB-1 7QIC ; 4.1 ; Structure of magnesium-bound EleNRMT in complex with two nanobodies at 4.1A 5JJG ; 1.72 ; Structure of magnesium-loaded ALG-2 5GWY ; 2.852 ; Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design 7UPV ; 1.84 ; Structure of maize BZR1-type beta-amylase provides new insights into its noncatalytic adaptation 4ML8 ; 2.7 ; Structure of maize cytokinin oxidase/dehydrogenase 2 (ZmCKO2) 4MLA ; 2.04 ; Structure of maize cytokinin oxidase/dehydrogenase 2 (ZmCKO2) 5CVC ; 2.09 ; Structure of maize serine racemase 5OXE ; 3.7 ; Structure of major capsid protein VP1 of Aeropyrum pernix bacilliform virus 1 APBV1 5YYL ; 2.65 ; Structure of Major Royal Jelly Protein 1 Oligomer 2V51 ; 2.35 ; Structure of MAL-RPEL1 complexed to actin 2V52 ; 1.45 ; Structure of MAL-RPEL2 complexed to G-actin 4TVO ; 1.5 ; Structure of Malate Dehydrogenase from Mycobacterium tuberculosis 1V9N ; 2.1 ; Structure of Malate Dehydrogenase from Pyrococcus horikoshii OT3 5KVV ; 2.01 ; Structure of Malate Dehydrogenase in complex with NADH from Mycobacterium tuberculosis 7KMV ; 1.8 ; Structure of Malaysian Banana Lectin F84T 6NKH ; 1.6 ; Structure of MalC Reductase/Diels-Alderase from Malbranchea aurantiaca 2V6K ; 1.3 ; Structure of Maleyl Pyruvate Isomerase, a bacterial glutathione-s- transferase in Zeta class, in complex with substrate analogue dicarboxyethyl glutathione 4DPK ; 2.05 ; Structure of malonyl-coenzyme A reductase from crenarchaeota 4DPM ; 2.3 ; Structure of malonyl-coenzyme A reductase from crenarchaeota in complex with CoA 4DPL ; 1.9 ; Structure of malonyl-coenzyme A reductase from crenarchaeota in complex with NadP 6LCU ; 2.45 ; structure of maltooligosyltrehalose synthase from Arthrobacter ramosus 4NDZ ; 3.45 ; Structure of Maltose Binding Protein fusion to 2-O-Sulfotransferase with bound heptasaccharide and PAP 1JW5 ; 2.0 ; Structure of Maltose Bound to Open-form Maltodextrin-binding Protein in P1 Crystal 4R0Y ; 2.0 ; Structure of Maltose-binding Protein Fusion with the C-terminal GH1 domain of Guanylate Kinase-associated Protein from Rattus norvegicus 1EZ9 ; 1.9 ; STRUCTURE OF MALTOTETRAITOL BOUND TO OPEN-FORM MALTODEXTRIN BINDING PROTEIN IN P1 CRYSTAL FORM 1FQA ; 1.9 ; STRUCTURE OF MALTOTETRAITOL BOUND TO OPEN-FORM MALTODEXTRIN BINDING PROTEIN IN P2(1)CRYSTAL FORM 1FQB ; 1.9 ; STRUCTURE OF MALTOTRIOTOL BOUND TO OPEN-FORM MALTODEXTRIN BINDING PROTEIN IN P2(1)CRYSTAL FORM 1PO5 ; 1.6 ; Structure of mammalian cytochrome P450 2B4 1SUO ; 1.9 ; Structure of mammalian cytochrome P450 2B4 with bound 4-(4-chlorophenyl)imidazole 1DT6 ; 3.0 ; STRUCTURE OF MAMMALIAN CYTOCHROME P450 2C5 5A5T ; 6.0 ; Structure of mammalian eIF3 in the context of the 43S preinitiation complex 5A5U ; 9.0 ; Structure of mammalian eIF3 in the context of the 43S preinitiation complex 1Y2A ; 2.2 ; Structure of mammalian importin bound to the non-classical PLSCR1-NLS 7CU3 ; 2.65 ; Structure of mammalian NALCN-FAM155A complex at 2.65 angstrom 7W7G ; 3.2 ; Structure of Mammalian NALCN-FAM155A-UNC79-UNC80 quanternary complex 6VJI ; 2.54 ; Structure of mammalian NEIL2 from Monodelphis domestica 8TH9 ; 2.08 ; Structure of mammalian NEIL2 from Monodelphis domestica in complex with THF-containing DNA 8A40 ; 3.0 ; Structure of mammalian Pol II-TFIIS elongation complex 5LDW ; 4.27 ; Structure of mammalian respiratory Complex I, class1 5LC5 ; 4.35 ; Structure of mammalian respiratory Complex I, class2 5LDX ; 5.6 ; Structure of mammalian respiratory Complex I, class3. 6EXV ; 3.6 ; Structure of mammalian RNA polymerase II elongation complex inhibited by Alpha-amanitin 8IB2 ; 3.8 ; Structure of mammalian spectrin-actin junctional complex of membrane skeleton, Pointed-end segment, headpiece domain of dematin optimized 8IAH ; 3.6 ; Structure of mammalian spectrin-actin junctional complex of membrane skeleton, State I, Global map 8IAI ; 3.5 ; Structure of mammalian spectrin-actin junctional complex of membrane skeleton, State II, Global map 3KKY ; 1.8 ; Structure of Manganese Superoxide Dismutase from Deinococcus Radiodurans in the orthorhombic space group P212121: A case study of mistaken identity 8U5K ; 2.8 ; Structure of Mango II aptamer bound to T01-6A 8U5P ; 2.9 ; Structure of Mango II aptamer bound to T01-6A-B 8U5R ; 2.6 ; Structure of Mango II variant aptamer bound to T01-6A 8U5T ; 2.2 ; Structure of Mango II variant aptamer bound to T01-6A-B 8U5Z ; 2.5 ; Structure of Mango II variant aptamer bound to T01-7M-B 8U60 ; 3.3 ; Structure of Mango II variant2 aptamer bound to T01-6A 8U5J ; 1.7 ; Structure of Mango III variant aptamer bound to T01-07M-B 4KA3 ; 2.707 ; Structure of MAP kinase in complex with a docking peptide 3CTQ ; 1.95 ; Structure of MAP kinase p38 in complex with a 1-o-tolyl-1,2,3-triazole-4-carboxamide 7UMU ; 2.51 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((5,6-dihydrobenzo[h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 7UMV ; 1.8 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((5,6-dihydropyrido[2,3-h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 6MC1 ; 2.7 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((9-(methylthio)-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 7UN0 ; 3.0 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((9-chloro-5,6-dihydrobenzo[h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 7U4R ; 3.14 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((9-propyl-5,6-dihydrothieno[2,3-h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 7U4O ; 2.3 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((9-propyl-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 7UN4 ; 2.7 ; Structure of MAP kinase phosphatase 5 in complex with 3,3-dimethyl-1-((9-propyl-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one, an allosteric inhibitor 5ETA ; 2.8 ; Structure of MAPK14 with bound the KIM domain of the Toxoplasma protein GRA24 6Y68 ; 2.4 ; Structure of Maporal virus envelope glycoprotein Gc in postfusion conformation 2B34 ; 2.141 ; Structure of MAR1 Ribonuclease from Caenorhabditis elegans 1B7U ; 3.8 ; Structure of Mare Apolactoferrin: the N and C Lobes are in the Closed Form 7AVN ; 1.6 ; Structure of marine actinobacteria clade rhodopsin (MacR) in orange form in P1 space group 7AVO ; 1.7 ; Structure of marine actinobacteria clade rhodopsin (MacR) in orange form in P1211 space group 7AVP ; 1.09 ; Structure of marine actinobacteria clade rhodopsin (MacR) in violet form 6JH5 ; 1.54 ; Structure of Marine bacterial laminarinase 6M6P ; 2.27 ; Structure of Marine bacterial laminarinase mutant E135A in complex with 1,3-beta-cellotriosyl-glucose 6JHJ ; 1.69 ; Structure of Marine bacterial laminarinase mutant-E135A 4LZ6 ; 3.2 ; Structure of MATE multidrug transporter DinF-BH 4LZ9 ; 3.7 ; Structure of MATE multidrug transporter DinF-BH in complex with R6G 5TVT ; 2.28 ; Structure of Maternal Embryonic Leucine Zipper Kinase 5TWL ; 2.42 ; Structure of Maternal Embryonic Leucine Zipper Kinase 5TWU ; 2.603 ; Structure of Maternal Embryonic Leucine Zipper Kinase 5TWY ; 2.91 ; Structure of Maternal Embryonic Leucine Zipper Kinase 5TWZ ; 2.631 ; Structure of Maternal Embryonic Leucine Zipper Kinase 5TX3 ; 2.9 ; Structure of Maternal Embryonic Leucine Zipper Kinase 6VXR ; 2.1 ; Structure of Maternal embryonic leucine zipper kinase bound to LDSM276 2GV7 ; 2.2 ; Structure of Matriptase in Complex with Inhibitor CJ-672 6Y6N ; 2.03 ; Structure of mature activin A with small molecule 2 6Y6O ; 2.04 ; Structure of mature activin A with small molecule 42 3DPM ; 2.35 ; Structure of mature CPAF complexed with lactacystin 4I07 ; 1.3 ; Structure of mature form of cathepsin B1 from Schistosoma mansoni 7OF4 ; 2.7 ; Structure of mature human mitochondrial ribosome large subunit in complex with GTPBP6 (PTC conformation 1). 7OF6 ; 2.6 ; Structure of mature human mitochondrial ribosome large subunit in complex with GTPBP6 (PTC conformation 2). 1SPJ ; 1.7 ; STRUCTURE OF MATURE HUMAN TISSUE KALLIKREIN (HUMAN KALLIKREIN 1 OR KLK1) AT 1.70 ANGSTROM RESOLUTION WITH VACANT ACTIVE SITE 6ULH ; 1.968 ; Structure of MavC in complex with its substrate in R3 spacegroup 6P5H ; 1.53 ; Structure of MavC middle insertion domain 5OJ9 ; 1.483 ; Structure of Mb NMH 6F18 ; 1.8 ; Structure of Mb NMH H64V, V68A mutant complex with EDA 6F1A ; 2.399 ; Structure of Mb NMH H64V, V68A mutant complex with EDA incubated at room temperature for 20 min 6F19 ; 1.895 ; Structure of Mb NMH H64V, V68A mutant complex with EDA incubated at room temperature for 5 min 6F17 ; 1.45 ; Structure of Mb NMH H64V, V68A mutant resting state 8QBJ ; 1.8 ; Structure of mBaoJin at pH 4.6 8Q79 ; 1.45 ; Structure of mBaoJin at pH 6.5 8QDD ; 1.6 ; Structure of mBaoJin at pH 8.5 8YQ4 ; 1.9 ; Structure of mBaoJin2 4EJY ; 2.0 ; Structure of MBOgg1 in complex with high affinity DNA ligand 4EJZ ; 3.05 ; Structure of MBOgg1 in complex with low affinity DNA ligand 5Y2G ; 3.0 ; Structure of MBP tagged GBS CAMP 8EL0 ; 1.917 ; Structure of MBP-Mcl-1 in complex with a macrocyclic compound 8EL1 ; 2.406 ; Structure of MBP-Mcl-1 in complex with ABBV-467 6QYN ; 2.5 ; Structure of MBP-Mcl-1 in complex with compound 10d 6QYO ; 2.1 ; Structure of MBP-Mcl-1 in complex with compound 18a 6YBJ ; 2.5 ; Structure of MBP-Mcl-1 in complex with compound 3e 6YBK ; 2.0 ; Structure of MBP-Mcl-1 in complex with compound 4d 6QXJ ; 1.7 ; Structure of MBP-Mcl-1 in complex with compound 6a 6QYK ; 2.3 ; Structure of MBP-Mcl-1 in complex with compound 7a 6QYL ; 2.2 ; Structure of MBP-Mcl-1 in complex with compound 8a 6QZ7 ; 2.2 ; Structure of MBP-Mcl-1 in complex with compound 8b 6YBL ; 2.1 ; Structure of MBP-Mcl-1 in complex with compound 9m 8EKX ; 1.55 ; Structure of MBP-Mcl-1 in complex with MIK665 4WMT ; 2.35 ; STRUCTURE OF MBP-MCL1 BOUND TO ligand 1 AT 2.35A 4WMU ; 1.55 ; STRUCTURE OF MBP-MCL1 BOUND TO ligand 2 AT 1.55A 4WMV ; 2.4 ; STRUCTURE OF MBP-MCL1 BOUND TO ligand 4 AT 2.4A 5OJA ; 1.347 ; Structure of MbQ 5OJB ; 1.543 ; Structure of MbQ NMH 5OJC ; 1.25 ; Structure of MbQ2.1 NMH 3X27 ; 2.481 ; Structure of McbB in complex with tryptophan 4IIX ; 1.229 ; Structure of MccF in complex with glutamyl sulfamoyl guanosine 4IIY ; 1.2 ; Structure of MccF in complex with glutamyl sulfamoyl inosine 3ILQ ; 2.05 ; Structure of mCD1d with bound glycolipid BbGL-2c from Borrelia burgdorferi 3ILP ; 1.85 ; Structure of mCD1d with bound glycolipid BbGL-2f from Borrelia burgdorferi 8FEF ; 2.71 ; Structure of Mce1 transporter from Mycobacterium smegmatis (Map0) 8FEE ; 2.9 ; Structure of Mce1 transporter from Mycobacterium smegmatis in the absence of LucB (Map2) 8FED ; 2.76 ; Structure of Mce1-LucB complex from Mycobacterium smegmatis (Map1) 7NB4 ; 1.9 ; Structure of Mcl-1 complex with compound 1 7NB7 ; 2.82 ; Structure of Mcl-1 complex with compound 6b 6QZ8 ; 2.15 ; Structure of Mcl-1 in complex with compound 10d 6QYP ; 2.2 ; Structure of Mcl-1 in complex with compound 13 6YBG ; 2.1 ; Structure of Mcl-1 in complex with compound 2g 6QZ5 ; 2.0 ; Structure of Mcl-1 in complex with compound 8a 6QZ6 ; 1.9 ; Structure of Mcl-1 in complex with compound 8b 6QZB ; 2.0 ; Structure of Mcl-1 in complex with compound 8d 4WMR ; 1.7 ; STRUCTURE OF MCL1 BOUND TO BRD inhibitor ligand 1 AT 1.7A 4JBZ ; 2.4 ; Structure of Mcm10 coiled-coil region 7PT7 ; 3.8 ; Structure of MCM2-7 DH complexed with Cdc7-Dbf4 in the presence of ADP:BeF3, state I 7PT6 ; 3.2 ; Structure of MCM2-7 DH complexed with Cdc7-Dbf4 in the presence of ATPgS, state III 7VSR ; 4.5 ; Structure of McrBC (stalkless mutant) 6HZ5 ; 4.2 ; Structure of McrBC without DNA binding domains (Class 1) 6HZ6 ; 4.3 ; Structure of McrBC without DNA binding domains (Class 2) 6HZ7 ; 4.3 ; Structure of McrBC without DNA binding domains (Class 3) 6HZ8 ; 4.3 ; Structure of McrBC without DNA binding domains (Class 4) 6HZ9 ; 4.8 ; Structure of McrBC without DNA binding domains (Class 5) 6HZ4 ; 3.6 ; Structure of McrBC without DNA binding domains (one half of the full complex) 8JBR ; 2.5 ; Structure of McyA2-CAPCP 8HLK ; 2.7 ; Structure of McyB-C1A1 complexed with L-Leu and AMP 4R0M ; 2.45 ; Structure of McyG A-PCP complexed with phenylalanyl-adenylate 4ZFI ; 2.0 ; Structure of Mdm2 with low molecular weight inhibitor 5OAI ; 2.0 ; Structure of MDM2 with low molecular weight inhibitor 5J7F ; 2.0 ; Structure of MDM2 with low molecular weight inhibitor with aliphatic linker. 5J7G ; 1.85 ; Structure of MDM2 with low molecular weight inhibitor with aliphatic linker. 4ZGK ; 2.0 ; Structure of Mdm2 with low molecular weight inhibitor. 5MNJ ; 2.16 ; Structure of MDM2-MDMX-UbcH5B-ubiquitin complex 4PTA ; 2.6003 ; Structure of MDR initiator 5ZNZ ; 2.55 ; Structure of mDR3 DD with MBP tag mutant-I387V 5ZNY ; 2.74 ; Structure of mDR3_DD-C363G with MBP tag 3DNU ; 1.54 ; structure of MDT protein 3HZI ; 2.98 ; Structure of mdt protein 3PXI ; 6.926 ; Structure of MecA108:ClpC 2Y1R ; 2.595 ; Structure of MecA121 & ClpC N-domain complex 3PXG ; 3.654 ; Structure of MecA121 and ClpC1-485 complex 6MGW ; 3.5 ; Structure of mechanically activated ion channel OSCA1.2 in LMNG 6MGV ; 3.1 ; Structure of mechanically activated ion channel OSCA1.2 in nanodisc 8T56 ; 2.8 ; Structure of mechanically activated ion channel OSCA1.2 in peptidiscs 8T57 ; 2.7 ; Structure of mechanically activated ion channel OSCA2.3 in peptidiscs 7N5E ; 2.8 ; Structure of Mechanosensitive Ion Channel Flycatcher1 in GDN 7N5F ; 2.7 ; Structure of Mechanosensitive Ion Channel Flycatcher1 Protomer in 'Down' conformation in GDN 7N5G ; 2.4 ; Structure of Mechanosensitive Ion Channel Flycatcher1 Protomer in 'Up' conformation in GDN 5JW5 ; 1.9 ; Structure of MEDI8852 Fab Fragment 5JW4 ; 3.7 ; Structure of MEDI8852 Fab Fragment in Complex with H5 HA 5JW3 ; 3.75 ; Structure of MEDI8852 Fab Fragment in Complex with H7 HA 5U3D ; 1.77 ; STRUCTURE OF MEDITOPE ENABLED TRASTUZUMAB I83E VARIANT 3KOV ; 2.9 ; Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors 2OPC ; 1.43 ; Structure of Melampsora lini avirulence protein, AvrL567-A 2QVT ; 2.26 ; Structure of Melampsora lini avirulence protein, AvrL567-D 1OA9 ; 2.0 ; Structure of Melanocarpus albomyces endoglucanase 1OA7 ; 2.0 ; Structure of Melanocarpus albomyces endoglucanase in complex with cellobiose 1I1J ; 1.39 ; STRUCTURE OF MELANOMA INHIBITORY ACTIVITY PROTEIN: A MEMBER OF A NEW FAMILY OF SECRETED PROTEINS 4D2P ; 2.55 ; Structure of MELK in complex with inhibitors 4D2T ; 2.7 ; Structure of MELK in complex with inhibitors 4D2V ; 2.45 ; Structure of MELK in complex with inhibitors 4D2W ; 1.92 ; Structure of MELK in complex with inhibitors 4UMP ; 2.3 ; Structure of MELK in complex with inhibitors 4UMQ ; 2.6 ; Structure of MELK in complex with inhibitors 4UMR ; 3.0 ; Structure of MELK in complex with inhibitors 4UMT ; 1.98 ; Structure of MELK in complex with inhibitors 4UMU ; 2.02 ; Structure of MELK in complex with inhibitors 4OEB ; 1.85 ; Structure of membrane binding protein pleurotolysin A from Pleurotus ostreatus 4OEJ ; 2.2 ; Structure of membrane binding protein pleurotolysin B from Pleurotus ostreatus 6QXA ; 3.41 ; Structure of membrane bound pyrophosphatase from Thermotoga maritima in complex with imidodiphosphate and N-[(2-amino-6-benzothiazolyl)methyl]-1H-indole-2-carboxamide (ATC) 5JSI ; 2.0 ; Structure of membrane protein 6K1H ; 3.52 ; Structure of membrane protein 6W8P ; 3.6 ; Structure of membrane protein with ions 7M8H ; 1.75 ; Structure of Memo1 C244S metal binding site mutant at 1.75A 2XMZ ; 1.94 ; Structure of MenH from S. aureus 6GOY ; 1.65 ; Structure of mEos4b in the green fluorescent state 6GOZ ; 2.406 ; Structure of mEos4b in the green long-lived dark state 6GP0 ; 1.5 ; Structure of mEos4b in the red fluorescent state 6GP1 ; 1.504 ; Structure of mEos4b in the red long-lived dark state 5X1Y ; 3.48 ; Structure of mercuric reductase from Lysinibacillus sphaericus 2H3O ; ; Structure of MERFT, a membrane protein with two trans-membrane helices 4ZRJ ; 2.3 ; Structure of Merlin-FERM and CTD 7T40 ; 1.7 ; Structure of MERS 3CL protease in complex with inhibitor 10c 7T41 ; 2.1 ; Structure of MERS 3CL protease in complex with inhibitor 14c 7T3Y ; 1.9 ; Structure of MERS 3CL protease in complex with inhibitor 8c 7T3Z ; 1.95 ; Structure of MERS 3CL protease in complex with inhibitor 9c 7TQ7 ; 1.7 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 13c 7TQ8 ; 1.65 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 14d 8CZT ; 2.1 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 15d 8CZU ; 2.7 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 16d 8DGY ; 1.65 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 16d (high resolution) 8CZV ; 1.95 ; Structure of MERS 3CL protease in complex with the cyclopropane based inhibitor 17d 4ZPT ; 2.591 ; Structure of MERS-Coronavirus Spike Receptor-binding Domain (England1 Strain) in Complex with Vaccine-Elicited Murine Neutralizing Antibody D12 (Crystal Form 1) 4ZPV ; 3.2 ; Structure of MERS-Coronavirus Spike Receptor-binding Domain (England1 Strain) in Complex with Vaccine-Elicited Murine Neutralizing Antibody D12 (Crystal Form 2) 5GMQ ; 2.703 ; Structure of MERS-CoV RBD in complex with a fully human antibody MCA1 2BSZ ; 2.0 ; Structure of Mesorhizobium loti arylamine N-acetyltransferase 1 3DKC ; 1.52 ; Structure of MET receptor tyrosine kinase in complex with ATP 3DKF ; 1.8 ; Structure of MET receptor tyrosine kinase in complex with inhibitor SGX-523 6G7D ; 1.35 ; Structure of MeT1 from Mycobacterium hassiacum in complex with SAM and glycerol. 1PXS ; 2.2 ; Structure of Met56Ala mutant of Bacteriorhodopsin 5VTL ; 1.8231 ; Structure of metacyclic invariant surface protein , Tb427.07.360, from Trypanosoma brucei. 8B3W ; 1.681 ; Structure of metacyclic VSG (mVSG) 1954 from Trypanosoma brucei 8B3B ; 1.949 ; Structure of metacyclic VSG (mVSG) 531 from Trypanosoma brucei 5CW6 ; 3.193 ; Structure of metal dependent enzyme DrBRCC36 2WKO ; 1.97 ; Structure of metal loaded Pathogenic SOD1 Mutant G93A. 2O6F ; 1.63 ; Structure of metal- free rTp34 from Treponema pallidum 4HX8 ; 2.001 ; Structure of metal-free MNTR mutant E11K 4UDN ; 2.21 ; structure of metal-free periplasmic metal binding protein from candidatus liberibacter asiaticus 6RPN ; 1.409 ; Structure of metallo beta lactamase VIM-2 with cyclic boronate APC308. 7L91 ; 2.2 ; Structure of Metallo Beta-Lactamase L1 in a Complex with Hydrolyzed Moxalactam Determined by Pink-Beam Serial Crystallography 4TZF ; 1.22 ; Structure of metallo-beta lactamase 4TZ9 ; 2.1269 ; Structure of Metallo-beta-lactamase 4TZE ; 1.574 ; Structure of metallo-beta-lactamase 2RT8 ; ; Structure of metallo-dna in solution 6UUG ; 1.685 ; Structure of methanesulfinate monooxygenase MsuC from Pseudomonas fluorescens at 1.69 angstrom resolution 6U76 ; 2.1 ; Structure of methanesulfinate monooxygenase MsuC from Pseudomonas fluorescens. 3T7Z ; 1.7 ; Structure of Methanocaldococcus jannaschii Nop N-terminal domain 3EZX ; 2.56 ; Structure of Methanosarcina barkeri monomethylamine corrinoid protein 4WNR ; 2.9 ; Structure of methanosarcina barkeri Roco2 RocCORdC bound to GDP 1MWU ; 2.6 ; Structure of methicillin acyl-Penicillin binding protein 2a from methicillin resistant Staphylococcus aureus strain 27r at 2.60 A resolution. 4QRE ; 1.7 ; Structure of Methionyl-tRNA Synthetase in complex with 1-(4-{4-[(1H-benzimidazol-2-ylmethyl)amino]-6-(4,5-dimethoxy-2-methylphenoxy)pyrimidin-2-yl}piperazin-1-yl)ethanone 4QRD ; 1.97 ; Structure of Methionyl-tRNA Synthetase in complex with N-(1H-benzimidazol-2-ylmethyl)-N'-(2,4-dichlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazine-2,4-diamine 3H9C ; 1.4 ; Structure of methionyl-tRNA synthetase: crystal form 2 8OQ3 ; 2.9 ; Structure of methylamine treated human complement C3 4UE6 ; 2.3 ; Structure of methylene blue-treated anaerobically purified D. fructosovorans NiFe-hydrogenase 1LU9 ; 1.9 ; Structure of methylene-tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1 1LUA ; 1.9 ; Structure of methylene-tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1 complexed with NADP 6TM3 ; 1.08 ; Structure of methylene-tetrahydromethanopterin dehydrogenase from Methylorubrum extorquens AM1 in a close conformation containing NADP+ and methylene-H4MPT 6TLK ; 1.8 ; Structure of methylene-tetrahydromethanopterin dehydrogenase from Methylorubrum extorquens AM1 in an open conformation containing NADP+ and methylene-H4MPT 1EGH ; 2.0 ; STRUCTURE OF METHYLGLYOXAL SYNTHASE COMPLEXED WITH THE COMPETITIVE INHIBITOR 2-PHOSPHOGLYCOLATE 5H3L ; 2.1 ; Structure of methylglyoxal synthase crystallised as a contaminant 6DCB ; 1.998 ; Structure of methylphosphate capping enzyme methyltransferase domain in complex with 5' end of 7SK RNA 6DCC ; 2.1 ; Structure of methylphosphate capping enzyme methyltransferase domain in complex with 5' end of 7SK RNA 8GMY ; 1.7 ; Structure of methyltransferase 8GMZ ; 1.88 ; Structure of methyltransferase 7R7O ; 1.58 ; Structure of methyltransferase domain of Spb1 boudn to SAM 4UD6 ; 2.12 ; Structure of methylviologen-treated anaerobically purified D. fructosovorans NiFe-hydrogenase 7RX6 ; 1.8 ; Structure of METTL3-METTL14(R298C) mutant methyltransferase complex 7RX8 ; 1.85 ; Structure of METTL3-METTL14(R298H) mutant methyltransferase complex 7RX7 ; 1.645 ; Structure of METTL3-METTL14(R298P) mutant methyltransferase complex 7F1E ; 2.589 ; Structure of METTL6 bound with SAM 2GS8 ; 1.5 ; Structure of mevalonate pyrophosphate decarboxylase from Streptococcus pyogenes 4WWU ; 3.301 ; Structure of Mex67:Mtr2 6XEO ; 5.5 ; Structure of Mfd bound to dsDNA 6M9W ; 1.5 ; Structure of Mg-free KRAS4b (2-169) bound to GDP with the switch-I in fully open conformation 3UCW ; 1.76 ; Structure of MG2+ bound N-Terminal domain of Calmodulin 3UCY ; 1.8 ; Structure of Mg2+ bound N-terminal domain of calmodulin in the presence of Zn2+ 6B7H ; 2.82 ; Structure of mGluR3 with an agonist 3L6F ; 2.1 ; Structure of MHC class II molecule HLA-DR1 complexed with phosphopeptide MART-1 4GUP ; 3.2 ; Structure of MHC-class I related molecule MR1 8BP6 ; 2.8 ; Structure of MHC-class I related molecule MR1 with bound M3Ade 6QZ1 ; 1.7 ; Structure of MHETase from Ideonella sakaiensis 6QZ2 ; 1.9 ; Structure of MHETase from Ideonella sakaiensis 6QZ3 ; 1.6 ; Structure of MHETase from Ideonella sakaiensis 6QZ4 ; 1.8 ; Structure of MHETase from Ideonella sakaiensis 2JLN ; 2.85 ; Structure of Mhp1, a nucleobase-cation-symport-1 family transporter 4D1D ; 3.7 ; STRUCTURE OF MHP1, A NUCLEOBASE-CATION-SYMPORT-1 FAMILY TRANSPORTER with the inhibitor 5-(2-naphthylmethyl)-L-hydantoin. 4D1B ; 3.8 ; STRUCTURE OF MHP1, A NUCLEOBASE-CATION-SYMPORT-1 FAMILY TRANSPORTER, IN A CLOSED CONFORMATION WITH BENZYL-HYDANTOIN 4D1C ; 3.7 ; STRUCTURE OF MHP1, A NUCLEOBASE-CATION-SYMPORT-1 FAMILY TRANSPORTER, IN A CLOSED CONFORMATION WITH bromovinylhydantoin bound. 4D1A ; 3.4 ; STRUCTURE OF MHP1, A NUCLEOBASE-CATION-SYMPORT-1 FAMILY TRANSPORTER, IN A CLOSED CONFORMATION WITH INDOLYLMETHYL-HYDANTOIN 4H2R ; 2.473 ; Structure of MHPCO Y270F mutant, 5-hydroxynicotinic acid complex 4H2Q ; 1.502 ; structure of MHPCO-5HN complex 1N9H ; 1.8 ; structure of microgravity-grown oxidized myoglobin mutant YQR (ISS6A) 1N9X ; 1.6 ; structure of microgravity-grown oxidized myoglobin mutant YQR (ISS8A) 1NAZ ; 1.04 ; structure of microgravity-grown oxidized myoglobin mutant YQR (ISS8A) 2H8A ; 3.2 ; Structure of Microsomal Glutathione Transferase 1 in Complex with Glutathione 2O1T ; 3.2 ; Structure of Middle plus C-terminal domains (M+C) of GRP94 3GAC ; 2.1 ; Structure of mif with HPP 4JEL ; 1.952 ; Structure of MilB Streptomyces rimofaciens CMP N-glycosidase 3G2X ; 2.7 ; Structure of mimivirus NDK +Kpn - N62L double mutant complexed with dTDP 3ISE ; 2.8 ; Structure of mineralized Bfrb (double soak) from Pseudomonas aeruginosa to 2.8A Resolution 3IS7 ; 2.1 ; Structure of mineralized Bfrb from Pseudomonas aeruginosa to 2.1A Resolution 3IS8 ; 2.25 ; Structure of mineralized Bfrb soaked with FeSO4 from Pseudomonas aeruginosa to 2.25A Resolution 5OGA ; ; Structure of minimal i-motif domain 6FQ2 ; 2.31 ; Structure of minimal sequence for left -handed G-quadruplex formation 7QF2 ; 1.07 ; Structure of miniSOG reconstituted with riboflavin as a cofactor 1INQ ; 2.2 ; Structure of Minor Histocompatibility Antigen peptide, H13a, complexed to H2-Db 1JUF ; 2.0 ; Structure of Minor Histocompatibility Antigen peptide, H13b, complexed to H2-Db 5DVW ; 1.75 ; Structure of minor nucleoprotein V30 from Zaire ebolavirus 5D77 ; 1.3 ; Structure of Mip6 RRM3 Domain 1N1N ; ; Structure of Mispairing of the Deoxycytosine with Deoxyadenosine 5' to the 8,9-Dihydro-8-(N7-guanyl)-9-Hydroxy-Aflatoxin B1 Adduct 5LY9 ; 1.65 ; Structure of MITat 1.1 1OKC ; 2.2 ; structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside 7TZ6 ; 2.88 ; Structure of mitochondrial bc1 in complex with ck-2-68 2C9H ; 1.8 ; Structure of mitochondrial beta-ketoacyl synthase 6IG2 ; 2.882 ; Structure of mitochondrial CDP-DAG synthase Tam41 complexed with CTP, delta 74, F240A 6IG4 ; 2.261 ; Structure of mitochondrial CDP-DAG synthase Tam41, delta 74 8ESW ; 3.3 ; Structure of mitochondrial complex I from Drosophila melanogaster, Flexible-class 1 8ESZ ; 3.4 ; Structure of mitochondrial complex I from Drosophila melanogaster, Helix-locked state 4IYN ; 2.312 ; Structure of mitochondrial Hsp90 (TRAP1) with ADP-ALF4- 4J0B ; 2.352 ; Structure of mitochondrial Hsp90 (TRAP1) with ADP-BeF3 4BOC ; 2.65 ; Structure of mitochondrial RNA polymerase elongation complex 5OLA ; 3.904 ; Structure of mitochondrial transcription elongation complex in complex with elongation factor TEFM 2CLQ ; 2.3 ; Structure of mitogen-activated protein kinase kinase kinase 5 7NFD ; 3.51 ; Structure of mitoxantrone-bound ABCG2 4C3K ; 3.099 ; Structure of mixed PII-ADP complexes from S. elongatus 2XWY ; 2.53 ; Structure of MK-3281, a Potent Non-Nucleoside Finger-Loop Inhibitor, in complex with the Hepatitis C Virus NS5B Polymerase 2PZY ; 2.9 ; Structure of MK2 Complexed with Compound 76 8IYH ; 3.3 ; Structure of MK6892-GPR109A-G-protein complex 8TEB ; 2.2 ; Structure of MKbur 6YIP ; 1.43 ; Structure of MKLP2 coiled coil 8TFO ; 2.0 ; Structure of MKvar 5AOR ; 2.08 ; Structure of MLE RNA ADP AlF4 complex 4UY9 ; 2.81 ; Structure of MLK1 kinase domain with leucine zipper 1 4UYA ; 2.8 ; Structure of MLK4 kinase domain with ATPgammaS 4BTF ; 2.604 ; Structure of MLKL 8JHN ; 3.75 ; Structure of MMF-GPR109A-G protein complex 7YEW ; 2.5 ; Structure of MmIGF2BP3 in complex with 7-mer RNA 7YEX ; 2.0 ; Structure of MmIGF2BP3 in complex with 8-mer RNA 7YEY ; 1.85 ; Structure of MmIGF2BP3-KH12 in complex with 8-mer RNA 4JA1 ; 1.96 ; Structure of MMP3 complexed with a platinum-based inhibitor 4DPE ; 1.96 ; Structure of MMP3 complexed with a platinum-based inhibitor. 4G9L ; 1.88 ; Structure of MMP3 complexed with NNGH inhibitor. 6IHK ; 2.23 ; Structure of MMPA CoA ligase in complex with ADP 6IJC ; 2.3 ; Structure of MMPA-CoA dehydrogenase from Roseovarius nubinhibens ISM 7N6B ; 2.66 ; Structure of MmpL3 reconstituted into lipid nanodisc in the TMM bound state 5F13 ; 2.393 ; Structure of Mn bound DUF89 from Saccharomyces cerevisiae 1XMF ; 2.32 ; Structure of Mn(II)-Soaked Apo Methane Monooxygenase Hydroxylase Crystals from M. capsulatus (Bath) 4UDO ; 2.22 ; structure of Mn-bound periplasmic metal binding protein from candidatus liberibacter asiaticus 7QPS ; 2.79 ; Structure of Mn-free SpoT 3OJN ; 1.65 ; Structure of Mn-substituted Homoprotocatechuate 2,3-Dioxygenase at 1.65 Ang resolution 3BZA ; 1.7 ; Structure of Mn-substituted Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.7 Ang resolution 3UCT ; 1.9 ; Structure of Mn2+-bound N-terminal domain of calmodulin in the presence of Zn2+ 5WVD ; 3.0 ; Structure of Mnk1 in complex with DS12881479 3UJP ; 2.7 ; Structure of MntC protein at 2.7A 4HX7 ; 1.9 ; Structure of MNTR E11K mutant complexed with Cd2+ 4HV6 ; 2.3 ; Structure of MNTR H77A mutant in apo- and mn-bound forms 4HX4 ; 1.65 ; Structure of MNTR mutant E11K complexed with Mn2+ 2FB3 ; 2.349 ; Structure of MoaA in complex with 5'-GTP 1TV8 ; 2.2 ; Structure of MoaA in complex with S-adenosylmethionine 2IZ7 ; 2.32 ; structure of Moco Carrier Protein from Chlamydomonas reinhardtii 7DSU ; 3.2 ; Structure of Mod subunit of the Type III restriction-modification enzyme Mbo45V 1DR8 ; 2.7 ; STRUCTURE OF MODIFIED 3-ISOPROPYLMALATE DEHYDROGENASE AT THE C-TERMINUS, HD177 1DR0 ; 2.2 ; STRUCTURE OF MODIFIED 3-ISOPROPYLMALATE DEHYDROGENASE AT THE C-TERMINUS, HD708 1DPZ ; 2.8 ; STRUCTURE OF MODIFIED 3-ISOPROPYLMALATE DEHYDROGENASE AT THE C-TERMINUS, HD711 4A4B ; 2.789 ; Structure of modified phosphoTyr371-c-Cbl-UbcH5B-ZAP-70 complex 4QAW ; 2.4 ; Structure of modular Xyn30D from Paenibacillus barcinonensis 2M05 ; ; Structure of module 2 from the E1 domain of C. elegans APL-1 5GWW ; 2.3 ; Structure of MoeN5-Sso7d fusion protein in complex with a permethylated substrate analogue 5GWV ; 2.4 ; Structure of MoeN5-Sso7d fusion protein in complex with a substrate analogue 5B0K ; 2.75 ; Structure of MoeN5-Sso7d fusion protein in complex with beta-decyl maltoside 5B0M ; 3.05 ; Structure of MoeN5-Sso7d fusion protein in complex with beta-dodecyl maltoside 5B0L ; 2.8 ; Structure of MoeN5-Sso7d fusion protein in complex with beta-nonyl glucoside 5B0I ; 2.26 ; Structure of MoeN5-Sso7d fusion protein in complex with beta-octyl glucoside 5B0J ; 2.5 ; Structure of MoeN5-Sso7d fusion protein in complex with beta-undecyl maltoside 5B03 ; 2.6 ; Structure of MoeN5-Sso7d fusion protein in complex with geranyl pyrophosphate 6J8W ; 2.35 ; Structure of MOEN5-SSO7D fusion protein in complex with lig 1 6J8V ; 2.23 ; Structure of MOEN5-SSO7D fusion protein in complex with ligand 2 5NOP ; 1.94 ; Structure of Mojiang virus attachment glycoprotein 6AOM ; 2.87 ; Structure of molecular chaperone Grp94 bound to selective inhibitor methyl 2-[2-(2-benzylphenyl)ethyl]-3-chloro-4,6-dihydroxybenzoate 6AOL ; 2.764 ; Structure of molecular chaperone Grp94 bound to selective inhibitor methyl 3-chloro-2-(2-{2-[(4-fluorophenyl)methyl]phenyl}ethyl)-4,6-dihydroxybenzoate 7EVA ; 2.083 ; Structure of molecular chaperone SycE of Yersinia enterocolitica 1MN8 ; 1.0 ; Structure of Moloney Murine Leukaemia Virus Matrix Protein 8WPE ; 2.7 ; Structure of monkeypox virus polymerase complex F8-A22-E4-H5 (tag-free A22) with exogenous DNA 8WPP ; 3.1 ; Structure of monkeypox virus polymerase complex F8-A22-E4-H5 with endogenous DNA 8WPK ; 2.7 ; Structure of monkeypox virus polymerase complex F8-A22-E4-H5 with exgenous DNA 8WPF ; 3.0 ; Structure of monkeypox virus polymerase complex F8-A22-E4-H5 with exogenous DNA bearing one abasic site 5GRU ; 1.955 ; Structure of mono-specific diabody 6VAF ; 3.9 ; Structure of mono-ubiquitinated FANCD2 bound to non-ubiquitinated FANCI and to DNA 3TBL ; 2.903 ; Structure of Mono-ubiquitinated PCNA: Implications for DNA Polymerase Switching and Okazaki Fragment Maturation 5LRN ; 1.55 ; Structure of mono-zinc MCR-1 in P21 space group 7JW7 ; 2.63 ; Structure of monobody 27 human MLKL pseudokinase domain complex 7JXU ; 2.44 ; Structure of monobody 32 human MLKL pseudokinase domain complex 6UX8 ; 2.5 ; Structure of monobody 33 MLKL N-terminal domain complex 5A3Z ; 1.59 ; Structure of monoclinic Lysozyme obtained by multi crystal data collection 1PPN ; 1.6 ; STRUCTURE OF MONOCLINIC PAPAIN AT 1.60 ANGSTROMS RESOLUTION 4RLR ; 2.002 ; Structure of monoheme cytochrome PccH from Geobacter sulfurreducens 7T1E ; 1.459 ; Structure of monomeric and dimeric human CCL20 3MBT ; 2.6 ; Structure of monomeric Blc from E. coli 7ELC ; 3.1 ; Structure of monomeric complex of MACV L bound to Z and 3'-vRNA 8S9L ; 1.85 ; Structure of monomeric FAM111A SPD V347D Mutant 5WDZ ; ; Structure of monomeric Interleukin-8 (1-66) 8E04 ; 3.8 ; Structure of monomeric LRRK1 5XP1 ; 2.88 ; Structure of monomeric mutant of REI immunoglobulin light chain variable domain crystallized at pH 6 5XQY ; 2.9 ; Structure of monomeric mutant of REI immunoglobulin light chain variable domain crystallized at pH 8 2B0T ; 1.75 ; Structure of Monomeric NADP Isocitrate dehydrogenase 4FBS ; 1.7 ; Structure of monomeric NT from Euprosthenops australis Major Ampullate Spidroin 1 (MaSp1) 7EDA ; 2.78 ; Structure of monomeric photosystem II 4CSD ; 1.35 ; Structure of Monomeric Ralstonia solanacearum lectin 6TNF ; 3.8 ; Structure of monoubiquitinated FANCD2 in complex with FANCI and DNA 6VM5 ; 2.35 ; Structure of Moraxella osloensis Cap4 SAVED/CARF-domain containing receptor 2R14 ; 1.4 ; Structure of morphinone reductase in complex with tetrahydroNAD 3GX9 ; 2.28 ; Structure of morphinone reductase N189A mutant in complex with tetrahydroNAD 6PMT ; 2.3 ; Structure of Mortalin-NBD with adenosine-5'-monophosphate and thiodiphosphate 6P2U ; 2.0 ; Structure of Mortalin-NBD with N6-propargyladenosine-5'-diphosphate 4MDB ; 1.7 ; Structure of Mos1 transposase catalytic domain and Raltegravir with Mg 4MDA ; 1.7 ; Structure of Mos1 transposase catalytic domain and Raltegravir with Mn 2VC6 ; 1.95 ; Structure of MosA from S. meliloti with pyruvate bound 6K5P ; 1.805 ; Structure of mosquito-larvicidal Binary toxin receptor, Cqm1 6T19 ; 1.85 ; Structure of mosquitocidal Cyt1A protoxin obtained by Serial Femtosecond Crystallography on in vivo grown crystals soaked with DTT at pH 7 6T1A ; 1.85 ; Structure of mosquitocidal Cyt1Aa protoxin obtained by Serial Femtosecond Crystallography on in vivo grown crystals at pH 10 7ZM5 ; 1.62 ; Structure of Mossman virus receptor binding protein 4LGZ ; 1.675 ; Structure of mouse 1-Pyrroline-5-Carboxylate Dehydrogenase (ALDH4A1) complexed with acetate 4LH3 ; 1.813 ; Structure of mouse 1-Pyrroline-5-Carboxylate Dehydrogenase (ALDH4A1) complexed with glutarate 4LH0 ; 1.674 ; Structure of mouse 1-Pyrroline-5-Carboxylate Dehydrogenase (ALDH4A1) complexed with glyoxylate 4LH1 ; 1.673 ; Structure of mouse 1-Pyrroline-5-Carboxylate Dehydrogenase (ALDH4A1) complexed with malonate 4LH2 ; 1.673 ; Structure of mouse 1-Pyrroline-5-Carboxylate Dehydrogenase (ALDH4A1) complexed with succinate 2VOH ; 1.9 ; Structure of mouse A1 bound to the Bak BH3-domain 2VOI ; 2.1 ; Structure of mouse A1 bound to the Bid BH3-domain 2VOG ; 1.9 ; Structure of mouse A1 bound to the Bmf BH3-domain 2VOF ; 1.8 ; Structure of mouse A1 bound to the Puma BH3-domain 4A16 ; 2.65 ; Structure of mouse Acetylcholinesterase complex with Huprine derivative 4BC0 ; 3.35 ; Structure of mouse acetylcholinesterase inhibited by CBDP (12-h soak) : Cresyl-phosphoserine adduct 4BC1 ; 2.95 ; Structure of mouse acetylcholinesterase inhibited by CBDP (30-min soak): cresyl-saligenin-phosphoserine adduct 5I91 ; 1.76 ; Structure of Mouse Acirecutone dioxygenase with to Ni2+ and 2-keto-4-(methylthio)-butyric acid in the active site 5I8Y ; 1.942 ; Structure of Mouse Acireductone Dioxygenase bound to Co2+ and 2-keto-4-(methylthio)-butyric acid 5I93 ; 2.236 ; Structure of Mouse Acireductone dioxygenase with Ni2+ and 2-ketopentanoic acid in the active site 5I8T ; 1.751 ; Structure of Mouse Acireductone dioxygenase with Ni2+ ion and D-lactic acid in the active site 5I8S ; 1.89 ; Structure of Mouse Acireductone dioxygenase with Ni2+ ion and pentanoic acid in the active site 5CCF ; 2.1 ; Structure of Mouse ADP-Dependent Glucokinase 7AZN ; 2.09 ; Structure of mouse AsterC (GramD1c) with a new cholesterol-derived compound 2Z8H ; 2.5 ; Structure of mouse Bach1 BTB domain 7R86 ; 1.65 ; Structure of mouse BAI1 (ADGRB1) in complex with mouse Nogo receptor (RTN4R) 7R85 ; 1.45 ; Structure of mouse Bai1 (ADGRB1) TSR3 domain 7R84 ; 1.336 ; Structure of mouse BAI1 (ADGRB1) TSR3 domain in P21 space group 3BOD ; 1.7 ; Structure of mouse beta-neurexin 1 3BOP ; 3.0 ; Structure of mouse beta-neurexin 2D4 1DDB ; ; STRUCTURE OF MOUSE BID, NMR, 20 STRUCTURES 3GMQ ; 1.8 ; Structure of mouse CD1d expressed in SF9 cells, no ligand added 3GMN ; 1.7 ; Structure of mouse CD1d in complex with C10Ph 3GML ; 1.7 ; Structure of mouse CD1d in complex with C6Ph 3GMM ; 1.8 ; Structure of mouse CD1d in complex with C8Ph 3GMR ; 1.9 ; Structure of mouse CD1d in complex with C8Ph, different space group 3GMO ; 1.6 ; Structure of mouse CD1d in complex with C8PhF 4MX7 ; 2.24 ; Structure of mouse CD1d in complex with dioleoyl-phosphatidic acid 3GMP ; 1.7 ; Structure of mouse CD1d in complex with PBS-25 5TW2 ; 1.75 ; Structure of mouse CD1d with bound alpha-galactosylsphingamide JG168 5TW5 ; 1.85 ; Structure of mouse CD1d with bound glycosphingolipid JJ112 6OMG ; 2.1 ; Structure of mouse CD1D- Glc-DAG (sn-1 C18:0, sn-2 C18:1c9)-iNKT TCR Ternary complex 4LEY ; 2.5 ; Structure of mouse cGAS bound to 18 bp DNA 4LEZ ; 2.36 ; Structure of mouse cGAS bound to an 18bp DNA and cGAS product 4ZI9 ; 1.7 ; Structure of mouse clustered PcdhgA1 EC1-3 4ZI8 ; 1.698 ; Structure of mouse clustered PcdhgC3 EC1-3 6KIT ; 1.57 ; Structure of mouse CXorf40A, Selenomethionine derivative 7UCW ; 1.35 ; Structure of mouse Decr1 in complex with 2'-5' oligoadenylate 4PMW ; 2.95 ; Structure of mouse Dis3L2 in complex with oligoU RNA substrate 8E11 ; 1.8 ; Structure of mouse DNA polymerase Beta (PolB) mutant 4DA4 ; 2.6 ; Structure of mouse DNMT1 (731-1602) bound to hemimethylated CpG DNA 5AOY ; 1.75 ; Structure of mouse Endonuclease V 4CCC ; 2.09 ; STRUCTURE OF MOUSE GALACTOCEREBROSIDASE WITH 4NBDG: ENZYME-SUBSTRATE COMPLEX 4CCD ; 1.97 ; STRUCTURE OF MOUSE GALACTOCEREBROSIDASE WITH D-GALACTAL: ENZYME- INTERMEDIATE COMPLEX 4CCE ; 2.06 ; STRUCTURE OF MOUSE GALACTOCEREBROSIDASE WITH GALACTOSE: ENZYME- PRODUCT COMPLEX 7CXB ; 1.46 ; Structure of mouse Galectin-3 CRD in complex with TD-139 belonging to P6522 space group. 7CXC ; 1.4 ; Structure of mouse Galectin-3 CRD point mutant (V160A) in complex with TD-139 belonging to P121 space group. 2V2U ; 1.9 ; Structure of Mouse gammaC-crystallin 6NWX ; 2.0 ; Structure of mouse GILT, an enzyme involved in antigen processing 6LBJ ; 2.70444 ; Structure of mouse GLD-2 (Terminal nucleotidyltransferase 2, TENT2) 5KKB ; 1.774 ; Structure of mouse Golgi alpha-1,2-mannosidase IA and Man9GlcNAc2-PA complex 1NXC ; 1.51 ; Structure of mouse Golgi alpha-1,2-mannosidase IA reveals the molecular basis for substrate specificity among Class I enzymes (family 47 glycosidases) 3WNW ; 2.24 ; Structure of Mouse H-chain modified ferritin 8PVC ; 2.6 ; Structure of mouse heavy-chain apoferritin determined by cryoEM at 100 keV 4YI0 ; 1.806 ; Structure of mouse importin a1 bound to Pom121NLS 6WBB ; 2.663 ; Structure of Mouse Importin alpha - MLH1-E475A NLS peptide complex 6P6A ; 2.151 ; Structure of Mouse Importin alpha - NIT2 NLS peptide complex 6P6E ; 1.99 ; Structure of Mouse Importin alpha - PAC3 NLS peptide complex 6WBA ; 2.151 ; Structure of Mouse Importin alpha MLH1- R470A NLS Peptide Complex 7M60 ; 2.3 ; Structure of Mouse Importin alpha MLH1-S467A NLS Peptide Complex 7TMX ; 2.3 ; Structure of Mouse Importin alpha NEIL1 NLS Peptide Complex 7TMY ; 2.21 ; Structure of Mouse Importin alpha NEIL3 NLS Peptide Complex 6WBC ; 2.15 ; Structure of Mouse Importin alpha- MLH1-R472K NLS Peptide Complex 4AS5 ; 2.43 ; Structure of mouse inositol monophosphatase 1 4EXP ; 2.8 ; Structure of mouse Interleukin-34 in complex with mouse FMS 6P2D ; 1.794 ; Structure of mouse ketohexokinase-C in complex with fructose and ADP 8HPX ; 3.68 ; Structure of mouse LGI1 LRR domain in space group P65 8T03 ; 2.72 ; Structure of mouse Myomaker bound to Fab18G7 in detergent 8T04 ; 2.98 ; Structure of mouse Myomaker bound to Fab18G7 in nanodiscs 8T06 ; 3.32 ; Structure of mouse Myomaker mutant-R107A bound to Fab18G7 8T07 ; 3.38 ; Structure of mouse Myomaker mutant-Y118A bound to Fab18G7 4DOW ; 1.95 ; Structure of mouse ORC1 BAH domain bound to H4K20me2 4LSG ; 3.8 ; Structure of Mouse P-Glycoprotein 8E10 ; 1.65 ; Structure of mouse polymerase beta 6M7K ; 1.1 ; Structure of mouse RECON (AKR1C13) in complex with cyclic AMP-AMP-GMP (cAAG) 6BZH ; 2.5 ; Structure of mouse RIG-I tandem CARDs 8VJJ ; 2.53 ; Structure of mouse RyR1 (EGTA-only dataset) 8VJK ; 2.92 ; Structure of mouse RyR1 (high-Ca2+/CFF/ATP dataset) 8VK3 ; 3.21 ; Structure of mouse RyR1 in complex with S100A1 (EGTA-only dataset) 8VK4 ; 3.56 ; Structure of mouse RyR1 in complex with S100A1 (high-Ca2+/CFF/ATP dataset) 8H95 ; 3.38 ; Structure of mouse SCMC bound with full-length FILIA 8H94 ; 2.9 ; Structure of mouse SCMC bound with KH domain of FILIA 8H96 ; 2.78 ; Structure of mouse SCMC core complex 6DD9 ; 2.3 ; Structure of mouse SYCP3, P1 form 6DD8 ; 2.6 ; Structure of mouse SYCP3, P21 form 2X3X ; 3.35 ; structure of mouse syndapin I (crystal form 1) 2X3W ; 2.64 ; structure of mouse syndapin I (crystal form 2) 6W10 ; 1.80003 ; Structure of mouse TREX1 with E198K disease-associated mutation 6A45 ; 1.904 ; Structure of mouse TREX2 4E1Z ; 2.5 ; Structure of mouse Tyk-2 complexed to a 3-aminoindazole inhibitor 4E20 ; 2.6 ; Structure of mouse Tyk-2 complexed to a 3-aminoindazole inhibitor 3TN0 ; 3.2 ; Structure of mouse Va14Vb8.2NKT TCR-mouse CD1d-a-C-Galactosylceramide complex 5TKK ; 1.55 ; Structure of mouse vaccination-elicited HIV neutralizing antibody vFP5.01 in complex with HIV-1 fusion peptide residue 512-519 3TO4 ; 3.1 ; Structure of mouse Valpha14Vbeta2-mouseCD1d-alpha-Galactosylceramide 4P2A ; 2.7 ; Structure of mouse VPS26A bound to rat SNX27 PDZ domain 2E6M ; 2.0 ; structure of mouse werner exonuclease domain 6ENS ; 1.3 ; Structure of mouse wild-type RKIP 2E6L ; 2.2 ; structure of mouse WRN exonuclease domain 4AJV ; 2.7 ; Structure of mouse ZP-C domain of TGF-Beta-Receptor-3 2LN0 ; ; Structure of MOZ 6JBP ; 2.217 ; Structure of MP-4 from Mucuna pruriens at 2.22 Angstroms 8C9K ; 1.72 ; Structure of Mpox virus poxin 8GQT ; 2.09 ; Structure of Mpro complexed with Quercetin 8BGD ; 1.621 ; Structure of Mpro from SARS-CoV-2 in complex with FGA147 8BGA ; 1.982 ; Structure of Mpro in complex with FGA146 6Q4W ; 1.55 ; Structure of MPT-1, a GDP-Man-dependent mannosyltransferase from Leishmania mexicana 6Q4X ; 1.55 ; Structure of MPT-2, a GDP-Man-dependent mannosyltransferase from Leishmania mexicana 6Q4Y ; 1.7 ; Structure of MPT-2, a GDP-Man-dependent mannosyltransferase from Leishmania mexicana, in complex with mannose 6Q50 ; 1.6 ; Structure of MPT-4, a mannose phosphorylase from Leishmania mexicana, in complex with phosphate ion 5D7K ; 1.9 ; Structure of MR1-reactive MAV36 TCR 4YIX ; 2.6 ; Structure of MRB1590 bound to ADP 4YIY ; 3.016 ; Structure of MRB1590 bound to AMP-PNP 7E1C ; 1.9 ; Structure of MreB3 from Spiroplasma eriocheiris 7E1G ; 1.75 ; Structure of MreB3 from Spiroplasma eriocheiris 1CKO ; 3.1 ; STRUCTURE OF MRNA CAPPING ENZYME IN COMPLEX WITH THE CAP ANALOG GPPPG 4L8R ; 2.6 ; Structure of mrna stem-loop, human stem-loop binding protein and 3'hexo ternary complex 7D3U ; 3.0 ; Structure of Mrp complex from Dietzia sp. DQ12-45-1b 7REF ; 2.1 ; Structure of MS3494 from Mycobacterium smegmatis 8DZD ; 1.901 ; Structure of MS3494 from Mycobacterium smegmatis bound to sucrose 7S0N ; ; Structure of MS3494 from Mycobacterium Smegmatis determined by Solution NMR 7BCW ; 3.5 ; Structure of MsbA in Salipro with ADP vanadate 4DEZ ; 2.6 ; Structure of MsDpo4 5HTL ; 1.371 ; Structure of MshE with cdg 3HCI ; 2.59 ; Structure of MsrB from Xanthomonas campestris (complex-like form) 3HCJ ; 1.66 ; Structure of MsrB from Xanthomonas campestris (oxidized form) 3SQX ; 2.112 ; Structure of Mss116p (NTE and C-tail double deletion) bound to ssRNA and AMP-PNP 3SQW ; 1.909 ; Structure of Mss116p (NTE deletion) bound to ssRNA and AMP-PNP 3I62 ; 1.95 ; Structure of Mss116p bound to ssRNA and ADP-Aluminum Fluoride 3I61 ; 2.1 ; Structure of Mss116p bound to ssRNA and ADP-Beryllium Fluoride 3I5X ; 1.9 ; Structure of Mss116p bound to ssRNA and AMP-PNP 3I5Y ; 2.49 ; Structure of Mss116p bound to ssRNA containing a single 5-BrU and AMP-PNP 4W8E ; 1.79 ; Structure of MST3 with a pyrrolopyrimidine inhibitor (PF-06645342) 1MP2 ; 2.3 ; Structure of MT-ADPRase (Apoenzyme), a Nudix hydrolase from Mycobacterium tuberculosis 1KJN ; 2.2 ; Structure of MT0777 3Q80 ; 2.0 ; Structure of Mtb 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (IspD) Complexed with CDP-ME 3Q7U ; 2.1 ; Structure of Mtb 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (IspD) complexed with CTP 3OKR ; 2.4 ; Structure of Mtb apo 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (IspD) 3IOS ; 1.6 ; Structure of MTB dsbF in its mixed oxidized and reduced forms 4U33 ; 3.293 ; Structure of Mtb GlgE bound to maltose 7KMY ; 2.21 ; Structure of Mtb Lpd bound to 010705 4M52 ; 2.4 ; Structure of Mtb Lpd bound to SL827 4KBJ ; 2.4532 ; Structure of Mtb RNAP Beta subunit B1 and B2 domains 8IQU ; 2.64 ; Structure of MtbFadD23 with PhU-AMS 3TOE ; 2.197 ; Structure of Mth10b 1OQK ; ; Structure of Mth11: A homologue of human RNase P protein Rpp29 2WNY ; 1.95 ; Structure of Mth689, a DUF54 protein from Methanothermobacter thermautotrophicus 8B8Q ; 2.94 ; Structure of mTMEM16F in lipid Nanodiscs in the presence of Ca2+ 4JSN ; 3.2 ; structure of mTORdeltaN-mLST8 complex 4JSP ; 3.3 ; structure of mTORDeltaN-mLST8-ATPgammaS-Mg complex 4JT6 ; 3.6 ; structure of mTORDeltaN-mLST8-PI-103 complex 4JSX ; 3.5 ; structure of mTORDeltaN-mLST8-Torin2 complex 4X2M ; 2.0 ; Structure of Mtr2 2XGJ ; 2.9 ; Structure of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance 7XEV ; 3.27 ; Structure of mTRPV2_2-APB 7XEU ; 2.77 ; Structure of mTRPV2_E2 7XEW ; 2.59 ; Structure of mTRPV2_Q525F 7XER ; 2.47 ; Structure of mTRPV2_Q525T 4DCF ; 2.7 ; Structure of MTX-II from Bothrops brazili 1MUC ; 1.85 ; STRUCTURE OF MUCONATE LACTONIZING ENZYME AT 1.85 ANGSTROMS RESOLUTION 6K3D ; 1.919 ; Structure of multicopper oxidase mutant 7PHP ; 3.47 ; Structure of Multidrug and Toxin Compound Extrusion (MATE) transporter NorM by NabFab-fiducial assisted cryo-EM 3TTP ; 2.23 ; Structure of multiresistant HIV-1 protease in complex with darunavir 7EWQ ; 3.5 ; Structure of Mumps virus nucleocapsid ring 7T7R ; 10.0 ; Structure of Munc13-1 C1-C2B-MUN-C2C trimer between lipid bilayers 3VCY ; 1.925 ; Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase), from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin. 1EYN ; 1.7 ; Structure of mura liganded with the extrinsic fluorescence probe ANS 6ZM8 ; 0.78 ; Structure of muramidase from Acremonium alcalophilum 6ZMV ; 1.4 ; Structure of muramidase from Trichobolus zukalii 5VVW ; 2.3 ; Structure of MurC from Pseudomonas aeruginosa 2XJA ; 3.0 ; Structure of MurE from M.tuberculosis with dipeptide and ADP 1E8C ; 2.0 ; Structure of MurE the UDP-N-acetylmuramyl tripeptide synthetase from E. coli 4KX3 ; 2.1 ; Structure of murine cytosolic 5'-nucleotidase III complexed with thymidine monophosphate 4FE3 ; 1.74 ; Structure of murine cytosolic 5'-nucleotidase III complexed with uridinine monophosphate 2BPD ; 1.5 ; STRUCTURE OF MURINE DECTIN-1 2BPE ; 2.25 ; STRUCTURE OF MURINE DECTIN-1 2BPH ; 2.2 ; STRUCTURE OF MURINE DECTIN-1 4JBM ; 2.218 ; Structure of murine DNA binding protein bound with ds DNA 4LU5 ; 2.9 ; Structure of murine IgG2a A20G2-Fab in complex with vaccinia antigen A33R at the resolution of 2.9 Angstroms 4M1G ; 1.6 ; Structure of murine IgG2a A27D7-Fab in complex with vaccinia antigen A33R at the resolution of 1.6 Angstroms 4LQF ; 2.3 ; Structure of murine IgG2b A2C7-Fab in complex with vaccinia antigen A33R at the resolution of 2.3 Angstroms 3E7T ; 2.6 ; Structure of murine iNOS oxygenase domain with inhibitor AR-C102222 3E6T ; 2.5 ; Structure of murine INOS oxygenase domain with inhibitor AR-C118901 3E6O ; 2.6 ; Structure of murine INOS oxygenase domain with inhibitor AR-C124355 3E6N ; 2.4 ; Structure of murine INOS oxygenase domain with inhibitor AR-C125813 3E68 ; 2.2 ; Structure of murine INOS oxygenase domain with inhibitor AR-C130232 3E6L ; 2.3 ; Structure of murine INOS oxygenase domain with inhibitor AR-C132283 3E7I ; 2.9 ; Structure of murine inos oxygenase domain with inhibitor AR-C94864 3E7M ; 2.0 ; Structure of murine iNOS oxygenase domain with inhibitor AR-C95791 7TZE ; 2.12 ; Structure of murine LAG3 domains 1-2 6GZA ; 1.89 ; Structure of murine leukemia virus capsid C-terminal domain 8A1D ; 3.0 ; Structure of murine perforin-2 (Mpeg1) pore in ring form 8A1S ; 4.0 ; Structure of murine perforin-2 (Mpeg1) pore in twisted form 6G70 ; 3.3 ; Structure of murine Prpf39 6RTF ; 7.77 ; Structure of murine Solute Carrier 26 family member A9 (Slc26a9) anion transporter in an intermediate state 6RTC ; 3.96 ; Structure of murine Solute Carrier 26 family member A9 (Slc26a9) anion transporter in the inward-facing state 2N2O ; ; Structure of murine tumour necrosis factor alpha CDE RNA 6CC4 ; 3.5 ; Structure of MurJ from Escherichia coli 4O2L ; 2.4 ; Structure of Mus musculus Rheb G63A mutant bound to GTP 4O2R ; 2.25 ; Structure of Mus musculus Rheb G63V mutant bound to GDP 8J97 ; 3.2 ; Structure of Muscarinic receptor (M2R) in complex with beta-arrestin1 (Local refine, cross-linked) 8JAF ; 3.1 ; Structure of Muscarinic receptor (M2R) in complex with beta-arrestin1 (Local Refine, non-cross linked) 4XJX ; 2.4 ; STRUCTURE OF MUTANT (E165H) OF THE HSDR SUBUNIT OF THE ECOR124I RESTRICTION ENZYME IN COMPLEX WITH ATP 1K1K ; 2.0 ; Structure of Mutant Human Carbonmonoxyhemoglobin C (beta E6K) at 2.0 Angstrom Resolution in Phosphate Buffer. 6JD0 ; 1.805 ; Structure of mutant human cathepsin L, engineered for GAG binding 1ZWI ; 2.5 ; Structure of mutant KcsA potassium channel 3K7P ; 1.4 ; Structure of mutant of ribose 5-phosphate isomerase type B from Trypanosoma cruzi. 1X10 ; 2.0 ; Structure of Mutant Pyrrolidone Carboxyl Peptidase (E192A) from a Hyperthermophile, Pyrococcus furiosus 1X12 ; 2.0 ; Structure of Mutant Pyrrolidone Carboxyl Peptidase (E192D) from a Hyperthermophile, Pyrococcus furiosus 1Z8W ; 2.0 ; Structure of Mutant Pyrrolidone Carboxyl Peptidase (E192I) from a Hyperthermophile, Pyrococcus furiosus 1Z8T ; 2.5 ; Structure of Mutant Pyrrolidone Carboxyl Peptidase (E192Q) from a Hyperthermophile, Pyrococcus furiosus 1Z8X ; 2.0 ; Structure of Mutant Pyrrolidone Carboxyl Peptidase (E192V) from a Hyperthermophile, Pyrococcus furiosus 4FB9 ; 1.75 ; Structure of mutant RIP from barley seeds 4FBA ; 1.85 ; Structure of mutant RIP from barley seeds in complex with adenine 4FBB ; 1.8 ; Structure of mutant RIP from barley seeds in complex with adenine (AMP-incubated) 4FBC ; 1.7 ; Structure of mutant RIP from barley seeds in complex with AMP 6LCV ; 2.84 ; structure of Mutant S44P of maltooligosyltrehalose synthase from Arthrobacter ramosus 5W6K ; 2.339 ; Structure of mutant Taq Polymerase incorporating unnatural base pairs Z:P 2DZT ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (D110A) from a hyperthermophile, Pyrococcus furiosus 2DZU ; 2.46 ; Structure of mutant tryptophan synthase alpha-subunit (D110N) from a hyperthermophile, Pyrococcus furiosus 2DZV ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (D146A) from a hyperthermophile, Pyrococcus furiosus 2DZP ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (D17N) from a hyperthermophile, Pyrococcus furiosus 2DZS ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (E103A) from a hyperthermophile, Pyrococcus furiosus 2DZX ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (E131-132A) from a hyperthermophile, Pyrococcus furiosus 2DZW ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (E244A) from a hyperthermophile, Pyrococcus furiosus 2E09 ; 2.4 ; Structure of mutant tryptophan synthase alpha-subunit (E74A) from a hyperthermophile, Pyrococcus furiosus 2W23 ; 1.94 ; Structure of mutant W169Y of Pleurotus eryngii versatile peroxidase (VP) 3DKG ; 1.91 ; Structure of Mutant(Y1248L) MET receptor tyrosine kinase in complex with inhibitor SGX-523 4CIS ; 2.05 ; Structure of MutM in complex with carbocyclic 8-oxo-G containing DNA 4GUQ ; 3.7 ; Structure of mutS139F p73 DNA binding domain complexed with 20BP DNA response element 7R1D ; 3.5 ; Structure of MuvB complex 1IDZ ; ; STRUCTURE OF MYB TRANSFORMING PROTEIN, NMR, 20 STRUCTURES 1IDY ; ; STRUCTURE OF MYB TRANSFORMING PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 4RS9 ; 1.95 ; Structure of Myc3 N-terminal JAZ-binding domain [44-238] in complex with Jas motif of JAZ9 3II4 ; 2.42 ; Structure of mycobacterial lipoamide dehydrogenase bound to a triazaspirodimethoxybenzoyl inhibitor 4U94 ; 1.473 ; Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway 4U98 ; 1.15 ; Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway (AppCp complex) 4WZY ; 1.71 ; Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway (ATP complex) 4LS9 ; 2.2 ; Structure of mycobacterial nrnA homolog reveals multifunctional nuclease activities 1Y25 ; 2.1 ; structure of mycobacterial thiol peroxidase Tpx 6G80 ; 2.05 ; Structure of Mycobacterium hassiacum MeT1 from orthorhombic crystals. 6TVP ; 1.9 ; Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM 7D5I ; 2.79 ; Structure of Mycobacterium smegmatis bd complex in the apo-form. 6YXU ; 3.08 ; Structure of Mycobacterium smegmatis HelD protein in complex with RNA polymerase core - State I, primary channel engaged 6YYS ; 3.08 ; Structure of Mycobacterium smegmatis HelD protein in complex with RNA polymerase core - State II, primary channel engaged and active site interfering 6Z11 ; 3.36 ; Structure of Mycobacterium smegmatis HelD protein in complex with RNA polymerase core - State III, primary channel dis-engaged and active site interfering 5V9X ; 2.797 ; Structure of Mycobacterium smegmatis helicase Lhr bound to ssDNA and AMP-PNP 2XW7 ; 2.0 ; Structure of Mycobacterium smegmatis putative reductase MS0308 6F6W ; 3.81 ; Structure of Mycobacterium smegmatis RNA polymerase core 6EYD ; 4.22 ; Structure of Mycobacterium smegmatis RNA polymerase Sigma-A holoenzyme 8FR8 ; 2.76 ; Structure of Mycobacterium smegmatis Rsh bound to a 70S translation initiation complex 6LUM ; 2.84 ; Structure of Mycobacterium smegmatis succinate dehydrogenase 2 5VI5 ; 3.196 ; Structure of Mycobacterium smegmatis transcription initiation complex with a full transcription bubble 5CJ5 ; 3.13 ; Structure of Mycobacterium thermoresistibile GlgE APO form at 3.13A resolution 5CIM ; 3.32 ; Structure of Mycobacterium thermoresistibile GlgE in complex with maltose (cocrystallisation with maltose-1-phosphate) at 3.32A resolution 5CGM ; 1.95 ; Structure of Mycobacterium thermoresistibile GlgE in complex with maltose at 1.95A resolution 5JIJ ; 1.82 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase (APO form). 5K41 ; 1.971 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase in a complex with ADP-glucose. 5K42 ; 1.921 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase in a complex with GDP-glucose. 5K44 ; 1.925 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase in a complex with Trehalose-6-phosphate. 5K5C ; 1.848 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase in a complex with Trehalose. 5L3K ; 2.305 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase in a ternary complex with ADP and fructose-6-phosphate 5JIO ; 1.711 ; Structure of Mycobacterium thermoresistibile trehalose-6-phosphate synthase ternary complex with ADP and Glucose-6-phosphate. 7YZI ; 3.83 ; Structure of Mycobacterium tuberculosis adenylyl cyclase Rv1625c / Cya 7YZK ; 3.57 ; Structure of Mycobacterium tuberculosis adenylyl cyclase Rv1625c / Cya 7O1I ; 2.3 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme alpha-E141A mutant 7O1K ; 2.86 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme alpha-E141A, beta-C92A mutant 7O1G ; 3.03 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme alpha-E141A-H462A, beta-C92A mutant 7O1L ; 2.38 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme alpha-H462A mutant 7O1M ; 2.89 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme alpha-H462A, beta-C92A mutant 7O1J ; 2.36 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme beta-C92A mutant 8OPW ; 2.52 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Caffeine (Fragment-B-51) 8OPY ; 2.45 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-B-DNQ 8OQL ; 2.7 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-1 8OQM ; 3.2 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-10 8OQV ; 2.78 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-109 8OQO ; 2.6 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-49 8OQN ; 2.2 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-53 8PF8 ; 2.23 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-72 8OQP ; 2.18 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-76 8OQQ ; 2.59 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-79 8OQR ; 2.4 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-80 8OQS ; 2.33 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-83 8OQT ; 2.62 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-91 8OQU ; 2.89 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Fragment-M-92 7O4V ; 2.42 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with oxidized nicotinamide adenine dinucleotide 8OPV ; 2.8 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Resveratrol (Fragment-B-H11) 8OPU ; 3.04 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Sulfamethoxazole (Fragment-B-E1) 8OPX ; 2.9 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with Trehalose (Fragment-B-TRE) 7O4Q ; 2.1 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in space group C2221 (unliganded) 7O4S ; 2.79 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme with Coenzyme A bound at the hydratase, thiolase active sites and additional binding site (CoA(ECH2)) 7O4T ; 2.1 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme with Coenzyme A bound at the hydratase, thiolase active sites and possible additional binding site (CoA(ECH/HAD)) 7O4R ; 2.79 ; Structure of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme with Coenzyme A bound at the thiolase active sites and additional binding site (CoA(HAD/KAT)) 2IJ7 ; 1.9 ; Structure of Mycobacterium tuberculosis CYP121 in complex with the antifungal drug fluconazole 3PVV ; 2.0 ; Structure of Mycobacterium tuberculosis DnaA-DBD in complex with box1 DNA 3PVP ; 2.3 ; Structure of Mycobacterium tuberculosis DnaA-DBD in complex with box2 DNA 3LOJ ; 1.25 ; Structure of Mycobacterium tuberculosis dUTPase H145A mutant 4GCY ; 1.5 ; Structure of Mycobacterium tuberculosis dUTPase H21W mutant 3ZHY ; 2.3 ; Structure of Mycobacterium tuberculosis DXR in complex with a di- substituted fosmidomycin analogue 3ZHX ; 2.0 ; Structure of Mycobacterium tuberculosis DXR in complex with a fosmidomycin analogue 3ZHZ ; 2.25 ; Structure of Mycobacterium tuberculosis DXR in complex with a fosmidomycin analogue 3ZI0 ; 1.9 ; Structure of Mycobacterium tuberculosis DXR in complex with a fosmidomycin analogue 2PR2 ; 2.5 ; Structure of Mycobacterium tuberculosis enoyl-ACP reductase with bound INH-NADP. 4NQW ; 2.4 ; Structure of Mycobacterium tuberculosis extracytoplasmic function sigma factor SigK in complex with the cytosolic domain of its cognate anti-sigma factor RskA 6GJC ; 3.3 ; Structure of Mycobacterium tuberculosis Fatty Acid Synthase - I 4A22 ; 1.9 ; Structure of Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase bound to N-(4-hydroxybutyl)- glycolohydroxamic acid bis- phosphate 4A21 ; 2.35 ; Structure of Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase bound to sulfate 6GE9 ; 2.26 ; Structure of Mycobacterium tuberculosis GlmU bound to Glc-1P and Ac-CoA 5U3F ; 1.695 ; Structure of Mycobacterium tuberculosis IlvE, a branched-chain amino acid transaminase, in complex with D-cycloserine derivative 1NWA ; 1.5 ; Structure of Mycobacterium tuberculosis Methionine Sulfoxide Reductase A in Complex with Protein-bound Methionine 6OXC ; 1.9 ; Structure of Mycobacterium tuberculosis methylmalonyl-CoA mutase with adenosyl cobalamin 6OXD ; 2.0 ; Structure of Mycobacterium tuberculosis methylmalonyl-CoA mutase with adenosyl cobalamin 3HEM ; 2.39 ; Structure of Mycobacterium tuberculosis Mycolic Acid Cyclopropane Synthase CmaA2 in Complex with Dioctylamine 6BUV ; 1.86 ; Structure of Mycobacterium tuberculosis NadD in complex with inhibitor [(1~{R},2~{R},5~{S})-5-methyl-2-propan-2-yl-cyclohexyl] 2-[3-methyl-2-(phenoxymethyl)benzimidazol-1-yl]ethanoate 4S1O ; 1.84 ; Structure of Mycobacterium tuberculosis NadD in complex with NADP 4YBR ; 1.65 ; Structure of Mycobacterium tuberculosis NadD in complex with NADP, P21212 5DAS ; 2.2 ; Structure of Mycobacterium tuberculosis NadD in complex with NADP, P21212, form 2 1ZJ8 ; 2.8 ; Structure of Mycobacterium tuberculosis NirA protein 1ZJ9 ; 2.9 ; Structure of Mycobacterium tuberculosis NirA protein 5TRG ; 2.804 ; Structure of Mycobacterium tuberculosis proteasome in complex with N,C-capped dipeptide DPLG-2 5TRS ; 3.08357 ; Structure of Mycobacterium tuberculosis proteasome in complex with N,C-capped dipeptide PKS2144 5TRR ; 3.103 ; Structure of Mycobacterium tuberculosis proteasome in complex with N,C-capped dipeptide PKS2169 5TRY ; 3.00001 ; Structure of Mycobacterium tuberculosis proteasome in complex with N,C-capped dipeptide PKS2206 5TS0 ; 2.8468 ; Structure of Mycobacterium tuberculosis proteasome in complex with N,C-capped dipeptide PKS2208 1USL ; 1.88 ; Structure Of Mycobacterium tuberculosis Ribose-5-Phosphate Isomerase, RpiB, Rv2465c, Complexed With Phosphate. 2BET ; 2.2 ; Structure of Mycobacterium tuberculosis Ribose-5-Phosphate Isomerase, RpiB, Rv2465c, in complex with 4-phospho-D-erythronate. 2BES ; 2.1 ; Structure of Mycobacterium tuberculosis Ribose-5-Phosphate Isomerase, RpiB, Rv2465c, in complex with 4-phospho-D-erythronohydroxamic acid. 4KDD ; 1.9 ; Structure of Mycobacterium tuberculosis ribosome recycling factor in presence of detergent 2PFC ; 2.3 ; Structure of Mycobacterium tuberculosis Rv0098 2VP8 ; 2.64 ; Structure of Mycobacterium tuberculosis Rv1207 2D1F ; 2.5 ; Structure of Mycobacterium tuberculosis threonine synthase 5MWO ; 1.962 ; Structure of Mycobacterium Tuberculosis Transcriptional Regulatory Repressor Protein (EthR) in complex with fragment 7E8. 5MXK ; 1.932 ; Structure of Mycobacterium Tuberculosis Transcriptional Regulatory Repressor Protein (EthR) in complex with fragment 7G9. 3TA6 ; 1.41 ; Structure of Mycobacterium tuberculosis triosephosphate isomerase 3TAO ; 1.45 ; Structure of Mycobacterium tuberculosis triosephosphate isomerase bound to phosphoglycolohydroxamate 5OCW ; 4.0 ; Structure of Mycobacterium tuberculosis tryptophan synthase in space group F222 2Y71 ; 1.5 ; Structure of Mycobacterium tuberculosis type II dehydroquinase complexed with (1R,4S,5R)-1,4,5-trihydroxy-3-((5-methylbenzo(b) thiophen-2-yl)methoxy)cyclohex-2-enecarboxylate 2Y77 ; 1.5 ; Structure of Mycobacterium tuberculosis type II dehydroquinase complexed with (1R,4S,5R)-3-(benzo(b)thiophen-2-ylmethoxy)-1,4,5- trihydroxy-2-(thiophen-2-ylmethyl)cyclohex-2-enecarboxylate 2Y76 ; 2.5 ; Structure of Mycobacterium tuberculosis type II dehydroquinase complexed with (1R,4S,5R)-3-(benzo(b)thiophen-5-ylmethoxy)-2-(benzo(b) thiophen-5-ylmethyl)-1,4,5-trihydroxycyclohex-2-enecarboxylate 2XB8 ; 2.4 ; Structure of Mycobacterium tuberculosis type II dehydroquinase in complex with inhibitor compound (2R)-2-(4-methoxybenzyl)-3- dehydroquinic acid 4B6Q ; 1.54 ; Structure of Mycobacterium tuberculosis Type II Dehydroquinase inhibited by (2R)-2-(benzothiophen-5-yl)methyl-3-dehydroquinic acid 4B6O ; 2.0 ; Structure of Mycobacterium tuberculosis Type II Dehydroquinase inhibited by (2S)-2-(4-methoxy)benzyl-3-dehydroquinic acid 4B6P ; 2.3 ; Structure of Mycobacterium tuberculosis Type II Dehydroquinase inhibited by (2S)-2-Perfluorobenzyl-3-dehydroquinic acid 4KG7 ; 1.5 ; Structure of MycP3 protease from the type VII (ESX-3) secretion system. 1NEU ; 1.9 ; STRUCTURE OF MYELIN MEMBRANE ADHESION MOLECULE P0 1YIV ; 2.1 ; Structure of myelin P2 protein from Equine spinal cord 6IXR ; 2.854 ; Structure of Myo2-GTD in complex with Inp2 6IXP ; 2.733 ; Structure of Myo2-GTD in complex with Mmr1 6IXQ ; 3.06 ; Structure of Myo2-GTD in complex with Smy1 4LL6 ; 2.3 ; Structure of Myo4p globular tail domain. 1MZ0 ; 1.6 ; STRUCTURE OF MYOGLOBIN MB-YQR 316 ns AFTER PHOTOLYSIS OF CARBON MONOXIDE SOLVED FROM LAUE DATA AT RT. 2MHR ; 1.3 ; STRUCTURE OF MYOHEMERYTHRIN IN THE AZIDOMET STATE AT 1.7(SLASH)1.3 ANGSTROMS RESOLUTION 3PVL ; 2.8 ; Structure of myosin VIIa MyTH4-FERM-SH3 in complex with the CEN1 of Sans 5F3B ; 1.76 ; Structure of myostatin in complex with chimeric RK35 antibody 5F3H ; 2.7 ; Structure of myostatin in complex with humanized RK35 antibody 5GWD ; 1.89 ; Structure of Myroilysin 5ZJK ; 2.6 ; Structure of myroilysin 7U0V ; 2.45 ; Structure of myxoma virus M062 protein variant Lau 7U0W ; 3.205 ; Structure of myxoma virus M062 protein variant MAV 6X0U ; 3.6 ; Structure of MZT1/GCP3-NHD and MZT1/GCP6-NHD in the gamma-TuRC lumenal bridge 6X0V ; 4.5 ; Structure of MZT2/GCP-NHD and CDK5Rap2 at position 13 of the gamma-TuRC 3BEN ; 1.65 ; Structure of N-(12-imidazolyl-dodecanoyl)-L-leucine inhibitor bound to the heme domain of Cytochrome P450-BM3 4AAJ ; 1.75 ; Structure of N-(5'-phosphoribosyl)anthranilate isomerase from Pyrococcus furiosus 4AYU ; 1.5 ; Structure of N-Acetyl-D-Proline bound to serum amyloid P component 4AVS ; 1.399 ; Structure of N-Acetyl-L-Proline bound to Serum Amyloid P Component 7PA1 ; 2.2 ; Structure of N-acetylglucosamine kinase from Plesiomonas shigelloides in complex with AMP-PNP in the absence of N-acetylglucoseamine substrate 2YHY ; 1.82 ; Structure of N-Acetylmannosamine kinase in complex with N- acetylmannosamine and ADP 5ZKN ; 2.205 ; Structure of N-acetylmannosamine-6-phosphate 2-epimerase from Fusobacterium nucleatum 3Q58 ; 1.8 ; Structure of N-acetylmannosamine-6-Phosphate Epimerase from Salmonella enterica 5ZJB ; 1.699 ; Structure of N-acetylmannosamine-6-phosphate-2-epimerase from Vibrio cholerae 5ZJP ; 2.66 ; Structure of N-acetylmannosamine-6-phosphate-2-epimerase from Vibrio cholerae with N-acetylglucosamine-6-phosphate 5ZJN ; 2.66 ; Structure of N-acetylmannosamine-6-phosphate-2-epimerase from Vibrio cholerae with N-acetylmannosamine-6-phosphate 4NF1 ; 1.3986 ; Structure of N-acetyltransferase domain of X. fastidiosa NAGS/K without his-tag 4YF9 ; 2.6 ; Structure of N-acylhomoserine lactone acylase MacQ 4YFA ; 2.2 ; Structure of N-acylhomoserine lactone acylase MacQ in complex with decanoic acid 4YFB ; 1.75 ; Structure of N-acylhomoserine lactone acylase MacQ in complex with phenylacetic acid 5C9I ; 1.8 ; Structure of N-acylhomoserine lactone acylase MacQ shortened spacer mutant (delta202-208) in uncleaved form 7KH2 ; 2.05 ; Structure of N-citrylornithine decarboxylase bound with PLP 6BBE ; 1.898 ; Structure of N-glycosylated porcine surfactant protein-D 6BBD ; 1.898 ; Structure of N-glycosylated porcine surfactant protein-D complexed with glycerol 2WUU ; 1.42 ; Structure of N-myristoyltransferase from L. donovani 1ZWF ; ; STRUCTURE OF N-TERMINAL ACETYLATED HUMAN PARATHYROID HORMONE, NMR, 10 STRUCTURES 2VAC ; 1.7 ; Structure of N-terminal Actin Depolymerizing Factor homology (ADF-H) domain of human twinfilin-2 6LHW ; 4.84 ; Structure of N-terminal and C-terminal domains of FANCA 1Y2O ; 2.2 ; Structure of N-terminal domain IRSp53/BAIAP2 2LWF ; ; Structure of N-terminal domain of a plant Grx 2Y7M ; 1.98 ; Structure of N-terminal domain of Candida albicans als9-2 (Pt derivative) 2Y7N ; 2.0 ; Structure of N-terminal domain of Candida albicans als9-2 - Apo Form 2Y7O ; 1.75 ; Structure of N-terminal domain of Candida albicans als9-2 - G299W mutant 2YLH ; 1.7 ; Structure of N-terminal domain of Candida albicans Als9-2 G299W mutant 2Y7L ; 1.49 ; Structure of N-terminal domain of Candida albicans Als9-2 in complex with human fibrinogen gamma peptide 2QCZ ; 2.7 ; Structure of N-terminal domain of E. Coli YaeT 2QDF ; 2.2 ; Structure of N-terminal domain of E. Coli YaeT 1MJD ; ; Structure of N-terminal domain of human doublecortin 3NHZ ; 2.5 ; Structure of N-terminal Domain of MtrA 3RW7 ; 3.0 ; Structure of N-terminal domain of nuclear RNA export factor TAP 6JRE ; 2.59 ; Structure of N-terminal domain of Plasmodium vivax p43 (PfNTD) solved by Co-SAD phasing 4IPH ; 1.94 ; Structure of N-terminal domain of RPA70 in complex with VU079104 inhibitor 3UBD ; 1.53 ; Structure of N-terminal domain of RSK2 kinase in complex with flavonoid glycoside SL0101 8S92 ; 4.06 ; Structure of N-terminal domains of Walker B mutated MCM8/9 heterohexamer complex with ADP 1MFW ; 1.6 ; STRUCTURE OF N-TERMINAL DOUBLECORTIN DOMAIN FROM DCLK: SELENOMETHIONINE LABELED PROTEIN 1MG4 ; 1.504 ; STRUCTURE OF N-TERMINAL DOUBLECORTIN DOMAIN FROM DCLK: WILD TYPE PROTEIN 3T9L ; 1.5 ; Structure of N-terminal DUSP-UBL domains of human USP15 2BRA ; 2.0 ; Structure of N-Terminal FAD Binding motif of mouse MICAL 3OUQ ; 2.6 ; Structure of N-terminal hexaheme fragment of GSU1996 4EL9 ; 1.55 ; Structure of N-terminal kinase domain of RSK2 with afzelin 4GUE ; 1.8 ; Structure of N-terminal kinase domain of RSK2 with flavonoid glycoside quercitrin 8FA3 ; ; Structure of N-terminal of Schistosoma japonicum asparaginyl-tRNA synthetase 2O1W ; 3.4 ; Structure of N-terminal plus middle domains (N+M) of GRP94 8A55 ; 0.99 ; Structure of N-terminal SARS-CoV-2 nonstructural protein 1 (nsp1) at atomic resolution 6RMW ; 3.5 ; Structure of N-terminal truncated IMP bound Plasmodium falciparum IMP-nucleotidase 3NVI ; 2.709 ; Structure of N-terminal truncated Nop56/58 bound with L7Ae and box C/D RNA 6RN1 ; 3.0 ; Structure of N-terminal truncated Plasmodium falciparum IMP-nucleotidase 4D5R ; 1.9 ; Structure of N-terminally truncated A49 from Vaccinia Virus Western Reserve 4D5T ; 1.84 ; Structure of N-terminally truncated A49 from Vaccinia Virus Western Reserve 6U1B ; 2.08009 ; Structure of N-terminus locked Esp with eight pro-peptide residues - V67C, D255C 6TYA ; 2.06594 ; Structure of N-terminus locked Esp with one pro-peptide residue - V67C, D255C 6CXB ; 1.701 ; Structure of N-truncated R1-type pyocin tail fiber at 1.7 angstrom resolution 6CU2 ; 2.58 ; Structure of N-truncated R2-type pyocin tail fiber at 2.6 angstrom resolution 3EBC ; 2.55 ; Structure of N141A HincII with Cognate DNA 2HIN ; 1.05 ; Structure of N15 Cro at 1.05 A: an ortholog of lambda Cro with a completely different but equally effective dimerization mechanism 6ON0 ; 1.6 ; STRUCTURE OF N15 CRO COMPLEXED WITH CONSENSUS OPERATOR DNA 4ZPY ; 3.8 ; Structure of N170A MVM mutant empty capsid 5U22 ; 1.748 ; Structure of N2152 from Neocallimastix frontalis 1PI5 ; 1.49 ; Structure of N289A mutant of AmpC in complex with SM2, carboxyphenylglycylboronic acid bearing the cephalothin R1 side chain 1PI4 ; 1.39 ; Structure of N289A mutant of AmpC in complex with SM3, a phenylglyclboronic acid bearing the cephalothin R1 side chain 2VMQ ; 1.67 ; Structure of N341AbsSHMT crystallized in the presence of L-allo-Thr 1B6S ; 2.5 ; STRUCTURE OF N5-CARBOXYAMINOIMIDAZOLE RIBONUCLEOTIDE SYNTHETASE 3A3R ; 1.9 ; Structure of N59D HEN EGG-WHITE LYSOZYME 3A3Q ; 2.0 ; Structure of N59D HEN EGG-WHITE LYSOZYME in complex with (GlcNAc)3 6K0X ; 2.2 ; Structure of N6AMT1-TRMT112 Complex with SAM 7RMM ; 1.97 ; Structure of N74D mutant of disulfide stabilized HIV-1 CA hexamer 5NNP ; 2.602 ; Structure of Naa15/Naa10 bound to HypK-THB 5NNR ; 3.1 ; Structure of Naa15/Naa10 bound to HypK-THB 3ZJ1 ; ; Structure of Nab2p tandem zinc finger 12 3ZJ2 ; ; Structure of Nab2p tandem zinc finger 34 2KVI ; ; Structure of Nab3 RRM 7N29 ; 2.8 ; Structure of NAD kinase 3Q4G ; 2.4 ; Structure of NAD synthetase from Vibrio cholerae 8G83 ; 3.03 ; Structure of NAD+ consuming protein Acinetobacter baumannii TIR domain 7WVH ; 2.45 ; Structure of NAD+ glycohydrolase/Streptolysin O complex from Group A streptococcus 4Q16 ; 2.6 ; Structure of NAD+ Synthetase from Deinococcus radiodurans 6ACH ; 3.2 ; Structure of NAD+-bound leucine dehydrogenase from Geobacillus stearothermophilus by cryo-EM 4KXQ ; 1.849 ; Structure of NAD-dependent protein deacetylase sirtuin-1 (closed state, 1.85 A) 4IF6 ; 2.25 ; Structure of NAD-dependent protein deacetylase sirtuin-1 (closed state, 2.25 A) 4IG9 ; 2.64 ; Structure of NAD-dependent protein deacetylase sirtuin-1 (open state, 2.64 A) 7BRF ; 2.15 ; Structure of NADH complex of Thermotoga maritima alpha-glucuronidase at 2.15 Angstrom resolution 1NPX ; 2.16 ; STRUCTURE OF NADH PEROXIDASE FROM STREPTOCOCCUS FAECALIS 10C1 REFINED AT 2.16 ANGSTROMS RESOLUTION 5GV8 ; 0.78 ; Structure of NADH-cytochrome b5 reductase refined with the multipolar atomic model at 0.78A 5GV7 ; 0.8 ; Structure of NADH-cytochrome b5 reductase refined with the multipolar atomic model at 0.80 A 8PXL ; 1.6 ; Structure of NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4, solved at wavelength 1.37 A 8PXK ; 3.77 ; Structure of NADH-DEPENDENT FERREDOXIN REDUCTASE, BPHA4, solved at wavelength 5.76 A 4XDY ; 1.535 ; Structure of NADH-preferring ketol-acid reductoisomerase from an uncultured archean 2GQA ; 1.7 ; Structure of NADH-reduced SYE1, an OYE homologue from S. oneidensis 7Q5Y ; 2.7 ; Structure of NADH:ubichinon oxidoreductase (complex I) of the hyperthermophilic eubacterium Aquifex aeolicus 1KEV ; 2.05 ; STRUCTURE OF NADP-DEPENDENT ALCOHOL DEHYDROGENASE 1VDC ; 2.5 ; STRUCTURE OF NADPH DEPENDENT THIOREDOXIN REDUCTASE 1PYF ; 1.8 ; Structure of NADPH-dependent family 11 aldo-keto reductase AKR11A(apo) 1PZ0 ; 2.35 ; Structure of NADPH-dependent family 11 aldo-keto reductase AKR11A(holo) 1PZ1 ; 2.2 ; Structure of NADPH-dependent family 11 aldo-keto reductase AKR11B(holo) 2ON7 ; 2.4 ; Structure of NaGST-1 2ON5 ; 1.9 ; Structure of NaGST-2 8H7R ; 2.0 ; Structure of nanobody 11A in complex with coumaphos 8H7M ; 1.87 ; Structure of nanobody 11A in complex with parathion 8H7I ; 2.4 ; Structure of nanobody 11A in complex with quinalphos 8H7N ; 1.99 ; Structure of nanobody 11A in complex with triazophos 8JLY ; 1.29 ; Structure of nanobody in complex with alpha-synuclein peptide 5M2W ; 1.5 ; Structure of nanobody nb18 raised against TssK from E. coli T6SS 7EH3 ; ; Structure of Nanobody Nb23 in solution using NMR spectroscopy 8IRW ; 1.55 ; Structure of nanobody Nb9 against parathion 6DO1 ; 2.901 ; Structure of nanobody-stabilized angiotensin II type 1 receptor bound to S1I8 5KP9 ; 5.7 ; Structure of Nanoparticle Released from Enveloped Protein Nanoparticle 8CXL ; 1.98 ; Structure of NapH3, a vanadium-dependent haloperoxidase homolog catalyzing the stereospecific alpha-hydroxyketone rearrangement reaction in napyradiomycin biosynthesis 1PNB ; ; STRUCTURE OF NAPIN BNIB, NMR, 10 STRUCTURES 3DZW ; 1.7 ; Structure of Narcissus pseudonarcissus lectin complex with Mannobiose at 1.7 A resolution, form II 2CBA ; 1.54 ; STRUCTURE OF NATIVE AND APO CARBONIC ANHYDRASE II AND SOME OF ITS ANION-LIGAND COMPLEXES 2CBB ; 1.67 ; STRUCTURE OF NATIVE AND APO CARBONIC ANHYDRASE II AND SOME OF ITS ANION-LIGAND COMPLEXES 2CBC ; 1.88 ; STRUCTURE OF NATIVE AND APO CARBONIC ANHYDRASE II AND SOME OF ITS ANION-LIGAND COMPLEXES 2CBD ; 1.67 ; STRUCTURE OF NATIVE AND APO CARBONIC ANHYDRASE II AND SOME OF ITS ANION-LIGAND COMPLEXES 2CBE ; 1.82 ; STRUCTURE OF NATIVE AND APO CARBONIC ANHYDRASE II AND SOME OF ITS ANION-LIGAND COMPLEXES 6Q3G ; 3.8 ; Structure of native bacteriophage P68 2WHE ; 1.55 ; Structure of native Beta-Phosphoglucomutase in an open conformation without bound ligands. 2Y1M ; 2.67 ; Structure of native c-Cbl 1M4L ; 1.25 ; STRUCTURE OF NATIVE CARBOXYPEPTIDASE A AT 1.25 RESOLUTION 1HQ4 ; 2.7 ; STRUCTURE OF NATIVE CATALYTIC ANTIBODY HA5-19A4 3OJT ; 1.7 ; Structure of native Fe-containing Homoprotocatechuate 2,3-Dioxygenase at 1.70 Ang resolution 6TVQ ; 1.45 ; Structure of native gp41 derived peptide fusion inhibitor 6TVU ; 1.25 ; Structure of native gp41 derived peptide fusion inhibitor 6TVW ; 1.45 ; Structure of native gp41 derived peptide fusion inhibitor 5G0Z ; 2.001 ; Structure of native granulovirus polyhedrin determined using an X-ray free-electron laser 4G0B ; 3.0 ; Structure of native HCT from Coffea canephora 5F14 ; 1.148 ; Structure of native hen egg-white lysozyme 1YTQ ; 1.7 ; Structure of Native Human Beta B2 Crystallin 8OGI ; 1.547 ; Structure of native human eosinophil peroxidase 3F5N ; 3.15 ; Structure of native human neuroserpin 3JA9 ; 22.0 ; Structure of native human PCNA 4IP9 ; 2.5 ; Structure of native human serum amyloid A1 3KVE ; 2.57 ; Structure of native L-amino acid oxidase from Vipera ammodytes ammodytes: stabilization of the quaternary structure by divalent ions and structural changes in the dynamic active site 7Z53 ; 2.28 ; Structure of native leukocyte myeloperoxidase in complex with a truncated version (SPIN truncated) of the Staphyloccal Peroxidase Inhibitor SPIN from Staphylococcus aureus 7QZR ; 2.18 ; Structure of native leukocyte myeloperoxidase in complex with the Staphyloccal Peroxidase Inhibitor SPIN from Staphylococcus aureus 2XPY ; 2.73 ; Structure of Native Leukotriene A4 Hydrolase from Saccharomyces cerevisiae 1ELT ; 1.61 ; STRUCTURE OF NATIVE PANCREATIC ELASTASE FROM NORTH ATLANTIC SALMON AT 1.61 ANGSTROMS RESOLUTION 3EST ; 1.65 ; STRUCTURE OF NATIVE PORCINE PANCREATIC ELASTASE AT 1.65 ANGSTROMS RESOLUTION 1FMU ; 2.7 ; STRUCTURE OF NATIVE PROTEINASE A IN P3221 SPACE GROUP. 1FMX ; 2.61 ; STRUCTURE OF NATIVE PROTEINASE A IN THE SPACE GROUP P21 4L9B ; 1.75 ; Structure of native RBP from lactococcal phage 1358 (CsI derivative) 7ASD ; 3.5 ; Structure of native royal jelly filaments 2O6D ; 1.86 ; Structure of native rTp34 from Treponema pallidum 2O6E ; 1.9 ; Structure of native rTp34 from Treponema pallidum from zinc-soaked crystals 2VA9 ; 2.4 ; Structure of native TcAChE after a 9 seconds annealing to room temperature during the first 5 seconds of which laser irradiation at 266nm took place 2UBP ; 2.0 ; STRUCTURE OF NATIVE UREASE FROM BACILLUS PASTEURII 4GQK ; 2.36 ; Structure of Native VgrG1-ACD with ADP (no cations) 2XPZ ; 2.3 ; Structure of native yeast LTA4 hydrolase 4KJS ; 3.05 ; Structure of native YfkE 7QTQ ; 3.3 ; Structure of Native, iodinated bovine thyroglobulin solved on strepavidin affinity grids. 4BFL ; 1.64 ; Structure of natively expressed catalase HPII 1YK0 ; 2.4 ; structure of natriuretic peptide receptor-C complexed with atrial natriuretic peptide 1YK1 ; 2.9 ; structure of natriuretic peptide receptor-C complexed with brain natriuretic peptide 8DIX ; 3.3 ; Structure of NavAb L98R as a basis for the human Nav1.7 Inherited Erythromelalgia L823R mutation 7K48 ; 3.6 ; Structure of NavAb/Nav1.7-VS2A chimera trapped in the resting state by tarantula toxin m3-Huwentoxin-IV 4OXS ; 2.8 ; Structure of NavMS in complex with channel blocking compound 4P9P ; 2.91 ; Structure of NavMS in complex with channel blocking compound 4PA3 ; 3.25 ; Structure of NavMS in complex with channel blocking compound 4PA4 ; 3.02 ; Structure of NavMS in complex with channel blocking compound 4PA9 ; 3.43 ; Structure of NavMS in complex with channel blocking compound 4P30 ; 3.31 ; Structure of NavMS mutant in presence of PI1 compound 4PA7 ; 3.02 ; Structure of NavMS pore and C-terminal domain crystallised in presence of channel blocking compound 4PA6 ; 3.36 ; Structure of NavMS pore and C-terminal domain crystallised in the presence of channel blocking compound 4P2Z ; 3.08 ; Structure of NavMS T207A/F214A 4EIZ ; 2.2 ; Structure of Nb113 bound to apoDHFR 5NLU ; 1.193 ; Structure of Nb36 crystal form 1 5NLW ; 1.5 ; Structure of Nb36 crystal form 2 1XFA ; 3.1 ; Structure of NBD1 from murine CFTR- F508R mutant 1XF9 ; 2.7 ; Structure of NBD1 from murine CFTR- F508S mutant 4Q7K ; 1.8 ; Structure of NBD287 of TM287/288 4Q7L ; 2.35 ; Structure of NBD288 of TM287/288 4Q7M ; 2.3 ; Structure of NBD288-Avi of TM287/288 2JZL ; ; Structure of NcCVNH (N. CRASSA CVNH) 6VRY ; 1.4 ; Structure of NCI09 fab in complex with SIV V2 peptide 6M7D ; 2.9 ; Structure of ncleoprotein of sendai virus 5JWB ; 2.7 ; Structure of NDH2 from plasmodium falciparum in complex with NADH 5JWC ; 2.051 ; Structure of NDH2 from plasmodium falciparum in complex with RYL-552 6V1M ; 1.05 ; Structure of NDM-1 bound to QPX7728 at 1.05 A 6XBE ; 1.8 ; Structure of NDM-1 in complex with macrocycle inhibitor NDM1i-1F 6XBF ; 2.2 ; Structure of NDM-1 in complex with macrocycle inhibitor NDM1i-1G 6XCI ; 1.6 ; Structure of NDM-1 in complex with macrocycle inhibitor NDM1i-3D 6ZYQ ; 1.7 ; Structure of NDM-1 with 2-Mercaptomethyl-thiazolidine D-syn-1b 6ZYP ; 1.4 ; Structure of NDM-1 with 2-Mercaptomethyl-thiazolidine L-anti-1b 4TZB ; 2.029 ; Structure of NDM-Metallo-beta-lactamase 3FKB ; 1.65 ; Structure of NDPK H122G and tenofovir-diphosphate 1MN4 ; 2.2 ; Structure of Ndt80 (Residues 59-340) DNA-binding domain core 1ZX3 ; 2.5 ; Structure of NE0241 Protein of Unknown Function from Nitrosomonas europaea 8FWG ; 3.45 ; Structure of neck and portal vertex of Agrobacterium phage Milano, C5 symmetry 8FXR ; 4.5 ; Structure of neck with portal vertex of capsid of Agrobacterium phage Milano 7LP1 ; 1.35 ; Structure of Nedd4L WW3 domain 7LP2 ; 1.88 ; Structure of Nedd4L WW3 domain 7LP3 ; 1.61 ; Structure of Nedd4L WW3 domain 7LP4 ; ; Structure of Nedd4L WW3 domain 7LP5 ; ; Structure of Nedd4L WW3 domain 1NDD ; 1.6 ; STRUCTURE OF NEDD8 3GZN ; 3.0 ; Structure of NEDD8-activating enzyme in complex with NEDD8 and MLN4924 7ONI ; 3.4 ; Structure of Neddylated CUL5 C-terminal region-RBX2-ARIH2* 7SIN ; 5.9 ; Structure of negative allosteric modulator-bound inactive human calcium-sensing receptor 8TJG ; 1.45 ; Structure of Nei2 from Mycobacterium smegmatis in complex with Zn2+ 7TJB ; 1.30003 ; Structure of Neisseria gonorrhoeae peptidoglycan O-acetyltransferase B (PatB) 7TLV ; 1.50001 ; Structure of Neisseria gonorrhoeae peptidoglycan O-acetyltransferase B (PatB) substituted with selenomethionine 7TRR ; 1.80002 ; Structure of Neisseria gonorrhoeae peptidoglycan O-acetyltransferase B (PatB) with methylsulfonyl adduct 2YK6 ; 2.83 ; Structure of Neisseria LOS-specific sialyltransferase (NST), in complex with CDP. 2YK7 ; 2.18 ; Structure of Neisseria LOS-specific sialyltransferase (NST), in complex with CMP-3F-Neu5Ac. 2YK5 ; 2.32 ; Structure of Neisseria LOS-specific sialyltransferase (NST), in complex with CMP. 2YK4 ; 1.94 ; Structure of Neisseria LOS-specific sialyltransferase (NST). 4V1J ; 1.43 ; Structure of Neisseria meningitidis Major Pillin 2XKE ; 2.203 ; Structure of Nek2 bound to Aminipyrazine Compound 5 2XKD ; 1.96 ; Structure of Nek2 bound to aminopyrazine compound 12 2XKC ; 2.5 ; Structure of Nek2 bound to aminopyrazine compound 14 2XK8 ; 2.001 ; Structure of Nek2 bound to aminopyrazine compound 15 2XK4 ; 2.1 ; Structure of Nek2 bound to aminopyrazine compound 17 2XKF ; 2.35 ; Structure of Nek2 bound to aminopyrazine compound 2 2XK7 ; 1.992 ; Structure of Nek2 bound to aminopyrazine compound 23 2XK3 ; 2.2 ; Structure of Nek2 bound to Aminopyrazine compound 35 2XK6 ; 2.2 ; Structure of Nek2 bound to aminopyrazine compound 36 2XNM ; 1.85 ; Structure of NEK2 bound to CCT 2XNN ; 2.5 ; Structure of Nek2 bound to CCT242430 2XNO ; 1.98 ; Structure of Nek2 bound to CCT243779 2XNP ; 1.98 ; Structure of Nek2 bound to CCT244858 2WQO ; 2.167 ; STRUCTURE OF NEK2 BOUND TO THE AMINOPYRIDINE CCT241950 3LZV ; 2.15 ; Structure of Nelfinavir-resistant HIV-1 protease (D30N/N88D) in complex with Darunavir. 6MI3 ; 1.783 ; Structure of NEMO(51-112) with N- and C-terminal coiled-coil adaptors. 7WPO ; 3.5 ; Structure of NeoCOV RBD binding to Bat37 ACE2 5ZYS ; 1.78 ; Structure of Nephrin/MAGI1 complex 5OXW ; 2.61 ; Structure of NeqN from Nanoarchaeum equitans 5ZLR ; 2.001 ; Structure of NeuC 1V0Z ; 1.84 ; Structure of Neuraminidase from English duck subtype N6 1W1X ; 2.0 ; Structure of Neuraminidase from English duck subtype N6 complexed with 30 mM sialic acid (NANA, Neu5Ac), crystal soaked for 3 hours at 277 K. 1W20 ; 2.08 ; Structure of Neuraminidase from English duck subtype N6 complexed with 30 mM sialic acid (NANA, Neu5Ac), crystal soaked for 3 hours at 291 K 1W21 ; 2.08 ; Structure of Neuraminidase from English duck subtype N6 complexed with 30 mM sialic acid (NANA, Neu5Ac), crystal soaked for 43 hours at 291 K. 2CML ; 2.15 ; Structure of Neuraminidase from English Duck Subtype N6 Complexed with 30 MM ZANAMIVIR, Crystal Soaked for 3 Hours at 291 K. 7XVR ; 2.4 ; Structure of neuraminidase from influenza B-like viruses derived from spiny eel 7XVU ; 1.6 ; Structure of neuraminidase from influenza B-like viruses derived from spiny eel 7XVV ; 1.85 ; Structure of neuraminidase from influenza B-like viruses derived from spiny eel 7XVW ; 1.94 ; Structure of neuraminidase from influenza B-like viruses derived from spiny eel 2C4L ; 2.15 ; Structure of Neuraminidase Subtype N9 Complexed with 30 MM Sialic Acid (NANA, NEU5AC), Crystal Soaked for 24 Hours at 291 K and Finally Backsoaked for 30 Min in a Cryoprotectant Solution which did not contain NEU5AC 2C4A ; 2.15 ; Structure of Neuraminidase Subtype N9 Complexed with 30 MM Sialic Acid (NANA, NEU5AC), Crystal Soaked for 3 Hours at 291 K. 3QCW ; 2.65 ; Structure of neurexin 1 alpha (domains LNS1-LNS6), no splice inserts 3R05 ; 2.95 ; Structure of neurexin 1 alpha (domains LNS1-LNS6), with splice insert SS3 3N64 ; 1.95 ; Structure of neuronal nitric oxide synthase D597N mutant heme domain in complex with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N62 ; 1.95 ; Structure of neuronal nitric oxide synthase D597N mutant heme domain in complex with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N63 ; 2.0 ; Structure of neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N61 ; 1.95 ; Structure of neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3NLQ ; 2.15 ; Structure of neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with 6-{{(3'R,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLR ; 2.1 ; Structure of neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with 6-{{(3'R,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLP ; 2.02 ; Structure of neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with 6-{{(3'S,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3JX6 ; 2.35 ; Structure of neuronal nitric oxide synthase D597N/M336V/Y706A mutant heme domain complexed with N1-[(3' R,4' R)-4'-((6""-amino-4""-methylpyridin-2""-yl)methyl)pyrrolidin-3'-yl]-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3NLJ ; 2.2 ; Structure of neuronal nitric oxide synthase D597N/M336V/Y706A triple mutant heme domain complexed with 6-{{(3'R,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy] pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3JT4 ; 1.8 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-[(3-(ethylsulfanyl)propanimidoyl]-L-ornithine 3JT5 ; 2.1 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-[2-(ethylsulfanyl)ethanimidoyl]-L-ornithine 3JT3 ; 2.15 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-[2-(methylsulfanyl)ethanimidoyl]-L-ornithine 3JT7 ; 2.1 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-[2-(propylsulfanyl)ethanimidoyl]-L-ornithine 3JT6 ; 2.2 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-[4-(methylsulfanyl)butanimidoyl]-L-ornithine 3JT8 ; 1.95 ; Structure of neuronal nitric oxide synthase heme domain complexed with N~5~-{3-[(1-methylethyl)sulfanyl]propanimidoyl}-L-ornithine 4K5G ; 1.85 ; Structure of neuronal nitric oxide synthase heme domain in complex with ((2S, 3S)-1,3-bis((6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methoxy)-2-aminobutane 4K5E ; 1.892 ; Structure of neuronal nitric oxide synthase heme domain in complex with (R)-1,2-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-propan-3-amine 4K5D ; 2.096 ; Structure of neuronal nitric oxide synthase heme domain in complex with (S)-1,2-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-propan-3-amine 4K5F ; 2.2 ; Structure of neuronal nitric oxide synthase heme domain in complex with (S)-1,3-bis((2-amino-4-methylpyridin-6-yl)-methoxy)-butan-4-amine 3TYN ; 1.968 ; Structure of neuronal nitric oxide synthase heme domain in complex with 2-(((2-(((3S,4S)-4-((6-amino-4-methylpyridin-2-yl)methyl)pyrrolidin-3-yl)oxy)ethyl)amino)methyl)phenol 3N5X ; 1.8 ; Structure of neuronal nitric oxide synthase heme domain in complex with 4-(2-(5-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)ethyl)-6-methylpyridin-2-amine 3N5Z ; 2.18 ; Structure of neuronal nitric oxide synthase heme domain in complex with 4-(2-(6-(2-(6-amino-4-methylpyridin-2-yl)ethyl)pyridin-2-yl)ethyl)-6-methylpyridin-2-amine 3N5V ; 2.3 ; Structure of neuronal nitric oxide synthase heme domain in complex with 4-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl)phenethyl)-6-methylpyridin-2-amine 3N60 ; 1.98 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N5Y ; 2.05 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6,6'-(2,2'-(pyridine-2,6-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N5W ; 1.73 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N2R ; 1.9 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R/3S,4S)-4-(3-Phenoxyphenoxy)pyrrolidin-3-yl)methyl)pyridin-2-amine 3TYL ; 1.9 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(2-((2-fluorobenzyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3TYM ; 2.0 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(2-((2-methoxybenzyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3TYO ; 1.927 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(2-((furan-2-ylmethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 4EUX ; 2.14 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-(5-(((3R,4R)-4-((6-amino-4-methylpyridin-2-yl)methyl)pyrrolidin-3-yl)oxy)pentyl)-4-methylpyridin-2-amine 3NLM ; 1.85 ; Structure of neuronal nitric oxide synthase heme domain in complex with 6-{{(3'R,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 4KCJ ; 2.05 ; Structure of neuronal nitric oxide synthase heme domain in complex with N,N'-((ethane-1,2-diylbis(oxy))bis(3,1-phenylene))bis(thiophene-2-carboximidamide) 4KCI ; 2.27 ; Structure of neuronal nitric oxide synthase heme domain in complex with N,N'-(ethane-1,2-diylbis(3,1-phenylene))bis(thiophene-2-carboximidamide) 4KCH ; 2.15 ; Structure of neuronal nitric oxide synthase heme domain in complex with N,N'-([1,1'-biphenyl]-3,3'-diyl)bis(thiophene-2-carboximidamide) 4KCN ; 1.85 ; Structure of neuronal nitric oxide synthase heme domain in complex with N-(3-(((3-fluorophenethyl)amino)methyl)phenyl)thiophene-2-carboximidamide 4KCO ; 1.86 ; Structure of neuronal nitric oxide synthase heme domain in complex with N-(3-((ethyl(3-fluorophenethyl)amino)methyl)phenyl)thiophene-2-carboximidamide 4KCK ; 2.1 ; Structure of neuronal nitric oxide synthase heme domain in complex with N-(3-(2-((3-(thiophene-2-carboximidamido)benzyl)amino)ethyl)phenyl)thiophene-2-carboximidamide 4KCL ; 1.93 ; Structure of neuronal nitric oxide synthase heme domain in complex with N-(4-(2-((3-(thiophene-2-carboximidamido)benzyl)amino)ethyl)phenyl)thiophene-2-carboximidamide 4KCM ; 2.074 ; Structure of neuronal nitric oxide synthase heme domain in complex with N-(4-(2-(ethyl(3-(thiophene-2-carboximidamido)benzyl)amino)ethyl)phenyl)thiophene-2-carboximidamide 3JT9 ; 2.1 ; Structure of neuronal nitric oxide synthase heme domain in the ferrous state complexed with N~5~-[2-(ethylsulfanyl)ethanimidoyl]-L-ornithine 3JTA ; 2.18 ; Structure of neuronal nitric oxide synthase heme domain in the ferrous state complexed with N~5~-[4-(methylsulfanyl)butanimidoyl]-L-ornithine 3Q9A ; 2.24 ; Structure of neuronal nitric oxide synthase in the ferric state in complex with N-5-[2-(ethylsulfanyl)ethanimidoyl]-L-ornithine 3Q99 ; 2.15 ; Structure of neuronal nitric oxide synthase in the ferric state in complex with N~5~-[(3-(ethylsulfanyl)propanimidoyl]-L-ornithine 3JWS ; 1.95 ; Structure of neuronal nitric oxide synthase R349A mutant heme domain complexed with N1-[(3' S,4'S)-4'-((6""-amino-4""-methylpyridin-2""-yl)methyl)pyrrolidin-3'-yl]-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3NLN ; 2.0 ; Structure of neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-{{(3'R,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLO ; 2.3 ; Structure of neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-{{(3'S,4'R)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3NLK ; 2.02 ; Structure of neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-{{(3'S,4'S)-3'-[2""-(3'''-fluorophenethylamino)ethoxy]pyrrolidin-4'-yl}methyl}-4-methylpyridin-2-amine 3N66 ; 1.78 ; Structure of neuronal nitric oxide synthase S602H mutant heme domain in complex with 6,6'-(2,2'-(5-amino-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3N65 ; 1.8 ; Structure of neuronal nitric oxide synthase S602H mutant heme domain in complex with 6,6'-(2,2'-(pyridine-3,5-diyl)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 3DQR ; 2.4 ; Structure of neuronal NOS D597N/M336V mutant heme domain in complex with a inhibitor (+-)-N1-{cis-4'-[(6""-aminopyridin-2""-yl)methyl]pyrrolidin-3'-yl}ethane-1,2-diamine 3B3M ; 1.95 ; Structure of neuronal NOS heme domain in complex with a inhibitor (+-)-3-{cis-4'-[(6""-aminopyridin-2""-yl)methyl]pyrrolidin-3'-ylamino}propan-1-ol 3B3O ; 2.05 ; Structure of neuronal nos heme domain in complex with a inhibitor (+-)-n1-{cis-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-n2-(4'-chlorobenzyl)ethane-1,2-diamine 3B3P ; 2.45 ; Structure of neuronal nos heme domain in complex with a inhibitor (+-)-n1-{cis-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-n2-(4'-chlorobenzyl)ethane-1,2-diamine 3B3N ; 1.98 ; Structure of neuronal NOS heme domain in complex with a inhibitor (+-)-N1-{cis-4'-[(6""-aminopyridin-2""-yl)methyl]pyrrolidin-3'-yl}ethane-1,2-diamine 4BWK ; 3.3 ; Structure of Neurospora crassa PAN3 pseudokinase 4BWX ; 2.85 ; Structure of Neurospora crassa PAN3 pseudokinase mutant 5GZN ; 3.0 ; Structure of neutralizing antibody bound to Zika envelope protein 5GZO ; 2.755 ; Structure of neutralizing antibody bound to Zika envelope protein 7N6R ; 3.93 ; Structure of nevanimibe bound human ACAT2 6VUM ; 3.67 ; Structure of nevanimibe-bound human tetrameric ACAT1 1VER ; 2.82 ; Structure of New Antigen Receptor variable domain from sharks 1VES ; 2.18 ; Structure of New Antigen Receptor variable domain from sharks 2COQ ; 2.1 ; Structure of new antigen receptor variable domain from sharks 2YWY ; 2.71 ; Structure of new antigen receptor variable domain from sharks 2YWZ ; 2.21 ; Structure of new antigen receptor variable domain from sharks 3ZR9 ; 1.91 ; Structure of New Delhi Metallo-Beta-lactamase 1 (NDM-1) 5WIH ; 1.35 ; Structure of New Delhi Metallo-Beta-lactamase 12 (NDM-12) 5WIG ; 1.4 ; Structure of New Delhi Metallo-Beta-lactamase 4 (NDM-4) 6Y5Y ; 1.8 ; Structure of New Jersey Polyomavirus VP1 in complex with 3'-Sialyllactose 1BFS ; 2.2 ; STRUCTURE OF NF-KB P50 HOMODIMER BOUND TO A KB SITE 1BFT ; 2.0 ; STRUCTURE OF NF-KB P50 HOMODIMER BOUND TO A KB SITE 7VUP ; 3.4 ; Structure of NF-kB p52 homodimer bound to +1/-1 swap P-Selectin kB DNA fragment 7W7L ; 3.0 ; Structure of NF-kB p52 homodimer bound to 13-mer A/T-centric P-Selectin kB DNA fragment 7VUQ ; 3.1 ; Structure of NF-kB p52 homodimer bound to A/T-centric P-Selectin kB DNA fragment 7CLI ; 3.0 ; Structure of NF-kB p52 homodimer bound to P-Selectin kB DNA fragment 2I9T ; 2.8 ; Structure of NF-kB p65-p50 heterodimer bound to PRDII element of B-interferon promoter 1P7H ; 2.6 ; Structure of NFAT1 bound as a dimer to the HIV-1 LTR kB element 3N2S ; 1.95 ; Structure of NfrA1 nitroreductase from B. subtilis 4I49 ; 2.75 ; Structure of ngNAGS bound with bisubstrate analog CoA-NAG 6VJN ; 2.0 ; Structure of NHP D11A.B5Fab in complex with 16055 V2b peptide 6XLZ ; 2.8 ; Structure of NHP D11A.F2 Fab in complex with 16055 V2b peptide 8IY9 ; 3.37 ; Structure of Niacin-GPR109A-G protein complex 7RKK ; 2.76 ; Structure of Nicotinamide N-Methyltransferase (NNMT) in complex with II399 (C2 space group) 7RKL ; 2.08 ; Structure of Nicotinamide N-Methyltransferase (NNMT) in complex with II399 (P1 space group) 7SOK ; 2.08 ; Structure of Nicotinamide N-Methyltransferase (NNMT) in complex with inhibitor II329 6PVE ; 2.3 ; Structure of Nicotinamide N-Methyltransferase (NNMT) in complex with inhibitor LL319 6PVS ; 2.575 ; Structure of Nicotinamide N-Methyltransferase (NNMT) in complex with inhibitor LL320 3U7Y ; 2.4478 ; Structure of NIH45-46 Fab in complex with gp120 of 93TH057 HIV 1M7Z ; 2.14 ; Structure of Nitric Oxide Synthase Heme Protein from Bacillus Subtilis with N-Hydroxy-Arginine and Tetrahydrofolate Bound 6HNS ; 1.84 ; Structure of Nitrincola lacisaponensis flavin-containing monooxygenase (FMO) in complex with FAD and NADP+ 1AS6 ; 1.8 ; STRUCTURE OF NITRITE BOUND TO OXIDIZED ALCALIGENES FAECALIS NITRITE REDUCTASE AT CRYO TEMPERATURE 1AS8 ; 1.85 ; STRUCTURE OF NITRITE BOUND TO REDUCED ALCALIGENES FAECALIS NITRITE REDUCTASE AT CRYO TEMPERATURE 7B04 ; 2.97 ; Structure of Nitrite oxidoreductase (Nxr) from the anammox bacterium Kuenenia stuttgartiensis. 5UE6 ; 2.35 ; Structure of nitrite reductase AniA from Neisseria gonorrhoeae, space group I4122 5TB7 ; 1.9 ; Structure of nitrite reductase AniA from Neisseria gonorrhoeae, space group P212121 1MWS ; 2.0 ; Structure of nitrocefin acyl-Penicillin binding protein 2a from methicillin resistant Staphylococcus aureus strain 27r at 2.00 A resolution. 1KQD ; 1.9 ; Structure of Nitroreductase from E. cloacae Bound with 2e-Reduced Flavin Mononucleotide (FMN) 1KQC ; 1.8 ; Structure of Nitroreductase from E. cloacae Complex with Inhibitor Acetate 1KQB ; 1.8 ; Structure of Nitroreductase from E. cloacae complex with inhibitor benzoate 5J8D ; 1.85 ; Structure of nitroreductase from E. cloacae complexed with nicotinic acid adenine dinucleotide 5J8G ; 1.9 ; Structure of nitroreductase from E. cloacae complexed with para-nitrobenzoic acid 2PTU ; 2.38 ; Structure of NK cell receptor 2B4 (CD244) 2PTT ; 1.63 ; Structure of NK cell receptor 2B4 (CD244) bound to its ligand CD48 3FF9 ; 1.8 ; Structure of NK cell receptor KLRG1 3FF7 ; 1.8 ; Structure of NK cell receptor KLRG1 bound to E-cadherin 3FF8 ; 2.0 ; Structure of NK cell receptor KLRG1 bound to E-cadherin 2PTV ; 1.66 ; Structure of NK cell receptor ligand CD48 6NPH ; 2.9 ; Structure of NKCC1 TM domain 3CII ; 4.41 ; Structure of NKG2A/CD94 bound to HLA-E 7FC3 ; 3.19 ; structure of NL63 receptor-binding domain complexed with horse ACE2 6BIM ; 1.547 ; Structure of NlpC1 from Trichomonas vaginalis 6BIO ; 1.2 ; Structure of NlpC1 from Trichomonas vaginalis 6BIQ ; 2.3 ; Structure of NlpC2 from Trichomonas vaginalis 6K8J ; 3.3 ; Structure of NLRC4 CARD filament 6K7V ; 3.7 ; Structure of NLRP1 CARD filament 8SXN ; 4.04 ; Structure of NLRP3 and NEK7 complex 5V5O ; 2.243 ; Structure of NLS2K of influenza A virus nucleoprotein bound to importin alpha 5V5P ; 2.15 ; Structure of NLS2R of influenza A virus nucleoprotein bound to importin alpha 5UI4 ; 2.75 ; Structure of NME1 covalently conjugated to imidazole fluorosulfate 2KT2 ; ; Structure of NmerA, the N-terminal HMA domain of Tn501 Mercuric Reductase 3FIU ; 1.85 ; Structure of NMN synthetase from Francisella tularensis 2OLX ; 1.42 ; Structure of NNQQ Peptide from Yeast Prion SUP35 3CAE ; 3.0 ; Structure of NNQQNY as an insert in T7 endonuclease I 5K2F ; 1.0 ; Structure of NNQQNY from yeast prion Sup35 with cadmium acetate determined by MicroED 1YJO ; 1.3 ; Structure of NNQQNY from yeast prion Sup35 with zinc acetate 5K2E ; 1.0 ; Structure of NNQQNY from yeast prion Sup35 with zinc acetate determined by MicroED 4GCT ; 2.45 ; structure of No factor protein-DNA complex 4GCK ; 2.05 ; structure of no-dna complex 4GCL ; 2.65 ; structure of no-dna factor 5NU6 ; 1.68 ; Structure of non-fluorescent human amniotic fluid RBP4 5NTY ; 2.0 ; Structure of non-fluorescent human plasma RBP4 5NU2 ; 1.5 ; Structure of non-fluorescent human urine RBP4 6XJJ ; 2.7 ; Structure of non-heme iron enzyme TropC: Radical tropolone biosynthesis 7UTT ; 2.04 ; Structure of Non-hydrolyzable ATP (ApCpp) binds to Cyclic GMP AMP synthase (cGAS) through Mn coordination 3ISF ; 2.07 ; Structure of non-mineralized Bfrb (as-isolated) from Pseudomonas aeruginosa to 2.07A Resolution 4IZ7 ; 1.8 ; Structure of Non-Phosphorylated ERK2 bound to the PEA-15 Death Effector Domain 1DUW ; 1.89 ; STRUCTURE OF NONAHEME CYTOCHROME C 7BWQ ; 2.954 ; Structure of nonstructural protein Nsp9 from SARS-CoV-2 5WTX ; 3.074 ; Structure of Nop9 5WTY ; 2.785 ; Structure of Nop9 RNA complex 8OI3 ; 1.5 ; Structure of NopD with AtSUMO2 7D5Q ; 3.6 ; Structure of NorC transporter (K398A mutant) in an outward-open conformation in complex with a single-chain Indian camelid antibody 7D5P ; 3.65 ; Structure of NorC transporter in an outward-open conformation in complex with a single-chain Indian camelid antibody 8U1W ; 1.84 ; Structure of Norovirus (Hu/GII.4/Sydney/NSW0514/2012/AU) protease bound to inhibitor NV-004 8U1V ; 2.79 ; Structure of Norovirus (Hu/GII.4/Sydney/NSW0514/2012/AU) protease in the ligand-free state 8FY4 ; 2.57 ; Structure of NOT1:NOT10:NOT11 module of the chicken CCR4-NOT complex 8FY3 ; 2.88 ; Structure of NOT1:NOT10:NOT11 module of the human CCR4-NOT complex 6YXI ; 1.34 ; Structure of Notum in complex with a 1-(3-Chlorophenyl)-2,5-dimethyl-1H-pyrrole-3-carboxylic acid inhibitor 6LZG ; 2.5 ; Structure of novel coronavirus spike receptor-binding domain complexed with its receptor ACE2 4HCS ; 1.28 ; Structure of Novel subfamily CX chemokine solved by sulfur SAD 2NX6 ; ; Structure of NOWA cysteine rich domain 6 2NX7 ; ; Structure of NOWA cysteine rich domain 8 3R3L ; 2.449 ; Structure of NP protein from Lassa AV strain 2J8I ; 2.1 ; Structure of NP275, a pentapeptide repeat protein from Nostoc punctiforme 1TT4 ; 2.801 ; Structure of NP459575, a predicted glutathione synthase from Salmonella typhimurium 6V3F ; 3.7 ; Structure of NPC1-like intracellular cholesterol transporter 1 (NPC1L1) 6V3H ; 3.5 ; Structure of NPC1-like intracellular cholesterol transporter 1 (NPC1L1) in complex with an ezetimibe analog 8V14 ; 1.9 ; Structure of NRAP-1 and its role in NMDAR signaling 6GC3 ; ; Structure of Nrd1 CID - Sen1 NIM complex 2LO6 ; ; Structure of Nrd1 CID bound to phosphorylated RNAP II CTD 5O1W ; 2.3 ; Structure of Nrd1 RNA binding domain 5O1X ; 1.6 ; Structure of Nrd1 RNA binding domain 5O1Z ; 3.4 ; Structure of Nrd1 RNA binding domain in complex with RNA (CGUAAA) 5O1Y ; 2.45 ; Structure of Nrd1 RNA binding domain in complex with RNA (GUAA) 5O20 ; 3.53 ; Structure of Nrd1 RNA binding domain in complex with RNA (UUAGUAAUCC) 2MOW ; ; Structure of Nrd1p CID - Trf4p NIM complex 3EE8 ; 2.6 ; Structure of NS1 effector domain 3EE9 ; 2.14 ; Structure of NS1 effector domain 6LEN ; 2.383 ; Structure of NS11 bound FEM1C 2MKB ; ; Structure of NS2(113-137) GBVB protein 2LZP ; ; Structure of NS2(2-32) GBVB protein 2LZQ ; ; Structure of NS2(32-57) GBVB protein 5GJ4 ; 1.839 ; Structure of NS2B-NS3 Protease from Zika Virus caught after self-cleavage 2OC0 ; 2.3 ; Structure of NS3 complexed with a ketoamide inhibitor SCh491762 5WDX ; 2.23 ; Structure of NS3 from HCV strain JFH-1 that is an unusually robust helicase that is primed to bind and unwind viral RNA 5KQR ; 1.331 ; Structure of NS5 methyltransferase from Zika virus bound to S-adenosylmethionine 5KQS ; 1.5 ; Structure of NS5 methyltransferase from Zika virus bound to S-adenosylmethionine and 7-methyl-guanosine-5'-diphosphate 7QUJ ; 1.85 ; Structure of NsNEPS2, a 7S-cis-trans nepetalactone synthase 7R2V ; 2.53 ; Structure of nsp14 from SARS-CoV-2 in complex with SAH 7TW8 ; 1.55 ; Structure of nsp14 N7-MethylTransferase domain fused with TELSAM bound to SAH 7TW7 ; 1.62 ; Structure of nsp14 N7-MethylTransferase domain fused with TELSAM bound to SAM 8FRJ ; 1.57 ; Structure of nsp14 N7-MethylTransferase domain fused with TELSAM bound to SGC0946 8FRK ; 1.61 ; Structure of nsp14 N7-MethylTransferase domain fused with TELSAM bound to SGC8158 7TW9 ; 1.41 ; Structure of nsp14 N7-MethylTransferase domain fused with TELSAM bound to Sinefungin 4Z6G ; 2.654 ; Structure of NT domain 2NXP ; 2.17 ; Structure of NTD2 domain of the human TAF5 subunit of TFIID 2DVP ; 1.9 ; Structure of NTPase from Pyroccous horikoshii 7L0Q ; 4.3 ; Structure of NTS-NTSR1-Gi complex in lipid nanodisc, canonical state, with AHD 7L0P ; 4.1 ; Structure of NTS-NTSR1-Gi complex in lipid nanodisc, canonical state, without AHD 7L0S ; 4.5 ; Structure of NTS-NTSR1-Gi complex in lipid nanodisc, noncanonical state, with AHD 7L0R ; 4.2 ; Structure of NTS-NTSR1-Gi complex in lipid nanodisc, noncanonical state, without AHD 3RW6 ; 2.3 ; Structure of nuclear RNA export factor TAP bound to CTE RNA 1ZO2 ; 1.6 ; Structure of nuclear transport factor 2 (Ntf2) from Cryptosporidium parvum 6USM ; 3.37 ; Structure of nuclease domain of human parvovirus B19 non-structural protein 1 in complex with zinc 5XBL ; 3.052 ; Structure of nuclease in complex with associated protein 2Q2K ; 3.0 ; Structure of nucleic-acid binding protein 2QX5 ; 2.5 ; Structure of nucleoporin Nic96 1KDN ; 2.0 ; STRUCTURE OF NUCLEOSIDE DIPHOSPHATE KINASE 4HR2 ; 1.95 ; Structure of nucleoside diphosphate kinase (NDK) from Burkholderia thailandensis bound to ADP 1S59 ; 2.6 ; Structure of nucleoside diphosphate kinase 2 with bound dGTP from Arabidopsis 1B4S ; 2.5 ; STRUCTURE OF NUCLEOSIDE DIPHOSPHATE KINASE H122G MUTANT 8Q3M ; 2.503 ; Structure of Nucleosome Core with a Bound Kaposi Sarcoma Associated Herpesvirus LANA Peptide Having a Methionine to Ornithine Substitution 8Q36 ; 2.604 ; Structure of Nucleosome Core with a Bound Metallopeptide Conjugate (Foamy Virus GAG Peptide-Au[I] Compound) 8Q3X ; 2.301 ; Structure of Nucleosome Core with a Bound Metallopeptide Conjugate (Kaposi Sarcoma Associated Herpesvirus LANA Peptide-Au[I] Compound) 7XFH ; 2.9 ; Structure of nucleosome-AAG complex (A-30I, post-catalytic state) 7XFL ; 2.8 ; Structure of nucleosome-AAG complex (A-53I, free state) 7XFM ; 3.1 ; Structure of nucleosome-AAG complex (A-53I, post-catalytic state) 7XNP ; 2.9 ; Structure of nucleosome-AAG complex (A-55I, post-catalytic state) 7XFJ ; 3.0 ; Structure of nucleosome-AAG complex (T-50I, post-catalytic state) 6LTJ ; 3.7 ; Structure of nucleosome-bound human BAF complex 8G57 ; 3.07 ; Structure of nucleosome-bound Sirtuin 6 deacetylase 8X19 ; 3.2 ; Structure of nucleosome-bound SRCAP-C in the ADP-BeFx-bound state 8X1C ; 3.2 ; Structure of nucleosome-bound SRCAP-C in the ADP-bound state 8X15 ; 3.2 ; Structure of nucleosome-bound SRCAP-C in the apo state 5O9G ; 4.8 ; Structure of nucleosome-Chd1 complex 7XFC ; 2.9 ; Structure of nucleosome-DI complex (-30I, Apo state) 7XFI ; 2.9 ; Structure of nucleosome-DI complex (-50I, Apo state) 7XFN ; 2.8 ; Structure of nucleosome-DI complex (-55I, Apo state) 6GFA ; 2.0 ; Structure of Nucleotide binding domain of HSP110, ATP and Mg2+ complexed 1V7R ; 1.4 ; Structure of nucleotide triphosphate pyrophosphatase from pyrococcus horikoshii OT3 2E5X ; 2.0 ; Structure of nucleotide triphosphate pyrophosphatase from pyrococcus horikoshii OT3 6S8F ; 4.0 ; Structure of nucleotide-bound Tel1/ATM 8UYF ; 2.75 ; Structure of nucleotide-free Pediculus humanus (Ph) PINK1 dimer 1SR6 ; 2.75 ; Structure of nucleotide-free scallop myosin S1 1GUP ; 1.8 ; STRUCTURE OF NUCLEOTIDYLTRANSFERASE COMPLEXED WITH UDP-GALACTOSE 1GUQ ; 1.8 ; STRUCTURE OF NUCLEOTIDYLTRANSFERASE COMPLEXED WITH UDP-GLUCOSE 5LPG ; 1.7 ; Structure of NUDT15 in complex with 6-thio-GMP 7B7V ; 1.6 ; Structure of NUDT15 in complex with Acyclovir monophosphate 7AOM ; 1.95 ; Structure of NUDT15 in complex with Ganciclovir triphosphate 7R0D ; 1.7 ; Structure of NUDT15 in complex with Geranyl monophosphate 6T5J ; 1.6 ; Structure of NUDT15 in complex with inhibitor TH1760 7AOP ; 2.35 ; Structure of NUDT15 in complex with inhibitor TH8321 7NR6 ; 1.8 ; Structure of NUDT15 in complex with NSC56456 7B63 ; 1.6 ; Structure of NUDT15 in complex with TH7755 7B65 ; 1.6 ; Structure of NUDT15 R139C Mutant in complex with TH7755 7B66 ; 1.6 ; Structure of NUDT15 R139H Mutant in complex with TH7755 7B64 ; 1.5 ; Structure of NUDT15 V18I Mutant in complex with TH7755 7B67 ; 1.45 ; Structure of NUDT15 V18_V19insGV Mutant in complex with TH7755 1QVJ ; 1.91 ; structure of NUDT9 complexed with ribose-5-phosphate 3F7F ; 2.6 ; Structure of Nup120 3H7N ; 3.0 ; Structure of Nup120 2OSZ ; 2.85 ; Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding 6LUO ; 2.302 ; Structure of nurse shark beta-2-microglobulin 7JOQ ; 3.95 ; Structure of NV1 small terminase 5HZN ; 2.2 ; Structure of NVP-AEW541 in complex with IGF-1R kinase 5I1Z ; 1.6 ; Structure of nvPizza2-H16S58 2JC3 ; 2.3 ; Structure of O-Acetylserine Sulfhydrylase B from Salmonella Typhimurium 3IQI ; 1.7 ; Structure of O-Acetylserine Sulfhydrylase in Complex with Peptide MNENI 3IQG ; 1.9 ; Structure of O-Acetylserine Sulfhydrylase in Complex with Peptide MNWNI 3IQH ; 1.9 ; Structure of O-Acetylserine Sulfhydrylase in Complex with Peptide MNYDI 2RR2 ; ; Structure of O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor 4HQI ; 1.7 ; Structure of O6-Benzyl-2'-deoxyguanosine opposite perimidinone-derived synthetic nucleoside in DNA duplex 5H0I ; 2.56 ; Structure of OaAEP1 asparaginyl peptide ligase in its proenzyme form 5M04 ; 1.85 ; Structure of ObgE from Escherichia coli 7NZA ; 1.199 ; Structure of OBP1 from Varroa destructor, form P2<1> 7NYJ ; 1.81 ; Structure of OBP1 from Varroa destructor, form P3<2>21 4Z45 ; 2.02 ; Structure of OBP3 from the currant-lettuce aphid Nasonovia ribisnigri 4Z39 ; 1.3 ; Structure of OBP3 from the vetch aphid Megoura viciae 7SB3 ; 3.3 ; Structure of OC43 spike in complex with polyclonal Fab1 (Donor 269) 7SB4 ; 4.7 ; Structure of OC43 spike in complex with polyclonal Fab2 (Donor 1412) 7SB5 ; 4.2 ; Structure of OC43 spike in complex with polyclonal Fab3 (Donor 1412) 7SBV ; 3.1 ; Structure of OC43 spike in complex with polyclonal Fab4 (Donor 269) 7SBW ; 3.2 ; Structure of OC43 spike in complex with polyclonal Fab5 (Donor 1051) 7SBX ; 3.0 ; Structure of OC43 spike in complex with polyclonal Fab6 (Donor 1051) 7SBY ; 3.0 ; Structure of OC43 spike in complex with polyclonal Fab7 (Donor 269) 4FB0 ; 3.22 ; Structure of Oceanobacillus iheyensis group II intron C377G mutant in a ligand-free state in the presence of K+ and Mg2+ 6T3K ; 3.44 ; Structure of Oceanobacillus iheyensis group II intron G-mutant (C289G/C358G/G385C) in the presence of K+, Mg2+ and 5'-exon 6T3N ; 3.22 ; Structure of Oceanobacillus iheyensis group II intron G-mutant (C289G/C358G/G385C) in the presence of Na+, Mg2+ and 5'-exon 4E8R ; 3.36 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of Cs+ and Mg2+ 4E8V ; 3.995 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of K+ and Ba2+ 4E8M ; 3.5 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of K+ and Mg2+ 4FAX ; 3.1 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of Na+ and Mg2+ 4E8N ; 2.96 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of NH4+ and Mg2+ 4E8P ; 3.28 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of Rb+ and Mg2+ 4E8Q ; 2.84 ; Structure of Oceanobacillus iheyensis group II intron in a ligand-free state in the presence of Tl+ and Mg2+ 4FAQ ; 3.11 ; Structure of Oceanobacillus iheyensis group II intron in the presence of K+, Ca2+ and 5'-exon 4E8K ; 3.03 ; Structure of Oceanobacillus iheyensis group II intron in the presence of K+, Ca2+ and a non-hydrolyzed oligonucleotide substrate 4E8T ; 3.34 ; Structure of Oceanobacillus iheyensis group II intron in the presence of K+, Ca2+ and an oligonucleotide fragment substrate (low energy dataset) 4FAR ; 2.86 ; Structure of Oceanobacillus iheyensis group II intron in the presence of K+, Mg2+ and 5'-exon 4FAW ; 2.7 ; Structure of Oceanobacillus iheyensis group II intron in the presence of K+, Mg2+ and a hydrolyzed oligonucleotide fragment 4FAU ; 2.87 ; Structure of Oceanobacillus iheyensis group II intron in the presence of Li+, Mg2+ and 5'-exon 6T3R ; 3.57 ; Structure of Oceanobacillus iheyensis group II intron U-mutant (C289U/C358U/G385A) in the presence of K+, Mg2+ and 5'-exon 6T3S ; 3.28 ; Structure of Oceanobacillus iheyensis group II intron U-mutant (C289U/C358U/G385A) in the presence of Na+, Mg2+ and 5'-exon 7YTH ; 1.93 ; Structure of OCPx1 from Nostoc flagelliforme CCNUN1 7YTF ; 2.65 ; Structure of OCPx2 from Nostoc flagelliforme CCNUN1 1S7Z ; 1.83 ; Structure of Ocr from Bacteriophage T7 7QDI ; 2.34 ; Structure of octameric left-handed 310-helix bundle: D-310HD 3IQD ; 2.8 ; Structure of Octopine-dehydrogenase in complex with NADH and Agmatine 5NGH ; 2.8 ; Structure of Odorant Binding Protein 3 from Giant Panda (Ailuropoda melanoleuca) 4WOH ; 1.34 ; Structure of of human dual-specificity phosphatase 22 (E24A/K28A/K30A/C88S) complexed with 4-nitrophenolphosphate 1Q5X ; 2.0 ; Structure of OF RRAA (MENG), a protein inhibitor of RNA processing 2O70 ; 1.8 ; Structure of OHCU decarboxylase from zebrafish 2O73 ; 1.8 ; Structure of OHCU decarboxylase in complex with allantoin 2O74 ; 1.8 ; Structure of OHCU decarboxylase in complex with guanine 7XPW ; 1.77 ; Structure of OhTRP14 3ODH ; 2.3 ; Structure of OkrAI/DNA complex 4UIR ; 2.75 ; Structure of oleate hydratase from Elizabethkingia meningoseptica 1B05 ; 2.0 ; Structure of oligo-peptide binding protein complexed with LYS-CYS-LYS 3SDM ; 6.6 ; Structure of oligomeric kinase/RNase Ire1 in complex with an oligonucleotide 1XCS ; 1.4 ; structure of oligonucleotide/drug complex 2XE4 ; 1.65 ; Structure of Oligopeptidase B from Leishmania major 4X7S ; 1.9 ; Structure of omalizumab Fab fragment crystal form 1 4X7T ; 3.0 ; Structure of Omalizumab Fab fragment, crystal form 2 6U97 ; 1.13 ; Structure of OmcF_H47I mutant 5ZNU ; ; Structure of omega conotoxin Bu8 5I50 ; 2.701 ; Structure of OmoMYC bound to double-stranded DNA 2ZLD ; 3.0 ; Structure of OmpF co-crystallized with T83 4D5U ; 3.5 ; Structure of OmpF in I2 2ZFG ; 1.59 ; Structure of OMPF PORIN 3K1B ; 4.39 ; Structure of OmpF porin 7FDY ; 3.1 ; Structure of OmpF1 7FF7 ; 3.38 ; Structure of OmpF2 8PYZ ; 2.7 ; Structure of Ompk36GD from Klebsiella pneumonia, solved at wavelength 4.13 A 1TU7 ; 1.5 ; Structure of Onchocerca Volvulus Pi-class Glutathione S-transferase 1TU8 ; 1.8 ; STructure of Onchoverca volvulus Pi-class Glutathione S-transferase with its kompetitive inhibitor s-hexyl-GSH 1OMD ; 1.85 ; STRUCTURE OF ONCOMODULIN REFINED AT 1.85 ANGSTROMS RESOLUTION. AN EXAMPLE OF EXTENSIVE MOLECULAR AGGREGATION VIA CA2+ 3A3X ; 1.7 ; Structure of OpdA mutant (G60A/A80V/R118Q/K185R/Q206P/D208G/I260T/G273S) 3A3W ; 1.85 ; Structure of OpdA mutant (G60A/A80V/S92A/R118Q/K185R/Q206P/D208G/I260T/G273S) with diethyl 4-methoxyphenyl phosphate bound in the active site 3OQE ; 1.9 ; Structure of OpdA mutant Y257F 3OOD ; 1.89 ; Structure of OpdA Y257F mutant soaked with diethyl 4-methoxyphenyl phosphate for 20 hours. 6JMX ; 1.859 ; Structure of open form of peptidoglycan peptidase 8DMO ; 3.9 ; Structure of open, inward-facing MsbA from E. coli 1RKM ; 2.4 ; STRUCTURE OF OPPA 2RKM ; 1.8 ; STRUCTURE OF OPPA COMPLEXED WITH LYS-LYS 6LBG ; 2.51 ; Structure of OR51B2 bound FEM1C 4XB5 ; 1.9 ; Structure of orange carotenoid protein binding canthaxanthin 7ZSF ; 1.36 ; Structure of Orange Carotenoid Protein with canthaxanthin bound 7ZSG ; 1.39 ; Structure of Orange Carotenoid Protein with canthaxanthin bound after 1 minute of illumination 7ZSJ ; 1.41 ; Structure of Orange Carotenoid Protein with canthaxanthin bound after 10 minutes of illumination 7ZSH ; 1.42 ; Structure of Orange Carotenoid Protein with canthaxanthin bound after 2 minutes of illumination 7ZSI ; 1.399 ; Structure of Orange Carotenoid Protein with canthaxanthin bound after 5 minutes of illumination 2H36 ; 2.95 ; Structure of ORF14 from Sulfolobus Islandicus Filamentous Virus (SIFV) 3II2 ; 2.0 ; Structure of ORF157 from Acidianus Filamentous Virus 1 3II3 ; 2.7 ; Structure of ORF157 from Acidianus filamentous Virus 1 3ILD ; 3.1 ; Structure of ORF157-K57A from Acidianus filamentous virus 1 5IPX ; 2.4 ; Structure of ORF49 from KSHV 6EKV ; 2.1 ; Structure of OrfX2 from Clostridium botulinum A2 4KA8 ; 1.9 ; Structure of Organellar OligoPeptidase 4KA7 ; 1.8 ; Structure of Organellar OligoPeptidase (E572Q) in complex with an endogenous substrate 2BYL ; 2.15 ; Structure of ornithine aminotransferase triple mutant Y85I Y55A G320F 4AMU ; 2.5 ; Structure of ornithine carbamoyltransferase from Mycoplasma penetrans with a P321 space group 1EIX ; 2.5 ; STRUCTURE OF OROTIDINE 5'-MONOPHOSPHATE DECARBOXYLASE FROM E. COLI, CO-CRYSTALLISED WITH THE INHIBITOR BMP 5Z2N ; 2.14 ; Structure of Orp1L N-terminal Domain 5Z2M ; 2.142 ; Structure of Orp1L/Rab7 complex 8TL1 ; 3.16 ; Structure of Orthoreovirus RNA Chaperone SigmaNS N17 8TKA ; 3.0 ; Structure of Orthoreovirus RNA Chaperone SigmaNS R6A mutant 8TL8 ; 3.2 ; Structure of Orthoreovirus RNA Chaperone SigmaNS R6A mutant in complex with bile acid 3F7A ; 4.308 ; Structure of Orthorhombic crystal form of Pseudomonas aeruginosa RssB 2WG7 ; 2.0 ; Structure of Oryza Sativa (Rice) PLA2 2WG9 ; 2.0 ; Structure of Oryza Sativa (Rice) PLA2, complex with octanoic acid 2WG8 ; 2.3 ; Structure of Oryza Sativa (Rice) PLA2, orthorhombic crystal form 3W94 ; 2.002 ; Structure of Oryzias latipes enteropeptidase light chain 4FES ; 2.0 ; Structure of OSH4 in complex with cholesterol analogs 4F4B ; 1.87 ; Structure of OSH4 with a cholesterol analog 3SPW ; 2.6 ; Structure of Osh4p/Kes1p in complex with phosphatidylinositol 4-phosphate 4B2Z ; 1.95 ; Structure of Osh6 in complex with phosphatidylserine 4PH7 ; 2.55 ; Structure of Osh6p in complex with phosphatidylinositol 4-phosphate 2D7V ; 1.97 ; Structure of OsmC-like Protein of Unknown Function VCA0330 from Vibrio cholerae O1 biovar eltor str. N16961 1UKK ; 1.6 ; Structure of Osmotically Inducible Protein C from Thermus thermophilus 8EFX ; 1.85 ; Structure of OtDUB DUB Domain disulfide crosslinked with Ubiquitin 1TFF ; 2.1 ; Structure of Otubain-2 4BOP ; 2.1 ; Structure of OTUD1 OTU domain 4BOQ ; 1.47 ; Structure of OTUD2 OTU domain 4BOZ ; 3.03 ; Structure of OTUD2 OTU domain in complex with K11-linked di ubiquitin 4BOS ; 2.35 ; Structure of OTUD2 OTU domain in complex with Ubiquitin K11-linked peptide 4BOU ; 1.55 ; Structure of OTUD3 OTU domain 5OE7 ; 2.95 ; Structure of OTULIN bound to the Met1-linked diubiquitin activity probe 7K5B ; 4.5 ; Structure of outer-arm dynein bound to microtubule doublet in microtubule binding state 2 (MTBS-2) 7K58 ; 4.0 ; Structure of outer-arm dyneins bound to microtubule with microtubule binding state 1(MTBS-1) 6KGA ; 3.3 ; Structure of Ovalbumin from Emu (Dromaius novaehollandiae) 3BY4 ; 1.55 ; Structure of Ovarian Tumor (OTU) domain in complex with Ubiquitin 3C0R ; 2.315 ; Structure of Ovarian Tumor (OTU) domain in complex with Ubiquitin 5D22 ; 1.994 ; Structure of ovine granulocyte-macrophage colony-stimulating factor 5ORF ; 2.54 ; Structure of ovine serum albumin in P1 space group 6S59 ; 3.7 ; Structure of ovine transhydrogenase in the apo state 6QTI ; 2.9 ; Structure of ovine transhydrogenase in the presence of NADP+ in a ""double face-down"" conformation 6QUE ; 3.7 ; Structure of ovine transhydrogenase in the presence of NADP+ in a ""single face-down"" conformation 4JF5 ; 1.15 ; Structure of OXA-23 at pH 4.1 4JF6 ; 2.5 ; Structure of OXA-23 at pH 7.0 6V1O ; 1.8 ; Structure of OXA-48 bound to QPX7728 at 1.80 A 4ZDX ; 2.001 ; Structure of OXA-51 beta-lactamase 1E4D ; 1.8 ; Structure of OXA10 beta-lactamase at pH 8.3 5VG3 ; 1.451 ; Structure of Oxalate Decarboxylase from Bacillus subtilis at pH 4.6 1B7Z ; 2.7 ; STRUCTURE OF OXALATE SUBSTITUTED DIFERRIC MARE LACTOFERRIN FROM COLOSTRUM 3M0J ; 1.55 ; Structure of oxaloacetate acetylhydrolase in complex with the inhibitor 3,3-difluorooxalacetate 3M0K ; 1.65 ; Structure of oxaloacetate acetylhydrolase in complex with the product oxalate 5LGX ; 1.5 ; Structure of Oxidised Pentaerythritol Tetranitrate Reductase 2CE0 ; 1.24 ; Structure of oxidized Arabidopsis thaliana cytochrome 6A 2OAN ; 2.606 ; Structure of oxidized beta-actin 7TIE ; 1.9 ; Structure of oxidized bovine cytochrome c oxidase at 1.90 Angstrom resolution obtained by synchrotron X-rays 7TIH ; 2.35 ; Structure of oxidized bovine cytochrome c oxidase with reduced metal centers induced by synchrotron X-ray exposure 1XLP ; 2.0 ; Structure of oxidized C73S putidaredoxin from Pseudomonas putida 4H6Q ; 1.359 ; Structure of oxidized Deinococcus radiodurans proline dehydrogenase complexed with L-tetrahydrofuroic acid 2N3B ; ; Structure of oxidized horse heart cytochrome c encapsulated in reverse micelles 3RYM ; 1.7039 ; Structure of Oxidized M98K mutant of Amicyanin 3IE9 ; 2.1 ; Structure of oxidized M98L mutant of amicyanin 2PFB ; 1.93 ; Structure of oxidized OhrR from Xanthamonas campestris 3PLY ; 2.2 ; Structure of Oxidized P96G Mutant of Amicyanin 1DW0 ; 1.82 ; STRUCTURE OF OXIDIZED SHP, AN OXYGEN BINDING CYTOCHROME C 6X0I ; 1.95 ; Structure of oxidized SidA ornithine hydroxylase with the FAD ""in"" and complexed with NADP 6X0H ; 2.087 ; Structure of oxidized SidA ornithine hydroxylase with the FAD in the ""out"" conformation 1SF5 ; 1.1 ; Structure of oxidized state of the P94A mutant of amicyanin 5F3R ; 2.04 ; Structure of oxidized UDP-galactopyranose mutase from Mycobacterium smegmatis in complex with magnesium ion 5ER9 ; 1.689 ; Structure of oxidized UDP-galactopyranose mutase from Mycobacterium smegmatis in complex with UDP in mixed conformation and closed form 5EQD ; 1.83 ; Structure of oxidized UDP-galactopyranose mutase from Mycobacterium smegmatis in complex with UDP in opened and closed form 6OP7 ; 1.37 ; Structure of oxidized VIM-20 4P5R ; 1.09 ; Structure of oxidized W45Y mutant of amicyanin 1SPU ; 2.0 ; STRUCTURE OF OXIDOREDUCTASE 1VJW ; 1.75 ; STRUCTURE OF OXIDOREDUCTASE (NADP+(A),FERREDOXIN(A)) 3O1A ; 2.5 ; Structure of OxyE (CYP165D3), a Cytochrome P450 Involved in Teicoplanin Biosynthesis 8B7G ; 1.3 ; Structure of oxygen-degraded rsCherry 7UWT ; 1.85 ; Structure of Oxygen-Insensitive NAD(P)H-dependent Nitroreductase NfsB_Vv F70A/F108Y (NTR 2.0) in complex with FMN at 1.85 Angstroms resolution 8JTL ; 1.78 ; Structure of OY phytoplasma SAP05 binding with AtRpn10 3GR7 ; 2.3 ; Structure of OYE from Geobacillus kaustophilus, hexagonal crystal form 3GR8 ; 2.5 ; Structure of OYE from Geobacillus kaustophilus, orthorhombic crystal form 5YSX ; 1.202 ; Structure of P domain of GII.2 Noroviruses 5N5V ; 2.3 ; Structure of p-boronophenylalanyl tRNA synthetase - apo form 5N5U ; 1.6 ; Structure of p-boronophenylalanyl tRNA synthetase in complex with p-boronophenylalanine and adenosine monophosphate 3G5U ; 3.8 ; Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding 3G60 ; 4.4 ; Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding 3G61 ; 4.35 ; Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding 6GDI ; 7.9 ; Structure of P-glycoprotein(ABCB1) in the post-hydrolytic state 6Q81 ; 7.9 ; Structure of P-glycoprotein(ABCB1) in the post-hydrolytic state 8AGA ; 2.21 ; Structure of p-hydroxy benzoic acid ligand bound HosA transcriptional regulator from enteropathogenic Escherichia coli O127:H6 (strain E2348/69) 4GLB ; 2.69 ; Structure of p-nitrobenzaldehyde inhibited lipase from Thermomyces lanuginosa at 2.69 A resolution 2V7F ; 1.15 ; Structure of P. abyssi RPS19 protein 2J8M ; 1.44 ; Structure of P. aeruginosa acetyltransferase PA4866 2J8N ; 2.35 ; Structure of P. aeruginosa acetyltransferase PA4866 solved at room temperature 2J8R ; 1.55 ; Structure of P. aeruginosa acetyltransferase PA4866 solved in complex with L-Methionine sulfoximine 6P8J ; 1.47 ; Structure of P. aeruginosa ATCC27853 CdnD D62N/D64N mutant bound to ATP 6P82 ; 2.05 ; Structure of P. aeruginosa ATCC27853 CdnD, Apo form 1 6P8U ; 1.893 ; Structure of P. aeruginosa ATCC27853 CdnD:HORMA2:Peptide 1 complex 6P8P ; 1.635 ; Structure of P. aeruginosa ATCC27853 HORMA1 6P8S ; 2.0 ; Structure of P. aeruginosa ATCC27853 HORMA1:HORMA2:Peptide 1 complex 6P8R ; 2.141 ; Structure of P. aeruginosa ATCC27853 HORMA2 6P8O ; 1.604 ; Structure of P. aeruginosa ATCC27853 HORMA2-deltaC 6Q1H ; 1.45 ; Structure of P. aeruginosa ATCC27853 NucC, cAAA-bound form 6I47 ; 1.9 ; Structure of P. aeruginosa LpxC with compound 10: (2RS)-4-(5-(2-Fluoro-4-methoxyphenyl)-1-oxoisoindolin-2-yl)-N-hydroxy-2-methyl-2-(methylsulfonyl)butanamide 6I48 ; 2.196 ; Structure of P. aeruginosa LpxC with compound 12: (2R)-4-(6-(2-Fluoro-4-methoxyphenyl)-3-oxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-N-hydroxy-2-methyl-2-(methylsulfonyl)butanamide 6I49 ; 1.94 ; Structure of P. aeruginosa LpxC with compound 17a: (2R)-N-Hydroxy-2-methyl-2-(methylsulfonyl)-4(6((4(morpholinomethyl)phenyl)ethynyl)-3-oxo-1H-pyrrolo[1,2-c]imidazol-2(3H)yl)butanamide 6I4A ; 2.251 ; Structure of P. aeruginosa LpxC with compound 18d: (2R)-N-Hydroxy-4-(6-((1-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)-3-oxo-1H-pyrrolo[1,2-c]imidazol-2(3H)-yl)-2-methyl-2-(methylsulfonyl)butanamide 6I46 ; 1.75 ; Structure of P. aeruginosa LpxC with compound 8: (2RS)-4-(5-(2-Fluoro-4-methoxyphenyl)-2-oxooxazol-3(2H)-yl)-N-hydroxy-2-methyl-2-(methylsulfonyl)butanamide 7TB5 ; 2.3 ; Structure of P. aeruginosa PA17 CapW 7AU1 ; 1.36 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 12) 7AU8 ; 1.79 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 13) 7AU9 ; 2.137 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 14) 7AUB ; 1.907 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 15) 7ATW ; 1.44 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 3) 7ATX ; 1.795 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 4) 7AU0 ; 2.17 ; Structure of P. aeruginosa PBP3 in complex with a benzoxaborole (Compound 7) 7ATM ; 1.582 ; Structure of P. aeruginosa PBP3 in complex with a phenyl boronic acid (Compound 1) 7ATO ; 1.587 ; Structure of P. aeruginosa PBP3 in complex with an aryl boronic acid (Compound 2) 7AUH ; 2.012 ; Structure of P. aeruginosa PBP3 in complex with vaborbactam 6CL5 ; 2.324 ; Structure of P. aeruginosa R1 pyocin fiber PALES_06171 comprising C-terminal residues 323-701 6CL6 ; 1.898 ; Structure of P. aeruginosa R2 pyocin fiber PA0620 comprising C-terminal residues 323-691 1KKT ; 2.2 ; Structure of P. citrinum alpha 1,2-mannosidase reveals the basis for differences in specificity of the ER and Golgi Class I enzymes 1KRE ; 2.2 ; STRUCTURE OF P. CITRINUM ALPHA 1,2-MANNOSIDASE REVEALS THE BASIS FOR DIFFERENCES IN SPECIFICITY OF THE ER AND GOLGI CLASS I ENZYMES 1KRF ; 2.2 ; STRUCTURE OF P. CITRINUM ALPHA 1,2-MANNOSIDASE REVEALS THE BASIS FOR DIFFERENCES IN SPECIFICITY OF THE ER AND GOLGI CLASS I ENZYMES 1OB3 ; 1.9 ; Structure of P. falciparum PfPK5 1V0O ; 1.9 ; Structure of P. falciparum PfPK5-Indirubin-5-sulphonate ligand complex 1V0P ; 2.0 ; Structure of P. falciparum PfPK5-Purvalanol B ligand complex 7R51 ; 1.808 ; Structure of P. gingivalis DPP11 in complex with the dipeptide Arg-Asp 5X6N ; 3.0 ; Structure of P. Knowlesi DBL Domain Capable of binding Human Duffy Antigen 7Z7H ; 3.8 ; Structure of P. luminescens TccC3-F-actin complex 1HEZ ; 2.7 ; Structure of P. magnus protein L bound to a human IgM Fab. 1MHH ; 2.1 ; Structure of P. magnus protein L mutant bound to a mouse Fab 4PX8 ; 1.25 ; Structure of P. vulgaris HigB toxin 5IWH ; 1.101 ; Structure of P. vulgaris HigB toxin delta H92 5IXL ; 1.55 ; Structure of P. vulgaris HigB toxin Y91A variant 1Z25 ; 2.7 ; Structure of P.furiosus Argonaute with bound Mn2+ 8R88 ; 1.95 ; Structure of P107T BlaC from Mycobacterium tuberculosis 5OX7 ; 2.4 ; Structure of P110 from Mycoplasma genitalium at 2.4A with potassium ion 6R3T ; 2.73 ; Structure of P110 from Mycoplasma Genitalium at 2.7A 6R41 ; 2.21 ; Structure of P110 from Mycoplasma genitalium complexed with 3'SL 6R43 ; 2.52 ; Structure of P110 from Mycoplasma Genitalium complexed with 6'-SL 8AJ8 ; 8.5 ; Structure of p110 gamma bound to the p84 regulatory subunit 8DP0 ; 2.96 ; Structure of p110 gamma bound to the Ras inhibitory nanobody NB7 6NCT ; 3.35 ; Structure of p110alpha/niSH2 - vector data collection 8OE1 ; 1.9 ; Structure of P167S BlaC from Mycobacterium tuberculosis at pH 5 8OE5 ; 1.8 ; Structure of P167S BlaC from Mycobacterium tuberculosis at pH 6.3 1MX4 ; 2.0 ; Structure of p18INK4c (F82Q) 1MX6 ; 2.0 ; Structure of p18INK4c (F92N) 8IDX ; 1.75 ; Structure of p205 HIN 4NJD ; 2.5 ; Structure of p21-activated kinase 4 with a novel inhibitor KY-04031 1CTQ ; 1.26 ; STRUCTURE OF P21RAS IN COMPLEX WITH GPPNHP AT 100 K 1QRA ; 1.6 ; STRUCTURE OF P21RAS IN COMPLEX WITH GTP AT 100 K 4DKW ; 2.02 ; Structure of P22 Large terminase nuclease domain 3C9I ; 1.95 ; Structure of P22 Tail-Needle GP26 Bound to Xenon Gas 7A6Z ; 1.3 ; Structure of P226G BlaC from Mycobacterium tuberculosis 4E5B ; 2.0 ; Structure of p38a MAP kinase without BOG 2OZA ; 2.7 ; Structure of p38alpha complex 5IUT ; 2.34 ; STRUCTURE OF P450 2B4 F202W MUTANT 5IUZ ; 2.73 ; STRUCTURE OF P450 2B4 F202W MUTANT (CYMAL-5) 4KEY ; 2.05 ; Structure of P450 BM3 A82F F87V in complex with omeprazole 4O4P ; 1.83 ; Structure of P450 BM3 A82F F87V in complex with S-omeprazol 4G44 ; 1.24 ; Structure of P450 CYP121 in complex with lead compound MB286, 3-((1H-1,2,4-triazol-1-yl)methyl)aniline 3WEC ; 2.19 ; Structure of P450 RauA (CYP1050A1) complexed with a biosynthetic intermediate of aurachin RE 5EX8 ; 2.1 ; Structure of P450 StaF from glycopeptide antibiotic A47934 biosynthesis; ethylene glycol cryo 5EX9 ; 2.2 ; Structure of P450 StaF from glycopeptide antibiotic A47934 biosynthesis; glycerol cryo 5EX6 ; 2.4 ; Structure of P450 StaH from glycopeptide antibiotic A47934 biosynthesis 8U3N ; 2.15 ; Structure of P450Blt from Micromonospora sp. MW-13 8U2M ; 1.79 ; Structure of P450Blt from Micromonospora sp. MW-13 in Complex with Biarylitide 8UKZ ; 1.95 ; Structure of P450Blt from Micromonospora sp. MW-13 with E238A Mutation 3RWL ; 2.0 ; Structure of P450pyr hydroxylase 4L0E ; 2.7 ; Structure of P450sky (CYP163B3), a cytochrome P450 from skyllamycin biosynthesis (heme-coordinated expression tag) 4L0F ; 1.9 ; Structure of P450sky (CYP163B3), a cytochrome P450 from skyllamycin biosynthesis (open active site) 4PWV ; 3.0 ; Structure of P450sky (CYP163B3), a cytochrome P450 from skyllamycin biosynthesis in complex with a peptidyl carrier protein domain 4PXH ; 2.7 ; Structure of P450sky (CYP163B3), a cytochrome P450 from skyllamycin biosynthesis in complex with a peptidyl carrier protein domain 6EKT ; 1.75 ; Structure of P47 from Clostridium botulinum A2 7WVL ; 3.0 ; Structure of P4A2 Fab in complex with Spike-RBD from SARS-CoV-2 4J4D ; 2.0 ; Structure of P51G Cyanovirin-N swapped dimer in the P21212 space group 4J4C ; 1.9 ; Structure of P51G Cyanovirin-N swapped dimer in the P3221 space group 4J4G ; 1.92 ; Structure of P51G Cyanovirin-N swapped tetramer in the C2 space group 4J4F ; 1.9 ; Structure of P51G Cyanovirin-N swapped tetramer in the P212121 space group 4J4E ; 2.4 ; Structure of P51G Cyanovirin-N swapped trimer in the P212121 space group 8CG7 ; 1.53 ; Structure of p53 cancer mutant Y220C with arylation at Cys182 and Cys277 6XMS ; 3.4 ; Structure of P5A-ATPase Spf1, AlF4-bound form 6XMQ ; 3.7 ; Structure of P5A-ATPase Spf1, AMP-PCP-bound form 6XMP ; 3.5 ; Structure of P5A-ATPase Spf1, Apo form 6XMT ; 3.3 ; Structure of P5A-ATPase Spf1, BeF3-bound form 6XMU ; 3.3 ; Structure of P5A-ATPase Spf1, endogenous substrate-bound 3QYM ; 3.2 ; Structure of p63 DNA Binding Domain in Complex with a 10 Base Pair A/T Rich Response Element Half Site 3US2 ; 4.2 ; Structure of p63 DNA Binding Domain in Complex with a 19 Base Pair A/T Rich Response Element Containing Two Half Sites with a Single Base Pair Overlap 3QYN ; 2.5 ; Structure of p63 DNA Binding Domain in Complex with a 22 Base Pair A/T Rich Response Element Containing 2 Base Pair Spacer Between Half Sites 3US0 ; 2.5 ; Structure of p63 DNA Binding Domain in Complex with a 22 Base Pair A/T Rich Response Element Containing a Two Base Pair ""AT"" Spacer Between Half Sites 3US1 ; 2.8 ; Structure of p63 DNA Binding Domain in Complex with a 22 Base Pair Response Element Containing a Two Base Pair ""GC"" Spacer Between Half Sites 5N2O ; ; Structure Of P63 SAM Domain L514F Mutant Causative Of AEC Syndrome 4GUO ; 3.19 ; structure of p73 DNA binding domain complex with 12 bp DNA 3VD0 ; 2.95 ; structure of p73 DNA binding domain tetramer modulates p73 transactivation 3VD1 ; 2.95 ; structure of p73 DNA binding domain tetramer modulates p73 transactivation 3VD2 ; 4.0 ; structure of p73 DNA binding domain tetramer modulates p73 transactivation 2YQB ; 1.41 ; Structure of P93A variant of three-domain heme-Cu nitrite reductase from Ralstonia pickettii at 1.4 A resolution 7MHS ; 3.6 ; Structure of p97 (subunits A to E) with substrate engaged 4KLN ; 2.62 ; Structure of p97 N-D1 A232E mutant in complex with ATPgS 5DYG ; 2.2 ; Structure of p97 N-D1 L198W mutant in complex with ADP 4KOD ; 2.96 ; Structure of p97 N-D1 R155H mutant in complex with ADP 3HU3 ; 2.2 ; Structure of p97 N-D1 R155H mutant in complex with ATPgS 4KO8 ; 1.98 ; Structure of p97 N-D1 R155H mutant in complex with ATPgS 3HU2 ; 2.85 ; Structure of p97 N-D1 R86A mutant in complex with ATPgS 3HU1 ; 2.81 ; Structure of p97 N-D1 R95G mutant in complex with ATPgS 5DYI ; 3.71 ; Structure of p97 N-D1 wild-type in complex with ADP 7PUX ; 1.73 ; Structure of p97 N-D1(L198W) in complex with Fragment TROLL2 3CF3 ; 4.25 ; Structure of P97/vcp in complex with ADP 3CF1 ; 4.4 ; Structure of P97/vcp in complex with ADP/ADP.alfx 3CF2 ; 3.5 ; Structure of P97/vcp in complex with ADP/AMP-PNP 4DG8 ; 2.15 ; Structure of PA1221, an NRPS protein containing adenylation and PCP domains 2XU8 ; 1.98 ; Structure of Pa1645 8PVI ; 3.7 ; Structure of PaaZ determined by cryoEM at 100 keV 6JQM ; 3.3 ; Structure of PaaZ with NADPH 6JQL ; 2.9 ; Structure of PaaZ, a bifunctional enzyme 6JQO ; 3.1 ; Structure of PaaZ, a bifunctional enzyme in complex with NADP+ and CCoA 6JQN ; 3.1 ; Structure of PaaZ, a bifunctional enzyme in complex with NADP+ and OCoA 7WJP ; 2.25 ; Structure of PadR-like protein from Listeria monocytogenes 2GL0 ; 2.25 ; Structure of PAE2307 in complex with adenosine 4G75 ; 1.7 ; Structure of PaeM, a colicin M-like bacteriocin produced by Pseudomonas aeruginosa 4G76 ; 2.385 ; Structure of PaeM, a colicin M-like bacteriocin produced by Pseudomonas aeruginosa 7TDP ; 1.98 ; Structure of Paenibacillus polymyxa GS bound to Met-Sox-P-ADP (Transition state complex) to 1.98 Angstom 7U2R ; 1.85 ; Structure of Paenibacillus sp. J14 Apyc1 6F2P ; 2.6 ; Structure of Paenibacillus xanthan lyase to 2.6 A resolution 7U2S ; 1.55 ; Structure of Paenibacillus xerothermodurans Apyc1 in the apo state 1RKI ; 1.6 ; Structure of pag5_736 from P. aerophilum with three disulphide bonds 4NFB ; 1.6 ; Structure of paired immunoglobulin-like type 2 receptor (PILR ) 4NFC ; 2.2 ; Structure of paired immunoglobulin-like type 2 receptor (PILR ) 4XSK ; 1.5 ; Structure of PAItrap, an uPA mutant 5I0B ; 3.09 ; Structure of PAK4 5YW8 ; 4.4 ; Structure of pancreatic ATP-sensitive potassium channel bound with ATPgammaS (all particles at 4.4A) 5YW9 ; 5.0 ; Structure of pancreatic ATP-sensitive potassium channel bound with ATPgammaS (class1 5.0A) 5YWA ; 6.1 ; Structure of pancreatic ATP-sensitive potassium channel bound with ATPgammaS (CTD class 2 at 6.1A) 5YKF ; 4.33 ; Structure of pancreatic ATP-sensitive potassium channel bound with glibenclamide and ATPgammaS (3D class1 at 4.33A) 5YKG ; 4.57 ; Structure of pancreatic ATP-sensitive potassium channel bound with glibenclamide and ATPgammaS (Class2 at 4.57A) 5YW7 ; 4.4 ; Structure of pancreatic ATP-sensitive potassium channel bound with glibenclamide and ATPgammaS (focused refinement on SUR1 ABC transporter module at 4.4A) 5YKE ; 4.11 ; Structure of pancreatic ATP-sensitive potassium channel bound with glibenclamide and ATPgammaS (focused refinement on TM at 4.11A) 5YWC ; 4.3 ; Structure of pancreatic ATP-sensitive potassium channel bound with Mg-ADP (CTD class1 at 4.3A) 5YWB ; 5.2 ; Structure of pancreatic ATP-sensitive potassium channel bound with Mg-ADP (CTD class2 at 5.2A) 5YWD ; 4.2 ; Structure of pancreatic ATP-sensitive potassium channel bound with Mg-ADP (focused refinement of SUR1 ABC transporter module at 4.22A) 6JB1 ; 3.3 ; Structure of pancreatic ATP-sensitive potassium channel bound with repaglinide and ATPgammaS at 3.3A resolution 6W7T ; 3.01 ; Structure of PaP3 small terminase 9PAP ; 1.65 ; STRUCTURE OF PAPAIN REFINED AT 1.65 ANGSTROMS RESOLUTION 6J4N ; 2.1 ; Structure of papua new guinea MBL-1(PNGM-1) native 3EZ6 ; 2.58 ; Structure of parA-ADP complex:tetragonal form 1CLM ; 1.8 ; STRUCTURE OF PARAMECIUM TETRAURELIA CALMODULIN AT 1.8 ANGSTROMS RESOLUTION 6S7M ; 1.75846 ; Structure of parasitic PEX14 in complex with a benzo[b]thiophene-7-carboxylic acid. 3FFD ; 2.0 ; Structure of parathyroid hormone-related protein complexed to a neutralizing monoclonal antibody 1ZX4 ; 2.98 ; Structure of ParB bound to DNA 4E03 ; 2.45 ; Structure of ParF-ADP form 2 4DZZ ; 1.8 ; Structure of ParF-ADP, crystal form 1 4E09 ; 2.99 ; Structure of ParF-AMPPCP, I422 form 7US1 ; 2.484 ; Structure of parkin (R0RB) bound to two phospho-ubiquitin molecules 4I1H ; 2.0 ; Structure of Parkin E3 ligase 4I1F ; 1.58 ; Structure of Parkin-S223P E3 ligase 4PJT ; 2.35 ; Structure of PARP1 catalytic domain bound to inhibitor BMN 673 4ZZX ; 1.65 ; Structure of PARP2 catalytic domain bound to an isoindolinone inhibitor 4PJV ; 2.5 ; Structure of PARP2 catalytic domain bound to inhibitor BMN 673 8K49 ; 2.9 ; Structure of partial Banna virus 8W9Q ; 5.7 ; Structure of partial Banna virus 7LT6 ; 1.8 ; Structure of Partial Beta-Hairpin LIR from FNIP2 Bound to GABARAP 6HSM ; 2.0 ; Structure of partially reduced RsrR in space group P2(1)2(1)2(1) 6NN3 ; 3.22 ; Structure of parvovirus B19 decorated with Fab molecules from a human antibody 5MG0 ; 1.65 ; Structure of PAS-GAF fragment of Deinococcus phytochrome by serial femtosecond crystallography 4H6V ; 1.7 ; Structure of Patellamide maturation protease PatA 4H6X ; 2.0 ; Structure of Patellamide maturation protease PatG 5ETE ; 2.1 ; Structure of pathogen-related yeast protein, Pry1 in complex with a competitive inhibitor of cholesterol binding 7PY2 ; 2.59 ; Structure of pathological TDP-43 filaments from ALS with FTLD 7XWH ; 2.31 ; structure of patulin-detoxifying enzyme with NADP+ 7XWI ; 2.22 ; structure of patulin-detoxifying enzyme with NADPH 7XWJ ; 2.12 ; structure of patulin-detoxifying enzyme Y155F with NADPH 7XWK ; 2.12 ; structure of patulin-detoxifying enzyme Y155F with NADPH and substrate 7XWL ; 2.02 ; structure of patulin-detoxifying enzyme Y155F/V187F with NADPH 7XWM ; 1.98 ; structure of patulin-detoxifying enzyme Y155F/V187K with NADPH 7XWN ; 2.1 ; structure of patulin-detoxifying enzyme Y155F/V187K with NADPH and substrate 6GML ; 3.2 ; Structure of paused transcription complex Pol II-DSIF-NELF 8UHG ; 2.7 ; Structure of paused transcription complex Pol II-DSIF-NELF - poised post-translocated 8UHD ; 2.8 ; Structure of paused transcription complex Pol II-DSIF-NELF - post-translocated 8UHA ; 3.5 ; Structure of paused transcription complex Pol II-DSIF-NELF - tilted 4HR1 ; 2.5 ; Structure of PAV1-137, a protein from the virus PAV1 that infects Pyrococcus abyssi. 3WTD ; 2.35 ; Structure of PAXX 3WTF ; 3.451 ; Structure of PAXX 3UMD ; 1.8 ; Structure of pB intermediate of Photoactive yellow protein (PYP) at pH 4. 3UME ; 1.8 ; Structure of pB intermediate of Photoactive yellow protein (PYP) at pH 7 3PNR ; 2.6 ; Structure of PbICP-C in complex with falcipain-2 2J7V ; 1.9 ; Structure of PBP-A 2J8Y ; 1.9 ; Structure of PBP-A acyl-enzyme complex with penicillin-G 2J9O ; 1.5 ; Structure of PBP-A, L158E mutant 2JBF ; 1.7 ; Structure of PBP-A, L158E mutant. Acyl-enzyme complex with penicillin- G. 7A66 ; 1.85 ; structure of Pcc2 from Pyrococcus abyssi 4II5 ; 2.15 ; Structure of PCDK2/CYCLINA bound to ADP and 1 MAGNESIUM ION 4I3Z ; 2.05 ; Structure of pCDK2/CyclinA bound to ADP and 2 Magnesium ions 4IZN ; 2.15 ; Structure of pcDronpa-A69T mutant 6HYL ; 1.559 ; Structure of PCM1 LIR motif bound to GABARAP 6HYM ; 1.86 ; Structure of PCM1 LIR motif bound to GABARAP 3VKX ; 2.1 ; Structure of PCNA 5T9D ; 3.27 ; Structure of PCNA acetylated on K20 3WGW ; 2.8 ; Structure of PCNA bound to a small molecule inhibitor 6T7Y ; 2.7 ; Structure of PCNA bound to cPIP motif of DP2 from P. abyssi 8E62 ; 1.8 ; STRUCTURE OF Pcryo_0615 from Psychrobacter cryohalolentis, an N-acetyltransferase required to produce Diacetamido-2,3-dideoxy-D-glucuronic acid 6O1Z ; 3.1 ; Structure of pCW3 conjugation coupling protein TcpA hexagonal crystal form 6O1X ; 2.46 ; Structure of pCW3 conjugation coupling protein TcpA monomer form with ATPgS 6O1W ; 2.2 ; Structure of pCW3 conjugation coupling protein TcpA monomer orthorhombic crystal form 6O1Y ; 2.7 ; Structure of pCW3 conjugation coupling protein TcpA monomeric form with ATP 5OWG ; 2.2 ; Structure of PcyX_EBK42635 5JDR ; 2.7 ; Structure of PD-L1 5N2D ; 2.35 ; Structure of PD-L1/small-molecule inhibitor complex 5N2F ; 1.7 ; Structure of PD-L1/small-molecule inhibitor complex 7WKU ; 2.6 ; Structure of PDCoV Mpro in complex with an inhibitor 3QPN ; 2.0 ; Structure of PDE10-inhibitor complex 3QPO ; 1.8 ; Structure of PDE10-inhibitor complex 3QPP ; 1.8 ; Structure of PDE10-inhibitor complex 1ZKN ; 2.1 ; Structure of PDE4D2-IBMX 4V5B ; 3.74 ; Structure of PDF binding helix in complex with the ribosome. 7WPZ ; 3.8 ; Structure of PDF-2180-COV RBD binding to Bat37 ACE2 2C0G ; 1.75 ; Structure of PDI-related Chaperone, Wind mutant-Y53S 2C1Y ; 2.25 ; Structure of PDI-related Chaperone, Wind mutant-Y55K 2C0E ; 2.35 ; Structure of PDI-related Chaperone, Wind with his-tag on C-terminus. 2BIY ; 1.95 ; Structure of PDK1-S241A mutant kinase domain 7UXP ; 2.62 ; Structure of PDL1 in complex with FP28132, a Helicon Polypeptide 7UXQ ; 2.89 ; Structure of PDL1 in complex with FP28135, a Helicon Polypeptide 7UX5 ; 3.35 ; Structure of PDL1 in complex with FP28136, a Helicon Polypeptide 7UXO ; 2.25 ; Structure of PDL1 in complex with FP30790, a Helicon Polypeptide 6U9E ; 4.21 ; Structure of PdpA-VgrG Complex, Lidless 6RG0 ; 3.074 ; Structure of pdxj 4XXX ; 1.5 ; Structure of PE-PPE domains of ESX-1 secreted protein EspB, C2221 4XWP ; 1.82 ; Structure of PE-PPE domains of ESX-1 secreted protein EspB, C2221 in presence of Ca 4XXN ; 2.14 ; Structure of PE-PPE domains of ESX-1 secreted protein EspB, I222 6VJ5 ; 2.4 ; Structure of PE25-PPE41(A124L) in complex with EspG5 chaperone from the type VII (ESX-5) secretion system 6VHR ; 3.3 ; Structure of PE5-PPE4-EspG3 complex from the type VII (ESX-3) secretion system, space group I422 6UUJ ; 3.0 ; Structure of PE5-PPE4-EspG3 complex from the type VII (ESX-3) secretion system, space group P212121 1HKD ; 2.09 ; Structure of pea lectin in complex with alpha-methyl-D-glucopyranoside 6AWY ; 2.1 ; Structure of peanut allergen Ara h 8.01. 4HWV ; 1.37 ; Structure of Pectate Lyase from Acidovorax avenae subsp citrulli 2QX3 ; 2.0 ; Structure of pectate lyase II from Xanthomonas campestris pv. campestris str. ATCC 33913 2Q0U ; 1.45 ; Structure of Pectenotoxin-2 and Latrunculin B Bound to Actin 2Q0R ; 1.7 ; Structure of Pectenotoxin-2 Bound to Actin 5CAW ; 2.62 ; Structure of Pediculus humanus Parkin bound to phospho-ubiquitin 6RHT ; 1.9 ; Structure of Pediococcus acidilactici putative lactate oxidase WT protein 6W81 ; 1.55 ; Structure of PEDV main protease bound to potent broad-spectrum non-covalent inhibitor X77 3EGB ; 3.25 ; Structure of Pellino2 FHA domain at 3.3 Angstroms resolution. 1OMQ ; ; Structure of penetratin in bicellar solution 1VQQ ; 1.8 ; Structure of Penicillin binding protein 2a from methicillin resistant Staphylococcus aureus strain 27r at 1.80 A resolution. 1MWT ; 2.45 ; Structure of penicillin G acyl-Penicillin binding protein 2a from methicillin resistant Staphylococcus aureus strain 27r at 2.45 A resolution. 5J9R ; 2.8 ; Structure of Penicillin V acylase from Agrobacterium tumefaciens 4WL2 ; 2.5 ; Structure of penicillin V acylase from Pectobacterium atrosepticum 8GPW ; 2.06 ; Structure of Penicillin-binding protein 3 (PBP3) from Klebsiella pneumoniae with ligand 18G 3MZD ; 1.9 ; Structure of penicillin-binding protein 5 from E. coli: cloxacillin acyl-enzyme complex 3MZF ; 1.5 ; Structure of penicillin-binding protein 5 from E. coli: imipenem acyl-enzyme complex 3MZE ; 2.1 ; Structure of penicillin-binding protein 5 from E.coli: cefoxitin acyl-enzyme complex 3UPP ; 2.4 ; Structure of penicillin-binding protein A from M. tuberculosis: ceftrixaone acyl-enzyme complex 3UPN ; 2.2 ; Structure of penicillin-binding protein A from M. tuberculosis: imipenem acyl-enzyme complex 3UPO ; 2.3 ; Structure of penicillin-binding protein A from M. tuberculosis: penicillin G acyl-enzyme complex 1PME ; 2.0 ; STRUCTURE OF PENTA MUTANT HUMAN ERK2 MAP KINASE COMPLEXED WITH A SPECIFIC INHIBITOR OF HUMAN P38 MAP KINASE 1GVO ; 1.38 ; STRUCTURE OF PENTAERYTHRITOL TETRANITRATE REDUCTASE AND COMPLEXED WITH 2,4 DINITROPHENOL 1GVR ; 1.38 ; STRUCTURE OF PENTAERYTHRITOL TETRANITRATE REDUCTASE AND COMPLEXED WITH 2,4,6 TRINITROTOLUENE 1GVQ ; 2.0 ; STRUCTURE OF PENTAERYTHRITOL TETRANITRATE REDUCTASE AND COMPLEXED WITH 2-CYCLOHEXENONE 1GVS ; 1.38 ; Structure of pentaerythritol tetranitrate reductase and complexed with picric acid 1H50 ; 1.5 ; Structure of Pentaerythritol Tetranitrate Reductase and complexes 1VYR ; 0.9 ; Structure of pentaerythritol tetranitrate reductase complexed with picric acid 1H62 ; 1.9 ; Structure of Pentaerythritol tetranitrate reductase in complex with 1,4-androstadien-3,17-dione 1H61 ; 1.4 ; Structure of Pentaerythritol Tetranitrate Reductase in complex with prednisone 1H60 ; 1.6 ; Structure of Pentaerythritol Tetranitrate Reductase in complex with progesterone 1VYP ; 1.27 ; Structure of pentaerythritol tetranitrate reductase W102F mutant and complexed with picric acid 1VYS ; 1.8 ; STRUCTURE OF PENTAERYTHRITOL TETRANITRATE REDUCTASE W102Y MUTANT AND COMPLEXED WITH PICRIC ACID 7PTU ; 3.87 ; Structure of pentameric S-layer protein from Halofaerax volcanii 6UEA ; 3.0 ; Structure of pentameric sIgA complex 1O08 ; 1.2 ; Structure of Pentavalent Phosphorous Intermediate of an Enzyme Catalyzed Phosphoryl transfer Reaction observed on cocrystallization with Glucose 1-phosphate 1O03 ; 1.4 ; Structure of Pentavalent Phosphorous Intermediate of an Enzyme Catalyzed Phosphoryl transfer Reaction observed on cocrystallization with Glucose 6-phosphate 4Z1D ; 1.65 ; Structure of PEP and zinc bound KDO8PS from H.pylori 7E51 ; 3.23 ; Structure of PEP bound Enolase from Mycobacterium tuberculosis 4E9B ; 1.7 ; Structure of Peptide Deformylase form Helicobacter Pylori in complex with actinonin 4E9A ; 1.662 ; Structure of Peptide Deformylase form Helicobacter Pylori in complex with inhibitor 1LM4 ; 1.45 ; Structure of Peptide Deformylase from Staphylococcus aureus at 1.45 A 6R28 ; ; Structure of peptide P7, which binds Cdc42 and inhibits effector interactions. 6H8L ; 1.54 ; Structure of peptidoglycan deacetylase PdaC from Bacillus subtilis 6H8N ; 1.26 ; Structure of peptidoglycan deacetylase PdaC from Bacillus subtilis - mutant D285S 8AUD ; 4.5 ; Structure of peptidoglycan hydrolase Cg1735 from Corynebacterium glutamicum, orthorhombic crystal form 8AUC ; 3.5 ; Structure of peptidoglycan hydrolase Cg1735 from Corynebacterium glutamicum, trigonal crystal form 4IKO ; 1.9 ; Structure of Peptidyl- tRNA Hydrolase from Acinetobacter baumannii at 1.90 A resolution 3FVZ ; 2.35 ; Structure of Peptidyl-alpha-hydroxyglycine alpha-Amidating Lyase (PAL) 3FW0 ; 2.52 ; Structure of Peptidyl-alpha-hydroxyglycine alpha-Amidating Lyase (PAL) bound to alpha-hydroxyhippuric acid (non-peptidic substrate) 1G6D ; 2.9 ; STRUCTURE OF PEPTIDYL-D(CGCAATTGCG) IN THE PRESENCE OF ZINC IONS 6IVV ; 1.26 ; Structure of peptidyl-tRNA hydrolase from Acinetobacter baumannii with multiple surface binding regions at 1.26A resolution 6YOF ; 2.45 ; Structure of PepTSt from COC IMISX setup collected by rotation serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 6YOG ; 2.3 ; Structure of PepTSt from COC IMISX setup collected by still serial crystallography on crystals prelocated by 2D X-ray phase-contrast imaging 5B7E ; 1.42 ; Structure of perdeuterated CueO 5B7M ; 1.8 ; Structure of perdeuterated CueO - the signal peptide was truncated by HRV3C protease 2X21 ; 1.75 ; Structure of Peridinin-Chlorophyll-Protein reconstituted with BChl-a 2X20 ; 1.95 ; Structure of Peridinin-Chlorophyll-Protein reconstituted with Chl-b 2X1Z ; 1.8 ; Structure of Peridinin-Chlorophyll-Protein reconstituted with Chl-d 2M11 ; ; Structure of perimidinone-derived synthetic nucleoside paired with guanine in DNA duplex 2F5X ; 1.72 ; Structure of periplasmic binding protein BugD 4CL2 ; 1.63 ; structure of periplasmic metal binding protein from candidatus liberibacter asiaticus 5Z66 ; 1.8 ; Structure of periplasmic trehalase from Diamondback moth gut bacteria complexed with validoxylamine 5Z6H ; 2.3 ; Structure of periplasmic trehalase from Diamondback moth gut bacteria in the apo form 3W6G ; 2.25 ; Structure of peroxiredoxin from anaerobic hyperthermophilic archaeon Pyrococcus horikoshii 5JLY ; 3.051 ; Structure of Peroxiredoxin-1 from Schistosoma japonicum 3CVP ; 2.0 ; Structure of Peroxisomal Targeting Signal 1 (PTS1) binding domain of Trypanosoma brucei Peroxin 5 (TbPEX5)complexed to PTS1 peptide (10-SKL) 3CVQ ; 3.01 ; Structure of Peroxisomal Targeting Signal 1 (PTS1) binding domain of Trypanosoma brucei Peroxin 5 (TbPEX5)complexed to PTS1 peptide (7-SKL) 3CVN ; 2.0 ; Structure of Peroxisomal Targeting Signal 1 (PTS1) binding domain of Trypanosoma brucei Peroxin 5 (TbPEX5)complexed to T. brucei Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) PTS1 peptide 3CVL ; 2.15 ; Structure of Peroxisomal Targeting Signal 1 (PTS1) binding domain of Trypanosoma brucei Peroxin 5 (TbPEX5)complexed to T. brucei Phosphofructokinase (PFK) PTS1 peptide 3CV0 ; 2.0 ; Structure of Peroxisomal Targeting Signal 1 (PTS1) binding domain of Trypanosoma brucei Peroxin 5 (TbPEX5)complexed to T. brucei Phosphoglucoisomerase (PGI) PTS1 peptide 3W15 ; 1.8 ; Structure of peroxisomal targeting signal 2 (PTS2) of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase in complex with Pex7p and Pex21p 4LLU ; 2.16 ; Structure of Pertuzumab Fab with light chain Clambda at 2.16A 2ABB ; 1.0 ; Structure of PETN reductase Y186F in complex with cyanide 2W85 ; ; Structure of Pex14 in complex with Pex19 2W84 ; ; Structure of Pex14 in complex with Pex5 4BXU ; ; Structure of Pex14 in complex with Pex5 LVxEF motif 4O8U ; 2.345 ; Structure of PF2046 7RQP ; 2.98 ; Structure of PfCSP NPNV binding antibody L9 6B5P ; 2.297 ; Structure of PfCSP peptide 20 with human antibody CIS42 6B5L ; 2.4 ; Structure of PfCSP peptide 20 with human protective antibody CIS43 7SG6 ; 1.55 ; Structure of PfCSP peptide 21 with antibody CIS43_Var10 7SG5 ; 1.4 ; Structure of PfCSP peptide 21 with antibody CIS43_Var2 7RAJ ; 3.0 ; Structure of PfCSP peptide 21 with antibody iGL-CIS43.D3 7UFN ; 2.2 ; Structure of PfCSP peptide 21 with antibody P3-21 7UFO ; 1.8 ; Structure of PfCSP peptide 21 with antibody P3-42 7UFQ ; 2.3 ; Structure of PfCSP peptide 21 with antibody P3-43 6B5R ; 1.775 ; Structure of PfCSP peptide 21 with human antibody CIS42 6B5M ; 1.79 ; Structure of PfCSP peptide 21 with human protective antibody CIS43 6B5S ; 1.983 ; Structure of PfCSP peptide 25 with human antibody CIS42 6B5N ; 1.98 ; Structure of PfCSP peptide 25 with human protective antibody CIS43 6B5T ; 2.222 ; Structure of PfCSP peptide 29 with human antibody CIS42 6B5O ; 2.194 ; Structure of PfCSP peptide 29 with human protective antibody CIS43 7WN0 ; 3.64 ; Structure of PfENT1(Y190A) in complex with nanobody 19 7E26 ; 2.29 ; Structure of PfFNT in apo state 7E27 ; 2.29 ; Structure of PfFNT in complex with MMV007839 6XJ9 ; 2.0 ; Structure of PfGH50B 7DIV ; 1.64 ; Structure of PfGrx1 in the intermediate state with cadmium 7DIT ; 1.8 ; Structure of PfGrx1 in the intermediate state with cadmium and cesium 7DIW ; 1.671 ; Structure of PfGrx1 in the intermediate state with mercury 7DIU ; 1.879 ; Structure of PfGrx1 in the intermediate state with platinum and cesium 7DJ0 ; 1.67 ; Structure of PfGrx1 in the reduced state using BME 7DIZ ; 1.8 ; Structure of PfGrx1 in the reduced state using DTT 7DIK ; 1.55 ; Structure of PfGrx1 with barium 7DIM ; 1.68 ; Structure of PfGrx1 with cadmium 7DIL ; 1.71 ; Structure of PfGrx1 with cesium 7DIN ; 1.799 ; Structure of PfGrx1 with cobalt 7DIO ; 1.899 ; Structure of PfGrx1 with iron 7DIP ; 1.731 ; Structure of PfGrx1 with manganese 7DIR ; 1.65 ; Structure of PfGrx1 with mercury 7DIQ ; 1.87 ; Structure of PfGrx1 with zinc 5LG9 ; ; Structure of PfIMP2 (Immune Mapped Protein 2 from Plasmodium falciparum) - an antigenic protein 6TU7 ; 3.1 ; Structure of PfMyoA decorated Plasmodium Act1 filament 7WN1 ; 3.11 ; Structure of PfNT1(Y190A) in complex with nanobody 48 and inosine 7YDQ ; 4.04 ; Structure of PfNT1(Y190A)-GFP in complex with GSK4 5TXW ; 1.86 ; Structure of Pfp1 protease from Thermococcus thioreducens: large cell H3 crystal form 7R66 ; 1.44 ; Structure of Pfp1 protease from Thermococcus thioreducens: large unit cell at 1.44 A resolution 5TW0 ; 1.96 ; Structure of Pfp1 protease from Thermococcus thioreducens: small cell H3 crystal form 3LRS ; 2.37 ; Structure of PG16, an antibody with broad and potent neutralization of HIV-1 2ZKT ; 2.4 ; Structure of PH0037 protein from Pyrococcus horikoshii 2IT1 ; 1.94 ; Structure of PH0203 protein from Pyrococcus horikoshii 2DC4 ; 1.65 ; Structure of PH1012 protein from Pyrococcus Horikoshii OT3 2IT2 ; 1.5 ; Structure of PH1069 protein from Pyrococcus horikoshii 2IT3 ; 2.1 ; Structure of PH1069 protein from Pyrococcus horikoshii 2DRV ; 1.6 ; Structure of PH1069 protein from Pyrococcus horikoshii OT3 4WJ0 ; 2.85 ; Structure of PH1245, a cas1 from Pyrococcus horikoshii 2DCL ; 2.28 ; Structure of PH1503 protein from Pyrococcus Horikoshii OT3 2FKO ; 1.85 ; Structure of PH1591 from Pyrococcus horikoshii OT3 2EKN ; 2.05 ; Structure of PH1811 protein from Pyrococcus horikoshii 2EEN ; 1.65 ; Structure of PH1819 protein from Pyrococcus Horikoshii OT3 2DVN ; 1.6 ; Structure of PH1917 protein with the complex of IMP from Pyrococcus horikoshii 2DVO ; 2.21 ; Structure of PH1917 protein with the complex of ITP from Pyrococcus horikoshii 5XAV ; 1.479 ; Structure of PhaC from Chromobacterium sp. USM2 2CRO ; 2.35 ; STRUCTURE OF PHAGE 434 CRO PROTEIN AT 2.35 ANGSTROMS RESOLUTION 1ZUG ; ; STRUCTURE OF PHAGE 434 CRO PROTEIN, NMR, 20 STRUCTURES 7T28 ; 2.68 ; Structure of phage Bsp38 anti-Pycsar nuclease Apyc1 in apo state 7T26 ; 1.14 ; Structure of phage FBB1 anti-CBASS nuclease Acb1 in apo state 7T27 ; 1.2 ; Structure of phage FBB1 anti-CBASS nuclease Acb1-3'3'-cGAMP complex in post reaction state 2POH ; 2.1 ; Structure of Phage P22 Tail Needle gp26 4IOS ; 2.4 ; Structure of phage TP901-1 RBP (ORF49) in complex with nanobody 11. 4JG2 ; 1.3 ; Structure of phage-related protein from Bacillus cereus ATCC 10987 5ZVW ; 2.292 ; Structure of phAimR-Ligand 1Z3W ; 1.7 ; Structure of Phanerochaete chrysosporium cellobiohydrolase Cel7D (CBH58) in complex with cellobioimidazole 1Z3T ; 1.7 ; Structure of Phanerochaete chrysosporium cellobiohydrolase Cel7D (CBH58) in complex with cellobiose 1Z3V ; 1.61 ; Structure of Phanerochaete chrysosporium cellobiohydrolase Cel7D (CBH58) in complex with lactose 4BTV ; 1.594 ; Structure of PhaZ7 PHB depolymerase in complex with 3HB trimer 4BYM ; 1.598 ; Structure of PhaZ7 PHB depolymerase Y105E mutant 2LGG ; ; Structure of PHD domain of UHRF1 in complex with H3 peptide 5V1B ; 2.49 ; Structure of PHD1 in complex with 1,2,4-Triazolo-[1,5-a]pyridine 5V18 ; 2.15 ; Structure of PHD2 in complex with 1,2,4-Triazolo-[1,5-a]pyridine 7UJV ; 1.8 ; Structure of PHD2 in complex with HIF2a-CODD 3HGU ; 1.95 ; Structure of Phenazine Antibiotic Biosynthesis Protein 3HGV ; 2.3 ; Structure of Phenazine Antibiotic Biosynthesis Protein 3L2K ; 2.8 ; Structure of phenazine antibiotic biosynthesis protein with substrate 5KHB ; ; Structure of Phenol-soluble modulin Alpha1 4ALB ; 3.03 ; Structure of Phenolic Acid Decarboxylase from Bacillus subtilis: Tyr19Ala mutant in complex with coumaric acid 3GYR ; 2.3 ; Structure of Phenoxazinone synthase from Streptomyces antibioticus reveals a new type 2 copper center. 4QYJ ; 2.83 ; Structure of Phenylacetaldehyde Dehydrogenase from Pseudomonas putida S12 6HQF ; 1.76 ; Structure of Phenylalanine ammonia-lyase from Petroselinum crispum in complex with (R)-APEP 2PHM ; 2.6 ; STRUCTURE OF PHENYLALANINE HYDROXYLASE DEPHOSPHORYLATED 6XHF ; 1.45 ; Structure of Phenylalanyl-5'-O-adenosine phosphoramidate 4INW ; 1.14 ; Structure of Pheromone-binding protein 1 in complex with (11Z,13Z)-hexadecadienal 4INX ; 1.853 ; Structure of Pheromone-binding protein 1 in complex with (Z,Z)-11,13- hexadecadienol 3KV4 ; 2.19 ; Structure of PHF8 in complex with histone H3 3TPV ; 2.3 ; Structure of pHipA bound to ADP 3TPD ; 1.5 ; Structure of pHipA, monoclinic form 6X1S ; 1.65 ; Structure of pHis Fab (SC1-1) in complex with pHis mimetic peptide 6X1U ; 1.641 ; Structure of pHis Fab (SC39-4) in complex with pHis mimetic peptide 6X1V ; 2.11 ; Structure of pHis Fab (SC44-8) in complex with pHis mimetic peptide 6X1T ; 2.34 ; Structure of pHis Fab (SC50-3) in complex with pHis mimetic peptide 6X1W ; 1.95 ; Structure of pHis Fab (SC56-2) in complex with pHis mimetic peptide 2YEQ ; 1.93 ; Structure of PhoD 3R0J ; 2.5 ; Structure of PhoP from Mycobacterium tuberculosis 5LMK ; 2.4 ; Structure of phopsho-CDK2-cyclin A in complex with an ATP-competitive inhibitor 1RKV ; 1.9 ; Structure of Phosphate complex of ThrH from Pseudomonas aeruginosa 7RSA ; 1.26 ; STRUCTURE OF PHOSPHATE-FREE RIBONUCLEASE A REFINED AT 1.26 ANGSTROMS 3TQK ; 2.3 ; Structure of Phospho-2-dehydro-3-deoxyheptonate aldolase from Francisella tularensis SCHU S4 6GLC ; 1.8 ; Structure of phospho-Parkin bound to phospho-ubiquitin 1OS1 ; 1.8 ; Structure of Phosphoenolpyruvate Carboxykinase complexed with ATP,Mg, Ca and pyruvate. 3O8L ; 3.2 ; Structure of phosphofructokinase from rabbit skeletal muscle 3O8N ; 3.2 ; Structure of phosphofructokinase from rabbit skeletal muscle 3O8O ; 2.9 ; Structure of phosphofructokinase from Saccharomyces cerevisiae 4NG4 ; 2.78 ; Structure of phosphoglycerate kinase (CBU_1782) from Coxiella burnetii 1XQ9 ; 2.58 ; Structure of Phosphoglycerate Mutase from Plasmodium falciparum at 2.6 Resolution 5I01 ; 2.37 ; Structure of phosphoheptose isomerase GmhA from Neisseria gonorrhoeae 5JHA ; 2.51 ; Structure of Phosphoinositide 3-kinase gamma (PI3K) bound to the potent inhibitor PIKin2 5JHB ; 2.48 ; Structure of Phosphoinositide 3-kinase gamma (PI3K) bound to the potent inhibitor PIKin3 1FB2 ; 1.95 ; STRUCTURE OF PHOSPHOLIPASE A2 FROM DABOIA RUSSELLI PULCHELLA AT 1.95 4Q6X ; 2.14 ; Structure of phospholipase D Beta1B1i from Sicarius terrosus venom at 2.14 A resolution 6WHE ; 1.73 ; Structure of phosphomimetic Rab8a GTPase (T72E) in the GTP-bound state 1IHP ; 2.5 ; STRUCTURE OF PHOSPHOMONOESTERASE 5EQN ; 2.3 ; Structure of phosphonate hydroxylase 4QYW ; 1.597 ; Structure of phosphono-CheY from T.maritima 4I3W ; 2.24 ; Structure of phosphonoacetaldehyde dehydrogenase in complex with gylceraldehyde-3-phosphate and cofactor NAD+ 4I3U ; 2.1 ; Structure of phosphonoacetaldehyde dehydrogenase in complex with phosphonoacetaldehyde 4I3V ; 2.0 ; Structure of phosphonoacetaldehyde dehydrogenase in complex with phosphonoacetaldehyde and cofactor NAD+ 4I3X ; 2.07 ; Structure of phosphonoacetaldehyde dehydrogenase in complex with phosphonoacetate and cofactor NAD+ 4I3T ; 2.1 ; Structure of phosphonoacetaldehyde dehydrogenase in the apo state 4F3R ; 2.25 ; Structure of phosphopantetheine adenylyltransferase (CBU_0288) from Coxiella burnetii 6W3C ; 2.3 ; Structure of phosphorylated apo IRE1 5OPD ; 2.75 ; Structure of phosphorylated EF-Tu in complex with GTP 2HWG ; 2.7 ; Structure of phosphorylated Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system 1VRV ; ; Structure of phosphorylated IIB (C384(SEP)) domain of the mannitol-specific permease enzyme II 6W3E ; 2.737 ; Structure of phosphorylated IRE1 in complex with G-0701 3Q52 ; 1.801 ; Structure of phosphorylated PAK1 kinase domain 3Q53 ; 2.09 ; Structure of phosphorylated PAK1 kinase domain in complex with ATP 1PHZ ; 2.2 ; STRUCTURE OF PHOSPHORYLATED PHENYLALANINE HYDROXYLASE 4FXW ; 2.29 ; Structure of phosphorylated SF1 complex with U2AF65-UHM domain 3DDP ; 2.7 ; Structure of phosphorylated Thr160 CDK2/cyclin A in complex with the inhibitor CR8 3BHT ; 2.0 ; Structure of phosphorylated Thr160 CDK2/cyclin A in complex with the inhibitor meriolin 3 3BHU ; 2.3 ; Structure of phosphorylated Thr160 CDK2/cyclin A in complex with the inhibitor meriolin 5 3DDQ ; 1.8 ; Structure of phosphorylated Thr160 CDK2/cyclin A in complex with the inhibitor roscovitine 3BHV ; 2.1 ; Structure of phosphorylated Thr160 CDK2/cyclin A in complex with the inhibitor variolin B 5MI3 ; 2.8 ; Structure of phosphorylated translation elongation factor EF-Tu from E. coli 5W7T ; 2.01 ; STRUCTURE OF PHOSPHORYLATED WNK1 4JFZ ; 1.75 ; Structure of phosphoserine (pSAb) scaffold bound to pSer peptide 1BJN ; 2.3 ; STRUCTURE OF PHOSPHOSERINE AMINOTRANSFERASE FROM ESCHERICHIA COLI 8I28 ; 2.8 ; Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae 4JG0 ; 1.81 ; Structure of phosphoserine/threonine (pSTAb) scaffold bound to pSer peptide 4JG1 ; 1.55 ; Structure of phosphoserine/threonine (pSTAb) scaffold bound to pThr peptide 2ECK ; 2.8 ; STRUCTURE OF PHOSPHOTRANSFERASE 3B2T ; 1.8 ; Structure of phosphotransferase 3OXP ; 1.2 ; Structure of phosphotransferase enzyme II, A component from Yersinia pestis CO92 at 1.2 A resolution 1LXT ; 2.7 ; STRUCTURE OF PHOSPHOTRANSFERASE PHOSPHOGLUCOMUTASE FROM RABBIT 3WML ; 1.99 ; Structure of phosphotriesterase mutant (S308L/Y309A) from Agrobacterium radiobacter 4NP7 ; 1.99 ; Structure of phosphotriesterase mutant (S308L/Y309A) from Agrobacterium radiobacter with diethyl thiophosphate bound in the active site 2O4Q ; 1.95 ; Structure of Phosphotriesterase mutant G60A 2OQL ; 1.8 ; Structure of Phosphotriesterase mutant H254Q/H257F 2OB3 ; 1.04 ; Structure of Phosphotriesterase mutant H257Y/L303T 2O4M ; 1.64 ; Structure of Phosphotriesterase mutant I106G/F132G/H257Y 3ZNI ; 2.21 ; Structure of phosphoTyr363-Cbl-b - UbcH5B-Ub - ZAP-70 peptide complex 4A49 ; 2.214 ; Structure of phosphoTyr371-c-Cbl-UbcH5B complex 4A4C ; 2.704 ; Structure of phosphoTyr371-c-Cbl-UbcH5B-ZAP-70 complex 4JFX ; 1.95 ; Structure of phosphotyrosine (pTyr) scaffold bound to pTyr peptide 5O76 ; 2.473 ; Structure of phosphoY371 c-CBL in complex with ZAP70-peptide and UbV.pCBL ubiquitin variant 5KYV ; 2.5 ; Structure of Photinus pyralis Luciferase green shifted light emitting variant 5KYT ; 2.001 ; Structure of Photinus pyralis Luciferase red light emitting variant 1QNF ; 1.8 ; STRUCTURE OF PHOTOLYASE 5LGZ ; 1.5 ; Structure of Photoreduced Pentaerythritol Tetranitrate Reductase 6SUF ; 3.4 ; Structure of Photorhabdus luminescens Tc holotoxin pore 6SUE ; 3.4 ; Structure of Photorhabdus luminescens Tc holotoxin pore, Mutation TccC3-D651A 5Y5S ; 1.9 ; Structure of photosynthetic LH1-RC super-complex at 1.9 angstrom resolution 7VRJ ; 2.81 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF Allochromatium tepidum 7YML ; 2.6 ; Structure of photosynthetic LH1-RC super-complex of Rhodobacter capsulatus 7VY2 ; 2.75 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF RHODOBACTER SPHAEROIDES DIMER 7VY3 ; 2.63 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF RHODOBACTER SPHAEROIDES LACKING PROTEIN-U 7F0L ; 2.94 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF RHODOBACTER SPHAEROIDES MONOMER 7XXF ; 2.24 ; Structure of photosynthetic LH1-RC super-complex of Rhodopila globiformis 7EQD ; 2.76 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF RHODOSPIRILLUM RUBRUM 7C9R ; 2.82 ; STRUCTURE OF PHOTOSYNTHETIC LH1-RC SUPER-COMPLEX OF THIORHODOVIBRIO STRAIN 970 7Z8D ; 2.14 ; Structure of Photosynthetic Reaction Center From Rhodobacter Sphaeroides strain RV by fixed-target serial synchrotron crystallography (room temperature, 26keV) 1KBY ; 2.5 ; Structure of Photosynthetic Reaction Center with bacteriochlorophyll-bacteriopheophytin heterodimer 6PNJ ; 3.19 ; Structure of Photosystem I Acclimated to Far-red Light 5ZJI ; 3.3 ; Structure of photosystem I supercomplex with light-harvesting complexes I and II 7S3D ; 2.91 ; Structure of photosystem I with bound ferredoxin from Synechococcus sp. PCC 7335 acclimated to far-red light 6NKI ; 2.6 ; Structure of PhqB Reductase Domain from Penicillium fellutanum 6NKM ; 1.896 ; Structure of PhqE D166N Reductase/Diels-Alderase from Penicillium fellutanum in complex with NADP+ and substrate 6NKK ; 2.299 ; Structure of PhqE Reductase/Diels-Alderase from Penicillium fellutanum in complex with NADP+ and premalbrancheamide 1PHN ; 1.65 ; STRUCTURE OF PHYCOCYANIN FROM CYANIDIUM CALDARIUM AT 1.65A RESOLUTION 2VCK ; 1.8 ; Structure of Phycoerythrobilin Synthase PebS from the Cyanophage P-SSM2 in Complex with the bound Substrate Biliverdin IXa 2VCL ; 1.55 ; Structure of Phycoerythrobilin Synthase PebS from the Cyanophage P-SSM2 in the substrate free form 6JEL ; 2.3 ; Structure of Phytolacca americana apo UGT2 6JEN ; 2.65 ; Structure of Phytolacca americana UGT2 complexed with UDP-2fluoro-glucose and pterostilbene 6JEM ; 2.6 ; Structure of Phytolacca americana UGT2 complexed with UDP-2fluoro-glucose and resveratrol 6LZX ; 3.101 ; Structure of Phytolacca americana UGT3 with 15-crown-5 6LZY ; 2.4 ; Structure of Phytolacca americana UGT3 with 18-crown-6 4PS3 ; 2.9 ; Structure of PI3K gamma in complex with 1-[6-(5-methoxypyridin-3-yl)-1,3-benzothiazol-2-yl]-3-[2-(1-propyl-1H-imidazol-4-yl)ethyl]urea 4XX5 ; 2.76 ; Structure of PI3K gamma in complex with an inhibitor 4XZ4 ; 2.6 ; Structure of PI3K gamma in complex with an inhibitor 3DBS ; 2.8 ; Structure of PI3K gamma in complex with GDC0941 4PS8 ; 2.99 ; Structure of PI3K gamma in complex with N-[6-(5,6-dimethoxypyridin-3-yl)-1,3-benzothiazol-2-yl]acetamide 4PS7 ; 2.69 ; Structure of PI3K gamma in complex with N-[6-(pyridin-3-yl)-1,3-benzothiazol-2-yl]acetamide 3L08 ; 2.7 ; Structure of Pi3K gamma with a potent inhibitor: GSK2126458 4KZ0 ; 2.87 ; Structure of PI3K gamma with Imidazopyridine inhibitors 4KZC ; 3.25 ; Structure of PI3K gamma with Imidazopyridine inhibitors 3L54 ; 2.3 ; Structure of Pi3K gamma with inhibitor 3ENJ ; 1.78 ; Structure of Pig Heart Citrate Synthase at 1.78 A resolution 1VJD ; 1.9 ; Structure of pig muscle PGK complexed with ATP 1VJC ; 2.1 ; Structure of pig muscle PGK complexed with MgATP 1HX0 ; 1.38 ; Structure of pig pancreatic alpha-amylase complexed with the ""truncate"" acarbose molecule (pseudotrisaccharide) 2XUL ; 2.2 ; Structure of PII from Synechococcus elongatus in complex with 2- oxoglutarate at high 2-OG concentrations 2XZW ; 1.95 ; STRUCTURE OF PII FROM SYNECHOCOCCUS ELONGATUS IN COMPLEX WITH 2- OXOGLUTARATE AT LOW 2-OG CONCENTRATIONS 1HWU ; 2.1 ; STRUCTURE OF PII PROTEIN FROM HERBASPIRILLUM SEROPEDICAE 4CNY ; 1.2 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense 4CNZ ; 1.7 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine diphosphate 4CO0 ; 1.4 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine diphosphate 4CO1 ; 1.5 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine diphosphate 4CO2 ; 1.8 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine diphosphate 4CO3 ; 1.05 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine triphosphate 4CO4 ; 1.5 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with adenosine triphosphate 4CO5 ; 1.8 ; Structure of PII signaling protein GlnZ from Azospirillum brasilense in complex with tartrate 7R9V ; 2.69 ; Structure of PIK3CA with covalent inhibitor 19 7R9Y ; 2.85 ; Structure of PIK3CA with covalent inhibitor 22 4NFD ; 1.708 ; Structure of PILR L108W mutant in complex with sialic acid 1YI4 ; 2.4 ; Structure of Pim-1 bound to adenosine 4K18 ; 2.051 ; Structure of PIM-1 kinase bound to 5-(4-cyanobenzyl)-N-(4-fluorophenyl)-7-hydroxypyrazolo[1,5-a]pyrimidine-3-carboxamide 4K0Y ; 1.954 ; Structure of PIM-1 kinase bound to N-(4-fluorophenyl)-7-hydroxy-5-(piperidin-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide 4K1B ; 2.082 ; Structure of PIM-1 kinase bound to N-(5-(2-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-((((3R,4R)-3-fluoropiperidin-4-yl)methyl)amino)pyrazolo[1,5-a]pyrimidine-3-carboxamide 3A99 ; 1.6 ; Structure of PIM-1 kinase crystallized in the presence of P27KIP1 Carboxy-terminal peptide 2HWY ; 2.75 ; Structure of PIN domain of human SMG5. 2HWW ; 1.8 ; Structure of PIN domain of human SMG6 5H4G ; 1.77 ; Structure of PIN-domain protein (VapC4 toxin) from Pyrococcus horikoshii determined at 1.77 A resolution 5H4H ; 2.23 ; Structure of PIN-domain protein (VapC4 toxin) from Pyrococcus horikoshii determined at 2.2 A resolution 3WH0 ; 1.6 ; Structure of Pin1 Complex with 18-crown-6 4TNS ; 1.33 ; Structure of Pin1 PPIase domain bound with all-trans retinoic acid 2M8I ; ; Structure of Pin1 WW domain 2M8J ; ; Structure of Pin1 WW domain phospho-mimic S16E 5VTJ ; 1.5 ; Structure of Pin1 WW Domain Sequence 1 Substituted with [S,S]ACPC 5VTI ; 1.8 ; Structure of Pin1 WW Domain Sequence 3 with [R,R]-ACPC Loop Substitution 5VTK ; 1.99 ; Structure of Pin1 WW Domain Variant 1 with beta3-Ser Loop Substitution 6EQI ; 3.1 ; Structure of PINK1 bound to ubiquitin 5NM8 ; 1.93 ; Structure of PipY, the COG0325 family member of Synechococcus elongatus PCC7942, with PLP bound 5NLC ; 1.9 ; Structure of PipY, the COG0325 family member of Synechococcus elongatus PCC7942,without PLP 4HHH ; 2.2 ; Structure of Pisum sativum Rubisco 4MKV ; 2.15 ; Structure of Pisum sativum Rubisco with ABA 1UW5 ; 2.9 ; Structure of PITP-alpha complexed to phosphatidylinositol 2VO7 ; 1.98 ; Structure of PKA complexed with 4-(4-Chlorobenzyl)-1-(7H-pyrrolo(2,3- d)pyrimidin-4-yl)piperidin-4-ylamine 7U9Q ; 3.11 ; Structure of PKA phosphorylated human RyR2 in the closed state 7U9T ; 2.68 ; Structure of PKA phosphorylated human RyR2 in the closed state in the presence of Calmodulin 7U9R ; 3.69 ; Structure of PKA phosphorylated human RyR2 in the open state 7U9X ; 2.58 ; Structure of PKA phosphorylated human RyR2-R2474S in the closed state 7UA1 ; 2.99 ; Structure of PKA phosphorylated human RyR2-R2474S in the closed state in the presence of ARM210 7UA3 ; 2.97 ; Structure of PKA phosphorylated human RyR2-R2474S in the closed state in the presence of Calmodulin 7U9Z ; 3.29 ; Structure of PKA phosphorylated human RyR2-R2474S in the open state 7UA4 ; 2.93 ; Structure of PKA phosphorylated human RyR2-R2474S in the open state in the presence of Calmodulin 8UXE ; 3.53 ; Structure of PKA phosphorylated human RyR2-R420Q in the closed state in the presence of ARM210 8UXC ; 2.86 ; Structure of PKA phosphorylated human RyR2-R420Q in the primed state 8UXG ; 3.08 ; Structure of PKA phosphorylated human RyR2-R420W in the closed state in the presence of ARM210 8UXI ; 3.29 ; Structure of PKA phosphorylated human RyR2-R420W in the open state in the presence of calcium 8UXM ; 3.56 ; Structure of PKA phosphorylated human RyR2-R420W in the open state in the presence of calcium and calmodulin 8UXF ; 3.13 ; Structure of PKA phosphorylated human RyR2-R420W in the primed state 8UXH ; 3.52 ; Structure of PKA phosphorylated human RyR2-R420W in the primed state in the presence of calcium 8UXL ; 3.12 ; Structure of PKA phosphorylated human RyR2-R420W in the primed state in the presence of calcium and calmodulin 3KKV ; 1.8 ; Structure of PKA with a protein Kinase B-selective inhibitor. 2VNY ; 1.96 ; Structure of PKA-PKB chimera complexed with (1-(9H-Purin-6-yl) piperidin-4-yl)amine 2VNW ; 2.09 ; Structure of PKA-PKB chimera complexed with (1-(9H-Purin-6-yl) piperidin-4-yl)methanamine 4AXA ; 1.9 ; Structure of PKA-PKB chimera complexed with (1S)-2-amino-1-(4- chlorophenyl)-1-(4-(1H-pyrazol-4-yl)phenyl)ethan-1-ol 2UW5 ; 2.14 ; Structure of PKA-PKB chimera complexed with (R)-2-(4-chloro-phenyl)- 2-(4-1H-pyrazol-4-yl)-phenyl)-ethylamine 2UW6 ; 2.23 ; Structure of PKA-PKB chimera complexed with (S)-2-(4-chloro-phenyl)- 2-(4-1H-pyrazol-4-yl)-phenyl)-ethylamine 2UW4 ; 2.0 ; Structure of PKA-PKB chimera complexed with 2-(4-(5-methyl-1H-pyrazol- 4-yl)-phenyl)-ethylamine 2UW8 ; 2.0 ; Structure of PKA-PKB chimera complexed with 2-(4-chloro-phenyl)-2- phenyl-ethylamine 2UW7 ; 2.1 ; Structure of PKA-PKB chimera complexed with 4-(4-chloro-phenyl)-4-(4- (1H-pyrazol-4-yl)-phenyl)-piperidine 2VO6 ; 1.97 ; Structure of PKA-PKB chimera complexed with 4-(4-Chlorobenzyl)-1-(7H- pyrrolo(2,3-d)pyrimidin-4-yl)piperidin-4-ylamine 2UW3 ; 2.19 ; Structure of PKA-PKB chimera complexed with 5-methyl-4-phenyl-1H- pyrazole 2UW0 ; 2.0 ; Structure of PKA-PKB chimera complexed with 6-(4-(4-(4-Chloro-phenyl) -piperidin-4-yl)-phenyl)-9H-purine 2UVX ; 2.0 ; Structure of PKA-PKB chimera complexed with 7-azaindole 2JDV ; 2.08 ; Structure of PKA-PKB chimera complexed with A-443654 2VO0 ; 1.94 ; Structure of PKA-PKB chimera complexed with C-(4-(4-Chlorophenyl)-1-(7H-pyrrolo(2,3-d)pyrimidin-4-yl)piperidin-4-yl)methylamine 2VO3 ; 1.98 ; Structure of PKA-PKB chimera complexed with C-(4-(4-Chlorophenyl)-1-(7H-pyrrolo(2,3-d)pyrimidin-4-yl)piperidin-4-yl)methylamine 2UVZ ; 1.94 ; Structure of PKA-PKB chimera complexed with C-Phenyl-C-(4-(9H-purin-6- yl)-phenyl)-methylamine 2JDT ; 2.15 ; Structure of PKA-PKB chimera complexed with ISOQUINOLINE-5-SULFONIC ACID (2-(2-(4-CHLOROBENZYLOXY) ETHYLAMINO)ETHYL)AMIDE 2UVY ; 1.95 ; Structure of PKA-PKB chimera complexed with methyl-(4-(9H-purin-6-yl)- benzyl)-amine 1GZN ; 2.5 ; Structure of PKB kinase domain 2UW9 ; 2.1 ; STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH 4-(4-chloro-phenyl)-4-(4-(1H-pyrazol-4-yl)-phenyl)-piperidine 2JDO ; 1.8 ; STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH ISOQUINOLINE-5-SULFONIC ACID (2-(2-(4-CHLOROBENZYLOXY) ETHYLAMINO)ETHYL)AMIDE 2JDR ; 2.3 ; STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH THE INHIBITOR A-443654 2UVM ; 1.94 ; Structure of PKBalpha PH domain in complex with a novel inositol headgroup surrogate, benzene 1,2,3,4-tetrakisphosphate 4DC2 ; 2.4 ; Structure of PKC in Complex with a Substrate Peptide from Par-3 7D7E ; 3.4 ; Structure of PKD1L3-CTD/PKD2L1 in apo state 7D7F ; 3.1 ; Structure of PKD1L3-CTD/PKD2L1 in calcium-bound state 8HK7 ; 3.0 ; Structure of PKD2-F604P (Polycystin-2, TRPP2) with ML-SA1 8K3S ; 3.0 ; Structure of PKD2-F604P complex 6BYP ; 1.9 ; Structure of PL24 family Polysaccharide lyase-LOR107 5GKD ; 2.194 ; Structure of PL6 family alginate lyase AlyGC 5GKQ ; 2.565 ; Structure of PL6 family alginate lyase AlyGC mutant-R241A 7Q73 ; 1.9 ; Structure of Pla1 apo 7Q74 ; 2.599 ; Structure of Pla1 apo, with a C-terminal deletion 7Q72 ; 2.8 ; Structure of Pla1 in complex with Red1 7DKZ ; 2.393 ; Structure of plant photosystem I-light harvesting complex I supercomplex 4U5X ; 1.9 ; Structure of plant small GTPase OsRac1 complexed with the non-hydrolyzable GTP analog GMPPNP 1LF4 ; 1.9 ; STRUCTURE OF PLASMEPSIN II 4Z22 ; 2.62 ; structure of plasmepsin II from Plasmodium Falciparum complexed with inhibitor DR718A 4YA8 ; 3.301 ; structure of plasmepsin II from Plasmodium Falciparum complexed with inhibitor PG394 4Y6M ; 2.27 ; Structure of plasmepsin II from Plasmodium falciparum complexed with inhibitor PG418 1XE5 ; 2.4 ; Structure of plasmepsin II in complex of an pepstatin analogue 1XE6 ; 2.8 ; Structure of plasmepsin II in complex of an pepstatin analogue 7QYH ; 3.33 ; Structure of plasmepsin II in complex with 2-aminoquinazolin-4(3H)-one based open-flap inhibitor 1XDH ; 1.7 ; Structure of plasmepsin II in complex with pepstatin A 7RY7 ; 2.1 ; Structure of Plasmepsin X (PM10, PMX) from Plasmodium falciparum 3D7 8DSR ; 2.85 ; Structure of Plasmepsin X (PM10, PMX) from Plasmodium falciparum 3D7 in complex with UCB7362 6Q1U ; 2.3467 ; Structure of plasmin and peptide complex 6TU4 ; 2.6 ; Structure of Plasmodium Actin1 filament 7LXT ; 3.4 ; Structure of Plasmodium falciparum 20S proteasome with bound bortezomib 7LXU ; 3.1 ; Structure of Plasmodium falciparum 20S proteasome with bound MPI-5 3MMR ; 2.14 ; Structure of Plasmodium falciparum Arginase in complex with ABH 5JMW ; 1.55 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC50 and manganese 5JAZ ; 1.4 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC51 and manganese 5JBI ; 1.7 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC52 and manganese 5JNL ; 1.6 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC54 and manganese 5JC1 ; 1.65 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC55 and manganese 5JO0 ; 1.8 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC56 and manganese 5JMP ; 1.7 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, LC57 and manganese 4Y6S ; 2.1 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, RC134, and manganese 4Y6R ; 1.9 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, RC137, and manganese 4Y67 ; 1.6 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, RC176, and manganese 4Y6P ; 1.9 ; Structure of Plasmodium falciparum DXR in complex with a beta-substituted fosmidomycin analogue, RC177, and manganese 6RMO ; 2.6 ; Structure of Plasmodium falciparum IMP-nucleotidase 2A94 ; 1.5 ; Structure of Plasmodium falciparum lactate dehydrogenase complexed to APADH. 3ZH2 ; 2.1 ; Structure of Plasmodium falciparum lactate dehydrogenase in complex with a DNA aptamer 3LG0 ; 2.3 ; Structure of Plasmodium falciparum ornithine delta-aminotransferase 6Z2L ; 1.95 ; Structure of Plasmodium falciparum P113 bound to antibody P3.2 4CWA ; 2.02 ; Structure of Plasmodium Falciparum Spermidine Synthase in Complex with 1H-Benzimidazole-2-pentanamine 4J56 ; 2.371 ; Structure of Plasmodium falciparum thioredoxin reductase-thioredoxin complex 4J57 ; 2.5 ; Structure of Plasmodium falciparum thioredoxin reductase-thioredoxin complex 6OHG ; 2.385 ; Structure of Plasmodium falciparum vaccine candidate Pfs230D1M in complex with the Fab of a transmission blocking antibody 4KP7 ; 2.0 ; Structure of Plasmodium IspC in complex with a beta-thia-isostere derivative of Fosmidomycin 6Y3A ; 1.49 ; Structure of Plasmodium vivax phosphoglycerate kinase 2MGP ; ; Structure of Plasmodium Yoelii Merozoite Surface Protein 1 - C-terminal Domain 2MGR ; ; Structure of Plasmodium Yoelii Merozoite Surface Protein 1 - C-terminal Domain, E28K mutant 5LR8 ; 2.7 ; Structure of plastidial phosphorylase Pho1 from Barley 3P72 ; 1.9 ; structure of platelet Glycoprotein 1b alpha with a bound peptide inhibitor 2MN3 ; ; Structure of Platypus 'Intermediate' Defensin-like Peptide (Int-DLP) 2C5L ; 1.9 ; Structure of PLC epsilon Ras association domain with hRas 2N6F ; ; Structure of Pleiotrophin 5V6R ; 2.7 ; Structure of Plexin D1 intracellular domain 2RKU ; 1.95 ; Structure of PLK1 in complex with BI2536 4O56 ; 1.8 ; Structure of PLK1 in complex with peptide 3THB ; 2.5 ; Structure of PLK1 kinase domain in complex with a benzolactam-derived inhibitor 6HBS ; 1.65 ; Structure of PLP internal aldimine form of Sphingopyxis sp. MTA144 FumI protein 6HBV ; 1.65 ; Structure of PLP internal aldimine form of Sphingopyxis sp. MTA144 FumI protein 2WK9 ; 1.9 ; Structure of Plp_Thr aldimine form of Vibrio cholerae CqsA 2WKA ; 1.91 ; Structure of Plp_Thr_decanoyl-CoA aldimine form of Vibrio cholerae CqsA 7SJK ; 1.208 ; Structure of PLS A-domain (residues 391-656) from Staphylococcus aureus 7SP2 ; 2.75 ; Structure of PLS A-domain (residues 391-656; 513-518 deletion mutant) from Staphylococcus aureus 1YB0 ; 1.86 ; Structure of PlyL 8VLQ ; 2.07 ; Structure of PmHMGR bound to mevalonate, CoA and NAD 5 minutes after reaction initiation at pH 9 8GDN ; 1.99 ; Structure of PmHMGR bound to mevalonate, CoA and NAD. 5CR6 ; 1.98 ; Structure of pneumolysin at 1.98 A resolution 4R4X ; 1.9 ; Structure of PNGF-II in C2 space group 4R4Z ; 2.81 ; Structure of PNGF-II in P21 space group 4XRU ; 3.41 ; Structure of Pnkp1/Rnl/Hen1 complex 2AN4 ; 2.2 ; Structure of PNMT complexed with S-adenosyl-L-homocysteine and the acceptor substrate octopamine 2AN3 ; 2.2 ; Structure of PNMT with S-adenosyl-L-homocysteine and the semi-rigid analogue acceptor substrate cis-(1R,2S)-2-amino-1-tetralol. 5KK1 ; 3.38 ; Structure of pNOB8 AspA-DNA complex. 5K5Z ; 2.369 ; Structure of pnob8 ParA 5U1J ; 2.95 ; Structure of pNOB8 ParA bound to nonspecific DNA 4RS7 ; 1.9 ; Structure of pNOB8 ParB-C 8UI0 ; 2.7 ; Structure of poised transcription complex Pol II-DSIF-NELF - pre-translocated 1D6A ; 2.1 ; STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN COMPLEXED WITH GUANINE 1J1Q ; 1.8 ; Structure of Pokeweed Antiviral Protein from Seeds (PAP-S1) 1J1R ; 1.9 ; Structure of Pokeweed Antiviral Protein from Seeds (PAP-S1) Complexed with Adenine 4IQJ ; 3.2 ; Structure of PolIIIalpha-Tauc-DNA complex suggests an atomic model of the replisome 7LJI ; 1.85 ; Structure of poly(aspartic acid) hydrolase PahZ2 with Gd+3 bound 7LJH ; 2.5 ; Structure of poly(aspartic acid) hydrolase PahZ2 with Zn+2 bound 1H83 ; 1.9 ; STRUCTURE OF POLYAMINE OXIDASE IN COMPLEX WITH 1,8-DIAMINOOCTANE 1H82 ; 1.9 ; STRUCTURE OF POLYAMINE OXIDASE IN COMPLEX WITH GUAZATINE 1H81 ; 2.1 ; STRUCTURE OF POLYAMINE OXIDASE IN THE REDUCED STATE 1SJW ; 1.35 ; Structure of polyketide cyclase SnoaL 1Q9J ; 2.75 ; Structure of polyketide synthase associated protein 5 from Mycobacterium tuberculosis 4IUJ ; 1.9 ; Structure of Polymerase acid protein (PA) from Influenzavirus A Influenza A virus A, WILSON-SMITH/1933 (H1N1) 4IRD ; 2.48 ; Structure of Polymerase-DNA complex 4IRK ; 2.32 ; structure of Polymerase-DNA complex, dna 4EXT ; 1.9 ; Structure of polymerase-interacting domain of human Rev1 in complex with translesional synthesis polymerase zeta 6Z1S ; 1.53 ; Structure of Polyphenol Oxidase (mutant G292N) from Thermothelomyces thermophila 7PLJ ; 1.64 ; Structure of Polyphosphate kinase 2 from Deinococcus radiodurans, in complex with ATP and polyphosphates. 5LL0 ; 1.96 ; Structure of Polyphosphate Kinase 2 from Francisella tularensis SCHU S4 with polyphosphate 5LLB ; 1.92 ; Structure of Polyphosphate Kinase 2 from Francisella tularensis with AMPPCH2PPP and polyphosphate 5LLF ; 2.31 ; Structure of Polyphosphate Kinase 2 mutant D117N from Francisella tularensis with polyphosphate 5LC9 ; 1.903 ; Structure of Polyphosphate Kinase from Meiothermus ruber Apo-form 5LCD ; 2.66 ; Structure of Polyphosphate Kinase from Meiothermus ruber bound to AMP 5O6K ; 2.903 ; Structure of Polyphosphate Kinase from Meiothermus ruber N121D 5O6M ; 2.3 ; Structure of Polyphosphate Kinase from Meiothermus ruber N121D bound to ATP 6D6K ; 2.5 ; Structure of polyribonucleotide nucleotidyltransferase from Acinetobacter baumannii 4DGI ; 2.4 ; Structure of POM1 FAB fragment complexed with human PrPc Fragment 120-230 4H88 ; 1.9 ; Structure of POM1 FAB fragment complexed with mouse PrPc Fragment 120-230 6AQ7 ; 1.83 ; Structure of POM6 FAB fragment complexed with mouse PrPc 3WPX ; 2.3 ; Structure of PomBc4, a periplasmic fragment of PomB from Vibrio alginolyticus 3WPW ; 2.0 ; Structure of PomBc5, a periplasmic fragment of PomB from Vibrio 7F3N ; 2.35186 ; Structure of PopP2 in apo form 6R1I ; 2.634 ; Structure of porcine Aichi virus polymerase 1EXS ; 2.39 ; STRUCTURE OF PORCINE BETA-LACTOGLOBULIN 4JLZ ; 2.27 ; Structure of porcine cGAS in complex with bound UTP 2GSR ; 2.11 ; Structure of porcine class pi glutathione s-transferase 4KB6 ; 3.0754 ; Structure of porcine cyclic GMP AMP synthase (CGAS) in complex with DNA, ATP and GTP 4JLX ; 2.004 ; Structure of porcine cyclic GMP-AMP synthase (cGAS) 7XNM ; 3.58 ; Structure of porcine dipeptidyl peptidase 4 inhibitory peptide complex 2GMJ ; 2.6 ; Structure of Porcine Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase 2GMH ; 2.5 ; Structure of Porcine Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase in Complexed with Ubiquinone 7INS ; 2.0 ; STRUCTURE OF PORCINE INSULIN COCRYSTALLIZED WITH CLUPEINE Z 7U8P ; 3.7 ; Structure of porcine kidney V-ATPase with SidK, Rotary State 1 7U8Q ; 4.1 ; Structure of porcine kidney V-ATPase with SidK, Rotary State 2 7U8R ; 3.8 ; Structure of porcine kidney V-ATPase with SidK, Rotary State 3 1DHK ; 1.85 ; STRUCTURE OF PORCINE PANCREATIC ALPHA-AMYLASE 8B49 ; 1.19 ; STRUCTURE OF PORCINE PANCREATIC ELASTASE BOUND TO A FRAGMENT (m-toluoylcarbonyl group) OF A 5-AZAINDOLE INHIBITOR 8B53 ; 1.25 ; Structure of porcine pancreatic elastase bound to a fragment of a 4-azaindole inhibitor 8B1Y ; 1.12 ; STRUCTURE OF PORCINE PANCREATIC ELASTASE BOUND TO A FRAGMENT OF A 5-AZAINDAZOLE INHIBITOR 8B04 ; 1.6 ; STRUCTURE OF PORCINE PANCREATIC ELASTASE BOUND TO A FRAGMENT OF AN ISOXAZOLONE INHIBITOR 3HGP ; 0.94 ; Structure of porcine pancreatic elastase complexed with a potent peptidyl inhibitor FR130180 determined by high resolution crystallography 3HGN ; 1.65 ; Structure of porcine pancreatic elastase complexed with a potent peptidyl inhibitor FR130180 determined by neutron crystallography 3HGN ; 1.201 ; Structure of porcine pancreatic elastase complexed with a potent peptidyl inhibitor FR130180 determined by neutron crystallography 1BRU ; 2.3 ; STRUCTURE OF PORCINE PANCREATIC ELASTASE COMPLEXED WITH THE ELASTASE INHIBITOR GR143783 2FOG ; 1.9 ; Structure of porcine pancreatic elastase in 40% trifluoroethanol 2FOH ; 1.8 ; Structure of porcine pancreatic elastase in 40% trifluoroethanol 2FOA ; 1.9 ; Structure of porcine pancreatic elastase in 40/50/10 % benzene 2FOB ; 1.9 ; Structure of porcine pancreatic elastase in 40/50/10 cyclohexane 2FOC ; 2.0 ; Structure of porcine pancreatic elastase in 55% dimethylformamide 2FOD ; 2.0 ; Structure of porcine pancreatic elastase in 80% ethanol 2FOE ; 2.2 ; Structure of porcine pancreatic elastase in 80% hexane 2FOF ; 2.2 ; Structure of porcine pancreatic elastase in 80% isopropanol 2FO9 ; 2.0 ; Structure of porcine pancreatic elastase in 95% acetone 1QR3 ; 1.6 ; Structure of porcine pancreatic elastase in complex with FR901277, a novel macrocyclic inhibitor of elastases at 1.6 angstrom resolution 6TH7 ; 2.2 ; Structure of porcine pancreatic elastase in complex with tutuilamide 3E3T ; 1.6 ; Structure of porcine pancreatic elastase with the magic triangle I3C 1P2P ; 2.6 ; STRUCTURE OF PORCINE PANCREATIC PHOSPHOLIPASE A2 AT 2.6 ANGSTROMS RESOLUTION AND COMPARISON WITH BOVINE PHOSPHOLIPASE A2 4DN8 ; 2.2 ; Structure of porcine surfactant protein D neck and carbohydrate recognition domain complexed with mannose 3I1K ; 2.1 ; Structure of porcine torovirus Hemagglutinin-Esterase 3I1L ; 2.79 ; Structure of porcine torovirus Hemagglutinin-Esterase in complex with its receptor 1EJA ; 2.7 ; STRUCTURE OF PORCINE TRYPSIN COMPLEXED WITH BDELLASTASIN, AN ANTISTASIN-TYPE INHIBITOR 7U8O ; 3.5 ; Structure of porcine V-ATPase with mEAK7 and SidK, Rotary state 2 6RHY ; ; Structure of pore-forming amyloid-beta tetramers 4D64 ; 3.2 ; Structure of porin Omp-Pst1 from P. stuartii; the crystallographic symmetry generates a dimer of trimers. 4D65 ; 2.2 ; Structure of porin Omp-Pst2 from P. stuartii; the asymmetric unit contains a dimer of trimers. 2POR ; 1.8 ; STRUCTURE OF PORIN REFINED AT 1.8 ANGSTROMS RESOLUTION 7SAT ; 3.9 ; Structure of PorLM, the proton-powered motor that drives Type IX protein secretion 1PDA ; 1.76 ; STRUCTURE OF PORPHOBILINOGEN DEAMINASE REVEALS A FLEXIBLE MULTIDOMAIN POLYMERASE WITH A SINGLE CATALYTIC SITE 3H8T ; 1.8 ; Structure of Porphyromonas gingivalis heme-binding protein HmuY in complex with Heme 7SIL ; 2.7 ; Structure of positive allosteric modulator-bound active human calcium-sensing receptor 7SIM ; 2.7 ; Structure of positive allosteric modulator-free active human calcium-sensing receptor 6LXT ; 2.9 ; Structure of post fusion core of 2019-nCoV S2 subunit 7COT ; 2.16 ; Structure of post fusion core of SARS-CoV-2 S2 subunit 5L0W ; 3.035 ; Structure of post-translational translocation Sec71/Sec72 complex 7ACR ; 3.44 ; Structure of post-translocated trans-translation complex on E. coli stalled ribosome. 2CJP ; 1.95 ; Structure of potato (Solanum tuberosum) epoxide hydrolase I (StEH1) 5DZU ; 2.12 ; Structure of potato cathepsin D inhibitor 3JRV ; 1.6 ; Structure of poxvirus K7 protein in complex with RNA helicase DDX3 6GHM ; 2.15 ; Structure of PP1 alpha phosphatase bound to ASPP2 6ZEE ; 1.9 ; Structure of PP1(7-300) bound to Phactr1 (507-580) at pH8.4 6ZEF ; 1.94 ; Structure of PP1(7-300) bound to Phactr1 (516-580) at pH 5.25 6ZEG ; 1.09 ; Structure of PP1-IRSp53 chimera [PP1(7-304) + linker (G/S)x9 + IRSp53(449-465)] bound to Phactr1 (516-580) 6ZEI ; 1.39 ; Structure of PP1-IRSp53 S455E chimera [PP1(7-304) + linker (G/S)x9 + IRSp53(449-465)] bound to Phactr1 (516-580) 6ZEJ ; 1.78 ; Structure of PP1-Phactr1 chimera [PP1(7-304) + linker (SGSGS) + Phactr1(526-580)] 6ZEH ; 1.3 ; Structure of PP1-spectrin alpha II chimera [PP1(7-304) + linker (G/S)x9 + spectrin alpha II (1025-1039)] bound to Phactr1 (516-580) 5WG8 ; 1.65 ; Structure of PP5C with LB-100; 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety modeled in the density 4BCR ; 2.497 ; Structure of PPARalpha in complex with WY14643 3ET1 ; 2.5 ; Structure of PPARalpha with 3-[5-Methoxy-1-(4-methoxy-benzenesulfonyl)-1H-indol-3-yl]-propionic acid 6L96 ; 3.2 ; Structure of PPARalpha-LBD/pemafibrate/SRC1 peptide 3ET2 ; 2.24 ; Structure of PPARdelta with 3-[5-Methoxy-1-(4-methoxy-benzenesulfonyl)-1H-indol-3-yl]-propionic acid 6T1V ; 2.21 ; Structure of PPARg H494Y mutant in complex with GW1929 5Y2T ; 1.7 ; Structure of PPARgamma ligand binding domain - lobeglitazone complex 3TY0 ; 2.0 ; Structure of PPARgamma ligand binding domain in complex with (R)-5-(3-((3-(6-methoxybenzo[d]isoxazol-3-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)methyl)phenyl)-5-methyloxazolidine-2,4-dione 5Y2O ; 1.801 ; Structure of PPARgamma ligand binding domain-pioglitazone complex 3ET0 ; 2.4 ; Structure of PPARgamma with 3-(5-Methoxy-1H-indol-3-yl)-propionic acid 3ET3 ; 1.95 ; Structure of PPARgamma with 3-[5-Methoxy-1-(4-methoxy-benzenesulfonyl)-1H-indol-3-yl]-propionic acid 5A9Y ; 4.0 ; Structure of ppGpp BipA 7UXM ; 1.2 ; Structure of PPIA in complex with FP29092, a Helicon Polypeptide 7UXJ ; 2.07 ; Structure of PPIA in complex with FP29102, a Helicon Polypeptide 7UXN ; 1.36 ; Structure of PPIA in complex with FP29103, a Helicon Polypeptide 7ABT ; 1.31 ; Structure of PPIA in complex with PR dipeptide repeat 8HZ8 ; 1.81 ; Structure of PPIA in complex with the peptide of NRF2 1RJD ; 1.8 ; Structure of PPM1, a leucine carboxy methyltransferase involved in the regulation of protein phosphatase 2A activity 1RJE ; 2.0 ; Structure of PPM1, a leucine carboxy methyltransferase involved in the regulation of protein phosphatase 2A activity 1RJF ; 2.25 ; Structure of PPM1, a leucine carboxy methyltransferase involved in the regulation of protein phosphatase 2A activity 1RJG ; 2.61 ; Structure of PPM1, a leucine carboxy methyltransferase involved in the regulation of protein phosphatase 2A activity 7N0Z ; 2.19 ; Structure of PPM1H phosphatase with manganese ions at the active site 7N6Q ; 3.87 ; Structure of PPPA bound human ACAT2 4L9G ; 2.2 ; Structure of PpsR N-Q-PAS1 from Rb. sphaeroides 4L9E ; 1.65 ; Structure of PpsR Q-PAS1 from Rb. sphaeroides 4HH2 ; 2.8 ; Structure of PpsR without the HTH motif from Rb. sphaeroides 7KGW ; 1.99 ; Structure of PQS Response Protein PqsE in Complex N-(3-(1H-pyrazol-5-yl)phenyl)-1H-indazole-7-carboxamide 7KGX ; 2.0 ; Structure of PQS Response Protein PqsE in Complex with 4-(3-(2-methyl-2-morpholinobutyl)ureido)-N-(thiazol-2-yl)benzamide 7TZA ; 2.1 ; Structure of PQS Response Protein PqsE in complex with N-(4-(3-neopentylureido)phenyl)-1H-indazole-7-carboxamide 7TZ9 ; 2.01 ; Structure of PQS Response Protein PqsE(E182W) Variant 7U6G ; 2.45 ; Structure of PQS Response Protein PqsE(E182W,E280A) Variant 6AWW ; 2.3 ; Structure of PR 10 Allergen Ara h 8.01 in complex with 3-Hydroxy-2-naphthoic acid 6AWR ; 1.6 ; Structure of PR 10 Allergen Ara h 8.01 in complex with ANS 6AWU ; 3.05 ; Structure of PR 10 Allergen Ara h 8.01 in complex with caffeic acid 6AWS ; 2.35 ; Structure of PR 10 Allergen Ara h 8.01 in complex with quercetin 6B1D ; 2.51 ; Structure of PR 10 Allergen Ara h 8.01 with Quercetin 6AWT ; 2.3 ; Structure of PR 10 Allergen in complex with epicatechin 6AX0 ; 2.5 ; Structure of PR-10 Allergen Ara h 8.01 in complex with epicatechin 6AWX ; 2.7 ; Structure of PR-10 Allergen Ara h 8.01. 6AWZ ; 1.9 ; Structure of PR-10 allergen from peanut (Ara h 8.01). 2FFS ; 2.5 ; Structure of PR10-allergen-like protein PA1206 from Pseudomonas aeruginosa PAO1 6EWX ; 2.771 ; Structure of Pragmin pseudo-kinase reveals a dimerization mechanism to regulate protein tyrosine phosphorylation and nuclear transcription 7Z34 ; 3.8 ; Structure of pre-60S particle bound to DRG1(AFG2). 7ABZ ; 3.21 ; Structure of pre-accomodated trans-translation complex on E. coli stalled ribosome. 8FCS ; ; Structure of pre-miR-31 reveals an active role in Dicer processing 2PAB ; 1.8 ; STRUCTURE OF PREALBUMIN, SECONDARY, TERTIARY AND QUATERNARY INTERACTIONS DETERMINED BY FOURIER REFINEMENT AT 1.8 ANGSTROMS 5EUI ; 1.45 ; Structure of predicted ancestral pika hemoglobin 5A86 ; 2.25 ; Structure of pregnane X receptor in complex with a Sphingosine 1- Phosphate Receptor 1 Antagonist 4H6W ; 2.45 ; Structure of Prenylagaramide maturation protease PagA 7FHB ; 1.9 ; Structure of prenyltransferase from Streptomyces sp. (strain CL190) with bound GPP 7FHE ; 2.5 ; Structure of prenyltransferase mutant Q295F from Streptomyces sp. (strain CL190) 7FHC ; 2.06 ; Structure of prenyltransferase mutant V49W from Streptomyces sp. (strain CL190) 7FHF ; 2.5 ; Structure of prenyltransferase mutant V49W/Y288F/Q295F from Streptomyces sp. (strain CL190) 7FHD ; 3.5 ; Structure of prenyltransferase mutant Y288P from Streptomyces sp. (strain CL190) 4RN6 ; 3.0 ; Structure of prethrombin-2 mutant s195a bound to the active site inhibitor argatroban 3BB7 ; 1.5 ; Structure of Prevotella intermedia prointerpain A fragment 39-359 (mutant C154A) 6XB4 ; 1.9 ; Structure of PrGV poxin in post-reactive state with Gp[2'-5']Ap[3'] 2AXU ; 2.9 ; Structure of PrgX 2AWI ; 2.25 ; Structure of PrgX Y153C mutant 2AXV ; 3.0 ; Structure of PrgX Y153C mutant 5X9J ; 2.1 ; Structure of PrhC from Penicillium brasilianum NBRC 6234 5OP0 ; 1.84 ; Structure of Prim-PolC from Mycobacterium smegmatis 7OLA ; 3.3 ; Structure of Primase-Helicase in SaPI5 7OM0 ; 3.1 ; Structure of Primase-Helicase in SaPI5 5LXQ ; 3.335 ; Structure of PRL-1 in complex with the Bateman domain of CNNM2 5MMZ ; 2.4 ; Structure of PRL-1 in complex with the Bateman domain of CNNM2 6CKC ; 2.8 ; Structure of PRMT5:MEP50 in complex with LLY-283, a potent and selective inhibitor of PRMT5, with antitumor activity 5HLZ ; 2.851 ; Structure of Pro-Activin A Complex at 2.85 A resolution 5HLY ; 2.302 ; Structure of Pro-Activin A Precursor at 2.3 A Resolution 6Q24 ; 1.85 ; Structure of pro-Esp mutant- S235A 6Q12 ; 2.2 ; Structure of pro-Esp mutant- S66V 2NN3 ; 3.0 ; structure of pro-sf-caspase-1 1PXR ; 1.7 ; Structure of Pro50Ala mutant of Bacteriorhodopsin 3L8C ; 2.41 ; Structure of probable D-alanine--poly(phosphoribitol) ligase subunit-1 from Streptococcus pyogenes 3LGX ; 2.6 ; Structure of probable D-alanine-poly(phosphoribitol) ligase subunit-1 from Streptococcus pyogenes with ATP 3LXZ ; 1.76 ; Structure of probable Glutathione S-transferase(PP0183) from Pseudomonas putida 3QLD ; 1.85 ; Structure of Probable Mandelate Racemase (AaLAA1DRAFT_2112) from Alicyclobacillus Acidocaldarius 3LME ; 2.74 ; Structure of probable translation initiation inhibitor from (RPA2473) from Rhodopseudomonas palustris 3LUF ; 1.76 ; Structure of probable two-component system response regulator/GGDEF domain protein 4OX8 ; 1.9031 ; Structure of Prochlorococcus marinus str. MIT 9313 CsoS1 6B6J ; 1.9 ; Structure of profilin Art v4 3P24 ; 1.8 ; Structure of profragilysin-3 from Bacteroides fragilis 6EL3 ; 1.899 ; Structure of Progesterone 5beta-Reductase from Arabidopsis thaliana in complex with NADP 2V6F ; 2.4 ; Structure of Progesterone 5beta-Reductase from Digitalis Lanata 2V6G ; 2.3 ; Structure of Progesterone 5beta-Reductase from Digitalis Lanata in complex with NADP 1MFK ; ; Structure of Prokaryotic SECIS mRNA Hairpin 5NBC ; 1.699 ; Structure of Prokaryotic Transcription Factors 5UX5 ; 2.7 ; Structure of Proline Utilization A (PutA) from Corynebacterium freiburgense 6BSN ; 2.15 ; Structure of proline utilization A (PutA) with proline bound in remote sites 5KF6 ; 1.7 ; Structure of proline utilization A from Sinorhizobium meliloti complexed with L-tetrahydrofuroic acid and NAD+ in space group P21 5KF7 ; 1.9 ; Structure of proline utilization A from Sinorhizobium meliloti complexed with L-tetrahydrofuroic acid and NAD+ in space group P3121 7MY9 ; 1.628 ; Structure of proline utilization A with 1,3-dithiolane-2-carboxylate bound in the proline dehydrogenase active site 6X9B ; 1.46 ; Structure of proline utilization A with cis-4-hydroxy-D-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site 6X99 ; 1.56 ; Structure of proline utilization A with D-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site 6X9C ; 1.44 ; Structure of proline utilization A with L-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site 7MYB ; 1.52 ; Structure of proline utilization A with tetrahydrothiophene-2-carboxylate bound in the proline dehydrogenase active site 6VZ9 ; 1.52 ; Structure of proline utilization A with the FAD covalently modified by L-thiazolidine-2-carboxylate 6UFP ; 1.737 ; Structure of proline utilization A with the FAD covalently modified by L-thiazolidine-2-carboxylate and three cysteines (Cys46, Cys470, Cys638) modified to S,S-(2-HYDROXYETHYL)THIOCYSTEINE 7MYC ; 1.9 ; Structure of proline utilization A with the FAD covalently modified by tetrahydrothiophene 7MYA ; 1.56 ; Structure of proline utilization A with the FAD covalently-modified by 1,3-dithiolane 6X9A ; 1.41 ; Structure of proline utilization A with trans-4-hydroxy-D-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site 6X9D ; 1.54 ; Structure of proline utilization A with trans-4-hydroxy-L-proline bound in the L-glutamate-gamma-semialdehyde dehydrogenase active site 4X43 ; 1.65 ; Structure of proline-free E. coli Thioredoxin 6XHD ; 1.51 ; Structure of Prolinyl-5'-O-adenosine phosphoramidate 8B57 ; 2.42 ; Structure of prolyl endoprotease from Aspergillus niger CBS 109712 8BBX ; 2.7 ; Structure of prolyl endoprotease from Aspergillus niger CBS 109712 in space group C222(1) 4JZR ; 2.1 ; Structure of Prolyl Hydroxylase Domain-containing Protein (PHD) with Inhibitors 6RV6 ; 3.507 ; Structure of properdin lacking TSR3 based on anomalous data 5BWY ; 2.644 ; Structure of proplasmepsin II from Plasmodium falciparum, Space Group P43212 5JOD ; 1.528 ; Structure of proplasmepsin IV from Plasmodium falciparum 3P50 ; 3.3 ; Structure of propofol bound to a pentameric ligand-gated ion channel, GLIC 6GG1 ; 1.3 ; Structure of PROSS-edited human interleukin 24 1RY0 ; 1.69 ; Structure of prostaglandin F synthase with prostaglandin D2 5H5L ; 1.999 ; Structure of prostaglandin synthase D of Nilaparvata lugens 3GYL ; 1.3 ; Structure of Prostasin at 1.3 Angstroms resolution in complex with a Calcium Ion. 3GYM ; 2.8 ; Structure of Prostasin in Complex with Aprotinin 8XJ4 ; 3.19 ; Structure of prostatic acid phosphatase in human semen 4TKX ; 1.6 ; Structure of Protease 6F2H ; 2.19 ; Structure of Protease 1 from Pyrococcus horikoshii co-crystallized in presence of 10 mM Tb-Xo4 and potassium iodide. 6Q3T ; 2.15 ; Structure of Protease1 from Pyrococcus horikoshii at room temperature in ChipX microfluidic device 7QO8 ; 1.95 ; Structure of Protease1 from Pyrococcus horikoshii in space group 19 with a hexamer in the asymmetric unit 3Q5W ; 2.75 ; Structure of proteasome tether 3Q5X ; 2.98 ; Structure of proteasome tether 4G4S ; 2.49 ; Structure of Proteasome-Pba1-Pba2 Complex 6Z3K ; 2.7 ; Structure of protective antibody 38-1-10A Fab 1GZO ; 2.75 ; Structure of protein kinase B unphosphorylated 5F9E ; 2.0 ; Structure of Protein Kinase C theta with compound 10: 2,2-dimethyl-7-(2-oxidanylidene-3~{H}-imidazo[4,5-b]pyridin-1-yl)-1-(phenylmethyl)-3~{H}-quinazolin-4-one 7AT5 ; 1.77 ; Structure of protein kinase ck2 catalytic subunit (csnk2a1 gene product) in complex with the bivalent inhibitor KN2 7AT9 ; 1.05 ; Structure of protein kinase ck2 catalytic subunit (csnk2a2 gene product) in complex with the ATP-competitive inhibitor MB002 and the alphaD-pocket ligand 3,4-dichlorophenethylamine 7ATV ; 0.98 ; Structure of protein kinase ck2 catalytic subunit (csnk2a2 gene product) in complex with the bivalent inhibitor KN2 5OOI ; 1.998 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA') IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR 4P 6HMQ ; 0.97 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 GENE PRODUCT) IN COMPLEX WITH THE BENZOTRIAZOLE-TYPE INHIBITOR MB002 8Q77 ; 1.255 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 GENE PRODUCT) IN COMPLEX WITH THE BISUBSTRATE INHIBITOR ARC-780 6HMD ; 1.0 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 gene product) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR AR18 6HMC ; 1.03 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 gene product) IN COMPLEX WITH THE INDENOINDOLE-TYPE INHIBITOR THN27 8QCD ; 1.03 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 GENE PRODUCT) IN COMPLEX WITH THE INHIBITOR 4,5,6,7-TETRABROMOBENZOTRIAZOLE 6HMB ; 1.04 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 Gene product) IN COMPLEX WITH the inhibitor CX-4945 (Silmitasertib) 8QBU ; 1.09 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 GENE PRODUCT) IN COMPLEX WITH THE INHIBITOR CX-4945 AND THE ALPHA-D-POCKET LIGAND 3,4-DICHLORO PHENETHYLAMINE (DPA) 8Q9S ; 1.352 ; STRUCTURE OF PROTEIN KINASE CK2 CATALYTIC SUBUNIT (ISOFORM CK2ALPHA'; CSNK2A2 GENE PRODUCT) IN COMPLEX WITH THE INHIBITOR SGC-CK2-1 6SPX ; 1.994 ; Structure of protein kinase CK2 catalytic subunit in complex with the CK2beta-competitive bisubstrate inhibitor ARC1502 6SPW ; 1.599 ; Structure of protein kinase CK2 catalytic subunit with the CK2beta-competitive bisubstrate inhibitor ARC3140 7PSU ; 1.77 ; Structure of protein kinase CK2alpha mutant K198R associated with the Okur-Chung Neurodevelopmental Syndrome 1SDS ; 1.8 ; Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA 2I6H ; 1.75 ; Structure of Protein of Unknown Function ATU0120 from Agrobacterium tumefaciens 2GAX ; 1.801 ; Structure of Protein of Unknown Function Atu0240 from Agrobacteriium tumerfaciencs str. C58 1RFZ ; 2.8 ; Structure of Protein of Unknown Function from Bacillus stearothermophilus 1U9D ; 1.7 ; Structure of Protein of Unknown Function from Vibrio cholerae O1 biovar eltor str. N16961 2GTS ; 2.1 ; Structure of Protein of Unknown Function HP0062 from Helicobacter pylori 1L1S ; 2.3 ; Structure of Protein of Unknown Function MTH1491 from Methanobacterium thermoautotrophicum 1NC5 ; 1.6 ; Structure of Protein of Unknown Function of YteR from Bacillus Subtilis 1Y0N ; 2.0 ; Structure of Protein of Unknown Function PA3463 from Pseudomonas aeruginosa PAO1 1Y0K ; 1.75 ; Structure of Protein of Unknown Function PA4535 from Pseudomonas aeruginosa strain PAO1, Monooxygenase Superfamily 1ZL0 ; 1.1 ; Structure of Protein of Unknown Function PA5198 from Pseudomonas aeruginosa 2GFQ ; 1.75 ; Structure of Protein of Unknown Function PH0006 from Pyrococcus horikoshii 2HHG ; 1.2 ; Structure of Protein of Unknown Function RPA3614, Possible Tyrosine Phosphatase, from Rhodopseudomonas palustris CGA009 2IL5 ; 2.3 ; Structure of Protein of Unknown Function SA2116 from Staphylococcus aureus 1MK4 ; 1.7 ; Structure of Protein of Unknown Function YqjY from Bacillus subtilis, Probable Acetyltransferase 1PV5 ; 1.75 ; Structure of Protein of Unknown Function YwqG from Bacillus subtilis 3ICF ; 2.3 ; Structure of Protein serine/threonine phosphatase from Saccharomyces cerevisiae with similarity to human phosphatase PP5 2C8M ; 1.89 ; Structure of protein Ta0514, putative lipoate protein ligase from T. acidophilum with bound lipoic acid 2C7I ; 2.1 ; Structure of protein Ta0514, putative lipoate protein ligase from T. acidophilum. 2CM3 ; 2.1 ; Structure of Protein Tyrosine Phosphatase 1B (C2) 2CM2 ; 1.5 ; Structure of Protein Tyrosine Phosphatase 1B (P212121) 4Y14 ; 1.898 ; Structure of protein tyrosine phosphatase 1B complexed with inhibitor (PTP1B:CPT157633) 6BV6 ; 2.2 ; Structure of proteinaceous RNase P 1 (PRORP1) from A. thaliana after 3-hour soak with juglone 6BV5 ; 1.79 ; Structure of proteinaceous RNase P 1 (PRORP1) from A. thaliana after 45-minute soak with juglone 6BV9 ; 2.1 ; Structure of proteinaceous RNase P 1 (PRORP1) from A. thaliana after overnight soak with juglone 6BV8 ; 2.1 ; Structure of proteinaceous RNase P 1 (PRORP1) from A. thaliana complexed with Mn after 3-hour soak with juglone 7C0P ; 2.15 ; Structure of proteinase K obtained in SSRF using serial crystallography 3GT3 ; 1.5 ; Structure of proteinase K with the mad triangle B3C 3GT4 ; 1.76 ; Structure of proteinase K with the magic triangle I3C 1M85 ; 2.0 ; Structure of Proteus mirabilis catalase for the native form 2CAH ; 2.7 ; STRUCTURE OF PROTEUS MIRABILIS PR CATALASE FOR THE NATIVE FORM (E-FE(III)) COMPLEXED WITH NADPH 3PCJ ; 2.13 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 2-HYDROXYISONICOTINIC ACID N-OXIDE 3PCL ; 2.15 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 2-HYDROXYISONICOTINIC ACID N-OXIDE AND CYANIDE 3PCA ; 2.2 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3,4-DIHYDROXYBENZOATE 3PCN ; 2.4 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3,4-DIHYDROXYPHENYLACETATE 3PCH ; 2.05 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3-CHLORO-4-HYDROXYBENZOATE 3PCF ; 2.15 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3-FLURO-4-HYDROXYBENZOATE 3PCB ; 2.19 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3-HYDROXYBENZOATE 3PCE ; 2.06 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3-HYDROXYPHENYLACETATE 3PCI ; 2.21 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 3-IODO-4-HYDROXYBENZOATE 3PCC ; 1.98 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 4-HYDROXYBENZOATE 3PCK ; 2.13 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 6-HYDROXYNICOTINIC ACID N-OXIDE 3PCM ; 2.25 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH 6-HYDROXYNICOTINIC ACID N-OXIDE AND CYANIDE 3PCG ; 1.96 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE COMPLEXED WITH THE INHIBITOR 4-HYDROXYPHENYLACETATE 2PCD ; 2.15 ; STRUCTURE OF PROTOCATECHUATE 3,4-DIOXYGENASE FROM PSEUDOMONAS AERUGINOSA AT 2.15 ANGSTROMS RESOLUTION 2VEE ; 2.6 ; Structure of protoglobin from Methanosarcina acetivorans C2A 6SGX ; 3.7 ; Structure of protomer 1 of the ESX-3 core complex 6SGZ ; 3.9 ; Structure of protomer 2 of the ESX-3 core complex 4XXG ; 0.85 ; Structure of protonated Cholesterol Oxidase from Streptomyces SA-COO 2IVE ; 2.7 ; Structure of protoporphyrinogen oxidase from Myxococcus xanthus 2IVD ; 2.3 ; Structure of protoporphyrinogen oxidase from Myxococcus xanthus with acifluorfen 4CN8 ; 2.45 ; Structure of proximal thread matrix protein 1 (PTMP1) from the mussel byssus 4CNB ; 1.95 ; Structure of proximal thread matrix protein 1 (PTMP1) from the mussel byssus - Crystal form 2 4CN9 ; 1.9 ; structure of proximal thread matrix protein 1 (PTMP1) from the mussel byssus with zinc occupied MIDAS motif 5EYI ; 2.16 ; Structure of PRRSV apo-NSP11 at 2.16A 2Y6X ; 1.6 ; Structure of Psb27 from Thermosynechococcus elongatus 3ZPN ; 2.361 ; Structure of Psb28 5MJO ; 1.55 ; Structure of Psb29 at 1.55A 5MJR ; 1.38 ; Structure of Psb29 at 1.55A 5MJW ; 2.47 ; Structure of Psb29 at 1.55A 5MLF ; 3.637 ; Structure of Psb29 at 1.55A 2VU4 ; 1.98 ; Structure of PsbP protein from Spinacia oleracea at 1.98 A resolution 5GNV ; 2.596 ; Structure of PSD-95/MAP1A complex reveals unique target recognition mode of MAGUK GK domain 5NCE ; ; Structure of PsDef1 defensin from Pinus sylvestris 3F79 ; 2.8 ; Structure of pseudo-centered cell crystal form of the C-terminal phosphatase domain of P. aeruginosa RssB 4BJ4 ; 1.722 ; Structure of Pseudomonas aeruginosa amidase Ampdh2 8AC7 ; 1.4 ; Structure of Pseudomonas aeruginosa aminopeptidase, PaAP 8ACK ; 1.784 ; Structure of Pseudomonas aeruginosa aminopeptidase, PaAP 8ACR ; 2.1 ; Structure of Pseudomonas aeruginosa aminopeptidase, PaAP 8AC9 ; 2.351 ; Structure of Pseudomonas aeruginosa aminopeptidase, PaAP_T 8ACG ; 2.84 ; Structure of Pseudomonas aeruginosa aminopeptidase, PaAP_T E340A mutant 7BOR ; 1.901 ; Structure of Pseudomonas aeruginosa CoA-bound OdaA 5WYB ; 2.25 ; Structure of Pseudomonas aeruginosa DspI 3OYY ; 1.75 ; Structure of Pseudomonas aeruginosa elongation factor P 4JB6 ; 2.4 ; Structure of Pseudomonas aeruginosa FabF mutant C164Q 7OC0 ; 1.78 ; Structure of Pseudomonas aeruginosa FabF mutant C164Q in complex with a ligand (2S,4R)-2-(thiophen-2-yl)thiazolidine-4-carboxylic acid 7OC1 ; 1.8 ; Structure of Pseudomonas aeruginosa FabF mutant C164Q in complex with Platensimycin 6G3U ; 2.707 ; Structure of Pseudomonas aeruginosa Isocitrate Dehydrogenase, IDH 6G1O ; 1.882 ; Structure of Pseudomonas aeruginosa Isocitrate Lyase, ICL 1W8H ; 1.75 ; structure of pseudomonas aeruginosa lectin II (PA-IIL)complexed with lewisA trisaccharide 2W7Q ; 1.88 ; Structure of Pseudomonas aeruginosa LolA 5DEM ; 1.81 ; Structure of Pseudomonas aeruginosa LpxA 5DG3 ; 2.3 ; Structure of Pseudomonas aeruginosa LpxA in complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc 5DEP ; 2.16 ; Structure of Pseudomonas aeruginosa LpxA in complex with UDP-GlcNAc 7CRD ; 1.901 ; Structure of Pseudomonas aeruginosa OdaA 8JU7 ; 1.8 ; Structure of Pseudomonas aeruginosa ParS sensor domain 6Y6Z ; 1.7 ; Structure of Pseudomonas aeruginosa Penicillin-Binding Protein 3 (PBP3) in complex with Compound 1 6Y6U ; 1.55 ; Structure of Pseudomonas aeruginosa Penicillin-Binding Protein 3 (PBP3) in complex with Compound 6 6R3X ; 1.59 ; Structure of Pseudomonas aeruginosa Penicillin-Binding Protein 3 (PBP3) in complex with piperacillin 4K2F ; 1.99 ; Structure of Pseudomonas aeruginosa PvdQ bound to BRD-A08522488 4K2G ; 2.3 ; Structure of Pseudomonas aeruginosa PvdQ bound to BRD-A33442372 3SRC ; 2.0 ; Structure of Pseudomonas aeruginosa PvdQ bound to NS2028 3SRB ; 1.8 ; Structure of Pseudomonas aeruginosa PvdQ bound to SMER28 3RD3 ; 2.4 ; Structure of Pseudomonas aeruginosa transcriptional regulator PA2196 3L91 ; 1.66 ; Structure of Pseudomonas aerugionsa PvdQ bound to octanoate 3SRA ; 2.3 ; Structure of Pseudomonas aerugionsa PvdQ covalently acylated with myristic acid from PVDIq 1GQI ; 1.48 ; Structure of Pseudomonas cellulosa alpha-D-glucuronidase 1GQK ; 1.9 ; Structure of Pseudomonas cellulosa alpha-D-glucuronidase complexed with glucuronic acid 1GQL ; 1.67 ; Structure of Pseudomonas cellulosa alpha-D-glucuronidase complexed with glucuronic acid and xylotriose 1GQJ ; 1.9 ; Structure of Pseudomonas cellulosa alpha-D-glucuronidase complexed with xylobiose 3PJT ; 2.5154 ; Structure of Pseudomonas fluorescence LapD EAL domain complexed with c-di-GMP, C2221 3PJU ; 2.4991 ; Structure of Pseudomonas fluorescence LapD EAL domain complexed with c-di-GMP, P6522 3PJW ; 3.1006 ; Structure of Pseudomonas fluorescence LapD GGDEF-EAL dual domain, I23 3PJX ; 2.0002 ; Structure of Pseudomonas fluorescence LapD GGDEF-EAL dual domain, P32 3PJV ; 1.7727 ; Structure of Pseudomonas fluorescence LapD periplasmic domain 1JOI ; 2.05 ; STRUCTURE OF PSEUDOMONAS FLUORESCENS HOLO AZURIN 1BF2 ; 2.0 ; STRUCTURE OF PSEUDOMONAS ISOAMYLASE 1CNO ; 2.2 ; STRUCTURE OF PSEUDOMONAS NAUTICA CYTOCHROME C552, BY MAD METHOD 7X0F ; 2.2 ; Structure of Pseudomonas NRPS protein, AmbB-TC bound to Ppant 7X17 ; 2.5 ; Structure of Pseudomonas NRPS protein, AmbB-TC bound to Ppant-L-Ala 7X0E ; 2.1 ; Structure of Pseudomonas NRPS protein, AmbB-TC in apo form 2Q0I ; 1.57 ; Structure of Pseudomonas Quinolone Signal Response Protein PqsE 2Q0J ; 2.1 ; Structure of Pseudomonas Quinolone Signal Response Protein PqsE 3DH8 ; 1.8 ; Structure of Pseudomonas Quinolone Signal Response Protein PqsE 6MW4 ; 1.55 ; Structure of pseudoprotease CspC from Clostridioides difficile 6KMX ; 2.41 ; Structure of PSI from H. hongdechloris grown under far-red light condition 6KMW ; 2.35 ; Structure of PSI from H. hongdechloris grown under white light condition 6JEO ; 3.3 ; Structure of PSI tetramer from Anabaena 6K33 ; 2.74 ; Structure of PSI-isiA supercomplex from Thermosynechococcus vulcanus 6IGZ ; 3.49 ; Structure of PSI-LHCI 6JLU ; 3.02 ; Structure of PSII-FCP supercomplex from a centric diatom Chaetoceros gracilis at 3.02 angstrom resolution 8W4O ; 3.23 ; Structure of PSII-FCPII-G/H complex in the PSII-FCPII supercomplex from Cyclotella meneghiniana 8W4P ; 3.48 ; Structure of PSII-FCPII-I/J/K complex in the PSII-FCPII supercomplex from Cyclotella meneghiniana 7NHP ; 2.72 ; Structure of PSII-I (PSII with Psb27, Psb28, and Psb34) 7NHQ ; 2.68 ; Structure of PSII-I prime (PSII with Psb28, and Psb34) 7NHO ; 2.66 ; Structure of PSII-M 5BX9 ; 2.001 ; Structure of PslG from Pseudomonas aeruginosa 5BXA ; 1.9 ; Structure of PslG from Pseudomonas aeruginosa in complex with mannose 7T8U ; 4.3 ; Structure of PSMbeta2 nanotubes 4D3G ; 3.0 ; Structure of PstA 4D3H ; 2.0 ; Structure of PstA 6A03 ; 2.597 ; Structure of pSTING complex 6A04 ; 1.9 ; Structure of pSTING complex 6A05 ; 2.2 ; Structure of pSTING complex 6A06 ; 1.792 ; Structure of pSTING complex 6IYF ; 1.764 ; Structure of pSTING complex 2N3O ; ; Structure of PTB RRM1(41-163) bound to an RNA stemloop containing a structured loop derived from viral internal ribosomal entry site RNA 6RMG ; 3.4 ; Structure of PTCH1 bound to a modified Hedgehog ligand ShhN-C24II 3BMN ; 1.98 ; Structure of Pteridine Reductase 1 (PTR1) from Trypanosoma brucei in ternary complex with cofactor (NADP+) and inhibitor (Compound AX3) 3BMO ; 1.6 ; Structure of Pteridine Reductase 1 (PTR1) from Trypanosoma brucei in ternary complex with cofactor (NADP+) and inhibitor (Compound AX4) 3BMQ ; 1.7 ; Structure of Pteridine Reductase 1 (PTR1) from Trypanosoma brucei in ternary complex with cofactor (NADP+) and inhibitor (Compound AX5) 3GN2 ; 1.6 ; Structure of Pteridine Reductase 1 (PTR1) from TRYPANOSOMA BRUCEI in ternary complex with cofactor (NADP+) and inhibitor (DDD00066730) 3GN1 ; 2.0 ; Structure of Pteridine Reductase 1 (PTR1) from TRYPANOSOMA BRUCEI in ternary complex with cofactor (NADP+) and inhibitor (DDD00067116) 3BMC ; 2.6 ; Structure of Pteridine Reductase 1 (PTR1) from Trypanosoma brucei in ternary complex with cofactor (NADP+) and substrate (folate) 2QHX ; 2.61 ; Structure of Pteridine Reductase from Leishmania major complexed with a ligand 6L03 ; 2.084 ; structure of PTP-MEG2 and MUNC18-1-pY145 peptide complex 6KZQ ; 1.7 ; structure of PTP-MEG2 and NSF-pY83 peptide complex 5T19 ; 2.1001 ; Structure of PTP1B complexed with N-(3'-(1,1-dioxido-4-oxo-1,2,5-thiadiazolidin-2-yl)-4'-methyl-[1,1'-biphenyl]-4-yl)acetamide 1LQF ; 2.5 ; Structure of PTP1b in Complex with a Peptidic Bisphosphonate Inhibitor 3SME ; 1.7 ; Structure of PTP1B inactivated by H2O2/bicarbonate 3MCV ; 1.7 ; Structure of PTR1 from Trypanosoma brucei in ternary complex with 2,4-diamino-5-[2-(2,5-dimethoxyphenyl)ethyl]thieno[2,3-d]-pyrimidine and NADP+ 3URR ; 1.397 ; Structure of PTS IIA-like nitrogen-regulatory protein PtsN (BTH_I0484) (ptsN) 8EE4 ; 2.6 ; Structure of PtuA 2FW1 ; 2.0 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) from the acidophilic bacterium Acetobacter aceti, at pH 8.5 5CLF ; 2.0 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) from the acidophilic bacterium Acetobacter aceti, at pH 8.5 2FWJ ; 1.95 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) from the acidophilic bacterium Acetobacter aceti, complexed with AIR (5-aminoimidazole ribonucleotide) 5CLI ; 1.948 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) from the acidophilic bacterium Acetobacter aceti, complexed with AIR (5-aminoimidazole ribonucleotide) 2FWI ; 1.94 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59D, from the acidophilic bacterium Acetobacter aceti, complexed with 5-aminoimidazole ribonucleotide (AIR) 2FW9 ; 1.75 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59F from the acidophilic bacterium Acetobacter aceti, at pH 8 2FW7 ; 1.75 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59N from the acidophilic bacterium Acetobacter aceti, at pH 8 5CLH ; 1.75 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59N from the acidophilic bacterium Acetobacter aceti, at pH 8 2FWP ; 1.85 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59N from the acidophilic bacterium Acetobacter aceti, bound to isocair 5CLJ ; 1.85 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H59N from the acidophilic bacterium Acetobacter aceti, complexed with AIR (5-aminoimidazole ribonucleotide) and CO2 2FWB ; 2.0 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H89F from the acidophilic bacterium Acetobacter aceti, at pH 8 2FW8 ; 1.75 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H89G from the acidophilic bacterium Acetobacter aceti, at pH 8 2FWA ; 1.9 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) H89N from the acidophilic bacterium Acetobacter aceti, at pH 7 2FW6 ; 1.85 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) mutant H59N from the acidophilic bacterium Acetobacter aceti, at pH 5.4 5CLG ; 1.85 ; Structure of PurE (N5-carboxyaminoimidazole ribonucleotide mutase) mutant H59N from the acidophilic bacterium Acetobacter aceti, at pH 5.4 6OTT ; 2.55 ; Structure of PurF in complex with ppApp 2P4S ; 2.2 ; Structure of Purine Nucleoside Phosphorylase from Anopheles gambiae in complex with DADMe-ImmH 3D54 ; 3.5 ; Structure of PurLQS from Thermotoga maritima 3ZK4 ; 1.65 ; Structure of purple acid phosphatase PPD1 isolated from yellow lupin (Lupinus luteus) seeds 3G17 ; 2.3 ; Structure of putative 2-dehydropantoate 2-reductase from staphylococcus aureus 3N07 ; 1.76 ; Structure of putative 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase from Vibrio cholerae 3I4F ; 2.39 ; Structure of putative 3-oxoacyl-reductase from bacillus thuringiensis 1UFH ; 2.2 ; Structure of putative acetyltransferase, YYCN protein of Bacillus subtilis 3IP1 ; 2.09 ; Structure of putative alcohol dehydrogenase (TM_042) from Thermotoga maritima 1JN9 ; 2.3 ; Structure of Putative Asparaginase Encoded by Escherichia coli ybiK Gene 2XIO ; 1.19 ; Structure of putative deoxyribonuclease TATDN1 isoform a 3LYB ; 2.66 ; Structure of putative endoribonuclease(KP1_3112) from Klebsiella pneumoniae 3PWX ; 2.5 ; Structure of putative flagellar hook-associated protein from Vibrio parahaemolyticus 4HYR ; 1.84 ; Structure of putative Glucarate dehydratase from Acidaminococcus sp. D21 with unusual static disorder 3N1U ; 1.8 ; Structure of putative HAD superfamily (subfamily III A) hydrolase from Legionella pneumophila 3HUL ; 2.19 ; Structure of putative homoserine kinase thrB from Listeria monocytogenes 2E1C ; 2.1 ; Structure of Putative HTH-type transcriptional regulator PH1519/DNA Complex 3P7M ; 2.2 ; Structure of putative lactate dehydrogenase from Francisella tularensis subsp. tularensis SCHU S4 1WOT ; ; Structure of putative minimal nucleotidyltransferase 3GPI ; 1.44 ; Structure of putative NAD-dependent epimerase/dehydratase from methylobacillus flagellatus 3G2E ; 2.0 ; Structure of putative OORC subunit of 2-oxoglutarate:acceptor oxidoreductase from Campylobacter jejuni 2AQW ; 2.0 ; Structure of putative orotidine-monophosphate-decarboxylase from Plasmodium yoelii (PY01515) 3IP3 ; 2.14 ; Structure of putative oxidoreductase (TM_0425) from Thermotoga maritima 3GFG ; 2.59 ; Structure of putative oxidoreductase yvaA from Bacillus subtilis in triclinic form 3IOY ; 1.9 ; Structure of putative short-chain dehydrogenase (Saro_0793) from Novosphingobium aromaticivorans 7US3 ; 2.2 ; Structure of Putrescine N-hydroxylase Involved Complexed with NADP+ 4YLM ; 2.05 ; Structure of PvcB, an Fe, alpha-ketoglutarate dependent oxygenase from an isonitrile synthetic pathway 5HH9 ; 1.47 ; Structure of PvdN from Pseudomonas aeruginosa 5HHA ; 1.24 ; Structure of PvdO from Pseudomonas aeruginosa 3L94 ; 1.95 ; Structure of PvdQ covalently acylated with myristate 2N1C ; ; Structure of PvHCt, an antimicrobial peptide from shrimp litopenaeus vannamei 6I7Q ; 1.798 ; Structure of pVHL-elongin B-elongin C (VCB) in complex with hydroxylated-HIF-2alpha (523-542) in the C2221 form 6I7R ; 1.949 ; Structure of pVHL-elongin B-elongin C (VCB) in complex with hydroxylated-HIF-2alpha (523-542) in the P43212 form 1PVI ; 2.6 ; STRUCTURE OF PVUII ENDONUCLEASE WITH COGNATE DNA 5Z5O ; 1.92 ; Structure of Pycnonodysostosis disease related I249T mutant of human cathepsin K 8TCX ; 1.72 ; Structure of PYCR1 complexed with 2,4-dioxo-1,2,3,4-tetrahydroquinazoline-6-carboxylic acid 8TCZ ; 2.1 ; Structure of PYCR1 complexed with 2-(pyridin-2-yl)cyclopropane-1-carboxylic acid 8TCU ; 2.0 ; Structure of PYCR1 complexed with 2-chloro-5-(2-oxoimidazolidin-1-yl)benzoic acid 8TCW ; 1.94 ; Structure of PYCR1 complexed with 2-methyl-3-(2-oxoimidazolidin-1-yl)benzoic acid 8TD1 ; 1.88 ; Structure of PYCR1 complexed with 3-(6-Oxa-9-azaspiro(4.5)decane-9-carbonyl)benzoic acid 8TCV ; 1.74 ; Structure of PYCR1 complexed with 4-bromobenzene-1,3-dicarboxylic acid 8TD0 ; 2.2 ; Structure of PYCR1 complexed with 5-oxo-7a-phenyl-hexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylic acid 8TCY ; 1.95 ; Structure of PYCR1 complexed with 7-fluoro-2-oxo-1,2,3,4-tetrahydroquinoline-6-carboxylic acid 8DKG ; 1.85 ; Structure of PYCR1 Thr171Met variant complexed with NADH 5B6A ; 2.0 ; Structure of Pyridoxal Kinasefrom Pseudomonas Aeruginosa 1M8V ; 2.6 ; Structure of Pyrococcus abyssii Sm Protein in Complex with a Uridine Heptamer 1Z26 ; 2.5 ; Structure of Pyrococcus furiosus Argonaute with bound tungstate 1KA2 ; 2.2 ; Structure of Pyrococcus furiosus Carboxypeptidase Apo-Mg 1K9X ; 2.3 ; Structure of Pyrococcus furiosus carboxypeptidase Apo-Yb 1KA4 ; 3.0 ; Structure of Pyrococcus furiosus carboxypeptidase Nat-Pb 7EI1 ; 3.9 ; Structure of Pyrococcus furiosus Cas1Cas2 complex 2WR8 ; 1.77 ; Structure of Pyrococcus horikoshii SAM hydroxide adenosyltransferase in complex with SAH 5MY4 ; 2.211 ; Structure of Pyroglutamate-Abeta-specific Fab c#17 in complex with human Abeta-pE3-12PEGb 5MYK ; 1.6 ; Structure of Pyroglutamate-Abeta-specific Fab c#17 in complex with murine Abeta-pE3-18PEGb 5MYX ; 1.492 ; Structure of Pyroglutamate-Abeta-specific Fab c#24 in complex with human Abeta-pE3-18 5MYO ; 1.59 ; Structure of Pyroglutamate-Abeta-specific Fab c#6 in complex with human Abeta-pE3-12-PEGb 4P82 ; 1.3 ; Structure of PyrR protein from Bacillus subtilis 4P86 ; 1.93 ; Structure of PyrR protein from Bacillus subtilis with GMP 4CH3 ; 2.28 ; Structure of pyrrolysyl-tRNA synthetase in complex with adenylated butyryl lysine 4CH4 ; 2.16 ; Structure of pyrrolysyl-tRNA synthetase in complex with adenylated crotonyl lysine 4CH6 ; 2.05 ; Structure of pyrrolysyl-tRNA synthetase in complex with adenylated propargyloxycarbonyl lysine 4CH5 ; 2.2 ; Structure of pyrrolysyl-tRNA synthetase in complex with adenylated propionyl lysine 2Q8F ; 2.03 ; Structure of pyruvate dehydrogenase kinase isoform 1 2Q8H ; 2.0 ; Structure of pyruvate dehydrogenase kinase isoform 1 in complex with dichloroacetate (DCA) 2Q8G ; 1.9 ; Structure of pyruvate dehydrogenase kinase isoform 1 in complex with glucose-lowering drug AZD7545 8FHU ; 1.801 ; Structure of Pyruvate dehydrogenase phosphatase regulatory subunit epitope presented by H2-Dd 8FHL ; 2.194 ; Structure of pyruvate dehydrogenase phosphatase regulatory subunit neoepitope presented by H2-Dd 1HQ6 ; 2.7 ; STRUCTURE OF PYRUVOYL-DEPENDENT HISTIDINE DECARBOXYLASE AT PH 8 8FNH ; 2.5 ; Structure of Q148K HIV-1 intasome with Dolutegravir bound 5TXO ; 2.546 ; STRUCTURE OF Q151M complex (A62V, V75I, F77L, F116Y, Q151M) mutant HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING DATP 5TXP ; 2.7 ; STRUCTURE OF Q151M complex (A62V, V75I, F77L, F116Y, Q151M) mutant HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING DDATP 5TXN ; 2.55 ; STRUCTURE OF Q151M MUTANT HIV-1 REVERSE TRANSCRIPTASE (RT) TERNARY COMPLEX WITH A DOUBLE STRANDED DNA AND AN INCOMING DATP 2NOZ ; 2.43 ; Structure of Q315F human 8-oxoguanine glycosylase distal crosslink to 8-oxoguanine DNA 2NOF ; 2.35 ; Structure of Q315F human 8-oxoguanine glycosylase proximal crosslink to 8-oxoguanine DNA 7RAR ; 2.15 ; Structure of Q67H mutant of disulfide stabilized HIV-1 CA hexamer 7RHM ; 2.16 ; Structure of Q67H/N74D mutant of disulfide stabilized HIV-1 CA hexamer 3PM1 ; 2.8 ; Structure of QacR E90Q bound to Ethidium 2GBY ; 2.9 ; Structure of QacR Multidrug Transcriptional Regulator Bound to Bivalent Diamidine Berenil 2G0E ; 2.88 ; Structure of QacR Multidrug Transcriptional Regulator Bound to Trivalent and Bivalent Diamidine Drugs 2XTW ; 2.803 ; Structure of QnrB1 (Full length), a plasmid-mediated fluoroquinolone resistance protein 2XTX ; 2.2 ; Structure of QnrB1 (M102R-Trypsin Treated), a plasmid-mediated fluoroquinolone resistance protein 2XTY ; 1.8 ; Structure of QnrB1 (R167E-Trypsin Treated), a plasmid-mediated fluoroquinolone resistance protein 5CGO ; 1.5 ; Structure of quasiracemic Ala-Magainin 2 with a beta amino acid substitution at position 13 5CGN ; 2.2 ; Structure of quasiracemic Ala-Magainin 2 with a beta amino acid substitution at position 8 3ULU ; 3.52 ; Structure of quaternary complex of human TLR3ecd with three Fabs (Form1) 3ULV ; 3.522 ; Structure of quaternary complex of human TLR3ecd with three Fabs (Form2) 6I0K ; 1.64 ; Structure of quinolinate synthase in complex with 4-mercaptophthalic acid 6I0R ; 2.1 ; Structure of quinolinate synthase in complex with 5-mercaptopyridine-2,3-dicarboxylic acid 6I0P ; 1.9 ; Structure of quinolinate synthase in complex with 6-mercaptopyridine-2,3-dicarboxylic acid 5F35 ; 1.6 ; Structure of quinolinate synthase in complex with citrate 5F33 ; 1.45 ; Structure of quinolinate synthase in complex with phosphoglycolohydroxamate 5F3D ; 1.9 ; Structure of quinolinate synthase in complex with reaction intermediate W 6F4L ; 2.3 ; Structure of quinolinate synthase with inhibitor-derived quinolinate 6F48 ; 1.5 ; Structure of quinolinate synthase with reaction intermediates X and Y 5LQM ; 1.62 ; Structure of quinolinate synthase Y21F mutant in complex with citrate 5LQS ; 1.9 ; Structure of quinolinate synthase Y21F mutant in complex with substrate-derived quinolinate 1QPQ ; 2.45 ; Structure of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium Tuberculosis: A Potential TB Drug Target 1LJ0 ; 2.0 ; Structure of quintuple mutant of the rat outer mitocondrial cytochrome b5. 5V1K ; 1.18 ; Structure of R-GNA dodecamer 1ZJZ ; 1.1 ; Structure of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis in complex with phenylethanol and NAD 1ZK1 ; 1.78 ; Structure of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis in complex with phenylethanol and NAD 1ZJY ; 1.05 ; Structure of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis in complex with phenylethanol and NADH 1ZK0 ; 1.55 ; Structure of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis in complex with phenylethanol and NADH 1ZK4 ; 1.0 ; Structure of R-specific alcohol dehydrogenase (wildtype) from Lactobacillus brevis in complex with acetophenone and NADP 6EVD ; 1.19 ; Structure of R173A A. niger Fdc1 with prFMN in the hydroxylated form 6EVE ; 2.05 ; Structure of R175A S. cerevisiae Fdc1 with prFMN in the iminium form 1NBI ; 3.0 ; Structure of R175K mutated glycine N-methyltransferase complexed with S-adenosylmethionine, R175K:SAM. 8IBW ; 3.6 ; Structure of R2 with 3'UTR and DNA in binding state 8IBX ; 3.74 ; Structure of R2 with 3'UTR and DNA in unwinding state 8IBY ; 3.47 ; Structure of R2 with 5'ORF 8IBZ ; 3.04 ; Structure of R2 with 5'ORF and 3'UTR 2CAQ ; 2.0 ; Structure of R21L mutant of Sh28GST in complex with GSH 2C8U ; 2.0 ; Structure of R21Q mutant of Sh28GST 3V4Q ; 3.06 ; Structure of R335W mutant of human Lamin 5YET ; 2.806 ; Structure of R354_WT 6R42 ; 1.72 ; Structure of R504C mutant of Pseudomonas aeruginosa Penicillin-Binding Protein 3 (PBP3) in complex with piperacillin 8JNJ ; 3.3 ; Structure of R932A/K1147A/H1148A mutant AE2 1LTX ; 2.7 ; Structure of Rab Escort Protein-1 in complex with Rab geranylgeranyl transferase and isoprenoid 2K6S ; ; Structure of Rab11-FIP2 C-terminal Coiled-coil Domain 4D0G ; 2.5 ; Structure of Rab14 in complex with Rab-Coupling Protein (RCP) 3CWZ ; 3.2 ; Structure of RAB6(GTP)-R6IP1 complex 2FU5 ; 2.0 ; structure of Rab8 in complex with MSS4 8BPO ; 2.8 ; Structure of rabbit 80S ribosome translating beta-tubulin in complex with tetratricopeptide protein 5 (TTC5) and S-phase Cyclin A Associated Protein residing in the ER (SCAPER) 6T59 ; 3.11 ; Structure of rabbit 80S ribosome translating beta-tubulin in complex with tetratricopeptide protein 5 and nascent chain-associated complex 1QZ6 ; 1.6 ; Structure of rabbit actin in complex with jaspisamide A 1QZ5 ; 1.45 ; Structure of rabbit actin in complex with kabiramide C 6MGO ; 2.2 ; Structure of rabbit actin in complex with Mycalolide B 2ASM ; 1.6 ; Structure of Rabbit Actin In Complex With Reidispongiolide A 2ASP ; 1.64 ; Structure of Rabbit Actin In Complex With Reidispongiolide C 2ASO ; 1.7 ; Structure of Rabbit Actin In Complex With Sphinxolide B 6W7V ; 1.7 ; Structure of rabbit actin in complex with truncated analog of Mycalolide B 6QRI ; 2.4 ; Structure of rabbit G-actin in complex with chivosazole A 2GJ4 ; 1.6 ; Structure of rabbit muscle glycogen phosphorylase in complex with ligand 2GM9 ; 2.3 ; Structure of rabbit muscle glycogen phosphorylase in complex with thienopyrrole 3PMG ; 2.4 ; STRUCTURE OF RABBIT MUSCLE PHOSPHOGLUCOMUTASE AT 2.4 ANGSTROMS RESOLUTION. USE OF FREEZING POINT DEPRESSANT AND REDUCED TEMPERATURE TO ENHANCE DIFFRACTIVITY 1PKN ; 2.9 ; STRUCTURE OF RABBIT MUSCLE PYRUVATE KINASE COMPLEXED WITH MN2+, K+, AND PYRUVATE 5J8V ; 4.9 ; Structure of rabbit ryanodine receptor RyR1 open state activated by calcium ion 5T9M ; 4.0 ; Structure of rabbit RyR1 (Ca2+-only dataset, class 1) 5T9N ; 3.8 ; Structure of rabbit RyR1 (Ca2+-only dataset, class 2) 5T9R ; 5.8 ; Structure of rabbit RyR1 (Ca2+-only dataset, class 3) 5T9S ; 4.2 ; Structure of rabbit RyR1 (Ca2+-only dataset, class 4) 5TAL ; 4.3 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 1&2) 5T9V ; 4.4 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 1) 5TA3 ; 4.4 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 2) 5TAQ ; 4.1 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 3&4) 5TAN ; 4.3 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 3) 5TAM ; 4.3 ; Structure of rabbit RyR1 (Caffeine/ATP/Ca2+ dataset, class 4) 5TAP ; 4.4 ; Structure of rabbit RyR1 (Caffeine/ATP/EGTA dataset, all particles) 5TAS ; 6.2 ; Structure of rabbit RyR1 (Caffeine/ATP/EGTA dataset, class 1) 5TAT ; 4.8 ; Structure of rabbit RyR1 (Caffeine/ATP/EGTA dataset, class 2) 5TAU ; 6.2 ; Structure of rabbit RyR1 (Caffeine/ATP/EGTA dataset, class 3) 5TAV ; 4.8 ; Structure of rabbit RyR1 (Caffeine/ATP/EGTA dataset, class 4) 5TB0 ; 4.4 ; Structure of rabbit RyR1 (EGTA-only dataset, all particles) 5TB1 ; 4.6 ; Structure of rabbit RyR1 (EGTA-only dataset, class 1) 5TB2 ; 4.6 ; Structure of rabbit RyR1 (EGTA-only dataset, class 2) 5TB3 ; 4.7 ; Structure of rabbit RyR1 (EGTA-only dataset, class 3) 5TB4 ; 4.5 ; Structure of rabbit RyR1 (EGTA-only dataset, class 4) 5TAW ; 4.4 ; Structure of rabbit RyR1 (ryanodine dataset, all particles) 5TAX ; 6.6 ; Structure of rabbit RyR1 (ryanodine dataset, class 1) 5TAY ; 4.6 ; Structure of rabbit RyR1 (ryanodine dataset, class 2) 5TAZ ; 4.3 ; Structure of rabbit RyR1 (ryanodine dataset, class 3) 5L1D ; 11.0 ; Structure of rabbit RyR2 in complex with FKBP12.6 in a closed state (conformation C1) 4PL8 ; 2.0 ; Structure of rabbit skeletal muscle actin in complex with a hybrid peptide comprising thymosin beta4 and the lysine-rich region of Cordon-Bleu 8S3E ; 2.39 ; Structure of rabbit Slo1 in complex with gamma1/LRRC26 1YZM ; 1.5 ; Structure of Rabenosyn (458-503), Rab4 binding domain 1UKV ; 1.5 ; Structure of RabGDP-dissociation inhibitor in complex with prenylated YPT1 GTPase 6UEB ; 3.3 ; Structure of Rabies SAD-B19 L-P complex from cryo-EM 6LGX ; 3.097 ; Structure of Rabies virus glycoprotein at basic pH 6LGW ; 2.9037 ; Structure of Rabies virus glycoprotein in complex with neutralizing antibody 523-11 at acidic pH 7T5G ; 1.7 ; Structure of rabies virus phosphoprotein C-terminal domain, S210E mutant 7T5H ; 1.5 ; Structure of rabies virus phosphoprotein C-terminal domain, wild type 4NP9 ; 1.92 ; Structure of Rabphilin C2A domain bound to IP3 6AGP ; ; Structure of Rac1 in the low-affinity state for Mg2+ 5I44 ; 2.621 ; Structure of RacA-DNA complex; P21 form 4MGP ; 1.75 ; Structure of racemic Ala-(8,13,18) Magainin 2 4GWT ; 2.25 ; Structure of racemic Pin1 WW domain cocrystallized with DL-malic acid 4GWV ; 3.05 ; Structure of racemic Pin1 WW domain cocrystallized with tri-ammonium citrate 5G34 ; 1.9 ; Structure of Rad14 in complex with acetylaminoanthracene-C8-guanine containing DNA 5G32 ; 2.2 ; Structure of Rad14 in complex with acetylaminophenyl-guanine containing DNA 5G35 ; 2.0 ; Structure of Rad14 in complex with acetylaminopyren-C8-guanine containing DNA 5G33 ; 2.4 ; Structure of Rad14 in complex with acetylnaphtyl-guanine containing DNA 5A39 ; 2.8 ; Structure of Rad14 in complex with cisplatin containing DNA 4R62 ; 2.28 ; Structure of Rad6~Ub 6WTE ; 1.67 ; Structure of radical S-adenosylmethionine methyltransferase, TsrM, from Kitasatospora setae with cobalamin and [4Fe-4S] cluster bound 6WTF ; 2.19 ; Structure of radical S-adenosylmethionine methyltransferase, TsrM, from Kitasatospora setae with tryptophan substrate and SAM analog (aza-SAM) bound 2HQ0 ; 1.4 ; Structure of RafE from Streptococcus pneumoniae 6XNX ; 2.7 ; Structure of RAG1 (R848M/E649V)-RAG2-DNA Strand Transfer Complex (Dynamic-Form) 6XNY ; 2.9 ; Structure of RAG1 (R848M/E649V)-RAG2-DNA Strand Transfer Complex (Paired-Form) 6XNZ ; 3.8 ; Structure of RAG1 (R848M/E649V)-RAG2-DNA Target Capture Complex 5CX8 ; 2.4 ; Structure of RagB, a major immunodominant virulence factor of Porphyromonas gingivalis. 2WGO ; ; Structure of ranaspumin-2, a surfactant protein from the foam nests of a tropical frog 6AXF ; 3.1 ; Structure of RasGRP2 in complex with Rap1B 6AXG ; 3.302 ; Structure of RasGRP4 in complex with HRas 6EOW ; 1.8 ; Structure of Raspberry Ketone Synthase with Hydroxybenzalacetone 1K2S ; 2.55 ; Structure of rat brain nNOS heme domain complexed with NG-allyl-L-arginine 1K2R ; 2.15 ; Structure of rat brain nNOS heme domain complexed with NG-nitro-L-arginine 1K2T ; 2.2 ; Structure of rat brain nNOS heme domain complexed with S-ethyl-N-phenyl-isothiourea 1K2U ; 2.2 ; Structure of rat brain nNOS heme domain complexed with S-ethyl-N-[4-(trifluoromethyl)phenyl] isothiourea 4YWD ; 2.1 ; Structure of rat cytosolic pepck in complex with 2,3-Pyridine dicarboxylic acid 4YW8 ; 1.55 ; Structure of rat cytosolic pepck in complex with 3-mercaptopicolinic acid 4YW9 ; 1.4 ; Structure of rat cytosolic pepck in complex with 3-mercaptopicolinic acid and GTP 4YWB ; 1.5 ; Structure of rat cytosolic pepck in complex with 3-mercaptopicolinic acid and oxalic acid 4GMM ; 1.736 ; Structure of rat cytosolic PEPCK Ld_1g in complex with Beta-Sulfopyruvate and GTP 4GMU ; 1.2 ; Structure of rat cytosolic PEPCK Ld_1g in complex with oxalate and GTP 4GMW ; 1.75 ; Structure of rat cytosolic PEPCK Ld_1g in complex with PEP and GDP 4GMZ ; 2.05 ; Structure of rat cytosolic PEPCK Ld_2g in complex with Beta-Sulfopyruvate and GTP 4GNM ; 1.5 ; Structure of rat cytosolic PEPCK Ld_2g in complex with oxalate and GTP 4GNL ; 1.7 ; Structure of rat cytosolic PEPCK Ld_2g in complex with PEP and GDP 4GNO ; 1.5 ; Structure of rat cytosolic PEPCK Ld_3g in complex with Beta-Sulfopyruvate and GTP 4GNQ ; 1.4 ; Structure of rat cytosolic PEPCK Ld_3g in complex with oxalate and GTP 4GNP ; 1.744 ; Structure of rat cytosolic PEPCK Ld_3g in complex with PEP and GDP 1QBQ ; 2.4 ; STRUCTURE OF RAT FARNESYL PROTEIN TRANSFERASE COMPLEXED WITH A CVIM PEPTIDE AND ALPHA-HYDROXYFARNESYLPHOSPHONIC ACID. 6LBK ; 2.49569 ; Structure of rat GLD-2 (Terminal nucleotidyltransferase 2, TENT2) 4KJG ; 2.38 ; Structure of Rat Intestinal Alkaline Phosphatase expressed in insect cell 5ADD ; 2.1 ; Structure of rat neuronal nitric oxide synthase d597n m336v mutant heme domain in complex with 7-((3-(methylamino)methyl) phenoxy)methyl)quinolin-2-amine 5G0O ; 1.85 ; Structure of rat neuronal nitric oxide synthase D597N mutant heme domain in complex with 4-METHYL-6-(2-(5-(4-METHYLPIPERAZIN-1-YL) PYRIDIN-3-YL)ETHYL)PYRIDIN-2-AMINE 5G0N ; 1.936 ; Structure of rat neuronal nitric oxide synthase D597N mutant heme domain in complex with N1-(5-(2-(6-AMINO-4-METHYLPYRIDIN-2-YL)ETHYL) PYRIDIN-3-YL)-N1,N2-DIMETHYLETHANE-1,2-DIAMINE 3JX1 ; 2.0 ; Structure of rat neuronal nitric oxide synthase D597N mutant heme domain in complex with N1-{(3'R,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JX0 ; 2.2 ; Structure of rat neuronal nitric oxide synthase D597N mutant heme domain in complex with N1-{(3'S,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JX3 ; 1.95 ; Structure of rat neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with N1-{(3'R,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JX4 ; 2.26 ; Structure of rat neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with N1-{(3'R,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JX5 ; 2.15 ; Structure of rat neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with N1-{(3'S,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JX2 ; 2.1 ; Structure of rat neuronal nitric oxide synthase D597N/M336V mutant heme domain in complex with N1-{(3'S,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 4CX5 ; 1.8 ; Structure of rat neuronal nitric oxide synthase H341L mutant heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(PYRIDIN-2-YL) PENTYL)OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 4CX6 ; 1.9 ; Structure of rat neuronal nitric oxide synthase H341L mutant heme domain in complex with 6-((((3S, 5R)-5-(((6-AMINO-4-METHYLPYRIDIN-2- YL)METHOXY)METHYL)PYRROLIDIN-3-YL)OXY)METHYL)-4-METHYLPYRIDIN-2-AMINE 8FGV ; 1.848 ; Structure of rat neuronal nitric oxide synthase H692F mutant heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methoxypyridin-2-amine 3NNY ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain complexed with 6-(((3R,4R)-4-(2-(3-Fluorophenethylamino)ethoxy)pyrrolidin-3-yl)methyl)pyridin-2-amine 3NNZ ; 1.97 ; Structure of rat neuronal nitric oxide synthase heme domain complexed with 6-(((3S,4S)-4-(2-(3-Fluorophenethylamino)ethoxy)pyrrolidin-3-yl)methyl)pyridin-2-amine 4D2Y ; 1.981 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (1R,2R)-2-(3-fluorobenzyl)-N-{2-[2-(1H-imidazol-1-yl)pyrimidin-4-yl]ethyl}cyclopropanamine 4D2Z ; 1.886 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (1S,2S)-2-(3-fluorobenzyl)-N-{2-[2-(1H-imidazol-1-YL)pyrimidin-4-YL]ethyl}cyclopropanamine 5AGK ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (2S)-2-Amino-5-(2-(methylsulfinyl)acetimidamido) pentanoic acid 4GQE ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (5E)-5-[(N-tert-butoxycarbamimidoyl)imino]-L-norvaline 5UNZ ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 6NGY ; 1.928 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-6-(2,3-difluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 4CTQ ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-6-(2-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl) ethyl)phenyl)ethyl)-4-methylpyridin-2-amine 4CTW ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-6-(3-amino-2-(5-(2-(6-amino-4-methylpyridin-2-yl) ethyl)pyridin-3-yl)propyl)-4-methylpyridin-2-amine 6NGM ; 1.693 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-6-(3-fluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGL ; 1.83 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (R)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 5UNY ; 1.82 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (RS)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 5AGL ; 1.94 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-2-Amino-5-(2-(methylsulfonyl)acetimidamido)pentanoic acid 5AGN ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-2-Amino-5-(2-hydroxyacetimidamido)pentanoic acid 5AGO ; 1.902 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-2-Amino-5-(2-mercaptoacetimidamido)pentanoic acid 5AGP ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-2-Amino-5-(2-mercaptoacetimidamido)pentanoic acid 5AGM ; 1.84 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-2-Amino-5-(2-oxoacetimidamido)pentanoic acid 5UO0 ; 1.97 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)propyl)benzonitrile 6NHD ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylazetidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGZ ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NH0 ; 1.898 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(2,3-difluoro-5-(2-(4-methylmorpholin-3-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 4CTT ; 2.3 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(2-amino-2-(3-(2-(4-methylpyridin-2-yl)ethyl)phenyl)ethyl)-4-methylpyridin-2-amine 4CTP ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(2-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl) ethyl)phenyl)ethyl)-4-methylpyridin-2-amine 4CTX ; 1.82 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(3-amino-2-(5-(2-(6-amino-4-methylpyridin-2-yl) ethyl)pyridin-3-yl)propyl)-4-methylpyridin-2-amine 6NGP ; 1.976 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(3-fluoro-5-(2-(1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGN ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with (S)-6-(3-fluoro-5-(2-(pyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 4V3Z ; 2.052 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N-(2-(3- fluorophenyl)cyclopropylmethyl)ethan-1-amine 4V3W ; 2.13 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N-(3- fluorophenethyl)ethan-1-amine 4D31 ; 1.951 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N-(3-cyanobenzyl) ethan-1-amine 4CTR ; 2.2 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 2-(6-Amino-4-methylpyridin-2-yl)-1-(3-(2-(6-amino-4- methylpyridin-2-yl)ethyl )phenyl)ethan-1-ol 6AUS ; 1.7 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(3-(methylamino)propyl)benzonitrile 4UH4 ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(methyl(2-(methylamino)ethyl)amino)benzonitrile 4D32 ; 2.103 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-(3-fluorophenyl)-N-2-(2-(5-methyl-1H-imidazol-1-yl) pyrimidin-4-yl)ethylpropan-1-amine 5UNU ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5UNX ; 2.03 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-[(2-amino-4-methylquinolin-7-yl)methoxy]-5-(2-(methylamino)ethyl)benzonitrile 5UNR ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-[(2-aminoquinolin-7-yl)methoxy]-5-((methylamino)methyl)benzonitrile 5UNW ; 2.044 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 3-[2-(2-amino-4-methylquinolin-7-yl)ethyl]-5-((methylamino)methyl)benzonitrile 5VUU ; 1.96 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VUT ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Amino-4-methylquinolin-7-yl)methyl)amino)ethyl)benzonitrile 5VUS ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-chlorobenzonitrile 5VUR ; 1.97 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)-2-methylbenzonitrile 5VUQ ; 2.002 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(2-(((2-Aminoquinolin-7-yl)methyl)amino)ethyl)benzonitrile 8FGB ; 1.91 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-6-methylpyrimidin-2-amine 4JSH ; 2.35 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-methyl-6-((3-(piperidin-4-ylmethoxy)phenoxy)methyl)pyridin-2-amine 5FVR ; 1.842 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-METHYL-6-(2-(5-(1-METHYLPIPERIDIN-4-YL)PYRIDIN-3-YL) ETHYL)PYRIDIN-2-AMINE 6AUV ; 1.76 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(2-(5-(3-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine 5FVS ; 1.948 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-methyl-6-(2-(5-(3-(methylamino)propyl)pyridin-3-yl) ethyl)pyridin-2-amine 6AUW ; 1.7 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(2-(5-(4-((methylamino)methyl)phenyl)pyridin-3-yl)ethyl)pyridin-2-amine 5FVQ ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-methyl-6-(2-(5-(4-methylpiperazin-1-yl)pyridin-3-yl) ethyl)pyridin-2-amine 6AUQ ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-6-(3-(3-(methylamino)propyl)phenethyl)pyridin-2-amine 5FVP ; 2.099 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-methyl-6-[2-(5-morpholin-4-ylpyridin-3-yl)ethyl]pyridin-2-amine 5UNT ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-7-[(3-((methylamino)methyl)phenoxy)methyl]quinolin-2-amine 5UNV ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 4-Methyl-7-[3-((methylamino)methyl)phenethyl]quinolin-2-amine 4IMS ; 2.15 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6,6'-((5-(3-aminopropyl)-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 4JSF ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6,6'-(heptane-1,7-diyl)bis(4-methylpyridin-2-amine) 4JSE ; 1.97 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6,6'-(pentane-1,5-diyl)bis(4-methylpyridin-2-amine) 4LUX ; 1.86 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-((((3R,5S)-5-(((6-amino-4-methylpyridin-2-yl)methoxy)methyl)pyrrolidin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 4C39 ; 1.98 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-((((3S, 5R)-5-(((6-amino-4-methylpyridin-2-yl)methoxy) methyl)pyrrolidin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 3NLX ; 1.87 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2- (2,2-Difluoro-2-(3-fluorophenyl)ethylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3NLY ; 1.99 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2- (2,2-Difluoro-2-(4-fluorophenyl)ethylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3SVQ ; 2.18 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((2,2-Difluoro-2-(2,3-difluorophenyl)ethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3PNF ; 1.94 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((2,2-Difluoro-2-(2-chlorophenyl)ethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3SVP ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((2,2-Difluoro-2-(3-chloro-5-fluorophenyl)ethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3PNE ; 1.97 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((2,2-Difluoro-2-(3-chlorophenyl)ethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3PNG ; 1.88 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((2-fluoro-2-(3-fluorophenyl)ethyl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3NM0 ; 1.81 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-(2,2-Difluoro-2-phenylethylamino)ethoxy) pyrrolidin-3-yl)methyl)-4-methyl-3,4,5,6-tetrahydropyridin-2-amine 3NLZ ; 1.92 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-(2,2-Difluoro-2-phenylethylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3NLV ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(2-(2,2-Difluoro-2-(3-fluorophenyl)ethylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3NLW ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(2-(2,2-Difluoro-2-(piperidin-2-yl)ethylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 4JSJ ; 1.92 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(((5-(((3-fluorophenethyl)amino)methyl)pyridin-3-yl)oxy)methyl)-4-methylpyridin-2-amine 4JSI ; 2.09 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-((3-(((3-fluorophenethyl)amino)methyl)phenoxy)methyl)-4-methylpyridin-2-amine 4JSG ; 1.94 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-((3-(3-aminopropoxy)phenoxy)methyl)-4-methylpyridin-2-amine 6NGX ; 1.773 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(2,3-difluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-methylpyridin-2-amine 5FW0 ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(2-(5-((2-methoxyethyl)(methyl)amino)pyridin-3-yl) ethyl)-4-methylpyridin-2-amine 5FVT ; 1.828 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(2-(5-(3-(dimethylamino)propyl)pyridin-3-yl)ethyl)-4- methylpyridin-2-amine 5FVO ; 2.12 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(2-(5-(3-methoxypropylamino)pyridin-3-yl)ethyl)-4- methylpyridin-2-amine 6AUX ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(2-(5-Fluoro-3'-((methylamino)methyl)-[1,1'-biphenyl]-3-yl)ethyl)-4-methylpyridin-2-amine 6NGK ; 1.83 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)prop-1-yn-1-yl)-5-fluorophenethyl)-4-methylpyridin-2-amine 6NGV ; 1.829 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,5,6-trifluorophenethyl)-4-methylpyridin-2-amine 6NGU ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,5-difluorophenethyl)-4-methylpyridin-2-amine 6NGT ; 1.942 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,6-difluorophenethyl)-4-methylpyridin-2-amine 6AUU ; 1.85 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-5-(trifluoromethyl)phenethyl)-4-methylpyridin-2-amine 6AUT ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(3-(Dimethylamino)propyl)-5-fluorophenethyl)-4-methylpyridin-2-amine 7TSF ; 1.776 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-(4,4-difluoropiperidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 4CTU ; 2.16 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-Amino-2-(3-(2-(6-amino-4-methylpyridin-2-yl)ethyl) phenyl)propyl)-4-methylpyridin-2-amine 4CTV ; 1.78 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-amino-2-(6-(2-(6-amino-4-methylpyridin-2-yl)ethyl) pyridin-2-yl)propyl)-4-methylpyridin-2-amine 6NGR ; 1.819 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(2-((2R,4S)-4-fluoro-1-methylpyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGQ ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(2-((2R,4S)-4-fluoropyrrolidin-2-yl)ethyl)phenethyl)-4-methylpyridin-2-amine 6NGJ ; 1.756 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-fluoro-5-(3-(methylamino)prop-1-yn-1-yl)phenethyl)-4-methylpyridin-2-amine 6AUR ; 1.75 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(3-Fluoro-5-(3-(methylamino)propyl)phenethyl)-4-methylpyridin-2-amine 4D7O ; 1.78 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(4-(((3-Fluorophenethyl)amino)methyl)phenyl)-4- methylpyridin-2-amine 6NHE ; 1.999 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(2-((2S,4R)-4-ethoxy-1-methylpyrrolidin-2-yl)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FGA ; 1.8947 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 8FG9 ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine 8FGC ; 1.779 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(2-aminoethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 6NGW ; 1.858 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(3-(dimethylamino)propyl)-2,3,4-trifluorophenethyl)-4-methylpyridin-2-amine 6NGS ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 6-(5-(3-(dimethylamino)propyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 5ADA ; 1.98 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-((Dimethylamino)methyl)phenyl)amino)methyl) quinolin-2-amine 5VUO ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-(4-Methoxypyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUN ; 1.745 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-(4-Methylpyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUP ; 1.94 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-(5-Fluoropyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUJ ; 1.952 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-(Dimethylamino)benzyl)amino)methyl)quinolin-2-amine 5VUM ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-(Pyridin-3-yl)propyl)amino)methyl)quinolin-2-amine 5VUI ; 2.06 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((3-Fluorophenyl)amino)methyl)quinolin-2-amine Dihydrochloride 5VUK ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((4-(Dimethylamino)benzyl)amino)methyl)quinolin-2-amine 5VUL ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((4-(Dimethylamino)phenethyl)amino)methyl)quinolin-2-amine 5ADC ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(((5-((Methylamino)methyl)pyridin-3-yl)oxy)methyl) quinolin-2-amine 7S40 ; 1.7969 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-((((6-aminopyridin-2-yl)methyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 7S3X ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-(((pyridin-2-ylmethyl)amino)methyl)phenoxy)methyl)quinolin-2-amine 5AD4 ; 1.981 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-(2-(Dimethylamino)ethyl)phenoxy)methyl)quinolin-2- amine 5AD5 ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-(2-(Methylamino)ethyl)phenoxy)methyl)quinolin-2- amine 5AD6 ; 2.005 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-(Dimethylamino)methyl)phenoxy)methyl)quinolin-2- amine 5AD7 ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-(Methylamino)methyl)phenoxy)methyl)quinolin-2- amine 5AD8 ; 1.905 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-Aminomethyl)phenoxy)methyl)quinolin-2-amine 4CAQ ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-Chlorophenethylamino)ethyl)quinolin-2-amine 4CDT ; 2.0 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-Fluorophenethylamino)ethyl)quinolin-2-amine 4CAM ; 1.83 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((3-Fluorophenethylamino)methyl)quinolin-2-amine 5AD9 ; 2.3 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((4-(Dimethylamino)methyl)phenoxy)methyl)quinolin-2- amine 5ADB ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-((4-Chloro-3-((methylamino)methyl)phenoxy)methyl) quinolin-2-amine 4CAO ; 1.98 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(2-(3-(3-Fluorophenyl(propylamino)ethyl))quinolin-2- amine 4CAP ; 2.06 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(2-(3-(3-Fluorophenyl(propylamino)methyl))quinolin-2- amine 4CAN ; 1.91 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(2-(3-Fluorobenzylamino)ethyl)quinolin-2-amine 6PMX ; 2.05 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PMY ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PN3 ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclobutylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN4 ; 1.898 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(cyclopropylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN8 ; 1.838 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(oxazol-4-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN5 ; 1.699 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-2-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN6 ; 1.843 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(pyridin-3-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN7 ; 1.878 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(thiazol-4-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN9 ; 1.84 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-(thiazol-5-ylmethoxy)phenyl)-4-methylquinolin-2-amine 6PN0 ; 2.229 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-ethoxyphenyl)-4-methylquinolin-2-amine 6PN2 ; 1.877 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-isopropoxyphenyl)-4-methylquinolin-2-amine 6PN1 ; 2.196 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(3-(Aminomethyl)-4-propoxyphenyl)-4-methylquinolin-2-amine 6PMV ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(4-(2-Aminoethyl)phenyl)-4-methylquinolin-2-amine 6PMW ; 1.748 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(4-(Aminomethyl)phenyl)-4-methylquinolin-2-amine 6PMZ ; 2.1 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-(5-(Aminomethyl)pyridin-3-yl)-4-methylquinolin-2-amine 5UNS ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with 7-[(3-Ethyl-5-((methylamino)methyl)phenoxy)methyl]quinolin-2-amine 4UPM ; 1.9 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N',N'-{[(2R)-3-aminopropane-1,2-diyl]bis(oxymethanediylbenzene-3,1-diyl)}dithiophene-2-carboximidamide 4UPP ; 1.91 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N'-[4-[[(2S,4R)-4-[3-[(C-thiophen-2-ylcarbonimidoyl)amino]phenoxy]pyrrolidin-2-yl]methoxy]phenyl]thiophene-2-carboximidamide 4UPN ; 2.09 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N,N''-{[(2S)-3-aminopropane-1,2-diyl]bis(oxymethanediylbenzene-3,1-diyl)}dithiophene-2-carboximidamide 4V3V ; 2.06 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N-(2-(1H-imidazol-1-yl)-4-pyrimidylmethyl)-3-(3- fluorophenyl)propan-1-amine 4V3Y ; 1.962 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(3- chlorophenyl)propan-1-amine 4V3X ; 1.99 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(3- fluorophenyl)propan-1-amine 4D30 ; 1.962 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N-2-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)ethyl-3-(pyridin- 3-yl)propan-1-amine 4UPO ; 1.95 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N-[3-({[(3S,5S)-5-{[(3-{[(Z)-imino(thiophen-2-yl)methyl]amino}benzyl)oxy]methyl}pyrrolidin-3-yl]oxy}methyl)phenyl]thiophene-2-carboximidamide 4D3B ; 1.798 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(2-(1H-imidazol-1-yl)pyrimidin-4-yl)-N2-(3- fluorophenethyl)ethane-1,2-diamine 4UH3 ; 2.03 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5- fluorophenyl)-N1,N2-dimethylethane-1,2-diamine 4UH2 ; 1.991 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-(trifluoromethyl)phenyl)-N1,N2-dimethylethane-1,2-diamine 4UGZ ; 2.076 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)phenyl)-N1, N2-dimethylethane-1,2-diamine 4UH1 ; 1.8 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(5-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-3- yl)-N1,N2-dimethylethane-1,2-diamine 4UH0 ; 2.039 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N1-(6-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)pyridin-2- yl)-N1,N2-dimethylethane-1,2-diamine 7S3Z ; 1.7297 ; Structure of rat neuronal nitric oxide synthase heme domain in complex with N2-((3-((2-aminoquinolin-7-yl)methoxy)phenoxy)methyl)pyridine-2,6-diamine 4IMW ; 2.2 ; Structure of rat neuronal nitric oxide synthase in complex with 3,5-bis(2-(6-amino-4-methylpyridin-2-yl)ethyl)benzonitrile 4IMT ; 2.2 ; Structure of rat neuronal nitric oxide synthase in complex with 6,6'-((4-(3-aminopropyl)-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 4IMU ; 2.03 ; Structure of rat neuronal nitric oxide synthase in complex with 6,6'-((5-(aminomethyl)-1,3-phenylene)bis(ethane-2,1-diyl))bis(4-methylpyridin-2-amine) 4CX4 ; 1.98 ; Structure of rat neuronal nitric oxide synthase M336V D597N mutant heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(4- METHYLPYRIDIN-2-YL)PENTYL)OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 4CX3 ; 1.97 ; Structure of rat neuronal nitric oxide synthase M336V D597N mutant heme domain in complex with 4-METHYL-6-(((3R,4R)-4-((5-(PYRIDIN-2-YL) PENTYL)OXY)PYRROLIDIN-3-YL)METHYL)PYRIDIN-2-AMINE 5G0P ; 2.1 ; Structure of rat neuronal nitric oxide synthase M336V D597N mutant heme domain in complex with 6-(2-(5-(3-(DIMETHYLAMINO)PROPYL)PYRIDIN- 3-YL)ETHYL)-4-METHYLPYRIDIN-2-AMINE 5ADE ; 2.1 ; Structure of rat neuronal nitric oxide synthase M336V D597N mutant heme domain in complex with 7-((4-Chloro-3-((methylamino)methyl) phenoxy)methyl)quinolin-2-amine 7UAN ; 1.6969 ; Structure of rat neuronal nitric oxide synthase R349A heme domain in complex with (6-(3-(4,4-difluoropiperidin-1-yl)propyl)-4-methylpyridin-2-amine) 7TSB ; 1.8177 ; Structure of rat neuronal nitric oxide synthase R349A heme domain in complex with 4-methyl-6-(3-(methylamino)prop-1-yn-1-yl)pyridin-2-amine 7TS9 ; 1.8526 ; Structure of rat neuronal nitric oxide synthase R349A heme domain in complex with 6-(3-(dimethylamino)propyl)-4-methylpyridin-2-amine 8FGE ; 1.89 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with 4-(difluoromethyl)-6-(5-(2-(dimethylamino)ethyl)-2,3-difluorophenethyl)pyridin-2-amine dihydrochloride 7TSC ; 1.7959 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with 4-methyl-6-(3-(4-methylpiperazin-1-yl)propyl)pyridin-2-amine 7TSD ; 1.769 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)prop-1-yn-1-yl)-4-methylpyridin-2-amine 7TSE ; 1.85 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-(3-(3,3-difluoroazetidin-1-yl)propyl)-4-methylpyridin-2-amine 8FGD ; 1.776 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with 6-(5-(2-(diethylamino)ethyl)-2,3-difluorophenethyl)-4-methylpyridin-2-amine 3JWT ; 2.01 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with N1-{(3'R,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 3JWU ; 1.93 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with N1-{(3'R,4'S)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine tetrahydrochloride 3JWV ; 1.98 ; Structure of rat neuronal nitric oxide synthase R349A mutant heme domain in complex with N1-{(3'S,4'R)-4'-[(6""-amino-4""-methylpyridin-2""-yl)methyl]pyrrolidin-3'-yl}-N2-(3'-fluorophenethyl)ethane-1,2-diamine 7TSA ; 2.03 ; Structure of rat neuronal nitric oxide synthase R349A/H692F mutant heme domain in complex with 4-methyl-6-(3-((methylamino)methyl)phenyl)pyridin-2-amine 1OM5 ; 2.3 ; STRUCTURE OF RAT NEURONAL NOS HEME DOMAIN WITH 3-BROMO-7-NITROINDAZOLE BOUND 1OM4 ; 1.75 ; STRUCTURE OF RAT NEURONAL NOS HEME DOMAIN WITH L-ARGININE BOUND 3UFV ; 2.078 ; Structure of rat nitric oxide synthase heme domain in complex with 4-methyl-6-(((3R,4R)-4-((5-(4-methylpyridin-2-yl)pentyl)oxy)pyrrolidin-3-yl)methyl)pyridin-2-amine 3UFU ; 1.886 ; Structure of rat nitric oxide synthase heme domain in complex with 4-methyl-6-(((3R,4R)-4-((5-(pyridin-2-yl)pentyl)oxy)pyrrolidin-3-yl)methyl)pyridin-2-amine 3UFR ; 2.097 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(((E)-5-(3-fluorophenyl)pent-4-en-1-yl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFS ; 1.971 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-((5-(3-chloro-5-fluorophenyl)pentyl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFP ; 2.1 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-((5-(3-fluorophenyl)pentyl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFW ; 2.0 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-((5-(6-aminopyridin-2-yl)pentyl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFT ; 2.078 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(4-(3-chloro-5-fluorophenoxy)butoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFQ ; 2.058 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-(((E)-5-(3-fluorophenyl)pent-4-en-1-yl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3UFO ; 2.169 ; Structure of rat nitric oxide synthase heme domain in complex with 6-(((3S,4S)-4-((5-(3-fluorophenyl)pentyl)oxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 2G6J ; 2.3 ; Structure of rat nNOS (L337N) heme domain (4-aminobiopterin bound) complexed with NO 2G6L ; 2.05 ; Structure of rat nNOS heme domain (BH2 bound) complexed with NO 2G6I ; 1.9 ; Structure of rat nNOS heme domain (BH2-bound) in the reduced form 2G6M ; 1.85 ; Structure of rat nNOS heme domain (BH4 bound) complexed with CO 2G6K ; 2.0 ; Structure of rat nNOS heme domain (BH4 bound) complexed with NO 2G6H ; 2.0 ; Structure of rat nNOS heme domain (BH4 bound) in the reduced form 4FW0 ; 1.95 ; Structure of rat nNOS heme domain in complex with N(delta)-methyl- N(omega)-hydroxy-L-arginine 4FVX ; 2.0 ; Structure of rat nNOS heme domain in complex with N(omega)-ethoxy-L-arginine 4FVY ; 1.7 ; Structure of rat nNOS heme domain in complex with N(omega)-hydroxy- N(omega)-methyl-L-arginine 4FVW ; 1.81 ; Structure of rat nNOS heme domain in complex with N(omega)-methoxy-L-arginine 4FVZ ; 1.99 ; Structure of rat nNOS heme domain in complex with N(omega)-methyl- N(omega)-methoxy-L-arginine 3KJ4 ; 3.1 ; Structure of rat Nogo receptor bound to 1D9 antagonist antibody 8SDU ; 2.05 ; Structure of rat organic anion transporter 1 (OAT1) 8SDY ; 2.79 ; Structure of rat organic anion transporter 1 (OAT1) in complex with para-aminohippuric acid (PAH) 8SDZ ; 2.86 ; Structure of rat organic anion transporter 1 (OAT1) in complex with probenecid 1QFC ; 2.7 ; STRUCTURE OF RAT PURPLE ACID PHOSPHATASE 1DPO ; 1.59 ; STRUCTURE OF RAT TRYPSIN 4YSW ; 1.99 ; Structure of rat xanthine oxidoreductase, C-terminal deletion protein variant, NADH bound form 4YTY ; 2.2 ; Structure of rat xanthine oxidoreductase, C535A/C992R/C1324S, NADH bound form 3CJ1 ; 1.7 ; Structure of Rattus norvegicus NTPDase2 3CJ7 ; 1.8 ; Structure of Rattus norvegicus NTPDase2 in complex with AMP 3CJA ; 2.1 ; Structure of Rattus norvegicus NTPDase2 in complex with calcium and AMPPNP 3CJ9 ; 1.8 ; Structure of Rattus norvegicus NTPDase2 in complex with calcium, AMP and phosphate 6WO6 ; 2.8 ; Structure of RavA (lpp0008) E38A/K39A surface entropy reduction mutant 1N4M ; 2.2 ; Structure of Rb tumor suppressor bound to the transactivation domain of E2F-2 7THE ; 3.87 ; Structure of RBD directed antibody DH1042 in complex with SARS-CoV-2 spike: Local refinement of RBD-Fab interface 8DTK ; 3.77 ; Structure of RBD directed antibody DH1047 in complex with SARS-CoV-2 spike: Local refinement of RBD-Fab interace 4A9A ; 2.67 ; Structure of Rbg1 in complex with Tma46 dfrp domain 5TRD ; 1.85 ; Structure of RbkR (Riboflavin Kinase) from Thermoplasma acidophilum determined in complex with CTP and its cognate DNA operator 7DDQ ; 2.84 ; Structure of RC-LH1-PufX from Rhodobacter veldkampii 5F29 ; 1.821 ; Structure of RCK domain with cda 5EI0 ; 2.5 ; Structure of RCL-cleaved vaspin (serpinA12) 4CLQ ; 2.02 ; Structure of Rcl1p - Bms1p complex 7Y4R ; 2.51 ; Structure of RclX 6ZIX ; 3.4 ; Structure of RcsB from Salmonella enterica serovar Typhimurium bound to promoter P1flhDC in the presence of phosphomimetic BeF3- 6ZJ2 ; 3.38 ; Structure of RcsB from Salmonella enterica serovar Typhimurium bound to promoter rprA in the presence of phosphomimetic BeF3- 8FNT ; 2.52 ; Structure of RdrA from Escherichia coli RADAR defense system 8FNU ; 2.5 ; Structure of RdrA from Streptococcus suis RADAR defense system 8HR7 ; 3.96 ; Structure of RdrA-RdrB complex 8FNW ; 6.73 ; Structure of RdrA-RdrB complex from Escherichia coli RADAR defense system 8FNV ; 2.11 ; Structure of RdrB from Escherichia coli RADAR defense system 2I7O ; 1.5 ; Structure of Re(4,7-dimethyl-phen)(Thr124His)(Lys122Trp)(His83Gln)AzCu(II), a Rhenium modified Azurin mutant 4K9J ; 1.7 ; Structure of Re(CO)3(4,7-dimethyl-phen)(Thr126His)(Lys122Trp)(His83Glu)(Trp48Phe)(Tyr72Phe)(Tyr108Phe)AzCu(II), a Rhenium modified Azurin mutant 7DVO ; 1.8 ; Structure of Reaction Intermediate of Cytochrome P450 NO Reductase (P450nor) Determined by XFEL 5INW ; 2.7 ; Structure of reaction loop cleaved lamprey angiotensinogen 1G19 ; 3.0 ; STRUCTURE OF RECA PROTEIN 1UBC ; 3.8 ; Structure of Reca Protein 4NUX ; 2.295 ; Structure of receptor A 1GM5 ; 3.24 ; Structure of RecG bound to three-way DNA junction 6LRD ; 1.90134 ; Structure of RecJ complexed with a 5'-P-dSpacer-modified ssDNA 5F55 ; 2.6 ; Structure of RecJ complexed with DNA 5F56 ; 2.3 ; Structure of RecJ complexed with DNA and SSB-ct 5F54 ; 2.7 ; Structure of RecJ complexed with dTMP 1FZD ; 2.1 ; STRUCTURE OF RECOMBINANT ALPHAEC DOMAIN FROM HUMAN FIBRINOGEN-420 6Z3I ; 1.8 ; Structure of recombinant beta-glucocerebrosidase in complex with bifunctional cyclophellitol aziridine activity based probe 5NFG ; 2.375 ; Structure of recombinant cardosin B from Cynara cardunculus 4D5G ; 2.0 ; Structure of recombinant CDH-H28AN484A 3HBG ; 1.9 ; Structure of recombinant Chicken Liver Sulfite Oxidase mutant C185S 3HBQ ; 2.8 ; Structure of recombinant Chicken Liver Sulfite Oxidase mutant Cys 185 Ala 1H3J ; 2.0 ; STRUCTURE OF RECOMBINANT COPRINUS CINEREUS PEROXIDASE DETERMINED TO 2.0 A 1XME ; 2.3 ; Structure of Recombinant Cytochrome ba3 Oxidase from Thermus thermophilus 4FAA ; 2.8 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant A120F+A204F from Thermus thermophilus 4FA7 ; 2.5 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant A204F from Thermus thermophilus 4N4Y ; 2.9 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant G232V from Thermus thermophilus 4G7R ; 3.05 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236A from Thermus thermophilus 4G7S ; 2.0 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236I from Thermus thermophilus 4G7Q ; 2.6 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236L from Thermus thermophilus 4G72 ; 3.19 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236M from Thermus thermophilus 4G71 ; 2.9 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236N from Thermus thermophilus 4G70 ; 2.6 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant V236T from Thermus thermophilus 4GP4 ; 2.8 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant Y133F from Thermus thermophilus 4GP5 ; 2.7 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant Y133W from Thermus thermophilus 4GP8 ; 2.8 ; Structure of Recombinant Cytochrome ba3 Oxidase mutant Y133W+T231F from Thermus thermophilus 6BMG ; 1.88 ; Structure of Recombinant Dwarf Sperm Whale Myoglobin (Oxy) 3JTM ; 1.3 ; Structure of recombinant formate dehydrogenase from Arabidopsis thaliana 4HZH ; 3.3 ; Structure of recombinant Gla-domainless prothrombin mutant S525A 5G3X ; 1.66 ; Structure of recombinant granulovirus polyhedrin 3ET4 ; 1.7 ; Structure of Recombinant Haemophilus Influenzae E(P4) Acid Phosphatase 3OCY ; 1.4 ; Structure of Recombinant Haemophilus Influenzae e(P4) Acid Phosphatase Complexed with inorganic phosphate 3OCZ ; 1.35 ; Structure of Recombinant Haemophilus influenzae e(P4) Acid Phosphatase Complexed with the inhibitor adenosine 5-O-thiomonophosphate 3ET5 ; 2.0 ; Structure of Recombinant Haemophilus Influenzae E(P4) Acid Phosphatase Complexed with tungstate 3SF0 ; 1.35 ; Structure of Recombinant Haemophilus Influenzae e(P4) Acid Phosphatase mutant D64N complexed with 5'AMP 3OCX ; 1.901 ; Structure of Recombinant Haemophilus influenzae e(P4) Acid Phosphatase mutant D66N complexed with 2'-AMP 3OCW ; 1.85 ; Structure of Recombinant Haemophilus influenzae e(P4) Acid Phosphatase mutant D66N complexed with 3'-AMP 3OCV ; 1.551 ; Structure of Recombinant Haemophilus Influenzae e(P4) Acid Phosphatase mutant D66N complexed with 5'-AMP 3OCU ; 1.35 ; Structure of Recombinant Haemophilus Influenzae e(P4) Acid Phosphatase mutant D66N complexed with NMN 6YTP ; 1.7 ; Structure of recombinant human beta-glucocerebrosidase in complex with azide tagged cyclophellitol epoxide inhibitor 6Z39 ; 1.7 ; Structure of recombinant human beta-glucocerebrosidase in complex with BODIPY functionalised epoxide activity based probe 7NWV ; 1.86 ; Structure of recombinant human beta-glucocerebrosidase in complex with BODIPY Tagged Cyclophellitol activity based probe 6YTR ; 1.7 ; Structure of recombinant human beta-glucocerebrosidase in complex with cyclophellitol aziridine inhibitor 8AWK ; 1.58 ; Structure of recombinant human beta-glucocerebrosidase in complex with D-carbaxylosyl chloride 6YV3 ; 1.8 ; Structure of recombinant human beta-glucocerebrosidase in complex with galacto-configured cyclophellitol aziridine inhibitor 8AWR ; 1.49 ; Structure of recombinant human beta-glucocerebrosidase in complex with L-carbaxylosyl chloride 8AX3 ; 1.59 ; Structure of recombinant human beta-glucocerebrosidase in complex with L-carbaxylosyl fluoride 6YUT ; 1.76 ; Structure of recombinant human beta-glucocerebrosidase in complex with N-acyl functionalised cyclophellitol aziridine 6RUA ; 2.75 ; Structure of recombinant human butyrylcholinesterase in complex with a coumarin-based fluorescent probe linked to sulfonamide type inhibitor. 6R6V ; 2.5 ; Structure of recombinant human butyrylcholinesterase in complex with a fluorescent coumarin-based probe 6R6W ; 2.474 ; Structure of recombinant human butyrylcholinesterase in complex with a fluorescent NBD-based probe 3ZCF ; 1.65 ; Structure of recombinant human cytochrome c 4KQ8 ; 3.29 ; Structure of Recombinant Human Cytochrome P450 Aromatase 4AWN ; 1.95 ; Structure of recombinant human DNase I (rhDNaseI) in complex with Magnesium and Phosphate. 7KIU ; 2.22 ; Structure of recombinant human DNase1L3 in complex with Mg2+ 7QJ5 ; 8.7 ; Structure of recombinant human gamma-Tubulin Ring Complex (spokes 1-14) 7QJC ; 16.1 ; Structure of recombinant human gamma-Tubulin Ring Complex (spokes 1-14, homogeneous dataset) 7QJ9 ; 8.1 ; Structure of recombinant human gamma-Tubulin Ring Complex 10-spoked assembly intermediate (spokes 3-12, homogeneous dataset) 7QJ6 ; 7.8 ; Structure of recombinant human gamma-Tubulin Ring Complex 10-spoked assembly intermediate (spokes 3-12, substoichiometric spokes 13-14) 7QJ4 ; 9.0 ; Structure of recombinant human gamma-Tubulin Ring Complex 10-spoked assembly intermediate (spokes 5-14) 7QJ7 ; 8.7 ; Structure of recombinant human gamma-Tubulin Ring Complex 12-spoked assembly intermediate (spokes 1-12 substoichiometric spokes 13-14) 7QJA ; 9.2 ; Structure of recombinant human gamma-Tubulin Ring Complex 12-spoked assembly intermediate (spokes 1-12, homogeneous dataset) 7QJB ; 9.2 ; Structure of recombinant human gamma-Tubulin Ring Complex 12-spoked assembly intermediate (spokes 3-14, homogeneous dataset) 7QJ8 ; 8.7 ; Structure of recombinant human gamma-Tubulin Ring Complex 12-spoked assembly intermediate (spokes 3-14, substoichiometric spokes 1-2) 7QJE ; 7.8 ; Structure of recombinant human gamma-Tubulin Ring Complex 4-spoked assembly intermediate (spokes 9-12) 7QJ0 ; 5.32 ; Structure of recombinant human gamma-Tubulin Ring Complex 6-spoked assembly intermediate (spokes 7-12) 7QJ2 ; 8.6 ; Structure of recombinant human gamma-Tubulin Ring Complex 8-spoked assembly intermediate (spokes 5-12) 7QJ3 ; 7.6 ; Structure of recombinant human gamma-Tubulin Ring Complex 8-spoked assembly intermediate (spokes 7-14) 7QJD ; 7.1 ; Structure of recombinant human gamma-Tubulin Ring Complex without actin 2BJJ ; 2.4 ; Structure of recombinant human lactoferrin produced in the milk of transgenic cows 2REN ; 2.5 ; STRUCTURE OF RECOMBINANT HUMAN RENIN, A TARGET FOR CARDIOVASCULAR-ACTIVE DRUGS, AT 2.5 ANGSTROMS RESOLUTION 1BBC ; 2.2 ; STRUCTURE OF RECOMBINANT HUMAN RHEUMATOID ARTHRITIC SYNOVIAL FLUID PHOSPHOLIPASE A2 AT 2.2 ANGSTROMS RESOLUTION 1G6J ; ; STRUCTURE OF RECOMBINANT HUMAN UBIQUITIN IN AOT REVERSE MICELLES 1CXV ; 2.0 ; STRUCTURE OF RECOMBINANT MOUSE COLLAGENASE-3 (MMP-13) 1LB3 ; 1.21 ; Structure of recombinant mouse L chain ferritin at 1.2 A resolution 5M6B ; 3.25 ; structure of recombinant mushroom tyrosinase (abPPO4) 7VMO ; 3.5 ; Structure of recombinant RyR2 (Ca2+ dataset, class 1, open state) 7VMP ; 3.5 ; Structure of recombinant RyR2 (Ca2+ dataset, class 2, open state) 7VMQ ; 3.7 ; Structure of recombinant RyR2 (Ca2+ dataset, class 3, open state) 7VML ; 3.3 ; Structure of recombinant RyR2 (EGTA dataset, class 1&2, closed state) 7VMM ; 3.5 ; Structure of recombinant RyR2 (EGTA dataset, class 1, closed state) 7VMN ; 3.5 ; Structure of recombinant RyR2 (EGTA dataset, class 2, closed state) 7VMS ; 3.8 ; Structure of recombinant RyR2 mutant K4593A (Ca2+ dataset) 7VMR ; 3.3 ; Structure of recombinant RyR2 mutant K4593A (EGTA dataset) 3X3Q ; 1.5 ; Structure of recombinant thaumatin in the presence of 1.0M PST, pH7 at 293K 7UAK ; 3.38 ; Structure of recombinantly assembled A53E alpha-synuclein fibrils 6UFR ; 2.5 ; Structure of recombinantly assembled E46K alpha-synuclein fibrils 3VE5 ; 2.8 ; Structure of recombination mediator protein RecR16-196 deletion mutant 3VDU ; 2.8 ; Structure of recombination mediator protein RecRK21G mutant 7A8R ; 2.31 ; Structure of RecQL from Bos taurus 7UB2 ; 3.4 ; Structure of RecT protein from Listeria innoccua phage A118 in complex with 83-mer annealed duplex 7UBB ; 4.5 ; Structure of RecT protein from Listeria innoccua phage A118 in complex with 83-mer ssDNA 8TFU ; 1.482 ; Structure of Red beta C-terminal domain in complex with SSB C-terminal peptide, Form 1 8TG7 ; 1.775 ; Structure of Red beta C-terminal domain in complex with SSB C-terminal peptide, Form 2 8TG8 ; 1.576 ; Structure of Red beta C-terminal domain in complex with SSB C-terminal peptide, Form 3 8TGC ; 1.484 ; Structure of Red beta C-terminal domain in complex with SSB C-terminal peptide, Form 4 4LLM ; 1.75 ; Structure of redesigned IgG1 first constant and lambda domains (CH1:Clambda constant redesign 1, CRD1) at 1.75A 4LLQ ; 1.42 ; Structure of redesigned IgG1 first constant and lambda domains (CH1:Clambda constant redesign 2 beta, CRD2b) at 1.42A 5HLG ; 3.0 ; Structure of reduced AbfR bound to DNA 2CE1 ; 1.4 ; Structure of reduced Arabidopsis thaliana cytochrome 6A 1L6V ; ; STRUCTURE OF REDUCED BOVINE ADRENODOXIN 7THU ; 1.93 ; Structure of reduced bovine cytochrome c oxidase at 1.93 Angstrom resolution obtained by synchrotron X-rays 2PEX ; 1.9 ; Structure of reduced C22S OhrR from Xanthamonas Campestris 1XLO ; 1.84 ; Structure of reduced C73S/C85S putidaredoxin, a [2Fe-2S] ferredoxin from Pseudomonas putida 3DR0 ; 1.23 ; Structure of reduced cytochrome c6 from Synechococcus sp. PCC 7002 4H6R ; 1.75 ; Structure of reduced Deinococcus radiodurans proline dehydrogenase 3U9M ; 1.95 ; Structure of reduced human FBXL5 hemerythrin like domain 2YMV ; 1.6 ; Structure of Reduced M Smegmatis 5246, a homologue of M.Tuberculosis Acg 3IEA ; 2.2 ; Structure of reduced M98L mutant of amicyanin 2ABA ; 1.05 ; Structure of reduced PETN reductase in complex with progesterone 6X0J ; 2.335 ; Structure of reduced SidA ornithine hydroxylase with the FAD ""in"" and complexed with NADP and L-ornithine 4P5S ; 1.02 ; Structure of reduced W45Y mutant of amicyanin 1SDQ ; 1.69 ; Structure of reduced-NO adduct of mesopone cytochrome c peroxidase 6EOD ; 2.2 ; Structure of Reductive Aminase from Aspergillus terreus in complex with NADPH 6SKX ; 2.25 ; Structure of Reductive Aminase from Neosartorya fumigata 6SLE ; 2.77 ; Structure of Reductive Aminase from Neosartorya fumigata in complex with NADP+ 8U4Q ; 3.36 ; Structure of REGN7663 Fab-bound CXCR4/Gi complex 8U4R ; 3.1 ; Structure of REGN7663-Fab bound CXCR4 5DO9 ; 2.6 ; Structure of regulator of G protein signaling 8 (RGS8) in complex with AlF4-activated Galpha-q 4CGR ; 2.1 ; Structure of Regulator Protein SCO3201 from Streptomyces coelicolor 2QGF ; 2.2 ; Structure of regulatory chain mutant H20A of asparate transcarbamoylase from E. coli 5KPS ; 3.9 ; Structure of RelA bound to ribosome in absence of A/R tRNA (Structure I) 5KPV ; 4.1 ; Structure of RelA bound to ribosome in presence of A/R tRNA (Structure II) 5KPW ; 3.9 ; Structure of RelA bound to ribosome in presence of A/R tRNA (Structure III) 5KPX ; 3.9 ; Structure of RelA bound to ribosome in presence of A/R tRNA (Structure IV) 5IQR ; 3.0 ; Structure of RelA bound to the 70S ribosome 4V7K ; 3.6 ; Structure of RelE nuclease bound to the 70S ribosome (postcleavage state) 4V7J ; 3.3 ; Structure of RelE nuclease bound to the 70S ribosome (precleavage state) 3R0E ; 2.4 ; Structure of Remusatia vivipara lectin 3S6X ; 2.25 ; Structure of reovirus attachment protein sigma1 in complex with alpha-2,3-sialyllactose 3S6Y ; 2.79 ; Structure of reovirus attachment protein sigma1 in complex with alpha-2,6-sialyllactose 3S6Z ; 2.28 ; Structure of reovirus attachment protein sigma1 in complex with alpha-2,8-disialyllactose 3EOY ; 3.4 ; Structure of Reovirus sigma1 in Complex with Its Receptor Junctional Adhesion Molecule-A 5KBJ ; 3.09 ; Structure of Rep-DNA complex 6YYT ; 2.9 ; Structure of replicating SARS-CoV-2 polymerase 2AJQ ; 2.6 ; Structure of replicative DNA polymerase provides insigts into the mechanisms for processivity, frameshifting and editing 2KVZ ; ; Structure of residues 161-235 of putative peptidoglycan binding protein lmo0835 from Listeria monocytogenes: target LmR64B of the Northeast Structural Genomics Consortium 4CCF ; 2.65 ; Structure of Respiratory Syncytial Virus F protein head domain 4V5V ; 3.6 ; Structure of respiratory syncytial virus nucleocapsid protein, P1 crystal form 2YHM ; 3.6 ; Structure of respiratory syncytial virus nucleocapsid protein, P212121 crystal form 8FU3 ; 2.88 ; Structure Of Respiratory Syncytial Virus Polymerase with Novel Non-Nucleoside Inhibitor 3I42 ; 2.15 ; Structure of response regulator receiver domain (CheY-like) from Methylobacillus flagellatus 1BAM ; 1.95 ; STRUCTURE OF RESTRICTION ENDONUCLEASE BAMHI PHASED AT 1.95 ANGSTROMS RESOLUTION BY MAD ANALYSIS 2P0J ; 2.1 ; Structure of restriction endonuclease BstYI bound to non-cognate DNA 2FOK ; 2.3 ; STRUCTURE OF RESTRICTION ENDONUCLEASE FOKI 1FOK ; 2.8 ; STRUCTURE OF RESTRICTION ENDONUCLEASE FOKI BOUND TO DNA 6JWD ; ; structure of RET G-quadruplex in complex with berberine 6JWE ; ; structure of RET G-quadruplex in complex with colchicine 7NZN ; 2.39 ; Structure of RET kinase domain bound to inhibitor JB-48 6NEC ; 1.87 ; STRUCTURE OF RET PROTEIN TYROSINE KINASE DOMAIN IN COMPLEX WITH NINTEDANIB 7JU5 ; 1.9 ; Structure of RET protein tyrosine kinase in complex with pralsetinib 7JU6 ; 2.06 ; Structure of RET protein tyrosine kinase in complex with selpercatinib 5F0J ; 2.7 ; Structure of retromer VPS26-VPS35 subunits bound to SNX3 5F0L ; 3.2 ; Structure of retromer VPS26-VPS35 subunits bound to SNX3 and DMT1 5F0M ; 3.1 ; Structure of retromer VPS26-VPS35 subunits bound to SNX3 and DMT1 (SeMet labeled) 5F0P ; 2.78 ; Structure of retromer VPS26-VPS35 subunits bound to SNX3 and DMT1(L557M) (SeMet labeled) 5OSI ; 2.52 ; Structure of retromer VPS29-VPS35C subunits complexed with RidL harpin loop (163-176) 5OSH ; 4.3 ; Structure of retromer VPS29-VPS35C subunits complexed with RidL N-terminal domain (1-236) 3OSP ; 2.5 ; Structure of rev1 6M7A ; 1.9 ; Structure of REV7-R124A complexed with SHLD3(28-73) 6M7B ; 1.77 ; Structure of REV7-R124A complexed with SHLD3(37-73) 6SRD ; 1.93 ; Structure of Rex8A from Paenibacillus barcinonensis complexed with xylose. 4B60 ; 1.83 ; Structure of rFnBPA(189-505) in complex with fibrinogen gamma chain C- terminal peptide 6K83 ; 2.39 ; Structure of RGLG1 mutant-D207G 6IFB ; 1.37 ; Structure of rhamnose bound beta-trefoil lectin from Entamoeba histolytica 6Q2F ; 2.2 ; Structure of Rhamnosidase from Novosphingobium sp. PP1Y 5YXH ; 2.04 ; Structure of Rheb-GDP 3SEA ; 2.0 ; Structure of Rheb-Y35A mutant in GDP- and GMPPNP-bound forms 6PB3 ; 2.048 ; Structure of Rhizobiales Trip13 3TW7 ; 3.1 ; Structure of Rhizobium etli pyruvate carboxylase T882A crystallized without acetyl coenzyme-A 3TW6 ; 2.4 ; Structure of Rhizobium etli pyruvate carboxylase T882A with the allosteric activator, acetyl coenzyme-A 1RHO ; 2.5 ; STRUCTURE OF RHO GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR 4E46 ; 1.26 ; Structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA in complex with 2-propanol 3FBW ; 1.23 ; Structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA mutant C176Y 3SK0 ; 1.78 ; structure of Rhodococcus rhodochrous haloalkane dehalogenase DhaA mutant DhaA12 3RK4 ; 1.31 ; Structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant DhaA31 4FWB ; 1.26 ; Structure of Rhodococcus rhodochrous haloalkane dehalogenase mutant DhaA31 in complex with 1, 2, 3 - trichloropropane 8T5Y ; 1.44 ; Structure of Rhodococcus sp. USK13 DarR(K44A)-cAMP complex 8SUK ; 2.45 ; Structure of Rhodococcus sp. USK13 DarR-c-di-AMP complex 2VRP ; 2.41 ; Structure of rhodocytin 5CUO ; 1.544 ; Structure of Rhodopseudomonas palustris PduL - CoA bound form 5CUP ; 2.1 ; Structure of Rhodopseudomonas palustris PduL - phosphate bound form 6E0K ; 1.6 ; Structure of Rhodothermus marinus CdnE c-UMP-AMP synthase 6E0L ; 2.25 ; Structure of Rhodothermus marinus CdnE c-UMP-AMP synthase with Apcpp and Upnpp 3H31 ; 1.0 ; Structure of Rhodothermus marinus HiPIP at 1.0 A resolution 1AJW ; ; STRUCTURE OF RHOGDI: A C-TERMINAL BINDING DOMAIN TARGETS AN N-TERMINAL INHIBITORY PEPTIDE TO GTPASES, NMR, 20 STRUCTURES 1GDF ; ; STRUCTURE OF RHOGDI: A C-TERMINAL BINDING DOMAIN TARGETS AN N-TERMINAL INHIBITORY PEPTIDE TO GTPASES, NMR, MINIMIZED AVERAGE STRUCTURE 6S5W ; 1.07 ; Structure of Rib domain 'Rib Long' from Lactobacillus acidophilus 6S5Z ; 1.8 ; Structure of Rib R28N from Streptococcus pyogenes 6SX1 ; 1.25 ; Structure of Rib Standard, a Rib domain from Lactobacillus acidophilus 4P8J ; 1.96 ; Structure of ribB 4P6P ; 1.862 ; Structure of ribB complexed with inhibitor (4PEH) and metal ions 4P6C ; 1.86 ; Structure of ribB complexed with inhibitor 4PEH 4P6D ; 1.59 ; Structure of ribB complexed with PO4 ion 4P8E ; 2.04 ; Structure of ribB complexed with substrate (Ru5P) and metal ions 4P77 ; 2.04 ; Structure of ribB complexed with substrate Ru5P 6WHJ ; 2.65 ; Structure of Ribokinase from Giardia lamblia 1AFU ; 2.0 ; STRUCTURE OF RIBONUCLEASE A AT 2.0 ANGSTROMS FROM MONOCLINIC CRYSTALS 4OOH ; 1.89 ; Structure of RIBONUCLEASE A at 40C 8PX0 ; 1.8 ; Structure of ribonuclease A, solved at wavelength 2.75 A 4HAA ; 1.9 ; Structure of Ribonuclease Binase Glu43Ala/Phe81Ala Mutant 1RNH ; 2.0 ; STRUCTURE OF RIBONUCLEASE H PHASED AT 2 ANGSTROMS RESOLUTION BY MAD ANALYSIS OF THE SELENOMETHIONYL PROTEIN 3D5G ; 1.8 ; Structure of ribonuclease Sa2 complexes with mononucleotides: new aspects of catalytic reaction and substrate recognition 8RNT ; 1.8 ; STRUCTURE OF RIBONUCLEASE T1 COMPLEXED WITH ZINC(II) AT 1.8 ANGSTROMS RESOLUTION: A ZN2+.6H2O.CARBOXYLATE CLATHRATE 5YU2 ; 1.75 ; Structure of Ribonuclease YabJ 1PBL ; ; STRUCTURE OF RIBONUCLEIC ACID, NMR, 1 STRUCTURE 1PBM ; ; STRUCTURE OF RIBONUCLEIC ACID, NMR, 1 STRUCTURE 1MWG ; ; STRUCTURE OF RIBONUCLEIC ACID, NMR, MINIMIZED AVERAGE STRUCTURE 7B9P ; 2.646 ; Structure of Ribonucleotide reductase from Rhodobacter sphaeroides 1RLR ; 2.5 ; STRUCTURE OF RIBONUCLEOTIDE REDUCTASE PROTEIN R1 7BET ; 2.3 ; Structure of Ribonucleotide reductase R2 from Escherichia coli collected by femtosecond serial crystallography on a COC membrane 7AI9 ; 2.0 ; Structure of Ribonucleotide reductase R2 from Escherichia coli collected by rotation serial crystallography on a COC membrane at a synchrotron source 7AI8 ; 2.1 ; Structure of Ribonucleotide reductase R2 from Escherichia coli collected by still serial crystallography on a COC membrane at a synchrotron source 3IXQ ; 1.78 ; Structure of ribose 5-phosphate isomerase a from methanocaldococcus jannaschii 3M1P ; 2.2 ; Structure of ribose 5-phosphate isomerase type B from Trypanosoma cruzi, soaked with allose-6-phosphate 6YE5 ; ; Structure of ribosomal binding factor A RbfA of Staphylococcus aureus bacterium by NMR 7RR5 ; 3.23 ; Structure of ribosomal complex bound with Rbg1/Tma46 2HW8 ; 2.1 ; Structure of ribosomal protein L1-mRNA complex at 2.1 resolution. 2KDS ; ; Structure of Ribosomal Protein L14e from Sulfolobus solfataricus 1G1X ; 2.6 ; STRUCTURE OF RIBOSOMAL PROTEINS S15, S6, S18, AND 16S RIBOSOMAL RNA 2D3O ; 3.35 ; Structure of Ribosome Binding Domain of the Trigger Factor on the 50S ribosomal subunit from D. radiodurans 5IMQ ; 3.8 ; Structure of ribosome bound to cofactor at 3.8 angstrom resolution 5IMR ; 5.7 ; Structure of ribosome bound to cofactor at 5.7 angstrom resolution 3A1P ; 2.3 ; Structure of Ribosome maturation protein RimM and Ribosomal protein S19 7QWS ; 3.4 ; Structure of ribosome translating beta-tubulin in complex with TTC5 and NAC 4AQY ; 3.5 ; Structure of ribosome-apramycin complexes 2NOQ ; 7.3 ; Structure of ribosome-bound cricket paralysis virus IRES RNA 6S5X ; 1.7 ; Structure of RibR, the most N-terminal Rib domain from Group B Streptococcus species Streptococcus agalactiae 5WSK ; 1.781 ; Structure of Ribulose-1,5-bisphosphate carboxylase/oxygenase from wheat 1PSY ; ; STRUCTURE OF RicC3, NMR, 20 STRUCTURES 1CCR ; 1.5 ; STRUCTURE OF RICE FERRICYTOCHROME C AT 2.0 ANGSTROMS RESOLUTION 3AXM ; 1.65 ; Structure of rice Rubisco in complex with 6PG 3AXK ; 1.9 ; Structure of rice Rubisco in complex with NADP(H) 4MX1 ; 1.59 ; Structure of ricin A chain bound with 2-amino-4-oxo-N-(2-(3-phenylureido)ethyl)-3,4-dihydropteridine-7-carboxamide 4MX5 ; 1.52 ; Structure of ricin A chain bound with benzyl-(2-(2-amino-4-oxo-3,4-dihydropteridine-7-carboxamido)ethyl)carbamate 1IL5 ; 2.8 ; STRUCTURE OF RICIN A CHAIN BOUND WITH INHIBITOR 2,5-DIAMINO-4,6-DIHYDROXYPYRIMIDINE (DDP) 1IL3 ; 2.8 ; STRUCTURE OF RICIN A CHAIN BOUND WITH INHIBITOR 7-DEAZAGUANINE 1IL9 ; 3.1 ; STRUCTURE OF RICIN A CHAIN BOUND WITH INHIBITOR 8-METHYL-9-OXOGUANINE 1IL4 ; 2.6 ; STRUCTURE OF RICIN A CHAIN BOUND WITH INHIBITOR 9-DEAZAGUANINE 4ESI ; 1.87 ; Structure of ricin A chain bound with N-((1H-1,2,3-triazol-4-yl)methyl-2-amino-4-oxo-3,4-dihydropteridine-7-carboxamide 4HV3 ; 1.54 ; Structure of Ricin A chain bound with N-(N-(pterin-7-yl)carbonyl-L-serinyl)-L-tryptophan 4HUO ; 1.52 ; Structure of Ricin A chain bound with N-(N-(pterin-7-yl)carbonylglycyl)-L-phenylalanine 4HUP ; 1.699 ; Structure of ricin A chain bound with N-(N-(pterin-7-yl)carbonylglycyl)-L-phenylalanyl)-L-phenylalanine 4HV7 ; 1.869 ; Structure of ricin A chain bound with N-(N-(pterin-7-yl)carbonylglycyl)glycine 1OBS ; 2.2 ; STRUCTURE OF RICIN A CHAIN MUTANT 1OBT ; 2.8 ; STRUCTURE OF RICIN A CHAIN MUTANT, COMPLEX WITH AMP 5HAM ; 2.4 ; Structure of Rickettsia bellii effector protein RickCE 5KOW ; 2.1 ; Structure of rifampicin monooxygenase 5KOX ; 1.8 ; Structure of rifampicin monooxygenase complexed with rifampicin 6C7S ; 2.1 ; Structure of Rifampicin Monooxygenase with Product Bound 7EEI ; 3.6 ; Structure of Rift Valley fever virus RNA-dependent RNA polymerase 7BAI ; 3.4 ; Structure of RIG-I CTD (I875A) bound to p-RNA 7BAH ; 1.89 ; Structure of RIG-I CTD bound to OH-RNA 6RVW ; 3.7 ; Structure of right-handed protein cage consisting of 24 eleven-membered ring proteins held together by gold (I) bridges. 1V10 ; 1.7 ; Structure of Rigidoporus lignosus laccase from hemihedrally twinned crystals 5D0I ; 1.9 ; Structure of RING finger protein 165 4FBH ; 2.3 ; Structure of RIP from barley seeds 5YRN ; 4.1 ; Structure of RIP2 CARD domain 6GFJ ; 3.3 ; Structure of RIP2 CARD domain fused to crystallisable MBP tag 6GGS ; 3.94 ; Structure of RIP2 CARD filament 8AZA ; 3.15 ; Structure of RIP2K dimer bound to the XIAP BIR2 domain 5NG2 ; 2.8 ; Structure of RIP2K(D146N) with bound Staurosporine 5NG0 ; 2.0 ; Structure of RIP2K(L294F) with bound AMPPCP 4KAQ ; 2.48 ; Structure of rituximab Fab 3SRP ; 2.14 ; Structure of Rivax: A Human Ricin Vaccine 6L0V ; 1.347 ; Structure of RLD2 BRX domain bound to LZY3 CCL motif 6L0W ; 1.591 ; Structure of RLD2 BRX domain bound to LZY3 CCL motif 6X3B ; 1.91 ; Structure of RMD from Pseudomonas aeruginosa complexed with NADPH 1EBQ ; ; STRUCTURE OF RNA (5'-GGUGGGCGCAGCUUCGGCUGCGGUACCAC-3'), NMR, 5 STRUCTURES 1EBR ; ; STRUCTURE OF RNA (5'-GGUGGGCGCAGCUUCGGCUGCGGUACCAC-3'), NMR, 5 STRUCTURES 1EBS ; ; STRUCTURE OF RNA (5'-GGUGGGCGCAGCUUCGGCUGCGGUACCAC-3'), NMR, 5 STRUCTURES 1MIS ; ; STRUCTURE OF RNA (5'-R(GP*CP*GP*GP*AP*CP*GP*C)-3') ANTI-PARALLEL RNA DUPLEX WITH TANDEM G:A MISMATCHES, NMR, MINIMIZED AVERAGE STRUCTURE 2EVZ ; ; Structure of RNA Binding Domains 3 and 4 of Polypyrimidine Tract Binding Protein 1G3A ; ; STRUCTURE OF RNA DUPLEXES (CIGCGICG)2 4XGT ; 3.09 ; Structure of RNA Helicase FRH a Critical Component of the Neurospora Crassa Circadian Clock 5DZR ; 3.161 ; Structure of RNA Helicase FRH a Critical Component of the Neurospora Crassa Circadian Clock 5E02 ; 3.8 ; Structure of RNA Helicase FRH a Critical Component of the Neurospora Crassa Circadian Clock 6VEM ; 1.56 ; Structure of RNA octamer 6PTG ; 2.95 ; Structure of RNA polymerase binding protein and transcriptional regulator Dks from Chlamydia trachomatis L2 (LGV434) 5ZVS ; 3.8 ; Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly 5ZVT ; 3.3 ; Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly 4C2M ; 2.8 ; Structure of RNA polymerase I at 2.8 A resolution 5IP7 ; 3.52 ; Structure of RNA Polymerase II-Tfg1 peptide complex 4BBR ; 3.4 ; Structure of RNA polymerase II-TFIIB complex 5IP9 ; 3.9 ; Structure of RNA Polymerase II-TFIIF complex 5FVC ; 4.17 ; Structure of RNA-bound decameric HMPV nucleoprotein 7ROZ ; 3.1 ; Structure of RNA-dependent RNA polymerase 2 (RDR2) from Arabidopsis thaliana 3L0O ; 2.35 ; Structure of RNA-free Rho transcription termination factor from Thermotoga maritima 2X1B ; 1.8 ; Structure of RNA15 RRM 2X1F ; 1.6 ; Structure of Rna15 RRM with bound RNA (GU) 2X1A ; 2.05 ; Structure of Rna15 RRM with RNA bound (G) 5OGH ; 1.16 ; Structure of RNase A at high resolution (1.16 A) in complex with 3'-CMP and sulphate ions 5ET4 ; 2.1 ; Structure of RNase A-K7H/R10H in complex with 3'-CMP 4OKE ; 1.7 ; Structure of RNase AS, a polyadenylate-specific exoribonuclease affecting mycobacterial virulence in vivo 6K6S ; 2.993 ; Structure of RNase J1 from Staphylococcus epidermidis 6K6W ; 2.7 ; Structure of RNase J2 from Staphylococcus epidermidis 3SDJ ; 3.65 ; Structure of RNase-inactive point mutant of oligomeric kinase/RNase Ire1 3C4B ; 1.68 ; Structure of RNaseIIIb and dsRNA binding domains of mouse Dicer 3C4T ; 2.8 ; Structure of RNaseIIIb and dsRNA binding domains of mouse Dicer 6U94 ; 2.35 ; Structure of RND efflux system, outer membrane lipoprotein, NodT family from Burkholderia mallei ATCC 23344 8GCB ; 2.39 ; Structure of RNF125 in complex with a UbcH5b~Ub conjugate 8GBQ ; 1.74 ; Structure of RNF125 in complex with UbcH5b 5ULH ; 1.95 ; Structure of RNF165 in complex with a UbcH5b~Ub conjugate 7UY2 ; 2.51 ; Structure of RNF31 in complex with FP06649, a Helicon Polypeptide 7UYJ ; 2.32 ; Structure of RNF31 in complex with FP06652, a Helicon Polypeptide 7UYK ; 2.7 ; Structure of RNF31 in complex with FP06655, a Helicon Polypeptide 4CWC ; 2.9 ; Structure of Rolling Circle Replication Initiator Protein (RepDE) from Staphylococcus aureus 4CIJ ; 2.3 ; Structure of Rolling Circle Replication Initiator Protein from Geobacillus stearothermophilus. 5UFO ; 2.802 ; Structure of RORgt bound to 5UFR ; 2.068 ; Structure of RORgt bound to 5UHI ; 3.198 ; Structure of RORgt bound to 5W4R ; 3.002 ; Structure of RORgt bound to a tertiary alcohol 5W4V ; 2.65 ; Structure of RORgt bound to a tertiary alcohol 6E3G ; 2.1 ; Structure of RORgt in complex with a novel agonist. 6B30 ; 2.69 ; Structure of RORgt in complex with a novel inverse agonist 1 6B31 ; 3.18 ; Structure of RORgt in complex with a novel inverse agonist 2 6B33 ; 2.48 ; Structure of RORgt in complex with a novel inverse agonist 3 6BR3 ; 3.0 ; Structure of RORgt in complex with a novel inverse agonist TAK-828. 6E3E ; 2.47 ; Structure of RORgt in complex with a novel inverse agonist. 6BR2 ; 3.18 ; Structure of RORgt in complex with a novel isoquinoline inverse agonist. 5GSF ; ; Structure of roseltide rT1 5JER ; 2.913 ; Structure of Rotavirus NSP1 bound to IRF-3 3FMG ; 3.4 ; Structure of rotavirus outer capsid protein VP7 trimer in complex with a neutralizing Fab 4R4C ; 1.4 ; Structure of RPA70N in complex with 5-(4-((4-(5-carboxyfuran-2-yl)-2-chlorobenzamido)methyl)phenyl)-1-(3,4-dichlorophenyl)-1H-pyrazole-3-carboxylic acid 4R4I ; 1.4 ; Structure of RPA70N in complex with 5-(4-((6-(5-carboxyfuran-2-yl)-1-thioxo-3,4-dihydroisoquinolin-2(1H)-yl)methyl)phenyl)-1-(3,4-dichlorophenyl)-1H-pyrazole-3-carboxylic acid 5N8A ; 1.28 ; Structure of RPA70N in complex with PrimPol (fragment 480-560) 5N85 ; 2.0 ; Structure of RPA70N in complex with PrimPol (fragment 514-525) 7F4G ; 2.78 ; Structure of RPAP2-bound RNA polymerase II 4F3D ; 2.5 ; Structure of RPE65: P65 crystal form grown in Fos-Choline-10 4F30 ; 3.15 ; Structure of RPE65: P6522 crystal form grown in ammonium phosphate solution 4F3A ; 2.6 ; Structure of RPE65: P6522 crystal form, iridium derivative 7ZQ7 ; 3.0 ; Structure of RpF-1 4XD9 ; 2.35 ; Structure of Rpf2-Rrs1 complex involved in ribosome biogenesis 7YFV ; 2.2 ; Structure of Rpgrip1l CC1 7YFU ; 1.5 ; Structure of Rpgrip1l CC2 7ZUW ; 4.3 ; Structure of RQT (C1) bound to the stalled ribosome in a disome unit from S. cerevisiae 6LE1 ; 2.3 ; Structure of RRM2 domain of DND1 protein 5D78 ; 1.251 ; Structure of RRM3 Domain of Mip6 at 1.25 A Resolution 4J0X ; 2.502 ; Structure of Rrp9 4MLG ; 2.7 ; Structure of RS223-Beta-xylosidase 8B65 ; 1.55 ; Structure of rsCherry crystallized in anaerobic conditions 4XOV ; 1.2 ; Structure of rsGreen0.7 in the green-off-state 4XOW ; 1.25 ; Structure of rsGreen0.7 in the green-on-state 4JG7 ; 3.0002 ; Structure of RSK2 CTD bound to 3-(3-(1H-pyrrolo[2,3-b]pyridine-3-carbonyl)phenyl)-2-cyanoacrylamide 4JG8 ; 3.1002 ; Structure of RSK2 T493M CTD mutant bound to 2-cyano-N-(1-hydroxy-2-methylpropan-2-yl)-3-(3-(3,4,5-trimethoxyphenyl)-1H-indazol-5-yl)acrylamide 4I6S ; 1.54 ; Structure of RSL mutant W76A in complex with L-fucose 7OBZ ; 2.0 ; Structure of RsLOV D109G 7OB0 ; 1.9 ; Structure of RsLOV d2 variant 8T85 ; 2.38 ; Structure of RssB bound to beryllofluoride 1KSK ; 2.0 ; STRUCTURE OF RSUA 1KSL ; 2.1 ; STRUCTURE OF RSUA 1KSV ; 2.65 ; STRUCTURE OF RSUA 7LVW ; 2.1 ; Structure of RSV F in Complex with VHH Cl184 7LVU ; 1.94 ; Structure of RSV F-directed VHH Cl184 3TW1 ; 1.772 ; Structure of Rtt106-AHN 3NPL ; 2.4 ; Structure of Ru(bpy)2(A-Phen)(K97C) P450 BM3 heme domain, a ruthenium modified P450 BM3 mutant 5KHC ; 11.1 ; Structure of rubella virus E1 glycoprotein ectodomain fitted into sub-tomogram averaged surface spike density of rubella virus 5NV3 ; 3.39 ; Structure of Rubisco from Rhodobacter sphaeroides in complex with CABP 2YBV ; 2.3 ; STRUCTURE OF RUBISCO FROM THERMOSYNECHOCOCCUS ELONGATUS 2H21 ; 2.45 ; Structure of Rubisco LSMT bound to AdoMet 2H2E ; 2.6 ; Structure of Rubisco LSMT bound to AzaAdoMet and Lysine 2H2J ; 2.45 ; Structure of Rubisco LSMT bound to Sinefungin and Monomethyllysine 2H23 ; 2.45 ; Structure of Rubisco LSMT bound to Trimethyllysine and AdoHcy 7RXN ; 1.5 ; STRUCTURE OF RUBREDOXIN FROM DESULFOVIBRIO VULGARIS AT 1.5 A RESOLUTION 2H8C ; 3.1 ; Structure of RusA D70N in complex with DNA 8BKD ; 1.4 ; structure of RutB 8BLL ; 1.54 ; Structure of RutB 8BLM ; 1.9 ; Structure of RutB 8BLN ; 1.88 ; Structure of RutB 3M1S ; 3.134 ; Structure of Ruthenium Half-Sandwich Complex Bound to Glycogen Synthase Kinase 3 1BEX ; 2.3 ; STRUCTURE OF RUTHENIUM-MODIFIED PSEUDOMONAS AERUGINOSA AZURIN 1IXS ; 3.2 ; Structure of RuvB complexed with RuvA domain III 1HQC ; 3.2 ; STRUCTURE OF RUVB FROM THERMUS THERMOPHILUS HB8 8DQY ; 2.1 ; Structure of Rv0455c from Mycobacterium tuberculosis 8DRG ; 1.8 ; Structure of Rv0455c from Mycobacterium tuberculosis 8DRI ; 2.0 ; Structure of Rv0455c from Mycobacterium tuberculosis 3HYS ; 2.3 ; Structure of Rv0554 from Mycobacterium tuberculosis complexed with Malonic Acid 1Y0H ; 1.6 ; Structure of Rv0793 from Mycobacterium tuberculosis 2EV3 ; 2.68 ; Structure of Rv1264N, the regulatory domain of the mycobacterial adenylyl cylcase Rv1264, at pH 5.3 2EV1 ; 1.6 ; Structure of Rv1264N, the regulatory domain of the mycobacterial adenylyl cylcase Rv1264, at pH 6.0 2EV2 ; 2.35 ; Structure of Rv1264N, the regulatory domain of the mycobacterial adenylyl cylcase Rv1264, at pH 8.5 2EV4 ; 2.28 ; Structure of Rv1264N, the regulatory domain of the mycobacterial adenylyl cylcase Rv1264, with a salt precipitant 2XIV ; 1.4 ; Structure of Rv1477, hypothetical invasion protein of Mycobacterium tuberculosis 4BEG ; 1.42 ; Structure of Rv2140c, a phosphatidyl-ethanolamine binding protein from Mycobacterium tuberculosis in complex with sulphate 2CHC ; 1.69 ; Structure of Rv3472(D26N), a function unknown protein from Mycobacterium tuberculosis 1NXJ ; 1.9 ; Structure of Rv3853 from Mycobacterium tuberculosis 6EGU ; 2.3 ; Structure of RVFV envelope protein Gc in postfusion conformation in complex with 1,2-dipropionyl-sn-glycero-3-phosphocholine 6EGT ; 2.5 ; Structure of RVFV envelope protein Gc in postfusion conformation in complex with MES 6IEK ; 2.7 ; Structure of RVFV Gn and human monoclonal antibody R12 6IEA ; 2.0 ; Structure of RVFV Gn and human monoclonal antibody R13 6IEB ; 2.409 ; Structure of RVFV Gn and human monoclonal antibody R15 6IEC ; 3.2 ; Structure of RVFV Gn and human monoclonal antibody R17 8WOJ ; 1.768 ; Structure of RxLR121 effector from phytophthora capsici 6FOO ; 8.2 ; Structure of Ryanodine Receptor 1 in nanodiscs in the presence of calcium and ATP 6FG3 ; 7.3 ; Structure of Ryanodine receptor 1 in nanodiscs in the presence of calcium, ATP and ryanodine 6M2W ; 3.8 ; Structure of RyR1 (Ca2+/Caffeine/ATP/CaM1234/CHL) 7CF9 ; 4.7 ; Structure of RyR1 (Ca2+/CHL) 5GKY ; 3.8 ; Structure of RyR1 in a closed state (C1 conformer) 5GKZ ; 4.0 ; Structure of RyR1 in a closed state (C3 conformer) 5GL0 ; 4.2 ; Structure of RyR1 in a closed state (C4 conformer) 5GL1 ; 5.7 ; Structure of RyR1 in an open state 6JRR ; 3.9 ; Structure of RyR2 (*F/A/C/L-Ca2+ dataset) 6JRS ; 3.7 ; Structure of RyR2 (*F/A/C/L-Ca2+/Ca2+-CaM dataset) 6JI0 ; 4.2 ; Structure of RyR2 (F/A/C/Ca2+ dataset) 6JIY ; 3.9 ; Structure of RyR2 (F/A/C/H-Ca2+/Ca2+CaM dataset) 6JII ; 4.2 ; Structure of RyR2 (F/A/C/L-Ca2+/apo-CaM-M dataset) 6JIU ; 4.2 ; Structure of RyR2 (F/A/C/L-Ca2+/Ca2+CaM dataset) 6JH6 ; 4.8 ; Structure of RyR2 (F/A/Ca2+ dataset) 6JI8 ; 3.6 ; Structure of RyR2 (F/apoCaM dataset) 6JHN ; 4.5 ; Structure of RyR2 (F/C/Ca2+ dataset) 6JGZ ; 4.6 ; Structure of RyR2 (F/P/Ca2+ dataset) 6JV2 ; 4.4 ; Structure of RyR2 (P/L-Ca2+/Ca2+-CaM dataset) 4YVF ; 2.7 ; Structure of S-adenosyl-L-homocysteine hydrolase 1YY3 ; 2.88 ; Structure of S-Adenosylmethionine:tRNA Ribosyltransferase-Isomerase (QueA) 6WPU ; 2.084 ; Structure of S-allyl-L-cysteine S-oxygenase from Allium sativum 5V1L ; 1.2 ; Structure of S-GNA dodecamer 1SLT ; 1.9 ; STRUCTURE OF S-LECTIN, A DEVELOPMENTALLY REGULATED VERTEBRATE BETA-GALACTOSIDE BINDING PROTEIN 6RZV ; 20.6 ; Structure of s-Mgm1 decorating the inner surface of tubulated lipid membranes 6RZW ; 18.8 ; Structure of s-Mgm1 decorating the inner surface of tubulated lipid membranes in the GTPgammaS bound state 6RZT ; 14.7 ; Structure of s-Mgm1 decorating the outer surface of tubulated lipid membranes 6RZU ; 14.7 ; Structure of s-Mgm1 decorating the outer surface of tubulated lipid membranes in the GTPgammaS bound state 4DLB ; 2.1 ; Structure of S-nitrosoglutathione reductase from tomato (Solanum lycopersicum) crystallized in presence of NADH and glutathione 9B8E ; 1.4 ; Structure of S-nitrosylated Legionella pneumophila Ceg10. 4TQ2 ; 1.95 ; Structure of S-type Phycobiliprotein Lyase CPES from Guillardia theta 4IJA ; 2.1 ; Structure of S. aureus methicillin resistance factor MecR2 1DEE ; 2.7 ; Structure of S. aureus protein A bound to a human IgM Fab 7OIW ; 2.63 ; Structure of S. aureus Rel catalytic domains in complex with pppGpp 3WYI ; 2.0 ; Structure of S. aureus undecaprenyl diphosphate synthase 4H8E ; 1.3 ; Structure of S. aureus undecaprenyl diphosphate synthase in complex with FPP and sulfate 4U82 ; 1.66 ; Structure of S. aureus undecaprenyl diphosphate synthase in complex with FSPP and sulfate 5JM9 ; 24.0 ; Structure of S. cerevesiae mApe1 dodecamer 4QTT ; 2.0 ; Structure of S. cerevisiae Bud23-Trm112 complex involved in formation of m7G1575 on 18S rRNA (apo-form) 4QTU ; 2.124 ; Structure of S. cerevisiae Bud23-Trm112 complex involved in formation of m7G1575 on 18S rRNA (SAM bound form) 2VGN ; 2.505 ; Structure of S. cerevisiae Dom34, a translation termination-like factor involved in RNA quality control pathways and interacting with Hbs1 (SelenoMet-labeled protein) 2VGM ; 2.6 ; Structure of S. cerevisiae Dom34, a translation termination-like factor involved in RNA quality control pathways and interacting with Hbs1 (Unlabeled protein) 4ZAC ; 1.65 ; Structure of S. cerevisiae Fdc1 with the prenylated-flavin cofactor in the iminium form. 2AGK ; 1.3 ; Structure of S. cerevisiae His6 protein 8CWW ; 2.74 ; Structure of S. cerevisiae Hop1 CBR bound to a nucleosome 4XHL ; 3.01 ; Structure of S. cerevisiae Hrr25 1-394 (K38R mutant) 5CYZ ; 1.841 ; Structure of S. cerevisiae Hrr25:Mam1 complex, form 1 5CZO ; 2.894 ; Structure of S. cerevisiae Hrr25:Mam1 complex, form 2 6FNU ; 1.56 ; Structure of S. cerevisiae Methylenetetrahydrofolate reductase 1, catalytic domain 3V60 ; 2.6 ; Structure of S. cerevisiae PCNA conjugated to SUMO on lysine 164 3V61 ; 2.8 ; Structure of S. cerevisiae PCNA conjugated to SUMO on lysine 164 6P2R ; 3.2 ; Structure of S. cerevisiae protein O-mannosyltransferase Pmt1-Pmt2 complex bound to the sugar donor 6P25 ; 3.2 ; Structure of S. cerevisiae protein O-mannosyltransferase Pmt1-Pmt2 complex bound to the sugar donor and a peptide acceptor 8FS3 ; 2.93 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 10-nt gapped DNA in step 1 (open 9-1-1 and shoulder bound DNA only) 8FS4 ; 2.94 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 10-nt gapped DNA in step 2 (open 9-1-1 ring and flexibly bound chamber DNA) 8FS5 ; 2.76 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 10-nt gapped DNA in step 3 (open 9-1-1 and stably bound chamber DNA) 8FS6 ; 2.9 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 10-nt gapped DNA in step 4 (partially closed 9-1-1 and stably bound chamber DNA) 8FS7 ; 2.85 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 10-nt gapped DNA in step 5 (closed 9-1-1 and stably bound chamber DNA) 8FS8 ; 3.04 ; Structure of S. cerevisiae Rad24-RFC loading the 9-1-1 clamp onto a 5-nt gapped DNA (9-1-1 encircling fully bound DNA) 3MGU ; 2.8 ; Structure of S. cerevisiae Tpa1 protein, a proline hydroxylase modifying ribosomal protein Rps23 2J6A ; 1.7 ; Structure of S. cerevisiae Trm112 protein, a methyltransferase activator 5V3N ; 1.3 ; Structure of S. cerevisiae Ulp2-Tof2-Csm1 complex 5V1A ; 2.14 ; Structure of S. cerevisiae Ulp2:Csm1 complex 6BZF ; 2.286 ; Structure of S. cerevisiae Zip2:Spo16 complex, C2 form 6BZG ; 2.13 ; Structure of S. cerevisiae Zip2:Spo16 complex, P212121 form 6AMA ; 3.09 ; Structure of S. coelicolor/S. venezuelae BldC-smeA-ssfA complex to 3.09 Angstrom 8TN2 ; 1.75 ; Structure of S. hygroscopicus aminotransferase MppQ complexed with pyridoxal-5'-phosphate (PLP) 8TN3 ; 1.63 ; Structure of S. hygroscopicus aminotransferase MppQ complexed with pyridoxamine 5'-phosphate (PMP) 7TB6 ; 1.89 ; Structure of S. maltophilia CapW 1NH6 ; 2.05 ; Structure of S. marcescens chitinase A, E315L, complex with hexasaccharide 1IHZ ; 1.65 ; Structure of S. nuclease mutant quintuple mutant V23L/V66L/I72L/I92L/V99L 1II3 ; 1.72 ; Structure of S. nuclease quintuple mutant V23I/V66L/I72L/I92L/V99L 1EY7 ; 1.88 ; STRUCTURE OF S. NUCLEASE STABILIZING MUTANT S128A 1EY4 ; 1.6 ; STRUCTURE OF S. NUCLEASE STABILIZING MUTANT S59A 1EY5 ; 1.7 ; STRUCTURE OF S. NUCLEASE STABILIZING MUTANT T33V 1EZ8 ; 1.85 ; STRUCTURE OF S. NUCLEASE STABILIZING MUTANT T33V 1EY6 ; 1.75 ; STRUCTURE OF S. NUCLEASE STABILIZING MUTANT T41I 1EY9 ; 1.72 ; STRUCTURE OF S. NUCLEASE STABILIZING QUADRUPLE MUTANT T41I/P117G/H124L/S128A 1EYA ; 2.0 ; STRUCTURE OF S. NUCLEASE STABILIZING QUINTUPLE MUTANT T33V/T41I/P117G/H124L/S128A 1EYC ; 1.85 ; STRUCTURE OF S. NUCLEASE STABILIZING QUINTUPLE MUTANT T41I/S59A/P117G/H124L/S128A 1EZ6 ; 1.9 ; STRUCTURE OF S. NUCLEASE STABILIZING SEXTUPLE MUTANT T33V/T41I/S59A/P117G/H124L/S128A 1EY8 ; 1.75 ; STRUCTURE OF S. NUCLEASE STABILIZING TRIPLE MUTANT P117G/H124L/S128A 5DV0 ; 3.299 ; Structure of S. pneumoniae D39 sortase A 6W18 ; 4.2 ; Structure of S. pombe Arp2/3 complex in inactive state 3FHO ; 2.8 ; Structure of S. pombe Dbp5 6S2W ; 1.95 ; Structure of S. pombe Erh1, a protein important for meiotic mRNA decay in mitosis and meiosis progression. 6PPQ ; 1.81 ; Structure of S. pombe Lsm1-7 with RNA, polyuridine with 3' adenosine 6PPV ; 2.05 ; Structure of S. pombe Lsm1-7 with RNA, polyuridine with 3' guanosine 6PPP ; 2.33 ; Structure of S. pombe Lsm2-8 with processed U6 snRNA 6PPN ; 1.91 ; Structure of S. pombe Lsm2-8 with unprocessed U6 snRNA 6YYM ; 2.63 ; Structure of S. pombe Mei2 RRM3 domain bound to RNA 6FPP ; 1.93 ; Structure of S. pombe Mmi1 6FPX ; 1.97 ; Structure of S. pombe Mmi1 in complex with 11-mer RNA 6FPQ ; 1.42 ; Structure of S. pombe Mmi1 in complex with 7-mer RNA 3QTM ; 2.15 ; Structure of S. pombe nuclear import adaptor Nro1 (Space group P21) 3QTN ; 3.499 ; Structure of S. pombe nuclear import adaptor Nro1 (Space group P6522) 4PN0 ; 2.6 ; Structure of S. pombe Pct1 RNA triphosphatase 4PN1 ; 2.803 ; Structure of S. pombe Pct1 RNA triphosphatase in complex with the Spt5 CTD 3G10 ; 2.597 ; Structure of S. pombe Pop2p - Mg2+ and Mn2+ bound form 3G0Z ; 2.004 ; Structure of S. pombe Pop2p - Zn2+ and Mn2+ bound form 6TZN ; 1.35 ; Structure of S. pombe telomerase accessory protein Pof8 C-terminal domain 7BB3 ; 2.158 ; Structure of S. pombe YG-box oligomer 2VL7 ; 2.25 ; Structure of S. tokodaii Xpd4 7U3B ; 3.6 ; Structure of S. venezuelae GlgX bound to c-di-GMP and acarbose (pH 8.5) 7U3D ; 2.4 ; Structure of S. venezuelae GlgX-c-di-GMP-acarbose complex (4.6) 6PFV ; 3.0 ; Structure of S. venezuelae RisG-WhiG-c-di-GMP complex: orthorhombic crystal form 6PFJ ; 2.08 ; Structure of S. venezuelae RsiG-WhiG-(ci-di-GMP) complex, P64 crystal form 6EMW ; 11.0 ; Structure of S.aureus ClpC in complex with MecA 2G3I ; 2.1 ; Structure of S.olivaceoviridis xylanase Q88A/R275A mutant 2G3J ; 2.7 ; Structure of S.olivaceoviridis xylanase Q88A/R275A mutant 2G4F ; 2.65 ; Structure of S.olivaceoviridis xylanase Q88A/R275A mutant 6LZ1 ; 3.2 ; Structure of S.pombe alpha-mannosidase Ams1 4ETO ; 1.54 ; Structure of S100A4 in complex with non-muscle myosin-IIA peptide 3M0W ; 2.8 ; Structure of S100A4 with PCP 2G9Y ; 2.0 ; Structure of S102T E. coli alkaline phosphatase in presence of phosphate at 2.00 A resolution 2GA3 ; 2.2 ; Structure of S102T E. coli Alkaline Phosphatase-phosphate intermediate at 2.20A resolution 2WQE ; 2.5 ; Structure of S155R Aurora-A somatic mutant 6SYA ; 2.27 ; STRUCTURE OF S192A-ESTER-HYDROLASE EH3 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH METHYL (2R)-2-PHENYLPROPANOATE 6SXY ; 2.06 ; STRUCTURE OF S192A-ESTER-HYDROLASE EH3 FROM THE METAGENOME OF MARINE SEDIMENTS AT MILAZZO HARBOR (SICILY, ITALY) COMPLEXED WITH METHYL (2S)-2-PHENYLPROPANOATE 7VD6 ; 2.8 ; Structure of S1M1-type FCPII complex from diatom 7T6B ; 3.19 ; Structure of S1PR2-heterotrimeric G13 signaling complex 3ZXY ; 1.58 ; Structure of S218A mutant of the protease domain of PatA 2R2H ; 2.0 ; Structure of S25-2 in Complex with Ko 5Z2J ; 1.87 ; structure of S38A mutant metal-free periplasmic metal binding protein from candidatus liberibacter asiaticus 5Z2K ; 1.8 ; Structure of S38A mutant Mn-bound periplasmic metal binding protein from candidatus liberibacter asiaticus 5IBM ; 2.18 ; Structure of S502P, a Cancer-Associated Mutation of the Oncogenic Phosphatase SHP2 5DQ9 ; 1.95 ; Structure of S55-3 Fab in complex with Lipid A 5DQD ; 1.94 ; Structure of S55-5 Fab in complex with lipid A carbohydrate backbone 1YX4 ; ; Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition 2HGY ; 2.05 ; Structure of S65A Y66F E222A GFP variant after cyclization and carbon-carbon bond cleavage 2HGD ; 1.6 ; Structure of S65A Y66F GFP variant with an oxidized chromophore 2G16 ; 2.0 ; Structure of S65A Y66S GFP variant after backbone fragmentation 5W46 ; 1.18 ; Structure of S65D Phosphomimetic Ubiquitin Refined at 1.2 Angstroms Resolution 2G3D ; 1.35 ; Structure of S65G Y66A GFP variant after spontaneous peptide hydrolysis 2G2S ; 1.2 ; Structure of S65G Y66S GFP variant after spontaneous peptide hydrolysis 2G5Z ; 1.8 ; Structure of S65G Y66S GFP variant after spontaneous peptide hydrolysis and decarboxylation 2HCG ; 1.35 ; Structure of S65T Y66F GFP variant after cyclization, carbon-carbon bond cleavage, and oxygen incorporation reactions 2HFC ; 1.2 ; Structure of S65T Y66F R96A GFP variant in precursor state 3IKC ; 2.6 ; Structure of S67-27 in Complex with Kdo(2.8)-7-O-methyl-Kdo 3IJY ; 2.85 ; Structure of S67-27 in Complex with Kdo(2.8)Kdo 3IJH ; 2.1 ; Structure of S67-27 in Complex with Ko 3IJS ; 2.55 ; Structure of S67-27 in Complex with TSBP 6H28 ; 1.19 ; Structure of S70A BlaC from Mycobacterium tuberculosis obtained from crystals produced in the absence of DTT 6H2A ; 2.54 ; Structure of S70A BlaC from Mycobacterium tuberculosis obtained from crystals produced in the presence of DTT 4FH2 ; 1.44 ; Structure of s70c beta-lactamase bound to sulbactam 6H27 ; 1.63 ; Structure of S70C BlaC from Mycobacterium tuberculosis 5UCX ; 2.4 ; Structure of S78C Human Peroxiredoxin 3 as three stacked rings 6R9I ; 3.0 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module 6R9J ; 3.326 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module in complex with A7 RNA 6R9Q ; 3.079 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module in complex with AACCAA RNA 6R9O ; 3.319 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module in complex with AAGGA RNA 6R9M ; 3.329 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module in complex with AAGGAA RNA 6R9P ; 2.98 ; Structure of Saccharomyces cerevisiae apo Pan2 pseudoubiquitin hydrolase-RNA exonuclease (UCH-Exo) module in complex with AAUUAA RNA 2M9V ; ; Structure of Saccharomyces cerevisiae Est3 protein 4EQV ; 3.4 ; Structure of Saccharomyces cerevisiae invertase 4PEW ; 1.51 ; Structure of sacteLam55A from Streptomyces sp. SirexAA-E 4YOM ; 2.49 ; Structure of SAD kinase 6TB4 ; 3.8 ; Structure of SAGA bound to TBP 6TBM ; 20.0 ; Structure of SAGA bound to TBP, including Spt8 and DUB 7S2X ; 2.85 ; Structure of SalC, a gamma-lactam-beta-lactone bicyclase for salinosporamide biosynthesis 7Y3L ; 2.5 ; Structure of SALL3 ZFC4 bound with 12 bp AT-rich dsDNA 7Y3M ; 2.723 ; Structure of SALL4 ZFC1 bound with 16 bp AT-rich dsDNA 7Y3K ; 2.501 ; Structure of SALL4 ZFC4 bound with 16 bp AT-rich dsDNA 4CUJ ; 1.88 ; Structure of Salmonella D-Lactate Dehydrogenase 4CUK ; 2.18 ; Structure of Salmonella D-Lactate Dehydrogenase in complex with NADH 6CGI ; 2.3 ; Structure of Salmonella Effector SseK3 6DUS ; 2.6 ; Structure of Salmonella Effector SseK3 E258Q mutant 8PX1 ; 2.1 ; Structure of salmonella effector SseK3, solved at wavelength 2.75 A 5HAF ; 2.7 ; Structure of Salmonella enterica effector protein SseL 6V3Z ; 1.9 ; Structure of Salmonella enteritidis Sen1395 6KFK ; 4.1 ; Structure of Salmonella flagellar hook reveals intermolecular domain interactions for the universal joint function 2MC7 ; ; Structure of Salmonella MgtR 6SE1 ; 1.08 ; Structure of Salmonella ser. Paratyphi A lipopolysaccharide acetyltransferase periplasmic domain 2FM9 ; 2.0 ; Structure of Salmonella SipA residues 48-264 7AK8 ; 2.5 ; Structure of Salmonella TacT1 toxin bound to TacA1 antitoxin C-terminal peptide 7AK7 ; 2.14 ; Structure of Salmonella TacT2 toxin bound to TacA2 antitoxin 7AK9 ; 2.55 ; Structure of Salmonella TacT3 toxin bound to TacA3 antitoxin C-terminal peptide 6OFH ; 3.7 ; Structure of Salmonella type III secretion system needle filament 6V40 ; 2.104 ; Structure of Salmonella Typhi TtsA 4CLM ; 1.4 ; Structure of Salmonella typhi type I dehydroquinase irreversibly inhibited with a 1,3,4-trihydroxyciclohexane-1-carboxylic acid derivative 2YLB ; 1.15 ; Structure of Salmonella typhimurium Hfq at 1.15 A 2YLC ; 1.3 ; Structure of Salmonella typhimurium Hfq in complex with U6 RNA 5KX4 ; 1.94 ; Structure of SALO 8R4V ; 1.9 ; Structure of Salt-inducible kinase 3 in complex with inhibitor 8R4U ; 2.416 ; Structure of salt-inducible kinase 3 with inhibitors 6UK5 ; 2.6 ; Structure of SAM bound CalS10, an amino pentose methyltransferase from Micromonospora echinaspora involved in calicheamicin biosynthesis 6YOP ; 1.1 ; Structure of SAMM50 LIR bound to GABARAP 6YOO ; 1.06 ; Structure of SAMM50 LIR bound to GABARAPL1 2N1U ; ; Structure of SAP30L corepressor protein 6TRV ; 2.4 ; Structure of SapL1 lectin in complex with alpha methyl fucoside 6SLR ; 2.38 ; Structure of saposin B in complex with atovaquone 4V2O ; 2.13 ; Structure of saposin B in complex with chloroquine 7DXG ; 2.9 ; Structure of SAR7334-bound TRPC6 at 2.9 angstrom 430D ; 2.1 ; STRUCTURE OF SARCIN/RICIN LOOP FROM RAT 28S RRNA 7R0A ; 2.8 ; Structure of sarin phosphonylated acetylcholinesterase in complex with 2-((hydroxyimino)methyl)-1-(5-(4-methyl-3-nitrobenzamido)pentyl)pyridinium 3AW1 ; 2.0 ; Structure of SARS 3CL protease auto-proteolysis resistant mutant in the absent of inhibitor 3AW0 ; 2.3 ; Structure of SARS 3CL protease with peptidic aldehyde inhibitor 3AVZ ; 2.46 ; Structure of SARS 3CL protease with peptidic aldehyde inhibitor containing cyclohexyl side chain 5N5O ; 2.0 ; Structure of SARS coronavirus main protease in complex with the alpha-ketoamide (S)-N-benzyl-3-((S)-2-cinnamamido-3-cyclopropylpropanamido)-2-oxo-4-((S)-2-oxopyrrolidin-3-yl)butanamide (Cinnamoyl-cyclopropylalanine-GlnLactam-CO-CO-NH-benzyl) 5N19 ; 1.62 ; Structure of SARS coronavirus main protease in complex with the alpha-ketoamide (S)-N-benzyl-3-((S)-2-cinnamamido-3-phenylpropanamido)-2-oxo-4-((S)-2-oxopyrrolidin-3-yl)butanamide 2AJF ; 2.9 ; Structure of SARS coronavirus spike receptor-binding domain complexed with its receptor 2C3S ; 1.9 ; Structure Of Sars Cov Main Proteinase At 1.9 A (Ph6.5) 7LMC ; 2.977 ; Structure of SARS CoV-2 main protease shows simultaneous processing of its N- and C-terminii 6WCO ; 1.48 ; Structure of SARS main protease bound to inhibitor X47 5E6J ; 2.85 ; Structure of SARS PLpro bound to a Lys48-linked di-ubiquitin activity based probe 4TWW ; 2.42 ; Structure of SARS-3CL protease complex with a Bromobenzoyl (S,R)-N-decalin type inhibitor 5C5N ; 1.69 ; Structure of SARS-3CL protease complex with a phenyl-beta-alanyl (R,S)-N-decalin type inhibitor 5C5O ; 1.5 ; Structure of SARS-3CL protease complex with a phenyl-beta-alanyl (S,R)-N-decalin type inhibitor 4WY3 ; 1.89 ; Structure of SARS-3CL protease complex with a phenylbenzoyl (R,S)-N-decalin type inhibitor 4TWY ; 1.6 ; Structure of SARS-3CL protease complex with a phenylbenzoyl (S,R)-N-decalin type inhibitor 6W79 ; 1.46 ; Structure of SARS-CoV main protease bound to potent broad-spectrum non-covalent inhibitor X77 7SG4 ; 3.43 ; Structure of SARS-CoV S protein in complex with Receptor Binding Domain antibody DH1047 5XLR ; 3.8 ; Structure of SARS-CoV spike glycoprotein 8EQS ; 3.1 ; Structure of SARS-CoV-1 Orf3a in late endosome/lysosome-like environment, MSP1D1 nanodisc 8H15 ; 3.14182 ; Structure of SARS-CoV-1 Spike Protein (S/native) at pH 5.5, Closed Conformation 8H16 ; 3.35534 ; Structure of SARS-CoV-1 Spike Protein (S/native) at pH 5.5, Open Conformation 8H11 ; 2.72 ; Structure of SARS-CoV-1 Spike Protein with Engineered x1 Disulfide (S370C and D967C), Closed Conformation 8H0X ; 2.57 ; Structure of SARS-CoV-1 Spike Protein with Engineered x1 Disulfide (S370C and D967C), Locked-1 Conformation 8H0Y ; 2.85 ; Structure of SARS-CoV-1 Spike Protein with Engineered x1 Disulfide (S370C and D967C), Locked-112 Conformation 8H0Z ; 2.99 ; Structure of SARS-CoV-1 Spike Protein with Engineered x1 Disulfide (S370C and D967C), Locked-122 Conformation 8H10 ; 2.99 ; Structure of SARS-CoV-1 Spike Protein with Engineered x1 Disulfide (S370C and D967C), Locked-2 Conformation 8H13 ; 4.05 ; Structure of SARS-CoV-1 Spike Protein with Engineered x2 Disulfide (G400C and V969C), Closed Conformation 8H12 ; 3.44681 ; Structure of SARS-CoV-1 Spike Protein with Engineered x2 Disulfide (G400C and V969C), Locked-2 Conformation 8H14 ; 3.39 ; Structure of SARS-CoV-1 Spike Protein with Engineered x3 Disulfide (D414C and V969C), Locked-1 Conformation 7T49 ; 1.75 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 10c 7T4A ; 1.8 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 11c 7LZU ; 1.6 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 12b 7M00 ; 2.0 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 13c 7M01 ; 1.65 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 14c 7T4B ; 1.6 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 14c 7M02 ; 1.8 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 17c 7M03 ; 2.0 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 18c 7LZV ; 1.6 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 19b 7LZX ; 1.65 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 1c 7LZW ; 2.2 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 20b (deuterated analog of 19b) 7M04 ; 1.75 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 21c 7T42 ; 1.6 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 2c 7LZY ; 1.85 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 3c 7T43 ; 1.7 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 3c 7T44 ; 1.45 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 4c 7LZZ ; 2.0 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 5c 7T45 ; 1.65 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 7c 7LZT ; 1.55 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 8b 7T46 ; 1.45 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 8c 7T48 ; 1.9 ; Structure of SARS-CoV-2 3CL protease in complex with inhibitor 9c 7TQ5 ; 1.65 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 10d 7TQ6 ; 1.55 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 13d 8CZW ; 1.7 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 15d 8CZX ; 1.65 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 17d 7TQ2 ; 2.3 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 1c 7TQ3 ; 2.0 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 5c 7TQ4 ; 2.45 ; Structure of SARS-CoV-2 3CL protease in complex with the cyclopropane based inhibitor 6c 7JJJ ; 4.5 ; Structure of SARS-CoV-2 3Q-2P full-length dimers of spike trimers 7JJI ; 3.6 ; Structure of SARS-CoV-2 3Q-2P full-length prefusion spike trimer (C3 symmetry) 7EKF ; 2.85 ; Structure of SARS-CoV-2 Alpha variant spike receptor-binding domain complexed with human ACE2 7XNF ; 2.79 ; Structure of SARS-CoV-2 antibody P2C-1F11 with GX/P2V/2017 RBD 7XSW ; 3.3 ; Structure of SARS-CoV-2 antibody S309 with GX/P2V/2017 RBD 7KRN ; 3.4 ; Structure of SARS-CoV-2 backtracked complex bound to nsp13 helicase - nsp13(1)-BTC 7KRP ; 3.2 ; Structure of SARS-CoV-2 backtracked complex complex bound to nsp13 helicase - BTC (local refinement) 7KRO ; 3.6 ; Structure of SARS-CoV-2 backtracked complex complex bound to nsp13 helicase - nsp13(2)-BTC 7EKG ; 2.63 ; Structure of SARS-CoV-2 Beta variant spike receptor-binding domain complexed with human ACE2 6VW1 ; 2.68 ; Structure of SARS-CoV-2 chimeric receptor-binding domain complexed with its receptor human ACE2 7XU5 ; 3.1 ; Structure of SARS-CoV-2 D614G Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Closed Conformation 7XU4 ; 3.2 ; Structure of SARS-CoV-2 D614G Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Locked-2 Conformation 7WNM ; 2.7 ; Structure of SARS-CoV-2 Gamma variant receptor-binding domain complexed with high affinity human ACE2 mutant (T27F,R273Q) 7EKC ; 2.8 ; Structure of SARS-CoV-2 Gamma variant spike receptor-binding domain complexed with human ACE2 7CZ4 ; 2.64 ; Structure of SARS-CoV-2 macro domain in complex with ADP-ribose 7ADW ; 1.63 ; Structure of SARS-CoV-2 Main Protease bound to 2,4'-Dimethylpropiophenone. 6YNQ ; 1.8 ; Structure of SARS-CoV-2 Main Protease bound to 2-Methyl-1-tetralone. 7ANS ; 1.7 ; Structure of SARS-CoV-2 Main Protease bound to Adrafinil. 7AXO ; 1.65 ; Structure of SARS-CoV-2 Main Protease bound to AR-42. 7AGA ; 1.68 ; Structure of SARS-CoV-2 Main Protease bound to AT7519 6YVF ; 1.6 ; Structure of SARS-CoV-2 Main Protease bound to AZD6482. 7AKU ; 2.5 ; Structure of SARS-CoV-2 Main Protease bound to Calpeptin. 7AOL ; 1.47 ; Structure of SARS-CoV-2 Main Protease bound to Climbazole 7AWW ; 1.65 ; Structure of SARS-CoV-2 Main Protease bound to Clonidine 7A1U ; 1.67 ; Structure of SARS-CoV-2 Main Protease bound to Fusidic Acid. 7AX6 ; 1.95 ; Structure of SARS-CoV-2 Main Protease bound to Glutathione isopropyl ester 7AQI ; 1.7 ; Structure of SARS-CoV-2 Main Protease bound to Ifenprodil 7AF0 ; 1.7 ; Structure of SARS-CoV-2 Main Protease bound to Ipidacrine. 7AY7 ; 1.55 ; Structure of SARS-CoV-2 Main Protease bound to Isofloxythepin 7AWU ; 2.07 ; Structure of SARS-CoV-2 Main Protease bound to LSN2463359. 7AHA ; 1.68 ; Structure of SARS-CoV-2 Main Protease bound to Maleate. 7AP6 ; 1.78 ; Structure of SARS-CoV-2 Main Protease bound to MUT056399. 7AMJ ; 1.59 ; Structure of SARS-CoV-2 Main Protease bound to PD 168568. 7AXM ; 1.4 ; Structure of SARS-CoV-2 Main Protease bound to Pelitinib 7B83 ; 1.8 ; Structure of SARS-CoV-2 Main Protease bound to pyrithione zinc 7ABU ; 1.6 ; Structure of SARS-CoV-2 Main Protease bound to RS102895 7AVD ; 1.8 ; Structure of SARS-CoV-2 Main Protease bound to SEN1269 ligand 7AWR ; 1.34 ; Structure of SARS-CoV-2 Main Protease bound to Tegafur 7AWS ; 1.81 ; Structure of SARS-CoV-2 Main Protease bound to TH-302. 7ARF ; 2.0 ; Structure of SARS-CoV-2 Main Protease bound to thioglucose. 7APH ; 1.65 ; Structure of SARS-CoV-2 Main Protease bound to Tofogliflozin. 7AK4 ; 1.63 ; Structure of SARS-CoV-2 Main Protease bound to Tretazicar. 7AQJ ; 2.59 ; Structure of SARS-CoV-2 Main Protease bound to Triglycidyl isocyanurate. 7AQE ; 1.39 ; Structure of SARS-CoV-2 Main Protease bound to UNC-2327 7RFR ; 1.626 ; Structure of SARS-CoV-2 main protease in complex with a covalent inhibitor 7RFS ; 1.91 ; Structure of SARS-CoV-2 main protease in complex with a covalent inhibitor 7RFU ; 2.498 ; Structure of SARS-CoV-2 main protease in complex with a covalent inhibitor 7RFW ; 1.729 ; Structure of SARS-CoV-2 main protease in complex with a covalent inhibitor 7TGR ; 1.68 ; Structure of SARS-CoV-2 main protease in complex with GC376 8DS1 ; 2.19 ; Structure of SARS-CoV-2 Mpro in complex with nsp12-nsp13 (C12) cut site sequence 8DS2 ; 1.6 ; Structure of SARS-CoV-2 Mpro in complex with the nsp13-nsp14 (C13) cut site sequence (form 2) 7U28 ; 1.679 ; Structure of SARS-CoV-2 Mpro Lambda (G15S) in complex with Nirmatrelvir (PF-07321332) 7U29 ; 2.088 ; Structure of SARS-CoV-2 Mpro mutant (K90R) in complex with Nirmatrelvir (PF-07321332) 7TLL ; 1.63 ; Structure of SARS-CoV-2 Mpro Omicron P132H in complex with Nirmatrelvir (PF-07321332) 7K7P ; 1.77 ; Structure of SARS-CoV-2 nonstuctural protein 1 7LW3 ; 2.3 ; Structure of SARS-CoV-2 nsp16/nsp10 complex in presence of Cap-1 analog (m7GpppAmU) and SAH 7LW4 ; 2.5 ; Structure of SARS-CoV-2 nsp16/nsp10 complex in presence of S-adenosyl-L-homocysteine (SAH) 6WKS ; 1.8 ; Structure of SARS-CoV-2 nsp16/nsp10 in complex with RNA cap analogue (m7GpppA) and S-adenosylmethionine 8AZL ; 2.2 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with 2'-deoxy-2'-fluoro-ADPR 8AZI ; 1.9 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with 2'-deoxy-ADPR 8AZM ; 2.1 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with 8Br-ADPR 8AZD ; 2.0 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with ADPR 8AZN ; 1.6 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with alpha-1-O-Me-ADPR 8AZO ; 1.9 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with beta-ethyl-ADP 8AZP ; 1.6 ; Structure of SARS-CoV-2 NSP3 macrodomain in complex with beta-methyl-ADP 8AZC ; 0.93 ; Structure of SARS-CoV-2 NSP3 macrodomain in the apo form 6WZO ; 1.42 ; Structure of SARS-CoV-2 Nucleocapsid dimerization domain, P1 form 6WZQ ; 1.45 ; Structure of SARS-CoV-2 Nucleocapsid dimerization domain, P21 form 7UW3 ; 1.7 ; Structure of SARS-CoV-2 Nucleocapsid Protein N-Terminal Domain 7PKU ; ; Structure of SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a 8F0G ; 3.35 ; Structure of SARS-CoV-2 Omicron BA.1 spike in complex with antibody Fab 1C3 8DZI ; 3.5 ; Structure of SARS-CoV-2 Omicron BA.1.1.529 Spike trimer with one RBD down in complex with the Fab fragment of human neutralizing antibody MB.02 8DZH ; 3.2 ; Structure of SARS-CoV-2 Omicron BA.1.1.529 Spike trimer with two RBDs down in complex with the Fab fragment of human neutralizing antibody MB.02 8H5C ; 2.9 ; Structure of SARS-CoV-2 Omicron BA.2.75 RBD in complex with human ACE2 8EQU ; 2.8 ; Structure of SARS-CoV-2 Orf3a in late endosome/lysosome-like environment, Saposin A nanodisc 8EQJ ; 3.0 ; Structure of SARS-CoV-2 Orf3a in late endosome/lysosome-like membrane environment, MSP1D1 nanodisc 8EQT ; 3.4 ; Structure of SARS-CoV-2 Orf3a in plasma membrane-like environment, MSP1D1 nanodisc 7XMN ; 2.3 ; Structure of SARS-CoV-2 ORF8 7JTL ; 2.04 ; Structure of SARS-CoV-2 ORF8 accessory protein 7QCJ ; 1.84 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(2,4-dihydroxybenzylidene)-thiosemicarbazone 7QCK ; 1.92 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(2,5-dihydroxybenzylidene)-thiosemicarbazone 7QCG ; 1.75 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(2-pyrrolidyl)-3,4,5-trihydroxybenzoylhydrazone 7QCI ; 1.76 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(3,4-dihydroxybenzylidene)-thiosemicarbazone 7QCH ; 1.88 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(3,5-dimethoxy-4-hydroxybenzyliden)thiosemicarbazone 7QCM ; 1.77 ; Structure of SARS-CoV-2 Papain-like Protease bound to N-(3-methoxy-4-hydroxy-acetophenone)thiosemicarbazone 7NFV ; 1.42 ; Structure of SARS-CoV-2 Papain-like protease PLpro 7OFU ; 1.72 ; Structure of SARS-CoV-2 Papain-like protease PLpro in complex with 3, 4-Dihydroxybenzoic acid, methyl ester 7OFS ; 1.9 ; Structure of SARS-CoV-2 Papain-like protease PLpro in complex with 4-(2-hydroxyethyl)phenol 7OFT ; 1.95 ; Structure of SARS-CoV-2 Papain-like protease PLpro in complex with p-hydroxybenzaldehyde 6XEZ ; 3.5 ; Structure of SARS-CoV-2 replication-transcription complex bound to nsp13 helicase - nsp13(2)-RTC 8GY6 ; ; Structure of SARS-CoV-2 RNA-dependent RNA polymerase with gossypol binding 7LCN ; 3.35 ; Structure of SARS-CoV-2 S protein in complex with N-terminal domain antibody DH1050.1 7LAB ; 2.97 ; Structure of SARS-CoV-2 S protein in complex with N-terminal domain antibody DH1052 7LAA ; 3.42 ; Structure of SARS-CoV-2 S protein in complex with Receptor Binding Domain antibody DH1041 7LD1 ; 3.4 ; Structure of SARS-CoV-2 S protein in complex with Receptor Binding Domain antibody DH1047 7MTE ; 3.2 ; Structure of SARS-CoV-2 S2P spike at pH 7.4 refolded by low-pH treatment 6XLU ; 2.4 ; Structure of SARS-CoV-2 spike at pH 4.0 7JWY ; 2.5 ; Structure of SARS-CoV-2 spike at pH 4.5 6XM5 ; 3.1 ; Structure of SARS-CoV-2 spike at pH 5.5, all RBDs down 6XM3 ; 2.9 ; Structure of SARS-CoV-2 spike at pH 5.5, single RBD up, conformation 1 6XM4 ; 2.9 ; Structure of SARS-CoV-2 spike at pH 5.5, single RBD up, conformation 2 7M3I ; 2.8 ; Structure of SARS-CoV-2 spike protein receptor binding domain in complex with a neutralizing antibody, CV2-75 Fab 6XE1 ; 2.75 ; Structure of SARS-CoV-2 spike protein receptor binding domain in complex with a potent neutralizing antibody, CV30 Fab 6ZP1 ; 3.3 ; Structure of SARS-CoV-2 Spike Protein Trimer (K986P, V987P, single Arg S1/S2 cleavage site) in Closed State 6ZP2 ; 3.1 ; Structure of SARS-CoV-2 Spike Protein Trimer (K986P, V987P, single Arg S1/S2 cleavage site) in Locked State 6ZP0 ; 3.0 ; Structure of SARS-CoV-2 Spike Protein Trimer (single Arg S1/S2 cleavage site) in Closed State 7XU3 ; 3.0 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Closed Conformation 7XU6 ; 2.9 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), incubated in Low pH after 40-Day Storage in PBS, Locked-2 Conformation 7XTZ ; 2.8 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Locked-1 Conformation 7XU1 ; 3.0 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Locked-122 Conformation 7XU2 ; 3.2 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Locked-2 Conformation 7XU0 ; 2.9 ; Structure of SARS-CoV-2 Spike Protein with Engineered x3 Disulfide (x3(D427C, V987C) and single Arg S1/S2 cleavage site), Locked-211 Conformation 7L4Z ; 3.96 ; Structure of SARS-CoV-2 spike RBD in complex with cyclic peptide 8HGM ; 3.4 ; Structure of SARS-CoV-2 spike RBD in complex with neutralizing antibody NIV-11 7YH6 ; 3.4 ; Structure of SARS-CoV-2 spike RBD in complex with neutralizing antibody NIV-8 7DMU ; 3.2 ; Structure of SARS-CoV-2 spike receptor-binding domain complexed with high affinity ACE2 mutant 3N39 7W6U ; 2.56 ; Structure of SARS-CoV-2 spike receptor-binding domain complexed with its receptor equine ACE2 7WA1 ; 2.9 ; Structure of SARS-CoV-2 spike receptor-binding domain F486L mutation complexed with American mink ACE2 7EKE ; 2.7 ; Structure of SARS-CoV-2 spike receptor-binding domain F486L mutation complexed with human ACE2 7EFP ; 2.698 ; Structure of SARS-CoV-2 spike receptor-binding domain in complex with high affinity ACE2 mutant (S19W,N330Y) 7EFR ; 2.494 ; Structure of SARS-CoV-2 spike receptor-binding domain in complex with high affinity ACE2 mutant (T27W,N330Y) 7W8S ; 2.85 ; Structure of SARS-CoV-2 spike receptor-binding domain Y453F mutation complexed with American mink ACE2 7EKH ; 2.4 ; Structure of SARS-CoV-2 spike receptor-binding domain Y453F mutation complexed with human ACE2 8F0H ; 3.18 ; Structure of SARS-CoV-2 spike with antibody Fabs 2A10 and 1H2 (Local refinement of the RBD and Fabs 1H2 and 2A10) 8IOU ; 3.18 ; Structure of SARS-CoV-2 XBB.1 spike glycoprotein in complex with ACE2 (1-up state) 8IOV ; 3.29 ; Structure of SARS-CoV-2 XBB.1 spike RBD in complex with ACE2 8JYN ; 3.04 ; Structure of SARS-CoV-2 XBB.1.5 spike glycoprotein in complex with ACE2 (1-up state) 8JYO ; 3.2 ; Structure of SARS-CoV-2 XBB.1.5 spike glycoprotein in complex with ACE2 (2-up state) 8JYP ; 3.38 ; Structure of SARS-CoV-2 XBB.1.5 spike RBD in complex with ACE2 7MBI ; 2.15 ; Structure of SARS-CoV2 3CL protease covalently bound to peptidomimetic inhibitor 8UTE ; 1.45 ; Structure of SARS-Cov2 3CLPro in complex with Compound 27 8UPV ; 1.57 ; Structure of SARS-Cov2 3CLPro in complex with Compound 33 8UPW ; 1.44 ; Structure of SARS-Cov2 3CLPro in complex with Compound 34 8UPS ; 2.44 ; Structure of SARS-Cov2 3CLPro in complex with Compound 5 7NXH ; 2.1 ; Structure of SARS-CoV2 NSP5 (3C-like proteinase) determined in-house 8EUA ; 3.1 ; Structure of SARS-CoV2 PLpro bound to a covalent inhibitor 7DG6 ; 2.4 ; Structure of SARS-Cov2-Mpro-1-302 6XKR ; 2.59 ; Structure of Sasanlimab Fab in complex with PD-1 7SMH ; 1.65 ; Structure of SASG A-domain (residues 163-419) from Staphylococcus aureus 7RWS ; 1.8 ; Structure of SAVED domain of Cap5 from Lactococcus lactis in complex with cGAMP 1NQM ; 1.7 ; Structure of Savm-W120K, streptavidin mutant 3MQE ; 2.8 ; Structure of SC-75416 bound at the COX-2 active site 1S5G ; 3.1 ; Structure of Scallop myosin S1 reveals a novel nucleotide conformation 5XBM ; 3.501 ; Structure of SCARB2-JL2 complex 6OJJ ; 2.406 ; Structure of ScAtg3 with truncations in N-terminal and flexible region (FR) 1N4X ; 1.7 ; Structure of scFv 1696 at acidic pH 6JLH ; 2.37 ; Structure of SCGN in complex with a Snap25 peptide 8GYD ; 1.7 ; Structure of Schistosoma japonicum Glutathione S-transferase bound with the ligand complex of 16 2V6O ; 2.2 ; Structure of Schistosoma mansoni Thioredoxin-Glutathione Reductase (SmTGR) 4P27 ; 2.16 ; Structure of Schistosoma mansoni venom allergen-like protein 4 (SmVAL4) 7Y8K ; 2.08 ; Structure of ScIRED wild-type from Streptomyces clavuligerus 7Y8L ; 2.41 ; Structure of ScIRED-R2-V3 from Streptomyces clavuligerus in complex with 5-(2,5-difluorophenyl)-3,4-dihydro-2H-pyrrole 7Y8M ; 2.28 ; Structure of ScIRED-R2-V3 from Streptomyces clavuligerus in complex with 5-(3-fluorophenyl)-3,4-dihydro-2H-pyrrole 7Y8N ; 2.2 ; Structure of ScIRED-R3-V4 from Streptomyces clavuligerus in complex with 5-(2,5-difluorophenyl)-3,4-dihydro-2H-pyrrole 7Y8O ; 2.3 ; Structure of ScIRED-R3-V4 from Streptomyces clavuligerus in complex with 5-(3-fluorophenyl)-3,4-dihydro-2H-pyrrole 6XRR ; 1.9 ; Structure of SciW bound to the Rhs1 Transmembrane Domain from Salmonella typhimurium 4OY6 ; 1.29 ; Structure of ScLPMO10B in complex with copper. 4OY8 ; 1.4 ; Structure of ScLPMO10B in complex with zinc. 3FIW ; 2.2 ; Structure of SCO0253, a Tetr-family transcriptional regulator from Streptomyces coelicolor 7AA8 ; 1.25 ; Structure of SCOC LIR bound to GABARAP 7AA7 ; 1.45 ; Structure of SCOC pS12/pS18 LIR motif bound to GABARAPL1 7AA9 ; 1.72 ; Structure of SCOC pT13/pT15 LIR motif bound to GABARAPL1 1SN1 ; 1.7 ; STRUCTURE OF SCORPION NEUROTOXIN BMK M1 1SN4 ; 1.3 ; STRUCTURE OF SCORPION NEUROTOXIN BMK M4 1SNB ; 1.9 ; STRUCTURE OF SCORPION NEUROTOXIN BMK M8 2SN3 ; 1.2 ; STRUCTURE OF SCORPION TOXIN VARIANT-3 AT 1.2 ANGSTROMS RESOLUTION 1S2K ; 2.0 ; Structure of SCP-B a member of the Eqolisin family of Peptidases in a complex with a Tripeptide Ala-Ile-His 1S2B ; 2.1 ; Structure of SCP-B the first member of the Eqolisin family of Peptidases to have its structure determined 6DU2 ; 2.5 ; Structure of Scp1 D96N bound to REST-pS861/4 peptide 6DU3 ; 2.58 ; Structure of Scp1 D96N bound to REST-pS861/4 peptide 5O6B ; 2.029 ; Structure of ScPif1 in complex with GGGTTTT and ADP-AlF4 5O6D ; 3.283 ; Structure of ScPif1 in complex with polydT and ATPgS 5O6E ; 3.345 ; Structure of ScPif1 in complex with TTTGGGTT and ADP-AlF4 2R5Y ; 2.6 ; Structure of Scr/Exd complex bound to a consensus Hox-Exd site 2R5Z ; 2.6 ; Structure of Scr/Exd complex bound to a DNA sequence derived from the fkh gene 5FGU ; 1.896 ; Structure of Sda1 nuclease apoprotein as an EGFP fixed-arm fusion 5FGW ; 1.95 ; Structure of Sda1 nuclease with bound zinc ion 2IXS ; 2.0 ; Structure of SdaI restriction endonuclease 8EFW ; 2.81 ; Structure of SdeA DUB Domain disulfide crosslinked with Ubiquitin 2KEC ; ; Structure of SDF-1/CXCL12 2KED ; ; Structure of SDF-1/CXCL12 2KEE ; ; Structure of SDF-1/CXCL12 2K03 ; ; Structure of SDF1 in complex with the CXCR4 N-terminus containing a sulfotyrosine at postition 21 2K04 ; ; Structure of SDF1 in complex with the CXCR4 N-terminus containing no sulfotyrosines 2K05 ; ; Structure of SDF1 in complex with the CXCR4 N-terminus containing sulfotyrosines at postitions 7, 12 and 21 5KYN ; 2.552 ; Structure of Sec23 and TANGO1 complex 2QTV ; 2.5 ; Structure of Sec23-Sar1 complexed with the active fragment of Sec31 8QOA ; 2.0 ; Structure of SecM-stalled Escherichia coli 70S ribosome 7K0C ; 3.3 ; Structure of Secretory IgM Core 7AE4 ; 3.31 ; Structure of Sedimentibacter hydroxybenzoicus vanillic acid decarboxylase (ShVdcCD) in closed form 7AE5 ; 2.19 ; Structure of Sedimentibacter hydroxybenzoicus vanillic acid decarboxylase (ShVdcCD) in open form 7AE7 ; 2.66 ; Structure of Sedimentibacter hydroxybenzoicus vanillic acid decarboxylase (ShVdcCD) in open form, with truncated ShVdcD (V59X) 2Y3J ; 1.99 ; Structure of segment AIIGLM from the amyloid-beta peptide (Ab, residues 30-35) 2Y2A ; 1.91 ; Structure of segment KLVFFA from the amyloid-beta peptide (Ab, residues 16-21), alternate polymorph I 2Y29 ; 2.3 ; Structure of segment KLVFFA from the amyloid-beta peptide (Ab, residues 16-21), alternate polymorph III 2Y3K ; 1.9 ; Structure of segment MVGGVVIA from the amyloid-beta peptide (Ab, residues 35-42), alternate polymorph 1 2Y3L ; 2.1 ; Structure of segment MVGGVVIA from the amyloid-beta peptide (Ab, residues 35-42), alternate polymorph 2 5LZC ; 4.8 ; Structure of SelB-Sec-tRNASec bound to the 70S ribosome in the codon reading state (CR) 5LZD ; 3.4 ; Structure of SelB-Sec-tRNASec bound to the 70S ribosome in the GTPase activated state (GA) 5LZB ; 5.3 ; Structure of SelB-Sec-tRNASec bound to the 70S ribosome in the initial binding state (IB) 4A0F ; 2.714 ; Structure of selenomethionine substituted bifunctional DAPA aminotransferase-dethiobiotin synthetase from Arabidopsis thaliana in its apo form. 5GN3 ; 2.281 ; Structure of selenomethionine-labelled Uracil DNA glycosylase (BdiUNG) from Bradyrhizobium diazoefficiens 2O6C ; 1.7 ; Structure of selenomethionyl rTp34 from Treponema pallidum 8Q3C ; 3.1 ; Structure of Selenomonas ruminantium lactate dehydrogenase I85R mutant 2PT0 ; 1.7 ; Structure of Selenomonas ruminantium PTP-like phytase with the active site cysteine oxidized to cysteine-sulfonic acid 8A8N ; 6.7 ; Structure of self-assembling engineered protein nanocage (EPN) fused with hepatitis A pX protein 3ZXX ; 1.95 ; Structure of self-cleaved protease domain of PatA 4B9J ; 2.542 ; Structure of self-complemented CssA subunit of enterotoxigenic Escherichia coli colonization factor CS6 2IMD ; 1.6 ; Structure of SeMet 2-hydroxychromene-2-carboxylate isomerase (HCCA isomerase) 1MWR ; 2.45 ; Structure of SeMet Penicillin binding protein 2a from methicillin resistant Staphylococcus aureus strain 27r (trigonal form) at 2.45 A resolution. 5ZVV ; 2.2 ; Structure of SeMet-phAimR 5ZW5 ; 2.4 ; Structure of SeMet-spAimR 8IHP ; 3.0 ; Structure of Semliki Forest virus VLP in complex with the receptor VLDLR-LA3 8JJQ ; 1.64 ; Structure of SenB in complex with UDP-GalNAc at 1.64 Angstroms resolution 8JJN ; 1.98 ; Structure of SenB in complex with UDP-Glc and PO4- at 1.98 Angstroms resolution 8JJT ; 1.88 ; Structure of SenB in complex with UDP-GlcNAc at 1.88 Angstroms resolution 6KP3 ; 2.2 ; STRUCTURE OF SENDAI VIRUS Y3/ALIX-BRO1 DOMAIN COMPLEX 6ADS ; 2.84 ; Structure of Seneca Valley Virus in acidic conditions 6ADT ; 3.22 ; Structure of Seneca Valley Virus in neutral condition 3CJI ; 2.3 ; Structure of Seneca Valley Virus-001 3ZO5 ; 2.15 ; Structure of SENP2-Loop1 in complex with preSUMO-2 2I89 ; 2.1 ; Structure of septuple mutant of Rat Outer Mitochondrial Membrane Cytochrome B5 1TDL ; 1.8 ; Structure of Ser130Gly SHV-1 beta-lactamase 1S80 ; 2.7 ; Structure of Serine Acetyltransferase from Haemophilis influenzae Rd 6UXH ; 1.858 ; Structure of serine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP 6UXI ; 2.1 ; Structure of serine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP-Glycine 6UXJ ; 1.4 ; Structure of serine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP-glycine and 5-formyltetrahydrofolate 6UXK ; 2.1 ; Structure of serine hydroxymethyltransferase 8 from Glycine max cultivar Forrest complexed with PLP 6UXL ; 2.35 ; Structure of serine hydroxymethyltransferase 8 from Glycine max cultivar Forrest complexed with PLP-Glycine 1TOC ; 3.1 ; STRUCTURE OF SERINE PROTEINASE 2PQ2 ; 1.82 ; Structure of serine proteinase K complex with a highly flexible hydrophobic peptide at 1.8A resolution 7Z4V ; 1.644 ; Structure of Serine-Threonine kinase STK25 in complex with compound 1S95 ; 1.6 ; Structure of serine/threonine protein phosphatase 5 7BPG ; 1.7 ; Structure of serinol nucleic acid - RNA complex 6XEW ; 2.0 ; Structure of Serratia marcescens 2,3-butanediol dehydrogenase 6VSP ; 1.9 ; Structure of Serratia marcescens 2,3-butanediol dehydrogenase mutant Q247A 6XEX ; 1.8 ; Structure of Serratia marcescens 2,3-butanediol dehydrogenase mutant Q247A/V139Q 7C92 ; 2.32 ; Structure of Serratia marcescens chitinase B complexed with compound 6k 7CB1 ; 1.98 ; Structure of Serratia marcescens chitinase B complexed with compound 6q 6ELU ; 2.3 ; Structure of Serum Resistance Associated protein from T. b. rhodesiense 1N6A ; 1.7 ; Structure of SET7/9 1N6C ; 2.3 ; Structure of SET7/9 8ONT ; 3.66 ; Structure of Setaria italica NRAT in complex with a nanobody 6ICT ; 1.952 ; Structure of SETD3 bound to SAH and methylated actin 6ICV ; 2.15 ; Structure of SETD3 bound to SAH and unmodified actin 6L42 ; 3.4 ; Structure of severe fever with thrombocytopenia syndrome virus L protein 1SVQ ; ; STRUCTURE OF SEVERIN DOMAIN 2 IN SOLUTION 1SVR ; ; STRUCTURE OF SEVERIN DOMAIN 2 IN SOLUTION 4FXX ; 2.4801 ; Structure of SF1 coiled-coil domain 7BJ9 ; 1.21001 ; Structure of Sfh-I with 2-Mercaptomethyl-thiazolidine L-anti-1a 7PU5 ; 2.999 ; Structure of SFPQ-NONO complex 8ILQ ; 4.3 ; Structure of SFTSV Gn-Gc heterodimer 5Z6Y ; 1.87 ; Structure of sfYFP48S95C66BPA 5YR3 ; 1.901 ; Structure of sfYFP66BPA 7O8C ; 2.0 ; Structure of SGBP BO2743 from Bacteroides ovatus 7NOX ; 1.43 ; Structure of SGBP BO2743 from Bacteroides ovatus in complex with mixed-linked gluco-nonasaccharide 2CA8 ; 2.49 ; Structure of Sh28GST in complex with GSH at pH 6.0 2C80 ; 2.3 ; Structure of Sh28GST in complex with S-hexyl Glutathione 3THK ; 1.7 ; Structure of SH3 chimera with a type II ligand linked to the chain C-terminal 3JV3 ; 2.4 ; Structure of SH3E-DH unit of murine intersectin-1L 7SIP ; 3.0 ; Structure of shaker-IR 7SJ1 ; 2.9 ; Structure of shaker-W434F 4LL7 ; 2.31 ; Structure of She3p amino terminus. 6Y63 ; 1.651 ; Structure of Sheep Polyomavirus VP1 in complex with 3'-Sialyllactosamine 6Y64 ; 1.6 ; Structure of Sheep Polyomavirus VP1 in complex with 6'-Sialyllactosamine 2OAW ; 1.9 ; Structure of SHH variant of ""Bergerac"" chimera of spectrin SH3 6X6H ; 1.88 ; Structure of Shiga toxin 2 with a C-terminal peptide of ribosomal P stalk proteins 3MXG ; 2.49 ; Structure of Shiga Toxin type 2 (Stx2) B Pentamer Mutant Q40L 5B0N ; 1.8 ; Structure of Shigella effector LRR domain 5B0T ; 2.0 ; Structure of Shigella effector LRR domain 4BVU ; 2.7 ; Structure of Shigella effector OspG in complex with host UbcH5c- Ubiquitin conjugate 1NPY ; 1.75 ; Structure of shikimate 5-dehydrogenase-like protein HI0607 2DFT ; 2.8 ; Structure of shikimate kinase from Mycobacterium tuberculosis complexed with ADP and Mg at 2.8 angstrons of resolution 2DFN ; 1.93 ; Structure of shikimate kinase from Mycobacterium tuberculosis complexed with ADP and shikimate at 1.9 angstrons of resolution 7BYI ; 2.76 ; Structure of SHMT2 in complex with CBX 8AVJ ; 2.1 ; Structure of short apo agroavidin with the Hoef tail. 8AVP ; 2.87 ; Structure of short biotin complexed agroavidin with the Hoef tail. 3TL0 ; 2.05 ; Structure of SHP2 N-SH2 domain in complex with RLNpYAQLWHR peptide 3ZUZ ; 1.5 ; Structure of Shq1p C-terminal domain 1SHV ; 1.98 ; STRUCTURE OF SHV-1 BETA-LACTAMASE 4JPM ; 1.14 ; Structure of SHV-1 beta-lactamase in complex with the 7-alkylidenecephalosporin DCM-1-10 at 1.14 Ang resolution 1VM1 ; 2.02 ; STRUCTURE OF SHV-1 BETA-LACTAMASE INHIBITED BY TAZOBACTAM 3T2X ; 1.15 ; Structure of shwanavidin low affinity mutant (F43A) 2V4C ; 1.7 ; Structure of sialic acid binding protein (SiaP) in the presence of KDN 4MMP ; 1.57 ; Structure of Sialic Acid Binding Protein from Pasturella Multocida 6MFL ; 1.9 ; Structure of siderophore binding protein BauB bound to a complex between two molecules of acinetobactin and ferric iron. 6TEK ; 1.8 ; Structure of siderophore interaction domain of IrtAB 7XLZ ; 1.19 ; Structure of siderophore-interacting protein from Vibrio anguillarum 7PQE ; 3.7 ; Structure of SidJ/CaM bound to SdeA in post-catalysis state 7PPO ; 2.91 ; Structure of SidJ/CaM bound to SdeA in pre-glutamylation state 5UI8 ; 3.76 ; structure of sigmaN-holoenzyme 4C9F ; 2.6 ; Structure of SIGN-R1 in complex with Sulfodextran 4KWB ; 2.39 ; Structure of signal peptide peptidase A with C-termini bound in the active sites: insights into specificity, self-processing and regulation 2GO5 ; 7.4 ; Structure of signal recognition particle receptor (SR) in complex with signal recognition particle (SRP) and ribosome nascent chain complex 1EHC ; 2.26 ; STRUCTURE OF SIGNAL TRANSDUCTION PROTEIN CHEY 1NLO ; ; STRUCTURE OF SIGNAL TRANSDUCTION PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 1NLP ; ; STRUCTURE OF SIGNAL TRANSDUCTION PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 8G04 ; 3.4 ; Structure of signaling thrombopoietin-MPL receptor complex 6BEK ; 1.7 ; Structure of sIHF bound to an 8bp palindromic DNA 6LBN ; 2.899 ; Structure of SIL1-bound FEM1C 6LEY ; 2.39 ; Structure of Sil1G bound FEM1C 3JCB ; ; Structure of Simian Immunodeficiency Virus Envelope Spikes bound with CD4 and Monoclonal Antibody 36D5 3JCC ; ; Structure of Simian Immunodeficiency Virus Envelope Spikes bound with CD4 and Monoclonal Antibody 36D5 5E06 ; 3.001 ; Structure of Sin Nombre virus nucleoprotein in long-axis crystal form 5E05 ; 2.3 ; Structure of Sin Nombre virus nucleoprotein in shot-axis crystal form 5VYF ; 2.9 ; Structure of single chain Fel d 1 bound to a neutralizing antibody 6KMY ; ; Structure of single disulfide peptide Czon1107-P5A 6KNO ; ; Structure of single disulfide peptide Czon1107-P7A (minor conformer) 6KNP ; ; Structure of single disulfide peptide Czon1107-P7A(major conformer) 6KN2 ; ; Structure of single disulfide peptide Czon1107-WT (major conformer) 6KN3 ; ; Structure of single disulfide peptide Czon1107-WT (minor conformer) 6FYS ; 2.0 ; Structure of single domain antibody SD83 8EFV ; 2.97 ; Structure of single homo-hexameric Holliday junction ATP-dependent DNA helicase RuvB motor 1KAW ; 2.9 ; STRUCTURE OF SINGLE STRANDED DNA BINDING PROTEIN (SSB) 1SE8 ; 1.8 ; Structure of single-stranded DNA-binding protein (SSB) from D. radiodurans 6LP5 ; 1.98 ; Structure of Sinonovacula constricta ferritin 3PDH ; 1.8 ; Structure of Sir2Tm bound to a propionylated peptide 6OWT ; 3.8 ; Structure of SIVsmm Nef and SMM tetherin bound to the clathrin adaptor AP-2 complex 6E3B ; 2.5 ; STRUCTURE OF Siw14 CATALYTIC CORE 5XGP ; 2.077 ; structure of Sizzled from Xenopus laevis at 2.08 angstroms resolution 1SQ9 ; 1.9 ; Structure of Ski8p, a WD repeat protein involved in mRNA degradation and meiotic recombination 1JTW ; ; Structure of SL4 RNA from the HIV-1 Packaging Signal 8C02 ; 4.09 ; Structure of SLC40/ferroportin in complex with synthetic nanobody Sy3 in occluded conformation 8C03 ; 3.89 ; Structure of SLC40/ferroportin in complex with vamifeport and synthetic nanobody Sy12 in outward-facing conformation 8BZY ; 3.24 ; Structure of SLC40/ferroportin in complex with vamifeport and synthetic nanobody Sy3 in occluded conformation 1T3I ; 1.8 ; Structure of slr0077/SufS, the Essential Cysteine Desulfurase from Synechocystis PCC 6803 4ODR ; 1.929 ; Structure of SlyD delta-IF from Thermus thermophilus in complex with FK506 4ODP ; 1.747 ; Structure of SlyD delta-IF from Thermus thermophilus in complex with S2-W23A peptide 4ODQ ; 2.0 ; Structure of SlyD delta-IF from Thermus thermophilus in complex with S3 peptide 4ODO ; 1.599 ; Structure of SlyD from Thermus thermophilus in complex with FK506 4ODL ; 2.916 ; Structure of SlyD from Thermus thermophilus in complex with S2 peptide 4ODN ; 1.598 ; Structure of SlyD from Thermus thermophilus in complex with S2-plus peptide 4ODM ; 1.75 ; Structure of SlyD from Thermus thermophilus in complex with S2-W23A peptide 4ODK ; 1.401 ; Structure of SlyD from Thermus thermophilus in complex with T1 peptide 3EFG ; 2.0 ; Structure of SlyX protein from Xanthomonas campestris pv. campestris str. ATCC 33913 1XTQ ; 2.0 ; Structure of small GTPase human Rheb in complex with GDP 1XTR ; 2.65 ; Structure of small GTPase human Rheb in complex with GppNHp 1XTS ; 2.8 ; Structure of small GTPase human Rheb in complex with GTP 7A4P ; 4.2 ; Structure of small high-light grown Chlorella ohadii photosystem I 2FCJ ; 1.3 ; Structure of small TOPRIM domain protein from Bacillus stearothermophilus. 2I5R ; 1.65 ; Structure of small Toprim domain-containing protein from B. stearothermophilus in complex with Mg2+ 2VD4 ; 1.9 ; Structure of small-molecule inhibitor of Glmu from Haemophilus influenzae reveals an allosteric binding site 7EL6 ; 2.802 ; Structure of SMCR8 bound FEM1B 2W53 ; 2.0 ; Structure of SmeT, the repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. 6L53 ; 3.63 ; Structure of SMG1 6Z3R ; 2.97 ; Structure of SMG1-8-9 kinase complex bound to UPF1-LSQ 6L54 ; 3.43 ; Structure of SMG189 4OD6 ; 1.199 ; Structure of Smr domain of MutS2 from Deinococcus radiodurans, Mn2+ soaked 2M7Z ; ; Structure of SmTSP2EC2 6OUX ; 1.94 ; Structure of SMUL_1544, a decarboxylase from Sulfurospirillum multivorans 3TG5 ; 2.3 ; Structure of SMYD2 in complex with p53 and SAH 3TG4 ; 2.0 ; Structure of SMYD2 in complex with SAM 7ZX7 ; 3.4 ; Structure of SNAPc containing Pol II pre-initiation complex bound to U1 snRNA promoter (CC) 7ZX8 ; 3.0 ; Structure of SNAPc containing Pol II pre-initiation complex bound to U1 snRNA promoter (OC) 7ZXE ; 3.5 ; Structure of SNAPc containing Pol II pre-initiation complex bound to U1 snRNA promoter (OC) 7ZWD ; 3.0 ; Structure of SNAPc containing Pol II pre-initiation complex bound to U5 snRNA promoter (CC) 7ZWC ; 3.2 ; Structure of SNAPc:TBP-TFIIA-TFIIB sub-complex bound to U5 snRNA promoter 7V1L ; 2.849 ; Structure of sNASP core in complex with H3 alpha3 helix peptide 6IY3 ; 3.67 ; Structure of Snf2-MMTV-A nucleosome complex at shl-2 in ADP state 6IY2 ; 3.47 ; Structure of Snf2-MMTV-A nucleosome complex at shl2 in ADP state 5Z3V ; 4.22 ; Structure of Snf2-nucleosome complex at shl-2 in ADP BeFx state 5Z3U ; 4.31 ; Structure of Snf2-nucleosome complex at shl2 in ADP BeFx state 5Z3O ; 3.62 ; Structure of Snf2-nucleosome complex in ADP state 5Z3L ; 4.31 ; Structure of Snf2-nucleosome complex in apo state 5BO4 ; 2.9 ; Structure of SOCS2:Elongin C:Elongin B from DMSO-treated crystals 3V5U ; 1.9 ; Structure of Sodium/Calcium Exchanger from Methanocaldococcus jannaschii DSM 2661 3V5S ; 3.5 ; Structure of Sodium/Calcium Exchanger from Methanococcus jannaschii 4Y2V ; 2.4 ; Structure of soluble epoxide hydrolase in complex with (4-bromo-3-cyclopropyl-1H-pyrazol-1-yl)acetic acid 4Y2S ; 2.3 ; Structure of soluble epoxide hydrolase in complex with 1-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-ol 4Y2Q ; 2.4 ; Structure of soluble epoxide hydrolase in complex with 1-[3-(trifluoromethyl)pyridin-2-yl]piperazine 4Y2Y ; 2.3 ; Structure of soluble epoxide hydrolase in complex with 2-(2-fluorophenyl)-N-[(5-methyl-2-thienyl)methyl]ethanamine 4Y2R ; 2.45 ; Structure of soluble epoxide hydrolase in complex with 2-(piperazin-1-yl)nicotinonitrile 4Y2X ; 2.5 ; Structure of soluble epoxide hydrolase in complex with 2-({[2-(adamantan-1-yl)ethyl]amino}methyl)phenol 4Y2T ; 2.4 ; Structure of soluble epoxide hydrolase in complex with 3-[4-(benzyloxy)phenyl]propan-1-ol 4Y2P ; 2.05 ; Structure of soluble epoxide hydrolase in complex with N-methyl-1-[3-(pyridin-3-yl)phenyl]methanamine 4Y2J ; 2.15 ; Structure of soluble epoxide hydrolase in complex with N-[(1-methyl-1H-pyrazol-3-yl)methyl]-2-phenylethanamine 4Y2U ; 2.75 ; Structure of soluble epoxide hydrolase in complex with tert-butyl 1,2,3,4-tetrahydroquinolin-3-ylcarbamate 7A26 ; 2.98 ; Structure of soluble SmhA crystal form 1 of the tripartite alpha-pore forming toxin, Smh, from Serratia marcescens. 7A27 ; 2.57 ; Structure of soluble SmhA crystal form 2 of the tripartite alpha-pore forming toxin, Smh, from Serratia marcescens. 6ZZH ; 1.86 ; Structure of soluble SmhB crystal form 2 of the tripartite alpha-pore forming toxin, Smh, from Serratia marcescens. 6ZZ5 ; 1.84 ; Structure of soluble SmhB of the tripartite alpha-pore forming toxin, Smh, from Serratia marcescens. 7XAV ; 2.87 ; Structure of somatostatin receptor 2 bound with lanreotide. 7XAU ; 2.97 ; Structure of somatostatin receptor 2 bound with octreotide. 7XAT ; 2.85 ; Structure of somatostatin receptor 2 bound with SST14. 3MKW ; 2.99 ; Structure of sopB(155-272)-18mer complex, I23 form 3MKZ ; 2.98 ; Structure of SopB(155-272)-18mer complex, P21 form 3MKY ; 2.86 ; Structure of SopB(155-323)-18mer DNA complex, I23 form 6PEI ; 2.1 ; Structure of sorbitol dehydrogenase from Sinorhizobium meliloti 1021 6PEJ ; 2.0 ; Structure of sorbitol dehydrogenase from Sinorhizobium meliloti 1021 bound to sorbitol 5AOG ; 1.27 ; Structure of Sorghum peroxidase 1IJA ; ; Structure of Sortase 4O8T ; 2.48 ; Structure of sortase A C207A mutant from Streptococcus pneumoniae 4O8L ; 2.7 ; Structure of sortase A from Streptococcus pneumoniae 7S53 ; 1.6 ; Structure of Sortase A from Streptococcus pyogenes with the b7-b8 loop sequence from Listeria monocytogenes Sortase A 7S57 ; 1.7 ; Structure of Sortase A from Streptococcus pyogenes with the b7-b8 loop sequence of Enterococcus faecalis Sortase A 5GO5 ; 1.65 ; Structure of sortase E from Streptomyces avermitilis 5GO6 ; 1.7 ; Structure of sortase E T196V mutant from Streptomyces avermitilis 6SG8 ; 2.5 ; Structure of Sosuga virus receptor binding protein 3F27 ; 2.75 ; Structure of Sox17 Bound to DNA 4Y60 ; 1.75 ; Structure of SOX18-HMG/PROX1-DNA 8EFN ; 1.73 ; Structure of Sp-STING3 from Stylophora pistillata coral in complex with 3',3'-cGAMP 1QVN ; 2.7 ; Structure of SP4160 Bound to IL-2 V69A 7U1Y ; 1.81 ; Structure of SPAC806.04c protein from fission yeast bound to AlF4 and Co2+ 7T7K ; 1.9 ; Structure of SPAC806.04c protein from fission yeast bound to Co2+ 7T7O ; 2.16 ; Structure of SPAC806.04c protein from fission yeast covalently bound to BeF3 7U1V ; 2.1 ; Structure of SPAC806.04c protein from fission yeast covalently bound to BeF3 7U1X ; 2.12 ; Structure of SPAC806.04c protein from fission yeast covalently bound to BeF3 5ZW6 ; 2.05 ; Structure of spAimR 6P10 ; 2.301 ; Structure of spastin AAA domain (N527C mutant) in complex with JNJ-7706621 inhibitor 6P13 ; 2.1 ; Structure of spastin AAA domain (T692A mutant) in complex with a diaminotriazole-based inhibitor (crystal form A) 6P14 ; 1.93001 ; Structure of spastin AAA domain (T692A mutant) in complex with a diaminotriazole-based inhibitor (crystal form B) 6P11 ; 2.15 ; Structure of spastin AAA domain (T692A mutant) in complex with JNJ-7706621 inhibitor 6P12 ; 1.94132 ; Structure of spastin AAA domain (wild-type) in complex with diaminotriazole-based inhibitor 6NYV ; 2.425 ; Structure of spastin AAA domain in complex with a quinazoline-based inhibitor 6NYW ; 2.189 ; Structure of spastin AAA domain N527C mutant in complex with 8-fluoroquinazoline-based inhibitor 6PEK ; 4.2 ; Structure of Spastin Hexamer (Subunit A-E) in complex with substrate peptide 6PEN ; 4.2 ; Structure of Spastin Hexamer (whole model) in complex with substrate peptide 5LJM ; 1.454 ; Structure of SPATA2 PUB domain 7T7N ; 2.0 ; Structure of SPCC1393.13 protein from fission yeast 5KAY ; 1.8 ; Structure of Spelter bound to Zn2+ 5XKV ; 1.4 ; structure of sperm whale myoglobin F138W 6LPW ; 2.401 ; Structure of Spermidine disinapoyl transferases(SDT) from Arabidopsis thaliana 6LPV ; 2.297 ; structure of Spermidine hydroxycinnamoyl transferases from Arabidopsis thaliana 5UG4 ; 2.15 ; Structure of spermidine N-acetyltransferase SpeG from Vibrio cholerae 6HIP ; 1.2 ; Structure of SPF45 UHM bound to HIV-1 Rev ULM 6G7G ; ; Structure of SPH (Self-Incompatibility Protein Homologue) proteins, a widespread family of small, highly stable, secreted proteins from plants 1F2E ; 2.3 ; STRUCTURE OF SPHINGOMONAD, GLUTATHIONE S-TRANSFERASE COMPLEXED WITH GLUTATHIONE 6CYW ; 1.95 ; Structure of sphingomyelin in complex with mouse CD1d 8CMX ; 3.46 ; Structure of sphingosine-1-phosphate lyase (SPL) from Aspergillus fumigatus 2N6O ; ; Structure of spider-venom peptide Hm1a 2IGC ; 1.4 ; Structure of Spin labeled T4 Lysozyme Mutant T115R1A 2Q9D ; 1.4 ; Structure of spin-labeled T4 lysozyme mutant A41R1 2NTH ; 1.8 ; Structure of Spin-labeled T4 Lysozyme Mutant L118R1 2Q9E ; 2.1 ; Structure of spin-labeled T4 lysozyme mutant S44R1 2OU8 ; 1.8 ; Structure of Spin-labeled T4 Lysozyme Mutant T115R1 at Room Temperature 2OU9 ; 1.55 ; Structure of Spin-labeled T4 Lysozyme Mutant T115R1/R119A 2NTG ; 1.4 ; Structure of Spin-labeled T4 Lysozyme Mutant T115R7 5LWO ; 1.183 ; Structure of Spin-labelled T4 lysozyme mutant L115C-R119C-R1 at 100K 5NX0 ; 1.803 ; Structure of Spin-labelled T4 lysozyme mutant L115C-R119C-R1 at room temperature 5JDT ; 1.0 ; Structure of Spin-labelled T4 lysozyme mutant L118C-R1 at 100K 5G27 ; 1.61 ; Structure of Spin-labelled T4 lysozyme mutant L118C-R1 at Room Temperature 2AKJ ; 2.8 ; Structure of spinach nitrite reductase 1U4C ; 2.35 ; Structure of spindle checkpoint protein Bub3 3L10 ; 2.8 ; Structure of split monoubiquitinated PCNA with ubiquitin in position one 3L0W ; 2.8 ; Structure of split monoubiquitinated PCNA with ubiquitin in position two 3L0X ; 3.0 ; Structure of split yeast PCNA 8SME ; 2.36 ; Structure of SPO1 phage Tad2 in apo state 8SMG ; 2.1 ; Structure of SPO1 phage Tad2 in complex with 1''-2' gcADPR 8SMF ; 1.75 ; Structure of SPO1 phage Tad2 in complex with 1''-3' gcADPR 7AC6 ; 3.0 ; Structure of sponge-phase grown PepTst2 collected by rotation serial crystallography on a COC membrane at a synchrotron source 7KLZ ; 3.4 ; Structure of SPOP MATH domain in complex with a Geminin peptide 2WNK ; 1.55 ; Structure of SporoSAG from Toxoplasma gondii 5XJ2 ; 2.84 ; Structure of spRlmCD with U747 RNA 5IIT ; 2.134 ; Structure of SPX domain of the yeast inorganic polyphophate polymerase Vtc4 crystallized by carrier-driven crystallization in fusion with the macro domain of human histone macroH2A1.1 5LNC ; 3.29 ; Structure of SPX domain of the yeast inorganic polyphophate polymerase Vtc4 crystallized by carrier-driven crystallization in fusion with the macro domain of human histone macroH2A1.1 7LQY ; 3.19 ; Structure of squirrel TRPV1 in apo state 7LR0 ; 3.81 ; Structure of squirrel TRPV1 in complex with capsaicin 7LQZ ; 3.41 ; Structure of squirrel TRPV1 in complex with RTX 4IL6 ; 2.1 ; Structure of Sr-substituted photosystem II 2M8D ; ; Structure of SRSF1 RRM2 in complex with the RNA 5'-UGAAGGAC-3' 7YM1 ; 2.36 ; Structure of SsbA protein in complex with the anticancer drug 5-fluorouracil 2I8E ; 1.59 ; Structure of SSO1404, a predicted DNA repair-associated protein from Sulfolobus solfataricus P2 7MPD ; 1.05 ; Structure of SsoPTP bound to 2-chloroethylsulfonate 7MPC ; 1.75 ; Structure of SsoPTP bound to vanadate 1ROW ; 2.0 ; Structure of SSP-19, an MSP-domain protein like family member in Caenorhabditis elegans 1OU9 ; 1.8 ; Structure of SspB, a AAA+ protease delivery protein 7DRR ; 3.48 ; Structure of SspE-R100A protein 7DRS ; 3.42 ; Structure of SspE_40224 7DRI ; 2.72 ; Structure of SspE_CTD_41658 2ONW ; 1.51 ; Structure of SSTSSA, a fibril forming peptide from Bovine Pancreatic Ribonuclease (RNase A, residues 15-20) 2EKL ; 1.77 ; Structure of ST1218 protein from Sulfolobus tokodaii 2EKM ; 2.06 ; Structure of ST1219 protein from Sulfolobus tokodaii 5XNL ; 2.7 ; Structure of stacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum 2M18 ; ; Structure of stacked G-quadruplex formed by human TERRA sequence in potassium solution 2MVJ ; ; Structure of Stage V sporulation protein M (SpoVM) P9A mutant 4WK3 ; 2.6 ; Structure of Staphyloccus aureus PstA 4RGO ; 1.8 ; Structure of Staphylococcal Enterotoxin B bound to the neutralizing antibody 14G8 4RGM ; 2.689 ; Structure of Staphylococcal Enterotoxin B bound to the neutralizing antibody 20B1 4RGN ; 2.698 ; Structure of Staphylococcal Enterotoxin B bound to two neutralizing antibodies, 14G8 and 6D3 1CK1 ; 2.6 ; STRUCTURE OF STAPHYLOCOCCAL ENTEROTOXIN C3 6KRY ; 1.8 ; Structure of staphylococcal enterotoxin SEN 4HA8 ; 2.65 ; Structure of Staphylococcus aureus biotin protein ligase in complex with biotin acetylene 4DQ2 ; 2.5 ; Structure of staphylococcus aureus biotin protein ligase in complex with biotinol-5'-amp 8R04 ; 2.1 ; Structure of Staphylococcus aureus ClpP Bound to the Covalent Active Site Inhibitor Cystargolide A 2JGV ; 2.0 ; STRUCTURE OF Staphylococcus aureus D-TAGATOSE-6-PHOSPHATE KINASE in complex with ADP 2JG1 ; 2.0 ; STRUCTURE OF Staphylococcus aureus D-TAGATOSE-6-PHOSPHATE KINASE with cofactor and substrate 3QSU ; 2.2 ; Structure of Staphylococcus aureus Hfq in complex with A7 RNA 7O4M ; 1.3 ; Structure of Staphylococcus aureus m1A22-tRNA methyltransferase 7O4O ; 1.52 ; Structure of Staphylococcus aureus m1A22-tRNA methyltransferase in complex with S-adenosylhomocysteine 7O4N ; 1.4 ; Structure of Staphylococcus aureus m1A22-tRNA methyltransferase in complex with S-adenosylmethionine 4K3V ; 2.2 ; Structure of Staphylococcus aureus MntC 6VJP ; 1.711 ; Structure of Staphylococcus aureus peptidoglycan O-acetyltransferase A (OatA) C-terminal catalytic domain 6WN9 ; 1.55 ; Structure of Staphylococcus aureus peptidoglycan O-acetyltransferase A (OatA) C-terminal catalytic domain, Zn-bound 6D1R ; 1.995 ; Structure of Staphylococcus aureus RNase P protein at 2.0 angstrom 6OV1 ; 1.66 ; Structure of Staphylococcus aureus RNase P protein mutant with defective mRNA degradation activity 1NYQ ; 3.2 ; Structure of Staphylococcus aureus threonyl-tRNA synthetase complexed with an analogue of threonyl adenylate 1NYR ; 2.8 ; Structure of Staphylococcus aureus threonyl-tRNA synthetase complexed with ATP 7PIJ ; 3.78 ; Structure of Staphylococcus capitis divalent metal ion transporter (DMT) by NabFab-fiducial assisted cryo-EM 4OXR ; 2.0 ; Structure of Staphylococcus pseudintermedius metal-binding protein SitA in complex with Manganese 4OXQ ; 2.62 ; Structure of Staphylococcus pseudintermedius metal-binding protein SitA in complex with Zinc 8BXT ; 1.6 ; Structure of StayGold 7TAI ; 3.2 ; Structure of STEAP2 in complex with ligands 1EXZ ; 2.3 ; STRUCTURE OF STEM CELL FACTOR 6WIG ; 2.1 ; Structure of STENOFOLIA Protein HD domain bound with DNA 8J9F ; 2.85 ; Structure of STG-hydrolyzing beta-glucosidase 1 (PSTG1) 8IK3 ; 3.3 ; Structure of Stimulator of interferon genes/ligand complex 8GSZ ; 3.65 ; Structure of STING SAVI-related mutant V147L 6WT9 ; 2.3 ; Structure of STING-associated CdnE c-di-GMP synthase from Capnocytophaga granulosa 2L2B ; ; Structure of StnII-Y111N, a mutant of the sea anemone actinoporin Sticholysin II 3GNI ; 2.35 ; Structure of STRAD and MO25 8PXG ; 1.8 ; Structure of Streptactin, solved at wavelength 2.75 A 8GOG ; 2.0 ; Structure of streptavidin mutant (S112Y-K121E) complexed with biotin-cyclopentadienyl-rhodium (III)(Cp*-Rh(III)) 3MP9 ; 1.2 ; Structure of Streptococcal protein G B1 domain at pH 3.0 1FNU ; 1.94 ; STRUCTURE OF STREPTOCOCCAL PYROGENIC EXOTOXIN A 1FNV ; 3.6 ; STRUCTURE OF STREPTOCOCCAL PYROGENIC EXOTOXIN A 1WPP ; 2.05 ; Structure of Streptococcus gordonii inorganic pyrophosphatase 3QKW ; 2.287 ; Structure of Streptococcus parasangunini Gtf3 glycosyltransferase 5KKY ; 2.393 ; Structure of Streptococcus pneumonia NanA bound with inhibitor 9N3Neu5Ac2en 4MBC ; 1.75 ; Structure of Streptococcus pneumonia ParE in complex with AZ13053807 4MOT ; 1.75 ; Structure of Streptococcus pneumonia pare in complex with AZ13072886 4MB9 ; 1.85 ; Structure of Streptococcus pneumonia ParE in complex with AZ13102335 2C1G ; 1.75 ; Structure of Streptococcus pneumoniae peptidoglycan deacetylase (SpPgdA) 2C1I ; 1.35 ; Structure of Streptococcus pneumoniae peptidoglycan deacetylase (SpPgdA) D 275 N Mutant. 5UFY ; 1.12 ; Structure of Streptococcus pneumoniae peptidoglycan O-acetyltransferase A (OatA) C-terminal catalytic domain 5UG1 ; 2.1 ; Structure of Streptococcus pneumoniae peptidoglycan O-acetyltransferase A (OatA) C-terminal catalytic domain with methylsulfonyl adduct 2DP5 ; 3.55 ; Structure of streptococcus pyogenes bacteriophage-associated hyaluronate lyase Hylp2 3DHO ; 1.8 ; Structure of Streptogramin Acetyltransferase in Complex with an Inhibitor 1GTZ ; 1.6 ; Structure of STREPTOMYCES COELICOLOR TYPE II DEHYDROQUINASE R23A MUTANT IN COMPLEX WITH DEHYDROSHIKIMATE 6AMK ; 3.288 ; Structure of Streptomyces venezuelae BldC-whiI opt complex 2JF7 ; 2.48 ; Structure of Strictosidine Glucosidase 4IMB ; 2.703 ; Structure of strictosidine synthase in complex with 2-(1-methyl-1H-indol-3-yl)ethanamine 4IYG ; 2.702 ; Structure of strictosidine synthase in complex with 2-(1H-INDOL-3-YL)-N-METHYLETHANAMINE 2VAQ ; 3.01 ; STRUCTURE OF STRICTOSIDINE SYNTHASE IN COMPLEX WITH INHIBITOR 2V91 ; 3.01 ; STRUCTURE OF STRICTOSIDINE SYNTHASE IN COMPLEX WITH STRICTOSIDINE 2FP8 ; 2.3 ; Structure of Strictosidine Synthase, the Biosynthetic Entry to the Monoterpenoid Indole Alkaloid Family 2FPB ; 2.8 ; Structure of Strictosidine Synthase, the Biosynthetic Entry to the Monoterpenoid Indole Alkaloid Family 2FPC ; 3.0 ; Structure of Strictosidine Synthase, the Biosynthetic Entry to the Monoterpenoid Indole Alkaloid Family 3MDK ; 1.85 ; Structure of stringent starvation protein A (sspA) from Pseudomonas putida 3LYK ; 2.1 ; Structure of stringent starvation protein A homolog from Haemophilus influenzae 3LYP ; 1.6 ; Structure of stringent starvation protein A homolog from Pseudomonas fluorescens 8U5M ; 2.46 ; Structure of Sts-1 HP domain with rebamipide 8U7E ; 2.63 ; Structure of Sts-1 HP domain with rebamipide derivative 7KDF ; 2.72 ; Structure of Stu2 Bound to dwarf Ndc80c 2XA5 ; 1.09 ; Structure of substrate binding protein SiaP (A11N) in complex with Neu5Ac 7Z11 ; 3.2 ; Structure of substrate bound DRG1 (AFG2) 4C9M ; 1.801 ; Structure of substrate free, glycerol bound wild type CYP101D1 5GZ1 ; 1.78 ; Structure of substrate/cofactor-free D-amino acid dehydrogenase 5FAX ; 2.0 ; Structure of subtilase SubHal from Bacillus halmapalus 5FBZ ; 1.9 ; Structure of subtilase SubHal from Bacillus halmapalus - complex with chymotrypsin inhibitor CI2A 1PXQ ; ; Structure of Subtilisin A 4KGB ; 2.64 ; Structure of succinyl-CoA: 3-ketoacid CoA transferase from Drosophila melanogaster 5M9X ; 2.349 ; Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to glycosylated resveratrol 6FME ; 1.51 ; Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to glycosylated resveratrol 5MAN ; 2.04 ; Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to nigerose 5MB2 ; 1.752 ; Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to nigerose 6NU7 ; 1.9 ; Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri 6NU8 ; 1.8 ; Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri in complex with fructose 4ZGH ; 2.9 ; Structure of Sugar Binding Protein Pneumolysin 2RQZ ; ; Structure of sugar modified epidermal growth factor-like repeat 12 of mouse Notch-1 receptor 2QFL ; 1.9 ; Structure of SuhB: Inositol monophosphatase and extragenic suppressor from E. coli 7DUT ; 2.1 ; Structure of Sulfolobus solfataricus SegA protein 7DWR ; 2.8 ; Structure of Sulfolobus solfataricus SegA-ADP complex bound to DNA 7DV3 ; 2.6 ; Structure of Sulfolobus solfataricus SegA-AMPPNP protein 7DUV ; 3.2 ; Structure of Sulfolobus solfataricus SegB protein 7DV2 ; 3.1 ; Structure of Sulfolobus solfataricus SegB-DNA complex 3F8D ; 1.4 ; Structure of Sulfolobus solfataricus Thioredoxin reductase Mutant C147A 3F8P ; 1.8 ; Structure of Sulfolobus solfataricus TrxR-B3 5ZTB ; 2.2 ; Structure of Sulfurtransferase 4DGH ; 1.9 ; Structure of SulP Transporter STAS Domain from Vibrio Cholerae Refined to 1.9 Angstrom Resolution 4DGF ; 1.6 ; Structure of SulP Transporter STAS Domain from Wolinella Succinogenes Refined to 1.6 Angstrom Resolution 2VRR ; 2.22 ; Structure of SUMO modified Ubc9 2N9E ; ; Structure of SUMO-2 bound to phosphorylated RAP80 SIM 6XOI ; 2.0 ; Structure of SUMO1-ML00752641 adduct bound to SAE 6XOH ; 2.226 ; Structure of SUMO1-ML00789344 adduct bound to SAE 6XOG ; 1.98 ; Structure of SUMO1-ML786519 adduct bound to SAE 3PGE ; 2.8 ; Structure of sumoylated PCNA 7NXX ; 2.189 ; Structure of Superoxide Dismutase 1 (SOD1) in complex with nanobody 2 (Nb2). 1VZG ; 1.69 ; Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray induced photoreduction 1VZH ; 1.69 ; Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray induced photoreduction 1VZI ; 1.15 ; Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray induced photoreduction 7WIT ; 3.21 ; Structure of SUR1 in complex with mitiglinide 6JB3 ; 3.53 ; Structure of SUR1 subunit bound with repaglinide 7Y1J ; 3.0 ; Structure of SUR2A in complex with Mg-ATP and repaglinide in the inward-facing conformation. 7Y1K ; 3.8 ; Structure of SUR2A in complex with Mg-ATP, Mg-ADP and repaglinide in the inward-facing conformation 7VLU ; 3.3 ; Structure of SUR2A in complex with Mg-ATP/ADP and P1075 7Y1L ; 3.73 ; Structure of SUR2B in complex with Mg-ATP and repaglinide in the inward-facing conformation 7Y1M ; 3.57 ; Structure of SUR2B in complex with Mg-ATP, Mg-ADP, and repaglinide in the inward-facing conformation 7Y1N ; 3.61 ; Structure of SUR2B in complex with Mg-ATP, Mg-ADP, and repaglinide in the partially occluded state 7VLR ; 3.4 ; Structure of SUR2B in complex with Mg-ATP/ADP 7VLT ; 3.1 ; Structure of SUR2B in complex with Mg-ATP/ADP and levcromakalim 7VLS ; 3.3 ; Structure of SUR2B in complex with MgATP/ADP and P1075 4UJ6 ; 3.4 ; Structure of surface layer protein SbsC, domains 1-6 5FTX ; 4.1 ; Structure of surface layer protein SbsC, domains 4-9 4UJ8 ; 1.7 ; Structure of surface layer protein SbsC, domains 6-7 5FTY ; 2.6 ; Structure of surface layer protein SbsC, domains 6-7 (monoclinic form) 3BVD ; 3.37 ; Structure of Surface-engineered Cytochrome ba3 Oxidase from Thermus thermophilus under Xenon Pressure, 100psi 5min 2VSQ ; 2.6 ; Structure of surfactin A synthetase C (SrfA-C), a nonribosomal peptide synthetase termination module 7BLL ; 1.76 ; Structure of SusD homologue BT3013 from Bacteroides thetaiotaomicron 4FEM ; 2.5 ; Structure of SusE with alpha-cyclodextrin 1SVO ; 2.6 ; Structure of SV40 large T antigen helicase domain 2LS1 ; ; Structure of Sviceucin, an antibacterial type I lasso peptide from Streptomyces sviceus 6TDA ; 15.0 ; Structure of SWI/SNF chromatin remodeler RSC bound to a nucleosome 7C8W ; 2.77 ; Structure of sybody MR17 in complex with the SARS-CoV-2 S receptor-binding domain (RBD) 7CAN ; 2.94 ; Structure of sybody MR17-K99Y in complex with the SARS-CoV-2 S Receptor-binding domain (RBD) 7D30 ; 2.1 ; Structure of sybody MR17-SR31 fusion in complex with the SARS-CoV-2 S Receptor Binding domain (RBD) 7D2Z ; 1.97 ; Structure of sybody SR31 in complex with the SARS-CoV-2 S Receptor Binding domain (RBD) 7C8V ; 2.15 ; Structure of sybody SR4 in complex with the SARS-CoV-2 S Receptor Binding domain (RBD) 2GQ8 ; 1.7 ; Structure of SYE1, an OYE homologue from S. ondeidensis, in complex with p-hydroxyacetophenone 2GQ9 ; 1.7 ; Structure of SYE1, an OYE homologue from S. oneidensis, in complex with p-hydroxybenzaldehyde 4FX7 ; 2.076 ; Structure of Sym2 D9V+D55V+D130V+D176V 4V11 ; 1.95 ; Structure of Synaptotagmin-1 with SV2A peptide phosphorylated at Thr84 4OX7 ; 2.1001 ; Structure of Synechococcus elongatus PCC 7942 CcmK2 4OX6 ; 1.3367 ; Structure of Synechococcus elongatus PCC 7942 CcmK4 8BCM ; 2.15 ; Structure of Synechococcus elongatus PCC 7942 Rubisco recombinantly expressed from E.coli 5Y2W ; 2.2 ; Structure of Synechocystis PCC6803 CcmR regulatory domain in complex with 2-PG 5OY0 ; 2.501 ; Structure of synechocystis photosystem I trimer at 2.5A resolution 1M25 ; ; STRUCTURE OF SYNTHETIC 26-MER PEPTIDE CONTAINING 145-169 SHEEP PRION PROTEIN SEGMENT AND C-TERMINAL CYSTEINE IN TFE SOLUTION 6OS0 ; 2.9 ; Structure of synthetic nanobody-stabilized angiotensin II type 1 receptor bound to angiotensin II 6OS1 ; 2.794 ; Structure of synthetic nanobody-stabilized angiotensin II type 1 receptor bound to TRV023 6OS2 ; 2.7 ; Structure of synthetic nanobody-stabilized angiotensin II type 1 receptor bound to TRV026 3Q0H ; 1.7 ; Structure of T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) 3RQ3 ; 2.7 ; Structure of T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) in hexagonal crystal form 1CDJ ; 2.5 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4 1CDY ; 2.0 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4 MUTANT WITH GLY 47 REPLACED BY SER 1CDU ; 2.7 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4 MUTANT WITH PHE 43 REPLACED BY VAL 1WIP ; 4.0 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4, MONOCLINIC CRYSTAL FORM 1WIO ; 3.9 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4, TETRAGONAL CRYSTAL FORM 1WIQ ; 5.0 ; STRUCTURE OF T-CELL SURFACE GLYCOPROTEIN CD4, TRIGONAL CRYSTAL FORM 5HI8 ; 1.8 ; Structure of T-type Phycobiliprotein Lyase CpeT from Prochlorococcus phage P-HM1 7NF2 ; 1.33 ; Structure of T. atroviride Fdc variant TaFdcV in complex with prFMN crotonic acid adduct 7NEY ; 1.74 ; Structure of T. atroviride Fdc wild-type (TaFdc) in complex with prFMN 7NF1 ; 1.77 ; Structure of T. atroviride variant TaFdcV in complex with prFMN-butynoic acid adduct 4WJG ; 3.1 ; Structure of T. brucei haptoglobin-hemoglobin receptor binding to human haptoglobin-hemoglobin 6NL1 ; 2.297 ; Structure of T. brucei MERS1 protein in its apo form 6P5R ; 2.45 ; Structure of T. brucei MERS1-GDP complex 6U9X ; 2.6 ; Structure of T. brucei MERS1-RNA complex 8DPK ; 1.94 ; structure of T. brucei RESC5 6MD3 ; 2.29 ; Structure of T. brucei RRP44 PIN domain 1LIK ; 2.55 ; STRUCTURE OF T. GONDII ADENOSINE KINASE BOUND TO ADENOSINE 1LII ; 1.73 ; STRUCTURE OF T. GONDII ADENOSINE KINASE BOUND TO ADENOSINE 2 AND AMP-PCP 1LIJ ; 1.86 ; STRUCTURE OF T. GONDII ADENOSINE KINASE BOUND TO PRODRUG 2 7-IODOTUBERCIDIN AND AMP-PCP 6D7A ; 1.13 ; Structure of T. gondii PLP1 beta-rich domain 1YAB ; 3.4 ; Structure of T. maritima FliN flagellar rotor protein 5E7K ; 3.2 ; Structure of T. thermophilus 70S ribosome complex with mRNA and cognate tRNALys in the A-site 5EL4 ; 3.15 ; Structure of T. thermophilus 70S ribosome complex with mRNA and tRNALys in the A-site with a U-U mismatch in the first position 5EL6 ; 3.1 ; Structure of T. thermophilus 70S ribosome complex with mRNA and tRNALys in the A-site with a U-U mismatch in the first position and antibiotic paromomycin 5EL5 ; 3.15 ; Structure of T. thermophilus 70S ribosome complex with mRNA and tRNALys in the A-site with a U-U mismatch in the second position 5EL7 ; 3.15 ; Structure of T. thermophilus 70S ribosome complex with mRNA and tRNALys in the A-site with a U-U mismatch in the second position and antibiotic paromomycin 5E81 ; 2.95 ; Structure of T. thermophilus 70S ribosome complex with mRNA and tRNALys in the A-site with wobble pair 6GSL ; 3.16 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet and cognate tRNAArg in the A-site 6GSJ ; 2.96 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet and cognate tRNAThr in the A-site 5IBB ; 2.96 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet and cognate tRNAVal in the A-site 5IB8 ; 3.13 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet and near-cognate tRNALys with U-G mismatch in the A-site 6GSK ; 3.36 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet and near-cognate tRNAThr in the A-site 5IB7 ; 2.99 ; Structure of T. thermophilus 70S ribosome complex with mRNA, tRNAfMet, near-cognate tRNALys with U-G mismatch in the A-site and antibiotic paromomycin 6SJC ; 2.23 ; Structure of T. thermophilus AspRS in Complex with 5'-O-(N-(L-aspartyl)-sulfamoyl)adenosine 6HHX ; 2.1 ; Structure of T. thermophilus AspRS in Complex with 5'-O-(N-(L-aspartyl)-sulfamoyl)cytidine 6HHV ; 2.18 ; Structure of T. thermophilus AspRS in Complex with 5'-O-(N-(L-aspartyl)-sulfamoyl)N3-methyluridine 6HHW ; 2.2 ; Structure of T. thermophilus AspRS in Complex with 5'-O-(N-(L-aspartyl)-sulfamoyl)uridine 3DH7 ; 2.97 ; Structure of T. thermophilus IDI-2 in complex with PPi 4PJ0 ; 2.437 ; Structure of T.elongatus Photosystem II, rows of dimers crystal packing 5UIZ ; 2.0 ; Structure of T.fusca AA10A 5AEM ; 3.4 ; Structure of t131 N-terminal TPR array 5ZCX ; 2.299 ; Structure of T20/N39 1EGD ; 2.4 ; STRUCTURE OF T255E, E376G MUTANT OF HUMAN MEDIUM CHAIN ACYL-COA DEHYDROGENASE 1EGE ; 2.75 ; STRUCTURE OF T255E, E376G MUTANT OF HUMAN MEDIUM CHAIN ACYL-COA DEHYDROGENASE 1EGC ; 2.6 ; STRUCTURE OF T255E, E376G MUTANT OF HUMAN MEDIUM CHAIN ACYL-COA DEHYDROGENASE COMPLEXED WITH OCTANOYL-COA 3U61 ; 3.2 ; Structure of T4 Bacteriophage Clamp Loader Bound To Closed Clamp, DNA and ATP Analog and ADP 3U60 ; 3.34 ; Structure of T4 Bacteriophage Clamp Loader Bound To Open Clamp, DNA and ATP Analog 3U5Z ; 3.5 ; Structure of T4 Bacteriophage clamp loader bound to the T4 clamp, primer-template DNA, and ATP analog 8UH7 ; 2.628 ; Structure of T4 Bacteriophage clamp loader bound to the T4 clamp, primer-template DNA, and ATP analog 8UK9 ; 3.1 ; Structure of T4 Bacteriophage clamp loader mutant D110C bound to the T4 clamp, primer-template DNA, and ATP analog 2HVS ; 2.5 ; Structure of T4 RNA Ligase 2 with Nicked 5'-Adenylated nucleic acid duplex containing a 2'-deoxyribonucleotide at the nick 2HVR ; 2.45 ; Structure of T4 RNA Ligase 2 with Nicked 5'-Adenylated nucleic acid duplex containing a 3'-deoxyribonucleotide at the nick 5UJ0 ; 2.3 ; Structure of T4Pnkp 3' phosphatase covalently bound to BeF3 7K5C ; 2.7 ; Structure of T7 DNA ejectosome periplasmic tunnel 6P7E ; 3.001 ; Structure of T7 DNA Polymerase Bound to a Primer/Template DNA and a Peptide that Mimics the C-terminal Tail of the Primase-Helicase 3J4B ; 12.0 ; Structure of T7 gatekeeper protein (gp11) 2LMC ; ; Structure of T7 transcription factor Gp2-E. coli RNAp jaw domain complex 1W08 ; 2.5 ; STRUCTURE OF T70N HUMAN LYSOZYME 4I24 ; 1.8 ; Structure of T790M EGFR kinase domain co-crystallized with dacomitinib 3V90 ; 2.0 ; Structure of T82M glycogenin mutant truncated at residue 270 3V91 ; 2.0 ; Structure of T82M glycogenin mutant truncated at residue 270 complexed with UDP-glucose 2QH1 ; 2.0 ; Structure of TA289, a CBS-rubredoxin-like protein, in its Fe+2-bound state 2J4O ; 2.25 ; Structure of TAB1 2W5V ; 1.78 ; Structure of TAB5 alkaline phosphatase mutant His 135 Asp with Mg bound in the M3 site. 2W5W ; 1.79 ; Structure of TAB5 alkaline phosphatase mutant His 135 Asp with Zn bound in the M3 site. 2W5X ; 1.99 ; Structure of TAB5 alkaline phosphatase mutant His 135 Glu with Mg bound in the M3 site. 6RS4 ; 1.3 ; Structure of tabersonine synthase - an alpha-beta hydrolase from Catharanthus roseus 7R2F ; 2.3 ; Structure of tabun inhibited acetylcholinesterase in complex with 2-((hydroxyimino)methyl)-1-(5-(4-methyl-3-nitrobenzamido)pentyl)pyridinium 5WXG ; 1.703 ; Structure of TAF PHD finger domain binds to H3(1-15)K4ac 2P6V ; 2.0 ; Structure of TAFH domain of the human TAF4 subunit of TFIID 1GVF ; 1.45 ; Structure of tagatose-1,6-bisphosphate aldolase 8W9V ; 2.9 ; structure of TaHKT2;1 in KCl at 2.9 Angstroms resolution 8W9T ; 2.6 ; Structure of TaHKT2;1 in NaCl at 2.6 Angstroms resolution 8FWM ; 3.49 ; Structure of tail-neck junction of Agrobacterium phage Milano 5Z4A ; 1.637 ; Structure of Tailor in complex with AGU RNA 5Z4D ; 1.803 ; Structure of Tailor in complex with AGUU RNA 5Z4J ; 1.82 ; Structure of Tailor in complex with U4 RNA 5Z4M ; 1.74 ; Structure of TailorD343A with bound UTP and Mg 1TYU ; 1.8 ; STRUCTURE OF TAILSPIKE-PROTEIN 1TYV ; 1.8 ; STRUCTURE OF TAILSPIKE-PROTEIN 1TYW ; 1.8 ; STRUCTURE OF TAILSPIKE-PROTEIN 7NTI ; 1.98 ; Structure of TAK1 in complex with compound 22 7NTH ; 1.97 ; Structure of TAK1 in complex with compound 54 3UGM ; 3.0 ; Structure of TAL effector PthXo1 bound to its DNA target 4EY0 ; 2.8 ; Structure of tandem SH2 domains from PLCgamma1 6S5Y ; 2.3 ; Structure of tandemly arrayed consecutive Rib domains (Rib2R) from Group B Streptococcal species Streptococcus agalactiae 4IM0 ; 2.4001 ; Structure of Tank-Binding Kinase 1 4IM2 ; 2.5001 ; Structure of Tank-Binding Kinase 1 4IM3 ; 3.342 ; Structure of Tank-Binding Kinase 1 8EHE ; 1.1 ; Structure of Tannerella forsythia potempin C in complex with mirolase 8EHD ; 1.8 ; Structure of Tannerella forsythia potempin E 8EHB ; 2.4 ; Structure of Tannerella forsythia selenomethionine-derivatized potempin D mutant I53M 8EHC ; 2.0 ; Structure of Tannerella forsythia selenomethionine-derivatized potempin E 1TAQ ; 2.4 ; STRUCTURE OF TAQ DNA POLYMERASE 1LVJ ; ; STRUCTURE OF TAR RNA COMPLEXED WITH A TAT-TAR INTERACTION NANOMOLAR INHIBITOR THAT WAS IDENTIFIED BY COMPUTATIONAL SCREENING 7NEQ ; 3.12 ; Structure of tariquidar-bound ABCG2 1PCZ ; 2.2 ; STRUCTURE OF TATA-BINDING PROTEIN 8CAQ ; 2.3 ; Structure of Tau filaments Type I from Subacute Sclerosing Panencephalitis 8CAX ; 3.7 ; Structure of Tau filaments Type II from Subacute Sclerosing Panencephalitis 4TQE ; 1.6 ; Structure of tau peptide in complex with Tau5 antibody Fab fragment 5NVB ; ; Structure of Tau(254-268) bound to F-actin 5N5A ; ; Structure of Tau(254-290) bound to F-actin 2MZ7 ; ; Structure of Tau(267-312) bound to Microtubules 5N5B ; ; Structure of Tau(292-319) bound to F-actin 4TPR ; 1.6 ; Structure of Tau5 antibody Fab fragment 8PXH ; 1.77 ; Structure of TauA from E. coli, solved at wavelength 2.375 A 7N16 ; 3.2 ; Structure of TAX-4_R421W apo closed state 7N17 ; 3.1 ; Structure of TAX-4_R421W apo open state 7N15 ; 2.9 ; Structure of TAX-4_R421W w/cGMP open state 5GN0 ; 2.9 ; Structure of TAZ-TEAD complex 5NNO ; 2.5 ; Structure of TbALDH3 complexed with NAD and AN3057 aldehyde 2JZK ; ; Structure of TbCVNH (T. BORCHII CVNH) 6UEQ ; 2.4 ; Structure of TBP bound to C-C mismatch containing TATA site 6NJQ ; 2.75 ; Structure of TBP-Hoogsteen containing DNA complex 1BYF ; 2.0 ; STRUCTURE OF TC14; A C-TYPE LECTIN FROM THE TUNICATE POLYANDROCARPA MISAKIENSIS 7U2P ; 2.596 ; Structure of TcdA GTD in complex with RhoA 1OQV ; 1.3 ; Structure of TcpA, the Type IV pilin subunit from the toxin co-regulated pilus of Vibrio cholerae classical biotype 8CG3 ; 2.39 ; Structure of TDP-43 amyloid filament from type A FTLD-TDP (variant 1) 8CGG ; 2.5 ; Structure of TDP-43 amyloid filament from type A FTLD-TDP (variant 2) 8CGH ; 2.68 ; Structure of TDP-43 amyloid filament from type A FTLD-TDP (variant 3) 6W7L ; 1.856 ; Structure of Tdp1 catalytic domain in complex with inhibitor XZ632p 6W4R ; 1.819 ; Structure of Tdp1 catalytic domain in complex with inhibitor XZ633p 6W7K ; 1.7 ; Structure of Tdp1 catalytic domain in complex with inhibitor XZ634p 6W7J ; 1.489 ; Structure of Tdp1 catalytic domain in complex with inhibitor XZ635p 8P5P ; 1.9 ; Structure of TECPR1 N-terminal DysF domain 5FSB ; 1.65 ; Structure of tectonin 2 from laccaria bicolor in complex with 2-o-methyl-methyl-seleno-beta-l-fucopyranoside 5FSC ; 1.95 ; Structure of tectonin 2 from Laccaria bicolor in complex with allyl- alpha_4-methyl-mannoside 5UKH ; 1.98 ; Structure of TelC from Streptococcus intermedius B196 6G3S ; 2.3 ; Structure of tellurium-centred Anderson-Evans polyoxotungstate (TEW) bound to the nucleotide binding domain of HSP70. Second structure of two TEW-HSP70 structures deposited. 6G3R ; 1.4 ; Structure of tellurium-centred Anderson-Evans polyoxotungstate (TEW) bound to the nucleotide binding domain of HSP70. Structure one of two TEW-HSP70 structures deposited. 6ZDQ ; 2.98 ; Structure of telomerase from Candida albicans in complexe with TWJ fragment of telomeric RNA 6ZDU ; 3.45 ; Structure of telomerase from Candida albicans in complexe with TWJ fragment of telomeric RNA 6ZDP ; 2.85 ; Structure of telomerase from Candida Tropicalis in complexe with TWJ fragment of telomeric RNA 8RQU ; 2.9 ; Structure of TEM1 beta-lactamase variant 70.a 1YAF ; 2.6 ; Structure of TenA from Bacillus subtilis 1JAE ; 1.65 ; STRUCTURE OF TENEBRIO MOLITOR LARVAL ALPHA-AMYLASE 1TMQ ; 2.5 ; STRUCTURE OF TENEBRIO MOLITOR LARVAL ALPHA-AMYLASE IN COMPLEX WITH RAGI BIFUNCTIONAL INHIBITOR 1YAD ; 2.1 ; Structure of TenI from Bacillus subtilis 4K9A ; 2.264 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pG(2 ,5 )pA 7V0R ; 2.51 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -ppcpG(2 ,5 )pA 4K99 ; 1.95 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppdG(2 ,5 )pdG 4K98 ; 1.94 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppG(2 ,5 )pG 7UYZ ; 2.49 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppG(2 ,5 )pG 7UZR ; 2.7 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppG(2 ,5 )pG 7V0C ; 2.57 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppG(2 ,5 )pG 7V0W ; 2.66 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5 -pppG(2,5 )pA 8EAE ; 2.56 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5-pppG(2,5)pI 8ECC ; 2.44 ; Structure of Ternary Complex of cGAS with dsDNA and Bound 5-pppI(2,5)pA 4K97 ; 2.41 ; Structure of Ternary Complex of cGAS with dsDNA and Bound ATP 4K9B ; 2.26 ; Structure of Ternary Complex of cGAS with dsDNA and Bound c[G(2 ,5 )pA(3 ,5 )p] 1FJX ; 2.26 ; STRUCTURE OF TERNARY COMPLEX OF HHAI METHYLTRANSFERASE MUTANT (T250G) IN COMPLEX WITH DNA AND ADOHCY 1CSC ; 1.7 ; Structure of ternary complexes of citrate synthase with D-and L-malate: Mechanistic implications 2CSC ; 1.7 ; Structure of ternary complexes of CITRATE SYNTHASE WITH D-AND L-MALATE: mechanistic implications 3CSC ; 1.9 ; STRUCTURE OF TERNARY COMPLEXES OF CITRATE SYNTHASE WITH D-AND L-MALATE: MECHANISTIC IMPLICATIONS 4CSC ; 1.9 ; STRUCTURE OF TERNARY COMPLEXES OF CITRATE SYNTHASE WITH D-AND L-MALATE: MECHANISTIC IMPLICATIONS 6E53 ; 2.8 ; Structure of TERT in complex with a novel telomerase inhibitor 2OC2 ; 2.25 ; Structure of testis ACE with RXPA380 3ZQF ; 2.56 ; Structure of Tetracycline repressor in complex with antiinducer peptide-TAP1 3ZQG ; 2.45 ; Structure of Tetracycline repressor in complex with antiinducer peptide-TAP2 3ZQI ; 1.5 ; Structure of Tetracycline repressor in complex with inducer peptide- TIP2 3ZQH ; 1.6 ; Structure of Tetracycline repressor in complex with inducer peptide- TIP3 8HR9 ; 3.03 ; Structure of tetradecameric RdrA ring 8HRB ; 3.78 ; Structure of tetradecameric RdrA ring in RNA-loading state 1F4J ; 2.4 ; STRUCTURE OF TETRAGONAL CRYSTALS OF HUMAN ERYTHROCYTE CATALASE 1IEE ; 0.94 ; STRUCTURE OF TETRAGONAL HEN EGG WHITE LYSOZYME AT 0.94 A FROM CRYSTALS GROWN BY THE COUNTER-DIFFUSION METHOD 6FRQ ; 1.69 ; Structure of tetragonal Hen Egg-White Lysozyme co-crystallized in presence of 100 mM Tb-Xo4 and 100 mM Potassium sodium tartrate tetrahydrate. 5DL9 ; 1.38 ; Structure of Tetragonal Lysozyme in complex with Iodine solved by UWO Students 5DLA ; 1.22 ; Structure of Tetragonal Lysozyme solved by UWO Students 3FSX ; 2.15 ; Structure of tetrahydrodipicolinate N-succinyltransferase (Rv1201c; DapD) from Mycobacterium tuberculosis 3FSY ; 1.97 ; Structure of tetrahydrodipicolinate N-succinyltransferase (Rv1201c;DapD) in complex with succinyl-CoA from Mycobacterium tuberculosis 5DFM ; 2.301 ; Structure of Tetrahymena telomerase p19 fused to MBP 5DFN ; 2.382 ; Structure of Tetrahymena Telomerase P45 C-terminal domain 8U4T ; 3.38 ; Structure of tetrameric CXCR4 in complex with REGN7663 Fab 5U1C ; 3.9 ; Structure of tetrameric HIV-1 Strand Transfer Complex Intasome 5JM1 ; 1.95 ; Structure of tetrameric jacalin complexed with a trisaccharide, Gal alpha-(1,3) Gal beta-(1,4) Gal 5J51 ; 1.67 ; Structure of tetrameric jacalin complexed with Gal alpha-(1,4) Gal 5J4X ; 1.65 ; Structure of tetrameric jacalin complexed with Gal beta-(1,3) Gal-beta-OMe 5J50 ; 2.05 ; Structure of tetrameric jacalin complexed with Gal beta-(1,3) GalNAc-alpha-OPNP 5J4T ; 1.94 ; Structure of tetrameric jacalin complexed with GlcNAc beta-(1,3) Gal-beta-OMe 5EGQ ; 2.5 ; Structure of tetrameric rat phenylalanine hydroxylase mutant R270K, residues 25-453 5FGJ ; 3.6 ; Structure of tetrameric rat phenylalanine hydroxylase, residues 1-453 6UE8 ; 3.0 ; Structure of tetrameric sIgA complex (Class 1) 6UE9 ; 2.9 ; Structure of tetrameric sIgA complex (Class 2) 8FFI ; 2.7 ; Structure of tetramerized MapSPARTA upon guide RNA-mediated target DNA binding 7KS6 ; ; STRUCTURE OF TETRASACCHARIDE BUILDING BLOCK OF A SULFATED FUCAN FROM LYTECHINUS VARIEGATUS 1TBE ; 2.4 ; STRUCTURE OF TETRAUBIQUITIN SHOWS HOW MULTIUBIQUITIN CHAINS CAN BE FORMED 7Q60 ; 3.13 ; Structure of TEV cleaved A2ML1 (A2ML1-TE) 7Q62 ; 3.18 ; Structure of TEV cleaved A2ML1 dimer (A2ML1-TT dimer) 7Q61 ; 2.88 ; Structure of TEV conjugated A2ML1 (A2ML1-TC) 7K01 ; 3.9 ; Structure of TFIIH in TFIIH/Rad4-Rad23-Rad33 DNA opening complex 7K04 ; 9.25 ; Structure of TFIIH/Rad4-Rad23-Rad33/DNA in DNA opening 3ZBD ; 1.49 ; Structure of TGEV nsp1 5TX6 ; 2.746 ; Structure of TGF-beta2 derivative with deletion of residues 52-71 and 10 single amino acid mutations (mmTGF-beta2-7M) 5OUO ; 1.11 ; Structure of TgPLP1 APCbeta domain 5OUP ; 2.03 ; Structure of TgPLP1 MACPF domain 5OUQ ; 5.11 ; Structure of TgPLP1 MACPF domain 5OWN ; 3.11 ; Structure of TgPLP1 MACPF domain 7T5T ; 1.35 ; Structure of Thauera sp. K11 CapP 2G4Y ; 1.98 ; structure of thaumatin at 2.0 A wavelength 6FJ6 ; 1.08 ; Structure of Thaumatin collected at 100K on ID30B 7AT6 ; 1.46 ; Structure of thaumatin collected by femtosecond serial crystallography on a COC membrane 7AC3 ; 1.65 ; Structure of thaumatin collected by rotation serial crystallography on a COC membrane at a synchrotron source 6FJ8 ; 1.5 ; Structure of Thaumatin collected from an in situ crystal collected on ID30B at 12.7 keV. 6FJ9 ; 1.5 ; Structure of Thaumatin collected from an in situ crystal on ID30B at 17.5 keV. 1LXZ ; 1.25 ; Structure of thaumatin crystallized in the presence of glycerol 1LY0 ; 1.36 ; Structure of thaumatin crystallized in the presence of glycerol 6S1D ; 2.65 ; Structure of thaumatin determined at SwissFEL using native-SAD at 4.57 keV from 20,000 diffraction patterns 6S19 ; 2.65 ; Structure of thaumatin determined at SwissFEL using native-SAD at 4.57 keV from all available diffraction patterns 7O44 ; 2.0 ; Structure of thaumatin determined at SwissFEL using native-SAD at 5.99 keV with photon energy bandwidth of 0.26% 7O5J ; 2.05 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.02 keV with photon energy bandwidth of 2.15% and pinkIndexer 7O5K ; 2.05 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.02 keV with photon energy bandwidth of 2.15% and pinkIndexer with 30000 indexed images 7O51 ; 2.2 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.02 keV with photon energy bandwidth of 2.15% and XGANDALF 7O53 ; 2.2 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.02 keV with photon energy bandwidth of 2.15% and XGANDALF with 50000 indexed images 6S1G ; 2.0 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.06 keV from 50,000 diffraction patterns. 6S1E ; 1.95 ; Structure of thaumatin determined at SwissFEL using native-SAD at 6.06 keV from all available diffraction patterns 1PP3 ; 1.6 ; Structure of thaumatin in a hexagonal space group 5A47 ; 1.2 ; Structure of Thaumatin obtained by multi crystal data collection 3E3S ; 1.73 ; Structure of thaumatin with the magic triangle I3C 4ZXR ; 1.92 ; Structure of Thaumatin wrapped in graphene within vacuum 8PZ5 ; 3.2 ; Structure of ThcOx, solved at wavelength 3.099 A 3FZE ; 1.601 ; Structure of the 'minimal scaffold' (ms) domain of Ste5 that cocatalyzes Fus3 phosphorylation by Ste7 2A51 ; ; Structure of the (13-51) domain of the nucleocapsid protein NCp8 from SIVlhoest 7RTK ; 2.5 ; Structure of the (NIAU)2 complex with N-terminal mutation of ISCU2 Y35D at 2.5 A resolution 5NCQ ; 3.0 ; Structure of the (SR) Ca2+-ATPase bound to a Tetrahydrocarbazole and TNP-ATP 6YAA ; 3.4 ; Structure of the (SR) Ca2+-ATPase bound to the inhibitor compound CAD204520 and TNP-ATP 1T5T ; 2.9 ; Structure of the (SR)Ca2+-ATPase Ca2-E1-ADP:AlF4- form 1T5S ; 2.6 ; Structure of the (SR)Ca2+-ATPase Ca2-E1-AMPPCP form 3N8G ; 2.585 ; Structure of the (SR)Ca2+-ATPase Ca2-E1-CaAMPPCP form 1XP5 ; 3.0 ; Structure Of The (Sr)Ca2+-ATPase E2-AlF4- Form 3N5K ; 2.2 ; Structure Of The (Sr)Ca2+-ATPase E2-AlF4- Form 4NAB ; 3.5 ; Structure of the (SR)Ca2+-ATPase mutant E309Q in the Ca2-E1-MgAMPPCP form 6RB2 ; 3.20001 ; Structure of the (SR)Ca2+-ATPase mutant E340A in the Ca2-E1-CaAMPPCP form 5WTT ; 2.7 ; Structure of the 093G9 Fab in complex with the epitope peptide 2KTP ; ; Structure of the 1,N2-ethenodeoxyguanosine lesion opposite a one-base deletion in duplex DNA 5WM8 ; 1.92 ; Structure of the 10R (+)-cis-BP-dG modified Rev1 ternary complex 5WM1 ; 1.85 ; Structure of the 10S (+)-trans-BP-dG modified Rev1 ternary complex 5WMB ; 2.25 ; Structure of the 10S (-)-cis-BP-dG modified Rev1 ternary complex (the BP residue is disordered) 3S34 ; 2.2 ; Structure of the 1121B Fab fragment 2O98 ; 2.7 ; Structure of the 14-3-3 / H+-ATPase plant complex 4DX0 ; 3.4 ; Structure of the 14-3-3/PMA2 complex stabilized by a pyrazole derivative 3M50 ; 2.6 ; Structure of the 14-3-3/PMA2 complex stabilized by Epibestatin 3M51 ; 3.25 ; Structure of the 14-3-3/PMA2 complex stabilized by Pyrrolidone1 3FZG ; 2.0 ; Structure of the 16S rRNA methylase ArmA 3FRI ; 1.8 ; Structure of the 16S rRNA methylase RmtB, I222 3FRH ; 1.2 ; Structure of the 16S rRNA methylase RmtB, P21 7CCQ ; 3.8 ; Structure of the 1:1 cGAS-nucleosome complex 4P9G ; 2.2 ; Structure of the 2,4'-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 5BPX ; 1.88 ; Structure of the 2,4'-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP. 3TQX ; 2.304 ; Structure of the 2-amino-3-ketobutyrate coenzyme A ligase (kbl) from Coxiella burnetii 6M1W ; 2.75 ; Structure of the 2-Aminoisobutyric acid Monooxygenase Hydroxylase 6M2I ; 2.45 ; Structure of the 2-Aminoisobutyric acid Monooxygenase Hydroxylase 3TQG ; 2.3 ; Structure of the 2-methylcitrate synthase (prpC) from Coxiella burnetii 1MUM ; 1.9 ; Structure of the 2-Methylisocitrate Lyase (PrpB) from Escherichia coli 4A0S ; 1.9 ; STRUCTURE OF THE 2-OCTENOYL-COA CARBOXYLASE REDUCTASE CINF IN COMPLEX WITH NADP AND 2-OCTENOYL-COA 6U3J ; 2.25 ; Structure of the 2-oxoadipate dehydrogenase DHTKD1 5KED ; 2.65 ; Structure of the 2.65 Angstrom P2(1) crystal of K. pneumonia MrkH 6LVN ; 2.47 ; Structure of the 2019-nCoV HR2 Domain 2O45 ; 3.6 ; Structure of the 23S rRNA of the large ribosomal subunit from Deinococcus Radiodurans in complex with the macrolide RU-69874 5A5B ; 9.5 ; Structure of the 26S proteasome-Ubp6 complex 7QO3 ; 6.1 ; Structure of the 26S proteasome-Ubp6 complex in the si state (Core Particle and Lid) 7CCR ; 4.9 ; Structure of the 2:2 cGAS-nucleosome complex 7ZRY ; 2.7 ; Structure of the 2a splicing variant of the full-length human LSD1 bound to CoREST (delta305) 6CNJ ; 3.7 ; Structure of the 2alpha3beta stiochiometry of the human Alpha4Beta2 nicotinic receptor 2CKB ; 3.0 ; STRUCTURE OF THE 2C/KB/DEV8 COMPLEX 2OI9 ; 2.35 ; Structure of the 2C/Ld/QL9 allogeneic complex 6COK ; 1.89 ; Structure of the 2nd TOG domain from yeast CLASP protein STU1 2QAR ; 2.4 ; Structure of the 2TEL crystallization module fused to T4 lysozyme with a helical linker. 2QB0 ; 2.56 ; Structure of the 2TEL crystallization module fused to T4 lysozyme with an Ala-Gly-Pro linker. 1BLU ; 2.1 ; STRUCTURE OF THE 2[4FE-4S] FERREDOXIN FROM CHROMATIUM VINOSUM 2FGO ; 1.32 ; Structure of the 2[4FE-4S] ferredoxin from Pseudomonas aeruginosa 3PHP ; ; STRUCTURE OF THE 3' HAIRPIN OF THE TYMV PSEUDOKNOT: PREFORMATION IN RNA FOLDING 3TQD ; 1.8 ; Structure of the 3-deoxy-D-manno-octulosonate cytidylyltransferase (kdsB) from Coxiella burnetii 4UBV ; 1.95 ; Structure of the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis with an partially acetylated cysteine in complex with acetyl-CoA and CoA 5ME0 ; 13.5 ; Structure of the 30S Pre-Initiation Complex 1 (30S IC-1) Stalled by GE81112 5ME1 ; 13.5 ; Structure of the 30S Pre-Initiation Complex 2 (30S IC-2) Stalled by GE81112 5O5J ; 3.45 ; Structure of the 30S small ribosomal subunit from Mycobacterium smegmatis 5X8R ; 3.7 ; Structure of the 30S small subunit of chloroplast ribosome from spinach 8JSH ; 4.4 ; Structure of the 30S-body-IF3 complex from Escherichia coli 8JSG ; 4.6 ; Structure of the 30S-IF3 complex from Escherichia coli 6AI1 ; 3.5 ; Structure of the 328-692 fragment of FlhA (D456V) 7CTN ; 2.8 ; Structure of the 328-692 fragment of FlhA (E351A/D356A) 6AI2 ; 3.3 ; Structure of the 328-692 fragment of FlhA (F459A) 6AI0 ; 2.4 ; Structure of the 328-692 fragment of FlhA (orthorhombic form) 6AI3 ; 3.3 ; Structure of the 328-692 fragment of FlhA (T490M) 6CNK ; 3.9 ; Structure of the 3alpha2beta stiochiometry of the human Alpha4Beta2 nicotinic receptor 3E3Q ; 2.95 ; Structure of the 3alpham13 high-affinity mutant of the 2C TCR in complex with Ld/QL9 7BCZ ; 2.4 ; Structure of the 4'-phosphopantetheinyl transferase PcpS from Pseudomonas aeruginosa 7B4S ; 1.38 ; Structure of the 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus in complex with Coenzyme A and compound 153786 from the NCI Open Database 7B4R ; 1.4 ; Structure of the 4'-phosphopantetheinyl transferase PptAb from Mycobacterium abscessus in complex with Coenzyme A and N-(2,6-diethylphenyl)-N'-(N-ethylcarbamimidoyl)urea 6T3T ; 2.1 ; Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV 6AHQ ; 3.398 ; Structure of the 40-167 fragment of FliL 5LL6 ; 3.9 ; Structure of the 40S ABCE1 post-splitting complex in ribosome recycling and translation initiation 2LAG ; ; Structure of the 44 kDa complex of interferon-alpha2 with the extracellular part of IFNAR2 obtained by 2D-double difference NOESY 6DWI ; 2.39 ; Structure of the 4462 Antibody Fab fragment bound to a Staphylococcus aureus wall techoic acid analog 6DWA ; 1.922 ; Structure of the 4497 Antibody Fab fragment bound to a Staphylococcus aureus wall techoic acid analog 7RRO ; 3.4 ; Structure of the 48-nm repeat doublet microtubule from bovine tracheal cilia 5OXV ; 6.721 ; Structure of the 4_601_157 tetranucleosome (C2 form) 5OY7 ; 5.774 ; Structure of the 4_601_157 tetranucleosome (P1 form) 1ZBB ; 9.0 ; Structure of the 4_601_167 Tetranucleosome 5O60 ; 3.18 ; Structure of the 50S large ribosomal subunit from Mycobacterium smegmatis 5X8T ; 3.3 ; Structure of the 50S large subunit of chloroplast ribosome from spinach 6DDD ; 3.1 ; Structure of the 50S ribosomal subunit from Methicillin Resistant Staphylococcus aureus in complex with the oxazolidinone antibiotic LZD-5 6DDG ; 3.1 ; Structure of the 50S ribosomal subunit from Methicillin Resistant Staphylococcus aureus in complex with the oxazolidinone antibiotic LZD-6 6WRU ; 3.1 ; Structure of the 50S subunit of the ribosome from Methicillin Resistant Staphylococcus aureus in complex with an isomer of the tedizolid 6WQN ; 2.9 ; Structure of the 50S subunit of the ribosome from Methicillin Resistant Staphylococcus aureus in complex with the antibiotic, contezolid 6WQQ ; 3.1 ; Structure of the 50S subunit of the ribosome from Methicillin Resistant Staphylococcus aureus in complex with the antibiotic, radezolid 6WRS ; 3.2 ; Structure of the 50S subunit of the ribosome from Methicillin Resistant Staphylococcus aureus in complex with the antibiotic, tedizolid 8RHN ; 4.5 ; Structure of the 55LCC ATPase complex 5AJ4 ; 3.8 ; Structure of the 55S mammalian mitoribosome. 6AHP ; 2.1 ; Structure of the 58-167 fragment of FliL 7CIK ; 2.29 ; Structure of the 58-213 fragment of FliF 2WQ7 ; 2.0 ; Structure of the 6-4 photolyase of D. melanogaster in complex with the non-natural N4-methyl T(6-4)C lesion 2WQ6 ; 2.3 ; Structure of the 6-4 photolyase of D. melanogaster in complex with the non-natural N4-methyl T(Dewar)C lesion 1UP7 ; 2.4 ; Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.4 Angstrom resolution in the tetragonal form with NAD and glucose-6-phosphate 1UP6 ; 2.55 ; Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.55 Angstrom resolution in the tetragonal form with manganese, NAD+ and glucose-6-phosphate 1UP4 ; 2.85 ; Structure of the 6-phospho-beta glucosidase from Thermotoga maritima at 2.85 Angstrom resolution in the monoclinic form 6DW2 ; 1.7 ; Structure of the 6078 Antibody Fab fragment bound to a Staphylococcus aureus wall techoic acid analog 2NXV ; 1.1 ; Structure of the 6th ORF of the Rhodobacter blastica ATPase operon; Majastridin 6MSV ; 2.4 ; Structure of the 6th type III domain from human fibronectin 5MMM ; 3.4 ; Structure of the 70S chloroplast ribosome 5X8P ; 3.4 ; Structure of the 70S chloroplast ribosome from spinach 5J7L ; 3.0 ; Structure of the 70S E coli ribosome with the U1052G mutation in the 16S rRNA bound to tetracycline 5MDZ ; 3.1 ; Structure of the 70S ribosome (empty A site) 4V5J ; 3.1 ; Structure of the 70S ribosome bound to Release factor 2 and a substrate analog provides insights into catalysis of peptide release 5LZF ; 4.6 ; Structure of the 70S ribosome with fMetSec-tRNASec in the hybrid pre-translocation state (H) 5LZE ; 3.5 ; Structure of the 70S ribosome with Sec-tRNASec in the classical pre-translocation state (C) 5LZA ; 3.6 ; Structure of the 70S ribosome with SECIS-mRNA and P-site tRNA (Initial complex, IC) 7PJT ; 6.0 ; Structure of the 70S ribosome with tRNAs in hybrid state 1 (H1) 7PJU ; 9.5 ; Structure of the 70S ribosome with tRNAs in hybrid state 2 (H2) 7PJS ; 2.35 ; Structure of the 70S ribosome with tRNAs in the classical pre-translocation state and apramycin (C) 7PJY ; 3.1 ; Structure of the 70S-EF-G-GDP ribosome complex with tRNAs in chimeric state 1 (CHI1-EF-G-GDP) 7PJZ ; 6.0 ; Structure of the 70S-EF-G-GDP ribosome complex with tRNAs in chimeric state 2 (CHI2-EF-G-GDP) 7PJX ; 6.5 ; Structure of the 70S-EF-G-GDP ribosome complex with tRNAs in hybrid state 1 (H1-EF-G-GDP) 7PJV ; 3.1 ; Structure of the 70S-EF-G-GDP-Pi ribosome complex with tRNAs in hybrid state 1 (H1-EF-G-GDP-Pi) 7PJW ; 4.0 ; Structure of the 70S-EF-G-GDP-Pi ribosome complex with tRNAs in hybrid state 2 (H2-EF-G-GDP-Pi) 3J7P ; 3.5 ; Structure of the 80S mammalian ribosome bound to eEF2 4V7H ; 8.9 ; Structure of the 80S rRNA and proteins and P/E tRNA for eukaryotic ribosome based on cryo-EM map of Thermomyces lanuginosus ribosome at 8.9A resolution 6EYN ; 2.4 ; Structure of the 8D6 (anti-IgE) Fab 5MSC ; 1.85 ; Structure of the A domain of carboxylic acid reductase (CAR) from Nocardia iowensis in complex with AMP 5MSD ; 1.71 ; Structure of the A domain of carboxylic acid reductase (CAR) from Nocardia iowensis in complex with AMP and benzoic acid 5MSQ ; 1.74 ; Structure of the A domain of carboxylic acid reductase (CAR) from Nocardia iowensis in complex with AMP and iodide 5MST ; 1.72 ; Structure of the A domain of carboxylic acid reductase (CAR) from Segniliparus rugosus in complex with AMP and a co-purified carboxylic acid 5MSS ; 1.96 ; Structure of the A-PCP didomain of carboxylic acid reductase (CAR) from Segniliparus rugosus in complex with AMP 5MSW ; 2.33 ; Structure of the A-PCP didomain of carboxylic acid reductase (CAR) from Segniliparus rugosus in complex with AMP 7QPK ; 2.75 ; Structure of the A-region of Awp14 from Candida glabrata 2HC8 ; 1.65 ; Structure of the A. fulgidus CopA A-domain 6GUM ; 1.792 ; Structure of the A.thaliana E1 UFD domain in complex with E2 2OXV ; 1.95 ; Structure of the A138T promiscuous mutant of the EcoRI restriction endonuclease bound to its cognate recognition site. 2VFJ ; 3.2 ; Structure of the A20 Ovarian Tumour (OTU) domain 6IX2 ; 1.478 ; Structure of the A214C/A250I mutant of an epoxide hydrolase from Aspergillus usamii E001 (AuEH2) at 1.48 Angstroms resolution 3LSV ; 3.15 ; Structure of the A237F mutant of the pentameric ligand gated ion channel from Gloeobacter Violaceus 1SMJ ; 2.75 ; Structure of the A264E mutant of cytochrome P450 BM3 complexed with palmitoleate 2IJ3 ; 1.9 ; Structure of the A264H mutant of cytochrome P450 BM3 2IJ4 ; 2.4 ; Structure of the A264K mutant of cytochrome P450 BM3 6S0Q ; 2.65 ; Structure of the A2A adenosine receptor determined at SwissFEL using native-SAD at 4.57 keV from 50,000 diffraction patterns 6S0L ; 2.65 ; Structure of the A2A adenosine receptor determined at SwissFEL using native-SAD at 4.57 keV from all available diffraction patterns 5OM4 ; 2.0 ; Structure of the A2A-StaR2-bRIL562-Compound 4e complex at 1.86A obtained from in meso soaking experiments (24 hour soak). 5OLZ ; 1.9 ; Structure of the A2A-StaR2-bRIL562-Compound 4e complex at 1.9A obtained from bespoke co-crystallisation experiments. 5OM1 ; 2.1 ; Structure of the A2A-StaR2-bRIL562-Compound 4e complex at 2.1A obtained from in meso soaking experiments (1 hour soak). 5OLV ; 1.998 ; Structure of the A2A-StaR2-bRIL562-LUAA47070 complex at 2.0A obtained from in meso soaking experiments. 5OLO ; 3.1 ; Structure of the A2A-StaR2-bRIL562-Tozadenant complex at 3.1A obtained from in meso soaking experiments. 5OLH ; 2.6 ; Structure of the A2A-StaR2-bRIL562-Vipadenant complex at 2.6A obtained from in meso soaking experiments. 5OLG ; 1.87 ; Structure of the A2A-StaR2-bRIL562-ZM241385 complex at 1.86A obtained from in meso soaking experiments. 4KEW ; 1.89 ; structure of the A82F BM3 heme domain in complex with omeprazole 4KF0 ; 1.45 ; Structure of the A82F P450 BM3 heme domain 7VBS ; 1.998 ; Structure of the AAA+ ATPase domain of the transcriptional regulator GtrR in Burkholderia cenocepacia 1OUL ; 2.2 ; Structure of the AAA+ protease delivery protein SspB 2HNS ; ; Structure of the AAGU tetraloop 5DRP ; 1.889 ; Structure of the AaLpxC/LPC-023 Complex 4NDM ; 3.0065 ; Structure of the AB18.1 TCR 6XAB ; 1.781 ; Structure of the acetate-bound form of ArrX from Chrysiogenes arsenatis 6ESQ ; 2.95 ; Structure of the acetoacetyl-CoA thiolase/HMG-CoA synthase complex from Methanothermococcus thermolithotrophicus soaked with acetyl-CoA 6ET9 ; 2.75 ; Structure of the acetoacetyl-CoA-thiolase/HMG-CoA-synthase complex from Methanothermococcus thermolithotrophicus at 2.75 A 7VZG ; 2.61 ; Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c (the larger form) 7VZR ; 2.22 ; Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c (the smaller form) 1U4D ; 2.1 ; Structure of the ACK1 Kinase Domain bound to Debromohymenialdisine 3HOP ; 2.3 ; Structure of the actin-binding domain of human filamin A 3HOR ; 2.7 ; Structure of the actin-binding domain of human filamin A (reduced) 3HOC ; 2.3 ; Structure of the actin-binding domain of human filamin A mutant E254K 3DAW ; 2.55 ; Structure of the actin-depolymerizing factor homology domain in complex with actin 4A7L ; 8.1 ; Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 1) 4A7H ; 7.8 ; Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 2) 4A7F ; 7.7 ; Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 3) 7JLU ; 3.8 ; Structure of the activated Roq1 resistosome directly recognizing the pathogen effector XopQ 7JLV ; 3.8 ; Structure of the activated Roq1 resistosome directly recognizing the pathogen effector XopQ 7JLX ; 4.6 ; Structure of the activated Roq1 resistosome directly recognizing the pathogen effector XopQ (TIR domains) 7QBM ; 1.88 ; Structure of the activation intermediate of cathepsin K in complex with the 3-cyano-3-aza-beta-amino acid inhibitor Gu2602 7QBO ; 1.9 ; Structure of the activation intermediate of cathepsin K in complex with the azadipeptide nitrile inhibitor Gu1303 1QLO ; ; Structure of the active domain of the herpes simplex virus protein ICP47 in water/sodium dodecyl sulfate solution determined by nuclear magnetic resonance spectroscopy 1NI2 ; 2.3 ; Structure of the active FERM domain of Ezrin 5LOP ; 3.5 ; Structure of the active form of /K. lactis/ Dcp1-Dcp2-Edc3 decapping complex bound to m7GDP 5UJM ; 18.0 ; Structure of the active form of human Origin Recognition Complex and its ATPase motor module 5UJ7 ; 3.394 ; Structure of the active form of human Origin Recognition Complex ATPase motor module, complex subunitS 1, 4, 5 8BTY ; 1.7 ; Structure of the active form of ScpB, the C5a-peptidase from Streptococcus agalactiae. 6EIB ; 1.941 ; Structure of the active GGEEF domain of a diguanylate cyclase from Vibrio cholerae. 5LDH ; 2.7 ; STRUCTURE OF THE ACTIVE TERNARY COMPLEX OF PIG HEART LACTATE DEHYDROGENASE WITH S-LAC-NAD AT 2.7 ANGSTROMS RESOLUTION 4QBU ; 1.7 ; Structure of the Acyl Transferase domain of ZmaA 2VZK ; 2.33 ; Structure of the acyl-enzyme complex of an N-terminal nucleophile (Ntn) hydrolase, OAT2 7AGP ; 2.4 ; Structure of the AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis 7AGS ; 3.1 ; Structure of the AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis acylated MethylMalonyl-CoenzymeA 1SZV ; ; Structure of the Adaptor Protein p14 reveals a Profilin-like Fold with Novel Function 5SWD ; 2.5 ; Structure of the adenine riboswitch aptamer domain in an intermediate-bound state 7MTW ; 2.99 ; Structure of the adeno-associated virus 9 capsid at pH 4.0 7MTP ; 2.79 ; Structure of the adeno-associated virus 9 capsid at pH 5.5 7MTG ; 2.67 ; Structure of the adeno-associated virus 9 capsid at pH 6.0 7MT0 ; 2.82 ; Structure of the adeno-associated virus 9 capsid at pH 7.4 7MUA ; 2.68 ; Structure of the adeno-associated virus 9 capsid at pH pH 5.5 in complex with terminal galactose 7MTZ ; 2.43 ; Structure of the adeno-associated virus 9 capsid at pH pH 7.4 in complex with terminal galactose 5EGC ; 3.011 ; Structure of the Adeno-Associated Virus Serotype 1 sialic acid complex 5G53 ; 3.4 ; Structure of the adenosine A2A receptor bound to an engineered G protein 4ZDG ; 3.2 ; Structure of the Adenovirus 14p1 knob domain 4LIY ; 2.1 ; Structure of the adenovirus 3 knob domain K217E and F224S mutant 1B04 ; 2.8 ; STRUCTURE OF THE ADENYLATION DOMAIN OF AN NAD+ DEPENDENT LIGASE 8BOZ ; 3.6 ; structure of the Adherent-Invasive Escherichia coli Tle3/Tli3 T6SS effector/immunity complex 8JMT ; 3.3 ; Structure of the adhesion GPCR ADGRL3 in the apo state 1PHP ; 1.65 ; STRUCTURE OF THE ADP COMPLEX OF THE 3-PHOSPHOGLYCERATE KINASE FROM BACILLUS STEAROTHERMOPHILUS AT 1.65 ANGSTROMS 6SH3 ; 3.4 ; Structure of the ADP state of the heptameric Bcs1 AAA-ATPase 5G4F ; 7.0 ; Structure of the ADP-bound VAT complex 7ZBQ ; ; Structure of the ADP-ribosyltransferase TccC3HVR from Photorhabdus Luminescens 1KHZ ; 2.04 ; Structure of the ADPR-ase in complex with AMPCPR and Mg 2YNM ; 2.1 ; Structure of the ADPxAlF3-Stabilized Transition State of the Nitrogenase-like Dark-Operative Protochlorophyllide Oxidoreductase Complex from Prochlorococcus marinus with Its Substrate Protochlorophyllide a 2V1U ; 3.1 ; STRUCTURE OF THE AEROPYRUM PERNIX ORC1 PROTEIN IN COMPLEX WITH DNA 1W5S ; 2.4 ; Structure of the Aeropyrum Pernix ORC2 protein (ADP form) 1W5T ; 2.4 ; Structure of the Aeropyrum Pernix ORC2 protein (ADPNP-ADP complexes) 2BP1 ; 2.4 ; Structure of the aflatoxin aldehyde reductase in complex with NADPH 6KU9 ; 2.67 ; Structure of the African swine fever virus major capsid protein p72 6GRJ ; 2.94 ; Structure of the AhlB pore of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 7OT9 ; 2.8 ; Structure of the AI-2 exporter family protein YdiK from E. coli 4P2V ; 2.51 ; Structure of the AI-2 processing enzyme LsrF in complex with the product of the LsrG reaction P-HPD 6G58 ; 1.9 ; Structure of the alanine racemase from Staphylococcus aureus in complex with a pyridoxal 5' phosphate-derivative 6G59 ; 2.45 ; Structure of the alanine racemase from Staphylococcus aureus in complex with an pyridoxal-6- phosphate derivative 3EFM ; 2.33 ; Structure of the alcaligin outer membrane recepteur FauA from Bordetella pertussis 3ZDR ; 2.504 ; Structure of the Alcohol dehydrogenase (ADH) domain of a bifunctional ADHE dehydrogenase from Geobacillus thermoglucosidasius NCIMB 11955 8OFM ; 1.831 ; Structure of the ALDEHYDE DEHYDROGENASE 5F1 (ALDH5F1) from the moss Physcomitrium patens in complex with NAD in an extended conformation 5KET ; 2.85 ; Structure of the aldo-keto reductase from Coptotermes gestroi 4HBK ; 2.2 ; Structure of the Aldose Reductase from Schistosoma japonicum 4RT1 ; 1.7 ; Structure of the Alg44 PilZ domain (R95A mutant) from Pseudomonas aeruginosa PAO1 in complex with c-di-GMP 4RT0 ; 1.8 ; Structure of the Alg44 PilZ domain from Pseudomonas aeruginosa PAO1 in complex with c-di-GMP 5ETZ ; 1.8 ; Structure of the all-trans isomer of pharaonis halorhodopsin in the absence of halide ions 1GPH ; 3.0 ; STRUCTURE OF THE ALLOSTERIC REGULATORY ENZYME OF PURINE BIOSYNTHESIS 7O4U ; 2.7 ; Structure of the alpha subunit of Mycobacterium tuberculosis beta-oxidation trifunctional enzyme in complex with oxidized nicotinamide adenine dinucleotide 6RJ8 ; 1.42 ; Structure of the alpha-beta hydrolase CorS from Tabernathe iboga 5M1Z ; 2.0 ; STRUCTURE OF THE ALPHA-L-ARABINOFURANOSIDASE ARB93A FROM FUSARIUM GRAMINEARUM IN COMPLEX WITH AN hydroximolactone INHIBITOR 2YDT ; 1.6 ; STRUCTURE OF THE ALPHA-L-ARABINOFURANOSIDASE ARB93A from FUSARIUM Graminearum in complexe with an iminosugar inhibitor 7LTS ; 2.32 ; Structure of the alpha-N-methyltransferase (SonM mutant R67A) and RiPP precursor (SonA) heteromeric complex (with SAH) 7LTF ; 2.2 ; Structure of the alpha-N-methyltransferase (SonM mutant Y58F) and RiPP precursor (SonA) heteromeric complex (no cofactor) 7LTH ; 2.1 ; Structure of the alpha-N-methyltransferase (SonM mutant Y93F) and RiPP precursor (SonA) heteromeric complex (no cofactor) 8T1S ; 2.0 ; Structure of the alpha-N-methyltransferase (SonM) and RiPP precursor (SonA with QSY deletion) heteromeric complex (bound to SAH) 8T1T ; 1.55 ; Structure of the alpha-N-methyltransferase (SonM) and RiPP precursor (SonA with QSY deletion) heteromeric complex (bound to SAM) 7LTC ; 2.0 ; Structure of the alpha-N-methyltransferase (SonM) and RiPP precursor (SonA) heteromeric complex (no cofactor) 7LTE ; 2.0 ; Structure of the alpha-N-methyltransferase (SonM) and RiPP precursor (SonA) heteromeric complex (with SAH) 6I42 ; 1.38 ; Structure of the alpha-Synuclein PreNAC/Cyclophilin A-complex 4U9Y ; 2.201 ; Structure of the alpha-tubulin acetyltransferase alpha-TAT1/Mec-17 in complex with CoA 4U9Z ; 1.802 ; Structure of the alpha-tubulin acetyltransferase alpha-TAT1/Mec-17 in complex with CoA 4GS4 ; 2.112 ; Structure of the alpha-tubulin acetyltransferase, alpha-TAT1 7EJ0 ; 3.2 ; Structure of the alpha2A-adrenergic receptor GoA signaling complex 7EJ8 ; 3.0 ; Structure of the alpha2A-adrenergic receptor GoA signaling complex bound to brimonidine 7EJA ; 3.6 ; Structure of the alpha2A-adrenergic receptor GoA signaling complex bound to dexmedetomidine 7EJK ; 3.4 ; Structure of the alpha2A-adrenergic receptor GoA signaling complex bound to oxymetazoline 4LE8 ; 1.75 ; Structure of the Als3 adhesin from Candida albicans, residues 1-299 (mature sequence) 4LEB ; 1.4 ; Structure of the Als3 adhesin from Candida albicans, residues 1-299 (mature sequence) in complex with hepta-threonine 4LEE ; 3.0 ; Structure of the Als3 adhesin from Candida albicans, residues 1-313 (mature sequence), triple mutant in the binding cavity: K59M, A116V, Y301F 2FKL ; 2.5 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) Copper Binding Domain (Residues 126- 189 of APP) 2FJZ ; 1.61 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) copper binding domain (residues 133 to 189) in 'small unit cell' form, metal-free 2FK3 ; 2.4 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) Copper Binding Domain in 'large unit cell' form 2FMA ; 0.85 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) Copper Binding Domain in 'small unit cell' form, atomic resolution 2FK2 ; 1.65 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) Copper Binding Domain in 'small unit cell' form, Cu(I)-bound 2FK1 ; 1.6 ; Structure of the Alzheimer's Amyloid Precursor Protein (APP) Copper Binding Domain in 'small unit cell' form, Cu(II)-bound 1OWT ; ; Structure of the Alzheimer's disease amyloid precursor protein copper binding domain 2H95 ; ; Structure of the Amantadine-Blocked Influenza A M2 Proton Channel Trans-membrane Domain by Solid-state NMR spectroscopy 4CP8 ; 2.5 ; Structure of the amidase domain of allophanate hydrolase from Pseudomonas sp strain ADP 5K4A ; 2.3 ; Structure of the amidase mutant E79A at 2.3 Angstrom resolution 3TQL ; 1.594 ; Structure of the amino acid ABC transporter, periplasmic amino acid-binding protein from Coxiella burnetii. 8FWT ; 3.09 ; Structure of the amino terminal domain of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 and competitive antagonist DNQX 2Y4Z ; 2.001 ; Structure of the amino-terminal capsid restriction escape mutation N- MLV L10W 2XFV ; 1.9 ; Structure of the amino-terminal domain from the cell-cycle regulator Swi6 2KFV ; ; Structure of the amino-terminal domain of human FK506-binding protein 3 / Northeast Structural Genomics Consortium Target HT99A 8FWR ; 3.1 ; Structure of the amino-terminal domain of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 8FWV ; 3.03 ; Structure of the amino-terminal domain of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 and noncompetitive inhibitor perampanel 1R69 ; 2.0 ; STRUCTURE OF THE AMINO-TERMINAL DOMAIN OF PHAGE 434 REPRESSOR AT 2.0 ANGSTROMS RESOLUTION 4I8Q ; 2.65 ; Structure of the aminoaldehyde dehydrogenase 1 E260A mutant from Solanum lycopersicum (SlAMADH1-E260A) 6BFF ; 1.7 ; Structure of the aminoglycoside acetyltransferase AAC(6')-Im 2KYG ; ; Structure of the AML1-ETO Nervy Domain - PKA(RIIa) complex and its contribution to AML1-ETO activity 6GJE ; 2.3 ; Structure of the Amnionless(20-357)-Cubilin(36-135) complex 6YK3 ; 1.2 ; Structure of the AMPA receptor GluA2o ligand-binding domain (S1S2J) in complex with the compound ( S) - 1- [2'-Amino-2'-carboxyethyl]-5 ,7- dihydropyrrolo[3,4-d]pyrimidin-2,4(1H,3H)-dione at resolution 1.20A 6YK4 ; 0.999 ; Structure of the AMPA receptor GluA2o ligand-binding domain (S1S2J) in complex with the compound ( S) - 1- [2'-Amino-2'-carboxyethyl]-6-methyl-5 ,7- dihydropyrrolo[3,4-d]pyrimidin-2,4(1H,3H)-dione at resolution 1.00A 6YK5 ; 1.15 ; Structure of the AMPA receptor GluA2o ligand-binding domain (S1S2J) in complex with the compound (S)-1-(2'-Amino-2'-carboxyethyl)-5,7-dihydrofuro[3,4-d]- pyrimidine-2,4(1H,3H)-dione at resolution 1.15A 6YK6 ; 1.469 ; Structure of the AMPA receptor GluA2o ligand-binding domain (S1S2J) in complex with the compound (S)-1-(2'-Amino-2'-carboxyethyl)furo[3,4-d]pyrimidin-2,4-dione at resolution 1.47A 6YK2 ; 1.612 ; Structure of the AMPA receptor GluA2o ligand-binding domain (S1S2J) in complex with the compound (S)-1-[2'-Amino-2'-carboxyethyl]-5,7-dihydrothieno[3,4-d]pyrimidin- 2,4(1H,3H)-dione at resolution 1.60A 6FPJ ; 1.96 ; Structure of the AMPAR GluA3 N-terminal domain bound to phosphate 3KOS ; 1.83 ; Structure of the AmpR effector binding domain from Citrobacter freundii 5E5X ; 1.61 ; Structure of the amyloid forming peptide ANFLVH (residues 13-18) from islet amyloid polypeptide 4QXX ; 1.445 ; Structure of the amyloid forming peptide GNLVS (residues 26-30) from the eosinophil major basic protein (EMBP) 5E5Z ; 1.664 ; Structure of the amyloid forming peptide LVHSSN (residues 6C88 ; 1.851 ; STRUCTURE OF THE AMYLOID FORMING PEPTIDE VAVHVF FROM TRANSTHYRETIN 4RIL ; 1.43 ; Structure of the amyloid forming segment, GAVVTGVTAVA, from the NAC domain of Parkinson's disease protein alpha-synuclein, residues 68-78, determined by electron diffraction 8ONQ ; 1.5 ; Structure of the amyloid-forming peptide Ac-EFIAWL from human GLP-1 8ANJ ; 1.55 ; Structure of the amyloid-forming peptide DFINWL from human GLP-2 8ANN ; 1.24 ; Structure of the amyloid-forming peptide LFIEWL from exendin-4, grown from acetonitrile / water 8ANL ; 1.75 ; Structure of the amyloid-forming peptide LFIEWL from exendin-4, grown from water 8ANI ; 1.35 ; Structure of the amyloid-forming peptide LYIQWL from Tc5b, grown from 10% ethanol 8ANH ; 1.25 ; Structure of the amyloid-forming peptide LYIQWL from Tc5b, grown from 30% acetonitrile 8ANG ; 1.5 ; Structure of the amyloid-forming peptide LYIQWL from Tc5b, grown from 30% ethanol 8ANM ; 0.9 ; Structure of the amyloid-forming peptide LYIQWL from Tc5b, grown from water 8ANK ; 1.3 ; Structure of the amyloid-forming peptide pEFIAWL from human GLP-1 4RP6 ; 1.703 ; Structure of the amyloid-forming segment LTIITLE from p53 (residues 252-258) 4RP7 ; 1.576 ; Structure of the amyloid-forming segment TIITLE from p53 (residues 253-258) 1FP8 ; 2.3 ; STRUCTURE OF THE AMYLOMALTASE FROM THERMUS THERMOPHILUS HB8 IN SPACE GROUP P21212 1J7A ; 1.8 ; STRUCTURE OF THE ANABAENA FERREDOXIN D68K MUTANT 1J7B ; 1.8 ; STRUCTURE OF THE ANABAENA FERREDOXIN MUTANT E94K 1J7C ; 1.8 ; STRUCTURE OF THE ANABAENA FERREDOXIN MUTANT E95K 7Y3F ; 2.62 ; Structure of the Anabaena PSI-monomer-IsiA supercomplex 6W9L ; 1.45 ; Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with deacetylated deflazacort and PGC1a coregulator fragment 6NWK ; 1.65 ; Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with dexamethasone and PGC1a coregulator fragment 6NWL ; 1.595 ; Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with hydrocortisone and PGC1a coregulator fragment 6W9K ; 1.6 ; Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with Prednisolone and PGC1a coregulator fragment 6W9M ; 1.59 ; Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with vamorolone and SHP coregulator fragment 8AJA ; 2.59 ; Structure of the Ancestral Scaffold Antigen-5 of Coronavirus Spike protein 8AJL ; 2.77 ; Structure of the Ancestral Scaffold Antigen-6 of Coronavirus Spike protein 1Z3U ; 2.25 ; Structure of the Angiopoietin-2 Recptor Binding Domain and Identification of Surfaces Involved in Tie2 Recognition 5FCJ ; 3.1 ; Structure of the anisomycin-containing uL3 W255C mutant 80S yeast ribosome 5AAR ; 1.87 ; Structure of the ankyrin domain of an Arabidopsis Thaliana potassium channel 5K34 ; 1.15 ; Structure of the ankyrin domain of AnkB from Legionella Pneumophila 1OT8 ; 2.0 ; Structure of the Ankyrin Domain of the Drosophila Notch Receptor 2CH2 ; 2.7 ; Structure of the Anopheles gambiae 3-hydroxykynurenine transaminase in complex with inhibitor 6Z1Z ; 1.7 ; Structure of the anti-CD9 nanobody 4C8 1ZEA ; 1.78 ; Structure of the anti-cholera toxin antibody Fab fragment TE33 in complex with a D-peptide 4OTX ; 2.1 ; Structure of the anti-Francisella tularensis O-antigen antibody N203 Fab fragment 5T4Z ; 1.991 ; STRUCTURE OF THE ANTI-HIV ANTIBODY DH501 THAT BINDS GP120 V3 GLYCAN AND THE BASE OF V3 WITH FREE MAN9 GLYCAN 1VMP ; ; STRUCTURE OF THE ANTI-HIV CHEMOKINE VMIP-II 7UCE ; 2.25 ; Structure of the anti-HIV-1 neutralizing antibody BG24 Fab fragment 4GLR ; 1.9 ; Structure of the anti-ptau Fab (pT231/pS235_1) in complex with phosphoepitope pT231/pS235 1H4Y ; 1.61 ; Structure of the Anti-Sigma Factor Antagonist SpoIIAA in its Unphosphorylated Form 1H4Z ; 2.74 ; Structure of the Anti-Sigma Factor Antagonist SpoIIAA in its Unphosphorylated Form 5OFR ; 3.4 ; Structure of the antibacterial peptide ABC transporter McjD in a high energy outward occluded intermediate state 5OFP ; 4.71 ; Structure of the antibacterial peptide ABC transporter McjD in an apo inward occluded conformation 8PX9 ; 2.8 ; Structure of the antibacterial peptide ABC transporter McjD, solved at wavelength 2.75 A 5EA0 ; 2.0 ; Structure of the antibody 7968 with human complement factor H-derived peptide 4YDV ; 2.7 ; STRUCTURE OF THE ANTIBODY 7B2 THAT CAPTURES HIV-1 VIRIONS 6W51 ; 3.53 ; Structure of the antibody fragment H2 in complex with HLA-A*02:01/p53R175H 1SKK ; ; Structure of the antimicrobial hexapeptide cyc-(KKWWKF) bound to DPC micelles 1SKL ; ; Structure of the antimicrobial hexapeptide cyc-(RRNalNalRF) bound to DPC micelles 1QVK ; ; Structure of the antimicrobial hexapeptide cyc-(RRWWRF) bound to DPC micelles 1QVL ; ; Structure of the antimicrobial hexapeptide cyc-(RRWWRF) bound to SDS micelles 1SKI ; ; Structure of the antimicrobial hexapeptide cyc-(RRYYRF) bound to DPC micelles 2OTQ ; ; Structure of the antimicrobial peptide cyclo(RRWFWR) bound to DPC micelles 2MLU ; ; Structure of the antimicrobial peptide LsbB in DPC micelles 2MLV ; ; Structure of the antimicrobial peptide LsbB in TFE/water 1NCO ; 1.8 ; STRUCTURE OF THE ANTITUMOR PROTEIN-CHROMOPHORE COMPLEX NEOCARZINOSTATIN 7PLN ; 3.15 ; Structure of the APCbeta domain of Plasmodium vivax perforin-like protein 1 6DWC ; 2.27 ; Structure of the apo 4497 antibody Fab fragment 1ZM3 ; 3.07 ; Structure of the apo eEF2-ETA complex 8TS5 ; 2.1 ; Structure of the apo FabS1C_C1 4MKR ; 2.58 ; Structure of the apo form of a Zingiber officinale double bond reductase 6ESK ; 1.75 ; Structure of the apo form of AioX from Rhizobium sp. str. NT-26 5D4L ; 2.3 ; Structure of the apo form of CPII from Thiomonas intermedia K12, a nitrogen regulatory PII-like protein 4TRM ; 1.8 ; Structure of the apo form of InhA from Mycobacterium tuberculosis 3I5M ; 2.72 ; Structure of the apo form of leucoanthocyanidin reductase from vitis vinifera 8BFO ; 1.99 ; Structure of the apo form of Mpro from SARS-CoV-2 8BFQ ; 1.863 ; Structure of the apo form of Mpro from SARS-CoV-2 5OVJ ; 1.7 ; Structure of the apo form of Mycobacterium smegmatis MabA 7U39 ; 3.51 ; Structure of the apo form of Streptomyces venezuelae GlgX, the glycogen debranching enzyme 7BFY ; 1.5 ; Structure of the apo form of the N terminal domain of Bc2L-C lectin (1-131) 5N08 ; 3.90095 ; Structure of the apo form of the NO response regulator NsrR 7ME6 ; 2.053 ; Structure of the apo form of YcnI 4OYJ ; 3.0 ; Structure of the apo HOIP PUB domain 5H8F ; 1.81 ; Structure of the apo human GluN1/GluN2A LBD 3Q6U ; 1.6 ; Structure of the apo MET receptor kinase in the dually-phosphorylated, activated state 5ISW ; 1.75 ; Structure of the apo PCP-E didomain of the gramicidin S synthetase A 5I41 ; 1.8 ; Structure of the apo RacA DNA binding domain 6ZA7 ; 2.34 ; Structure of the apo transcriptional repressor Atu1419 (VanR) from agrobacterium fabrum 1BD3 ; 1.93 ; STRUCTURE OF THE APO URACIL PHOSPHORIBOSYLTRANSFERASE, 2 MUTANT C128V 1A6X ; ; STRUCTURE OF THE APO-BIOTIN CARBOXYL CARRIER PROTEIN (APO-BCCP87) OF ESCHERICHIA COLI ACETYL-COA CARBOXYLASE, NMR, 49 STRUCTURES 6M9U ; 2.2 ; Structure of the apo-form of 20beta-Hydroxysteroid Dehydrogenase from Bifidobacterium adolescentis strain L2-32 4B5Z ; 2.2 ; Structure of the apo-rFnBPA(189-505) from Staphylococcus aureus 7OGR ; 3.0 ; Structure of the apo-state of the bacteriophage PhiKZ non-virion RNA polymerase 7OGP ; 3.3 ; Structure of the apo-state of the bacteriophage PhiKZ non-virion RNA polymerase - class including clamp 6SH4 ; 4.4 ; Structure of the Apo1 state of the heptameric Bcs1 AAA-ATPase. 6SH5 ; 4.6 ; Structure of the Apo2 state of the heptameric Bcs1 AAA-ATPase 8OF3 ; 1.348 ; Structure of the apoform of ALDEHYDE DEHYDROGENASE 5F1 (ALDH5F1) from the moss Physcomitrium patens 1Z6T ; 2.21 ; Structure of the apoptotic protease-activating factor 1 bound to ADP 4HH3 ; 1.75 ; Structure of the AppA-PpsR2 core complex from Rb. sphaeroides 5DRO ; 2.01 ; Structure of the Aquifex aeolicus LpxC/LPC-011 Complex 5U86 ; 1.62 ; Structure of the Aquifex aeolicus LpxC/LPC-069 complex 8WP0 ; 3.4 ; Structure of the Arabidopsis E529Q/E1174Q ABCB19 in the ATP bound state 4YZH ; 2.0 ; Structure of the Arabidopsis TAP38/PPH1 in complex with pLhcb1 phosphopeptide substrate 4YZG ; 1.6 ; Structure of the Arabidopsis TAP38/PPH1, a state-transition phosphatase responsible for dephosphorylation of LHCII 2V07 ; 1.6 ; Structure of the Arabidopsis thaliana cytochrome c6A V52Q variant 2HJ3 ; 2.5 ; Structure of the Arabidopsis Thaliana Erv1 Thiol Oxidase 1V1F ; 3.0 ; Structure of the Arabidopsis thaliana SOS3 complexed with Calcium(II) and Manganese(II) ions 1V1G ; 2.7 ; Structure of the Arabidopsis thaliana SOS3 complexed with Calcium(II) ion 8D00 ; 2.8 ; Structure of the Arabidopsis thaliana SPIRAL2 TOG domain 2CKY ; 2.9 ; Structure of the Arabidopsis thaliana thiamine pyrophosphate riboswitch with its regulatory ligand 5NQS ; 2.61 ; Structure of the Arabidopsis Thaliana TOPLESS N-terminal domain 5NQV ; 1.95 ; Structure of the Arabidopsis Thaliana TOPLESS N-terminal domain 2YCB ; 3.1 ; Structure of the archaeal beta-CASP protein with N-terminal KH domains from Methanothermobacter thermautotrophicus 3RSB ; 2.8 ; Structure of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii 2AHO ; 3.0 ; Structure of the archaeal initiation factor eIF2 alpha-gamma heterodimer from Sulfolobus solfataricus complexed with GDPNP 2VWB ; 3.05 ; Structure of the archaeal Kae1-Bud32 fusion protein MJ1130: a model for the eukaryotic EKC-KEOPS subcomplex involved in transcription and telomere homeostasis. 5DMP ; 1.793 ; Structure of the Archaeal NHEJ Phosphoesterase from Methanocella paludicola. 6SS5 ; 1.78 ; Structure of the arginase-2-inhibitory human antigen-binding fragment Fab C0020187 6SRV ; 2.4 ; Structure of the arginase-2-inhibitory human antigen-binding fragment Fab C0021144 6SRX ; 1.9 ; Structure of the arginase-2-inhibitory human antigen-binding fragment Fab C0021158 6TUL ; 2.25 ; Structure of the arginase-2-inhibitory human antigen-binding fragment Fab C0021177 6SS0 ; 1.7 ; Structure of the arginase-2-inhibitory human antigen-binding fragment Fab C0021181 1B4A ; 2.5 ; STRUCTURE OF THE ARGININE REPRESSOR FROM BACILLUS STEAROTHERMOPHILUS 6GGV ; 2.69 ; Structure of the arginine-bound form of truncated (residues 20-233) ArgBP from T. maritima 5G5S ; 2.29 ; Structure of the Argonaute protein from Methanocaldcoccus janaschii 5G5T ; 2.85 ; Structure of the Argonaute protein from Methanocaldcoccus janaschii in complex with guide DNA 8ACF ; 1.8 ; Structure of the argX-117 in complex with a complement C2 fragment at low pH 4BAS ; 2.0 ; Structure of the Arl6 BBS3 Small GTPase from Trypanosoma brucei with bound nucleotide analogue GppNp 3JU0 ; 1.6 ; Structure of the arm-type binding domain of HAI7 integrase 3JTZ ; 1.3 ; Structure of the arm-type binding domain of HPI integrase 1XM9 ; 2.8 ; Structure of the armadillo repeat domain of plakophilin 1 6XL2 ; 1.74 ; Structure of the arsenate-bound form of ArrX from Chrysiogenes arsenatis 2JGO ; 1.81 ; Structure of the arsenated de novo designed peptide Coil Ser L9C 6EU7 ; 3.0 ; Structure of the arsenite-bound form of AioX from Rhizobium sp. str. NT-26 6BZX ; 3.107 ; Structure of the artificial complex alpha-Rep/Octarellin V.1 crystallized by counter diffusion in a capillary 2C8E ; 1.6 ; Structure of the ARTT motif E214N mutant C3bot1 Exoenzyme (Free state, crystal form III) 2C8F ; 2.5 ; Structure of the ARTT motif E214N mutant C3bot1 Exoenzyme (NAD-bound state, crystal form III) 2C8D ; 2.2 ; Structure of the ARTT motif Q212A mutant C3bot1 Exoenzyme (Free state, crystal form I) 2C8B ; 1.7 ; Structure of the ARTT motif Q212A mutant C3bot1 Exoenzyme (Free state, crystal form II) 2C8C ; 2.7 ; Structure of the ARTT motif Q212A mutant C3bot1 Exoenzyme (NAD-bound state, crystal form I) 4GUZ ; 1.8 ; Structure of the arylamine N-acetyltransferase from Mycobacterium abscessus 5ULM ; 2.1 ; Structure of the ASK1 central regulatory region 4JPR ; 2.001 ; Structure of the ASLV fusion subunit core 2RSP ; 2.0 ; STRUCTURE OF THE ASPARTIC PROTEASE FROM ROUS SARCOMA RETROVIRUS REFINED AT 2 ANGSTROMS RESOLUTION 6NJO ; 3.34 ; Structure of the assembled ATPase EscN from the enteropathogenic E. coli (EPEC) type III secretion system 6NJP ; 3.29 ; Structure of the assembled ATPase EscN in complex with its central stalk EscO from the enteropathogenic E. coli (EPEC) type III secretion system 8A28 ; 2.4 ; Structure of the astacin zymogen of LAST-MAM from Limulus polyphemus 8I4T ; 5.2 ; Structure of the asymmetric unit of SFTSV virion 6GTO ; 2.97 ; Structure of the AtaR antitoxin 6GTP ; 2.5 ; Structure of the AtaT Y144F mutant toxin 6GTQ ; 2.49 ; Structure of the AtaT Y144F mutant toxin bound to the C-terminus of the antitoxin AtaR 6GTR ; 2.99 ; Structure of the AtaT Y144F mutant toxin bound to the C-terminus of the antitoxin AtaR and Acetyl-CoA 6GTS ; 3.357 ; Structure of the AtaT-AtaR complex bound DNA 1JWA ; 2.9 ; Structure of the ATP-bound MoeB-MoaD Protein Complex 2WLK ; 2.8 ; STRUCTURE OF THE ATP-SENSITIVE INWARD RECTIFIER POTASSIUM CHANNEL FROM MAGNETOSPIRILLUM MAGNETOTACTICUM 1Z47 ; 1.9 ; Structure of the ATPase subunit CysA of the putative sulfate ATP-binding cassette (ABC) transporter from Alicyclobacillus acidocaldarius 5G4G ; 7.8 ; Structure of the ATPgS-bound VAT complex 5DNY ; 3.11 ; Structure of the ATPrS-Mre11/Rad50-DNA complex 5F3W ; 3.11 ; Structure of the ATPrS-Mre11/Rad50-DNA complex 4B6D ; 2.2 ; Structure of the atypical C1 domain of MgcRacGAP 8AT4 ; 33.0 ; Structure of the augmin holocomplex in closed conformation 8AT3 ; 33.0 ; Structure of the augmin holocomplex in open conformation 8AT2 ; 7.7 ; Structure of the augmin TIII subcomplex 8Y6P ; 3.9 ; Structure of the auto-inhibited Dark monomer 3RNV ; 2.0 ; Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase 7NB6 ; 3.3 ; Structure of the autoinducer-2 exporter TqsA from E. coli 2L3S ; ; Structure of the autoinhibited Crk 8PR5 ; 8.6 ; Structure of the autoinhibited dynactin p150glued projection 5EK7 ; 1.901 ; Structure of the autoinhibited Epha2 JMS-KD 4BM9 ; 2.25 ; Structure of the autoinhibited Parkin catalytic domain 7MF3 ; 3.4 ; Structure of the autoinhibited state of smooth muscle myosin-2 7QNQ ; 1.89 ; Structure of the Aux2 relaxosome protein of plasmid pLS20 7Y9T ; 3.1 ; Structure of the auxin exporter PIN1 in Arabidopsis thaliana in the apo state 7Y9V ; 3.2 ; Structure of the auxin exporter PIN1 in Arabidopsis thaliana in the IAA-bound state 7Y9U ; 3.3 ; Structure of the auxin exporter PIN1 in Arabidopsis thaliana in the NPA-bound state 7LNR ; 1.83 ; Structure of the avibactam-CDD-1 120 minute complex in imidazole and MPD 7LNQ ; 1.73 ; Structure of the avibactam-CDD-1 3 minute complex in imidazole and MPD 7R0C ; 4.73 ; Structure of the AVP-V2R-arrestin2-ScFv30 complex 2YPF ; 2.55 ; Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism 1EMU ; 1.9 ; STRUCTURE OF THE AXIN RGS-HOMOLOGOUS DOMAIN IN COMPLEX WITH A SAMP REPEAT FROM APC 5U6B ; 2.84 ; Structure of the Axl kinase domain in complex with a macrocyclic inhibitor 6QKN ; 2.3 ; Structure of the azide-inhibited form of cytochrome c peroxidase from obligate human pathogenic bacterium Neisseria gonorrhoeae 4UO4 ; 2.6 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin 4UO5 ; 2.7 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin in complex with 3SLN 4UO7 ; 3.0 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin in complex with 6SO4 Sialyl Lewis X 4UO8 ; 3.0 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin in complex with 6SO4-3SLN 4UO6 ; 2.9 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin in complex with Sialyl Lewis X 4UOA ; 2.5 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin Met29Ile mutant 4UO9 ; 3.2 ; Structure of the A_Canine_Colorado_17864_06 H3 haemagglutinin Ser30Thr mutant 4UNW ; 2.6 ; Structure of the A_Equine_Newmarket_2_93 H3 haemagglutinin 4UNX ; 3.2 ; Structure of the A_Equine_Newmarket_2_93 H3 haemagglutinin in complex with 3SLN 4UNY ; 2.9 ; Structure of the A_Equine_Newmarket_2_93 H3 haemagglutinin in complex with 6SO4-3SLN 4UNZ ; 2.9 ; Structure of the A_Equine_Newmarket_2_93 H3 haemagglutinin in complex with 6SO4-Sialyl Lewis X 4UO0 ; 1.9 ; Structure of the A_Equine_Richmond_07 H3 haemagglutinin 4UO1 ; 3.0 ; Structure of the A_Equine_Richmond_07 H3 haemagglutinin in complex with 3SLN 4UO2 ; 2.7 ; Structure of the A_Equine_Richmond_07 H3 haemagglutinin in complex with Sialyl Lewis X 4UO3 ; 2.87 ; Structure of the A_Equine_Richmond_07 H3 haemagglutinin mutant Ser30Thr 4CYV ; 2.3 ; Structure of the A_mallard_Sweden_51_2002 H10 Avian Haemmaglutinin 4CYZ ; 2.4 ; Structure of the A_mallard_Sweden_51_2002 H10 Avian Haemmaglutinin in complex with avian receptor analog LSTA 4CZ0 ; 3.2 ; Structure of the A_mallard_Sweden_51_2002 H10 Avian Haemmaglutinin in complex with avian receptor analog Su-3SLN 4CYW ; 2.6 ; Structure of the A_mallard_Sweden_51_2002 H10 Avian Haemmaglutinin in complex with human receptor analog 6-SLN 5DNB ; 1.4 ; STRUCTURE OF THE B-DNA DECAMER C-C-A-A-C-G-T-T-G-G AND COMPARISON WITH ISOMORPHOUS DECAMERS C-C-A-A-G-A-T-T-G-G AND C-C-A-G-G-C-C-T-G-G 2FB8 ; 2.9 ; Structure of the B-Raf kinase domain bound to SB-590885 6VMY ; 3.25 ; Structure of the B. subtilis cobalamin riboswitch 7QH4 ; 5.45 ; Structure of the B. subtilis disome - collided 70S ribosome 7QGU ; 4.75 ; Structure of the B. subtilis disome - stalled 70S ribosome 6ZFB ; 3.9 ; Structure of the B. subtilis RNA POLYMERASE in complex with HelD (dimer) 6ZCA ; 4.2 ; Structure of the B. subtilis RNA POLYMERASE in complex with HelD (monomer) 3IV9 ; 3.25 ; Structure of the B12-dependent Methionine Synthase (MetH) C-teminal half in a ""His-On"" conformation 3IVA ; 2.7 ; Structure of the B12-dependent Methionine Synthase (MetH) C-teminal half with AdoHcy bound 4MTJ ; 2.4 ; Structure of the b12-independent glycerol dehydratase with 1,2-propanediol bound 2FJH ; 3.1 ; Structure of the B20-4 Fab, a phage derived Fab fragment, in complex with VEGF 5OS9 ; 1.8 ; Structure of the B3 DNA-Binding Domain of NGA1 6HHU ; 2.7 ; Structure of the Bacillus anthracis Sap S-layer assembly domain 6QX4 ; 3.27 ; Structure of the Bacillus anthracis Sap S-layer assembly domain 3R8Y ; 1.7 ; Structure of the Bacillus anthracis tetrahydropicolinate succinyltransferase 1H4X ; 1.16 ; Structure of the Bacillus Cell Fate Determinant SpoIIAA in the Phosphorylated Form 1KU0 ; 2.0 ; Structure of the Bacillus stearothermophilus L1 lipase 5NJT ; 3.8 ; Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. 2XY3 ; 2.55 ; Structure of the Bacillus subtilis prophage dUTPase with dUpNHpp 2XX6 ; 1.74 ; Structure of the Bacillus subtilis prophage dUTPase, YosS 5NMO ; 1.899 ; Structure of the Bacillus subtilis Smc Joint domain 5ZUG ; 2.802 ; Structure of the bacterial acetate channel SatP 2XJ4 ; 1.6 ; Structure of the bacterial cell division regulator protein MipZ 3QXF ; 1.85 ; Structure of the bacterial cellulose synthase subunit Z 7F81 ; 1.93 ; Structure of the bacterial cellulose synthase subunit Z from Enterobacter sp. CJF-002 7F82 ; 1.3 ; Structure of the bacterial cellulose synthase subunit Z in complex with cellooligosaccharides from Enterobacter sp. CJF-002 3QXQ ; 2.2 ; Structure of the bacterial cellulose synthase subunit Z in complex with cellopentaose 1WCV ; 1.6 ; Structure of the bacterial chromosome segregation protein Soj 2BEJ ; 2.1 ; Structure of the bacterial chromosome segregation protein Soj 2BEK ; 1.8 ; Structure of the bacterial chromosome segregation protein Soj 6JZT ; 7.1 ; Structure of the bacterial flagellar hook from Salmonella typhimurium 6JZR ; 7.4 ; Structure of the bacterial flagellar polyrod 5YBI ; 2.268 ; Structure of the bacterial pathogens ATPase with substrate AMPPNP 5ZT1 ; 3.114 ; Structure of the bacterial pathogens ATPase with substrate ATP gamma S 2JQT ; ; Structure of the bacterial replication origin-associated protein Cnu 7K00 ; 1.98 ; Structure of the Bacterial Ribosome at 2 Angstrom Resolution 4V6T ; 8.3 ; Structure of the bacterial ribosome complexed by tmRNA-SmpB and EF-G during translocation and MLD-loading 7Y7C ; 2.51 ; Structure of the Bacterial Ribosome with human tRNA Asp(G34) and mRNA(GAU) 7Y7F ; 2.43 ; Structure of the Bacterial Ribosome with human tRNA Asp(ManQ34) and mRNA(GAC) 7Y7E ; 2.41 ; Structure of the Bacterial Ribosome with human tRNA Asp(ManQ34) and mRNA(GAU) 7Y7D ; 2.58 ; Structure of the Bacterial Ribosome with human tRNA Asp(Q34) and mRNA(GAU) 7Y7H ; 2.51 ; Structure of the Bacterial Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAC) 7Y7G ; 2.34 ; Structure of the Bacterial Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAU) 7AQC ; 2.99 ; Structure of the bacterial RQC complex (Decoding State) 7AQD ; 3.1 ; Structure of the bacterial RQC complex (Translocating State) 5LFB ; 5.0 ; Structure of the bacterial sex F pilus (12.5 Angstrom rise) 5LER ; 5.0 ; Structure of the bacterial sex F pilus (13.2 Angstrom rise) 5LEG ; 3.6 ; Structure of the bacterial sex F pilus (pED208) 6TKT ; ; Structure of the bacterial toxin phenomycin 7PZT ; 1.84 ; Structure of the bacterial toxin, TecA, an asparagine deamidase from Alcaligenes faecalis. 7Q97 ; 3.3 ; Structure of the bacterial type VI secretion system effector RhsA. 4RDT ; 3.2 ; Structure of the bacterial Zn-transporter ZnuD from Neisseria meningitidis (flexible conformation bound to a zinc ion) 4RDR ; 2.472 ; Structure of the bacterial Zn-transporter ZnuD from Neisseria meningitidis (locked conformation bound to zinc and cadmium ions) 4RVW ; 4.477 ; Structure of the bacterial Zn-transporter ZnuD from Neisseria meningitidis (soaked with 20 micromolar Zinc) 4EO2 ; 3.007 ; Structure of the bacteriophage C1 tail knob protein, gp12 4EP0 ; 4.0 ; Structure of the bacteriophage C1 tail knob protein, gp12 8K37 ; 3.5 ; Structure of the bacteriophage lambda neck 8K39 ; 4.0 ; Structure of the bacteriophage lambda portal vertex 8K35 ; 3.44 ; Structure of the bacteriophage lambda tail tip complex 8K36 ; 3.48 ; Structure of the bacteriophage lambda tail tube 1IJG ; 2.9 ; Structure of the Bacteriophage phi29 Head-Tail Connector Protein 5JBL ; 1.943 ; Structure of the bacteriophage T4 capsid assembly protease, gp21. 2XGF ; 2.2 ; Structure of the bacteriophage T4 long tail fibre needle-shaped receptor-binding tip 4HUH ; 3.2 ; Structure of the bacteriophage T4 tail terminator protein, gp15 (C-terminal truncation mutant 1-261). 4HUD ; 2.7001 ; Structure of the bacteriophage T4 tail terminator protein, gp15. 6F2M ; 1.8 ; Structure of the bacteriophage T5 distal tail protein pb9 co-crystallized with 10mM Tb-Xo4 5BRJ ; 1.922 ; Structure of the bacteriophytochrome response regulator AtBRR 7LJO ; 1.76 ; Structure of the Bacteroides fragilis CD-NTase CdnB in complex with ADP 2OMK ; 1.8 ; Structure of the Bacteroides Thetaiotaomicron Thiamin Pyrophosphokinase 6LYQ ; 3.19 ; Structure of the BAM complex 6LYR ; 3.28 ; Structure of the BAM complex 6LYS ; 3.05 ; Structure of the BAM complex 6LYU ; 4.2 ; Structure of the BAM complex 4CVW ; 2.67 ; Structure of the barley limit dextrinase-limit dextrinase inhibitor complex 6RS2 ; 3.694 ; Structure of the Bateman module of human CNNM4. 4TN3 ; 3.1989 ; Structure of the BBox-Coiled-coil region of Rhesus Trim5alpha 2P1L ; 2.5 ; Structure of the Bcl-XL:Beclin 1 complex 1K1F ; 2.2 ; Structure of the Bcr-Abl Oncoprotein Oligomerization domain 2MW6 ; ; Structure of the bee venom toxin melittin with [(C5H5)Ru]+ fragment attached to the tryptophan residue 5Y9K ; 1.9 ; Structure of the belimumab Fab fragment 2CFH ; 2.3 ; Structure of the Bet3-TPC6B core of TRAPP 1NW7 ; 2.1 ; Structure of the beta class N6-adenine DNA methyltransferase RsrI bound to S-ADENOSYL-L-HOMOCYSTEINE 1NW5 ; 2.05 ; Structure of the beta class N6-adenine DNA methyltransferase RsrI bound to S-ADENOSYLMETHIONINE 1NW6 ; 1.94 ; Structure of the beta class N6-adenine DNA methyltransferase RsrI bound to sinefungin 3OBA ; 2.75 ; Structure of the beta-galactosidase from Kluyveromyces lactis 3OB8 ; 2.8 ; Structure of the beta-galactosidase from Kluyveromyces lactis in complex with galactose 5C37 ; 2.3 ; Structure of the beta-ketoacyl reductase domain of human fatty acid synthase bound to a spiro-imidazolone inhibitor 1GCE ; 1.8 ; STRUCTURE OF THE BETA-LACTAMASE OF ENTEROBACTER CLOACAE GC1 6KR8 ; ; Structure of the beta2 adrenergic receptor in the full agonist bound state 2X89 ; 2.16 ; Structure of the Beta2_microglobulin involved in amyloidogenesis 2C1L ; 1.9 ; Structure of the BfiI restriction endonuclease 7UCF ; 4.0 ; Structure of the BG505 SOSIP.664 trimer in complex with neutralizing antibody Fab fragments 10-1074 and BG24 1TT9 ; 3.42 ; Structure of the bifunctional and Golgi associated formiminotransferase cyclodeaminase octamer 1OGH ; 1.88 ; Structure of the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii 6A9W ; 1.8 ; Structure of the bifunctional DNA primase-polymerase from phage NrS-1 1W55 ; 2.3 ; Structure of the Bifunctional IspDF from Campylobacter jejuni 1W57 ; 3.09 ; Structure of the Bifunctional IspDF from Campylobacter jejuni containing Zn 2VPS ; 2.75 ; Structure Of The Bifunctional Leishmania Major Trypanothione Synthetase-Amidase 6YXA ; 3.95 ; Structure of the bifunctional Rel enzyme from B. subtilis 3D0F ; 1.64 ; Structure of the BIG_1156.2 domain of putative penicillin-binding protein MrcA from Nitrosomonas europaea ATCC 19718 5JAB ; 1.65 ; Structure of the biliverdin reductase Rv2074 from Mycobacterium tuberculosis in complex with F420 4GPC ; 1.85 ; Structure of the biliverdin-HmuO, heme oxygenase from Corynebacterium diphtheriae 3I6I ; 1.75 ; Structure of the binary complex leucoanthocyanidin reductase - NADPH from vitis vinifera 3I6Q ; 1.87 ; Structure of the binary complex leucoanthocyanidin reductase-NADPH from vitis vinifera 4NH4 ; 2.1 ; Structure of the binary complex of a zingiber officinale double bond reductase in complex with NADP 4WE3 ; 2.6 ; STRUCTURE OF THE BINARY COMPLEX OF A ZINGIBER OFFICINALE DOUBLE BOND REDUCTASE IN COMPLEX WITH NADP MONOCLINIC CRYSTAL FORM 2FZW ; 1.84 ; Structure of the binary complex of the E67L mutant of human glutathione-dependent formaldehyde dehydrogenase with NAD(H) 1BTN ; 2.0 ; STRUCTURE OF THE BINDING SITE FOR INOSITOL PHOSPHATES IN A PH DOMAIN 2LZF ; ; Structure of the biofilm matrix promoter AbbA from B. subtilis 1BDO ; 1.8 ; STRUCTURE OF THE BIOTINYL DOMAIN OF ACETYL-COENZYME A CARBOXYLASE DETERMINED BY MAD PHASING 1U78 ; 2.69 ; Structure of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA 3F7G ; 2.3 ; Structure of the BIR domain from ML-IAP bound to a peptidomimetic 1XB0 ; 2.2 ; Structure of the BIR domain of IAP-like protein 2 7NK0 ; 3.3 ; Structure of the BIR1 domain of cIAP2 5TZF ; 2.4 ; Structure of the BldD CTD(D116A)-(c-di-GMP)2 intermediate, form 1 5TZG ; 2.5 ; Structure of the BldD CTD(D116A)-(c-di-GMP)2, form 2 4KC1 ; 1.5 ; Structure of the blood group glycosyltransferase AAglyB in complex with a pyridine inhibitor as a neutral pyrophosphate surrogate 4KC2 ; 1.7 ; Structure of the blood group glycosyltransferase AAglyB in complex with a pyridine inhibitor as a neutral pyrophosphate surrogate 4KC4 ; 1.6 ; Structure of the blood group glycosyltransferase AAglyB in complex with a pyridine inhibitor as a neutral pyrophosphate surrogate 2OV0 ; 0.75 ; Structure of the blue copper protein Amicyanin to 0.75 A resolution 1XFQ ; ; structure of the blue shifted intermediate state of the photoactive yellow protein lacking the N-terminal part 6H1T ; 2.08 ; Structure of the BM3 heme domain in complex with clotrimazole 6H1S ; 1.95 ; Structure of the BM3 heme domain in complex with fluconazole 6H1L ; 1.968 ; Structure of the BM3 heme domain in complex with tioconazole 6H1O ; 1.734 ; Structure of the BM3 heme domain in complex with voriconazole 5SZG ; 2.7 ; Structure of the bMERB domain of Mical-3 3D0T ; 2.55 ; Structure of the BNB domain of the Hsp70 cochaperone Bag2 1GD6 ; 2.5 ; STRUCTURE OF THE BOMBYX MORI LYSOZYME 1REU ; 2.65 ; Structure of the bone morphogenetic protein 2 mutant L51P 6GCI ; 3.3 ; Structure of the bongkrekic acid-inhibited mitochondrial ADP/ATP carrier 7O6Q ; 1.88 ; Structure of the borneol dehydrogenase 1 of salvia rosmarinus 7O6P ; 2.04 ; Structure of the borneol dehydrogenase 2 of Salvia officinalis 6ZZ0 ; 3.1 ; Structure of the borneol dehydrogenase of Salvia rosmarinus (apo) 6ZZT ; 2.6 ; Structure of the borneol dehydrogenases of Salvia rosmarinus (high salt condition) 6ZYZ ; 2.27 ; Structure of the borneol dehydrogenases of Salvia rosmarinus with NAD+ 6T6Z ; 1.7 ; Structure of the Bottromycin epimerase BotH in complex with a bottromycin A2 derivative 6T6Y ; 1.4 ; Structure of the Bottromycin epimerase BotH in complex with Bottromycin A2 6T70 ; 1.58 ; Structure of the Bottromycin epimerase BotH in complex with Bottromycin A2 derivative 6T6X ; 1.25 ; Structure of the Bottromycin epimerase BotH in complex with substrate 1G89 ; ; STRUCTURE OF THE BOVINE ANTIMICROBIAL PEPTIDE INDOLICIDIN BOUND TO DODECYLPHOSPHOCHOLINE MICELLES 1G8C ; ; STRUCTURE OF THE BOVINE ANTIMICROBIAL PEPTIDE INDOLICIDIN BOUND TO SODIUM DODECYL SULFATE MICELLES 4UE0 ; 1.17 ; Structure of the bovine atadenovirus type 4 fibre head protein 6VBU ; 3.1 ; Structure of the bovine BBSome complex 6VBV ; 3.5 ; Structure of the bovine BBSome:ARL6:GTP complex 4GCR ; 1.47 ; STRUCTURE OF THE BOVINE EYE LENS PROTEIN GAMMA-B (GAMMA-II)-CRYSTALLIN AT 1.47 ANGSTROMS 1GCS ; 2.0 ; STRUCTURE OF THE BOVINE GAMMA-B CRYSTALLIN AT 150K 2DVC ; 3.0 ; Structure of the bovine lactoferrin C-lobe complex with sucrose at 3.0 A resolution 6D81 ; 2.248 ; Structure of the Bovine p85a BH domain 6D82 ; 2.407 ; Structure of the Bovine p85a BH domain 6D86 ; 2.301 ; Structure of the Bovine p85a BH domain 6D85 ; 2.203 ; Structure of the Bovine p85a BH domain E217K mutant 6MRP ; 2.403 ; Structure of the Bovine p85a BH domain R228E mutant 6D87 ; 2.7 ; Structure of the Bovine p85alpha BH domain, R262T mutant 7LJN ; 1.6 ; Structure of the Bradyrhizobium diazoefficiens CD-NTase CdnG in complex with GTP 1BND ; 2.3 ; STRUCTURE OF THE BRAIN-DERIVED NEUROTROPHIC FACTOR(SLASH)NEUROTROPHIN 3 HETERODIMER 4OZ6 ; 2.786 ; Structure of the Branched Intermediate in Protein Splicing 7R0X ; 2.83 ; Structure of the branching thioesterase from oocydin biosynthesis 4ZLR ; 2.3 ; Structure of the Brat-NHL domain bound to consensus RNA motif 1Y98 ; 2.5 ; Structure of the BRCT repeats of BRCA1 bound to a CtIP phosphopeptide. 6Y7H ; 1.8 ; Structure of the BRD9 bromodomain and compound 11 6Y7J ; 1.6 ; Structure of the BRD9 bromodomain and compound 15 6Y7I ; 1.6 ; Structure of the BRD9 bromodomain and compound 2 6Y7K ; 1.2 ; Structure of the BRD9 bromodomain and compound 27 6Y7L ; 1.8 ; Structure of the BRD9 bromodomain and TP-472 6SY2 ; ; Structure of the BRK domain of the SWI/SNF chromatin remodelling complex subunit BRG1 reveals a potential role in protein-protein interactions 4GAY ; 2.65 ; Structure of the broadly neutralizing antibody AP33 4GAJ ; 2.51 ; Structure of the broadly neutralizing antibody AP33 in complex with its HCV epitope (E2 residues 411-424) 4GAG ; 1.8 ; Structure of the broadly neutralizing antibody AP33 in complex with its HCV epitope (E2 residues 412-423) 6WOR ; 2.601 ; Structure of the broadly neutralizing antibody HC1AM 4QUT ; 1.7 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) complexed with Histone H4-K(ac)12 4QUU ; 1.8 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) complexed with Histone H4-K(ac)5 4QST ; 2.05 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with 1-methylquinolin 2-one 4QSX ; 1.93 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with 3'-deoxy thymidine 4QSW ; 1.8 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with 5-methyl uridine 4QSP ; 1.6 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with acetyl-lysine 4QSS ; 2.0 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with N-Methyl-2-pyrrolidone (NMP) 4QSV ; 1.9 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with thymidine 4QSU ; 1.9 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) in complex with thymine 4QSQ ; 1.8 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) with bound DMSO 4QSR ; 2.0 ; Structure of the bromodomain of human ATPase family AAA domain-containing protein 2 (ATAD2) with bound MPD 5Z1G ; 2.294 ; Structure of the Brx1 and Ebp2 complex 4I92 ; 1.6 ; Structure of the BSK8 kinase domain 4I93 ; 1.5 ; Structure of the BSK8 kinase domain (SeMet labeled) 2PPI ; 2.4 ; Structure of the BTB (Tramtrack and Bric a brac) domain of human Gigaxonin 6GFB ; 2.08 ; Structure of the BTB/POZ domain of human 90K 6GFC ; 3.3 ; Structure of the BTB/POZ domain of human 90K 1XAU ; 1.8 ; STRUCTURE OF THE BTLA ECTODOMAIN 2GSK ; 2.1 ; Structure of the BtuB:TonB Complex 4WYB ; 3.493 ; Structure of the Bud6 flank domain in complex with actin 4ACO ; 1.89 ; Structure of the budding yeast Ndc10 N-terminal domain 2BFW ; 1.8 ; Structure of the C domain of glycogen synthase from Pyrococcus abyssi 1AUV ; 2.15 ; STRUCTURE OF THE C DOMAIN OF SYNAPSIN IA FROM BOVINE BRAIN 1AUX ; 2.3 ; STRUCTURE OF THE C DOMAIN OF SYNAPSIN IA FROM BOVINE BRAIN WITH CALCIUM ATP-GAMMA-S BOUND 4MJN ; 6.0 ; Structure of the c ring of the CF1FO ATP synthases. 1B7V ; 1.7 ; Structure of the C-553 cytochrome from Bacillus pasteruii to 1.7 A resolution 2KXW ; ; Structure of the C-domain Fragment of apo Calmodulin Bound to the IQ motif of Nav1.2 2M5E ; ; Structure of the C-domain of Calcium-saturated Calmodulin bound to the IQ motif of NaV1.2 1IH0 ; ; Structure of the C-domain of Human Cardiac Troponin C in Complex with Ca2+ Sensitizer EMD 57033 4L11 ; 2.55 ; Structure of the C-linker/CNBHD of agERG channels 3UKN ; 2.2 ; Structure of the C-linker/CNBHD of zELK channels in C 2 2 21 space group 3UKV ; 2.7 ; Structure of the C-linker/CNBHD of zELK channels in P 1 21 1 space group, crystallized in the presence of cAMP 3UKT ; 2.3 ; Structure of the C-linker/CNBHD of zELK channels in P1 21 1 space group 2KRH ; ; Structure of the C-terminal actin binding domain of ABRA 4AYN ; 2.06 ; Structure of the C-terminal barrel of Neisseria meningitidis FHbp Variant 2 8OJN ; 2.51 ; Structure of the C-terminal beta helix domain of the Bdellovibrio bacteriovorus Bd3182 fibre 8ONB ; 1.12 ; Structure of the C-terminal beta helix domain of the Bdellovibrio bacteriovorus Bd3182 fibre 8ONC ; 2.0 ; Structure of the C-terminal beta helix domain of the Bdellovibrio bacteriovorus Bd3182 fibre 6WH2 ; 2.414 ; Structure of the C-terminal BRCT domain of human XRCC1 6OFP ; 2.006 ; Structure of the C-terminal cargo binding domain of human Bicaudal D2 5KC1 ; 2.2 ; Structure of the C-terminal dimerization domain of Atg38 2GE7 ; 2.0 ; Structure of the C-terminal dimerization domain of infectious bronchitis virus nucleocapsid protein 2GE8 ; 2.2 ; Structure of the C-terminal dimerization domain of infectious bronchitis virus nucleocapsid protein 4NFA ; 2.497 ; Structure of the C-terminal doamin of Knl1 3HCH ; 2.1 ; Structure of the C-terminal domain (MsrB) of Neisseria meningitidis PilB (complex with substrate) 3HCG ; 1.82 ; Structure of the C-terminal domain (MsrB) of Neisseria meningitidis PilB (reduced form) 3L9A ; 1.3 ; Structure of the C-terminal domain from a Streptococcus mutans hypothetical 2LSY ; ; Structure of the C-terminal domain from human REV1 1XU6 ; ; Structure of the C-terminal domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2 3GWO ; 1.65 ; Structure of the C-terminal Domain of a Putative HIV-1 gp41 Fusion Intermediate 3H00 ; 2.2 ; Structure of the C-terminal Domain of a Putative HIV-1 gp41 Fusion Intermediate 3H01 ; 1.7 ; Structure of the C-terminal Domain of a Putative HIV-1 gp41 Fusion Intermediate 5MUS ; 2.009 ; Structure of the C-terminal domain of a reptarenavirus L protein 3KDK ; 2.26 ; Structure of the C-terminal domain of Bacillus subtilis MutL bound to Zn2+ 2YH5 ; 1.25 ; Structure of the C-terminal domain of BamC 3T6A ; 2.4 ; Structure of the C-terminal domain of BCAR3 6X7I ; ; Structure of the C-terminal domain of BCL-XL in membrane 6SWZ ; 1.995 ; Structure of the C-terminal domain of C. glutamicum mycoloyltransferase A 8B9O ; 2.0 ; Structure of the C-terminal domain of ClpC2 from Mycobacterium smegmatis 3OA7 ; 2.3 ; Structure of the C-terminal domain of Cnm67, a core component of the spindle pole body of Saccharomyces cerevisiae 2HYX ; 1.9 ; Structure of the C-terminal domain of DipZ from Mycobacterium tuberculosis 5XDM ; 3.004 ; Structure of the C-terminal domain of E. coli MinC at 3.0 angstrom resolution 2KFG ; ; Structure of the C-terminal domain of EHD1 in complex with FNYESTDPFTAK 2KFH ; ; Structure of the C-terminal domain of EHD1 with FNYESTGPFTAK 2KFF ; ; Structure of the C-terminal domain of EHD1 with FNYESTNPFTAK 2LJZ ; ; Structure of the C-terminal domain of HPV16 E6 oncoprotein 5NH1 ; 2.04 ; Structure of the C-terminal domain of human Gasdermin D 3H8H ; 2.0 ; Structure of the C-terminal domain of human RNF2/RING1B; 4JQF ; 1.6 ; Structure of the C-terminal domain of human telomeric Stn1 1YO8 ; 2.6 ; Structure of the C-terminal domain of human thrombospondin-2 2FIM ; 1.9 ; Structure of the C-terminal domain of Human Tubby-like protein 1 5BU0 ; 2.35 ; Structure of the C-terminal domain of lpg1496 from Legionella pneumophila 5BU2 ; 2.11 ; Structure of the C-terminal domain of lpg1496 from Legionella pneumophila in complex with nucleotide 3GZF ; 2.756 ; Structure of the C-terminal domain of nsp4 from Feline Coronavirus 4I9Y ; 1.75 ; Structure of the C-terminal domain of Nup358 4RHA ; 1.75 ; Structure of the C-terminal domain of outer-membrane protein OmpA from Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 1COK ; ; STRUCTURE OF THE C-TERMINAL DOMAIN OF P73 6VXG ; ; Structure of the C-terminal Domain of RAGE and Its Inhibitor 2QX2 ; 1.9 ; Structure of the C-terminal domain of sex pheromone staph-cAM373 precursor from Staphylococcus aureus 8OK3 ; 1.5 ; Structure of the C-terminal domain of the Bdellovibrio bacteriovorus Bd2133 fibre 3GFP ; 1.8 ; Structure of the C-terminal domain of the DEAD-box protein Dbp5 4LKU ; 1.45 ; Structure of the C-terminal domain of the E. coli mechanosensitive channel of large conductance 3FMY ; 1.4 ; Structure of the C-terminal domain of the E. coli protein MQSA (YgiT/b3021) 5NBB ; ; Structure of the C-terminal domain of the Escherichia Coli ProQ RNA binding protein 7KD4 ; 1.312 ; Structure of the C-terminal domain of the Menangle virus phosphoprotein (residues 329 -388), fused to MBP. Space group P21. 7KD5 ; 1.551 ; Structure of the C-terminal domain of the Menangle virus phosphoprotein (residues 329 -388), fused to MBP. Space group P212121 4KYC ; 1.95 ; Structure of the C-terminal domain of the Menangle virus phosphoprotein, fused to MBP. 1VYI ; 1.5 ; Structure of the c-terminal domain of the polymerase cofactor of rabies virus: insights in function and evolution. 7NXR ; 1.9 ; Structure of the C-terminal domain of the pORF19 capsid protein from murid gammaherpesvirus 68 (MuHV-68) 7NXP ; 1.896 ; Structure of the C-terminal domain of the pUL77 capsid protein from human cytomegalovirus (HCMV) 1CTF ; 1.7 ; STRUCTURE OF THE C-TERMINAL DOMAIN OF THE RIBOSOMAL PROTEIN L7/L12 FROM ESCHERICHIA COLI AT 1.7 ANGSTROMS 4E4W ; 2.5 ; Structure of the C-terminal domain of the Saccharomyces cerevisiae MUTL alpha (MLH1/PMS1) heterodimer 4FMO ; 3.04 ; Structure of the C-terminal domain of the Saccharomyces cerevisiae MUTL alpha (MLH1/PMS1) heterodimer bound to a fragment of exo1 4FMN ; 2.69 ; Structure of the C-terminal domain of the Saccharomyces cerevisiae MUTL alpha (MLH1/PMS1) heterodimer bound to a fragment of NTG2 4OFQ ; 1.8 ; Structure of the C-terminal domain of the Streptococcus pyogenes antigen I/II-family protein AspA 4FC9 ; 1.8 ; Structure of the C-terminal domain of the type III effector Xcv3220 (XopL) 5D17 ; 2.85 ; Structure of the C-terminal domain of TnsE at 2.85 resolution 5D16 ; 1.76 ; Structure of the C-terminal domain of TnsE double mutant - A453V/D523N 3H4C ; 2.3 ; Structure of the C-terminal Domain of Transcription Factor IIB from Trypanosoma brucei 6HEM ; 1.72 ; Structure of the C-terminal domain of USP25 (748-1048) 3FD3 ; 1.7 ; Structure of the C-terminal domains of a LysR family protein from Agrobacterium tumefaciens str. C58. 5CYY ; 2.2 ; Structure of the C-terminal domains of DipZ from Mycobacterium tuberculosis 8ON4 ; 1.41 ; Structure of the C-terminal domains of the Bdellovibrio bacteriovorus Bd1334 fibre 8OND ; 2.5 ; Structure of the C-terminal domains of the Bdellovibrio bacteriovorus Bd2133 fibre 8OL4 ; 1.84 ; Structure of the C-terminal domains of the Bdellovibrio bacteriovorus Bd2439 fibre in complex with GlcNAc 1GO5 ; ; Structure of the C-terminal FG-binding domain of human Tap 4PS2 ; 2.0 ; Structure of the C-terminal fragment (87-165) of E.coli EAEC TssB molecule 8TYQ ; 2.99 ; Structure of the C-terminal half of LRRK2 bound to GZD-824 (G2019S mutant) 8TZB ; 3.1 ; Structure of the C-terminal half of LRRK2 bound to GZD-824 (I2020T mutant) 2IUM ; 1.6 ; Structure of the C-terminal head domain of the avian adenovirus CELO long fibre (C2 crystal form) 2IUN ; 2.8 ; Structure of the C-terminal head domain of the avian adenovirus CELO long fibre (P21 crystal form) 6ITX ; 2.75 ; Structure of the C-terminal head domain of the avian adenovirus EDSV fiber 7VXO ; 1.6 ; Structure of the C-terminal head domain of the Fowl Adenovirus serotype 4 (FAdV-4) fibre-2 protein 2VTW ; 2.0 ; Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre 7X5T ; 1.65 ; Structure of the C-terminal head domain of the fowl adenovirus type 4 fiber 1 7W83 ; 1.29 ; Structure of the C-terminal head domain of the fowl adenovirus type 4 fiber 2 5KS5 ; ; Structure of the C-terminal Helical Repeat Domain of Elongation Factor 2 Kinase 6NX4 ; ; Structure of the C-terminal Helical Repeat Domain of Eukaryotic Elongation Factor 2 Kinase (eEF-2K) 2DQV ; 2.7 ; Structure of the C-terminal lobe of bovine lactoferrin in complex with galactose at 2.7 A resolution 2N1P ; ; Structure of the C-terminal membrane domain of HCV NS5B protein 4GKR ; 2.69 ; Structure of the C-terminal motor domain of Kar3 from Candida glabrata 2KHM ; ; Structure of the C-terminal non-repetitive domain of the spider dragline silk protein ADF-3 1XX0 ; ; Structure of the C-terminal PH domain of human pleckstrin 3ES2 ; 2.95 ; Structure of the C-terminal phosphatase domain of P. aeruginonsa RssB 2ROZ ; ; Structure of the C-terminal PID Domain of Fe65L1 Complexed with the Cytoplasmic Tail of APP Reveals a Novel Peptide Binding Mode 8SXE ; 3.55 ; Structure of the C-terminal protease CtpA-LbcA complex of Pseudomonas aeruginosa 8SXH ; 3.94 ; Structure of the C-terminal protease CtpA-LbcA complex of Pseudomonas aeruginosa 2BT7 ; 2.35 ; Structure of the C-terminal receptor-binding domain of avian reovirus fibre sigmaC, Cd crystal form 2BT8 ; 3.0 ; Structure of the C-terminal receptor-binding domain of avian reovirus fibre sigmaC, space group P6322. 2BSF ; 2.1 ; Structure of the C-terminal receptor-binding domain of avian reovirus fibre sigmaC, Zn crystal form. 3SW0 ; 1.8 ; Structure of the C-terminal region (modules 18-20) of complement regulator Factor H 3IM1 ; 1.65 ; Structure of the C-terminal Sec63 unit of yeast Brr2, P212121 Form 3IM2 ; 1.99 ; Structure of the C-terminal Sec63 unit of yeast Brr2, P41212 Form 4TT9 ; 2.3 ; Structure of the C-terminal SpoA domain of Shigella flexneri Spa33 5KTF ; ; Structure of the C-terminal transmembrane domain of scavenger receptor BI (SR-BI) 4K22 ; 2.0 ; Structure of the C-terminal truncated form of E.Coli C5-hydroxylase UBII involved in ubiquinone (Q8) biosynthesis 5FM4 ; 2.8 ; Structure of the C-terminally extended domain My4 of human myomesin (space group P21) 5FM8 ; 2.05 ; Structure of the C-terminally extended domain My4 of human myomesin (space group P65) 8AK4 ; 3.36 ; Structure of the C-terminally truncated NAD+-dependent DNA ligase from the poly-extremophile Deinococcus radiodurans 3FG6 ; 3.0 ; Structure of the C-terminus of Adseverin 1T8C ; ; Structure of the C-type lectin domain of CD23 1T8D ; ; Structure of the C-type lectin domain of CD23 3BOK ; 1.25 ; Structure of the C. botulinum neurotoxin serotype A apo-enzyme 6XCB ; 1.74 ; Structure of the C. botulinum neurotoxin serotype A light chain protease in complex with covalent inhibitor 20 6XCC ; 1.9 ; Structure of the C. botulinum neurotoxin serotype A light chain protease in complex with covalent inhibitor 21 6XCD ; 1.92 ; Structure of the C. botulinum neurotoxin serotype A light chain protease in complex with covalent inhibitor 22 6XCE ; 2.5 ; Structure of the C. botulinum neurotoxin serotype A light chain protease in complex with covalent inhibitor 53 6XCF ; 1.68 ; Structure of the C. botulinum neurotoxin serotype A light chain protease in complex with noncovalent inhibitor 59 3BOO ; 1.4 ; Structure of the C. botulinum neurotoxin serotype A with an inhibitory peptide bound 5VGV ; 2.6 ; Structure of the C. botulinum neurotoxin serotype A with Cu bound 5VGX ; 2.15 ; Structure of the C. botulinum neurotoxin serotype A with Hg bound 3BON ; 1.2 ; Structure of the C. botulinum neurotoxin serotype A with Zn2+ cofactor bound 7U02 ; 2.48 ; Structure of the C. crescentus DriD C-domain bound to ssDNA 5N97 ; 7.4 ; Structure of the C. crescentus S-layer 8TP8 ; 2.74 ; Structure of the C. crescentus WYL-activator, DriD, bound to ssDNA and cognate DNA 3PEE ; 2.1 ; Structure of the C. difficile TcdB cysteine protease domain 3PA8 ; 2.0 ; Structure of the C. difficile TcdB cysteine protease domain in complex with a peptide inhibitor 8CXK ; 1.3 ; Structure of the C. elegans HIM-3 R93Y mutant 5CA5 ; 2.4 ; Structure of the C. elegans NONO-1 homodimer 5MJ7 ; 1.65 ; Structure of the C. elegans nucleoside hydrolase 4YV4 ; 1.8 ; Structure of the C. elegans SAS-5 coiled coil domain 4YNH ; 1.0 ; Structure of the C. elegans SAS-5 Implico dimerization domain 3ZHE ; 3.0 ; Structure of the C. elegans SMG5-SMG7 complex 8TKP ; 2.9 ; Structure of the C. elegans TMC-2 complex 7VPT ; 2.5 ; Structure of the C. glabrata importin alpha ARM domain - Upc2 NLS fusion 4AF5 ; 1.9 ; Structure of the C. glutamicum AcnR Crystal Form I 4ACI ; 1.65 ; Structure of the C. glutamicum AcnR Crystal Form II 7Z6E ; 2.14 ; Structure of the C1-PH-CNH regulatory module of MRCK1 1A2N ; 2.8 ; STRUCTURE OF THE C115A MUTANT OF MURA COMPLEXED WITH THE FLUORINATED ANALOG OF THE REACTION TETRAHEDRAL INTERMEDIATE 3UZT ; 3.51 ; Structure of the C13.18 RNA Aptamer in Complex with G Protein-Coupled Receptor Kinase 2 3UZS ; 4.52 ; Structure of the C13.28 RNA Aptamer Bound to the G Protein-Coupled Receptor Kinase 2-Heterotrimeric G Protein Beta 1 and Gamma 2 Subunit Complex 2W5J ; 3.8 ; Structure of the c14-rotor ring of the proton translocating chloroplast ATP synthase 3M31 ; 1.85 ; Structure of the C150A/C295A mutant of S. cerevisiae Ero1p 1GMI ; 1.7 ; Structure of the c2 domain from novel protein kinase C epsilon 5K5D ; 2.45 ; Structure of the C2221 form of Pnob8-like ParB-N domain 2B4U ; 2.0 ; Structure of the C252S mutant of Selenomonas ruminantium PTP-like phytase 8ENU ; 3.22 ; Structure of the C3bB proconvertase in complex with lufaxin 8EOK ; 3.53 ; Structure of the C3bB proconvertase in complex with lufaxin and factor Xa 1CHC ; ; STRUCTURE OF THE C3HC4 DOMAIN BY 1H-NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY; A NEW STRUCTURAL CLASS OF ZINC-FINGER 7D5V ; 2.102 ; Structure of the C646A mutant of peptidylarginine deiminase type III (PAD3) 6T1C ; 2.0 ; Structure of the C7S mutant of mosquitocidal Cyt1A protoxin obtained by Serial Femtosecond Crystallography on in vivo grown crystals at pH 7 4UBT ; 1.7 ; Structure of the C93S variant of the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis in complex with a steroid and CoA. 7O2W ; ; Structure of the C9orf72-SMCR8 complex 2Q91 ; 1.63 ; Structure of the Ca2+-Bound Activated Form of the S100A4 Metastasis Factor 7D5R ; 3.148 ; Structure of the Ca2+-bound C646A mutant of peptidylarginine deiminase type III (PAD3) 5LOW ; 2.8 ; Structure of the Ca2+-bound Rabphilin 3A C2B domain SNAP25 complex (P21 space group) 5LOB ; 3.3 ; Structure of the Ca2+-bound Rabphilin3A C2B- SNAP25 complex (C2 space group) 5CCG ; 3.5 ; Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) 5KJ8 ; 4.1 ; Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) - from synchrotron diffraction 5KJ7 ; 3.5 ; Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (long unit cell form) - from XFEL diffraction 5CCH ; 3.6 ; Structure of the Ca2+-bound synaptotagmin-1 SNARE complex (short unit cell form) 7DAN ; 3.1 ; Structure of the Ca2+-bound wild-type peptidylarginine deiminase type III (PAD3) 1OQP ; ; STRUCTURE OF THE CA2+/C-TERMINAL DOMAIN OF CALTRACTIN IN COMPLEX WITH THE CDC31P-BINDING DOMAIN FROM KAR1P 3BA6 ; 2.8 ; Structure of the Ca2E1P phosphoenzyme intermediate of the SERCA Ca2+-ATPase 8DEI ; 2.81 ; Structure of the Cac1 KER domain 6Z3U ; 2.6 ; Structure of the CAK complex form Chaetomium thermophilum 6Z4X ; 2.98 ; Structure of the CAK complex form Chaetomium thermophilum bound to ATP-gamma-S 2JOG ; ; Structure of the calcineurin-NFAT complex 2CCO ; ; STRUCTURE OF THE CALCIUM CHANNEL BLOCKER OMEGA CONOTOXIN GVIA, NMR, 20 STRUCTURES 1RJH ; ; Structure of the Calcium Free Form of the C-type Lectin-like Domain of Tetranectin 1MSB ; 2.3 ; STRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASING 1EL4 ; 1.73 ; STRUCTURE OF THE CALCIUM-REGULATED PHOTOPROTEIN OBELIN DETERMINED BY SULFUR SAS 8B0R ; 2.2 ; Structure of the CalpL/cA4 complex 8B0U ; 3.29 ; Structure of the CalpL/T10 complex 3H6A ; 1.608 ; Structure of the Calx-beta domain of integrin beta4 crystallized in the presence of calcium 2BYV ; 2.7 ; Structure of the cAMP responsive exchange factor Epac2 in its auto- inhibited state 8DQD ; 1.78 ; Structure of the Campylobacter concisus glycosyltransferase PglA 8DVW ; 2.29 ; Structure of the Campylobacter concisus glycosyltransferase PglA R203Q 8DVZ ; 2.27 ; Structure of the Campylobacter concisus glycosyltransferase PglA R282V variant 2V25 ; 1.49 ; Structure of the Campylobacter jejuni antigen Peb1A, an aspartate and glutamate receptor with bound aspartate 6X80 ; 3.5 ; Structure of the Campylobacter jejuni G508A Flagellar Filament 3TSO ; 1.8 ; Structure of the cancer associated Rab25 protein in complex with FIP2 4A0C ; 3.8 ; Structure of the CAND1-CUL4B-RBX1 complex 7Q0P ; 2.77 ; Structure of the Candida albicans 80S ribosome in complex with anisomycin 7Q0R ; 2.67 ; Structure of the Candida albicans 80S ribosome in complex with blasticidin s 2WFE ; 2.9 ; Structure of the Candida albicans cytosolic leucyl-tRNA synthetase editing domain 2WFG ; 2.2 ; Structure of the Candida albicans cytosolic leucyl-tRNA synthetase editing domain bound to a benzoxaborole-AMP adduct 7ANZ ; 3.6 ; Structure of the Candida albicans gamma-Tubulin Small Complex 2OX2 ; ; Structure of the cantionic, antimicrobial hexapeptide cyclo(RRWWFR) bound to DPC-micelles 4U6O ; 1.3 ; STRUCTURE OF THE CAP-BINDING DOMAIN OF INFLUENZA VIRUS POLYMERASE SUBUNIT PB2 2VQZ ; 2.3 ; Structure of the cap-binding domain of influenza virus polymerase subunit PB2 with bound m7GTP 6QHG ; 1.483 ; Structure of the cap-binding domain of Rift Valley Fever virus L protein 3J9J ; 3.275 ; Structure of the capsaicin receptor, TRPV1, determined by single particle electron cryo-microscopy 4BTP ; 3.7 ; Structure of the capsid protein P1 of the bacteriophage phi8 1E19 ; 1.5 ; Structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus bound to ADP 5VYB ; 2.4 ; Structure of the carbohydrate recognition domain of Dectin-2 complexed with a mammalian-type high mannose Man9GlcNAc2 oligosaccharide 3P5I ; 1.8 ; Structure of the carbohydrate-recognition domain of human Langerin with 6-SO4-Gal-GlcNAc 3P5G ; 1.6027 ; Structure of the carbohydrate-recognition domain of human Langerin with Blood group B trisaccharide (Gal alpha1-3(Fuc alpha1-2)Gal) 3P5H ; 1.6051 ; Structure of the carbohydrate-recognition domain of human Langerin with Laminaritriose 3P5F ; 1.7501 ; Structure of the carbohydrate-recognition domain of human Langerin with man2 (Man alpha1-2 Man) 3P5E ; 1.7012 ; Structure of the carbohydrate-recognition domain of human Langerin with man4 (Man alpha1-3(Man alpha1-6)Man alpha1-6Man) 3P5D ; 1.8013 ; Structure of the carbohydrate-recognition domain of human Langerin with man5 (Man alpha1-3(Man alpha1-6)Man alpha1-6)(Man- alpha1-3)Man 4KZW ; 1.85 ; Structure of the carbohydrate-recognition domain of the C-type lectin mincle 4KZV ; 1.4 ; Structure of the carbohydrate-recognition domain of the C-type lectin mincle bound to trehalose 6K9S ; 1.55 ; Structure of the Carbonylruthenium Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 8UM1 ; ; Structure of the Carboxy terminus of Oleate Hydratase 4A0U ; 2.0 ; Structure of the carboxy-terminal domain of bacteriophage T7 fibre gp17 containing residues 371-553, C2221 crystal form. 4A0T ; 1.9 ; Structure of the carboxy-terminal domain of bacteriophage T7 fibre gp17 containing residues 371-553. 4UW8 ; 2.52 ; Structure of the carboxy-terminal domain of the bacteriophage T5 L- shaped tail fiber with its intra-molecular chaperone domain 4UW7 ; 2.52 ; Structure of the carboxy-terminal domain of the bacteriophage T5 L- shaped tail fiber without its intra-molecular chaperone domain 5AQ5 ; 2.3 ; Structure of the Carboxy-Terminal Domain of the Bacteriophage T5 L- Shaped Tail Fibre 3ZPE ; 2.2 ; Structure of the carboxy-terminal domain of the turkey type 3 siadenovirus fibre 3ZPF ; 2.2 ; Structure of the carboxy-terminal domain of the turkey type 3 siadenovirus fibre 4D62 ; 2.5 ; Structure of the carboxy-terminal domain of the turkey type 3 siadenovirus fibre, avirulent form complexed with 3-sialyllactose. 4D63 ; 2.2 ; Structure of the carboxy-terminal domain of the turkey type 3 siadenovirus fibre, avirulent form complexed with 6-sialyllactose. 4CW8 ; 2.3 ; Structure of the carboxy-terminal domain of the turkey type 3 siadenovirus fibre, virulent form 1CTL ; ; STRUCTURE OF THE CARBOXY-TERMINAL LIM DOMAIN FROM THE CYSTEINE RICH PROTEIN CRP 4JX4 ; 2.98 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase 4MIM ; 2.65 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with 3-bromopyruvate 4MFE ; 2.61 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with 3-hydroxypyruvate 4MFD ; 2.55 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with oxalate 4LOC ; 2.26 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with oxamate and biotin 4JX5 ; 2.55 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with pyruvate 4M6V ; 2.4 ; Structure of the carboxyl transferase domain from Rhizobium etli pyruvate carboxylase with pyruvate and biocytin 4JX6 ; 2.78 ; Structure of the carboxyl transferase domain Y628A from Rhizobium etli pyruvate carboxylase with pyruvate 4A94 ; 1.7 ; Structure of the carboxypeptidase inhibitor from Nerita versicolor in complex with human CPA4 5WVC ; 2.993 ; Structure of the CARD-CARD disk 4J5L ; 2.2 ; Structure of the Cargo Binding Domain from Human Myosin Va 4J5M ; 2.07 ; Structure of the Cargo Binding Domain from Human Myosin Vb 4L8T ; 2.95 ; Structure of the Cargo Binding Domain from Human Myosin Vc 6D84 ; 6.72 ; Structure of the cargo bound AP-1:Arf1:tetherin-Nef (L164A, L165A) dileucine mutant dimer 6D83 ; 4.27 ; Structure of the cargo bound AP-1:Arf1:tetherin-Nef (L164A, L165A) dileucine mutant dimer monomeric subunit 6CM9 ; 3.73 ; Structure of the cargo bound AP-1:Arf1:tetherin-Nef closed trimer monomeric subunit 6DFF ; 3.9 ; Structure of the cargo bound AP-1:Arf1:tetherin-Nef monomer 6CRI ; 6.8 ; Structure of the cargo bound AP-1:Arf1:tetherin-Nef stable closed trimer 7Y9X ; 2.49 ; Structure of the Cas7-11-Csx29-guide RNA complex 7Y9Y ; 2.77 ; Structure of the Cas7-11-Csx29-guide RNA-target RNA (no PFS) complex 8GS2 ; 2.84 ; Structure of the Cas7-11-Csx29-guide RNA-target RNA (non-matching PFS) complex 5O7H ; 3.0 ; Structure of the Cascade-I-Fv complex from Shewanella putrefaciens 5O6U ; 3.25 ; Structure of the Cascade-I-Fv R-loop complex from Shewanella putrefaciens 4EKN ; 2.4996 ; Structure of the catalytic chain of Methanococcus jannaschii Aspartate Transcarbamoylase in a hexagonal crystal form 4A05 ; 1.9 ; Structure of the catalytic core domain of the cellobiohydrolase, Cel6A, from Chaetomium thermophilum 1T3N ; 2.3 ; Structure of the catalytic core of DNA polymerase Iota in complex with DNA and dTTP 3U1N ; 3.1 ; Structure of the catalytic core of human SAMHD1 4D4A ; 1.4 ; Structure of the catalytic domain (BcGH76) of the Bacillus circulans GH76 alpha mannanase, Aman6. 1QYU ; 2.0 ; Structure of the catalytic domain of 23S rRNA pseudouridine synthase RluD 4DFS ; 3.754 ; Structure of the catalytic domain of an endo-1,3-beta-glucanase (laminarinase) from Thermotoga petrophila RKU-1 6FRV ; 2.3 ; Structure of the catalytic domain of Aspergillus niger Glucoamylase 1JWQ ; 1.8 ; Structure of the catalytic domain of CwlV, N-acetylmuramoyl-L-alanine amidase from Bacillus(Paenibacillus) polymyxa var.colistinus 4PL9 ; 1.9 ; Structure of the catalytic domain of ETR1 from Arabidopsis thaliana 1CGL ; 2.4 ; Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor 2HD0 ; 2.28 ; Structure of the catalytic domain of hepatitis C virus NS2 1LN0 ; 2.0 ; Structure of the Catalytic Domain of Homing Endonuclease I-TevI 1F6W ; 2.3 ; STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN BILE SALT ACTIVATED LIPASE 1NW3 ; 2.5 ; Structure of the Catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase 6ZFQ ; 1.2 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with bis-tris 6ZJ5 ; 2.269 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with GlcDMJ and hexatungstotellurate(VI) TEW 6ZDL ; 1.9 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with GlcIFG and hexatungstotellurate(VI) TEW 6ZFA ; 1.8 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with GlcIFG, alpha-1,2-mannobiose and hexatungstotellurate(VI) TEW 6ZDF ; 3.0 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with HEPES 6ZDK ; 2.0 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with HEPES and hexatungstotellurate(VI) TEW 6ZDC ; 2.251 ; Structure of the catalytic domain of human endo-alpha-mannosidase MANEA in complex with nickel 2TCL ; 2.2 ; STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST COLLAGENASE COMPLEXED WITH AN INHIBITOR 3USN ; ; STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN FIBROBLAST STROMELYSIN-1 INHIBITED WITH THE THIADIAZOLE INHIBITOR IPNU-107859, NMR, 1 STRUCTURE 2OU7 ; 2.4 ; Structure of the Catalytic Domain of Human Polo-like Kinase 1 2OWB ; 2.1 ; Structure of the Catalytic Domain of Human Polo-like Kinase 1 2WZ1 ; 1.63 ; STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN SOLUBLE GUANYLATE CYCLASE 1 BETA 3. 2GFO ; 2.0 ; Structure of the Catalytic Domain of Human Ubiquitin Carboxyl-terminal Hydrolase 8 2J0A ; 1.8 ; Structure of the catalytic domain of mouse Manic Fringe 2J0B ; 2.1 ; Structure of the catalytic domain of mouse Manic Fringe in complex with UDP and manganese 8COZ ; 1.438 ; Structure of the catalytic domain of P. vivax Sub1 (triclinic crystal form) 8COY ; 1.507 ; Structure of the catalytic domain of P. vivax Sub1 (triclinic crystal form) in complex with inhibitor 8CP0 ; 3.251 ; Structure of the catalytic domain of P. vivax Sub1 (trigonal crystal form) 7KK2 ; 1.695 ; Structure of the catalytic domain of PARP1 7KK5 ; 1.7 ; Structure of the catalytic domain of PARP1 in complex with niraparib 7KK4 ; 1.96 ; Structure of the catalytic domain of PARP1 in complex with olaparib 7KK3 ; 2.06 ; Structure of the catalytic domain of PARP1 in complex with talazoparib 7KK6 ; 2.06 ; Structure of the catalytic domain of PARP1 in complex with veliparib 4BPC ; 2.1 ; Structure of the Catalytic Domain of Protein Tyrosine Phosphatase Sigma in the Sulfenic Acid Form 8FK4 ; 3.25 ; Structure of the catalytic domain of Streptococcus mutans GtfB complexed to acarbose in orthorhombic space group P21212 8FJC ; 2.5 ; Structure of the catalytic domain of Streptococcus mutans GtfB complexed to acarbose in tetragonal space group P4322 8FJ9 ; 2.5 ; Structure of the catalytic domain of Streptococcus mutans GtfB in tetragonal space group P4322 2VVZ ; 2.5 ; Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA 6S2U ; 2.95 ; Structure of the catalytic domain of T. thermophilus Rel in complex with AMP and ppGpp 7KKM ; 1.58 ; Structure of the catalytic domain of tankyrase 1 7KKP ; 1.4 ; Structure of the catalytic domain of tankyrase 1 in complex with niraparib 7KKO ; 1.56 ; Structure of the catalytic domain of tankyrase 1 in complex with olaparib 7KKN ; 1.48 ; Structure of the catalytic domain of tankyrase 1 in complex with talazoparib 7KKQ ; 1.59 ; Structure of the catalytic domain of tankyrase 1 in complex with veliparib 6ZBX ; 1.35 ; Structure of the catalytic domain of the Bacillus circulans alpha-1,6 Mannanase in complex with an alpha-1,6- alpha-manno-cyclophellitol carbasugar-stabilised trisaccharide inhibitor 7NL5 ; 1.4 ; Structure of the catalytic domain of the Bacillus circulans alpha-1,6 Mannanase in complex with an alpha-1,6-alpha-manno-cyclophellitol trisaccharide inhibitor 2PI7 ; 2.59 ; Structure of the catalytic domain of the chick retinal neurite inhibitor-Receptor Protein Tyrosine Phosphatase CRYP-2/cPTPRO 5T6O ; 1.8 ; Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator 2W20 ; 1.49 ; Structure of the catalytic domain of the native NanA sialidase from Streptococcus pneumoniae 4G29 ; 1.7 ; Structure of the Catalytic Domain of the Salmonella Virulence Factor SseI 4G2B ; 2.05 ; Structure of the Catalytic Domain of the Salmonella Virulence Factor SseI 6HEH ; 2.26 ; Structure of the catalytic domain of USP28 (insertion deleted) 6HEI ; 1.64 ; Structure of the catalytic domain of USP28 (insertion deleted) bound to Ubiquitin-PA 1NB8 ; 2.3 ; Structure of the catalytic domain of USP7 (HAUSP) 3RDR ; 2.2 ; Structure of the catalytic domain of XlyA 4NTT ; 3.5 ; Structure of the catalytic subunit of cAMP-dependent protein kinase bound to ADP and one magnesium ion 8QCG ; 1.04 ; STRUCTURE OF THE CATALYTIC SUBUNIT OF PROTEIN KINASE CK2 (CK2ALPHA') IN COMPLEX WITH THE NON-HYDROLYZABLE ATP ANALOGUE AMPPNP 8QF1 ; 1.32 ; STRUCTURE OF THE CATALYTIC SUBUNIT OF PROTEIN KINASE CK2 (CK2ALPHA') IN COMPLEX WITH THE NON-HYDROLYZABLE GTP ANALOGUE GMPPNP 3KYL ; 2.7 ; Structure of the catalytic subunit of telomerase bound to its RNA template and telomeric DNA 3DU5 ; 3.25 ; Structure of the catalytic subunit of telomerase, TERT 3DU6 ; 2.71 ; Structure of the catalytic subunit of telomerase, TERT 7EEB ; 2.9 ; Structure of the CatSpermasome 7PEO ; 4.37 ; Structure of the Caulobacter crescentus S-layer protein RsaA N-terminal domain bound to LPS and soaked with Holmium 5LY8 ; 1.28 ; Structure of the CBM2 module of Lactobacillus casei BL23 phage J-1 evolved Dit. 4XUO ; 1.7 ; Structure of the CBM22-1 xylan-binding domain from Paenibacillus barcinonensis Xyn10C 4XUN ; 1.75 ; Structure of the CBM22-2 xylan-binding domain from Paenibacillus barcinonensis Xyn10C 4XUR ; 1.67 ; Structure of the CBM22-2 xylan-binding domain from Paenibacillus barcinonensis Xyn10C in complex with xylotetraose 4XUQ ; 1.95 ; Structure of the CBM22-2 xylan-binding domain from Paenibacillus barcinonensis Xyn10C in complex with xylotriose 4XUT ; 1.8 ; Structure of the CBM22-2 xylan-binding domain in complex with 1,3:1,4 Beta-glucotetraose B from Paenibacillus barcinonensis Xyn10C 7CFH ; 2.0 ; Structure of the CBS domain of the bacterial CNNM/CorC family Mg2+ transporter 7CFI ; 2.45 ; Structure of the CBS domain of the bacterial CNNM/CorC family Mg2+ transporter in complex with ATP 7CFK ; 2.9 ; Structure of the CBS domain of the bacterial CNNM/CorC family Mg2+ transporter in complex with the novel inhibitor IGN95a 3K2V ; 1.95 ; Structure of the CBS pair of a putative D-arabinose 5-phosphate isomerase from Klebsiella pneumoniae subsp. pneumoniae. 2RPT ; ; Structure of the CC mismatch from the thymidylate synthase binding site 1 hairpin and analysis of its interaction with paromomycin 4HGY ; 3.0 ; Structure of the CcbJ Methyltransferase from Streptomyces caelestis 4HGZ ; 2.7 ; Structure of the CcbJ Methyltransferase from Streptomyces caelestis 4HH4 ; 2.9 ; Structure of the CcbJ Methyltransferase from Streptomyces caelestis 4WH9 ; 1.5 ; Structure of the CDC25B Phosphatase Catalytic Domain with Bound Inhibitor 4WH7 ; 1.62 ; Structure of the CDC25B Phosphatase Catalytic Domain with Bound Ligand 2KLO ; ; Structure of the Cdt1 C-terminal domain 5CXU ; 1.6 ; Structure of the CE1 ferulic acid esterase AmCE1/Fae1A, from the anaerobic fungi Anaeromyces mucronatus in the absence of substrate 4YIQ ; 1.85 ; Structure of the CEACAM6-CEACAM8 heterodimer 3LQQ ; 3.534 ; Structure of the CED-4 Apoptosome 5XCY ; 1.199 ; Structure of the cellobiohydrolase Cel6A from Phanerochaete chrysosporium at 1.2 angstrom 5XCZ ; 2.1 ; Structure of the cellobiohydrolase Cel6A from Phanerochaete chrysosporium in complex with cellobiose at 2.1 angstrom 3BQF ; 2.24 ; Structure of the central domain (MsrA) of Neisseria meningitidis PilB (complex with a substrate) 3BQH ; 1.95 ; Structure of the central domain (MsrA) of Neisseria meningitidis PilB (oxidized form) 3BQE ; 2.0 ; Structure of the central domain (MsrA) of Neisseria meningitidis PilB (reduced form) 3BQG ; 2.0 ; Structure of the central domain (MsrA) of Neisseria meningitidis PilB (sulfenic acid form) 3K81 ; 3.4 ; Structure of the central interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies 4MYP ; 1.8 ; Structure of the central NEAT domain, N2, of the listerial Hbp2 protein complexed with heme 4NLA ; 2.7 ; Structure of the central NEAT domain, N2, of the listerial Hbp2 protein, apo form 4NFU ; 2.21 ; Structure of the central plant immunity signaling node EDS1 in complex with its interaction partner SAG101 3PE0 ; 2.95 ; Structure of the central region of the plakin domain of plectin 2VKZ ; 4.0 ; Structure of the cerulenin-inhibited fungal fatty acid synthase type I multienzyme complex 3FAV ; 2.15 ; Structure of the CFP10-ESAT6 complex from Mycobacterium tuberculosis 7LT1 ; 2.4 ; Structure of the cGAS-like receptor human MB21D2 4OJK ; 2.657 ; Structure of the cGMP Dependent Protein Kinase II and Rab11b Complex 4KNH ; 2.702 ; Structure of the Chaetomium thermophilum adaptor nucleoporin Nup192 N-terminal domain 4WPM ; 2.4 ; Structure of the Chaetomium thermophilum Mex67:Mtr2 Complex 6DG4 ; 1.442 ; Structure of the Chaetomium thermophilum Ulp1-like SUMO protease catalytic domain 1PI7 ; ; Structure of the channel-forming trans-membrane domain of Virus protein ""u"" (Vpu) from HIV-1 1PI8 ; ; Structure of the channel-forming trans-membrane domain of Virus protein ""u"" (Vpu) from HIV-1 1PJE ; ; Structure of the channel-forming trans-membrane domain of Virus protein ""u""(Vpu) from HIV-1 6TMW ; 5.91 ; Structure of the chaperonin gp146 from the bacteriophage EL (Pseudomonas aeruginosa) in complex with ADP 6TMX ; 5.8 ; Structure of the chaperonin gp146 from the bacteriophage EL (Pseudomonas aeruginosa) in complex with ATPgammaS 6TMV ; 3.45 ; Structure of the chaperonin gp146 from the bacteriophage EL (Pseudomonas aeruginosa) in the apo state 3E9J ; 3.7 ; Structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB 6YMZ ; 2.3 ; Structure of the CheB methylsterase from P. atrosepticum SCRI1043 3RVP ; 2.404 ; Structure of the CheY-BeF3 Complex with substitutions at 59 and 89: N59D and E89K 3RVJ ; 2.1 ; Structure of the CheY-BeF3 Complex with substitutions at 59 and 89: N59D and E89Q 3RVL ; 1.55 ; Structure of the CheY-BeF3 Complex with substitutions at 59 and 89: N59D and E89R 3RVN ; 2.25 ; Structure of the CheY-BeF3 Complex with substitutions at 59 and 89: N59D and E89Y 3RVM ; 1.45 ; Structure of the CheY-Mn2+ Complex with substitutions at 59 and 89: N59D and E89R 3RVQ ; 1.15 ; Structure of the CheY-Mn2+ Complex with substitutions at 59 and 89: N59D E89K 3RVK ; 1.16 ; Structure of the CheY-Mn2+ Complex with substitutions at 59 and 89: N59D E89Q 3RVR ; 2.1 ; Structure of the CheYN59D/E89R Molybdate complex 3RVS ; 2.1 ; Structure of the CheYN59D/E89R Tungstate complex 4E0R ; 2.26 ; Structure of the chicken MHC class I molecule BF2*0401 4G43 ; 1.803 ; Structure of the chicken MHC class I molecule BF2*0401 complexed to P5E 4G42 ; 2.294 ; Structure of the Chicken MHC Class I Molecule BF2*0401 complexed to pepitde P8D 3TRK ; 2.397 ; Structure of the Chikungunya virus nsP2 protease 4KBQ ; 2.91 ; Structure of the CHIP-TPR domain in complex with the Hsc70 Lid-Tail domains 2LHS ; ; Structure of the chitin binding protein 21 (CBP21) 7BLY ; 1.81 ; Structure of the chitin deacetylase AngCDA from Aspergillus niger 2IW0 ; 1.81 ; Structure of the chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum 1DXJ ; 1.8 ; Structure of the chitinase from jack bean 6OF9 ; 3.0 ; Structure of the Chlamydamonas reinhardtii CamKII hub homology domain 6WA9 ; 4.62 ; Structure of the Chlamydia pneumoniae CdsV and CdsO protein complex 6WA6 ; 2.8 ; Structure of the Chlamydia pneumoniae CdsV protein 6YRL ; 2.343 ; Structure of the Chlamydomonas reinhardtii SAS-6 coiled-coil domain, C2 crystal form 6YRN ; 2.43 ; Structure of the Chlamydomonas reinhardtii SAS-6 coiled-coil domain, P2 crystal form 2IZ6 ; 1.6 ; Structure of the Chlamydomonas rheinhardtii Moco Carrier Protein 1RYN ; 1.75 ; Structure of the Chloroplast Group II Intron Splicing Factor CRS2 6ERI ; 3.0 ; Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor 5I9J ; 1.74 ; Structure of the cholesterol and lutein-binding domain of human STARD3 at 1.74A 2LBG ; ; Structure of the CHR of the Prion protein in DPC Micelles 1AP0 ; ; STRUCTURE OF THE CHROMATIN BINDING (CHROMO) DOMAIN FROM MOUSE MODIFIER PROTEIN 1, NMR, 26 STRUCTURES 6FTX ; 4.5 ; Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome 6JMW ; 1.85 ; Structure of the Chromium Protoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 3BO6 ; 1.4 ; Structure of the Chromobacterium violaceum VirA (SpvC) Phosphothreonine Lyase effector protein 4PLL ; 2.6 ; Structure of the chromodaomain of MRG2 in complex with H3K36me3 1GUW ; ; STRUCTURE OF THE CHROMODOMAIN FROM MOUSE HP1beta IN COMPLEX WITH THE LYSINE 9-METHYL HISTONE H3 N-TERMINAL PEPTIDE, NMR, 25 STRUCTURES 4PLI ; 1.651 ; Structure of the chromodomain of MRG2 in complex with H3K36me3 4PL6 ; 1.681 ; Structure of the chromodomain of MRG2 in complex with H3K4me3 1ZTU ; 2.5 ; Structure of the chromophore binding domain of bacterial phytochrome 6BAF ; 1.85 ; Structure of the chromophore binding domain of Stigmatella aurantiaca phytochrome P1, wild-type 3EB5 ; 2.0 ; Structure of the cIAP2 RING domain 3EB6 ; 3.4 ; Structure of the cIAP2 RING domain bound to UbcH5b 4FBJ ; 1.6 ; Structure of the Cif:Nedd8 complex - Photorhabdus luminescens Cycle Inhibiting Factor in complex with human Nedd8 4F8C ; 1.95 ; Structure of the Cif:Nedd8 complex - Yersinia pseudotuberculosis Cycle Inhibiting Factor in complex with human Nedd8 2ALJ ; ; Structure of the cis confomer of the major extracytoplasmic domain of the bacterial cell division protein divib from geobacillus stearothermophilus 6ZZF ; ; Structure of the cis-(Tyr39-Pro40) form of the Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) 8BGB ; 1.7 ; Structure of the citrate-bound extracytoplasmic PAS domain of histidine kinase CitA from Geobacillus thermodenitrificans 5MPT ; 1.648 ; Structure of the citrinin polyketide synthase CMeT domain 3KOT ; 1.9 ; Structure of the Citrobacter freundii effector binding domain containing three amino acid substitutions: T103V, S221A and Y264F 6HXO ; 1.5 ; Structure of the citryl-CoA lyase core module of Chlorobium limicola ATP citrate lyase (space group P21) 6HXN ; 1.7 ; Structure of the citryl-CoA lyase core module of Chlorobium limicola ATP citrate lyase (space group P3121) 6HXK ; 1.85 ; Structure of the citryl-CoA lyase core module of human ATP citrate lyase in complex with citrate 6HXL ; 1.35 ; Structure of the citryl-CoA lyase core module of human ATP citrate lyase in complex with citrate and CoASH (space group P21) 6HXM ; 1.3 ; Structure of the citryl-CoA lyase core module of human ATP citrate lyase in complex with citrate and CoASH in space group C2221 8T7G ; 2.0 ; Structure of the CK variant of Fab F1 (FabC-F1) 2FEE ; 3.2 ; Structure of the Cl-/H+ exchanger CLC-ec1 from E.Coli in NaBr 7V1N ; 3.2 ; Structure of the Clade 2 C. difficile TcdB in complex with its receptor TFPI 4L6R ; 3.3 ; Structure of the class B human glucagon G protein coupled receptor 3PCT ; 1.85 ; Structure of the class C acid phosphatase from Pasteurella multocida 3ISG ; 1.4 ; Structure of the class D beta-lactamase OXA-1 in complex with doripenem 1K6S ; 2.03 ; STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-10 IN COMPLEX WITH A PHENYLBORONIC ACID 1K6R ; 2.3 ; STRUCTURE OF THE CLASS D BETA-LACTAMASE OXA-10 IN COMPLEX WITH MOXALACTAM 4X53 ; 2.3 ; Structure of the class D Beta-Lactamase OXA-160 V130D in Acyl-Enzyme Complex with Aztreonam 4X56 ; 2.28 ; Structure of the class D Beta-Lactamase OXA-160 V130D in Acyl-Enzyme Complex with Ceftazidime 4X55 ; 1.941 ; Structure of the class D Beta-Lactamase OXA-225 K82D in Acyl-Enzyme Complex with Ceftazidime 4F94 ; 2.4 ; Structure of the Class D Beta-Lactamase OXA-24 K84D in Acyl-Enzyme Complex with Oxacillin 5WPK ; 2.3 ; Structure of the class II 3-hydroxy-3-methylglutaryl-CoA reductase from Streptococcus pneumoniae bound to HMG-CoA and in a partially closed conformation 5WPJ ; 2.0 ; Structure of the class II 3-hydroxy-3-methylglutaryl-CoA reductase from Streptococcus pneumoniae bound to NADPH in open conformations 7JS3 ; 2.4 ; Structure of the Class II Fructose-1,6-Bisphophatase from Francisella tularensis 8G5W ; 2.0 ; Structure of the Class II Fructose-1,6-Bisphophatase from Francisella tularensis complexed with native metal cofactor Mn++ 7TXA ; 2.4 ; Structure of the Class II Fructose-1,6-Bisphophatase from Francisella tularensis complexed with native metal cofactor Mn++ and product F6P 8G5X ; 2.2 ; Structure of the Class II Fructose-1,6-Bisphophatase from Francisella tularensis complexed with native metal cofactor Mn++ and substrate Fructose-1,6-Bisphosphate 7TXB ; 3.71 ; Structure of the Class II Fructose-1,6-Bisphophatase from Mycobacterium tuberculosis complexed with substrate F1,6BP 7TXG ; 1.9 ; Structure of the Class II Fructose-1,6-Bisphosphatase from Francisella tularensis with native Mn++ divalent cation and partially occupied product F6P 4KJQ ; 2.875 ; Structure of the CLC-ec1 deltaNC construct in 100mM fluoride 4KJW ; 3.03 ; Structure of the CLC-ec1 deltaNC construct in 100mM fluoride and 20mM bromide 4KK5 ; 3.171 ; Structure of the CLC-ec1 deltaNC construct in 20mM fluoride and 20mM bromide 4KJP ; 3.2 ; Structure of the CLC-ec1 deltaNC construct in the absence of halide 4GIP ; 2.0 ; Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 (PIV5) fusion protein 6BJ5 ; 2.5 ; Structure of the Clinically used Myxomaviral Serine Protease Inhibitor 1 (SERP-1) 6SKZ ; 3.4 ; Structure of the closed conformation of CtTel1 6V1S ; 3.8 ; Structure of the Clostridioides difficile transferase toxin 1GZE ; 2.7 ; Structure of the Clostridium botulinum C3 exoenzyme (L177C mutant) 1GZF ; 1.95 ; Structure of the Clostridium botulinum C3 exoenzyme (wild-type) in complex with NAD 4AXJ ; 1.62 ; Structure of the Clostridium difficile EutM protein 4AXO ; 1.0 ; Structure of the Clostridium difficile EutQ protein 4AXI ; 1.51 ; Structure of the Clostridium difficile EutS protein 4I0W ; 1.6 ; Structure of the Clostridium Perfringens CspB protease 7MFK ; 2.13 ; Structure of the Clostridium perfringens GH89 in complex with alpha-HNJNAc 7MFL ; 2.0 ; Structure of the Clostridium perfringens GH89 in complex with beta-HNJNAc 2CBI ; 2.25 ; Structure of the Clostridium perfringens NagJ family 84 glycoside hydrolase, a homologue of human O-GlcNAcase 2CBJ ; 2.35 ; Structure of the Clostridium perfringens NagJ family 84 glycoside hydrolase, a homologue of human O-GlcNAcase in complex with PUGNAc 4P15 ; 1.85 ; Structure of the ClpC N-terminal domain from an alkaliphilic Bacillus lehensis G1 species 3Q7H ; 2.5 ; Structure of the ClpP subunit of the ATP-dependent Clp Protease from Coxiella burnetii 6TTZ ; 2.2 ; Structure of the ClpP:ADEP4-complex from Staphylococcus aureus (open state) 7PZA ; 2.72 ; Structure of the Clr-cAMP-DNA complex 7PZB ; 3.12 ; Structure of the Clr-cAMP-DNA complex 3GBZ ; 1.85 ; Structure of the CMGC CDK Kinase from Giardia lamblia 3GC0 ; 2.0 ; Structure of the CMGC CDK Kinase from Giardia lamblia in complex with AMP 3UNG ; 2.31 ; Structure of the Cmr2 subunit of the CRISPR RNA silencing complex 3UR3 ; 2.405 ; Structure of the Cmr2 subunit of the CRISPR RNA silencing complex 4H4K ; 2.804 ; Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA-silencing complex 1NH4 ; ; Structure of the coat protein in fd filamentous bacteriophage particles 6JVC ; 1.75 ; Structure of the Cobalt Protoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 1K1E ; 1.67 ; Structure Of the cobalt-bound form of the deoxy-D-mannose-octulosonate 8-phosphate phosphatase (YrbI) From Haemophilus Influenzae (HI1679) 1MAT ; 2.4 ; STRUCTURE OF THE COBALT-DEPENDENT METHIONINE AMINOPEPTIDASE FROM ESCHERICHIA COLI: A NEW TYPE OF PROTEOLYTIC ENZYME 8GSI ; 2.02 ; Structure of the cobolimab Fab 3CF4 ; 2.0 ; Structure of the CODH component of the M. barkeri ACDS complex 1CCW ; 1.6 ; STRUCTURE OF THE COENZYME B12 DEPENDENT ENZYME GLUTAMATE MUTASE FROM CLOSTRIDIUM COCHLEARIUM 1ROP ; 1.7 ; STRUCTURE OF THE COL*E1 ROP PROTEIN AT 1.7 ANGSTROMS RESOLUTION 2V27 ; 1.5 ; Structure of the cold active phenylalanine hydroxylase from Colwellia psychrerythraea 34H 6BPQ ; 4.1 ; Structure of the cold- and menthol-sensing ion channel TRPM8 3L6W ; 4.0 ; Structure of the collar functional unit (KLH1-H) of keyhole limpet hemocyanin 7QG8 ; 3.97 ; Structure of the collided E. coli disome - VemP-stalled 70S ribosome 2BE1 ; 2.983 ; Structure of the compact lumenal domain of yeast Ire1 8COH ; 1.3 ; Structure of the complement C5 specific nanobody TPP-3444 3BK7 ; 2.8 ; Structure of the complete ABCE1/RNAase-L Inhibitor protein from Pyrococcus abysii 4WFL ; 2.49 ; Structure of the complete bacterial SRP Alu domain 4WFM ; 3.1 ; Structure of the complete bacterial SRP Alu domain 6RFL ; 2.76 ; Structure of the complete Vaccinia DNA-dependent RNA polymerase complex 1AKE ; 2.0 ; STRUCTURE OF THE COMPLEX BETWEEN ADENYLATE KINASE FROM ESCHERICHIA COLI AND THE INHIBITOR AP5A REFINED AT 1.9 ANGSTROMS RESOLUTION: A MODEL FOR A CATALYTIC TRANSITION STATE 1GL1 ; 2.1 ; structure of the complex between bovine alpha-chymotrypsin and PMP-C, an inhibitor from the insect Locusta migratoria 1GL0 ; 3.0 ; structure of the complex between bovine alpha-chymotrypsin and PMP-D2v, an inhibitor from the insect Locusta migratoria 2YSU ; 3.5 ; Structure of the complex between BtuB and Colicin E2 receptor binding domain 1UJW ; 2.75 ; Structure of the complex between BtuB and Colicin E3 Receptor binding domain 2MGU ; ; Structure of the complex between calmodulin and the binding domain of HIV-1 matrix protein 2YIN ; 2.7 ; STRUCTURE OF THE COMPLEX BETWEEN Dock2 AND Rac1. 2WMN ; 2.391 ; Structure of the complex between DOCK9 and Cdc42-GDP. 2WM9 ; 2.2 ; Structure of the complex between DOCK9 and Cdc42. 2WMO ; 2.2 ; Structure of the complex between DOCK9 and Cdc42. 4IZ5 ; 3.19 ; Structure of the complex between ERK2 phosphomimetic mutant and PEA-15 7NE1 ; 3.15 ; Structure of the complex between Netrin-1 and its receptor Neogenin 3T6G ; 2.5 ; Structure of the complex between NSP3 (SHEP1) and p130Cas 1RJL ; 2.6 ; Structure of the complex between OspB-CT and bactericidal Fab-H6831 4BD9 ; 2.2 ; Structure of the complex between SmCI and human carboxypeptidase A4 8ED4 ; 2.25 ; Structure of the complex between the arsenite oxidase and its native electron acceptor cytochrome c552 from Pseudorhizobium sp. str. NT-26 4L96 ; 2.38 ; Structure of the complex between the F360L PPARgamma mutant and the ligand LT175 (space group I222) 4ASW ; ; Structure of the complex between the N-terminal dimerisation domain of Sgt2 and the UBL domain of Get5 1TSI ; 2.84 ; STRUCTURE OF THE COMPLEX BETWEEN TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE AND N-HYDROXY-4-PHOSPHONO-BUTANAMIDE: BINDING AT THE ACTIVE SITE DESPITE AN ""OPEN"" FLEXIBLE LOOP 1SV3 ; 1.35 ; Structure of the complex formed between Phospholipase A2 and 4-methoxybenzoic acid at 1.3A resolution. 5CDB ; 1.7 ; Structure of the complex of a bimolecular human telomeric DNA with a 13-diphenylalkyl Berberine derivative 4P1D ; 1.55 ; Structure of the complex of a bimolecular human telomeric DNA with Coptisine 1QGC ; 30.0 ; STRUCTURE OF THE COMPLEX OF A FAB FRAGMENT OF A NEUTRALIZING ANTIBODY WITH FOOT AND MOUTH DISEASE VIRUS 2F6D ; 1.6 ; Structure of the complex of a glucoamylase from Saccharomycopsis fibuligera with acarbose 5CCW ; 1.89 ; Structure of the complex of a human telomeric DNA with Au(caffein-2-ylidene)2 6H5R ; 2.0 ; Structure of the complex of a human telomeric DNA with bis(1-butyl-3-methyl-imidazole-2-ylidene) gold(I) 3H4S ; 2.4 ; Structure of the complex of a mitotic kinesin with its calcium binding regulator 7RZA ; 4.26 ; Structure of the complex of AMPA receptor GluA2 with auxiliary subunit GSG1L bound to agonist quisqualate 7RZ9 ; 4.15 ; Structure of the complex of AMPA receptor GluA2 with auxiliary subunit GSG1L in the apo state 7RZ6 ; 4.4 ; Structure of the complex of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to agonist glutamate 7RZ7 ; 4.2 ; Structure of the complex of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to agonist Quisqualate 7RZ4 ; 3.6 ; Structure of the complex of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to competitive antagonist ZK 200775 3R6R ; 2.4 ; Structure of the complex of an intramolecular human telomeric DNA with Berberine formed in K+ solution 2V17 ; 1.65 ; Structure of the complex of antibody MN423 with a fragment of tau protein 3DL8 ; 7.5 ; Structure of the complex of aquifex aeolicus SecYEG and bacillus subtilis SecA 3BXI ; 2.3 ; Structure of the complex of bovine lactoperoxidase with its catalyzed product hypothiocyanate ion at 2.3A resolution 3IB2 ; 2.29 ; structure of the complex of C-terminal half (C-lobe) of bovine lactoferrin with alpha-methyl-4-(2-methylpropyl) benzene acetic acid 2NWJ ; 2.25 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with disaccharide at 1.75 A resolution 2DS9 ; 2.8 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with mannose at 2.8 A resolution 2OCU ; 2.38 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with N-(4-hydroxyphenyl) acetamide at 2.38 A resolution 2DWJ ; 2.3 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with raffinose at 2.3 A resolution 2DXY ; 2.03 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with trehalose at 2.0 A resolution 2DSF ; 2.8 ; Structure of the complex of C-terminal lobe of bovine lactoferrin with xylose at 2.8A resolution 1MXE ; 1.7 ; Structure of the Complex of Calmodulin with the Target Sequence of CaMKI 7XU8 ; 2.15 ; Structure of the complex of camel peptidoglycan recognition protein-short (PGRP-S) with heptanoic acid at 2.15 A resolution. 2VMD ; 1.9 ; Structure of the complex of discoidin II from Dictyostelium discoideum with beta-methyl-galactose 2VMC ; 1.9 ; Structure of the complex of discoidin II from Dictyostelium discoideum with N-acetyl-galactosamine 5JPM ; 3.75 ; Structure of the complex of human complement C4 with MASP-2 rebuilt using iMDFF 6WH1 ; 2.4 ; Structure of the complex of human DNA ligase III-alpha and XRCC1 BRCT domains 4ZQK ; 2.45 ; Structure of the complex of human programmed death-1 (PD-1) and its ligand PD-L1. 1WHS ; 2.0 ; STRUCTURE OF THE COMPLEX OF L-BENZYLSUCCINATE WITH WHEAT SERINE CARBOXYPEPTIDASE II AT 2.0 ANGSTROMS RESOLUTION 1WHT ; 2.0 ; STRUCTURE OF THE COMPLEX OF L-BENZYLSUCCINATE WITH WHEAT SERINE CARBOXYPEPTIDASE II AT 2.0 ANGSTROMS RESOLUTION 1LCC ; ; STRUCTURE OF THE COMPLEX OF LAC REPRESSOR HEADPIECE AND AN 11 BASE-PAIR HALF-OPERATOR DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS 1LCD ; ; STRUCTURE OF THE COMPLEX OF LAC REPRESSOR HEADPIECE AND AN 11 BASE-PAIR HALF-OPERATOR DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS 2DYX ; 2.0 ; Structure of the complex of lactoferrin C-lobe with melibiose at 2.0 A resolution 2DWA ; 2.07 ; Structure of the complex of lactoferrin C-terminal half with fucose at 2.07 A resolution 7WYJ ; 1.89 ; Structure of the complex of lactoperoxidase with nitric oxide catalytic product nitrite at 1.89 A resolution 7RYZ ; 4.15 ; Structure of the complex of LBD-TMD part of AMPA receptor GluA2 with auxiliary subunit GSG1L bound to agonist quisqualate 7RYY ; 4.4 ; Structure of the complex of LBD-TMD part of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to agonist glutamate 7RZ8 ; 4.1 ; Structure of the complex of LBD-TMD part of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to agonist quisqualate 7RZ5 ; 3.3 ; Structure of the complex of LBD-TMD part of AMPA receptor GluA2 with auxiliary subunit TARP gamma-5 bound to competitive antagonist ZK 200775 2GF3 ; 1.3 ; Structure of the complex of monomeric sarcosine with its substrate analogue inhibitor 2-furoic acid at 1.3 A resolution. 2DPZ ; 2.1 ; Structure of the complex of phospholipase A2 with N-(4-hydroxyphenyl)- acetamide at 2.1 A resolution 1UVO ; 1.85 ; Structure Of The Complex Of Porcine Pancreatic Elastase In Complex With Cadmium Refined At 1.85 A Resolution (Crystal A) 1UVP ; 1.85 ; Structure Of The Complex Of Porcine Pancreatic Elastase In Complex With Cadmium Refined At 1.85 A Resolution (Crystal B) 1PEK ; 2.2 ; STRUCTURE OF THE COMPLEX OF PROTEINASE K WITH A SUBSTRATE-ANALOGUE HEXA-PEPTIDE INHIBITOR AT 2.2 ANGSTROMS RESOLUTION 2ATE ; 1.8 ; Structure of the complex of PurE with NitroAIR 2WR6 ; 1.8 ; Structure of the complex of RBP4 with linoleic acid 7VE3 ; 2.7 ; Structure of the complex of sheep lactoperoxidase with hypoiodite at 2.70 A resolution 4U7I ; 1.794 ; Structure of the complex of Spartin MIT and IST1 MIM 3SGB ; 1.8 ; STRUCTURE OF THE COMPLEX OF STREPTOMYCES GRISEUS PROTEASE B AND THE THIRD DOMAIN OF THE TURKEY OVOMUCOID INHIBITOR AT 1.8 ANGSTROMS RESOLUTION 4SGB ; 2.1 ; STRUCTURE OF THE COMPLEX OF STREPTOMYCES GRISEUS PROTEINASE B AND POLYPEPTIDE CHYMOTRYPSIN INHIBITOR-1 FROM RUSSET BURBANK POTATO TUBERS AT 2.1 ANGSTROMS RESOLUTION 2V98 ; 3.0 ; Structure of the complex of TcAChE with 1-(2-nitrophenyl)-2,2,2- trifluoroethyl-arsenocholine after a 9 seconds annealing to room temperature, during the first 5 seconds of which laser irradiation at 266nm took place 2LPB ; ; Structure of the complex of the central activation domain of Gcn4 bound to the mediator co-activator domain 1 of Gal11/med15 4BFI ; 3.22 ; Structure of the complex of the extracellular portions of mouse CD200R and mouse CD200 6H41 ; 2.75 ; Structure of the complex of the IL-5 inhibitory peptide AF17121 bound to the IL-5 receptor IL-5Ralpha 1E91 ; ; Structure of the complex of the Mad1-Sin3B interaction domains 4GI1 ; 2.43 ; Structure of the complex of three phase partition treated lipase from Thermomyces lanuginosa with 16-hydroxypalmitic acid at 2.4 A resolution 1YHL ; 1.95 ; Structure of the complex of Trypanosoma cruzi farnesyl diphosphate synthase with risedronate, dmapp and mg+2 1YHM ; 2.5 ; Structure of the complex of Trypanosoma cruzi farnesyl disphosphate synthase with alendronate, Isopentenyl diphosphate and mg+2 5CSO ; 1.78 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with a nucleoside, cytidine at 1.78 A resolution 5CST ; 1.78 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with a nucleotide, cytidine diphosphate at 1.78 A resolution 4ZU0 ; 1.8 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with a nucleotide, cytidine monophosphate at 1.80 A resolution 4ZZ6 ; 2.0 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with a nucleotide, cytidine triphosphate at 2.0A resolution 4ZT8 ; 1.98 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with a pyrimidine base, cytosine at 1.98 A resolution 4RZJ ; 1.98 ; Structure of the complex of type 1 ribosome inactivating protein from Momordica balsamina with N-acetylglucosamine at 1.98 Angstrom resolution using crystals grown in different conditions 5CIX ; 1.88 ; Structure of the complex of type 1 Ribosome inactivating protein with triethanolamine at 1.88 Angstrom resolution 2MRO ; ; Structure of the complex of ubiquitin and the UBA domain from DNA-damage-inducible 1 protein (Ddi1) 2MWS ; ; Structure of the complex of ubiquitin and the ubiquitin-like (UBL) domain of Ddi1 4U7Y ; 2.502 ; Structure of the complex of VPS4B MIT and IST1 MIM 1TJ9 ; 1.1 ; Structure of the complexed formed between group II phospholipase A2 and a rationally designed tetra peptide,Val-Ala-Arg-Ser at 1.1A resolution 2ZW3 ; 3.5 ; Structure of the connexin-26 gap junction channel at 3.5 angstrom resolution 2K7M ; ; Structure of the Connexin40 Carboxyl terminal Domain 1UT4 ; 2.5 ; Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors 1UT7 ; 1.9 ; Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors 2V1L ; 2.13 ; Structure of the conserved hypothetical protein VC1805 from pathogenicity island VPI-2 of Vibrio cholerae O1 biovar eltor str. N16961 shares structural homology with the human P32 protein 2OBB ; 2.2 ; Structure of the conserved protein coded by locus BT_0820 from Bacteroides thetaiotaomicron 1YOX ; 2.3 ; Structure of the conserved Protein of Unknown Function PA3696 from Pseudomonas aeruginosa 5FG0 ; 2.41 ; Structure of the conserved yeast listerin (Ltn1) N-terminal domain, MONOCLINIC FORM 5FG1 ; 2.55 ; Structure of the conserved yeast listerin (Ltn1) selenomethionine-substituted N-terminal domain, TRIGONAL FORM 5URX ; 28.0 ; Structure of the contracted type VI secretion system sheath in Myxococcus xanthus 4HJI ; 1.6 ; Structure of the CooA pilin subunit from enterotoxigenic Escherichia coli 1I1Q ; 1.9 ; STRUCTURE OF THE COOPERATIVE ALLOSTERIC ANTHRANILATE SYNTHASE FROM SALMONELLA TYPHIMURIUM 2IEF ; 2.601 ; Structure of the cooperative Excisionase (Xis)-DNA complex reveals a micronucleoprotein filament 4UIG ; 2.0 ; Structure of the copper sensitive operon repressor from Streptomyces lividans at pH6 6Q6B ; 1.9 ; Structure of the copper storage protein, Ccsp, from Streptomyces lividans loaded with 10 copper equivalents 4A8X ; 1.9 ; Structure of the core ASAP complex 2K9L ; ; Structure of the Core Binding Domain of sigma54 2K9M ; ; Structure of the Core Binding Domain of sigma54 6QBM ; 2.5 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S200A 6QBQ ; 2.35 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S200A S203A 6QBN ; 2.4 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S200D 6QBR ; 2.15 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S200D, S203D 6QBO ; 2.75 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S203A 6QBP ; 2.4 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - mutant S203D 5J1B ; 2.5 ; structure of the core domaine of Knr4, an intrinsically disordered protein from Saccharomyces cerevisiae - WT. 4WEB ; 2.4 ; Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2 7MWX ; 3.32 ; Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2 with tamarin CD81 4MEW ; 1.993 ; Structure of the core fragment of human PR70 2LKL ; ; Structure of the core intracellular domain of PfEMP1 7AO9 ; 6.1 ; Structure of the core MTA1/HDAC1/MBD2 NURD deacetylase complex 6S3L ; 3.2 ; Structure of the core of the flagellar export apparatus from Vibrio mimicus, the FliPQR-FlhB complex. 5LJ3 ; 3.8 ; Structure of the core of the yeast spliceosome immediately after branching 7S94 ; 2.0 ; Structure of the core postfusion porcine endogenous retrovirus fusion protein 6R6B ; 3.5 ; Structure of the core Shigella flexneri type III secretion system export gate complex SctRST (Spa24/Spa9/Spa29). 6RO4 ; 3.5 ; Structure of the core TFIIH-XPA-DNA complex 6RIC ; 2.8 ; Structure of the core Vaccinia Virus DNA-dependent RNA polymerase complex 3HR6 ; 1.6 ; Structure of the Corynebacterium diphtheriae major pilin SpaA points to a modular pilus assembly stabilizing isopeptide bonds 3HTL ; 1.8 ; Structure of the Corynebacterium diphtheriae major pilin SpaA points to a modular pilus assembly with stabilizing isopeptide bonds 1JWB ; 2.1 ; Structure of the Covalent Acyl-Adenylate Form of the MoeB-MoaD Protein Complex 4XTD ; 2.05 ; Structure of the covalent intermediate E-XMP* of the IMP dehydrogenase of Ashbya gossypii 2CIT ; 1.4 ; Structure of the covalent intermediate of a family 26 lichenase 5MGA ; 3.0 ; Structure of the Cpf1 endonuclease R-loop complex after DNA cleavage 7XSQ ; 2.88 ; Structure of the Craspase 2VXB ; 2.3 ; Structure of the Crb2-BRCT2 domain 2VXC ; 3.1 ; Structure of the Crb2-BRCT2 domain complex with phosphopeptide. 5L3W ; 2.4 ; Structure of the crenarchaeal FtsY GTPase bound to GDP 5L3V ; 2.3 ; Structure of the crenarchaeal SRP54 GTPase bound to GDP 6W2T ; 3.36 ; Structure of the Cricket Paralysis Virus 5-UTR IRES (CrPV 5-UTR-IRES) bound to the small ribosomal subunit in the closed state (Class 2) 6W2S ; 3.47 ; Structure of the Cricket Paralysis Virus 5-UTR IRES (CrPV 5-UTR-IRES) bound to the small ribosomal subunit in the open state (Class 1) 4AKL ; 2.1 ; Structure of the Crimean-Congo Haemorrhagic Fever Virus Nucleocapsid Protein 2PIJ ; 1.7 ; Structure of the Cro protein from prophage Pfl 6 in Pseudomonas fluorescens Pf-5 3BD1 ; 1.4 ; Structure of the Cro protein from putative prophage element Xfaso 1 in Xylella fastidiosa strain Ann-1 7AXQ ; 1.562 ; Structure of the cryo-trapped WDR5:CS-VIP8 cocrystal after illumination at 405 nm and 180 K 7LU8 ; ; Structure of the cryptic HMA domain of the human copper transporter ATP7A 1ROB ; 1.6 ; STRUCTURE OF THE CRYSTALLINE COMPLEX OF CYTIDYLIC ACID (2'-CMP) WITH RIBONUCLEASE AT 1.6 ANGSTROMS RESOLUTION 1RCA ; 1.9 ; STRUCTURE OF THE CRYSTALLINE COMPLEX OF DEOXYCYTIDYLYL-3',5'-GUANOSINE (3',5'-DCPDG) CO-CRYSTALISED WITH RIBONUCLEASE AT 1.9 ANGSTROMS RESOLUTION. RETROBINDING IN PANCREATIC RNASEA IS INDEPENDENT OF MODE OF INHIBITOR INTROMISSION 3EUD ; 2.4 ; Structure of the CS domain of the essential H/ACA RNP assembly protein Shq1p 1WA5 ; 2.0 ; Structure of the Cse1:Imp-alpha:RanGTP complex 5IC9 ; 3.7 ; Structure of the CTD complex of Utp12 and Utp13 5ICA ; 3.507 ; Structure of the CTD complex of UTP12, Utp13, Utp1 and Utp21 5MDT ; 1.62 ; Structure of the CTD-interacting domain (CID) of Seb1 from S. pombe. 2QDV ; 0.89 ; Structure of the Cu(II) form of the M51A mutant of amicyanin 2MYX ; ; Structure of the CUE domain of yeast Cue1 1LDD ; 2.0 ; Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF Ubiquitin Ligase Complex 1LDJ ; 3.0 ; Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF Ubiquitin Ligase Complex 1LDK ; 3.1 ; Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF Ubiquitin Ligase Complex 2WZK ; 2.05 ; Structure of the Cul5 N-terminal domain at 2.05A resolution. 6SI7 ; 3.4 ; Structure of the curli secretion-assembly complex CsgG:CsgF 4UV2 ; 2.8 ; Structure of the curli transport lipoprotein CsgG in a non-lipidated, pre-pore conformation 4UV3 ; 3.59 ; Structure of the curli transport lipoprotein CsgG in its membrane- bound conformation 7RAG ; 2.4 ; Structure of the CwlD amidase from Clostridioides difficile in complex with the GerS lipoprotein 2LL2 ; ; Structure of the Cx43 C-terminal domain bound to tubulin 5OX9 ; 1.56 ; Structure of the Cyan Fluorescent Protein SCFP3A at pH 4.5 1DW1 ; 1.9 ; STRUCTURE OF THE CYANIDE COMPLEX OF SHP, AN OXYGEN BINDING CYTOCHROME C 3S5X ; 1.65 ; Structure of the cyanobacterial Oscillatoria Agardhii Agglutinin (OAA) in complex with a3,a6 mannopentaose 3S5V ; 1.55 ; Structure of the cyanobacterial Oscillatoria Agardhii Agglutinin (OAA) in free state obtained at -180 degrees Celsius 3S60 ; 1.6 ; Structure of the cyanobacterial Oscillatoria Agardhii Agglutinin (OAA) in free state obtained at 25 degree Celsius 8CMY ; 3.79 ; Structure of the Cyanobium sp. PCC 7001 determined with C1 symmetry 3ZSU ; 1.6 ; Structure of the CyanoQ protein from Thermosynechococcus elongatus 5T13 ; 2.19 ; Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel 2AJW ; ; Structure of the cyclic conotoxin MII-6 4NVP ; 2.5 ; Structure of the cyclic nucleotide-binding domain of HCN4 channel complexed with 7-CH-cAMP 2N7G ; ; Structure of the cyclic nucleotide-binding homology domain of the hERG channel 3EFY ; 1.7 ; Structure of the Cyclomodulin Cif from Pathogenic Escherichia coli 2HQ6 ; 1.75 ; Structure of the Cyclophilin_CeCYP16-Like Domain of the Serologically Defined Colon Cancer Antigen 10 from Homo Sapiens 1TPY ; 2.2 ; Structure of the cyclopropane synthase MmaA2 from Mycobacterium tuberculosis 6VVG ; 2.01 ; Structure of the Cydia pomonella Granulovirus kinase, PK-1 2VHF ; 2.8 ; Structure of the CYLD USP domain 7WY4 ; 1.45 ; Structure of the CYP102A1 F87A Haem Domain with N-Enanthyl-L-Prolyl-L-Phenylalanine in complex with Styrene 7CX6 ; 1.69 ; Structure of the CYP102A1 Haem Domain with N-(5-Cyclohexyl)valeroyl-L-Phenylalanine in complex with (R)-(+)-1-Phenylethylamine 7CP8 ; 1.68 ; Structure of the CYP102A1 Haem Domain with N-(5-Cyclohexyl)valeroyl-L-Phenylalanine in complex with (R)-1-Indanylamine 7CX8 ; 1.7 ; Structure of the CYP102A1 Haem Domain with N-(5-Cyclohexyl)valeroyl-L-Phenylalanine in complex with (R)-1-Tetralylamine 6JO1 ; 2.1 ; Structure of the CYP102A1 Haem Domain with N-(S)-Ibuprofenoyl-L-Phenylalanine 7E46 ; 1.91 ; Structure of the CYP102A1 Haem Domain with N-Carboxybenzyl-L-Prolyl-L-Phenylalanine in complex with (S)-(-)-1-Phenylethylamine 7D0T ; 1.74 ; Structure of the CYP102A1 Haem Domain with N-Carboxybenzyl-L-Prolyl-L-Phenylalanine in complex with (S)-1-Indanylamine 7CVR ; 1.6 ; Structure of the CYP102A1 Haem Domain with N-Carboxybenzyl-L-Prolyl-L-Phenylalanine in complex with (S)-1-Tetralylamine 7COO ; 1.49 ; Structure of the CYP102A1 Haem Domain with N-Carboxybenzyl-L-Prolyl-L-Phenylalanine in complex with Cyclohexylamine 6JS8 ; 1.36 ; Structure of the CYP102A1 Haem Domain with N-Dehydroabietoyl-L-Tryptophan 6K58 ; 1.41 ; Structure of the CYP102A1 Haem Domain with N-Enanthyl-L-Prolyl-L-Phenylalanine 7D0U ; 1.68 ; Structure of the CYP102A1 Haem Domain with N-enanthyl-L-prolyl-L-phenylalanine in complex with Ethylamine 7D1F ; 1.45 ; Structure of the CYP102A1 Haem Domain with N-enanthyl-L-prolyl-L-phenylalanine in complex with Methylamine 7CZI ; 1.64 ; Structure of the CYP102A1 Haem Domain with N-{2-[4-(Trifluoromethoxy)phenoxy]}acetoyl-L-Phenylalanine 7CKN ; 1.55 ; Structure of the CYP102A1 Haem Domain with N-{2-[4-(Trifluoromethoxy)phenoxy]}acetoyl-L-Phenylalanine in complex with Isopropylamine 7CON ; 1.46 ; Structure of the CYP102A1 Haem Domain with N-{2-[4-(Trifluoromethoxy)phenoxy]}acetoyl-L-Phenylalanine in complex with n-Propylamine 1SP7 ; ; Structure of the Cys-rich C-terminal domain of Hydra minicollagen 4D03 ; 1.81 ; Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state 4D04 ; 1.75 ; Structure of the Cys65Asp mutant of phenylacetone monooxygenase: reduced state 3KXR ; 2.41 ; Structure of the cystathionine beta-synthase pair domain of the putative Mg2+ transporter SO5017 from Shewanella oneidensis MR-1. 6ZOP ; ; Structure of the cysteine-rich domain of PiggyMac, a domesticated PiggyBac transposase involved in programmed genome rearrangements 6MM1 ; 1.9 ; Structure of the cysteine-rich region from human EHMT2 3TQO ; 2.3 ; Structure of the cysteinyl-tRNA synthetase (cysS) from Coxiella burnetii. 2LCV ; ; Structure of the Cytidine Repressor DNA-Binding Domain; an alternate calculation 1Q90 ; 3.1 ; Structure of the cytochrome b6f (plastohydroquinone : plastocyanin oxidoreductase) from Chlamydomonas reinhardtii 1LS9 ; 1.3 ; Structure of the Cytochrome c6 from the Green Alga Cladophora glomerata 7AYX ; 2.53 ; Structure of the cytochrome P450 AryC from Streptomyces roseosporus NRRL 15998 2UYY ; 2.5 ; Structure of the cytokine-like nuclear factor n-pac 4PN6 ; 3.0 ; Structure of the Cytomegalovirus-Encoded m04 Glycoprotein 1EXB ; 2.1 ; STRUCTURE OF THE CYTOPLASMIC BETA SUBUNIT-T1 ASSEMBLY OF VOLTAGE-DEPENDENT K CHANNELS 5NBG ; 2.15 ; Structure of the cytoplasmic domain I of OutF in the D. dadantii type II secretion system 3A5I ; 2.8 ; Structure of the cytoplasmic domain of FlhA 3MYD ; 2.4 ; Structure of the Cytoplasmic domain of FlhA from Helicobacter pylori 6UID ; 1.45 ; Structure of the cytoplasmic domain of the T3SS sorting platform protein PscD from P. aeruginosa 6UIE ; 2.55 ; Structure of the cytoplasmic domain of the T3SS sorting platform protein PscK from P. aeruginosa 5FQ1 ; 1.76 ; Structure of the cytoplasmic PAS domain of the Geobacillus thermodenitrificans histidine kinase CitA 3JZ3 ; 2.5 ; Structure of the cytoplasmic segment of histidine kinase QseC 1TO4 ; 1.55 ; Structure of the cytosolic Cu,Zn SOD from S. mansoni 1TO5 ; 2.2 ; Structure of the cytosolic Cu,Zn SOD from S. mansoni 5X1U ; 1.8 ; Structure of the cytosolic domain of DotM derived from Legionella pneumophila 3I8X ; 2.25 ; Structure of the cytosolic domain of E. coli FeoB, GDP-bound form 3I92 ; 3.0 ; Structure of the cytosolic domain of E. coli FeoB, GppCH2p-bound form 3I8S ; 1.8 ; Structure of the cytosolic domain of E. coli FeoB, nucleotide-free form 8OQH ; 1.76 ; Structure of the cytosolic domain of lysosome-associated TMEM55B 4A4Y ; 1.57 ; Structure of the Cytosolic Domain of the Shigella T3SS component MxiG 1RK8 ; 1.9 ; Structure of the cytosolic protein PYM bound to the Mago-Y14 core of the exon junction complex 3TQT ; 1.88 ; Structure of the D-alanine-D-alanine ligase from Coxiella burnetii 2XF8 ; 2.95 ; Structure of the D-Erythrose-4-Phosphate Dehydrogenase from E. coli in complex with a NAD cofactor analog (3-Chloroacetyl adenine pyridine dinucleotide) and sulfate anion 1LK5 ; 1.75 ; Structure of the D-Ribose-5-Phosphate Isomerase from Pyrococcus horikoshii 4V6W ; 6.0 ; Structure of the D. melanogaster 80S ribosome 5OK2 ; 1.1 ; Structure of the D10N mutant of beta-phosphoglucomutase from Lactococcus lactis inhibited with glucose 6-phosphate and tetrafluoroaluminate to 1.1A resolution. 5OK0 ; 2.15 ; Structure of the D10N mutant of beta-phosphoglucomutase from Lactococcus lactis trapped with native reaction intermediate beta-glucose 1,6-bisphosphate to 2.2A resolution. 4RSD ; 1.6 ; STRUCTURE OF THE D121A VARIANT OF RIBONUCLEASE A 3RSD ; 1.6 ; STRUCTURE OF THE D121N VARIANT OF RIBONUCLEASE A 6ZBM ; 1.47 ; Structure of the D125N mutant of the catalytic domain of the Bacillus circulans alpha-1,6 Mannanase in complex with an alpha-1,6-alpha-manno-cyclophellitol carbasugar-stabilised trisaccharide inhibitor 6ZBW ; 1.4 ; Structure of the D125N mutant of the catalytic domain of the Bacillus circulans alpha-1,6 Mannanase in complex with an alpha-1,6-alpha-manno-cyclophellitol trisaccharide inhibitor 3O6Z ; 2.05 ; Structure of the D152A E.coli GDP-mannose hydrolase (yffh) in complex with Mg++ 1LL6 ; 2.8 ; STRUCTURE OF THE D169N MUTANT OF C. IMMITIS CHITINASE 1 1E0Y ; 2.75 ; Structure of the D170S/T457E double mutant of vanillyl-alcohol oxidase 1QWS ; 1.9 ; Structure of the D181N variant of catalase HPII from E. coli 2Y6E ; 2.4 ; Structure of the D1D2 domain of USP4, the conserved catalytic domain 6CM4 ; 2.867 ; Structure of the D2 Dopamine Receptor Bound to the Atypical Antipsychotic Drug Risperidone 2B4P ; 1.81 ; Structure of the D223N mutant of Selenomonas ruminantium PTP-like phytase 1U5O ; 2.5 ; Structure of the D23A mutant of the nuclear transport carrier NTF2 1Z4Q ; 2.05 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with 2',3'-dideoxy-2',3-didehydrothymidine 5'-monophosphate (d4T-MP) 1Z4P ; 2.0 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with deoxyriboguanosine 5'-monophosphate 1Z4I ; 1.98 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with deoxyribouridine 5'-monophosphate 1Z4K ; 1.75 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with thymidine 3'-monophosphate 1Z4L ; 1.8 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with thymidine 5'-monophosphate 1Z4J ; 1.8 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with uridine 2'-monophosphate 1Z4M ; 1.7 ; Structure of the D41N variant of the human mitochondrial deoxyribonucleotidase in complex with uridine 5'-monophosphate 1IBU ; 3.1 ; STRUCTURE OF THE D53,54N MUTANT OF HISTIDINE DECARBOXYLASE AT 25 C 1IBT ; 2.6 ; STRUCTURE OF THE D53,54N MUTANT OF HISTIDINE DECARBOXYLASE AT-170 C 1IBW ; 3.2 ; STRUCTURE OF THE D53,54N MUTANT OF HISTIDINE DECARBOXYLASE BOUND WITH HISTIDINE METHYL ESTER AT 25 C 1IBV ; 2.5 ; STRUCTURE OF THE D53,54N MUTANT OF HISTIDINE DECARBOXYLASE BOUND WITH HISTIDINE METHYL ESTER AT-170 C 1P5X ; 2.0 ; STRUCTURE OF THE D55N MUTANT OF PHOSPHOLIPASE C FROM BACILLUS CEREUS 1P6D ; 2.0 ; STRUCTURE OF THE D55N MUTANT OF PHOSPHOLIPASE C FROM BACILLUS CEREUS IN COMPLEX WITH (3S)-3,4,DI-N-HEXANOYLOXYBUTYL-1-PHOSPHOCHOLINE 1P6E ; 2.3 ; STRUCTURE OF THE D55N MUTANT OF PHOSPHOLIPASE C FROM BACILLUS CEREUS IN COMPLEX WITH 1,2-DI-N-PENTANOYL-SN-GLYCERO-3-DITHIOPHOSPHOCHOLINE 1MGY ; 2.0 ; Structure of the D85S mutant of bacteriorhodopsin with bromide bound 3BIN ; 2.3 ; Structure of the DAL-1 and TSLC1 (372-383) complex 6Z26 ; 2.32 ; Structure of the Danio rerio SAS-6 coiled-coil domain 2L34 ; ; Structure of the DAP12 transmembrane homodimer 2L35 ; ; Structure of the DAP12-NKG2C transmembrane heterotrimer 6TAP ; 3.5 ; Structure of the dArc1 capsid 6TAQ ; 3.9 ; Structure of the dArc2 capsid 5DKK ; 2.5 ; Structure of the dark-state monomer of the blue light photoreceptor Aureochrome 1a LOV from P. tricornutum 7NRI ; 3.03 ; Structure of the darobactin-bound E. coli BAM complex (BamABCDE) 6CFZ ; 4.5 ; Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface 2K29 ; ; Structure of the DBD domain of E. coli antitoxin RelB 5Z5K ; 2.493 ; Structure of the DCC-Draxin complex 5MSN ; 2.002 ; Structure of the Dcc1 Protein 5MSM ; 2.29 ; Structure of the Dcc1-Ctf8-Ctf18C Trimer 8WQR ; 3.08 ; Structure of the DDB1-AMBRA1 E3 ligase receptor complex linked to cell cycle regulation 4CI2 ; 2.95 ; Structure of the DDB1-CRBN E3 ubiquitin ligase bound to lenalidomide 4CI3 ; 3.5 ; Structure of the DDB1-CRBN E3 ubiquitin ligase bound to Pomalidomide 4CI1 ; 2.98 ; Structure of the DDB1-CRBN E3 ubiquitin ligase bound to thalidomide 6H0G ; 4.25 ; Structure of the DDB1-CRBN-pomalidomide complex bound to ZNF692(ZF4) 3ZOS ; 1.92 ; Structure of the DDR1 kinase domain in complex with ponatinib 2G9N ; 2.25 ; Structure of the DEAD domain of Human eukaryotic initiation factor 4A, eIF4A 8CNT ; 1.9 ; Structure of the DEAH-box helicase Prp16 in complex with ADP 4B0R ; 2.6 ; Structure of the Deamidase-Depupylase Dop of the Prokaryotic Ubiquitin-like Modification Pathway 5LRT ; 1.85 ; Structure of the Deamidase-Depupylase Dop of the Prokaryotic Ubiquitin-like Modification Pathway in Complex with ADP and Phosphate 4B0S ; 2.85 ; Structure of the Deamidase-Depupylase Dop of the Prokaryotic Ubiquitin-like Modification Pathway in Complex with ATP 5LG6 ; 2.5 ; Structure of the deglycosylated porcine aminopeptidase N ectodomain 5NJI ; 1.6 ; Structure of the dehydratase domain of PpsC from Mycobacterium tuberculosis in complex with C12:1-CoA 7SYS ; 3.5 ; Structure of the delta dII IRES eIF2-containing 48S initiation complex, closed conformation. Structure 12(delta dII). 7SYX ; 3.7 ; Structure of the delta dII IRES eIF5B-containing 48S initiation complex, closed conformation. Structure 15(delta dII) 7SYU ; 4.6 ; Structure of the delta dII IRES w/o eIF2 48S initiation complex, closed conformation. Structure 13(delta dII) 4EJ4 ; 3.4 ; Structure of the delta opioid receptor bound to naltrindole 2QF0 ; 2.5 ; Structure of the delta PDZ truncation of the DegS protease 2QF3 ; 2.04 ; Structure of the delta PDZ truncation of the DegS protease 1R6A ; 2.6 ; Structure of the dengue virus 2'O methyltransferase in complex with s-adenosyl homocysteine and ribavirin 5' triphosphate 1VTR ; 1.04 ; STRUCTURE OF THE DEOXYTETRANUCLEOTIDE D-PAPTPAPT AND A SEQUENCE-DEPENDENT MODEL FOR POLY(DA-DT) 7V6B ; 3.3 ; Structure of the Dicer-2-R2D2 heterodimer 7V6C ; 3.3 ; Structure of the Dicer-2-R2D2 heterodimer bound to small RNA duplex 5U3G ; 2.3 ; Structure of the Dickeya dadantii ykkC riboswitch bound to guanidinium 7PXO ; 1.95 ; Structure of the Diels Alderase enzyme AbyU, from Micromonospora maris, co-crystallised with a non transformable substrate analogue 3TQB ; 2.4 ; Structure of the dihydrofolate reductase (folA) from Coxiella burnetii in complex with folate 3TQ9 ; 2.3 ; Structure of the dihydrofolate reductase (folA) from Coxiella burnetii in complex with methotrexate 3TQA ; 2.3 ; Structure of the dihydrofolate reductase (folA) from Coxiella burnetii in complex with NADPH 3TQ8 ; 1.9 ; Structure of the dihydrofolate reductase (folA) from Coxiella burnetii in complex with trimethoprim 7QRF ; 2.28 ; Structure of the dimeric complex between precursor membrane ectodomain (prM) and envelope protein ectodomain (E) from tick-borne encephalitis virus 8K53 ; 3.8 ; Structure of the Dimeric Human CNTN2 Ig 1-6-FNIII 1-2 Domain in an Asymmetric State 1JYF ; 3.0 ; Structure of the Dimeric Lac Repressor with an 11-residue C-terminal Deletion. 1JWL ; 4.0 ; Structure of the Dimeric lac Repressor/Operator O1/ONPF Complex 8BGL ; 2.0 ; Structure of the dimeric rsCherryRev1.4 8PEK ; ; Structure of the dimeric, periplasmic domain of ExbD 3L32 ; 1.5 ; Structure of the dimerisation domain of the rabies virus phosphoprotein 2MJ2 ; ; Structure of the dimerization domain of the human polyoma, JC virus agnoprotein is an amphipathic alpha-helix. 1M23 ; ; STRUCTURE OF THE DIMERIZED CYTOPLASMIC DOMAIN OF P23 IN SOLUTION 1P23 ; ; STRUCTURE OF THE DIMERIZED CYTOPLASMIC DOMAIN OF P23 IN SOLUTION, NMR, 10 STRUCTURES 3TQS ; 1.98 ; Structure of the dimethyladenosine transferase (ksgA) from Coxiella burnetii 4ILT ; 2.55 ; Structure of the dioxygenase domain of SACTE_2871, a novel dioxygenase carbohydrate-binding protein fusion from the cellulolytic bacterium Streptomyces sp. SirexAA-E 4ILV ; 2.06 ; Structure of the dioxygenase domain of SACTE_2871, a novel dioxygenase carbohydrate-binding protein fusion from the cellulolytic bacterium Streptomyces sp. SirexAA-E 4REV ; 1.95 ; Structure of the dirigent protein DRR206 2WN2 ; 1.82 ; Structure of the discoidin I from Dictyostelium discoideum in complex with galactose beta 1-3 galNAc at 1.8 A resolution. 2W95 ; 1.75 ; STructure of the Discoidin I from Dictyostelium discoideum in complex with GalNAc at 1.75 angstrom resolution 5FZP ; 1.7 ; Structure of the dispase autolysis inducing protein from Streptomyces mobaraensis 3MMC ; 2.04 ; Structure of the dissimilatory sulfite reductase from Archaeoglobus fulgidus 5NC1 ; 2.0 ; Structure of the distal domain of mouse adenovirus 2 fibre bound to N-acetyl-glucosamine 5N83 ; 2.76 ; Structure of the distal domain of mouse adenovirus 2 fibre, methylmercury chloride derivative 5N8D ; 1.8 ; Structure of the distal domain of mouse adenovirus 2 fibre, P21 native 5NBH ; 1.7 ; Structure of the distal domain of mouse adenovirus 2 fibre, P212121 native 8CP7 ; 1.9 ; Structure of the disulfide-locked substrate binding protein HiSiaP. 5OAK ; 1.5 ; Structure of the dmPar3 PDZ1 domain in complex with the dmPar6 PBM 6IYA ; 3.0 ; Structure of the DNA binding domain of antitoxin CopASO 8CSH ; 2.25 ; Structure of the DNA binding domain of pSK1 Par partition protein bound to centromere DNA 1J9I ; ; STRUCTURE OF THE DNA BINDING DOMAIN OF THE GPNU1 SUBUNIT OF LAMBDA TERMINASE 1T2K ; 3.0 ; Structure Of The DNA Binding Domains Of IRF3, ATF-2 and Jun Bound To DNA 2AS5 ; 2.7 ; Structure of the DNA binding domains of NFAT and FOXP2 bound specifically to DNA. 1A02 ; 2.7 ; STRUCTURE OF THE DNA BINDING DOMAINS OF NFAT, FOS AND JUN BOUND TO DNA 4CO8 ; 1.05 ; Structure of the DNA binding ETS domain of human ETV4 4UUV ; 2.8 ; Structure of the DNA binding ETS domain of human ETV4 in complex with DNA 2AF1 ; 3.1 ; Structure of the DNA coiled-coil formed by d(CGATATATATAT) 2LEV ; ; Structure of the DNA complex of the C-Terminal domain of Ler 2MXF ; ; Structure of the DNA complex of the C-Terminal domain of MvaT 5LIT ; 1.25 ; Structure of the DNA duplex d(AAATTT)2 with the potential antiparasitic drug 6XV at 1.25 A resolution 6GIM ; 1.43 ; Structure of the DNA duplex d(AAATTT)2 with [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2- yl)amino)benzamide] - (drug JNI18) 4U9M ; 3.13 ; Structure of the DNA duplex d(ATTAAT)2 with Hoogsteen hydrogen bonds 243D ; 1.9 ; STRUCTURE OF THE DNA OCTANUCLEOTIDE D(ACGTACGT)2 1OQY ; ; Structure of the DNA repair protein hHR23a 1D3Y ; 2.0 ; STRUCTURE OF THE DNA TOPOISOMERASE VI A SUBUNIT 2GPE ; 1.9 ; Structure of the DNA-binding domain of E. Coli Proline Utilization A (PUTA) 5FO5 ; 2.16 ; Structure of the DNA-binding domain of Escherichia coli methionine biosynthesis regulator MetR 5LXU ; 2.14 ; Structure of the DNA-binding domain of LUX ARRHYTHMO 7NB0 ; 2.1 ; Structure of the DNA-binding domain of SEPALLATA 3 4U88 ; 2.355 ; Structure of the DNA-Binding Domain of the Response Regulator SaeR from Staphylococcus aureus 8A2Q ; 3.53 ; Structure of the DNA-bound FANCD2-FANCI complex containing phosphomimetic FANCI 4A04 ; 2.58 ; Structure of the DNA-bound T-box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome 1DD9 ; 1.6 ; STRUCTURE OF THE DNAG CATALYTIC CORE 1DDE ; 1.7 ; STRUCTURE OF THE DNAG CATALYTIC CORE 3B39 ; 2.35 ; Structure of the DnaG primase catalytic domain bound to ssDNA 7CLY ; 1.432 ; Structure of the DOCK8 DHR-1 domain crystallized with di-C8-phosphatidylinositol-(4,5)-bisphosphate 5B6P ; 2.0 ; Structure of the dodecameric type-II dehydrogenate dehydratase from Acinetobacter baumannii at 2.00 A resolution 3MCA ; 2.74 ; Structure of the Dom34-Hbs1 Complex and implications for its role in No-Go decay 3IZQ ; 9.5 ; Structure of the Dom34-Hbs1-GDPNP complex bound to a translating ribosome 5YS2 ; 2.698 ; Structure of the domain IV(D_IV) of Pseudorabies virus glycoprotein B( PRV gB) 5LZK ; 1.575 ; Structure of the domain of unknown function DUF1669 from human FAM83B 5UC3 ; 2.009 ; Structure of the dominant negative mutant Glucocorticoid Receptor alpha (L733K/N734P) complexed with RU-486 1C74 ; 1.9 ; Structure of the double mutant (K53,56M) of phospholipase A2 1NU0 ; 1.6 ; Structure of the double mutant (L6M; F134M, SeMet form) of yqgF from Escherichia coli, a hypothetical protein 4P0Y ; 1.4 ; Structure of the double stranded DNA binding type IV secretion protein TraN from Enterococcus 4P0Z ; 1.35 ; Structure of the double stranded DNA binding type IV secretion protein TraN from Enterococcus 4PM3 ; 1.8 ; Structure of the double-stranded DNA binding type IV secretion protein TraN from Enterococcus 1QU6 ; ; STRUCTURE OF THE DOUBLE-STRANDED RNA-BINDING DOMAIN OF THE PROTEIN KINASE PKR REVEALS THE MOLECULAR BASIS OF ITS DSRNA-MEDIATED ACTIVATION 4MNH ; 3.3 ; Structure of the DP10.7 TCR 4MNG ; 3.0058 ; Structure of the DP10.7 TCR with CD1d-sulfatide 4V4L ; 6.9 ; Structure of the Drosophila apoptosome 5EUP ; 2.5 ; Structure of the Drosophila melanogaster CP190 BTB domain 7MWY ; 1.84 ; Structure of the drosophila STING cyclic dinucleotide binding domain 4Q47 ; 2.899 ; Structure of the DrRecQ Catalytic Core in complex with ADP 2B6M ; 2.65 ; Structure of the DsbA mutant (P31A-C33A) 2B3S ; 1.96 ; structure of the DSBA mutant (P31G-C33A) 1OHG ; 3.45 ; STRUCTURE OF THE DSDNA BACTERIOPHAGE HK97 MATURE EMPTY CAPSID 3CQ2 ; 1.9 ; Structure of the DTDP-4-Keto-L-Rhamnose Reductase related protein (other form) from Thermus Thermophilus HB8 3CQ3 ; 2.1 ; Structure of the DTDP-4-Keto-L-Rhamnose Reductase related protein (other form) from Thermus Thermophilus HB8 3CQ1 ; 1.9 ; Structure of the DTDP-4-Keto-L-Rhamnose Reductase related protein (TT1362) from Thermus Thermophilus HB8 7PWH ; 1.9 ; Structure of the dTDP-sugar epimerase StrM 7PWI ; 1.326 ; Structure of the dTDP-sugar epimerase StrM 7UCG ; 3.5 ; Structure of the DU422 SOSIP.664 trimer in complex with neutralizing antibody Fab fragments 10-1074 and BG24 2RIO ; 2.4 ; Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation of non-conventional splicing 2LG0 ; ; structure of the duplex containing (5'S)-8,5'-cyclo-2'-deoxyadenosine 2LG3 ; ; Structure of the duplex containing HNE derived (6S,8R,11S) gamma-HO-PdG when placed opposite dT 2LG2 ; ; Structure of the duplex containing HNE derived (6S,8R,11S) N2-dG cyclic hemiacetal when placed opposite dT 2LFY ; ; Structure of the duplex when (5'S)-8,5'-cyclo-2'-deoxyguanosine is placed opposite dA 2LFX ; ; Structure of the duplex when (5'S)-8,5'-cyclo-2'-deoxyguanosine is placed opposite dT 3PPA ; 2.35 ; Structure of the Dusp-Ubl domains of Usp15 6SC2 ; 3.9 ; Structure of the dynein-2 complex; IFT-train bound model 6RLA ; 3.9 ; Structure of the dynein-2 complex; motor domains 6RLB ; 4.5 ; Structure of the dynein-2 complex; tail domain 5J8A ; 3.1 ; Structure of the E coli 70S ribosome with the U1052G mutation in 16S rRNA bound to tigecycline 5J88 ; 3.32 ; Structure of the E coli 70S ribosome with the U1060A mutation in 16S rRNA 4N7B ; 2.198 ; Structure of the E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate reductase from Plasmodium falciparum 1GA0 ; 1.6 ; STRUCTURE OF THE E. CLOACAE GC1 BETA-LACTAMASE WITH A CEPHALOSPORIN SULFONE INHIBITOR 3J5L ; 6.6 ; Structure of the E. coli 50S subunit with ErmBL nascent chain 3J7Z ; 3.9 ; Structure of the E. coli 50S subunit with ErmCL nascent chain 1LB2 ; 3.1 ; Structure of the E. coli alpha C-terminal domain of RNA polymerase in complex with CAP and DNA 3O9X ; 2.0999 ; Structure of the E. coli antitoxin MqsA (YgiT/b3021) in complex with its gene promoter 4XB6 ; 1.7 ; Structure of the E. coli C-P lyase core complex 2WMP ; 2.3 ; Structure of the E. coli chaperone PapD in complex with the pilin domain of the PapGII adhesin 3ME0 ; 2.03 ; Structure of the E. coli chaperone PAPD in complex with the pilin domain of the PapGII adhesin 8VAQ ; 3.8 ; Structure of the E. coli clamp loader bound to the beta clamp in a Closed-DNA1 conformation 8VAR ; 3.9 ; Structure of the E. coli clamp loader bound to the beta clamp in a Closed-DNA2 conformation 8VAP ; 3.0 ; Structure of the E. coli clamp loader bound to the beta clamp in a Fully-Open conformation 8VAL ; 3.7 ; Structure of the E. coli clamp loader bound to the beta clamp in a Open-DNAp/t conformation 8VAT ; 3.2 ; Structure of the E. coli clamp loader bound to the beta clamp in a Open-RNAp/t conformation 8VAM ; 3.9 ; Structure of the E. coli clamp loader bound to the beta clamp in a Semi-Open conformation 8VAS ; 3.8 ; Structure of the E. coli clamp loader bound to the beta clamp in an Altered-Collar conformation 8VAN ; 7.7 ; Structure of the E. coli clamp loader bound to the beta clamp in an Initial-Binding conformation 1V74 ; 2.0 ; Structure of the E. coli colicin D bound to its immunity protein ImmD 2O1C ; 1.8 ; Structure of the E. coli dihydroneopterin triphosphate pyrophosphohydrolase 2O5W ; 2.6 ; Structure of the E. coli dihydroneopterin triphosphate pyrophosphohydrolase in complex with Sm+3 and pyrophosphate 7QGH ; 4.48 ; Structure of the E. coli disome - collided 70S ribosome 2GT2 ; 2.0 ; Structure of the E. coli GDP-mannose mannosyl hydrolase 2PYU ; 2.02 ; Structure of the E. coli inosine triphosphate pyrophosphatase RgdB in complex with IMP 2Q16 ; 1.95 ; Structure of the E. coli inosine triphosphate pyrophosphatase RgdB in complex with ITP 1XS0 ; 1.58 ; Structure of the E. coli Ivy protein 5LJ9 ; 2.3 ; Structure of the E. coli MacB ABC domain (C2221) 5LJA ; 2.4 ; Structure of the E. coli MacB ABC domain (P6122) 5LJ8 ; 1.95 ; Structure of the E. coli MacB periplasmic domain (P21) 4ADV ; 13.5 ; Structure of the E. coli methyltransferase KsgA bound to the E. coli 30S ribosomal subunit 5HBU ; 2.6 ; Structure of the E. coli nucleoid occlusion protein SlmA bound to DNA and the C-terminal tail of the cytoskeletal cell division protein FtsZ 1PSU ; 2.2 ; Structure of the E. coli PaaI protein from the phyenylacetic acid degradation operon 2FS2 ; 2.0 ; Structure of the E. coli PaaI protein from the phyenylacetic acid degradation operon 1ZVT ; 1.7 ; Structure of the E. coli ParC C-terminal domain 4Q65 ; 3.4 ; Structure of the E. coli Peptide Transporter YbgH 2IDO ; 2.1 ; Structure of the E. coli Pol III epsilon-Hot proofreading complex 3GN5 ; 2.15 ; Structure of the E. coli protein MqsA (YgiT/b3021) 7SQN ; 2.25 ; Structure of the E. coli PutA proline dehydrogenase domain (residues 86-630) complexed with (2S)-oxetane-2-carboxylic acid 7MWT ; 2.19 ; Structure of the E. coli PutA proline dehydrogenase domain (residues 86-630) complexed with 1,1-Cyclobutanedicarboxylate 7MWU ; 1.69 ; Structure of the E. coli PutA proline dehydrogenase domain (residues 86-630) complexed with cyclobutanecarboxylic acid 7MWV ; 1.69 ; Structure of the E. coli PutA proline dehydrogenase domain (residues 86-630) complexed with cyclopropanecarboxylic acid 2FZN ; 2.0 ; Structure of the E. coli PutA proline dehydrogenase domain reduced by dithionite and complexed with proline 2FZM ; 2.3 ; Structure of the E. coli PutA proline dehydrogenase domain reduced by dithionite and complexed with SO2 1ML5 ; 14.0 ; Structure of the E. coli ribosomal termination complex with release factor 2 4V66 ; 9.0 ; Structure of the E. coli ribosome and the tRNAs in Post-accommodation state 4V65 ; 9.0 ; Structure of the E. coli ribosome in the Pre-accommodation state 2IY3 ; 16.0 ; Structure of the E. Coli Signal Regognition Particle 2YHS ; 1.6 ; Structure of the E. coli SRP receptor FtsY 3SXU ; 1.85 ; Structure of the E. coli SSB-DNA polymerase III interface 2MX1 ; ; Structure of the E. coli Threonylcarbamoyl-AMP Synthase TSAC 2VRH ; 19.0 ; Structure of the E. coli trigger factor bound to a translating ribosome 4Q2M ; 1.489 ; Structure of the E. coli YajR Transporter YAM Domain Combined Iodine 1H3D ; 2.7 ; STRUCTURE OF THE E.COLI ATP-PHOSPHORIBOSYLTRANSFERASE 8PAY ; 1.21 ; Structure of the E.coli DNA polymerase sliding clamp with a covalently bound peptide 2. 8PAT ; 1.45 ; Structure of the E.coli DNA polymerase sliding clamp with a covalently bound peptide 3. 3OAA ; 3.26 ; Structure of the E.coli F1-ATP synthase inhibited by subunit Epsilon 3O52 ; 2.5 ; Structure of the E.coli GDP-mannose hydrolase (yffh) in complex with tartrate 3O61 ; 2.45 ; Structure of the E100A E.coli GDP-mannose hydrolase (yffh) in complex with GDP-mannose and Mg++ 3O69 ; 2.1 ; Structure of the E100A E.coli GDP-mannose hydrolase (yffh) in complex with Mg++ 4BXQ ; 1.9 ; Structure of the E1021V mutant of the TCP10 domain of Danio rerio CPAP 7KPP ; 1.45 ; Structure of the E102A mutant of a GNAT superfamily PA3944 acetyltransferase 2KOY ; ; Structure of the E1064A mutant of the N-domain of Wilson Disease Associated Protein 4KKL ; 2.85 ; Structure of the E148A mutant of CLC-ec1 delta NC construct in 100mM fluoride 4KKA ; 3.0 ; Structure of the E148A mutant of CLC-ec1 deltaNC construct in 100mM fluoride and 20mM Bromide 4KK9 ; 2.997 ; Structure of the E148A mutant of CLC-ec1 deltaNC construct in 100mM fluoride and 2mM Bromide 4KKC ; 3.18 ; Structure of the E148A mutant of CLC-ec1 deltaNC construct in 20mM Bromide 4KKB ; 3.021 ; Structure of the E148A mutant of CLC-ec1 deltaNC construct in 20mM fluoride and 20mM Bromide 3DET ; 2.8 ; Structure of the E148A, Y445A doubly ungated mutant of E.coli CLC_Ec1, Cl-/H+ antiporter 4KK8 ; 2.86 ; Structure of the E148Q mutant of CLC-ec1 deltaNC construct in 100mM fluoride 4LOU ; 2.981 ; Structure of the E148Q mutant of CLC-ec1 deltaNC construct in the absence of halide 1LL7 ; 2.0 ; STRUCTURE OF THE E171Q MUTANT OF C. IMMITIS CHITINASE 1 2XFW ; 1.65 ; Structure of the E192N mutant of E. coli N-acetylneuraminic acid lyase in complex with pyruvate in crystal form III 2WNZ ; 1.85 ; Structure of the E192N mutant of E. coli N-acetylneuraminic acid lyase in complex with pyruvate in space group P21 crystal form I 2WNQ ; 1.8 ; Structure of the E192N mutant of E. coli N-acetylneuraminic acid lyase in space group P21 3B9B ; 2.65 ; Structure of the E2 beryllium fluoride complex of the SERCA Ca2+-ATPase 6GV3 ; 1.201 ; Structure of the E2 conjugating enzyme, SCE1, from Arabidopsis thaliana. 6LSC ; 3.21 ; Structure of the E202Y mutant of the Cl-/H+ antiporter CLC-ec1 from E.coli: a re-refined model of the 4FTP model 2FEC ; 3.967 ; Structure of the E203Q mutant of the Cl-/H+ exchanger CLC-ec1 from E.Coli 2FED ; 3.317 ; Structure of the E203Q mutant of the Cl-/H+ exchanger CLC-ec1 from E.Coli 3EI0 ; 3.5 ; Structure of the E221A mutant of the Gloebacter violaceus pentameric ligand gated ion channnel (GLIC) 2YDP ; 1.85 ; Structure of the E242A mutant of the alpha-l-arabinofuranosidase arb93a from fusarium graminearum in complex with an iminosugar inhibitor 4WUO ; 2.05 ; Structure of the E270A Mutant Isopropylmalate dehydrogenase from Thermus thermophilus in complex with IPM, Mn and NADH 5W4P ; 2.19 ; Structure of the E28A mutant of the HIV-1 capsid protein 7P47 ; 3.314 ; Structure of the E3 ligase Smc5/Nse2 in complex with Ubc9-SUMO thioester mimetic 4PEX ; 1.75 ; Structure of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with glucose 4PF0 ; 1.75 ; Structure of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminarihexaose 4PEZ ; 1.9 ; Structure of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminaritetraose 4PEY ; 1.5 ; Structure of the E502A variant of sacteLam55A from Streptomyces sp. SirexAA-E in complex with laminaritriose 5N2H ; 2.81 ; Structure of the E9 DNA polymerase exonuclease deficient mutant (D166A+E168A) from vaccinia virus 5N2E ; 2.74 ; Structure of the E9 DNA polymerase from vaccinia virus 5N2G ; 2.78 ; Structure of the E9 DNA polymerase from vaccinia virus in complex with manganese 8OPR ; 1.811 ; Structure of the EA1 surface layer of Bacillus anthracis 5MWN ; 2.2 ; Structure of the EAEC T6SS component TssK N-terminal domain in complex with llama nanobodies nbK18 and nbK27 4LLO ; 1.995 ; Structure of the eag domain-CNBHD complex of the mouse EAG1 channel 8ARV ; 1.9 ; Structure of the EAL domain of BifA from Pseudomonas aeruginosa 5T42 ; ; Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity 3FKE ; 1.4 ; Structure of the Ebola VP35 Interferon Inhibitory Domain 3VNE ; 2.0 ; Structure of the ebolavirus protein VP24 from Sudan 3VNF ; 2.1 ; Structure of the ebolavirus protein VP24 from Sudan 6Z20 ; 2.68 ; Structure of the EC2 domain of CD9 in complex with nanobody 4C8 6Z1V ; 1.33 ; Structure of the EC2 domain of CD9 in complex with nanobody 4E8 4HLU ; 2.7003 ; Structure of the EcfA-A' heterodimer bound to ADP 8PAE ; 1.2 ; Structure of the ectodomain of Atypical Porcine Pestivirus E2 at 1.2A resolution 4BSU ; 3.2 ; Structure of the ectodomain of LGR5 in complex with R-spondin-1 (Fu1Fu2) in C2 crystal form 4BSS ; 3.2 ; Structure of the ectodomain of LGR5 in complex with R-spondin-1 (Fu1Fu2) in P21 crystal form 4BSR ; 3.2 ; Structure of the ectodomain of LGR5 in complex with R-spondin-1 (Fu1Fu2) in P22121 crystal form 4BST ; 4.3 ; Structure of the ectodomain of LGR5 in complex with R-spondin-1 (Fu1Fu2) in P6122 crystal form 4UFR ; 2.2 ; Structure of the ectodomain of LGR5 in complex with R-spondin-2 (Fu1Fu2) 5YS6 ; 3.1 ; Structure of the ectodomain of pseudorabies virus glycoproten B 5U8R ; 3.00002 ; Structure of the ectodomain of the human Type 1 insulin-like growth factor receptor 5U8Q ; 3.27104 ; Structure of the ectodomain of the human Type 1 insulin-like growth factor receptor in complex with IGF-I 1ZM4 ; 2.9 ; Structure of the eEF2-ETA-bTAD complex 3B8H ; 2.5 ; Structure of the eEF2-ExoA(E546A)-NAD+ complex 3B82 ; 2.35 ; Structure of the eEF2-ExoA(E546H)-NAD+ complex 3B78 ; 2.5 ; Structure of the eEF2-ExoA(R551H)-NAD+ complex 2ZIT ; 3.0 ; Structure of the eEF2-ExoA-NAD+ complex 4J32 ; 1.8 ; Structure of the effector - immunity system Tae4 / Tai4 from Salmonella typhimurium 4J30 ; 2.3 ; Structure of the effector - immunity system Tae4 / Tai4 from Salmonella typhimurium, selenomethionine variant 4FGI ; 3.2 ; Structure of the effector - immunity system Tse1 / Tsi1 from Pseudomonas aeruginosa 5FIA ; 1.75 ; Structure of the effector protein LpiR1 (Lpg0634) from Legionella pneumophila 5JG4 ; 2.4 ; Structure of the effector protein LpiR1 (Lpg0634) from Legionella pneumophila 5UFK ; 2.3 ; Structure of the effector protein SidK (lpg0968) from Legionella pneumophila 5UF5 ; 2.4 ; Structure of the effector protein SidK (lpg0968) from Legionella pneumophila (domain-swapped dimer) 4FGE ; 1.7 ; Structure of the effector protein Tse1 from Pseudomonas aeruginosa 4FGD ; 2.6 ; Structure of the effector protein Tse1 from Pseudomonas aeruginosa, selenomethionine variant 3TB6 ; 2.21 ; Structure of the effector-binding domain of arabinose repressor AraR from Bacillus subtilis 4OQQ ; 1.8 ; Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis 4OQP ; 1.6 ; Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis in complex with deoxyribose-5-phosphate 1FSB ; ; STRUCTURE OF THE EGF DOMAIN OF P-SELECTIN, NMR, 19 STRUCTURES 1APQ ; ; STRUCTURE OF THE EGF-LIKE MODULE OF HUMAN C1R, NMR, 19 STRUCTURES 5DFT ; 2.5 ; Structure of the Eleventh Type III Domain from Human Fibronectin 7A5G ; 4.33 ; Structure of the elongating human mitoribosome bound to mtEF-Tu.GMPPCP and A/T mt-tRNA 4X33 ; 1.45 ; Structure of the Elongator cofactor complex Kti11/Kti13 at 1.45A 3PZT ; 1.97 ; Structure of the endo-1,4-beta-glucanase from Bacillus subtilis 168 with manganese(II) ion 7B2L ; 3.9 ; Structure of the endocytic adaptor complex AENTH 2Q7Y ; 1.95 ; Structure of the endogenous iNKT cell ligand iGb3 bound to mCD1d 1UP0 ; 1.75 ; Structure of the endoglucanase Cel6 from Mycobacterium tuberculosis in complex with cellobiose at 1.75 angstrom 1UP2 ; 1.9 ; Structure of the endoglucanase Cel6 from Mycobacterium tuberculosis in complex with glucose-isofagomine at 1.9 angstrom 1UP3 ; 1.6 ; Structure of the endoglucanase Cel6 from Mycobacterium tuberculosis in complex with METHYL-CELLOBIOSYL-4-DEOXY-4-THIO-BETA-D-CELLOBIOSIDE at 1.6 angstrom 1UOZ ; 1.1 ; Structure of the endoglucanase Cel6 from Mycobacterium tuberculosis in complex with thiocellopentaose at 1.1 angstrom 4XST ; 3.0 ; Structure of the endoglycosidase-H treated L1-CR domains of the human insulin receptor in complex with residues 697-719 of the human insulin receptor (A-isoform) 8ONG ; ; Structure of the endothelial monocyte activating polypeptide II (EMAP II) in solution 3RQO ; 2.08 ; Structure of the endothelial nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((1S,2R/1R,2S)-2-(3-Clorophenyl)cyclopropylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3RQP ; 2.35 ; Structure of the endothelial nitric oxide synthase heme domain in complex with 6-{[(3R,4R)-4-(2-{[(2R/2S)-1-(3-fluorophenyl)propan-2-yl]amino}ethoxy)pyrrolidin-3-yl]methyl}-4-methylpyridin-2-amine 3JAJ ; 3.75 ; Structure of the engaged state of the mammalian SRP-ribosome complex 6TF8 ; 1.903 ; Structure of the engineered artificial aldolase I133F RA95.5-8F with a bound substrate, pentan-2-one 6YPI ; 1.479 ; Structure of the engineered metallo-Diels-Alderase DA7 W16G,K58Q,L77R,T78R 7BWW ; 1.5 ; Structure of the engineered metallo-Diels-Alderase DA7 W16S 5OD1 ; 1.34 ; Structure of the engineered metalloesterase MID1sc10 complexed with a phosphonate transition state analogue 5OD9 ; 1.13 ; Structure of the engineered metalloesterase MID1sc9 4A29 ; 1.1 ; Structure of the engineered retro-aldolase RA95.0 4A2S ; 1.4 ; Structure of the engineered retro-aldolase RA95.5 4A2R ; 1.302 ; Structure of the engineered retro-aldolase RA95.5-5 5AOU ; 1.1 ; Structure of the engineered retro-aldolase RA95.5-8F apo 6TFA ; 2.163 ; Structure of the engineered retro-aldolase RA95.5-8F F112L 5AN7 ; 1.1 ; Structure of the engineered retro-aldolase RA95.5-8F with a bound 1,3-diketone inhibitor 4EWJ ; 2.403 ; structure of the enloase from Streptococcus suis serotype 2 3ZU3 ; 1.802 ; Structure of the enoyl-ACP reductase FabV from Yersinia pestis with the cofactor NADH (MR, cleaved Histag) 3ZU2 ; 2.1 ; Structure of the enoyl-ACP reductase FabV from Yersinia pestis with the cofactor NADH (SIRAS) 3ZU4 ; 2.01 ; Structure of the enoyl-ACP reductase FabV from Yersinia pestis with the cofactor NADH and the 2-pyridone inhibitor PT172 3ZU5 ; 2.0 ; Structure of the enoyl-ACP reductase FabV from Yersinia pestis with the cofactor NADH and the 2-pyridone inhibitor PT173 4TRO ; 1.4 ; Structure of the enoyl-ACP reductase of Mycobacterium tuberculosis InhA, inhibited with the active metabolite of isoniazid 7LJL ; 1.45 ; Structure of the Enterobacter cloacae CD-NTase CdnD in complex with ATP 2C2A ; 1.9 ; Structure of the entire cytoplasmic portion of a sensor histidine kinase protein 5AYH ; 3.011 ; Structure of the entire dynein stalk region 3WUQ ; 3.5 ; Structure of the entire stalk region of the dynein motor domain 5XEB ; 2.497 ; Structure of the envelope glycoprotein of Dhori virus 4ETW ; 2.05 ; Structure of the Enzyme-ACP Substrate Gatekeeper Complex Required for Biotin Synthesis 4XEG ; 1.72 ; Structure of the enzyme-product complex resulting from TDG action on a G/hmU mismatch 5CYS ; 2.45 ; Structure of the enzyme-product complex resulting from TDG action on a GcaC mismatch 4Z7B ; 2.02 ; Structure of the enzyme-product complex resulting from TDG action on a GfC mismatch 4Z7Z ; 1.83 ; Structure of the enzyme-product complex resulting from TDG action on a GT mismatch in the presence of excess base 4Z47 ; 1.45 ; Structure of the enzyme-product complex resulting from TDG action on a GU mismatch in the presence of excess base 7K7K ; 3.56 ; Structure of the EPEC type III secretion injectisome EspA filament 8TRT ; 3.0 ; Structure of the EphA2 CRD bound to FabS1CE_C1, monoclinic form 8TRS ; 1.9 ; Structure of the EphA2 CRD bound to FabS1CE_C1, trigonal form 4W4Z ; 2.41 ; Structure of the EphA4 LBD in complex with peptide 4W50 ; 2.42 ; Structure of the EphA4 LBD in complex with peptide 1EPA ; 2.1 ; STRUCTURE OF THE EPIDIDYMAL RETINOIC ACID-BINDING PROTEIN AT 2.1 ANGSTROMS RESOLUTION 1EPB ; 2.2 ; STRUCTURE OF THE EPIDIDYMAL RETINOIC ACID-BINDING PROTEIN AT 2.1 ANGSTROMS RESOLUTION 5LSS ; 1.79 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LSU ; 2.14 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LSX ; 2.9 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LSY ; 1.62 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LSZ ; 1.62 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LT6 ; 2.05 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LT7 ; 1.51 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 5LT8 ; 1.57 ; Structure of the Epigenetic Oncogene MMSET and inhibition by N-Alkyl Sinefungin Derivatives 2JXC ; ; Structure of the EPS15-EH2 Stonin2 Complex 2YMW ; 2.41 ; Structure of the epsilon-lysine oxidase from Marinomonas mediterranea 6EPI ; 2.8 ; Structure of the epsilon_1 / zeta_1 antitoxin / toxin system from Neisseria gonorrhoeae in complex with UNAM-4P. 6EPG ; 2.4 ; Structure of the epsilon_1 / zeta_1 antitoxin / toxin system from Neisseria gonorrhoeae. 6EPH ; 2.7 ; Structure of the epsilon_1 / zeta_1 antitoxin toxin system from Neisseria gonorrhoeae in complex with UNAM. 1KG0 ; 2.65 ; Structure of the Epstein-Barr Virus gp42 Protein Bound to the MHC class II Receptor HLA-DR1 7JHJ ; 3.2 ; Structure of the Epstein-Barr virus GPCR BILF1 in complex with human Gi 2CH8 ; 2.3 ; Structure of the Epstein-Barr Virus Oncogene BARF1 2C9L ; 2.25 ; Structure of the Epstein-Barr virus ZEBRA protein 2C9N ; 3.3 ; Structure of the Epstein-Barr virus ZEBRA protein at approximately 3. 5 Angstrom resolution 2I9F ; 2.0 ; Structure of the equine arterivirus nucleocapsid protein 1TVT ; ; STRUCTURE OF THE EQUINE INFECTIOUS ANEMIA VIRUS TAT PROTEIN 6Q0N ; 1.18 ; Structure of the Erbin PDB domain in complex with a high-affinity peptide 6Q0U ; 1.89 ; Structure of the Erbin PDZ variant E-6a with a high-affinity C-terminal peptide 4MT8 ; 1.9 ; Structure of the ERS1 dimerization and histidine phosphotransfer domain from Arabidopsis thaliana 4MTX ; 2.15 ; Structure of the ERS1 dimerization and histidine phosphotransfer domain from Arabidopsis thaliana 8G7R ; 2.8 ; Structure of the Escherichia coli 70S ribosome in complex with A-site tRNAIle(LAU) bound to the cognate AUA codon (Structure III) 8G7P ; 2.9 ; Structure of the Escherichia coli 70S ribosome in complex with EF-Tu and Ile-tRNAIle(LAU) bound to the cognate AUA codon (Structure I) 8G7Q ; 3.1 ; Structure of the Escherichia coli 70S ribosome in complex with EF-Tu and Ile-tRNAIle(LAU) bound to the near-cognate AUG codon (Structure II) 8G7S ; 3.1 ; Structure of the Escherichia coli 70S ribosome in complex with P-site tRNAIle(LAU) bound to the cognate AUA codon (Structure IV) 1OTS ; 2.51 ; Structure of the Escherichia coli ClC Chloride channel and Fab Complex 1OTT ; 3.0 ; Structure of the Escherichia coli ClC Chloride channel E148A mutant and Fab Complex 1OTU ; 3.3 ; Structure of the Escherichia coli ClC Chloride channel E148Q mutant and Fab Complex 2HTK ; 3.41 ; Structure of the Escherichia coli ClC chloride channel Y445A mutant and Fab complex 2HTL ; 3.4 ; Structure of the Escherichia coli ClC chloride channel Y445F mutant and Fab complex 2HT2 ; 3.32 ; Structure of the Escherichia coli ClC chloride channel Y445H mutant and Fab complex 2HT3 ; 3.3 ; Structure of the Escherichia coli ClC chloride channel Y445L mutant and Fab complex 2HT4 ; 3.2 ; Structure of the Escherichia coli ClC chloride channel Y445W mutant and Fab complex 2AVU ; 3.0 ; Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription 7Z0T ; 3.4 ; Structure of the Escherichia coli formate hydrogenlyase complex (aerobic preparation, composite structure) 7Z0S ; 2.6 ; Structure of the Escherichia coli formate hydrogenlyase complex (anaerobic preparation, without formate dehydrogenase H) 6SPN ; 1.45 ; Structure of the Escherichia coli methionyl-tRNA synthetase complexed with beta-methionine 6SPO ; 1.2 ; Structure of the Escherichia coli methionyl-tRNA synthetase complexed with methionine 6SPP ; 1.49 ; Structure of the Escherichia coli methionyl-tRNA synthetase variant VI298 6SPR ; 1.48 ; Structure of the Escherichia coli methionyl-tRNA synthetase variant VI298 complexed with beta-methionine 6SPQ ; 1.38 ; Structure of the Escherichia coli methionyl-tRNA synthetase variant VI298 complexed with methionine 5JC9 ; 3.03 ; Structure of the Escherichia coli ribosome with the U1052G mutation in the 16S rRNA 1PIL ; 2.7 ; STRUCTURE OF THE ESCHERICHIA COLI SIGNAL TRANSDUCING PROTEIN PII 2HLF ; 3.3 ; Structure of the Escherichis coli ClC chloride channel Y445E mutant and Fab complex 2F66 ; 2.8 ; Structure of the ESCRT-I endosomal trafficking complex 1U5T ; 3.6 ; Structure of the ESCRT-II endosomal trafficking complex 6XLP ; 2.0 ; Structure of the essential inner membrane lipopolysaccharide-PbgA complex 7UDA ; 2.47 ; Structure of the EstG 6SGW ; 3.8 ; Structure of the ESX-3 core complex 4WAS ; 1.7 ; STRUCTURE OF THE ETR1P/NADP/CROTONYL-COA COMPLEX 2R8J ; 3.1 ; Structure of the Eukaryotic DNA Polymerase eta in complex with 1,2-d(GpG)-cisplatin containing DNA 2R8K ; 3.3 ; Structure of the Eukaryotic DNA Polymerase eta in complex with 1,2-d(GpG)-cisplatin containing DNA 5VG9 ; 4.0 ; Structure of the eukaryotic intramembrane Ras methyltransferase ICMT (isoprenylcysteine carboxyl methyltransferase) without a monobody 3JC5 ; 4.7 ; Structure of the eukaryotic replicative CMG helicase and pumpjack motion 3JC6 ; 3.7 ; Structure of the eukaryotic replicative CMG helicase and pumpjack motion 3JC7 ; 4.8 ; Structure of the eukaryotic replicative CMG helicase and pumpjack motion 3D2V ; 2.0 ; Structure of the eukaryotic TPP-specific riboswitch bound to the antibacterial compound pyrithiamine pyrophosphate 7WYL ; 1.31 ; Structure of the EV71 3Cpro with 337 inhibitor 7WYO ; 1.402 ; Structure of the EV71 3Cpro with 338 inhibitor 6UH1 ; 3.04 ; Structure of the EVA71 strain 11316 capsid 2W3Y ; 2.0 ; Structure of the Evf virulence factor 5SV1 ; 3.5 ; Structure of the ExbB/ExbD complex from E. coli at pH 4.5 5SV0 ; 2.6 ; Structure of the ExbB/ExbD complex from E. coli at pH 7.0 5ZFP ; 2.84 ; Structure of the ExbB/ExbD hexameric complex 5ZFU ; 6.7 ; Structure of the ExbB/ExbD hexameric complex (ExbB6ExbD3TM) 5ZFV ; 7.1 ; Structure of the ExbB/ExbD pentameric complex (ExbB5ExbD1TM) 7LNP ; 2.7 ; Structure of the exo-alpha-L-galactosidase BpGH29 (D264N mutant) from Bacteroides plebeius in complex with paranitrophenyl-alpha-L-galactopyranoside 7LJJ ; 1.9 ; Structure of the Exo-alpha-L-galactosidase BpGH29 from Bacteroides plebeius 7LK7 ; 2.19 ; Structure of the Exo-alpha-L-galactosidase BpGH29 from Bacteroides plebeius in complex with L-galactose 7LHA ; 1.95 ; Structure of the Exo-L-galactose-6-sulfatase BuS1_11 from Bacteroides uniformis 2O1J ; 2.7 ; Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4 2O1K ; 1.67 ; Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4 7AOA ; 19.4 ; Structure of the extended MTA1/HDAC1/MBD2/RBBP4 NURD deacetylase complex 5URW ; 24.0 ; Structure of the extended type VI secretion system sheath in Myxococcus xanthus 2Y3M ; 2.3 ; Structure of the extra-membranous domain of the secretin HofQ from Actinobacillus actinomycetemcomitans 1J71 ; 1.8 ; Structure of the extracellular aspartic proteinase from Candida tropicalis yeast. 4K55 ; 1.91 ; Structure of the extracellular domain of butyrophilin BTN3A1 in complex with (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) 4JKW ; 2.01 ; Structure of the extracellular domain of butyrophilin BTN3A1 in complex with Isopentenyl pyrophosphate (IPP) 4LIQ ; 2.6 ; Structure of the extracellular domain of human CSF-1 receptor in complex with the Fab fragment of RG7155 1NQL ; 2.8 ; Structure of the extracellular domain of human epidermal growth factor (EGF) receptor in an inactive (low pH) complex with EGF. 2XVT ; 2.05 ; Structure of the extracellular domain of human RAMP2 5DMJ ; 2.79 ; Structure of the extracellular domain of the CD40 in complex with 3H56-5 DAB 5IHL ; 3.3 ; STRUCTURE OF THE EXTRACELLULAR DOMAIN OF THE CD40 IN COMPLEX WITH 3H56-5 DAB 5DMI ; 3.69 ; Structure of the extracellular domain of the CD40 in complex with CHI220 FAB 1YY9 ; 2.605 ; Structure of the extracellular domain of the epidermal growth factor receptor in complex with the Fab fragment of cetuximab/Erbitux/IMC-C225 4BFG ; 2.08 ; Structure of the extracellular portion of mouse CD200R 4BFE ; 2.5 ; Structure of the extracellular portion of mouse CD200RLa 2IFG ; 3.4 ; Structure of the extracellular segment of human TRKA in complex with nerve growth factor 7ME5 ; 2.0 ; Structure of the extracellular WNT-binding module in Drl-2 7ME4 ; 1.75 ; Structure of the extracellular WNT-binding module in Drosophila Ror2/Nrk 2GIL ; 1.82 ; Structure of the extremely slow GTPase Rab6A in the GTP bound form at 1.8 resolution 8RTY ; 6.25 ; Structure of the F-actin barbed end bound by Cdc12 and profilin (ring complex) at a resolution of 6.3 Angstrom 8RU2 ; 3.49 ; Structure of the F-actin barbed end bound by formin mDia1 3J8A ; 3.7 ; Structure of the F-actin-tropomyosin complex 5JLF ; 3.6 ; Structure of the F-actin-tropomyosin complex (Reprocessed) 2X3V ; 2.45 ; Structure of The F-BAR Domain of Mouse Syndapin I 3D34 ; 1.8 ; Structure of the F-spondin domain of mindin 5FL7 ; 3.5 ; Structure of the F1c10 complex from Yarrowia lipolytica ATP synthase 4S3G ; 2.5 ; Structure of the F249X mutant of Phosphatidylinositol-specific phospholipase C from Staphylococcus aureus 4CSP ; 1.7 ; Structure of the F306C mutant of nitrite reductase from Achromobacter xylosoxidans 6VC7 ; 2.05 ; Structure of the F349A mutant of the periplasmic domain of YejM from Salmonella typhimurium 3F6L ; 2.801 ; Structure of the F4 fimbrial chaperone FaeE 3TTV ; 1.45 ; Structure of the F413E variant of E. coli KatE 3TTW ; 1.62 ; Structure of the F413E variant of E. coli KatE 3TTX ; 1.74 ; Structure of the F413K variant of E. coli KatE 1DN0 ; 2.28 ; STRUCTURE OF THE FAB FRAGMENT FROM A HUMAN IGM COLD AGGLUTININ 3UJT ; 2.1 ; Structure of the Fab fragment of Ab-52, an antibody that binds the O-antigen of Francisella tularensis 3EO1 ; 3.1 ; Structure of the Fab Fragment of GC-1008 in Complex with Transforming Growth Factor-Beta 3 4KPH ; 2.59 ; Structure of the Fab fragment of N62, a protective monoclonal antibody to the nonreducing end of Francisella tularensis O-antigen 4PB0 ; 2.5 ; Structure of the Fab fragment of the anti-Francisella tularensis GroEL antibody Ab53 4PB9 ; 2.6 ; Structure of the Fab fragment of the anti-Francisella tularensis GroEL antibody Ab64 4KHO ; 2.0 ; Structure of the FACT complex Subunit Spt16M 4B1T ; 1.78 ; Structure of the factor Xa-like trypsin variant triple-Ala (TA) in complex with eglin C 4B2A ; 1.89 ; Structure of the factor Xa-like trypsin variant triple-Ala (TGA) in complex with eglin C 4B2B ; 1.36 ; Structure of the factor Xa-like trypsin variant triple-Ala (TGPA) in complex with eglin C 4B2C ; 1.43 ; Structure of the factor Xa-like trypsin variant triple-Ala (TPA) in complex with eglin C 4YBN ; 1.9 ; Structure of the FAD and Heme binding protein msmeg_4975 from Mycobacterium smegmatis 6ECI ; 2.69 ; Structure of the FAD binding protein MSMEG_5243 from Mycobacterium smegmatis 2XQX ; 2.01 ; Structure of the family 32 carbohydrate-binding module from Streptococcus pneumoniae EndoD 5MDN ; 2.8 ; Structure of the family B DNA polymerase from the hyperthermophilic archaeon Pyrobaculum calidifontis 6F8Z ; 2.5 ; Structure of the family GH92 alpha-mannosidase BT3130 from Bacteroides thetaiotaomicron 6F90 ; 2.4 ; Structure of the family GH92 alpha-mannosidase BT3130 from Bacteroides thetaiotaomicron in complex with Mannoimidazole (ManI) 6F91 ; 1.8 ; Structure of the family GH92 alpha-mannosidase BT3965 from Bacteroides thetaiotaomicron 6F92 ; 1.9 ; Structure of the family GH92 alpha-mannosidase BT3965 from Bacteroides thetaiotaomicron in complex with Mannoimidazole (ManI) 2WVY ; 2.26 ; STRUCTURE OF THE FAMILY GH92 INVERTING MANNOSIDASE BT2199 FROM BACTEROIDES THETAIOTAOMICRON VPI-5482 2WW2 ; 1.9 ; Structure of the Family GH92 Inverting Mannosidase BT2199 from Bacteroides thetaiotaomicron VPI-5482 2WVX ; 1.9 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 2WVZ ; 2.4 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 2WW0 ; 2.8 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 2WZS ; 2.25 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 in complex with Mannoimidazole 2WW1 ; 2.25 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 in complex with Thiomannobioside 2WW3 ; 2.1 ; Structure of the Family GH92 Inverting Mannosidase BT3990 from Bacteroides thetaiotaomicron VPI-5482 in complex with thiomannobioside 2ENX ; 2.8 ; Structure of the family II inorganic pyrophosphatase from Streptococcus agalactiae at 2.8 resolution 7PJJ ; 3.086 ; Structure of the Family-3 Glycosyl Hydrolase BcpE2 from Streptomyces scabies 2EXJ ; 2.2 ; Structure of the family43 beta-Xylosidase D128G mutant from geobacillus stearothermophilus in complex with xylobiose 2EXI ; 2.15 ; Structure of the family43 beta-Xylosidase D15G mutant from geobacillus stearothermophilus 2EXK ; 2.2 ; Structure of the family43 beta-Xylosidase E187G from geobacillus stearothermophilus in complex with xylobiose 2EXH ; 1.88 ; Structure of the family43 beta-Xylosidase from geobacillus stearothermophilus 3S4W ; 3.408 ; Structure of the FANCI-FANCD2 complex 6SRI ; 4.2 ; Structure of the Fanconi anaemia core complex 6SRS ; 4.6 ; Structure of the Fanconi anaemia core subcomplex 6VAA ; 3.4 ; Structure of the Fanconi Anemia ID complex bound to ICL DNA 4CVN ; 2.121 ; Structure of the Fap7-Rps14 complex 4CW7 ; 2.46 ; Structure of the Fap7-Rps14 complex in complex with ATP 7COY ; 2.5 ; Structure of the far-red light utilizing photosystem I of Acaryochloris marina 8UHE ; 2.78 ; Structure of the far-red light-absorbing allophycocyanin core expressed during FaRLiP 8UHI ; 2.35 ; Structure of the far-red light-absorbing allophycocyanin core expressed during FaRLiP 3OQ9 ; 6.8 ; Structure of the FAS/FADD death domain assembly 1YWJ ; ; Structure of the FBP11WW1 domain 1YWI ; ; Structure of the FBP11WW1 domain complexed to the peptide APPTPPPLPP 7T1Y ; 2.55 ; Structure of the Fbw7-Skp1-MycCdegron complex 7T1Z ; 2.77 ; Structure of the Fbw7-Skp1-MycNdegron complex 4GPF ; 1.9 ; Structure of the Fe3+-biliverdin-HmuO, heme oxygenase from Corynebacterium diphtheriae (data set III) 4P3X ; 1.65 ; Structure of the Fe4S4 quinolinate synthase NadA from Thermotoga maritima 1FCA ; 1.8 ; STRUCTURE OF THE FERREDOXIN FROM CLOSTRIDIUM ACIDURICI: MODEL AT 1.8 ANGSTROMS RESOLUTION 6I96 ; 1.85 ; Structure of the ferrioxamine B transporter FoxA from Pseudomonas aeruginosa in complex with ferrioxamine B 6I97 ; 3.35 ; Structure of the ferrioxamine B transporter FoxA from Pseudomonas aeruginosa in complex with ferrioxamine B and a C-terminal TonB fragment 6I98 ; 2.8 ; Structure of the ferrioxamine B transporter FoxA from Pseudomonas aeruginosa, apo state 1YWC ; 1.0 ; Structure of the ferrous CO complex of NP4 from Rhodnius Prolixus at pH 7.0 5FRT ; 2.34 ; Structure of the FeSII (shethna) protein of Azotobacter vinelandii 5T2S ; 2.4 ; Structure of the FHA1 domain of Rad53 bound simultaneously to the BRCT domain of Dbf4 and a phosphopeptide. 5T2F ; 2.66 ; Structure of the FHA1 domain of Rad53 bound to the BRCT domain of Dbf4 1AY2 ; 2.6 ; STRUCTURE OF THE FIBER-FORMING PROTEIN PILIN AT 2.6 ANGSTROMS RESOLUTION 1DUG ; 1.8 ; STRUCTURE OF THE FIBRINOGEN G CHAIN INTEGRIN BINDING AND FACTOR XIIIA CROSSLINKING SITES OBTAINED THROUGH CARRIER PROTEIN DRIVEN CRYSTALLIZATION 2JYD ; ; Structure of the fifth zinc finger of Myelin Transcription Factor 1 2JX1 ; ; Structure of the fifth zinc finger of Myelin Transcription Factor 1 in complex with RARE DNA 3UXF ; 1.603 ; Structure of the fimbrial protein FimP from Actonomyces oris 4AVJ ; 2.105 ; Structure of the FimH lectin domain in the trigonal space group, in complex with a methanol triazol ethyl phenyl alpha-D-mannoside at 2.1 A resolution 4AV0 ; 2.099 ; Structure of the FimH lectin domain in the trigonal space group, in complex with a methoxy phenyl propynyl alpha-D-mannoside at 2.1 A resolution 4AVI ; 2.4 ; Structure of the FimH lectin domain in the trigonal space group, in complex with a methyl ester octyl alpha-D-mannoside at 2.4 A resolution 4AVH ; 2.105 ; Structure of the FimH lectin domain in the trigonal space group, in complex with a thioalkyl alpha-D-mannoside at 2.1 A resolution 4AUY ; 2.102 ; Structure of the FimH lectin domain in the trigonal space group, in complex with an hydroxyl propynyl phenyl alpha-D-mannoside at 2.1 A resolution 5LUU ; 1.61 ; Structure of the first bromodomain of BRD4 with a pyrazolo[4,3-c]pyridin fragment 1RSY ; 1.9 ; STRUCTURE OF THE FIRST C2-DOMAIN OF SYNAPTOTAGMIN I: A NOVEL CA2+(SLASH)PHOSPHOLIPID BINDING FOLD 3QR5 ; 2.3 ; Structure of the first domain of a cardiac Ryanodine Receptor mutant with exon 3 deleted 2Y79 ; 1.8 ; STRUCTURE OF THE FIRST GAF DOMAIN E87A MUTANT OF MYCOBACTERIUM TUBERCULOSIS DOSS 2Y8H ; 1.9 ; STRUCTURE OF THE FIRST GAF DOMAIN E87G MUTANT OF MYCOBACTERIUM TUBERCULOSIS DOSS 2W3D ; 2.0 ; Structure of the first GAF domain of Mycobacterium tuberculosis DosS 7UYG ; 1.5 ; Structure of the first OTU domain from Legionella pneumophila effector protein LotA 7UYH ; 2.8 ; Structure of the first OTU domain from Legionella pneumophila effector protein LotA bound to K6-linked diUb 1O0K ; 1.17 ; Structure of the First Parallel DNA Quadruplex-drug Complex 2L5U ; ; Structure of the first PHD finger (PHD1) from CHD4 (Mi2b) 4L1M ; 2.6 ; Structure of the first RCC1-like domain of HERC2 4TVE ; 1.8 ; Structure Of the First Two Thioredoxin Domains of Naumovozyma dairenensis Eps1p 4TW5 ; 2.37 ; Structure Of the First Two Thioredoxin Domains of Saccharomyces cerevisiae Eps1p 2LB0 ; ; Structure of the first WW domain of human Smurf1 in complex with a di-phosphorylated human Smad1 derived peptide 2LAZ ; ; Structure of the first WW domain of human Smurf1 in complex with a mono-phosphorylated human Smad1 derived peptide 2LAY ; ; Structure of the first WW domain of human YAP in complex with a phosphorylated human Smad1 derived peptide 5TRU ; 3.0 ; Structure of the first-in-class checkpoint inhibitor Ipilimumab bound to human CTLA-4 6TAR ; 2.8 ; Structure of the five-fold capsomer of the dArc1 capsid 6TAT ; 3.7 ; Structure of the five-fold capsomer of the dArc2 capsid 8RB4 ; 3.2 ; Structure of the five-fold capsomer of the PNMA2 capsid 8BAJ ; 1.2 ; Structure of the FK1 domain of the FKBP51 G64S variant in complex with (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one 8BA6 ; 1.1 ; Structure of the FK1 domain of the FKBP51 G64S variant in complex with (2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15,16-trimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0^5,^10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone 7R0L ; 1.1 ; Structure of the FK1 domain of the FKBP51 G64S variant in complex with SAFit1 7A6W ; 1.85 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 33-(Z) 7B9Z ; 1.44 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 35-(E) 7AWX ; 2.2 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 55 7A6X ; 1.67 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 56 7BA0 ; 1.14 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 63 7B9Y ; 1.35 ; Structure of the FKBP51FK1 domain in complex with the macrocyclic SAFit analogue 64a 6YSL ; 3.5 ; Structure of the flagellar MotAB stator complex from Bacillus subtilis 6YSF ; 3.4 ; Structure of the flagellar MotAB stator complex from Clostridium sporogenes 7VWP ; 2.3 ; Structure of the flavin-dependent monooxygenase FlsO1 from the biosynthesis of fluostatinsin 6RK0 ; 0.99 ; Structure of the Flavocytochrome Anf3 from Azotobacter vinelandii 4IV9 ; 1.951 ; Structure of the Flavoprotein Tryptophan-2-Monooxygenase 5B0O ; 3.0 ; Structure of the FliH-FliI complex 6S3R ; 3.5 ; Structure of the FliPQR complex from the flagellar type 3 secretion system of Pseudomonas savastanoi. 6S3S ; 4.1 ; Structure of the FliPQR complex from the flagellar type 3 secretion system of Vibrio mimicus. 4JDX ; 2.5 ; Structure of the Fluorescence Recovery Protein from Synechocystis sp PCC 6803 4JDQ ; 3.52 ; Structure of the Fluorescence Recovery Protein from Synechocystis sp PCC 6803, R60K mutant 8AG8 ; 1.8 ; Structure of the Fluorescence Recovery-like protein FRPL from Pseudomonas borbori 6S67 ; 2.47 ; Structure of the Fluorescent Protein AausFP1 from Aequorea cf. australis at pH 7.0 6S68 ; 2.06 ; Structure of the Fluorescent Protein AausFP2 from Aequorea cf. australis at pH 7.6 2C9I ; 1.82 ; Structure of the fluorescent protein asFP499 from Anemonia sulcata 2C9J ; 1.35 ; Structure of the fluorescent protein cmFP512 at 1.35A from Cerianthus membranaceus 7Z7P ; 1.95 ; Structure of the fluorescent protein NeonCyan0.95 at pH 5.6 7Z7O ; 1.51 ; Structure of the fluorescent protein NeonCyan0.95 at pH 7.5 1QOL ; 3.0 ; STRUCTURE OF THE FMDV LEADER PROTEASE 3VDI ; 1.99 ; Structure of the FMO protein from Pelodictyon phaeum 8OHI ; 2.8 ; Structure of the Fmoc-Tau-PAM4 Type 2 amyloid fibril 8OHP ; 2.7 ; Structure of the Fmoc-Tau-PAM4 Type 3 amyloid fibril 8OI0 ; 2.9 ; Structure of the Fmoc-Tau-PAM4 Type 4 amyloid fibril 7O0H ; 3.09 ; Structure of the foamy viral protease-reverse transcriptase dRH in complex with ds DNA. 7O24 ; 4.8 ; Structure of the foamy viral protease-reverse transcriptase in complex with dsDNA. 7O0G ; 3.1 ; Structure of the foamy viral protease-reverse transcriptase in complex with RNA/DNA hybrid. 4QBB ; 1.6 ; Structure of the foot-and-mouth disease virus leader proteinase in complex with inhibitor (N~2~-[(3S)-4-({(2R)-1-[(4-CARBAMIMIDAMIDOBUTYL)AMINO]-4-METHYL-1-OXOPENTAN-2-YL}AMINO)-3-HYDROXY-4-OXOBUTANOYL]-L-ARGINYL-L-PROLINAMIDE) 6XAD ; 1.893 ; Structure of the formate-bound form of ArrX from Chrysiogenes arsenatis 8RTT ; 3.56 ; Structure of the formin Cdc12 bound to the barbed end of phalloidin-stabilized F-actin. 8RV2 ; 3.41 ; Structure of the formin INF2 bound to the barbed end of F-actin. 8J8P ; 2.7 ; Structure of the four-component Paf1 complex from Saccharomyces eubayanus 8J8Q ; 3.11 ; Structure of the four-component Paf1 complex from Saccharomyces eubayanus 3T1W ; 2.4 ; Structure of the four-domain fragment Fn7B89 of oncofetal fibronectin 7RMA ; 2.0 ; Structure of the fourth UIM (Ubiquitin Interacting Motif) of ANKRD13D in complex with a high affinity UbV (Ubiquitin Variant) 3G73 ; 2.21 ; Structure of the FOXM1 DNA binding 5ODW ; 2.8 ; Structure of the FpvAI-pyocin S2 complex 4IDB ; 1.55 ; Structure of the Fragaria x ananassa enone oxidoreductase in complex with NADP+ 4IDE ; 1.6 ; Structure of the Fragaria x ananassa enone oxidoreductase in complex with NADP+ and EDHMF 4IDD ; 1.5 ; Structure of the Fragaria x ananassa enone oxidoreductase in complex with NADPH and EHMF 4IDC ; 1.4 ; Structure of the Fragaria x ananassa enone oxidoreductase in complex with NADPH and HDMF 4IDF ; 1.55 ; Structure of the Fragaria x ananassa enone oxidoreductase in complex with NADPH and HMF 4IDA ; 1.6 ; Structure of the Fragaria x ananassa enone oxidoreductase in its apo form 6ONT ; 1.803 ; Structure of the Francisella response regulator 1452 receiver domain 5UIC ; 2.487 ; Structure of the Francisella response regulator receiver domain, QseB 5WBH ; 1.75 ; Structure of the FRB domain of mTOR bound to a substrate recruitment peptide of S6K1 4P9T ; 2.5 ; Structure of the free form of the N-terminal VH1 domain of monomeric alpha-catenin 7KEK ; 8.0 ; Structure of the free outer-arm dynein in pre-parallel state 3UU9 ; 2.2 ; Structure of the free TvNiRb form of Thioalkalivibrio nitratireducens cytochrome c nitrite reductase 5TZ0 ; 3.025 ; Structure of the Fremyella diplosiphon Fluorescence Recovery Protein 6PQ1 ; 1.61 ; Structure of the Fremyella diplosiphon OCP1 8JSC ; 2.16 ; Structure of the FSP1 protein from Human 7MYZ ; 3.4 ; Structure of the full length 5-TM receptor CD47 bound to Fab B6H12 2HRO ; 2.5 ; Structure of the full-lenght Enzyme I of the PTS system from Staphylococcus carnosus 6OQ5 ; 3.87 ; Structure of the full-length Clostridium difficile toxin B in complex with 3 VHHs 7NH9 ; 3.03 ; structure of the full-length CmaX protein 1ZVU ; 3.0 ; Structure of the full-length E. coli ParC subunit 5XEZ ; 3.0 ; Structure of the Full-length glucagon class B G protein-coupled receptor 5XF1 ; 3.19 ; Structure of the Full-length glucagon class B G protein-coupled receptor 4W8J ; 2.78 ; Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals 8EAQ ; 3.26 ; Structure of the full-length IP3R1 channel determined at high Ca2+ 8EAR ; 3.5 ; Structure of the full-length IP3R1 channel determined in the presence of Calcium/IP3/ATP 3RPK ; 2.8 ; Structure of the Full-Length Major Pilin RrgB from Streptococcus pneumoniae 4HSS ; 2.5 ; Structure of the Full-Length Major Pilin SpaD from Corynebacterium diphtheriae 4ZMS ; 1.9 ; Structure of the full-length response regulator spr1814 in complex with a phosphate analogue and B3C 5HI9 ; 4.4 ; Structure of the full-length TRPV2 channel by cryo-electron microscopy 3WEE ; 3.1 ; Structure of the full-length yeast Arp7-Arp9 Heterodimer 2H0N ; 1.53 ; Structure of the fully modified left-handed cyclohexene nucleic acid sequence GTGTACAC 1ZZH ; 2.7 ; Structure of the fully oxidized di-heme cytochrome c peroxidase from R. capsulatus 2C9K ; 2.8 ; Structure of the functional form of the mosquito-larvicidal Cry4Aa toxin from Bacillus thuringiensis at 2.8 A resolution 7NY1 ; 3.26 ; Structure of the fungal plasma membrane proton pump Pma1 in its auto-inhibited state - hexameric assembly 7NXF ; 3.1 ; Structure of the fungal plasma membrane proton pump Pma1 in its auto-inhibited state - monomer unit 2WAS ; 1.9 ; Structure of the fungal type I FAS PPT domain 2WAT ; 2.2 ; Structure of the fungal type I FAS PPT domain in complex with CoA 4E4B ; 2.8 ; Structure of the fusidic acid resistance protein FusB 2YB5 ; 2.1 ; Structure of the fusidic acid resistance protein FusC 2J8K ; 1.5 ; Structure of the fusion of NP275 and NP276, pentapeptide repeat proteins from Nostoc punctiforme 7F19 ; 1.773 ; Structure of the G304E mutant of CueO 2FJG ; 2.8 ; Structure of the G6 Fab, a phage derived Fab fragment, in complex with VEGF 2FJF ; 2.65 ; Structure of the G6 Fab, a phage derived VEGF binding Fab 1CZG ; 2.5 ; STRUCTURE OF THE G62T MUTANT OF SHIGA-LIKE TOXIN I B SUBUNIT 6PA0 ; 2.05 ; Structure of the G77A mutant in Sodium Chloride 1F5M ; 1.9 ; STRUCTURE OF THE GAF DOMAIN 3TRC ; 1.65 ; Structure of the GAF domain from a phosphoenolpyruvate-protein phosphotransferase (ptsP) from Coxiella burnetii 8VT7 ; 2.66 ; Structure of the gamma tubulin ring complex nucleated microtubule protofilament. 6OAT ; 3.17 ; Structure of the Ganjam virus OTU bound to sheep ISG15 2V3M ; 2.74 ; Structure of the Gar1 domain of NAf1 1ODH ; 2.85 ; Structure of the GCM domain bound to DNA 4S23 ; 1.65 ; Structure of the GcpE-HMBPP complex from Thermus thermophilius 4G9P ; 1.55 ; Structure of the GcpE-MEcPP (IspG) complex from Thermus thermophilus 6CTZ ; 1.34 ; Structure of the GDP and kanamycin complex of APH(2"")-IIia 3TDV ; 2.2 ; Structure of the GDP complex of wild-type aminoglycoside 2'-phosphotransferase-IIIa 1EFM ; 2.7 ; STRUCTURE OF THE GDP DOMAIN OF EF-TU AND LOCATION OF THE AMINO ACIDS HOMOLOGOUS TO RAS ONCOGENE PROTEINS 6EG8 ; 2.8 ; Structure of the GDP-bound Gs heterotrimer 8C7D ; 1.86 ; Structure of the GEF Kalirin DH2 Domain 5GXI ; 1.85 ; Structure of the Gemin5 WD40 domain in complex with AAUUUUUGAG 4KFS ; 1.946 ; Structure of the genome packaging NTPase B204 from Sulfolobus turreted icosahedral virus 2 in complex with AMP 4KFU ; 1.892 ; Structure of the genome packaging NTPase B204 from Sulfolobus turreted icosahedral virus 2 in complex with AMPPCP 4KFT ; 2.241 ; Structure of the genome packaging NTPase B204 from Sulfolobus turreted icosahedral virus 2 in complex with ATP-gammaS 4KFR ; 1.956 ; Structure of the genome packaging NTPase B204 from Sulfolobus turreted icosahedral virus 2 in complex with sulfate 3GSZ ; 1.9 ; Structure of the genotype 2B HCV polymerase 3HVO ; 2.0 ; Structure of the genotype 2B HCV polymerase bound to a NNI 3HAM ; 2.5 ; Structure of the gentamicin-APH(2"")-IIa complex 2NBG ; ; Structure of the Geobacillus stearothermophilus IF2 G3-subdomain 2Q20 ; 1.3 ; Structure of the germline Vk1 O18/O8 light chain variable domain homodimer 3OGO ; 2.8 ; Structure of the GFP:GFP-nanobody complex at 2.8 A resolution in spacegroup P21212 8XLD ; 2.1 ; Structure of the GFP:GFP-nanobody complex from Biortus. 1OM9 ; 2.5 ; Structure of the GGA1-appendage in complex with the p56 binding peptide 4AYO ; 0.85 ; Structure of The GH47 processing alpha-1,2-mannosidase from Caulobacter strain K31 4AYQ ; 1.1 ; Structure of The GH47 processing alpha-1,2-mannosidase from Caulobacter strain K31 in complex with mannoimidazole 4AYR ; 1.1 ; Structure of The GH47 processing alpha-1,2-mannosidase from Caulobacter strain K31 in complex with noeuromycin 4AYP ; 0.85 ; Structure of The GH47 processing alpha-1,2-mannosidase from Caulobacter strain K31 in complex with thiomannobioside 4V1S ; 1.5 ; Structure of the GH76 alpha-mannanase BT2949 from Bacteroides thetaiotaomicron 6SHD ; 2.0 ; Structure of the GH76A alpha-1,6-mannanase from Salegentibacter sp. HEL1_6 2XSG ; 2.0 ; Structure of the gh92 family glycosyl hydrolase ccman5 4AQ0 ; 2.09 ; Structure of the Gh92 Family Glycosyl Hydrolase Ccman5 in complex with deoxymannojirimycin 6FWP ; 1.08 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-1,3-mannobiose and alpha-1,2-mannobiose 6HMG ; 1.27 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-(1,2-anhydro-carba-glucosamine) 6HMH ; 1.03 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-(1,2-anhydro-carba-glucosamine) and alpha-1,2-mannobiose 6FWI ; 1.25 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-(1,2-anhydro-carba-mannosamine) 6FWJ ; 1.04 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-(1,2-anhydro-carba-mannosamine) and alpha-1,2-mannobiose 6FWM ; 1.28 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with alpha-Glc-1,3-1,2-anhydro-mannose hydrolyzed by enzyme 6ZJ6 ; 1.09 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with cyclohexylmethyl-Glc-1,3-isofagomine 5M17 ; 1.03 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-1,2-dideoxymannose 5M3W ; 1.04 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-1,2-dideoxymannose and alpha-1,2-mannobiose 6FAM ; 1.13 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-2-aminodeoxymannojirimycin 5M5D ; 1.07 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-D-glucal 5MC8 ; 1.18 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-D-glucal and alpha-1,2-mannobiose 4V27 ; 1.9 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-isofagomine 6FAR ; 1.3 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-mannoimidazole 5LYR ; 1.14 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-noeuromycin 5M03 ; 1.05 ; Structure of the GH99 endo-alpha-mannanase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-noeuromycin and 1,2-alpha-mannobiose 4AD0 ; 2.09 ; Structure of the GH99 endo-alpha-mannosidase from Bacteriodes thetaiotaomicron in complex with BIS-TRIS-Propane 4ACZ ; 1.99 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides thetaiotaomicron 4AD1 ; 1.9 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens 4AD3 ; 2.0 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens in complex with Glucose-1,3-deoxymannojirimycin 4AD5 ; 1.9 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens in complex with glucose-1,3-deoxymannojirimycin and alpha-1,2-mannobiose 4AD2 ; 2.1 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens in complex with glucose-1,3-isofagomine 4AD4 ; 1.9 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens in complex with glucose-1,3-isofagomine and alpha-1,2- mannobiose 4UTF ; 1.3 ; Structure of the GH99 endo-alpha-mannosidase from Bacteroides xylanisolvens in complex with mannose-alpha-1,3-isofagomine and alpha- 1,2-mannobiose 8ATM ; 3.3 ; Structure of the giant inhibitor of apoptosis, BIRC6 (composite map) 8ATO ; 3.0 ; Structure of the giant inhibitor of apoptosis, BIRC6 bound to the regulator SMAC 8C3T ; 2.11 ; Structure of the GIsul2 transposon excisionase 4A0X ; 2.4 ; Structure of the global transcription regulator FapR from Staphylococcus aureus 4A0Y ; 2.6 ; Structure of the global transcription regulator FapR from Staphylococcus aureus 4A12 ; 3.15 ; Structure of the global transcription regulator FapR from Staphylococcus aureus in complex with DNA operator 4A0Z ; 1.9 ; Structure of the global transcription regulator FapR from Staphylococcus aureus in complex with malonyl-CoA 6W5Q ; 2.2 ; Structure of the globular C-terminal domain of P. aeruginosa LpoP 1ZWT ; ; Structure of the globular head domain of the bundlin, BfpA, of the bundle-forming pilus of Enteropathogenic E.coli 7TVQ ; ; Structure of the globular isoform of the novel conotoxin PnID derived from Conus pennaceus 6ZYU ; 1.9 ; Structure of the GluA2 ligand-binding domain (L483Y-N754S) in complex with glutamate and BPAM549 3O2J ; 1.95 ; Structure of the GluA2 NTD-dimer interface mutant, N54A 3N6V ; 3.2 ; Structure of the GluA2 NTD-dimer interface mutant, T78A 5YQZ ; 3.0 ; Structure of the glucagon receptor in complex with a glucagon analogue 7LZH ; 3.57 ; Structure of the glutamate receptor-like channel AtGLR3.4 7LZI ; 4.39 ; Structure of the glutamate receptor-like channel AtGLR3.4 6VEA ; 1.58 ; Structure of the Glutamate-Like Receptor GLR3.2 ligand-binding domain in complex with Glycine 6VE8 ; 1.75 ; Structure of the Glutamate-Like Receptor GLR3.2 ligand-binding domain in complex with Methionine 2NV0 ; 1.73 ; Structure of the glutaminase subunit Pdx2 (YaaE) of PLP synthase from Bacillus subtilis 6QN3 ; 2.3 ; Structure of the Glutamine II Riboswitch 6LBP ; 3.065 ; Structure of the Glutamine Phosphoribosylpyrophosphate Amidotransferase from Arabidopsis thaliana 3MPJ ; 2.1 ; Structure of the glutaryl-coenzyme A dehydrogenase 3MPI ; 2.05 ; Structure of the glutaryl-coenzyme A dehydrogenase glutaryl-CoA complex 4MYH ; 3.38 ; Structure of the Glutathione bound mitochondrial ABC transporter, Atm1 5F0G ; 1.6 ; Structure of the glutathione transferase delta 2 from Drosophila melanogaster 2NTO ; 2.095 ; Structure of the Glutathione Transferase from Ochrobactrum anthropi in complex with glutathione 3IXM ; 1.9 ; Structure of the Gly74Cys mutant of arylmalonate decarboxylase in the sulfate ion associated form 3N2T ; 2.0 ; Structure of the glycerol dehydrogenase AKR11B4 from Gluconobacter oxydans 5DN4 ; 1.8 ; Structure of the glycoside hydrolase domain from Salmonella typhimurium FlgJ 5TCB ; 1.535 ; Structure of the glycoside hydrolase domain of PelA from Pseudomonas aeruginosa 5TSY ; 1.9 ; Structure of the glycoside hydrolase domain of PelA variant E218A from Pseudomonas aeruginosa 4EA5 ; 2.14 ; Structure of the glycoslyase domain of MBD4 bound to a 5hmU containing DNA 4E9E ; 1.9 ; Structure of the glycosylase domain of MBD4 4EA4 ; 2.0 ; Structure of the glycosylase domain of MBD4 bound to 5hmU-containing DNA 4E9F ; 1.79 ; Structure of the glycosylase domain of MBD4 bound to AP site containing DNA 4E9G ; 2.35 ; structure of the glycosylase domain of MBD4 bound to thymine containing DNA 1CDB ; ; STRUCTURE OF THE GLYCOSYLATED ADHESION DOMAIN OF HUMAN T LYMPHOCYTE GLYCOPROTEIN CD2 2YJN ; 3.091 ; Structure of the glycosyltransferase EryCIII from the erythromycin biosynthetic pathway, in complex with its activating partner, EryCII 3TQI ; 2.84 ; Structure of the GMP synthase (guaA) from Coxiella burnetii 2R3C ; 1.73 ; Structure of the gp41 N-peptide in complex with the HIV entry inhibitor PIE1 2R5B ; 2.0 ; Structure of the gp41 N-trimer in complex with the HIV entry inhibitor PIE7 2R5D ; 1.66 ; Structure of the gp41 N-trimer in complex with the HIV entry inhibitor PIE7 2LVN ; ; Structure of the gp78 CUE domain 2LVO ; ; Structure of the gp78CUE domain bound to monubiquitin 7QA8 ; 2.7 ; Structure of the GPCR dimer Ste2 bound to an antagonist 7QBI ; 3.46 ; Structure of the GPCR dimer Ste2 in the active-like state bound to agonist 7QBC ; 3.53 ; Structure of the GPCR dimer Ste2 in the inactive-like state bound to agonist 7Y89 ; 3.02 ; Structure of the GPR17-Gi complex 7EJX ; 2.4 ; Structure of the GPR88-Gi1 signaling complex bound to a synthetic ligand 6JO5 ; 2.9 ; Structure of the green algal photosystem I supercomplex with light-harvesting complex I 6JO6 ; 2.9 ; Structure of the green algal photosystem I supercomplex with light-harvesting complex I 5HK5 ; 2.9 ; Structure of the Grem2-GDF5 Inhibitory Complex 7YWY ; 3.4 ; Structure of the GroEL chaperonin in complex with the CnoX chaperedoxin 8BLD ; 4.4 ; Structure of the GroEL(ATP7/ADP7) complex plunged 13 ms after mixing with ATP 8BLF ; 3.9 ; Structure of the GroEL(ATP7/ADP7) complex plunged 50 ms after mixing with ATP 8BLY ; 3.2 ; Structure of the GroEL-ATP complex plunge-frozen 13 ms after mixing with ATP 8BLC ; 2.7 ; Structure of the GroEL-ATP complex plunge-frozen 50 ms after mixing with ATP 1RYM ; 1.8 ; Structure of the Group II Intron Splicing Factor CRS2 8H0Q ; 3.3 ; Structure of the GRP14-27-GRPR-Gq complex 7UBY ; 2.1 ; Structure of the GTD domain of Clostridium difficile toxin A in complex with VHH AH3 6OQ8 ; 2.2 ; Structure of the GTD domain of Clostridium difficile toxin B in complex with VHH 7F 6OQ7 ; 2.39 ; Structure of the GTD domain of Clostridium difficile toxin B in complex with VHH E3 1XZP ; 2.3 ; Structure of the GTP-binding protein TrmE from Thermotoga maritima 1XZQ ; 2.9 ; Structure of the GTP-binding protein TrmE from Thermotoga maritima complexed with 5-formyl-THF 7VBW ; 2.5 ; Structure of the GTP-bound AAA+ ATPase domain of the transcriptional regulator GtrR in Burkholderia cenocepacia 5L3R ; 2.5 ; Structure of the GTPase heterodimer of chloroplast SRP54 and FtsY from Arabidopsis thaliana 5L3S ; 1.9 ; Structure of the GTPase heterodimer of crenarchaeal SRP54 and FtsY 5L3Q ; 3.2 ; Structure of the GTPase heterodimer of human SRP54 and SRalpha 6Y32 ; 2.6 ; Structure of the GTPase heterodimer of human SRP54 and SRalpha 6X90 ; 2.26 ; Structure of the guanine nucleotide exchange factor Sec12 bound to the small GTPase Sar1 7KPW ; 4.9 ; Structure of the H-lobe of yeast CKM 6QZL ; 1.98 ; Structure of the H1 domain of human KCTD12 6QB7 ; 2.23 ; Structure of the H1 domain of human KCTD16 6G57 ; 2.8 ; Structure of the H1 domain of human KCTD8 1HLW ; 1.9 ; STRUCTURE OF THE H122A MUTANT OF THE NUCLEOSIDE DIPHOSPHATE KINASE 1F3F ; 1.85 ; STRUCTURE OF THE H122G NUCLEOSIDE DIPHOSPHATE KINASE / D4T-TRIPHOSPHATE.MG COMPLEX 3LL4 ; 2.49 ; Structure of the H13A mutant of Ykr043C in complex with fructose-1,6-bisphosphate 4O8C ; 2.0 ; Structure of the H170Y mutant of thermostable p-nitrophenylphosphatase from Bacillus Stearothermophilus 3V1H ; 1.9 ; Structure of the H258Y mutant of Phosphatidylinositol-specific phospholipase C from Staphylococcus aureus 4I9T ; 2.0 ; Structure of the H258Y mutant of the phosphatidylinositol-specific phospholipase C from Staphylococcus aureus 7NA5 ; 2.5 ; Structure of the H2DB-TCR ternary complex with HSF2 melanoma neoantigen 2HUE ; 1.7 ; Structure of the H3-H4 chaperone Asf1 bound to histones H3 and H4 1QLT ; 2.2 ; STRUCTURE OF THE H422A MUTANT OF THE FLAVOENZYME VANILLYL-ALCOHOL OXIDASE 1QLU ; 2.4 ; STRUCTURE OF THE H422A MUTANT VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH ISOEUGENOL 5V9F ; 2.05 ; Structure of the H477R variant of rat cytosolic PEPCK in complex with beta sulfopyruvate and GTP. 5V97 ; 1.8 ; Structure of the H477R variant of rat cytosolic PEPCK in complex with GTP. 5V95 ; 2.3 ; Structure of the H477R variant of rat cytosolic PEPCK in complex with manganese. 5V9G ; 1.95 ; Structure of the H477R variant of rat cytosolic PEPCK in complex with oxalate and GTP. 5V9H ; 2.15 ; Structure of the H477R variant of rat cytosolic PEPCK in complex with phosphoglycolate and GDP. 3OJ1 ; 1.52 ; Structure of the H55D mutant of dehaloperoxidase-hemoglobin A from Amphitrite ornata 3OK5 ; 1.72 ; Structure of the H55D mutant of dehaloperoxidase-hemoglobin A from Amphitriti ornata with 4-Bromophenol inhibitor 1E8G ; 2.1 ; STRUCTURE OF THE H61T DOUBLE MUTANT OF VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH FLUORO-CRESOL 1E8F ; 2.9 ; STRUCTURE OF THE H61T MUTANT OF THE FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN THE APO FORM 1E8H ; 2.6 ; STRUCTURE OF THE H61T MUTANT OF THE FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN THE APO FORM COMPLEXED BY ADP 1JXZ ; 1.9 ; Structure of the H90Q mutant of 4-Chlorobenzoyl-Coenzyme A Dehalogenase complexed with 4-hydroxybenzoyl-Coenzyme A (product) 5L84 ; 2.9 ; Structure of the H959F variant of the PpsC dehydratase domain from Mycobacterium tuberculosis 6CGJ ; 1.75 ; Structure of the HAD domain of effector protein Lem4 (lpg1101) from Legionella pneumophila 6CDW ; 1.84 ; Structure of the HAD domain of effector protein Lem4 (lpg1101) from Legionella pneumophila (inactive mutant) 6CGK ; 1.668 ; Structure of the HAD domain of effector protein Lem4 (lpg1101) from Legionella pneumophila (inactive mutant)with phosphate bound in the active site 2J0P ; 1.7 ; Structure of the haem-chaperone Proteobacteria-protein HemS 2J0R ; 1.9 ; Structure of the haem-chaperone Proteobacteria-protein HemS 5K8K ; 2.55 ; Structure of the Haemophilus influenzae LpxH-lipid X complex 5DJB ; 1.798 ; Structure of the Haliangium ochraceum BMC-H shell protein 8FJ5 ; 2.9 ; Structure of the Haloferax volcanii archaeal type IV pilus 5OPG ; 2.15 ; Structure of the Hantaan virus Gn glycoprotein ectodomain 7NKS ; 3.5 ; Structure of the Hantaan virus Gn glycoprotein ectodomain in complex with Fab HTN-Gn1 5FSG ; 3.209 ; Structure of the hantavirus nucleoprotein provides insights into the mechanism of RNA encapsidation and a template for drug design 4F4O ; 2.9 ; Structure of the Haptoglobin-Haemoglobin Complex 7JMS ; 2.78 ; Structure of the Hazara virus OTU bound to ubiquitin 4XUW ; 1.1 ; Structure of the hazelnut allergen, Cor a 8 2WY3 ; 1.8 ; Structure of the HCMV UL16-MICB complex elucidates select binding of a viral immunoevasin to diverse NKG2D ligands 4HKH ; 1.69 ; Structure of the Hcp1 protein from E. coli EAEC 042 pathovar, mutants N93W-S158W 7SYG ; 4.3 ; Structure of the HCV IRES binding to the 40S ribosomal subunit, closed conformation. Structure 1(delta dII) 7SYH ; 4.6 ; Structure of the HCV IRES binding to the 40S ribosomal subunit, closed conformation. Structure 2(delta dII) 7SYI ; 4.5 ; Structure of the HCV IRES binding to the 40S ribosomal subunit, closed conformation. Structure 3(delta dII) 7SYJ ; 4.8 ; Structure of the HCV IRES binding to the 40S ribosomal subunit, closed conformation. Structure 4(delta dII) 7SYK ; 4.2 ; Structure of the HCV IRES binding to the 40S ribosomal subunit, closed conformation. Structure 5(delta dII) 7SYL ; 4.5 ; Structure of the HCV IRES bound to the 40S ribosomal subunit, closed conformation. Structure 6(delta dII) 7SYO ; 4.6 ; Structure of the HCV IRES bound to the 40S ribosomal subunit, head open. Structure 9(delta dII) 7SYM ; 4.8 ; Structure of the HCV IRES bound to the 40S ribosomal subunit, head opening. Structure 7(delta dII) 7SYN ; 4.0 ; Structure of the HCV IRES bound to the 40S ribosomal subunit, head opening. Structure 8(delta dII) 5A2Q ; 3.9 ; Structure of the HCV IRES bound to the human ribosome 2OC1 ; 2.7 ; Structure of the HCV NS3/4A Protease Inhibitor CVS4819 5KZP ; 2.262 ; Structure of the HCV1-C1 Antibody-Antigen Complex 5TKA ; 2.048 ; Structure of the HD-domain phosphohydrolase OxsA 5TK9 ; 1.843 ; Structure of the HD-domain phosphohydrolase OxsA with Oxetanocin-A bound 5TK6 ; 1.924 ; Structure of the HD-domain phosphohydrolase OxsA with Oxetanocin-A diphosphate bound 5TK8 ; 1.64 ; Structure of the HD-domain phosphohydrolase OxsA with Oxetanocin-A monophosphate bound 5TK7 ; 1.904 ; Structure of the HD-domain phosphohydrolase OxsA with Oxetanocin-A triphosphate bound 2OQS ; ; Structure of the hDLG/SAP97 PDZ2 in complex with HPV-18 papillomavirus E6 peptide 3D9X ; 1.13 ; Structure of the head of the Bartonella adhesin BadA 4UFT ; 4.3 ; Structure of the helical Measles virus nucleocapsid 4IRV ; 2.04 ; Structure of the Helicobacter pylori CagA Oncogene Bound to the Human Tumor Suppressor Apoptosis-stimulating Protein of p53-2 4DJ7 ; 2.81 ; Structure of the hemagglutinin complexed with 3SLN from a highly pathogenic H7N7 influenza virus 4DJ8 ; 2.8 ; Structure of the hemagglutinin complexed with 6SLN from a highly pathogenic H7N7 influenza virus 4DJ6 ; 2.61 ; Structure of the hemagglutinin from a highly pathogenic H7N7 influenza virus 1V2I ; 2.2 ; Structure of the hemagglutinin-neuraminidase from human parainfluenza virus type III 1V3B ; 2.0 ; Structure of the hemagglutinin-neuraminidase from human parainfluenza virus type III 4WEF ; 2.5 ; Structure of the Hemagglutinin-neuraminidase from Human parainfluenza virus type III: complex with difluorosialic acid 1V3C ; 2.3 ; Structure of the hemagglutinin-neuraminidase from human parainfluenza virus type III: complex with NEU5AC 1V3D ; 2.28 ; Structure of the hemagglutinin-neuraminidase from human parainfluenza virus type III: complex with NEU5AC2EN 1V3E ; 1.89 ; Structure of the hemagglutinin-neuraminidase from human parainfluenza virus type III: complex with ZANAMAVIR 2OVI ; 2.05 ; Structure of the Heme Binding Protein ChuX 4K8F ; 2.7 ; Structure of the heme domain of CooA from Rhodospirillum rubrum 7NEV ; 1.7 ; Structure of the hemiacetal complex between the SARS-CoV-2 Main Protease and Leupeptin 3ELL ; 1.7 ; Structure of the hemophore from Pseudomonas aeruginosa (HasAp) 3KTM ; 2.7 ; Structure of the Heparin-induced E1-Dimer of the Amyloid Precursor Protein (APP) 4N0Y ; 1.749 ; Structure of the Hepatitis C Envelope Glycoprotein E1 antigenic region 314-324 bound to the cross-neutralizing antibody IGH526 4XVJ ; 2.0 ; STRUCTURE OF THE HEPATITIS C VIRUS ENVELOPE GLYCOPROTEIN E2 ANTIGENIC 2 REGION 412-423 BOUND TO THE BROADLY NEUTRALIZING ANTIBODY HC33.1 6BZY ; 1.6 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the 22D11 broadly neutralizing antibody 6BZU ; 2.7 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody 19B3 4WHT ; 2.22 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody 3/11, P1 crystal form 4WHY ; 2.62 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody 3/11, P21 crystal form 4G6A ; 2.501 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody AP33 4DGY ; 1.798 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody HCV1, C2 form 4DGV ; 1.805 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the broadly neutralizing antibody HCV1, P2(1) form 6BZV ; 2.654 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the GL precursor of the broadly neutralizing antibody 19B3 6BZW ; 2.2 ; Structure of the Hepatitis C virus envelope glycoprotein E2 antigenic region 412-423 bound to the GL precursor of the broadly neutralizing antibody AP33 1HEI ; 2.1 ; STRUCTURE OF THE HEPATITIS C VIRUS RNA HELICASE DOMAIN 5NPH ; 1.7 ; Structure of the Hepatitis C virus strain J4 glycoprotein E2 antigenic region 532-540 bound to the Fab fragment of the non-neutralizing antibody DAO5 5NPI ; 2.0 ; Structure of the Hepatitis C virus strain J4 glycoprotein E2 antigenic region 532-540 bound to the single chain variable fragment of the non-neutralizing antibody DAO5 5NPJ ; 1.9 ; Structure of the Hepatitis C virus strain JFH1 glycoprotein E2 antigenic region 532-540 bound to the single chain variable fragment of the non-neutralizing antibody DAO5 7MN6 ; 3.09 ; Structure of the HER2 S310F/HER3/NRG1b Heterodimer Extracellular Domain 7MN5 ; 2.93 ; Structure of the HER2/HER3/NRG1b Heterodimer Extracellular Domain 7MN8 ; 3.45 ; Structure of the HER2/HER3/NRG1b Heterodimer Extracellular Domain bound to Trastuzumab Fab 8U4K ; 4.27 ; Structure of the HER2/HER4/BTC Heterodimer Extracellular Domain 8U4L ; 3.31 ; Structure of the HER2/HER4/NRG1b Heterodimer Extracellular Domain 1M6B ; 2.6 ; Structure of the HER3 (ERBB3) Extracellular Domain 8U4J ; 3.7 ; Structure of the HER4/BTC Homodimer Extracellular Domain 8U4I ; 3.38 ; Structure of the HER4/NRG1b Homodimer Extracellular Domain 5ZZ8 ; 3.75 ; Structure of the Herpes simplex virus type 2 C-capsid with capsid-vertex-specific component 2WVN ; 2.62 ; Structure of the HET-s N-terminal domain 2WVO ; 2.3 ; Structure of the HET-S N-terminal domain 2WVQ ; 2.0 ; Structure of the HET-s N-terminal domain. Mutant D23A, P33H 2RNM ; ; Structure of The HET-s(218-289) prion in its amyloid form obtained by solid-state NMR 7QRE ; 2.7 ; Structure of the hetero-tetramer complex between precursor membrane protein fragment (pr) and envelope protein (E) from tick-borne encephalitis virus 5TGC ; 3.245 ; Structure of the hetero-trimer of Rtt102-Arp7/9 bound to ATP 4BS9 ; 2.9 ; Structure of the heterocyclase TruD 1RJ9 ; 1.9 ; Structure of the heterodimer of the conserved GTPase domains of the Signal Recognition Particle (Ffh) and Its Receptor (FtsY) 4AKX ; 2.94 ; Structure of the heterodimeric complex ExoU-SpcU from the type III secretion system (T3SS) of Pseudomonas aeruginosa 7LTR ; 1.75 ; Structure of the heteromeric complex between the alpha-N-methyltransferase (SonM) and a truncated construct of the RiPP precursor (SonA) (with SAM) 7PCS ; 2.25 ; Structure of the heterotetrameric SDR family member BbsCD 2UWJ ; 2.0 ; Structure of the heterotrimeric complex which regulates type III secretion needle formation 2WTK ; 2.65 ; Structure of the heterotrimeric LKB1-STRADalpha-MO25alpha complex 7KI6 ; 2.8 ; Structure of the HeV F glycoprotein in complex with the 1F5 neutralizing antibody 3QDW ; 1.9 ; Structure of the hexagonal form of the Boletus edulis lectin in complex with N-acetyl glucosamine and N-acetyl galactosamine 3QDY ; 2.0 ; Structure of the hexagonal form of the Boletus edulis lectin in complex with T-antigen disaccharide and N,N-diacetyl chitobiose 7OZS ; 3.5 ; Structure of the hexameric 5S RNP from C. thermophilum 1XAT ; 3.2 ; STRUCTURE OF THE HEXAPEPTIDE XENOBIOTIC ACETYLTRANSFERASE FROM PSEUDOMONAS AERUGINOSA 7NBU ; 3.11 ; Structure of the HigB1 toxin mutant K95A from Mycobacterium tuberculosis (Rv1955) and its target, the cspA mRNA, on the E. coli Ribosome. 6S8V ; 1.8 ; Structure of the high affinity Anticalin P3D11 in complex with the human CD98 heavy chain ectodomain 6SUA ; 2.75 ; Structure of the high affinity engineered lipocalin C1B12 in complex with the mouse CD98 heavy chain ectodomain 4B9N ; 2.2 ; Structure of the high fidelity DNA polymerase I correctly bypassing the oxidative formamidopyrimidine-dA DNA lesion. 4B9M ; 2.05 ; Structure of the high fidelity DNA polymerase I with an oxidative formamidopyrimidine-dA DNA lesion -thymine basepair in the post- insertion site. 4B9U ; 2.1 ; Structure of the high fidelity DNA polymerase I with an oxidative formamidopyrimidine-dG DNA lesion -dA basepair in the post-insertion site. 4B9T ; 2.65 ; Structure of the high fidelity DNA polymerase I with an oxidative formamidopyrimidine-dG DNA lesion -dC basepair in the post-insertion site. 4B9S ; 1.73 ; Structure of the high fidelity DNA polymerase I with an oxidative formamidopyrimidine-dG DNA lesion outside of the pre-insertion site. 4B9V ; 2.0 ; Structure of the high fidelity DNA polymerase I with extending from an oxidative formamidopyrimidine-dG DNA lesion -dA basepair. 4B9L ; 2.05 ; Structure of the high fidelity DNA polymerase I with the oxidative formamidopyrimidine-dA DNA lesion in the pre-insertion site. 7UWK ; 4.4 ; Structure of the higher-order IL-25-IL-17RB complex 7Z50 ; 2.65 ; Structure of the highly diabetogenic 4.1-T cell receptor targeting a hybrid insulin peptide bound to I-Ag7. 1HGT ; 2.2 ; STRUCTURE OF THE HIRUGEN AND HIRULOG 1 COMPLEXES OF ALPHA-THROMBIN 2HGT ; 2.2 ; STRUCTURE OF THE HIRUGEN AND HIRULOG 1 COMPLEXES OF ALPHA-THROMBIN 1ABI ; 2.3 ; STRUCTURE OF THE HIRULOG 3-THROMBIN COMPLEX AND NATURE OF THE S' SUBSITES OF SUBSTRATES AND INHIBITORS 1ABJ ; 2.4 ; STRUCTURE OF THE HIRULOG 3-THROMBIN COMPLEX AND NATURE OF THE S' SUBSITES OF SUBSTRATES AND INHIBITORS 1I59 ; 1.8 ; STRUCTURE OF THE HISTIDINE KINASE CHEA ATP-BINDING DOMAIN IN COMPLEX WITH ADPNP AND MAGENSIUM 1I58 ; 1.6 ; STRUCTURE OF THE HISTIDINE KINASE CHEA ATP-BINDING DOMAIN IN COMPLEX WITH ATP ANALOG ADPCP AND MAGNESIUM 2WIO ; 2.0 ; Structure of the histidine tagged, open cytochrome P450 Eryk from S. erythraea 3AAD ; 3.3 ; Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction 5IKK ; 2.4 ; Structure of the histone deacetylase Clr3 2IDC ; 2.2 ; Structure of the Histone H3-Asf1 Chaperone Interaction 1KKS ; ; Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression 5UP4 ; 9.0 ; Structure of the HIV-1 Capsid Protein and spacer peptide 1 by Cryo-EM 1A43 ; 2.6 ; STRUCTURE OF THE HIV-1 CAPSID PROTEIN DIMERIZATION DOMAIN AT 2.6A RESOLUTION 2L94 ; ; Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication 3G9R ; 2.0 ; Structure of the HIV-1 gp41 Membrane-Proximal Ectodomain Region in a Putative Prefusion Conformation 7LOH ; ; Structure of the HIV-1 gp41 transmembrane domain and cytoplasmic tail 6UJU ; ; Structure of the HIV-1 gp41 transmembrane domain and cytoplasmic tail (LLP2) 2H3Z ; ; Structure of the HIV-1 matrix protein bound to di-C4-phosphatidylinositol-(4,5)-bisphosphate 2H3V ; ; Structure of the HIV-1 Matrix protein bound to di-C8-phosphatidylinositol-(4,5)-bisphosphate 1EN1 ; ; STRUCTURE OF THE HIV-1 MINUS STRAND PRIMER BINDING SITE 1A1T ; ; STRUCTURE OF THE HIV-1 NUCLEOCAPSID PROTEIN BOUND TO THE SL3 PSI-RNA RECOGNITION ELEMENT, NMR, 25 STRUCTURES 8VGT ; 2.9 ; Structure of the HKU1 RBD bound to the human TMPRSS2 receptor 5W1V ; 3.31 ; Structure of the HLA-E-VMAPRTLIL/GF4 TCR complex 2ESV ; 2.6 ; Structure of the HLA-E-VMAPRTLIL/KK50.4 TCR complex 5W1W ; 3.1 ; Structure of the HLA-E-VMAPRTLVL/GF4 TCR complex 1HME ; ; STRUCTURE OF THE HMG BOX MOTIF IN THE B-DOMAIN OF HMG1 1HMF ; ; STRUCTURE OF THE HMG BOX MOTIF IN THE B-DOMAIN OF HMG1 5OIX ; 1.61 ; Structure of the HMPV P oligomerization domain at 1.6 A 5OIY ; 2.2 ; Structure of the HMPV P oligomerization domain at 2.2 A 6N07 ; 3.6 ; Structure of the HO BMC shell: BMC-TD focused map, open inner pore, compacted shell 5LJN ; 2.701 ; Structure of the HOIP PUB domain bound to SPATA2 PIM peptide 5EDV ; 3.48 ; Structure of the HOIP-RBR/UbcH5B~ubiquitin transfer complex 2CRX ; 2.5 ; STRUCTURE OF THE HOLLIDAY JUNCTION INTERMEDIATE IN CRE-LOXP SITE-SPECIFIC RECOMBINATION 5ISX ; 2.335 ; Structure of the holo PCP-E didomain of the gramicidin S synthetase A 1B8I ; 2.4 ; STRUCTURE OF THE HOMEOTIC UBX/EXD/DNA TERNARY COMPLEX 6YS4 ; 2.11 ; Structure of the Homo sapiens SAS-6 coiled-coil domain 7UWJ ; 3.2 ; Structure of the homodimeric IL-25-IL-17RB binary complex 3GVM ; 2.15 ; Structure of the homodimeric WXG-100 family protein from Streptococcus agalactiae 3GWK ; 1.3 ; Structure of the homodimeric WXG-100 family protein from Streptococcus agalactiae 4G6T ; 1.56 ; Structure of the HopA1-SchA Chaperone-Effector Complex 7AT0 ; 1.2 ; Structure of the Hormone-Sensitive Lipase like EstD11 1XWV ; 1.83 ; Structure of the house dust mite allergen Der f 2: Implications for function and molecular basis of IgE cross-reactivity 3TQF ; 2.8 ; Structure of the Hpr(Ser) kinase/phosphatase from Coxiella burnetii 3IQT ; 1.4 ; Structure of the HPT domain of Sensor protein barA from Escherichia coli CFT073. 3EI3 ; 2.3 ; Structure of the hsDDB1-drDDB2 complex 4A11 ; 3.31 ; Structure of the hsDDB1-hsCSA complex 3EI4 ; 3.3 ; Structure of the hsDDB1-hsDDB2 complex 1N19 ; 1.86 ; Structure of the HSOD A4V mutant 3C7N ; 3.115 ; Structure of the Hsp110:Hsc70 Nucleotide Exchange Complex 2VW5 ; 1.9 ; Structure Of The Hsp90 Inhibitor 7-O-carbamoylpremacbecin Bound To The N- Terminus Of Yeast Hsp90 2VWC ; 2.4 ; STRUCTURE OF THE HSP90 INHIBITOR MACBECIN BOUND TO THE N-TERMINUS OF YEAST HSP90. 6QBW ; 2.4 ; Structure of the HTLV-2 integrase catalytic core domain in complex with calcium 6QBV ; 2.45 ; Structure of the HTLV-2 integrase catalytic core domain in complex with magnesium (dimeric form) 6QBT ; 2.29 ; Structure of the HTLV-2 integrase catalytic core domain in complex with magnesium (trimeric form) 1JVR ; ; STRUCTURE OF THE HTLV-II MATRIX PROTEIN, NMR, 20 STRUCTURES 8RC0 ; 3.2 ; Structure of the human 20S U5 snRNP 8Q91 ; 3.1 ; Structure of the human 20S U5 snRNP core 5GJQ ; 4.35 ; Structure of the human 26S proteasome bound to USP14-UbAl 6MHR ; 2.8 ; Structure of the human 4-1BB / Urelumab Fab complex 6MI2 ; 2.72 ; Structure of the human 4-1BB / Utomilumab Fab complex 7QP7 ; 3.7 ; Structure of the human 48S initiation complex in closed state (h48S AUG closed) 7QP6 ; 4.7 ; Structure of the human 48S initiation complex in open state (h48S AUG open) 7AYY ; 2.0 ; Structure of the human 8-oxoguanine DNA Glycosylase hOGG1 in complex with activator TH10785 6RLW ; 2.0 ; Structure of the human 8-oxoguanine DNA Glycosylase hOGG1 in complex with inhibitor TH5487 4UG0 ; 3.6 ; STRUCTURE OF THE HUMAN 80S RIBOSOME 4V6X ; 5.0 ; Structure of the human 80S ribosome 8E7M ; 3.3 ; Structure of the human ACE2 receptor in complex with antibody Fab fragment, 05B04 6QAP ; 2.3 ; Structure of the human aldehyde dehydrogenase 9A1 in C2 space group 7LRZ ; 1.91 ; Structure of the Human ALK GRD 7LS0 ; 3.05 ; Structure of the Human ALK GRD bound to AUG 4CCU ; 2.0 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with 2-(5-(6-amino-5-((R)-1-(5-fluoro-2-(2H-1,2,3-triazol-2-yl)phenyl)ethoxy) pyridin-3-yl)-4-methylthiazol-2-yl)propan-2-ol 4CCB ; 2.03 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with 3-((R)-1-(5-fluoro-2-(2H-1,2,3-triazol-2-yl)phenyl)ethoxy)-5-(5-methyl-1H- pyrazol-4-yl)pyridin-2-amine 2XP2 ; 1.9 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with Crizotinib (PF-02341066) 4CLI ; 2.05 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with PF- 06463922 ((10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16, 17-tetrahydro-2H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecine-3-carbonitrile). 4CMU ; 1.8 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor (10R)-7-amino-12-fluoro-1,3,10,16-tetramethyl-16,17-dihydro- 1H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11)benzoxadiazacyclotetradecin-15(10H)-one 4CTB ; 1.79 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor (5R)-8-amino-3-fluoro-5,19-dimethyl-20-oxo-5,18,19,20- tetrahydro-7,11-(azeno)pyrido(2',1':2,3)imidazo(4,5-h)(2,5,11) benzoxadiazacyclotetradecine-14-carbonitrile 4CMO ; 2.05 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor 2-((1R)-1-((3-amino-6-(2-methoxypyridin-3-yl)pyrazin-2-yl) oxy)ethyl)-4-fluoro-N-methylbenzamide 4CMT ; 1.73 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor 3-((1R)-1-(5-fluoro-2-(2H-1,2,3-triazol-2-yl)phenyl)ethoxy)- 5-(3-(methylsulfonyl)phenyl)pyridin-2-amine 4CNH ; 1.9 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor 3-((1R)-1-(5-fluoro-2-methoxyphenyl)ethoxy)-5-(1-methyl-1H- 1,2,3-triazol-5-yl)pyridin-2-amine 4CTC ; 2.03 ; Structure of the Human Anaplastic Lymphoma Kinase in Complex with the inhibitor 7-amino-3-cyclopropyl-12-fluoro-1,10,16-trimethyl-16,17- dihydro-1H-8,4-(metheno)pyrazolo(4,3-h)(2,5,11) benzoxadiazacyclotetradecin-15(10H)-one 5G04 ; 3.9 ; Structure of the human APC-Cdc20-Hsl1 complex 5A31 ; 4.3 ; Structure of the human APC-Cdh1-Hsl1-UbcH10 complex. 6O9M ; 4.4 ; Structure of the human apo TFIIH 6HXH ; 3.3 ; Structure of the human ATP citrate lyase holoenzyme in complex with citrate, coenzyme A and Mg.ADP 6QFB ; 3.25 ; Structure of the human ATP citrate lyase holoenzyme in complex with citrate, coenzyme A and Mg.ADP 8ACT ; 3.6 ; structure of the human beta-cardiac myosin folded-back off state 2FXM ; 2.7 ; Structure of the human beta-myosin S2 fragment 2FXO ; 2.5 ; Structure of the human beta-myosin S2 fragment 7VRB ; 2.389 ; Structure of the Human BRG1/SS18 complex 6XD3 ; 3.3 ; Structure of the human CAK in complex with THZ1 6QZH ; 2.1 ; Structure of the human CC Chemokine Receptor 7 in complex with the intracellular allosteric antagonist Cmp2105 and the insertion protein Sialidase NanA 7R5S ; 2.83 ; Structure of the human CCAN bound to alpha satellite DNA 7PII ; 2.68 ; Structure of the human CCAN CENP-A alpha-satellite complex 7R5R ; 2.44 ; Structure of the human CCAN CENP-A alpha-satellite complex 7R5V ; 4.55 ; Structure of the human CCAN CENP-A alpha-satellite complex 7YWX ; 12.0 ; Structure of the human CCAN CENP-A alpha-satellite complex 7PKN ; 3.2 ; Structure of the human CCAN deltaCT complex 7YYH ; 8.9 ; Structure of the human CCANdeltaT CENP-A alpha-satellite complex 6XBZ ; 2.8 ; Structure of the human CDK-activating kinase 6CT9 ; 2.26 ; Structure of the human cGAS-DNA complex 6CTA ; 2.779 ; Structure of the human cGAS-DNA complex with ATP 6VVO ; 3.4 ; Structure of the human clamp loader (Replication Factor C, RFC) bound to the sliding clamp (Proliferating Cell Nuclear Antigen, PCNA) 5CGC ; 3.101 ; Structure of the human class C GPCR metabotropic glutamate receptor 5 transmembrane domain in complex with the negative allosteric modulator 3-chloro-4-fluoro-5-[6-(1H-pyrazol-1-yl)pyrimidin-4-yl]benzonitrile 5CGD ; 2.603 ; Structure of the human class C GPCR metabotropic glutamate receptor 5 transmembrane domain in complex with the negative allosteric modulator 3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile - (HTL14242) 4OO9 ; 2.6 ; Structure of the human class C GPCR metabotropic glutamate receptor 5 transmembrane domain in complex with the negative allosteric modulator mavoglurant 1HLA ; 3.5 ; STRUCTURE OF THE HUMAN CLASS I HISTOCOMPATIBILITY ANTIGEN, HLA-A2 8HVT ; 3.6 ; Structure of the human CLC-7/Ostm1 complex reveals a novel state 7CQ6 ; 3.0 ; Structure of the human CLCN7-OSTM1 complex 7CQ7 ; 3.55 ; Structure of the human CLCN7-OSTM1 complex with ADP 7CQ5 ; 2.6 ; Structure of the human CLCN7-OSTM1 complex with ATP 4CQO ; 2.8 ; Structure of the human CNOT1 superfamily homology domain in complex with a Nanos1 peptide 7VOI ; 4.38 ; Structure of the human CNOT1(MIF4G)-CNOT6L-CNOT7 complex 1GR3 ; 2.0 ; Structure of the human collagen X NC1 trimer 4B3Z ; 3.05 ; Structure of the human collapsin response mediator protein-1, a lung cancer suppressor 8P0V ; 6.5 ; Structure of the human Commander complex coiled coils, DENND10 and partial Retriever subcomplex 8P0W ; 2.9 ; Structure of the human Commander complex COMMD ring 8P0X ; 7.5 ; Structure of the human Commander complex Retriever Subcomplex 7SSP ; 3.5 ; Structure of the human COQ7:COQ9 complex by single-particle electron cryo-microscopy, unliganded state 7US6 ; 3.8 ; Structure of the human coronavirus CCoV-HuPn-2018 spike glycoprotein with domain 0 in the proximal conformation 7USA ; 2.8 ; Structure of the human coronavirus CCoV-HuPn-2018 spike glycoprotein with domain 0 in the swung out conformation 7Q3D ; 3.35 ; Structure of the human CPLANE complex 7NP9 ; 1.14 ; Structure of the human CR3 - CD11bCD18 specific nanobody hCR3Nb1 4WRL ; 2.802 ; Structure of the human CSF-1:CSF-1R complex 4WRM ; 6.853 ; Structure of the human CSF-1:CSF-1R complex 8JDK ; 2.26 ; Structure of the Human cytoplasmic Ribosome with human tRNA Asp(ManQ34) and mRNA(GAU) 8JDJ ; 2.5 ; Structure of the Human cytoplasmic Ribosome with human tRNA Asp(Q34) and mRNA(GAU) 8JDL ; 2.42 ; Structure of the Human cytoplasmic Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAU) (non-rotated state) 8JDM ; 2.67 ; Structure of the Human cytoplasmic Ribosome with human tRNA Tyr(GalQ34) and mRNA(UAU) (rotated state) 2WFD ; 3.25 ; Structure of the human cytosolic leucyl-tRNA synthetase editing domain 1SNT ; 1.75 ; Structure of the human cytosolic sialidase Neu2 1VCU ; 2.85 ; Structure of the human cytosolic sialidase Neu2 in complex with the inhibitor DANA 5WIU ; 1.962 ; Structure of the human D4 Dopamine receptor in complex with Nemonapride 6FCV ; 2.92 ; Structure of the human DDB1-CSA complex 8AJN ; 3.0 ; Structure of the human DDB1-DCAF12 complex 8ROX ; 3.3 ; Structure of the human DDB1-DDA1-DCAF15 E3 ubiquitin ligase bound to compound furan 12 8ROY ; 3.1 ; Structure of the human DDB1-DDA1-DCAF15 E3 ubiquitin ligase bound to compound furan 24 6SJ7 ; 3.54 ; Structure of the human DDB1-DDA1-DCAF15 E3 ubiquitin ligase bound to RBM39 and Indisulam 6PAI ; 2.9 ; Structure of the human DDB1-DDA1-DCAF15 E3 ubiquitin ligase bound to RBM39 and sulfonamide E7820 2WAX ; 2.3 ; Structure of the human DDX6 C-terminal domain in complex with an EDC3- FDF peptide 2WAY ; 2.3 ; Structure of the human DDX6 C-terminal domain in complex with an EDC3- FDF peptide 4G69 ; 2.0 ; Structure of the Human Discs Large 1 PDZ2 - Adenomatous Polyposis Coli Cytoskeletal Polarity Complex 3PBL ; 2.89 ; Structure of the human dopamine D3 receptor in complex with eticlopride 2JGC ; 2.4 ; Structure of the human eIF4E homologous protein, 4EHP without ligand bound 6NH6 ; 2.189 ; Structure of the human endothelial nitric oxide synthase heme domain in complex with 6-(3-(3-(dimethylamino)propyl)-2,6-difluorophenethyl)-4-methylpyridin-2-amine 6CIF ; 2.2 ; Structure of the human endothelial nitric oxide synthase heme domain in complex with N-(1-(Piperidin-4-yl)indolin-5-yl)thiophene-2-carboximidamide 4A2Y ; 1.7 ; STRUCTURE OF THE HUMAN EOSINOPHIL CATIONIC PROTEIN IN COMPLEX WITH CITRATE ANIONS 4A2O ; 1.69 ; STRUCTURE OF THE HUMAN EOSINOPHIL CATIONIC PROTEIN IN COMPLEX WITH SULFATE ANIONS 4L0P ; 2.26 ; Structure of the human EphA3 receptor ligand binding domain complexed with ephrin-A5 8S9S ; 3.6 ; Structure of the human ER membrane protein complex (EMC) in GDN 6WW7 ; 3.4 ; Structure of the human ER membrane protein complex in a lipid nanodisc 7RLO ; 2.6 ; Structure of the human eukaryotic translation initiation factor 2B (eIF2B) in complex with a viral protein NSs 2HYI ; 2.3 ; Structure of the human exon junction complex with a trapped DEAD-box helicase bound to RNA 7KZP ; 3.1 ; Structure of the human Fanconi anaemia Core complex 7KZQ ; 4.3 ; Structure of the human Fanconi anaemia Core-ID complex 7KZR ; 4.4 ; Structure of the human Fanconi Anaemia Core-UBE2T-ID complex 7KZV ; 4.2 ; Structure of the human fanconi anaemia Core-UBE2T-ID-DNA complex in closed state 7KZT ; 4.2 ; Structure of the human fanconi anaemia Core-UBE2T-ID-DNA complex in intermediate state 7KZS ; 4.2 ; Structure of the human fanconi anaemia Core-UBE2T-ID-DNA complex in open state 3HHD ; 2.15 ; Structure of the Human Fatty Acid Synthase KS-MAT Didomain as a Framework for Inhibitor Design. 5NQH ; 2.6 ; Structure of the human Fe65-PTB2 homodimer 7T6T ; 3.2 ; Structure of the human FPR1-Gi complex with fMLFII 7T6U ; 2.9 ; Structure of the human FPR2-Gi complex with CGEN-855A 7T6S ; 3.0 ; Structure of the human FPR2-Gi complex with compound C43 7T6V ; 3.1 ; Structure of the human FPR2-Gi complex with fMLFII 6NZU ; 3.2 ; Structure of the human frataxin-bound iron-sulfur cluster assembly complex 1K8P ; 2.4 ; Structure of the Human G-quadruplex reveals a novel topology 6H8C ; ; Structure of the human GABARAPL2 protein in complex with the UBA5 LIR motif 7RUQ ; 1.79 ; Structure of the human GIGYF1-TNRC6C complex 7RUP ; 1.23 ; Structure of the human GIGYF2-TNRC6A complex 5VEX ; 3.0 ; Structure of the human GLP-1 receptor complex with NNC0640 5VEW ; 2.7 ; Structure of the human GLP-1 receptor complex with PF-06372222 5H8S ; 1.703 ; Structure of the human GluA2 LBD in complex with GNE3419 5C65 ; 2.65 ; Structure of the human glucose transporter GLUT3 / SLC2A3 7EU7 ; 3.5 ; Structure of the human GluN1-GluN2A NMDA receptor in complex with S-ketamine, glycine and glutamate 7EU8 ; 4.07 ; Structure of the human GluN1-GluN2B NMDA receptor in complex with S-ketamine,glycine and glutamate 5I2K ; 2.86 ; Structure of the human GluN1/GluN2A LBD in complex with 7-{[ethyl(4-fluorophenyl)amino]methyl}-N,2-dimethyl-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-3-carboxamide (compound 19) 5TP9 ; 2.4 ; Structure of the human GluN1/GluN2A LBD in complex with compound 2 (GNE9178) 5TPA ; 2.48 ; Structure of the human GluN1/GluN2A LBD in complex with compound 9 (GNE3500) 5KDT ; 2.44 ; Structure of the human GluN1/GluN2A LBD in complex with GNE0723 5H8H ; 2.23 ; Structure of the human GluN1/GluN2A LBD in complex with GNE3419 5KCJ ; 2.09 ; Structure of the human GluN1/GluN2A LBD in complex with GNE6901 5H8Q ; 1.9 ; Structure of the human GluN1/GluN2A LBD in complex with GNE8324 5I2N ; 2.12 ; Structure of the human GluN1/GluN2A LBD in complex with N-ethyl-7-{[2-fluoro-3-(trifluoromethyl)phenyl]methyl}-2-methyl-5-oxo-5H-[1,3]thiazolo[3,2-a]pyrimidine-3-carboxamide (compound 29) 5H8N ; 2.5 ; Structure of the human GluN1/GluN2A LBD in complex with NAM 7EOT ; 3.8 ; Structure of the human GluN1/GluN2A NMDA receptor in the CGP-78608/glutamate bound state 6IRF ; 5.1 ; Structure of the human GluN1/GluN2A NMDA receptor in the glutamate/glycine-bound state at pH 6.3, Class I 6IRG ; 5.5 ; Structure of the human GluN1/GluN2A NMDA receptor in the glutamate/glycine-bound state at pH 6.3, Class II 6IRH ; 7.8 ; Structure of the human GluN1/GluN2A NMDA receptor in the glutamate/glycine-bound state at pH 6.3, Class III 6IRA ; 4.5 ; Structure of the human GluN1/GluN2A NMDA receptor in the glutamate/glycine-bound state at pH 7.8 7EOQ ; 4.1 ; Structure of the human GluN1/GluN2A NMDA receptor in the glycine/CPP bound state 7EOS ; 3.9 ; Structure of the human GluN1/GluN2A NMDA receptor in the glycine/glutamate bound state 7EOR ; 4.0 ; Structure of the human GluN1/GluN2A NMDA receptor in the glycine/glutamate/GNE-6901 bound state 7EOU ; 4.3 ; Structure of the human GluN1/GluN2A NMDA receptor in the glycine/glutamate/GNE-6901/9-AA bound state 5U6O ; 3.5 ; Structure of the human HCN1 hyperpolarization-activated cyclic nucleotide-gated ion channel 5U6P ; 3.51 ; Structure of the human HCN1 hyperpolarization-activated cyclic nucleotide-gated ion channel in complex with cAMP 3WBG ; 2.15 ; Structure of the human heart fatty acid-binding protein in complex with 1-anilinonaphtalene-8-sulphonic acid 5SW7 ; 1.851 ; Structure of the Human Hemoglobin Mutant Hb Providence (A-Gly-C:V1M; B,D:V1M,K82D; Ferrous, carbonmonoxy bound) 6Z1N ; 2.3 ; Structure of the human heterotetrameric cis-prenyltransferase complex 7PAY ; 2.4 ; Structure of the human heterotetrameric cis-prenyltransferase complex in complex with magnesium and GGsPP 7PAX ; 2.0 ; Structure of the human heterotetrameric cis-prenyltransferase complex in complex with magnesium, FsPP and IPP 7PB1 ; 2.59 ; Structure of the human heterotetrameric cis-prenyltransferase complex in complex with magnesium, GGPP and IsPP 7PB0 ; 2.301 ; Structure of the human heterotetrameric cis-prenyltransferase complex in complex with magnesium, GGsPP and IsPP 3RZE ; 3.1 ; Structure of the human histamine H1 receptor in complex with doxepin 5ZSU ; 4.25 ; Structure of the human homo-hexameric LRRC8A channel at 4.25 Angstroms 6M04 ; 4.36 ; Structure of the human homo-hexameric LRRC8D channel at 4.36 Angstroms 3O0I ; 1.47 ; Structure of the human Hsp90-alpha N-domain bound to the hsp90 inhibitor PU-H54 2A7L ; 1.82 ; Structure of the human hypothetical ubiquitin-conjugating enzyme, LOC55284 1F6A ; 3.5 ; Structure of the human ige-fc bound to its high affinity receptor fc(epsilon)ri(alpha) 7QOO ; 4.6 ; Structure of the human inner kinetochore CCAN complex 4ZXB ; 3.3 ; Structure of the human insulin receptor ectodomain, IRDeltabeta construct, in complex with four Fab molecules 6N77 ; 1.64 ; Structure of the human JAK1 kinase domain with compound 15 6N79 ; 2.27 ; Structure of the human JAK1 kinase domain with compound 20 6N78 ; 1.83 ; Structure of the human JAK1 kinase domain with compound 21 6N7B ; 1.81 ; Structure of the human JAK1 kinase domain with compound 38 6N7A ; 1.33 ; Structure of the human JAK1 kinase domain with compound 39 6N7D ; 1.78 ; Structure of the human JAK1 kinase domain with compound 54 6N7C ; 1.69 ; Structure of the human JAK1 kinase domain with compound 56 4DJH ; 2.9 ; Structure of the human kappa opioid receptor in complex with JDTic 8FD7 ; 3.1 ; Structure of the human L-type voltage-gated calcium channel Cav1.2 complexed with gabapentin 8EOG ; 3.3 ; Structure of the human L-type voltage-gated calcium channel Cav1.2 complexed with L-leucine 5YK5 ; 2.03 ; structure of the human Lamtor4-Lamtor5 complex 3P7F ; 2.5 ; Structure of the human Langerin carbohydrate recognition domain 3P7H ; 2.3 ; Structure of the human Langerin carbohydrate recognition domain in complex with maltose 3P7G ; 1.5 ; Structure of the human Langerin carbohydrate recognition domain in complex with mannose 7TYG ; 1.9 ; Structure of the human leucine rich repeat protein SHOC2, residues 80-582 2W7A ; 1.4 ; Structure of the human LINE-1 ORF1p central domain 6FIA ; 2.65 ; Structure of the human LINE-1 ORF1p coiled coil domain 2YKO ; 2.1 ; Structure of the human LINE-1 ORF1p trimer 2YKP ; 3.1 ; Structure of the human LINE-1 ORF1p trimer 2YKQ ; 3.1 ; Structure of the human LINE-1 ORF1p trimer 5CXV ; 2.7 ; Structure of the human M1 muscarinic acetylcholine receptor bound to antagonist Tiotropium 3UON ; 3.0 ; Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist 1T9G ; 2.9 ; Structure of the human MCAD:ETF complex 2A1T ; 2.8 ; Structure of the human MCAD:ETF E165betaA complex 3DAB ; 1.9 ; Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain 3DAC ; 1.8 ; Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain 7FH1 ; 3.34 ; Structure of the human Meckelin 7LBM ; 4.8 ; Structure of the human Mediator-bound transcription pre-initiation complex 5VXA ; 2.1 ; Structure of the human Mesh1-NADPH complex 5L1X ; 3.3 ; Structure of the Human Metapneumovirus Fusion Protein in the Postfusion Conformation 4DAG ; 3.3904 ; Structure of the Human Metapneumovirus Fusion Protein with Neutralizing Antibody Identifies a Pneumovirus Antigenic Site 6U5O ; 3.7 ; Structure of the Human Metapneumovirus Polymerase bound to the phosphoprotein tetramer 7QPD ; 3.73 ; Structure of the human MHC I peptide-loading complex editing module 6XQO ; 3.1 ; Structure of the human MICU1-MICU2 heterodimer, calcium bound, in association with a lipid nanodisc 4TNT ; 2.3938 ; Structure of the human mineralocorticoid receptor in complex with DNA 4AYT ; 2.85 ; STRUCTURE OF THE HUMAN MITOCHONDRIAL ABC TRANSPORTER, ABCB10 3ZDQ ; 2.85 ; STRUCTURE OF THE HUMAN MITOCHONDRIAL ABC TRANSPORTER, ABCB10 (NUCLEOTIDE-FREE FORM) 4AYW ; 3.3 ; STRUCTURE OF THE HUMAN MITOCHONDRIAL ABC TRANSPORTER, ABCB10 (PLATE FORM) 4AYX ; 2.9 ; STRUCTURE OF THE HUMAN MITOCHONDRIAL ABC TRANSPORTER, ABCB10 (ROD FORM B) 6UXE ; 1.57 ; Structure of the human mitochondrial desulfurase complex Nfs1-ISCU2(M140I)-ISD11 with E.coli ACP1 at 1.57 A resolution showing flexibility of N terminal end of ISCU2 7AZP ; 3.5 ; Structure of the human mitochondrial HSPD1 single ring 5I35 ; 2.3 ; Structure of the Human mitochondrial kinase COQ8A R611K with AMPPNP (Cerebellar Ataxia and Ubiquinone Deficiency Through Loss of Unorthodox Kinase Activity) 3J9M ; 3.5 ; Structure of the human mitochondrial ribosome (class 1) 6VLZ ; 2.97 ; Structure of the human mitochondrial ribosome-EF-G1 complex (ClassI) 6VMI ; 2.96 ; Structure of the human mitochondrial ribosome-EF-G1 complex (ClassIII) 6ERQ ; 4.5 ; Structure of the human mitochondrial transcription initiation complex at the HSP promoter 6ERP ; 4.502 ; Structure of the human mitochondrial transcription initiation complex at the LSP promoter 3W8Q ; 2.2 ; Structure of the Human Mitogen-Activated Protein Kinase Kinase 1 (MEK1) 5YT3 ; 2.9 ; Structure of the Human Mitogen-Activated Protein Kinase Kinase 1 S218D and S222D mutant 7PD3 ; 3.4 ; Structure of the human mitoribosomal large subunit in complex with NSUN4.MTERF4.GTPBP7 and MALSU1.L0R8F8.mt-ACP 7A5K ; 3.7 ; Structure of the human mitoribosome in the post translocation state bound to mtEF-G1 7A5I ; 3.7 ; Structure of the human mitoribosome with A- P-and E-site mt-tRNAs 3OB9 ; 2.5 ; Structure of the human MSL3 chromo-barrel domain at 2.5 Angstrom resolution 2CBZ ; 1.5 ; Structure of the human Multidrug Resistance Protein 1 Nucleotide Binding Domain 1 3AU5 ; 2.55 ; Structure of the human myosin-X MyTH4-FERM cassette 3AU4 ; 1.9 ; Structure of the human myosin-X MyTH4-FERM cassette bound to its specific cargo, DCC 1P6F ; 2.2 ; Structure of the human natural cytotoxicity receptor NKp46 6CIC ; 1.752 ; Structure of the human nitric oxide synthase R354A/G357D mutant heme domain in complex with N-(1-(2-(Ethyl(methyl)amino)ethyl)-1,2,3,4-tetrahydroquino-lin-6-yl)thiophene-2-carboximidamide 6BT1 ; 1.48 ; Structure of the human Nocturnin catalytic domain 6BT2 ; 2.411 ; Structure of the human Nocturnin catalytic domain with bound sulfate anion 8PMP ; 3.43 ; Structure of the human nuclear cap-binding complex bound to ARS2[147-871] and m7GTP 8BY6 ; 3.19 ; Structure of the human nuclear cap-binding complex bound to NCBP3(560-620) and cap-analogue m7GpppG 8PNT ; 3.46 ; Structure of the human nuclear cap-binding complex bound to PHAX and m7G-capped RNA 1H2V ; 2.0 ; Structure of the human nuclear cap-binding-complex (CBC) 1H2T ; 2.1 ; Structure of the human nuclear cap-binding-complex (CBC) in complex with a cap analogue m7GpppG 1H2U ; 2.4 ; Structure of the human nuclear cap-binding-complex (CBC) in complex with a cap analogue m7GpppG 8PPR ; 3.0 ; Structure of the human outer kinetochore KMN network complex 4NTJ ; 2.62 ; Structure of the human P2Y12 receptor in complex with an antithrombotic drug 2WTT ; 2.3 ; Structure of the human p73 tetramerization domain (crystal form II) 2OXE ; 2.8 ; Structure of the Human Pancreatic Lipase-related Protein 2 1CMI ; 2.5 ; STRUCTURE OF THE HUMAN PIN/LC8 DIMER WITH A BOUND PEPTIDE 6A70 ; 3.6 ; Structure of the human PKD1/PKD2 complex 6ENY ; 5.8 ; Structure of the human PLC editing module 1W4M ; ; Structure of the human pleckstrin DEP domain by multidimensional NMR 7S1T ; 2.9 ; Structure of the human POT1-TPP1 complex 5UN7 ; 2.1 ; Structure of the human POT1-TPP1 telomeric complex 7SQF ; 3.1 ; Structure of the human proton-activated chloride channel ASOR in activated conformation 7SQH ; 2.5 ; Structure of the human proton-activated chloride channel ASOR in desensitized conformation 7SQG ; 2.6 ; Structure of the human proton-activated chloride channel ASOR in resting conformation 5LBY ; 1.4 ; Structure of the human quinone reductase 2 (NQO2) in complex with crenolanib 5LBT ; 1.75 ; Structure of the human quinone reductase 2 (NQO2) in complex with imiquimod 5LBZ ; 1.4 ; Structure of the human quinone reductase 2 (NQO2) in complex with pacritinib 5LBU ; 1.65 ; Structure of the human quinone reductase 2 (NQO2) in complex with to CL097 5LBW ; 1.9 ; Structure of the human quinone reductase 2 (NQO2) in complex with volitinib 6S5H ; 2.0 ; Structure of the human RAB38 in complex with GTP 6S5F ; 1.7 ; Structure of the human RAB39B in complex with GMPPNP 6Y7G ; 2.3 ; Structure of the human RAB3C in complex with GDP 6ZRC ; 2.6 ; Structure of the human RBAP48 in complex with a macrocyclic peptide cyclized via a xylene linker attached to two cysteines 6ZRD ; 2.5 ; STRUCTURE OF THE HUMAN RBAP48 in complex with a macrocyclic peptide cyclized via a xylene linker attached to two cysteines 4PBY ; 2.5 ; Structure of the human RbAp48-MTA1(656-686) complex 4PBZ ; 2.15 ; Structure of the human RbAp48-MTA1(670-695) complex 4PC0 ; 2.5 ; Structure of the human RbAp48-MTA1(670-711) complex 5FXY ; 3.2 ; Structure of the human RBBP4:MTA1(464-546) complex 6G16 ; 2.8 ; Structure of the human RBBP4:MTA1(464-546) complex showing loop exchange 2UZX ; 2.8 ; Structure of the human receptor tyrosine kinase Met in complex with the Listeria monocytogenes invasion protein InlB: Crystal form I 2UZY ; 4.0 ; Structure of the human receptor tyrosine kinase Met in complex with the Listeria monocytogenes invasion protein inlb: low resolution, Crystal form II 1L1O ; 2.8 ; Structure of the human Replication Protein A (RPA) trimerization core 6PZQ ; 2.703 ; Structure of the human respiratory syncytial virus M2-1 protein in complex with a short positive-sense gene-end RNA 2NN6 ; 3.35 ; Structure of the human RNA exosome composed of Rrp41, Rrp45, Rrp46, Rrp43, Mtr3, Rrp42, Csl4, Rrp4, and Rrp40 6Z4A ; 1.46 ; Structure of the human SAS-6 N-terminal domain, F131E mutant 2Q2F ; 1.5 ; Structure of the human Selenoprotein S (VCP-interacting membrane protein) 2L9N ; ; Structure of the human Shwachman-Bodian-Diamond syndrome (SBDS) protein 2KDO ; ; Structure of the human Shwachman-Bodian-Diamond syndrome protein, SBDS 4QGK ; 2.1 ; Structure of the Human Sjogren Larsson Syndrome enzyme fatty aldehyde dehydrogenase (FALDH) 4HPF ; 3.4 ; Structure of the human SLO3 gating ring 4JKV ; 2.45 ; Structure of the human smoothened 7TM receptor in complex with an antitumor agent 4QIM ; 2.61 ; Structure of the human smoothened receptor in complex with ANTA XV 4QIN ; 2.6 ; Structure of the human smoothened receptor in complex with SAG1.5 4N4W ; 2.8 ; Structure of the human smoothened receptor in complex with SANT-1. 4PQO ; 2.55 ; Structure of the human SNX14 PX domain in space group I41 7ZYI ; 2.88 ; Structure of the human sodium/bile acid cotransporter (NTCP) in complex with Fab and nanobody 2V24 ; 2.2 ; Structure of the human SPRY domain-containing SOCS box protein SSB-4 4P3E ; 3.5 ; Structure of the human SRP S domain 5M73 ; 3.4 ; Structure of the human SRP S domain with SRP72 RNA-binding domain 5M72 ; 1.6 ; Structure of the human SRP68-72 protein-binding domain complex 4P3F ; 1.699 ; Structure of the human SRP68-RBD 6L47 ; 3.5 ; Structure of the human sterol O-acyltransferase 1 in complex with CI-976 6L48 ; 3.5 ; Structure of the human sterol O-acyltransferase 1 in resting state 8GJX ; 2.6 ; Structure of the human STING receptor bound to 2'3'-cUA 5UGW ; 2.31 ; STRUCTURE OF THE HUMAN TELOMERASE THUMB DOMAIN 7APK ; 3.3 ; Structure of the human THO - UAP56 complex 7RRM ; 1.72 ; Structure of the human TMED1 (p24gamma1) Golgi dynamics Domain 7ZNL ; 3.45 ; Structure of the human TREX core THO-UAP56 complex 7ZRZ ; 3.09 ; Structure of the human tRNA splicing endonuclease defines substrate recognition 6CUD ; 3.3 ; Structure of the human TRPC3 in a lipid-occupied, closed state 6MHS ; 3.2 ; Structure of the human TRPV3 channel in a putative sensitized conformation 6MHO ; 3.4 ; Structure of the human TRPV3 channel in the apo conformation 4ZNY ; 2.4 ; Structure of the human TSG101-UEV Domain in complex with the PTAP motif of the p19 gag protein of the Human T-cell Leukemia type I virus 4YC1 ; 2.0 ; Structure of the human TSG101-UEV domain in the P321 space group 6QW6 ; 2.92 ; Structure of the human U5.U4/U6 tri-snRNP at 2.9A resolution. 2A4D ; 1.69 ; Structure of the human ubiquitin-conjugating enzyme E2 variant 1 (UEV-1) 8BJA ; 3.0 ; Structure of the human UBR5 Dimer. 8E0Q ; 2.66 ; Structure of the human UBR5 HECT-type E3 ubiquitin ligase in a C2 symmetric dimeric form 8D4X ; 2.8 ; Structure of the human UBR5 HECT-type E3 ubiquitin ligase in a dimeric form 8EWI ; 3.5 ; Structure of the human UBR5 HECT-type E3 ubiquitin ligase in a tetrameric form 7OVC ; ; Structure of the human UFC1 protein in complex with the UBA5 C-terminal UFC1-binding motif. 8THR ; 3.12 ; Structure of the human vesicular monoamine transporter 2 (VMAT2) bound to tetrabenazine in an occluded conformation 2JK4 ; 4.1 ; Structure of the human voltage-dependent anion channel 6AGF ; 3.2 ; Structure of the human voltage-gated sodium channel Nav1.4 in complex with beta1 6N8C ; ; Structure of the Huntingtin tetramer/dimer mixture determined by paramagnetic NMR 1WMQ ; 1.6 ; Structure of the HutP antitermination complex bound to a single stranded region of hut mRNA 3H1D ; 1.892 ; Structure of the HUWE1 HECT Domain 5M3C ; 2.8 ; Structure of the hybrid domain (GGDEF-EAL) of PA0575 from Pseudomonas aeruginosa PAO1 at 2.8 Ang. with GTP and Ca2+ bound to the active site of the GGDEF domain 1IHA ; 1.6 ; Structure of the Hybrid RNA/DNA R-GCUUCGGC-D[BR]U in Presence of RH(NH3)6+++ 1IDW ; 1.8 ; STRUCTURE OF THE HYBRID RNA/DNA R-GCUUCGGC-D[CL]U IN PRESENCE OF RH(NH3)6+++ 1ICG ; 1.53 ; STRUCTURE OF THE HYBRID RNA/DNA R-GCUUCGGC-D[F]U IN PRESENCE OF IR(NH3)6+++ 1ID9 ; 1.6 ; STRUCTURE OF THE HYBRID RNA/DNA R-GCUUCGGC-D[F]U IN PRESENCE OF RH(NH3)6+++ 3DQZ ; 2.504 ; Structure of the hydroxynitrile lyase from Arabidopsis thaliana 6OAY ; 3.3 ; Structure of the hyperactive ClpB mutant K476C, bound to casein, post-state 6OAX ; 2.9 ; Structure of the hyperactive ClpB mutant K476C, bound to casein, pre-state 3PZI ; 1.55 ; Structure of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 in complex with beta-D-glucose 3PZO ; 1.55 ; Structure of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 in complex with three maltose molecules 3PZN ; 1.5 ; Structure of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 with citrate and glycerol 3PZQ ; 1.92 ; Structure of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 with maltose and glycerol 3PZM ; 1.5 ; Structure of the hyperthermostable endo-1,4-beta-D-mannanase from Thermotoga petrophila RKU-1 with three glycerol molecules 8P6K ; 1.918 ; Structure of the hypervariable region of Streptococcus pyogenes M3 protein 8P6J ; 2.324 ; Structure of the hypervariable region of Streptococcus pyogenes M3 protein in complex with a collagen peptide 1YEL ; ; Structure of the hypothetical Arabidopsis thaliana protein At1g16640.1 1ZCH ; 1.85 ; Structure of the hypothetical oxidoreductase YcnD from Bacillus subtilis 2W56 ; 1.9 ; Structure of the hypothetical protein VC0508 from Vibrio cholerae VSP- II pathogenicity island 1NNX ; 1.45 ; Structure of the hypothetical protein ygiW from E. coli. 6AXW ; 2.4 ; Structure of the I124A mutant of the HIV-1 capsid protein 6MI4 ; 2.50009 ; Structure of the I65M mutant of NEMO(51-112) with N- and C-terminal coiled-coil adaptors. 6S8T ; 2.17 ; Structure of the ICAM-1-binding PfEMP1 IT4var13 DBLbeta domain 3J7Q ; 3.4 ; Structure of the idle mammalian ribosome-Sec61 complex 8BBG ; 3.5 ; Structure of the IFT-A complex; anterograde IFT-A train model 8BBF ; 8.0 ; Structure of the IFT-A complex; IFT-A1 module 8BBE ; 3.5 ; Structure of the IFT-A complex; IFT-A2 module 1BOE ; ; STRUCTURE OF THE IGF BINDING DOMAIN OF THE INSULIN-LIKE GROWTH FACTOR-BINDING PROTEIN-5 (IGFBP-5): IMPLICATIONS FOR IGF AND IGF-I RECEPTOR INTERACTIONS 3LQM ; 2.14 ; Structure of the IL-10R2 Common Chain 7UWM ; 2.5 ; Structure of the IL-17A-IL-17RA binary complex 7UWN ; 3.01 ; Structure of the IL-17A-IL-17RA-IL-17RC ternary complex 4DEP ; 3.1 ; Structure of the IL-1b signaling complex 7UWL ; 3.7 ; Structure of the IL-25-IL-17RB-IL-17RA ternary complex 8TLD ; 3.6 ; Structure of the IL-5 Signaling Complex 6E8S ; 2.35 ; Structure of the iMango-III aptamer bound to TO1-Biotin 6PQ7 ; 3.0 ; Structure of the iMango-III fluorescent aptamer at room temperature. 3PH2 ; 1.4 ; Structure of the imidazole-adduct of the Phormidium laminosum cytochrome c6 Q51V variant 1DY6 ; 2.13 ; Structure of the imipenem-hydrolyzing beta-lactamase SME-1 8PUH ; 6.2 ; Structure of the immature HTLV-1 CA lattice from full-length Gag VLPs: CA-CTD refinement 8PUG ; 5.9 ; Structure of the immature HTLV-1 CA lattice from full-length Gag VLPs: CA-NTD refinement 5JJ1 ; 3.3 ; Structure of the Immature Procapsid Conformation of P22 Portal Protein 4ARD ; 7.0 ; Structure of the immature retroviral capsid at 8A resolution by cryo- electron microscopy 4ARG ; 7.0 ; Structure of the immature retroviral capsid at 8A resolution by cryo- electron microscopy 5IHB ; 2.24 ; Structure of the immune receptor CD33 5J06 ; 2.66 ; Structure of the immune receptor CD33 in complex with 3'-sialyllactose 5J0B ; 2.48 ; Structure of the immune receptor CD33 in complex with 6'-sialyllactose 2J8H ; 1.99 ; Structure of the immunoglobulin tandem repeat A168-A169 of titin 2J8O ; 2.49 ; Structure of the immunoglobulin tandem repeat of titin A168-A169 2FRG ; 1.19 ; Structure of the immunoglobulin-like domain of human TLT-1 2VSC ; 1.9 ; Structure of the immunoglobulin-superfamily ectodomain of human CD47 4XWU ; 1.75 ; Structure of the IMP dehydrogenase from Ashbya gossypii 4Z87 ; 2.25 ; Structure of the IMP dehydrogenase from Ashbya gossypii bound to GDP 8P4Q ; 1.88 ; Structure of the IMP dehydrogenase related protein GUAB3 from Synechocystis PCC 6803 5C1F ; 2.3551 ; Structure of the Imp2 F-BAR domain 4Z0G ; 1.25 ; Structure of the IMPDH from Ashbya gossypii bound to GMP 2CIU ; 1.6 ; Structure of the IMS domain of the mitochondrial import protein Tim21 from S. cerevisiae 7N9F ; 37.0 ; Structure of the in situ yeast NPC 5FJ5 ; 4.8 ; Structure of the in vitro assembled bacteriophage phi6 polymerase complex 4EKF ; 0.98 ; Structure of the Inactive Adenovirus Proteinase at 0.98 Angstrom Resolution 4LZL ; 1.55 ; Structure of the inactive form of the regulatory domain from the repressor of iron transport regulator (RitR) 7D8N ; 2.753 ; Structure of the inactive form of wild-type peptidylarginine deiminase type III (PAD3) crystallized under the condition with high concentrations of Ca2+ 4ARL ; 1.999 ; Structure of the inactive pesticin D207A mutant 4ARP ; 2.296 ; Structure of the inactive pesticin E178A mutant 4ARM ; 2.002 ; Structure of the inactive pesticin T201A mutant 4ELL ; 1.98 ; Structure of the inactive retinoblastoma protein pocket domain 5O7F ; 1.9 ; Structure of the inactive T.maritima PDE (TM1595) D80N D154N mutant with GMP and Mn2+ 5O70 ; 1.55 ; Structure of the inactive T.maritima PDE (TM1595) D80N D154N mutant with reaction products 2 AMP 5O4Z ; 1.7 ; Structure of the inactive T.maritima PDE (TM1595) D80N D154N mutant with substrate 5'-pApA 5O58 ; 1.55 ; Structure of the inactive T.maritima PDE (TM1595) D80N D154N mutant with substrate 5'-pApG 2LJB ; ; Structure of the influenza AM2-BM2 chimeric channel 2LJC ; ; Structure of the influenza AM2-BM2 chimeric channel bound to rimantadine 2Q0S ; 1.5 ; Structure of the Inhibitor bound form of M. Smegmatis Aryl Esterase 1O3W ; 1.85 ; Structure of the inhibitor free triple mutant (K53,56,120M) of phospholipase A2 6E7D ; 2.9 ; Structure of the inhibitory NKR-P1B receptor bound to the host-encoded ligand, Clr-b 7TN9 ; 3.1 ; Structure of the Inmazeb cocktail and resistance to escape against Ebola virus 4JD0 ; 1.8 ; Structure of the inositol-1-phosphate CTP transferase from T. maritima. 8UVT ; 2.9 ; Structure of the insect gustatory receptor Gr9 from Bombyx mori 8UVU ; 3.0 ; Structure of the insect gustatory receptor Gr9 from Bombyx mori in complex with D-fructose 8VV3 ; 2.61 ; Structure of the insect gustatory receptor Gr9 from Bombyx mori in complex with L-sorbose 2KSL ; ; Structure of the insecticidal toxin TaITX-1 1K3A ; 2.1 ; Structure of the Insulin-like Growth Factor 1 Receptor Kinase 5V74 ; 3.51015 ; Structure of the intact Haliangium ochraceum microcompartment shell 8GWA ; 2.9 ; Structure of the intact photosynthetic light-harvesting antenna-reaction center complex from a green sulfur bacterium 7BFQ ; 4.15 ; Structure of the Integrator cleavage module with extended INTS4 and rigid body docked INTS9/11 CTD 7BFP ; 3.56 ; Structure of the Integrator cleavage module with INTS4/9/11 7KN0 ; ; Structure of the integrin aIIb(W968V)b3 transmembrane complex 1Q7D ; 1.8 ; Structure of the integrin alpha2beta1 binding collagen peptide 2N9Y ; ; Structure of the Integrin alphaIIb-beta3(A711P) Transmembrane Complex 6V4P ; 2.8 ; Structure of the integrin AlphaIIbBeta3-Abciximab complex 2L91 ; ; Structure of the Integrin beta3 (A711P,K716A) Transmembrane Segment 4GS7 ; 2.35 ; Structure of the Interleukin-15 quaternary complex 6JZF ; 2.534 ; Structure of the intermembrane space region of PARC6 6JZN ; 2.894 ; Structure of the intermembrane space region of PARC6-PDV1 3NAF ; 3.1 ; Structure of the Intracellular Gating Ring from the Human High-conductance Ca2+ gated K+ Channel (BK Channel) 3UQC ; 2.256 ; Structure of the Intracellular Kinase Homology Domain of Rv3910 at 2.2 A resolution 7LIR ; 2.6 ; Structure of the invertebrate ALK GRD 6O94 ; 1.98 ; Structure of the IRAK4 kinase domain with compound 17 6O95 ; 1.77 ; Structure of the IRAK4 kinase domain with compound 41 6O9D ; 2.51 ; Structure of the IRAK4 kinase domain with compound 5 5U1M ; 1.8 ; Structure of the IRS-1 PTB Domain Bound to the Juxtamembrane Region of the Insulin Receptor 1T3M ; 1.65 ; Structure of the isoaspartyl peptidase with L-asparaginase activity from E. coli 3REM ; 1.95 ; Structure of the Isochorismate-Pyruvate Lyase from Pseudomonas aerugionsa with Bound Salicylate and Pyruvate 8TH2 ; 2.6 ; Structure of the isoflavene-forming dirigent protein PsPTS2 6ZIL ; 3.12 ; Structure of the isolated REC domain of RcsB from Salmonella enterica serovar Typhimurium in the apo form 6ZII ; 2.5 ; Structure of the isolated REC domain of RcsB from Salmonella enterica serovar Typhimurium in the presence of phosphomimetic BeF3- 5LL3 ; 2.15 ; Structure of the Isoleucine 2-epimerase from Lactobacillus buchneri (PLP complex form) 8BY2 ; 3.18 ; Structure of the K+/H+ exchanger KefC with GSH. 6P7V ; 4.0 ; Structure of the K. lactis CBF3 core 6P7W ; 4.1 ; Structure of the K. lactis CBF3 core - Ndc10 D1 complex 6P7X ; 4.3 ; Structure of the K. lactis CBF3 core - Ndc10 D1D2 complex 7SBE ; 2.65 ; Structure of the K. lactis telomerase RNA binding domain 5HSZ ; 2.3 ; Structure of the K. pneumonia SlmA protein bound to the C-terminal tail of the cytoskeletal cell division protein FtsZ 5K58 ; 2.772 ; Structure of the K. pneumonia SlmA-DNA complex bound to the C-terminal of the cell division protein FtsZ 8BXG ; 3.16 ; Structure of the K/H exchanger KefC. 1SVK ; 2.0 ; Structure of the K180P mutant of Gi alpha subunit bound to AlF4 and GDP 1SVS ; 1.5 ; Structure of the K180P mutant of Gi alpha subunit bound to GppNHp. 2XQ2 ; 2.73 ; Structure of the K294A mutant of vSGLT 2ZJY ; 2.8 ; Structure of the K349P mutant of Gi alpha 1 subunit bound to ALF4 and GDP 2ZJZ ; 2.6 ; Structure of the K349P mutant of Gi alpha 1 subunit bound to GDP 1STX ; 2.1 ; Structure of the K38A mutant of EcoRV bound to cognate DNA and Mn2+ 8DZL ; 1.36 ; Structure of the K39Q mutant of rat somatic Cytochrome c at 1.36A 8AIW ; 2.0 ; Structure of the K5/CagI complex 3RSK ; 2.0 ; STRUCTURE OF THE K7A/R10A/K66A VARIANT OF RIBONUCLEASE A 4RSK ; 2.1 ; STRUCTURE OF THE K7A/R10A/K66A VARIANT OF RIBONUCLEASE A COMPLEXED WITH 3'-UMP 1YAE ; 3.11 ; Structure of the Kainate Receptor Subunit GluR6 Agonist Binding Domain Complexed with Domoic Acid 6BFH ; 1.95 ; Structure of the kanamycin complex of aminoglycoside acetyltransferase AAC(6')-Im 5YBU ; 1.89 ; Structure of the KANK1 ankyrin domain in complex with KIF21A peptide 2C1T ; 2.6 ; Structure of the Kap60p:Nup2 complex 7AG9 ; 3.3 ; Structure of the Kar9 protein 1QBK ; 3.0 ; STRUCTURE OF THE KARYOPHERIN BETA2-RAN GPPNHP NUCLEAR TRANSPORT COMPLEX 6NFU ; 2.09 ; Structure of the KcsA-G77A mutant or the 2,4-ion bound configuration of a K+ channel selectivity filter. 6NFV ; 2.13 ; Structure of the KcsA-G77C mutant or the 2,4-ion bound configuration of a K+ channel selectivity filter. 7SQW ; 3.21 ; Structure of the KcsA-W67F mutant with the activation gate in the closed conformation 6TE1 ; 3.11 ; Structure of the KDM1A/CoREST complex with the inhibitor 2-[3-{4-chloro-3-[(4-chlorophenyl)ethynyl]phenyl}-1-(3-morpholin-4-ylpropyl)-1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl]-2-oxoethanol 5LHH ; 3.05 ; Structure of the KDM1A/CoREST complex with the inhibitor 4-ethyl-N-[3-(methoxymethyl)-2-[[4-[[(3R)-pyrrolidin-3-yl]methoxy]phenoxy]methyl]phenyl]thieno[3,2-b]pyrrole-5-carboxamide 5LHG ; 3.34 ; Structure of the KDM1A/CoREST complex with the inhibitor 4-methyl-N-[4-[[4-(1-methylpiperidin-4-yl)oxyphenoxy]methyl]phenyl]thieno[3,2-b]pyrrole-5-carboxamide 5LHI ; 3.4 ; Structure of the KDM1A/CoREST complex with the inhibitor N-[3-(ethoxymethyl)-2-[[4-[[(3R)-pyrrolidin-3-yl]methoxy]phenoxy]methyl]phenyl]-4-methylthieno[3,2-b]pyrrole-5-carboxamide 5MRW ; 2.9 ; Structure of the KdpFABC complex 5FNQ ; 1.91 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FNR ; 1.89 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FNS ; 1.79 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FNT ; 1.79 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FNU ; 1.78 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FZJ ; 2.01 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 5FZN ; 1.97 ; Structure of the Keap1 Kelch domain in complex with a small molecule inhibitor. 8IN0 ; 1.8 ; Structure of the Keap1 Kelch domain in complex with PGAM5-derived peptide 8CRA ; 2.4 ; Structure of the keratin-like domain of SEPALLATA3 and AGAMOUS from Arabidopsis thaliana 4Z37 ; 1.998 ; Structure of the ketosynthase of module 2 of C0ZGQ5 (trans-AT PKS) from Brevibacillus brevis 2HG4 ; 2.73 ; Structure of the ketosynthase-acyltransferase didomain of module 5 from DEBS. 5EL3 ; 1.59 ; Structure of the KH domain of T-STAR 5ELS ; 2.873 ; Structure of the KH domain of T-STAR in complex with AAAUAA RNA 5ELR ; 2.3 ; Structure of the KH-QUA2 domain of T-STAR in complex with AAUAAU RNA 3OSE ; 1.7 ; Structure of the Kinase Associated Domain 1 (KA1) from MARK1 kinase 3OSM ; 1.7 ; Structure of the Kinase Associated Domain-1 (KA1) from Kcc4p 3OST ; 1.694 ; Structure of the Kinase Associated-1 (KA1) from Kcc4p 2F4J ; 1.91 ; Structure of the Kinase Domain of an Imatinib-Resistant Abl Mutant in Complex with the Aurora Kinase Inhibitor VX-680 3LQ8 ; 2.02 ; Structure of the kinase domain of c-Met bound to XL880 (GSK1363089) 6HP9 ; 1.96 ; Structure of the kinase domain of human DDR1 in complex with a 2-Amino-2,3-Dihydro-1H-Indene-5-Carboxamide-based inhibitor 6GWR ; 2.07 ; Structure of the kinase domain of human DDR1 in complex with a potent and selective inhibitor of DDR1 and DDR2 4C8B ; 2.75 ; Structure of the kinase domain of human RIPK2 in complex with ponatinib 6FU5 ; 3.26 ; Structure of the kinase domain of human RIPK2 in complex with the inhibitor CSLP18 6S1F ; 3.11 ; Structure of the kinase domain of human RIPK2 in complex with the inhibitor CSLP3 6RX7 ; 1.63 ; Structure of the KIV type 2 (KIV-2) domain of lipoprotein (a) 6PIB ; 2.26 ; Structure of the Klebsiella pneumoniae LpxH-AZ1 complex 8YGY ; 2.401 ; Structure of the KLK1 from Biortus. 5IT7 ; 3.6 ; Structure of the Kluyveromyces lactis 80S ribosome in complex with the cricket paralysis virus IRES and eEF2 4NF9 ; 2.8 ; Structure of the Knl1/Nsl1 complex 4YTK ; 1.0904 ; Structure of the KOW1-Linker1 domain of Transcription Elongation Factor Spt5 4YTL ; 1.601 ; Structure of the KOW2-KOW3 Domain of Transcription Elongation Factor Spt5. 6HOS ; 2.15 ; Structure of the KpFlo2 adhesin domain in complex with glycerol 4QMF ; 2.804 ; Structure of the Krr1 and Faf1 complex from Saccharomyces cerevisiae 5DVH ; 1.8 ; Structure of the Kunitz-type cysteine protease inhibitor PCPI-3 from potato 6OAR ; 2.063 ; Structure of the Kupe virus OTU bound to the C-terminal domain of sheep ISG15 5A22 ; 3.8 ; Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy 2W11 ; 1.9 ; Structure of the L-2-haloacid dehalogenase from Sulfolobus tokodaii 1M1C ; 3.5 ; Structure of the L-A virus 2LBP ; 2.4 ; STRUCTURE OF THE L-LEUCINE-BINDING PROTEIN REFINED AT 2.4 ANGSTROMS RESOLUTION AND COMPARISON WITH THE LEU(SLASH)ILE(SLASH)VAL-BINDING PROTEIN STRUCTURE 7TU6 ; 2.7 ; Structure of the L. blandensis dGTPase bound to dATP 7TU0 ; 2.04 ; Structure of the L. blandensis dGTPase bound to Mn 7TU3 ; 2.17 ; Structure of the L. blandensis dGTPase del55-58 mutant 7TU4 ; 2.26 ; Structure of the L. blandensis dGTPase del55-58 mutant bound to Mn 7TU7 ; 2.5 ; Structure of the L. blandensis dGTPase H125A mutant bound to dGTP 7TU8 ; 2.6 ; Structure of the L. blandensis dGTPase H125A mutant bound to dGTP and dATP 7TU5 ; 2.1 ; Structure of the L. blandensis dGTPase in the apo form 7TU1 ; 1.8 ; Structure of the L. blandensis dGTPase R37A mutant 7TU2 ; 2.13 ; Structure of the L. blandensis dGTPase R37A mutant bound to Mn 1MZP ; 2.65 ; Structure of the L1 protuberance in the ribosome 4HSW ; 1.22 ; Structure of the L100F mutant of dehaloperoxidase-hemoglobin A from Amphitrite ornata 4KMV ; 1.44 ; Structure of the L100F MUTANT OF DEHALOPEROXIDASE-HEMOGLOBIN A FROM AMPHITRITE ORNATA WITH 2,4,6-TRICHLOROPHENOL 4HSX ; 1.12 ; Structure of the L100F mutant of dehaloperoxidase-hemoglobin A from Amphitrite ornata with 4-bromophenol 4KJT ; 1.44 ; Structure of the L100F MUTANT OF DEHALOPEROXIDASE-HEMOGLOBIN A FROM AMPHITRITE ORNATA WITH OXYGEN 3V9E ; 1.7 ; Structure of the L499M mutant of the laccase from B.aclada 5AMQ ; 3.0 ; Structure of the La Crosse Bunyavirus polymerase in complex with the 3' and 5' viral RNA 5AMR ; 2.57 ; Structure of the La Crosse Bunyavirus polymerase in complex with the 3' viral RNA 2YJG ; 1.8 ; Structure of the lactate racemase apoprotein from Thermoanaerobacterium thermosaccharolyticum 4RGG ; 2.15 ; Structure of the lactococcal phage 1358 receptor binding protein in complex with GlcNAc-1P 6XN5 ; 2.97 ; Structure of the Lactococcus lactis Csm Apo- CRISPR-Cas Complex 6XN4 ; 3.35 ; Structure of the Lactococcus lactis Csm CTR_3:2 CRISPR-Cas Complex 6XN3 ; 3.0 ; Structure of the Lactococcus lactis Csm CTR_4:3 CRISPR-Cas Complex 6XN7 ; 3.47 ; Structure of the Lactococcus lactis Csm NTR CRISPR-Cas Complex 1ZRU ; 1.73 ; structure of the lactophage p2 receptor binding protein in complex with glycerol 2W2S ; 2.75 ; Structure of the Lagos bat virus matrix protein 8IB1 ; 1.95 ; Structure of the LAH31 Fab bound to an influenza virus HA epitope peptide 6WU4 ; 3.71 ; Structure of the LaINDY-alpha-ketoglutarate complex 6WU2 ; 3.36 ; Structure of the LaINDY-malate complex 1AE9 ; 1.9 ; STRUCTURE OF THE LAMBDA INTEGRASE CATALYTIC CORE 4ZLH ; 2.0 ; Structure of the LapB cytoplasmic domain at 2 angstroms 1KT0 ; 2.7 ; Structure of the Large FKBP-like Protein, FKBP51, Involved in Steroid Receptor Complexes 1KT1 ; 2.8 ; Structure of the Large FKBP-like Protein, FKBP51, Involved in Steroid Receptor Complexes 3LWM ; 2.186 ; Structure of the large fragment of thermus aquaticus DNA polymerase I in complex with a blunt-ended DNA and ddATP 1KK0 ; 1.95 ; Structure of the large gamma subunit of initiation factor eIF2 from Pyrococcus abyssi 1KJZ ; 1.85 ; Structure of the large gamma subunit of initiation factor eIF2 from Pyrococcus abyssi-G235D mutant 1KK2 ; 2.1 ; Structure of the large gamma subunit of initiation factor eIF2 from Pyrococcus abyssi-G235D mutant complexed with GDP-Mg2+ 1KK1 ; 1.8 ; Structure of the large gamma subunit of initiation factor eIF2 from Pyrococcus abyssi-G235D mutant complexed with GDPNP-Mg2+ 1NO7 ; 2.9 ; Structure of the Large Protease Resistant Upper Domain of VP5, the Major Capsid Protein of Herpes Simplex Virus-1 3J7Y ; 3.4 ; Structure of the large ribosomal subunit from human mitochondria 5H1S ; 3.5 ; Structure of the large subunit of the chloro-ribosome 5MMI ; 3.2 ; Structure of the large subunit of the chloroplast ribosome 4V19 ; 3.4 ; Structure of the large subunit of the mammalian mitoribosome, part 1 of 2 4V1A ; 3.4 ; Structure of the large subunit of the mammalian mitoribosome, part 2 of 2 7T0X ; 4.4 ; Structure of the larger diameter PSMalpha3 nanotube 5J01 ; 3.39 ; Structure of the lariat form of a chimeric derivative of the Oceanobacillus iheyensis group II intron in the presence of NH4+ and MG2+. 5J02 ; 3.493 ; Structure of the lariat form of a chimeric derivative of the Oceanobacillus iheyensis group II intron in the presence of NH4+, MG2+ and an inactive 5' exon. 5C0V ; 2.2 ; Structure of the LARP1-unique domain DM15 7AG5 ; 1.04 ; Structure of the Laspartomycin C double mutant G4D D-allo-Thr9D-Dap in complex with Geranyl phosphate 7ANY ; 1.135 ; Structure of the Laspartomycin C Friulimicin-like mutant in complex with Geranyl phosphate 6S5I ; 2.45 ; Structure of the Lausanne variant of myxoma virus M062 protein 4U9C ; 1.995 ; STRUCTURE OF THE LBPB N-LOBE FROM NEISSERIA MENINGITIDIS 4OX3 ; 2.0 ; Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition 4OX5 ; 1.8 ; Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition 4OXD ; 2.8 ; Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition 6FJ1 ; 2.69 ; Structure of the Ldtfm-avibactam carbamoyl enzyme 7Z62 ; 1.53 ; Structure of the LecA lectin from Pseudomonas aeruginosa in complex with a biaryl-thiogalactoside 7Z63 ; 1.75 ; Structure of the LecA lectin from Pseudomonas aeruginosa in complex with a biaryl-thiogalactoside 5MB1 ; 1.65 ; STRUCTURE OF THE LECB LECTIN FROM PSEUDOMONAS AERUGINOSA STRAIN PA14 IN COMPLEX WITH 2,4,6-Trimethylphenylsulfonamide-N-methyl-L-fucopyranoside 5MAY ; 1.65 ; STRUCTURE OF THE LECB LECTIN FROM PSEUDOMONAS AERUGINOSA STRAIN PA14 IN COMPLEX WITH 2-Thiophenesulfonamide-N-(beta-L-fucopyranosyl methyl) 5MAZ ; 1.45 ; STRUCTURE OF THE LECB LECTIN FROM PSEUDOMONAS AERUGINOSA STRAIN PA14 IN COMPLEX WITH 3-Thiophenesulfonamide-2,5-dimethyl-N-methyl-beta-L-fucopyranoside 5A6X ; 1.55 ; Structure of the LecB lectin from Pseudomonas aeruginosa strain PA14 in complex with alpha-methyl-fucoside 5A6Z ; 1.5 ; Structure of the LecB lectin from Pseudomonas aeruginosa strain PA14 in complex with lewis a 5A70 ; 1.6 ; Structure of the LecB lectin from Pseudomonas aeruginosa strain PA14 in complex with lewis x tetrasaccharide 5A6Y ; 1.4 ; Structure of the LecB lectin from Pseudomonas aeruginosa strain PA14 in complex with mannose-alpha1,3mannoside 6R35 ; 1.8 ; Structure of the LecB lectin from Pseudomonas aeruginosa strain PAO1 in complex with lewis x tetrasaccharide 8AIJ ; 1.5 ; STRUCTURE OF THE LECB LECTIN FROM PSEUDOMONAS AERUGINOSA STRAIN PAO1 IN COMPLEX WITH N-(alpha-L-Fucopyranosyl)benzamide (6) 8AIY ; 1.55 ; STRUCTURE OF THE LECB LECTIN FROM PSEUDOMONAS AERUGINOSA STRAIN PAO1 IN COMPLEX WITH N-(beta-L-Fucopyranosyl)-biphenyl-3-carboxamide (4i) 3ZW2 ; 1.6 ; Structure of the lectin Bambl from Burkholderia ambifaria in complex with blood group H type 1 tetrasaccharide 3ZVX ; 2.1 ; STRUCTURE OF THE LECTIN FROM PLATYPODIUM ELEGANS IN COMPLEX WITH A TRIMANNOSIDE 3ZYR ; 1.65 ; Structure of the lectin from Platypodium elegans in complex with heptasaccharide 1JOT ; 2.2 ; STRUCTURE OF THE LECTIN MPA COMPLEXED WITH T-ANTIGEN DISACCHARIDE 5K35 ; 2.85 ; Structure of the Legionella effector, AnkB, in complex with human Skp1 8AGG ; 3.6 ; Structure of the Legionella phosphocholine hydrolase Lem3 8ALK ; 2.15 ; Structure of the Legionella phosphocholine hydrolase Lem3 in complex with its substrate Rab1 5OT4 ; 3.0 ; Structure of the Legionella pneumophila effector RidL (1-866) 6SY9 ; 2.1 ; Structure of the Legionella pneumophila response regulator LqsR 2JQD ; ; Structure of the Leucine-Rich Repeat domain of LANP 4FCG ; 2.0 ; Structure of the leucine-rich repeat domain of the type III effector XCV3220 (XopL) 8FAC ; 3.92 ; Structure of the leucine-rich repeat kinase 1 monomer 3E0G ; 3.1 ; Structure of the Leukemia Inhibitory Factor Receptor (LIF-R) domains D1-D5 1L1C ; ; Structure of the LicT Bacterial Antiterminator Protein in Complex with its RNA Target 7AD9 ; 3.5 ; Structure of the Lifeact-F-actin complex 2HXR ; 2.05 ; Structure of the ligand binding domain of E. coli CynR, a transcriptional regulator controlling cyanate metabolism 7QEJ ; 1.81 ; Structure of the ligand binding domain of the antibiotic biosynthesis regulator AdmX from the rhizobacterium Serratia plymuthica A153 bound to the auxin indole-3-acetic acid (IAA). 7QEK ; 2.25 ; Structure of the ligand binding domain of the antibiotic biosynthesis regulator AdmX from the rhizobacterium Serratia plymuthica A153 bound to the auxin indole-3-piruvic acid (IPA). 3ATP ; 2.5 ; Structure of the ligand binding domain of the bacterial serine chemoreceptor Tsr with ligand 7PSG ; 1.91 ; Structure of the ligand binding domain of the PacA (ECA2226) chemoreceptor of Pectobacterium atrosepticum SCRI1043 in complex with betaine. 7PRR ; 1.8 ; Structure of the ligand binding domain of the PctD (PA4633) chemoreceptor of Pseudomonas aeruginosa PAO1 in complex with acetylcholine 7PRQ ; 2.0 ; Structure of the ligand binding domain of the PctD (PA4633) chemoreceptor of Pseudomonas aeruginosa PAO1 in complex with choline. 1XAP ; 2.1 ; Structure of the ligand binding domain of the Retinoic Acid Receptor beta 6XA3 ; 2.96 ; Structure of the ligand free P450 monooxygenase TamI 8FWS ; 3.23 ; Structure of the ligand-binding and transmembrane domains of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 8FWU ; 3.18 ; Structure of the ligand-binding and transmembrane domains of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 and competitive antagonist DNQX 8FWW ; 3.1 ; Structure of the ligand-binding and transmembrane domains of kainate receptor GluK2 in complex with the positive allosteric modulator BPAM344 and noncompetitive inhibitor perampanel 3BFU ; 1.95 ; Structure of the ligand-binding core of GluR2 in complex with the agonist (R)-TDPA at 1.95 A resolution 3BFT ; 2.27 ; Structure of the ligand-binding core of GluR2 in complex with the agonist (S)-TDPA at 2.25 A resolution 2V3U ; 1.74 ; Structure of the ligand-binding core of the ionotropic glutamate receptor-like GluRdelta2 in complex with D-serine 2V3T ; 2.75 ; Structure of the ligand-binding core of the ionotropic glutamate receptor-like GluRdelta2 in the apo form 4YMA ; 1.895 ; Structure of the ligand-binding domain of GluA2 in complex with the antagonist CNG10109 4YMB ; 1.93 ; Structure of the ligand-binding domain of GluK1 in complex with the antagonist CNG10111 7XB5 ; 3.44 ; Structure of the ligand-binding domain of S. cerevisiae Upc2 in fusion with T4 lysozyme 5CC2 ; 2.501 ; STRUCTURE OF THE LIGAND-BINDING DOMAIN OF THE IONOTROPIC GLUTAMATE RECEPTOR-LIKE GLUD2 IN COMPLEX WITH 7-CKA 3C1Z ; 2.3 ; Structure of the ligand-free form of a bacterial DNA damage sensor protein 6GGP ; 1.03 ; Structure of the ligand-free form of truncated ArgBP (residues 20-233) from T. maritima 7QB9 ; 3.1 ; Structure of the ligand-free GPCR dimer Ste2 2G7N ; 1.9 ; Structure of the Light Chain of Botulinum Neurotoxin Serotype A Bound to small Molecule Inhibitors 2G7P ; 2.3 ; Structure of the Light Chain of Botulinum Neurotoxin Serotype A Bound to Small Molecule Inhibitors 2G7Q ; 2.41 ; Structure of the Light Chain of Botulinum Neurotoxin Serotype A Bound to Small Molecule Inhibitors 2G7K ; 2.8 ; Structure of the Light Chain of Botulinum Neurotoxin, Serotype A Bound to small Molecule Inhibitors 7S96 ; 1.8 ; Structure of the Light Harvesting Complex PC577 from Hemiselmis pacifica 7TJA ; 1.96 ; Structure of the Light Harvesting Complex PE545 from Proteomonas sulcata 3AEK ; 2.3 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 3AEQ ; 2.9 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 3AER ; 2.8 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 3AES ; 2.5 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 3AET ; 2.91 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 3AEU ; 2.9 ; Structure of the light-independent protochlorophyllide reductase catalyzing a key reduction for greening in the dark 5DKL ; 2.7 ; Structure of the light-state dimer of the blue light photoreceptor Aureochrome 1a LOV from P. tricornutum 5L6W ; 2.53 ; Structure Of the LIMK1-ATPgammaS-CFL1 Complex 6E7K ; 2.8 ; Structure of the lipoprotein lipase GPIHBP1 complex that mediates plasma triglyceride hydrolysis 8CGM ; 1.7 ; Structure of the lipoprotein transporter LolA from Porphyromonas gingivalis 7TEC ; 3.45 ; Structure of the Listeria monocytogenes GlnR-DNA complex to 3.45 Angstrom 5WXN ; 2.93 ; Structure of the LKB1 and 14-3-3 complex 6FIJ ; 2.77 ; Structure of the loading/condensing region (SAT-KS-MAT) of the cercosporin fungal non-reducing polyketide synthase (NR-PKS) CTB1 1WOA ; 2.8 ; Structure of the loop6 hinge mutant of Plasmodium falciparum Triosephosphate Isomerase, W168F, complexed with Glycerol-2-phosphate 8E8U ; 2.65 ; Structure of the LOR domain of human AASS 5NT7 ; 1.4 ; Structure of the LOTUS domain of Oskar in complex with the C-terminal RecA-like domain of Vasa 8A6I ; ; Structure of the low complexity domain of TDP-43 (fragment 309-350) with methionine sulfoxide modifications 2E7X ; 1.8 ; Structure of the Lrp/AsnC like transcriptional regulator from Sulfolobus tokodaii 7 complexed with its cognate ligand 4WYK ; 3.4 ; Structure of the LRR and NTF2-like domains of NXF1 complexed with NXT1 7LHT ; 3.5 ; Structure of the LRRK2 dimer 7LI3 ; 3.8 ; Structure of the LRRK2 G2019S mutant 7LHW ; 3.7 ; Structure of the LRRK2 monomer 3SWN ; 2.5 ; Structure of the LSm657 Complex: An Assembly Intermediate of the LSm1 7 and LSm2 8 Rings 4W8O ; 2.05 ; Structure of the luciferase-like enzyme from the nonluminescent Zophobas morio mealworm 2AY0 ; 2.1 ; Structure of the Lys9Met mutant of the E. coli Proline Utilization A (PutA) DNA-binding domain. 8BEZ ; 1.75 ; Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein at pH 11 8BEX ; 1.78 ; Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein at pH 3 8BEY ; 1.62 ; Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein at pH 7 4F7B ; 3.0 ; Structure of the lysosomal domain of limp-2 8S0U ; 1.5 ; Structure of the LytM domain of PrgK from E. faecalis 1DZE ; 2.5 ; Structure of the M Intermediate of Bacteriorhodopsin trapped at 100K 2QBZ ; 2.6 ; Structure of the M-Box Riboswitch Aptamer Domain 8SV6 ; 3.56 ; Structure of the M. smegmatis DarR protein 4B6C ; 2.2 ; Structure of the M. smegmatis GyrB ATPase domain in complex with an aminopyrazinamide 7W22 ; 2.01 ; Structure of the M. tuberculosis HtrA K436A mutant 7W4W ; 2.0 ; Structure of the M. tuberculosis HtrA K436A mutant at room-temperature 7W21 ; 2.0 ; Structure of the M. tuberculosis HtrA N269A mutant 7W4R ; 2.701 ; Structure of the M. tuberculosis HtrA N269A mutant at room-temperature 7W24 ; 2.9 ; Structure of the M. tuberculosis HtrA N383A mutant 7W23 ; 1.9 ; Structure of the M. tuberculosis HtrA S363A mutant 7W4S ; 2.6 ; Structure of the M. tuberculosis HtrA S363A mutant at room-temperature 7VYZ ; 2.401 ; Structure of the M. tuberculosis HtrA S367A mutant 7W4T ; 2.2 ; Structure of the M. tuberculosis HtrA S367A mutant at room-temperature 7VZ0 ; 1.95 ; Structure of the M. tuberculosis HtrA S407A mutant 7W4U ; 2.3 ; Structure of the M. tuberculosis HtrA S407A mutant at room-temperature 7W25 ; 2.65 ; Structure of the M. tuberculosis HtrA S413A mutant 7W4V ; 2.7 ; Structure of the M. tuberculosis HtrA S413A mutant at room temperature 5JFO ; 2.907 ; Structure of the M.tuberculosis enoyl-reductase InhA in complex with GSK625 2MIZ ; ; Structure of the m04/gp34 mouse Cytomegalovirus Immunoevasin core domain 3EBG ; 2.1 ; Structure of the M1 Alanylaminopeptidase from malaria 4R5T ; 1.98 ; Structure of the m1 alanylaminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 4R5V ; 2.1 ; Structure of the m1 alanylaminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 4R5X ; 1.85 ; Structure of the m1 alanylaminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 3EBH ; 1.65 ; Structure of the M1 Alanylaminopeptidase from malaria complexed with bestatin 3EBI ; 2.0 ; Structure of the M1 Alanylaminopeptidase from malaria complexed with the phosphinate dipeptide analog 7JVL ; 2.1 ; Structure of the M101A variant of the SidA ornithine hydroxylase complexed with NADP and the FAD in the ""out"" conformation 7JVK ; 2.2 ; Structure of the M101A variant of the SidA ornithine hydroxylase with the FAD in the ""out"" conformation 4R6T ; 2.6 ; Structure of the m17 leucyl aminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 4R76 ; 2.5 ; Structure of the m17 leucyl aminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 4R7M ; 2.85 ; Structure of the m17 leucyl aminopeptidase from malaria complexed with a hydroxamic acid-based inhibitor 7BFM ; 2.0 ; Structure of the M198F M298F double mutant of the Streptomyces coelicolor small laccase T1 copper site 2WA7 ; 1.85 ; Structure of the M202V mutant of human filamin b actin binding domain at 1.85 Angstrom resolution 7B2K ; 2.2 ; Structure of the M298F mutant of the Streptomyces coelicolor small laccase T1 copper axial ligand. 7B4Y ; 2.19 ; Structure of the M298L mutant of the Streptomyces coelicolor small laccase T1 copper axial ligand 4DAJ ; 3.4 ; Structure of the M3 Muscarinic Acetylcholine Receptor 2CSA ; ; Structure of the M3 Muscarinic Acetylcholine Receptor Basolateral Sorting Signal 4U14 ; 3.57 ; Structure of the M3 muscarinic acetylcholine receptor bound to the antagonist tiotropium crystallized with disulfide-stabilized T4 lysozyme (dsT4L) 7F0V ; 1.494 ; Structure of the M305I mutant of CueO 5DSG ; 2.6 ; Structure of the M4 muscarinic acetylcholine receptor (M4-mT4L) bound to tiotropium 6OL9 ; 2.541 ; Structure of the M5 muscarinic acetylcholine receptor (M5-T4L) bound to tiotropium 7AGR ; 2.8 ; Structure of the M624V-S726F mutant of AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis soaked with MethylMalonyl Coenzyme A 3E2H ; 3.8 ; Structure of the m67 high-affinity mutant of the 2C TCR in complex with Ld/QL9 5NIK ; 3.3 ; Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump 5NIL ; 5.3 ; Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump-MacB section 6H2B ; 3.28 ; Structure of the Macrobrachium rosenbergii Nodavirus 1E9W ; 1.02 ; Structure of the macrocycle thiostrepton solved using the anomalous dispersive contribution from sulfur 3G56 ; 2.1 ; Structure of the macrolide biosensor protein, MphR(A) 3FRQ ; 1.76 ; Structure of the macrolide biosensor protein, MphR(A), with erythromcyin 5WK1 ; 3.6 ; Structure of the major capsid protein and the capsid stabilizing protein of the marine siphovirus TW1 1YR1 ; ; Structure of the major extracytoplasmic domain of the trans isomer of the bacterial cell division protein divib from geobacillus stearothermophilus 8JFQ ; ; Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-back Loop 6BBT ; 1.9 ; Structure of the major pilin protein (T-13) from Streptococcus pyogenes serotype GAS131465 6N0A ; 1.75 ; Structure of the major pilin protein (T-18.1) from Streptococcus pyogenes serotype MGAS8232 6BBW ; 1.8 ; Structure of the major pilin protein (T3.2) from Streptococcus pyogenes serotype GAS13637 2XTL ; 1.75 ; Structure of the major pilus backbone protein from Streptococcus Agalactiae 5EQW ; 1.679 ; Structure of the major structural protein D135 of Acidianus tailed spindle virus (ATSV) 4DWH ; 2.5 ; Structure of the major type 1 pilus subunit FIMA bound to the FIMC (2.5 A resolution) 3SQB ; 3.2 ; Structure of the major type 1 pilus subunit FimA bound to the FimC chaperone 4XA2 ; 1.98 ; Structure of the Major Type IV pilin of Acinetobacter baumannii 6T8S ; 1.65 ; Structure of the major Type IV pilin PilA1 from Clostridium difficile 5M97 ; 1.33 ; Structure of the Mal3 EB1-like domain 2Q8A ; 2.4 ; Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody 2Q8B ; 2.3 ; Structure of the malaria antigen AMA1 in complex with a growth-inhibitory antibody 2D4A ; 2.87 ; Structure of the malate dehydrogenase from Aeropyrum pernix 6D6Z ; 2.38 ; Structure of the malate racemase apoprotein from Thermoanaerobacterium thermosaccharolyticum 7S91 ; 2.25 ; Structure of the malate racemase mar2 apoprotein from Thermoanaerobacterium thermosaccharolyticum at 2.25 angstroms resolution 6X9G ; 1.68 ; Structure of the malonate-bound form of ArrX from Chrysiogenes arsenatis 3TQE ; 1.5 ; Structure of the malonyl CoA-acyl carrier protein transacylase (fabD) from Coxiella burnetii 7P01 ; 2.12 ; Structure of the maltase BaAG2 from Blastobotrys adeninivorans in complex with acarbose 7P07 ; 2.13 ; Structure of the maltase BaAG2 from Blastobotrys adeninivorans in complex with glucose 3J7O ; 3.4 ; Structure of the mammalian 60S ribosomal subunit 1CTP ; 2.9 ; STRUCTURE OF THE MAMMALIAN CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE AND AN INHIBITOR PEPTIDE DISPLAYS AN OPEN CONFORMATION 7N9H ; 2.2 ; Structure of the mammalian importin a1 bound to the TDP-43 NLS 8OEW ; 2.8 ; Structure of the mammalian Pol II-Elongin complex, lacking the ELOA latch (composite structure, structure 2) 8OEU ; 3.04 ; Structure of the mammalian Pol II-SPT6 complex (composite structure, Structure 4) 8OEV ; 2.86 ; Structure of the mammalian Pol II-SPT6-Elongin complex, lacking ELOA latch (composite structure, structure 3) 8OF0 ; 3.05 ; Structure of the mammalian Pol II-SPT6-Elongin complex, Structure 1 5LZZ ; 3.47 ; Structure of the mammalian rescue complex with Pelota and Hbs1l (combined) 5LZY ; 3.99 ; Structure of the mammalian rescue complex with Pelota and Hbs1l assembled on a polyadenylated mRNA. 5LZW ; 3.53 ; Structure of the mammalian rescue complex with Pelota and Hbs1l assembled on a truncated mRNA. 5LZX ; 3.67 ; Structure of the mammalian rescue complex with Pelota and Hbs1l assembled on a UGA stop codon. 5LZS ; 3.31 ; Structure of the mammalian ribosomal elongation complex with aminoacyl-tRNA, eEF1A, and didemnin B 3J5Y ; 9.7 ; Structure of the mammalian ribosomal pre-termination complex associated with eRF1-eRF3-GDPNP 5LZU ; 3.75 ; Structure of the mammalian ribosomal termination complex with accommodated eRF1 5LZV ; 3.35 ; Structure of the mammalian ribosomal termination complex with accommodated eRF1(AAQ) and ABCE1. 5LZT ; 3.65 ; Structure of the mammalian ribosomal termination complex with eRF1 and eRF3. 5GJV ; 3.6 ; Structure of the mammalian voltage-gated calcium channel Cav1.1 complex at near atomic resolution 5GJW ; 3.9 ; Structure of the mammalian voltage-gated calcium channel Cav1.1 complex for ClassII map 6JZS ; 1.68 ; Structure of the Manganese Protoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan in complex with Pyridine 7WG0 ; 2.2 ; Structure of the Manganese Protoporphyrin IX-Reconstituted CYP102A1 Heme Domain with N-palmitoyl-L-phenylalanine 5CVI ; 2.804 ; Structure of the manganese regulator SloR 6E8T ; 2.9 ; Structure of the Mango-III (A10U) aptamer bound to TO1-Biotin 6E8U ; 1.55 ; Structure of the Mango-III (A10U) aptamer bound to TO1-Biotin 6UP0 ; 2.8 ; Structure of the Mango-III fluorescent aptamer bound to YO3-Biotin 6FMG ; 1.8 ; Structure of the Mannose Transporter IIA Domain from Streptococcus pneumoniae 8A8M ; 4.0 ; Structure of the MAPK p38alpha in complex with its activating MAP2K MKK6 3EF2 ; 1.8 ; Structure of the Marasmius oreades mushroom lectin (MOA) in complex with Galalpha(1,3)[Fucalpha(1,2)]Gal and Calcium. 7LV8 ; 3.4 ; Structure of the Marseillevirus nucleosome 2JFD ; 2.81 ; Structure of the MAT domain of human FAS 2JFK ; 2.4 ; Structure of the MAT domain of human FAS with malonyl-CoA 6Z70 ; 2.0 ; Structure of the MATE family multidrug resistance transporter Aq_128 from Aquifex aeolicus in the outward-facing state 6Z71 ; 3.5 ; Structure of the MATE family multidrug resistance transporter Aq_128 from Aquifex aeolicus in the outward-facing state 2VQP ; 1.6 ; Structure of the matrix protein from human Respiratory Syncytial Virus 2YKD ; 1.86 ; Structure of the matrix protein from human respiratory syncytial virus 7NO6 ; 6.0 ; Structure of the mature RSV CA lattice: Group I, pentamer-hexamer interface, class 1 7NO7 ; 7.5 ; Structure of the mature RSV CA lattice: Group I, pentamer-hexamer interface, class 1""2 7NO8 ; 7.9 ; Structure of the mature RSV CA lattice: Group I, pentamer-hexamer interface, class 1""6 7NO9 ; 7.6 ; Structure of the mature RSV CA lattice: Group I, pentamer-pentamer interface, class 1'1 7NOB ; 6.7 ; Structure of the mature RSV CA lattice: Group II, hexamer-hexamer interface, class 2'6 7NOA ; 6.4 ; Structure of the mature RSV CA lattice: Group II, hexamer-hexamer interface, class 6 7NOC ; 7.8 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 3'3 7NOD ; 7.8 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 3'4 7NOE ; 7.5 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 3'5 7NOF ; 7.6 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 4'4 7NOG ; 7.8 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 4'5 7NOH ; 7.1 ; Structure of the mature RSV CA lattice: Group III, hexamer-hexamer interface, class 5'5 7NOI ; 7.2 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 3'Alpha 7NOJ ; 6.7 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 3'Beta 7NOK ; 9.1 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 3'Gamma 7NOL ; 8.2 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 4'Alpha 7NOM ; 6.7 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 4'Beta 7NON ; 6.8 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 4'Gamma 7NOO ; 7.9 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 5'Alpha 7NOP ; 7.8 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 5'Beta 7NOQ ; 6.5 ; Structure of the mature RSV CA lattice: Group IV, hexamer-hexamer interface, class 5'Gamma 7NO2 ; 4.3 ; Structure of the mature RSV CA lattice: hexamer derived from tubes (C2-symmetric) 7NO5 ; 7.4 ; Structure of the mature RSV CA lattice: hexamer with 2 adjacent pentamers (C2 symmetric) 7NO4 ; 7.5 ; Structure of the mature RSV CA lattice: hexamer with 3 adjacent pentamers (C3 symmetric) 7NO3 ; 5.8 ; Structure of the mature RSV CA lattice: pentamer derived from polyhedral VLPs 7NO0 ; 3.1 ; Structure of the mature RSV CA lattice: T=1 CA icosahedron 7NO1 ; 7.6 ; Structure of the mature RSV CA lattice: T=3 CA icosahedron 3AJC ; 2.3 ; Structure of the MC domain of FliG (PEV), a CW-biased mutant 8F0Z ; 1.61 ; Structure of the MDM2 P53 binding domain in complex with H101, an all-D Helicon Polypeptide 8F10 ; 1.28 ; Structure of the MDM2 P53 binding domain in complex with H102, an all-D Helicon Polypeptide 8F12 ; 1.86 ; Structure of the MDM2 P53 binding domain in complex with H103, an all-D Helicon Polypeptide 8F13 ; 1.4 ; Structure of the MDM2 P53 binding domain in complex with H103, an all-D Helicon Polypeptide, alternative C-terminus 3INB ; 3.1 ; Structure of the measles virus hemagglutinin bound to the CD46 receptor 6BPZ ; 3.8 ; Structure of the mechanically activated ion channel Piezo1 6RLD ; 2.9 ; STRUCTURE OF THE MECHANOSENSITIVE CHANNEL MSCS EMBEDDED IN THE MEMBRANE BILAYER 6B3R ; 3.8 ; Structure of the mechanosensitive channel Piezo1 5Z10 ; 3.97 ; Structure of the mechanosensitive Piezo1 channel 7PZ2 ; 1.58 ; Structure of the mechanosensor domain of Wsc1 from Saccharomyces cerevisiae 4GWP ; 4.2 ; Structure of the Mediator Head Module from S. cerevisiae 4GWQ ; 4.5 ; Structure of the Mediator Head Module from S. cerevisiae in complex with the carboxy-terminal domain (CTD) of RNA Polymerase II Rpb1 subunit 3R84 ; 2.05 ; Structure of the Mediator head subcomplex Med11/22 2HZM ; 2.4 ; Structure of the Mediator head subcomplex Med18/20 2HZS ; 2.7 ; Structure of the Mediator head submodule Med8C/18/20 1YKH ; 3.0 ; Structure of the mediator MED7/MED21 (Med7/Srb7) subcomplex 1YKE ; 3.3 ; Structure of the mediator MED7/MED21 subcomplex 3FBI ; 2.8 ; Structure of the Mediator submodule Med7N/31 3FBN ; 3.007 ; Structure of the Mediator submodule Med7N/31 1ZP2 ; 3.0 ; Structure of the Mediator subunit cyclin C 7QE5 ; 4.7 ; Structure of the membrane domains of the sialic acid TRAP transporter HiSiaQM from Haemophilus influenzae 5XU0 ; 2.95 ; Structure of the membrane fusion protein Spr0693 from Streptococcus pneumoniae R6 5N6L ; 2.9 ; Structure of the membrane integral lipoprotein N-acyltransferase Lnt C387A mutant from E. coli 5N6H ; 2.9 ; Structure of the membrane integral lipoprotein N-acyltransferase Lnt from E. coli 5N6M ; 3.1 ; Structure of the membrane integral lipoprotein N-acyltransferase Lnt from P. aeruginosa 2MOZ ; ; Structure of the Membrane Protein MerF, a Bacterial Mercury Transporter, Improved by the Inclusion of Chemical Shift Anisotropy Constraints 7PVD ; 3.7 ; Structure of the membrane soluble spike complex from the Lassa virus in a C1-symmetric map focused on the ectodomain 7PUY ; 3.3 ; Structure of the membrane soluble spike complex from the Lassa virus in a C3-symmetric map 5CR8 ; 2.05 ; Structure of the membrane-binding domain of pneumolysin 3HIE ; 2.0 ; Structure of the membrane-binding domain of the Sec3 subunit of the Exocyst complex 2RCR ; 3.1 ; STRUCTURE OF THE MEMBRANE-BOUND PROTEIN PHOTOSYNTHETIC REACTION CENTER FROM RHODOBACTER SPHAEROIDES 6U8Y ; 4.0 ; Structure of the membrane-bound sulfane sulfur reductase (MBS), an archaeal respiratory membrane complex 2X7J ; 2.35 ; Structure of the menaquinone biosynthesis protein MenD from Bacillus subtilis 1AFJ ; ; STRUCTURE OF THE MERCURY-BOUND FORM OF MERP, THE PERIPLASMIC PROTEIN FROM THE BACTERIAL MERCURY DETOXIFICATION SYSTEM, NMR, 20 STRUCTURES 4MOD ; 1.901 ; Structure of the MERS-CoV fusion core 1NI5 ; 2.65 ; Structure of the MesJ PP-ATPase from Escherichia Coli 3H7I ; 1.502 ; Structure of the metal-free D132N T4 RNase H 1J8D ; 2.3 ; Structure Of the metal-free form of the deoxy-D-mannose-octulosonate 8-phosphate phosphatase (YrbI) From Haemophilus Influenzae (HI1679) 1CFH ; ; STRUCTURE OF THE METAL-FREE GAMMA-CARBOXYGLUTAMIC ACID-RICH MEMBRANE BINDING REGION OF FACTOR IX BY TWO-DIMENSIONAL NMR SPECTROSCOPY 5C3L ; 2.9 ; Structure of the metazoan Nup62.Nup58.Nup54 nucleoporin complex. 3EN9 ; 2.67 ; Structure of the Methanococcus jannaschii KAE1-BUD32 fusion protein 4V4N ; 9.0 ; Structure of the Methanococcus jannaschii ribosome-SecYEBeta channel complex 4U9P ; 1.7 ; Structure of the methanofuran/methanopterin biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii 4RC1 ; 2.4 ; Structure of the methanofuran/methanopterin biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii with PRPP 5ZCW ; 2.7 ; Structure of the Methanosarcina mazei class II CPD-photolyase in complex with intact, phosphodiester linked, CPD-lesion 3TQQ ; 2.0 ; Structure of the methionyl-tRNA formyltransferase (fmt) from Coxiella burnetii 2PZX ; 3.5 ; Structure of the methuselah ectodomain with peptide inhibitor 8G1U ; 2.83 ; Structure of the methylosome-Lsm10/11 complex 2WA1 ; 2.0 ; Structure of the methyltransferase domain from Modoc Virus, a Flavivirus with No Known Vector (NKV) 2WA2 ; 1.8 ; Structure of the methyltransferase domain from Modoc Virus, a Flavivirus with No Known Vector (NKV) 2ZFU ; 2.0 ; Structure of the methyltransferase-like domain of nucleomethylin 4WP6 ; 1.7 ; Structure of the Mex67 LRR domain from Chaetomium thermophilum 8HBN ; 3.81 ; Structure of the Mex67-Mtr2-1 heterodimer 2CHE ; 1.8 ; STRUCTURE OF THE MG2+-BOUND FORM OF CHEY AND MECHANISM OF PHOSPHORYL TRANSFER IN BACTERIAL CHEMOTAXIS 2CHF ; 1.8 ; STRUCTURE OF THE MG2+-BOUND FORM OF CHEY AND THE MECHANISM OF PHOSPHORYL TRANSFER IN BACTERIAL CHEMOTAXIS 5CCI ; 4.1 ; Structure of the Mg2+-bound synaptotagmin-1 SNARE complex (short unit cell form) 2C0C ; 1.45 ; Structure of the MGC45594 gene product 1B3J ; 3.0 ; STRUCTURE OF THE MHC CLASS I HOMOLOG MIC-A, A GAMMADELTA T CELL LIGAND 1JE6 ; 2.5 ; Structure of the MHC Class I Homolog MICB 3VJ6 ; 1.9 ; Structure of the MHC class Ib molecule Qa-1b 2NNA ; 2.1 ; Structure of the MHC class II molecule HLA-DQ8 bound with a deamidated gluten peptide 2K2S ; ; structure of the MIC1-GLD/MIC6-EGF complex from Toxoplasma gondii 2CIP ; 1.4 ; Structure of the Michaelis complex of a family 26 lichenase 2WBK ; 2.1 ; Structure of the Michaelis complex of beta-mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis 6CI8 ; 1.7 ; Structure of the microcompartment-associated aminoacetone dehydrogenase 6EF6 ; 1.35 ; Structure of the microcompartment-associated aminopropanol kinase 4L3I ; 3.6005 ; Structure of the microtubule associated protein PRC1 (Protein Regulator of Cytokinesis 1) 4L6Y ; 3.3015 ; Structure of the microtubule associated protein PRC1 (Protein Regulator of Cytokinesis 1) 4P1Z ; 2.3 ; Structure of the MID domain from MIWI 2JUN ; ; Structure of the MID1 tandem B-boxes reveals an interaction reminiscent of intermolecular RING heterodimers 5BTY ; 1.15 ; Structure of the middle domain of lpg1496 from Legionella pneumophila in P21 space group 5BTZ ; 1.6 ; Structure of the middle domain of lpg1496 from Legionella pneumophila in P212121 space group 6EUY ; 3.0 ; Structure of the midlink and cap-binding domains of influenza A polymerase PB2 subunit with a bound azaindazole cap-binding inhibitor 6EUV ; 2.7 ; Structure of the midlink and cap-binding domains of influenza A polymerase PB2 subunit with a bound azaindole cap-binding inhibitor (VX-787) 6EUX ; 2.05 ; Structure of the midlink and cap-binding domains of influenza B polymerase PB2 subunit with a bound azaindazole cap-binding inhibitor 7PTV ; 3.3 ; Structure of the Mimivirus genomic fibre asymmetric unit 7YX4 ; 3.7 ; Structure of the Mimivirus genomic fibre in its compact 5-start helix form 7YX3 ; 4.0 ; Structure of the Mimivirus genomic fibre in its compact 6-start helix form 7YX5 ; 3.7 ; Structure of the Mimivirus genomic fibre in its relaxed 5-start helix form 5T51 ; 2.2007 ; Structure of the MIND Complex Shows a Regulatory Focus of Yeast Kinetochore Assembly 5T58 ; 3.2131 ; Structure of the MIND Complex Shows a Regulatory Focus of Yeast Kinetochore Assembly 5T59 ; 2.405 ; Structure of the MIND Complex Shows a Regulatory Focus of Yeast Kinetochore Assembly 5T6J ; 1.752 ; Structure of the MIND Complex Shows a Regulatory Focus of Yeast Kinetochore Assembly 7ODF ; 2.66 ; Structure of the mini-RNA-guided endonuclease CRISPR-Cas_phi3 5LXR ; 2.0 ; Structure of the minimal RBM7 - ZCCHC8 Complex 5LXY ; 2.85 ; Structure of the minimal RBM7 - ZCCHC8 Complex 4F2H ; 3.192 ; Structure of the minimal Ste5 VWA domain subject to autoinhibition by the Ste5 PH domain 7MU8 ; 1.7 ; Structure of the minimally glycosylated human CEACAM1 N-terminal domain 2QV8 ; 2.0 ; Structure of the minor pseudopilin EpsH from the Type 2 Secretion System of Vibrio cholerae 3NJE ; 1.85 ; Structure of the Minor Pseudopilin XcpW from the Pseudomonas aeruginosa Type II Secretion System 2V6Y ; 2.4 ; Structure of the MIT domain from a S. solfataricus Vps4-like ATPase 2C0D ; 1.78 ; Structure of the mitochondrial 2-cys peroxiredoxin from Plasmodium falciparum 4MYC ; 3.06 ; Structure of the mitochondrial ABC transporter, Atm1 8A22 ; 2.91 ; Structure of the mitochondrial ribosome from Polytomella magna 8APN ; 3.1 ; Structure of the mitochondrial ribosome from Polytomella magna with tRNA bound to the P site 8APO ; 3.2 ; Structure of the mitochondrial ribosome from Polytomella magna with tRNAs bound to the A and P sites 6Z1P ; 3.7 ; Structure of the mitochondrial ribosome from Tetrahymena thermophila 2LCK ; ; Structure of the mitochondrial uncoupling protein 2 determined by NMR molecular fragment replacement 6QFL ; 2.2 ; Structure of the mitogen activated kinase kinase 7 active conformation 6QFR ; 2.3 ; Structure of the mitogen activated kinase kinase 7 dfg-out conformation 6QFT ; 2.7 ; Structure of the mitogen activated kinase kinase 7 in complex with pyrazolopyrimidin 1b 6QG7 ; 2.1 ; Structure of the mitogen activated kinase kinase 7 in complex with pyrazolopyrimidine 1k 6QHR ; 2.52 ; Structure of the mitogen activated kinase kinase 7 in complex with pyrazolopyrimidine 1m 6QG4 ; 2.3 ; Structure of the mitogen activated kinase kinase 7 in complex with pyrazolopyrimidine inhibitor 1h 3GWZ ; 1.91 ; Structure of the Mitomycin 7-O-methyltransferase MmcR 3GXO ; 2.3 ; Structure of the Mitomycin 7-O-methyltransferase MmcR with bound Mitomycin A 3ZSN ; 1.9 ; Structure of the mixed-function P450 MycG F286A mutant in complex with mycinamicin IV 4AW3 ; 2.05 ; Structure of the mixed-function P450 MycG F286V mutant in complex with mycinamicin V in P1 space group 2Y46 ; 1.83 ; Structure of the mixed-function P450 MycG in complex with mycinamicin IV in C 2 2 21 space group 2Y98 ; 1.65 ; Structure of the mixed-function P450 MycG in complex with mycinamicin IV in P21212 space group 2Y5N ; 1.62 ; Structure of the mixed-function P450 MycG in complex with mycinamicin V in P21 space group 2YGX ; 2.39 ; Structure of the mixed-function P450 MycG in P21 space group 6FU3 ; 1.8 ; Structure of the mixed-valence, active form, of cytochrome c peroxidase from obligate human pathogenic bacterium Neisseria gonorrhoeae 4Z4P ; 2.2 ; Structure of the MLL4 SET Domain 3NTW ; 2.6 ; Structure of the MLLE domain of EDD in complex with a PAM2 peptide from Paip1 7LUL ; 1.65 ; Structure of the MM2 Erbin PDZ variant in complex with a high-affinity peptide 6UBH ; 1.8 ; Structure of the MM7 Erbin PDZ variant in complex with a high-affinity peptide 1DSV ; ; STRUCTURE OF THE MMTV NUCLEOCAPSID PROTEIN (C-TERMINAL ZINC FINGER) 1DSQ ; ; STRUCTURE OF THE MMTV NUCLEOCAPSID PROTEIN (ZINC FINGER 1) 2GJ8 ; 1.7 ; Structure of the MnmE G-domain in complex with GDP*AlF4-, Mg2+ and K+ 2GJA ; 1.85 ; Structure of the MnmE G-domain in complex with GDP*AlF4-, Mg2+ and NH4+ 2GJ9 ; 2.0 ; Structure of the MnmE G-domain in complex with GDP*AlF4-, Mg2+ and Rb+ 3R61 ; 1.9002 ; Structure of the MntR Co2+ Complex 3R60 ; 1.8 ; Structure of the MntR Fe2+ Complex 4HV5 ; 1.9 ; Structure of the MNTR FE2+ complex with E site metal binding 2FB2 ; 2.25 ; Structure of the MoaA Arg17/266/268/Ala triple mutant 5XQZ ; 2.1 ; Structure of the MOB1-NDR2 complex 1PS5 ; 2.0 ; STRUCTURE OF THE MONOCLINIC C2 FORM OF HEN EGG-WHITE LYSOZYME AT 2.0 ANGSTROMS RESOLUTION 1EV6 ; 1.9 ; Structure of the monoclinic form of the M-cresol/insulin R6 hexamer 6DVU ; 1.8 ; Structure of the Monoclinic-1 (Monocl-1) Crystal Form of Human Apolipoprotein C1 6DXR ; 2.0 ; Structure of the Monoclinic-2 (Monocl-2) Crystal Form of Human Apolipoprotein C1 6NF3 ; 2.33 ; Structure of the Monoclinic-3 (Monocln-3) Crystal Form of Human Apolipoprotein C1 4I22 ; 1.71 ; Structure of the monomeric (V948R)gefitinib/erlotinib resistant double mutant (L858R+T790M) EGFR kinase domain co-crystallized with gefitinib 1PWJ ; ; Structure of the Monomeric 8-kDa Dynein Light Chain and Mechanism of Domain Swapped Dimer Assembly 1PWK ; ; Structure of the Monomeric 8-kDa Dynein Light Chain and Mechanism of Domain Swapped Dimer Assembly 1YNT ; 3.1 ; Structure of the monomeric form of T. gondii SAG1 surface antigen bound to a human Fab 2LJX ; ; Structure of the monomeric N-terminal domain of HPV16 E6 oncoprotein 2IWV ; 2.3 ; Structure of the monomeric outer membrane porin OmpG in the open and closed conformation 2IWW ; 2.7 ; Structure of the monomeric outer membrane porin OmpG in the open and closed conformation 2JBR ; 2.3 ; Structure of the monooxygenase component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumanni 2JBS ; 2.8 ; Structure of the monooxygenase component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii 2JBT ; 2.8 ; Structure of the monooxygenase component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii 6YT3 ; 2.85 ; Structure of the MoStoNano fusion protein 7AYZ ; 2.6 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with activator TH10785 7ZG3 ; 2.3 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH011228 7QEL ; 2.5 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH011247 7Z5R ; 2.5 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH012035 7ZC7 ; 2.3 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH012941 7Z3Y ; 2.35 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH013545 7Z5B ; 2.6 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH013546 8CEX ; 2.3 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH11227 8CEY ; 1.95 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH11233 8BQ7 ; 2.6 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH2829 6G3Y ; 2.51 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH5675 7PZ1 ; 2.45 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH8535 6G40 ; 2.49 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with ligand TH9525 7AZ0 ; 2.4 ; Structure of the mouse 8-oxoguanine DNA Glycosylase mOGG1 in complex with TH12161 4IRJ ; 3.0 ; Structure of the mouse CD1d-4ClPhC-alpha-GalCer-iNKT TCR complex 3QUX ; 2.91 ; Structure of the mouse CD1d-alpha-C-GalCer-iNKT TCR complex 3QUY ; 2.25 ; Structure of the mouse CD1d-BnNH-GSL-1'-iNKT TCR complex 3TA3 ; 2.7 ; Structure of the mouse CD1d-Glc-DAG-s2-iNKT TCR complex 3RTQ ; 2.8 ; Structure of the mouse CD1d-HS44-iNKT TCR complex 3QUZ ; 2.3 ; Structure of the mouse CD1d-NU-alpha-GalCer-iNKT TCR complex 4IRS ; 2.8 ; Structure of the mouse CD1d-PyrC-alpha-GalCer-iNKT TCR complex 3TVM ; 2.8 ; Structure of the mouse CD1d-SMC124-iNKT TCR complex 6I9Q ; 2.1 ; Structure of the mouse CD98 heavy chain ectodomain 7Q3E ; 3.35 ; Structure of the mouse CPLANE-RSG1 complex 2Q86 ; 1.85 ; Structure of the mouse invariant NKT cell receptor Valpha14 5IRI ; 2.8 ; Structure of the mouse SAD-B AIS-KA1 fragment 6FFY ; 3.9 ; Structure of the mouse SorCS2-NGF complex 5Z96 ; 3.28 ; Structure of the mouse TRPC4 ion channel 6JZO ; 3.28 ; Structure of the mouse TRPC4 ion channel 2PLY ; 2.6 ; Structure of the mRNA binding fragment of elongation factor SelB in complex with SECIS RNA. 3U1L ; 1.64 ; Structure of the mRNA splicing complex component Cwc2 3U1M ; 1.95 ; Structure of the mRNA splicing complex component Cwc2 2PJP ; 2.3 ; Structure of the mRNA-binding domain of elongation factor SelB from E.coli in complex with SECIS RNA 6Z16 ; 2.98 ; Structure of the Mrp antiporter complex 4RKG ; 2.5 ; Structure of the MSL2 CXC domain bound with a non-specific (GC)6 DNA 4RKH ; 2.0 ; Structure of the MSL2 CXC domain bound with a specific MRE sequence 5XY9 ; 2.303 ; Structure of the MST4 and 14-3-3 complex 1MR2 ; 2.3 ; Structure of the MT-ADPRase in complex with 1 Mn2+ ion and AMP-CP (a inhibitor), a nudix enzyme 1MK1 ; 2.0 ; Structure of the MT-ADPRase in complex with ADPR, a Nudix enzyme 1MQE ; 2.0 ; Structure of the MT-ADPRase in complex with gadolidium and ADP-ribose, a Nudix enzyme 1MQW ; 2.3 ; Structure of the MT-ADPRase in complex with three Mn2+ ions and AMPCPR, a Nudix enzyme 7AO8 ; 4.5 ; Structure of the MTA1/HDAC1/MBD2 NURD deacetylase complex 4KBM ; 2.1146 ; Structure of the Mtb CarD/RNAP Beta subunit B1-B2 domains complex 6R2Q ; 2.697 ; Structure of the Mtr complex 5OOQ ; 3.2 ; Structure of the Mtr4 Nop53 Complex 8QOT ; 3.2 ; Structure of the mu opioid receptor bound to the antagonist nanobody NbE 7QCL ; 3.36 ; Structure of the MUCIN-2 Cterminal domains 7QCU ; 3.25 ; Structure of the MUCIN-2 Cterminal domains partially deglycosylated. 7QCN ; 3.4 ; Structure of the MUCIN-2 Cterminal domains: vWCN to TIL domains with a C2 symmetry 2ONJ ; 3.4 ; Structure of the multidrug ABC transporter Sav1866 from S. aureus in complex with AMP-PNP 2GFP ; 3.5 ; Structure of the Multidrug Transporter EmrD from Escherichia coli 1E8T ; 2.5 ; Structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase 1E8U ; 2.0 ; Structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase 1E8V ; 2.0 ; Structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase 4EIJ ; 2.2001 ; Structure of the Mumps virus phosphoprotein oligomerization domain 5EOR ; 2.27 ; Structure of the murine antibody Fab 8E3 bound to the vaccinia virus A27 peptide 101-110 7PLL ; ; Structure of the murine cortactin C-SH3 domain in complex with a Pyk2 proline-rich ligand 5EOQ ; 1.95 ; Structure of the murine Fab 1G6 bound to the vaccinia virus A27 peptide 31-40 2YMY ; 1.69 ; Structure of the murine Nore1-Sarah domain 8PM2 ; 2.92 ; Structure of the murine trace amine-associated receptor TAAR7f bound to N,N-dimethylcyclohexylamine (DMCH) in complex with mini-Gs trimeric G protein 2V8O ; 1.9 ; Structure of the Murray Valley encephalitis virus RNA helicase to 1. 9A resolution 5K8Y ; 2.4 ; Structure of the Mus musclus Langerin carbohydrate recognition domain 5M62 ; 1.7 ; Structure of the Mus musclus Langerin carbohydrate recognition domain in complex with glucose 1CG1 ; 2.5 ; STRUCTURE OF THE MUTANT (K16Q) OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH HADACIDIN, GDP, 6-PHOSPHORYL-IMP, AND MG2+ 1CG3 ; 2.5 ; STRUCTURE OF THE MUTANT (R143L) OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH HADACIDIN, GDP, 6-PHOSPHORYL-IMP, AND MG2+ 1CG4 ; 2.5 ; STRUCTURE OF THE MUTANT (R303L) OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI COMPLEXED WITH, GDP, 6-PHOSPHORYL-IMP, AND MG2+ 4I01 ; 2.3 ; Structure of the mutant Catabolite gen activator protein V140L 4I0B ; 1.5 ; structure of the mutant Catabolite gene activator protein H160L 4I0A ; 2.2 ; structure of the mutant Catabolite gene activator protein V132A 4I09 ; 2.05 ; structure of the mutant Catabolite gene activator protein V132L 4I02 ; 1.75 ; structure of the mutant Catabolite gene activator protein V140A 2X9I ; 2.2 ; Structure of the Mutant D105N of Phycoerythrobilin Synthase PebS from the Cyanophage P-SSM2 in complex with bound substrate Biliverdin IXA 2X9J ; 1.85 ; Structure of the Mutant D206N of Phycoerythrobilin Synthase PebS from the Cyanophage P-SSM2 in complex with bound substrate Biliverdin IXA 1JT9 ; 2.06 ; Structure of the mutant F174A T form of the Glucosamine-6-Phosphate deaminase from E.coli 3KXX ; 3.2 ; Structure of the mutant Fibroblast Growth Factor receptor 1 1QF7 ; 2.2 ; STRUCTURE OF THE MUTANT HIS392GLN OF CATALASE HPII FROM E. COLI 2QET ; 1.24 ; Structure of the mutant S211A of the ribosome inactivating protein PDL4 from P. dioica in complex with adenine 4B30 ; 2.1 ; Structure of the mutant V44A of the fluorescent protein KillerRed 1CF9 ; 1.8 ; Structure of the mutant VAL169CYS of catalase HPII from Escherichia coli 7B9F ; 3.0 ; Structure of the mycobacterial ESX-5 Type VII Secretion System hexameric pore complex 7B9S ; 3.4 ; Structure of the mycobacterial ESX-5 Type VII Secretion System hexameric pore complex 8D6Y ; 10.0 ; Structure of the Mycobacterium tuberculosis 20S proteasome bound to the ADP-bound Mpa ATPase 8D6X ; 3.2 ; Structure of the Mycobacterium tuberculosis 20S proteasome bound to the ATP-bound Mpa ATPase 8D6W ; 3.0 ; Structure of the Mycobacterium tuberculosis 20S proteasome bound to the C-terminal GQYL motif of the ADP-bound Mpa ATPase 8D6V ; 3.2 ; Structure of the Mycobacterium tuberculosis 20S proteasome bound to the C-terminal GQYL motif of the ATP-bound Mpa ATPase 4RFV ; 1.69 ; Structure of the Mycobacterium tuberculosis APS kinase CysC Cys556Ala mutant 4BZP ; 1.47 ; Structure of the Mycobacterium tuberculosis APS kinase CysC in complex with ADP 4BZQ ; 2.1 ; Structure of the Mycobacterium tuberculosis APS kinase CysC in complex with ADP and APS 4BZX ; 1.7 ; Structure of the Mycobacterium tuberculosis APS kinase CysC in complex with AMPPNP and APS 3H6D ; 1.8 ; Structure of the mycobacterium tuberculosis DUTPase D28N mutant 8GB3 ; 3.7 ; Structure of the Mycobacterium tuberculosis Hsp70 protein DnaK bound to the nucleotide exchange factor GrpE 3ZEI ; 2.0 ; Structure of the Mycobacterium tuberculosis O-Acetylserine Sulfhydrylase (OASS) CysK1 in complex with a small molecule inhibitor 4M6G ; 2.104 ; Structure of the Mycobacterium tuberculosis peptidoglycan amidase Rv3717 in complex with L-Alanine-iso-D-Glutamine reaction product 2X9Q ; 2.02 ; Structure of the Mycobacterium tuberculosis protein, Rv2275, demonstrates that cyclodipeptide synthetases are related to type I tRNA-Synthetases. 4CKZ ; 2.52 ; Structure of the Mycobacterium tuberculosis Type II Dehydroquinase D88N mutant 4CKY ; 1.65 ; Structure of the Mycobacterium tuberculosis Type II Dehydroquinase inhibited by a 3-dehydroquinic acid derivative 4CL0 ; 3.1 ; Structure of the Mycobacterium tuberculosis Type II Dehydroquinase inhibited by a 3-dehydroquinic acid derivative 4CKW ; 2.7 ; Structure of the Mycobacterium tuberculosis Type II Dehydroquinase N12S mutant (Crystal Form 1) 4CKX ; 2.6 ; Structure of the Mycobacterium tuberculosis Type II Dehydroquinase N12S mutant (Crystal Form 2) 4KXR ; 2.6 ; Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer 7ADK ; 2.8 ; Structure of the mycoplasma MIB and MIP proteins 7ADJ ; 2.8 ; Structure of the mycoplasma MIB protein 7ADM ; 3.5 ; Structure of the mycoplasma MIB protein 3PZD ; 2.5 ; Structure of the myosin X MyTH4-FERM/DCC complex 6ZZW ; 1.9 ; Structure of the N terminal domain of Bc2L-C lectin (1-131) in complex with Globo H (H-type 3) and CAS No 912569-62-1 6TIG ; 1.9 ; Structure of the N terminal domain of Bc2L-C lectin (1-131) in complex with Globo H (H-type 3) antigen 6TID ; 1.614 ; Structure of the N terminal domain of Bc2L-C lectin (1-131) in complex with H-type 1 antigen 4UD1 ; 2.48 ; Structure of the N Terminal domain of the MERS CoV nucleocapsid 4P5W ; 2.4 ; Structure of the N- and C-terminal domain fusion of the human mitochondrial aspartate/glutamate carrier Citrin in the calcium-bound state 4ENE ; 2.4 ; Structure of the N- and C-terminal trimmed ClC-ec1 Cl-/H+ antiporter and Fab Complex 7ZZK ; 1.5 ; Structure of the N-acetyl-D-glucosamine oxidase from Ralstonia Solanacearum 4K30 ; 2.103 ; Structure of the N-acetyltransferase domain of human N-acetylglutamate synthase 4NEX ; 1.6955 ; Structure of the N-acetyltransferase domain of X. fastidiosa NAGS/K 3O2F ; 2.0 ; Structure of the N-domain of GRP94 bound to the HSP90 inhibitor PU-H54 7AGW ; 1.511 ; Structure of the N-domain of the K+/H+ antiporter subunit KhtT at pH 6.5 7AHT ; 2.16 ; Structure of the N-domain of the K+/H+ antiporter subunit KhtT at pH 7.5 7AGY ; 1.54 ; Structure of the N-domain of the K+/H+ antiporter subunit KhtT at pH 8.5 2JCD ; 2.11 ; Structure of the N-oxygenase AurF from Streptomyces thioluteus 6ROY ; 2.1 ; Structure of the N-SH2 domain of the human tyrosine-protein phosphatase non-receptor type 11 in complex with the phosphorylated immune receptor tyrosine-based inhibitory motif 6ROZ ; 2.89 ; Structure of the N-SH2 domain of the human tyrosine-protein phosphatase non-receptor type 11 in complex with the phosphorylated immune receptor tyrosine-based switch motif 1L6N ; ; STRUCTURE OF THE N-TERMINAL 283-RESIDUE FRAGMENT OF THE HIV-1 GAG POLYPROTEIN 2RND ; ; Structure of the N-terminal BARpeptide in DPC micelles 2RMY ; ; Structure of the N-terminal BARpeptide in SDS micelles 2WT8 ; 1.6 ; Structure of the N-terminal BRCT domain of human microcephalin (Mcph1) 3PA6 ; 1.5 ; Structure of the N-terminal BRCT domain of human microcephalin (MCPH1) 3KTF ; 1.6 ; Structure of the N-terminal BRCT domain of human microcephalin (MCPH1). 2WLV ; 1.25 ; Structure of the N-terminal capsid domain of HIV-2 2WLW ; 1.5 ; Structure of the N-terminal capsid domain of HIV-2 6S2V ; 2.96 ; Structure of the N-terminal catalytic region of T. thermophilus Rel 6S2T ; 2.75 ; Structure of the N-terminal catalytic region of T. thermophilus Rel bound to ppGpp 4XUP ; 2.43 ; Structure of the N-terminal CBM22-1-CBM22-2 tandem domain from Paenibacillus barcinonensis Xyn10C 3M4R ; 2.0 ; Structure of the N-terminal Class II Aldolase domain of a conserved protein from Thermoplasma acidophilum 2JA9 ; 2.2 ; Structure of the N-terminal deletion of yeast exosome component Rrp40 5X4R ; 1.5 ; Structure of the N-terminal domain (NTD) of MERS-CoV spike protein 5X4S ; 2.2 ; Structure of the N-terminal domain (NTD)of SARS-CoV spike protein 6PZJ ; 1.75 ; Structure of the N-terminal domain (residues 43-304) of Methyl-accepting chemotaxis protein from Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni (strain Fiocruz L1-130) 1E32 ; 2.9 ; Structure of the N-Terminal domain and the D1 AAA domain of membrane fusion ATPase p97 2GEC ; 1.3 ; Structure of the N-terminal domain of avian infectious bronchitis virus nucleocapsid protein (strain Gray) in a novel dimeric arrangement 2YH6 ; 1.55 ; Structure of the N-terminal domain of BamC from E. coli 7OLU ; 1.793 ; Structure of the N-terminal domain of BC2L-C lectin (1-131) in complex with a synthetic beta-C-fucoside ligand 8BRO ; 1.55 ; Structure of the N-terminal domain of BC2L-C lectin (1-131) in complex with a synthetic beta-fucosylamide 7OLW ; 1.32 ; Structure of the N-terminal domain of BC2L-C lectin (1-131) in complex with a synthetic beta-N-fucoside ligand 7OLN ; 1.92 ; Structure of the N-terminal domain of BC2L-C lectin (1-131) in complex with Lewis y antigen 3PYI ; 2.104 ; Structure of the N-terminal domain of C. elegans SAS-6 2XGU ; 1.502 ; Structure of the N-terminal domain of capsid protein from Rabbit Endogenous Lentivirus (RELIK) 2XGV ; 2.0 ; Structure of the N-terminal domain of capsid protein from Rabbit Endogenous Lentivirus (RELIK) 1B47 ; 2.2 ; STRUCTURE OF THE N-TERMINAL DOMAIN OF CBL IN COMPLEX WITH ITS BINDING SITE IN ZAP-70 8R8C ; 1.55 ; Structure of the N-terminal domain of CMA from Cucumis melo in complex with N-acetylgalactosamine 8R8A ; 1.317 ; Structure of the N-terminal domain of CMA in complex with N-acetyllactosamine 4LMT ; 1.71 ; Structure of The N-terminal domain of Coronavirus Nucleocapsid Protein complexed with NSC663284 6P0X ; 2.4 ; Structure of the N-terminal domain of effector protein SpvB from Salmonella typhimurium strain LT2 1V4A ; 2.0 ; Structure of the N-terminal Domain of Escherichia coli Glutamine Synthetase adenylyltransferase 2D68 ; 1.6 ; Structure of the N-terminal domain of FOP (FGFR1OP) protein 2BKD ; ; Structure of the N-terminal domain of Fragile X Mental Retardation Protein 2KFX ; ; Structure of the N-terminal domain of human cardiac troponin C bound to calcium ion and to the inhibitor W7 2A9U ; 2.1 ; Structure of the N-terminal domain of Human Ubiquitin carboxyl-terminal hydrolase 8 (USP8) 4CKM ; 2.15 ; Structure of the N-terminal domain of Leishmania SAS-6 5UDF ; 2.35 ; Structure of the N-terminal domain of lipoprotein-releasing system transmembrane protein LolE from Acinetobacter baumannii 5BTW ; 1.2 ; Structure of the N-terminal domain of lpg1496 from Legionella pneumophila 5BTX ; 2.1 ; Structure of the N-terminal domain of lpg1496 from Legionella pneumophila in complex with nucleotide 6KL2 ; 2.63 ; Structure of the N-terminal domain of Middle East respiratory syndrome coronavirus nucleocapsid protein 6KL5 ; 3.09 ; Structure of The N-terminal domain of Middle East respiratory syndrome coronavirus Nucleocapsid Protein complexed with Benzyl 2-(Hydroxymethyl)-1-Indolinecarboxylate 2FY6 ; 1.9 ; Structure of the N-terminal domain of Neisseria meningitidis PilB 4GA0 ; 1.15 ; Structure of the N-terminal domain of Nup358 4GA1 ; 1.15 ; Structure of the N-terminal domain of Nup358 4GA2 ; 0.95 ; Structure of the N-terminal domain of Nup358 4XB4 ; 1.544 ; Structure of the N-terminal domain of OCP binding canthaxanthin 2X8X ; 1.97 ; Structure of the N-terminal domain of Omp85 from the Thermophilic Cyanobacterium Thermosynechococcus elongatus 1WLF ; 2.05 ; Structure of the N-terminal domain of PEX1 AAA-ATPase: Characterization of a putative adaptor-binding domain 6KJK ; 1.3 ; Structure of the N-terminal domain of PorA 4IPD ; 1.51 ; Structure of the N-terminal domain of RPA70, E100R mutant 4IPC ; 1.22 ; Structure of the N-terminal domain of RPA70, E7R mutant 4IPG ; 1.58 ; Structure of the N-terminal domain of RPA70, E7R, E100R mutant 4YNZ ; 2.0 ; Structure of the N-terminal domain of SAD 1S0P ; 1.4 ; Structure of the N-Terminal Domain of the Adenylyl Cyclase-Associated Protein (CAP) from Dictyostelium discoideum. 3HI2 ; 2.0 ; Structure of the N-terminal domain of the E. coli antitoxin MqsA (YgiT/b3021) in complex with the E. coli toxin MqsR (YgiU/b3022) 3GA8 ; 1.7 ; Structure of the N-terminal domain of the E. coli protein MqsA (YgiT/b3021) 4A3X ; 1.65 ; Structure of the N-terminal domain of the Epa1 adhesin (Epa1-Np) from the pathogenic yeast Candida glabrata, in complex with calcium and lactose 5NB9 ; ; Structure of the N-terminal domain of the Escherichia Coli ProQ RNA binding protein 4LHL ; 1.43 ; Structure of the N-terminal domain of the Flo1 adhesin (N-Flo1p) from the yeast Saccharomyces cerevisiae 4LHN ; 2.12 ; Structure of the N-terminal domain of the Flo1 adhesin (N-Flo1p) from the yeast Saccharomyces cerevisiae, in complex with calcium and mannose 4P60 ; 2.4 ; Structure of the N-terminal domain of the human mitochondrial aspartate/glutamate carrier Aralar in the apo state 4P5X ; 2.261 ; Structure of the N-terminal domain of the human mitochondrial aspartate/glutamate carrier Aralar in the calcium-bound state 1BYW ; 2.6 ; STRUCTURE OF THE N-TERMINAL DOMAIN OF THE HUMAN-ERG POTASSIUM CHANNEL 4LHK ; 1.73 ; Structure of the N-terminal domain of the Lg-Flo1 adhesin (N-Lg-Flo1p) from the yeast Saccharomyces pastorianus, in complex with calcium and alpha-1,2-mannobiose 1GWP ; ; STRUCTURE OF THE N-TERMINAL DOMAIN OF THE MATURE HIV-1 CAPSID PROTEIN 5ABK ; ; Structure of the N-terminal domain of the metalloprotease PrtV from Vibrio cholerae 1A4H ; 2.5 ; STRUCTURE OF THE N-TERMINAL DOMAIN OF THE YEAST HSP90 CHAPERONE IN COMPLEX WITH GELDANAMYCIN 5NPT ; 2.4 ; Structure of the N-terminal domain of the yeast telomerase reverse transcriptase 7UGC ; ; Structure of the N-terminal domain of ViaA 6LFA ; 2.3 ; Structure of the N-terminal domain of Wag31 2D27 ; 2.21 ; Structure of the N-terminal domain of XpsE (crystal form I4122) 2D28 ; 2.0 ; Structure of the N-terminal domain of XpsE (crystal form P43212) 5XFN ; 1.9 ; Structure of the N-terminal domains of PHF1 5XFO ; 1.9 ; Structure of the N-terminal domains of PHF1 4J3K ; 2.0 ; Structure of the N-terminal domian of human coronavirus OC43 nucleocapsid protein 1J54 ; 1.7 ; Structure of the N-terminal exonuclease domain of the epsilon subunit of E.coli DNA polymerase III at pH 5.8 1J53 ; 1.8 ; Structure of the N-terminal Exonuclease Domain of the Epsilon Subunit of E.coli DNA Polymerase III at pH 8.5 4U9R ; 2.17 ; Structure of the N-terminal Extension from Cupriavidus metallidurans CzcP 2XRB ; 2.5 ; Structure of the N-terminal four domains of the complement regulator Rat Crry 2XRD ; 3.5 ; Structure of the N-terminal four domains of the complement regulator Rat Crry 3GS3 ; 2.4 ; Structure of the N-terminal HEAT Domain of Symplekin from D. melanogaster 4NQI ; 2.21 ; Structure of the N-terminal I-BAR domain (1-259) of D.Discoideum IBARa 4LUN ; 1.641 ; Structure of the N-terminal mIF4G domain from S. cerevisiae Upf2, a protein involved in the degradation of mRNAs containing premature stop codons 6YXO ; 2.0 ; Structure of the N-terminal module of the human SWI/SNF-subunit BAF155/SMARCC1 2YK0 ; 2.8 ; Structure of the N-terminal NTS-DBL1-alpha and CIDR-gamma double domain of the PfEMP1 protein from Plasmodium falciparum varO strain. 7SZX ; 3.5 ; Structure of the N-terminal nuclease and origin binding domain of Human Parvovirus B19 2BVE ; 2.2 ; Structure of the N-terminal of Sialoadhesin in complex with 2-Phenyl- Prop5Ac 4J7O ; 2.175 ; Structure of the N-terminal Repeat Domain of Rickettsia Sca2 1SSK ; ; Structure of the N-terminal RNA-binding Domain of the SARS CoV Nucleocapsid Protein 2JM2 ; ; Structure of the N-terminal subdomain of insulin-like growth factor (IGF) binding protein-6 and its interactions with IGFs 2G3P ; 1.9 ; STRUCTURE OF THE N-TERMINAL TWO DOMAINS OF THE INFECTIVITY PROTEIN G3P OF FILAMENTOUS PHAGE FD 2P08 ; 2.0 ; Structure of the N-terminally truncated PAS domain of signal transduction histidine kinase from Nostoc punctiforme PCC 73102 with homology to the H-NOXA/H-NOBA domain of the soluble guanylyl cyclase 3MVS ; 1.1 ; Structure of the N-terminus of Cadherin 23 2IFS ; ; Structure of the N-WASP EVH1 domain in complex with an extended WIP peptide 1MKE ; ; Structure of the N-WASP EVH1 Domain-WIP complex 4EA3 ; 3.013 ; Structure of the N/OFQ Opioid Receptor in Complex with a Peptide Mimetic 4JTM ; 1.43 ; Structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli 4IZL ; 2.8 ; Structure Of The N248A Mutant of the PANTON-VALENTINE LEUCOCIDIN S Component from STAPHYLOCOCCUS AUREUS 4F2U ; 2.19 ; Structure of the N254Y/H258Y double mutant of the Phosphatidylinositol-Specific Phospholipase C from S.aureus 4I90 ; 1.65 ; Structure of the N254Y/H258Y mutant of the phosphatidylinositol-specific phospholipase C from S. aureus bound to choline 4I9J ; 1.85 ; Structure of the N254Y/H258Y mutant of the phosphatidylinositol-specific phospholipase C from S. aureus bound to diC4PC 4I9M ; 2.2 ; Structure of the N254Y/H258Y mutant of the phosphatidylinositol-specific phospholipase C from Staphylococcus aureus bound to HEPES 1XGZ ; 2.0 ; Structure of the N298S variant of human pancreatic alpha-amylase 1XH0 ; 2.0 ; Structure of the N298S variant of human pancreatic alpha-amylase complexed with acarbose 1XH1 ; 2.03 ; Structure of the N298S variant of human pancreatic alpha-amylase complexed with chloride 1XH2 ; 2.2 ; Structure of the N298S variant of human pancreatic alpha-amylase complexed with chloride and acarbose 7ABO ; 1.95 ; Structure of the N318H variant of the reversible pyrrole-2-carboxylic acid decarboxylase PA0254/HudA in complex with FMN 8DOM ; 1.89 ; Structure of the N358Y single variant ofserine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP 8DSK ; 1.63 ; Structure of the N358Y variant of serine hydroxymethyltransferase 8 in complex with PLP, glycine, and formyl tetrahydrofolate 2XXG ; 1.6 ; STRUCTURE OF THE N90S MUTANT OF NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS 2XX1 ; 3.0 ; STRUCTURE OF THE N90S MUTANT OF NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS complexed with nitrite 2XX0 ; 1.46 ; STRUCTURE OF THE N90S-H254F MUTANT OF NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS 3AOU ; 3.14 ; Structure of the Na+ unbound rotor ring modified with N,N f-Dicyclohexylcarbodiimide of the Na+-transporting V-ATPase 2JO1 ; ; Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles 2MKV ; ; Structure of the NA,K-ATPASE regulatory protein FXYD2b in micelles 7JSK ; 3.04 ; Structure of the NaCT-Citrate complex 7JSJ ; 3.12 ; Structure of the NaCT-PF2 complex 1EDZ ; 2.8 ; STRUCTURE OF THE NAD-DEPENDENT 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE FROM SACCHAROMYCES CEREVISIAE 6OW4 ; 1.99 ; Structure of the NADH-bound form of 20beta-Hydroxysteroid Dehydrogenase from Bifidobacterium adolescentis strain L2-32 7SSS ; 2.4 ; Structure of the NADH-bound human COQ7:COQ9 complex by single-particle electron cryo-microscopy 4ZN0 ; 2.6 ; Structure of the NADPH-dependent thioredoxin reductase from Methanosarcina mazei 7NOZ ; 3.9 ; Structure of the nanobody stablized properdin bound alternative pathway proconvertase C3b:FB:FP 6H1F ; 1.9 ; Structure of the nanobody-stabilized gelsolin D187N variant (second domain) 5G2E ; 6.7 ; Structure of the Nap1 H2A H2B complex 1JNI ; 1.25 ; Structure of the NapB subunit of the periplasmic nitrate reductase from Haemophilus influenzae. 4AKK ; 2.145 ; Structure of the NasR transcription antiterminator 1TLV ; 1.95 ; Structure of the native and inactive LicT PRD from B. subtilis 7KO7 ; 8.3 ; Structure of the native cardiac thin filament at pCa=5.8 having upper Tn in Ca2+ free state and lower Tn in Ca2+ bound state 4XFY ; 2.8 ; Structure of the native full-length dehydrated HIV-1 capsid protein 4XFX ; 2.43 ; Structure of the native full-length HIV-1 capsid protein 6SLQ ; 4.4 ; Structure of the native full-length HIV-1 capsid protein A92E in helical assembly (-12,11) 6SLU ; 4.7 ; Structure of the native full-length HIV-1 capsid protein A92E in helical assembly (-13,11) 6SKM ; 4.9 ; Structure of the native full-length HIV-1 capsid protein A92E in helical assembly (-13,12) 6AY9 ; 2.5 ; Structure of the native full-length HIV-1 capsid protein in complex with CPSF6 peptide 6ZDJ ; 5.8 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-13,10) 6Y9X ; 4.4 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-13,7) 6Y9W ; 4.1 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-13,8) 6Y9Z ; 4.8 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-13,9) 6Y9Y ; 6.1 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-7,13) 6Y9V ; 6.9 ; Structure of the native full-length HIV-1 capsid protein in complex with Cyclophilin A from helical assembly (-8,13) 6AYA ; 2.4 ; Structure of the native full-length HIV-1 capsid protein in complex with Nup153 peptide 4XFZ ; 2.7 ; Structure of the native full-length HIV-1 capsid protein in complex with PF-3450074 (PF74) 6SMU ; 5.0 ; Structure of the native full-length HIV-1 capsid protein in helical assembly (-13,12) 6SKK ; 3.6 ; Structure of the native full-length HIV-1 capsid protein in helical assembly (-13,8) 6SKN ; 4.5 ; Structure of the native full-length HIV-1 capsid protein in helical assembly (-13,8) 6V6S ; 4.3 ; Structure of the native human gamma-tubulin ring complex 2Q0Q ; 1.5 ; Structure of the Native M. Smegmatis Aryl Esterase 1JW9 ; 1.7 ; Structure of the Native MoeB-MoaD Protein Complex 2R22 ; 1.4 ; Structure of the native RNA tridecamer r(GCGUUUGAAACGC) at 1.5 A (NatMn) 5NCS ; 3.0 ; Structure of the native serpin-type proteinase inhibitor, miropin. 6K9Q ; 3.1 ; Structure of the native supercoiled hook as a universal joint 6ZMB ; 1.7 ; Structure of the native tRNA-Monooxygenase enzyme MiaE 2I7B ; 1.99 ; Structure of the naturally occuring mutant of human ABO(H) Blood group B glycosyltransferase: GTB/A268T 5XSY ; 4.0 ; Structure of the Nav1.4-beta1 complex from electric eel 6S2P ; 2.5 ; Structure of the NB-ARC domain from the Tomato immune receptor NRC1 6TJV ; 3.2 ; Structure of the NDH-1MS complex from Thermosynechococcus elongatus 4G9K ; 2.7 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae 5YJY ; 3.4 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae in complex with AC0-12. 5YJX ; 3.21 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae in complex with myxothiazol. 4GAP ; 2.9 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae in complex with NAD+ 4GAV ; 3.0 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae in complex with quinone 5YJW ; 1.85 ; Structure of the Ndi1 protein from Saccharomyces cerevisiae in complex with the competitive inhibitor, stigmatellin. 4GKQ ; 2.99 ; Structure of the neck and C-terminal motor homology domain of ViK1 from Candida glabrata 3JQH ; 2.201 ; Structure of the neck region of the glycan-binding receptor DC-SIGNR 7MDI ; 4.3 ; Structure of the Neisseria gonorrhoeae ribonucleotide reductase in the inactive state 2HIL ; 12.5 ; Structure of the Neisseria gonorrhoeae Type IV pilus filament from x-ray crystallography and electron cryomicroscopy 2OPD ; 2.5 ; Structure of the Neisseria meningitidis minor Type IV pilin, PilX 8JJ6 ; 2.72 ; Structure of the NELF-BCE complex 4CPM ; 2.75 ; Structure of the Neuraminidase from the B/Brisbane/60/2008 virus in complex with Oseltamivir 4CPN ; 2.4 ; Structure of the Neuraminidase from the B/Brisbane/60/2008 virus in complex with Zanamivir 4CPL ; 2.0 ; Structure of the Neuraminidase from the B/Brisbane/60/2008 virus. 4CPO ; 2.2 ; Structure of the Neuraminidase from the B/Lyon/CHU/15.216/2011 virus 4CPY ; 1.8 ; Structure of the Neuraminidase from the B/Lyon/CHU/15.216/2011 virus in complex with Oseltamivir 4CPZ ; 2.2 ; Structure of the Neuraminidase from the B/Lyon/CHU/15.216/2011 virus in complex with Zanamivir 3RQK ; 2.21 ; Structure of the neuronal nitric oxide synthase heme domain in complex with 4-methyl-6-{[(3R,4R)-4-(2-{[(1R,2S)-2-(3-methylphenyl)cyclopropyl]amino}ethoxy)pyrrolidin-3-yl]methyl}pyridin-2-amine and its isomer 3RQN ; 1.95 ; Structure of the neuronal nitric oxide synthase heme domain in complex with 6-(((3*R*,4*R*)-4-(2-(((*S* )-1-(3-fluorophenyl)propan-2-yl)amino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3RQJ ; 1.84 ; Structure of the neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((1S,2R)-2-(3-Fluorophenyl)cyclopropylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3RQL ; 1.93 ; Structure of the neuronal nitric oxide synthase heme domain in complex with 6-(((3R,4R)-4-(2-((1S,2R/1R,2S)-2-(3-Clorophenyl)cyclopropylamino)ethoxy)pyrrolidin-3-yl)methyl)-4-methylpyridin-2-amine 3RQM ; 1.95 ; Structure of the neuronal nitric oxide synthase heme domain in complex with 6-{[(3R,4R)-4-(2-{[(2R/2S)-1-(3-fluorophenyl)propan-2-yl]amino}ethoxy)pyrrolidin-3-yl]methyl}-4-methylpyridin-2-amine 4DEQ ; 2.649 ; Structure of the Neuropilin-1/VEGF-A complex 4CZW ; 2.6 ; Structure of the Neurospora crassa Pan2 catalytic unit (protease and nuclease domain) 4CZV ; 2.1 ; Structure of the Neurospora crassa Pan2 WD40 domain 1ML9 ; 1.98 ; Structure of the Neurospora SET domain protein DIM-5, a histone lysine methyltransferase 3MAW ; 3.5 ; Structure of the Newcastle disease virus F protein in the post-fusion conformation 2QY9 ; 1.9 ; Structure of the NG+1 construct of the E. coli SRP receptor FtsY 4AU5 ; 3.696 ; Structure of the NhaA dimer, crystallised at low pH 4K1P ; 2.05 ; Structure of the NheA component of the Nhe toxin from Bacillus cereus 5DMU ; 1.949 ; Structure of the NHEJ polymerase from Methanocella paludicola 4R94 ; 1.668 ; Structure of the nickase domain of NS1 from MVM complexed with magnesium 3TQV ; 2.62 ; Structure of the nicotinate-nucleotide pyrophosphorylase from Francisella tularensis. 4NOX ; 2.722 ; Structure of the nine-bladed beta-propeller of eIF3b 1DW2 ; 2.2 ; STRUCTURE OF THE NITRIC OXIDE COMPLEX OF REDUCED SHP, AN OXYGEN BINDING CYTOCHROME C 4WNA ; 2.0 ; Structure of the Nitrogenase MoFe Protein from Azotobacter vinelandii Pressurized with Xenon 4WN9 ; 1.9 ; Structure of the Nitrogenase MoFe Protein from Clostridium pasteurianum Pressurized with Xenon 7KI4 ; 2.9 ; Structure of the NiV F glycoprotein in complex with the 12B2 neutralizing antibody 6NPJ ; 3.8 ; Structure of the NKCC1 CTD 8H0P ; 3.15 ; Structure of the NMB30-NMBR and Gq complex 4ZRL ; 2.28 ; Structure of the non canonical Poly(A) polymerase complex GLD-2 - GLD-3 2OQ9 ; ; Structure of the non-canonical Mcol5 of Hydra nematocysts 3GPN ; 2.5 ; Structure of the non-trimeric form of the E113G PCNA mutant protein 3X2R ; 2.9 ; Structure of the nonameric bacterial amyloid secretion channel CsgG 6FT6 ; 3.9 ; Structure of the Nop53 pre-60S particle bound to the exosome nuclear cofactors 3NK6 ; 2.0 ; Structure of the Nosiheptide-resistance methyltransferase 3NK7 ; 2.1 ; Structure of the Nosiheptide-resistance methyltransferase S-adenosyl-L-methionine Complex 4C0D ; 3.2 ; Structure of the NOT module of the human CCR4-NOT complex (CNOT1-CNOT2-CNOT3) 4C0F ; 2.4 ; Structure of the NOT-box domain of human CNOT2 4C0G ; 2.4 ; Structure of the NOT-box domain of human CNOT3 4C0E ; 3.2 ; Structure of the NOT1 superfamily homology domain from Chaetomium thermophilum 6XSW ; 2.98 ; Structure of the Notch3 NRR in complex with an antibody Fab Fragment 3MWN ; 2.6 ; Structure of the Novel 14 kDa Fragment of alpha-Subunit of Phycoerythrin from the Starving Cyanobacterium Phormidium Tenue 2L73 ; ; Structure of the NOXO1b PX domain 4IYP ; 2.797 ; structure of the nPP2Ac-alpha4 complex 5JRZ ; 1.62 ; Structure of the NS3 helicase from the French Polynesia strain of the Zika virus 5ULP ; 1.55 ; Structure of the NS5 methyltransferase from Zika bound to MS2042 2VRI ; 1.9 ; Structure of the NSP3 X-domain of human coronavirus NL63 5BXQ ; 2.5 ; Structure of the NTF2:RanGDP complex 1NFK ; 2.3 ; STRUCTURE OF THE NUCLEAR FACTOR KAPPA-B (NF-KB) P50 HOMODIMER 6FSZ ; 4.6 ; Structure of the nuclear RNA exosome 4XGL ; 1.8 ; Structure of the nuclease subunit of human mitochondrial RNase P (MRPP3) at 1.8A 4XGM ; 1.98 ; Structure of the nuclease subunit of human mitochondrial RNase P (MRPP3) at 1.98A 3BBZ ; 2.1 ; Structure of the nucleocapsid-binding domain from the mumps virus phosphoprotein 4CA9 ; ; Structure of the Nucleoplasmin-like N-terminal domain of Drosophila FKBP39 3OUO ; 2.3 ; Structure of the Nucleoprotein from Rift Valley Fever Virus 3OV9 ; 1.6 ; Structure of the Nucleoprotein from Rift Valley Fever Virus 1F6T ; 1.92 ; STRUCTURE OF THE NUCLEOSIDE DIPHOSPHATE KINASE/ALPHA-BORANO(RP)-TDP.MG COMPLEX 8COM ; 3.3 ; Structure of the Nucleosome Core Particle from Trypanosoma brucei 5IDV ; 1.45 ; Structure of the nucleotide binding domain of an ABC transporter MsbA from Acinetobacter baumannii 2AKA ; 1.9 ; Structure of the nucleotide-free myosin II motor domain from Dictyostelium discoideum fused to the GTPase domain of dynamin 1 from Rattus norvegicus 1XSA ; ; Structure of the nudix enzyme AP4A hydrolase from homo sapiens (E63A mutant) 1XSC ; ; Structure of the nudix enzyme AP4A hydrolase from homo sapiens (E63A mutant) in complex with ATP 1XSB ; ; Structure of the nudix enzyme AP4A hydrolase from homo sapiens (E63A mutant) in complex with ATP. No ATP restraints included 3TKN ; 3.4 ; Structure of the Nup82-Nup159-Nup98 heterotrimer 6CO7 ; 3.07 ; Structure of the nvTRPM2 channel in complex with Ca2+ 2WK1 ; 1.4 ; Structure of the O-methyltransferase NovP 1LNZ ; 2.6 ; Structure of the Obg GTP-binding protein 1VAO ; 2.5 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE 1AHV ; 3.1 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH 2-NITRO-P-CRESOL 1AHZ ; 3.3 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH 4-(1-HEPTENYL)PHENOL 2VAO ; 2.8 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH ISOEUGENOL 1AHU ; 2.7 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE IN COMPLEX WITH P-CRESOL 1W1M ; 3.0 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE: Glu502Gly Mutant 1W1K ; 2.55 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE: Ile238Thr Mutant 1W1L ; 2.7 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE: Phe454Tyr Mutant 1W1J ; 2.7 ; STRUCTURE OF THE OCTAMERIC FLAVOENZYME VANILLYL-ALCOHOL OXIDASE: The505Ser Mutant 2QMI ; 2.2 ; Structure of the octameric penicillin-binding protein homologue from Pyrococcus abyssi 7AKC ; 1.6 ; Structure of the of AcylTransferase domain of phenolphthiocerol/phtiocerol synthase A from Mycobacterium bovis (BCG) 7XHT ; 2.55 ; Structure of the OgeuIscB-omega RNA-target DNA complex 4E2D ; 1.997 ; Structure of the old yellow enzyme from Trypanosoma cruzi 2UX0 ; 2.46 ; Structure of the oligomerisation domain of calcium-calmodulin dependent protein kinase II gamma 1B4B ; 2.2 ; STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF THE ARGININE REPRESSOR FROM BACILLUS STEAROTHERMOPHILUS 446D ; 3.0 ; STRUCTURE OF THE OLIGONUCLEOTIDE D(CGTATATACG) AS A SITE SPECIFIC COMPLEX WITH NICKEL IONS 1R1M ; 1.9 ; Structure of the OmpA-like domain of RmpM from Neisseria meningitidis 1Q1V ; ; Structure of the Oncoprotein DEK: a putative DNA-binding Domain Related to the Winged Helix Motif 2DVW ; 2.3 ; Structure of the Oncoprotein Gankyrin in Complex with S6 ATPase of the 26S Proteasome 2DWZ ; 2.4 ; Structure of the Oncoprotein Gankyrin in Complex with S6 ATPase of the 26S Proteasome 2VDF ; 1.95 ; Structure of the OpcA adhesion from Neisseria meningitidis determined by crystallization from the cubic mesophase 5U95 ; 2.25 ; Structure of the open conformation of 4-coumarate-CoA ligase from Nicotiana tabacum 6SL1 ; 3.6 ; Structure of the open conformation of CtTel1 7QCZ ; 1.85 ; Structure of the orange carotenoid protein from Planktothrix agardhii binding canthaxanthin in the C2 space group 7QD2 ; 1.4 ; Structure of the orange carotenoid protein from Planktothrix agardhii binding canthaxanthin in the P21 space group 7QD0 ; 1.7 ; Structure of the orange carotenoid protein from Planktothrix agardhii binding echinenone in the C2 space group 7QD1 ; 1.71 ; Structure of the orange carotenoid protein from Planktothrix agardhii binding echinenone in the P21 space group 8AJ2 ; 2.2 ; structure of the ordered core of Knr4 (loop 189-217 deleted) 7SQO ; 3.17 ; Structure of the orexin-2 receptor(OX2R) bound to TAK-925, Gi and scFv16 4ART ; 2.15 ; STRUCTURE OF THE ORF273 PROTEIN FROM THE ACIDIANUS TWO-TAILED VIRUS 4ATS ; 3.85 ; Structure of the ORF273 protein from the Acidianus two-tailed virus 5EQC ; 2.2 ; Structure of the ornithine aminotransferase from Toxoplasma gondii crystallized in presence of oxidized glutathione reveals partial occupancy of PLP at the protein active site 5E5I ; 1.7 ; Structure of the ornithine aminotransferase from Toxoplasma gondii in complex with inactivator 4ANF ; 2.6 ; Structure of the ornithine carbamoyltransferase from Mycoplasma penetrans with a P23 Space group 6DZ6 ; 3.0 ; Structure of the Orthorhombic (Orthrhmb) Crystal Form of Human Apolipoprotein C1 3QDV ; 1.3 ; Structure of the orthorhombic form of the Boletus edulis lectin in complex with N-acetyl glucosamine and N-acetyl galactosamine 3QDX ; 1.7 ; Structure of the orthorhombic form of the Boletus edulis lectin in complex with T-antigen disaccharide and N,N-diacetyl chitobiose 1AH8 ; 2.1 ; STRUCTURE OF THE ORTHORHOMBIC FORM OF THE N-TERMINAL DOMAIN OF THE YEAST HSP90 CHAPERONE 2VWI ; 2.15 ; Structure of the OSR1 kinase, a hypertension drug target 4Q3G ; 2.787 ; Structure of the OsSERK2 leucine rich repeat extracellular domain 4Q3I ; 2.35 ; Structure of the OsSERK2 leucine rich repeat extracellular domain 6I9C ; 1.77 ; Structure of the OTU domain of OTULIN G281R mutant 6SAK ; 2.0 ; Structure of the OTULINcat C129A - SNX27 PDZ domain complex. 4C4V ; 3.0 ; Structure of the outer membrane protein insertase BamA with one POTRA domain. 7OKN ; 3.34 ; Structure of the outer-membrane core complex (inner ring) from a conjugative type IV secretion system 7OKO ; 3.4 ; Structure of the outer-membrane core complex (outer ring) from a conjugative type IV secretion system 7TPM ; 1.9 ; Structure of the outer-membrane lipoprotein carrier protein (LolA) from Borrelia burgdorferi 1M6K ; 1.5 ; Structure of the OXA-1 class D beta-lactamase 1W4V ; 1.8 ; structure of the oxidised form of human thioredoxin 2 2WPN ; 2.04 ; Structure of the oxidised, as-isolated NiFeSe hydrogenase from D. vulgaris Hildenborough 2AMS ; 1.4 ; Structure of the oxidized Hipip from thermochromatium tepidum at 1.4 angstrom resolution 1FLV ; 2.0 ; STRUCTURE OF THE OXIDIZED LONG CHAIN FLAVODOXIN FROM ANABAENA 7120 AT 2 ANGSTROMS RESOLUTION 1YQW ; 1.83 ; Structure of the Oxidized Unready Form of Ni-Fe Hydrogenase 7WY2 ; 1.45 ; Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 F87A Mutant Haem Domain with N-Enanthyl-L-Prolyl-L-Phenylalanine in complex with Styrene 7WY3 ; 1.6 ; Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 F87V Mutant Haem Domain with N-(5-Cyclohexyl)valeroyl-L-Phenylalanine in complex with Styrene 6JMH ; 1.46 ; Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 7WY1 ; 1.6 ; Structure of the Oxomolybdenum Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Enanthyl-L-Prolyl-L-Phenylalanine in complex with Styerene 3IHM ; 2.3 ; Structure of the oxygenase component of a Pseudomonas styrene monooxygenase 4P26 ; 1.9 ; Structure of the P domain from a GI.7 Norovirus variant in complex with A-type 2 HBGA 4P1V ; 1.5497 ; Structure of the P domain from a GI.7 Norovirus variant in complex with H-type 2 HBGA 4P3I ; 1.6941 ; Structure of the P domain from a GI.7 Norovirus variant in complex with LeA HBGA. 4P2N ; 1.7 ; Structure of the P domain from a GI.7 Norovirus variant in complex with LeX HBGA 4P25 ; 1.4991 ; Structure of the P domain from a GI.7 Norovirus variant in complex with LeY HBGA. 2VQI ; 3.2 ; Structure of the P pilus usher (PapC) translocation pore 6YSU ; 3.7 ; Structure of the P+0 ArfB-ribosome complex in the post-hydrolysis state 6YSS ; 2.6 ; Structure of the P+9 ArfB-ribosome complex in the post-hydrolysis state 6YST ; 3.2 ; Structure of the P+9 ArfB-ribosome complex with P/E hybrid tRNA in the post-hydrolysis state 6YSR ; 3.1 ; Structure of the P+9 stalled ribosome complex 7P1G ; 3.2 ; Structure of the P. aeruginosa ExoY-F-actin complex 2UV0 ; 1.8 ; Structure of the P. aeruginosa LasR ligand-binding domain bound to its autoinducer 4JLE ; 2.35 ; Structure of the P. falciparum PFI1780w PHIST domain 2XTQ ; 2.31 ; Structure of the P107A Colicin M mutant from E. coli 6AXR ; 2.3 ; Structure of the P122A mutant of the HIV-1 capsid protein 7UJI ; 2.3 ; Structure of the P130R single variant of serine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP 7UJH ; 2.24 ; Structure of the P130R single variant of serine hydroxymethyltransferase 8 from Glycine max cultivar Essex complexed with PLP and glycine 2XTR ; 2.14 ; Structure of the P176A Colicin M mutant from E. coli 5FJ6 ; 7.9 ; Structure of the P2 polymerase inside in vitro assembled bacteriophage phi6 polymerase complex 5FJ7 ; 7.9 ; Structure of the P2 polymerase inside in vitro assembled bacteriophage phi6 polymerase complex, with P1 included 7YXW ; 2.5 ; Structure of the p22phox A200G mutant in complex with p47phox peptide 1OV3 ; 1.8 ; Structure of the p22phox-p47phox complex 3C04 ; 2.2 ; Structure of the P368G mutant of PMM/PGM from P. aeruginosa 3BKQ ; 2.05 ; Structure of the P368G mutant of PMM/PGM in complex with its substrate 4L40 ; 2.5 ; Structure of the P450 OleT with a C20 fatty acid substrate bound 4KF2 ; 1.82 ; Structure of the P4509 BM3 A82F F87V heme domain 5AOJ ; 1.47 ; Structure of the p53 cancer mutant Y220C in complex with 2-hydroxy-3, 5-diiodo-4-(1H-pyrrol-1-yl)benzoic acid 5AOI ; 1.78 ; Structure of the p53 cancer mutant Y220C in complex with an indole- based small molecule 6GGF ; 1.32 ; Structure of the p53 cancer mutant Y220C in complex with small-molecule stabilizer PK9328 5AOL ; 1.5 ; Structure of the p53 cancer mutant Y220C with bound 3-bromo-5-(trifluoromethyl)benzene-1,2-diamine 5AB9 ; 1.36 ; Structure of the p53 cancer mutant Y220C with bound small molecule 7- ethyl-3-(piperidin-4-yl)-1H-indole 5AOK ; 1.35 ; Structure of the p53 cancer mutant Y220C with bound small molecule PhiKan7099 5AOM ; 1.74 ; Structure of the p53 cancer mutant Y220C with bound small molecule PhiKan883 5ABA ; 1.62 ; Structure of the p53 cancer mutant Y220C with bound small-molecule stabilizer PhiKan5149 5A7B ; 1.4 ; Structure of the p53 cancer Y220C bound to the stabilizing small molecule PhiKan5211 2X0V ; 1.8 ; STRUCTURE OF THE P53 CORE DOMAIN MUTANT Y220C BOUND TO 4-(trifluoromethyl)benzene-1,2-diamine 2X0W ; 2.1 ; STRUCTURE OF THE P53 CORE DOMAIN MUTANT Y220C BOUND TO 5,6-dimethoxy- 2-methylbenzothiazole 2X0U ; 1.6 ; STRUCTURE OF THE P53 CORE DOMAIN MUTANT Y220C BOUND TO A 2-amino substituted benzothiazole scaffold 3ZME ; 1.35 ; Structure of the p53 core domain mutant Y220C bound to the small molecule PhiKan7242 4AGM ; 1.52 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan5086 4AGN ; 1.6 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan5116 4AGO ; 1.45 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan5174 4AGP ; 1.5 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan5176 4AGQ ; 1.42 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan5196 4AGL ; 1.7 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small molecule PhiKan784 2VUK ; 1.5 ; Structure of the p53 core domain mutant Y220C bound to the stabilizing small-molecule drug PhiKan083 6XRE ; 4.6 ; Structure of the p53/RNA polymerase II assembly 2M6X ; ; Structure of the p7 channel of Hepatitis C virus, genotype 5a 3RSP ; 1.7 ; STRUCTURE OF THE P93G VARIANT OF RIBONUCLEASE A 4A6S ; 2.15 ; Structure of the PAIL lectin from Pseudomonas aeruginosa in complex with 2-Naphtyl-1-thio-beta-D-galactopyranoside 1N8S ; 3.04 ; Structure of the pancreatic lipase-colipase complex 1PVL ; 2.0 ; STRUCTURE OF THE PANTON-VALENTINE LEUCOCIDIN F COMPONENT FROM STAPHYLOCOCCUS AUREUS 1T5R ; 2.0 ; STRUCTURE OF THE PANTON-VALENTINE LEUCOCIDIN S COMPONENT FROM STAPHYLOCOCCUS AUREUS 3TQC ; 2.3 ; Structure of the pantothenate kinase (coaA) from Coxiella burnetii 1X8S ; 2.503 ; Structure of the Par-6 PDZ domain with a Pals1 internal ligand 4JF7 ; 2.5018 ; Structure of the parainfluenza virus 5 (PIV5) hemagglutinin-neuraminidase (HN) ectodomain 3TSI ; 2.651 ; Structure of the parainfluenza virus 5 (PIV5) hemagglutinin-neuraminidase (HN) stalk domain 2B9B ; 2.85 ; Structure of the Parainfluenza Virus 5 F Protein in its Metastable, Pre-fusion Conformation 4XJN ; 3.11 ; Structure of the parainfluenza virus 5 nucleocapsid-RNA complex: an insight into paramyxovirus polymerase activity 1NP9 ; ; Structure of the parallel-stranded DNA quadruplex d(TTAGGGA)4 containing the human telomeric repeat 6ZU5 ; 2.9 ; Structure of the Paranosema locustae ribosome in complex with Lso2 5DFY ; 1.6 ; Structure of the parental state of GAF3 from Slr1393 of Synechocystis sp. PCC6803 (in vitro assembled protein/chromophore) 5DFX ; 1.8 ; Structure of the parental state of GAF3 from Slr1393 of Synechocystis sp. PCC6803 (in vivo assembled protein/chromophore) 2ZFO ; 1.95 ; Structure of the partially unliganded met state of 400 kDa hemoglobin: Insights into ligand-induced structural changes of giant hemoglobins 8PX4 ; 2.5 ; Structure of the PAS domain code by the LIC_11128 gene from Leptospira interrogans serovar Copenhageni Fiocruz, solved at wavelength 3.09 A 6ZJ8 ; 2.4 ; Structure of the PAS domain from Bordetella pertussis BvgS 2BKF ; 1.56 ; Structure of the PB1 domain of NBR1 1TS0 ; 1.6 ; Structure of the pB1 intermediate from time-resolved Laue crystallography 1TS6 ; 1.6 ; Structure of the pB2 intermediate from time-resolved Laue crystallography 6HLX ; 1.65 ; Structure of the PBP AgaA in complex with agropinic acid from A.tumefacien R10 6EPY ; 2.04 ; Structure of the PBP MelB (Atu4661) in complex with raffinose from A.fabrum C58 4P0I ; 1.89 ; Structure of the PBP NocT 4POW ; 1.55 ; Structure of the PBP NocT in complex with pyronopaline 4PP0 ; 1.57 ; Structure of the PBP NocT-M117N in complex with pyronopaline 6TG2 ; 2.21 ; Structure of the PBP/SBP MotA in complex with mannopinic acid from A.tumefacien R10 4U1D ; 3.3 ; Structure of the PCI domain of translation initiation factor eIF3a 3P83 ; 3.05 ; Structure of the PCNA:RNase HII complex from Archaeoglobus fulgidus. 6OLA ; 3.3 ; Structure of the PCV2d virus-like particle 2PW3 ; 1.56 ; Structure of the PDE4D-cAMP complex 2VKI ; 1.8 ; Structure of the PDK1 PH domain K465E mutant 3PDV ; 2.2 ; Structure of the PDlim2 PDZ domain in complex with the C-terminal 6-peptide extension of NS1 5FRP ; 2.895 ; Structure of the Pds5-Scc1 complex and implications for cohesin function 5FRR ; 5.8 ; Structure of the Pds5-Scc1 complex and implications for cohesin function 5FRS ; 4.073 ; Structure of the Pds5-Scc1 complex and implications for cohesin function 3CI1 ; 1.9 ; Structure of the PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri complexed with four-coordinate cob(II)alamin and ATP 3CI4 ; 2.0 ; Structure of the PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri complexed with four-coordinate cob(II)inamide and ATP 3CI3 ; 1.11 ; Structure of the PduO-type ATP:co(I)rrinoid adenosyltransferase from Lactobacillus reuteri complexed with partial adenosylcobalamin and PPPi 7VGE ; 4.0 ; Structure of the PDZ deleted variant of HtrA2 protease (S306A) 2W7R ; 1.6 ; Structure of the PDZ domain of Human Microtubule associated serine- threonine kinase 4 2PA1 ; 1.7 ; Structure of the PDZ domain of human PDLIM2 bound to a C-terminal extension from human beta-tropomyosin 2Q3G ; 1.11 ; Structure of the PDZ domain of human PDLIM7 bound to a C-terminal extension from human beta-tropomyosin 2VZ5 ; 1.738 ; Structure of the PDZ domain of Tax1 (human T-cell leukemia virus type I) binding protein 3 8DS6 ; 4.9 ; Structure of the PEAK3 pseudokinase homodimer 8DP5 ; 3.1 ; Structure of the PEAK3/14-3-3 complex 5CRF ; 1.8 ; Structure of the penicillin-binding protein PonA1 from Mycobacterium Tuberculosis 7NXQ ; 2.422 ; Structure of the pentameric C-terminal domain of the capsid protein from Kaposi's sarcoma-associated herpesvirus (KSHV) 6SSP ; 3.25 ; Structure of the pentameric ligand-gated ion channel ELIC in complex with a NAM nanobody 6SSI ; 2.59 ; Structure of the pentameric ligand-gated ion channel ELIC in complex with a PAM nanobody 2XT2 ; 1.999 ; Structure of the pentapeptide repeat protein AlbG, a resistance factor for the topoisomerase poison albicidin. 2XT4 ; 2.394 ; Structure of the pentapeptide repeat protein AlbG, a resistance factor for the topoisomerase poison albicidin. 2W7Z ; 1.6 ; Structure of the pentapeptide repeat protein EfsQnr, a DNA gyrase inhibitor. Free amines modified by cyclic pentylation with glutaraldehyde. 1FF3 ; 1.9 ; STRUCTURE OF THE PEPTIDE METHIONINE SULFOXIDE REDUCTASE FROM ESCHERICHIA COLI 3PBI ; 1.6 ; Structure of the peptidoglycan hydrolase RipB (Rv1478) from Mycobacterium tuberculosis at 1.6 resolution 7D56 ; 3.175 ; Structure of the peptidylarginine deiminase type III (PAD3) in complex with Cl-amidine 2HE9 ; 2.0 ; Structure of the peptidylprolyl isomerase domain of the human NK-tumour recognition protein 6L4T ; 2.6 ; Structure of the peripheral FCPI from diatom 4TKO ; 2.85 ; Structure of the periplasmic adaptor protein EmrA 7NPS ; 3.81 ; Structure of the periplasmic assembly from the ESX-5 inner membrane complex, C1 model 6I7W ; 1.8 ; Structure of the periplasmic binding protein (PBP) AccA in complex with 2-glucose-2-O-lactic acid phosphate (G2LP) from Agrobacterium fabrum C58 6EQ8 ; 2.19 ; Structure of the periplasmic binding protein (PBP) MelB (Atu4661) in complex with galactinol from agrobacterium fabrum C58 6EQ0 ; 2.45 ; Structure of the periplasmic binding protein (PBP) MelB (atu4661) in complex with galactose from agrobacterium tumefacien C58 6EQ1 ; 2.1 ; Structure of the periplasmic binding protein (PBP) MelB (Atu4661) in complex with stachyose from agrobacterium fabrum C58 5OT9 ; 2.45 ; Structure of the periplasmic binding protein (PBP) NocT from A.tumefaciens C58 in complex with histopine. 5OTC ; 2.2 ; Structure of the periplasmic binding protein (PBP) NocT from Agrobacterium tumefaciens C58 in complex with noroctopinic acid. 5OTA ; 2.1 ; Structure of the periplasmic binding protein (PBP) NocT from Agrobacterium tumefaciens C58 in complex with octopinic acid 5OT8 ; 2.35 ; Structure of the periplasmic binding protein (PBP) NocT-G97S mutant from A. tumefaciens C58 in complex with octopine. 5ORG ; 1.99 ; Structure of the periplasmic binding protein (PBP) OccJ from A. tumefaciens B6 in complex with octopine. 5ORE ; 2.35 ; Structure of the periplasmic binding protein (PBP) OccJ from agrobacterium tumefaciens B6 4R72 ; 1.6 ; Structure of the periplasmic binding protein AfuA from Actinobacillus pleuropneumoniae (apo form) 4R73 ; 1.6 ; Structure of the periplasmic binding protein AfuA from Actinobacillus pleuropneumoniae (endogenous glucose-6-phosphate and mannose-6-phosphate bound) 4R74 ; 1.93 ; Structure of the periplasmic binding protein AfuA from Actinobacillus pleuropneumoniae (exogenous fructose-6-phosphate bound) 4R75 ; 1.278 ; Structure of the periplasmic binding protein AfuA from Actinobacillus pleuropneumoniae (exogenous sedoheptulose-7-phosphate bound) 6FT2 ; 1.25 ; Structure of the periplasmic binding protein LAO-Q122A in complex with arginine. 5ITO ; 2.35 ; Structure of the periplasmic binding protein M117N-NocT from A. tumefaciens in complex with octopine 6EPZ ; 1.8 ; Structure of the periplasmic binding protein MelB (Atu4661) in complex with melibiose from Agrobacterium fabrum C58 5ITP ; 1.85 ; Structure of the periplasmic binding protein NocT from A.tumefaciens in complex with octopine 6WCE ; 1.754 ; Structure of the periplasmic binding protein P5PA 1GU6 ; 2.5 ; Structure of the Periplasmic Cytochrome c Nitrite Reductase from Escherichia coli 1P1L ; 2.0 ; Structure of the Periplasmic divalent cation tolerance protein CutA from Archaeoglobus fulgidus 3WZ4 ; 2.2 ; Structure of the periplasmic domain of DotI (crystal form I) 3WZ5 ; 3.5 ; Structure of the periplasmic domain of DotI (crystal form II) 8P9R ; 1.52 ; Structure of the periplasmic domain of ExbD from E. coli in complex with TonB 5H72 ; 2.4 ; Structure of the periplasmic domain of FliP 7SB2 ; 3.4 ; Structure of the periplasmic domain of GldM from Capnocytophaga canimorsus 2ZOV ; 2.0 ; Structure of the periplasmic domain of MotB from Salmonella (crystal form I) 2ZVY ; 1.75 ; Structure of the periplasmic domain of MotB from Salmonella (crystal form II) 2ZVZ ; 2.4 ; Structure of the periplasmic domain of MotB from Salmonella (crystal form III) 6IF6 ; 1.9 ; Structure of the periplasmic domain of SflA 4A2L ; 2.6 ; Structure of the periplasmic domain of the heparin and heparan sulphate sensing hybrid two component system BT4663 in apo and ligand bound forms 4A2M ; 3.4 ; Structure of the periplasmic domain of the heparin and heparan sulphate sensing hybrid two component system BT4663 in apo and ligand bound forms 5Y3Z ; 2.0 ; Structure of the periplasmic domain of the MotB L119P mutant from Salmonella (crystal form 1) 5Y40 ; 2.8 ; Structure of the periplasmic domain of the MotB L119P mutant from Salmonella (crystal form 2) 4BHQ ; 2.05 ; Structure of the periplasmic domain of the PilN type IV pilus biogenesis protein from Thermus thermophilus 6VAT ; 2.35 ; Structure of the periplasmic domain of YejM from Salmonella typhimurium 6VDF ; 1.92 ; Structure of the periplasmic domain of YejM from Salmonella typhimurium (twinned) 4UEY ; 1.9 ; Structure of the periplasmic domain PhoQ double mutant (W104C-A128C) 6DUZ ; 3.6 ; Structure of the periplasmic domains of PrgH and PrgK from the assembled Salmonella type III secretion injectisome needle complex 1ESZ ; 2.0 ; STRUCTURE OF THE PERIPLASMIC FERRIC SIDEROPHORE BINDING PROTEIN FHUD COMPLEXED WITH COPROGEN 3GBP ; 2.4 ; STRUCTURE OF THE PERIPLASMIC GLUCOSE/GALACTOSE RECEPTOR OF SALMONELLA TYPHIMURIUM 4U65 ; 2.1 ; Structure of the periplasmic output domain of the Legionella pneumophila LapD ortholog CdgS9 in complex with Pseudomonas fluorescens LapG 4U64 ; 2.141 ; Structure of the periplasmic output domain of the Legionella pneumophila LapD ortholog CdgS9 in the apo state 3QZC ; 2.85 ; Structure of the periplasmic stress response protein CpxP 2WUA ; 1.8 ; Structure of the peroxisomal 3-ketoacyl-CoA thiolase from Sunflower 8C0V ; 4.1 ; Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate in single seam state 8C0W ; 4.7 ; Structure of the peroxisomal Pex1/Pex6 ATPase complex bound to a substrate in twin seam state 7T92 ; 3.1 ; Structure of the peroxisomal retro-translocon formed by a heterotrimeric ubiquitin ligase complex 4ARQ ; 2.6 ; Structure of the pesticin S89C, S285C double mutant 6S8U ; 3.67 ; Structure of the PfEMP1 IT4var13 DBLbeta domain bound to ICAM-1 7DIS ; 1.901 ; Structure of the PfGrx1 with platinum 5C5K ; 3.31 ; Structure of the Pfr form of a canonical phytochrome 6AU1 ; 1.76 ; Structure of the PgaB (BpsB) glycoside hydrolase domain from Bordetella bronchiseptica 8YHP ; 1.95 ; Structure of the PGK1 from Biortus. 3EP1 ; 2.1 ; Structure of the PGRP-Hd from Alvinella pompejana 4B1U ; 2.0 ; Structure of the Phactr1 RPEL domain and RPEL motif directed assemblies with G-actin reveal the molecular basis for actin binding cooperativity. 4B1Z ; 3.3 ; Structure of the Phactr1 RPEL domain bound to G-actin 4B1X ; 1.8 ; Structure of the Phactr1 RPEL-2 bound to G-actin 4B1W ; 1.95 ; Structure of the Phactr1 RPEL-2 domain bound to actin 4B1Y ; 1.29 ; Structure of the Phactr1 RPEL-3 bound to G-actin 4B1V ; 1.75 ; Structure of the Phactr1 RPEL-N domain bound to G-actin 7UM0 ; 3.8 ; Structure of the phage AR9 non-virion RNA polymerase holoenzyme in complex with two DNA oligonucleotides containing the AR9 P077 promoter as determined by cryo-EM 8U7I ; 2.57 ; Structure of the phage immune evasion protein Gad1 bound to the Gabija GajAB complex 4V5I ; 5.464 ; Structure of the Phage P2 Baseplate in its Activated Conformation with Ca 2X53 ; 3.9 ; Structure of the phage p2 baseplate in its activated conformation with Sr 3RB8 ; 2.6 ; Structure of the phage tubulin PhuZ(SeMet)-GDP 3R4V ; 1.67 ; Structure of the phage tubulin PhuZ-GDP 3F3B ; 2.5 ; Structure of the phage-like element PBSX protein xkdH from Bacillus Subtilus. Northeast Structural Genomics Consortium target SR352. 2P26 ; 1.75 ; Structure of the PHE2 and PHE3 fragments of the integrin beta2 subunit 2P28 ; 2.2 ; Structure of the PHE2 and PHE3 fragments of the integrin beta2 subunit 2INN ; 2.7 ; Structure of the Phenol Hydroxyalse-Regulatory Protein Complex 2INP ; 2.3 ; Structure of the Phenol Hydroxylase-Regulatory Protein Complex 1PBY ; 1.7 ; Structure of the Phenylhydrazine Adduct of the Quinohemoprotein Amine Dehydrogenase from Paracoccus denitrificans at 1.7 A Resolution 2PK9 ; 2.906 ; Structure of the Pho85-Pho80 CDK-cyclin Complex of the Phosphate-responsive Signal Transduction Pathway 2PMI ; 2.9 ; Structure of the Pho85-Pho80 CDK-cyclin Complex of the Phosphate-responsive Signal Transduction Pathway with Bound ATP-gamma-S 3T91 ; 2.64 ; Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis 3T9Q ; 2.76 ; Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis (Mn presoaked) 5MQH ; 2.45 ; Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis in a crystal form without domain swapping 6ESV ; 1.78 ; Structure of the phosphate-bound form of AioX from Rhizobium sp. str. NT-26 6SLD ; 1.4 ; Structure of the Phosphatidylcholine Binding Mutant of Yeast Sec14 Homolog Sfh1 (S175I,T177I) in Complex with Phosphatidylinositol 1B7A ; 2.25 ; STRUCTURE OF THE PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN FROM BOVINE BRAIN 3V18 ; 2.34 ; Structure of the Phosphatidylinositol-specific phospholipase C from Staphylococcus aureus 7MEZ ; 2.89 ; Structure of the phosphoinositide 3-kinase p110 gamma (PIK3CG) p101 (PIK3R5) complex 7NXE ; 2.1 ; Structure of the Phospholipase C gamma 1 tSH2 domain in complex with a phosphorylated KSHV pK15 peptide 5MI8 ; 2.18 ; Structure of the phosphomimetic mutant of EF-Tu T383E 5MI9 ; 3.3 ; Structure of the phosphomimetic mutant of the elongation factor EF-Tu T62E 5MSV ; 2.34 ; Structure of the phosphopantetheine modified PCP-R didomain of carboxylic acid reductase (CAR) in complex with NADP 4MRT ; 2.0 ; Structure of the Phosphopantetheine Transferase Sfp in Complex with Coenzyme A and a Peptidyl Carrier Protein 3TQR ; 1.97 ; Structure of the phosphoribosylglycinamide formyltransferase (purN) in complex with CHES from Coxiella burnetii 3G7C ; 2.0 ; Structure of the Phosphorylation Mimetic of Occludin C-term Tail 2G57 ; ; Structure of the Phosphorylation Motif of the oncogenic Protein beta-Catenin Recognized By a Selective Monoclonal Antibody 7X1Y ; 3.3 ; Structure of the phosphorylation-site double mutant S431A/T432A of the KaiC circadian clock protein 7X1Z ; 3.3 ; Structure of the phosphorylation-site double mutant S431E/T432E of the KaiC circadian clock protein 2P1W ; 2.3 ; structure of the phosphothreonine lyase SpvC, the effector protein from Salmonella 4IF2 ; 2.27 ; Structure of the phosphotriesterase from Mycobacterium tuberculosis 7S97 ; 2.35 ; Structure of the Photoacclimated Light Harvesting Complex PC577 from Hemiselmis pacifica 7TLF ; 2.8 ; Structure of the photoacclimated Light Harvesting Complex PE545 from Proteomonas sulcata 1YST ; 3.0 ; STRUCTURE OF THE PHOTOCHEMICAL REACTION CENTER OF A SPHEROIDENE CONTAINING PURPLE BACTERIUM, RHODOBACTER SPHAEROIDES Y, AT 3 ANGSTROMS RESOLUTION 5MG1 ; 3.3 ; Structure of the photosensory module of Deinococcus phytochrome by serial femtosecond X-ray crystallography 6HUM ; 3.34 ; Structure of the photosynthetic complex I from Thermosynechococcus elongatus 1PCR ; 2.65 ; STRUCTURE OF THE PHOTOSYNTHETIC REACTION CENTRE FROM RHODOBACTER SPHAEROIDES AT 2.65 ANGSTROMS RESOLUTION: COFACTORS AND PROTEIN-COFACTOR INTERACTIONS 1RG5 ; 2.5 ; Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides carotenoidless strain R-26.1 5Y6P ; 3.5 ; Structure of the phycobilisome from the red alga Griffithsia pacifica 6KGX ; 2.8 ; Structure of the phycobilisome from the red alga Porphyridium purpureum 7EZX ; 3.0 ; Structure of the phycobilisome from the red alga Porphyridium purpureum in Middle Light 3T0Y ; 2.102 ; Structure of the PhyR anti-anti-sigma domain bound to the anti-sigma factor, NepR 3N0R ; 1.251 ; Structure of the PhyR stress response regulator at 1.25 Angstrom resolution 3ZHC ; 2.3 ; Structure of the phytase from Citrobacter braakii at 2.3 angstrom resolution. 4BWI ; 2.6 ; Structure of the phytochrome Cph2 from Synechocystis sp. PCC6803 1PKS ; ; STRUCTURE OF THE PI3K SH3 DOMAIN AND ANALYSIS OF THE SH3 FAMILY 1PKT ; ; STRUCTURE OF THE PI3K SH3 DOMAIN AND ANALYSIS OF THE SH3 FAMILY 2LUI ; ; Structure of the PICK PDZ domain in complex with the DAT C-terminal 2GW8 ; 1.85 ; Structure of the PII signal transduction protein of Neisseria meningitidis at 1.85 resolution 3UTK ; 1.65 ; Structure of the pilotin of the type II secretion system 2WW8 ; 1.9 ; Structure of the pilus adhesin (RrgA) from Streptococcus pneumoniae 2X9W ; 1.92 ; STRUCTURE OF THE PILUS BACKBONE (RRGB) FROM STREPTOCOCCUS PNEUMONIAE 2X9X ; 1.5 ; STRUCTURE OF THE PILUS BACKBONE (RRGB) FROM STREPTOCOCCUS PNEUMONIAE 2X9Y ; 2.33 ; STRUCTURE OF THE PILUS BACKBONE (RRGB) FROM STREPTOCOCCUS PNEUMONIAE 2X9Z ; 1.3 ; STRUCTURE OF THE PILUS BACKBONE (RRGB) FROM STREPTOCOCCUS PNEUMONIAE 4FOU ; 2.1 ; Structure of the PilZ-FimX(EAL domain)-c-di-GMP complex responsible for the regulation of bacterial Type IV pilus biogenesis 5YZ4 ; 2.135 ; Structure of the PIN domain endonuclease Utp24 5KBZ ; 1.803 ; Structure of the PksA Product Template domain in complex with a phosphopantetheine mimetic 7O77 ; 2.321 ; Structure of the PL6 family alginate lyase Patl3640 from Pseudoalteromonas atlantica T6c 7O7T ; 2.05 ; Structure of the PL6 family alginate lyase Patl3640 from Pseudoalteromonas atlantica T6c in complex with 4-deoxy-L-erythro-5-hexoseulose uronic acid 7O7A ; 1.99 ; Structure of the PL6 family alginate lyase Pedsa0632 from Pseudopedobacter saltans 7O84 ; 2.177 ; Structure of the PL6 family alginate lyase Pedsa0632 from Pseudopedobacter saltans in complex with substrate 7O78 ; 1.58 ; Structure of the PL6 family chondroitinase B from Pseudopedobacter saltans, Pedsa3807 7O79 ; 1.93 ; Structure of the PL6 family polysaccharide lyase Pedsa3628 from Pseudopedobacter saltans 1N4N ; ; Structure of the Plant Defensin PhD1 from Petunia Hybrida 6I8H ; 3.682 ; Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB15 6Q6Z ; 3.476 ; Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB21 6I8G ; 2.344 ; Structure of the plant immune signaling node EDS1 (enhanced disease susceptibility 1) in complex with nanobody ENB73 1W1Z ; 2.6 ; Structure of the plant like 5-Aminolaevulinic Acid Dehydratase from Chlorobium vibrioforme 6XYW ; 3.86 ; Structure of the plant mitochondrial ribosome 1L3A ; 2.3 ; Structure of the plant transcriptional regulator PBF-2 4KWC ; 1.994 ; Structure of the plantazolicin methyltransferase BpumL in complex with SAH 2LOE ; ; Structure of the Plasmodium 6-cysteine s48/45 Domain 8G6F ; 2.58 ; Structure of the Plasmodium falciparum 20S proteasome beta-6 A117D mutant complexed with inhibitor WLW-vs 8G6E ; 2.18 ; Structure of the Plasmodium falciparum 20S proteasome complexed with inhibitor TDI-8304 5UMD ; 3.2 ; Structure of the Plasmodium falciparum 80S ribosome bound to the antimalarial drug mefloquine 6SSZ ; 3.45 ; Structure of the Plasmodium falciparum falcipain 2 protease in complex with an (E)-chalcone inhibitor. 6ZHI ; 3.25 ; Structure of the Plasmodium falciparum Hsp70-x substrate binding domain in complex with hydrophobic peptide 6SY0 ; 3.102 ; Structure of the Plasmodium falciparum SIP2 DNA-binding AP2 tandem repeat in complex with two SPE2 half-sites 2AUC ; 2.6 ; Structure of the Plasmodium MTIP-MyoA complex, a key component of the parasite invasion motor 8QMA ; 3.5 ; Structure of the plastid-encoded RNA polymerase complex (PEP) from Sinapis alba 1FB8 ; 2.4 ; STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN FROM DAPP1/PHISH 1FAO ; 1.8 ; STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN FROM DAPP1/PHISH IN COMPLEX WITH INOSITOL 1,3,4,5-TETRAKISPHOSPHATE 1FHX ; 2.5 ; Structure of the pleckstrin homology domain from GRP1 in complex with inositol 1,3,4,5-tetrakisphosphate 1FHW ; 1.9 ; Structure of the pleckstrin homology domain from GRP1 in complex with inositol(1,3,4,5,6)pentakisphosphate 1MAI ; 1.9 ; STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN FROM PHOSPHOLIPASE C DELTA IN COMPLEX WITH INOSITOL TRISPHOSPHATE 4XB0 ; 2.701 ; Structure of the Plk2 polo-box domain 2NV2 ; 2.12 ; Structure of the PLP synthase complex Pdx1/2 (YaaD/E) from Bacillus subtilis 2ISS ; 2.9 ; Structure of the PLP synthase Holoenzyme from Thermotoga maritima 5DJ1 ; 2.102 ; Structure of the PLP-Dependent L-Arginine Hydroxylase MppP Holoenzyme 5DJ3 ; 2.227 ; Structure of the PLP-Dependent L-Arginine Hydroxylase MppP with D-Arginine Bound 6ZQP ; 1.6 ; Structure of the Pmt2-MIR domain with bound ligands 6ZQQ ; 1.9 ; Structure of the Pmt3-MIR domain with bound ligands 2C8G ; 2.0 ; Structure of the PN loop Q182A mutant C3bot1 Exoenzyme (Free state, crystal form I) 2C8H ; 1.65 ; Structure of the PN loop Q182A mutant C3bot1 Exoenzyme (NAD-bound state, crystal form I) 4XRP ; 3.3 ; Structure of the Pnkp1/Rnl/Hen1 RNA repair complex 8RB3 ; 3.2 ; Structure of the PNMA2 capsid 5K5A ; 2.825 ; Structure of the pNOB8-like ParB N-domain 2GCL ; 2.21 ; Structure of the Pob3 Middle domain 8B3D ; 2.6 ; Structure of the Pol II-TCR-ELOF1 complex. 8A9O ; 1.587 ; Structure of the polyamine acetyltransferase DpA 5EKE ; 3.001 ; Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB (F215A mutant) 5EKP ; 3.194 ; Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB (WT) 4NBQ ; 2.9138 ; Structure of the polynucleotide phosphorylase (CBU_0852) from Coxiella burnetii 4PHB ; 2.1781 ; Structure of the polysaccharide lyase-like protein Cthe_2159 from C. thermocellum, Gadolinium derivative 4PEU ; 1.8001 ; Structure of the polysaccharide lyase-like protein Cthe_2159 from C. thermocellum, native form with Calcium bound 5CXW ; 1.75 ; Structure of the PonA1 protein from Mycobacterium Tuberculosis in complex with penicillin V 5LDS ; 2.0 ; Structure of the porcine aminopeptidase N ectodomain 6TOP ; 1.55 ; Structure of the PorE C-terminal domain, a protein of T9SS from Porphyromonas gingivalis 6G8Z ; 3.66 ; Structure of the pore domain of homomeric mLRRC8A volume-regulated anion channel at 3.66 A resolution 6OQ6 ; 2.97 ; Structure of the pore forming fragment of Clostridium difficile toxin B in complex with VHH 5D 7VBB ; 2.81 ; Structure of the post state human RNA Polymerase I Elongation Complex 7QRG ; 2.8 ; Structure of the post-fusion complex between precursor membrane ectodomain (prM) and envelope ectodomain protein (E) from tick-borne encephalitis virus 428D ; 1.75 ; STRUCTURE OF THE POTASSIUM FORM OF CGCGAATTCGCG: DNA DEFORMATION BY ELECTROSTATIC COLLAPSE AROUND SMALL CATIONS 6CJ6 ; 2.1 ; Structure of the poxvirus protein F9 2IF5 ; 2.0 ; Structure of the POZ domain of human LRF, a master regulator of oncogenesis 5UCG ; 3.906 ; Structure of the PP2C Phosphatase Domain and a Fragment of the Regulatory Domain of the Cell Fate Determinant SpoIIE from Bacillus Subtilis 8SOT ; 1.99 ; Structure of the PPIase domain of borrelial BB0108 2AWG ; 1.6 ; Structure of the PPIase domain of the Human FK506-binding protein 8 3DAS ; 1.6 ; Structure of the PQQ-bound form of Aldose Sugar Dehydrogenase (Adh) from Streptomyces coelicolor 1TS8 ; 1.6 ; Structure of the pR cis planar intermediate from time-resolved Laue crystallography 1TS7 ; 1.6 ; Structure of the pR cis wobble and pR E46Q intermediates from time-resolved Laue crystallography 6XAZ ; 1.7 ; Structure of the PR domain from human PRDM5 2N1I ; ; Structure of the PR domain from PRDM16 6XAU ; 1.89 ; Structure of the PR domain from PRDM3 6CGA ; 3.5 ; Structure of the PR-DUB complex 7VBA ; 2.89 ; Structure of the pre state human RNA Polymerase I Elongation Complex 6H2F ; 2.55 ; Structure of the pre-pore AhlB of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 3TNX ; 2.62 ; Structure of the precursor of a thermostable variant of papain at 2.6 Angstroem resolution 3USV ; 3.8 ; Structure of the precursor of a thermostable variant of papain at 3.8 A resolution from a crystal soaked at pH 4 1OR8 ; 2.35 ; Structure of the Predominant protein arginine methyltransferase PRMT1 1ORH ; 2.64 ; Structure of the Predominant Protein Arginine Methyltransferase PRMT1 1ORI ; 2.5 ; Structure of the predominant protein arginine methyltransferase PRMT1 6Z97 ; 3.4 ; Structure of the prefusion SARS-CoV-2 spike glycoprotein 5B00 ; 2.95 ; Structure of the prenyltransferase MoeN5 in complex with geranyl pyrophosphate 5B02 ; 2.21 ; Structure of the prenyltransferase MoeN5 with a fusion protein tag of Sso7d 4G1I ; 1.85 ; Structure of the PrgH periplasmic domain 2MKY ; ; Structure of the PrgK first periplasmic domain 5IJ8 ; 2.99 ; Structure of the primary oncogenic mutant Y641N Hs/AcPRC2 in complex with a pyridone inhibitor 6FPC ; 1.75 ; Structure of the PRO-PRO endopeptidase (PPEP-2) from Paenibacillus alvei 1NES ; 1.65 ; STRUCTURE OF THE PRODUCT COMPLEX OF ACETYL-ALA-PRO-ALA WITH PORCINE PANCREATIC ELASTASE AT 1.65 ANGSTROMS RESOLUTION 5CCX ; 2.1 ; Structure of the product complex of tRNA m1A58 methyltransferase with tRNA3Lys as substrate 2C7A ; 2.5 ; STRUCTURE OF THE PROGESTERONE RECEPTOR-DNA COMPLEX 1OHC ; 2.5 ; Structure of the proline directed phosphatase cdc14 2L3P ; ; Structure of the prolyl cis isomer of the Crk Protein 2L3Q ; ; Structure of the prolyl trans isomer of the Crk Protein 5JXJ ; 2.0 ; Structure of the proprotein convertase furin complexed to meta-guanidinomethyl-Phac-RVR-Amba in presence of EDTA 2HNL ; 2.0 ; Structure of the prostaglandin D synthase from the parasitic nematode Onchocerca volvulus 3LGI ; 1.652 ; Structure of the protease domain of DegS (DegS-deltaPDZ) at 1.65 A 2SAM ; 2.4 ; STRUCTURE OF THE PROTEASE FROM SIMIAN IMMUNODEFICIENCY VIRUS: COMPLEX WITH AN IRREVERSIBLE NON-PEPTIDE INHIBITOR 2FXA ; 2.4 ; Structure of the Protease Production Regulatory Protein hpr from Bacillus subtilis. 1UJB ; 2.06 ; Structure of the protein histidine phosphatase SixA 1UJC ; 1.9 ; Structure of the protein histidine phosphatase SixA complexed with tungstate 6G4J ; 1.599 ; Structure of the protein kinase YabT from Bacillus subtilis in complex with an alphaREP crystallization helper 2IE4 ; 2.6 ; Structure of the Protein Phosphatase 2A Core Enzyme Bound to okadaic acid 2IE3 ; 2.8 ; Structure of the Protein Phosphatase 2A Core Enzyme Bound to Tumor-inducing Toxins 2NPP ; 3.3 ; Structure of the Protein Phosphatase 2A Holoenzyme 2X36 ; 2.0 ; Structure of the proteolytic domain of the Human Mitochondrial Lon protease 6SJH ; 1.5 ; Structure of the PRY-SPRY domain of human Trim16L/Trim70 2NBI ; ; Structure of the PSCD-region of the cell wall protein pleuralin-1 2MK0 ; ; Structure of the PSCD4-domain of the cell wall protein pleuralin-1 from the diatom Cylindrotheca fusiformis 4L68 ; 2.0 ; Structure of the psedudokinase domain of BIR2, an immune regulator of the RLK/Pelle family 7Q4T ; 1.27 ; Structure of the Pseudomonas aeruginosa bacteriophage JG004 endolysin Pae87 bound to a peptidoglycan fragment. 7Q4S ; 2.5 ; Structure of the Pseudomonas aeruginosa bacteriophage JG004 endolysin Pae87, apo form. 7ULA ; 2.46 ; Structure of the Pseudomonas putida AlgKX modification and secretion complex 6GW6 ; 2.205 ; Structure of the Pseudomonas putida RES-Xre toxin-antitoxin complex 6L4U ; 2.4 ; Structure of the PSI-FCPI supercomplex from diatom 3K13 ; 2.0 ; Structure of the pterin-binding domain MeTr of 5-methyltetrahydrofolate-homocysteine methyltransferase from Bacteroides thetaiotaomicron 6OOC ; 2.6 ; Structure of the pterocarpan synthase dirigent protein GePTS1 6OOD ; 1.5 ; Structure of the pterocarpan synthase dirigent protein PsPTS1 6CZ2 ; 2.5 ; Structure of the PTK6 kinase domain 6CZ3 ; 1.8 ; Structure of the PTK6 kinase domain bound to a type I inhibitor (3-fluoro-4-{[6-methyl-3-(1H-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]amino}phenyl)(morpholin-4-yl)methanone 6CZ4 ; 1.5 ; Structure of the PTK6 kinase domain bound to a type II inhibitor 2-{[(3R,4S)-3-fluoro-1-{[4-(trifluoromethoxy)phenyl]acetyl}piperidin-4-yl]oxy}-5-(1-methyl-1H-imidazol-4-yl)pyridine-3-carboxamide 3TJY ; 1.7 ; Structure of the Pto-binding domain of HopPmaL generated by limited chymotrypsin digestion 3SVI ; 1.8 ; Structure of the Pto-binding domain of HopPmaL generated by limited thermolysin digestion 7K67 ; 1.6 ; Structure of the PTP-like myo-inositol phosphatase from Desulfovibrio magneticus 7K6Y ; 1.75 ; Structure of the PTP-like myo-inositol phosphatase from Desulfovibrio magneticus (high salt) 7K6W ; 2.3 ; Structure of the PTP-like myo-inositol phosphatase from Desulfovibrio magneticus in complex with myo-inositol hexakisphosphate 7SDB ; 2.0 ; Structure of the PTP-like myo-inositol phosphatase from Legionella pneumophila str. Paris in complex with myo-inositol hexakisphosphate 7SDD ; 1.85 ; Structure of the PTP-like myo-inositol phosphatase from Legionella pneumophila str. Paris in complex with myo-inositol-(1,3,4,5)-tetrakisphosphate 4WU3 ; 2.2 ; Structure of the PTP-like myo-inositol phosphatase from Mitsuokella multacida in complex with myo-inositol-(1,3,4,5)-tetrakisphosphate 4WTY ; 2.1 ; Structure of the PTP-like myo-inositol phosphatase from Selenomonas ruminantium in complex with myo-inositol-(1,3,4,5)-tetrakisphosphate 4WU2 ; 2.15 ; Structure of the PTP-like myo-inositol phosphatase from Selenomonas ruminantium in complex with myo-inositol-(1,4,5)-trikisphosphate 3D1O ; 2.1 ; Structure of the PTP-Like Phytase Expressed by Selenomonas Ruminantium at an Ionic Strength of 300 mM 3D1Q ; 2.1 ; Structure of the PTP-Like Phytase Expressed by Selenomonas Ruminantium at an Ionic Strength of 400 mM 3D1H ; 2.1 ; Structure of the PTP-Like Phytase Expressed by Selenomonas Ruminantium at an Ionic Strength of 500 mM 2PSZ ; 2.0 ; Structure of the PTP-like Phytase expressed by Selenomonas ruminantium at low ionic strength 3MOZ ; 1.6 ; Structure of the PTP-like phytase from Selenomonas ruminantium in complex with myo-inositol (1,2,3,5,6)pentakisphosphate 3O3L ; 1.85 ; Structure of the PTP-like phytase from Selenomonas ruminantium in complex with myo-inositol (1,3,4,5)tetrakisphosphate 3MMJ ; 1.6 ; Structure of the PTP-like phytase from Selenomonas ruminantium in complex with myo-inositol hexakisphosphate 6SAP ; ; Structure of the PUB domain from Ubiquitin Regulatory X domain protein 1 (UBXD1) 5WDA ; 5.0 ; Structure of the PulG pseudopilus 4B0T ; 2.159 ; Structure of the Pup Ligase PafA of the Prokaryotic Ubiquitin-like Modification Pathway in Complex with ADP 3KUU ; 1.41 ; Structure of the PurE Phosphoribosylaminoimidazole Carboxylase Catalytic Subunit from Yersinia pestis 1D48 ; 1.0 ; STRUCTURE OF THE PURE-SPERMINE FORM OF Z-DNA (MAGNESIUM FREE) AT 1 ANGSTROM RESOLUTION 246D ; 2.2 ; STRUCTURE OF THE PURINE-PYRIMIDINE ALTERNATING RNA DOUBLE HELIX, R(GUAUAUA)D(C) , WITH A 3'-TERMINAL DEOXY RESIDUE 1VPW ; 2.7 ; STRUCTURE OF THE PURR MUTANT, L54M, BOUND TO HYPOXANTHINE AND PURF OPERATOR DNA 1WET ; 2.6 ; STRUCTURE OF THE PURR-GUANINE-PURF OPERATOR COMPLEX 5O95 ; 1.491 ; Structure of the putative methyltransferase Lpg2936 from Legionella pneumophila 5O96 ; 2.3 ; Structure of the putative methyltransferase Lpg2936 from Legionella pneumophila in complex with the bound cofactor SAM 1H6H ; 1.7 ; Structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate 2IWL ; 2.6 ; Structure of the PX Domain of Phosphoinositide 3-Kinase-C2alpha 8YGX ; 2.0 ; Structure of the PYK2 from Biortus. 2IP2 ; 1.8 ; Structure of the Pyocyanin Biosynthetic Protein PhzM 3ZVU ; 2.1 ; Structure of the PYR1 His60Pro mutant in complex with the HAB1 phosphatase and Abscisic acid 4C5J ; 1.45 ; Structure of the pyridoxal kinase from Staphylococcus aureus 4C5K ; 1.4 ; Structure of the pyridoxal kinase from Staphylococcus aureus in complex with ADP 4C5M ; 1.45 ; Structure of the pyridoxal kinase from Staphylococcus aureus in complex with AMP-PCP 4C5N ; 1.75 ; Structure of the pyridoxal kinase from Staphylococcus aureus in complex with AMP-PCP and pyridoxal 4C5L ; 1.85 ; Structure of the pyridoxal kinase from Staphylococcus aureus in complex with pyridoxal 1N66 ; ; Structure of the pyrimidine-rich internal loop in the Y-domain of poliovirus 3'UTR 8FK7 ; 4.3 ; Structure of the Pyrobaculum calidifontis flagellar-like archaeal type IV pilus 5G5C ; 1.18 ; Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 5G5M ; 2.07 ; Structure of the Pyrococcus Furiosus Esterase Pf2001 with space group P21 5LCN ; 2.6 ; STRUCTURE OF THE PYROCOCCUS FURIOSUS ESTERASE PF2001 WITH SPACE GROUP P212121 5G59 ; 1.613 ; Structure of the Pyrococcus Furiosus Esterase Pf2001 with space group P3121 4FX9 ; 2.7 ; Structure of the Pyrococcus horikoshii CoA persulfide/polysulfide reductase 7QF5 ; 1.37 ; Structure of the Q103L mutant of miniSOG 1SVU ; 2.66 ; Structure of the Q237W mutant of HhaI DNA methyltransferase: an insight into protein-protein interactions 4H8Q ; 1.7 ; Structure of the Q29T IsdX2-NEAT5 mutant in complex with heme 1ZVQ ; 2.0 ; Structure of the Q61G mutant of Ras in the GDP-bound form 2P4T ; 1.15 ; Structure of the Q67H mutant of R67 dihydrofolate reductase-NADP+ complex reveals a novel cofactor binding mode 3MMP ; 2.5 ; Structure of the Qb replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins 4R71 ; 3.21 ; Structure of the Qbeta holoenzyme complex in the P1211 crystal form 5VCL ; 2.05 ; Structure of the Qdm peptide bound to Qa-1a 5ELT ; 2.13 ; Structure of the QUA1-KH domain of T-STAR in complex with UAAU RNA 7P4P ; 1.75 ; Structure of the quinolinate synthase A84L variant complexed with citrate 7P4Q ; 2.2 ; Structure of the quinolinate synthase S124A variant complexed with citrate 7P4M ; 1.55 ; Structure of the quinolinate synthase Y107F variant in an empty open form 3TQH ; 2.44 ; Structure of the quinone oxidoreductase from Coxiella burnetii 6CH0 ; 2.15 ; Structure of the Quorum Quenching lactonase from Alicyclobacillus acidoterrestris bound to a glycerol molecule 6CGY ; 1.65 ; Structure of the Quorum Quenching lactonase from Alicyclobacillus acidoterrestris bound to a phosphate anion 6CGZ ; 1.8 ; Structure of the Quorum Quenching lactonase from Alicyclobacillus acidoterrestris bound to C6-AHL 6N9I ; 1.6 ; Structure of the Quorum Quenching lactonase from Parageobacillus caldoxylosilyticus - free 6N9Q ; 2.35 ; Structure of the Quorum Quenching lactonase from Parageobacillus caldoxylosilyticus bind to substrate C4-AHL 6N9R ; 1.75 ; Structure of the Quorum Quenching lactonase from Parageobacillus caldoxylosilyticus bound to substrate 3-oxo-C12-AHL 5MSO ; 1.2 ; Structure of the R domain of carboxylic acid reductase (CAR) from Mycobacterium marinum in complex with NADP 5MSU ; 1.74 ; Structure of the R domain of carboxylic acid reductase (CAR) from Mycobacterium marinum in complex with NADP, P21 form 4ZA6 ; 1.97 ; Structure of the R. erythropolis transcriptional repressor QsdR from TetR family 5VMQ ; 2.012 ; STRUCTURE OF THE R105A MUTANT CATALYTIC TRIMER OF ESCHERICHIA COLI ASPARTATE TRANSCARBAMOYLASE AT 2.0-A RESOLUTION 2QGR ; 2.7 ; Structure of the R178A mutant of delta PDZ DegS protease 3ZI8 ; 1.5 ; Structure of the R17A mutant of the Ralstonia soleanacerum lectin at 1.5 Angstrom in complex with L-fucose 5W4O ; 2.093 ; Structure of the R18A mutant of the HIV-1 capsid protein 5W4Q ; 2.285 ; Structure of the R18A/E28A mutant of the HIV-1 capsid protein 6KYD ; 3.1 ; Structure of the R217A mutant of Clostridium difficile sortase B 2B4O ; 2.3 ; Structure of the R258K mutant of Selenomonas ruminantium PTP-like phytase 2KDZ ; ; Structure of the R2R3 DNA binding domain of MYB1 protein from protozoan parasite trichomonas vaginalis in complex with MRE-1/MRE-2R DNA 5IPK ; 3.7 ; Structure of the R432A variant of Adeno-associated virus type 2 VLP 7QF4 ; 1.17 ; Structure of the R57Q mutant of miniSOG expressed in E. coli in LB medium enriched with riboflavin 7QF3 ; 1.1 ; Structure of the R57Q mutant of miniSOG expressed in E. coli in regular LB medium 3F45 ; 2.0 ; Structure of the R75A mutant of rat alpha-Parvalbumin 7QLA ; 3.85 ; Structure of the Rab GEF complex Mon1-Ccz1 6HCJ ; 3.8 ; Structure of the rabbit 80S ribosome on globin mRNA in the rotated state with A/P and P/E tRNAs 8RJB ; 2.69243 ; Structure of the rabbit 80S ribosome stalled on a 2-TMD rhodopsin intermediate in complex with Sec61-RAMP4 8RJC ; 2.90061 ; Structure of the rabbit 80S ribosome stalled on a 2-TMD rhodopsin intermediate in complex with Sec61-TRAP, open conformation 1 8RJD ; 2.78574 ; Structure of the rabbit 80S ribosome stalled on a 2-TMD rhodopsin intermediate in complex with Sec61-TRAP, open conformation 2 7TM3 ; 3.25 ; Structure of the rabbit 80S ribosome stalled on a 2-TMD Rhodopsin intermediate in complex with the multipass translocon 7TUT ; 3.88 ; Structure of the rabbit 80S ribosome stalled on a 4-TMD Rhodopsin intermediate in complex with the multipass translocon 6HCF ; 3.9 ; Structure of the rabbit 80S ribosome stalled on globin mRNA at the stop codon 6HCQ ; 6.5 ; Structure of the rabbit collided di-ribosome (collided monosome) 6HCM ; 6.8 ; Structure of the rabbit collided di-ribosome (stalled monosome) 3J8H ; 3.8 ; Structure of the rabbit ryanodine receptor RyR1 in complex with FKBP12 at 3.8 Angstrom resolution 1E96 ; 2.4 ; Structure of the Rac/p67phox complex 5LCL ; 2.2 ; STRUCTURE OF the RAD14 DNA-binding domain IN COMPLEX WITH C8-aminofluorene- GUANINE CONTAINING DNA 5LCM ; 1.9 ; STRUCTURE OF the RAD14 DNA-binding domain IN COMPLEX WITH N2-acetylaminonaphtyl- GUANINE CONTAINING DNA 7Z38 ; 3.16 ; Structure of the RAF1-HSP90-CDC37 complex (RHC-I) 7Z37 ; 3.67 ; Structure of the RAF1-HSP90-CDC37 complex (RHC-II) 6SM3 ; 3.3 ; Structure of the RagAB peptide importer in the 'closed-closed' state 6SMQ ; 3.3 ; Structure of the RagAB peptide importer in the 'open-closed' state 6SML ; 3.4 ; Structure of the RagAB peptide importer in the 'open-open' state 6SLI ; 3.38 ; Structure of the RagAB peptide transporter 6SLJ ; 3.04 ; Structure of the RagAB peptide transporter 6SLN ; 2.61 ; Structure of the RagAB peptide transporter 2Y8G ; 1.61 ; Structure of the Ran-binding domain from human RanBP3 (E352A-R353V double mutant) 2Y8F ; 2.1 ; Structure of the Ran-binding domain from human RanBP3 (wild type) 1RRP ; 2.96 ; STRUCTURE OF THE RAN-GPPNHP-RANBD1 COMPLEX 6T3H ; 3.039 ; Structure of the Rap conjugation gene regulator of the plasmid pLS20 in apo form 6T46 ; 2.45 ; Structure of the Rap conjugation gene regulator of the plasmid pLS20 in complex with the Phr* peptide 3BRW ; 3.4 ; Structure of the Rap-RapGAP complex 7YFG ; 3.6 ; Structure of the Rat GluN1-GluN2C NMDA receptor in complex with glycine and glutamate (major class in asymmetry) 8HDK ; 4.3 ; Structure of the Rat GluN1-GluN2C NMDA receptor in complex with glycine and glutamate (minor class in symmetry) 7YFH ; 3.0 ; Structure of the Rat GluN1-GluN2C NMDA receptor in complex with glycine, glutamate and (R)-PYD-106 6ENT ; 2.66 ; Structure of the rat RKIP variant delta143-146 7YFI ; 3.3 ; Structure of the Rat tri-heteromeric GluN1-GluN2A-GluN2C NMDA receptor in complex with glycine and glutamate 8SBE ; 3.8 ; Structure of the rat vesicular glutamate transporter 2 determined by single-particle Cryo-EM 2AZE ; 2.55 ; Structure of the Rb C-terminal domain bound to an E2F1-DP1 heterodimer 5OV3 ; 2.45 ; Structure of the RbBP5 beta-propeller domain 6SD5 ; 3.1 ; Structure of the RBM2 inner ring of Salmonella flagella MS-ring protein FliF with 22-fold symmetry applied 6SD2 ; 3.1 ; Structure of the RBM2inner region of the Salmonella flagella MS-ring protein FliF with 21-fold symmetry applied. 6TRE ; 3.3 ; Structure of the RBM3/collar region of the Salmonella flagella MS-ring protein FliF with 32-fold symmetry applied 6SD1 ; 2.6 ; Structure of the RBM3/collar region of the Salmonella flagella MS-ring protein FliF with 33-fold symmetry applied 6SD4 ; 2.8 ; Structure of the RBM3/collar region of the Salmonella flagella MS-ring protein FliF with 34-fold symmetry applied 4L92 ; 2.1 ; Structure of the RBP from lactococcal phage 1358 in complex with 2 GlcNAc molecules 4L99 ; 2.2 ; Structure of the RBP from lactococcal phage 1358 in complex with glycerol 4L97 ; 2.61 ; Structure of the RBP of lactococcal phage 1358 in complex with glucose-1-phosphate 6DKS ; 2.78 ; Structure of the Rbpj-SHARP-DNA Repressor Complex 4RCR ; 2.8 ; STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER SPHAEROIDES R-26 AND 2.4.1: PROTEIN-COFACTOR (BACTERIOCHLOROPHYLL, BACTERIOPHEOPHYTIN, AND CAROTENOID) INTERACTIONS 1RQK ; 2.7 ; Structure of the reaction centre from Rhodobacter sphaeroides carotenoidless strain R-26.1 reconstituted with 3,4-dihydrospheroidene 1RGN ; 2.8 ; Structure of the reaction centre from Rhodobacter sphaeroides carotenoidless strain R-26.1 reconstituted with spheroidene 1YRQ ; 2.1 ; Structure of the ready oxidized form of [NiFe]-hydrogenase 3EPT ; 2.97 ; Structure of the rebeccamycin biosynthetic enzyme RebC with reduced flavin 6HFG ; 2.5 ; Structure of the REC114 PH domain 1REA ; 2.7 ; STRUCTURE OF THE RECA PROTEIN-ADP COMPLEX 1ZIT ; ; Structure of the receiver domain of NtrC4 from Aquifex aeolicus 4KQZ ; 2.514 ; structure of the receptor binding domain (RBD) of MERS-CoV spike 2F0C ; 1.65 ; Structure of the Receptor Binding Protein (ORF49, bbp) from lactophage tp901-1 1OCY ; 1.5 ; Structure of the receptor-binding domain of the bacteriophage T4 short tail fibre 2V5I ; 1.6 ; Structure of the receptor-binding protein of bacteriophage Det7: a podoviral tailspike in a myovirus 7QJ1 ; 7.0 ; Structure of the recombinant human gamma-Tubulin Ring Complex 6-spoked assembly intermediate (spokes 7-12, homogeneous dataset) 4UP4 ; 1.95 ; Structure of the recombinant lectin PVL from Psathyrella velutina in complex with GlcNAcb-D-1,3Galactoside 1MF1 ; 2.7 ; Structure of the Recombinant Mouse-Muscle Adenylosuccinate Synthetase Complexed with AMP 1MF0 ; 2.5 ; Structure of the Recombinant Mouse-Muscle Adenylosuccinate Synthetase Complexed with AMP, GDP, HPO4(2-), and Mg(2+) 1MEZ ; 2.4 ; Structure of the Recombinant Mouse-Muscle Adenylosuccinate Synthetase Complexed with SAMP, GDP, SO4(2-), and Mg(2+) 1LCT ; 2.0 ; STRUCTURE OF THE RECOMBINANT N-TERMINAL LOBE OF HUMAN LACTOFERRIN AT 2.0 ANGSTROMS RESOLUTION 2XWZ ; 2.34 ; STRUCTURE OF THE RECOMBINANT NATIVE NITRITE REDUCTASE FROM ALCALIGENES XYLOSOXIDANS complexed with nitrite 5Z67 ; 2.2 ; Structure of the recombination mediator protein RecF in RecFOR pathway 5Z68 ; 3.0 ; Structure of the recombination mediator protein RecF-ATP in RecFOR pathway 5Z69 ; 2.102 ; Structure of the recombination mediator protein RecF-ATPrS in RecFOR pathway 3IIS ; 1.4 ; Structure of the reconstituted Peridinin-Chlorophyll a-Protein (RFPCP) 3IIU ; 1.45 ; Structure of the reconstituted Peridinin-Chlorophyll a-Protein (RFPCP) mutant N89L 8A85 ; 2.67 ; Structure of the Reconstructed Ancestor of Phenolic Acid Decarboxylase AncPAD134 8B30 ; 2.7 ; Structure of the Reconstructed Ancestor of Phenolic Acid Decarboxylase AncPAD31 8ADX ; 1.6 ; Structure of the Reconstructed Ancestor of Phenolic Acid Decarboxylase AncPAD55 8C66 ; 1.6 ; Structure of the Reconstructed Ancestor of Phenolic Acid Decarboxylase AncPAD55 1OYW ; 1.8 ; Structure of the RecQ Catalytic Core 1OYY ; 2.5 ; Structure of the RecQ Catalytic Core bound to ATP-gamma-S 4Q48 ; 2.797 ; Structure of the RecQ Catalytic Core from Deinococcus radiodurans 5LK4 ; 1.47 ; Structure of the Red Fluorescent Protein mScarlet at pH 7.8 7ZCT ; 1.33 ; Structure of the red fluorescent protein mScarlet3 at pH 7.5 3EWK ; 2.34 ; Structure of the redox sensor domain of Methylococcus capsulatus (Bath) MmoS 1FT9 ; 2.6 ; STRUCTURE OF THE REDUCED (FEII) CO-SENSING PROTEIN FROM R. RUBRUM 3EH3 ; 3.1 ; Structure of the reduced form of cytochrome ba3 oxidase from Thermus thermophilus 3EH4 ; 2.9 ; Structure of the reduced form of cytochrome ba3 oxidase from Thermus thermophilus 3EH5 ; 2.8 ; Structure of the reduced form of cytochrome ba3 oxidase from Thermus thermophilus 1W89 ; 2.0 ; Structure of the reduced form of human thioredoxin 2 1AFI ; ; STRUCTURE OF THE REDUCED FORM OF MERP, THE PERIPLASMIC PROTEIN FROM THE BACTERIAL MERCURY DETOXIFICATION SYSTEM, NMR, 20 STRUCTURES 1SF3 ; 1.05 ; Structure of the reduced form of the P94A mutant of amicyanin 1H63 ; 1.62 ; Structure of the reduced Pentaerythritol Tetranitrate Reductase 4M6H ; 2.194 ; Structure of the reduced, metal-free form of Mycobacterium tuberculosis peptidoglycan amidase Rv3717 4M6I ; 2.666 ; Structure of the reduced, Zn-bound form of Mycobacterium tuberculosis peptidoglycan amidase Rv3717 6O6O ; 1.63 ; Structure of the regulator FasR from Mycobacterium tuberculosis 6O6N ; 1.7 ; Structure of the regulator FasR from Mycobacterium tuberculosis in complex with C20-CoA 6O6P ; 3.851 ; Structure of the regulator FasR from Mycobacterium tuberculosis in complex with DNA 2BT2 ; 1.9 ; Structure of the regulator of G-protein signaling 16 1ZV4 ; 2.4 ; Structure of the Regulator of G-Protein Signaling 17 (RGSZ2) 2AF0 ; 2.3 ; Structure of the Regulator of G-Protein Signaling Domain of RGS2 2ES0 ; 2.1 ; Structure of the regulator of G-protein signaling domain of RGS6 2A72 ; 2.0 ; Structure of the regulator of G-protein signaling domain of RGS7 1GLA ; 2.6 ; STRUCTURE OF THE REGULATORY COMPLEX OF ESCHERICHIA COLI IIIGLC WITH GLYCEROL KINASE 1GLB ; 2.6 ; STRUCTURE OF THE REGULATORY COMPLEX OF ESCHERICHIA COLI IIIGLC WITH GLYCEROL KINASE 3S1T ; 1.63 ; Structure of the regulatory domain of aspartokinase (Rv3709c; AK-beta) in complex with threonine from Mycobacterium tuberculosis 2M76 ; ; Structure of the Regulatory Domain of Human Brain Carnitine Palmitoyltransferase 1 1SCM ; 2.8 ; STRUCTURE OF THE REGULATORY DOMAIN OF SCALLOP MYOSIN AT 2.8 ANGSTROMS RESOLUTION 5U93 ; 1.999 ; Structure of the Regulatory Domain of the AraC Family Transcriptional Activator RhaR 5U9E ; 2.02 ; Structure of the Regulatory Domain of the AraC Family Transcriptional Activator RhaR 2YA3 ; 2.51 ; STRUCTURE OF THE REGULATORY FRAGMENT OF MAMMALIAN AMPK IN COMPLEX WITH COUMARIN ADP 2Y8Q ; 2.8 ; Structure of the regulatory fragment of mammalian AMPK in complex with one ADP 2Y8L ; 2.5 ; Structure of the regulatory fragment of mammalian aMPK in complex with two ADP 3T4N ; 2.3 ; Structure of the regulatory fragment of Saccharomyces cerevisiae AMPK in complex with ADP 3TE5 ; 2.5 ; structure of the regulatory fragment of sacchromyces cerevisiae ampk in complex with NADH 3TDH ; 2.3 ; Structure of the regulatory fragment of sccharomyces cerevisiae AMPK in complex with AMP 1LXF ; ; Structure of the Regulatory N-domain of Human Cardiac Troponin C in Complex with Human Cardiac Troponin-I(147-163) and Bepridil 4ER8 ; 2.6 ; Structure of the REP associates tyrosine transposase bound to a REP hairpin 6HBC ; 2.78 ; Structure of the repeat unit in the network formed by CcmM and Rubisco from Synechococcus elongatus 1IG9 ; 2.6 ; Structure of the Replicating Complex of a Pol Alpha Family DNA Polymerase 3CFP ; 2.5 ; Structure of the replicating complex of a POL Alpha family DNA Polymerase, ternary complex 1 3CFR ; 2.4 ; Structure of the replicating complex of a POL Alpha family DNA Polymerase, ternary complex 2 3EPZ ; 2.31 ; Structure of the replication foci-targeting sequence of human DNA cytosine methyltransferase DNMT1 4Q4G ; 0.97 ; Structure of the Resuscitation Promoting Factor Interacting protein RipA mutated at C383 4Q4T ; 1.63 ; Structure of the Resuscitation Promoting Factor Interacting protein RipA mutated at E444 4Q4N ; 1.38 ; Structure of the Resuscitation Promoting Factor Interacting protein RipA mutated at H432 3C4Q ; 2.8 ; Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP 3C48 ; 2.1 ; Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. 3C4V ; 2.6 ; Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. 1L8R ; 1.65 ; Structure of the Retinal Determination Protein Dachshund Reveals a DNA-Binding Motif 2R7G ; 1.671 ; Structure of the retinoblastoma protein pocket domain in complex with adenovirus E1A CR1 domain 4FJO ; 2.718 ; Structure of the Rev1 CTD-Rev3/7-Pol kappa RIR complex 7ABN ; 1.65 ; Structure of the reversible pyrrole-2-carboxylic acid decarboxylase PA0254/HudA 1DEC ; ; STRUCTURE OF THE RGD PROTEIN DECORSIN: CONSERVED MOTIF AND DISTINCT FUNCTION IN LEECH PROTEINS THAT AFFECT BLOOD CLOTTING 1HTJ ; 2.2 ; STRUCTURE OF THE RGS-LIKE DOMAIN FROM PDZ-RHOGEF 3UV9 ; 1.549 ; Structure of the rhesus monkey TRIM5alpha deltav1 PRYSPRY domain 2LM3 ; ; Structure of the rhesus monkey TRIM5alpha PRYSPRY domain 1DOA ; 2.6 ; Structure of the rho family gtp-binding protein cdc42 in complex with the multifunctional regulator rhogdi 6K24 ; 2.1 ; Structure of the Rhodium Mesoporphyrin IX-Reconstituted CYP102A1 Haem Domain with N-Abietoyl-L-Tryptophan 7OS0 ; 2.2 ; Structure of the Rhodobacter capsulatus Cas13a-crRNA binary complex 2V9Z ; 3.0 ; Structure of the Rhodococcus haloalkane dehalogenase mutant with enhanced enantioselectivity 8SVA ; 2.96 ; Structure of the Rhodococcus sp. USK13 DarR-20 bp DNA complex 6OY9 ; 3.9 ; Structure of the Rhodopsin-Transducin Complex 6OYA ; 3.3 ; Structure of the Rhodopsin-Transducin-Nanobody Complex 1DGW ; 1.7 ; Structure of the rhombohedral crystal of canavalin from jack bean 1EV3 ; 1.78 ; Structure of the rhombohedral form of the M-cresol/insulin R6 hexamer 4IGL ; 2.49 ; Structure of the RHS-repeat containing BC component of the secreted ABC toxin complex from Yersinia entomophaga 7TVR ; ; Structure of the ribbon isoform of the novel conotoxin PnID derived from Conus pennaceus 2RBF ; 2.25 ; Structure of the ribbon-helix-helix domain of Escherichia coli PutA (PutA52) complexed with operator DNA (O2) 1DUL ; 1.8 ; STRUCTURE OF THE RIBONUCLEOPROTEIN CORE OF THE E. COLI SIGNAL RECOGNITION PARTICLE 1SMQ ; 3.1 ; Structure of the Ribonucleotide Reductase Rnr2 Homodimer from Saccharomyces cerevisiae 1SMS ; 3.1 ; Structure of the Ribonucleotide Reductase Rnr4 Homodimer from Saccharomyces cerevisiae 4V4B ; 11.7 ; Structure of the ribosomal 80S-eEF2-sordarin complex from yeast obtained by docking atomic models for RNA and protein components into a 11.7 A cryo-EM map. 6CAO ; 3.45 ; Structure of the ribosomal decoding complex at ambient temperature 4V5A ; 3.5 ; Structure of the Ribosome Recycling Factor bound to the Thermus thermophilus 70S ribosome with mRNA, ASL-Phe and tRNA-fMet 4V7C ; 7.6 ; Structure of the Ribosome with Elongation Factor G Trapped in the Pre-Translocation State (pre-translocation 70S*tRNA structure) 4V7D ; 7.6 ; Structure of the Ribosome with Elongation Factor G Trapped in the Pre-Translocation State (pre-translocation 70S*tRNA*EF-G structure) 7QWR ; 2.9 ; Structure of the ribosome-nascent chain containing an ER signal sequence in complex with NAC 4V6M ; 7.1 ; Structure of the ribosome-SecYE complex in the membrane environment 1E4P ; ; Structure of the ribozyme substrate hairpin of Neurospora VS RNA. A close look at the cleavage site 6OCE ; 4.9 ; Structure of the rice hyperosmolality-gated ion channel OSCA1.2 6WNC ; 2.2 ; Structure of the Rieske non-heme iron oxygenase GxtA 7SZG ; 2.69 ; Structure of the Rieske Non-heme Iron Oxygenase GxtA Pressurized with Xenon 7SZF ; 1.79 ; Structure of the Rieske Non-heme Iron Oxygenase GxtA with beta-Saxitoxinol Bound 6WND ; 2.18 ; Structure of the Rieske non-heme iron oxygenase GxtA with dideoxysaxitoxin bound 7SZE ; 1.74 ; Structure of the Rieske Non-heme Iron Oxygenase GxtA with Saxitoxin Bound 6WN3 ; 1.86 ; Structure of the Rieske non-heme iron oxygenase SxtT 7SZH ; 1.79 ; Structure of the Rieske Non-heme Iron Oxygenase SxtT with beta-saxitoxinol Bound 6WNB ; 2.1 ; Structure of the Rieske non-heme iron oxygenase SxtT with dideoxysaxitoxin bound 5OOO ; 2.2 ; Structure of the Rift Valley fever virus NSs protein core domain 6GPG ; 2.894 ; Structure of the RIG-I Singleton-Merten syndrome variant C268F 5ZCK ; 1.271 ; Structure of the RIP3 core region 2G0C ; 1.7 ; Structure of the RNA binding domain (residues 404-479) of the Bacillus subtilis YxiN protein 2CJK ; ; Structure of the RNA binding domain of Hrp1 in complex with RNA 2OG3 ; 1.85 ; structure of the rna binding domain of n protein from SARS coronavirus in cubic crystal form 3MOJ ; 2.902 ; Structure of the RNA binding domain of the Bacillus subtilis YxiN protein complexed with a fragment of 23S ribosomal RNA 2R20 ; 1.3 ; Structure of the RNA brominated tridecamer r(GCGUU-5BUGAAACGC) at 1.3 A (Br2) 2R1S ; 1.4 ; Structure of the RNA brominated tridecamer r(GCGUU-5BUGAAACGC) at 1.4 A (Br1) 2R21 ; 1.59 ; Structure of the RNA brominated tridecamer r(GCGUU-5BUGAAACGC) at 1.6 A (BrMn) 2LQZ ; ; Structure of the RNA claw of the DNA packaging motor of bacteriophage 29 6I1V ; ; Structure of the RNA duplex containing pseudouridine residue (5'-Cp(PSU)pG-3' sequence context) 6I1W ; ; Structure of the RNA duplex containing pseudouridine residue (5'-Gp(PSU)pC-3' sequence context) 1OSU ; 1.4 ; STRUCTURE OF THE RNA HEXAMER, R(UUCGCG), WITH A 5'-UU-OVERHANG EXHIBITING HOOGSTEEN-LIKE TRANS U-U BASE PAIRS 4IT0 ; 2.4 ; Structure of the RNA ligase RtcB-GMP/Mn(II) complex 3CLJ ; 2.1 ; Structure of the RNA polymerase II CTD-interacting domain of Nrd1 6GOV ; 3.7 ; Structure of THE RNA POLYMERASE LAMBDA-BASED ANTITERMINATION COMPLEX 2YI8 ; 2.3 ; Structure of the RNA polymerase VP1 from Infectious Pancreatic Necrosis Virus 2YIA ; 3.02 ; Structure of the RNA polymerase VP1 from Infectious Pancreatic Necrosis Virus 2YIB ; 3.8 ; Structure of the RNA polymerase VP1 from Infectious Pancreatic Necrosis Virus 2YI9 ; 2.2 ; Structure of the RNA polymerase VP1 from Infectious Pancreatic Necrosis Virus in complex with magnesium 3EES ; 1.9 ; Structure of the RNA pyrophosphohydrolase BdRppH 3EF5 ; 2.6 ; Structure of the RNA pyrophosphohydrolase BdRppH in complex with dGTP 3FFU ; 2.8 ; Structure of the RNA pyrophosphohydrolase BdRppH in complex with GTP and magnesium 3EEU ; 2.0 ; Structure of the RNA pyrophosphohydrolase BdRppH in complex with Holmium 5MDU ; 1.02 ; Structure of the RNA recognition motif (RRM) of Seb1 from S. pombe. 8PX5 ; 1.77 ; Structure of the RNA recognition motif (RRM) of Seb1 from S. pombe., solved at wavelength 2.75 A 1ZC5 ; ; Structure of the RNA signal essential for translational frameshifting in HIV-1 3EXC ; 2.25 ; Structure of the RNA'se SSO8090 from Sulfolobus solfataricus 1A8V ; 2.0 ; STRUCTURE OF THE RNA-BINDING DOMAIN OF THE RHO TRANSCRIPTION TERMINATOR 7BW4 ; 3.7 ; Structure of the RNA-dependent RNA polymerase from SARS-CoV-2 1J3L ; 2.3 ; Structure of the RNA-processing inhibitor RraA from Thermus thermophilis 2J7N ; 2.3 ; Structure of the RNAi polymerase from Neurospora crassa 2J7O ; 3.5 ; STRUCTURE OF THE RNAI POLYMERASE FROM NEUROSPORA CRASSA 2ZEJ ; 2.0 ; Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase 3D6T ; 2.43 ; Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase 8BX7 ; 2.76 ; Structure of the rod CNG channel bound to calmodulin 1YCE ; 2.4 ; Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus 6CO4 ; ; Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets 7ZPQ ; 3.47 ; Structure of the RQT-bound 80S ribosome from S. cerevisiae (C1) 7ZRS ; 4.8 ; Structure of the RQT-bound 80S ribosome from S. cerevisiae (C2) - composite map 4WFC ; 2.35 ; Structure of the Rrp6-Rrp47 interaction 4WFD ; 2.4 ; Structure of the Rrp6-Rrp47-Mtr4 interaction 6T72 ; 3.7 ; Structure of the RsaA N-terminal domain bound to LPS 2R0V ; 2.35 ; Structure of the Rsc4 tandem bromodomain acetylated at K25 2R0Y ; 1.75 ; Structure of the Rsc4 tandem bromodomain in complex with an acetylated H3 peptide 3RRR ; 2.821 ; Structure of the RSV F protein in the post-fusion conformation 3RRT ; 3.2 ; Structure of the RSV F protein in the post-fusion conformation 3Q33 ; 2.8 ; Structure of the Rtt109-AcCoA/Vps75 Complex and Implications for Chaperone-Mediated Histone Acetylation 3Q35 ; 3.3 ; Structure of the Rtt109-AcCoA/Vps75 complex and implications for chaperone-mediated histone acetylation 1DSZ ; 1.7 ; STRUCTURE OF THE RXR/RAR DNA-BINDING DOMAIN HETERODIMER IN COMPLEX WITH THE RETINOIC ACID RESPONSE ELEMENT DR1 4UWA ; 6.1 ; Structure of the ryanodine receptor at resolution of 6.1 A in closed state 4UWE ; 8.5 ; Structure of the ryanodine receptor at resolution of 8.5 A in partially open state 3NPQ ; 2.1814 ; Structure of the S-adenosylhomocysteine riboswitch at 2.18 A 3NPN ; 2.792 ; Structure of the s-adenosylhomocysteine riboswitch at 3.0A 1TV7 ; 2.8 ; Structure of the S-adenosylmethionine dependent Enzyme MoaA 2GIS ; 2.9 ; Structure of the S-adenosylmethionine riboswitch mRNA regulatory element 2MVI ; ; Structure of the S-glycosylated bacteriocin ASM1 4UJ7 ; 1.54 ; Structure of the S-layer protein SbsC, domains 5-6 6Z46 ; 3.698 ; Structure of the S. acidocaldarius 20S proteasome (Saci0613/Saci0662) 2PK0 ; 2.65 ; Structure of the S. agalactiae serine/threonine phosphatase at 2.65 resolution 7TJ4 ; 1.8 ; Structure of the S. aureus amidase LytH and activator ActH extracellular domains 5JM0 ; 6.3 ; Structure of the S. cerevisiae alpha-mannosidase 1 6WB9 ; 3.0 ; Structure of the S. cerevisiae ER membrane complex 7MCA ; 3.6 ; Structure of the S. cerevisiae origin recognition complex bound to the replication initiator Cdc6 and the ARS1 origin DNA. 7RD8 ; 5.64 ; Structure of the S. cerevisiae P4B ATPase lipid flippase in the E1-ATP state 7RD6 ; 3.25 ; Structure of the S. cerevisiae P4B ATPase lipid flippase in the E2P state 7RD7 ; 3.08 ; Structure of the S. cerevisiae P4B ATPase lipid flippase in the E2P-transition state 7KY6 ; 3.1 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf1-Lem3 complex in the apo E1 state 7KYB ; 3.2 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf1-Lem3 complex in the E1-ADP state 7KYC ; 2.8 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf1-Lem3 complex in the E2P state 7KY7 ; 3.08 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf2-Lem3 complex in the apo E1 state 7KY9 ; 4.05 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf2-Lem3 complex in the E1-ADP state 7KY8 ; 3.85 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf2-Lem3 complex in the E1-ATP state 7KYA ; 3.5 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf2-Lem3 complex in the E2P state 7KY5 ; 3.98 ; Structure of the S. cerevisiae phosphatidylcholine flippase Dnf2-Lem3 complex in the E2P transition state 6U0M ; 3.9 ; Structure of the S. cerevisiae replicative helicase CMG in complex with a forked DNA 3V62 ; 2.9 ; Structure of the S. cerevisiae Srs2 C-terminal domain in complex with PCNA conjugated to SUMO on lysine 164 6BOX ; 2.412 ; Structure of the S. pombe Clr4 catalytic domain bound to SAH 6BP4 ; 2.7701 ; Structure of the S. pombe Clr4 catalytic domain bound to SAM 3HUE ; 2.8 ; Structure of the S. pombe Nbs1 FHA-BRCT1-BRCT2 domains 3I0M ; 2.6 ; Structure of the S. pombe Nbs1 FHA/BRCT-repeat domain 3I0N ; 2.3 ; Structure of the S. pombe Nbs1 FHA/BRCT-repeat domain 3HUF ; 2.15 ; Structure of the S. pombe Nbs1-Ctp1 complex 4OB4 ; 2.8 ; Structure of the S. venezulae BldD DNA-binding domain 5XGR ; 2.1 ; Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein 8T7F ; 3.5 ; Structure of the S1 variant of Fab F1 7ABV ; 2.065 ; Structure of the S1-cleaved mouse Notch1 Negative Regulatory Region (NRR) 4IP7 ; 1.8 ; Structure of the S12D variant of human liver pyruvate kinase in complex with citrate and FBP. 6CXU ; 2.49 ; Structure of the S167H mutant of human indoleamine 2,3 dioxygenase in complex with tryptophan and cyanide 6CXV ; 2.6 ; Structure of the S167H mutant of human indoleamine 2,3 dioxygenase in complex with tryptophan and cyanide 8T7I ; 2.6 ; Structure of the S1CE variant of Fab F1 (FabS1CE-F1) 6HR5 ; 2.912 ; Structure of the S1_25 family sulfatase module of the rhamnosidase FA22250 from Formosa agariphila 5OXA ; 1.16 ; Structure of the S205A mutant of the Cyan Fluorescent Protein Cerulean at pH 7.0 6KYC ; 2.604 ; Structure of the S207A mutant of Clostridium difficile sortase B 4ENT ; 1.7 ; Structure of the S234A variant of E. coli KatE 4ENU ; 1.7 ; Structure of the S234D variant of E. coli KatE 4ENV ; 1.7 ; Structure of the S234I variant of E. coli KatE 4ENW ; 1.9 ; Structure of the S234N variant of E. coli KatE 4LDR ; 2.292 ; Structure of the S283Y mutant of MRDI 7AGQ ; 2.8 ; Structure of the S726F mutant of AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis 7AGT ; 2.901 ; Structure of the S726F mutant of AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis acylated with Malonyl-coenzyme A 7AGU ; 3.1 ; Structure of the S726F mutant of AcylTransferase domain of Mycocerosic Acid Synthase from Mycobacterium tuberculosis acylated with MethylMalonyl-coenzyme A 7XR8 ; 1.94 ; Structure of the S8 family protease A4095 6QNX ; 2.7 ; Structure of the SA2/SCC1/CTCF complex 8FJS ; 3.0 ; Structure of the Saccharolobus solfataricus archaeal type IV pilus at 3 Angstrom resolution 4H62 ; 3.0 ; Structure of the Saccharomyces cerevisiae Mediator subcomplex Med17C/Med11C/Med22C 4Q8G ; 2.1 ; Structure of the Saccharomyces cerevisiae PAN2 pseudoubiquitin-hydrolase 4Q8H ; 3.1 ; Structure of the Saccharomyces cerevisiae PAN2 pseudoubiquitin-hydrolase-RNase module 4XR7 ; 3.796 ; Structure of the Saccharomyces cerevisiae PAN2-PAN3 core complex 6WJV ; 3.5 ; Structure of the Saccharomyces cerevisiae polymerase epsilon holoenzyme 7KC0 ; 3.2 ; Structure of the Saccharomyces cerevisiae replicative polymerase delta in complex with a primer/template and the PCNA clamp 5G5P ; 5.3 ; Structure of the Saccharomyces cerevisiae TREX-2 complex 5L3T ; 4.927 ; Structure of the Saccharomyces cerevisiae TREX-2 complex 4FIP ; 2.686 ; Structure of the SAGA Ubp8(S144N)/Sgf11(1-72, Delta-ZnF)/Sus1/Sgf73 DUB module 4FK5 ; 2.032 ; Structure of the SAGA Ubp8(S144N)/Sgf11/Sus1/Sgf73 DUB module 4FJC ; 2.826 ; Structure of the SAGA Ubp8/Sgf11(1-72, Delta-ZnF)/Sus1/Sgf73 DUB module 3MHH ; 2.45 ; Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module 3MHS ; 1.89 ; Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module bound to ubiquitin aldehyde 7LJM ; 2.6 ; Structure of the Salmonella enterica CD-NTase CdnD in complex with GTP 3IGS ; 1.5 ; Structure of the Salmonella enterica N-acetylmannosamine-6-phosphate 2-epimerase 4HAH ; 1.8 ; Structure of the Salmonella plasmid virulence C protein (SpvC) 4H43 ; 2.304 ; Structure of the Salmonella plasmid virulence C protein (SpvC) H106N mutant. 6ZNH ; 3.6 ; Structure of the Salmonella PrgI needle filament attached to the basal body 6Q14 ; 3.8 ; Structure of the Salmonella SPI-1 injectisome NC-base 6Q15 ; 5.15 ; Structure of the Salmonella SPI-1 injectisome needle complex 6DWB ; 3.3 ; Structure of the Salmonella SPI-1 type III secretion injectisome needle filament 6DV6 ; 3.9 ; Structure of the Salmonella SPI-1 type III secretion injectisome secretin InvG (residues 176-end) in the open gate state 6DV3 ; 4.1 ; Structure of the Salmonella SPI-1 type III secretion injectisome secretin InvG in the open gate state 7ZTB ; 2.312 ; Structure of the Salmonella tRNA pyrophosphokinase CapRel 4UIO ; 1.35 ; Structure of the Salmonella typhi Type I Dehydroquinase covalently inhibited by a 3-dehydroquinic acid derivative 4CNO ; 1.5 ; Structure of the Salmonella typhi Type I dehydroquinase inhibited by a 3-dehydroquinic acid derivative 4CNP ; 1.15 ; Structure of the Salmonella typhi type I dehydroquinase inhibited by a 3-epiquinic acid derivative 3HZN ; 2.4 ; Structure of the Salmonella typhimurium nfnB dihydropteridine reductase 1JYO ; 1.9 ; Structure of the Salmonella Virulence Effector SptP in Complex with its Secretion Chaperone SicP 5LIR ; 1.75 ; Structure of the SALTY Sigma cross-reacting protein 27A (SCRP-27A) from Salmonella typhimurium 2QKQ ; 2.1 ; Structure of the SAM Domain of Human Ephrin Type-B Receptor 4 2ES6 ; ; Structure of the SAM domain of Vts1p 2ESE ; ; Structure of the SAM domain of Vts1p in complex with RNA 5AP8 ; 2.246 ; Structure of the SAM-dependent rRNA:acp-transferase Tsr3 from S. solfataricus 5APG ; 1.6 ; Structure of the SAM-dependent rRNA:acp-transferase Tsr3 from Vulcanisaeta distributa 4OQU ; 3.2 ; Structure of the SAM-I/IV riboswitch (env87(deltaU92)) 4L81 ; 2.95 ; Structure of the SAM-I/IV riboswitch (env87(deltaU92, deltaG93)) 1XAK ; 1.8 ; STRUCTURE OF THE SARS-CORONAVIRUS ORF7A ACCESSORY PROTEIN 7RKS ; 2.7 ; Structure of the SARS-CoV receptor binding domain in complex with the human neutralizing antibody Fab fragment, C118 7AKJ ; 3.8 ; Structure of the SARS-CoV spike glycoprotein in complex with the 47D11 neutralizing antibody Fab fragment 7ZQW ; 2.53 ; Structure of the SARS-CoV-1 main protease in complex with AG7404 7M2P ; 1.7 ; Structure of the SARS-CoV-2 3CL protease in complex with inhibitor 18 7P35 ; 2.256 ; Structure of the SARS-CoV-2 3CL protease in complex with rupintrivir 7FCE ; 3.1 ; Structure of the SARS-CoV-2 A372T spike glycoprotein (closed) 7FCD ; 3.9 ; Structure of the SARS-CoV-2 A372T spike glycoprotein (open) 8K5G ; 3.41 ; Structure of the SARS-CoV-2 BA.1 RBD with UT28-RD 8K5H ; 3.22 ; Structure of the SARS-CoV-2 BA.1 spike with UT28-RD 8GS6 ; 2.86 ; Structure of the SARS-CoV-2 BA.2.75 spike glycoprotein (closed state 1) 6WOJ ; 2.2 ; Structure of the SARS-CoV-2 macrodomain (NSP3) in complex with ADP-ribose 7ZQV ; 2.26 ; Structure of the SARS-CoV-2 main protease in complex with AG7404 7TUU ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with halicin 7SDC ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MI-09 7JPZ ; 1.6 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI1 7RVM ; 1.95 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI11 7RVN ; 1.63 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI12 7UUB ; 1.63 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI12 7RVO ; 1.8 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI13 7RVP ; 1.9 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI14 7RVQ ; 2.48 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI16 7RVR ; 2.46 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI18 7RVS ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI19 7UUC ; 1.6 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI19 7RVT ; 2.1 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI20 7RVU ; 2.5 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI21 7RVV ; 3.0 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI22 7RVW ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI23 7RVX ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI24 7RVY ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI25 7RVZ ; 1.9 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI26 7RW0 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI27 7RW1 ; 2.5 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI28 7S6W ; 2.29 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI29 7JQ0 ; 1.65 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI3 7S6X ; 1.8 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI30 7S6Y ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI32 7S6Z ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI33 7UUD ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI33 7S70 ; 2.6 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI34 7S71 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI35 7S72 ; 2.5 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI36 7S73 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI37 8EOY ; 2.28 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI37 8STZ ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI37 7S74 ; 1.7 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI38 7JQ1 ; 1.65 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI4 7S75 ; 1.8 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI42 7SD9 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI48 7SDA ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI49 7JQ2 ; 1.4 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI5 7JQ3 ; 2.1 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI6 8STY ; 1.9 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI60 7JQ4 ; 1.65 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI7 7JQ5 ; 1.9 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI8 7UUA ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI8 7UUE ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI85 7SH9 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI86 7SH7 ; 1.85 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI87 7SH8 ; 1.8 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor MPI88 7TE0 ; 2.0 ; Structure of the SARS-CoV-2 main protease in complex with inhibitor PF-07321332 7WYM ; 2.05 ; Structure of the SARS-COV-2 main protease with 337 inhibitor 7WYP ; 2.3 ; Structure of the SARS-COV-2 main protease with EN102 inhibitor 7N0I ; 2.2 ; Structure of the SARS-CoV-2 N protein C-terminal domain bound to single-domain antibody E2 7R98 ; 2.51 ; Structure of the SARS-CoV-2 N protein RNA-binding domain bound to single-domain antibody B6 7N0R ; 1.42 ; Structure of the SARS-CoV-2 N protein RNA-binding domain bound to single-domain antibody C2 7JME ; 1.55 ; Structure of the SARS-CoV-2 NSP3 Macro X domain in complex with cyclic AMP 7UAQ ; 3.1 ; Structure of the SARS-CoV-2 NTD in complex with C1520, local refinement 7UZ8 ; 3.1 ; Structure of the SARS-CoV-2 Omicron BA.1 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-31 7TIK ; 2.4 ; Structure of the SARS-CoV-2 Omicron spike post-fusion bundle 6W37 ; 2.9 ; STRUCTURE OF THE SARS-CoV-2 ORF7A ENCODED ACCESSORY PROTEIN 7JX6 ; 1.61 ; STRUCTURE OF THE SARS-CoV-2 ORF8 ENCODED ACCESSORY PROTEIN 7M6D ; 3.1 ; Structure of the SARS-CoV-2 RBD in complex with neutralizing antibodies BG4-25 and CR3022 7R8L ; 2.6 ; Structure of the SARS-CoV-2 RBD in complex with neutralizing antibody C099 and CR3022 7S0B ; 2.9 ; Structure of the SARS-CoV-2 RBD in complex with neutralizing antibody N-612-056 7UZD ; 3.0 ; Structure of the SARS-CoV-2 RBD in complex with the mouse antibody Fab fragment, HSW-2 7UZC ; 2.2 ; Structure of the SARS-CoV-2 RBD in complex with the mouse antibody Fab fragment, M8a-34 7RKU ; 3.2 ; Structure of the SARS-CoV-2 receptor binding domain in complex with the human neutralizing antibody Fab fragment, C022 7K8M ; 3.2 ; Structure of the SARS-CoV-2 receptor binding domain in complex with the human neutralizing antibody Fab fragment, C102 7M6I ; 4.0 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, BG1-24 7M6H ; 4.0 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, BG7-20 7K8S ; 3.4 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C002 (state 1) 7K8V ; 3.8 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C110 7K8W ; 3.6 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C119 7K8X ; 3.9 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C121 (State 1) 7K8Y ; 4.4 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C121 (State 2) 7K8Z ; 3.5 ; Structure of the SARS-CoV-2 S 2P trimer in complex with the human neutralizing antibody Fab fragment, C135 7R8M ; 3.4 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody C032 7R8N ; 3.55 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody C051 7RKV ; 3.45 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody C118 (State 1) 7R8O ; 3.5 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody C548 7S0D ; 3.5 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody N-612-014 7S0C ; 3.25 ; Structure of the SARS-CoV-2 S 6P trimer in complex with neutralizing antibody N-612-017 7KL9 ; 4.1 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the ACE2 protein decoy, CTC-445.2 (State 4) 7M6F ; 3.9 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, BG1-22 7M6E ; 3.3 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, BG10-19 7M6G ; 3.7 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, BG7-15 7K8T ; 3.4 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, C002 (State 2) 7K8U ; 3.8 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, C104 7K90 ; 3.24 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, C144 7SC1 ; 3.2 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the human neutralizing antibody Fab fragment, R40-1G8 7UZA ; 3.1 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, HSW-1 7UZ6 ; 2.8 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-28 7UZ4 ; 3.1 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-3 7UZ7 ; 2.9 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-31 7UZ9 ; 3.5 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-34 7UZ5 ; 3.2 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the mouse antibody Fab fragment, M8a-6 7UAP ; 2.8 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the neutralizing antibody Fab fragment, C1520 7UAR ; 3.5 ; Structure of the SARS-CoV-2 S 6P trimer in complex with the neutralizing antibody Fab fragment, C1717 7UZB ; 4.1 ; Structure of the SARS-CoV-2 S S1 doamin in complex with the mouse antibody Fab fragment, HSW-2 7S0E ; 4.9 ; Structure of the SARS-CoV-2 S1 subunit in complex with antibody N-612-004 6VXX ; 2.8 ; Structure of the SARS-CoV-2 spike glycoprotein (closed state) 7VNC ; 3.7 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with a human single domain antibody n3113 (UDD-state, state 1) 7VND ; 3.6 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with a human single domain antibody n3113 (UUD-state, state 2) 7VNE ; 3.5 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with a human single domain antibody n3113.1 (UUU-state) 8C8P ; 4.1 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the 10D12 heavy-chain-only antibody (local refinement) 7AKD ; 4.0 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the 47D11 neutralizing antibody Fab fragment 7R40 ; 2.9 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the 87G7 antibody Fab fragment 6XCM ; 3.42 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the C105 neutralizing antibody Fab fragment (state 1) 6XCN ; 3.66 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the C105 neutralizing antibody Fab fragment (state 2) 8BON ; 3.2 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the macrocyclic peptide S1B3inL1 6WPS ; 3.1 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the S309 neutralizing antibody Fab fragment 6WPT ; 3.7 ; Structure of the SARS-CoV-2 spike glycoprotein in complex with the S309 neutralizing antibody Fab fragment (open state) 8DYA ; 3.67 ; Structure of the SARS-CoV-2 spike glycoprotein S2 subunit 6YOR ; 3.9 ; Structure of the SARS-CoV-2 spike S1 protein in complex with CR3022 Fab 7MW2 ; 2.97 ; Structure of the SARS-CoV-2 Spike trimer with all RBDs down in complex with the Fab fragment of human neutralizing antibody clone 6 7MW5 ; 3.42 ; Structure of the SARS-CoV-2 Spike trimer with one RBD down in complex with the Fab fragment of human neutralizing antibody clone 2 7MW4 ; 3.42 ; Structure of the SARS-CoV-2 Spike trimer with one RBD down in complex with the Fab fragment of human neutralizing antibody clone 6 7MW6 ; 3.22 ; Structure of the SARS-CoV-2 Spike trimer with three RBDs up in complex with the Fab fragment of human neutralizing antibody clone 2 7MW3 ; 3.15 ; Structure of the SARS-CoV-2 Spike trimer with two RBDs down in complex with the Fab fragment of human neutralizing antibody clone 6 8IOS ; 2.5 ; Structure of the SARS-CoV-2 XBB.1 spike glycoprotein (closed-1 state) 8IOT ; 2.51 ; Structure of the SARS-CoV-2 XBB.1 spike glycoprotein (closed-2 state) 8JYK ; 2.59 ; Structure of the SARS-CoV-2 XBB.1.5 spike glycoprotein (closed state 1) 8JYM ; 2.79 ; Structure of the SARS-CoV-2 XBB.1.5 spike glycoprotein (closed state 2) 8CX9 ; 3.5 ; Structure of the SARS-COV2 PLpro (C111S) in complex with a dimeric Ubv that inhibits activity by an unusual allosteric mechanism 8GNA ; 2.8 ; Structure of the SbCas7-11-crRNA-NTR complex 8GU6 ; 3.1 ; Structure of the SbCas7-11-crRNA-NTR-Csx29 complex 6R5S ; 2.75 ; Structure of the SBP FpvC from pseudomonas aeruginosa in complex with Fe(II) 6RU4 ; 2.49 ; Structure of the SBP FpvC from pseudomonas aeruginosa in complex with Mn2+ 6R3Z ; 1.65 ; Structure of the SBP FpvC in complex with Ni2+ ion from P. aeruginosa in P212121 space group 6R44 ; 1.99 ; Structure of the SBP FpvC in complex with Ni2+ ion from P.aeruginosa from P21 space group 4AQ1 ; 2.42 ; Structure of the SbsB S-layer protein of Geobacillus stearothermophilus PV72p2 in complex with nanobody KB6 3JAN ; 3.75 ; Structure of the scanning state of the mammalian SRP-ribosome complex 5ME3 ; 2.85 ; Structure of the Scc2 C-terminus 4H63 ; 3.4 ; Structure of the Schizosaccharomyces pombe Mediator head module 3C0T ; 2.4 ; Structure of the Schizosaccharomyces pombe Mediator subcomplex Med8C/18 4H61 ; 2.7 ; Structure of the Schizosaccharomyces pombe Mediator subunit Med6 1NI3 ; 2.8 ; Structure of the Schizosaccharomyces pombe YchF GTPase 6RUR ; 6.0 ; Structure of the SCIN stabilized C3bBb convertase bound to properdin 6RUV ; 6.15 ; Structure of the SCIN stabilized C3bBb convertase bound to Properdin and a the non-inhibitory nanobody hFPNb1 2YPB ; 2.87 ; Structure of the SCL:E47 complex bound to DNA 2YPA ; 2.8 ; Structure of the SCL:E47:LMO2:LDB1 complex bound to DNA 2KYJ ; ; Structure of the scorpion toxin U1-Liotoxin-Lw1a 5F4Y ; 3.293 ; Structure of the SD2 domain of Human Shroom2 1PV0 ; ; Structure of the Sda antikinase 5CRA ; 2.64 ; Structure of the SdeA DUB Domain 5CRC ; 2.853 ; Structure of the SdeA DUB Domain 5EUL ; 3.7 ; Structure of the SecA-SecY complex with a translocating polypeptide substrate 7XHB ; 3.33 ; Structure of the SecA/SecYE/proOmpA(4Y)-sfGFP complex with ADP 7XHA ; 3.35 ; Structure of the SecA/SecYE/proOmpA(4Y)-sfGFP complex with ADP.BeF3-. 2HJV ; 1.95 ; Structure of the second domain (residues 207-368) of the Bacillus subtilis YxiN protein 2LB2 ; ; Structure of the second domain of human Nedd4L in complex with a phosphorylated pTPY motif derived from human Smad3 2LB1 ; ; Structure of the second domain of human Smurf1 in complex with a human Smad1 derived peptide 1FF1 ; ; STRUCTURE OF THE SECOND EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15 IN COMPLEX WITH PTGSSSTNPFL 1F8H ; ; STRUCTURE OF THE SECOND EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15 IN COMPLEX WITH PTGSSSTNPFR 1EH2 ; ; STRUCTURE OF THE SECOND EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15, NMR, 20 STRUCTURES 7F9X ; 1.97 ; Structure of the second OTU domain of LotA 2JXO ; ; Structure of the second PDZ domain of NHERF-1 2RCZ ; 1.7 ; Structure of the second PDZ domain of ZO-1 2KG0 ; ; Structure of the second qRRM domain of hnRNP F in complex with a AGGGAU G-tract RNA 5GQO ; 2.5 ; Structure of the second Single Stranded DNA Binding protein (SSBb) from Mycobacterium smegmatis 3GHP ; 2.487 ; Structure of the second type II cohesin module from the adaptor ScaA scaffoldin of Acetivibrio cellulolyticus (including long C-terminal linker) 2LAW ; ; Structure of the second WW domain from human YAP in complex with a human Smad1 derived peptide 3J46 ; 10.1 ; Structure of the SecY protein translocation channel in action 3RZC ; 2.8 ; Structure of the self-antigen iGb3 bound to mouse CD1d and in complex with the iNKT TCR 6XOR ; ; Structure of the Self-Association Domain of Swallow 6PTL ; 2.5 ; Structure of the self-association domain of the chromatin looping factor LDB1 6SJW ; ; Structure of the self-processing module of iron-regulated FrpC of N. Meningitidis with calcium ions 1Q47 ; 2.8 ; Structure of the Semaphorin 3A Receptor-Binding Module 3F6I ; 2.788 ; Structure of the SeMet labeled F4 fibrial chaperone FaeE 7CG5 ; 2.85 ; Structure of the sensor domain (long construct) of the anti-sigma factor RsgI4 in Pseudobacteroides cellulosolvens 7CG8 ; 1.5 ; Structure of the sensor domain (short construct) of the anti-sigma factor RsgI4 in Pseudobacteroides cellulosolvens 3CSN ; 3.0 ; Structure of the Serratia marcescens hemophore receptor HasR in complex with its hemophore HasA 3CSL ; 2.7 ; Structure of the Serratia marcescens hemophore receptor HasR in complex with its hemophore HasA and heme 3DDR ; 2.8 ; Structure of the Serratia marcescens hemophore receptor HasR-Ile671Gly mutant in complex with its hemophore HasA and heme 1MVH ; 2.3 ; structure of the SET domain histone lysine methyltransferase Clr4 1MVX ; 3.0 ; structure of the SET domain histone lysine methyltransferase Clr4 8ASG ; 3.2 ; Structure of the SFTSV L protein bound in a resting state [RESTING] 8AS6 ; 3.4 ; Structure of the SFTSV L protein bound to 5' cRNA hook [5' HOOK] 8ASB ; 3.6 ; Structure of the SFTSV L protein stalled at early elongation with the endonuclease domain in a raised conformation [EARLY-ELONGATION-ENDO] 8AS7 ; 2.6 ; Structure of the SFTSV L protein stalled at early elongation [EARLY-ELONGATION] 8ASD ; 2.6 ; Structure of the SFTSV L protein stalled at late elongation [LATE-ELONGATION] 3GXW ; 1.9 ; Structure of the SH2 domain of the Candida glabrata transcription elongation factor Spt6, crystal form A 3GXX ; 2.4 ; Structure of the SH2 domain of the Candida glabrata transcription elongation factor Spt6, crystal form B 4F14 ; 1.2 ; Structure of the SH3 domain of human nebulette in complex with a peptide of XIRP2 5K26 ; 1.2 ; Structure of the SH3 domain of MLK3 bound to peptide generated from phage display 6AQB ; 1.5 ; Structure of the SH3 domain of MLK3 bound to peptide generated from phage display 7WOI ; 2.73 ; Structure of the shaft pilin Spa2 from Corynebacterium glutamicum 3NTA ; 2.01 ; Structure of the Shewanella loihica PV-4 NADH-dependent persulfide reductase 3NT6 ; 2.0 ; Structure of the Shewanella loihica PV-4 NADH-dependent persulfide reductase C43S/C531S Double Mutant 3NTD ; 1.99 ; Structure of the Shewanella loihica PV-4 NADH-dependent persulfide reductase C531S Mutant 4OCG ; 2.75 ; Structure of the Shewanella loihica PV-4 NADH-dependent persulfide reductase F161A Mutant 4A5P ; 3.15 ; Structure of the Shigella flexneri MxiA protein 5ECW ; 1.94 ; Structure of the Shigella flexneri VapC mutant D7A 5ED0 ; 2.1 ; Structure of the Shigella flexneri VapC mutant D7N 5ECD ; 1.75 ; Structure of the Shigella flexneri VapC mutant D98N crystal form 1 5ECY ; 2.0 ; Structure of the Shigella flexneri VapC mutant D98N crystal form 2 6ZNI ; 3.6 ; Structure of the Shigella MxiH needle filament attached to the basal body 8E8T ; 2.18 ; Structure of the short LOR domain of human AASS 8E8V ; 2.45 ; Structure of the short LOR domain of human AASS bound to N-ethylsuccinimide 3TKZ ; 1.8 ; Structure of the SHP-2 N-SH2 domain in a 1:2 complex with RVIpYFVPLNR peptide 3UAH ; 1.6 ; Structure of the Shq1 specific domain from Saccharomyces cerevisiae 3UAI ; 3.06 ; Structure of the Shq1-Cbf5-Nop10-Gar1 complex from Saccharomyces cerevisiae 3ZV0 ; 2.8 ; Structure of the SHQ1P-CBF5P complex 3SZJ ; 1.45 ; Structure of the shwanavidin-biotin complex 4MNP ; 2.5 ; Structure of the Sialic Acid Binding Protein from Fusobacterium Nucleatum subsp. nucleatum ATCC 25586 7T3E ; 1.04 ; Structure of the sialic acid bound Tripartite ATP-independent Periplasmic (TRAP) periplasmic component SiaP from Photobacterium profundum 378D ; 2.4 ; STRUCTURE OF THE SIDE-BY-SIDE BINDING OF DISTAMYCIN TO DNA 7LRN ; 2.85 ; Structure of the Siderophore Interacting Protein from Acinetbacter baumannii 5DH2 ; 2.59 ; Structure of the siderophore periplasmic binding protein from the fuscachelin gene cluster of Thermobifida fusca in I222 5DH1 ; 2.842 ; Structure of the siderophore periplasmic binding protein from the fuscachelin gene cluster of Thermobifida fusca in P21 5DH0 ; 2.444 ; Structure of the siderophore periplasmic binding protein from the fuscachelin gene cluster of Thermobifida fusca in P41 3EUL ; 1.9 ; Structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis 1RY1 ; 12.0 ; Structure of the signal recognition particle interacting with the elongation-arrested ribosome 2UV3 ; 1.8 ; Structure of the signal-regulatory protein (SIRP) alpha domain that binds CD47. 1F2X ; 2.1 ; STRUCTURE OF THE SINGLE-DOMAIN CAMELID ANTIBODY CAB-CA05 7U5U ; 3.16 ; Structure of the SK/DHQase/DHSD dimer from Candida albicans Aro1 2OVP ; 2.9 ; Structure of the Skp1-Fbw7 complex 2OVQ ; 2.6 ; Structure of the Skp1-Fbw7-CyclinEdegC complex 2OVR ; 2.5 ; Structure of the Skp1-Fbw7-CyclinEdegN complex 3RDV ; 1.75 ; Structure of the SLAIN2c-CLIPCG1 complex 5SV9 ; 5.9 ; Structure of the SLC4 transporter Bor1p in an inward-facing conformation 6XJL ; 2.0 ; Structure of the SM protein Vps45 2J5X ; 2.8 ; STRUCTURE OF THE SMALL G PROTEIN ARF6 IN COMPLEX WITH GTPGAMMAS 5MMJ ; 3.6 ; Structure of the small subunit of the chloroplast ribosome 8PAQ ; 1.6 ; Structure of the small subunit of the laccase-like Nlac protein from Pleurotus eryngii 5AJ3 ; 3.6 ; Structure of the small subunit of the mammalian mitoribosome 7SZZ ; 3.9 ; Structure of the smaller diameter PSMalpha3 nanotubes 2B7G ; ; Structure of the Smaug Recognition RNA Element 6SYT ; 3.45 ; Structure of the SMG1-SMG8-SMG9 complex 7A0G ; 6.979 ; Structure of the SmhB pore of the tripartite alpha-pore forming toxin, Smh, from Serratia marcescens. 7QGR ; 5.7 ; Structure of the SmrB-bound E. coli disome - collided 70S ribosome 7QGN ; 3.37 ; Structure of the SmrB-bound E. coli disome - stalled 70S ribosome 7M3Q ; 2.5 ; Structure of the Smurf2 HECT Domain with a High Affinity Ubiquitin Variant (UbV) 5G5N ; 2.3 ; Structure of the snake adenovirus 1 hexon-interlacing LH3 protein, methylmercury chloride derivative 5G5O ; 2.0 ; Structure of the snake adenovirus 1 hexon-interlacing LH3 protein, native 8CI5 ; 3.2 ; Structure of the SNV L protein bound to 5' RNA 8A1G ; 2.5 ; Structure of the SNX1-SNX5 complex 8ABQ ; 2.81 ; Structure of the SNX1-SNX5 complex, Pt derivative 4GXB ; 1.8 ; Structure of the SNX17 atypical FERM domain bound to the NPxY motif of P-selectin 4TKN ; 3.0 ; Structure of the SNX17 FERM domain bound to the second NPxF motif of KRIT1 6E8R ; 2.268 ; Structure of the SNX32 PX domain in complex with Chlamydial protein IncE in space group I121 5TGJ ; 2.6 ; Structure of the SNX5 PX domain in complex with chlamydial protein IncE in space group I2 5TGI ; 1.98 ; Structure of the SNX5 PX domain in complex with chlamydial protein IncE in space group P212121 5TGH ; 2.8 ; Structure of the SNX5 PX domain in complex with chlamydial protein IncE in space group P32 4JGH ; 3.0 ; Structure of the SOCS2-Elongin BC complex bound to an N-terminal fragment of Cullin5 4CZB ; 3.5 ; Structure of the sodium proton antiporter MjNhaP1 from Methanocaldococcus jannaschii at pH 8. 4CZ9 ; 3.5 ; Structure of the sodium proton antiporter PaNhaP from Pyrococcus abyssii at pH 4. 4CZ8 ; 3.15 ; Structure of the sodium proton antiporter PaNhaP from Pyrococcus abyssii at pH 8. 4CZA ; 3.2 ; Structure of the sodium proton antiporter PaNhaP from Pyrococcus abyssii with bound thallium ion. 5WIV ; 2.143 ; Structure of the sodium-bound human D4 Dopamine receptor in complex with Nemonapride 7UUY ; 3.3 ; Structure of the sodium/iodide symporter (NIS) 7UV0 ; 3.1 ; Structure of the sodium/iodide symporter (NIS) in complex with iodide and sodium 7UUZ ; 3.2 ; Structure of the sodium/iodide symporter (NIS) in complex with perrhenate and sodium 6GRK ; 2.33 ; Structure of the soluble AhlB of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 6H2D ; 2.62 ; Structure of the soluble AhlC of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 6H2E ; 2.35 ; Structure of the soluble AhlC of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 6R1J ; 1.92 ; Structure of the soluble AhlC triple head mutant of the tripartite alpha-pore forming toxin, AHL, from Aeromonas hydrophila. 1QL4 ; 1.5 ; Structure of the soluble domain of cytochrome c552 from Paracoccus denitrificans in the oxidised state 1QL3 ; 1.4 ; Structure of the soluble domain of cytochrome c552 from Paracoccus denitrificans in the reduced state 3M97 ; 1.332 ; Structure of the soluble domain of cytochrome c552 with its flexible linker segment from Paracoccus denitrificans 5CYU ; 3.07 ; Structure of the soluble domain of EccB1 from the Mycobacterium smegmatis ESX-1 secretion system. 4KAY ; 1.781 ; Structure of the soluble domain of Lipooligosaccharide phosphoethanolamine transferase A from Neisseria meningitidis - complex with Zn 2VKJ ; 1.65 ; Structure of the soluble domain of the membrane protein TM1634 from Thermotoga maritima 2VKO ; 1.79 ; Structure of the soluble domain of the membrane protein TM1634 from Thermotoga maritima 1CKV ; ; STRUCTURE OF THE SOLUBLE METHANE MONOOXYGENASE REGULATORY PROTEIN B 4PO7 ; 2.66 ; Structure of the Sortilin:neurotensin complex at excess neurotensin concentration 3U2B ; 2.402 ; Structure of the Sox4 HMG domain bound to DNA 8J7S ; 2.84 ; Structure of the SPARTA complex 6VPC ; 3.2 ; Structure of the SpCas9 DNA adenine base editor - ABE8e 5J1F ; 3.0 ; Structure of the spectrin repeats 5 and 6 of the plakin domain of plectin 5J1H ; 2.8 ; Structure of the spectrin repeats 5 and 6 of the plakin domain of plectin 5J1G ; 1.8 ; Structure of the spectrin repeats 7 and 8 of the plakin domain of plectin 5J1I ; 2.801 ; Structure of the spectrin repeats 7, 8, and 9 of the plakin domain of plectin 3TTH ; 3.298 ; Structure of the spermidine N1-acetyltransferase (speG) from Coxiella burnetii 4IA4 ; 3.1 ; Structure of the spinach aquaporin SoPIP2;1 at pH 6 8GKH ; 2.7 ; Structure of the Spizellomyces punctatus Fanzor (SpuFz) in complex with omega RNA and target DNA 4NHO ; 2.0 ; Structure of the spliceosomal DEAD-box protein Prp28 4R3F ; 1.3 ; Structure of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27 from Chaetomium thermophilum 4R3E ; 2.0 ; Structure of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27 from Homo sapiens 2L5I ; ; structure of the spliceosomal phosphopeptide P140 (non-phosphorylated form) 2L5J ; ; structure of the spliceosomal phosphopeptide P140 (phosphorylated form) 7A5J ; 3.1 ; Structure of the split human mitoribosomal large subunit with P-and E-site mt-tRNAs 7A5H ; 3.3 ; Structure of the split human mitoribosomal large subunit with rescue factors mtRF-R and MTRES1 3TUF ; 2.26 ; Structure of the SpoIIQ-SpoIIIAH pore forming complex. 1MNN ; 1.4 ; Structure of the sporulation specific transcription factor Ndt80 bound to DNA 7PEG ; 1.77 ; Structure of the sporulation/germination protein YhcN from Bacillus subtilis 7XPN ; 3.98 ; Structure of the Spring Viraemia of Carp Virus Nucleoprotein 7YG7 ; 3.7 ; Structure of the Spring Viraemia of Carp Virus ribonucleoprotein Complex 3TOJ ; 2.07 ; Structure of the SPRY domain of human Ash2L 4IOY ; 1.945 ; Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT 4KHB ; 2.4 ; Structure of the Spt16D Pob3N heterodimer 5IJJ ; 1.95 ; Structure of the SPX domain of Chaetomium thermophilum Glycerophosphodiester Phosphodiesterase 1 in complex with inositol hexakisphosphate (InsP6) 5IJH ; 2.43 ; Structure of the SPX domain of the human phosphate transporter XPR1 in complex with a sulfate ion 5IIG ; 2.99 ; Structure of the SPX-TTM domain fragment of the yeast inorganic polyphophate polymerase Vtc4 (form A). 5IIQ ; 3.03 ; Structure of the SPX-TTM domain fragment of the yeast inorganic polyphophate polymerase Vtc4 (form B). 2ES5 ; ; Structure of the SRE RNA 4GYC ; 2.0501 ; Structure of the SRII(D75N mutant)/HtrII Complex in I212121 space group (""U"" shape) 5JJE ; 1.9 ; Structure of the SRII/HtrII Complex in I212121 space group (""U"" shape) 5JJF ; 1.9 ; Structure of the SRII/HtrII Complex in I212121 space group (""U"" shape) - M state 5JJJ ; 2.5 ; Structure of the SRII/HtrII Complex in P64 space group (""U"" shape) 5JJN ; 2.25 ; Structure of the SRII/HtrII(G83F) Complex in P212121 space group (""V"" shape) 4P3G ; 2.7 ; Structure of the SRP68-RBD from Chaetomium thermophilum 6PAJ ; 2.0 ; Structure of the SrrAB Histidine Kinase DHp-CA domain 4UAH ; 1.73 ; Structure of the Ssl1 laccase mutant H99N with depleted type-2 copper ion 4UAN ; 1.8 ; Structure of the Ssl1 laccase mutant H99Q with depleted type-2 copper ion 4W1T ; 1.55 ; Structure of the Ssl1 laccase mutant H99Y with depleted type-2 copper ion 4WTQ ; 1.8 ; Structure of the Ssl1 laccase mutant M295L 4GNI ; 1.796 ; Structure of the Ssz1 ATPase bound to ATP and Magnesium 4FG0 ; 3.899 ; Structure of the St. Louis Encephalitis Virus envelope protein in the fusogenic trimer conformation. 5IFR ; 2.2 ; Structure of the stable UBE2D3-UbDha conjugate 7A5F ; 4.4 ; Structure of the stalled human mitoribosome with P- and E-site mt-tRNAs 5FJ0 ; 2.2 ; Structure of the standard kink turn HmKt-7 as simple duplex in P4222 space group 5FJ4 ; 2.95 ; Structure of the standard kink turn HmKt-7 as stem loop bound with U1A and L7Ae proteins 5FJ1 ; 2.75 ; Structure of the standard kink turn HmKt-7 as stem loop in P212121 space group 6Q8U ; 1.99 ; Structure of the standard kink turn HmKt-7 variant A2bm6A bound with AfL7Ae protein 6Q8V ; 2.09 ; Structure of the standard kink turn HmKt-7 variant A2bm6A. 4G4K ; 1.52 ; Structure of the Staphylococcus aureus AgrA LytTR Domain 3BS1 ; 1.6 ; Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with a Novel Mode of Binding 2IHY ; 1.9 ; Structure of the Staphylococcus aureus putative ATPase subunit of an ATP-binding cassette (ABC) transporter 3V3B ; 2.0 ; Structure of the Stapled p53 Peptide Bound to Mdm2 5AFG ; 1.9 ; Structure of the Stapled Peptide Bound to Mdm2 4UE1 ; 1.45 ; Structure of the stapled peptide YS-01 bound to MDM2 4UD7 ; 1.6 ; Structure of the stapled peptide YS-02 bound to MDM2 4JVY ; 2.853 ; Structure of the STAR (signal transduction and activation of RNA) domain of GLD-1 bound to RNA 4JVH ; 3.501 ; Structure of the star domain of quaking protein in complex with RNA 5EMO ; 3.03 ; Structure of the star domain of T-STAR in complex with AUUAAA RNA 7ML5 ; 2.35 ; Structure of the Starch Branching Enzyme I (BEI) complexed with maltododecaose from Oryza sativa L 3VU2 ; 2.23 ; Structure of the Starch Branching Enzyme I (BEI) complexed with maltopentaose from Oryza sativa L 3AMK ; 1.9 ; Structure of the Starch Branching Enzyme I (BEI) from Oryza sativa L 3AML ; 1.7 ; Structure of the Starch Branching Enzyme I (BEI) from Oryza sativa L 1YP0 ; 1.5 ; Structure of the steroidogenic factor-1 ligand binding domain bound to phospholipid and a SHP peptide motif 4D7T ; 2.582 ; Structure of the SthK Carboxy-Terminal Region in complex with cAMP 4D7S ; 2.55 ; Structure of the SthK Carboxy-Terminal Region in complex with cGMP 6CJQ ; 3.42 ; Structure of the SthK cyclic nucleotide-gated potassium channel 6CJU ; 3.35 ; Structure of the SthK cyclic nucleotide-gated potassium channel in complex with cAMP 6CJT ; 3.46 ; Structure of the SthK cyclic nucleotide-gated potassium channel in complex with cGMP 7OUH ; 3.5 ; Structure of the STLV intasome:B56 complex bound to the strand-transfer inhibitor bictegravir 7OUF ; 3.0 ; Structure of the STLV intasome:B56 complex bound to the strand-transfer inhibitor XZ450 5SY1 ; 3.9 ; Structure of the STRA6 receptor for retinol uptake in complex with calmodulin 4OQ1 ; 1.85 ; Structure of the Streptococcal ancillary pilin 1Y08 ; 1.93 ; Structure of the Streptococcal Endopeptidase IdeS, a Novel Cysteine Proteinase with Strict Specificity for IgG 4K48 ; 2.49 ; Structure of the Streptococcus pneumoniae leucyl-tRNA synthetase editing domain 4K47 ; 2.02 ; Structure of the Streptococcus pneumoniae leucyl-tRNA synthetase editing domain bound to a benzoxaborole-AMP adduct 3ZPP ; 2.28 ; Structure of the Streptococcus pneumoniae surface protein and adhesin PfbA 2WYH ; 1.9 ; Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase 2WYI ; 2.6 ; Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine 7BDN ; 2.7 ; Structure of the Streptomyces coelicolor small laccase - cubic crystal form 6I0I ; 1.448 ; Structure of the streptomyces subtilisin and TAMP inhibitor (SSTI) 7U3A ; 3.34 ; Structure of the Streptomyces venezuelae GlgX-c-di-GMP complex 3HAV ; 2.45 ; Structure of the streptomycin-ATP-APH(2"")-IIa ternary complex 3FAJ ; 1.7 ; Structure of the structural protein P131 of the archaeal virus Acidianus Two-tailed virus (ATV) 3OI7 ; 2.4 ; Structure of the structure of the H13A mutant of Ykr043C in complex with sedoheptulose-1,7-bisphosphate 8F14 ; 1.69 ; Structure of the STUB1 TPR domain in complex with H201, an all-D Helicon Polypeptide 8F15 ; 1.73 ; Structure of the STUB1 TPR domain in complex with H202, an all-D Helicon Polypeptide 8F16 ; 1.56 ; Structure of the STUB1 TPR domain in complex with H203, an all-D Helicon Polypeptide 8F17 ; 2.21 ; Structure of the STUB1 TPR domain in complex with H204, an all-D Helicon Polypeptide 4F07 ; 2.3 ; Structure of the Styrene Monooxygenase Flavin Reductase (SMOB) from Pseudomonas putida S12 5E24 ; 2.14 ; Structure of the Su(H)-Hairless-DNA Repressor Complex 2Y08 ; 1.7 ; Structure of the substrate-free FAD-dependent tirandamycin oxidase TamL 2R0C ; 1.8 ; Structure of the substrate-free form of the rebeccamycin biosynthetic enzyme REBC 4GOH ; 1.8 ; Structure of the substrate-free HmuO, HO from Corynebacterium diphtheriae 5NCU ; 1.7 ; Structure of the subtilisin induced serpin-type proteinase inhibitor, miropin. 6X6B ; 1.67 ; Structure of the sulfate-bound form of ArrX from Chrysiogenes arsenatis 1FLP ; 1.5 ; STRUCTURE OF THE SULFIDE-REACTIVE HEMOGLOBIN FROM THE CLAM LUCINA PECTINATA: CRYSTALLOGRAPHIC ANALYSIS AT 1.5 ANGSTROMS RESOLUTION 2NNC ; 2.14 ; Structure of the sulfur carrier protein SoxY from Chlorobium limicola f thiosulfatophilum 2NNF ; 2.39 ; Structure of the sulfur carrier protein SoxY from Chlorobium limicola f thiosulfatophilum 3TQJ ; 2.004 ; Structure of the superoxide dismutase (Fe) (sodB) from Coxiella burnetii 1Z3I ; 3.0 ; Structure of the SWI2/SNF2 chromatin remodeling domain of eukaryotic Rad54 2VFX ; 1.95 ; Structure of the Symmetric Mad2 Dimer 1ZNN ; 2.2 ; Structure of the synthase subunit of PLP synthase 2NV1 ; 2.08 ; Structure of the synthase subunit Pdx1 (YaaD) of PLP synthase from Bacillus subtilis 3FEM ; 3.02 ; Structure of the synthase subunit Pdx1.1 (Snz1) of PLP synthase from Saccharomyces cerevisiae 4YFS ; 2.1 ; Structure of the synthetic Duffy Binding Protein (DBP) antigen DEKnull relevant for malaria vaccine design 5HU6 ; 2.9 ; Structure of the T. brucei haptoglobin-haemoglobin receptor bound to human haptolgobin-haemoglobin 6E4P ; 1.949 ; Structure of the T. brucei RRM domain in complex with RNA 6E4N ; 1.801 ; Structure of the T. brucei TbRGG2 RRM domain: apo R3 crystal form 5LB9 ; 2.1 ; Structure of the T175V Etr1p mutant in the monoclinic form P21 5LBX ; 2.5 ; Structure of the T175V Etr1p mutant in the trigonal form P312 in complex with NADP and crotonyl-CoA 4UCQ ; 2.6 ; Structure of the T18D small subunit mutant of D. fructosovorans NiFe- hydrogenase 4UCX ; 1.95 ; Structure of the T18G small subunit mutant of D. fructosovorans NiFe- hydrogenase 4UCW ; 2.3 ; Structure of the T18V small subunit mutant of D. fructosovorans NiFe- hydrogenase 7Z7Q ; 1.6 ; Structure of the T207D single-point mutant of the fluorescent protein NeonCyan1 at pH 6.5 4IYC ; 2.75 ; Structure of the T244A mutant of the PANTON-VALENTINE LEUCOCIDIN component from STAPHYLOCOCCUS AUREUS 6XYR ; 2.079 ; Structure of the T4Lnano fusion protein 6AXX ; 2.6 ; Structure of the T58A/I124A mutant of the HIV-1 capsid protein 6AXT ; 2.4 ; Structure of the T58S/T107I/P122A mutant of the HIV-1 capsid protein 6AXV ; 2.77 ; Structure of the T58S/T107I/P122A mutant of the HIV-1 capsid protein in complex with PF-3450074 (PF74) 3EXX ; 1.35 ; Structure of the T6 human insulin derivative with nickel at 1.35 A resolution 5M38 ; 2.6 ; Structure of the TagL peptidoglycan binding domain from EAEC T6SS 7BBA ; 2.43 ; Structure of the TagL peptidoglycan binding domain from EAEC T6SS 8ON5 ; 2.3 ; Structure of the tail fibre from an extracellular contractile injection system from Photorhabdus bacteria 6MNI ; 1.696 ; Structure of the tandem CACHE domain of PscC 2KZT ; ; Structure of the Tandem MA-3 Region of Pdcd4 3FSS ; 1.432 ; Structure of the tandem PH domains of Rtt106 3TVV ; 2.589 ; Structure of the tandem PH domains of Rtt106 (residues 68-315) 2XP1 ; 2.2 ; Structure of the tandem SH2 domains from Antonospora locustae transcription elongation factor Spt6 3F41 ; 2.3 ; Structure of the tandemly repeated protein tyrosine phosphatase like phytase from Mitsuokella multacida 4B4A ; 3.5 ; Structure of the TatC core of the twin arginine protein translocation system 8OH2 ; 2.6 ; Structure of the Tau-PAM4 Type 1 amyloid fibril 4Z6Y ; 2.81 ; Structure of the TBC1D7-TSC1 complex 2XTC ; 2.22 ; Structure of the TBL1 tetramerisation domain 2XTD ; 3.2 ; Structure of the TBL1 tetramerisation domain 2XTE ; 3.9 ; Structure of the TBL1 tetramerisation domain 7NE0 ; 3.25 ; Structure of the ternary complex between Netrin-1, Repulsive-Guidance Molecule-B (RGMB) and Neogenin 4WGG ; 2.4 ; STRUCTURE OF THE TERNARY COMPLEX OF A ZINGIBER OFFICINALE DOUBLE BOND REDUCTASE IN COMPLEX WITH NADP AND CONIFERYL ALDEHYDE 4K7T ; 1.1 ; Structure of the ternary complex of bacitracin, zinc, and geranyl-pyrophosphate 8ING ; 1.98 ; Structure of the ternary complex of lactoperoxidase with substrate nitric oxide (NO) and product nitrite ion (NO2) at 1.98 A resolution 4Q9E ; 2.31 ; Structure of the ternary complex of peptidoglycan recognition protein, PGRP-S with N-acetyl glucosamine and paranitro benzaldehyde at 2.3 A resolution 7DY5 ; 2.3 ; Structure of the ternary complex of peptidoglycan recognition protein-short (PGRP-S) with hexanoic acid and tartaric acid at 2.30A resolution 6RPU ; 2.11 ; Structure of the ternary complex of the IMPDH enzyme from Ashbya gossypii bound to the dinucleoside polyphosphate Ap5G and GDP 3V11 ; 5.0 ; Structure of the ternary initiation complex AIF2:GDPNP:methionylated initiator TRNA 1BUI ; 2.65 ; Structure of the ternary microplasmin-staphylokinase-microplasmin complex: a proteinase-cofactor-substrate complex in action 4F37 ; 2.57 ; Structure of the tethered N-terminus of Alzheimer's disease A peptide 4A99 ; 2.18 ; STRUCTURE OF THE TETRACYCLINE DEGRADING MONOOXYGENASE TETX IN COMPLEX WITH MINOCYCLINE 4A6N ; 2.3 ; STRUCTURE OF THE TETRACYCLINE DEGRADING MONOOXYGENASE TETX IN COMPLEX WITH TIGECYCLINE 2XDO ; 2.09 ; Structure of the Tetracycline degrading Monooxygenase TetX2 from Bacteroides thetaiotaomicron 2W2C ; 2.7 ; STRUCTURE OF THE TETRADECAMERIC OLIGOMERISATION DOMAIN OF CALCIUM- CALMODULIN DEPENDENT PROTEIN KINASE II DELTA 3EW5 ; 3.1 ; Structure of the tetragonal crystal form of X (ADRP) domain from FCoV 1AH6 ; 1.8 ; STRUCTURE OF THE TETRAGONAL FORM OF THE N-TERMINAL DOMAIN OF THE YEAST HSP90 CHAPERONE 1Y5Y ; 2.0 ; Structure of the tetrahydromethanopterin dependent formaldehyde-activating enzyme (Fae) from Methylobacterium extorquens AM1 1Y60 ; 1.9 ; Structure of the tetrahydromethanopterin dependent formaldehyde-activating enzyme (Fae) from Methylobacterium extorquens AM1 with bound 5,10-methylene tetrahydromethanopterin 1X8W ; 3.8 ; Structure of the Tetrahymena Ribozyme: Base Triple Sandwich and Metal Ion at the Active Site 2MEX ; ; Structure of the tetrameric building block of the Salmonella Typhimurium PrgI Type three secretion system needle 1WNT ; 2.3 ; Structure of the tetrameric form of Human L-Xylulose Reductase 3CQD ; 1.98 ; Structure of the tetrameric inhibited form of phosphofructokinase-2 from Escherichia coli 1VZJ ; 2.35 ; Structure of the tetramerization domain of acetylcholinesterase: four-fold interaction of a WWW motif with a left-handed polyproline helix 4GJW ; 3.0 ; Structure of the tetramerization domain of Nipah virus phosphoprotein 8BNY ; 1.429 ; Structure of the tetramerization domain of pLS20 conjugation repressor Rco 2Y6R ; 3.1 ; Structure of the TetX monooxygenase in complex with the substrate 7- chlortetracycline 2Y6Q ; 2.37 ; Structure of the TetX monooxygenase in complex with the substrate 7- Iodtetracycline 6YJ6 ; 3.1 ; Structure of the TFIIIC subcomplex tauA 3KO0 ; 2.3 ; Structure of the tfp-ca2+-bound activated form of the s100a4 Metastasis factor 3G7M ; 2.91 ; Structure of the thaumatin-like xylanase inhibitor TLXI 5DA0 ; 3.2 ; Structure of the the SLC26 transporter SLC26Dg in complex with a nanobody 8H09 ; 1.81 ; Structure of the thermolabile hemolysin from Vibrio alginolyticus (apo form) 8H0C ; 1.98 ; Structure of the thermolabile hemolysin from Vibrio alginolyticus (in complex with arachidonic acid) 8H0D ; 2.01 ; Structure of the thermolabile hemolysin from Vibrio alginolyticus (in complex with docosahexaenoic acid) 8H0A ; 1.94 ; Structure of the thermolabile hemolysin from Vibrio alginolyticus (in complex with lauric acid) 8H0B ; 1.931 ; Structure of the thermolabile hemolysin from Vibrio alginolyticus (in complex with oleic acid) 5LLM ; 3.25 ; Structure of the thermostabilized EAAT1 cryst mutant in complex with L-ASP and the allosteric inhibitor UCPH101 7AWM ; 3.25 ; Structure of the thermostabilized EAAT1 cryst mutant in complex with L-ASP, three sodium ions and the allosteric inhibitor UCPH101 7AWN ; 3.92 ; Structure of the thermostabilized EAAT1 cryst mutant in complex with rubidium and barium and the allosteric inhibitor UCPH101 5MJU ; 3.71 ; Structure of the thermostabilized EAAT1 cryst mutant in complex with the competititve inhibitor TFB-TBOA and the allosteric inhibitor UCPH101 7AWQ ; 3.65 ; Structure of the thermostabilized EAAT1 cryst-E386Q mutant in complex with L-ASP, sodium ions and the allosteric inhibitor UCPH101 7AWL ; 3.7 ; Structure of the thermostabilized EAAT1 cryst-II mutant in complex with barium and the allosteric inhibitor UCPH101 5LLU ; 3.32 ; Structure of the thermostabilized EAAT1 cryst-II mutant in complex with L-ASP 7AWP ; 3.91 ; Structure of the thermostabilized EAAT1 cryst-II mutant in complex with rubidium and barium ions and the allosteric inhibitor UCPH101 7CFF ; 2.0 ; Structure of the thermostabilized transmembrane domain of the bacterial CNNM/CorC family Mg2+ transporter in complex with Mg2+ 4XZ5 ; 2.596 ; Structure of the thermostable alpha-Carbonic Anydrase from Thiomicrospira crunogena XCL-2 gammaproteobacterium 1WL7 ; 1.9 ; Structure of the thermostable arabinanase 3S2C ; 3.0 ; Structure of the thermostable GH51 alpha-L-arabinofuranosidase from Thermotoga petrophila RKU-1 1VBL ; 1.91 ; Structure of the thermostable pectate lyase PL 47 5LM4 ; 3.1 ; Structure of the thermostalilized EAAT1 cryst-II mutant in complex with L-ASP and the allosteric inhibitor UCPH101 7EC9 ; 1.8 ; Structure of the Thermotoga maritima Family 5 endo-glucanase in complex with 1-deoxynojiromycin 5UHT ; 2.68 ; Structure of the Thermotoga maritima HK853-BeF3-RR468 complex at pH 5.0 1J5E ; 3.05 ; Structure of the Thermus thermophilus 30S Ribosomal Subunit 1N32 ; 3.0 ; Structure of the Thermus thermophilus 30S ribosomal subunit bound to codon and near-cognate transfer RNA anticodon stem-loop mismatched at the first codon position at the a site with paromomycin 1N33 ; 3.35 ; Structure of the Thermus thermophilus 30S ribosomal subunit bound to codon and near-cognate transfer rna anticodon stem-loop mismatched at the second codon position at the a site with paromomycin 6MPF ; 3.33 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a 2-thiocytidine (s2C32) and inosine (I34) modified anticodon stem loop (ASL) of Escherichia coli transfer RNA Arginine 1 (TRNAARG1) bound to an mRNA with an CGC-codon in the A-site and paromomycin 6MPI ; 3.33 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a 2-thiocytidine (s2C32) and inosine (I34) modified anticodon stem loop (ASL) of Escherichia coli transfer RNA Arginine 1 (TRNAARG1) bound to an mRNA with an CGU-codon in the A-site and paromomycin 3T1H ; 3.11 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a human anti-codon stem loop (HASL) of transfer RNA lysine 3 (tRNALys3) bound to an mRNA with an AAA-codon in the A-site and Paromomycin 3T1Y ; 2.8 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a human anti-codon stem loop (HASL) of transfer RNA Lysine 3 (TRNALYS3) bound to an mRNA with an AAG-codon in the A-site and paromomycin 4GKK ; 3.2 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a human mitochondrial anticodon stem loop (ASL) of transfer RNA Methionine (TRNAMET) bound to an mRNA with an AUA-codon in the A-site and paromomycin 4GKJ ; 3.298 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a human mitochondrial anticodon stem loop (ASL) of transfer RNA Methionine (TRNAMET) bound to an mRNA with an AUG-codon in the A-site and paromomycin. 2UUC ; 3.1 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a Valine-ASL with cmo5U in position 34 bound to an mRNA with a GUA-codon in the A-site and paromomycin. 2UUA ; 2.9 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a Valine-ASL with cmo5U in position 34 bound to an mRNA with a GUC-codon in the A-site and paromomycin. 2UU9 ; 3.1 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a Valine-ASL with cmo5U in position 34 bound to an mRNA with a GUG-codon in the A-site and paromomycin. 2UUB ; 2.8 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with a Valine-ASL with cmo5U in position 34 bound to an mRNA with a GUU-codon in the A-site and paromomycin. 6MKN ; 3.46 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with an inosine (I34) modified anticodon stem loop (ASL) of Escherichia coli transfer RNA Arginine 2 (TRNAARG2) bound to an mRNA with an CGU-codon in the A-site and paromomycin 6DTI ; 3.54 ; Structure of the Thermus thermophilus 30S ribosomal subunit complexed with an unmodifed anticodon stem loop (ASL) of Escherichia coli transfer RNA Arginine 2 (TRNAARG2) bound to an mRNA with an CGU-codon in the A-site and paromomycin 1IBM ; 3.31 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH A MESSENGER RNA FRAGMENT AND COGNATE TRANSFER RNA ANTICODON STEM-LOOP BOUND AT THE A SITE 1IBL ; 3.11 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH A MESSENGER RNA FRAGMENT AND COGNATE TRANSFER RNA ANTICODON STEM-LOOP BOUND AT THE A SITE AND WITH THE ANTIBIOTIC PAROMOMYCIN 4KHP ; 3.1 ; Structure of the Thermus thermophilus 30S ribosomal subunit in complex with de-6-MSA-pactamycin 1HNZ ; 3.3 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH HYGROMYCIN B 1HNX ; 3.4 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH PACTAMYCIN 1HNW ; 3.4 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH TETRACYCLINE 1IBK ; 3.31 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH THE ANTIBIOTIC PAROMOMYCIN 1FJG ; 3.0 ; STRUCTURE OF THE THERMUS THERMOPHILUS 30S RIBOSOMAL SUBUNIT IN COMPLEX WITH THE ANTIBIOTICS STREPTOMYCIN, SPECTINOMYCIN, AND PAROMOMYCIN 1N34 ; 3.8 ; Structure of the Thermus thermophilus 30S ribosomal subunit in the presence of codon and crystallographically disordered near-cognate transfer rna anticodon stem-loop mismatched at the first codon position 1N36 ; 3.65 ; Structure of the Thermus thermophilus 30S ribosomal subunit in the presence of crystallographically disordered codon and near-cognate transfer RNA anticodon stem-loop mismatched at the second codon position 4V7Y ; 3.0 ; Structure of the Thermus thermophilus 70S ribosome complexed with azithromycin. 4V51 ; 2.8 ; Structure of the Thermus thermophilus 70S ribosome complexed with mRNA, tRNA and paromomycin 4V7Z ; 3.1 ; Structure of the Thermus thermophilus 70S ribosome complexed with telithromycin. 4V5D ; 3.5 ; Structure of the Thermus thermophilus 70S ribosome in complex with mRNA, paromomycin, acylated A- and P-site tRNAs, and E-site tRNA. 4V5C ; 3.3 ; Structure of the Thermus thermophilus 70S ribosome in complex with mRNA, paromomycin, acylated A-site tRNA, deacylated P-site tRNA, and E-site tRNA. 4V7W ; 3.0 ; Structure of the Thermus thermophilus ribosome complexed with chloramphenicol. 4V7X ; 3.0 ; Structure of the Thermus thermophilus ribosome complexed with erythromycin. 4LVV ; 2.1 ; Structure of the THF riboswitch 4LVZ ; 1.77 ; Structure of the THF riboswitch bound to 2,6-diaminopurine 4LVW ; 1.768 ; Structure of the THF riboswitch bound to 7-deazaguanine 4LW0 ; 1.889 ; Structure of the THF riboswitch bound to adenine 4LVY ; 2.0 ; Structure of the THF riboswitch bound to pemetrexed 4LVX ; 1.9 ; Structure of the THF riboswitch bound to tetrahydrobiopterin 3D2X ; 2.5 ; Structure of the thiamine pyrophosphate-specific riboswitch bound to oxythiamine pyrophosphate 1TYG ; 3.15 ; Structure of the thiazole synthase/ThiS complex 5MVA ; 27.7 ; Structure of the thin filament at high calcium concentration 2ZO5 ; 1.7 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in a complex with azide 3OWM ; 1.65 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in a complex with hydroxylamine 3D1I ; 1.8 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in a complex with nitrite 3RKH ; 1.83 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in a complex with nitrite (full occupancy) 3MMO ; 1.55 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in complex with cyanide 3GM6 ; 1.8 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in complex with phosphate 3F29 ; 2.0 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in complex with sulfite 3LGQ ; 1.8 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase in complex with sulfite (modified Tyr-303) 3LG1 ; 1.95 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase reduced by sodium borohydride (in complex with sulfite) 3FO3 ; 1.4 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase reduced by sodium dithionite (sulfite complex) 3SCE ; 1.45 ; Structure of the Thioalkalivibrio nitratireducens cytochrome c nitrite reductase with a covalent bond between the CE1 atom of Tyr303 and the CG atom of Gln360 (TvNiRb) 3TTB ; 2.0 ; Structure of the Thioalkalivibrio paradoxus cytochrome c nitrite reductase in complex with sulfite 3D6I ; 1.5 ; Structure of the Thioredoxin-like Domain of Yeast Glutaredoxin 3 3GYQ ; 2.45 ; Structure of the Thiostrepton-Resistance Methyltransferase S-adenosyl-L-methionine Complex 3PDY ; 2.2182 ; Structure of the third and fourth spectrin repeats of the plakin domain of plectin 1C07 ; ; STRUCTURE OF THE THIRD EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15 2YS9 ; ; structure of the third Homeodomain from the human homeobox and leucine zipper protein, Homez 1ZZJ ; 2.3 ; Structure of the third KH domain of hnRNP K in complex with 15-mer ssDNA 2KG1 ; ; Structure of the third qRRM domain of hnRNP F in complex with a AGGGAU G-tract RNA 2N1K ; ; Structure of the Third Type III Domain from Human Fibronectin 2KVF ; ; Structure of the three-Cys2His2 domain of mouse testis zinc finger protein 2KVG ; ; Structure of the three-Cys2His2 domain of mouse testis zinc finger protein 2KVH ; ; Structure of the three-Cys2His2 domain of mouse testis zinc finger protein 8RB5 ; 3.3 ; Structure of the three-fold capsomer of the PNMA2 capsid 2W8X ; 1.6 ; Structure of the tick ion-channel modulator Ra-KLP 2WQB ; 2.95 ; Structure of the Tie2 kinase domain in complex with a thiazolopyrimidine inhibitor 2GUZ ; 2.0 ; Structure of the Tim14-Tim16 complex of the mitochondrial protein import motor 4LZP ; 3.15 ; Structure of the TIR domain of the immunosuppressor BtpA from Brucella 5WEZ ; 2.74 ; Structure of the Tir-CesT effector-chaperone complex 6XA2 ; 2.64 ; Structure of the tirandamycin C-bound P450 monooxygenase TamI 2Y3R ; 1.79 ; Structure of the tirandamycin-bound FAD-dependent tirandamycin oxidase TamL in P21 space group 2Y4G ; 2.03 ; Structure of the Tirandamycin-bound FAD-dependent tirandamycin oxidase TamL in P212121 space group 2Y3S ; 1.67 ; Structure of the tirandamycine-bound FAD-dependent tirandamycin oxidase TamL in C2 space group 6SJL ; 2.6 ; Structure of the Tle1 effector bound to the VgrG spike from the Type 6 secretion system 6NPK ; 3.6 ; Structure of the TM domain 6EN0 ; 2.8 ; Structure of the Tn1549 transposon Integrase (aa 82-397) in complex with circular intermediate DNA (CI5-DNA) 6EN1 ; 2.67 ; Structure of the Tn1549 transposon Integrase (aa 82-397, R225K) in complex with a circular intermediate DNA (CI6a-DNA) 6EN2 ; 2.67 ; Structure of the Tn1549 transposon Integrase (aa 82-397, R225K) in complex with a circular intermediate DNA (CI6b-DNA) 6EMZ ; 2.79 ; Structure of the Tn1549 transposon Integrase (aa 82-397, R225K) in complex with circular intermediate DNA (CI5-DNA) 6EMY ; 2.5 ; Structure of the Tn1549 transposon Integrase (aa 82-397, Y379F) in complex with transposon right end DNA 5LPH ; 2.25 ; Structure of the TOG domain of human Cep104 4LXR ; 2.2 ; Structure of the Toll - Spatzle complex, a molecular hub in Drosophila development and innate immunity 4LXS ; 3.3 ; Structure of the Toll - Spatzle complex, a molecular hub in Drosophila development and innate immunity (glycosylated form) 4WQM ; 1.62 ; Structure of the toluene 4-monooxygenase NADH oxidoreductase T4moF, K270S K271S variant 1T0Q ; 2.15 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase 3RNB ; 2.64 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/F176W Double Mutant 3RNC ; 2.74 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/I100A Double Mutant 3RNA ; 3.0 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/I100W Double Mutant 3RNE ; 2.5 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/I276E Double Mutant 3RN9 ; 2.8 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/L272E Double Mutant 3RNF ; 2.2 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/V271A Double Mutant 3RNG ; 2.81 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase T201S/W167E Double Mutant 1T0S ; 2.2 ; Structure of the Toluene/o-Xylene Monooxygenase Hydroxylase with 4-bromophenol bound 465D ; 1.6 ; STRUCTURE OF THE TOPOISOMERASE II POISON BOUND TO DNA 7NUR ; 3.125 ; Structure of the Toxoplasma gondii kinase Ron13, kinase-dead mutant 5LYN ; 2.0 ; Structure of the Tpr Domain of Sgt2 in complex with yeast Ssa1 peptide fragment 5TO5 ; 2.5 ; Structure of the TPR oligomerization domain 5TO6 ; 2.7 ; Structure of the TPR oligomerization domain 5TO7 ; 2.6 ; Structure of the TPR oligomerization domain 5TVB ; 2.75 ; Structure of the TPR oligomerization domain 6ZZE ; ; Structure of the trans-(Tyr39-Pro40) form of the Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) 7QYF ; 3.3 ; Structure of the transaminase PluriZyme variant (TR2E2) 7QYG ; 3.6 ; Structure of the transaminase TR2 7QX3 ; 3.6 ; Structure of the transaminase TR2E2 with EOS 2EUL ; 2.4 ; Structure of the transcription factor Gfh1. 2KEL ; ; Structure of the transcription regulator SvtR from the hyperthermophilic archaeal virus SIRV1 1UB9 ; 2.05 ; Structure of the transcriptional regulator homologue protein from Pyrococcus horikoshii OT3 3TQN ; 2.8 ; Structure of the transcriptional regulator of the GntR family, from Coxiella burnetii. 2HXO ; 2.4 ; Structure of the transcriptional regulator SCO7222, a TetR from Streptomyces coelicolor 6ZA3 ; 2.05 ; Structure of the transcriptional repressor Atu1419 (VanR) from agrobacterium fabrum in complex a palindromic DNA (C2221 space group) 6ZAB ; 2.8 ; Structure of the transcriptional repressor Atu1419 (VanR) from agrobacterium fabrum in complex a palindromic DNA (P6422 space group) 6Z74 ; 2.0 ; Structure of the transcriptional repressor Atu1419 (VanR) in complex with a fortuitous citrate from agrobacterium fabrum 6ZA0 ; 1.65 ; Structure of the transcriptional repressor Atu1419 (VanR) in complex with a fortuitous citrate from agrobacterium fabrum (P21212 space group) 2Z12 ; 1.15 ; Structure of the transformed monoclinic lysozyme by controlled dehydration 3EO0 ; 1.75 ; Structure of the Transforming Growth Factor-Beta Neutralizing Antibody GC-1008 3J7R ; 3.9 ; Structure of the translating mammalian ribosome-Sec61 complex 7R81 ; 2.7 ; Structure of the translating Neurospora crassa ribosome arrested by cycloheximide 3JUX ; 3.1 ; Structure of the translocation ATPase SecA from Thermotoga maritima 5JYN ; ; Structure of the transmembrane domain of HIV-1 gp41 in bicelle 2N7R ; ; Structure of the transmembrane domain of human nicastrin in DPC micelles 2N7Q ; ; Structure of the transmembrane domain of human nicastrin in SDS micelles 7DCV ; ; Structure of the transmembrane domain of human PD-L1 8J3V ; ; Structure of the transmembrane domain of human PD-L2 6ITH ; ; Structure of the transmembrane domain of syndecan 2 in micelles 7CFG ; 3.2 ; Structure of the transmembrane domain of the bacterial CNNM/CorC family Mg2+ transporter in complex with Mg2+ 7VU5 ; ; Structure of the transmembrane domain of the CD28 dimer 6NHW ; ; Structure of the transmembrane domain of the Death Receptor 5 - Dimer of Trimer 6NHY ; ; Structure of the transmembrane domain of the Death Receptor 5 mutant (G217Y) - Trimer Only 2MXB ; ; Structure of the transmembrane domain of the mouse erythropoietin receptor 5IOF ; 4.2 ; Structure of the transmembrane domain of the transporter SLC26Dg 2N4X ; ; Structure of the Transmembrane Electron Transporter CcdA 6F46 ; ; Structure of the transmembrane helix of BclxL in phospholipid nanodiscs 1MP6 ; ; Structure of the transmembrane region of the M2 protein H+ channel by solid state NMR spectroscopy 2NQW ; 1.3 ; Structure of the transporter associated domain from PG_0272, a CBS domain protein from Porphyromonas gingivalis 3F2K ; 1.85 ; Structure of the transposase domain of human Histone-lysine N-methyltransferase SETMAR 8BTK ; 3.5 ; Structure of the TRAP complex with the Sec translocon and a translating ribosome 6Z0I ; ; Structure of the TREM2 transmembrane helix in complex with DAP12 in DPC micelles 5WIR ; 2.1 ; Structure of the TRF1-TERB1 interface 3ZQC ; 2.9 ; Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal beta-hairpin conformation 1RCF ; 1.4 ; STRUCTURE OF THE TRIGONAL FORM OF RECOMBINANT OXIDIZED FLAVODOXIN FROM ANABAENA 7120 AT 1.40 ANGSTROMS RESOLUTION 4CFG ; 2.8 ; Structure of the TRIM25 coiled-coil 6YXE ; 2.1 ; Structure of the Trim69 RING domain 3GPM ; 3.8 ; Structure of the trimeric form of the E113G PCNA mutant protein 6U66 ; 0.99 ; Structure of the trimeric globular domain of Adiponectin 6U6N ; 2.15 ; Structure of the trimeric globular domain of Adiponectin mutant - D187A Q188A 2KNK ; ; Structure of the trimethylene N2-dG:N2-dG interstrand cross-link in 5'-CpG-3' sequence context 2KNL ; ; Structure of the trimethylene N2-dG:N2-dG interstrand cross-link in the 5'-GpC-3' sequence context 7TIM ; 1.9 ; STRUCTURE OF THE TRIOSEPHOSPHATE ISOMERASE-PHOSPHOGLYCOLOHYDROXAMATE COMPLEX: AN ANALOGUE OF THE INTERMEDIATE ON THE REACTION PATHWAY 6QAJ ; 2.901 ; Structure of the tripartite motif of KAP1/TRIM28 1KC2 ; 2.1 ; structure of the triple (Lys(beta)D3Ala, Asp(beta)C8Ala, AspCD2Ala) mutant of the Src SH2 domain bound to the PQpYEEIPI peptide 1O2E ; 2.6 ; Structure of the triple mutant (K53,56,120M) + Anisic acid complex of phospholipase A2 1GH4 ; 1.9 ; Structure of the triple mutant (K56M, K120M, K121M) of phospholipase A2 5E7T ; 2.9 ; Structure of the tripod (BppUct-A-L) from the baseplate of bacteriophage Tuc2009 6ZMA ; 2.15 ; Structure of the tRNA-Monooxygenase enzyme MiaE frozen under 140 bar of krypton using the soak and freeze methodology 6ZMC ; 2.5 ; Structure of the tRNA-Monooxygenase enzyme MiaE frozen under 2000 bar using the high pressure freezing method 3MTU ; 2.1 ; Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle 3MUD ; 2.2 ; Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle 1GTN ; 2.5 ; Structure of the trp RNA-binding attenuation protein (TRAP) bound to an RNA molecule containing 11 GAGCC repeats 3J9P ; 4.24 ; Structure of the TRPA1 ion channel determined by electron cryo-microscopy 6O6R ; 3.2 ; Structure of the TRPM8 cold receptor by single particle electron cryo-microscopy, AMTB-bound state 6O77 ; 3.2 ; Structure of the TRPM8 cold receptor by single particle electron cryo-microscopy, calcium-bound state 6O6A ; 3.6 ; Structure of the TRPM8 cold receptor by single particle electron cryo-microscopy, ligand-free state 6O72 ; 3.0 ; Structure of the TRPM8 cold receptor by single particle electron cryo-microscopy, TC-I 2014-bound state 6HRS ; 2.95 ; Structure of the TRPML2 ELD at pH 4.5 6HRR ; 2.0 ; Structure of the TRPML2 ELD at pH 6.5 6OT2 ; 4.1 ; Structure of the TRPV3 K169A sensitized mutant in apo form at 4.1 A resolution 6OT5 ; 3.6 ; Structure of the TRPV3 K169A sensitized mutant in the presence of 2-APB at 3.6 A resolution 5BU1 ; 1.6 ; Structure of the truncated C-terminal domain of lpg1496 from Legionella pneumophila 8FN5 ; 1.92 ; Structure of the truncated catalytic domain of Streptococcus mutans GtfD 3B8K ; 8.8 ; Structure of the Truncated Human Dihydrolipoyl Acetyltransferase (E2) 4GKP ; 2.42 ; Structure of the truncated neck and C-terminal motor homology domain of ViK1 from Candida glabrata 6XZ6 ; 2.7 ; Structure of the trypanosome brucei factor H receptor bound to domain D5 of bovine factor H 5NCW ; 1.5 ; Structure of the trypsin induced serpin-type proteinase inhibitor, miropin (V367K/K368A mutant). 5NCT ; 1.6 ; Structure of the trypsin induced serpin-type proteinase inhibitor, miropin. 1TAB ; 2.3 ; STRUCTURE OF THE TRYPSIN-BINDING DOMAIN OF BOWMAN-BIRK TYPE PROTEASE INHIBITOR AND ITS INTERACTION WITH TRYPSIN 4GE1 ; 2.15 ; Structure of the tryptamine complex of the amine binding protein of Rhodnius prolixus 2UUX ; 1.4 ; Structure of the tryptase inhibitor TdPI from a tick 5T6M ; 1.8 ; Structure of the tryptophan synthase b-subunit from Pyroccus furiosus with b-methyltryptophan non-covalently bound 6SSH ; 1.4 ; Structure of the TSC2 GAP domain 5HIU ; 2.5 ; Structure of the TSC2 N-terminus 1KPP ; ; Structure of the Tsg101 UEV domain 1KPQ ; ; Structure of the Tsg101 UEV domain 1M4Q ; ; STRUCTURE OF THE TSG101 UEV DOMAIN IN COMPLEX WITH A HIV-1 PTAP ""LATE DOMAIN"" PEPTIDE, CNS ENSEMBLE 1M4P ; ; Structure of the Tsg101 UEV domain in complex with a HIV-1 PTAP ""late domain"" peptide, DYANA Ensemble 4EJE ; 2.2 ; Structure Of The Tsg101 UEV Domain In Complex With an Ebola PTAP late Domain Peptide 4BHR ; 1.7 ; Structure of the TTHA1221 type IV pilin protein from Thermus thermophilus 5VLQ ; 2.285 ; Structure of the TTLL3 Glycylase 3UL9 ; 2.45 ; structure of the TV3 mutant M41E 3S7W ; 1.79 ; Structure of the TvNiRb form of Thioalkalivibrio nitratireducens cytochrome c nitrite reductase with an oxidized Gln360 in a complex with hydroxylamine 1IAM ; 2.1 ; STRUCTURE OF THE TWO AMINO-TERMINAL DOMAINS OF HUMAN INTERCELLULAR ADHESION MOLECULE-1, ICAM-1 5M9F ; 1.8 ; Structure of the two C-terminal domains of bacteriophage K gp144 3ZD1 ; 2.0 ; STRUCTURE OF THE TWO C-TERMINAL DOMAINS OF COMPLEMENT FACTOR H RELATED PROTEIN 2 3C2U ; 1.3 ; Structure of the two subsite D-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane 4OVA ; 3.0 ; Structure of the two tandem Tudor domains and a new identified KH0 domain from human Fragile X Mental Retardation Protein 5W43 ; 3.15 ; Structure of the two-component response regulator RcsB-DNA complex 6TAS ; 2.75 ; Structure of the two-fold capsomer of the dArc1 capsid 6TAU ; 3.7 ; Structure of the two-fold capsomer of the dArc2 capsid 8RB7 ; 3.2 ; Structure of the two-fold capsomer of the PNMA2 capsid 2JGP ; 1.85 ; Structure of the TycC5-6 PCP-C bidomain of the tyrocidine synthetase TycC 8ANE ; 3.2 ; Structure of the type I-G CRISPR effector 8B2X ; 8.0 ; Structure of the type I-G CRISPR effector 2BM3 ; 1.8 ; Structure of the Type II cohesin from Clostridium thermocellum SdbA 4FTF ; 1.48 ; Structure of the Type II secretion system pilotin AspS from Vibrio cholerae 6VAP ; 1.93 ; Structure of the type II thioesterase BorB from the borrelidin biosynthetic cluster 2F9T ; 2.2 ; Structure of the type III CoaA from Pseudomonas aeruginosa 2F9W ; 1.9 ; Structure of the type III CoaA from Pseudomonas aeruginosa 3I0U ; 2.7 ; Structure of the type III effector/phosphothreonine lyase OspF from Shigella flexneri 4UR4 ; 1.45 ; Structure of the type III fish antifreeze protein from Zoarces viviparus ZvAFP13 4UR6 ; 1.2 ; Structure of the type III fish antifreeze protein from Zoarces viviparus ZvAFP6 2H3G ; 2.0 ; Structure of the Type III Pantothenate Kinase (CoaX) from Bacillus Anthracis 4D9V ; 2.519 ; Structure of the Type III Secretion System Protein 7XSO ; 3.01 ; Structure of the type III-E CRISPR-Cas effector gRAMP 5ZMM ; 3.15 ; Structure of the Type IV phosphorothioation-dependent restriction endonuclease ScoMcrA 6GV9 ; 8.0 ; Structure of the type IV pilus from enterohemorrhagic Escherichia coli (EHEC) 2M7G ; ; Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens 4F4M ; 2.677 ; Structure of the type VI peptidoglycan amidase effector Tse1 (C30A) from Pseudomonas aeruginosa 4EOB ; 2.611 ; Structure of the type VI peptidoglycan amidase effector Tse1 from Pseudomonas aeruginosa 6N38 ; 3.7 ; Structure of the type VI secretion system TssK-TssF-TssG baseplate subcomplex revealed by cryo-electron microscopy - full map sharpened 2K3U ; ; Structure of the tyrosine-sulfated C5a receptor N-terminus in complex with the immune evasion protein CHIPS. 2J5B ; 2.2 ; Structure of the Tyrosyl tRNA synthetase from Acanthamoeba polyphaga Mimivirus complexed with tyrosynol 6SQT ; 1.84 ; Structure of the U1A variant A1-98 Y31H/Q36R/F56W triple mutant 6SQN ; 2.05 ; Structure of the U1A variant A1-98 Y31H/Q36R/F56W triple mutant co-crystallized with RNA 6SQQ ; 2.37 ; Structure of the U1A variant A1-98 Y31H/Q36R/F56W triple mutant in complex with RNA obtained by soaking 6SR7 ; 1.86 ; Structure of the U1A variant A1-98 Y31H/Q36R/K98W 6SQV ; 2.45 ; Structure of the U1A variant A1-98 Y31H/Q36R/R70W 7ONB ; 3.1 ; Structure of the U2 5' module of the A3'-SSA complex 1VTM ; 3.5 ; STRUCTURE OF THE U2 STRAIN OF TOBACCO MOSAIC VIRUS REFINED AT 3.5 ANGSTROMS RESOLUTION USING X-RAY FIBER DIFFRACTION 3IVN ; 2.8 ; Structure of the U65C mutant A-riboswitch aptamer from the Bacillus subtilis pbuE operon 6G5R ; ; Structure of the UB2H domain of E.coli PBP1B in complex with LpoB 2MJ5 ; ; Structure of the UBA Domain of Human NBR1 in Complex with Ubiquitin 2OXQ ; 2.9 ; Structure of the UbcH5 :CHIP U-box complex 8OIF ; 3.5 ; Structure of the UBE1L activating enzyme bound to ISG15 and UBE2L6 6H6V ; 2.66 ; Structure of the UbiD-class enzyme HmfF from Pelotomaculum thermopropionicum in complex with FMN 5VSX ; 2.1 ; Structure of the Ubl domain of Sacsin 5VSZ ; 2.4 ; Structure of the Ubl domain of Sacsin mutant L78M 3M99 ; 2.7 ; Structure of the Ubp8-Sgf11-Sgf73-Sus1 SAGA DUB module 3NY1 ; 2.085 ; Structure of the ubr-box of the UBR1 ubiquitin ligase 3NY3 ; 1.6 ; Structure of the ubr-box of UBR2 in complex with N-degron 3NY2 ; 2.61 ; Structure of the ubr-box of UBR2 ubiquitin ligase 2DZK ; ; Structure of the UBX domain in Mouse UBX Domain-Containing Protein 2 4BMJ ; 2.75 ; Structure of the UBZ1and2 tandem of the ubiquitin-binding adaptor protein TAX1BP1 3DXB ; 2.2 ; Structure of the UHM domain of Puf60 fused to thioredoxin 4FZH ; 3.5008 ; Structure of the Ulster Strain Newcastle Disease Virus Hemagglutinin-Neuraminidase Reveals Auto-Inhibitory Interactions Associated with Low Virulence 7WKI ; 2.6 ; Structure of the ultra-affinity complex between CFH and a nanobody 6VI2 ; 1.15 ; Structure of the unaligned Fab4 5K28 ; 1.5 ; Structure of the unbound SH3 domain of MLK3 3H35 ; 2.15 ; Structure of the uncharacterized protein ABO_0056 from the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2. 1ZTM ; 3.05 ; Structure of the Uncleaved Paramyxovirus (hPIV3) Fusion Protein 8RU0 ; 3.08 ; Structure of the undecorated barbed end of F-actin. 3QTB ; 2.1 ; Structure of the universal stress protein from Archaeoglobus fulgidus in complex with dAMP 5IIE ; 2.8 ; STRUCTURE OF THE UNLIGANDED ANTI-HIV ANTIBODY DH501 THAT BINDS GP120 V3 GLYCAN AND THE BASE OF V3 1FOT ; 2.8 ; STRUCTURE OF THE UNLIGANDED CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT FROM SACCHAROMYCES CEREVISIAE 5F89 ; 2.7842 ; Structure of the Unliganded Fab from HIV-1 Neutralising Antibody CAP248-2B that Binds to the gp120 C-terminus - gp41 Interface 5MP6 ; 1.959 ; Structure of the Unliganded Fab from HIV-1 Neutralizing Antibody CAP248-2B that Binds to the gp120 C-terminus - gp41 Interface, at two Angstrom resolution. 5JXI ; 2.0 ; Structure of the unliganded form of the proprotein convertase furin in presence of EDTA. 5JXG ; 1.8 ; Structure of the unliganded form of the proprotein convertase furin. 4I8Y ; 2.1 ; Structure of the unliganded N254Y/H258Y mutant of the phosphatidylinositol-specific phospholipase C from S. aureus 5MSP ; 2.41 ; Structure of the unmodified PCP-R didomain of carboxylic acid reductase (CAR) from Segniliparus rugosus in complex with NADP, F2221 form 5MSR ; 2.37 ; Structure of the unmodified PCP-R domain of carboxylic acid reductase (CAR) from Segniliparus rugosus in complex with NADPH, P43 form 2V97 ; 2.4 ; Structure of the unphotolysed complex of TcAChE with 1-(2- nitrophenyl)-2,2,2-trifluoroethyl-arsenocholine after a 9 seconds annealing to room temperature 2V96 ; 2.4 ; Structure of the unphotolysed complex of TcAChE with 1-(2- nitrophenyl)-2,2,2-trifluoroethyl-arsenocholine at 100K 4UPE ; 1.8 ; Structure of the unready Ni-A state of the S499C mutant of D. fructosovorans NiFe-hydrogenase 1YQ9 ; 2.35 ; Structure of the unready oxidized form of [NiFe] hydrogenase 1JLR ; 2.45 ; STRUCTURE OF THE URACIL PHOSPHORIBOSYLTRANSFERASE GTP COMPLEX 2 MUTANT C128V 1JLS ; 2.5 ; STRUCTURE OF THE URACIL PHOSPHORIBOSYLTRANSFERASE URACIL/CPR 2 MUTANT C128V 1UPF ; 2.3 ; STRUCTURE OF THE URACIL PHOSPHORIBOSYLTRANSFERASE, MUTANT C128V BOUND TO THE DRUG 5-FLUOROURACIL 1UPU ; 2.5 ; STRUCTURE OF THE URACIL PHOSPHORIBOSYLTRANSFERASE, MUTANT C128V, BOUND TO PRODUCT URIDINE-1-MONOPHOSPHATE (UMP) 3CXN ; 1.55 ; Structure of the Urease Accessory Protein UreF from Helicobacter pylori 6CRN ; 2.5 ; Structure of the USP15 deubiquitinase domain in complex with a high-affinity first-generation Ubv 6CPM ; 2.011 ; Structure of the USP15 deubiquitinase domain in complex with a third-generation inhibitory Ubv 6ML1 ; 1.9 ; Structure of the USP15 deubiquitinase domain in complex with an affinity-matured inhibitory Ubv 6DJ9 ; 3.1 ; Structure of the USP15 DUSP domain in complex with a high-affinity Ubiquitin Variant (UbV) 6H4K ; 2.05 ; Structure of the Usp25 C-terminal domain 6FPF ; 2.2 ; Structure of the Ustilago maydis chorismate mutase 1 6FPG ; 1.8 ; Structure of the Ustilago maydis chorismate mutase 1 in complex with a Zea mays kiwellin 6TI2 ; 2.75 ; Structure of the Ustilago maydis chorismate mutase 1 in complex with KWL1-b from Zea mays 5XPV ; 1.9 ; Structure of the V domain of amphioxus IgVJ-C2 3EEB ; 2.1 ; Structure of the V. cholerae RTX cysteine protease domain 3GCD ; 2.35 ; Structure of the V. cholerae RTX cysteine protease domain in complex with an aza-Leucine peptide inhibitor 7P1H ; 3.9 ; Structure of the V. vulnificus ExoY-G-actin-profilin complex 6AXY ; 2.78 ; Structure of the V11I/T58A/I124A mutant of the HIV-1 capsid protein 6AXS ; 2.402 ; Structure of the V11I/T58A/P122A mutant of the HIV-1 capsid protein 7R0J ; 4.23 ; Structure of the V2 receptor Cter-arrestin2-ScFv30 complex 4UEQ ; 1.7 ; Structure of the V74C large subunit mutant of D. fructosovorans NiFe- hydrogenase 3H3X ; 2.7 ; Structure of the V74M large subunit mutant of NI-FE hydrogenase in an oxidized state 7PZY ; 2.32 ; Structure of the vacant Candida albicans 80S ribosome 5FCI ; 3.4 ; Structure of the vacant uL3 W255C mutant 80S yeast ribosome 6RFG ; 1.897 ; Structure of the Vaccinia core protein E11 8GP6 ; 2.7 ; Structure of the vaccinia virus A16/G9 sub-complex from the orthopoxvirus entry-fusion complex 4LQK ; 1.99 ; Structure of the vaccinia virus NF- B antagonist A46 8DMM ; 3.47 ; Structure of the vanadate-trapped MsbA bound to KDL 1LVE ; 1.95 ; STRUCTURE OF THE VARIABLE DOMAIN OF HUMAN IMMUNOGLOBULIN K-4 LIGHT CHAIN LEN 5LVE ; 2.0 ; STRUCTURE OF THE VARIABLE DOMAIN OF HUMAN IMMUNOGLOBULIN K-4 LIGHT CHAIN LEN 4HGA ; 2.799 ; Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX 8FCK ; 6.88 ; Structure of the vertebrate augmin complex 6TF9 ; 4.8 ; Structure of the vertebrate gamma-Tubulin Ring Complex 6U1X ; 3.0 ; Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor (3.0 A resolution) 2W2R ; 1.83 ; Structure of the vesicular stomatitis virus matrix protein 4U0N ; 2.102 ; Structure of the Vibrio cholerae di-nucleotide cyclase (DncV) deletion mutant D-loop 4U03 ; 2.041 ; Structure of the vibrio cholerae di-nucleotide cyclase (DncV) in complex with GTP and 5MTHFGLU2 4U0L ; 2.1 ; Structure of the Vibrio cholerae di-nucleotide cyclase (DncV) mutant D131A-D133A 4U0M ; 2.3 ; Structure of the Vibrio cholerae di-nucleotide cyclase (DncV) mutant D193N in complex with ATP, GTP and 5MTHFGLU2 1YG2 ; 2.2 ; Structure of the Vibrio cholerae virulence activator AphA 4UA4 ; 1.25 ; Structure of the VIM-2 Metallo-beta-Lactamase in Complex with a Bisthiazolidine Inhibitor 5TZN ; 2.6 ; Structure of the viral immunoevasin m12 (Smith) bound to the natural killer cell receptor NKR-P1B (B6) 1F0C ; 2.26 ; STRUCTURE OF THE VIRAL SERPIN CRMA 2XXN ; 1.6 ; Structure of the vIRF4-HAUSP TRAF domain complex 4CSB ; 1.9 ; Structure of the Virulence-Associated Protein VapD from the intracellular pathogen Rhodococcus equi. 7JSN ; 3.2 ; Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6 8YHV ; 2.35 ; Structure of the VP40 from Biortus. 7UMT ; 3.4 ; Structure of the VP5*/VP8* assembly from the human rotavirus strain CDC-9 - Reversed conformation 7UMS ; 3.5 ; Structure of the VP5*/VP8* assembly from the human rotavirus strain CDC-9 in complex with antibody 41 - Upright conformation 7RSJ ; 1.881 ; Structure of the VPS34 kinase domain with compound 14 7RSP ; 1.67 ; Structure of the VPS34 kinase domain with compound 14 7RSV ; 1.78 ; Structure of the VPS34 kinase domain with compound 5 3Q68 ; 2.705 ; Structure of the Vps75-Rtt109 histone chaperone-lysine acetyltransferase complex (Full-length proteins in space group P212121) 3Q66 ; 2.705 ; Structure of the Vps75-Rtt109 histone chaperone-lysine acetyltransferase complex (Full-length proteins in space group P6122) 2WA6 ; 1.95 ; Structure of the W148R mutant of human filamin b actin binding domain at 1.95 Angstrom resolution 3RLM ; 2.13 ; Structure of the W199F MauG/pre-Methylamine Dehydrogenase complex after treatment with hydrogen peroxide 1CZW ; 2.5 ; STRUCTURE OF THE W34A MUTANT OF SHIGA-LIKE TOXIN I B SUBUNIT 2OR2 ; 1.84 ; Structure of the W47A/W242A Mutant of Bacterial Phosphatidylinositol-Specific Phospholipase C 7AP7 ; 1.15 ; Structure of the W64R amyloidogenic variant of human lysozyme 3L7I ; 2.7 ; Structure of the Wall Teichoic Acid Polymerase TagF 3L7K ; 3.1 ; Structure of the Wall Teichoic Acid Polymerase TagF, H444N + CDPG (15 minute soak) 3L7L ; 2.95 ; Structure of the Wall Teichoic Acid Polymerase TagF, H444N + CDPG (30 minute soak) 3L7J ; 2.81 ; Structure of the Wall Teichoic Acid Polymerase TagF, H444N variant 3L7M ; 2.85 ; Structure of the Wall Teichoic Acid Polymerase TagF, H548A 5IC7 ; 2.331 ; Structure of the WD domain of UTP18 5NUV ; 1.55 ; Structure of the WD40-domain of human ATG16L1 8B2Y ; 2.83 ; Structure of the weakly red fluorescent protein csiFP4 from Clytia simplex 2HG0 ; 3.0 ; Structure of the West Nile Virus envelope glycoprotein 4HZF ; 1.48 ; structure of the wild type Catabolite gene Activator Protein 5J91 ; 2.96 ; Structure of the Wild-type 70S E coli ribosome bound to Tigecycline 8WOI ; 3.4 ; Structure of the wild-type Arabidopsis ABCB19 in the apo state 8WOO ; 3.9 ; Structure of the wild-type Arabidopsis ABCB19 in the brassinolide and AMP-PNP bound state 8WOM ; 3.5 ; Structure of the wild-type Arabidopsis ABCB19 in the brassinolide-bound state 2C89 ; 1.85 ; Structure of the wild-type C3bot1 Exoenzyme (Free state, crystal form I) 2C8A ; 1.7 ; Structure of the wild-type C3bot1 Exoenzyme (Nicotinamide-bound state, crystal form I) 1OCB ; 1.75 ; Structure of the wild-type cellobiohydrolase Cel6A from Humicolas insolens in complex with a fluorescent substrate 2VME ; 2.45 ; Structure of the wild-type discoidin II from Dictyostelium discoideum 1KK3 ; 1.9 ; Structure of the wild-type large gamma subunit of initiation factor eIF2 from Pyrococcus abyssi complexed with GDP-Mg2+ 7M9F ; 2.7 ; Structure of the wild-type native full-length HIV-1 capsid protein in complex with ZW-1261 4BXP ; 1.7 ; Structure of the wild-type TCP10 domain of Danio rerio CPAP 4BXR ; 2.2 ; Structure of the wild-type TCP10 domain of Danio rerio CPAP in complex with a peptide of Danio rerio STIL 1LKY ; 2.3 ; Structure of the wild-type TEL-SAM polymer 2JP9 ; ; Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA 2JPA ; ; Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA 2PRT ; 3.15 ; Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA 4WBH ; 2.2 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM I APO - 2.2A 4UYW ; 1.7 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM I HEPARIN FRAGMENT COMPLEX - 1.7A 4UYU ; 2.3 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM I IODIDE COMPLEX - 2.3A 4UZL ; 2.1 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM I MYRISTOLEATE COMPLEX - 2.1A 4UYZ ; 2.8 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM II - 2.8A 4UZ1 ; 1.4 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM III - 1.4A 4UZ5 ; 2.1 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM IV - 2.1A 4UZ6 ; 1.9 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM V - SOS COMPLEX - 1.9A 4UZ7 ; 2.2 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM VI - 2.2A 4UZ9 ; 2.2 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM VII - SOS COMPLEX - 2.2A 4UZA ; 2.4 ; STRUCTURE OF THE WNT DEACYLASE NOTUM - CRYSTAL FORM VIII - PHOSPHATE COMPLEX - 2.4A 4UZJ ; 2.4 ; STRUCTURE OF THE WNT DEACYLASE NOTUM FROM DROSOPHILA - CRYSTAL FORM I - 2.4A 4UZK ; 1.9 ; STRUCTURE OF THE WNT DEACYLASE NOTUM FROM DROSOPHILA - CRYSTAL FORM II - 1.9A 6R8Q ; 1.5 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A BENZOTRIAZOLE FRAGMENT 6YUW ; 1.94 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A PYRROLE-3-CARBOXYLIC ACID FRAGMENT 454 6YUY ; 2.0 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A PYRROLE-3-CARBOXYLIC ACID FRAGMENT 471 6YV4 ; 2.0 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A PYRROLE-3-CARBOXYLIC ACID FRAGMENT 686 6YV0 ; 2.0 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A PYRROLIDINE-3-CARBOXYLIC ACID FRAGMENT 587 6YV2 ; 2.1 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH A PYRROLIDINE-3-CARBOXYLIC ACID FRAGMENT 598 6R8R ; 1.27 ; Structure of the Wnt deacylase Notum in complex with isoquinoline 45 4UZQ ; 1.5 ; STRUCTURE OF THE WNT DEACYLASE NOTUM IN COMPLEX WITH O-PALMITOLEOYL SERINE - CRYSTAL FORM IX - 1.5A 3ZIK ; 2.14 ; Structure of the Wpl1 protein 3ZIL ; 2.012 ; Structure of the Wpl1 protein 5J5B ; 2.8 ; Structure of the WT E coli ribosome bound to tetracycline 7SYP ; 4.0 ; Structure of the wt IRES and 40S ribosome binary complex, open conformation. Structure 10(wt) 7SYQ ; 3.8 ; Structure of the wt IRES and 40S ribosome ternary complex, open conformation. Structure 11(wt) 7SYR ; 3.6 ; Structure of the wt IRES eIF2-containing 48S initiation complex, closed conformation. Structure 12(wt). 7SYW ; 3.7 ; Structure of the wt IRES eIF5B-containing 48S initiation complex, closed conformation. Structure 15(wt) 7SYV ; 3.9 ; Structure of the wt IRES eIF5B-containing pre-48S initiation complex, open conformation. Structure 14(wt) 7SYT ; 4.4 ; Structure of the wt IRES w/o eIF2 48S initiation complex, closed conformation. Structure 13(wt) 5TZD ; 1.749 ; Structure of the WT S. venezulae BldD-(CTD-c-di-GMP)2 assembly intermediate 2VGR ; 2.1 ; Structure of the WT-Phycoerythrobilin Synthase PebS from the Cyanophage P-SSM2 in Complex with the bound Substrate Biliverdin IXa 6RY3 ; 1.374 ; Structure of the WUS homeodomain 2LB3 ; ; Structure of the WW domain of PIN1 in complex with a human phosphorylated Smad3 derived peptide 8PXW ; ; Structure of the WW domain tandem of PRPF40A 8PXX ; ; Structure of the WW domain tandem of PRPF40A in complex with SF1 5I84 ; 2.98 ; Structure of the Xanthomonas citri phosphate-binding protein PhoX 2GST ; 1.8 ; STRUCTURE OF THE XENOBIOTIC SUBSTRATE BINDING SITE OF A GLUTATHIONE S-TRANSFERASE AS REVEALED BY X-RAY CRYSTALLOGRAPHIC ANALYSIS OF PRODUCT COMPLEXES WITH THE DIASTEREOMERS OF 9-(S-GLUTATHIONYL)-10-HYDROXY-9, 10-DIHYDROPHENANTHRENE 3GST ; 1.9 ; STRUCTURE OF THE XENOBIOTIC SUBSTRATE BINDING SITE OF A GLUTATHIONE S-TRANSFERASE AS REVEALED BY X-RAY CRYSTALLOGRAPHIC ANALYSIS OF PRODUCT COMPLEXES WITH THE DIASTEREOMERS OF 9-(S-GLUTATHIONYL)-10-HYDROXY-9, 10-DIHYDROPHENANTHRENE 2KN7 ; ; Structure of the XPF-single strand DNA complex 4C1U ; 2.0 ; Structure of the xylo-oligosaccharide specific solute binding protein from Bifidobacterium animalis subsp. lactis Bl-04 in complex with arabinoxylobiose 4C1T ; 2.39 ; Structure of the xylo-oligosaccharide specific solute binding protein from Bifidobacterium animalis subsp. lactis Bl-04 in complex with arabinoxylotriose 3ZKK ; 2.198 ; Structure of the xylo-oligosaccharide specific solute binding protein from Bifidobacterium animalis subsp. lactis Bl-04 in complex with xylotetraose 3ZKL ; 2.397 ; Structure of the xylo-oligosaccharide specific solute binding protein from Bifidobacterium animalis subsp. lactis Bl-04 in complex with xylotriose 5MXJ ; 2.8 ; Structure of the Y108F mutant of vanillyl alcohol oxidase 4BWL ; 2.0 ; Structure of the Y137A mutant of E. coli N-acetylneuraminic acid lyase in complex with pyruvate, N-acetyl-D-mannosamine and N- acetylneuraminic acid 4IYT ; 2.2 ; Structure Of The Y184A Mutant Of The PANTON-VALENTINE LEUCOCIDIN S Component From STAPHYLOCOCCUS AUREUS 6F4D ; 2.0 ; Structure of the Y21F variant of quinolinate synthase in complex with PGH 6G74 ; 2.0 ; Structure of the Y21F variant of quinolinate synthase in complex with phthalate 4J0O ; 2.5 ; Structure of the Y246A Mutant of the PANTON-VALENTINE LEUCOCIDIN S Component from STAPHYLOCOCCUS AUREUS 4IYA ; 1.55 ; Structure of the Y250A mutant of the PANTON-VALENTINE LEUCOCIDIN S component from STAPHYLOCOCCUS AUREUS 3ZQ5 ; 1.95 ; Structure of the Y263F mutant of the cyanobacterial phytochrome Cph1 4KMW ; 1.79 ; Structure of the Y34N MUTANT OF DEHALOPEROXIDASE-HEMOGLOBIN A FROM AMPHITRITE ORNATA WITH 2,4,6-TRICHLOROPHENOL 4KN3 ; 1.78 ; Structure of the Y34NS91G double mutant of Dehaloperoxidase from Amphitrite ornata with 2,4,6-trichlorophenol 3ZOO ; 1.35 ; Structure of the Y46F mutant of human cytochrome c 5MXU ; 2.8 ; Structure of the Y503F mutant of vanillyl alcohol oxidase 1NI0 ; 2.5 ; Structure of the Y94F mutant of the restriction endonuclease PvuII 2RU9 ; ; Structure of the YAM domain of E. coli Transporter YajR 8GA8 ; 3.5 ; Structure of the yeast (HDAC) Rpd3L complex 3JCK ; 3.5 ; Structure of the yeast 26S proteasome lid sub-complex 5APO ; 3.41 ; Structure of the yeast 60S ribosomal subunit in complex with Arx1, Alb1 and C-terminally tagged Rei1 5APN ; 3.91 ; Structure of the yeast 60S ribosomal subunit in complex with Arx1, Alb1 and N-terminally tagged Rei1 1YAG ; 1.9 ; STRUCTURE OF THE YEAST ACTIN-HUMAN GELSOLIN SEGMENT 1 COMPLEX 7KPX ; 4.4 ; Structure of the yeast CKM 7TI8 ; 3.5 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the open sliding clamp (Proliferating Cell Nuclear Antigen PCNA) 7TKU ; 4.0 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the open sliding clamp (Proliferating Cell Nuclear Antigen PCNA) 7TIB ; 3.4 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the open sliding clamp (Proliferating Cell Nuclear Antigen PCNA) and primer-template DNA 7TID ; 3.3 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the sliding clamp (Proliferating Cell Nuclear Antigen PCNA) and primer-template DNA 7THJ ; 3.8 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the sliding clamp (Proliferating Cell Nuclear Antigen PCNA) in an autoinhibited conformation 7THV ; 4.0 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the sliding clamp (Proliferating Cell Nuclear Antigen PCNA) in an autoinhibited conformation 7TIC ; 3.9 ; Structure of the yeast clamp loader (Replication Factor C RFC) bound to the sliding clamp (Proliferating Cell Nuclear Antigen PCNA) in an autoinhibited conformation 4XMM ; 7.384 ; Structure of the yeast coat nucleoporin complex, space group C2 4XMN ; 7.6 ; Structure of the yeast coat nucleoporin complex, space group P212121 5ZYP ; 2.532 ; Structure of the Yeast Ctr9/Paf1 complex 1EZV ; 2.3 ; STRUCTURE OF THE YEAST CYTOCHROME BC1 COMPLEX CO-CRYSTALLIZED WITH AN ANTIBODY FV-FRAGMENT 3P48 ; 1.67 ; Structure of the yeast dUTPase DUT1 in complex with dUMPNPP 2P22 ; 2.7 ; Structure of the Yeast ESCRT-I Heterotetramer Core 5BQJ ; 2.1 ; Structure of the yeast F1FO ATPase C10 ring with 21-hydroxy-oligomycin 4F4S ; 1.9 ; Structure of the yeast F1Fo ATPase c10 ring with bound oligomycin 5BPS ; 2.1 ; Structure of the yeast F1FO ATPase C10 ring with oligomycin A 5BQ6 ; 2.3 ; Structure of the yeast F1FO ATPase C10 ring with oligomycin B 5BQA ; 2.1 ; Structure of the yeast F1FO ATPase C10 ring with oligomycin C 7NRD ; 4.36 ; Structure of the yeast Gcn1 bound to a colliding stalled 80S ribosome with MBF1, A/P-tRNA and P/E-tRNA 7NRC ; 3.9 ; Structure of the yeast Gcn1 bound to a leading stalled 80S ribosome with Rbg2, Gir2, A- and P-tRNA and eIF5A 3PBP ; 2.6 ; Structure of the yeast heterotrimeric Nup82-Nup159-Nup116 nucleoporin complex 1Q17 ; 2.7 ; Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide 1Q1A ; 1.5 ; Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide 5IT9 ; 3.8 ; Structure of the yeast Kluyveromyces lactis small ribosomal subunit in complex with the cricket paralysis virus IRES. 3J6B ; 3.2 ; Structure of the yeast mitochondrial large ribosomal subunit 5MRC ; 3.25 ; Structure of the yeast mitochondrial ribosome - Class A 5MRE ; 3.75 ; Structure of the yeast mitochondrial ribosome - Class B 5MRF ; 4.97 ; Structure of the yeast mitochondrial ribosome - Class C 2H0R ; 2.9 ; Structure of the Yeast Nicotinamidase Pnc1p 8ESC ; 3.1 ; Structure of the Yeast NuA4 Histone Acetyltransferase Complex 2HBJ ; 2.1 ; Structure of the yeast nuclear exosome component, Rrp6p, reveals an interplay between the active site and the HRDC domain 2HBK ; 2.25 ; Structure of the yeast nuclear exosome component, Rrp6p, reveals an interplay between the active site and the HRDC domain; Protein in complex with Mn 2HBL ; 2.3 ; Structure of the yeast nuclear exosome component, Rrp6p, reveals an interplay between the active site and the HRDC domain; Protein in complex with Mn, Zn, and AMP 2HBM ; 2.7 ; Structure of the yeast nuclear exosome component, Rrp6p, reveals an interplay between the active site and the HRDC domain; Protein in complex with Mn, Zn, and UMP 6C4W ; 2.4 ; Structure of the yeast Pichia membranifaciens cytochrome c 3B5N ; 1.6 ; Structure of the yeast plasma membrane SNARE complex 2JKD ; 2.5 ; Structure of the yeast Pml1 splicing factor and its integration into the RES complex 7SGZ ; 3.17 ; Structure of the yeast Rad24-RFC loader bound to DNA and the closed 9-1-1 clamp 7SH2 ; 3.23 ; Structure of the yeast Rad24-RFC loader bound to DNA and the open 9-1-1 clamp 2FVU ; 2.0 ; Structure of the yeast Sir3 BAH domain 7VRC ; 2.147 ; Structure of the Yeast SNF11/SNF2 complex 7U05 ; 3.7 ; Structure of the yeast TRAPPII-Rab11/Ypt32 complex in the closed/closed state (composite structure) 7U06 ; 4.2 ; Structure of the yeast TRAPPII-Rab11/Ypt32 complex in the closed/open state (composite structure) 7KMT ; 3.7 ; Structure of the yeast TRAPPIII-Ypt1(Rab1) complex 2QIZ ; 2.56 ; Structure of the yeast U-box-containing ubiquitin ligase Ufd2p 2QJ0 ; 2.65 ; Structure of the yeast U-box-containing ubiquitin ligase Ufd2p 2A08 ; 1.54 ; Structure of the yeast YHH6 SH3 domain 3FK3 ; 2.3 ; Structure of the Yeats Domain, Yaf9 8OFN ; 3.48 ; Structure of the yellow fever virus (Asibi strain) dimeric envelope protein 3DPW ; 1.59 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1 Atmosphere Number 1: Structure 1 in a Series of 26 High Pressure Structures 3DQO ; 1.5 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1 Atmosphere Number 2: Structure 2 in a Series of 26 High Pressure Structures 3DQL ; 1.47 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 1: Structure 5 in a Series of 26 High Pressure Structures 3DQK ; 1.4 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 2: Structure 6 in a Series of 26 High Pressure Structures 3DQJ ; 1.51 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 3: Structure 7 in a Series of 26 High Pressure Structures 3DQI ; 1.42 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 4: Structure 8 in a Series of 26 High Pressure Structures 3DQH ; 1.45 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 5: Structure 9 in a Series of 26 High Pressure Structures 3DQF ; 1.46 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1000 Atmospheres Number 6: Structure 10 in a Series of 26 High Pressure Structures 3DQE ; 1.43 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1250 Atmospheres Number 1: Structure 11 in a Series of 26 High Pressure Structures 3DQD ; 1.4 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1250 Atmospheres Number 2: Structure 12 in a Series of 26 High Pressure Structures 3DQC ; 1.49 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1250 Atmospheres Number 3: Structure 13 in a Series of 26 High Pressure Structures 3DQA ; 1.44 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1250 Atmospheres Number 4: Structure 14 in a Series of 26 High Pressure Structures 3DQ9 ; 1.4 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1500 Atmospheres Number 1: Structure 15 in a Series of 26 High Pressure Structures 3DQ8 ; 1.51 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1500 Atmospheres Number 2: Structure 16 in a Series of 26 High Pressure Structures 3DQ7 ; 1.23 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1920 Atmospheres Number 1: Structure 17 in a Series of 26 High Pressure Structures 3DQ6 ; 1.6 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1920 Atmospheres Number 2: Structure 18 in a Series of 26 High Pressure Structures 3DQ5 ; 1.5 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 1960 Atmospheres: Structure 19 in a Series of 26 High Pressure Structures 3DQU ; 1.42 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 2000 Atmospheres Number 1: Structure 20 in a Series of 26 High Pressure Structures 3DQ4 ; 1.47 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 2000 Atmospheres Number 2: Structure 20 in a Series of 26 High Pressure Structures 3DQ3 ; 1.7 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 2500 Atmospheres: Structure 22 in a Series of 26 High Pressure Structures 3DQ2 ; 1.6 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 4000 Atmospheres Number 1: Structure 23 in a Series of 26 High Pressure Structures 3DQ1 ; 1.7 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 4000 Atmospheres Number 2: Structure 24 in a Series of 26 High Pressure Structures 3DPZ ; 1.7 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 4000 Atmospheres Number 3: Structure 25 in a Series of 26 High Pressure Structures 3DQN ; 1.44 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 500 Atmospheres: Structure 3 in a Series of 26 High Pressure Structures 3DPX ; 1.5 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 5000 Atmospheres: Structure 26 in a Series of 26 High Pressure Structures 3DQM ; 1.44 ; Structure of the Yellow Fluorescent Protein Citrine Frozen at 750 Atmospheres: Structure 4 in a Series of 26 High Pressure Structures 5LTQ ; 2.05 ; Structure of the Yellow Fluorescent Protein lanYFP from Branchiostoma lanceolatum at pH 7.5 5LTP ; 1.7 ; Structure of the Yellow-Green Fluorescent Protein mNeonGreen from Branchiostoma lanceolatum at the acidic pH 4.5 5LTR ; 1.21 ; Structure of the Yellow-Green Fluorescent Protein mNeonGreen from Branchiostoma lanceolatum at the near physiological pH 8.0 2VGX ; 1.95 ; Structure of the Yersinia enterocolitica Type III Secretion Translocator Chaperone SycD 2P58 ; 1.8 ; Structure of the Yersinia pestis Type III secretion system needle protein YscF in complex with its chaperones YscE/YscG 3R3S ; 1.25 ; Structure of the YghA Oxidoreductase from Salmonella enterica 2F2H ; 1.95 ; Structure of the YicI thiosugar Michaelis complex 3KUX ; 2.75 ; Structure of the YPO2259 putative oxidoreductase from Yersinia pestis 3R3R ; 1.2 ; Structure of the YrdA ferripyochelin binding protein from Salmonella enterica 6I1D ; 2.28 ; Structure of the Ysh1-Mpe1 nuclease complex from S.cerevisiae 2DS7 ; 2.5 ; Structure of the ZBD in the hexagonal crystal form 2DS5 ; 1.5 ; Structure of the ZBD in the orthorhomibic crystal from 2DS6 ; 2.0 ; Structure of the ZBD in the tetragonal crystal form 2DS8 ; 1.6 ; Structure of the ZBD-XB complex 5JPS ; 1.78 ; Structure of the Zika Virus NS3 Helicase Domain 2KKH ; ; Structure of the zinc binding domain of the ATPase HMA4 5LPI ; 1.8 ; Structure of the zinc finger array of Cep104 2QFI ; 3.8 ; Structure of the zinc transporter YiiP 1D0Q ; 1.71 ; STRUCTURE OF THE ZINC-BINDING DOMAIN OF BACILLUS STEAROTHERMOPHILUS DNA PRIMASE 1ZH1 ; 2.5 ; Structure of the zinc-binding domain of HCV NS5A 2G43 ; 2.09 ; Structure of the ZNF UBP domain from deubiquitinating enzyme isopeptidase T (IsoT) 1FXI ; 2.2 ; STRUCTURE OF THE [2FE-2S] FERREDOXIN I FROM THE BLUE-GREEN ALGA APHANOTHECE SACRUM AT 2.2 ANGSTROMS RESOLUTION 5N07 ; 1.95 ; Structure of the [4Fe-4S] form of the NO response regulator NsrR 2FLA ; 0.95 ; Structure of thereduced HiPIP from thermochromatium tepidum at 0.95 angstrom resolution 6KK7 ; 3.1 ; Structure of thermal-stabilised(M6) human GLP-1 receptor transmembrane domain 6KK1 ; 2.8 ; Structure of thermal-stabilised(M8) human GLP-1 receptor transmembrane domain 6KJV ; 2.8 ; Structure of thermal-stabilised(M9) human GLP-1 receptor transmembrane domain 1GZJ ; 1.62 ; Structure of Thermoascus aurantiacus family 5 endoglucanase 5FW4 ; 1.8 ; Structure of Thermobifida fusca DyP-type Peroxidase and Activity towards Kraft Lignin and Lignin Model Compounds 6T3E ; 2.6 ; Structure of Thermococcus litoralis Delta(1)-pyrroline-2-carboxylate reductase in complex with NADH and L-proline 5O8N ; 1.9 ; Structure of thermolysin at room temperature via a method of acoustically induced rotation. 5MA7 ; 1.3 ; Structure of thermolysin in complex with inhibitor (JC306). 3QGO ; 1.45 ; Structure of Thermolysin in complex with L-Phenylalanine methylester 3QH1 ; 1.55 ; Structure of Thermolysin in complex with N-benzyloxycarbonyl-L-aspartic acid 3QH5 ; 1.5 ; Structure of Thermolysin in complex with N-Carbobenzyloxy-L-aspartic acid and L-Phenylalanine Methyl Ester 5FSP ; 1.7 ; Structure of thermolysin prepared by the 'soak-and-freeze' method under 100 bar of krypton pressure 5FSS ; 1.5 ; Structure of thermolysin prepared by the 'soak-and-freeze' method under 40 bar of krypton pressure 5FSJ ; 1.201 ; Structure of thermolysin prepared by the 'soak-and-freeze' method under 45 bar of oxygen pressure 5FXN ; 1.45 ; Structure of thermolysin solved by SAD from data collected by Direct Data Collection (DDC) using the ESRF RoboDiff goniometer 3ZI6 ; 2.0 ; Structure of thermolysin solved by SAD from data collected by Direct Data Collection (DDC) using the GRob robot goniometer 6FJ2 ; 1.43 ; Structure of Thermolysin solved from SAD data collected at the peak of the Zn absorption edge on ID30B 8FJQ ; 1.62 ; Structure of Thermomonospora curvata heme-containing DyP-type peroxidase E293G mutant 8FJR ; 1.49 ; Structure of Thermomonospora curvata heme-containing DyP-type peroxidase E293H mutant 7RMU ; 2.1 ; Structure of Thermomonospora curvata heme-containing DyP-type peroxidase with a modified axial ligand 4XD7 ; 3.9 ; Structure of thermophilic F1-ATPase inhibited by epsilon subunit 2DTX ; 1.6 ; Structure of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) in complex with D-mannose 2DTE ; 1.65 ; Structure of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) in complex with NADH 2DTD ; 2.1 ; Structure of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) in ligand-free form 3VTZ ; 2.3 ; Structure of Thermoplasma volcanium aldohexose dehydrogenase 7PQQ ; 3.3 ; Structure of thermostabilised human NTCP in complex with Megabody 91 7PQG ; 3.7 ; Structure of thermostabilised human NTCP in complex with nanobody 87 3ZEV ; 3.0 ; Structure of Thermostable Agonist-bound Neurotensin Receptor 1 Mutant without Lysozyme Fusion 5L8Z ; 1.4 ; Structure of thermostable DNA-binding HU protein from micoplasma Spiroplasma melliferum 4R9K ; 1.5 ; Structure of thermostable eightfold mutant of limonene epoxide hydrolase from Rhodococcus erythropolis 7OIX ; 3.6 ; Structure of thermostable human MFSD2A in complex with thermostable human Sync2 4JVZ ; 2.01 ; Structure of Thermosynechococcus elongatus CcmL 1P1M ; 1.5 ; Structure of Thermotoga maritima amidohydrolase TM0936 bound to Ni and methionine 1XKO ; 2.48 ; Structure of Thermotoga maritima CheX 4YXM ; 2.25 ; Structure of Thermotoga maritima DisA D75N mutant with reaction product c-di-AMP 4YVZ ; 2.495 ; Structure of Thermotoga maritima DisA in complex with 3'-dATP/Mn2+ 4YXJ ; 2.55 ; Structure of Thermotoga maritima DisA in complex with ApCpp 7EFZ ; 1.69 ; Structure of Thermotoga maritima GH5 endoglucanase TM1752 in complex with TRIS 1TMI ; 1.7 ; Structure of Thermotoga maritima S63A non-processing mutant S-adenosylmethionine decarboxylase 7LJP ; 2.1 ; Structure of Thermotoga maritima SmpB 2AUJ ; 2.7 ; Structure of Thermus aquaticus RNA polymerase beta'-subunit insert 4K57 ; 1.537 ; Structure of Thermus thermophilus 1-pyrroline-5-carboxylate dehydrogenase R100A mutant 4NCA ; 2.489 ; Structure of Thermus thermophilus Argonaute bound to guide DNA 19-mer and target DNA in the presence of Mg2+ 4N47 ; 2.823 ; Structure of Thermus thermophilus Argonaute bound to guide DNA and 12-mer target DNA 4N41 ; 2.248 ; Structure of Thermus thermophilus Argonaute bound to guide DNA and 15-mer target DNA 4NCB ; 2.189 ; Structure of Thermus thermophilus Argonaute bound to guide DNA and 19-mer target DNA with Mg2+ 4N76 ; 2.89 ; Structure of Thermus thermophilus Argonaute bound to guide DNA and cleaved target DNA with Mn2+ 4AN8 ; 2.3 ; Structure of Thermus thermophilus CasA (Cse1) 6HWN ; 1.95 ; Structure of Thermus thermophilus ClpP in complex with a tripeptide. 6HWM ; 2.7 ; Structure of Thermus thermophilus ClpP in complex with bortezomib 3QRQ ; 3.194 ; Structure of Thermus Thermophilus Cse3 bound to an RNA representing a pre-cleavage complex 3QRR ; 3.099 ; Structure of Thermus Thermophilus Cse3 bound to an RNA representing a product complex 3QRP ; 2.352 ; Structure of Thermus Thermophilus Cse3 bound to an RNA representing a product mimic complex 3S33 ; 4.45 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 10s after Xe depressurization 3S3A ; 4.25 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 120s after Xe depressurization 3S3B ; 3.3 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 240s after Xe depressurization 3S38 ; 4.2 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 30s after Xe depressurization 3S3C ; 4.0 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 360s after Xe depressurization 3S3D ; 3.75 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 480s after Xe depressurization 3S39 ; 4.8 ; Structure of Thermus thermophilus cytochrome ba3 oxidase 60s after Xe depressurization 1FNM ; 2.8 ; STRUCTURE OF THERMUS THERMOPHILUS EF-G H573A 2G37 ; 2.0 ; Structure of Thermus thermophilus L-proline dehydrogenase 5M42 ; 2.2 ; Structure of Thermus thermophilus L-proline dehydrogenase lacking alpha helices A, B and C 2EKG ; 1.9 ; Structure of Thermus thermophilus Proline Dehydrogenase inactivated by N-propargylglycine 2DGB ; 2.1 ; Structure of Thermus thermophilus PurS in the P21 Form 7OHG ; 2.507 ; Structure of Thermus thermophilus Rel bound to the non-hydrolasable alarmone analogue 4V8X ; 3.35 ; Structure of Thermus thermophilus ribosome 1ZYR ; 3.0 ; Structure of Thermus thermophilus RNA polymerase holoenzyme in complex with the antibiotic streptolydigin 5CM7 ; 1.55 ; Structure of thiamine-monophosphate kinase from Acinetobacter baumannii in complex with adenosine diphosphate (ADP) and thiamine diphosphate (TPP) 6MFM ; 1.9 ; Structure of thiamine-monophosphate kinase from Acinetobacter baumannii in complex with adenosine diphosphate (ADP) and thiamine diphosphate (TPP), orthorhombic crystal form 5CC8 ; 1.75 ; Structure of thiamine-monophosphate kinase from Acinetobacter baumannii in complex with AMPPNP 5DD7 ; 1.7 ; Structure of thiamine-monophosphate kinase from Acinetobacter baumannii in complex with AMPPNP and thiamine-monophosphate 1NG4 ; 2.3 ; Structure of ThiO (glycine oxidase) from Bacillus subtilis 6MLK ; 2.45 ; Structure of Thioesterase from DEBS with a thioesterase-specific antibody 8GQH ; 2.2 ; Structure of Thiolase from Pseudomonas aeruginosa PAO1 8GQI ; 2.21 ; Structure of Thiolase from Pseudomonas aeruginosa PAO1 8GQJ ; 1.78 ; Structure of Thiolase from Pseudomonas aeruginosa PAO1 6NUP ; 1.6 ; Structure of thioredoxin (trxA) from Rickettsia prowazekii str. Madrid E. 6MOS ; 1.80014 ; Structure of thioredoxin 1 from the thermophilic eubacterium Thermosipho africanus TCF52B 2LRC ; ; Structure of thioredoxin 2 from Pseudomonas aeruginosa PAO1 in its reduced form 8QPD ; ; Structure of thioredoxin m from pea 7JYP ; 1.6 ; Structure of thioredoxin reductase from the thermophilic eubacterium Thermosipho africanus TCF52B 1ZUD ; 1.98 ; Structure of ThiS-ThiF protein complex 4N4D ; 2.4 ; Structure of ThiT with AV-38 bound 4MUU ; 2.1 ; Structure of ThiT with pyrithiamine bound 5XEA ; 2.093 ; Structure of Thogoto virus envelope glycoprotein 8KG3 ; 2.6 ; Structure of THOUSAND-GRAIN WEIGHT 6 (TGW6) 3DOG ; 2.7 ; Structure of Thr 160 phosphorylated CDK2/cyclin A in complex with the inhibitor N-&-N1 2G9X ; 2.5 ; Structure of Thr 160 phosphorylated CDK2/cyclin A in complex with the inhibitor NU6271 7REC ; 2.2 ; Structure of Thr354Asn, Glu355Gln, Thr412Asn, Ile414Met, Ile464His, and Phe467Met mutant human CaMKII alpha hub bound to 5-HDC 6OF8 ; 2.1 ; Structure of Thr354Asn, Glu355Gln, Thr412Asn, Ile414Met, Ile464His, and Phe467Met mutant human CamKII-alpha hub domain 4S0X ; 2.1 ; Structure of three phase partition - treated lipase from Thermomyces lanuginosa in complex with lauric acid at 2.1 A resolution 4FLF ; 2.15 ; Structure of three phase partition treated lipase from Thermomyces lanuginosa at 2.15A resolution. 4GWL ; 2.55 ; Structure of three phase partition treated lipase from Thermomyces lanuginosa at 2.55A resolution 3ZIY ; 1.01 ; Structure of three-domain heme-Cu nitrite reductase from Ralstonia pickettii at 1.01 A resolution 4AX3 ; 1.6 ; Structure of three-domain heme-Cu nitrite reductase from Ralstonia pickettii at 1.6 A resolution 1E5X ; 2.25 ; Structure of threonine synthase from Arabidopsis thaliana 3BV9 ; 1.8 ; Structure of Thrombin Bound to the Inhibitor FM19 1BTH ; 2.3 ; STRUCTURE OF THROMBIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR 1D9I ; 2.3 ; STRUCTURE OF THROMBIN COMPLEXED WITH SELECTIVE NON-ELECTOPHILIC INHIBITORS HAVING CYCLOHEXYL MOIETIES AT P1 1D6W ; 2.0 ; STRUCTURE OF THROMBIN COMPLEXED WITH SELECTIVE NON-ELECTROPHILIC INHIBITORS HAVING CYCLOHEXYL MOIETIES AT P1 2A0Q ; 1.9 ; Structure of thrombin in 400 mM potassium chloride 1A2C ; 2.1 ; Structure of thrombin inhibited by AERUGINOSIN298-A from a BLUE-GREEN ALGA 3GIC ; 1.55 ; Structure of thrombin mutant delta(146-149e) in the free form 4HFP ; 2.4 ; Structure of thrombin mutant S195a bound to the active site inhibitor argatroban 3S7K ; 1.9 ; Structure of thrombin mutant Y225P in the E form 3S7H ; 1.9 ; Structure of thrombin mutant Y225P in the E* form 1T0B ; 1.7 ; Structure of ThuA-like protein from Bacillus stearothermophilus 5UIV ; 2.45 ; Structure of Thymidylate Kinase from Candida albicans Reveals Origin of Broad Substrate Specificity and a Novel Structural Element. 2TDM ; 2.55 ; STRUCTURE OF THYMIDYLATE SYNTHASE 1HW4 ; 2.06 ; STRUCTURE OF THYMIDYLATE SYNTHASE SUGGESTS ADVANTAGES OF CHEMOTHERAPY WITH NONCOMPETITIVE INHIBITORS 4FZB ; 2.59 ; Structure of thymidylate synthase ThyX complexed to a new inhibitor 5T2W ; 2.2 ; Structure of thymine DNA glycosylase bound to substrate analog 2'-F-5-formyl-dC 7X1U ; 3.19 ; Structure of Thyrotropin-Releasing Hormone Receptor bound with an Endogenous Peptide Agonist TRH. 7X1T ; 3.26 ; Structure of Thyrotropin-Releasing Hormone Receptor bound with Taltirelin. 6RPT ; 2.7 ; Structure of tick complement inhibitor CirpT1 complexed with macroglobubulin domain 4 of human complement C5 5V52 ; 3.1 ; Structure of TIGIT bound to nectin-2 (CD112) 5Y7I ; 3.0 ; Structure of tilapia fish CLIC2 7M3Y ; 1.69 ; Structure of TIM-3 in complex with 8-chloro-2-methyl-9-(3-mehtylpyridin-4-yl)-[1,2,4]triazolo[1,5-c]quinazolin-5(6H)-one (compound 22) 7M3Z ; 1.4 ; Structure of TIM-3 in complex with N-(4-(8-chloro-2-mehtyl-5-oxo-5,6-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-9-yl)-3-methylphenyl)methanesulfonamdide (compound 35) 7M41 ; 1.79 ; Structure of TIM-3 in complex with N-(4-(8-chloro-2-methyl-5-oxo-5,6-dihydro-[1,2,4]traizolo[1,5-c]quinazolin-9-yl)-3-methylphenyl)-1H-imidazole-2-sulfonamide (compound 38) 3KAA ; 3.002 ; Structure of Tim-3 in complex with phosphatidylserine 3FHN ; 3.0 ; Structure of Tip20p 6DHX ; 1.75 ; Structure of TipC2 from Streptococcus intermedius B196 5Z78 ; 1.762 ; Structure of TIRR/53BP1 complex 8POE ; 4.2 ; Structure of tissue-specific lipid scramblase ATG9B homotrimer, refined with C3 symmetry applied 5H52 ; 3.0 ; Structure of Titanium-bound human serum transferrin 6H4L ; 1.6 ; Structure of Titin M4 trigonal form 6GW3 ; 1.39 ; Structure of TKS from Cannabis sativa in complex with CoA 1TUL ; 2.2 ; STRUCTURE OF TLP20 4XTK ; 2.7 ; Structure of TM1797, a CAS1 protein from Thermotoga maritima 2K9P ; ; Structure of TM1_TM2 in LPPG micelles 2XON ; 1.4 ; Structure of TmCBM61 in complex with beta-1,4-galactotriose at 1.4 A resolution 5KC4 ; 3.4 ; Structure of TmRibU, orthorhombic crystal form 6Q97 ; 3.9 ; Structure of tmRNA SmpB bound in A site of E. coli 70S ribosome 6Q95 ; 3.7 ; Structure of tmRNA SmpB bound in A site of T. thermophilus 70S ribosome 6Q98 ; 4.3 ; Structure of tmRNA SmpB bound in P site of E. coli 70S ribosome 6Q9A ; 3.7 ; Structure of tmRNA SmpB bound past E site of E. coli 70S ribosome 2OB7 ; 13.6 ; Structure of tmRNA-(SmpB)2 complex as inferred from cryo-EM 6B12 ; 1.71 ; Structure of Tne2 in complex with Tni2 1CA4 ; 2.2 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 (TRAF2) 1D0A ; 2.0 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 (TRAF2) IN COMPLEX WITH A HUMAN OX40 PEPTIDE 1CZZ ; 2.7 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 IN COMPLEX WITH A 17-RESIDUE CD40 PEPTIDE 1D00 ; 2.0 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 IN COMPLEX WITH A 5-RESIDUE CD40 PEPTIDE 1D01 ; 2.0 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 IN COMPLEX WITH A HUMAN CD30 PEPTIDE 1D0J ; 2.5 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 IN COMPLEX WITH A M4-1BB PEPTIDE 1CA9 ; 2.3 ; STRUCTURE OF TNF RECEPTOR ASSOCIATED FACTOR 2 IN COMPLEX WITH A PEPTIDE FROM TNF-R2 5UMZ ; 1.9 ; Structure of TNRC6A NLS in complex with importin-alpha 1A6C ; 3.5 ; STRUCTURE OF TOBACCO RINGSPOT VIRUS 4Y6X ; 2.1 ; Structure of Tobacco streak virus coat protein at 2.1 Angstroms resolution (C2 crystal form) 4Y6T ; 2.4 ; Structure of Tobacco streak virus coat protein dimer at 2.4 Angstroms resolution 2IVZ ; 2.0 ; Structure of TolB in complex with a peptide of the colicin E9 T- domain 1TQQ ; 2.75 ; Structure of TolC in complex with hexamminecobalt 8ODT ; 4.2 ; Structure of TolQR complex from E.coli 3LCA ; 2.19 ; Structure of Tom71 complexed with Hsp70 Ssa1 C terminal tail indicating conformational plasticity 4JDG ; 2.74 ; Structure of Tomato Bifunctional Nuclease TBN1, variant N211D 2TBV ; 2.9 ; STRUCTURE OF TOMATO BUSHY STUNT VIRUS. V. COAT PROTEIN SEQUENCE DETERMINATION AND ITS STRUCTURAL IMPLICATIONS 5Y6J ; 2.811 ; Structure of Tomato spotted wilt virus nucleocapsid protein with alternative oligomerization state 6MRQ ; 1.288 ; Structure of ToPI1 inhibitor from Tityus obscurus scorpion venom in complex with trypsin 3M7G ; 2.4 ; Structure of topoisomerase domain of topoisomerase V protein 1MU5 ; 2.0 ; Structure of topoisomerase subunit 1MX0 ; 2.3 ; Structure of topoisomerase subunit 7NEZ ; 3.39 ; Structure of topotecan-bound ABCG2 4WHN ; 2.15 ; Structure of toxin-activating acyltransferase (TAAT) 4TU1 ; 2.0 ; Structure of Toxoplasma gondii fructose 1,6 bisphosphate aldolase 2XGG ; 2.05 ; Structure of Toxoplasma gondii Micronemal Protein 2 A_I Domain 4OKU ; 3.2 ; Structure of Toxoplasma gondii proMIC2 5U1G ; 3.64 ; Structure of TP228 ParA-AMPPNP-ParB complex 5ZLZ ; 3.581 ; Structure of tPA and PAI-1 6JBI ; 2.5 ; Structure of Tps1 apo structure 6JBW ; 2.65 ; Structure of Tps1/UDP complex 4APN ; 3.2 ; Structure of TR from Leishmania infantum in complex with a diarylpirrole-based inhibitor 3HZF ; 2.5 ; Structure of TR-alfa bound to selective thyromimetic GC-1 in C2 space group 3ILZ ; 1.85 ; Structure of TR-alfa bound to selective thyromimetic GC-1 in P212121 space group 3IMY ; 2.55 ; Structure of TR-beta bound to selective thyromimetic GC-1 5OEJ ; 5.7 ; Structure of Tra1 subunit within the chromatin modifying complex SAGA 7L3L ; 2.8 ; Structure of TRAF5 and TRAF6 RING Hetero dimer 2L98 ; ; Structure of trans-Resveratrol in complex with the cardiac regulatory protein Troponin C 6OM6 ; 3.1 ; Structure of trans-translation inhibitor bound to E. coli 70S ribosome with P site tRNA 1BHI ; ; STRUCTURE OF TRANSACTIVATION DOMAIN OF CRE-BP1/ATF-2, NMR, 20 STRUCTURES 1ONR ; 1.87 ; STRUCTURE OF TRANSALDOLASE B 5FR9 ; 2.81 ; Structure of transaminase ATA-117 arRmut11 from Arthrobacter sp. KNK168 inhibited with 1-(4-Bromophenyl)-2-fluoroethylamine 8WAK ; 5.47 ; Structure of transcribing complex 2 (TC2), the initially transcribing complex with Pol II positioned 2nt downstream of TSS. 8WAL ; 8.52 ; Structure of transcribing complex 3 (TC3), the initially transcribing complex with Pol II positioned 3nt downstream of TSS. 8WAN ; 6.07 ; Structure of transcribing complex 4 (TC4), the initially transcribing complex with Pol II positioned 4nt downstream of TSS. 8WAO ; 6.4 ; Structure of transcribing complex 5 (TC5), the initially transcribing complex with Pol II positioned 5nt downstream of TSS. 8WAP ; 5.85 ; Structure of transcribing complex 6 (TC6), the initially transcribing complex with Pol II positioned 6nt downstream of TSS. 8WAQ ; 6.29 ; Structure of transcribing complex 7 (TC7), the initially transcribing complex with Pol II positioned 7nt downstream of TSS. 8WAR ; 7.2 ; Structure of transcribing complex 8 (TC8), the initially transcribing complex with Pol II positioned 8nt downstream of TSS. 8WAS ; 6.13 ; Structure of transcribing complex 9 (TC9), the initially transcribing complex with Pol II positioned 9nt downstream of TSS. 5FLM ; 3.4 ; Structure of transcribing mammalian RNA polymerase II 6I84 ; 4.4 ; Structure of transcribing RNA polymerase II-nucleosome complex 8UIS ; 3.23 ; Structure of transcription complex Pol II-DSIF-NELF-TFIIS 6MBW ; 3.29 ; Structure of Transcription Factor 6MBZ ; 3.21 ; Structure of Transcription Factor 4IJJ ; 3.25 ; Structure of transcription factor DksA2 from Pseudomonas aeruginosa 2HDC ; ; STRUCTURE OF TRANSCRIPTION FACTOR GENESIS/DNA COMPLEX 7Z0O ; 2.8 ; Structure of transcription factor UAF in complex with TBP and 35S rRNA promoter DNA 6JQS ; 2.09 ; Structure of Transcription factor, GerE 2HSG ; 2.5 ; Structure of transcription regulator CcpA in its DNA-free state 2B2N ; 2.1 ; Structure of transcription-repair coupling factor 3UFE ; 1.5 ; Structure of transcriptional antiterminator (BGLG-family) at 1.5 A resolution 1F4S ; ; STRUCTURE OF TRANSCRIPTIONAL FACTOR ALCR IN COMPLEX WITH A TARGET DNA 1F5E ; ; STRUCTURE OF TRANSCRIPTIONAL FACTOR ALCR IN COMPLEX WITH A TARGET DNA 7WZE ; 2.65 ; Structure of Transcriptional regulator from Bacillus subtilis (strain 168) 5IPA ; 1.78 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with (E)-3-(furan-3-yl)-1-(pyrrolidin-1-yl)prop-2-en-1-one at 1.78A resolution 5J3L ; 1.66 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with 1-((2-cyclopentylethyl)sulfonyl)pyrrolidine at 1.66A resolution 5J1Y ; 1.81 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with 1-(pyrrolidin-1-yl)-3-(tetrahydrofuran-3-yl)propan-1-one at 1.81A resolution 5J1R ; 1.92 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with 3-(furan-3-yl)-1-(pyrrolidin-1-yl)propan-1-one at 1.92A resolution 5F1J ; 1.631 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 1 at 1.63A resolution 5F08 ; 1.92 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium tuberculosis in complex with compound 14 at 1.92A resolution 5F0F ; 1.76 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 15 at 1.76A resolution 5F27 ; 1.684 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 2 at 1.68A resolution 5EZH ; 1.7 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 21 at 1.7A resolution 5EZG ; 1.84 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 22 at 1.84A resolution 5F0H ; 1.99 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 28 at 1.99A resolution 5F04 ; 1.84 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 3 at 1.84A resolution 5F0C ; 1.87 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium tuberculosis in complex with compound 4 at 1.87A resolution 5EYR ; 1.57 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound 5 at 1.57A resolution 5MXV ; 1.626 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK1107112A at 1.63A resolution 5MYL ; 1.724 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK1570606A at 1.72A resolution 5MYM ; 2.28 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK2032710A at 2.28A resolution 5MYN ; 1.564 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK445886A at 1.56A resolution 5MYR ; 1.828 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK735816A at 1.83A resolution 5MYS ; 1.587 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK920684A at 1.59A resolution 5MYT ; 1.61 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound GSK921295A at 1.61A resolution 5MYW ; 1.77 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with compound SB-435634 at 1.77A resolution 5NZ0 ; 1.825 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with linezolid 5IP6 ; 1.93 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with N-((tetrahydrofuran-3-yl)methyl)pyrrolidine-1-carboxamide at 1.93A resolution 5IOZ ; 2.02 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with N-(cyclopentylmethyl)cyclopentanecarboxamide at 2.02A resolution 5IOY ; 1.77 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with N-(cyclopentylmethyl)pyrrolidine-1-carboxamide at 1.77A resolution 5J1U ; 1.8 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with N-(furan-3-ylmethyl)pyrrolidine-1-carboxamide at 1.80A resolution 5NZ1 ; 2.33 ; Structure of Transcriptional Regulatory Repressor Protein - EthR from Mycobacterium Tuberculosis in complex with sutezolid 5XYK ; 2.57 ; Structure of Transferase 6AI4 ; 2.1 ; Structure of Transferase mutant-C21S,C199S 5H5Y ; 2.3 ; Structure of Transferase mutant-C23S,C199S 5H60 ; 3.64 ; Structure of Transferase mutant-C23S,C199S 5H61 ; 1.86 ; Structure of Transferase mutant-C23S,C199S 5H62 ; 1.66 ; Structure of Transferase mutant-C23S,C199S 5H63 ; 1.92 ; Structure of Transferase mutant-C23S,C199S 8HIA ; 4.9 ; Structure of transforming growth factor beta induced protein (TGFBIp) G623R fibril 2FSV ; 2.3 ; Structure of transhydrogenase (dI.D135N.NAD+)2(dIII.E155W.NADP+)1 asymmetric complex 2OO5 ; 2.6 ; Structure of transhydrogenase (dI.H2NADH)2(dIII.NADP+)1 asymmetric complex 2OOR ; 2.32 ; Structure of transhydrogenase (dI.NAD+)2(dIII.H2NADPH)1 asymmetric complex 2FR8 ; 2.6 ; Structure of transhydrogenase (dI.R127A.NAD+)2(dIII.NADP+)1 asymmetric complex 2FRD ; 3.2 ; Structure of Transhydrogenase (dI.S138A.NADH)2(dIII.NADPH)1 asymmetric complex 5IWK ; 3.247 ; Structure of Transient Receptor Potential (TRP) channel TRPV6 5IWR ; 3.85 ; Structure of Transient Receptor Potential (TRP) channel TRPV6 in the presence of barium 5IWP ; 3.65 ; Structure of Transient Receptor Potential (TRP) channel TRPV6 in the presence of calcium 5IWT ; 3.8 ; Structure of Transient Receptor Potential (TRP) channel TRPV6 in the presence of gadolinium 5J3B ; 2.3 ; Structure of translation elongation factor P from Acinetobacter baumannii 7ACJ ; 3.2 ; Structure of translocated trans-translation complex on E. coli stalled ribosome. 1SMZ ; ; Structure of Transportan in phospholipid bicellar solution 1RVS ; ; STRUCTURE OF TRANSTHYRETIN IN AMYLOID FIBRILS DETERMINED BY SOLID-STATE MAGIC ANGLE SPINNING NMR 5TZL ; 1.4 ; Structure of transthyretin in complex with the kinetic stabilizer 201 3SSG ; 2.0 ; Structure of transthyretin L55P in complex with Zn 8W1N ; 1.6 ; Structure of transthyretin pathogenic mutation A120S 8W2W ; 2.07 ; Structure of transthyretin synthetic mutation A120L 5Y3O ; 2.7 ; Structure of TRAP1 complexed with DN320 5Y3N ; 2.4 ; Structure of TRAP1 complexed with DN401 5HPH ; 2.429 ; Structure of TRAP1 fragment 6BGT ; 2.7 ; Structure of Trastuzumab Fab mutant in complex with Her2 extracellular domain 5N8M ; ; Structure of TRBP dsRBD 1 and 2 in complex with a 19 bp siRNA (Complex A) 5N8L ; ; Structure of TRBP dsRBD 1 and 2 in complex with a 19 bp siRNA (Complex B) 3ADL ; 2.2 ; Structure of TRBP2 and its molecule implications for miRNA processing 1EU8 ; 1.9 ; STRUCTURE OF TREHALOSE MALTOSE BINDING PROTEIN FROM THERMOCOCCUS LITORALIS 5H2T ; 2.796 ; Structure of trehalose synthase 5DX9 ; 2.15 ; Structure of trehalose-6-phosphate phosphatase from Cryptococcus neoformans 6UPD ; 2.052 ; Structure of trehalose-6-phosphate phosphatase from Salmonella typhimurium in complex with trehalose 6UPC ; 2.505 ; Structure of trehalose-6-phosphate phosphatase from Salmonella typhimurium in complex with trehalose 6-sulfate 6UPE ; 2.244 ; Structure of trehalose-6-phosphate phosphatase from Salmonella typhimurium inhibited by 4-n-octylphenyl alpha-D-glucopyranoside-6-sulfate 6Z0G ; ; Structure of TREM2 transmembrane helix in DPC micelles 6Z0H ; ; Structure of TREM2 transmembrane helix K186A variant in DPC micelles 3QZ0 ; 1.77 ; Structure of Treponema denticola Factor H Binding protein (FhbB), selenomethionine derivative 2O4G ; 2.35 ; Structure of TREX1 in complex with a nucleotide 3B6O ; 2.1 ; Structure of TREX1 in complex with a nucleotide and an inhibitor ion (lithium) 3B6P ; 2.3 ; Structure of TREX1 in complex with a nucleotide and inhibitor ions (sodium and zinc) 2O4I ; 3.5 ; Structure of TREX1 in complex with DNA 6A4B ; 2.7 ; Structure of TREX2 in complex with a duplex DNA with 2 nucleotide 3'-overhang 6A46 ; 2.0 ; Structure of TREX2 in complex with a nucleotide (dCMP) 6A47 ; 1.9 ; Structure of TREX2 in complex with a Y structured dsDNA 8OX1 ; 2.7 ; Structure of TRF1core in complex with telomeric nucleosome 4RQI ; 2.4405 ; Structure of TRF2/RAP1 secondary interaction binding site 3NAP ; 2.5 ; Structure of Triatoma Virus (TrV) 5CQG ; 2.3 ; Structure of Tribolium telomerase in complex with the highly specific inhibitor BIBR1532 5GW5 ; 4.6 ; Structure of TRiC-AMP-PNP 4PSD ; 1.52 ; Structure of Trichoderma reesei cutinase native form. 2F51 ; 1.9 ; Structure of Trichomonas vaginalis thioredoxin 7P1R ; 1.75 ; Structure of Trichophyton Rubrum KDNase in complex with 2,3-difluoro-KDN 6XB5 ; 2.9 ; Structure of Trichoplusia ni poxin in post-reactive state with Gp[2'-5']Ap[3'] 6ADH ; 2.9 ; STRUCTURE OF TRICLINIC TERNARY COMPLEX OF HORSE LIVER ALCOHOL DEHYDROGENASE AT 2.9 ANGSTROMS RESOLUTION 3RM5 ; 2.68 ; Structure of Trifunctional THI20 from Yeast 2AAR ; 3.5 ; Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome. 4AVK ; 2.4 ; Structure of trigonal FimH lectin domain crystal soaked with an alpha- D-mannoside O-linked to propynyl pyridine at 2.4A resolution 1G0N ; 2.0 ; STRUCTURE OF TRIHYDROXYNAPHTHALENE REDUCTASE IN COMPLEX WITH NADPH AND 4,5,6,7-TETRACHLORO-PHTHALIDE 1DOH ; 2.1 ; STRUCTURE OF TRIHYDROXYNAPHTHALENE REDUCTASE IN COMPLEX WITH NADPH AND 4-NITRO-INDEN-1-ONE 1YBV ; 2.8 ; STRUCTURE OF TRIHYDROXYNAPHTHALENE REDUCTASE IN COMPLEX WITH NADPH AND AN ACTIVE SITE INHIBITOR 1G0O ; 1.7 ; STRUCTURE OF TRIHYDROXYNAPHTHALENE REDUCTASE IN COMPLEX WITH NADPH AND PYROQUILON 7ZJ3 ; 2.53 ; Structure of TRIM2 RING domain in complex with UBE2D1~Ub conjugate 8U4S ; 3.35 ; Structure of trimeric CXCR4 in complex with REGN7663 Fab 1HR3 ; 5.5 ; STRUCTURE OF TRIMERIC HAEMERYTHRIN 8AE1 ; 3.25 ; Structure of trimeric SlpA outer membrane protein 1TIM ; 2.5 ; STRUCTURE OF TRIOSE PHOSPHATE ISOMERASE FROM CHICKEN MUSCLE 3KRS ; 1.55 ; Structure of Triosephosphate Isomerase from Cryptosporidium Parvum at 1.55A Resolution 4POD ; 1.99 ; Structure of Triosephosphate Isomerase I170V mutant human enzyme. 2I9E ; 2.0 ; Structure of Triosephosphate Isomerase of Tenebrio molitor 4POC ; 1.601 ; Structure of Triosephosphate Isomerase Wild Type human enzyme. 8GP7 ; ; Structure of Trioxacarcin A covalently bound to RET G4-DNA 6V4K ; 3.53004 ; Structure of TrkH-TrkA in complex with ADP 6V4J ; 2.97 ; Structure of TrkH-TrkA in complex with ATP 6V4L ; 3.8 ; Structure of TrkH-TrkA in complex with ATPgammaS 2VDV ; 2.3 ; Structure of trm8, m7G methylation enzyme 2VDU ; 2.4 ; Structure of trm8-trm82, THE YEAST TRNA m7G methylation complex 5BOX ; 2.5 ; Structure of TrmBL2, an archaeal chromatin protein, shows a novel mode of DNA binding. 5BPD ; 2.4 ; Structure of TrmBL2, an archaeal chromatin protein, shows a novel mode of DNA binding. 5BPI ; 3.198 ; Structure of TrmBL2, an archaeal chromatin protein, shows a novel mode of DNA binding. 5BQT ; 3.0 ; Structure of TrmBL2, an archaeal chromatin protein, shows a novel mode of DNA binding. 8K5L ; 1.67 ; Structure of tRNA (cmo5U34)-methyltransferase from Fusobacterium nucleatum 3CRM ; 1.9 ; Structure of tRNA Dimethylallyltransferase: RNA Modification through a Channel 3CRQ ; 2.2 ; Structure of tRNA Dimethylallyltransferase: RNA Modification through a Channel 3CRR ; 1.9 ; Structure of tRNA Dimethylallyltransferase: RNA Modification through a Channel 1SGV ; 1.9 ; STRUCTURE OF TRNA PSI55 PSEUDOURIDINE SYNTHASE (TRUB) 2G5H ; 2.5 ; Structure of tRNA-Dependent Amidotransferase GatCAB 2G5I ; 3.35 ; Structure of tRNA-Dependent Amidotransferase GatCAB complexed with ADP-AlF4 2DQN ; 2.55 ; Structure of tRNA-Dependent Amidotransferase GatCAB complexed with Asn 2F2A ; 2.3 ; Structure of tRNA-Dependent Amidotransferase GatCAB complexed with Gln 2DF4 ; 3.2 ; Structure of tRNA-Dependent Amidotransferase GatCAB complexed with Mn2+ 3H0L ; 2.3 ; Structure of trna-dependent amidotransferase gatcab from aquifex aeolicus 3H0M ; 2.8 ; Structure of trna-dependent amidotransferase gatcab from aquifex aeolicus 3H0R ; 3.0 ; Structure of trna-dependent amidotransferase gatcab from aquifex aeolicus 4WC3 ; 3.1 ; Structure of tRNA-processing enzyme complex 1 4WC5 ; 3.41 ; Structure of tRNA-processing enzyme complex 3 4WC6 ; 3.41 ; Structure of tRNA-processing enzyme complex 4 4WC7 ; 3.102 ; Structure of tRNA-processing enzyme complex 5 4X0A ; 3.505 ; Structure of tRNA-processing enzyme complex 6 4X0B ; 3.2 ; Structure of tRNA-processing enzyme complex 7 4WC1 ; 3.1 ; Structure of tRNA-processing enzyme with CTP 2B9C ; 2.3 ; Structure of tropomyosin's mid-region: bending and binding sites for actin 6V9W ; 3.1 ; Structure of TRPA1 (ligand-free) with bound calcium, LMNG 6V9Y ; 3.6 ; Structure of TRPA1 bound with A-967079, PMAL-C8 7YKR ; 3.2 ; Structure of TRPA1 in Drosophila melanogaster in a state with 17 ankyrin repeats determined 7YKS ; 3.0 ; Structure of TRPA1 in Drosophila melanogaster in a state with 5 ankyrin repeats determined 6V9V ; 2.6 ; Structure of TRPA1 modified by Bodipy-iodoacetamide with bound calcium, LMNG 6V9X ; 3.3 ; Structure of TRPA1 modified by iodoacetamide, PMAL-C8 7DXB ; 2.7 ; Structure of TRPC3 at 2.7 angstrom in high calcium state 7DXC ; 3.06 ; Structure of TRPC3 at 3.06 angstrom in low calcium state 7DXD ; 3.9 ; Structure of TRPC3 at 3.9 angstrom in 1340 nM free calcium state 7DXE ; 3.2 ; Structure of TRPC3 gain of function mutation R803C at 3.2 angstrom in 1340nM free calcium state 6DRJ ; 3.3 ; Structure of TRPM2 ion channel receptor by single particle electron cryo-microscopy, ADPR/Ca2+ bound state 6DRK ; 3.8 ; Structure of TRPM2 ion channel receptor by single particle electron cryo-microscopy, Apo state 2A4M ; 2.3 ; Structure of Trprs II bound to ATP 4WU8 ; 2.45 ; Structure of trPtNAP-NCP145 5IRZ ; 3.28 ; Structure of TRPV1 determined in lipid nanodisc 5IS0 ; 3.43 ; Structure of TRPV1 in complex with capsazepine, determined in lipid nanodisc 5IRX ; 2.95 ; Structure of TRPV1 in complex with DkTx and RTX, determined in lipid nanodisc 3J5P ; 3.275 ; Structure of TRPV1 ion channel determined by single particle electron cryo-microscopy 3J5Q ; 3.8 ; Structure of TRPV1 ion channel in complex with DkTx and RTX determined by single particle electron cryo-microscopy 7RAS ; 3.64 ; Structure of TRPV3 in complex with osthole 7RAU ; 3.99 ; Structure of TRPV3 in complex with osthole 6B5V ; 4.8 ; Structure of TRPV5 in complex with econazole 4HSZ ; 2.25 ; Structure of truncated (delta8C) S100A4 6XXG ; 2.099 ; Structure of truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Deinococcus radiodurans 8A8Y ; 2.1 ; Structure of truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Klebsiella pneumoniae 8A9C ; 1.8 ; Structure of truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Klebsiella pneumoniae in complex with cofactor TPP 5HO9 ; 2.845 ; Structure of truncated AbnA (domains 1-3), a GH43 arabinanase from Geobacilllus stearothermophilus, in complex with arabinooctaose 2FEP ; 2.45 ; Structure of truncated CcpA in complex with P-Ser-HPr and Sulfate ions 7LQS ; ; Structure of truncated conotoxin CIC 2MRN ; ; Structure of truncated EcMazE 2MRU ; ; Structure of truncated EcMazE-DNA complex 8JJV ; 1.23 ; Structure of truncated form of nanobody in complex with alpha-synuclein peptide 6TD7 ; 1.75 ; Structure of truncated hemoglobin THB11 from Chlamydomonas reinhardtii 4ZGI ; 2.701 ; Structure of Truncated Human TIFA 2Z71 ; 2.6 ; Structure of truncated mutant CYS1GLY of penicillin V acylase from bacillus sphaericus co-crystallized with penicillin V 5N8Q ; 2.0 ; Structure of truncated Norcoclaurine Synthase from Thalictrum flavum 5NON ; 1.85 ; Structure of truncated Norcoclaurine Synthase from Thalictrum flavum with product mimic 1NO1 ; 2.4 ; Structure of truncated variant of B.subtilis SPP1 phage G39P helicase loader/inhibitor protein 1ZI7 ; 2.5 ; Structure of truncated yeast oxysterol binding protein Osh4 7JIA ; ; Structure of truncated zebrafish granulin AaE 7JIY ; ; Structure of truncated zebrafish paragranulin 8GH2 ; 3.66 ; Structure of Trypanosoma (MDH)4-(Pex5)2, close conformation 8GH3 ; 3.53 ; Structure of Trypanosoma (MDH)4-(Pex5)2, distal conformation 8GGD ; 3.33 ; Structure of Trypanosoma (MDH)4-Pex5, close conformation 8GGH ; 3.29 ; Structure of Trypanosoma (MDH)4-PEX5, distal conformation 4N08 ; 2.6 ; Structure of Trypanosoma brucei brucei adenosine kinase (apo) 4N09 ; 2.6 ; Structure of Trypanosoma brucei brucei adenosine kinase in complex with adenosine and AMPPNP 1KV5 ; 1.65 ; Structure of Trypanosoma brucei brucei TIM with the salt-bridge-forming residue Arg191 mutated to Ser 1IIH ; 2.2 ; STRUCTURE OF TRYPANOSOMA BRUCEI BRUCEI TRIOSEPHOSPHATE ISOMERASE COMPLEXED WITH 3-PHOSPHOGLYCERATE 1IIG ; 2.6 ; STRUCTURE OF TRYPANOSOMA BRUCEI BRUCEI TRIOSEPHOSPHATE ISOMERASE COMPLEXED WITH 3-PHOSPHONOPROPIONATE 1OEP ; 2.3 ; Structure of Trypanosoma brucei enolase reveals the inhibitory divalent metal site 2C7V ; 2.2 ; Structure of Trypanosoma brucei pteridine reductase (PTR1) in ternary complex with cofactor and the antifolate methotrexate 6FXS ; 2.01 ; Structure of Trypanosoma brucei type B ribose 5-phosphate isomerase 5KMX ; 2.452 ; Structure of Trypanosoma congolense Insect Stage Antigen 3W1A ; 1.42 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with 5-halogenated orotate derivatives 3W1R ; 1.58 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-045a 3W1T ; 1.68 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-095 3W1U ; 1.85 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-111 3W1X ; 1.45 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-121 3W22 ; 1.98 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-125 3W23 ; 1.48 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-131 3W2J ; 1.42 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-135 3W2K ; 1.54 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-165 3W2L ; 1.64 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-169 3W2M ; 1.58 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-183 3W2N ; 1.96 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-185 3W2U ; 2.25 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-3-193 3W3O ; 1.96 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-053 4JD4 ; 1.51 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-065 3W70 ; 2.6 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-095 3W71 ; 1.68 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-097 3W72 ; 1.55 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-107 3W73 ; 1.78 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-129 3W74 ; 1.9 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-139 3W75 ; 1.47 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-149 3W76 ; 1.58 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-4-189 4JDB ; 1.82 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-005 3W7G ; 1.55 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-013 3W7H ; 1.67 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-015 3W7I ; 1.69 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-055 3W7L ; 1.88 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-075 3W7C ; 1.75 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-077 3W7D ; 1.52 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-170 3W7E ; 1.56 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-5-179 3W7J ; 1.58 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-6-040 3W7K ; 1.61 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-6-066 3W83 ; 2.8 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-6-097 3W84 ; 1.93 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with MII-6-101 3W1Q ; 1.85 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with NL-2 3W87 ; 1.43 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with SH-1-103 3W88 ; 1.4 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with SH-1-200 3W86 ; 1.5 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with SH-1-96 3W6Y ; 2.68 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-2-199 3W7M ; 2.4 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-3-063 3W85 ; 2.0 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-3-139 3W7N ; 2.39 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-3-149 3W7O ; 1.68 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-3-165 3W7P ; 1.7 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-4-031 3W7Q ; 1.83 ; Structure of Trypanosoma cruzi dihydroorotate dehydrogenase in complex with TT2-5-127 6FXL ; 1.96 ; Structure of Trypanosoma cruzi type B ribose 5-phosphate isomerase (TcRpiB) 8GI0 ; 3.5 ; Structure of Trypanosoma docking complex 6SY7 ; 2.75 ; Structure of Trypanosome Brucei Phosphofructokinase in complex with AMP. 2JK6 ; 2.95 ; Structure of Trypanothione Reductase from Leishmania infantum 1FG4 ; 1.9 ; STRUCTURE OF TRYPAREDOXIN II 1RXP ; 1.7 ; STRUCTURE OF TRYPSIN (ORTHORHOMBIC) WITH 1-(4-TERT-BUTYLCARBAMOYL- PIPERAZINE-1-CARBONYL)-3-(3-GUANIDINO-PROPYL)-4-OXO-AZETIDINE-2-CARBOXYLIC ACID 5FXL ; 1.78 ; Structure of trypsin solved by MR from data collected by Direct Data Collection (DDC) using the ESRF RoboDiff goniometer 7A0N ; 4.3 ; Structure of TSC1 NTD and linker domain 4ZV4 ; 3.504 ; Structure of Tse6 in complex with EF-Tu 4ZV0 ; 1.401 ; Structure of Tse6 in complex with Tsi6 3RQ9 ; 1.0 ; Structure of Tsi2, a Tse2-immunity protein from Pseudomonas aeruginosa 4ZUY ; 1.952 ; Structure of Tsi6 from Pseudomonas aeruginosa 7T7T ; 3.17 ; Structure of TSK/BRU1 bound to histone H3.1 5X7L ; 1.22 ; Structure of TsrD from Streptomyces laurentii 5M2Y ; 1.61 ; Structure of TssK C-terminal domain from E. coli T6SS 5M30 ; 2.6 ; Structure of TssK from T6SS EAEC in complex with nanobody nb18 2E37 ; 2.3 ; Structure of TT0471 protein from Thermus thermophilus 2EKP ; 1.15 ; Structure of TT0495 protein from Thermus thermophilus 2EKQ ; 1.8 ; Structure of TT0495 protein from Thermus thermophilus 1WP4 ; 2.0 ; Structure of TT368 protein from Thermus Thermophilus HB8 7JXY ; 2.15 ; Structure of TTBK1 kinase domain in complex with Compound 18 7JXX ; 1.56 ; Structure of TTBK1 kinase domain in complex with Compound 3 5HXK ; 2.0 ; Structure of TTHA1265 1X7T ; 1.6 ; Structure of TTR R104H: a non-amyloidogenic variant with protective clinical effects 2YJM ; 1.84 ; Structure of TtrD from Archaeoglobus fulgidus 7AC5 ; 2.26 ; Structure of Tubulin Darpin complex 1 collected by rotation serial crystallography on a COC membrane at a synchrotron source 7DON ; 1.8 ; Structure of tubulin H392D mutant from Odinarchaeota 6Y4M ; 3.34 ; Structure of Tubulin Tyrosine Ligase in Complex with Tb111 6Y4N ; 2.852 ; Structure of Tubulin Tyrosine Ligase in Complex with Tb116 3M89 ; 2.0 ; Structure of TubZ-GTP-g-S 6OHM ; 1.895 ; Structure of tungstate bound human Phospholipase D2 catalytic domain 8BJW ; 2.39 ; Structure of Tupaia Paramyxovirus C protein 2FZ2 ; 2.9 ; Structure of Turnip Yellow Mosaic Virus at 100 K 5GWL ; ; Structure of two CCTG repeats 6T7C ; 4.0 ; Structure of two copies of human Sox11 transcription factor in complex with a nucleosome 1CKM ; 2.5 ; STRUCTURE OF TWO DIFFERENT CONFORMATIONS OF MRNA CAPPING ENZYME IN COMPLEX WITH GTP 1HJQ ; 2.55 ; Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum. 1HJS ; 1.87 ; Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum. 1HJU ; 2.15 ; Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum. 6G0L ; 10.0 ; Structure of two molecules of the chromatin remodelling enzyme Chd1 bound to a nucleosome 6USJ ; 10.5 ; Structure of two nucleosomes bridged by human PARP2 5VXN ; 3.375 ; Structure of two RcsB dimers bound to two parallel DNAs. 5GWQ ; ; Structure of two TTTA repeats 6BQI ; ; Structure of two-domain translational regulator Yih1 reveals a possible mechanism of action 6U1L ; ; Structure of two-domain translational regulator Yih1 reveals a possible mechanism of action 6U1O ; ; Structure of two-domain translational regulator Yih1 reveals a possible mechanism of action 5F1Z ; 2.65 ; Structure of TYK2 with inhibitor 16: 3-azanyl-5-[(2~{S})-3-methylbutan-2-yl]-7-[1-methyl-5-(2-oxidanylpropan-2-yl)pyrazol-3-yl]-1~{H}-pyrazolo[4,3-c]pyridin-4-one 5F20 ; 2.91 ; Structure of TYK2 with inhibitor 4: 3-azanyl-5-(2-methylphenyl)-7-(1-methylpyrazol-3-yl)-1~{H}-pyrazolo[4,3-c]pyridin-4-one 3PX3 ; 1.8 ; Structure of TylM1 from Streptomyces fradiae H123A mutant in complex with SAH and dTDP-Quip3N 3PX2 ; 1.65 ; Structure of TylM1 from Streptomyces fradiae H123N mutant in complex with SAH and dTDP-Quip3N 3K7O ; 2.0 ; Structure of type B ribose 5-phosphate isomerase from Trypanosoma cruzi 7UMQ ; 3.29 ; Structure of Type I Prion filaments from Gerstmann-Straussler-Scheinker disease 7SBA ; 2.9 ; Structure of type I-D Cascade bound to a dsDNA target 7SBB ; 3.1 ; Structure of type I-D Cascade bound to a ssRNA target 7UN5 ; 3.13 ; Structure of Type II Prion filaments from Gerstmann-Straussler-Scheinker disease 6SBB ; 1.95 ; Structure of type II terpene cyclase MstE from Scytonema (apo) 6SBC ; 1.35 ; Structure of type II terpene cyclase MstE from Scytonema in complex with farnesyl dihydroxybenzoate 6SBD ; 1.4 ; Structure of type II terpene cyclase MstE_D109A from Scytonema in complex with merosterolic acid A (product) 6SBE ; 1.4 ; Structure of type II terpene cyclase MstE_D109N from Scytonema in complex with geranylgeranyl dihydroxybenzoate (substrate) 6SBG ; 2.3 ; Structure of type II terpene cyclase MstE_R337A from Scytonema in complex with geranylgeranyl dihydroxybenzoate (substrate) 6SBF ; 1.3 ; Structure of type II terpene cyclase MstE_Y157F from Scytonema (apo) 5HR4 ; 2.5964 ; Structure of Type IIL restriction-modification enzyme MmeI in complex with DNA has implications for engineering of new specificities 1M3D ; 2.0 ; Structure of Type IV Collagen NC1 Domains 8GRA ; 2.8 ; Structure of Type VI secretion system cargo delivery vehicle Hcp-VgrG-PAAR 4K6L ; 2.393 ; Structure of Typhoid Toxin 2OOP ; ; Structure of Tyr7-PYY in solution 5CE9 ; 1.8 ; structure of tyrosinase from walnut (Juglans regia) 5HSJ ; 1.9 ; Structure of tyrosine decarboxylase complex with PLP at 1.9 Angstroms resolution 2QAD ; 3.3 ; Structure of tyrosine-sulfated 412d antibody complexed with HIV-1 YU2 gp120 and CD4 2TS1 ; 2.3 ; STRUCTURE OF TYROSYL-T/RNA SYNTHETASE REFINED AT 2.3 ANGSTROMS RESOLUTION. INTERACTION OF THE ENZYME WITH THE TYROSYL ADENYLATE INTERMEDIATE 3TS1 ; 2.7 ; STRUCTURE OF TYROSYL-T/RNA SYNTHETASE REFINED AT 2.3 ANGSTROMS RESOLUTION. INTERACTION OF THE ENZYME WITH THE TYROSYL ADENYLATE INTERMEDIATE 1TYD ; 2.5 ; STRUCTURE OF TYROSYL-TRNA SYNTHETASE REFINED AT 2.3 ANGSTROMS RESOLUTION. INTERACTION OF THE ENZYME WITH THE TYROSYL ADENYLATE INTERMEDIATE 6DJT ; 1.64 ; Structure of TYW1 with a lysine-pyruvate adduct bound 4GNX ; 2.8 ; Structure of U. maydis Replication protein A bound to ssDNA 5W0G ; 1.07 ; Structure of U2AF65 (U2AF2) RRM1 at 1.07 resolution 5W0H ; 1.11 ; Structure of U2AF65 (U2AF2) RRM2 at 1.11 Angstrom Resolution 4TU7 ; 2.087 ; Structure of U2AF65 D231V variant with BrU5 DNA 3VAF ; 2.49 ; Structure of U2AF65 variant with BrU3 DNA 3VAG ; 2.19 ; Structure of U2AF65 variant with BrU3C2 DNA 3VAH ; 2.5 ; Structure of U2AF65 variant with BrU3C4 DNA 3VAI ; 2.2 ; Structure of U2AF65 variant with BrU3C5 DNA 3VAK ; 2.17 ; Structure of U2AF65 variant with BrU5 DNA 4TU8 ; 1.918 ; STRUCTURE OF U2AF65 VARIANT WITH BRU5A6 DNA 3VAL ; 2.5 ; Structure of U2AF65 variant with BrU5C1 DNA 3VAM ; 2.4 ; Structure of U2AF65 variant with BrU5C2 DNA 3VAJ ; 1.9 ; Structure of U2AF65 variant with BrU5C6 DNA 4TU9 ; 1.992 ; STRUCTURE OF U2AF65 VARIANT WITH BRU5G6 DNA 2G4B ; 2.5 ; Structure of U2AF65 variant with polyuridine tract 4J0W ; 1.7 ; Structure of U3-55K 7PX3 ; 3.05 ; Structure of U5 snRNP assembly and recycling factor TSSC4 in complex with BRR2 and Jab1 domain of PRPF8 5L8E ; 2.3 ; Structure of UAF1 5D0K ; 2.65 ; Structure of UbE2D2:RNF165:Ub complex 5D0M ; 1.913 ; Structure of UbE2D2:RNF165:Ub complex 5A4P ; 2.1 ; Structure of UBE2Z provides functional insight into specificity in the FAT10 conjugation machinery 5TR4 ; 2.2 ; Structure of Ubiquitin activating enzyme (Uba1) in complex with ubiquitin and TAK-243 2D5G ; 3.2 ; Structure of ubiquitin fold protein R767E mutant 3H1U ; 3.0 ; Structure of ubiquitin in complex with Cd ions 1UBQ ; 1.8 ; STRUCTURE OF UBIQUITIN REFINED AT 1.8 ANGSTROMS RESOLUTION 2OJR ; 2.6 ; Structure of ubiquitin solved by SAD using the Lanthanide-Binding Tag 1BT0 ; 1.7 ; STRUCTURE OF UBIQUITIN-LIKE PROTEIN, RUB1 7ZF1 ; 4.14 ; Structure of ubiquitinated FANCI in complex with FANCD2 and double-stranded DNA 5LN1 ; 3.14 ; STRUCTURE OF UBIQUITYLATED-RPN10 FROM YEAST; 4ZAY ; 1.54 ; Structure of UbiX E49Q in complex with a covalent adduct between dimethylallyl monophosphate and reduced FMN 4ZAG ; 1.68 ; Structure of UbiX E49Q mutant in complex with oxidised FMN and dimethylallyl monophosphate 4ZAL ; 1.62 ; Structure of UbiX E49Q mutant in complex with reduced FMN and dimethylallyl monophosphate 4ZAF ; 1.71 ; Structure of UbiX in complex with oxidised FMN and dimethylallyl monophosphate 4ZAX ; 1.61 ; Structure of UbiX in complex with oxidised prenylated FMN (radical) 4ZAW ; 1.89 ; Structure of UbiX in complex with reduced prenylated FMN 4ZAZ ; 1.45 ; Structure of UbiX Y169F in complex with a covalent adduct formed between reduced FMN and dimethylallyl monophosphate 4ZAN ; 1.76 ; Structure of UbiX Y169F in complex with oxidised FMN and dimethylallyl monophosphate 7ZM0 ; 2.24 ; Structure of UCHL1 in complex with GK13S inhibitor 4R16 ; 1.55 ; Structure of UDP-D-MAnNAc dehdrogeanse from Pyrococcus horikoshii 3KYB ; 2.3 ; Structure of UDP-galactopyranose mutase bound to flavin mononucleotide 3INR ; 2.3 ; Structure of UDP-galactopyranose mutase bound to UDP-galactose (oxidized) 3INT ; 2.51 ; Structure of UDP-galactopyranose mutase bound to UDP-galactose (reduced) 3GF4 ; 2.45 ; Structure of UDP-galactopyranose mutase bound to UDP-glucose 5BR7 ; 1.95 ; Structure of UDP-galactopyranose mutase from Corynebacterium diphtheriae in complex with citrate ion 1I8T ; 2.4 ; STRUCTURE OF UDP-GALACTOPYRANOSE MUTASE FROM E.COLI 1WAM ; 2.35 ; Structure of UDP-galactopyranose mutase from Klebsiella Pneumoniae with FADH- 3AW9 ; 2.3 ; Structure of UDP-galactose 4-epimerase mutant 1UDA ; 1.8 ; STRUCTURE OF UDP-GALACTOSE-4-EPIMERASE COMPLEXED WITH UDP-4-DEOXY-4-FLUORO-ALPHA-D-GALACTOSE 1UDB ; 1.65 ; STRUCTURE OF UDP-GALACTOSE-4-EPIMERASE COMPLEXED WITH UDP-4-DEOXY-4-FLUORO-ALPHA-D-GLUCOSE 1UDC ; 1.65 ; STRUCTURE OF UDP-GALACTOSE-4-EPIMERASE COMPLEXED WITH UDP-MANNOSE 4TWR ; 1.9 ; Structure of UDP-glucose 4-epimerase from Brucella abortus 3TF5 ; 2.3 ; Structure of UDP-glucose dehydrogenase V132 deletion 4R7U ; 2.45 ; Structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase from Vibrio cholerae in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin 4HWG ; 2.0 ; Structure of UDP-N-acetylglucosamine 2-epimerase from Rickettsia bellii 1UAE ; 1.8 ; STRUCTURE OF UDP-N-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE 7D27 ; 2.48 ; Structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate--2, 6-diaminopimelate ligase 4ZIY ; 1.85 ; Structure of UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate--D-alanyl-D-alanyl ligase from Acinetobacter baumannii 3HBF ; 2.1 ; Structure of UGT78G1 complexed with myricetin and UDP 3HBJ ; 2.1 ; Structure of UGT78G1 complexed with UDP 3ASK ; 2.904 ; Structure of UHRF1 in complex with histone tail 3ASL ; 1.41 ; Structure of UHRF1 in complex with histone tail 3T6R ; 1.95 ; Structure of UHRF1 in complex with unmodified H3 N-terminal tail 3SOU ; 1.8001 ; Structure of UHRF1 PHD finger in complex with histone H3 1-9 peptide 3SOW ; 1.9501 ; Structure of UHRF1 PHD finger in complex with histone H3K4me3 1-9 peptide 3SOX ; 2.6501 ; Structure of UHRF1 PHD finger in the free form 5XPI ; 2.2 ; Structure of UHRF1 TTD in complex with NV01 4PW5 ; 2.204 ; structure of UHRF2-SRA in complex with a 5hmC-containing DNA, complex I 4PW6 ; 3.789 ; structure of UHRF2-SRA in complex with a 5hmC-containing DNA, complex II 4PW7 ; 2.001 ; structure of UHRF2-SRA in complex with a 5mC-containing DNA 3D2U ; 2.21 ; Structure of UL18, a Peptide-Binding Viral MHC Mimic, Bound to a Host Inhibitory Receptor 3LUN ; 1.8 ; Structure of ulilysin mutant M290C 3LUM ; 1.7 ; Structure of ulilysin mutant M290L 2CKI ; 1.7 ; Structure of Ulilysin, a member of the pappalysin family of metzincin metalloendopeptidases. 4WNP ; 1.88 ; Structure of ULK1 bound to a potent inhibitor 5CI7 ; 1.74 ; Structure of ULK1 bound to a selective inhibitor 4WNO ; 1.56 ; Structure of ULK1 bound to an inhibitor 6HYO ; 1.07 ; Structure of ULK1 LIR motif bound to GABARAP 6D2C ; 1.906 ; Structure of Ulvan lyase from Nonlaben Ulvanivorans- NLR48 2JI5 ; 2.45 ; Structure of UMP kinase from Pyrococcus furiosus complexed with UTP 8GMT ; 3.31 ; Structure of UmuD in complex with RecA filament 5N2K ; 2.219 ; Structure of unbound Briakinumab FAb 5MXA ; 2.501 ; Structure of unbound Interleukin-23 4ZPW ; 3.023 ; Structure of unbound MERS-CoV spike receptor-binding domain (England1 strain). 7UMO ; 2.3 ; Structure of Unc119-inhibitor complex. 3FGX ; 2.9 ; Structure of uncharacterised protein rbstp2171 from bacillus stearothermophilus 3GNL ; 1.5 ; Structure of uncharacterized protein (LMOf2365_1472) from Listeria monocytogenes serotype 4b 2K52 ; ; Structure of uncharacterized protein MJ1198 from Methanocaldococcus jannaschii. Northeast Structural Genomics Target MjR117B 4OSX ; 1.95 ; STRUCTURE of UNCLEAVED GLYCINE-BOUND HUMAN L-ASPARAGINASE PROTEIN 7N6U ; 4.1 ; Structure of uncleaved HIV-1 JR-FL Env glycoprotein trimer in state U1 bound to small Molecule HIV-1 Entry Inhibitor BMS-378806 7N6W ; 4.7 ; Structure of uncleaved HIV-1 JR-FL Env glycoprotein trimer in state U2 bound to small Molecule HIV-1 Entry Inhibitor BMS-378806 1CLE ; 2.0 ; STRUCTURE OF UNCOMPLEXED AND LINOLEATE-BOUND CANDIDA CYLINDRACEA CHOLESTEROL ESTERASE 1W0N ; 0.8 ; Structure of uncomplexed Carbohydrate Binding Domain CBM36 1UCB ; 2.5 ; STRUCTURE OF UNCOMPLEXED FAB COMPARED TO COMPLEX (1CLY, 1CLZ) 3QAS ; 1.7 ; Structure of Undecaprenyl Diphosphate synthase 5OON ; 2.6 ; Structure of Undecaprenyl-Pyrophosphate Phosphatase, BacA 2MD5 ; ; Structure of uninhibited ETV6 ETS domain 6HCD ; 1.9 ; Structure of universal stress protein from Archaeoglobus fulgidus 6K9F ; 3.7 ; Structure of unknow protein 4 4FKM ; 2.2 ; Structure of unliganded and reductively methylated FhuD2 from staphylococcus aureus 5UKP ; 2.0 ; Structure of unliganded anti-gp120 CD4bs antibody DH522.1 Fab 5UKQ ; 2.1 ; Structure of unliganded anti-gp120 CD4bs antibody DH522.2 Fab 5UKR ; 2.712 ; Structure of unliganded anti-gp120 CD4bs antibody DH522.2 Fab in complex with a gp120 core 5UKO ; 2.3 ; Structure of unliganded anti-gp120 CD4bs antibody DH522IA Fab 5UKN ; 1.75 ; Structure of unliganded anti-gp120 CD4bs antibody DH522UCA Fab 2VLB ; 1.92 ; Structure of unliganded arylmalonate decarboxylase 4MBX ; 1.92 ; Structure of unliganded B-Lymphotropic Polyomavirus VP1 4FNA ; 3.5 ; Structure of unliganded FhuD2 from Staphylococcus Aureus 2G69 ; 1.35 ; Structure of Unliganded HIV-1 Protease F53L Mutant 6N8W ; 3.09228 ; Structure of Unliganded Hsp90-Beta N-Terminal Domain 2C36 ; 2.11 ; Structure of unliganded HSV gD reveals a mechanism for receptor- mediated activation of virus entry 2C3A ; 2.5 ; Structure of unliganded HSV gD reveals a mechanism for receptor- mediated activation of virus entry 4A0D ; 1.75 ; Structure of unliganded human PARG catalytic domain 4B1G ; 1.83 ; Structure of unliganded human PARG catalytic domain 5QUK ; 1.16 ; Structure of unliganded HumRadA1.2 5QUL ; 1.278 ; Structure of unliganded HumRadA1.3 5QUM ; 1.93 ; Structure of unliganded HumRadA1.4 5QUN ; 1.24 ; Structure of unliganded HumRadA1.6 4TZI ; 2.1 ; Structure of unliganded Lyn SH2 domain 6ZPX ; 1.3 ; Structure of Unliganded MgGH51 a-L-Arabinofuranosidase Crystal Type 1 6ZPW ; 1.329 ; Structure of Unliganded MgGH51 a-L-Arabinofuranosidase Crystal Type 2 6ZPV ; 1.2 ; Structure of Unliganded MgGH51 a-L-Arabinofuranosidase Crystal Type 3 6ZPS ; 1.795 ; Structure of Unliganded MgGH51 a-L-Arabinofuranosidase Crystal Type 3 Collected at 2.75 A 5FHG ; 2.0 ; Structure of unliganded Pif1 from Bacteroides sp 5DQJ ; 2.61 ; Structure of unliganded S55-5 Fab 4OFZ ; 3.0 ; Structure of unliganded trehalose-6-phosphate phosphatase from Brugia malayi 6UEV ; 2.7 ; Structure of unliganded tRNA (guanine-N1)-methyltransferase found in Anaplasma phagocytophilum 4POQ ; 2.0 ; Structure of unliganded VP1 pentamer of Human Polyomavirus 9 6VG3 ; 1.95 ; Structure of unliganded, inactive PTK7 kinase domain 4GT4 ; 2.406 ; Structure of unliganded, inactive Ror2 kinase domain 6UGG ; 1.95 ; Structure of unmodified E. coli tRNA(Asp) 4B09 ; 3.3 ; Structure of unphosphorylated BaeR dimer 1Y57 ; 1.91 ; Structure of unphosphorylated c-Src in complex with an inhibitor 1OL6 ; 3.0 ; Structure of unphosphorylated D274N mutant of Aurora-A 1DCK ; 2.0 ; STRUCTURE OF UNPHOSPHORYLATED FIXJ-N COMPLEXED WITH MN2+ 1DCM ; 3.0 ; STRUCTURE OF UNPHOSPHORYLATED FIXJ-N WITH AN ATYPICAL CONFORMER (MONOMER A) 6W3K ; 2.08 ; Structure of unphosphorylated human IRE1 bound to G-9807 6W39 ; 1.736 ; Structure of unphosphorylated IRE1 in complex with G-1749 6W3A ; 2.606 ; Structure of unphosphorylated IRE1 in complex with G-7658 3Q4Z ; 1.887 ; Structure of unphosphorylated PAK1 kinase domain 7T3X ; 3.53 ; Structure of unphosphorylated Pediculus humanus (Ph) PINK1 D334A mutant 1YVL ; 3.0 ; Structure of Unphosphorylated STAT1 1Y1U ; 3.21 ; Structure of unphosphorylated STAT5a 6YKP ; 2.98 ; Structure of unplugged C. jejuni MotAB 2YCG ; 1.81 ; Structure of unreduced ferric cytochrome c peroxidase obtained by multicrystal method 5XNM ; 3.2 ; Structure of unstacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum 4ZGB ; 2.3 ; Structure of untreated lipase from Thermomyces lanuginosa at 2.3 A resolution 4YOE ; 1.92 ; Structure of UP1 bound to RNA 5'-AGU-3' 2IVN ; 1.65 ; Structure of UP1 protein 2IVO ; 2.9 ; Structure of UP1 protein 2IVP ; 2.5 ; Structure of UP1 protein 8RZV ; 1.51 ; Structure of UP1 S4ES6E phosphomimetic mutant in complex with human telomeric repeat DNA 2UP1 ; 2.1 ; STRUCTURE OF UP1-TELOMERIC DNA COMPLEX 7KON ; 8.1 ; Structure of upper Tn Ca2+ free (rotated) and lower Tn Ca2+ bound cardiac native thin filament at pCa=5.8 2EHJ ; 2.8 ; Structure of Uracil phosphoribosyl transferase 4S1K ; 2.2 ; Structure of Uranotaenia sapphirina cypovirus (CPV17) polyhedrin at 100 K 4S1L ; 1.752 ; Structure of Uranotaenia sapphirina cypovirus (CPV17) polyhedrin at 298 K 6A4M ; 2.6 ; Structure of urate oxidase from Bacillus subtilis 168 5FRC ; 1.443 ; Structure of urate oxidase prepared by the 'soak-and-freeze' method under 42 bar of oxygen pressure 1GMU ; 1.5 ; Structure of UreE 1GMV ; 2.8 ; Structure of UreE 1GMW ; 1.5 ; Structure of UreE 5L9N ; 1.901 ; Structure of uridylylated GlnB from Escherichia coli bound to ATP 6K5Z ; 2.33 ; Structure of uridylyltransferase 6K9Z ; 1.78 ; STRUCTURE OF URIDYLYLTRANSFERASE MUTANT 2A3J ; ; Structure of URNdesign, a complete computational redesign of human U1A protein 7JFZ ; 1.7 ; Structure of Urocanate hydratase from Legionella pneumophila bound to NAD 6UEK ; 2.16 ; Structure of Urocanate Hydratase from Trypanosoma cruzi in complex with NAD+ 3BT1 ; 2.8 ; Structure of urokinase receptor, urokinase and vitronectin complex 3BT2 ; 2.5 ; Structure of urokinase receptor, urokinase and vitronectin complex 4ZR8 ; 1.5 ; Structure of uroporphyrinogen decarboxylase from Acinetobacter baumannii 1JR2 ; 1.84 ; Structure of Uroporphyrinogen III Synthase 6L8K ; 2.999 ; Structure of URT1 in complex with UTP 7RKX ; 3.1 ; Structure of US27-Gi-scFv16 in CL-state 7X2E ; 1.85 ; Structure of USH1C PDZ2 and coiled-coil in complex with CDHR2 C-terminal tail 5L8W ; 2.79 ; Structure of USP12-UB-PRG/UAF1 2AYO ; 3.5 ; Structure of USP14 bound to ubquitin aldehyde 2AYN ; 3.2 ; Structure of USP14, a proteasome-associated deubiquitinating enzyme 7W37 ; 3.0 ; Structure of USP14-bound human 26S proteasome in state EA1_UBL 7W38 ; 3.1 ; Structure of USP14-bound human 26S proteasome in state EA2.0_UBL 7W39 ; 3.2 ; Structure of USP14-bound human 26S proteasome in state EA2.1_UBL 7W3C ; 3.4 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED0_USP14 7W3F ; 3.3 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED1_USP14 7W3G ; 3.2 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED2.0_USP14 7W3H ; 3.2 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED2.1_USP14 7W3A ; 3.5 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED4_USP14 7W3B ; 3.6 ; Structure of USP14-bound human 26S proteasome in substrate-engaged state ED5_USP14 7W3I ; 3.5 ; Structure of USP14-bound human 26S proteasome in substrate-inhibited state SB_USP14 7W3J ; 3.5 ; Structure of USP14-bound human 26S proteasome in substrate-inhibited state SC_USP14 7W3K ; 3.6 ; Structure of USP14-bound human 26S proteasome in substrate-inhibited state SD4_USP14 7W3M ; 3.5 ; Structure of USP14-bound human 26S proteasome in substrate-inhibited state SD5_USP14 4A3P ; 1.4 ; Structure of USP15 DUSP-UBL deletion mutant 2Y5B ; 2.7 ; Structure of USP21 in complex with linear diubiquitin-aldehyde 8BS3 ; 2.2 ; Structure of USP36 in complex with Fubi-PA 8BS9 ; 1.9 ; Structure of USP36 in complex with Ubiquitin-PA 5L8H ; 1.85 ; Structure of USP46-UbVME 7MS6 ; 1.55 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with (2-fluoro-4-((4-phenylpiperidin-1-yl)sulfonyl)benzoyl)glycine 6NFT ; 1.65 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with (4-oxoquinazolin-3(4H)-yl)acetic acid 7MS7 ; 1.45 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with (5-((4-(4-chlorophenyl)piperidin-1-yl)sulfonyl)picolinoyl)glycine 6P9G ; 2.1 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with 2-(4-oxoquinazolin-3(4H)-yl)propanoic acid 6DXT ; 1.95 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with 3-(5-phenyl-1,3,4-oxadiazol-2-yl)propanoate 7MS5 ; 1.98 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with 4-(4-(4-(3,4-difluoro-phenyl)-piperidin-1-ylsulfonyl)-phenyl)-4-oxo-butanoic acid 6DXH ; 2.0 ; Structure of USP5 zinc-finger ubiquitin binding domain co-crystallized with 4-(4-tert-butylphenyl)-4-oxobutanoate 5FWI ; 3.4 ; structure of usp7 catalytic domain and three ubl-domains 4YSI ; 1.02 ; Structure of USP7 with a novel viral protein 7EEV ; 2.15 ; Structure of UTP cyclohydrolase 5IC8 ; 3.3 ; Structure of UTP6 6UXF ; 1.65 ; Structure of V. metoecus NucC, hexamer form 6UXG ; 2.15 ; Structure of V. metoecus NucC, trimer form 2QMH ; 2.6 ; structure of V267F mutant HprK/P 7SOJ ; 1.85 ; Structure of V750A Soybean Lipoxygenase at 277K 2O8L ; 1.5 ; Structure of V8 protease from staphylococcus aureus 5TKJ ; 2.118 ; Structure of vaccine-elicited diverse HIV-1 neutralizing antibody vFP1.01 in complex with HIV-1 fusion peptide residue 512-519 6CDO ; 2.099 ; Structure of vaccine-elicited HIV-1 neutralizing antibody vFP16.02 in complex with HIV-1 fusion peptide residue 512-519 6CDM ; 2.408 ; Structure of vaccine-elicited HIV-1 neutralizing antibody vFP7.04 in complex with HIV-1 fusion peptide residue 512-519 2JII ; 2.0 ; Structure of vaccinia related kinase 3 3VOP ; 2.2 ; Structure of Vaccinia virus A27 2YGB ; 2.81 ; Structure of vaccinia virus D13 scaffolding protein 2YGC ; 3.02 ; Structure of vaccinia virus D13 scaffolding protein 6B9J ; 2.9 ; Structure of vaccinia virus D8 protein bound to human Fab vv138 5USL ; 2.9 ; Structure of vaccinia virus D8 protein bound to human Fab vv304 5USH ; 2.3 ; Structure of vaccinia virus D8 protein bound to human Fab vv66 6RIE ; 3.1 ; Structure of Vaccinia Virus DNA-dependent RNA polymerase co-transcriptional capping complex 6RID ; 2.9 ; Structure of Vaccinia Virus DNA-dependent RNA polymerase elongation complex 2VVW ; 1.9 ; Structure of Vaccinia virus protein A52 2VVX ; 2.746 ; Structure of Vaccinia virus protein A52 2VVY ; 2.693 ; Structure of Vaccinia virus protein B14 2J87 ; 3.1 ; Structure of vaccinia virus thymidine kinase in complex with dTTP: insights for drug design 2V62 ; 1.7 ; Structure of vaccinia-related kinase 2 2A22 ; 2.198 ; Structure of Vacuolar Protein Sorting 29 from Cryptosporidium Parvum 6EA6 ; 1.703 ; Structure of VACV poxin 2'3' cGAMP-specific nuclease 6EA9 ; 2.1 ; Structure of VACV Poxin in post-reactive state with Gp[2'-5']Ap[3'] 6EA8 ; 2.6 ; Structure of VACV poxin in pre-reactive state with nonhydrolyzable 2'3' cGAMP 5ZHF ; 1.65 ; Structure of VanYB unbound 6SD6 ; 2.61 ; Structure of VapBC from Shigella sonnei 7FAP ; 3.4 ; Structure of VAR2CSA-CSA 3D7 1VZV ; 3.0 ; STRUCTURE OF VARICELLA-ZOSTER VIRUS PROTEASE 2H7F ; 2.7 ; Structure of variola topoisomerase covalently bound to DNA 2H7G ; 1.9 ; Structure of variola topoisomerase non-covalently bound to DNA 4IF8 ; 2.08 ; Structure Of Vaspin 4Y40 ; 2.2 ; Structure of Vaspin mutant D305C V383C 4Y3K ; 2.2 ; Structure of Vaspin mutant E379S 5GZS ; 2.601 ; Structure of VC protein 4PD7 ; 2.909 ; Structure of vcCNT bound to zebularine 4PB2 ; 2.302 ; Structure of vcCNT-7C8C bound to 5-fluorouridine 4PD9 ; 3.096 ; Structure of vcCNT-7C8C bound to adenosine 4PDA ; 2.608 ; Structure of vcCNT-7C8C bound to cytidine 4PD8 ; 2.75 ; Structure of vcCNT-7C8C bound to pyrrolo-cytidine 4PB1 ; 2.803 ; Structure of vcCNT-7C8C bound to ribavirin 6OKZ ; 3.292 ; Structure of VcINDY bound to Fumarate 6OL0 ; 3.502 ; Structure of VcINDY bound to Malate 6OL1 ; 3.088 ; Structure of VcINDY in complex with Succinate 6WTX ; 3.92 ; Structure of VcINDY in complex with terephthalate 7T9F ; 3.23 ; Structure of VcINDY-apo 7T9G ; 2.83 ; Structure of VcINDY-Na+ 6WU3 ; 3.16 ; Structure of VcINDY-Na+ in amphipol 6WW5 ; 3.15 ; Structure of VcINDY-Na-Fab84 in nanodisc 7K56 ; 3.9 ; Structure of VCP dodecamer purified from H1299 cells 7XJN ; 1.79 ; Structure of VcPotD1 in complex with norspermidine 7XJM ; 1.755 ; Structure of VcPotD1 in complex with spermidine 6U3Z ; 1.99002 ; Structure of VD20_5A4 Fab 2QR0 ; 3.5 ; Structure of VEGF complexed to a Fab containing TYR and SER in the CDRs 3C7Q ; 2.1 ; Structure of VEGFR2 kinase domain in complex with BIBF1120 7FFF ; 3.0 ; Structure of Venezuelan equine encephalitis virus with the receptor LDLRAD3 7UMK ; 4.1 ; Structure of vesicular stomatitis virus (helical reconstruction, 4.1 A resolution) 7UML ; 3.5 ; Structure of vesicular stomatitis virus (local reconstruction, 3.5 A resolution) 7Q5P ; 3.3 ; Structure of VgrG1 from Pseudomonas protegens. 6H3L ; 4.2 ; Structure of VgrG1 in the Type VI secretion ""pre-firing"" VgrG1-Tse6-EagT6-EF-Tu-Tsi6 complex 6H3N ; 3.25 ; Structure of VgrG1 in the Type VI secretion VgrG1-Tse6-EF-Tu complex embedded in lipid nanodiscs 6DYX ; 1.5 ; Structure of VHH R419 isolated from a pre-immune phage display library 8T6I ; 2.55 ; Structure of VHH-Fab complex with engineered Crystal Kappa region 8T9Y ; 2.52 ; Structure of VHH-Fab complex with engineered Elbow FNQIKG and Crystal Kappa regions 8T8I ; 2.52 ; Structure of VHH-Fab complex with engineered Elbow FNQIKG, Crystal Kappa and SER substitutions 8T58 ; 2.23 ; Structure of VHH-Fab complex with engineered FNQIKG elbow region 4WQO ; 3.2 ; Structure of VHL-EloB-EloC-Cul2 4ERC ; 1.15 ; Structure of VHZ bound to metavanadate 4BEU ; 1.15 ; Structure of Vibrio cholerae broad spectrum racemase 4BEQ ; 1.5 ; Structure of Vibrio cholerae broad spectrum racemase double mutant R173A, N174A 4NZ5 ; 1.874 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with 2-(ACETYLAMINO)-2-DEOXY-A-D-GLUCOPYRANOSE (NDG) and cadmium ion 4NZ4 ; 1.944 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with 2-(ACETYLAMINO)-2-DEOXY-A-D-GLUCOPYRANOSE (NDG) and zinc ion 4NYU ; 2.03 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with acetate ion (ACT) in C 2 2 21 4NYY ; 2.65 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with acetate ion (ACT) in P 2 21 21 4NY2 ; 1.879 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with acetate ion (ACT) in P 21 4NZ1 ; 2.051 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with DI(N-ACETYL-D-GLUCOSAMINE) (CBS) in P 21 4NZ3 ; 2.114 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with DI(N-ACETYL-D-GLUCOSAMINE) (CBS) in P 21 21 21 4OUI ; 2.17 ; Structure of Vibrio cholerae chitin de-N-acetylase in complex with TRIACETYLCHITOTRIOSE (CTO) 4LK4 ; 2.4 ; Structure of Vibrio cholerae VesB protease 2NYQ ; 2.5 ; Structure of Vibrio proteolyticus aminopeptidase with a bound Trp fragment of dLWCF 5YJS ; 2.16 ; Structure of vicilin from Capsicum annuum 3W3E ; 1.5 ; Structure of Vigna unguiculata chitinase with regulation activity of the plant cell wall 2D98 ; 2.0 ; Structure of VIL (extra KI/I2 added)-xylanase 2D8O ; 2.38 ; Structure of VIL-thaumatin 2D97 ; 2.01 ; Structure of VIL-xylanase 6V1P ; 1.2 ; Structure of VIM-2 bound to QPX7728 at 1.20 A 7A5Z ; 1.29 ; Structure of VIM-2 metallo-beta-lactamase with hydrolysed Faropenem imine product 6ZYO ; 1.45 ; Structure of VIM-2 with 2-Mercaptomethyl-thiazolidine D-syn-1b 6ZYN ; 1.40001 ; Structure of VIM-2 with 2-Mercaptomethyl-thiazolidine L-anti-1b 6OP6 ; 1.25 ; Structure of VIM-20 in the reduced state 2GDC ; 2.74 ; Structure of Vinculin VD1 / IpaA560-633 complex 8K4R ; 2.3 ; Structure of VinM-VinL complex 6B4C ; 2.795 ; Structure of Viperin from Trichoderma virens 2CFA ; 2.3 ; Structure of viral flavin-dependant thymidylate synthase ThyX 1VLK ; 1.9 ; STRUCTURE OF VIRAL INTERLEUKIN-10 7EK6 ; 1.243 ; Structure of viral peptides IPB19/N52 3AGP ; 2.8 ; Structure of viral polymerase form I 3AGQ ; 3.22 ; Structure of viral polymerase form II 7VCL ; 3.2 ; structure of viral protein BKRF4 in complex with H2A-H2B 7VCQ ; 3.0 ; structure of viral protein BKRF4 in complex with H3.3-H4-ASF1 3AVT ; 2.607 ; Structure of viral RNA polymerase complex 1 3AVU ; 2.907 ; Structure of viral RNA polymerase complex 2 3AVV ; 3.119 ; Structure of viral RNA polymerase complex 3 3AVW ; 2.602 ; Structure of viral RNA polymerase complex 4 3AVX ; 2.406 ; Structure of viral RNA polymerase complex 5 3AVY ; 2.616 ; Structure of viral RNA polymerase complex 6 4AG5 ; 2.45 ; Structure of VirB4 of Thermoanaerobacter pseudethanolicus 4AG6 ; 2.35 ; Structure of VirB4 of Thermoanaerobacter pseudethanolicus 6RJK ; 1.922 ; Structure of virulence factor SghA from Agrobacterium tumefaciens 5DYR ; 3.0 ; Structure of virulence-associated protein D (VapD) from Xylella fastidiosa 7PVB ; ; Structure of Viscotoxin A3 from Viscum Album in the complex with DPC micelles 4R9U ; 2.785 ; Structure of vitamin B12 transporter BtuCD in a nucleotide-bound outward facing state 4FI3 ; 3.466 ; Structure of vitamin B12 transporter BtuCD-F in a nucleotide-bound state 8IYE ; 1.9 ; Structure of VldE-D158N in complex with GDP 8IYF ; 1.9 ; Structure of VldE-H182A in complex with GDP 5E1J ; 3.308 ; Structure of voltage-gated two-pore channel TPC1 from Arabidopsis thaliana 3NPE ; 3.2 ; Structure of VP14 in complex with oxygen 8K44 ; 3.8 ; Structure of VP9 in Banna virus 8GUG ; 2.85 ; Structure of VPA0770 toxin bound to VPA0769 antitoxin in Vibrio parahaemolyticus 5DFZ ; 4.4 ; Structure of Vps34 complex II from S. cerevisiae. 6HOH ; 2.25 ; Structure of VPS34 LIR motif (S249E) bound to GABARAP 6HOG ; 1.26 ; Structure of VPS34 LIR motif bound to GABARAP 5F0K ; 3.074 ; Structure of VPS35 N terminal region 7ZTY ; 2.89 ; Structure of Vps39 N-terminal domain from Chaetomium thermophilum 4LCB ; 2.08 ; Structure of Vps4 homolog from Acidianus hospitalis 7L9X ; 2.81 ; Structure of VPS4B in complex with an allele-specific covalent inhibitor 7TAN ; 3.0 ; Structure of VRK1 C-terminal tail bound to nucleosome core particle 8F0Q ; 2.5 ; Structure of VSD4-NaV1.7-NaVPas channel chimera bound to the acylsulfonamide inhibitor GDC-0310 8F0R ; 2.9 ; Structure of VSD4-NaV1.7-NaVPas channel chimera bound to the arylsulfonamide inhibitor GNE-3565 8F0P ; 2.2 ; Structure of VSD4-NaV1.7-NaVPas channel chimera bound to the hybrid inhibitor GNE-1305 8F0S ; 3.1 ; Structure of VSD4-NaV1.7-NaVPas channel chimera bound to the hybrid inhibitor GNE-9296 2G46 ; ; structure of vSET in complex with meK27 H3 Pept. and cofactor product SAH 5NB8 ; 2.1 ; Structure of vWC domain from CCN3 6O66 ; 2.452 ; Structure of VX-phosphonylated hAChE in complex with oxime reactivator RS-170B 6U37 ; 2.25 ; Structure of VX-phosphonylated hAChE in complex with oxime reactivator RS194B 7JQJ ; 2.2 ; Structure of W45F Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with NADP+ 3EKC ; 1.8 ; structure of W60V beta-2 microglobulin mutant 8S91 ; 4.3 ; Structure of Walker B mutated MCM8/9 heterohexamer complex with ADP 5ODV ; 4.0 ; Structure of Watermelon mosaic virus potyvirus. 2GNQ ; 1.8 ; Structure of wdr5 3EG6 ; 1.72 ; Structure of WDR5 bound to MLL1 peptide 7AXU ; 1.68 ; Structure of WDR5:CS-VIP8 cocrystal after illumination in situ 7AXX ; 1.79 ; Structure of WDR5:CS-VIP8 crystal after illumination at 405 nm and room temperature 7KVA ; 3.1 ; Structure of West Nile virus (Kunjin) 8CO8 ; 1.91 ; Structure of West Nile Virus NS2B-NS3 protease 6OB1 ; ; Structure of WHB in complex with Ubiquitin Variant 8PXJ ; 2.75 ; Structure of Whitewater Arroyo virus GP1 glycoprotein, solved at wavelength 2.75 A 6EV4 ; 1.14 ; Structure of wild type A. niger Fdc1 purified in the dark with prFMN in the iminium form 6EV3 ; 1.3 ; Structure of wild type A. niger Fdc1 that has been illuminated with UV light, with prFMN in the iminium and ketimine form 5JZO ; 2.5 ; Structure of wild type amidase at high temperature at 2.5 Angstrom resolution 5JZM ; 1.87 ; Structure of wild type Amidase from Vibrio cholerae 0395 at low temparature at 1.8 Angstroms resolution. 7DVA ; 1.55 ; Structure of wild type Bt4394, a GH20 family sulfoglycosidase, in complex with 6S-GlcNAc 6JMY ; 1.661 ; Structure of wild type closed form of peptidoglycan peptidase 6KV1 ; 1.722 ; Structure of wild type closed form of peptidoglycan peptidase ZN SAD 2GFW ; 2.4 ; Structure of wild type E. coli FabF (KASII) 2WNN ; 1.65 ; Structure of wild type E. coli N-acetylneuraminic acid lyase in complex with pyruvate in space group P21 2WO5 ; 2.2 ; Structure of wild type E. coli N-acetylneuraminic acid lyase in space group P21 crystal form I 2YGY ; 1.9 ; Structure of wild type E. coli N-acetylneuraminic acid lyase in space group P21 crystal form II 7JQI ; 2.4 ; Structure of wild type Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with alpha-ketoglutarate and NADP+ 7JQH ; 2.0 ; Structure of wild type Glyoxylate/Hydroxypyruvate reductase A from Escherichia Coli in complex with phosphate and NADP+ 2QD5 ; 2.3 ; Structure of wild type human ferrochelatase in complex with a lead-porphyrin compound 6E70 ; 1.992 ; Structure of Wild Type Human Transthyretin in Complex with Diflunisal 6E6Z ; 1.75 ; Structure of Wild Type Human Transthyretin in Complex with Tafamidis 4O25 ; 2.2 ; Structure of Wild Type Mus musculus Rheb bound to GTP 4BRS ; 1.6 ; Structure of wild type PhaZ7 PHB depolymerase 5UZT ; ; Structure of wild type pre-miR21 apical loop 5UZZ ; ; Structure of wild type pre-miR21 apical loop 4B7V ; 1.73 ; Structure of wild type Pseudomonas aeruginosa FabF (KASII) 4JPF ; 1.67 ; Structure of wild type Pseudomonas aeruginosa FabF (KASII) in Complex with ligand 4AH7 ; 2.3 ; Structure of Wild Type Stapylococcus aureus N-acetylneuraminic acid lyase in complex with pyruvate 6IB7 ; 2.245 ; Structure of wild type SuhB 2GOU ; 1.4 ; Structure of wild type, oxidized SYE1, an OYE homologue from S. oneidensis 1M5L ; ; Structure of wild-type and mutant internal loops from the SL-1 domain of the HIV-1 packaging signal 8I4J ; 1.62 ; Structure of wild-type Azami Green from Galaxea fascicularis 6N21 ; 2.04 ; Structure of wild-type CAO1 4C0B ; 2.77 ; Structure of wild-type Clp1p-Pcf11p (454 -563) complex 2PA7 ; 1.5 ; Structure of Wild-Type dTDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from Aneurinibacillus thermoaerophilus in complex with TDP 1ZA1 ; 2.2 ; Structure of wild-type E. coli Aspartate Transcarbamoylase in the presence of CTP at 2.20 A resolution 1ZA2 ; 2.5 ; Structure of wild-type E. coli Aspartate Transcarbamoylase in the presence of CTP, carbamoyl phosphate at 2.50 A resolution 2H3E ; 2.3 ; Structure of wild-type E. coli Aspartate Transcarbamoylase in the presence of N-phosphonacetyl-L-isoasparagine at 2.3A resolution 4MQJ ; 1.8 ; Structure of Wild-type Fetal Human Hemoglobin HbF 4LL3 ; 1.95 ; Structure of wild-type HIV protease in complex with darunavir 4U7V ; 1.38 ; Structure of wild-type HIV protease in complex with degraded photosensitive inhibitor 4U7Q ; 1.7 ; Structure of wild-type HIV protease in complex with photosensitive inhibitor PDI-6 5CHZ ; 1.83 ; Structure of wild-type human MBD4 bound to a G:T mismatch 7NGB ; 3.64 ; Structure of Wild-Type Human Potassium Chloride Transporter KCC3 in NaCl (LMNG/CHS) 4LLD ; 1.19 ; Structure of wild-type IgG1 antibody heavy chain constant domain 1 and light chain lambda constant domain (IgG1 CH1:Clambda) at 1.19A 6CME ; 1.92 ; Structure of wild-type ISL2-LID in complex with LHX4-LIM1+2 2V08 ; 2.0 ; Structure of wild-type Phormidium laminosum cytochrome c6 7KPR ; 3.09 ; Structure of wild-type PPM1H phosphatase at 3.1 Angstrom resolution 7DR0 ; 3.3 ; Structure of Wild-type PSI monomer1 from Cyanophora paradoxa 7DR1 ; 3.2 ; Structure of Wild-type PSI monomer2 from Cyanophora paradoxa 1EY0 ; 1.6 ; STRUCTURE OF WILD-TYPE S. NUCLEASE AT 1.6 A RESOLUTION 1EYD ; 1.7 ; STRUCTURE OF WILD-TYPE S. NUCLEASE AT 1.7 A RESOLUTION 7JP1 ; 1.8 ; Structure of wild-type substrate free SARS-CoV-2 Mpro. 3TCT ; 1.3 ; Structure of wild-type TTR in complex with tafamidis 1XTI ; 1.95 ; Structure of Wildtype human UAP56 4C3L ; 1.6 ; Structure of wildtype PII from S. elongatus at high resolution 4C3M ; 2.149 ; Structure of wildtype PII from S. elongatus at medium resolution 5O25 ; 1.75 ; Structure of wildtype T.maritima PDE (TM1595) in ligand-free state 5O1U ; 1.9 ; Structure of wildtype T.maritima PDE (TM1595) with AMP and Mn2+ 2C0F ; 2.28 ; Structure of Wind Y53F mutant 7UOS ; 2.9 ; Structure of WNK1 inhibitor complex 1M1S ; 1.8 ; Structure of WR4, a C.elegans MSP family member 1ZWK ; 2.6 ; Structure of WrbA from Pseudomonas aeruginosa 1ZWL ; 2.8 ; Structure of WrbA from Pseudomonas aeruginosa in complex with FMN 7Q6N ; 2.33 ; Structure of WrbA from Salmonella Typhimurium bound to ME0052 7Q6O ; 1.99 ; Structure of WrbA from Yersinia pseudotuberculosis in C2221 7Q6M ; 2.04 ; Structure of WrbA from Yersinia pseudotuberculosis in P1 3AAF ; 1.9 ; Structure of WRN RQC domain bound to double-stranded DNA 2X0F ; 2.55 ; Structure of WsaF in complex with dTDP-beta-L-Rha 7XYJ ; 2.275 ; Structure of WSSV thymidylate synthase in complex with dUMP 7XYK ; 1.433 ; Structure of WSSV thymidylate synthase in complex with dUMP and raltitrexed 8G6W ; 2.02 ; Structure of WT E.coli 70S ribosome complexed with mRNA, P-site fMet-NH-tRNAfMet and A-site ortho-aminobenzoic acid charged NH-tRNAPhe 8G6Y ; 2.09 ; Structure of WT E.coli ribosome 50S subunit with complexed with mRNA, P-site fMet-NH-tRNAfMet and A-site 3-aminopyridine-4-carboxylic acid charged NH-tRNAPhe 8G6X ; 2.31 ; Structure of WT E.coli ribosome 50S subunit with complexed with mRNA, P-site fMet-NH-tRNAfMet and A-site meta-aminobenzoic acid charged NH-tRNAPhe 8FN7 ; 2.8 ; Structure of WT HIV-1 intasome bound to Dolutegravir 5DJM ; 1.9 ; Structure of WT Human Glutathione Transferase in complex with cisplatin in the absence of glutathione. 5DJL ; 1.8 ; Structure of WT Human Glutathione Transferase in complex with cisplatin in the presence of glutathione. 7KMU ; 1.51 ; Structure of WT Malaysian Banana Lectin 5AK7 ; 1.46 ; Structure of wt Porphyromonas gingivalis peptidylarginine deiminase 6NJA ; 1.92 ; Structure of WT RET protein tyrosine kinase domain at 1.92A resolution. 7YG4 ; 3.1 ; Structure of WTAP-VIRMA in the m6A writer complex 4L29 ; 3.09 ; Structure of wtMHC class I with NY-ESO1 double mutant 5D73 ; 2.33 ; Structure of Wuchereria bancrofti pi-class glutathione S-transferase 5TJQ ; 2.75 ; Structure of WWP2 2,3-linker-HECT 5TJ8 ; 2.3 ; Structure of WWP2 WW2-2,3-linker-HECT (no WW2 observed) 5TJ7 ; 2.6 ; Structure of WWP2 WW2-2,3-linker-HECT aa 334-398 linked to 485-865 4WL1 ; 5.989 ; Structure of WzzE Polysaccharide Co-polymerase 3B8O ; 2.4 ; Structure of WzzE- Bacterial Polysaccharide Co-polymerase 6NFF ; 2.0 ; Structure of X-prolyl dipeptidyl aminopeptidase from Lactobacillus helveticus 3K89 ; 1.6 ; Structure of X. oryzae pv. oryzae KACC10331, Xoo0880(fabD) complexed with glycerol 8GP5 ; 4.05 ; Structure of X18 UFO protomer in complex with F6 Fab VHVL domain 2RH6 ; 1.45 ; Structure of Xac NPP for evaluation of refinement methodology 2GSN ; 1.75 ; Structure of Xac Nucleotide Pyrophosphatase/Phosphodiesterase 2GSU ; 2.0 ; Structure of Xac Nucleotide Pyrophosphatase/Phosphodiesterase in Complex with AMP 2GSO ; 1.3 ; Structure of Xac Nucleotide Pyrophosphatase/Phosphodiesterase in Complex with Vanadate 5HPC ; 2.6 ; Structure of XacCel5A crystallized in the space group P41212 3B9J ; 2.3 ; Structure of Xanthine Oxidase with 2-hydroxy-6-methylpurine 5JP1 ; 2.1 ; Structure of Xanthomonas campestris effector protein XopD bound to tomato SUMO 5JP3 ; 2.9 ; Structure of Xanthomonas campestris effector protein XopD bound to ubiquitin 6R5Q ; 3.0 ; Structure of XBP1u-paused ribosome nascent chain complex (post-state) 6R6P ; 3.1 ; Structure of XBP1u-paused ribosome nascent chain complex (rotated state) 6R7Q ; 3.9 ; Structure of XBP1u-paused ribosome nascent chain complex with Sec61. 6R6G ; 3.7 ; Structure of XBP1u-paused ribosome nascent chain complex with SRP. 5NGI ; 2.98 ; Structure of XcpQN012 5N1U ; 2.976 ; Structure of xEco2 acetyltransferase domain 5N1W ; 2.3 ; Structure of xEco2 acetyltransferase domain bound to K105-CoA conjugate 5N22 ; 1.99 ; Structure of xEco2 acetyltransferase domain bound to K106-CoA conjugate 4AB4 ; 1.5 ; Structure of Xenobiotic Reductase B from Pseudomonas putida in complex with TNT 4AEO ; 1.7 ; Structure of Xenobiotic Reductase B from Pseudomonas putida in complex with TNT 7SXM ; 2.503 ; Structure of Xenon-derivatized Methyl-Coenzyme M Reductase from Methanothermobacter marburgensis 8ERO ; 3.2 ; Structure of Xenopus cholinephosphotransferase1 in complex with CDP 8ERP ; 3.7 ; Structure of Xenopus cholinephosphotransferase1 in complex with CDP-choline 7TCP ; 3.84 ; Structure of Xenopus KCNQ1-CaM 7TCI ; 3.9 ; Structure of Xenopus KCNQ1-CaM in complex with ML277 7SHK ; 3.1 ; Structure of Xenopus laevis CRL2Lrr1 (State 1) 7SHL ; 3.5 ; Structure of Xenopus laevis CRL2Lrr1 (State 2) 6LK8 ; 5.5 ; Structure of Xenopus laevis Cytoplasmic Ring subunit. 7VCI ; 8.1 ; Structure of Xenopus laevis NPC nuclear ring asymmetric unit 6GJW ; 1.9 ; Structure of XIAP-BIR1 domain in complex with an NF023 analog 4MTZ ; 2.1 ; Structure of XIAP-BIR1 in complex with NF023 6QCI ; 2.3 ; Structure of XIAP-BIR1 V86E mutant 4KMP ; 1.95 ; Structure of XIAP-BIR3 and inhibitor 7KXI ; ; Structure of XL5-ligated hRpn13 Pru domain 5CVK ; 2.1 ; Structure of Xoo1075, a peptide deformyase from Xanthomonas oryzae pv. oryze, in complex with fragment 493 5CVQ ; 2.5 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv oryzae, in complex with actinonin 5CXJ ; 2.38 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv oryzae, in complex with fragment 124 5CWX ; 2.2 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv oryzae, in complex with fragment 134 5CY8 ; 2.38 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv oryze, in complex with fragment 244 5CVP ; 2.0 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv oryze, in complex with fragment 571 5CX0 ; 2.5 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryzae pv. oryzae, in complex with fragment 322 5CWY ; 2.4 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryze pv oryzae, in complex with fragment 83 5CY7 ; 2.4 ; Structure of Xoo1075, a peptide deformylase from Xanthomonas oryze pv oryze, in complex with fragment 275 2VSF ; 2.9 ; Structure of XPD from Thermoplasma acidophilum 4EI6 ; 1.6 ; Structure of XV19 Valpha1-Vbeta16 Type-II Natural Killer T cell receptor 4FE7 ; 2.9 ; structure of xylose-binding transcription activator xylR 7NL2 ; 1.8 ; Structure of Xyn11 from Pseudothermotoga thermarum 5CM2 ; 2.5 ; Structure of Y. lipolytica Trm9-Trm112 complex, a methyltransferase modifying U34 in the anticodon loop of some tRNAs 2B2K ; 1.97 ; structure of Y104F IDI-1 mutant in complex with EIPP 4BVJ ; 1.599 ; Structure of Y105A mutant of PhaZ7 PHB depolymerase 6JX9 ; 1.8 ; Structure of Y17107 complexed HPPD 4BVK ; 1.606 ; Structure of Y190E mutant of PhaZ7 PHB depolymerase 3USR ; 2.1 ; Structure of Y194F glycogenin mutant truncated at residue 270 4GHC ; 1.55 ; Structure of Y257F variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum at 1.55 Ang resolution 4GHF ; 1.67 ; Structure of Y257F variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-Nitrocatechol and dioxygen at 1.67 Ang resolution 4GHE ; 1.6 ; Structure of Y257F variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with 4-nitrocatechol at 1.60 Ang resolution 4GHD ; 1.85 ; Structure of Y257F variant of Homoprotocatechuate 2,3-Dioxygenase from B.fuscum in complex with HPCA at 1.85 Ang resolution 4UGW ; 1.901 ; Structure of Y357F Bacillus subtilis Nitric Oxide Synthase in complex with 6-(5-((3R,4R)-4-((6-azanyl-4-methyl-pyridin-2-yl)methyl) pyrrolidin-3-yl)oxypentyl)-4-methyl-pyridin-2-amine 4UGV ; 1.985 ; Structure of Y357F Bacillus subtilis Nitric Oxide Synthase in complex with Arginine and 5,6,7,8-TETRAHYDROBIOPTERIN 8D5D ; 1.54 ; Structure of Y430F D-ornithine/D-lysine decarboxylase complex with D-arginine 8D88 ; 1.41 ; Structure of Y430F D-ornithine/D-lysine decarboxylase complex with D-lysine 8D5R ; 1.44 ; Structure of Y430F D-ornithine/D-lysine decarboxylase complex with D-ornithine 8D4I ; 1.32 ; Structure of Y430F D-ornithine/D-lysine decarboxylase complex with putrescine 5Z35 ; 1.8 ; Structure of Y68F mutant metal free periplasmic metal binding protein from candidatus liberibacter asiaticus 5ZHA ; 1.84 ; Structure of Y68F mutant Mn-Bound periplasmic metal binding protein from candidatus liberibacter asiaticus 3OG9 ; 1.88 ; Structure of YahD with Malic acid 6YJ4 ; 2.7 ; Structure of Yarrowia lipolytica complex I at 2.7 A 1J8B ; 1.75 ; Structure of YbaB from Haemophilus influenzae (HI0442), a protein of unknown function 3NVD ; 1.836 ; Structure of YBBD in complex with pugnac 6P6I ; 3.67 ; Structure of YbtPQ importer 6P6J ; 3.4 ; Structure of YbtPQ importer with substrate Ybt-Fe bound 6PE3 ; 2.3 ; Structure of YcaO enzyme from Methanocaldococcus jannaschii in complex with ATP 6PEU ; 1.95 ; Structure of YcaO enzyme from Methanocaldococcus jannaschii in complex with peptide 1QZ4 ; 2.0 ; Structure of YcfC Protein of Unknown Function Escherichia coli 4LIT ; 2.4 ; Structure of YcfD a Ribosomal oxygenase from Escherichia coli in complex with Cobalt and 2-oxoglutarate. 4LIV ; 2.7 ; Structure of YcfD, a Ribosomal oxygenase from Escherichia coli in complex with Cobalt and succinic acid. 4LIU ; 2.7 ; Structure of YcfD, a Ribosomal oxygenase from Escherichia coli. 4QLN ; 2.65 ; structure of ydao riboswitch binding with c-di-dAMP 4YNX ; 1.5 ; Structure of YdiE from E. coli 3MG8 ; 2.59 ; Structure of yeast 20S open-gate proteasome with Compound 16 3SDI ; 2.65 ; Structure of yeast 20S open-gate proteasome with Compound 20 3OEU ; 2.6 ; Structure of yeast 20S open-gate proteasome with Compound 24 3OEV ; 2.85 ; Structure of yeast 20S open-gate proteasome with Compound 25 3SDK ; 2.7 ; Structure of yeast 20S open-gate proteasome with Compound 34 3MG6 ; 2.6 ; Structure of yeast 20S open-gate proteasome with Compound 6 3MG7 ; 2.78 ; Structure of yeast 20S open-gate proteasome with Compound 8 8OLR ; 2.8 ; Structure of yeast 20S proteasome in complex with the natural product beta-lactone inhibitor Cystargolide A 3MG0 ; 2.68 ; Structure of yeast 20S proteasome with bortezomib 3MG4 ; 3.11 ; Structure of yeast 20S proteasome with Compound 1 3JCO ; 4.8 ; Structure of yeast 26S proteasome in M1 state derived from Titan dataset 3JCP ; 4.6 ; Structure of yeast 26S proteasome in M2 state derived from Titan dataset 6T7T ; 3.1 ; Structure of yeast 80S ribosome stalled on poly(A) tract. 6T4Q ; 2.6 ; Structure of yeast 80S ribosome stalled on the CGA-CCG inhibitory codon combination. 6T7I ; 3.2 ; Structure of yeast 80S ribosome stalled on the CGA-CGA inhibitory codon combination. 8J6V ; 3.4 ; Structure of yeast Arginyl-tRNA-protein transferase 1 3CSM ; 3.0 ; STRUCTURE OF YEAST CHORISMATE MUTASE WITH BOUND TRP AND AN ENDOOXABICYCLIC INHIBITOR 3CXH ; 2.5 ; Structure of yeast complex III with isoform-2 cytochrome c bound and definition of a minimal core interface for electron transfer. 2I7X ; 2.5 ; Structure of Yeast CPSF-100 (Ydh1p) 7MGM ; 3.1 ; Structure of yeast cytoplasmic dynein with AAA3 Walker B mutation bound to Lis1 4ZDD ; 3.0 ; Structure of yeast D3,D2-enoyl-CoA isomerase bound to sulphate ion 2IS9 ; 1.92 ; Structure of yeast DCN-1 6T83 ; 4.0 ; Structure of yeast disome (di-ribosome) stalled on poly(A) tract. 2XGQ ; 2.7 ; Structure of yeast DNA polymerase eta in complex with C8-N-acetyl-2- aminoanthracene containing DNA 7LXD ; 4.11 ; Structure of yeast DNA Polymerase Zeta (apo) 2IX3 ; 2.7 ; Structure of yeast Elongation Factor 3 2IWH ; 3.0 ; Structure of yeast Elongation Factor 3 in complex with ADPNP 4EJS ; 2.606 ; Structure of yeast elongator subcomplex Elp456 5LOZ ; 1.95 ; STRUCTURE OF YEAST ENT1 ENTH DOMAIN 8F2K ; 2.9 ; Structure of yeast F1-ATPase determined with 100 micromolar cruentaren A 7NS5 ; 1.95 ; Structure of yeast Fbp1 (Fructose-1,6-bisphosphatase 1) 1FPW ; ; STRUCTURE OF YEAST FREQUENIN 2JU0 ; ; Structure of Yeast Frequenin bound to PdtIns 4-kinase 3D5J ; 1.91 ; Structure of yeast Grx2-C30S mutant with glutathionyl mixed disulfide 4XZR ; 2.25 ; Structure of yeast importin a bound to the membrane protein Nuclear Localization Signal sequence of INM protein Heh1 4PVZ ; 2.5 ; Structure of yeast importin a bound to the membrane protein Nuclear Localization Signal sequence of INM protein Heh2 3ND2 ; 2.4 ; Structure of Yeast Importin-beta (Kap95p) 2XQ0 ; 1.955 ; Structure of yeast LTA4 hydrolase in complex with Bestatin 4C9G ; 2.49 ; Structure of yeast mitochondrial ADP/ATP carrier isoform 2 inhibited by carboxyatractyloside (C2221 crystal form) 4C9H ; 3.2 ; Structure of yeast mitochondrial ADP/ATP carrier isoform 2 inhibited by carboxyatractyloside (P212121 crystal form) 4C9Q ; 3.2 ; Structure of yeast mitochondrial ADP/ATP carrier isoform 3 inhibited by carboxyatractyloside (P21 crystal form) 4C9J ; 3.397 ; Structure of yeast mitochondrial ADP/ATP carrier isoform 3 inhibited by carboxyatractyloside (P212121 crystal form) 6EYW ; 2.88 ; Structure of Yeast Myosin 5 Cargo Binding Domain in Trigonal Space Group 4B8A ; 2.4 ; Structure of yeast NOT1 MIF4G domain co-crystallized with CAF1 5GW4 ; 4.7 ; Structure of Yeast NPP-TRiC 8AGE ; 2.8 ; Structure of yeast oligosaccharylransferase complex with acceptor peptide bound 8AGC ; 3.1 ; Structure of yeast oligosaccharylransferase complex with lipid-linked oligosaccharide and non-acceptor peptide bound 8AGB ; 3.0 ; Structure of yeast oligosaccharylransferase complex with lipid-linked oligosaccharide bound 1ZHW ; 1.7 ; Structure of yeast oxysterol binding protein Osh4 in complex with 20-hydroxycholesterol 1ZHX ; 1.5 ; Structure of yeast oxysterol binding protein Osh4 in complex with 25-hydroxycholesterol 1ZHT ; 1.9 ; Structure of yeast oxysterol binding protein Osh4 in complex with 7-hydroxycholesterol 1ZHY ; 1.6 ; Structure of yeast oxysterol binding protein Osh4 in complex with cholesterol 1ZHZ ; 1.9 ; Structure of yeast oxysterol binding protein Osh4 in complex with ergosterol 1FA0 ; 2.6 ; STRUCTURE OF YEAST POLY(A) POLYMERASE BOUND TO MANGANATE AND 3'-DATP 2HHP ; 1.8 ; Structure of yeast poly(A) polymerase in a closed conformation. 2O1P ; 2.7 ; Structure of yeast Poly(A) Polymerase in a somewhat closed state 2Q66 ; 1.8 ; Structure of Yeast Poly(A) Polymerase with ATP and oligo(A) 2JXR ; 2.4 ; STRUCTURE OF YEAST PROTEINASE A 7MZV ; 3.2 ; Structure of yeast pseudouridine synthase 7 (PUS7) 8XGC ; 3.7 ; Structure of yeast replisome associated with FACT and histone hexamer, Composite map 3TB9 ; 2.53 ; Structure of Yeast Ribonucleotide Reductase 1 Q288A with AMPPNP and CDP 3TBA ; 2.8 ; Structure of Yeast Ribonucleotide Reductase 1 Q288A with dGTP and ADP 3S8C ; 2.77 ; Structure of Yeast Ribonucleotide Reductase 1 R293A with AMPPNP and CDP 3S8B ; 2.8 ; Structure of Yeast Ribonucleotide Reductase 1 with AMPPNP and CDP 3S87 ; 2.25 ; Structure of Yeast Ribonucleotide Reductase 1 with dGTP and ADP 3S8A ; 2.9 ; Structure of Yeast Ribonucleotide Reductase R293A with dGTP 7A9X ; 2.45 ; Structure of yeast Rmd9p in complex with 16nt target RNA 7A9W ; 2.55 ; Structure of yeast Rmd9p in complex with 20nt target RNA 7Z1N ; 3.9 ; Structure of yeast RNA Polymerase III Delta C53-C37-C11 7Z1M ; 3.4 ; Structure of yeast RNA Polymerase III Elongation Complex (EC) 8BWS ; 3.2 ; Structure of yeast RNA Polymerase III elongation complex at 3.3 A 7Z1L ; 2.8 ; Structure of yeast RNA Polymerase III Pre-Termination Complex (PTC) 7Z1O ; 2.7 ; Structure of yeast RNA Polymerase III PTC + NTPs 7Z2Z ; 3.07 ; Structure of yeast RNA Polymerase III-DNA-Ty1 integrase complex (Pol III-DNA-IN1) at 3.1 A 7Z0H ; 2.6 ; Structure of yeast RNA Polymerase III-Ty1 integrase complex at 2.6 A (focus subunit AC40). 7Z31 ; 2.76 ; Structure of yeast RNA Polymerase III-Ty1 integrase complex at 2.7 A (focus subunit C11, no C11 C-terminal Zn-ribbon in the funnel pore). 7Z30 ; 2.9 ; Structure of yeast RNA Polymerase III-Ty1 integrase complex at 2.9 A (focus subunit C11 terminal Zn-ribbon in the funnel pore). 6W6V ; 3.0 ; Structure of yeast RNase MRP holoenzyme 4WA6 ; 2.36 ; Structure of yeast SAGA DUBm with Sgf73 N59D mutant at 2.36 angstroms resolution 4W4U ; 2.8 ; Structure of yeast SAGA DUBm with Sgf73 Y57A mutant at 2.8 angstroms resolution 6F0E ; 2.6 ; Structure of yeast Sec14p with a picolinamide compound 7ZGA ; 2.302 ; Structure of yeast Sec14p with ergoline 7ZG9 ; 1.764 ; Structure of yeast Sec14p with himbacine 7ZGB ; 2.7 ; Structure of yeast Sec14p with NPPM112 7ZGD ; 2.08 ; Structure of yeast Sec14p with NPPM244 7ZGC ; 2.236 ; Structure of yeast Sec14p with NPPM481 6L9J ; 2.642 ; Structure of yeast Snf5 and Swi3 subcomplex 7AM1 ; 1.9 ; Structure of yeast Ssd1, a pseudonuclease 5OQJ ; 4.7 ; STRUCTURE OF YEAST TRANSCRIPTION PRE-INITIATION COMPLEX WITH TFIIH 5OQM ; 5.8 ; STRUCTURE OF YEAST TRANSCRIPTION PRE-INITIATION COMPLEX WITH TFIIH AND CORE MEDIATOR 1YPI ; 1.9 ; STRUCTURE OF YEAST TRIOSEPHOSPHATE ISOMERASE AT 1.9-ANGSTROMS RESOLUTION 4YH8 ; 1.7 ; Structure of yeast U2AF complex 5VSU ; 3.1 ; Structure of yeast U6 snRNP with 2'-phosphate terminated U6 RNA 6ASO ; 2.71 ; Structure of yeast U6 snRNP with 3'-phosphate terminated U6 RNA 7MEY ; 3.67 ; Structure of yeast Ubr1 in complex with Ubc2 and monoubiquitinated N-degron 7MEX ; 3.35 ; Structure of yeast Ubr1 in complex with Ubc2 and N-degron 5UQJ ; 1.8 ; Structure of yeast Usb1 7N0J ; 1.88 ; Structure of YebY from E. coli K12 1YFP ; 2.5 ; STRUCTURE OF YELLOW-EMISSION VARIANT OF GFP 2YFP ; 2.6 ; STRUCTURE OF YELLOW-EMISSION VARIANT OF GFP 6OJK ; 1.5 ; Structure of YePL2A K291W in Complex with Tetragalacturonic Acid 6OJL ; 1.5 ; Structure of YePL2A R194K in Complex with Pentagalacturonic Acid 7N34 ; 1.9 ; Structure of Yersinia aleksiciae Cap15 cyclic dinucleotide receptor, crystal form 1 7N35 ; 2.6 ; Structure of Yersinia aleksiciae Cap15 cyclic dinucleotide receptor, crystal form 2 2UVE ; 2.19 ; Structure of Yersinia enterocolitica Family 28 Exopolygalacturonase 2UVF ; 2.1 ; Structure of Yersinia enterocolitica Family 28 Exopolygalacturonase in Complex with Digalaturonic Acid 5N40 ; 1.7 ; Structure of Yersinia pseudotuberculosis adhesin InvE 5LDY ; 2.6 ; Structure of Yersinia pseudotuberculosis InvD 3TNY ; 1.55 ; Structure of YfiY from Bacillus cereus bound to the siderophore iron (III) schizokinen 3Q98 ; 2.001 ; Structure of ygeW encoded protein from E. coli 1IZM ; 1.95 ; Structure of ygfB from Haemophilus influenzae (HI0817), a Conserved Hypothetical Protein 3F4A ; 1.8 ; Structure of Ygr203w, a yeast protein tyrosine phosphatase of the Rhodanese family 1ODF ; 2.25 ; Structure of YGR205w protein. 3GFR ; 2.403 ; Structure of YhdA, D137L variant 3GFS ; 2.105 ; Structure of YhdA, K109D/D137K variant 3GFQ ; 2.996 ; Structure of YhdA, K109L variant 1J85 ; 2.0 ; Structure of YibK from Haemophilus influenzae (HI0766), a truncated sequence homolog of tRNA (guanosine-2'-O-) methyltransferase (SpoU) 1MXI ; 1.7 ; Structure of YibK from Haemophilus influenzae (HI0766): a Methyltransferase with a Cofactor Bound at a Site Formed by a Knot 6QKV ; 2.01 ; Structure of YibK from P. aeruginosa 1TO3 ; 2.7 ; Structure of yiht from Salmonella typhimurium 1J7G ; 1.64 ; Structure of YihZ from Haemophilus influenzae (HI0670), a D-Tyr-tRNA(Tyr) deacylase 8B3S ; 2.09 ; Structure of YjbA in complex with ClpC N-terminal Domain 2D4G ; 2.3 ; Structure of YjcG protein, a putative 2'-5' RNA ligase from Bacillus subtilis 2UVK ; 1.5 ; Structure of YjhT 3DR6 ; 1.75 ; Structure of yncA, a putative ACETYLTRANSFERASE from Salmonella typhimurium 3DR8 ; 1.95 ; Structure of yncA, a putative ACETYLTRANSFERASE from Salmonella typhimurium with its cofactor Acetyl-CoA 2XCE ; 1.85 ; Structure of YncF in complex with dUpNHpp 2XCD ; 1.84 ; Structure of YncF,the genomic dUTPase from Bacillus subtilis 2BAZ ; 2.3 ; Structure of YosS, a putative dUTPase from Bacillus subtilis 3EC1 ; 2.36 ; Structure of YqeH GTPase from Geobacillus stearothermophilus (an AtNOS1 / AtNOA1 ortholog) 1NMN ; 2.3 ; Structure of yqgF from Escherichia coli, a hypothetical protein 4RDN ; 2.1 ; Structure of YTH-YTHDF2 in complex with m6A 4RDO ; 2.15 ; Structure of YTH-YTHDF2 in the free state 5CXC ; 3.1 ; Structure of Ytm1 bound to the C-terminal domain of Erb1 in P 65 2 2 space group 5CXB ; 2.1 ; Structure of Ytm1 bound to the C-terminal domain of Erb1 in P21 21 2 space group 5CYK ; 3.0 ; Structure of Ytm1 bound to the C-terminal domain of Erb1-R486E 1TVL ; 2.104 ; Structure of YTNJ from Bacillus subtilis 1YW1 ; 2.81 ; Structure Of Ytnj From Bacillus Subtilis in complex with FMN 8OF6 ; 2.1 ; Structure of YtoQ 7Z06 ; 1.74 ; Structure of YwlG (Q2FF14) from Staphylococcus aureus 8FFJ ; 7.5 ; Structure of Zanidatamab bound to HER2 6S8D ; 3.49 ; Structure of ZEBOV GP in complex with 1T0227 antibody 6S8I ; 2.99 ; Structure of ZEBOV GP in complex with 3T0265 antibody 6S8J ; 2.91 ; Structure of ZEBOV GP in complex with 5T0180 antibody 6NF4 ; 2.98 ; Structure of zebrafish Otop1 in nanodiscs 6MYD ; 1.399 ; Structure of zebrafish TRAF6 in complex with STING CTT 2HAC ; ; Structure of Zeta-Zeta Transmembrane Dimer 6GL0 ; 2.2 ; Structure of ZgEngAGH5_4 in complex with a cellotriose 6GL2 ; 1.96 ; Structure of ZgEngAGH5_4 wild type at 1.2 Angstrom resolution 6CO8 ; 3.1 ; Structure of Zika virus at a resolution of 3.1 Angstrom 7M1V ; 1.6 ; Structure of Zika virus NS2b-NS3 protease mutant binding the compound NSC86314 in the super-open conformation 6UM3 ; 2.5 ; Structure of Zika virus NS2b-NS3 protease mutant stabilizing the super-open conformation 6RWZ ; 1.7 ; Structure of Zika virus NS3 helicase in complex with ADP-BeF3 6S0J ; 1.5 ; Structure of Zika virus NS3 helicase in complex with ADP-MgF3(H2O)- 5TMH ; 3.278 ; Structure of Zika virus NS5 5U0C ; 3.0 ; Structure of Zika virus NS5 RNA polymerase domain 5H6V ; 2.422 ; Structure of Zika virus protease in complex with a dipeptide inhibitor 1XXW ; 2.7 ; Structure of zinc induced heterodimer of two calcium free isoforms of phospholipase A2 from Naja naja sagittifera at 2.7A resolution 8OGD ; 1.75 ; Structure of zinc(II) double mutant human carbonic anhydrase II bound to thiocyanate 8F1B ; 2.41 ; Structure of zinc-bound ZrgA deletion 124-184 from Vibrio cholerae 4PXL ; 2.25 ; Structure of Zm ALDH2-3 (RF2C) in complex with NAD 4PZ2 ; 2.4 ; Structure of Zm ALDH2-6 (RF2F) in complex with NAD 4PXN ; 2.94 ; Structure of Zm ALDH7 in complex with NAD 4NQ2 ; 1.55 ; Structure of Zn(II)-bound metallo-beta-lactamse VIM-2 from Pseudomonas aeruginosa 5AFS ; 2.22 ; structure of Zn-bound periplasmic metal binding protein from candidatus liberibacter asiaticus 2NXA ; 2.29 ; Structure of Zn-dependent Metallo-Beta-Lactamase from Bacillus Cereus R121H, C221D Double Mutant 8G4Y ; 1.41 ; Structure of ZNRF3 ECD bound to peptide MK1-3.6.10 4CDJ ; 1.5 ; Structure of ZNRF3 ectodomain 4CDK ; 2.8 ; Structure of ZNRF3-RSPO1 6XZH ; 2.372 ; Structure of zVDR LBD-Calcitriol in complex with chimera 10 6XZI ; 2.1 ; Structure of zVDR LBD-calcitriol in complex with chimera 11 6XZJ ; 2.1 ; Structure of zVDR LBD-Calcitriol in complex with chimera 12 6XZK ; 2.0 ; Structure of zVDR LBD-Calcitriol in complex with chimera 13 6XZV ; 2.3 ; Structure of zVDR LBD-Calcitriol in complex with chimera 18 4I04 ; 1.95 ; Structure of zymogen of cathepsin B1 from Schistosoma mansoni 6RVA ; ; STRUCTURE OF [ASP58]-IGF-I ANALOGUE 5ZVN ; ; Structure of [beta Glc-T9,K7]indolicidin, a glycosylated analogue of indolicidin 6J0I ; 2.5 ; Structure of [Co2+-(Chromomycin A3)2]-d(TTGGCGAA)2 complex 2M2O ; ; Structure of [D-HisB24] insulin analogue at pH 1.9 2M2P ; ; Structure of [D-HisB24] insulin analogue at pH 8.0 1H19 ; 2.1 ; STRUCTURE OF [E271Q]LEUKOTRIENE A4 HYDROLASE 2GP4 ; 2.49 ; Structure of [FeS]cluster-free Apo Form of 6-Phosphogluconate Dehydratase from Shewanella oneidensis 2M2M ; ; Structure of [L-HisB24] insulin analogue at pH 1.9 2M2N ; ; Structure of [L-HisB24] insulin analogue at pH 8.0 6Z7R ; 1.77 ; Structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris hildenborough pressurized with Krypton gas - structure wtKr1 6Z8J ; 1.09 ; Structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris hildenborough pressurized with Oxygen gas - structure wtO2 6Z8O ; 2.2 ; Structure of [NiFeSe] hydrogenase G491A variant from Desulfovibrio vulgaris Hildenborough pressurized with Krypton gas - structure G491A-Kr 6Z9G ; 1.76 ; Structure of [NiFeSe] hydrogenase G491A variant from Desulfovibrio vulgaris Hildenborough pressurized with Oxygen gas - structure G491A-O2 6ZA1 ; 1.37 ; Structure of [NiFeSe] hydrogenase G491A variant from Desulfovibrio vulgaris Hildenborough pressurized with Oxygen gas - structure G491A-O2-hd 6Z9O ; 1.53 ; Structure of [NiFeSe] hydrogenase G491S variant from Desulfovibrio vulgaris Hildenborough pressurized with Oxygen gas - structure G491A-O2-ld 6Z8M ; 1.02 ; Structure of [NiFeSe] hydrogenase G491S variant from Desulfovibrio vulgaris Hildenborough pressurized with Oxygen gas - structure G491S-O2 1SQM ; 2.3 ; STRUCTURE OF [R563A] LEUKOTRIENE A4 HYDROLASE 6RSO ; 1.97 ; Structure of [Ru(phen)2(10-NO2-dppz)]2+ bound to the DNA sequence d(TCGGCGCCGA) 5ZVF ; ; Structure of [T9,K7]indolicidin, a non glycosylated analogue of indolicidin 7S3Y ; 2.08 ; Structure ofrat neuronal nitric oxide synthase heme domain in complex with 7-((3-(2-(6-aminopyridin-2-yl)ethyl)phenoxy)methyl)quinolin-2-amine 1IAV ; 1.8 ; STRUCTURE ON NATIVE (ASN 87) SUBTILISIN FROM BACILLUS LENTUS 2PND ; 1.0 ; Structure or murine CRIg 5KXV ; 0.98 ; Structure Proteinase K at 0.98 Angstroms 5KXU ; 1.2 ; Structure Proteinase K determined by SACLA 1E0U ; 2.8 ; Structure R271L mutant of E. coli pyruvate kinase 1TFN ; ; STRUCTURE REFINEMENT FOR A 24-NUCLEOTIDE RNA HAIRPIN, NMR, MINIMIZED AVERAGE STRUCTURE 2FBP ; 2.8 ; STRUCTURE REFINEMENT OF FRUCTOSE-1,6-BISPHOSPHATASE AND ITS FRUCTOSE 2,6-BISPHOSPHATE COMPLEX AT 2.8 ANGSTROMS RESOLUTION 3FBP ; 2.8 ; STRUCTURE REFINEMENT OF FRUCTOSE-1,6-BISPHOSPHATASE AND ITS FRUCTOSE 2,6-BISPHOSPHATE COMPLEX AT 2.8 ANGSTROMS RESOLUTION 1VLB ; 1.28 ; STRUCTURE REFINEMENT OF THE ALDEHYDE OXIDOREDUCTASE FROM DESULFOVIBRIO GIGAS AT 1.28 A 1D83 ; ; STRUCTURE REFINEMENT OF THE CHROMOMYCIN DIMER/DNA OLIGOMER COMPLEX IN SOLUTION 1RGD ; ; STRUCTURE REFINEMENT OF THE GLUCOCORTICOID RECEPTOR-DNA BINDING DOMAIN FROM NMR DATA BY RELAXATION MATRIX CALCULATIONS 5LWU ; 1.109 ; Structure resulting from an endothiapepsin crystal soaked with a dimeric derivative of fragment 177 4HJJ ; 2.1 ; Structure Reveals Function of the Dual Variable Domain Immunoglobulin (DVD-Ig) Molecule 2H8E ; 1.2 ; Structure RusA D70N 1SDY ; 2.5 ; STRUCTURE SOLUTION AND MOLECULAR DYNAMICS REFINEMENT OF THE YEAST CU,ZN ENZYME SUPEROXIDE DISMUTASE 1C8Q ; 2.3 ; STRUCTURE SOLUTION AND REFINEMENT OF THE RECOMBINANT HUMAN SALIVARY AMYLASE 2A6P ; 2.2 ; Structure Solution to 2.2 Angstrom and Functional Characterisation of the Open Reading Frame Rv3214 from Mycobacterium tuberculosis 6YCC ; 1.3 ; Structure the ananain protease from Ananas comosus covalently bound to the E64 inhibitor 6YCD ; 1.35 ; Structure the ananain protease from Ananas comosus covalently bound to the TLCK inhibitor 6YCB ; 1.257 ; Structure the ananain protease from Ananas comosus covalently bound to with the E64 inhibitor 6Y6L ; 1.3 ; Structure the ananain protease from Ananas comosus with a thiomethylated catalytic cysteine 6YCF ; 1.85 ; Structure the bromelain protease from Ananas comosus in complex with the E64 inhibitor 6YCG ; 1.45 ; Structure the bromelain protease from Ananas comosus in complex with the TLCK inhibitor 6YCE ; 1.8 ; Structure the bromelain protease from Ananas comosus with a thiomethylated active cysteine 3ITG ; 2.15 ; Structure the proline utilization A proline dehydrogenase domain (PutA86-630) inactivated with N-propargylglycine 5JXH ; 2.0 ; Structure the proprotein convertase furin in complex with meta-guanidinomethyl-Phac-RVR-Amba at 2.0 Angstrom resolution. 3NG9 ; 2.5 ; Structure to Function Correlations for Adeno-associated Virus Serotype 1 3R15 ; 1.701 ; Structure Treponema Denticola Factor H Binding Protein 8G66 ; 3.45 ; Structure with SJ3149 2LM8 ; ; Structure, Activity and Interactions of the Cysteine Deleted Analog of Tachyplesin-1 with Lipopolysaccharide Micelles 2NC2 ; ; Structure, Dynamics and functional Aspects of the antifungal protein sfPAFB 1QCH ; ; STRUCTURE, DYNAMICS AND HYDRATION OF THE NOGALAMYCIN-D(ATGCAT)2 COMPLEX DETERMINED BY NMR AND MOLECULAR DYNAMICS SIMULATIONS IN SOLUTION 2MJN ; ; Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1 6I3R ; ; Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1/2 of Drosophila helicase MLE 2MBX ; ; Structure, dynamics and stability of allergen cod parvalbumin Gad m 1 by solution and high-pressure NMR. 7OO1 ; 3.01 ; Structure, function and characterization of a second pyruvate kinase isozyme in Pseudomonas aeruginosa. 2M8G ; ; Structure, function, and tethering of DNA-binding domains in 54 transcriptional activators 3VFL ; 1.91 ; Structure, Function, Stability and Knockout Phenotype of Dihydrodipicolinate Synthase from Streptococcus pneumoniae 5DQQ ; 2.872 ; Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana 2KBO ; ; Structure, interaction, and real-time monitoring of the enzymatic reaction of wild type APOBEC3G 4OIT ; 2.24 ; Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis 4OIZ ; 3.4 ; Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis 4OKC ; 2.25 ; Structure, interactions and evolutionary implications of a domain-swapped lectin dimer from Mycobacterium smegmatis 2TSC ; 1.97 ; STRUCTURE, MULTIPLE SITE BINDING, AND SEGMENTAL ACCOMODATION IN THYMIDYLATE SYNTHASE ON BINDING D/UMP AND AN ANTI-FOLATE 2M09 ; ; Structure, phosphorylation and U2AF65 binding of the Nterminal Domain of splicing factor 1 during 3 splice site Recognition 2M0G ; ; Structure, phosphorylation and U2AF65 binding of the Nterminal Domain of splicing factor 1 during 3 splice site Recognition 2CAB ; 2.0 ; STRUCTURE, REFINEMENT AND FUNCTION OF CARBONIC ANHYDRASE ISOZYMES. REFINEMENT OF HUMAN CARBONIC ANHYDRASE I 5EP4 ; 1.5 ; Structure, Regulation, and Inhibition of the Quorum-Sensing Signal Integrator LuxO 2LSW ; ; Structure, sulfatide-binding properties, and inhibition of platelet aggregation by a Disabled-2-derived peptide 6S8K ; 1.52 ; Structure, Thermodynamics, and Kinetics of Plinabulin Binding to two Tubulin Isotypes 6S8L ; 1.801 ; Structure, Thermodynamics, and Kinetics of Plinabulin Binding to two Tubulin Isotypes 5IH2 ; 1.8 ; Structure, thermodynamics, and the role of conformational dynamics in the interactions between the N-terminal SH3 domain of CrkII and proline-rich motifs in cAbl 4ELB ; 2.6 ; Structure-activity relationship guides enantiomeric preference among potent inhibitors of B. anthracis dihydrofolate reductase 4ELE ; 2.35 ; Structure-activity relationship guides enantiomeric preference among potent inhibitors of B. anthracis dihydrofolate reductase 4ELF ; 2.3 ; Structure-activity relationship guides enantiomeric preference among potent inhibitors of B. anthracis dihydrofolate reductase 4ELG ; 2.101 ; Structure-activity relationship guides enantiomeric preference among potent inhibitors of B. anthracis dihydrofolate reductase 4ELH ; 2.103 ; Structure-activity relationship guides enantiomeric preference among potent inhibitors of B. anthracis dihydrofolate reductase 2NDD ; ; Structure-activity relationship of peptide toxin HelaTx1: a new kappa-KTx subfamily affecting K+ channel 7F8G ; 3.491 ; Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase 7F8H ; 3.3 ; Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase 5NKY ; 2.096 ; Structure-activity relationship study of vitamin D analogs with oxolane group in their side chain 5NMA ; 2.8 ; Structure-activity relationship study of vitamin D analogs with oxolane group in their side chain 5NMB ; 2.5 ; Structure-activity relationship study of vitamin D analogs with oxolane group in their side chain 5OJT ; ; Structure-Activity Relationships and Biological Characterization of a Novel, Potent and Serum Stable C-X-C chemokine receptor type 4 (CXCR4) Antagonist 2AQ7 ; 2.3 ; Structure-activity relationships at the 5-posiiton of thiolactomycin: an intact 5(R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherichia coli 2AQB ; 2.19 ; Structure-activity relationships at the 5-position of thiolactomycin: an intact 5(R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherchia coli 1IVA ; ; STRUCTURE-ACTIVITY RELATIONSHIPS FOR P-TYPE CALCIUM CHANNEL SELECTIVE OMEGA-AGATOXINS 1UYL ; 1.4 ; Structure-Activity Relationships in purine-based inhibitor binding to HSP90 isoforms 1TCG ; ; STRUCTURE-ACTIVITY RELATIONSHIPS OF MU-CONOTOXIN GIIIA: STRUCTURE DETERMINATION OF ACTIVE AND INACTIVE SODIUM CHANNEL BLOCKER PEPTIDES BY NMR AND SIMULATED ANNEALING CALCULATIONS 1TCH ; ; STRUCTURE-ACTIVITY RELATIONSHIPS OF MU-CONOTOXIN GIIIA: STRUCTURE DETERMINATION OF ACTIVE AND INACTIVE SODIUM CHANNEL BLOCKER PEPTIDES BY NMR AND SIMULATED ANNEALING CALCULATIONS 1TCJ ; ; STRUCTURE-ACTIVITY RELATIONSHIPS OF MU-CONOTOXIN GIIIA: STRUCTURE DETERMINATION OF ACTIVE AND INACTIVE SODIUM CHANNEL BLOCKER PEPTIDES BY NMR AND SIMULATED ANNEALING CALCULATIONS 1TCK ; ; STRUCTURE-ACTIVITY RELATIONSHIPS OF MU-CONOTOXIN GIIIA: STRUCTURE DETERMINATION OF ACTIVE AND INACTIVE SODIUM CHANNEL BLOCKER PEPTIDES BY NMR AND SIMULATED ANNEALING CALCULATIONS 5XXK ; 1.66 ; Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids 4Q78 ; 1.0 ; Structure-assisted design of carborane-based inhibitors of carbonic anhydrase 2P4D ; 1.8 ; Structure-assisted discovery of Variola major H1 phosphatase inhibitors 1CCS ; 2.35 ; STRUCTURE-ASSISTED REDESIGN OF A PROTEIN-ZINC BINDING SITE WITH FEMTOMOLAR AFFINITY 1CCT ; 2.2 ; STRUCTURE-ASSISTED REDESIGN OF A PROTEIN-ZINC BINDING SITE WITH FEMTOMOLAR AFFINITY 1CCU ; 2.25 ; STRUCTURE-ASSISTED REDESIGN OF A PROTEIN-ZINC BINDING SITE WITH FEMTOMOLAR AFFINITY 3QK2 ; 1.643 ; Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA 1MJH ; 1.7 ; Structure-based assignment of the biochemical function of hypothetical protein MJ0577: A test case of structural genomics 2QIQ ; 1.9 ; Structure-based Design and Synthesis and Biological Evaluation of Peptidomimetic SARS-3CLpro Inhibitors 1BOZ ; 2.1 ; STRUCTURE-BASED DESIGN AND SYNTHESIS OF LIPOPHILIC 2,4-DIAMINO-6-SUBSTITUTED QUINAZOLINES AND THEIR EVALUATION AS INHIBITORS OF DIHYDROFOLATE REDUCTASE AND POTENTIAL ANTITUMOR AGENTS 6FFN ; 1.75 ; Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors 6FFS ; 1.86 ; Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors 3BE9 ; 2.0 ; Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities 4Q1N ; 2.09 ; Structure-based design of 4-hydroxy-3,5-substituted piperidines as direct renin inhibitors 3GMD ; 2.28 ; Structure-based design of 7-Azaindole-pyrrolidines as inhibitors of 11beta-Hydroxysteroid-Dehydrogenase type I 3QN2 ; 1.661 ; Structure-based design of a disulfide-linked oligomeric form of the Simian Virus 40 (SV40) large T antigen DNA binding domain 2Y68 ; 1.49 ; Structure-based design of a new series of D-glutamic acid-based inhibitors of bacterial MurD ligase 5SXN ; 2.1 ; Structure-based design of a new series of N-piperidin-3-ylpyrimidine-5-carboxamides as renin inhibitors 5SY2 ; 2.25 ; Structure-based design of a new series of N-piperidin-3-ylpyrimidine-5-carboxamides as renin inhibitors 5SY3 ; 2.3 ; Structure-based design of a new series of N-piperidin-3-ylpyrimidine-5-carboxamides as renin inhibitors 5SZ9 ; 2.85 ; Structure-based design of a new series of N-piperidin-3-ylpyrimidine-5-carboxamides as renin inhibitors 7Z0N ; 2.4 ; Structure-Based Design of a Novel Class of Autotaxin Inhibitors Based on Endogenous Allosteric Modulators 4TYD ; 2.84 ; Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease 1FBZ ; 2.4 ; Structure-based design of a novel, osteoclast-selective, nonpeptide Src SH2 inhibitor with in vivo anti-resorptive activity 3CS4 ; 2.0 ; Structure-based design of a superagonist ligand for the vitamin D nuclear receptor 3CS6 ; 1.8 ; Structure-based design of a superagonist ligand for the vitamin D nuclear receptor 5UOR ; 2.75 ; Structure-Based Design of ASK1 Inhibitors as Potential First-in-Class Agents for Heart Failure 5UOX ; 2.5 ; Structure-Based Design of ASK1 Inhibitors as Potential First-in-Class Agents for Heart Failure 5UP3 ; 2.95 ; Structure-Based Design of ASK1 Inhibitors as Potential First-in-Class Agents for Heart Failure 4CFM ; 2.85 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 4CFN ; 2.2 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 4CFU ; 2.2 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 4CFV ; 2.0 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 4CFW ; 2.45 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 4CFX ; 3.5 ; Structure-based design of C8-substituted O6-cyclohexylmethoxyguanine CDK1 and 2 inhibitors. 2GTK ; 2.1 ; Structure-based Design of Indole Propionic Acids as Novel PPARag CO-Agonists 4LAE ; 1.69 ; Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-yl)-2,4-diaminoquinazolines 4LAG ; 1.7 ; Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-yl)-2,4-diaminoquinazolines 4LAH ; 1.88 ; Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-yl)-2,4-diaminoquinazolines 4LEK ; 1.7 ; Structure-Based Design of New Dihydrofolate Reductase Antibacterial Agents: 7-(Benzimidazol-1-yl)-2,4-diaminoquinazolines 2BR1 ; 2.0 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRB ; 2.1 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRG ; 2.1 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRH ; 2.1 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRM ; 2.2 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRN ; 2.8 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 2BRO ; 2.2 ; Structure-based Design of Novel Chk1 Inhibitors: Insights into Hydrogen Bonding and Protein-Ligand Affinity 4HZT ; 1.8 ; Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates 4I0Z ; 1.8 ; Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates 4I10 ; 2.07 ; Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates 4I11 ; 1.89 ; Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates. 3IK8 ; 1.85 ; Structure-Based Design of Novel PIN1 Inhibitors (I) 3IKD ; 2.0 ; Structure-Based Design of Novel PIN1 Inhibitors (I) 3IKG ; 1.86 ; Structure-Based Design of Novel PIN1 Inhibitors (I) 3I6C ; 1.3 ; Structure-Based Design of Novel PIN1 Inhibitors (II) 3JYJ ; 1.87 ; Structure-Based Design of Novel PIN1 Inhibitors (II) 4C4E ; 2.6 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 4C4F ; 2.36 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 4C4G ; 2.65 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 4C4H ; 2.8 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 4C4I ; 2.65 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 4C4J ; 2.5 ; Structure-based design of orally bioavailable pyrrolopyridine inhibitors of the mitotic kinase MPS1 1MF4 ; 1.9 ; Structure-based design of potent and selective inhibitors of phospholipase A2: Crystal structure of the complex formed between phosholipase A2 from Naja Naja sagittifera and a designed peptide inhibitor at 1.9 A resolution 7SEJ ; 2.51 ; Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins 7SEM ; 2.2 ; Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins 2BGD ; 2.4 ; Structure-based design of Protein Tyrosine Phosphatase-1B Inhibitors 2BGE ; 1.8 ; Structure-based design of Protein Tyrosine Phosphatase-1B Inhibitors 2PVH ; 2.2 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 2PVJ ; 1.7 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 2PVK ; 1.9 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 2PVL ; 1.9 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 2PVM ; 2.0 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 2PVN ; 2.0 ; Structure-Based Design of Pyrazolo[1,5-a][1,3,5]triazine Derivatives as Potent Inhibitors of Protein Kinase CK2 1SRF ; 2.0 ; STRUCTURE-BASED DESIGN OF SYNTHETIC AZOBENZENE LIGANDS FOR STREPTAVIDIN 1SRG ; 1.8 ; STRUCTURE-BASED DESIGN OF SYNTHETIC AZOBENZENE LIGANDS FOR STREPTAVIDIN 1SRH ; 2.2 ; STRUCTURE-BASED DESIGN OF SYNTHETIC AZOBENZENE LIGANDS FOR STREPTAVIDIN 1SRI ; 1.65 ; STRUCTURE-BASED DESIGN OF SYNTHETIC AZOBENZENE LIGANDS FOR STREPTAVIDIN 1SRJ ; 1.8 ; STRUCTURE-BASED DESIGN OF SYNTHETIC AZOBENZENE LIGANDS FOR STREPTAVIDIN 1VGN ; 2.63 ; Structure-based design of the irreversible inhibitors to metallo--lactamase (IMP-1) 3R7Q ; 2.5 ; Structure-based design of thienobenzoxepin inhibitors of PI3- kinase 3R7R ; 2.9 ; Structure-based design of thienobenzoxepin inhibitors of PI3-Kinase 6FX0 ; 1.9 ; Structure-based design of Trifarotene (CD5789), a potent and selective RAR gamma agonist for the treatment of acne 5WJJ ; 1.6 ; Structure-based Design, Synthesis, and Biological Evaluation of Imidazo[1,2-b]pyridazine-based p38 MAP Kinase Inhibitors 6ANL ; 2.0 ; Structure-based Design, Synthesis, and Biological Evaluation of Imidazo[1,2-b]pyridazine-based p38 MAP Kinase Inhibitors 6M9L ; 2.45 ; Structure-based Design, Synthesis, and Biological Evaluation of Imidazo[4,5-b]pyridine-2-one based p38 MAP Kinase Inhibitors by scaffold hopping - compound 10 6M95 ; 1.8 ; Structure-based Design, Synthesis, and Biological Evaluation of Imidazo[4,5-b]pyridine-2-one based p38 MAP Kinase Inhibitors by scaffold hopping: compound 1 3ATW ; 2.36 ; Structure-Based Design, Synthesis, Evaluation of Peptide-mimetic SARS 3CL Protease Inhibitors 6V9S ; 3.5 ; Structure-based development of subtype-selective orexin 1 receptor antagonists 2BZ5 ; 1.9 ; Structure-based Discovery of a New Class of Hsp90 Inhibitors 6U2S ; 1.5 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U33 ; 1.75 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U3F ; 1.78 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U3T ; 2.79 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U3Y ; 2.04 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U49 ; 2.35 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 6U4P ; 2.49 ; Structure-based discovery of a novel small-molecule inhibitor of methicillin-resistant S. aureus 4KFN ; 1.6 ; Structure-Based Discovery of Novel Amide-Containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors 4KFO ; 1.6 ; Structure-Based Discovery of Novel Amide-Containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors 2GZ7 ; 1.856 ; Structure-Based Drug Design and Structural Biology Study of Novel Nonpeptide Inhibitors of SARS-CoV Main Protease 2GZ8 ; 1.97 ; Structure-Based Drug Design and Structural Biology Study of Novel Nonpeptide Inhibitors of SARS-CoV Main Protease 2GZ9 ; 2.17 ; Structure-Based Drug Design and Structural Biology Study of Novel Nonpeptide Inhibitors of SARS-CoV Main Protease 2G0G ; 2.54 ; Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities 2G0H ; 2.3 ; Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities 5V19 ; 3.1 ; Structure-based drug design of novel ASK1 inhibitors using a fully integrated lead optimization strategy 5V24 ; 2.5 ; Structure-based drug design of novel ASK1 inhibitors using a fully integrated lead optimization strategy 3FDN ; 1.9 ; Structure-based drug design of novel Aurora kinase A inhibitors: Structure basis for potency and specificity 5AC9 ; 3.2 ; Structure-based energetics of protein interfaces guide Foot-and-Mouth disease virus vaccine design 5ACA ; 3.5 ; Structure-based energetics of protein interfaces guide Foot-and-Mouth disease virus vaccine design 3LAQ ; 3.2 ; Structure-based engineering of species selectivity in the uPA-uPAR interaction 2VEI ; 1.89 ; Structure-based enzyme engineering efforts with an inactive monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties 2VEK ; 1.6 ; Structure-based enzyme engineering efforts with an inactive monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties 2VEL ; 2.3 ; Structure-based enzyme engineering efforts with an inactive monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties 2VEM ; 2.2 ; Structure-based enzyme engineering efforts with an inactive monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties 2VEN ; 2.0 ; Structure-based enzyme engineering efforts with an inactive monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties 1ZS5 ; ; Structure-based evaluation of selective and non-selective small molecules that block HIV-1 TAT and PCAF association 5M0D ; 2.4 ; Structure-based evolution of a hybrid steroid series of Autotaxin inhibitors 5M0E ; 1.95 ; Structure-based evolution of a hybrid steroid series of Autotaxin inhibitors 5M0M ; 2.1 ; Structure-based evolution of a hybrid steroid series of Autotaxin inhibitors 5M0S ; 2.1 ; Structure-based evolution of a hybrid steroid series of Autotaxin inhibitors 6YKG ; 3.12 ; Structure-based exploration of selectivity for ATM inhibitors in Huntingtons disease 2CIQ ; 1.7 ; Structure-based functional annotation: Yeast ymr099c codes for a D- hexose-6-phosphate mutarotase. 2CIR ; 1.6 ; Structure-based functional annotation: Yeast ymr099c codes for a D- hexose-6-phosphate mutarotase. Complex with glucose-6-phosphate 2CIS ; 1.62 ; Structure-based functional annotation: Yeast ymr099c codes for a D- hexose-6-phosphate mutarotase. Complex with tagatose-6-phosphate 1VDH ; 2.0 ; Structure-based functional identification of a novel heme-binding protein from thermus thermophilus HB8 8QIC ; 2.5 ; Structure-based identification of salicylic acid derivatives as malarial threonyl tRNA-synthetase inhibitors 1B78 ; 2.2 ; STRUCTURE-BASED IDENTIFICATION OF THE BIOCHEMICAL FUNCTION OF A HYPOTHETICAL PROTEIN FROM METHANOCOCCUS JANNASCHII:MJ0226 2MJP ; 2.2 ; STRUCTURE-BASED IDENTIFICATION OF THE BIOCHEMICAL FUNCTION OF A HYPOTHETICAL PROTEIN FROM METHANOCOCCUS JANNASCHII:MJ0226 4JR5 ; 1.906 ; Structure-based Identification of Ureas as Novel Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors 5Y85 ; 2.001 ; Structure-based Insights into Self-Cleavage by a Four-way Junctional Twister-Sister Ribozyme 5Y87 ; 2.132 ; Structure-based Insights into Self-Cleavage by a Four-way Junctional Twister-Sister Ribozyme 3L2O ; 2.8 ; Structure-Based Mechanism of Dimerization-Dependent Ubiquitination by the SCFFbx4 Ubiquitin Ligase 2W5Q ; 1.2 ; Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. 2W5R ; 1.7 ; Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. 2W5S ; 2.1 ; Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. 2W5T ; 1.6 ; Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. 5TC0 ; 2.24 ; Structure-based optimization of 1H-imidazole-2-carboxamides as Axl kinase inhibitors utilizing a Mer mutant surrogate 5TD2 ; 2.68 ; Structure-based optimization of 1H-imidazole-2-carboxamides as Axl kinase inhibitors utilizing a Mer mutant surrogate 3SFC ; 2.1 ; Structure-Based Optimization of Potent 4- and 6-Azaindole-3-Carboxamides as Renin Inhibitors 3NZS ; 2.75 ; Structure-based Optimization of Pyrazolo -Pyrimidine and -Pyridine Inhibitors of PI3-Kinase 3NZU ; 2.6 ; Structure-based Optimization of Pyrazolo -Pyrimidine and -Pyridine Inhibitors of PI3-Kinase 1GK0 ; 2.5 ; Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C 1GK1 ; 2.4 ; Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C 4PC8 ; 1.55 ; Structure-based protein engineering efforts on the scaffold of a monomeric triosephosphate isomerase yielding a sugar isomerase 4PCF ; 2.71 ; Structure-based protein engineering of a monomeric triosephosphate isomerase towards changing substrate specificity 1SKG ; 1.21 ; Structure-based rational drug design: Crystal structure of the complex formed between Phospholipase A2 and a pentapeptide Val-Ala-Phe-Arg-Ser 2YG5 ; 1.9 ; Structure-based redesign of cofactor binding in Putrescine Oxidase: A394C mutant 2YG7 ; 2.75 ; Structure-based redesign of cofactor binding in Putrescine Oxidase: A394C-A396T-Q431G Triple mutant 2YG6 ; 2.5 ; Structure-based redesign of cofactor binding in Putrescine Oxidase: P15I-A394C double mutant 2YG4 ; 2.3 ; Structure-based redesign of cofactor binding in Putrescine Oxidase: wild type bound to Putrescine 2YG3 ; 2.0 ; Structure-based redesign of cofactor binding in Putrescine Oxidase: wild type enzyme 5AYQ ; 1.7 ; Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of VGSC beta subunits 8E1A ; 1.2 ; Structure-based study to overcome cross-reactivity of novel androgen receptor inhibitors 5JYY ; 2.1 ; Structure-based Tetravalent Zanamivir with Potent Inhibitory Activity against Drug-resistant Influenza Viruses 7A2D ; ; Structure-function analyses of dual-BON domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation to the cell division site 3E81 ; 1.629 ; Structure-function Analysis of 2-Keto-3-deoxy-D-glycero-D-galacto-nononate-9-phosphate (KDN) Phosphatase Defines a New Clad Within the Type C0 HAD Subfamily 3E84 ; 1.85 ; Structure-function Analysis of 2-Keto-3-deoxy-D-glycero-D-galacto-nononate-9-phosphate (KDN) Phosphatase Defines a New Clad Within the Type C0 HAD Subfamily 3E8M ; 1.1 ; Structure-function Analysis of 2-Keto-3-deoxy-D-glycero-D-galacto-nononate-9-phosphate (KDN) Phosphatase Defines a New Clad Within the Type C0 HAD Subfamily 7BJT ; 1.42 ; Structure-function analysis of a new PL17 oligoalginate lyase from the marine bacterium Zobellia galactanivorans DsijT 7BM6 ; 2.16 ; Structure-function analysis of a new PL17 oligoalginate lyase from the marine bacterium Zobellia galactanivorans DsijT 5HXU ; 1.83 ; Structure-function analysis of functionally diverse members of the cyclic amide hydrolase family of Toblerone fold enzymes 5HXZ ; 2.36 ; Structure-function analysis of functionally diverse members of the cyclic amide hydrolase family of Toblerone fold enzymes 5HY2 ; 2.6 ; Structure-function analysis of functionally diverse members of the cyclic amide hydrolase family of Toblerone fold enzymes 5HY4 ; 2.56 ; Structure-function analysis of functionally diverse members of the cyclic amide hydrolase family of Toblerone fold enzymes 3O19 ; 1.66 ; Structure-function analysis of human L-Prostaglandin D Synthase bound with fatty acid 3O22 ; 1.4 ; Structure-function analysis of human L-Prostaglandin D Synthase bound with fatty acid 3O2Y ; 1.7 ; Structure-function analysis of human L-Prostaglandin D Synthase bound with fatty acid 3HO6 ; 1.6 ; Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in clostridium difficile toxin A 3HQJ ; 1.95 ; Structure-function analysis of Mycobacterium tuberculosis acyl carrier protein synthase (AcpS). 3SHM ; 3.019 ; Structure-function Analysis of Receptor Binding in Adeno-Associated Virus Serotype 6 (AAV-6) 4V86 ; 3.003 ; Structure-function Analysis of Receptor-binding in Adeno-Associated Virus Serotype 6 (AAV-6) 7UTF ; 2.5 ; Structure-Function characterization of an aldo-keto reductase involved in detoxification of the mycotoxin, deoxynivalenol 1D7L ; 2.2 ; STRUCTURE-FUNCTION CORRELATIONS OF THE REACTION OF REDUCED NICOTINAMIDE ANALOGS WITH P-HYDROXYBENZOATE HYDROXYLASE SUBSTITUTED WITH A SERIES OF 8-SUBSTITUTED FLAVINS 1ISA ; 1.8 ; STRUCTURE-FUNCTION IN E. COLI IRON SUPEROXIDE DISMUTASE: COMPARISONS WITH THE MANGANESE ENZYME FROM T. THERMOPHILUS 1ISB ; 1.85 ; STRUCTURE-FUNCTION IN E. COLI IRON SUPEROXIDE DISMUTASE: COMPARISONS WITH THE MANGANESE ENZYME FROM T. THERMOPHILUS 1ISC ; 1.8 ; STRUCTURE-FUNCTION IN E. COLI IRON SUPEROXIDE DISMUTASE: COMPARISONS WITH THE MANGANESE ENZYME FROM T. THERMOPHILUS 1MNG ; 1.8 ; STRUCTURE-FUNCTION IN E. COLI IRON SUPEROXIDE DISMUTASE: COMPARISONS WITH THE MANGANESE ENZYME FROM T. THERMOPHILUS 5LKS ; 3.6 ; Structure-function insights reveal the human ribosome as a cancer target for antibiotics 3O1E ; 2.5001 ; Structure-function of Gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097. 1Z32 ; 1.6 ; Structure-function relationships in human salivary alpha-amylase: Role of aromatic residues 2BTI ; 2.0 ; Structure-function studies of the RmsA CsrA post-transcriptional global regulator protein family reveals a class of RNA-binding structure 5I3F ; 1.72 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 5I3G ; 1.96 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 5I3H ; 2.25 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 5I3I ; 2.2 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 5I3J ; 1.8 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 5I3K ; 2.209 ; Structure-Function Studies on Role of Hydrophobic Clamping of a Basic Glutamate in Catalysis by Triosephosphate Isomerase 6KBL ; 1.7 ; Structure-function study of AKR4C14, an aldo-keto reductase from Thai Jasmine rice (Oryza sativa L. ssp. Indica cv. KDML105) 3O1D ; 2.4007 ; Structure-function study of Gemini derivatives with two different side chains at C-20, Gemini-0072 and Gemini-0097. 2L1U ; ; Structure-Functional Analysis of Mammalian MsrB2 protein 2LV3 ; ; Structure-functional characterization of Grx domain of Mus musculus TGR 3KAB ; 2.19 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAC ; 2.0 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAD ; 1.95 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAF ; 2.3 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAG ; 1.9 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAH ; 2.3 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KAI ; 1.9 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 3KCE ; 1.9 ; Structure-guided design of alpha-amino acid-derived Pin1 inhibitors 4WVL ; 2.41 ; Structure-Guided DOT1L Probe Optimization by Label-Free Ligand Displacement 5YW4 ; 2.047 ; Structure-Guided Engineering of Reductase: Efficient Attenuating Substrate Inhibition in Asymmetric Catalysis 6XIH ; 2.65 ; Structure-guided optimization of a novel class of ASK1 inhibitors with increased sp3 character and an exquisite selectivity profile 7ESS ; 1.93 ; Structure-guided studies of the Holliday junction resolvase RuvX provide novel insights into ATP-stimulated cleavage of branched DNA and RNA substrates 2L8D ; ; Structure/function of the LBR Tudor domain 2DKK ; 1.97 ; Structure/Function studies of Cytochrome P450 158A1 from Streptomyces Coelicolor A3(2) 3OFG ; 1.367 ; Structured Domain of Caenorhabditis elegans BMY-1 3OFE ; 2.288 ; Structured Domain of Drosophila melanogaster Boca p41 2 2 Crystal form 3OFF ; 2.002 ; Structured Domain of Drosophila melanogaster Boca p65 2 2 Crystal form 3OFH ; 2.013 ; Structured Domain of Mus musculus Mesd 2JM1 ; ; Structures and chemical shift assignments for the ADD domain of the ATRX protein 2LD1 ; ; Structures and chemical shift assignments for the ADD domain of the ATRX protein 3DM9 ; 2.2 ; Structures and Conformations in Solution of the Signal Recognition Particle Receptor from the archaeon Pyrococcus furiosus 3DMD ; 2.21 ; Structures and Conformations in Solution of the Signal Recognition Particle Receptor from the archaeon Pyrococcus furiosus 3E70 ; 1.97 ; Structures and conformations in solution of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus Furiosus 5O6G ; 2.75 ; Structures and dynamics of mesophilic variants from the homing endonuclease I-DmoI 5O6I ; 2.25 ; Structures and dynamics of mesophilic variants from the homing endonuclease I-DmoI 5B7G ; 1.399 ; Structures and functional analysis of periplasmic 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Aeromonas hydrophila 5B7P ; 1.49 ; Structures and functional analysis of periplasmic 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Aeromonas hydrophila 5B7Q ; 1.493 ; Structures and functional analysis of periplasmic 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Aeromonas hydrophila 2LKE ; ; Structures and Interaction Analyses of the Integrin Alpha-M Beta-2 Cytoplasmic Tails 2LKJ ; ; Structures and Interaction Analyses of the Integrin Alpha-M Beta-2 Cytoplasmic Tails 3S66 ; 1.401 ; Structures and oxygen affinities of crystalline human hemoglobin C (beta6 Lys) in the R quaternary structures 3S65 ; 1.8 ; Structures and oxygen affinities of crystalline human hemoglobin C (beta6 Lys) in the R2 quaternary structures 5LQ3 ; 3.55 ; Structures and transport dynamics of the Campylobacter jejuni multidrug efflux pump CmeB 2PU8 ; 2.1 ; Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding 2PUI ; 2.2 ; Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding 2PUL ; 2.0 ; Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding 2PUN ; 2.3 ; Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding 2PUP ; 2.6 ; Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding 5GON ; 2.48 ; Structures of a beta-lactam bridged analogue in complex with tubulin 7VPP ; 2.69 ; Structures of a deltacoronavirus spike protein bound to porcine and human receptors indicate the risk of virus adaptation to humans 7VPQ ; 3.1 ; Structures of a deltacoronavirus spike protein bound to porcine and human receptors indicate the risk of virus adaptation to humans 1RMF ; 2.8 ; STRUCTURES OF A MONOCLONAL ANTI-ICAM-1 ANTIBODY R6.5 FRAGMENT AT 2.8 ANGSTROMS RESOLUTION 3MMV ; 2.8 ; Structures of actin-bound WH2 domains of Spire and the implication for filament nucleation 3MN5 ; 1.5 ; Structures of actin-bound WH2 domains of Spire and the implication for filament nucleation 3MN6 ; 2.0 ; Structures of actin-bound WH2 domains of Spire and the implication for filament nucleation 3MN7 ; 2.0 ; Structures of actin-bound WH2 domains of Spire and the implication for filament nucleation 3MN9 ; 2.0 ; Structures of actin-bound WH2 domains of Spire and the implication for filament nucleation 2OS0 ; 1.3 ; Structures of actinonin bound peptide deformylases from E. faecalis and S. pyogenes 2OS1 ; 1.5 ; Structures of actinonin bound peptide deformylases from E. faecalis and S. pyogenes 2OS3 ; 2.26 ; Structures of actinonin bound peptide deformylases from E. faecalis and S. pyogenes 1GFI ; 2.2 ; STRUCTURES OF ACTIVE CONFORMATIONS OF GI ALPHA 1 AND THE MECHANISM OF GTP HYDROLYSIS 1DJ2 ; 2.9 ; STRUCTURES OF ADENYLOSUCCINATE SYNTHETASE FROM TRITICUM AESTIVUM AND ARABIDOPSIS THALIANA 1DJ3 ; 3.0 ; STRUCTURES OF ADENYLOSUCCINATE SYNTHETASE FROM TRITICUM AESTIVUM AND ARABIDOPSIS THALIANA 3U57 ; 2.43 ; Structures of Alkaloid Biosynthetic Glucosidases Decode Substrate Specificity 3U5U ; 2.2 ; Structures of Alkaloid Biosynthetic Glucosidases Decode Substrate Specificity 3U5Y ; 2.3 ; Structures of Alkaloid Biosynthetic Glucosidases Decode Substrate Specificity 1CDH ; 2.3 ; STRUCTURES OF AN HIV AND MHC BINDING FRAGMENT FROM HUMAN CD4 AS REFINED IN TWO CRYSTAL LATTICES 1CDI ; 2.9 ; STRUCTURES OF AN HIV AND MHC BINDING FRAGMENT FROM HUMAN CD4 AS REFINED IN TWO CRYSTAL LATTICES 2IL3 ; 2.2 ; Structures of an Insect Epsilon-class Glutathione S-transferase from the Malaria Vector Anopheles Gambiae: Evidence for High DDT-detoxifying Activity 2IMI ; 1.4 ; Structures of an Insect Epsilon-class Glutathione S-transferase from the Malaria Vector Anopheles Gambiae: Evidence for High DDT-detoxifying Activity 2IMK ; 1.9 ; Structures of an Insect Epsilon-class Glutathione S-transferase from the Malaria Vector Anopheles Gambiae: Evidence for High DDT-detoxifying Activity 2NSA ; 1.7 ; Structures of and interactions between domains of trigger factor from Themotoga maritim 2NSB ; 3.2 ; Structures of and interactions between domains of trigger factor from Themotoga maritima 2NSC ; 2.2 ; Structures of and interactions between domains of trigger factor from Themotoga maritima 1CDD ; 2.8 ; STRUCTURES OF APO AND COMPLEXED ESCHERICHIA COLI GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE 1CDE ; 2.5 ; STRUCTURES OF APO AND COMPLEXED ESCHERICHIA COLI GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE 3P4H ; 1.1 ; Structures of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily 1IVB ; 2.4 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 1IVC ; 2.4 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 1IVD ; 1.9 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 1IVE ; 2.4 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 1IVF ; 2.4 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 1IVG ; 1.9 ; STRUCTURES OF AROMATIC INHIBITORS OF INFLUENZA VIRUS NEURAMINIDASE 3GB1 ; ; STRUCTURES OF B1 DOMAIN OF STREPTOCOCCAL PROTEIN G 6W19 ; 5.5 ; Structures of Capsid and Capsid-Associated Tegument Complex inside the Epstein-Barr Virus 6W2D ; 4.0 ; Structures of Capsid and Capsid-Associated Tegument Complex inside the Epstein-Barr Virus 6W2E ; 4.4 ; Structures of Capsid and Capsid-Associated Tegument Complex inside the Epstein-Barr Virus 7BEG ; 4.2 ; Structures of class I bacterial transcription complexes 7BEF ; 4.5 ; Structures of class II bacterial transcription complexes 3PDD ; 1.72 ; Structures of Clostridium thermocellum CbhA fibronectin(III)-like modules 3PDG ; 1.78 ; Structures of Clostridium thermocellum CbhA fibronectin(III)-like modules 3PE9 ; 1.69 ; Structures of Clostridium thermocellum CbhA fibronectin(III)-like modules 4APR ; 2.5 ; STRUCTURES OF COMPLEXES OF RHIZOPUSPEPSIN WITH PEPSTATIN AND OTHER STATINE-CONTAINING INHIBITORS 5APR ; 2.1 ; STRUCTURES OF COMPLEXES OF RHIZOPUSPEPSIN WITH PEPSTATIN AND OTHER STATINE-CONTAINING INHIBITORS 6APR ; 2.5 ; STRUCTURES OF COMPLEXES OF RHIZOPUSPEPSIN WITH PEPSTATIN AND OTHER STATINE-CONTAINING INHIBITORS 4XIA ; 2.3 ; STRUCTURES OF D-XYLOSE ISOMERASE FROM ARTHROBACTER STRAIN B3728 CONTAINING THE INHIBITORS XYLITOL AND D-SORBITOL AT 2.5 ANGSTROMS AND 2.3 ANGSTROMS RESOLUTION, RESPECTIVELY 5XIA ; 2.5 ; STRUCTURES OF D-XYLOSE ISOMERASE FROM ARTHROBACTER STRAIN B3728 CONTAINING THE INHIBITORS XYLITOL AND D-SORBITOL AT 2.5 ANGSTROMS AND 2.3 ANGSTROMS RESOLUTION, RESPECTIVELY 5JSO ; 2.0 ; Structures of DddQ from Ruegeria lac. Reveal Key Residues for Metal Binding and Catalysis - TRIS bound 5LUT ; 2.72 ; Structures of DHBN domain of Gallus gallus BLM helicase 5LUP ; 2.032 ; Structures of DHBN domain of human BLM helicase 5MK5 ; 2.16 ; Structures of DHBN domain of human BLM helicase 5LUS ; 1.433 ; Structures of DHBN domain of Pelecanus crispus BLM helicase 3HBB ; 3.0 ; Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate 2ZTI ; 2.6 ; Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes 2ND8 ; ; Structures of DK17 in TBLE LUVS 4IJ0 ; 1.54 ; Structures of DNA duplexes containing O6-carboxymethylguanine, a lesion associated with gastrointestinal cancer, reveal a mechanism for inducing transition mutation 4ITD ; 1.94 ; Structures of DNA duplexes containing O6-carboxymethylguanine, a lesion associated with gastrointestinal cancer, reveal a mechanism for inducing transition mutation 1ARD ; ; STRUCTURES OF DNA-BINDING MUTANT ZINC FINGER DOMAINS: IMPLICATIONS FOR DNA BINDING 1ARE ; ; STRUCTURES OF DNA-BINDING MUTANT ZINC FINGER DOMAINS: IMPLICATIONS FOR DNA BINDING 1ARF ; ; STRUCTURES OF DNA-BINDING MUTANT ZINC FINGER DOMAINS: IMPLICATIONS FOR DNA BINDING 2W35 ; 2.15 ; Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair 2W36 ; 2.1 ; Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair 3SO3 ; 2.1 ; Structures of Fab-Protease Complexes Reveal a Highly Specific Non-Canonical Mechanism of Inhibition. 2W16 ; 2.71 ; Structures of FpvA bound to heterologous pyoverdines 1POD ; 2.1 ; STRUCTURES OF FREE AND INHIBITED HUMAN SECRETORY PHOSPHOLIPASE A2 FROM INFLAMMATORY EXUDATE 1POE ; 2.1 ; STRUCTURES OF FREE AND INHIBITED HUMAN SECRETORY PHOSPHOLIPASE A2 FROM INFLAMMATORY EXUDATE 6V6B ; 3.8 ; Structures of GCP2 and GCP3 in the native human gamma-tubulin ring complex 6V69 ; 4.2 ; Structures of GCP4 and GCP5 in the native human gamma-tubulin ring complex 1FS4 ; 2.38 ; Structures of glycogen phosphorylase-inhibitor complexes and the implications for structure-based drug design 1FTQ ; 2.35 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1FTW ; 2.36 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1FTY ; 2.38 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1FU4 ; 2.36 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1FU7 ; 2.36 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1FU8 ; 2.35 ; STRUCTURES OF GLYCOGEN PHOSPHORYLASE-INHIBITOR COMPLEXES AND THE IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN 1GGN ; 2.36 ; Structures of glycogen phosphorylase-inhibitor complexes and the implications for structure-based drug design 3MXC ; 2.0 ; Structures of Grb2-SH2 Domain and AICD peptide Complexes Reveal a Conformational Switch and Their Functional Implications. 3MXY ; 2.3 ; Structures of Grb2-SH2 Domain and AICD peptide Complexes Reveal a Conformational Switch and Their Functional Implications. 4B3O ; 3.3 ; Structures of HIV-1 RT and RNA-DNA Complex Reveal a Unique RT Conformation and Substrate Interface 4B3P ; 4.839 ; Structures of HIV-1 RT and RNA-DNA Complex Reveal a Unique RT Conformation and Substrate Interface 4B3Q ; 5.0 ; Structures of HIV-1 RT and RNA-DNA Complex Reveal a Unique RT Conformation and Substrate Interface 1Q94 ; 2.4 ; Structures of HLA-A*1101 in complex with immunodominant nonamer and decamer HIV-1 epitopes clearly reveal the presence of a middle anchor residue 1QVO ; 2.22 ; STRUCTURES OF HLA-A*1101 IN COMPLEX WITH IMMUNODOMINANT NONAMER AND DECAMER HIV-1 EPITOPES CLEARLY REVEAL THE PRESENCE OF A MIDDLE ANCHOR RESIDUE 8E13 ; 1.37 ; Structures of HLA-B8E76C loaded with long peptides reveal novel features at the N-terminus of the groove 8E2Z ; 1.13 ; Structures of HLA-B8E76C loaded with long peptides reveal novel features at the N-terminus of the groove 8E8I ; 1.49 ; Structures of HLA-B8E76C loaded with long peptides reveal novel features at the N-terminus of the groove 8EC5 ; 1.22 ; Structures of HLA-B8E76C loaded with long peptides reveal novel features at the N-terminus of the groove 1HLD ; 2.1 ; STRUCTURES OF HORSE LIVER ALCOHOL DEHYDROGENASE COMPLEXED WITH NAD+ AND SUBSTITUTED BENZYL ALCOHOLS 3K54 ; 1.94 ; Structures of human Bruton's tyrosine kinase in active and inactive conformations suggests a mechanism of activation for TEC family kinases. 2X7S ; 1.64 ; Structures of human carbonic anhydrase II inhibitor complexes reveal a second binding site for steroidal and non-steroidal inhibitors. 2X7T ; 1.89 ; Structures of human carbonic anhydrase II inhibitor complexes reveal a second binding site for steroidal and non-steroidal inhibitors. 2X7U ; 2.12 ; Structures of human carbonic anhydrase II inhibitor complexes reveal a second binding site for steroidal and non-steroidal inhibitors. 7NA7 ; 2.7 ; Structures of human ghrelin receptor-Gi complexes with ghrelin and a synthetic agonist 7NA8 ; 2.7 ; Structures of human ghrelin receptor-Gi complexes with ghrelin and a synthetic agonist 5GNS ; 2.702 ; Structures of human Mitofusin 1 provide insight into mitochondrial tethering 1H35 ; 2.8 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1H36 ; 2.8 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1H37 ; 2.8 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1H39 ; 2.8 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1H3A ; 2.85 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1H3C ; 2.9 ; Structures of Human Oxidosqualene Cyclase Inhibitors Bound to an Homologous Enzyme 1O6Q ; 2.8 ; Structures of human oxidosqualene cyclase inhibitors bound to an homologous enzyme 1O6R ; 2.7 ; Structures of human oxidosqualene cyclase inhibitors bound to an homologous enzyme 1O79 ; 2.8 ; Structures of human oxidosqualene cyclase inhibitors bound to an homologous enzyme 3OLE ; 1.55 ; Structures of human pancreatic alpha-amylase in complex with acarviostatin II03 3OLG ; 2.3 ; Structures of human pancreatic alpha-amylase in complex with acarviostatin III03 3OLI ; 1.5 ; Structures of human pancreatic alpha-amylase in complex with acarviostatin IV03 3VE4 ; 1.6 ; Structures of ICT and PR1 intermediates from time-resolved laue crystallography 4I39 ; 1.6 ; Structures of ICT and PR1 intermediates from time-resolved laue crystallography collected at 14ID-B, APS 5AE4 ; 3.3 ; Structures of inactive and activated DntR provide conclusive evidence for the mechanism of action of LysR transcription factors 5AE5 ; 2.645 ; Structures of inactive and activated DntR provide conclusive evidence for the mechanism of action of LysR transcription factors 2WR0 ; 2.45 ; Structures of influenza H2 Hemagglutinins 3OX4 ; 2.0 ; Structures of iron-dependent alcohol dehydrogenase 2 from Zymomonas mobilis ZM4 complexed with NAD cofactor 3OWO ; 2.07 ; Structures of iron-dependent alcohol dehydrogenase 2 from Zymomonas mobilis ZM4 with and without NAD cofactor 4I3I ; 1.6 ; Structures of IT intermediate of photoactive yellow protein E46Q mutant from time-resolved laue crystallography collected at 14ID APS 4I38 ; 1.6 ; Structures of IT intermediates from time-resolved laue crystallography collected at 14ID-B, APS 2WZP ; 2.6 ; Structures of Lactococcal Phage p2 Baseplate Shed Light on a Novel Mechanism of Host Attachment and Activation in Siphoviridae 4GV3 ; 1.68 ; Structures of Lassa and Tacaribe viral nucleoproteins with or without 5 triphosphate dsRNA substrate reveal a unique 3 -5 exoribonuclease mechanism to suppress type I interferon production 4GV6 ; 1.98 ; Structures of Lassa and Tacaribe viral nucleoproteins with or without 5 triphosphate dsRNA substrate reveal a unique 3 -5 exoribonuclease mechanism to suppress type I interferon production 5E6R ; 2.901 ; Structures of leukocyte integrin aLb2: The aI domain, the headpiece, and the pocket for the internal ligand 5E6S ; 2.15 ; Structures of leukocyte integrin aLB2: The aI domain, the headpiece, and the pocket for the internal ligand 5E6U ; 2.5 ; Structures of leukocyte integrin aLb2: The aI domain, the headpiece, and the pocket for the internal ligand 2FY2 ; 2.25 ; Structures of ligand bound human choline acetyltransferase provide insight into regulation of acetylcholine synthesis 2FY4 ; 2.3 ; Structures of ligand bound human choline acetyltransferase provide insight into regulation of acetylcholine synthesis 2FY5 ; 2.6 ; Structures of ligand bound human choline acetyltransferase provide insight into regulation of acetylcholine synthesis 2FY3 ; 2.27 ; Structures of ligand bound human choline acetyltransferase provides insight into regulation of acetylcholine synthesis 3DNT ; 1.66 ; structures of MDT proteins 1H47 ; 1.99 ; Structures of MECP synthase in complex with (i) CMP and (ii) CMP and product 2YMB ; 3.404 ; Structures of MITD1 4A5X ; 1.91 ; Structures of MITD1 4A5Z ; 2.3 ; Structures of MITD1 4EDA ; 2.701 ; Structures of monomeric hemagglutinin and its complex with an Fab fragment of a neutralizing antibody that binds to H1 subtype influenza viruses: molecular basis of infectivity of 2009 pandemic H1N1 influenza A viruses 4EDB ; 2.5 ; Structures of monomeric hemagglutinin and its complex with an Fab fragment of a neutralizing antibody that binds to H1 subtype influenza viruses: molecular basis of infectivity of 2009 pandemic H1N1 influenza A viruses 4RHX ; 2.0322 ; Structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase which is a potential target for drug development against this disease 4GFK ; 1.95 ; structures of NO factors 7WS0 ; 3.2 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS1 ; 3.4 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS2 ; 3.3 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS3 ; 3.6 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS5 ; 3.7 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS6 ; 3.8 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS7 ; 3.4 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS8 ; 3.0 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WS9 ; 2.9 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 7WSA ; 3.0 ; Structures of Omicron Spike complexes illuminate broad-spectrum neutralizing antibody development 1UJ8 ; 1.75 ; Structures of ORF3 in Two Crystal Forms, a Member of Isc Machinery of E. coli Involved in the Assembly of Iron-Sulfur Clusters 4KSB ; 3.8001 ; Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain 4KSC ; 4.0 ; Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain 4KSD ; 4.1001 ; Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain 2W75 ; 2.9 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: Apo-FpvA 2W78 ; 3.0 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: FpvA-Pvd(ATCC13535)-Fe complex 2W6T ; 2.9 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: FpvA-Pvd(DSM50106)-Fe complex 2W6U ; 3.0 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: FpvA-Pvd(G173)-Fe complex 2W76 ; 2.8 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: FpvA-Pvd(Pa6)-Fe complex 2W77 ; 2.9 ; Structures of P. aeruginosa FpvA bound to heterologous pyoverdines: FpvA-Pvd(Pfl18.1)-Fe complex 4KU7 ; 1.65 ; Structures of PKGI Reveal a cGMP-Selective Activation Mechanism 4KU8 ; 1.994 ; Structures of PKGI Reveal a cGMP-Selective Activation Mechanism 4HY8 ; 1.6 ; Structures of PR1 and PR2 intermediates from time-resolved laue crystallography 4I3A ; 1.6 ; Structures of PR1 and PR2 intermediates from time-resolved laue crystallography collected at 14ID-B, APS 4I3J ; 1.6 ; Structures of PR1 intermediate of photoactive yellow protein E46Q mutant from time-resolved laue crystallography collected AT 14ID APS 3SGA ; 1.8 ; STRUCTURES OF PRODUCT AND INHIBITOR COMPLEXES OF STREPTOMYCES GRISEUS PROTEASE A AT 1.8 ANGSTROMS RESOLUTION. A MODEL FOR SERINE PROTEASE CATALYSIS 4SGA ; 1.8 ; STRUCTURES OF PRODUCT AND INHIBITOR COMPLEXES OF STREPTOMYCES GRISEUS PROTEASE A AT 1.8 ANGSTROMS RESOLUTION. A MODEL FOR SERINE PROTEASE CATALYSIS 5SGA ; 1.8 ; Structures of product and inhibitor complexes of Streptomyces griseus protease a at 1.8 Angstroms resolution. a model for serine protease catalysis 129L ; 1.7 ; STRUCTURES OF RANDOMLY GENERATED MUTANTS OF T4 LYSOZYME SHOW THAT PROTEIN STABILITY CAN BE ENHANCED BY RELAXATION OF STRAIN AND BY IMPROVED HYDROGEN BONDING VIA BOUND SOLVENT 130L ; 1.7 ; STRUCTURES OF RANDOMLY GENERATED MUTANTS OF T4 LYSOZYME SHOW THAT PROTEIN STABILITY CAN BE ENHANCED BY RELAXATION OF STRAIN AND BY IMPROVED HYDROGEN BONDING VIA BOUND SOLVENT 131L ; 1.7 ; STRUCTURES OF RANDOMLY GENERATED MUTANTS OF T4 LYSOZYME SHOW THAT PROTEIN STABILITY CAN BE ENHANCED BY RELAXATION OF STRAIN AND BY IMPROVED HYDROGEN BONDING VIA BOUND SOLVENT 6AXD ; ; Structures of REV1 UBM2 domain complex with ubiquitin and with the first small-molecule that inhibits the REV1 UBM2-ubiquitin interaction 3JCJ ; 3.7 ; Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association 3JCN ; 4.6 ; Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association: Initiation Complex I 1RPG ; 1.4 ; STRUCTURES OF RNASE A COMPLEXED WITH 3'-CMP AND D(CPA): ACTIVE SITE CONFORMATION AND CONSERVED WATER MOLECULES 1RPH ; 2.2 ; STRUCTURES OF RNASE A COMPLEXED WITH 3'-CMP AND D(CPA): ACTIVE SITE CONFORMATION AND CONSERVED WATER MOLECULES 4NYE ; 2.69 ; Structures of SAICAR Synthetase (PurC) from Streptococcus pneumoniae with ADP, Mg2+, AIR and L-Asp 1BC8 ; 1.93 ; STRUCTURES OF SAP-1 BOUND TO DNA SEQUENCES FROM THE E74 AND C-FOS PROMOTERS PROVIDE INSIGHTS INTO HOW ETS PROTEINS DISCRIMINATE BETWEEN RELATED DNA TARGETS 4JDZ ; 2.1 ; Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands 4JE0 ; 1.7 ; Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands 3IVB ; 1.75 ; Structures of SPOP-Substrate Complexes: Insights into Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATH-MacroH2ASBCpep1 3HVE ; 2.8 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: GigaxoninBTB/3-box 3HTM ; 2.5 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPBTB/3-box 3IVQ ; 2.1 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATH-CiSBC2 3IVV ; 1.25 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATH-PucSBC1_pep1 3HQM ; 1.74 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx-CiSBC2 3HQH ; 2.3 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx-MacroH2ASBCpep1 3HSV ; 1.43 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx-MacroH2ASBCpep2 3HQI ; 2.62 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx/BTB/3-box-PucSBC1 3HU6 ; 2.7 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases: SPOPMATHx/BTB/3-box-PucSBC1 3HQL ; 1.66 ; Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases:SPOPMATHx-PucSBC1_pep2 3DLU ; 1.8 ; Structures of SRP54 and SRP19, the two proteins assembling the ribonucleic core of the Signal Recognition Particle from the archaeon Pyrococcus furiosus. 3DLV ; 1.87 ; Structures of SRP54 and SRP19, the two proteins assembling the ribonucleic core of the Signal Recognition Particle from the archaeon Pyrococcus furiosus. 3DM5 ; 2.51 ; Structures of SRP54 and SRP19, the two proteins assembling the ribonucleic core of the Signal Recognition Particle from the archaeon Pyrococcus furiosus. 5JY6 ; 2.0 ; Structures of Streptococcus agalactiae GBS GAPDH in different enzymatic states 5JYA ; 2.85 ; Structures of Streptococcus agalactiae GBS GAPDH in different enzymatic states 5JYE ; 2.23 ; Structures of Streptococcus agalactiae GBS GAPDH in different enzymatic states 5JYF ; 2.62 ; Structures of Streptococcus agalactiae GBS GAPDH in different enzymatic states 7S0Y ; 2.79 ; Structures of TcdB in complex with Cdc42 7S0Z ; 2.34 ; Structures of TcdB in complex with R-Ras 2BPF ; 2.9 ; STRUCTURES OF TERNARY COMPLEXES OF RAT DNA POLYMERASE BETA, A DNA TEMPLATE-PRIMER, AND DDCTP 2BPG ; 3.6 ; STRUCTURES OF TERNARY COMPLEXES OF RAT DNA POLYMERASE BETA, A DNA TEMPLATE-PRIMER, AND DDCTP 1TPD ; 2.1 ; STRUCTURES OF THE ""OPEN"" AND ""CLOSED"" STATE OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE, AS OBSERVED IN A NEW CRYSTAL FORM: IMPLICATIONS FOR THE REACTION MECHANISM 1GHP ; 1.76 ; STRUCTURES OF THE ACYL-ENZYME COMPLEX OF THE STAPHYLOCOCCUS AUREUS BETA-LACTAMASE MUTANT GLU166ASP:ASN170GLN WITH DEGRADED BENZYLPENICILLIN 1GHM ; 1.86 ; Structures of the acyl-enzyme complex of the staphylococcus aureus beta-lactamase mutant GLU166ASP:ASN170GLN with degraded cephaloridine 1TNP ; ; STRUCTURES OF THE APO AND CALCIUM TROPONIN-C REGULATORY DOMAINS: THE MUSCLE CONTRACTION SWITCH 1TNQ ; ; STRUCTURES OF THE APO AND CALCIUM TROPONIN-C REGULATORY DOMAINS: THE MUSCLE CONTRACTION SWITCH 1DPR ; 3.0 ; STRUCTURES OF THE APO-AND METAL ION ACTIVATED FORMS OF THE DIPHTHERIA TOX REPRESSOR FROM CORYNEBACTERIUM DIPHTHERIAE 4V9D ; 3.0 ; Structures of the bacterial ribosome in classical and hybrid states of tRNA binding 5CA9 ; 2.8 ; Structures of the candida albicans sey1p GTPase in complex with GDPAlF4- 2HKR ; 1.4 ; Structures of the carbinolamine and schiff-base intermediates in the reductive half-reaction of aromatic amine dehydrogenase (AADH) with p-methoxyphenylethylamine 8PAB ; 1.8 ; Structures of the ectodomains of Atypical porcine pestivirus solved by long wavelength sulphur SAD 4ZJ8 ; 2.751 ; Structures of the human OX1 orexin receptor bound to selective and dual antagonists 4ZJC ; 2.832 ; Structures of the human OX1 orexin receptor bound to selective and dual antagonists 7RPM ; ; Structures of the Intracellular Domain and Transmembrane Domain of the Human alpha7 Nicotinic Acetylcholine Receptors 1LEC ; 2.0 ; STRUCTURES OF THE LECTIN IV OF GRIFFONIA SIMPLICIFOLIA AND ITS COMPLEX WITH THE LEWIS B HUMAN BLOOD GROUP DETERMINANT AT 2.0 ANGSTROMS RESOLUTION 1LED ; 2.0 ; STRUCTURES OF THE LECTIN IV OF GRIFFONIA SIMPLICIFOLIA AND ITS COMPLEX WITH THE LEWIS B HUMAN BLOOD GROUP DETERMINANT AT 2.0 ANGSTROMS RESOLUTION 3RO2 ; 2.3 ; Structures of the LGN/NuMA complex 1VT7 ; 2.5 ; Structures of the mismatched duplex D(GGGTGCCC) 3AOA ; 3.35 ; Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket 3AOB ; 3.35 ; Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket 3AOC ; 3.34 ; Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket 3AOD ; 3.3 ; Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket 1CWP ; 3.2 ; STRUCTURES OF THE NATIVE AND SWOLLEN FORMS OF COWPEA CHLOROTIC MOTTLE VIRUS DETERMINED BY X-RAY CRYSTALLOGRAPHY AND CRYO-ELECTRON MICROSCOPY 5HAW ; 1.89 ; structures of the NO factor SlmA bound to DNA and the cytoskeletal cell division protein FtsZ 2HPP ; 3.3 ; Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human ppack-thrombin 2HPQ ; 3.3 ; Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human ppack-thrombin 2V5L ; 2.4 ; Structures of the Open and Closed State of Trypanosomal Triosephosphate Isomerase: as Observed in a New Crystal Form: Implications for the Reaction Mechanism 2N5B ; ; Structures of the OXIDIZED state of the mutant D24A of yeast thioredoxin 1 6BYR ; 3.661 ; Structures of the PKA RI alpha holoenzyme with the FLHCC driver J-PKAc alpha or native PKAc alpha 6BYS ; 4.75 ; Structures of the PKA RI alpha holoenzyme with the FLHCC driver J-PKAc alpha or native PRKAc alpha 2N5A ; ; Structures of the REDUCED state of the mutant D24A of yeast thioredoxin 1 2WCO ; 1.94 ; Structures of the Streptomyces coelicolor A3(2) Hyaluronan Lyase in Complex with Oligosaccharide Substrates and an Inhibitor 3PPN ; 2.3 ; Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC 3PPO ; 2.7 ; Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC 3PPP ; 2.4 ; Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC 3PPQ ; 1.91 ; Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC 3PPR ; 2.1 ; Structures of the substrate-binding protein provide insights into the multiple compatible solutes binding specificities of Bacillus subtilis ABC transporter OpuC 6NWH ; 2.03 ; Structures of the transcriptional regulator BgaR, a lactose sensor. 6NWJ ; 2.16 ; Structures of the transcriptional regulator BgaR, a lactose sensor. 6NWM ; 2.11 ; Structures of the transcriptional regulator BgaR, a lactose sensor. 6NWO ; 2.11 ; Structures of the transcriptional regulator BgaR, a lactose sensor. 6NX3 ; 1.87 ; Structures of the transcriptional regulator BgaR, a lactose sensor. 6B74 ; 2.323 ; Structures of the two-chain human plasma Factor XIIa co-crystallized with potent inhibitors 6B77 ; 2.37 ; Structures of the two-chain human plasma factor XIIa co-crystallized with potent inhibitors 5CA8 ; 2.3 ; Structures of the yeast dynamin-like GTPase Sey1p in complex with GDP 2BVO ; 1.65 ; Structures of Three HIV-1 HLA-B5703-Peptide Complexes and Identification of Related HLAs Potentially Associated with Long-Term Non-Progression 2BVP ; 1.35 ; Structures of Three HIV-1 HLA-B5703-Peptide Complexes and Identification of Related HLAs Potentially Associated with Long-Term Non-Progression 2BVQ ; 2.0 ; Structures of Three HIV-1 HLA-B5703-Peptide Complexes and Identification of Related HLAs Potentially Associated with Long-Term Non-Progression 1THR ; 2.3 ; STRUCTURES OF THROMBIN COMPLEXES WITH A DESIGNED AND A NATURAL EXOSITE INHIBITOR 1THS ; 2.2 ; STRUCTURES OF THROMBIN COMPLEXES WITH A DESIGNED AND A NATURAL EXOSITE INHIBITOR 3H9K ; 2.65 ; Structures of Thymidylate Synthase R163K with Substrates and Inhibitors Show Subunit Asymmetry 3HB8 ; 2.74 ; Structures of Thymidylate Synthase R163K with Substrates and Inhibitors Show Subunit Asymmetry 1TDA ; 3.09 ; STRUCTURES OF THYMIDYLATE SYNTHASE WITH A C-TERMINAL DELETION: ROLE OF THE C-TERMINUS IN ALIGNMENT OF D/UMP AND CH2H4FOLATE 1TDB ; 2.65 ; STRUCTURES OF THYMIDYLATE SYNTHASE WITH A C-TERMINAL DELETION: ROLE OF THE C-TERMINUS IN ALIGNMENT OF D/UMP AND CH2H4FOLATE 1TDC ; 2.65 ; STRUCTURES OF THYMIDYLATE SYNTHASE WITH A C-TERMINAL DELETION: ROLE OF THE C-TERMINUS IN ALIGNMENT OF D/UMP AND CH2H4FOLATE 2TDD ; 2.7 ; STRUCTURES OF THYMIDYLATE SYNTHASE WITH A C-TERMINAL DELETION: ROLE OF THE C-TERMINUS IN ALIGNMENT OF D/UMP AND CH2H4FOLATE 4OKR ; 2.601 ; Structures of Toxoplasma gondii MIC2 6J05 ; 1.86 ; Structures of two ArsR As(III)-responsive repressors: implications for the mechanism of derepression 6J0E ; 1.6 ; Structures of two ArsR As(III)-responsive repressors: implications for the mechanism of derepression 3K7L ; 2.5 ; Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins 3K7N ; 2.3 ; Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins 1LM5 ; 1.8 ; Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure 1LM7 ; 3.0 ; Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure 6TMN ; 1.6 ; Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond 1VGA ; 1.8 ; Structures of unligated and inhibitor complexes of W168F mutant of Triosephosphate Isomerase from Plasmodium falciparum 4DOF ; 2.8 ; Structures of Vaccinia Virus Uracil-DNA Glycosylase in New Crystal Forms 4DOG ; 2.3 ; Structures of Vaccinia Virus Uracil-DNA Glycosylase in New Crystal Forms 3J78 ; 6.3 ; Structures of yeast 80S ribosome-tRNA complexes in the rotated and non-rotated conformations (Class I - non-rotated ribosome with 2 tRNAs) 3J77 ; 6.2 ; Structures of yeast 80S ribosome-tRNA complexes in the rotated and non-rotated conformations (Class II - rotated ribosome with 1 tRNA) 1ZZD ; 2.6 ; Structures of Yeast Ribonucleotide Reductase I 2CVS ; 2.6 ; Structures of Yeast Ribonucleotide Reductase I 2CVT ; 3.2 ; Structures of Yeast Ribonucleotide Reductase I 2CVU ; 2.9 ; Structures of Yeast Ribonucleotide Reductase I 2CVV ; 2.9 ; Structures of Yeast Ribonucleotide Reductase I 2CVW ; 2.4 ; Structures of Yeast Ribonucleotide Reductase I 2CVX ; 2.2 ; Structures of Yeast Ribonucleotide Reductase I 2CVY ; 2.4 ; Structures of Yeast Ribonucleotide Reductase I 2EUD ; 2.3 ; Structures of Yeast Ribonucleotide Reductase I complexed with Ligands and Subunit Peptides 1ZYZ ; 2.9 ; Structures of Yeast Ribonucloetide Reductase I 8CXG ; 3.2 ; Structures of Zika Virus in Complex with Antibodies Targeting E Dimer Epitopes and Basis for Neutralization Efficacy 8CXH ; 3.2 ; Structures of Zika Virus in Complex with Antibodies Targeting E Dimer Epitopes and Basis for Neutralization Efficacy 8CXI ; 3.4 ; Structures of Zika Virus in Complex with Antibodies Targeting E Dimer Epitopes and Basis for Neutralization Efficacy 121P ; 1.54 ; STRUKTUR UND GUANOSINTRIPHOSPHAT-HYDROLYSEMECHANISMUS DES C-TERMINAL VERKUERZTEN MENSCHLICHEN KREBSPROTEINS P21-H-RAS 3V00 ; 2.9 ; Studies of a constitutively active G-alpha subunit provide insights into the mechanism of G protein activation. 1GPD ; 2.9 ; STUDIES OF ASYMMETRY IN THE THREE-DIMENSIONAL STRUCTURE OF LOBSTER D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 6DZ1 ; 2.26 ; Studies of Ion Transport in K+ Channels 5LYM ; 1.8 ; STUDIES OF MONOCLINIC HEN EGG WHITE LYSOZYME. IV. X-RAY REFINEMENT AT 1.8 ANGSTROM RESOLUTION AND A COMPARISON OF THE VARIABLE REGIONS IN THE POLYMORPHIC FORMS 1SMF ; 2.1 ; Studies on an artificial trypsin inhibitor peptide derived from the mung bean inhibitor 1MRG ; 1.8 ; STUDIES ON CRYSTAL STRUCTURES ACTIVE CENTER GEOMETRY AND DEPURINE MECHANISM OF TWO RIBOSOME-INACTIVATING PROTEINS 1MRH ; 2.0 ; STUDIES ON CRYSTAL STRUCTURES ACTIVE CENTER GEOMETRY AND DEPURINE MECHANISM OF TWO RIBOSOME-INACTIVATING PROTEINS 1MRI ; 2.2 ; STUDIES ON CRYSTAL STRUCTURES ACTIVE CENTER GEOMETRY AND DEPURINE MECHANISM OF TWO RIBOSOME-INACTIVATING PROTEINS 1MRJ ; 1.6 ; STUDIES ON CRYSTAL STRUCTURES ACTIVE CENTER GEOMETRY AND DEPURINE MECHANISM OF TWO RIBOSOME-INACTIVATING PROTEINS 1MRK ; 1.6 ; STUDIES ON CRYSTAL STRUCTURES ACTIVE CENTER GEOMETRY AND DEPURINE MECHANISM OF TWO RIBOSOME-INACTIVATING PROTEINS 4FC6 ; 2.1 ; Studies on DCR shed new light on peroxisomal beta-oxidation: Crystal structure of the ternary complex of pDCR 4FC7 ; 1.84 ; Studies on DCR shed new light on peroxisomal beta-oxidation: Crystal structure of the ternary complex of pDCR 2AAW ; 2.4 ; Studies on ligand binding and enzyme inhibition of Plasmodium falciparum glutathione S-transferase 1PTK ; 2.4 ; STUDIES ON THE INHIBITORY ACTION OF MERCURY UPON PROTEINASE K 1OO5 ; 2.5 ; Studies on the Nitroreductase Prodrug-Activating System. Crystal Structures of the Enzyme Active Form and Complexes with the Inhibitor Dicoumarol and Dinitrobenzamide Prodrugs 7AEI ; 2.65 ; Studies Towards a Reversible EGFR C797S Triple Mutant Inhibitor Series 7AEM ; 2.65 ; Studies Towards a Reversible EGFR C797S Triple Mutant Inhibitor Series 1M9W ; ; Study of electrostatic potential surface distribution using high resolution side-chain conformation determined by NMR 6K0Y ; 1.7 ; Study of the interactions of a novel monoclonal antibody, mAb059c, with the hPD-1 receptor 1DWA ; 2.0 ; STUDY ON RADIATION DAMAGE ON A CRYOCOOLED CRYSTAL. PART 1: STRUCTURE PRIOR TO IRRADIATION 1DWF ; 2.0 ; Study on radiation damage on a cryocooled crystal. Part 2: Structure after irradiation with 9.1*10e15 photons/mm2 1DWH ; 2.0 ; Study on radiation damage on a cryocooled crystal. Part 4: Structure after irradiation with 27.2*10e15 photons/mm2 1DWI ; 2.0 ; Study on radiation damage on a cryocooled crystal. Part 5: Structure after irradiation with 54.0*10e15 photons/mm2 1DWJ ; 2.4 ; study on radiation damage on a cryocooled crystal. Refined part 6: structure after a radiation dose of 54*10e15 photons/mm2 1DWG ; 2.0 ; STUDY ON RADIATION DAMAGE ON A CRYOCOOLED CRYSTAL: PART 3 STRUCTURE AFTER IRRADIATION WITH 18.2*10E15 PHOTONS/MM2. 4GUL ; 1.8 ; Study on structure and function relationships in human ferric Pirin 4ERO ; 2.65 ; Study on structure and function relationships in human Pirin with Cobalt ion 4EWA ; 2.47 ; Study on structure and function relationships in human Pirin with Fe ion 4EWE ; 1.56 ; Study on structure and function relationships in human Pirin with Manganese ion 4EWD ; 2.15 ; Study on structure and function relationships in human Pirin with Mn ion 8TGD ; 2.928 ; STX-478, a Mutant-Selective, Allosteric Inhibitor bound to H1047R PI3Kalpha 8TDU ; 3.11 ; STX-478, a Mutant-Selective, Allosteric Inhibitor bound to PI3Kalpha 2GA4 ; 1.8 ; Stx2 with adenine 7UJJ ; 6.5 ; Stx2a and DARPin complex 8GCW ; 3.1 ; Stx2A1(Y77A)-P6 peptide 8CX8 ; 1.905 ; Stx2A1-BTB13086 6E9D ; 1.86 ; Sub-2 Angstrom Ewald Curvature-Corrected Single-Particle Cryo-EM Reconstruction of AAV-2 L336C 8C5N ; 0.75 ; Sub-atomic resolution structure of the chitin-binding protein D (CbpD) from Pseudomonas aeruginosa 7MID ; 3.56 ; Sub-complex of Cas4-Cas1-Cas2 bound PAM containing DNA 8PC1 ; 18.0 ; Sub-tomogram average of the closed conformation of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. 8PBZ ; 11.0 ; Sub-tomogram average of the Nap adhesion complex from the human pathogen Mycoplasma genitalium at 11 Angstrom. 8PC0 ; 17.0 ; Sub-tomogram average of the open conformation of the Nap adhesion complex from the human pathogen Mycoplasma genitalium. 7SKA ; 9.1 ; Sub-tomogram averaged structure of HIV-1 Envelope protein in native membrane 8CSL ; 25.0 ; Sub-tomogram averaging of erythrocyte ankyrin-1 complex 5FT2 ; 16.4 ; Sub-tomogram averaging of Lassa virus glycoprotein spike from virus- like particles at pH 5 5FYN ; 15.6 ; Sub-tomogram averaging of Tula virus glycoprotein spike 8WDG ; 0.99 ; Subatomic crystal structure of glucose isomerase from Streptomyces rubiginosus 4G78 ; 0.92 ; Subatomic Resolution Crystal Structure of Histidine-containing Phosphotransfer Protein MtHPt2 from Medicago truncatula 4F19 ; 0.95 ; Subatomic resolution structure of a high affinity periplasmic phosphate-binding protein (PfluDING) bound with arsenate at pH 4.5 4F18 ; 0.96 ; Subatomic resolution structure of a high affinity periplasmic phosphate-binding protein (PfluDING) bound with arsenate at pH 8.5 4F1U ; 0.98 ; Subatomic resolution structure of a high affinity periplasmic phosphate-binding protein (PfluDING) bound with phosphate at pH 4.5 4F1V ; 0.88 ; Subatomic resolution structure of a high affinity periplasmic phosphate-binding protein (PfluDING) bound with phosphate at pH 8.5 8K9N ; 0.86 ; Subatomic resolution structure of Pseudoazurin from Alcaligenes faecalis 2CLY ; 2.8 ; Subcomplex of the stator of bovine mitochondrial ATP synthase 7WFG ; 4.33 ; Subcomplexes A and E in NDH complex from Arabidopsis 7WFF ; 3.59 ; Subcomplexes B,M and L in the Cylic electron transfer supercomplex NDH-PSI from Arabidopsis 5V1E ; ; Suboptimization of a glycine rich peptide allows the combinatorial space exploration for designing novel antimicrobial peptides 7JYI ; 3.4 ; Subparticle Map of ZIKV MR-766 7CN2 ; 3.43 ; Subparticle refinement of human papillomavirus type 16 pesudovirus in complex with H16.001 Fab 7TNS ; 6.7 ; Subpellicular microtubule from detergent-extract Toxoplasma gondii cells 8OP1 ; 3.5 ; Subsection of a helical nucleocapsid of the Respiratory Syncytial Virus 1BRN ; 1.76 ; SUBSITE BINDING IN AN RNASE: STRUCTURE OF A BARNASE-TETRANUCLEOTIDE COMPLEX AT 1.76 ANGSTROMS RESOLUTION 1CPU ; 2.0 ; SUBSITE MAPPING OF THE ACTIVE SITE OF HUMAN PANCREATIC ALPHA-AMYLASE USING SUBSTRATES, THE PHARMACOLOGICAL INHIBITOR ACARBOSE, AND AN ACTIVE SITE VARIANT 2CPU ; 2.0 ; SUBSITE MAPPING OF THE ACTIVE SITE OF HUMAN PANCREATIC ALPHA-AMYLASE USING SUBSTRATES, THE PHARMACOLOGICAL INHIBITOR ACARBOSE, AND AN ACTIVE SITE VARIANT 3CPU ; 2.0 ; SUBSITE MAPPING OF THE ACTIVE SITE OF HUMAN PANCREATIC ALPHA-AMYLASE USING SUBSTRATES, THE PHARMACOLOGICAL INHIBITOR ACARBOSE, AND AN ACTIVE SITE VARIANT 7RMG ; 3.0 ; Substance P bound to active human neurokinin 1 receptor in complex with miniGs/q70 7RMH ; 3.1 ; Substance P bound to active human neurokinin 1 receptor in complex with miniGs399 8JBH ; 2.9 ; Substance P bound to active human neurokinin 3 receptor in complex with Gq 2KSA ; ; Substance P in DMPC/CHAPS isotropic q=0.25 bicelles as a ligand for NK1R 2KSB ; ; Substance P in isotropic q=0.25 DMPC/CHAPS/GM1 bicelles as a ligand for NK1R 4B5H ; 3.05 ; Substate bound inactive mutant of Neisseria AP endonuclease in presence of metal ions 1U6Q ; 2.02 ; Substituted 2-Naphthamadine inhibitors of Urokinase 1OWD ; 2.32 ; Substituted 2-Naphthamidine inhibitors of urokinase 1OWE ; 1.6 ; Substituted 2-Naphthamidine inhibitors of urokinase 1OWH ; 1.61 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1OWI ; 2.93 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1OWJ ; 3.1 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1OWK ; 2.8 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1SQA ; 2.0 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1SQO ; 1.84 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 1SQT ; 1.9 ; Substituted 2-Naphthamidine Inhibitors of Urokinase 6W9H ; 1.995 ; SUBSTITUTED BENZYLOXYTRICYCLIC COMPOUNDS AS RETINOIC ACID-RELATED ORPHAN RECEPTOR GAMMA T AGONISTS 6W9I ; 1.608 ; SUBSTITUTED BENZYLOXYTRICYCLIC COMPOUNDS AS RETINOIC ACID-RELATED ORPHAN RECEPTOR GAMMA T AGONISTS 6XAE ; 2.257 ; SUBSTITUTED BENZYLOXYTRICYCLIC COMPOUNDS AS RETINOIC ACID-RELATED ORPHAN RECEPTOR GAMMA T AGONISTS 2R4F ; 1.7 ; Substituted Pyrazoles as Hepatselective HMG-COA reductase inhibitors 1MYL ; 2.4 ; SUBSTITUTING HYDROPHOBIC RESIDUES FOR A BURIED SALT BRIDGE ENHANCES PROTEIN STABILITY BUT DOES NOT REDUCE CONFORMATIONAL SPECIFICITY 6GHW ; 2.3 ; Substituting the prolines of 4-oxalocrotonate tautomerase with non-canonical analogue (2S)-3,4-dehydroproline 1RBA ; 2.6 ; SUBSTITUTION OF ASP193 TO ASN AT THE ACTIVE SITE OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE RESULTS IN CONFORMATIONAL CHANGES 1MRR ; 2.5 ; SUBSTITUTION OF MANGANESE FOR IRON IN RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI. SPECTROSCOPIC AND CRYSTALLOGRAPHIC CHARACTERIZATION 276D ; 1.8 ; SUBSTITUTIONS AT C2' OF DAUNOSAMINE IN THE ANTICANCER DAUNORUBICIN ALTER ITS DNA-BINDING SEQUENCE SPECIFICITY 277D ; 1.8 ; SUBSTITUTIONS AT C2' OF DAUNOSAMINE IN THE ANTICANCER DAUNORUBICIN ALTER ITS DNA-BINDING SEQUENCE SPECIFICITY 278D ; 1.8 ; SUBSTITUTIONS AT C2' OF DAUNOSAMINE IN THE ANTICANCER DAUNORUBICIN ALTER ITS DNA-BINDING SEQUENCE SPECIFICITY 288D ; 1.8 ; SUBSTITUTIONS AT C2' OF DAUNOSAMINE IN THE ANTICANCER DAUNORUBICIN ALTER ITS DNA-BINDING SEQUENCE SPECIFICITY 4DBC ; 1.5 ; Substrate Activation in Aspartate Aminotransferase 1FHI ; 3.1 ; SUBSTRATE ANALOG (IB2) COMPLEX WITH THE FRAGILE HISTIDINE TRIAD PROTEIN, FHIT 2FHI ; 2.6 ; SUBSTRATE ANALOG (IB2) COMPLEX WITH THE HIS 96 ASN SUBSTITUTION OF THE FRAGILE HISTIDINE TRIAD PROTEIN, FHIT 5KVS ; 1.28 ; Substrate Analog and NADP+ bound structure of Irp3, a Thiazolinyl Imine Reductase from Yersinia enterocolitica 4QGS ; 1.7 ; Substrate and cofactor-free form of the Aldehyde Reductase YqhD from E. coli. 3ZDW ; 2.4 ; Substrate and dioxygen binding to the endospore coat laccase CotA from Bacillus subtilis 3MK6 ; 1.98 ; Substrate and Inhibitor Binding to Pank 3ENQ ; 2.0 ; Substrate and inhibitor complexes of ribose 5-phosphate isomerase A from Vibrio vulnificus YJ016 3ENV ; 2.0 ; Substrate and inhibitor complexes of ribose 5-phosphate isomerase from Vibrio vulnificus YJ016 3ENW ; 2.0 ; Substrate and inhibitor complexes of ribose 5-phosphate isomerase from Vibrio vulnificus YJ016 2XGM ; 2.55 ; Substrate and product analogues as human O-GlcNAc transferase inhibitors. 1AOM ; 1.8 ; SUBSTRATE AND PRODUCT BOUND TO CYTOCHROME CD1 NITRITE REDUCTASE 4ICT ; 1.8 ; Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 4IPS ; 1.2 ; Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 4IPW ; 1.4 ; Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 4IQ7 ; 1.9 ; Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 4IQ9 ; 1.4 ; Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 2D0E ; 2.15 ; Substrate assited in Oxygen Activation in Cytochrome P450 158A2 1GRA ; 2.0 ; SUBSTRATE BINDING AND CATALYSIS BY GLUTATHIONE REDUCTASE AS DERIVED FROM REFINED ENZYME: SUBSTRATE CRYSTAL STRUCTURES AT 2 ANGSTROMS RESOLUTION 1GRB ; 1.85 ; SUBSTRATE BINDING AND CATALYSIS BY GLUTATHIONE REDUCTASE AS DERIVED FROM REFINED ENZYME: SUBSTRATE CRYSTAL STRUCTURES AT 2 ANGSTROMS RESOLUTION 1GRE ; 2.0 ; SUBSTRATE BINDING AND CATALYSIS BY GLUTATHIONE REDUCTASE AS DERIVED FROM REFINED ENZYME: SUBSTRATE CRYSTAL STRUCTURES AT 2 ANGSTROMS RESOLUTION 1GRF ; 2.0 ; SUBSTRATE BINDING AND CATALYSIS BY GLUTATHIONE REDUCTASE AS DERIVED FROM REFINED ENZYME: SUBSTRATE CRYSTAL STRUCTURES AT 2 ANGSTROMS RESOLUTION 1GRG ; 2.0 ; SUBSTRATE BINDING AND CATALYSIS BY GLUTATHIONE REDUCTASE AS DERIVED FROM REFINED ENZYME: SUBSTRATE CRYSTAL STRUCTURES AT 2 ANGSTROMS RESOLUTION 4KD5 ; 2.4999 ; substrate binding domain of putative molybdenum ABC transporter from Clostridium difficile 3N8E ; 2.8 ; Substrate binding domain of the human Heat Shock 70kDa protein 9 (mortalin) 6C78 ; 1.75 ; Substrate Binding Induces Conformational Changes In A Class A Beta Lactamase That Primes It For Catalysis 3C1G ; 2.3 ; Substrate binding, deprotonation and selectivity at the periplasmic entrance of the E. coli ammonia channel AmtB 3C1H ; 2.2 ; Substrate binding, deprotonation and selectivity at the periplasmic entrance of the E. coli ammonia channel AmtB 3C1I ; 2.3 ; Substrate binding, deprotonation and selectivity at the periplasmic entrance of the E. coli ammonia channel AmtB 3C1J ; 2.0 ; Substrate binding, deprotonation and selectivity at the periplasmic entrance of the E. coli ammonia channel AmtB 6L1N ; 2.0 ; Substrate bound BacF structure from Bacillus subtillis 4AQ6 ; 1.98 ; substrate bound homogentisate 1,2-dioxygenase 4B5F ; 2.005 ; Substrate bound Neisseria AP endonuclease in absence of metal ions (crystal form 1) 4B5G ; 2.75 ; Substrate bound Neisseria AP endonuclease in absence of metal ions (crystal form 2) 4LLH ; 2.8 ; Substrate bound outward-open state of the symporter BetP 1L7P ; 1.9 ; SUBSTRATE BOUND PHOSPHOSERINE PHOSPHATASE COMPLEX STRUCTURE 5D0Y ; 3.014 ; Substrate bound S-component of folate ECF transporter 4AQ4 ; 1.8 ; substrate bound sn-glycerol-3-phosphate binding periplasmic protein ugpB from Escherichia coli 6K0Z ; 2.49673 ; Substrate bound state of Staphylococcus Aureus AldH 6TWK ; 2.25 ; Substrate bound structure of the Ectoine utilization protein EutD (DoeA) from Halomonas elongata 4FAF ; 2.1 ; Substrate CA/p2 in Complex with a Human Immunodeficiency Virus Type 1 Protease Variant 2VZV ; 2.7 ; Substrate Complex of Amycolatopsis orientalis exo-chitosanase CsxA E541A with chitosan 3CO0 ; 1.93 ; Substrate Complex of Fluoride-sensitive Engineered Subtilisin SUBT_BACAM 1GVY ; 1.7 ; Substrate distorsion by beta-mannanase from Pseudomonas cellulosa 1GW1 ; 1.65 ; Substrate distortion by beta-mannanase from Pseudomonas cellulosa 2F3K ; 1.599 ; Substrate envelope and drug resistance: crystal structure of r01 in complex with wild-type hiv-1 protease 3RKU ; 2.6 ; Substrate Fingerprint and the Structure of NADP+ Dependent Serine Dehydrogenase from Saccharomyces cerevisiae complexed with NADP+ 2VE4 ; 2.4 ; Substrate free cyanobacterial CYP120A1 6MJM ; 2.2 ; Substrate Free Cytochrome P450 3A5 (CYP3A5) 8SWL ; 3.06 ; Substrate free structure of cytochrome P450 CYP105Q4 from mycobacterium marinum 3NUM ; 2.75 ; Substrate induced remodeling of the active site regulates HtrA1 activity 3NWU ; 3.2 ; Substrate induced remodeling of the active site regulates HtrA1 activity 3NZI ; 2.75 ; Substrate induced remodeling of the active site regulates HtrA1 activity 1TYP ; 2.8 ; SUBSTRATE INTERACTIONS BETWEEN TRYPANOTHIONE REDUCTASE AND N1-GLUTATHIONYLSPERMIDINE DISULPHIDE AT 0.28-NM RESOLUTION 2RJR ; 2.1 ; Substrate mimic bound to SgTAM 4FAE ; 2.3 ; Substrate p2/NC in Complex with a Human Immunodeficiency Virus Type 1 Protease Variant 5A0X ; 1.7 ; Substrate peptide-bound structure of metalloprotease Zmp1 variant E143AY178F from Clostridium difficile 6EPD ; 15.4 ; Substrate processing state 26S proteasome (SPS1) 6EPE ; 12.8 ; Substrate processing state 26S proteasome (SPS2) 6TP8 ; 1.55 ; Substrate protein interactions in the limbus region of the catalytic site of Candida antarctica Lipase B 7NSC ; 3.3 ; Substrate receptor scaffolding module of human CTLH E3 ubiquitin ligase 7NS3 ; 3.5 ; Substrate receptor scaffolding module of yeast Chelator-GID SR4 E3 ubiquitin ligase bound to Fbp1 substrate 2GC7 ; 1.9 ; Substrate reduced, copper free complex of methylamine dehydrogenase, amicyanin and cytochrome c551i from Paracoccus denitrificans. 2RFK ; 2.87 ; Substrate RNA Positioning in the Archaeal H/ACA Ribonucleoprotein Complex 2E2U ; 1.68 ; Substrate Schiff-base analogue of copper amine oxidase from Arthrobacter globiformis formed with 4-hydroxybenzylhydrazine 2E2V ; 1.8 ; Substrate Schiff-base analogue of copper amine oxidase from Arthrobacter globiformis formed with benzylhydrazine 2E2T ; 2.05 ; Substrate Schiff-base analogue of copper amine oxidase from Arthrobacter globiformis formed with phenylhydrazine 2CWU ; 1.85 ; Substrate schiff-base intermediate of copper amine oxidase from arthrobacter globiformis 2D1W ; 1.74 ; Substrate Schiff-Base intermediate with tyramine in copper amine oxidase from Arthrobacter globiformis 1KJ4 ; 2.9 ; SUBSTRATE SHAPE DETERMINES SPECIFICITY OF RECOGNITION RECOGNITION FOR HIV-1 PROTEASE: ANALYSIS OF CRYSTAL STRUCTURES OF SIX SUBSTRATE COMPLEXES 1KJ7 ; 2.0 ; SUBSTRATE SHAPE DETERMINES SPECIFICITY OF RECOGNITION RECOGNITION FOR HIV-1 PROTEASE: ANALYSIS OF CRYSTAL STRUCTURES OF SIX SUBSTRATE COMPLEXES 1KJF ; 2.0 ; SUBSTRATE SHAPE DETERMINES SPECIFICITY OF RECOGNITION RECOGNITION FOR HIV-1 PROTEASE: ANALYSIS OF CRYSTAL STRUCTURES OF SIX SUBSTRATE COMPLEXES 1KJG ; 2.0 ; SUBSTRATE SHAPE DETERMINES SPECIFICITY OF RECOGNITION RECOGNITION FOR HIV-1 PROTEASE: ANALYSIS OF CRYSTAL STRUCTURES OF SIX SUBSTRATE COMPLEXES 1KJH ; 2.0 ; SUBSTRATE SHAPE DETERMINES SPECIFICITY OF RECOGNITION RECOGNITION FOR HIV-1 PROTEASE: ANALYSIS OF CRYSTAL STRUCTURES OF SIX SUBSTRATE COMPLEXES 1ABF ; 1.9 ; SUBSTRATE SPECIFICITY AND AFFINITY OF A PROTEIN MODULATED BY BOUND WATER MOLECULES 5ABP ; 1.8 ; SUBSTRATE SPECIFICITY AND AFFINITY OF A PROTEIN MODULATED BY BOUND WATER MOLECULES 1UKY ; 2.13 ; SUBSTRATE SPECIFICITY AND ASSEMBLY OF CATALYTIC CENTER DERIVED FROM TWO STRUCTURES OF LIGATED URIDYLATE KINASE 1UKZ ; 1.9 ; SUBSTRATE SPECIFICITY AND ASSEMBLY OF CATALYTIC CENTER DERIVED FROM TWO STRUCTURES OF LIGATED URIDYLATE KINASE 4F5K ; 2.2 ; Substrate Specificity Conversion of Aspartate Aminotransferase to Tyrosine Aminotransferase By The JANUS Algorithm: Chimera P6. 4F5I ; 2.2 ; Substrate Specificity Conversion of E. coli Pyridoxal-5'-Phosphate Dependent Aspartate Aminotransferase to Tyrosine Aminotransferase: Chimera P4. 2OP9 ; 1.8 ; Substrate Specificity Profiling and Identification of a New Class of Inhibitor for the Major Protease of the SARS Coronavirus 4OXY ; 2.3501 ; Substrate-binding loop movement with inhibitor PT10 in the tetrameric Mycobacterium tuberculosis enoyl-ACP reductase InhA 7Q4O ; 2.1 ; Substrate-bound A-like U2 snRNP 3UND ; 2.1 ; Substrate-bound crystal structure of 2-dehydro-3-deoxyphosphooctonate aldolase from Burkholderia pseudomallei 8H3S ; 4.9 ; Substrate-bound EP, polyA model 5NV9 ; 1.95 ; Substrate-bound outward-open state of a Na+-coupled sialic acid symporter reveals a novel Na+-site 5NVA ; 2.26 ; Substrate-bound outward-open state of a Na+-coupled sialic acid symporter reveals a novel Na+-site 5XWV ; 1.8 ; Substrate-bound Structure of a Ketoreductase from the Second Module of the amphotericin Polyketide Synthases 4OD5 ; 3.557 ; Substrate-bound structure of a UbiA homolog from Aeropyrum pernix K1 5XWW ; 1.96 ; Substrate-bound Structure of G355T/Q364H mutant of a Ketoreductase from amphotericin Polyketide Synthases 7RMF ; 7.3 ; Substrate-bound Ura7 filament at low pH 7KZE ; 2.9 ; Substrate-dependent divergence of leukotriene A4 hydrolase aminopeptidase activity 7LLQ ; 2.85 ; Substrate-dependent divergence of leukotriene A4 hydrolase aminopeptidase activity 4DYD ; 1.95 ; Substrate-directed dual catalysis of dicarbonyl compounds by diketoreductase 4E12 ; 1.93 ; Substrate-directed dual catalysis of dicarbonyl compounds by diketoreductase 4E13 ; 2.08 ; Substrate-directed dual catalysis of dicarbonyl compounds by diketoreductase 7PX9 ; 3.8 ; Substrate-engaged mycobacterial Proteasome-associated ATPase - focused 3D refinement (state A) 7PXB ; 4.0 ; Substrate-engaged mycobacterial Proteasome-associated ATPase - focused 3D refinement (state B) 7PXC ; 3.84 ; Substrate-engaged mycobacterial Proteasome-associated ATPase in complex with open-gate 20S CP - composite map (state A) 7PXD ; 4.0 ; Substrate-engaged mycobacterial Proteasome-associated ATPase in complex with open-gate 20S CP - composite map (state B) 8HCO ; 4.1 ; Substrate-engaged TOM complex from yeast 7AH9 ; 3.3 ; Substrate-engaged type 3 secretion system needle complex from Salmonella enterica typhimurium - SpaR state 1 7AHI ; 3.3 ; Substrate-engaged type 3 secretion system needle complex from Salmonella enterica typhimurium - SpaR state 2 6YDL ; 1.52 ; Substrate-free beta-phosphoglucomutase from Lactococcus lactis 1Q5E ; 2.65 ; Substrate-free Cytochrome P450epoK 3M10 ; 1.727 ; Substrate-free form of Arginine Kinase 2ZQJ ; 2.9 ; Substrate-Free Form of Cytochrome P450BSbeta 7KSL ; 3.5 ; Substrate-free human mitochondrial LONP1 2JG4 ; 2.8 ; Substrate-free IDE structure in its closed conformation 8A9Y ; 3.5 ; Substrate-free levan utilisation machinery (utilisome) 1YZP ; 1.6 ; Substrate-free manganese peroxidase 6YDK ; 2.02 ; Substrate-free P146A variant of beta-phosphoglucomutase from Lactococcus lactis 7CL7 ; 1.95 ; Substrate-free structure of CYP154C2 from Streptomyces avermitilis in an open conformation 4PZP ; 1.9 ; Substrate-free structure of D-alanine carrier protein ligase DltA from Bacillus cereus 1P88 ; ; Substrate-induced structural changes to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase 1P89 ; ; Substrate-induced Structural Changes to the Isolated N-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate Synthase 4OXN ; 2.2926 ; Substrate-like binding mode of inhibitor PT155 to the Mycobacterium tuberculosis enoyl-ACP reductase InhA 6IEN ; 2.7 ; Substrate/product bound Argininosuccinate lyase from Mycobacterium tuberculosis 6K98 ; 2.032 ; Substrates promiscuity of xyloglucanases and endoglucanases of glycoside hydrolase 12 family 1GNS ; 1.8 ; SUBTILISIN BPN' 1SUA ; 2.1 ; SUBTILISIN BPN' 1SBI ; 2.2 ; SUBTILISIN BPN' 8397 (E.C. 3.4.21.14) MUTANT (M50F, N76D, G169A, Q206C, N218S) 1YJA ; 1.8 ; SUBTILISIN BPN' 8397+1 (E.C. 3.4.21.14) (MUTANT WITH MET 50 REPLACED BY PHE, ASN 76 REPLACED BY ASP, GLY 169 REPLACED BY ALA, GLN 206 REPLACED BY CYS, ASN 218 REPLACED BY SER AND LYS 256 REPLACED BY TYR) (M50F, N76D, G169A, Q206C, N218S, AND K256Y) IN 20% DIMETHYLFORMAMIDE 1YJB ; 1.8 ; SUBTILISIN BPN' 8397+1 (E.C. 3.4.21.14) (MUTANT WITH MET 50 REPLACED BY PHE, ASN 76 REPLACED BY ASP, GLY 169 REPLACED BY ALA, GLN 206 REPLACED BY CYS, ASN 218 REPLACED BY SER AND LYS 256 REPLACED BY TYR) (M50F, N76D, G169A, Q206C, N218S, AND K256Y) IN 35% DIMETHYLFORMAMIDE 1YJC ; 1.8 ; SUBTILISIN BPN' 8397+1 (E.C. 3.4.21.14) (MUTANT WITH MET 50 REPLACED BY PHE, ASN 76 REPLACED BY ASP, GLY 169 REPLACED BY ALA, GLN 206 REPLACED BY CYS, ASN 218 REPLACED BY SER AND LYS 256 REPLACED BY TYR) (M50F, N76D, G169A, Q206C, N218S, AND K256Y) IN 50% DIMETHYLFORMAMIDE 1SBH ; 1.8 ; SUBTILISIN BPN' 8397+1 (E.C. 3.4.21.14) MUTANT (M50F, N76D, G169A, Q206C, N218S, K256Y) 1SUP ; 1.6 ; SUBTILISIN BPN' AT 1.6 ANGSTROMS RESOLUTION: ANALYSIS OF DISCRETE DISORDER AND COMPARISON OF CRYSTAL FORMS 1DUI ; 2.0 ; Subtilisin BPN' from Bacillus amyloliquefaciens, crystal growth mutant 1SUE ; 1.8 ; SUBTILISIN BPN' FROM BACILLUS AMYLOLIQUEFACIENS, MUTANT 1A2Q ; 1.8 ; SUBTILISIN BPN' MUTANT 7186 1AU9 ; 1.8 ; SUBTILISIN BPN' MUTANT 8324 IN CITRATE 1SPB ; 2.0 ; SUBTILISIN BPN' PROSEGMENT (77 RESIDUES) COMPLEXED WITH A MUTANT SUBTILISIN BPN' (266 RESIDUES). CRYSTAL PH 4.6. CRYSTALLIZATION TEMPERATURE 20 C DIFFRACTION TEMPERATURE-160 C 3VSB ; 2.6 ; SUBTILISIN CARLSBERG D-NAPHTHYL-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 1AVT ; 2.0 ; SUBTILISIN CARLSBERG D-PARA-CHLOROPHENYL-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 1BFU ; 2.2 ; SUBTILISIN CARLSBERG IN 20% DIOXANE 1AV7 ; 2.6 ; SUBTILISIN CARLSBERG L-NAPHTHYL-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 1VSB ; 2.1 ; SUBTILISIN CARLSBERG L-PARA-CHLOROPHENYL-1-ACETAMIDO BORONIC ACID INHIBITOR COMPLEX 1BH6 ; 1.75 ; SUBTILISIN DY IN COMPLEX WITH THE SYNTHETIC INHIBITOR N-BENZYLOXYCARBONYL-ALA-PRO-PHE-CHLOROMETHYL KETONE 1AK9 ; 1.8 ; SUBTILISIN MUTANT 8321 1AQN ; 1.8 ; SUBTILISIN MUTANT 8324 6DWQ ; 1.27 ; Subtilisin serine protease modified with the protease inhibitor cyanobenzylsulfonylfluoride 1C3L ; 2.16 ; SUBTILISIN-CARLSBERG COMPLEXED WITH XENON (8 BAR) 7OZR ; 4.5 ; Subtomogram average of authentic mumps virus nucleocapsid from HeLa cell lysate of long helical pitch 8CO6 ; 4.7 ; Subtomogram average of Immature Rotavirus TLP penton 8AFY ; 26.0 ; Subtomogram average of membrane-bound Atg18 oligomers 6FTG ; 9.1 ; Subtomogram average of OST-containing ribosome-translocon complexes from canine rough microsomal membranes 8B6L ; 7.6 ; Subtomogram average of the human Sec61-TRAP-OSTA-translocon 7ZC1 ; 3.8 ; Subtomogram averaging of Rubisco from Cyanobium carboxysome 7ZBT ; 3.3 ; Subtomogram averaging of Rubisco from native Halothiobacillus carboxysomes 8OH4 ; 16.5 ; Subtomogram averaging structure of cofilactin filament inside microtubule lumen of Drosophila S2 cell protrusion. 6XTB ; 4.3 ; Subunit BBS 5 of the human core BBSome complex 1A91 ; ; SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURES 1C0V ; ; SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURES 2D00 ; 2.2 ; Subunit F of V-type ATPase/synthase 6OIG ; 3.8 ; Subunit joining exposes nascent pre-40S rRNA for processing and quality control 6WDR ; 3.7 ; Subunit joining exposes nascent pre-40S rRNA for processing and quality control 4NNZ ; 2.478 ; Subunit PA0372 of heterodimeric zinc protease PA0371-PA0372 6XT9 ; 3.8 ; Subunits BBS 1,4,8,9,18 of the human BBSome complex 2C35 ; 2.7 ; Subunits Rpb4 and Rpb7 of human RNA polymerase II 5CAE ; 2.2 ; Succinate bound to pig GTP-specific succinyl-CoA synthetase 1VZ5 ; 2.15 ; Succinate Complex of AtsK 6WU6 ; 3.6 ; succinate-coenzyme Q reductase 7JZ2 ; 2.5 ; Succinate: quinone oxidoreductase SQR from E.coli K12 1O9L ; 2.4 ; Succinate:Coenzyme-A Transferase (pig heart) 3NS7 ; 2.6 ; Succinic Acid Amides as P2-P3 Replacements for Inhibitors of Interleukin-1beta Converting Enzyme (ICE or Caspase 1) 5GIB ; 2.697 ; Succinic acid bound trypsin crystallized as dimer 1ZWG ; ; SUCCINYL HUMAN PARATHYROID HORMONE 4-37, NMR, 10 STRUCTURES 2AGG ; 1.28 ; succinyl-AAPK-trypsin acyl-enzyme at 1.28 A resolution 2AGE ; 1.15 ; Succinyl-AAPR-trypsin acyl-enzyme at 1.15 A resolution 8CEI ; 2.2 ; Succinyl-CoA Reductase from Clostridium kluyveri (SucD) 8CEJ ; 2.1 ; Succinyl-CoA Reductase from Clostridium kluyveri (SucD) with Mesaconyl-C1-CoA 8CEK ; 2.15 ; Succinyl-CoA Reductase from Clostridium kluyveri (SucD) with NADPH 6MEL ; 2.06 ; Succinyl-CoA synthase from Campylobacter jejuni 6PFN ; 1.76 ; Succinyl-CoA synthase from Francisella tularensis 6MGG ; 1.78 ; Succinyl-CoA synthase from Francisella tularensis, phosphorylated, in complex with CoA 4EU4 ; 2.802 ; Succinyl-CoA: acetate CoA-transferase (AarCH6) in complex with CoA (hexagonal lattice) 1OOY ; 1.7 ; SUCCINYL-COA:3-KETOACID COA TRANSFERASE FROM PIG HEART 1M3E ; 2.5 ; Succinyl-COA:3-ketoacid COA transferase from pig heart (selenomethionine) 3OXO ; 2.3 ; Succinyl-CoA:3-ketoacid CoA transferase from pig heart covalently bound to CoA 4EUD ; 1.95 ; Succinyl-CoA:acetate CoA-transferase (AarC) in complex with CoA and citrate 5DW4 ; 1.622 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) bound to acetate 5E5H ; 2.052 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) bound to acetate and degradation products from the acetyl-CoA analogue dethiaacetyl-CoA 5DW6 ; 1.548 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) bound to acetate and the CoA analogue 3'-phosphoadenosine 5'-(O-(N-propyl-R-pantothenamide))pyrophosphate (MX) 5DW5 ; 1.656 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) bound to the CoA analogue 3'-phosphoadenosine 5'-(O-(N-propylpantothenamide))pyrophosphate (MX) 4EU3 ; 1.58 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) in complex with citrate (subunit B) or unliganded (subunit A) 4EU5 ; 1.743 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) in complex with CoA 4EU7 ; 1.7 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) in complex with CoA and citrate 4EU6 ; 1.988 ; Succinyl-CoA:acetate CoA-transferase (AarCH6) in complex with CoA, acetate, and covalent acetylglutamyl anhydride and glutamyl-CoA thioester adducts 4EUB ; 1.973 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-E294A) in complex with CoA 4EUC ; 2.644 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-E294A) in complex with dethiaacetyl-CoA 5DDK ; 2.127 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-N347A) in complex with CoA 4EUA ; 2.398 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-R228E) in complex with CoA (anomalous dataset) 4EU9 ; 1.479 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-R228E) in complex with CoA and a covalent glutamyl-CoA thioester adduct 4EU8 ; 1.809 ; Succinyl-CoA:acetate CoA-transferase (AarCH6-S71A) in complex with CoA 4YWP ; 1.45 ; Sucrose Binding Site in genetically engineered Carbonic anhydrase IX 2WPG ; 1.9 ; Sucrose Hydrolase 1R7A ; 1.77 ; Sucrose Phosphorylase from Bifidobacterium adolescentis 2GDV ; 2.0 ; Sucrose phosphorylase from BIFIDOBACTERIUM ADOLESCENTIS reacted with sucrose 7QQI ; 1.36 ; Sucrose phosphorylase from Faecalibaculum rodentium 7QQJ ; 2.05 ; Sucrose phosphorylase from Jeotgalibaca ciconiae 6X8A ; 1.06 ; Sucrose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 6KIH ; 3.0 ; Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus 6LDQ ; 1.92 ; Sucrose-phosphate synthase (tll1590)_27_220_406_426_from Thermosynechococcus elongatus (twinned) 1A0S ; 2.4 ; SUCROSE-SPECIFIC PORIN 1A0T ; 2.4 ; SUCROSE-SPECIFIC PORIN, WITH BOUND SUCROSE MOLECULES 1OH2 ; 2.4 ; Sucrose-Specific Porin, with Bound Sucrose Molecules 7THH ; 1.32 ; SUD-C and Ubl2 domains of SARS CoV-2 Nsp3 protein 6OAF ; 2.2 ; Sudan virus nucleoprotein core domain in complex with VP35 chaperoning peptide 2UXT ; 1.9 ; SufI Protein from Escherichia Coli 2UXV ; 2.61 ; SufI Protein from Escherichia Coli 6KFY ; 1.97 ; SufS from Bacillus subtilis in a resting state at 1.96 angstrom resolution 5ZS9 ; 2.8 ; SufS from Bacillus subtilis in the resting state 5ZSK ; 3.24 ; SufS from Bacillus subtilis soaked with L-cysteine for 63 sec 5ZSO ; 2.7 ; SufS from Bacillus subtilis, soaked with L-cysteine for 90 sec 6KFZ ; 1.96 ; SufS from Bacillus subtilis, soaked with L-cysteine for 90 sec at 1.96 angstrom resolution 8D8S ; 1.388 ; SufS from Staphylococcus aureus 7XEL ; 1.8 ; SufS soaked with D-penicillamine 7XET ; 2.3 ; SufS with beta-cyano-L-alanine 7YB3 ; 1.8 ; SufS with D-cysteine for 1 min 7XEJ ; 1.74 ; SufS with D-cysteine for 5 min 7XEK ; 1.88 ; SufS with D-cysteine for 6 h 7XEN ; 2.47 ; SufS with L-penicillamine 7XEP ; 1.78 ; SufS with L-propargylglycine 5XT5 ; 2.34 ; SufS-SufU complex from Bacillus subtilis 8ODQ ; 1.65 ; SufS-SufU complex from Mycobacterium tuberculosis 2GBP ; 1.9 ; SUGAR AND SIGNAL-TRANSDUCER BINDING SITES OF THE ESCHERICHIA COLI GALACTOSE CHEMORECEPTOR PROTEIN 3W38 ; 2.79 ; Sugar beet alpha-glucosidase 3W37 ; 1.7 ; Sugar beet alpha-glucosidase with acarbose 3WEO ; 1.45 ; Sugar beet alpha-glucosidase with acarviosyl-maltohexaose 3WEN ; 2.59 ; Sugar beet alpha-glucosidase with acarviosyl-maltopentaose 3WEM ; 2.591 ; Sugar beet alpha-glucosidase with acarviosyl-maltotetraose 3WEL ; 1.84 ; Sugar beet alpha-glucosidase with acarviosyl-maltotriose 5DG1 ; 3.2 ; Sugar binding protein - human galectin-2 5EWS ; 2.0 ; Sugar binding protein - human galectin-2 5DG2 ; 1.612 ; Sugar binding protein - human galectin-2 (dimer) 2CFP ; 3.3 ; Sugar Free Lactose Permease at acidic pH 2CFQ ; 2.95 ; Sugar Free Lactose Permease at neutral pH 5HTY ; 2.815 ; Sugar kinases from Synechococcus elongatus PCC7942-D221A 5HU2 ; 2.6 ; Sugar kinases from Synechococcus elongatus PCC7942-T11A 7KMF ; 2.91 ; Sugar phosphate activation of the stress sensor eIF2B 1BVV ; 1.8 ; SUGAR RING DISTORTION IN THE GLYCOSYL-ENZYME INTERMEDIATE OF A FAMILY G/11 XYLANASE 2BVV ; 1.5 ; SUGAR RING DISTORTION IN THE GLYCOSYL-ENZYME INTERMEDIATE OF A FAMILY G/11 XYLANASE. 2QPU ; 1.7 ; Sugar tongs mutant S378P in complex with acarbose 7B0M ; 1.43 ; Sugar transaminase from a metagenome collected from troll oil field production water 7B0D ; 1.27 ; Sugar transaminase from Archaeoglobus veneficus 5XPD ; 2.788 ; Sugar transporter of AtSWEET13 in inward-facing state with a substrate analog 6ABP ; 1.67 ; SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES OF AN ARABINOSE-BINDING PROTEIN MUTANT (MET108LEU) WHICH EXHIBITS ENHANCED AFFINITY AND ALTERED SPECIFICITY 7ABP ; 1.67 ; SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES OF AN ARABINOSE-BINDING PROTEIN MUTANT (MET108LEU) WHICH EXHIBITS ENHANCED AFFINITY AND ALTERED SPECIFICITY 8ABP ; 1.49 ; SUGAR-BINDING AND CRYSTALLOGRAPHIC STUDIES OF AN ARABINOSE-BINDING PROTEIN MUTANT (MET108LEU) WHICH EXHIBITS ENHANCED AFFINITY AND ALTERED SPECIFICITY 7AAR ; 2.64 ; sugar/H+ symporter STP10 in inward open conformation 7AAQ ; 1.81 ; sugar/H+ symporter STP10 in outward occluded conformation 2G6W ; 2.14 ; Suicide inhibition of a-Oxamine Synthase: Structures of the Covalent Adducts of 8-Amino-7-oxonanoate Synthase with trifluoroalanine 8GOY ; 1.784 ; SulE P44R 7Y0L ; 1.29 ; SulE-S209A 7O89 ; 1.16 ; sulerythrin without metals (apo-state) 7YD2 ; 1.61 ; SulE_P44R_S209A 4FFA ; 2.5 ; Sulfatase from Mycobacterium tuberculosis 8EVO ; 2.4 ; Sulfatase from Mycobacterium tuberculosis (Rv3406) in complex with inhibitor FG2216 8EVN ; 2.644 ; Sulfatase from Mycobacterium tuberculosis (Rv3406) in complex with N-oxalylglycine (NOG) 8IBM ; 2.2 ; Sulfate bound form of PET-degrading cutinase Cut190 with thermostability-improving mutations of S226P/R228S/Q138A/D250C-E296C/Q123H/N202H and S176A inactivation 2YMM ; 1.64 ; Sulfate bound L-haloacid dehalogenase from a Rhodobacteraceae family bacterium 1H29 ; 2.51 ; Sulfate respiration in Desulfovibrio vulgaris Hildenborough: Structure of the 16-heme Cytochrome c HmcA at 2.5 A resolution and a view of its role in transmembrane electron transfer 5YSQ ; 1.47 ; Sulfate-complex structure of a pyrophosphate-dependent kinase in the ribokinase family provides insight into the donor-binding mode 7OZE ; 2.7 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT1624-S1_15) 7OZ8 ; 1.95 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT1918_S1_46) 7OZ9 ; 1.907 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT3057-S1_16) 7OZC ; 1.75 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT3109_S1_15) 7P24 ; 0.97 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT3177_S1_11) 7OZA ; 1.5 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT3796_S1_16) 7P26 ; 1.35 ; Sulfated host glycan recognition by carbohydrate sulfatases of the human gut microbiota (BT4631_S1_15) 3GUA ; 3.1 ; Sulfates bound in the vestibule of AChBP 3LLI ; 2.05 ; Sulfhydryl Oxidase Fragment of Human QSOX1 3LLK ; 2.0 ; Sulfhydryl Oxidase Fragment of Human QSOX1 2BLF ; 1.8 ; Sulfite dehydrogenase from Starkeya Novella 2BPB ; 1.9 ; Sulfite dehydrogenase from Starkeya Novella 2CA4 ; 2.1 ; Sulfite dehydrogenase from Starkeya Novella mutant 2CA3 ; 2.0 ; Sulfite dehydrogenase from Starkeya Novella r55m mutant 2C9X ; 1.8 ; Sulfite dehydrogenase from Starkeya Novella Y236F mutant 1SOX ; 1.9 ; SULFITE OXIDASE FROM CHICKEN LIVER 6Y0K ; 1.7 ; Sulfite oxidase from Thermus thermophilus with coordinated phosphate 5GEP ; 2.1 ; SULFITE REDUCTASE HEMOPROTEIN CARBON MONOXIDE COMPLEX REDUCED WITH CRII EDTA 4GEP ; 2.0 ; SULFITE REDUCTASE HEMOPROTEIN CYANIDE COMPLEX REDUCED WITH CRII EDTA 7GEP ; 2.4 ; SULFITE REDUCTASE HEMOPROTEIN IN COMPLEX WITH A PARTIALLY OXIDIZED SULFIDE SPECIES 8GEP ; 2.2 ; SULFITE REDUCTASE HEMOPROTEIN NITRATE COMPLEX 6GEP ; 1.8 ; SULFITE REDUCTASE HEMOPROTEIN NITRIC OXIDE COMPLEX REDUCED WITH PROFLAVINE EDTA 3GEO ; 2.1 ; SULFITE REDUCTASE HEMOPROTEIN NITRITE COMPLEX 4AOP ; 1.8 ; SULFITE REDUCTASE HEMOPROTEIN PARTIALLY PHOTOREDUCED WITH PROFLAVINE EDTA, PHOSPHATE PARTIALLY BOUND 3AOP ; 2.1 ; SULFITE REDUCTASE HEMOPROTEIN PHOTOREDUCED WITH PROFLAVINE EDTA, SIROHEME FEII,[4FE-4S] +1, PHOSPHATE BOUND 2GEP ; 1.9 ; SULFITE REDUCTASE HEMOPROTEIN, OXIDIZED, SIROHEME FEIII [4FE-4S] +2,SULFITE COMPLEX 1AOP ; 1.6 ; SULFITE REDUCTASE STRUCTURE AT 1.6 ANGSTROM RESOLUTION 5AOP ; 2.2 ; SULFITE REDUCTASE STRUCTURE REDUCED WITH CRII EDTA, 5-COORDINATE SIROHEME, SIROHEME FEII, [4FE-4S] +1 2AOP ; 1.75 ; SULFITE REDUCTASE: REDUCED WITH CRII EDTA, SIROHEME FEII, [4FE-4S] +1, PHOSPHATE BOUND 2X06 ; 2.5 ; SULFOLACTATE DEHYDROGENASE FROM METHANOCALDOCOCCUS JANNASCHII 7PNB ; 3.46 ; Sulfolobus acidocaldarius 0406 filament. 8Q30 ; 3.22 ; Sulfolobus acidocaldarius AAP filament. 1QEZ ; 2.7 ; SULFOLOBUS ACIDOCALDARIUS INORGANIC PYROPHOSPHATASE: AN ARCHAEL PYROPHOSPHATASE. 1W3N ; 2.1 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate (KDG) aldolase complex with D-KDG 1W3T ; 2.1 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate (KDG) aldolase complex with D-KDGal, D-Glyceraldehyde and pyruvate 1W3I ; 1.7 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate (KDG) aldolase complex with pyruvate 6H7R ; 2.8 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase T157V/A198L variant 6H7S ; 3.202 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase T157V/A198L variant in complex with L-2-keto-3deoxy-gluconate 6H2R ; 1.574 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase T157V/D181Q/A198L variant 6H2S ; 2.17 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase T157V/D181Q/A198L variant, pyruvate complex 6GV2 ; 2.101 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase Y103F,Y130F,A198F variant in complex with L-2-keto, 3-deoxy-galactonate 6GSO ; 2.0 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase Y132V,T157C variant 6GT8 ; 3.15 ; Sulfolobus solfataricus 2-keto-3-deoxygluconate aldolase Y132V,T157C variant 2BJD ; 1.27 ; Sulfolobus Solfataricus Acylphosphatase. Triclinic space group 4TRB ; 2.4 ; Sulfolobus solfataricus adenine phosphoribosyltransferase 4TRC ; 2.4 ; Sulfolobus solfataricus adenine phosphoribosyltransferase with adenine 4TS7 ; 2.8 ; Sulfolobus solfataricus adenine phosphoribosyltransferase with ADP 4TS5 ; 2.4 ; Sulfolobus solfataricus adenine phosphoribosyltransferase with AMP 5I3D ; 2.16 ; Sulfolobus solfataricus beta-glycosidase - E387Y mutant 2CD9 ; 1.8 ; Sulfolobus solfataricus Glucose Dehydrogenase 1 - apo form 2CDA ; 2.28 ; Sulfolobus solfataricus Glucose Dehydrogenase 1 in complex with NADP 2CDB ; 1.6 ; Sulfolobus solfataricus Glucose Dehydrogenase 1 in complex with NADP and glucose 2CDC ; 1.5 ; Sulfolobus solfataricus Glucose Dehydrogenase 1 in complex with NADP and Xylose 4TKD ; 2.01 ; Sulfolobus solfataricus HJC mutants 4TKK ; 2.4 ; Sulfolobus solfataricus HJC mutants 4TWB ; 2.802 ; Sulfolobus solfataricus ribose-phosphate pyrophosphokinase 1Z5Z ; 2.0 ; Sulfolobus solfataricus SWI2/SNF2 ATPase C-terminal domain 1Z6A ; 3.0 ; Sulfolobus solfataricus SWI2/SNF2 ATPase core domain 1Z63 ; 3.0 ; Sulfolobus solfataricus SWI2/SNF2 ATPase core in complex with dsDNA 5N2P ; 2.059 ; Sulfolobus solfataricus Tryptophan Synthase A 6HUL ; 2.55 ; Sulfolobus solfataricus Tryptophan Synthase AB Complex 6HTE ; 1.961 ; Sulfolobus solfataricus Tryptophan Synthase B2a 1XTT ; 1.8 ; Sulfolobus solfataricus uracil phosphoribosyltransferase in complex with uridine 5'-monophosphate (UMP) 1XTU ; 2.8 ; Sulfolobus solfataricus uracil phosphoribosyltransferase in complex with uridine 5'-monophosphate (UMP) and cytidine 5'-triphosphate (CTP) 1XTV ; 2.6 ; Sulfolobus solfataricus uracil phosphoribosyltransferase with uridine 5'-monophosphate (UMP) bound to half of the subunits 6G3Z ; 2.35 ; Sulfolobus sulfataricus 2-keto-3-deoxygluconate (KDG) aldolase complex with D-KDPG 2YDA ; 1.91 ; Sulfolobus sulfataricus 2-keto-3-deoxygluconate aldolase Y103F,Y130F, A198F variant 2YLY ; 3.2 ; Sulfonamides as selective Estrogen Receptor beta Agonists. 7QGW ; 1.3 ; Sulfonated Calpeptin is a promising drug candidate against SARS-CoV-2 infections 8C3D ; 2.0 ; Sulfonated Calpeptin is a promising drug candidate against SARS-CoV-2 infections 4HLD ; 2.0 ; Sulfonylpiperidines as Novel, Antibacterial Inhibitors of Gram-Positive Thymidylate Kinase (TMK): Compound 11 4HLC ; 1.55 ; Sulfonylpiperidines as Novel, Antibacterial Inhibitors of Gram-Positive Thymidylate Kinase (TMK): Compound 5 4GBM ; 1.62 ; Sulfotransferase Domain from the Curacin Biosynthetic Pathway 4GOX ; 2.15 ; Sulfotransferase Domain from the Synechococcus PCC 7002 Olefin Synthase 5VBJ ; 1.944 ; Sulfur as a bromine biomolecular halogen-bond acceptor 5ZMN ; 3.29 ; Sulfur binding domain and SRA domain of ScoMcrA complexed with phosphorothioated DNA 8H0L ; 1.8 ; Sulfur binding domain of Hga complexed with phosphorothioated DNA 5ZMO ; 1.69 ; Sulfur binding domain of ScoMcrA complexed with phosphorothioated DNA 7CC9 ; 2.063 ; Sulfur binding domain of SprMcrA complexed with phosphorothioated DNA 7CCD ; 2.42 ; Sulfur binding domain of SprMcrA complexed with phosphorothioated DNA 7CCJ ; 3.3 ; Sulfur binding domain of SprMcrA complexed with phosphorothioated DNA 2CB2 ; 1.7 ; Sulfur Oxygenase Reductase from Acidianus Ambivalens 7X9W ; 2.78 ; Sulfur Oxygenase Reductase from Acidianus ambivalens 4US7 ; 1.96 ; Sulfur SAD Phased Structure of a Type IV Pilus Protein from Shewanella oneidensis 5FTP ; 3.1 ; sulfur SAD phasing of Cdc23Nterm: data collection with a tailored X- ray beam size at 2.69 A wavelength (4.6 keV) 4BRM ; 2.02 ; Sulfur SAD phasing of the Legionella pneumophila NTPDase1 - crystal form III (closed) in complex with sulfate 5B4F ; 2.75 ; Sulfur Transferase TtuA in complex with iron sulfur cluster 5B4E ; 2.698 ; Sulfur Transferase TtuA in complex with iron sulfur cluster and ATP derivative 5GHA ; 2.502 ; Sulfur Transferase TtuA in complex with Sulfur Carrier TtuB 3I0T ; 2.27 ; Sulfur-SAD at long wavelength: Structure of BH3703 from Bacillus halodurans 3EXD ; 1.49 ; Sulfur-SAD phased HEWL Crystal 1RHS ; 1.36 ; SULFUR-SUBSTITUTED RHODANESE 1BOH ; 2.3 ; SULFUR-SUBSTITUTED RHODANESE (ORTHORHOMBIC FORM) 1E0C ; 1.8 ; SULFURTRANSFERASE FROM AZOTOBACTER VINELANDII 1H4K ; 2.05 ; Sulfurtransferase from Azotobacter vinelandii in complex with hypophosphite 1H4M ; 2.1 ; Sulfurtransferase from Azotobacter vinelandii in complex with phosphate 5MEK ; 1.74 ; Sulphotransferase-18 from Arabidopsis thaliana in complex with 3'-phosphoadenosine 5'-phosphate (PAP) 5MEX ; 1.92 ; Sulphotransferase-18 from Arabidopsis thaliana in complex with 3'-phosphoadenosine 5'-phosphate (PAP)and sinigrin 4U9A ; 2.8 ; Sulphur Anomalous Crystal Structure of Asymmetric IRAK4 Dimer 3Q5G ; 1.77 ; Sulphur SAD structure solution of proteinase K grown in SO4 solution 3Q40 ; 1.8 ; Sulphur SAD structure solution of proteinase K grown in SO4-less solution. 1Y8Q ; 2.25 ; SUMO E1 ACTIVATING ENZYME SAE1-SAE2-MG-ATP COMPLEX 1Y8R ; 2.75 ; SUMO E1 ACTIVATING ENZYME SAE1-SAE2-SUMO1-MG-ATP COMPLEX 8UZH ; 2.8 ; SUMO fused Trehalose Synthase (TreS) of Mycobacterium tuberculosis 2HKP ; 2.1 ; SUMO protease Ulp1 with the catalytic cysteine oxidized to a sulfenic acid 2HL8 ; 2.0 ; SUMO protease Ulp1 with the catalytic cysteine oxidized to a sulfinic acid 2HL9 ; 1.9 ; SUMO protease Ulp1 with the catalytic cysteine oxidized to a sulfonic acid 2K1F ; ; SUMO-3 from Drosophila melanogaster (dsmt3) 6JXV ; ; SUMO1 bound to phosphorylated SLS4-SIM peptide from ICP0 6JXU ; ; SUMO1 bound to SLS4-SIM peptide from ICP0 5TVP ; 2.399 ; SUMO2 bound to Mouse Tdp2 catalytic domain with a 5'-phosphorylated DNA ternary complex 6JXX ; ; SUMO2 bound to phosphorylated SLS4-SIM peptide from ICP0 2MUX ; ; SUMO2 non-covalently interacts with USP25 and downregulates its activity 6TNT ; 3.78 ; SUMOylated apoAPC/C with repositioned APC2 WHB domain 7MSN ; 3.0 ; SunS glycosin S-glycosyltransferase 7MSP ; 2.1 ; SunS glycosin S-glycosyltransferase 5NHN ; 1.96 ; Super-Folder Green Fluorescent Protein Artificiall dimer linked via 148 position 6FLR ; 2.51 ; Super-open structure of the AMPAR GluA3 N-terminal domain 5W7H ; 2.75 ; Supercharged arPTE variant R5 6KHI ; 3.0 ; Supercomplex for cylic electron transport in cyanobacteria 6KHJ ; 3.0 ; Supercomplex for electron transfer 8DPD ; 1.51 ; superfolder GFP Tyr74pCNPhe mutant 6OA8 ; 1.37 ; Superfolder Green Fluorescent Protein with 4-cyano-L-phenylalanine at the chromophore (position 66) 6B9C ; 1.695 ; Superfolder Green Fluorescent Protein with 4-nitro-L-phenylalanine at the chromophore (position 66) 7YEU ; 1.95 ; Superfolder green fluorescent protein with phosphine unnatural amino acid P3BF 1OLM ; 1.95 ; Supernatant Protein Factor in Complex with RRR-alpha-Tocopherylquinone: A Link between Oxidized Vitamin E and Cholesterol Biosynthesis 3AK1 ; 1.57 ; Superoxide dismutase from Aeropyrum pernix K1, apo-form 3AK3 ; 1.48 ; Superoxide dismutase from Aeropyrum pernix K1, Fe-bound form 3AK2 ; 1.35 ; Superoxide dismutase from Aeropyrum pernix K1, Mn-bound form 1B06 ; 2.2 ; SUPEROXIDE DISMUTASE FROM SULFOLOBUS ACIDOCALDARIUS 1FUN ; 2.85 ; SUPEROXIDE DISMUTASE MUTANT WITH LYS 136 REPLACED BY GLU, CYS 6 REPLACED BY ALA AND CYS 111 REPLACED BY SER (K136E, C6A, C111S) 2A03 ; 2.33 ; Superoxide dismutase protein from plasmodium berghei 6D52 ; 1.6 ; Superoxide dismutase SodCI of Salmonella enterica serovar Typhimurium at 1.6 Angstrom resolution 8AVK ; 2.1 ; Superoxide dismutase SodFM1 from CPR Parkubacteria Wolfebacteria 8AVL ; 1.6 ; Superoxide dismutase SodFM2 from Bacteroides fragilis 2AW9 ; 2.7 ; Superoxide dismutase with manganese from Deinococcus radiodurans 4D7P ; 2.001 ; Superoxide reductase (1Fe-SOR) from Giardia intestinalis 4BGL ; 1.9 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus 4BFK ; 2.103 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus E12Q mutant 4C4U ; 2.583 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus E12Q mutant in the reduced form 4C4B ; 2.5 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus E12V in the reduced form 4BFJ ; 2.8 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus E12V mutant 4BFF ; 2.0 ; Superoxide reductase (Neelaredoxin) from Archaeoglobus fulgidus in the reduced form 4BK8 ; 1.847 ; Superoxide reductase (Neelaredoxin) from Ignicoccus hospitalis 4BRV ; 2.05 ; Superoxide reductase (Neelaredoxin) from Ignicoccus hospitalis E23A 4BRJ ; 2.5 ; Superoxide reductase (Neelaredoxin) from Ignicoccus hospitalis T24K 6GQ8 ; 1.9 ; Superoxide reductase from Nanoarchaeum equitans 1QDS ; 2.0 ; SUPERSTABLE E65Q MUTANT OF LEISHMANIA MEXICANA TRIOSEPHOSPHATE ISOMERASE (TIM) 2P63 ; 2.67 ; Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination 7NSB ; 3.7 ; Supramolecular assembly module of yeast Chelator-GID SR4 E3 ubiquitin ligase 2KWD ; ; Supramolecular Protein Structure Determination by Site-Specific Long-Range Intermolecular Solid State NMR Spectroscopy 7KV4 ; 1.84 ; Surface glycan-binding protein A from Bacteroides fluxus 7KV2 ; 1.8 ; Surface glycan-binding protein A from Bacteroides thetaiotaomicron 7KV3 ; 2.05 ; Surface glycan-binding protein A from Bacteroides thetaiotaomicron in complex with laminarihexaose 7KV1 ; 1.86 ; Surface glycan-binding protein A from Bacteroides uniformis 7KWC ; 2.611 ; Surface glycan-binding protein B (truncated) from Bacteroides thetaiotaomicron 7KV5 ; 1.82 ; Surface glycan-binding protein B from Bacteroides fluxus 7KV7 ; 1.76 ; Surface glycan-binding protein B from Bacteroides fluxus in complex with laminaritriose 7KV6 ; 1.6 ; Surface glycan-binding protein B from Bacteroides fluxus in complex with mixed-linkage glucotriose 7KWB ; 2.6 ; Surface glycan-binding protein B from Bacteroides thetaiotaomicron 4ZWI ; 1.6 ; Surface Lysine Acetylated Human Carbonic Anhydrase II in Complex with a Sulfamate-Based Inhibitor 4CNR ; 2.29 ; Surface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 capture 4CNV ; 1.62 ; Surface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 capture 4CNW ; 2.03 ; Surface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 capture 4CNX ; 1.23 ; Surface residue engineering of bovine carbonic anhydrase to an extreme halophilic enzyme for potential application in postcombustion CO2 capture 6P5T ; 2.1 ; Surface-layer (S-layer) RsaA protein from Caulobacter crescentus bound to strontium and iodide 3PAQ ; 2.1 ; Surfactant Protein A neck and carbohydrate recognition domain (NCRD) complexed with alpha-methylmannose 3PBF ; 1.8 ; Surfactant Protein-A neck and carbohydrate recognition domain (NCRD) complexed with glycerol 3PAR ; 2.3 ; Surfactant Protein-A neck and carbohydrate recognition domain (NCRD) in the absence of ligand 1CHP ; 2.0 ; SURPRISING LEADS FOR A CHOLERA TOXIN RECEPTOR BINDING ANTAGONIST; CRYSTALLOGRAPHIC STUDIES OF CTB MUTANTS 1CHQ ; 2.1 ; SURPRISING LEADS FOR A CHOLERA TOXIN RECEPTOR BINDING ANTAGONIST; CRYSTALLOGRAPHIC STUDIES OF CTB MUTANTS 1P20 ; 1.34 ; Surprising Roles of Electrostatic Interactions in DNA-Ligand Complexes 1E31 ; 2.71 ; SURVIVIN DIMER H. SAPIENS 6CEP ; 2.0 ; Sus scrofa heart L-lactate dehydrogenase ternary complex with NADH and oxamate 8AA4 ; 3.1 ; SusC components of the dextran utilisation system (utilisome) 7NEK ; 2.65 ; SusD protein from human gut uncultured Bacteroides 7M1A ; 1.42 ; SusE-like protein BT2857 7M1B ; 1.5 ; SusE-like protein BT2857 6BS6 ; 2.17 ; SusG with mixed linkage amylosaccharide 5D9I ; 1.7 ; SV40 Large T antigen origin binding domain bound to artificial DNA fork 2TBD ; ; SV40 T ANTIGEN DNA-BINDING DOMAIN, NMR, 30 STRUCTURES 3BWR ; 2.25 ; SV40 VP1 pentamer in complex with GM1 oligosaccharide 6ODG ; 1.0 ; SVQIVY, Crystal Structure of a tau protein fragment 4E0M ; 1.75 ; SVQIVYK segment from human Tau (305-311) displayed on 54-membered macrocycle scaffold (form I) 4E0N ; 1.65 ; SVQIVYK segment from human Tau (305-311) displayed on 54-membered macrocycle scaffold (form II) 4E0O ; 1.82 ; SVQIVYK segment from human Tau (305-311) displayed on 54-membered macrocycle scaffold (form III) 4P2M ; 2.7 ; Swapped Dimer of Mycobacterial Adenylyl cyclase Rv1625c: Form 1 4P2X ; 2.4 ; Swapped Dimer of Mycobacterial Adenylyl cyclase Rv1625c: Form 2 4U17 ; 1.99 ; Swapped dimer of the human Fyn-SH2 domain 1XZW ; 2.5 ; Sweet potato purple acid phosphatase/phosphate complex 7W8E ; 1.34 ; Sweet taste protein Brazzein - R43A 7W8H ; 1.501 ; Sweet taste protein Brazzein mutant - D29K 6CFH ; 1.5 ; SWGMMGMLASQ segment from the low complexity domain of TDP-43 6UXV ; 4.7 ; SWI/SNF Body Module 6UXW ; 8.96 ; SWI/SNF nucleosome complex with ADP-BeFx 1ZFD ; ; SWI5 ZINC FINGER DOMAIN 2, NMR, 45 STRUCTURES 6LJJ ; 1.89 ; Swine dUTPase in complex with alpha,beta-iminodUTP and magnesium ion 1MQT ; 3.3 ; Swine Vesicular Disease Virus coat protein 5IT3 ; 1.4 ; Swirm domain of human Lsd1 3HI4 ; 2.25 ; Switching catalysis from hydrolysis to perhydrolysis in P. fluorescens esterase 5BT0 ; 2.03 ; Switching GFP fluorescence using genetically encoded phenyl azide chemistry through two different non-native post-translational modifications routes at the same position. 5BTT ; 2.14 ; Switching GFP fluorescence using genetically encoded phenyl azide chemistry through two different non-native post-translational modifications routes at the same position. 3H5F ; 1.86 ; Switching the Chirality of the Metal Environment Alters the Coordination Mode in Designed Peptides. 3H5G ; 1.71 ; Switching the Chirality of the Metal Environment Alters the Coordination Mode in Designed Peptides. 5UPB ; 1.912 ; Swit_4259, an Acetoacetate Decarboxylase-like Enzyme from Sphingomonas wittichii RW1 1B7F ; 2.6 ; SXL-LETHAL PROTEIN/RNA COMPLEX 7UCI ; 2.6 ; SxtA Methyltransferase and decarboxylase didomain in complex with Mn2+ and SAH 7UCL ; 2.09 ; SxtA Methyltransferase variant F458H in complex with Mn2+ and malonate 6U1R ; 1.792 ; SxtG an amidinotransferase from the Microseira wollei in Saxitoxin biosynthetic pathway 7MXZ ; 1.47 ; Sy-CrtE apo structure 7MY0 ; 1.37 ; Sy-CrtE IPP structure 7MY1 ; 1.84 ; Sy-CrtE structure with IPP, N-term His-tag 5CY3 ; 1.76 ; SYK catalytic domain complexed with a potent and orally bioavailable benzisothiazole inhibitor 5CXH ; 1.9 ; SYK catalytic domain complexed with a potent orally bioavailable thiazole inhibitor 4RX9 ; 1.75 ; SYK Catalytic Domain Complexed with a Potent Pyrimidine Inhibitor 4RX7 ; 1.8 ; SYK Catalytic Domain Complexed with a Potent Triazine Inhibitor 4RX8 ; 1.59 ; SYK Catalytic Domain Complexed with a Potent Triazine Inhibitor2 5CXZ ; 1.7 ; SYK catalytic domain complexed with naphthyridine inhibitor 4PX6 ; 1.6 ; SYK catalytic domain in complex with a potent pyridopyrimidinone inhibitor 4WNM ; 2.5 ; SYK catalytic domain in complex with a potent triazolopyridine inhibitor 6ZCU ; 1.73 ; syk in complex with 57262_SYKB-AZ13344324-2 6SSB ; 2.08 ; syk in complex with compound 30 4F4P ; 2.37 ; SYK in COMPLEX WITH LIGAND LASW836 6ZCX ; 1.66 ; SYK Kinase domain in complex with azabenzimidazole inhibitor 18 6ZC0 ; 1.97 ; SYK Kinase domain in complex with azabenzimidazole inhibitor 2b 6ZCP ; 2.2 ; SYK Kinase domain in complex with azabenzimidazole inhibitor 2b 6ZCS ; 1.47 ; SYK Kinase domain in complex with azabenzimidazole inhibitor 3 6ZCR ; 1.73 ; SYK Kinase domain in complex with azabenzimidazole inhibitor 7 6ZCY ; 1.81 ; SYK Kinase domain in complex with diamine inhibitor 16 6ZCQ ; 2.32 ; SYK Kinase domain in complex with diamine inhibitor 5 4YJQ ; 1.34 ; SYK kinase domain in complex with inhibitor GTC000224 4YJR ; 1.32 ; SYK kinase domain in complex with inhibitor GTC000225 8BI2 ; 1.508 ; Syk kinase domain in complex with macrocyclic inhibitor 20a 1CSY ; ; SYK TYROSINE KINASE C-TERMINAL SH2 DOMAIN COMPLEXED WITH A PHOSPHOPEPTIDEFROM THE GAMMA CHAIN OF THE HIGH AFFINITY IMMUNOGLOBIN G RECEPTOR, NMR 1CSZ ; ; SYK TYROSINE KINASE C-TERMINAL SH2 DOMAIN COMPLEXED WITH A PHOSPHOPEPTIDEFROM THE GAMMA CHAIN OF THE HIGH AFFINITY IMMUNOGLOBIN G RECEPTOR, NMR 4F34 ; 1.95 ; Symfoil-4V synthetic protein with T30E/T72E/T116E mutations, and delta His tag 7ZPL ; 3.12 ; Symmetric dimer of influenza A/H7N9 polymerase bound to 5' vRNA hook 8SP0 ; 3.33 ; Symmetric dimer of MapSPARTA bound with gRNA/tDNA hybrid 4A7J ; 1.9 ; Symmetric Dimethylation of H3 Arginine 2 is a Novel Histone Mark that Supports Euchromatin Maintenance 6OPO ; 3.5 ; Symmetric model of CD4- and 17-bound B41 HIV-1 Env SOSIP in complex with DDM 6X5B ; 3.6 ; Symmetric model of CD4- and 17-bound B41 HIV-1 Env SOSIP in complex with small molecule GO52 6OTF ; 3.1 ; Symmetric reconstruction of human norovirus GII.2 Snow Mountain Virus Strain VLP in T=3 symmetry 6OUU ; 4.1 ; Symmetric reconstruction of human norovirus GII.4 Minerva strain VLP in T=4 symmetry 3D9B ; 3.42 ; Symmetric structure of E. coli AcrB 1VST ; 2.8 ; Symmetric Sulfolobus solfataricus uracil phosphoribosyltransferase with bound PRPP and GTP 7MI4 ; 3.2 ; Symmetrical PAM-PAM prespacer bound Cas4/Cas1/Cas2 complex 4A8C ; 7.5 ; Symmetrized cryo-EM reconstruction of E. coli DegQ 12-mer in complex with a binding peptide 4A8B ; 13.0 ; Symmetrized cryo-EM reconstruction of E. coli DegQ 12-mer in complex with lysozymes 4A9G ; 7.5 ; Symmetrized cryo-EM reconstruction of E. coli DegQ 24-mer in complex with beta-casein 8PE8 ; 3.46 ; Symmetry expanded D7 local refined map of mitochondrial heat-shock protein 60-like protein from Chaetomium thermophilum 8VA2 ; 4.5 ; Symmetry expanded map of 2 gamma-tubulins bound to 2 alpha tubulins in gamma tubulin ring complex capped microtubule end. 8E06 ; 4.3 ; Symmetry expansion of dimeric LRRK1 8E00 ; 3.6 ; Symmetry expansion of yeast cytoplasmic dynein-1 bound to Lis1 in the chi conformation. 7KJY ; 3.2 ; Symmetry in Yeast Alcohol Dehydrogenase 1 - Open Form with NADH 7KCB ; 2.77 ; Symmetry in Yeast Alcohol Dehydrogenase 1 -Closed Form with NAD+ and Trifluoroethanol 7KC2 ; 2.67 ; Symmetry in Yeast Alcohol Dehydrogenase 1 -Closed Form with NADH 7KCQ ; 3.2 ; Symmetry in Yeast Alcohol Dehydrogenase 1 -Open Form of Apoenzyme 5L0P ; 2.3 ; Symmetry-based assembly of a two-dimensional protein lattice 7Y6U ; 3.2 ; Symmetry-expanded and locally refined protomer structure of IPEC-J2 cell-derived PEDV PT52 S with a CTD-close conformation 7Y6V ; 3.3 ; Symmetry-expanded and locally refined protomer structure of IPEC-J2 cell-derived PEDV PT52 S with a CTD-open conformation 4A0O ; 10.5 ; Symmetry-free cryo-EM map of TRiC in the nucleotide-free (apo) state 5AFF ; 3.398 ; Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA binding site 6O8J ; ; Syn-safencin 6O8R ; ; Syn-safencin 24 6O8S ; ; Syn-safencin 56 6O8P ; ; Syn-safencin 8 6O8T ; ; Syn-safencin 96 2AWU ; 2.44 ; Synapse associated protein 97 PDZ2 domain variant C378G 2AWW ; 2.21 ; Synapse associated protein 97 PDZ2 domain variant C378G with C-terminal GluR-A peptide 2AWX ; 1.8 ; Synapse associated protein 97 PDZ2 domain variant C378S 8U0O ; 2.05 ; Synaptic complex of human DNA polymerase Lambda DL variant engaged on a DNA double-strand break containing an unpaired 3' primer terminus 8U0P ; 1.9 ; Synaptic complex of human DNA polymerase Lambda DL variant engaged on a noncomplementary DNA double-strand break 5IWZ ; 2.098 ; Synaptonemal complex protein 6CXW ; 1.832 ; Synaptotagmin 1 C2A beta4 chimera with enhanced PIP2 binding function 5T0R ; 1.95 ; Synaptotagmin 1 C2A domain, cadmium-bound 5VFE ; 1.38 ; Synaptotagmin 1 C2A domain, lead-bound 5T0S ; 1.42 ; Synaptotagmin 1 C2B domain, cadmium-bound 5VFG ; 1.82 ; Synaptotagmin 1 C2B domain, lead-bound (high occupancy) 5VFF ; 1.413 ; Synaptotagmin 1 C2B domain, lead-bound (low occupancy) 6MTI ; 10.4 ; Synaptotagmin-1 C2A, C2B domains and SNARE-pin proteins (5CCI) individually docked into Cryo-EM map of C2AB-SNARE complexes helically organized on lipid nanotube surface in presence of Mg2+ 2YOA ; 1.5 ; Synaptotagmin-1 C2B domain with phosphoserine 6ANJ ; 1.698 ; Synaptotagmin-7, C2A domain 6ANK ; 2.254 ; Synaptotagmin-7, C2A- and C2B-domains 3N5A ; 1.441 ; Synaptotagmin-7, C2B-domain, calcium bound 1ZYP ; 2.4 ; Synchrotron reduced form of the N-terminal domain of Salmonella typhimurium AhpF 5UNH ; 2.9 ; Synchrotron structure of human angiotensin II type 2 receptor in complex with compound 2 (N-[(furan-2-yl)methyl]-N-(4-oxo-2-propyl-3-{[2'-(2H-tetrazol-5-yl)[1,1'- biphenyl]-4-yl]methyl}-3,4-dihydroquinazolin-6-yl)benzamide) 5ZTK ; 1.75 ; Synchrotron structure of light-driven chloride pump having an NTQ motif 4RWA ; 3.28 ; Synchrotron structure of the human delta opioid receptor in complex with a bifunctional peptide (PSI community target) 2PRK ; 1.5 ; SYNCHROTRON X-RAY DATA COLLECTION AND RESTRAINED LEAST-SQUARES REFINEMENT OF THE CRYSTAL STRUCTURE OF PROTEINASE K AT 1.5 ANGSTROMS RESOLUTION 1XFT ; 3.35 ; Synchrotron X-ray Powder Diffraction Study of Hexagonal Turkey Egg-white Lysozyme 5HNC ; 1.76 ; Synchrotron X-ray single crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels 7R7G ; 2.25 ; Synechococcus Olefin Synthase FAAL domain A229I/R336A in complex with palmitoyl adenylate and pyrophosphate 7R7E ; 1.99 ; Synechococcus Olefin Synthase FAAL domain in complex with AMP and pyrophosphate 7R7F ; 2.13 ; Synechococcus Olefin Synthase FAAL domain R336A in complex with stearoyl adenylate and pyrophosphate 5KK0 ; 2.8 ; Synechocystis ACO mutant - T136A 5KJB ; 2.81 ; Synechocystis apocarotenoid oxygenase (ACO) mutant - Glu150Asp 5KJD ; 2.75 ; Synechocystis apocarotenoid oxygenase (ACO) mutant - Glu150Gln 5KJA ; 2.8 ; Synechocystis apocarotenoid oxygenase (ACO) mutant - Trp149Ala 7CR8 ; 3.7 ; Synechocystis Cas1-Cas2-prespacerL complex 7CR6 ; 3.72 ; Synechocystis Cas1-Cas2/prespacer binary complex 1Y6I ; 1.78 ; Synechocystis GUN4 7E2S ; 1.05 ; Synechocystis GUN4 in complex with biliverdin IXa 7E2T ; 1.1 ; Synechocystis GUN4 in complex with phycocyanobilin 7E2U ; 1.7 ; Synechocystis GUN4 in complex with phytochrome 7SC7 ; 2.8 ; Synechocystis PCC 6803 Phycobilisome core from up-down rod conformation 7SC9 ; 2.6 ; Synechocystis PCC 6803 Phycobilisome core, complex with OCP 7SCA ; 2.1 ; Synechocystis PCC 6803 Phycobilisome rod from OCP-PBS complex sample 7SC8 ; 2.1 ; Synechocystis PCC 6803 Phycobilisome rod from PBS sample 4EML ; 2.043 ; Synechocystis sp. PCC 6803 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in complex with bicarbonate 4I4Z ; 2.0 ; Synechocystis sp. PCC 6803 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in complex with salicylyl-CoA 4MJC ; 1.409 ; Synechocystis sp. PCC 6803 glutaredoxin A - P84R 4MJA ; 2.0 ; Synechocystis sp. PCC 6803 glutaredoxin A-A75I 4MJB ; 2.111 ; Synechocystis sp. PCC 6803 glutaredoxin A-A79S 4MJE ; 1.2 ; Synechocystis sp. PCC 6803 glutaredoxin A-R27L 7PKA ; 2.16 ; Synechocystis sp. PCC6803 glutathione transferase Chi 1, GSOH bound 7LG5 ; 2.63 ; Synechocystis sp. UTEX2470 Cyanophycin synthetase 1 with ATP 1C8L ; 2.3 ; SYNERGISTIC INHIBITION OF GLYCOGEN PHOSPHORYLASE A BY A POTENTIAL ANTIDIABETIC DRUG AND CAFFEINE 7A3M ; 1.01 ; Synergistic stabilization of a double mutant in CI2 from an in-cell library screen 7PF8 ; 1.85 ; SynFtn Variant E141A 7PF9 ; 1.55 ; SynFtn Variant E141D 5JXC ; 2.5 ; SynGAP Coiled-coil trimer 7R2T ; 2.5 ; SYNJ2BP complex with a phosphorylated Vangl2 peptide at the P-1 position. 8AEL ; 2.2 ; SYNJ2BP complex with a synthetic Vangl2 peptide (3mer). 7R2M ; 2.4 ; SYNJ2BP complex with a synthetic Vangl2 peptide (9mer). 6Q08 ; ; Synoeca peptide was isolated from the venom of wasp synoeca surinama. 1LVF ; 2.1 ; syntaxin 6 1RVV ; 2.4 ; SYNTHASE/RIBOFLAVIN SYNTHASE COMPLEX OF BACILLUS SUBTILIS 2A4F ; 1.9 ; Synthesis and Activity of N-Axyl Azacyclic Urea HIV-1 Protease Inhibitors with High Potency Against Multiple Drug Resistant Viral Strains. 5M96 ; 1.77 ; Synthesis and biological evaluation of new triazolo and imidazolopyridine RORgt inverse agonists 5T8E ; 2.71 ; Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs). Part II: Optimization of 4-(pyrrolidin-1-yl)benzonitrile derivatives 5T8J ; 2.7 ; Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs). Part II: Optimization of 4-(pyrrolidin-1-yl)benzonitrile derivatives 5V8Q ; 1.44 ; Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs): Part III 4XUC ; 1.8 ; Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of catechol-O-methyltransferase (COMT): Structure with Cmpd18 (1-(biphenyl-3-yl)-3-hydroxypyridin-4(1H)-one) 4XUE ; 2.3 ; Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of catechol-O-methyltransferase (COMT): Structure with Cmpd27b 4XUD ; 2.4 ; Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of catechol-O-methyltransferase (COMT): Structure with Cmpd32 ([1-(biphenyl-3-yl)-5-hydroxy-4-oxo-1,4-dihydropyridin-3-yl]boronic acid) 4GB1 ; 2.62 ; Synthesis and Evaluation of Novel 3-C-alkylated-Neu5Ac2en Derivatives as Probes of Influenza Virus Sialidase 150-loop flexibility 2YER ; 1.83 ; Synthesis and evaluation of triazolones as checkpoint kinase 1 inhibitors 2YEX ; 1.3 ; Synthesis and evaluation of triazolones as checkpoint kinase 1 inhibitors 2P33 ; 2.4 ; Synthesis and SAR of Aminopyrimidines as Novel c-Jun N-Terminal Kinase (JNK) Inhibitors 4AD6 ; 1.85 ; Synthesis and SAR of guanine based analogues for HPPK inhibitors 3VAP ; 2.66 ; Synthesis and SAR Studies of imidazo-[1,2-a]-pyrazine Aurora kinase inhibitors with improved off target kinase selectivity 1QFI ; 0.91 ; SYNTHESIS AND STRUCTURE OF PROLINE RING MODIFIED ACTINOMYCINS OF X TYPE 3DJ8 ; 1.51 ; Synthesis of (2S)-2-amino-7,8-epoxyoctanoic acid and structure of its metal-bridging complex with human arginase I 4H42 ; 2.01 ; Synthesis of a Weak Basic uPA Inhibitor and Crystal Structure of Complex with uPA 4JQL ; 1.72 ; Synthesis of Benzoquinone-Ansamycin-Inspired Macrocyclic Lactams from Shikimic Acid 2FET ; 2.03 ; Synthesis of C-D-Glycopyranosyl-Hydroquinones and-Benzoquinones. Inhibition of PTP1B. Inhibition of and binding to glycogen phosphorylase in the crystal 2FF5 ; 2.03 ; Synthesis of C-D-Glycopyranosyl-Hydroquinones and-Benzoquinones. Inhibition of PTP1B. Inhibition of and binding to glycogen phosphorylase in the crystal 3G5M ; 1.84 ; Synthesis of Casimiroin and Optimization of Its Quinone Reductase 2 and Aromatase Inhibitory activity 3GAM ; 1.98 ; Synthesis of Casimiroin and Optimization of Its Quinone Reductase 2 and Aromatase Inhibitory activity 2VSH ; 2.0 ; Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae 2VSI ; 2.75 ; Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae 3UPH ; 2.0 ; Synthesis of novel 4,5-dihydrofurano indoles and their evaluation as HCV NS5B polymerase inhibitors 3UPI ; 2.0 ; Synthesis of novel 4,5-dihydrofurano indoles and their evaluation as HCV NS5B polymerase inhibitors 4GQI ; 1.948 ; Synthesis of novel MT3 receptor ligands via unusual Knoevenagel condensation 4GR9 ; 2.291 ; Synthesis of novel MT3 receptor ligands via unusual Knoevenagel condensation 4UFZ ; 2.33 ; Synthesis of Novel NAD Dependant DNA Ligase Inhibitors via Negishi Cross-Coupling: Development of SAR and Resistance Studies 5ULN ; 1.35 ; Synthesis of novel seleno ureido containing compounds as SLC-0111 analogs. Investigations on carbonic anhydrases activity, glutathione peroxidase and X-ray crystallography 5UMC ; 2.15 ; Synthesis of novel seleno ureido containing compounds as SLC-0111 analogs. Investigations on carbonic anhydrases activity, glutathione peroxidase and X-ray crystallography 6PGX ; 1.36 ; Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity 2FOI ; 2.5 ; Synthesis, Biological Activity, and X-Ray Crystal Structural Analysis of Diaryl Ether Inhibitors of Malarial Enoyl ACP Reductase. 1ZSN ; 2.992 ; Synthesis, Biological Activity, and X-Ray Crystal Structural Analysis of Diaryl Ether Inhibitors of Malarial Enoyl ACP Reductase. Part 1:4'-Substituted Triclosan Derivatives 1ZW1 ; 2.9 ; Synthesis, Biological Activity, and X-Ray Crystal Structural Analysis of Diaryl Ether Inhibitors of Malarial Enoyl ACP Reductase. Part 1:4'-Substituted Triclosan Derivatives 1ZXB ; 2.68 ; Synthesis, Biological Activity, and X-Ray Crystal Structural Analysis of Diaryl Ether Inhibitors of Malarial Enoyl ACP Reductase. Part 1:4'-Substituted Triclosan Derivatives 1ZXL ; 3.0 ; Synthesis, Biological Activity, and X-Ray Crystal Structural Analysis of Diaryl Ether Inhibitors of Malarial Enoyl ACP Reductase. Part 1:4'-Substituted Triclosan Derivatives 5A6H ; 1.57 ; Synthesis, carbonic anhydrase inhibition and protein X-ray structure of the unusual natural product primary sulfonamide Psammaplin C 4PZW ; 1.8 ; Synthesis, Characterization and PK/PD Studies of a Series of Spirocyclic Pyranochromene BACE1 Inhibitors 4PZX ; 1.8 ; Synthesis, Characterization and PK/PD Studies of a Series of Spirocyclic Pyranochromene BACE1 Inhibitors 2H1M ; 2.9 ; Synthesis, Oxidation Behavior, Crystallization and Structure of 2'-Methylseleno Guanosine Containing RNAs 2OO8 ; 2.2 ; Synthesis, Structural Analysis, and SAR Studies of Triazine Derivatives as Potent, Selective Tie-2 Inhibitors 2OSC ; 2.8 ; Synthesis, Structural Analysis, and SAR Studies of Triazine Derivatives as Potent, Selective Tie-2 Inhibitors 2K1I ; ; Synthesis, Structure and Activities of an Oral Mucosal Alpha-Defensin from Rhesus Macaque 3P8X ; 1.7 ; Synthesis, Structure, and Biological Activity of des-Side Chain Analogues of 1alpha,25-Dihydroxyvitamin D3 with Substituents at C-18 8TPB ; 1.88 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPC ; 1.73 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPD ; 1.68 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPE ; 1.61 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPF ; 1.95 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPG ; 1.692 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPH ; 1.52 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 8TPI ; 1.98 ; Synthesis, X-Ray Crystallographic and Biological Activities of Covalent, Non-Peptidic Inhibitors of SARS-CoV-2 Main Protease 1S9Z ; 2.01 ; SYNTHETIC 17 AMINO ACID LONG PEPTIDE THAT FORMS A NATIVE-LIKE COILED-COIL AT AMBIENT TEMPERATURE AND AGGREGATES INTO AMYLOID-LIKE FIBRILS AT HIGHER TEMPERATURES. 8DPY ; 1.0 ; Synthetic Beta Sheet Macrocycle Stabilized by Hydrogen Bond Surrogates 3PJJ ; 1.8 ; Synthetic Dimer of Human Carbonic Anhydrase II 7B4Z ; ; Synthetic DNA duplex dodecamer 1CS7 ; 3.2 ; SYNTHETIC DNA HAIRPIN WITH STILBENEDIETHER LINKER 8CUG ; 1.131 ; Synthetic epi-Novo29 (2R,3S), synchrotron structure 8CUF ; 1.68 ; Synthetic epi-Novo29 (2R,3S), X-ray diffractometer structure 6OTC ; 1.7 ; Synthetic Fab bound to Marburg virus VP35 interferon inhibitory domain 2RHL ; 2.45 ; Synthetic Gene Encoded Bacillus Subtilis FtsZ NCS Dimer with Bound GDP 2RHO ; 2.45 ; Synthetic Gene Encoded Bacillus Subtilis FtsZ NCS Dimer with Bound GDP and GTP-gamma-S 2RHH ; 2.001 ; Synthetic Gene Encoded Bacillus Subtilis FtsZ with Bound Sulfate Ion 2RHJ ; 1.761 ; Synthetic Gene Encoded Bacillus Subtilis FtsZ with Two Sulfate Ions and Sodium Ion in the Nucleotide Pocket 3BLA ; 2.6 ; Synthetic Gene Encoded DcpS bound to inhibitor DG153249 3BL7 ; 2.31 ; Synthetic Gene Encoded DcpS bound to inhibitor DG156844 3BL9 ; 1.8 ; Synthetic Gene Encoded DcpS bound to inhibitor DG157493 7NXZ ; 1.998 ; Synthetic glycoform of Human Interleukin 6 6NER ; 3.59 ; Synthetic Haliangium ochraceum BMC shell 6CMH ; ; SYNTHETIC LINEAR MODIFIED ENDOTHELIN-1 AGONIST 3CMH ; ; SYNTHETIC LINEAR TRUNCATED ENDOTHELIN-1 AGONIST 7RCU ; 2.69 ; Synthetic Max homodimer mimic in complex with DNA 6SNY ; 3.11 ; Synthetic mimic of an EPCR-binding PfEMP1 bound to EPCR 5M13 ; 1.372 ; Synthetic nanobody in complex with MBP 5M14 ; 1.6 ; Synthetic nanobody in complex with MBP 5M15 ; 1.9 ; Synthetic nanobody in complex with MBP 1BCV ; ; SYNTHETIC PEPTIDE CORRESPONDING TO THE MAJOR IMMUNOGEN SITE OF FMD VIRUS, NMR, 10 STRUCTURES 6HCR ; 3.5 ; Synthetic Self-assembling ADDomer Platform for Highly Efficient Vaccination by Genetically-encoded Multi-epitope Display 1UBI ; 1.8 ; SYNTHETIC STRUCTURAL AND BIOLOGICAL STUDIES OF THE UBIQUITIN SYSTEM. PART 1 1OGW ; 1.32 ; Synthetic Ubiquitin with fluoro-Leu at 50 and 67 2WVP ; 2.4 ; Synthetically modified OmpG 2FCU ; 1.6 ; SyrB2 with alpha-ketoglutarate 2FCV ; 1.8 ; SyrB2 with Fe(II), bromide, and alpha-ketoglutarate 2FCT ; 1.6 ; SyrB2 with Fe(II), chloride, and alpha-ketoglutarate 2LH8 ; ; Syrian hamster prion protein with thiamine 6BWZ ; 1.1 ; SYSGYS from low-complexity domain of FUS, residues 37-42 6BXV ; 1.1 ; SYSSYGQS from low-complexity domain of FUS, residues 54-61 5HPK ; 2.431 ; System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes: NEDD4L and UbV NL.1 5HPL ; 2.31 ; System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes: Rsp5 and UbV R5.4 5HPS ; 2.05 ; System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes: WWP1 and UbV P1.1 5HPT ; 2.84 ; System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes: WWP1, Ubv P2.3 and UBCH7 9B7F ; 1.65 ; S_SAD structure of HEWL using lossless default compression 9B7E ; 1.65 ; S_SAD structure of HEWL using lossy compression data with a compression ratio of 422 1LTH ; 2.5 ; T AND R STATES IN THE CRYSTALS OF BACTERIAL L-LACTATE DEHYDROGENASE REVEAL THE MECHANISM FOR ALLOSTERIC CONTROL 2V2W ; 1.6 ; T CELL CROSS-REACTIVITY AND CONFORMATIONAL CHANGES DURING TCR ENGAGEMENT 2V2X ; 1.6 ; T cell cross-reactivity and conformational changes during TCR engagement. 2OYP ; 1.952 ; T Cell Immunoglobulin Mucin-3 Crystal Structure Revealed a Galectin-9-independent Binding Surface 1L8K ; 2.56 ; T Cell Protein-Tyrosine Phosphatase Structure 4UDT ; 1.35 ; T cell receptor (TRAV22,TRBV7-9) structure 1L0Y ; 2.5 ; T cell receptor beta chain complexed with superantigen SpeA soaked with zinc 7RYL ; 2.0 ; T cell receptor CO3 1H5B ; 1.85 ; T cell receptor Valpha11 (AV11S5) domain 6VQO ; 3.0 ; T cell receptor-p53-HLA-A2 complex 6VRM ; 2.61 ; T cell receptor-p53-HLA-A2 complex 6VRN ; 2.46 ; T cell receptor-p53-HLA-A2 complex 4MJI ; 2.99 ; T cell response to a HIV reverse transcriptase epitope presented by the protective allele HLA-B*51:01 3B69 ; 1.67 ; T cruzi Trans-sialidase complex with benzoylated NANA derivative 1XBR ; 2.5 ; T DOMAIN FROM XENOPUS LAEVIS BOUND TO DNA 1VWT ; 1.9 ; T STATE HUMAN HEMOGLOBIN [ALPHA V96W], ALPHA AQUOMET, BETA DEOXY 3QZ7 ; 1.998 ; T-3 ternary complex of Dpo4 1JCK ; 3.5 ; T-CELL RECEPTOR BETA CHAIN COMPLEXED WITH SEC3 SUPERANTIGEN 1SBB ; 2.4 ; T-CELL RECEPTOR BETA CHAIN COMPLEXED WITH SUPERANTIGEN SEB 7SCC ; 2.6 ; T-cylinder of Synechocystis PCC 6803 Phycobilisome, complex with OCP - local refinement 7EXY ; ; T-hairpin structure found in the RNA element involved in the piRNA biogenesis 2Q8M ; 2.05 ; T-like Fructose-1,6-bisphosphatase from Escherichia coli with AMP, Glucose 6-phosphate, and Fructose 1,6-bisphosphate bound 7R94 ; 2.6 ; T-Plastin-F-actin complex 7SX9 ; 10.0 ; T-Plastin-F-actin complex, anti-parallel bundled state 7SX8 ; 9.0 ; T-Plastin-F-actin complex, parallel bundled state 7SXA ; 6.87 ; T-Plastin-F-actin complex, pre-bundling intermediate state 2AIR ; 2.0 ; T-state Active Site of Aspartate Transcarbamylase:Crystal Structure of the Carbamyl Phosphate and L-alanosine Ligated Enzyme 5WRP ; 2.85 ; T-state crystal structure of pyruvate kinase from Mycobacterium tuberculosis 2ZQY ; 2.6 ; T-state structure of allosteric L-lactate dehydrogenase from Lactobacillus casei 1RDY ; 2.2 ; T-STATE STRUCTURE OF THE ARG 243 TO ALA MUTANT OF PIG KIDNEY FRUCTOSE 1,6-BISPHOSPHATASE EXPRESSED IN E. COLI 1RDZ ; 2.05 ; T-STATE STRUCTURE OF THE ARG 243 TO ALA MUTANT OF PIG KIDNEY FRUCTOSE 1,6-BISPHOSPHATASE EXPRESSED IN E. COLI 1Y09 ; 2.25 ; T-to-T(High) Quaternary Transitions in Human Hemoglobin: alphaN97A deoxy low-salt 1Y8W ; 2.9 ; T-To-T(High) quaternary transitions in human hemoglobin: alphaR92A oxy (2mM IHP, 20% PEG) (10 test sets) 1YDZ ; 3.3 ; T-To-T(High) quaternary transitions in human hemoglobin: alphaY140F oxy (2MM IHP, 20% PEG) (1 test set) 1Y4V ; 1.84 ; T-To-T(High) quaternary transitions in human hemoglobin: betaC93A deoxy low-salt (1 test set) 1Y5K ; 2.2 ; T-To-T(High) quaternary transitions in human hemoglobin: betaD99A deoxy low-salt (10 test sets) 1Y4Q ; 2.11 ; T-To-T(High) quaternary transitions in human hemoglobin: betaF42A deoxy low-salt (1 test set) 1Y4R ; 2.22 ; T-To-T(High) quaternary transitions in human hemoglobin: betaF45A deoxy low-salt (1 test set) 1Y5J ; 2.03 ; T-To-T(High) quaternary transitions in human hemoglobin: betaH97A deoxy low-salt (1 test set) 1YGF ; 2.7 ; T-to-T(high) quaternary transitions in human hemoglobin: betaH97A oxy (2MM IHP, 20% PEG) (1 test set) 1Y5F ; 2.14 ; T-To-T(High) quaternary transitions in human hemoglobin: betaL96A deoxy low-salt (1 test set) 1Y7G ; 2.1 ; T-To-T(high) quaternary transitions in human hemoglobin: betaN102A deoxy low-salt (1 test set) 1Y7Z ; 1.98 ; T-To-T(High) quaternary transitions in human hemoglobin: betaN108A deoxy low-salt (1 test set) 1Y7C ; 2.1 ; T-To-T(High) quaternary transitions in human hemoglobin: betaP100A deoxy low-salt (1 test set) 1YIH ; 2.0 ; T-to-T(High) quaternary transitions in human hemoglobin: betaP100A oxy (2.2MM IHP, 20% PEG) (1 test set) 1Y7D ; 1.9 ; T-To-T(High) quaternary transitions in human hemoglobin: betaP100G deoxy low-salt (1 test set) 1Y45 ; 2.0 ; T-To-T(high) quaternary transitions in human hemoglobin: betaP36A deoxy low-salt (10 test sets) 1YEN ; 2.8 ; T-To-T(High) quaternary transitions in human hemoglobin: betaP36A oxy (2MM IHP, 20% PEG) (10 test sets) 1Y0T ; 2.14 ; T-to-T(High) Quaternary Transitions in Human Hemoglobin: betaV1M deoxy low-salt (1 test set) 1Y22 ; 2.16 ; T-To-T(High) quaternary transitions in human hemoglobin: betaV33A deoxy low-salt (1 test set) 1YE0 ; 2.5 ; T-To-T(High) quaternary transitions in human hemoglobin: betaV33A oxy (2MM IHP, 20% PEG) (1 test set) 1Y2Z ; 2.07 ; T-To-T(High) quaternary transitions in human hemoglobin: betaV34G deoxy low-salt (1 test set) 1Y4F ; 2.0 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37A deoxy low-salt (10 test sets) 1YEO ; 2.22 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37A OXY (10 test sets) 1YGD ; 2.73 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37E alpha zinc beta oxy (10 TEST SETS) 1Y4P ; 1.98 ; T-To-T(high) quaternary transitions in human hemoglobin: betaW37E deoxy low-salt (10 test sets) 1YEV ; 2.11 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37E OXY (10 test sets) 1Y4G ; 1.91 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37G deoxy low-salt (10 test sets) 1YEU ; 2.12 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37G OXY (10 test sets) 1Y4B ; 2.1 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37H deoxy low-salt (10 test sets) 1YG5 ; 2.7 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37H OXY (2MM IHP, 20% PEG) (10 test sets) 1Y46 ; 2.22 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37Y deoxy low-salt (10 test sets) 1YEQ ; 2.75 ; T-To-T(High) quaternary transitions in human hemoglobin: betaW37Y OXY (10 test sets) 1Y83 ; 1.9 ; T-To-T(High) quaternary transitions in human hemoglobin: betaY145G deoxy low-salt (1 test set) 1Y31 ; 2.13 ; T-To-T(High) quaternary transitions in human hemoglobin: betaY35A deoxy low-salt (1 test set) 1YE1 ; 4.5 ; T-To-T(High) quaternary transitions in human hemoglobin: betaY35A oxy (2MM IHP, 20% PEG) (1 test set) 1Y35 ; 2.12 ; T-To-T(High) quaternary transitions in human hemoglobin: betaY35F deoxy low-salt (1 test set) 1YE2 ; 1.8 ; T-To-T(High) quaternary transitions in human hemoglobin: betaY35F oxy (2MM IHP, 20% PEG) (1 test set) 1Y85 ; 2.13 ; T-To-T(High) quaternary transitions in human hemoglobin: desHIS146beta deoxy low-salt 1YHR ; 2.6 ; T-To-T(High) quaternary transitions in human hemoglobin: HbA OXY (10.0MM IHP, 20% PEG) (10 test sets) 1YH9 ; 2.2 ; T-to-T(High) quaternary transitions in human hemoglobin: HbA OXY (2MM IHP, 20% PEG) (10 test sets) 1YHE ; 2.1 ; T-To-T(High) quaternary transitions in human hemoglobin: HbA OXY (5.0MM IHP, 20% PEG) (10 test sets) 1XZU ; 2.16 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaD94G deoxy low-salt 1XZ5 ; 2.11 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaL91A deoxy low-salt 1XZV ; 2.11 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaP95A deoxy low-salt 1XZ7 ; 1.9 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaR92A deoxy low-salt 1Y0A ; 2.22 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaY140A deoxy low-salt 1Y0C ; 2.3 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: alphaY140F deoxy low-salt 1Y0W ; 2.14 ; T-to-THigh quaternary Transitions in Human Hemoglobin: betaV1M deoxy low-salt (10 test sets) 1YIE ; 2.4 ; T-to-thigh quaternary transitions in human hemoglobin: betaW37A oxy (2.2MM IHP, 13% PEG) (1 test set) 1Y0D ; 2.1 ; T-to-THigh Quaternary Transitions in Human Hemoglobin: desArg141alpha deoxy low-salt 1XYE ; 2.13 ; T-to-THigh Transitions in Human Hemoglobin: alpha Y42A deoxy low salt 1XY0 ; 1.99 ; T-to-THigh Transitions in Human Hemoglobin: alphaK40G deoxy low-salt 1OB5 ; 3.1 ; T. aquaticus elongation factor EF-Tu complexed with the antibiotic enacyloxin IIa, a GTP analog, and Phe-tRNA 1LS1 ; 1.1 ; T. aquaticus Ffh NG Domain at 1.1A Resolution 7NF0 ; 1.35 ; T. atroviride Fdc variant TaFdcV in complex with hydroxylated prFMN 2I19 ; 2.28 ; T. Brucei farnesyl diphosphate synthase complexed with bisphosphonate 5AFX ; 2.39 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-1238 5AHU ; 2.69 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-1326 4RXE ; 2.5 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-14 2P1C ; 2.45 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-210 3DYG ; 2.1 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-461 3DYF ; 2.65 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-461 and Isopentyl Diphosphate 2OGD ; 2.0 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-527 5AEL ; 2.6 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-597 3EFQ ; 2.0 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-714 3DYH ; 1.94 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-721 3EGT ; 2.0 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Bisphosphonate BPH-722 4RXC ; 2.31 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Homorisedronate BPH-6 2EWG ; 2.48 ; T. brucei Farnesyl Diphosphate Synthase Complexed with Minodronate 4RXD ; 2.0 ; T. Brucei Farnesyl Diphosphate Synthase Complexed with Risedronate 6R36 ; 1.67 ; T. brucei farnesyl pyrophosphate synthase (FPPS) 6SII ; 2.33 ; T. brucei FPPS in complex with 1-((1H-indol-3-yl)methyl)-N-(3-chlorobenzyl)piperidin-4-amine 6R39 ; 2.6 ; T. brucei FPPS in complex with 1-(carboxymethyl)-1H-benzo[g]indole-2-carboxylic acid 6R38 ; 2.33 ; T. brucei FPPS in complex with 2-(2,5-dichlorobenzo[b]thiophen-3-yl)acetic acid 6R37 ; 2.1 ; T. brucei FPPS in complex with 2-(5-chlorobenzo[b]thiophen-3-yl)acetic acid 5QT8 ; 2.35 ; T. brucei FPPS in complex with CAS 34105-16-3 5QT6 ; 2.189 ; T. brucei FPPS in complex with CID 112445 5QTG ; 2.093 ; T. brucei FPPS in complex with CID 126782062 5QTF ; 1.783 ; T. brucei FPPS in complex with CID 144539 5QT9 ; 2.199 ; T. brucei FPPS in complex with CID 23155989 5QTH ; 1.887 ; T. brucei FPPS in complex with CID 2799882 5QTA ; 2.113 ; T. brucei FPPS in complex with CID 2804072 5QTB ; 1.965 ; T. brucei FPPS in complex with CID 303798 5QT4 ; 2.324 ; T. brucei FPPS in complex with CID 3599333 5QTE ; 2.072 ; T. brucei FPPS in complex with CID 4563894 5QTJ ; 2.101 ; T. brucei FPPS in complex with CID 47256035 5QTI ; 2.112 ; T. brucei FPPS in complex with CID 62483448 5QT7 ; 2.292 ; T. brucei FPPS in complex with CID 66669982 5QTK ; 1.857 ; T. brucei FPPS in complex with CID 69539 5QT5 ; 2.143 ; T. brucei FPPS in complex with CID 89021 6IAE ; 2.49 ; T. brucei IFT22 GDP-bound crystal structure 6IA7 ; 2.3 ; T. brucei IFT22 GTP-bound crystal structure 6IAN ; 3.2 ; T. brucei IFT22/74/81 GTP-bound crystal structure 6EWK ; 2.22 ; T. californica AChE in complex with a 3-hydroxy-2-pyridine aldoxime. 1W41 ; 1.7 ; T. celer L30e E90A variant 1W40 ; 2.03 ; T. celer L30e K9A variant 1W42 ; 1.8 ; T. celer L30e R92A variant 5JDO ; 3.2 ; T. congolense haptoglobin-haemoglobin receptor in complex with haemoglobin 5HCF ; 2.451 ; T. cruzi calreticulin globular domain 6R04 ; 1.47 ; T. cruzi FPPS 6R06 ; 1.559 ; T. CRUZI FPPS IN COMPLEX WITH (3S,4S)-4-(3,4-dimethylphenoxy)-1-(prop-2-yn-1-yl)piperidin-3-ol 6SI5 ; 2.097 ; T. cruzi FPPS in complex with 1-methyl-5-(4,5,6,7-tetrahydrothieno[3,2-c]pyridine-5-carbonyl)pyridin-2(1H)-one 6R09 ; 1.28 ; T. cruzi FPPS in complex with 2-(4-((1H-indol-3-yl)methyl)piperazin-1-yl)benzo[d]thiazole 6R07 ; 1.57 ; T. cruzi FPPS in complex with 2-(5-chlorobenzo[b]thiophen-3-yl)acetic acid 6R0B ; 1.612 ; T. cruzi FPPS in complex with 3-((4-(5-chlorobenzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indol-5-ol 6R0A ; 1.32 ; T. cruzi FPPS in complex with 3-((4-(benzo[d]thiazol-2-yl)piperazin-1-yl)methyl)-1H-indol-5-ol 6R08 ; 1.44 ; T. cruzi FPPS in complex with 3-(carboxymethyl)-5,7-dichloro-1H-indole-2-carboxylic acid 6SHV ; 1.808 ; T. cruzi FPPS in complex with 5-(4-fluorophenoxy)pyridin-2-amine 6R05 ; 1.57 ; T. CRUZI FPPS IN COMPLEX WITH N-BENZYL-6-METHYLPYRIDIN-2-AMINE 8GCC ; 2.94 ; T. cruzi topoisomerase II alpha bound to dsDNA and the covalent inhibitor CT1 5KVW ; 1.59 ; T. danielli thaumatin at 100K, Data set 1 5KVX ; 1.59 ; T. danielli thaumatin at 100K, Data set 2 5KVZ ; 1.592 ; T. danielli thaumatin at 100K, Data set 3 5KW0 ; 1.594 ; T. danielli thaumatin at 100K, Data set 5 5KW3 ; 1.55 ; T. danielli thaumatin at 278K, Data set 1 5KW4 ; 1.55 ; T. danielli thaumatin at 278K, Data set 2 5KW5 ; 1.55 ; T. danielli thaumatin at 278K, Data set 3 5KW7 ; 1.55 ; T. danielli thaumatin at 278K, Data set 4 5KW8 ; 1.55 ; T. danielli thaumatin at 278K, Data set 5 3OM9 ; 1.98 ; T. Gondii bradyzoite-specific LDH (LDH1) in complex with NAD and OXQ 1SOW ; 1.9 ; T. gondii bradyzoite-specific LDH (LDH2) in complex with NAD and oxalate 3CZM ; 2.3 ; T. Gondii bradyzoite-specific LDH (LDH2) in complex with NAD and OXQ 6TJ7 ; 2.3 ; T. gondii myosin A trimeric complex 6TJ5 ; 2.394 ; T. gondii myosin A trimeric complex with ELC1 6TJ6 ; 2.0 ; T. gondii myosin A trimeric complex with ELC1, calcium-free 1C3C ; 1.8 ; T. MARITIMA ADENYLOSUCCINATE LYASE 1C3U ; 2.3 ; T. MARITIMA ADENYLOSUCCINATE LYASE 3IWD ; 1.9 ; T. maritima AdoMetDC complex with 5'-Deoxy-5'-dimethyl thioadenosine 3IWC ; 1.9 ; T. maritima AdoMetDC complex with S-Adenosylmethionine methyl ester 3IWB ; 2.06 ; T. maritima AdoMetDC in processed form 4GTC ; 1.97 ; T. Maritima FDTS (E144R mutant) plus FAD 4GTD ; 1.76 ; T. Maritima FDTS (E144R mutant) with FAD and dUMP 4GTE ; 1.89 ; T. Maritima FDTS (E144R mutant) with FAD and Folate 4GTF ; 1.77 ; T. Maritima FDTS (H53A mutant) with FAD, dUMP and Folate 4GTL ; 2.17 ; T. Maritima FDTS (R174K mutant) with FAD 4GT9 ; 1.39 ; T. Maritima FDTS with FAD, dUMP and Folate. 4GTA ; 1.5 ; T. Maritima FDTS with FAD, dUMP, and Folinic Acid 4GTB ; 1.7 ; T. Maritima FDTS with FAD, dUMP, and Raltitrexed. 1QC7 ; 2.2 ; T. MARITIMA FLIG C-TERMINAL DOMAIN 1TZT ; 1.55 ; T. maritima NusB, P21 1TZU ; 1.85 ; T. maritima NusB, P212121 1TZV ; 1.35 ; T. maritima NusB, P3121, Form 1 1TZW ; 1.6 ; T. maritima NusB, P3121, Form 2 1TZX ; 1.72 ; T. maritima NusB, P3221 2HRU ; 2.8 ; T. maritima PurL complexed with ADP 2HRY ; 2.8 ; T. maritima PurL complexed with AMPPCP 2HS0 ; 2.52 ; T. maritima PurL complexed with ATP 2HS3 ; 2.3 ; T. maritima PurL complexed with FGAR 2HS4 ; 2.7 ; T. maritima PurL complexed with FGAR and AMPPCP 3O3F ; 2.0 ; T. maritima RNase H2 D107N in complex with nucleic acid substrate and magnesium ions 3O3H ; 2.8 ; T. maritima RNase H2 D107N in complex with nucleic acid substrate and manganese ions 4HHT ; 3.1 ; T. maritima RNase H2 G21S in complex with nucleic acid substrate and calcium ions 3O3G ; 2.1 ; T. maritima RNase H2 in complex with nucleic acid substrate and calcium ions 5CHP ; 1.7 ; T. maritima ThyX in complex with TyC5-03 3PIH ; 2.9 ; T. maritima UvrA in complex with fluorescein-modified DNA 4CIC ; 1.6 ; T. potens IscR 2Z75 ; 1.7 ; T. tengcongensis glmS ribozyme bound to glucosamine-6-phosphate 3B4C ; 3.0 ; T. tengcongensis glmS ribozyme bound to glucosamine-6-phosphate and a substrate RNA with a 2'5'-phosphodiester linkage 2Z74 ; 2.2 ; T. tengcongensis glmS ribozyme bound to glucose-6-phosphate 3B4A ; 2.7 ; T. tengcongensis glmS ribozyme with G40A mutation, bound to glucosamine-6-phosphate 3B4B ; 2.7 ; T. tengcongensis glmS ribozyme with G40A mutation, bound to glucosamine-6-phosphate and a substrate RNA with a 2'5'-phosphodiester linkage 3FUW ; 1.56 ; T. thermophilus 16S rRNA A1518 and A1519 methyltransferase (KsgA) in complex with 5'-methylthioadenosine in space group P212121 3FUX ; 1.68 ; T. thermophilus 16S rRNA A1518 and A1519 methyltransferase (KsgA) in complex with 5'-methylthioadenosine in space group P212121 3FUU ; 1.53 ; T. thermophilus 16S rRNA A1518 and A1519 methyltransferase (KsgA) in complex with Adenosine in space group P212121 3G8A ; 2.1 ; T. thermophilus 16S rRNA G527 methyltransferase in complex with AdoHcy in space group P61 3G89 ; 1.5 ; T. thermophilus 16S rRNA G527 methyltransferase in complex with AdoMet and AMP in space group P61 3G8B ; 2.1 ; T. thermophilus 16S rRNA G527 methyltransferase in complex with AdoMet in space group I222 3G88 ; 1.87 ; T. thermophilus 16S rRNA G527 methyltransferase in complex with AdoMet in space group P61 3DMG ; 1.55 ; T. Thermophilus 16S rRNA N2 G1207 methyltransferase (RsmC) in complex with AdoHcy 3DMF ; 1.58 ; T. Thermophilus 16S rRNA N2 G1207 methyltransferase (RsmC) in complex with AdoMet 3DMH ; 1.55 ; T. Thermophilus 16S rRNA N2 G1207 methyltransferase (RsmC) in complex with AdoMet and Guanosine 4V68 ; 6.4 ; T. thermophilus 70S ribosome in complex with mRNA, tRNAs and EF-Tu.GDP.kirromycin ternary complex, fitted to a 6.4 A Cryo-EM map. 6GZZ ; 4.13 ; T. thermophilus hibernating 100S ribosome (amc) 6GZX ; 4.57 ; T. thermophilus hibernating 100S ribosome (ice) 6GZQ ; 3.28 ; T. thermophilus hibernating 70S ribosome 7TH4 ; 1.45 ; T. thermophilus methylenetetrahydrofolate reductase complex with 5-formyltetrahydrofolate 2NXN ; 2.4 ; T. thermophilus ribosomal protein L11 methyltransferase (PrmA) in complex with ribosomal protein L11 2NXE ; 1.75 ; T. thermophilus ribosomal protein L11 methyltransferase (PrmA) in complex with S-Adenosyl-L-Methionine 5XJ0 ; 4.004 ; T. thermophilus RNA polymerase holoenzyme bound with gp39 and gp76 4LD0 ; 3.75 ; T. thermophilus RuvC in complex with Holliday junction substrate 6S16 ; 3.409 ; T. thermophilus RuvC in complex with Holliday junction substrate 5E17 ; 3.2 ; T. thermophilus transcription initiation complex having a RRR discriminator sequence and a nontemplate-strand length corresponding to TSS selection at position 7 (RPo-GGG-7) 5E18 ; 3.3 ; T. thermophilus transcription initiation complex having a YYY discriminator sequence and a nontemplate-strand length corresponding to TSS selection at position 8 (RPo-CCC-8) 4GY3 ; 2.5 ; T. vulcanus Phycocyanin crystallized in 2M Urea 4GXE ; 3.0 ; T. vulcanus Phycocyanin crystallized in 4M Urea 6NBY ; 3.1 ; T.elongatus NDH (composite model) 6NBQ ; 3.1 ; T.elongatus NDH (data-set 1) 6NBX ; 3.5 ; T.elongatus NDH (data-set 2) 1PZE ; 1.95 ; T.gondii LDH1 apo form 1PZG ; 1.6 ; T.gondii LDH1 complexed with APAD and sulfate at 1.6 Angstroms 1PZF ; 2.2 ; T.gondii LDH1 ternary complex with APAD+ and oxalate 1PZH ; 1.9 ; T.gondii LDH1 ternary complex with NAD and oxalate 4V8P ; 3.52 ; T.thermophila 60S ribosomal subunit in complex with initiation factor 6. 7V2L ; 3.3 ; T.thermophilus 30S ribosome with KsgA, class K1k2 7V2M ; 3.4 ; T.thermophilus 30S ribosome with KsgA, class K1k4 7V2N ; 3.6 ; T.thermophilus 30S ribosome with KsgA, class K2 7V2O ; 3.5 ; T.thermophilus 30S ribosome with KsgA, class K4 7V2P ; 3.3 ; T.thermophilus 30S ribosome with KsgA, class K5 7V2Q ; 3.24 ; T.thermophilus 30S ribosome with KsgA, class K6 2NXJ ; 2.3 ; T.thermophilus ribosomal protein L11 methyltransferase (PrmA) in space group P 21 21 2 4BGC ; 1.2 ; T1 domain of the renal potassium channel Kv1.3 7BUK ; 2.644 ; T1 lipase mutant - 5M (D43E/T118N/E226D/E250L/N304E) 1CJ6 ; 1.8 ; T11A MUTANT HUMAN LYSOZYME 1CJ7 ; 1.8 ; T11V MUTANT HUMAN LYSOZYME 1TS2 ; 2.3 ; T128A MUTANT OF TOXIC SHOCK SYNDROME TOXIN-1 FROM S. AUREUS 2BUP ; 1.7 ; T13G Mutant of the ATPASE fragment of Bovine HSC70 1BUP ; 1.7 ; T13S MUTANT OF BOVINE 70 KILODALTON HEAT SHOCK PROTEIN 5DNS ; 3.561 ; t1428 loop variant in P3221 1A6L ; 2.1 ; T14C MUTANT OF AZOTOBACTER VINELANDII FDI 5KSB ; 2.9 ; T15-DQ8.5-glia-gamma1 complex 2GAC ; 2.1 ; T152C MUTANT GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 5DN0 ; 4.4 ; t1555 loop variant 6AA9 ; 2.7 ; T166A mutant of D-Serine deaminase from Salmonella typhimurium 6H8Y ; 1.89 ; T16A variant of beta-phosphoglucomutase from Lactococcus lactis in an open conformer complexed with aluminium tetrafluoride to 1.9 A. 6H8Z ; 1.6 ; T16A variant of beta-phosphoglucomutase from Lactococcus lactis in an open conformer complexed with magnesium trifluoride to 1.6 A. 6H94 ; 1.49 ; T16A variant of beta-phosphoglucomutase from Lactococcus lactis with phosphate and TRIS bound in an open conformer to 1.5 A. 3URD ; 1.08 ; T181A mutant of alpha-Lytic Protease 3URC ; 1.1 ; T181G mutant of alpha-Lytic Protease 6EGK ; 1.96 ; T181N Cucumene Synthase 5X99 ; 1.73 ; T18V mutant of thermus thermophilus HB8 thymidylate kinase 2ZTU ; 2.0 ; T190A mutant of D-3-hydroxybutyrate dehydrogenase complexed with NAD+ 1OSS ; 1.93 ; T190P STREPTOMYCES GRISEUS TRYPSIN IN COMPLEX WITH BENZAMIDINE 2ZTM ; 2.3 ; T190S mutant of D-3-hydroxybutyrate dehydrogenase 8JLN ; 3.24 ; T1AM-bound hTAAR1-Gs protein complex 8JLJ ; 3.1 ; T1AM-bound mTAAR1-Gs protein complex 5MHS ; 3.7 ; T1L reovirus sigma1 complexed with 5C6 Fab fragments 4JHV ; 1.6 ; T2-depleted laccase from Coriolopsis caperata 4JHU ; 1.89 ; T2-depleted laccase from Coriolopsis caperata soaked with CuCl 3N81 ; 1.7 ; T244A mutant of Human mitochondrial aldehyde dehydrogenase, apo form 3N83 ; 1.9 ; T244A mutant of human mitochondrial aldehyde dehydrogenase, NAD complex 3N82 ; 2.25 ; T244A mutant of Human mitochondrial aldehyde dehydrogenase, NADH complex 7AQP ; 2.6 ; T262S, A251S, L254S, L211Q mutant of carboxypeptidase T from Thermoactinomyces vulgaris 1YQO ; 1.9 ; T268A mutant heme domain of flavocytochrome P450 BM3 1YQP ; 1.8 ; T268N mutant cytochrome domain of flavocytochrome P450 BM3 1QT3 ; 1.85 ; T26D MUTANT OF T4 LYSOZYME 1QTV ; 2.3 ; T26E APO STRUCTURE OF T4 LYSOZYME 1QT8 ; 1.9 ; T26H Mutant of T4 Lysozyme 1QT4 ; 2.1 ; T26Q MUTANT OF T4 LYSOZYME 3P67 ; 1.5 ; T26S mutant of pentaerythritol tetranitrate reductase containing a bound acetate molecule 7AA3 ; 3.56 ; T275P after heme uptake from M. tuberculosis 8RIV ; 2.78 ; T2R-TTL-1-K08 complex 8RIW ; 2.57 ; T2R-TTL-1-L01 complex 8BB1 ; 2.8 ; T3 SAM lyase in complex with S-adenosylmethionine synthase 4Z7W ; 2.89 ; T316 complex 2E83 ; 1.52 ; T31V mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 5DQA ; 3.27 ; t3284 loop variant of beta1 5DRA ; 3.0 ; t3284 loop variant of beta1 8UJA ; 6.0 ; T33-fn10 - Designed Tetrahedral Protein Cage Using Fragment-based Hydrogen Bond Networks 8UF0 ; 2.02 ; T33-ml23 - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 8UN1 ; 3.9 ; T33-ml23 Assembly Intermediate - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 8UI2 ; 2.73 ; T33-ml28 - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 8UKM ; 4.2 ; T33-ml30 - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 8UMP ; 2.92 ; T33-ml35 - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 8UMR ; 4.42 ; T33-ml35 Assembly Intermediate - Designed Tetrahedral Protein Cage Using Machine Learning Algorithms 3VXT ; 2.5 ; T36-5 TCR specific for HLA-A24-Nef134-10 2E0W ; 2.55 ; T391A precursor mutant protein of gamma-Glutamyltranspeptidase from Escherichia coli 5MHR ; 3.0 ; T3D reovirus sigma1 complexed with 9BG5 Fab fragments 8GSG ; 2.05 ; T3R3 form of Human insulin with single Zn 1TLH ; ; T4 AsiA bound to sigma70 region 4 8DVF ; 3.3 ; T4 Bacteriophage primosome with single strand DNA, state 1 8DVI ; 3.2 ; T4 bacteriophage primosome with single strand DNA, State 2 8DW6 ; 3.5 ; T4 bacteriophage primosome with single-strand DNA, State 3 6A9B ; 2.01 ; T4 dCMP hydroxymethylase structure solved by I-SAD using a home source 1NOZ ; 2.2 ; T4 DNA POLYMERASE FRAGMENT (RESIDUES 1-388) AT 110K 2O0K ; 2.5 ; T4 gp17 ATPase domain mutant 2O0J ; 1.8 ; T4 gp17 ATPase domain mutant complexed with ADP 2O0H ; 1.88 ; T4 gp17 ATPase domain mutant complexed with ATP 8T9R ; 3.4 ; T4 highly immunogenic outer capsid protein C-terminal domain bound to a vertex-proximal gp23* capsomer of the prolate capsid in two preferred orientations. 8T1X ; 3.3 ; T4 highly immunogenic outer capsid protein C-terminal domain bound to the vertex-proximal gp23* capsomer of the isometric head in two preferred orientations 1P36 ; 1.45 ; T4 LYOSZYME CORE REPACKING MUTANT I100V/TA 2O7A ; 0.84 ; T4 lysozyme C-terminal fragment 1OV7 ; 2.0 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound with 2-Allyl-6-Methyl-Phenol 1OV5 ; 2.1 ; T4 Lysozyme Cavity Mutant L99a/M102Q Bound With 2-Allylphenol 1OVH ; 1.95 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound With 2-Chloro-6-Methyl-Aniline 1OWY ; 1.9 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound With 2-Propyl-Aniline 1OVJ ; 2.0 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound with 3-Fluoro-2-Methyl_Aniline 1OWZ ; 1.9 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound With 4-FluoroPhenEthyl Alcohol 1OVK ; 2.1 ; T4 Lysozyme Cavity Mutant L99A/M102Q Bound with N-Allyl-Aniline 2O4W ; 1.9 ; T4 lysozyme circular permutant 1P37 ; 1.57 ; T4 LYSOZYME CORE REPACKING BACK-REVERTANT L102M/CORE10 1PQJ ; 1.9 ; T4 LYSOZYME CORE REPACKING MUTANT A111V/CORE10/TA 1PQD ; 1.65 ; T4 LYSOZYME CORE REPACKING MUTANT CORE10/TA 1PQI ; 1.57 ; T4 LYSOZYME CORE REPACKING MUTANT I118L/CORE7/TA 1P2R ; 1.58 ; T4 LYSOZYME CORE REPACKING MUTANT I78V/TA 1PQO ; 1.65 ; T4 Lysozyme Core Repacking Mutant L118I/TA 1P64 ; 1.62 ; T4 LYSOZYME CORE REPACKING MUTANT L133F/TA 1P46 ; 1.67 ; T4 lysozyme core repacking mutant M106I/TA 1P6Y ; 1.54 ; T4 LYSOZYME CORE REPACKING MUTANT M120Y/TA 1P7S ; 1.5 ; T4 LYSOZYME CORE REPACKING MUTANT V103I/TA 1PQM ; 1.52 ; T4 Lysozyme Core Repacking Mutant V149I/T152V/TA 1P2L ; 1.58 ; T4 Lysozyme Core Repacking Mutant V87I/TA 7L3E ; 1.13 ; T4 Lysozyme L99A - 3-iodotoluene - cryo 7L3D ; 1.35 ; T4 Lysozyme L99A - 3-iodotoluene - RT 7L3G ; 1.27 ; T4 Lysozyme L99A - 4-iodotoluene - cryo 7L3F ; 1.49 ; T4 Lysozyme L99A - 4-iodotoluene - RT 7L38 ; 1.33 ; T4 Lysozyme L99A - Apo - cryo 7L37 ; 1.439 ; T4 Lysozyme L99A - Apo - RT 7L3K ; 1.11 ; T4 Lysozyme L99A - benzylacetate - cryo 7L3J ; 1.49 ; T4 Lysozyme L99A - benzylacetate - RT 7L3H ; 1.39 ; T4 Lysozyme L99A - ethylbenzene - RT 7L3B ; 1.27 ; T4 Lysozyme L99A - iodobenzene - RT 7L3C ; 1.31 ; T4 Lysozyme L99A - o-xylene - RT 7L3I ; 1.46 ; T4 Lysozyme L99A - propylbenzene - RT 7L3A ; 1.11 ; T4 Lysozyme L99A - toluene - cryo 7L39 ; 1.35 ; T4 Lysozyme L99A - toluene - RT 5JWS ; 1.65 ; T4 Lysozyme L99A with 1-Hydro-2-ethyl-1,2-azaborine Bound 4W52 ; 1.5001 ; T4 Lysozyme L99A with Benzene Bound 4W54 ; 1.7901 ; T4 Lysozyme L99A with Ethylbenzene Bound 4W57 ; 1.6801 ; T4 Lysozyme L99A with n-Butylbenzene Bound 4W59 ; 1.39 ; T4 Lysozyme L99A with n-Hexylbenzene Bound 4W58 ; 1.8 ; T4 Lysozyme L99A with n-Pentylbenzene Bound 4W55 ; 1.6401 ; T4 Lysozyme L99A with n-Propylbenzene Bound 4W51 ; 1.45 ; T4 Lysozyme L99A with No Ligand Bound 4W56 ; 1.63 ; T4 Lysozyme L99A with sec-Butylbenzene Bound 4W53 ; 1.56 ; T4 Lysozyme L99A with Toluene Bound 7SJ6 ; 1.72 ; T4 Lysozyme L99A/M102H with 1,2-Azaborine bound 4I7N ; 1.58 ; T4 Lysozyme L99A/M102H with 1-phenyl-2-propyn-1-ol bound 4I7R ; 1.52 ; T4 Lysozyme L99A/M102H with 2-(pyrazolo-1-yl) ethanol bound 4I7M ; 1.48 ; T4 Lysozyme L99A/M102H with 2-allylphenol bound 4I7O ; 1.73 ; T4 Lysozyme L99A/M102H with 2-amino-5-chlorothiazole bound 4I7T ; 1.55 ; T4 Lysozyme L99A/M102H with 2-bromo-5-hydroxybenzaldehyde bound 4EKR ; 1.49 ; T4 Lysozyme L99A/M102H with 2-Cyanophenol Bound 4E97 ; 1.3 ; T4 Lysozyme L99A/M102H with 2-Mercaptoethanol Bound 4I7S ; 1.69 ; T4 Lysozyme L99A/M102H with 3-trifluoromethyl-5-methyl pyrazole bound 4I7P ; 1.6 ; T4 Lysozyme L99A/M102H with 4-bromoimidazole bound 4EKQ ; 1.54 ; T4 Lysozyme L99A/M102H with 4-Nitrophenol Bound 4I7Q ; 1.58 ; T4 Lysozyme L99A/M102H with 4-trifluoromethylimidazole bound 4I7J ; 1.67 ; T4 Lysozyme L99A/M102H with benzene bound 4EKS ; 1.64 ; T4 Lysozyme L99A/M102H with Isoxazole Bound 4EKP ; 1.64 ; T4 Lysozyme L99A/M102H with Nitrobenzene Bound 4I7L ; 1.52 ; T4 Lysozyme L99A/M102H with phenol bound 4I7K ; 1.72 ; T4 Lysozyme L99A/M102H with toluene bound 5JWU ; 1.7 ; T4 Lysozyme L99A/M102Q with 1,2-Dihydro-1,2-azaborine Bound 5JWW ; 1.47 ; T4 Lysozyme L99A/M102Q with 1-Hydro-2-ethyl-1,2-azaborine Bound 5JWT ; 1.41 ; T4 Lysozyme L99A/M102Q with Benzene Bound 5JWV ; 1.3 ; T4 Lysozyme L99A/M102Q with Ethylbenzene Bound 3GUN ; 1.5 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--aniline binding 3GUI ; 1.45 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--Apo structure 3GUJ ; 1.6 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--Benzene binding 3GUL ; 2.07 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--ethylbenzene binding 3GUM ; 2.24 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--p-xylene binding 3GUO ; 2.16 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--phenol binding 3GUP ; 1.5 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--pyridine binding 3GUK ; 1.85 ; T4 lysozyme M102E/L99A mutant with buried charge in apolar cavity--Toluene binding 1CX7 ; 1.94 ; T4 LYSOZYME METHIONINE CORE MUTANT 1C6P ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A IN THE PRESENCE OF 8 ATM ARGON 1C6Q ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A IN THE PRESENCE OF 8 ATM KRYPTON 1C6T ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A IN THE PRESENCE OF 8 ATM XENON 1C60 ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/F153A IN THE PRESENCE OF 8 ATM ARGON 1C61 ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/F153A IN THE PRESENCE OF 8 ATM KRYPTON 1C62 ; 2.3 ; T4 LYSOZYME MUTANT C54T/C97A/F153A IN THE PRESENCE OF 8 ATM XENON 1G1V ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/I58T 1C63 ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L121A IN THE PRESENCE OF 8 ATM ARGON 1C64 ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L121A IN THE PRESENCE OF 8 ATM KRYPTON 1C65 ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L121A IN THE PRESENCE OF 8 ATM XENON 1C66 ; 2.1 ; T4 LYSOZYME MUTANT C54T/C97A/L121A/L133A IN THE PRESENCE OF 8 ATM ARGON 1C67 ; 2.2 ; T4 LYSOZYME MUTANT C54T/C97A/L121A/L133A IN THE PRESENCE OF 8 ATM KRYPTON 1C68 ; 2.5 ; T4 LYSOZYME MUTANT C54T/C97A/L121A/L133A IN THE PRESENCE OF 8 ATM XENON 1C69 ; 1.8 ; T4 LYSOZYME MUTANT C54T/C97A/L133A IN THE PRESENCE OF 8 ATM ARGON 1C6A ; 2.1 ; T4 LYSOZYME MUTANT C54T/C97A/L133A IN THE PRESENCE OF 8 ATM KRYPTON 1C6B ; 2.2 ; T4 LYSOZYME MUTANT C54T/C97A/L133A IN THE PRESENCE OF 8 ATM XENON 1C6C ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 16 ATM ARGON 1C6D ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 16 ATM KRYPTON 1C6E ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 2 ATM XENON 1C6F ; 2.0 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 32 ATM ARGON 1C6G ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 4 ATM KRYPTON 1C6H ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 4 ATM XENON 1C6I ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 8 ATM ARGON 1C6J ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 8 ATM KRYPTON 1C6K ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A IN THE PRESENCE OF 8 ATM XENON 1C6L ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/L99A/F153A IN THE PRESENCE OF 8 ATM ARGON 1C6M ; 2.1 ; T4 LYSOZYME MUTANT C54T/C97A/L99A/F153A IN THE PRESENCE OF 8 ATM KRYPTON 1C6N ; 2.2 ; T4 LYSOZYME MUTANT C54T/C97A/L99A/F153A IN THE PRESENCE OF 8 ATM XENON 1I6S ; 1.9 ; T4 LYSOZYME MUTANT C54T/C97A/N101A 1G1W ; 1.8 ; T4 LYSOZYME MUTANT C54T/C97A/Q105M 3C7Z ; 1.67 ; T4 lysozyme mutant D89A/R96H at room temperature 1CV0 ; 2.12 ; T4 LYSOZYME MUTANT F104M 1CTW ; 2.1 ; T4 LYSOZYME MUTANT I78A 1CU0 ; 2.2 ; T4 LYSOZYME MUTANT I78M 1CVK ; 1.8 ; T4 LYSOZYME MUTANT L118A 1CV4 ; 1.9 ; T4 LYSOZYME MUTANT L118M 1CV3 ; 1.8 ; T4 LYSOZYME MUTANT L121M 1CV5 ; 1.87 ; T4 LYSOZYME MUTANT L133M 1CU2 ; 1.85 ; T4 LYSOZYME MUTANT L84M 1CU6 ; 2.1 ; T4 LYSOZYME MUTANT L91A 1CU5 ; 2.05 ; T4 LYSOZYME MUTANT L91M 7LX6 ; 1.05 ; T4 lysozyme mutant L99A 7LX7 ; 1.05 ; T4 lysozyme mutant L99A 7LX8 ; 1.03 ; T4 lysozyme mutant L99A 7LX9 ; 1.19 ; T4 lysozyme mutant L99A 7LXA ; 1.07 ; T4 lysozyme mutant L99A 2B72 ; 2.1 ; T4 Lysozyme mutant L99A at 100 MPa 2B73 ; 2.15 ; T4 Lysozyme mutant L99A at 100 MPa 2B74 ; 2.1 ; T4 Lysozyme mutant L99A at 100 MPa 2B75 ; 2.1 ; T4 Lysozyme mutant L99A at 150 MPa 2B6T ; 2.1 ; T4 Lysozyme mutant L99A at 200 MPa 2B6W ; 2.2 ; T4 Lysozyme mutant L99A at 200 MPa 2B6X ; 2.107 ; T4 Lysozyme mutant L99A at 200 MPa 2B6Y ; 2.4 ; T4 Lysozyme mutant L99A at ambient pressure 2B6Z ; 2.4 ; T4 Lysozyme mutant L99A at ambient pressure 2B70 ; 2.4 ; T4 Lysozyme mutant L99A at ambient pressure 7LOC ; 1.16 ; T4 lysozyme mutant L99A in complex with 1-bromanyl-4-fluoranyl-benzene 7LOD ; 1.02 ; T4 lysozyme mutant L99A in complex with 1-fluoranyl-4-iodanyl-benzene 7LOE ; 1.01 ; T4 lysozyme mutant L99A in complex with 1-fluoranylnaphthalene 7LOB ; 1.1 ; T4 lysozyme mutant L99A in complex with 1-fluoro-2-[(prop-2-en-1-yl)oxy]benzene 7LOF ; 1.05 ; T4 lysozyme mutant L99A in complex with 2-butylthiophene 7LOG ; 0.99 ; T4 lysozyme mutant L99A in complex with 3-butylpyridine 7LOA ; 1.07 ; T4 lysozyme mutant L99A in complex with 3-fluoroiodobenzene 7LOJ ; 1.5 ; T4 lysozyme mutant L99A in complex with 4-(3-phenylpropyl)aniline 1LGU ; 1.9 ; T4 Lysozyme Mutant L99A/M102Q 1LGW ; 1.85 ; T4 Lysozyme Mutant L99A/M102Q Bound by 2-fluoroaniline 1LGX ; 1.9 ; T4 Lysozyme Mutant L99A/M102Q Bound by 3,5-difluoroaniline 1LI3 ; 1.85 ; T4 lysozyme mutant L99A/M102Q bound by 3-chlorophenol 1LI6 ; 2.0 ; T4 lysozyme mutant L99A/M102Q bound by 5-methylpyrrole 1LI2 ; 2.0 ; T4 Lysozyme Mutant L99A/M102Q Bound by Phenol 231L ; 2.5 ; T4 LYSOZYME MUTANT M106K 234L ; 1.9 ; T4 LYSOZYME MUTANT M106L 232L ; 1.73 ; T4 LYSOZYME MUTANT M120K 233L ; 1.9 ; T4 LYSOZYME MUTANT M120L 230L ; 1.9 ; T4 LYSOZYME MUTANT M6L 3C80 ; 1.99 ; T4 Lysozyme mutant R96Y at room temperature 1CUQ ; 2.05 ; T4 LYSOZYME MUTANT V103M 1CV1 ; 2.1 ; T4 LYSOZYME MUTANT V111M 1CV6 ; 1.9 ; T4 LYSOZYME MUTANT V149M 1CU3 ; 2.12 ; T4 LYSOZYME MUTANT V87M 1B6I ; 1.9 ; T4 LYSOZYME MUTANT WITH CYS 54 REPLACED BY THR, CYS 97 REPLACED BY ALA, THR 21 REPLACED BY CYS AND LYS 124 REPLACED BY CYS (C54T,C97A,T21C,K124C) 1EPY ; 1.85 ; T4 LYSOZYME MUTANT, T21H/C54T/C97A/Q141H/T142H 7XE9 ; 1.5 ; T4 lysozyme mutant-S44C/C54T/N68C/A93C/C97A/T115C, DMSO 20% 7XEA ; 1.1 ; T4 lysozyme mutant-S44C/C54T/N68C/A93C/C97A/T115C, DMSO 40%, and then backsoaking 7XE7 ; 1.05 ; T4 lysozyme mutant-S44C/C54T/N68C/A93C/C97A/T115C, pH10 7XE5 ; 1.3 ; T4 lysozyme mutant-S44C/C54T/N68C/A93C/C97A/T115C, pH4 7XE6 ; 1.1 ; T4 lysozyme mutant-S44C/C54T/N68C/A93C/C97A/T115C, pH7 6PH0 ; 1.947 ; T4 lysozyme pseudo-wild type soaked in TEMPO 6PH1 ; 1.632 ; T4 lysozyme pseudo-wild type soaked in TEMPOL 3L64 ; 1.9 ; T4 Lysozyme S44E/WT* 1CX6 ; 2.01 ; T4 LYSOZYME SUBSTITUTED WITH SELENOMETHIONINE 8F11 ; 1.12 ; T4 lysozyme with a 2,6-diazaadamantane nitroxide (DZD) spin label 2O79 ; 1.8 ; T4 lysozyme with C-terminal extension 5V7D ; 1.35 ; T4 lysozyme Y18Ymbr 5V7E ; 1.36 ; T4 lysozyme Y18Ymcl 5V7F ; 1.65 ; T4 lysozyme Y18Ymi 1JEJ ; 2.5 ; T4 phage apo BGT 1QKJ ; 2.3 ; T4 Phage B-Glucosyltransferase, Substrate Binding and Proposed Catalytic Mechanism 1C3J ; 1.88 ; T4 PHAGE BETA-GLUCOSYLTRANSFERASE: SUBSTRATE BINDING AND PROPOSED CATALYTIC MECHANISM 1JIX ; 1.65 ; T4 Phage BGT in Complex with Ca2+ 1JIU ; 2.5 ; T4 Phage BGT in Complex with Mg2+ : Form I 1JIV ; 2.07 ; T4 phage BGT in complex with Mg2+ : Form II 1JG6 ; 1.9 ; T4 phage BGT in complex with UDP 1NVK ; 1.8 ; T4 phage BGT in complex with UDP and a Mn2+ ion at 1.8 A resolution 1JG7 ; 1.65 ; T4 phage BGT in complex with UDP and Mn2+ 1NZD ; 2.0 ; T4 phage BGT-D100A mutant in complex with UDP-glucose: Form I 1NZF ; 2.1 ; T4 phage BGT-D100A mutant in complex with UDP-glucose: Form II 7CN6 ; 1.6 ; T4 phage spackle protein gp61.3 7CN7 ; 1.15 ; T4 phage spackle protein gp61.3 complex with lysozyme domain of gp5 tail lysozyme 1RRC ; 2.46 ; T4 POLYNUCLEOTIDE KINASE BOUND TO 5'-GTC-3' SSDNA 1RC8 ; 2.75 ; T4 Polynucleotide Kinase bound to 5'-GTCAC-3' ssDNA 1RPZ ; 2.9 ; T4 POLYNUCLEOTIDE KINASE BOUND TO 5'-TGCAC-3' SSDNA 2IA5 ; 2.9 ; T4 polynucleotide kinase/phosphatase with bound sulfate and magnesium. 2C5U ; 2.21 ; T4 RNA Ligase (Rnl1) Crystal Structure 5TT6 ; 2.187 ; T4 RNA Ligase 1 (K99M) 6D9M ; 1.35 ; T4-Lysozyme fusion to Geobacter GGDEF 1CJ8 ; 1.8 ; T40A MUTANT HUMAN LYSOZYME 1CJ9 ; 1.8 ; T40V MUTANT HUMAN LYSOZYME 1CKC ; 1.8 ; T43A MUTANT HUMAN LYSOZYME 1CKD ; 1.8 ; T43V MUTANT HUMAN LYSOZYME 1GGO ; 2.6 ; T453A MUTANT OF PYRUVATE, PHOSPHATE DIKINASE 2MML ; ; T47 phosphorylation of the Mengovirus Leader Protein: NMR Studies of the Phosphorylation of the Mengovirus Leader Protein Reveal Stabilization of Intermolecular Domain Interactions 6C3Z ; 1.681 ; T477A SiRHP 5LFZ ; 1.561 ; T48 deacetylase 5LGC ; 2.09 ; T48 deacetylase with substrate 1YF3 ; 2.29 ; T4Dam in Complex with AdoHcy and 13-mer Oligonucleotide Making Non- and Semi-specific (~1/4) Contact 1YFJ ; 2.69 ; T4Dam in Complex with AdoHcy and 15-mer Oligonucleotide Showing Semi-specific and Specific Contact 1YFL ; 3.09 ; T4Dam in Complex with Sinefungin and 16-mer Oligonucleotide Showing Semi-specific and Specific Contact and Flipped Base 7MH2 ; 3.57 ; T4GALA Engineered Protein Nanocage 6VMA ; 2.75 ; T4H2 T cell receptor bound to HLA-A2 presenting gp100 peptide (ITDQVPFSV) 6VMC ; 2.85 ; T4H2 T cell receptor bound to HLA-A2 presenting gp100T2L peptide (ILDQVPFSV) 6VM9 ; 2.9 ; T4H2 T cell receptor bound to HLA-A2 presenting gp100T2M peptide (IMDQVPFSV) 1EXN ; 2.5 ; T5 5'-EXONUCLEASE 1XO1 ; 2.5 ; T5 5'-EXONUCLEASE MUTANT K83A 5TJT ; 9.0 ; T5 bacteriophage major capsid protein - one PB8 hexon 8A8C ; 3.1 ; T5 phage receptor-binding protein pb5 bound to ferrichrome transporter FhuA 8B14 ; 2.6 ; T5 Receptor Binding Protein pb5 in complex with its E. coli receptor FhuA 5FAW ; 1.852 ; T502A mutant of choline TMA-lyase 1CKF ; 1.8 ; T52A MUTANT HUMAN LYSOZYME 1CKG ; 2.2 ; T52V MUTANT HUMAN LYSOZYME 4AZD ; 1.62 ; T57V mutant of aspartate decarboxylase 1MSO ; 1.0 ; T6 Human Insulin at 1.0 A Resolution 4Y7M ; 1.92 ; T6SS protein TssM C-terminal domain (835-1129) from EAEC 4Y7L ; 1.51 ; T6SS protein TssM C-terminal domain (869-1107) from EAEC 4Y7O ; 2.24 ; T6SS protein TssM C-terminal domain (869-1107) from EAEC 1TK5 ; 2.2 ; T7 DNA polymerase binary complex with 8 oxo guanosine in the templating strand 1SKR ; 2.4 ; T7 DNA Polymerase Complexed To DNA Primer/Template and ddATP 1T7P ; 2.2 ; T7 DNA POLYMERASE COMPLEXED TO DNA PRIMER/TEMPLATE,A NUCLEOSIDE TRIPHOSPHATE, AND ITS PROCESSIVITY FACTOR THIOREDOXIN 1ZYQ ; 2.7 ; T7 DNA polymerase in complex with 8oG and incoming ddATP 1X9W ; 2.3 ; T7 DNA polymerase in complex with a primer/template DNA containing a disordered N-2 aminofluorene on the template, crystallized with dideoxy-ATP as the incoming nucleotide. 1X9S ; 2.7 ; T7 DNA polymerase in complex with a primer/template DNA containing a disordered N-2 aminofluorene on the template, crystallized with dideoxy-CTP as the incoming nucleotide. 1X9M ; 2.1 ; T7 DNA polymerase in complex with an N-2-acetylaminofluorene-adducted DNA 1TK8 ; 2.5 ; T7 DNA polymerase ternary complex with 8 oxo guanosine and dAMP at the elongation site 1TKD ; 2.49 ; T7 DNA polymerase ternary complex with 8 oxo guanosine and dCMP at the elongation site 1TK0 ; 2.3 ; T7 DNA polymerase ternary complex with 8 oxo guanosine and ddCTP at the insertion site 1T8E ; 2.54 ; T7 DNA Polymerase Ternary Complex with dCTP at the Insertion Site. 1S76 ; 2.88 ; T7 RNA polymerase alpha beta methylene ATP elongation complex 2PI5 ; 2.9 ; T7 RNA polymerase complexed with a phi10 promoter 1ARO ; 2.8 ; T7 RNA POLYMERASE COMPLEXED WITH T7 LYSOZYME 8DH0 ; 2.9 ; T7 RNA polymerase elongation complex with unnatural base dDs 8DH2 ; 2.9 ; T7 RNA polymerase elongation complex with unnatural base dDs-ATP mismatch 8DH1 ; 2.65 ; T7 RNA polymerase elongation complex with unnatural base dDs-PaTP pair 8DH3 ; 3.0 ; T7 RNA polymerase elongation complex with unnatural base dPa 8DH5 ; 2.85 ; T7 RNA polymerase elongation complex with unnatural base dPa-ATP mismatch 8DH4 ; 2.8 ; T7 RNA polymerase elongation complex with unnatural base dPa-DsTP pair 1S77 ; 2.69 ; T7 RNAP product pyrophosphate elongation complex 2BC3 ; 1.54 ; T7-tagged full-length streptavidin 2QCB ; 1.65 ; T7-tagged full-length streptavidin complexed with ruthenium ligand 1CKH ; 2.0 ; T70V MUTANT HUMAN LYSOZYME 1T2I ; 1.1 ; T76W mutant of RNase Sa from Streptomyces aureofaciens 2PI4 ; 2.5 ; T7RNAP complexed with a phi10 protein and initiating GTPs. 6LZ9 ; 2.8 ; t8E4 antibody Fab complexed with the active form of HGF 8JKN ; 2.92 ; T95R mutant IRF4 DNA-binding domain bound to an DNA containing GAAA motif 8JKQ ; 3.09 ; T95R mutant IRF4 DNA-binding domain bound to an DNA containing GACA motif 8JKS ; 3.3 ; T95R mutant IRF4 DNA-binding domain bound to an DNA containing GAGA motif 8JKO ; 2.95 ; T95R mutant IRF4 DNA-binding domain bound to an DNA containing GATA motif 2HHV ; 1.55 ; T:O6-methyl-guanine in the polymerase-2 basepair position 2HW3 ; 1.98 ; T:O6-methyl-guanine pair in the polymerase postinsertion site (-1 basepair position) 1X36 ; 2.7 ; T=1 capsid of an amino-terminal deletion mutant of SeMV CP 4Y4Y ; 3.0 ; T=1 capsid structure of SeMV Ndel65CP fused with B-domain of S. aureus protein SpA at the N-terminus (C2 crystal form) 4Y5Z ; 2.95 ; T=1 capsid structure of SeMV Ndel65CP fused with B-domain of S. aureus protein SpA at the N-terminus (P1 crystal form) 1VB4 ; 3.3 ; T=1 capsid structure of Sesbania mosaic virus coat protein deletion mutant CP-N(delta)36 1VAK ; 3.05 ; T=1 capsid structure of Sesbania mosaic virus coat protein deletion mutant CP-N(delta)65 1VB2 ; 3.4 ; T=1 capsid structure of Sesbania mosaic virus coat protein deletion mutant CP-N(delta)65-D146N-D149N 8EEP ; 2.2 ; T=1 particle HIV-1 CA G60A/G61P 7URT ; 2.39 ; T=1 particle HIV-1 CA G60A/G61P/M66A 8EET ; 3.1 ; T=1 particle HIV-1 CA M66A 4RFT ; 3.1 ; T=1 subviral particle of Grouper nervous necrosis virus capsid protein deletion mutant (delta 1-34 & 218-338) 5YL1 ; 3.12 ; T=1 subviral particle of Penaeus vannamei nodavirus capsid protein deletion mutant (delta 1-37 & 251-368) 6RRS ; 3.9 ; T=3 MS2 Virus-like particle 1X33 ; 3.6 ; T=3 recombinant capsid of SeMV CP 6RRT ; 6.0 ; T=4 MS2 Virus-like-particle 6QN1 ; 3.28 ; T=4 quasi-symmetric bacterial microcompartment particle 7VWO ; 2.0 ; TA complex from Mycobacterium tuberculosis 2POM ; 2.27 ; TAB1 with manganese ion 2WX0 ; 2.4 ; TAB2 NZF DOMAIN IN COMPLEX WITH Lys63-linked di-ubiquitin, P21 2WWZ ; 1.4 ; TAB2 NZF DOMAIN IN COMPLEX WITH Lys63-linked di-ubiquitin, P212121 2WX1 ; 3.0 ; TAB2 NZF DOMAIN IN COMPLEX WITH Lys63-linked tri-ubiquitin, P212121 7ZG6 ; 1.95 ; TacA1 antitoxin 4GVE ; 1.73 ; Tacaribe nucleoprotein structure 1JC9 ; 2.01 ; TACHYLECTIN 5A FROM TACHYPLEUS TRIDENTATUS (JAPANESE HORSESHOE CRAB) 1TL2 ; 2.0 ; TACHYLECTIN-2 FROM TACHYPLEUS TRIDENTATUS (JAPANESE HORSESHOE CRAB) 1WO1 ; ; Tachyplesin I in dodecylphosphocholine micelles 2MDB ; ; Tachyplesin I in the presence of lipopolysaccharide 2RTV ; ; Tachyplesin I in water 1MA5 ; ; Tachyplesin I solution structure in the presence of 300mM Dodecylphosphocholine micelles 1MA2 ; ; Tachyplesin I Wild type peptide NMR Structure 7F36 ; 3.098 ; TacT complexed with acetyl-glycyl-tRNAGly 5I29 ; 1.21 ; TAF1(2) bound to a pyrrolopyridone compound 6BQD ; 2.136 ; TAF1-BD2 bromodomain in complex with (E)-3-(6-(but-2-en-1-yl)-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridin-4-yl)-N,N-dimethylbenzamide 6DF7 ; 2.0 ; TAF1-BD2 in complex with Cpd27 (6-(but-3-en-1-yl)-4-(1-methyl-6-(morpholine-4-carbonyl)-1H-benzo[d]imidazol-4-yl)-1,6-dihydro-7H-pyrrolo[2,3-c]pyridin-7-one) 6DF4 ; 1.3 ; TAF1-BD2 in complex with Cpd8 (6-(but-3-en-1-yl)-4-(3-(morpholine-4-carbonyl)phenyl)-1,6-dihydro-7H-pyrrolo[2,3-c]pyridin-7-one) 7UHE ; 1.66 ; Taf14 ET domain in complex with C-terminal tail of Taf2 8ONS ; 1.97 ; TAF15 amyloid fold in atypical FTLD - Individual 1 4ATG ; 1.89 ; TAF6 C-terminal domain from Antonospora locustae 3MHF ; 1.87 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes 5F2I ; 1.95 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes Glu163Gln mutant 5F2G ; 1.918 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes Glu164Gln mutant in complex with FBP 5F2M ; 1.92 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes in complex with competitive inhibitor hexitol-1,6-bisphosphate 5F2L ; 1.755 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes in complex with competitive inhibitor talitol-1,6-bisphosphate 5FF7 ; 2.092 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes in complex with DHAP and G3P 5F4S ; 1.724 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes in complex with FBP 5F4W ; 1.663 ; Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes in complex with TBP 8C7P ; 3.0 ; Tagless BtuM in complex with cyanocobalamin 6MPT ; 1.649 ; TagT bound to LI-WTA 6MPS ; 1.86 ; TagT bound to LIIa-WTA 2L6J ; ; Tah1 complexed by MEEVD 7QOL ; 3.33 ; Tail assembly of the phicrAss001 virion with C6 symmetry imposed 7QOJ ; 3.21 ; Tail barrel assembly of the phicrAss001 virion with C12 symmetry imposed 8IYD ; 3.1 ; Tail cap of phage lambda tail 6IAB ; 2.0 ; Tail fiber of Staphylococcus aureus phage P68 8EGS ; 3.92 ; Tail knob structure of Staphylococcus phage Andhra 7JMN ; 3.58 ; Tail module of Mediator complex 7QOK ; 3.38 ; Tail muzzle assembly of the phicrAss001 virion with C6 symmetry imposed 7Z47 ; 3.8 ; Tail of bacteriophage SU10 6TSV ; 3.78 ; Tail of empty GTA particle computed with helical refinement, C6 symmetry 6TEA ; 3.89 ; Tail of native GTA particle computed with helical refinement, C6 symmetry 7Z4F ; 4.2 ; Tail of phage SU10 genome release intermediate 7EY9 ; 3.4 ; tail proteins 7XDI ; 3.8 ; Tail structure of bacteriophage SSV19 7WMP ; 3.6 ; Tail structure of Helicobacter pylori bacteriophage KHP30 8IYK ; 2.95 ; Tail tip conformation 1 of phage lambda tail 8IYL ; 3.0 ; Tail tip conformation 2 of phage lambda tail 7ZN4 ; 4.32 ; Tail tip of siphophage T5 : bent fibre after interaction with its bacterial receptor FhuA 7ZLV ; 4.22 ; Tail tip of siphophage T5 : central fibre protein pb4 7QG9 ; 3.45 ; Tail tip of siphophage T5 : common core proteins 7ZN2 ; 4.29 ; Tail tip of siphophage T5 : full complex after interaction with its bacterial receptor FhuA 7ZQB ; 3.88 ; Tail tip of siphophage T5 : full structure 7ZQP ; 3.6 ; Tail tip of siphophage T5 : open cone after interaction with bacterial receptor FhuA 7ZHJ ; 3.53 ; Tail tip of siphophage T5 : tip proteins 8EJ5 ; 4.9 ; Tail tip structure of Staphylococcus phage Andhra 8HRG ; 4.5 ; Tail tube of DT57C bacteriophage in the full state 5MU4 ; 1.9 ; Tail Tubular Protein A of Klebsiella pneumoniae bacteriophage KP32 6TEB ; 4.14 ; Tail-baseplate interface of native GTA particle computed with C6 symmetry 3VDZ ; 2.4 ; Tailoring Encodable Lanthanide-Binding Tags as MRI Contrast Agents: xq-dSE3-Ubiquitin at 2.4 Angstroms 3TOI ; 1.9 ; Tailoring Enzyme Stability and Exploiting Stability-Trait Linkage by Iterative Truncation and Optimization 4N6G ; 2.142 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4N7J ; 1.673 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4N7M ; 2.125 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4NBK ; 1.936 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4NBL ; 1.756 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4NBN ; 1.75 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6 4N5D ; 2.06 ; Tailoring Small Molecules for an Allosteric Site on Procaspase-6: Cpd1 7RFV ; 3.2 ; Tailspike protein 4 (TSP4) from phage CBA120, residues 1-250, obtained in the presence of PEG8000 7REJ ; 2.6 ; Tailspike protein 4 (TSP4) from phage CBA120, residues 1-335, obtained in the presence of NaK-Tartrate 4XLH ; 1.91 ; Tailspike protein double mutant D339A/E372A of E. coli bacteriophage HK620 4YEL ; 1.72 ; Tailspike protein double mutant D339A/E372A of E. coli bacteriophage HK620 in complex with hexasaccharide 4XMY ; 1.45 ; Tailspike protein double mutant D339A/E372A of E. coli bacteriophage HK620 in complex with pentasaccharide 4XNF ; 1.68 ; Tailspike protein double mutant D339A/E372Q of E. coli bacteriophage HK620 4XR6 ; 1.78 ; Tailspike protein double mutant D339A/E372Q of E. coli bacteriophage HK620 in complex with hexasaccharide 4YEJ ; 1.4 ; Tailspike protein double mutant D339A/E372Q of E. coli bacteriophage HK620 in complex with pentasaccharide 4XLC ; 1.85 ; Tailspike protein double mutant D339N/E372A of E. coli bacteriophage HK620 4XLE ; 1.45 ; Tailspike protein double mutant D339N/E372A of E. coli bacteriophage HK620 in complex with hexasaccharide 4XLF ; 1.75 ; Tailspike protein double mutant D339N/E372A of E. coli bacteriophage HK620 in complex with pentasaccharide 4XON ; 2.1 ; Tailspike protein double mutant D339N/E372Q of E. coli bacteriophage HK620 4XOP ; 1.59 ; Tailspike protein double mutant D339N/E372Q of E. coli bacteriophage HK620 in complex with hexasaccharide 4XOR ; 1.5 ; Tailspike protein double mutant D339N/E372Q of E. coli bacteriophage HK620 in complex with pentasaccharide 1CLW ; 2.0 ; TAILSPIKE PROTEIN FROM PHAGE P22, V331A MUTANT 4XL9 ; 2.02 ; Tailspike protein mutant D339A of E. coli bacteriophage HK620 4XLA ; 1.47 ; Tailspike protein mutant D339A of E. coli bacteriophage HK620 IN COMPLEX WITH PENTASACCHARIDE 2X6Y ; 1.35 ; Tailspike protein mutant D339A of E.coli bacteriophage HK620 in complex with hexasaccharide 4XKV ; 2.1 ; Tailspike protein mutant D339N of E. coli bacteriophage HK620 4XKW ; 1.45 ; Tailspike protein mutant D339N of E. coli bacteriophage HK620 in complex with pentasaccharide 2X6X ; 1.48 ; Tailspike protein mutant D339N of E.coli bacteriophage HK620 in complex with hexasaccharide 4XN0 ; 1.75 ; Tailspike protein mutant E372A of E. coli bacteriophage HK620 4XN3 ; 1.65 ; Tailspike protein mutant E372A of E. coli bacteriophage HK620 in complex with hexasaccharide 4XM3 ; 1.27 ; Tailspike protein mutant E372A of E. coli bacteriophage HK620 in complex with pentasaccharide 4XQF ; 1.55 ; Tailspike protein mutant E372Q (delta D470/N471) of E. coli bacteriophage HK620 6GVP ; 1.71 ; TAILSPIKE PROTEIN MUTANT E372Q (DELTA N471/S472) OF E. COLI BACTERIOPHAGE HK620 IN COMPLEX WITH HEXASACCHARIDE 6GVR ; 1.85 ; TAILSPIKE PROTEIN MUTANT E372Q (DELTA N471/S472) OF E. COLI BACTERIOPHAGE HK620 IN COMPLEX WITH PENTASACCHARIDE 4AVZ ; 1.82 ; Tailspike protein mutant E372Q of E. coli bacteriophage HK620 4XOT ; 1.06 ; Tailspike protein mutant E372Q of E. coli bacteriophage HK620 in complex with pentasaccharide 2X6W ; 1.35 ; Tailspike protein mutant E372Q of E.coli bacteriophage HK620 in complex with hexasaccharide 2VBE ; 1.98 ; Tailspike protein of bacteriophage Sf6 2VBM ; 2.0 ; Tailspike protein of bacteriophage Sf6 complexed with tetrasaccharide 2X85 ; 1.5 ; Tailspike protein of E. coli bacteriophage HK620 in complex with hexasaccharide 6G0X ; 1.41 ; TAILSPIKE PROTEIN OF E. COLI BACTERIOPHAGE HK620 IN COMPLEX WITH PENTASACCHARIDE 2VJI ; 1.38 ; Tailspike protein of E.coli bacteriophage HK620 2VJJ ; 1.59 ; TAILSPIKE PROTEIN OF E.COLI BACTERIOPHAGE HK620 IN COMPLEX WITH HEXASACCHARIDE 4URR ; 1.95 ; Tailspike protein of Sf6 bacteriophage bound to Shigella flexneri O- antigen octasaccharide fragment 1QA3 ; 2.0 ; TAILSPIKE PROTEIN, MUTANT A334I 1QA2 ; 2.0 ; TAILSPIKE PROTEIN, MUTANT A334V 1QQ1 ; 1.8 ; TAILSPIKE PROTEIN, MUTANT E359G 1QA1 ; 2.0 ; TAILSPIKE PROTEIN, MUTANT V331G 1QRC ; 2.5 ; TAILSPIKE PROTEIN, MUTANT W391A 8S9Y ; ; Taipan Natriuretic Peptide C -TNPc 6YQ7 ; 1.58 ; Taka-amylase 6YQA ; 1.67 ; Taka-amylase in complex with alpha-glucosyl epi-cyclophellitol aziridine inhibitor 6YQB ; 1.5 ; Taka-amylase in complex with alpha-glucosyl epi-cyclophellitol cyclosulfate inhibitor 6YQ9 ; 1.55 ; Taka-amylase in complex with alpha-glucosyl epi-cyclophellitol epoxide inhibitor 6YQC ; 1.35 ; Taka-amylase in complex with alpha-glucosyl epi-cyclophellitol epoxide inhibitor 6WV8 ; 3.01 ; Takifugu rubripes VKOR-like C138S mutant with vitamin K1 6WVA ; 3.35 ; Takifugu rubripes VKOR-like with vitamin K1 epoxide at non-catalytic state 6WV9 ; 3.35 ; Takifugu rubripes VKOR-like with vitamin K1 in noncatalytic state 6WVB ; 2.872 ; Takifugu rubripes VKOR-like with warfarin 7VTA ; 2.4 ; Talaromyces verruculosus talaropentaene synthase apo 2MWN ; ; Talin-F3 / RIAM N-terminal Peptide complex 7K16 ; 2.1 ; Tamana Bat Virus xrRNA1 2ZSC ; 1.3 ; Tamavidin2, Novel Avidin-like Biotin-Binding Proteins from an Edible Mushroom 2KFL ; ; Tammar Wallaby Prion Protein (121-230) 1FJ5 ; ; TAMOXIFEN-DNA ADDUCT 1TRR ; 2.4 ; TANDEM BINDING IN CRYSTALS OF A TRP REPRESSOR/OPERATOR HALF-SITE COMPLEX 2H1E ; 2.2 ; Tandem chromodomains of budding yeast CHD1 2B2Y ; 2.35 ; Tandem chromodomains of human CHD1 2B2W ; 2.4 ; Tandem chromodomains of human CHD1 complexed with Histone H3 Tail containing trimethyllysine 4 2B2U ; 2.95 ; Tandem chromodomains of human CHD1 complexed with Histone H3 Tail containing trimethyllysine 4 and dimethylarginine 2 2B2T ; 2.45 ; Tandem chromodomains of human CHD1 complexed with Histone H3 Tail containing trimethyllysine 4 and phosphothreonine 3 4O42 ; 1.87 ; Tandem chromodomains of human CHD1 in complex with influenza NS1 C-terminal tail dimethylated at K229 4NW2 ; 1.9 ; Tandem chromodomains of human CHD1 in complex with Influenza virus NS1 C-terminal tail trimethylated at K229 7SBI ; 2.23 ; Tandem diubiquitin-like domain from chicken 2'-5'-oligoadenylate synthetase-like protein 1TAN ; ; TANDEM DNA, NMR, MINIMIZED AVERAGE STRUCTURE 6GZB ; 2.1 ; Tandem GerMN domains of the sporulation protein GerM from Bacillus subtilis 2WPX ; 2.31 ; Tandem GNAT protein from the clavulanic acid biosynthesis pathway (with AcCoA) 2WPW ; 2.38 ; Tandem GNAT protein from the clavulanic acid biosynthesis pathway (without AcCoA) 1QES ; ; TANDEM GU MISMATCHES IN RNA, NMR, 30 STRUCTURES 1QET ; ; TANDEM GU MISMATCHES IN RNA, NMR, 30 STRUCTURES 3PXH ; 2.0009 ; Tandem Ig domains of tyrosine phosphatase LAR 3PXJ ; 2.3003 ; Tandem Ig repeats of Dlar 8EB5 ; 2.5 ; Tandem of Hermes transposase BED domain in complex with the quasi palindrome of its transposon left-end 3SGR ; 2.17 ; Tandem repeat of amyloid-related segment of alphaB-crystallin residues 90-100 mutant V91L 2OQ1 ; 1.9 ; Tandem SH2 domains of ZAP-70 with 19-mer zeta1 peptide 4TVR ; 2.29 ; Tandem Tudor and PHD domains of UHRF2 1XNI ; 2.8 ; Tandem Tudor Domain of 53BP1 6VZC ; ; Tandem UU:GA mismatch within an RNA helix 1L0Q ; 2.4 ; Tandem YVTN beta-propeller and PKD domains from an archaeal surface layer protein 5ECE ; 2.2 ; Tankyrase 1 with Phthalazinone 1 5EBT ; 2.24 ; Tankyrase 1 with Phthalazinone 2 4L0I ; 2.3 ; Tankyrase 2 catalytic domain in complex with ethyl 4-(4-oxo-4H-chromen-2-yl)benzoate 7R3Z ; 2.25 ; Tankyrase 2 catalytic domain in complex with OUL40 5DCZ ; 2.23 ; Tankyrase 2 complexed with a selective inhibitor 4L2K ; 2.1 ; Tankyrase 2 in complex with 2-(1,3-benzodioxol-5-yl)-4H-chromen-4-one 4L32 ; 1.85 ; Tankyrase 2 in complex with 2-[4-(4-methylpiperazine-1-carbonyl)phenyl]chromen-4-one 4J22 ; 2.12 ; Tankyrase 2 in complex with 3-chloro-4-(4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)-N-[2-(morpholin-4-yl)ethyl]benzamide 4J3M ; 1.9 ; Tankyrase 2 in complex with 3-chloro-4-(4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)benzoic acid 4J3L ; 2.09 ; Tankyrase 2 in complex with 3-chloro-N-(2-methoxyethyl)-4-(4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)benzamide 4L0V ; 1.7 ; Tankyrase 2 in complex with 4'-chloro flavone 4L0S ; 1.9 ; Tankyrase 2 in complex with 4'-cyano flavone 4L0B ; 1.8 ; Tankyrase 2 in complex with 4'-dimethylamino flavone 4L10 ; 1.7 ; Tankyrase 2 in complex with 4'-methoxy flavone 4L0T ; 2.1 ; Tankyrase 2 in complex with 4'-nitro flavone 4L34 ; 1.8 ; Tankyrase 2 in complex with 4'-tetrazole flavone 4J1Z ; 2.0 ; Tankyrase 2 in complex with 4-chloro-1,2-dihydrophatalzin-one 4L2G ; 2.05 ; Tankyrase 2 in complex with 6- fluoro flavone 4L2F ; 2.05 ; Tankyrase 2 in complex with 6-chloro flavone 4J21 ; 1.93 ; Tankyrase 2 in complex with 7-(4-amino-2-chlorophenyl)-4-methylquinolin-2(1H)-one 8B6M ; 1.6 ; Tankyrase 2 in complex with an inhibitor 6TKN ; 2.5 ; Tankyrase 2 in complex with an inhibitor (OM-1000) 7O6X ; 2.2 ; Tankyrase 2 in complex with an inhibitor (OM-153) 6TG4 ; 2.76 ; Tankyrase 2 in complex with an inhibitor (OM-1700) 6TKR ; 2.75 ; Tankyrase 2 in complex with an inhibitor (OM-1704) 6TKS ; 2.5 ; Tankyrase 2 in complex with an inhibitor (OM-1720) 6TKM ; 2.7 ; Tankyrase 2 in complex with an inhibitor (OM-1800) 6TKP ; 2.4 ; Tankyrase 2 in complex with an inhibitor (OM-1900) 6TKQ ; 2.5 ; Tankyrase 2 in complex with an inhibitor (OM-2700) 7R5X ; 2.052 ; Tankyrase 2 in complex with an inhibitor (OUL211) 7OLJ ; 1.8 ; Tankyrase 2 in complex with an inhibitor (OUL219) 7OM1 ; 1.7 ; Tankyrase 2 in complex with an inhibitor (OUL220) 7OMC ; 2.1 ; Tankyrase 2 in complex with an inhibitor (OUL228) 4L33 ; 2.1 ; Tankyrase 2 in complex with cyanomethyl 4-(4-oxo-4H-chromen-2-yl)benzoate 4HKI ; 2.15 ; Tankyrase 2 in complex with flavone 4L31 ; 2.0 ; Tankyrase 2 in complex with methyl 4-(4-oxochromen-2-yl)benzoate 7OJO ; 2.3 ; Tankyrase 2 in complex with two small molecule fragments 3W51 ; 2.0 ; Tankyrase in complex with 2-hydroxy-4-methylquinoline 4IUE ; 2.38 ; Tankyrase in complex with 7-(2-fluorophenyl)-4-methyl-1,2-dihydroquinolin-2-one 4W5S ; 2.8 ; Tankyrase in complex with compound 3UH4 ; 2.0 ; TANKYRASE-1 complexed with NVP-XAV939 4KRS ; 2.29 ; Tankyrase-1 complexed with small molecule inhibitor 4LI8 ; 2.521 ; TANKYRASE-1 complexed with small molecule inhibitor 2-[4-(4-fluorobenzoyl)piperidin-1-yl]-N-[(4-oxo-3,5,7,8-tetrahydro-4H-pyrano[4,3-d]pyrimidin-2-yl)methyl]-N-(thiophen-2-ylmethyl)acetamide 4LI7 ; 2.2 ; TANKYRASE-1 complexed with small molecule inhibitor 4-chloro-5-cyano-N-{2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl}-2-methoxybenzamide 4LI6 ; 2.05 ; TANKYRASE-1 Complexed with small molecule inhibitor N-[(4-oxo-3,4-dihydroquinazolin-2-yl)methyl]-3-phenyl-N-(thiophen-2-ylmethyl)propanamide 3UDD ; 1.95 ; Tankyrase-1 in complex with small molecule inhibitor 3UH2 ; 2.0 ; Tankyrase-1 in complexed with PJ34 5ZQP ; 1.99 ; Tankyrase-2 in complex with compound 12 6A84 ; 1.98 ; Tankyrase-2 in complex with compound 15d 5ZQO ; 2.06 ; Tankyrase-2 in complex with compound 1a 5ZQR ; 1.75 ; Tankyrase-2 in complex with compound 40c 5ZQQ ; 2.29 ; Tankyrase-2 in complex with compound 52 6KRO ; 1.9 ; Tankyrase-2 in complex with RK-582 7CE4 ; 1.5 ; Tankyrase2 catalytic domain in complex with K-476 8DHL ; 2.3 ; Tannerella forsythia beta-glucuronidase (L2) 8DHE ; 2.2 ; Tannerella forsythia beta-glucuronidase (mL1) 6R7W ; 1.5 ; Tannerella forsythia mature mirolysin in complex with a cleaved peptide. 6R7V ; 1.4 ; Tannerella forsythia promirolysin mutant E225A 4J0G ; 2.5 ; Tannin acyl hydrolase (mercury derivative) 7K4O ; 1.65 ; Tannin acyl hydrolase from Aspergillus niger 4J0D ; 1.6 ; tannin acyl hydrolase from Lactobacillus plantarum (Cadmium) 4J0C ; 1.65 ; tannin acyl hydrolase from Lactobacillus plantarum (native structure) 4J0I ; 1.75 ; Tannin acyl hydrolase in complex with 3,4-dihydroxybenzoate 4J0J ; 2.0 ; Tannin acyl hydrolase in complex with ethyl 3,5-dihydroxybenzoate 4J0K ; 2.05 ; Tannin acyl hydrolase in complex with ethyl gallate 4J0H ; 1.8 ; Tannin acyl hydrolase in complex with gallic acid 2GCD ; 2.55 ; TAO2 kinase domain-staurosporine structure 1KJM ; 2.35 ; TAP-A-associated rat MHC class I molecule 1KJV ; 1.48 ; TAP-B-associated rat MHC class I molecule 8AIF ; 1.07 ; TapA acts as specific chaperone in TasA non-amyloid filament formation 3F8U ; 2.6 ; Tapasin/ERp57 heterodimer 1TAU ; 3.0 ; TAQ POLYMERASE (E.C.2.7.7.7)/DNA/B-OCTYLGLUCOSIDE COMPLEX 1BGX ; 2.3 ; TAQ POLYMERASE IN COMPLEX WITH TP7, AN INHIBITORY FAB 1YNN ; 3.3 ; Taq RNA polymerase-rifampicin complex 1YNJ ; 3.2 ; Taq RNA polymerase-Sorangicin complex 5L1Z ; 5.9 ; TAR complex with HIV-1 Tat-AFF4-P-TEFb 2A9X ; ; TAR RNA recognition by a cyclic peptidomimetic of Tat protein 1KIS ; ; TAR-TAR ""KISSING"" HAIRPIN COMPLEX DERIVED FROM THE HIV GENOME, NMR, 1 STRUCTURE 6NSD ; 1.74 ; Tar14, tryptophan C-6 flavin-dependent halogenase (chlorinase) from taromycin biosynthesis 3DTP ; 20.0 ; Tarantula heavy meromyosin obtained by flexible docking to Tarantula muscle thick filament Cryo-EM 3D-MAP 4J5S ; 1.55 ; TARG1 (C6orf130), Terminal ADP-ribose Glycohydrolase 1 ADP-ribose complex 4J5R ; 1.25 ; TARG1 (C6orf130), Terminal ADP-ribose Glycohydrolase 1 bound to ADP-HPD 4J5Q ; 1.35 ; TARG1 (C6orf130), Terminal ADP-ribose Glycohydrolase 1, apo structure 6PIJ ; 2.9 ; Target DNA-bound V. cholerae TniQ-Cascade complex, closed conformation 1CDL ; 2.0 ; TARGET ENZYME RECOGNITION BY CALMODULIN: 2.4 ANGSTROMS STRUCTURE OF A CALMODULIN-PEPTIDE COMPLEX 2D82 ; ; Target Structure-Based Discovery of Small Molecules that Block Human p53 and CREB Binding Protein (CBP) Association 7OX9 ; 2.45 ; Target-bound SpCas9 complex with AAVS1 all-RNA guide 7OXA ; 2.15 ; Target-bound SpCas9 complex with AAVS1 chimeric RNA-DNA guide 7OX7 ; 2.6 ; Target-bound SpCas9 complex with TRAC chimeric RNA-DNA guide 7OX8 ; 2.75 ; Target-bound SpCas9 complex with TRAC full RNA guide 3EN6 ; 2.39 ; Targeted polypharmacology: crystal structure of the c-Src kinase domain in complex with PP102, a multitargeted kinase inhibitor 3EN4 ; 2.55 ; Targeted polypharmacology: crystal structure of the c-Src kinase domain in complex with PP121, a multitargeted kinase inhibitor 3EN5 ; 2.66 ; Targeted polypharmacology: crystal structure of the c-Src kinase domain in complex with PP494, a multitargeted kinase inhibitor 3EN7 ; 2.81 ; Targeted polypharmacology: crystal structure of the c-Src kinase domain in complex with S1, a multitargeted kinase inhibitor 4FCQ ; 2.151 ; Targeting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization 4FCR ; 1.698 ; Targeting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization 7M1Z ; 2.27 ; Targeting Enterococcus faecalis HMG-CoA reductase with a novel non-statin inhibitor 7M3H ; 1.27 ; Targeting Enterococcus faecalis HMG-CoA reductase with a novel non-statin inhibitor 7M66 ; 2.25 ; Targeting Enterococcus faecalis HMG-CoA reductase with a novel non-statin inhibitor 8PVS ; 1.68 ; Targeting extended blood antigens by Akkermansia muciniphila enzymes unveils a missing link for generating universal donor blood 8PXT ; 2.25 ; Targeting extended blood antigens by Akkermansia muciniphila enzymes unveils a missing link for generating universal donor blood 8PXU ; 1.99 ; Targeting extended blood antigens by Akkermansia muciniphila enzymes unveils a missing link for generating universal donor blood 8PXV ; 2.5 ; Targeting extended blood antigens by Akkermansia muciniphila enzymes unveils a missing link for generating universal donor blood 6FMD ; 1.58 ; Targeting myeloid differentiation using potent human dihydroorotate dehydrogenase (hDHODH) inhibitors based on 2-hydroxypyrazolo[1,5-a]pyridine scaffold 4HLW ; 2.5 ; Targeting the Binding Function 3 (BF3) Site of the Human Androgen Receptor Through Virtual Screening. 2. Development of 2-((2-phenoxyethyl) thio)-1H-benzoimidazole derivatives. 2YLO ; 2.5 ; TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING 2YLP ; 2.3 ; TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING 2YLQ ; 2.4 ; TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING 3ZQT ; 2.29 ; TARGETING THE BINDING FUNCTION 3 SITE OF THE ANDROGEN RECEPTOR THROUGH IN SILICO MOLECULAR MODELING 289D ; 2.2 ; TARGETING THE MINOR GROOVE OF DNA: CRYSTAL STRUCTURES OF TWO COMPLEXES BETWEEN FURAN DERIVATIVES OF BERENIL AND THE DNA DODECAMER D(CGCGAATTCGCG)2 298D ; 2.2 ; TARGETING THE MINOR GROOVE OF DNA: CRYSTAL STRUCTURES OF TWO COMPLEXES BETWEEN FURAN DERIVATIVES OF BERENIL AND THE DNA DODECAMER D(CGCGAATTCGCG)2 5L87 ; 0.87 ; Targeting the PEX14-PEX5 interaction by small molecules provides novel therapeutic routes to treat trypanosomiases. 5L8A ; 1.57 ; Targeting the PEX14-PEX5 interaction by small molecules provides novel therapeutic routes to treat trypanosomiases. 5N8V ; 1.55 ; Targeting the PEX14-PEX5 interaction by small molecules provides novel therapeutic routes to treat trypanosomiases. 5K0M ; 1.83 ; Targeting the PRC2 complex through a novel protein-protein interaction inhibitor of EED 8BWW ; ; Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs 1P44 ; 2.7 ; Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data 1P45 ; 2.6 ; Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data 4FCP ; 2.0 ; Targetting conserved water molecules: Design of 4-aryl-5-cyanopyrrolo [2,3-d] pyrimidine Hsp90 inhibitors using fragment-based screening and structure-based optimization 7QNT ; 3.21 ; TarM(Se) native 7QD7 ; 2.06 ; TarM(Se)_G117R 7QH9 ; 2.689 ; TarM(Se)_G117R-4RboP 8P20 ; 2.848 ; TarM(Se)_G117R-UDP-4RboP-glucose 8P1X ; 2.03 ; TarM(Se)_G117R-UDP-glucose 6H1J ; 1.86 ; TarP native 6H4F ; 2.18 ; TarP-3RboP 6HNQ ; 2.4 ; TarP-6RboP-(CH2)6NH2 6H4M ; 2.73 ; TarP-UDP-GlcNAc-3RboP 6H2N ; 1.95 ; TarP-UDP-GlcNAc-Mg 6H21 ; 1.8 ; TarP-UDP-GlcNAc-Mn 6WCV ; 1.52 ; Tartryl-CoA bound to human GTP-specific succinyl-CoA synthetase 1LQA ; 1.604 ; TAS PROTEIN FROM ESCHERICHIA COLI IN COMPLEX WITH NADPH 6MZW ; 2.2 ; TAS-120 covalent complex with FGFR1 6MZQ ; 2.0 ; TAS-120 in reversible binding mode with FGFR1 6WLV ; 3.45 ; TASK2 in MSP1D1 lipid nanodisc at pH 6.5 6WM0 ; 3.52 ; TASK2 in MSP1D1 lipid nanodisc at pH 8.5 7KI1 ; 2.5 ; Taspoglutide-bound Glucagon-Like Peptide-1 (GLP-1) Receptor in Complex with Gs Protein 1TGH ; 2.9 ; TATA BINDING PROTEIN (TBP)/DNA COMPLEX 2LZS ; ; TatA oligomer 2LZR ; ; TatA T22P 1D3U ; 2.4 ; TATA-BINDING PROTEIN/TRANSCRIPTION FACTOR (II)B/BRE+TATA-BOX COMPLEX FROM PYROCOCCUS WOESEI 1AIS ; 2.1 ; TATA-BINDING PROTEIN/TRANSCRIPTION FACTOR (II)B/TATA-BOX COMPLEX FROM PYROCOCCUS WOESEI 8G58 ; ; Tau (297-391) in vitro untwisted fibril 8Q88 ; 2.95 ; Tau - AD-LIA2 (tau intermediate amyloid) 8Q8E ; 3.81 ; Tau - AD-LIA4 (tau intermediate amyloid) 8Q8F ; 2.93 ; Tau - AD-LIA5 (tau intermediate amyloid) 8Q8D ; 3.04 ; Tau - AD-LIA6 (tau intermediate amyloid) 8Q8L ; 3.04 ; Tau - AD-LIA7 (tau intermediate amyloid) 8QCP ; 3.21 ; Tau - AD-LIA8 (tau intermediate amyloid) 8Q8C ; 1.92 ; Tau - AD-MIA10 (intermediate amyloid) 8Q7T ; 3.0 ; Tau - AD-MIA11 8Q2J ; 2.23 ; Tau - AD-MIA2 8Q2K ; 2.88 ; Tau - AD-MIA3 8Q2L ; 2.2 ; Tau - AD-MIA4 8Q7F ; 3.72 ; Tau - AD-MIA5 8Q7L ; 2.82 ; Tau - AD-MIA6 (tau intermediate amyloid) 8Q7M ; 3.26 ; Tau - AD-MIA7 (tau intermediate amyloid) 8Q7P ; 3.28 ; Tau - AD-MIA8 (intermediate amyloid) 8Q8R ; 2.1 ; Tau - AD-PHF 8Q8M ; 2.95 ; Tau - AD-PHF long crossover 8Q8S ; 2.68 ; Tau - AD-THF 8Q9K ; 3.2 ; Tau - CTE-LIA13 (tau intermediate amyloid) 8Q9L ; 2.76 ; Tau - CTE-LIA14 (tau intermediate amyloid) 8Q9F ; 1.91 ; Tau - CTE-LIA3 (tau intermediate amyloid) 8Q9H ; 2.18 ; Tau - CTE-LIA4 (tau intermediate amyloid) 8Q9G ; 2.65 ; Tau - CTE-LIA5 (tau intermediate amyloid) 8Q9I ; 2.56 ; Tau - CTE-LIA6 (tau intermediate amyloid) 8Q9J ; 2.96 ; Tau - CTE-LIA7 (tau intermediate amyloid) 8Q8U ; 3.3 ; Tau - CTE-MIA1 (tau intermediate amyloid) 8Q99 ; 2.7 ; Tau - CTE-MIA10 (tau intermediate amyloid) 8Q9A ; 3.04 ; Tau - CTE-MIA11 (tau intermediate amyloid) 8QCR ; 2.75 ; Tau - CTE-MIA12 (tau intermediate amyloid) 8Q9B ; 3.1 ; Tau - CTE-MIA13 (tau intermediate amyloid) 8Q9C ; 3.4 ; Tau - CTE-MIA14 (tau intermediate amyloid) 8Q9D ; 3.16 ; Tau - CTE-MIA15 (tau intermediate amyloid) 8Q9E ; 2.97 ; Tau - CTE-MIA18 (tau intermediate amyloid) 8Q8V ; 3.8 ; Tau - CTE-MIA3 8Q8W ; 2.85 ; Tau - CTE-MIA4 (tau intermediate amyloid) 8Q8X ; 2.54 ; Tau - CTE-MIA5 (tau intermediate amyloid) 8Q8Y ; 2.88 ; Tau - CTE-MIA6 (tau intermediate amyloid) 8Q8Z ; 3.16 ; Tau - CTE-MIA7 (tau intermediate amyloid) 8Q98 ; 1.75 ; Tau - CTE-MIA8 (tau intermediate amyloid) 8Q97 ; 2.99 ; Tau - CTE-MIA9 (tau intermediate amyloid) 8Q9M ; 2.65 ; Tau - CTE-type I (tau intermediate amyloid) 8P34 ; 2.61 ; Tau filaments extracted from human brain with the DeltaK281 mutation in MAPT 7UPF ; 3.3 ; Tau Paired Helical Filament from Alzheimer's Disease incubated 1 hr. with EGCG 7UPG ; 3.8 ; Tau Paired Helical Filament from Alzheimer's Disease incubated with EGCG for 3 hours 7UPE ; 3.4 ; Tau Paired Helical Filament from Alzheimer's Disease not incubated with EGCG 8BGV ; 3.27 ; Tau Paired Helical Filament from Cellular Fraction of Alzheimer's disease brain 8BGS ; 3.16 ; Tau Paired Helical Filament from Extracellular Vesicles from Alzheimer's disease brain 7PQC ; 4.1 ; tau-microtubule structural ensemble based on CryoEM data 7PQP ; 4.1 ; tau-microtubule structural ensemble based on CryoEM data 8KDX ; 1.01 ; Tau-S214 Phosphorylation Inhibits Fyn Kinase Interaction and Increases the Decay Time of NMDAR-mediated Current 2YN0 ; 1.5 ; tau55 histidine phosphatase domain 8Q27 ; 2.02 ; Tau: AD-MIA1 6ST1 ; 1.55 ; Taurine ABC transporter substrate binding protein TauA from E. coli in complex with 2-(N-Morpholino)ethanesulfonic acid (MES) 6SSY ; 1.62 ; Taurine ABC transporter substrate binding protein TauA from E. coli in complex with 2-Aminoethylphosphonic acid 6ST0 ; 1.5 ; Taurine ABC transporter substrate binding protein TauA from E. coli in complex with N-(2-Acetamido)-2-aminoethanesulfonic acid 6STL ; 1.3 ; Taurine ABC transporter substrate binding protein TauA from E. coli in complex with taurine 1GQW ; 3.0 ; Taurine/alpha-ketoglutarate Dioxygenase from Escherichia coli 1GY9 ; 2.5 ; Taurine/alpha-ketoglutarate Dioxygenase from Escherichia coli 6EDH ; 1.73 ; Taurine:2OG dioxygenase (TauD) bound to the vanadyl ion, taurine, and succinate 4NNL ; 1.5 ; Tax-Interacting Protein-1 (TIP-1) PDZ domain bound to F-iCAL36 (ANSRFPTSII) peptide 4NNM ; 1.6 ; Tax-Interacting Protein-1 (TIP-1) PDZ domain bound to Y-iCAL36 (YPTSII) peptide 6VC9 ; 2.25 ; TB19 complex 6VCA ; 3.73 ; TB38 complex 4NC6 ; 1.8 ; Tbc domain of human rab gtpase-activating protein 1 8QQF ; 2.19 ; TBC1D23 PH domain complexed with STX16 TLY motif 2Z5W ; 1.35 ; tBclA, a recombinant spore surface protein from Bacillus anthracis 5V1V ; 1.35 ; TbiB1 in Complex with the TbiA(alpha) Leader Peptide 5V1U ; 2.052 ; TbiB1 in Complex with the TbiA(beta) Leader Peptide 5W5V ; 3.645 ; TBK1 co-crystal structure with amlexanox 6BOE ; 3.598 ; TBK1 in complex with amide-coupled tetrazole analog of amlexanox 6RSR ; 3.15 ; TBK1 in complex with compound 2 6CQ4 ; 3.2 ; TBK1 in Complex with Cyclohexyl Analog of Amlexanox 6CQ0 ; 3.19 ; TBK1 in Complex with Dimethyl Amino Analog of Amlexanox 6BOD ; 3.197 ; TBK1 in complex with ethyl ester analog of amlexanox 6RST ; 3.29 ; TBK1 in complex with inhibitor compound 24 6RSU ; 2.75 ; TBK1 in complex with Inhibitor compound 35 6CQ5 ; 3.354 ; TBK1 in Complex with Sulfone Analog of Amlexanox 6BNY ; 3.341 ; TBK1 in complex with tetrazole analog of amlexanox 5AAQ ; ; TBK1 recruitment to cytosol-invading Salmonella induces anti- bacterial autophagy 5AAY ; ; TBK1 recruitment to cytosol-invading Salmonella induces anti- bacterial autophagy 5AAZ ; ; TBK1 recruitment to cytosol-invading Salmonella induces anti- bacterial autophagy 7UG0 ; 2.55 ; TBOA-bound GltPh RSMR mutant in IFS state 7UGJ ; 2.81 ; TBOA-bound GltPh RSMR mutant in OFS state 1MP9 ; 2.0 ; TBP from a mesothermophilic archaeon, Sulfolobus acidocaldarius 7OHB ; 3.4 ; TBP-nucleosome complex 4PHL ; 1.95 ; TbrPDEB1-inhibitor complex 7F2W ; 2.16 ; TbUox in complex with uric acid 4S0H ; 2.817 ; TBX5 DB, NKX2.5 HD, ANF DNA Complex 6GPI ; ; Tc-DNA/DNA duplex 6GMY ; ; Tc-DNA/RNA duplex 6GN4 ; ; tc-DNA/tc-DNA duplex 4ZRP ; 2.1 ; TC:CD320 7QBE ; 3.0 ; TC:CD320 in complex with nanobody TC-Nb11 7QBD ; 4.18 ; TC:CD320 in complex with nanobody TC-Nb26 7QBF ; 1.85 ; TC:CD320 in complex with nanobody TC-Nb34 7QBG ; 2.69 ; TC:CD320 in complex with nanobody TC-Nb4 4KDP ; 3.6 ; TcaR-ssDNA complex crystal structure reveals the novel ssDNA binding mechanism of the MarR family proteins 4YED ; 1.9 ; TcdA (CsdL) 7N9S ; 5.1 ; TcdB and frizzled-2 CRD complex 8SCF ; ; TCEIII NMR Structure 8SCH ; ; TCEI_III NMR Structure 3MBE ; 2.886 ; TCR 21.30 in complex with MHC class II I-Ag7HEL(11-27) 6DFW ; 3.2 ; TCR 8F10 in complex with IAg7-p8G9E 6MF8 ; ; TCR alpha transmembrane domain 1L0X ; 2.8 ; TCR beta chain complexed with streptococcal superantigen SpeA 2WBJ ; 3.0 ; TCR complex 1I9E ; 2.5 ; TCR DOMAIN 5TEZ ; 1.7 ; TCR F50 recgonizing M1-HLA-A2 4H1L ; 3.3 ; TCR interaction with peptide mimics of nickel offers structural insights in nickel contact allergy 4H26 ; 2.5 ; TCR interaction with peptide mimics of nickel offers structure insight to nickel contact allergy 4H25 ; 2.2 ; TCR interaction with peptide mimics of nickel offers structure insights to nickel contact allergy 7RE9 ; 2.77 ; TCR mimic antibody (Fab fragment) 7RE7 ; 2.547 ; TCR mimic antibody (Fab fragment) in complex with AFP/HLA-A*02 7N6E ; 3.2 ; TCR peptide HLA-A2 complex 8D5Q ; 2.501 ; TCR TG6 in complex with Ld-HF10 7N2N ; 2.6 ; TCR-antigen complex AS4.2-PRPF3-HLA*B27 8CX4 ; 2.2 ; TCR-antigen complex AS8.4-YEIH-HLA*B27 4MNQ ; 2.742 ; TCR-peptide specificity overrides affinity enhancing TCR-MHC interactions 1YMM ; 3.5 ; TCR/HLA-DR2b/MBP-peptide complex 6BJ3 ; 1.898 ; TCR55 in complex with HIV(Pol448-456)/HLA-B35 6BJ8 ; 1.75 ; TCR55 in complex with Pep20/HLA-B35 6BJ2 ; 3.35 ; TCR589 in complex with HIV(Pol448-456)/HLA-B35 3V94 ; 2.33 ; TcrPDEC1 catalytic domain in complex with inhibitor wyq16 4Z9V ; 2.099 ; TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL 6WY8 ; 2.1 ; Tcur3481-Tcur3483 steroid ACAD 6WY9 ; 2.0 ; Tcur3481-Tcur3483 steroid ACAD G363A variant 5FF8 ; 1.7 ; TDG enzyme-product complex 5HF7 ; 1.54 ; TDG enzyme-substrate complex 8QX9 ; 3.76 ; TDP-43 amyloid fibrils: Morphology-1a 8QXA ; 4.05 ; TDP-43 amyloid fibrils: Morphology-1b 8QXB ; 3.86 ; TDP-43 amyloid fibrils: Morphology-2 7KWZ ; 3.2 ; TDP-43 LCD amyloid fibrils 6Q00 ; 0.85 ; TDP2 UBA Domain Bound to Ubiquitin at 0.85 Angstroms Resolution, Crystal Form 1 6Q01 ; 0.851 ; TDP2 UBA Domain Bound to Ubiquitin at 0.85 Angstroms Resolution, Crystal Form 2 2LTO ; ; TDRD3 complex 6GO3 ; 2.2 ; TdT chimera (Loop1 of pol mu) - apoenzyme 6GO4 ; 1.96 ; TdT chimera (Loop1 of pol mu) - binary complex with ddCTP 6GO7 ; 2.55 ; TdT chimera (Loop1 of pol mu) - full DNA synapsis complex 6GO5 ; 2.35 ; TdT chimera (Loop1 of pol mu) - Ternary complex with 1-nt gapped DNA substrate 6GO6 ; 2.09 ; TdT chimera (Loop1 of pol mu) - ternary complex with downstream dsDNA 4IQU ; 2.4 ; Tdt core in complex with inhibitor (2Z,5E)-6-[4-(4-fluorobenzoyl)-1H-pyrrol-2-yl]-2-hydroxy-4-oxohexa-2,5-dienoic acid 4IQW ; 2.6 ; Tdt core in complex with inhibitor (2Z,5E)-6-[4-(4-fluorobenzoyl)-1H-pyrrol-2-yl]-2-hydroxy-4-oxohexa-2,5-dienoic acid and ssDNA 4IQT ; 2.6 ; Tdt core in complex with inhibitor 6-[4-(3-fluorobenzoyl)-1H-pyrrol-2-yl]-2-hydroxy-4-oxohexa-2,5-dienoic acid 4IQV ; 2.9 ; Tdt core in complex with inhibitor 6-[4-(3-fluorobenzoyl)-1H-pyrrol-2-yl]-2-hydroxy-4-oxohexa-2,5-dienoic acid and ssDNA 4Z8E ; 2.092 ; TEAD DBD mutant -deltaL1 5XJD ; 2.22 ; TEAD in complex with fragment 5NNX ; 3.29 ; TEAD1 bound to DNA 7TYQ ; 1.88 ; TEAD2 bound to Compound 1 7TYU ; 1.78 ; TEAD2 bound to Compound 2 7TYP ; 1.6 ; TEAD2 bound to GNE-7883 8P29 ; 2.06 ; TEAD2 in complex with an inhibitor 8POJ ; 2.45 ; TEAD2 in complex with an inhibitor 8POM ; 1.95 ; TEAD2 in complex with an inhibitor 8PON ; 2.2 ; TEAD2 in complex with an inhibitor 8PUX ; 2.05 ; TEAD2 with a covalent inhibitor 8PUY ; 2.2 ; TEAD2 with a covalent inhibitor 6Q2X ; 2.1 ; TEAD4 (216-434) COMPLEXED WITH YAP PEPTIDE (60-100) AND MYRISTOATE (COVALENTLY BOUND) AT 2.1A (P41212 CRYSTAL FORM) 6GEC ; 1.7 ; TEAD4 (216-434) COMPLEXED WITH YAP PEPTIDE (60-100);S94A AND MYRISTOATE (COVALENTLY BOUND) AT 1.70A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GE4 ; 1.97 ; TEAD4 (216-434);E263A COMPLEXED WITH YAP PEPTIDE (60-100) AND MYRISTOATE (COVALENTLY BOUND) AT 1.97A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GEE ; 1.96 ; TEAD4 (216-434);E263A COMPLEXED WITH YAP PEPTIDE (60-100); S94A AND MYRISTOATE (COVALENTLY BOUND) AT 1.96A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GEI ; 1.65 ; TEAD4 (216-434);E263A+Y429F COMPLEXED WITH YAP PEPTIDE (60- 100);S94A AND MYRISTOATE (COVALENTLY BOUND TO LYS344, NOT CYS367!) AT 1.65A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GE5 ; 2.05 ; TEAD4 (216-434);Y429F COMPLEXED WITH YAP PEPTIDE (60-100) AND MYRISTOATE (COVALENTLY BOUND) AT 2.05A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GEK ; 2.28 ; TEAD4 (216-434);Y429F COMPLEXED WITH YAP PEPTIDE (60-100) AND MYRISTOATE (COVALENTLY BOUND) AT 2.28A (P212121 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6GEG ; 2.23 ; TEAD4 (216-434);Y429F COMPLEXED WITH YAP PEPTIDE (60-100); S94A AND MYRISTOATE (COVALENTLY BOUND) AT 2.23A (P41212 CRYSTAL FORM); MYRISTOYLATION WAS DONE BY ADDING MYR-COA 6SEN ; 1.65 ; TEAD4 bound to a FAM181A peptide 6SEO ; 2.55 ; TEAD4 bound to a FAM181B peptide 5OAQ ; 1.95 ; TEAD4 COMPLEXED WITH YAP PEPTIDE AND MYRISTATE (COVALENTLY BOUND) 6Q36 ; 2.01 ; TEAD4(216-434) complexed with optimized peptide 9 and myristoate (covalently bound) at 2.01A resolution: Structure-based design of potent linear peptide inhibitors of the YAP-TEAD protein-protein interaction derived from the YAP omega-loop sequence 5NO6 ; 2.88 ; TEAD4-HOXB13 complex bound to DNA 6B3O ; 4.1 ; Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion 3MG9 ; 2.27 ; Teg 12 Binary Structure Complexed with the Teicoplanin Aglycone 3MGB ; 2.04 ; Teg 12 Ternary Structure Complexed with PAP and the Teicoplanin Aglycone 3MGC ; 2.91 ; Teg12 Apo 3NIB ; 2.7 ; Teg14 Apo 8EN9 ; 2.6 ; TehA native-SAD structure determined at 5 keV with a helium environment 6JXC ; 4.1 ; Tel1 kinase butterfly symmetric dimer 6JXA ; 4.3 ; Tel1 kinase compact monomer 3O4Z ; 3.1 ; Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes 6XT7 ; 1.56 ; Tel25 Hybrid Four-quartet G-quadruplex with K+ 6W9P ; 1.99 ; Tel26 Parallel Four-quartet G-quadruplex with K+ 3K18 ; 1.5 ; Tellurium modified DNA-8mer 6USQ ; 3.62 ; Telomerase Reverse Transcriptase binary complex with Y256A mutation, TERT:DNA 6USO ; 2.54 ; Telomerase Reverse Transcriptase prenucleotide binary complex, TERT:DNA 6USP ; 3.56 ; Telomerase Reverse Transcriptase product complex, TERT:DNA 6USR ; 2.93 ; Telomerase Reverse Transcriptase ternary complex, TERT:DNA:dGpCpp 7V96 ; 3.92 ; Telomeric Dinucleosome 7V9C ; 4.5 ; Telomeric Dinucleosome in open state 7V90 ; 3.5 ; Telomeric mononucleosome 7V9K ; 8.1 ; Telomeric tetranucleosome 7VA4 ; 14.0 ; Telomeric tetranucleosome in open state 7V9J ; 8.0 ; Telomeric trinucleosome 7V9S ; 11.0 ; Telomeric trinucleosome in open state 7U6Q ; 1.9 ; TEM-1 beta-lactamase 8DDZ ; 1.45 ; TEM-1 beta-lactamase A237Y 8DE1 ; 1.56 ; TEM-1 beta-lactamase A237Y mutant covalently bound to avibactam 8DE2 ; 2.45 ; TEM-1 beta-lactamase A237Y mutant covalently bound to avibactam, a room temperature structure 8DE0 ; 1.72 ; TEM-1 beta-lactamase covalently bound to avibactam 1AXB ; 2.0 ; TEM-1 BETA-LACTAMASE FROM ESCHERICHIA COLI INHIBITED WITH AN ACYLATION TRANSITION STATE ANALOG 1PZO ; 1.9 ; TEM-1 Beta-Lactamase in Complex with a Novel, Core-Disrupting, Allosteric Inhibitor 1PZP ; 1.45 ; TEM-1 Beta-Lactamase in Complex with a Novel, Core-Disrupting, Allosteric Inhibitor 3CMZ ; 1.92 ; TEM-1 Class-A beta-lactamase L201P mutant apo structure 1ZG4 ; 1.55 ; TEM1 beta lactamase 1ZG6 ; 2.1 ; TEM1 beta lactamase mutant S70G 5JX0 ; 2.4 ; Temperature sensitive D4 mutant L110F 8G54 ; ; Temperature-dependent structures of tau aggregates 8G55 ; ; Temperature-dependent structures of tau aggregates 7BZA ; ; Template lasso peptide C24 7BZ7 ; ; Template lasso peptide C24 mutant F15Y 7BZ9 ; ; Template lasso peptide C24 mutant I4A 7BZ8 ; ; Template lasso peptide C24 mutant V3A 6M19 ; ; Template lasso peptide C24 mutant W14F 5J9V ; 1.16 ; Ten minutes iron loaded Rana Catesbeiana H' ferritin variant E57A/E136A/D140A 2GM8 ; 2.5 ; TenA Homolog/Thi-4 Thiaminase complexed with product 4-amino-5-hydroxymethyl-2-methylpyrimidine 2GM7 ; 2.8 ; TenA Homolog/Thi-4 Thiaminase from Pyrobaculum Aerophilum 1UDD ; 2.15 ; TenA homologue protein from P.horikoshii OT3 1VIW ; 3.0 ; TENEBRIO MOLITOR ALPHA-AMYLASE-INHIBITOR COMPLEX 6SKA ; 3.86 ; Teneurin 2 in complex with Latrophilin 1 Lec-Olf domains 6SKE ; 3.62 ; Teneurin 2 in complex with Latrophilin 2 Lec domain 6FB3 ; 2.38 ; Teneurin 2 Partial Extracellular Domain 6FAY ; 3.8 ; Teneurin3 monomer 4B8D ; 4.79 ; TENSEGRITY TRIANGLE FROM ENZYMATICALLY MANUFACTURED DNA 7QID ; 5.0 ; tentative model of the human insulin receptor ectodomain bound by three insulin 5WFB ; 1.382 ; Tepsin tENTH domain 1-136. 5WF9 ; 1.8 ; Tepsin tENTH domain 1-153 5WF2 ; 1.851 ; Tepsin VHS/ENTH-like Native 5WF1 ; 1.954 ; Tepsin VHS/ENTHlike domain SeMet 6SUX ; 1.16 ; Terahertz irradiated structure of bovine trypsin (even frames of crystal x37) 6SV8 ; 1.15 ; Terahertz irradiated structure of bovine trypsin (odd frames of crystal x38) 6SVB ; 1.15 ; Terahertz irradiated structure of bovine trypsin (odd frames of crystal x40) 6SVG ; 1.16 ; Terahertz irradiated structure of bovine trypsin (odd frames of crystal x41) 6SVJ ; 1.16 ; Terahertz irradiated structure of bovine trypsin (odd frames of crystal x42) 5KT4 ; 2.78 ; Teranry complex of human DNA polymerase iota R96G inserting dCMPNPP opposite template G in the presence of Mg2+ 5KT5 ; 2.798 ; Teranry complex of human DNA polymerase iota R96G inserting dCMPNPP opposite template G in the presence of Mn2+ 5KT6 ; 3.54 ; Teranry complex of human DNA polymerase iota(1-445) inserting dCMPNPP opposite template G in the presence of Mg2+ 5KT7 ; 3.151 ; Teranry complex of human DNA polymerase iota(1-445) inserting dCMPNPP opposite template G in the presence of Mn2+ 5KT2 ; 2.488 ; Teranry complex of human DNA polymerase iota(26-445) inserting dCMPNPP opposite template G in the presence of Mg2+ 5KT3 ; 2.64 ; Teranry complex of human DNA polymerase iota(26-445) inserting dCMPNPP opposite template G in the presence of Mn2+ 2V15 ; 2.1 ; Terbium binding in Streptococcus suis Dpr protein 6ZV9 ; 1.85 ; Terbium(III)-bound de novo TIM barrel-ferredoxin fold fusion dimer with 4-glutamate binding site and tryptophan antenna (TFD-EE N6W) 1WKO ; 1.8 ; Terminal flower 1 (tfl1) from arabidopsis thaliana 3GCF ; 2.3 ; Terminal oxygenase of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 3GKQ ; 2.1 ; Terminal oxygenase of carbazole 1,9a-dioxygenase from Novosphingobium sp. KA1 2Q0D ; 2.0 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound ATP 2Q0C ; 2.2 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound CTP 2NOM ; 2.4 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound dUTP 2Q0E ; 2.1 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound GTP 2Q0G ; 2.3 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound UPU 2IKF ; 2.0 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound UTP 2Q0F ; 2.4 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound UTP and UMP 5KAL ; 2.75 ; Terminal uridylyl transferase 4 from Trypanosoma brucei with bound UTP and UpU 8SCB ; 2.5 ; Terminating ribosome with SRI-41315 2WDF ; 2.08 ; Termus thermophilus Sulfate thiohydrolase SoxB 2WDC ; 1.5 ; Termus thermophilus Sulfate thiohydrolase SoxB in complex with glycerol 2WDD ; 1.5 ; Termus thermophilus Sulfate thiohydrolase SoxB in complex with Sulfate 2WDE ; 1.85 ; Termus thermophilus Sulfate thiohydrolase SoxB in complex with thiosulfate 6MB9 ; 2.5 ; Ternary (neomycin/CoA) structure of AAC-IIIb 1SL0 ; 3.2 ; Ternary 3' complex of T7 DNA polymerase with a DNA primer/template containing a disordered cis-syn thymine dimer on the template and an incoming nucleotide 1SL2 ; 2.3 ; Ternary 5' complex of T7 DNA polymerase with a DNA primer/template containing a cis-syn thymine dimer on the template and an incoming nucleotide 3ZKX ; 2.37 ; TERNARY BACE2 XAPERONE COMPLEX 4TR9 ; 2.111 ; Ternary co-crystal structure of fructose-bisphosphate aldolase from Plasmodium falciparum in complex with TRAP and a small molecule inhibitor 7JW9 ; 2.39 ; Ternary cocrystal structure of alkanesulfonate monooxygenase MsuD from Pseudomonas fluorescens 4V1D ; 3.1 ; Ternary complex among two human derived single chain antibody fragments and Cn2 toxin from scorpion Centruroides noxius. 4LRR ; 2.41 ; Ternary complex between E. coli thymidylate synthase, dUMP, and F9 4N0U ; 3.8 ; Ternary complex between Neonatal Fc receptor, serum albumin and Fc 1G9H ; 1.8 ; TERNARY COMPLEX BETWEEN PSYCHROPHILIC ALPHA-AMYLASE, COMII (PSEUDO TRI-SACCHARIDE FROM BAYER) AND TRIS (2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL) 1O94 ; 2.0 ; Ternary complex between trimethylamine dehydrogenase and electron transferring flavoprotein 1O95 ; 3.7 ; Ternary complex between trimethylamine dehydrogenase and electron transferring flavoprotein 8BDS ; 1.72 ; Ternary complex between VCB, BRD4-BD1 and PROTAC 48 8BEB ; 3.18 ; Ternary complex between VCB, BRD4-BD1 and PROTAC 49 8BDX ; 2.93 ; Ternary complex between VCB, BRD4-BD2 and PROTAC 48 8BDT ; 2.7 ; Ternary complex between VCB, BRD4-BD2 and PROTAC 51 6ZH9 ; 3.31 ; Ternary complex CR3022 H11-H4 and RBD (SARS-CoV-2) 6A9A ; 1.9 ; Ternary complex crystal structure of dCH with dCMP and THF 6NKV ; 1.85 ; Ternary complex crystal structure of DNA polymerase Beta with ""hot-spot sequence"" with beta-gamma CHF analogue of dGTP 6NKW ; 1.98 ; Ternary complex crystal structure of DNA polymerase Beta with ""hot-spot sequence"" with beta-gamma-methylene dGTP 6NKU ; 1.9 ; Ternary complex crystal structure of DNA polymerase Beta with ""hot-spot sequence"" with dGTP 4RT3 ; 1.92 ; Ternary complex crystal structure of DNA polymerase Beta with (alpha, beta)-NH-(beta,gamma)-CH2-dTTP 4RT2 ; 1.92 ; Ternary complex crystal structure of DNA polymerase Beta with (alpha,beta)-CH2-(beta,gamma)-NH-dTTP 6PH6 ; 2.6 ; Ternary complex crystal structure of DNA polymerase Beta with 2nt-gap with dCTP bound downstream 6N2S ; 2.457 ; Ternary complex crystal structure of DNA polymerase Beta with 5-carboxy-dC (5-caC) at the templating position 6N2T ; 2.6 ; Ternary complex crystal structure of DNA polymerase Beta with 5-hydroxymethyl-dC (5-hmC) at the templating position 6CR3 ; 1.95 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CBr2, beta, gamma dATP analogue 6CTX ; 2.02 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CBr2, beta, gamma dCTP analogue 6CRC ; 2.3 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CCL2, beta, gamma dATP analogue 6CTW ; 1.981 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CCL2, beta, gamma dCTP analogue 6CTI ; 2.001 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CCL2, beta, gamma dTTP analogue 6CRB ; 2.151 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CF2, beta, gamma dATP analogue 6CTV ; 2.02 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CF2, beta, gamma dCTP analogue 6CTO ; 2.04 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CF2, beta, gamma dTTP analogue 6CR9 ; 1.96 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CFCL, beta, gamma dATP analogue 6CTU ; 1.9 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CFCL, beta, gamma dCTP analogue 6CTN ; 1.92 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CFCL,beta-gamma dTTP analogue 6CR6 ; 2.097 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CH-CH3, beta, gamma dATP analogue 6CTP ; 2.2 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CH2, beta, gamma dTTP analogue 6CR5 ; 1.982 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CH2-beta, gamma dATP analogue 6CTJ ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCH3, beta, gamma dTTP analogue 6CR8 ; 2.05 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCL (R & S isomers), beta, gamma dATP analogue 6CTT ; 2.0 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCL (R & S isomers, beta, gamma dCTP analogue 6G2Q ; 2.148 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCL (S-isomer), beta, gamma dTTP analogue 6CTM ; 2.101 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCL(R-isomer), beta, gamma dTTP analogue 6CTL ; 2.0 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHCL-R/S isomers, beta, gamma dTTP analogue 6CTR ; 1.85 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHF (R & S isomers), beta, gamma dCTP analogue 6CR7 ; 2.29 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHF, beta, gamma dATP analogue 6CTK ; 2.153 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with CHF-R/S isomers, beta, gamma dTTP analogue 6CR4 ; 1.8 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with dATP 6CTQ ; 1.87 ; Ternary complex crystal structure of DNA polymerase Beta with a dideoxy terminated primer with dCTP 5J29 ; 2.2 ; Ternary complex crystal structure of DNA polymerase Beta with A:A mismatch at the primer terminus 5J2A ; 2.5 ; Ternary complex crystal structure of DNA polymerase Beta with A:C mismatch at the primer terminus 5J2B ; 2.5 ; Ternary complex crystal structure of DNA polymerase Beta with A:C mismatch at the primer terminus 5J2C ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with C:A mismatch at the primer terminus 5J2D ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with C:C mismatch at the primer terminus 5J2E ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with C:T mismatch at the primer terminus 5J2F ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with G:A mismatch at the primer terminus 5J2G ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with G:G mismatch at the primer terminus 5J2H ; 2.3 ; Ternary complex crystal structure of DNA polymerase Beta with G:T mismatch at the primer terminus 6BEL ; 1.898 ; Ternary complex crystal structure of DNA polymerase Beta with R-isomer of beta-gamma-CHF-dCTP 6BEM ; 1.88 ; Ternary complex crystal structure of DNA polymerase Beta with S-isomer of beta-gamma-CHCL-dCTP 5J2I ; 2.4 ; Ternary complex crystal structure of DNA polymerase Beta with T:C mismatch at the primer terminus 5J2J ; 2.2 ; Ternary complex crystal structure of DNA polymerase Beta with T:G mismatch at the primer terminus 5J2K ; 2.1 ; Ternary complex crystal structure of DNA polymerase Beta with T:T mismatch at the primer terminus 3RJJ ; 2.0 ; Ternary complex crystal structure of DNA Polymerase Beta with template 8odG provides insight into mutagenic lesion bypass 4R66 ; 2.25 ; Ternary complex crystal structure of E295K mutant of DNA polymerase Beta 6NL0 ; 1.97 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with ""hot-spot sequence"" with beta-gamma CF2 analogue of dGTP 6NKY ; 2.094 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with ""hot-spot sequence"" with beta-gamma CHF analogue of dGTP 6NKZ ; 2.01 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with ""hot-spot sequence"" with beta-gamma methylene dGTP 6NKX ; 1.98 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with ""hot-spot sequence"" with dGTP 6NKS ; 2.349 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with beta-gamma CHF analog of dGTP 6NKT ; 2.6 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with beta-gamma difluoro analogue of dGTP 6NKR ; 2.45 ; Ternary complex crystal structure of K289M variant of DNA polymerase Beta with dGTP 4R65 ; 1.95 ; Ternary complex crystal structure of R258A mutant of DNA polymerase Beta 7UUT ; 1.89 ; Ternary complex crystal structure of secondary alcohol dehydrogenases from the Thermoanaerobacter ethanolicus mutants C295A and I86A provides better understanding of catalytic mechanism 6Y3W ; 1.34 ; Ternary complex of 14-3-3 sigma (C38N), Estrogen Related Receptor gamma (DBD) phosphopeptide, and disulfide PPI stabilizer 1 6Y18 ; 1.3 ; Ternary complex of 14-3-3 sigma (C38N), Estrogen Related Receptor gamma (DBD) phosphopeptide, and disulfide PPI stabilizer 3 6XXC ; 1.3 ; Ternary complex of 14-3-3 sigma (C38N), Estrogen Related Receptor gamma (DBD) phosphopeptide, and disulfide PPI stabilizer 4 6XY5 ; 1.3 ; Ternary complex of 14-3-3 sigma (C38N), Estrogen Related Receptor gamma (DBD) phosphopeptide, and disulfide PPI stabilizer 5 7OQG ; 1.5 ; Ternary complex of 14-3-3 sigma, Amot-p130 phosphopeptide, and WQ136 7OQJ ; 1.4 ; Ternary complex of 14-3-3 sigma, Amot-p130 phosphopeptide, and WQ162 7OQS ; 1.34 ; Ternary complex of 14-3-3 sigma, Amot-p130 phosphopeptide, and WQ177 7OQW ; 1.9 ; Ternary complex of 14-3-3 sigma, Amot-p130 phosphopeptide, and WQ178 7OQU ; 1.4 ; Ternary complex of 14-3-3 sigma, Amot-p130 phosphopeptide, and WQ180 7OPW ; 1.81 ; Ternary complex of 14-3-3 sigma, Estrogen Receptor alfa phosphopeptide, and WQ136 7OQ7 ; 1.6 ; Ternary complex of 14-3-3 sigma, Estrogen Receptor alfa phosphopeptide, and WQ162 7OQ8 ; 1.43 ; Ternary complex of 14-3-3 sigma, Estrogen Receptor alfa phosphopeptide, and WQ178 7OR3 ; 1.8 ; Ternary complex of 14-3-3 sigma, NotchpS1917 phosphopeptide, and WQ136 7OR5 ; 1.8 ; Ternary complex of 14-3-3 sigma, NotchpS1917 phosphopeptide, and WQ162 7OR7 ; 1.8 ; Ternary complex of 14-3-3 sigma, NotchpS1917 phosphopeptide, and WQ178 7OR8 ; 1.8 ; Ternary complex of 14-3-3 sigma, p27pT198 phosphopeptide, and WQ136 7ORS ; 1.8 ; Ternary complex of 14-3-3 sigma, p27pT198 phosphopeptide, and WQ147 7ORG ; 1.8 ; Ternary complex of 14-3-3 sigma, p27pT198 phosphopeptide, and WQ162 7ORT ; 2.33 ; Ternary complex of 14-3-3 sigma, p27pT198 phosphopeptide, and WQ176 7ORH ; 1.8 ; Ternary complex of 14-3-3 sigma, p27pT198 phosphopeptide, and WQ178 7OQ9 ; 1.8 ; Ternary complex of 14-3-3 sigma, Pin1pS72 phosphopeptide, and WQ136 7OQA ; 1.8 ; Ternary complex of 14-3-3 sigma, Pin1pS72 phosphopeptide, and WQ162 8ADM ; 1.7 ; Ternary complex of 14-3-3 sigma, Usp8pS718 phosphopeptide and small molecule stabilizer 1OJ4 ; 2.01 ; Ternary complex of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase 1DY3 ; 2.0 ; Ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. 5OMQ ; 2.199 ; Ternary complex of 9N DNA polymerase in the replicative state with three metal ions in the active site 5OMV ; 2.003 ; Ternary complex of 9N DNA polymerase in the replicative state with two metal ions in the active site 1TCO ; 2.5 ; TERNARY COMPLEX OF A CALCINEURIN A FRAGMENT, CALCINEURIN B, FKBP12 AND THE IMMUNOSUPPRESSANT DRUG FK506 (TACROLIMUS) 3MGI ; 2.603 ; Ternary complex of a DNA polymerase lambda loop mutant 6NAS ; 2.9 ; Ternary Complex of Ac-Alpha-Actin with Profilin and AcCoA-NAA80 6NBE ; 2.0 ; Ternary Complex of Ac-Alpha-Actin with Profilin and CoA-NAA80 3PW0 ; 2.91 ; Ternary complex of Aflatoxin B1 Adduct modified DNA (AFB1-FAPY) with DNA Polymerase IV and incoming dATP 3PW2 ; 2.74 ; Ternary complex of Aflatoxin B1 Adduct modified DNA (AFB1-FAPY) with DNA Polymerase IV and incoming dTTP 3PW4 ; 2.9 ; Ternary complex of Aflatoxin B1 Adduct modified DNA (AFB1-N7-Gua) with DNA Polymerase IV and incoming dATP 3PW7 ; 2.9 ; Ternary complex of Aflatoxin B1 Adduct modified DNA (AFB1-N7-Gua) with DNA Polymerase IV and incoming dCTP 3PW5 ; 3.0 ; Ternary complex of Aflatoxin B1 Adduct modified DNA (AFB1-N7-Gua) with DNA Polymerase IV and incoming dTTP 1A71 ; 2.0 ; TERNARY COMPLEX OF AN ACTIVE SITE DOUBLE MUTANT OF HORSE LIVER ALCOHOL DEHYDROGENASE, PHE93=>TRP, VAL203=>ALA WITH NAD AND TRIFLUOROETHANOL 1JU5 ; ; Ternary complex of an Crk SH2 domain, Crk-derived phophopeptide, and Abl SH3 domain by NMR spectroscopy 1QI1 ; 3.0 ; Ternary Complex of an NADP Dependent Aldehyde Dehydrogenase 2ANM ; 2.4 ; Ternary complex of an orally active thrombin inhibitor with human thrombin and a c-terminal hirudin derived exo-sit inhibitor 2M2W ; ; Ternary complex of ASFV Pol X with DNA and MgdGTP 4DQQ ; 1.595 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment E658A, DNA duplex, and rCTP (paired with dG of template) in presence of Mg2+ 4DQR ; 1.95 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment E658A, DNA duplex, and rCTP (paired with dG of template) in presence of Mn2+ 4DSE ; 1.67 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment F710Y, DNA duplex, and rCTP (paired with dG of template) in presence of Mg2+ 4DSF ; 1.661 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment F710Y, DNA duplex, and rCTP (paired with dG of template) in presence of Mn2+ 4DQI ; 1.69 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment, DNA duplex, and dCTP (paired with dG of template) 4DQP ; 1.74 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment, DNA duplex, and ddCTP (paired with dG of template) 4DS5 ; 1.68 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment, DNA duplex, and rCTP in presence of Mg2+ 4DS4 ; 1.681 ; Ternary complex of Bacillus DNA Polymerase I Large Fragment, DNA duplex, and rCTP in presence of Mn2+ 6NBW ; 2.5 ; Ternary Complex of Beta/Gamma-Actin with Profilin and AnCoA-NAA80 4O3M ; 2.3 ; Ternary complex of Bloom's syndrome helicase 2GOO ; 2.2 ; Ternary Complex of BMP-2 bound to BMPR-Ia-ECD and ActRII-ECD 2DSA ; 2.1 ; Ternary complex of BphK, a bacterial GST 6ZBI ; ; Ternary complex of Calmodulin bound to 2 molecules of NHE1 8FOW ; 1.6 ; Ternary complex of CDK2 with small molecule ligands TW8672 and Dinaciclib 8FP0 ; 1.6 ; Ternary complex of CDK2 with small molecule ligands TW8672 and Roscovitine 4JWN ; 2.39 ; Ternary complex of D256A mutant of DNA Polymerase Beta 4JWM ; 2.0 ; Ternary complex of D256E mutant of DNA Polymerase Beta 3C2L ; 2.6 ; Ternary complex of DNA POLYMERASE BETA with a C:DAPCPP mismatch in the active site 3JPN ; 2.15 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-dichloro methylene triphosphate 2ISO ; 2.1 ; Ternary complex of DNA Polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-difluoromethylene triphosphate 3JPR ; 2.1 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-dimethyl methylene triphosphate 3JPT ; 2.15 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-fluoro chloro methylene triphosphate 3JPS ; 2.0 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-fluoro methyl methylene triphosphate 2ISP ; 2.2 ; Ternary complex of DNA Polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-methylene triphosphate 3JPQ ; 1.9 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monoBromo methylene triphosphate 3JPO ; 2.0 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monochloromethylene triphosphate 4DOB ; 2.05 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monochlororomethylene triphosphate: Stereoselective binding of R-isomer 4DOC ; 1.949 ; Ternary complex of dna polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monochlororomethylene triphosphate:binding of S-isomer 2PXI ; 2.1 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monofluoromethylene triphosphate 4DOA ; 2.051 ; Ternary complex of dna polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monofluoromethylene triphosphate: non-interactive binding of s-isomer 4DO9 ; 2.05 ; Ternary complex of dna polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-monofluoromethylene triphosphate: stereoselective binding of r-isomer 3JPP ; 2.1 ; Ternary complex of DNA polymerase beta with a dideoxy terminated primer and 2'-deoxyguanosine 5'-beta, gamma-MonoMethyl Methylene triphosphate 3C2M ; 2.15 ; Ternary complex of DNA POLYMERASE BETA with a G:dAPCPP mismatch in the active site 3RJF ; 2.3 ; Ternary complex of DNA Polymerase Beta with a gapped DNA containing (syn)8odG at template position paired with non-hydrolyzable dATP analog (dApCPP) 3RJH ; 2.2 ; Ternary complex of DNA Polymerase Beta with a gapped DNA containing (syn)8odG:dA at primer terminus and dG:dCMP(CF2)PPin the active site 3RJE ; 2.1 ; Ternary complex of DNA Polymerase Beta with a gapped DNA containing 8odG at template position 3RJI ; 2.3 ; Ternary complex of DNA Polymerase Beta with a gapped DNA containing 8odG at template position paired with non-hydrolyzable dCTP analog (dCMP(CF2)PP) 3RJK ; 2.1 ; Ternary complex of DNA Polymerase Beta with a gapped DNA containing 8odG:dC base pair at primer terminus and dG:dCMP(CF2)PP in the active site 3MBY ; 2.0 ; Ternary complex of DNA Polymerase BETA with template base A and 8oxodGTP in the active site with a dideoxy terminated primer 7S9Q ; 1.9 ; Ternary complex of DNA Polymerase Beta with Template Fapy-dG and an incoming dATP analog 7S9P ; 1.86 ; Ternary complex of DNA Polymerase Beta with Template Fapy-dG and an incoming dCTP analog 3IAY ; 2.0 ; Ternary complex of DNA polymerase delta 4M8O ; 2.2 ; TERNARY COMPLEX OF DNA POLYMERASE EPSILON WITH AN INCOMING dATP 3G6X ; 2.08 ; Ternary complex of DNA Polymerase iota:DNA:dGTP with an abasic site at the templating position 3G6Y ; 2.1 ; Ternary complex of DNA Polymerase iota:DNA:dTTP with an abasic site at the templating position 3HWT ; 1.95 ; Ternary complex of DNA polymerase lambda bound to a two nucleotide gapped DNA substrate with a scrunched dA 3HW8 ; 1.95 ; ternary complex of DNA polymerase lambda of a two nucleotide gapped DNA substrate with a C in the scrunch site 7COC ; 1.9 ; Ternary complex of DNA polymerase Mu (K438A/Q441A) with 1-nt gapped DNA (T:dGMPNPP) 7COB ; 1.797 ; Ternary complex of DNA polymerase Mu (Q441A) with 1-nt gapped DNA (T:dGMPNPP) 7CO9 ; 1.599 ; Ternary complex of DNA polymerase Mu with 1-nt gapped DNA (T:dGMPNPP) and Mg 7COA ; 1.698 ; Ternary complex of DNA polymerase Mu with 1-nt gapped DNA (T:dGMPNPP) and Mn 7CO8 ; 1.697 ; Ternary complex of DNA polymerase Mu with 2-nt gapped DNA (T:dGMPNPP) 2W9A ; 2.6 ; Ternary complex of Dpo4 bound to N2,N2-dimethyl-deoxyguanosine modified DNA with incoming dGTP 2W9C ; 2.9 ; Ternary complex of Dpo4 bound to N2,N2-dimethyl-deoxyguanosine modified DNA with incoming dTTP 3ZJU ; 2.4 ; Ternary complex of E .coli leucyl-tRNA synthetase, tRNA(Leu) and the benzoxaborole AN3016 in the editing conformation 3ZJV ; 2.31 ; Ternary complex of E .coli leucyl-tRNA synthetase, tRNA(Leu) and the benzoxaborole AN3213 in the editing conformation 4ARC ; 2.0 ; Ternary complex of E. coli leucyl-tRNA synthetase, tRNA(leu) and leucine in the editing conformation 4AQ7 ; 2.5 ; Ternary complex of E. coli leucyl-tRNA synthetase, tRNA(leu) and leucyl-adenylate analogue in the aminoacylation conformation 4ARI ; 2.08 ; Ternary complex of E. coli leucyl-tRNA synthetase, tRNA(leu) and the benzoxaborole AN2679 in the editing conformation 4AS1 ; 2.02 ; Ternary complex of E. coli leucyl-tRNA synthetase, tRNA(leu) and the benzoxaborole AN2679 in the editing conformation 3ZGZ ; 2.4 ; Ternary complex of E. coli leucyl-tRNA synthetase, tRNA(leu) and toxic moiety from agrocin 84 (TM84) in aminoacylation-like conformation 3ZJT ; 2.2 ; Ternary complex of E.coli leucyl-tRNA synthetase, tRNA(Leu)574 and the benzoxaborole AN3017 in the editing conformation 6HHP ; 1.802 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C42 mutant bound to disulfide fragment PPI stabilizer 1 6HMT ; 1.1 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C42 mutant bound to disulfide fragment PPI stabilizer 2 6HKB ; 1.7 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C42 mutant bound to disulfide fragment PPI stabilizer 3 6HKF ; 1.801 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C42 mutant bound to disulfide fragment PPI stabilizer 4 6HN2 ; 1.7 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C42 mutant bound to disulfide fragment PPI stabilizer 5 6HMU ; 1.2 ; Ternary complex of Estrogen Receptor alpha peptide and 14-3-3 sigma C45 mutant bound to disulfide fragment PPI stabilizer 6 6QIP ; 2.45 ; Ternary complex of FcRn ectodomain, FcRn binding optimised human serum albumin and the albumin-biniding side chain of the human growth hormone derivative somapacitan 6QIO ; 1.95 ; Ternary complex of FcRn ectodomain, FcRn binding optimised human serum albumin and the human growth hormone derivative somapacitan 7SCD ; 2.9 ; Ternary complex of fixed-arm Trx-3ost5 (I299E) with 8mer-1 octasaccharide substrate and co-factor product PAP 7SCE ; 2.75 ; Ternary complex of fixed-arm Trx-3ost5 (I299E) with 8mer-2 octasaccharide substrate and co-factor product PAP 4JUZ ; 2.65 ; Ternary complex of gamma-OHPDG adduct modified dna (zero primer) with dna polymerase iv and incoming dgtp 4JV2 ; 2.74 ; Ternary complex of gamma-OHPDG adduct modified dna with dna (-1 primer) polymerase iv and incoming datp 4JV1 ; 2.3 ; Ternary complex of gamma-OHPDG adduct modified dna with dna (-1 primer) polymerase iv and incoming dgtp 5ERU ; 1.6 ; Ternary complex of GephE - ADP - Molybdenum cluster 5ERV ; 1.8 ; Ternary complex of GephE - ADP - Tungsten cluster 1WPQ ; 2.5 ; Ternary Complex Of Glycerol 3-phosphate Dehydrogenase 1 with NAD and dihydroxyactone 3T5H ; 2.35 ; Ternary complex of HNE Adduct modified DNA (5'-CXG-3' vs 13-mer) with Dpo4 and incoming dDGT 3T5L ; 2.9 ; Ternary complex of HNE Adduct modified DNA (5'-CXG-3' vs 14-mer) with Dpo4 and incoming dDGT 3T5J ; 2.4 ; Ternary complex of HNE Adduct modified DNA (5'-TXG-3' vs 13-mer) with Dpo4 and incoming dDTP 3T5K ; 2.9 ; Ternary complex of HNE Adduct modified DNA (5'-TXG-3' vs 14-mer) with Dpo4 and incoming dDTP 2ALZ ; 2.5 ; Ternary Complex of hPoli with DNA and dCTP 2DPI ; 2.3 ; Ternary complex of hPoli with DNA and dCTP 5AZT ; 3.45 ; Ternary complex of hPPARalpha ligand binding domain, 17-oxoDHA and a SRC1 peptide 6SF2 ; 3.3 ; Ternary complex of human bone morphogenetic protein 9 (BMP9) growth factor domain, its prodomain and extracellular domain of activin receptor-like kinase 1 (ALK1). 1QFW ; 3.5 ; TERNARY COMPLEX OF HUMAN CHORIONIC GONADOTROPIN WITH FV ANTI ALPHA SUBUNIT AND FV ANTI BETA SUBUNIT 5HCC ; 2.59 ; Ternary complex of human Complement C5 with Ornithodoros moubata OmCI and Dermacentor andersoni RaCI3. 5HCE ; 3.12 ; Ternary complex of human Complement C5 with Ornithodoros moubata OmCI and Rhipicephalus appendiculatus RaCI1 5HCD ; 2.98 ; Ternary complex of human Complement C5 with Ornithodoros moubata OmCI and Rhipicephalus microplus RaCI2 2OH2 ; 3.05 ; Ternary Complex of Human DNA Polymerase 3ISD ; 2.6 ; Ternary complex of human DNA polymerase beta with an abasic site (THF): DAPCPP mismatch 5EWG ; 1.75 ; Ternary complex of human DNA polymerase eta inserting rATP opposite an 8-Oxodeoxyguanosine Lesion 5EWF ; 1.782 ; Ternary complex of human DNA polymerase eta inserting rCTP opposite an 8-Oxodeoxyguanosine Lesion 5EWE ; 1.66 ; Ternary complex of human DNA polymerase eta inserting rCTP opposite template G 2FLL ; 2.6 ; Ternary complex of human DNA polymerase iota with DNA and dTTP 3H4B ; 2.85 ; Ternary complex of human DNA polymerase iota with template U/T and incoming dATP 3H4D ; 2.2 ; Ternary complex of human DNA polymerase iota with template U/T and incoming dGTP 4YD1 ; 1.75 ; Ternary complex of human DNA Polymerase Mu with 2-nt gapped DNA substrate and an incoming nonhydrolyzable dUMPNPP 4X0P ; 3.911 ; Ternary complex of human DNA polymerase theta C-terminal domain binding ddATP opposite a tetrahydrofuran AP site analog 4X0Q ; 3.9 ; Ternary complex of human DNA polymerase theta C-terminal domain binding ddGTP opposite dCMP 1MA0 ; 2.3 ; Ternary complex of Human glutathione-dependent formaldehyde dehydrogenase with NAD+ and dodecanoic acid 1MC5 ; 2.6 ; Ternary complex of Human glutathione-dependent formaldehyde dehydrogenase with S-(hydroxymethyl)glutathione and NADH 6E90 ; 2.05 ; Ternary complex of human glycerol 3-phosphate dehydrogenase 3ID8 ; 2.4 ; Ternary complex of human pancreatic glucokinase crystallized with activator, glucose and AMP-PNP 5HQ0 ; 2.3 ; Ternary complex of human proteins CDK1, Cyclin B and CKS2, bound to an inhibitor 6A22 ; 2.55 ; Ternary complex of Human ROR gamma Ligand Binding Domain With Compound T. 1B3O ; 2.9 ; TERNARY COMPLEX OF HUMAN TYPE-II INOSINE MONOPHOSPHATE DEHYDROGENASE WITH 6-CL-IMP AND SELENAZOLE ADENINE DINUCLEOTIDE 1XKD ; 2.3 ; Ternary complex of Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix 3HX0 ; 3.0 ; ternary complex of L277A, H511A, R514 mutant pol lambda bound to a 2 nucleotide gapped DNA substrate with a scrunched dA 2VOJ ; 2.6 ; Ternary complex of M. tuberculosis Rv2780 with NAD and pyruvate 3IJJ ; 1.25 ; Ternary Complex of Macrophage Migration Inhibitory Factor (MIF) Bound Both to 4-hydroxyphenylpyruvate and to the Allosteric Inhibitor AV1013 (R-stereoisomer) 1N2D ; 2.0 ; Ternary complex of MLC1P bound to IQ2 and IQ3 of Myo2p, a class V myosin 6O9I ; 2.6 ; Ternary complex of mouse ECD with Fab1 and Fab2 4I2B ; 2.2 ; Ternary complex of mouse TdT with ssDNA and AMPcPP 4I2C ; 2.1 ; Ternary complex of mouse TdT with ssDNA and AMPcPP 4I2E ; 2.0 ; Ternary complex of mouse TdT with ssDNA and AMPcPP 4I2H ; 2.75 ; Ternary complex of mouse TdT with ssDNA and AMPcPP 4I27 ; 2.6 ; Ternary complex of mouse TdT with ssDNA and incoming nucleotide 5XFR ; 2.25 ; Ternary complex of MTF2, DNA and histone 7ARZ ; 2.15 ; Ternary complex of NAD-dependent formate dehydrogenase from Physcomitrium patens 4NNC ; 2.279 ; Ternary complex of ObcA with C4-CoA adduct and oxalate 6OGX ; 2.77 ; Ternary complex of OX40R (TNFRSF4) bound to Fab1 and Fab2 6G9Q ; 1.89 ; Ternary complex of P14 TCR with murine MHC class I H-2 Db in complex with self-antigen derived from dopamine monooxygenase. 4TYH ; 3.0 ; Ternary complex of P38 and MK2 with a P38 inhibitor 3NG4 ; 1.73 ; Ternary complex of peptidoglycan recognition protein (PGRP-S) with Maltose and N-Acetylglucosamine at 1.7 A Resolution 5XFQ ; 2.4 ; Ternary complex of PHF1, a DNA duplex and a histone peptide 13PK ; 2.5 ; TERNARY COMPLEX OF PHOSPHOGLYCERATE KINASE FROM TRYPANOSOMA BRUCEI 6SA0 ; 2.209 ; Ternary complex of Prim-PolC from Mycobacterium smegmatis with 2nt gapped DNA and UpNHpp 1PYT ; 2.35 ; TERNARY COMPLEX OF PROCARBOXYPEPTIDASE A, PROPROTEINASE E, AND CHYMOTRYPSINOGEN C 2PAV ; 1.8 ; Ternary complex of Profilin-Actin with the Last Poly-Pro of Human VASP 2PBD ; 1.501 ; Ternary complex of profilin-actin with the poly-PRO-GAB domain of VASP* 1QAX ; 2.8 ; TERNARY COMPLEX OF PSEUDOMONAS MEVALONII HMG-COA REDUCTASE WITH HMG-COA AND NAD+ 1QAY ; 2.8 ; TERNARY COMPLEX OF PSEUDOMONAS MEVALONII HMG-COA REDUCTASE WITH MEVALONATE AND NAD+ 4KHQ ; 2.186 ; Ternary complex of RB69 mutant L415F wit DUMPNPP 4KHU ; 2.05 ; Ternary complex of rb69 mutant L415F with a ribonucleotide at -1 position 4KHS ; 2.12 ; Ternary complex of RB69 mutant L415F with a ribonucleotide at 0 position 4KHW ; 2.371 ; Ternary complex of RB69 mutant L415F with ribonucleotide at -2 position 4KHY ; 2.25 ; Ternary complex of rb69 mutant L415F with ribonucleotide at -3 position 4KI6 ; 2.55 ; Ternary complex of rb69 mutant l415f with ribonucleotides at -1 and -2 position 4KI4 ; 2.45 ; Ternary complex of rb69 mutant L415F with ribonucleotides at 0 and -1 position 7QWQ ; 2.83 ; Ternary complex of ribosome nascent chain with SRP and NAC 5VVR ; 5.8 ; Ternary complex of RNA Pol II, transcription scaffold and Rad26 1E5Q ; 2.1 ; Ternary complex of saccharopine reductase from Magnaporthe grisea, NADPH and saccharopine 1HBX ; 3.15 ; Ternary Complex of SAP-1 and SRF with specific SRE DNA 2F69 ; 1.3 ; Ternary complex of SET7/9 bound to AdoHcy and a TAF10 peptide 6Z1A ; 2.3 ; Ternary complex of Staphylococcus aureus DNA gyrase with AMK12 and DNA 2XCP ; 2.6 ; TERNARY COMPLEX OF SULFOLOBUS SOLFATARICUS DPO4 DNA POLYMERASE, 7,8- DIHYDRO-8-OXODEOXYGUANINE MODIFIED DNA AND dCTP - MAGNESIUM FORM 2XCA ; 2.5 ; TERNARY COMPLEX OF SULFOLOBUS SOLFATARICUS DPO4 DNA POLYMERASE, 7,8- DIHYDRO-8-OXODEOXYGUANINE MODIFIED DNA AND dGTP - MAGNESIUM FORM 2J6S ; 2.5 ; Ternary complex of Sulfolobus solfataricus Dpo4 DNA polymerase, O6- methylguanine modified DNA, and dATP. 2J6T ; 2.6 ; Ternary complex of Sulfolobus solfataricus Dpo4 DNA polymerase, O6- methylguanine modified DNA, and dATP. 2J6U ; 2.5 ; Ternary complex of Sulfolobus solfataricus Dpo4 DNA polymerase, O6- methylguanine modified DNA, and dGTP. 8DJH ; 1.77 ; Ternary complex of SUMO1 with a phosphomimetic SIM of PML and zinc 8DJI ; 1.97 ; Ternary complex of SUMO1 with the SIM of PML and zinc 1IXY ; 2.5 ; Ternary complex of T4 phage BGT with UDP and a 13 mer DNA duplex 1M5R ; 1.8 ; Ternary complex of T4 phage BGT with UDP and a 13 mer DNA duplex 7KQN ; 2.02 ; Ternary complex of TERT (telomerase reverse transcriptase) with RNA template, DNA primer, an incoming dGTP and a downstream hybrid duplex 3KFD ; 2.995 ; Ternary complex of TGF-b1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily 2WG1 ; 2.2 ; TERNARY COMPLEX OF THE AGED CONJUGATE OF TORPEDO CALIFORNICA ACEYLCHOLINESTERASE WITH SOMAN AND 2-PAM 2AQ4 ; 2.32 ; Ternary complex of the catalytic core of REV1 with DNA and dCTP. 1O4X ; ; TERNARY COMPLEX OF THE DNA BINDING DOMAINS OF THE OCT1 AND SOX2 TRANSCRIPTION FACTORS WITH A 19MER OLIGONUCLEOTIDE FROM THE HOXB1 REGULATORY ELEMENT 1NFB ; 2.9 ; Ternary complex of the human type II Inosine Monophosphate Dedhydrogenase with 6Cl-IMP and NAD 1NF7 ; 2.65 ; Ternary complex of the human type II Inosine Monophosphate Dedhydrogenase with Ribavirin Monophosphate and C2-Mycophenolic Adenine Dinucleotide 7LNT ; 2.35 ; Ternary complex of the Isopentenyl Phosphate Kinase from Candidatus methanomethylophilus alvus bound to benzyl monophosphate and ATP 7LNU ; 2.5 ; Ternary complex of the Isopentenyl Phosphate Kinase from Candidatus methanomethylophilus alvus bound to isopentenyl monophosphate and ATP 3CQ8 ; 2.5 ; Ternary complex of the L415F mutant RB69 exo(-)polymerase 2W5Z ; 2.2 ; Ternary Complex of the Mixed Lineage Leukaemia (MLL1) SET Domain with the cofactor product S-Adenosylhomocysteine and histone peptide. 2D1K ; 2.5 ; Ternary complex of the WH2 domain of mim with actin-dnase I 2A3Z ; 2.078 ; Ternary complex of the WH2 domain of WASP with Actin-DNAse I 2A40 ; 1.8 ; Ternary complex of the WH2 domain of WAVE with Actin-DNAse I 2A41 ; 2.6 ; Ternary complex of the WH2 Domain of WIP with Actin-DNAse I 3W34 ; 1.91 ; Ternary complex of Thermus thermophilus HB8 uridine-cytidine kinase with substrates 1CI7 ; 2.6 ; TERNARY COMPLEX OF THYMIDYLATE SYNTHASE FROM PNEUMOCYSTIS CARINII 8P2K ; 2.9 ; Ternary complex of translating ribosome, NAC and METAP1 7KHH ; 2.281 ; Ternary complex of VHL/BRD4-BD1/Compound9 (4-(3,5-difluoropyridin-2-yl)-N-(11-(((S)-1-((2S,4R)-4-hydroxy-2-((4-(4-methylthiazol-5-yl)benzyl)carbamoyl)pyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)amino)-11-oxoundecyl)-10-methyl-7-((methylsulfonyl)methyl)-11-oxo-3,4,10,11-tetrahydro-1H-1,4,10-triazadibenzo[cd,f]azulene-6-carboxamide) 4TQS ; 2.06 ; Ternary complex of Y-family DNA polymerase Dpo4 with (5'S)-8,5'-Cyclo-2'-deoxyguanosine and dCTP 4TQR ; 1.58 ; Ternary complex of Y-family DNA polymerase Dpo4 with (5'S)-8,5'-Cyclo-2'-deoxyguanosine and dTTP 6W8I ; 3.8 ; Ternary complex structure - BTK cIAP compound 15 6W7O ; 2.17 ; Ternary complex structure - BTK cIAP compound 17 5X8F ; 1.763 ; Ternary complex structure of a double mutant I454RA456K of o-Succinylbenzoate CoA Synthetase (MenE) from Bacillus Subtilis bound with AMP and its product analogue OSB-NCoA at 1.76 angstrom 7U8F ; 3.15 ; Ternary complex structure of Cereblon-DDB1 bound to IKZF2(ZF2) and the molecular glue DKY709 8DEY ; 3.7 ; Ternary complex structure of Cereblon-DDB1 bound to IKZF2(ZF2,3) and the molecular glue DKY709 3TFR ; 2.0 ; Ternary complex structure of DNA polymerase beta with a gapped DNA substrate and a, b dAMP(CF2)PP in the active site 3TFS ; 2.0 ; Ternary complex structure of DNA polymerase beta with a gapped DNA substrate and a, b dAMP(CFH)PP in the active site: Stereoselective binding of (S) isomer 1D6N ; 2.7 ; TERNARY COMPLEX STRUCTURE OF HUMAN HGPRTASE, PRPP, MG2+, AND THE INHIBITOR HPP REVEALS THE INVOLVEMENT OF THE FLEXIBLE LOOP IN SUBSTRATE BINDING 4N5S ; 1.67 ; Ternary complex structure of Klenow fragment of Taq DNA polymerase I707L mutant (Cs3C KlenTaq) with DNA and ddCTP 3I52 ; 2.28 ; Ternary complex structure of leucoanthocyanidin reductase from vitis vinifera 6NMM ; 2.5 ; Ternary complex structure of the T130K mutant of ANT-4 with Neomycin, AMPCPP and Pyrophosphate 6NMN ; 1.8 ; Ternary complex structure of the T130K mutant of ANT-4'' with Neomycin and ATP (No Pyrophosphate) 4V69 ; 6.7 ; Ternary complex-bound E.coli 70S ribosome. 8HR2 ; 1.94 ; Ternary Crystal Complex Structure of RBD with NB1B5 and NB1C6 3PNC ; 2.0 ; Ternary crystal structure of a polymerase lambda variant with a GT mispair at the primer terminus and sodium at catalytic metal site 2GCG ; 2.2 ; Ternary Crystal Structure of Human Glyoxylate Reductase/Hydroxypyruvate Reductase 3PMN ; 2.2 ; ternary crystal structure of polymerase lambda variant with a GT mispair at the primer terminus with Mn2+ in the active site 5DKW ; 2.689 ; Ternary crystal structure of polymerase lambda with a GA mispair at the primer terminus with Ca2+ in the active 5AOV ; 1.4 ; Ternary Crystal Structure of Pyrococcus furiosus Glyoxylate Hydroxypyruvate Reductase in presence of glyoxylate 6C09 ; 2.95 ; Ternary crystal structure of the 3C8 TCR-CD1c-monoacylglycerol complex 3VWK ; 2.935 ; Ternary crystal structure of the human NKT TCR-CD1d-4'deoxy-alpha-galactosylceramide complex 3VWJ ; 3.093 ; Ternary crystal structure of the human NKT TCR-CD1d-C20:2 complex 3ARD ; 3.01 ; Ternary crystal structure of the mouse NKT TCR-CD1d-3'deoxy-alpha-galactosylceramide 3ARE ; 2.8 ; Ternary crystal structure of the mouse NKT TCR-CD1d-4'deoxy-alpha-galactosylceramide 3ARG ; 3.0 ; Ternary crystal structure of the mouse NKT TCR-CD1d-alpha-glucosylceramide(C20:2) 3ARF ; 2.9 ; Ternary crystal structure of the mouse NKT TCR-CD1d-C20:2 3ARB ; 2.7 ; Ternary crystal structure of the NKT TCR-CD1d-alpha-galactosylceramide analogue-OCH 4UP0 ; 1.28 ; Ternary crystal structure of the Pygo2 PHD finger in complex with the B9L HD1 domain and a H3K4me2 peptide 4PTF ; 2.809 ; Ternary crystal structure of yeast DNA polymerase epsilon with template G 4K4H ; 2.1 ; Ternary crystal structures of a human DNA POLYMERASE LAMBDA IN COMPLEX WITH DNA AND (-)3TC-TP. 4K4I ; 2.25 ; Ternary crystal structures of a human DNA POLYMERASE LAMBDA IN COMPLEX WITH DNA AND (-)FTC-TP. 4QWC ; 2.4 ; Ternary Crystal Structures of a Y-family DNA polymerase DPO4 from Sulfobus Solfataricus in Comples with DNA and L-DCDP 4QWA ; 2.2 ; TERNARY CRYSTAL STRUCTURES OF A Y-FAMILY DNA POLYMERASE DPO4 FROM SULFOLOBUS SOLFATARICUS in COMPLEX WITH DNA AND (-)3TC-DP 4QWD ; 2.05 ; TERNARY CRYSTAL STRUCTURES of A Y-FAMILY DNA POLYMERASE DPO4 FROM SULFOLOBUS SOLFATARICUS IN COMPLEX WITH DNA AND (-)3TC-PPNP 4QWE ; 2.2 ; TERNARY CRYSTAL STRUCTURES of A Y-FAMILY DNA POLYMERASE DPO4 FROM SULFOLOBUS SOLFATARICUS IN COMPLEX WITH DNA AND (-)FTC-DP 4QW9 ; 2.4 ; TERNARY CRYSTAL STRUCTURES of A Y-FAMILY DNA POLYMERASE DPO4 FROM SULFOLOBUS SOLFATARICUS IN COMPLEX WITH DNA AND (-)FTC-PPNP 4QW8 ; 2.29 ; TERNARY CRYSTAL STRUCTURES of A Y-FAMILY DNA POLYMERASE DPO4 FROM SULFOLOBUS SOLFATARICUS IN COMPLEX WITH DNA AND D-DCTP 4K4G ; 2.15 ; Ternary crystal structures of human DNA POLYMERASE LAMBDA IN COMPLEX WITH DNA AND L-DCTP. 1OS2 ; 2.15 ; Ternary enzyme-product-inhibitor complexes of human MMP12 4ONT ; 2.15 ; Ternary host recognition complex of complement factor H, C3d, and sialic acid 1D15 ; 1.5 ; TERNARY INTERACTIONS OF SPERMINE WITH DNA: 4'-EPIADRIAMYCIN AND OTHER DNA: ANTHRACYCLINE COMPLEXES 6D8P ; 2.1 ; Ternary RsAgo Complex Containing Guide RNA Paired with Target DNA 6D92 ; 1.81 ; Ternary RsAgo Complex with Guide RNA and Target DNA Containing A-A non-canonical pair at position 3 6D9K ; 2.0 ; Ternary RsAgo Complex with Guide RNA and Target DNA Containing A-G Non-canonical Pair 6D9L ; 2.6 ; Ternary RsAgo Complex with Guide RNA and Target DNA Containing G-A Non-canonical Pair 6D95 ; 1.85 ; Ternary RsAgo Complex with Guide RNA Paired and Target DNA containing A8-A8' Non-Canonical Pair 7PPC ; 3.6 ; Ternary signalling complex of BMP10 bound to ALK1 and BMPRII 7K14 ; 2.75 ; Ternary soak structure of alkanesulfonate monooxygenase MsuD from Pseudomonas fluorescens with FMN and methanesulfonate 8B5P ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 10 8B2I ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 4 8B4Q ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 5 8BJN ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 6 8BM5 ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 7 8BJG ; 1.4 ; Ternary structure of 14-3-3s, ERRg phosphopeptide and dual-reactive compound 8 8B2K ; 1.4 ; Ternary structure of 14-3-3s, RND3 phosphopeptide and dual-reactive compound 10 8C42 ; 1.4 ; Ternary structure of 14-3-3sigma, PKA-responsive ERa phosphopeptide and Fusicoccin-A 8C43 ; 1.4 ; Ternary structure of 14-3-3sigma, strep-tagged PKA-responsive ERa phosphopeptide, and Fusicoccin-A. 2Z6Q ; 2.79 ; Ternary structure of Arg165Ala M.HhaI C5-Cytosine DNA methyltransferase with unmodified DNA and AdoHcy 6E16 ; 2.4 ; Ternary structure of c-Myc-TBP-TAF1 6E24 ; 3.001 ; Ternary structure of c-Myc-TBP-TAF1 7KLF ; 2.301 ; Ternary structure of Dpo4 bound to G in the template base paired with incoming dCTP 5EDW ; 2.62 ; Ternary structure of Dpo4 bound to G in the template base paired with incoming dTTP 7KLE ; 3.003 ; Ternary structure of Dpo4 bound to N7mG in the template base paired with incoming dCTP 6MAC ; 2.34 ; Ternary structure of GDF11 bound to ActRIIB-ECD and Alk5-ECD 6MHT ; 2.05 ; TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE WITH ADOHCY AND DNA CONTAINING 4'-THIO-2'DEOXYCYTIDINE AT THE TARGET 10MH ; 2.55 ; TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE WITH ADOHCY AND HEMIMETHYLATED DNA CONTAINING 5,6-DIHYDRO-5-AZACYTOSINE AT THE TARGET 5MHT ; 2.7 ; TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE WITH HEMIMETHYLATED DNA AND ADOHCY 4MHT ; 2.7 ; TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE WITH NATIVE DNA AND ADOHCY 3MHT ; 2.7 ; TERNARY STRUCTURE OF HHAI METHYLTRANSFERASE WITH UNMODIFIED DNA AND ADOHCY 8OV6 ; 3.77 ; Ternary structure of intramolecular bivalent glue degrader IBG1 bound to BRD4 and DCAF16:DDB1deltaBPB 3HSN ; 1.91 ; Ternary structure of neuronal nitric oxide synthase with NHA and CO bound 3HSO ; 2.02 ; Ternary structure of neuronal nitric oxide synthase with NHA and NO bound(1) 3HSP ; 2.2 ; Ternary structure of neuronal nitric oxide synthase with NHA and NO bound(2) 1Q0T ; 3.1 ; Ternary Structure of T4DAM with AdoHcy and DNA 6P06 ; 2.3 ; Ternary structure of the E52D mutant of ANT-4 with Neomycin and AMPCPP 6P08 ; 2.27 ; Ternary structure of the E52D mutant of ANT-4'' with Neomycin, AMP and Pyrophosphate 2Z6U ; 2.72 ; Ternary structure of the Glu119Ala M.HhaI, C5-Cytosine DNA methyltransferase, with unmodified DNA and AdoHcy 2ZCJ ; 2.75 ; Ternary structure of the Glu119Gln M.HhaI, C5-Cytosine DNA methyltransferase, with unmodified DNA and AdoHcy 4DLG ; 1.89 ; Ternary Structure of the large Fragment of Taq DNA polymerase 3RR8 ; 2.4 ; Ternary Structure of the large fragment of Taq DNA polymerase bound to an abasic site and a ddGTP 3RRG ; 2.3 ; Ternary Structure of the large fragment of Taq DNA polymerase bound to an abasic site and a ddGTP 3RRH ; 1.8 ; Ternary Structure of the large fragment of Taq DNA polymerase bound to an abasic site and a ddTTP 3T3F ; 1.9 ; Ternary Structure of the large fragment of Taq DNA polymerase bound to an abasic site and dNITP 4DLE ; 2.44 ; Ternary Structure of the large Fragment of Taq DNA Polymerase: 4-Fluoroproline Variant 6NML ; 2.0 ; Ternary structure of the T130K mutant of ANT-4'' with Neomycin and AMPCPP 2HR1 ; 1.96 ; Ternary structure of WT M.HhaI C5-Cytosine DNA methyltransferase with unmodified DNA and AdoHcy 1TC2 ; 1.81 ; TERNARY SUBSTRATE COMPLEX OF THE HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE FROM TRYPANOSOMA CRUZI 8ITQ ; 2.07 ; Terpene cyclase AriE mutant - D128A 6VYD ; 1.46 ; Terpenoid Cyclase FgGS in Complex with Mg, Inorganic Pyrophosphate, and Benzyltriethylammonium cation 6W26 ; 2.15 ; Terpenoid Cyclase FgGS in Complex with Mg, Inorganic Pyrophosphate, and Imidazole 1B9R ; ; TERPREDOXIN FROM PSEUDOMONAS SP. 1GDD ; 2.2 ; TERTIARY AND QUATERNARY STRUCTURAL CHANGES IN GIA1 INDUCED BY GTP HYDROLYSIS 3IGI ; 3.125 ; Tertiary Architecture of the Oceanobacillus Iheyensis Group II Intron 1TNM ; ; TERTIARY STRUCTURE OF AN IMMUNOGLOBULIN-LIKE DOMAIN FROM THE GIANT MUSCLE PROTEIN TITIN: A NEW MEMBER OF THE I SET 1TNN ; ; Tertiary structure of an immunoglobulin-like domain from the giant muscle protein titin: a new member of the I set 1DV5 ; ; TERTIARY STRUCTURE OF APO-D-ALANYL CARRIER PROTEIN 1HQB ; ; TERTIARY STRUCTURE OF APO-D-ALANYL CARRIER PROTEIN 6LEK ; ; Tertiary structure of Barnacle cement protein MrCP20 1ERA ; ; TERTIARY STRUCTURE OF ERABUTOXIN B IN AQUEOUS SOLUTION ELUCIDATED BY TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE 1FRA ; ; TERTIARY STRUCTURE OF ERABUTOXIN B IN AQUEOUS SOLUTION ELUCIDATED BY TWO-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE 1A9V ; ; TERTIARY STRUCTURE OF THE MAJOR HOUSE DUST MITE ALLERGEN DER P 2, NMR, 10 STRUCTURES 4FXC ; 2.5 ; TERTIARY STRUCTURE OF [2FE-2S] FERREDOXIN FROM SPIRULINA PLATENSIS REFINED AT 2.5 ANGSTROMS RESOLUTION: STRUCTURAL COMPARISONS OF PLANT-TYPE FERREDOXINS AND AN ELECTROSTATIC POTENTIAL ANALYSIS 1BZD ; 1.9 ; TERTIARY STRUCTURES OF THREE AMYLOIDOGENIC TRANSTHYRETIN VARIANTS AND IMPLICATIONS FOR AMYLOID FIBRIL FORMATION 1BZE ; 1.8 ; TERTIARY STRUCTURES OF THREE AMYLOIDOGENIC TRANSTHYRETIN VARIANTS AND IMPLICATIONS FOR AMYLOID FIBRIL FORMATION 1TSH ; 1.7 ; TERTIARY STRUCTURES OF THREE AMYLOIDOGENIC TRANSTHYRETIN VARIANTS AND IMPLICATIONS FOR AMYLOID FIBRIL FORMATION 2TRH ; 1.9 ; TERTIARY STRUCTURES OF THREE AMYLOIDOGENIC TRANSTHYRETIN VARIANTS AND IMPLICATIONS FOR AMYLOID FIBRIL FORMATION 2TRY ; 2.0 ; TERTIARY STRUCTURES OF THREE AMYLOIDOGENIC TRANSTHYRETIN VARIANTS AND IMPLICATIONS FOR AMYLOID FIBRIL FORMATION 6FVJ ; 2.6 ; TesA a major thioesterase from Mycobacterium tuberculosis 6FW5 ; 2.75 ; TesA a major thioesterase from Mycobacterium tuberculosis 3BKK ; 2.17 ; Tesis ACE co-crystal structure with ketone ACE inhibitor kAF 6A7J ; 2.71 ; Testerone bound CYP154C4 from Streptomyces sp. ATCC 11861 1JJ8 ; 2.75 ; Testing the Water-Mediated HIN Recombinase DNA Recognition by Systematic Mutations 1JKO ; 2.24 ; Testing the Water-Mediated HIN Recombinase DNA Recognition by Systematic Mutations 1JKP ; 2.8 ; Testing the Water-Mediated HIN Recombinase DNA Recognition by Systematic Mutations 1JKQ ; 2.86 ; Testing the Water-Mediated HIN Recombinase DNA Recognition by Systematic Mutations 1JKR ; 2.28 ; Testing the Water-Mediated HIN Recombinase DNA Recognition by Systematic Mutations 1IJW ; 2.4 ; Testing the Water-Mediated Hin Recombinase DNA Recognition by Systematic Mutations. 1JJ6 ; 2.3 ; Testing the Water-Mediated Hin Recombinase DNA Recognition by Systematic Mutations. 3BKL ; 2.18 ; Testis ACE co-crystal structure with ketone ACE inhibitor kAW 3L3N ; 2.3 ; Testis ACE co-crystal structure with novel inhibitor lisW 1I9J ; 2.6 ; TESTOSTERONE COMPLEX STRUCTURE OF THE RECOMBINANT MONOCLONAL WILD TYPE ANTI-TESTOSTERONE FAB FRAGMENT 7CL8 ; 1.42 ; Testosterone-bound structure of CYP154C2 from Streptomyces avermitilis in an closed conformation 2XB5 ; 2.5 ; Tet repressor (class D) in complex with 7-Iodotetracycline 2X9D ; 2.34 ; Tet repressor (class D) in complex with iso-7-chlortetracycline 2VKE ; 1.62 ; Tet repressor class D complexed with cobalt and tetracycline 2X6O ; 2.3 ; Tet Repressor class D in complex with 7-chlor-2-cyano-iso- tetracycline 4AUX ; 2.25 ; Tet repressor class D in complex with 9-nitrotetracycline 2VPR ; 2.49 ; Tet repressor class H in complex with 5a,6- anhydrotetracycline-Mg 1ORK ; 2.4 ; TET REPRESSOR, CLASS D IN COMPLEX WITH 9-(N,N-DIMETHYLGLYCYLAMIDO)-6-DEMETHYL-6-DEOXY-TETRACYCLINE 1A6I ; 2.4 ; TET REPRESSOR, CLASS D VARIANT 2XRL ; 1.85 ; Tet-repressor class D T103A with doxycycline 1AF9 ; 2.7 ; TETANUS NEUROTOXIN C FRAGMENT 7OH0 ; 3.9 ; Tetanus neurotoxin HC domain in complex with TT104-Fab1 7OH1 ; 8.0 ; Tetanus neurotoxin LC-HN domain in complex with TT110-Fab1 7BY5 ; 2.27 ; Tetanus neurotoxin mutant-(H233A/E234Q/H237A/Y375F) 7BY4 ; 1.5 ; Tetanus neurotoxin receptor binding domain 7BXX ; 2.34 ; Tetanus neurotoxin translocation domain -C467S 1A8D ; 1.57 ; TETANUS TOXIN C FRAGMENT 7P2T ; 2.3 ; Tetartohedrally twinned crystal structure of Schistosoma mansoni HDAC8 in complex with a tricyclic thieno[3,2-b]indole capped hydroxamate-based inhibitor, bromine derivative 7WUI ; 3.1 ; Tethered peptide activation mechanism of adhesion GPCRs ADGRG2 and ADGRG4 7WUJ ; 3.3 ; Tethered peptide activation mechanism of adhesion GPCRs ADGRG2 and ADGRG4 7WUQ ; 2.9 ; Tethered peptide activation mechanism of adhesion GPCRs ADGRG2 and ADGRG4 3CTB ; 2.0 ; Tethered PXR-LBD/SRC-1p apoprotein 6P2B ; 2.3 ; Tethered PXR-LBD/SRC-1p bound to Garcinoic Acid 3HVL ; 2.1 ; Tethered PXR-LBD/SRC-1p complexed with SR-12813 2VKV ; 1.74 ; TetR (BD) variant L17G with reverse phenotype 6NSM ; 2.8 ; TetR family transcriptional regulator CifR C99T-C107S-C181R Cysteines mutant complexed with 26bp double-strand operator DNA 6NSR ; 3.0 ; TetR family transcriptional regulator CifR C99T-C181R cysteine mutant complexed with 26bp double-strand operator DNA and apo-CifR C99T-C181R 6NSN ; 2.6 ; TetR family transcriptional regulator CifR C99T-C181R Cysteines mutant complexed with 26bp double-strand operator DNA 6SY4 ; 2.695 ; TetR in complex with the TetR-binding RNA-aptamer K1 6SY6 ; 2.9 ; TetR in complex with the TetR-binding RNA-aptamer K2 4AC0 ; 2.45 ; TETR(B) IN COMPLEX WITH MINOCYCLINE AND MAGNESIUM 5MRU ; 2.55 ; TetR(class A) in complex with 5a,6-anhydrotetracycline and magnesium 5FKO ; 1.85 ; TetR(D) E147A mutant in complex with anhydrotetracycline and magnesium 6RBL ; 1.9 ; TETR(D) E147A MUTANT IN COMPLEX WITH DOXYCYCLINE AND MAGNESIUM 6RBM ; 2.05 ; TETR(D) E147A MUTANT IN COMPLEX WITH MINOCYCLINE AND MAGNESIUM 6FPL ; 1.602 ; TETR(D) E147A MUTANT IN COMPLEX WITH TETRACYCLINE AND MAGNESIUM 5FKL ; 1.9 ; TetR(D) H100A mutant in complex with anhydrotetracycline and magnesium 6RCR ; 2.05 ; TETR(D) H100A MUTANT IN COMPLEX WITH DOXYCYCLINE AND MAGNESIUM 4D7M ; 1.55 ; TetR(D) in complex with anhydrotetracycline and magnesium 4D7N ; 1.76 ; TetR(D) in complex with anhydrotetracycline and potassium 2XPU ; 1.55 ; TetR(D) in complex with anhydrotetracycline. 2XPV ; 1.49 ; TetR(D) in complex with minocycline and magnesium. 2XPW ; 1.44 ; TetR(D) in complex with oxytetracycline and magnesium. 4ABZ ; 1.886 ; TetR(D) in Complex with Tigecycline and Magnesium, co-crystallized 5FKK ; 1.75 ; TetR(D) N82A mutant in complex with anhydrotetracycline and magnesium 6RGX ; 1.8 ; TETR(D) N82A MUTANT IN COMPLEX WITH DOXYCYCLINE AND MAGNESIUM 6FTS ; 2.0 ; TETR(D) N82A MUTANT IN COMPLEX WITH PEG4 6YR1 ; 2.3 ; TetR(D) soaked with Tigecycline I4(1)22 6YR2 ; 1.95 ; TetR(D) soaked with Tigecycline P4(1)2(1)2 6QJW ; 2.1 ; TetR(D) T103A mutant in complex with 7-chlortetracycline and magnesium 5FKM ; 1.63 ; TetR(D) T103A mutant in complex with anhydrotetracycline and magnesium, I4(1)22 5FKN ; 1.8 ; TetR(D) T103A mutant in complex with anhydrotetracycline and magnesium, P4(3)2(1)2 6QJX ; 2.1 ; TetR(D) T103A mutant in complex with minocycline and magnesium 6FPM ; 1.85 ; TetR(D) T103A mutant in complex with tetracycline and magnesium 5FWG ; 2.0 ; TETRA-(5-FLUOROTRYPTOPHANYL)-GLUTATHIONE TRANSFERASE 2MK7 ; ; Tetra-O-GalNAc glycosylated mucin sequence from alpha dystroglycan mucin domain 4OQ3 ; 2.3 ; Tetra-substituted imidazoles as a new class of inhibitors of the p53-MDM2 interaction 2RES ; 2.2 ; Tetracenomycin ARO/CYC mutant R69A 2REZ ; 1.95 ; Tetracenomycin ARO/CYC NaI Structure 6Y6X ; 2.8 ; Tetracenomycin X bound to the human ribosome 8CF1 ; 1.82 ; Tetracycline bound to the 30S head 1BJZ ; 2.2 ; TETRACYCLINE CHELATED MG2+-ION INITIATES HELIX UNWINDING FOR TET REPRESSOR INDUCTION 2TRT ; 2.5 ; TETRACYCLINE REPRESSOR CLASS D 4B1R ; 1.95 ; Tetracycline repressor class D mutant H100A in complex with iso-7- Chlortetracycline 4B3A ; 1.7 ; Tetracycline repressor class D mutant H100A in complex with tetracycline 4D5F ; 2.2 ; tetracycline repressor class H, apo form 4D5C ; 1.7 ; tetracycline repressor class J, apo form 4V2G ; 2.71 ; Tetracycline repressor TetR(D) bound to chlortetracycline and iso- chlortetracycline 4V2F ; 2.4 ; Tetracycline repressor TetR(D), unliganded 4V6V ; 9.8 ; Tetracycline resistance protein Tet(O) bound to the ribosome 7URW ; 3.11 ; Tetradecameric hub domain of CaMKII beta 7URY ; 2.64 ; Tetradecameric hub domain of CaMKII beta 6VE2 ; 4.3 ; Tetradecameric PilQ bound by TsaP heptamer from Pseudomonas aeruginosa 6VE3 ; 4.3 ; Tetradecameric PilQ from Pseudomonas aeruginosa 5CQW ; 2.65 ; Tetragonal Complex Structure of Protein Kinase CK2 Catalytic Subunit with a Benzotriazole-Based Inhibitor Generated by click-chemistry 1JKT ; 3.5 ; TETRAGONAL CRYSTAL FORM OF A CATALYTIC DOMAIN OF DEATH-ASSOCIATED PROTEIN KINASE 6WUE ; 1.8 ; Tetragonal crystal form of SbtB from Synechocystis PCC6803 1IES ; 2.6 ; TETRAGONAL CRYSTAL STRUCTURE OF NATIVE HORSE SPLEEN FERRITIN 3D1B ; 1.7 ; Tetragonal crystal structure of Tas3 C-terminal alpha motif 6ZDZ ; 2.153 ; Tetragonal crystal structure of the bulky-bulky ketone specific alcohol dehydrogenase from Comamonas testosteroni 7YYJ ; 2.1 ; Tetragonal crystal structure of YTHDF1 YTH domain (544AVV546 mutant) 5EYY ; 1.902 ; Tetragonal Form of Centrolobium tomentosum seed lectin (CTL) complexed with Man1-3Man-OMe. 8A9R ; 1.6 ; Tetragonal Hen Egg-White (HEW) Lysozyme soaked in reduced resazurin in a glovebox and flash-cooled using a miniature-airlock 6F1P ; 1.12 ; Tetragonal Lysozyme crystallized at 298 K and pH 4.5 with phosphate bound 6F1R ; 1.1 ; Tetragonal Lysozyme crystallized at 298 K and pH 4.5 with phosphate bound: control experiment 6RTA ; 1.8 ; Tetragonal lysozyme grown with 300g/L Ficoll 7MQ7 ; 1.95 ; Tetragonal Maltose Binding Protein 7MQ6 ; 2.372 ; Tetragonal Maltose Binding Protein in the presence of gold 4XF2 ; 5.0 ; Tetragonal structure of Arp2/3 complex 7B8I ; 2.55 ; Tetragonal structure of human protein kinase CK2 catalytic subunit in complex with a heparin oligo saccharide 5N95 ; 2.6 ; Tetragonal structure of mutant V173I of 3D polymerase from Foot-and-Mouth Disease Virus 5UU7 ; 1.60001 ; Tetragonal thermolysin (295 K) in the presence of 50% mpd 5UN3 ; 1.60004 ; Tetragonal thermolysin (295 K) in the presence of 50% xylose 6N4W ; 1.4 ; Tetragonal thermolysin (with 50% xylose) cryocooled in a nitrogen gas stream to 100 K 6N4Z ; 1.4 ; Tetragonal thermolysin (with 50% xylose) plunge cooled in liquid nitrogen to 77 K 5UUB ; 1.6 ; Tetragonal thermolysin cryocooled to 100 K with 25% xylose/25% mpd as cryoprotectant 5UU8 ; 2.5 ; Tetragonal thermolysin cryocooled to 100 K with 30% xylose as cryoprotectant 5UU9 ; 1.59969 ; Tetragonal thermolysin cryocooled to 100 K with 40% xylose as cryoprotectant 5UUD ; 1.6 ; Tetragonal thermolysin cryocooled to 100 K with 50% dmf as cryoprotectant 5UUE ; 1.6 ; Tetragonal thermolysin cryocooled to 100 K with 50% methanol as cryoprotectant 5UUC ; 1.60001 ; Tetragonal thermolysin cryocooled to 100 K with 50% mpd as cryoprotectant 5UUA ; 1.6 ; Tetragonal thermolysin cryocooled to 100 K with 50% xylose as cryoprotectant 3T2J ; 2.0 ; Tetragonal thermolysin in the presence of betaine 3T2I ; 2.1 ; Tetragonal thermolysin in the presence of sarcosine 3T2H ; 1.95 ; Tetragonal thermolysin in the presence of TMAO 6N1R ; 4.0 ; Tetrahedral oligomeric complex of GyrA N-terminal fragment, solved by cryoEM in tetrahedral symmetry 6P3O ; 1.8 ; Tetrahydroprotoberberine N-methyltransferase in complex with (S)-cis-N-methylstylopine and S-adenosylhomocysteine 6P3M ; 1.8 ; Tetrahydroprotoberberine N-methyltransferase in complex with S-adenosylhomocysteine 6P3N ; 1.6 ; Tetrahydroprotoberberine N-methyltransferase in complex with S-adenosylmethionine 6N2J ; 1.8 ; Tetrahydropyridopyrimidines as Covalent Inhibitors of KRAS-G12C 6N2K ; 1.72 ; Tetrahydropyridopyrimidines as Covalent Inhibitors of KRAS-G12C 5BVD ; 1.9 ; Tetrahydropyrrolo-diazepenones as inhibitors of ERK2 kinase 5BVE ; 2.0 ; Tetrahydropyrrolo-diazepenones as inhibitors of ERK2 kinase 5BVF ; 1.9 ; Tetrahydropyrrolo-diazepenones as inhibitors of ERK2 kinase 3O5N ; 1.83 ; Tetrahydroquinoline carboxylates are potent inhibitors of the Shank PDZ domain, a putative target in autism disorders 7UY7 ; 4.2 ; Tetrahymena CST with Polymerase alpha-Primase 1M1D ; 2.2 ; TETRAHYMENA GCN5 WITH BOUND BISUBSTRATE ANALOG INHIBITOR 7UY8 ; 4.5 ; Tetrahymena Polymerase alpha-Primase 8TJX ; 2.44 ; Tetrahymena Ribozyme cryo-EM scaffold 6WLS ; 6.8 ; Tetrahymena ribozyme models, 6.8 Angstrom resolution 8TJV ; 2.99 ; Tetrahymena Ribozyme scaffolded Fluoride riboswitch 8TJU ; 3.46 ; Tetrahymena Ribozyme scaffolded TABV xrRNA 8TJQ ; 3.4 ; Tetrahymena Ribozyme scaffolded Zika Virus xrRNA 7UY6 ; 2.9 ; Tetrahymena telomerase at 2.9 Angstrom resolution 7LMA ; 3.3 ; Tetrahymena telomerase T3D2 structure at 3.3 Angstrom 7LMB ; 3.8 ; Tetrahymena telomerase T5D5 structure at 3.8 Angstrom 7UY5 ; 3.5 ; Tetrahymena telomerase with CST 2JYF ; ; Tetraloop-receptor RNA complex 8V5M ; 9.22 ; Tetramer core subcomplex (conformation 1) of Xenopus laevis DNA polymerase alpha-primase 8V5N ; 8.56 ; Tetramer core subcomplex (conformation 2) of Xenopus laevis DNA polymerase alpha-primase 8V5O ; 8.99 ; Tetramer core subcomplex (conformation 3) of Xenopus laevis DNA polymerase alpha-primase 8X5N ; 2.8 ; Tetramer Gabija with ATP 8X5I ; 3.01 ; tetramer Gabija with ATP (local refinement) 4D3E ; 24.0 ; Tetramer of IpaD, modified from 2J0O, fitted into negative stain electron microscopy reconstruction of the wild type tip complex from the type III secretion system of Shigella flexneri 5GYR ; 1.6 ; Tetrameric Allochromatium vinosum cytochrome c' 7W0X ; ; Tetrameric antiparallel G-quadruplex formed by natural human telomeric sequence 5A7D ; 3.4 ; Tetrameric assembly of LGN with Inscuteable 4W80 ; 3.2 ; Tetrameric BAP29 vDED with disulfide bonds in crystal contacts 4W7Z ; 2.2 ; Tetrameric BAP29 vDED without disulfide bonds 7D2H ; 2.2 ; Tetrameric coiled-coil structure of liprin-alpha2_H2 7D2E ; 1.7 ; Tetrameric coiled-coil structure of liprin-alpha2_H3 5FTU ; 6.01 ; Tetrameric complex of Latrophilin 3, Unc5D and FLRT2 6PIK ; 7.8 ; Tetrameric cryo-EM ArnA 3C62 ; 1.87 ; Tetrameric Cytochrome cb562 (H59/D62/H63/H73/A74/H77) Assembly Stabilized by Interprotein Zinc Coordination 3C63 ; 1.75 ; Tetrameric Cytochrome cb562 (K34/H59/D62/H63/H73/A74/H77) Assembly Stabilized by Interprotein Zinc Coordination 4H2P ; 1.981 ; Tetrameric form of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO) 4KPR ; 2.4 ; Tetrameric form of rat selenoprotein thioredoxin reductase 1 6JX6 ; 2.805 ; Tetrameric form of Smac 7KLU ; 3.5 ; Tetrameric human mitochondrial Hsp90 (TRAP1) in the presence of AMP-PNP 2PAH ; 3.1 ; TETRAMERIC HUMAN PHENYLALANINE HYDROXYLASE 2N89 ; ; Tetrameric i-motif structure of dT-dC-dC-CFL-CFL-dC at acidic pH 6JI1 ; 4.1 ; Tetrameric PepTSo2 incorporated in salipro nano particle 1FIU ; 1.6 ; TETRAMERIC RESTRICTION ENDONUCLEASE NGOMIV IN COMPLEX WITH CLEAVED DNA 4M1X ; 1.3 ; Tetrameric ring structure of 201phi2-1p060 from Pseudomonas phage 201phi2-1 6P2P ; 3.1 ; Tetrameric structure of ACAT1 1J2W ; 1.5 ; Tetrameric Structure of aldolase from Thermus thermophilus HB8 1Z9W ; 2.5 ; Tetrameric structure of apo-7,8-Dihydroneopterin Aldolase from Mycobacterium tuberculosis 2JO4 ; ; Tetrameric structure of KIA7 peptide 2JO5 ; ; Tetrameric structure of KIA7F peptide 7P4T ; 3.17 ; Tetrameric structure of murine SapA 6LZ7 ; 3.59936 ; Tetrameric structure of ZmCRY1a PHR domain 3FR3 ; 1.9 ; Tetramerization and Cooperativity in Plasmodium falciparum glutathione transferase are mediated by the atypic loop 113-118 3FR6 ; 2.6 ; Tetramerization and Cooperativity in Plasmodium falciparum glutathione transferase are mediated by the atypic loop 113-118 3FR9 ; 2.4 ; Tetramerization and Cooperativity in Plasmodium falciparum glutathione transferase are mediated by the atypic loop 113-118 3FRC ; 2.0 ; Tetramerization and Cooperativity in Plasmodium falciparum glutathione transferase are mediated by the atypic loop 113-118 3KVT ; 2.0 ; TETRAMERIZATION DOMAIN FROM AKV3.1 (SHAW-SUBFAMILY) VOLTAGE-GATED POTASSIUM CHANNEL 3ZDO ; 2.07 ; Tetramerization domain of Measles virus phosphoprotein 2MW4 ; ; Tetramerization domain of the Ciona intestinalis p53/p73-b transcription factor protein 4D1L ; 1.97 ; Tetramerization domain of zebrafish p53 (crystal form I) 4D1M ; 2.2 ; Tetramerization domain of zebrafish p53 (crystal form II) 3U0Z ; 2.9 ; Tetramerization dynamics of the C-terminus underlies isoform-specific cAMP-gating in HCN channels 3U10 ; 2.3 ; Tetramerization dynamics of the C-terminus underlies isoform-specific cAMP-gating in HCN channels 3U11 ; 2.5 ; Tetramerization dynamics of the C-terminus underlies isoform-specific cAMP-gating in HCN channels 8SPO ; 2.98 ; Tetramerized activation of MapSPARTA bound with NAD+ 2KV6 ; ; Tetrapeptide KWKK conjugated to oligonucleotide duplex by a trimethylene tether 6L8A ; 1.95005 ; Tetrathionate hydrolase from Acidithiobacillus ferrooxidans 7CQY ; 2.80036 ; Tetrathionate hydrolase from Acidithiobacillus ferrooxidans mutant - D325N 7CC7 ; 1.45 ; Tetratricopeptide repeat (TPR) domain of protein tyrosine phosphatase-interacting protein 51 (PTPIP51) 1A17 ; 2.45 ; TETRATRICOPEPTIDE REPEATS OF PROTEIN PHOSPHATASE 5 4GUV ; 2.73 ; TetX derivatized with Xenon 5TDM ; 2.1 ; TEV Cleaved Human ATP Citrate Lyase Bound to 4R-Hydroxycitrate and ADP 5TDF ; 1.8 ; TEV Cleaved Human ATP Citrate Lyase Bound to 4S hydroxycitrate 5TET ; 2.2 ; TEV Cleaved Human ATP Citrate Lyase Bound to 4S Hydroxycitrate 5TDE ; 1.7 ; TEV Cleaved Human ATP Citrate Lyase Bound to Citrate 5TES ; 2.4 ; TEV Cleaved Human ATP Citrate Lyase Bound to Citrate and ADP 5TDZ ; 2.0 ; TEV Cleaved Human ATP Citrate Lyase Bound to Tartrate and ADP 5ZJ3 ; 1.88 ; Textilinin-1, A Kunitz-Type Serine Protease Inhibitor From pichia expression system 1W0Y ; 2.5 ; tf7a_3771 complex 1W2K ; 3.0 ; tf7a_4380 complex 6HC3 ; 3.1 ; TFAM bound to Site-X 3TMM ; 2.5001 ; TFAM imposes a U-turn on mitochondrial DNA 6HB4 ; 3.05 ; TFAM in Complex with Site-Y 6CSK ; ; TFE-induced NMR structure of a novel bioactive peptide (PaDBS1R2) derived from a Pyrobaculum aerophilum ribosomal protein (L39e) 6CSZ ; ; TFE-induced NMR structure of a novel bioactive peptide (PaDBS1R3) derived from a Pyrobaculum aerophilum ribosomal protein (L39e) 6CT1 ; ; TFE-induced NMR structure of a novel bioactive peptide (PaDBS1R7) derived from a Pyrobaculum aerophilum ribosomal protein (L39e) 6CT4 ; ; TFE-induced NMR structure of an antimicrobial peptide (EcDBS1R5) derived from a mercury transporter protein (MerP - Escherichia coli) 1IWC ; ; TFE-induded structure of the N-terminal domain of pig gastric H/K-ATPase 7RDV ; 2.90007 ; TFH TCR bound to MHC Class II IAd presenting aggrecan epitope 1VOL ; 2.7 ; TFIIB (HUMAN CORE DOMAIN)/TBP (A.THALIANA)/TATA ELEMENT TERNARY COMPLEX 7EGE ; 9.0 ; TFIID in canonical conformation 7EGI ; 9.82 ; TFIID in rearranged conformation 7EGF ; 3.16 ; TFIID lobe A subcomplex 7EGG ; 2.77 ; TFIID lobe B subcomplex 7EGH ; 3.04 ; TFIID lobe C subcomplex 7EG8 ; 7.4 ; TFIID-based core PIC on PUMA promoter 7EG7 ; 6.2 ; TFIID-based core PIC on SCP promoter 7EGB ; 3.3 ; TFIID-based holo PIC on SCP promoter 7EGA ; 4.1 ; TFIID-based intermediate PIC on PUMA promoter 7EG9 ; 3.7 ; TFIID-based intermediate PIC on SCP promoter 7ENC ; 4.13 ; TFIID-based PIC-Mediator holo-complex in fully-assembled state (hPIC-MED) 7ENA ; 4.07 ; TFIID-based PIC-Mediator holo-complex in pre-assembled state (pre-hPIC-MED) 7NVX ; 3.9 ; TFIIH in a post-translocated state (with ADP-BeF3) 7NVW ; 4.3 ; TFIIH in a pre-translocated state (without ADP-BeF3) 1TF3 ; ; TFIIIA FINGER 1-3 BOUND TO DNA, NMR, 22 STRUCTURES 8FFZ ; 3.8 ; TFIIIA-TFIIIC-Brf1-TBP complex bound to 5S rRNA gene 5N9G ; 2.7 ; TFIIIB -TBP/Brf2/DNA and SANT domain of Bdp1- 8CLK ; 3.5 ; TFIIIC TauA complex 8CLJ ; 3.2 ; TFIIIC TauB-DNA dimer 8CLI ; 3.2 ; TFIIIC TauB-DNA monomer 6ZUZ ; ; TFIIS N-terminal domain (TND) from human Elongin-A 6ZV1 ; ; TFIIS N-terminal domain (TND) from human IWS1 6ZV0 ; ; TFIIS N-terminal domain (TND) from human LEDGF/p75 6ZV3 ; ; TFIIS N-terminal domain (TND) from human MED26 6ZV2 ; ; TFIIS N-terminal domain (TND) from human PPP1R10 4RJD ; 2.0 ; TFP bound in alternate orientations to calcium-saturated Calmodulin C-Domains 7NX1 ; 1.3 ; TG domain of LTK 6IVD ; 1.975 ; TGEV nsp1 mutant - 91-95sg 3TZM ; 1.7 ; TGF-beta Receptor type 1 in complex with SB431542 5E8T ; 1.7 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) 5E8Z ; 1.51 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH 3-AMINO-6-[4-(2-HYDROXYETHYL)PHENYL]-N-[4-(MORPHOLIN-4-YL)PYRIDIN-3-YL]PYRAZINE-2-CARBOXAMIDE 5QTZ ; 1.83 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH 6-[1-(2,2-DIFLUOROETHYL)-4-(6-METHYLPYRIDIN-2-YL)-1H-IMIDAZOL-5-YL]IMIDAZO[1,2-A]PYRIDINE 5QU0 ; 1.67 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH 6-[4-(3-CHLORO-4-FLUOROPHENYL)-1-(2-HYDROXYETHYL)-1H-IMIDAZOL-5-YL]IMIDAZO[1,2-B]PYRIDAZINE-3-CARBONITRILE 6B8Y ; 1.65 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH N-(3-fluoropyridin-4-yl)-2-[6-(trifluoromethyl)pyridin-2-yl]-7H-pyrrolo[2,3-d]pyrimidin-4-amine 5QIM ; 1.75 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH N-{4-[3-(5-METHOXYPYRIDIN-2-YL)-1H-PYRROLO[3,2-B] PYRIDIN-2-YL]PYRIDIN-2-YL}ACETAMIDE 5QIK ; 1.58 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH N-{4-[3-(6-fluoropyridin-3-yl)-4-oxo-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridin-2-yl]pyridin-2-yl}acetamide 5QIL ; 1.98 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH N-{4-[3-(6-METHOXYPYRIDIN-3-YL)-1H-PYRROLO[3,2-B]PYRIDIN-2-YL]PYRIDIN-2-YL}ACETAMIDE 5E8W ; 1.86 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D) IN COMPLEX WITH STAUROSPORINE 5E90 ; 2.05 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D,I211V,Y249F, S280T,Y282F,S287N,A350C,L352F) IN COMPLEX WITH 3-AMINO-6- [4-(2-HYDROXYETHYL)PHENYL]-N-[4-(MORPHOLIN-4-YL)PYRIDIN-3-YL]PYRAZINE-2-CARBOXAMIDE 5E8U ; 2.03 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D,I211V,Y249F,S280T, Y282F,S287N,A350C,L352F) 5E8X ; 1.45 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (T204D,I211V,Y249F,S280T, Y282F,S287N,A350C,L352F) IN COMPLEX WITH STAUROSPORINE 5E8S ; 1.45 ; TGF-BETA RECEPTOR TYPE 1 KINASE DOMAIN (WT) 5E8V ; 1.69 ; TGF-BETA RECEPTOR TYPE 2 KINASE DOMAIN (E431A,R433A,E485A,K488A,R493A,R495A) 5E91 ; 2.42 ; TGF-BETA RECEPTOR TYPE 2 KINASE DOMAIN (E431A,R433A,E485A,K488A,R493A,R495A) IN COMPLEX WITH 3-AMINO-6-[4-(2- HYDROXYETHYL)PHENYL]-N-[4-(MORPHOLIN-4-YL)PYRIDIN-3-YL] PYRAZINE-2-CARBOXAMIDE 5E92 ; 2.08 ; TGF-BETA RECEPTOR TYPE 2 KINASE DOMAIN (E431A,R433A,E485A,K488A,R493A,R495A) IN COMPLEX WITH AMPPNP 5E8Y ; 2.05 ; TGF-BETA RECEPTOR TYPE 2 KINASE DOMAIN (E431A,R433A,E485A,K488A,R493A,R495A) IN COMPLEX WITH STAUROSPORINE 5QIN ; 1.57 ; TGF-BETA RECEPTOR TYPE 2 KINASE DOMAIN IN COMPLEX WITH N- {4-[3-(6-METHOXYPYRIDIN-3-YL)-1H-PYRROLO[3,2-B]PYRIDIN-2- YL]PYRIDIN-2-YL}ACETAMIDE 5KN5 ; 2.8 ; TGFalpha/Epiregulin complex with neutralizing antibody LY3016859 7ASC ; 4.8 ; TGFBIp mutant A546T 7ASG ; 2.0 ; TGFBIp mutant R555W 1ZF6 ; 1.5 ; TGG DUPLEX A-DNA 4P8I ; 1.85 ; Tgl - a bacterial spore coat transglutaminase 4PA5 ; 1.86 ; Tgl - a bacterial spore coat transglutaminase - cystamine complex 7B08 ; 2.394 ; TgoT apo 7B07 ; 3.099 ; TgoT_6G12 apo 7B0F ; 2.797 ; TgoT_6G12 Binary complex 7B0G ; 3.0 ; TgoT_6G12 binary with 2 hCTPs 7B0H ; 3.15 ; TgoT_6G12 Ternary complex 7B06 ; 2.349 ; TgoT_RT521 apo 4TZA ; 1.9 ; TGP, an extremely thermostable green fluorescent protein created by structure-guided surface engineering 4GHR ; 2.0 ; TGT D102N mutant in complex with lin-benzohypoxanthine inhibitor 6YFW ; 1.26 ; TGT H333F mutant crystallised at pH 8.5 4DXX ; 1.66 ; TGT K52M mutant crystallized at pH 8.5 3BLL ; 1.26 ; TGT mutant in complex with Boc-preQ1 3BLO ; 1.6 ; TGT mutant in complex with queuine 6YGW ; 1.16 ; TGT W178F mutant labelled mit 5F-Trp crystallised at pH 5.5 6YGL ; 1.48 ; TGT W326F mutant labelled mit 5F-Trp crystallised at pH 5.5 6YGM ; 1.23 ; TGT W95F mutant labelled mit 5F-Trp crystallised at pH 5.5 6YGO ; 1.26 ; TGT W95F mutant labelled mit 5F-Trp crystallised at pH 8.5 6YGP ; 1.33 ; TGT WT labelled mit 5F-Trp crystallised at pH 5.5 6YFX ; 1.38 ; TGT Y330F mutant crystallised at pH 5.5 6YGK ; 1.4 ; TGT Y330F mutant crystallised at pH 8.5 4R0U ; 1.38 ; Tgvtava, an amyloid forming segment from alpha synuclein, residues 72-78 8PUM ; 2.6 ; Tha1 L-threonine aldolase (mouse), monoclinic form (C2) 8PUS ; 2.26 ; Tha1 L-threonine aldolase (mouse), orthorhombic form (F222) 6Z82 ; 2.3 ; Thalictrum flavumn Norcoclaurine synthase point mutant in complex with a transition state analoge 2AKG ; ; Thallium form of the G-Quadruplex from Oxytricha Nova, d(G4T4G4)2 4P1A ; 3.75 ; Thallium-bound inward-facing state of the glutamate transporter homologue GltPh 6AAB ; ; Thanatin in presence of DPC 5XO9 ; ; Thanatin in presence of LPS 5XO3 ; ; Thanatin M21F Free 5XOA ; ; Thanatin M21F in complex with LPS 6AFQ ; ; Thanatin M21F in presence of DPC 8IL6 ; ; Thanatin PM15 with LPS 8XTH ; ; Thanatin PM15Y in LPS 5XOL ; ; Thanatin R13R14AA in complex with LPS 8X3N ; ; Thanatin VF16 in complex with LPS 5XOK ; ; Thanatin Y10M21AA in complex with LPS 3N02 ; 1.5 ; Thaumatic crystals grown in loops/micromounts 2BLU ; 1.4 ; Thaumatin After A High Dose X-Ray ""Burn"" 8F03 ; 1.39 ; Thaumatin Anomalous Dataset at 293 K and 12 keV 8F01 ; 1.8 ; Thaumatin Anomalous Dataset at 293 K and 7.1 keV 2BLR ; 1.4 ; Thaumatin Before A High Dose X-Ray ""Burn"" 3E0A ; 1.51 ; Thaumatin by Classical hanging drop method after high X-Ray dose on ESRF ID29 beamline 3DZR ; 1.51 ; Thaumatin by Classical hanging drop method before high X-Ray dose on ESRF ID29 beamline 3V7V ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 1.81 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3V87 ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 1.81 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3V88 ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 18.1 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3V8A ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 18.1 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3VCH ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 9.05 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3VCI ; 2.3 ; Thaumatin by Classical Hanging Drop Vapour Diffusion after 9.05 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3V82 ; 2.3 ; Thaumatin by LB based Hanging Drop Vapour Diffusion after 1.81 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3V84 ; 2.3 ; Thaumatin by LB based Hanging Drop Vapour Diffusion after 1.81 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3VCE ; 2.3 ; Thaumatin by LB based Hanging Drop Vapour Diffusion after 18.1 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3VCG ; 2.3 ; Thaumatin by LB based Hanging Drop Vapour Diffusion after 18.1 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3VCJ ; 2.3 ; Thaumatin by LB Hanging Drop Vapour Diffusion after 9.05 MGy X-Ray dose at ESRF ID29 beamline (Best Case) 3VCK ; 2.3 ; Thaumatin by LB Hanging Drop Vapour Diffusion after 9.05 MGy X-Ray dose at ESRF ID29 beamline (Worst Case) 3DZP ; 1.51 ; Thaumatin by LB nanotemplate method after high X-Ray dose on ESRF ID29 beamline 3DZN ; 1.51 ; Thaumatin by LB nanotemplate method before high X-Ray dose on ESRF ID29 beamline 8FZW ; 1.48 ; Thaumatin crystallized in cyclic olefin copolymer-based microfluidic chips 3N03 ; 1.5 ; Thaumatin crystals grown from drops 5TCL ; 3.201 ; Thaumatin from 4.96 A wavelength data collection 2PE7 ; 1.46 ; Thaumatin from Thaumatococcus Danielli in complex with tris-dipicolinate Europium 4BAR ; 1.2 ; Thaumatin from Thaumatococcus daniellii structure in complex with the europium tris-hydroxyethyltriazoledipicolinate complex at 1.20 A resolution. 4BAL ; 1.298 ; Thaumatin from Thaumatococcus daniellii structure in complex with the europium tris-hydroxymethyltriazoledipicolinate complex at 1.30 A resolution. 4DIY ; 1.98 ; Thaumatin I by Classical Hanging Drop Method at 1.98A resolution for Unique Water Distribution 4DIZ ; 1.98 ; Thaumatin I by Classical Hanging Drop Method at 1.98A resolution for Unique Water Distribution 4DJ0 ; 1.98 ; Thaumatin I by Langmuir-Blodgett Hanging Drop Method at 1.98A resolution for Unique Water Distribution 4DJ1 ; 1.98 ; Thaumatin I by Langmuir-Blodgett Hanging Drop Method at 1.98A resolution for Unique Water Distribution 6O8A ; 2.6 ; Thaumatin native-SAD structure determined at 5 keV from microcrystals 8ENA ; 2.5 ; Thaumatin native-SAD structure determined at 5 keV with a helium environmet 7VCG ; 1.25 ; Thaumatin protected by alginate gel 7WXT ; 1.7 ; Thaumatin protected by polyacrylamide gel 4C3C ; 1.8 ; Thaumatin refined against hatrx data for time-point 1 5T3G ; 1.55 ; thaumatin soaked with selenourea for 10 min 6G89 ; 2.359 ; Thaumatin solved by Native SAD from a dataset collected in 0.6 second with JUNGFRAU detector 5FGX ; 2.134 ; Thaumatin solved by native sulphur SAD using synchrotron radiation 5FGT ; 2.1 ; Thaumatin solved by native sulphur-SAD using free-electron laser radiation 1RQW ; 1.05 ; Thaumatin Structure at 1.05 A Resolution 5SW0 ; 1.269 ; Thaumatin Structure at pH 4.0 5SW1 ; 1.1 ; Thaumatin Structure at pH 6.0 5SW2 ; 1.2 ; Thaumatin Structure at pH 6.0, orthorhombic type1 5GQP ; 1.296 ; Thaumatin Structure at pH 8.0, orthorhombic type1 3ZEJ ; 1.55 ; Thaumatin structure determined at room temperature by in-situ diffraction in ChipX 5WR8 ; 1.55 ; Thaumatin structure determined by SACLA at 1.55 Angstrom 3WXS ; 2.0 ; Thaumatin structure determined by SPring-8 Angstrom Compact free electron Laser (SACLA) 8A9F ; 1.88 ; Thaumatin, 9-11 fs FEL pulses as determined by XTCAV 7P22 ; 1.87 ; Thaumatin-like protein of Amycolatopsis rifamycinica 7P23 ; 1.5 ; Thaumatin-like protein of Puccinia graminis 5Z2U ; 2.35 ; ThDP-Mn2+ complex of R395A variant of EcMenD soaked with 2-ketoglutarate for 5 min 5Z2R ; 2.3 ; ThDP-Mn2+ complex of R395K variant of EcMenD soaked with 2-ketoglutarate for 5 min 5EJM ; 1.72 ; ThDP-Mn2+ complex of R413A variant of EcMenD soaked with 2-ketoglutarate for 35 min 5Z2P ; 2.3 ; ThDP-Mn2+ complex of R413K variant of EcMenD soaked with 2-ketoglutarate for 5 min 8K3Y ; 4.42 ; The ""5+1"" heteromeric structure of Lon protease consisting of a spiral pentamer with Y224S mutation and an N-terminal-truncated monomeric E613K mutant 1URH ; 2.8 ; The ""Rhodanese"" fold and catalytic mechanism of 3-mercaptopyruvate sulfotransferases: Crystal structure of SseA from Escherichia coli 7W7U ; 3.0 ; The 'Ca2+-unbound' BeF3- of SERCA2b 6D9S ; 2.105 ; The (p)ppGpp-bound crystal structure of HPRT (hypoxanthine phosphoribosyltransferase) 4UUG ; 1.6 ; The (R)-selective amine transaminase from Aspergillus fumigatus with inhibitor bound 4CMD ; 1.68 ; The (R)-selective transaminase from Nectria haematococca 4CMF ; 1.5 ; The (R)-selective transaminase from Nectria haematococca with inhibitor bound 7FEZ ; 0.76 ; The 0.76 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with petroselinic acid 1GCI ; 0.78 ; THE 0.78 ANGSTROMS STRUCTURE OF A SERINE PROTEASE-BACILLUS LENTUS SUBTILISIN 7WKB ; 0.81 ; The 0.81 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with docosahexaenoic acid 7FF6 ; 0.83 ; The 0.83 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with cis-vaccenic acid 7WF0 ; 0.83 ; The 0.83 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with nervonic acid 7WKG ; 0.84 ; The 0.84 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with erucic acid 7FFK ; 0.84 ; The 0.84 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with palmitoleic acid 7WCI ; 0.85 ; The 0.85 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with two molecules of pelargonic acid 5AVD ; 0.86 ; The 0.86 angstrom structure of elastase crystallized in high-strength agarose hydrogel 1MUW ; 0.86 ; The 0.86 Angstrom Structure of Xylose Isomerase 7WJ1 ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with arachidonic acid 7FDT ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with elaidic acid 7FDU ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with heptadecanoic acid 4TKB ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with lauric acid 7FBF ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with octanoic acid 7X48 ; 0.86 ; The 0.86 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with pelargonic acid 4TJZ ; 0.87 ; The 0.87 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with capric acid 7WQ7 ; 0.87 ; The 0.87 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with nonadecanoic acid 7WE5 ; 0.87 ; The 0.87 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with oleic acid 4TKJ ; 0.87 ; The 0.87 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with palmitic acid 7FFX ; 0.88 ; The 0.88 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with alpha-llinolenic acid 7XHM ; 0.88 ; The 0.88 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with behenic acid 3WVM ; 0.88 ; The 0.88 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with stearic acid 7XHU ; 0.88 ; The 0.88 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with tricosanoic acid 5AVH ; 0.9 ; The 0.90 angstrom structure (I222) of glucose isomerase crystallized in high-strength agarose hydrogel 7WOM ; 0.9 ; The 0.90 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with eicosapentaenoic acid 7WPG ; 0.9 ; The 0.90 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with heptanoic acid 7WDJ ; 0.9 ; The 0.90 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with linoleic acid 7VB1 ; 0.9 ; The 0.90 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with trans-vaccenic acid 5B28 ; 0.9 ; The 0.90A structure of human FABP3 F16V mutant complexed with palmitic acid 5NC0 ; 0.91 ; The 0.91 A resolution structure of the L16G mutant of cytochrome c prime from Alcaligenes xylosoxidans, complexed with nitric oxide 7V5U ; 0.92 ; The 0.92 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with 2-cyclohexadecylacetic acid (CYC16AA) 7XBC ; 0.92 ; The 0.92 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with lignoceric acid 7X50 ; 0.93 ; The 0.93 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with heneicosanoic acid 4TKH ; 0.93 ; The 0.93 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with myristic acid 7FG1 ; 0.93 ; The 0.93 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with tridecanoic acid 3F1L ; 0.95 ; The 0.95 A structure of an oxidoreductase, yciK from E.coli 1RTQ ; 0.95 ; The 0.95 Angstrom Resolution Crystal Structure of the Aminopeptidase from Aeromonas proteolytica 5AVG ; 0.95 ; The 0.95 angstrom structure of thaumatin crystallized in high-strength agarose hydrogel 7WD6 ; 0.95 ; The 0.95 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with hexanoic acid 7FEU ; 0.95 ; The 0.95 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with perfluorononanoic acid 7WPU ; 0.95 ; The 0.95 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with undecanoic acid 7X4J ; 0.96 ; The 0.96 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with arachidic acid 7WPW ; 0.97 ; The 0.97 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with pentadecanoic acid 1F94 ; 0.97 ; THE 0.97 RESOLUTION STRUCTURE OF BUCANDIN, A NOVEL TOXIN ISOLATED FROM THE MALAYAN KRAIT 7V2G ; 0.98 ; The 0.98 angstrom structure of the human FABP3 Y19F mutant complexed with palmitic acid 2GCE ; 1.85 ; The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an aspartate/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety 2GD0 ; 1.7 ; The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an aspartate/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety 2GD2 ; 1.7 ; The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an aspartate/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety 2GD6 ; 2.3 ; The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an aspartate/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety 2GCI ; 1.6 ; The 1,1-proton transfer reaction mechanism by alpha-methylacyl-CoA racemase is catalyzed by an asparte/histidine pair and involves a smooth, methionine-rich surface for binding the fatty acyl moiety 6FC9 ; ; The 1,8-bis(aminomethyl)anthracene and Quadruplex-duplex junction complex 1EXR ; 1.0 ; THE 1.0 ANGSTROM CRYSTAL STRUCTURE OF CA+2 BOUND CALMODULIN 4DP9 ; 1.0 ; The 1.00 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin A at pH 6.0 4DPB ; 1.0 ; The 1.00 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin A at pH 8.0 7FD7 ; 1.0 ; The 1.00 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with perfluoroheptanoic acid 5B27 ; 1.02 ; The 1.02A structure of human FABP3 M20S mutant complexed with palmitic acid 5AVN ; 1.03 ; The 1.03 angstrom structure (P212121) of glucose isomerase crystallized in high-strength agarose hydrogel 4DPA ; 1.05 ; The 1.05 Angstrom crystal structure of reduced (CuI) poplar plastocyanin A at pH 6.0 7FEK ; 1.05 ; The 1.05 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with perfluorooctanoic acid 5NGX ; 1.06 ; The 1.06 A resolution structure of the L16G mutant of ferric cytochrome c prime from Alcaligenes xylosoxidans, complexed with nitrite 4DPC ; 1.06 ; The 1.06 Angstrom crystal structure of reduced (CuI) poplar plastocyanin A at pH 8.0 4DP8 ; 1.07 ; The 1.07 Angstrom crystal structure of reduced (CuI) poplar plastocyanin A at pH 4.0 4DP7 ; 1.08 ; The 1.08 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin A at pH 4.0 4MQ3 ; 1.08 ; The 1.1 Angstrom Structure of Catalytic Core Domain of FIV Integrase 1Z53 ; 1.13 ; The 1.13 Angstrom Structure of Iron-free Cytochrome c Peroxidase 4LWU ; 1.14 ; The 1.14A Crystal Structure of Humanized Xenopus MDM2 with RO5499252 1AGY ; 1.15 ; The 1.15 angstrom refined structure of fusarium solani pisi cutinase 3WS7 ; 1.18 ; The 1.18 A resolution structure of L-serine 3-dehydrogenase complexed with NADP+ and sulfate ion from the hyperthermophilic archaeon Pyrobaculum calidifontis 1Z2U ; 1.1 ; The 1.1A crystallographic structure of ubiquitin-conjugating enzyme (ubc-2) from Caenorhabditis elegans: functional and evolutionary significance 3GVN ; 1.2 ; The 1.2 Angstroem crystal structure of an E.coli tRNASer acceptor stem microhelix reveals two magnesium binding sites 1J98 ; 1.2 ; The 1.2 Angstrom Structure of Bacillus subtilis LuxS 1NOT ; 1.2 ; THE 1.2 ANGSTROM STRUCTURE OF G1 ALPHA CONOTOXIN 2KNT ; 1.2 ; THE 1.2 ANGSTROM STRUCTURE OF KUNITZ TYPE DOMAIN C5 1LOK ; 1.2 ; The 1.20 Angstrom Resolution Crystal Structure of the Aminopeptidase from Aeromonas proteolytica Complexed with Tris: A Tale of Buffer Inhibition 6XLR ; 1.23 ; The 1.23 Angstrom crystal structure of galactose oxidase variant with genetically incorporated Cl2-Tyr272 1Y6X ; 1.25 ; The 1.25 A resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis 3C90 ; 1.79 ; The 1.25 A Resolution Structure of Phosphoribosyl-ATP Pyrophosphohydrolase from Mycobacterium tuberculosis, crystal form II 5ZXF ; 1.25 ; The 1.25A Crystal structure of His6-tagged Mdm2 in complex with nutlin-3a 4J7D ; 1.25 ; The 1.25A crystal structure of humanized Xenopus MDM2 with a nutlin fragment, RO5045331 6XKH ; 1.28 ; THE 1.28A CRYSTAL STRUCTURE OF 3CL MAINPRO OF SARS-COV-2 WITH OXIDIZED C145 (sulfinic acid cysteine) 5B29 ; 1.28 ; The 1.28A structure of human FABP3 F16V mutant complexed with palmitic acid at room temperature 4J74 ; 1.2 ; The 1.2A crystal structure of humanized Xenopus MDM2 with RO0503918 - a nutlin fragment 3B9W ; 1.3 ; The 1.3 A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins 193L ; 1.33 ; THE 1.33 A STRUCTURE OF TETRAGONAL HEN EGG WHITE LYSOZYME 3MBK ; 1.35 ; The 1.35 A Structure of the Phosphatase Domain of the Suppressor of T Cell Receptor Signalling Protein in Complex with Sulphate 4DP1 ; 1.35 ; The 1.35 Angstrom crystal structure of reduced (CuI) poplar plastocyanin B at pH 4.0 4YE2 ; 3.098 ; The 1.35 structure of a viral RNase L antagonist reveals basis for the 2'-5'-oligoadenylate binding and enzyme activity. 4RPT ; 1.35 ; The 1.35A structure of a viral RNase L antagonist reveals basis for the 2'-5'-oligoadenylate binding and enzyme activity. 4WBK ; 1.37 ; The 1.37 angstrom X-ray structure of the human heart fatty acid-binding protein complexed with stearic acid 2ZMZ ; 1.37 ; The 1.37-A crystal structure of the hydroxylamine-induced deoxy-form of the copper-bound tyrosinase in complex with a caddie protein from Streptomyces castaneoglobisporus 3E2D ; 1.4 ; The 1.4 A crystal structure of the large and cold-active Vibrio sp. alkaline phosphatase 4MLL ; 1.37 ; The 1.4 A structure of the class D beta-lactamase OXA-1 K70D complexed with oxacillin 3MWH ; 2.05 ; The 1.4 Ang crystal structure of the ArsD arsenic metallochaperone provides insights into its interactions with the ArsA ATPase 194L ; 1.4 ; THE 1.40 A STRUCTURE OF SPACEHAB-01 HEN EGG WHITE LYSOZYME 4Y9H ; 1.43 ; The 1.43 angstrom crystal structure of bacteriorhodopsin crystallized from bicelles 1RCQ ; 1.45 ; The 1.45 A crystal structure of alanine racemase from a pathogenic bacterium, Pseudomonas aeruginosa, contains both internal and external aldimine forms 1JBO ; 1.45 ; The 1.45A Three-Dimensional Structure of c-Phycocyanin from the Thermophylic Cyanobacterium Synechococcus elongatus 6XLT ; 1.478 ; The 1.48 Angstrom crystal structure of evolved galactose oxidase variant A3.E7 3C1V ; 1.5 ; The 1.5 A Crystal structure of Ca2+-bound S100A4 3DGT ; 1.5 ; The 1.5 A crystal structure of endo-1,3-beta-glucanase from Streptomyces sioyaensis 6XIP ; 1.5 ; The 1.5 A Crystal Structure of the Co-factor Complex of NSP7 and the C-terminal Domain of NSP8 from SARS CoV-2 2CFE ; 1.5 ; The 1.5 A crystal structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family 1SJ1 ; 1.5 ; The 1.5 A Resolution Crystal Structure of [Fe3S4]-Ferredoxin from the hyperthermophilic Archaeon Pyrococcus furiosus 4DP0 ; 1.5 ; The 1.5 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin B at pH 4.0 4Z67 ; 1.5 ; The 1.5-angstrom crystal structure of Mn(2+)-bound PqqB from Pseudomonas Putida 8DQV ; 1.52 ; The 1.52 angstrom CryoEM structure of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis - catalytic dimer (Huc2S2L) 4DP4 ; 1.54 ; The 1.54 Angstrom crystal structure of reduced (CuI) poplar plastocyanin B at pH 6.0 1IUQ ; 1.55 ; The 1.55 A Crystal Structure of Glycerol-3-Phosphate Acyltransferase 4OO7 ; 1.65 ; THE 1.55A CRYSTAL STRUCTURE of NAF1 (MINER1): THE REDOX-ACTIVE 2FE-2S PROTEIN 4Z5Y ; 1.561 ; The 1.56-angstrom crystal structure of copper(II)-bound PqqB from Pseudomonas Putida 2AEX ; 1.58 ; The 1.58A Crystal Structure of Human Coproporphyrinogen Oxidase Reveals the Structural Basis of Hereditary Coproporphyria 1L8N ; 1.5 ; The 1.5A crystal structure of alpha-D-glucuronidase from Bacillus stearothermophilus T-1, complexed with 4-O-methyl-glucuronic acid and xylotriose 3GEN ; 1.6 ; The 1.6 A crystal structure of human bruton's tyrosine kinase bound to a pyrrolopyrimidine-containing compound 3C8Z ; 1.6 ; The 1.6 A Crystal Structure of MshC: The Rate Limiting Enzyme in the Mycothiol Biosynthetic Pathway 2G7E ; 1.6 ; The 1.6 A crystal structure of Vibrio cholerae extracellular endonuclease I 4B5L ; 1.6 ; The 1.6 A High Energy Room Temperature Structure of Proteinase K at 38.4 keV and 0.04 MGy 1JXG ; 1.6 ; The 1.6 A Resolution Crystal Structure of a Mutant Poplar Plastocyanin Bearing a 21-25 Engeneered Disulfide Bridge 2C0Z ; 1.6 ; The 1.6 A resolution crystal structure of NovW: a 4-keto-6-deoxy sugar epimerase from the novobiocin biosynthetic gene cluster of Streptomyces spheroides 1MY6 ; 1.6 ; The 1.6 A Structure of Fe-Superoxide Dismutase from the thermophilic cyanobacterium Thermosynechococcus elongatus : Correlation of EPR and Structural Characteristics 1SSC ; 2.0 ; THE 1.6 ANGSTROMS STRUCTURE OF A SEMISYNTHETIC RIBONUCLEASE CRYSTALLIZED FROM AQUEOUS ETHANOL. COMPARISON WITH CRYSTALS FROM SALT SOLUTIONS AND WITH RNASE A FROM AQUEOUS ALCOHOL SOLUTIONS 1PTF ; 1.6 ; THE 1.6 ANGSTROMS STRUCTURE OF HISTIDINE-CONTAINING PHOSPHOTRANSFER PROTEIN HPR FROM STREPTOCOCCUS FAECALIS 1KNT ; 1.6 ; THE 1.6 ANGSTROMS STRUCTURE OF THE KUNITZ-TYPE DOMAIN FROM THE ALPHA3 CHAIN OF THE HUMAN TYPE VI COLLAGEN 4EN1 ; 1.62 ; The 1.62A structure of a FRET-optimized Cerulean Fluorescent Protein 4J7E ; 1.63 ; The 1.63A crystal structure of humanized Xenopus MDM2 with a nutlin fragment, RO5524529 1QTX ; 1.65 ; THE 1.65 ANGSTROM STRUCTURE OF CALMODULIN RS20 PEPTIDE COMPLEX 3F4W ; 1.65 ; The 1.65A Crystal Structure of 3-hexulose-6-phosphate synthase from Salmonella typhimurium 1PGX ; 1.66 ; THE 1.66 ANGSTROMS X-RAY STRUCTURE OF THE B2 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G AND COMPARISON TO THE NMR STRUCTURE OF THE B1 DOMAIN 7UUR ; 1.67 ; The 1.67 Angstrom CryoEM structure of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis - catalytic dimer (Huc2S2L) 4DP6 ; 1.67 ; The 1.67 Angstrom crystal structure of reduced (CuI) poplar plastocyanin B at pH 8.0 8Q2E ; 1.68 ; The 1.68-A X-ray crystal structure of Sporosarcina pasteurii urease inhibited by thiram and bound to dimethylditiocarbamate 4Z6X ; 1.68 ; The 1.68-angstrom crystal structure of acitive-site metal-free PqqB from Pseudomonas putida 4LWT ; 1.6 ; The 1.6A Crystal Structure of Humanized Xenopus MDM2 with RO5027344 2H8O ; 1.6 ; The 1.6A crystal structure of the geranyltransferase from Agrobacterium tumefaciens 1NS9 ; 1.6 ; The 1.6A Structure of Horse Methemoglobin at pH 7.1 1ECS ; 1.7 ; THE 1.7 A CRYSTAL STRUCTURE OF A BLEOMYCIN RESISTANCE DETERMINANT ENCODED ON THE TRANSPOSON TN5 1K9D ; 1.7 ; The 1.7 A crystal structure of alpha-D-glucuronidase, a family-67 glycoside hydrolase from Bacillus stearothermophilus T-1 2IE2 ; 1.7 ; The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein 1IA8 ; 1.7 ; THE 1.7 A CRYSTAL STRUCTURE OF HUMAN CELL CYCLE CHECKPOINT KINASE CHK1 1EWF ; 1.7 ; THE 1.7 ANGSTROM CRYSTAL STRUCTURE OF BPI 3N90 ; 1.7 ; The 1.7 Angstrom resolution crystal structure of AT2G44920, a pentapeptide repeat protein from Arabidopsis thaliana thylakoid lumen. 1FVK ; 1.7 ; THE 1.7 ANGSTROM STRUCTURE OF WILD TYPE DISULFIDE BOND FORMATION PROTEIN (DSBA) 1GCA ; 1.7 ; THE 1.7 ANGSTROMS REFINED X-RAY STRUCTURE OF THE PERIPLASMIC GLUCOSE(SLASH)GALACTOSE RECEPTOR FROM SALMONELLA TYPHIMURIUM 1H5U ; 1.76 ; THE 1.76 A RESOLUTION CRYSTAL STRUCTURE OF GLYCOGEN PHOSPHORYLASE B COMPLEXED WITH GLUCOSE AND CP320626, A POTENTIAL ANTIDIABETIC DRUG 3HA9 ; 1.7 ; The 1.7A Crystal Structure of a Thioredoxin-like Protein from Aeropyrum pernix 3TBJ ; 1.8 ; The 1.7A crystal structure of Actibind a T2 ribonucleases as antitumorigenic agents 4IPF ; 1.7 ; The 1.7A crystal structure of humanized Xenopus MDM2 with RO5045337 4N5T ; 1.7 ; The 1.7A Crystal Structure of MDMX with a Stapled Peptide, ATSP-7041 1EBL ; 1.8 ; THE 1.8 A CRYSTAL STRUCTURE AND ACTIVE SITE ARCHITECTURE OF BETA-KETOACYL-[ACYL CARRIER PROTEIN] SYNTHASE III (FABH) FROM ESCHERICHIA COLI 2B6N ; 1.8 ; The 1.8 A crystal structure of a Proteinase K like enzyme from a psychrotroph Serratia species 1HYL ; 1.8 ; THE 1.8 A STRUCTURE OF COLLAGENASE FROM HYPODERMA LINEATUM 1BVX ; 1.8 ; THE 1.8 A STRUCTURE OF GEL GROWN TETRAGONAL HEN EGG WHITE LYSOZYME 1BWH ; 1.8 ; THE 1.8 A STRUCTURE OF GROUND CONTROL GROWN TETRAGONAL HEN EGG WHITE LYSOZYME 1BWI ; 1.8 ; THE 1.8 A STRUCTURE OF MICROBATCH OIL DROP GROWN TETRAGONAL HEN EGG WHITE LYSOZYME 1BWJ ; 1.8 ; THE 1.8 A STRUCTURE OF MICROGRAVITY GROWN TETRAGONAL HEN EGG WHITE LYSOZYME 4DP2 ; 1.8 ; The 1.8 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin B at pH 6.0 1AFW ; 1.8 ; THE 1.8 ANGSTROM CRYSTAL STRUCTURE OF THE DIMERIC PEROXISOMAL THIOLASE OF SACCHAROMYCES CEREVISIAE 4NYO ; 1.8 ; The 1.8 Angstrom Crystal Structure of the Periplasmic Divalent Cation Tolerance Protein Cuta from Pyrococcus Horikoshii OT3 1YAC ; 1.8 ; THE 1.8 ANGSTROM CRYSTAL STRUCTURE OF THE YCAC GENE PRODUCT FROM ESCHERICHIA COLI REVEALS AN OCTAMERIC HYDROLASE OF UNKNOWN SPECIFICITY 1QS7 ; 1.8 ; The 1.8 angstrom structure of calmodulin rs20 peptide complex 1CBM ; 1.74 ; THE 1.8 ANGSTROM STRUCTURE OF CARBONMONOXY-BETA4 HEMOGLOBIN: ANALYSIS OF A HOMOTETRAMER WITH THE R QUATERNARY STRUCTURE OF LIGANDED ALPHA2BETA2 HEMOGLOBIN 1SGC ; 1.8 ; THE 1.8 ANGSTROMS STRUCTURE OF THE COMPLEX BETWEEN CHYMOSTATIN AND STREPTOMYCES GRISEUS PROTEASE A. A MODEL FOR SERINE PROTEASE CATALYTIC TETRAHEDRAL INTERMEDIATES 6XLS ; 1.797 ; The 1.80 Angstrom crystal structure of galactose oxidase variant with genetically incorporated F2-Tyr272 4DP5 ; 1.88 ; The 1.88 Angstrom crystal structure of oxidized (CuII) poplar plastocyanin B at pH 8.0 1XFC ; 1.9 ; The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site 4J6C ; 1.9 ; The 1.9 A crystal structure of CYP154C5 from Nocardia farcinica in complex with progesterone 6W01 ; 1.9 ; The 1.9 A Crystal Structure of NSP15 Endoribonuclease from SARS CoV-2 in the Complex with a Citrate 2ID4 ; 1.9 ; The 1.9 A structure of Kex2 in complex with an Ac-R-E-R-K-chloromethyl ketone inhibitor. 1F0K ; 1.9 ; THE 1.9 ANGSTROM CRYSTAL STRUCTURE OF E. COLI MURG 1CBL ; 1.8 ; THE 1.9 ANGSTROM STRUCTURE OF DEOXY-BETA4 HEMOGLOBIN: ANALYSIS OF THE PARTITIONING OF QUATERNARY-ASSOCIATED AND LIGAND-INDUCED CHANGES IN TERTIARY STRUCTURE 1VRK ; 1.9 ; THE 1.9 ANGSTROM STRUCTURE OF E84K-CALMODULIN RS20 PEPTIDE COMPLEX 1GCG ; 1.9 ; THE 1.9 ANGSTROMS X-RAY STRUCTURE OF A CLOSED UNLIGANDED FORM OF THE PERIPLASMIC GLUCOSE(SLASH)GALACTOSE RECEPTOR FROM SALMONELLA TYPHIMURIUM 1LI1 ; 1.9 ; The 1.9-A crystal structure of the noncollagenous (NC1) domain of human placenta collagen IV shows stabilization via a novel type of covalent Met-Lys cross-link 1GWI ; 1.92 ; The 1.92 A structure of Streptomyces coelicolor A3(2) CYP154C1: A new monooxygenase that functionalizes macrolide ring systems 6WQD ; 1.95 ; The 1.95 A Crystal Structure of the Co-factor Complex of NSP7 and the C-terminal Domain of NSP8 from SARS-CoV-2 2G7F ; 1.95 ; The 1.95 A crystal structure of Vibrio cholerae extracellular endonuclease I 4Z7R ; 1.982 ; The 1.98-angstrom crystal structure of Zn(2+)-bound PqqB from Methylobacterium extorquens 4J3E ; 1.91 ; The 1.9A crystal structure of humanized Xenopus Mdm2 with nutlin-3a 4JRG ; 1.9 ; The 1.9A crystal structure of humanized Xenopus MDM2 with RO5313109 - a pyrrolidine MDM2 inhibitor 1BFF ; 2.0 ; THE 154 AMINO ACID FORM OF HUMAN BASIC FIBROBLAST GROWTH FACTOR 1XQN ; 2.5 ; The 15k neutron structure of saccharide-free concanavalin A 3EW3 ; 3.8 ; the 1:2 complex between a Nterminal elongated prolactin and the extra cellular domain of the rat prolactin receptor 3FYM ; 1.0 ; The 1A structure of YmfM, a putative DNA-binding membrane protein from Staphylococcus aureus 1FM2 ; 2.0 ; THE 2 ANGSTROM CRYSTAL STRUCTURE OF CEPHALOSPORIN ACYLASE 1O8U ; 2.0 ; The 2 Angstrom Structure of 6-Oxo Camphor Hydrolase: New Structural Diversity in the Crotonase Superfamily 2WS2 ; 2.01 ; The 2 Angstrom structure of a Nu-class GST from Haemonchus contortus 1RSM ; 2.0 ; THE 2-ANGSTROMS RESOLUTION STRUCTURE OF A THERMOSTABLE RIBONUCLEASE A CHEMICALLY CROSS-LINKED BETWEEN LYSINE RESIDUES 7 AND 41 1S4V ; 2.0 ; The 2.0 A crystal structure of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm 6PUA ; 2.0 ; The 2.0 A Crystal Structure of the Type B Chloramphenicol Acetyltransferase from Vibrio cholerae 1MHO ; 2.0 ; THE 2.0 A STRUCTURE OF HOLO S100B FROM BOVINE BRAIN 1S96 ; 2.0 ; The 2.0 A X-ray structure of Guanylate Kinase from E.coli 1KXG ; 2.0 ; The 2.0 Ang Resolution Structure of BLyS, B Lymphocyte Stimulator. 4K5R ; 2.0 ; The 2.0 angstrom crystal structure of MTMOIV, a baeyer-villiger monooxygenase from the mithramycin biosynthetic pathway in streptomyces argillaceus. 1TE5 ; 2.0 ; The 2.0 Angstrom crystal structure of predicted glutamine amidotransferase from Pseudomonas aeruginosa PA01 4NYP ; 2.0 ; The 2.0 Angstrom Crystal Structure of Pyrococcus Horikoshii Cuta1 Complexed With NA+ 3DU1 ; 2.0 ; The 2.0 Angstrom Resolution Crystal Structure of HetL, a Pentapeptide Repeat Protein involved in Heterocyst Differentiation Regulation from the Cyanobacterium Nostoc sp. Strain PCC 7120 3E56 ; 2.01 ; The 2.0 Angstrom Resolution Crystal Structure of NpR1517, a Putative Heterocyst Differentiation Inhibitor from Nostoc punctiforme 1G5Y ; 2.0 ; THE 2.0 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE RXRALPHA LIGAND BINDING DOMAIN TETRAMER IN THE PRESENCE OF A NON-ACTIVATING RETINOIC ACID ISOMER. 1GV3 ; 2.0 ; The 2.0 Angstrom resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase 2ARL ; 2.0 ; The 2.0 angstroms crystal structure of a pocilloporin at pH 3.5: the structural basis for the linkage between color transition and halide binding 1POH ; 2.0 ; THE 2.0 ANGSTROMS RESOLUTION STRUCTURE OF ESCHERICHIA COLI HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR: A REDETERMINATION 1CEW ; 2.0 ; THE 2.0 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF CHICKEN EGG WHITE CYSTATIN AND ITS POSSIBLE MODE OF INTERACTION WITH CYSTEINE PROTEINASES 1UIS ; 2.0 ; The 2.0 crystal structure of eqFP611, a far-red fluorescent protein from the sea anemone Entacmaea quadricolor 1L5X ; 2.0 ; The 2.0-Angstrom resolution crystal structure of a survival protein E (SurE) homolog from Pyrobaculum aerophilum 1FVJ ; 2.06 ; THE 2.06 ANGSTROM STRUCTURE OF THE H32Y MUTANT OF THE DISULFIDE BOND FORMATION PROTEIN (DSBA) 2AO2 ; 2.07 ; The 2.07 Angstrom crystal structure of Mycobacterium tuberculosis chorismate mutase reveals unexpected gene duplication and suggests a role in host-pathogen interactions 5L92 ; 2.1 ; The 2.1 A crystal structure of CYP109E1 from Bacillus megaterium in complex with corticosterone 1WZ9 ; 2.1 ; The 2.1 A structure of a tumour suppressing serpin 1W3W ; 1.99 ; The 2.1 Angstroem resolution structure of annexin A8 3V83 ; 2.102 ; The 2.1 angstrom crystal structure of diferric human transferrin 3VE2 ; 2.14 ; The 2.1 angstrom crystal structure of Transferrin binding protein B (TbpB) from serogroup B M982 Neisseria meningitidis 1FM9 ; 2.1 ; THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND GI262570 AND CO-ACTIVATOR PEPTIDES. 1FM6 ; 2.1 ; THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND ROSIGLITAZONE AND CO-ACTIVATOR PEPTIDES. 1CQD ; 2.1 ; THE 2.1 ANGSTROM STRUCTURE OF A CYSTEINE PROTEASE WITH PROLINE SPECIFICITY FROM GINGER RHIZOME, ZINGIBER OFFICINALE 3SDP ; 2.1 ; THE 2.1 ANGSTROMS RESOLUTION STRUCTURE OF IRON SUPEROXIDE DISMUTASE FROM PSEUDOMONAS OVALIS 1VRP ; 2.1 ; The 2.1 Structure of T. californica Creatine Kinase Complexed with the Transition-State Analogue Complex, ADP-Mg 2+ /NO3-/Creatine 6I9Y ; 2.14 ; The 2.14 A X-ray crystal structure of Sporosarcina pasteurii urease in complex with Au(I) ions 1PCS ; 2.15 ; THE 2.15 A CRYSTAL STRUCTURE OF A TRIPLE MUTANT PLASTOCYANIN FROM THE CYANOBACTERIUM SYNECHOCYSTIS SP. PCC 6803 4A3Q ; 2.15 ; The 2.15 Angstrom resolution crystal structure of Staphylococcus aureus alanine racemase 7UTD ; 2.19 ; The 2.19-angstrom CryoEM structure of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis - Complex minus stalk 2G3O ; 2.1 ; The 2.1A crystal structure of copGFP 2XCS ; 2.1 ; The 2.1A crystal structure of S. aureus Gyrase complex with GSK299423 and DNA 1YZW ; 2.1 ; The 2.1A Crystal Structure of the Far-red Fluorescent Protein HcRed: Inherent Conformational Flexibility of the Chromophore 1NS6 ; 2.05 ; The 2.1A Structure of Horse (alpha hemichrome/beta met) Hemoglobin at pH 5.4 5L91 ; 2.2 ; The 2.2 A crystal structure of CYP109E1 from Bacillus megaterium bound with four corticosterone molecules 4JBT ; 2.2 ; The 2.2 A crystal structure of CYP154C5 from Nocardia farcinica in complex with androstenedione 4J6B ; 2.2 ; The 2.2 A crystal structure of CYP154C5 from Nocardia farcinica in complex with pregnenolone 1PJP ; 2.2 ; THE 2.2 A CRYSTAL STRUCTURE OF HUMAN CHYMASE IN COMPLEX WITH SUCCINYL-ALA-ALA-PRO-PHE-CHLOROMETHYLKETONE 1R64 ; 2.2 ; The 2.2 A crystal structure of Kex2 protease in complex with Ac-Arg-Glu-Lys-boroArg peptidyl boronic acid inhibitor 3B3F ; 2.2 ; The 2.2 A crystal structure of the catalytic domain of coactivator-associated arginine methyl transferase I(CARM1,142-478), in complex with S-adenosyl homocysteine 6U9C ; 2.2 ; The 2.2 A Crystal Structure of the Type B Chloramphenicol Acetyltransferase from Vibrio cholerae in the complex with Acetyl CoA 1GXW ; 2.18 ; the 2.2 A resolution structure of thermolysin crystallized in presence of potassium thiocyanate 3ZD5 ; 2.2 ; THE 2.2 A STRUCTURE OF A FULL-LENGTH CATALYTICALLY ACTIVE HAMMERHEAD RIBOZYME 1JVI ; 2.2 ; THE 2.2 ANGSTROM RESOLUTION STRUCTURE OF BACILLUS SUBTILIS LUXS/RIBOSILHOMOCYSTEINE COMPLEX 3VCP ; 2.2 ; The 2.2 Angstrom structure of Stc2 with proline bound in the active site 1TND ; 2.2 ; THE 2.2 ANGSTROMS CRYSTAL STRUCTURE OF TRANSDUCIN-ALPHA COMPLEXED WITH GTP GAMMA S 1NSB ; 2.2 ; THE 2.2 ANGSTROMS RESOLUTION CRYSTAL STRUCTURE OF INFLUENZA B NEURAMINIDASE AND ITS COMPLEX WITH SIALIC ACID 5L94 ; 2.25 ; The 2.25 A crystal structure of CYP109E1 from Bacillus megaterium in complex with testosterone 3FRL ; 2.25 ; The 2.25 A crystal structure of LipL32, the major surface antigen of Leptospira interrogans serovar Copenhageni 2CKW ; 2.3 ; The 2.3 A resolution structure of the Sapporo virus RNA dependant RNA polymerase. 3R0R ; 2.35 ; The 2.3 A structure of porcine circovirus 2 1K74 ; 2.3 ; The 2.3 Angstrom resolution crystal structure of the heterodimer of the human PPARgamma and RXRalpha ligand binding domains respectively bound with GW409544 and 9-cis retinoic acid and co-activator peptides. 1JQW ; 2.3 ; THE 2.3 ANGSTROM RESOLUTION STRUCTURE OF BACILLUS SUBTILIS LUXS/HOMOCYSTEINE COMPLEX 4LWV ; 2.32 ; The 2.3A Crystal Structure of Humanized Xenopus MDM2 with RO5545353 4J6D ; 2.4 ; The 2.4 A crystal structure of CYP154C5 from Nocardia farcinica in complex with testosterone 3B3G ; 2.4 ; The 2.4 A crystal structure of the apo catalytic domain of coactivator-associated arginine methyl transferase I(CARM1,140-480). 1OT5 ; 2.4 ; The 2.4 Angstrom Crystal Structure of Kex2 in complex with a peptidyl-boronic acid inhibitor 2UUT ; 2.4 ; The 2.4 angstrom resolution structure of the D346G mutant of the Sapporo Virus RdRp polymerase 2WRT ; 2.4 ; The 2.4 Angstrom structure of the Fasciola hepatica mu class GST, GST26 1LPB ; 2.46 ; THE 2.46 ANGSTROMS RESOLUTION STRUCTURE OF THE PANCREATIC LIPASE COLIPASE COMPLEX INHIBITED BY A C11 ALKYL PHOSPHONATE 5VES ; 2.4 ; The 2.4A crystal structure of OmpA domain of OmpA from Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 3ODU ; 2.5 ; The 2.5 A structure of the CXCR4 chemokine receptor in complex with small molecule antagonist IT1t 1W45 ; 2.51 ; The 2.5 Angstroem structure of the K16A mutant of annexin A8, which has an intact N-terminus. 1K7L ; 2.5 ; The 2.5 Angstrom resolution crystal structure of the human PPARalpha ligand binding domain bound with GW409544 and a co-activator peptide. 1G1U ; 2.5 ; THE 2.5 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE RXRALPHA LIGAND BINDING DOMAIN IN TETRAMER IN THE ABSENCE OF LIGAND 1PAF ; 2.5 ; THE 2.5 ANGSTROMS STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN 1PAG ; 2.8 ; THE 2.5 ANGSTROMS STRUCTURE OF POKEWEED ANTIVIRAL PROTEIN 4Z5Z ; 2.54 ; The 2.5-angstrom crystal structure of Mg(2+)-bound PqqB from Pseudomonas Putida 4Z60 ; 2.5 ; The 2.5-angstrom of crystal structure of Zn(2+)-bound PqqB from Pseudomonas Putida 3B3J ; 2.55 ; The 2.55 A crystal structure of the apo catalytic domain of coactivator-associated arginine methyl transferase I(CARM1:28-507, residues 28-146 and 479-507 not ordered) 4JSC ; 2.5 ; The 2.5A crystal structure of humanized Xenopus MDM2 with RO5316533 - a pyrrolidine MDM2 inhibitor 3EML ; 2.6 ; The 2.6 A Crystal Structure of a Human A2A Adenosine Receptor bound to ZM241385. 3D3L ; 2.6 ; The 2.6 A crystal structure of the lipoxygenase domain of human arachidonate 12-lipoxygenase, 12S-type 2ANT ; 2.6 ; THE 2.6 A STRUCTURE OF ANTITHROMBIN INDICATES A CONFORMATIONAL CHANGE AT THE HEPARIN BINDING SITE 1JGC ; 2.6 ; The 2.6 A Structure Resolution of Rhodobacter capsulatus Bacterioferritin with Metal-free Dinuclear Site and Heme Iron in a Crystallographic Special Position 3EIT ; 2.56 ; the 2.6 angstrom crystal structure of CHBP, the Cif Homologue from Burkholderia pseudomallei 1EQG ; 2.61 ; THE 2.6 ANGSTROM MODEL OF OVINE COX-1 COMPLEXED WITH IBUPROFEN 1LTD ; 2.6 ; THE 2.6 ANGSTROMS REFINED STRUCTURE OF THE ESCHERICHIA COLI RECOMBINANT SACCHAROMYCES CEREVISIAE FLAVOCYTOCHROME B2-SULPHITE COMPLEX 2GSY ; 2.6 ; The 2.6A structure of Infectious Bursal Virus Derived T=1 Particles 3LHB ; 2.7 ; THE 2.7 ANGSTROM CRYSTAL STRUCTURE OF DEOXYGENATED HEMOGLOBIN FROM THE SEA LAMPREY (PETROMYZON MARINUS) 1EQH ; 2.7 ; THE 2.7 ANGSTROM MODEL OF OVINE COX-1 COMPLEXED WITH FLURBIPROFEN 1I3S ; 2.7 ; THE 2.7 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF A MUTATED BACULOVIRUS P35 AFTER CASPASE CLEAVAGE 1HT8 ; 2.69 ; THE 2.7 ANGSTROM RESOLUTION MODEL OF OVINE COX-1 COMPLEXED WITH ALCLOFENAC 1HT5 ; 2.75 ; THE 2.75 ANGSTROM RESOLUTION MODEL OF OVINE COX-1 COMPLEXED WITH METHYL ESTER FLURBIPROFEN 5UF6 ; 2.8 ; The 2.8 A Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparanoid Pentasaccharide 1XU8 ; 2.8 ; The 2.8 A structure of a tumour suppressing serpin 1GFW ; 2.8 ; THE 2.8 ANGSTROM CRYSTAL STRUCTURE OF CASPASE-3 (APOPAIN OR CPP32)IN COMPLEX WITH AN ISATIN SULFONAMIDE INHIBITOR. 1PXT ; 2.8 ; THE 2.8 ANGSTROMS STRUCTURE OF PEROXISOMAL 3-KETOACYL-COA THIOLASE OF SACCHAROMYCES CEREVISIAE: A FIVE LAYERED A-B-A-B-A STRUCTURE, CONSTRUCTED FROM TWO CORE DOMAINS OF IDENTICAL TOPOLOGY 3VE1 ; 2.956 ; The 2.9 angstrom crystal structure of Transferrin binding protein B (TbpB) from serogroup B M982 Neisseria meningitidis in complex with human transferrin 1SER ; 2.9 ; THE 2.9 ANGSTROMS CRYSTAL STRUCTURE OF T. THERMOPHILUS SERYL-TRNA SYNTHETASE COMPLEXED WITH TRNA SER 2XCQ ; 2.98 ; The 2.98A crystal structure of the catalytic core (B'A' region) of Staphylococcus aureus DNA Gyrase 3NSS ; 1.902 ; The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active sites 6M17 ; 2.9 ; The 2019-nCoV RBD/ACE2-B0AT1 complex 6MDM ; 4.4 ; The 20S supercomplex engaging the SNAP-25 N-terminus (class 1) 6MDN ; 4.4 ; The 20S supercomplex engaging the SNAP-25 N-terminus (class 2) 2L87 ; ; The 27-residue N-terminus CCR5-peptide in a ternary complex with HIV-1 gp120 and a CD4-mimic peptide 6XRZ ; 6.9 ; The 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome 8ST0 ; 2.4 ; The 2alpha3beta stoichiometry of full-length human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine 8SSZ ; 2.64 ; The 2alpha3beta stoichiometry of full-length human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine and calcium 8ST4 ; 2.35 ; The 2alpha3beta stoichiometry of human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine 8ST3 ; 2.93 ; The 2alpha3beta stoichiometry of human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine and calcium 1QNO ; 2.0 ; The 3-D structure of a Trichoderma reesei b-mannanase from glycoside hydrolase family 5 1QNP ; 1.5 ; The 3-D structure of a Trichoderma reesei b-mannanase from glycoside hydrolase family 5 1QNQ ; 1.65 ; The 3-D structure of a Trichoderma reesei b-mannanase from glycoside hydrolase family 5 1QNR ; 1.4 ; The 3-D structure of a Trichoderma reesei b-mannanase from glycoside hydrolase family 5 1QNS ; 1.5 ; The 3-D structure of a Trichoderma reesei b-mannanase from glycoside hydrolase family 5 1SMR ; 2.0 ; The 3-d structure of mouse submaxillary renin complexed with a decapeptide inhibitor ch-66 based on the 4-16 fragment of rat angiotensinogen 4V1Z ; 1.78 ; The 3-D structure of the cellobiohydrolase, Cel7A, from Aspergillus fumigatus 4V20 ; 1.5 ; The 3-D structure of the cellobiohydrolase, Cel7A, from Aspergillus fumigatus, disaccharide complex 1W2V ; 1.55 ; The 3-dimensional structure of a thermostable mutant of a xylanase (Xyn10A) from Cellvibrio japonicus 1W32 ; 1.2 ; The 3-dimensional structure of a thermostable mutant of a xylanase (Xyn10A) from Cellvibrio japonicus 1W3H ; 1.5 ; The 3-dimensional structure of a thermostable mutant of a xylanase (Xyn10A) from Cellvibrio japonicus 1W2P ; 1.45 ; The 3-dimensional structure of a xylanase (Xyn10A) from Cellvibrio japonicus 3ZTW ; 1.898 ; The 3-dimensional structure of apo-MpgP, the mannosyl-3- phosphoglycerate phosphatase from Thermus thermophilus HB27 in its apo-form 3ZX5 ; 1.81 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, covalently bound to vanadate and in complex with alpha- mannosylglycerate and magnesium 3ZW7 ; 1.898 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the alpha-mannosylglycerate and metaphosphate. 3ZU6 ; 1.9 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the alpha-mannosylglycerate and orthophosphate reaction products. 3ZUP ; 1.804 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the alpha-mannosylglycerate and orthophosphate reaction products. 3ZX4 ; 1.74 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the alpha-mannosylglycerate,orthophosphate and magnesium 3ZWD ; 1.917 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the alpha-mannosylglycerate. 3ZWK ; 2.099 ; The 3-dimensional structure of MpgP from Thermus thermophilus HB27, in complex with the metavanadate 3ZTY ; 2.5 ; The 3-dimensional structure of the gadolinium derivative of MpgP, the mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27 3UWN ; 2.15 ; The 3-MBT repeat domain of L3MBTL1 in complex with a methyl-lysine mimic 2C8T ; 3.0 ; The 3.0 A Resolution Structure of Caseinolytic Clp Protease 1 from Mycobacterium tuberculosis 5CTG ; 3.103 ; The 3.1 A resolution structure of a eukaryotic SWEET transporter 1I3P ; 3.1 ; THE 3.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF A MUTATED BACULOVIRUS P35 AFTER CASPASE CLEAVAGE 2XCO ; 3.1 ; The 3.1A crystal structure of the catalytic core (B'A' region) of Staphylococcus aureus DNA Gyrase 3J26 ; 3.5 ; The 3.5 A resolution structure of the Sputnik virophage by cryo-EM 2XCR ; 3.5 ; The 3.5A crystal structure of the catalytic core (B'A' region) of Staphylococcus aureus DNA Gyrase complexed with GSK299423 and DNA 5CTH ; 3.69 ; The 3.7 A resolution structure of a eukaryotic SWEET transporter 8ST2 ; 2.94 ; The 3alpha2beta stoichiometry of human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine 8ST1 ; 3.41 ; The 3alpha2beta stoichiometry of human alpha4beta2 nicotinic acetylcholine receptor in complex with acetylcholine and calcium 2N5E ; ; The 3D solution structure of discoidal high-density lipoprotein particles 1Q2Z ; ; The 3D solution structure of the C-terminal region of Ku86 7XKW ; 3.1 ; The 3D strcuture of (-)-cyperene synthase with substrate analogue FSPP 2RKX ; 2.25 ; The 3D structure of chain D, cyclase subunit of imidazoleglycerol_evolvedcerolphosphate synthase 4WRK ; 2.9 ; The 3D structure of D95N mutant DUTPase from phage phi11 of S. aureus reveals the molecular details for the coordination of a structural Mg(II) ion 5JT1 ; 1.35 ; The 3D structure of Ni-reconstituted U489C variant of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough in the oxidized state at 1.35 Angstrom resolution 5JSH ; 1.3 ; The 3D structure of recombinant [NiFeSe] hydrogenase from Desulfovibrio Vulgaris Hildenborough in the oxidized state at 1.30 Angstrom 1HRZ ; ; THE 3D STRUCTURE OF THE HUMAN SRY-DNA COMPLEX SOLVED BY MULTI-DIMENSIONAL HETERONUCLEAR-EDITED AND-FILTERED NMR 1HRY ; ; THE 3D STRUCTURE OF THE HUMAN SRY-DNA COMPLEX SOLVED BY MULTID-DIMENSIONAL HETERONUCLEAR-EDITED AND-FILTERED NMR 5JSY ; 1.04 ; The 3D structure of the Ni-reconstituted U489C variant of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough at 1.04 Angstrom resolution 1BHU ; ; THE 3D STRUCTURE OF THE STREPTOMYCES METALLOPROTEINASE INHIBITOR, SMPI, ISOLATED FROM STREPTOMYCES NIGRESCENS TK-23, NMR, MINIMIZED AVERAGE STRUCTURE 5JSU ; 1.4 ; The 3D structure of the U489C variant of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough in the oxidized state at 1.40 Angstrom resolution 5JSK ; 0.95 ; The 3D structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough in the reduced state at 0.95 Angstrom resolution 6RU9 ; 1.355 ; THE 3D STRUCTURE OF [NIFESE] HYDROGENASE G491A VARIANT FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH AT 1.36 ANGSTROM RESOLUTION 6RUC ; 1.199 ; THE 3D STRUCTURE OF [NIFESE] HYDROGENASE G491S VARIANT FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH AT 1.20 ANGSTROM RESOLUTION 6RTP ; 1.1 ; THE 3D STRUCTURE OF [NIFESE] HYDROGENASE G50T VaRIANT FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH AT 1.10 ANGSTROM RESOLUTION 4BGF ; 2.097 ; The 3D-structure of arylamine-N-acetyltransferase from M. tuberculosis 4MUC ; 2.897 ; The 4th and 5th C-terminal domains of Factor H related protein 1 7PET ; 9.5 ; The 4x177 nucleosome array containing H1 4CX9 ; 1.43 ; The 5-coordinate proximal NO complex of cytochrome c prime from Shewanella frigidimarina 4PBB ; 3.46 ; The 5-Hydroxymethylcytosine-Specific Restriction Enzyme AbaSI 4PAR ; 2.89 ; The 5-Hydroxymethylcytosine-Specific Restriction Enzyme AbaSI in a Complex with Product-like DNA 4PBA ; 3.301 ; The 5-Hydroxymethylcytosine-Specific Restriction Enzyme AbaSI in a Complex with Substrate-like DNA 8HIJ ; 3.54 ; The 5-MTHF-bound BRIL-SLC19A1/Fab/Nb ternary complex 2QKU ; 2.2 ; The 5th PDZ Domain of InaD in 10mM DTT 7CB2 ; 2.15 ; The 6-phosphogluconate dehydrogenase (NADP-bound) from Staphylococcus aureus 7CB5 ; 2.54 ; The 6-phosphogluconate dehydrogenase from Staphylococcus aureus (6-phosphogluconate bound) 5JNX ; 6.56 ; The 6.6 A cryo-EM structure of the full-length human NPC1 in complex with the cleaved glycoprotein of Ebola virus 2VY7 ; 1.53 ; The 627-domain from influenza A virus polymerase PB2 subunit 2VY8 ; 1.2 ; The 627-domain from influenza A virus polymerase PB2 subunit with Glu- 627 4F7U ; 1.898 ; The 6S snRNP assembly intermediate 5VPO ; 3.34 ; The 70S P-site ASL SufA6 complex 5VPP ; 3.9 ; The 70S P-site tRNA SufA6 complex 4V98 ; 3.1 ; The 8S snRNP Assembly Intermediate 2VDC ; 9.5 ; THE 9.5 A RESOLUTION STRUCTURE OF GLUTAMATE SYNTHASE FROM CRYO-ELECTRON MICROSCOPY AND ITS OLIGOMERIZATION BEHAVIOR IN SOLUTION: FUNCTIONAL IMPLICATIONS. 2LDT ; ; The 912-888 alternate conformation for helix 27 of E.coli 16S rRNA 2O94 ; 3.0 ; The 97H/F mutant Structure of a glutamine-rich domain from histone deacetylase 4 6LRB ; 2.65 ; The A form apo structure of NrS-1 C terminal region-CTR 6K9E ; 2.9 ; The A form apo structure of NrS-1 C terminal region-CTR(305-718) 7VOH ; 2.197 ; The a-glucosidase QsGH13 from Qipengyuania seohaensis 2V0T ; 2.2 ; The A178L mutation in the C-terminal hinge of the flexible loop-6 of triosephosphate isomerase (TIM) induces a more closed conformation of this hinge region in dimeric and monomeric TIM 2V2C ; 1.89 ; The A178L mutation in the C-terminal hinge of the flexible loop-6 of triosephosphate isomerase (TIM) induces a more closed conformation of this hinge region in dimeric and monomeric TIM 2V2D ; 2.3 ; The A178L mutation in the C-terminal hinge of the flexible loop-6 of triosephosphate isomerase (TIM) induces a more closed conformation of this hinge region in dimeric and monomeric TIM 2V2H ; 1.18 ; The A178L mutation in the C-terminal hinge of the flexible loop-6 of triosephosphate isomerase (TIM) induces a more closed conformation of this hinge region in dimeric and monomeric TIM 1Q9I ; 1.6 ; The A251C:S430C double mutant of flavocytochrome c3 from Shewanella frigidimarina 7S1W ; 3.09 ; The AAVrh.10-glycan complex 1AHO ; 0.96 ; THE AB INITIO STRUCTURE DETERMINATION AND REFINEMENT OF A SCORPION PROTEIN TOXIN 6H0H ; 1.39 ; The ABC transporter associated binding protein from B. animalis subsp. lactis Bl-04 in complex with beta-1,6-galactobiose 6Q5G ; 2.0 ; The ABC transporter associated binding protein from B. animalis subsp. lactis Bl-04 without ligand. SeMet variant 2FF7 ; 1.6 ; The ABC-ATPase of the ABC-transporter HlyB in the ADP bound state 8AVY ; 2.9 ; The ABCB1 L335C mutant (mABCB1) in the Apo state 7ZK4 ; 2.6 ; The ABCB1 L335C mutant (mABCB1) in the outward facing state 3K90 ; 2.0 ; The Abscisic acid receptor PYR1 in complex with Abscisic Acid 3UBI ; 6.8046 ; The Absence of Tertiary Interactions in a Self-Assembled DNA Crystal Structure 7PSA ; 3.4 ; The acetogenin-bound complex I of Mus musculus resolved to 3.4 angstroms 3RIK ; 2.48 ; The acid beta-glucosidase active site exhibits plasticity in binding 3,4,5,6-tetrahydroxyazepane-based inhibitors: implications for pharmacological chaperone design for gaucher disease 3RIL ; 2.4 ; The acid beta-glucosidase active site exhibits plasticity in binding 3,4,5,6-tetrahydroxyazepane-based inhibitors: implications for pharmacological chaperone design for gaucher disease 3FY1 ; 1.7 ; The Acidic Mammalian Chitinase catalytic domain in complex with methylallosamidin 8CG5 ; 2.7 ; The ACP crosslinked to the KS of the cercosporin fungal non-reducing polyketide synthase (NR-PKS) CTB1 (SAT-KS:ACP-MAT) 8CG6 ; 3.4 ; The ACP crosslinked to the SAT of the cercosporin fungal non-reducing polyketide synthase (NR-PKS) CTB1 (ACP:SAT-KS-MAT) 2M6O ; ; The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase 2M6P ; ; The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase 2K0Y ; ; The actinorhodin apo acyl carrier protein from S. coelicolor 2K0X ; ; The actinorhodin holo acyl carrier protein from S. coelicolor 1TQY ; 2.0 ; The Actinorhodin Ketosynthase/Chain Length Factor 1PPI ; 2.2 ; THE ACTIVE CENTER OF A MAMMALIAN ALPHA-AMYLASE. THE STRUCTURE OF THE COMPLEX OF A PANCREATIC ALPHA-AMYLASE WITH A CARBOHYDRATE INHIBITOR REFINED TO 2.2 ANGSTROMS RESOLUTION 6FLI ; 3.0 ; The active form of a pentameric ion channel (sTeLIC) gated by alkaline pH - Co-crystallization with 4-bromo cinnamic acid 6FVQ ; 3.3 ; The active form of a pentameric ion channel (sTeLIC) gated by alkaline pH - R86A 6FVS ; 3.2 ; The active form of a pentameric ion channel (sTeLIC) gated by alkaline pH - sTeLIC in complex with Barium ions (Ba2+) 6FVR ; 4.2 ; The active form of a pentameric ion channel (sTeLIC) gated by alkaline pH - sTeLIC in complex with Cesium ions (Cs+) 6FL9 ; 2.3 ; The active form of a pentameric ion channel (sTeLIC) gated by alkaline pH - Wild type 2.3 Angstrom resolution 1YBA ; 2.24 ; The active form of phosphoglycerate dehydrogenase 1HH8 ; 1.8 ; The active N-terminal region of p67phox: Structure at 1.8 Angstrom resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease 1QAF ; 2.2 ; THE ACTIVE SITE BASE CONTROLS COFACTOR REACTIVITY IN ESCHERICHIA COLI AMINE OXIDASE : X-RAY CRYSTALLOGRAPHIC STUDIES WITH MUTATIONAL VARIANTS 1QAK ; 2.0 ; THE ACTIVE SITE BASE CONTROLS COFACTOR REACTIVITY IN ESCHERICHIA COLI AMINE OXIDASE : X-RAY CRYSTALLOGRAPHIC STUDIES WITH MUTATIONAL VARIANTS 1QAL ; 2.2 ; THE ACTIVE SITE BASE CONTROLS COFACTOR REACTIVITY IN ESCHERICHIA COLI AMINE OXIDASE : X-RAY CRYSTALLOGRAPHIC STUDIES WITH MUTATIONAL VARIANTS 1DYU ; 2.04 ; The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X-ray crystallographic studies with mutational variants. 8J7Q ; 1.69 ; The active site mutant of human inorganic pyrophosphatase 2W9X ; 2.0 ; The active site of a carbohydrate esterase displays divergent catalytic and non-catalytic binding functions 1ER8 ; 2.0 ; THE ACTIVE SITE OF ASPARTIC PROTEINASES 3ER3 ; 2.0 ; The active site of aspartic proteinases 3ER5 ; 1.8 ; THE ACTIVE SITE OF ASPARTIC PROTEINASES 4APE ; 2.1 ; THE ACTIVE SITE OF ASPARTIC PROTEINASES 4ER1 ; 2.0 ; THE ACTIVE SITE OF ASPARTIC PROTEINASES 4ER2 ; 2.0 ; The active site of aspartic proteinases 5BNW ; 2.4 ; The active site of O-GlcNAc transferase imposes constraints on substrate sequence 1QAE ; 2.05 ; THE ACTIVE SITE OF SERRATIA ENDONUCLEASE CONTAINS A CONSERVED MAGNESIUM-WATER CLUSTER 1O8Q ; 2.6 ; The active site of the molybdenum cofactor biosenthetic protein domain Cnx1G 1O8N ; 2.8 ; The active site of the molybdenum cofactor biosynthetic protein domain Cnx1G 1O8O ; 2.7 ; The active site of the molybdenum cofactor biosynthetic protein domain Cnx1G 1ASZ ; 3.0 ; THE ACTIVE SITE OF YEAST ASPARTYL-TRNA SYNTHETASE: STRUCTURAL AND FUNCTIONAL ASPECTS OF THE AMINOACYLATION REACTION 1MAE ; 2.8 ; The Active Site Structure of Methylamine Dehydrogenase: Hydrazines Identify C6 as the Reactive Site of the Tryptophan Derived Quinone Cofactor 1MAF ; 2.6 ; The Active Site Structure of Methylamine Dehydrogenase: Hydrazines Identify C6 as the Reactive Site of the Tryptophan Derived Quinone Cofactor 2MAD ; 2.25 ; THE ACTIVE SITE STRUCTURE OF METHYLAMINE DEHYDROGENASE: HYDRAZINES IDENTIFY C6 AS THE REACTIVE SITE OF THE TRYPTOPHAN DERIVED QUINONE COFACTOR 7KHT ; 2.504 ; The acyl chains of phosphoinositide PIP3 alter the structure and function of nuclear receptor Steroidogenic Factor-1 (SF-1) 6TIM ; 2.2 ; THE ADAPTABILITY OF THE ACTIVE SITE OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE AS OBSERVED IN THE CRYSTAL STRUCTURES OF THREE DIFFERENT COMPLEXES 7BCU ; 0.98 ; The adduct of NAMI-A with Hen Egg White Lysozyme at 1.5 hours. 7BD0 ; 1.06 ; The adduct of NAMI-A with Hen Egg White Lysozyme at 26 hours. 7BCX ; 1.06 ; The adduct of NAMI-A with Hen Egg White Lysozyme at 8 hours. 7BDM ; 1.07 ; The adduct of NAMI-A with Hen Egg White Lysozyme at 98 hours. 1LIB ; 1.7 ; THE ADIPOCYTE LIPID-BINDING PROTEIN AT 1.6 ANGSTROMS RESOLUTION: CRYSTAL STRUCTURES OF THE APOPROTEIN AND WITH BOUND SATURATED AND UNSATURATED FATTY ACIDS 1LID ; 1.6 ; THE ADIPOCYTE LIPID-BINDING PROTEIN AT 1.6 ANGSTROMS RESOLUTION: CRYSTAL STRUCTURES OF THE APOPROTEIN AND WITH BOUND SATURATED AND UNSATURATED FATTY ACIDS 1LIF ; 1.6 ; THE ADIPOCYTE LIPID-BINDING PROTEIN AT 1.6 ANGSTROMS RESOLUTION: CRYSTAL STRUCTURES OF THE APOPROTEIN AND WITH BOUND SATURATED AND UNSATURATED FATTY ACIDS 6CEQ ; 1.67 ; The Aer2 Receptor from Vibrio cholerae is a Dual PAS-Heme Oxygen Sensor 4AVY ; 2.0 ; The AEROPATH project and Pseudomonas aeruginosa high-throughput crystallographic studies for assessment of potential targets in early stage drug discovery. 4B79 ; 1.98 ; THE AEROPATH PROJECT AND PSEUDOMONAS AERUGINOSA HIGH-THROUGHPUT CRYSTALLOGRAPHIC STUDIES FOR ASSESSMENT OF POTENTIAL TARGETS IN EARLY STAGE DRUG DISCOVERY. 4IMY ; 2.94 ; The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat 1AGA ; 3.0 ; THE AGAROSE DOUBLE HELIX AND ITS FUNCTION IN AGAROSE GEL STRUCTURE 5GTP ; 2.35 ; The agonist-free structure of human PPARgamma ligand binding domain in the presence of the SRC-1 coactivator peptide 7VQ7 ; 3.6 ; The Al-bound AtALMT1 structure at pH 5 (ALMT1Al/pH5) 3KSJ ; 2.0 ; The alkanesulfonate-binding protein SsuA from Xabthomonas axonopodis pv. citri bound to MES 3KSX ; 1.7 ; The alkanesulfonate-binding protein SsuA from Xanthomonas axonopodis pv. citri bound to MOPS 6QBS ; 1.7 ; The Alkyne Moiety as a Latent Electrophile in Irreversible Covalent Small Molecule Inhibitors of Cathepsin K 7TXF ; 2.47 ; The allosteric binding mode of alphaD-conotoxin VxXXB 3QGN ; 2.1 ; The allosteric E*-E equilibrium is a key property of the trypsin fold 1PSD ; 2.75 ; THE ALLOSTERIC LIGAND SITE IN THE VMAX-TYPE COOPERATIVE ENZYME PHOSPHOGLYCERATE DEHYDROGENASE 9GPB ; 2.9 ; THE ALLOSTERIC TRANSITION OF GLYCOGEN PHOSPHORYLASE 1STY ; 1.67 ; THE ALPHA ANEURISM: A STRUCTURAL MOTIF REVEALED IN AN INSERTION MUTANT OF STAPHYLOCOCCAL NUCLEASE 4FNG ; 1.95 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina 4FNM ; 1.804 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina 5IVH ; 1.71 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina: apo-enzyme ensemble refinement 5IVD ; 1.71 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina: apo-enzyme qFit multi-conformer model 5IVI ; 1.53 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina: phosphorylated enzyme qFit multi-conformer model 5IVK ; 1.53 ; The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina: phosphorylated-enzyme ensemble refinement 3LC6 ; 3.1 ; The alternative conformation structure of isocitrate dehydrogenase kinase/phosphatase from E. Coli 1OZI ; ; The alternatively spliced PDZ2 domain of PTP-BL 1AML ; ; THE ALZHEIMER`S DISEASE AMYLOID A4 PEPTIDE (RESIDUES 1-40) 4OLS ; 2.27 ; The amidase-2 domain of LysGH15 7LGX ; 1.8 ; The aminoacrylate form of mutant beta-K167T Salmonella typhimurium Tryptophan Synthase in complex with with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, benzimidazole (BZI) at the enzyme beta site and cesium ion at the metal coordination site at 1.80 Angstrom resolution 7LT4 ; 1.8 ; The aminoacrylate form of the beta-K167T mutant Tryptophan Synthase at 1.80 Angstrom resolution in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site 7KQ9 ; 1.5 ; The aminoacrylate form of the beta-Q114A mutant Tryptophan Synthase at 1.50 Angstrom resolution with cesium ion at the metal coordination site 7LEV ; 1.7 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with ammonium ion at the metal coordination site at 1.70 Angstrom resolution 7KWV ; 1.3 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site at 1.30 Angstrom resolution 7L1H ; 1.5 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site at 1.50 Angstrom resolution. Three water molecules are close to the amynoacrylate at the enzyme beta-site 7L03 ; 1.6 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and sodium ion at the metal coordination site at 1.60 Angstrom resolution. Three water molecules are close to the amynoacrylate at the enzyme beta-site 7KYT ; 1.35 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site and benzimidazole (BZI) at the enzyme beta-site at 1.35 Angstrom resolution 7KXC ; 1.51 ; The aminoacrylate form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, sodium ion at the metal coordination site and benzimidazole (BZI) at the enzyme beta-site at 1.30 Angstrom resolution. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 8IB0 ; ; The amyloid structure of mouse RIPK1 RHIM-containing domain by solid-state NMR 2Q7L ; 1.92 ; The Androgen Receptor Prostate Cancer Mutant H874Y Ligand Binding Domain Bound with Testosterone and a TIF2 box3 Coactivator Peptide 740-753 2Q7K ; 1.8 ; The Androgen Receptor Prostate Cancer Mutant H874Y Ligand Binding Domain Bound with Testosterone and an AR 20-30 Peptide 6FN0 ; 2.9 ; The animal-like Cryptochrome from Chlamydomonas reinhardtii in complex with 6-4 DNA 1KTH ; 0.95 ; The Anisotropic Refinement Of Kunitz Type Domain C5 at 0.95 Angstrom 3EU9 ; 1.99 ; The ankyrin repeat domain of Huntingtin interacting protein 14 5VXR ; 1.4 ; The antigen-binding fragment of MAb24 in complex with a peptide from Hepatitis C Virus E2 epitope I (412-423) 1HHG ; 2.6 ; THE ANTIGENIC IDENTITY OF PEPTIDE(SLASH)MHC COMPLEXES: A COMPARISON OF THE CONFORMATION OF FIVE PEPTIDES PRESENTED BY HLA-A2 1HHH ; 3.0 ; THE ANTIGENIC IDENTITY OF PEPTIDE(SLASH)MHC COMPLEXES: A COMPARISON OF THE CONFORMATION OF FIVE PEPTIDES PRESENTED BY HLA-A2 1HHI ; 2.5 ; THE ANTIGENIC IDENTITY OF PEPTIDE(SLASH)MHC COMPLEXES: A COMPARISON OF THE CONFORMATION OF FIVE PEPTIDES PRESENTED BY HLA-A2 1HHJ ; 2.5 ; THE ANTIGENIC IDENTITY OF PEPTIDE(SLASH)MHC COMPLEXES: A COMPARISON OF THE CONFORMATION OF FIVE PEPTIDES PRESENTED BY HLA-A2 1HHK ; 2.5 ; THE ANTIGENIC IDENTITY OF PEPTIDE(SLASH)MHC COMPLEXES: A COMPARISON OF THE CONFORMATION OF FIVE PEPTIDES PRESENTED BY HLA-A2 4LXC ; 3.5 ; The antimicrobial peptidase lysostaphin from Staphylococcus simulans 1KY7 ; 2.15 ; THE AP-2 CLATHRIN ADAPTOR ALPHA-APPENDAGE IN COMPLEX WITH AMPHIPHYSIN FXDXF 7CB0 ; 2.52 ; The apo 6-phosphogluconate dehydrogenase from Staphylococcus aureus (strain Newman) 8U49 ; 1.8 ; The Apo Crystal Structure of BlCel9A from Glycoside Hydrolase Family 9 5EC6 ; 1.6 ; The apo crystal structure of haemoglobin receptor HpuA from Kingella denitrificans 2PME ; 2.9 ; The Apo crystal Structure of the glycyl-tRNA synthetase 5HJF ; 1.59 ; The apo form of Dps4 from Nostoc punctiforme 1RKA ; 2.3 ; THE APO FORM OF E. COLI RIBOKINASE 2CRL ; ; The apo form of HMA domain of copper chaperone for superoxide dismutase 4FB7 ; 1.3 ; The apo form of idole-3-glycerol phosphate synthase (TrpC) form Mycobacterium tuberculosis 5VM4 ; 1.9 ; The apo form of the triclocarban-binding single domain camelid nanobody VHH T10 5VLV ; 1.35 ; The apo form of the triclocarban-binding single domain camelid nanobody VHH T9 5NY5 ; 2.501 ; The apo structure of 3,4-dihydroxybenzoic acid decarboxylases from Enterobacter cloacae 4AST ; 2.38 ; The apo structure of a bacterial aldo-keto reductase AKR14A1 4YJM ; 1.952 ; The apo structure of Agrobacterium tumefaciens ClpS2 8H4H ; 2.3 ; The apo structure of Aspergillomarasmine A synthetase 7VKW ; 1.75 ; The apo structure of beta-1,2-glucosyltransferase from Ignavibacterium album 6HV1 ; 2.547 ; The apo structure of Dps from Listeria innocua before soaking experiments with Zn, Co and La 1ZLX ; 2.2 ; The apo structure of human glycinamide ribonucleotide transformylase 8IPI ; 2.1 ; The apo structure of human mitochondrial methyltransferase METTL15 7TZO ; 3.28 ; The apo structure of human mTORC2 complex 5Y9O ; 2.554 ; The apo structure of Legionella pneumophila WipA 2AHD ; 3.0 ; The Apo structure of Methanococcus jannaschii phosphodiesterase MJ0936 6K9C ; 2.406 ; The apo structure of NrS-1 C terminal region (305-718) 7XYE ; 2.482 ; The apo structure of Orf1 8AHD ; 2.1 ; The apo structure of the Corramycin phosphotransferase 7XTR ; 2.2 ; The apo structure of the engineered TfCut 7XTS ; 2.21 ; The apo structure of the engineered TfCut S130A 7W5F ; 2.53 ; The apo structure of trichobrasilenol synthase TaTC6 with the space group of monoclinic 7W5G ; 1.8 ; The apo structure of trichobrasilenol synthase TaTC6 with the space group of orthorhombic 8ALS ; 2.3 ; The apo-crystal structure of a variant form of the 28-kDa Schistosoma haematobium glutathione transferase 8BHZ ; 2.4 ; The apo-crystal structure of a variant form of the 28-kDa Schistosoma haematobium glutathione transferase in orthorhombic form 8HGQ ; 2.09 ; The apo-flavodoxin dimer from Synechococcus elongatus PCC 7942 8HGR ; 1.84 ; The apo-flavodoxin monomer from Synechococcus elongatus PCC 7942 7WIA ; 3.22 ; The apo-form of THF-II C22G riboswitch 3WDW ; 1.8 ; The apo-form structure of E113A from Paecilomyces thermophila 7F9I ; 2.5 ; The apo-form structure of EnrR 3WDT ; 1.98 ; The apo-form structure of PtLic16A from Paecilomyces thermophila 3PHL ; 1.9 ; The apo-form UDP-glucose 6-dehydrogenase 3PID ; 1.4 ; The apo-form UDP-glucose 6-dehydrogenase with a C-terminal six-histidine tag 7VQ4 ; 3.2 ; The apo-state AtALMT1 structure at pH 7.5(ALMT1apo/pH7.5) 7VQ3 ; 3.2 ; The apo-state AtALMT1 structures at pH 5 (ALMT1apo/pH5) 5Z1Z ; 1.97 ; The apo-structure of D-lactate dehydrogenase from Escherichia coli 6ABI ; 2.1 ; The apo-structure of D-lactate dehydrogenase from Fusobacterium nucleatum 6ABJ ; 1.86 ; The apo-structure of D-lactate dehydrogenase from Pseudomonas aeruginosa 6IMU ; 2.0 ; The apo-structure of endo-beta-1,2-glucanase from Talaromyces funiculosus 2NYT ; 2.5 ; The APOBEC2 Crystal Structure and Functional Implications for AID 1Q8Z ; 2.35 ; The apoenzyme structure of the yeast SR protein kinase, Sky1p 8IAB ; 2.96 ; The Arabidopsis CLCa transporter bound with chloride, ATP and PIP2 8IAD ; 3.16 ; The Arabidopsis CLCa transporter bound with nitrate, ATP and PIP2 5TFY ; 3.4 ; The archaeal flagellum of Methanospirillum hungatei strain JF1. 6IAZ ; 1.901 ; The archaeal Methanocaldococcus infernus Elp3 with N-terminus deletion (1-46) 7OFQ ; 3.08 ; The archaellum of Methanocaldococcus villosus 1LTG ; 2.4 ; THE ARG7LYS MUTANT OF HEAT-LABILE ENTEROTOXIN EXHIBITS GREAT FLEXIBILITY OF ACTIVE SITE LOOP 47-56 OF THE A SUBUNIT 2BCT ; 2.9 ; THE ARMADILLO REPEAT REGION FROM MURINE BETA-CATENIN 3BCT ; 2.1 ; THE ARMADILLO REPEAT REGION FROM MURINE BETA-CATENIN 6CZ7 ; 1.62 ; The arsenate respiratory reductase (Arr) complex from Shewanella sp. ANA-3 6CZ8 ; 1.78 ; The arsenate respiratory reductase (Arr) complex from Shewanella sp. ANA-3 bound to arsenate 6CZ9 ; 1.8 ; The arsenate respiratory reductase (Arr) complex from Shewanella sp. ANA-3 bound to arsenite 6CZA ; 1.71 ; The arsenate respiratory reductase (Arr) complex from Shewanella sp. ANA-3 bound to phosphate 1CCA ; 1.8 ; THE ASP-HIS-FE TRIAD OF CYTOCHROME C PEROXIDASE CONTROLS THE REDUCTION POTENTIAL, ELECTRONIC STRUCTURE, AND COUPLING OF THE TRYPTOPHAN FREE-RADICAL TO THE HEME 1CCB ; 2.1 ; THE ASP-HIS-FE TRIAD OF CYTOCHROME C PEROXIDASE CONTROLS THE REDUCTION POTENTIAL, ELECTRONIC STRUCTURE, AND COUPLING OF THE TRYPTOPHAN FREE-RADICAL TO THE HEME 1CCC ; 2.0 ; THE ASP-HIS-FE TRIAD OF CYTOCHROME C PEROXIDASE CONTROLS THE REDUCTION POTENTIAL, ELECTRONIC STRUCTURE, AND COUPLING OF THE TRYPTOPHAN FREE-RADICAL TO THE HEME 2XZI ; 1.45 ; THE ASPERGILLUS FUMIGATUS SIALIDASE IS A KDNASE: STRUCTURAL AND MECHANISTIC INSIGHTS 2XZJ ; 1.84 ; THE ASPERGILLUS FUMIGATUS SIALIDASE IS A KDNASE: STRUCTURAL AND MECHANISTIC INSIGHTS 2XZK ; 1.5 ; THE ASPERGILLUS FUMIGATUS SIALIDASE IS A KDNASE: STRUCTURAL AND MECHANISTIC INSIGHTS 2F86 ; 2.64 ; The Association Domain of C. elegans CaMKII 1HZZ ; 2.5 ; THE ASYMMETRIC COMPLEX OF THE TWO NUCLEOTIDE-BINDING COMPONENTS (DI, DIII) OF PROTON-TRANSLOCATING TRANSHYDROGENASE 8I4I ; 2.2 ; The asymmetric structure of homodimeric E. coli TrpRS bound with tryptophanyl adenylate and L-tryptophan 8I1W ; 1.8 ; The asymmetric structure of homodimeric E. coli TrpRS bound with tryptophanyl adenylate at one of its two active pockets 5LBM ; 2.7 ; The asymmetric tetrameric structure of the formaldehyde sensing transcriptional repressor FrmR from Escherichia coli 8I1T ; 2.8 ; The asymmetric unit of P22 empty capsid 8I1V ; 2.6 ; The asymmetric unit of P22 procapsid 6JFH ; 20.0 ; The asymmetric-reconstructed cryo-EM structure of Zika virus-FabZK2B10 complex 8GVE ; 3.17 ; The asymmetry structure of hAE2 6HI7 ; 1.743 ; The ATAD2 bromodomain in complex with compound 10 6HI8 ; 1.9 ; The ATAD2 bromodomain in complex with compound 11 6EPT ; 1.65 ; The ATAD2 bromodomain in complex with compound 12 6HIA ; 1.897 ; The ATAD2 bromodomain in complex with compound 13 6HIB ; 2.029 ; The ATAD2 bromodomain in complex with compound 14 6HIC ; 1.768 ; The ATAD2 bromodomain in complex with compound 15 6HID ; 1.768 ; The ATAD2 bromodomain in complex with compound 16 6HIE ; 2.05 ; The ATAD2 bromodomain in complex with compound 17 6EPU ; 1.8 ; The ATAD2 bromodomain in complex with compound 2 6EPX ; 1.84 ; The ATAD2 bromodomain in complex with compound 3 6HI3 ; 2.4 ; The ATAD2 bromodomain in complex with compound 4 6EPV ; 1.793 ; The ATAD2 bromodomain in complex with compound 5 6EPJ ; 1.652 ; The ATAD2 bromodomain in complex with compound 6 6HI4 ; 1.69 ; The ATAD2 bromodomain in complex with compound 7 6HI5 ; 1.59 ; The ATAD2 bromodomain in complex with compound 8 6HI6 ; 1.64 ; The ATAD2 bromodomain in complex with compound 9 6EPS ; 2.081 ; The ATAD2 bromodomain in complex with compound UZH-DQ41 6EPR ; 2.053 ; The ATAD2 bromodomain in complex with compound UZH-DS15 6EPW ; 1.924 ; The ATAD2 bromodomain in complex with compound UZH-DU32 5D14 ; 1.0 ; The atomic resolution crystal structure of human IL-8 6DCM ; 1.031 ; The atomic resolution crystal structure of Kringle 2 variant bound with EACA 1ZWP ; 1.1 ; The atomic resolution Crystal structure of the Phospholipase A2 (PLA2) complex with Nimesulide reveals its weaker binding to PLA2 1QLW ; 1.09 ; The Atomic Resolution Structure of a Novel Bacterial Esterase 4I9V ; 1.02 ; The atomic structure of 5-Hydroxymethyl 2'-deoxycitidine base paired with 2'-deoxyguanosine in Dickerson Drew Dodecamer 6U3Q ; 2.46 ; The atomic structure of a human adeno-associated virus capsid isolate (AAVhu69/AAVv66) 1LP3 ; 3.0 ; The Atomic Structure of Adeno-Associated Virus (AAV-2), a Vector for Human Gene Therapy 4YN1 ; 1.9 ; THE ATOMIC STRUCTURE OF ANOMALA CUPREA ENTOMOPOXVIRUS (ACEPV) FUSOLIN SPINDLES 1EST ; 2.5 ; THE ATOMIC STRUCTURE OF CRYSTALLINE PORCINE PANCREATIC ELASTASE AT 2.5 ANGSTROMS RESOLUTION. COMPARISONS WITH THE STRUCTURE OF ALPHA-CHYMOTRYPSIN 6Z7N ; 3.77 ; The atomic structure of HAdV-F41 at pH 7.4 1UF2 ; 3.5 ; The Atomic Structure of Rice dwarf Virus (RDV) 7EMN ; 3.0 ; The atomic structure of SHP2 E76A mutant 5XZR ; 2.8 ; The atomic structure of SHP2 E76A mutant in complex with allosteric inhibitor 9b 1GFF ; 3.0 ; THE ATOMIC STRUCTURE OF THE DEGRADED PROCAPSID PARTICLE OF THE BACTERIOPHAGE G4: INDUCED STRUCTURAL CHANGES IN THE PRESENCE OF CALCIUM IONS AND FUNCTIONAL IMPLICATIONS 6Z7Q ; 3.8 ; The atomic structure of the HAdVF-41 penton base in solution 6LGN ; 5.3 ; The atomic structure of varicella zoster virus C-capsid 6LGL ; 4.4 ; The atomic structure of varicella-zoster virus A-capsid 4YN2 ; 2.02 ; THE ATOMIC STRUCTURE OF WISEANA SPP ENTOMOPOXVIRUS (WSEPV) FUSOLIN SPINDLES 5HV6 ; 3.005 ; The ATP binding domain of rifampin phosphotransferase from Listeria monocytogenes 1Q1E ; 2.9 ; The ATPase component of E. coli maltose transporter (MalK) in the nucleotide-free form 6JUI ; 2.402 ; The atypical Myb-like protein Cdc5 contains two distinct nucleic acid-binding surfaces 1LEL ; 2.9 ; The avidin BCAP complex 3TL8 ; 2.5 ; The AvrPtoB-BAK1 complex reveals two structurally similar kinaseinteracting domains in a single type III effector 1NDL ; 2.4 ; THE AWD NUCLEOTIDE DIPHOSPHATE KINASE FROM DROSOPHILA 3Q1D ; 2.15 ; The B-box domain of Trim54 355D ; 1.4 ; THE B-DNA DODECAMER AT HIGH RESOLUTION 7RQT ; 1.26 ; THE B-DNA DODECAMER With HIGH RESOLUTION 6FWV ; 2.58 ; The Bacillus anthracis TIE protein 7R4B ; 1.1 ; The Bacillus pumilus chorismate mutase 1F46 ; 1.5 ; THE BACTERIAL CELL-DIVISION PROTEIN ZIPA AND ITS INTERACTION WITH AN FTSZ FRAGMENT REVEALED BY X-RAY CRYSTALLOGRAPHY 1F47 ; 1.95 ; THE BACTERIAL CELL-DIVISION PROTEIN ZIPA AND ITS INTERACTION WITH AN FTSZ FRAGMENT REVEALED BY X-RAY CRYSTALLOGRAPHY 8HHF ; 3.04 ; The bacterial divisome protein complex FtsB-FtsL-FtsQ 8HHG ; 3.1 ; The bacterial divisome protein complex FtsB-FtsL-FtsQ 8HHH ; 3.3 ; The bacterial divisome protein complex FtsB-FtsL-FtsQ 5NDX ; 2.2 ; The bacterial orthologue of Human a-L-iduronidase does not need N-glycan post-translational modifications to be catalytically competent: Crystallography and QM/MM insights into Mucopolysaccharidosis I 1HPB ; 2.5 ; THE BACTERIAL PERIPLASMIC HISTIDINE-BINDING PROTEIN: STRUCTURE(SLASH)FUNCTION ANALYSIS OF THE LIGAND-BINDING SITE AND COMPARISON WITH RELATED PROTEINS 3ZT9 ; 1.75 ; The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling 3ZTA ; 2.7 ; The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling 3ZTB ; 2.8 ; The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling 7JQQ ; 4.1 ; The bacteriophage Phi-29 viral genome packaging motor assembly 1CJD ; 1.85 ; THE BACTERIOPHAGE PRD1 COAT PROTEIN, P3, IS STRUCTURALLY SIMILAR TO HUMAN ADENOVIRUS HEXON 2MDP ; ; The bacteriophage T7 encoded inhibitor (gp1.2) of E. coli dGTP triphosphohydrolase 7Z8I ; 3.3 ; The barbed end complex of dynactin bound to BICDR1 and the cytoplasmic dynein tails (A2, B1, B2) 6GIY ; 4.3 ; The baseplate complex from the type VI secretion system 6GJ1 ; 4.7 ; The baseplate complex from the type VI secretion system 6GJ3 ; 4.3 ; The baseplate complex from the type VI secretion system 7V9H ; 2.692 ; The BEN3 domain of protein Bend3 2GOP ; 2.0 ; The beta-propeller domain of the Trilobed protease from Pyrococcus furiosus reveals an open velcro topology 7TRG ; 3.0 ; The beta-tubulin folding intermediate I 7TTN ; 3.3 ; The beta-tubulin folding intermediate II 7TTT ; 2.9 ; The beta-tubulin folding intermediate III 7TUB ; 3.6 ; The beta-tubulin folding intermediate IV 6OBA ; 3.1 ; The beta2 adrenergic receptor bound to a negative allosteric modulator 284D ; 1.1 ; THE BI-LOOP, A NEW GENERAL FOUR-STRANDED DNA MOTIF 4F4U ; 2.0 ; The bicyclic intermediate structure provides insights into the desuccinylation mechanism of SIRT5 4F56 ; 1.7 ; The bicyclic intermediate structure provides insights into the desuccinylation mechanism of SIRT5 2CG8 ; 2.9 ; The bifunctional dihydroneopterin aldolase 6-hydroxymethyl-7,8- dihydropterin synthase from Streptococcus pneumoniae 6V3P ; 3.25 ; The BIgI domain of beta protein from S. agalactiae bound to CEACAM1 2ZTV ; 1.95 ; The binary complex of D-3-hydroxybutyrate dehydrogenase with NAD+ 2X66 ; 2.09 ; The binary complex of PrnB (the second enzyme in pyrrolnitrin biosynthesis pathway) and cyanide 1SKN ; 2.5 ; THE BINDING DOMAIN OF SKN-1 IN COMPLEX WITH DNA: A NEW DNA-BINDING MOTIF 4WCG ; 1.5 ; The binding mode of Cyprinid Herpesvirus3 ORF112-Zalpha to Z-DNA 1TVK ; 2.89 ; The binding mode of epothilone A on a,b-tubulin by electron crystallography 4KAP ; 1.45 ; The Binding of Benzoarylsulfonamide Ligands to Human Carbonic Anhydrase is Insensitive to Formal Fluorination of the Ligand 3NC4 ; 2.07 ; The binding of beta-D-glucopyranosyl-thiosemicarbazone derivatives to glycogen phosphorylase: a new class of inhibitors 2VXI ; 1.91 ; The binding of heme and zinc in Escherichia coli Bacterioferritin 3TMN ; 1.7 ; THE BINDING OF L-VALYL-L-TRYPTOPHAN TO CRYSTALLINE THERMOLYSIN ILLUSTRATES THE MODE OF INTERACTION OF A PRODUCT OF PEPTIDE HYDROLYSIS 7ONF ; 1.6 ; The binding of p-coumaroyl glucose to glycogen phosphorylase reveals the relationship between structural data and effects on cell metabolome 4GR1 ; 2.4 ; THE BINDING OF THE RETRO-ANALOGUE OF GLUTATHIONE DISULFIDE TO GLUTATHIONE REDUCTASE 2VS3 ; 2.2 ; THE BINDING OF UDP-GALACTOSE BY AN ACTIVE SITE MUTANT OF alpha-1,3 GALACTOSYLTRANSFERASE (alpha3GT) 2VS4 ; 1.77 ; THE BINDING OF UDP-GALACTOSE BY AN ACTIVE SITE MUTANT OF alpha-1,3 GALACTOSYLTRANSFERASE (alpha3GT) 2VS5 ; 1.82 ; THE BINDING OF UDP-GALACTOSE BY AN ACTIVE SITE MUTANT OF alpha-1,3 GALACTOSYLTRANSFERASE (alpha3GT) 7CCO ; ; The binding structure of a lanthanide binding tag (LBT3) with lanthanum ion (La3+) 7CCN ; ; The binding structure of a lanthanide binding tag (LBT3) with lutetium ion (Lu3+) 2R3V ; 2.5 ; The Biochemical and Structural Basis for Feedback Inhibition of Mevalonate Kinase and Isoprenoid Metabolism 2R42 ; 2.4 ; The Biochemical and Structural Basis for feedback Inhibition of Mevalonate Kinase and Isoprenoid Metabolism 3V4X ; 1.952 ; The Biochemical and Structural Basis for Inhibition of Enterococcus faecalis HMG-CoA Synthase, mvaS, by Hymeglusin 3V4N ; 1.6 ; The Biochemical and Structural Basis for Inhibition of Enterococcus faecalis HMG-CoA Synthatse, mvaS, by Hymeglusin 3GLK ; 2.1 ; The biotin carboxylase (BC) domain of human Acetyl-CoA Carboxylase 2 (ACC2) 3GID ; 2.3 ; The biotin carboxylase (BC) domain of human Acetyl-CoA Carboxylase 2 (ACC2) in complex with Soraphen A 3D9U ; 2.3 ; The BIR3 domain of cIAP1 in complex with the N terminal peptide from SMAC/DIABLO (AVPIAQ). 1FBT ; 2.0 ; THE BISPHOSPHATASE DOMAIN OF THE BIFUNCTIONAL RAT LIVER 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE 1TIP ; 2.2 ; THE BISPHOSPHATASE DOMAIN OF THE BIFUNCTIONAL RAT LIVER 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE 1H1K ; 10.0 ; THE BLUETONGUE VIRUS (BTV) CORE BINDS DSRNA 5OG9 ; 2.09 ; The BM3 mutant WIFI-WC heme domain in complex with testosterone 2C3E ; 2.8 ; The bovine mitochondrial ADP-ATP carrier 1HD9 ; ; The Bowman-Birk Inhibitor Reactive Site Loop Sequence Represents an Independent Structural Beta-Hairpin Motif 3MYW ; 2.5 ; The Bowman-Birk type inhibitor from mung bean in ternary complex with porcine trypsin 5H6Y ; 2.0 ; The BPTF Bromodomain Recognising H4K12Cr peptide 8HII ; 3.57 ; The BRIL-SLC19A1/Fab/Nb ternary complex 1UOY ; 1.5 ; The bubble protein from Penicillium brevicompactum Dierckx exudate. 2LY8 ; ; The budding yeast chaperone Scm3 recognizes the partially unfolded dimer of the centromere-specific Cse4/H4 histone variant 3IWZ ; 2.3 ; The c-di-GMP Responsive Global Regulator CLP Links Cell-Cell Signaling to Virulence Gene Expression in Xanthomonas campestris 3UCZ ; 2.8 ; The c-di-GMP-I riboswitch bound to GpG 3UCU ; 2.8 ; The c-di-GMP-I riboswitch bound to pGpG 1JNK ; 2.3 ; THE C-JUN N-TERMINAL KINASE (JNK3S) COMPLEXED WITH MGAMP-PNP 4CBJ ; 2.8 ; The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic cell physiology 4CBK ; 2.42 ; The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic cell physiology 7VIM ; 2.2 ; The C-terminal DNA binding domain of EsrB from Edwardsiella piscicida 2BVB ; ; The C-terminal domain from Micronemal Protein 1 (MIC1) from Toxoplasma Gondii 6SWI ; 1.13 ; The C-terminal domain of AraT, a response regulator from Geobacillus stearothermophilus 4WRP ; 1.9 ; The C-terminal domain of gene product lpg0944 from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 5IAZ ; ; The C-terminal domain of rice beta-galactosidase 1 4WT4 ; 2.81 ; The C-terminal domain of Rubisco Accumulation Factor 1 from Arabidopsis thaliana, crystal form I 4WT5 ; 2.568 ; The C-terminal domain of Rubisco Accumulation Factor 1 from Arabidopsis thaliana, crystal form II 8HBR ; 2.2 ; The C-terminal domain of Spiral2 1DOQ ; ; THE C-TERMINAL DOMAIN OF THE RNA POLYMERASE ALPHA SUBUNIT FROM THERMUS THERMOPHILUS 2LW1 ; ; The C-terminal domain of the Uup protein is a DNA-binding coiled coil motif 8RD6 ; ; the C-terminal domain of TonB protein from Salmonella enterica. 6KNE ; 1.701 ; The C-terminal Domain of Translation Initiation Factor 5 at high pH 6KND ; 1.9 ; The C-terminal Domain of Translation Initiation Factor 5 at low pH 3IHO ; 2.7 ; The C-terminal glycosylase domain of human MBD4 2O7M ; 2.0 ; The C-terminal loop of the homing endonuclease I-CreI is essential for DNA binding and cleavage. Identification of a novel site for specificity engineering in the I-CreI scaffold 3E3X ; 1.95 ; The C-terminal part of BipA protein from Vibrio parahaemolyticus RIMD 2210633 4B02 ; 3.3 ; The C-terminal Priming Domain is Strongly Associated with the Main Body of Bacteriophage phi6 RNA-Dependent RNA Polymerase 8SXF ; 3.92 ; The C-terminal protease CtpA-LbcA complex of pseudomonas aeruginosa with the TPR at the high position 8SXG ; 4.14 ; The C-terminal protease CtpA-LbcA complex of pseudomonas aeruginosa with the TPR at the low position 2M7H ; ; The C-terminal Region of Disintegrin Modulate its 3D Conformation and Cooperate with RGD Loop in Regulating Integrin alpha-IIb beta-3 Recognition 2M7F ; ; The C-terminal Region of Disintegrin Modulate its 3D Conformation and Cooperate with RGD Loop in Regulating Integrins Recognitions 2M75 ; ; The C-terminal Region of Disintegrin Modulate its 3D Conformation and Cooperate with RGD Loop in Regulating Recognitions of Integrins 5Z9Z ; 2.049 ; The C-terminal RRM domain of Arabidopsis SMALL RNA DEGRADING NUCLEASE 1 (E329A/E330A/E332A) 1TN3 ; 2.0 ; THE C-TYPE LECTIN CARBOHYDRATE RECOGNITION DOMAIN OF HUMAN TETRANECTIN 2ROW ; ; The C1 domain of ROCK II 1I4U ; 1.15 ; THE C1 SUBUNIT OF ALPHA-CRUSTACYANIN 4IZS ; 1.44 ; The C145A mutant of the amidase from Nesterenkonia sp. AN1 in complex with butyramide 7OVG ; 1.65 ; The C146A variant of an amidase from Pyrococcus horikoshii with bound acetamide 6YPA ; 1.58 ; The C146A variant of an amidase from Pyrococcus horikoshii with bound glutaramide 1I5I ; 2.4 ; THE C18S MUTANT OF BOVINE (GAMMA-B)-CRYSTALLIN 6VBS ; 1.7 ; The C2 Crystal form of SodCI Superoxide Dismutase at 1.7 A resolution with 6 molecules in the asymmetric unit. 6IEJ ; 2.206 ; The C2 domain of cytosolic phospholipase A2 alpha bound to phosphatidylcholine 1YRK ; 1.7 ; The C2 Domain of PKC is a new Phospho-Tyrosine Binding Domain 6V7J ; 2.0 ; The C2221 crystal form of canavalin at 173 K 7W5K ; 2.22 ; The C296A mutant of L-sorbosone dehydrogenase (SNDH) from Gluconobacter Oxydans WSH-004 4NS0 ; 1.8 ; The C2A domain of Rabphilin 3A in complex with PI(4,5)P2 5LO8 ; 2.5 ; The C2B domain of Rabphilin 3A in complex with PI(4,5)P2 3RPB ; ; THE C2B-DOMAIN OF RABPHILIN: STRUCTURAL VARIATIONS IN A JANUS-FACED DOMAIN 3UD4 ; 2.7 ; The C92U mutant c-di-GMP-I riboswitch bound to GpA 3UD3 ; 3.1 ; The C92U mutant c-di-GMP-I riboswitch bound to pGpA 2PF2 ; 2.2 ; THE CA+2 ION AND MEMBRANE BINDING STRUCTURE OF THE GLA DOMAIN OF CA-PROTHROMBIN FRAGMENT 1 6TGT ; 2.155 ; The Calcium soaked crystal structure of the DPS2 from DEINOCOCCUS RADIODURANS to 2.16A resolution (Soaked in CaCl2 [5mM] for 20 min). 1P8X ; 2.0 ; The Calcium-Activated C-terminal half of gelsolin 1AVM ; 1.55 ; THE CAMBIALISTIC SUPEROXIDE DISMUTASE (FE-SOD) OF P. SHERMANII COORDINATED BY AZIDE 2CAS ; 3.0 ; THE CANINE PARVOVIRUS EMPTY CAPSID STRUCTURE 5XIX ; 2.25 ; The canonical domain of human asparaginyl-tRNA synthetase 5EG7 ; 1.4 ; The cap binding site of influenza virus protein PB2 as a drug target 5EG8 ; 1.54 ; The cap binding site of influenza virus protein PB2 as a drug target 5EG9 ; 2.3 ; The cap binding site of influenza virus protein PB2 as a drug target 1HW5 ; 1.82 ; THE CAP/CRP VARIANT T127L/S128A 7Z49 ; 4.2 ; The capsid of bacteriophage SU10. 8TU0 ; 2.72 ; The Capsid of Canine Minute Virus 7KMX ; 3.2 ; The capsid of Myoviridae Phage XM1 8TU1 ; 2.31 ; The Capsid of Porcine Bocavirus 1 8TU2 ; 2.52 ; The Capsid of Rat Bocavirus 8EP2 ; 2.37 ; The capsid structure of Aleutian Mink Disease Virus 6O9R ; 2.75 ; The capsid structure of empty AAVrh.10 particles 8EP9 ; 3.12 ; The capsid structure of Human Parvovirus 4 7RD1 ; 3.07 ; The Capsid Structure of the ChAdOx1 viral vector/chimpanzee adenovirus Y25 7B5V ; 1.7 ; The carbohydrate binding module family 48 (CBM48) and carboxy-terminal carbohydrate esterase family 1 (CE1) domains of the multidomain esterase DmCE1B from Dysgonomonas mossii 7B6B ; 1.41 ; The carbohydrate binding module family 48 (CBM48) and carboxy-terminal carbohydrate esterase family 1 (CE1) domains of the multidomain esterase DmCE1B from Dysgonomonas mossii in complex with methyl ferulate 7VXQ ; 1.77 ; The Carbon Monoxide Complex of [NiFe]-hydrogenase (Hyb-type) from Citrobacter sp. S-77 6QGT ; 1.988 ; The carbon monoxide inhibition of F420-reducing [NiFe] hydrogenase complex from Methanosarcina barkeri 4C3T ; 1.69 ; The Carbonic anhydrase from Thermovibrio ammonificans reveals an interesting intermolecular disulfide contributing to increasing thermal stability of this enzyme 4U7A ; 1.6 ; The carboxy-terminal domain of Erb1 is a seven-bladed beta-propeller that binds RNA. 3PG6 ; 1.7 ; The carboxyl terminal domain of human deltex 3-like 6E28 ; 1.36 ; The CARD9 CARD domain-swapped dimer 6E27 ; 1.811 ; The CARD9 CARD domain-swapped dimer with a zinc ion bound to one of the two zinc binding sites 6AAY ; 2.79 ; the Cas13b binary complex 6IV9 ; 1.86 ; the Cas13d binary complex 5M1Y ; 1.904 ; The case of 1lkr held at the PDB and its variable amino acid occupancies; re refinement of 4ow9 to correct this 7BG9 ; 3.8 ; The catalytic core lobe of human telomerase in complex with a telomeric DNA substrate 4Q0R ; 2.75 ; The catalytic core of Rad2 (complex I) 4Q0Z ; 2.398 ; The catalytic core of Rad2 in complex with DNA substrate (complex III) 4Q10 ; 2.7 ; The catalytic core of Rad2 in complex with DNA substrate (complex IV) 7XRQ ; 2.501 ; The Catalytic Core Structure of Cystathionine beta-Synthase from Candida albicans 3E2T ; 1.9 ; The catalytic domain of chicken tryptophan hydroxylase 1 with bound tryptophan 5XSI ; 2.2 ; The catalytic domain of GdpP 5XSP ; 2.146 ; The catalytic domain of GdpP with 5'-pApA 5XSN ; 2.501 ; The catalytic domain of GdpP with c-di-AMP 5XT3 ; 2.591 ; The catalytic domain of GdpP with c-di-GMP 3TMO ; 2.2 ; The catalytic domain of human deubiquitinase DUBA 3TMP ; 1.91 ; The catalytic domain of human deubiquitinase DUBA in complex with ubiquitin aldehyde 3PFY ; 1.702 ; The catalytic domain of human OTUD5 6F6D ; 1.81811 ; The catalytic domain of KDM6B in complex with H3(17-33)K18IA21M peptide 5LHR ; 2.3 ; The catalytic domain of murine urokinase-type plasminogen activator in complex with the active site binding inhibitory nanobody Nb22 5LHN ; 2.55 ; The catalytic domain of murine urokinase-type plasminogen activator in complex with the allosteric inhibitory nanobody Nb7 3N3K ; 2.6 ; The catalytic domain of USP8 in complex with a USP8 specific inhibitor 4D4C ; 1.3 ; The catalytic domain, BcGH76, of Bacillus circulans Aman6 in complex with 1,6-ManDMJ 4D4D ; 1.4 ; The catalytic domain, BcGH76, of Bacillus circulans Aman6 in complex with 1,6-ManIFG 5N0F ; 1.69 ; The catalytic domain, BcGH76, of Bacillus circulans Aman6 in complex with 1,6-ManSIFG 4D4B ; 1.3 ; The catalytic domain, BcGH76, of Bacillus circulans Aman6 in complex with MSMSMe 2PAW ; 2.3 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE 1PAX ; 2.4 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH 3,4-DIHYDRO-5-METHYL-ISOQUINOLINONE 3PAX ; 2.4 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH 3-METHOXYBENZAMIDE 2PAX ; 2.4 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH 4-AMINO-1,8-NAPHTHALIMIDE 4PAX ; 2.8 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH 8-HYDROXY-2-METHYL-3-HYDRO-QUINAZOLIN-4-ONE 6I8T ; 2.1 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH AN ISOINDOLINONE INHIBITOR 1A26 ; 2.25 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH CARBA-NAD 6I8M ; 2.1 ; THE CATALYTIC FRAGMENT OF POLY(ADP-RIBOSE) POLYMERASE COMPLEXED WITH ISOINDOLINONE INHIBITOR 4XJQ ; 1.9 ; The catalytic mechanism of human parainfluenza virus type 3 haemagglutinin-neuraminidase revealed 4XJR ; 3.0 ; The catalytic mechanism of human parainfluenza virus type 3 haemagglutinin-neuraminidase revealed 1QL6 ; 2.4 ; THE CATALYTIC MECHANISM OF PHOSPHORYLASE KINASE PROBED BY MUTATIONAL STUDIES 1H46 ; 1.52 ; The catalytic module of Cel7D from Phanerochaete chrysosporium as a chiral selector: Structural studies of its complex with the b-blocker (R)-propranolol 1Q8T ; 2.0 ; The Catalytic Subunit of cAMP-dependent Protein Kinase (PKA) in Complex with Rho-kinase Inhibitor Y-27632 1Q8W ; 2.2 ; The Catalytic Subunit of cAMP-dependent Protein Kinase in Complex with Rho-kinase Inhibitor Fasudil (HA-1077) 1Q8U ; 1.9 ; The Catalytic Subunit of cAMP-dependent Protein Kinase in Complex with Rho-kinase Inhibitor H-1152P 4AXX ; 1.74 ; The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP 3-phosphoglycerate and beryllium trifluoride 2X15 ; 2.1 ; The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP and 1,3- bisphosphoglycerate 2X13 ; 1.74 ; The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP and 3phosphoglycerate 2WZC ; 1.5 ; The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP, 3PG and aluminium tetrafluoride 2WZB ; 1.47 ; The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP, 3PG and magnesium trifluoride 2WZD ; 1.56 ; The catalytically active fully closed conformation of human phosphoglycerate kinase K219A mutant in complex with ADP, 3PG and aluminium trifluoride 2X14 ; 1.9 ; The catalytically active fully closed conformation of human phosphoglycerate kinase K219A mutant in complex with AMP-PCP and 3PG 3G38 ; 3.04 ; The catalytically inactive mutant Mth0212 (D151N) in complex with an 8 bp dsDNA 8KE9 ; 3.76 ; The CBD domain of cyanophage A-1(L) short tail fiber 7LVS ; 2.02 ; The CBP TAZ1 Domain in Complex with a CITED2-HIF-1-Alpha Fusion Peptide 3JTF ; 2.0 ; The CBS Domain Pair Structure of a magnesium and cobalt efflux protein from Bordetella parapertussis in complex with AMP 2NCG ; ; The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins 4DIJ ; 1.9 ; The Central Valine Concept Provides an Entry in a New Class of Non Peptide Inhibitors of the P53-MDM2 Interaction 8BY8 ; 2.5 ; The cercosporin fungal non-reducing polyketide synthase (NR-PKS) CTB1 (SAT-KS-MAT) 1YMG ; 2.24 ; The Channel Architecture of Aquaporin O at 2.2 Angstrom Resolution 4V0J ; 2.8 ; The channel-block Ser202Glu, Thr104Lys double mutant of Stearoyl-ACP- Desaturase from Castor bean (Ricinus communis) 4OLK ; 2.694 ; The CHAP domain of LysGH15 5J70 ; 2.956 ; The Chd1 DNA-binding domain in complex with 17mer DNA duplex 2Q6P ; 2.1 ; The Chemical Control of Protein Folding: Engineering a Superfolder Green Fluorescent Protein 4ZK9 ; 2.6 ; The chemokine binding protein of orf virus complexed with CCL2 4ZKB ; 2.9 ; The chemokine binding protein of orf virus complexed with CCL3 4ZKC ; 3.15 ; The chemokine binding protein of orf virus complexed with CCL7 4V3D ; 2.65 ; The CIDRa domain from HB3var03 PfEMP1 bound to endothelial protein C receptor 4V3E ; 2.9 ; The CIDRa domain from IT4var07 PfEMP1 bound to endothelial protein C receptor 5LGD ; 2.07 ; The CIDRa domain from MCvar1 PfEMP1 bound to CD36 5XUB ; 2.5 ; The citrate-bound trimer of chemoreceptor MCP2201 ligand binding domain 6ITS ; 2.501 ; The citrate-bound trimer of chemoreceptor MCP2201 ligand binding domain 6BS8 ; 1.95 ; The class 3 DnaB intein from Mycobacterium smegmatis 6KW3 ; 7.13 ; The ClassA RSC-Nucleosome Complex 6KW4 ; 7.55 ; The ClassB RSC-Nucleosome Complex 6KW5 ; 10.13 ; The ClassC RSC-Nucleosome Complex 6C41 ; ; The clavanin peptide in the presence of TFE (2,2,2-trifluoroethanol), presented a amphipathic alpha-helices from Phe-2 to Val-22 residues 4RLG ; 1.901 ; The clear crystal structure of pyridoxal-dependent decarboxylase from sphaerobacter thermophilus dsm 20745 2MBK ; ; The Clip-segment of the von Willebrand domain 1 of the BMP modulator protein Crossveinless 2 is preformed 8E4Q ; 3.51 ; The closed C0-state flycatcher TRPM8 structure in complex with PI(4,5)P2 8E4N ; 3.07 ; The closed C1-state mouse TRPM8 structure in complex with PI(4,5)P2 8E4O ; 3.43 ; The closed C1-state mouse TRPM8 structure in complex with putative PI(4,5)P2 1ANK ; 2.0 ; THE CLOSED CONFORMATION OF A HIGHLY FLEXIBLE PROTEIN: THE STRUCTURE OF E. COLI ADENYLATE KINASE WITH BOUND AMP AND AMPPNP 3GDE ; 2.3 ; The closed conformation of ATP-dependent DNA ligase from Archaeoglobus fulgidus 7CYR ; 2.05 ; The closed conformation of MSMEG_1954 from Mycobacterium smegmatis 7W2B ; 3.203 ; The closed conformation of the sigma-1 receptor from Xenopus laevis 7W2C ; 3.335 ; The closed conformation of the sigma-1 receptor from Xenopus laevis complexed with PRE084 7W2D ; 3.471 ; The closed conformation of the sigma-1 receptor from Xenopus laevis complexed with S1RA 3ASV ; 2.7 ; The Closed form of serine dehydrogenase complexed with NADP+ 3NID ; 2.3 ; The Closed Headpiece of Integrin alphaIIB beta3 and its Complex with an alpahIIB beta3 -Specific Antagonist That Does Not Induce Opening 3NIF ; 2.4 ; The Closed Headpiece of Integrin IIb 3 and its Complex with an IIb 3 -Specific Antagonist That Does Not Induce Opening 3NIG ; 2.25 ; The Closed Headpiece of Integrin IIb 3 and its Complex with an IIb 3 -Specific Antagonist That Does Not Induce Opening 2QAC ; 1.7 ; The closed MTIP-MyosinA-tail complex from the malaria parasite invasion machinery 2HT1 ; 3.51 ; The closed ring structure of the Rho transcription termination factor in complex with nucleic acid in the motor domains 6K85 ; 1.606 ; The closed state of RGLG1 mutant-D338A 6K86 ; 1.593 ; The closed state of RGLG1 mutant-E378A 6K89 ; 1.689 ; The closed state of RGLG1 VWA domain 6K87 ; 1.502 ; The closed state of RGLG1 VWA domain with MIDAS is occupied by water 8HMH ; 2.56 ; The closed state of RGLG2-VWA 8Q3B ; 2.69 ; The closed state of the ASFV apo-RNA polymerase 1NYJ ; ; The closed state structure of M2 protein H+ channel by solid state NMR spectroscopy 5WX1 ; 2.35 ; The closed-conformation crystal structure of the full-length pestivirus NS3 with its NS4A protease cofactor segment 2VN5 ; 1.9 ; The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner 2VN6 ; 1.49 ; The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner 7DGK ; 1.75 ; The Co-bound dimeric structure of K78H/G80A/H82A myoglobin 7DGN ; 2.35 ; The Co-bound dimeric structure of K79H/G80A/H81A myoglobin 4TPW ; 1.5 ; The co-complex structure of the translation initiation factor eIF4E with the inhibitor 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G 4TQB ; 1.59 ; The co-complex structure of the translation initiation factor eIF4E with the inhibitor 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G 4TQC ; 1.8 ; The co-complex structure of the translation initiation factor eIF4E with the inhibitor 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G 7E7E ; 3.8 ; The co-crystal structure of ACE2 with Fab 7Y0V ; 2.48 ; The co-crystal structure of BA.1-RBD with Fab-5549 6P7G ; 2.65 ; The co-crystal structure of BRAF(V600E) with PHI1 6P3D ; 2.11 ; The co-crystal structure of BRAF(V600E) with ponatinib 1PJS ; 2.4 ; The co-crystal structure of CysG, the multifunctional methyltransferase/dehydrogenase/ferrochelatase for siroheme synthesis, in complex with it NAD cofactor 6K0J ; 2.352 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 7DHC ; 2.592 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 10 7DHK ; 2.341 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 13 7DHO ; 3.29 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 14 7DJO ; 2.499 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 17 7DL6 ; 2.648 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 18 7DHH ; 2.486 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 19 7DHN ; 2.38 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 20 7DH3 ; 2.33 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 5 7DG4 ; 2.58 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 6 7DH9 ; 2.194 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 7 7DHV ; 2.679 ; The co-crystal structure of DYRK2 with a small molecule inhibitor 8 7EJV ; 2.5 ; The co-crystal structure of DYRK2 with YK-2-69 8HLT ; 2.8 ; The co-crystal structure of DYRK2 with YK-2-99B 7UW6 ; 1.5 ; The co-crystal structure of low molecular weight protein tyrosine phosphatase (LMW-PTP) with a small molecule inhibitor SPAA-2 6LNQ ; 2.244 ; The co-crystal structure of SARS-CoV 3C Like Protease with aldehyde inhibitor M7 7DGB ; 1.678 ; The co-crystal structure of SARS-CoV-2 main protease with (S)-2-cinnamamido-4-methyl-N-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)pentanamide 7DGG ; 2.004 ; The co-crystal structure of SARS-CoV-2 main protease with (S)-2-cinnamamido-N-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)hexanamide 7DGF ; 1.639 ; The co-crystal structure of SARS-CoV-2 main protease with peptidomimetic inhibitor (S)-2-cinnamamido-N-((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)hexanamide 7DGH ; 1.968 ; The co-crystal structure of SARS-CoV-2 main protease with peptidomimetic inhibitor N-((S)-3-methyl-1-(((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)amino)pentan-2-yl)amino)-1-oxobutan-2-yl)-2-naphthamide 7DGI ; 1.898 ; The co-crystal structure of SARS-CoV-2 main protease with peptidomimetic inhibitor N-((S)-3-methyl-1-(((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)amino)pentan-2-yl)amino)-1-oxobutan-2-yl)-4-nitrobenzamide 7DHJ ; 1.962 ; The co-crystal structure of SARS-CoV-2 main protease with the peptidomimetic inhibitor (S)-2-cinnamamido-N-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)pent-4-ynamide 6LO0 ; 1.939 ; The co-crystal structure of Severe Acute Respiratory Syndrome Coronavirus 3C Like Protease with aldehyde M14 6LNY ; 2.245 ; The co-crystal structure of Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease with aldehyde M15 1MKW ; 2.3 ; THE CO-CRYSTAL STRUCTURE OF UNLIGANDED BOVINE ALPHA-THROMBIN AND PRETHROMBIN-2: MOVEMENT OF THE YPPW SEGMENT AND ACTIVE SITE RESIDUES UPON LIGAND BINDING 1MKX ; 2.2 ; THE CO-CRYSTAL STRUCTURE OF UNLIGANDED BOVINE ALPHA-THROMBIN AND PRETHROMBIN-2: MOVEMENT OF THE YPPW SEGMENT AND ACTIVE SITE RESIDUES UPON LIGAND BINDING 2IYN ; 2.08 ; The co-factor-induced pre-active conformation in PhoB 5UK8 ; 2.5 ; The co-structure of (R)-4-(6-(1-(cyclopropylsulfonyl)cyclopropyl)-2-(1H-indol-4-yl)pyrimidin-4-yl)-3-methylmorpholine and a rationally designed PI3K-alpha mutant that mimics ATR 5UL1 ; 3.0 ; The co-structure of 3-amino-6-(4-((1-(dimethylamino)propan-2-yl)sulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide and a rationally designed PI3K-alpha mutant that mimics ATR 5UKJ ; 2.8 ; The co-structure of N,N-dimethyl-4-[(6R)-6-methyl-5-(1H-pyrrolo[2,3- b]pyridin-4-yl)-4,5,6,7-tetrahydropyrazolo[1,5- a]pyrazin-3-yl]benzenesulfonamide and a rationally designed PI3K-alpha mutant that mimics ATR 6AGX ; 2.95 ; The cocrystal structure of FGFR2 bound with compound 14 harboring 5H-pyrrolo[2,3-b]pyrazine scaffold 2PHH ; 2.7 ; THE COENZYME ANALOGUE ADENOSINE 5-DIPHOSPHORIBOSE DISPLACES FAD IN THE ACTIVE SITE OF P-HYDROXYBENZOATE HYDROXYLASE. AN X-RAY CRYSTALLOGRAPHIC INVESTIGATION 2OZN ; 1.6 ; The Cohesin-Dockerin Complex of NagJ and NagH from Clostridium perfringens 2IC6 ; 1.15 ; The Coiled-coil Domain (residues 1-75) Structure of the Sin Nombre Virus Nucleocapsid Protein 2IC9 ; 2.0 ; The Coiled-coil Domain (residues 1-93) Structure of the Sin Nombre Virus Nucleocapsid Protein 3CHG ; 2.8 ; The compatible solute-binding protein OpuAC from Bacillus subtilis in complex with DMSA 6HUA ; 3.389 ; the competence regulator ComR from Streptococcus vestibularis in complex with its cognate signaling peptide XIP 2CM4 ; 1.9 ; The complement inhibitor OmCI in complex with ricinoleic acid 2CM9 ; 2.3 ; The complement inhibitor OmCI in complex with ricinoleic acid 6N1L ; 1.722 ; The complement inhibitory domain of B. burgdorferi BBK32. 7LHD ; 4.6 ; The complete model of phage Qbeta virion 2XE6 ; 1.74 ; The complete reaction cycle of human phosphoglycerate kinase: The open binary complex with 3PG 2XE7 ; 2.2 ; The complete reaction cycle of human phosphoglycerate kinase: The open ternary complex with 3PG and ADP 2XE8 ; 1.79 ; The complete reaction cycle of human phosphoglycerate kinase: The open ternary complex with 3PG and AMP-PNP 2VEA ; 2.21 ; The complete sensory module of the cyanobacterial phytochrome Cph1 in the Pr-state. 4EV6 ; 3.2 ; The complete structure of CorA magnesium transporter from Methanocaldococcus jannaschii 2WAQ ; 3.35 ; The complete structure of the archaeal 13-subunit DNA-directed RNA Polymerase 2WB1 ; 3.52 ; The complete structure of the archaeal 13-subunit DNA-directed RNA Polymerase 5O61 ; 3.31 ; The complete structure of the Mycobacterium smegmatis 70S ribosome 5WLC ; 3.8 ; The complete structure of the small subunit processome 6DKP ; 2.966 ; The complex among DMF5(alpha-D26Y, alpha-Y50A,beta-L98W) TCR, human Class I MHC HLA-A2 and MART-1(26-35)(A27L) peptide 3VXM ; 2.5 ; The complex between C1-28 TCR and HLA-A24 bound to HIV-1 Nef134-10(2F) peptide 2LV6 ; ; The complex between Ca-Calmodulin and skeletal muscle myosin light chain kinase from combination of NMR and aqueous and contrast-matched SAXS data 8GVI ; 3.3 ; The complex between H25-11 TCR and HLA-A24 bound to HIV-1 Nef138-8 peptide 3VXS ; 1.8 ; The complex between H27-14 TCR and HLA-A24 bound to HIV-1 Nef134-10(6L) peptide 3VXR ; 2.4 ; The complex between H27-14 TCR and HLA-A24 bound to HIV-1 Nef134-10(wt) peptide 4L3E ; 2.557 ; The complex between high affinity TCR DMF5(alpha-D26Y,beta-L98W) and human Class I MHC HLA-A2 with the bound MART-1(26-35)(A27L) peptide 6D78 ; 2.347 ; The complex between high-affinity TCR DMF5(alpha-D26Y,beta-L98W) and human Class I MHC HLA-A2 with the bound MART-1(27-35)peptide 1CRA ; 1.9 ; THE COMPLEX BETWEEN HUMAN CARBONIC ANHYDRASE II AND THE AROMATIC INHIBITOR 1,2,4-TRIAZOLE 5G64 ; 3.715 ; The complex between human IgE-Fc and two anti-IgE Fab fragments 1PER ; 2.5 ; THE COMPLEX BETWEEN PHAGE 434 REPRESSION DNA-BINDING DOMAIN AND OPERATOR SITE OR3: STRUCTURAL DIFFERENCES BETWEEN CONSENSUS AND NON-CONSENSUS HALF-SITES 8GVG ; 3.37 ; The complex between public TCR TD08 and HLA-A24 bound to HIV-1 Nef138-8 (2F) peptide 8GVB ; 3.2 ; The complex between public TCR TD08 and HLA-A24 bound to HIV-1 Nef138-8 peptide 7KDC ; 3.1 ; The complex between RhoD and the Plexin B2 RBD 1RGC ; 2.0 ; THE COMPLEX BETWEEN RIBONUCLEASE T1 AND 3'-GUANYLIC ACID SUGGESTS GEOMETRY OF ENZYMATIC REACTION PATH. AN X-RAY STUDY 3VXU ; 2.7 ; The complex between T36-5 TCR and HLA-A24 bound to HIV-1 Nef134-10(2F) peptide 3W0W ; 2.603 ; The complex between T36-5 TCR and HLA-A24 bound to HIV-1 Nef134-10(2F) peptide in space group P212121 3PWP ; 2.69 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the bound HuD peptide 3H9S ; 2.7 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the bound Tel1p peptide 3D3V ; 2.8 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the modified HTLV-1 TAX (Y5(3,4-difluoroPhenylalanine)) peptide 3D39 ; 2.81 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the modified HTLV-1 TAX (Y5(4-fluoroPhenylalanine)) peptide 2GJ6 ; 2.56 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the modified HTLV-1 TAX (Y5K-4-[3-Indolyl]-butyric acid) peptide 3QFJ ; 2.29 ; The complex between TCR A6 and human Class I MHC HLA-A2 with the modified TAX (Y5F) peptide 6RSY ; 2.95 ; The complex between TCR a7b2 and human Class I MHC HLA-A0201-WT1 with the bound RMFPNAPYL peptide. 3QDM ; 2.8 ; The complex between TCR DMF4 and human Class I MHC HLA-A2 with the bound MART-1(26-35)(A27L) decameric peptide 3QEQ ; 2.59 ; The complex between TCR DMF4 and human Class I MHC HLA-A2 with the bound MART-1(27-35) nonameric peptide 3QDG ; 2.69 ; The complex between TCR DMF5 and human Class I MHC HLA-A2 with the bound MART-1(26-35)(A27L) peptide 3QDJ ; 2.3 ; The complex between TCR DMF5 and human Class I MHC HLA-A2 with the bound MART-1(27-35) nonameric peptide 4EUP ; 2.88 ; The complex between TCR JKF6 and human Class I MHC HLA-A2 presenting the MART-1(27-35)(A27L) peptide 6Y7P ; 1.75 ; The complex between the eight-bladed symmetrical designer protein Tako8 and 1:2 zirconium(IV) Wells-Dawson (ZrWD) 6Y7O ; 2.3 ; The complex between the eight-bladed symmetrical designer protein Tako8 and the silicotungstic acid Keggin (STA) 4FTV ; 2.74 ; The complex between the high affinity version of A6 TCR (A6c134) and human Class I MHC HLA-A2 with the bound TAX nonameric peptide 1MEE ; 2.0 ; THE COMPLEX BETWEEN THE SUBTILISIN FROM A MESOPHILIC BACTERIUM AND THE LEECH INHIBITOR EGLIN-C 7RK7 ; 2.54 ; The complex between TIL 1383i TCR and human Class I MHC HLA-A2 with the bound Tyrosinase(369-377)(N371D) nonameric peptide 6JHO ; 2.1 ; The complex crystal structure of Cagbeta with CagZ revealed a novel regulatory mechanism for T4SS coupling ATPase in Helicobacter pylori 3KXZ ; 2.37 ; The complex crystal structure of LCK with a probe molecule w259 6N6B ; 2.3 ; The complex crystal structure of neuraminidase from A/Minnesota/11/2010 with B10 antibody. 5X4K ; 1.749 ; The complex crystal structure of Pyrococcus furiosus RecJ and CMP 4HLY ; 1.48 ; The complex crystal structure of the DNA binding domain of vIRF-1 from the oncogenic KSHV with DNA 3MHW ; 1.45 ; The complex crystal Structure of Urokianse and 2-Aminobenzothiazole 3MWI ; 2.03 ; The complex crystal Structure of Urokianse and 5-nitro-1H-indole-2-amidine 5YB5 ; 1.903 ; The complex crystal structure of VrEH2 mutant M263N with SNO 7FGM ; 2.2 ; The complex crystals structure of the FAF1 UBL1_L-Hsp70 NBD with ADP and phosphate 2TCT ; 2.1 ; THE COMPLEX FORMED BETWEEN TET REPRESSOR AND TETRACYCLINE-MG2+ REVEALS MECHANISM OF ANTIBIOTIC RESISTANCE 6OX7 ; 2.75 ; The complex of 1918 NS1-ED and the iSH2 domain of the human p85beta subunit of PI3K 1O9M ; 2.4 ; The Complex of a novel antibiotic with the Aminoacyl Site of the Bacterial Ribosome Revealed by X-Ray Crystallography. 8HMT ; 3.17 ; The complex of ACK1 with the inhibitor 2-142 7VRS ; 2.6 ; The complex of Acyltransferase and Acyl Carrier Protein Domains from module 9 of Salinomycin Polyketide Synthase 4COQ ; 1.55 ; The complex of alpha-Carbonic anhydrase from Thermovibrio ammonificans with inhibitor sulfanilamide. 6ION ; 2.75 ; The complex of C4.4A with its antibody 11H10 Fab fragment 6N0J ; 1.79 ; The complex of CCG-222740 bound to pirin 6N0K ; 1.46 ; The complex of CCG-257081 bound to pirin 2PCF ; ; THE COMPLEX OF CYTOCHROME F AND PLASTOCYANIN DETERMINED WITH PARAMAGNETIC NMR. BASED ON THE STRUCTURES OF CYTOCHROME F AND PLASTOCYANIN, 10 STRUCTURES 7SVR ; 3.9 ; The complex of dephosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) and Lumacaftor (VX-809) 7F2F ; 2.55 ; The complex of DNA with the C-terminal domain of TYE7 from Saccharomyces cerevisiae. 5H4R ; 1.7031 ; the complex of Glycoside Hydrolase 5 Lichenase from Caldicellulosiruptor sp. F32 E188Q mutant and cellotetraose 8D5F ; 2.31 ; The complex of Gtf2b neoantigen TGAARFDEF Presented by H2-Dd 8D5E ; 2.46 ; The complex of Gtf2b Peptide TGAASFDEF Presented by H2-Dd 4J4P ; 2.91 ; The complex of human IgE-Fc with two bound Fab fragments 8BH7 ; 4.23 ; The complex of immature 30S ribosomal subunit with Ribosome maturation factor P (RimP) from Staphylococcus aureus 7E6U ; 6.0 ; the complex of inactive CaSR and NB2D11 6K1P ; 3.87 ; The complex of ISWI-nucleosome in the ADP.BeF-bound state 4OTJ ; 2.11 ; The complex of murine cyclooxygenase-2 with a conjugate of indomefathin and podophyllotoxin, N-{(succinylpodophyllotoxinyl)but-4-yl}-2-{1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl}acetamide 1UWJ ; 3.5 ; The complex of mutant V599E B-RAF and BAY439006. 8DTU ; 2.447 ; The complex of nanobody 5344N74D with BCL11A ZF6. 8DTN ; 2.199 ; The complex of nanobody 6101 with BCL11A ZF6 7XQV ; 2.76 ; The complex of nanobody Rh57 binding to GTP-bound RhoA active form 1TU2 ; ; THE COMPLEX OF NOSTOC CYTOCHROME F AND PLASTOCYANIN DETERMIN WITH PARAMAGNETIC NMR. BASED ON THE STRUCTURES OF CYTOCHROME F AND PLASTOCYANIN, 10 STRUCTURES 6K9A ; 2.3 ; The complex of NrS-1 N terminal domain (1-305) with dGTP 6JUE ; 1.549 ; The complex of PDZ and PBM 7SVD ; 2.7 ; The complex of phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) with ATP/Mg and Lumacaftor (VX-809) 7SV7 ; 3.8 ; The complex of phosphorylated human cystic fibrosis transmembrane conductance regulator (CFTR) with ATP/Mg and Tezacaftor (VX-661) 8EIG ; 3.6 ; The complex of phosphorylated human delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) with elexacaftor (VX-445) and ATP/Mg 8EIO ; 2.8 ; The complex of phosphorylated human delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) with elexacaftor (VX-445), lumacaftor (VX-809) and ATP/Mg 8EIQ ; 3.0 ; The complex of phosphorylated human delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) with Trikafta [elexacaftor (VX-445), tezacaftor (VX-661), ivacaftor (VX-770)] and ATP/Mg 2JJ4 ; 3.46 ; The complex of PII and acetylglutamate kinase from Synechococcus elongatus PCC7942 3N5B ; 1.9 ; The complex of PII and PipX from Anabaena 3WWE ; 2.1 ; The complex of pOPH with PEG 3WWC ; 1.49 ; The complex of pOPH_S172A of pNPB 3WWD ; 1.65 ; The complex of pOPH_S172C with DMSO 8D5J ; 1.95 ; The complex of Pre-mRNA-Processing Factor 19 (Prpf19) neoantigen KYLQVASHV Presented by H2-Kd 8D5K ; 2.066 ; The complex of Pre-mRNA-Processing Factor 19 (Prpf19) peptide KYLQVASHV Presented by H2-Kd 8IOL ; 2.9 ; The complex of Rubisco large subunit (RbcL) 7VFA ; 1.75 ; the complex of SARS-CoV2 3CL and NB1A2 7VFB ; 2.0 ; the complex of SARS-CoV2 3cl and NB2B4 4UMK ; 3.096 ; The complex of Spo0J and parS DNA in chromosomal partition system 8HAQ ; 2.27 ; The complex of Src with GW8510 1CQF ; 2.2 ; THE COMPLEX OF THE MUTATED SHIGA TOXIN B SUBUNIT AND GB3 TRISACCHARIDE 5AKO ; 2.4 ; The complex of Tse2 and Tsi2 from Pseudomonas aeruginosa 1UWH ; 2.95 ; The complex of wild type B-RAF and BAY439006. 3II5 ; 2.79 ; The Complex of wild-type B-RAF with Pyrazolo pyrimidine inhibitor 8DIN ; 2.5 ; The complex structure between human IgG1 Fc and its high affinity receptor FcgRI H174R variant 8DIR ; 2.3 ; The complex structure between human IgG1 Fc and its high affinity receptor FcgRI H174R variant 8DJ7 ; 2.39 ; The complex structure between human IgG1 Fc and its high affinity receptor FcgRI H174R variant 2DX5 ; 3.35 ; The complex structure between the mouse EAP45-GLUE domain and ubiquitin 4IPN ; 2.411 ; The complex structure of 6-phospho-beta-glucosidase BglA-2 with thiocellobiose-6P from Streptococcus pneumoniae 2ZZN ; 2.95 ; The complex structure of aTrm5 and tRNACys 2ZZM ; 2.65 ; The complex structure of aTrm5 and tRNALeu 7VKZ ; 2.0 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with 1-Deoxynojirimycin 7VL6 ; 1.75 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with arbutin 7VL7 ; 1.89 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with esculin 7VL2 ; 1.8 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with ethyl alpha-D-Glucoside 7VKX ; 1.56 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with glucose 7VL1 ; 1.6 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with methyl alpha-D-glucoside 7VL4 ; 1.83 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with methyl beta-D-glucoside 7VL5 ; 1.93 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with n-octyl-beta-D-glucoside 7VL0 ; 1.79 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with p-nitrophenyl-alpha-D-glucopyranoside 7VL3 ; 1.82 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with phenyl alpha-D-glucoside 7VKY ; 2.0 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with sophorose 7X87 ; 1.79 ; The complex structure of beta-1,2-glucosyltransferase from Ignavibacterium album with sophotetraose observed as sophorose 4R5Y ; 3.5 ; The complex structure of Braf V600E kinase domain with a novel Braf inhibitor 5VYO ; 2.49 ; The complex structure of Burkholderia pseudomallei DsbA bound to a peptide 5BWM ; 2.5 ; The complex structure of C3cer exoenzyme and GDP bound RhoA (NADH-bound state) 4XSH ; 2.5 ; The complex structure of C3cer exoenzyme and GTP bound RhoA (NADH-bound state) 4XSG ; 1.8 ; The complex structure of C3cer exoenzyme and GTP bound RhoA (NADH-free state) 2R28 ; 1.86 ; The complex Structure of Calmodulin Bound to a Calcineurin Peptide 3H39 ; 2.854 ; The complex structure of CCA-adding enzyme with ATP 3H3A ; 2.801 ; The complex structure of CCA-adding enzyme with CTP 3WP6 ; 1.43 ; The complex structure of CDBFV E109A with xylotriose 1NVS ; 1.8 ; The Complex Structure Of Checkpoint Kinase Chk1/SB218078 1NVR ; 1.8 ; The Complex Structure Of Checkpoint Kinase Chk1/Staurosporine 1NVQ ; 2.0 ; The Complex Structure Of Checkpoint Kinase Chk1/UCN-01 6JO8 ; 3.495 ; The complex structure of CHIKV envelope glycoprotein bound to human MXRA8 8HQV ; 1.398 ; The complex structure of COPI cargo sorting module with HCoV-OC43 Spike KTSHxx sorting motif 8HQW ; 1.405 ; The complex structure of COPI cargo sorting module with MHV Spike Hxx sorting motif 8HQT ; 1.8 ; The complex structure of COPI cargo sorting module with SARS-CoV-2 Spike KxHxx sorting motif 8HQX ; 1.538 ; The complex structure of COPI cargo sorting module with TAT-WDM peptide 8HR0 ; 3.34 ; The complex structure of COPII coat with HCoV-OC43 DD sorting motif 5GZX ; 2.35 ; The complex structure of D-2-haloacid dehalogenase mutant with D-2-CPA 5GZY ; 2.18 ; The complex structure of D-2-haloacid dehalogenase with L-LA 3WFJ ; 2.8 ; The complex structure of D-mandelate dehydrogenase with NADH 1WR1 ; ; The complex structure of Dsk2p UBA with ubiquitin 4TKY ; 2.5 ; The complex structure of E. coli DsbA bound to a peptide at the DsbA/DsbB interface 3WDY ; 1.94 ; The complex structure of E113A with cellotetraose 3WDX ; 1.9 ; The complex structure of E113A with glucotriose 6KVW ; 2.25 ; The complex structure of EanB/C339A/C370A and hercynine 6KTZ ; 2.0 ; The complex structure of EanB/C412S with hercynine 3W8Z ; 1.8 ; The complex structure of EncM with hydroxytetraketide 3W8X ; 1.82 ; The complex structure of EncM with trifluorotriketide 6IMV ; 2.0 ; The complex structure of endo-beta-1,2-glucanase from Talaromyces funiculosus with sophorose 6IMW ; 2.1 ; The complex structure of endo-beta-1,2-glucanase mutant (E262Q) from Talaromyces funiculosus with beta-1,2-glucan 4UV7 ; 2.1 ; The complex structure of extracellular domain of EGFR and GC1118A 4UIP ; 2.95 ; The complex structure of extracellular domain of EGFR with Repebody (rAC1). 7ESA ; 1.8 ; the complex structure of flavin transferase FmnB complexed with FAD 5ZDN ; 2.02 ; The complex structure of FomD with CDP 7ETK ; 1.22027 ; The complex structure of FtmOx1 bond with fumitremorgen B at 1.22 angstrom 7EP7 ; 2.6 ; The complex structure of Gpsm2 and Whirlin 5E66 ; 3.1 ; The complex structure of Hemagglutinin-esterase-fusion mutant protein from the influenza D virus with receptor analog 9-N-Ac-Sia 5E65 ; 2.2 ; The complex structure of Hemagglutinin-esterase-fusion mutant protein from the influenza D virus with receptor analog 9-O-Ac-3'SLN (Tr322) 6QIL ; 2.0 ; The complex structure of hsRosR-S1 (VNG0258H/RosR-S1) 6QFD ; 2.133 ; The complex structure of hsRosR-S4 (vng0258/RosR-S4) 6QH0 ; 2.436 ; The complex structure of hsRosR-S5 (VNG0258H/RosR-S5) 6QUA ; 2.681 ; The complex structure of hsRosR-SG (vng0258/RosR-SG) 3WCH ; 2.5 ; The complex structure of HsSQS wtih ligand BPH1237 3WCM ; 2.06 ; The complex structure of HsSQS wtih ligand, ER119884 3WC9 ; 2.82 ; The complex structure of HsSQS wtih ligand, FSPP 3WCD ; 2.75 ; The complex structure of HsSQS wtih ligand, WC-9 3WCF ; 2.22 ; The complex structure of HsSQS wtih ligand,BPH1218 3WCI ; 2.3 ; The complex structure of HsSQS wtih ligand,BPH1325 3WCL ; 2.24 ; The complex structure of HsSQS wtih ligand,BPH1344 3WCJ ; 2.2 ; The complex structure of HsSQS wtih ligand,E5700 6KA7 ; 3.0 ; The complex structure of Human IgG Fc and its binding Repebody 3WRG ; 2.23 ; The complex structure of HypBA1 with L-arabinose 6LOJ ; 3.72 ; The complex structure of IpaH9.8-LRR and hGBP1 2PXJ ; 2.0 ; The complex structure of JMJD2A and monomethylated H3K36 peptide 2P5B ; 1.99 ; The complex structure of JMJD2A and trimethylated H3K36 peptide 4XLY ; 1.82 ; The complex structure of KS-D75C with substrate CPP 7W3S ; 2.324 ; The complex structure of Larg1-ADPr from Legionella pneumophila 7CZ2 ; 1.8 ; The complex structure of MSMEG_1954-ADP from Mycobacterium smegmatis 7XQ6 ; 2.0 ; The complex structure of mutant Mpro with inhibitor 4TSR ; 2.07 ; The Complex Structure of Mutant Phytase with IHS 4PZA ; 1.776 ; The complex structure of mycobacterial glucosyl-3-phosphoglycerate phosphatase Rv2419c with inorganic phosphate 7X1M ; 2.74 ; The complex structure of Omicron BA.1 RBD with BD604, S309,and S304 8HWS ; 2.36 ; The complex structure of Omicron BA.4 RBD with BD604, S309, and S304 7WVM ; 3.4 ; The complex structure of PD-1 and cemiplimab 5A2P ; 2.496 ; THE COMPLEX STRUCTURE OF PDZ DOMAINS IN SYNTENIN-1 WITH 4L PEPTIDE 6LRA ; 1.9 ; The complex structure of PHF core domain peptide of tau and antibody's Fab domain. 7FGL ; 2.1 ; The complex structure of PHF core domain peptide of tau, VQIVYK, and antibody's Fab domain. 3WL7 ; 1.67 ; The complex structure of pOPH S172C with ligand, ACA 6JAU ; 1.905 ; The complex structure of Pseudomonas aeruginosa MucA/MucB. 3WDU ; 2.25 ; The complex structure of PtLic16A with cellobiose 3WDV ; 1.936 ; The complex structure of PtLic16A with cellotetraose 7XBH ; 3.02 ; The complex structure of RshSTT182/200 RBD bound to human ACE2 7XBF ; 3.51 ; The complex structure of RshSTT182/200 RBD-insert2 bound to human ACE2 5YK0 ; 2.102 ; The complex structure of Rv3197-ADP from Mycobacterium tuberculosis 5YK1 ; 2.103 ; The complex structure of Rv3197-AMPPNP from Mycobacterium tuberculosis 5YK2 ; 2.807 ; The complex structure of Rv3197-erythromycin from Mycobacterium tuberculosis 4KT8 ; 2.4 ; The complex structure of Rv3378c-Y51FY90F with substrate, TPP 8I4S ; 2.2 ; the complex structure of SARS-CoV-2 Mpro with D8 5WSY ; 2.0 ; The complex structure of SAV606 with N-carboxymethyl-3-aminobutyrate 7V3E ; 2.12 ; The complex structure of soBcmB and its intermediate product 1a 7V36 ; 1.96009 ; The complex structure of soBcmB and its intermediate product 2a 7V2T ; 2.20006 ; The complex structure of SoBcmB and its natural precursor 2 7V34 ; 2.00017 ; The complex structure of soBcmB and its product 1d 7V2U ; 2.0001 ; The complex structure of SoBcmB and its product 2f 7V2X ; 2.08387 ; The complex structure of soBcmB and its substrate 1 7V3N ; 1.85001 ; The complex structure of soBcmB-D307A and its natural precursor 2 5G1D ; 2.81 ; The complex structure of syntenin-1 PDZ domain with c-terminal extension 5G1E ; 1.92 ; The complex structure of syntenin-1 PDZ domain with c-terminal extension 5YAO ; 2.611 ; The complex structure of SZ529 and expoxid 3WCB ; 3.0 ; The complex structure of TcSQS with ligand, BPH1237 3WCG ; 2.8 ; The complex structure of TcSQS with ligand, BPH1344 3WCC ; 2.32 ; The complex structure of TcSQS with ligand, E5700 3WCE ; 2.75 ; The complex structure of TcSQS with ligand, ER119884 3WCA ; 2.24 ; The complex structure of TcSQS with ligand, FSPP 4AUB ; 2.05 ; the complex Structure of the bacterial aldo-keto reductase AKR14A1 with NADP and citrate 2VBG ; 1.8 ; The complex structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis with 2R-1-hydroxyethyl-deazaThDP 4ERK ; 2.2 ; THE COMPLEX STRUCTURE OF THE MAP KINASE ERK2/OLOMOUCINE 3ERK ; 2.1 ; THE COMPLEX STRUCTURE OF THE MAP KINASE ERK2/SB220025 3HA8 ; 2.48 ; THE COMPLEX STRUCTURE OF THE MAP KINASE P38/Compound 14b 1A9U ; 2.5 ; THE COMPLEX STRUCTURE OF THE MAP KINASE P38/SB203580 1BL6 ; 2.5 ; THE COMPLEX STRUCTURE OF THE MAP KINASE P38/SB216995 1BMK ; 2.4 ; THE COMPLEX STRUCTURE OF THE MAP KINASE P38/SB218655 1BL7 ; 2.5 ; THE COMPLEX STRUCTURE OF THE MAP KINASE P38/SB220025 4E2I ; 5.0 ; The Complex Structure of the SV40 Helicase Large T Antigen and p68 Subunit of DNA Polymerase Alpha-Primase 4XHU ; 2.089 ; The complex structure of Timeless_PAB and PARP-1_catalytic domain 5CZD ; 2.34 ; The complex structure of VinK with VinL 7XQ7 ; 2.35 ; The complex structure of WT-Mpro 3VST ; 1.75 ; The complex structure of XylC with Tris 3VSU ; 2.05 ; The complex structure of XylC with xylobiose 3VSV ; 1.48 ; The complex structure of XylC with xylose 8ILB ; 3.0 ; The complexes of RbcL, AtRaf1 and AtBSD2 (LFB) 5FU2 ; 1.4 ; The complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition 5FU3 ; 1.61 ; The complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition 5FU4 ; 2.0 ; The complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition 5FU5 ; 1.5 ; The complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition 7LEP ; 3.25 ; The composite LBD-TMD structure combined from all hippocampal AMPAR subtypes at 3.25 Angstrom resolution 8F7G ; 2.4 ; The condensation domain of surfactin A synthetase C in space group P212121 8F7F ; 1.62 ; The condensation domain of surfactin A synthetase C in space group P43212 8F7H ; 1.93 ; The condensation domain of surfactin A synthetase C variant 18b in space group P212121 8F7I ; 1.58 ; The condensation domain of surfactin A synthetase C variant 18b in space group P43212 4JGW ; 2.3 ; The conformation of a docking site for SH3 domains is pre-selected in the Guanine Nucleotide Exchange Factor Rlf 2D94 ; 1.7 ; THE CONFORMATION OF THE DNA DOUBLE HELIX IN THE CRYSTAL IS DEPENDENT ON ITS ENVIRONMENT 1JNV ; 4.4 ; The Conformation of the Epsilon and Gamma Subunits within the E. coli F1 ATPase 1D81 ; 2.5 ; THE CONFORMATIONAL VARIABILITY OF AN ADENOSINE. INOSINE BASE-PAIR IN A SYNTHETIC DNA DODECAMER 4GQH ; 3.06 ; The Conformations and Interactions of the Four-Layer Aggregate Revealed by X-ray Crystallography Diffraction Implied the Importance of Peptides at Opposite Ends in Their Assemblies 2X7P ; 2.34 ; The Conserved Candida albicans CA3427 Gene Product Defines a New Family of Proteins Exhibiting the Generic Periplasmic Binding Protein Structural Fold 2X7Q ; 2.0 ; The conserved Candida albicans CA3427 gene product defines a new family of proteins exhibiting the generic periplasmic binding protein structural fold 4DM4 ; 2.19 ; The conserved domain of yeast Cdc73 2NS5 ; ; The conserved N-terminal domain of Par-3 adopts a novel PB1-like structure required for Par-3 oligomerization and apical membrane localization 4PYU ; 2.0 ; The conserved ubiquitin-like protein hub1 plays a critical role in splicing in human cells 1BAN ; 2.2 ; THE CONTRIBUTION OF BURIED HYDROGEN BONDS TO PROTEIN STABILITY: THE CRYSTAL STRUCTURES OF TWO BARNASE MUTANTS 1BAO ; 2.2 ; THE CONTRIBUTION OF BURIED HYDROGEN BONDS TO PROTEIN STABILITY: THE CRYSTAL STRUCTURES OF TWO BARNASE MUTANTS 1COO ; ; THE COOH-TERMINAL DOMAIN OF RNA POLYMERASE ALPHA SUBUNIT 6M5V ; 4.5 ; The coordinate of the hexameric terminase complex in the presence of the ADP-BeF3 6M5T ; 3.6 ; The coordinate of the nuclease domain of the apo terminase complex 6M5S ; 3.9 ; The coordinates of the apo hexameric terminase complex 6M5R ; 3.5 ; The coordinates of the apo monomeric terminase complex 6M5U ; 3.8 ; The coordinates of the monomeric terminase complex in the presence of the ADP-BeF3 5UVR ; 1.7 ; The core region of PilO from the type IV pilus system of Pseudomonas aeruginosa 7PGP ; 3.1 ; The core structure of human neurofibromin isoform 2 8AGY ; 1.5 ; The Corramycin phosphotransferase in complex with Corramycin 3IEO ; 2.0 ; The coumarin-binding site in carbonic anhydrase: the antiepileptic lacosamide as an example 2CNA ; 2.0 ; THE COVALENT AND THREE-DIMENSIONAL STRUCTURE OF CONCANAVALIN A, IV.ATOMIC COORDINATES,HYDROGEN BONDING,AND QUATERNARY STRUCTURE 6BBF ; 6.706 ; The CRAC channel Orai in an open conformation; H206A gain-of-function mutation 6BBG ; 6.9 ; The CRAC channel Orai in an unlatched-closed conformation 6BBH ; 6.1 ; The CRAC channel Orai in an unlatched-closed conformation; K163W loss-of-function mutation 6BBI ; 4.35 ; The CRAC channel Orai in an unlatched-closed conformation; K163W loss-of-function mutation; P42212 crystal form 3S4L ; 2.3 ; The CRISPR-associated Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii 7FGR ; 2.2 ; The cross-reaction complex structure with VQIFNK peptide and the tau antibody's Fab domain. 7VTJ ; 2.0 ; The cross-reaction complex structure with VQIIYK peptide and tau antibody's Fab domain. 7FGJ ; 1.89 ; The cross-reaction complex structure with VQILNK peptide and the tau antibody's Fab domain. 6IRO ; 3.4 ; the crosslinked complex of ISWI-nucleosome in the ADP-bound state 6JYL ; 3.37 ; The crosslinked complex of ISWI-nucleosome in the ADP.BeF-bound state 4CY4 ; 21.6 ; The Cryo-Electron Microscopy Structure of the CorA channel from Methanocaldococcus jannaschii at 21.6 Angstrom in low magnesium. 5OH0 ; 4.2 ; The Cryo-Electron Microscopy Structure of the Type 1 Chaperone-Usher Pilus Rod 7RSI ; 4.9 ; The cryo-EM map of KIF18A bound to KIFBP 4V5X ; 11.5 ; The cryo-EM structure of a 3D DNA-origami object 6B6H ; 3.9 ; The cryo-EM structure of a bacterial class I transcription activation complex 6C26 ; 3.5 ; The Cryo-EM structure of a eukaryotic oligosaccharyl transferase complex 8JO0 ; 3.6 ; The Cryo-EM structure of a heptameric CED-4/CED-3 catalytic complex 7EU0 ; 3.16 ; The cryo-EM structure of A. thaliana Pol IV-RDR2 backtracked complex 7EU1 ; 3.86 ; The cryo-EM structure of A. thaliana Pol IV-RDR2 holoenzyme 7XYB ; 3.7 ; The cryo-EM structure of an AlpA-loaded complex 7XYA ; 3.3 ; The cryo-EM structure of an AlpA-loading complex 7CKQ ; 4.4 ; The cryo-EM structure of B. subtilis BmrR transcription activation complex 6QVK ; 3.6 ; The cryo-EM structure of bacteriophage phi29 prohead 7YE2 ; 3.8 ; The cryo-EM structure of C. crescentus GcrA-TACdown 7YE1 ; 3.7 ; The cryo-EM structure of C. crescentus GcrA-TACup 8HO7 ; 2.59 ; The cryo-EM structure of cellobiose phosphorylase from Clostridium thermocellum 8HOB ; 2.19 ; The cryo-EM structure of cellobiose phosphorylase from Clostridium thermocellum ( variant) 8HO9 ; 2.25 ; The cryo-EM structure of cellobiose phosphorylase from Clostridium thermocellum (cysteine-to-serine varient) 8HO8 ; 2.24 ; The cryo-EM structure of cellobiose phosphorylase from Clostridium thermocellum in complex with cellobiose 8IYR ; 2.6 ; The cryo-EM structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate 7BXT ; 4.2 ; The cryo-EM structure of CENP-A nucleosome in complex with CENP-C peptide and CENP-N N-terminal domain 7BY0 ; 4.5 ; The cryo-EM structure of CENP-A nucleosome in complex with the phosphorylated CENP-C 6QX7 ; 3.8 ; The cryo-EM structure of connector in bacteriophage phi29 prohead 6LHB ; 3.33 ; The cryo-EM structure of coxsackievirus A16 A-particle 6LHL ; 3.07 ; The cryo-EM structure of coxsackievirus A16 A-particle in complex with Fab 18A7 6LHC ; 3.43 ; The cryo-EM structure of coxsackievirus A16 empty particle 6LHO ; 3.13 ; The cryo-EM structure of coxsackievirus A16 empty particle in complex with Fab 18A7 6LHA ; 3.56 ; The cryo-EM structure of coxsackievirus A16 mature virion 6LHP ; 3.3 ; The cryo-EM structure of coxsackievirus A16 mature virion in complex with Fab 14B10 6LHK ; 2.65 ; The cryo-EM structure of coxsackievirus A16 mature virion in complex with Fab 18A7 6LHQ ; 3.06 ; The cryo-EM structure of coxsackievirus A16 mature virion in complex with Fab NA9D7 8DD7 ; 3.3 ; The Cryo-EM structure of Drosophila Cryptochrome in complex with Timeless 6LDI ; 3.69 ; The cryo-EM structure of E. coli CueR transcription activation complex 7C17 ; 4.22 ; The cryo-EM structure of E. coli CueR transcription activation complex with fully duplex promoter DNA 8ILM ; 3.3 ; The cryo-EM structure of eight Rubisco large subunits (RbcL), two Arabidopsis thaliana Rubisco accumulation factors 1 (AtRaf1), and seven Arabidopsis thaliana Bundle Sheath Defective 2 (AtBSD2) 7XJX ; 2.7 ; The cryo-EM structure of Fe3+ induced alpha-syn fibril. 6A7F ; 3.4 ; The cryo-EM structure of filamentous bacteriophage IKe major coat protein p8 shell assembly. 8GV3 ; 3.05 ; The cryo-EM structure of GSNOR with NYY001 8GVC ; 2.89 ; The cryo-EM structure of hAE2 with bicarbonate 8GV9 ; 3.06 ; The cryo-EM structure of hAE2 with chloride ion 8GV8 ; 3.08 ; The cryo-EM structure of hAE2 with DIDS 6JHQ ; 3.9 ; The cryo-EM structure of HAV bound to a neutralizing antibody-F4 6JHR ; 3.68 ; The cryo-EM structure of HAV bound to a neutralizing antibody-F6 6JHS ; 3.05 ; The cryo-EM structure of HAV bound to a neutralizing antibody-F7 6JHT ; 3.79 ; The cryo-EM structure of HAV bound to a neutralizing antibody-F9 6LAT ; 3.4 ; The cryo-EM structure of HEV VLP 6LB0 ; 3.6 ; The cryo-EM structure of HEV VLP in complex with Fab 8C11 6FXC ; 6.76 ; The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus 7W5B ; 4.3 ; The cryo-EM structure of human C* complex 5YZG ; 4.1 ; The Cryo-EM Structure of Human Catalytic Step I Spliceosome (C complex) at 4.1 angstrom resolution 7Y4W ; 3.67 ; The cryo-EM structure of human ERAD retro-translocation complex 7Y53 ; 3.61 ; The cryo-EM structure of human ERAD retro-translocation complex 7Y59 ; 4.51 ; The cryo-EM structure of human ERAD retro-translocation complex 7XUR ; 3.49 ; The cryo-EM structure of human mini-SNAPc in complex with hU6-1 PSE 6M66 ; 4.1 ; The Cryo-EM Structure of Human Pannexin 1 6M68 ; 4.6 ; The Cryo-EM Structure of Human Pannexin 1 in the Presence of CBX 6M67 ; 3.6 ; The Cryo-EM Structure of Human Pannexin 1 with D376E/D379E Mutation 7DN5 ; 4.11 ; The cryo-EM structure of human papillomavirus type 58 pseudovirus 8HK1 ; 2.7 ; The cryo-EM structure of human pre-17S U2 snRNP 7W59 ; 3.6 ; The cryo-EM structure of human pre-C*-I complex 7W5A ; 3.6 ; The cryo-EM structure of human pre-C*-II complex 6AHD ; 3.8 ; The Cryo-EM Structure of Human Pre-catalytic Spliceosome (B complex) at 3.8 angstrom resolution 8W9Y ; 3.5 ; The cryo-EM structure of human sphingomyelin synthase-related protein 8IJQ ; 3.45 ; The cryo-EM structure of human sphingomyelin synthase-related protein in complex with ceramide 8W9W ; 3.74 ; The cryo-EM structure of human sphingomyelin synthase-related protein in complex with ceramide/phosphoethanolamine 8IJR ; 3.29 ; The cryo-EM structure of human sphingomyelin synthase-related protein in complex with diacylglycerol/phosphoethanolamine 5OF4 ; 4.4 ; The cryo-EM structure of human TFIIH 7YIX ; 2.96 ; The Cryo-EM Structure of Human Tissue Nonspecific Alkaline Phosphatase and Single-Chain Fragment Variable (ScFv) Complex. 8JM9 ; 2.6 ; The cryo-EM structure of insect gustatory receptor Gr43a from Drosophila melanogaster 8JMA ; 2.5 ; The cryo-EM structure of insect gustatory receptor Gr43a from Drosophila melanogaster in complex with fructose 8X82 ; 2.8 ; The cryo-EM structure of insect gustatory receptor Gr43a I418A from Drosophila melanogaster 8X83 ; 2.8 ; The cryo-EM structure of insect gustatory receptor Gr43a I418A from Drosophila melanogaster in complex with fructose 8X84 ; 3.1 ; The cryo-EM structure of insect gustatory receptor Gr43a I418A from Drosophila melanogaster in complex with fructose and calcium 8JME ; 2.5 ; The cryo-EM structure of insect gustatory receptor Gr64a from Drosophila melanogaster 8JMI ; 2.6 ; The cryo-EM structure of insect gustatory receptor Gr64a from Drosophila melanogaster in complex with maltose 8JMH ; 2.5 ; The cryo-EM structure of insect gustatory receptor Gr64a from Drosophila melanogaster in complex with sucrose 8H5B ; 4.03 ; The cryo-EM structure of nuclear transport receptor Kap114p complex with yeast TATA-box binding protein 6JC3 ; 4.8 ; The Cryo-EM structure of nucleoprotein-RNA complex of Newcastle disease virus 8I6U ; 7.9 ; The cryo-EM structure of OsCyc1 dimer state 8I6T ; 3.7 ; The cryo-EM structure of OsCyc1 hexamer state 8I6P ; 3.5 ; The cryo-EM structure of OsCyc1 tetramer state 8IH5 ; 4.0 ; The cryo-EM structure of OsCyc1 that complexed with GGPP 8JB5 ; 2.9 ; The cryo-EM structure of Paeniclostridium sordellii lethal toxin (TcsL) 6QYZ ; 4.6 ; The cryo-EM structure of prohead RNA in bacteriophage phi29 prohead 6SV4 ; 3.3 ; The cryo-EM structure of SDD1-stalled collided trisome. 7WLM ; 2.8 ; The Cryo-EM structure of siphonaxanthin chlorophyll a/b type light-harvesting complex II 4ADX ; 6.6 ; The Cryo-EM Structure of the Archaeal 50S Ribosomal Subunit in Complex with Initiation Factor 6 7JZ6 ; 2.53 ; The Cryo-EM structure of the Catalase-peroxidase from Escherichia coli 6QZ9 ; 3.3 ; The cryo-EM structure of the collar complex and tail axis in bacteriophage phi29 6QZF ; 3.8 ; The cryo-EM structure of the collar complex and tail axis in genome emptied bacteriophage phi29 6QYM ; 3.6 ; The cryo-EM structure of the connector of the genome empited bacteriophage phi29 6QYJ ; 3.4 ; The cryo-EM structure of the connector of the mature bacteriophage phi29 7FIK ; 3.7 ; The cryo-EM structure of the CR subunit from X. laevis NPC 7EVN ; 2.6 ; The cryo-EM structure of the DDX42-SF3b complex 8XBU ; 4.24 ; The cryo-EM structure of the decameric RAD51 ring bound to the nucleosome with the linker DNA binding 8JNE ; 4.68 ; The cryo-EM structure of the decameric RAD51 ring bound to the nucleosome without the linker DNA binding 7CZB ; 3.8 ; The cryo-EM structure of the ERAD retrotranslocation channel formed by human Derlin-1 7JZH ; 3.59 ; The Cryo-EM structure of the Glutamate decarboxylase from Escherichia coli 6QZ0 ; 3.2 ; The cryo-EM structure of the head of the genome empited bacteriophage phi29 7EVO ; 2.5 ; The cryo-EM structure of the human 17S U2 snRNP 6PA7 ; 2.94 ; The cryo-EM structure of the human DNMT3A2-DNMT3B3 complex bound to nucleosome. 7VPX ; 3.0 ; The cryo-EM structure of the human pre-A complex 8X5D ; 3.1 ; The cryo-EM structure of the Mycobacterium tuberculosis CRISPR-Csm complex 8W9Z ; 3.0 ; The cryo-EM structure of the Nicotiana tabacum PEP-PAP 8WA0 ; 2.7 ; The cryo-EM structure of the Nicotiana tabacum PEP-PAP-TEC1 8WA1 ; 2.8 ; The cryo-EM structure of the Nicotiana tabacum PEP-PAP-TEC2 8JND ; 3.66 ; The cryo-EM structure of the nonameric RAD51 ring bound to the nucleosome with the linker DNA binding 7FIL ; 3.0 ; The cryo-EM structure of the NTD2 from the X. laevis Nup358 8XBT ; 4.12 ; The cryo-EM structure of the octameric RAD51 ring bound to the nucleosome with the linker DNA binding 4UMM ; 11.6 ; The Cryo-EM structure of the palindromic DNA-bound USP-EcR nuclear receptor reveals an asymmetric organization with allosteric domain positioning 6AH0 ; 5.7 ; The Cryo-EM Structure of the Precusor of Human Pre-catalytic Spliceosome (pre-B complex) 8JNF ; 6.91 ; The cryo-EM structure of the RAD51 filament bound to the nucleosome 8XBY ; 7.8 ; The cryo-EM structure of the RAD51 L1 and L2 loops bound to the linker DNA with the blunt end of the nucleosome 8XBV ; 7.61 ; The cryo-EM structure of the RAD51 L1 and L2 loops bound to the linker DNA with the sticky end of the nucleosome 8XBX ; 4.36 ; The cryo-EM structure of the RAD51 L2 loop bound to the linker DNA with the blunt end of the nucleosome 8XBW ; 2.89 ; The cryo-EM structure of the RAD51 N-terminal lobe domain bound to the histone H4 tail of the nucleosome 6Q0X ; 4.2 ; The cryo-EM structure of the SNX-BAR Mvp1 tetramer 8J5Z ; 4.75 ; The cryo-EM structure of the TwOSC1 tetramer 6WTI ; 2.38 ; The Cryo-EM structure of the ubiquinol oxidase from Escherichia coli 7AKV ; 3.6 ; The cryo-EM structure of the Vag8-C1 inhibitor complex 5O6V ; 3.9 ; The cryo-EM structure of Tick-borne encephalitis virus complexed with Fab fragment of neutralizing antibody 19/1786 5O6A ; 3.9 ; The cryo-EM structure of Tick-borne encephalitis virus mature particle 7BJP ; 3.65 ; The cryo-EM structure of vesivirus 2117, an adventitious agent and possible cause of haemorrhagic gastroenteritis in dogs. 5UZ4 ; 5.8 ; The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly 5IRE ; 3.8 ; The cryo-EM structure of Zika Virus 3JAU ; 4.8 ; The cryoEM map of EV71 mature viron in complex with the Fab fragment of antibody D5 4UIS ; 4.4 ; The cryoEM structure of human gamma-Secretase complex 7N88 ; 3.7 ; The cryoEM structure of LbpB from N. gonorrhoeae in complex with lactoferrin 7UOJ ; 4.02 ; The CryoEM structure of N49-P9.6-FR3 and PGT121 Fabs in complex with BG505 SOSIP.664 7UUS ; 8.0 ; The CryoEM structure of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis - Full complex focused refinement of stalk 5NW3 ; 0.59 ; The cryofrozen atomic resolution X-ray crystal structure of perdeuterated Pyrococcus furiosus Rubredoxin (100K, 0.59A resolution) 5OME ; 0.747 ; The cryofrozen atomic resolution X-ray crystal structure of the reduced form (Fe2+) perdeuterated Pyrococcus furiosus Rubredoxin in D2O (100K, 0.75 Angstrom resolution) 1UB7 ; 2.3 ; The Crystal Analysis of Beta-Keroacyl-[Acyl Carrier Protein] Synthase III (FABH)From Thermus Thermophilus. 211D ; 1.6 ; THE CRYSTAL AND MOLECULAR STRUCTURE OF A NEW Z-DNA CRYSTAL FORM: D[CGT(2-NH2-A) CG] AND ITS PLATINATED DERIVATIVE 2OVO ; 1.5 ; THE CRYSTAL AND MOLECULAR STRUCTURE OF THE THIRD DOMAIN OF SILVER PHEASANT OVOMUCOID (OMSVP3) 5ZNG ; 2.189 ; The crystal complex of immune receptor RGA5A_S of Pia from rice (Oryzae sativa) with rice blast (Magnaporthe oryzae) effector protein AVR1-CO39 6LGQ ; 3.0 ; The crystal complex structure of histidine kinase and response regulator 2UZ0 ; 1.7 ; The Crystal crystal structure of the estA protein, a virulence factor estA protein from Streptococcus pneumonia 6JOH ; 2.4 ; The crystal of nucleoside diphosphate kinase from Aspergillus flavus 5HBP ; 1.5 ; The crystal of rhodanese domain of YgaP treated with SNOC 5HPA ; 1.66 ; The crystal of rhodanese domain of YgaP treated with sodium thiosulfate 7BPI ; 2.40009 ; The crystal structue of PDE10A complexed with 14 6KO0 ; 2.60003 ; The crystal structue of PDE10A complexed with 1i 6KO1 ; 2.7 ; The crystal structue of PDE10A complexed with 2d 6KZE ; 2.50003 ; The crystal structue of PDE10A complexed with 4d 4UW9 ; 2.3 ; The crystal structural of archaeal beta-phosphoglucomutase from hyper-thermophilic Pyrococcus sp. Strain ST 04 1KP0 ; 2.7 ; The Crystal Structure Analysis of Creatine Amidinohydrolase from Actinobacillus 7YTO ; 2.31 ; The Crystal Structure Analysis of Creatine Amidinohydrolase from Alcaligenes sp. KS-85 233D ; 2.4 ; THE CRYSTAL STRUCTURE ANALYSIS OF D(CGCGAASSCGCG)2: A SYNTHETIC DNA DODECAMER DUPLEX CONTAINING FOUR 4'-THIO-2'-DEOXYTHYMIDINE NUCLEOTIDES 1EW6 ; 1.78 ; THE CRYSTAL STRUCTURE AND AMINO ACID SEQUENCE OF DEHALOPEROXIDASE FROM AMPHITRITE ORNATA INDICATE COMMON ANCESTRY WITH GLOBINS 1LKI ; 2.0 ; THE CRYSTAL STRUCTURE AND BIOLOGICAL FUNCTION OF LEUKEMIA INHIBITORY FACTOR: IMPLICATIONS FOR RECEPTOR BINDING 1L1Y ; 2.4 ; The Crystal Structure and Catalytic Mechanism of Cellobiohydrolase CelS, the Major Enzymatic Component of the Clostridium thermocellum cellulosome 1L2A ; 2.5 ; The Crystal Structure and Catalytic Mechanism of Cellobiohydrolase CelS, the Major Enzymatic Component of the Clostridium thermocellum cellulosome 1SIQ ; 2.1 ; The Crystal Structure and Mechanism of Human Glutaryl-CoA Dehydrogenase 1SIR ; 2.6 ; The Crystal Structure and Mechanism of Human Glutaryl-CoA Dehydrogenase 1KOH ; 3.8 ; THE CRYSTAL STRUCTURE AND MUTATIONAL ANALYSIS OF A NOVEL RNA-BINDING DOMAIN FOUND IN THE HUMAN TAP NUCLEAR MRNA EXPORT FACTOR 1KOO ; 3.8 ; THE CRYSTAL STRUCTURE AND MUTATIONAL ANALYSIS OF A NOVEL RNA-BINDING DOMAIN FOUND IN THE HUMAN TAP NUCLEAR MRNA EXPORT FACTOR 1AM5 ; 2.16 ; THE CRYSTAL STRUCTURE AND PROPOSED AMINO ACID SEQUENCE OF A PEPSIN FROM ATLANTIC COD (GADUS MORHUA) 1PS9 ; 2.2 ; The Crystal Structure and Reaction Mechanism of E. coli 2,4-Dienoyl CoA Reductase 2W6K ; 1.7 ; The crystal structure at 1.7 A resolution of CobE, a protein from the cobalamin (vitamin B12) biosynthetic pathway 2W6L ; 1.89 ; The crystal structure at 1.7 A resolution of CobE, a protein from the cobalamin (vitamin B12) biosynthetic pathway 1QI7 ; 2.0 ; THE CRYSTAL STRUCTURE AT 2.0 A OF SAPORIN SO6, A RIBOSOME INACTIVATING PROTEIN FROM SAPONARIA OFFICINALIS 6WJM ; 1.0 ; The crystal structure beta-lactamase from Desulfarculus baarsii DSM 2075 3DHT ; 2.98 ; The Crystal Structure Determination of Rat (rattus norvegicus) Hemoglobin 3OEO ; 2.7 ; The crystal structure E. coli Spy 1IC1 ; 3.0 ; THE CRYSTAL STRUCTURE FOR THE N-TERMINAL TWO DOMAINS OF ICAM-1 7RSK ; 2.4 ; The crystal structure from microfluidic crystals of glycosyl hydrolase family 2 (GH2) member from Bacteroides cellulosilyticus 5JVH ; 3.58 ; The crystal structure large ribosomal subunit (50S) of Deinococcus radiodurans in complex with evernimicin 8EQ8 ; 1.5 ; The crystal structure of 14-3-3 Beta containing 3-nitrotyrosine at position Y130 8EQH ; 1.9 ; The crystal structure of 14-3-3 Beta containing 3-nitrotyrosine at position Y213 6EIH ; 2.7 ; The crystal structure of 14-3-3 epsilon in complex with the phosphorylated NELFE peptide 1YZ5 ; 2.8 ; The crystal structure of 14-3-3-sigma at 2.8 angstrom resolution 7UI2 ; 1.19 ; The crystal structure of 15kDa Phlebotomus papatasi salivary protein Ppsp15. 3FJN ; 2.3 ; The crystal structure of 17-alpha hydroxysteroid dehydrogenase Y224D mutant. 1Q74 ; 1.7 ; The Crystal Structure of 1D-myo-inositol 2-acetamido-2-deoxy-alpha-D-glucopyranoside Deacetylase (MshB) 7X7Z ; 2.903 ; The crystal structure of 2+2/4+2 cyclase PloI4 3GOS ; 1.8 ; The crystal structure of 2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase from Yersinia pestis CO92 2B15 ; 1.7 ; The crystal structure of 2,4-dinitrophenol in complex with human transthyretin 2B14 ; 2.0 ; The crystal structure of 2,4-dinitrophenol in complex with the amyloidogenic variant Transthyretin Leu 55 Pro 2B16 ; 1.75 ; The crystal structure of 2,4-dinitrophenol in complex with the amyloidogenic variant Transthyretin Tyr78Phe 6ZR8 ; 1.79 ; The crystal structure of 2-(4-Benzhydrylpiperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II 6JFV ; 2.6 ; The crystal structure of 2B-2B complex from keratins 5 and 14 (C367A mutant of K14) 7TYE ; 1.94 ; The crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase mutant (G108S) from E. Coli 1FJH ; 1.68 ; THE CRYSTAL STRUCTURE OF 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE FROM COMAMONAS TESTOSTERONI, A MEMBER OF THE SHORT CHAIN DEHYDROGENASE/REDUCTASE FAMILY 6PRS ; 2.373 ; The crystal structure of 3-ethoxybenzoate-bound CYP199A4 1ZVF ; 2.41 ; The crystal structure of 3-hydroxyanthranilate 3,4-dioxygenase from Saccharomyces cerevisiae 6B7J ; 1.44 ; The crystal structure of 3-hydroxydecanoyl-(acyl carrier protein) dehydratase from Vibrio cholerae O1 biovar eltor str. N16961 1V53 ; 2.85 ; The crystal structure of 3-isopropylmalate dehydrogenase from Bacillus coagulans 5CEJ ; 2.5 ; The crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) from Yersinia pestis at 2.50A resolution 5CDY ; 2.85 ; The crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG) from Yersinia pestis at 2.85A resolution 4AT0 ; 1.6 ; The crystal structure of 3-ketosteroid-delta4-(5alpha)-dehydrogenase from Rhodococcus jostii RHA1 4AT2 ; 1.6 ; The crystal structure of 3-ketosteroid-delta4-(5alpha)-dehydrogenase from Rhodococcus jostii RHA1 in complex with 4-androstene-3,17- dione 6PQ6 ; 1.658 ; The crystal structure of 3-methoxybenzoate-bound CYP199A4 6PRR ; 1.67 ; The crystal structure of 3-methylaminobenzoate-bound CYP199A4 6PQW ; 1.679 ; The crystal structure of 3-methylbenzoate-bound CYP199A4 6PQD ; 1.89 ; The crystal structure of 3-methylthiobenzoate-bound CYP199A4 3U9L ; 2.1 ; The crystal structure of 3-oxoacyl-[acyl-carrier-protein] reductase (NADPH) from Sinorhizobium meliloti 4DRY ; 2.5 ; The crystal structure of 3-oxoacyl-[acyl-carrier-protein] reductase from Rhizobium meliloti 3U5T ; 2.4 ; The crystal structure of 3-oxoacyl-[acyl-carrier-protein] reductase from Sinorhizobium meliloti 6XOA ; 2.1 ; The crystal structure of 3CL MainPro of SARS-CoV-2 with C145S mutation 7JFQ ; 1.55 ; The crystal structure of 3CL MainPro of SARS-CoV-2 with de-oxidized C145 6XKF ; 1.8 ; The crystal structure of 3CL MainPro of SARS-CoV-2 with oxidized Cys145 (Sulfenic acid cysteine). 6U31 ; 1.578 ; The crystal structure of 4-(1H-imidazol-1-yl)benzoate-bound CYP199A4 7JXB ; 1.655 ; The crystal structure of 4-(3'-methoxyphenyl)benzoic acid-bound CYP199A4 6U3K ; 1.8 ; The crystal structure of 4-(pyridin-2-yl)benzoate-bound CYP199A4 6C3J ; 1.66 ; The crystal structure of 4-(thiophen-3-yl)benzoate-bound CYP199A4 6BB9 ; 2.282 ; The crystal structure of 4-amino-4-deoxychorismate lyase from Salmonella typhimurium LT2 6C2D ; 1.79 ; The crystal structure of 4-cyclohexylbenzoate-bound CYP199A4 5UVB ; 1.54 ; The crystal structure of 4-cyclopropylbenzoate-bound CYP199A4 4KT7 ; 2.001 ; The crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritolsynthase from Anaerococcus prevotii DSM 20548 5U6T ; 1.935 ; The crystal structure of 4-ethoxybenzoate-bound CYP199A4 6OOW ; 1.6 ; The crystal structure of 4-ethylbenzoate bound to T252A mutant of CYP199A4 5U6U ; 1.786 ; The crystal structure of 4-ethylthiobenzoate-bound CYP199A4 2OOF ; 2.2 ; The crystal structure of 4-imidazolone-5-propanoate amidohydrolase from environmental sample 6VJX ; 1.788 ; The crystal structure of 4-isobutylbenzoic acid-bound CYP199A4 6OOX ; 1.774 ; The crystal structure of 4-isopropylbenzoate bound to T252A mutant of CYP199A4 5KDB ; 1.644 ; The crystal structure of 4-isopropylbenzoate-bound CYP199A4 7N60 ; 1.892 ; The crystal structure of 4-methoxybenzoate-bound CYP199A S244D mutant 6UNN ; 1.655 ; The crystal structure of 4-methoxycinnamic acid-bound CYP199A4 5U6W ; 2.644 ; The crystal structure of 4-methylaminobenzoate-bound CYP199A4 6PQS ; 1.6 ; The crystal structure of 4-methylbenzoate-bound CYP199A4 5KT1 ; 2.015 ; The crystal structure of 4-methylthiobenzoate-bound CYP199A4 8E5J ; 2.3 ; The crystal structure of 4-n-butylbenzoic acid bound CYP199A4 6C3H ; 1.705 ; The crystal structure of 4-n-heptylbenzoate-bound CYP199A4 6U30 ; 1.655 ; The crystal structure of 4-pyridin-3-ylbenzoate-bound CYP199A4 6WZP ; 1.65 ; The crystal structure of 4-vinylbenzoate-bound T252A mutant CYP199A4 7KCS ; 1.773 ; The crystal structure of 4-vinylbenzoate-bound wild-type CYP199A4 3M02 ; 2.5 ; The Crystal Structure of 5-epi-aristolochene synthase complexed with (2-cis,6-trans)-2-fluorofarnesyl diphosphate 3M01 ; 2.6 ; The Crystal Structure of 5-epi-aristolochene synthase complexed with (2-trans,6-trans)-2-fluorofarnesyl diphosphate 3LZ9 ; 2.28 ; The Crystal Structure of 5-epi-aristolochene synthase M4 mutant complexed with (2-trans,6-trans)-2-fluorofarnesyl diphosphate 2JCB ; 1.6 ; The crystal structure of 5-formyl-tetrahydrofolate cycloligase from Bacillus anthracis (BA4489) 5IZN ; 2.35 ; The crystal structure of 50S ribosomal protein L25 from Vibrio vulnificus CMCP6 4GPN ; 2.291 ; The crystal structure of 6-P-beta-D-Glucosidase (E375Q mutant) from Streptococcus mutans UA150 in complex with Gentiobiose 6-phosphate. 4IPL ; 2.004 ; The crystal structure of 6-phospho-beta-glucosidase BglA-2 from Streptococcus pneumoniae 3PN8 ; 1.693 ; The crystal structure of 6-phospho-beta-glucosidase from Streptococcus mutans UA159 4F66 ; 1.479 ; The crystal structure of 6-phospho-beta-glucosidase from Streptococcus mutans UA159 in complex with beta-D-glucose-6-phosphate. 4F79 ; 2.54 ; The crystal structure of 6-phospho-beta-glucosidase mutant (E375Q) in complex with Salicin 6-phosphate 4E21 ; 2.301 ; The crystal structure of 6-phosphogluconate dehydrogenase from Geobacter metallireducens 5USW ; 1.643 ; The crystal structure of 7,8-dihydropteroate synthase from Vibrio fischeri ES114 5LYS ; 2.32 ; The crystal structure of 7SK 5'-hairpin - Gold derivative 5LYV ; 2.35 ; The crystal structure of 7SK 5'-hairpin - Osmium derivative 3JYF ; 2.43 ; The crystal structure of a 2,3-cyclic nucleotide 2-phosphodiesterase/3-nucleotidase bifunctional periplasmic precursor protein from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 2UVD ; 2.4 ; The crystal structure of a 3-oxoacyl-(acyl carrier protein) reductase from Bacillus anthracis (BA3989) 4YJ6 ; 1.7 ; The Crystal Structure of a Bacterial Aryl Acylamidase Belonging to the Amidase signature (AS) enzymes family 4YJI ; 1.73 ; The Crystal Structure of a Bacterial Aryl Acylamidase Belonging to the Amidase signature (AS) enzymes family 3HIM ; 2.2 ; The Crystal Structure of a Bacterial Regulatory Protein in the tetR Family from Rhodococcus RHA1 to 2.2A 7K02 ; 3.4 ; The crystal structure of a BAK dimer activated by detergent 6WGP ; 1.5 ; The crystal structure of a beta lactamase from Xanthomonas campestris pv. campestris str. ATCC 33913 6V4W ; 1.29 ; The crystal structure of a beta-lactamase from Chitinophaga pinensis DSM 2588 6X9Y ; 1.9 ; The crystal structure of a Beta-lactamase from Escherichia coli CFT073 6WHL ; 2.3 ; The crystal structure of a beta-lactamase from Legionella pneumophila str. Paris 6WGQ ; 1.8 ; The crystal structure of a beta-lactamase from Shigella flexneri 2a str. 2457T 6WGR ; 1.88 ; The crystal structure of a beta-lactamase from Staphylococcus aureus subsp. aureus USA300_TCH1516 2RET ; 2.21 ; The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the Type 2 Secretion System of Vibrio vulnificus 1SYX ; 2.345 ; The crystal structure of a binary U5 snRNP complex 1XHM ; 2.7 ; The Crystal Structure of a Biologically Active Peptide (SIGK) Bound to a G Protein Beta:Gamma Heterodimer 6B3M ; 3.92 ; The crystal structure of a broadly-reactive human anti-hemagglutinin stalk antibody (70-1F02) in complex with H5 hemagglutinin 1LSP ; 2.45 ; THE CRYSTAL STRUCTURE OF A BULGECIN-INHIBITED G-TYPE LYSOZYME FROM THE EGG-WHITE OF THE AUSTRALIAN BLACK SWAN. A COMPARISON OF THE BINDING OF BULGECIN TO THREE MURAMIDASES 3H6E ; 2.5 ; The crystal structure of a carbohydrate kinase from Novosphingobium aromaticivorans 3LFR ; 1.53 ; The Crystal Structure of a CBS Domain from a Putative Metal Ion Transporter Bound to AMP from Pseudomonas syringae to 1.55A 4NOC ; 2.3 ; The crystal structure of a CBS Domain-containing Protein of Unknown Function from Kribbella flavida DSM 17836. 3HF7 ; 2.75 ; The Crystal Structure of a CBS-domain Pair with Bound AMP from Klebsiella pneumoniae to 2.75A 5SV7 ; 3.209 ; The Crystal structure of a chaperone 3G6L ; 1.8 ; The crystal structure of a chitinase CrChi1 from the nematophagous fungus Clonostachys rosea 6V6N ; 1.85 ; The crystal structure of a class D beta-lactamase from Agrobacterium tumefaciens 4Q6T ; 1.4 ; The crystal structure of a class V chitininase from Pseudomonas fluorescens Pf-5 8CGE ; 2.5 ; The crystal structure of a cobalt-bound scFv reveals a Tetrameric polyHistidine motif (TetrHis) 5L8S ; 2.5 ; The crystal structure of a cold-adapted acylaminoacyl peptidase reveals a novel quaternary architecture based on the arm-exchange mechanism 6WFV ; 1.7 ; The crystal structure of a collagen galactosylhydroxylysyl glucosyltransferase from human 1LMC ; 2.0 ; THE CRYSTAL STRUCTURE OF A COMPLEX BETWEEN BULGECIN, A BACTERIAL METABOLITE, AND LYSOZYME FROM THE RAINBOW TROUT 6RNR ; 2.003 ; The crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 6RO2 ; 1.821 ; The crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 6ROK ; 1.95 ; The crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 6RP0 ; 2.25 ; The crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 6RP7 ; 2.0 ; The crystal structure of a complex between the LlFpg protein, a THF-DNA and an inhibitor 1W2Y ; 1.65 ; The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue dUpNHp 2CIC ; 1.7 ; THE CRYSTAL STRUCTURE OF A COMPLEX OF CAMPYLOBACTER JEJUNI DUTPASE WITH SUBSTRATE ANALOGUE DUPNHPP 2CJE ; 2.34 ; THE CRYSTAL STRUCTURE OF A COMPLEX OF Leishmania major DUTPASE WITH SUBSTRATE ANALOGUE DUPNHP 1C28 ; 2.1 ; THE CRYSTAL STRUCTURE OF A COMPLMENT-1Q FAMILY PROTEIN SUGGESTS AN EVOLUTIONARY LINK TO TUMOR NECROSIS FACTOR 3E0Y ; 3.1 ; The crystal structure of a conserved domain from a protein of Geobacter sulfurreducens PCA 4GXT ; 1.821 ; The crystal structure of a conserved functionally unknown protein from Anaerococcus prevotii DSM 20548 3LO3 ; 2.383 ; The crystal structure of a conserved functionally unknown protein from Colwellia psychrerythraea 34H. 3MUQ ; 2.053 ; The crystal structure of a conserved functionally unknown protein from Vibrio parahaemolyticus RIMD 2210633 3ROB ; 1.48 ; The crystal structure of a conserved protein from Planctomyces limnophilus DSM 3776 2QZI ; 2.2 ; The crystal structure of a conserved protein of unknown function from Streptococcus thermophilus LMG 18311. 3ERM ; 2.45 ; The crystal structure of a conserved protein with unknown function from Pseudomonas syringae pv. tomato str. DC3000 4R55 ; 1.8 ; The crystal structure of a Cren7 mutant protein GR and dsDNA complex 5B5I ; 1.599 ; The crystal structure of a crustacean hyperglycemic hormone precursor from the kuruma prawn 3ZJA ; 1.48 ; The crystal structure of a Cu(I) metallochaperone from Streptomyces lividans 3ZK0 ; 1.7 ; The crystal structure of a Cu(I) metallochaperone from Streptomyces lividans in its apo form 4RD7 ; 1.571 ; The crystal structure of a Cupin 2 conserved barrel domain protein from Salinispora arenicola CNS-205 1CBG ; 2.15 ; THE CRYSTAL STRUCTURE OF A CYANOGENIC BETA-GLUCOSIDASE FROM WHITE CLOVER (TRIFOLIUM REPENS L.), A FAMILY 1 GLYCOSYL-HYDROLASE 2C0Y ; 2.1 ; THE CRYSTAL STRUCTURE OF A CYS25ALA MUTANT OF HUMAN PROCATHEPSIN S 3KZV ; 2.0 ; The crystal structure of a cytoplasmic protein with unknown function from Saccharomyces cerevisiae 1NR8 ; 1.66 ; The crystal structure of a D-Lysine-based chiral PNA-DNA duplex 5UXY ; 1.8 ; The crystal structure of a DegV family protein from Eubacterium eligens loaded with heptadecanoic acid to 1.80 Angstrom resolution (ALTERNATIVE REFINEMENT OF PDB 3FDJ with HEPTADECANOIC acid) 6KHU ; 2.098 ; The crystal structure of a DGC protein from Thermotoga maritima 1Z3Z ; 2.9 ; The crystal structure of a DGD mutant: Q52A 3S40 ; 2.1 ; The crystal structure of a diacylglycerol kinases from Bacillus anthracis str. Sterne 3GRI ; 2.0 ; The Crystal Structure of a Dihydroorotase from Staphylococcus aureus 3L21 ; 2.1 ; The crystal structure of a dimeric mutant of dihydrodipicolinate synthase (DAPA, RV2753C) from Mycobacterium Tuberculosis - DHDPS-A204R 2OJP ; 1.7 ; The crystal structure of a dimeric mutant of Dihydrodipicolinate synthase from E.coli- DHDPS-L197Y 7NRP ; 2.67 ; The crystal structure of a DNA:RNA hybrid duplex sequence CTTTTCTTTG 7OOS ; 2.6 ; The crystal structure of a DNA:RNA hybrid duplex sequence CTTTTCTTTG 7OOO ; 2.57 ; The crystal structure of a DNA:RNA hybrid duplex sequence CTTTTCTTTG containing an LNA-Amide-LNA modification 7OZZ ; 2.7 ; The crystal structure of a DNA:RNA hybrid duplex sequence CTTTTCTTTG with LNA-amide modification 3OCM ; 1.801 ; The crystal structure of a domain from a possible membrane protein of Bordetella parapertussis 3EO4 ; 2.19 ; The crystal structure of a domain from Methanocaldococcus jannaschii DSM 2661 3NE8 ; 1.239 ; The crystal structure of a domain from N-acetylmuramoyl-l-alanine amidase of Bartonella henselae str. Houston-1 3NZE ; 1.697 ; The crystal structure of a domain of a possible sugar-binding transcriptional regulator from Arthrobacter aurescens TC1. 3IS6 ; 1.95 ; The Crystal Structure of a domain of a putative Permease protein from Porphyromonas gingivalis to 2A 3FC7 ; 2.65 ; The crystal structure of a domain of HTR-like protein from Haloarcula marismortui ATCC 43049 3LAX ; 1.428 ; The crystal structure of a domain of phenylacetate-coenzyme A ligase from Bacteroides vulgatus ATCC 8482 3HCZ ; 1.88 ; The crystal structure of a domain of possible thiol-disulfide isomerase from Cytophaga hutchinsonii ATCC 33406. 2R5S ; 2.14 ; The crystal structure of a domain of protein VP0806 (unknown function) from Vibrio parahaemolyticus RIMD 2210633 7FFT ; 1.6 ; The crystal structure of a domain-swapped dimeric maltodextrin-binding protein MalE from Salmonella enterica 7FFW ; 1.6 ; The crystal structure of a domain-swapped dimeric maltodextrin-binding protein MalE from Salmonella enterica 3RZV ; 1.67 ; The Crystal Structure of a E280A Mutant of the Catalytic Domain of AMSH 3NYI ; 1.9 ; The crystal structure of a fat acid (stearic acid)-binding protein from Eubacterium ventriosum ATCC 27560. 1LIS ; 1.9 ; THE CRYSTAL STRUCTURE OF A FERTILIZATION PROTEIN 8BHH ; 1.69 ; The crystal structure of a feruloyl esterase C from Fusarium oxysporum in complex with p-coumaric acid 6FAT ; 2.3 ; The crystal structure of a feruloyl esterase C from Fusarium oxysporum. 3NKZ ; 2.112 ; The crystal structure of a flagella protein from Yersinia enterocolitica subsp. enterocolitica 8081 3V76 ; 2.51 ; The crystal structure of a flavoprotein from Sinorhizobium meliloti 4M0C ; 2.073 ; The crystal structure of a FMN-dependent NADH-azoreductase from Bacillus anthracis str. Ames Ancestor in complex with FMN. 3MPC ; 1.6 ; The crystal structure of a Fn3-like protein from Clostridium thermocellum 6FKQ ; 3.07 ; THE CRYSTAL STRUCTURE OF A FRAGMENT OF NETRIN-1 IN COMPLEX WITH A FRAGMENT OF DRAXIN 4URT ; 3.1 ; The crystal structure of a fragment of netrin-1 in complex with FN5- FN6 of DCC 6X1L ; 2.0 ; The crystal structure of a functional uncharacterized protein KP1_0663 from Klebsiella pneumoniae subsp. pneumoniae NTUH-K2044 5ES2 ; 2.6 ; The crystal structure of a functionally uncharacterized protein LPG0634 from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 4R0J ; 1.715 ; The crystal structure of a functionally uncharacterized protein SMU1763c from Streptococcus mutans 4FCA ; 2.055 ; The crystal structure of a functionally unknown conserved protein from Bacillus anthracis str. Ames. 3L1W ; 1.6 ; The crystal structure of a functionally unknown conserved protein from Enterococcus faecalis V583 3LAE ; 1.453 ; The crystal structure of a functionally unknown conserved protein from Haemophilus influenzae Rd KW20 3FRM ; 2.32 ; The crystal structure of a functionally unknown conserved protein from Staphylococcus epidermidis ATCC 12228. 5EV7 ; 2.351 ; The crystal structure of a functionally unknown conserved protein mutant from Bacillus anthracis str. Ames 3U4Y ; 2.994 ; The crystal structure of a functionally unknown protein (Dtox_1751) from Desulfotomaculum acetoxidans DSM 771. 3M33 ; 2.195 ; The crystal structure of a functionally unknown protein from Deinococcus radiodurans R1 3O2I ; 2.197 ; The crystal structure of a functionally unknown protein from Leptospirillum sp. Group II UBA 4EAE ; 1.32 ; The crystal structure of a functionally unknown protein from Listeria monocytogenes EGD-e 3O12 ; 1.5 ; The crystal structure of a functionally unknown protein from Saccharomyces cerevisiae. 4G6Q ; 2.08 ; The crystal structure of a functionally unknown protein Kfla_6221 from Kribbella flavida DSM 17836 3T8K ; 1.769 ; The crystal structure of a functionally unknown protein Lebu_0176 from Leptotrichia buccalis C-1013-b 4M0M ; 2.192 ; The crystal structure of a functionally unknown protein lpg2422 from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 3MT0 ; 1.582 ; The crystal structure of a functionally unknown protein PA1789 from Pseudomonas aeruginosa PAO1 3M05 ; 3.145 ; The crystal structure of a functionally unknown protein PEPE_1480 from Pediococcus pentosaceus ATCC 25745 3LAG ; 1.15 ; The crystal structure of a functionally unknown protein RPA4178 from Rhodopseudomonas palustris CGA009 4RD8 ; 1.72 ; The crystal structure of a functionally-unknown protein from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 3NEU ; 1.58 ; The crystal structure of a functionally-unknown protein lin1836 from Listeria innocua Clip11262 8XRT ; 2.4 ; The crystal structure of a GH3 enzyme CcBgl3B 8XRV ; 2.4 ; The crystal structure of a GH3 enzyme CcBgl3B with glucose 8XRX ; 2.5 ; The crystal structure of a GH3 enzyme CcBgl3B with glucose and gentiobiose 8XRU ; 2.02 ; The crystal structure of a GH3 enzyme CcBgl3B with glycerol 4YYF ; 1.92 ; The crystal structure of a glycosyl hydrolase of GH3 family member from [Mycobacterium smegmatis str. MC2 155 3RQ0 ; 2.02 ; The crystal structure of a glycosyl hydrolases (GH) family protein 16 from Mycobacterium smegmatis str. MC2 155 3PNN ; 1.901 ; The crystal structure of a glycosyltransferase from Porphyromonas gingivalis W83 5UJP ; 1.42 ; The crystal structure of a glyoxalase/bleomycin resistance protein from Streptomyces sp. CB03234 4RT5 ; 1.5 ; The crystal structure of a glyoxalase/bleomycin resistance protein/dioxygenase protein from planctomyces limnophilus dsm 3776 2RK9 ; 1.6 ; The crystal structure of a glyoxalase/bleomycin resistance protein/dioxygenase superfamily member from Vibrio splendidus 12B01 3IC8 ; 2.4 ; The Crystal Structure of a GST-like protein from Pseudomonas syringae to 2.4A 8U4W ; 3.02 ; The crystal structure of a helical domain deleted PARP1 in complex with isoindolinone based inhibitor. 2R2Z ; 1.2 ; The crystal structure of a hemolysin domain from Enterococcus faecalis V583 3OCO ; 2.204 ; The crystal structure of a Hemolysin-like protein containing CBS domain of Oenococcus oeni PSU 1I8F ; 1.75 ; THE CRYSTAL STRUCTURE OF A HEPTAMERIC ARCHAEAL SM PROTEIN: IMPLICATIONS FOR THE EUKARYOTIC SNRNP CORE 5O7G ; 1.9 ; The crystal structure of a highly thermostable carboxyl esterase from Bacillus coagulans 5OLU ; 1.8 ; The crystal structure of a highly thermostable carboxyl esterase from Bacillus coagulans in complex with glycerol 3KDR ; 2.9 ; The Crystal Structure of a HK97 Family Phage Portal Protein from Corynebacterium diphtheriae to 2.9A 2QZ7 ; 2.1 ; The crystal structure of a homologue of telluride resistance protein (TerD), SCO6318 from Streptomyces coelicolor A3(2) 3MTJ ; 2.15 ; The Crystal Structure of a Homoserine Dehydrogenase from Thiobacillus denitrificans to 2.15A 2PMF ; 2.85 ; The crystal structure of a human glycyl-tRNA synthetase mutant 4F2C ; 1.35 ; The Crystal Structure of a Human MitoNEET double mutant in which Gly 66 are Asp 67 are both Replaced with Ala Residues 4EZF ; 1.19 ; The Crystal Structure of a Human MitoNEET mutant with an Ala inserted between Asp 67 and Lys 68 4F1E ; 2.4 ; The Crystal Structure of a Human MitoNEET mutant with Asp 67 replaced by a Gly 4F28 ; 1.55 ; The Crystal Structure of a Human MitoNEET mutant with Met 62 Replaced by a Gly 1NSK ; 2.8 ; THE CRYSTAL STRUCTURE OF A HUMAN NUCLEOSIDE DIPHOSPHATE KINASE, NM23-H2 6H3M ; 1.821 ; The crystal structure of a human seleno-insulin analog 1WT5 ; 2.1 ; The Crystal Structure Of A Humanized Antibody Fv 528 3MPO ; 2.9 ; The crystal structure of a hydrolase from Lactobacillus brevis 3OM8 ; 2.25 ; The crystal structure of a hydrolase from Pseudomonas aeruginosa PA01 3S6J ; 2.198 ; The crystal structure of a hydrolase from Pseudomonas syringae 2FI1 ; 1.4 ; The crystal structure of a hydrolase from Streptococcus pneumoniae TIGR4 1JJI ; 2.2 ; The Crystal Structure of a Hyper-thermophilic Carboxylesterase from the Archaeon Archaeoglobus fulgidus 3JUR ; 2.05 ; The crystal structure of a hyperthermoactive Exopolygalacturonase from Thermotoga maritima 1MG6 ; 1.6 ; The Crystal Structure of a K49 PLA2 from the Snake Venom of Agkistrodon acutus 4O5A ; 1.777 ; The crystal structure of a LacI family transcriptional regulator from Bifidobacterium animalis subsp. lactis DSM 10140 5UFH ; 1.45 ; The crystal structure of a LacI-type transcription regulator from Bifidobacterium animalis subsp. lactis DSM 10140 4IQZ ; 2.1 ; The crystal structure of a large insert in RNA polymerase (RpoC) subunit from E. coli 3E0X ; 1.45 ; The crystal structure of a Lipase-esterase related protein from Clostridium acetobutylicum ATCC 824 1PHR ; 2.1 ; THE CRYSTAL STRUCTURE OF A LOW MOLECULAR PHOSPHOTYROSINE PROTEIN PHOSPHATASE 1PPA ; 2.0 ; THE CRYSTAL STRUCTURE OF A LYSINE 49 PHOSPHOLIPASE A2 FROM THE VENOM OF THE COTTONMOUTH SNAKE AT 2.0 ANGSTROMS RESOLUTION 6AX6 ; 2.241 ; The crystal structure of a lysyl hydroxylase from Acanthamoeba polyphaga mimivirus 6AX7 ; 2.002 ; The crystal structure of a lysyl hydroxylase from Acanthamoeba polyphaga mimivirus 1P9P ; 2.5 ; The Crystal Structure of a M1G37 tRNA Methyltransferase, TrmD 4MMO ; 2.3363 ; The crystal structure of a M20 family metallo-carboxypeptidase Sso-CP2 from Sulfolobus solfataricus 3SRT ; 2.504 ; The crystal structure of a maltose O-acetyltransferase from Clostridium difficile 630 3E6M ; 2.2 ; The crystal structure of a MarR family transcriptional regulator from Silicibacter pomeroyi DSS. 3S2W ; 2.453 ; The crystal structure of a MarR transcriptional regulator from Methanosarcina mazei Go1 3FQ6 ; 2.36 ; The crystal structure of a methyltransferase domain from Bacteroides thetaiotaomicron VPI 3NWG ; 2.7 ; The crystal structure of a microcomparments protein from Desulfitobacterium hafniense DCB 1CZ7 ; 2.9 ; THE CRYSTAL STRUCTURE OF A MINUS-END DIRECTED MICROTUBULE MOTOR PROTEIN NCD REVEALS VARIABLE DIMER CONFORMATIONS 8BBH ; 1.619 ; The crystal structure of a mouse Fab fragment TL1 in complex with a human Glucose-6-phosphate isomerase peptide 293-307 5WEQ ; 2.0 ; The crystal structure of a MR78 mutant 1LY8 ; 2.05 ; The crystal structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability and insight into modelling of protein structures 1LHM ; 1.8 ; THE CRYSTAL STRUCTURE OF A MUTANT LYSOZYME C77(SLASH)95A WITH INCREASED SECRETION EFFICIENCY IN YEAST 4O1B ; 1.65 ; The crystal structure of a mutant NAMPT (G217R) in complex with an inhibitor APO866 4O19 ; 1.75 ; The crystal structure of a mutant NAMPT (G217V) 4O15 ; 1.8 ; The crystal structure of a mutant NAMPT (S165F) in complex with GNE-618 1LLI ; 2.1 ; THE CRYSTAL STRUCTURE OF A MUTANT PROTEIN WITH ALTERED BUT IMPROVED HYDROPHOBIC CORE PACKING 3M1J ; 1.8 ; The crystal structure of a NAMI A-Carbonic Anhydrase II adduct discloses the mode of action of this novel anticancer metallodrug 5UHJ ; 1.75 ; The crystal structure of a natural product biosynthetic enzyme from Streptomyces sp. CB03234 1ANX ; 1.9 ; THE CRYSTAL STRUCTURE OF A NEW HIGH-CALCIUM FORM OF ANNEXIN V 6FYQ ; 2.0 ; The crystal structure of a new transaminase from the marine bacterium Virgibacillus 4OV1 ; 2.306 ; The crystal structure of a novel electron transfer ferredoxin from R. palustris HaA2 1XRF ; 1.65 ; The Crystal Structure of a Novel, Latent Dihydroorotase from Aquifex aeolicus at 1.7 A resolution 1XRT ; 1.609 ; The Crystal Structure of a Novel, Latent Dihydroorotase from Aquifex Aeolicus at 1.7 A Resolution 352D ; 0.95 ; THE CRYSTAL STRUCTURE OF A PARALLEL-STRANDED PARALLEL-STRANDED GUANINE TETRAPLEX AT 0.95 ANGSTROM RESOLUTION 1YMP ; 2.2 ; The Crystal Structure of a Partial Mouse Notch-1 Ankyrin Domain: Repeats 4 Through 7 Preserve an Ankyrin Fold 3LUQ ; 2.49 ; The Crystal Structure of a PAS Domain from a Sensory Box Histidine Kinase Regulator from Geobacter sulfurreducens to 2.5A 3PH1 ; 2.1 ; The Crystal Structure of a Pathogenic Protein from the Xanthomonas campestris Reveals a New Tetrameric PilZ Domain Self-Assembled via a Unusual Helical Bundle 3RQA ; 2.1 ; The Crystal Structure of a Pathogenic Protein from the Xanthomonas campestris Reveals a New Tetrameric PilZ Domain Self-Assembled via a Unusual Helical Bundle 4GM2 ; 2.8 ; The crystal structure of a peptidase from plasmodium falciparum 4YE5 ; 2.052 ; The crystal structure of a peptidoglycan synthetase from Bifidobacterium adolescentis ATCC 15703 4LJS ; 2.321 ; The crystal structure of a periplasmic binding protein from Veillonella parvula DSM 2008 4N01 ; 1.797 ; The crystal structure of a periplasmic binding protein from Veillonella parvula dsm 2008 1P28 ; 1.7 ; The crystal structure of a pheromone binding protein from the cockroach Leucophaea maderae in complex with a component of the pheromonal blend: 3-hydroxy-butan-2-one. 1ORG ; 1.7 ; The crystal structure of a pheromone binding protein from the cockroach Leucophaea maderae reveals a new mechanism of pheromone binding 2PHK ; 2.6 ; THE CRYSTAL STRUCTURE OF A PHOSPHORYLASE KINASE PEPTIDE SUBSTRATE COMPLEX: KINASE SUBSTRATE RECOGNITION 3DSB ; 1.48 ; The crystal structure of a possible acetyltransferase from Clostridium difficile 630 4M7O ; 2.02 ; The crystal structure of a possible an iron-binding (periplasmic solute-binding) protein from Staphylococcus epidermidis ATCC 12228. 3FZ4 ; 1.38 ; The crystal structure of a possible arsenate reductase from Streptococcus mutans UA159 4RNL ; 1.8 ; The crystal structure of a possible galactose mutarotase from Streptomyces platensis subsp. rosaceus 3DF8 ; 1.65 ; The crystal structure of a possible HxlR family transcriptional factor from Thermoplasma volcanium GSS1 4KV7 ; 1.2 ; The crystal structure of a possible leucine/isoleucine/valine-binding protein from Rhodopirellula baltica SH 1 4Q7Q ; 1.451 ; The crystal structure of a possible lipase from Chitinophaga pinensis DSM 2588 3PMM ; 1.899 ; The crystal structure of a possible member of GH105 family from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 3QWT ; 2.183 ; The crystal structure of a possible member of GH105 family from Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 3RPC ; 1.49 ; The crystal structure of a possible metal-dependent hydrolase from Veillonella parvula DSM 2008 3LDU ; 1.7 ; The crystal structure of a possible methylase from Clostridium difficile 630. 3U9E ; 2.04 ; The crystal structure of a possible phosphate acetyl/butaryl transferase (from Listeria monocytogenes EGD-e) in complex with CoA. 3UF6 ; 1.8 ; The crystal structure of a possible phosphate acetyl/butaryl transferase (from Listeria monocytogenes EGD-e) in complex with CoD (3'-dephosphocoenzyme A) 3TNG ; 2.16 ; The crystal structure of a possible phosphate acetyl/butaryl transferase from Listeria monocytogenes EGD-e. 4JWO ; 1.601 ; The crystal structure of a possible phosphate binding protein from Planctomyces limnophilus DSM 3776 3MZ1 ; 1.88 ; The crystal structure of a possible TRANSCRIPTION REGULATOR PROTEIN from Sinorhizobium meliloti 1021 3OCJ ; 1.39 ; The crystal structure of a possilbe exported protein from Bordetella parapertussis 1QPS ; 2.5 ; THE CRYSTAL STRUCTURE OF A POST-REACTIVE COGNATE DNA-ECO RI COMPLEX AT 2.50 A IN THE PRESENCE OF MN2+ ION 3MN2 ; 1.8 ; The crystal structure of a probable AraC family transcriptional regulator from Rhodopseudomonas palustris CGA009 2FE7 ; 2.0 ; The crystal structure of a probable N-acetyltransferase from Pseudomonas aeruginosa 3LZK ; 1.9 ; The crystal structure of a probably aromatic amino acid degradation proteiN from Sinorhizobium meliloti 1021 5EUF ; 2.8 ; The crystal structure of a protease from Helicobacter pylori 2HLS ; 1.93 ; The crystal structure of a protein disulfide oxidoreductase from Aeropyrum pernix k1 2AYT ; 2.4 ; The crystal structure of a protein disulfide oxidoreductase from aquifex aeolicus 3LXQ ; 1.95 ; The Crystal Structure of a Protein in the Alkaline Phosphatase Superfamily from Vibrio parahaemolyticus to 1.95A 3LVT ; 2.55 ; The Crystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A 3LEC ; 1.8 ; The Crystal Structure of a protein in the NADB-Rossmann Superfamily from Streptococcus agalactiae to 1.8A 2QH9 ; 1.8 ; The crystal structure of a protein of unknown function from Archaeoglobus fulgidus DSM 4304 2P90 ; 2.35 ; The crystal structure of a protein of unknown function from Corynebacterium glutamicum ATCC 13032 2O2A ; 2.1 ; The crystal structure of a protein of unknown function from Streptococcus agalactiae 1RYL ; 1.6 ; The Crystal Structure of a Protein of Unknown Function YfbM from Escherichia coli 3D8U ; 2.88 ; The crystal structure of a PurR family transcriptional regulator from Vibrio parahaemolyticus RIMD 2210633 3MUX ; 1.45 ; The Crystal Structure of a putative 4-hydroxy-2-oxoglutarate aldolase from Bacillus anthracis to 1.45A 6E4B ; 2.55 ; The crystal structure of a putative alpha-ribazole-5'-P phosphatase from Escherichia coli str. K-12 substr. MG1655 4EWT ; 2.1 ; The crystal structure of a putative aminohydrolase from methicillin resistant Staphylococcus aureus 3D6K ; 2.0 ; The crystal structure of a putative aminotransferase from Corynebacterium diphtheriae 3ISR ; 1.9 ; The Crystal Structure of a Putative Cysteine Protease from Cytophaga hutchinsonii to 1.9A 3PU5 ; 2.05 ; The crystal structure of a putative extracellular solute-binding protein from Bordetella parapertussis 3OPN ; 2.05 ; The crystal structure of a putative hemolysin from Lactococcus lactis 3H05 ; 1.65 ; The Crystal Structure of a Putative Nicotinate-nucleotide Adenylyltransferase from Vibrio parahaemolyticus 3IG2 ; 2.09 ; The Crystal Structure of a Putative Phenylalanyl-tRNA synthetase (PheRS) beta chain domain from Bacteroides fragilis to 2.1A 3BJV ; 2.4 ; The Crystal Structure of a putative PTS IIA(PtxA) from Streptococcus mutans 3CZC ; 2.02 ; The Crystal Structure of a putative PTS IIB(PtxB) from Streptococcus mutans 4PON ; 1.9 ; The crystal structure of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis 3OXN ; 2.7 ; The crystal structure of a putative transcriptional regulator from Vibrio parahaemolyticus 2IA2 ; 2.1 ; The crystal structure of a putative transcriptional regulator RHA06195 from Rhodococcus sp. RHA1 7VOB ; 2.09224 ; The crystal structure of a Radical SAM Enzyme BlsE involved in the Biosynthesis of Blasticidin S 7VOC ; 2.62005 ; The crystal structure of a Radical SAM Enzyme BlsE involved in the Biosynthesis of Blasticidin S 8F23 ; 1.93 ; The crystal structure of a rationally designed zinc sensor based on maltose binding protein - Apo conformation 8ETB ; 1.63 ; the crystal structure of a rationally designed zinc sensor based on maltose binding protein - Zn binding conformation 4KVF ; 1.722 ; The crystal structure of a rhamnose ABC transporter, periplasmic rhamnose-binding protein from Kribbella flavida DSM 17836 6MXV ; 1.78 ; The crystal structure of a rhodanese-like family protein from Francisella tularensis subsp. tularensis SCHU S4 3MTI ; 1.95 ; The Crystal Structure of a rRNA Methylase from Streptococcus thermophilus to 1.95A 4NAS ; 1.92 ; The crystal structure of a rubisco-like protein (MtnW) from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 5G2P ; 1.89 ; The crystal structure of a S-selective transaminase from Arthrobacter sp. 5G2Q ; 2.3 ; The crystal structure of a S-selective transaminase from Arthrobacter sp. with alanine bound 5G0A ; 1.7 ; The crystal structure of a S-selective transaminase from Bacillus megaterium 5G09 ; 1.9 ; The crystal structure of a S-selective transaminase from Bacillus megaterium bound with R-alpha-methylbenzylamine 6IV7 ; 1.937 ; The crystal structure of a SAM-dependent enzyme from aspergillus flavus 4HDE ; 1.317 ; The crystal structure of a SCO1/SenC family lipoprotein from Bacillus anthracis str. Ames 4J7K ; 1.66 ; The crystal structure of a secreted protein EsxB (Mutant E54Q) from Bacillus anthracis str. Sterne 4J7J ; 1.458 ; The crystal structure of a secreted protein EsxB (Mutant G53A) from Bacillus anthracis str. Sterne 4J41 ; 1.522 ; The crystal structure of a secreted protein EsxB (Mutant P67A) from Bacillus anthracis str. Sterne 4J42 ; 1.28 ; The crystal structure of a secreted protein EsxB (Mutant Y65F) from Bacillus anthracis str. Sterne 4J10 ; 1.44 ; The crystal structure of a secreted protein ESXB (SeMet-labeled) from Bacillus anthracis str. Sterne 4IYH ; 1.881 ; The crystal structure of a secreted protein EsxB (SeMet-labeled, C-term. His-Tagged) from Bacillus anthracis str. Sterne 4IYI ; 2.083 ; The crystal structure of a secreted protein EsxB (wild-type, C-term. His-tagged) from Bacillus anthracis str. Sterne 4J11 ; 1.44 ; The crystal structure of a secreted protein ESXB (wild-type, in P21 space group) from Bacillus anthracis str. sterne 3LWA ; 1.75 ; The Crystal Structure of a Secreted Thiol-disulfide Isomerase from Corynebacterium glutamicum to 1.75A 5U98 ; 2.0 ; The crystal structure of a self-peptide complexed to Abacavir and HLA-B*57:01 3LHF ; 2.3 ; The Crystal Structure of a Serine Recombinase from Sulfolobus solfataricus to 2.3A 7DAI ; 2.3 ; The crystal structure of a serotonin N-acetyltransferase from Oryza Sativa 6K5M ; 1.793 ; The crystal structure of a serotonin N-acetyltransferase from Oryza Sativa (Rice) 7DAK ; 2.8 ; The crystal structure of a serotonin N-acetyltransferase in complex with 5-Methoxytryptamine and acetyl-CoA from Oryza Sativa 7DAL ; 2.5 ; The crystal structure of a serotonin N-acetyltransferase in complex with serotonin and acetyl-CoA from Oryza Sativa 4HN3 ; 2.047 ; The crystal structure of a sex pheromone precursor (lmo1757) from Listeria monocytogenes EGD-e 4E4Y ; 1.803 ; The crystal structure of a short chain dehydrogenase family protein from Francisella tularensis subsp. tularensis SCHU S4 3M1A ; 2.0 ; The Crystal Structure of a Short-chain Dehydrogenase from Streptomyces avermitilis to 2A 4IPT ; 1.546 ; The crystal structure of a short-chain dehydrogenases/reductase (ethylated) from Veillonella parvula DSM 2008 4HNG ; 1.5 ; The crystal structure of a short-chain dehydrogenases/reductase (wide type) from Veillonella parvula DSM 2008 4HNH ; 1.576 ; The crystal structure of a short-chain dehydrogenases/reductase (wide type) from Veillonella parvula DSM 2008 in complex with NADP 6W4L ; 1.31 ; The crystal structure of a single chain H2B-H2A histone chimera from Xenopus laevis 6PXI ; 3.447 ; The crystal structure of a singly capped HslUV complex with an axial pore plug and a HslU E257Q mutation 4PZ0 ; 1.25 ; The crystal structure of a solute binding protein from Bacillus anthracis str. Ames in complex with quorum-sensing signal autoinducer-2 (AI-2) 4NQR ; 1.09 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with alanine 4OTZ ; 1.36 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with cystein 4OAT ; 1.199 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with isoleucine. 4OG2 ; 1.099 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with leucine 4QYM ; 1.581 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with methionine 4RDC ; 1.198 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with proline 4NV3 ; 1.09 ; The crystal structure of a solute-binding protein (N280D mutant) from Anabaena variabilis ATCC 29413 in complex with valine. 4OBB ; 1.526 ; The crystal structure of a solute-binding protein from Anabaena variabilis ATCC 29413 in complex with (3S)-3-methyl-2-oxopentanoic acid. 4RV5 ; 1.04 ; The crystal structure of a solute-binding protein from Anabaena variabilis ATCC 29413 in complex with pyruvic acid 3F5R ; 1.7 ; The crystal structure of a subunit of the heterodimeric FACT complex (Spt16p-Pob3p). 4RWE ; 1.65 ; The crystal structure of a sugar-binding transport protein from Yersinia pestis CO92 3DPJ ; 1.9 ; The crystal structure of a TetR transcription regulator from Silicibacter pomeroyi DSS 2HYJ ; 2.19 ; The crystal structure of a tetR-family transcriptional regulator from Streptomyces coelicolor 3F1B ; 2.4 ; The crystal structure of a TetR-like transcriptional regulator from Rhodococcus sp. RHA1. 3MVP ; 1.85 ; The Crystal Structure of a TetR/AcrR transcriptional regulator from Streptococcus mutans to 1.85A 5ZOA ; 1.537 ; The crystal structure of a Thermobifida fusca cutinase 2HPG ; 1.9 ; The crystal structure of a thermophilic TRAP periplasmic binding protein 2XSL ; 1.59 ; The crystal structure of a Thermus thermophilus tRNAGly acceptor stem microhelix at 1.6 Angstroem resolution 5VPJ ; 2.35 ; The crystal structure of a thioesteras from Actinomadura verrucosospora. 3LOR ; 2.2 ; The Crystal Structure of a Thiol-disulfide Isomerase from Corynebacterium glutamicum to 2.2A 3GYK ; 1.76 ; The crystal structure of a thioredoxin-like oxidoreductase from Silicibacter pomeroyi DSS-3 3GNJ ; 1.99 ; The crystal structure of a thioredoxin-related protein from Desulfitobacterium hafniense DCB 1NEZ ; 2.1 ; The Crystal Structure of a TL/CD8aa Complex at 2.1A resolution:Implications for Memory T cell Generation, Co-receptor Preference and Affinity 2FD5 ; 1.7 ; The crystal structure of a transcriptional regulator from Pseudomonas aeruginosa PAO1 4DQD ; 1.601 ; The crystal structure of a transporter in complex with 3-phenylpyruvic acid 6RMV ; 1.94 ; The crystal structure of a TRP channel peptide bound to a G protein beta gamma heterodimer 3G1C ; 2.2 ; The crystal structure of a TrpR like protein from Eubacterium eligens ATCC 27750 1R6X ; 1.4 ; The Crystal Structure of a Truncated Form of Yeast ATP Sulfurylase, Lacking the C-Terminal APS Kinase-like Domain, in complex with Sulfate 2DRP ; 2.8 ; THE CRYSTAL STRUCTURE OF A TWO ZINC-FINGER PEPTIDE REVEALS AN EXTENSION TO THE RULES FOR ZINC-FINGER/DNA RECOGNITION 2QVG ; 1.5 ; The crystal structure of a two-component response regulator from Legionella pneumophila 3L34 ; 1.7 ; The crystal structure of a two-component sensor domain (2nd form) from Pseudomonas aeruginosa PA01 3N24 ; 2.056 ; The crystal structure of a two-component sensor domain (3rd form) from Pseudomonas aeruginosa PA01 3KKB ; 1.881 ; The crystal structure of a two-component sensor domain from Pseudomonas aeruginosa PA01 3OLQ ; 1.816 ; The crystal structure of a universal stress protein E from Proteus mirabilis HI4320 3LOQ ; 2.32 ; The crystal structure of a universal stress protein from Archaeoglobus fulgidus DSM 4304 3IDF ; 2.0 ; The Crystal Structure of a USP-like protein from Wolinella succinogenes to 2.0A 1UN6 ; 3.1 ; THE CRYSTAL STRUCTURE OF A ZINC FINGER - RNA COMPLEX REVEALS TWO MODES OF MOLECULAR RECOGNITION 4ID8 ; 2.15 ; The crystal structure of a [3Fe-4S] ferredoxin associated with CYP194A4 from R. palustris HaA2 3GGG ; 2.21 ; The crystal structure of A. aeolicus prephenate dehydrogenase in complex with tyrosine and NAD+ 3RKL ; 1.7 ; The crystal structure of A81 from Sulfolobus Turreted Icosahedral Virus 3PZ0 ; 2.4 ; The crystal structure of AaLeuRS-CP1 3PZ5 ; 2.5 ; The crystal structure of AaLeuRS-CP1-D20 6JZZ ; 3.011 ; The crystal structure of AAR-C294S in complex with ADO. 3NND ; 2.8 ; The crystal structure of ABC transporter from Rhodopseudomonas palustris 4RU0 ; 2.442 ; The crystal structure of abc transporter permease from pseudomonas fluorescens group 6RKH ; 2.471 ; The crystal structure of AbnE (Selenium derivative), an arabino-oligosaccharide binding protein, in complex with arabinohexaose 6RJY ; 1.621 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinobiose 6RKL ; 2.0 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinoheptaose 6RKJ ; 1.601 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinooctaose 6RKX ; 2.094 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinopentaose 6RL2 ; 1.94 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinotetraose 6RL1 ; 1.7 ; The crystal structure of AbnE, an arabino-oligosaccharide binding protein, in complex with arabinotriose 1U6M ; 2.4 ; The crystal structure of acetyltransferase 6RO8 ; 2.6 ; The crystal structure of Acinetobacter radioresistens CYP116B5 heme domain 6JZQ ; 2.798 ; The crystal structure of acyl-acyl carrier protein (acyl-ACP) reductase (AAR) 6JZU ; 2.181 ; The crystal structure of acyl-acyl carrier protein (acyl-ACP) reductase (AAR) in complex with aldehyde deformylating oxygenase (ADO) 4RM7 ; 2.529 ; The crystal structure of acyl-COA dehydrogenase from Slackia heliotrinireducens DSM 20476 4GS5 ; 2.018 ; The crystal structure of acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II-like protein from Dyadobacter fermentans DSM 18053 4MFJ ; 2.9 ; The crystal structure of acyltransferase 4MFQ ; 2.0 ; The crystal structure of acyltransferase in complex with CoA and 10C-Teicoplanin 4MFK ; 1.9 ; The crystal structure of acyltransferase in complex with decanoyl-CoA 4MFZ ; 2.1 ; The crystal structure of acyltransferase in complex with decanoyl-CoA 4MFL ; 1.9 ; The crystal structure of acyltransferase in complex with decanoyl-CoA and Tei pseudoaglycone 4MFP ; 2.15 ; The crystal structure of acyltransferase in complex with decanoyl-CoA and Tei pseudoaglycone 4Q38 ; 1.99 ; The crystal structure of acyltransferase in complex with decanoyl-CoA and teicoplanin 4Q36 ; 2.35 ; The crystal structure of acyltransferase in complex with octanoyl-CoA and teicoplanin 6IIX ; 1.73 ; The crystal structure of acyltransferase mutant, orf11*-W163A, in complex with octanoyl-CoA 3RYS ; 2.601 ; The crystal structure of adenine deaminase (AAur1117) from Arthrobacter aurescens 3OU8 ; 2.51 ; The crystal structure of adenosine deaminase from Pseudomonas aeruginosa 3PBM ; 2.591 ; The crystal structure of adenosine deaminase in complex with chloropurine from Pseudomonas aeruginosa 3PAO ; 2.493 ; The crystal structure of adenosine deaminase with adenine bound from Pseudomonas aeruginosa 3PAN ; 2.627 ; The crystal structure of adenosine deaminase with hypoxanthine bound from Pseudomonas aeruginosa 3UBO ; 2.601 ; The crystal structure of adenosine kinase from Sinorhizobium meliloti 3KCN ; 2.45 ; The crystal structure of adenylate cyclase from Rhodopirellula baltica 4PZL ; 2.1 ; The crystal structure of adenylate kinase from Francisella tularensis subsp. tularensis SCHU S4 1DOF ; 2.1 ; THE CRYSTAL STRUCTURE OF ADENYLOSUCCINATE LYASE FROM PYROBACULUM AEROPHILUM: INSIGHTS INTO THERMAL STABILITY AND HUMAN PATHOLOGY 1EQ2 ; 2.0 ; THE CRYSTAL STRUCTURE OF ADP-L-GLYCERO-D-MANNOHEPTOSE 6-EPIMERASE 1HUW ; 2.0 ; THE CRYSTAL STRUCTURE OF AFFINITY-MATURED HUMAN GROWTH HORMONE AT 2 ANGSTROMS RESOLUTION 7WLH ; 2.65 ; The crystal structure of African swine fever virus I215L 7VWV ; 2.59 ; The crystal structure of African swine fever virus I73R 4V8N ; 3.1 ; The crystal structure of agmatidine tRNA-Ile2 bound to the 70S ribosome in the A and P site. 3PZL ; 2.7 ; The crystal structure of agmatine ureohydrolase of Thermoplasma volcanium 7XW1 ; 2.36 ; The crystal structure of AhpD from Pseudomonas aeruginosa 3QRA ; 1.801 ; The crystal structure of Ail, the attachment invasion locus protein of Yersinia pestis 3QRC ; 1.852 ; The crystal structure of Ail, the attachment invasion locus protein of Yersinia pestis, in complex with the heparin analogue sucrose octasulfate 7F7J ; 1.93 ; The crystal structure of AKR4C17 2VD8 ; 1.47 ; The crystal structure of alanine racemase from Bacillus anthracis (BA0252) 2VD9 ; 2.1 ; The crystal structure of alanine racemase from Bacillus anthracis (BA0252) with bound L-Ala-P 3S46 ; 2.0 ; The crystal structure of alanine racemase from streptococcus pneumoniae 1YFS ; 2.08 ; The crystal structure of alanyl-tRNA synthetase in complex with L-alanine 5MLN ; 1.6 ; The crystal structure of alcohol dehydrogenase 10 from Candida magnoliae 5TJF ; 2.3 ; The crystal structure of Allophycocyanin from the red algae Gracilaria chilensis 1CSM ; 2.2 ; THE CRYSTAL STRUCTURE OF ALLOSTERIC CHORISMATE MUTASE AT 2.2 ANGSTROMS RESOLUTION 5EB4 ; 2.3 ; The crystal structure of almond HNL, PaHNL5 V317A, expressed in Aspergillus niger 5EB5 ; 2.8 ; The crystal structure of almond HNL, PaHNL5 V317A, in complex with benzyl alcohol 8H3T ; 1.866 ; The crystal structure of AlpH 3DXV ; 2.21 ; The crystal structure of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae 3DXW ; 2.41 ; The crystal structure of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae complexed with epsilon caprolactam 2ZUK ; 2.41 ; The crystal structure of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae complexed with epsilon caprolactam (different binding mode) 2ABX ; 2.5 ; THE CRYSTAL STRUCTURE OF ALPHA-BUNGAROTOXIN AT 2.5 ANGSTROMS RESOLUTION. RELATION TO SOLUTION STRUCTURE AND BINDING TO ACETYLCHOLINE RECEPTOR 1MQR ; 2.0 ; THE CRYSTAL STRUCTURE OF ALPHA-D-GLUCURONIDASE (E386Q) FROM BACILLUS STEAROTHERMOPHILUS T-6 1MQQ ; 1.65 ; THE CRYSTAL STRUCTURE OF ALPHA-D-GLUCURONIDASE FROM BACILLUS STEAROTHERMOPHILUS T-1 COMPLEXED WITH GLUCURONIC ACID 1MQP ; 1.9 ; THE CRYSTAL STRUCTURE OF ALPHA-D-GLUCURONIDASE FROM BACILLUS STEAROTHERMOPHILUS T-6 4THN ; 2.5 ; THE CRYSTAL STRUCTURE OF ALPHA-THROMBIN-HIRUNORM IV COMPLEX REVEALS A NOVEL SPECIFICITY SITE RECOGNITION MODE. 8HFW ; 1.66 ; The crystal structure of alpha/beta fold hydrolase 4MAA ; 2.0 ; The Crystal Structure of Amino Acid ABC Transporter Substrate-binding Protein from Pseudomonas fluorescens Pf-5 1K0E ; 2.0 ; THE CRYSTAL STRUCTURE OF AMINODEOXYCHORISMATE SYNTHASE FROM FORMATE GROWN CRYSTALS 1K0G ; 2.05 ; THE CRYSTAL STRUCTURE OF AMINODEOXYCHORISMATE SYNTHASE FROM PHOSPHATE GROWN CRYSTALS 3F5B ; 2.0 ; The crystal structure of aminoglycoside N(6')acetyltransferase from Legionella pneumophila subsp. pneumophila str. Philadelphia 1. 1Y7E ; 3.2 ; The Crystal Structure of Aminopeptidase I from Borrelia burgdorferi B31 5DYF ; 1.854 ; The crystal structure of Aminopeptidase N in complex with N-benzyl-1,2-diaminoethylphosphonic acid 4KKE ; 2.2 ; The crystal structure of AMP-bound JNK3 1PTW ; 2.3 ; The Crystal Structure of AMP-Bound PDE4 Suggests a Mechanism for Phosphodiesterase Catalysis 5TPT ; 2.422 ; The Crystal Structure of Amyloid Precursor-Like Protein 2 (APLP2) E2 Domain 3RPW ; 1.65 ; The crystal structure of an ABC transporter from Rhodopseudomonas palustris CGA009 6NLP ; 1.9 ; The crystal structure of an ABC transporter periplasmic binding protein YdcS from Escherichia coli BW25113 4I1D ; 2.201 ; The crystal structure of an ABC transporter substrate-binding protein from Bradyrhizobium japonicum USDA 110 1ZR6 ; 1.55 ; The crystal structure of an Acremonium strictum glucooligosaccharide oxidase reveals a novel flavinylation 4IGA ; 1.73 ; The crystal structure of an activated Thermotoga maritima CheY with N-terminal region of FliM 3LW7 ; 2.3 ; The Crystal Structure of an Adenylate kinase-related protein bound to AMP from sulfolobus solfataricus to 2.3A 4M9D ; 1.821 ; The Crystal structure of an adenylosuccinate synthetase from Bacillus anthracis str. Ames Ancestor in complex with AMP. 4M0G ; 2.152 ; The crystal structure of an adenylosuccinate synthetase from Bacillus anthracis str. Ames Ancestor. 2I5B ; 2.8 ; The crystal structure of an ADP complex of Bacillus subtilis pyridoxal kinase provides evidence for the parralel emergence of enzyme activity during evolution 4JDU ; 1.47 ; The crystal structure of an aerotolerance-related membrane protein from Bacteroides fragilis NCTC 9343 with multiple mutations to serines. 5Z6P ; 2.061 ; The crystal structure of an agarase, AgWH50C 4FTG ; 2.5054 ; The crystal structure of an AHNAK peptide in complex with the S100A10/AnxA2 heterotetramer 1HQT ; 2.2 ; THE CRYSTAL STRUCTURE OF AN ALDEHYDE REDUCTASE Y50F MUTANT-NADP COMPLEX AND ITS IMPLICATIONS FOR SUBSTRATE BINDING 1MME ; 3.1 ; THE CRYSTAL STRUCTURE OF AN ALL-RNA HAMMERHEAD RIBOZYME: A PROPOSED MECHANISM FOR RNA CATALYTIC CLEAVAGE 1ZFT ; 2.33 ; The crystal structure of an all-RNA minimal Hairpin Ribozyme with mutant G8I at the cleavage site 4X5S ; 1.95 ; The crystal structure of an alpha carbonic anhydrase from the extremophilic bacterium Sulfurihydrogenibium azorense. 4G7A ; 1.8 ; The crystal structure of an alpha Carbonic Anhydrase from the extremophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 3MO4 ; 1.901 ; The crystal structure of an alpha-(1-3,4)-fucosidase from Bifidobacterium longum subsp. infantis ATCC 15697 5KBP ; 2.4 ; The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 3R0V ; 1.383 ; The crystal structure of an alpha/beta hydrolase from Sphaerobacter thermophilus DSM 20745. 5EWQ ; 2.57 ; The crystal structure of an amidase family protein from Bacillus anthracis str. Ames 4I6V ; 2.137 ; The crystal structure of an amidohydrolase 2 from Planctomyces limnophilus DSM 3776 3MSR ; 2.162 ; The crystal structure of an amidohydrolase from Mycoplasma synoviae 3OVG ; 2.059 ; The crystal structure of an amidohydrolase from Mycoplasma synoviae with Zn ion bound 5UID ; 2.18 ; The crystal structure of an aminotransferase TlmJ from Streptoalloteichus hindustanus 4HYL ; 1.751 ; The crystal structure of an anti-sigma-factor antagonist from Haliangium ochraceum DSM 14365 4R3H ; 1.9 ; The crystal structure of an apo RNA binding protein 3AF5 ; 2.6 ; The crystal structure of an archaeal CPSF subunit, PH1404 from Pyrococcus horikoshii 3AF6 ; 2.6 ; The crystal structure of an archaeal CPSF subunit, PH1404 from Pyrococcus horikoshii complexed with RNA-analog 3OD1 ; 1.97 ; The crystal structure of an ATP phosphoribosyltransferase regulatory subunit/histidyl-tRNA synthetase from Bacillus halodurans C 1PY9 ; 1.8 ; The crystal structure of an autoantigen in multiple sclerosis 4QN8 ; 1.751 ; The crystal structure of an effector protein VipE from Legionella pneumophila subsp. pneumophila str. Philadelphia 1 4Q2B ; 2.12 ; The crystal structure of an endo-1,4-D-glucanase from Pseudomonas putida KT2440 2HYK ; 1.3 ; The crystal structure of an endo-beta-1,3-glucanase from alkaliphilic Nocardiopsis sp.strain F96 1TRI ; 2.4 ; THE CRYSTAL STRUCTURE OF AN ENGINEERED MONOMERIC TRIOSEPHOSPHATE ISOMERASE, MONOTIM: THE CORRECT MODELLING OF AN EIGHT-RESIDUE LOOP 4EXM ; 2.6 ; The crystal structure of an engineered phage lysin containing the binding domain of pesticin and the killing domain of T4-lysozyme 1B0X ; 2.0 ; THE CRYSTAL STRUCTURE OF AN EPH RECEPTOR SAM DOMAIN REVEALS A MECHANISM FOR MODULAR DIMERIZATION. 5F4Z ; 1.82 ; The crystal structure of an epoxide hydrolase from Streptomyces carzinostaticus subsp. neocarzinostaticus 4I19 ; 2.148 ; The crystal structure of an epoxide hydrolase from Streptomyces carzinostaticus subsp. neocarzinostaticus. 3SG0 ; 1.201 ; The crystal structure of an extracellular ligand-binding receptor from Rhodopseudomonas palustris HaA2 1PSK ; 2.8 ; THE CRYSTAL STRUCTURE OF AN FAB FRAGMENT THAT BINDS TO THE MELANOMA-ASSOCIATED GD2 GANGLIOSIDE 6DXP ; 2.478 ; The crystal structure of an FMN-dependent NADH-azoreductase from Klebsiella pneumoniae 7N2W ; 2.65 ; The crystal structure of an FMN-dependent NADH-azoreductase, AzoA in complex with Red 40 7N2X ; 1.7 ; The crystal structure of an FMN-dependent NADH:quinone oxidoreductase, AzoR from Escherichia coli 4Q7O ; 1.45 ; The crystal structure of an immunity protein NMB0503 from Neisseria meningitidis MC58 1HLO ; 2.8 ; THE CRYSTAL STRUCTURE OF AN INTACT HUMAN MAX-DNA COMPLEX: NEW INSIGHTS INTO MECHANISMS OF TRANSCRIPTIONAL CONTROL 3HB7 ; 2.3 ; The Crystal Structure of an Isochorismatase-like Hydrolase from Alkaliphilus metalliredigens to 2.3A 1T2Q ; 1.83 ; The Crystal Structure of an NNA7 Fab that recognizes an N-type blood group antigen 2FI9 ; 1.8 ; The crystal structure of an outer membrane protein from the Bartonella henselae 4R3I ; 1.8 ; The crystal structure of an RNA complex 333D ; 2.52 ; THE CRYSTAL STRUCTURE OF AN RNA OLIGOMER INCORPORATING TANDEM ADENOSINE-INOSINE MISMATCHES 1JB8 ; 2.38 ; The Crystal Structure of an RNA/DNA Hybrid Reveals Novel Intermolecular Intercalation 1JRI ; 2.8 ; The Crystal Structure of an Sm-like Archaeal Protein with Two Heptamers in the Asymmetric Unit. 3PU6 ; 2.6 ; The crystal structure of an uncharacterized protein from Wolinella succinogenes 3FG9 ; 1.47 ; The crystal structure of an universal stress protein UspA family protein from Lactobacillus plantarum WCFS1 2FA5 ; 1.8 ; The crystal structure of an unliganded multiple antibiotic-resistance repressor (MarR) from Xanthomonas campestris 3URG ; 2.003 ; The crystal structure of Anabaena CcbP 4KWH ; 1.7 ; The crystal structure of angucycline C-6 ketoreductase LanV with bound NADP 4KWI ; 2.0 ; The crystal structure of angucycline C-6 ketoreductase LanV with bound NADP and 11-deoxy-6-oxylandomycinone 1BIT ; 1.83 ; THE CRYSTAL STRUCTURE OF ANIONIC SALMON TRYPSIN IN A SECOND CRYSTAL FORM 1BZX ; 2.1 ; THE CRYSTAL STRUCTURE OF ANIONIC SALMON TRYPSIN IN COMPLEX WITH BOVINE PANCREATIC TRYPSIN INHIBITOR 1QDL ; 2.5 ; THE CRYSTAL STRUCTURE OF ANTHRANILATE SYNTHASE FROM SULFOLOBUS SOLFATARICUS 6U6F ; 2.9 ; The crystal structure of anti-apoptotic Mcl-1 protein in complex with 2, 5-substituted benzoic acid inhibitor 21 1J05 ; 1.5 ; The crystal structure of anti-carcinoembryonic antigen monoclonal antibody T84.66 Fv fragment 5B3N ; 1.94 ; The crystal structure of anti-H4K20me1_scFv, 15F11 7URL ; 1.49 ; The crystal structure of anti-HIV_scFv 1NSN ; 2.8 ; THE CRYSTAL STRUCTURE OF ANTIBODY N10-STAPHYLOCOCCAL NUCLEASE COMPLEX AT 2.9 ANGSTROMS RESOLUTION 3DFI ; 2.1 ; The crystal structure of antimicrobial reagent A40926 pseudoaglycone deacetylase Dbv21 8XQK ; 2.85 ; The Crystal Structure of Apaf from Biortus. 8X2Q ; 2.0 ; The Crystal Structure of APC from Biortus. 7WUP ; 2.3 ; The crystal structure of ApiI 4WKG ; 2.7 ; The crystal structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic coop-erativity 4U2H ; 1.85 ; The crystal structure of apo CalE6, a methionine gamma lyase from Micromonospora echinospora 7UCT ; 2.52 ; The Crystal Structure of Apo Domain-Swapped Dimer F57:H:H:H:H:H:H:R58 Mutant of HCRBPII with Histidine Insertion in the Hinge Loop Region at 2.5 Angstrom Resolution 6WNF ; 1.67 ; The Crystal Structure of Apo Domain-Swapped Dimer Q108K:K40D:T53A:R58L:Q38F:Q4F:F57H Variant of HCRBPII 7UCV ; 2.19 ; The Crystal Structure of Apo Domain-Swapped Dimer Q108K:T51D:A28CL36C R58:H:H:H:N59 HCRBPII with Histidine Insertion in the Hinge Loop Region at 2.19 Angstrom Resolution 6VIT ; 3.2 ; The Crystal Structure of Apo Domain-Swapped dimer Q108K:T51D:I32C Variant of HCRBPII with an Engineered Disulfide Bond 6WP1 ; 2.99 ; The Crystal Structure of Apo Domain-Swapped Trimer Q108K:K40L:T51K Variant of HCRBPII 6WNJ ; 2.1 ; The Crystal Structure of Apo Domain-Swapped Trimer Q108K:T51D:A28C:I32C of HCRBPII 4KNV ; 1.993 ; The crystal structure of APO HUMAN HDHD4 FROM SE-MAD 7UCZ ; 1.08 ; The Crystal Structure of Apo Monomer F57:H:H:H:H:H:H:R58 Mutant of HCRBPII with Histidine Insertion in the Hinge Loop Region at 1.1 Angstrom Resolution 7UD1 ; 1.32 ; The Crystal Structure of Apo Monomer F57:H:H:H:R58 HCRBPII with Histidine Insertion in the Hinge Loop Region at 1.3 Angstrom Resolution 3E1X ; 1.7 ; The Crystal Structure of Apo Prostasin at 1.7 Angstroms Resolution 3HIF ; 3.59 ; The crystal structure of apo wild type CAP at 3.6 A resolution. 6WP2 ; 2.48 ; The Crystal Structure of Apo Zinc-Bound Domain Swapped-Trimer Q108K:K40D:T53A:R58L:Q38F:Q4F:F57H Variant of HCRBPII 3JUJ ; 2.9 ; The crystal structure of apo- UDP-glucose pyrophosphorylase 4GZ7 ; 2.0 ; The crystal structure of Apo-dihydropyrimidinase from Tetraodon nigroviridis 5ZYW ; 2.2 ; The crystal structure of apo-HsMGME1 with Mn2+ 6A0N ; 2.1 ; The crystal structure of apo-Lpg2622 6KKP ; 2.5 ; The crystal structure of apo-SiaC from Pseudomonas aeruginosa 1XU2 ; 2.35 ; The crystal structure of APRIL bound to BCMA 1XU1 ; 1.9 ; The crystal structure of APRIL bound to TACI 6VID ; 2.89 ; The Crystal Structure of Aps Domain-Swapped Trimer Q108K:K40D:T53A:R58L:Q38F:Q4F Variant of HCRBPII 5DQR ; 2.7 ; The crystal structure of Arabidopsis 7-hydroxymethyl chlorophyll a reductase (HCAR) 4ZHO ; 2.34 ; The crystal structure of Arabidopsis ferredoxin 2 with 2Fe-2S cluster 5A52 ; 1.65 ; The crystal structure of Arabidopsis thaliana CAR1 in complex with one calcium ion 4V29 ; 1.6 ; The crystal structure of Arabidopsis thaliana CAR4 in complex with two calcium ions 5A51 ; 1.602 ; The crystal structure of Arabidopsis thaliana CAR4 in complex with two calcium ions and phophatidyl serine 5A4X ; 2.2 ; The crystal structure of Arabidopsis thaliana CAR4 in complex with two calcium ions and Zn 5A50 ; 2.4 ; The crystal structure of Arabidopsis thaliana CAR4 in complex with two calcium ions, Zn and Phopho Choline 4X1T ; 2.25 ; The crystal structure of Arabidopsis thaliana galactolipid synthase MGD1 in complex with UDP 4WYI ; 2.5 ; The crystal structure of Arabidopsis thaliana galactolipid synthase, MGD1 (apo-form) 2J0V ; 1.78 ; The crystal structure of Arabidopsis thaliana RAC7-ROP9: the first RAS superfamily GTPase from the plant kingdom 4ATW ; 3.0 ; The crystal structure of Arabinofuranosidase 4X3X ; 2.0 ; The crystal structure of Arc C-lobe 4X3I ; 1.8 ; The crystal structure of Arc N-lobe complexed with CAMK2A fragment 3VHX ; 2.81 ; The crystal structure of Arf6-MKLP1 (Mitotic kinesin-like protein 1) complex 4NZP ; 2.307 ; The crystal structure of argininosuccinate synthase from Campylobacter jejuni subsp. jejuni NCTC 11168 4GOK ; 2.6 ; The Crystal structure of Arl2GppNHp in complex with UNC119a 7D6F ; 3.001 ; The crystal structure of ARMS-PBM/MAGI2-PDZ4 7E7L ; 3.53 ; The crystal structure of arylacetate decarboxylase from Olsenella scatoligenes. 3LVQ ; 3.38 ; The crystal structure of ASAP3 in complex with Arf6 in transition state 3LVR ; 3.38 ; The crystal structure of ASAP3 in complex with Arf6 in transition state soaked with Calcium 6KHY ; 3.008 ; The crystal structure of AsfvAP:AG 6KI3 ; 2.354 ; The crystal structure of AsfvAP:dF commplex 6IMK ; 2.502 ; The crystal structure of AsfvLIG:CG complex 6IML ; 2.35 ; The crystal structure of AsfvLIG:CT1 complex 6IMN ; 2.7 ; The crystal structure of AsfvLIG:CT2 complex 5HRG ; 2.0 ; The crystal structure of AsfvPolX(D51N mutant):DNA4 binary complex 5HRK ; 2.9 ; The crystal structure of AsfvPolX(H115F mutant): 1nt-gap(P) DNA2:dGTP ternary complex 5HRH ; 3.0 ; The crystal structure of AsfvPolX(H115F/R127A mutant): 1nt-gap(P) DNA2:dGTP ternary complex 5HRL ; 2.4 ; The crystal structure of AsfvPolX: 1nt-gap(P) DNA2: dGTP ternary complex. 5HRF ; 2.25 ; The crystal structure of AsfvPolX: DNA5: dGTP ternary complex 5HRB ; 1.7 ; The crystal structure of AsfvPolX:DNA1 binary complex 5HRI ; 2.2 ; The crystal structure of AsfvPolX:DNA1 binary complex 5HRD ; 1.8 ; The crystal structure of AsfvPolX:DNA2 binary complex 5HRE ; 1.75 ; The crystal structure of AsfvPolX:DNA3 binary complex 3PLX ; 1.747 ; The crystal structure of aspartate alpha-decarboxylase from Campylobacter jejuni subsp. jejuni NCTC 11168 1IUG ; 2.2 ; The crystal structure of aspartate aminotransferase which belongs to subgroup IV from Thermus thermophilus 8WKJ ; 1.7 ; The crystal structure of aspartate aminotransferases Lpg0070 from Legionella pneumophila 8WOU ; 2.14 ; The crystal structure of aspartate aminotransferases Lpg0070 from Legionella pneumophila 3TRS ; 1.6 ; The crystal structure of aspergilloglutamic peptidase from Aspergillus niger 2C3B ; 1.85 ; The Crystal Structure of Aspergillus fumigatus Cyclophilin reveals 3D Domain Swapping of a Central Element 5F19 ; 2.04 ; The Crystal Structure of Aspirin Acetylated Human Cyclooxygenase-2 3S2Q ; 1.75 ; The crystal structure of AT5g51720 (AT-NEET) 2NX4 ; 1.7 ; The Crystal Structure of athe Putative TetR-family transcriptional regulator Rha06780 from Rhodococcus sp. Rha1. 4PXC ; 1.893 ; The crystal structure of AtUAH in complex with (S)-hydroxyglycine 4PXB ; 1.903 ; The crystal structure of AtUAH in complex with (S)-ureidoglycolate 4PXE ; 1.449 ; The crystal structure of AtUAH in complex with glyoxylate 1OQC ; 1.8 ; The crystal structure of augmenter of liver regeneration: a mammalian FAD dependent sulfhydryl oxidase 3HW3 ; 1.9 ; The crystal structure of avian influenza virus PA_N in complex with UMP 2D5I ; 2.2 ; The crystal structure of AzoR (Azo Reductase) from Escherichia coli 1V4B ; 1.8 ; The crystal structure of AzoR (Azo Reductase) from Escherichia coli: Oxidized form 2Z9C ; 2.3 ; The crystal structure of AzoR (azoreductase) from Escherichia coli: AzoR in complex with dicoumarol 2Z9D ; 2.1 ; The crystal structure of AzoR (azoreductase) from Escherichia coli: Oxidized AzoR in orthorhombic crystals 2Z98 ; 1.4 ; The crystal structure of AzoR (azoreductase) from Escherichia coli: Oxidized AzoR in tetragonal crystals (The resolution has improved from 1.8 (1v4b) to 1.4 angstrom) 2Z9B ; 1.7 ; The crystal structure of AzoR (azoreductase) from Escherichia coli: Reduced AzoR in tetragonal crystals 4ESE ; 1.45 ; The crystal structure of azoreductase from Yersinia pestis CO92 in complex with FMN. 5JRO ; 2.54 ; The crystal structure of azoreductase from Yersinia pestis CO92 in its Apo form 2GQD ; 2.3 ; The crystal structure of B-ketoacyl-ACP synthase II (FabF) from Staphylococcus aureus 6M37 ; 3.1 ; The crystal structure of B. subtilis RsbV/RsbW complex in the hexagonal crystal form 6M36 ; 3.4 ; The crystal structure of B. subtilis RsbV/RsbW complex in the monoclinic crystal form 4R2H ; 1.96 ; The Crystal Structure of B204, the DNA-packaging ATPase from Sulfolobus Turreted Icosahedral Virus 5JE8 ; 2.1 ; The crystal structure of Bacillus cereus 3-hydroxyisobutyrate dehydrogenase in complex with NAD 1FEZ ; 3.0 ; THE CRYSTAL STRUCTURE OF BACILLUS CEREUS PHOSPHONOACETALDEHYDE HYDROLASE COMPLEXED WITH TUNGSTATE, A PRODUCT ANALOG 2GX8 ; 2.2 ; The Crystal Structure of Bacillus cereus protein related to NIF3 4MGR ; 2.55 ; The crystal structure of Bacillus subtilis GabR, an autorepressor and PLP- and GABA-dependent transcriptional activator of gabT 1I6W ; 1.5 ; THE CRYSTAL STRUCTURE OF BACILLUS SUBTILIS LIPASE: A MINIMAL ALPHA/BETA HYDROLASE ENZYME 4NKR ; 2.41 ; The Crystal structure of Bacillus subtilis MobB 2FE3 ; 1.75 ; The crystal structure of bacillus subtilis PerR-Zn reveals a novel Zn(Cys)4 Structural redox switch 5IHY ; 2.5 ; The crystal structure of Bacillus subtilis SeMet-YpgQ 5DQV ; 2.0 ; The crystal structure of Bacillus subtilis YpgQ 5DQW ; 2.15 ; The crystal structure of Bacillus subtilis YpgQ in complex with ADP 4POO ; 2.2 ; The crystal structure of Bacillus subtilis YtqB in complex with SAM 1GD8 ; 2.3 ; THE CRYSTAL STRUCTURE OF BACTERIA-SPECIFIC L17 RIBOSOMAL PROTEIN. 5Z1A ; 1.859 ; The crystal structure of Bacteroides fragilis beta-glucuronidase in complex with uronic isofagomine 6KZ7 ; 2.28 ; The crystal structure of BAF155 SWIRM domain and N-terminal elongated hSNF5 RPT1 domain complex: Chromatin remodeling complex 2JCN ; 1.8 ; The crystal structure of BAK1 - a mitochondrial apoptosis regulator 4K3C ; 2.913 ; The crystal structure of BamA from Haemophilus ducreyi lacking POTRA domains 1-3 4K3B ; 3.2 ; The crystal structure of BamA from Neisseria gonorrhoeae 4IMM ; 2.33 ; The crystal structure of BamB from Moraxella catarrhalis 3Q7M ; 1.651 ; The crystal structure of BamB from the BAM complex in spacegroup I222 3Q7N ; 1.772 ; The crystal structure of BamB from the BAM complex in spacegroup P212121 3Q7O ; 2.091 ; The crystal structure of BamB from the BAM complex in spacegroup P213 8J5J ; 3.0 ; The crystal structure of bat coronavirus RsYN04 RBD bound to the antibody S43 2BZW ; 2.3 ; The crystal structure of BCL-XL in complex with full-length BAD 3DRN ; 2.15 ; The crystal structure of Bcp1 from Sulfolobus Sulfataricus 3HJP ; 2.55 ; The crystal structure of Bcp4 from Sulfolobus Solfataricus 6M2U ; 1.709 ; The crystal structure of benzoate coenzyme A ligase double mutant (H333A/I334A) in complex with 2-chloro-1,3-thiazole-5-carboxylate-AMP 6M2T ; 2.14 ; The crystal structure of benzoate coenzyme A ligase double mutant (H333A/I334A) in complex with 2-methyl-thiazole-5 carboxylate-AMP 4K9Q ; 1.598 ; The Crystal Structure of Benzoylformate Decarboxylase from Polynucleobacter necessarius 3NP6 ; 2.3 ; The crystal structure of Berberine bound to DNA d(CGTACG) 7FIR ; 2.2 ; The crystal structure of beta-1,2-mannobiose phosphorylase in complex with 1,4-mannobiose 7FIS ; 2.19 ; The crystal structure of beta-1,2-mannobiose phosphorylase in complex with mannose 1-phosphate (M1P) 1V18 ; 2.1 ; The crystal structure of beta-catenin armadillo repeat complexed with a phosphorylated APC 20mer repeat. 3LMY ; 2.8 ; The Crystal Structure of beta-hexosaminidase B in complex with Pyrimethamine 1OX0 ; 1.3 ; The crystal structure of beta-ketoacyl-[acyl carrier protein] synthase II from Streptococcus pneumoniae 1OXH ; 2.09 ; The crystal structure of beta-ketoacyl-[acyl carrier protein] synthase II from Streptococcus Pneumoniae, Triclinic form 4EWF ; 2.0 ; The crystal structure of beta-lactamase from Sphaerobacter thermophilus DSM 20745 4PYS ; 1.822 ; The crystal structure of beta-N-acetylhexosaminidase from Bacteroides fragilis NCTC 9343 3NAS ; 3.0 ; The crystal structure of beta-phosphoglucomutase from Bacillus subtilis 5CSB ; 1.719 ; The crystal structure of beta2-microglobulin D76N mutant at room temperature 5CSG ; 1.5 ; The crystal structure of beta2-microglobulin R97Q mutant 7WAT ; 2.0 ; The Crystal Structure of Bifunctional Miltiradiene Synthase from Selaginella moellendorffii 2XLL ; 2.305 ; The crystal structure of bilirubin oxidase from Myrothecium verrucaria 1R30 ; 3.4 ; The Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme 1BVP ; 2.6 ; THE CRYSTAL STRUCTURE OF BLUETONGUE VIRUS VP7 8X2A ; 1.3 ; The Crystal Structure of BMX from Biortus. 6V4V ; 1.65 ; The crystal structure of BonA from Acinetobacter baumannii 1CYC ; 2.3 ; THE CRYSTAL STRUCTURE OF BONITO (KATSUO) FERROCYTOCHROME C AT 2.3 ANGSTROMS RESOLUTION. II. STRUCTURE AND FUNCTION 2EWB ; 1.85 ; The crystal structure of Bovine Lens Leucine Aminopeptidase in complex with zofenoprilat 1TGU ; 2.8 ; The crystal structure of bovine liver catalase without NADPH 7A0D ; 1.6 ; The Crystal Structure of Bovine Thrombin in complex with Hirudin (C16U/C28U) at 1.6 Angstroms Resolution 7A0F ; 2.7 ; The Crystal Structure of Bovine Thrombin in complex with Hirudin (C22U/C39U) at 2.7 Angstroms Resolution 7A0E ; 1.9 ; The Crystal Structure of Bovine Thrombin in complex with Hirudin (C6U/C14U) at 1.9 Angstroms Resolution 2O9Q ; 1.7 ; The crystal structure of Bovine Trypsin complexed with a small inhibition peptide ORB2K 6E8V ; 3.79 ; The crystal structure of bovine ultralong antibody BOV-1 6E9G ; 2.904 ; The crystal structure of bovine ultralong antibody BOV-2 6E9H ; 2.0 ; The crystal structure of bovine ultralong antibody BOV-3 6E9I ; 2.5 ; The crystal structure of bovine ultralong antibody BOV-4 6E9K ; 2.193 ; The crystal structure of bovine ultralong antibody BOV-5 6E9Q ; 3.4 ; The crystal structure of bovine ultralong antibody BOV-6 6E9U ; 2.295 ; The crystal structure of bovine ultralong antibody BOV-7 8X2S ; 1.9 ; The Crystal Structure of BPGM from Biortus 3K0H ; 2.7 ; The crystal structure of BRCA1 BRCT in complex with a minimal recognition tetrapeptide with an amidated C-terminus 8YHS ; 1.5 ; The Crystal Structure of BRDT from Biortus. 7L1E ; 3.2 ; The Crystal Structure of Bromide-Bound GtACR1 6HC7 ; 2.5 ; The crystal structure of BSAP, a zinc aminopeptidase from Bacillus subtilis (medium resolution) 4WBD ; 1.77 ; The crystal structure of BshC from Bacillus subtilis complexed with citrate and ADP 5N2B ; 1.9 ; The crystal structure of Burkholderia pseudomallei antigen and type I fimbria protein BPSL1626. 167D ; 2.3 ; THE CRYSTAL STRUCTURE OF C-C-A-T-T-A-A-T-G-G: IMPLICATIONS FOR BENDING OF B-DNA AT T-A STEPS 8XEY ; 2.65 ; The Crystal Structure of C-terminal kinase domain of RSK2 from Biortus 3F46 ; 1.95 ; The Crystal Structure of C176A Mutated [Fe]-Hydrogenase (Hmd) Holoenzyme from Methanocaldococcus jannaschii 3H65 ; 2.15 ; The Crystal Structure of C176A Mutated [Fe]-Hydrogenase (Hmd) Holoenzyme in Complex with Methylenetetrahydromethanopterin 3HBP ; 2.4 ; The crystal structure of C185S mutant of recombinant sulfite oxidase with bound substrate, sulfite, at the active site 3ERB ; 1.8 ; The Crystal Structure of C2b, a Fragment of Complement Component C2 produced during C3-convertase Formation 1OJQ ; 1.68 ; The crystal structure of C3stau2 from S. aureus 1OJZ ; 2.02 ; The crystal structure of C3stau2 from S. aureus with NAD 3O27 ; 2.8 ; The crystal structure of C68 from the hybrid virus-plasmid pSSVx 1J55 ; 2.0 ; The Crystal Structure of Ca+-bound Human S100P Determined at 2.0A Resolution by X-ray 3TWO ; 2.18 ; The crystal structure of CAD from Helicobacter pylori complexed with NADP(H) 2CT9 ; 2.2 ; The crystal structure of calcineurin B homologous proein 1 (CHP1) 1D0N ; 2.5 ; THE CRYSTAL STRUCTURE OF CALCIUM-FREE EQUINE PLASMA GELSOLIN. 6N2C ; 1.75 ; The Crystal Structure of Caldicellulosiruptor hydrothermalis Tapirin C-terminal domain 6N2B ; 2.65 ; The Crystal Structure of Caldicellulosiruptor kristjanssonii Tapirin C-terminal domain 4XPK ; 1.95 ; The crystal structure of Campylobacter jejuni N-acetyltransferase PseH 4XPL ; 1.95 ; The crystal structure of Campylobacter jejuni N-acetyltransferase PseH in complex with acetyl coenzyme A 2CYF ; 1.8 ; The Crystal Structure of Canavalia Maritima Lectin (ConM) in Complex with Trehalose and Maltose 3NL2 ; 3.08 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 3NL3 ; 3.007 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 3NL5 ; 3.3 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 3NL6 ; 2.612 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 3NM1 ; 3.211 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 3NM3 ; 3.102 ; The Crystal Structure of Candida glabrata THI6, a Bifunctional Enzyme involved in Thiamin Biosyhthesis of Eukaryotes 1NX4 ; 2.4 ; The crystal structure of carbapenem synthase (CarC) 4TX1 ; 1.75 ; The crystal structure of carbohydrate acetylesterase family member from Sinorhizobium meliloti 5KDR ; 2.6 ; The crystal structure of carboxyltransferase from Staphylococcus Aureus bound to the antimicrobial agent moiramide B. 6KMH ; 2.4 ; The crystal structure of CASK/Mint1 complex 8WRA ; 1.45 ; The Crystal Structure of CASP1 from Biortus 3EDR ; 2.45 ; The crystal structure of caspase-7 in complex with Acetyl-LDESD-CHO 3WNU ; 2.2 ; The crystal structure of catalase-peroxidase, KatG, from Synechococcus PCC7942 6HW2 ; 1.941 ; The Crystal Structure of CaV beta4c in complex with HP1gamma chromo shadow domains 3LHH ; 2.1 ; The crystal structure of CBS domain protein from Shewanella oneidensis MR-1. 4L4O ; 2.05 ; The crystal structure of CbXyn10B in native form 8H7J ; 2.5 ; The crystal structure of CD163 SRCR5-9 2CCH ; 1.7 ; The crystal structure of CDK2 cyclin A in complex with a substrate peptide derived from CDC modified with a gamma-linked ATP analogue 7XQK ; 2.25 ; The Crystal Structure of CDK3 and CyclinE1 Complex from Biortus. 8H4R ; 2.75 ; The Crystal Structure of CDK3 and CyclinE1 Complex with Dinaciclib from Biortus 2E0P ; 1.6 ; The crystal structure of Cel44A 3P6B ; 2.0 ; The crystal structure of CelK CBM4 from Clostridium thermocellum 1XHN ; 1.95 ; The crystal structure of Cellular Repressor of E1A-stimulated Genes (CREG) 3VVG ; 1.9 ; The Crystal Structure of Cellulase-Inhibitor Complex. 8WR8 ; 3.1 ; The Crystal Structure of cGAS from Biortus 4D9Y ; 2.1 ; The crystal structure of Chelerythrine bound to DNA d(CGTACG) 3QTK ; 1.849 ; The crystal structure of chemically synthesized VEGF-A 5DE3 ; 1.417 ; The Crystal structure of Chlamydomonas reinhardtii Arl3 bound to GppNHp 5UX9 ; 2.7 ; The crystal structure of chloramphenicol acetyltransferase from Vibrio fischeri ES114 6PXA ; 1.82 ; The crystal structure of chloramphenicol acetyltransferase-like protein from Vibrio fischeri ES114 in complex with taurocholic acid 2VXH ; 2.1 ; The crystal structure of chlorite dismutase: a detox enzyme producing molecular oxygen 4AWE ; 1.4 ; The Crystal Structure of Chrysonilia sitophila endo-beta-D-1,4- mannanase 8WBU ; 1.7 ; The crystal structure of circular mannose with mutant H247F of the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus 6Q38 ; 1.74 ; The Crystal structure of CK2a bound to P1-C4 6Q4Q ; 1.45 ; The Crystal structure of CK2a bound to P2-C4 5OSP ; 1.91 ; The crystal structure of CK2alpha in complex with an analogue of compound 1 5OSR ; 1.57 ; The crystal structure of CK2alpha in complex with an analogue of compound 1 5OTP ; 1.57 ; The crystal structure of CK2alpha in complex with an analogue of compound 22 5OTS ; 1.9 ; The crystal structure of CK2alpha in complex with an analogue of compound 22 5OSU ; 1.63 ; The crystal structure of CK2alpha in complex with analogues of compound 1 5OTY ; 1.48 ; The crystal structure of CK2alpha in complex with CAM4712 6EHK ; 1.4 ; The crystal structure of CK2alpha in complex with CAM4712 and compound 37 5OTZ ; 1.46 ; The crystal structure of CK2alpha in complex with compound 1 5OS8 ; 1.55 ; The crystal structure of CK2alpha in complex with compound 11 5OTR ; 1.52 ; The crystal structure of CK2alpha in complex with compound 14 6EII ; 1.935 ; The crystal structure of CK2alpha in complex with compound 18 5OT6 ; 1.94 ; The crystal structure of CK2alpha in complex with compound 19 5ORH ; 1.75 ; The crystal structure of CK2alpha in complex with compound 2 5OUE ; 2.01 ; The crystal structure of CK2alpha in complex with compound 20 5OUM ; 2.05 ; The crystal structure of CK2alpha in complex with compound 21 5OUU ; 1.81 ; The crystal structure of CK2alpha in complex with compound 22 5OSZ ; 2.0 ; The crystal structure of CK2alpha in complex with compound 23 5OT5 ; 1.63 ; The crystal structure of CK2alpha in complex with compound 24 5OTD ; 1.57 ; The crystal structure of CK2alpha in complex with compound 25 5OTH ; 1.69 ; The crystal structure of CK2alpha in complex with compound 26 5OTI ; 1.59 ; The crystal structure of CK2alpha in complex with compound 27 5OTL ; 1.57 ; The crystal structure of CK2alpha in complex with compound 29 5ORJ ; 1.99 ; The crystal structure of CK2alpha in complex with compound 3 6GMD ; 1.66 ; The crystal structure of CK2alpha in complex with compound 3 5OTO ; 1.51 ; The crystal structure of CK2alpha in complex with compound 30 5OYF ; 1.54 ; The crystal structure of CK2alpha in complex with compound 31 6EHU ; 1.95 ; The crystal structure of CK2alpha in complex with compound 32 5OTQ ; 1.38 ; The crystal structure of CK2alpha in complex with compound 33 5OS7 ; 1.66 ; The crystal structure of CK2alpha in complex with compound 4 5OQU ; 2.324 ; The crystal structure of CK2alpha in complex with compound 5 5ORK ; 2.143 ; The crystal structure of CK2alpha in complex with compound 6 5OSL ; 1.95 ; The crystal structure of CK2alpha in complex with compound 7 5OUL ; 1.34 ; The crystal structure of CK2alpha in complex with compound 9 2I34 ; 2.0 ; The crystal structure of Class C acid phosphatase from Bacillus anthracis with tungstate bound 6NLW ; 1.85 ; The crystal structure of class D carbapenem-hydrolyzing beta-lactamase BlaA from Shewanella oneidensis MR-1 1VGK ; 2.06 ; The crystal structure of class I Major histocompatibility complex, H-2Kd at 2.0 A resolution 7FF4 ; 2.19 ; The crystal structure of Clostridium cellulolyticum LacI family transcriptional regulator Ccel_1438 1KHY ; 1.95 ; The Crystal Structure of ClpB N Terminal Domain, Implication to the Peptide Binding Function of ClpB 8XQU ; 1.85 ; The Crystal Structure of ClpC1-NTD from Biortus. 1L4F ; 2.1 ; The crystal structure of CobT complexed with 4,5-dimethyl-1,2-phenylenediamine and nicotinate mononucleotide 1L4E ; 2.0 ; The crystal structure of CobT complexed with alpha-ribazole-5'-phosphate 6OBN ; 2.7 ; The crystal structure of coexpressed SDS22:PP1 complex 5AX6 ; 1.88 ; The crystal structure of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli. 6L19 ; 2.13 ; The crystal structure of competence or damage-inducible protein from Enterobacter asburiae 2A9S ; 1.75 ; The crystal structure of competence/damage inducible protein CihA from Agrobacterium tumefaciens 4EW7 ; 1.67 ; The crystal structure of conjugative transfer PAS_like domain from Salmonella enterica subsp. enterica serovar Typhimurium 5ICU ; 1.46 ; The crystal structure of CopC from Methylosinus trichosporium OB3b 4D9X ; 2.44 ; The crystal structure of Coptisine bound to DNA d(CGTACG) 3DXU ; 2.2 ; The crystal structure of core JMJD2D complexed with FE and N-oxalylglycine 3CPR ; 2.2 ; The crystal structure of Corynebacterium glutamicum dihydrodipicolinate synthase to 2.2 A resolution 4Q8B ; 1.91 ; The crystal structure of CotA laccase complexed with sinapic acid 7E5X ; 2.19 ; THE CRYSTAL STRUCTURE OF COVID-19 MAIN PROTEASE apo form at 2.2 angstrom 6M03 ; 2.0 ; The crystal structure of COVID-19 main protease in apo form 6LZE ; 1.505 ; The crystal structure of COVID-19 main protease in complex with an inhibitor 11a 6M0K ; 1.504 ; The crystal structure of COVID-19 main protease in complex with an inhibitor 11b 6LU7 ; 2.16 ; The crystal structure of COVID-19 main protease in complex with an inhibitor N3 7BQY ; 1.7 ; THE CRYSTAL STRUCTURE OF COVID-19 MAIN PROTEASE IN COMPLEX WITH AN INHIBITOR N3 at 1.7 angstrom 7CA8 ; 2.45 ; The crystal structure of COVID-19 main protease in complex with an inhibitor Shikonin 7BUY ; 1.6 ; The crystal structure of COVID-19 main protease in complex with carmofur 7C8U ; 2.35 ; The crystal structure of COVID-19 main protease in complex with GC376 7VAH ; 1.491 ; The crystal structure of COVID-19 main protease in H41A mutation 7C2Q ; 1.93 ; The crystal structure of COVID-19 main protease in the apo state 7DAT ; 2.75 ; The crystal structure of COVID-19 main protease treated by AF 7DAU ; 1.72 ; The crystal structure of COVID-19 main protease treated by GA 7C2Y ; 1.91 ; The crystal structure of COVID-2019 main protease in the apo state 1Z7S ; 3.2 ; The crystal structure of coxsackievirus A21 1D4M ; 2.9 ; THE CRYSTAL STRUCTURE OF COXSACKIEVIRUS A9 TO 2.9 A RESOLUTION 7DMY ; 2.0 ; The crystal structure of Cpd7 in complex with BPTF bromodomain 7DN4 ; 2.841 ; The crystal structure of Cpd8 in complex with BPTF bromodomain 3B9Q ; 1.75 ; The crystal structure of cpFtsY from Arabidopsis thaliana 5WVW ; 1.8 ; The crystal structure of Cren7 mutant L28A in complex with dsDNA 5WVZ ; 2.3 ; The crystal structure of Cren7 mutant L28F in complex with dsDNA 5WWC ; 1.9 ; The crystal structure of Cren7 mutant L28M in complex with dsDNA 5WVY ; 2.0 ; The crystal structure of Cren7 mutant L28V in complex with dsDNA 6NYR ; 2.431 ; The crystal structure of CroV588 a novel circular LRR protein structure 6NYS ; 3.1 ; The crystal structure of CroV588 a novel circular LRR protein structure 3IUT ; 1.2 ; The Crystal Structure of Cruzain in Complex with a Tetrafluorophenoxymethyl Ketone Inhibitor 3FFS ; 3.19 ; The Crystal Structure of Cryptosporidium parvum Inosine-5'-Monophosphate Dehydrogenase 8GXO ; 1.74 ; The crystal structure of CsFAOMT1 in complex with SAH 8GXN ; 1.34 ; The crystal structure of CsFAOMT2 in complex with SAH 5XYN ; 3.3 ; The crystal structure of Csm2-Psy3-Shu1-Shu2 complex from budding yeast 5DIJ ; 2.7 ; The crystal structure of CT 5DLK ; 1.8 ; The crystal structure of CT mutant 7ELX ; 2.14 ; The crystal structure of CTLA-4 and Fab 5UQP ; 2.4 ; The crystal structure of cupin protein from Rhodococcus jostii RHA1 6LM0 ; 2.65 ; The crystal structure of cyanorhodopsin (CyR) N2098R from cyanobacteria Calothrix sp. NIES-2098 6LM1 ; 1.9 ; The crystal structure of cyanorhodopsin (CyR) N4075R from cyanobacteria Tolypothrix sp. NIES-4075 8H79 ; 2.07 ; The crystal structure of cyanorhodopsin-II (CyR-II) P7104R from Nodosilinea nodulosa PCC 7104 3KBR ; 1.659 ; The crystal structure of cyclohexadienyl dehydratase precursor from Pseudomonas aeruginosa PA01 6K0F ; 1.634 ; The crystal structure of cyclopenin-bound AsqJ quinary complex 5Z9O ; 2.7 ; The crystal structure of Cyclopropane-fatty-acyl-phospholipid synthase from Lactobacillus acidophilus 5YQA ; 1.38 ; The crystal structure of CYP199A4 binding with 4-n-Propyl benzoic acid 5YQH ; 2.3 ; The crystal structure of CYP199A4 binding with 4-n-Propyl benzoic acid 7TRT ; 1.42 ; The crystal structure of CYP199A4 bound to 4-(furan-2-yl)benzoic acid 7R8S ; 1.366 ; The crystal structure of CYP199A4 bound to 4-n-propylbenzoic acid 7TND ; 1.825 ; The crystal structure of CYP199A4 bound to 4-phenoxybenzoic acid 2OH7 ; 2.45 ; The Crystal Structure of Cypovirus Polyhedra containing the Human ZIP-kinase 4Q31 ; 2.099 ; The crystal structure of cystathione gamma lyase (CalE6) from Micromonospora echinospora 1R5T ; 2.0 ; The Crystal Structure of Cytidine Deaminase CDD1, an Orphan C to U editase from Yeast 6K63 ; 2.073 ; The crystal structure of cytidine deaminase from Klebsiella pneumoniae 2J8W ; 1.29 ; The crystal structure of cytochrome c' from Rubrivivax gelatinosus at 1.3 A Resolution and pH 8.0 2J9B ; 1.5 ; THE CRYSTAL STRUCTURE OF CYTOCHROME C' FROM RUBRIVIVAX GELATINOSUS AT 1.5 A RESOLUTION AND PH 6.3 4UBS ; 2.2 ; The crystal structure of cytochrome P450 105D7 from Streptomyces avermitilis in complex with Diclofenac 1UMO ; 2.59 ; The crystal structure of cytoglobin: the fourth globin type discovered in man 1OMK ; 1.3 ; The Crystal Structure of d(CACG(5IU)G) 1VT5 ; 2.25 ; THE CRYSTAL STRUCTURE OF D(CCCCGGGG): A NEW A-FORM VARIANT WITH AN EXTENDED BACKBONE CONFORMATION 2ANA ; 2.5 ; THE CRYSTAL STRUCTURE OF D(G-G-G-G-C-C-C-C). A MODEL FOR POLY(DG).POLY(DC) 1DN6 ; 3.0 ; THE CRYSTAL STRUCTURE OF D(GGATGGGAG). AN ESSENTIAL PART OF THE BINDING SITE FOR TRANSCRIPTION FACTOR IIIA 1JTL ; 1.85 ; The crystal structure of d(GGCCAATTGG) Complexed with Distamycin 1K2Z ; 2.38 ; The Crystal Structure of d(GGCCAATTGG) Complexed with Distamycin. 5ANA ; 2.25 ; THE CRYSTAL STRUCTURE OF D(GTACGTAC) AT 2.25 ANGSTROMS RESOLUTION. ARE THE A-DNA'S ALWAYS UNWOUND APPROXIMATELY 10 DEGREES AT THE C-G STEPS 5H01 ; 2.194 ; The crystal structure of D-2-halacid dehalogenase mutant 5H00 ; 2.64 ; The crystal structure of D-2-haloacid dehalogenase 6DGI ; 2.3 ; The crystal structure of D-alanyl-alanine synthetase A from Vibrio cholerae O1 biovar eltor str. N16961 4RYE ; 1.901 ; The crystal structure of D-ALANYL-D-ALANINE CARBOXYPEPTIDASE from Mycobacterium tuberculosis H37Rv 2DNS ; 2.4 ; The crystal structure of D-amino acid amidase from Ochrobactrum anthropi SV3 complexed with D-Phenylalanine 2EFU ; 2.3 ; The crystal structure of D-amino acid amidase from Ochrobactrum anthropi SV3 complexed with L-phenylalanine 2EFX ; 2.2 ; The crystal structure of D-amino acid amidase from Ochrobactrum anthropi SV3 complexed with L-phenylalanine amide 3V2H ; 3.0 ; The crystal structure of D-beta-hydroxybutyrate dehydrogenase from Sinorhizobium meliloti 3WX0 ; 3.3 ; The crystal structure of D-lactate dehydrogenase from Escherichia coli 3WFI ; 1.997 ; The crystal structure of D-mandelate dehydrogenase 7E9W ; 2.1 ; The Crystal Structure of D-psicose-3-epimerase from Biortus. 2FLI ; 1.8 ; The crystal structure of D-ribulose 5-phosphate 3-epimerase from Streptococus pyogenes complexed with D-xylitol 5-phosphate 7TQM ; 1.438 ; The crystal structure of D251N CYP199A4 bound to 4-methylthiobenzoic acid 3QO4 ; 2.2 ; The Crystal Structure of Death Receptor 6 3M2T ; 2.3 ; The crystal structure of dehydrogenase from Chromobacterium violaceum 3UOE ; 2.311 ; The crystal structure of dehydrogenase from Sinorhizobium meliloti 2OZE ; 1.83 ; The Crystal structure of Delta protein of pSM19035 from Streptoccocus pyogenes 7PAE ; 1.85 ; The crystal structure of Deltarasin in complex with PDE6D 5VCO ; 2.74 ; THE CRYSTAL STRUCTURE OF DER P 1 ALLERGEN COMPLEXED WITH FAB FRAGMENT OF MAB 10B9 5VCN ; 3.0 ; THE CRYSTAL STRUCTURE OF DER P 1 ALLERGEN COMPLEXED WITH FAB FRAGMENT OF MAB 5H8 2V4J ; 2.1 ; THE CRYSTAL STRUCTURE OF Desulfovibrio vulgaris DISSIMILATORY SULFITE REDUCTASE BOUND TO DsrC PROVIDES NOVEL INSIGHTS INTO THE MECHANISM OF SULFATE RESPIRATION 8HEF ; 1.51 ; The Crystal structure of deuterated S-217622 (Ensitrelvir) bound to the main protease (3CLpro/Mpro) of SARS-CoV-2 5O8R ; 2.8 ; The crystal structure of DfoA bound to FAD and NADP; the desferrioxamine biosynthetic pathway cadaverine monooxygenase from the fire blight disease pathogen Erwinia amylovora 5O8P ; 2.75 ; The crystal structure of DfoA bound to FAD, the desferrioxamine biosynthetic pathway cadaverine monooxygenase from the fire blight disease pathogen Erwinia amylovora 5O7O ; 2.11 ; The crystal structure of DfoC, the desferrioxamine biosynthetic pathway acetyltransferase/Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore (NIS) from the fire blight disease pathogen Erwinia amylovora 5O5C ; 2.1 ; The crystal structure of DfoJ, the desferrioxamine biosynthetic pathway lysine decarboxylase from the fire blight disease pathogen Erwinia amylovora 8ILI ; 1.9 ; The crystal structure of dG(Se-Rp)-DNA:Pol X product binary complex 8ILH ; 2.1 ; The crystal structure of dG(Se-Sp)-DNA:Pol X product binary complex 8ILG ; 1.805 ; The crystal structure of dG-DNA:Pol X product binary complex 8ILE ; 3.0 ; The crystal structure of dGTPalphaSe-Rp:DNApre-II:Pol X substrate ternary complex 8ILF ; 2.3 ; The crystal structure of dGTPalphaSe-Sp:DNApre-II:Pol X substrate ternary complex 5YM0 ; 1.842 ; The crystal structure of DHAD 4H01 ; 2.0 ; The crystal structure of di-Zn dihydropyrimidinase from Tetraodon nigroviridis 4LCS ; 2.2 ; The crystal structure of di-Zn dihydropyrimidinase in complex with hydantoin 4LCR ; 2.0 ; The crystal structure of di-Zn dihydropyrimidinase in complex with NCBA 4LCQ ; 1.81 ; The crystal structure of di-Zn dihydropyrimidinase in complex with NCBI 1ZC9 ; 2.0 ; The crystal structure of dialkylglycine decarboxylase complex with pyridoxamine 5-phosphate 6LT9 ; 1.801 ; The crystal structure of diamondback moth ryanodine receptor SPRY1 domain 4WFW ; 2.05 ; The crystal structure of Dickeya dadantii GspB from the type 2 secretion system 1H76 ; 2.15 ; The crystal structure of diferric porcine serum transferrin 3QY9 ; 1.8 ; The Crystal Structure of Dihydrodipicolinate reductase from Staphylococcus aureus 2R8W ; 1.8 ; The crystal structure of dihydrodipicolinate synthase (Atu0899) from Agrobacterium tumefaciens str. C58 2HMC ; 1.9 ; The Crystal Structure of Dihydrodipicolinate Synthase DapA from Agrobacterium tumefaciens 1ZY8 ; 2.59 ; The crystal structure of dihydrolipoamide dehydrogenase and dihydrolipoamide dehydrogenase-binding protein (didomain) subcomplex of human pyruvate dehydrogenase complex. 5NNM ; 1.9 ; The crystal structure of dimeric LL-37 4PQQ ; 1.55 ; The crystal structure of discoidin domain from muskelin 3FK8 ; 1.3 ; The crystal structure of disulphide isomerase from Xylella fastidiosa Temecula1 2FEX ; 1.7 ; The Crystal Structure of DJ-1 Superfamily Protein Atu0886 from Agrobacterium tumefaciens 1UCF ; 1.95 ; The Crystal Structure of DJ-1, a Protein Related to Male Fertility and Parkinson's Disease 2QLC ; 2.3 ; The crystal structure of DNA repair protein RadC from Chlorobium tepidum TLS 4DYU ; 2.75 ; The crystal structure of DNA starvation/stationary phase protection protein Dps from Yersinia pestis KIM 10 6OF5 ; 2.3 ; The crystal structure of dodecyloxy(naphthalen-1-yl)methylphosphonic acid in complex with red kidney bean purple acid phosphatase 7UCS ; 1.92 ; The Crystal Structure of Domain-Swapped Dimer Q108K:T51D:A28C:L36C:F57:H:H:H:R58 Mutant of hCRBPII with Histidine Insertion in the Hinge Loop Region at 1.92 Angstrom Resolution 7UCN ; 1.96 ; The Crystal Structure of Domain-Swapped Dimer Q108K:T51D:A28C:L36C:F57:H:R58 Mutant of hCRBPII with a Histidine Insertion in the Hinge Loop Region at 1.96 Angstrom Resolution 7UD3 ; 2.37 ; The Crystal Structure of Domain-Swapped Dimer Q108K:T51D:A28C:L36C:F57:W:W:W:R58 Mutant of hCRBPII with a Histidine Insertion in the Hinge Loop Region at 2.36 Angstrom Resolution 7MFZ ; 2.49 ; The Crystal Structure of Domain-Swapped Trimer Q108K:K40D:T53A:R58L:Q38F:Q4F Mutant of HCRBPII Bound with LizFluor3 Chromophore Showing Excited State Intermolecular Proton Transfer 6VIS ; 2.79 ; The Crystal Structure of Domain-Swapped Trimer Q108K:K40D:T53A:R58L:Q38F:Q4F:V62E Variant of HCRBPII 6WP0 ; 2.78 ; The Crystal Structure of Domain-Swapped Trimer Q108K:T51D variant of HCRBPII 1DPS ; 1.6 ; THE CRYSTAL STRUCTURE OF DPS, A FERRITIN HOMOLOG THAT BINDS AND PROTECTS DNA 2JH3 ; 1.9 ; The crystal structure of DR2241 from Deinococcus radiodurans at 1.9 A resolution reveals a multi-domain protein with structural similarity to chelatases but also with two additional novel domains 3ODN ; 2.4 ; The crystal structure of Drosophila Dally-Like Protein core domain 1NLQ ; 1.5 ; The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding 1KEU ; 2.4 ; The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium with dTDP-D-glucose bound 1KEW ; 1.8 ; The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium with thymidine diphosphate bound 1KER ; 2.2 ; The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Streptococcus suis with dTDP-D-glucose bound 1KEP ; 1.8 ; The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Streptococcus suis with dTDP-xylose bound 1KET ; 1.8 ; The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Streptococcus suis with thymidine diphosphate bound 1G1A ; 2.47 ; THE CRYSTAL STRUCTURE OF DTDP-D-GLUCOSE 4,6-DEHYDRATASE (RMLB)FROM SALMONELLA ENTERICA SEROVAR TYPHIMURIUM 2R5R ; 3.05 ; The crystal structure of DUF198 from Nitrosomonas europaea ATCC 19718 7PAD ; 1.49 ; The crystal structure of DW-0254 in complex with PDE6D 4MQ1 ; 2.35 ; The crystal structure of DYRK1a with a bound pyrido[2,3-d]pyrimidine inhibitor 4MQ2 ; 2.8 ; The crystal structure of DYRK1a with a bound pyrido[2,3-d]pyrimidine inhibitor 5MFT ; 1.59 ; The crystal structure of E. coli Aminopeptidase N in complex with 7-amino-1-bromo-4-phenyl-5,7,8,9-tetrahydrobenzocyclohepten-6-one 5MFS ; 1.57 ; The crystal structure of E. coli Aminopeptidase N in complex with 7-amino-4-phenyl-5,7,8,9-tetrahydrobenzocyclohepten-6-one 5MFR ; 1.4 ; The crystal structure of E. coli Aminopeptidase N in complex with 7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one 2EG8 ; 2.2 ; The crystal structure of E. coli dihydroorotase complexed with 5-fluoroorotic acid 2EG7 ; 2.0 ; The crystal structure of E. coli dihydroorotase complexed with HDDP 1ETV ; 2.0 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT G72A 1ETW ; 2.0 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT G72D 1ETK ; 2.1 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT Q68A 1ETX ; 1.9 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT Q74A 1ETO ; 1.9 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT R71L 1ETQ ; 2.8 ; THE CRYSTAL STRUCTURE OF E. COLI FIS MUTANT R71Y 1SQF ; 2.1 ; The crystal structure of E. coli Fmu binary complex with S-Adenosylmethionine at 2.1 A resolution 1OH5 ; 2.9 ; THE CRYSTAL STRUCTURE OF E. COLI MUTS BINDING TO DNA WITH A C:A MISMATCH 1OH7 ; 2.5 ; THE CRYSTAL STRUCTURE OF E. COLI MUTS BINDING TO DNA WITH A G:G MISMATCH 1E3M ; 2.2 ; The crystal structure of E. coli MutS binding to DNA with a G:T mismatch 1OH6 ; 2.4 ; THE CRYSTAL STRUCTURE OF E. COLI MUTS BINDING TO DNA WITH AN A:A MISMATCH 1OH8 ; 2.9 ; THE CRYSTAL STRUCTURE OF E. COLI MUTS BINDING TO DNA WITH AN UNPAIRED THYMIDINE 1DJ0 ; 1.5 ; THE CRYSTAL STRUCTURE OF E. COLI PSEUDOURIDINE SYNTHASE I AT 1.5 ANGSTROM RESOLUTION 1ETY ; 2.0 ; THE CRYSTAL STRUCTURE OF E. COLI WILD-TYPE FIS 2O99 ; 1.7 ; The crystal structure of E.coli IclR C-terminal fragment in complex with glyoxylate 2CMD ; 1.87 ; THE CRYSTAL STRUCTURE OF E.COLI MALATE DEHYDROGENASE: A COMPLEX OF THE APOENZYME AND CITRATE AT 1.87 ANGSTROMS RESOLUTION 1G2A ; 1.75 ; THE CRYSTAL STRUCTURE OF E.COLI PEPTIDE DEFORMYLASE COMPLEXED WITH ACTINONIN 3K9O ; 1.8 ; The crystal structure of E2-25K and UBB+1 complex 3K9P ; 2.8 ; The crystal structure of E2-25K and ubiquitin complex 2Q8K ; 1.6 ; The crystal structure of Ebp1 4PXD ; 2.2 ; The crystal structure of EcAAH in complex with allantoate 1O8V ; 1.6 ; The crystal structure of Echinococcus granulosus fatty-acid-binding protein 1 1RVE ; 2.5 ; THE CRYSTAL STRUCTURE OF ECORV ENDONUCLEASE AND OF ITS COMPLEXES WITH COGNATE AND NON-COGNATE DNA FRAGMENTS 2RVE ; 3.0 ; THE CRYSTAL STRUCTURE OF ECORV ENDONUCLEASE AND OF ITS COMPLEXES WITH COGNATE AND NON-COGNATE DNA SEGMENTS 4RVE ; 3.0 ; THE CRYSTAL STRUCTURE OF ECORV ENDONUCLEASE AND OF ITS COMPLEXES WITH COGNATE AND NON-COGNATE DNA SEGMENTS 4V5P ; 3.1 ; The crystal structure of EF-Tu and A9C-tRNA-Trp bound to a near- cognate codon on the 70S ribosome 7VMX ; 2.8 ; The Crystal Structure of EF-Tu and EF-Ts complex from Mycobacterium tuberculosis 4V5S ; 3.1 ; The crystal structure of EF-Tu and G24A-tRNA-Trp bound to a cognate codon on the 70S ribosome. 4V5Q ; 3.1 ; The crystal structure of EF-Tu and G24A-tRNA-Trp bound to a near- cognate codon on the 70S ribosome 7VOK ; 3.4 ; The Crystal structure of EF-Tu and GDP from Mycobacterium tuberculosis 4V5R ; 3.1 ; The crystal structure of EF-Tu and Trp-tRNA-Trp bound to a cognate codon on the 70S ribosome. 7VRA ; 2.41 ; The crystal structure of EGFR T790M/C797S with the inhibitor HC5476 7VRE ; 2.507 ; The crystal structure of EGFR T790M/C797S with the inhibitor HCD2892 8XPT ; 3.35 ; The Crystal Structure of EHMT1 from Biortus. 2J0U ; 3.0 ; The crystal structure of eIF4AIII-Barentsz complex at 3.0 A resolution 3EX7 ; 2.301 ; The crystal structure of EJC in its transition state 5JW9 ; 2.003 ; The Crystal Structure of ELL2 Oclludin Domain and AFF4 peptide 1EFT ; 2.5 ; THE CRYSTAL STRUCTURE OF ELONGATION FACTOR EF-TU FROM THERMUS AQUATICUS IN THE GTP CONFORMATION 1EFG ; 2.7 ; THE CRYSTAL STRUCTURE OF ELONGATION FACTOR G COMPLEXED WITH GDP, AT 2.7 ANGSTROMS RESOLUTION 6AKJ ; 2.7 ; The crystal structure of EMC complex 2VUN ; 1.89 ; The Crystal Structure of Enamidase at 1.9 A Resolution - A new Member of the Amidohydrolase Superfamily 3W8W ; 1.95 ; The crystal structure of EncM 6FY8 ; 3.0 ; The crystal structure of EncM bromide soak 6FY9 ; 3.65 ; The crystal structure of EncM complex with xenon under 15 bars Xe pressure 6FOW ; 2.04 ; The crystal structure of EncM complexed with dioxygen under 10 bar of oxygen pressure. 6FOQ ; 1.386 ; The crystal structure of EncM complexed with dioxygen under 15 bar of oxygen pressure. 6FP3 ; 1.976 ; The crystal structure of EncM complexed with dioxygen under 5 bar of oxygen pressure. 6FYE ; 2.3 ; The crystal structure of EncM H138T mutant 6FYB ; 1.882 ; The crystal structure of EncM L144M mutant 6FYC ; 2.0 ; The crystal structure of EncM L144M mutant complex with dioxygen under 15 bars O2 pressure 6FYD ; 1.76 ; The crystal structure of EncM T139V mutant 6FYA ; 2.6 ; The crystal structure of EncM under anaerobic conditions 6FYF ; 2.2 ; The crystal structure of EncM V135M mutant 6FYG ; 2.55 ; The crystal structure of EncM V135T mutant 5CD2 ; 1.55 ; The crystal structure of endo-1,4-D-glucanase from Vibrio fischeri ES114 5C0P ; 1.532 ; The crystal structure of endo-arabinase from Bacteroides thetaiotaomicron VPI-5482 1G87 ; 1.6 ; THE CRYSTAL STRUCTURE OF ENDOGLUCANASE 9G FROM CLOSTRIDIUM CELLULOLYTICUM 1GA2 ; 1.7 ; THE CRYSTAL STRUCTURE OF ENDOGLUCANASE 9G FROM CLOSTRIDIUM CELLULOLYTICUM COMPLEXED WITH CELLOBIOSE 5GY3 ; 1.77 ; The crystal structure of endoglucanase Cel10, a family 8 glycosyl hydrolase from Klebsiella pneumoniae 4RUW ; 1.281 ; The crystal structure of endonuclease/exonuclease/phosphatase from Beutenbergia cavernae DSM 12333 1W7P ; 3.6 ; The crystal structure of endosomal complex ESCRT-II (VPS22/VPS25/VPS36) 4XPU ; 2.4 ; The crystal structure of EndoV from E.coli 6H08 ; 1.9 ; The crystal structure of engineered cytochrome c peroxidase from Saccharomyces cerevisiae with a His175Me-His proximal ligand substitution 6Y1T ; 1.5 ; The crystal structure of engineered cytochrome c peroxidase from Saccharomyces cerevisiae with a Trp51 to S-Trp51 modification 6Y2Y ; 1.7 ; The crystal structure of engineered cytochrome c peroxidase from Saccharomyces cerevisiae with Trp51 to S-Trp51 and Trp191Phe modifications 2FKG ; 2.4 ; The Crystal Structure of Engineered OspA 2FKJ ; 3.1 ; The crystal structure of engineered OspA 2HKD ; 1.6 ; The crystal structure of engineered OSPA 4JJT ; 2.496 ; The crystal structure of enoyl-CoA hydratase from Mycobacterium tuberculosis H37Rv 3OSS ; 2.63 ; The crystal structure of enterotoxigenic Escherichia coli GspC-GspD complex from the type II secretion system 8I34 ; 2.44 ; The crystal structure of EPD-BCP1 from a marine sponge 8XPV ; 1.55 ; The Crystal Structure of EphA2 from Biortus. 7LKI ; 2.0 ; The crystal structure of Epitope III of HCV envelop protein E2 in complex with antibody 1H8 2E3J ; 2.1 ; The crystal structure of epoxide hydrolase B (Rv1938) from mycobacterium tuberculosis at 2.1 angstrom 5EBX ; 2.0 ; THE CRYSTAL STRUCTURE OF ERABUTOXIN A AT 2.0 ANGSTROMS RESOLUTION 4XZ8 ; 2.35 ; The crystal structure of Erve virus nucleoprotein 4XZA ; 1.8 ; The crystal structure of Erve virus nucleoprotein 7OSO ; 1.4 ; The crystal structure of Erwinia tasmaniensis levansucrase in complex with (S)-1,2,4-butanentriol 7EN6 ; 2.276 ; The crystal structure of Escherichia coli MurR in apo form 7EN5 ; 1.25 ; The crystal structure of Escherichia coli MurR in complex with N-acetylglucosamine-6-phosphate 7EN7 ; 1.22 ; The crystal structure of Escherichia coli MurR in complex with N-acetylmuramic-acid-6-phosphate 2C7B ; 2.3 ; The Crystal Structure of EstE1, a New Thermophilic and Thermostable Carboxylesterase Cloned from a Metagenomic Library 1G24 ; 1.7 ; THE CRYSTAL STRUCTURE OF EXOENZYME C3 FROM CLOSTRIDIUM BOTULINUM 6J0T ; 2.8 ; The crystal structure of exoinulinase INU1 7TNU ; 1.584 ; The crystal structure of F298V CYP199A4 bound to 4-cyclohexylbenzoic acid 7UDF ; 1.54 ; The crystal structure of F298V CYP199A4 bound to 4-n-propylbenzoic acid 7TNF ; 1.539 ; The crystal structure of F298V CYP199A4 bound to 4-phenylbenzoic acid 8ASR ; 1.66 ; The Crystal structure of F46Y mutant of apo agroavidin 8ASS ; 2.12 ; The Crystal structure of F46Y mutant of the agroavidin-biotin complex 3S8M ; 1.6 ; The Crystal Structure of FabV 2PGO ; 1.26 ; The crystal structure of FAD and ThDP dependent Cyclohexane-1,2-dione Hydrolase (Cdh) from Azoarcus sp. strain 22Lin 2PGN ; 1.2 ; The crystal structure of FAD and ThDP-dependent Cyclohexane-1,2-dione Hydrolase in Complex with Cyclohexane-1,2-dione 8XOX ; 1.9 ; The Crystal Structure of FAK2 from Biortus. 7CZJ ; 1.495 ; The Crystal Structure of Family 20 CBM of Maltotetraose-forming Amylase from Pseudomonas Saccharophila STB07 3T9G ; 1.5 ; The crystal structure of family 3 pectate lyase from Caldicellulosiruptor bescii 7T7Z ; 1.46 ; The crystal structure of family 8 carbohydrate-binding module from Dictyostelium discoideum 7T7Y ; 1.81 ; The crystal structure of family 8 carbohydrate-binding module from Dictyostelium discoideum complexed with iodine atoms 4DRB ; 2.634 ; The crystal structure of FANCM bound MHF complex 3KXW ; 1.851 ; The crystal structure of fatty acid AMP ligase from Legionella pneumophila 3LNV ; 2.0 ; The crystal structure of fatty acyl-adenylate ligase from L. pneumophila in complex with acyl adenylate and pyrophosphate 6UVX ; 2.3 ; The crystal structure of FbiA from Mycobacterium Smegmatis, Apo state 6UW7 ; 2.342 ; The crystal structure of FbiA from Mycobacterium smegmatis, Dehydro-F420-0 bound form 6UW1 ; 2.205 ; The crystal structure of FbiA from Mycobacterium Smegmatis, Fo bound form 6UW5 ; 2.2 ; The crystal structure of FbiA from Mycobacterium smegmatis, GDP and Fo bound form 6UW3 ; 2.4 ; The crystal structure of FbiA from Mycobacterium Smegmatis, GDP Bound form 2V2K ; 1.6 ; THE CRYSTAL STRUCTURE OF FDXA, A 7FE FERREDOXIN FROM MYCOBACTERIUM SMEGMATIS 2OIF ; 1.8 ; The crystal structure of ferric cyanide bound barley hexacoordinate hemoglobin. 3QZ3 ; 2.099 ; The crystal structure of ferritin from Vibrio cholerae O1 biovar El Tor str. N16961 8X2T ; 2.9 ; The Crystal Structure of FES from Biortus. 5JKG ; 2.352 ; The crystal structure of FGFR4 kinase domain in complex with LY2874455 7VJL ; 2.90017 ; The crystal structure of FGFR4 kinase domain in complex with N-(5-cyano-4-((2-methoxyethyl)amino)pyridin-2-yl)-7-(2,2,2-trifluoroacetyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxamide 6E4V ; 2.0 ; The Crystal Structure of FhuE from E. coli in complex with its substrate Coprogen 1YCP ; 2.5 ; THE CRYSTAL STRUCTURE OF FIBRINOGEN-AA PEPTIDE 1-23 (F8Y) BOUND TO BOVINE THROMBIN EXPLAINS WHY THE MUTATION OF PHE-8 TO TYROSINE STRONGLY INHIBITS NORMAL CLEAVAGE AT ARGININE-16 1QQK ; 3.1 ; THE CRYSTAL STRUCTURE OF FIBROBLAST GROWTH FACTOR 7 (KERATINOCYTE GROWTH FACTOR) 1QQL ; 2.3 ; THE CRYSTAL STRUCTURE OF FIBROBLAST GROWTH FACTOR 7/1 CHIMERA 7WW0 ; 1.85 ; The crystal structure of FinI complex with SAH 7WUY ; 1.84 ; The crystal structure of FinI in complex with SAM and fischerin 1F36 ; 2.65 ; THE CRYSTAL STRUCTURE OF FIS MUTANT K36E REVEALS THAT THE TRANSACTIVATION REGION OF THE FIS PROTEIN CONTAINS EXTENDED MOBILE BETA-HAIRPIN ARMS 2QKL ; 2.33 ; The crystal structure of fission yeast mRNA decapping enzyme Dcp1-Dcp2 complex 2QKM ; 2.8 ; The crystal structure of fission yeast mRNA decapping enzyme Dcp1-Dcp2 complex 2D36 ; 2.3 ; The Crystal Structure of Flavin Reductase HpaC 2D37 ; 1.7 ; The Crystal Structure of Flavin Reductase HpaC complexed with NAD+ 2D38 ; 2.05 ; The Crystal Structure of Flavin Reductase HpaC complexed with NADP+ 4HEQ ; 1.3 ; The crystal structure of flavodoxin from Desulfovibrio gigas 3OZV ; 2.4 ; The Crystal Structure of flavohemoglobin from R. eutrophus in complex with econazole 3OZW ; 2.3 ; The Crystal Structure of flavohemoglobin from R. eutrophus in complex with ketoconazole 3OZU ; 2.0 ; The Crystal Structure of flavohemoglobin from R. eutrophus in complex with miconazole 5KBN ; 2.48 ; The crystal structure of fluoride channel Fluc Ec2 F80I Mutant 5KOM ; 2.69 ; The crystal structure of fluoride channel Fluc Ec2 F83I Mutant 6BX5 ; 3.0 ; The crystal structure of fluoride channel Fluc Ec2 with Monobody S12 6BX4 ; 2.55 ; The crystal structure of fluoride channel Fluc Ec2 with Monobody S9 3U7I ; 1.75 ; The crystal structure of FMN-dependent NADH-azoreductase 1 (GBAA0966) from Bacillus anthracis str. Ames Ancestor 7E6V ; 1.832 ; The crystal structure of foot-and-mouth disease virus(FMDV) 2C protein 97-318aa 3M1R ; 2.199 ; The crystal structure of formimidoylglutamase from Bacillus subtilis subsp. subtilis str. 168 1EG7 ; 2.5 ; THE CRYSTAL STRUCTURE OF FORMYLTETRAHYDROFOLATE SYNTHETASE FROM MOORELLA THERMOACETICA 3Q94 ; 2.301 ; The crystal structure of fructose 1,6-bisphosphate aldolase from Bacillus anthracis str. 'Ames Ancestor' 1FBA ; 1.9 ; THE CRYSTAL STRUCTURE OF FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE FROM DROSOPHILA MELANOGASTER AT 2.5 ANGSTROMS RESOLUTION 4WCT ; 1.67 ; The crystal structure of Fructosyl amine: oxygen oxidoreductase (Amadoriase I) from Aspergillus fumigatus 4XWZ ; 1.9 ; The crystal structure of Fructosyl amine: oxygen oxidoreductase (Amadoriase I) from Aspergillus fumigatus in complex with the substrate fructosyl lysine 7ETL ; 1.99213 ; The crystal structure of FtmOx1-Y68F 3MVK ; 1.65 ; The Crystal Structure of FucU from Bifidobacterium longum to 1.65A 4GOJ ; 2.1 ; The Crystal Structure of full length Arl3GppNHp in complex with UNC119a 2Q9Q ; 2.36 ; The crystal structure of full length human GINS complex 6LOL ; 2.75 ; The crystal structure of full length IpaH9.8 3EFF ; 3.8 ; The Crystal Structure of Full-Length KcsA in its Closed Conformation 3OI8 ; 1.989 ; The crystal structure of functionally unknown conserved protein domain from Neisseria meningitidis MC58 3NYM ; 1.9 ; The crystal structure of functionally unknown protein from Neisseria meningitidis MC58 7CJ1 ; 3.0 ; The crystal structure of FXIa serine protease domain in complex with benzamidine 5UWG ; 2.56 ; The crystal structure of Fz4-CRD in complex with palmitoleic acid 3GXK ; 1.9 ; The crystal structure of g-type lysozyme from Atlantic cod (Gadus morhua L.) in complex with NAG oligomers sheds new light on substrate binding and the catalytic mechanism. Native structure to 1.9 3GXR ; 1.7 ; The crystal structure of g-type lysozyme from Atlantic cod (Gadus morhua L.) in complex with NAG oligomers sheds new light on substrate binding and the catalytic mechanism. Structure with NAG to 1.7 2G2Q ; 2.5 ; The crystal structure of G4, the poxviral disulfide oxidoreductase essential for cytoplasmic disulfide bond formation 4GXL ; 2.023 ; The crystal structure of Galectin-8 C-CRD in complex with NDP52 4LIH ; 1.85 ; The crystal structure of Gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase from Burkholderia cenocepacia J2315 6K2D ; 3.6 ; The crystal structure of GBP1 with LRR domain of IpaH9.8 3FAX ; 2.4 ; The crystal structure of GBS pullulanase SAP in complex with maltotetraose 1Q8D ; 1.8 ; The crystal structure of GDNF family co-receptor alpha 1 domain 3 2OEB ; 1.66 ; The crystal structure of gene product Af1862 from Archaeoglobus fulgidus 2ODF ; 1.9 ; The crystal structure of gene product Atu2144 from Agrobacterium tumefaciens 7AHW ; 1.952 ; The crystal structure of gene product PA4063 from Pseudomonas aeruginosa 7ALY ; 2.7 ; The crystal structure of gene product PA4063 from Pseudomonas aeruginosa in complex with Au(I) for phasing 7AMX ; 2.85 ; The crystal structure of gene product PA4063 from Pseudomonas aeruginosa in complex with zinc 7BGO ; 3.301 ; The crystal structure of gene product PA4063 from Pseudomonas aeruginosa in complex with Zn (space group P65) 2OOI ; 2.6 ; The crystal structure of gene product SA0254 from Staphylocococcus aureus subsp. aureus N315 2OD0 ; 1.95 ; The crystal structure of gene product VP1028 from Vibrio parahaemolyticus 2HLY ; 1.6 ; The crystal structure of genomics APC5867 3A0F ; 2.5 ; The crystal structure of Geotrichum sp. M128 xyloglucanase 3NPK ; 1.5 ; The crystal structure of geranyltranstransferase from Campylobacter jejuni 5Y1I ; 2.0 ; The crystal structure of GfsF 3POP ; 1.651 ; The crystal structure of GilR, an oxidoreductase that catalyzes the terminal step of gilvocarcin biosynthesis 3PZ6 ; 2.6 ; The crystal structure of GlLeuRS-CP1 3UBB ; 2.601 ; The crystal structure of GlpG in complex with a phosphonofluoridate inhibitor 4GG2 ; 2.21 ; The crystal structure of glutamate-bound human gamma-glutamyltranspeptidase 1 1KXJ ; 2.8 ; The Crystal Structure of Glutamine Amidotransferase from Thermotoga maritima 4S17 ; 2.3 ; The crystal structure of glutamine synthetase from Bifidobacterium adolescentis ATCC 15703 3NIV ; 2.3 ; The crystal structure of Glutathione S-transferase from Legionella pneumophila 4I97 ; 2.15 ; The crystal structure of glutathione S-transferase SnigGSTD1A from Scaptomyza nigrita in complex with glutathione 1OBF ; 1.7 ; The crystal structure of Glyceraldehyde 3-phosphate Dehydrogenase from Alcaligenes xylosoxidans at 1.7A resolution. 4DIB ; 2.55 ; The crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Bacillus anthracis str. Sterne 3GG4 ; 2.0 ; The crystal structure of glycerol kinase from Yersinia pseudotuberculosis 2G9R ; 2.07 ; The crystal structure of glycogen phosphorylase b in complex with (3R,4R,5R)-5-hydroxymethyl-1-(3-phenylpropyl)-piperidine-3,4-diol 3S0J ; 2.0 ; The crystal structure of glycogen phosphorylase b in complex with 2,5-dihydroxy-4-(beta-D-glucopyranosyl)-chlorobenzene 2OFF ; 2.2 ; The crystal structure of Glycogen Phosphorylase b in complex with a potent allosteric inhibitor 2G9U ; 2.15 ; The crystal structure of glycogen phosphorylase in complex with (3R,4R,5R)-5-hydroxymethyl-1-(3-phenylpropyl)-piperidine-3,4-diol and phosphate 2G9V ; 2.15 ; The crystal structure of glycogen phosphorylase in complex with (3R,4R,5R)-5-hydroxymethylpiperidine-3,4-diol and phosphate 6S51 ; 2.37 ; The crystal structure of glycogen phosphorylase in complex with 10 6F3J ; 2.2 ; The crystal structure of Glycogen Phosphorylase in complex with 10a 6F3L ; 1.9 ; The crystal structure of Glycogen Phosphorylase in complex with 10b 6F3R ; 1.9 ; The crystal structure of Glycogen Phosphorylase in complex with 10c 6F3S ; 1.9 ; The crystal structure of Glycogen Phosphorylase in complex with 10d 6F3U ; 2.2 ; The crystal structure of Glycogen Phosphorylase in complex with 10h 6S4R ; 2.3 ; The crystal structure of glycogen phosphorylase in complex with 11 6S4K ; 2.43 ; The crystal structure of glycogen phosphorylase in complex with 12 6S4P ; 2.37 ; The crystal structure of glycogen phosphorylase in complex with 13 6S52 ; 2.37 ; The crystal structure of glycogen phosphorylase in complex with 14 6Y5O ; 2.33 ; The crystal structure of glycogen phosphorylase in complex with 20 6Y55 ; 2.38 ; The crystal structure of glycogen phosphorylase in complex with 43 6Y5C ; 2.4 ; The crystal structure of glycogen phosphorylase in complex with 52 6S4H ; 2.45 ; The crystal structure of glycogen phosphorylase in complex with 8 6S4O ; 2.35 ; The crystal structure of glycogen phosphorylase in complex with 9 8BZS ; 2.25 ; The crystal structure of glycogen phosphorylase in complex with baicalein 2PYD ; 1.93 ; The crystal structure of Glycogen phosphorylase in complex with glucose at 100 K 6M6L ; 1.5 ; The crystal structure of glycosidase hydrolyzing Notoginsenoside 6M6M ; 2.07 ; The crystal structure of glycosidase mutant 6R5N ; 2.0 ; The crystal structure of Glycoside Hydrolase BglX from P. aeruginosa in complex with 1-deoxynojirimycin 6R5R ; 1.65 ; The crystal structure of Glycoside Hydrolase BglX inactive mutant D286N from P. aeruginosa in complex with cellobiose 6R5P ; 2.85 ; The crystal structure of Glycoside Hydrolase BglX inactive mutant D286N from P. aeruginosa in complex with glucose 6R5T ; 1.6 ; The crystal structure of Glycoside Hydrolase BglX inactive mutant D286N from P. aeruginosa in complex with lactose 6R5V ; 1.8 ; The crystal structure of Glycoside Hydrolase BglX inactive mutant D286N from P. aeruginosa in complex with xylotriose 6R5U ; 2.15 ; The crystal structure of Glycoside Hydrolase BglX inactive mutant from P. aeruginosa in complex with laminaritriose 6B6L ; 2.0 ; The crystal structure of glycosyl hydrolase family 2 (GH2) member from Bacteroides cellulosilyticus DSM 14838 3TEV ; 2.3 ; The crystal structure of glycosyl hydrolase from Deinococcus radiodurans R1 3RF1 ; 2.2 ; The crystal structure of glycyl-tRNA synthetase subunit alpha from Campylobacter jejuni subsp. jejuni NCTC 11168 3UFG ; 2.552 ; The crystal structure of glycyl-tRNA synthetase subunit alpha from Campylobacter jejuni subsp. jejuni NCTC in complex with ATP 3RGL ; 2.45 ; The crystal structure of glycyl-tRNA synthetase subunit alpha from Campylobacter jejuni subsp. jejuni NCTC in complex with ATP and glycine 4N04 ; 2.489 ; The crystal structure of glyoxalase / bleomycin resistance protein from Catenulispora Acidiphila DSM 44928 8XN6 ; 2.4 ; The Crystal Structure of GSK3b from Biortus. 4ARZ ; 3.1 ; The crystal structure of Gtr1p-Gtr2p complexed with GTP-GDP 3BG4 ; 2.5 ; The crystal structure of guamerin in complex with chymotrypsin and the development of an elastase-specific inhibitor 7ZWE ; 1.47 ; The Crystal structure of GW8695 bound to CK2alpha 3S0X ; 3.6 ; The crystal structure of GxGD membrane protease FlaK 2CII ; 2.55 ; The crystal structure of H-2Db complexed with a partial peptide epitope suggests an MHC Class I assembly-intermediate 4PG2 ; 2.8 ; The crystal structure of H-2Db with a S-glutathionylated peptide 1BII ; 2.4 ; THE CRYSTAL STRUCTURE OF H-2DD MHC CLASS I IN COMPLEX WITH THE HIV-1 DERIVED PEPTIDE P18-110 4URU ; 2.83 ; The crystal structure of H-Ras and SOS in complex with ligands 4URV ; 2.58 ; The crystal structure of H-Ras and SOS in complex with ligands 4URW ; 2.76 ; The crystal structure of H-Ras and SOS in complex with ligands 4URX ; 2.49 ; The crystal structure of H-Ras and SOS in complex with ligands 4URY ; 2.47 ; The crystal structure of H-Ras and SOS in complex with ligands 4URZ ; 2.24 ; The crystal structure of H-Ras and SOS in complex with ligands 4US0 ; 2.17 ; The crystal structure of H-Ras and SOS in complex with ligands 4US1 ; 2.65 ; The crystal structure of H-Ras and SOS in complex with ligands 4US2 ; 2.48 ; The crystal structure of H-Ras and SOS in complex with ligands 6HIT ; 2.5 ; The crystal structure of haemoglobin from Atlantic cod 4HO1 ; 1.856 ; The Crystal structure of Haemophilus influenzae O-acetylserine sulfhydrylase at 1.85A resolution 6GWI ; 2.0 ; The crystal structure of Halomonas elongata amino-transferase 4XZE ; 2.9 ; The crystal structure of Hazara virus nucleoprotein 6XXT ; 1.05 ; The crystal structure of hCA II in complex with a 4-(4-aroylpiperazine-1-carbonyl)benzenesulfonamide derivative. 5LMD ; 1.7 ; The crystal structure of hCA II in complex with a benzoxaborole inhibitor 6QYY ; 1.8 ; The crystal structure of head fiber gp8.5 N base in bacteriophage phi29 4INO ; 1.65 ; The crystal structure of Helicobacter pylori Ceue (HP1561) 4INP ; 2.3 ; The crystal structure of Helicobacter pylori Ceue (HP1561) with Ni(II) bound 4LS3 ; 1.7 ; THE crystal STRUCTURE OF HELICOBACTER PYLORI CEUE(HP1561)/NI-HIS COMPL 2WLT ; 1.4 ; The crystal structure of Helicobacter pylori L-asparaginase at 1.4 A resolution 4LN4 ; 3.1 ; The crystal structure of hemagglutinin form a h7n9 influenza virus (a/shanghai/1/2013) in complex with lstb 4WSR ; 2.5 ; The crystal structure of hemagglutinin form A/chicken/New York/14677-13/1998 4WSS ; 2.8 ; The crystal structure of hemagglutinin form A/chicken/New York/14677-13/1998 in complex with LSTa 4WE4 ; 2.351 ; The crystal structure of hemagglutinin from 1968 H3N2 influenza virus 4WA1 ; 1.898 ; The crystal structure of hemagglutinin from a H3N8 influenza virus isolated from New England harbor seals 4WA2 ; 2.5 ; The crystal structure of hemagglutinin from a H3N8 influenza virus isolated from New England harbor seals in complex with 3'SLN 4LN3 ; 2.65 ; The crystal structure of hemagglutinin from a H7N9 influenza virus (A/Shanghai/1/2013) 4LN6 ; 2.12 ; The crystal structure of hemagglutinin from a h7n9 influenza virus (a/shanghai/2/2013) 4LN8 ; 2.5 ; The crystal structure of hemagglutinin from a h7n9 influenza virus (a/shanghai/2/2013) in complex with lstb 4W8N ; 2.9 ; The crystal structure of hemagglutinin from a swine influenza virus (A/swine/Missouri/2124514/2006) 6N4F ; 3.01 ; The crystal structure of hemagglutinin from A/canine/IL/11613/2015 (H3N2) influenza virus. 6V47 ; 2.8 ; The crystal structure of hemagglutinin from A/duck/Memphis/546/1974 (H11N9) 4WSW ; 2.8 ; The crystal structure of hemagglutinin from A/green-winged teal/Texas/Y171/2006 influenza virus 6D7U ; 2.7 ; The crystal structure of hemagglutinin from A/Guangdong/17SF003/2016 H7N9 influenza virus 5HUF ; 2.81 ; The crystal structure of hemagglutinin from A/gyrfalcon/Washington/41088-6/2014 influenza virus 6D8B ; 2.95 ; The crystal structure of hemagglutinin from A/Hong Kong/125/2017 H7N9 influenza virus 6D8D ; 3.55 ; The crystal structure of hemagglutinin from A/Hong Kong/125/2017 influenza virus in complex with LSTb 6D7C ; 2.95 ; The crystal structure of hemagglutinin from A/Hong Kong/61/2016 H7N9 influenza virus 4WSX ; 2.7 ; The crystal structure of hemagglutinin from A/Jiangxi-Donghu/346/2013 influenza virus 6V48 ; 3.004 ; The crystal structure of hemagglutinin from A/mallard/Gurjev/263/1982 (H14N5) 4WE5 ; 2.1 ; The crystal structure of hemagglutinin from A/Port Chalmers/1/1973 influenza virus 5HU8 ; 2.45 ; The crystal structure of hemagglutinin from A/Sichuan/26221/2014 (H5N6) influenza virus 4WSU ; 2.7 ; The crystal structure of hemagglutinin from A/Taiwan/1/2013 in complex with 3'SLN 4WSV ; 3.1 ; The crystal structure of hemagglutinin from A/Taiwan/1/2013 in complex with 6'SLN 4WST ; 2.4 ; The crystal structure of hemagglutinin from A/Taiwan/1/2013 influenza virus 6V46 ; 2.248 ; The crystal structure of hemagglutinin from A/turkey/Ontario/6118/1968 (H8N4) 6V49 ; 2.5 ; The crystal structure of hemagglutinin from A/wedge-tailed shearwater/Western Australia/2576/1979 (H15N9) 4WE9 ; 2.2 ; The crystal structure of hemagglutinin from influenza virus A/Victoria/361/2011 in complex with 3'SLN 6V44 ; 2.2 ; The crystal structure of hemagglutinin from swine influenza virus A/swine/Missouri/A01727926/2015 4WE6 ; 1.904 ; The crystal structure of hemagglutinin HA1 domain from influenza virus A/Perth/142/2007(H3N2) 4WE8 ; 2.1 ; The crystal structure of hemagglutinin of influenza virus A/Victoria/361/2011 3VRF ; 1.55 ; The crystal structure of hemoglobin from woolly mammoth in the carbonmonoxy forms 3VRE ; 2.2 ; The crystal structure of hemoglobin from woolly mammoth in the deoxy form 3VRG ; 1.5 ; The crystal structure of hemoglobin from woolly mammoth in the met form 3NFE ; 2.01 ; The crystal structure of hemoglobin I from trematomus newnesi in deoxygenated state 3NG6 ; 2.2 ; The crystal structure of hemoglobin I from Trematomus newnesi in deoxygenated state obtained through an oxidation/reduction cycle in which potassium hexacyanoferrate and sodium dithionite were alternatively added 5KVB ; 1.45 ; The crystal structure of hexachlorocyclohexane dehydrochlorinase LinA-type3 from Novosphingobium barchaimii LL02 6GWK ; 2.15 ; The crystal structure of Hfq from Caulobacter crescentus 1SHY ; 3.22 ; The Crystal Structure of HGF beta-chain in Complex with the Sema Domain of the Met Receptor. 2VD2 ; 2.85 ; The crystal structure of HisG from B. subtilis 4ZKI ; 3.401 ; The crystal structure of Histidine Kinase YycG with ADP 3FFH ; 2.31 ; The crystal structure of histidinol-phosphate aminotransferase from Listeria innocua Clip11262. 4U1T ; 2.0 ; The crystal structure of holo CalE6, a methionine gamma lyase from Micromonospora echinospora 5EJD ; 2.49 ; The crystal structure of holo T3CT 1HDG ; 2.5 ; THE CRYSTAL STRUCTURE OF HOLO-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM THE HYPERTHERMOPHILIC BACTERIUM THERMOTOGA MARITIMA AT 2.5 ANGSTROMS RESOLUTION 8I2M ; 2.1 ; The crystal structure of homodimeric E. coli tryptophanyl-tRNA synthetase bound with niraparib at one of its two active sites 7QVH ; 2.24 ; The crystal structure of HotPETase, an evolved thermostable variant of IsPETase 3QZ6 ; 1.999 ; The crystal structure of HpcH/HpaI aldolase from Desulfitobacterium hafniense DCB-2 5EE4 ; 2.3 ; The crystal structure of HpuA from Kingella denitrificans in complex with human haemoglobin 8X2R ; 1.45 ; The Crystal Structure of HSP 90-alpha from Biortus. 1NLT ; 2.7 ; The crystal structure of Hsp40 Ydj1 8X87 ; 2.2 ; The Crystal Structure of HspBP1 from Biortus. 3LIT ; 2.19 ; The crystal structure of htlv protease complexed with the inhibitor KNI-10681 8HD5 ; 2.14 ; The crystal structure of Hu protein in Staphylococcus aureus 2FBK ; 2.3 ; The Crystal Structure of HucR from Deinococcus radiodurans 5DD8 ; 2.05 ; The Crystal structure of HucR mutant (HucR-E48Q) from Deinococcus radiodurans 1X6V ; 1.75 ; The crystal structure of human 3'-phosphoadenosine-5'-phosphosulfate synthetase 1 3I2B ; 2.3 ; The crystal structure of human 6 Pyruvoyl Tetrahydrobiopterin Synthase 5OCH ; 3.4 ; The crystal structure of human ABCB8 in an outward-facing state 8H7H ; 2.2779 ; The crystal structure of human abl1 kinase domain in complex with abl1-A-EBA 7W7X ; 2.00001 ; The crystal structure of human abl1 kinase domain in complex with ABL1-A11 8H7F ; 2.45013 ; The crystal structure of human abl1 kinase domain in complex with abl1-B-EBA 7W7Y ; 2.20003 ; The crystal structure of human abl1 kinase domain in complex with ABL2-A5 3QRI ; 2.1 ; The crystal structure of human abl1 kinase domain in complex with DCC-2036 3QRK ; 2.3 ; The crystal structure of human abl1 kinase domain in complex with DP-987 3QRJ ; 1.82 ; The crystal structure of human abl1 kinase domain T315I mutant in complex with DCC-2036 4TWP ; 2.4 ; The crystal structure of human abl1 T315I gatekeeper mutant kinase domain in complex with axitinib 4WA9 ; 2.2 ; The crystal structure of human abl1 wild type kinase domain in complex with axitinib 3HMI ; 1.65 ; The crystal structure of human ABL2 in complex with 5-AMINO-3-{[4-(AMINOSULFONYL)PHENYL]AMINO}-N-(2,6-DIFLUOROPHENYL)-1H-1,2,4-TRIAZOLE-1-CARBOTHIOAMIDE 3GVU ; 2.05 ; The crystal structure of human ABL2 in complex with GLEEVEC 3FLV ; 1.7 ; The crystal structure of human acyl-CoenzymeA binding domain containing 5 3IAR ; 1.52 ; The crystal structure of human adenosine deaminase 1X9P ; 3.3 ; The crystal structure of human adenovirus 2 penton base 1X9T ; 3.5 ; The crystal structure of human adenovirus 2 penton base in complex with an ad2 N-terminal fibre peptide 1H0C ; 2.5 ; The crystal structure of human alanine:glyoxylate aminotransferase 2WM1 ; 2.01 ; The crystal structure of human alpha-amino-beta-carboxymuconate- epsilon-semialdehyde decarboxylase in complex with 1,3- dihydroxyacetonephosphate suggests a regulatory link between NAD synthesis and glycolysis 4W5N ; 2.9 ; The Crystal Structure of Human Argonaute2 Bound to a Defined Guide RNA 4W5T ; 2.5 ; The Crystal Structure of Human Argonaute2 Bound to a Guide and Target RNA Containing Seed Pairing from 2-7 4W5Q ; 3.101 ; The Crystal Structure of Human Argonaute2 Bound to a Guide and Target RNA Containing Seed Pairing from 2-8 4W5R ; 2.5 ; The Crystal Structure of Human Argonaute2 Bound to a Guide and Target RNA Containing Seed Pairing from 2-8 (Long Target) 4W5O ; 1.802 ; The Crystal Structure of Human Argonaute2 Bound to a Guide and Target RNA Containing Seed Pairing from 2-9 2CY7 ; 1.9 ; The crystal structure of human Atg4B 2ZZP ; 2.05 ; The crystal structure of human Atg4B(C74S)- LC3(1-124) complex 2Z0D ; 1.9 ; The crystal structure of human Atg4B- LC3(1-120) complex 2Z0E ; 1.9 ; The crystal structure of human Atg4B- LC3(1-124) complex 8JMX ; 2.9502 ; The crystal structure of human aurka kinase domain in complex with AURKA-A2 8JF4 ; 2.89288 ; The crystal structure of human AURKA kinase domain in complex with AURKA-compound 9 1CI4 ; 1.9 ; THE CRYSTAL STRUCTURE OF HUMAN BARRIER-TO-AUTOINTEGRATION FACTOR (BAF) 7CA4 ; 2.7 ; The Crystal Structure of human Bcl-2-like protein 1 from Biortus 2D4F ; 1.7 ; The Crystal Structure of human beta2-microglobulin 2D4D ; 2.1 ; The Crystal Structure of human beta2-microglobulin, L39W W60F W95F Mutant 2W8P ; 2.3 ; The crystal structure of human C340A SSADH 7W7O ; 1.59 ; The crystal structure of human Calpain-1 protease core in complex with 14a 7X79 ; 1.8 ; The crystal structure of human Calpain-1 protease core in complex with 14b 8GX3 ; 1.99 ; The crystal structure of human Calpain-1 protease core in complex with 14c 6RHK ; 1.44 ; The crystal structure of human carbonic anhydrase II in complex with 4-(3-benzylimidazolidine-1-carbonyl)benzenesulfonamide 6H33 ; 1.58 ; The crystal structure of human carbonic anhydrase II in complex with 4-(4-phenyl)-4-hydroxy-1-piperidine-1-carbonyl)benzenesulfonamide. 6H2Z ; 1.94 ; The crystal structure of human carbonic anhydrase II in complex with 4-(4-phenylpiperidine-1-carbonyl)benzenesulfonamide. 6H34 ; 1.55 ; The crystal structure of human carbonic anhydrase II in complex with 4-[(4-fluorophenyl)methyl]-1-piperazinyl]benzenesulfonamide. 3MNA ; 1.5 ; The crystal structure of human carbonic anhydrase Ii in complex with a 1,3,5-triazine-substituted benzenesulfonamide inhibitor 4FL7 ; 1.85 ; The crystal structure of human carbonic anhydrase II in complex with N-(Hydroxy)-benzamide 8Q1A ; 2.35 ; The Crystal Structure of Human Carbonic Anhydrase IX in Complex with inhibitor 8Q18 ; 2.13 ; The Crystal Structure of Human Carbonic Anhydrase IX in Complex with Sulfonamide 8Q19 ; 2.63 ; The Crystal Structure of Human Carbonic Anhydrase IX in Complex with Sulfonamide 6H37 ; 1.9 ; The crystal structure of human carbonic anhydrase VII in complex with 4-(4-phenyl)-4-hydroxy-1-piperidine-1-carbonyl)benzenesulfonamide 6H36 ; 1.85 ; The crystal structure of human carbonic anhydrase VII in complex with 4-(4-phenylpiperidine-1-carbonyl)benzenesulfonamide. 6H38 ; 1.7 ; The crystal structure of human carbonic anhydrase VII in complex with 4-[(4-fluorophenyl)methyl]-1-piperazinyl]benzenesulfonamide. 6K0O ; 1.99 ; The crystal structure of human CD163-like homolog SRCR8 1UQS ; 3.1 ; The Crystal Structure of Human CD1b with a Bound Bacterial Glycolipid 1ZT4 ; 3.0 ; The crystal structure of human CD1d with and without alpha-Galactosylceramide 2ODB ; 2.4 ; The crystal structure of human cdc42 in complex with the CRIB domain of human p21-activated kinase 6 (PAK6) 6AKX ; 2.8 ; The Crystal structure of Human Chemokine Receptor CCR5 in complex with compound 21 6AKY ; 2.8 ; The Crystal structure of Human Chemokine Receptor CCR5 in complex with compound 34 6Y2H ; 2.154 ; The crystal structure of human chloride intracellular channel protein 5 8Q4I ; 2.1 ; The crystal structure of human chloride intracellular channel protein 5 delta 57-68 8Q4J ; 2.51 ; The crystal structure of human chloride intracellular channel protein 5 delta 57-68 F34D mutant 1VFQ ; 1.9 ; The Crystal Structure of Human Coactosin-like Protein at 1.9 A Resolution 1CSK ; 2.5 ; THE CRYSTAL STRUCTURE OF HUMAN CSKSH3: STRUCTURAL DIVERSITY NEAR THE RT-SRC AND N-SRC LOOP 7W33 ; 2.39 ; The crystal structure of human CtsL in complex with 14a 7W34 ; 2.89 ; The crystal structure of human CtsL in complex with 14b 8GX2 ; 2.0 ; The crystal structure of human CtsL in complex with 14c 6LPF ; 2.49 ; The crystal structure of human cytoplasmic LRS 6LR6 ; 3.009 ; The crystal structure of human cytoplasmic LRS 2JFE ; 2.7 ; The crystal structure of human cytosolic beta-glucosidase 5GOY ; 2.278 ; The crystal structure of human cytosolic methionyl-tRNA synthetase in complex with methionine 3WJA ; 2.548 ; The crystal structure of human cytosolic NADP(+)-dependent malic enzyme in apo form 2HHB ; 1.74 ; THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74 ANGSTROMS RESOLUTION 3HHB ; 1.74 ; THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74 ANGSTROMS RESOLUTION 4HHB ; 1.74 ; THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74 ANGSTROMS RESOLUTION 7ESE ; 1.85 ; The Crystal Structure of human DHFR from Biortus 4WXX ; 2.622 ; The crystal structure of human DNMT1(351-1600) 5ZTN ; 2.496 ; The crystal structure of human DYRK2 in complex with Curcumin 5IZK ; 3.25 ; The crystal structure of human eEFSec in complex with GDP 5IZL ; 2.72 ; The crystal structure of human eEFSec in complex with GDPCP 5IZM ; 3.4 ; The crystal structure of human eEFSec in complex with GDPNP 3I85 ; 2.5 ; The Crystal Structure of Human EMMPRIN N-terminal Domain 1 3I84 ; 2.0 ; The Crystal Structure of Human EMMPRIN N-terminal Domain 1 in P6(1)22 space group 2HW5 ; 2.55 ; The crystal structure of human enoyl-coenzyme A (CoA) hydratase short chain 1, ECHS1 1XGW ; 1.9 ; The crystal structure of human enthoprotin N-terminal domain 1DT9 ; 2.7 ; THE CRYSTAL STRUCTURE OF HUMAN EUKARYOTIC RELEASE FACTOR ERF1-MECHANISM OF STOP CODON RECOGNITION AND PEPTIDYL-TRNA HYDROLYSIS 6AQ1 ; 1.4 ; The crystal structure of human FABP3 4GP3 ; 2.25 ; The crystal structure of human fascin 1 K358A mutant 4GOY ; 2.3 ; The crystal structure of human fascin 1 K41A mutant 4GP0 ; 2.5 ; The crystal structure of human fascin 1 R149A K150A R151A mutant 4GOV ; 2.2 ; The crystal structure of human fascin 1 S39D mutant 7VOX ; 2.1 ; The crystal structure of human forkhead box protein A in complex with DNA 2 7VOU ; 3.1 ; The crystal structure of human forkhead box protein in complex with DNA 1 7VOV ; 3.15 ; The crystal structure of human forkhead box protein in complex with DNA 2 3FFM ; 2.3 ; The crystal structure of human Gadd45g 2E9X ; 2.3 ; The crystal structure of human GINS core complex 3L50 ; 1.9 ; The crystal structure of human Glia Maturation Factor, Gamma (GMFG) 8I0B ; 1.73 ; The crystal structure of human glutamate receptor 2 in complex with LT-102 3L5K ; 2.0 ; The crystal structure of human Haloacid Dehalogenase-like Hydrolase Domain containing 1A (HDHD1A) 3HLT ; 2.3 ; The crystal structure of human haloacid dehalogenase-like hydrolase domain containing 2 (HDHD2) 4KNW ; 2.699 ; The crystal structure of human HDHD4 IN COMPLEX WITH MAGNESIUM AND THE PHOSPHATE MIMETIC VANADATE 4QPP ; 2.52 ; The Crystal Structure of Human HMT1 hnRNP methyltransferase-like protein 6 in complex with compound DS-421 (2-{4-[3-CHLORO-2-(2-METHOXYPHENYL)-1H-INDOL-5-YL]PIPERIDIN-1-YL}-N-METHYLETHANAMINE 1HMP ; 2.5 ; THE CRYSTAL STRUCTURE OF HUMAN HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE WITH BOUND GMP 4QGT ; 2.99 ; The Crystal Structure of Human IgG Fc Domain with Enhanced Aromatic Sequon 7AL7 ; 1.801 ; The Crystal Structure of Human IL-18 in Complex With Human IL-18 Binding Protein 4B18 ; 2.52 ; The crystal structure of human Importin alpha 5 with TERT NLS peptide 3OG4 ; 2.16 ; The crystal structure of human interferon lambda 1 complexed with its high affinity receptor in space group P21212 3OG6 ; 2.097 ; The crystal structure of human interferon lambda 1 complexed with its high affinity receptor in space group P212121 4MHL ; 2.09 ; The crystal structure of human interleukin-11 2HZ6 ; 3.1 ; The crystal structure of human IRE1-alpha luminal domain 7S6P ; 2.15 ; The crystal structure of human ISG15 2ICJ ; 1.7 ; The crystal structure of human isopentenyl diphophate isomerase 5YAK ; 2.3 ; The crystal structure of human IYD Thr239 mutant with ligand 3-Fluorotyrosine (F-Tyr) 7D4A ; 2.201 ; The Crystal Structure of human JMJD2A Tudor domain from Biortus 7CML ; 2.15 ; The Crystal Structure of human JNK2 from Biortus. 5EFS ; 1.82503 ; The crystal structure of human kynurenine aminotransferase II 2R2N ; 1.95 ; The crystal structure of human kynurenine aminotransferase II in complex with kynurenine 5EUN ; 1.825 ; The Crystal Structure of Human Kynurenine Aminotransferase II, PLP-bound form, at 1.83 A 3F3S ; 2.0 ; The Crystal Structure of Human Lambda-Crystallin, CRYL1 6ZZR ; 2.65 ; The Crystal Structure of human LDHA from Biortus 3O7W ; 2.0 ; The Crystal Structure of Human Leucine Carboxyl Methyltransferase 1 1ZDU ; 2.5 ; The Crystal Structure of Human Liver Receptor Homologue-1 6Y4Y ; 1.75 ; The crystal structure of human MACROD2 in space group P41212 6Y73 ; 1.7 ; The crystal structure of human MACROD2 in space group P43 6Y4Z ; 1.9 ; The crystal structure of human MACROD2 in space group P43212 8H7B ; 1.46408 ; The crystal structure of human mcl1 kinase domain in complex with MCL1-M-EBA 6O1E ; 2.41 ; The crystal structure of human MORC3 ATPase-CW in complex with AMPPNP 7ESF ; 1.55 ; The Crystal Structure of human MTH1 from Biortus 4D1E ; 3.5 ; THE CRYSTAL STRUCTURE OF HUMAN MUSCLE ALPHA-ACTININ-2 7CMR ; 2.2 ; The Crystal Structure of human MYST1 from Biortus. 2W4M ; 2.6 ; The Crystal Structure of human N-acetylneuraminic acid phosphatase, NANP 2FFQ ; 1.78 ; The crystal structure of human neuronal Rab6B in its active GTPgS-bound form 2FE4 ; 2.3 ; The crystal structure of human neuronal Rab6B in its inactive GDP-bound form 5ZBH ; 3.0 ; The Crystal Structure of Human Neuropeptide Y Y1 Receptor with BMS-193885 5ZBQ ; 2.7 ; The Crystal Structure of human neuropeptide Y Y1 receptor with UR-MK299 7DDZ ; 2.8 ; The Crystal Structure of Human Neuropeptide Y Y2 Receptor with JNJ-31020028 4WQ6 ; 1.72 ; The crystal structure of human Nicotinamide phosphoribosyltransferase (NAMPT) in complex with N-(4-{(S)-[1-(2-methylpropyl)piperidin-4-yl]sulfinyl}benzyl)furo[2,3-c]pyridine-2-carboxamide inhibitor (compound 21) 5UN9 ; 2.5 ; The crystal structure of human O-GlcNAcase in complex with Thiamet-G 7JX9 ; 1.96 ; The crystal structure of human ornithine aminotransferase with an intermediate bound during inactivation by (1S,3S)-3-amino-4-(hexafluoropropan-2-ylidenyl)-cyclopentane-1-carboxylic acid. 2JGY ; 1.95 ; The crystal structure of human orotidine-5'-decarboxylase domain of human uridine monophosphate synthetase (UMPS) 2DYB ; 3.15 ; The crystal structure of human p40(phox) 7D2C ; 1.56 ; The Crystal Structure of human PARP14 from Biortus. 1PSN ; 2.2 ; THE CRYSTAL STRUCTURE OF HUMAN PEPSIN AND ITS COMPLEX WITH PEPSTATIN 1PSO ; 2.0 ; The crystal structure of human pepsin and its complex with pepstatin 2F6Q ; 1.95 ; The crystal structure of human peroxisomal delta3, delta2 enoyl CoA isomerase (PECI) 7CVP ; 2.5 ; The Crystal Structure of human PHGDH from Biortus. 1NUH ; 2.51 ; The crystal structure of human phosphoglucose isomerase complexed with 5-phosphoarabinonate 3CH4 ; 1.76 ; The Crystal Structure of Human Phosphomavelonate Kinase At 1.8 A Resolution 1FZV ; 2.0 ; THE CRYSTAL STRUCTURE OF HUMAN PLACENTA GROWTH FACTOR-1 (PLGF-1), AN ANGIOGENIC PROTEIN AT 2.0A RESOLUTION 5F8Z ; 1.5 ; The crystal structure of human Plasma Kallikrein in complex with its peptide inhibitor pkalin-1 5F8T ; 1.75 ; The crystal structure of human Plasma Kallikrein in complex with its peptide inhibitor pkalin-2 5F8X ; 1.55 ; The crystal structure of human plasma kallikrein in complex with its peptide inhibitor pkalin-3 3EQ1 ; 2.8 ; The Crystal Structure of Human Porphobilinogen Deaminase at 2.8A resolution 1BY8 ; 2.6 ; THE CRYSTAL STRUCTURE OF HUMAN PROCATHEPSIN K 4KWW ; 2.55 ; The crystal structure of human quinolinic acid phosphoribosyltransferase in complex with its inhibitor phthalic acid 2F7S ; 2.7 ; The crystal structure of human Rab27b bound to GDP 2FN4 ; 1.65 ; The crystal structure of human Ras-related protein, RRAS, in the GDP-bound state 2ATV ; 1.9 ; The crystal structure of human RERG in the GDP bound state 2GJS ; 1.9 ; The crystal structure of human RRAD in complex with GDP 8YA8 ; 2.85 ; The crystal structure of human Rtel1 HHD2 domain 5W4B ; 2.65 ; The crystal structure of human S-adenosylhomocysteine hydrolase (AHCY) bound to benzothiazole inhibitor 5W49 ; 2.4 ; The crystal structure of human S-adenosylhomocysteine hydrolase (AHCY) bound to oxadiazole inhibitor 1ODB ; 2.19 ; THE CRYSTAL STRUCTURE OF HUMAN S100A12 - COPPER COMPLEX 2Y74 ; 2.95 ; THE CRYSTAL STRUCTURE OF HUMAN SOLUBLE PRIMARY AMINE OXIDASE AOC3 IN THE OFF-COPPER CONFORMATION 7DSF ; 1.8 ; The Crystal Structure of human SPR from Biortus. 2W8R ; 2.4 ; The crystal structure of human SSADH in complex with NAD+ 2W8Q ; 2.4 ; The crystal structure of human SSADH in complex with SSA. 1ZDT ; 2.1 ; The Crystal Structure of Human Steroidogenic Factor-1 1O6U ; 2.05 ; The Crystal Structure of Human Supernatant Protein Factor 2P0A ; 1.9 ; The crystal structure of human synapsin III (SYN3) in complex with AMPPNP 7YIW ; 2.89 ; The Crystal Structure of Human Tissue Nonspecific Alkaline Phosphatase (ALPL) at Acidic pH 7YIV ; 3.18 ; The Crystal Structure of Human Tissue Nonspecific Alkaline Phosphatase (ALPL) at Basic pH 1DJL ; 2.0 ; THE CRYSTAL STRUCTURE OF HUMAN TRANSHYDROGENASE DOMAIN III WITH BOUND NADP 7XBI ; 2.16 ; The crystal structure of human TrkA kinase bound to the inhibitor 1RGU ; 2.22 ; The crystal structure of human Tyrosyl-DNA Phosphodiesterase complexed with vanadate, octopamine, and tetranucleotide AGTG 3N32 ; 1.795 ; The crystal structure of human Ubiquitin adduct with Zeise's salt 7E9V ; 2.1 ; The Crystal Structure of human UMP-CMP kinase from Biortus. 4DVA ; 1.94 ; The crystal structure of human urokinase-type plasminogen activator catalytic domain 7CM2 ; 2.25 ; The Crystal Structure of human USP7 USP domain from Biortus 8TBQ ; 2.593 ; The crystal structure of human VISTA extra cellular domain in complex with Fab fragment of pH-selective anti-VISTA antibody 5ENN ; 2.7 ; The crystal structure of Human VPS34 in complex with a selective and potent inhibitor 4PH4 ; 2.8 ; The crystal structure of Human VPS34 in complex with PIK-III 5ZYU ; 1.752 ; The crystal structure of humanMGME1 with single strand DNA2 6OE8 ; 1.99 ; The crystal structure of hyper-thermostable AgUricase mutant K12C/E286C 3VGI ; 1.07 ; The crystal structure of hyperthermophilic family 12 endocellulase from Pyrococcus furiosus 3BGK ; 2.5 ; The crystal structure of hypothetic protein SMU.573 from Streptococcus mutans 1U14 ; 1.68 ; The crystal structure of hypothetical UPF0244 protein yjjX at resolution 1.68 Angstrom 5A0W ; 2.2 ; THE CRYSTAL STRUCTURE OF I-DMOI E117A IN COMPLEX WITH ITS TARGET DNA AND IN THE PRESENCE OF 2MM MN 5AKM ; 2.4 ; THE CRYSTAL STRUCTURE OF I-DMOI G20S IN COMPLEX WITH ITS TARGET DNA IN THE PRESENCE OF 2MM MG 2VS7 ; 2.05 ; The crystal structure of I-DmoI in complex with DNA and Ca 2VS8 ; 2.1 ; The crystal structure of I-DmoI in complex with DNA and Mn 4D6N ; 2.35 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 10 DAYS INCUBATION IN 5MM MG (STATE 7) 4UT0 ; 2.4 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 10 DAYS INCUBATION IN 5MM MN (STATE 7) 4D6O ; 2.2 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 1H INCUBATION IN 5MM MG (STATE 2) 4UN8 ; 2.6 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 1H INCUBATION IN 5MM MN (STATE 2) 4UNA ; 2.3 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 2 DAYS INCUBATION IN 5MM MN (STATE 4) 4UNB ; 2.55 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 6 DAYS INCUBATION IN 5MM MN (STATE 5) 4UNC ; 2.3 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 8 DAYS INCUBATION IN 5MM MN (STATE 6) 4UN9 ; 2.734 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA AT 8H INCUBATION IN 5MM MN (STATE 3) 4UN7 ; 2.7 ; THE CRYSTAL STRUCTURE OF I-DMOI IN COMPLEX WITH ITS TARGET DNA BEFORE INCUBATION IN 5MM MN (STATE 1) 5AK9 ; 2.601 ; THE CRYSTAL STRUCTURE OF I-DMOI Q42AK120M IN COMPLEX WITH ITS TARGET DNA IN THE PRESENCE OF 2MM MN 5AKF ; 2.45 ; THE CRYSTAL STRUCTURE OF I-DMOI Q42AK120M IN COMPLEX WITH ITS TARGET DNA NICKED IN THE CODING STRAND A AND IN THE PRESENCE OF 2MM MN 5AKN ; 2.75 ; THE CRYSTAL STRUCTURE OF I-DMOI Q42AK120M IN COMPLEX WITH ITS TARGET DNA NICKED IN THE non-CODING STRAND B AND IN THE PRESENCE OF 2MM MN 3R7P ; 2.704 ; The crystal structure of I-LtrI 5A0M ; 2.9 ; THE CRYSTAL STRUCTURE OF I-SCEI IN COMPLEX WITH ITS TARGET DNA IN THE PRESENCE OF MN 8EDZ ; 2.65 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ000986319 8DIP ; 2.5 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023030 8E4S ; 2.4 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023034 8DTW ; 2.33 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023036 7RKP ; 2.36 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with cyclic compound SJ001034733 7LP8 ; 2.55 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000983476 7N8F ; 2.35 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988288 7ML8 ; 2.7 ; The crystal structure of I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ001023038 1P53 ; 3.06 ; The Crystal Structure of ICAM-1 D3-D5 fragment 1ZXQ ; 2.2 ; THE CRYSTAL STRUCTURE OF ICAM-2 8X70 ; 1.7 ; The Crystal Structure of IFI16 from Biortus. 5LGJ ; 2.6 ; THE CRYSTAL STRUCTURE OF IGE FC MUTANT - P333C 1O0V ; 2.6 ; The crystal structure of IgE Fc reveals an asymmetrically bent conformation 2WPT ; 1.78 ; The crystal structure of Im2 in complex with colicin E9 DNase 5ZNE ; 1.78 ; The crystal structure of immune receptor RGA5A_S of resistance protein Pia from rice (Oryza sativa) 3QB2 ; 2.5 ; The Crystal Structure of Immunity Factor for SPN (IFS) 5JJO ; 2.002 ; The crystal structure of immunity protein PA5088 from Pseudomonas aeruginosa 5YL8 ; 1.79 ; The crystal structure of inactive dimeric peptidyl-tRNA hydrolase from Acinetobacter baumannii at 1.79 A resolution 6BMA ; 1.98 ; The crystal structure of indole-3-glycerol phosphate synthase from Campylobacter jejuni subsp. jejuni NCTC 11168 2OH5 ; 1.98 ; The Crystal Structure of Infectious Cypovirus Polyhedra 4HZV ; 1.8 ; The crystal structure of influenza A neuraminidase N3 5J4V ; 2.94 ; The crystal structure of Inhibitor Bound to JCV Helicase 5NAL ; 2.2 ; The crystal structure of inhibitor-15 covalently bound to PDE6D 4KKH ; 2.0 ; The crystal structure of inhibitor-bound JNK3 5E1S ; 2.264 ; The Crystal structure of INSR Tyrosine Kinase in complex with the Inhibitor BI 885578 6HDV ; 2.16 ; The crystal structure of intact afifavidin apo form 8WF7 ; 1.55 ; The Crystal Structure of integrase from Biortus 8DPV ; 1.48 ; The crystal structure of Interleukin-11, W147A mutant 7YA7 ; 1.4 ; The crystal structure of IpaH1.4 LRR domain 7YA8 ; 3.4 ; The crystal structure of IpaH2.5 LRR domain 8WTF ; 2.0 ; The Crystal Structure of IRAK4 from Biortus 2W7W ; 1.7 ; The crystal structure of iron superoxide dismutase from Aliivibrio salmonicida. 2IQQ ; 2.66 ; The Crystal Structure of Iron, Sulfur-Dependent L-serine dehydratase from Legionella pneumophila subsp. pneumophila 5YMR ; 2.4 ; The Crystal Structure of IseG 3EPS ; 2.8 ; The crystal structure of isocitrate dehydrogenase kinase/phosphatase from E. coli 3LCB ; 2.9 ; The crystal structure of isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli. 6K5L ; 2.55 ; The crystal structure of isocitrate dehydrogenase kinase/phosphatase wtih two Mn2+ from E. coli 4HOW ; 1.7 ; The crystal structure of isomaltulose synthase from Erwinia rhapontici NX5 4HOX ; 2.0 ; The crystal structure of isomaltulose synthase from Erwinia rhapontici NX5 in complex with Tris 4HOZ ; 2.0 ; The crystal structure of isomaltulose synthase mutant D241A from Erwinia rhapontici NX5 in complex with D-glucose 4HP5 ; 2.0 ; The crystal structure of isomaltulose synthase mutant E295A from Erwinia rhapontici NX5 in complex with D-glucose 4HPH ; 1.7 ; The crystal structure of isomaltulose synthase mutant E295Q from Erwinia rhapontici NX5 in complex with its natural substrate sucrose 2POC ; 1.8 ; The crystal structure of isomerase domain of glucosamine-6-phosphate synthase from Candida albicans 2PUT ; 1.9 ; The crystal structure of isomerase domain of glucosamine-6-phosphate synthase from Candida albicans 2PUV ; 1.9 ; The crystal structure of isomerase domain of glucosamine-6-phosphate synthase from Candida albicans 2PUW ; 3.151 ; The crystal structure of isomerase domain of glucosamine-6-phosphate synthase from Candida albicans 6BRM ; 2.55 ; The crystal structure of isothiocyanate hydrolase from Delia radicum gut bacteria 5JIA ; 1.8 ; The Crystal Structure Of IUS-SPRY Domain From RanBP10 5JI7 ; 1.51 ; The Crystal Structure Of IUS-SPRY Domain From RanBPM/9 5JI9 ; 2.5 ; The Crystal Structure Of IUS-SPRY Domain From RanBPM/9 8G8O ; 2.2 ; The crystal structure of JAK2 in complex with Compound 31 2OQ7 ; 2.15 ; The crystal structure of JMJD2A complexed with Ni and N-oxalylglycine 8WD3 ; 3.3 ; The Crystal Structure of JMJD2A(M1-L359) from Biortus. 8WUG ; 1.7 ; The Crystal Structure of JMJD2D from Biortus. 5AWM ; 1.79 ; The Crystal Structure of JNK from Drosophila melanogaster Reveals an Evolutionarily Conserved Topology with that of Mammalian JNK Proteins. 8X5M ; 2.0 ; The Crystal Structure of JNK1 from Biortus. 8WGF ; 1.85 ; The Crystal Structure of JNK3 from Biortus. 1PMU ; 2.7 ; The crystal structure of JNK3 in complex with a phenantroline inhibitor 5ZGN ; 2.24 ; The crystal structure of KacTA-DNA complex 6S0R ; 2.5 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus complex with nickel, sulfate and chloride 6S0U ; 2.15 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus in complex with nickel and 2-oxoglutarate 6S0W ; 2.36 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus in complex with nickel and kanamycin B sulfate 6S0V ; 3.0 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus in complex with nickel, neamine and sulfate 6S0S ; 2.4 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus in complex with nickel, ribostamycin B and 2-oxoglutarate 6S0T ; 2.1 ; The crystal structure of kanamycin B dioxygenase (KanJ) from Streptomyces kanamyceticus in complex with nickel, sulfate, soaked with iodide 6JW6 ; 2.8 ; The crystal structure of KanD2 in complex with NAD 6JW7 ; 2.36 ; The crystal structure of KanD2 in complex with NADH and 3""-deamino-3""-hydroxykanamycin A 6JW8 ; 2.4 ; The crystal structure of KanD2 in complex with NADH and 3""-deamino-3""-hydroxykanamycin B 7CL2 ; 2.0 ; The crystal structure of KanJ 7CL3 ; 2.2 ; The crystal structure of KanJ in complex with kanamycin B 7CL5 ; 2.5 ; The crystal structure of KanJ in complex with kanamycin B and N-oxalylglycine 7CL4 ; 2.25 ; The crystal structure of KanJ in complex with N-oxalylglycine 7CL6 ; 2.44 ; The crystal structure of KanJ in complex with neamine and N-oxalylglycine 4EZH ; 2.52 ; the crystal structure of KDM6B bound with H3K27me3 peptide 8WFG ; 2.251 ; The Crystal Structure of KEAP1 from Biortus. 3ON3 ; 2.193 ; The crystal structure of keto/oxoacid ferredoxin oxidoreductase, gamma subunit from Geobacter sulfurreducens PCA 7V4R ; 2.1 ; The crystal structure of KFDV NS3H bound with Pi 6IGN ; 3.451 ; The crystal structure of Kif5b stalk 1 coiled-coil region 4F7H ; 1.9 ; The crystal structure of kindlin-2 pleckstrin homology domain in free form 4BN2 ; 2.695 ; The crystal structure of kinesin-like protein KIF15 5Z08 ; 2.199 ; The crystal structure of kinetochore subunits Cenp-H/I/K triple complex 1OZG ; 2.3 ; The crystal structure of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate 1OZH ; 2.0 ; The crystal structure of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate. 1OZF ; 2.3 ; The crystal structure of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactors 3MNL ; 1.8 ; The crystal structure of KstR (Rv3574) from Mycobacterium tuberculosis H37Rv 4XZC ; 2.601 ; The crystal structure of Kupe virus nucleoprotein 8WGQ ; 2.75 ; The Crystal Structure of L-asparaginase from Biortus. 6DKH ; 2.608 ; The crystal structure of L-idonate 5-dehydrogenase from Escherichia coli str. K-12 substr. MG1655 7VID ; 2.5 ; The crystal structure of L-leucine dehydrogenase from Pseudomonas aeruginosa 2QMX ; 2.3 ; The crystal structure of L-Phe inhibited prephenate dehydratase from Chlorobium tepidum TLS 3AI2 ; 1.9 ; The crystal structure of L-sorbose reductase from Gluconobacter frateurii complexed with NADPH 3AI3 ; 1.8 ; The crystal structure of L-Sorbose reductase from Gluconobacter frateurii complexed with NADPH and L-sorbose 3AI1 ; 2.38 ; The crystal structure of L-sorbose reductase from Gluconobacter frateurii complexed with NADPH and L-sorbose reveals the structure bases of its catalytic mechanism and high substrate selectivity 3FKD ; 2.5 ; The crystal structure of L-threonine-O-3-phosphate decarboxylase from Porphyromonas gingivalis 2J6X ; 2.1 ; The crystal structure of lactate oxidase 7JRD ; 2.85 ; The crystal structure of lactoferrin binding protein B (LbpB) from Neisseria meningitidis in complex with human lactoferrin 4OSO ; 2.5 ; The crystal structure of landomycin C-6 ketoreductase LanV with bound NADP and rabelomycin 1MI5 ; 2.5 ; The crystal structure of LC13 TcR in complex with HLAB8-EBV peptide complex 8X2P ; 1.4 ; The Crystal Structure of LCK from Biortus. 7DS7 ; 2.15 ; The Crystal Structure of Leaf-branch compost cutinase from Biortus. 6ICA ; 2.195 ; The crystal structure of Legionella pneumophila LapA aminopeptidase 2YB0 ; 2.28 ; The Crystal Structure of Leishmania major dUTPase in complex deoxyuridine 2YAZ ; 2.4 ; The Crystal Structure of Leishmania major dUTPase in complex dUMP 2YAY ; 1.86 ; The Crystal Structure of Leishmania major dUTPase in complex with substrate analogue dUpNpp 4A26 ; 2.7 ; The crystal structure of Leishmania major N5,N10- methylenetetrahydrofolate dehydrogenase/cyclohydrolase 3RIV ; 1.76 ; The Crystal Structure of Leishmania major Peroxidase 3RIW ; 2.37 ; The Crystal Structure of Leishmania major Peroxidase mutant C197T 7PXX ; 1.81 ; The crystal structure of Leishmania major Pteridine Reductase 1 in complex with substrate folic acid 3CB4 ; 2.8 ; The Crystal Structure of LepA 1WZ2 ; 3.21 ; The crystal structure of Leucyl-tRNA synthetase and tRNA(leucine) complex 3LL3 ; 2.002 ; The crystal structure of ligand bound xylulose kinase from Lactobacillus acidophilus 2HVC ; 2.1 ; The Crystal Structure of Ligand-binding Domain (LBD) of human Androgen Receptor in Complex with a selective modulator LGD2226 1ELJ ; 1.85 ; THE CRYSTAL STRUCTURE OF LIGANDED MALTODEXTRIN-BINDING PROTEIN FROM PYROCOCCUS FURIOSUS 7MSG ; 3.5 ; The crystal structure of LIGHT in complex with HVEM and CD160 5G2C ; 2.31 ; The crystal structure of light-driven chloride pump ClR (T102D) mutant at pH 4.5. 5G2D ; 1.8 ; The crystal structure of light-driven chloride pump ClR (T102N) mutant at pH 4.5. 5G54 ; 2.0 ; The crystal structure of light-driven chloride pump ClR at pH 4.5 5G2A ; 2.17 ; The crystal structure of light-driven chloride pump ClR at pH 6.0 with Bromide ion. 5G28 ; 1.57 ; The crystal structure of light-driven chloride pump ClR at pH 6.0. 5FJG ; 2.0 ; The crystal structure of light-driven chloride pump ClR in pH 4.5. 6K6K ; 2.197 ; The crystal structure of light-driven cyanobacterial chloride importer (N63A/P118A) Mastigocladopsis repens 6K6I ; 1.9 ; The crystal structure of light-driven cyanobacterial chloride importer from Mastigocladopsis repens 6K6J ; 2.5 ; The crystal structure of light-driven cyanobacterial chloride importer from Mastigocladopsis repens with Bromide ion 8WSW ; 2.5 ; The Crystal Structure of LIMK2a from Biortus 3O60 ; 2.8 ; The Crystal Structure of Lin0861 from Listeria innocua to 2.8A 3A76 ; 2.25 ; The crystal structure of LinA 8WBV ; 1.95 ; The crystal structure of linear mannose with mutant H247F of the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus 1XS5 ; 1.85 ; The Crystal Structure of Lipoprotein Tp32 from Treponema pallidum 4U0P ; 1.623 ; The Crystal Structure of Lipoyl Synthase in Complex with S-Adenosyl Homocysteine 2XMO ; 1.7 ; The crystal structure of Lmo2642 7EGS ; 1.7 ; The crystal structure of lobe domain of E. coli RNA polymerase complexed with the C-terminal domain of UvrD 1H91 ; 1.4 ; The crystal structure of lobster apocrustacyanin A1 using softer X-rays. 5YE7 ; 2.312 ; The crystal structure of Lp-PLA2 in complex with a novel inhibitor 5YE8 ; 1.851 ; The crystal structure of Lp-PLA2 in complex with a novel inhibitor 5YE9 ; 1.876 ; The crystal structure of Lp-PLA2 in complex with a novel inhibitor 5YEA ; 1.805 ; The crystal structure of Lp-PLA2 in complex with a novel inhibitor 5TSC ; 2.008 ; The crystal structure of Lpg2147 from Legionella pneumophila 6A0Q ; 2.2 ; The crystal structure of Lpg2622_E64 complex 3C8K ; 2.9 ; The crystal structure of Ly49C bound to H-2Kb 5D74 ; 1.9 ; The crystal structure of Ly7917 5D76 ; 2.54 ; The crystal structure of Ly7917 with the hydrolyzing product of MDP 8WFF ; 1.3 ; The Crystal Structure of LYN from Biortus. 7S6O ; 1.25 ; The crystal structure of Lys48-linked di-ubiquitin 7EWT ; 3.4 ; The crystal structure of Lysophospholipid acyltransferase LPCAT3 (MOBAT5) in its monomeric and apo form 4INZ ; 1.7 ; The crystal structure of M145A mutant of an epoxide hydrolase from Bacillus megaterium 8B67 ; 2.6 ; The crystal structure of M644G variant of DNA Pol Epsilon containing CTP in the polymerase active site 8B6K ; 2.5 ; The crystal structure of M644G variant of DNA Pol Epsilon containing dCTP in the polymerase active site 8B76 ; 2.6 ; The crystal structure of M644G variant of DNA Pol Epsilon containing dTTP in the polymerase active site 8B79 ; 2.65 ; The crystal structure of M644G variant of DNA Pol Epsilon containing UTP in the polymerase active site 5YKV ; 2.31 ; The crystal structure of Macrobrachium rosenbergii nodavirus P-domain 5YKX ; 2.0 ; The crystal structure of Macrobrachium rosenbergii nodavirus P-domain with Cd ion 5YKU ; 1.39 ; The crystal structure of Macrobrachium rosenbergii nodavirus P-domain with Zn ions 2IYA ; 1.7 ; The crystal structure of macrolide glycosyltransferases: A blueprint for antibiotic engineering 2IYF ; 1.7 ; The crystal structure of macrolide glycosyltransferases: A blueprint for antibiotic engineering 4HEB ; 2.26 ; The Crystal structure of Maf protein of Bacillus subtilis 6JIJ ; 2.65 ; The Crystal Structure of Main Protease from Mouse Hepatitis Virus A59 in Complex with an inhibitor 1OCL ; 2.0 ; THE CRYSTAL STRUCTURE OF MALONAMIDASE E2 COMPLEXED WITH MALONATE FROM BRADYRHIZOBIUM JAPONICUM 1OCM ; 1.9 ; THE CRYSTAL STRUCTURE OF MALONAMIDASE E2 COVALENTLY COMPLEXED WITH PYROPHOSPHATE FROM BRADYRHIZOBIUM JAPONICUM 1OCK ; 1.8 ; THE CRYSTAL STRUCTURE OF MALONAMIDASE E2 FROM BRADYRHIZOBIUM JAPONICUM 4ISX ; 2.702 ; The crystal structure of maltose o-acetyltransferase from clostridium difficile 630 in complex with acetyl-coa 2XD2 ; 2.9 ; The crystal structure of MalX from Streptococcus pneumoniae 2XD3 ; 2.0 ; The crystal structure of MalX from Streptococcus pneumoniae in complex with maltopentaose. 5ZZP ; 1.39 ; The crystal structure of Mandelate oxidase 6A0B ; 1.65 ; The crystal structure of Mandelate oxidase mutant Y128F with (R)-3,3,3-trifluoro-2-hydroxy-propionic acid 5ZZX ; 1.49 ; The crystal structure of Mandelate oxidase mutant Y128F with (R)-mandelic acid 6A0D ; 1.65 ; The crystal structure of Mandelate oxidase mutant Y128F with (S)-2-phenylpropanoic acid 6A0G ; 1.8 ; The crystal structure of Mandelate oxidase mutant Y128F with b-Phenyllactate 5ZZY ; 1.5 ; The crystal structure of Mandelate oxidase mutant Y128F with L-Lactate 6A3T ; 2.511 ; The crystal structure of Mandelate oxidase R163L with 2-hydroxy-phenylacetamide 6A00 ; 1.59 ; The crystal structure of Mandelate oxidase with (S)-2-phenylpropionate 5ZZQ ; 1.32 ; The crystal structure of Mandelate oxidase with (S)-4-Hydroxymandelic acid 5ZZR ; 1.31 ; The crystal structure of Mandelate oxidase with (S)-mandelic acid 5ZZT ; 1.35 ; The crystal structure of Mandelate oxidase with 3,3-difluoro-2-hydroxy-3-phenylpropionic acid 6A24 ; 1.39 ; The crystal structure of Mandelate oxidase with 3-fluoropyruvate 5ZZS ; 1.398 ; The crystal structure of Mandelate oxidase with benzoic acid 6A08 ; 1.547 ; The crystal structure of Mandelate oxidase with benzoyl-formic acid 5ZZZ ; 1.446 ; The crystal structure of Mandelate oxidase Y128C with benzoyl-formic acid 6A01 ; 1.868 ; The crystal structure of Mandelate oxidase Y128F with 3,3-difluoro-2,2-dihydroxy-3-phenylpropionic acid 6A3D ; 1.923 ; The crystal structure of Mandelate oxidase Y128F with 4-Br-2-hydroxy-methylphenylacetate 6A39 ; 1.89 ; The crystal structure of Mandelate oxidase Y128F with C4a-Malic acid-monooxide-FMN adduct 3SSZ ; 2.392 ; The crystal structure of Mandelate racemase/muconate lactonizing enzyme from Rhodobacteraceae bacterium 3U9I ; 2.9 ; The crystal structure of Mandelate racemase/muconate lactonizing enzyme from Roseiflexus sp. 3T4W ; 2.522 ; The crystal structure of mandelate racemase/muconate lactonizing enzyme from Sulfitobacter sp 3H2Z ; 1.9 ; The crystal structure of mannitol-1-phosphate dehydrogenase from Shigella flexneri 3BAN ; 2.9 ; The crystal structure of mannonate dehydratase from Streptococcus suis serotype2 7FIQ ; 2.22 ; The crystal structure of mannose-bound beta-1,2-mannobiose phosphorylase from Thermoanaerobacter sp. 8YGW ; 3.301 ; The Crystal Structure of MAPK11 from Biortus 8X23 ; 1.5 ; The Crystal Structure of MAPK13 from Biortus. 8XU4 ; 3.4 ; The Crystal Structure of MAPK2 from Biortus. 8XX1 ; 2.55 ; The Crystal Structure of MAPKAP kinase 2 domain from Biortus 8XFL ; 3.0 ; The Crystal Structure of MARK4 from Biortus. 2X1D ; 1.64 ; The crystal structure of mature acyl coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum 2X1E ; 2.0 ; The crystal structure of mature acyl coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum in complex 6- aminopenicillanic acid 3FEO ; 2.5 ; The crystal structure of MBTD1 7M6B ; 1.9 ; The Crystal Structure of Mcbe1 3K05 ; 1.33 ; The crystal structure of MDC1 BRCT T2067D in complex with a minimal recognition tetrapeptide with an amidated C-terminus 1RJN ; 2.3 ; The Crystal Structure of MenB (Rv0548c) from Mycobacterium tuberculosis in Complex with the CoA Portion of Naphthoyl CoA 3PCY ; 1.9 ; THE CRYSTAL STRUCTURE OF MERCURY-SUBSTITUTED POPLAR PLASTOCYANIN AT 1.9-ANGSTROMS RESOLUTION 4TQO ; 2.57 ; The crystal structure of methanol dehydrogenase from Methylococcus capsulatus (Bath) 1QLM ; 2.0 ; The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri 4OMA ; 1.6 ; The crystal structure of methionine gamma-lyase from Citrobacter freundii in complex with L-cycloserine pyridoxal-5'-phosphate 3C2I ; 2.5 ; The Crystal Structure of Methyl-CpG Binding Domain of Human MeCP2 in Complex with a Methylated DNA Sequence from BDNF 2X8W ; 1.95 ; The Crystal Structure of Methylglyoxal Synthase from Thermus sp. GH5 Bound to Malonate. 2XW6 ; 1.08 ; The Crystal Structure of Methylglyoxal Synthase from Thermus sp. GH5 Bound to Phosphate Ion. 1EF9 ; 2.7 ; THE CRYSTAL STRUCTURE OF METHYLMALONYL COA DECARBOXYLASE COMPLEXED WITH 2S-CARBOXYPROPYL COA 4H12 ; 2.06 ; The crystal structure of methyltransferase domain of human SET domain-containing protein 2 in complex with S-adenosyl-L-homocysteine 5SBJ ; 1.28 ; The crystal structure of METP in complex with Cd at a resolution of 1.29 A. 5SBI ; 1.799 ; The crystal structure of METP in complex with Co at a resolution of 1.80A. 5SBG ; 1.338 ; The crystal structure of METP in complex with Zn at a resolution of 1.34 A. 2X58 ; 2.8 ; The crystal structure of MFE1 liganded with CoA 5BW0 ; 2.0 ; The crystal structure of minor pseudopilin binary complex of XcpV and XcpW from the Type 2 secretion system of Pseudomonas aeruginosa 5VTM ; 2.041 ; The crystal structure of minor pseudopilin ternary complex of XcpVWX from the Type 2 secretion system of Pseudomonas aeruginosa 2C2P ; 1.75 ; The crystal structure of mismatch specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans 2C2Q ; 1.7 ; The crystal structure of mismatch specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans. Inactive mutant Asp93Ala. 8YHH ; 1.95 ; The Crystal Structure of Mitotic Kinesin Eg5 from Biortus 5F6L ; 1.9 ; The crystal structure of MLL1 (N3861I/Q3867L) in complex with RbBP5 and Ash2L 7W67 ; 2.194 ; The crystal structure of MLL1 (N3861I/Q3867L/C3882SS)-RBBP5-ASH2L in complex with H3K4me0 peptide 7W6I ; 2.56 ; The crystal structure of MLL1 (N3861I/Q3867L/C3882SS)-RBBP5-ASH2L in complex with H3K4me1 peptide 7W6J ; 2.68 ; The crystal structure of MLL1 (N3861I/Q3867L/C3882SS)-RBBP5-ASH2L in complex with H3K4me2 peptide 5F5E ; 1.802 ; The Crystal Structure of MLL1 SET domain with N3816I/Q3867L mutation 7BRE ; 2.803 ; The crystal structure of MLL2 in complex with ASH2L and RBBP5 5F59 ; 2.801 ; The crystal structure of MLL3 SET domain 7W6L ; 2.26 ; The crystal structure of MLL3-RBBP5-ASH2L in complex with H3K4me0 peptide 8WR5 ; 1.7 ; The Crystal Structure of Mms2 from Biortus 8XFM ; 2.6 ; The Crystal Structure of MNK2 from Biortus. 3SGL ; 2.7 ; The crystal structure of MnmC from Yersinia pestis bound with FAD and SAM 1DEQ ; 3.5 ; THE CRYSTAL STRUCTURE OF MODIFIED BOVINE FIBRINOGEN (AT ~4 ANGSTROM RESOLUTION) 1UZ5 ; 2.05 ; The Crystal Structure of molybdopterin biosynthesis moea protein from Pyrococcus horikosii 4H00 ; 2.0 ; The crystal structure of mon-Zn dihydropyrimidinase from Tetraodon nigroviridis 4YU3 ; 2.45 ; The crystal structure of mongoose (Helogale parvula) hemoglobin at pH 8.2 4ZJ0 ; 1.5 ; The crystal structure of monomer Q108K:K40L:Y60W CRBPII bound to all-trans-retinal 4BHM ; 2.7 ; The crystal structure of MoSub1-DNA complex reveals a novel DNA binding mode 3CV6 ; 2.1 ; The crystal structure of mouse 17-alpha hydroxysteroid dehydrogenase GG225.226PP mutant in complex with inhibitor and cofactor NADP+. 1WC8 ; 1.9 ; The crystal structure of mouse bet3p 6ERY ; 1.795 ; The crystal structure of mouse chloride intracellular channel protein 6 6ERZ ; 1.923 ; The crystal structure of mouse chloride intracellular channel protein 6 5GUT ; 2.099 ; The crystal structure of mouse DNMT1 (731-1602) mutant - N1248A 5GUV ; 3.078 ; The crystal structure of mouse DNMT1 (731-1602) mutant - R1279D 2PFT ; 2.25 ; The Crystal Structure of Mouse Exo70 Reveals Unique Features of the Mammalian Exocyst 7MSJ ; 2.1 ; The crystal structure of mouse HVEM 7BYF ; 2.5 ; The crystal structure of mouse ORF10-Rae1-Nup98 complex 4BFM ; 2.35 ; The crystal structure of mouse PK38 4V0V ; 1.61 ; The crystal structure of mouse PP1G in complex with truncated human PPP1R15B (631-660) 4V0W ; 1.55 ; The crystal structure of mouse PP1G in complex with truncated human PPP1R15B (631-669) 4V0X ; 1.85 ; The crystal structure of mouse PP1G in complex with truncated human PPP1R15B (631-684) 4AJT ; 2.5 ; The crystal structure of mouse protein-Z dependent protease inhibitor(mZPI) 5IJD ; 2.7 ; The crystal structure of mouse TLR4/MD-2/lipid A complex 5IJC ; 2.57 ; The crystal structure of mouse TLR4/MD-2/neoseptin-3 complex 3EMN ; 2.3 ; The Crystal Structure of Mouse VDAC1 at 2.3 A resolution 4CQG ; 2.57 ; The crystal structure of MPK38 in complex with OTSSP167, an orally- administrative MELK selective inhibitor 3LWE ; 2.05 ; The crystal structure of MPP8 8CZQ ; 2.78 ; The crystal structure of MtbTOP1 in complex with both G- and T-segments 3FMW ; 2.89 ; The crystal structure of MtmOIV, a Baeyer-Villiger monooxygenase from the mithramycin biosynthetic pathway in Streptomyces argillaceus. 6A9Y ; 2.7 ; The crystal structure of Mu homology domain of SGIP1 2OQY ; 2.0 ; The crystal structure of muconate cycloisomerase from Oceanobacillus iheyensis 1BQS ; 2.2 ; THE CRYSTAL STRUCTURE OF MUCOSAL ADDRESSIN CELL ADHESION MOLECULE-1 (MADCAM-1) 5UE8 ; 3.35 ; The crystal structure of Munc13-1 C1C2BMUN domain 4X1Q ; 2.28 ; The crystal structure of mupain-1 in complex with murinised human uPA at pH7.4 4ZHM ; 1.9 ; The crystal structure of mupain-1--16-IG in complex with murinised human uPA at pH7.4 4X1R ; 2.1 ; The crystal structure of mupain-1-12 in complex with murinised human uPA at pH7.4 4X1N ; 1.8 ; The crystal structure of mupain-1-16 in complex with murinised human uPA at pH7.4 4X1S ; 1.9 ; The crystal structure of mupain-1-16-D9A in complex with murinised human uPA at pH7.4 4X0W ; 2.1 ; The crystal structure of mupain-1-17 in complex with murinised human uPA 4X1P ; 1.6 ; The crystal structure of mupain-1-17 in complex with murinised human uPA at pH4.6 6A8G ; 2.53 ; The crystal structure of muPAin-1-IG in complex with muPA-SPD at pH8.5 4ZHL ; 2.06 ; The crystal structure of mupain-1-IG in complex with murinised human uPA at pH7.4 6A8N ; 2.489 ; The crystal structure of muPAin-1-IG-2 in complex with muPA-SPD at pH8.5 1Y5R ; 3.0 ; The crystal structure of murine 11b-hydroxysteroid dehydrogenase complexed with corticosterone 1Y5M ; 2.3 ; The crystal structure of murine 11b-hydroxysteroid dehydrogenase: an important therapeutic target for diabetes 1U5Z ; 2.4 ; The Crystal structure of murine APRIL, pH 8.5 1QWJ ; 2.8 ; The Crystal Structure of Murine CMP-5-N-Acetylneuraminic Acid Synthetase 1DQT ; 2.0 ; THE CRYSTAL STRUCTURE OF MURINE CTLA4 (CD152) 1R7R ; 3.6 ; The crystal structure of murine p97/VCP at 3.6A 3WP5 ; 1.32 ; The crystal structure of mutant CDBFV E109A from Neocallimastix patriciarum 1YL7 ; 2.34 ; the crystal structure of Mycobacterium tuberculosis dihydrodipicolinate reductase (Rv2773c) in complex with NADH (crystal form C) 1R88 ; 1.71 ; The crystal structure of Mycobacterium tuberculosis MPT51 (FbpC1) 6CCD ; 1.8 ; The crystal structure of Mycobacterium tuberculosis Rv1747 FHA-1 7E2P ; 1.7 ; The Crystal Structure of Mycoplasma bovis enolase 5L7K ; 2.1 ; The crystal structure of myristoylated NPHP3 peptide in complex with UNC119a 5J4Y ; 2.59 ; The crystal structure of N-(4-(2-(thiazolo[5,4-c]pyridin-2-yl)phenoxy)phenyl)acetamide bound to JCV Helicase 5NCK ; 2.23 ; The Crystal Structure of N-acetylmannosamine kinase in Fusobacterium nucleatum 4RN7 ; 1.717 ; The crystal structure of N-acetylmuramoyl-L-alanine amidase from Clostridium difficile 630 8XOV ; 2.55 ; The Crystal Structure of N-terminal kinase domain of human RSK-1 from Biortus. 133D ; 1.8 ; THE CRYSTAL STRUCTURE OF N4-METHYLCYTOSINE.GUANOSIN BASE-PAIRS IN THE SYNTHETIC HEXANUCLEOTIDE D(CGCGM(4)CG) 8B77 ; 2.7 ; The crystal structure of N828V variant of DNA Pol Epsilon containing dATP in the polymerase active site 8B7E ; 2.6 ; The crystal structure of N828V variant of DNA Pol Epsilon containing UTP in the polymerase active site 3RHE ; 2.053 ; The crystal structure of NAD-dependent benzaldehyde dehydrogenase from Legionella pneumophila 3A1F ; 2.0 ; The crystal structure of NADPH binding domain of gp91(phox) 3VOU ; 3.2 ; The crystal structure of NaK-NavSulP chimera channel 4O13 ; 1.75 ; The crystal structure of NAMPT in complex with GNE-618 8K3K ; 2.43 ; The crystal structure of nanobody Nb4 in complex with receptor binding domain (RBD) of BA.1 Spike protein 5EP6 ; 1.451 ; The crystal structure of NAP1 in complex with TBK1 3WP4 ; 1.27 ; The crystal structure of native CDBFV from Neocallimastix patriciarum 8ILD ; 2.25 ; The crystal structure of native dGTP:DNApre-I:Pol X substrate ternary complex 3MJZ ; 2.4 ; The crystal structure of native FG41 MSAD 3WVJ ; 1.95 ; The crystal structure of native glycosidic hydrolase 3WRE ; 2.78 ; The crystal structure of native HypBA1 from Bifidobacterium longum JCM 1217 3WRF ; 2.25 ; The crystal structure of native HypBA1 from Bifidobacterium longum JCM 1217 4PK9 ; 1.96 ; The Crystal Structure of Native Patatin 1OGL ; 2.4 ; The crystal structure of native Trypanosoma cruzi dUTPase 5GL8 ; 1.8 ; The crystal structure of Nattokinase fragments 3C8J ; 2.6 ; The crystal structure of natural killer cell receptor Ly49C 6XMV ; 2.75 ; The crystal structure of Neisseria gonorrhoeae DolP (NGO1985) 6N4D ; 1.8 ; The crystal structure of neuramindase from A/canine/IL/11613/2015 (H3N2) influenza virus. 4WA3 ; 1.801 ; The crystal structure of neuraminidase from a H3N8 influenza virus isolated from New England harbor seals 4WA4 ; 1.95 ; The crystal structure of neuraminidase from a H3N8 influenza virus isolated from New England harbor seals in complex with oseltamivir carboxylate 4WA5 ; 1.95 ; The crystal structure of neuraminidase from a H3N8 influenza virus isolated from New England harbor seals in complex with zanamivir 5HUG ; 1.85 ; The crystal structure of neuraminidase from A/American green-winged teal/Washington/195750/2014 influenza virus 5HUN ; 2.3 ; The crystal structure of neuraminidase from A/gyrfalcon/Washington/41088-6/2014 influenza virus 5HUK ; 2.45 ; The crystal structure of neuraminidase from A/Northern pintail/Washington/40964/2014 influenza virus 5L14 ; 1.9 ; The crystal structure of neuraminidase from A/Shanghai/2/2013 (H7N9) influenza virus 5HUM ; 1.6 ; The crystal structure of neuraminidase from A/Sichuan/26221/2014 influenza virus 5L15 ; 2.4 ; The crystal structure of neuraminidase in complex with oseltamivir from A/Shanghai/2/2013 (H7N9) influenza virus 5L18 ; 1.8 ; The crystal structure of neuraminidase in complex with sialic acid from A/Shanghai/2/2013 (H7N9) influenza virus 5L17 ; 2.4 ; The crystal structure of neuraminidase in complex with zanamivir from A/Shanghai/2/2013 (H7N9) influenza virus 1NTN ; 1.9 ; THE CRYSTAL STRUCTURE OF NEUROTOXIN-I FROM NAJA NAJA OXIANA AT 1.9 ANGSTROMS RESOLUTION 3PG4 ; 2.0 ; The crystal structure of New Delhi Metallo-beta lactamase (NDM-1) 8YHW ; 2.9 ; The Crystal Structure of NF-kB-inducing Kinase (NIK) from Biortus 4Q3H ; 1.443 ; The crystal structure of NHERF1 PDZ2 CXCR2 complex revealed by the NHERF1 CXCR2 chimeric protein 7REI ; 1.78 ; The crystal structure of nickel bound human ADO C18S C239S variant 3OS4 ; 1.601 ; The Crystal Structure of Nicotinate Phosphoribosyltransferase from Yersinia pestis 1Y4Z ; 2.0 ; The crystal structure of Nitrate Reductase A, NarGHI, in complex with the Q-site inhibitor pentachlorophenol 1N70 ; 1.6 ; The Crystal Structure of Nitrite Reductase Mutant His287Ala from Rhodobacter Sphaeroides 2BMO ; 1.2 ; The Crystal Structure of Nitrobenzene Dioxygenase 2BMR ; 1.5 ; The Crystal Structure of Nitrobenzene Dioxygenase in complex with 3- nitrotoluene 2BMQ ; 1.55 ; The Crystal Structure of Nitrobenzene Dioxygenase in complex with nitrobenzene 5UU6 ; 1.95 ; The crystal structure of nitroreductase A from Vibrio parahaemolyticus RIMD 2210633 4URP ; 2.991 ; The Crystal structure of Nitroreductase from Saccharomyces cerevisiae 4RBN ; 3.05 ; The crystal structure of Nitrosomonas europaea sucrose synthase: Insights into the evolutionary origin of sucrose metabolism in prokaryotes 5DHG ; 3.0 ; The crystal structure of nociceptin/orphanin FQ peptide receptor (NOP) in complex with C-35 (PSI Community Target) 5DHH ; 3.004 ; The crystal structure of nociceptin/orphanin FQ peptide receptor (NOP) in complex with SB-612111 (PSI Community Target) 7VYY ; 2.443 ; The crystal structure of Non-hydrolyzing UDPGlcNAc 2-epimerase 7VZA ; 2.58 ; The crystal structure of Non-hydrolyzing UDPGlcNAc 2-epimerase in complex with UDP 7VZ6 ; 2.092 ; The crystal structure of Non-hydrolyzing UDPGlcNAc 2-epimerase in complex with UDP-glucose 4O2I ; 2.2 ; The crystal structure of non-LEE encoded type III effector C from Citrobacter rodentium 2R50 ; 2.2 ; The crystal structure of nonsymbiotic corn hemoglobin 1 4ROV ; 1.8 ; The crystal structure of novel APOBEC3G CD2 head-to-tail dimer suggests the binding mode of full-length APOBEC3G to HIV-1 ssDNA 4ROW ; 1.7 ; The crystal structure of novel APOBEC3G CD2 head-to-tail dimer suggests the binding mode of full-length APOBEC3G to HIV-1 ssDNA 3VSM ; 2.0 ; The crystal structure of novel chondroition lyase ODV-E66, baculovirus envelope protein 3VSN ; 2.0 ; The crystal structure of novel chondroition lyase ODV-E66, baculovirus envelope protein 4CMR ; 1.8 ; The crystal structure of novel exo-type maltose-forming amylase(Py04_0872) from Pyrococcus sp. ST04 1E9L ; 2.5 ; The crystal structure of novel mammalian lectin Ym1 suggests a saccharide binding site 4CL1 ; 3.5 ; The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors 6W4B ; 2.95 ; The crystal structure of Nsp9 RNA binding protein of SARS CoV-2 5ZVD ; 2.594 ; The crystal structure of NSun6 from Pyrococcus horikoshii 5ZVE ; 2.178 ; The crystal structure of NSun6 from Pyrococcus horikoshii with SAH 5ZVG ; 2.5 ; The crystal structure of NSun6 from Pyrococcus horikoshii with SAM 5ZVH ; 2.5 ; The crystal structure of NSun6 from Pyrococcus horikoshii with SFG 1K5J ; 2.3 ; The Crystal Structure of Nucleoplasmin-Core 7D8G ; 1.5 ; The crystal structure of nucleotide phosphatase Sa1684 from Staphylococcus aureus 3R03 ; 2.491 ; The crystal structure of NUDIX hydrolase from Rhodospirillum rubrum 1EYV ; 1.6 ; THE CRYSTAL STRUCTURE OF NUSB FROM MYCOBACTERIUM TUBERCULOSIS 5JIS ; 2.2 ; The Crystal Structure of O-acetyl serine sulfhydralase from Brucella abortus 8BVK ; 2.0 ; The crystal structure of O-glycoside cleaving beta-eliminase from A. tumefaciens AtOGE 1JF0 ; 1.82 ; The Crystal Structure of Obelin from Obelia geniculata at 1.82 A Resolution 7O3U ; 1.8 ; The crystal structure of obelin from Obelia longissima bound with v-coelenterazine 6OFD ; 2.2 ; The crystal structure of octadecyloxy(naphthalen-1-yl)methylphosphonic acid in complex with red kidney bean purple acid phosphatase 2D5W ; 1.3 ; The crystal structure of oligopeptide binding protein from Thermus thermophilus HB8 complexed with pentapeptide 5DUN ; 2.64 ; The crystal structure of OMe substituted twister ribozyme 4ERH ; 2.52 ; The crystal structure of OmpA domain of OmpA from Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S 3IRA ; 2.1 ; The crystal structure of one domain of the conserved protein from Methanosarcina mazei Go1 3H92 ; 2.2 ; The crystal structure of one domain of the protein with unknown function from Methanocaldococcus jannaschii 3IPJ ; 1.2 ; The crystal structure of one domain of the PTS system, IIabc component from Clostridium difficile 7EKR ; 2.17 ; The crystal structure of Orange carotenoid binding protein 1 (OCP1) 7XLJ ; 2.45 ; The crystal structure of ORE1(ANAC092) NAC domain 3IT6 ; 2.4 ; The Crystal Structure of Ornithine Acetyltransferase complexed with Ornithine from Mycobacterium tuberculosis (Rv1653) at 2.4 A 3IT4 ; 1.7 ; The Crystal Structure of Ornithine Acetyltransferase from Mycobacterium tuberculosis (Rv1653) at 1.7 A 4F2G ; 2.1 ; The Crystal Structure of Ornithine carbamoyltransferase from Burkholderia thailandensis E264 3CKF ; 1.25 ; The crystal structure of OspA deletion mutant 3CKG ; 1.8 ; The crystal structure of OspA deletion mutant 2I5Z ; 1.2 ; The crystal structure of OspA mutant 2OL6 ; 1.6 ; The crystal structure of OspA mutant 2OL7 ; 1.35 ; The crystal structure of OspA mutant 2OL8 ; 1.9 ; The crystal structure of OspA mutant 2OY1 ; 1.86 ; The crystal structure of OspA mutant 2OY5 ; 1.8 ; The crystal structure of OspA mutant 2OY7 ; 1.55 ; The crystal structure of OspA mutant 2OY8 ; 2.0 ; The crystal structure of OspA mutant 2OYB ; 1.3 ; The crystal structure of OspA mutant 2PI3 ; 1.4 ; The crystal structure of OspA mutant 3CKA ; 1.65 ; The crystal structure of OspA mutant 3EEX ; 2.49 ; The crystal structure of OspA mutant 4NHE ; 1.95 ; The crystal structure of oxidoreductase (Gfo/Idh/MocA family) from Streptococcus pneumoniae TIGR4 in complex with NADP 3RHA ; 2.052 ; The crystal structure of Oxidoreductase from Arthrobacter aurescens 3RH9 ; 2.63 ; The crystal structure of oxidoreductase from Marinobacter aquaeolei 3V5N ; 2.802 ; The crystal structure of oxidoreductase from Sinorhizobium meliloti 2O2Y ; 2.2 ; The crystal structure of P. falciparum enoyl acyl carrier protein reductase 6FP1 ; 1.97 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with competitive inhibitor No. 1 6FOZ ; 2.15 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with competitive inhibitor No. 13 6FPH ; 2.0 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with competitive inhibitor No. 1h 6FP0 ; 2.03 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with competitive inhibitor No. 4 6FOY ; 1.65 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with competitive inhibitor No. 9 6FOX ; 1.9 ; The crystal structure of P.fluorescens Kynurenine 3-monooxygenase (KMO) in complex with kynurenine 2UZ8 ; 2.0 ; The crystal structure of p18, human translation elongation factor 1 epsilon 1 8YHK ; 3.3 ; The Crystal Structure of P21-Activated Kinases Pak4 from Biortus 4E8A ; 2.7 ; The crystal structure of p38a MAP kinase in complex with PIA24 5OPA ; 1.345 ; The crystal structure of P450 CYP121 in complex with lead compound 7b 5OP9 ; 1.455 ; The crystal structure of P450 CYP121 in complex with lead compound 7e 7DVD ; 2.59 ; The crystal structure of p53 DNA binding domain and PUMA complex 8WD2 ; 1.85 ; The Crystal Structure of p53 from Biortus. 8XP5 ; 2.55 ; The Crystal Structure of p53/BCL-xL fusion complex from Biortus. 7EL4 ; 2.11 ; The crystal structure of p53p peptide fragment in complex with the N-terminal domain of MdmX 8X5Z ; 1.8 ; The Crystal Structure of PAK1 kinase domain from Biortus. 7VTO ; 2.59 ; The crystal structure of PAK1 with the inhibitor GW8510 1PJA ; 2.7 ; The crystal structure of palmitoyl protein thioesterase-2 reveals the basis for divergent substrate specificities of the two lysosomal thioesterases (PPT1 and PPT2) 6W9C ; 2.7 ; The crystal structure of papain-like protease of SARS CoV-2 6WRH ; 1.6 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , C111S mutant 6XG3 ; 2.48 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , C111S mutant, at room temperature 7JIR ; 2.09 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , C111S mutant, in complex with PLP_Snyder457 inhibitor 7JIT ; 1.95 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , C111S mutant, in complex with PLP_Snyder495 inhibitor 7JIV ; 2.05 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , C111S mutant, in complex with PLP_Snyder530 inhibitor 6WZU ; 1.79 ; The crystal structure of Papain-Like Protease of SARS CoV-2 , P3221 space group 7JN2 ; 1.93 ; The crystal structure of Papain-Like Protease of SARS CoV-2 in complex with PLP_Snyder441 inhibitor 7KOL ; 2.58 ; The crystal structure of Papain-Like Protease of SARS CoV-2 in complex with PLP_Snyder496 inhibitor 7JIW ; 2.3 ; The crystal structure of Papain-Like Protease of SARS CoV-2 in complex with PLP_Snyder530 inhibitor 7RBR ; 1.88 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with a Lys48-linked di-ubiquitin 7M1Y ; 2.02 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with ebselen 7RBS ; 2.98 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with human ISG15 7KRX ; 2.72 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with PLP_Snyder441 inhibitor 7KOJ ; 2.02 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with PLP_Snyder494 inhibitor 7KOK ; 2.0 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with PLP_Snyder496 inhibitor 7UV5 ; 1.45 ; The crystal structure of Papain-Like Protease of SARS CoV-2, C111S/D286N mutant, in complex with a Lys48-linked di-ubiquitin 6D7J ; 2.24 ; The Crystal Structure of Parabacteroides merdae Beta-Glucuronidase (GUS) with Glycerol in Active-Site 7C62 ; 2.027 ; The Crystal Structure of Parkinson disease protein 7 (DJ-1) from Biortus 8XPX ; 1.75 ; The Crystal Structure of PARP12 from Biortus. 8X5J ; 1.7 ; The Crystal Structure of PARP5A from Biortus. 6JM4 ; 3.20015 ; The crystal structure of PB1 homo-dimer of human P62/SQSTM1 5ZC3 ; 3.005 ; The Crystal Structure of PcRxLR12 2QTW ; 1.9 ; The Crystal Structure of PCSK9 at 1.9 Angstroms Resolution Reveals structural homology to Resistin within the C-terminal domain 8WFR ; 1.95 ; The Crystal Structure of PCSK9 from Biortus. 2XTJ ; 2.7 ; The crystal structure of PCSK9 in complex with 1D05 Fab 5ML3 ; 1.4 ; The crystal structure of PDE6D in complex to Deltasonamide1 4JV6 ; 1.87 ; The crystal structure of PDE6D in complex to inhibitor-1 5ML8 ; 2.6 ; The crystal structure of PDE6D in complex to inhibitor-4 5ML4 ; 2.4 ; The crystal structure of PDE6D in complex to inhibitor-7 5ML6 ; 1.87 ; The crystal structure of PDE6D in complex to inhibitor-8 5ML2 ; 1.6 ; The crystal structure of PDE6D in complex with inhibitor-3 4JV8 ; 1.45 ; The crystal structure of PDE6D in complex with rac-S1 4JVF ; 2.4 ; The Crystal structure of PDE6D in complex with the inhibitor (s)-5 7PAC ; 2.05 ; The crystal structure of PDE6D in the apo state 5E80 ; 2.6 ; The crystal structure of PDEd in complex with inhibitor-2a 7BQL ; 2.396 ; The crystal structure of PdxI complex with the Alder-ene adduct 2QBW ; 1.8 ; The crystal structure of PDZ-Fibronectin fusion protein 3CH8 ; 1.9 ; The crystal structure of PDZ-Fibronectin fusion protein 5GNI ; 3.008 ; The crystal structure of PECAM-1 IgL1-2 trans-homophilic dimer 4N59 ; 2.3 ; The Crystal Structure of Pectocin M2 at 2.3 Angstroms 5YKZ ; 1.17 ; The crystal structure of Penaeus vannamei nodavirus P-domain (P21) 5YL0 ; 1.22 ; The crystal structure of Penaeus vannamei nodavirus P-domain (P212121) 3TG9 ; 2.2 ; The crystal structure of penicillin binding protein from Bacillus halodurans 1V3Y ; 1.81 ; The crystal structure of peptide deformylase from Thermus thermophilus HB8 7E60 ; 2.24 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 1 7E61 ; 1.8 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 2 7E63 ; 2.4 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 2-1 7E64 ; 2.9 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 2-2 7E65 ; 2.65 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 3 7E66 ; 2.84 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 3-1 7E67 ; 2.85 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 3-2 7E69 ; 2.61 ; The crystal structure of peptidoglycan peptidase in complex with inhibitor 3-3 2RGV ; 2.05 ; The crystal structure of PerR-Ox highlights 2-oxo-Histidine formation 1PRT ; 2.9 ; THE CRYSTAL STRUCTURE OF PERTUSSIS TOXIN 4EPF ; 2.09 ; The crystal structure of pesticin from Yersinia pestis 4EPI ; 1.74 ; The crystal structure of pesticin-T4 lysozyme hybrid stabilized by engineered disulfide bonds 8B4U ; 1.71 ; The crystal structure of PET46, a PETase enzyme from Candidatus bathyarchaeota 3I2M ; 2.81 ; The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi s Sarcoma-Associated Herpesvirus 3HSL ; 2.8 ; The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus 6SBR ; 1.54 ; The crystal structure of PfA-M1 in complex with 7-amino-1,4-dibromo-5,7,8,9-tetrahydrobenzocyclohepten-6-one 6SBQ ; 1.33 ; The crystal structure of PfA-M1 in complex with 7-amino-4-phenyl-5,7,8,9-tetrahydrobenzocyclohepten-6-one 1OGQ ; 1.7 ; The crystal structure of PGIP (polygalacturonase inhibiting protein), a leucine rich repeat protein involved in plant defense 1I4Z ; 2.1 ; THE CRYSTAL STRUCTURE OF PHASCOLOPSIS GOULDII L98Y METHEMERYTHRIN 1I4Y ; 1.8 ; THE CRYSTAL STRUCTURE OF PHASCOLOPSIS GOULDII WILD TYPE METHEMERYTHRIN 2X5X ; 1.2 ; The crystal structure of PhaZ7 at atomic (1.2 Angstrom) resolution reveals details of the active site and suggests a substrate binding mode 2X76 ; 1.45 ; The crystal structure of PhaZ7 at atomic (1.2 Angstrom) resolution reveals details of the active site and suggests a substrate binding mode 1EIY ; 3.3 ; THE CRYSTAL STRUCTURE OF PHENYLALANYL-TRNA SYNTHETASE FROM THERMUS THERMOPHILUS COMPLEXED WITH COGNATE TRNAPHE 5UNC ; 1.71 ; The crystal structure of PHOSPHOENOLPYRUVATE PHOSPHOMUTASE from Streptomyces platensis subsp. rosaceus 3IE7 ; 1.6 ; The crystal structure of phosphofructokinase (lin2199) from Listeria innocua in complex with ATP at 1.6A 1ZXX ; 1.85 ; The crystal structure of phosphofructokinase from Lactobacillus delbrueckii 3HIC ; 2.02 ; THE CRYSTAL STRUCTURE OF PHOSPHOFRUCTOKINASE(Lin2199)FROM Listeria innocua 1GZV ; 3.51 ; The crystal structure of phosphoglucose isomerase from pig muscle complexed with 5-phosphoarabinonate 2GC0 ; 2.0 ; The crystal structure of phosphoglucose isomerase from Pyrococcus furiosus in complex with 5-phospho-D-arabinonohydroxamate and zinc 2GC2 ; 2.1 ; The crystal structure of phosphoglucose isomerase from Pyrococcus furiosus in complex with Fructose 6-phosphate and zinc 2GC3 ; 2.1 ; The crystal structure of phosphoglucose isomerase from Pyrococcus furiosus in complex with mannose 6-phosphate and zinc 2GC1 ; 1.95 ; The crystal structure of phosphoglucose isomerase from Pyrococcus furiosus in complex with sorbitol 6-phosphate and zinc 1N8T ; 2.5 ; The crystal structure of phosphoglucose isomerase from rabbit muscle 1B0Z ; 2.3 ; The crystal structure of phosphoglucose isomerase-an enzyme with autocrine motility factor activity in tumor cells 2PGI ; 2.3 ; THE CRYSTAL STRUCTURE OF PHOSPHOGLUCOSE ISOMERASE-AN ENZYME WITH AUTOCRINE MOTILITY FACTOR ACTIVITY IN TUMOR CELLS 1C7Q ; 2.3 ; THE CRYSTAL STRUCTURE OF PHOSPHOGLUCOSE ISOMERASE/AUTOCRINE MOTILITY FACTOR/NEUROLEUKIN COMPLEXED WITH ITS CARBOHYDRATE PHOSPHATE INHIBITORS AND ITS SUBSTRATE RECOGNITION MECHANISM 1C7R ; 2.5 ; THE CRYSTAL STRUCTURE OF PHOSPHOGLUCOSE ISOMERASE/AUTOCRINE MOTILITY FACTOR/NEUROLEUKIN COMPLEXED WITH ITS CARBOHYDRATE PHOSPHATE INHIBITORS AND ITS SUBSTRATE RECOGNITION MECHANISM 5YRR ; 2.88 ; The crystal structure of Phosphopantetheine adenylyltransferase from Acinetobacter baumannii with Coenzyme A at 2.88 A resolution 1OD6 ; 1.5 ; The Crystal Structure of Phosphopantetheine adenylyltransferase from Thermus Thermophilus in complex with 4'-phosphopantetheine 6UNC ; 2.5 ; The crystal structure of Phosphopantetheinyl Hydrolase (PptH) from Mycobacterium tuberculosis 4M9U ; 1.599 ; The crystal structure of phosphoribosylaminoimidazole carboxylase ATPase subunit of Francisella tularensis subsp. tularensis SCHU S4 5JQW ; 2.06 ; The crystal structure of phosphoribosylaminoimidazole carboxylase ATPase subunit of Francisella tularensis subsp. tularensis SCHU S4 in complex with ADP 4MAM ; 1.474 ; The crystal structure of phosphoribosylaminoimidazole carboxylase ATPase subunit of Francisella tularensis subsp. tularensis SCHU S4 in complex with an ADP analog, AMP-CP 4MA5 ; 1.809 ; The crystal structure of phosphoribosylaminoimidazole carboxylase ATPase subunit of Francisella tularensis subsp. tularensis SCHU S4 in complex with an ATP analog, AMP-PNP. 4MA0 ; 1.982 ; The crystal structure of phosphoribosylaminoimidazole carboxylase ATPase subunit of Francisella tularensis subsp. tularensis SCHU S4 in complex with partially hydrolysed ATP 5CJJ ; 2.42 ; The crystal structure of phosphoribosylglycinamide formyltransferase from Campylobacter jejuni subsp. jejuni NCTC 11168 4S1N ; 2.7 ; The crystal structure of phosphoribosylglycinamide formyltransferase from Streptococcus pneumoniae TIGR4 3A77 ; 1.8 ; The crystal structure of phosphorylated IRF-3 1XWM ; 2.5 ; The crystal structure of PhoU (phosphate uptake regulator), Structural genomics 2BV8 ; 2.01 ; The crystal structure of Phycocyanin from Gracilaria chilensis. 6INR ; 2.34 ; The crystal structure of phytoplasmal effector causing phyllody symptoms 1 (PHYL1) 5I6U ; 2.842 ; The crystal structure of PI3Kdelta with compound 32 5I4U ; 2.372 ; The crystal structure of PI3Kdelta with compound 34 2EG1 ; 1.8 ; The crystal structure of PII protein 2EG2 ; 1.72 ; The crystal structure of PII protein 2Z0G ; 2.1 ; The crystal structure of PII protein 8WZD ; 2.05 ; The Crystal Structure of PKCi from Biortus 1WZ3 ; 1.8 ; The crystal structure of plant ATG12 2ZFD ; 1.2 ; The crystal structure of plant specific calcium binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14 1OGP ; 2.6 ; The crystal structure of plant sulfite oxidase provides insight into sulfite oxidation in plants and animals 2BMA ; 2.7 ; The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs 2H66 ; 2.5 ; The Crystal Structure of Plasmodium Vivax 2-Cys peroxiredoxin 7PCY ; 1.8 ; THE CRYSTAL STRUCTURE OF PLASTOCYANIN FROM A GREEN ALGA, ENTEROMORPHA PROLIFERA 8X72 ; 2.2 ; The Crystal Structure of PLK1 from Biortus. 7X80 ; 1.97 ; The crystal structure of PloI4-C16M/D46A/I137V 7X81 ; 2.104 ; The crystal structure of PloI4-C16M/D46A/I137V in complex with exo-2+2 adduct 7X86 ; 2.303 ; The crystal structure of PloI4-F124L in complex with endo-4+2 adduct 4CP6 ; 1.34 ; The Crystal structure of Pneumococcal vaccine antigen PcpA 6H1V ; 2.7 ; The crystal structure of Pol2CORE in complex with DNA and an incoming nucleotide, carrying an Fe-S cluster 6QIB ; 2.8 ; The crystal structure of Pol2CORE in complex with DNA and an incoming nucleotide, carrying an Fe-S cluster 6FWK ; 2.503 ; The crystal structure of Pol2CORE-M644G in complex with DNA and an incoming nucleotide 8XPG ; 2.7 ; The Crystal Structure of polo box domain of Plk4 from Biortus. 8XB9 ; 1.95 ; The Crystal Structure of polo-box domain of PLK1 from Biortus. 5BY9 ; 4.0 ; The crystal structure of polyglycilated 14-3-3 protein from Giardia intestinalis 2PCY ; 1.8 ; THE CRYSTAL STRUCTURE OF POPLAR APOPLASTOCYANIN AT 1.8-ANGSTROMS RESOLUTION. THE GEOMETRY OF THE COPPER-BINDING SITE IS CREATED BY THE POLYPEPTIDE 3IFU ; 2.42 ; The Crystal Structure of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Leader Protease Nsp1 4KTB ; 1.936 ; The crystal structure of posible asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases from Jonesia denitrificans DSM 20603 3BWG ; 2.09 ; The crystal structure of possible transcriptional regulator YydK from Bacillus subtilis subsp. subtilis str. 168 4ZHP ; 2.46 ; The crystal structure of Potato ferredoxin I with 2Fe-2S cluster 8WFE ; 2.2 ; The Crystal Structure of PPARg from Biortus. 2X7K ; 1.15 ; The crystal structure of PPIL1 in complex with cyclosporine A suggests a binding mode for SKIP 2X1C ; 1.85 ; The crystal structure of precursor acyl coenzyme A:isopenicillin N acyltransferase from Penicillium chrysogenum 3K32 ; 2.5 ; The crystal structure of predicted subunit of tRNA methyltransferase from Methanocaldococcus jannaschii DSM 3PQB ; 2.324 ; The crystal structure of pregilvocarcin in complex with GilR, an oxidoreductase that catalyzes the terminal step of gilvocarcin biosynthesis 4K5S ; 1.9 ; The crystal structure of premithramycin B in complex with MTMOIV, a baeyer-villiger monooxygenase from the mithramycin biosynthetic pathway in streptomyces argillaceus. 3MWB ; 2.0 ; The Crystal Structure of Prephenate dehydratase in complex with L-Phe from Arthrobacter aurescens to 2.0A 8X5L ; 2.75 ; The Crystal Structure of PRKACA from Biortus. 3HDJ ; 1.7 ; The crystal structure of probable ornithine cyclodeaminase from Bordetella pertussis Tohama I 2ESN ; 2.1 ; The crystal structure of probable transcriptional regulator PA0477 from Pseudomonas aeruginosa 1FAZ ; 1.4 ; THE CRYSTAL STRUCTURE OF PROKARYOTIC PHOSPHOLIPASE A2 1X2E ; 2.4 ; The crystal structure of prolyl aminopeptidase complexed with Ala-TBODA 1X2B ; 2.4 ; The crystal structure of prolyl aminopeptidase complexed with Sar-TBODA 2PMW ; 2.3 ; The Crystal Structure of Proprotein convertase subtilisin kexin type 9 (PCSK9) 1VBJ ; 2.1 ; The crystal structure of prostaglandin F synthase from Trypanosoma brucei 3FVF ; 1.6 ; The Crystal Structure of Prostasin Complexed with Camostat at 1.6 Angstroms Resolution 3TNE ; 2.4 ; The crystal structure of protease Sapp1p from Candida parapsilosis in complex with the HIV protease inhibitor ritonavir 3HIU ; 1.85 ; The crystal structure of protein (XCC3681) from Xanthomonas campestris pv. campestris str. ATCC 33913 2HNG ; 1.63 ; The Crystal Structure of Protein of Unknown Function SP1558 from Streptococcus pneumoniae 2FEF ; 1.9 ; The Crystal Structure of Protein PA2201 from Pseudomonas aeruginosa 4DZR ; 2.551 ; The crystal structure of protein-(glutamine-N5) methyltransferase (release factor-specific) from Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446 3OF7 ; 1.9 ; The Crystal Structure of Prp20p from Saccharomyces cerevisiae and Its Binding Properties to Gsp1p and Histones 4RTI ; 1.8 ; The crystal structure of PsbP from Spinacia oleracea 4RTH ; 1.6 ; The crystal structure of PsbP from Zea mays 8EJU ; 1.74 ; The crystal structure of Pseudomonas putida PcaR 8EJV ; 2.43 ; The crystal structure of Pseudomonas putida PcaR in complex with succinate 4EQ6 ; 1.8 ; The crystal structure of Psy3-Csm2 complex from budding yeast 3L8R ; 2.5 ; The crystal structure of PtcA from S. mutans 8XOY ; 1.55 ; The Crystal Structure of PTP1B from Biortus. 8XQD ; 2.55 ; The Crystal Structure of PTPRG from Biortus. 2F9H ; 1.57 ; The Crystal Structure of PTS System IIA Component from Enterococcus faecalis V583 7VF6 ; 1.703 ; The crystal structure of PurZ0 2PJZ ; 1.9 ; The crystal structure of putative Cobalt transport ATP-binding protein (cbiO-2), ST1066 2AFR ; 2.3 ; The Crystal Structure of Putative Precorrin Isomerase CbiC in Cobalamin Biosynthesis 2AFV ; 3.0 ; The Crystal Structure of Putative Precorrin Isomerase CbiC in Cobalamin Biosynthesis 3NRT ; 2.54 ; The crystal structure of putative ryanodine receptor from Bacteroides thetaiotaomicron VPI-5482 3EOQ ; 2.29 ; The crystal structure of putative zinc protease beta-subunit from Thermus thermophilus HB8 1PVU ; 2.4 ; THE CRYSTAL STRUCTURE OF PVUII ENDONUCLEASE REVEALS EXTENSIVE STRUCTURAL HOMOLOGIES TO ECORV 3QJ6 ; 2.3 ; The crystal structure of PWWP domain of human Hepatoma-derived growth factor 2 in complex with H3K79me3 peptide 8HIB ; 2.45 ; The crystal structure of Pygo2-LDB1-SSBP2 triple complex 4LE7 ; 2.09 ; The Crystal Structure of Pyocin L1 at 2.09 Angstroms 4LEA ; 2.55 ; The Crystal Structure of Pyocin L1 bound to D-mannose at 2.55 Angstroms 4LED ; 2.37 ; The Crystal Structure of Pyocin L1 bound to D-rhamnose at 2.37 Angstroms 3S2S ; 1.7 ; The crystal structure of pyrazinamidase/nicotinamidase from streptococcus mutans UA159 1BRW ; 2.1 ; THE CRYSTAL STRUCTURE OF PYRIMIDINE NUCLEOSIDE PHOSPHORYLASE IN A CLOSED CONFORMATION 2JJQ ; 1.8 ; The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)- methyltransferase in complex with S-adenosyl-L-homocysteine 2VS1 ; 2.1 ; The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)- methyltransferase in complex with S-adenosyl-L-homocysteine 1X7N ; 1.89 ; The crystal structure of Pyrococcus furiosus phosphoglucose isomerase with bound 5-phospho-D-arabinonate and Manganese 5X4H ; 2.801 ; The crystal structure of Pyrococcus furiosus RecJ (wild-type) 5X4J ; 2.04 ; The crystal structure of Pyrococcus furiosus RecJ (Zn-soaking) 1W85 ; 2.0 ; The crystal structure of pyruvate dehydrogenase E1 bound to the peripheral subunit binding domain of E2 1W88 ; 2.3 ; The crystal structure of pyruvate dehydrogenase E1(D180N,E183Q) bound to the peripheral subunit binding domain of E2 1MT1 ; 2.2 ; The Crystal Structure of Pyruvoyl-dependent Arginine Decarboxylase from Methanococcus jannaschii 1N13 ; 1.4 ; The Crystal Structure of Pyruvoyl-dependent Arginine Decarboxylase from Methanococcus jannashii 7LSQ ; 1.67131 ; The Crystal Structure of Q108K:K40E:T53A:R58W:Q38F:Q4F:Y19W Mutant of HCRBPII Bound with LizFluor Chromophore Showing Excited State Intermolecular Proton Transfer 7MFX ; 1.59 ; The Crystal Structure of Q108K:K40H:T53A:R58L:Q38F:Q4F Mutant of HCRBPII Bound with FR1 Chromophore Showing Excited State Intermolecular Proton Transfer 7MFY ; 1.26 ; The Crystal Structure of Q108K:K40L:T51V:T53S:R58W:Y19W:A33W:L117E Mutant of HCRBPII Bound with LizFluor 4HQE ; 2.299 ; The crystal structure of QsrR-DNA complex 4HQM ; 2.55 ; The crystal structure of QsrR-menadione complex 1KD5 ; 1.58 ; The Crystal Structure of r(GGUCACAGCCC)2 metal free form 1KD4 ; 1.85 ; The Crystal Structure of r(GGUCACAGCCC)2, Barium form 1KD3 ; 1.8 ; The Crystal Structure of r(GGUCACAGCCC)2, Thallium form 4N05 ; 2.605 ; The crystal structure of R43A mutant putative ryanodine receptor from Bacteroides Thetaiotaomicron VPI-5482 4LLC ; 2.0 ; The crystal structure of R60E mutant of the histidine kinase (KinB) sensor domain from Pseudomonas aeruginosa PA01 4LLE ; 1.68 ; The crystal structure of R60L mutant of the histidine kinase (KinB) sensor domain from Pseudomonas aeruginosa PA01 5FZT ; 2.1 ; The crystal structure of R7R8 in complex with a DLC1 fragment. 8WFQ ; 3.5 ; The Crystal Structure of RALDH1 from Biortus. 5JIU ; 2.054 ; The crystal structure of RanBPM/9 IUS-SPRY domain in complex with DDX-4 peptide 4QFI ; 1.784 ; The crystal structure of rat angiogenin-heparin complex 4QFJ ; 2.196 ; The crystal structure of rat angiogenin-heparin complex 7VS3 ; 2.595 ; The crystal structure of rat calcium-dependent activator protein for secretion (CAPS) C2PH 6A68 ; 2.901 ; the crystal structure of rat calcium-dependent activator protein for secretion (CAPS) DAMH domain 7F5H ; 3.0 ; The crystal structure of RBD-Nanobody complex, DL28 (SC4) 7F5G ; 1.75 ; The crystal structure of RBD-Nanobody complex, DL4 (SA4) 3FUO ; 1.8 ; The Crystal structure of receptor binding domain of botulinum neurotoxin serotype A 1W3S ; 2.4 ; The crystal structure of RecO from Deinococcus radiodurans. 2WUX ; 1.838 ; the crystal structure of recombinant baculovirus polyhedra 7RST ; 1.69 ; The Crystal Structure of Recombinant Chloroperoxidase Expressed in Aspergillus niger 2OH6 ; 2.1 ; The Crystal Structure of Recombinant Cypovirus Polyhedra 1RNE ; 2.4 ; THE CRYSTAL STRUCTURE OF RECOMBINANT GLYCOSYLATED HUMAN RENIN ALONE AND IN COMPLEX WITH A TRANSITION STATE ANALOG INHIBITOR 6KYE ; 2.28 ; The crystal structure of recombinant human adult hemoglobin 1NAP ; 1.9 ; THE CRYSTAL STRUCTURE OF RECOMBINANT HUMAN NEUTROPHIL-ACTIVATING PEPTIDE-2 (M6L) AT 1.9-ANGSTROMS RESOLUTION 3COO ; 2.0 ; The crystal structure of Reelin-N domain of F-spondin 2NZJ ; 2.5 ; The crystal structure of REM1 in complex with GDP 1PP4 ; 2.5 ; The crystal structure of rhamnogalacturonan acetylesterase in space group P3121 2FV8 ; 1.9 ; The crystal structure of RhoB in the GDP-bound state 2P7U ; 1.65 ; The crystal structure of rhodesain, the major cysteine protease of T. brucei rhodesiense, bound to inhibitor K777 1EU1 ; 1.3 ; THE CRYSTAL STRUCTURE OF RHODOBACTER SPHAEROIDES DIMETHYLSULFOXIDE REDUCTASE REVEALS TWO DISTINCT MOLYBDENUM COORDINATION ENVIRONMENTS. 2Q3H ; 1.73 ; The crystal structure of RhouA in the GDP-bound state. 2G6V ; 2.6 ; The crystal structure of ribD from Escherichia coli 2OBC ; 3.0 ; The crystal structure of RibD from Escherichia coli in complex with a substrate analogue, ribose 5-phosphate (beta form), bound to the active site of the reductase domain 2O7P ; 3.0 ; The crystal structure of RibD from Escherichia coli in complex with the oxidised NADP+ cofactor in the active site of the reductase domain 1JN4 ; 1.8 ; The Crystal Structure of Ribonuclease A in complex with 2'-deoxyuridine 3'-pyrophosphate (P'-5') adenosine 3LXO ; 1.549 ; The crystal structure of ribonuclease A in complex with thymidine-3'-monophosphate 1RBB ; 2.5 ; THE CRYSTAL STRUCTURE OF RIBONUCLEASE B AT 2.5-ANGSTROMS RESOLUTION 1BOL ; 2.0 ; THE CRYSTAL STRUCTURE OF RIBONUCLEASE RH FROM RHIZOPUS NIVEUS AT 2.0 A RESOLUTION 3IGR ; 2.0 ; The Crystal Structure of Ribosomal-protein-S5-alanine Acetyltransferase from Vibrio fischeri to 2.0A 3PTK ; 2.49 ; The crystal structure of rice (Oryza sativa L.) Os4BGlu12 3PTM ; 2.4 ; The crystal structure of rice (Oryza sativa L.) Os4BGlu12 with 2-fluoroglucopyranoside 3PTQ ; 2.45 ; The crystal structure of rice (Oryza sativa L.) Os4BGlu12 with dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside 7DV8 ; 2.447 ; The crystal structure of rice immune receptor RGA5-HMA2. 3I5H ; 3.4 ; The crystal structure of rigor like squid myosin S1 in the absence of nucleotide 3N6L ; 2.6 ; The crystal structure of RNA-dependent RNA polymerase of EV71 virus 1YRG ; 2.66 ; THE CRYSTAL STRUCTURE OF RNA1P: A NEW FOLD FOR A GTPASE-ACTIVATING PROTEIN 2G8Q ; 1.5 ; The crystal structure of RNase A from monoclinic crystals at 100 K 7ZWG ; 1.31 ; The Crystal structure of RO4493940 bound to CK2alpha 7A4Q ; 1.42 ; The Crystal structure of RO4613269 bound to CK2alpha 7RGU ; 3.2 ; The crystal structure of RocC bound to a transcriptional terminator 7RGT ; 2.02 ; The crystal structure of RocC, containing FinO domain, 1-126 7RGS ; 2.1 ; The crystal structure of RocC, containing FinO domain, 24-126 8XU5 ; 3.5 ; The Crystal Structure of RORgT from Biortus. 5H6X ; 1.6 ; The crystal structure of RpoS fragment including a partial region 1.2 and region 2 from intracellular pathogen Legionella pneumophila 3C8O ; 1.9 ; The Crystal Structure of RraA from PAO1 7XBG ; 3.37 ; The crystal structure of RshSTT182/200 RBD-insert2-T346R-Y496G mutant in complex with human ACE2 8WF4 ; 2.65 ; The Crystal Structure of RSK1 from Biortus. 8XFY ; 3.2 ; The Crystal Structure of RSK2 from Biortus. 8POF ; 1.85 ; The crystal structure of RsSymEG1 reveals a unique form of smaller GH7 endoglucanases alongside GH7 cellobiohydrolases in protist symbionts of termites 1BXN ; 2.7 ; THE CRYSTAL STRUCTURE OF RUBISCO FROM ALCALIGENES EUTROPHUS TO 2.7 ANGSTROMS. 7FF5 ; 2.37 ; The crystal structure of Ruminiclostridium cellulolyticum Phosphocarrier 5Z18 ; 2.495 ; The crystal structure of Ruminococcus gnavus beta-glucuronidase 5Z19 ; 2.503 ; The crystal structure of Ruminococcus gnavus beta-glucuronidase in complex with uronic isofagomine 3CIS ; 2.9 ; The Crystal Structure of Rv2623 from Mycobacterium tuberculosis 5YO2 ; 2.997 ; The crystal structure of Rv2747 from Mycobacterium tuberculosis in complex with Acetyl CoA and L-Arginine 6ADD ; 2.301 ; The crystal structure of Rv2747 from Mycobacterium tuberculosis in complex with CoA and NLQ 6FM4 ; 2.7 ; The crystal structure of S. aureus Gyrase complex with ID-130 and DNA 2DCM ; 2.9 ; The Crystal Structure of S603A Mutated Prolyl Tripeptidyl Aminopeptidase Complexed with Substrate 3A7P ; 2.8 ; The crystal structure of Saccharomyces cerevisiae Atg16 2DYT ; 2.5 ; The crystal structure of Saccharomyces cerevisiae Atg3 2DYM ; 2.2 ; The crystal structure of Saccharomyces cerevisiae Atg5- Atg16(1-46) complex 2DYO ; 1.97 ; The crystal structure of Saccharomyces cerevisiae Atg5- Atg16(1-57) complex 2ZPN ; 2.7 ; The crystal structure of Saccharomyces cerevisiae Atg8- Atg19(412-415) complex 1LBQ ; 2.4 ; The crystal structure of Saccharomyces cerevisiae ferrochelatase 6L5T ; 1.72 ; The crystal structure of SADS-CoV Papain Like protease 5F1A ; 2.38 ; The Crystal Structure of Salicylate Bound to Human Cyclooxygenase-2 6L0Z ; 1.6 ; The crystal structure of Salmonella enterica sugar-binding protein MalE 7ZG5 ; 2.0 ; The crystal structure of Salmonella TacAT3-DNA complex 4HT3 ; 1.3 ; The crystal structure of Salmonella typhimurium Tryptophan Synthase at 1.30A complexed with N-(4'-TRIFLUOROMETHOXYBENZENESULFONYL)-2-AMINO-1-ETHYLPHOSPHATE (F9) inhibitor in the alpha site, internal aldimine 1ZA7 ; 2.7 ; The crystal structure of salt stable cowpea cholorotic mottle virus at 2.7 angstroms resolution. 3NX5 ; 2.31 ; The crystal structure of Sanguinarine bound to DNA d(CGTACG) 2FA9 ; 2.5 ; The crystal structure of Sar1[H79G]-GDP provides insight into the coat-controlled GTP hydrolysis in the disassembly of COP II 2CME ; 2.8 ; The crystal structure of SARS coronavirus ORF-9b protein 2GA6 ; 2.7 ; The crystal structure of SARS nsp10 without zinc ion as additive 8H6I ; 1.9 ; The crystal structure of SARS-CoV-2 3C-like protease Double Mutant (L50F and E166V) in complex with a traditional Chinese Medicine Inhibitors 7VIC ; 2.1 ; The crystal structure of SARS-CoV-2 3C-like protease in complex with a traditional Chinese Medicine Inhibitors 7VTH ; 2.0 ; The crystal structure of SARS-CoV-2 3CL protease in complex with compound 1 7VU6 ; 1.8 ; The crystal structure of SARS-CoV-2 3CL protease in complex with compound 3 8HBK ; 1.8 ; The crystal structure of SARS-CoV-2 3CL protease in complex with Ensitrelvir 7D64 ; 2.45012 ; The crystal structure of SARS-CoV-2 3CLpro with Zinc 8GXG ; 1.69 ; The crystal structure of SARS-CoV-2 main protease in complex with 14a 8GXH ; 1.59 ; The crystal structure of SARS-CoV-2 main protease in complex with 14b 8GXI ; 1.69 ; The crystal structure of SARS-CoV-2 main protease in complex with 14c 7L5D ; 1.58 ; The crystal structure of SARS-CoV-2 Main Protease in complex with demethylated analog of masitinib 7CBT ; 2.346 ; The crystal structure of SARS-CoV-2 main protease in complex with GC376 7JU7 ; 1.6 ; The crystal structure of SARS-CoV-2 Main Protease in complex with masitinib 7KYU ; 1.48 ; The crystal structure of SARS-CoV-2 Main Protease with the formation of Cys145-1H-indole-5-carboxylate 6YZ1 ; 2.4 ; The crystal structure of SARS-CoV-2 nsp10-nsp16 methyltransferase complex with Sinefungin 7XBY ; 2.85 ; The crystal structure of SARS-CoV-2 Omicron BA.1 variant RBD in complex with equine ACE2 7TVS ; 1.88613 ; The Crystal Structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with demethylated analog of masitinib 7TVX ; 2.094 ; The Crystal Structure of SARS-CoV-2 Omicron Mpro (P132H) in complex with masitinib 7D7K ; 1.9 ; The crystal structure of SARS-CoV-2 papain-like protease in apo form 7D7L ; 2.11 ; The crystal structure of SARS-CoV-2 papain-like protease in complex with YM155 6DNM ; 1.397 ; The crystal structure of SatS c-terminal domain 6DRQ ; 2.3 ; The crystal structure of SatS c-terminal domain in complex with bromine 6LYJ ; 2.1 ; The crystal structure of SAUGI/EBVUDG complex 5AYR ; 2.4 ; The crystal structure of SAUGI/human UDG complex 6LYV ; 2.7 ; The crystal structure of SAUGI/KSHVUDG complex 5WSX ; 2.4 ; The crystal structure of SAV606 6H30 ; 2.8 ; The crystal structure of SBD1-SBD2 tandem of GlnPQ transporter 2OFC ; 1.11 ; The crystal structure of Sclerotium rolfsii lectin 2OFD ; 1.96 ; The Crystal Structure of Sclerotium rolfsii lectin in complex with N-acetyl-D-galactosamine 2OFE ; 1.7 ; The Crystal structure of Sclerotium rolfsii lectin in complex with N-acetyl-D-glucosamine 4YLD ; 1.7 ; The crystal structure of Sclerotium Rolfsii lectin variant 1 (SSR1) 4Z2Q ; 1.9 ; The crystal structure of Sclerotium Rolfsii lectin variant 1 (SSR1) in complex with N-acetyl-glucosamine 4Z2S ; 1.7 ; The crystal structure of Sclerotium Rolfsii lectin variant 2 (SSR2) in complex with N-acetyl-glucosamine 7D8F ; 1.15 ; The crystal structure of ScNTM1 in complex with SAH 7D8D ; 1.05 ; The crystal structure of ScNTM1 in complex with SAH and Rps25a hexapeptide 7SCP ; 1.99 ; The crystal structure of ScoE in complex with intermediate 5IHW ; 1.25 ; The crystal structure of SdrE from staphylococcus aureus 6IMJ ; 2.554 ; The crystal structure of Se-AsfvLIG:DNA complex 5HR9 ; 2.2 ; The crystal structure of Se-AsfvPolX(L52/163M mutant) in complex with 1nt-gap DNA1 6F03 ; 2.2 ; The crystal structure of secreted antigen BPSL2520 3U0O ; 2.25 ; The crystal structure of selenophosphate synthetase from E. coli 1OXW ; 2.2 ; The Crystal Structure of SeMet Patatin 5HD2 ; 2.276 ; The crystal structure of SeMet-Cry51Aa2-L11M 5EGF ; 2.29 ; The crystal structure of SeMet-CT 3ICY ; 2.684 ; The crystal structure of sensory box histidine kinase/response regulator domain from Chlorobium tepidum TLS 7DAJ ; 2.3 ; The crystal structure of serotonin N-acetyltransferase in complex with acetyl-CoA from Oryza Sativa 4I35 ; 1.501 ; The crystal structure of serralysin 3UXY ; 2.097 ; The crystal structure of short chain dehydrogenase from Rhodobacter sphaeroides 8AST ; 1.55 ; The Crystal structure of short F46Y agroavidin - apo 8ASU ; 2.52 ; The Crystal structure of short F46Y agroavidin - biotin complex 8YHI ; 1.75 ; The Crystal Structure of SHP1 from Biortus. 8WFY ; 2.6 ; The Crystal Structure of SHP2 from Biortus. 6KKO ; 2.099 ; The crystal structure of SiaB-SiaC complex from Pseudomonas aeruginosa 4BBW ; 2.3 ; The crystal structure of Sialidase VPI 5482 (BTSA) from Bacteroides thetaiotaomicron 3K2N ; 2.5 ; The crystal structure of sigma-54-dependent transcriptional regulator domain from Chlorobium Tepidum TLS 6K0L ; 1.58 ; The crystal structure of simian CD163 SRCR5 3ZHK ; 1.962 ; The crystal structure of single domain antibody 2x1 scaffold 3ZHL ; 2.47 ; The crystal structure of single domain antibody 8-14 scaffold 3ZHD ; 1.962 ; The crystal structure of single domain antibody 8-4 scaffold. 6TCI ; 1.47 ; The crystal structure of SleB N-terminal domain 3L9D ; 2.484 ; The Crystal Structure of smu.1046c from Streptococcus mutans UA159 3L7Y ; 1.996 ; The Crystal Structure of SMU.1108c from Streptococcus mutans UA159 3L78 ; 1.9 ; The crystal structure of SMU.1142C from Streptococcus mutans UA159 3LA8 ; 1.8 ; The Crystal Structure of smu.1229 from Streptococcus mutans UA159 3LBA ; 2.24 ; The Crystal Structure of smu.1229 from Streptococcus mutans UA159 bound to hypoxanthine 3L87 ; 2.0 ; The Crystal Structure of smu.143c from Streptococcus mutans UA159 3L9F ; 1.8 ; The Crystal Structure of smu.1604c from Streptococcus mutans UA159 3L7W ; 2.2 ; The Crystal Structure of smu.1704 from Streptococcus mutans UA159 3LD2 ; 2.5 ; The Crystal Structure of smu.2055 from Streptococcus mutans UA159 3L9T ; 2.206 ; The Crystal Structure of smu.31 from Streptococcus mutans UA159 3L7X ; 1.699 ; The Crystal Structure of SMU.412c from Streptococcus mutans UA159 3L86 ; 2.06 ; The Crystal Structure of smu.665 from Streptococcus mutans UA159 3L9C ; 1.6 ; The Crystal Structure of smu.777 from Streptococcus mutans UA159 3LBB ; 2.1 ; The Crystal Structure of smu.793 from Streptococcus mutans UA159 3LBE ; 1.7 ; The Crystal Structure of smu.793 from Streptococcus mutans UA159 bound to acetyl CoA 3LEH ; 1.7 ; The Crystal Structure of smu.943c from Streptococcus mutans UA159 3UC3 ; 1.9 ; The crystal structure of Snf1-related kinase 2.3 3UC4 ; 2.3 ; The crystal structure of Snf1-related kinase 2.6 3BFR ; 2.05 ; The crystal structure of Sod2 from Saccharomyces cerevisiae 4GLP ; 4.002 ; The crystal structure of soluble human CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. 4XDX ; 0.95 ; The crystal structure of soluble human interleukin 8 expressed in Pichia pastoris 2OQW ; 2.1 ; The crystal structure of sortase B from B.anthracis in complex with AAEK1 2OQZ ; 1.6 ; The crystal structure of sortase B from B.anthracis in complex with AAEK2 7E0B ; 1.29 ; The crystal structure of sorting nexin 27 and PBM complex 4FFJ ; 1.95 ; The crystal structure of spDHBPs from S.pneumoniae 2HTE ; 2.0 ; The crystal structure of spermidine synthase from p. falciparum in complex with 5'-methylthioadenosine 2I7C ; 1.71 ; The crystal structure of spermidine synthase from p. falciparum in complex with AdoDATO 3D43 ; 0.8 ; The crystal structure of Sph at 0.8A 4AC7 ; 1.5 ; The crystal structure of Sporosarcina pasteurii urease in complex with citrate 6QDY ; 1.416 ; The crystal structure of Sporosarcina pasteurii urease in complex with its substrate urea 4JGR ; 2.4 ; The crystal structure of sporulation kinase D mutant sensor domain, R131A, from Bacillus subtilis subsp at 2.4A resolution 4JGQ ; 2.63 ; The crystal structure of sporulation kinase D mutant sensor domain, r131a, from Bacillus subtilis subsp in co-crystallization with pyruvate 4JGP ; 2.03 ; The crystal structure of sporulation kinase D sensor domain from Bacillus subtilis subsp in complex with pyruvate at 2.0A resolution 4JGO ; 2.28 ; The crystal structure of sporulation kinase d sensor domain from Bacillus subtilis subsp. 3ONT ; 2.65 ; The Crystal Structure of Spot14, a modulator of lipogenesis 3I5I ; 3.3 ; The crystal structure of squid myosin S1 in the presence of SO4 2- 8XN8 ; 1.95 ; The Crystal Structure of SRC from Biortus. 2WNW ; 2.0 ; The crystal structure of SrfJ from salmonella typhimurium 2W9J ; 2.6 ; The crystal structure of SRP14 from the Schizosaccharomyces pombe signal recognition particle 4MNN ; 1.8 ; The crystal structure of Sso1120 from Sulfolobus solfataricus 1STN ; 1.7 ; THE CRYSTAL STRUCTURE OF STAPHYLOCOCCAL NUCLEASE REFINED AT 1.7 ANGSTROMS RESOLUTION 5YH5 ; 2.9 ; The crystal structure of Staphylococcus aureus CntA in apo form 5YHE ; 2.465 ; The crystal structure of Staphylococcus aureus CntA in complex with staphylopine and cobalt 5YH8 ; 2.12 ; The crystal structure of Staphylococcus aureus CntA in complex with staphylopine and nickel 5YHG ; 2.03 ; The crystal structure of Staphylococcus aureus CntA in complex with staphylopine and zinc 6UCD ; 2.85 ; The crystal structure of Staphylococcus aureus super antigen-like protein SSL10 4R2I ; 2.05 ; The Crystal Structure of STIV B204 complexed with AMP-PNP 5D23 ; 1.95 ; The crystal structure of STPR from Bombyx mori in complex with 13-bp DNA derived from the +290 site of fibroin gene 3G66 ; 1.7 ; The crystal structure of Streptococcus pneumoniae Sortase C provides novel insights into catalysis as well as pilin substrate specificity 3G69 ; 2.0 ; The crystal structure of Streptococcus pneumoniae Sortase C provides novel insights into catalysis as well as pilin substrate specificity 4M1U ; 1.56 ; The crystal structure of Stx2 and a disaccharide ligand 7WEX ; 1.99 ; The crystal structure of substrate-free CYP107X1 from Streptomyces avermitilis 5L90 ; 2.55 ; The crystal structure of substrate-free CYP109E1 from Bacillus megaterium at 2.55 Angstrom resolution 1OI7 ; 1.23 ; The Crystal Structure of Succinyl-CoA synthetase alpha subunit from Thermus Thermophilus 1SCU ; 2.5 ; THE CRYSTAL STRUCTURE OF SUCCINYL-COA SYNTHETASE FROM ESCHERICHIA COLI AT 2.5 ANGSTROMS RESOLUTION 3S27 ; 2.91 ; The crystal structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. 3S29 ; 2.85 ; The crystal structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. 3S28 ; 2.8 ; The crystal structure of sucrose synthase-1 in complex with a breakdown product of the UDP-glucose 1J30 ; 1.7 ; The crystal structure of sulerythrin, a rubrerythrin-like protein from a strictly aerobic and thermoacidiphilic archaeon 6IXJ ; 2.8 ; The crystal structure of sulfoacetaldehyde reductase from Klebsiella oxytoca 1SKQ ; 1.8 ; The crystal structure of Sulfolobus solfataricus elongation factor 1-alpha in complex with magnesium and GDP 3A4R ; 1.0 ; The crystal structure of SUMO-like domain 2 in Nip45 1OOP ; 3.0 ; The Crystal Structure of Swine Vesicular Disease Virus 8X5K ; 1.8 ; The Crystal Structure of SYK from Biortus. 8KBW ; 3.49 ; The crystal structure of syn-copalyl diphosphate synthase from Oryza sativa 4RR5 ; 2.427 ; The crystal structure of Synechocystis sp. PCC 6803 Malonyl-CoA: ACP Transacylase 8HJA ; 2.38 ; The crystal structure of syn_CdgR-(c-di-GMP) from Synechocystis sp. PCC 6803 8TAW ; 1.73 ; The crystal structure of T252E CYP199A4 bound to 4-(pyridin-2-yl)benzoic acid 8TAY ; 2.021 ; The crystal structure of T252E CYP199A4 bound to 4-(thiophen-3-yl)benzoic acid 7TP5 ; 1.655 ; The crystal structure of T252E CYP199A4 bound to 4-ethylthiobenzoic acid 7TP6 ; 1.655 ; The crystal structure of T252E CYP199A4 bound to 4-methylthiobenzoic acid 4ZDO ; 2.65 ; The crystal structure of T325S mutant of human SepSecS in complex with selenocysteine tRNA (tRNASec) 2OCA ; 2.7 ; The crystal structure of T4 UvsW 5A10 ; 1.423 ; The crystal structure of Ta-TFP, a thiocyanate-forming protein involved in glucosinolate breakdown (space group C2) 5A11 ; 2.47 ; The crystal structure of Ta-TFP, a thiocyanate-forming protein involved in glucosinolate breakdown (space group P21) 2POP ; 3.1 ; The Crystal Structure of TAB1 and BIR1 complex 8XI8 ; 3.35 ; The Crystal Structure of TAB1 from Biortus. 3U65 ; 1.4 ; The Crystal Structure of Tat-P(T) (Tp0957) 3U64 ; 2.3 ; The Crystal Structure of Tat-T (Tp0956) 4C7M ; 2.57 ; The crystal structure of TcpB or BtpA TIR domain 3QH3 ; 2.19 ; The crystal structure of TCR A6 3QEU ; 2.09 ; The crystal structure of TCR DMF5 3DFF ; 1.6 ; The crystal structure of teicoplanin pseudoaglycone deacetylase Orf2 3DFK ; 1.8 ; The crystal structure of teicoplanin pseudoaglycone deacetylase Orf2* bound to one of its products decanoic acid 4DQ0 ; 2.199 ; The crystal structure of tellurite resistance protein from Escherichia coli O157:H7 str. Sakai 7CE2 ; 2.01 ; The Crystal structure of TeNT Hc complexed with neutralizing antibody 6GII ; 1.9 ; The crystal structure of Tepidiphilus thermophilus P450 heme domain 6ND7 ; 1.36 ; The crystal structure of TerB co-crystallized with polyporic acid 4V0U ; 7.88 ; The crystal structure of ternary PP1G-PPP1R15B and G-actin complex 4HKU ; 2.302 ; The crystal structure of TetR transcriptional regulator (lmo2814) from Listeria monocytogenes EGD-e 3KKC ; 2.5 ; The crystal structure OF TetR transcriptional regulator from Streptococcus agalactiae 2603V 6XP8 ; 1.65 ; The crystal structure of TfuA involved in peptide backbone thioamidation from Methanosarcina acetivorans 8YGZ ; 2.1 ; The Crystal Structure of TGF beta R2 kinase domain from Biortus. 8YHL ; 1.47 ; The Crystal Structure of Tgf-Beta Type I Receptor (Alk5) from Biortus 3TIM ; 2.8 ; THE CRYSTAL STRUCTURE OF THE ""OPEN"" AND THE ""CLOSED"" CONFORMATION OF THE FLEXIBLE LOOP OF TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE 2OPG ; 1.5 ; The crystal structure of the 10th PDZ domain of MPDZ 2FNE ; 1.83 ; The crystal structure of the 13th PDZ domain of MPDZ 2O2T ; 2.7 ; The crystal structure of the 1st PDZ domain of MPDZ 7K87 ; 2.7 ; The crystal structure of the 2009 H1N1 PA endonuclease in complex with SJ000986436 6V53 ; 2.2 ; The crystal structure of the 2009 H1N1 PA endonuclease mutant I38T in complex with SJ000985494 6VIV ; 2.23 ; The crystal structure of the 2009 H1N1 PA endonuclease mutant I38T in complex with SJ000986192 6VL3 ; 2.68 ; The crystal structure of the 2009 H1N1 PA endonuclease mutant I38T in complex with SJ000986436 6V6X ; 2.5 ; The crystal structure of the 2009 H1N1 PA endonuclease mutant I38T in complex with SJ000988632 7K77 ; 2.78 ; The crystal structure of the 2009 H1N1 PA endonuclease mutant I38T in complex with SJ001008025 6V56 ; 2.75 ; The crystal structure of the 2009 H1N1 PA endonuclease wild type in complex with SJ000985494 6V9E ; 2.4 ; The crystal structure of the 2009 H1N1 PA endonuclease wild type in complex with SJ000988632 6VG9 ; 2.75 ; The crystal structure of the 2009 H1N1/California PA endonuclease I38T mutant in complex with SJ000986248 6VJH ; 2.55 ; The crystal structure of the 2009 H1N1/California PA endonuclease wild type in complex with SJ000986192 6VBR ; 2.75 ; The crystal structure of the 2009 H1N1/California PA endonuclease wild type in complex with SJ000986248 7K0W ; 2.09 ; The crystal structure of the 2009/H1N1/California PA endonuclease (construct with truncated loop 51-72) in complex with Baloxavir acid 7KAF ; 2.25 ; The crystal structure of the 2009/H1N1/California PA endonuclease I38T (construct with truncated loop 51-72) in complex with baloxavir acid 7LW6 ; 2.38 ; The crystal structure of the 2009/H1N1/California PA endonuclease I38T mutant in complex with Raltegravir 7KOP ; 2.33 ; The crystal structure of the 2009/H1N1/California PA endonuclease I38T mutant in complex with SJ000988539 7KBC ; 2.25 ; The crystal structure of the 2009/H1N1/California PA endonuclease mutant E119D (construct with truncated loop 51-72) in complex with baloxavir acid 6W7A ; 2.09 ; The crystal structure of the 2009/H1N1/California PA endonuclease mutant E119D bound to DNA oligomer TAGCAT (uncleaved, 5mM overnight DNA soak) 7KL3 ; 1.99 ; The crystal structure of the 2009/H1N1/California PA endonuclease mutant E119D bound to RNA oligomer AG*CAUC (*uncleaveable bond, -UC disordered) 6VLL ; 2.87 ; The crystal structure of the 2009/H1N1/California PA endonuclease mutant I38T in complex with SJ000986213 6WIJ ; 2.44 ; The crystal structure of the 2009/H1N1/California PA endonuclease mutant I38T in complex with SJ000986448 6WHM ; 1.92 ; The crystal structure of the 2009/H1N1/California PA endonuclease wild type bound to DNA oligomer TAGC (cleaved TTAGCATT, 5mM overnight DNA soak) 6WS3 ; 2.2 ; The crystal structure of the 2009/H1N1/California PA endonuclease wild type bound to DNA oligomers TG and AGCA (from cleaved GTGAGCAGTG) 6WJ4 ; 2.55 ; The crystal structure of the 2009/H1N1/California PA endonuclease wild type in complex with SJ000986448 2OZF ; 1.5 ; The crystal structure of the 2nd PDZ domain of the human NHERF-1 (SLC9A3R1) 1NJO ; 3.7 ; The crystal structure of the 50S Large ribosomal subunit from Deinococcus radiodurans complexed with a short substrate analog ACCPuromycin (ACCP) 1NJP ; 3.5 ; The crystal structure of the 50S Large ribosomal subunit from Deinococcus radiodurans complexed with a tRNA acceptor stem mimic (ASM) 1NJM ; 3.6 ; The crystal structure of the 50S Large ribosomal subunit from Deinococcus radiodurans complexed with a tRNA acceptor stem mimic (ASM) and the antibiotic sparsomycin 1P9X ; 3.4 ; THE CRYSTAL STRUCTURE OF THE 50S LARGE RIBOSOMAL SUBUNIT FROM DEINOCOCCUS RADIODURANS COMPLEXED WITH TELITHROMYCIN KETOLIDE ANTIBIOTIC 1NJN ; 3.7 ; The crystal structure of the 50S Large ribosomal subunit from Deinococcus radiodurans complexed with the antibiotic sparsomycin 1OND ; 3.4 ; THE CRYSTAL STRUCTURE OF THE 50S LARGE RIBOSOMAL SUBUNIT FROM DEINOCOCCUS RADIODURANS COMPLEXED WITH TROLEANDOMYCIN MACROLIDE ANTIBIOTIC 1G7Y ; 2.5 ; THE CRYSTAL STRUCTURE OF THE 58KD VEGETATIVE LECTIN FROM THE TROPICAL LEGUME DOLICHOS BIFLORUS 3QJH ; 1.9 ; The crystal structure of the 5c.c7 TCR 4V5G ; 3.6 ; The crystal structure of the 70S ribosome bound to EF-Tu and tRNA 2FCF ; 1.76 ; The crystal structure of the 7th PDZ domain of MPDZ (MUPP-1) 4WYN ; 1.805 ; The crystal structure of the A109G mutant of RNase A 4WYZ ; 1.449 ; The crystal structure of the A109G mutant of RNase A in complex with 3'UMP 4WYP ; 1.502 ; The crystal structure of the A109G mutant of RNase A in complex with 5'AMP 3LFT ; 1.35 ; The Crystal Structure of the ABC domain in complex with L-Trp from Streptococcus pneumonia to 1.35A 3MY7 ; 2.3 ; The Crystal Structure of the ACDH domain of an Alcohol Dehydrogenase from Vibrio parahaemolyticus to 2.25A 3FBU ; 1.8 ; The crystal structure of the acetyltransferase (GNAT family) from Bacillus anthracis 2FIA ; 2.6 ; The crystal structure of the acetyltransferase from Enterococcus faecalis 2I79 ; 2.1 ; The crystal structure of the acetyltransferase of GNAT family from Streptococcus pneumoniae 5NL7 ; 2.48 ; The crystal structure of the Actin Binding Domain (ABD) of alpha actinin from Entamoeba histolytica 1V5D ; 1.5 ; The crystal structure of the active form chitosanase from Bacillus sp. K17 at pH6.4 5YDA ; 2.353 ; The crystal structure of the Acyl Transferase domain of SpnD 5YDL ; 2.402 ; The crystal structure of the Acyl Transferase domain of SpnD complex with 2-(pent-4-yn-1-yl)malonyl 5YDM ; 2.5 ; The crystal structure of the Acyl Transferase domain of SpnD complex with benzylmalonyl 2OKU ; 1.9 ; The crystal structure of the acyl-CoA dehydrogenase family protein from Porphyromonas gingivalis 6B4R ; 2.55 ; The crystal structure of the aldehyde dehydrogenase KauB from Pseudomonas aeruginosa 1ABN ; 2.4 ; THE CRYSTAL STRUCTURE OF THE ALDOSE REDUCTASE NADPH BINARY COMPLEX 4CQ6 ; 1.8 ; The crystal structure of the allene oxide cyclase 2 from Arabidopsis thaliana with bound inhibitor - vernolic acid 4CQ7 ; 1.7 ; The crystal structure of the allene oxide cyclase 2 from Arabidopsis thaliana with bound product - OPDA 3N04 ; 2.02 ; THE CRYSTAL STRUCTURE OF THE alpha-Glucosidase (FAMILY 31) FROM RUMINOCOCCUS OBEUM ATCC 29174 6C9X ; 1.457 ; THE CRYSTAL STRUCTURE OF THE alpha-Glucosidase (GH 31) FROM RUMINOCOCCUS OBEUM ATCC 29174 in complex with voglibose 6C9Z ; 2.101 ; THE CRYSTAL STRUCTURE OF THE alpha-Glucosidase (GH 31) W169Y mutant FROM RUMINOCOCCUS OBEUM ATCC 29174 in complex with voglibose 3IL0 ; 2.2 ; The crystal structure of the aminopeptidase P,XAA-pro aminopeptidase from Streptococcus thermophilus 3E1U ; 2.3 ; The Crystal Structure of the Anti-Viral APOBEC3G Catalytic Domain 1YQV ; 1.7 ; The crystal structure of the antibody Fab HyHEL5 complex with lysozyme at 1.7A resolution 7NM7 ; 2.1 ; The crystal structure of the antimycin pathway standalone ketoreductase, AntM 7NM8 ; 1.7 ; The crystal structure of the antimycin pathway standalone ketoreductase, AntM, in complex with NADPH 7V4Q ; 1.91 ; The crystal structure of the apo form of KFDV NS3H 5WYG ; 2.356 ; The crystal structure of the apo form of Mtb MazF 2B0J ; 1.75 ; The crystal structure of the apoenzyme of the iron-sulfur-cluster-free hydrogenase (Hmd) 5IXT ; 1.94 ; The crystal structure of the Arabidopsis receptor kinase HAESA LRR ectdomain in complex with a N-terminal extended IDA peptide hormone ligand. 8DN6 ; 3.0 ; The crystal structure of the Arabidopsis thaliana Toc75 POTRA domains in complex with fab tc2 1R6Z ; 2.8 ; The Crystal Structure of the Argonaute2 PAZ domain (as a MBP fusion) 2HJG ; 2.5 ; The crystal structure of the B. subtilis YphC GTPase in complex with GDP 1ST3 ; 1.4 ; THE CRYSTAL STRUCTURE OF THE BACILLUS LENTUS ALKALINE PROTEASE, SUBTILISIN BL, AT 1.4 ANGSTROMS RESOLUTION 1W2E ; 2.8 ; The Crystal Structure of the Bacterial Cell Division Protein ZapA 1GRL ; 2.8 ; THE CRYSTAL STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8 ANGSTROMS 5JLT ; 2.955 ; The crystal structure of the bacteriophage T4 MotA C-terminal domain in complex with dsDNA reveals a novel protein-DNA recognition motif 6KPD ; 3.2 ; The crystal structure of the BALDIBIS/IDD9 bound to the homodimeric SCL3 2FIC ; 1.99 ; The crystal structure of the BAR domain from human Bin1/Amphiphysin II and its implications for molecular recognition 2J3R ; 2.6 ; The crystal structure of the bet3-trs31 heterodimer. 2J3W ; 2.1 ; The crystal structure of the bet3-trs31-sedlin complex. 2J3T ; 2.4 ; The crystal structure of the bet3-trs33-bet5-trs23 complex. 3ICA ; 2.44 ; The crystal structure of the beta subunit of a phenylalanyl-tRNA synthetase from Porphyromonas gingivalis W83 3E7H ; 1.7 ; The crystal structure of the beta subunit of the DNA-directed RNA polymerase from Vibrio cholerae O1 biovar eltor 3FWW ; 2.5 ; The crystal structure of the bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase from Yersinia pestis CO92 1Q57 ; 3.45 ; The Crystal Structure of the Bifunctional Primase-Helicase of Bacteriophage T7 1JOL ; 1.96 ; THE CRYSTAL STRUCTURE OF THE BINARY COMPLEX BETWEEN FOLINIC ACID (LEUCOVORIN) AND E. COLI DIHYDROFOLATE REDUCTASE 1JOM ; 1.9 ; THE CRYSTAL STRUCTURE OF THE BINARY COMPLEX BETWEEN FOLINIC ACID (LEUCOVORIN) AND E. COLI DIHYDROFOLATE REDUCTASE 1FK8 ; 1.95 ; THE CRYSTAL STRUCTURE OF THE BINARY COMPLEX WITH NAD OF 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE FROM COMAMONAS TESTOSTERONI, A MEMBER OF THE SHORT CHAIN DEHYDROGENASE/REDUCTASE FAMILY 6LY4 ; 1.68 ; The crystal structure of the BM3 mutant LG-23 in complex with testosterone 6G26 ; 2.49 ; The crystal structure of the Burkholderia pseudomallei HicAB complex 5EE2 ; 1.95 ; The crystal structure of the C-terminal beta-barrel of HpuA from Neisseria gonorrhoeae 3LHE ; 1.62 ; The crystal structure of the C-terminal domain of a GntR family transcriptional regulator from Bacillus anthracis str. Sterne 3DMN ; 1.66 ; The crystal structure of the C-terminal domain of a possilbe DNA helicase from Lactobacillus plantarun WCFS1 2EYU ; 1.87 ; The Crystal Structure of the C-terminal Domain of Aquifex aeolicus PilT 5DSD ; 2.31 ; The crystal structure of the C-terminal domain of Ebola (Bundibugyo) nucleoprotein 5E2X ; 2.1 ; The crystal structure of the C-terminal domain of Ebola (Tai Forest) nucleoprotein 4QAZ ; 1.98 ; The crystal structure of the C-terminal domain of Ebola (Zaire) nucleoprotein 4QB0 ; 1.75 ; The crystal structure of the C-terminal domain of Ebola (Zaire) nucleoprotein 3CYP ; 1.6 ; The crystal structure of the C-terminal domain of Helicobacter pylori MotB (residues 125-256). 8P0Y ; 4.12 ; The crystal structure of the C-terminal domain of Mengla nucleoprotein 8P10 ; 3.26 ; The crystal structure of the C-terminal domain of Mengla nucleoprotein 8P24 ; 3.73 ; The crystal structure of the C-terminal domain of Mengla nucleoprotein 3VTO ; 1.44 ; The crystal structure of the C-terminal domain of Mu phage central spike 3VTN ; 1.75 ; The crystal structure of the C-terminal domain of Mu phage central spike - Pt derivative for MAD 7EGT ; 2.581 ; The crystal structure of the C-terminal domain of T. thermophilus UvrD complexed with the N-terminal domain of UvrB 3IUO ; 1.6 ; The Crystal Structure of the C-terminal domain of the ATP-dependent DNA helicase RecQ from Porphyromonas gingivalis to 1.6A 3LSG ; 2.049 ; The crystal structure of the C-terminal domain of the two-component response regulator yesN from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 3D3M ; 1.9 ; The Crystal Structure of the C-terminal region of Death Associated Protein 5(DAP5) 4G07 ; 1.95 ; The crystal structure of the C366S mutant of HDH from Brucella suis 4G09 ; 1.9 ; The crystal structure of the C366S mutant of HDH from Brucella suis in complex with a substituted benzyl ketone 1UHN ; 2.1 ; The crystal structure of the calcium binding protein AtCBL2 from Arabidopsis thaliana 2JC7 ; 2.5 ; The crystal structure of the carbapenemase OXA-24 reveals new insights into the mechanism of carbapenem-hydrolysis 1R1Z ; 2.4 ; The Crystal structure of the Carbohydrate recognition domain of the glycoprotein sorting receptor p58/ERGIC-53 reveals a novel metal binding site and conformational changes associated with calcium ion binding 2F9Y ; 3.2 ; The Crystal Structure of The Carboxyltransferase Subunit of ACC from Escherichia coli 3ET6 ; 2.55 ; The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase 3RZU ; 2.5 ; The Crystal Structure of the Catalytic Domain of AMSH 5JMU ; 1.54 ; The crystal structure of the catalytic domain of peptidoglycan N-acetylglucosamine deacetylase from Eubacterium rectale ATCC 33656 1V9K ; 2.0 ; The crystal structure of the catalytic domain of pseudouridine synthase RluC from Escherichia coli 1YFT ; 2.23 ; The crystal structure of the catalytic fragment of alanyl-tRNA synthetase in complex wtih glycine 1RIQ ; 2.14 ; The crystal structure of the catalytic fragment of the alanyl-tRNA synthetase 3H7D ; 2.242 ; The crystal structure of the cathepsin K Variant M5 in complex with chondroitin-4-sulfate 3UK8 ; 2.3 ; The crystal structure of the cd-bound domain 3 of the cadmium carbonic anhydrase from marine diatom Thalassiosira weissflogii 8WCT ; 1.9 ; The crystal structure of the CHASE4 domain of iron-sensetive membrane protein (IsmP,Uniprot ID:Q9I243) 6IAK ; 3.95 ; The crystal structure of the chicken CREB3 bZIP 7DA2 ; 2.79 ; The crystal structure of the chicken FANCM-MHF complex 8U36 ; 2.6 ; The crystal structure of the classical binding interface of Importin alpha 2 and a nuclear localisation signal sequence in Frog siadenovirus core protein VII 8SV0 ; 2.2 ; The crystal structure of the classical binding interface of Importin alpha 2 and nuclear localisation signal sequence in Psittacine siadenovirus core protein VII 3A7O ; 2.5 ; The crystal structure of the coiled-coil domain of Saccharomyces cerevisiae Atg16 8EC3 ; 1.5 ; The crystal structure of the complement inhibitory domain of Borrelia hermsii FbpC. 1NAB ; 2.15 ; The crystal structure of the complex between a disaccharide anthracycline and the DNA hexamer d(CGATCG) reveals two different binding sites involving two DNA duplexes 3FPT ; 2.7 ; The Crystal Structure of the Complex between Evasin-1 and CCL3 1PVN ; 2.0 ; The crystal structure of the complex between IMP dehydrogenase catalytic domain and a transition state analogue MZP 1OQ9 ; 2.4 ; The Crystal Structure of the Complex between Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean) and Acetate. 1OQ4 ; 2.4 ; The Crystal Structure of the Complex between Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean) and Azide. 2BWE ; 3.1 ; The crystal structure of the complex between the UBA and UBL domains of Dsk2 2QP6 ; 1.45 ; The crystal structure of the complex of hcaII with a bioreductive antitumor derivative 5CLU ; 1.55 ; THE CRYSTAL STRUCTURE OF THE COMPLEX of HCAII WITH A SACCHARINE DERIVATIVE 4QY3 ; 1.5 ; THE CRYSTAL STRUCTURE OF THE COMPLEX of HCAII WITH AN ORTHO-SUBSTITUTED BENZOIC ACID 6YRI ; 1.6 ; THE CRYSTAL STRUCTURE OF THE COMPLEX OF HCAII WITH CAFFEIC ACID 6ZR9 ; 2.05 ; The crystal structure of the complex of hCAVII with 2-(4-benzhydrylpiperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide 4U7E ; 1.6 ; The crystal structure of the complex of LIP5 NTD and IST1 MIM 1FZZ ; 1.86 ; THE CRYSTAL STRUCTURE OF THE COMPLEX OF NON-PEPTIDIC INHIBITOR ONO-6818 AND PORCINE PANCREATIC ELASTASE. 3TBE ; 2.85 ; The crystal structure of the complex of Streptococcus agalactiae sortase C1 and MTSET 3CYQ ; 2.3 ; The crystal structure of the complex of the C-terminal domain of Helicobacter pylori MotB (residues 125-256) with N-acetylmuramic acid 2BFN ; 1.6 ; The crystal structure of the complex of the haloalkane dehalogenase LinB with the product of dehalogenation reaction 1,2-dichloropropane. 3FBQ ; 2.71 ; The crystal structure of the conserved domain protein from Bacillus anthracis 2FI0 ; 2.1 ; The crystal structure of the conserved domain protein from Streptococcus pneumoniae TIGR4 1GWN ; 2.1 ; The crystal structure of the core domain of RhoE/Rnd3 - a constitutively activated small G protein 2D1X ; 1.9 ; The crystal structure of the cortactin-SH3 domain and AMAP1-peptide complex 5GKC ; 1.892 ; The crystal structure of the CPS-6 H148A/F122A 3O5V ; 1.85 ; The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A 4CI7 ; 1.4 ; The crystal structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer associated protein of Clostridium difficile 3EFD ; 2.6 ; The crystal structure of the cytoplasmic domain of KcsA 3I12 ; 2.2 ; The crystal structure of the D-alanyl-alanine synthetase A from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 3Q1K ; 2.202 ; The Crystal Structure of the D-alanyl-alanine Synthetase A from Salmonella enterica Typhimurium Complexed with ADP 1RJR ; 2.1 ; The crystal structure of the D-aminoacylase D366A mutant in complex with 100mM ZnCl2 1RJQ ; 1.8 ; The crystal structure of the D-aminoacylase mutant D366A 5KDY ; 1.589 ; The crystal structure of the D251N mutant of CYP199A4 in complex with 4-methoxybenzoate 5HYW ; 3.01 ; The crystal structure of the D3-ASK1 complex 3POC ; 1.99 ; The crystal structure of the D307A mutant of alpha-Glucosidase (FAMILY 31) from Ruminococcus obeum ATCC 29174 in complex with acarbose 3M6D ; 2.9 ; The crystal structure of the d307a mutant of glycoside Hydrolase (family 31) from ruminococcus obeum atcc 29174 3MKK ; 1.91 ; The crystal structure of the D307A mutant of glycoside HYDROLASE (FAMILY 31) from Ruminococcus obeum ATCC 29174 in complex with isomaltose 3M46 ; 2.66 ; The crystal structure of the D73A mutant of glycoside HYDROLASE (FAMILY 31) from Ruminococcus obeum ATCC 29174 4E4V ; 2.5283 ; The crystal structure of the dimeric human importin alpha 1 at 2.5 angstrom resolution. 3IBP ; 3.099 ; The Crystal Structure of the Dimerization Domain of Escherichia coli Structural Maintenance of Chromosomes Protein MukB 3FDG ; 1.8 ; The crystal structure of the dipeptidase AC, Metallo peptidase. MEROPS family M19 1DSF ; 2.0 ; THE CRYSTAL STRUCTURE OF THE DISULFIDE-STABILIZED FV FRAGMENT OF ANTICANCER ANTIBODY B1: CONFORMATIONAL INFLUENCE OF AN ENGINEERED DISULFIDE BOND 4HLX ; 2.379 ; The crystal structure of the DNA binding domain of vIRF-1 from the oncogenic KSHV 3EUS ; 1.8 ; The crystal structure of the DNA binding protein from Silicibacter pomeroyi 335D ; 2.4 ; THE CRYSTAL STRUCTURE OF THE DNA DECAMER D(GGCAATTGCG) CONTAINS BOTH MAJOR AND MINOR GROOVE BINDING G.(G.C) TRIPLETS 2GK4 ; 1.83 ; The Crystal Structure of the DNA/Pantothenate Metabolism Flavoprotein from Streptococcus pneumoniae 6IEW ; 1.5 ; The crystal structure of the dNxf2 UBA domain in complex with Panoramix 3HCY ; 2.8 ; The crystal structure of the domain of putative two-component sensor histidine kinase protein from Sinorhizobium meliloti 1021 3EEH ; 1.95 ; The crystal structure of the domain of the putative light and redox sensing histidine kinase from Haloarcula marismortui 7OR6 ; 2.12 ; The crystal structure of the domain-swapped dimer of onconase 7ORD ; 2.14 ; The crystal structure of the domain-swapped dimer of onconase (2) 5TDH ; 3.0 ; The crystal structure of the dominant negative mutant G protein alpha(i)-1-beta-1-gamma-2 G203A/A326S 3E8L ; 2.48 ; The Crystal Structure of the Double-headed Arrowhead Protease Inhibitor A in Complex with Two Trypsins 6TB5 ; 1.83 ; The crystal structure of the DPS2 from DEINOCOCCUS RADIODURANS to 1.83A resolution (sequentially soaked in CaCl2 [5mM] for 20 min, then in Ammonium iron(II) sulfate [10mM] for 2h). 2X6H ; 2.9 ; THE CRYSTAL STRUCTURE OF THE DROSOPHILA CLASS III PI3-KINASE VPS34 2X6F ; 3.3 ; THE CRYSTAL STRUCTURE OF THE DROSOPHILA CLASS III PI3-KINASE VPS34 IN COMPLEX WITH 3-METHYLADENINE 2X6K ; 3.5 ; THE CRYSTAL STRUCTURE OF THE DROSOPHILA CLASS III PI3-KINASE VPS34 IN COMPLEX WITH PI-103 2X6I ; 3.4 ; THE CRYSTAL STRUCTURE OF THE DROSOPHILA CLASS III PI3-KINASE VPS34 IN COMPLEX WITH PIK-90 2X6J ; 3.5 ; THE CRYSTAL STRUCTURE OF THE DROSOPHILA CLASS III PI3-KINASE VPS34 IN COMPLEX WITH PIK-93 4NQL ; 2.3 ; The crystal structure of the DUB domain of AMSH orthologue, Sst2 from S. pombe, in complex with lysine 63-linked diubiquitin 1SQG ; 1.65 ; The crystal structure of the E. coli Fmu apoenzyme at 1.65 A resolution 2ECP ; 2.95 ; THE CRYSTAL STRUCTURE OF THE E. COLI MALTODEXTRIN PHOSPHORYLASE COMPLEX 2R6G ; 2.8 ; The Crystal Structure of the E. coli Maltose Transporter 1G0S ; 1.9 ; THE CRYSTAL STRUCTURE OF THE E.COLI ADP-RIBOSE PYROPHOSPHATASE 2QOM ; 2.66 ; The crystal structure of the E.coli EspP autotransporter Beta-domain. 2O9A ; 1.8 ; The crystal structure of the E.coli IclR C-terminal fragment in complex with pyruvate. 2GS4 ; 2.0 ; The crystal structure of the E.coli stress protein YciF. 1A7G ; 2.4 ; THE CRYSTAL STRUCTURE OF THE E2 DNA-BINDING DOMAIN FROM HUMAN PAPILLOMAVIRUS AT 2.4 ANGSTROMS 6Y7N ; 1.6 ; The crystal structure of the eight-bladed symmetrical designer protein Tako8 in the presence of tellurotungstic Anderson-Evans (TEW) 2GOJ ; 2.0 ; The crystal structure of the enzyme Fe-superoxide dismutase from Plasmodium falciparum 2GPC ; 1.9 ; The crystal structure of the enzyme Fe-superoxide dismutase from Trypanosoma cruzi 1HCQ ; 2.4 ; THE CRYSTAL STRUCTURE OF THE ESTROGEN RECEPTOR DNA-BINDING DOMAIN BOUND TO DNA: HOW RECEPTORS DISCRIMINATE BETWEEN THEIR RESPONSE ELEMENTS 4BTS ; 3.703 ; THE CRYSTAL STRUCTURE OF THE EUKARYOTIC 40S RIBOSOMAL SUBUNIT IN COMPLEX WITH EIF1 AND EIF1A 1UNF ; 1.97 ; The crystal structure of the eukaryotic FeSOD from Vigna unguiculata suggests a new enzymatic mechanism 2J0S ; 2.21 ; The crystal structure of the Exon Junction Complex at 2.2 A resolution 2J0Q ; 3.2 ; The crystal structure of the Exon Junction Complex at 3.2 A resolution 3P98 ; 2.1 ; The crystal structure of the extended spectrum beta-lactamase TEM-72 reveals inhibition by citrate 2HFT ; 1.69 ; THE CRYSTAL STRUCTURE OF THE EXTRACELLULAR DOMAIN OF HUMAN TISSUE FACTOR AT 1.7 ANGSTROMS RESOLUTION 2NMS ; 2.6 ; The Crystal Structure of the Extracellular Domain of the Inhibitor Receptor Expressed on Myeloid Cells IREM-1 1C5D ; 2.4 ; THE CRYSTAL STRUCTURE OF THE FAB FRAGMENT OF A RAT MONOCLONAL ANTIBODY AGAINST THE MAIN IMMUNOGENIC REGION OF THE HUMAN MUSCLE ACETYLCHOLINE RECEPTOR 4DVB ; 1.93 ; The crystal structure of the Fab fragment of pro-uPA antibody mAb-112 7FGN ; 1.199 ; The crystal structure of the FAF1 UBL1 2FIY ; 2.1 ; The crystal structure of the FdhE protein from Pseudomonas aeruginosa 7EDR ; 2.527 ; The crystal structure of the FERM and C-terminal domain complex of Drosophila Merlin 6B05 ; 1.9 ; The Crystal Structure of the Ferredoxin Protease FusC E83A mutant in complex with Arabidopsis Ferredoxin 6BRS ; 2.3 ; The Crystal Structure of the Ferredoxin Protease FusC in complex with Arabidopsis Ferredoxin, Ethylmercury phosphate soaked dataset 6B03 ; 2.7 ; The crystal structure of the ferredoxin protease FusC in complex with its substrate plant ferredoxin 4ZGV ; 3.2 ; The Crystal Structure of the Ferredoxin Receptor FusA from Pectobacterium atrosepticum SCRI1043 4EPA ; 3.2 ; The crystal structure of the ferric yersiniabactin uptake receptor FyuA from Yersinia pestis 6BPN ; 2.1 ; The crystal structure of the Ferric-Catecholate import receptor Fiu from E. coli K12: Open form (C2221) 6BPM ; 2.5 ; The crystal structure of the Ferric-Catecholate import receptor Fiu from K12 E. coli: Closed form (C21) 6BPO ; 2.9 ; The crystal structure of the Ferric-Catecholate import receptor Fiu from K12 E. coli: Closed form (P1) 3DOA ; 2.81 ; The crystal structure of the fibrinogen binding protein from Staphylococcus aureus 1OY0 ; 2.8 ; The crystal Structure of the First Enzyme of Pantothenate Biosynthetic Pathway, Ketopantoate Hydroxymethyltransferase from Mycobacterium Tuberculosis Shows a Decameric Assembly and Terminal Helix-Swapping 6OFT ; 2.0 ; The crystal structure of the first half of the periplasmic protease PqqL from Escherichia coli 2OCS ; 1.5 ; The crystal structure of the first PDZ domain of human NHERF-2 (SLC9A3R2) 3D7N ; 2.3 ; The crystal structure of the flavodoxin, WrbA-like protein from Agrobacterium tumefaciens 1QD1 ; 1.7 ; THE CRYSTAL STRUCTURE OF THE FORMIMINOTRANSFERASE DOMAIN OF FORMIMINOTRANSFERASE-CYCLODEAMINASE. 3LJL ; 3.2 ; The crystal structure of the full-length transcriptional regulator LuxT from Vibrio parahaemolyticus RIMD 2210633. 4YE9 ; 2.7 ; The crystal structure of the G45V mutant of human GlnRS 3O5Y ; 2.45 ; The Crystal Structure of the GAF domain of a two-component sensor histidine kinase from Bacillus halodurans to 2.45A 3EEA ; 1.8 ; The crystal structure of the GAF domain/HD domain protein from Geobacter sulfurreducens 3DS8 ; 1.8 ; The crystal structure of the gene lin2722 products from Listeria innocua 7N6H ; 1.28 ; The crystal structure of the GH30 subfamily 10 enzyme, AcXbh30A from Acetivibrio clariflavus 7N6O ; 1.5 ; The crystal structure of the GH30 subfamily 10 enzyme, AcXbh30A from Acetivibrio clariflavus in complex with xylobiose 1UW3 ; 2.05 ; The crystal structure of the globular domain of sheep prion protein 3NZN ; 1.1 ; The crystal structure of the Glutaredoxin from Methanosarcina mazei Go1 3IC4 ; 1.7 ; The crystal structure of the glutaredoxin(grx-1) from Archaeoglobus fulgidus 2OTD ; 2.6 ; The crystal structure of the glycerophosphodiester phosphodiesterase from Shigella flexneri 2a 2G9Q ; 2.5 ; The crystal structure of the glycogen phosphorylase b- 1AB complex 6R5I ; 1.8 ; The crystal structure of the Glycoside Hydrolase BglX from P. aeruginosa 3TOV ; 2.983 ; The crystal structure of the glycosyl transferase family 9 from Veillonella parvula DSM 2008 2P25 ; 1.7 ; The crystal structure of the glyoxalase family protein from Enterococcus faecalis 3CI0 ; 2.2 ; The Crystal Structure of the GspK-GspI-GspJ complex from enterotoxigenic Escherichia coli Type 2 Secretion System 5BMU ; 2.6 ; The crystal structure of the GST-like domains complex of AIMP3-EPRS mutant C92SC105SC123S 5A5H ; 2.318 ; The crystal structure of the GST-like domains complex of EPRS C92SC105SC123S mutant-AIMP2 5A34 ; 2.6 ; The crystal structure of the GST-like domains complex of EPRS-AIMP2 5A1N ; 2.1 ; The crystal structure of the GST-like domains complex of EPRS-AIMP2 mutant S156D 5B33 ; 2.925 ; The crystal structure of the H2AZ nucleosome with H3.3. 2RJW ; 1.55 ; The crystal structure of the H41Y mutant of villin headpiece, P61 SPACE GROUP. 4I84 ; 1.5 ; The crystal structure of the Haemophilus influenzae HxuA secretion domain involved in the two-partner secretion pathway 4H32 ; 2.7 ; The crystal structure of the hemagglutinin H17 derived the bat influenza A virus 3Q6S ; 1.93 ; The crystal structure of the heterochromatin protein 1 beta chromoshadow domain complexed with a peptide from Shugoshin 1 3AMJ ; 3.0 ; The crystal structure of the heterodimer of M16B peptidase from Sphingomonas sp. A1 5B3G ; 2.0 ; The crystal structure of the heterodimer of SHORT-ROOT and SCARECROW GRAS domains 5B31 ; 2.2 ; The crystal structure of the heterotypic H2AZ/H2A nucleosome with H3.1. 5B32 ; 2.35 ; The crystal structure of the heterotypic H2AZ/H2A nucleosome with H3.3. 4GRM ; 2.0 ; The crystal structure of the high affinity TCR A6 7Q2U ; 2.27 ; The crystal structure of the HINT1 Q62A mutant. 3FTB ; 2.0 ; The crystal structure of the histidinol-phosphate aminotransferase from Clostridium acetobutylicum 2FFB ; 1.9 ; The crystal structure of the HlyB-NBD E631Q mutant in complex with ADP 3MYF ; 1.8 ; The Crystal Structure of the HPT domain from the Hpt Sensor Hybrid Histidine Kinase from Shewanella to 1.80A 4A1G ; 2.6 ; The crystal structure of the human Bub1 TPR domain in complex with the KI motif of Knl1 2POU ; 1.6 ; The crystal structure of the human carbonic anhydrase II in complex with 4,5-dichloro-benzene-1,3-disulfonamide 2POV ; 1.6 ; The crystal structure of the human carbonic anhydrase II in complex with 4-amino-6-chloro-benzene-1,3-disulfonamide 2POW ; 1.75 ; The crystal structure of the human carbonic anhydrase II in complex with 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide 5E2R ; 1.6 ; The crystal structure of the human carbonic anhydrase II in complex with a 1,1'-biphenyl-4-sulfonamide inhibitor 5O07 ; 1.8 ; The crystal structure of the human carbonic anhydrase II in complex with a nitroimidazole sulfamate inhibitor 4PQ7 ; 1.85 ; The crystal structure of the human carbonic anhydrase ii in complex with a sulfamide inhibitor 3IBL ; 1.55 ; The crystal structure of the human carbonic anhydrase II in complex with an aliphatic bis-sulfamate inhibitor 3IBN ; 2.2 ; The crystal structure of the human carbonic anhydrase II in complex with an aliphatic bis-sulfamate inhibitor 3IBI ; 1.93 ; The crystal structure of the human carbonic anhydrase II in complex with an aliphatic sulfamate inhibitor 3IBU ; 1.41 ; The crystal structure of the human carbonic anhydrase II in complex with an aliphatic sulfamate inhibitor 4MO8 ; 1.85 ; The crystal structure of the human carbonic anhydrase II in complex with N-[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl]sulfamide 4LU3 ; 2.0 ; The crystal structure of the human carbonic anhydrase XIV 5CJF ; 1.83 ; The crystal structure of the human carbonic anhydrase XIV in complex with a 1,1'-biphenyl-4-sulfonamide inhibitor. 2GF0 ; 1.9 ; The crystal structure of the human DiRas1 GTPase in the inactive GDP bound state 1BIX ; 2.2 ; THE CRYSTAL STRUCTURE OF THE HUMAN DNA REPAIR ENDONUCLEASE HAP1 SUGGESTS THE RECOGNITION OF EXTRA-HELICAL DEOXYRIBOSE AT DNA ABASIC SITES 2V4Z ; 2.8 ; The crystal structure of the human G-protein subunit alpha (GNAI3) in complex with an engineered regulator of G-protein signaling type 2 domain (RGS2) 1S3X ; 1.84 ; The crystal structure of the human Hsp70 ATPase domain 2Q87 ; 1.7 ; The Crystal Structure of the Human IRp60 Ectodomain 6EHP ; 2.3 ; The crystal structure of the human LAMTOR complex 6EHR ; 2.898 ; The crystal structure of the human LAMTOR-RagA CTD-RagC CTD complex 2X4F ; 2.67 ; The Crystal Structure of the human myosin light chain kinase LOC340156. 2NPA ; 2.3 ; the crystal structure of the human PPARaplpha ligand binding domain in complex with a a-hydroxyimino phenylpropanoic acid 2OVJ ; 1.49 ; The crystal structure of the human Rac GTPase activating protein 1 (RACGAP1) MgcRacGAP. 2G0N ; 1.9 ; The Crystal Structure of the Human RAC3 in complex with GDP and Chloride 2OV2 ; 2.1 ; The crystal structure of the human RAC3 in complex with the CRIB domain of human p21-activated kinase 4 (PAK4) 2CLS ; 2.31 ; The crystal structure of the human RND1 GTPase in the active GTP bound state 3HL2 ; 2.81 ; The crystal structure of the human SepSecS-tRNASec complex 1KDM ; 2.35 ; THE CRYSTAL STRUCTURE OF THE HUMAN SEX HORMONE-BINDING GLOBULIN (TETRAGONAL CRYSTAL FORM) 5L7A ; 2.102 ; The crystal structure of the Human SNF5/INI1 domain 1UPX ; 1.25 ; The crystal structure of the Hybrid Cluster Protein from Desulfovibrio desulfuricans containing molecules in the oxidized and reduced states. 2FBL ; 1.9 ; The crystal structure of the hypothetical protein NE1496 5EP5 ; 2.9 ; The crystal structure of the hypothetical protein SAV0944 mutant (Glu47Ala) from Staphylococcus aureus. 1QCY ; 2.3 ; THE CRYSTAL STRUCTURE OF THE I-DOMAIN OF HUMAN INTEGRIN ALPHA1BETA1 8E1Q ; 2.5 ; The crystal structure of the I38T mutant PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023044 7LM4 ; 2.35 ; The crystal structure of the I38T mutant PA Endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988503 7KNY ; 2.48 ; The crystal structure of the I38T mutant PA endonuclease (2009/H1N1/California) in complex with SJ000988528 7KNR ; 2.48 ; The crystal structure of the I38T mutant PA endonuclease (2009/H1N1/California) in complex with SJ000988558 8DPU ; 3.78 ; The crystal structure of the IL-11 signalling complex 7F4B ; 2.05 ; The crystal structure of the immature apo-enzyme of homoserine dehydrogenase from the hyperthermophilic archaeon Sulfurisphaera tokodaii. 7F4C ; 1.9 ; The crystal structure of the immature holo-enzyme of homoserine dehydrogenase complexed with NADP and 1,4-butandiol from the hyperthermophilic archaeon Sulfurisphaera tokodaii. 1V5C ; 2.0 ; The crystal structure of the inactive form chitosanase from Bacillus sp. K17 at pH3.7 3IVL ; 2.2 ; The Crystal Structure of the Inactive Peptidase Domain of a Putative Zinc Protease from Bordetella parapertussis to 2.2A 4AFL ; 2.275 ; The crystal structure of the ING4 dimerization domain reveals the functional organization of the ING family of chromatin binding proteins. 3TYP ; 1.9 ; The crystal structure of the inorganic triphosphatase NE1496 4YE6 ; 2.4 ; The crystal structure of the intact human GlnRS 6O4P ; 3.429 ; The crystal structure of the interleukin 11 alpha receptor 1OQ7 ; 3.2 ; The crystal structure of the iron free (Apo-)form of Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean). 6OUY ; 1.6 ; The crystal structure of the isolate tryptophan synthase alpha-chain from Salmonella enterica serovar typhimurium at 1.60 Angstrom resolution 6OSO ; 1.75 ; The crystal structure of the isolate tryptophan synthase alpha-chain from Salmonella enterica serovar typhimurium at 1.75 Angstrom resolution 3GNM ; 2.1 ; The crystal structure of the JAA-F11 monoclonal antibody Fab fragment 5B3H ; 2.7 ; The crystal structure of the JACKDAW/IDD10 bound to the heterodimeric SHR-SCR complex 6KPB ; 2.4 ; The crystal structure of the JACKDAW/IDD10 bound to the homodimeric SCL3 7UAU ; 2.1 ; The crystal structure of the K137A mutant of E. coli YGGS in complex with PLP 1NSW ; 1.9 ; The Crystal Structure of the K18G Mutant of the thioredoxin from Alicyclobacillus acidocaldarius 7UAT ; 2.0 ; The crystal structure of the K36A mutant of E. coli YGGS in complex with PLP 7UBP ; 2.3 ; The crystal structure of the K36A/K137A double mutant of E. coli YGGS in complex with PLP 7UAX ; 2.07 ; The crystal structure of the K36A/K38A double mutant of E. coli YGGS in complex with PLP 7UB4 ; 2.4 ; The crystal structure of the K36A/K38A/K233A/K234A quadruple mutant of E. coli YGGS in complex with PLP 7UB8 ; 2.3 ; The crystal structure of the K38A/K137A/K233A/K234A quadruple mutant of E. coli YGGS in complex with PLP 2JED ; 2.32 ; The crystal structure of the kinase domain of the protein kinase C theta in complex with NVP-XAA228 at 2.32A resolution. 1R8N ; 1.75 ; The Crystal Structure of the Kunitz (STI) Type Inhibitor from Seeds of Delonix regia 7R3X ; 2.46 ; The crystal structure of the L439V variant of Pol2CORE in complex with DNA and an incoming nucleotide 1ZUJ ; 2.9 ; The crystal structure of the Lactococcus lactis MG1363 DpsA protein 1ZS3 ; 2.7 ; The crystal structure of the Lactococcus lactis MG1363 DpsB protein 2OGO ; 3.66 ; The crystal structure of the large ribosomal subunit from Deinococcus radiodurans complexed with the pleuromutilin derivative retapamulin (SB-275833) 2OGN ; 3.56 ; The crystal structure of the large ribosomal subunit from Deinococcus radiodurans complexed with the pleuromutilin derivative SB-280080 2OGM ; 3.5 ; The crystal structure of the large ribosomal subunit from Deinococcus radiodurans complexed with the pleuromutilin derivative SB-571519 4WCE ; 3.526 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus 4WFB ; 3.43 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with BC-3205 5HL7 ; 3.55 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with lefamulin 5HKV ; 3.66 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with lincomycin 4WFA ; 3.392 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with linezolid 5NRG ; 3.442 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with RB02 4WF9 ; 3.427 ; The crystal structure of the large ribosomal subunit of Staphylococcus aureus in complex with telithromycin 3NRK ; 3.1 ; The crystal structure of the leptospiral hypothetical protein LIC12922 5FCE ; 1.798 ; The crystal structure of the ligand binding region of Serine-glutamate repeat protein A (SgrA) of Enterococcus faecium 3ETP ; 2.0 ; The crystal structure of the ligand-binding domain of the EphB2 receptor at 2.0 A resolution 2EG6 ; 1.7 ; The crystal structure of the ligand-free dihydroorotase from E. coli 1XOV ; 1.8 ; The crystal structure of the listeria monocytogenes bacteriophage PSA endolysin PlyPSA 3AMI ; 2.4 ; The crystal structure of the M16B metallopeptidase subunit from Sphingomonas sp. A1 3PG2 ; 1.8 ; The Crystal structure of the major pilin GBS80 of Streptococcus agalactiae 35 kDa C-terminal fragment 3PF2 ; 1.7 ; The Crystal Structure of the Major Pilin GBS80 of Streptococcus agalactiae 35kDa C-terminal fragment 5EYO ; 2.39 ; The crystal structure of the Max bHLH domain in complex with 5-carboxyl cytosine DNA 5HOL ; 1.59 ; The crystal structure of the MERS-CoV macro domain with ADP-ribose 4WUR ; 3.16 ; The crystal structure of the MERS-CoV papain-like protease (C111S) with human ubiquitin 5XJA ; 3.43 ; The Crystal Structure of the Minimal Core Domain of the Microtubule Depolymerizer KIF2C Complexed with ADP-Mg-AlFx 5XJB ; 3.1 ; The Crystal Structure of the Minimal Core Domain of the Microtubule Depolymerizer KIF2C Complexed with ADP-Mg-BeFx 1V8J ; 3.24 ; The Crystal Structure of the Minimal Functional Domain of the Microtubule Destabilizer KIF2C Complexed with Mg-ADP 1V8K ; 2.25 ; The Crystal Structure of the Minimal Functional Domain of the Microtubule Destabilizer KIF2C Complexed with Mg-AMPPNP 4F6T ; 1.6 ; The crystal structure of the molybdenum storage protein (MoSto) from Azotobacter vinelandii loaded with various polyoxometalates 2OGX ; 1.6 ; The crystal structure of the molybdenum storage protein from Azotobacter vinelandii loaded with polyoxotungstates (WSto) 1VDP ; 1.7 ; The crystal structure of the monoclinic form of hen egg white lysozyme at 1.7 angstroms resolution in space 4MH8 ; 3.0 ; The crystal structure of the monomeric reverse transcriptase from moloney murine leukemia virus 6TQS ; 2.25 ; The crystal structure of the MSP domain of human MOSPD2 in complex with the conventional FFAT motif of ORP1. 6TQU ; 2.4 ; The crystal structure of the MSP domain of human MOSPD2 in complex with the Phospho-FFAT motif of STARD3. 6TQT ; 1.5 ; The crystal structure of the MSP domain of human MOSPD2. 6TQR ; 1.85 ; The crystal structure of the MSP domain of human VAP-A in complex with the Phospho-FFAT motif of STARD3. 6A6X ; 2.7 ; The crystal structure of the Mtb MazE-MazF-mt9 complex 4F4C ; 3.4 ; The Crystal Structure of the Multi-Drug Transporter 2WXQ ; 2.7 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with AS15. 2WXO ; 2.49 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with AS5. 2WXM ; 2.8 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with DL06. 2WXN ; 2.6 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with DL07. 2WXP ; 2.3 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with GDC-0941. 2X38 ; 2.2 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with IC87114. 2WXJ ; 2.6 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with INK654. 2WXK ; 2.9 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with INK666. 2WXF ; 1.9 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with PIK-39. 2WXG ; 2.0 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with SW13. 2WXH ; 1.9 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with SW14. 2WXI ; 2.8 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with SW30. 2WXL ; 1.99 ; The crystal structure of the murine class IA PI 3-kinase p110delta in complex with ZSTK474. 2WXR ; 2.5 ; The crystal structure of the murine class IA PI 3-kinase p110delta. 3V5I ; 2.8 ; The crystal structure of the mutant ClpP S98A (Staphylococcus aureus) 7N55 ; 2.33 ; The crystal structure of the mutant I38T PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988514 4O1A ; 1.87 ; The crystal structure of the mutant NAMPT G217R 6W0V ; 1.381 ; The Crystal Structure of the Mutant Nuclease Domain of Pyocin S8 with its Cognate Immunity Protein 1NW2 ; 1.9 ; The crystal structure of the mutant R82E of Thioredoxin from Alicyclobacillus acidocaldarius 3QAO ; 1.874 ; The crystal structure of the N-terminal domain of a MerR-like transcriptional regulator from Listeria monocytogenes EGD-e 5JMB ; 2.05 ; The Crystal structure of the N-terminal domain of a novel cellulases from Bacteroides coprocola 3IWF ; 1.4 ; The Crystal Structure of the N-terminal domain of a RpiR Transcriptional Regulator from Staphylococcus epidermidis to 1.4A 1TJF ; 2.21 ; The crystal structure of the N-terminal domain of CAP indicates variable oligomerisation 4NKN ; 2.79 ; The Crystal Structure of the N-terminal domain of COMMD9 4OE9 ; 1.55 ; The crystal structure of the n-terminal domain of COMMD9 3LAZ ; 1.921 ; The crystal structure of the N-terminal domain of D-galactarate dehydratase from Escherichia coli CFT073 1YY6 ; 1.7 ; The Crystal Structure of the N-terminal domain of HAUSP/USP7 complexed with an EBNA1 peptide 2FOP ; 2.1 ; The Crystal Structure of the N-terminal domain of HAUSP/USP7 complexed with mdm2 peptide 147-150 2FOO ; 2.2 ; The Crystal Structure of the N-terminal domain of HAUSP/USP7 complexed with p53 peptide 359-362 2FOJ ; 1.6 ; The Crystal Structure of the N-terminal domain of HAUSP/USP7 complexed with p53 peptide 364-367 1XKS ; 2.35 ; The crystal structure of the N-terminal domain of Nup133 reveals a beta-propeller fold common to several nucleoporins 4RXV ; 1.099 ; The crystal structure of the N-terminal fragment of uncharacterized protein from Legionella pneumophila 4KQD ; 1.55 ; The crystal Structure of the N-terminal PAS domain of the F plasmid TraJ 3LLV ; 1.7 ; The Crystal Structure of the NAD(P)-binding domain of an Exopolyphosphatase-related protein from Archaeoglobus fulgidus to 1.7A 3EGW ; 1.9 ; The crystal structure of the NarGHI mutant NarH - C16A 1Y5L ; 2.5 ; The crystal structure of the NarGHI mutant NarI-H66Y 1Y5I ; 1.9 ; The crystal structure of the NarGHI mutant NarI-K86A 1Y5N ; 2.5 ; The crystal structure of the NarGHI mutant NarI-K86A in complex with pentachlorophenol 2JC2 ; 2.5 ; The crystal structure of the natural F112L human sorcin mutant 3SI7 ; 2.25 ; The crystal structure of the NBD1 domain of the mouse CFTR protein, deltaF508 mutant 4B6G ; 1.4 ; The Crystal Structure of the Neisserial Esterase D. 4GRV ; 2.802 ; The crystal structure of the neurotensin receptor NTS1 in complex with neurotensin (8-13) 5H5N ; 2.0 ; The crystal structure of the NS1 (H17N10) RNA-binding domain 2HRZ ; 1.85 ; The crystal structure of the nucleoside-diphosphate-sugar epimerase from Agrobacterium tumefaciens 5Z30 ; 2.45 ; The crystal structure of the nucleosome containing a cancer-associated histone H2A.Z R80C mutant 5B24 ; 3.6 ; The crystal structure of the nucleosome containing cyclobutane pyrimidine dimer 5B0Z ; 1.987 ; The crystal structure of the nucleosome containing H3.2, at 1.98 A resolution 5X7X ; 2.184 ; The crystal structure of the nucleosome containing H3.3 at 2.18 angstrom resolution 5GXQ ; 2.85 ; The crystal structure of the nucleosome containing H3.6 5ZBX ; 2.58 ; The crystal structure of the nucleosome containing histone H3.1 CATD(V76Q, K77D) 4XQ7 ; 1.6 ; The crystal structure of the OAS-like domain (OLD) of human OASL 1OQB ; 2.8 ; The Crystal Structure of the one-iron form of the di-iron center in Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean). 1OPR ; 2.3 ; THE CRYSTAL STRUCTURE OF THE OROTATE PHOSPHORIBOSYLTRANSFERASE COMPLEXED WITH OROTATE AND ALPHA-D-5-PHOSPHORIBOSYL-1-PYROPHOSPHATE 4LOG ; 2.7 ; The crystal structure of the orphan nuclear receptor PNR ligand binding domain fused with MBP 2DTH ; 1.95 ; The Crystal Structure of the Orthorhombic Form of Biotin Protein Ligase From Pyrococcus Horikoshii OT3 in Complex with Biotin and ADP 1VDQ ; 1.5 ; The crystal structure of the orthorhombic form of hen egg white lysozyme at 1.5 angstroms resolution 2ZQ3 ; 1.6 ; The crystal structure of the orthorhombic form of hen egg white lysozyme at 1.6 angstroms resolution 1VED ; 1.9 ; The crystal structure of the orthorhombic form of hen egg white lysozyme at 1.9 angstroms resolution in space 2ZQ4 ; 2.0 ; The crystal structure of the orthorhombic form of hen egg white lysozyme at 2.0 angstroms resolution 3I76 ; 2.0 ; The crystal structure of the orthorhombic form of the putative HAD-hydrolase YfnB from Bacillus subtilis bound to magnesium reveals interdomain movement 1YC9 ; 1.8 ; The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 resolution 6OFR ; 2.4 ; The crystal structure of the outer membrane transporter YddB from Escherichia coli 6V81 ; 2.957 ; The crystal structure of the outer-membrane transporter YncD 7W5L ; 2.5 ; The crystal structure of the oxidized form of Gluconobacter oxydans WSH-004 SNDH 2W8N ; 2.0 ; The crystal structure of the oxidized form of human SSADH 2FRE ; 1.9 ; The crystal structure of the oxidoreductase containing FMN 3FBS ; 2.15 ; The crystal structure of the oxidoreductase from Agrobacterium tumefaciens 3N70 ; 2.8 ; The Crystal Structure of the P-loop NTPase domain of the Sigma-54 transport activator from E. coli to 2.8A 1XG6 ; 2.15 ; The crystal structure of the P1 mutant (Leu to Arg)of a Winged bean chymotrypsin inhibitor(Kunitz)solved at 2.15A resolution 1WYX ; 1.14 ; The Crystal Structure of the p130Cas SH3 Domain at 1.1 A Resolution 4LUL ; 1.89 ; The crystal structure of the P132A, Y133D mutant of Pyrococcus furiosus phosphoglucose isomerase in complex with manganese. 4LUK ; 1.41 ; The crystal structure of the P132A, Y133G mutant of Pyrococcus furiosus phosphoglucose isomerase in complex with manganese and 5-phospho-D-arabinonate. 4LTA ; 2.04 ; The crystal structure of the P132R, Y133G mutant of Pyrococcus furiosus phosphoglucose isomerase in complex with manganese and 5-phospho-D-arabinonate. 4LUM ; 1.79 ; The crystal structure of the P132V mutant of Pyrococcus furiosus phosphoglucose isomerase in complex with manganese and fructose-6- phosphate. 3NWL ; 2.69 ; The crystal structure of the P212121 form of bovine liver catalase previously characterized by electron microscopy 3MQQ ; 1.65 ; The Crystal Structure of the PAS domain in complex with Ethanol of a Transcriptional Regulator in the LuxR family from Burkholderia thailandensis to 1.65A 3MQO ; 1.7 ; The Crystal Structure of the PAS domain in complex with isopropanol of a Transcriptional Regulator in the LuxR family from Burkholderia thailandensis to 1.7A 3NJA ; 2.368 ; The crystal structure of the PAS domain of a GGDEF family protein from Chromobacterium violaceum ATCC 12472. 3KHF ; 1.2 ; The crystal structure of the PDZ domain of human Microtubule Associated Serine/Threonine Kinase 3 (MAST3) 3FWX ; 2.0 ; The crystal structure of the peptide deformylase from Vibrio cholerae O1 biovar El Tor str. N16961 3S02 ; 2.5 ; The crystal structure of the periplasmic domain of Helicobacter pylori MotB (residues 103-256) 3S0W ; 2.5 ; The crystal structure of the periplasmic domain of Helicobacter pylori MotB (residues 78-256). 3S0H ; 2.1 ; The crystal structure of the periplasmic domain of Helicobacter pylori MotB (residues 90-256). 3S06 ; 1.8 ; The crystal structure of the periplasmic domain of Helicobacter pylori MotB (residues 97-256, P3121). 3S03 ; 2.5 ; The crystal structure of the periplasmic domain of Helicobacter pylori MotB (residues 97-256, P43). 3S0Y ; 1.8 ; The crystal structure of the periplasmic domain of MotB (residues 64-256). 6OFS ; 2.6 ; The crystal structure of the periplasmic protease PqqL from Escherichia coli 2X18 ; 1.46 ; The crystal structure of the PH domain of human AKT3 protein kinase 1Z1L ; 1.7 ; The Crystal Structure of the Phosphodiesterase 2A Catalytic Domain 2OLS ; 2.4 ; The crystal structure of the phosphoenolpyruvate synthase from Neisseria meningitidis 6ABA ; 1.797 ; The crystal structure of the photoactivated state of Nonlabens marinus Rhodopsin 3 8DN7 ; 2.0 ; The crystal structure of the Pisum sativum Toc75 POTRA domains in complex with fab ax9 6G0A ; 2.62 ; The crystal structure of the Pol2 catalytic domain of DNA polymerase epsilon carrying a P301R substitution. 6I8A ; 2.652 ; The crystal structure of the Pol2 catalytic domain of DNA polymerase epsilon carrying a P301R substitution. 5ZCT ; 2.05 ; The crystal structure of the poly-alpha-L-glutamate peptides synthetase RimK at 2.05 angstrom resolution. 2QMW ; 2.3 ; The crystal structure of the prephenate dehydratase (PDT) from Staphylococcus aureus subsp. aureus Mu50 2DPK ; 2.5 ; The Crystal Structure of the Primary Ca2+ Sensor of the Na+/Ca2+ Exchanger 3FH2 ; 1.6 ; The crystal structure of the PROBABLE ATP-DEPENDENT PROTEASE (HEAT SHOCK PROTEIN) from Corynebacterium glutamicum 7YVD ; 2.1 ; The crystal structure of the progerin C-terminal peptide and the Ig-like domain of lamin A/C 3DNH ; 1.94 ; The crystal structure of the protein Atu2129 (unknown function) from Agrobacterium tumefaciens str. C58 2R8B ; 2.56 ; The crystal structure of the protein Atu2452 of unknown function from Agrobacterium tumefaciens str. C58 3KBQ ; 2.0 ; The crystal structure of the protein CinA with unknown function from Thermoplasma acidophilum 2B26 ; 3.2 ; The crystal structure of the protein complex of yeast Hsp40 Sis1 and Hsp70 Ssa1 3D7L ; 2.06 ; The crystal structure of the protein lin1944 from Listeria innocua . 3EDP ; 2.092 ; The crystal structure of the protein lin2111 (functionally unknown) from Listeria innocua Clip11262 5V85 ; 2.003 ; The crystal structure of the protein of DegV family COG1307 from Ruminococcus gnavus ATCC 29149 (alternative refinement of PDB 3JR7 with Vaccenic acid) 3JR7 ; 2.0 ; The crystal structure of the protein of DegV family COG1307 with unknown function from Ruminococcus gnavus ATCC 29149 1XM7 ; 2.4 ; The Crystal Structure of the Protein of Unknown Function AQ665 from Aquifex aeolicus 1YLN ; 2.2 ; The Crystal Structure of the Protein of Unknown Function VCA0042 from Vibrio cholerae O1 3LMB ; 2.1 ; The crystal structure of the protein OLEI01261 with unknown function from Chlorobaculum tepidum TLS 3LLB ; 1.8 ; The crystal structure of the protein PA3983 with unknown function from Pseudomonas aeruginosa PAO1 3DO8 ; 1.6 ; The crystal structure of the protein with unknown function from Archaeoglobus fulgidus 3FVV ; 2.1 ; The crystal structure of the protein with unknown function from Bordetella pertussis Tohama I 3H04 ; 1.9 ; The crystal structure of the protein with unknown function from Staphylococcus aureus subsp. aureus Mu50 3FB9 ; 1.8 ; The crystal structure of the protein with unknown function from Streptococcus pneumoniae TIGR4 3GAA ; 2.7 ; The crystal structure of the protein with unknown function from Thermoplasma acidophilum 3KZQ ; 2.1 ; The crystal structure of the protein with unknown function from Vibrio parahaemolyticus RIMD 2210633 2VEC ; 1.85 ; The crystal structure of the protein YhaK from Escherichia coli 3MTV ; 2.8 ; The Crystal Structure of the PRRSV Nonstructural Protein Nsp1 7UYY ; 2.7 ; The crystal structure of the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene in complex with NADH 3FDD ; 2.35 ; The Crystal Structure of the Pseudomonas dacunhae Aspartate-Beta-Decarboxylase Reveals a Novel Oligomeric Assembly for a Pyridoxal-5-Phosphate Dependent Enzyme 1YUK ; 1.8 ; The crystal structure of the PSI/Hybrid domain/ I-EGF1 segment from the human integrin beta2 at 1.8 resolution 3LOD ; 2.5 ; The crystal structure of the putative acyl-CoA N-acyltransferase from Klebsiella pneumoniae subsp.pneumoniae MGH 78578 3LP5 ; 2.0 ; The crystal structure of the putative cell surface hydrolase from Lactobacillus plantarum WCFS1 3MOI ; 2.5 ; The crystal structure of the putative dehydrogenase from Bordetella bronchiseptica RB50 3O0Y ; 1.7 ; The crystal structure of the putative lipoprotein from Colwellia psychrerythraea 3CZX ; 1.6 ; The crystal structure of the putative N-acetylmuramoyl-L-alanine amidase from Neisseria meningitidis 2HAY ; 2.11 ; The Crystal Structure of the Putative NAD(P)H-Flavin Oxidoreductase from Streptococcus pyogenes M1 GAS 2B0C ; 2.0 ; The crystal structure of the putative phosphatase from Escherichia coli 3HFI ; 2.2 ; The crystal structure of the putative regulator from Escherichia coli CFT073 2O0M ; 1.6 ; The crystal structure of the putative SorC family transcriptional regulator from Enterococcus faecalis 3E7Q ; 2.2 ; The crystal structure of the putative transcriptional regulator from Pseudomonas aeruginosa PAO1 2G7G ; 2.01 ; The Crystal Structure of the Putative Transcriptional Regulator Rha04620 from Rhodococcus sp. RHA1 3DQQ ; 2.7 ; The crystal structure of the putative tRNA synthase from Salmonella typhimurium LT2 4QKO ; 1.8 ; The Crystal Structure of the Pyocin S2 Nuclease Domain, Immunity Protein Complex at 1.8 Angstroms 3EC8 ; 2.6 ; The crystal structure of the RA domain of FLJ10324 (RADIL) 3CH5 ; 2.1 ; The crystal structure of the RanGDP-Nup153ZnF2 complex 2ERY ; 1.7 ; The crystal structure of the Ras related protein RRas2 (RRAS2) in the GDP bound state 1TJD ; 2.5 ; The crystal structure of the reduced disulphide bond isomerase, DsbC, from Escherichia coli 7W5N ; 2.988 ; The crystal structure of the reduced form of Gluconobacter oxydans WSH-004 SNDH 2W8O ; 3.4 ; The crystal structure of the reduced form of human SSADH 6MX1 ; 1.671 ; The crystal structure of the regulatory domain of aspartokinase in the bifunctional aspartokinase/homoserine dehydrogenase 1 from Escherichia coli str. K-12 substr. MG1655 6AB9 ; 1.75 ; The crystal structure of the relaxed state of Nonlabens marinus Rhodopsin 3 3MZY ; 2.5 ; The Crystal Structure of the RNA polymerase sigma-H factor from Fusobacterium nucleatum to 2.5A 2G8R ; 1.7 ; The crystal structure of the RNase A- 3-N-piperidine-4-carboxyl-3-deoxy-ara-uridine complex 3LEQ ; 1.85 ; The Crystal Structure of the Roadblock/LC7 domain from Streptomyces avermitillis to 1.85A 4JHN ; 1.7 ; The crystal structure of the RPGR RCC1-like domain 4JHP ; 1.9 ; The crystal structure of the RPGR RCC1-like domain in complex with PDE6D 3KE6 ; 2.6 ; The crystal structure of the RsbU and RsbW domains of Rv1364c from Mycobacterium tuberculosis 6XNB ; 1.16 ; The Crystal Structure of the S154Y Mutant Carbonyl Reductase from Leifsonia xyli Explains Enhanced Activity for 3,5-Bis(trifluoromethyl)acetophenone Reduction 8A2C ; 1.6 ; The crystal structure of the S178A mutant of PET40, a PETase enzyme from an unclassified Amycolatopsis 5JHE ; 1.8 ; The Crystal Structure of the Saccharomyces cerevisiae Co-Chaperone Cpr7 3O02 ; 1.9 ; The Crystal Structure of the Salmonella Type III Secretion System Tip Protein SipD in Complex with Chenodeoxycholate 3O01 ; 1.9 ; The Crystal Structure of the Salmonella Type III Secretion System Tip Protein SipD in Complex with Deoxycholate 7CI3 ; 2.2 ; The crystal structure of the SARS-CoV-2 ORF7a ectodomain 2FE5 ; 1.1 ; The Crystal Structure of the Second PDZ Domain of Human DLG3 2HE4 ; 1.45 ; The crystal structure of the second PDZ domain of human NHERF-2 (SLC9A3R2) interacting with a mode 1 PDZ binding motif 3EYI ; 1.45 ; The crystal structure of the second Z-DNA binding domain of human DAI (ZBP1) in complex with Z-DNA 2CN4 ; 2.3 ; The crystal structure of the secreted dimeric form of the hemophore HasA reveals a domain swapping with an exchanged heme ligand 3KYZ ; 1.497 ; The crystal structure of the sensor domain of two-component sensor PfeS from Pseudomonas aeruginosa PA01 4UMS ; 1.84 ; The crystal structure of the seventh ScaB type I cohesin from Pseudobacteroides cellulosolvens 5G4X ; 2.166 ; The crystal structure of the SHANK3 N-terminus 7QH5 ; 2.2 ; The crystal structure of the sigma factor SigG1 from Streptomyces tsukubaensis NRRL18488 2XXA ; 3.94 ; The Crystal Structure of the Signal Recognition Particle (SRP) in Complex with its Receptor(SR) 3FBY ; 3.15 ; The crystal structure of the signature domain of cartilage oligomeric matrix protein. 1QBZ ; 1.47 ; THE CRYSTAL STRUCTURE OF THE SIV GP41 ECTODOMAIN AT 1.47 A 3A4S ; 2.7 ; The crystal structure of the SLD2:Ubc9 complex 1UOS ; 2.7 ; The Crystal Structure of the Snake Venom Toxin Convulxin 4ZBH ; 1.5 ; THE CRYSTAL STRUCTURE OF THE SOLUBLE DOMAIN OF SULFOLOBUS ACIDOCALDARIUS FLAF 4P94 ; 1.651 ; The crystal structure of the soluble domain of Sulfolobus acidocaldarius FlaF (residues 35-164) 4GJ4 ; 1.8 ; The Crystal Structure of the soluble Guanylate Cyclase PAS alpha domain from Manduca sexta 2FL4 ; 1.6 ; The crystal structure of the spermine/spermidine acetyltransferase from Enterococcus faecalis 1OOW ; 2.0 ; The crystal structure of the spinach plastocyanin double mutant G8D/L12E gives insight into its low reactivity towards photosystem 1 and cytochrome f 4P6Q ; 2.0 ; The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA Recognition Motifs 6MH9 ; 2.02 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein A121I mutant to 2.02 Angstrom resolution 6NM1 ; 2.33 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein A158L mutant to 2.33 Angstrom resolution exhibits a conformation change compared to the wild type form 6ALW ; 1.63 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein loaded with 12-Methyl Myristic Acid (C15:0) to 1.63 Angstrom resolution 6B9I ; 1.93 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein loaded with 14-Methylhexadecanoic Acid (Anteiso C17:0) to 1.93 Angstrom resolution 5WOO ; 1.78 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein loaded with Myristic acid (C14:0) to 1.78 Angstrom resolution 5UTO ; 1.83 ; The crystal structure of the Staphylococcus aureus Fatty acid Kinase (Fak) B1 protein loaded with palmitic acid to 1.83 Angstrom resolution 5HZG ; 3.3 ; The crystal structure of the strigolactone-induced AtD14-D3-ASK1 complex 3RNM ; 2.4 ; The crystal structure of the subunit binding of human dihydrolipoamide transacylase (E2b) bound to human dihydrolipoamide dehydrogenase (E3) 2E25 ; 2.7 ; The Crystal Structure of the T109S mutant of E. coli Dihydroorotase complexed with an inhibitor 5-fluoroorotate 8DYB ; 1.88 ; The crystal structure of the T252A mutant of CYP199A4 bound to 4-methylthiobenzoic acid 5KDZ ; 1.424 ; The crystal structure of the T252A mutant of CYP199A4 in complex with 4-methoxybenzoate 8TNK ; 1.79 ; The crystal structure of the T252E mutant of CYP199A4 bound to 4-benzylbenzoic acid 4ZDL ; 2.26 ; The crystal structure of the T325S mutant of the human holo SepSecS 3D37 ; 2.1 ; The crystal structure of the tail protein from Neisseria meningitidis MC58 4U7W ; 1.899 ; The crystal structure of the terminal R domain from the myxalamid PKS-NRPS biosynthetic pathway 4W4T ; 1.845 ; The crystal structure of the terminal R domain from the myxalamid PKS-NRPS biosynthetic pathway 1SNC ; 1.65 ; THE CRYSTAL STRUCTURE OF THE TERNARY COMPLEX OF STAPHYLOCOCCAL NUCLEASE, CA2+, AND THE INHIBITOR PD*TP, REFINED AT 1.65 ANGSTROMS 1VDS ; 1.6 ; The crystal structure of the tetragonal form of hen egg white lysozyme at 1.6 angstroms resolution in space 1VDT ; 1.7 ; The crystal structure of the tetragonal form of hen egg white lysozyme at 1.7 angstroms resolution under basic conditions in space 3NSX ; 1.569 ; The crystal structure of the The crystal structure of the D420A mutant of the alpha-glucosidase (FAMILY 31) from Ruminococcus obeum ATCC 29174 1EVQ ; 2.6 ; THE CRYSTAL STRUCTURE OF THE THERMOPHILIC CARBOXYLESTERASE EST2 FROM ALICYCLOBACILLUS ACIDOCALDARIUS 3EFE ; 2.3 ; The crystal structure of the thiJ/pfpI family protein from Bacillus anthracis 3HHV ; 1.83 ; The crystal structure of the Thioredoxin A2 from Sulfolobus solfataricus 2OUJ ; 1.9 ; The crystal structure of the Thrombospondin-1 N-terminal domain in complex with fractionated Heparin DP8 7UWG ; 2.16 ; The crystal structure of the TIR domain-containing protein from Acinetobacter baumannii (AbTir) 3IAX ; 2.6 ; The crystal structure of the TolB box of Colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins 3G5O ; 2.0 ; The crystal structure of the toxin-antitoxin complex RelBE2 (Rv2865-2866) from Mycobacterium tuberculosis 1I4W ; 2.6 ; THE CRYSTAL STRUCTURE OF THE TRANSCRIPTION FACTOR SC-MTTFB OFFERS INTRIGUING INSIGHTS INTO MITOCHONDRIAL TRANSCRIPTION 3DDV ; 2.65 ; The crystal structure of the transcriptional regulator (GntR family) from Enterococcus faecalis V583 2FQ4 ; 1.79 ; The crystal structure of the transcriptional regulator (TetR family) from Bacillus cereus 1LJ9 ; 1.6 ; The crystal structure of the transcriptional regulator SlyA 3EUP ; 1.99 ; The crystal structure of the transcriptional regulator, TetR family from Cytophaga hutchinsonii 7KCJ ; 1.997 ; The crystal structure of the translation initiation factor EIF4E5 from Leishmania major 1DA3 ; 2.0 ; THE CRYSTAL STRUCTURE OF THE TRIGONAL DECAMER C-G-A-T-C-G-6MEA-T-C-G: A B-DNA HELIX WITH 10.6 BASE-PAIRS PER TURN 2NX8 ; 2.0 ; The crystal structure of the tRNA-specific adenosine deaminase from Streptococcus pyogenes 2A5L ; 1.7 ; The crystal structure of the Trp repressor binding protein WrbA from Pseudomonas aeruginosa 8QCW ; 2.9 ; The crystal structure of the truncated form of Lotus japonicus kinase 1 1V6D ; 1.9 ; The crystal structure of the trypsin complex with synthetic heterochiral peptide 3KUF ; 2.7 ; The Crystal Structure of the Tudor Domains from FXR1 3H8Z ; 1.92 ; The Crystal Structure of the Tudor Domains from FXR2 2JE1 ; 2.69 ; The crystal Structure of the tumor supressor protein pp32 (Anp32a) :structural insights into the Anp32 family of proteins 3LR1 ; 1.8 ; The crystal structure of the tungstate ABC transporter from Geobacter sulfurreducens 5NL6 ; 2.05 ; The crystal structure of the two spectrin repeat domains from Entamoeba histolytica 8YHF ; 1.4 ; The Crystal Structure of the Type I TGF beta receptor from Biortus. 2WYQ ; 1.651 ; THE CRYSTAL STRUCTURE OF THE UBIQUITIN-LIKE (UBL) DOMAIN OF HHR23A (HUMAN HOMOLOGUE A OF RAD23) 3I99 ; 2.2 ; The crystal structure of the UDP-N-acetylenolpyruvoylglucosamine reductase from the Vibrio cholerae O1 biovar Tor 3L1Q ; 2.5 ; The crystal structure of the undecamer d(TGGCCTTAAGG) 7R3Y ; 2.6 ; The crystal structure of the V426L variant of Pol2CORE in complex with DNA and an incoming nucleotide 4RM4 ; 1.771 ; The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis 8JW3 ; 1.45 ; The crystal structure of the viral terpene synthase from Orpheovirus IHUMI-LCC2 6BGC ; 2.082 ; The crystal structure of the W145A variant of TpMglB-2 (Tp0684) with bound glucose 6BGD ; 1.47 ; The crystal structure of the W145A variant of TpMglB-2 (Tp0684) with bound ligand 3NUK ; 2.055 ; THE CRYSTAL STRUCTURE OF THE W169Y mutant of ALPHA-GLUCOSIDASE (FAMILY 31) from RUMINOCOCCUS OBEUM ATCC 29174 6CA1 ; 1.95 ; THE CRYSTAL STRUCTURE OF THE W169Y MUTANT OF ALPHA-GLUCOSIDASE (GH 31) FROM RUMINOCOCCUS OBEUM ATCC 29174 in complex with miglitol 6CA3 ; 1.743 ; THE CRYSTAL STRUCTURE OF THE W169Y MUTANT OF ALPHA-GLUCOSIDASE (GH 31) FROM RUMINOCOCCUS OBEUM ATCC 29174 in complex with miglitol 3PHA ; 2.173 ; The crystal structure of the W169Y mutant of alpha-glucosidase (gh31 family) from Ruminococcus obeum atcc 29174 in complex with acarbose 7LP7 ; 2.5 ; The crystal structure of the wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000983476 7UBQ ; 2.6 ; The crystal structure of the wild-type of E. coli YGGS in complex with PNP 6P66 ; 3.0 ; The crystal structure of the XPB complex with Bax1 from Archaeoglobus fulgidus at 3.0 Angstrom resolution 4YE8 ; 3.3 ; The crystal structure of the Y57H mutant of human GlnRS 1UXO ; 1.8 ; The crystal structure of the ydeN gene product from B. subtilis 5H5D ; 2.7 ; The crystal structure of the yeast arginine methyltransferase SFM1 complexed with MTA 5H5E ; 2.09 ; The crystal structure of the yeast arginine methyltransferase SFM1 complexed with SAH 5H5F ; 1.7 ; The crystal structure of the yeast arginine methyltransferase SFM1 complexed with SAM 1ZA3 ; 3.35 ; The crystal structure of the YSd1 Fab bound to DR5 2FPN ; 2.49 ; The crystal structure of the ywmB protein from Bacillus subtilis 4HOB ; 1.76 ; The crystal structure of the Zalpha domain from Cyprinid Herpes virus 3 1XMK ; 0.97 ; The Crystal structure of the Zb domain from the RNA editing enzyme ADAR1 3DFM ; 2.01 ; The crystal structure of the zinc inhibited form of teicoplanin deacetylase Orf2 1JV0 ; 2.0 ; THE CRYSTAL STRUCTURE OF THE ZINC(II) ADDUCT OF THE CAI MICHIGAN 1 VARIANT 1GPZ ; 2.9 ; THE CRYSTAL STRUCTURE OF THE ZYMOGEN CATALYTIC DOMAIN OF COMPLEMENT PROTEASE C1R 4AEF ; 2.34 ; THE CRYSTAL STRUCTURE OF THERMOSTABLE AMYLASE FROM THE PYROCOCCUS 5HXV ; 2.0 ; The crystal structure of thermostable xylanase mutant 6RNV ; 1.27 ; The crystal structure of Thermosynechococcus elongatus protochlorophyllide oxidoreductase (POR) 6RNW ; 1.92 ; The crystal structure of Thermosynechococcus elongatus protochlorophyllide oxidoreductase (POR) in complex with NADP. 1GC9 ; 2.3 ; THE CRYSTAL STRUCTURE OF THERMUS THERMOPHILUS 3-ISOPROPYLMALATE DEHYDROGENASE MUTATED AT 172TH FROM ALA TO GLY 1GC8 ; 2.5 ; THE CRYSTAL STRUCTURE OF THERMUS THERMOPHILUS 3-ISOPROPYLMALATE DEHYDROGENASE MUTATED AT 172TH FROM ALA TO PHE 3EC5 ; 1.75 ; The crystal structure of Thioflavin-T (ThT) binding OspA mutant 4NPB ; 2.147 ; The crystal structure of thiol:disulfide interchange protein DsbC from Yersinia pestis CO92 3HDC ; 1.771 ; The crystal structure of thioredoxin protein from Geobacter metallireducens 3KCM ; 2.45 ; The crystal structure of thioredoxin protein from Geobacter metallireducens 5UWY ; 2.72 ; The crystal structure of thioredoxin reductase from Streptococcus pyogenes MGAS5005 3RAZ ; 2.0 ; The crystal structure of thioredoxin-related protein from Neisseria meningitidis serogroup B 4EDH ; 1.32 ; The crystal structure of thymidylate kinase from Pseudomonas aeruginosa PAO1 in complex with ADP,TMP and Mg. 4GMD ; 1.98 ; The crystal structure of thymidylate kinase from Pseudomonas aeruginosa PAO1 in complex with AZT Monophosphate 4ESH ; 1.95 ; The crystal structure of thymidylate kinase from Pseudomonas aeruginosa PAO1 in complex with deoxythymidine. 4E5U ; 1.812 ; The crystal structure of thymidylate kinase from Pseudomonas aeruginosa PAO1 in complex with thymidine monophosphate. 4R1D ; 1.749 ; The crystal structure of Tle4-Tli4 complex 1PBT ; 1.7 ; The crystal structure of TM1154, oxidoreductase, sol/devB family from Thermotoga maritima 1RJ8 ; 2.23 ; The crystal structure of TNF family member EDA-A2 8X88 ; 2.7 ; The Crystal Structure of TNIK from Biortus. 2O50 ; 2.9 ; The crystal structure of Toxoplasma gondii Enoyl acyl carrier protein reductase 5U2P ; 1.76 ; The crystal structure of Tp0737 from Treponema pallidum 3PJL ; 1.7 ; The crystal structure of Tp34 bound to Co (II) ion at pH 7.5 3PJN ; 1.7 ; The crystal structure of Tp34 bound to Zn(II) ion at pH 7.5 1FC3 ; 2.0 ; THE CRYSTAL STRUCTURE OF TRANS-ACTIVATION DOMAIN OF THE SPORULATION RESPONSE REGULATOR, SPO0A 3H5O ; 2.3 ; The crystal structure of transcription regulator GntR from Chromobacterium violaceum 2FBQ ; 1.8 ; The crystal structure of transcriptional regulator PA3006 2FBH ; 1.8 ; The crystal structure of transcriptional regulator PA3341 2FBI ; 2.1 ; The crystal structure of transcriptional regulator PA4135 2A61 ; 1.8 ; The crystal structure of transcriptional regulator Tm0710 from Thermotoga maritima 1YSQ ; 1.75 ; The crystal structure of transcriptional regulator YaiJ 2G7S ; 1.4 ; The crystal structure of transcriptional regulator, TetR family, from Agrobacterium tumefaciens 3V89 ; 3.1 ; The crystal structure of transferrin binding protein A (TbpA) from Neisseria meningitidis serogroup B in complex with the C-lobe of human transferrin 3V8X ; 2.6 ; The crystal structure of transferrin binding protein A (TbpA) from Neisserial meningitidis serogroup B in complex with full length human transferrin 3V8U ; 2.4 ; The crystal structure of transferrin binding protein B (TbpB) from Neisseria meningitidis serogroup B 4DIO ; 2.6 ; The crystal structure of transhydrogenase from Sinorhizobium meliloti 3P3K ; 2.551 ; The crystal structure of translationally controlled tumor protein (TCTP) of Plasmodium falciparum 3C9J ; 3.5 ; The Crystal structure of Transmembrane domain of M2 protein and Amantadine complex 1S5X ; 2.4 ; The crystal structure of Trematomus bernacchii hemoglobin oxidized by air 1S5Y ; 2.5 ; The crystal structure of Trematomus bernacchii hemoglobin oxidized by ferricyanide 1LA6 ; 2.0 ; The crystal structure of Trematomus newnesi hemoglobin in a partial hemichrome state 2IOC ; 2.1 ; The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partenring 1TAH ; 3.0 ; THE CRYSTAL STRUCTURE OF TRIACYLGLYCEROL LIPASE FROM PSEUDOMONAS GLUMAE REVEALS A PARTIALLY REDUNDANT CATALYTIC ASPARTATE 6QIX ; 1.65 ; The crystal structure of Trichuris muris p43 6IET ; 2.101 ; The crystal structure of TRIM66 PHD-Bromo domain 7XAF ; 3.00118 ; The crystal structure of TrkA kinase in complex with 4^6,14-dimethyl-N-(3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl)-10-oxo-5-oxa-11,14-diaza-1(3,6)-imidazo[1,2-b]pyridazina-4(1,3)-benzenacyclo- tetradecaphan-2-yne-45-carboxamide 8J63 ; 3.0005 ; The crystal structure of TrkA kinase in complex with 4^6-methyl-N-(3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl)-11-oxo-5-oxa-10,14-diaza-1(3,6)-imidazo[1,2-b]pyridazina-4(1,3)-benzenacyclotetradecaphan-2-yne-4^5-carboxamide 8J61 ; 3.05065 ; The crystal structure of TrkA kinase in complex with 4^6-methyl-N-(3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl)-14-oxo-5-oxa-13-aza-1(3,6)-imidazo[1,2-b]pyridazina-4(1,3)-benzenacyclotetradecaphan-2-yne-4^5-carboxamide 8J5W ; 2.28041 ; The crystal structure of TrkA(F589L) kinase in complex with N-(3-cyclopropyl-5-((4-methylpiperazin-1-yl)methyl)phenyl)-4^6-methyl-14-oxo-5-oxa-13-aza-1(3,6)-imidazo[1,2-b]pyridazina-4(1,3)-benzenacyclotetradecaphan-2-yne-4^5-carboxamide 8J5X ; 2.09192 ; The crystal structure of TrkA(G595R) kinase in complex with N-(3-cyclopropyl-5-((4-methylpiperazin-1-yl)methyl)phenyl)-4^6-methyl-14-oxo-5-oxa-13-aza-1(3,6)-imidazo[1,2-b]pyridazina-4(1,3)-benzenacyclotetradecaphan-2-yne-4^5-carboxamide 2HMA ; 2.41 ; The Crystal Structure of tRNA (5-Methylaminomethyl-2-Thiouridylate)-Methyltransferase TrmU from Streptococcus pneumoniae 1ZVW ; 2.3 ; The Crystal Structure of TrpD (Rv2192c) from Mycobacterium tuberculosis in Complex with PRPP and Magnesium 1WC9 ; 1.6 ; The crystal structure of truncated mouse bet3p 4OJH ; 1.6 ; The crystal structure of truncated, Y86E mutant of S. solfataricus acylphosphatase 4CJX ; 2.05 ; The crystal structure of Trypanosoma brucei N5, N10- methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) complexed with NADP cofactor and inhibitor 7C42 ; 2.0 ; The crystal structure of Trypanosoma brucei RNase D 7C43 ; 2.3 ; The crystal structure of Trypanosoma brucei RNase D : AMP complex 7C47 ; 2.2 ; The crystal structure of Trypanosoma brucei RNase D : CMP complex 7C4C ; 2.265 ; The crystal structure of Trypanosoma brucei RNase D : GMP complex 7C4B ; 2.101 ; The crystal structure of Trypanosoma brucei RNase D : UMP complex 7C45 ; 1.769 ; The crystal structure of Trypanosoma brucei RNase D complex with RNA U12 1OGK ; 2.85 ; The crystal structure of Trypanosoma cruzi dUTPase in complex with dUDP 6XIN ; 1.75 ; The crystal structure of tryptophan synthase from Salmonella enterica serovar typhimurium in complex with (2S)-3-Amino-3-imino-2-phenyldiazenylpropanamide at the enzyme alpha-site. 4NEG ; 2.201 ; The crystal structure of tryptophan synthase subunit beta from Bacillus anthracis str. 'Ames Ancestor' 8XPZ ; 2.6 ; The Crystal Structure of TTBK1 from Biortus. 5XLZ ; 2.298 ; The crystal structure of tubulin complexed with a benzylidene derivative of 9(10H)-anthracenone 5XLT ; 2.813 ; The crystal structure of tubulin in complex with 4'-demethylepipodophyllotoxin 3N2N ; 1.8 ; The Crystal Structure of Tumor Endothelial Marker 8 (TEM8) extracellular domain 6DET ; 1.75 ; The crystal structure of Tv2483 bound to L-arginine 1F7Y ; 2.8 ; THE CRYSTAL STRUCTURE OF TWO UUCG LOOPS HIGHLIGHTS THE ROLE PLAYED BY 2'-HYDROXYL GROUPS IN ITS UNUSUAL STABILITY 7C78 ; 1.98 ; The crystal structure of type I-F anti-crispr protein AcrIF9 6HSB ; 1.95 ; The crystal structure of type II Dehydroquinase from Acidithiobacillus caldus SM-1 6HS8 ; 1.7 ; The crystal structure of type II Dehydroquinase from Butyrivibrio crossotus DSM 2876 6HS9 ; 1.05 ; The crystal structure of type II Dehydroquinase from Butyrivibrio crossotus DSM 2876 6HSA ; 0.92 ; The crystal structure of type II Dehydroquinase from Butyrivibrio crossotus DSM 2876 6SME ; 1.7 ; THE CRYSTAL STRUCTURE OF TYPE II DEHYDROQUINASE FROM PROPIONIBACTERIUM ACNES 6HSQ ; 1.46 ; The crystal structure of type II Dehydroquinase from Psychromonas ingrahamii 37 crystal form 1 6HSR ; 2.0 ; The crystal structure of type II Dehydroquinase from Psychromonas ingrahamii 37, 40% ethanol as cryoprotectant 6HSU ; 1.6 ; The crystal structure of type II Dehydroquinase from Psychromonas ingrahamii 37, crystal form 2 6SMF ; 2.343 ; THE CRYSTAL STRUCTURE OF TYPE II DEHYDROQUINASE FROM ZYMOMONAS MOBILIS 4P5F ; 2.1 ; The crystal structure of type III effector protein XopQ complexed with adenosine diphosphate ribose 4DM9 ; 2.35 ; The Crystal Structure of Ubiquitin Carboxy-terminal hydrolase L1 (UCHL1) bound to a tripeptide fluoromethyl ketone Z-VAE(OMe)-FMK 8XI7 ; 1.95 ; The Crystal Structure of UCHL1 from Biortus. 1PKD ; 2.3 ; THE CRYSTAL STRUCTURE OF UCN-01 IN COMPLEX WITH PHOSPHO-CDK2/CYCLIN A 1XHB ; 2.5 ; The Crystal Structure of UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase-T1 3JUK ; 2.3 ; The Crystal Structure of UDP-glucose pyrophosphorylase complexed with UDP-glucose 3M2P ; 2.95 ; The crystal structure of UDP-N-acetylglucosamine 4-epimerase from Bacillus cereus 3EAG ; 2.55 ; The crystal structure of UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (MPL) from Neisseria meningitides 3LK7 ; 1.5 ; The Crystal Structure of UDP-N-acetylmuramoylalanine-D-glutamate (MurD) ligase from Streptococcus agalactiae to 1.5A 2JJX ; 2.82 ; THE CRYSTAL STRUCTURE OF UMP KINASE FROM BACILLUS ANTHRACIS (BA1797) 5DPO ; 1.644 ; The crystal structure of uncharacterized protein (LPG2149) from Legionella pneumophila 2PPW ; 2.01 ; The crystal structure of uncharacterized Ribose 5-phosphate isomerase RpiB from Streptococcus pneumoniae 6G4T ; 1.91 ; The crystal structure of uninhibited C183S/C217S mutant of human CA VII 2PFK ; 2.4 ; THE CRYSTAL STRUCTURE OF UNLIGANDED PHOSPHOFRUCTOKINASE FROM ESCHERICHIA COLI 3L0U ; 3.0 ; The crystal structure of unmodified tRNAPhe from Escherichia coli 3OX7 ; 1.58 ; The crystal structure of uPA complex with peptide inhibitor MH027 at pH4.6 3OY5 ; 2.31 ; The crystal structure of uPA complex with peptide inhibitor MH027 at pH7.4 3OY6 ; 2.31 ; The crystal structure of uPA complex with peptide inhibitor MH036 at pH4.6 5YC6 ; 1.18 ; The crystal structure of uPA in complex with 4-Bromobenzylamirne at pH4.6 5YC7 ; 2.0 ; The crystal structure of uPA in complex with 4-Bromobenzylamirne at pH7.4 5Z1C ; 1.45 ; The crystal structure of uPA in complex with 4-Iodobenzylamine at pH7.4 6AG7 ; 1.9 ; The crystal structure of uPA in complex with HMA-55F 4DW2 ; 2.97 ; The crystal structure of uPA in complex with the Fab fragment of mAb-112 4ZKS ; 1.85 ; The crystal structure of upain-1-W3A in complex with inactive uPA (uPA-S195A) at pH7.4 4ZKN ; 1.36 ; The crystal structure of upain-1-W3A in complex with uPA at pH5.5 4ZKO ; 1.29 ; The crystal structure of upain-1-W3A in complex with uPA at pH7.4 4ZKR ; 1.36 ; The crystal structure of upain-1-W3A in complex with uPA at pH9.0 2BOO ; 1.8 ; The crystal structure of Uracil-DNA N-Glycosylase (UNG) from Deinococcus radiodurans. 4OSP ; 2.25 ; The crystal structure of urdamycin C-6 ketoreductase domain UrdMred with bound NADP and rabelomycin 2KAU ; 2.0 ; THE CRYSTAL STRUCTURE OF UREASE FROM KLEBSIELLA AEROGENES AT 2.2 ANGSTROMS RESOLUTION 8XPN ; 2.1 ; The Crystal Structure of USP8 from Biortus. 8Y9A ; 3.1 ; The Crystal Structure of USP8 from Biortus. 4OJG ; 1.377 ; The crystal structure of V84D mutant of S. solfataricus acylphosphatase 4OJ3 ; 2.2 ; The crystal structure of V84P mutant of S. solfataricus Acylphosphatase 5WXV ; 2.3 ; The crystal structure of VabB-ICL domain from Vibrio anguillarum 775 6A9S ; 1.18 ; The crystal structure of vaccinia virus A26 (residues 1-397) 6OCF ; 2.102 ; The crystal structure of VASH1-SVBP complex 3FG7 ; 2.0 ; The crystal structure of villin domain 6 5C5T ; 1.598 ; The crystal structure of viral collagen prolyl hydroxylase vCPH from Paramecium Bursaria Chlorella virus-1 - 2OG complex 5C5U ; 1.7 ; The crystal structure of viral collagen prolyl hydroxylase vCPH from Paramecium Bursaria Chlorella virus-1 - Truncated Construct 5Y6Y ; 1.5 ; The crystal structure of VrEH2 mutant M263N 5Y5D ; 1.85 ; The crystal structure of VrEH2 mutant M263W 2CDU ; 1.8 ; The Crystal Structure of Water-forming NAD(P)H Oxidase from Lactobacillus sanfranciscensis 1BWO ; 2.1 ; THE CRYSTAL STRUCTURE OF WHEAT NON-SPECIFIC TRANSFER PROTEIN COMPLEXED WITH TWO MOLECULES OF PHOSPHOLIPID AT 2.1 A RESOLUTION 8DPJ ; 2.45 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023030 8DQS ; 2.45 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023032 8E21 ; 2.61 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023034 8DVO ; 2.33 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001023044 7UMR ; 2.53 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001034732-1 (trans-form) 7UUH ; 2.89 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with compound SJ001034732-2 (cis-form) 7MPF ; 2.8 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000986436 7N68 ; 2.26 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988288 7MY5 ; 2.38 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988503 7N47 ; 2.37 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988514 7MX0 ; 2.48 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988558 7MTY ; 2.38 ; The crystal structure of wild type PA endonuclease (2009/H1N1/CALIFORNIA) in complex with SJ000988569 7M0N ; 2.4 ; The crystal structure of wild type PA endonuclease (A/Vietnam/1203/2004) in complex with Raltegravir 1NZO ; 1.85 ; The crystal structure of wild type penicillin-binding protein 5 from E. coli 2WUY ; 3.09 ; the crystal structure of wild-type baculovirus polyhedra 8AMH ; 1.73 ; The Crystal structure of wt apo agroavidin 8AN6 ; 1.9 ; The Crystal structure of wt apo agroavidin - biotin complex 5CS7 ; 2.1 ; The crystal structure of wt beta2-microglobulin at room temperature 7TZY ; 1.992 ; The crystal structure of WT CYP199A4 bound to 4-(2-bromoethyl)benzoic acid 7U00 ; 1.657 ; The crystal structure of WT CYP199A4 bound to 4-(2-chloroethyl)benzoic acid 7TRU ; 1.454 ; The crystal structure of WT CYP199A4 bound to 4-(thiophen-2-yl)benzoic acid 8D39 ; 1.268 ; The crystal structure of WT CYP199A4 bound to 4-benzoylbenzoic acid 7TZW ; 1.462 ; The crystal structure of WT CYP199A4 bound to 4-chlorobenzoic acid 7TZX ; 1.414 ; The crystal structure of WT CYP199A4 bound to 4-chloromethylbenzoic acid 7TZN ; 1.839 ; The crystal structure of WT CYP199A4 bound to 4-fluorobenzoic acid 7TZM ; 1.524 ; The crystal structure of WT CYP199A4 bound to 4-iodobenzoic acid 5H0J ; 1.801 ; The crystal structure of WT Pedobacter heparinus SMUG2 5H0K ; 2.25 ; The crystal structure of WT Pedobacter heparinus SMUG2 5NHS ; 2.11 ; The crystal structure of Xanthomonas albilineans N5, N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) 2E11 ; 1.73 ; The Crystal Structure of XC1258 from Xanthomonas campestris: A CN-hydrolase Superfamily Protein with an Arsenic Adduct in the Active Site 2E12 ; 1.7 ; The crystal structure of XC5848 from Xanthomonas campestris adopting a novel variant of Sm-like motif 2GBZ ; 2.3 ; The Crystal Structure of XC847 from Xanthomonas campestris: a 3-5 Oligoribonuclease of DnaQ fold family with a Novel Opposingly-Shifted Helix 5CPL ; 1.57 ; The crystal structure of Xenobiotic reductase A (XenA) from Pseudomonas putida in complex with a nicotinamide mimic (mNH2) 3W0L ; 2.92 ; The crystal structure of Xenopus Glucokinase and Glucokinase Regulatory Protein complex 3L0Q ; 1.61 ; The crystal structure of xlylulose kinase from Yersinia pseudotuberculosis 4EXH ; 2.0 ; The crystal structure of xmrv protease complexed with acetyl-pepstatin 3SM2 ; 1.75 ; The crystal structure of XMRV protease complexed with Amprenavir 3SM1 ; 1.5 ; The crystal structure of XMRV protease complexed with pepstatin A 3SLZ ; 1.4 ; The crystal structure of XMRV protease complexed with TL-3 6CCI ; 1.85 ; The Crystal Structure of XOAT1 3I8B ; 2.0 ; The crystal structure of xylulose kinase from Bifidobacterium adolescentis 3IFR ; 2.3 ; The crystal structure of xylulose kinase from Rhodospirillum rubrum 3WMS ; 2.3 ; The crystal structure of Y195I mutant alpha-cyclodextrin glycosyltransferase from Paenibacillus macerans 4RJ0 ; 1.95 ; The crystal structure of Y333N mutant pyridoxal-dependent decarboxylase from Sphaerobacter thermophilus dsm 20745 4RIZ ; 2.2 ; The crystal structure of Y333Q mutant pyridoxal-dependent decarboxylase from Sphaerobacter thermophilus dsm 20745 4RM1 ; 1.99 ; The crystal structure of Y333Q mutant pyridoxal-dependent decarboxylase from Sphaerobacter thermophilus DSM 20745 4ZDP ; 2.703 ; The crystal structure of Y334C mutant of human SepSecS in complex with selenocysteine tRNA (tRNASec) 2G3W ; 1.9 ; The Crystal Structure of YaeQ Protein from Xanthomonas axonopodis pv. citri 3Q34 ; 1.7 ; The crystal structure of YceI-like family protein from Pseudomonas syringae 2GLU ; 2.91 ; The crystal structure of YcgJ protein from Bacillus subitilis 1XXL ; 2.1 ; The crystal structure of YcgJ protein from Bacillus subitilis at 2.1 A resolution 1GYJ ; 2.1 ; The Crystal Structure of YdcE, a 4-Oxalocrotonate Tautomerase Homologue from Escherichia coli, Confirms the Structural Basis for Oligomer Diversity 1GYX ; 1.35 ; The Crystal Structure of YdcE, a 4-Oxalocrotonate Tautomerase Homologue from Escherichia coli, Confirms the Structural Basis for Oligomer Diversity 1GYY ; 1.35 ; The Crystal Structure of YdcE, a 4-Oxalocrotonate Tautomerase Homologue from Escherichia coli, Confirms the Structural Basis for Oligomer Diversity 4V81 ; 3.8 ; The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins 1UAQ ; 1.6 ; The crystal structure of yeast cytosine deaminase 1P6O ; 1.14 ; The crystal structure of yeast cytosine deaminase bound to 4(R)-hydroxyl-3,4-dihydropyrimidine at 1.14 angstroms. 1EHZ ; 1.93 ; The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution 7ATR ; 1.55 ; The Crystal Structure of YejA - an ABC Peptide Transporter Receptor 3ED5 ; 1.72 ; The crystal structure of YfnB from Bacillus subtilis subsp. subtilis str. 168 3WE9 ; 1.92 ; The crystal structure of YisP from Bacillus subtilis subsp. subtilis strain 168 1T9H ; 1.6 ; The crystal structure of YloQ, a circularly permuted GTPase. 1VF8 ; 1.31 ; The Crystal Structure of Ym1 at 1.31 A Resolution 8GN3 ; 1.8 ; The crystal structure of ZBTB10 ZF1-2 in complex with telomeric vairant repeat TTGGGG 8GN4 ; 1.9 ; The crystal structure of ZBTB10 ZF1-2 R767Q in complex with telomeric DNA TTAGGG 1DU5 ; 2.5 ; THE CRYSTAL STRUCTURE OF ZEAMATIN. 4O6K ; 2.1 ; The crystal structure of zebrafish IL-22 7DOV ; 2.59 ; The crystal structure of zebrafish tumor necrosis factor alpha 6MH3 ; 1.92 ; The crystal structure of Zika virus NS3 helicase domain 3CYY ; 2.4 ; The crystal structure of ZO-1 PDZ2 in complex with the Cx43 peptide 3F47 ; 1.75 ; The Crystal Structure of [Fe]-Hydrogenase (Hmd) Holoenzyme from Methanocaldococcus jannaschii 3DAG ; 1.75 ; The crystal structure of [Fe]-hydrogenase holoenzyme (HMD) from METHANOCALDOCOCCUS JANNASCHII 3DAF ; 1.75 ; The crystal structure of [Fe]-hydrogenase holoenzyme (HMD) from METHANOCALDOCOCCUS JANNASCHII cocrystallized with cyanide 5X72 ; 1.95 ; The crystal Structure PDE delta in complex with (rac)-p9 5X74 ; 2.25 ; The crystal Structure PDE delta in complex with compound (R, R)-1g 5X73 ; 2.5 ; The crystal Structure PDE delta in complex with R-p9 6R5O ; 2.4 ; The crystal structure the Glycoside Hydrolase BglX inactive mutant D286N from P. aeruginosa in complex with two glucose molecules 1HEF ; 2.2 ; The crystal structures at 2.2 angstroms resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations 1HEG ; 2.2 ; The crystal structures at 2.2 angstroms resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations 3KID ; 2.71 ; The Crystal Structures of 2-Aminobenzothiazole-based Inhibitors in Complexes with Urokinase-type Plasminogen Activator 4DNJ ; 1.8 ; The crystal structures of 4-methoxybenzoate bound CYP199A2 4DO1 ; 2.0 ; The crystal structures of 4-methoxybenzoate bound CYP199A4 4O1C ; 2.092 ; The crystal structures of a mutant NAMPT H191R 8GQV ; 2.4 ; The Crystal Structures of a Swine SLA-2*HB01 Molecules Complexed with a CTL epitope from Asia1 serotype of Foot-and-mouth disease virus 8GQW ; 2.48 ; The Crystal Structures of a Swine SLA-2*HB01 Molecules Complexed with a CTL epitope from Asia1 serotype of Foot-and-mouth disease virus 2A2G ; 2.9 ; THE CRYSTAL STRUCTURES OF A2U-GLOBULIN AND ITS COMPLEX WITH A HYALINE DROPLET INDUCER. 2A2U ; 2.5 ; THE CRYSTAL STRUCTURES OF A2U-GLOBULIN AND ITS COMPLEX WITH A HYALINE DROPLET INDUCER. 4DNZ ; 2.6 ; The crystal structures of CYP199A4 1OPA ; 1.9 ; THE CRYSTAL STRUCTURES OF HOLO-AND APO-CELLULAR RETINOL BINDING PROTEIN II 1OPB ; 1.9 ; THE CRYSTAL STRUCTURES OF HOLO-AND APO-CELLULAR RETINOL BINDING PROTEIN II 4QYP ; 1.62 ; The Crystal Structures of holo-wt human Cellular Retinol Binding protein II (hCRBPII) bound to Retinal 4QYN ; 1.19 ; The Crystal Structures of holo-wt human Cellular Retinol Binding protein II (hCRBPII) bound to Retinol 6G6J ; 2.25 ; The crystal structures of Human MYC:MAX bHLHZip complex 6G6K ; 1.35 ; The crystal structures of Human MYC:MAX bHLHZip complex 6G6L ; 2.2 ; The crystal structures of Human MYC:MAX bHLHZip complex 1XEI ; 2.1 ; THE CRYSTAL STRUCTURES OF LYSOZYME AT VERY LOW LEVELS OF HYDRATION 1XEJ ; 2.1 ; THE CRYSTAL STRUCTURES OF LYSOZYME AT VERY LOW LEVELS OF HYDRATION 1XEK ; 2.3 ; THE CRYSTAL STRUCTURES OF LYSOZYME AT VERY LOW LEVELS OF HYDRATION 3PQS ; 2.1 ; The crystal structures of porcine pathogen ApH87_TbpB 3PQU ; 2.1 ; The crystal structures of porcine pathogen AsH57_TbpB 1PZA ; 1.8 ; THE CRYSTAL STRUCTURES OF REDUCED PSEUDOAZURIN FROM ALCALIGENES FAECALIS S-6 AT TWO PH VALUES 1PZB ; 1.8 ; THE CRYSTAL STRUCTURES OF REDUCED PSEUDOAZURIN FROM ALCALIGENES FAECALIS S-6 AT TWO PH VALUES 4FCN ; 1.7 ; The crystal structures of several mutants of pleurotus eryngii versatile peroxidase 4FCS ; 1.5 ; The crystal structures of several mutants of pleurotus eryngii versatile peroxidase 4FDQ ; 1.6 ; The crystal structures of several mutants of pleurotus eryngii versatile peroxidase 4FEF ; 2.0 ; The crystal structures of several mutants of pleurotus eryngii versatile peroxidase 4G05 ; 2.35 ; The crystal structures of several mutants of Pleurotus eryngii versatile peroxidase 4LQD ; 2.451 ; The crystal structures of the Brucella protein TcpB and the TLR adaptor protein TIRAP show structural differences in microbial TIR mimicry 4LQC ; 2.3 ; The crystal structures of the Brucella protein TcpB and the TLR adaptor protein TIRAP show structural differences in microbial TIR mimicry. 2DPQ ; 1.25 ; The crystal structures of the calcium-bound con-G and con-T(K7gamma) dimeric peptides demonstrate a novel metal-dependent helix-forming motif 2DPR ; 1.7 ; The crystal structures of the calcium-bound con-G and con-T(K7Glu) dimeric peptides demonstrate a novel metal-dependent helix-forming motif 3BTG ; 1.9 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTH ; 1.75 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTK ; 1.85 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTM ; 1.8 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTQ ; 1.9 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTT ; 1.9 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTW ; 2.05 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI 3BTE ; 1.85 ; The Crystal Structures of the Complexes Between Bovine Beta-Trypsin and Ten P1 Variants of BPTI. 3BTF ; 1.8 ; THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI. 3BTD ; 1.9 ; The Crystal Structures of the Complexes Between the Bovine Beta-Trypsin and Ten P1 Variants of BPTI. 1XJX ; 1.7 ; The crystal structures of the DNA binding sites of the RUNX1 transcription factor 1XJY ; 2.0 ; The crystal structures of the DNA binding sites of the RUNX1 transcription factor 4B2T ; 5.5 ; The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning 4V8R ; 3.8 ; The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning 1VG9 ; 2.5 ; The crystal structures of the REP-1 protein in complex with C-terminally truncated Rab7 protein 1VG0 ; 2.2 ; The crystal structures of the REP-1 protein in complex with monoprenylated Rab7 protein 1LMO ; 1.8 ; THE CRYSTAL STRUCTURES OF THREE COMPLEXES BETWEEN CHITOOLIGOSACCHARIDES AND LYSOZYME FROM THE RAINBOW TROUT 1LMP ; 2.0 ; THE CRYSTAL STRUCTURES OF THREE COMPLEXES BETWEEN CHITOOLIGOSACCHARIDES AND LYSOZYME FROM THE RAINBOW TROUT 1LMQ ; 1.6 ; THE CRYSTAL STRUCTURES OF THREE COMPLEXES BETWEEN CHITOOLIGOSACCHARIDES AND LYSOZYME FROM THE RAINBOW TROUT 3KIF ; 2.5 ; The crystal structures of two fragments truncated from 5-bladed beta-propeller lectin, tachylectin-2 (Lib1-B7-18 and Lib2-D2-15) 3KIH ; 2.49 ; The crystal structures of two fragments truncated from 5-bladed beta-propeller lectin, tachylectin-2 (Lib2-D2-15) 1SPP ; 2.4 ; THE CRYSTAL STRUCTURES OF TWO MEMBERS OF THE SPERMADHESIN FAMILY REVEAL THE FOLDING OF THE CUB DOMAIN 4P8U ; 2.4 ; The crystal structures of YKL-39 in the absence of chitooligosaccharides was solved to resolutions of 2.4 angstrom 4P8V ; 1.64 ; The crystal structures of YKL-39 in the presence of chitooligosaccharides (GlcNAc2) were solved to resolutions of 1.5 angstrom 4P8W ; 1.87 ; The crystal structures of YKL-39 in the presence of chitooligosaccharides (GlcNAc4) were solved to resolutions of 1.9 angstrom 4P8X ; 2.48 ; The crystal structures of YKL-39 in the presence of chitooligosaccharides (GlcNAc6) were solved to resolutions of 2.48 angstrom 2DRW ; 2.1 ; The crystal structutre of D-amino acid amidase from Ochrobactrum anthropi SV3 4C0W ; 1.6 ; The crystal strucuture of native PpAzoR 4C0X ; 1.499 ; The crystal strucuture of PpAzoR in complex with anthraquinone-2- sulfonate 4C14 ; 1.9 ; The crystal strucuture of PpAzoR in complex with reactive black 5 (RB5) 8FXQ ; 1.21 ; The Crystal Sturucture of Rhizopuspepsin with a bound modified peptide inhibitor generated by de novo drug design. 2GNU ; 2.2 ; The crystallization of reaction center from Rhodobacter sphaeroides occurs via a new route 1HDR ; 2.5 ; THE CRYSTALLOGRAPHIC STRUCTURE OF A HUMAN DIHYDROPTERIDINE REDUCTASE NADH BINARY COMPLEX EXPRESSED IN ESCHERICHIA COLI BY A CDNA CONSTRUCTED FROM ITS RAT HOMOLOGUE 2PZN ; 1.0 ; The crystallographic structure of Aldose Reductase IDD393 complex confirms Leu300 as a specificity determinant 4D02 ; 1.755 ; The crystallographic structure of Flavorubredoxin from Escherichia coli 1APN ; 2.5 ; THE CRYSTALLOGRAPHIC STRUCTURE OF METAL-FREE CONCANAVALIN A AT 2.5 ANGSTROMS RESOLUTION 4V99 ; 2.9 ; The Crystallographic Structure of Panicum Mosaic Virus 1QC9 ; 3.0 ; THE CRYSTALLOGRAPHIC STRUCTURE OF RESTRICTION ENDONUCLEASE ECO RI AT 3.3 A IN THE ABSENSE OF DNA 3FPU ; 1.76 ; The crystallographic structure of the Complex between Evasin-1 and CCL3 2FBD ; 1.9 ; The crystallographic structure of the digestive lysozyme 1 from Musca domestica at 1.90 Ang. 3CB7 ; 1.9 ; The crystallographic structure of the digestive lysozyme 2 from Musca domestica at 1.9 Ang. 4U8U ; 3.2 ; The Crystallographic structure of the giant hemoglobin from Glossoscolex paulistus at 3.2 A resolution. 7Q71 ; 2.0 ; The crystallographic structure of the Ligand Binding domain of the NR7 nuclear receptor from the amphioxus Branchiostoma lanceolatum 1IVP ; 2.5 ; THE CRYSTALLOGRAPHIC STRUCTURE OF THE PROTEASE FROM HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 WITH TWO SYNTHETIC PEPTIDIC TRANSITION STATE ANALOG INHIBITORS 1IVQ ; 2.6 ; THE CRYSTALLOGRAPHIC STRUCTURE OF THE PROTEASE FROM HUMAN IMMUNODEFICIENCY VIRUS TYPE 2 WITH TWO SYNTHETIC PEPTIDIC TRANSITION STATE ANALOG INHIBITORS 4DGS ; 2.5 ; The crystals structure of dehydrogenase from Rhizobium meliloti 7ES4 ; 2.3 ; the crystral structure of DndH-C-domain 3OSV ; 2.35 ; The crytsal structure of FLGD from P. Aeruginosa 7ECV ; 3.43 ; The Csy-AcrIF14 complex 7ECW ; 3.1 ; The Csy-AcrIF14-dsDNA complex 6GW7 ; ; The CTD of HpDprA, a DNA binding Winged Helix domain which do not bind dsDNA 7SAO ; 1.77 ; The CTI-homolog pacifastin 7SAP ; 1.79 ; The CTI-homolog pacifastin 2CUA ; 1.6 ; THE CUA DOMAIN OF CYTOCHROME BA3 FROM THERMUS THERMOPHILUS 5CIS ; 2.58 ; The CUB1-EGF-CUB2 domains of rat MBL-associated serine protease-2 (MASP-2) bound to Ca2+ 5CKM ; 2.73 ; The CUB1-EGF-CUB2 domains of rat MBL-associated serine protease-2 (MASP-2) bound to Ca2+ 5CKN ; 2.6 ; The CUB1-EGF-CUB2 domains of rat MBL-associated serine protease-2 (MASP-2) bound to Ca2+ 7WLT ; 3.46 ; the Curved Structure of mPIEZO1 in Lipid Bilayer 6X2I ; 2.87 ; The Cutavirus (CuV) capsid structure 2XZV ; 1.6 ; The cyanobacterial PP2C-like phosphatase tPphA requires three metals in the catalytic center for efficient catalysis 2Y09 ; 1.7 ; The cyanobacterial PP2C-like phosphatase tPphA requires three metals in the catalytic center for efficient catalysis 1QFB ; ; THE CYCLIC PEPTIDE CONTRYPHAN-R FROM CONUS RADIATUS 6JIX ; 2.647 ; The cyrstal structure of taurine:2-oxoglutarate aminotransferase from Bifidobacterium kashiwanohense, in complex with PLP and glutamate 1UZ2 ; 1.95 ; The Cys121Ser Mutant of Beta-Lactoglobulin 2GZV ; 1.12 ; The cystal structure of the PDZ domain of human PICK1 5YZ2 ; 1.75 ; the cystathionine-beta-synthase (CBS) domain of magnesium and cobalt efflux protein CorC in complex with both C2'- and C3'-endo AMP 1EWM ; 2.0 ; THE CYSTEINE PROTEASE CRUZAIN BOUND TO WRR-112 1EWO ; 2.1 ; THE CYSTEINE PROTEASE CRUZAIN BOUND TO WRR-204 2A05 ; ; The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates Ryanodine receptor Ca2+ signaling 2FWL ; ; The cytochrome c552/CuA complex from Thermus thermophilus 6KFW ; 2.0 ; The cytochrome P450 enzyme CxnD for C-S bond formation in chuangxinmycin biosynthesis 5FV0 ; 2.91 ; The cytoplasmic domain of EssC 6F3C ; 2.3 ; The cytotoxic [Pt(H2bapbpy)] platinum complex interacting with the CGTACG hexamer 6EZV ; 1.9 ; The cytotoxin MakA from Vibrio cholerae 6T8D ; 2.1 ; The cytotoxin MakB from Vibrio cholerae 6TAO ; 1.98 ; The cytotoxin MakE from Vibrio cholerae 1RK5 ; 1.8 ; The D-aminoacylase mutant D366A in complex with 100mM CuCl2 3LCF ; 1.86 ; The D-sialic acid aldolase mutant V251I 3LCL ; 1.83 ; The D-sialic acid aldolase mutant V251I/V265I 3LCG ; 1.78 ; The D-sialic acid aldolase mutant V251L 3LCH ; 2.04 ; The D-sialic acid aldolase mutant V251R 3LCI ; 2.12 ; The D-sialic acid aldolase mutant V251W 6MDO ; 3.9 ; The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 1) 6MDP ; 3.8 ; The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 2) 8R79 ; 2.18 ; The D2 domain of human DTX3L 6IJN ; 1.66 ; The D295N mutant of the N6-methyl-AMP deaminase from Arabidopsis thaliana complexed with N6m-AMP 1XB3 ; 1.501 ; The D62C/K74C double mutant of Pseudomonas Aeruginosa Azurin 3NHQ ; 2.55 ; The dark Pfr structure of the photosensory core module of P. aeruginosa Bacteriophytochrome 3UE6 ; 2.75 ; The dark structure of the blue-light photoreceptor Aureochrome1 LOV 6SWS ; 3.0 ; The DBB dimerization domain of B-cell adaptor for PI3K (BCAP) is required for down regulation of inflammatory signalling through the Toll-like receptor pathway 8EZ6 ; 2.0 ; The DBC1/SIRT1 Interaction is Choreographed by Post-translational Modification 5MZA ; 2.78 ; The DBLb domain of PF11_0521 PfEMP1 bound to human ICAM-1 7BCM ; 2.3 ; The DDR1 Kinase Domain Bound To SR302 1IVL ; 2.17 ; THE DE NOVO DESIGN OF AN ANTIBODY COMBINING SITE: CRYSTALLOGRAPHIC ANALYSIS OF THE VL DOMAIN CONFIRMS THE STRUCTURAL MODEL 7ARR ; 1.1 ; The de novo designed hybrid alpha/beta-miniprotein 7ARS ; 1.15 ; The de novo designed hybrid alpha/beta-miniprotein (with Se-Methionine) 5C2M ; 1.9 ; The de novo evolutionary emergence of a symmetrical protein is shaped by folding constraints 5C2N ; 1.65 ; The de novo evolutionary emergence of a symmetrical protein is shaped by folding constraints 6QSR ; 1.85 ; The Dehydratase Heterocomplex ApeI:P from Xenorhabdus doucetiae 2YXV ; 1.81 ; The deletion mutant of Multicopper Oxidase CueO 2YXW ; 1.5 ; The deletion mutant of Multicopper Oxidase CueO 6SL7 ; 3.3 ; The Delta Calcium mutant of ALPHA-ACTININ FROM ENTAMOEBA HISTOLYTICA 1SAN ; ; THE DES(1-6)ANTENNAPEDIA HOMEODOMAIN: COMPARISON OF THE NMR SOLUTION STRUCTURE AND THE DNA BINDING AFFINITY WITH THE INTACT ANTENNAPEDIA HOMEODOMAIN 5FQE ; 1.53 ; The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens 5FQF ; 2.15 ; The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens 5FQG ; 2.3 ; The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens 5FQH ; 2.1 ; The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens 5FR0 ; 1.75 ; The details of glycolipid glycan hydrolysis by the structural analysis of a family 123 glycoside hydrolase from Clostridium perfringens 1PMB ; 2.5 ; THE DETERMINATION OF THE CRYSTAL STRUCTURE OF RECOMBINANT PIG MYOGLOBIN BY MOLECULAR REPLACEMENT AND ITS REFINEMENT 3S1B ; 2.9 ; The Development of Peptide-based Tools for the Analysis of Angiogenesis 3S1K ; 2.55 ; The Development of Peptide-based Tools for the Analysis of Angiogenesis 7TZL ; 2.45 ; The DH dehydratase domain of AlnB 8BNT ; 1.4 ; The DH domain of ARHGEF2 bound to RhoA 3FAI ; 1.7 ; The Di Zinc Carbapenemase CphA N220G mutant 436D ; 1.1 ; THE DICKERSON-DREW B-DNA DODECAMER REVISITED-AT ATOMIC RESOLUTION 5U5N ; 2.1 ; The dimeric crystal structure of HTPA Reductase from Sellaginella moellendorffii 5U5I ; 2.2 ; The dimeric crystal structure of the selenomethionine derivative of HTPA Reductase from Sellaginella moellendorffii 7YCV ; 2.61 ; The Dimeric Format of Truncated PrpA (2-54)and RHH Domain of PrpA 6LTL ; 1.25 ; The dimeric structure of G80A myoglobin 7V5P ; 1.16 ; The dimeric structure of G80A/H81A myoglobin 6LTM ; 1.65 ; The dimeric structure of G80A/H81A/H82A myoglobin 7V5R ; 1.39 ; The dimeric structure of G80A/H81A/L137D myoglobin 7V5Q ; 1.38 ; The dimeric structure of G80A/H81A/L137E myoglobin 7DGJ ; 1.6 ; The dimeric structure of K78H/G80A/H82A myoglobin 7DGM ; 1.62 ; The dimeric structure of K79H/G80A/H81A myoglobin 5NNT ; 2.209 ; The dimeric structure of LL-37 crystallized in DPC 6NCQ ; 1.9 ; The dimerization domain of human SFPQ in space group C2221 2V0X ; 2.2 ; The dimerization domain of LAP2alpha 7ALF ; 1.261 ; The dimethylated RSL - sulfonato-calix[8]arene complex, P3 form, acetate pH 4.0 4PT6 ; 2.1 ; The discobody: an engineered discoidin domain from factor VIII that binds v 3 integrin with antibody-like affinities 2RBE ; 1.9 ; The discovery of 2-anilinothiazolones as 11beta-HSD1 inhibitors 5AMN ; 2.57 ; The Discovery of 2-Substituted Phenol Quinazolines as Potent and Selective RET Kinase Inhibitors 4YND ; 2.79 ; The Discovery of A-893, A New Cell-Active Benzoxazinone Inhibitor of Lysine Methyltransferase SMYD2 7BZJ ; 2.0 ; The Discovery of Benzhydrol-Oxaborole Hybrid Derivatives as Leucyl-tRNA Synthetase Inhibitors 2Q1J ; 1.9 ; The discovery of glycine and related amino acid-based factor xa inhibitors 2Y6C ; 1.7 ; The Discovery of MMP7 inhibitors Exploiting a Novel Selectivity Trigger 2Y6D ; 1.6 ; The Discovery of MMP7 Inhibitors Exploiting a Novel Selectivity Trigger 3R00 ; 2.1 ; The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors 3R01 ; 2.6 ; The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors 3R02 ; 1.95 ; The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors 3R04 ; 1.7 ; The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors 2Y37 ; 2.6 ; The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS) 4UX6 ; 3.0 ; The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS) 2Y7X ; 1.9 ; The discovery of potent and long-acting oral factor Xa inhibitors with tetrahydroisoquinoline and benzazepine P4 motifs 4CSJ ; 2.3 ; The discovery of potent selective glucocorticoid receptor modulators, suitable for inhalation 3UUO ; 2.11 ; The discovery of potent, selectivity, and orally bioavailable pyrozoloquinolines as PDE10 inhibitors for the treatment of Schizophrenia 6RWF ; 1.64 ; The dissociation mechanism of processive cellulases 6IJU ; 2.4 ; The DNA binding domain of a response regulator ArlR from Staphylococcus aureus 2ROH ; ; The DNA binding domain of RTBP1 4K4O ; 1.3 ; The DNA Gyrase B ATP binding domain of Enterococcus faecalis in complex with a small molecule inhibitor 4KFG ; 1.6 ; The DNA Gyrase B ATP binding domain of Escherichia coli in complex with a small molecule inhibitor. 6M1S ; 2.254 ; The DNA Gyrase B ATP binding domain of PSEUDOMONAS AERUGINOSA in complex with compound 12o 6M1J ; 1.701 ; The DNA Gyrase B ATP binding domain of PSEUDOMONAS AERUGINOSA in complex with compound 12x 175D ; ; THE DNA SEQUENCE GCGAATGAGC CONTAINING THE HUMAN CENTROMERE CORE SEQUENCE GAAT FORMS A SELF-COMPLEMENTARY DUPLEX WITH SHEARED G:A PAIRS IN SOLUTION 1ZZF ; ; The DNA-bound solution structure of HPV-16 E2 DNA-binding domain 2L66 ; ; The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. 1LTL ; 3.0 ; THE DODECAMER STRUCTURE OF MCM FROM ARCHAEAL M. THERMOAUTOTROPHICUM 2XSZ ; 3.0 ; The dodecameric human RuvBL1:RuvBL2 complex with truncated domains II 1BJQ ; 2.65 ; THE DOLICHOS BIFLORUS SEED LECTIN IN COMPLEX WITH ADENINE 2K6I ; ; The domain features of the peripheral stalk subunit H of the methanogenic A1AO ATP synthase and the NMR solution structure of H1-47 8D01 ; 2.46 ; The domain-swaped dimer of the HIV-1 CD4bs targeting antibody 21N13 1L5E ; ; The domain-swapped dimer of CV-N in solution 3IB4 ; 1.25 ; The double mutant of Beta-2 microglobulin K58P-W60G 6S42 ; 1.4 ; The double mutant(Ile44Leu+Gln102His) of haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94 with an eliminated halide-binding site 6OIE ; 2.075 ; The double PHD finger (DPF) of MORF in complex with histone H3K14cr 1NBO ; 2.6 ; The dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD 4WOD ; 1.9 ; The duplicated taurocyamine kinase from Schistosoma mansoni complexed with arginine 4WOE ; 2.3 ; The duplicated taurocyamine kinase from Schistosoma mansoni with bound transition state analog (TSA) components 3CBX ; 1.7 ; The Dvl2 PDZ Domain in Complex with the C1 Inhibitory Peptide 3CBY ; 1.5 ; The Dvl2 PDZ Domain in Complex with the N1 Inhibitory Peptide 3CBZ ; 1.38 ; The Dvl2 PDZ Domain in Complex with the N2 Inhibitory Peptide 3CC0 ; 1.75 ; The Dvl2 PDZ Domain in Complex with the N3 Inhibitory Peptide 2KB8 ; ; The dynamic alpha-helix structure of micelle-bound human amylin. 5OWI ; ; The dynamic dimer structure of the chaperone Trigger Factor (conformer 1) 5OWJ ; ; The dynamic dimer structure of the chaperone Trigger Factor (conformer 2) 6G6U ; 2.74 ; The dynamic nature of the VDAC1 channels in bilayers: human VDAC1 at 2.7 Angstrom resolution 6G73 ; 3.27 ; The dynamic nature of the VDAC1 channels in bilayers: human VDAC1 at 3.3 Angstrom resolution 7O4F ; 1.65 ; The DYW domain of A. thaliana OTP86 in its active state 7O4E ; 2.5 ; The DYW domain of A. thaliana OTP86 in its inactive state 2J96 ; 2.25 ; The E-configuration of alfa-Phycoerythrocyanin 1BIA ; 2.3 ; THE E. COLI BIOTIN HOLOENZYME SYNTHETASE(SLASH)BIO REPRESSOR CRYSTAL STRUCTURE DELINEATES THE BIOTIN AND DNA-BINDING DOMAINS 1BIB ; 2.8 ; THE E. COLI BIOTIN HOLOENZYME SYNTHETASE(SLASH)BIO REPRESSOR CRYSTAL STRUCTURE DELINEATES THE BIOTIN AND DNA-BINDING DOMAINS 2P5Z ; 2.6 ; The E. coli c3393 protein is a component of the type VI secretion system and exhibits structural similarity to T4 bacteriophage tail proteins gp27 and gp5 6PB5 ; 4.52 ; The E. coli class-II CAP-dependent transcription activation complex at the state 1 architecture 6PB6 ; 4.29 ; The E. coli class-II CAP-dependent transcription activation complex at the state 2 6PB4 ; 4.35 ; The E. coli class-II CAP-dependent transcription activation complex with de novo RNA transcript at the state 2 8BFR ; 1.3 ; The E. coli TrpD2 protein YbiB at 1.3 A resolution 8BFT ; 1.19 ; The E. coli TrpD2 protein YbiB in complex with a C-terminal peptide from ObgE 7W7T ; 3.4 ; The E1-BeF3- 2Ca2+ of SERCA2b 3A6K ; 2.2 ; The E122Q mutant creatininase, Mn-Zn type 4LF0 ; 1.1 ; The E142D mutant of the amidase from Geobacillus pallidus 4GYN ; 1.9 ; The E142L mutant of the amidase from Geobacillus pallidus 4GYL ; 1.9 ; The E142L mutant of the amidase from Geobacillus pallidus showing the result of Michael addition of acrylamide at the active site cysteine 7FDF ; 2.05 ; The E145S mutant of the regulatory domain of YeiE, a sulfite sensing LysR-type transcriptional regulator from Cronobacter sakazakii (sulfate-bound form) 5GNX ; 1.8 ; The E171Q mutant structure of Bgl6 4N7X ; 2.5 ; The E254A mutant of the sodium bile acid symporter from Yersinia frederiksenii 4IZW ; 1.6 ; The E41L mutant of the amidase from Nesterenkonia sp. AN1 showing covalent addition of the acetamide moiety of fluoroacetamide at the active site cysteine 2FFN ; 1.8 ; The E41Q mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 4IZT ; 1.92 ; The E41Q mutant of the amidase from Nesterenkonia sp. AN1 showing covalent addition of the acetamide moiety of fluoroacetamide at the active site cysteine 4IZU ; 1.4 ; The E41Q mutant of the amidase from Nesterenkonia sp. AN1 showing the result of Michael addition of acrylamide at the active site cysteine 4IZV ; 1.65 ; The E41Q/C145A double mutant of the amidase from Nesterenkonia sp. AN1 in complex with acrylamide 6Z3O ; 1.74 ; The E74Q mutant of Small Alarmone Hydrolase SAH from Pseudomonas aeruginosa PAO1 3GYY ; 2.2 ; The ectoine binding protein of the TeaABC TRAP transporter TeaA in the Apo-State 2R0M ; 2.7 ; The effect of a Glu370Asp Mutation in Glutaryl-CoA Dehydrogenase on Proton Transfer to the Dienolate Intermediate 2R0N ; 2.3 ; The effect of a Glu370Asp mutation in Glutaryl-CoA Dehydrogenase on Proton Transfer to the Dienolate Intermediate 5NT5 ; 2.3 ; The effect of Berenil and Cacodylateon the crystal structure of d(CGTGAATTCACG) 1COA ; 2.2 ; THE EFFECT OF CAVITY CREATING MUTATIONS IN THE HYDROPHOBIC CORE OF CHYMOTRYPSIN INHIBITOR 2 2PKY ; 1.55 ; The Effect of Deuteration on Protein Structure A High Resolution Comparison of Hydrogenous and Perdeuterated Haloalkane Dehalogenase 2YXP ; 1.53 ; The Effect of Deuteration on Protein Structure A High Resolution Comparison of Hydrogenous and Perdeuterated Haloalkane Dehalogenase 3C1B ; 2.2 ; The effect of H3 K79 dimethylation and H4 K20 trimethylation on nucleosome and chromatin structure 3C1C ; 3.15 ; The effect of H3 K79 dimethylation and H4 K20 trimethylation on nucleosome and chromatin structure 5CPB ; 1.997 ; The effect of isoleucine to alanine mutation on InhA enzyme crystallization pattern and inhibition by ligand PT70 (TCU) 5CP8 ; 2.4 ; The effect of isoleucine to alanine mutation on InhA enzyme crystallization pattern and substrate binding loop conformation and flexibility 1ANW ; 2.4 ; THE EFFECT OF METAL BINDING ON THE STRUCTURE OF ANNEXIN V AND IMPLICATIONS FOR MEMBRANE BINDING 6O5H ; 2.84 ; The effect of modifier structure on the activation of leukotriene A4 hydrolase aminopeptidase activity. 5COQ ; 2.3 ; The effect of valine to alanine mutation on InhA enzyme crystallization pattern and substrate binding loop conformation and flexibility 4NG6 ; 2.35 ; The effects of Lysine 200 and Phenylalanine 239 Farnesyl Pyrophosphate Synthase (FPPS) mutations on the catalytic activity, crystal structure and inhibition by nitrogen containing bisphosphonates 4NKE ; 1.46 ; The effects of Lysine 200 and Phenylalanine 239 Farnesyl Pyrophosphate Synthase (FPPS) mutations on the catalytic activity, crystal structure and inhibition by nitrogen containing bisphosphonates 4NKF ; 2.0 ; The effects of Lysine 200 and Phenylalanine 239 Farnesyl Pyrophosphate Synthase (FPPS) mutations on the catalytic activity, crystal structure and inhibition by nitrogen containing bisphosphonates 4NUA ; 1.43 ; The effects of Lysine 200 and Phenylalanine 239 Farnesyl Pyrophosphate Synthase (FPPS) mutations on the catalytic activity, crystal structure and inhibition by nitrogen containing bisphosphonates 4OGU ; 2.1 ; The effects of Lysine 200 and Phenylalanine 239 Farnesyl Pyrophosphate Synthase (FPPS) mutations on the catalytic activity, crystal structure and inhibition by nitrogen containing bisphosphonates 8HGS ; 3.81 ; The EGF-bound EGFR ectodomain homodimer 8HGO ; 3.31 ; The EGF-bound EGFR/HER2 ectodomain complex 5LHQ ; 2.6 ; The EGR-cmk active site inhibited catalytic domain of murine urokinase-type plasminogen activator in complex with the allosteric inhibitory nanobody Nb7 1WFO ; ; The eighth FN3 domain of human sidekick-2 4CHV ; 7.0 ; The electron crystallography structure of the cAMP-bound potassium channel MloK1 6EO1 ; 4.5 ; The electron crystallography structure of the cAMP-bound potassium channel MloK1 (PCO-refined) 4CHW ; 7.0 ; The electron crystallography structure of the cAMP-free potassium channel MloK1 5OL2 ; 3.1 ; The electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile 4NZ0 ; 2.8 ; The EMCV 3Dpol structure at 2.8A resolution 4NYZ ; 2.15 ; The EMCV 3Dpol structure with altered motif A conformation at 2.15A resolution 7L6F ; 2.86 ; The empty AAV11 capsid 7L6B ; 2.54 ; The empty AAV12 capsid 7L6I ; 2.76 ; The empty AAV13 capsid 7L5Q ; 2.96 ; The empty AAV7 capsid 5NGK ; 1.9 ; The endo-beta1,6-glucanase BT3312 5NGL ; 1.85 ; The endo-beta1,6-glucanase BT3312 7CEI ; 2.3 ; THE ENDONUCLEASE DOMAIN OF COLICIN E7 IN COMPLEX WITH ITS INHIBITOR IM7 PROTEIN 118L ; 1.8 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 119L ; 1.65 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 120L ; 1.8 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 122L ; 1.8 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 123L ; 1.8 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 125L ; 1.85 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 126L ; 1.8 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 127L ; 1.85 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 128L ; 1.7 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 221L ; 1.7 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 224L ; 1.85 ; THE ENERGETIC COST AND THE STRUCTURAL CONSEQUENCES OF BURYING A HYDROXYL GROUP WITHIN THE CORE OF A PROTEIN DETERMINED FROM ALA TO SER AND VAL TO THR SUBSTITUTIONS IN T4 LYSOZYME 2YIM ; 1.41 ; The enolisation chemistry of a thioester-dependent racemase: the 1.4 A crystal structure of a complex with a planar reaction intermediate analogue 2KRL ; ; The ensemble of the solution global structures of the 102-nt ribosome binding structure element of the turnip crinkle virus 3' UTR RNA 2Z1P ; 2.5 ; The Enterococcus faecalis MSCRAMM ACE binds its ligands by the collagen Hug Model 3J22 ; 6.3 ; The Enterovirus 71 A-particle 3J23 ; 9.2 ; The Enterovirus 71 empty capsid 6ENR ; 1.84 ; The ENTH domain from epsin Ent2 5ONF ; 2.8 ; The ENTH domain from epsin-1 5ON7 ; 3.35 ; The ENTH domain from epsin-2 in complex with phosphatidylinositol 4,5-bisphosphate (PIP2) 5OO7 ; 1.84 ; The ENTH domain from epsin-2 in complex with phosphatidylinositol 4,5-bisphosphate (PIP2) 7T2P ; 3.47 ; The Envelope Glycoprotein SIVmac239.K180S SOSIP trimer in complex with 3 copies of the neutralizing antibody K11 7T4G ; 3.7 ; The Envelope Glycoprotein SIVmac239.K180S SOSIP trimer in complex with 3 copies of the neutralizing antibody K11 1RK6 ; 1.43 ; The enzyme in complex with 50mM CdCl2 8HGP ; 4.53 ; The EREG-bound EGFR/HER2 ectodomain complex 8PND ; 1.9 ; The ES3 intermediate of hydroxymethylbilane synthase R167Q variant 1D0L ; 1.97 ; THE ESCHERICHIA COLI LYTIC TRANSGLYCOSYLASE SLT35 IN COMPLEX WITH BULGECIN A 1D0M ; 2.47 ; THE ESCHERICHIA COLI LYTIC TRANSGLYCOSYLASE SLT35 IN COMPLEX WITH BULGECIN A AND (GLCNAC)2 1D0K ; 2.02 ; THE ESCHERICHIA COLI LYTIC TRANSGLYCOSYLASE SLT35 IN COMPLEX WITH TWO MURODIPEPTIDES (GLCNAC-MURNAC-L-ALA-D-GLU) 1MLA ; 1.5 ; THE ESCHERICHIA COLI MALONYL-COA:ACYL CARRIER PROTEIN TRANSACYLASE AT 1.5-ANGSTROMS RESOLUTION. CRYSTAL STRUCTURE OF A FATTY ACID SYNTHASE COMPONENT 4Q50 ; 3.07 ; The Estrogen Receptor Alpha Ligand Binding Domain D538G Mutant in Complex with 4-hydroxytamoxifen 4PXM ; 1.9 ; The Estrogen Receptor Alpha Ligand Binding Domain D538G Mutant in Complex with Estradiol and a glucocorticoid receptor-interacting protein 1 NR box II peptide 7L70 ; 2.8 ; The eukaryotic translation initiation factor 2B from Homo sapiens in its apo form 7TRJ ; 2.8 ; The eukaryotic translation initiation factor 2B from Homo sapiens with a H160D mutation in the beta subunit 6PI5 ; 1.67 ; The evolving story of AtzT, a periplasmic binding protein 6PI6 ; 1.65 ; The evolving story of AtzT, a periplasmic binding protein 6PII ; 1.87 ; The evolving story of AtzT, a periplasmic binding protein 5YJ6 ; 1.43 ; The exoglucanase CelS from Clostridium thermocellum 7VS5 ; 3.4 ; The expanded head structure of phage T4 3U99 ; 1.146 ; The experimental X-ray structure of the new diheme cytochrome type c from Shewanella baltica OS155 sb-DHC 1Z3H ; 3.1 ; The exportin Cse1 in its cargo-free, cytoplasmic state 7JTT ; 1.64 ; The external aldimine crystal structure of Salmonella typhimurium Tryptophan Synthase mutant beta-S377A in complex F9 inhibitor at the alpha-site and cesium ion at the metal coordination site. The single beta-Q114 rotamer conformation allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 7JQW ; 1.7 ; The external aldimine crystal structure of Salmonella typhimurium Tryptophan Synthase mutant beta-S377A in complex with cesium ion at the metal coordination site. The single beta-Q114 rotamer conformation allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 6XSY ; 1.55 ; The external aldimine crystal structure of Salmonella typhimurium Tryptophan Synthase mutant beta-S377A with inhibitor 2-({[4-(trifluoromethoxy)phenyl]sulfonyl}amino)ethyl dihydrogen phosphate (F9F) at the alpha-site, Cesium ion at the metal coordination site, and (E)-N-({3-hydroxy-2-methyl-5-[(phosphonooxy)methyl]pyridin-4-yl}methylidene)-L-serine (KOU) at the beta-site 7KI7 ; 1.75 ; The external aldimine crystal structure of the beta-K167T mutant Tryptophan Synthase at 1.75 Angstrom resolution in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site 7K5A ; 1.5 ; The external aldimine form of Salmonella typhimurium Tryptophan Synthase mutant beta-Q114A in complex with cesium ion at the metal coordination site. 7JMQ ; 1.6 ; The external aldimine form of the mutant beta-S377A Salmonella thypi tryptophan synthase in open conformation showing dual side chain conformations for the residue beta-Q114, sodium ion at the metal coordination site, and F9 inhibitor at the alpha-site. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 6WDU ; 1.4 ; The external aldimine form of the Salmonella thypi wild-type tryptophan synthase in open conformation showing multiple side chain conformations for the residue beta Q114 and sodium ion at the metal coordination site. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring. 7L5H ; 1.8 ; The external aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase at 1.80 Angstrom resolution with cesium ion at the metal coordination site 2RON ; ; The external thioesterase of the Surfactin-Synthetase 5KW2 ; 2.76 ; The extra-helical binding site of GPR40 and the structural basis for allosteric agonism and incretin stimulation 3NJP ; 3.304 ; The Extracellular and Transmembrane Domain Interfaces in Epidermal Growth Factor Receptor Signaling 6R0X ; 3.13 ; The extracellular domain of G6b-B in complex with Fab fragment and DP12 heparin oligosaccharide. 8GCE ; 3.12 ; The Extracellular Domain of Integrin AlphaIIbBeta3 in Intermediate State 7AW6 ; 1.95 ; The extracellular region of CD33 with bound sialoside analogue P22 7MD2 ; 3.1 ; The F1 region of ammocidin-bound Saccharomyces cerevisiae ATP synthase 7MD3 ; 3.3 ; The F1 region of apoptolidin-bound Saccharomyces cerevisiae ATP synthase 1OCV ; 2.0 ; the F116W mutant structure of ketosteroid isomerase from Comamonas testosteroni 2EWU ; 1.1 ; The F20H mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 2YYW ; 1.33 ; The F20M mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 2EWI ; 1.0 ; The F20Y mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 1NXG ; 2.5 ; The F383A variant of type II Citrate Synthase complexed with NADH 3F65 ; 2.29 ; The F4 fimbrial chaperone FaeE does not self-cap its interactive surfaces 6QGR ; 1.839 ; The F420-reducing [NiFe] hydrogenase complex from Methanosarcina barkeri at the Nia-S state 4OMF ; 1.71 ; The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member 7FGK ; 2.3 ; The Fab antibody single structure against tau protein. 8VFU ; 2.45 ; The Fab Crystal Structure of the PAN IL-1 Family Inhibitor Antibody 3G5 8TJT ; 2.7 ; The Fab fragment of an anti-glucagon receptor (GCGR) antibody 1HW1 ; 1.5 ; THE FADR-DNA COMPLEX: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM IN ESCHERICHIA COLI 8U3M ; ; The FARFAR-MD-NMR ensemble of an HIV-1 TAR excited state 7JU1 ; ; The FARFAR-NMR Ensemble of 29-mer HIV-1 Trans-activation Response Element RNA (N=20) 5XGF ; 2.35 ; The fatty acid-responsive FadR repressor of Vibrio alginolyticus 5DV5 ; 2.4 ; The fatty acid-responsive FadR repressor of Vibrio alginolyticus complex with Palmitoyl-CoA 4BWO ; 1.8 ; The FedF adhesin from entrrotoxigenic Escherichia coli is a sulfate- binding lectin 6IBE ; 1.45 ; The FERM domain of Human EPB41L3 8CIU ; 2.393 ; The FERM domain of human moesin mutant H288A 8CIT ; 2.536 ; The FERM domain of human moesin mutant L281R 8CIR ; 1.85 ; The FERM domain of human moesin with a bound peptide identified by phage display 8CIS ; 1.52 ; The FERM domain of human moesin with two bound peptides identified by phage display 1DWL ; ; The Ferredoxin-Cytochrome complex using heteronuclear NMR and docking simulation 5XGO ; 1.99 ; The Ferritin E-Domain: Toward Understanding Its Role in Protein Cage Assembly Through the Crystal Structure of a Maxi-/Mini-Ferritin Chimera 2KI6 ; ; The FGF1-S100A13-C2A hetero-hexameric complex structure: A component in the non-classical pathway for FGF1 secretion 1GJO ; 2.4 ; The FGFr2 tyrosine kinase domain 5FLY ; 1.598 ; The FhuD protein from S.pseudintermedius 2FVN ; ; The fibrillar tip complex of the Afa/Dr adhesins from pathogen E. coli displays synergistic binding to 5 1 and v 3 integrins 6EUA ; 2.095 ; The fibrinogen-like domain of human Angptl3 6EUB ; 2.3 ; The fibrinogen-like domain of human Angptl4 2X9B ; 2.92 ; The filamentous phages fd and IF1 use different infection mechanisms 5NFI ; 2.508 ; The fimbrial anchor protein Mfa2 from Porphyromonas gingivalis 5NF2 ; 1.73 ; The fimbrial shaft protein Mfa1 from Porphyromonas gingivalis 5NF3 ; 1.97 ; The fimbrial shaft protein Mfa1 from Porphyromonas gingivalis-C-terminal deletion 5KHM ; 1.48 ; The first BET bromodomain of BRD4 bound to compound 13 in a bivalent manner 5Z5V ; 1.66 ; The first bromodomain of BRD4 with compound BDF-1253 5Z5T ; 1.991 ; The first bromodomain of BRD4 with compound BDF-2141 5Z5U ; 1.631 ; The first bromodomain of BRD4 with compound BDF-2254 4BW1 ; 1.4 ; The first bromodomain of human BRD4 in complex with 3,5 dimethylisoxaxole ligand 4BW2 ; 1.92 ; The first bromodomain of human BRD4 in complex with 3,5 dimethylisoxaxole ligand 4BW3 ; 1.5 ; The first bromodomain of human BRD4 in complex with 3,5 dimethylisoxaxole ligand 4BW4 ; 1.67 ; The first bromodomain of human BRD4 in complex with 3,5 dimethylisoxaxole ligand 1WFM ; ; The first C2 domain of human synaptotagmin XIII 3QSC ; 2.4 ; The first crystal structure of a human telomeric G-quadruplex DNA bound to a metal-containing ligand (a copper complex) 3QSF ; 2.4 ; The first crystal structure of a human telomeric G-quadruplex DNA bound to a metal-containing ligand (a nickel complex) 1F0I ; 1.4 ; THE FIRST CRYSTAL STRUCTURE OF A PHOSPHOLIPASE D 3ADR ; 1.8 ; The first crystal structure of an archaeal metallo-beta-lactamase superfamily protein; ST1585 from Sulfolobus tokodaii 6A4U ; 1.16 ; The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin 6RL5 ; 2.45 ; The first crystal structure of the DABA aminotransferase EctB in the ectoine biosynthesis pathway of the model organism Chromohalobacter salexigens DSM 3034 1NOF ; 1.42 ; THE FIRST CRYSTALLOGRAPHIC STRUCTURE OF A XYLANASE FROM GLYCOSYL HYDROLASE FAMILY 5: IMPLICATIONS FOR CATALYSIS 2OUM ; 2.55 ; The first domain of L1 from Thermus thermophilus 2OV7 ; 2.3 ; The first domain of the ribosomal protein L1 from Thermus thermophilus 1FF7 ; ; THE FIRST EGF-LIKE DOMAIN FROM HUMAN BLOOD COAGULATION FVII (FUCOSYLATED AT SER-60), NMR, 20 STRUCTURES 1FFM ; ; THE FIRST EGF-LIKE DOMAIN FROM HUMAN BLOOD COAGULATION FVII (FUCOSYLATED AT SER-60), NMR, MINIMIZED AVERAGE STRUCTURE 1F7E ; ; THE FIRST EGF-LIKE DOMAIN FROM HUMAN BLOOD COAGULATION FVII, NMR, 20 STRUCTURES 1F7M ; ; THE FIRST EGF-LIKE DOMAIN FROM HUMAN BLOOD COAGULATION FVII, NMR, MINIMIZED AVERAGE STRUCTURE 1KS0 ; ; The First Fibronectin Type II Module from Human Matrix Metalloproteinase 2 4H9M ; 1.52 ; The first Jack bean urease (Canavalia ensiformis) complex obtained at 1.52 resolution 2FR0 ; 1.81 ; The first ketoreductase of the erythromycin synthase (crystal form 1) 2FR1 ; 1.79 ; The first ketoreductase of the erythromycin synthase (crystal form 2) 2Z5L ; 1.95 ; The first ketoreductase of the tylosin PKS 1T4X ; ; The first left-handed RNA structure of (CGCGCG)2, Z-RNA, NMR, 12 structures, determined in high salt 1IU0 ; ; The first PDZ domain of PSD-95 1IU2 ; ; The first PDZ domain of PSD-95 8JWL ; 2.3 ; The first purified state crystal structure of AKRtyl 4LNP ; 1.41 ; The first SH3 domain from CAP/Ponsin in complex with proline rich peptide from Vinculin 5DEN ; 2.9 ; The First Structure of a Full-Length Mammalian Phenylalanine Hydroxylase Reveals the Architecture of an Auto-inhibited Tetramer 1DLI ; 2.31 ; THE FIRST STRUCTURE OF UDP-GLUCOSE DEHYDROGENASE (UDPGDH) REVEALS THE CATALYTIC RESIDUES NECESSARY FOR THE TWO-FOLD OXIDATION 1DLJ ; 1.8 ; THE FIRST STRUCTURE OF UDP-GLUCOSE DEHYDROGENASE (UDPGDH) REVEALS THE CATALYTIC RESIDUES NECESSARY FOR THE TWO-FOLD OXIDATION 6L0X ; 1.3 ; The First Tudor Domain of PHF20L1 5W1A ; 2.227 ; The first X-ray crystal structure of an insect muscle myosin. Drosophila melanogaster, skeletal muscle myosin II, an embryonic isoform, subfragment-1 3H8I ; 2.65 ; The first X-ray structure of a sulfide:quinone oxidoreductase: Insights into sulfide oxidation mechanism 3H8L ; 2.57 ; The first X-ray structure of a sulfide:quinone oxidoreductase: insights into sulfide oxidation mechanism 8FJE ; 3.0 ; The five-repeat design E8 7APT ; 1.131 ; The Fk1 domain of FKBP51 in complex with ((1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-2-oxo-5-vinyl-3,10-diazabicyclo[4.3.1]decan-3-yl)acetic acid 5OBK ; 1.0 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-((3,5-dichlorophenyl)sulfonyl)-5-(hydroxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one 8CHR ; 1.1 ; The FK1 domain of FKBP51 in complex with (1S,5S,6R)-10-((R)-(3,5-dichlorophenyl)sulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHP ; 1.0 ; The FK1 domain of FKBP51 in complex with (1S,5S,6R)-10-((S)-(3,5-dichlorophenyl)sulfinyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHN ; 0.99 ; The FK1 domain of FKBP51 in complex with (1S,5S,6R)-10-((S)-(3,5-dichlorophenyl)sulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 8CHQ ; 1.01 ; The FK1 domain of FKBP51 in complex with (1S,5S,6R)-10-((S)-3,5-dichloro-N-methylphenylsulfonimidoyl)-3-(pyridin-2-ylmethyl)-5-vinyl-3,10-diazabicyclo[4.3.1]decan-2-one 7APW ; 0.89 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(methoxymethyl)-3-(pyridin-2-ylethyl)-3,10-diazabicyclo[4.3.1]decan-2-one 7APQ ; 1.09 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-(benzo[d]thiazol-6-ylsulfonyl)-5-(methoxymethyl)-3-(pyridin-2-ylmethyl)-3,10-diazabicyclo[4.3.1]decan-2-one 4W9Q ; 1.08 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-[(3,5-dichlorophenyl)sulfonyl]-3-[2-(3,4-dimethoxyphenoxy)ethyl]-5-ethyl-3,10-diazabicyclo[4.3.1]decan-2-one 4TX0 ; 1.03 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-[(3,5-dichlorophenyl)sulfonyl]-5-(2-methoxyethoxy)-3-(2-methoxyethyl)-3,10-diazabicyclo[4.3.1]decan-2-one 4W9O ; 1.27 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-[(3,5-dichlorophenyl)sulfonyl]-5-[(1R)-1,2-dihydroxyethyl]-3-[2-(3,4-dimethoxyphenoxy)ethyl]-3,10-diazabicyclo[4.3.1]decan-2-one 4W9P ; 1.5 ; The Fk1 domain of FKBP51 in complex with (1S,5S,6R)-10-[(3,5-dichlorophenyl)sulfonyl]-5-[(1S)-1,2-dihydroxyethyl]-3-[2-(3,4-dimethoxyphenoxy)ethyl]-3,10-diazabicyclo[4.3.1]decan-2-one 7AOU ; 1.16 ; The Fk1 domain of FKBP51 in complex with (2'R,5'S,12'R)-12'-cyclohexyl-2'-[2-(3,4-dimethoxyphenyl)ethyl]-3',19'-dioxa-10',13',16'-triazaspiro[cyclopropane-1,15'- tricyclo[18.3.1.0-5,10]tetracosane]-1'(24'),20',22'-triene-4',11',14',17'-tetrone 7AWF ; 1.4 ; The Fk1 domain of FKBP51 in complex with (2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15,16-trimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0^5,^10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone 7AOT ; 0.85 ; The Fk1 domain of FKBP51 in complex with (2R,5S,12R)-12-cyclohexyl-2-[2-(3,4-dimethoxyphenyl)ethyl]-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0-5,10]tetracosa- 1(24),20,22-triene-4,11,14,17-tetrone 8CCG ; 1.3 ; The Fk1 domain of FKBP51 in complex with (2R,5S,12S)-12-(thiophen-2-yl)-2-[2-(3,4-dimethoxyphenyl)ethyl]-15,15-dimethyl-3,19-dioxa-10,13,16-triazatricyclo[18.3.1.0^5,^10]tetracosa-1(24),20,22-triene-4,11,14,17-tetrone 7APS ; 0.94 ; The Fk1 domain of FKBP51 in complex with (2S)-2-((1S,5R,6R)-10-((3,5-dichlorophenyl)sulfonyl)-2-oxo-5-vinyl-3,10-diazabicyclo[4.3.1]decan-3-yl)propanoic acid 6SAF ; 2.05 ; The Fk1 domain of FKBP51 in complex with (S)-(R)-3-(3,4-dimethoxyphenyl)-1-(3-(2-morpholinoethoxy)phenyl)propyl 1-((1R,4aR,8aR)-4-oxodecahydronaphthalene-1-carbonyl)piperidine-2-carboxylate 8CCB ; 1.7 ; The Fk1 domain of FKBP51 in complex with 2-(3-((1R)-1-(((2S)-1-(2-(5-chlorothiophen-2-yl)-2-cyclohexylacetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 8CCH ; 1.73 ; The Fk1 domain of FKBP51 in complex with 2-(3-((1R)-1-(((2S)-1-(2-cyclohexyl-2-(thiophen-2-yl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 8CCD ; 2.1 ; The Fk1 domain of FKBP51 in complex with 2-(3-((R)-1-(((S)-1-((S)-2-(5-chlorothiophen-2-yl)-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 8CCE ; 1.4 ; The Fk1 domain of FKBP51 in complex with 2-(3-((R)-1-(((S)-1-((S)-2-(5-chlorothiophen-2-yl)butanoyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 8CCF ; 2.0 ; The Fk1 domain of FKBP51 in complex with 2-(3-((R)-1-(((S)-1-((S)-2-(5-chlorothiophen-2-yl)pent-4-enoyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 8CCC ; 1.55 ; The Fk1 domain of FKBP51 in complex with 2-(3-((R)-1-(((S)-1-((S)-2-(5-chlorothiophen-2-yl)propanoyl)piperidine-2-carbonyl)oxy)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 4TW6 ; 1.4 ; The Fk1 domain of FKBP51 in complex with iFit1 4TW7 ; 1.25 ; The Fk1 domain of FKBP51 in complex with iFit4 7ETV ; 1.31 ; The FK1 domain of FKBP51 in complex with peptide-inhibitor hit DFPFV 7ETT ; 1.5 ; The FK1 domain of FKBP51 in complex with peptide-inhibitor hit QFPFV 7ETU ; 1.39 ; The FK1 domain of FKBP51 in complex with peptide-inhibitor hit SFPFT 8CCA ; 1.33 ; The Fk1 domain of FKBP51 in complex with SAFit1 5DIT ; 2.25 ; The Fk1 domain of FKBP51 in complex with the new synthetic ligand (1R)-3-(3,4-dimethoxyphenyl)-1-f3-[2-(morpholin-4-yl)ethoxy]phenylgpropyl(2S)-1-[(2S,3R)-2-cyclohexyl-3-hydroxybutanoyl]piperidine-2-carboxylate 5DIV ; 1.65 ; The Fk1 domain of FKBP51 in complex with the new synthetic ligand (S)-N-(1-carbamoylcyclopentyl)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxamide 5DIU ; 1.3 ; The Fk1 domain of FKBP51 in complex with the new synthetic ligand 2-(3-((R)-1-((S)-1-((S)-2-cyclohexyl-2-(3,4,5-trimethoxyphenyl)acetyl)piperidine-2-carboxamido)-3-(3,4-dimethoxyphenyl)propyl)phenoxy)acetic acid 4TW8 ; 3.003 ; The Fk1-Fk2 domains of FKBP52 in complex with iFit-FL 5O4U ; 4.2 ; The flagellin of Pyrococcus furiosus 7WLU ; 6.81 ; The Flattened Structure of mPIEZO1 in Lipid Bilayer 2X2O ; 1.13 ; The flavoprotein NrdI from Bacillus cereus with the initially oxidized FMN cofactor in an intermediate radiation reduced state 2X2P ; 1.15 ; The flavoprotein NrdI from Bacillus cereus with the initially semiquinone FMN cofactor in an intermediate radiation reduced state 2C2W ; 2.0 ; The fluorinase from Streptomyces cattleya is also a chlorinase. Structure of 5'-chloro-5'-deoxyadenosine crystallised in the fluorinase. 1E20 ; 2.02 ; The FMN binding protein AtHal3 3S9O ; 2.6 ; The Focal Adhesion Targeting (FAT) domain of the Focal Adhesion Kinase showing N-terminal interactions in cis 8I6J ; 3.82 ; The focused refinement of CCT3-PhLP2A from TRiC-PhLP2A complex in the open state 8I9Q ; 4.22 ; The focused refinement of CCT4-PhLP2A from TRiC-PhLP2A complex in the open state 2WXC ; ; The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family. 1UJX ; ; The forkhead associated (FHA) domain like structure from mouse polynucleotide kinase 3'-phosphatase 4MU3 ; 1.12 ; The form A structure of an E21Q catalytic mutant of A. thaliana IGPD2 in complex with Mn2+ and a mixture of its substrate, 2R3S-IGP, and an inhibitor, 2S3S-IGP, to 1.12 A resolution 4MU4 ; 1.41 ; The form B structure of an E21Q catalytic mutant of A. thaliana IGPD2 in complex with Mn2+ and its substrate, 2R3S-IGP, to 1.41 A resolution 2VXP ; 2.5 ; The fourth FAS1 domain structure of human Bigh3 1WFN ; ; The fourth FN3 domain of human sidekick-2 3H1T ; 2.3 ; The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016 4EYU ; 2.3 ; The free structure of the mouse C-terminal domain of KDM6B 4AIP ; 2.4 ; The FrpB iron transporter from Neisseria meningitidis (F3-3 variant) 4AIQ ; 2.6 ; The FrpB iron transporter from Neisseria meningitidis (F5-1 variant) 4B7O ; 2.32 ; THE FrpB IRON TRANSPORTER FROM NEISSERIA MENINGITIDIS (F5-1 VARIANT) APOPROTEIN FORM 7L5U ; 3.16 ; The full AAV7 capsid 6IVC ; 1.8 ; The full length of TGEV nsp1 5N9Y ; 4.2 ; The full-length structure of ZntB 7CRN ; 2.26 ; The Functional Characterization and Crystal Structure of the Bifunctional Thioesterase Catalyzing Epimerization and Cyclization 6LK3 ; 2.1 ; The Functional Characterization and Crystal Structure of Type II Peptidyl Carrier Protein ColA1a in Collismycins Biosynthesis 1V4Y ; 1.65 ; The functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuation 1V51 ; 1.6 ; The functional role of the binuclear metal center in D-aminoacylase. One-metal activation and second-metal attenuation 2J24 ; 2.1 ; The functional role of the conserved active site proline of triosephosphate isomerase 2J27 ; 1.15 ; The functional role of the conserved active site proline of triosephosphate isomerase 2XUR ; 1.9 ; The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication 1F5G ; ; The G7(syn)-G4(anti) structure of r(GCAGGCGUGC)2 1F5H ; ; The G7(syn)-G4(anti) structure of r(GCAGGCGUGC)2 2Z8E ; 1.99 ; The galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum in complex with galacto-N-biose 2Z8D ; 1.85 ; The galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum in complex with lacto-N-biose 2Z8F ; 1.65 ; The galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum in complex with lacto-N-tetraose 1SAU ; 1.12 ; The Gamma subunit of the dissimilatory sulfite reductase (DsrC) from Archaeoglobus fulgidus at 1.1 A resolution 1NF1 ; 2.5 ; THE GAP RELATED DOMAIN OF NEUROFIBROMIN 1YSA ; 2.9 ; THE GCN4 BASIC REGION LEUCINE ZIPPER BINDS DNA AS A DIMER OF UNINTERRUPTED ALPHA HELICES: CRYSTAL STRUCTURE OF THE PROTEIN-DNA COMPLEX 3TDW ; 1.7 ; The GDP complex of the aminoglycoside 2'-phosphotransfere-IIIa F108L mutant 7L6E ; 3.15 ; The genome-containing AAV11 capsid 7L6A ; 2.67 ; The genome-containing AAV12 capsid 7L6H ; 3.0 ; The genome-containing AAV13 capsid 1TPA ; 1.9 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 1TPO ; 1.7 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 1TPP ; 1.4 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 2PTC ; 1.9 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 2TGP ; 1.9 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 3PTB ; 1.7 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 3TPI ; 1.9 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 4PTI ; 1.5 ; THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS 6EX6 ; 2.16 ; The GH127, Beta-arabinofuranosidase, BT3674 5A7V ; 1.35 ; The GH130 family of mannoside phosphorylases contains glycoside hydrolases that target beta-1,2 mannosidic linkages in Candida mannan 6EUF ; 2.2 ; The GH43, Beta 1,3 Galactosidase, BT0265 6EUJ ; 2.75 ; The GH43, Beta 1,3 Galactosidase, BT0265 6EUH ; 2.0 ; The GH43, Beta 1,3 Galactosidase, BT3683 with galactodeoxynojirimycin 6EUG ; 1.61 ; The GH43, Beta 1,3 Galactosidase, BT3683 with galactoimidazole 6EUI ; 1.76 ; The GH43, Beta 1,3 Galactosidase, BT3683 with galactose 4HFH ; 2.65 ; The GLIC pentameric Ligand-Gated Ion Channel (wild-type) complexed to bromoform 4QH4 ; 3.2 ; The GLIC pentameric Ligand-Gated Ion Channel (wild-type) crystallized in acetate buffer at pH3 4QH5 ; 3.0 ; The GLIC pentameric Ligand-Gated Ion Channel (wild-type) crystallized in phosphate buffer 4QH1 ; 3.4 ; The GLIC pentameric Ligand-Gated Ion Channel (wild-type) in complex with bromoacetate 5HCM ; 3.15 ; The GLIC pentameric Ligand-Gated Ion Channel 2-21' cross-linked mutant complexed to bromoform 6HZW ; 2.22 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL 2.22 resolution 4HFI ; 2.4 ; The GLIC pentameric Ligand-Gated Ion Channel at 2.4 A resolution 3TLS ; 3.2 ; The GLIC pentameric Ligand-Gated Ion Channel E19'P mutant in a locally-closed conformation (LC2 subtype) 4HFB ; 2.75 ; The GLIC pentameric Ligand-Gated Ion Channel F14'A ethanol-sensitive mutant (Apo) 4HFC ; 3.05 ; The GLIC pentameric Ligand-Gated Ion Channel F14'A ethanol-sensitive mutant complexed to 2-bromo-ethanol 4HFD ; 3.1 ; The GLIC pentameric Ligand-Gated Ion Channel F14'A ethanol-sensitive mutant complexed to bromoform 4HFE ; 2.8 ; The GLIC pentameric Ligand-Gated Ion Channel F14'A ethanol-sensitive mutant complexed to ethanol 3TLT ; 3.3 ; The GLIC pentameric Ligand-Gated Ion Channel H11'F mutant in a locally-closed conformation (LC1 subtype) 4ILC ; 2.99 ; The GLIC pentameric ligand-gated ion channel in complex with sulfates 4ZZB ; 3.4 ; The GLIC pentameric Ligand-Gated Ion Channel Locally-closed form complexed to xenon 3UU5 ; 2.9 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-20' mutant reduced in solution 3UU3 ; 3.15 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-20' oxidized mutant in a locally-closed conformation (LC1 subtype) 3UUB ; 2.9 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-21' mutant reduced in solution 3UU4 ; 3.05 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-21' mutant reduced in the crystal in a locally-closed conformation (LC1 subtype) 3TLW ; 2.6 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-21' oxidized mutant in a locally-closed conformation (LC2 subtype) 3UU6 ; 2.98 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-22' mutant reduced in solution 3TLV ; 2.9 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-22' oxidized mutant in a locally-closed conformation (LC3 subtype) 3UU8 ; 3.25 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-24' mutant reduced in solution 3TLU ; 2.85 ; The GLIC pentameric Ligand-Gated Ion Channel Loop2-24' oxidized mutant in a locally-closed conformation (LC1 subtype) 6HZ1 ; 2.5 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT E243C 6I08 ; 3.0 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT E243C-I201W 6HZ3 ; 3.15 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT E243G 6HZ0 ; 2.75 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT K248A 6HYZ ; 3.05 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT K248C 6HY5 ; 2.58 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Q193C 6HYR ; 3.5 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Q193C+MMTS 6HYA ; 3.39 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Q193L 6HY9 ; 2.95 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Q193M 6HYV ; 2.8 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Y119A 6HYW ; 2.8 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Y119F 6HYX ; 3.0 ; THE GLIC PENTAMERIC LIGAND-GATED ION CHANNEL MUTANT Y197F-P250C 4ZZC ; 3.1 ; The GLIC pentameric Ligand-Gated Ion Channel open form complexed to xenon 4NPP ; 3.35 ; The GLIC-His10 wild-type structure in equilibrium between the open and locally-closed (LC) forms 7PRV ; 2.7 ; The glucocorticoid receptor in complex with fluticasone furoate, a PGC1a coactivator fragment and sgk 23bp 7PRW ; 2.502 ; The glucocorticoid receptor in complex with velsecorat, a PGC1a coactivator fragment and sgk 23bp 6SZ0 ; 1.74 ; The glucuronoyl esterase OtCE15A H408A variant from Opitutus terrae 6SZ4 ; 1.75 ; The glucuronoyl esterase OtCE15A H408A variant from Opitutus terrae in complex with, and covalently linked to, D-glucuronate 7B7H ; 1.8 ; The glucuronoyl esterase OtCE15A R268A variant from Opitutus terrae in complex with, and covalently linked to, D-glucuronate 6T0E ; 1.89 ; The glucuronoyl esterase OtCE15A S267A variant from Opitutus terrae in complex with benzyl D-glucuronoate and D-glucuronate 6SZO ; 2.2 ; The glucuronoyl esterase OtCE15A S267A variant from Opitutus terrae in complex with D-galacturonate 6SYV ; 1.12 ; The glucuronoyl esterase OtCE15A S267A variant from Opitutus terrae in complex with D-glucuronate 4IS4 ; 2.35 ; The glutamine synthetase from the dicotyledonous plant M. truncatula is a decamer 3R3E ; 2.205 ; The glutathione bound structure of YqjG, a glutathione transferase homolog from Escherichia coli K-12 3E3N ; 2.7 ; The Glycogen phosphorylase b R state- AMP complex 1Z0N ; 1.49 ; the glycogen-binding domain of the AMP-activated protein kinase 1Z0M ; 1.91 ; the glycogen-binding domain of the AMP-activated protein kinase beta1 subunit 7KRJ ; 2.56 ; The GR-Maturation Complex: Glucocorticoid Receptor in complex with Hsp90 and co-chaperone p23 7WKH ; 1.58 ; the grass carp IFNa 4QRY ; 2.2 ; the ground state and the N intermediate of pharaonis halorhodopsin in complex with bromide ion 5FPH ; 3.2 ; The GTPase domains of the immunity-related Irga6 dimerize in a parallel head-to-head fashion 7BGB ; 3.4 ; The H/ACA RNP lobe of human telomerase 8OUE ; 2.7 ; The H/ACA RNP lobe of human telomerase with the dyskerin thumb loop in a semi-closed conformation 8OUF ; 3.1 ; The H/ACA RNP lobe of human telomerase with the dyskerin thumb loop in an open conformation 2YXC ; 1.5 ; The H25M mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 7LGI ; ; The haddock model of GDP KRas in complex with promazine using chemical shift perturbations and intermolecular NOEs 7MQU ; ; The haddock model of GDP KRas in complex with promethazine using NMR chemical shift perturbations 6V5L ; ; The HADDOCK structure model of GDP KRas in complex with its allosteric inhibitor E22 6ZVK ; 3.49 ; The Halastavi arva virus (HalV) intergenic region IRES promotes translation by the simplest possible initiation mechanism 7A01 ; 3.6 ; The Halastavi arva virus intergenic region IRES promotes translation by the simplest possible initiation mechanism 1KQS ; 3.1 ; The Haloarcula marismortui 50S Complexed with a Pretranslocational Intermediate in Protein Synthesis 2K9H ; ; The hantavirus glycoprotein G1 tail contains a dual CCHC-type classical zinc fingers 1FL6 ; 2.8 ; THE HAPTEN COMPLEXED GERMLINE PRECURSOR TO SULFIDE OXIDASE CATALYTIC ANTIBODY 28B4 5VM6 ; 1.5 ; The hapten triclocarban bound to the single domain camelid nanobody VHH T10 5VL2 ; 1.9 ; The hapten triclocarban bound to the single domain camelid nanobody VHH T4 5VM0 ; 1.79 ; The hapten triclocarban bound to the single domain camelid nanobody VHH T9 4E40 ; 1.6 ; The haptoglobin-hemoglobin receptor of Trypanosoma congolense 1DLL ; 1.8 ; The HC fragement of tetanus toxin complexed with lactose 1FV2 ; 2.5 ; The Hc fragment of tetanus toxin complexed with an analogue of its ganglioside receptor GT1B 1FV3 ; 2.3 ; THE HC FRAGMENT OF TETANUS TOXIN COMPLEXED WITH AN ANALOGUE OF ITS GANGLIOSIDE RECEPTOR GT1B 1DIW ; 2.0 ; THE HC FRAGMENT OF TETANUS TOXIN COMPLEXED WITH GALACTOSE 1D0H ; 2.1 ; THE HC FRAGMENT OF TETANUS TOXIN COMPLEXED WITH N-ACETYL-GALACTOSAMINE 1DFQ ; 2.6 ; THE HC FRAGMENT OF TETANUS TOXIN COMPLEXED WITH SIALIC ACID 6YSQ ; 3.3 ; The hC4Nb8 complement inhibitory nanobody in complex with C4b 3KF2 ; 2.5 ; The HCV NS3/NS4A protease apo structure 7F2P ; 3.0 ; The head structure of Helicobacter pylori bacteriophage KHP40 1GW3 ; ; THE HELIX-HINGE-HELIX STRUCTURAL MOTIF IN HUMAN APOLIPOPROTEIN A-I DETERMINED BY NMR SPECTROSCOPY, 1 STRUCTURE 1GW4 ; ; THE HELIX-HINGE-HELIX STRUCTURAL MOTIF IN HUMAN APOLIPOPROTEIN A-I DETERMINED BY NMR SPECTROSCOPY, 1 STRUCTURE 2KXA ; ; The hemagglutinin fusion peptide (H1 subtype) at pH 7.4 3HTO ; 2.95 ; the hemagglutinin structure of an avian H1N1 influenza A virus 3HTT ; 2.95 ; The hemagglutinin structure of an avian H1N1 influenza A virus in complex with 2,3-sialyllactose 3HTP ; 2.96 ; the hemagglutinin structure of an avian H1N1 influenza A virus in complex with LSTa 3HTQ ; 2.955 ; the hemagglutinin structure of an avian H1N1 influenza A virus in complex with LSTc 6M0A ; 2.2 ; The heme-bound structure of the chloroplast protein At3g03890 2YFV ; 2.32 ; The heterotrimeric complex of Kluyveromyces lactis Scm3, Cse4 and H4 1VTB ; 2.0 ; THE HEXAGONAL CRYSTAL STRUCTURE OF THE A-DNA OCTAMER D(GTGTACAC) AND ITS COMPARISON WITH THE TETRAGONAL STRUCTURE CORRELATED VARIATIONS IN HELICAL PARAMETERS 7T7C ; 10.0 ; The hexagonal organization of Munc13-1 C1-C2B-MUN-C2C domains between lipid bilayers 5T63 ; 2.5 ; The HhoA protease from Synechocystis sp. PCC 6803 5T69 ; 2.1 ; The HhoA protease from Synechocystis sp. PCC 6803, active site mutant 2YXF ; 1.13 ; The high resolution crystal structure of beta2-microglobulin under physiological conditions 3PNP ; 1.6 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF BOVINE SPLEEN PURINE NUCLEOSIDE PHOSPHORYLASE IN COMPLEX FORMS WITH PHOSPHATE AND 9-DEAZAINOSINE 4PNP ; 1.8 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF BOVINE SPLEEN PURINE NUCLEOSIDE PHOSPHORYLASE IN COMPLEX FORMS WITH PHOSPHATE AND 9-DEAZAINOSINE 2HBS ; 2.05 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF DEOXYHEMOGLOBIN S 3BO8 ; 1.8 ; The High Resolution Crystal Structure of HLA-A1 Complexed with the MAGE-A1 Peptide 3BXN ; 1.864 ; The high resolution crystal structure of HLA-B*1402 complexed with a Cathepsin A signal sequence peptide, pCatA 3BP4 ; 1.85 ; The high resolution crystal structure of HLA-B*2705 in complex with a Cathepsin A signal sequence peptide pCatA 3BP7 ; 1.8 ; The high resolution crystal structure of HLA-B*2709 in complex with a Cathepsin A signal sequence peptide, pCatA 2WQR ; 1.9 ; The high resolution crystal structure of IgE Fc 3PSG ; 1.65 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF PORCINE PEPSINOGEN 2P86 ; 1.16 ; The high resolution crystal structure of rhodesain, the major cathepsin L protease from T. brucei rhodesiense, bound to inhibitor K11002 2CTB ; 1.5 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CARBOXYPEPTIDASE A AND L-PHENYL LACTATE 2CTC ; 1.4 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CARBOXYPEPTIDASE A AND L-PHENYL LACTATE 232D ; 1.3 ; THE HIGH RESOLUTION CRYSTAL STRUCTURE OF THE DNA DECAMER D(AGGCATGCCT) 3ZRV ; 1.65 ; The high resolution structure of a dimeric Hamp-Dhp fusion displays asymmetry - A291F mutant 3ZRX ; 1.25 ; The high resolution structure of a dimeric Hamp-Dhp fusion displays strong asymmetry 1FR3 ; 1.5 ; THE HIGH RESOLUTION STRUCTURE OF A MOLYBDATE BINDING PROTEIN FROM SPOROMUSA OVATA 5A8D ; 1.65 ; The high resolution structure of a novel alpha-L-arabinofuranosidase (CtGH43) from Clostridium thermocellum ATCC 27405 6YX7 ; 1.419 ; The high resolution structure of allophycocyanin from cyanobacterium Nostoc sp. WR13, the P21212 crystal form. 1AXN ; 1.78 ; THE HIGH RESOLUTION STRUCTURE OF ANNEXIN III SHOWS DIFFERENCES WITH ANNEXIN V 5FDA ; 1.549 ; The high resolution structure of apo form dihydrofolate reductase from Yersinia pestis at 1.55 A 3KVS ; 1.5 ; The high resolution structure of C-Phycocyanin from Galdieria Sulphuraria 5YUQ ; 1.56 ; The high resolution structure of chitinase (RmChi1) from the thermophilic fungus Rhizomucor miehei (sp P1) 5HI6 ; 2.051 ; The high resolution structure of dihydrofolate reductase from Yersinia pestis complex with methotrexate as closed form 3IP4 ; 1.9 ; The high resolution structure of GatCAB 3FED ; 1.29 ; The high resolution structure of human glutamate carboxypeptidase III (GCPIII/NAALADase II) in complex with a transition state analog of Glu-Glu 3FF3 ; 1.37 ; The high resolution structure of human glutamate carboxypeptidase III (GCPIII/NAALADase II) in complex with L-glutamate 3FEE ; 1.56 ; The high resolution structure of human glutamate carboxypeptidase III (GCPIII/NAALADase II) in complex with quisqualic acid 1W6S ; 1.2 ; The high resolution structure of methanol dehydrogenase from methylobacterium extorquens 1W0D ; 1.65 ; The high resolution structure of Mycobacterium tuberculosis LeuB (Rv2995c) 1E25 ; 1.9 ; The high resolution structure of PER-1 class A beta-lactamase 6TXQ ; 1.73 ; The high resolution structure of the FERM domain and helical linker of human moesin 6XTJ ; 1.6 ; The high resolution structure of the FERM domain of human FERMT2 2PDD ; ; THE HIGH RESOLUTION STRUCTURE OF THE PERIPHERAL SUBUNIT-BINDING DOMAIN OF DIHYDROLIPOAMIDE ACETYLTRANSFERASE FROM THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX OF BACILLUS STEAROTHERMOPHILUS 2PDE ; ; THE HIGH RESOLUTION STRUCTURE OF THE PERIPHERAL SUBUNIT-BINDING DOMAIN OF DIHYDROLIPOAMIDE ACETYLTRANSFERASE FROM THE PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX OF BACILLUS STEAROTHERMOPHILUS 2R4G ; 1.71 ; The high resolution structure of the RNA-binding domain of telomerase 4M6E ; 0.95 ; The high resolution structure of tyrocidine A reveals an amphipathic dimer 2LGD ; ; The high resolution structure of ubiquitin like domain of UBLCP1 1UWK ; 1.19 ; The High Resolution Structure of Urocanate Hydratase from Pseudomonas putida in complex with urocanate 1NYW ; 1.6 ; The high resolution structures of RmlC from Streptoccus suis in complex with dTDP-D-glucose 1NXM ; 1.3 ; The high resolution structures of RmlC from Streptococcus suis 1NZC ; 1.8 ; The high resolution structures of RmlC from Streptococcus suis in complex with dTDP-D-xylose 1ITI ; ; THE HIGH RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURE OF HUMAN INTERLEUKIN-4 DETERMINED BY MULTI-DIMENSIONAL HETERONUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2CIO ; 1.5 ; The high resolution x-ray structure of papain complexed with fragments of the Trypanosoma brucei cysteine protease inhibitor ICP. 1YVT ; 1.8 ; The high salt (phosphate) crystal structure of CO Hemoglobin E (Glu26Lys) at physiological pH (pH 7.35) 3DUT ; 1.55 ; The high salt (phosphate) crystal structure of deoxy hemoglobin E (GLU26LYS) at physiological pH (pH 7.35) 2Y7Q ; 3.4 ; THE HIGH-AFFINITY COMPLEX BETWEEN IGE AND ITS RECEPTOR FC EPSILON RI 3Q6B ; 1.5 ; The high-resolution and new form crystal structure of BamA POTRA4-5 from E.coli 244D ; 1.2 ; THE HIGH-RESOLUTION CRYSTAL STRUCTURE OF A PARALLEL-STRANDED GUANINE TETRAPLEX 1N82 ; 1.45 ; The high-resolution crystal structure of IXT6, a thermophilic, intracellular xylanase from G. stearothermophilus 2Q8X ; 1.45 ; The high-resolution crystal structure of ixt6, a thermophilic, intracellular xylanase from G. stearothermophilus 3W25 ; 1.32 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from /Thermoanaerobacterium saccharolyticum JW/SL-YS485/: the complex of the E146A mutant with xylobiose 3W26 ; 1.6 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from /Thermoanaerobacterium saccharolyticum JW/SL-YS485/: the complex of the E146A mutant with xylotriose 3W27 ; 1.41 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from /Thermoanaerobacterium saccharolyticum JW/SL-YS485/: the complex of the E251A mutant with xylobiose 3W29 ; 1.39 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from /Thermoanaerobacterium saccharolyticum JW/SL-YS485/: the complex of the E251A mutant with xylotetraose 3W28 ; 1.39 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from /Thermoanaerobacterium saccharolyticum JW/SL-YS485/: the complex of the E251A mutant with xylotriose 3W24 ; 1.35 ; The high-resolution crystal structure of TsXylA, intracellular xylanase from Thermoanaerobacterium saccharolyticum JW/SL-YS485 2G9L ; ; The High-resolution Solution Conformation of an Antimicrobial Peptide Gaegurin 4 and Its Mode of Membrane Interaction 1HDN ; ; THE HIGH-RESOLUTION STRUCTURE OF THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR FROM ESCHERICHIA COLI DETERMINED BY RESTRAINED MOLECULAR DYNAMICS FROM NMR NUCLEAR OVERHAUSER EFFECT DATA 4B0A ; 1.97 ; The high-resolution structure of yTBP-yTAF1 identifies conserved and competing interaction surfaces in transcriptional activation 1TRS ; ; THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN 1TRU ; ; THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN 1TRV ; ; THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN 1TRW ; ; THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN 1CSE ; 1.2 ; THE HIGH-RESOLUTION X-RAY CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN SUBTILISIN CARLSBERG AND EGLIN C, AN ELASTASE INHIBITOR FROM THE LEECH HIRUDO MEDICINALIS. STRUCTURAL ANALYSIS, SUBTILISIN STRUCTURE AND INTERFACE GEOMETRY 4PFX ; 1.66 ; The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold 1KWC ; 2.1 ; The His145Ala mutant of 2,3-dihydroxybiphenyl dioxygenase in complex with 2,3-dihydroxybiphenyl 6FSX ; 1.8 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography 6GXH ; 1.802 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography: FAcD 0MS after reaction initiation 6GXT ; 1.95 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography: FAcD2052MS after reaction initiation 6GXD ; 1.8 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography: FAcD752MS after reaction initiation 6GXF ; 1.8 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography: RADDAM1 6GXL ; 1.8 ; The hit-and-return system enables efficient time-resolved serial synchrotron crystallography: RADDAM2 1MSN ; 2.0 ; The HIV protease (mutant Q7K L33I L63I V82F I84V) complexed with KNI-764 (an inhibitor) 1MSM ; 2.0 ; The HIV protease (mutant Q7K L33I L63I) complexed with KNI-764 (an inhibitor) 6PW6 ; 4.5 ; The HIV-1 Envelope Glycoprotein Clone BG505 SOSIP.664 in Complex with Three Copies of the Bovine Broadly Neutralizing Antibody, NC-Cow1, Fragment Antigen Binding Domain 2VBF ; 1.6 ; The holostructure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis 1R7M ; 2.25 ; The homing endonuclease I-SceI bound to its DNA recognition region 6X1J ; 1.945 ; The homing endonuclease I-WcaI bound to its DNA recognition sequence 8HZ5 ; 3.0 ; The homodimer of a biotin carboxylase isoform from chloroflexus aurantiacus 1NZ4 ; 1.8 ; The horse heart myoglobin variant K45E/K63E complexed with Cadmium 1NZ5 ; 1.7 ; The Horse heart myoglobin variant K45E/K63E complexed with Manganese 3NB3 ; 19.0 ; The host outer membrane proteins OmpA and OmpC are packed at specific sites in the Shigella phage Sf6 virion as structural components 5EFV ; 2.2 ; The host-recognition device of Staphylococcus aureus phage Phi11 4XUU ; 2.62 ; The hSac2 domain from human phosphoinositide phosphatase Sac2 3BBU ; 10.0 ; The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex 3BBX ; 10.0 ; The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex 5L4G ; 3.9 ; The human 26S proteasome at 3.9 A 5LN3 ; 6.8 ; The human 26S Proteasome at 6.8 Ang. 5L4K ; 3.9 ; The human 26S proteasome lid 2GSF ; 1.77 ; The Human Epha3 Receptor Tyrosine Kinase and Juxtamembrane Region 6ECR ; 2.2 ; The human methylenetetrahydrofolate dehydrogenase/cyclohydrolase (FolD) complexed with NADP 6ECP ; 2.2 ; The human methylenetetrahydrofolate dehydrogenase/cyclohydrolase (FolD) complexed with NADP and inhibitor LY249543 6ECQ ; 2.7 ; The human methylenetetrahydrofolate dehydrogenase/cyclohydrolase (FolD) complexed with NADP and inhibitor LY345899 6C9M ; 2.8 ; The Human NatA (Naa10/Naa15) amino-terminal acetyltransferase complex 6C95 ; 3.15 ; The Human NatA (Naa10/Naa15) amino-terminal acetyltransferase complex bound to HYPK 1KPR ; 2.8 ; The human non-classical major histocompatibility complex molecule HLA-E 1KTL ; 3.1 ; The human non-classical major histocompatibility complex molecule HLA-E 1MHE ; 2.85 ; THE HUMAN NON-CLASSICAL MAJOR HISTOCOMPATIBILITY COMPLEX MOLECULE HLA-E 3BZE ; 2.5 ; The human non-classical major histocompatibility complex molecule HLA-E 3BZF ; 2.5 ; The human non-classical major histocompatibility complex molecule HLA-E 3AFA ; 2.5 ; The human nucleosome structure 3AV1 ; 2.5 ; The human nucleosome structure containing the histone variant H3.2 3AV2 ; 2.8 ; The human nucleosome structure containing the histone variant H3.3 5NPS ; 1.68 ; The human O-GlcNAc transferase in complex with a bisubstrate inhibitor 5NPR ; 1.85 ; The human O-GlcNAc transferase in complex with a thiol-linked bisubstrate inhibitor 3ZJ0 ; 1.8 ; The human O-GlcNAcase C-terminal domain is a pseudo histone acetyltransferase 4XNV ; 2.2 ; The human P2Y1 receptor in complex with BPTU 4XNW ; 2.7 ; The human P2Y1 receptor in complex with MRS2500 8FZ6 ; 2.54 ; The human PI31 complexed with bovine 20S proteasome 2BIL ; 2.55 ; The human protein kinase Pim1 in complex with its consensus peptide Pimtide 8GW8 ; 2.9 ; the human PTH1 receptor bound to an intracellular biased agonist 2WFH ; 1.8 ; The Human Slit 2 Dimerization Domain D4 6KE9 ; 2.22 ; The Human Telomeric Nucleosome Displays Distinct Structural and Dynamic Properties 6L9H ; 2.6 ; The Human Telomeric Nucleosome Displays Distinct Structural and Dynamic Properties 6LE9 ; 2.6 ; The Human Telomeric Nucleosome Displays Distinct Structural and Dynamic Properties 1Y97 ; 2.5 ; The human TREX2 3' exonuclease structure suggests a mechanism for efficient non-processive DNA catalysis 4GR7 ; 1.7 ; The human W42R Gamma D-Crystallin Mutant Structure at 1.7A Resolution 1OLR ; 1.2 ; The Humicola grisea Cel12A Enzyme Structure at 1.2 A Resolution 2JCP ; 1.3 ; The hyaluronan binding domain of murine CD44 2JCQ ; 1.25 ; The hyaluronan binding domain of murine CD44 in a Type A complex with an HA 8-mer 2JCR ; 2.0 ; The hyaluronan binding domain of murine CD44 in a Type B complex with an HA 8-mer 7OV7 ; 1.8 ; The hybrid cage formed between Pizza6-S and Cu(II)-substituted trilacunary Keggin 8CNS ; 1.36 ; The Hybrid Cluster Protein from the thermophilic methanogen Methanothermococcus thermolithotrophicus in a mixed redox state after soaking with hydroxylamine, at 1.36-A resolution. 2CFI ; 1.85 ; The hydrolase domain of human 10-FTHFD in complex with 6- formyltetrahydropterin 8H2D ; 2.9 ; The hypothetical protein from Mycobacterium tuberculosis mutant - E47A 3MSV ; 2.18 ; The hypoxic regulator of sterol synthesis Nro1 is a nuclear import adaptor 3WY0 ; 2.001 ; The I375W mutant of CsyB complexed with CoA-SH 7D0K ; 2.79 ; The icosahedral capsid of Omono River virus (strain:LZ) 4BRY ; 2.89 ; The Idas:Geminin heterodimeric parallel coiled-coil 5J79 ; 2.69 ; The identification and pharmacological characterization of 6-(tert-butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a highly potent and selective inhibitor of RIP2 Kinase, Compound 3 complex 5J7B ; 2.53 ; The identification and pharmacological characterization of 6-(tert-butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a highly potent and selective inhibitor of RIP2 Kinase, GSK583 complex 4M5G ; 1.31 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5H ; 1.11 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5I ; 1.08 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5J ; 1.696 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5K ; 1.296 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5L ; 1.094 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5M ; 1.118 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 4M5N ; 2.0 ; The Identification, Analysis and Structure-Based Development of Novel Inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase 2YHN ; 3.0 ; The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor 2YHO ; 2.1 ; The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor 8CXJ ; 3.05 ; The IgI3 domain of R28 protein from S. pyogenes bound to CEACAM1 6T15 ; 3.29 ; The III2-IV(5B)1 respiratory supercomplex from S. cerevisiae 6T0B ; 2.8 ; The III2-IV(5B)2 respiratory supercomplex from S. cerevisiae 6JDP ; 1.601 ; the imm52 family protein TsiT (PA3908) from Pseudomonas aeruginosa 2AXF ; 1.8 ; The Immunogenicity of a Viral Cytotoxic T Cell Epitope is controlled by its MHC-bound Conformation 2AXG ; 2.0 ; The Immunogenicity of a Viral Cytotoxic T Cell Epitope is controlled by its MHC-bound Conformation 8P7F ; 2.0 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7H ; 1.774 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7I ; 1.7 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7K ; 1.929 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7M ; 1.85 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7N ; 3.2 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7Q ; 1.77 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7R ; 1.85 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7S ; 1.77 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7T ; 1.8 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7U ; 1.38 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 8P7V ; 1.737 ; The impact of molecular variants, crystallization conditions and space group on structure-ligand complexes: A case study on Bacterial Phosphotriesterase Variants and complexes 1LYC ; 1.57 ; The impact of the physical and chemical enviroment on the molecular structure of Coprinus cinereus peroxidase 1LYK ; 2.0 ; THE IMPACT OF THE PHYSICAL AND CHEMICAL ENVIROMENT ON THE MOLECULAR STRUCTURE OF COPRINUS CINEREUS PEROXIDASE 1LY9 ; 2.0 ; The impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase 3H0O ; 1.4 ; The importance of CH-Pi stacking interactions between carbohydrate and aromatic residues in truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase 4COT ; 1.9 ; The importance of the Abn2 calcium cluster in the endo-1,5- arabinanase activity from Bacillus subtilis 1GM2 ; ; The independent structure of the antitryptic reactive site loop of Bowman-Birk inhibitor and sunflower trypsin inhibitor-1 1RRU ; 2.35 ; The influence of a chiral amino acid on the helical handedness of PNA in solution and in crystals 1TRD ; 2.5 ; THE INFLUENCE OF CRYSTAL PACKING ON CRYSTALLOGRAPHIC BINDING STUDIES: A NEW CRYSTAL FORM OF TRYPANOSOMAL TIM 2QHC ; 2.802 ; The Influence of I47A Mutation on Reduced Susceptibility to the Protease Inhibitor Lopinavir 2Z54 ; 2.31 ; The Influence of I47A Mutation on Reduced Susceptibility to the Protease Inhibitor Lopinavir 1LSA ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1LSB ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1LSC ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1LSD ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1LSE ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1LSF ; 1.7 ; THE INFLUENCE OF TEMPERATURE ON LYSOZYME CRYSTALS. STRUCTURE AND DYNAMICS OF PROTEIN AND WATER 1UWN ; 1.2 ; The Initial Events in the Photocycle of Photoactive Yellow Protein: A Common Mechanism on Light Activation in Photoreceptor Proteins 6VE7 ; 3.6 ; The inner junction complex of Chlamydomonas reinhardtii doublet microtubule 2LLD ; ; The Insect Defensin Lucifensin from Lucilia sericata 3VHP ; 1.93 ; The insertion mutant Y61GG of Tm Cel12A 7MQO ; 3.4 ; The insulin receptor ectodomain in complex with a venom hybrid insulin analog - ""head"" region 7MQR ; 4.1 ; The insulin receptor ectodomain in complex with four venom hybrid insulins - symmetric conformation 7MQS ; 4.4 ; The insulin receptor ectodomain in complex with three venom hybrid insulin molecules - asymmetric conformation 1ATH ; 3.2 ; THE INTACT AND CLEAVED HUMAN ANTITHROMBIN III COMPLEX AS A MODEL FOR SERPIN-PROTEINASE INTERACTIONS 2M3E ; ; The Integrin Alpha L Transmembrane Domain in Bicelles: Structure and Interaction with Integrin Beta 2 6SO3 ; 6.2 ; The interacting head motif in insect flight muscle myosin thick filaments 6WRM ; 1.55 ; The interaction of chlorido(1,5-cyclooctadiene)([4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1,3-dimethyl-1H-imidazol-3-ide])rhodium(I) with HEWL after 1 month 6WRL ; 1.35 ; The interaction of chlorido(1,5-cyclooctadiene)([4-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-1,3-dimethyl-1H-imidazol-3-ide])rhodium(I) with HEWL after 1 week 3IYP ; 7.2 ; The Interaction of Decay-accelerating Factor with Echovirus 7 6WGO ; 1.3 ; The interaction of dichlorido(3-(anthracen-9-ylmethyl)-1-methylimidazol-2-ylidene)(eta6-p-cymene)ruthenium(II) with HEWL after 1 week 1ERB ; 1.9 ; THE INTERACTION OF N-ETHYL RETINAMIDE WITH PLASMA RETINOL-BINDING PROTEIN (RBP) AND THE CRYSTAL STRUCTURE OF THE RETINOID-RBP COMPLEX AT 1.9 ANGSTROMS RESOLUTION 1FPH ; 2.5 ; THE INTERACTION OF THROMBIN WITH FIBRINOGEN: A STRUCTURAL BASIS FOR ITS SPECIFICITY 2W1L ; 1.51 ; THE INTERDEPENDENCE OF WAVELENGTH, REDUNDANCY AND DOSE IN SULFUR SAD EXPERIMENTS: 0.979 a wavelength 991 images data 2W1X ; 1.7 ; The interdependence of wavelength, redundancy and dose in sulfur SAD experiments: 1.284 A wavelength 360 images data 2W1Y ; 1.73 ; THE INTERDEPENDENCE OF WAVELENGTH, REDUNDANCY AND DOSE IN SULFUR SAD EXPERIMENTS: 1.540 A wavelength 180 images data 2W1M ; 1.78 ; THE INTERDEPENDENCE OF WAVELENGTH, REDUNDANCY AND DOSE IN SULFUR SAD EXPERIMENTS: 2.070 A WAVELENGTH with 2theta 30 degrees data 7CAH ; 3.9 ; The interface of H014 Fab binds to SARS-CoV-2 S 7WRV ; 2.47 ; The interface of JMB2002 Fab binds to SARS-CoV-2 Omicron Variant S 8E4M ; 3.44 ; The intermediate C2-state mouse TRPM8 structure in complex with the cooling agonist C3 and PI(4,5)P2 6JZM ; 1.88 ; The intermediate forming O-C10 bond formation in AsqJ-catalyzed epoxidation 8HD7 ; 3.52 ; The intermediate pre-Tet-S1 state of G264A mutated Tetrahymena group I intron with 6nt 3'/5'-exon and 2-aminopurine nucleoside 7XD4 ; 3.89 ; The intermediate pre-Tet-S1 state of wild-type Tetrahymena group I intron with 6nt 3'/5'-exon 8GVA ; 3.25 ; The intermediate structure of hAE2 in basic pH 7JHW ; 1.65 ; The internal aldimine crystal structure of Salmonella typhimurium Tryptophan Synthase mutant beta-S377A in complex with inhibitor 2-({[4-(trifluoromethoxy)phenyl]sulfonyl}amino)ethyl dihydrogen phosphate (F9F) at the alpha-site and Cesium ion at the metal coordination site 7JLL ; 1.55 ; The internal aldimine crystal structure of Salmonella typhimurium Tryptophan Synthase mutant beta-S377A in complex with inhibitor 2-({[4-(trifluoromethoxy)phenyl]sulfonyl}amino)ethyl dihydrogen phosphate (F9F) at the alpha-site, Cesium ion at the metal coordination site and L-Tryptophan at the enzyme beta-site 7KMC ; 1.5 ; The internal aldimine crystal structure of the beta-K167T mutant Tryptophan Synthase at 1.50 Angstrom resolution with cesium ion at the metal coordination site 7K0B ; 1.57 ; The internal aldimine form of Salmonella typhimurium Tryptophan Synthase mutant beta-Q114A with cesium ion at the metal coordination site. A random beta-P270L mutation was inserted during PCR step 7L47 ; 1.55 ; The internal aldimine form of the beta-K167T mutant Tryptophan Synthase from Salmonella at 1.55 Angstrom resolution with cesium ion at the metal coordination site 7LUT ; 1.6 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with cesium ion at the metal coordination site and the product L-tryptophan at the enzyme beta-site at 1.60 Angstrom resolution 7LX1 ; 1.61 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with cesium ion at the metal coordination site at 1.61 Angstrom resolution 7LPF ; 1.1 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and sodium ion at the metal coordination site at 1.10 Angstrom resolution 7LV5 ; 1.6 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site and L-Histidine at the enzyme beta-site at 1.55 Angstrom resolution 7LKL ; 1.05 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site and the product L-tryptophan at the enzyme beta-site at 1.05 Angstrom resolution. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 7LTP ; 1.47 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site and the product L-tryptophan at the enzyme beta-site at 1.47 Angstrom resolution 7LVX ; 1.55 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site at 1.55 Angstrom resolution 7M3S ; 1.55 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor at the alpha-and beta-site, sodium ion at the metal coordination site, and another F6F molecule at the enzyme beta-site at 1.55 Angstrom resolution. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 7M2L ; 1.6 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor at the alpha-and beta-site, sodium ion at the metal coordination site, and another F6F molecule at the enzyme beta-site at 1.60 Angstrom resolution. Two of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 7ME8 ; 1.6 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor at the beta-site, sodium ion at the metal coordination site and dual beta-Q114 rotamer conformation at 1.60 Angstrom resolution 7LY8 ; 1.55 ; The internal aldimine form of the wild-type Salmonella Typhimurium Tryptophan Synthase in complex with two molecules of N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor at the enzyme alpha-site, a single F6F molecule at the enzyme beta-site, and sodium ion at the metal coordination site at 1.55 Angstrom resolution. One of the beta-Q114 rotamer conformations allows a hydrogen bond to form with the PLP oxygen at the position 3 in the ring 7L4D ; 1.6 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase with cesium ion at the metal coordination site at 1.60 Angstrom resolution 7KU9 ; 1.4 ; The internal aldimine form of the wild-type Salmonella typhimurium Tryptophan Synthase with sodium ion at the metal coordination site, two molecules of F6F inhibitor at the enzyme alpha-site and another F6F molecule at the enzyme beta-site at 1.40 Angstrom resolution 7KQF ; 1.47 ; The internal aldimine form of the wild-type Tryptophan Synthase from Salmonella in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site and cesium ion at the metal coordination site at 1.47 Angstrom resolution 5HM7 ; 1.93 ; The Intracellular domain of Butyrophilin 3A1 protein 2PX9 ; ; The intrinsic affinity between E2 and the Cys domain of E1 in Ubiquitin-like modifications 400D ; 1.65 ; THE INTRINSIC STRUCTURE AND STABILITY OF OUT-OF-ALTERNATION BASE PAIRS IN Z-DNA 1QS5 ; 2.5 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QS9 ; 1.85 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QSB ; 1.8 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QTB ; 1.9 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QTC ; 2.5 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QTD ; 2.5 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1QTH ; 1.9 ; THE INTRODUCTION OF STRAIN AND ITS EFFECTS ON THE STRUCTURE AND STABILITY OF T4 LYSOZYME 1FRN ; 2.0 ; THE INVOLVEMENT OF SER96 IN THE CATALYTIC MECHANISM OF FERREDOXIN-NADP+ REDUCTASE: STRUCTURE-FUNCTION RELATIONSHIP AS STUDIED BY SITE-DIRECTED MUTAGENESIS AND X-RAY CRYSTALLOGRAPHY 4LDS ; 3.2 ; The inward-facing structure of the glucose transporter from Staphylococcus epidermidis 6ZIW ; 2.18 ; The IRAK3 Pseudokinase Domain Bound To ATPgammaS 6KXD ; 1.75 ; The ishigamide ketosynthase/chain length factor 6KXE ; 1.81 ; The ishigamide ketosynthase/chain length factor 6KXF ; 1.98 ; The ishigamide ketosynthase/chain length factor 7LIE ; ; The isolated chicken ASIC1a thumb domain (ATD-c1a) retains the structure and ligand binding properties of the full length chicken ASIC1a 1EKX ; 1.95 ; THE ISOLATED, UNREGULATED CATALYTIC TRIMER OF ASPARTATE TRANSCARBAMOYLASE COMPLEXED WITH BISUBSTRATE ANALOG PALA (N-(PHOSPHONACETYL)-L-ASPARTATE) 2V4M ; 2.29 ; The isomerase domain of human glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in complex with fructose 6-phosphate 1HAG ; 2.0 ; THE ISOMORPHOUS STRUCTURES OF PRETHROMBIN2, HIRUGEN-AND PPACK-THROMBIN: CHANGES ACCOMPANYING ACTIVATION AND EXOSITE BINDING TO THROMBIN 1HAH ; 2.3 ; THE ISOMORPHOUS STRUCTURES OF PRETHROMBIN2, HIRUGEN-AND PPACK-THROMBIN: CHANGES ACCOMPANYING ACTIVATION AND EXOSITE BINDING TO THROMBIN 1HAI ; 2.4 ; THE ISOMORPHOUS STRUCTURES OF PRETHROMBIN2, HIRUGEN-AND PPACK-THROMBIN: CHANGES ACCOMPANYING ACTIVATION AND EXOSITE BINDING TO THROMBIN 2J4E ; 2.8 ; THE ITP COMPLEX OF HUMAN INOSINE TRIPHOSPHATASE 4K6Z ; 2.73 ; The Jak1 kinase domain in complex with compound 37 4EHZ ; 2.174 ; The Jak1 kinase domain in complex with inhibitor 4I5C ; 2.1 ; The Jak1 kinase domain in complex with inhibitor 5WFJ ; 2.48 ; THE JAK3 KINASE DOMAIN IN COMPLEX WITH A COVALENT INHIBITOR 1JUB ; 1.4 ; The K136E mutant of lactococcus lactis dihydroorotate dehydrogenase A 1OVD ; 2.25 ; THE K136E MUTANT OF LACTOCOCCUS LACTIS DIHYDROOROTATE DEHYDROGENASE A IN COMPLEX WITH OROTATE 1JQV ; 2.1 ; The K213E mutant of Lactococcus lactis Dihydroorotate dehydrogenase A 1XB6 ; 1.823 ; The K24R mutant of Pseudomonas Aeruginosa Azurin 1LEI ; 2.7 ; The kB DNA sequence from the HLV-LTR functions as an allosteric regulator of HIV transcription 6RIS ; 2.1 ; The Kb42S variant of the molybdenum storage protein 3BJ4 ; 2.0 ; The KCNQ1 (Kv7.1) C-terminus, a multi-tiered scaffold for subunit assembly and protein interaction 2BPU ; 1.35 ; The Kedge Holmium Derivative of Hen Egg-White Lysozyme at high resolution from Single Wavelength Anomalous Diffraction 3CIO ; 2.5 ; The kinase domain of Escherichia coli tyrosine kinase ETK 6SWK ; 1.742 ; The kinase domain of GanS, a histidine kinase from Geobacillus stearothermophilus 6SWJ ; 1.762 ; The kinase domain of GanS, a histidine kinase from Geobacillus stearothermophilus (with Pt) 3LCK ; 1.7 ; THE KINASE DOMAIN OF HUMAN LYMPHOCYTE KINASE (LCK), ACTIVATED FORM (AUTO-PHOSPHORYLATED ON TYR394) 4YJO ; 1.6 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000222 4YJP ; 1.83 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000223 4YJS ; 2.22 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000226 4YJT ; 1.52 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000233 4YJU ; 1.67 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000249 4YJV ; 1.652 ; THE KINASE DOMAIN OF HUMAN SPLEEN TYROSINE (SYK) IN COMPLEX WITH GTC000250 6EJN ; 3.2 ; The KLC2 TPR domain bound to the JIP3 leucine zipper domain 4APV ; 2.095 ; The Klebsiella pneumoniae primosomal PriB protein: identification, crystal structure, and ssDNA binding mode 6CZO ; 2.95 ; The KNL1-PP1 Holoenzyme 7W5Q ; 2.73 ; The Kruppel-associated box (KRAB) domain of human zinc finger protein 568 2JB1 ; 1.55 ; The L-amino acid oxidase from Rhodococcus opacus in complex with L- alanine 7O82 ; 1.69 ; The L-arginine/agmatine antiporter from E. coli at 1.7 A resolution 1K75 ; 1.75 ; The L-histidinol dehydrogenase (hisD) structure implicates domain swapping and gene duplication. 1V2G ; 2.0 ; The L109P mutant of E. coli Thioesterase I/Protease I/Lysophospholipase L1 (TAP) in complexed with octanoic acid 5JSL ; 1.25 ; The L16F mutant of cytochrome c prime from Alcaligenes xylosoxidans: Ferrous form 3HEA ; 1.9 ; The L29P/L124I mutation of Pseudomonas fluorescens esterase 3NBM ; 1.3 ; The lactose-specific IIB component domain structure of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) from Streptococcus pneumoniae. 1JB3 ; 1.6 ; The Laminin-Binding Domain of Agrin is structurally related to N-TIMP-1 1JC7 ; 2.73 ; The Laminin-Binding Domain of Agrin is Structurally Related to N-TIMP-1 3FWO ; 3.71 ; The large ribosomal subunit from Deinococcus radiodurans complexed with Methymycin 5JVG ; 3.428 ; The large ribosomal subunit from Deinococcus radiodurans in complex with avilamycin 7AIH ; 3.6 ; The Large subunit of the Kinetoplastid mitochondrial ribosome 7CMI ; 2.9 ; The LAT2-4F2hc complex in complex with leucine 7CMH ; 3.4 ; The LAT2-4F2hc complex in complex with tryptophan 1NUV ; 1.81 ; The Leadzyme Ribozyme Bound to Mg(H2O)6(II) and Sr(II) at 1.8 A resolution 1NUJ ; 1.8 ; THE LEADZYME STRUCTURE BOUND TO MG(H20)6(II) AT 1.8 A RESOLUTION 4TRH ; 2.03 ; The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling 4BTH ; 1.9 ; The LeuA146Trp,PheB24Tyr Double Mutant of the Quorum Quenching N-acyl Homoserine Lactone Acylase PvdQ Has an Altered Substrate Specificity Towards Small Acyl Chains 2AGI ; 1.14 ; The leupeptin-trypsin covalent complex at 1.14 A resolution 6IOP ; 2.3 ; The ligand binding domain of Mlp24 6IOT ; 2.7 ; The ligand binding domain of Mlp24 with arginine 6IOR ; 2.5 ; The ligand binding domain of Mlp24 with asparagine 6IOQ ; 2.143 ; The ligand binding domain of Mlp24 with glycine 6IOS ; 2.35 ; The ligand binding domain of Mlp24 with proline 6IOU ; 2.1 ; The ligand binding domain of Mlp24 with serine 6IOV ; 2.351 ; The ligand binding domain of Mlp37 with arginine 5AVE ; 1.8 ; The ligand binding domain of Mlp37 with serine 5AVF ; 1.95 ; The ligand binding domain of Mlp37 with taurine 1N4A ; 2.0 ; The Ligand Bound Structure of E.coli BtuF, the Periplasmic Binding Protein for Vitamin B12 5LHS ; 3.047 ; The ligand free catalytic domain of murine urokinase-type plasminogen activator 1OLZ ; 2.0 ; The ligand-binding face of the semaphorins revealed by the high resolution crystal structure of SEMA4D 6HNI ; 1.35 ; The ligand-bound, closed structure of CD0873, a substrate binding protein with adhesive properties from Clostridium difficile. 6HNJ ; 1.8 ; The ligand-bound, open structure of CD0873, a substrate binding protein with adhesive properties from Clostridium difficile. 5XUA ; 2.8 ; The ligand-free dimer of chemoreceptor MCP2201 ligand binding domain 7E2R ; 2.3 ; The ligand-free structure of Arabidopsis thaliana GUN4 1N4D ; 3.0 ; The Ligand-Free Structure of E coli BtuF, the Periplasmic Binding Protein for Vitamin B12 5ZDM ; 1.38 ; The ligand-free structure of FomD 7VEE ; 2.55 ; The ligand-free structure of GfsA KSQ-AT didomain 6L8B ; 2.102 ; The ligand-free structure of human PPARgamma LBD 7CXF ; 2.35 ; The ligand-free structure of human PPARgamma LBD C285Y mutant in the presence of the SRC-1 coactivator peptide 7CXI ; 2.3 ; The ligand-free structure of human PPARgamma LBD F287Y mutant in the presence of the SRC-1 coactivator peptide 6JQ7 ; 2.55 ; The ligand-free structure of human PPARgamma LBD in the presence of the SRC-1 coactivator peptide 7CXG ; 1.88 ; The ligand-free structure of human PPARgamma LBD Q286E mutant 7CXH ; 2.3 ; The ligand-free structure of human PPARgamma LBD Q286E mutant in the presence of the SRC-1 coactivator peptide 7CXE ; 2.5 ; The ligand-free structure of human PPARgamma LBD R280C mutant 7CXJ ; 2.65 ; The ligand-free structure of human PPARgamma LBD R288C mutant in the presence of the SRC-1 coactivator peptide 7CXK ; 2.2 ; The ligand-free structure of human PPARgamma LBD R288H mutant in the presence of the SRC-1 coactivator peptide 7CXL ; 2.7 ; The ligand-free structure of human PPARgamma LBD S289C mutant in the presence of the SRC-1 coactivator peptide 6KTM ; 2.7 ; The ligand-free structure of human PPARgamma ligand-binding domain R288A mutant in the presence of the SRC-1 coactivator peptide 3WH9 ; 1.57 ; The ligand-free structure of ManBK from Aspergillus niger BK01 6VIH ; 2.993 ; The ligand-free structure of mouse RABL3 6M09 ; 2.101 ; The ligand-free structure of the chloroplast protein At3g03890 5IJB ; 2.91 ; The ligand-free structure of the mouse TLR4/MD-2 complex 6HNK ; 2.5 ; The ligand-free, open structure of CD0873, a substrate binding protein with adhesive properties from Clostridium difficile. 4EW9 ; 1.6 ; The liganded structure of C. bescii family 3 pectate lyase 4DOE ; 1.561 ; The liganded structure of Cbescii CelA GH9 module 3ULF ; 2.9 ; The light state structure of the blue-light photoreceptor Aureochrome1 LOV 4CTF ; 17.0 ; The limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis A virus particle 4CTG ; 17.0 ; The limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis A virus particle 7ATU ; 2.8 ; The LIMK1 Kinase Domain Bound To LIJTF500025 7ATS ; 2.8 ; The LIMK1 Kinase Domain Bound To LIJTF500127 4A76 ; 1.92 ; The Lin28b Cold shock domain in complex with heptathymidine 4A75 ; 1.75 ; The Lin28b Cold shock domain in complex with hexathymidine. 4ALP ; 1.48 ; The Lin28b Cold shock domain in complex with hexauridine 1DEG ; 2.9 ; THE LINKER OF DES-GLU84 CALMODULIN IS BENT AS SEEN IN THE CRYSTAL STRUCTURE 8C0E ; 3.6 ; The lipid linked oligosaccharide polymerase Wzy and its regulating co-polymerase Wzz form a complex in vivo and in vitro 6F9M ; 1.298 ; The LIPY/F-motif in an intracellular subtilisin protease is involved in inhibition 7WOP ; 3.51 ; The local refined map of Omicron spike with bispecific antibody FD01 2G50 ; 1.65 ; The location of the allosteric amino acid binding site of muscle pyruvate kinase. 4PQD ; 1.332 ; The longer crystal structure of the grow factor like domain from Beta amypoid precusor protein (APP22-126) 6Z42 ; 4.0 ; The low resolution structure of a zinc-dependent alcohol dehydrogenase from Halomonas elongata. 1YVQ ; 1.8 ; The low salt (PEG) crystal structure of CO Hemoglobin E (betaE26K) approaching physiological pH (pH 7.5) 131D ; 1.0 ; THE LOW-TEMPERATURE CRYSTAL STRUCTURE OF THE PURE-SPERMINE FORM OF Z-DNA REVEALS BINDING OF A SPERMINE MOLECULE IN THE MINOR GROOVE 5IV8 ; 2.938 ; The LPS Transporter LptDE from Klebsiella pneumoniae, core complex 5IV9 ; 4.369 ; The LPS Transporter LptDE from Klebsiella pneumoniae, full-length 5IVA ; 2.988 ; The LPS Transporter LptDE from Pseudomonas aeruginosa, core complex 5IXM ; 2.746 ; The LPS Transporter LptDE from Yersinia pestis, core complex 4B5Q ; 1.75 ; The lytic polysaccharide monooxygenase GH61D structure from the basidiomycota fungus Phanerochaete chrysosporium 6YJ1 ; 2.3 ; The M23 peptidase domain of the Staphylococcal phage 2638A endolysin 5GNZ ; 2.2 ; The M3 mutant structure of Bgl6 4NHU ; 2.9 ; The M33 TCR p3M33l/H-2 Ld Complex 2BFR ; 2.5 ; The Macro domain is an ADP-ribose binding module 1S2H ; ; The Mad2 spindle checkpoint protein possesses two distinct natively folded states 1KLQ ; ; The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes upon Binding to Either Mad1 or Cdc20 7D0L ; 2.95 ; The major capsid of Omono River virus (strain:LZ), protrusion-free status. 6H1K ; ; The major G-quadruplex form of HIV-1 LTR 1VFR ; 1.8 ; THE MAJOR NAD(P)H:FMN OXIDOREDUCTASE FROM VIBRIO FISCHERI 7VQ5 ; 3.1 ; The malate-bound AtALMT1 structure at pH 7.5 (ALMT1malate/pH7.5) 7WRM ; 1.8 ; The malate-bound dimer of chemoreceptor MCP2201 ligand binding domain 4X21 ; 1.95 ; The MAP kinase JNK3 as target for halogen bonding 7P1L ; 1.95 ; The MARK3 Kinase Domain Bound To AA-CS-1-008 3ECH ; 1.802 ; The MarR-family repressor MexR in complex with its antirepressor ArmR 7LCG ; 2.42 ; The mature Usutu SAAR-1776, Model A 7LCH ; 2.35 ; The mature Usutu SAAR-1776, Model B 2VYT ; 1.9 ; The MBT repeats of human SCML2 bind to peptides containing mono methylated lysine. 4EDU ; 2.58 ; The MBT repeats of human SCML2 in a complex with histone H2A peptide 3C64 ; 2.4 ; The MC179 portion of the Cysteine-rich Interdomain Region (CIDR) of a Plasmodium falciparum Erythrocyte Membrane Protein-1 (PfEMP1) 3MK8 ; 2.321 ; The MCL-1 BH3 Helix is an Exclusive MCL-1 Inhibitor and Apoptosis Sensitizer 5LA0 ; 1.65 ; The mechanism by which arabinoxylanases can recognise highly decorated xylans 5LA1 ; 1.9 ; The mechanism by which arabinoxylanases can recognise highly decorated xylans 5LA2 ; 1.65 ; The mechanism by which arabinoxylanases can recognise highly decorated xylans 6ZSH ; 2.2 ; The mechanism of activation of the actin binding protein EHBP1 by Rab8 family members 6ZSI ; 1.914 ; The mechanism of activation of the actin binding protein EHBP1 by Rab8 family members. 6ZSJ ; 2.0 ; The mechanism of activation of the actin binding protein EHBP1 by Rab8 family members. 3ZM9 ; 1.9 ; The mechanism of allosteric coupling in choline kinase a1 revealed by a rationally designed inhibitor 1XQE ; 2.1 ; The mechanism of ammonia transport based on the crystal structure of AmtB of E. coli. 1XQF ; 1.8 ; The mechanism of ammonia transport based on the crystal structure of AmtB of E. coli. 1F2W ; 1.9 ; THE MECHANISM OF CYANAMIDE HYDRATION CATALYZED BY CARBONIC ANHYDRASE II REVEALED BY CRYOGENIC X-RAY DIFFRACTION 6BFQ ; 2.6 ; The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies 6BFS ; 2.0 ; The mechanism of GM-CSF inhibition by human GM-CSF auto-antibodies 5A4I ; 1.23 ; The mechanism of Hydrogen activation by NiFE-hydrogenases 5ADU ; 1.1 ; The Mechanism of Hydrogen Activation by NiFe-hydrogenases 4UE3 ; 1.4 ; The Mechanism of Hydrogen Activation by NiFe-hydrogenases and the Importance of the active site Arginine 5A4F ; 1.25 ; The mechanism of Hydrogen Activation by NiFe-hydrogenases. 1OVB ; 2.3 ; THE MECHANISM OF IRON UPTAKE BY TRANSFERRINS: THE STRUCTURE OF AN 18KD NII-DOMAIN FRAGMENT AT 2.3 ANGSTROMS RESOLUTION 4KZF ; 1.85 ; The mechanism of the amidases: The effect of the mutation E142L in the amidase from Geobacillus pallidus 1W8S ; 1.85 ; The mechanism of the Schiff Base Forming Fructose-1,6-bisphosphate Aldolase: Structural analysis of reaction intermediates 2Y0Q ; 2.0 ; The mechanisms of HAMP-mediated signaling in transmembrane receptors - the A291C mutant 2Y0T ; 1.3 ; The mechanisms of HAMP-mediated signaling in transmembrane receptors - the A291F mutant 2Y20 ; 1.65 ; The mechanisms of HAMP-mediated signaling in transmembrane receptors - the A291I mutant 2Y21 ; 2.45 ; The mechanisms of HAMP-mediated signaling in transmembrane receptors - the A291V mutant 2XNF ; ; The Mediator Med25 activator interaction domain: Structure and cooperative binding of VP16 subdomains 2M2F ; ; The membran-proximal domain of ADAM17 2BL2 ; 2.1 ; The membrane rotor of the V-type ATPase from Enterococcus hirae 6LY9 ; 3.93 ; The membrane-embedded Vo domain of V/A-ATPase from Thermus thermophilus 2M7Y ; ; The Mengovirus Leader protein 6EJX ; 2.0 ; The metal ion-dependent adhesion site (MIDAS) of the alphaMbeta2 integrin Mac-1 I-domain promiscuously and competitively binds multiple ligands in the regulation of Leukocyte function 4HCB ; 2.0 ; The metal-free form of crystal structure of E.coli ExoI-ssDNA complex 6F1F ; 1.716 ; The methylene thioacetal BPTI (Bovine Pancreatic Trypsin Inhibitor) mutant structure 1GO7 ; 2.1 ; The metzincin's methionine: PrtC M226C-E189K double mutant 1GO8 ; 2.0 ; The metzincin's methionine: PrtC M226L mutant 2WPD ; 3.432 ; The Mg.ADP inhibited state of the yeast F1c10 ATP synthase 8SDK ; 2.1 ; The MicroED structure of proteinase K crystallized by suspended drop crystallization 6KJN ; ; The microtubule-binding domains of yeast cytoplasmic dynein in the high affinity state 6KJO ; ; The microtubule-binding domains of yeast cytoplasmic dynein in the low affinity state 2E35 ; ; the minimized average structure of L11 with rg refinement 8K6T ; 2.8 ; The minor pilin structure of FctB3 in Streptococcus 4IMP ; 2.57 ; The missing linker: a dimerization motif located within polyketide synthase modules 2V50 ; 3.0 ; The Missing Part of the Bacterial MexAB-OprM System: Structural determination of the Multidrug Exporter MexB 7BTW ; 2.9 ; The mitochondrial SAM complex from S.cere 7BTX ; 2.8 ; The mitochondrial SAM-Mdm10 supercomplex in GDN micelle from S.cere 7BTY ; 3.2 ; The mitochondrial SAM-Mdm10 supercomplex in Nanodisc from S.cere 4AP0 ; 2.594 ; The mitotic kinesin Eg5 in complex with Mg-ADP and ispinesib 8C9Y ; 1.18 ; The MK-RSL - sulfonato-calix[8]arene complex, H32 form 1D2B ; ; THE MMP-INHIBITORY, N-TERMINAL DOMAIN OF HUMAN TISSUE INHIBITOR OF METALLOPROTEINASES-1 (N-TIMP-1), SOLUTION NMR, 29 STRUCTURES 1DOB ; 2.0 ; THE MOBIL FLAVIN OF 4-OH BENZOATE HYDROXYLASE: MOTION OF A PROSTHETIC GROUP REGULATES CATALYSIS 1DOC ; 2.0 ; THE MOBIL FLAVIN OF 4-OH BENZOATE HYDROXYLASE: MOTION OF A PROSTHETIC GROUP REGULATES CATALYSIS 1DOD ; 2.1 ; THE MOBIL FLAVIN OF 4-OH BENZOATE HYDROXYLASE: MOTION OF A PROSTHETIC GROUP REGULATES CATALYSIS 1DOE ; 2.3 ; THE MOBIL FLAVIN OF 4-OH BENZOATE HYDROXYLASE: MOTION OF A PROSTHETIC GROUP REGULATES CATALYSIS 2BSG ; 15.0 ; The modeled structure of fibritin (gpwac) of bacteriophage T4 based on cryo-EM reconstruction of the extended tail of bacteriophage T4 5OJQ ; 3.7 ; The modeled structure of of wild type extended type VI secretion system sheath/tube complex in vibrio cholerae based on cryo-EM reconstruction of the non-contractile sheath/tube complex 1XXM ; 1.9 ; The modular architecture of protein-protein binding site 4PEP ; 1.8 ; THE MOLECULAR AND CRYSTAL STRUCTURES OF MONOCLINIC PORCINE PEPSIN REFINED AT 1.8 ANGSTROMS RESOLUTION 4U4C ; 2.4 ; The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities 4WO4 ; 2.5 ; The molecular bases of Delta/Alpha beta T cell-mediated antigen recognition. 4WNQ ; 1.8 ; THE MOLECULAR BASES OF DELTA/ALPHA-BETA T-CELL MEDIATED ANTIGEN RECOGNITION 5A2T ; 5.6 ; The Molecular Basis for Flexibility in the Flexible Filamentous Plant Viruses 1R2A ; ; THE MOLECULAR BASIS FOR PROTEIN KINASE A ANCHORING REVEALED BY SOLUTION NMR 6RW3 ; 3.65 ; The molecular basis for sugar import in malaria parasites. 6C2C ; 1.597 ; The molecular basis for the functional evolution of an organophosphate hydrolysing enzyme 4FDI ; 2.2 ; The molecular basis of mucopolysaccharidosis IV A 4FDJ ; 2.81 ; The molecular basis of mucopolysaccharidosis IV A, complex with GalNAc 2JEG ; 2.38 ; The Molecular Basis of Selectivity of Nucleoside Triphosphate Incorporation Opposite O6-Benzylguanine by Sulfolobus solfataricus DNA Polymerase IV: Steady-state and Pre-steady-state Kinetics and X- Ray Crystallography of Correct and Incorrect Pairing 2JEI ; 2.39 ; The Molecular Basis of Selectivity of Nucleoside Triphosphate Incorporation Opposite O6-Benzylguanine by Sulfolobus solfataricus DNA Polymerase IV: Steady-state and Pre-steady-state Kinetics and X- Ray Crystallography of Correct and Incorrect Pairing 2JEJ ; 1.86 ; The Molecular Basis of Selectivity of Nucleoside Triphosphate Incorporation Opposite O6-Benzylguanine by Sulfolobus solfataricus DNA Polymerase IV: Steady-state and Pre-steady-state Kinetics and X- Ray Crystallography of Correct and Incorrect Pairing 2JEF ; 2.17 ; The Molecular Basis of Selectivity of Nucleotide Triphosphate Incorporation Opposite O6-Benzylguanine by Sulfolobus solfataricus DNA Polymerase IV: Steady-state and Pre-steady-state and X-Ray Crystallography of Correct and Incorrect Pairing 1GKA ; 3.23 ; The molecular basis of the coloration mechanism in lobster shell. beta-crustacyanin at 3.2 A resolution 1OIP ; 1.95 ; The Molecular Basis of Vitamin E Retention: Structure of Human Alpha-Tocopherol Transfer Protein 1OIZ ; 1.88 ; The Molecular Basis of Vitamin E Retention: Structure of Human Alpha-Tocopherol Transfer Protein 1ESC ; 2.1 ; THE MOLECULAR MECHANISM OF ENANTIORECOGNITION BY ESTERASES 1ESD ; 2.3 ; THE MOLECULAR MECHANISM OF ENANTIORECOGNITION BY ESTERASES 1ESE ; 2.4 ; THE MOLECULAR MECHANISM OF ENANTIORECOGNITION BY ESTERASES 5OCE ; 2.41 ; THE MOLECULAR MECHANISM OF SUBSTRATE RECOGNITION AND CATALYSIS OF THE MEMBRANE ACYLTRANSFERASE PatA -- Complex of PatA with palmitate, mannose, and palmitoyl-6-mannose 5UL6 ; 1.45 ; The molecular mechanisms by which NS1 of the 1918 Spanish influenza A virus hijack host protein-protein interactions 6ATV ; 1.751 ; The molecular mechanisms by which NS1 of the 1918 Spanish influenza A virus hijack host protein-protein interactions 5BVJ ; 2.0 ; The molecular mode of action and species specificity of canakinumab, a human monoclonal antibody neutralizing IL-1beta 5BVP ; 2.2 ; The molecular mode of action and species specificity of canakinumab, a human monoclonal antibody neutralizing IL-1beta 4BW0 ; 2.33 ; The molecular recognition of kink turn structure by the L7Ae class of proteins 4C40 ; 2.2 ; The molecular recognition of kink turn structure by the L7Ae class of proteins 1D58 ; 1.7 ; THE MOLECULAR STRUCTURE OF A 4'-EPIADRIAMYCIN COMPLEX WITH D(TGATCA) AT 1.7 ANGSTROM RESOLUTION-COMPARISON WITH THE STRUCTURE OF 4'-EPIADRIAMYCIN D(TGTACA) AND D(CGATCG) COMPLEXES 1REI ; 2.0 ; THE MOLECULAR STRUCTURE OF A DIMER COMPOSED OF THE VARIABLE PORTIONS OF THE BENCE-JONES PROTEIN REI REFINED AT 2.0 ANGSTROMS RESOLUTION 1VTG ; 1.67 ; THE MOLECULAR STRUCTURE OF A DNA-TRIOSTIN A COMPLEX 1D67 ; 1.6 ; THE MOLECULAR STRUCTURE OF AN IDARUBICIN-D(TGATCA) COMPLEX AT HIGH RESOLUTION 1Z24 ; 2.6 ; The molecular structure of insecticyanin from the tobacco hornworm Manduca sexta L. at 2.6 A resolution. 1DNH ; 2.25 ; THE MOLECULAR STRUCTURE OF THE COMPLEX OF HOECHST 33258 AND THE DNA DODECAMER D(CGCGAATTCGCG) 2HIP ; 2.5 ; THE MOLECULAR STRUCTURE OF THE HIGH POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM ECTOTHIORHODOSPIRA HALOPHILA DETERMINED AT 2.5-ANGSTROMS RESOLUTION 4V3P ; 34.0 ; The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes 1DCG ; 1.0 ; THE MOLECULAR STRUCTURE OF THE LEFT-HANDED Z-DNA DOUBLE HELIX AT 1.0 ANGSTROM ATOMIC RESOLUTION. GEOMETRY, CONFORMATION, AND IONIC INTERACTIONS OF D(CGCGCG) 2A0Z ; 2.4 ; The molecular structure of toll-like receptor 3 ligand binding domain 3FIS ; 2.3 ; THE MOLECULAR STRUCTURE OF WILD-TYPE AND A MUTANT FIS PROTEIN: RELATIONSHIP BETWEEN MUTATIONAL CHANGES AND RECOMBINATIONAL ENHANCER FUNCTION OR DNA BINDING 4FIS ; 2.3 ; THE MOLECULAR STRUCTURE OF WILD-TYPE AND A MUTANT FIS PROTEIN: RELATIONSHIP BETWEEN MUTATIONAL CHANGES AND RECOMBINATIONAL ENHANCER FUNCTION OR DNA BINDING 5M35 ; 2.38 ; The molecular tweezer CLR01 stabilizes a disordered protein-protein interface 5M36 ; 2.45 ; The molecular tweezer CLR01 stabilizes a disordered protein-protein interface 5M37 ; 2.35 ; The molecular tweezer CLR01 stabilizes a disordered protein-protein interface 6H74 ; 1.801 ; The molybdenum storage protein - L131H 7Z5J ; 2.58 ; The molybdenum storage protein loaded with tungstate 6GX4 ; 1.9 ; The molybdenum storage protein: with ATP/Mn2+ and with POM clusters formed under in vitro conditions 1X8H ; 1.6 ; The Mono-Zinc Carbapenemase CphA (N220G mutant) Shows a Zn(II)- NH2 ARG Coordination 1TZ8 ; 1.85 ; The monoclinic crystal structure of transthyretin in complex with diethylstilbestrol 2VML ; 2.4 ; The monoclinic structure of phycocyanin from Gloeobacter violaceus 1COM ; 2.2 ; THE MONOFUNCTIONAL CHORISMATE MUTASE FROM BACILLUS SUBTILIS: STRUCTURE DETERMINATION OF CHORISMATE MUTASE AND ITS COMPLEXES WITH A TRANSITION STATE ANALOG AND PREPHENATE, AND IMPLICATIONS ON THE MECHANISM OF ENZYMATIC REACTION 7V9I ; 3.5 ; The Monomer mutant of BEN4 domain of protein Bend3 with DNA 1VAP ; 1.6 ; THE MONOMERIC ASP49 SECRETORY PHOSPHOLIPASE A2 FROM THE VENOM OF AGKISTRIDON PISCIVORUS PISCIVORUS 6LS8 ; 2.3 ; The monomeric structure of G80A/H81A/H82A myoglobin 2V5B ; 2.0 ; The monomerization of Triosephosphate Isomerase from Trypanosoma cruzi 1LEM ; 3.0 ; THE MONOSACCHARIDE BINDING SITE OF LENTIL LECTIN: AN X-RAY AND MOLECULAR MODELLING STUDY 3KAR ; 2.3 ; THE MOTOR DOMAIN OF KINESIN-LIKE PROTEIN KAR3, A SACCHAROMYCES CEREVISIAE KINESIN-RELATED PROTEIN 7VDT ; 2.8 ; The motor-nucleosome module of human chromatin remodeling PBAF-nucleosome complex 6X59 ; 2.98 ; The mouse cGAS catalytic domain binding to human assembled nucleosome 6X5A ; 4.36 ; The mouse cGAS catalytic domain binding to human nucleosome that purified from HEK293T cells 5XM0 ; 2.874 ; The mouse nucleosome structure containing H2A, H2B type3-A, H3.3, and H4 5XM1 ; 3.45 ; The mouse nucleosome structure containing H2A, H2B type3-A, H3mm7, and H4 5B1M ; 2.34 ; The mouse nucleosome structure containing H3.1 7DBH ; 3.6 ; The mouse nucleosome structure containing H3mm18 7VBM ; 3.4 ; The mouse nucleosome structure containing H3mm18 aided by PL2-6 scFv 5B1L ; 2.35 ; The mouse nucleosome structure containing H3t 2F4M ; 1.85 ; The Mouse PNGase-HR23 Complex Reveals a Complete Remodulation of the Protein-Protein Interface Compared to its Yeast Orthologs 2F4O ; 2.26 ; The Mouse PNGase-HR23 Complex Reveals a Complete Remodulation of the Protein-Protein Interface Compared to its Yeast Orthologs 1U0O ; 2.7 ; The mouse von Willebrand Factor A1-botrocetin complex 7ML9 ; 1.94 ; The Mpp75Aa1.1 beta-pore-forming protein from Brevibacillus laterosporus 3QF7 ; 1.9 ; The Mre11:Rad50 complex forms an ATP dependent molecular clamp in DNA double-strand break repair 3QG5 ; 3.4 ; The Mre11:Rad50 complex forms an ATP dependent molecular clamp in DNA double-strand break repair 7QGK ; 1.5 ; The mRubyFT protein, Genetically Encoded Blue-to-Red Fluorescent Timer in its red state 3NSY ; 2.1 ; The multi-copper oxidase CueO with six Met to Ser mutations (M358S,M361S,M362S,M364S,M366S,M368S) 2ZOY ; 1.9 ; The multi-drug binding transcriptional repressor CgmR (CGL2612 protein) from C.glutamicum 2PBI ; 1.95 ; The multifunctional nature of Gbeta5/RGS9 revealed from its crystal structure 3C1O ; 1.8 ; The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct lineages 3C3X ; 2.15 ; The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct lineages 2NR2 ; ; The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native states ensembles of proteins 4Z0L ; 2.29 ; The murine cyclooxygenase-2 complexed with a nido-dicarbaborate-containing indomethacin derivative 2GGL ; 2.4 ; The mutant A222C of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase 2GGK ; 2.3 ; The mutant A302C of Agrobacterium radiobacter N-carbamoyl-D-amino-acid amidohydrolase 2GGG ; 2.4 ; The mutant A68C-D72C of Deinococcus Radiodurans N-acylamino acid racemase 2GGH ; 2.2 ; The mutant A68C-D72C-NLQ of Deinococcus Radiodurans Nacylamino acid racemase 7WH6 ; 1.58 ; The mutant crystal structure of b-1,4-Xylanase (XynAF1_N179S) 7WH7 ; 1.44 ; The mutant crystal structure of b-1,4-Xylanase (XynAF1_N179S) with xylotetraose 7WHA ; 1.83 ; The mutant crystal structure of b-1,4-Xylanase (XynAF1_R246K) 7WHE ; 1.75 ; The mutant crystal structure of b-1,4-Xylanase (XynAF1_R246K) with xylobiose 3WUF ; 2.04 ; The mutant crystal structure of b-1,4-Xylanase (XynAS9_V43P/G44E) from Streptomyces sp. 9 3WUG ; 1.88 ; The mutant crystal structure of b-1,4-Xylanase (XynAS9_V43P/G44E) with xylobiose from Streptomyces sp. 9 6KVH ; 1.2 ; The mutant crystal structure of endo-polygalacturonase (T284A) from Talaromyces leycettanus JCM 12802 7E56 ; 1.4 ; The mutant crystal structure of endo-polygalacturonase (T316C/G344C) from Talaromyces leycettanus JCM 12802 1CSA ; ; THE MUTANT E.COLI F112W CYCLOPHILIN BINDS CYCLOSPORIN A IN NEARLY IDENTICAL CONFORMATION AS HUMAN CYCLOPHILIN 2GGI ; 2.2 ; The mutant E149C-A182C of Deinococcus Radiodurans N-acylamino acid racemase 7DL0 ; 2.17 ; The mutant E310G/A314Y of 3,5-DAHDHcca complex with NADPH 7DL1 ; 2.72 ; The mutant E310G/G323S structure of 3,5-DAHDHcca complex with NADPH 2FKP ; 2.0 ; The mutant G127C-T313C of Deinococcus Radiodurans N-acylamino acid racemase 7DXO ; 2.4 ; The mutant of bifunctional thioesterase catalyzing epimerization and cyclization 6LAX ; 2.7 ; the mutant SAM-VI riboswitch (U6C) bound to SAM 8IKZ ; 1.75 ; The mutant structure of DHAD 8HS0 ; 1.42 ; The mutant structure of DHAD V178W 3T1D ; 2.3 ; The mutant structure of human Siderocalin W79A, R81A, Y106F bound to Enterobactin 4KQE ; 2.739 ; The mutant structure of the human glycyl-tRNA synthetase E71G 7WI1 ; 1.61 ; The mutant variant of PNGM-1, H93 was substituuted for alanine to study metal coordination 7BZ3 ; 2.0 ; The mutant variant of PNGM-1. H257 was substituted for alanine to study substrate binding. 7BZ4 ; 2.16 ; The mutant variant of PNGM-1. H279 was substituted for alanine to study metal coordination. 7BYQ ; 1.96 ; The mutant variant of PNGM-1. H279A was substituted for alanine to study metal coordination. 7BZI ; 1.94 ; The mutant variant of PNGM-1. H91 was substituted for alanine to study metal coordination. 7BZ1 ; 2.45 ; The mutant variant of PNGM-1. H96 was substituted for alanine to study metal coordination. 2GGJ ; 2.5 ; The mutant Y218C of Deinococcus Radiodurans N-acylamino acid racemase 4L4P ; 1.9 ; the mutant(E139A) structure in complex with xylotriose 1CMY ; 3.0 ; THE MUTATION BETA99 ASP-TYR STABILIZES Y-A NEW, COMPOSITE QUATERNARY STATE OF HUMAN HEMOGLOBIN 6W6G ; 3.1 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure in conformation I in the presence of DnaK chaperone and a model substrate 6W6H ; 3.3 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure in conformation II in the presence of DnaK chaperone and a model substrate 6W6I ; 3.5 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure in conformation T in the presence of DnaK chaperone and a model substrate 6W6E ; 3.7 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure with a locally refined ClpB middle domain and a DnaK nucleotide binding domain 6W6J ; 3.2 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure with a locally refined N-terminal domain in the presence of DnaK chaperone and a model substrate 7L6N ; 7.0 ; The Mycobacterium tuberculosis ClpB disaggregase hexamer structure with three locally refined ClpB middle domains and three DnaK nucleotide binding domains 2KSQ ; ; The myristoylated yeast ARF1 in a GTP and bicelle bound conformation 6LW2 ; 2.4 ; The N-arylsulfonyl-indole-2-carboxamide-based inhibitors against fructose-1,6-bisphosphatase 7CVN ; 2.75 ; The N-arylsulfonyl-indole-2-carboxamide-based inhibitors against fructose-1,6-bisphosphatase 2MV3 ; ; The N-domain of the AAA metalloproteinase Yme1 from Saccharomyces cerevisiae 1AHA ; 2.2 ; THE N-GLYCOSIDASE MECHANISM OF RIBOSOME-INACTIVATING PROTEINS IMPLIED BY CRYSTAL STRUCTURES OF ALPHA-MOMORCHARIN 1AHB ; 2.2 ; THE N-GLYCOSIDASE MECHANISM OF RIBOSOME-INACTIVATING PROTEINS IMPLIED BY CRYSTAL STRUCTURES OF ALPHA-MOMORCHARIN 1AHC ; 2.0 ; THE N-GLYCOSIDASE MECHANISM OF RIBOSOME-INACTIVATING PROTEINS IMPLIED BY CRYSTAL STRUCTURES OF ALPHA-MOMORCHARIN 7EXM ; 1.96 ; The N-terminal crystal structure of SARS-CoV-2 NSP2 3QQ6 ; 1.9 ; The N-terminal DNA binding domain of SinR from Bacillus subtilis 1E7N ; 2.35 ; The N-terminal domain of beta-B2-crystallin resembles the putative ancestral homodimer 2VZ4 ; 2.9 ; The N-terminal domain of MerR-like protein TipAL bound to promoter DNA 6O1Q ; ; The N-terminal domain of NPHP1 folds into an antiparallel three-stranded coiled coil 8CTF ; 2.14 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 3-hydroxy-4-oxo-1,4-dihydropyridine-2-carboxylic acid 8DDE ; 2.22 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 4-(benzyloxy)-6-bromo-2-(1H-tetrazol-5-yl) yridine-3-ol 8DDB ; 2.15 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 4-(benzyloxy)-6-bromo-3-hydroxypicolinic acid 8DAL ; 2.2 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 4-(benzyloxy)-6-bromo-3-hydroxypicolinonitrile 8DJY ; 2.5 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 6-Bromo-2-(4,5-dihydro-1H-imidazol-2-yl)-3-hydroxypyridin-4(1H)-one 8DHN ; 2.4 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 6-Bromo-3-hydroxy-2-(5-methyl-1,2,4-oxadiazol-3-yl)pyridin-4(1H)-one 7V04 ; 1.91 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 6-bromo-3-hydroxy-4-oxo-1,4-dihydropyridine-2-carboxamide 8DJV ; 2.08 ; The N-terminal domain of PA endonuclease from the influenza H1N1 viral polymerase in complex with 6-Bromo-3-hydroxy-N-methoxy-4-oxo-1,4-dihydropyridine-2-carboxamide 6E6X ; 2.5 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 1-(4-(1H-tetrazol-5-yl)phenyl)-5-hydroxy-2-methylpyridin-4(1H)-one 6DCZ ; 2.89 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-4-oxo-4H-pyran-2-carboxylic acid 6E3N ; 3.19 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-4-oxo-6-(o-tolyl)-1,4-dihydropyridine-2-carboxylic acid 6E6W ; 2.35 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-6-(2-methyl-4-(1H-tetrazol-5-yl)phenyl)-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6E4C ; 2.35 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-6-(2-methyl-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)phenyl)-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6E6V ; 2.25 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-6-methyl-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6DZQ ; 2.25 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 3-hydroxy-6-methyl-4-oxo-4H-pyran-2-carboxylic acid 6E0Q ; 2.35 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 4,6-dihydroxy-2-methyl-5-oxocyclohepta-1,3,6-triene-1-carboxylic acid 6DCY ; 2.08 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 5-hydroxy-2-methyl-4-oxo-4H-pyran-3-carboxylic acid 6E3O ; 3.19 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 6-(2-ethylphenyl)-3-hydroxy-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6E3P ; 2.8 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 6-(3-(1H-tetrazol-5-yl)phenyl)-3-hydroxy-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6E3M ; 2.65 ; The N-terminal domain of PA endonuclease from the influenza H1N1 virus in complex with 6-(3-carboxyphenyl)-3-hydroxy-4-oxo-1,4-dihydropyridine-2-carboxylic acid 6R0J ; ; The N-terminal domain of rhomboid protease YqgP 1PKV ; 2.6 ; The N-terminal domain of riboflavin synthase in complex with riboflavin 3DNS ; 2.1 ; The N-terminal domain of Ribosomal-protein-alanine acetyltransferase from Clostridium acetobutylicum ATCC 824 4WT3 ; 1.954 ; The N-terminal domain of Rubisco Accumulation Factor 1 from Arabidopsis thaliana 4C0Z ; 2.0 ; The N-terminal domain of the Streptococcus pyogenes pilus tip adhesin Cpa 4ZYA ; 1.65 ; The N-terminal extension domain of human asparaginyl-tRNA synthetase 3K3C ; 1.62 ; The N-terminal PAS domain crystal structure of Rv1364c from Mycobacterium tuberculosis at 1.62 3K3D ; 2.3 ; The N-terminal PAS domain crystal structure of RV1364C from Mycobacterium Tuberculosis at 2.3 angstrom 8HT7 ; ; The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex 6YI3 ; ; The N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein 8FK2 ; 2.29 ; The N-terminal VicR from Streptococcus mutans 5LGG ; 2.15 ; The N-terminal WD40 domain of Apc1 (Anaphase promoting complex subunit 1) 7CKF ; 2.284 ; The N-terminus of interferon-inducible antiviral protein-dimer 7K1S ; 3.9 ; The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. 5YKB ; 2.76 ; The N253F mutant structure of trehalose synthase from Deinococcus radiodurans reveals an open active-site conformation 5GTW ; 2.93 ; The N253R mutant structures of trehalose synthase from Deinococcus radiodurans display two different active-site conformations 8BJP ; 2.1 ; The N288D mutant cytoplasmic PAS domain of Geobacillus thermodenitrificans histidine kinase CitA 8T48 ; 2.0 ; The N4BP1 CUE-like domain in complex with linear di-Ubiquitin 1JRC ; 1.8 ; The N67A mutant of Lactococcus lactis dihydroorotate dehydrogenase A 2VND ; 1.7 ; The N69Q mutant of Vibrio cholerae endonuclease I 3SWM ; 4.25 ; The NAC domain of ANAC019 in complex with DNA, gold derivative 6JKH ; 3.0 ; The NAD+-bound form of human NSDHL 6JKG ; 2.9 ; The NAD+-free form of human NSDHL 7CAT ; 2.5 ; The NADPH binding site on beef liver catalase 8CAT ; 2.5 ; The NADPH binding site on beef liver catalase 7VEM ; 2.39 ; the NADPH-assisted quinone oxidoreductase from Phytophthora capsici 6EFV ; 2.341 ; The NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation that is unique to this diflavin reductase 4KVM ; 2.597 ; The NatA (Naa10p/Naa15p) amino-terminal acetyltransferase complex bound to a bisubstrate analog 4KVO ; 3.15 ; The NatA (Naa10p/Naa15p) amino-terminal acetyltrasferase complex bound to AcCoA 4HNW ; 2.801 ; The NatA Acetyltransferase Complex Bound To Inositol Hexakisphosphate 4HNX ; 2.339 ; The NatA Acetyltransferase Complex Bound To ppGpp 5K18 ; 2.73 ; The NatB Acetyltransferase Complex Bound To bisubstrate inhibitor 5K04 ; 2.4 ; The NatB Acetyltransferase Complex Bound To CoA and MES 5LYU ; 2.2 ; The native crystal structure of 7SK 5'-hairpin 7DAV ; 1.77 ; The native crystal structure of COVID-19 main protease 5YJZ ; 2.16 ; The native crystal structure of Rv3197 from Mycobacterium tuberculosis 2WDW ; 3.21 ; The Native Crystal Structure of the Primary Hexose Oxidase (Dbv29) in Antibiotic A40926 Biosynthesis 2J5G ; 1.46 ; The Native structure of a beta-Diketone Hydrolase from the Cyanobacterium Anabaena sp. PCC 7120 8FDP ; 1.88 ; The native structure of a dodecamer: 5'-CGCAAATTTGCG-3 7FIP ; 2.39 ; The native structure of beta-1,2-mannobiose phosphorylase from Thermoanaerobacter sp. 5A55 ; 1.85 ; The native structure of GH101 from Streptococcus pneumoniae TIGR4 4PZ9 ; 1.94 ; The native structure of mycobacterial glucosyl-3-phosphoglycerate phosphatase Rv2419c 4RVS ; 1.8464 ; The native structure of mycobacterial quinone oxidoreductase Rv154c. 4RVU ; 1.7988 ; The native structure of mycobacterial Rv1454c complexed with NADPH 5K7C ; 2.73 ; The native structure of native pistol ribozyme 4UZN ; 2.46 ; The native structure of the family 46 carbohydrate-binding module (CBM46) of endo-beta-1,4-glucanase B (Cel5B) from Bacillus halodurans 2Y73 ; 2.6 ; THE NATIVE STRUCTURES OF SOLUBLE HUMAN PRIMARY AMINE OXIDASE AOC3 2ZP8 ; 3.2 ; The Nature of the TRAP:Anti-TRAP complex 2ZP9 ; 3.2 ; The Nature of the TRAP:Anti-TRAP complex 7KJK ; 3.6 ; The Neck region of Phage XM1 (6-fold symmetry) 5JVS ; 2.248 ; The neck-linker + DAL and alpha 7 helix of Drosophila melanogaster Kinesin-1 fused to EB1 5JVU ; 1.948 ; The neck-linker and alpha 7 helix of Drosophila melanogaster kinesin-1 fused to EB1 5JVP ; 2.1 ; The neck-linker and alpha 7 helix of Homo sapiens CENP-E 5JV3 ; 2.006 ; The neck-linker and alpha 7 helix of Homo sapiens Eg5 fused to EB1 5JX1 ; 1.67 ; The neck-linker and alpha 7 helix of Mus musculus KIF3A fused to EB1 5JVM ; 1.567 ; The neck-linker and alpha 7 helix of Mus musculus KIF3C 5JVR ; 2.1 ; The neck-linker of Mus musculus KIF3A fused to the alpha 7 helix of Drosophila melanogaster Kinesin-1 fused to EB1 3Q3L ; 2.5 ; The neutron crystallographic structure of inorganic pyrophosphatase from Thermococcus thioreducens 2YZ4 ; 2.2 ; The neutron structure of concanavalin A at 2.2 Angstroms 7D3C ; 2.2 ; The newly emerged SARS-like coronavirus HCoV-EMC also has an ""Achilles' heel"": current effective inhibitor targeting a 3C-like protease 4AWL ; 3.08 ; The NF-Y transcription factor is structurally and functionally a sequence specific histone 7DGL ; 1.91 ; The Ni-bound dimeric structure of K78H/G80A/H82A myoglobin 5FMN ; 2.4 ; The nickel-responsive transcriptional regulator InrS 1RNL ; 2.4 ; THE NITRATE/NITRITE RESPONSE REGULATOR PROTEIN NARL FROM NARL 1FP6 ; 2.15 ; THE NITROGENASE FE PROTEIN FROM AZOTOBACTER VINELANDII COMPLEXED WITH MGADP 2EU0 ; ; The NMR ensemble structure of the Itk SH2 domain bound to a phosphopeptide 2LSU ; ; The NMR high resolution structure of yeast Tah1 in a free form 2LSV ; ; The NMR high resolution structure of yeast Tah1 in complex with the Hsp90 C-terminal tail 2ETZ ; ; The NMR minimized average structure of the Itk SH2 domain bound to a phosphopeptide 1SHP ; ; THE NMR SOLUTION STRUCTURE OF A KUNITZ-TYPE PROTEINASE INHIBITOR FROM THE SEA ANEMONE STICHODACTYLA HELIANTHUS 1YYJ ; ; The NMR solution structure of a redesigned apocytochrome b562:Rd-apocyt b562 1IDI ; ; THE NMR SOLUTION STRUCTURE OF ALPHA-BUNGAROTOXIN 1IDL ; ; THE NMR SOLUTION STRUCTURE OF ALPHA-BUNGAROTOXIN 6CWS ; ; The NMR solution structure of CCL28 1DTK ; ; THE NMR SOLUTION STRUCTURE OF DENDROTOXIN K FROM THE VENOM OF DENDROASPIS POLYLEPIS POLYLEPIS 1HIC ; ; THE NMR SOLUTION STRUCTURE OF HIRUDIN(1-51) AND COMPARISON WITH CORRESPONDING THREE-DIMENSIONAL STRUCTURES DETERMINED USING THE COMPLETE 65-RESIDUE HIRUDIN POLYPEPTIDE CHAIN 2N5W ; ; The NMR solution structure of octyl-tridecaptin A1 in DPC micelles 2JOO ; ; The NMR Solution Structure of Recombinant RGD-hirudin 5JN6 ; ; The NMR Solution Structure of RPA3313 1F2G ; ; THE NMR SOLUTION STRUCTURE OF THE 3FE FERREDOXIN II FROM DESULFOVIBRIO GIGAS, 15 STRUCTURES 1IDG ; ; THE NMR SOLUTION STRUCTURE OF THE COMPLEX FORMED BETWEEN ALPHA-BUNGAROTOXIN AND AN 18MER COGNATE PEPTIDE 1IDH ; ; THE NMR SOLUTION STRUCTURE OF THE COMPLEX FORMED BETWEEN ALPHA-BUNGAROTOXIN AND AN 18MER COGNATE PEPTIDE 1BW5 ; ; THE NMR SOLUTION STRUCTURE OF THE HOMEODOMAIN OF THE RAT INSULIN GENE ENHANCER PROTEIN ISL-1, 50 STRUCTURES 2KCF ; ; The NMR solution structure of the isolated Apo Pin1 WW domain 6FGM ; ; The NMR solution structure of the peptide AC12 from Hypsiboas raniceps 1ERC ; ; THE NMR SOLUTION STRUCTURE OF THE PHEROMONE ER-1 FROM THE CILIATED PROTOZOAN EUPLOTES RAIKOVI 1ERD ; ; THE NMR SOLUTION STRUCTURE OF THE PHEROMONE ER-2 FROM THE CILIATED PROTOZOAN EUPLOTES RAIKOVI 2LWP ; ; The NMR solution structure of the the ubiquitin homology domain of mouse BAG-1 1T3V ; ; The NMR solution structure of TM1816 2LM9 ; ; The NMR structure of a major allergen from dust mite 1SA8 ; ; THE NMR STRUCTURE OF A STABLE AND COMPACT ALL-beta-SHEET VARIANT OF INTESTINAL FATTY ACID-BINDING PROTEIN 2K2R ; ; The NMR structure of alpha-parvin CH2/paxillin LD1 complex 2H49 ; ; The NMR Structure of an Internal Loop from 23S Ribosomal RNA of Deinococcus radiodurans Differs from the Structure in the Crystal of the Ribosomal Subunit 5GGM ; ; The NMR structure of calmodulin in CTAB reverse micelles 1T8V ; ; The NMR structure of d34a i-fabp: implications for the determinants of ligand binding stoichiometry 1DUF ; ; THE NMR STRUCTURE OF DNA DODECAMER DETERMINED IN AQUEOUS DILUTE LIQUID CRYSTALLINE PHASE 1GIP ; ; THE NMR STRUCTURE OF DNA DODECAMER DETERMINED IN AQUEOUS DILUTE LIQUID CRYSTALLINE PHASE 1PD6 ; ; The NMR structure of domain C2 of human cardiac Myosin Binding Protein C 7YFS ; ; The NMR structure of noursin, a tricyclic ribosomal peptide containing a histidine-to-butyrine crosslink 8HZW ; ; The NMR structure of noursinH11W peptide 6HJ7 ; ; The NMR structure of NRADD death domain 2KSV ; ; The NMR structure of protein-glutaminase from Chryseobacterium proteolyticum 2OV6 ; ; The NMR structure of subunit F of the Methanogenic A1Ao ATP synthase and its interaction with the nucleotide-binding subunit B 1DZ5 ; ; The NMR structure of the 38KDa U1A protein-PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein 1PBA ; ; THE NMR STRUCTURE OF THE ACTIVATION DOMAIN ISOLATED FROM PORCINE PROCARBOXYPEPTIDASE B 2KWC ; ; The NMR structure of the autophagy-related protein Atg8 7BV9 ; ; The NMR structure of the BEN domain from human NAC1 2M5B ; ; The NMR structure of the BID-BAK complex 5FRG ; ; The NMR Structure of the Cdc42-interacting region of TOCA1 5K6P ; ; The NMR structure of the m domain tri-helix bundle and C2 of human cardiac Myosin Binding Protein C 8C8A ; ; The NMR structure of the MAX28 effector from Magnaporthe oryzae 7ZKD ; ; The NMR structure of the MAX47 effector from Magnaporthe Oryzae 7ZK0 ; ; The NMR structure of the MAX60 effector from Magnaporthe Oryzae 7ZJY ; ; The NMR structure of the MAX67 effector from Magnaporthe Oryzae 6AHZ ; ; The NMR Structure of the Polysialyltranseferase Domain (PSTD) in Polysialyltransferase ST8siaIV 2LA3 ; ; The NMR structure of the protein NP_344798.1 reveals a CCA-adding enzyme head domain 1SPF ; ; THE NMR STRUCTURE OF THE PULMONARY SURFACTANT-ASSOCIATED POLYPEPTIDE SP-C IN AN APOLAR SOLVENT CONTAINS A VALYL-RICH ALPHA-HELIX 1A63 ; ; THE NMR STRUCTURE OF THE RNA BINDING DOMAIN OF E.COLI RHO FACTOR SUGGESTS POSSIBLE RNA-PROTEIN INTERACTIONS, 10 STRUCTURES 2MS3 ; ; The NMR structure of the rubredoxin domain of the NO Reductase Flavorubredoxin from Escherichia coli 2RPI ; ; The NMR structure of the submillisecond folding intermediate of the Thermus thermophilus ribonuclease H 2KE4 ; ; The NMR structure of the TC10 and Cdc42 interacting domain of CIP4 7OMK ; ; The NMR structure of the Zf-GRF domains from the mouse Endonuclease VIII-LIKE 3 (mNEIL3) 2IRN ; ; The NMR Structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2 2IRO ; ; The NMR Structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2 2HFH ; ; THE NMR STRUCTURES OF A WINGED HELIX PROTEIN: GENESIS, 20 STRUCTURES 1QDI ; ; THE NMR STUDY OF DNA QUADRUPLEX STRUCTURE, (12MER) DNA 1QDK ; ; THE NMR STUDY OF DNA QUADRUPLEX STRUCTURE, (12MER) DNA 1QDF ; ; THE NMR STUDY OF DNA QUADRUPLEX STRUCTURE, APTAMER (15MER) DNA 1QDH ; ; THE NMR STUDY OF DNA QUADRUPLEX STRUCTURE, APTAMER (15MER) DNA 1K8V ; ; The NMR-derived Conformation of Neuropeptide F from Moniezia expansa 1U6C ; ; The NMR-derived solution structure of the (2S,3S)-N6-(2,3,4-trihydroxybutyl)-2'-deoxyadenosyl DNA adduct of butadiene diol epoxide 3EW0 ; 1.4 ; The novel 2Fe-2S outer mitochondrial protein mitoNEET displays conformational flexibility in its N-terminal cytoplasmic tethering domain 3JD7 ; 3.9 ; The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs 2WOZ ; 2.0 ; The novel beta-propeller of the BTB-Kelch protein Krp1 provides the binding site for Lasp-1 that is necessary for pseudopodia extension 2LOZ ; ; The novel binding mode of DLC1 and Tensin2 PTB domain 3ZG6 ; 2.2 ; The novel de-long chain fatty acid function of human sirt6 7Z9P ; 2.2 ; The novel DNA binding mechanism of ridinilazole, a precision Clostridiodes difficile antibiotic 4ZKK ; 1.801 ; The novel double-fold structure of d(GCATGCATGC) 5GLG ; 1.8 ; The novel function of Osm1 under anaerobic condition in the ER was revealed by crystal structure of Osm1, a soluble fumarate reductase in yeast 7W0W ; 2.247 ; The novel membrane-proximal sensing mechanism in a broad-ligand binding chemoreceptor McpA of Bacillus velezensis 5KJ2 ; 1.95 ; The novel p300/CBP inhibitor A-485 uncovers a unique mechanism of action to target AR in castrate resistant prostate cancer 5CPR ; 2.22 ; The novel SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity 2P7F ; 2.35 ; The Novel Use of a 2',5'-Phosphodiester Linkage as a Reaction Intermediate at the Active Site of a Small Ribozyme 6LPA ; 2.105 ; The nsp1 protein of a new porcine coronavirus 7BV2 ; 2.5 ; The nsp12-nsp7-nsp8 complex bound to the template-primer RNA and triphosphate form of Remdesivir(RTP) 7YFP ; 4.0 ; The NuA4 histone acetyltransferase complex from S. cerevisiae 1FVL ; ; THE NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF FLAVORIDIN, AN ANTAGONIST OF THE PLATELET GP IIB-IIIA RECEPTOR 1UUT ; 2.0 ; The Nuclease Domain of Adeno-Associated Virus Rep Complexed with the RBE' Stemloop of the Viral Inverted Terminal Repeat 8AC8 ; 1.6 ; The nucleoprotein complex of Rep protein with DUE ssDNA 8AAN ; 2.19 ; The nucleoprotein complex of Rep protein with iteron containing dsDNA and DUE ssDNA. 1E2H ; 1.9 ; The nucleoside binding site of Herpes simplex type 1 thymidine kinase analyzed by X-ray crystallography 1E2I ; 1.9 ; The nucleoside binding site of Herpes simplex type 1 thymidine kinase analyzed by X-ray crystallography 1E2J ; 2.5 ; The nucleoside binding site of Herpes simplex type 1 thymidine kinase analyzed by X-ray crystallography 3A6N ; 2.7 ; The nucleosome containing a testis-specific histone variant, human H3T 3WA9 ; 3.07 ; The nucleosome containing human H2A.Z.1 3WAA ; 3.2 ; The nucleosome containing human H2A.Z.2 4Z5T ; 2.8 ; The nucleosome containing human H3.5 3WKJ ; 2.8 ; The nucleosome containing human TSH2B 6V2K ; 2.6 ; The nucleosome structure after H2A-H2B exchange 5B40 ; 3.33 ; The nucleosome structure containing H2B-K120 and H4-K31 monoubiquitinations 7Y8R ; 4.4 ; The nucleosome-bound human PBAF complex 6OBY ; 2.87 ; The nucleotide-binding protein AF_226 in complex with ADP from Archaeoglobus fulgidus with Co found by PIXE. Based on 3KB1. 6AL1 ; 3.2 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA12 tag inserted between the residues 181 and 184 6ICC ; 2.0 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA12 tag inserted between the residues 181 and 186 6ICF ; 4.0 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA12 tag inserted between the residues 263 and 266 6AL0 ; 2.6 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA12 tag inserted between the residues 263 and 267 7CQC ; 2.5 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA14 tag inserted between the residues 181 and 184 7CQD ; 3.2 ; The NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA14 tag inserted between the residues 235 and 236 1OTC ; 2.8 ; THE O. NOVA TELOMERE END BINDING PROTEIN COMPLEXED WITH SINGLE STRAND DNA 3IWM ; 3.2 ; The octameric SARS-CoV main protease 4AA6 ; 2.6 ; The oestrogen receptor recognizes an imperfectly palindromic response element through an alternative side-chain conformation 1ORF ; 2.4 ; The Oligomeric Structure of Human Granzyme A Reveals the Molecular Determinants of Substrate Specificity 6EZE ; 2.47 ; The open conformation of E.coli Elongation Factor Tu in complex with GDPNP. 7CY2 ; 2.75 ; The open conformation of MSMEG_1954 from Mycobacterium smegmatis 8E4L ; 3.32 ; The open state mouse TRPM8 structure in complex with the cooling agonist C3, AITC, and PI(4,5)P2 6K8B ; 2.21 ; The open state of RGLG1 VWA domain 8HMG ; 2.81 ; The open state of RGLG2-VWA 8Q3K ; 2.92 ; The open state of the ASFV apo-RNA polymerase 2VV5 ; 3.45 ; The open structure of MscS 2O7L ; 2.5 ; The open-cap conformation of GlpG 8CG4 ; 2.6 ; The organise full-length structure of the fungal non-reducing polyketide synthase (NR-PKS) PksA 2NL8 ; 2.3 ; The origin binding domain of the SV40 large T antigen bound non specifically to a 17 bp palindrome DNA (sites 1 and 3) 2ITL ; 1.65 ; The origin binding domain of the SV40 large T antigen bound to the functional pen palindrome DNA (23 bp) 3S71 ; 1.25 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S72 ; 1.6 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S73 ; 1.75 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S74 ; 1.4 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S75 ; 1.5 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S76 ; 1.6 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S77 ; 1.86 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 3S78 ; 1.98 ; The origin of the hydrophobic effect in the molecular recognition of arylsulfonamides by carbonic anhydrase 1TT6 ; 1.8 ; The orthorhombic crystal structure of transthyretin in complex with diethylstilbestrol 7Y5M ; 1.5 ; The OTU domain of Tacheng Tick Virus 1 8GVF ; 3.09 ; The outward-facing structure of hAE2 in basic pH 7VDV ; 3.4 ; The overall structure of human chromatin remodeling PBAF-nucleosome complex 6M1Y ; 3.2 ; The overall structure of KCC3 7CGE ; 2.9 ; The overall structure of nucleotide free MlaFEDB complex 7CH1 ; 2.6 ; The overall structure of SLC26A9 7CH0 ; 3.7 ; The overall structure of the MlaFEDB complex in ATP-bound EQclose conformation (Mutation of E170Q on MlaF) 7CGN ; 4.3 ; The overall structure of the MlaFEDB complex in ATP-bound EQtall conformation (Mutation of E170Q on MlaF) 5GAN ; 3.7 ; The overall structure of the yeast spliceosomal U4/U6.U5 tri-snRNP at 3.7 Angstrom 5XM6 ; 2.501 ; the overall structure of VrEH2 3DLL ; 3.5 ; The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning 1YIC ; ; THE OXIDIZED SACCHAROMYCES CEREVISIAE ISO-1-CYTOCHROME C, NMR, 20 STRUCTURES 1H6R ; 1.5 ; The oxidized state of a redox sensitive variant of green fluorescent protein 3A3T ; 2.1 ; The oxidoreductase NmDsbA1 from N. meningitidis 5LHP ; 2.63 ; The p-aminobenzamidine active site inhibited catalytic domain of murine urokinase-type plasminogen activator in complex with the allosteric inhibitory nanobody Nb7 5FMF ; 6.0 ; the P-lobe of RNA polymerase II pre-initiation complex 6VJF ; 2.472 ; The P-Loop K to A mutation of C. therm Vps1 GTPase-BSE 1ZO3 ; 13.8 ; The P-site and P/E-site tRNA structures fitted to P/I site codon. 6VBT ; 1.7 ; The P212121 Crystal structure of SodCI Superoxide Dismutase with 2 molecules in the asymmetric unit at 1.7 A resolution 1F42 ; 2.5 ; THE P40 DOMAIN OF HUMAN INTERLEUKIN-12 2GB2 ; 1.25 ; The P52G mutant of amicyanin in the Cu(II) state. 1JRB ; 1.9 ; The P56A mutant of Lactococcus lactis dihydroorotate dehydrogenase A 3PTH ; 1.7 ; The PABC1 MLLE domain bound to the variant PAM2 motif of LARP4B 3I8D ; 1.61 ; The Pairing Geometry of the Hydrophobic Thymine Analog 2,4-Difluorotoluene in Duplex DNA as Analyzed by X-ray Crystallography 1ML4 ; 1.8 ; The PALA-liganded Aspartate transcarbamoylase catalytic subunit from Pyrococcus abyssi 1KA0 ; 1.8 ; The PAPase Hal2p complexed with a sodium ion and the reaction product AMP 1KA1 ; 1.3 ; The PAPase Hal2p complexed with calcium and magnesium ions and reaction substrate: PAP 1K9Y ; 1.9 ; The PAPase Hal2p complexed with magnesium ions and reaction products: AMP and inorganic phosphate 1K9Z ; 1.5 ; The PAPase Hal2p complexed with zinc ions 2WB3 ; 1.9 ; The partial structure of a group A streptococcal phage-encoded tail fibre hyaluronate lyase Hylp3 2WH7 ; 1.6 ; The partial structure of a group A streptpcoccal phage-encoded tail fibre hyaluronate lyase Hylp2 6K4I ; ; The partially disordered conformation of ubiquitin (Q41N variant) 1JGO ; 5.6 ; The Path of Messenger RNA Through the Ribosome. THIS FILE, 1JGO, CONTAINS THE 30S RIBOSOME SUBUNIT, THREE TRNA, AND MRNA MOLECULES. 50S RIBOSOME SUBUNIT IS IN THE FILE 1GIY 1JGP ; 7.0 ; The Path of Messenger RNA Through the Ribosome. THIS FILE, 1JGP, CONTAINS THE 30S RIBOSOME SUBUNIT, THREE TRNA, AND MRNA MOLECULES. 50S RIBOSOME SUBUNIT IS IN THE FILE 1GIY 1JGQ ; 5.0 ; The Path of Messenger RNA Through the Ribosome. THIS FILE, 1JGQ, CONTAINS THE 30S RIBOSOME SUBUNIT, THREE TRNA, AND MRNA MOLECULES. 50S RIBOSOME SUBUNIT IS IN THE FILE 1GIY 4TSF ; 3.2 ; The Pathway of Binding of the Intrinsically Disordered Mitochondrial Inhibitor Protein to F1-ATPase 4TT3 ; 3.21 ; The Pathway of Binding of the Intrinsically Disordered Mitochondrial Inhibitor Protein to F1-ATPase 2JX0 ; ; The paxillin-binding domain (PBD) of G Protein Coupled Receptor (GPCR)-kinase (GRK) interacting protein 1 (GIT1) 4BBV ; 1.6 ; The PB0 Photocycle Intermediate of Photoactive Yellow Protein 7D33 ; 2.117 ; The Pb2+ complexed structure of TBA G8C mutant 7QQM ; 1.6 ; The PDZ domain of LRRC7 fused with ANXA2 7P71 ; 2.6 ; The PDZ domain of MAGI1_2 complexed with the PDZ-binding motif of HPV35-E6 7PC4 ; 2.3 ; The PDZ domain of SNTB1 complexed with the PDZ-binding motif of HTLV1-TAX1 7PC7 ; 2.1 ; The PDZ domain of SNTG1 complexed with the acetylated PDZ-binding motif of PTEN 7QQN ; 2.45 ; The PDZ domain of SNTG1 complexed with the acetylated PDZ-binding motif of TRPV3 7PC8 ; 2.5 ; The PDZ domain of SNTG1 complexed with the phosphomimetic mutant PDZ-binding motif of RSK1 7QQL ; 2.44 ; The PDZ domain of SNTG2 complexed with the phosphorylated PDZ-binding motif of RSK1 7P72 ; 2.15 ; The PDZ domain of SNX27 complexed with the PDZ-binding motif of MERS-E 7PCB ; 2.0 ; The PDZ domain of SNX27 fused with ANXA2 7P73 ; 1.85 ; The PDZ domain of SYNJ2BP complexed with the PDZ-binding motif of HTLV1-TAX1 7PC9 ; 2.4 ; The PDZ domain of SYNJ2BP complexed with the PDZ-binding motif of HTLV1-TAX1 7P74 ; 1.9 ; The PDZ domain of SYNJ2BP complexed with the phosphorylated PDZ-binding motif of RSK1 8BLU ; 1.5 ; The PDZ domains of human SDCBP 8BLV ; 1.5 ; The PDZ domains of human SDCBP with a bound SDC4 C-terminal peptide 6AKQ ; 1.9 ; The PDZ tandem fragment of A. aeolicus S2P homolog with the PA12 tag inserted between the residues 263 and 267 7P70 ; 2.0 ; The PDZ-domain of SNTB1 complexed with the PDZ-binding motif of HPV35-E6 1M5Z ; ; The PDZ7 of Glutamate Receptor Interacting Protein Binds to its Target via a Novel Hydrophobic Surface Area 4IL9 ; 2.83 ; The pentameric ligand-gated ion channel GLIC A237F in complex with bromide 4ILA ; 3.5 ; The pentameric ligand-gated ion channel GLIC A237F in complex with Cesium 4ILB ; 3.15 ; The pentameric ligand-gated ion channel GLIC A237F in complex with Rubidium 4IL4 ; 3.3 ; The pentameric ligand-gated ion channel GLIC in complex with Se-DDM 7T7W ; ; The peptide Lt-MAP4 is an analog derived from the Ltc-3a. The primary sequence of the parental peptide was used as template for rational design, using the amino acid residues for modification of charge and hydrophobicity. 6MI9 ; ; The peptide PaAMP1B3 is an analog derived from the PaAMP1. The sequence of the ribosomal protein of Pyrobaculum aerophylum was used as template for rational design, using the Joker algorithm. 4BVM ; 0.93 ; The peripheral membrane protein P2 from human myelin at atomic resolution 5OAH ; 1.8 ; THE PERIPLASMIC BINDING PROTEIN CEUE OF CAMPYLOBACTER JEJUNI BINDS THE IRON(III) COMPLEX OF Azotochelin 5ADV ; 2.1 ; The Periplasmic Binding Protein CeuE of Campylobacter jejuni preferentially binds the iron(III) complex of the Linear Dimer Component of Enterobactin 5ADW ; 1.9 ; The Periplasmic Binding Protein CeuE of Campylobacter jejuni preferentially binds the iron(III) complex of the Linear Dimer Component of Enterobactin 5OCP ; 1.7 ; The periplasmic binding protein component of the arabinose ABC transporter from Shewanella sp. ANA-3 bound to alpha and beta-L-arabinofuranose 3WKL ; 2.8 ; The periplasmic PDZ tandem fragment of the RseP homologue from Aquifex aeolicus 3WKM ; 2.2 ; The periplasmic PDZ tandem fragment of the RseP homologue from Aquifex aeolicus in complex with the Fab fragment 6TT2 ; 1.36 ; The PH domain of Bruton's tyrosine kinase mutant R28C 6TUH ; 2.25 ; The PH domain of Bruton's tyrosine kinase mutant R28C 3CRO ; 2.5 ; THE PHAGE 434 CRO/OR1 COMPLEX AT 2.5 ANGSTROMS RESOLUTION 1RPE ; 2.5 ; THE PHAGE 434 OR2/R1-69 COMPLEX AT 2.5 ANGSTROMS RESOLUTION 5XHT ; ; The PHD finger of human Kiaa1045 protein 2PNX ; 1.8 ; The PHD finger of ING4 in complex with an H3K4Me3 histone peptide 4II4 ; 2.799 ; The Phenylacetyl-CoA monooxygenase - mutant PaaA E49Q K68Q - PaaC wild type subcomplex with benzoyl-CoA 4IIT ; 4.3 ; The Phenylacetyl-CoA monooxygenase PaaABC subcomplex with phenylacetyl-CoA 3PWQ ; 2.65 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex 3PVT ; 2.03 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex with 3-hydroxybutanoyl-CoA 3PW8 ; 2.97 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex with acetyl-CoA 3PVR ; 2.1 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex with benzoyl-CoA 3PVY ; 2.15 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex with coenzyme A 3PW1 ; 2.25 ; The Phenylacetyl-CoA monooxygenase PaaAC subcomplex with phenylacetyl-CoA 7JQ6 ; 2.9 ; The Phi-28 gp11 DNA packaging Motor 7JQ7 ; 2.895 ; The Phi-28 gp11 DNA packaging Motor 7JQP ; 2.89 ; The Phi-28 gp11 DNA packaging Motor 3TPE ; 1.9 ; The phipa p3121 structure 1RB8 ; 3.5 ; The phiX174 DNA binding protein J in two different capsid environments. 6IBD ; 1.48 ; The Phosphatase and C2 domains of Human SHIP1 8PDH ; 1.45 ; The phosphatase and C2 domains of SHIP1 with covalent Z1742148362 8PDI ; 1.3 ; The phosphatase and C2 domains of SHIP1 with covalent Z1763271112 8PDG ; 1.4 ; The phosphatase and C2 domains of SHIP1 with covalent Z2738285202 8PDJ ; 1.4 ; The phosphatase and C2 domains of SHIP1 with covalent Z56948267 1PFH ; ; THE PHOSPHORYLATED FORM OF THE HISTIDINE-CONTAINING PHOSPHOCARRIER PROTEIN HPR 6R26 ; 3.11 ; The photosensory core module (PAS-GAF-PHY) of the bacterial phytochrome Agp1 (AtBphP1) locked in a Pr-like state 5I5L ; 2.7 ; The photosensory module (PAS-GAF-PHY) of the bacterial phytochrome Agp1 (AtBphP1) in the Pr form, chromophore modelled with an endocyclic double bond in pyrrole ring A 8FZ5 ; 2.23 ; The PI31-free Bovine 20S proteasome 5AIZ ; 1.7 ; The PIAS-like coactivator Zmiz1 is a direct and selective cofactor of Notch1 in T-cell development and leukemia 7LKO ; 2.88 ; The PilB(N-terminal)-PilZ complex of the Type IV pilus from Xanthomonas citri (2.9 A) 7LKN ; 1.71 ; The PilB(N-terminal_P70S mutant)-PilZ complex (SeMet) 7LKM ; 2.0 ; The PilB(N-terminal_P70S mutant)-PilZ complex of the Type IV pilus from Xanthomonas citri 7LKQ ; 3.4 ; The PilZ(delta107-117)-FimX(GGDEF-EAL) complex from Xanthomonas citri 8I9J ; 6.39 ; The PKR and E3L complex 4Z62 ; 2.9 ; The plant peptide hormone free receptor 4Z5W ; 2.2 ; The plant peptide hormone receptor 4Z61 ; 2.75 ; The plant peptide hormone receptor complex 4Z64 ; 2.659 ; the plant peptide hormone receptor complex in arabidopsis 4Z63 ; 2.514 ; The plant peptide hormone receptor in arabidopsis 1YVB ; 2.7 ; the Plasmodium falciparum Cysteine Protease Falcipain-2 3U12 ; 2.08 ; The pleckstrin homology (PH) domain of USP37 3RYT ; 3.582 ; The Plexin A1 intracellular region in complex with Rac1 5V6T ; 3.189 ; The Plexin D1 intracellular region in complex with GIPC1 2YXQ ; 3.5 ; The plug domain of the SecY protein stablizes the closed state of the translocation channel and maintains a membrane seal 2YXR ; 3.6 ; The plug domain of the SecY protein stablizes the closed state of the translocation channel and maintains a membrane seal 8YOU ; 1.8 ; The pmTcDH complex structure with an inhibitor SeCN 6ZO4 ; 8.2 ; The pointed end complex of dynactin bound to BICD2 6ZNM ; 4.1 ; The pointed end complex of dynactin bound to BICDR1 7Z8M ; 3.37 ; The pointed end complex of dynactin bound to BICDR1 6ZNN ; 4.5 ; The pointed end complex of dynactin bound to Hook3 6ZNO ; 6.8 ; The pointed end complex of dynactin with the p150 projection docked 1Q4K ; 2.3 ; The polo-box domain of Plk1 in complex with a phospho-peptide 5FMW ; 6.7 ; The poly-C9 component of the Complement Membrane Attack Complex 2LID ; ; The polyserine tract of Nasonia vitripennis Vg residues 351-385 7PAG ; 4.0 ; The pore conformation of lymphocyte perforin 6RB9 ; 3.2 ; The pore structure of Clostridium perfringens epsilon toxin 2BK1 ; 29.0 ; The pore structure of pneumolysin, obtained by fitting the alpha carbon trace of perfringolysin O into a cryo-EM map 7EY6 ; 4.3 ; The portal protein (GP8) of bacteriophage T7 1CIL ; 1.6 ; THE POSITIONS OF HIS-64 AND A BOUND WATER IN HUMAN CARBONIC ANHYDRASE II UPON BINDING THREE STRUCTURALLY RELATED INHIBITORS 1CIM ; 2.1 ; THE POSITIONS OF HIS-64 AND A BOUND WATER IN HUMAN CARBONIC ANHYDRASE II UPON BINDING THREE STRUCTURALLY RELATED INHIBITORS 1CIN ; 2.1 ; THE POSITIONS OF HIS-64 AND A BOUND WATER IN HUMAN CARBONIC ANHYDRASE II UPON BINDING THREE STRUCTURALLY RELATED INHIBITORS 5YOW ; 2.1 ; The post-fusion structure of the Heartland virus Gc glycoprotein 5ZKX ; 2.3 ; The postfusion structure of human-infecting Bourbon virus envelope glycoprotein 8PQ7 ; 2.1 ; The Potato Late Blight pathogen (Phytophthora infestans) effector protein Pi04134 in complex with potato protein phosphatase type 1c (PP1c). 4B9O ; 1.6 ; The PR0 Photocycle Intermediate of Photoactive Yellow Protein 4BBT ; 1.6 ; The PR1 Photocycle Intermediate of Photoactive Yellow Protein 4BBU ; 1.6 ; The PR2 Photocycle Intermediate of Photoactive Yellow Protein 7XYM ; 3.3 ; The pre-fusion structure of Thogotovirus dhori envelope glycoprotein 7XD7 ; 3.02 ; The pre-Tet-C state of wild-type Tetrahymena group I intron with 30nt 3'/5'-exon 2BK2 ; 28.0 ; The prepore structure of pneumolysin, obtained by fitting the alpha carbon trace of perfringolysin O into a cryo-EM map 5BNA ; 2.6 ; THE PRIMARY MODE OF BINDING OF CISPLATIN TO A B-DNA DODECAMER: C-G-C-G-A-A-T-T-C-G-C-G 1ARB ; 1.2 ; THE PRIMARY STRUCTURE AND STRUCTURAL CHARACTERISTICS OF ACHROMOBACTER LYTICUS PROTEASE I, A LYSINE-SPECIFIC SERINE PROTEASE 1ARC ; 2.0 ; THE PRIMARY STRUCTURE AND STRUCTURAL CHARACTERISTICS OF ACHROMOBACTER LYTICUS PROTEASE I, A LYSINE-SPECIFIC SERINE PROTEASE 1WKM ; 2.3 ; THE PRODUCT BOUND FORM OF THE MN(II)LOADED METHIONINE AMINOPEPTIDASE FROM HYPERTHERMOPHILE PYROCOCCUS FURIOSUS 3HRR ; 1.9 ; The Product Template Domain from PksA with Harris Compound Bound 3HRQ ; 1.8 ; The Product Template Domain from PksA with palmitate bound 7VWK ; 2.0 ; The product template domain of AviM 2JSP ; ; The prokaryotic Cys2His2 zinc finger adopts a novel fold as revealed by the NMR structure of A. tumefaciens Ros DNA binding domain 1X9Y ; 2.5 ; The prostaphopain B structure 5T35 ; 2.7 ; The PROTAC MZ1 in complex with the second bromodomain of Brd4 and pVHL:ElonginC:ElonginB 2M63 ; ; The protease-resistant N-terminal domain of TIR-domain containing adaptor molecule-1, TICAM-1 3HVD ; 3.209 ; The Protective Antigen Component of Anthrax Toxin Forms Functional Octameric Complexes 2LE8 ; ; The protein complex for DNA replication 6LP9 ; 1.803 ; the protein of cat virus 2MUU ; ; The Proteolytic Activity of Ubiquitin-specific Protease 28 Is Modulated by the N-terminal Domain 1HRM ; 1.7 ; THE PROXIMAL LIGAND VARIANT HIS93TYR OF HORSE HEART MYOGLOBIN 3LRV ; 2.6 ; The Prp19 WD40 Domain Contains a Conserved Protein Interaction Region Essential for its Function. 6MWY ; 2.594 ; The Prp8 intein of Cryptococcus gattii 6MX6 ; 1.749 ; The Prp8 intein of Cryptococcus neoformans 6OWU ; 1.84 ; THE PRP8 INTEIN OF CRYPTOCOCCUS NEOFORMANS in complex with Zn2+ 6MYL ; 3.06 ; The Prp8 intein-cisplatin complex 3C6D ; 12.5 ; The pseudo-atomic structure of dengue immature virus 3IXY ; 23.0 ; The pseudo-atomic structure of dengue immature virus in complex with Fab fragments of the anti-fusion loop antibody E53 3IXX ; 15.0 ; The pseudo-atomic structure of West Nile immature virus in complex with Fab fragments of the anti-fusion loop antibody E53 4OLI ; 2.8 ; The pseudokinase/kinase protein from JAK-family member TYK2 8K3B ; 1.9 ; The Pseudomonas aeruginosa RccR protein complexed with KDPG 4DBB ; 1.901 ; The PTB domain of Mint1 is autoinhibited by a helix in the C-terminal linker region 6IWD ; 1.8 ; The PTP domain of human PTPN14 in a complex with the CR3 domain of HPV18 E7 2CCQ ; 1.6 ; The PUB domain functions as a p97 binding module in human peptide N-glycanase. 2CM0 ; 1.9 ; The PUB domain functions as a p97 binding module in human peptide N-glycanase. 2RU6 ; ; The pure alternative state of ubiquitin 4ND9 ; 2.3 ; The putative substrate binding domain of ABC-type transporter from Agrobacterium tumefaciens in open conformation 3FLG ; 1.8 ; The PWWP domain of Human DNA (cytosine-5-)-methyltransferase 3 beta 3QKJ ; 2.04 ; The PWWP domain of human DNA (CYTOSINE-5-)-METHYLTRANSFERASE 3 BETA in complex with a bis-tris molecule 2RAI ; 3.2 ; The PX-BAR membrane remodeling unit of Sorting Nexin 9 5IE8 ; ; The pyrazinoic acid binding domain of Ribosomal Protein S1 from Mycobacterium tuberculosis 2NNB ; 1.9 ; The Q403K mutant heme domain of flavocytochrome P450 BM3 4V4U ; 10.0 ; The quasi-atomic model of Human Adenovirus type 5 capsid 2C9G ; 9.3 ; THE QUASI-ATOMIC MODEL OF THE ADENOVIRUS TYPE 3 PENTON BASE DODECAHEDRON 2C9F ; 16.5 ; THE QUASI-ATOMIC MODEL OF THE ADENOVIRUS TYPE 3 PENTON DODECAHEDRON 6K0E ; 1.707 ; The quinary complex of AsqJ-Fe-2OG-dehydrocyclopeptin-dioxygen 2WYC ; 1.9 ; The quorum quenching N-acyl homoserine lactone acylase PvdQ in complex with 3-oxo-lauric acid 2WYD ; 1.901 ; The quorum quenching N-acyl homoserine lactone acylase PvdQ in complex with dodecanoic acid 2WYE ; 1.8 ; The quorum quenching N-acyl homoserine lactone acylase PvdQ is an Ntn- Hydrolase with an unusual substrate-binding pocket 2WYB ; 2.1 ; The quorum quenching N-acyl homoserine lactone acylase PvdQ with a covalently bound dodecanoic acid 4KH0 ; 2.25 ; The R state structure of E. coli ATCase with ATP and Magnesium bound 4KGV ; 2.1 ; The R state structure of E. coli ATCase with ATP bound 4KGX ; 2.202 ; The R state structure of E. coli ATCase with CTP bound 4KH1 ; 2.2 ; The R state structure of E. coli ATCase with CTP,UTP, and Magnesium bound 4KGZ ; 2.4 ; The R state structure of E. coli ATCase with UTP and Magnesium bound 3E3L ; 2.59 ; The R-state Glycogen Phosphorylase 6L3V ; 2.63 ; The R15G mutant of human Cx31.3/GJC3 connexin hemichannel 8H1G ; 1.43 ; The R406T mutant form of the Aquifex aeolicus MutL endonuclease domain 2AU7 ; 1.05 ; The R43Q active site variant of E.coli inorganic pyrophosphatase 1JQX ; 1.7 ; The R57A mutant of Lactococcus lactis dihydroorotate dehydrogenase A 117E ; 2.15 ; THE R78K AND D117E ACTIVE SITE VARIANTS OF SACCHAROMYCES CEREVISIAE SOLUBLE INORGANIC PYROPHOSPHATASE: STRUCTURAL STUDIES AND MECHANISTIC IMPLICATIONS 8PRK ; 1.85 ; THE R78K AND D117E ACTIVE SITE VARIANTS OF SACCHAROMYCES CEREVISIAE SOLUBLE INORGANIC PYROPHOSPHATASE: STRUCTURAL STUDIES AND MECHANISTIC IMPLICATIONS 6SUR ; 3.467 ; The Rab33B-Atg16L1 crystal structure 1US8 ; 2.1 ; The Rad50 signature motif: essential to ATP binding and biological function 8I9M ; 5.19 ; The RAGE and HMGB1 complex 2ELG ; 1.0 ; The rare crystallographic structure of d(CGCGCG)2: The natural spermidine molecule bound to the minor groove of left-handed Z-DNA d(CGCGCG)2 at 10 degree celsius 1RRB ; ; THE RAS-BINDING DOMAIN OF RAF-1 FROM RAT, NMR, 1 STRUCTURE 3GBI ; 4.018 ; The Rational Design and Structural Analysis of a Self-Assembled Three-Dimensional DNA Crystal 3G8V ; 2.4 ; The rationally designed catalytically inactive mutant Mth0212(D151N) 4V9F ; 2.404 ; The re-refined crystal structure of the Haloarcula marismortui large ribosomal subunit at 2.4 Angstrom resolution: more complete structure of the L7/L12 and L1 stalk, L5 and LX proteins 4CQB ; 1.84 ; The reaction mechanism of the N-isopropylammelide isopropylaminohydrolase AtzC: insights from structural and mutagenesis studies 4CQC ; 2.2 ; The reaction mechanism of the N-isopropylammelide isopropylaminohydrolase AtzC: insights from structural and mutagenesis studies 4CQD ; 2.25 ; The reaction mechanism of the N-isopropylammelide isopropylaminohydrolase AtzC: insights from structural and mutagenesis studies 2RIW ; 2.04 ; The Reactive loop cleaved human Thyroxine Binding Globulin complexed with thyroxine 6SWB ; 2.259 ; The REC domain of AraT, a response regulator from Geobacillus stearothermophilus 6SWL ; 2.17 ; The REC domain of XynC, a response regulator from Geobacillus stearothermophilus 7QNW ; 2.4 ; The receptor binding domain of SARS-CoV-2 Omicron variant spike glycoprotein in complex with Beta-55 and EY6A Fabs 7QNX ; 2.92 ; The receptor binding domain of SARS-CoV-2 spike glycoprotein in complex with Beta-55 and EY6A Fabs 7QNY ; 2.84 ; The receptor binding domain of SARS-CoV-2 spike glycoprotein in complex with COVOX-58 and COVOX-158 Fabs 1NCN ; 2.7 ; the receptor-binding domain of human B7-2 1N7U ; 2.4 ; THE RECEPTOR-BINDING PROTEIN P2 OF BACTERIOPHAGE PRD1: CRYSTAL FORM I 1N7V ; 2.2 ; THE RECEPTOR-BINDING PROTEIN P2 OF BACTERIOPHAGE PRD1: CRYSTAL FORM III 8IPC ; 2.2 ; The recombinant NZ-1 Fab complexed with the PDZ tandem fragment of A. aeolicus S2P homolog with the PA14 tag inserted between the residues 181 and 184 2OWY ; 2.5 ; The recombination-associated protein RdgC adopts a novel toroidal architecture for DNA binding 2DE6 ; 1.8 ; The reduced complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 3PAV ; 1.45 ; The reduced form of CueO 4NQY ; 2.6 ; The reduced form of MJ0499 4Y0M ; 2.3 ; The reduced form of OxyR regulatory domain from Psedomonas aeruginosa 1MCT ; 1.6 ; THE REFINED 1.6 ANGSTROMS RESOLUTION CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN PORCINE BETA-TRYPSIN AND MCTI-A, A TRYPSIN INHIBITOR OF SQUASH FAMILY 1ONC ; 1.7 ; THE REFINED 1.7 ANGSTROMS X-RAY CRYSTALLOGRAPHIC STRUCTURE OF P-30, AN AMPHIBIAN RIBONUCLEASE WITH ANTI-TUMOR ACTIVITY 1PPB ; 1.92 ; THE REFINED 1.9 ANGSTROMS CRYSTAL STRUCTURE OF HUMAN ALPHA-THROMBIN: INTERACTION WITH D-PHE-PRO-ARG CHLOROMETHYLKETONE AND SIGNIFICANCE OF THE TYR-PRO-PRO-TRP INSERTION SEGMENT 1PPE ; 2.0 ; THE REFINED 2.0 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF THE COMPLEX FORMED BETWEEN BOVINE BETA-TRYPSIN AND CMTI-I, A TRYPSIN INHIBITOR FROM SQUASH SEEDS (CUCURBITA MAXIMA): TOPOLOGICAL SIMILARITY OF THE SQUASH SEED INHIBITORS WITH THE CARBOXYPEPTIDASE A INHIBITOR FROM POTATOES 1HUC ; 2.1 ; THE REFINED 2.15 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF HUMAN LIVER CATHEPSIN B: THE STRUCTURAL BASIS FOR ITS SPECIFICITY 4TPI ; 2.2 ; THE REFINED 2.2-ANGSTROMS (0.22-NM) X-RAY CRYSTAL STRUCTURE OF THE TERNARY COMPLEX FORMED BY BOVINE TRYPSINOGEN, VALINE-VALINE AND THE ARG15 ANALOGUE OF BOVINE PANCREATIC TRYPSIN INHIBITOR 1PPG ; 2.3 ; The refined 2.3 angstroms crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor 1STF ; 2.37 ; THE REFINED 2.4 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF RECOMBINANT HUMAN STEFIN B IN COMPLEX WITH THE CYSTEINE PROTEINASE PAPAIN: A NOVEL TYPE OF PROTEINASE INHIBITOR INTERACTION 1SRN ; 1.8 ; THE REFINED CRYSTAL STRUCTURE OF A FULLY ACTIVE SEMISYNTHETIC RIBONUCLEASE AT 1.8 ANGSTROMS RESOLUTION 2CTX ; 2.4 ; THE REFINED CRYSTAL STRUCTURE OF ALPHA-COBRATOXIN FROM NAJA NAJA SIAMENSIS AT 2.4-ANGSTROMS RESOLUTION 2BAA ; 1.8 ; THE REFINED CRYSTAL STRUCTURE OF AN ENDOCHITINASE FROM HORDEUM VULGARE L. SEEDS TO 1.8 ANGSTROMS RESOLUTION 1PP2 ; 2.5 ; THE REFINED CRYSTAL STRUCTURE OF DIMERIC PHOSPHOLIPASE A2 AT 2.5 ANGSTROMS. ACCESS TO A SHIELDED CATALYTIC CENTER 1LMN ; 1.8 ; THE REFINED CRYSTAL STRUCTURE OF LYSOZYME FROM THE RAINBOW TROUT (ONCORHYNCHUS MYKISS) 1SBC ; 2.5 ; THE REFINED CRYSTAL STRUCTURE OF SUBTILISIN CARLSBERG AT 2.5 ANGSTROMS RESOLUTION 3CC2 ; 2.4 ; The Refined Crystal Structure of the Haloarcula Marismortui Large Ribosomal Subunit at 2.4 Angstrom Resolution with rrnA Sequence for the 23S rRNA and Genome-derived Sequences for r-Proteins 3PTE ; 1.6 ; THE REFINED CRYSTALLOGRAPHIC STRUCTURE OF A DD-PEPTIDASE PENICILLIN-TARGET ENZYME AT 1.6 A RESOLUTION 2MS2 ; 2.8 ; THE REFINED STRUCTURE OF BACTERIOPHAGE MS2 AT 2.8 ANGSTROMS RESOLUTION 2I18 ; ; The refined structure of C-terminal domain of an EF-hand Calcium binding Protein from Entamoeba Histolytica 1CON ; 2.0 ; THE REFINED STRUCTURE OF CADMIUM SUBSTITUTED CONCANAVALIN A AT 2.0 ANGSTROMS RESOLUTION 4CAB ; 2.599 ; The refined structure of catalase DR1998 from Deinococcus radiodurans at 2.6 A resolution 1DDT ; 2.0 ; THE REFINED STRUCTURE OF DIMERIC DIPHTHERIA TOXIN AT 2.0 ANGSTROMS RESOLUTION 1MDT ; 2.3 ; THE REFINED STRUCTURE OF MONOMERIC DIPHTHERIA TOXIN AT 2.3 ANGSTROMS RESOLUTION 1OHF ; 2.8 ; The refined structure of Nudaurelia capensis omega virus 1LVL ; 2.45 ; THE REFINED STRUCTURE OF PSEUDOMONAS PUTIDA LIPOAMIDE DEHYDROGENASE COMPLEXED WITH NAD+ AT 2.45 ANGSTROMS RESOLUTION 2SNV ; 2.8 ; THE REFINED STRUCTURE OF SINDBIS VIRUS CORE PROTEIN IN COMPARISON WITH OTHER CHYMOTRYPSIN-LIKE SERINE PROTEINASE STRUCTURES 2PK4 ; 2.25 ; THE REFINED STRUCTURE OF THE EPSILON-AMINOCAPROIC ACID COMPLEX OF HUMAN PLASMINOGEN KRINGLE 4HTC ; 2.3 ; THE REFINED STRUCTURE OF THE HIRUDIN-THROMBIN COMPLEX 1GP1 ; 2.0 ; THE REFINED STRUCTURE OF THE SELENOENZYME GLUTATHIONE PEROXIDASE AT 0.2-NM RESOLUTION 3ICB ; 2.3 ; THE REFINED STRUCTURE OF VITAMIN D-DEPENDENT CALCIUM-BINDING PROTEIN FROM BOVINE INTESTINE. MOLECULAR DETAILS, ION BINDING, AND IMPLICATIONS FOR THE STRUCTURE OF OTHER CALCIUM-BINDING PROTEINS 1POW ; 2.5 ; THE REFINED STRUCTURES OF A STABILIZED MUTANT AND OF WILD-TYPE PYRUVATE OXIDASE FROM LACTOBACILLUS PLANTARUM 1POX ; 2.1 ; THE REFINED STRUCTURES OF A STABILIZED MUTANT AND OF WILD-TYPE PYRUVATE OXIDASE FROM LACTOBACILLUS PLANTARUM 153L ; 1.6 ; THE REFINED STRUCTURES OF GOOSE LYSOZYME AND ITS COMPLEX WITH A BOUND TRISACCHARIDE SHOW THAT THE ""GOOSE-TYPE LYSOZYMES LACK A CATALYTIC ASPARTATE 154L ; 1.6 ; THE REFINED STRUCTURES OF GOOSE LYSOZYME AND ITS COMPLEX WITH A BOUND TRISACCHARIDE SHOW THAT THE ""GOOSE-TYPE LYSOZYMES LACK A CATALYTIC ASPARTATE 2HSD ; 2.64 ; THE REFINED THREE-DIMENSIONAL STRUCTURE OF 3ALPHA,20BETA-HYDROXYSTEROID DEHYDROGENASE AND POSSIBLE ROLES OF THE RESIDUES CONSERVED IN SHORT-CHAIN DEHYDROGENASES 2BBV ; 2.8 ; THE REFINED THREE-DIMENSIONAL STRUCTURE OF AN INSECT VIRUS AT 2.8 ANGSTROMS RESOLUTION 1PKM ; 2.6 ; THE REFINED THREE-DIMENSIONAL STRUCTURE OF CAT MUSCLE (M1) PYRUVATE KINASE, AT A RESOLUTION OF 2.6 ANGSTROMS 2PEC ; 2.2 ; THE REFINED THREE-DIMENSIONAL STRUCTURE OF PECTATE LYASE C FROM ERWINIA CHRYSANTHEMI AT 2.2 ANGSTROMS RESOLUTION: IMPLICATIONS FOR AN ENZYMATIC MECHANISM 5CHA ; 1.67 ; THE REFINEMENT AND THE STRUCTURE OF THE DIMER OF ALPHA-*CHYMOTRYPSIN AT 1.67-*ANGSTROMS RESOLUTION 4SBV ; 2.8 ; The REFINEMENT OF SOUTHERN BEAN MOSAIC VIRUS IN RECIPROCAL SPACE 7ERQ ; 1.95 ; The regulatory domain of YeiE, a sulfite sensing LysR-type transcriptional regulator from Cronobacter sakazakii (ligand-free form) 7ERP ; 2.03 ; The regulatory domain of YeiE, a sulfite sensing LysR-type transcriptional regulator from Cronobacter sakazakii (sulfite-bound form) 4GO5 ; 2.6 ; The regulatory subunit of aspartate kinase from Mycobacterium tuberculosis 4GO7 ; 2.0 ; The regulatory subunit of aspartate kinase in complex with threonine from Mycobacterium tuberculosis 8HD6 ; 3.73 ; The relaxed pre-Tet-S1 state of G264A mutated Tetrahymena group I intron with 6nt 3'/5'-exon and 2-aminopurine nucleoside 7XD3 ; 4.05 ; The relaxed pre-Tet-S1 state of wild-type Tetrahymena group I intron with 6nt 3'/5'-exon 1KSR ; ; THE REPEATING SEGMENTS OF THE F-ACTIN CROSS-LINKING GELATION FACTOR (ABP-120) HAVE AN IMMUNOGLOBULIN FOLD, NMR, 20 STRUCTURES 4BKK ; ; The Respiratory Syncytial Virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid. 235L ; 1.9 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 236L ; 1.9 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 237L ; 1.7 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 238L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 239L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 240L ; 1.75 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 241L ; 1.7 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 242L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 243L ; 1.75 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 244L ; 1.7 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 245L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 246L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 247L ; 1.75 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 248L ; 1.9 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 249L ; 1.9 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 250L ; 1.8 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 251L ; 2.6 ; THE RESPONSE OF T4 LYSOZYME TO LARGE-TO-SMALL SUBSTITUTIONS WITHIN THE CORE AND ITS RELATION TO THE HYDROPHOBIC EFFECT 5E3J ; 2.1 ; The response regulator RstA is a potential drug target for Acinetobacter baumannii 1Z4H ; ; The response regulator TorI belongs to a new family of atypical excisionase 5WVI ; 6.3 ; The resting state of yeast proteasome 4NPQ ; 4.35 ; The resting-state conformation of the GLIC ligand-gated ion channel 1D8V ; ; THE RESTRAINED AND MINIMIZED AVERAGE NMR STRUCTURE OF MAP30. 3QQN ; 2.309 ; The retinal specific CD147 Ig0 domain: from molecular structure to biological activity 3S8I ; 1.7 ; The retroviral-like protease (RVP) domain of human DDI1 2OSA ; 1.8 ; The Rho-GAP domain of human N-chimaerin 1Q5Q ; 2.6 ; The Rhodococcus 20S proteasome 1Q5R ; 3.1 ; The Rhodococcus 20S proteasome with unprocessed pro-peptides 3D7B ; 1.6 ; The Ribonuclease A- 5'-Deoxy-5'-N-pyrrolidinouridine complex 3BN0 ; 2.0 ; The ribosomal protein S16 from Aquifex aeolicus 7T0Y ; 1.8 ; The Ribosomal RNA Processing 1B Protein Phosphatase-1 Holoenzyme 8IWO ; 3.09 ; The rice Na+/H+ antiporter SOS1 in an auto-inhibited state 6RMH ; 9.6 ; The Rigid-body refined model of the normal Huntingtin. 2Q3X ; 1.73 ; The RIM1alpha C2B domain 2MWX ; ; The RING Domain of human Promyelocytic Leukemia Protein (PML) 5ZI6 ; 2.2 ; The RING domain structure of MEX-3C 8I2N ; 2.29 ; The RIPK1 kinase domain in complex with QY7-2B compound 2FOW ; ; THE RNA BINDING DOMAIN OF RIBOSOMAL PROTEIN L11: THREE-DIMENSIONAL STRUCTURE OF THE RNA-BOUND FORM OF THE PROTEIN, NMR, 26 STRUCTURES 1FOY ; ; THE RNA BINDING DOMAIN OF RIBOSOMAL PROTEIN L11: THREE-DIMENSIONAL STRUCTURE OF THE RNA-BOUND FORM OF THE PROTEIN, NMR, MINIMIZED AVERAGE STRUCTURE 1I9K ; ; THE RNA I-MOTIF 1SZ9 ; 2.1 ; The RNA polymerase II CTD in mRNA processing: beta-turn recognition and beta-spiral model 1SZA ; 2.2 ; The RNA polymerase II CTD in mRNA processing: beta-turn recognition and beta-spiral model 6IZY ; 2.11 ; The RNA-dependent RNA polymerase domain of dengue 2 NS5 6IZX ; 2.43 ; The RNA-dependent RNA polymerase domain of dengue 2 NS5, bound with RK-0404678 6J00 ; 2.14 ; The RNA-dependent RNA polymerase domain of dengue 3 NS5 6IZZ ; 1.97 ; The RNA-dependent RNA polymerase domain of dengue 3 NS5, bound with RK-0404678 3D6O ; 1.58 ; The RNase A- 5'-Deoxy-5'-N-(ethyl isonipecotatyl)uridine complex 3D6Q ; 1.6 ; The RNase A- 5'-Deoxy-5'-N-piperidinouridine complex 1CRG ; 2.0 ; THE ROLE OF A CONSERVED INTERNAL WATER MOLECULE AND ITS ASSOCIATED HYDROGEN BOND NETWORK IN CYTOCHROME C 1CRH ; 1.9 ; THE ROLE OF A CONSERVED INTERNAL WATER MOLECULE AND ITS ASSOCIATED HYDROGEN BOND NETWORK IN CYTOCHROME C 1CRI ; 2.0 ; THE ROLE OF A CONSERVED INTERNAL WATER MOLECULE AND ITS ASSOCIATED HYDROGEN BOND NETWORK IN CYTOCHROME C 1CRJ ; 2.05 ; THE ROLE OF A CONSERVED INTERNAL WATER MOLECULE AND ITS ASSOCIATED HYDROGEN BOND NETWORK IN CYTOCHROME C 7S0V ; 1.95 ; The role of an Asp-Asp pair in the structure, function and inhibition of CTX-M Class A Beta-lactamase 1WDP ; 1.27 ; The role of an inner loop in the catalytic mechanism of soybean beta-amylase 1WDQ ; 1.28 ; The role of an inner loop in the catalytic mechanism of soybean beta-amylase 1WDR ; 1.35 ; The role of an inner loop in the catalytic mechanism of soybean beta-amylase 1WDS ; 1.64 ; The role of an inner loop in the catalytic mechanism of soybean beta-amylase 3BDZ ; 2.0 ; The Role of Asn 242 in P450cin 3BE0 ; 3.05 ; The Role of Asn 242 in P450cin 1CMT ; 2.1 ; THE ROLE OF ASPARTATE-235 IN THE BINDING OF CATIONS TO AN ARTIFICIAL CAVITY AT THE RADICAL SITE OF CYTOCHROME C PEROXIDASE 1CMU ; 2.1 ; THE ROLE OF ASPARTATE-235 IN THE BINDING OF CATIONS TO AN ARTIFICIAL CAVITY AT THE RADICAL SITE OF CYTOCHROME C PEROXIDASE 1H6X ; 2.25 ; The role of conserved amino acids in the cleft of the C-terminal family 22 carbohydrate binding module of Clostridium thermocellum Xyn10B in ligand binding 1H6Y ; 2.2 ; The role of conserved amino acids in the cleft of the C-terminal family 22 carbohydrate binding module of Clostridium thermocellum Xyn10B in ligand binding 2AAD ; 2.0 ; THE ROLE OF HISTIDINE-40 IN RIBONUCLEASE T1 CATALYSIS: THREE-DIMENSIONAL STRUCTURES OF THE PARTIALLY ACTIVE HIS40LYS MUTANT 2AAE ; 1.8 ; THE ROLE OF HISTIDINE-40 IN RIBONUCLEASE T1 CATALYSIS: THREE-DIMENSIONAL STRUCTURES OF THE PARTIALLY ACTIVE HIS40LYS MUTANT 311D ; 2.2 ; THE ROLE OF HYDROGEN BONDING IN MINOR-GROOVE DRUG-DNA RECOGNITION. STRUCTURE OF A BIS-AMIDINIUM DERIVATIVE OF HOECHST 33258 COMPLEXED TO THE DODECANUCLEOTIDE D(CGCGAATTCGCG)2 3TZO ; 1.76 ; The role of I87 of CYP158A2 in oxidative coupling reaction 5DE9 ; 1.76 ; The role of Ile87 of CYP158A2 in oxidative coupling reaction 2J30 ; 1.4 ; The Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of (Pro)caspase-3 2J33 ; 2.0 ; The Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of (Pro)caspase-3 2J31 ; 1.5 ; The Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of(Pro)caspase-3 2J32 ; 1.3 ; The Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of(Pro)caspase-3 1MDR ; 2.1 ; THE ROLE OF LYSINE 166 IN THE MECHANISM OF MANDELATE RACEMASE FROM PSEUDOMONAS PUTIDA: MECHANISTIC AND CRYSTALLOGRAPHIC EVIDENCE FOR STEREOSPECIFIC ALKYLATION BY (R)-ALPHA-PHENYLGLYCIDATE 4N9U ; 2.11 ; The role of lysine 200 in the human farnesyl pyrophosphate synthase catalytic mechanism and the mode of inhibition by the nitrogen-containing bisphosphonates 1NGT ; 2.04 ; The Role of Minor Groove Functional Groups in DNA Hydration 1D5D ; 2.25 ; The role of phenylalanine 8 in the stabilization of the s protein-s peptide interaction: packing and cavities 1D5E ; 2.25 ; The role of phenylalanine 8 in the stabilization of the S protein-S peptide interaction: Packing and cavities 4R8H ; 1.46 ; The role of protein-ligand contacts in allosteric regulation of the Escherichia coli Catabolite Activator Protein 2FYY ; 1.5 ; The role of T cell receptor alpha genes in directing human MHC restriction 2FZ3 ; 1.9 ; The role of T cell receptor alpha genes in directing human MHC restriction 5EUC ; 2.65 ; The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase 1XYL ; 1.8 ; THE ROLE OF THE DIVALENT METAL ION IN SUGAR BINDING, RING OPENING, AND ISOMERIZATION BY D-XYLOSE ISOMERASE: REPLACEMENT OF A CATALYTIC METAL BY AN AMINO-ACID 1XYM ; 1.8 ; THE ROLE OF THE DIVALENT METAL ION IN SUGAR BINDING, RING OPENING, AND ISOMERIZATION BY D-XYLOSE ISOMERASE: REPLACEMENT OF A CATALYTIC METAL BY AN AMINO-ACID 4Q23 ; 1.98 ; The role of threonine 201 and tyrosine 204 in the human farnesyl pyrophosphate synthase catalytic mechanism and the mode of inhibition by the nitrogen-containing bisphosphonates 1MIK ; 1.76 ; THE ROLE OF WATER MOLECULES IN THE STRUCTURE-BASED DESIGN OF (5-HYDROXYNORVALINE)-2-CYCLOSPORIN: SYNTHESIS, BIOLOGICAL ACTIVITY, AND CRYSTALLOGRAPHIC ANALYSIS WITH CYCLOPHILIN A 1V3H ; 1.6 ; The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase 1V3I ; 1.9 ; The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase 3M3A ; 1.37 ; The roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin: Cu(II)-I107E FeBMb (Cu(II) binding to FeB site) 3M39 ; 1.65 ; The roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin: Fe(II)-I107E FeBMb (Fe(II) binding to FeB site) 3M38 ; 1.42 ; The roles of Glutamates and Metal ions in a rationally designed nitric oxide reductase based on myoglobin: I107E FeBMb (No metal ion binding to FeB site) 3M3B ; 1.6 ; The roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin: Zn(II)-I107E FeBMb (Zn(II) binding to FeB site) 6QQ3 ; 1.53 ; The room temperature structure of lysozyme via the acoustic levitation of a droplet 6TU9 ; 1.94 ; The ROR1 Pseudokinase Domain Bound To Ponatinib 8UK2 ; 8.0 ; The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2+ (class 5 reconstruction) 8UK3 ; 8.0 ; The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2+ (class 6 reconstruction) 2WBR ; ; The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing 8C9Z ; 1.18 ; The RSL - sulfonato-calix[8]arene complex, H32 form, citrate pH 6.0 6Z5G ; 1.278 ; The RSL - sulfonato-calix[8]arene complex, I23 form, citrate pH 4.0, solved by S-SAD 6Z5M ; 1.6 ; The RSL - sulfonato-calix[8]arene complex, I23 form, Gly-HCl pH 2.2 6Z5X ; 1.14 ; The RSL - sulfonato-calix[8]arene complex, P213 form, acetate pH 4.8 6Z60 ; 1.166 ; The RSL - sulfonato-calix[8]arene complex, P213 form, CAPS pH 9.5 6Z5W ; 1.187 ; The RSL - sulfonato-calix[8]arene complex, P213 form, MES pH 6.8 6Z62 ; 1.156 ; The RSL - sulfonato-calix[8]arene complex, P213 form, TRIS-HCl pH 8.5 6Z5Q ; 1.29 ; The RSL - sulfonato-calix[8]arene complex, P3 form, acetate pH 4.0 8Q6A ; 2.61 ; The RSL-D32N - sulfonato-calix[8]arene complex, I213 form, citrate pH 4.0 8Q6B ; 1.52 ; The RSL-D32N - sulfonato-calix[8]arene complex, I23 form, citrate pH 4.0, obtained by cross-seeding 8Q6C ; 1.38 ; The RSL-D32N - sulfonato-calix[8]arene complex, P63 form, acetate pH 4.0 6Z5Z ; 1.124 ; The RSL-R6 - sulfonato-calix[8]arene complex, P213 form, TRIS-HCl pH 8.5 6Z5P ; 1.42 ; The RSL-R8 - sulfonato-calix[8]arene complex, P3 form, TRIS-HCl pH 8.5 7ALG ; 1.452 ; The RSLex - sulfonato-calix[8]arene complex, P3 form, acetate pH 4.0 8IO2 ; 3.1 ; The Rubisco assembly intermidate of Arabidopsis thaliana Rubisco accumulation factor 1 (AtRaf1) and Rubisco large subunit (RbcL) 8IOJ ; 4.1 ; The Rubisco assembly intermidiate of Rubisco large subunit (RbcL) and Arabidopsis thaliana Rubisco accumulation factor 1 (AtRaf1) 1EAQ ; 1.25 ; The RUNX1 Runt domain at 1.25A resolution: A structural switch and specifically bound chloride ions modulate DNA binding 1EAO ; 1.4 ; THE RUNX1 Runt domain at 1.4A resolution: a structural switch and specifically bound chloride ions modulate DNA binding 1EAN ; 1.7 ; THE RUNX1 Runt domain at 1.70A resolution: A structural switch and specifically bound chloride ions modulate DNA binding 6TUA ; 2.38 ; The RYK Pseudokinase Domain 7API ; 3.0 ; THE S VARIANT OF HUMAN ALPHA1-ANTITRYPSIN, STRUCTURE AND IMPLICATIONS FOR FUNCTION AND METABOLISM 8API ; 3.1 ; THE S VARIANT OF HUMAN ALPHA1-ANTITRYPSIN, STRUCTURE AND IMPLICATIONS FOR FUNCTION AND METABOLISM 9API ; 3.0 ; THE S VARIANT OF HUMAN ALPHA1-ANTITRYPSIN, STRUCTURE AND IMPLICATIONS FOR FUNCTION AND METABOLISM 3U3P ; 2.09 ; The S-SAD phased crystal structure of the ecto-domain of Death Receptor 6 (DR6) 3U3Q ; 2.7 ; The S-SAD phased crystal structure of the ecto-domain of Death Receptor 6 (DR6) 3U3S ; 2.7 ; The S-SAD phased crystal structure of the ecto-domain of Death Receptor 6 (DR6) 3U3T ; 3.21 ; The S-SAD phased crystal structure of the ecto-domain of Death Receptor 6 (DR6) 3U3V ; 2.96 ; The S-SAD phased crystal structure of the ecto-domain of Death Receptor 6 (DR6) 6MJH ; 2.06 ; The S31N mutant of the influenza A M2 proton channel in two distinct conformational states 2CCL ; 2.03 ; THE S45A, T46A MUTANT OF THE TYPE I COHESIN-DOCKERIN COMPLEX FROM THE CELLULOSOME OF CLOSTRIDIUM THERMOCELLUM 1N2M ; 1.9 ; The S53A Proenzyme Structure of Methanococcus jannaschii. 1MSV ; 1.75 ; The S68A S-adenosylmethionine decarboxylase proenzyme processing mutant. 3G06 ; 1.9 ; The Salmonella Virulence Effector SspH2 Functions As A Novel E3 Ligase 6BRG ; 3.5 ; The SAM domain of mouse SAMHD1 is critical for its activation and regulation 6BRH ; 3.4 ; The SAM domain of mouse SAMHD1 is critical for its activation and regulation 6BRK ; 3.5 ; The SAM domain of mouse SAMHD1 is critical for its activation and regulation 2KYK ; ; The sandwich region between two LMP2A PY motif regulates the interaction between AIP4WW2domain and PY motif 1NMK ; 2.1 ; The Sanglifehrin-Cyclophilin Interaction: Degradation Work, Synthetic Macrocyclic Analogues, X-ray Crystal Structure and Binding Data 1H1J ; ; The SAP domain is a DNA-Binding Domain Capable of Binding S/MAR DNA 4DFF ; 2.11 ; The SAR development of dihydroimidazoisoquinoline derivatives as phosphodiesterase 10A inhibitors for the treatment of schizophrenia 1SCL ; ; THE SARCIN-RICIN LOOP, A MODULAR RNA 7ACT ; ; The SARS-CoV-2 nucleocapsid phosphoprotein N-terminal domain in complex with 10mer ssRNA 7ACS ; ; The SARS-CoV-2 nucleocapsid phosphoprotein N-terminal domain in complex with 7mer dsRNA 7X91 ; 4.3 ; The SARS-CoV-2 receptor binding domain bound with an Fv-clasp form of a human neutralizing antibody Ab496 7X8Y ; 4.1 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab159 7X8Z ; 4.1 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab188 7X90 ; 4.2 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab326 7X8W ; 3.1 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab354 7X92 ; 4.1 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab445 7X95 ; 3.9 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab709 7X94 ; 4.0 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab712 7X93 ; 3.3 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab765 7Y6N ; 4.4 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab803 7Y6L ; 3.5 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab816 7X96 ; 3.4 ; The SARS-CoV-2 receptor binding domain bound with the Fab fragment of a human neutralizing antibody Ab847 7R4R ; 3.9 ; The SARS-CoV-2 spike in complex with the 1.10 neutralizing nanobody 7R4Q ; 3.6 ; The SARS-CoV-2 spike in complex with the 1.29 neutralizing nanobody 7R4I ; 3.2 ; The SARS-CoV-2 spike in complex with the 2.15 neutralizing nanobody 7LX5 ; 3.44 ; The SARS-CoV-2 spike protein receptor binding domain bound to neutralizing nanobodies WNb 2 and WNb 10 7PFL ; 1.8 ; The SARS-CoV2 major protease (Mpro) apo structure to 1.8 A resolution 6UUE ; 1.389 ; The Se-Met Structure of the Vibrio vulnificus ToxR periplasmic domain 6FAE ; 2.35 ; The Sec7 domain of IQSEC2 (Brag1) in complex with the small GTPase Arf1 4WO3 ; 2.73 ; THE SECOND C-KIT DNA QUADRUPLEX CRYSTAL STRUCTURE 2QVK ; 1.451 ; The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis 2QVM ; 1.703 ; The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis 2LRS ; ; The second dsRBD domain from A. thaliana DICER-LIKE 1 7PC3 ; 1.95 ; The second PDZ domain of DLG1 complexed with the PDZ-binding motif of HTLV1-TAX1 5E22 ; 1.797 ; The second PDZ domain of Ligand of Numb protein X 2 in the presence of an electric field of ~1 MV/cm along the crystallographic x axis, with eightfold extrapolation of structure factor differences. 8JWK ; 2.32 ; The second purified state crystal structure of AKRtyl 7WPC ; 2.57 ; The second RBD of SARS-CoV-2 Omicron Variant in complexed with RBD-ACE2 4LN2 ; 1.0 ; The second SH3 domain from CAP/Ponsin in complex with proline rich peptide from Vinculin 2O9S ; 0.83 ; The second SH3 domain from ponsin 2O9V ; 1.63 ; The second SH3 domain from Ponsin in complex with the paxillin proline rich region 4QAH ; 2.403 ; The second sphere residue T263 is important for function and activity of PTP1B through modulating WPD loop 4QAP ; 1.903 ; The second sphere residue T263 is important for function and activity of PTP1B through modulating WPD loop 4QBE ; 2.292 ; The second sphere residue T263 is important for function and activity of PTP1B through modulating WPD loop 4QBW ; 1.912 ; The second sphere residue T263 is important for function and activity of PTP1B through modulating WPD loop 4Q46 ; 1.8 ; The second structure of Influenza B PB2 cap-binding domain complex with GDP 1CXW ; ; THE SECOND TYPE II MODULE FROM HUMAN MATRIX METALLOPROTEINASE 2 3ON9 ; 1.57 ; The SECRET domain from Ectromelia virus 3ONA ; 2.6 ; The SECRET domain in complex with CX3CL1 5AAS ; ; The selective autophagy receptor TAX1BP1 is required for autophagy- dependent capture of cytosolic Salmonella typhimurium 1HQN ; 2.2 ; THE SELENOMETHIONINE DERIVATIVE OF P3, THE MAJOR COAT PROTEIN OF THE LIPID-CONTAINING BACTERIOPHAGE PRD1. 6IV8 ; 2.15 ; the selenomethionine(SeMet)-derived Cas13d binary complex 4UZ8 ; 2.3 ; The SeMet structure of the family 46 carbohydrate-binding module (CBM46) of endo-beta-1,4-glucanase B (Cel5B) from Bacillus halodurans 5GPO ; 1.701 ; The sensor domain structure of the zinc-responsive histidine kinase CzcS from Pseudomonas Aeruginosa 1ION ; 2.3 ; THE SEPTUM SITE-DETERMINING PROTEIN MIND COMPLEXED WITH MG-ADP FROM PYROCOCCUS HORIKOSHII OT3 1TCA ; 1.55 ; THE SEQUENCE, CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT OF TWO CRYSTAL FORMS OF LIPASE B FROM CANDIDA ANTARCTICA 1TCB ; 2.1 ; THE SEQUENCE, CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT OF TWO CRYSTAL FORMS OF LIPASE B FROM CANDIDA ANTARCTICA 1TCC ; 2.5 ; THE SEQUENCE, CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT OF TWO CRYSTAL FORMS OF LIPASE B FROM CANDIDA ANTARCTICA 1EKB ; 2.3 ; THE SERINE PROTEASE DOMAIN OF ENTEROPEPTIDASE BOUND TO INHIBITOR VAL-ASP-ASP-ASP-ASP-LYS-CHLOROMETHANE 1Z23 ; ; The serine-rich domain from Crk-associated substrate (p130Cas) 7B9Q ; 2.78 ; The SERp optimized structure of Ribonucleotide reductase from Rhodobacter sphaeroides 3CLZ ; 2.2 ; The set and ring associated (SRA) domain of UHRF1 bound to methylated DNA 8ATK ; ; The SH2 domain of mouse SH2B1 1AOJ ; 2.5 ; THE SH3 DOMAIN OF EPS8 EXISTS AS A NOVEL INTERTWINED DIMER 6CQ7 ; 2.0 ; The SH3 domain of MLK3 in complex with poly-proline peptide derived from Htt 5WZZ ; 2.103 ; The SIAH E3 ubiquitin ligases promote Wnt/ beta-catenin signaling through mediating Wnt-induced Axin degradation 3SAO ; 1.8 ; The Siderocalin Ex-FABP functions through dual ligand specificities 2FFH ; 3.2 ; THE SIGNAL SEQUENCE BINDING PROTEIN FFH FROM THERMUS AQUATICUS 1UAT ; 1.9 ; The significance of the flexible loop in the azurin (Az-iso2) from the obligate methylotroph Methylomonas sp. strain J 7CB6 ; 2.64 ; The silver-bound 6-phosphogluconate dehydrogenase from Staphylococcus aureus (strain Newman) 5AH2 ; 2.129 ; The sliding clamp of Mycobacterium smegmatis in complex with a natural product. 5AH4 ; 2.313 ; The sliding clamp of Mycobacterium smegmatis in complex with a natural product. 5AGU ; 2.173 ; The sliding clamp of Mycobacterium tuberculosis in complex with a natural product. 5AGV ; 1.93 ; The sliding clamp of Mycobacterium tuberculosis in complex with a natural product. 3RAP ; 2.2 ; The small G protein Rap2 in a non catalytic complex with GTP 2RAP ; 2.6 ; THE SMALL G PROTEIN RAP2A IN COMPLEX WITH GTP 4TRG ; 2.59 ; the SNL domain of SidC 6L85 ; 2.302 ; The sodium-dependent phosphate transporter 1XSW ; ; The solid-state NMR structure of Kaliotoxin 3NVO ; 2.3 ; The Soluble Domain Structure of the ZntB Zn2+ Efflux System 3NWI ; 3.13 ; The Soluble Domain Structure of the ZntB Zn2+ Efflux System 1QUT ; 2.44 ; THE SOLUBLE LYTIC TRANSGLYCOSYLASE SLT35 FROM ESCHERICHIA COLI IN COMPLEX WITH N-ACETYLGLUCOSAMINE 1CCH ; ; THE SOLUTION CONFORMATION OF CYTOCHROME C-551 FROM P.STUTZERI ZOBELL DETERMINED BY NMR+ 1HUA ; ; THE SOLUTION CONFORMATION OF HYALURONAN: A COMBINED NMR AND MOLECULAR DYNAMICS STUDY 1PU3 ; ; The Solution NMR Structure and Dynamics of a Recombinant Onconase with Altered N-terminal and Met23 residues 5SXY ; ; The solution NMR structure for the PqqD truncation of Methylobacterium extorquens PqqCD representing a functional and stand-alone ribosomally synthesized and post-translational modified (RiPP) recognition element (RRE) 1HM1 ; ; THE SOLUTION NMR STRUCTURE OF A THERMALLY STABLE FAPY ADDUCT OF AFLATOXIN B1 IN AN OLIGODEOXYNUCLEOTIDE DUPLEX REFINED FROM DISTANCE RESTRAINED MOLECULAR DYNAMICS SIMULATED ANNEALING, MINIMIZED AVERAGE STRUCTURE 1AWO ; ; THE SOLUTION NMR STRUCTURE OF ABL SH3 AND ITS RELATIONSHIP TO SH2 IN THE SH(32) CONSTRUCT, 20 STRUCTURES 1AGK ; ; THE SOLUTION NMR STRUCTURE OF AN (R)-A-(N6-ADENYL)-STYRENE OXIDE-RAS61 OLIGODEOXYNUCLEOTIDE MODIFIED AT THE SECOND POSITION OF THE CODON 61 REGION, MINIMIZED AVERAGE STRUCTURE 1AGZ ; ; THE SOLUTION NMR STRUCTURE OF AN (R)-A-(N6-ADENYL)-STYRENE OXIDE-RAS61 OLIGODEOXYNUCLEOTIDE MODIFIED AT THE THIRD POSITION OF THE CODON 61 REGION, MINIMIZED AVERAGE STRUCTURE 1AGO ; ; THE SOLUTION NMR STRUCTURE OF AN (S)-A-(N6-ADENYL)-STYRENE OXIDE-RAS61 OLIGODEOXYNUCLEOTIDE MODIFIED AT THE THIRD POSITION OF THE CODON 61 REGION, MINIMIZED AVERAGE STRUCTURE 1AF1 ; ; THE SOLUTION NMR STRUCTURE OF AN R-STYRENE OXIDE ADDUCT AT THE N2 POSITION OF GUANINE OF AN 11 BASE-PAIR OLIGONUCLEOTIDE SEQUENCE CODING FOR AMINO ACIDS 11-13 OF THE PRODUCT OF THE N-RAS PROTOONCOGENE, MINIMIZED AVERAGE STRUCTURE 1AP1 ; ; THE SOLUTION NMR STRUCTURE OF AN S-STYRENE OXIDE ADDUCT AT THE N2 POSITION OF GUANINE OF AN 11 BASE-PAIR OLIGONUCLEOTIDE SEQUENCE CODING FOR AMINO ACIDS 11-13 OF THE PRODUCT OF THE N-RAS PROTOONCOGENE, MINIMIZED AVERAGE STRUCTURE 6G4I ; ; The solution NMR structure of brevinin-1BYa in 33% trifluoroethanol 6G4U ; ; The solution NMR structure of brevinin-1BYa in dodecylphosphocholine micelles 6G4K ; ; The solution NMR structure of brevinin-1BYa in sodium dodecyl sulphate micelles 6R95 ; ; The solution NMR structure of cis-dicarba-brevinin-1BYa in 33% trifluoroethanol 6R96 ; ; The solution NMR structure of cis-dicarba-brevinin-1BYa in sodium dodecyl sulphate micelles 2M8C ; ; The solution NMR structure of E. coli apo-HisJ 2MHW ; ; The solution NMR structure of maximin-4 in SDS micelles 6ACV ; ; the solution NMR structure of MBD domain 1A2S ; ; THE SOLUTION NMR STRUCTURE OF OXIDIZED CYTOCHROME C6 FROM THE GREEN ALGA MONORAPHIDIUM BRAUNII, MINIMIZED AVERAGE STRUCTURE 1AW3 ; ; THE SOLUTION NMR STRUCTURE OF OXIDIZED RAT MICROSOMAL CYTOCHROME B5, MINIMIZED AVERAGE STRUCTURE 1BFX ; ; THE SOLUTION NMR STRUCTURE OF THE B FORM OF OXIDIZED RAT MICROSOMAL CYTOCHROME B5, MINIMIZED AVERAGE STRUCTURE 2NAZ ; ; The solution NMR structure of the C-terminal effector domain of BfmR from Acinetobacter baumannii 1AGU ; ; THE SOLUTION NMR STRUCTURE OF THE C10R ADDUCT OF BENZO[A]PYRENE-DIOL-EPOXIDE AT THE N6 POSITION OF ADENINE OF AN 11 BASE-PAIR OLIGONUCLEOTIDE SEQUENCE CODING FOR AMINO ACIDS 60-62 OF THE PRODUCT OF THE N-RAS PROTOONCOGENE, MINIMIZED AVERAGE STRUCTURE 2K1R ; ; The solution NMR structure of the complex between MNK1 and HAH1 mediated by Cu(I) 1BT7 ; ; THE SOLUTION NMR STRUCTURE OF THE N-TERMINAL PROTEASE DOMAIN OF THE HEPATITIS C VIRUS (HCV) NS3-PROTEIN, FROM BK STRAIN, 20 STRUCTURES 2MJM ; ; The solution NMR structure of the NLRC5 caspase recruitment domain (CARD) 2JM4 ; ; The solution NMR structure of the relaxin (RXFP1) receptor LDLa module. 2LP1 ; ; The solution NMR structure of the transmembrane C-terminal domain of the amyloid precursor protein (C99) 7BX2 ; ; The solution NMR structure of VV14 peptide in the presence of Deuterated SDS micelle. 6G4V ; ; The solution NMR structure of [C18S,C24S]brevinin-1BYa in 33% trifluoroethanol 6G4X ; ; The solution NMR structure of [C18S,C24S]brevinin-1BYa in sodium dodecyl sulphate micelles 1CRP ; ; THE SOLUTION STRUCTURE AND DYNAMICS OF RAS P21. GDP DETERMINED BY HETERONUCLEAR THREE AND FOUR DIMENSIONAL NMR SPECTROSCOPY 1CRQ ; ; THE SOLUTION STRUCTURE AND DYNAMICS OF RAS P21. GDP DETERMINED BY HETERONUCLEAR THREE AND FOUR DIMENSIONAL NMR SPECTROSCOPY 1CRR ; ; THE SOLUTION STRUCTURE AND DYNAMICS OF RAS P21. GDP DETERMINED BY HETERONUCLEAR THREE AND FOUR DIMENSIONAL NMR SPECTROSCOPY 1HMA ; ; THE SOLUTION STRUCTURE AND DYNAMICS OF THE DNA BINDING DOMAIN OF HMG-D FROM DROSOPHILA MELANOGASTER 1XV6 ; ; The solution structure of 2',5'-linked 3'-O-(2-methoxyethyl)-RNA hairpin 2M39 ; ; The solution structure of 3',5'-LINKED 2'-O-(2-METHOXYETHYL)-RNA DUPLEX 1QGM ; ; THE SOLUTION STRUCTURE OF A 30 RESIDUE AMINO-TERMINAL DOMAIN OF THE CARP GRANULIN-1 PROTEIN. 1FWO ; ; THE SOLUTION STRUCTURE OF A 35-RESIDUE FRAGMENT FROM THE GRANULIN/EPITHELIN-LIKE SUBDOMAIN OF RICE ORYZAIN BETA (ROB 382-416 (C398S,C399S,C407S,C413S)) 1I7V ; ; THE SOLUTION STRUCTURE OF A BAY REGION 1R-BENZ[A]ANTHRACENE OXIDE ADDUCT AT THE N6 POSITION OF ADENINE OF AN OLIGODEOXYNUCLEOTIDE CONTAINING THE HUMAN N-RAS CODON 61 SEQUENCE 1QBY ; ; THE SOLUTION STRUCTURE OF A BAY-REGION 1R-BENZ[A]ANTHRACENE OXIDE ADDUCT AT THE N6 POSITION OF ADENINE OF AN OLIGODEOXYNUCLEOTIDE CONTAINING THE HUMAN N-RAS CODON 61 SEQUENCE 1DL4 ; ; THE SOLUTION STRUCTURE OF A BAY-REGION 1S-BENZ[A]ANTHRACENE OXIDE ADDUCT AT THE N6 POSITION OF ADENINE OF AN OLIGODEOXYNUCLEOTIDE CONTAINING THE HUMAN N-RAS CODON 61 SEQUENCE 2MFD ; ; The Solution Structure of a cGCUUAg RNA Pentaloop from Bovine Enterovirus Vir404/03 2K6U ; ; The Solution Structure of a Conformationally Restricted Fully Active Derivative of the Human Relaxin-like Factor (RLF) 1BC4 ; ; THE SOLUTION STRUCTURE OF A CYTOTOXIC RIBONUCLEASE FROM THE OOCYTES OF RANA CATESBEIANA (BULLFROG), NMR, 15 STRUCTURES 108D ; ; THE SOLUTION STRUCTURE OF A DNA COMPLEX WITH THE FLUORESCENT BIS INTERCALATOR TOTO DETERMINED BY NMR SPECTROSCOPY 214D ; ; THE SOLUTION STRUCTURE OF A DNA DUPLEX CONTAINING A SINGLE 2'-O-METHYL-BETA-D-ARAT 2IVW ; ; The solution structure of a domain from the Neisseria meningitidis PilP pilot protein. 1ZTA ; ; THE SOLUTION STRUCTURE OF A LEUCINE-ZIPPER MOTIF PEPTIDE 1DSW ; ; THE SOLUTION STRUCTURE OF A MONOMERIC, REDUCED FORM OF HUMAN COPPER, ZINC SUPEROXIDE DISMUTASE BEARING THE SAME CHARGE AS THE NATIVE PROTEIN 1DJD ; ; THE SOLUTION STRUCTURE OF A NON-BAY REGION 11R-BENZ[A]ANTHRACENE OXIDE ADDUCT AT THE N6 POSITION OF ADENINE OF AN OLIGODEOXYNUCLEOTIDE CONTAINING THE HUMAN N-RAS CODON 61 SEQUENCE 2O4E ; ; The solution structure of a protein-protein interaction module from a family 84 glycoside hydrolase of Clostridium perfringens 1YYX ; ; The solution structure of a redesigned apocytochrome B562 (Rd-apocyt b562) at 2.8M urea 1YZC ; ; The solution structure of a redesigned apocytochrome B562 (Rd-apocyt b562) with the N- and a part of the C-terminal helices unfolded 1YZA ; ; The solution structure of a redesigned apocytochrome B562 (Rd-apocyt b562) with the N-terminal helix unfolded 1BM5 ; ; THE SOLUTION STRUCTURE OF A SITE-DIRECTED MUTANT (R111M) OF HUMAN CELLULAR RETIONIC ACID BINDING PROTEIN-TYPE II, NMR, 31 STRUCTURES 1U3K ; ; The solution structure of a substrate of archaeal pre-tRNA splicing endonucleases 1MFD ; 2.1 ; THE SOLUTION STRUCTURE OF A TRISACCHARIDE-ANTIBODY COMPLEX: COMPARISON OF NMR MEASUREMENTS WITH A CRYSTAL STRUCTURE 1G26 ; ; THE SOLUTION STRUCTURE OF A WELL-FOLDED PEPTIDE BASED ON THE 31-RESIDUE AMINO-TERMINAL SUBDOMAIN OF HUMAN GRANULIN A 2XV9 ; ; The solution structure of ABA-1A saturated with oleic acid 8EPY ; ; The solution structure of abxF in complex with its product (-)-ABX, an enzyme catalyzing the formation of the chiral spiroketal of an anthrabenzoxocinone antibiotic, (-)-ABX 8EO9 ; ; The solution structure of abxF, an enzyme catalyzing the formation of chiral spiroketal of an antibiotics, (-)-ABX 1KLP ; ; The Solution Structure of Acyl Carrier Protein from Mycobacterium tuberculosis 5Y0U ; ; The solution structure of AEBP2 C2H2 zinc fingers 1BA4 ; ; THE SOLUTION STRUCTURE OF AMYLOID BETA-PEPTIDE (1-40) IN A WATER-MICELLE ENVIRONMENT. IS THE MEMBRANE-SPANNING DOMAIN WHERE WE THINK IT IS? NMR, 10 STRUCTURES 1AGH ; ; THE SOLUTION STRUCTURE OF AN 11 BASE-PAIR OLIGONUCLEOTIDE DUPLEX CODING FOR AMINO ACIDS 60-62 OF THE PRODUCT OF THE N-RAS PROTOONCOGENE, NMR, MINIMIZED AVERAGE STRUCTURE 1AG5 ; ; THE SOLUTION STRUCTURE OF AN AFLATOXIN B1 EPOXIDE ADDUCT AT THE N7 POSITION OF GUANINE OPPOSITE AN ADENINE IN THE COMPLEMENTARY STRAND OF AN OLIGODEOXYNUCLEOTIDE DUPLEX, NMR, MINIMIZED AVERAGE STRUCTURE 1P9Z ; ; The Solution Structure of Antifungal Peptide Distinct With a Five-disulfide Motif from Eucommia ulmoides Oliver 2HHI ; ; The solution structure of antigen MPT64 from Mycobacterium tuberculosis defines a novel class of beta-grasp proteins 1P8G ; ; The solution structure of apo CopZ from Bacillus subtilis 2KEW ; ; The solution structure of Bacillus subtilis SR211 START domain by NMR spectroscopy 2KTE ; ; The solution structure of Bacillus subtilis, YndB, Northeast Structural Genomics Consoritum Target SR211 1OA5 ; ; The solution structure of bovine pancreatic trypsin inhibitor at high pressure 1OA6 ; ; The solution structure of bovine pancreatic trypsin inhibitor at high pressure 2LT9 ; ; The solution structure of Ca2+ binding domain 2B of the third isoform of the Na+/Ca2+ exchanger 2L4H ; ; The Solution Structure of Calcium Bound CIB1 2JV9 ; ; The Solution Structure of Calponin Homology Domain from Smoothelin-like 1 1CVO ; ; THE SOLUTION STRUCTURE OF CARDIOTOXIN V FROM NAJA NAJA ATRA 2KLQ ; ; The solution structure of CBD of human MCM6 1HTH ; ; The solution structure of cyclic human parathyroid hormone fragment 1-34, NMR, 10 structures 1C6S ; ; THE SOLUTION STRUCTURE OF CYTOCHROME C6 FROM THE THERMOPHILIC CYANOBACTERIUM SYNECHOCOCCUS ELONGATUS, NMR, 20 STRUCTURES 1U64 ; ; The Solution Structure of d(G3T4G4)2 1LVS ; ; THE SOLUTION STRUCTURE OF D(G4T4G3)2 2MXQ ; ; The solution structure of DEFA1, a highly potent antimicrobial peptide from the horse 1EGL ; ; THE SOLUTION STRUCTURE OF EGLIN C BASED ON MEASUREMENTS OF MANY NOES AND COUPLING CONSTANTS AND ITS COMPARISON WITH X-RAY STRUCTURES 2K4Q ; ; The Solution Structure of gpV, the Major Tail Protein from Bacteriophage Lambda 2JXF ; ; The solution structure of HCV NS4B(40-69) 2RQP ; ; The Solution Structure of Heterochromatin Protein 1-Binding Protein 74 Histone H1 like domain 1NNV ; ; The Solution structure of HI1450 1PFD ; ; THE SOLUTION STRUCTURE OF HIGH PLANT PARSLEY [2FE-2S] FERREDOXIN, NMR, 18 STRUCTURES 2LP0 ; ; The solution structure of homeodomain-protein complex 2DCV ; ; The solution structure of horseshoe crab antimicrobial peptide tachystatin b with the inhibitory cystine-knot motif 2DCW ; ; The solution structure of horseshoe crab antimicrobial peptide tachystatin b with the inhibitory cystine-knot motif 7Q4L ; ; The solution structure of hsDND1 RRM12 bound to CUUAUUUG RNA 2KDH ; ; The Solution Structure of Human Cardiac Troponin C in complex with the Green Tea Polyphenol; (-)-epigallocatechin-3-gallate 2RQR ; ; The solution structure of human DOCK2 SH3 domain - ELMO1 peptide chimera complex 2NBR ; ; The Solution Structure of Human gammaC-crystallin 2K3J ; ; The solution structure of human Mia40 6KVG ; ; The solution structure of human Orc6 1HPY ; ; THE SOLUTION STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 1-34 IN 20% TRIFLUORETHANOL, NMR, 10 STRUCTURES 1BWX ; ; THE SOLUTION STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 1-39, NMR, 10 STRUCTURES 2L1X ; ; The Solution Structure Of Human Parathyroid Hormone-Related Protein 1BZG ; ; THE SOLUTION STRUCTURE OF HUMAN PARATHYROID HORMONE-RELATED PROTEIN (1-34) IN NEAR-PHYSIOLOGICAL SOLUTION, NMR, 30 STRUCTURES 2M0O ; ; The solution structure of human PHF1 in complex with H3K36me3 2TGF ; ; THE SOLUTION STRUCTURE OF HUMAN TRANSFORMING GROWTH FACTOR ALPHA 3TGF ; ; THE SOLUTION STRUCTURE OF HUMAN TRANSFORMING GROWTH FACTOR ALPHA 2A2V ; ; The solution structure of Jingzhaotoxin-XI 1YOP ; ; The solution structure of Kti11p 2L4I ; ; The Solution Structure of Magnesium bound CIB1 1MGS ; ; THE SOLUTION STRUCTURE OF MELANOMA GROWTH STIMULATING ACTIVITY 2RPB ; ; The solution structure of membrane protein 2D2P ; ; The solution structure of micelle-bound peptide 1J0T ; ; The solution structure of molt-inhibiting hormone from the kuruma prawn 1KMG ; ; The Solution Structure Of Monomeric Copper-free Superoxide Dismutase 3ZD0 ; ; The Solution Structure of Monomeric Hepatitis C Virus p7 Yields Potent Inhibitors of Virion Release 2KX2 ; ; The solution structure of MTH1821 2RPA ; ; The solution structure of N-terminal domain of microtubule severing enzyme 6LZP ; ; The solution structure of N-terminal elongated hSNF5 RPT1 domain 2M08 ; ; The solution structure of NmPin, the parvuline of Nitrosopumilus maritimus 1AGG ; ; THE SOLUTION STRUCTURE OF OMEGA-AGA-IVB, A P-TYPE CALCIUM CHANNEL ANTAGONIST FROM THE VENOM OF AGELENOPSIS APERTA 7JPM ; ; The solution structure of omega-theraphotoxin-Pm1b isolated from King Baboon spider 1AXX ; ; THE SOLUTION STRUCTURE OF OXIDIZED RAT MICROSOMAL CYTOCHROME B5, NMR, 19 STRUCTURES 2AXX ; ; THE SOLUTION STRUCTURE OF OXIDIZED RAT MICROSOMAL CYTOCHROME B5, NMR, 21 STRUCTURES 2LTF ; ; The solution structure of Phage P2 gpX 2RM8 ; ; The solution structure of phototactic transducer protein HtrII linker region from Natronomonas pharaonis 2GLW ; ; The solution structure of PHS018 from pyrococcus horikoshii 1DIP ; ; THE SOLUTION STRUCTURE OF PORCINE DELTA-SLEEP-INDUCING PEPTIDE IMMUNOREACTIVE PEPTIDE, NMR, 10 STRUCTURES 2L42 ; ; The solution structure of Rap1 BRCT domain from Saccharomyces cerevisiae 1NMJ ; ; The Solution Structure of Rat Ab-(1-28) and its Interaction with Zinc: Insights into the Scarity of Amyloid Deposition in Aged Rat Brain 1L3N ; ; The Solution Structure of Reduced Dimeric Copper Zinc SOD: the Structural Effects of Dimerization 1BA9 ; ; THE SOLUTION STRUCTURE OF REDUCED MONOMERIC SUPEROXIDE DISMUTASE, NMR, 36 STRUCTURES 7RZ3 ; ; The solution structure of remipede double-ICK toxin phi-Xibalbin3-Xt3a 2KI7 ; ; The solution structure of RPP29-RPP21 complex from Pyrococcus furiosus 1WIF ; ; The solution structure of RSGI RUH-020, a PDZ domain of hypothetical protein from mouse 1WIX ; ; The solution structure of RSGI RUH-026, conserved domain of HOOK1 protein from mouse 1SGG ; ; THE SOLUTION STRUCTURE OF SAM DOMAIN FROM THE RECEPTOR TYROSINE KINASE EPHB2, NMR, 10 STRUCTURES 1FRY ; ; THE SOLUTION STRUCTURE OF SHEEP MYELOID ANTIMICROBIAL PEPTIDE, RESIDUES 1-29 (SMAP29) 6LF5 ; ; The solution structure of ShSPI 2N4I ; ; The solution structure of Skint-1, a critical determinant of dendritic epidermal gamma-delta T cell selection 2L1W ; ; The solution structure of soybean calmodulin isoform 4 complexed with the vacuolar calcium ATPase BCA1 peptide 2LL3 ; ; The solution structure of TgMIC4 apple-5 domain 2CUM ; ; The solution structure of the 33rd fibronectin type III domain of human Tenascin-X 1UYA ; ; THE SOLUTION STRUCTURE OF THE A-FORM OF UROGUANYLIN-16 NMR, 10 STRUCTURES 1LYP ; ; THE SOLUTION STRUCTURE OF THE ACTIVE DOMAIN OF CAP18: A LIPOPOLYSACCHARIDE BINDING PROTEIN FROM RABBIT LEUKOCYTES 2L3J ; ; The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific read out of the minor groove 2A00 ; ; The solution structure of the AMP-PNP bound nucleotide binding domain of KdpB 2A29 ; ; The solution structure of the AMP-PNP bound nucleotide binding domain of KdpB 1RZW ; ; The Solution Structure of the Archaeglobus fulgidis protein AF2095. Northeast Structural Genomics Consortium target GR4 2K9A ; ; The Solution Structure of the Arl2 Effector, BART 1UYB ; ; THE SOLUTION STRUCTURE OF THE B-FORM OF UROGUANYLIN-16 NMR, 10 STRUCTURES 2HTF ; ; The solution structure of the BRCT domain from human polymerase reveals homology with the TdT BRCT domain 1G84 ; ; THE SOLUTION STRUCTURE OF THE C EPSILON2 DOMAIN FROM IGE 7VU7 ; ; The Solution structure of the C-terminal domain from flagelliform spidroin 2EXD ; ; The solution structure of the C-terminal domain of a nfeD homolog from Pyrococcus horikoshii 2MC4 ; ; The solution structure of the C-terminal domain of BldD from Streptomyces coelicolor 1X53 ; ; The solution structure of the C-terminal domain of human Activator of 90 kDa heat shock protein ATPase homolog 1 2L04 ; ; The Solution Structure of the C-terminal Ig-like Domain of the Bacteriophage Lambda Tail Tube Protein 2RRF ; ; The solution structure of the C-terminal region of Zinc finger FYVE domain-containing protein 21 1K42 ; ; The Solution Structure of the CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase. 1K45 ; ; The Solution Structure of the CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase. 2BUD ; ; The solution structure of the chromo barrel domain from the males- absent on the first (MOF) protein 2KJF ; ; The solution structure of the circular bacteriocin carnocyclin A (CclA) 2I9S ; ; The solution structure of the core of mesoderm development (MESD). 2LRE ; ; The solution structure of the dimeric Acanthaporin 2LYD ; ; The solution structure of the Dm DCP1 EVH1 domain in complex with the XRN1 DBM peptide 1QK9 ; ; The solution structure of the domain from MeCP2 that binds to methylated DNA 1OIG ; ; The solution structure of the DPY module from the Dumpy protein 2KNH ; ; The Solution structure of the eTAFH domain of AML1-ETO complexed with HEB peptide 1IRL ; ; THE SOLUTION STRUCTURE OF THE F42A MUTANT OF HUMAN INTERLEUKIN 2 1W1N ; ; The solution structure of the FATC Domain of the Protein Kinase TOR1 from yeast 1X5J ; ; The solution structure of the fifth fibronectin type III domain of human Neogenin 1UDL ; ; The solution structure of the fifth SH3 domain of intersectin 2 (KIAA1256) 1X5F ; ; The solution structure of the first fibronectin type III domain of human Neogenin 2DJQ ; ; The solution structure of the first SH3 domain of mouse SH3 domain containing ring finger 2 2DJ1 ; ; The solution structure of the first thioredoxin domain of mouse Protein disulfide-isomerase A4 2DML ; ; The solution structure of the first thioredoxin domain of mouse Protein disulfide-isomerase A6 2DMK ; ; The solution structure of the FN3 domain of human Midline 2 protein 1X5I ; ; The solution structure of the fourth fibronectin type III domain of human Neogenin 2MUY ; ; The solution structure of the FtsH periplasmic N-domain 2KQA ; ; The solution structure of the fungal elicitor Cerato-Platanin 2L7H ; ; The solution structure of the HAMP domain of the hypothetical transmembrane receptor Af1503 2L7I ; ; The solution structure of the HAMP domain of the hypothetical transmembrane receptor Af1503 (A291F variant) 1QQ3 ; ; THE SOLUTION STRUCTURE OF THE HEME BINDING VARIANT ARG98CYS OF OXIDIZED ESCHERICHIA COLI CYTOCHROME B562 2DJN ; ; The solution structure of the homeobox domain of human Homeobox protein DLX-5 2DMN ; ; The solution structure of the homeobox domain of human homeobox protein TGIF2LX 1HRA ; ; THE SOLUTION STRUCTURE OF THE HUMAN RETINOIC ACID RECEPTOR-BETA DNA-BINDING DOMAIN 2IXQ ; ; The solution structure of the invasive tip complex from Afa-Dr fibrils 2M6Y ; ; The solution structure of the J-domain of human DnaJA1 2RR9 ; ; The solution structure of the K63-Ub2:tUIMs complex 2N52 ; ; The solution structure of the kallikrein inhibitor SPINK6 2AFF ; ; The solution structure of the Ki67FHA/hNIFK(226-269)3P complex 2LI8 ; ; The solution structure of the Lin28-ZnF domains bound to AGGAGAU of pre-let-7 miRNA 1MNX ; ; The Solution Structure of the Loop E Region of the 5S rRNA from Spinach Chloroplasts. 6GD5 ; ; The solution structure of the LptA-Thanatin complex 2DJP ; ; The solution structure of the LysM domain of human hypothetical protein SB145 2KSZ ; ; The solution structure of the Magnesium bound soybean calmodulin isoform 4 N-domain 2MZK ; ; The solution structure of the Magnesium-bound Conantokin RLB 2MZM ; ; The Solution Structure of the Magnesium-bound Conantokin-G 2MZL ; ; The Solution Structure of the Magnesium-bound Conantokin-G Mutant 2MYZ ; ; The Solution Structure of the Magnesium-bound Conantokin-R1B Mutant 5TBG ; ; The Solution Structure of the Magnesium-bound Conantokin-R1B Mutant 5TBQ ; ; The Solution Structure of the Magnesium-bound Conantokin-R1B Mutant 5TBR ; ; The Solution Structure of the Magnesium-bound Conantokin-R1B Mutant 1I4B ; ; The solution structure of the major family of the mutant stem loop C 5'UUA3' triloop of brome mosaic virus (+) strand RNA 2MSX ; ; The solution structure of the MANEC-type domain from Hepatocyte Growth Factor Inhibitor 1 reveals an unexpected PAN/apple domain-type fold 2ARW ; ; The solution structure of the membrane proximal cytokine receptor domain of the human interleukin-6 receptor 6HKA ; ; The solution structure of the micelle-associated FATC domain of the human protein kinase ataxia telangiectasia mutated (ATM) 1I4C ; ; THE SOLUTION STRUCTURE OF THE MINOR FAMILY OF THE MUTANT STEM LOOP C 5'UUA3' TRILOOP OF BROME MOSAIC VIRUS (+) STRAND RNA 4BZT ; ; The Solution Structure of the MLN 944-d(ATGCAT)2 Complex 4BZV ; ; The Solution Structure of the MLN 944-d(TACGCGTA)2 complex 4BZU ; ; The Solution Structure of the MLN 944-d(TATGCATA)2 Complex 2LRD ; ; The solution structure of the monomeric Acanthaporin 2K4W ; ; The Solution Structure of the Monomeric Copper, Zinc Superoxide Dismutase from Salmonella enterica 2JO0 ; ; The solution structure of the monomeric species of the C terminal domain of the CA protein of HIV-1 1JZC ; ; THE SOLUTION STRUCTURE OF THE MUTANT 5'AUG3' TRILOOP IN THE RNA PROMOTER REGION OF THE BROME MOSAIC VIRUS GENOMIC (+)-RNA 2KX3 ; ; The solution structure of the mutant of UBL domain of UBLCP1, I5M 1I46 ; ; The solution structure of the mutant stem loop C 5'GUA3' triloop of brome mosaic virus (+) strand RNA 2DAN ; ; The solution structure of the MYND domain (LEU384-CYS430) of human Zinc finger MYND domain containing protein 10 1YFB ; ; The solution structure of the N-domain of the transcription factor abrB 1YSF ; ; The solution structure of the N-domain of the transcription factor abrB 2L3L ; ; The solution structure of the N-terminal domain of human Tubulin Binding Cofactor C reveals a platform for the interaction with ab-tubulin 2RQ2 ; ; The solution structure of the N-terminal fragment of big defensin 1WCO ; ; The solution structure of the nisin-lipid II complex 1SVJ ; ; The solution structure of the nucleotide binding domain of KdpB 1U7Q ; ; THE SOLUTION STRUCTURE OF THE NUCLEOTIDE BINDING DOMAIN OF KDPB 1POU ; ; THE SOLUTION STRUCTURE OF THE OCT-1 POU-SPECIFIC DOMAIN REVEALS A STRIKING SIMILARITY TO THE BACTERIOPHAGE LAMBDA REPRESSOR DNA-BINDING DOMAIN 2L49 ; ; The solution structure of the P2 C,the immunity repressor of the P2 bacteriophage 2RMN ; ; The solution structure of the p63 DNA-binding domain 1RHW ; ; The solution structure of the pH-induced monomer of dynein light chain LC8 from Drosophila 2KYU ; ; The solution structure of the PHD3 finger of MLL 1SXE ; ; The solution structure of the Pointed (PNT) domain from the transcrition factor Erg 169D ; ; THE SOLUTION STRUCTURE OF THE R(GCG)D(TATACCC):D(GGGTATACGC) OKAZAKI FRAGMENT CONTAINS TWO DISTINCT DUPLEX MORPHOLOGIES CONNECTED BY A JUNCTION 2NPU ; ; The solution structure of the rapamycin-binding domain of mTOR (FRB) 2BIC ; ; The solution structure of the recombinant elicitor protein PcF from the oomycete pathogen P. cactorum 2KIT ; ; The solution structure of the reduced yeast TOR1 FATC domain bound to DPC micelles at 298K 2F3J ; ; The solution structure of the REF2-I mRNA export factor (residues 1-155). 2MDA ; ; The Solution Structure of the Regulatory Domain of Tyrosine Hydroxylase 1X5G ; ; The solution structure of the second fibronectin type III domain of human Neogenin 1X5A ; ; The solution structure of the second fibronectin type III domain of mouse Ephrin type-A receptor 1 1ADZ ; ; THE SOLUTION STRUCTURE OF THE SECOND KUNITZ DOMAIN OF TISSUE FACTOR PATHWAY INHIBITOR, NMR, 30 STRUCTURES 7FBV ; ; The solution structure of the second RRM domain of Matrin-3 2DMM ; ; The solution structure of the second thioredoxin domain of human Protein disulfide-isomerase A3 2DJ2 ; ; The solution structure of the second thioredoxin domain of mouse Protein disulfide-isomerase A4 1X5C ; ; The solution structure of the second thioredoxin-like domain of human Protein disulfide-isomerase 1X5D ; ; The solution structure of the second thioredoxin-like domain of human Protein disulfide-isomerase A6 2L3D ; ; The solution structure of the short form SWIRM domain of LSD1 1X5K ; ; The solution structure of the sixth fibronectin type III domain of human Neogenin 6K4V ; ; The solution structure of the smart chimeric peptide G6 1NG7 ; ; The Solution Structure of the Soluble Domain of Poliovirus 3A Protein 2N0M ; ; The solution structure of the soluble form of the Lipid-modified Azurin from Neisseria gonorrhoeae 2KXG ; ; The solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) 1ESH ; ; THE SOLUTION STRUCTURE OF THE STEM LOOP C 5'AUA3' TRILOOP OF BROME MOSAIC VIRUS (+) STRAND RNA 2COM ; ; The solution structure of the SWIRM domain of human LSD1 2DBA ; ; The solution structure of the tetratrico peptide repeat of human Smooth muscle cell associated protein-1, isoform 2 1LY7 ; ; The solution structure of the the c-terminal domain of frataxin, the protein responsible for friedreich ataxia 2DIY ; ; The solution structure of the thioredoxin domain of human Thioredoxin-like protein 2 2DJ0 ; ; The solution structure of the thioredoxin domain of human Thioredoxin-related transmembrane protein 2 1X5E ; ; The solution structure of the thioredoxin-like domain of human Thioredoxin-related transmembrane protein 1X5H ; ; The solution structure of the third fibronectin type III domain of human Neogenin 2ECB ; ; The solution structure of the third homeobox domain of human zinc fingers and homeoboxes protein 1IRH ; ; The Solution Structure of The Third Kunitz Domain of Tissue Factor Pathway Inhibitor 2DIZ ; ; The solution structure of the third thioredoxin domain of human Thioredoxin domain-containing protein 5 2DJ3 ; ; The solution structure of the third thioredoxin domain of mouse Protein disulfide-isomerase A4 8AJR ; ; The Solution Structure of the Triple Mutant Methyl-CpG-Binding Domain from MeCP2 8ALQ ; ; The Solution Structure of the Triple Mutant Methyl-CpG-Binding Domain from MeCP2 that Binds to Asymmetrically Modified DNA 1X5B ; ; The solution structure of the VHS domain of human Signal transducing adaptor molecule 2 2LN8 ; ; The solution structure of theromacin 1B69 ; ; THE SOLUTION STRUCTURE OF TN916 INTEGRASE N-TERMINAL DOMAIN/DNA COMPLEX 1TN9 ; ; THE SOLUTION STRUCTURE OF TN916 INTEGRASE N-TERMINAL DOMAIN/DNA COMPLEX 2AFP ; ; THE SOLUTION STRUCTURE OF TYPE II ANTIFREEZE PROTEIN REVEALS A NEW MEMBER OF THE LECTIN FAMILY 2KX0 ; ; the solution structure of UBB+1, frameshift mutant of ubiquitin B 2K6L ; ; The solution structure of XACb0070 from Xanthonomas axonopodis pv citri reveals this new protein is a member of the RHH family of transcriptional repressors 2LXW ; ; The solution structure of XIAP(RING)-binding domain of human XAF1 1P9K ; ; THE SOLUTION STRUCTURE OF YBCJ FROM E. COLI REVEALS A RECENTLY DISCOVERED ALFAL MOTIF INVOLVED IN RNA-BINDING 1YHD ; ; The solution structure of YGGX from Escherichia Coli 1DXN ; ; The Solution Structure of [d(CGC)r(aaa)d(TTTGCG)]2: Hybrid Junctions Flanked by DNA Duplexes 1L3M ; ; The Solution Structure of [d(CGC)r(amamam)d(TTTGCG)]2 1WSO ; ; The solution structures of human Orexin-A 1BOC ; ; THE SOLUTION STRUCTURES OF MUTANT CALBINDIN D9K'S, AS DETERMINED BY NMR, SHOW THAT THE CALCIUM BINDING SITE CAN ADOPT DIFFERENT FOLDS 1BOD ; ; THE SOLUTION STRUCTURES OF MUTANT CALBINDIN D9K'S, AS DETERMINED BY NMR, SHOW THAT THE CALCIUM BINDING SITE CAN ADOPT DIFFERENT FOLDS 203D ; ; THE SOLUTION STRUCTURES OF PSORALEN MONOADDUCTED AND CROSSLINKED DNA OLIGOMERS BY NMR SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS 204D ; ; THE SOLUTION STRUCTURES OF PSORALEN MONOADDUCTED AND CROSSLINKED DNA OLIGOMERS BY NMR SPECTROSCOPY AND RESTRAINED MOLECULAR DYNAMICS 1BTQ ; ; THE SOLUTION STRUCTURES OF THE FIRST AND SECOND TRANSMEMBRANE-SPANNING SEGMENTS OF BAND 3 1BTR ; ; THE SOLUTION STRUCTURES OF THE FIRST AND SECOND TRANSMEMBRANE-SPANNING SEGMENTS OF BAND 3 1BTS ; ; THE SOLUTION STRUCTURES OF THE FIRST AND SECOND TRANSMEMBRANE-SPANNING SEGMENTS OF BAND 3 1BTT ; ; THE SOLUTION STRUCTURES OF THE FIRST AND SECOND TRANSMEMBRANE-SPANNING SEGMENTS OF BAND 3 2OZ1 ; 2.35 ; The SoxAX Complex of Rhodovulum Sulfidophilum 2OX5 ; 1.98 ; The SoxYZ complex of Paracoccus pantotrophus 2OXG ; 1.4 ; The SoxYZ Complex of Paracoccus pantotrophus 2OXH ; 2.35 ; The SOXYZ Complex of Paracoccus Pantotrophus 7ZRO ; ; The spatial structure of amyloidogenic SEM1(68-107) peptide 5BKH ; 2.43 ; The splicing activity and an alternative domain-swapped structure of the Pyrococcus horikoshii PolII mini-intein 2ROV ; ; The split PH domain of ROCK II 5E4F ; 2.1 ; The spring alpha-helix coordinates multiple modes of HCV NS3 helicase action 7EGM ; 3.6 ; The SRM module of SWI/SNF-nucleosome complex 6QLC ; 2.2 ; The ssDNA-binding RNA polymerase cofactor Drc from Pseudomonas phage LUZ7 1PXV ; 1.8 ; The staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease 6KI2 ; 2.197 ; The STAS domain of cyanobacteria bicarbonate transporter BicA 7WHJ ; 3.27 ; The state 1 complex structure of Omicron spike with Bn03 (1-up RBD, 3 nanobodies) 7WOQ ; 3.47 ; The state 1 of Omicron Spike with bispecific antibody FD01 7WHI ; 2.93 ; The state 2 complex structure of Omicron spike with Bn03 (2-up RBD, 4 nanobodies) 7WOR ; 3.7 ; The state 2 of Omicron Spike with bispecific antibody FD01 7WHK ; 3.01 ; The state 3 complex structure of Omicron spike with Bn03 (2-up RBD, 5 nanobodies) 7WOS ; 3.91 ; The state 3 of Omicron Spike with bispecific antibody FD01 7WOU ; 3.47 ; The state 4 of Omicron Spike with bispecific antibody FD01 7WOV ; 3.87 ; The state 5 of Omicron Spike with bispecific antibody FD01 7WOW ; 6.11 ; The state 6 of Omicron Spike with bispecific antibody FD01 1OSW ; ; The Stem of SL1 RNA in HIV-1: Structure and Nucleocapsid Protein Binding for a 1X3 Internal Loop 1MBN ; 2.0 ; The stereochemistry of the protein myoglobin 7QUF ; 2.6 ; The STK17A (DRAK1) Kinase Domain Bound to CK156 7QUE ; 2.4 ; The STK17A (DRAK1) Kinase Domain Bound to CKJB68 2ZLG ; 2.52 ; The Structual Basis for Peptidomimetic Inhibition of Eukaryotic Ribonucleotide Reductase 7EBP ; 1.8 ; The structural analysis of A.Muciniphila sulfatase 7EBQ ; 2.4 ; The structural analysis of A.Muciniphila sulfatase 3QML ; 2.31 ; The structural analysis of Sil1-Bip complex reveals the mechanism for Sil1 to function as a novel nucleotide exchange factor 5EGL ; 2.1 ; The structural and biochemical characterization of acyl-coa hydrolase from Staphylococcus aureus in complex with Butyryl Coenzyme A, Coenzyme A, and Coenzyme A disulfide 5EGJ ; 2.4 ; The structural and biochemical characterization of acyl-coa hydrolase mutant Asn28Ala from Staphylococcus aureus in complex with COENZYME A 5HWF ; 2.5 ; The structural and biochemical characterization of acyl-coa hydrolase mutant Asn28Ala from Staphylococcus aureus. 5EGK ; 2.4 ; The structural and biochemical characterization of acyl-coa hydrolase mutant Asp43Ala from Staphylococcus aureus 5HZ4 ; 2.5 ; The structural and biochemical characterization of acyl-coa hydrolase mutant Thr60Ala from Staphylococcus aureus. 2N79 ; ; The structural and functional effects of the Familial Hypertrophic Cardiomyopathy-linked cardiac troponin C mutation, L29Q 1T7I ; 1.35 ; The structural and thermodynamic basis for the binding of TMC114, a next-generation HIV-1 protease inhibitor. 1L54 ; 1.9 ; THE STRUCTURAL AND THERMODYNAMIC CONSEQUENCES OF BURYING A CHARGED RESIDUE WITHIN THE HYDROPHOBIC CORE OF T4 LYSOZYME 5CJP ; 2.6 ; The Structural Basis for Cdc42-Induced Dimerization of IQGAPs 1F30 ; 2.85 ; THE STRUCTURAL BASIS FOR DNA PROTECTION BY E. COLI DPS PROTEIN 1F33 ; 2.6 ; THE STRUCTURAL BASIS FOR DNA PROTECTION BY E. COLI DPS PROTEIN 6LKQ ; 3.1 ; The Structural Basis for Inhibition of Ribosomal Translocation by Viomycin 4AF8 ; 1.4 ; The structural basis for metacaspase substrate specificity and activation 3MMK ; 2.157 ; The structural basis for partial redundancy in a class of transcription factors, the lim-homeodomain proteins, in neural cell type specification 2ZLF ; 2.59 ; The Structural Basis for Peptidomimetic Inhibition of Eukaryotic Ribonucleotide Reductase 2XSE ; 1.9 ; The structural basis for recognition of J-base containing DNA by a novel DNA-binding domain in JBP1 3GCA ; 2.75 ; The structural basis for recognition of the preQ0 metabolite by an unusually small riboswitch aptamer domain 1UVN ; 3.0 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 ca2+ inhibition complex 1UVK ; 2.45 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 dead-end complex 1UVM ; 2.0 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 with 5NT RNA conformation A 1UVL ; 2.0 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 with 5nt RNA. Conformation B 1UVI ; 2.15 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 with 6nt RNA 1UVJ ; 1.9 ; The structural basis for RNA specificity and Ca2 inhibition of an RNA-dependent RNA polymerase phi6p2 with 7nt RNA 2H2D ; 1.7 ; The Structural Basis for Sirtuin Substrate Affinity 2H2F ; 2.2 ; The Structural basis for Sirtuin Substrate affinity 2RNW ; ; The Structural Basis for Site-Specific Lysine-Acetylated Histone Recognition by the Bromodomains of the Human Transcriptional Co-Activators PCAf and CBP 2RNX ; ; The Structural Basis for Site-Specific Lysine-Acetylated Histone Recognition by the Bromodomains of the HUman Transcriptional Co-Activators PCAF and CBP 3ZVL ; 1.65 ; The structural basis for substrate recognition by mammalian polynucleotide kinase 3' phosphatase 3ZVM ; 1.997 ; The structural basis for substrate recognition by mammalian polynucleotide kinase 3' phosphatase 3ZVN ; 2.15 ; The structural basis for substrate recognition by mammalian polynucleotide kinase 3' phosphatase 5CPP ; 2.08 ; THE STRUCTURAL BASIS FOR SUBSTRATE-INDUCED CHANGES IN REDOX POTENTIAL AND SPIN EQUILIBRIUM IN CYTOCHROME P-450(CAM) 7CPP ; 2.0 ; THE STRUCTURAL BASIS FOR SUBSTRATE-INDUCED CHANGES IN REDOX POTENTIAL AND SPIN EQUILIBRIUM IN CYTOCHROME P450(CAM) 1AAM ; 2.8 ; THE STRUCTURAL BASIS FOR THE ALTERED SUBSTRATE SPECIFICITY OF THE R292D ACTIVE SITE MUTANT OF ASPARTATE AMINOTRANSFERASE FROM E. COLI 1AAW ; 2.4 ; THE STRUCTURAL BASIS FOR THE ALTERED SUBSTRATE SPECIFICITY OF THE R292D ACTIVE SITE MUTANT OF ASPARTATE AMINOTRANSFERASE FROM E. COLI 4BA9 ; 2.73 ; The structural basis for the coordination of Y-family Translesion DNA Polymerases by Rev1 6KM7 ; 1.801 ; The structural basis for the internal interaction in RBBP5 1ASB ; 2.6 ; THE STRUCTURAL BASIS FOR THE REDUCED ACTIVITY OF THE D223A(D222A) ACTIVE SITE MUTANT OF E. COLI ASPARTATE AMINOTRANSFERASE 1ASC ; 2.4 ; THE STRUCTURAL BASIS FOR THE REDUCED ACTIVITY OF THE D223A(D222A) ACTIVE SITE MUTANT OF E. COLI ASPARTATE AMINOTRANSFERASE 1ASA ; 2.4 ; THE STRUCTURAL BASIS FOR THE REDUCED ACTIVITY OF THE Y226F(Y225F) ACTIVE SITE MUTANT OF E. COLI ASPARTATE AMINOTRANSFERASE 1ASF ; 2.8 ; THE STRUCTURAL BASIS FOR THE REDUCED ACTIVITY OF THE Y226F(Y225F) ACTIVE SITE MUTANT OF E. COLI ASPARTATE AMINOTRANSFERASE 1ASG ; 2.8 ; THE STRUCTURAL BASIS FOR THE REDUCED ACTIVITY OF THE Y226F(Y225F) ACTIVE SITE MUTANT OF E. COLI ASPARTATE AMINOTRANSFERASE 4AIA ; 1.8 ; The structural basis of 3-methyladenine recognition by 3- methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus 3GKY ; 1.8 ; The Structural Basis of an ER Stress-Associated Bottleneck in a Protein Folding Landscape 1PTH ; 3.4 ; The Structural Basis of Aspirin Activity Inferred from the Crystal Structure of Inactivated Prostaglandin H2 Synthase 1YV3 ; 2.0 ; The structural basis of blebbistatin inhibition and specificity for myosin II 1W98 ; 2.15 ; The structural basis of CDK2 activation by cyclin E 1MG9 ; 2.3 ; The structural basis of ClpS-mediated switch in ClpA substrate recognition 4PHM ; 2.03 ; The Structural Basis of Differential Inhibition of Human Calpain by Indole and Phenyl alpha-Mercaptoacrylic Acids 4PHN ; 1.79 ; The Structural Basis of Differential Inhibition of Human Calpain by Indole and Phenyl alpha-Mercaptoacrylic Acids 4PHK ; 2.05 ; The Structural Basis of Differential Inhibition of Human Calpain by Indole and Phenyl alpha-Mercaptoacrylic Acids. The complex with (Z)-3-(4-chlorophenyl)-2-mercaptoacrylic acid 4PHJ ; 1.6 ; The Structural Basis of Differential Inhibition of Human Calpain by Indole and Phenyl alpha-Mercaptoacrylic Acids: Human unliganded protein 2MNA ; ; The structural basis of DNA binding by the single-stranded DNA-binding protein from Sulfolobus solfataricus 4C7O ; 2.6 ; The structural basis of FtsY recruitment and GTPase activation by SRP RNA 379D ; 3.1 ; THE STRUCTURAL BASIS OF HAMMERHEAD RIBOZYME SELF-CLEAVAGE 5YPS ; 2.097 ; The structural basis of histone chaperoneVps75 5ZB5 ; 2.299 ; The structural basis of histone chaperoneVps75 2B7A ; 2.0 ; The structural basis of Janus Kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor 1OLA ; 2.1 ; THE STRUCTURAL BASIS OF MULTISPECIFICITY IN THE OLIGOPEPTIDE-BINDING PROTEIN OPPA 7JTX ; 3.23 ; the structural basis of PTEN regulation by multi-site phosphorylation 1DL7 ; 2.35 ; THE STRUCTURAL BASIS OF REPERTOIRE SHIFT IN AN IMMUNE RESPONSE TO PHOSPHOCHOLINE 2H2G ; 1.63 ; The Structural Basis of Sirtuin substrate affinity 2H2I ; 1.8 ; The Structural basis of Sirtuin Substrate Affinity 2H2H ; 2.2 ; The Structural basis of sirtuin substrate specificity 1UDG ; 1.75 ; THE STRUCTURAL BASIS OF SPECIFIC BASE EXCISION REPAIR BY URACIL-DNA GLYCOSYLASE 1UDH ; 1.75 ; THE STRUCTURAL BASIS OF SPECIFIC BASE EXCISION REPAIR BY URACIL-DNA GLYCOSYLASE 6JQD ; 1.69 ; The structural basis of the beta-carbonic anhydrase CafC (L25G and L78G mutant) of the filamentous fungus Aspergillus fumigatus 6JQC ; 1.8 ; The structural basis of the beta-carbonic anhydrase CafC (wild type) of the filamentous fungus Aspergillus fumigatus 6LAC ; 1.3 ; The structural basis of the beta-carbonic anhydrase CafD (C39A mutant) of the filamentous fungus Aspergillus fumigatus 6LAI ; 1.6 ; The structural basis of the beta-carbonic anhydrase CafD (E54A mutant) of the filamentous fungus Aspergillus fumigatus 6JQE ; 1.9 ; The structural basis of the beta-carbonic anhydrases CafD (wild type) of the filamentous fungus Aspergillus fumigatus 1FZW ; 1.9 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). APO ENZYME. 1G23 ; 2.8 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). GLUCOSE-1-PHOSPHATE COMPLEX. 1G1L ; 1.77 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). TDP-GLUCOSE COMPLEX. 1G3L ; 2.7 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). TDP-L-RHAMNOSE COMPLEX. 1G0R ; 1.87 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). THYMIDINE/GLUCOSE-1-PHOSPHATE COMPLEX. 1FXO ; 1.66 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). TMP COMPLEX. 1G2V ; 2.6 ; THE STRUCTURAL BASIS OF THE CATALYTIC MECHANISM AND REGULATION OF GLUCOSE-1-PHOSPHATE THYMIDYLYLTRANSFERASE (RMLA). TTP COMPLEX. 5OY3 ; 2.136 ; The structural basis of the histone demethylase KDM6B histone 3 lysine 27 specificity 1UW4 ; 1.95 ; The structural basis of the interaction between nonsense mediated decay factors UPF2 and UPF3 3ZS6 ; 2.1 ; The Structural characterization of Burkholderia pseudomallei OppA. 1PZ4 ; 1.35 ; The structural determination of an insect (mosquito) Sterol Carrier Protein-2 with a ligand bound C16 Fatty Acid at 1.35 A resolution 2VLJ ; 2.4 ; The Structural Dynamics and Energetics of an Immunodominant T-cell Receptor are Programmed by its Vbeta Domain 2VLK ; 2.5 ; The Structural Dynamics and Energetics of an Immunodominant T-cell Receptor are Programmed by its Vbeta Domain 2VLL ; 1.6 ; The Structural Dynamics and Energetics of an Immunodominant T-cell Receptor are Programmed by its Vbeta Domain 2VLM ; 1.98 ; The Structural Dynamics and Energetics of an Immunodominant T-cell Receptor are Programmed by its Vbeta Domain 2VLR ; 2.3 ; The Structural Dynamics and Energetics of an Immunodominant T-cell Receptor are Programmed by its Vbeta Domain 2NND ; 1.6 ; The Structural Identification of the Interaction Site and Functional State of RBP for its Membrane Receptor 2NNE ; 1.6 ; The Structural Identification of the Interaction Site and Functional State of RBP for its Membrane Receptor 4L5U ; 2.05 ; The structural implications of the secondary CO2 binding pocket in human carbonic anhydrase II 4L5V ; 1.63 ; The structural implications of the secondary CO2 binding pocket in human carbonic anhydrase II 4F3H ; 2.5 ; The structural of FimXEAL-c-di-GMP from Xanthomonas campestris 1DT3 ; 2.6 ; THE STRUCTURAL ORIGINS OF INTERFACIAL ACTIVATION IN THERMOMYCES (HUMICOLA) LANUGINOSA LIPASE 1DT5 ; 2.4 ; THE STRUCTURAL ORIGINS OF INTERFACIAL ACTIVATION IN THERMOMYCES (HUMICOLA) LANUGINOSA LIPASE 1DTE ; 2.35 ; THE STRUCTURAL ORIGINS OF INTERFACIAL ACTIVATION IN THERMOMYCES (HUMICOLA) LANUGINOSA LIPASE 1EIN ; 3.0 ; THE STRUCTURAL ORIGINS OF INTERFACIAL ACTIVATION IN THERMOMYCES (HUMICOLA) LANUGINOSA LIPASE 1DU4 ; 2.5 ; THE STRUCTURAL ORIGINS OF INTERFACIAL ACTIVATION IN THERMOMYCES (HUMICOLA) LANUGINOSA LIPASE OTHER STRUCTURE DETAILS 6KP6 ; 3.0 ; The structural study of mutation induced inactivation of Human muscarinic receptor M4 5OF1 ; 1.56 ; The structural versatility of TasA in B. subtilis biofilm formation 5OF2 ; 1.86 ; The structural versatility of TasA in B. subtilis biofilm formation 4RGD ; 1.2 ; The structure a AS-48 G13K/L40K mutant 4GSF ; 2.7 ; The structure analysis of cysteine free insulin degrading enzyme (ide) with (s)-2-{2-[carboxymethyl-(3-phenyl-propionyl)-amino]-acetylamino}-3-(3h-imidazol-4-yl)-propionic acid methyl ester 1FMD ; 3.5 ; THE STRUCTURE AND ANTIGENICITY OF A TYPE C FOOT-AND-MOUTH DISEASE VIRUS 2BVY ; 2.25 ; The structure and characterization of a modular endo-beta-1,4-mannanase from Cellulomonas fimi 3HM3 ; 1.96 ; The Structure and conformation of Lys-63 linked tetra-ubiquitin 1P8K ; 2.6 ; The structure and DNA recognition of a bifunctional homing endonuclease and group I intron splicing factor 2HF5 ; ; The structure and function of a novel two-site calcium-binding fragment of calmodulin 3QED ; 2.99 ; The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases 3QEE ; 1.64 ; The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases 3QEF ; 1.789 ; The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases 1S99 ; 1.65 ; The structure and function of B. subtilis YkoF gene product: ligand free protein 1SBR ; 2.3 ; The structure and function of B. subtilis YkoF gene product: the complex with thiamin 1RAP ; 2.25 ; THE STRUCTURE AND FUNCTION OF OMEGA LOOP A REPLACEMENTS IN CYTOCHROME C 1RAQ ; 1.9 ; THE STRUCTURE AND FUNCTION OF OMEGA LOOP A REPLACEMENTS IN CYTOCHROME C 1XE0 ; 1.7 ; The structure and function of Xenopus NO38-core, a histone binding chaperone in the nucleolus 1XB9 ; 1.9 ; The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus 7EZT ; 2.81 ; The structure and functional mechanism of nucleotide regulated acetylhexosaminidase Am2136 from Akkermansia muciniphila 1VT9 ; 2.5 ; The structure and hydration of the A-DNA fragment D(GGGTACCC) at room temperature and low temperature 1VTA ; 2.5 ; THE STRUCTURE AND HYDRATION OF THE A-DNA FRAGMENT D(GGGTACCC) AT ROOM TEMPERATURE AND LOW TEMPERATURE 5J53 ; 1.61 ; The Structure and Mechanism of NOV1, a Resveratrol-Cleaving Dioxygenase 5J54 ; 1.89 ; The Structure and Mechanism of NOV1, a Resveratrol-Cleaving Dioxygenase 5J55 ; 1.75 ; The Structure and Mechanism of NOV1, a Resveratrol-Cleaving Dioxygenase 1S2P ; 1.3 ; The structure and refinement of apocrustacyanin C2 to 1.3A resolution and the search for differences between this protein and the homologous apoproteins A1 and C1 1S44 ; 1.6 ; The structure and refinement of apocrustacyanin C2 to 1.6A resolution and the search for differences between this protein and the homologous apoproteins A1 and C1. 4BOT ; 42.0 ; The structure and super-organization of acetylcholine receptor- rapsyn complexes class E 4BOG ; 50.0 ; The structure and super-organization of acetylcholine receptor-rapsyn complexes 4BOI ; 41.0 ; The structure and super-organization of acetylcholine receptor-rapsyn complexes class A 4BON ; 40.0 ; The structure and super-organization of acetylcholine receptor-rapsyn complexes class B 4BOO ; 42.0 ; The structure and super-organization of acetylcholine receptor-rapsyn complexes class C 4BOR ; 42.0 ; The structure and super-organization of acetylcholine receptor-rapsyn complexes class D 1BDM ; 1.8 ; THE STRUCTURE AT 1.8 ANGSTROMS RESOLUTION OF A SINGLE SITE MUTANT (T189I) OF MALATE DEHYDROGENASE FROM THERMUS FLAVUS WITH INCREASED ENZYMATIC ACTIVITY 1O5W ; 3.2 ; The structure basis of specific recognitions for substrates and inhibitors of rat monoamine oxidase A 4Y7N ; 3.3 ; The Structure Insight into 5-Carboxycytosine Recognition by RNA Polymerase II during Transcription Elongation. 3ZKO ; 13.7 ; The structure of ''breathing'' dengue virus. 1U1Z ; 2.5 ; The Structure of (3R)-hydroxyacyl-ACP dehydratase (FabZ) 2EFJ ; 2.0 ; The structure of 1,7 dimethylxanthine methyltransferase 5YQG ; 2.1 ; The structure of 14-3-3 and pNumb peptide 4K11 ; 2.3 ; The structure of 1NA in complex with Src T338G 1H48 ; 2.3 ; The structure of 2C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase in complex with CMP and product 4INS ; 1.5 ; THE STRUCTURE OF 2ZN PIG INSULIN CRYSTALS AT 1.5 ANGSTROMS RESOLUTION 7DL3 ; 1.84607 ; The structure of 3,5-DAHDHcca complex with NADPH 2B7O ; 2.3 ; The Structure of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium tuberculosis 3RZI ; 1.95 ; The structure of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from mycobacterium tuberculosis cocrystallized and complexed with phenylalanine and tryptophan 3NUD ; 3.0 ; The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from mycobacterium tuberculosis complexed with phenylalanine 3KGF ; 2.0 ; The structure of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis complexed with phenylalanine and tryptophan 3NUE ; 2.5 ; The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from mycobacterium tuberculosis complexed with tryptophan 3NV8 ; 2.25 ; The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in complex with phosphoenol pyruvate and manganese (thesit-free) 6PBJ ; 1.9 ; The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase with Gly190Pro mutation 6RLH ; 1.5 ; The structure of 3fPizza6-SH obtained via vapour diffusion 2PGD ; 2.0 ; THE STRUCTURE OF 6-PHOSPHOGLUCONATE DEHYDROGENASE REFINED AT 2 ANGSTROMS RESOLUTION 1D62 ; 2.0 ; THE STRUCTURE OF A /B-DNA$ DECAMER WITH AN I(SLASH)*A MISMATCH AND COMPARISON WITH THE G(SLASH)*A MISMATCH 4V96 ; 3.8 ; The structure of a 1.8 MDa viral genome injection device suggests alternative infection mechanisms 1TMR ; ; THE STRUCTURE OF A 19 RESIDUE FRAGMENT FROM THE C-LOOP OF THE FOURTH EPIDERMAL GROWTH FACTOR-LIKE DOMAIN OF THROMBOMODULIN 8FN2 ; 3.4 ; The structure of a 50S ribosomal subunit in the Lyme disease pathogen Borreliella burgdorferi 8HNQ ; 2.0 ; The structure of a alcohol dehydrogenase AKR13B2 with NADP 1D49 ; 1.5 ; THE STRUCTURE OF A B-DNA DECAMER WITH A CENTRAL T-A STEP: C-G-A-T-T-A-A-T-C-G 3RPD ; 1.5 ; The structure of a B12-independent methionine synthase from Shewanella sp. W3-18-1 in complex with Selenomethionine. 2OST ; 3.1 ; The structure of a bacterial homing endonuclease : I-Ssp6803I 3SOV ; 1.27 ; The structure of a beta propeller domain in complex with peptide S 1JPP ; 3.1 ; The Structure of a beta-Catenin Binding Repeat from Adenomatous Polyposis Coli (APC) in Complex with beta-Catenin 6HPD ; 2.43 ; The structure of a beta-glucuronidase from glycoside hydrolase family 2 1LMK ; 2.6 ; THE STRUCTURE OF A BIVALENT DIABODY 3QP9 ; 1.88 ; The Structure of a C2-type Ketoreductase from a Modular Polyketide Synthase 6G5O ; 2.25 ; The structure of a carbohydrate active P450 6G5Q ; 2.4 ; The structure of a carbohydrate active P450 4DHJ ; 2.35 ; The structure of a ceOTUB1 ubiquitin aldehyde UBC13~Ub complex 5YEY ; ; The structure of a chair-type G-quadruplex of the human telomeric variant in K+ solution 4P48 ; 1.35 ; The structure of a chicken anti-cardiac Troponin I scFv 4P49 ; 1.4 ; The structure of a chicken anti-prostate specific antigen scFv 5Z34 ; 2.399 ; The structure of a chitin deacetylase from Bombyx mori provide the first insight into insect chitin deacetylation mechanism 1TTE ; ; The Structure of a Class II ubiquitin-conjugating enzyme, Ubc1. 1NQY ; 2.09 ; The structure of a CoA pyrophosphatase from D. Radiodurans 1NQZ ; 1.7 ; The structure of a CoA pyrophosphatase from D. Radiodurans complexed with a magnesium ion 5W8D ; 2.0 ; The structure of a COA-dependent acyl-homoserine lactone synthase, BjaI, with MTA 5W8C ; 1.85 ; The structure of a COA-dependent acyl-homoserine lactone synthase, BjaI, with MTA and isovaleryl-CoA 5W8G ; 2.0 ; The structure of a COA-dependent acyl-homoserine lactone synthase, BjaI, with SAH 5W8A ; 2.0 ; The structure of a COA-dependent acyl-homoserine lactone synthase, BjaI, with SAM and isopentyl-CoA 5W8E ; 1.8 ; The structure of a CoA-dependent acyl-homoserine lactone synthase, BjaI, with the adduct of SAH and IV-CoA 6WNS ; 1.93 ; The structure of a CoA-dependent acyl-homoserine lactone synthase, MesI 6WN0 ; 1.85 ; The structure of a CoA-dependent acyl-homoserine lactone synthase, RpaI, with the adduct of SAH and p-coumaroyl CoA 1NMB ; 2.2 ; THE STRUCTURE OF A COMPLEX BETWEEN THE NC10 ANTIBODY AND INFLUENZA VIRUS NEURAMINIDASE AND COMPARISON WITH THE OVERLAPPING BINDING SITE OF THE NC41 ANTIBODY 1HRT ; 2.8 ; THE STRUCTURE OF A COMPLEX OF BOVINE ALPHA-THROMBIN AND RECOMBINANT HIRUDIN AT 2.8 ANGSTROMS RESOLUTION 1TYL ; 1.9 ; THE STRUCTURE OF A COMPLEX OF HEXAMERIC INSULIN AND 4'-HYDROXYACETANILIDE 1TYM ; 1.9 ; THE STRUCTURE OF A COMPLEX OF HEXAMERIC INSULIN AND 4'-HYDROXYACETANILIDE 3HTC ; 2.3 ; THE STRUCTURE OF A COMPLEX OF RECOMBINANT HIRUDIN AND HUMAN ALPHA-THROMBIN 4PKE ; 2.5 ; The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold 4PKX ; 2.54 ; The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold 3IKB ; 1.67 ; The structure of a conserved protein from Streptococcus mutans UA159. 3PEB ; 1.86 ; The Structure of a Creatine_N Superfamily domain of a dipeptidase from Streptococcus thermophilus. 8FO0 ; 1.69 ; The structure of a crystallizable variant of E. coli pyruvate formate-lyase activating enzyme bound to a partially cleaved SAM molecule 8FSI ; 1.46 ; The structure of a crystallizable variant of E. coli pyruvate formate-lyase activating enzyme bound to SAM 8FOL ; 2.65 ; The structure of a crystallizable variant of E. coli pyruvate formate-lyase activating enzyme bound to SAM, alternate crystal form 6ZIF ; 2.2 ; The structure of a cytosolic copper storage protein from Methylocystis sp. Strain Rockwell (ATCC 49242) 1KM8 ; 1.9 ; The Structure of a Cytotoxic Ribonuclease From the Oocyte of Rana Catesbeiana (Bullfrog) 1KM9 ; 1.96 ; The Structure of a Cytotoxic Ribonuclease From the Oocyte of Rana Catesbeiana (Bullfrog) 2Y0O ; 1.229 ; The structure of a D-lyxose isomerase from the sigmaB regulon of Bacillus subtilis 467D ; 2.16 ; The structure of a decamer forming a four-way junction 3FDJ ; 1.8 ; The structure of a DegV family protein from Eubacterium eligens. 3WCV ; 2.6 ; The structure of a deoxygenated 400 kda hemoglobin provides a more accurate description of the cooperative mechanism of giant hemoglobins: CA bound form 3WCU ; 2.9 ; The structure of a deoxygenated 400 kda hemoglobin provides a more accurate description of the cooperative mechanism of giant hemoglobins: Deoxygenated form 3WCW ; 2.5 ; The structure of a deoxygenated 400 kda hemoglobin provides a more accurate description of the cooperative mechanism of giant hemoglobins: MG bound form 3WCT ; 2.4 ; The structure of a deoxygenated 400 kda hemoglobin provides a more accurate description of the cooperative mechanism of giant hemoglobins: Oxygenated form 6I7O ; 5.3 ; The structure of a di-ribosome (disome) as a unit for RQC and NGD quality control pathways recognition. 6BMC ; 2.7 ; The structure of a dimeric type II DAH7PS associated with pyocyanin biosynthesis in Pseudomonas aeruginosa 4A8E ; 2.99 ; The structure of a dimeric Xer recombinase from archaea 3BGW ; 3.91 ; The Structure Of A DnaB-Like Replicative Helicase And Its Interactions With Primase 2L7E ; ; The structure of a domain from yeast 4ZR7 ; 1.86 ; The structure of a domain of a functionally unknown protein from Bacillus subtilis subsp. subtilis str. 168 2R4Q ; 1.6 ; The structure of a domain of fruA from Bacillus subtilis 2WBT ; 2.7 ; The Structure of a Double C2H2 Zinc Finger Protein from a Hyperthermophilic Archaeal Virus in the Absence of DNA 3QUF ; 1.7 ; The structure of a family 1 extracellular solute-binding protein from Bifidobacterium longum subsp. infantis 2WAG ; 1.4 ; The Structure of a family 25 Glycosyl hydrolase from Bacillus anthracis. 2C79 ; 1.5 ; The structure of a family 4 acetyl xylan esterase from Clostridium thermocellum in complex with a colbalt ion. 2C71 ; 1.05 ; The structure of a family 4 acetyl xylan esterase from Clostridium thermocellum in complex with a magnesium ion. 2C8N ; 2.9 ; The Structure of a family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum in complex with 1,3-linked arabinoside of xylobiose. 2C7F ; 2.7 ; The Structure of a family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum in complex with 1,5-alpha-L-Arabinotriose. 2X8R ; 1.7 ; The structure of a family GH25 lysozyme from Aspergillus fumigatus 4OHS ; 2.19 ; The structure of a far-red fluorescent protein, AQ143 3IUS ; 1.66 ; The structure of a functionally unknown conserved protein from Silicibacter pomeroyi DSS 4AC1 ; 1.3 ; The structure of a fungal endo-beta-N-acetylglucosaminidase from glycosyl hydrolase family 18, at 1.3A resolution 4H89 ; 1.37 ; The Structure of a GCN5-Related N-Acetyltransferase from Kribbella flavida 4ZXO ; 1.5 ; The structure of a GH26 beta-mannanase from Bacteroides ovatus, BoMan26A. 5OES ; 2.48 ; The structure of a glutathione synthetase (StGSS1) from Solanum tuberosum in ADP and y-EC bound closed conformation. 5OEU ; 2.57 ; The structure of a glutathione synthetase like-effector (GSS22) from Globodera pallida in ADP-bound closed conformation. 5OEV ; 2.18 ; The structure of a glutathione synthetase like-effector (GSS22) from Globodera pallida in apoform. 5OET ; 2.57 ; The structure of a glutathione synthetase like-effector (GSS30) from Globodera pallida in apoform. 2VTC ; 1.6 ; The structure of a glycoside hydrolase family 61 member, Cel61B from the Hypocrea jecorina. 4K35 ; 2.003 ; The structure of a glycoside hydrolase family 81 endo-[beta]-1,3-glucanase 4K3A ; 2.3 ; The structure of a glycoside hydrolase family 81 endo-[beta]-1,3-glucanase 2C3F ; 1.81 ; The structure of a group A streptococcal phage-encoded tail-fibre showing hyaluronan lyase activity. 1NRW ; 1.7 ; The structure of a HALOACID DEHALOGENASE-LIKE HYDROLASE FROM B. SUBTILIS 3R7C ; 2.4 ; The structure of a hexahestidine-tagged form of augmenter of liver regeneration reveals a novel Cd(2)Cl(4)O(6) cluster that aids in crystal packing 8FMW ; 2.86 ; The structure of a hibernating ribosome in the Lyme disease pathogen 3GL9 ; 1.8 ; The structure of a histidine kinase-response regulator complex sheds light into two-component signaling and reveals a novel cis autophosphorylation mechanism 1Y58 ; ; The structure of a lactoferricinB derivative bound to micelles 1Y5C ; ; The structure of a lactoferricinB derivative bound to micelles (LfcinB4-14) 5ZMP ; 2.19 ; The structure of a lysine deacylase 2RDP ; 2.3 ; The structure of a MarR family protein from Bacillus stearothermophilus 3IUV ; 2.554 ; The structure of a member of TetR family (SCO1917) from Streptomyces coelicolor A3 6R3Q ; 3.4 ; The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein 1ZFX ; 2.38 ; The Structure of a minimal all-RNA Hairpin Ribozyme with the mutant G8U at the cleavage site 165D ; 1.55 ; THE STRUCTURE OF A MISPAIRED RNA DOUBLE HELIX AT 1.6 ANGSTROMS RESOLUTION AND IMPLICATIONS FOR THE PREDICTION OF RNA SECONDARY STRUCTURE 2CMO ; 2.65 ; The structure of a mixed glur2 ligand-binding core dimer in complex with (s)-glutamate and the antagonist (s)-ns1209 2BVT ; 2.9 ; The structure of a modular endo-beta-1,4-mannanase from Cellulomonas fimi explains the product specificity of glycoside hydrolase family 26 mannanases. 3BXQ ; 1.3 ; The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition 2LFU ; ; The structure of a N. meningitides protein targeted for vaccine development 218D ; 2.25 ; THE STRUCTURE OF A NEW CRYSTAL FORM OF A DNA DODECAMER CONTAINING T.(O6ME)G BASE PAIRS 1HLT ; 3.0 ; THE STRUCTURE OF A NONADECAPEPTIDE OF THE FIFTH EGF DOMAIN OF THROMBOMODULIN COMPLEXED WITH THROMBIN 5AOB ; 1.79 ; The structure of a novel thermophilic esterase from the Planctomycetes species, Thermogutta terrifontis, Est2-butyrate bound 5AO9 ; 1.58 ; The structure of a novel thermophilic esterase from the Planctomycetes species, Thermogutta terrifontis, Est2-native 5AOA ; 1.71 ; The structure of a novel thermophilic esterase from the Planctomycetes species, Thermogutta terrifontis, Est2-Propionate bound 5AOC ; 1.79 ; The structure of a novel thermophilic esterase from the Planctomycetes species, Thermogutta terrifontis, Est2-valerate bound 4QHQ ; 1.4 ; The structure of a nutrient binding protein from Burkholderia cenocepacia bound to methionine 3S6M ; 1.651 ; The structure of a Peptidyl-prolyl cis-trans isomerase from Burkholderia pseudomallei 1PTO ; 3.5 ; THE STRUCTURE OF A PERTUSSIS TOXIN-SUGAR COMPLEX AS A MODEL FOR RECEPTOR BINDING 4ZNP ; 2.94 ; The structure of A pfI Riboswitch Bound to ZMP 2W42 ; 1.9 ; THE STRUCTURE OF A PIWI PROTEIN FROM ARCHAEOGLOBUS FULGIDUS COMPLEXED WITH A 16NT DNA DUPLEX. 2BGG ; 2.2 ; The structure of a Piwi protein from Archaeoglobus fulgidus complexed with a 16nt siRNA duplex. 1W9H ; 1.95 ; The Structure of a Piwi protein from Archaeoglobus fulgidus. 2O01 ; 3.4 ; The Structure of a plant photosystem I supercomplex at 3.4 Angstrom resolution 3MJG ; 2.3 ; The structure of a platelet derived growth factor receptor complex 4WA0 ; 1.7 ; The structure of a possible adhesin C-terminal domain from Caldicellulosiruptor kronotskyensis 3IVP ; 2.02 ; The structure of a possible transposon-related DNA-binding protein from Clostridium difficile 630. 6UFE ; 1.2 ; The structure of a potassium selective ion channel at atomic resolution 1U0K ; 1.5 ; The structure of a Predicted Epimerase PA4716 from Pseudomonas aeruginosa 2I6X ; 2.4 ; The structure of a predicted HAD-like family hydrolase from Porphyromonas gingivalis. 2OIW ; 2.0 ; The structure of a predicted thioesterase from Bacillus stearothermophilus 3F56 ; 2.303 ; The structure of a previously undetected carboxysome shell protein: CsoS1D from Prochlorococcus marinus MED4 3FCH ; 2.201 ; The structure of a previously undetected carboxysome shell protein: CsoS1D from Prochlorococcus marinus MED4 2HJS ; 2.2 ; The structure of a probable aspartate-semialdehyde dehydrogenase from Pseudomonas aeruginosa 3ILK ; 2.01 ; The structure of a probable methylase family protein from Haemophilus influenzae Rd KW20 3OOO ; 1.57 ; The structure of a proline dipeptidase from Streptococcus agalactiae 2603V 1RH5 ; 3.2 ; The structure of a protein conducting channel 1RHZ ; 3.5 ; The structure of a protein conducting channel 3TZT ; 2.1 ; The structure of a protein in glycosyl transferase family 8 from Anaerococcus prevotii. 3U1D ; 1.8 ; The structure of a protein with a GntR superfamily winged-helix-turn-helix domain from Halomicrobium mukohataei. 3ON1 ; 1.65 ; The structure of a protein with unknown function from Bacillus halodurans C 3OOP ; 1.78 ; The structure of a protein with unknown function from Listeria innocua Clip11262 3OOU ; 1.57 ; The structure of a protein with unkown function from Listeria innocua 3TU6 ; 2.0 ; The Structure of a Pseudoazurin From Sinorhizobium meliltoi 2OCZ ; 1.85 ; The Structure of a Putative 3-Dehydroquinate Dehydratase from Streptococcus pyogenes. 3EH7 ; 2.05 ; The structure of a putative 4-hydroxybutyrate CoA-transferase from Porphyromonas gingivalis W83 2HI1 ; 2.3 ; The structure of a putative 4-hydroxythreonine-4-phosphate dehydrogenase from Salmonella typhimurium. 3TX6 ; 1.5 ; The Structure of a putative ABC-transporter periplasmic component from Rhodopseudomonas palustris 3DCI ; 2.0 ; The Structure of a putative arylesterase from Agrobacterium tumefaciens str. C58 3U7V ; 1.8 ; The structure of a putative Beta-galactosidase from Caulobacter crescentus CB15. 3RSI ; 2.0 ; The structure of a putative enoyl-CoA hydratase/isomerase from Mycobacterium abscessus ATCC 19977 / DSM 44196 3M1G ; 2.1 ; The structure of a putative glutathione S-transferase from Corynebacterium glutamicum 3DDH ; 2.0 ; The structure of a putative haloacid dehalogenase-like family hydrolase from Bacteroides thetaiotaomicron VPI-5482 3U24 ; 2.25 ; The structure of a putative lipoprotein of unknown function from Shewanella oneidensis. 2G8Y ; 2.15 ; The structure of a putative malate/lactate dehydrogenase from E. coli. 1ZX5 ; 2.3 ; The structure of a putative mannosephosphate isomerase from Archaeoglobus fulgidus 3JW4 ; 2.1 ; The structure of a putative MarR family transcriptional regulator from Clostridium acetobutylicum 2IJL ; 2.3 ; The structure of a putative ModE from Agrobacterium tumefaciens. 2HSJ ; 1.5 ; The structure of a putative platelet activating factor from Streptococcus pneumonia. 2I6D ; 1.85 ; The structure of a putative RNA methyltransferase of the TrmH family from Porphyromonas gingivalis. 4FRY ; 2.1 ; The structure of a putative signal-transduction protein with CBS domains from Burkholderia ambifaria MC40-6 3IV3 ; 1.8 ; The Structure of a putative tagatose 1,6-aldolase from Streptococcus mutans 3DEW ; 1.75 ; The structure of a putative TetR family transcriptional regulator from Geobacter sulfurreducens PCA. 3HE0 ; 2.2 ; The Structure of a Putative Transcriptional Regulator TetR Family Protein from Vibrio parahaemolyticus. 4HG2 ; 1.6 ; The Structure of a Putative Type II Methyltransferase from Anaeromyxobacter dehalogenans. 5G4T ; 2.751 ; The structure of a quasi-cyclic six k-turn duplex RNA species 6Y9C ; 1.8 ; The structure of a quaternary ammonium Rieske monooxygenase reveals insights into carnitine oxidation by gut microbiota and inter-subunit electron transfer 4K2P ; 1.98 ; The Structure of a Quintuple Mutant of the Tiam1 PH-CC-Ex Domain 6UZV ; 3.1 ; The structure of a red shifted photosystem I complex 3JV9 ; 2.39 ; The structure of a reduced form of OxyR from N. meningitidis 3IJM ; 1.7 ; The structure of a restriction endonuclease-like fold superfamily protein from Spirosoma linguale. 1ZHO ; 2.6 ; The structure of a ribosomal protein L1 in complex with mRNA 1U63 ; 3.4 ; THE STRUCTURE OF A RIBOSOMAL PROTEIN L1-mRNA COMPLEX 1S03 ; 2.7 ; The Structure of a Ribosomal Protein S8/spc Operon mRNA Complex 1XJR ; 2.7 ; The Structure of a Rigorously Conserved RNA Element Within the SARS Virus Genome 7KB3 ; 2.25 ; The structure of a sensor domain of a histidine kinase (VxrA) from Vibrio cholerae O1 biovar eltor str. N16961, 2nd form 7KB9 ; 1.98 ; THE STRUCTURE OF A SENSOR DOMAIN OF A HISTIDINE KINASE (VxrA) FROM VIBRIO CHOLERAE O1 BIOVAR ELTOR STR. N16961, D238-T240 deletion mutant 7LA6 ; 1.98 ; THE STRUCTURE OF A SENSOR DOMAIN OF A HISTIDINE KINASE (VxrA) FROM VIBRIO CHOLERAE O1 BIOVAR ELTOR STR. N16961, N239 deletion mutant 7KB7 ; 2.2 ; THE STRUCTURE OF A SENSOR DOMAIN OF A HISTIDINE KINASE (VxrA) FROM VIBRIO CHOLERAE O1 BIOVAR ELTOR STR. N16961, N239-T240 deletion mutant 4R7Q ; 1.981 ; The structure of a sensor domain of a histidine kinase from Vibrio cholerae O1 biovar eltor str. N16961 3UCX ; 1.85 ; The structure of a Short chain dehydrogenase from Mycobacterium smegmatis 1TKK ; 2.1 ; The Structure of a Substrate-Liganded Complex of the L-Ala-D/L-Glu Epimerase from Bacillus subtilis 2ER6 ; 2.0 ; The structure of a synthetic pepsin inhibitor complexed with endothiapepsin. 1GWC ; 2.25 ; The structure of a tau class glutathione S-transferase from wheat, active in herbicide detoxification 3UR1 ; 4.5 ; The structure of a ternary complex between CheA domains P4 and P5 with CheW and with a truncated fragment of TM14, a chemoreceptor analog from Thermotoga maritima. 4JPB ; 3.186 ; The structure of a ternary complex between CheA domains P4 and P5 with CheW and with an unzipped fragment of TM14, a chemoreceptor analog from Thermotoga maritima. 6DFE ; 2.31 ; The structure of a ternary complex of E. coli WaaC 4UOV ; 1.85 ; The structure of a tetrameric alpha-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides, which contribute to its thermostability. 3HH1 ; 1.85 ; The Structure of a Tetrapyrrole methylase family protein domain from Chlorobium tepidum TLS 2ET0 ; 1.7 ; The structure of a three-way DNA junction in complex with a metallo-supramolecular helicate reveals a new target for drugs 4K2O ; 2.15 ; The Structure of a Triple Mutant of the Tiam1 PH-CC-Ex Domain 2C10 ; 2.5 ; The structure of a truncated, soluble version of semicarbazide- sensitive amine oxidase 7WZV ; 1.89931 ; The structure of a Twitch Radical SAM Dehydrogenase SpeY 7WZX ; 1.98001 ; The structure of a Twitch Radical SAM Dehydrogenase SpeY 7X0B ; 2.02028 ; The structure of a Twitch Radical SAM Dehydrogenase SpeY 2PO8 ; ; The structure of a two-disulfide intermediate of MCoTI-II 6R23 ; 4.9 ; The structure of a Ty3 retrotransposon capsid C-terminal domain dimer 6R22 ; 5.5 ; The structure of a Ty3 retrotransposon capsid N-terminal domain dimer 6R24 ; 7.5 ; The structure of a Ty3 retrotransposon icosahedral capsid 1BCF ; 2.9 ; THE STRUCTURE OF A UNIQUE, TWO-FOLD SYMMETRIC, HAEM-BINDING SITE 1YG8 ; 2.6 ; The structure of a V6A variant of ClpP. 3U0H ; 2.3 ; The Structure of a Xylose Isomerase domain protein from Alicyclobacillus acidocaldarius subsp. acidocaldarius. 4DS1 ; 1.851 ; The Structure of a Yeast Dyn2-Nup159 Complex and the Molecular Basis for the Dynein Light Chain - Nuclear Pore Interaction 4HT6 ; 1.9 ; The Structure of a Yeast Dynein Dyn2-Pac11 Complex and Effect on Single Molecule Dynein Motor Activity 4V35 ; 2.3 ; The Structure of A-PGS from Pseudomonas aeruginosa 4V34 ; 3.1 ; The Structure of A-PGS from Pseudomonas aeruginosa (SeMet derivative) 4IOV ; 3.5 ; The structure of AAVrh32.33, a Novel Gene Delivery Vector 6TQF ; 3.5 ; The structure of ABC transporter Rv1819c in AMP-PNP bound state 6TQE ; 4.3 ; The structure of ABC transporter Rv1819c without addition of substrate 7TBZ ; 4.3 ; The structure of ABCA1 Y482C 6F1G ; 1.672 ; The structure of AbnB-E201A, an intracellular 1,5-alpha-L-arabinanase from Geobacillus stearothermophilus, in complex with arabinopentaose 1W9Y ; 2.1 ; The structure of ACC oxidase 1WA6 ; 2.55 ; The structure of ACC oxidase 4LGN ; 1.82 ; The structure of Acidothermus cellulolyticus family 74 glycoside hydrolase 1SEK ; 2.1 ; THE STRUCTURE OF ACTIVE SERPIN K FROM MANDUCA SEXTA AND A MODEL FOR SERPIN-PROTEASE COMPLEX FORMATION 1RKB ; 2.0 ; The structure of adrenal gland protein AD-004 5JM7 ; 2.4 ; The structure of aerobactin synthetase IucA from a hypervirulent pathotype of Klebsiella pneumoniae 6CN7 ; 2.45 ; The structure of aerobactin synthetase IucC from a hypervirulent pathotype of Klebsiella pneumoniae 7LOL ; 1.8 ; The structure of Agmatinase from E. Coli at 1.8 A displaying urea and agmatine 7LOX ; 3.2 ; The structure of Agmatinase from E. Coli at 3.2 A displaying guanidine in the active site 4YJX ; 2.547 ; The structure of Agrobacterium tumefaciens ClpS2 bound to L-phenylalaninamide 4YKA ; 2.801 ; The structure of Agrobacterium tumefaciens ClpS2 in complex with L-tyrosinamide 4X0X ; 1.9 ; The structure of AhpE from Mycobacterium tuberculosis revisited 4X1U ; 1.87 ; The structure of AhpE from Mycobacterium tuberculosis revisited 4QFM ; 2.3 ; The structure of aIF2gamma subunit D152A from archaeon Sulfolobus solfataricus complexed with GDPCP 3SJZ ; 2.8 ; The structure of aIF2gamma subunit delta 41-45 from archaeon Sulfolobus solfataricus complexed with GDP and GDPNP 2PLF ; 2.9 ; The structure of aIF2gamma subunit from the archaeon Sulfolobus solfataricus in the nucleotide-free form. 4NBS ; 2.305 ; The structure of aIF2gamma subunit H20F from archaeon Sulfolobus solfataricus complexed with GDPCP 4QHY ; 3.29 ; The structure of aIF2gamma subunit H20F/D152A from archaeon Sulfolobus solfataricus complexed with GDPCP 8HW0 ; 1.5 ; the structure of AKR6D1 4QHR ; 1.9 ; The structure of alanine racemase from Acinetobacter baumannii 7ENN ; 2.8 ; The structure of ALC1 bound to the nucleosome 6YX8 ; 1.831 ; The structure of allophycocyanin from cyanobacterium Nostoc sp. WR13, the C2221 crystal form. 2VJT ; 2.5 ; The Structure of Allophycocyanin from Gloeobacter Violaceus 1SZN ; 1.54 ; THE STRUCTURE OF ALPHA-GALACTOSIDASE 1T0O ; 1.96 ; The structure of alpha-galactosidase from Trichoderma reesei complexed with beta-D-galactose 1KTB ; 1.9 ; The Structure of alpha-N-Acetylgalactosaminidase 1KTC ; 2.4 ; The Structure of alpha-N-Acetylgalactosaminidase 1HUT ; 2.9 ; THE STRUCTURE OF ALPHA-THROMBIN INHIBITED BY A 15-MER SINGLE-STRANDED DNA APTAMER 4V3B ; 2.18 ; The structure of alpha2,3-sialyltransferase variant 1 from Pasteurella dagmatis in complex with the donor product CMP 4V3C ; 1.84 ; The structure of alpha2,3-sialyltransferase variant 2 from Pasteurella dagmatis in complex with the donor product CMP 6CZR ; 3.14 ; The structure of amicetin bound to the 70S ribosome 4AYS ; 3.15 ; The Structure of Amylosucrase from D. radiodurans 4FB4 ; 1.85 ; The Structure of an ABC-Transporter Family Protein from Rhodopseudomonas palustris in Complex with Caffeic Acid 3HJZ ; 1.9 ; The structure of an aldolase from Prochlorococcus marinus 1ZFV ; 2.4 ; The structure of an all-RNA minimal Hairpin Ribozyme with Mutation G8A at the cleavage site 1U5U ; 2.0 ; The structure of an Allene Oxide Synthase reveals a novel use for a catalase fold 3OOS ; 1.65 ; The structure of an alpha/beta fold family hydrolase from Bacillus anthracis str. Sterne 3WMU ; 1.1 ; The structure of an anti-cancer lectin mytilec apo-form from the mussel Mytilus galloprovincialis 3WMV ; 1.05 ; The structure of an anti-cancer lectin mytilec with ligand from the mussel Mytilus galloprovincialis 3T6O ; 2.1 ; The Structure of an Anti-sigma-factor antagonist (STAS) domain protein from Planctomyces limnophilus. 1ZA6 ; 2.8 ; The structure of an antitumor CH2-domain-deleted humanized antibody 2VUG ; 2.9 ; The structure of an archaeal homodimeric RNA ligase 4F8J ; 1.6 ; The structure of an aromatic compound transport protein from Rhodopseudomonas palustris in complex with p-coumarate 6CX6 ; 2.84 ; The structure of an As(III) S-adenosylmethionine methyltransferase with As(III) and S-adenosyl-L-homocysteine (SAH) 4KW7 ; 1.8 ; The structure of an As(III) S-adenosylmethionine methyltransferase with Phenylarsine oxide(PAO) 4FS8 ; 1.78 ; The structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation 6ZM3 ; 1.7 ; The structure of an E2 ubiquitin-conjugating complex (UBC2-UEV1) essential for Leishmania amastigote differentiation 7VWN ; 1.45 ; The structure of an engineered PET hydrolase 3CXC ; 3.0 ; The structure of an enhanced oxazolidinone inhibitor bound to the 50S ribosomal subunit of H. marismortui 1Z31 ; ; The structure of an enzyme-activating fragment of human telomerase RNA 1UZC ; ; THE STRUCTURE OF AN FF DOMAIN FROM HUMAN HYPA/FBP11 1FAV ; 3.0 ; THE STRUCTURE OF AN HIV-1 SPECIFIC CELL ENTRY INHIBITOR IN COMPLEX WITH THE HIV-1 GP41 TRIMERIC CORE 7O5E ; ; The structure of an i-motif/duplex junction at neutral pH 1HIB ; 2.4 ; THE STRUCTURE OF AN INTERLEUKIN-1 BETA MUTANT WITH REDUCED BIOACTIVITY SHOWS MULTIPLE SUBTLE CHANGES IN CONFORMATION THAT AFFECT PROTEIN-PROTEIN RECOGNITION 1A6A ; 2.75 ; THE STRUCTURE OF AN INTERMEDIATE IN CLASS II MHC MATURATION: CLIP BOUND TO HLA-DR3 3MCZ ; 1.9 ; The Structure of an O-methyltransferase family protein from Burkholderia thailandensis. 3QVQ ; 1.602 ; The structure of an Oleispira antarctica phosphodiesterase OLEI02445 in complex with the product sn-glycerol-3-phosphate 1D98 ; 2.5 ; THE STRUCTURE OF AN OLIGO(DA).OLIGO(DT) TRACT AND ITS BIOLOGICAL IMPLICATIONS 7NTE ; 1.6 ; The structure of an open conformation of the SBP TarP_Csal 3OON ; 1.79 ; The structure of an outer membrance protein from Borrelia burgdorferi B31 280D ; 2.4 ; THE STRUCTURE OF AN RNA DODECAMER SHOWS HOW TANDEM U-U BASE PAIRS INCREASE THE RANGE OF STABLE RNA STRUCTURES AND THE DIVERSITY OF RECOGNITION SITES 1RNK ; ; THE STRUCTURE OF AN RNA PSEUDOKNOT THAT CAUSES EFFICIENT FRAMESHIFTING IN MOUSE MAMMARY TUMOR VIRUS 1FIX ; 2.3 ; THE STRUCTURE OF AN RNA/DNA HYBRID: A SUBSTRATE OF THE RIBONUCLEASE ACTIVITY OF HIV-1 REVERSE TRANSCRIPTASE 3QJQ ; 2.9 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 3QJR ; 3.2 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 3QJS ; 2.8 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 3QJT ; 2.95 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 3QJU ; 2.9 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 3QJV ; 2.8 ; The structure of and photolytic induced changes of carbon monoxide binding to the cytochrome ba3-oxidase from Thermus thermophilus 7KIX ; ; The structure of anti-CRISPR AcrIE2 2KO8 ; ; The Structure of Anti-TRAP 1JOH ; 1.4 ; THE STRUCTURE OF ANTIAMOEBIN I, A MEMBRANE-ACTIVE PEPTIDE 1WUA ; 1.45 ; The structure of Aplyronine A-actin complex 4GGR ; 1.9 ; The structure of apo bradavidin2 (Form A) 1HL4 ; 1.82 ; The Structure of Apo Type Human Cu, Zn Superoxide Dismutase 3SKP ; 1.7 ; The structure of apo-human transferrin C-lobe with bound sulfate ions 2HYG ; 2.8 ; The Structure of apo-MntR from Bacillus subtilis, Native Form 2HYF ; 2.8 ; The Structure of apo-MntR from Bacillus subtilis, selenomethionine derivative 8HIV ; 2.20003 ; The structure of apo-SoBcmB with Fe(II) and AKG 6IO9 ; 1.9 ; The structure of apo-UdgX 4OJ2 ; 3.05 ; The structure of aquaporin 4Y0B ; 2.4 ; The structure of Arabidopsis ClpT1 4Y0C ; 1.992 ; The structure of Arabidopsis ClpT2 5KWK ; 1.9 ; The structure of Arabidopsis thaliana FUT1 in complex with GDP 5KOE ; 1.79 ; The structure of Arabidopsis thaliana FUT1 in complex with XXLG 5KX6 ; 2.2 ; The structure of Arabidopsis thaliana FUT1 Mutant R284K in complex with GDP 4HRY ; 1.5 ; The structure of Arabidopsis thaliana KAI2 6SW4 ; 1.845 ; The structure of AraP, an arabinose binding protein from Geobacillus stearothermophilus 5UCQ ; 1.4 ; The structure of archaeal Inorganic Pyrophosphatase in complex with pyrophosphate 3Q4W ; 1.441 ; The structure of archaeal inorganic pyrophosphatase in complex with substrate 7YIK ; 2.191 ; The structure of archaeal nuclease RecJ2 from Methanocaldococcus jannaschii 7YKV ; 2.04 ; The structure of archaeal nuclease RecJ2 from Methanocaldococcus jannaschii 3A1Y ; 2.13 ; The structure of archaeal ribosomal stalk P1/P0 complex 2W82 ; 2.8 ; The structure of ArdA 1YLE ; 1.7 ; The structure of arginine/ornithine succinyltransferase subunit AI from Pseudomonas aeruginosa. 7AFS ; 1.7 ; The structure of Artemis variant D37A 7AFU ; 1.56 ; The structure of Artemis variant H33A 7AGI ; 1.7 ; The structure of Artemis variant H35D 7AF1 ; 1.7 ; The structure of Artemis/SNM1C/DCLRE1C with 2 Zinc ions 1ASH ; 2.15 ; THE STRUCTURE OF ASCARIS HEMOGLOBIN DOMAIN I AT 2.2 ANGSTROMS RESOLUTION: MOLECULAR FEATURES OF OXYGEN AVIDITY 2XI6 ; 1.65 ; The structure of ascorbate peroxidase Compound I 2XIF ; 1.65 ; The structure of ascorbate peroxidase Compound II 5JQR ; 1.81 ; The Structure of Ascorbate Peroxidase Compound II formed by reaction with m-CPBA 2XIH ; 1.65 ; The structure of ascorbate peroxidase Compound III 8XB8 ; 3.4 ; The structure of ASFV A137R 1KS4 ; 2.5 ; The structure of Aspergillus niger endoglucanase-palladium complex 5C71 ; 2.62 ; The structure of Aspergillus oryzae a-glucuronidase complexed with glycyrrhetinic acid monoglucuronide 5C70 ; 3.1 ; The structure of Aspergillus oryzae beta-glucuronidase 7TBW ; 3.1 ; The structure of ATP-bound ABCA1 5JM8 ; 2.2 ; The structure of ATP-bound aerobactin synthetase IucA from a hypervirulent pathotype of Klebsiella pneumoniae 6BJT ; 1.8 ; The structure of AtzH: a little known member of the atrazine breakdown pathway 6BJU ; 1.64 ; The structure of AtzH: a little known member of the atrazine breakdown pathway 6D63 ; 2.3 ; The structure of AtzH: a little known member of the atrazine breakdown pathway 3AJ2 ; 2.7 ; The structure of AxCeSD octamer (C-terminal HIS-tag) from Acetobacter xylinum 3AJ1 ; 2.5 ; The structure of AxCeSD octamer (N-terminal HIS-tag) from Acetobacter xylinum 3A8E ; 3.0 ; The structure of AxCesD octamer complexed with cellopentaose 5Z85 ; 1.85 ; The structure of azide-bound cytochrome c oxidase determined using the another batch crystals exposed to 20 mM azide solution for 2 days 5Z84 ; 1.85 ; The structure of azide-bound cytochrome c oxidase determined using the crystals exposed to 20 mM azide solution for 4 days 8GVM ; 1.851 ; The structure of azide-bound cytochrome C oxidase determined using the crystals exposed to 20 mm azide solution for 4 days 1D23 ; 1.5 ; THE STRUCTURE OF B-HELICAL C-G-A-T-C-G-A-T-C-G AND COMPARISON WITH C-C-A-A-C-G-T-T-G-G. THE EFFECT OF BASE PAIR REVERSALS 1S58 ; 3.5 ; The structure of B19 parvovirus capsid 5BV9 ; 1.93 ; The Structure of Bacillus pumilus GH48 in complex with cellobiose 5CVY ; 2.0 ; The Structure of Bacillus pumilus GH48 in complex with cellobiose and cellohexaose 7M33 ; 3.55 ; The structure of Bacillus subtilis BmrCD in the inward-facing conformation bound to Hoechst-33342 and ATP 7BOV ; 2.293 ; The Structure of Bacillus subtilis glycosyltransferase,Bs-YjiC 1OGC ; 2.0 ; The Structure of Bacillus subtilis RbsD complexed with D-ribose 1OGD ; 1.95 ; The Structure of Bacillus subtilis RbsD complexed with D-ribose 1OGF ; 2.3 ; The Structure of Bacillus subtilis RbsD complexed with glycerol 1OGE ; 2.05 ; The Structure of Bacillus subtilis RbsD complexed with Ribose 5-phosphate 1ZP7 ; 2.25 ; The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence specific cleavage. 8K38 ; 3.2 ; The structure of bacteriophage lambda portal-adaptor 3QC7 ; 1.52 ; The structure of bacteriophage phi29 head fibers has a supercoiled triple repeating helix-turn-helix motif 1NOH ; 2.8 ; The structure of bacteriophage phi29 scaffolding protein gp7 after prohead assembly 1LBA ; 2.2 ; THE STRUCTURE OF BACTERIOPHAGE T7 LYSOZYME, A ZINC AMIDASE AND AN INHIBITOR OF T7 RNA POLYMERASE 7LH6 ; 2.85 ; The structure of Bacteroides plebeius L-galactose dehydrogenase 7RJ5 ; 7.0 ; The structure of BAM in complex with EspP at 7 Angstrom resolution 7RI7 ; 8.0 ; The structure of BAM in MSP1D1 nanodiscs 7RI9 ; 6.9 ; The structure of BAM in MSP1E3D1 at 6.9 Angstrom resolution 7RI8 ; 7.5 ; The structure of BAM in MSP2N2 nanodiscs 2YH3 ; 2.6 ; The structure of BamB from E. coli 7JRK ; 1.71 ; The Structure of BamE from Pseudomonas aeruginosa 8GY8 ; 1.94 ; The structure of Bax1 from Pyrococcus furiosus 1O0L ; ; THE STRUCTURE OF BCL-W REVEALS A ROLE FOR THE C-TERMINAL RESIDUES IN MODULATING BIOLOGICAL ACTIVITY 4CP3 ; 2.3 ; The structure of BCL6 BTB (POZ) domain in complex with the ansamycin antibiotic rifabutin. 6RX4 ; 3.3 ; THE STRUCTURE OF BD OXIDASE FROM ESCHERICHIA COLI 5DOQ ; 3.05 ; The structure of bd oxidase from Geobacillus thermodenitrificans 5IR6 ; 3.8 ; The structure of bd oxidase from Geobacillus thermodenitrificans 4PCV ; 2.05 ; The structure of BdcA (YjgI) from E. coli 4QAV ; 2.1 ; The structure of Beta-ketoacyl -(acyl carrier protein) synthase II (FabF) from Neisseria meningitidis 3U0F ; 1.25 ; The structure of Beta-ketoacyl synthase from Brucella melitensis bound to the fragment 7-hydroxycoumarin 1G5X ; 2.45 ; The Structure of Beta-Ketoacyl-[Acyl Carrier Protein] Synthase I 1FJ8 ; 2.27 ; THE STRUCTURE OF BETA-KETOACYL-[ACYL CARRIER PROTEIN] SYNTHASE I IN COMPLEX WITH CERULENIN, IMPLICATIONS FOR DRUG DESIGN 1FJ4 ; 2.35 ; THE STRUCTURE OF BETA-KETOACYL-[ACYL CARRIER PROTEIN] SYNTHASE I IN COMPLEX WITH THIOLACTOMYCIN, IMPLICATIONS FOR DRUG DESIGN 3ZI4 ; 1.33 ; The structure of Beta-phosphoglucomutase Inhibited With Glucose-6-phosphate and Scandium Tetrafluoride 7VC6 ; 2.54 ; The structure of beta-xylosidase from Phanerochaete chrysosporium(PcBxl3) 7VC7 ; 3.08 ; The structure of beta-xylosidase from Phanerochaete chrysosporium(PcBxl3) 1Q7B ; 2.05 ; The structure of betaketoacyl-[ACP] reductase from E. coli in complex with NADP+ 1Q7C ; 2.5 ; The structure of betaketoacyl-[ACP] reductase Y151F mutant in complex with NADPH fragment 4PFJ ; 2.3 ; The structure of bi-acetylated SAHH 1KVK ; 2.4 ; The Structure of Binary complex between a Mammalian Mevalonate Kinase and ATP: Insights into the Reaction Mechanism and Human Inherited Disease 1DV2 ; 2.5 ; The structure of biotin carboxylase, mutant E288K, complexed with ATP 6KUE ; 1.992 ; The structure of BioZ from Agrobacterium tumefaciens 3HUH ; 1.5 ; The structure of biphenyl-2,3-diol 1,2-dioxygenase iii-related protein from salmonella typhimurium 2JH8 ; 3.22 ; The structure of bluetongue virus VP4 reveals a multifunctional RNA- capping production-line 2JH9 ; 3.0 ; The structure of bluetongue virus VP4 reveals a multifunctional RNA- capping production-line 2JHA ; 3.4 ; The structure of bluetongue virus VP4 reveals a multifunctional RNA- capping production-line 2JHC ; 3.0 ; The structure of bluetongue virus VP4 reveals a multifunctional RNA- capping production-line 2JHP ; 2.5 ; The structure of bluetongue virus VP4 reveals a multifunctional RNA- capping production-line 6HF2 ; 1.69 ; The structure of BoMan26B, a GH26 beta-mannanase from Bacteroides ovatus 6HF4 ; 1.781 ; The structure of BoMan26B, a GH26 beta-mannanase from Bacteroides ovatus, complexed with G1M4 1DAB ; 2.5 ; The Structure of Bordetella Pertussis Virulence Factor P.69 Pertactin 2AKQ ; 3.0 ; The structure of bovine B-lactoglobulin A in crystals grown at very low ionic strength 6NKQ ; 2.3 ; The structure of bovine beta-lactoglobulin in novel crystals grown at pH 3.8 1NBM ; 3.0 ; THE STRUCTURE OF BOVINE F1-ATPASE COVALENTLY INHIBITED WITH 4-CHLORO-7-NITROBENZOFURAZAN 1GMJ ; 2.2 ; The structure of bovine IF1, the regulatory subunit of mitochondrial F-ATPase 2BP2 ; 3.0 ; THE STRUCTURE OF BOVINE PANCREATIC PROPHOSPHOLIPASE A2 AT 3.0 ANGSTROMS RESOLUTION 1BPI ; 1.09 ; THE STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR AT 125K: DEFINITION OF CARBOXYL-TERMINAL RESIDUES GLYCINE-57 AND ALANINE-58 7N4Y ; 2.61 ; The structure of bovine thyroglobulin with iodinated tyrosines 4GGZ ; 1.75 ; The structure of bradavidin2-biotin complex 5XBW ; 3.109 ; The structure of BrlR 5XBT ; 2.495 ; The structure of BrlR bound to c-di-GMP 5XBI ; 1.4 ; The structure of BrlR-C domain bound to 3-amino-2-phenazino(a pyocyanin analog) 4MIR ; 2.4 ; The structure of Brucella abortus PliC in the hexagonal crystal form 4MIS ; 2.0 ; The structure of Brucella abortus PliC in the orthorombic crystal form 6HC6 ; 1.77 ; The structure of BSAP, a zinc aminopeptidase from Bacillus subtilis 2FCA ; 2.1 ; The structure of BsTrmB 6RCZ ; 1.74 ; The structure of Burkholderia pseudomallei trehalose-6-phosphatase 1VQ6 ; 2.7 ; The structure of c-hpmn and CCA-PHE-CAP-BIO bound to the large ribosomal subunit of haloarcula marismortui 3L2Y ; 2.7 ; The structure of C-reactive protein bound to phosphoethanolamine 4ITK ; 1.18 ; The structure of C.reinhardtii Ferredoxin 2 6H0P ; 3.47 ; The structure of C100A mutant of Arabidopsis thaliana UDP-apiose/UDP-xylose synthase in complex with NADH and UDP-D-glucuronic acid 5LIQ ; 1.85 ; The structure of C160S,C508S,C578S mutant of Nt.BspD6I nicking endonuclease at 0.185 nm resolution . 4IMA ; 1.954 ; The structure of C436M-hLPYK in complex with Citrate/Mn/ATP/Fru-1,6-BP 3CME ; 2.95 ; The Structure of CA and CCA-PHE-CAP-BIO Bound to the Large Ribosomal Subunit of Haloarcula Marismortui 3O78 ; 2.6 ; The structure of Ca2+ Sensor (Case-12) 3O77 ; 2.35 ; The structure of Ca2+ Sensor (Case-16) 4DUQ ; 1.3 ; The Structure of Ca2+-loaded S100A2 at 1.3A resolution 3R5V ; 1.65 ; The structure of calcium bound Thermococcus thioreducens inorganic pyrophosphatase at 298K 1CNP ; ; THE STRUCTURE OF CALCYCLIN REVEALS A NOVEL HOMODIMERIC FOLD FOR S100 CA2+-BINDING PROTEINS, NMR, 22 STRUCTURES 7PJC ; 2.11 ; The structure of Candida albicans phosphoglucomutase with isothiazolone modification on Cys359 5CB2 ; 2.9 ; the structure of candida albicans Sey1p in complex with GMPPNP 1W92 ; 1.7 ; The structure of carbomonoxy murine neuroglobin reveals a heme- sliding mechanism for affinity regulation 7EP9 ; 2.604 ; The structure of carboxypeptidase from Fusobacterium nucleatum 1OPO ; 3.2 ; THE STRUCTURE OF CARNATION MOTTLE VIRUS 2OP3 ; 1.6 ; The structure of cathepsin S with a novel 2-arylphenoxyacetaldehyde inhibitor derived by the Substrate Activity Screening (SAS) method 3MK7 ; 3.2 ; The structure of CBB3 cytochrome oxidase 5DJQ ; 3.2 ; The structure of CBB3 cytochrome oxidase. 4DOD ; 1.7 ; The structure of Cbescii CelA GH9 module 4CCS ; 1.9 ; The structure of CbiX, the terminal Enzyme for Biosynthesis of Siroheme in Denitrifying Bacteria 7JND ; 2.0 ; The structure of CBM32-1 and CBM32-2 domains from Clostridium perfringens ZmpB 7JNB ; 2.0 ; The structure of CBM32-1 and CBM32-2 domains from Clostridium perfringens ZmpB in complex with GalNAc 7JNF ; 2.1 ; The structure of CBM32-1 and CBM32-2 domains from Clostridium perfringens ZmpB in complex with GalNAc 2VMH ; 1.5 ; The structure of CBM51 from Clostridium perfringens GH95 2VMG ; 1.9 ; The structure of CBM51 from Clostridium perfringens GH95 in complex with methyl-galactose 7JRM ; 2.0 ; The structure of CBM51-2 and INT domains from Clostridium perfringens ZmpB 7JRL ; 1.5 ; The structure of CBM51-2 in complex with GlcNAc and INT domains from Clostridium perfringens ZmpB 1VQN ; 2.4 ; The structure of CC-HPMN AND CCA-PHE-CAP-BIO bound to the large ribosomal subunit of haloarcula marismortui 4O9B ; 2.604 ; The Structure of CC1-IH in human STIM1. 3CMA ; 2.8 ; The structure of CCA and CCA-Phe-Cap-Bio bound to the large ribosomal subunit of Haloarcula marismortui 3H37 ; 2.85 ; The structure of CCA-adding enzyme apo form I 3H38 ; 2.37 ; The structure of CCA-adding enzyme apo form II 1VQ9 ; 2.4 ; The structure of CCA-PHE-CAP-BIO and the antibiotic sparsomycin bound to the large ribosomal subunit of haloarcula marismortui 1VQ8 ; 2.2 ; The structure of CCDA-PHE-CAP-BIO and the antibiotic sparsomycin bound to the large ribosomal subunit of haloarcula marismortui 1VQK ; 2.3 ; The structure of CCDA-PHE-CAP-BIO bound to the a site of the ribosomal subunit of haloarcula marismortui 7E5W ; 2.55 ; The structure of CcpA from Staphylococcus aureus 1VQO ; 2.2 ; The structure of CCPMN bound to the large ribosomal subunit haloarcula marismortui 1FVV ; 2.8 ; THE STRUCTURE OF CDK2/CYCLIN A IN COMPLEX WITH AN OXINDOLE INHIBITOR 1IUL ; 2.0 ; The structure of cell-free ID.343 from Thermus thermophilus 5ZIG ; 2.05 ; The Structure of cellobiose 2-epimerase from Spirochaeta thermophila DSM 6192 3QDE ; 2.4 ; The structure of Cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate 6AGK ; 2.8 ; The structure of CH-II-77-tubulin complex 2OUL ; 2.2 ; The Structure of Chagasin in Complex with a Cysteine Protease Clarifies the Binding Mode and Evolution of a New Inhibitor Family 5JTQ ; ; The structure of chaperone SecB in complex with unstructured MBP binding site d 5JTR ; ; The structure of chaperone SecB in complex with unstructured MBP binding site e 5JTM ; ; The structure of chaperone SecB in complex with unstructured PhoA binding site a 5JTL ; ; The structure of chaperone SecB in complex with unstructured proPhoA 5JTN ; ; The structure of chaperone SecB in complex with unstructured proPhoA binding site c 5JTO ; ; The structure of chaperone SecB in complex with unstructured proPhoA binding site d 5JTP ; ; The structure of chaperone SecB in complex with unstructured proPhoA binding site e 3OA5 ; 1.74 ; The structure of chi1, a chitinase from Yersinia entomophaga 2QZY ; 1.9 ; The structure of chicken mitochondrial PEPCK in complex with PEP 2FAF ; 1.7 ; The structure of chicken mitochondrial PEPCK. 8HE1 ; 1.61 ; The structure of chitin deacetylase Pst_13661 from Puccinia striiformis f. sp. tritici 8HE2 ; 1.61 ; The structure of chitin deacetylase Pst_13661 from Puccinia striiformis f. sp. tritici 8HE4 ; 1.93 ; The structure of chitin deacetylase Pst_13661 from Puccinia striiformis f. sp. tritici 8HF9 ; 1.96 ; The structure of chitin deacetylase Pst_13661 from Puccinia striiformis f. sp. tritici 8HFA ; 2.64 ; The structure of chitin deacetylase VdPDA1 from Verticillium dahliae 7E76 ; 2.65 ; The structure of chloroplastic TaPGI 7A03 ; 1.39 ; The Structure of CHT 6FVF ; 1.47 ; The Structure of CK2alpha with CCh503 bound 6FVG ; 1.6 ; The Structure of CK2alpha with CCh507 bound 7C3Z ; 1.957 ; The structure of class II tumor suppressor protein H-REV107 7X3H ; 1.7 ; The structure of Clostridium botulinum ParM in the apo conformation 2VK5 ; 0.97 ; THE STRUCTURE OF CLOSTRIDIUM PERFRINGENS NANI SIALIDASE AND ITS CATALYTIC INTERMEDIATES 2VK6 ; 1.5 ; THE STRUCTURE OF CLOSTRIDIUM PERFRINGENS NANI SIALIDASE AND ITS CATALYTIC INTERMEDIATES 2VK7 ; 1.2 ; THE STRUCTURE OF CLOSTRIDIUM PERFRINGENS NANI SIALIDASE AND ITS CATALYTIC INTERMEDIATES 1TYF ; 2.3 ; THE STRUCTURE OF CLPP AT 2.3 ANGSTROM RESOLUTION SUGGESTS A MODEL FOR ATP-DEPENDENT PROTEOLYSIS 1H7E ; 1.83 ; The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogues, Apo-enzyme 1H7H ; 2.3 ; The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogues, CDP complex 1H7F ; 2.12 ; The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogues, CMP complex 1H7G ; 2.13 ; The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogues, CTP MG2+ complex 1H7T ; 2.48 ; The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogues, here complex with CMP-NeuAc 1GQC ; 2.6 ; THE STRUCTURE OF CMP:2-KETO-3-DEOXY-MANNO-OCTONIC ACID SYNTHETASE COMPLEXED WITH CMP-Kdo at 100K 1GQ9 ; 2.6 ; THE STRUCTURE OF CMP:2-KETO-3-DEOXY-MANNO-OCTONIC ACID SYNTHETASE COMPLEXED WITH CTP at 100K 6JRJ ; 2.943 ; The structure of co-crystals of 8r-B-EGFR T790M/C797S complex 6JRK ; 2.796 ; The structure of co-crystals of 8r-B-EGFR WT complex 3NYK ; 1.86 ; The structure of cobalt-substituted pseudoazurin from Alcaligenes faecalis 3U4G ; 1.9 ; The Structure of CobT from Pyrococcus horikoshii 1RPR ; ; THE STRUCTURE OF COLE1 ROP IN SOLUTION 5O32 ; 4.20621 ; The structure of complement complex 6OYF ; 2.1 ; The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module 6OZV ; 2.18 ; The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module in complex with AMP 6P3I ; 2.15 ; The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module in complex with Mg 6P4U ; 2.1 ; The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module in complex with Mg and AMP 6P1J ; 2.95 ; The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module 2HIY ; 1.4 ; The structure of conserved bacterial protein SP0830 from Streptococcus pneumoniae. (CASP Target) 4FFE ; 2.25 ; The structure of cowpox virus CPXV018 (OMCP) 7Y7M ; 3.05 ; The structure of coxsackievirus A16 mature virion in complex with Fab 8C4 3ZH7 ; 2.102 ; The structure of crystal form II of Haemophilus influenzae protein E 2CHA ; 2.0 ; THE STRUCTURE OF CRYSTALLINE ALPHA-CHYMOTRYPSIN, $V.THE ATOMIC STRUCTURE OF TOSYL-ALPHA-CHYMOTRYPSIN AT 2 ANGSTROMS RESOLUTION 2BTF ; 2.55 ; THE STRUCTURE OF CRYSTALLINE PROFILIN-BETA-ACTIN 3ZC4 ; 2.72 ; The structure of Csa5 from Sulfolobus solfataricus. 3DEL ; 1.92 ; The structure of CT381, the arginine binding protein from the periplasm Chlamydia trachomatis 5KAX ; 2.0 ; The structure of CTR107 protein bound to RHODAMINE 6G 4M4L ; 1.45 ; The structure of Cu T6 bovine insulin 1NIA ; 2.5 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 1NIB ; 2.7 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 1NIC ; 1.9 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 1NID ; 2.2 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 1NIE ; 1.9 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 1NIF ; 1.7 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 2NRD ; 2.1 ; THE STRUCTURE OF CU-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT FIVE PH VALUES, WITH NITRITE BOUND AND WITH TYPE II CU DEPLETED 6AD0 ; 3.9 ; The structure of CVA10 mature virion in complex with Fab 2G8 6AD1 ; 4.2 ; The structure of CVA10 procapsid from its complex with Fab 2G8 6ACY ; 3.4 ; The structure of CVA10 virus A-particle 6ACZ ; 4.3 ; The structure of CVA10 virus A-particle from its complex with Fab 2G8 6ACU ; 3.4 ; The structure of CVA10 virus mature virion 6ACW ; 4.0 ; The structure of CVA10 virus procapsid particle 2XB3 ; 2.8 ; The Structure of Cyanobacterial PsbP 3EN0 ; 1.5 ; The Structure of Cyanophycinase 4JPD ; 1.9 ; The structure of CyaY from Burkholderia cenocepacia 3LE6 ; 2.0 ; The structure of cyclin dependent kinase 2 (CKD2) with a pyrazolobenzodiazepine inhibitor 1P2A ; 2.5 ; The structure of cyclin dependent kinase 2 (CKD2) with a trisubstituted naphthostyril inhibitor 1JSV ; 1.96 ; The structure of cyclin-dependent kinase 2 (CDK2) in complex with 4-[(6-amino-4-pyrimidinyl)amino]benzenesulfonamide 1DI8 ; 2.2 ; THE STRUCTURE OF CYCLIN-DEPENDENT KINASE 2 (CDK2) IN COMPLEX WITH 4-[3-HYDROXYANILINO]-6,7-DIMETHOXYQUINAZOLINE 1FVT ; 2.2 ; THE STRUCTURE OF CYCLIN-DEPENDENT KINASE 2 (CDK2) IN COMPLEX WITH AN OXINDOLE INHIBITOR 7VDU ; 1.53 ; The structure of cyclin-dependent kinase 2 (CDK2) in complex with Compound 1 7VDP ; 2.09 ; The structure of cyclin-dependent kinase 5 (CDK5) in complex with p25 and Compound 1 7VDR ; 2.55 ; The structure of cyclin-dependent kinase 5 (CDK5) in complex with p25 and Compound 13 7VDS ; 3.05 ; The structure of cyclin-dependent kinase 5 (CDK5) in complex with p25 and Compound 24 7VDQ ; 2.91 ; The structure of cyclin-dependent kinase 5 (CDK5) in complex with p25 and Compound 7 8WY1 ; 3.9 ; The structure of cyclization domain in cyclic beta-1,2-glucan synthase from Thermoanaerobacter italicus 2Y75 ; 2.0 ; The Structure of CymR (YrzC) the Global Cysteine Regulator of B. subtilis 6TET ; 1.49987 ; The structure of CYP121 in complex with inhibitor L21 6TEV ; 1.70001 ; The structure of CYP121 in complex with inhibitor L44 6TE7 ; 1.50002 ; The structure of CYP121 in complex with inhibitor S2 4I1Y ; 2.6 ; The structure of Cysteine synthase from Mycobacterium ulcerans Agy99 3QZ2 ; 3.2 ; The structure of cysteine-free human insulin degrading enzyme 2XIL ; 1.68 ; The structure of cytochrome c peroxidase Compound I 2XJ5 ; 1.69 ; The structure of cytochrome c peroxidase Compound II 1CED ; ; THE STRUCTURE OF CYTOCHROME C6 FROM MONORAPHIDIUM BRAUNII, NMR, MINIMIZED AVERAGE STRUCTURE 7E77 ; 2.04 ; The structure of cytosolic TaPGI 7E78 ; 2.21 ; the structure of cytosolic TaPGI with substrate 1Z8V ; 1.75 ; The Structure of d(GGCCAATTGG) Complexed with Netropsin 362D ; 1.3 ; THE STRUCTURE OF D(TGCGCA)2 AND A COMPARISON TO OTHER Z-DNA HEXAMERS 1LJX ; 1.64 ; THE STRUCTURE OF D(TPGPCPGPCPA)2 AT 293K: COMPARISON OF THE EFFECT OF SEQUENCE AND TEMPERATURE 5LHC ; 2.4 ; The structure of D456A mutant of Nt.BspD6I nicking endonuclease at 0.24 nm resolution . 5JZV ; 2.07 ; The structure of D77G hCINAP-ADP 2VLE ; 2.4 ; The structure of daidzin, a naturally occurring anti alcohol- addiction agent, in complex with human mitochondrial aldehyde dehydrogenase 1D30 ; 2.4 ; THE STRUCTURE OF DAPI BOUND TO DNA 7D79 ; 2.10411 ; The structure of DcsB complex with its substrate analogue 4EXW ; 2.8 ; The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins. 7W8D ; 2.75016 ; The structure of Deinococcus radiodurans RuvC 7W89 ; 1.50006 ; The structure of Deinococcus radiodurans Yqgf 1TG8 ; 2.61 ; The structure of Dengue virus E glycoprotein 1HMD ; 2.0 ; THE STRUCTURE OF DEOXY AND OXY HEMERYTHRIN AT 2.0 ANGSTROMS RESOLUTION 1HMO ; 2.0 ; THE STRUCTURE OF DEOXY AND OXY HEMERYTHRIN AT 2.0 ANGSTROMS RESOLUTION 2NOA ; 1.8 ; The structure of deoxycytidine kinase complexed with lamivudine and ADP. 2NO9 ; 2.15 ; The structure of deoxycytidine kinase complexed with troxacitabine and ADP. 2INS ; 2.5 ; THE STRUCTURE OF DES-PHE B1 BOVINE INSULIN 5EL8 ; 2.3 ; The structure of DHAR1 from Arabidopsis thaliana 5ELA ; 2.28 ; The structure of DHAR1 from Arabidopsis thaliana 5ELG ; 1.81 ; The structure of DHAR1 from Arabidopsis thaliana 5XGV ; 2.099 ; The structure of Diels-Alderase PyrE3 in the biosynthetic pathway of pyrroindomycins 5BTU ; 2.503 ; The structure of Diels-Alderase PyrI4 in the biosynthetic pathway of pyrroindomycins 4DPP ; 2.0 ; The structure of dihydrodipicolinate synthase 2 from Arabidopsis thaliana 4DPQ ; 2.202 ; The structure of dihydrodipicolinate synthase 2 from Arabidopsis thaliana in complex with (S)-lysine 3IC9 ; 2.15 ; The structure of dihydrolipoamide dehydrogenase from Colwellia psychrerythraea 34H. 4HB7 ; 1.95 ; The Structure of Dihydropteroate Synthase from Staphylococcus aureus subsp. aureus Mu50. 2HT9 ; 1.9 ; The structure of dimeric human glutaredoxin 2 7VOR ; 2.74 ; The structure of dimeric photosynthetic RC-LH1 supercomplex in Class-1 7VOT ; 2.9 ; The structure of dimeric photosynthetic RC-LH1 supercomplex in Class-2 4ZPU ; 2.4 ; The structure of DLP12 endolysin exhibits likely active and inactive conformations. 3ZQ7 ; 2.52 ; The Structure of DNA-binding domain of response regulator from Escherichia coli K-12 7EXX ; 2.5 ; The structure of DndG 5SUH ; 2.7 ; The structure of double ringed trimeric shell protein MSM0271 from the RMM microcompartment 3HAC ; 2.0 ; The structure of DPP-4 in complex with piperidine fused imidazopyridine 34 2HHA ; 2.35 ; The structure of DPP4 in complex with an oxadiazole inhibitor 3HAB ; 2.1 ; The structure of DPP4 in complex with piperidine fused benzimidazole 25 6B1E ; 1.77 ; The structure of DPP4 in complex with Vildagliptin 6B1O ; 1.91 ; The structure of DPP4 in complex with Vildagliptin Analog 6HVQ ; 1.9 ; The structure of Dps from Listeria innocua soaked before soaking experiments with Zn, Co and La 6HX2 ; 1.597 ; The structure of Dps from Listeria innocua soaked with Cobalt 6HUI ; 2.995 ; The structure of Dps from Listeria innocua soaked with zinc 5YH0 ; 3.45 ; The structure of DrFam20C1 5YH2 ; 3.55 ; The structure of DrFam20C1 and hFam20A complex 5ZK4 ; 2.03 ; The structure of DSZS acyltransferase with carrier protein 2KWF ; ; The structure of E-protein activation domain 1 bound to the KIX domain of CBP/p300 elucidates leukemia induction by E2A-PBX1 1XJW ; 2.71 ; The Structure of E. coli Aspartate Transcarbamoylase Q137A Mutant in The R-State 7P8V ; 3.6 ; The structure of E. coli MutL bound to a 3' resected DNA end 1YKI ; 1.7 ; The structure of E. coli nitroreductase bound with the antibiotic nitrofurazone 1YLU ; 2.0 ; The structure of E. coli nitroreductase with bound acetate, crystal form 2 8RTZ ; 1.52 ; The structure of E. coli penicillin binding protein 3 (PBP3) in complex with a bicyclic peptide inhibitor 6CZF ; 1.949 ; The structure of E. coli PurF in complex with ppGpp-Mg 5F6C ; 3.002 ; The structure of E. coli RNase E catalytically inactive mutant with RNA bound 8I1Y ; 1.78 ; The structure of E. coli TrpRS bound with a chemical fragment 2V4Y ; 2.8 ; THE STRUCTURE OF E. COLI UMP KINASE IN COMPLEX WITH ITS ALLOSTERIC REGULATOR GTP 2BND ; 2.6 ; The structure of E. coli UMP kinase in complex with UDP 2BNE ; 2.3 ; The structure of E. coli UMP kinase in complex with UMP 2BNF ; 2.45 ; The structure of E. coli UMP kinase in complex with UTP 1YLR ; 1.7 ; The structure of E.coli nitroreductase with bound acetate, crystal form 1 3K6L ; 2.15 ; The structure of E.coli peptide deformylase (PDF) in complex with peptidomimetic ligand BB2827 4M80 ; 1.858 ; The structure of E292S glycosynthase variant of exo-1,3-beta-glucanase from Candida albicans at 1.85A resolution 4M81 ; 1.86 ; The structure of E292S glycosynthase variant of exo-1,3-beta-glucanase from Candida albicans complexed with 1-fluoro-alpha-D-glucopyranoside (donor) and p-nitrophenyl beta-D-glucopyranoside (acceptor) at 1.86A resolution 4M82 ; 1.592 ; The structure of E292S glycosynthase variant of exo-1,3-beta-glucanase from Candida albicans complexed with p-nitrophenyl-gentiobioside (product) at 1.6A resolution 6KTV ; 2.2 ; The structure of EanB complex with hercynine and persulfided Cys412 6KVY ; 1.78 ; The structure of EanB/T414A complex with hercynine 6KVZ ; 2.18 ; The structure of EanB/T414V complex with hercynine 6KU1 ; 2.25 ; The structure of EanB/Y353A complex with ergothioneine 6KU2 ; 2.34 ; The structure of EanB/Y353A complex with ergothioneine covalent linked with persulfide Cys412 6KW0 ; 2.8 ; The structure of EanB/Y353F-Cys412-persulfide in tetrahedral intermediate state with ergothioneine 7YER ; 3.0 ; The structure of EBOV L-VP35 complex 7YET ; 3.3 ; The structure of EBOV L-VP35 in complex with suramin 8JSL ; 2.95 ; The structure of EBOV L-VP35-RNA complex 8JSM ; 3.3 ; The structure of EBOV L-VP35-RNA complex (conformation 1) 8JSN ; 3.4 ; The structure of EBOV L-VP35-RNA complex (conformation 2) 7YES ; 3.4 ; The structure of EBOV L-VP35-RNA complex (state2) 6ZG3 ; 2.8 ; the structure of ECF PanT transporter in a complex with a nanobody 4V5L ; 3.1 ; The structure of EF-Tu and aminoacyl-tRNA bound to the 70S ribosome with a GTP analog 6O6M ; 2.506 ; The Structure of EgtB (Cabther) 6O6L ; 2.25 ; The Structure of EgtB(Cabther) in complex with Hercynine 1R8L ; 2.6 ; The structure of endo-beta-1,4-galactanase from Bacillus licheniformis 1UR0 ; 2.5 ; The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. 1UR4 ; 2.2 ; The structure of endo-beta-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. 1KS8 ; 1.4 ; The structure of Endoglucanase from termite, Nasutitermes takasagoensis, at pH 2.5. 1KSC ; 1.55 ; The structure of Endoglucanase from termite, Nasutitermes takasagoensis, at pH 5.6. 1KSD ; 1.6 ; The structure of Endoglucanase from termite, Nasutitermes takasagoensis, at pH 6.5. 7XTT ; 1.82 ; The structure of engineered TfCut S130A in complex with MHET 4F47 ; 1.75 ; The Structure of Enoyl-CoA hydratase EchA19 from Mycobacterium marinum 6IYK ; 2.45 ; The structure of EntE with 2-nitrobenzoyl adenylate analog 6IYL ; 2.56 ; The structure of EntE with 3-cyanobenzoyl adenylate analog 6AJ0 ; 3.4 ; The structure of Enterovirus D68 mature virion 6AJ7 ; 3.6 ; The structure of Enterovirus D68 mature virion in complex with Fab 15C5 6AJ9 ; 3.5 ; The structure of Enterovirus D68 mature virion in complex with Fab 15C5 and 11G1 6AJ3 ; 3.8 ; The structure of Enterovirus D68 procapsid 1MFG ; 1.25 ; The Structure of ERBIN PDZ domain bound to the Carboxy-terminal tail of the ErbB2 Receptor 1MFL ; 1.88 ; The Structure of ERBIN PDZ domain bound to the Carboxy-terminal tail of the ErbB2 Receptor 1TVO ; 2.5 ; The structure of ERK2 in complex with a small molecule inhibitor 7AUV ; 1.76 ; The structure of ERK2 in complex with dual inhibitor ASTX029 3W55 ; 3.0 ; The structure of ERK2 in complex with FR148083 1K6W ; 1.75 ; The Structure of Escherichia coli Cytosine Deaminase 1K70 ; 1.8 ; The Structure of Escherichia coli Cytosine Deaminase bound to 4-Hydroxy-3,4-Dihydro-1H-Pyrimidin-2-one 1EHS ; ; THE STRUCTURE OF ESCHERICHIA COLI HEAT-STABLE ENTEROTOXIN B BY NUCLEAR MAGNETIC RESONANCE AND CIRCULAR DICHROISM 1ICR ; 1.7 ; THE STRUCTURE OF ESCHERICHIA COLI NITROREDUCTASE COMPLEXED WITH NICOTINIC ACID 1ICU ; 1.8 ; THE STRUCTURE OF ESCHERICHIA COLI NITROREDUCTASE COMPLEXED WITH NICOTINIC ACID 1ICV ; 2.4 ; THE STRUCTURE OF ESCHERICHIA COLI NITROREDUCTASE COMPLEXED WITH NICOTINIC ACID 4DAP ; 2.2 ; The structure of Escherichia coli SfsA 4P1M ; 1.95 ; The structure of Escherichia coli ZapA 5DKO ; 2.4 ; The structure of Escherichia coli ZapD 5HC3 ; 2.4 ; The structure of esterase Est22 5HC5 ; 2.43 ; The structure of esterase Est22 mutant-S188A 1UOM ; 2.28 ; The Structure of Estrogen Receptor in Complex with a Selective and Potent Tetrahydroisochiolin Ligand. 1FXX ; 2.4 ; THE STRUCTURE OF EXONUCLEASE I SUGGESTS HOW PROCESSIVITY IS ACHIEVED 3ZIA ; 2.5 ; The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF1 2V7Q ; 2.1 ; The structure of F1-ATPase inhibited by I1-60HIS, a monomeric form of the inhibitor protein, IF1. 2JJ1 ; 2.7 ; The Structure of F1-ATPase inhibited by piceatannol. 2JJ2 ; 2.4 ; The Structure of F1-ATPase inhibited by quercetin. 2JIZ ; 2.3 ; The Structure of F1-ATPase inhibited by resveratrol. 6W69 ; 2.501 ; The structure of F64, S172A Keap1-BTB domain 1T66 ; 2.3 ; The structure of FAB with intermediate affinity for fluorescein. 7DX4 ; 3.6 ; The structure of FC08 Fab-hA.CE2-RBD complex 3EF0 ; 2.1 ; The Structure of Fcp1, an essential RNA polymerase II CTD phosphatase 3EF1 ; 2.15 ; The Structure of Fcp1, an essential RNA polymerase II CTD phosphatase 2G0B ; 3.0 ; The structure of FeeM, an N-acyl amino acid synthase from uncultured soil microbes 2XJ6 ; 1.7 ; The structure of ferrous ascorbate peroxidase 2XJ8 ; 1.69 ; The structure of ferrous cytochrome c peroxidase 2MTP ; ; The structure of Filamin repeat 21 bound to integrin 7WVS ; 2.35 ; The structure of FinI complex with SAM 1FIP ; 1.9 ; THE STRUCTURE OF FIS MUTANT PRO61ALA ILLUSTRATES THAT THE KINK WITHIN THE LONG ALPHA-HELIX IS NOT DUE TO THE PRESENCE OF THE PROLINE RESIDUE 2HAH ; 1.7 ; The structure of FIV 12S protease in complex with TL-3 4I2O ; 1.77 ; The Structure of FixK2 from Bradyrhizobium japonicum 5MGX ; 2.18 ; The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90 7XQU ; 2.6 ; The structure of FLA-E*00301/EM-FECV-10 7XQS ; 2.69 ; The structure of FLA-K*00701/KP-CoV-9 7XQT ; 2.8 ; The structure of FLA-K*00701/KP-FECV-11 7F39 ; 1.888 ; The structure of flavin transferase FmnB 1FCD ; 2.53 ; THE STRUCTURE OF FLAVOCYTOCHROME C SULFIDE DEHYDROGENASE FROM A PURPLE PHOTOTROPHIC BACTERIUM CHROMATIUM VINOSUM AT 2.5 ANGSTROMS RESOLUTION 8EW5 ; 6.0 ; The structure of flightin within myosin thick filaments from Bombus ignitus flight muscle 8U8H ; 4.7 ; The structure of flightin within myosin thick filaments from Drosophila melanogaster flight muscle 5IKV ; 2.508 ; The Structure of Flufenamic Acid Bound to Human Cyclooxygenase-2 3H1O ; 2.0 ; The Structure of Fluorescent Protein FP480 8FIA ; 2.4 ; The structure of fly Teneurin self assembly 2WZR ; 3.0 ; The Structure of Foot and Mouth Disease Virus Serotype SAT1 7VFX ; 2.8 ; The structure of Formyl Peptide Receptor 1 in complex with Gi and peptide agonist fMIFL 7EUO ; 2.9 ; The structure of formyl peptide receptor 1 in complex with Gi and peptide agonist fMLF 6K1T ; 1.584 ; The structure of Francisella virulence factor BioJ 6GG2 ; 2.598 ; The structure of FsqB from Aspergillus fumigatus, a flavoenzyme of the amine oxidase family 2VXY ; 1.7 ; The structure of FTsZ from Bacillus subtilis at 1.7A resolution 3HJL ; 2.4 ; The structure of full-length FliG from Aquifex aeolicus 6HYC ; 3.18 ; The structure of full-length human phenylalanine hydroxylase in complex with the cofactor and negative regulator tetrahydrobiopterin 6CI1 ; 4.9 ; The Structure of Full-Length Kv Beta 2.1 Determined by Cryogenic Electron Microscopy 5KMP ; 3.2 ; The structure of G164E variant of type II NADH dehydrogenase from Caldalkalibacillus thermarum 1SZK ; 2.52 ; The structure of gamma-aminobutyrate aminotransferase mutant: E211S 1SZS ; 2.1 ; The structure of gamma-aminobutyrate aminotransferase mutant: I50Q 1SZU ; 2.52 ; The structure of gamma-aminobutyrate aminotransferase mutant: V241A 8B81 ; 1.585 ; The structure of Gan1D W433A in complex with cellobiose-6-phosphate 8B80 ; 1.78 ; The structure of Gan1D W433A in complex with galactose-6P 7VYO ; 2.25 ; The structure of GdmN 7VZY ; 2.81 ; The structure of GdmN complex with AMP and 20-O-methyl-19-chloroproansamitocin 7VX0 ; 2.0 ; The structure of GdmN complex with ATP 7VYP ; 2.88 ; The structure of GdmN complex with the natural tetrahedral intermediate, carbamoylated derivative, and AMP 7VYJ ; 1.98 ; The structure of GdmN in complex with carbamoyl adenylate intermediate 7VZN ; 2.1 ; The structure of GdmN in complex with carbamoyl adenylate intermediate and 20-O-methyl-19-chloroproansamitocin 7VZZ ; 2.85 ; The structure of GdmN in complex with the natural tetrahedral intermediate, carbamoyl adenylate, and 20-O-methyl-19-chloroproansamitocin 7VZQ ; 2.1 ; The structure of GdmN V24Y/G157A/R158A/G188R mutant in complex with carbamoyl adenylate intermediate 7VZU ; 2.3 ; The structure of GdmN Y82F mutant 1W8I ; 2.1 ; The Structure of gene product af1683 from Archaeoglobus fulgidus. 1ZS7 ; 1.85 ; The structure of gene product APE0525 from Aeropyrum pernix 7VEF ; 2.65 ; The structure of GfsA KSQ-AT didomain in complex with a malonate substrate analog 5A58 ; 1.8 ; The structure of GH101 D764N mutant from Streptococcus pneumoniae TIGR4 in complex with serinyl T-antigen 5A5A ; 1.75 ; The structure of GH101 E796Q mutant from Streptococcus pneumoniae TIGR4 in complex with PNP-T-antigen 5A59 ; 2.5 ; The structure of GH101 E796Q mutant from Streptococcus pneumoniae TIGR4 in complex with T-antigen 5A56 ; 1.8 ; The structure of GH101 from Streptococcus pneumoniae TIGR4 in complex with 1-O-methyl-T-antigen 5A57 ; 1.46 ; The structure of GH101 from Streptococcus pneumoniae TIGR4 in complex with PUGT 4CD6 ; 1.64 ; The structure of GH113 beta-mannanase AaManA from Alicyclobacillus acidocaldarius in complex with ManIFG 4CD7 ; 1.65 ; The structure of GH113 beta-mannanase AaManA from Alicyclobacillus acidocaldarius in complex with ManIFG and beta-1,4-mannobiose 4CD8 ; 1.47 ; The structure of GH113 beta-mannanase AaManA from Alicyclobacillus acidocaldarius in complex with ManMIm 4CD4 ; 1.2 ; The structure of GH26 beta-mannanase CjMan26C from Cellvibrio japonicus in complex with ManIFG 4CD5 ; 1.1 ; The structure of GH26 beta-mannanase CjMan26C from Cellvibrio japonicus in complex with ManMIm 6Q75 ; 1.75 ; The structure of GH26A from Muricauda sp. MAR_2010_75 6Q78 ; 1.5 ; The structure of GH26C from Muricauda sp. MAR_2010_75 6NUM ; 1.9 ; The structure of GH32 from Bifidobacteium adolescentis 7YIL ; 2.17 ; The structure of GINS from Methanocaldococcus jannaschii 3MX1 ; 2.3 ; The structure of GIY-YIG endonuclease R.Eco29kI 4EX4 ; 2.1 ; The Structure of GlcB from Mycobacterium leprae 4EM6 ; 1.9 ; The structure of Glucose-6-phosphate isomerase (GPI) from Brucella melitensis 6ZL4 ; 3.0 ; the structure of glutamate transporter homologue GltTk in complex with the photo switchable compound (cis) 6ZLH ; 2.8 ; the structure of glutamate transporter homologue GltTk in complex with the photo switchable compound (trans) 4H3S ; 2.15 ; The Structure of Glutaminyl-tRNA Synthetase from Saccharomyces Cerevisiae 1GER ; 1.86 ; THE STRUCTURE OF GLUTATHIONE REDUCTASE FROM ESCHERICHIA COLI AT 1.86 ANGSTROMS RESOLUTION: COMPARISON WITH THE ENZYME FROM HUMAN ERYTHROCYTES 1YWG ; 2.6 ; The structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum 7CKA ; 1.06 ; The structure of Glycine max (Soybean) Heme oxygenase 1 2AMV ; 2.3 ; THE STRUCTURE OF GLYCOGEN PHOSPHORYLASE B WITH AN ALKYL-DIHYDROPYRIDINE-DICARBOXYLIC ACID 1RHG ; 2.2 ; THE STRUCTURE OF GRANULOCYTE-COLONY-STIMULATING FACTOR AND ITS RELATIONSHIP TO THOSE OF OTHER GROWTH FACTORS 4RXO ; 2.6 ; The structure of GTP-bound SAMHD1 4RXP ; 2.1 ; The structure of GTP-dATP-bound SAMHD1 4RXR ; 2.117 ; The structure of GTP-dCTP-bound SAMHD1 4RXS ; 2.2 ; The structure of GTP-dTTP-bound SAMHD1 4RXQ ; 2.1 ; The structure of GTP-dUTP-bound SAMHD1 113D ; 2.5 ; THE STRUCTURE OF GUANOSINE-THYMIDINE MISMATCHES IN B-DNA AT 2.5 ANGSTROMS RESOLUTION 4DHZ ; 3.11 ; The structure of h/ceOTUB1-ubiquitin aldehyde-UBC13~Ub 4LDT ; 1.901 ; The structure of h/ceOTUB1-ubiquitin aldehyde-UBCH5B~Ub 8GHC ; 2.3 ; The structure of h12-LOX in dimeric form 8GHD ; 2.2 ; The structure of h12-LOX in hexameric form bound to inhibitor ML355 and arachidonic acid 8GHB ; 2.76 ; The structure of h12-LOX in monomeric form 8GHE ; 2.05 ; The structure of h12-LOX in tetrameric form bound to endogenous inhibitor oleoyl-CoA 3H09 ; 1.75 ; The structure of Haemophilus influenzae IgA1 protease 3ZH5 ; 1.801 ; The structure of Haemophilus influenzae protein E 7T2Z ; 2.2547 ; The structure of Haemophilus influenzae Rd KW20 nitroreductase complexed with 1-methyl-5-nitroimidazole 7T33 ; 2.301 ; The structure of Haemophilus influenzae Rd KW20 nitroreductase complexed with nicotinic acid 3ZH6 ; 2.292 ; The structure of Haemophilus influenzae Se_Met form of protein E 1SVD ; 1.8 ; The structure of Halothiobacillus neapolitanus RuBisCo 2M2K ; ; The structure of HasB CTD 6JQ5 ; 2.059 ; The structure of Hatchet Ribozyme 3IIJ ; 1.76 ; The structure of hCINAP-ADP complex at 1.76 angstroms resolution. 3IIM ; 2.0 ; The structure of hCINAP-dADP complex at 2.0 angstroms resolution 3IIL ; 2.0 ; The structure of hCINAP-MgADP-Pi complex at 2.0 angstroms resolution 3IIK ; 1.95 ; The structure of hCINAP-SO4 complex at 1.95 angstroms resolution 6DEJ ; 1.6279 ; The structure of HcRed7, a brighter and red-shifted HcRed variant 3RVB ; 2.2 ; The structure of HCV NS3 helicase (Heli-80) bound with inhibitor ITMN-3479 4BKX ; 3.0 ; The structure of HDAC1 in complex with the dimeric ELM2-SANT domain of MTA1 from the NuRD complex 2XUV ; 1.5 ; The structure of HdeB 4LKG ; 2.994 ; The structure of hemagglutinin from a avian-origin H7N9 influenza virus (A/Shanghai/1/2013) in complex with avian receptor analog 3'SLNLN 4LKH ; 3.099 ; The structure of hemagglutinin from a avian-origin H7N9 influenza virus (A/Shanghai/1/2013) in complex with human receptor analog 6'SLNLN 4YY0 ; 2.59 ; The structure of hemagglutinin from a H6N1 influenza virus (A/chicken/Taiwan/A2837/2013) 4YY7 ; 2.99 ; The structure of hemagglutinin from a H6N1 influenza virus (A/chicken/Taiwan/A2837/2013) in complex with avian receptor analog 3'SLNLN 4YY1 ; 3.1 ; The structure of hemagglutinin from a H6N1 influenza virus (A/chicken/Taiwan/A2837/2013) in complex with human receptor analog 6'SLNLN 4YY9 ; 2.601 ; The structure of hemagglutinin from a H6N1 influenza virus (A/Taiwan/2/2013) 4YYA ; 2.595 ; The structure of hemagglutinin from a H6N1 influenza virus (A/Taiwan/2/2013) in complex with avian receptor analog 3'SLNLN 4YYB ; 2.609 ; The structure of hemagglutinin from a H6N1 influenza virus (A/Taiwan/2/2013) in complex with human receptor analog 6'SLNLN 5XL1 ; 2.3 ; The structure of hemagglutinin from an avian-origin H4N6 influenza virus 5XL4 ; 2.102 ; The structure of hemagglutinin from an avian-origin H4N6 influenza virus in complex with human receptor analog Lstc 4KOL ; 2.799 ; The structure of hemagglutinin from avian-origin H7N9 influenza virus 4LCX ; 3.094 ; The structure of hemagglutinin from avian-origin H7N9 influenza virus (A/Shanghai/1/2013) 4KOM ; 2.604 ; The structure of hemagglutinin from avian-origin H7N9 influenza virus in complex with avian receptor analog 3'SLNLN (NeuAcα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc) 4KON ; 2.6 ; The structure of hemagglutinin from avian-origin H7N9 influenza virus in complex with human receptor analog 6'SLNLN (NeuAcα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc) 5XL8 ; 2.001 ; The structure of hemagglutinin G228S mutant from a avian-origin H4N6 influenza virus (A/duck/Czech/1956) 5XL9 ; 2.39 ; The structure of hemagglutinin G228S mutant from an avian-origin H4N6 influenza virus in complex with avian receptor analog LSTa 5XLA ; 2.1 ; The structure of hemagglutinin G228S mutant from an avian-origin H4N6 influenza virus in complex with human receptor analog LSTc 4LKJ ; 2.798 ; The structure of hemagglutinin L226Q mutant (H3 numbering) from a avian-origin H7N9 influenza virus (A/Anhui/1/2013) in complex with avian receptor analog 3'SLNLN 4LKK ; 2.491 ; The structure of hemagglutinin L226Q mutant (H3 numbering) from a avian-origin H7N9 influenza virus (A/Anhui/1/2013) in complex with human receptor analog 6'SLNLN 4LKI ; 2.7 ; The structure of hemagglutinin L226Q mutant from a avian-origin H7N9 influenza virus (A/Anhui/1/2013) 4FIU ; 1.999 ; The structure of hemagglutinin of H16 subtype influenza virus with V327G mutation 5XL6 ; 2.41 ; The structure of hemagglutinin Q226L mutant from a avian-origin H4N6 influenza virus 5XL5 ; 2.2 ; The structure of hemagglutinin Q226L mutant from an avian-origin H4N6 influenza virus 5XL7 ; 2.1 ; The structure of hemagglutinin Q226L mutant from an avian-origin H4N6 influenza virus in complex with human receptor analog LSTc 5XLB ; 2.5 ; The structure of hemagglutinin Q226L-G228S mutant from an avian-origin H4N6 influenza virus 5XLC ; 2.4 ; The structure of hemagglutinin Q226L-G228S mutant from an avian-origin H4N6 influenza virus in complex with avian receptor analog LSTa 5XLD ; 2.3 ; The structure of hemagglutinin Q226L-G228S mutant from an avian-origin H4N6 influenza virus in complex with human receptor analog LSTc 5XL2 ; 2.3 ; The structure of hemagglutininfrom a swine-origin H4N6 influenza virus 2C0K ; 2.6 ; The structure of hemoglobin from the botfly Gasterophilus intestinalis 1WTN ; 1.13 ; The structure of HEW Lysozyme Orthorhombic Crystal Growth under a High Magnetic Field 5YH3 ; 3.3 ; The structure of hFam20C and hFam20A complex 2VD3 ; 2.45 ; The structure of histidine inhibited HisG from Methanobacterium thermoautotrophicum 5ITJ ; 1.63 ; The structure of histone-like protein 6M01 ; 2.0 ; The structure of HitB-HitD complex 1HH1 ; 2.15 ; THE STRUCTURE OF HJC, A HOLLIDAY JUNCTION RESOLVING ENZYME FROM SULFOLOBUS SOLFATARICUS 6J1W ; 1.501 ; The structure of HLA-A*3001/RT313 6J29 ; 1.6 ; The structure of HLA-A*3003/MTB 6J2A ; 1.4 ; The structure of HLA-A*3003/NP44 6J1V ; 2.0 ; The structure of HLA-A*3003/RT313 7XF3 ; 1.91 ; The structure of HLA-B*1501/BM58-66AF9 4LNR ; 2.0 ; The structure of HLA-B*35:01 in complex with the peptide (RPQVPLRPMTY) 2Q6W ; 2.25 ; The structure of HLA-DRA, DRB3*0101 (DR52a) with bound platelet integrin peptide associated with fetal and neonatal alloimmune thrombocytopenia 3NOJ ; 1.82 ; The structure of HMG/CHA aldolase from the protocatechuate degradation pathway of Pseudomonas putida 1HL5 ; 1.8 ; The Structure of Holo Type Human Cu, Zn Superoxide Dismutase 5ZE4 ; 2.11 ; The structure of holo- structure of DHAD complex with [2Fe-2S] cluster 2MHB ; 2.0 ; THE STRUCTURE OF HORSE METHAEMOGLOBIN AT 2.0 ANGSTROMS RESOLUTION 7BQP ; 1.33 ; The structure of HpiI 7BQO ; 1.53 ; The structure of HpiI in complex with its substrate analogue 1NA1 ; 3.3 ; The structure of HRV14 when complexed with Pleconaril 1NCQ ; 2.5 ; The structure of HRV14 when complexed with pleconaril, an antiviral compound 1ND3 ; 2.8 ; The structure of HRV16, when complexed with pleconaril, an antiviral compound 5ME4 ; 1.52 ; The structure of HtxB from Pseudomonas stutzeri in complex with hypophosphite to 1.52 A resolution 7XL9 ; 2.58 ; The structure of HucR with urate 4NRE ; 2.63 ; The structure of human 15-lipoxygenase-2 with a substrate mimic 7TC0 ; 3.1 ; The structure of human ABCA1 in digitonin 7TBY ; 4.0 ; The structure of human ABCA1 in nanodisc 7R8C ; 3.7 ; The structure of human ABCG1 7R8E ; 3.7 ; The structure of human ABCG1 E242Q complexed with ATP 7R8D ; 3.2 ; The structure of human ABCG1 E242Q with cholesterol 7R88 ; 3.5 ; The structure of human ABCG5-I529W/ABCG8-WT 7R87 ; 3.4 ; The structure of human ABCG5-WT/ABCG8-I419E 7R8A ; 2.9 ; The structure of human ABCG5/ABCG8 purified from mammalian cells 7R89 ; 2.6 ; The structure of human ABCG5/ABCG8 purified from yeast 7R8B ; 3.1 ; The structure of human ABCG5/ABCG8 supplemented with cholesterol 1SOH ; ; The structure of human apolipoprotein C-II in dodecyl phosphocholine 5W6V ; 2.828 ; The Structure of human Argonaute-1 in complex with the hook motif of human GW182 3HUD ; 3.2 ; THE STRUCTURE OF HUMAN BETA 1 BETA 1 ALCOHOL DEHYDROGENASE: CATALYTIC EFFECTS OF NON-ACTIVE-SITE SUBSTITUTIONS 3NFY ; 1.94 ; The Structure of Human Bisphosphoglycerate Mutase to 1.94A 5URF ; 2.9 ; The structure of human bocavirus 1 5XYZ ; 2.64 ; The structure of human BTK kinase domain in complex with a covalent inhibitor 5VLO ; 2.05 ; The structure of human CamKII with bound inhibitor 6AYW ; 2.05 ; The structure of human CamKII with bound inhibitor 6BAB ; 1.91 ; The structure of human CamKII with bound inhibitor 1RAY ; 1.8 ; THE STRUCTURE OF HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH BROMIDE AND AZIDE 1RAZ ; 1.9 ; THE STRUCTURE OF HUMAN CARBONIC ANHYDRASE II IN COMPLEX WITH BROMIDE AND AZIDE 1HCO ; 2.7 ; THE STRUCTURE OF HUMAN CARBONMONOXY HAEMOGLOBIN AT 2.7 ANGSTROMS RESOLUTION 2HCO ; 2.7 ; THE STRUCTURE OF HUMAN CARBONMONOXY HAEMOGLOBIN AT 2.7 ANGSTROMS RESOLUTION 3HXN ; 2.0 ; The structure of human carbonmonoxyhemoglobin complex to IHP at 2.0 angstrons resolution. 3FRT ; 4.0 ; The structure of human CHMP3 (residues 8 - 222). 3MPH ; 2.05 ; The structure of human diamine oxidase complexed with an inhibitor aminoguanidine 1UMK ; 1.75 ; The Structure of Human Erythrocyte NADH-cytochrome b5 Reductase 4YDH ; 3.8 ; The structure of human FMNL1 N-terminal domains bound to Cdc42 3QIC ; 2.2 ; The structure of human glucokinase E339K mutation 4EW3 ; 1.702 ; The structure of human glycinamide ribonucleotide transformylase in complex with 10R-methylthio-DDATHF. 4EW2 ; 1.602 ; The structure of human glycinamide ribonucleotide transformylase in complex with 10S-methylthio-DDATHF. 1ZLY ; 2.07 ; The structure of human glycinamide ribonucleotide transformylase in complex with alpha,beta-N-(hydroxyacetyl)-D-ribofuranosylamine and 10-formyl-5,8,dideazafolate 3CYN ; 2.0 ; The structure of human GPX8 7CUN ; 3.5 ; The structure of human Integrator-PP2A complex 6O4O ; 1.62 ; The structure of human interleukin 11 3K5E ; 1.97 ; The structure of human kinesin-like motor protein Kif11/KSP/Eg5 in complex with ADP and enastrol. 6NN4 ; 2.15 ; The structure of human liver pyruvate kinase, hLPYK-D499N, in complex with Fru-1,6-BP 6NN7 ; 2.32 ; The structure of human liver pyruvate kinase, hLPYK-GGG 6NN8 ; 2.416 ; The structure of human liver pyruvate kinase, hLPYK-S531E 6NN5 ; 2.256 ; The structure of human liver pyruvate kinase, hLPYK-W527H 4LCW ; 2.4 ; The structure of human MAIT TCR in complex with MR1-K43A-RL-6-Me-7OH 5A1G ; 1.83 ; The structure of Human MAT2A in complex with S-adenosylethionine and PPNP. 5A1I ; 1.09 ; The structure of Human MAT2A in complex with SAM, Adenosine, Methionine and PPNP. 1JY7 ; 3.2 ; THE STRUCTURE OF HUMAN METHEMOGLOBIN. THE VARIATION OF A THEME 6FAJ ; 1.95 ; The structure of Human Methionine Adenosyltransferase II in apo state 1ZSY ; 1.75 ; The structure of human mitochondrial 2-enoyl thioester reductase (CGI-63) 8IPM ; 3.1 ; The structure of human mitochondrial methyltransferase METTL15 with h44_RNA, RBFA and SAM 8IPL ; 2.2 ; The structure of human mitochondrial methyltransferase METTL15 with RBFA and SAM 8IPK ; 1.9 ; The structure of human mitochondrial methyltransferase METTL15 with SAM 1N0J ; 2.2 ; The Structure of Human Mitochondrial MN3+ Superoxide Dismutase Reveals a Novel Tetrameric Interface of Two 4-Helix Bundles 7PGR ; 4.0 ; The structure of human neurofibromin isoform 2 in closed conformation 7PGT ; 4.8 ; The structure of human neurofibromin isoform 2 in opened conformation. 7CYZ ; 2.1 ; The structure of human ORP3 OSBP-related domain 5ZYQ ; 2.531 ; The Structure of Human PAF1/CTR9 complex 1HNY ; 1.8 ; The structure of human pancreatic alpha-amylase at 1.8 angstroms resolution and comparisons with related enzymes 4Z0V ; 1.78 ; The structure of human PDE12 residues 161-609 4Z2B ; 1.8 ; The structure of human PDE12 residues 161-609 in complex with GSK3036342A 3ZOZ ; 1.95 ; The structure of human phosphoglycerate kinase with bound bromide, a stimulating anion. 7YFK ; 2.1 ; The structure of human pregnane X receptor in complex with an SRC-1 coactivator peptide and a limonoid compound, nomilin 3N2Z ; 2.79 ; The Structure of Human Prolylcarboxypeptidase at 2.80 Angstroms Resolution 1QAB ; 3.2 ; The structure of human retinol binding protein with its carrier protein transthyretin reveals interaction with the carboxy terminus of RBP 3U0D ; 2.51 ; The structure of human Siderocalin bound to the bacterial siderophore 2,3-DHBA 4K19 ; 2.74 ; The structure of Human Siderocalin bound to the bacterial siderophore fluvibactin 6SCJ ; 3.6 ; The structure of human thyroglobulin 3MOS ; 1.75 ; The structure of human Transketolase 5XOO ; 2.85 ; The structure of hydra Fam20 with sugar 2BNN ; 2.5 ; The structure of Hydroxypropylphosphonic acid epoxidase from S. wedmorenis in complex with fosfomycin 2BNM ; 1.7 ; The structure of Hydroxypropylphosphonic acid epoxidase from S. wedmorenis. 2BNO ; 1.9 ; The structure of Hydroxypropylphosphonic acid epoxidase from S. wedmorenis. 5A7M ; 1.8 ; The structure of Hypocrea jecorina beta-xylosidase Xyl3A (Bxl1) 5AE6 ; 2.1 ; The structure of Hypocrea jecorina beta-xylosidase Xyl3A (Bxl1) in complex with 4-thioxylobiose 5KMQ ; 2.7 ; The structure of I379E variant of type II NADH dehydrogenase from Caldalkalibacillus thermarum 4PH9 ; 1.81 ; The structure of Ibuprofen bound to cyclooxygenase-2 6AJ2 ; 4.0 ; The structure of ICAM-5 triggered Enterovirus D68 virus A-particle 3LB6 ; 3.05 ; The structure of IL-13 in complex with IL-13Ralpha2 1TGE ; 12.5 ; The structure of immature Dengue virus at 12.5 angstrom 1N6G ; 16.0 ; The structure of immature Dengue-2 prM particles 1NA4 ; ; The structure of immature Yellow Fever virus particle 2DOO ; 2.43 ; The structure of IMP-1 complexed with the detecting reagent (DansylC4SH) by a fluorescent probe 4D3Z ; 2.3 ; The structure of inactive prolegumain from chinese hamster, trigonal space group. 4D3Y ; 2.4 ; The structure of inactive prolegumain from chinese hamster. 2WRC ; 2.706 ; the structure of influenza H2 human singapore hemagglutinin 2WRB ; 3.1 ; the structure of influenza H2 human singapore hemagglutinin with avian receptor 2WR7 ; 2.5 ; the structure of influenza H2 human singapore hemagglutinin with human receptor 4QLZ ; 2.326 ; The structure of inorganic pyrophosphatase from Schistosoma japonicum 4QMB ; 2.603 ; The structure of inorganic pyrophosphatase from Schistosoma japonicum 3Q5V ; 1.29 ; The structure of inorganic pyrophosphatase from Thermococcus Thioreducens in complex with magnesium and sulfate 7YCX ; 4.18 ; The structure of INTAC-PEC complex 3HOL ; 1.98 ; The Structure of Intact Ap-TbpB (N and C lobes) 8DPW ; 1.8 ; The structure of Interleukin-11 Mutein 8UZD ; 2.721 ; The structure of IpCS3, a theobromine methyltransferase from Yerba Mate 7XTW ; 1.91 ; The structure of IsPETase in complex with MHET 4QU2 ; 2.7 ; The structure of JMJD7 with alpha-KG 1PMV ; 2.5 ; The structure of JNK3 in complex with a dihydroanthrapyrazole inhibitor 4Z9L ; 2.1 ; THE STRUCTURE OF JNK3 IN COMPLEX WITH AN IMIDAZOLE-PYRIMIDINE INHIBITOR 1SUZ ; 1.8 ; The structure of K92A EcoRV bound to cognate DNA and Mg2+ 7W4P ; 3.19 ; The structure of KATP H175K mutant in closed state 7W4O ; 2.96 ; The structure of KATP H175K mutant in pre-open state 7PVC ; ; The structure of Kbp.K from E. coli with potassium bound. 7MDJ ; 2.75 ; The structure of KcsA in complex with a synthetic Fab 5FQ0 ; 2.0 ; The structure of KdgF from Halomonas sp. 5FPZ ; 1.5 ; The structure of KdgF from Yersinia enterocolitica with malonate bound in the active site. 5FPX ; 1.5 ; The structure of KdgF from Yersinia enterocolitica. 5W3D ; 2.79 ; The structure of kinesin-14 wild-type Ncd-ADP dimer 2JB2 ; 1.45 ; The structure of L-amino acid oxidase from Rhodococcus opacus in complex with L-phenylalanine. 2JB3 ; 1.85 ; The structure of L-amino acid oxidase from Rhodococcus opacus in complex with o-aminobenzoate 2JAE ; 1.25 ; The structure of L-amino acid oxidase from Rhodococcus opacus in the unbound state 4V36 ; 2.1 ; The structure of L-PGS from Bacillus licheniformis 7DT1 ; 2.43002 ; The structure of Lactobacillus fermentum 4,6-alpha-Glucanotransferase 8HFS ; 2.98 ; The structure of LcnA, LciA, and the man-PTS of Lactococcus lactis 1PKL ; 2.35 ; THE STRUCTURE OF LEISHMANIA PYRUVATE KINASE 6IX7 ; 1.835 ; The structure of LepI C52A in complex with SAH and substrate analogue 6IX8 ; 1.659 ; The structure of LepI C52A in complex with SAM and its substrate analogue 6IX9 ; 1.776 ; The structure of LepI C52A in complex with SAM and leporin C 6IX3 ; 2.13 ; The structure of LepI complex with SAM 6IX5 ; 1.7 ; The structure of LepI complex with SAM and its substrate analogue 6D6A ; 1.9 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 10 6D6B ; 1.7 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 11 6D6C ; 1.88 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 12 6D6D ; 1.7 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 13 6D6L ; 1.63 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 14 6D6M ; 1.9 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 15 6D6N ; 1.81 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 16 6D6O ; 1.65 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 17 6D6P ; 1.65 ; The structure of ligand binding domain of LasR in complex with TP-1 homolog, compound 19 5NNK ; 1.798 ; The structure of LL-37 crystallized in the presence LDAO 4GPD ; 2.8 ; THE STRUCTURE OF LOBSTER APO-D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE AT 3.0 ANGSTROMS RESOLUTION 3PMO ; 1.3 ; The structure of LpxD from Pseudomonas aeruginosa at 1.3 A resolution 8BYK ; 1.7 ; The structure of MadC from Clostridium maddingley reveals new insights into class I lanthipeptide cyclases 5JWA ; 2.162 ; the structure of malaria PfNDH2 4MB1 ; 1.4 ; The Structure of MalL mutant enzyme G202P from Bacillus subtilus 7LV6 ; 1.1 ; The structure of MalL mutant enzyme S536R from Bacillus subtilis 4M8U ; 1.45 ; The Structure of MalL mutant enzyme V200A from Bacillus subtilus 4MAZ ; 1.6 ; The Structure of MalL mutant enzyme V200S from Bacillus subtilus 6IWK ; 1.501 ; The Structure of Maltooligosaccharide-forming Amylase from Pseudomonas saccharophila STB07 6IYG ; 1.5 ; The Structure of Maltooligosaccharide-forming Amylase from Pseudomonas saccharophila STB07 with Maltotetraose 6J3X ; 1.62 ; The Structure of Maltooligosaccharide-forming Amylase from Pseudomonas saccharophila STB07 with Maltotriose 6JQB ; 1.101 ; The structure of maltooligosaccharide-forming amylase from Pseudomonas saccharophila STB07 with pseudo-maltoheptaose 3L6R ; 1.7 ; The structure of mammalian serine racemase: Evidence for conformational changes upon inhibitor binding 3R5U ; 1.92 ; The structure of manganese bound Thermococcus thioreducens Inorganic pyrophosphatase 2VVL ; 2.45 ; The structure of MAO-N-D3, a variant of monoamine oxidase from Aspergillus niger. 2VVM ; 1.85 ; The structure of MAO-N-D5, a variant of monoamine oxidase from Aspergillus niger. 3WZU ; 3.01 ; THE STRUCTURE OF MAP2K7 IN COMPLEX WITH 5Z-7-oxozeaenol 5A19 ; 2.34 ; The structure of MAT2A in complex with PPNP. 4D3X ; 1.848 ; The structure of mature legumain from chinese hamster. 4WMW ; 1.9 ; The structure of MBP-MCL1 bound to ligand 5 at 1.9A 4WMX ; 2.0 ; The structure of MBP-MCL1 bound to ligand 6 at 2.0A 2G5F ; 1.8 ; The structure of MbtI from Mycobacterium Tuberculosis, the first enzyme in the synthesis of Mycobactin, reveals it to be a salicylate synthase 5IKQ ; 2.41 ; The Structure of Meclofenamic Acid Bound to Human Cyclooxygenase-2 5IKR ; 2.342 ; The Structure of Mefenamic Acid Bound to Human Cyclooxygenase-2 8RC7 ; 0.98 ; The structure of membrane-active antibiotic cyclodecapeptide gramicidin S in complex with urea 4AFR ; 1.6 ; THE STRUCTURE OF METACASPASE 2 (C213A MUTANT) FROM T. BRUCEI 4AFV ; 1.5 ; THE STRUCTURE OF METACASPASE 2 FROM T. BRUCEI DETERMINED IN THE PRESENCE OF CALCIUM CHLORIDE 4AFP ; 2.1 ; The structure of metacaspase 2 from T. brucei determined in the presence of Samarium 2WNR ; 2.65 ; The structure of Methanothermobacter thermautotrophicus exosome core assembly 1T5E ; 3.0 ; The structure of MexA 2BM4 ; 2.2 ; The Structure of MfpA (Rv3361c, C2 Crystal form). The Pentapeptide Repeat Protein from Mycobacterium tuberculosis Folds as A Right- handed Quadrilateral Beta-helix. 2BM6 ; 2.2 ; The Structure of MfpA (Rv3361c, C2221 Crystal form). The Pentapeptide Repeat Protein from Mycobacterium tuberculosis Folds as A Right- handed Quadrilateral Beta-helix. 2BM5 ; 2.0 ; The Structure of MfpA (Rv3361c, P21 Crystal form). The Pentapeptide Repeat Protein from Mycobacterium tuberculosis Folds as A Right- handed Quadrilateral Beta-helix. 2BM7 ; 2.7 ; The Structure of MfpA (Rv3361c, P3221 Crystal form). The Pentapeptide Repeat Protein from Mycobacterium tuberculosis Folds as A Right- handed Quadrilateral Beta-helix. 7XTV ; 2.31 ; The structure of MHET-bound TfCut S130A 7MJZ ; 2.08 ; The structure of MiaB with pentasulfide bridge 6OM4 ; 1.7 ; The structure of Microcin C7 biosynthetic enzyme MccB in complex with N-formylated MccA 1Q71 ; ; The structure of microcin J25 is a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone 5I9K ; 3.5 ; The structure of microsomal glutathione transferase 1 5IA9 ; 3.5 ; The structure of microsomal glutathione transferase 1 in complex with Meisenheimer complex 5GNU ; 4.113 ; the structure of mini-MFN1 apo 5GNR ; 2.65 ; the structure of mini-MFN1 K88A in complex with GDP 2FAH ; 2.09 ; The structure of mitochondrial PEPCK, Complex with Mn and GDP 6IB0 ; 2.6 ; The structure of MKK7 in complex with the covalent 4-amino-pyrazolopyrimidine 3a 6IB2 ; 2.1 ; The structure of MKK7 in complex with the covalent 4-amino-pyrazolopyrimidine 4a 4AS9 ; 2.71 ; The structure of modified benzoquinone ansamycins bound to yeast N- terminal Hsp90 4ASA ; 2.25 ; The structure of modified benzoquinone ansamycins bound to yeast N- terminal Hsp90 4ASB ; 3.08 ; The structure of modified benzoquinone ansamycins bound to yeast N- terminal Hsp90 4ASF ; 2.6 ; The structure of modified benzoquinone ansamycins bound to yeast N- terminal Hsp90 4ASG ; 2.2 ; The structure of modified benzoquinone ansamycins bound to yeast N- terminal Hsp90 4PGF ; 2.59 ; The structure of mono-acetylated SAHH 3VFJ ; 2.05 ; The structure of monodechloro-teicoplanin in complex with its ligand, using MBP as a ligand carrier 3VFK ; 2.8 ; The structure of monodechloro-teicoplanin in complex with its ligand, using ubiquitin as a ligand carrier 5JZL ; 1.8 ; The Structure of Monomeric Ultra Stable Green Fluorescent Protein 5F5N ; 1.304 ; The structure of monooxygenase KstA11 in complex with NAD and its substrate 5F5L ; 1.68 ; The structure of monooxygenase KstA11 in the biosynthetic pathway of kosinostatin 426D ; 3.0 ; THE STRUCTURE OF MOST STUDIED DNA FRAGMENT CHANGES UNDER THE INFLUENCE OF IONS: A NEW PACKING OF D(CGCGAATTCGCG) 6GQF ; 2.9 ; The structure of mouse AsterA (GramD1a) with 25-hydroxy cholesterol 8AXW ; 1.6 ; The structure of mouse AsterC (GramD1c) with Ezetimibe 5BK7 ; 2.196 ; The structure of MppP E15A mutant soaked with the substrate L-arginine 6C92 ; 1.834 ; The structure of MppP soaked with the product 2-ketoarginine 6C9B ; 1.689 ; The structure of MppP soaked with the products 4HKA and 2KA 6C8T ; 2.2 ; The structure of MppP soaked with the substrate L-Arg 8HG1 ; 2.8 ; The structure of MPXV polymerase holoenzyme in replicating state 5MWP ; 1.82 ; The structure of MR in complex with AZD9977. 5MWY ; 1.75 ; The structure of MR in complex with eplerenone. 1N1I ; 2.4 ; The structure of MSP-1(19) from Plasmodium knowlesi 5ZXH ; 2.8 ; The structure of MT189-tubulin complex 4QMG ; 2.701 ; The Structure of MTDH-SND1 Complex Reveals Novel Cancer-Promoting Interactions 4WIQ ; 1.59 ; The structure of Murine alpha-Dystroglycan T190M mutant N-terminal domain. 2MIB ; 2.84 ; THE STRUCTURE OF MURINE INTERLEUKIN-1 BETA AT 2.8 ANGSTROMS RESOLUTION 3N25 ; 2.41 ; The structure of muscle pyruvate kinase in complex with proline, pyruvate, and Mn2+ 1YG9 ; 1.3 ; The structure of mutant (N93Q) of bla g 2 7OU4 ; 3.3 ; The structure of MutS bound to one molecule of ATP and one molecule of ADP 7OU2 ; 4.8 ; The structure of MutS bound to two molecules of ADP 7OU0 ; 3.8 ; The structure of MutS bound to two molecules of ADP-Vanadate 7OTO ; 3.4 ; The structure of MutS bound to two molecules of AMPPNP 3BKN ; 2.72 ; The structure of Mycobacterial bacterioferritin 4QIH ; 2.299 ; The structure of mycobacterial glucosyl-3-phosphoglycerate phosphatase Rv2419c complexes with VO3 2VFB ; 2.0 ; The structure of Mycobacterium marinum arylamine N-acetyltransferase 4C5P ; 1.592 ; The structure of mycobacterium marinum arylamine n-acetyltransferase 2VFC ; 2.7 ; The structure of Mycobacterium marinum arylamine N-acetyltransferase in complex with CoA 3LTW ; 2.1 ; The structure of mycobacterium marinum arylamine n-acetyltransferase in complex with hydralazine 5UJY ; 2.7 ; The structure of Mycobacterium tuberculosis topoisomerase I from the 2nd crystal form 2C27 ; 1.8 ; The Structure of Mycothiol Synthase in Complex with des- AcetylMycothiol and CoenzymeA. 8U95 ; 4.7 ; The structure of myosin heavy chain from Drosophila melanogaster flight muscle thick filaments 6FV4 ; 1.974 ; The structure of N-acetyl-D-glucosamine-6-phosphate deacetylase D267A mutant from Mycobacterium smegmatis in complex with N-acetyl-D-glucosamine-6-phosphate 2G17 ; 2.3 ; The structure of N-acetyl-gamma-glutamyl-phosphate reductase from Salmonella typhimurium. 3MDW ; 1.8979 ; The structure of N-formimino-L-Glutamate Iminohydrolase from Pseudomonas aeruginosa complexed with N-formimino-L-Aspartate 4RDV ; 2.08 ; The structure of N-formimino-L-Glutamate Iminohydrolase from Pseudomonas aeruginosa complexed with N-formimino-L-Aspartate 4RZB ; 1.863 ; The structure of N-formimino-L-Glutamate Iminohydrolase from Pseudomonas aeruginosa complexed with N-formimino-L-Aspartate, SOAKED WITH MERCURY 3MDU ; 1.4003 ; The structure of N-formimino-L-Glutamate Iminohydrolase from Pseudomonas aeruginosa complexed with N-Guanidino-L-Glutamate 4RDW ; 1.591 ; The structure of N-formimino-L-Glutamate Iminohydrolase from Pseudomonas aeruginosa complexed with N-Guanidino-L-Glutaric acid 1XT0 ; 2.16 ; The Structure of N-terminal Sec7 domain of RalF 1OC2 ; 1.5 ; The structure of NADH in the dTDP-D-glucose dehydratase (RmlB) enzyme 5DAY ; 2.329 ; The structure of NAP1-Related Protein(NRP1) in Arabidopsis 1U6I ; 2.2 ; The Structure of native coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase at 2.2A resolution 1U6J ; 2.4 ; The Structure of native coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase at 2.4A resolution 3HBT ; 2.7 ; The structure of native G-actin 1IUK ; 1.7 ; The structure of native ID.343 from Thermus thermophilus 5K7D ; 2.68 ; The structure of native pistol ribozyme, bound to Iridium 1QNJ ; 1.1 ; THE STRUCTURE OF NATIVE PORCINE PANCREATIC ELASTASE AT ATOMIC RESOLUTION (1.1 A) 7QA1 ; 2.2 ; The structure of natural crystals of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated using serial femtosecond crystallography at an X-ray free electron laser 1NPC ; 2.0 ; THE STRUCTURE OF NEUTRAL PROTEASE FROM BACILLUS CEREUS AT 0.2-NM RESOLUTION 4M4M ; 1.5 ; The structure of Ni T6 bovine insulin 8DSV ; 2.5 ; The structure of NicA2 in complex with N-methylmyosmine 8DQ7 ; 2.1 ; The structure of NicA2 variant F104L/A107T/S146I/G317D/H368R/L449V/N462S from Pseudomonas putida 8DQ8 ; 1.9 ; The structure of NicA2 variant F104L/A107T/S146I/G317D/H368R/L449V/N462S in complex with N-methylmyosmine 3G3Z ; 2.1 ; The structure of NMB1585, a MarR family regulator from Neisseria meningitidis 4N8X ; 1.93 ; The structure of Nostoc sp. PCC 7120 CcmL 5LIZ ; 1.93 ; The structure of Nt.BspD6I nicking endonuclease with all cysteines mutated by serine residues at 0.19 nm resolution . 6PVA ; 1.84 ; The structure of NTMT1 in complex with compound 11 6PVB ; 1.5 ; The structure of NTMT1 in complex with compound 6 6WH8 ; 1.729 ; The structure of NTMT1 in complex with compound BM-30 6WJ7 ; 1.42 ; The structure of NTMT1 in complex with compound C2A 7K3D ; 2.34 ; The structure of NTMT1 in complex with compound DC1-13 6DTN ; 1.475 ; The structure of NTMT1 in complex with compound DC100-1 7SS1 ; 2.4 ; The structure of NTMT1 in complex with compound GD433 4DUT ; 2.5 ; The structure of nucleoside diphosphate kinase (NDK) from Burkholderia thailandensis 4EK2 ; 2.0 ; The structure of nucleoside diphosphate kinase (NDK) from Burkholderia thailandensis bound to deoxyadenosine monophosphate 7D8L ; 1.55 ; The structure of nucleoside phosphatase Sa1684 complex with GTP analogue from Staphylococcus aureus 2AYU ; 3.0 ; The structure of nucleosome assembly protein suggests a mechanism for histone binding and shuttling 7D8Q ; 1.5 ; The structure of nucleotide phosphatase Sa1684 complex with GDP analogue from Staphylococcus aureus 1HXQ ; 1.86 ; THE STRUCTURE OF NUCLEOTIDYLATED GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE FROM ESCHERICHIA COLI AT 1.86 ANGSTROMS RESOLUTION 6J2W ; ; The structure of OBA3-OTA complex 7W9N ; ; THE STRUCTURE OF OBA33-OTA COMPLEX 3QVM ; 1.998 ; The structure of olei00960, a hydrolase from Oleispira antarctica 1OPF ; 3.2 ; THE STRUCTURE OF OMPF PORIN IN A TETRAGONAL CRYSTAL FORM 3FYX ; 3.4 ; The Structure of OmpF porin with a synthetic dibenzo-18-crown-6 as modulator 4CSO ; 2.6 ; The structure of OrfY from Thermoproteus tenax 4BLC ; 2.3 ; THE STRUCTURE OF ORTHORHOMBIC CRYSTALS OF BEEF LIVER CATALASE 5XEG ; 1.8 ; The structure of OsALKBH1 5XOI ; 1.8 ; The structure of OsALKBH1 3ZUT ; 2.5 ; The structure of OST1 (D160A) kinase 3ZUU ; 2.7 ; The structure of OST1 (D160A, S175D) kinase in complex with gold 2CK1 ; 1.8 ; The structure of oxidised cyclophilin A from s. mansoni 1AAZ ; 2.0 ; THE STRUCTURE OF OXIDIZED BACTERIOPHAGE T4 GLUTAREDOXIN (THIOREDOXIN) 1ABA ; 1.45 ; THE STRUCTURE OF OXIDIZED BACTERIOPHAGE T4 GLUTAREDOXIN (THIOREDOXIN). REFINEMENT OF NATIVE AND MUTANT PROTEINS 5C9M ; 1.362 ; The structure of oxidized rat cytochrome c (T28A) at 1.362 angstroms resolution. 5DF5 ; 1.301 ; The structure of oxidized rat cytochrome c (T28E) at 1.30 angstroms resolution. 5C0Z ; 1.1236 ; The structure of oxidized rat cytochrome c at 1.13 angstroms resolution 4XEB ; 1.7 ; The structure of P. funicolosum Cel7A 1OUY ; 2.5 ; The structure of p38 alpha in complex with a dihydropyrido-pyrimidine inhibitor 1OVE ; 2.1 ; The structure of p38 alpha in complex with a dihydroquinolinone 1OUK ; 2.5 ; The structure of p38 alpha in complex with a pyridinylimidazole inhibitor 5XYX ; 2.61 ; The structure of p38 alpha in complex with a triazol inhibitor 5XYY ; 1.7 ; The structure of p38 alpha in complex with a triazol inhibitor 1DI9 ; 2.6 ; THE STRUCTURE OF P38 MITOGEN-ACTIVATED PROTEIN KINASE IN COMPLEX WITH 4-[3-METHYLSULFANYLANILINO]-6,7-DIMETHOXYQUINAZOLINE 1R39 ; 2.3 ; THE STRUCTURE OF P38ALPHA 1R3C ; 2.0 ; THE STRUCTURE OF P38ALPHA C162S MUTANT 3GC7 ; 1.8 ; The structure of p38alpha in complex with a dihydroquinazolinone 2I0H ; 2.0 ; The structure of p38alpha in complex with an arylpyridazinone 3GC9 ; 2.05 ; The structure of p38beta C119S, C162S in complex with a dihydroquinazolinone inhibitor 3GC8 ; 2.4 ; The structure of p38beta C162S in complex with a dihydroquinazolinone 3UK2 ; 2.25 ; The structure of Pantothenate synthetase from Burkholderia thailandensis 155C ; 2.5 ; THE STRUCTURE OF PARACOCCUS DENITRIFICANS CYTOCHROME C550 1F8V ; 3.0 ; THE STRUCTURE OF PARIACOTO VIRUS REVEALS A DODECAHEDRAL CAGE OF DUPLEX RNA 3TVX ; 2.84 ; The structure of PDE4A with pentoxifylline at 2.84A resolution 7BQJ ; 1.98 ; The structure of PdxI 7BQK ; 1.99 ; The structure of PdxI in complex with its substrate analogue 5HIZ ; 2.9 ; The structure of PEDV NSP9 1SAC ; 2.0 ; THE STRUCTURE OF PENTAMERIC HUMAN SERUM AMYLOID P COMPONENT 6WNM ; 2.58 ; The structure of Pf4r from a superinfective isolate of the filamentous phage Pf4 of Pseudomonas aeruginosa PA01 6WPZ ; 1.993 ; The structure of Pf4r from a superinfective isolate of the filamentous phage Pf4 of Pseudomonas aeruginosa PA01 6X6F ; 1.735 ; The structure of Pf6r from the filamentous phage Pf6 of Pseudomonas aeruginosa PA01 2BNK ; 2.9 ; The structure of phage phi29 replication organizer protein p16.7 2C5R ; 2.9 ; The structure of phage phi29 replication organizer protein p16.7 in complex with double stranded DNA 2PHL ; 2.2 ; THE STRUCTURE OF PHASEOLIN AT 2.2 ANGSTROMS RESOLUTION: IMPLICATIONS FOR A COMMON VICILIN(SLASH)LEGUMIN STRUCTURE AND THE GENETIC ENGINEERING OF SEED STORAGE PROTEINS 1N7J ; 2.7 ; The structure of Phenylethanolamine N-methyltransferase in complex with S-adenosylhomocysteine and an iodinated inhibitor 1N7I ; 2.8 ; The structure of Phenylethanolamine N-methyltransferase in complex with S-adenosylhomocysteine and the inhibitor LY134046 1P5E ; 2.22 ; The structure of phospho-CDK2/cyclin A in complex with the inhibitor 4,5,6,7-tetrabromobenzotriazole (TBS) 7PIZ ; 2.15 ; The structure of phosphoglucomutase from Candida albicans 7U34 ; 1.56 ; The structure of phosphoglucose isomerase from Aspergillus fumigatus 4Y3U ; 3.51 ; The structure of phospholamban bound to the calcium pump SERCA1a 1LVH ; 2.3 ; The Structure of Phosphorylated beta-phosphoglucomutase from Lactoccocus lactis to 2.3 angstrom resolution 1BJO ; 2.8 ; THE STRUCTURE OF PHOSPHOSERINE AMINOTRANSFERASE FROM E. COLI IN COMPLEX WITH ALPHA-METHYL-L-GLUTAMATE 1Q6T ; 2.3 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 11 1Q6J ; 2.2 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 2 2FJM ; 2.1 ; The structure of phosphotyrosine phosphatase 1B in complex with compound 2 2FJN ; 2.2 ; The structure of phosphotyrosine phosphatase 1B in complex with compound 2 1Q6M ; 2.2 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 3 1Q6N ; 2.1 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 4 1Q6P ; 2.3 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 6 1Q6S ; 2.2 ; THE STRUCTURE OF PHOSPHOTYROSINE PHOSPHATASE 1B IN COMPLEX WITH COMPOUND 9 7QCO ; 3.7 ; The structure of Photosystem I tetramer from Chroococcidiopsis TS-821, a thermophilic, unicellular, non-heterocyst-forming cyanobacterium 2VJR ; 2.6 ; The structure of phycocyanin from Gloeobacter violaceus 2VJH ; 2.2 ; The structure of Phycoerythrin from Gloeobacter violaceus 2EIX ; 1.56 ; The Structure of Physarum polycephalum cytochrome b5 reductase 4IXJ ; 1.983 ; The structure of PilJ, a Type IV pilin from Clostridium difficile 6R47 ; 3.1 ; The structure of pistol ribozyme bound to magnesium 5K7E ; 3.27 ; The structure of pistol ribozyme, soaked with Mn2+ 1T27 ; 2.2 ; THE STRUCTURE OF PITP COMPLEXED TO PHOSPHATIDYLCHOLINE 5DO0 ; 2.6 ; The structure of PKMT1 from Rickettsia prowazekii 5DNK ; 1.9 ; The structure of PKMT1 from Rickettsia prowazekii in complex with AdoHcy 5DPD ; 3.0 ; The structure of PKMT1 from Rickettsia prowazekii in complex with AdoMet 5DOO ; 3.133 ; The structure of PKMT2 from Rickettsia typhi 5DPL ; 3.2 ; The structure of PKMT2 from Rickettsia typhi in complex with AdoHcy 5L8R ; 2.6 ; The structure of plant photosystem I super-complex at 2.6 angstrom resolution. 4Y28 ; 2.8 ; The structure of plant photosystem I super-complex at 2.8 angstrom resolution. 3RIE ; 1.9 ; The structure of Plasmodium falciparum spermidine synthase in complex with 5'-methylthioadenosine and N-(3-aminopropyl)-trans-cyclohexane-1,4-diamine 2PT6 ; 2.0 ; The structure of Plasmodium falciparum spermidine synthase in complex with decarboxylated S-adenosylmethionine 2PT9 ; 2.2 ; The structure of Plasmodium falciparum spermidine synthase in complex with decarboxylated S-adenosylmethionine and the inhibitor cis-4-methylcyclohexylamine (4MCHA) 2PSS ; 2.2 ; The structure of Plasmodium falciparum spermidine synthase in its apo-form 6R2S ; 3.04 ; The structure of Plasmodium vivax Duffy binding protein (PvDBP) bound to human antibody DB9 7WDK ; 3.05 ; The structure of PldA-PA3488 complex 1DYR ; 1.86 ; THE STRUCTURE OF PNEUMOCYSTIS CARINII DIHYDROFOLATE REDUCTASE TO 1.9 ANGSTROMS RESOLUTION 5FR6 ; 2.51 ; The structure of polycomb ULD complex 5GWZ ; 2.444 ; The structure of Porcine epidemic diarrhea virus main protease in complex with an inhibitor 1L0Z ; 1.5 ; THE STRUCTURE OF PORCINE PANCREATIC ELASTASE COMPLEXED WITH XENON AND BROMIDE, CRYOPROTECTED WITH DRY PARAFFIN OIL 1L1G ; 1.5 ; The Structure of Porcine Pancreatic Elastase Complexed with Xenon and Bromide, Cryoprotected with Glycerol 3KRV ; 2.55 ; The Structure Of Potential Metal-Dependent Hydrolase With Cyclase Activity 1R61 ; 2.5 ; The structure of predicted metal-dependent hydrolase from Bacillus stearothermophilus 7PDS ; 3.14 ; The structure of PriRep1 with dsDNA 7C9M ; 2.7 ; The structure of product-bound CntL, an aminobutyrate transferase in staphylopine biosynthesis 2E8G ; 1.7 ; The structure of protein from P. horikoshii at 1.7 angstrom resolution 1DP5 ; 2.2 ; THE STRUCTURE OF PROTEINASE A COMPLEXED WITH A IA3 MUTANT INHIBITOR 1G0V ; 2.0 ; THE STRUCTURE OF PROTEINASE A COMPLEXED WITH A IA3 MUTANT, MVV 1DPJ ; 1.8 ; THE STRUCTURE OF PROTEINASE A COMPLEXED WITH IA3 PEPTIDE INHIBITOR 3OSG ; 1.997 ; The structure of protozoan parasite Trichomonas vaginalis Myb2 in complex with MRE-1-12 DNA 3OSF ; 2.032 ; The structure of protozoan parasite Trichomonas vaginalis Myb2 in complex with MRE-2f-13 DNA 6LKX ; 2.998 ; The structure of PRRSV helicase 5WZE ; 1.783 ; The structure of Pseudomonas aeruginosa aminopeptidase PepP 6IGB ; 1.651 ; the structure of Pseudomonas aeruginosa Periplasmic gluconolactonase, PpgL 5MP4 ; 2.79 ; The structure of Pst2p from Saccharomyces cerevisiae 4H7N ; 2.0 ; The Structure of Putative Aldehyde Dehydrogenase PutA from Anabaena variabilis. 2GWN ; 1.85 ; The structure of putative dihydroorotase from Porphyromonas gingivalis. 4HBZ ; 1.55 ; The Structure of Putative Phosphohistidine Phosphatase SixA from Nakamurella multipartitia. 2OJH ; 1.85 ; The structure of putative TolB from Agrobacterium tumefaciens 4DA2 ; 1.8 ; The structure of Pyrococcus Furiosus SfsA in complex with Ca2+ 4DAV ; 2.2 ; The structure of Pyrococcus Furiosus SfsA in complex with DNA 2Q7E ; 1.8 ; The structure of pyrrolysyl-tRNA synthetase bound to an ATP analogue 4E7V ; 1.8 ; The structure of R6 bovine insulin 5H53 ; 5.2 ; The structure of rabbit skeletal muscle actomyosin rigor complex at 5.2 angstrom. 1XSZ ; 1.41 ; The structure of RalF 8HST ; 2.66 ; The structure of rat beta-arrestin1 8HSV ; 3.0 ; The structure of rat beta-arrestin1 in complex with a rat Mdm2 peptide 6P5O ; 1.49 ; The structure of rat cytosolic PEPCK in complex with 3-(carboxymethylthiol)-picolinic acid 2RKD ; 1.9 ; The Structure of rat cytosolic PEPCK in complex with 3-phosphonopropionate 3DT7 ; 1.5 ; The structure of rat cytosolic PEPCK in complex with beta-sulfopyruvate and GTP 2RK7 ; 1.9 ; The Structure of rat cytosolic PEPCK in complex with oxalate 3DT2 ; 1.5 ; The structure of rat cytosolic PEPCK in complex with oxalate and GTP 3DT4 ; 1.45 ; The structure of rat cytosolic PEPCK in complex with oxalate and GTP 2RKA ; 1.95 ; The Structure of rat cytosolic PEPCK in complex with phosphoglycolate 3DTB ; 1.3 ; The structure of rat cytosolic PEPCK in complex with phosphoglycolate and GDP 2RK8 ; 2.0 ; The Structure of rat cytosolic PEPCK in complex with phosphonoformate 2RKE ; 1.8 ; The Structure of rat cytosolic PEPCK in complex with sulfoacetate. 3MOE ; 1.25 ; The structure of rat cytosolic PEPCK mutant A467G in complex with Beta-Sulfopyruvate and GTP 3MOF ; 1.75 ; The structure of rat cytosolic PEPCK mutant A467G in complex with oxalate and GTP 3MOH ; 2.1 ; The structure of rat cytosolic PEPCK mutant A467G in complex with phosphoglycolate and GDP 5FH0 ; 1.6 ; The structure of rat cytosolic PEPCK variant E89A complex with GTP 5FH3 ; 1.6 ; The structure of rat cytosolic PEPCK variant E89A in complex with oxalic acid and GTP 5FH4 ; 1.49 ; The structure of rat cytosolic PEPCK variant E89D in complex with beta-sulfopyruvate and GTP 5FH1 ; 1.55 ; The structure of rat cytosolic PEPCK variant E89D in complex with GTP 5FH2 ; 1.49 ; The structure of rat cytosolic PEPCK variant E89Q in complex with GTP 5FH5 ; 1.55 ; The structure of rat cytosolic PEPCK variant E89Q in complex with phosphoglycolate and GDP 4V60 ; 3.5 ; The structure of rat liver vault at 3.5 angstrom resolution 3RP2 ; 1.9 ; THE STRUCTURE OF RAT MAST CELL PROTEASE II AT 1.9-ANGSTROMS RESOLUTION 2P01 ; ; The structure of receptor-associated protein(RAP) 2P03 ; ; The structure of receptor-associated protein(RAP) 1PKR ; 2.48 ; THE STRUCTURE OF RECOMBINANT PLASMINOGEN KRINGLE 1 AND THE FIBRIN BINDING SITE 1RTC ; 2.3 ; THE STRUCTURE OF RECOMBINANT RICIN A CHAIN AT 2.3 ANGSTROMS 2CMT ; 1.5 ; The structure of reduced cyclophilin A from s. mansoni 1BBR ; 2.3 ; THE STRUCTURE OF RESIDUES 7-16 OF THE A ALPHA CHAIN OF HUMAN FIBRINOGEN BOUND TO BOVINE THROMBIN AT 2.3 ANGSTROMS RESOLUTION 5E27 ; 2.6 ; The structure of Resuscitation Promoting Factor B from M. tuberculosis reveals unexpected ubiquitin-like domains 1ND2 ; 2.5 ; The structure of Rhinovirus 16 1NCR ; 2.7 ; The structure of Rhinovirus 16 when complexed with pleconaril, an antiviral compound 1RBN ; 2.1 ; THE STRUCTURE OF RIBONUCLEASE A DERIVATIVE II AT 2.1 ANGSTROMS RESOLUTION 4EM8 ; 1.95 ; The Structure of Ribose 5-phosphate Isomerase B from Anaplasma phagocytophilum 1PKP ; 2.8 ; THE STRUCTURE OF RIBOSOMAL PROTEIN S5 REVEALS SITES OF INTERACTION WITH 16S RRNA 7EOZ ; 3.4 ; The structure of rice Defective Pollen Wall (DPW) in the complex with its cofactor NADP 4PMH ; 1.79 ; The structure of rice weevil pectin methyl esterase 1NBK ; ; The structure of RNA aptamer for HIV Tat complexed with two argininamide molecules 2KXZ ; ; The Structure of RNA Internal Loops with Tandem AG Pairs: 5'AAGU/3'UGAA 2KY0 ; ; The Structure of RNA Internal Loops with Tandem AG Pairs: 5'GAGC/3'CGAG 2KY1 ; ; The Structure of RNA Internal Loops with Tandem AG Pairs: 5'UAGA/3'AGAU 2KY2 ; ; The Structure of RNA Internal Loops with Tandem AG Pairs: 5'UAGG/3'GGAU 5BY8 ; 1.515 ; The structure of Rpf2-Rrs1 explains its role in ribosome biogenesis 7NTO ; 1.23 ; The structure of RRM domain of human TRMT2A at 1.23 A resolution 7NTN ; 2.016 ; The structure of RRM domain of human TRMT2A at 2 A resolution 6RXN ; 1.5 ; THE STRUCTURE OF RUBREDOXIN FROM DESULFOVIBRIO DESULFURICANS 4DI0 ; 1.9 ; The structure of Rubrerythrin from Burkholderia pseudomallei 3E3A ; 2.35 ; The Structure of Rv0554 from Mycobacterium tuberculosis 8F8F ; 2.0 ; The structure of Rv2173 from M. tuberculosis (APO form) 8F8L ; 2.2 ; The structure of Rv2173 from M. tuberculosis with DMAP bound 8F8K ; 2.2 ; The structure of Rv2173 from M. tuberculosis with IPP bound 5Y0W ; 2.5 ; The structure of RVFV Gn head domain 7TIN ; 2.35 ; The Structure of S. aureus MenD 8DO6 ; 3.1 ; The structure of S. epidermidis Cas10-Csm bound to target RNA 1GQM ; 2.7 ; The structure of S100A12 in a hexameric form and its proposed role in receptor signalling 6W67 ; 2.2 ; The structure of S172A Keap1-BTB domain 5YEQ ; 1.75 ; The structure of Sac-KARI protein 3O26 ; 1.91 ; The structure of salutaridine reductase from Papaver somniferum. 7C7M ; 1.81 ; The structure of SAM-bound CntL, an aminobutyrate transferase in staphylopine biosysnthesis 3FPB ; 2.55 ; The Structure of Sarcoplasmic Reticulum Ca2+-ATPase Bound To Cyclopiazonic acid with ATP 3FPS ; 3.2 ; The Structure of Sarcoplasmic Reticulum Ca2+-ATPase Bound To Cyclopiazonic and ADP 5KAV ; 2.0 ; The structure of SAV2435 5KCB ; 2.101 ; The structure of SAV2435 bound to ethidium bromide 5KAU ; 1.95 ; The structure of SAV2435 bound to RHODAMINE 6G 5KAT ; 2.101 ; The structure of SAV2435 bound to TETRAPHENYLPHOSPHONIUM 5KAW ; 1.86 ; The structure of SAV2435 bound to TETRAPHENYLPHOSPHONIUM and RHODAMINE 6G 6EG5 ; 2.45 ; The structure of SB-1-202-tubulin complex 6N47 ; 2.6 ; The structure of SB-2-204-tubulin complex 6QH1 ; 2.9 ; The structure of Schizosaccharomyces pombe PCNA in complex with an Spd1 derived peptide 6L6W ; 2.17 ; The structure of ScoE with intermediate 6L6X ; 2.18 ; The structure of ScoE with substrate 7V3O ; 1.83005 ; The structure of Se-SoBcmB with Fe(II)and AKG 2VMI ; 1.7 ; The structure of seleno-methionine labelled CBM51 from Clostridium perfringens GH95 8K5K ; 1.81 ; The structure of SenA 8K5J ; 1.3 ; The structure of SenA in complex with N,N,N-trimethyl-histidine 8K5I ; 1.92 ; The structure of SenA in complex with N,N,N-trimethyl-histidine and thioglucose 2CKG ; 2.45 ; The structure of SENP1 SUMO-2 co-complex suggests a structural basis for discrimination between SUMO paralogues during processing 6SSV ; 3.22 ; The structure of serpin from Schistosoma mansoni 4A1R ; 1.92 ; The Structure of Serratia marcescens Lip, a membrane bound component of the Type VI Secretion System. 2W08 ; 1.7 ; The structure of serum amyloid P component bound to 0-phospho- threonine 3KQR ; 1.5 ; The structure of serum amyloid p component bound to phosphoethanolamine 6L86 ; 2.23 ; The structure of SfaA 4I4J ; 2.784 ; The structure of SgcE10, the ACP-polyene thioesterase involved in C-1027 biosynthesis 2KXD ; ; The structure of SH3-F2 2DF3 ; 1.9 ; The structure of Siglec-7 in complex with alpha(2,3)/alpha(2,6) disialyl lactotetraosyl 2-(trimethylsilyl)ethyl 4TWI ; 1.79 ; The structure of Sir2Af1 bound to a succinylated histone peptide 4TWJ ; 1.65 ; The structure of Sir2Af2 bound to a myristoylated histone peptide 6PDK ; 1.9 ; The Structure of Smlt3025, an immunity protein of the Stenotrophomonas maltophilia type IV secretion system 1FHF ; 2.8 ; THE STRUCTURE OF SOYBEAN PEROXIDASE 5LU3 ; 1.5 ; The Structure of Spirochaeta thermophila CBM64 2JK9 ; 1.79 ; The structure of splA-ryanodine receptor domain and SOCS box containing 1 in complex with a PAR-4 peptide 7E8L ; 2.3 ; The structure of Spodoptera litura chemosensory protein 3O6Q ; 2.5 ; The Structure of SpoIISA and SpoIISB, a Toxin - Antitoxin System 6NCF ; 2.871 ; The structure of Stable-5-Lipoxygenase bound to AKBA 6N2W ; 2.71 ; The structure of Stable-5-Lipoxygenase bound to NDGA 5U75 ; 1.66 ; The structure of Staphylococcal Enterotoxin-like X (SElX), a Unique Superantigen 2FEY ; ; The structure of stem loop IV of Tetrahymena telomerase RNA 1EE2 ; 1.54 ; THE STRUCTURE OF STEROID-ACTIVE ALCOHOL DEHYDROGENASE AT 1.54 A RESOLUTION 4JGX ; 2.2 ; The Structure of Sterol Carrier Protein 2 from the Yeast Yarrowia Lipolytica 1Y7O ; 2.51 ; The structure of Streptococcus pneumoniae A153P ClpP 2LJJ ; ; The structure of subdomain IV-B from the CVB-3 IRES 6W11 ; 2.46 ; The structure of Sulfolobus solfataricus Csa3 in complex with cyclic tetraadenylate (cA4) 4KYT ; 2.833 ; The structure of superinhibitory phospholamban bound to the calcium pump SERCA1a 7EGP ; 6.9 ; The structure of SWI/SNF-nucleosome complex 7QXO ; 1.9 ; The structure of T. forsythia NanH 7QY8 ; 2.06 ; The structure of T. forsythia NanH 7QYJ ; 2.11 ; The structure of T. forsythia NanH 7QYP ; 1.659 ; The structure of T. forsythia NanH 7QZ3 ; 1.97 ; The structure of T. forsythia NanH 4JJJ ; 1.6 ; The structure of T. fusca GH48 D224N mutant 2O2S ; 2.6 ; The structure of T. gondii enoyl acyl carrier protein reductase in complex with NAD and triclosan 7QY9 ; 1.92 ; The structure of T.forsythia NanH with oseltamivir 4E7U ; 1.3 ; The structure of T3R3 bovine insulin 7DWS ; 2.8 ; The structure of T4 Lysozyme I3C/C54T/R125C/E128C complex with Zinc ions 2A3G ; 2.25 ; The structure of T6 bovine insulin 4E7T ; 1.4 ; The structure of T6 bovine insulin 5VTG ; 1.859 ; The structure of TamB963-1138 from Escherichia coli reveals a novel hydrophobic Beta-taco fold 2O81 ; ; The Structure of Tandem GA RNA Pairs When Flanking Pairs are isoG-isoC Pairs 2O83 ; ; The Structure of Tandem GA RNA Pairs When Flanking Pairs are isoG-isoC Pairs 2V0P ; 1.8 ; The Structure of Tap42 Alpha4 Subunit 7XTU ; 2.43 ; The structure of TfCut S130A 5LQ4 ; 2.65 ; The Structure of ThcOx, the First Oxidase Protein from the Cyanobactin Pathways 8DF2 ; 2.35 ; The structure of the 'ALT' construct of the Amuc_1438 glycopeptidase 2XZ0 ; 3.0 ; The Structure of the 2:1 (Partially Occupied) Complex Between Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean) and Acyl Carrier Protein. 2XZ1 ; 3.35 ; The Structure of the 2:2 (Fully Occupied) Complex Between Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean) and Acyl Carrier Protein. 6XM2 ; 1.91 ; The structure of the 4A11.v7 antibody in complex with human TGFb2 7EAL ; 2.5 ; The structure of the A20-Binding Inhibitor of NF-kB 1 in complex with di-ubiquitin 7EB9 ; 3.2 ; The structure of the A20-binding inhibitor of NF-kB 1 in complex with tetra-ubiquitin 7EAO ; 2.9 ; The structure of the A20-binding inhibitor of NF-kB 1 in complex with tri-ubiquitin 7CCC ; 3.2 ; The structure of the actin filament uncapping complex mediated by twinfilin 6BIH ; 6.0 ; The Structure of the Actin-Smooth Muscle Myosin Motor Domain Complex in the Rigor State 2P6A ; 3.4 ; The structure of the Activin:Follistatin 315 complex 6IJP ; 1.85 ; The structure of the ADAL-IMP complex 2ORB ; 2.2 ; The structure of the anti-c-myc antibody 9E10 Fab fragment 2OR9 ; 2.7 ; The structure of the anti-c-myc antibody 9E10 Fab fragment/epitope peptide complex reveals a novel binding mode dominated by the heavy chain hypervariable loops 3CPW ; 2.7 ; The structure of the antibiotic LINEZOLID bound to the large ribosomal subunit of HALOARCULA MARISMORTUI 1D6X ; ; THE STRUCTURE OF THE ANTIMICROBIAL PEPTIDE TRITRPTICIN BOUND TO MICELLES-A DISTINCT MEMBRANE-BOUND PEPTIDE FOLD 7DBF ; 1.9 ; The structure of the Arabidopsis thaliana guanosine deaminase 7DCA ; 2.1 ; The structure of the Arabidopsis thaliana guanosine deaminase bound by xanthosine 7DCW ; 2.3 ; The structure of the Arabidopsis thaliana guanosine deaminase complexed with adenosine 7DM6 ; 2.05 ; The structure of the Arabidopsis thaliana guanosine deaminase complexed with crotonoside 7DCB ; 2.0 ; The structure of the Arabidopsis thaliana guanosine deaminase complexed with inosine 7DOY ; 2.17 ; The structure of the Arabidopsis thaliana guanosine deaminase in complex with 6-O-methylguanosine 7DOX ; 1.9 ; The structure of the Arabidopsis thaliana guanosine deaminase in complex with m7G 7DGC ; 2.1 ; The structure of the Arabidopsis thaliana guanosine deaminase in reaction with 2'-O-Methylguanosine 7DOW ; 2.0 ; The structure of the Arabidopsis thaliana guanosine deaminase in reaction with 7-deazaguansoine 7DM5 ; 2.2 ; The structure of the Arabidopsis thaliana guanosine deaminase in reaction with guanosine 7DLC ; 2.45 ; The structure of the Arabidopsis thaliana guanosine deaminase in reaction with N1-methylguanosine 7DH1 ; 1.85 ; The structure of the Arabidopsis thaliana guanosine deaminase in reaction with N2-Methylguanosine 7DC9 ; 1.7 ; The structure of the Arabidopsis thaliana guanosine deaminase mutant E82Q complex with guanosine 7W1Q ; 2.3 ; The structure of the Arabidopsis thaliana guanosine deaminase mutant E82Q complexed with 2'-O-methylguanosine 7DQN ; 2.6 ; The structure of the Arabidopsis thaliana guanosine deaminase mutant Y185F complexed with guanosine 5UAY ; 2.5 ; The structure of the Arabidopsis thaliana Toc75 POTRA domains 5UBC ; 2.862 ; The structure of the Arabidopsis thaliana Toc75 POTRA domains 6PNZ ; 2.27 ; The structure of the Aspartate Transcarbamoylase trimer from Staphylococcus aureus complexed with PALA at 2.27 Resolution. 4DNX ; 1.6 ; The structure of the ATP sulfurylase from Allochromatium vinosum in the open state 6YWV ; 3.03 ; The structure of the Atp25 bound assembly intermediate of the mitoribosome from Neurospora crassa 4APT ; 2.5 ; The structure of the AXH domain of ataxin-1. 4AQP ; 2.452 ; The structure of the AXH domain of ataxin-1. 1D61 ; 1.3 ; THE STRUCTURE OF THE B-DNA DECAMER C-C-A-A-C-I-T-T-G-G: MONOCLINIC FORM 1D60 ; 2.2 ; THE STRUCTURE OF THE B-DNA DECAMER C-C-A-A-C-I-T-T-G-G: TRIGONAL FORM 1K28 ; 2.9 ; The Structure of the Bacteriophage T4 Cell-Puncturing Device 5EKQ ; 3.392 ; The structure of the BamACDE subcomplex from E. coli 2V6V ; 1.5 ; The structure of the Bem1p PX domain 5FA0 ; 2.3 ; The structure of the beta-3-deoxy-D-manno-oct-2-ulosonic acid transferase domain from WbbB 5FA1 ; 2.1 ; The structure of the beta-3-deoxy-D-manno-oct-2-ulosonic acid transferase domain of WbbB 5SWC ; 1.45 ; The structure of the beta-carbonic anhydrase CcaA 3MFD ; 1.75 ; The Structure of the Beta-lactamase superfamily domain of D-alanyl-D-alanine carboxypeptidase from Bacillus subtilis 4HZN ; 2.25 ; The Structure of the Bifunctional Acetyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double Hot Dog Fold 4HZO ; 1.76 ; The Structure of the Bifunctional Acetyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double Hot Dog Fold 4HZP ; 1.77 ; The Structure of the Bifunctional Acetyltransferase/Decarboxylase LnmK from the Leinamycin Biosynthetic Pathway Revealing Novel Activity for a Double Hot Dog Fold 2R9E ; 1.95 ; The structure of the binary complex of citryl dethia COA and citrate synthase from the thermophilic archaeonthermoplasma acidophilum 2IFC ; 1.7 ; The Structure of the Binary Complex of Oxalateacetate with Citrate Synthase from the Thermophilic Archaeon Thermolasma acidophilum 1XB1 ; 2.7 ; The Structure of the BIR domain of IAP-like protein 2 7YDS ; 2.3 ; The structure of the bispecific antibody targeted PD-L1 and 4-1BB 7ABA ; 1.85002 ; The structure of the Bottromycin biosynthetic protein SalCYP 1O7D ; 2.7 ; The structure of the bovine lysosomal a-mannosidase suggests a novel mechanism for low pH activation 4BY9 ; ; The structure of the Box CD enzyme reveals regulation of rRNA methylation 2NAY ; ; The structure of the Bt1.8 peptide synthesized by solid-phase method 2VXD ; ; The structure of the C-terminal domain of Nucleophosmin 6Z4E ; 2.0 ; The structure of the C-terminal domain of RssB from E. coli 2EHB ; 2.1 ; The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3 2O0A ; 1.6 ; The structure of the C-terminal domain of Vik1 has a motor domain fold but lacks a nucleotide-binding site. 6E3F ; 2.7 ; The structure of the C-terminal domains (C123) of Streptococcus intermedius antigen I/II (Pas) 3IA8 ; 1.792 ; The structure of the C-terminal heme nitrobindin domain of THAP domain-containing protein 4 from Homo sapiens 5H3W ; 2.6 ; The structure of the C-terminal of the fibronectin/fibrinogen-binding protein from Streptococcus suis (FBPS) 4USX ; 1.8 ; The Structure of the C-terminal YadA-like domain of BPSL2063 from Burkholderia pseudomallei 5TP1 ; 2.31 ; The structure of the C-terminus of virulence protein IncE from Chlamydia trachomatis bound to Mus musculus SNX5-PX domain 4YBA ; 1.7 ; The structure of the C.Kpn2I controller protein 3Q13 ; 1.95 ; The Structure of the Ca2+-binding, Glycosylated F-spondin Domain of F-spondin, A C2-domain Variant from Extracellular Matrix 2L1R ; ; The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I 4I0C ; 1.95 ; The structure of the camelid antibody cAbHuL5 in complex with human lysozyme 2MWI ; ; The structure of the carboxy-terminal domain of DNTTIP1 3A2A ; 2.0 ; The structure of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1 3NDY ; 2.1 ; The structure of the catalytic and carbohydrate binding domain of endoglucanase D from Clostridium cellulovorans 3NDZ ; 2.08 ; The structure of the catalytic and carbohydrate binding domain of endoglucanase D from Clostridium cellulovorans bound to cellotriose 3K4S ; 2.05 ; The structure of the catalytic domain of human PDE4d with 4-(3-Butoxy-4-methoxyphenyl)methyl-2-imidazolidone 4D7U ; 1.56 ; The structure of the catalytic domain of NcLPMO9C from the filamentous fungus Neurospora crassa 4D7V ; 1.9 ; The structure of the catalytic domain of NcLPMO9C from the filamentous fungus Neurospora crassa 3UXU ; 2.706 ; The structure of the catalytic domain of the Sulfolobus Spindle-shaped viral integrase reveals an evolutionarily conserved catalytic core and supports a mechanism of DNA cleavage in trans 6XSX ; 2.1 ; The structure of the catalytic module of the metalloprotease ZmpA from Clostridium perfringens 2KFB ; ; The structure of the cataract causing P23T mutant of human gamma-D crystallin 3GQ0 ; 2.066 ; The structure of the Caulobacter crescentus clpS protease adaptor protein - apo structure with no peptide 3DNJ ; 1.15 ; The structure of the Caulobacter crescentus ClpS protease adaptor protein in complex with a N-end rule peptide 3GQ1 ; 1.496 ; The structure of the caulobacter crescentus clpS protease adaptor protein in complex with a WLFVQRDSKE decapeptide 3GW1 ; 2.36 ; The structure of the Caulobacter crescentus CLPs protease adaptor protein in complex with FGG tripeptide 3G19 ; 1.849 ; The structure of the Caulobacter crescentus clpS protease adaptor protein in complex with LLL tripeptide 7JFS ; 4.6 ; The structure of the CBM32-1, CBM32-2, and M60 catalytic domains from Clostridium perfringens ZmpB 4B62 ; 1.45 ; The structure of the cell wall anchor of the T6SS from Pseudomonas aeruginosa 3AN2 ; 3.6 ; The structure of the centromeric nucleosome containing CENP-A 6CSU ; 2.5 ; The structure of the Cep63-Cep152 heterotetrameric complex 6CSV ; 2.5 ; The structure of the Cep63-Cep152 heterotetrameric complex 2I33 ; 1.57 ; The structure of the Class C acid phosphatase from Bacillus anthracis 6ZLX ; 3.394 ; The structure of the ClpX-associated factor PDIP38 5N0L ; 1.68 ; The structure of the cofactor binding GAF domain of the nutrient sensor CodY from Clostridium difficile 6QPQ ; 2.1 ; The structure of the cohesin head module elucidates the mechanism of ring opening 1USU ; 2.15 ; The Structure of the complex between Aha1 and HSP90 1USV ; 2.7 ; The Structure of the complex between Aha1 and HSP90 3OED ; 3.16 ; The structure of the complex between complement receptor CR2 and its ligand complement fragment C3d 2BAT ; 2.0 ; THE STRUCTURE OF THE COMPLEX BETWEEN INFLUENZA VIRUS NEURAMINIDASE AND SIALIC ACID, THE VIRAL RECEPTOR 5YMY ; ; The structure of the complex between Rpn13 and K48-diUb 2VPL ; 2.3 ; The structure of the complex between the first domain of L1 protein from Thermus thermophilus and mRNA from Methanococcus jannaschii 5N3U ; 1.89 ; The structure of the complex of CpcE and CpcF of phycocyanin lyase from Nostoc sp. PCC7120 2M56 ; ; The structure of the complex of cytochrome P450cam and its electron donor putidaredoxin determined by paramagnetic NMR spectroscopy 1MH5 ; 2.1 ; The Structure Of The Complex Of The Fab Fragment Of The Esterolytic Antibody MS6-164 and A Transition-State Analog 3JQ4 ; 3.52 ; The structure of the complex of the large ribosomal subunit from D. Radiodurans with the antibiotic lankacidin 5NZR ; 9.2 ; The structure of the COPI coat leaf 5NZS ; 10.1 ; The structure of the COPI coat leaf in complex with the ArfGAP2 uncoating factor 5A1V ; 21.0 ; The structure of the COPI coat linkage I 5NZT ; 17.0 ; The structure of the COPI coat linkage I 5A1W ; 18.0 ; The structure of the COPI coat linkage II 5NZU ; 15.0 ; The structure of the COPI coat linkage II 5A1X ; 23.0 ; The structure of the COPI coat linkage III 5A1Y ; 21.0 ; The structure of the COPI coat linkage IV 5NZV ; 17.3 ; The structure of the COPI coat linkage IV 5A1U ; 13.0 ; The structure of the COPI coat triad 4BZI ; 23.0 ; The structure of the COPII coat assembled on membranes 4BZJ ; 40.0 ; The structure of the COPII coat assembled on membranes 4BZK ; 40.0 ; The structure of the COPII coat assembled on membranes 3PS0 ; 2.0 ; The structure of the CRISPR-associated protein, csa2, from Sulfolobus solfataricus 2WTE ; 1.8 ; The structure of the CRISPR-associated protein, Csa3, from Sulfolobus solfataricus at 1.8 angstrom resolution. 2GD7 ; ; The Structure of the Cyclin T-binding domain of Hexim1 reveals the molecular basis for regulation of transcription elongation 1H1Y ; 1.87 ; The structure of the cytosolic D-ribulose-5-phosphate 3-epimerase from rice complexed with sulfate 1H1Z ; 3.4 ; The structure of the cytosolic D-ribulose-5-phosphate 3-epimerase from rice complexed with sulfate and zinc 1BQG ; 2.3 ; THE STRUCTURE OF THE D-GLUCARATE DEHYDRATASE PROTEIN FROM PSEUDOMONAS PUTIDA 2P8D ; 1.9 ; The Structure of the Dickerson Sequence with an Incorporated CeNA Residue 3Q9L ; 2.343 ; The structure of the dimeric E.coli MinD-ATP complex 3ZRW ; 2.25 ; The structure of the dimeric Hamp-Dhp fusion A291V mutant 6Z2J ; 4.0 ; The structure of the dimeric HDAC1/MIDEAS/DNTTIP1 MiDAC deacetylase complex 6L94 ; 3.10012 ; The structure of the dioxygenase ABH1 from mouse 1LU1 ; 2.6 ; THE STRUCTURE OF THE DOLICHOS BIFLORUS SEED LECTIN IN COMPLEX WITH THE FORSSMAN DISACCHARIDE 2CLB ; 2.4 ; The structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like di-metal binding site within a Dps- like dodecameric assembly 8HVJ ; 4.05 ; The structure of the E. coli mRNA endoonuclease YiCC 2REB ; 2.3 ; THE STRUCTURE OF THE E. COLI RECA PROTEIN MONOMER AND POLYMER 5NDI ; 2.57 ; The structure of the E.coli guanidine II riboswitch P1 stem-loop 2KQ6 ; ; The structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity 4RSW ; 1.9 ; The structure of the effector protein from Pseudomonas syringae pv. syringae strain 61 4RSX ; 2.303 ; The structure of the effector protein from Pseudomonas syringae pv. tomato strain DC3000 2W1B ; 3.85 ; The structure of the efflux pump AcrB in complex with bile acid 3O9P ; 2.07 ; The structure of the Escherichia coli murein tripeptide binding protein MppA 5I6C ; 3.7 ; The structure of the eukaryotic purine/H+ symporter, UapA, in complex with Xanthine 4V88 ; 3.0 ; The structure of the eukaryotic ribosome at 3.0 A resolution. 7DPK ; 2.15 ; The structure of the exchange reaction of the Arabidopsis thaliana guanosine deaminase in complex with 7-deazaguaosine by guanosine 1Y6U ; ; The Structure of the Excisionase (Xis) Protein from Conjugative Transposon Tn916 Provides Insights into the Regulation of Heterobivalent Tyrosine Recombinases 6W66 ; 3.21 ; The structure of the F64A, S172A mutant Keap1-BTB domain in complex with SKP1-FBXL17 2C1F ; 2.1 ; The structure of the family 11 xylanase from Neocallimastix patriciarum 2V72 ; 2.25 ; The structure of the family 32 CBM from C. perfringens NanJ in complex with galactose 2V73 ; 2.2 ; The structure of the family 40 CBM from C. perfringens NanJ in complex with a sialic acid containing molecule 7ROY ; 2.9 ; The structure of the Fem1B:FNIP1 complex 6TXS ; 2.2 ; The structure of the FERM domain and helical linker of human moesin bound to a CD44 peptide 3SOQ ; 1.9 ; The structure of the first YWTD beta propeller domain of LRP6 in complex with a DKK1 peptide 3SOB ; 1.9 ; The structure of the first YWTD beta propeller domain of LRP6 in complex with a FAB 6H6K ; 2.0 ; The structure of the FKR mutant of the archaeal translation initiation factor 2 gamma subunit in complex with GDPCP, obtained in the absence of magnesium salts in the crystallization solution. 4UT1 ; 1.8 ; The structure of the flagellar hook junction protein FlgK from Burkholderia pseudomallei 5XBJ ; 2.448 ; The structure of the flagellar hook junction protein HAP1 (FlgK) from Campylobacter jejuni 4BDX ; 1.62 ; The structure of the FnI-EGF tandem domain of coagulation factor XII 4BDW ; 2.501 ; The structure of the FnI-EGF tandem domain of coagulation factor XII in complex with Holmium 4YXP ; 1.92 ; The structure of the folded domain of the signature multifunctional protein ICP27 from herpes simplex virus-1 reveals an intertwined dimer. 2B0U ; 2.8 ; The Structure of the Follistatin:Activin Complex 2Y3I ; 2.9 ; The structure of the fully closed conformation of human PGK in complex with L-ADP, 3PG and the TSA aluminium tetrafluoride 2YBE ; 2.0 ; The structure of the fully closed conformation of human PGK in complex with L-ADP, 3PG and the TSA aluminium tetrafluoride at 2.0 A resolution 5L39 ; 2.1 ; The structure of the fused permuted hexameric shell protein MSM0275 from the RMM microcompartment 2WZO ; 1.6 ; The structure of the FYR domain 5NEO ; 1.69 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop 5NEX ; 1.72 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop with agmatine 5NEQ ; 1.69 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop with aminoguanidine 5NEF ; 1.91 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop with guanidine 5NOM ; 1.93 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop with guanidine 5NEP ; 1.6 ; The structure of the G. violaceus guanidine II riboswitch P1 stem-loop with methylguanidine 5NDH ; 1.81 ; The structure of the G. violaceus guanidine II riboswitch P2 stem-loop 6HBT ; 1.66 ; The structure of the G. violaceus guanidine II riboswitch P2 stem-loop with arcaine 6HC5 ; 1.413 ; The structure of the G. violaceus guanidine II riboswitch P2 stem-loop with audouine 6HBX ; 1.54 ; The structure of the G. violaceus guanidine II riboswitch P2 stem-loop with ethylguanidine 2V5E ; 2.35 ; The structure of the GDNF:Coreceptor complex: Insights into RET signalling and heparin binding. 5GXH ; 1.8 ; The structure of the Gemin5 WD40 domain with AAUUUUUG 8IN9 ; 3.4 ; The structure of the GfsA KSQ-AT didomain in complex with the GfsA ACP domain 4D1J ; 1.8 ; The structure of the GH35 beta-galactosidase Bgl35A from Cellvibrio japonicas in complex with 1-Deoxygalactonojirimycin 4D1I ; 1.8 ; The structure of the GH35 beta-galactosidase Bgl35A from Cellvibrio japonicus 8DEK ; 2.5 ; The structure of the glycopeptidase catalytic domain including the linker of Amuc_1438 6IOB ; 2.002 ; The structure of the H109A mutant of UdgX in complex with uracil 6IOC ; 1.624 ; The structure of the H109Q mutant of UdgX in complex with uracil 5GK2 ; 2.201 ; The structure of the H302A mutant of StlD 2XIG ; 1.85 ; The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites 4IOX ; 2.458 ; The structure of the herpes simplex virus DNA-packaging motor pUL15 C-terminal nuclease domain provides insights into cleavage of concatemeric viral genome precursors 5L38 ; 2.2 ; The structure of the hexagonal shell protein MSM0272 from the RMM microcompartment 4V1X ; 2.2 ; The structure of the hexameric atrazine chlorohydrolase, AtzA 4V1Y ; 2.8 ; The structure of the hexameric atrazine chlorohydrolase, AtzA 1HSM ; ; THE STRUCTURE OF THE HMG BOX AND ITS INTERACTION WITH DNA 1HSN ; ; THE STRUCTURE OF THE HMG BOX AND ITS INTERACTION WITH DNA 1NHM ; ; THE STRUCTURE OF THE HMG BOX AND ITS INTERACTION WITH DNA 1NHN ; ; THE STRUCTURE OF THE HMG BOX AND ITS INTERACTION WITH DNA 7EZG ; 1.9 ; The structure of the human METTL6 enzyme in complex with SAH 1H9U ; 2.7 ; The structure of the human retinoid-X-receptor beta ligand binding domain in complex with the specific synthetic agonist LG100268 3P56 ; 4.06 ; The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease 3P5J ; 2.9 ; The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease 7PDC ; 1.83 ; The structure of the human tetrameric LL-37 peptide in a channel conformation 7NC0 ; 2.2 ; The structure of the humanised A33 Fab C226S variant, an immunotherapy candidate for colorectal cancer 7NFA ; 2.3 ; The structure of the humanised A33 Fab C226S variant, an immunotherapy candidate for colorectal cancer 1MWW ; 2.08 ; THE STRUCTURE OF THE HYPOTHETICAL PROTEIN HI1388.1 FROM HAEMOPHILUS INFLUENZAE REVEALS A TAUTOMERASE/MIF FOLD 3WXZ ; 2.303 ; The structure of the I375F mutant of CsyB 8DPT ; 4.0 ; The structure of the IL-11 signalling complex, with full-length extracellular gp130 4USN ; 8.8 ; The structure of the immature HIV-1 capsid in intact virus particles at sub-nm resolution 2FAP ; 2.2 ; THE STRUCTURE OF THE IMMUNOPHILIN-IMMUNOSUPPRESSANT FKBP12-(C16)-ETHOXY RAPAMYCIN COMPLEX INTERACTING WITH HUMA 1FAP ; 2.7 ; THE STRUCTURE OF THE IMMUNOPHILIN-IMMUNOSUPPRESSANT FKBP12-RAPAMYCIN COMPLEX INTERACTING WITH HUMAN FRAP 1NSG ; 2.2 ; THE STRUCTURE OF THE IMMUNOPHILIN-IMMUNOSUPPRESSANT FKBP12-RAPAMYCIN COMPLEX INTERACTING WITH HUMAN FRAP 4B54 ; 2.8 ; The Structure of the inactive mutant G153R of LptC from E. coli 7LIC ; 3.3 ; The structure of the insect olfactory receptor OR5 from Machilis hrabei 7LIG ; 2.9 ; The structure of the insect olfactory receptor OR5 from Machilis hrabei in complex with DEET 7LID ; 2.9 ; The structure of the insect olfactory receptor OR5 from Machilis hrabei in complex with eugenol 8DPS ; 3.47 ; The structure of the interleukin 11 signalling complex, truncated gp130 3LAJ ; 2.306 ; The Structure of the Intermediate Complex of the Arginine Repressor from Mycobacterium tuberculosis Bound to its DNA Operator and L-arginine. 3LAP ; 2.15 ; The Structure of the Intermediate Complex of the Arginine Repressor from Mycobacterium tuberculosis Bound to its DNA Operator and L-canavanine. 1DTP ; 2.5 ; THE STRUCTURE OF THE ISOLATED CATALYTIC DOMAIN OF DIPHTHERIA TOXIN 1ATO ; ; THE STRUCTURE OF THE ISOLATED, CENTRAL HAIRPIN OF THE HDV ANTIGENOMIC RIBOZYME, NMR, 10 STRUCTURES 5YBV ; 2.12 ; The structure of the KANK2 ankyrin domain with the KIF21A peptide 4HTA ; 1.901 ; The structure of the karrikin insensitive (KAI2) protein in Arabidopsis thaliana 5HNO ; 1.7 ; The structure of the kdo-capped saccharide binding subunit of the O-12 specific ABC transporter, Wzt 5HNP ; 2.2 ; The structure of the kdo-capped saccharide binding subunit of the O-12 specific ABC transporter, Wzt 2KMG ; ; The structure of the KlcA and ArdB proteins show a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro 5G3T ; 1.8 ; The structure of the L-tryptophan oxidase VioA from Chromobacterium violaceum 5G3S ; 2.076 ; The structure of the L-tryptophan oxidase VioA from Chromobacterium violaceum - Samarium derivative 5G3U ; 2.377 ; The structure of the L-tryptophan oxidase VioA from Chromobacterium violaceum in complex with its inhibitor 2-(1H-indol-3-ylmethyl)prop-2- enoic acid 6YWS ; 2.74 ; The structure of the large subunit of the mitoribosome from Neurospora crassa 3P5B ; 3.3 ; The structure of the LDLR/PCSK9 complex reveals the receptor in an extended conformation 3P5C ; 4.2 ; The structure of the LDLR/PCSK9 complex reveals the receptor in an extended conformation 1C4R ; 2.6 ; THE STRUCTURE OF THE LIGAND-BINDING DOMAIN OF NEUREXIN 1BETA: REGULATION OF LNS DOMAIN FUNCTION BY ALTERNATIVE SPLICING 2W9Y ; 1.8 ; The structure of the lipid binding protein Ce-FAR-7 from Caenorhabditis elegans 6KYT ; 2.00101 ; The structure of the M. tb toxin MazEF-mt1 complex 6KYS ; 2.20041 ; The structure of the M. tb toxin MazF-mt1 7DU5 ; 2.65 ; The structure of the M.tb MazF-mt1 toxin in complex with a fragment of cognate antitoxin 7DU4 ; 2.18 ; The structure of the M.tb MazF-mt9 toxin in complex with a fragment of cognate antitoxin 3G1B ; 1.448 ; The structure of the M53A mutant of Caulobacter crescentus clpS protease adaptor protein in complex with WLFVQRDSKE peptide 3G3P ; 1.478 ; The structure of the M53A Mutant of the Caulobacter crescentus CLPS in complex with a peptide containing an amino-terminal norleucine residue 6XSZ ; 2.25 ; The structure of the M60 catalytic domain from Clostridium perfringens ZmpC 6XT1 ; 2.49 ; The structure of the M60 catalytic domain from Clostridium perfringens ZmpC in complex the sialyl T antigen 7JS4 ; 4.6 ; The structure of the M60 catalytic domain with the CBM51-1 and CBM51-2 domains from Clostridium perfringens ZmpB 1HFO ; 1.65 ; The Structure of the Macrophage Migration Inhibitory Factor from Trichinella Spiralis. 5TIP ; 2.0 ; The Structure of the Major Capsid protein of PBCV-1 5TIQ ; 2.537 ; The Structure of the Major Capsid protein of PBCV-1 3JC2 ; 3.6 ; The structure of the mammalian Sec61 channel opened by a signal sequence 2FH5 ; 2.45 ; The Structure of the Mammalian SRP Receptor 5UOJ ; 2.1 ; THE STRUCTURE OF THE MAP KINASE P38 AT 2.1 ANGSTROMS RESOLUTION 3ENM ; 2.35 ; The structure of the MAP2K MEK6 reveals an autoinhibitory dimer 5MCX ; 6.8 ; The structure of the mature HIV-1 CA hexamer in intact virus particles 5MCZ ; 8.2 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=-1, twist=0 5MD7 ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=11, twist=-12 5MD6 ; 8.1 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=11, twist=-6 5MD5 ; 8.2 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=11, twist=0 5MD3 ; 8.5 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=11, twist=12 5MD4 ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=11, twist=6 5MDC ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=17, twist=-12 5MDB ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=17, twist=-6 5MDA ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=17, twist=0 5MD8 ; 8.6 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=17, twist=12 5MD9 ; 8.0 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=17, twist=6 5MDF ; 8.5 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=23, twist=-6 5MDE ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=23, twist=0 5MDD ; 8.5 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=23, twist=6 5MDG ; 8.7 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=29, twist=0 5MD2 ; 8.6 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=5, twist=-6 5MD1 ; 8.2 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=5, twist=0 5MD0 ; 8.4 ; The structure of the mature HIV-1 CA hexameric lattice with curvature parameters: tilt=5, twist=6 5MCY ; 8.8 ; The structure of the mature HIV-1 CA pentamer in intact virus particles 6L29 ; 2.30001 ; The structure of the MazF-mt1 mutant 2WSS ; 3.2 ; The structure of the membrane extrinsic region of bovine ATP synthase 6KW1 ; 1.77521 ; The structure of the metallo-beta-lactamase VIM-2 in complex with a triazolylthioacetamide 1b 5LSC ; 1.497 ; The structure of the metallo-beta-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor 4GC0 ; 2.6 ; The structure of the MFS (major facilitator superfamily) proton:xylose symporter XylE bound to 6-bromo-6-deoxy-D-glucose 4GBZ ; 2.894 ; The structure of the MFS (major facilitator superfamily) proton:xylose symporter XylE bound to D-glucose 4GBY ; 2.808 ; The structure of the MFS (major facilitator superfamily) proton:xylose symporter XylE bound to D-xylose 5Y91 ; 1.901 ; The structure of the MHC class I molecule of bony fishes provides insights into the conserved nature of the antigen-presenting system 7XSJ ; 3.2 ; The structure of the Mint1/Munc18-1/syntaxin-1 complex 6YWE ; 2.99 ; The structure of the mitoribosome from Neurospora crassa in the P/E tRNA bound state 6YWY ; 3.05 ; The structure of the mitoribosome from Neurospora crassa with bound tRNA at the P-site 6YWX ; 3.1 ; The structure of the mitoribosome from Neurospora crassa with tRNA bound to the E-site 6Q32 ; 1.39 ; The structure of the Mo-insertase domain Cnx1E (variant S269DD274S) from Arabidopsis thaliana in complex with Moco-AMP 6ETD ; 1.723 ; The Structure of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP 6ETF ; 1.781 ; The Structure of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP and molybdate 6ETH ; 1.64 ; The Structure of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP and tungstate 6Y01 ; 1.23 ; The structure of the molybdenum cofactor binding protein from the phototrophic bacterium Rippkaea orientalis 4TWG ; 1.85 ; The structure of the Molybdopterin biosynthesis Mog protein from Mycobacterium ulcerans 7KSQ ; 2.8 ; The Structure of the moss PSI-LHCI reveals the evolution of the LHCI antenna 7KU5 ; 3.76 ; The Structure of the moss PSI-LHCI reveals the evolution of the LHCI antenna 7KUX ; 2.8 ; The Structure of the moss PSI-LHCI reveals the evolution of the LHCI antenna 1G2U ; 2.1 ; THE STRUCTURE OF THE MUTANT, A172V, OF 3-ISOPROPYLMALATE DEHYDROGENASE FROM THERMUS THERMOPHILUS HB8 : ITS THERMOSTABILITY AND STRUCTURE. 1V5B ; 2.95 ; The Structure Of The Mutant, S225A and E251L, Of 3-Isopropylmalate Dehydrogenase From Bacillus Coagulans 2WZL ; 2.1 ; The Structure of the N-RNA Binding Domain of the Mokola virus Phosphoprotein 7EEY ; 2.6 ; The structure of the N-terminal doamin of the Schizosaccharomyces pombe Tad2 adenosine deaminase 6E4L ; 1.6 ; The structure of the N-terminal domain of human clathrin heavy chain 1 (nTD) in complex with ES9 2BNL ; 2.0 ; The structure of the N-terminal domain of RsbR 6Z4C ; 2.0 ; The structure of the N-terminal domain of RssB from E. coli 1VZO ; 1.8 ; The structure of the N-terminal kinase domain of MSK1 reveals a novel autoinhibitory conformation for a dual kinase protein 1KDK ; 1.7 ; THE STRUCTURE OF THE N-TERMINAL LG DOMAIN OF SHBG IN CRYSTALS SOAKED WITH EDTA 5H3X ; 2.1 ; The structure of the N-terminal of the fibronectin/fibrinogen-binding protein from Streptococcus suis (FBPS) 3A8R ; 2.4 ; The structure of the N-terminal regulatory domain of a plant NADPH oxidase 8DD0 ; 3.5 ; The structure of the native cardiac thin filament junction region 8V01 ; 5.5 ; The structure of the native cardiac thin filament troponin core in Ca2+-bound fully activated state 1 from the lower strand 8V0I ; 5.8 ; The structure of the native cardiac thin filament troponin core in Ca2+-bound fully activated state 2 from the lower strand 8UZX ; 5.4 ; The structure of the native cardiac thin filament troponin core in Ca2+-bound fully activated state from the upper strand 8V0K ; 5.2 ; The structure of the native cardiac thin filament troponin core in Ca2+-bound partially activated state from the lower strand 8UZY ; 5.3 ; The structure of the native cardiac thin filament troponin core in Ca2+-bound partially activated state from the upper strand 8UZ5 ; 5.9 ; The structure of the native cardiac thin filament troponin core in Ca2+-free rotated state from the lower strand 8UWY ; 5.5 ; The structure of the native cardiac thin filament troponin core in Ca2+-free rotated state from the upper strand 8UYD ; 5.3 ; The structure of the native cardiac thin filament troponin core in Ca2+-free state from the lower strand 8UWW ; 5.1 ; The structure of the native cardiac thin filament troponin core in Ca2+-free state from the upper strand 8V0Y ; 7.0 ; The structure of the native cardiac thin filament troponin core in Ca2+-free state from the upper strand activated by the C1-domain of cardiac myosin binding protein C 8UZ6 ; 7.1 ; The structure of the native cardiac thin filament troponin core in Ca2+-free tilted state from the lower strand 8UWX ; 6.0 ; The structure of the native cardiac thin filament troponin core in Ca2+-free tilted state from the upper strand 7O4H ; 3.4 ; The structure of the native CNGA1/CNGB1 CNG channel from retinal rods 4RSO ; 3.5 ; The structure of the neurotropic AAVrh.8 viral vector 3T1E ; 3.301 ; The structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a 4-helix bundle stalk 1A04 ; 2.2 ; THE STRUCTURE OF THE NITRATE/NITRITE RESPONSE REGULATOR PROTEIN NARL IN THE MONOCLINIC C2 CRYSTAL FORM 5CS1 ; 2.0 ; The structure of the NK1 fragment of HGF/SF 5CS3 ; 2.5 ; The structure of the NK1 fragment of HGF/SF complexed with (H)EPPS 5CT3 ; 2.0 ; The structure of the NK1 fragment of HGF/SF complexed with 2FA 5CT2 ; 2.0 ; The structure of the NK1 fragment of HGF/SF complexed with CAPS 5CT1 ; 2.0 ; The structure of the NK1 fragment of HGF/SF complexed with CHES 5COE ; 2.18 ; The structure of the NK1 fragment of HGF/SF complexed with HEPES 5CP9 ; 1.9 ; The structure of the NK1 fragment of HGF/SF complexed with MB605 5CS9 ; 2.0 ; The structure of the NK1 fragment of HGF/SF complexed with MES 5CSQ ; 1.95 ; The structure of the NK1 fragment of HGF/SF complexed with MOPS 5CS5 ; 1.9 ; The structure of the NK1 fragment of HGF/SF complexed with PIPES 1CEB ; 2.07 ; THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH AMCHA (TRANS-4-AMINOMETHYLCYCLOHEXANE-1-CARBOXYLIC ACID) 1CEA ; 2.06 ; THE STRUCTURE OF THE NON-COVALENT COMPLEX OF RECOMBINANT KRINGLE 1 DOMAIN OF HUMAN PLASMINOGEN WITH EACA (EPSILON-AMINOCAPROIC ACID) 1XOC ; 1.55 ; The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide. 4B98 ; 1.65 ; The structure of the omega aminotransferase from Pseudomonas aeruginosa 4B9B ; 1.64 ; The structure of the omega aminotransferase from Pseudomonas aeruginosa 2H1L ; 3.16 ; The Structure of the Oncoprotein SV40 Large T Antigen and p53 Tumor Suppressor Complex 1QO8 ; 2.15 ; The structure of the open conformation of a flavocytochrome c3 fumarate reductase 6PO0 ; 1.75 ; The structure of the orthorhombic (P212121) crystal form of beef liver catalase at 1.85 A resolution 1AKI ; 1.5 ; THE STRUCTURE OF THE ORTHORHOMBIC FORM OF HEN EGG-WHITE LYSOZYME AT 1.5 ANGSTROMS RESOLUTION 2GV0 ; 1.9 ; The structure of the orthorhombic form of soft-shelled turtle lysozyme at 1.9 angstroms resolution 6V7L ; 2.8 ; The structure of the P212121 crystal form of canavalin at 173 K 2BQP ; 1.9 ; THE STRUCTURE OF THE PEA LECTIN-D-GLUCOPYRANOSE COMPLEX 1BQP ; 2.1 ; THE STRUCTURE OF THE PEA LECTIN-D-MANNOPYRANOSE COMPLEX 5L37 ; 1.6 ; The structure of the pentameric shell protein MSM0273 from the RMM microcompartment 4DT0 ; 3.65 ; The structure of the peripheral stalk subunit E from Pyrococcus horikoshii 7CMG ; 3.7 ; The Structure of the periplasmic domain of PorM 4KZK ; 1.5 ; The structure of the periplasmic L-arabinose binding protein from Burkholderia thailandensis 6NWA ; 3.48 ; The structure of the photosystem I IsiA super-complex 1QY7 ; 2.0 ; The structure of the PII protein from the cyanobacteria Synechococcus sp. PCC 7942 6MUX ; 3.9 ; The structure of the Plasmodium falciparum 20S proteasome in complex with one PA28 activator 6MUV ; 3.8 ; The structure of the Plasmodium falciparum 20S proteasome in complex with two PA28 activators 6MUW ; 3.6 ; The structure of the Plasmodium falciparum 20S proteasome. 4G7N ; 2.3 ; The Structure of the Plk4 Cryptic Polo Box Reveals Two Tandem Polo Boxes Required for Centriole Duplication 1Q4O ; 2.2 ; The structure of the polo box domain of human Plk1 5NMM ; 2.02 ; The structure of the polo-box domain (PBD) of Plk1 in complex with Alpha-Bromo-3-Iodotoluene. 5NN2 ; 1.81 ; The structure of the polo-box domain (PBD) of Plk1 in complex with Z228588490 5NN1 ; 1.785 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) 4E9D ; 2.75 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with 3-(1-benzothiophen-2-yl)propanoyl-derivatized DPPLHSpTA peptide 5NJE ; 1.978 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with Alpha-Bromo-3-Iodotoluene. 4E67 ; 2.1 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with hydrocinnamoyl-derivatized PLHSpTA peptide 5NEI ; 2.68 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with JES107 4E9C ; 1.7 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with LDPPLHSpTA phosphopeptide 5NFU ; 1.809 ; The structure of the polo-box domain (PBD) of polo-like kinase 1 (Plk1) in complex with LHSpTA peptide 3K7B ; 2.1 ; The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. 6VRO ; 2.45 ; The structure of the PP2A B56 subunit AIM1 complex 5K6S ; 2.794 ; The structure of the PP2A B56 subunit BubR1 complex 5SWF ; 2.818 ; The structure of the PP2A B56 subunit double phosphorylated BubR1 complex 6OYL ; 3.15 ; The structure of the PP2A B56 subunit KIF4A complex 5SW9 ; 2.846 ; The structure of the PP2A B56 subunit RepoMan complex 8U1X ; 2.7 ; The structure of the PP2A-B56Delta holoenzyme mutant - E197K 8U89 ; 3.3 ; The structure of the PP2A-B56Delta holoenzyme mutant - E197K 7SOY ; 3.4 ; The structure of the PP2A-B56gamma1 holoenzyme-PME-1 complex 3IAU ; 2.353 ; The structure of the processed form of threonine deaminase isoform 2 from Solanum lycopersicum 1E9K ; ; The structure of the RACK1 interaction sites located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5. 1EVR ; 1.9 ; The structure of the resorcinol/insulin R6 hexamer 2OQR ; 2.03 ; The structure of the response regulator RegX3 from Mycobacterium tuberculosis 2VSW ; 2.2 ; The structure of the rhodanese domain of the human dual specificity phosphatase 16 3UZU ; 1.75 ; The structure of the Ribosomal RNA small subunit methyltransferase A from Burkholderia pseudomallei 4V5F ; 3.6 ; The structure of the ribosome with elongation factor G trapped in the post-translocational state 2KN4 ; ; The structure of the RRM domain of SC35 1QAM ; 2.2 ; THE STRUCTURE OF THE RRNA METHYLTRANSFERASE ERMC': IMPLICATIONS FOR THE REACTION MECHANISM 1QAN ; 2.4 ; THE STRUCTURE OF THE RRNA METHYLTRANSFERASE ERMC': IMPLICATIONS FOR THE REACTION MECHANISM 1QAO ; 2.7 ; THE STRUCTURE OF THE RRNA METHYLTRANSFERASE ERMC': IMPLICATIONS FOR THE REACTION MECHANISM 1QAQ ; 2.8 ; THE STRUCTURE OF THE RRNA METHYLTRANSFERASE ERMC': IMPLICATIONS FOR THE REACTION MECHANISM 4E2K ; 2.15 ; The structure of the S. aureus DnaG RNA Polymerase Domain 4EDG ; 2.003 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to ATP and Manganese 4EE1 ; 2.02 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to CTP and Manganese 4EDK ; 2.0 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to GTP and Manganese 4EDT ; 2.005 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to ppGpp and Manganese 4EDV ; 2.01 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to pppGpp and Manganese 4EDR ; 2.01 ; The structure of the S. aureus DnaG RNA Polymerase Domain bound to UTP and Manganese 2F6F ; 2.0 ; The structure of the S295F mutant of human PTP1B 4ZOR ; 2.2 ; The structure of the S37P MS2 viral capsid assembly. 1Q97 ; 2.3 ; The structure of the Saccharomyces cerevisiae SR protein kinase, Sky1p, with bound ATP 6HAG ; ; The structure of the SAM/SAH-binding riboswitch. 7NRR ; 1.67 ; The structure of the SBP TarP_Csal in complex with caffeate 7NSW ; 1.67 ; The structure of the SBP TarP_Csal in complex with coumarate 7NTD ; 1.75 ; The structure of the SBP TarP_Csal in complex with ferulate 7NQG ; 1.1 ; The structure of the SBP TarP_Rhp in complex with 4-hydroxyphenylacetate 7NRA ; 1.91 ; The structure of the SBP TarP_Sse in complex with cinnamate 7NR2 ; 2.13 ; The structure of the SBP TarP_Sse in complex with coumarate 6RLI ; 1.15 ; The structure of the self-assembled 3fPizza6-SH crystal 1PJT ; 2.8 ; The structure of the Ser128Ala point-mutant variant of CysG, the multifunctional methyltransferase/dehydrogenase/ferrochelatase for siroheme synthesis 4KQW ; 1.39 ; The structure of the Slackia exigua KARI in complex with NADP 3PYW ; 1.8 ; The structure of the SLH domain from B. anthracis surface array protein at 1.8A 6YW5 ; 2.85 ; The structure of the small subunit of the mitoribosome from Neurospora crassa 5A17 ; ; The structure of the SOLE element of oskar mRNA 5A18 ; ; The structure of the SOLE element of oskar mRNA 4EGW ; 2.5 ; The structure of the soluble domain of CorA from Methanocaldococcus jannaschii 4BNQ ; 2.279 ; The structure of the Staphylococcus aureus Ham1 protein 4M54 ; 2.36 ; The structure of the staphyloferrin B precursor biosynthetic enzyme SbnB bound to N-(1-amino-1-carboxyl-2-ethyl)-glutamic acid and NADH 6BAK ; 1.92 ; The structure of the Stigmatella aurantiaca phytochrome chromophore binding domain T289H mutant 6Q2K ; 2.0 ; The structure of the Streptococcus gordonii surface protein SspB in complex with TEV peptide provides clues to the adherence of oral streptococcal adherence to salivary agglutinin 6Q2L ; 1.8 ; The structure of the Streptococcus gordonii surface protein SspB in complex with TEV peptide provides clues to the adherence of oral streptococcal adherence to salivary agglutinin 6TZL ; 1.6 ; The structure of the Streptococcus gordonii surface protein SspB in complex with TEV peptide provides clues to the adherence of oral streptococcal adherence to salivary agglutinin 6UBV ; 2.7 ; The structure of the Streptococcus gordonii surface protein SspB in complex with TEV peptide provides clues to the adherence of oral streptococcal adherence to salivary agglutinin 2VRN ; 2.15 ; The structure of the stress response protein DR1199 from Deinococcus radiodurans: a member of the DJ-1 superfamily 3UOR ; 2.202 ; The structure of the sugar-binding protein MalE from the phytopathogen Xanthomonas citri 4AU7 ; 2.07 ; The structure of the Suv4-20h2 ternary complex with histone H4 5E8O ; 1.98 ; The structure of the TEIPP associated altered peptide ligand Trh4-p2ABU in complex with H-2D(b) 5E8P ; 2.0 ; The structure of the TEIPP associated altered peptide ligand Trh4-p5NLE in complex with H-2D(b) 5E8N ; 2.25 ; The structure of the TEIPP associated Trh4 peptide in complex with H-2D(b) 2R26 ; 2.5 ; The Structure of the Ternary Complex of Carboxymethyl Coenzyme A and Oxalateacetate with Citrate Synthase from the Thermophilic Archaeonthermoplasma Acidophilum 3SD3 ; 1.95 ; The structure of the tetrahydrofolate riboswitch containing a U25C mutation 7MOQ ; 8.0 ; The structure of the Tetrahymena thermophila outer dynein arm on doublet microtubule 6Z2K ; 4.5 ; The structure of the tetrameric HDAC1/MIDEAS/DNTTIP1 MiDAC deacetylase complex 5NZD ; 2.007 ; The structure of the thermobifida fusca guanidine III riboswitch in space group P212121. 5O62 ; 2.119 ; The structure of the thermobifida fusca guanidine III riboswitch with 1-Ethylguanidine. 5O69 ; 2.319 ; The structure of the thermobifida fusca guanidine III riboswitch with agmatine. 5NY8 ; 2.04 ; The structure of the thermobifida fusca guanidine III riboswitch with aminoguanidine 5NZ6 ; 2.94 ; The structure of the thermobifida fusca guanidine III riboswitch with guanidine in space group P3212. 5NWQ ; 1.91 ; The structure of the thermobifida fusca guanidine III riboswitch with guanidine. 5NZ3 ; 2.059 ; The structure of the thermobifida fusca guanidine III riboswitch with methylguanidine 3ZJB ; 1.84 ; The structure of the TRAF domain of human TRAF4 1VQ4 ; 2.7 ; The structure of the transition state analogue ""DAA"" bound to the large ribosomal subunit of Haloarcula marismortui 1VQM ; 2.3 ; The structure of the transition state analogue ""DAN"" bound to the large ribosomal subunit of haloarcula marismortui 1VQ7 ; 2.5 ; The structure of the transition state analogue ""DCA"" bound to the large ribosomal subunit of haloarcula marismortui 1VQL ; 2.3 ; The structure of the transition state analogue ""DCSN"" bound to the large ribosomal subunit of haloarcula marismortui 1VQ5 ; 2.6 ; The structure of the transition state analogue ""RAA"" bound to the large ribosomal subunit of haloarcula marismortui 1VQP ; 2.25 ; The structure of the transition state analogue ""RAP"" bound to the large ribosomal subunit of haloarcula marismortui 1AH9 ; ; THE STRUCTURE OF THE TRANSLATIONAL INITIATION FACTOR IF1 FROM ESCHERICHIA COLI, NMR, 19 STRUCTURES 5AQ0 ; 0.95 ; The structure of the Transthyretin-like domain of the first catalytic domain of the HUMAN Carboxypeptidase D 6PM7 ; 1.85 ; The structure of the triclinic crystal form of beef liver catalase at 1.85 A resolution 5W9A ; 2.74 ; The structure of the Trim5alpha Bbox- coiled coil in complex LC3B 5NBQ ; 3.18 ; The structure of the tripartite complex between OspE, the C-terminal domains of factor H and C3dg 6L2L ; 2.40046 ; The structure of the tRNA-specific deaminase from M. capricolum 6L2M ; 2.30255 ; The structure of the tRNA-specific deaminase mutant from M. capricolum 1GTF ; 1.75 ; The structure of the trp RNA-binding attenuation protein (TRAP) bound to a 53-nucleotide RNA molecule containing GAGUU repeats 1UTD ; 2.1 ; The structure of the trp RNA-binding attenuation protein (TRAP) bound to a 63-nucleotide RNA molecule containing GAGUUU repeats 4V4F ; 1.9 ; The structure of the trp RNA-binding attenuation protein (TRAP) bound to a RNA molecule containing UAGAU repeats 4LL1 ; 2.0 ; The structure of the TRX and TXNIP complex 4LL4 ; 2.7 ; The structure of the TRX and TXNIP complex 4C18 ; 1.49 ; The structure of the Tsi2 dimer with a disulfide bond 3ZD2 ; 1.99 ; THE STRUCTURE OF THE TWO N-TERMINAL DOMAINS OF COMPLEMENT FACTOR H RELATED PROTEIN 1 SHOWS FORMATION OF A NOVEL DIMERISATION INTERFACE 2NUD ; 2.3 ; The structure of the type III effector AvrB complexed with a high-affinity RIN4 peptide 2NUN ; 2.4 ; The structure of the type III effector AvrB complexed with ADP 5T09 ; 2.013 ; The structure of the type III effector HopBA1 5D88 ; 1.66 ; The Structure of the U32 Peptidase Mk0906 6GF1 ; 1.925 ; The structure of the ubiquitin-like modifier FAT10 reveals a novel targeting mechanism for degradation by the 26S proteasome 6GF2 ; ; The structure of the ubiquitin-like modifier FAT10 reveals a novel targeting mechanism for degradation by the 26S proteasome 6L5B ; 2.00005 ; The structure of the UdgX mutant H109E at a post-excision state 6L5A ; 1.80007 ; The structure of the UdgX mutant H109E at a pre-excision state 6L6S ; 2.06426 ; The structure of the UdgX mutant H109E crosslinked to single-stranded DNA 7K3P ; 2.04 ; The structure of the UDP-Glc/GlcNAc 4-epimerase from the human pathogen Campylobacter jejuni 4LLV ; 2.39 ; The structure of the unbound form of anti-HIV antibody 4E10 Fv 2ESZ ; ; The structure of the V3 region within gp120 of JR-FL HIV-1 strain (ensemble) 2ESX ; ; The structure of the V3 region within gp120 of JR-FL HIV-1 strain (minimized average structure) 6E36 ; 1.7 ; The structure of the variable domain of Streptococcus intermedius antigen I/II (Pas) 2M8P ; ; The structure of the W184AM185A mutant of the HIV-1 capsid protein 5M2R ; 1.5 ; The Structure of the Ycf54 A9G mutant protein from Synechocystis sp. PCC6803 5M2P ; 1.33 ; The Structure of the Ycf54 protein from Synechocystis sp. PCC6803 5M2U ; 2.2 ; The Structure of the Ycf54 protein from Synechocystis sp. PCC6803 1Q8Y ; 2.05 ; The structure of the yeast SR protein kinase, Sky1p, with bound ADP 1HRU ; 2.0 ; THE STRUCTURE OF THE YRDC GENE PRODUCT FROM E.COLI 2VRD ; ; THE STRUCTURE OF THE ZINC FINGER FROM THE HUMAN SPLICEOSOMAL PROTEIN U1C 3R6E ; 1.18 ; The structure of Thermococcus thioreducens' inorganic pyrophosphatase bound to sulfate 4V8A ; 3.2 ; The structure of thermorubin in complex with the 70S ribosome from Thermus thermophilus. 2V8A ; 3.5 ; The structure of Thermosynechococcus elongatus allophycocyanin at 3.5 Angstroems. 1WS6 ; 2.5 ; The Structure of Thermus thermphillus HB8 hypothetical protein TTHA0928 8Q9Y ; 1.1 ; The structure of thiocyanate dehydrogenase from Pelomicrobium methylotrophicum in complex with inhibitor thiourea at 1.10 A resolution 8Q9X ; 1.05 ; The structure of thiocyanate dehydrogenase from Pelomicrobium methylotrophicum with molecular oxygen at 1.05 A resolution 6G50 ; 1.65 ; The structure of thiocyanate dehydrogenase from Thioalkalivibrio paradoxus as isolated. 6I3Q ; 1.45 ; The structure of thiocyanate dehydrogenase from Thioalkalivibrio paradoxus complex with acetate ions. 6G5M ; 2.31 ; The structure of thiocyanate dehydrogenase from Thioalkalivibrio paradoxus complex with CU(I) ions. 6SJI ; 1.8 ; The structure of thiocyanate dehydrogenase from Thioalkalivibrio paradoxus mutant with His 482 replaced by Gln 8P3M ; 2.07 ; The structure of thiocyanate dehydrogenase mutant form with Lys 281 replaced by Ala from Thioalkalivibrio paradoxus 8BPN ; 1.99 ; The structure of thiocyanate dehydrogenase mutant form with Phe 436 replaced by Gln from Thioalkalivibrio paradoxus 8P3L ; 1.8 ; The structure of thiocyanate dehydrogenase mutant form with Thr 169 replaced by Ala from Thioalkalivibrio paradoxus 7D78 ; 1.96543 ; The structure of thioesterase DcsB 1T00 ; 1.51 ; The structure of thioredoxin from S. coelicolor 3MI8 ; 2.951 ; The structure of TL1A-DCR3 COMPLEX 1C5K ; 2.0 ; THE STRUCTURE OF TOLB, AN ESSENTIAL COMPONENT OF THE TOL-DEPENDENT TRANSLOCATION SYSTEM AND ITS INTERACTIONS WITH THE TRANSLOCATION DOMAIN OF COLICIN E9 5IKT ; 2.451 ; The Structure of Tolfenamic Acid Bound to Human Cyclooxygenase-2 1LAJ ; 3.4 ; The Structure of Tomato Aspermy Virus by X-Ray Crystallography 1S0Y ; 2.3 ; The structure of trans-3-chloroacrylic acid dehalogenase, covalently inactivated by the mechanism-based inhibitor 3-bromopropiolate at 2.3 Angstrom resolution 8HUZ ; 3.3 ; the structure of trans-editing factor ProX 5DDG ; 3.06 ; The structure of transcriptional factor AraR from Bacteroides thetaiotaomicron VPI in complex with target double strand DNA 2R8D ; 2.0 ; The structure of transporter associated domain CorC_HlyC from a Xylella fastidiosa Temecula1 hemolysin in complex with Mg++ and Mn++ 2OAI ; 1.8 ; The structure of transporter associated domain CorC_HlyC from a Xylella fastidiosa Temecula1 hemolysin. 3ZO9 ; 1.84 ; The structure of Trehalose Synthase (TreS) of Mycobacterium smegmatis 3ZOA ; 1.85 ; The structure of Trehalose Synthase (TreS) of Mycobacterium smegmatis in complex with acarbose 6QJ6 ; 1.74 ; The structure of Trehalose-6-phosphatase from Burkholderia pseudomallei 7W5I ; 2.13 ; The structure of trichobrasilenol synthase TaTC6 in complex with FPP-1 7W5J ; 2.05 ; The structure of trichobrasilenol synthase TaTC6 in complex with FPP-2 7W5H ; 2.05 ; The structure of trichobrasilenol synthase TaTC6 in complex with FsPP 6IEU ; 1.787 ; The structure of TRIM66 PHD-Bromo domain with unmodified H3 N terminal peptide 1TRE ; 2.6 ; THE STRUCTURE OF TRIOSEPHOSPHATE ISOMERASE FROM ESCHERICHIA COLI DETERMINED AT 2.6 ANGSTROM RESOLUTION 4PMP ; 1.8 ; The structure of TrkA kinase bound to the inhibitor 1-cyclopropyl-1-[3-(1,3-thiazol-2-yl)benzyl]-3-[4-(trifluoromethoxy)phenyl]urea 4PMS ; 2.8 ; The structure of TrkA kinase bound to the inhibitor 4-naphthalen-1-yl-1-[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]-1H-pyrrolo[3,2-c]pyridine-2-carboxylic acid 4PMM ; 2.0 ; The structure of TrkA kinase bound to the inhibitor N-(3-cyclopropyl-1-phenyl-1H-pyrazol-5-yl)-2-{4-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]-1H-1,2,3-triazol-1-yl}acetamide 4PMT ; 2.1 ; The structure of TrkA kinase bound to the inhibitor N~4~-(4-morpholin-4-ylphenyl)-N~6~-(pyridin-3-ylmethyl)pyrido[3,2-d]pyrimidine-4,6-diamine 5KVT ; 2.45 ; THE STRUCTURE OF TRKA KINASE DOMAIN BOUND TO THE INHIBITOR ENTRECTINIB 1RLI ; 1.8 ; The Structure of Trp Repressor Binding Protein from Bacillus subtilis 5ITM ; 1.4 ; The structure of truncated histone-like protein 2CDM ; 2.7 ; The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site 1NDA ; 3.3 ; THE STRUCTURE OF TRYPANOSOMA CRUZI TRYPANOTHIONE REDUCTASE IN THE OXIDIZED AND NADPH REDUCED STATE 3S9F ; 1.8 ; The structure of Tryparedoxin I from Leishmania major 3TUE ; 3.0 ; The structure of tryparedoxin peroxidase I from Leishmania major 2AQJ ; 1.8 ; The structure of tryptophan 7-halogenase (PrnA) suggests a mechanism for regioselective chlorination 2ARD ; 2.6 ; The structure of tryptophan 7-halogenase (PrnA) suggests a mechanism for regioselective chlorination 2APG ; 1.9 ; The structure of tryptophan 7-halogenase (PrnA)suggests a mechanism for regioselective chlorination 2AR8 ; 2.2 ; The structure of tryptophan 7-halogenase (PrnA)suggests a mechanism for regioselective chlorination 1IUJ ; 1.6 ; The structure of TT1380 protein from thermus thermophilus 1TNF ; 2.6 ; THE STRUCTURE OF TUMOR NECROSIS FACTOR-ALPHA AT 2.6 ANGSTROMS RESOLUTION. IMPLICATIONS FOR RECEPTOR BINDING 6GEL ; 2.51 ; The structure of TWITCH-2B 6GEZ ; 2.47 ; THE STRUCTURE OF TWITCH-2B N532F 1QFE ; 2.1 ; THE STRUCTURE OF TYPE I 3-DEHYDROQUINATE DEHYDRATASE FROM SALMONELLA TYPHI 5KMS ; 2.5 ; The structure of type II NADH dehydrogenase from Caldalkalibacillus thermarum complexed with NAD+ at 2.5 angstrom resolution. 5KMR ; 3.0 ; The structure of type II NADH dehydrogenase from Caldalkalibacillus thermarum complexed with NAD+ at 3.0 angstrom resolution. 1FFT ; 3.5 ; The structure of ubiquinol oxidase from Escherichia coli 3NIJ ; 2.1 ; The structure of UBR box (HIAA) 3NII ; 2.1 ; The structure of UBR box (KIAA) 3NIT ; 2.6 ; The structure of UBR box (native1) 3NIS ; 1.68 ; The structure of UBR box (native2) 3NIL ; 1.75 ; The structure of UBR box (RDAA) 3NIK ; 1.85 ; The structure of UBR box (REAA) 3NIH ; 2.1 ; The structure of UBR box (RIAAA) 3NIN ; 2.1 ; The structure of UBR box (RLGES) 3NIM ; 2.0 ; The structure of UBR box (RRAA) 6IOD ; 1.66 ; The structure of UdgX in complex with single-stranded DNA 6IOA ; 2.15 ; The structure of UdgX in complex with uracil 4NEQ ; 2.85 ; The structure of UDP-GlcNAc 2-epimerase from Methanocaldococcus jannaschii 7PPR ; 2.57 ; The structure of UDP-glucose pyrophosphorylase from Aspergillus fumigatus 1F6D ; 2.5 ; THE STRUCTURE OF UDP-N-ACETYLGLUCOSAMINE 2-EPIMERASE FROM E. COLI. 5JZK ; 1.9 ; The Structure of Ultra Stable Green Fluorescent Protein 3G5B ; 2.0 ; The structure of UNC5b cytoplasmic domain 3PF6 ; 1.6 ; The structure of uncharacterized protein PP-LUZ7_gp033 from Pseudomonas phage LUZ7. 2NZC ; 1.95 ; The structure of uncharacterized protein TM1266 from Thermotoga maritima. 3F3K ; 1.75 ; The structure of uncharacterized protein YKR043C from Saccharomyces cerevisiae. 1HMV ; 3.2 ; THE STRUCTURE OF UNLIGANDED REVERSE TRANSCRIPTASE FROM THE HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 6L3F ; 1.975 ; The structure of UTP:RNA uridylyltransferase 1 (URT1) in in Arabidopsis 4HIQ ; 1.18 ; The Structure of V122I Mutant Transthyretin in Complex with AG10 4HIS ; 1.2 ; The Structure of V122I Mutant Transthyretin in Complex with Tafamidis 6W68 ; 2.55 ; The structure of V98A S172A Keap1-BTB domain 4W5X ; 2.002 ; The structure of Vaccina virus H7 protein displays A Novel Phosphoinositide binding fold required for membrane biogenesis 4W60 ; 2.7 ; The structure of Vaccina virus H7 protein displays A Novel Phosphoinositide binding fold required for membrane biogenesis 2VGA ; 1.9 ; The structure of Vaccinia virus A41 2UXE ; 2.9 ; The structure of Vaccinia virus N1 4BBB ; 3.09 ; THE STRUCTURE OF VACCINIA VIRUS N1 Q61Y MUTANT 4BBD ; 3.0 ; THE STRUCTURE OF VACCINIA VIRUS N1 R58Y MUTANT 4BBC ; 3.1 ; THE STRUCTURE OF VACCINIA VIRUS N1 R71Y MUTANT 4CYF ; 2.25 ; The structure of vanin-1: defining the link between metabolic disease, oxidative stress and inflammation 4CYG ; 2.3 ; The structure of vanin-1: defining the link between metabolic disease, oxidative stress and inflammation 4CYY ; 2.89 ; The structure of vanin-1: defining the link between metabolic disease, oxidative stress and inflammation 6RMS ; 1.74 ; The Structure of variant D274E of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP 6GB0 ; 1.814 ; The Structure of variant K294A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP 6GAX ; 1.77 ; The Structure of variant K294A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP and molybdate 6GBF ; 1.712 ; The Structure of variant R369A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP 6GBC ; 1.59 ; The Structure of variant R369A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP and molybdate 6GB9 ; 1.67 ; The Structure of variant S328A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP 6GB4 ; 1.648 ; The Structure of variant S328A of the Mo-insertase domain Cnx1E from Arabidopsis thaliana in complex with AMP and molybdate 4UHV ; 2.0 ; The structure of VgrG1, the needle tip of the bacterial Type VI Secretion System 5GLE ; 2.1 ; The structure of Vibrio anguillarum775 AngB-ICL 5CZC ; 1.8 ; The structure of VinK 5KIR ; 2.697 ; The Structure of Vioxx Bound to Human COX-2 2ZD7 ; 1.85 ; The structure of VPS75 (Vacuolar protein sorting-associated protein 75) 1ASD ; 2.2 ; THE STRUCTURE OF WILD TYPE E. COLI ASPARTATE AMINOTRANSFERASE RECONSTITUTED WITH N-MEPLP 1ASE ; 2.5 ; THE STRUCTURE OF WILD TYPE E. COLI ASPARTATE AMINOTRANSFERASE RECONSTITUTED WITH PLP-N-OXIDE 6H0N ; 3.02 ; The structure of wild-type Arabidopsis thaliana UDP-apiose/UDP-xylose synthase in complex with NAD+ and UDP 2FZC ; 2.1 ; The Structure of Wild-Type E. Coli Aspartate Transcarbamoylase in Complex with Novel T State Inhibitors at 2.10 Resolution 2FZG ; 2.25 ; The Structure of Wild-Type E. Coli Aspartate Transcarbamoylase in Complex with Novel T State Inhibitors at 2.25 Resolution 2FZK ; 2.5 ; The Structure of Wild-Type E. Coli Aspartate Transcarbamoylase in Complex with Novel T State Inhibitors at 2.50 Resolution 2O23 ; 1.2 ; The structure of wild-type human HADH2 (17beta-hydroxysteroid dehydrogenase type 10) bound to NAD+ at 1.2 A 4M56 ; 2.3 ; The Structure of Wild-type MalL from Bacillus subtilis 4MU0 ; 1.3 ; The structure of wt A. thaliana IGPD2 in complex with Mn2+ and 1,2,4-triazole at 1.3 A resolution 4QNJ ; 1.3 ; The structure of wt A. thaliana IGPD2 in complex with Mn2+ and formate at 1.3A resolution 4QNK ; 1.75 ; The structure of wt A. thaliana IGPD2 in complex with Mn2+ and phosphate 4MU1 ; 1.5 ; The structure of wt A. thaliana IGPD2 in complex with Mn2+, imidazole, and sulfate at 1.5 A resolution 5GNY ; 2.105 ; The structure of WT Bgl6 2J58 ; 2.25 ; The structure of Wza 2EG5 ; 2.2 ; The structure of xanthosine methyltransferase 2C1W ; 2.2 ; The structure of XendoU: a splicing independent snoRNA processing endoribonuclease 1JEZ ; 2.2 ; THE STRUCTURE OF XYLOSE REDUCTASE, A DIMERIC ALDO-KETO REDUCTASE FROM CANDIDA TENUIS 6CI7 ; 2.3 ; The structure of YcaO from Methanopyrus kandleri bound with AMPPCP and Mg2+ 6CIB ; 2.05 ; The structure of YcaO from Methanopyrus kandleri bound with AMPPCP and Mg2+ 3M92 ; 2.05 ; The structure of yciN, an unchracterized protein from Shigella flexneri. 1K39 ; 3.29 ; The structure of yeast delta3-delta2-enoyl-COA isomerase complexed with octanoyl-COA 3PGK ; 2.5 ; The structure of yeast phosphoglycerate kinase at 0.25 nm resolution 3PGM ; 2.8 ; THE STRUCTURE OF YEAST PHOSPHOGLYCERATE MUTASE AT 0.28 NM RESOLUTION 1R6F ; 2.17 ; The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague 7CUA ; 1.8 ; The structure of YoeB dimer from Staphylococcus aureus 7XH8 ; 2.99 ; The structure of ZCB11 Fab against SARS-CoV-2 Omicron Spike 8H55 ; 2.03 ; The structure of zebrafish angiotensinogen 6A5F ; 2.05 ; The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of nargenicin 6A5G ; 2.3 ; The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of streptoseomycin 6A5H ; 1.618 ; The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product 1V1P ; 2.7 ; The structure SSL from Staphylococcus Aureus from an orthorhombic crystal form 8BFW ; 2.33 ; The structures of Ace2 in complex with bicyclic peptide inhibitor 8BN1 ; 2.61 ; The structures of Ace2 in complex with bicyclic peptide inhibitor 8BYJ ; 2.07 ; The structures of Ace2 in complex with bicyclic peptide inhibitor 2PMD ; 2.65 ; The structures of aIF2gamma subunit from the archaeon Sulfolobus solfataricus in the GDP-bound form. 2PRH ; 2.4 ; The structures of apo- and inhibitor bound human dihydroorotate dehydrogenase reveal conformational flexibility within the inhibitor binding site 2PRL ; 2.1 ; The structures of apo- and inhibitor bound human dihydroorotate dehydrogenase reveal conformational flexibility within the inhibitor binding site 2PRM ; 3.0 ; The structures of apo- and inhibitor bound human dihydroorotate dehydrogenase reveal conformational flexibility within the inhibitor binding site 4V7M ; 3.45 ; The structures of Capreomycin bound to the 70S ribosome. 2B1E ; 2.0 ; The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif 1P5W ; 3.3 ; The structures of host range controlling regions of the capsids of canine and feline parvoviruses and mutants 1P5Y ; 3.2 ; The structures of host range controlling regions of the capsids of canine and feline parvoviruses and mutants 2HMQ ; 1.66 ; THE STRUCTURES OF MET AND AZIDOMET HEMERYTHRIN AT 1.66 ANGSTROMS RESOLUTION 2HMZ ; 1.66 ; THE STRUCTURES OF MET AND AZIDOMET HEMERYTHRIN AT 1.66 ANGSTROMS RESOLUTION 2IUF ; 1.71 ; The structures of Penicillium vitale catalase: resting state, oxidised state (compound I) and complex with aminotriazole 1RPF ; 2.2 ; THE STRUCTURES OF RNASE COMPLEXED WITH 3'-CMP AND D(CPA): ACTIVE SITE CONFORMATION AND CONSERVED WATER MOLECULES 2SIL ; 1.6 ; THE STRUCTURES OF SALMONELLA TYPHIMURIUM LT2 NEURAMINIDASE AND ITS COMPLEX WITH A TRANSITION STATE ANALOGUE AT 1.6 ANGSTROMS RESOLUTION 2SIM ; 1.6 ; THE STRUCTURES OF SALMONELLA TYPHIMURIUM LT2 NEURAMINIDASE AND ITS COMPLEX WITH A TRANSITION STATE ANALOGUE AT 1.6 ANGSTROMS RESOLUTION 1LZH ; 6.0 ; THE STRUCTURES OF THE MONOCLINIC AND ORTHORHOMBIC FORMS OF HEN EGG-WHITE LYSOZYME AT 6 ANGSTROMS RESOLUTION. 2LZH ; 6.0 ; THE STRUCTURES OF THE MONOCLINIC AND ORTHORHOMBIC FORMS OF HEN EGG-WHITE LYSOZYME AT 6 ANGSTROMS RESOLUTION. 2EVK ; 1.4 ; The Structures of Thiolate- and Carboxylate-Ligated Ferric H93G Myoglobin: Models for Cytochrome P450 and for Oxyanion-Bound Heme Proteins 2EVP ; 1.7 ; The Structures of Thiolate- and Carboxylate-Ligated Ferric H93G Myoglobin: Models for Cytochrome P450 and for Oxyanion-Bound Heme Proteins 1THU ; 2.6 ; THE STRUCTURES OF THREE CRYSTAL FORMS OF THE SWEET PROTEIN THAUMATIN 1THV ; 1.75 ; THE STRUCTURES OF THREE CRYSTAL FORMS OF THE SWEET PROTEIN THAUMATIN 1THW ; 1.75 ; THE STRUCTURES OF THREE CRYSTAL FORMS OF THE SWEET PROTEIN THAUMATIN 4V7L ; 3.0 ; The structures of viomycin bound to the 70S ribosome. 8AE7 ; 1.28 ; The strucuture of Compound 15 bound to CK2alpha 1YMR ; 1.5 ; The study of reductive unfolding pathways of RNase A (Y92A mutant) 1YMW ; 1.5 ; The study of reductive unfolding pathways of RNase A (Y92G mutant) 1YMN ; 1.45 ; The study of reductive unfolding pathways of RNase A (Y92L mutant) 5MEW ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi. Second structure of the series with total exposition time 33 min. 5MI2 ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 10-th structure of the series with total exposition time 273 min. 5MIA ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 11-th structure of the series with total exposition time 303 min. 5MIB ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 12-th structure of the series with total exposition time 333 min. 5MIC ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 13-th structure of the series with total exposition time 363 min. 5MID ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 14-th structure of the series with total exposition time 393 min. 5MIE ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 15-th structure of the series with total exposition time 423 min. 5MIG ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 16-th structure of the series with total exposition time 453 min. The crystal was quick refreezing before this data collection. 5MHZ ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 8-th structure of the series with total exposition time 213 min. 5MI1 ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The 9-th structure of the series with total exposition time 243 min. 5MHW ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The fifth structure of the series with total exposition time 123 min. 5MHV ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The fourth structure of the series with total exposition time 93 min. 5MHY ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The seventh structure of the series with total exposition time 183 min. 5MHX ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The sixth structure of the series with total exposition time 153 min. 5MHU ; 1.35 ; The study of the X-ray induced enzymatic reduction of molecular oxygen to water for laccase from Steccherinum murashkinskyi.The third structure of the series with total exposition time 63 min. 8IPW ; 2.35 ; The sturecture of Legionella effector protein MavL with ADPR 1DKZ ; 2.0 ; THE SUBSTRATE BINDING DOMAIN OF DNAK IN COMPLEX WITH A SUBSTRATE PEPTIDE, DETERMINED FROM TYPE 1 NATIVE CRYSTALS 1DKX ; 2.0 ; THE SUBSTRATE BINDING DOMAIN OF DNAK IN COMPLEX WITH A SUBSTRATE PEPTIDE, DETERMINED FROM TYPE 1 SELENOMETHIONYL CRYSTALS 1DKY ; 2.8 ; THE SUBSTRATE BINDING DOMAIN OF DNAK IN COMPLEX WITH A SUBSTRATE PEPTIDE, DETERMINED FROM TYPE 2 NATIVE CRYSTALS 5HI0 ; 2.602 ; The Substrate Binding Mode and Chemical Basis of a Reaction Specificity Switch in Oxalate Decarboxylase 2DE7 ; 2.0 ; The substrate-bound complex between oxygenase and ferredoxin in carbazole 1,9a-dioxygenase 6D9R ; 1.64 ; The substrate-bound crystal structure of HPRT (hypoxanthine phosphoribosyltransferase) 4WO8 ; 2.2 ; The substrate-free duplicated taurocyamine kinase from Schistosoma mansoni 6LPH ; 1.91 ; the Sufu-Fu complex crystal structure 6DDN ; 2.295 ; The sulfate-binding protein SubI from Mycobacterium tuberculosis H37Rv 6D9Q ; 2.056 ; The sulfate-bound crystal structure of HPRT (hypoxanthine phosphoribosyltransferase) 1NST ; 2.3 ; THE SULFOTRANSFERASE DOMAIN OF HUMAN HAPARIN SULFATE N-DEACETYLASE/N-SULFOTRANSFERASE 1W3B ; 2.85 ; The superhelical TPR domain of O-linked GlcNAc transferase reveals structural similarities to importin alpha. 5HSQ ; 1.85 ; The surface engineered photosensory module (PAS-GAF-PHY) of the bacterial phytochrome Agp1 (AtBphP1) in the Pr form, chromophore modelled with an endocyclic double bond in pyrrole ring A. 8CO5 ; 2.42 ; The surface-engineered photosensory module (PAS-GAF-PHY) of the bacterial phytochrome Agp1 (AtBphP1) in the Pr form with parallel dimer formation 8BAI ; 1.69 ; The surface-exposed lipo-protein of BtuG2 in complex with cyanocobalamin. 8BAZ ; 2.0 ; The surface-exposed lipo-protein of BtuG2 in complex with cyanocobalamin. 8BB0 ; 1.5 ; The surface-exposed lipo-protein of BtuG2 in complex with hydroxycobalamin. 6JFI ; 11.0 ; The symmetric-reconstructed cryo-EM structure of Zika virus-FabZK2B10 complex 7TNQ ; 8.4 ; The symmetry-released subpellicular microtubule map from detergent-extracted Toxoplasma cells 3ZO1 ; 2.0 ; The Synthesis and Evaluation of Diazaspirocyclic Protein Kinase Inhibitors 3ZO2 ; 1.98 ; The Synthesis and Evaluation of Diazaspirocyclic Protein Kinase Inhibitors 3ZO3 ; 2.1 ; The Synthesis and Evaluation of Diazaspirocyclic Protein Kinase Inhibitors 3ZO4 ; 1.65 ; The Synthesis and Evaluation of Diazaspirocyclic Protein Kinase Inhibitors 6C0M ; 1.83 ; The synthesis, biological evaluation and structural insights of unsaturated 3-N-substituted sialic acids as probes of human parainfluenza virus-3 haemagglutinin-neuraminidase 1FSA ; 2.3 ; THE T-STATE STRUCTURE OF LYS 42 TO ALA MUTANT OF THE PIG KIDNEY FRUCTOSE 1,6-BISPHOSPHATASE EXPRESSED IN E. COLI 1XXT ; 1.91 ; The T-to-T High Transitions in Human Hemoglobin: wild-type deoxy Hb A (low salt, one test set) 2J2F ; 2.65 ; The T199D Mutant of Stearoyl Acyl Carrier Protein Desaturase from Ricinus Communis (Castor Bean) 7QAC ; 2.29 ; The T2 structure of polycrystalline cubic human insulin 2EWK ; 1.0 ; The T24V mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 4P0D ; 1.9 ; The T6 backbone pilin of serotype M6 Streptococcus pyogenes has a modular three-domain structure decorated with variable loops and extensions 7MWL ; 1.84 ; The TAM domain of BAZ2A in complex with a 12mer mCG DNA 7Q63 ; 1.9 ; The tandem SH2 domains of SYK 7Q5U ; 2.4 ; The tandem SH2 domains of SYK with a bound CD3G diphospho-ITAM peptide 7Q5T ; 2.2 ; The tandem SH2 domains of SYK with a bound FCER1G diphospho-ITAM peptide 7Q5W ; 2.2 ; The tandem SH2 domains of SYK with a bound TYROBP diphospho-ITAM peptide 1MV2 ; ; The tandem, Face-to-Face AP Pairs in 5'(rGGCAPGCCU)2 1MV1 ; ; The Tandem, Sheared PA Pairs in 5'(rGGCPAGCCU)2 1MV6 ; ; The tandem, Sheared PP Pairs in 5'(rGGCPPGCCU)2 2J04 ; 3.2 ; The tau60-tau91 subcomplex of yeast transcription factor IIIC 7D31 ; 1.396 ; The TBA-Pb2+ complex in P41212 space group 7D32 ; 1.707 ; The TBA-Pb2+ complex in P41212 space group 7N3R ; 2.25 ; The ternary complex of human Bisphosphoglycerate mutase with 3-phosphoglycerate and 2-phosphoglycolate 2X68 ; 2.13 ; The ternary complex of PrnB (the second enzyme in pyrrolnitrin biosynthesis pathway), 7-Cl-L-tryptophan and cyanide 2X67 ; 2.16 ; The ternary complex of PrnB (the second enzyme in pyrrolnitrin biosynthesis pathway), tryptophan and cyanide 1LLU ; 2.3 ; THE TERNARY COMPLEX OF PSEUDOMONAS AERUGINOSA ALCOHOL DEHYDROGENASE WITH ITS COENZYME AND WEAK SUBSTRATE 8U17 ; 3.1 ; The ternary complex structure of DDB1-CRBN-SALL4(ZF1,2)-long bound to Pomalidomide 8U15 ; 2.95 ; The ternary complex structure of DDB1-CRBN-SALL4(ZF1,2)-short bound to CC-220 8U16 ; 2.9 ; The ternary complex structure of DDB1-CRBN-SALL4(ZF1,2)-short bound to Pomalidomide 7WSB ; 2.87 ; The ternary complex structure of FtmOx1 with a-ketoglutarate and 13-oxo-fumitremorgin B 3MOP ; 3.4 ; The ternary Death Domain complex of MyD88, IRAK4, and IRAK2 5Z21 ; 2.3 ; The ternary structure of D-lactate dehydrogenase from Fusobacterium nucleatum with NADH and oxamate 5Z20 ; 2.2 ; The ternary structure of D-lactate dehydrogenase from Pseudomonas aeruginosa with NADH and oxamate 5X20 ; 2.4 ; The ternary structure of D-mandelate dehydrogenase with NADH and anilino(oxo)acetate 1U0N ; 2.95 ; The ternary von Willebrand Factor A1-glycoprotein Ibalpha-botrocetin complex 8I7N ; 2.98 ; The Tet-S1 state of G264A mutated Tetrahymena group I intron with 6nt 3'/5'-exon and 2-aminopurine nucleoside 7XD5 ; 2.84 ; The Tet-S2 state of wild-type Tetrahymena group I intron with 30nt 3'/5'-exon 7XD6 ; 2.84 ; The Tet-S2 state with a pseudoknotted 4-way junction of wild-type Tetrahymena group I intron with 30nt 3'/5'-exon 5G56 ; 2.64 ; THE TETRA-MODULAR CELLULOSOMAL ARABINOXYLANASE CtXyl5A STRUCTURE AS REVEALED BY X-RAY CRYSTALLOGRAPHY 1WQ6 ; 2.0 ; The tetramer structure of the nervy homolgy two (NHR2) domain of AML1-ETO is critical for AML1-ETO'S activity 8HZ4 ; 3.2 ; The tetrameric structure of biotin carboxylase from Chloroflexus aurantiacus in complex with bicarbonate 7AVR ; 2.0 ; The tetrameric structure of haloalkane dehalogenase DpaA from Paraglaciecola agarilytica NO2 2KBY ; ; The Tetramerization Domain of Human p73 6AVQ ; 35.0 ; The Therapeutic Antibody LM609 Selectively Inhibits Ligand Binding to Human alpha-V beta-3 Integrin via Steric Hindrance 3DF6 ; 2.05 ; The thermo- and acido-stable ORF-99 from the archaeal virus AFV1 3DJW ; 3.1 ; The thermo- and acido-stable ORF-99 from the archaeal virus AFV1 8JPZ ; 2.08 ; The thermostability mutant Gox_M8 from Aspergillus niger 5OT0 ; 2.18 ; The thermostable L-asparaginase from Thermococcus kodakarensis 1GTL ; 2.8 ; The thermostable serine-carboxyl type proteinase, kumamolisin (KSCP) - complex with Ac-Ile-Pro-Phe-cho 7WIE ; 2.9 ; The THF-II riboswitch bound to 7DG 7WIF ; 2.86 ; The THF-II riboswitch bound to H4B 7WII ; 2.75 ; The THF-II riboswitch bound to NPR 7WIB ; 2.83 ; The THF-II riboswitch bound to THF 7WI9 ; 2.98 ; The THF-II riboswitch bound to THF and soaking with SeUrea 3ILS ; 1.7 ; The Thioesterase Domain from PksA 3KP8 ; 1.66 ; The thioredoxin-like domain of a VKOR homolog from Synechococcus sp. 3ITE ; 2.0 ; The third adenylation domain of the fungal SidN non-ribosomal peptide synthetase 1WF6 ; ; The third BRCA1 C-terminus (BRCT) domain of Similar to S.pombe rad4+/cut5+ product 3P4K ; 2.304 ; The third conformation of p38a MAP kinase observed in phosphorylated p38a and in solution 2JRV ; ; The third dimensional structure of mab198-bound pep.1 for autoimmune myasthenia gravis 1J7M ; ; The Third Fibronectin Type II Module from Human Matrix Metalloproteinase 2 1IGD ; 1.1 ; THE THIRD IGG-BINDING DOMAIN FROM STREPTOCOCCAL PROTEIN G: AN ANALYSIS BY X-RAY CRYSTALLOGRAPHY OF THE STRUCTURE ALONE AND IN A COMPLEX WITH FAB 4B6V ; ; The third member of the eIF4E family represses gene expression via a novel mode of recognition of the methyl-7 guanosine cap moiety 1BFE ; 2.3 ; THE THIRD PDZ DOMAIN FROM THE SYNAPTIC PROTEIN PSD-95 5HDY ; 1.801 ; The third PDZ domain from the synaptic protein PSD-95 5HET ; 2.001 ; The third PDZ domain from the synaptic protein PSD-95 (G330T mutant) 5HEY ; 1.5 ; The third PDZ domain from the synaptic protein PSD-95 (G330T mutant) in complex with a C-terminal peptide derived from CRIPT 5HF1 ; 1.747 ; The third PDZ domain from the synaptic protein PSD-95 (G330T mutant) in complex with a mutant C-terminal peptide derived from CRIPT (T-2F) 5HFD ; 1.6 ; The third PDZ domain from the synaptic protein PSD-95 (G330T, H372A double mutant) 5HFE ; 1.8 ; The third PDZ domain from the synaptic protein PSD-95 (G330T, H372A double mutant) in complex with a C-terminal peptide derived from CRIPT 5HFF ; 1.749 ; The third PDZ domain from the synaptic protein PSD-95 (G330T, H372A double mutant) in complex with a mutant C-terminal peptide derived from CRIPT (T-2F) 5HF4 ; 1.75 ; The third PDZ domain from the synaptic protein PSD-95 (H372A mutant) 5HFB ; 1.616 ; The third PDZ domain from the synaptic protein PSD-95 (H372A mutant) in complex with a C-terminal peptide derived from CRIPT 5HFC ; 1.851 ; The third PDZ domain from the synaptic protein PSD-95 (H372A mutant) in complex with a mutant C-terminal peptide derived from CRIPT (T-2F) 5HEB ; 1.65 ; The third PDZ domain from the synaptic protein PSD-95 in complex with a C-terminal peptide derived from CRIPT 1BE9 ; 1.82 ; THE THIRD PDZ DOMAIN FROM THE SYNAPTIC PROTEIN PSD-95 IN COMPLEX WITH A C-TERMINAL PEPTIDE DERIVED FROM CRIPT. 5HED ; 1.7 ; The third PDZ domain from the synaptic protein PSD-95 in complex with a mutant C-terminal peptide derived from CRIPT (T-2F) 7PC5 ; 1.7 ; The third PDZ domain of PDZD7 complexed with the PDZ-binding motif of EXOC4 3KCI ; 1.8 ; The third RLD domain of HERC2 2LJ0 ; ; The third SH3 domain of R85FL 2LJ1 ; ; The third SH3 domain of R85FL with ataxin-7 PRR 1C9K ; 2.2 ; THE THREE DIMENSIONAL STRUCTURE OF ADENOSYLCOBINAMIDE KINASE/ ADENOSYLCOBINAMIDE PHOSPHATE GUALYLYLTRANSFERASE (COBU) COMPLEXED WITH GMP: EVIDENCE FOR A SUBSTRATE INDUCED TRANSFERASE ACTIVE SITE 2O0T ; 2.33 ; The three dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation 1RCK ; ; THE THREE DIMENSIONAL STRUCTURE OF GUANINE-SPECIFIC RIBONUCLEASE F1 IN SOLUTION DETERMINED BY NMR SPECTROSCOPY AND DISTANCE GEOMETRY 1RCL ; ; THE THREE DIMENSIONAL STRUCTURE OF GUANINE-SPECIFIC RIBONUCLEASE F1 IN SOLUTION DETERMINED BY NMR SPECTROSCOPY AND DISTANCE GEOMETRY 1QZ9 ; 1.85 ; The Three Dimensional Structure of Kynureninase from Pseudomonas fluorescens 1HKF ; 2.2 ; The three dimensional structure of NK cell receptor Nkp44, a triggering partner in natural cytotoxicity 2RLU ; ; The Three Dimensional Structure of the Moorella thermoacetica Selenocysteine Insertion Sequence RNA Hairpin and its Interaction with the Elongation factor SelB 1PIH ; ; THE THREE DIMENSIONAL STRUCTURE OF THE PARAMAGNETIC PROTEIN HIPIP I FROM E.HALOPHILA THROUGH NUCLEAR MAGNETIC RESONANCE 1PIJ ; ; THE THREE DIMENSIONAL STRUCTURE OF THE PARAMAGNETIC PROTEIN HIPIP I FROM E.HALOPHILA THROUGH NUCLEAR MAGNETIC RESONANCE 1HRR ; ; THE THREE DIMENSIONAL STRUCTURE OF THE REDUCED HIGH POTENTIAL IRON-SULFUR PROTEIN FROM CHROMATIUM VINOSUM THROUGH NMR 2LZ2 ; 2.2 ; THE THREE DIMENSIONAL STRUCTURE OF TURKEY EGG WHITE LYSOZYME AT 2.2 ANGSTROMS RESOLUTION 1CEL ; 1.8 ; THE THREE-DIMENSIONAL CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI 1DMD ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF CALLINECTES SAPIDUS METALLOTHIONEIN-I DETERMINED BY HOMONUCLEAR AND HETERONUCLEAR MAGNETIC RESONANCE SPECTOSCOPY 1DME ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF CALLINECTES SAPIDUS METALLOTHIONEIN-I DETERMINED BY HOMONUCLEAR AND HETERONUCLEAR MAGNETIC RESONANCE SPECTOSCOPY 1DMF ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF CALLINECTES SAPIDUS METALLOTHIONEIN-I DETERMINED BY HOMONUCLEAR AND HETERONUCLEAR MAGNETIC RESONANCE SPECTOSCOPY 1DMC ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF CALLINECTES SAPIDUS METALLOTHIONEIN-I DETERMINED BY HOMONUCLEAR AND HETERONUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1PSE ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF PSAE FROM THE CYANOBACTERIUM SYNECHOCOCCUS SP. STRAIN PCC 7002: A PHOTOSYSTEM I PROTEIN THAT SHOWS STRUCTURAL HOMOLOGY WITH SH3 DOMAINS 1PSF ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF PSAE FROM THE CYANOBACTERIUM SYNECHOCOCCUS SP. STRAIN PCC 7002: A PHOTOSYSTEM I PROTEIN THAT SHOWS STRUCTURAL HOMOLOGY WITH SH3 DOMAINS 1EWS ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE RABBIT KIDNEY DEFENSIN, RK-1 1HRQ ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE REDUCED HIGH-POTENTIAL IRON-SULFUR PROTEIN FROM CHROMATIUM VINOSUM THROUGH NMR 1FHS ; ; THE THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE SRC HOMOLOGY DOMAIN-2 OF THE GROWTH FACTOR RECEPTOR BOUND PROTEIN-2, NMR, 18 STRUCTURES 1SGL ; 2.2 ; The three-dimensional structure and X-ray sequence reveal that trichomaglin is a novel S-like ribonuclease 1PBG ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF 6-PHOSPHO-BETA GALACTOSIDASE FROM LACTOCOCCUS LACTIS 1TMC ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF A CLASS I MAJOR HISTOCOMPATIBILITY COMPLEX MOLECULE MISSING THE ALPHA3 DOMAIN OF THE HEAVY CHAIN 1A57 ; ; THE THREE-DIMENSIONAL STRUCTURE OF A HELIX-LESS VARIANT OF INTESTINAL FATTY ACID BINDING PROTEIN, NMR, 20 STRUCTURES 2ABD ; ; THE THREE-DIMENSIONAL STRUCTURE OF ACYL-COENZYME A BINDING PROTEIN FROM BOVINE LIVER. STRUCTURAL REFINEMENT USING HETERONUCLEAR MULTIDIMENSIONAL NMR SPECTROSCOPY 1LK9 ; 1.53 ; The Three-dimensional Structure of Alliinase from Garlic 1ETZ ; 2.6 ; THE THREE-DIMENSIONAL STRUCTURE OF AN ANTI-SWEETENER FAB, NC10.14, SHOWS THE EXTENT OF STRUCTURAL DIVERSITY IN ANTIGEN RECOGNITION BY IMMUNOGLOBULINS 2SBL ; 2.6 ; THE THREE-DIMENSIONAL STRUCTURE OF AN ARACHIDONIC ACID 15-LIPOXYGENASE 1MOE ; 2.6 ; The three-dimensional structure of an engineered scFv T84.66 dimer or diabody in VL to VH linkage. 1LD9 ; 2.4 ; THE THREE-DIMENSIONAL STRUCTURE OF AN H-2LD PEPTIDE COMPLEX EXPLAINS THE UNIQUE INTERACTION OF LD WITH BETA2M AND PEPTIDE 1TRM ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF ASN102 MUTANT OF TRYPSIN. ROLE OF ASP102 IN SERINE PROTEASE CATALYSIS 2TRM ; 2.8 ; THE THREE-DIMENSIONAL STRUCTURE OF ASN102 MUTANT OF TRYPSIN. ROLE OF ASP102 IN SERINE PROTEASE CATALYSIS 1G5R ; 2.1 ; THE THREE-DIMENSIONAL STRUCTURE OF ATP:CORRINOID ADENOSYLTRANSFERASE FROM SALMONELLA TYPHIMURIUM. APO FORM 1G5T ; 1.8 ; THE THREE-DIMENSIONAL STRUCTURE OF ATP:CORRINOID ADENOSYLTRANSFERASE FROM SALMONELLA TYPHIMURIUM. APO-ATP FORM 1G64 ; 2.1 ; THE THREE-DIMENSIONAL STRUCTURE OF ATP:CORRINOID ADENOSYLTRANSFERASE FROM SALMONELLA TYPHIMURIUM. COBALAMIN/ATP TERNARY COMPLEX 1ST2 ; 2.0 ; THE THREE-DIMENSIONAL STRUCTURE OF BACILLUS AMYLOLIQUEFACIENS SUBTILISIN AT 1.8 ANGSTROMS AND AN ANALYSIS OF THE STRUCTURAL CONSEQUENCES OF PEROXIDE INACTIVATION 2ST1 ; 1.8 ; THE THREE-DIMENSIONAL STRUCTURE OF BACILLUS AMYLOLIQUEFACIENS SUBTILISIN AT 1.8 ANGSTROMS AND AN ANALYSIS OF THE STRUCTURAL CONSEQUENCES OF PEROXIDE INACTIVATION 1O4Y ; 1.48 ; THE THREE-DIMENSIONAL STRUCTURE OF BETA-AGARASE A FROM ZOBELLIA GALACTANIVORANS 1O4Z ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF BETA-AGARASE B FROM ZOBELLIA GALACTANIVORANS 1UYP ; 1.9 ; The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima 3DSL ; 2.7 ; The Three-dimensional Structure of Bothropasin, the Main Hemorrhagic Factor from Bothrops jararaca venom. 1PLF ; 2.2 ; THE THREE-DIMENSIONAL STRUCTURE OF BOVINE PLATELET FACTOR 4 AT 3.0 ANGSTROMS RESOLUTION 1A03 ; ; THE THREE-DIMENSIONAL STRUCTURE OF CA2+-BOUND CALCYCLIN: IMPLICATIONS FOR CA2+-SIGNAL TRANSDUCTION BY S100 PROTEINS, NMR, 20 STRUCTURES 1CAV ; 2.6 ; THE THREE-DIMENSIONAL STRUCTURE OF CANAVALIN FROM JACK BEAN (CANAVALIA ENSIFORMIS) 1H6J ; 2.32 ; The three-dimensional structure of capsule-specific CMP:2-keto-3-deoxy-manno-octonic acid synthetase from Escherichia coli 5EPO ; 2.0 ; The three-dimensional structure of Clostridium absonum 7alpha-hydroxysteroid dehydrogenase 1NG0 ; 2.7 ; The three-dimensional structure of Cocksfoot mottle virus at 2.7A resolution 8GQQ ; 1.069 ; The three-dimensional structure of Cystatin A2, a cysteine protease inhibitor from Dictyostelium discoideum 1GNE ; 2.5 ; THE THREE-DIMENSIONAL STRUCTURE OF GLUTATHIONE S-TRANSFERASE OF SCHISTOSOMA JAPONICUM FUSED WITH A CONSERVED NEUTRALIZING EPITOPE ON GP41 OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 1HOC ; 2.4 ; THE THREE-DIMENSIONAL STRUCTURE OF H-2DB AT 2.4 ANGSTROMS RESOLUTION: IMPLICATIONS FOR ANTIGEN-DETERMINANT SELECTION 1HSA ; 2.1 ; THE THREE-DIMENSIONAL STRUCTURE OF HLA-B27 AT 2.1 ANGSTROMS RESOLUTION SUGGESTS A GENERAL MECHANISM FOR TIGHT PEPTIDE BINDING TO MHC 1E8A ; 1.95 ; The three-dimensional structure of human S100A12 1MHU ; ; THE THREE-DIMENSIONAL STRUCTURE OF HUMAN [113CD7] METALLOTHIONEIN-2 IN SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2MHU ; ; THE THREE-DIMENSIONAL STRUCTURE OF HUMAN [113CD7] METALLOTHIONEIN-2 IN SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1XVL ; 2.9 ; The three-dimensional structure of MntC from Synechocystis 6803 1NAL ; 2.2 ; THE THREE-DIMENSIONAL STRUCTURE OF N-ACETYLNEURAMINATE LYASE FROM ESCHERICHIA COLI 2O0R ; 2.0 ; The three-dimensional structure of N-Succinyldiaminopimelate aminotransferase from Mycobacterium tuberculosis 1GHL ; 2.1 ; THE THREE-DIMENSIONAL STRUCTURE OF PHEASANT AND GUINEA-FOWL EGG LYSOZYMES 1HHL ; 1.9 ; THE THREE-DIMENSIONAL STRUCTURE OF PHEASANT AND GUINEA-FOWL EGG LYSOZYMES 1PGS ; 1.8 ; THE THREE-DIMENSIONAL STRUCTURE OF PNGASE F, A GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 1CMS ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF RECOMBINANT BOVINE CHYMOSIN AT 2.3 ANGSTROMS RESOLUTION 1SHK ; 1.9 ; THE THREE-DIMENSIONAL STRUCTURE OF SHIKIMATE KINASE FROM ERWINIA CHRYSANTHEMI 2SHK ; 2.6 ; THE THREE-DIMENSIONAL STRUCTURE OF SHIKIMATE KINASE FROM ERWINIA CHRYSANTHEMI COMPLEXED WITH ADP 2ASR ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF THE ASPARTATE RECEPTOR FROM ESCHERICHIA COLI 1HHP ; 2.7 ; THE THREE-DIMENSIONAL STRUCTURE OF THE ASPARTYL PROTEASE FROM THE HIV-1 ISOLATE BRU 1JJR ; ; The Three-Dimensional Structure of the C-terminal DNA Binding Domain of Human Ku70 2AK3 ; 1.85 ; THE THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX BETWEEN MITOCHONDRIAL MATRIX ADENYLATE KINASE AND ITS SUBSTRATE AMP AT 1.85 ANGSTROMS RESOLUTION 1P90 ; 1.8 ; The Three-dimensional Structure of the Core Domain of NafY from Azotobacter vinelandii determined at 1.8 resolution 2VMA ; 1.9 ; The three-dimensional structure of the cytoplasmic domains of EpsF from the Type 2 Secretion System of Vibrio cholerae 2VMB ; 1.95 ; The three-dimensional structure of the cytoplasmic domains of EpsF from the Type 2 Secretion System of Vibrio cholerae 3C1Q ; 1.7 ; The three-dimensional structure of the cytoplasmic domains of EpsF from the Type 2 Secretion System of Vibrio cholerae 1IXA ; ; THE THREE-DIMENSIONAL STRUCTURE OF THE FIRST EGF-LIKE MODULE OF HUMAN FACTOR IX: COMPARISON WITH EGF AND TGF-A 1ISU ; 1.5 ; THE THREE-DIMENSIONAL STRUCTURE OF THE HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM THE PURPLE PHOTOTROPHIC BACTERIUM RHODOCYCLUS TENUIS DETERMINED AND REFINED AT 1.5 ANGSTROMS RESOLUTION 1WAS ; 2.7 ; THE THREE-DIMENSIONAL STRUCTURE OF THE LIGAND-BINDING DOMAIN OF A WILD-TYPE BACTERIAL CHEMOTAXIS RECEPTOR 1WAT ; 3.0 ; THE THREE-DIMENSIONAL STRUCTURE OF THE LIGAND-BINDING DOMAIN OF A WILD-TYPE BACTERIAL CHEMOTAXIS RECEPTOR 2VHL ; 2.05 ; The Three-dimensional structure of the N-Acetylglucosamine-6- phosphate deacetylase from Bacillus subtilis 1PHS ; 3.0 ; THE THREE-DIMENSIONAL STRUCTURE OF THE SEED STORAGE PROTEIN PHASEOLIN AT 3 ANGSTROMS RESOLUTION 1TTF ; ; THE THREE-DIMENSIONAL STRUCTURE OF THE TENTH TYPE III MODULE OF FIBRONECTIN: AN INSIGHT INTO RGD-MEDIATED INTERACTIONS 1TTG ; ; THE THREE-DIMENSIONAL STRUCTURE OF THE TENTH TYPE III MODULE OF FIBRONECTIN: AN INSIGHT INTO RGD-MEDIATED INTERACTIONS 3QPH ; 2.992 ; The three-dimensional structure of TrmB, a global transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose 1TPL ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURE OF TYROSINE PHENOL-LYASE 2H1P ; 2.4 ; THE THREE-DIMENSIONAL STRUCTURES OF A POLYSACCHARIDE BINDING ANTIBODY TO CRYPTOCOCCUS NEOFORMANS AND ITS COMPLEX WITH A PEPTIDE FROM A PHAGE DISPLAY LIBRARY: IMPLICATIONS FOR THE IDENTIFICATION OF PEPTIDE MIMOTOPES 1D31 ; 2.6 ; THE THREE-DIMENSIONAL STRUCTURES OF BULGE-CONTAINING DNA FRAGMENTS 1GHR ; 2.2 ; THE THREE-DIMENSIONAL STRUCTURES OF TWO PLANT BETA-GLUCAN ENDOHYDROLASES WITH DISTINCT SUBSTRATE SPECIFICITIES 1GHS ; 2.3 ; THE THREE-DIMENSIONAL STRUCTURES OF TWO PLANT BETA-GLUCAN ENDOHYDROLASES WITH DISTINCT SUBSTRATE SPECIFICITIES 8FJF ; 1.6 ; The three-repeat design H10 2RHP ; 2.9 ; The Thrombospondin-1 Polymorphism Asn700Ser Associated with Cornoary Artery Disease Causes Local and Long-Ranging Changes in Protein Structure 5NF4 ; 1.746 ; The tip fimbrial protein Mfa3 from Porphyromonas gingivalis with C-terminal truncation. 2J67 ; 2.2 ; The TIR domain of human Toll-Like Receptor 10 (TLR10) 6SKI ; 2.6 ; The Tle hydrolase bound to the TTR domain of the VgrG spike of the Type 6 secretion system 8HIK ; 3.72 ; The TPP-bound BRIL-SLC19A1/Fab/Nb ternary complex 3CEQ ; 2.75 ; The TPR domain of Human Kinesin Light Chain 2 (hKLC2) 5LEJ ; 2.7 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 6EV0 ; 2.3 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (AC129) 5F1R ; 2.25 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (C10) 6EUU ; 2.6 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (KSK29) 6EUT ; 1.9 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (KSK67) 6EXM ; 1.6 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (MK202) 6EXL ; 1.9 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (MK206) - folded HTH motif 6EXK ; 2.1 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (MK206) - unfolded HTH motif 6EUZ ; 1.95 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with a ring-fused 2-pyridone (MK37) 6HCK ; 2.7 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with dipeptide Leu-Leu 5LRR ; 2.171 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with glutathione 5LRS ; 2.9 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with glutathione and a 30-bp operator PrfA-box motif 6T5I ; 2.0 ; The Transcriptional Regulator PrfA from Listeria Monocytogenes in complex with inhibitor of WNT production (IWP)-2 6QW2 ; 2.6 ; The Transcriptional Regulator PrfA-A218G mutant from Listeria Monocytogenes 6QWM ; 2.9 ; The Transcriptional Regulator PrfA-A218G mutant from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 6QVY ; 1.686 ; The Transcriptional Regulator PrfA-A94V mutant from Listeria Monocytogenes 6QWF ; 2.7 ; The Transcriptional Regulator PrfA-A94V mutant from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 5LEK ; 2.8 ; The Transcriptional Regulator PrfA-G145S mutant from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 6QW1 ; 1.844 ; The Transcriptional Regulator PrfA-L140F mutant from Listeria Monocytogenes 6QWK ; 2.9 ; The Transcriptional Regulator PrfA-L140F mutant from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 6QVZ ; 2.705 ; The Transcriptional Regulator PrfA-L140H mutant from Listeria Monocytogenes 6QWH ; 2.9 ; The Transcriptional Regulator PrfA-L140H mutant from Listeria Monocytogenes in complex with a 30-bp operator PrfA-box motif 1TKW ; ; The transient complex of poplar plastocyanin with turnip cytochrome f determined with paramagnetic NMR 6KI1 ; 2.809 ; The transmembrane domain of a cyanobacterium bicarbonate transporter BicA 1OLQ ; 1.7 ; The Trichoderma reesei cel12a P201C mutant, structure at 1.7 A resolution 1V6H ; 1.9 ; The Trimeric Structure Of Divalent Cation Tolerance Protein CutA1 From Thermus Thermophilus HB8 4IND ; 1.8 ; The Triple Jelly Roll Fold and Turret Assembly in an Archaeal Virus 5U9T ; 1.92 ; The Tris-thiolate Zn(II)S3Cl Binding Site Engineered by D-Cysteine Ligands in de Novo Three-stranded Coiled Coil Environment 3BBV ; 10.0 ; The tRNA(phe) fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex 2JOF ; ; The Trp-cage: Optimizing the Stability of a Globular Miniprotein 4MUO ; 1.94 ; The TrpD2 enzyme from E.coli: YbiB 3HR9 ; 1.7 ; The truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase F40I mutant 3AXD ; 1.53 ; The truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase V18Y/W203Y in apo-form 3AXE ; 1.53 ; The truncated Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase V18Y/W203Y in complex with cellotetraose (cellobiose density was observed) 8J2M ; 3.4 ; The truncated rice Na+/H+ antiporter SOS1 (1-976) in a constitutively active state 7ABB ; 1.50004 ; The truncated structure of the Bottromycin biosynthetic protein SalCYP 3WSA ; 2.9 ; The Tuberculosis Drug SQ109 Inhibits Trypanosoma cruzi Cell Proliferation and acts Synergistically with Posaconazole 3WSB ; 2.4 ; The Tuberculosis Drug SQ109 Inhibits Trypanosoma cruzi Cell Proliferation and acts Synergistically with Posaconazole 7TNT ; 9.3 ; The tubulin-based conoid from detergent-extract Toxoplasma gondii cells 8G2M ; 1.8 ; The tumor activated anti-CTLA-4 monoclonal antibody XTX101 demonstrates tumor-growth inhibition and tumor-selective pharmacodynamics in mouse models of cancer 6X2K ; 2.88 ; The Tusavirus (TuV) capsid structure 2XCT ; 3.35 ; The twinned 3.35A structure of S. aureus Gyrase complex with Ciprofloxacin and DNA 8FJG ; 2.13 ; The two-repeat design H12 8GLK ; 2.8 ; The Type 9 Secretion System dGldL peak II, NucA substrate bound complex 8GL8 ; 2.2 ; The Type 9 Secretion System Extended Translocon - SprA-PorV-PPI-RemZ-SkpA-SprE complex 8GLJ ; 3.2 ; The Type 9 Secretion System in vitro assembled, FspA-CTD substrate bound complex 8GL6 ; 3.2 ; The Type 9 Secretion System in vitro assembled, RemA-CTD substrate bound complex 8GLM ; 2.2 ; The Type 9 Secretion System in vivo assembled, RemZ substrate bound complex - conformation 1 8GLN ; 2.2 ; The Type 9 Secretion System in vivo assembled, RemZ substrate bound complex - conformation 2 3TB7 ; 2.45 ; The type I crystal structure of Streptococcus agalactiae sortase C1 5CD4 ; 3.2 ; The Type IE CRISPR Cascade complex from E. coli, with two assemblies in the asymmetric unit arranged back-to-back 2B59 ; 2.11 ; The type II cohesin dockerin complex 5K39 ; 1.98 ; THE TYPE II COHESIN DOCKERIN COMPLEX FROM CLOSTRIDIUM THERMOCELLUM 3RBK ; 2.9 ; The Type II Crystal Structure of Streptococcus agalactiae Sortase C1 3RBI ; 3.0 ; The Type III Crystal Structure of Streptococcus agalactiae Sortase C1 5OT1 ; 2.8 ; The type III pullulan hydrolase from Thermococcus kodakarensis 7OQC ; 4.1 ; The U1 part of Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1) 7OQB ; 9.0 ; The U2 part of Saccharomyces cerevisiae spliceosomal pre-A complex (delta BS-A ACT1) 3JBA ; 12.0 ; The U4 antibody epitope on human papillomavirus 16 identified by cryo-EM 4AE4 ; 1.65 ; The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a novel SOUBA domain 7TDY ; 1.53 ; The ubiquitin-associated domain of human thirty-eight negative kinase 1, flexibly fused to the 1TEL crystallization chaperone via a 2-glycine linker and crystallized at low protein concentration 7TCY ; 1.54 ; The ubiquitin-associated domain of human thirty-eight negative kinase I 7U4W ; 2.1 ; The ubiquitin-associated domain of human thirty-eight negative kinase-1 flexibly fused to the 1TEL crystallization chaperone via a 2-glycine linker and crystallized at traditional protein concentration 7U4Z ; 2.03 ; The ubiquitin-associated domain of human thirty-eight negative kinase-1 flexibly fused to the 1TEL crystallization chaperone via a 2-glycine linker and crystallized at very low protein concentration 7T8J ; 1.89 ; The ubiquitin-associated domain of human thirty-eight negative kinase-1 flexibly fused to the 1TEL crystallization chaperone via a GSGG linker 2QGI ; 1.65 ; The UDP complex structure of the sixth gene product of the F1-ATPase operon of Rhodobacter blasticus 6TSZ ; 1.9 ; The ULK4 Pseudokinase Domain Bound To ATPgammaS 5A8C ; 0.97 ; The ultra high resolution structure of a novel alpha-L-arabinofuranosidase (CtGH43) from Clostridium thermocellum ATCC 27405 with bound trimethyl N-Oxide (TRS) 1SK5 ; 0.89 ; The ultra-high resolution structure of d(CTTTTAAAAG)2: modulation of bending by T-A steps and its role in DNA recognition 4K74 ; 2.5 ; The UmuC subunit of the E. coli DNA polymerase V shows a unique interaction with the beta-clamp processivity factor. 7VRT ; 5.1 ; The unexpanded head structure of phage T4 6SL4 ; 1.8 ; The unique CBM-Cthe_0271 of Ruminiclostridium thermocellum 6XX1 ; 1.61 ; The unique CBM3-Clocl_1192 of Hungateiclostridium clariflavum 3B1B ; 1.88 ; The unique structure of wild type carbonic anhydrase alpha-CA1 from Chlamydomonas reinhardtii 1FL5 ; 2.1 ; THE UNLIGANDED GERMLINE PRECURSOR TO THE SULFIDE OXIDASE CATALYTIC ANTIBODY 28B4. 4EL8 ; 2.45 ; The unliganded structure of C.bescii CelA GH48 module 5ECU ; 1.5 ; The unliganded structure of Caldicellulosiruptor saccharolyticus GH5 6T33 ; ; The unusual structure of Ruminococcin C1 antimicrobial peptide confers activity against clinical pathogens 103D ; ; THE UNUSUAL STRUCTURE OF THE HUMAN CENTROMERE (GGA)2 MOTIF: UNPAIRED GUANOSINE RESIDUES STACKED BETWEEN SHEARED G(DOT)A PAIRS 4RHV ; 3.0 ; THE USE OF MOLECULAR-REPLACEMENT PHASES FOR THE REFINEMENT OF THE HUMAN RHINOVIRUS 14 STRUCTURE 2PGK ; 3.0 ; THE USE OF PHASE COMBINATION IN THE REFINEMENT OF PHOSPHOGLYCERATE KINASE AT 2.5 ANGSTROMS RESOLUTION 7UNE ; 3.73 ; The V1 region of bovine V-ATPase in complex with human mEAK7 (focused refinement) 6WLZ ; 2.9 ; The V1 region of human V-ATPase in state 1 (focused refinement) 2KWX ; ; The V27A mutant of influenza A M2 proton channel 3O7N ; 1.72 ; The V59W mutation blocks the distal pocket of the hemoglobin - dehaloperoxidase from Amphitrite ornata 3K3U ; 1.63 ; The V59W mutation blocks the distal pocket of the hemoglobin dehaloperoxidase from Amphitrite ornata 5EJ0 ; 1.9 ; The vaccinia virus H3 envelope protein, a major target of neutralizing antibodies, exhibits a glycosyltransferase fold and binds UDP-Glucose 4QOE ; 1.45 ; The value 'crystal structure of fad quinone reductase 2 at 1.45A 4QOD ; 1.35 ; The value crystal structure of apo quinone reductase 2 at 1.35A 1QSZ ; ; THE VEGF-BINDING DOMAIN OF FLT-1 (MINIMIZED MEAN) 1QSV ; ; THE VEGF-BINDING DOMAIN OF FLT-1, 20 NMR STRUCTURES 6SK0 ; 2.3 ; The VgrG spike from the Type 6 secretion system 1VCB ; 2.7 ; THE VHL-ELONGINC-ELONGINB STRUCTURE 4IVN ; 1.9 ; The Vibrio vulnificus NanR protein complexed with ManNAc-6P 3RGC ; 2.3 ; The virulence factor PEB4 and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni 3RFW ; 2.2 ; The virulence factor PEB4 and the periplasmic protein Cj1289 are two structurally-related SurA-like chaperones in the human pathogen Campylobacter jejuni 5WPI ; 2.3 ; The virulence-associated protein HsvA from the fire blight pathogen Erwinia amylovora is a polyamine amidinotransferase 6WLW ; 3.0 ; The Vo region of human V-ATPase in state 1 (focused refinement) 6EBK ; 3.3 ; The voltage-activated Kv1.2-2.1 paddle chimera channel in lipid nanodiscs 6EBL ; 3.0 ; The voltage-activated Kv1.2-2.1 paddle chimera channel in lipid nanodiscs, cytosolic domain 6EBM ; 4.0 ; The voltage-activated Kv1.2-2.1 paddle chimera channel in lipid nanodiscs, transmembrane domain of subunit alpha 8FZ4 ; 2.19 ; The von Willebrand factor A domain of Anthrax toxin receptor 2 7N1O ; 2.77 ; The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone 8FZV ; 3.29 ; The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Ala-Ala linker variant, expressed with SUMO tag 8FT6 ; 2.62 ; The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Ala-Ala linker variant, SUMO tag-free preparation. 8FZU ; 1.9 ; The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Thr-Val linker variant, Expressed with SUMO tag 8FT8 ; 1.6 ; The von Willebrand factor A domain of human capillary morphogenesis gene II, flexibly fused to the 1TEL crystallization chaperone, Thr-Val linker variant, SUMO tag-free preparation 4GYX ; 1.49 ; The von Willebrand Factor A3 domain binding region of type III collagen stabilized by the cysteine knot 1IJB ; 1.8 ; The von Willebrand Factor mutant (I546V) A1 domain 1IJK ; 2.6 ; The von Willebrand Factor mutant (I546V) A1 domain-botrocetin Complex 2PJW ; 3.01 ; The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting 4E5A ; 1.87 ; The W197A mutant of p38a MAP kinase 2QEN ; 2.25 ; The walker-type atpase paby2304 of pyrococcus abyssi 4N78 ; 2.43 ; The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton 5KWN ; 1.42 ; The WD domain ofArabidopsis thaliana E3 Ubiquitin Ligase COP1 in complex with peptide from HY5 2Q7J ; 1.9 ; The Wild Type Androgen Receptor Ligand Binding Domain Bound with Testosterone and a TIF2 box 3 Coactivator Peptide 740-753 2Q7I ; 1.87 ; The Wild Type Androgen Receptor Ligand Binding Domain Bound with Testosterone and an AR 20-30 Peptide 3WUB ; 2.08 ; The wild type crystal structure of b-1,4-Xylanase (XynAS9) from Streptomyces sp. 9 3WUE ; 2.15 ; The wild type crystal structure of b-1,4-Xylanase (XynAS9) with xylobiose from Streptomyces sp. 9 6SYR ; 1.49 ; The wild type glucuronoyl esterase OtCE15A from Opitutus terrae in complex with D-glucuronate 6T0I ; 1.53 ; The wild type glucuronoyl esterase OtCE15A from Opitutus terrae in complex with the aldotetrauronic acid XUX 6SYU ; 1.33 ; The wild type glucuronoyl esterase OtCE15A from Opitutus terrae in complex with xylobiose 7QOV ; 1.4 ; The wild type nitrile hydratase from Geobacillus pallidus 4DGP ; 2.3 ; The wild-type Src homology 2 (SH2)-domain containing protein tyrosine phosphatase-2 (SHP2) 7DL7 ; 2.30066 ; The wild-type structure of 3,5-DAHDHcca 6LAZ ; 2.76 ; the wildtype SAM-VI riboswitch bound to a N-mustard SAM analog M1 6LAU ; 3.109 ; the wildtype SAM-VI riboswitch bound to SAH 6LAS ; 2.708 ; the wildtype SAM-VI riboswitch bound to SAM 6KTX ; 2.189 ; The wildtype structure of EanB 5X3G ; 2.021 ; The WT UNG crystal structure from Nitratifractor salsuginis 5L2W ; 2.8 ; The X-ray co-crystal structure of human CDK2/CyclinE and Dinaciclib. 5L2S ; 2.27 ; The X-ray co-crystal structure of human CDK6 and Abemaciclib. 5L2I ; 2.75 ; The X-ray co-crystal structure of human CDK6 and Palbociclib. 5L2T ; 2.37 ; The X-ray co-crystal structure of human CDK6 and Ribociclib. 8UDU ; 1.737 ; The X-RAY co-crystal structure of human FGFR3 and Compound 17 8UDT ; 2.829 ; The X-RAY co-crystal structure of human FGFR3 and KIN-3248 8UDV ; 2.348 ; The X-RAY co-crystal structure of human FGFR3 V555M and Compound 17 4KXH ; 2.7 ; The X-ray crystal structure of a dimeric variant of human pancreatic ribonuclease 5K8H ; 1.069 ; The X-ray crystal structure of a parallel poly(rA) double helix generated by rA7 at acidic pH 1MTP ; 1.5 ; The X-ray crystal structure of a serpin from a thermophilic prokaryote 5X5I ; 2.554 ; The X-ray crystal structure of a TetR family transcription regulator RcdA involved in the regulation of biofilm formation in Escherichia coli 2O7I ; 1.5 ; The X-ray crystal structure of a thermophilic cellobiose binding protein bound with cellobiose 3I5O ; 1.5 ; The X-ray crystal structure of a thermophilic cellobiose binding protein bound with cellopentaose 4JSD ; 2.05 ; The X-ray crystal structure of a thermophilic cellobiose binding protein bound with laminaribiose 4JSO ; 2.07 ; The X-ray crystal structure of a thermophilic cellobiose binding protein bound with laminaripentaose 6N04 ; 1.998 ; The X-ray crystal structure of AbsH3, an FAD dependent reductase from the Abyssomicin biosynthesis pathway in Streptomyces 1O9R ; 1.45 ; The X-ray crystal structure of Agrobacterium tumefaciens Dps, a member of the family that protect DNA without binding 7Q6Y ; 2.22 ; The X-ray crystal structure of CbTan2, a tannase enzyme from Clostridium butyricum 1K72 ; 1.8 ; The X-ray Crystal Structure Of Cel9G Complexed With cellotriose 1KFG ; 1.9 ; The X-ray Crystal Structure of Cel9G from Clostridium cellulolyticum complexed with a Thio-Oligosaccharide Inhibitor 4EGP ; 3.0 ; The X-ray crystal structure of CYP199A4 in complex with 2-naphthoic acid 4EGM ; 2.91 ; The X-ray crystal structure of CYP199A4 in complex with 4-ethylbenzoic acid 4EGO ; 1.76 ; The X-ray crystal structure of CYP199A4 in complex with indole-6-carboxylic acid 4EGN ; 2.0 ; The X-ray crystal structure of CYP199A4 in complex with veratric acid 4C5C ; 1.4 ; The X-ray crystal structure of D-alanyl-D-alanine ligase in complex with ADP and D-ala-D-ala 4C5B ; 1.5 ; The X-ray crystal structure of D-alanyl-D-alanine ligase in complex with ATP and D-ala-D-ala 6ENK ; 1.96 ; The X-ray crystal structure of DesE bound to desferrioxamine B 1O9J ; 2.4 ; The X-ray crystal structure of eta-crystallin 2HZ2 ; 2.0 ; The x-ray crystal structure of ferric Synechocystis hemoglobin H117A mutant with a covalent linkage 2HZ3 ; 1.9 ; The x-ray crystal structure of ferrous Synechocystis hemoglobin H117A mutant with a covalent linkage 2HZ1 ; 1.8 ; The x-ray crystal structure of ferrous Synechocystis hemoglobin with a covalent linkage 1DVO ; 2.0 ; THE X-RAY CRYSTAL STRUCTURE OF FINO, A REPRESSOR OF BACTERIAL CONJUGATION 4DUU ; 5.2 ; The X-ray Crystal Structure of Full-Length type I Human Plasminogen 4DUR ; 2.45 ; The X-ray Crystal Structure of Full-Length type II Human Plasminogen 4J1Y ; 2.6645 ; The X-ray crystal structure of human complement protease C1s zymogen 6DK5 ; 1.85 ; The X-ray crystal structure of human endothelin-1, a polypeptide hormone regulator of blood pressure 2BJY ; 2.6 ; The X-ray crystal structure of Listeria innocua Dps H31G-H43G mutant. 3NSJ ; 2.75 ; The X-ray crystal structure of lymphocyte perforin 4KKD ; 2.5991 ; The X-ray crystal structure of Mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the 3MC syndrome 1FI4 ; 2.27 ; THE X-RAY CRYSTAL STRUCTURE OF MEVALONATE 5-DIPHOSPHATE DECARBOXYLASE AT 2.3 ANGSTROM RESOLUTION. 2Q5W ; 2.0 ; The X-ray Crystal Structure of Molybdopterin Synthase from Staphylococcus aureus 2HEW ; 1.45 ; The X-ray crystal structure of murine OX40L 3M0C ; 7.01 ; The X-ray Crystal Structure of PCSK9 in Complex with the LDL receptor 3SIG ; 1.28 ; The X-ray crystal structure of poly(ADP-ribose) glycohydrolase (PARG) bound to ADP-ribose from Thermomonospora curvata 3SIH ; 1.5 ; The X-ray crystal structure of poly(ADP-ribose) glycohydrolase (PARG) from Thermomonospora curvata 3SII ; 1.48 ; The X-ray crystal structure of poly(ADP-ribose) glycohydrolase bound to the inhibitor ADP-HPD from Thermomonospora curvata 3SIJ ; 1.9 ; The X-ray crystal structure of poly(ADP-ribose) glycohydrolase E115A mutant from Thermomonospora curvata 1A0H ; 3.2 ; THE X-RAY CRYSTAL STRUCTURE OF PPACK-MEIZOTHROMBIN DESF1: KRINGLE/THROMBIN AND CARBOHYDRATE/KRINGLE/THROMBIN INTERACTIONS AND LOCATION OF THE LINKER CHAIN 3KMG ; 2.1 ; The X-ray Crystal Structure of PPAR-gamma in Complex with an Indole Derivative Modulator, GSK538, and an SRC-1 Peptide 1IU8 ; 1.6 ; The X-ray Crystal Structure of Pyrrolidone-Carboxylate Peptidase from Hyperthermophilic Archaeon Pyrococcus horikoshii 3HKZ ; 3.4 ; The X-ray crystal structure of RNA polymerase from Archaea 4QJV ; 1.601 ; The X-ray crystal structure of Rpo3/Rpo11 heterodimer of euryarchaeal RNA polymerase from Thermococcus kodakarensis 1HOW ; 2.1 ; THE X-RAY CRYSTAL STRUCTURE OF SKY1P, AN SR PROTEIN KINASE IN YEAST 7K7V ; 1.882 ; The X-ray crystal structure of SSR4, an S. pombe chromatin remodelling protein: iodide derivative 7K7W ; 1.77 ; The X-ray crystal structure of SSR4, an S. pombe chromatin remodelling protein: native 7K82 ; 2.1 ; The X-ray crystal structure of SSR4, an S. pombe chromatin remodelling protein: sulfur SAD 6NYU ; 2.183 ; The X-ray crystal structure of Staphylococcus aureus Fatty Acid Kinase (Fak) B1 F263T mutant protein to 2.18 Angstrom resolution 7SCL ; 1.6 ; The X-ray crystal structure of Staphylococcus aureus Fatty Acid Kinase B1 (FakB1) mutant R173A in complex with Palmitate to 1.60 Angstrom resolution 6NOK ; 1.69 ; The X-ray crystal structure of Streptococcus pneumoniae Fatty Acid Kinase (Fak) B1 protein loaded with myristic acid (C14:0) to 1.69 Angstrom resolution 6DKE ; 1.76 ; The X-ray crystal structure of Streptococcus pneumoniae Fatty Acid Kinase (Fak) B1 protein loaded with palmitic acid (C16:0) to 1.76 Angstrom resolution 6NR1 ; 2.1 ; The X-ray crystal structure of Streptococcus pneumoniae Fatty Acid Kinase (Fak) B2 protein loaded with Vaccenic acid (C18:1 delta11) to 2.1 Angstrom resolution 5X89 ; 1.53 ; The X-ray crystal structure of subunit fusion RNA splicing endonuclease from Methanopyrus kandleri 2YGL ; 2.1 ; The X-ray crystal structure of tandem CBM51 modules of Sp3GH98, the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 2YGM ; 2.35 ; THE X-RAY CRYSTAL STRUCTURE OF TANDEM CBM51 MODULES OF SP3GH98, THE FAMILY 98 GLYCOSIDE HYDROLASE FROM STREPTOCOCCUS PNEUMONIAE SP3-BS71, IN COMPLEX WITH THE BLOOD GROUP B ANTIGEN 2OKK ; 2.3 ; The X-ray crystal structure of the 65kDa isoform of Glutamic Acid Decarboxylase (GAD65) 2OKJ ; 2.3 ; The X-ray crystal structure of the 67kDa isoform of Glutamic Acid Decarboxylase (GAD67) 6W6B ; 1.4 ; The X-ray crystal structure of the C-terminus domain of Staphylococcus aureus Fatty Acid Kinase A (FakA, residues 328-548) protein to 1.40 Angstrom resolution 1IJJ ; 2.85 ; THE X-RAY CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN RABBIT SKELETAL MUSCLE ACTIN AND LATRUNCULIN A AT 2.85 A RESOLUTION 3HI9 ; 2.0 ; The x-ray crystal structure of the first RNA recognition motif (RRM1) of the AU-rich element (ARE) binding protein HuR at 2.0 angstrom resolution 4DKK ; 1.701 ; The X-ray Crystal Structure of the Human STAU1 SSM-'RBD'5 Domain-Swapped Dimer 2BK6 ; 2.19 ; The X-ray crystal structure of the Listeria innocua H31G Dps mutant. 1PRH ; 3.5 ; THE X-RAY CRYSTAL STRUCTURE OF THE MEMBRANE PROTEIN PROSTAGLANDIN H2 SYNTHASE-1 7RM7 ; 1.025 ; The X-ray crystal structure of the N-terminal domain of Staphylococcus aureus Fatty Acid Kinase A (FakA, residues 1-208) in complex with ADP to 1.025 Angstrom resolution 7UQ1 ; 1.72 ; The X-ray crystal structure of the N-terminal domain of Staphylococcus aureus Fatty Acid Kinase A (FakA, residues 1-208) in complex with AMP and a single Mg ion at the dinuclear binding site 7SNB ; 1.11 ; The X-ray crystal structure of the N-terminal domain of Staphylococcus aureus Fatty Acid Kinase A (FakA, residues 1-208) in complex with AMP and ADP to 1.105 Angstrom resolution 2NV9 ; 1.95 ; The X-ray Crystal Structure of the Paramecium bursaria Chlorella virus arginine decarboxylase 2NVA ; 1.8 ; The X-ray crystal structure of the Paramecium bursaria Chlorella virus arginine decarboxylase bound to agmatine 7SG3 ; 2.35 ; The X-ray crystal structure of the Staphylococcus aureus Fatty Acid Kinase B1 mutant A121I-A158L to 2.35 Angstrom resolution (Open form chain A, Palmitate bound) 6DJ6 ; 1.9 ; The X-ray crystal structure of the Streptococcus pneumoniae Fatty Acid Kinase (Fak) B2 protein loaded with cis-oleic acid to 1.9 Angstrom resolution 6CNG ; 1.47 ; The X-ray crystal structure of the Streptococcus pneumoniae Fatty Acid Kinase (Fak) B3 protein loaded with linoleic acid to 1.47 Angstrom resolution 1GMC ; 2.2 ; THE X-RAY CRYSTAL STRUCTURE OF THE TETRAHEDRAL INTERMEDIATE OF GAMMA-CHYMOTRYPSIN IN HEXANE 4H7M ; 2.068 ; The X-ray Crystal Structure of the Trichoderma harzianum Endoglucanase 3 from family GH12 1H8V ; 1.9 ; The X-ray Crystal Structure of the Trichoderma reesei Family 12 Endoglucanase 3, Cel12A, at 1.9 A Resolution 8ETN ; 3.16 ; The X-ray Crystal Structure of Tri-Ketone Dioxygenase from Rice 1ETA ; 1.7 ; THE X-RAY CRYSTAL STRUCTURE REFINEMENTS OF NORMAL HUMAN TRANSTHYRETIN AND THE AMYLOIDOGENIC VAL 30-->MET VARIANT TO 1.7 ANGSTROMS RESOLUTION 1ETB ; 1.7 ; THE X-RAY CRYSTAL STRUCTURE REFINEMENTS OF NORMAL HUMAN TRANSTHYRETIN AND THE AMYLOIDOGENIC VAL 30-->MET VARIANT TO 1.7 ANGSTROMS RESOLUTION 1TTA ; 1.7 ; THE X-RAY CRYSTAL STRUCTURE REFINEMENTS OF NORMAL HUMAN TRANSTHYRETIN AND THE AMYLOIDOGENIC VAL30MET VARIANT TO 1.7 ANGSTROMS RESOLUTION 1TTB ; 1.7 ; THE X-RAY CRYSTAL STRUCTURE REFINEMENTS OF NORMAL HUMAN TRANSTHYRETIN AND THE AMYLOIDOGENIC VAL30MET VARIANT TO 1.7 ANGSTROMS RESOLUTION 1TTC ; 1.7 ; THE X-RAY CRYSTAL STRUCTURE REFINEMENTS OF NORMAL HUMAN TRANSTHYRETIN AND THE AMYLOIDOGENIC VAL30MET VARIANT TO 1.7 ANGSTROMS RESOLUTION 4C5A ; 1.65 ; The X-ray crystal structures of D-alanyl-D-alanine ligase in complex ADP and D-cycloserine phosphate 7VMA ; 2.804 ; The X-ray crystallographic structure of amylo-alpha-1,6-glucosidase from Thermococcus gammatolerans STB12 1EKJ ; 1.93 ; THE X-RAY CRYSTALLOGRAPHIC STRUCTURE OF BETA CARBONIC ANHYDRASE FROM THE C3 DICOT PISUM SATIVUM 1M7X ; 2.3 ; The X-ray Crystallographic Structure of Branching Enzyme 6JOY ; 2.392 ; The X-ray Crystallographic Structure of Branching Enzyme from Rhodothermus obamensis STB05 7X7W ; 2.097 ; The X-ray Crystallographic Structure of D-Psicose 3-epimerase from Clostridia bacterium 7EAV ; 2.803 ; The X-ray crystallographic structure of glycogen debranching enzyme from Sulfolobus solfataricus STB09 6AG0 ; 2.2 ; The X-ray Crystallographic Structure of Maltooligosaccharide-forming Amylase from Bacillus stearothermophilus STB04 1X7S ; 1.55 ; The X-ray crystallographic structure of the amyloidogenic variant TTR Tyr78Phe 2DOH ; 2.3 ; The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound a to a peptide from the group A streptococcal surface protein PAM 2DOI ; 3.1 ; The X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound to a peptide from the group A streptococcus protein PAM 4F48 ; 3.0 ; The X-ray structural of FimXEAL-c-di-GMP-PilZ complexes from Xanthomonas campestris 1FSX ; 2.1 ; THE X-RAY STRUCTURE DETERMINATION OF BOVINE CARBONMONOXY HB AT 2.1 A RESOLUTION AND ITS RELATIONSHIP TO THE QUATERNARY STRUCTURE OF OTHER HB CRYSTAL FORMS 1CWB ; 2.2 ; THE X-RAY STRUCTURE OF (MEBM2T)1-CYCLOSPORIN COMPLEXED WITH CYCLOPHILIN A PROVIDES AN EXPLANATION FOR ITS ANOMALOUSLY HIGH IMMUNOSUPPRESSIVE ACTIVITY 5GT9 ; 1.7 ; The X-ray structure of 7beta-hydroxysteroid dehydrogenase 2IMS ; 1.48 ; The X-ray Structure of a Bak Homodimer Reveals an Inhibitory Zinc Binding Site 2IMT ; 1.49 ; The X-ray Structure of a Bak Homodimer Reveals an Inhibitory Zinc Binding Site 1CBF ; 2.4 ; THE X-RAY STRUCTURE OF A COBALAMIN BIOSYNTHETIC ENZYME, COBALT PRECORRIN-4 METHYLTRANSFERASE, CBIF 2CBF ; 3.1 ; THE X-RAY STRUCTURE OF A COBALAMIN BIOSYNTHETIC ENZYME, COBALT PRECORRIN-4 METHYLTRANSFERASE, CBIF, FROM BACILLUS MEGATERIUM, WITH THE HIS-TAG CLEAVED OFF 2QWD ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF 4-AMINO-NEU5AC2EN AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWE ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF 4-GUANIDINO-NEU5AC2EN AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWG ; 1.8 ; THE X-RAY STRUCTURE OF A COMPLEX OF 5-N-ACETYL-4-AMINO-6-DIETHYLCARBOXAMIDE-4,5-DIHYDRO-2H-PYRAN-2-CARBOXYLIC ACID AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWJ ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF 5-N-ACETYL-4-AMINO-6-DIETHYLCARBOXAMIDE-4,5-DIHYDRO-2H-PYRAN-2-CARBOXYLIC ACID AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWH ; 1.8 ; THE X-RAY STRUCTURE OF A COMPLEX OF 5-N-ACETYL-5-AMINO-3-(1-ETHYLPROPOXY)-1-CYCLOHEXENE-1-CARBOXYLIC ACID (GS4071) AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWK ; 1.8 ; THE X-RAY STRUCTURE OF A COMPLEX OF 5-N-ACETYL-5-AMINO-3-(1-ETHYLPROPOXY)-1-CYCLOHEXENE-1-CARBOXYLIC ACID (GS4071) AND WILDTYPE TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWF ; 1.9 ; THE X-RAY STRUCTURE OF A COMPLEX OF N-ACETYL-4-GUANIDINO-6-METHYL(PROPYL)CARBOXAMIDE-4,5-DIHYDRO-2H-PYRAN-2-CARBOXYLIC ACID AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWI ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF N-ACETYL-4-GUANIDINO-6-METHYL(PROPYL)CARBOXAMIDE-4,5-DIHYDRO-2H-PYRAN-2-CARBOXYLIC ACID AND WILDTYPE TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWC ; 1.6 ; THE X-RAY STRUCTURE OF A COMPLEX OF NEU5AC2EN AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 2QWB ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF SIALIC ACID AND A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 1MWE ; 1.7 ; THE X-RAY STRUCTURE OF A COMPLEX OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE COMPLEXED WITH SIALIC ACID AT 4 DEGREES C REVEALING A SECOND SIALIC ACID BINDING SITE 1BJI ; 2.0 ; THE X-RAY STRUCTURE OF A COMPLEX OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE COMPLEXED WITH THE GLAXO 6-CARBOXAMIDE SIALIC ACID ANALOGUE GR217029 3F8G ; 2.6 ; The X-ray structure of a dimeric variant of human pancreatic ribonuclease with high cytotoxic and antitumor activities 2QWA ; 1.7 ; THE X-RAY STRUCTURE OF A DRUG RESISTANT VARIANT R292K OF TERN N9 INFLUENZA VIRUS NEURAMINIDASE 4WNL ; 2.8 ; The X-ray structure of a RNA-binding protein complex 3NYL ; 2.8 ; The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain 1LFB ; 2.8 ; THE X-RAY STRUCTURE OF AN ATYPICAL HOMEODOMAIN PRESENT IN THE RAT LIVER TRANSCRIPTION FACTOR LFB1(SLASH)HNF1 AND IMPLICATIONS FOR DNA BINDING 1Y9L ; 1.5 ; The X-ray structure of an secretion system protein 5XZ3 ; 1.86 ; The X-ray structure of Apis mellifera PGRP-SA 1EDO ; 2.3 ; THE X-RAY STRUCTURE OF BETA-KETO ACYL CARRIER PROTEIN REDUCTASE FROM BRASSICA NAPUS COMPLEXED WITH NADP+ 6F60 ; 1.14 ; The x-ray structure of bovine pancreatic ribonuclease in complex with a five-coordinate platinum(II) compound containing a sugar ligand 5NA9 ; 2.07 ; The X-ray structure of bovine pancreatic ribonuclease incubated in the presence of an excess of carboplatin (1:10 ratio) 4RTE ; 1.95 ; The X-ray structure of bovine pancreatic ribonuclease incubated in the presence of an excess of cisplatin (1:10 ratio) 4USL ; 1.65 ; The X-ray structure of calcium bound human sorcin 5O8X ; 2.5 ; The X-ray Structure of Catenated Lytic Transglycosylase SltB1 from Pseudomonas aeruginosa 2C1H ; 2.6 ; The X-ray Structure of Chlorobium vibrioforme 5-Aminolaevulinic Acid Dehydratase Complexed with a Diacid Inhibitor 2FLZ ; 2.75 ; The X-ray structure of cis-3-chloroacrylic acid dehalogenase (cis-CaaD) with a sulfate ion bound in the active site 2XME ; 1.89 ; The X-ray structure of CTP:inositol-1-phosphate cytidylyltransferase from Archaeoglobus fulgidus 2XMH ; 2.4 ; The X-ray structure of CTP:inositol-1-phosphate cytidylyltransferase from Archaeoglobus fulgidus 2VY0 ; 2.16 ; The X-ray structure of endo-beta-1,3-glucanase from Pyrococcus furiosus 1GVH ; 2.19 ; The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unespected geometry of the distal heme pocket 6FQF ; 2.1 ; THE X-RAY STRUCTURE OF FERRIC-BETA4 HUMAN HEMOGLOBIN 2X17 ; 3.1 ; The X-ray structure of Ferritin from Pyrococcus furiosus loaded with Ag(I) 4FUS ; 1.75 ; The X-ray structure of Hahella chejuensis family 48 glycosyl hydrolase 7OON ; 2.8 ; The X-ray structure of heme-bound murine HEBP1 1KI0 ; 1.75 ; The X-ray Structure of Human Angiostatin 5M6Z ; 1.67 ; The X-ray structure of human M189I PGK-1 mutant in partially closed conformation 5MXM ; 2.05 ; The X-ray structure of human M190I phosphoglycerate kinase 1 mutant 7VQG ; 1.35 ; The X-ray structure of human neuroglobin A15C mutant 3E0P ; 1.7 ; The X-ray structure of Human Prostasin in complex with a covalent benzoxazole inhibitor 3E0N ; 1.7 ; The X-ray structure of Human Prostasin in complex with DFFR-chloromethyl ketone inhibitor 5O7D ; 1.84 ; The X-ray structure of human R38M phosphoglycerate kinase 1 mutant 5M3U ; 1.81 ; The X-ray structure of human V216F phosphoglycerate kinase 1 mutant 5J47 ; 1.99 ; The X-ray structure of Inhibitor Bound to JCV Helicase 3LJF ; 2.1 ; The X-ray structure of iron superoxide dismutase from Pseudoalteromonas haloplanktis (crystal form II) 5J40 ; 2.17 ; The X-ray structure of JCV Helicase 7PJD ; 1.99 ; The X-ray structure of juvenile hormone diol kinase from the silk worm Bombyx mori. 7AJ9 ; 2.35 ; The X-ray Structure of L,D-transpeptidase LdtA from Vibrio cholerae 7AJX ; 2.55 ; The X-ray Structure of L,D-transpeptidase LdtA from Vibrio cholerae in complex with meropenem 7AJZ ; 2.98 ; The X-ray Structure of L,D-transpeptidase LdtA from Vibrio cholerae in complex with NAG-NAM(tetrapeptide) 7AJO ; 1.85 ; The X-ray Structure of L,D-transpeptidase LdtA from Vibrio cholerae in complex with the cross-linking reaction intermediate 7OL1 ; 2.6 ; The X-ray structure of L-threonine dehydrogenase from the common hospital pathogen Clostridium difficile. 5OHU ; 2.2 ; The X-ray Structure of Lytic Transglycosylase Slt from Pseudomonas aeruginosa 6FBT ; 2.5 ; The X-ray Structure of Lytic Transglycosylase Slt from Pseudomonas aeruginosa in complex with the reaction product NAG-anhNAMpentapeptide 6FC4 ; 3.05 ; The X-ray Structure of Lytic Transglycosylase Slt inactive mutant E503Q from Pseudomonas aeruginosa 6FCU ; 3.2 ; The X-ray Structure of Lytic Transglycosylase Slt inactive mutant E503Q from Pseudomonas aeruginosa in complex with 4(NAG-NAMpentapeptide) 6FCQ ; 3.1 ; The X-ray Structure of Lytic Transglycosylase Slt inactive mutant E503Q from Pseudomonas aeruginosa in complex with Bulgecin A 6FCS ; 2.9 ; The X-ray Structure of Lytic Transglycosylase Slt inactive mutant E503Q from Pseudomonas aeruginosa in complex with NAG-NAMpentapeptide-NAG-NAMpentapeptide 6FCR ; 2.75 ; The X-ray Structure of Lytic Transglycosylase Slt inactive mutant E503Q from Pseudomonas aeruginosa in complex with NAG-NAMtetrapeptide-NAG-anhNAMtetrapeptide 1F8G ; 2.0 ; THE X-RAY STRUCTURE OF NICOTINAMIDE NUCLEOTIDE TRANSHYDROGENASE FROM RHODOSPIRILLUM RUBRUM COMPLEXED WITH NAD+ 2VNE ; 2.72 ; The X-ray structure of Norcoclaurine synthase from Thalictrum flavum 5HNR ; 2.83 ; The X-ray structure of octameric human native 5-aminolaevulinic acid dehydratase. 7VW4 ; 1.8 ; The X-ray structure of sperm whale F46C/L61C myoglobin double mutant 5NJ7 ; 2.15 ; The X-ray structure of the adduct formed in the reaction between bovine pancreatic ribonuclease and arsenoplatin-1 4S0Q ; 2.09 ; The X-ray structure of the adduct formed in the reaction between bovine pancreatic ribonuclease and carboplatin 6QE9 ; 2.03 ; The X-ray structure of the adduct formed in the reaction between bovine pancreatic ribonuclease and complex I, a pentacoordinate Pt(II) compound containing 2,9-dimethyl-1,10-phenanthroline, dimethylfumarate, methyl and iodine as ligands 5JLG ; 1.79 ; The X-ray structure of the adduct formed in the reaction between bovine pancreatic ribonuclease and compound I, a piano-stool organometallic Ru(II) arene compound containing an O,S-chelating ligand 4S18 ; 2.27 ; The X-ray structure of the adduct formed in the reaction between bovine pancreatic ribonuclease and oxaliplatin 5ILC ; 1.75 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme a compound 2, a platin(II) compound containing a O, S bidentate ligand 5IHG ; 1.75 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme a compound I, a platin(II) compound containing a O, S bidentate ligand 5NJ1 ; 1.85 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme and arsenoplatin-1 6QEA ; 1.96 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme and complex I, a pentacoordinate Pt(II) compound containing 2,9-dimethyl-1,10-phenanthroline, dimethylfumarate, methyl and iodine as ligands 5II3 ; 1.78 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme and compound 3, a platin(II) compound containing a O, S bidentate ligand 5ILF ; 1.85 ; The X-ray structure of the adduct formed in the reaction between hen egg white lysozyme and compound 4, a platin(II) compound containing a O, S bidentate ligand 6G5Y ; 1.49 ; The X-ray structure of the adduct formed in the reaction between lysozyme and a platinum(II) terpyridine compound (acid pH) 6G5V ; 1.96 ; The X-ray structure of the adduct formed in the reaction between lysozyme and a platinum(II) terpyridine compound (pH 7.0) 2FLT ; 2.1 ; The X-ray structure of the cis-3-chloroacrylic acid dehalogenase cis-CaaD inactivated with (R)-Oxirane-2-carboxylate 1S6A ; 1.69 ; The X-ray structure of the cyanobacteria Synechocystis hemoglobin ""cyanoglobin"" with azide ligand 1S69 ; 1.68 ; The X-ray structure of the cyanobacteria Synechocystis hemoglobin ""cyanoglobin"" with cyanide ligand 1VM9 ; 1.48 ; The X-ray Structure of the cys84ala cys85ala double mutant of the [2Fe-2S] Ferredoxin subunit of Toluene-4-Monooxygenase from Pseudomonas Mendocina KR1 5JK7 ; 3.49 ; The X-ray structure of the DDB1-DCAF1-Vpr-UNG2 complex 1DNK ; 2.3 ; THE X-RAY STRUCTURE OF THE DNASE I-D(GGTATACC)2 COMPLEX AT 2.3 ANGSTROMS RESOLUTION 5MMH ; 2.2 ; The X-Ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of Pseudomonas aeruginosa 2XGL ; 2.7 ; The X-ray structure of the Escherichia coli colicin M immunity protein demonstrates the presence of a disulphide bridge, which is functionally essential 6FX8 ; 1.8 ; The X-ray structure of the ferritin nanocage containing Au and Pt, obtained upon encapsulation of a single heterobimetallic compound within the protein cage (rotating anode data) 6FX9 ; 1.5 ; The X-ray structure of the ferritin nanocage containing Au and Pt, obtained upon encapsulation of a single heterobimetallic compound within the protein cage (synchrtron data) 1DGC ; 3.0 ; THE X-RAY STRUCTURE OF THE GCN4-BZIP BOUND TO ATF/CREB SITE DNA SHOWS THE COMPLEX DEPENDS ON DNA FLEXIBILITY 6RJV ; 3.21 ; The X-ray structure of the Gold/Serum Albumin adduct obtained upon reaction of the protein with AuL12, a gold(III) dithiocarbamate complex 3J2N ; 16.0 ; The X-ray structure of the gp15 hexamer and the model of the gp18 protein fitted into the cryo-EM reconstruction of the contracted T4 tail 3J2M ; 15.0 ; The X-ray structure of the gp15 hexamer and the model of the gp18 protein fitted into the cryo-EM reconstruction of the extended T4 tail 2BKC ; 2.3 ; The X-ray structure of the H43G Listeria innocua Dps mutant 6HJT ; 1.33 ; The X-ray structure of the horse spleen ferritin nanocage containing Pt, obtained upon encapsulation of a Pt(II) terpyridine compound within the protein cage 6HJU ; 1.58 ; The X-ray structure of the horse spleen ferritin nanocage containing Pt, obtained upon encapsulation of a Pt(II) terpyridine compound within the protein cage 1TUE ; 2.1 ; The X-ray Structure of the Papillomavirus Helicase in Complex with its Molecular Matchmaker E2 4RSZ ; 2.19 ; The X-ray structure of the Primary Adduct formed in the Reaction between Cisplatin and Cytochrome c 2YBO ; 2.0 ; The x-ray structure of the SAM-dependent uroporphyrinogen III methyltransferase NirE from Pseudomonas aeruginosa in complex with SAH 2YBQ ; 2.0 ; The x-ray structure of the SAM-dependent uroporphyrinogen III methyltransferase NirE from Pseudomonas aeruginosa in complex with SAH and uroporphyrinogen III 1GJY ; 2.2 ; The X-ray structure of the Sorcin Calcium Binding Domain (SCBD) provides insight into the phosphorylation and calcium dependent processess 2WDA ; 2.3 ; The X-ray structure of the Streptomyces coelicolor A3 Chondroitin AC Lyase in Complex with Chondroitin sulphate 2X03 ; 2.3 ; The X-ray structure of the Streptomyces coelicolor A3 Chondroitin AC Lyase Y253A mutant 1QGH ; 2.35 ; THE X-RAY STRUCTURE OF THE UNUSUAL DODECAMERIC FERRITIN FROM LISTERIA INNOCUA, REVEALS A NOVEL INTERSUBUNIT IRON BINDING SITE. 2XQV ; 1.93 ; The X-ray structure of the Zn(II) bound ZnuA from Salmonella enterica 6JP6 ; 2.699 ; The X-ray structure of yeast tRNA methyltransferase complex of Trm7 and Trm734 essential for 2'-O-methylation at the first position of anticodon in specific tRNAs 6JPL ; 2.32 ; The X-ray structure of yeast tRNA methyltransferase Trm7-Trm734 in complex with S-adenosyl-L-methionine 3LJD ; 1.38 ; The X-ray structure of zebrafish RNase1 from a new crystal form at pH 4.5 3LJE ; 1.8 ; The X-ray structure of zebrafish RNase5 3LN8 ; 1.61 ; The X-ray structure of Zf-RNase-1 from a new crystal form at pH 7.3 4AYH ; 2.52 ; The X-ray structure of zinc bound ZinT 5XZ4 ; 1.41 ; The X-tay structure of Bumblebee PGRP-SA 7B21 ; 1.2 ; The X183 domain from Cellvibrio japonicus Cbp2D 1HQL ; 2.2 ; The xenograft antigen in complex with the B4 isolectin of Griffonia simplicifolia lectin-1 4QMH ; 1.652 ; The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array 4QMI ; 1.9 ; The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array 4QMJ ; 2.498 ; The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array 5JQK ; 2.35 ; The Xray Crystal Structure of P. falciparum Aminopeptidase P 5JR6 ; 2.3 ; The Xray Crystal Structure of P. falciparum Aminopeptidase P in Complex With Apstatin 1BP3 ; 2.9 ; THE XRAY STRUCTURE OF A GROWTH HORMONE-PROLACTIN RECEPTOR COMPLEX 2BNJ ; 1.6 ; The xylanase TA from Thermoascus aurantiacus utilizes arabinose decorations of xylan as significant substrate specificity determinants. 2DVH ; ; THE Y64A MUTANT OF CYTOCHROME C553 FROM DESULFOVIBRIO VULGARIS HILDENBOROUGH, NMR, 39 STRUCTURES 2YYX ; 1.0 ; The Y65A mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 2Z47 ; 1.6 ; The Y66L mutant of tetraheme cytochrome c3 from Desulfovibrio Vulgaris Miyazaki F 5X3H ; 2.5 ; The Y81G mutant of the UNG crystal structure from Nitratifractor salsuginis 5WYI ; 2.0 ; The Yaf9 YEATS domain Recognizing H3K122suc Peptide 1YVN ; 2.1 ; THE YEAST ACTIN VAL 159 ASN MUTANT COMPLEX WITH HUMAN GELSOLIN SEGMENT 1. 6WUC ; 3.23 ; The yeast Ctf3 complex with Cnn1-Wip1 2V3J ; 2.0 ; The yeast ribosome synthesis factor Emg1 alpha beta knot fold methyltransferase 2V3K ; 2.0 ; The yeast ribosome synthesis factor Emg1 alpha beta knot fold methyltransferase 4RIT ; 1.8 ; The yellow crystal structure of pyridoxal-dependent decarboxylase from sphaerobacter thermophilus dsm 20745 4ALZ ; 1.4 ; The Yersinia T3SS basal body component YscD reveals a different structural periplasmatic domain organization to known homologue PrgH 5CE3 ; 2.93 ; The Yersinia YopO - actin complex with MgADP 5EB1 ; 1.8 ; the YfiB-YfiR complex 1FL9 ; 2.5 ; THE YJEE PROTEIN 6RT6 ; 1.461 ; The YTH domain of YTHDC1 protein in complex with GGm6AC oligonucleotide 6RT5 ; 2.303 ; The YTH domain of YTHDC1 protein in complex with Gm6AC oligonucleotide 6RT7 ; 1.73 ; The YTH domain of YTHDC1 protein in complex with Gm6ACU oligonucleotide 6RT4 ; 1.49 ; The YTH domain of YTHDC1 protein in complex with m6ACU oligonucleotide 2BAI ; ; The Zinc finger domain of Mengovirus Leader polypeptide 4HCC ; 2.96 ; The zinc ion bound form of crystal structure of E.coli ExoI-ssDNA complex 7DGO ; 2.0 ; The Zn-bound dimeric structure of K79H/G80A/H81A myoglobin 2M13 ; ; The ZZ domain of cytoplasmic polyadenylation element binding protein 1 (CPEB1) 5O9W ; 1.85 ; Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum in complex with 2-oxoglutarate 5O7Y ; 1.97 ; Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum in complex with succinate 1EHT ; ; THEOPHYLLINE-BINDING RNA IN COMPLEX WITH THEOPHYLLINE, NMR, 10 STRUCTURES 1O15 ; ; THEOPHYLLINE-BINDING RNA IN COMPLEX WITH THEOPHYLLINE, NMR, REGULARIZED MEAN STRUCTURE, REFINEMENT WITH TORSION ANGLE AND BASE-BASE POSITIONAL DATABASE POTENTIALS AND DIPOLAR COUPLINGS 6TUZ ; 1.24 ; Theophylline-Notum complex 6BP2 ; 3.172 ; Therapeutic human monoclonal antibody MR191 bound to a marburgvirus glycoprotein 1LSM ; 1.7 ; THERMAL STABILITY DETERMINANTS OF CHICKEN EGG-WHITE LYSOZYME CORE MUTANTS: HYDROPHOBICITY, PACKING VOLUME AND CONSERVED BURIED WATER MOLECULES 1LSN ; 1.9 ; THERMAL STABILITY DETERMINANTS OF CHICKEN EGG-WHITE LYSOZYME CORE MUTANTS: HYDROPHOBICITY, PACKING VOLUME AND CONSERVED BURIED WATER MOLECULES 1NCL ; 2.2 ; THERMAL STABILITY OF HEXAMERIC AND TETRAMERIC NUCLEOSIDE, DIPHOSPHATE KINASES 2IV0 ; 2.5 ; Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers 2DCZ ; 1.9 ; Thermal Stabilization of Bacillus subtilis Family-11 Xylanase By Directed Evolution 7DQP ; 2.203 ; Thermal treated Marsupenaeus japonicus ferritin 6J4M ; 2.598 ; Thermal treated soybean seed H-2 ferritin 5EJT ; 1.55 ; Thermally annealed ferryl Cytochrome C Peroxidase crystal structure 1IZJ ; 2.2 ; Thermoactinomyces vulgaris R-47 alpha-amylase 1 mutant enzyme f313a 1IZK ; 2.2 ; Thermoactinomyces vulgaris R-47 alpha-amylase 1 mutant enzyme w398v 1UH4 ; 1.8 ; Thermoactinomyces vulgaris R-47 alpha-amylase 1/malto-tridecaose complex 5Z0U ; 1.37 ; Thermoactinomyces vulgaris R-47 alpha-amylase I (TVA I) 11 residues (from A363 to N373) deletion mutant (Del11) 5Z0T ; 1.5 ; Thermoactinomyces vulgaris R-47 alpha-amylase I (TVA I) mutant A357V/Q359N/Y360E (AQY/VNE) 1WZK ; 2.3 ; Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) mutatnt D465N 1WZM ; 3.2 ; Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) mutatnt R469K 1WZL ; 2.0 ; Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) mutatnt R469L 1UH3 ; 2.6 ; Thermoactinomyces vulgaris R-47 alpha-amylase/acarbose complex 1UH2 ; 2.0 ; Thermoactinomyces vulgaris R-47 alpha-amylase/malto-hexaose complex 4QK8 ; 3.05 ; Thermoanaerobacter pseudethanolicus c-di-AMP riboswitch 8FXU ; 1.59 ; Thermoanaerobacter thermosaccharolyticum periplasmic Glucose-Binding Protein glucose complex: Badan conjugate attached at F17C 2YET ; 1.502 ; Thermoascus GH61 isozyme A 3ZUD ; 1.25 ; THERMOASCUS GH61 ISOZYME A 6WQW ; 2.102 ; Thermobacillus composti GH10 xylanase 5DIY ; 2.06 ; Thermobaculum terrenum O-GlcNAc hydrolase mutant - D120N 5DJS ; 2.8 ; Thermobaculum terrenum O-GlcNAc transferase mutant - K341M 4B4F ; 2.2 ; Thermobifida fusca Cel6B(E3) co-crystallized with cellobiose 4AVN ; 2.0 ; Thermobifida fusca cellobiohydrolase Cel6B catalytic mutant D226A- S232A cocrystallized with cellobiose 4AVO ; 1.8 ; Thermobifida fusca cellobiohydrolase Cel6B catalytic mutant D274A cocrystallized with cellobiose 4B4H ; 1.5 ; Thermobifida fusca cellobiohydrolase Cel6B(E3) catalytic domain 6EA3 ; 1.65 ; Thermobifida fusca FscH adenylation domain complexed with MbtH-like protein FscK and Ser-AMP 7ZVM ; 1.58 ; Thermococcus barophilus phosphomannose isomerase protein structure at 1.6 A 1QYP ; ; THERMOCOCCUS CELER RPB9, NMR, 25 STRUCTURES 7ZVY ; 2.16 ; Thermococcus kadokarensis phosphomannose isomerase 6GQI ; 2.0 ; Thermocrispum municipale cyclohexanone monooxygenase bound to hexanoic acid 3TEK ; 2.0 ; ThermoDBP: a non-canonical single-stranded DNA binding protein with a novel structure and mechanism 1PWT ; 1.77 ; THERMODYNAMIC ANALYSIS OF ALPHA-SPECTRIN SH3 AND TWO OF ITS CIRCULAR PERMUTANTS WITH DIFFERENT LOOP LENGTHS: DISCERNING THE REASONS FOR RAPID FOLDING IN PROTEINS 2DTM ; 2.25 ; Thermodynamic and structural analyses of hydrolytic mechanism by catalytic antibodies 2E4L ; 2.0 ; Thermodynamic and Structural Analysis of Thermolabile RNase HI from Shewanella oneidensis MR-1 195L ; 1.9 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 196L ; 2.3 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 197L ; 2.1 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 198L ; 2.0 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 199L ; 1.85 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 200L ; 1.95 ; THERMODYNAMIC AND STRUCTURAL COMPENSATION IN ""SIZE-SWITCH"" CORE-REPACKING VARIANTS OF T4 LYSOZYME 2RLN ; 1.85 ; THERMODYNAMIC AND STRUCTURAL CONSEQUENCES OF CHANGING A SULPHUR ATOM TO A METHYLENE GROUP IN THE M13NLE MUTATION IN RIBONUCLEASE S 3CCT ; 2.12 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CCW ; 2.1 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CCZ ; 1.7 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CD0 ; 2.4 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CD5 ; 2.39 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CD7 ; 2.05 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CDA ; 2.07 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 3CDB ; 2.3 ; Thermodynamic and structure guided design of statin hmg-coa reductase inhibitors 1YTC ; 1.8 ; THERMODYNAMIC CYCLES AS PROBES OF STRUCTURE-FUNCTION RELATIONSHIPS IN UNFOLDED PROTEINS 4UOS ; 1.63 ; Thermodynamic hyperstability in parametrically designed helical bundles 4UOT ; 1.69 ; Thermodynamic hyperstability in parametrically designed helical bundles 2WEG ; 1.1 ; Thermodynamic Optimisation of Carbonic Anhydrase Fragment Inhibitors 2WEH ; 2.09 ; Thermodynamic Optimisation of Carbonic Anhydrase Fragment Inhibitors 2WEJ ; 1.45 ; Thermodynamic Optimisation of Carbonic Anhydrase Fragment Inhibitors 2WEO ; 1.4 ; Thermodynamic Optimisation of Carbonic Anhydrase Fragment Inhibitors 2DM5 ; 1.7 ; Thermodynamic Penalty Arising From Burial of a Ligand Polar Group Within a Hydrophobic Pocket of a Protein Receptor 6GE7 ; 2.3 ; Thermodynamic, Crystallographic and Computational Studies of Non Mammalian Fatty Acid Binding to Bovine b-Lactoglobulin 6GF9 ; 2.1 ; Thermodynamic, Crystallographic and Computational Studies of Non Mammalian Fatty Acid Binding to Bovine b-Lactoglobulin 6GFS ; 2.0 ; Thermodynamic, Crystallographic and Computational Studies of Non Mammalian Fatty Acid Binding to Bovine b-Lactoglobulin 6GHH ; 1.9 ; Thermodynamic, Crystallographic and Computational Studies of Non Mammalian Fatty Acid Binding to Bovine b-Lactoglobulin 3MGW ; 1.75 ; Thermodynamics and structure of a salmon cold-active goose-type lysozyme 1QY0 ; 1.8 ; Thermodynamics of Binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the Major Urinary Protein 1QY1 ; 1.7 ; Thermodynamics of Binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the Major Urinary Protein 1QY2 ; 1.75 ; Thermodynamics of Binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the Major Urinary Protein 1IN5 ; 2.0 ; THERMOGOTA MARITIMA RUVB A156S MUTANT 8AG9 ; 1.56 ; Thermogutta terrifontis endoglucanase of glycoside hydrolase family 5 (TtEnd5A) 7BFV ; 1.84 ; Thermogutta terrifontis esterase 2 phosphonylated by cyclosarin 7BFU ; 1.65 ; Thermogutta terrifontis esterase 2 phosphonylated by sarin 7BFO ; 1.99 ; Thermogutta terrifontis esterase 2 phosphonylated by VX 7BFT ; 1.99 ; Thermogutta terrifontis esterase 2 phosphoramylated by tabun 7BFR ; 1.99 ; Thermogutta terrifontis esterase 2 phosphorylated by paraoxon 6LZN ; 1.5 ; Thermolysin 3TLI ; 1.95 ; THERMOLYSIN (10% ISOPROPANOL SOAKED CRYSTALS) 8TLI ; 2.2 ; THERMOLYSIN (100% ISOPROPANOL SOAKED CRYSTALS) 1TLI ; 2.05 ; THERMOLYSIN (2% ISOPROPANOL SOAKED CRYSTALS) 4TLI ; 1.95 ; THERMOLYSIN (25% ISOPROPANOL SOAKED CRYSTALS) 2TLI ; 1.95 ; THERMOLYSIN (5% ISOPROPANOL SOAKED CRYSTALS) 1FJW ; 1.9 ; THERMOLYSIN (50 MM PHENOL SOAKED) 1FJ3 ; 2.0 ; THERMOLYSIN (50% ACETONE SOAKED) 1FJT ; 2.2 ; THERMOLYSIN (50% ACETONITRILE SOAKED CRYSTALS) 1FJO ; 2.0 ; THERMOLYSIN (60% ACETONE SOAKED CRYSTALS) 1FJV ; 2.0 ; THERMOLYSIN (60% ACETONITRILE SOAKED CRYSTALS) 5TLI ; 2.1 ; THERMOLYSIN (60% ISOPROPANOL SOAKED CRYSTALS) 6TLI ; 2.1 ; THERMOLYSIN (60% ISOPROPANOL SOAKED CRYSTALS) 1FJQ ; 1.7 ; THERMOLYSIN (70% ACETONE SOAKED CRYSTALS) 1FJU ; 2.0 ; THERMOLYSIN (80% ACETONITRILE SOAKED CRYSTALS) 7TLI ; 1.95 ; THERMOLYSIN (90% ISOPROPANOL SOAKED CRYSTALS) 1QF2 ; 2.06 ; THERMOLYSIN (E.C.3.4.24.27) COMPLEXED WITH (2-SULPHANYL-3-PHENYLPROPANOYL)-GLY-(5-PHENYLPROLINE). PARAMETERS FOR ZN-MONODENTATION OF MERCAPTOACYLDIPEPTIDES IN METALLOENDOPEPTIDASE 1QF0 ; 2.2 ; THERMOLYSIN (E.C.3.4.24.27) COMPLEXED WITH (2-SULPHANYL-3-PHENYLPROPANOYL)-PHE-TYR. PARAMETERS FOR ZN-BIDENTATION OF MERCAPTOACYLDIPEPTIDES IN METALLOENDOPEPTIDASE 1QF1 ; 2.0 ; THERMOLYSIN (E.C.3.4.24.27) COMPLEXED WITH (2-SULPHANYLHEPTANOYL)-PHE-ALA. PARAMETERS FOR ZN-BIDENTATION OF MERCAPTOACYLDIPEPTIDES IN METALLOENDOPEPTIDASE 1TLX ; 2.1 ; THERMOLYSIN (NATIVE) 2TLX ; 1.65 ; THERMOLYSIN (NATIVE) 1KEI ; 1.6 ; Thermolysin (substrate-free) 3DO0 ; 1.36 ; Thermolysin by classical hanging drop method after high X-Ray dose on esrf ID14-2 beamline 3DO1 ; 1.33 ; Thermolysin by Classical hanging drop method before high X-Ray dose on ESRF ID14-2 beamline 3DO2 ; 1.22 ; Thermolysin by LB nanotemplate method after high X-Ray dose on ESRF ID14-2 beamline 3DNZ ; 1.2 ; Thermolysin by LB nanotemplate method before high X-Ray dose on ESRF ID14-2 beamline 1THL ; 1.7 ; Thermolysin complexed with a novel glutaramide derivative, n-(1-(2(r,s)-carboxy-4-phenylbutyl) cyclopentylcarbonyl)-(s)-tryptophan 3FOR ; 1.93 ; Thermolysin Complexed with BNPA (2-Benzyl-3-Nitro Propanoic Acid Amide) 1KTO ; 1.9 ; Thermolysin complexed with Z-D-Alanine (benzyloxycarbonyl-D-Alanine) 1KS7 ; 1.7 ; Thermolysin complexed with Z-D-Aspartic acid (benzyloxycarbonyl-D-Aspartic acid) 1KR6 ; 1.8 ; Thermolysin complexed with Z-D-Glutamic acid (benzyloxycarbonyl-D-Glutamic acid) 1KRO ; 1.7 ; Thermolysin complexed with Z-D-Threonine (benzyloxycarbonyl-D-Threonine) 1KL6 ; 1.8 ; Thermolysin complexed with Z-L-Alanine (benzyloxycarbonyl-L-Alanine) 1KKK ; 1.6 ; Thermolysin complexed with Z-L-Aspartic Acid (benzyloxycarbonyl-L-Aspartic Acid) 1KJP ; 1.6 ; Thermolysin complexed with Z-L-Glutamic acid (benzyloxycarbonyl-L-Glutamic acid) 1KJO ; 1.6 ; Thermolysin complexed with Z-L-Threonine (benzyloxycarbonyl-L-Threonine) 7AKN ; 2.46 ; Thermolysin from Bacillus thermoproteolyticus 4D91 ; 1.9 ; Thermolysin In Complex With DMSO And Acetate 6SBK ; 1.48 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J13 6SC0 ; 1.53 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J22 6SC3 ; 1.82 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J62 6SCK ; 1.41 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J77 6SCU ; 1.42 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J88 6SC1 ; 1.56 ; THERMOLYSIN IN COMPLEX WITH FRAGMENT J96 5LIF ; 1.31 ; Thermolysin in complex with inhibitor 5LVD ; 1.25 ; Thermolysin in complex with inhibitor (JC67) 5LWD ; 1.23 ; Thermolysin in complex with inhibitor (JC96) 5M5F ; 1.33 ; Thermolysin in complex with inhibitor and krypton 5M69 ; 1.44 ; Thermolysin in complex with inhibitor and xenon 5MNR ; 1.249 ; Thermolysin in complex with inhibitor JC256 5N3Y ; 1.339 ; Thermolysin in complex with inhibitor JC267 5N2X ; 1.209 ; Thermolysin in complex with inhibitor JC272 5N34 ; 1.22 ; Thermolysin in complex with inhibitor JC276 5N31 ; 1.368 ; Thermolysin in complex with inhibitor JC277 5N2Z ; 1.37 ; Thermolysin in complex with inhibitor JC286 5N2T ; 1.379 ; Thermolysin in complex with inhibitor JC287 5N3V ; 1.12 ; Thermolysin in complex with inhibitor JC292 5DPE ; 1.34 ; Thermolysin in complex with inhibitor. 5DPF ; 1.47 ; Thermolysin in complex with inhibitor. 6SB9 ; 1.3 ; Thermolysin in complex with J28 5JT9 ; 1.26 ; Thermolysin in complex with JC106. 5L8P ; 1.29 ; Thermolysin in complex with JC114 (PEG400 cryo protectant) 5JS3 ; 1.16 ; Thermolysin in complex with JC114. 5L41 ; 1.25 ; Thermolysin in complex with JC148 (MPD cryo protectant) 5JVI ; 1.12 ; Thermolysin in complex with JC148. 5L3U ; 1.23 ; Thermolysin in complex with JC149 (MPD cryo protectant) 5JSS ; 1.19 ; Thermolysin in complex with JC149. 5JXN ; 1.38 ; Thermolysin in complex with JC240. 4N5P ; 1.25 ; Thermolysin in complex with UBTLN20 3T73 ; 1.6 ; Thermolysin In Complex With UBTLN22 3T8G ; 1.5 ; Thermolysin In Complex With UBTLN26 3T74 ; 1.28 ; Thermolysin In Complex With UBTLN27 3T87 ; 1.28 ; Thermolysin In Complex With UBTLN28 3T8H ; 1.45 ; Thermolysin In Complex With UBTLN29 3T8C ; 1.66 ; Thermolysin In Complex With UBTLN30 3T8D ; 1.41 ; Thermolysin In Complex With UBTLN31 4D9W ; 1.381 ; Thermolysin In Complex With UBTLN32 3T8F ; 1.44 ; Thermolysin In Complex With UBTLN34 4MXJ ; 1.349 ; Thermolysin in complex with UBTLN35 4MTW ; 1.32 ; Thermolysin in complex with UBTLN36 4N66 ; 1.44 ; Thermolysin in complex with UBTLN37 4MWP ; 1.23 ; Thermolysin in complex with UBTLN46 4N4E ; 1.13 ; Thermolysin in complex with UBTLN58 4MZN ; 1.172 ; Thermolysin in complex with UBTLN59 1L3F ; 2.3 ; Thermolysin in the Absence of Substrate has an Open Conformation 3F28 ; 1.68 ; Thermolysin inhibition 3F2P ; 1.95 ; Thermolysin inhibition 3FCQ ; 1.75 ; Thermolysin inhibition 3FLF ; 1.97 ; Thermolysin inhibition 3FV4 ; 1.56 ; Thermolysin inhibition 3FVP ; 1.41 ; Thermolysin inhibition 3FXP ; 2.05 ; Thermolysin inhibition 4H57 ; 1.56 ; Thermolysin inhibition 4OW3 ; 2.1 ; Thermolysin structure determined by free-electron laser 6LZO ; 1.8 ; Thermolysin with 1,10-phenanthroline 1OS0 ; 2.1 ; Thermolysin with an alpha-amino phosphinic inhibitor 1PE7 ; 1.82 ; Thermolysin with bicyclic inhibitor 1PE8 ; 1.8 ; Thermolysin with monocyclic inhibitor 1PE5 ; 1.7 ; Thermolysin with tricyclic inhibitor 5WR5 ; 1.9 ; Thermolysin, liganded form with cryo condition 1 5WR6 ; 2.3 ; Thermolysin, liganded form with cryo condition 2 5WR2 ; 2.0 ; Thermolysin, SFX liganded form with oil-based carrier 5WR3 ; 2.1 ; Thermolysin, SFX liganded form with water-based carrier 5WR4 ; 2.1 ; Thermolysin, SFX unliganded form with oil-based carrier 6QAR ; 1.85 ; Thermolysine under 2 kbar of argon 7EXS ; 1.42 ; Thermomicrobium roseum sarcosine oxidase mutant - S320R 4N1A ; 3.24 ; Thermomonospora curvata EccC (ATPases 2 and 3) in complex with a signal sequence peptide 6I9E ; 3.74 ; Thermophage P23-45 empty expanded capsid 6QJT ; 3.74 ; Thermophage P23-45 in situ procapsid portal protein 6IBC ; 4.39 ; Thermophage P23-45 procapsid 5MR0 ; 1.98 ; Thermophilic archaeal branched-chain amino acid transaminases from Geoglobus acetivorans and Archaeoglobus fulgidus: biochemical and structural characterisation 1M4W ; 2.1 ; Thermophilic b-1,4-xylanase from Nonomuraea flexuosa 1H1A ; 1.75 ; Thermophilic beta-1,4-xylanase from Chaetomium thermophilum 1IO7 ; 1.5 ; THERMOPHILIC CYTOCHROME P450 (CYP119) FROM SULFOLOBUS SOLFATARICUS: HIGH RESOLUTION STRUCTURAL ORIGIN OF ITS THERMOSTABILITY AND FUNCTIONAL PROPERTIES 1IO8 ; 2.0 ; Thermophilic cytochrome P450 (CYP119) from sulfolobus solfataricus: High resolution structural origin of its thermostability and functional properties 1IO9 ; 2.05 ; THERMOPHILIC CYTOCHROME P450 (CYP119) FROM SULFOLOBUS SOLFATARICUS: HIGH RESOLUTION STRUCTURAL ORIGIN OF ITS THERMOSTABILITY AND FUNCTIONAL PROPERTIES 7OLC ; 2.9 ; Thermophilic eukaryotic 80S ribosome at idle POST state 7OLD ; 3.0 ; Thermophilic eukaryotic 80S ribosome at pe/E (TI)-POST state 1F4U ; 2.69 ; THERMOPHILIC P450: CYP119 FROM SULFOLOBUS SOLFACTARICUS 1F4T ; 1.93 ; THERMOPHILIC P450: CYP119 FROM SULFOLOBUS SOLFACTARICUS WITH 4-PHENYLIMIDAZOLE BOUND 8UCE ; 2.12 ; Thermophilic RNA Ligase from Palaeococcus pacificus + AMP 8UCF ; 1.9 ; Thermophilic RNA Ligase from Palaeococcus pacificus K238G 8UCI ; 2.14 ; Thermophilic RNA Ligase from Palaeococcus pacificus K238G + AMP 8UCG ; 1.86 ; Thermophilic RNA Ligase from Palaeococcus pacificus K92A 8UCH ; 2.14 ; Thermophilic RNA Ligase from Palaeococcus pacificus K92A + ATP 1C7I ; 2.0 ; THERMOPHYLIC PNB ESTERASE 3J9I ; 3.3 ; Thermoplasma acidophilum 20S proteasome 8F66 ; 2.28 ; Thermoplasma acidophilum 20S proteasome - L81Y mutation in alpha subunit 8F6A ; 2.06 ; Thermoplasma acidophilum 20S proteasome - wild type 8F7K ; 1.94 ; Thermoplasma acidophilum 20S proteasome - wild type bound to ZYA 5VY4 ; 3.3 ; Thermoplasma acidophilum 20S Proteasome using 200keV with image shift 5VY3 ; 3.1 ; Thermoplasma acidophilum 20S Proteasome using 200keV with stage position 3C92 ; 6.8 ; Thermoplasma acidophilum 20S proteasome with a closed gate 3C91 ; 6.8 ; Thermoplasma acidophilum 20S proteasome with an open gate 5APZ ; 1.6 ; Thermosinus carboxydivorans Nor1 Tcar0761 residues 68-101 and 191-211 fused to GCN4 adaptors 7OMU ; 2.96 ; Thermosipho africanus DarTG in complex with ADP-ribose 1A6D ; 2.6 ; THERMOSOME FROM T. ACIDOPHILUM 1A6E ; 3.2 ; THERMOSOME-MG-ADP-ALF3 COMPLEX 7P2L ; 2.54 ; thermostabilised 7TM domain of human mGlu5 receptor bound to photoswitchable ligand alloswitch-1 3PWH ; 3.296 ; Thermostabilised Adenosine A2A Receptor 3UZC ; 3.341 ; Thermostabilised Adenosine A2A receptor in complex with 4-(3-amino-5-phenyl-1,2,4-triazin-6-yl)-2-chlorophenol 3UZA ; 3.273 ; Thermostabilised Adenosine A2A receptor in complex with 6-(2,6-Dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine 3RFM ; 3.598 ; Thermostabilised adenosine A2A receptor in complex with caffeine 3REY ; 3.309 ; Thermostabilised adenosine A2A receptor in complex with XAC 5A8E ; 2.4 ; thermostabilised beta1-adrenoceptor with rationally designed inverse agonist 7-methylcyanopindolol bound 7FD8 ; 3.8 ; Thermostabilised full length human mGluR5-5M bound with L-quisqualic acid 7FD9 ; 4.0 ; Thermostabilised full length human mGluR5-5M with orthosteric antagonist, LY341495 2YDO ; 3.0 ; Thermostabilised HUMAN A2a Receptor with adenosine bound 4UG2 ; 2.6 ; Thermostabilised HUMAN A2a Receptor with CGS21680 bound 4UHR ; 2.6 ; Thermostabilised HUMAN A2a Receptor with CGS21680 bound 2YDV ; 2.6 ; Thermostabilised HUMAN A2a Receptor with NECA bound 3ZPQ ; 2.8 ; Thermostabilised turkey beta1 adrenergic receptor with 4-(piperazin-1- yl)-1H-indole bound (compound 19) 3ZPR ; 2.7 ; Thermostabilised turkey beta1 adrenergic receptor with 4-methyl-2-(piperazin-1-yl) quinoline bound 1XNC ; 1.6 ; THERMOSTABILIZATION OF THE BACILLUS CIRCULANS XYLANASE, BY THE INTRODUCTION OF DISULFIDE BONDS 7V73 ; 3.52 ; Thermostabilized human prestin in complex with chloride 7V75 ; 3.57 ; Thermostabilized human prestin in complex with salicylate 7V74 ; 3.63 ; Thermostabilized human prestin in complex with sulfate 6B00 ; 0.9 ; Thermostabilized mutant of human carbonic anhydrase II - A65T L100H K154N L224S L240P A248T 6D3S ; 6.6 ; Thermostabilized phosphorylated chicken CFTR 4LU6 ; 3.05 ; Thermostabilized RebH 7SOG ; 1.74 ; Thermostable actophorin 5EK6 ; 2.66 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp. 1860 complexed with NADP and isobutyraldehyde 5F2C ; 1.898 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp. 1860 crystallized in microgravity (complex with NADP+) 4H73 ; 2.4 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp. complexed with NADP+ 4NMJ ; 2.002 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp. complexed with NADP+ at 2 A resolution 4NMK ; 1.898 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp. crystallized in microgravity (complex with NADP+) 5EKC ; 1.895 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp.1860 complexed with NADP+ 5EUY ; 2.06 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp.1860 complexed with NADP+ 5EXF ; 2.19 ; Thermostable aldehyde dehydrogenase from Pyrobaculum sp.1860 complexed with NADP+ 1TGO ; 2.5 ; THERMOSTABLE B TYPE DNA POLYMERASE FROM THERMOCOCCUS GORGONARIUS 6NJ2 ; 1.5 ; thermostable carbonic anhydrase II variant with tetrazine 2.0 at site 186 1CIU ; 2.3 ; THERMOSTABLE CGTASE FROM THERMOANAEROBACTERIUM THERMOSULFURIGENES EM1 AT PH 8.0. 3IDA ; 1.6 ; Thermostable Cocaine Esterase with mutations L169K and G173Q, bound to DTT adduct 4YWS ; 2.45 ; Thermostable enolase from Chloroflexus aurantiacus 4Z17 ; 2.65 ; Thermostable enolase from Chloroflexus aurantiacus 4Z1Y ; 2.53 ; Thermostable enolase from Chloroflexus aurantiacus with substrate 2-phosphoglycerate 7ZEI ; 1.7 ; Thermostable GH159 glycoside hydrolase from Caldicellulosiruptor at 1.7 A 2VUL ; 1.9 ; Thermostable mutant of ENVIRONMENTALLY ISOLATED GH11 XYLANASE 5KVC ; 1.501 ; Thermostable mutant of halohydrin dehalogenase (HheC) 5KWE ; 1.684 ; Thermostable mutant of halohydrin dehalogenase HheC - C153N 1N18 ; 2.0 ; Thermostable mutant of Human Superoxide Dismutase, C6A, C111S 7B4I ; 1.7 ; Thermostable omega transaminase PjTA-R6 variant W58G engineered for asymmetric synthesis of enantiopure bulky amines 7B4J ; 1.9 ; Thermostable omega transaminase PjTA-R6 variant W58M/F86L/R417L engineered for asymmetric synthesis of enantiopure bulky amines 3K3W ; 3.31 ; Thermostable Penicillin G acylase from Alcaligenes faecalis in orthorhombic form 3ML0 ; 3.5 ; Thermostable Penicillin G acylase from Alcaligenes faecalis in tetragonal form 4E5P ; 1.9 ; Thermostable phosphite dehydrogenase A176R variant in complex with NAD 4E5M ; 1.85 ; Thermostable phosphite dehydrogenase E175A/A176R in complex with NADP 4E5N ; 1.7 ; Thermostable phosphite dehydrogenase in complex with NAD 4E5K ; 1.95 ; Thermostable phosphite dehydrogenase in complex with NAD and sulfite 1POO ; 2.1 ; THERMOSTABLE PHYTASE FROM BACILLUS SP 2POO ; 2.05 ; THERMOSTABLE PHYTASE IN FULLY CALCIUM LOADED STATE 4AAI ; ; THERMOSTABLE PROTEIN FROM HYPERTHERMOPHILIC VIRUS SSV-RH 1VII ; ; THERMOSTABLE SUBDOMAIN FROM CHICKEN VILLIN HEADPIECE, NMR, MINIMIZED AVERAGE STRUCTURE 1BKO ; 2.75 ; THERMOSTABLE THYMIDYLATE SYNTHASE A FROM BACILLUS SUBTILIS 1BKP ; 1.7 ; THERMOSTABLE THYMIDYLATE SYNTHASE A FROM BACILLUS SUBTILIS 1BSF ; 2.2 ; THERMOSTABLE THYMIDYLATE SYNTHASE A FROM BACILLUS SUBTILIS 1BSP ; 2.5 ; THERMOSTABLE THYMIDYLATE SYNTHASE A FROM BACILLUS SUBTILIS 3WLV ; 1.747 ; Thermostable urate oxidase from Bacillus sp. TB-90 6NJ5 ; 1.25 ; Thermostable variant of human carbonic anhydrase II with disordered tetrazine 2.0 at site 233 6NJ4 ; 1.3 ; Thermostable variant of human carbonic anhydrase with disordered tetrazine 2.0 reacted with strained trans-cyclooctene at site 233 6NJ3 ; 1.01 ; Thermostable variant of human carbonic anhydrase with ordered tetrazine 2.0 at site 233 6NJ6 ; 1.6 ; Thermostable variant of human carbonic anhydrase with tetrazine 2.0 at site 186 reacted with sTCO in crystallo 1GOO ; 1.87 ; Thermostable xylanase I from Thermoascus aurantiacus - Cryocooled glycerol complex 1GOQ ; 1.8 ; Thermostable xylanase I from Thermoascus aurantiacus - Room temperature xylobiose complex 1GOR ; 1.7 ; THERMOSTABLE XYLANASE I FROM THERMOASCUS AURANTIACUS - XYLOBIOSE COMPLEX AT 100 K 1GOM ; 1.92 ; Thermostable xylanase I from Thermoascus aurantiacus- Crystal form I 1GOK ; 1.14 ; Thermostable xylanase I from Thermoascus aurantiacus- Crystal form II 6D3R ; 4.3 ; Thermostablilized dephosphorylated chicken CFTR 6MGB ; 1.8 ; Thermosulfurimonas dismutans KpsC, beta Kdo 2,4 transferase 6MGD ; 2.5 ; Thermosulfurimonas dismutans KpsC, beta Kdo 2,7 transferase 2WSP ; 2.65 ; Thermotoga maritima alpha-L-fucosynthase, TmD224G, in complex with alpha-L-Fuc-(1-2)-beta-L-Fuc-N3 5HC9 ; 2.9 ; Thermotoga maritima CCA-adding enzyme complexed with tRNA_CCA 3PG9 ; 2.35 ; Thermotoga maritima DAH7P synthase in complex with inhibitor 7LIJ ; 2.84 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S1K 7LIK ; 2.91 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S1R 7LIS ; 2.96 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S5D 7LIM ; 2.75 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S6E 7LII ; 3.55 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S7D 7LIT ; 2.53 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant S7G 7LIL ; 2.84 ; Thermotoga maritima Encapsulin Nanocompartment Pore Mutant SE3 7MU1 ; 3.3 ; Thermotoga maritima encapsulin shell 5N6T ; 2.1 ; Thermotoga maritima family 1 glycoside hydrolase complexed with a cyclophellitol analogue transition state mimic 5N6S ; 2.1 ; Thermotoga maritima family 1 Glycoside hydrolase complexed with Carba-Cyclophellitol transition state mimic 7DY8 ; 2.103 ; Thermotoga maritima ferritin mutant-FLAL 7DY9 ; 2.303 ; Thermotoga maritima ferritin mutant-FLAL 7DYB ; 1.779 ; Thermotoga maritima ferritin mutant-FLAL-L 7XA4 ; 1.96 ; Thermotoga maritima ferritin variant-Tm-E (S111H) with Zn 7X9Z ; 2.29 ; Thermotoga maritima ferritin variant-Tm-E(G40E) with Co 7X9X ; 2.3 ; Thermotoga Maritima ferritin variant-Tm-E(G40E) with Zn 7XA0 ; 2.03 ; Thermotoga maritima ferritin variant-Tm-E(S111F) 7XA2 ; 1.84 ; Thermotoga maritima ferritin variant-Tm-E(S111H) 7XA1 ; 2.2 ; Thermotoga maritima ferritin variant-Tm-E(S111Y) 4A2B ; 1.8 ; Thermotoga maritima FtsA with ATP gamma S 4A2A ; 1.8 ; Thermotoga maritima FtsA:FtsZ(336-351) 1B3B ; 3.1 ; THERMOTOGA MARITIMA GLUTAMATE DEHYDROGENASE MUTANT N97D, G376K 2TMG ; 2.9 ; THERMOTOGA MARITIMA GLUTAMATE DEHYDROGENASE MUTANT S128R, T158E, N117R, S160E 2P3N ; 2.2 ; Thermotoga maritima IMPase TM1415 2P3V ; 2.4 ; Thermotoga maritima IMPase TM1415 1GJW ; 2.1 ; Thermotoga maritima maltosyltransferase complex with maltose 2GHA ; 1.6 ; Thermotoga maritima maltotriose binding protein bound with maltotriose 2FNC ; 1.7 ; Thermotoga maritima maltotriose binding protein bound with maltotriose. 2GHB ; 2.1 ; Thermotoga maritima maltotriose binding protein, ligand free form 4DDW ; 3.9 ; Thermotoga maritima reverse gyrase, c-centered orthorhombic form 4DDU ; 3.0 ; Thermotoga maritima reverse gyrase, C2 FORM 1 4DDT ; 3.2 ; Thermotoga maritima reverse gyrase, C2 FORM 2 4DDX ; 4.17 ; Thermotoga maritima reverse gyrase, primitive monoclinic form 4DDV ; 3.46 ; Thermotoga maritima reverse gyrase, triclinic form 3O0N ; 1.95 ; Thermotoga maritima Ribonucleotide Reductase, NrdJ, in complex with dTTP and Adenosylcobalamin 3O0Q ; 1.8 ; Thermotoga maritima Ribonucleotide Reductase, NrdJ, in complex with dTTP, GDP and Adenosine 3O0O ; 1.9 ; Thermotoga maritima Ribonucleotide Reductase, NrdJ, in complex with dTTP, GDP and Adenosylcobalamin 2FN8 ; 2.15 ; Thermotoga maritima Ribose Binding Protein Ribose Bound Form 2FN9 ; 1.4 ; Thermotoga maritima Ribose Binding Protein Unliganded Form 1IN4 ; 1.6 ; THERMOTOGA MARITIMA RUVB HOLLIDAY JUNCTION BRANCH MIGRATION MOTOR 1IN6 ; 1.8 ; THERMOTOGA MARITIMA RUVB K64R MUTANT 1J7K ; 1.8 ; THERMOTOGA MARITIMA RUVB P216G MUTANT 1IN7 ; 1.9 ; THERMOTOGA MARITIMA RUVB R170A 1IN8 ; 1.9 ; THERMOTOGA MARITIMA RUVB T158V 2ORW ; 1.5 ; Thermotoga maritima thymidine kinase 1 like enzyme in complex with TP4A 2QPO ; 1.95 ; Thermotoga Maritima Thymidine Kinase in the apo form 4PY5 ; 2.1 ; Thermovibrio ammonificans RNase H3 in complex with 19-mer RNA/DNA 4QK9 ; 3.05 ; Thermovirga lienii c-di-AMP riboswitch 1I6V ; 3.3 ; THERMUS AQUATICUS CORE RNA POLYMERASE-RIFAMPICIN COMPLEX 5TJG ; 2.6 ; Thermus aquaticus delta1.1-sigmaA holoenzyme/downstream-fork promoter complex with an open clamp 1L9U ; 4.0 ; THERMUS AQUATICUS RNA POLYMERASE HOLOENZYME AT 4 A RESOLUTION 1L9Z ; 6.5 ; Thermus aquaticus RNA Polymerase Holoenzyme/Fork-Junction Promoter DNA Complex at 6.5 A Resolution 3UFX ; 2.35 ; Thermus aquaticus succinyl-CoA synthetase in complex with GDP-Mn2+ 5VF4 ; 2.81 ; Thermus aquaticus variable protein (TaqVP) from diversity-generating retroelements (DGR) 2J07 ; 1.95 ; Thermus DNA photolyase with 8-HDF antenna chromophore 2J08 ; 2.61 ; Thermus DNA photolyase with 8-Iod-riboflavin antenna chromophore 2J09 ; 2.0 ; Thermus DNA photolyase with FMN antenna chromophore 1GVI ; 3.3 ; Thermus maltogenic amylase in complex with beta-CD 4ZNI ; 2.097 ; Thermus Phage P74-26 Large Terminase ATPase domain (I 2 3 space group) 4ZNL ; 2.068 ; Thermus Phage P74-26 Large Terminase ATPase domain bound to ADP Beryllium Fluoride 4ZNK ; 1.931 ; Thermus Phage P74-26 Large Terminase ATPase domain from (P 32 2 1 space group) 4ZNJ ; 2.532 ; Thermus Phage P74-26 Large Terminase ATPase domain mutant R139A (I 2 3 space group) 7KS4 ; 1.887 ; Thermus Phage P74-26 Large Terminase ATPase domain with partially bound ADP 5TGE ; 2.6 ; Thermus Phage P74-26 Large Terminase Nuclease Domain 5NUX ; 2.3 ; Thermus scotoductus SA-01 Ene-reductase double mutant TsER_C25D_I67T 5OGT ; 2.3 ; Thermus scotoductus SA-01 Ene-reductase triple mutant TsER_C25D_I67T_A102H 7OMV ; 1.29 ; Thermus sp. 2.9 DarT 7ON0 ; 1.46 ; Thermus sp. 2.9 DarT in complex with ADP-ribosylated ssDNA 7OMZ ; 1.66 ; Thermus sp. 2.9 DarT in complex with ADP-ribosylated ssDNA and nicotinamide 7OMX ; 1.52 ; Thermus sp. 2.9 DarT in complex with carba-NAD+ 7OMY ; 1.6 ; Thermus sp. 2.9 DarT in complex with carba-NAD+ and ssDNA 7OMW ; 1.3 ; Thermus sp. 2.9 DarT in complex with NAD+ 6CUU ; 2.994 ; Thermus thermophiles RNA polymerase in complex with promoter DNA and antibiotic Kanglemycin A 6BUW ; 3.5 ; Thermus thermophilus 70S complex containing 16S G299A ram mutation and empty A site. 6BZ6 ; 3.18 ; Thermus thermophilus 70S complex containing 16S G347U ram mutation and empty A site 6BZ7 ; 3.68 ; Thermus thermophilus 70S containing 16S G299A point mutation and near-cognate ASL Leucine in A site. 6BZ8 ; 3.74 ; Thermus thermophilus 70S containing 16S G347U point mutation and near-cognate ASL Leucine in A site 5V8I ; 3.25 ; Thermus thermophilus 70S ribosome lacking ribosomal protein uS17 5J30 ; 3.2 ; Thermus thermophilus 70S termination complex containing E. coli RF1 5J3C ; 3.04 ; Thermus thermophilus 70S termination complex containing E. coli RF1 2OWX ; 2.5 ; THERMUS THERMOPHILUS AMYLOMALTASE AT pH 5.6 1IQ0 ; 2.3 ; THERMUS THERMOPHILUS ARGINYL-TRNA SYNTHETASE 1B5P ; 1.8 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE DOUBLE MUTANT 1 1GCK ; 2.5 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE DOUBLE MUTANT 1 COMPLEXED WITH ASPARTATE 1B5O ; 2.2 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE SINGLE MUTANT 1 5BJ3 ; 2.2 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE TETRA MUTANT 1 5BJ4 ; 2.0 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE TETRA MUTANT 2 1GC4 ; 3.3 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE TETRA MUTANT 2 COMPLEXED WITH ASPARTATE 1GC3 ; 3.3 ; THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE TETRA MUTANT 2 COMPLEXED WITH TRYPTOPHAN 7AP4 ; 2.15 ; Thermus thermophilus Aspartyl-tRNA Synthetase in Complex with Compound AspS7HMDDA 4C98 ; 2.001 ; Thermus thermophilus Cas6 (TTHB231) 1DT1 ; 1.8 ; THERMUS THERMOPHILUS CYTOCHROME C552 SYNTHESIZED BY ESCHERICHIA COLI 1C52 ; 1.28 ; THERMUS THERMOPHILUS CYTOCHROME-C552: A NEW HIGHLY THERMOSTABLE CYTOCHROME-C STRUCTURE OBTAINED BY MAD PHASING 6U1K ; 1.67 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ADP, carbonate, D-alanine-D-alanine, Mg2+ and K+ 6U1J ; 2.2 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ADP, phosphate, D-ala-D-ala, Mg2+ and K+ 6U1H ; 2.2 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ADP, phosphate, Mg2+ and K+ 6U1I ; 2.3 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ADP, phosphorylated D-cycloserine, Mg2+ and K+ 6U1F ; 2.3 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ATP, D-alanine-D-alanine, Mg2+ and Cs+ 6U1G ; 2.4 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ATP, D-alanine-D-alanine, Mg2+ and Cs+ 6U1D ; 1.9 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ATP, D-alanine-D-alanine, Mg2+ and Rb+ 6U1E ; 2.1 ; Thermus thermophilus D-alanine-D-alanine ligase in complex with ATP, D-alanine-D-alanine, Mg2+ and Rb+ 4J80 ; 2.9 ; Thermus thermophilus DnaJ 4J7Z ; 1.64 ; Thermus thermophilus DNAJ J- and G/F-DOMAINS 3P0B ; 1.35 ; Thermus thermophilus family GH57 branching enzyme: crystal structure, mechanism of action and products formed 2B3F ; 1.56 ; Thermus thermophilus Glucose/Galactose Binding Protein Bound With Galactose 2B3B ; 1.95 ; Thermus thermophilus Glucose/Galactose Binding Protein With Bound Glucose 1SRV ; 1.7 ; THERMUS THERMOPHILUS GROEL (HSP60 CLASS) FRAGMENT (APICAL DOMAIN) COMPRISING RESIDUES 192-336 4KVB ; 4.198 ; Thermus thermophilus HB27 30S ribosomal subunit lacking ribosomal protein S17 6KQD ; 3.3 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-OH RNA of 3 nt 6KQE ; 3.3 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-OH RNA of 4 nt 6KQF ; 2.45 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-OH RNA of 5 nt 6KQG ; 2.783 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-OH RNA of 6 nt 6KQH ; 3.18 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-OH RNA of 7 nt 6L74 ; 3.12 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-triphosphate RNA of 2 nt 6KQL ; 2.89 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-triphosphate RNA of 4 nt 6KQM ; 3.197 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-triphosphate RNA of 5 nt 6KQN ; 3.489 ; Thermus thermophilus initial transcription complex comprising sigma A and 5'-triphosphate RNA of 6 nt 2BYT ; 3.3 ; Thermus thermophilus Leucyl-tRNA synthetase complexed with a tRNAleu transcript in the post-editing conformation 2BTE ; 2.9 ; Thermus thermophilus Leucyl-tRNA synthetase complexed with a tRNAleu transcript in the post-editing conformation and a post- transfer editing substrate analogue 4DMG ; 1.7 ; Thermus thermophilus m5C1942 methyltransferase RlmO 2GH9 ; 1.95 ; Thermus thermophilus maltotriose binding protein bound with maltotriose 7TH5 ; 2.09 ; Thermus thermophilus methylenetetrahydrofolate reductase 8EAC ; 1.9 ; Thermus thermophilus methylenetetrahydrofolate reductase 5IT5 ; 2.648 ; Thermus thermophilus PilB core ATPase region 6F8L ; 8.0 ; Thermus thermophilus PilF ATPase (AMPPNP-bound form) 6EJF ; 8.0 ; Thermus thermophilus PilF ATPase (apoprotein form) 8HSR ; 4.0 ; Thermus thermophilus Rho-engaged RNAP elongation complex 4V90 ; 2.95 ; Thermus thermophilus Ribosome 4WQS ; 4.306 ; Thermus thermophilus RNA polymerase backtracked complex 8HSL ; 5.8 ; Thermus thermophilus RNA polymerase bound with an inverted Rho hexamer 4WQT ; 4.4 ; Thermus thermophilus RNA polymerase complexed with an RNA cleavage stimulating factor (a GreA/Gfh1 chimeric protein) 8HSH ; 3.4 ; Thermus thermophilus RNA polymerase coreenzyme 4Q4Z ; 2.9 ; Thermus thermophilus RNA polymerase de novo transcription initiation complex 8HSG ; 3.2 ; Thermus thermophilus RNA polymerase elongation complex 4Q5S ; 3.0 ; Thermus thermophilus RNA polymerase initially transcribing complex containing 6-mer RNA 6WOX ; 3.14 ; Thermus thermophilus RNA polymerase initially transcribing complex with 2'dCTP 6WOY ; 3.0 ; Thermus thermophilus RNA polymerase initially transcribing complex with 3'dCTP 7EH0 ; 2.808 ; Thermus thermophilus RNA polymerase transcription initiation complex containing a template-strand purine at position TSS-2, UpA RNA primer and CMPcPP 4EP4 ; 1.28 ; Thermus thermophilus RuvC structure 4EP5 ; 2.08 ; Thermus thermophilus RuvC structure 7EH1 ; 2.9 ; Thermus thermophilus transcription initiation complex containing a template-strand purine at position TSS-2, GpG RNA primer, and CMPcPP 7EH2 ; 3.34 ; Thermus thermophilus transcription initiation complex containing a template-strand pyrimidine at position TSS-2 and GpG RNA primer 8HSJ ; 3.6 ; Thermus thermophilus transcription termination factor Rho bound with ADP-BeF3 3D8R ; 2.0 ; Thermus thermophilus Uroporphyrinogen III Synthase 3D8S ; 2.0 ; Thermus thermophilus Uroporphyrinogen III Synthase 3D8T ; 1.6 ; Thermus thermophilus Uroporphyrinogen III Synthase 5TSJ ; 8.7 ; Thermus thermophilus V/A-ATPase bound to VH dAbs 5GAR ; 6.4 ; Thermus thermophilus V/A-ATPase, conformation 1 5GAS ; 9.5 ; Thermus thermophilus V/A-ATPase, conformation 2 6QUM ; 3.25 ; Thermus thermophilus V/A-type ATPase/synthase, rotational state 1 6R0Z ; 3.8 ; Thermus thermophilus V/A-type ATPase/synthase, rotational state 1L 6R10 ; 4.3 ; Thermus thermophilus V/A-type ATPase/synthase, rotational state 1R 6R0W ; 3.6 ; Thermus thermophilus V/A-type ATPase/synthase, rotational state 2 6R0Y ; 3.9 ; Thermus thermophilus V/A-type ATPase/synthase, rotational state 3 2DWQ ; 2.95 ; Thermus thermophilus YchF GTP-binding protein 1G4E ; 1.6 ; THIAMIN PHOSPHATE SYNTHASE 1G4P ; 2.5 ; THIAMIN PHOSPHATE SYNTHASE 1G4S ; 1.7 ; THIAMIN PHOSPHATE SYNTHASE 1G4T ; 1.55 ; THIAMIN PHOSPHATE SYNTHASE 1G67 ; 1.4 ; THIAMIN PHOSPHATE SYNTHASE 1G69 ; 1.5 ; THIAMIN PHOSPHATE SYNTHASE 1G6C ; 1.4 ; THIAMIN PHOSPHATE SYNTHASE 2TPS ; 1.25 ; THIAMIN PHOSPHATE SYNTHASE 2G9Z ; 1.96 ; Thiamin pyrophosphokinase from Candida albicans 2HH9 ; 2.1 ; Thiamin pyrophosphokinase from Candida albicans 2THI ; 2.5 ; THIAMINASE I FROM BACILLUS THIAMINOLYTICUS 3THI ; 2.0 ; THIAMINASE I FROM BACILLUS THIAMINOLYTICUS 4THI ; 2.0 ; THIAMINASE I FROM BACILLUS THIAMINOLYTICUS WITH COVALENTLY BOUND 4-AMINO-2,5-DIMETHYLPYRIMIDINE 1XI3 ; 1.7 ; Thiamine phosphate pyrophosphorylase from Pyrococcus furiosus Pfu-1255191-001 4C7X ; 2.29 ; Thiamine Pyrophosphate Bound Transketolase from Lactobacillus salivarius at 2.2A resolution 8XV2 ; 3.7 ; Thiamine-bound human SLC19A3 3JSK ; 2.7 ; Thiazole synthase from Neurospora crassa 4Y4M ; 2.71 ; Thiazole synthase Thi4 from Methanocaldococcus jannaschii 4Y4N ; 2.1 ; Thiazole synthase Thi4 from Methanococcus igneus 2O5D ; 2.2 ; Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crystallographic study 2MNB ; ; Thiazotropsin B DNA recognition sequence d(CGACGCGTCG)2 5LGT ; 3.0 ; Thieno[3,2-b]pyrrole-5-carboxamides as Novel Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1: Compound 15 5LGN ; 3.2 ; Thieno[3,2-b]pyrrole-5-carboxamides as Novel Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1: Compound 19 5LGU ; 3.2 ; Thieno[3,2-b]pyrrole-5-carboxamides as Novel Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1: Compound 34 3HUQ ; 1.45 ; Thieno[3,2-b]thiophene in complex with T4 lysozyme L99A/M102Q 7DU3 ; 2.54 ; ThiL in complex with AMP-PNP 5MVY ; 28.4 ; Thin Filament at low calcium concentration 8Q4G ; 8.0 ; Thin filament from FIB milled relaxed left ventricular mouse myofibrils 3CMC ; 1.77 ; Thioacylenzyme intermediate of Bacillus stearothermophilus phosphorylating GAPDH 2QE0 ; 2.19 ; Thioacylenzyme Intermediate of GAPN from S. Mutans, New Data Integration and Refinement. 5OVS ; 2.3 ; Thiobacillus denitrificans BPH 5OVT ; 2.95 ; Thiobacillus denitrificans BPH in complex with Epoxomicin 4VHB ; 1.8 ; THIOCYANATE ADDUCT OF THE BACTERIAL HEMOGLOBIN FROM VITREOSCILLA SP. 5F75 ; 2.0 ; Thiocyanate dehydrogenase from Thioalkalivibrio paradoxus 2DD5 ; 2.0 ; Thiocyanate hydrolase (SCNase) from Thiobacillus thioparus native holo-enzyme 2DD4 ; 2.06 ; Thiocyanate hydrolase (SCNase) from Thiobacillus thioparus recombinant apo-enzyme 6NWR ; 3.5 ; Thioester acyl-intermediate of Apolipoprotein N-acyltransferase (Lnt) 6FWY ; 2.14 ; Thioester domain of the Enterococcus faecium TIE86 protein 6FX6 ; 2.25 ; Thioester domain of the Staphylococcus aureus TIE protein 1MO2 ; 3.0 ; Thioesterase Domain from 6-Deoxyerythronolide Synthase (DEBS TE), pH 8.5 3QIT ; 1.68 ; Thioesterase Domain From Curacin Biosynthetic Pathway 1MN6 ; 2.2 ; Thioesterase Domain from Picromycin Polyketide Synthase, pH 7.6 7MHD ; 2.03 ; Thioesterase Domain of Human Fatty Acid Synthase (FASN-TE) binding a competitive inhibitor SBP-7635 7MHE ; 2.8 ; Thioesterase Domain of Human Fatty Acid Synthase (FASN-TE) binding a competitive inhibitor SBP-7957 1MNA ; 1.8 ; Thioesterase Domain of Picromycin Polyketide Synthase (PICS TE), pH 8.0 1MNQ ; 2.2 ; Thioesterase Domain of Picromycin Polyketide Synthase (PICS TE), pH 8.4 3LCR ; 2.0 ; Thioesterase from Tautomycetin Biosynthhetic Pathway 3KEB ; 1.8 ; Thiol peroxidase from Chromobacterium violaceum 2YJH ; 2.55 ; Thiol Peroxidase from Yersinia Psuedotuberculosis, inactive mutant C61S 3FKF ; 2.2 ; thiol-disulfide oxidoreductase from Bacteroides fragilis NCTC 9343 7UNN ; 1.45 ; Thiol-disulfide oxidoreductase TsdA from Corynebacterium diphtheriae 7UNO ; 1.1 ; Thiol-disulfide oxidoreductase TsdA, C129S mutant, from Corynebacterium diphtheriae 1H5V ; 1.1 ; Thiopentasaccharide complex of the endoglucanase Cel5A from Bacillus agaradharens at 1.1 A resolution in the tetragonal crystal form 2ZJP ; 3.7 ; Thiopeptide antibiotic Nosiheptide bound to the large ribosomal subunit of Deinococcus radiodurans 3CF5 ; 3.3 ; Thiopeptide antibiotic Thiostrepton bound to the large ribosomal subunit of Deinococcus radiodurans 3MDM ; 1.6 ; Thioperamide complex of Cytochrome P450 46A1 7KSI ; 1.726 ; Thiophenyl-Pyrazolourea Derivatives as Potent, Brian Penetrant, Orally Bioavailable, and Isoform-Selective JNK3 Inhibitors 7KSJ ; 2.06 ; Thiophenyl-Pyrazolourea Derivatives as Potent, Brian Penetrant, Orally Bioavailable, and Isoform-Selective JNK3 Inhibitors 7KSK ; 1.84 ; Thiophenyl-Pyrazolourea Derivatives as Potent, Brian Penetrant, Orally Bioavailable, and Isoform-Selective JNK3 Inhibitors 6FD3 ; 1.52 ; Thiophosphorylated PAK3 kinase domain 3BGD ; 2.0 ; Thiopurine S-Methyltransferase 3BGI ; 1.8 ; Thiopurine S-Methyltransferase 1XOA ; ; THIOREDOXIN (OXIDIZED DISULFIDE FORM), NMR, 20 STRUCTURES 1XOB ; ; THIOREDOXIN (REDUCED DITHIO FORM), NMR, 20 STRUCTURES 2VOC ; 1.5 ; THIOREDOXIN A ACTIVE SITE MUTANTS FORM MIXED DISULFIDE DIMERS THAT RESEMBLE ENZYME-SUBSTRATE REACTION INTERMEDIATE 4KND ; 1.9 ; Thioredoxin from Anaeromyxobacter dehalogenans. 6FMZ ; 1.8 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 1,4-Bis(2-hydroxyethyl)piperazine 6FP4 ; 2.501 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 1,8-Naphthyridine-2-carboxylic acid 6RTJ ; 2.0 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 1-[(dimethylamino)methyl]-2-naphthol at 1 hour of soaking 6RTM ; 2.1 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 1-[(dimethylamino)methyl]-2-naphthol at 2 hour of soaking 6RTO ; 2.3 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 1-[(dimethylamino)methyl]-2-naphthol at 4 hours of soaking 6ZP3 ; 1.8 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 2-Methylindole-3-acetic acid 6ZST ; 1.7 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 3-(3-methoxyquinoxalin-2-yl)propanoic acid 7NPX ; 2.7 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 3-(3-Methoxyquinoxalin-2-yl)propanoic acid at 24 hours of soaking 6ZLP ; 2.15 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 4-Aminopiazthiole 7B02 ; 1.45 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with 4-Hydroxy-7-methyl-1,8-naphthyridine-3-carboxylic acid 2X8H ; 1.9 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with GSH 6FTC ; 1.8 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with HEPES 6ZLB ; 1.9 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with Indole-3-carbinol 2X99 ; 2.3 ; Thioredoxin glutathione reductase from Schistosoma mansoni in complex with NADPH 2X8C ; 3.1 ; Thioredoxin glutathione reductase from Schistosoma mansoni with the reduced C-terminal end 6FMU ; 1.8 ; Thioredoxin glutathione reductase from Schistosome mansoni in complex with 2-[4-(4-amino-butyl)-piperazin-1-yl]-ethanol 8PDD ; 1.25 ; Thioredoxin glutathione reductase of Schistosoma mansoni at 1.25A resolution. 8PL0 ; 1.7 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 1. 8PL9 ; 1.98 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 10. 8PLA ; 1.66 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 11. 8PLB ; 2.0 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 12. 8PLC ; 2.34 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 13. 8PLD ; 1.85 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 14. 8PLE ; 1.94 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 15. 8PLF ; 1.95 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 16. 8PLG ; 1.75 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 17. 8PLH ; 1.62 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 18. 8PLI ; 2.33 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 19. 8PL1 ; 2.46 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 2. 8PLJ ; 2.18 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 20. 8PLK ; 1.82 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 21. 8PLL ; 1.85 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 22. 8PLM ; 1.95 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 23. 8PLN ; 2.8 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 24. 8PLO ; 1.74 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 25. 8PLP ; 2.28 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 26. 8PLQ ; 2.29 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 27. 8PLR ; 2.72 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 28. 8PLS ; 1.8 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 29. 8PL2 ; 1.88 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 3. 8PLT ; 2.33 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 30. 8PLU ; 2.04 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 31. 8PLV ; 2.46 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 32. 8PLW ; 1.78 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 33. 8PLX ; 1.77 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 34. 8PLY ; 2.43 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 35. 8PL3 ; 1.65 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 4. 8PL4 ; 1.97 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 5. 8PL5 ; 2.15 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 6. 8PL6 ; 1.81 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 7. 8PL7 ; 1.77 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 8. 8PL8 ; 2.35 ; Thioredoxin glutathione reductase of Schistosoma mansoni fragment screen hit 9. 1TOF ; ; THIOREDOXIN H (OXIDIZED FORM), NMR, 23 STRUCTURES 2IWT ; 2.3 ; Thioredoxin h2 (HvTrxh2) in a mixed disulfide complex with the target protein BASI 1QMV ; 1.7 ; thioredoxin peroxidase B from red blood cells 1X0R ; 2.0 ; Thioredoxin Peroxidase from Aeropyrum pernix K1 7AAW ; 2.25 ; Thioredoxin Reductase from Bacillus cereus 5M5J ; 2.65 ; Thioredoxin reductase from Giardia duodenalis 1THX ; 1.6 ; THIOREDOXIN-2 3R9U ; 2.36 ; Thioredoxin-disulfide reductase from Campylobacter jejuni. 2L2W ; ; Thiostrepton 2L2Y ; ; Thiostrepton, epimer form of residue 9 2L2X ; ; Thiostrepton, oxidized at CA-CB bond of residue 9 2L2Z ; ; Thiostrepton, reduced at N-CA bond of residue 14 5I0S ; 1.3 ; Thiosulfate bound Cysteine Dioxygenase at pH 6.2 5I0T ; 1.37 ; Thiosulfate bound Cysteine Dioxygenase at pH 6.8 5EZW ; 1.65 ; Thiosulfate bound rat cysteine dioxygenase Y157H variant 4WQ7 ; 1.98 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - ""as isolated"" form 4WQB ; 1.5013 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - bisulfite soak 4WQ9 ; 1.47 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - dithionite soak 4WQD ; 1.22 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - K208G mutant 4WQE ; 1.4 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - K208G mutant 4WQC ; 1.56 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - K208N mutant 4WQA ; 1.64 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - tetrathionate co-crystallization 4WQ8 ; 1.3989 ; Thiosulfate dehydrogenase (TsdA) from Allochromatium vinosum - tetrathionate soak 5LO9 ; 2.75 ; Thiosulfate dehydrogenase (TsdBA) from Marichromatium purpuratum - ""as isolated"" form 7NED ; 1.9 ; Thiourocanate hydratase from Paenibacillus sp. Soil724D2 in complex with cofactor NAD+ and urocanate 2B96 ; 1.7 ; Third Calcium ion found in an inhibitor bound phospholipase A2 1W8A ; 2.8 ; Third LRR domain of Drosophila Slit 2V70 ; 3.01 ; Third LRR domain of human Slit2 4OOK ; 1.9 ; Third Metal bound M.tuberculosis methionine aminopeptidase 1BJ8 ; ; THIRD N-TERMINAL DOMAIN OF GP130, NMR, MINIMIZED AVERAGE STRUCTURE 5D13 ; 2.151 ; Third PDZ domain (PDZ3) of PSD-95 complexed with CFMOC-KKETEV peptide 2JTE ; ; Third SH3 domain of CD2AP 7RCE ; 2.42 ; Third stage reengineered variant of I-OnuI with specificity enhancing substitutions 5AHT ; ; Third WW domain from the E3 ubiquitin-protein ligase NEDD4 2LAJ ; ; Third WW domain of human Nedd4L in complex with doubly phosphorylated human smad3 derived peptide 4YKH ; 1.52 ; Thirty minutes iron loaded human H ferritin 4POV ; 2.2 ; ThiT with LMG135 bound 4POP ; 2.2 ; ThiT with LMG139 bound 5O34 ; 2.45 ; ThnE from S.clavuligerus 7EZB ; 1.5 ; Thorarchaeota Rab bound to GDP 7EZD ; 1.76 ; Thorarchaeota Rab co-crystallized with GTP gamma-S 7EZE ; 1.95 ; Thorarchaeota Rab GTP-gamma-S/Mg2+ (soak) 7OM9 ; 3.0 ; Thosea asigna virus RdRP domain 7OMA ; 3.1 ; Thosea asigna virus RdRP domain elongation complex 7OM2 ; 2.07 ; Thosea asigna virus RdRP domain in complex with Mg+2 7OM6 ; 2.18 ; Thosea asigna virus RdRP domain in complex with RNA 7OM7 ; 2.4 ; Thosea asigna virus RdRP domain in complex with RNA and nucleotide UMPNPP 1C3Y ; ; THP12-CARRIER PROTEIN FROM YELLOW MEAL WORM 1C3Z ; ; THP12-CARRIER PROTEIN FROM YELLOW MEAL WORM 1E9H ; 2.5 ; Thr 160 phosphorylated CDK2 - Human cyclin A3 complex with the inhibitor indirubin-5-sulphonate bound 4EOJ ; 1.65 ; Thr 160 phosphorylated CDK2 H84S, Q85M, K89D - human cyclin A3 complex with ATP 4EOK ; 2.57 ; Thr 160 phosphorylated CDK2 H84S, Q85M, K89D - human cyclin A3 complex with the inhibitor NU6102 4EOL ; 2.4 ; Thr 160 phosphorylated CDK2 H84S, Q85M, K89D - human cyclin A3 complex with the inhibitor RO3306 4EOM ; 2.1 ; Thr 160 phosphorylated CDK2 H84S, Q85M, Q131E - human cyclin A3 complex with ATP 4EON ; 2.4 ; Thr 160 phosphorylated CDK2 H84S, Q85M, Q131E - human cyclin A3 complex with the inhibitor RO3306 4EOI ; 2.0 ; Thr 160 phosphorylated CDK2 K89D, Q131E - human cyclin A3 complex with the inhibitor RO3306 4EOO ; 2.1 ; Thr 160 phosphorylated CDK2 Q131E - human cyclin A3 complex with ATP 4EOP ; 1.99 ; Thr 160 phosphorylated CDK2 Q131E - human cyclin A3 complex with the inhibitor RO3306 4EOQ ; 2.15 ; Thr 160 phosphorylated CDK2 WT - human cyclin A3 complex with ATP 4EOR ; 2.2 ; Thr 160 phosphorylated CDK2 WT - human cyclin A3 complex with the inhibitor NU6102 4EOS ; 2.57 ; Thr 160 phosphorylated CDK2 WT - human cyclin A3 complex with the inhibitor RO3306 2Z29 ; 1.9 ; Thr109Ala dihydroorotase from E. coli 2Z2A ; 1.87 ; Thr109Gly dihydroorotase from E. coli 2Z27 ; 1.87 ; Thr109Ser dihydroorotase from E. coli 2Z28 ; 1.87 ; Thr109Val dihydroorotase from E. coli 2Z26 ; 1.29 ; Thr110Ala dihydroorotase from E. coli 2Z24 ; 1.9 ; Thr110Ser dihydroorotase from E. coli 2Z25 ; 1.87 ; Thr110Val dihydroorotase from E. coli 5NVG ; 1.07 ; Thr12 Phosphorylated Ubiquitin 1S54 ; 2.2 ; Thr24Ala Bacteriorhodopsin 1S51 ; 2.0 ; Thr24Ser Bacteriorhodopsin 1S52 ; 2.3 ; Thr24Val Bacteriorhodopsin 1C8W ; 1.8 ; THR45GLY VARIANT OF RIBONUCLEASE A 1S53 ; 2.0 ; Thr46Ser Bacteriorhodopsin 2JUM ; ; ThrA3-DKP-insulin 6KKE ; 2.577 ; THRb mutation with a novel agonist 6KNU ; 2.7 ; THRb mutation with a novel agonist 6KNV ; 2.8 ; THRb mutation with a novel agonist 6KNW ; 2.67 ; THRb mutation with a novel agonist 4BIJ ; 16.0 ; Threading model of T7 large terminase 4BIL ; 29.0 ; Threading model of the T7 large terminase within the gp8gp19 complex 3KQH ; 2.4 ; Three Conformational Snapshots of the Hepatitis C Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism 3KQK ; 2.8 ; Three Conformational Snapshots of the Hepatitis C Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism 3KQL ; 2.5 ; Three Conformational Snapshots of the Hepatitis C Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism 3KQN ; 2.05 ; Three Conformational Snapshots of the Hepatitis C Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism 3KQU ; 2.4 ; Three Conformational Snapshots of the Hepatitis C Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism 2DD1 ; ; Three consecutive sheared GA pairs in 5'GGUGGAGGCU/3'PCCAAAGCCG 1T2L ; 2.8 ; Three Crystal Structures of Human Coactosin-like Protein 1T3X ; 2.0 ; Three Crystal Structures of Human Coactosin-like Protein 1T3Y ; 1.15 ; Three Crystal Structures of Human Coactosin-like Protein 1CMC ; 1.8 ; THREE DIMENSIONAL CRYSTAL STRUCTURES OF E. COLI MET REPRESSOR WITH AND WITHOUT COREPRESSOR 1CMB ; 1.8 ; THREE DIMENSIONAL CRYSTAL STRUCTURES OF ESCHERICHIA COLI MET REPRESSOR WITH AND WITHOUT COREPRESSOR 2DHB ; 2.8 ; THREE DIMENSIONAL FOURIER SYNTHESIS OF HORSE DEOXYHAEMOGLOBIN AT 2.8 ANGSTROMS RESOLUTION 2PRF ; ; THREE DIMENSIONAL SOLUTION STRUCTURE OF ACANTHAMOEBA PROFILIN I 1NIX ; ; THREE DIMENSIONAL SOLUTION STRUCTURE OF HAINANTOXIN-I BY 2D 1H-NMR 2JTB ; ; Three dimensional solution structure of hainantoxin-III by 2D 1H-NMR 1NIY ; ; THREE DIMENSIONAL SOLUTION STRUCTURE OF HAINANTOXIN-IV BY 2D 1H-NMR 1I25 ; ; Three dimensional solution structure of huwentoxin-II by 2D 1H-NMR 1MB6 ; ; Three dimensional solution structure of huwentoxin-IV by 2D 1H-NMR 1Y29 ; ; Three dimensional solution structure of huwentoxin-x by 2D 1H-NMR 1X32 ; ; Three Dimensional Solution Structure of the Chromo1 domain of cpSRP43 1RYV ; ; Three dimensional solution structure of the K27A MUTANT of sodium channels inhibitor HAINANTOXIN-IV BY 2D 1H-NMR 1RYG ; ; Three dimensional solution structure of the R29A MUTANT of sodium channels inhibitor HAINANTOXIN-IV by 2D 1H-NMR 1OWC ; 2.2 ; Three Dimensional Structure Analysis Of The R109L Variant of the Type II Citrate Synthase From E. Coli 1KB3 ; 2.1 ; Three Dimensional Structure Analysis of the R195A Variant of Human Pancreatic Alpha Amylase 1KGX ; 2.0 ; Three Dimensional Structure Analysis of the R195Q Variant of Human Pancreatic Alpha Amylase 1KGU ; 2.0 ; THREE DIMENSIONAL STRUCTURE ANALYSIS OF THE R337A VARIANT OF HUMAN PANCREATIC ALPHA-AMYLASE 1KGW ; 2.1 ; THREE DIMENSIONAL STRUCTURE ANALYSIS OF THE R337Q VARIANT OF HUMAN PANCREATIC ALPHA-MYLASE 4G6B ; 2.2 ; Three dimensional structure analysis of the type II citrate synthase from e.coli 1OWB ; 2.2 ; Three Dimensional Structure Analysis Of The Variant R109L NADH Complex of Type II Citrate Synthase From E. Coli 2J0E ; 2.1 ; Three dimensional structure and catalytic mechanism of 6- phosphogluconolactonase from Trypanosoma brucei 2DSZ ; 2.35 ; Three dimensional structure of a goat signalling protein secreted during involution 1T3F ; 2.0 ; THREE DIMENSIONAL STRUCTURE OF A HUMANIZED ANTI-IFN-GAMMA FAB (HuZAF) IN P21 21 21 SPACE GROUP 1T04 ; 3.0 ; Three dimensional structure of a humanized anti-IFN-Gamma Fab in C2 space group 6GOL ; 1.7 ; Three dimensional structure of a novel influenza hemagglutinin tri-stalk protein 1W3A ; 2.65 ; Three dimensional structure of a novel pore-forming lectin from the mushroom Laetiporus sulphureus 2CLR ; 2.0 ; THREE DIMENSIONAL STRUCTURE OF A PEPTIDE EXTENDING OUT ONE END OF A CLASS I MHC BINDING SITE 1IGM ; 2.3 ; THREE DIMENSIONAL STRUCTURE OF AN FV FROM A HUMAN IGM IMMUNOGLOBULIN 1FIZ ; 2.9 ; THREE DIMENSIONAL STRUCTURE OF BETA-ACROSIN FROM BOAR SPERMATOZOA 2C2X ; 2.0 ; Three dimensional structure of bifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Mycobacterium tuberculosis 2C2Y ; 2.3 ; Three Dimensional Structure of bifunctional methylenetetrahydrofolate dehydrogenase-cyclohydrolase from Mycobacterium tuberculosis 4JVP ; 1.76 ; Three dimensional structure of broadly neutralizing anti - Hepatitis C virus (HCV) glycoprotein E2 alpaca nanobody D03 3U6R ; 2.67 ; Three dimensional structure of broadly neutralizing anti - Hepatitis C virus (HCV) glycoprotein E2 single chain FV fragment 1:7 5FGB ; 1.65 ; Three dimensional structure of broadly neutralizing human anti - Hepatitis C virus (HCV) glycoprotein E2 Fab fragment HC33.4 5FGC ; 1.9 ; Three dimensional structure of broadly neutralizing human anti - Hepatitis C virus (HCV) glycoprotein E2 Fab fragment HC33.8 4JZN ; 2.05 ; Three dimensional structure of broadly neutralizing human anti - Hepatitis C virus (HCV) glycoprotein E2 Fab fragment HC84-1 4JZO ; 2.22 ; Three dimensional structure of broadly neutralizing human anti - Hepatitis C virus (HCV) glycoprotein E2 Fab fragment HC84-27 1CYE ; ; THREE DIMENSIONAL STRUCTURE OF CHEMOTACTIC CHE Y PROTEIN IN AQUEOUS SOLUTION BY NUCLEAR MAGNETIC RESONANCE METHODS 4H18 ; 1.755 ; Three dimensional structure of corynomycoloyl tranferase C 3U1O ; 2.494 ; THREE DIMENSIONAL STRUCTURE OF DE NOVO DESIGNED CYSTEINE ESTERASE ECH19, Northeast Structural Genomics Consortium Target OR49 4DRT ; 2.002 ; Three dimensional structure of de novo designed serine hydrolase OSH26, Northeast Structural Genomics Consortium (NESG) target OR89 2N0X ; ; Three dimensional structure of EPI-X4, a human albumin-derived peptide that regulates innate immunity through the CXCR4/CXCL12 chemotactic axis and antagonizes HIV-1 entry 5AMD ; 1.5 ; Three dimensional structure of human carbonic anhydrase II in complex with 2-((2-Phenylethyl)sulfamoyl)-4-sulfamoylbenzoic acid 5AML ; 1.36 ; Three dimensional structure of human carbonic anhydrase II in complex with 2-(But-2-yn-1-ylsulfamoyl)-4-sulfamoylbenzoic acid 5AMG ; 1.55 ; Three dimensional structure of human carbonic anhydrase II in complex with 2-(Pentylsulfamoyl)-4-sulfamoylbenzoic acid 4BF6 ; 1.82 ; Three dimensional structure of human carbonic anhydrase II in complex with 5-(1-(3-Cyanophenyl)-1H-1,2,3-triazol-4-yl)thiophene-2- sulfonamide 4BF1 ; 1.35 ; Three dimensional structure of human carbonic anhydrase II in complex with 5-(1-naphthalen-1-yl-1,2,3-triazol-4-yl)thiophene-2-sulfonamide 5MJN ; 1.17 ; Three dimensional structure of human carbonic anhydrase II in complex with 5-[(4Chlorobenzyl)sulfanyl]thiophene-2-sulfonamide 6FE2 ; 1.87 ; Three dimensional structure of human carbonic anhydrase IX 5FL5 ; 2.05 ; Three dimensional structure of human carbonic anhydrase IX in complex with 5-(1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)thiophene-2- sulfonamide 5FL6 ; 1.95 ; Three dimensional structure of human carbonic anhydrase IX in complex with 5-(1-(4-Methylphenyl)-1H-1,2,3-triazol-4-yl)thiophene-2- sulfonamide 5FL4 ; 1.82 ; Three dimensional structure of human carbonic anhydrase IX in complex with 5-(1-naphthalen-1-yl-1,2,3-triazol-4-yl)thiophene-2-sulfonamide 6QN2 ; 1.95 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide 6QN5 ; 1.96 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide 6QN6 ; 2.25 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide 6QUT ; 1.96 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide 6FE0 ; 1.91 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide. 6FE1 ; 1.95 ; Three dimensional structure of human carbonic anhydrase IX in complex with benzenesulfonamide. 6G98 ; 2.47 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 6G9U ; 1.75 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 6TL5 ; 2.21 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 6TL6 ; 2.15 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 7POM ; 1.98 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 8CO0 ; 2.3 ; Three dimensional structure of human carbonic anhydrase IX in complex with sulfonamide 6QN0 ; 1.89 ; Three dimensional structure of human carbonic anhydrase XII in complex with benzenesulfonamide 6QNG ; 1.67 ; Three dimensional structure of human carbonic anhydrase XII in complex with benzenesulfonamide 6QNL ; 1.53 ; Three dimensional structure of human carbonic anhydrase XII in complex with benzenesulfonamide 7PP9 ; 2.34 ; Three dimensional structure of human carbonic anhydrase XII in complex with sulfonamide 8CO3 ; 1.68 ; Three dimensional structure of human carbonic anhydrase XII in complex with sulfonamide 4BGK ; 2.18 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with (3-(Trimethylammonio)propyl)phosphinate 4BG1 ; 1.89 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 1-(3-Carboxypropyl)-1-methylpyrrolidin-1-ium chloride 4BHI ; 2.15 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 3-(1,1,1,2-Tetramethylhydrazin-1-ium-2-yl)propanoate 4BHG ; 1.85 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 3-(1-Ethyl-1,1-dimethylhydrazin-1-ium-2-yl)propanoate 4BGM ; 2.4 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 3-Carboxy-N-(2-fluoroethyl)-N,N-dimethylpropan-1- aminium chloride 4C5W ; 1.7 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 4-(Ethyldimethylammonio)butanoate 4BHF ; 2.05 ; Three dimensional structure of human gamma-butyrobetaine hydroxylase in complex with 4-(Trimethylammonio)pentanoate 2KUN ; ; Three dimensional structure of HuPrP(90-231 M129 Q212P) 4L1J ; 1.824 ; Three dimensional structure of mutant D143A of human HD domain-containing protein 2, Northeast Structural Genomics Consortium (NESG) Target HR6723 4L7E ; 2.229 ; Three dimensional structure of mutant D78A of human HD domain-containing protein 2, Genomics Consortium (NESG) Target HR6723 1QJZ ; 3.8 ; Three Dimensional Structure of Physalis Mottle Virus : Implications for the Viral Assembly 2L4V ; ; Three Dimensional Structure of Pineapple Cystatin 4CKU ; 1.85 ; Three dimensional structure of plasmepsin II in complex with hydroxyethylamine-based inhibitor 1PCA ; 2.0 ; THREE DIMENSIONAL STRUCTURE OF PORCINE PANCREATIC PROCARBOXYPEPTIDASE A. A COMPARISON OF THE A AND B ZYMOGENS AND THEIR DETERMINANTS FOR INHIBITION AND ACTIVATION 1EVE ; 2.5 ; THREE DIMENSIONAL STRUCTURE OF THE ANTI-ALZHEIMER DRUG, E2020 (ARICEPT), COMPLEXED WITH ITS TARGET ACETYLCHOLINESTERASE 4F67 ; 1.79 ; Three dimensional structure of the double mutant of UPF0176 protein lpg2838 from Legionella pneumophila at the resolution 1.8A, Northeast Structural Genomics Consortium (NESG) Target LgR82 1WR5 ; 1.4 ; Three dimensional Structure of the E41K mutant of Tetraheme Cytochrome c3 from Desulfovibrio vulgaris Miyazaki F 1BBD ; 2.8 ; THREE DIMENSIONAL STRUCTURE OF THE FAB FRAGMENT OF A NEUTRALIZING ANTIBODY TO HUMAN RHINOVIRUS SEROTYPE 2 6STM ; 1.7 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) 6STQ ; 1.5 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) complex with N,N'-Diacetylchitobiose; 30 seconds soaking 6STR ; 1.8 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) complex with N,N'-Diacetylchitobiose; 60 seconds soaking 6STN ; 1.75 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) complex with N-Acetyl glucosamine 6STO ; 1.5 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) complex with N-Acetyl lactosamine 6STP ; 1.6 ; Three dimensional structure of the giant reed (Arundodonax) lectin (ADL) complex with sialic acid 1BR0 ; ; THREE DIMENSIONAL STRUCTURE OF THE N-TERMINAL DOMAIN OF SYNTAXIN 1A 1OFW ; 1.5 ; Three dimensional structure of the oxidized form of nine heme cytochrome c at PH 7.5 2GUJ ; 3.0 ; Three dimensional structure of the protein P54332 from Bacillus Subtilis. Northeast Structural Genomics Consortium target sr353. 1OFY ; 2.0 ; three dimensional structure of the reduced form of nine-heme cytochrome c at ph 7.5 3F1X ; 2.0 ; Three dimensional structure of the serine acetyltransferase from Bacteroides vulgatus, NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET BVR62. 3U8V ; 1.9 ; Three dimensional structure of the Small Metal Binding Protein, SMBP 1F06 ; 2.1 ; THREE DIMENSIONAL STRUCTURE OF THE TERNARY COMPLEX OF CORYNEBACTERIUM GLUTAMICUM DIAMINOPIMELATE DEHYDROGENASE NADPH-L-2-AMINO-6-METHYLENE-PIMELATE 1J0P ; 0.91 ; Three dimensional Structure of the Y43L mutant of Tetraheme Cytochrome c3 from Desulfovibrio vulgaris Miyazaki F 1Q9M ; 2.3 ; Three dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity 3SHS ; 1.951 ; Three N-terminal domains of the bacteriophage RB49 Highly Immunogenic Outer Capsid protein (Hoc) 1TTI ; 2.4 ; THREE NEW CRYSTAL STRUCTURES OF POINT MUTATION VARIANTS OF MONOTIM: CONFORMATIONAL FLEXIBILITY OF LOOP-1,LOOP-4 AND LOOP-8 1TTJ ; 2.4 ; THREE NEW CRYSTAL STRUCTURES OF POINT MUTATION VARIANTS OF MONOTIM: CONFORMATIONAL FLEXIBILITY OF LOOP-1,LOOP-4 AND LOOP-8 7UPW ; 2.7 ; Three RBD-down state of SARS-CoV-2 D614G spike in complex with the SP1-77 neutralizing antibody Fab fragment 7UPX ; 3.2 ; Three RBD-down state of SARS-CoV-2 D614G spike in complex with the SP1-77 neutralizing antibody Fab fragment (local refinement of the RBD and Fab variable domains) 5LP3 ; 10.5 ; Three tetrameric rings of Isoaspartyl Dipeptidase fitted in an EM volume. 1UCR ; 1.2 ; Three-dimensional crystal structure of dissimilatory sulfite reductase D (DsrD) 1IFA ; 2.6 ; THREE-DIMENSIONAL CRYSTAL STRUCTURE OF RECOMBINANT MURINE INTERFERON-BETA 264D ; 2.44 ; THREE-DIMENSIONAL CRYSTAL STRUCTURE OF THE A-TRACT DNA DODECAMER D(CGCAAATTTGCG) COMPLEXED WITH THE MINOR-GROOVE-BINDING DRUG HOECHST 33258 6KBV ; ; Three-dimensional cytoplasmic membrane-bound structure of VG16KRKP-KYE28 1COP ; ; THREE-DIMENSIONAL DIMER STRUCTURE OF THE LAMBDA-CRO REPRESSOR IN SOLUTION AS DETERMINED BY HETERONUCLEAR MULTIDIMENSIONAL NMR 4F8G ; 1.93 ; Three-dimensional DNA lattices with non-canonical base pairs 4F8I ; 2.0 ; Three-dimensional DNA lattices with non-canonical base pairs 3IYD ; 19.8 ; Three-dimensional EM structure of an intact activator-dependent transcription initiation complex 6KBO ; ; Three-dimensional LPS bound structure of VG16KRKP-KYE28. 2Y9J ; 6.4 ; THREE-DIMENSIONAL MODEL OF SALMONELLA'S NEEDLE COMPLEX AT SUBNANOMETER RESOLUTION 2Y9K ; 8.3 ; Three-dimensional model of Salmonella's needle complex at subnanometer resolution 2KJ7 ; ; Three-Dimensional NMR Structure of Rat Islet Amyloid Polypeptide in DPC micelles 1EPG ; ; THREE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE STRUCTURES OF MOUSE EPIDERMAL GROWTH FACTOR IN ACIDIC AND PHYSIOLOGICAL PH SOLUTIONS 1EPH ; ; THREE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE STRUCTURES OF MOUSE EPIDERMAL GROWTH FACTOR IN ACIDIC AND PHYSIOLOGICAL PH SOLUTIONS 1EPI ; ; THREE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE STRUCTURES OF MOUSE EPIDERMAL GROWTH FACTOR IN ACIDIC AND PHYSIOLOGICAL PH SOLUTIONS 1EPJ ; ; THREE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE STRUCTURES OF MOUSE EPIDERMAL GROWTH FACTOR IN ACIDIC AND PHYSIOLOGICAL PH SOLUTIONS 5GJE ; 21.0 ; Three-dimensional reconstruction of human LRP6 ectodomain complexed with Dkk1 4CAK ; 20.5 ; Three-dimensional reconstruction of intact human integrin alphaIIbbeta3 in a phospholipid bilayer nanodisc 6J12 ; ; Three-dimensional Solution NMR Structure of KYE28-PEG48 in Microgel 1BTA ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE AND 13C ASSIGNMENTS OF BARSTAR USING NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1BTB ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE AND 13C ASSIGNMENTS OF BARSTAR USING NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1NEA ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF A CURAREMIMETIC TOXIN FROM NAJA NIGRICOLLIS VENOM: A PROTON NMR AND MOLECULAR MODELING STUDY 1ZNF ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF A SINGLE ZINC FINGER DNA-BINDING DOMAIN 1MTQ ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF ALPHA-CONOTOXIN GID BY NMR SPECTROSCOPY 2PTL ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF AN IMMUNOGLOBULIN LIGHT CHAIN-BINDING DOMAIN OF PROTEIN L. COMPARISON WITH THE IGG-BINDING DOMAINS OF PROTEIN G 1MHI ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF AN INSULIN DIMER. A STUDY OF THE B9(ASP) MUTANT OF HUMAN INSULIN USING NUCLEAR MAGNETIC RESONANCE DISTANCE GEOMETRY AND RESTRAINED MOLECULAR DYNAMICS 1M31 ; ; Three-Dimensional Solution Structure of Apo-Mts1 1K2H ; ; Three-dimensional Solution Structure of apo-S100A1. 1OZO ; ; Three-dimensional solution structure of apo-S100P protein determined by NMR spectroscopy 1CB1 ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF CA2+-LOADED PORCINE CALBINDIN D9K DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1CLH ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF ESCHERICHIA COLI PERIPLASMIC CYCLOPHILIN 1BBN ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF HUMAN INTERLEUKIN-4 BY MULTI-DIMENSIONAL HETERONUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1BCN ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF HUMAN INTERLEUKIN-4 BY MULTI-DIMENSIONAL HETERONUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1F3K ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF OMEGA-CONOTOXIN TXVII, AN L-TYPE CALCIUM CHANNEL BLOCKER 1V4Q ; ; Three-dimensional solution structure of the analogue peptide of omega-conotoxin MVIIC 1FHB ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE CYANIDE ADDUCT OF A MET80ALA VARIANT OF SACCHAROMYCES CEREVISIAE ISO-1-CYTOCHROME C. IDENTIFICATION OF LIGAND-RESIDUE INTERACTIONS IN THE DISTAL HEME CAVITY 1BAL ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE E3-BINDING DOMAIN OF THE DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE CORE FROM THE 2-OXOGLUTARATE DEHYDROGENASE MULTIENZYME COMPLEX OF (ESCHERICHIA COLI) 1BBL ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE E3-BINDING DOMAIN OF THE DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE CORE FROM THE 2-OXOGLUTARATE DEHYDROGENASE MULTIENZYME COMPLEX OF ESCHERICHIA COLI 1ERG ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE EXTRACELLULAR REGION OF THE COMPLEMENT REGULATORY PROTEIN, CD59, A NEW CELL SURFACE PROTEIN DOMAIN RELATED TO NEUROTOXINS 1ERH ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE EXTRACELLULAR REGION OF THE COMPLEMENT REGULATORY PROTEIN, CD59, A NEW CELL SURFACE PROTEIN DOMAIN RELATED TO NEUROTOXINS 1AB2 ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE SRC HOMOLOGY 2 DOMAIN OF C-ABL 148D ; ; THREE-DIMENSIONAL SOLUTION STRUCTURE OF THE THROMBIN BINDING DNA APTAMER D(GGTTGGTGTGGTTGG) 1WQB ; ; Three-dimensional Solution Strucutre of Aptotoxin VII, from the venom of a Trap-door Spider 2MTS ; ; Three-Dimensional Structure and Interaction Studies of Hepatitis C Virus p7 in 1,2-Dihexanoyl-sn-glycero-3-phosphocholine by Solution Nuclear Magnetic Resonance 386D ; 1.8 ; THREE-DIMENSIONAL STRUCTURE AND REACTIVITY OF A PHOTOCHEMICAL CLEAVAGE AGENT BOUND TO DNA 1OG7 ; ; Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P. 1OHN ; ; Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P. 1BW3 ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF BARWIN, A PROTEIN FROM BARLEY SEED 1BW4 ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF BARWIN, A PROTEIN FROM BARLEY SEED 1TIN ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF CUCURBITA MAXIMA TRYPSIN INHIBITOR-V DETERMINED BY NMR SPECTROSCOPY 1ANS ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF NEUROTOXIN III FROM THE SEA ANEMONE ANEMONIA SULCATA 6OTA ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF THE RIBBON DISULFIDE ISOMER OF THE NICOTINIC ACETYLCHOLINE RECEPTOR ANTAGONIST ALPHA-CONOTOXIN TxIA 1FU3 ; ; THREE-DIMENSIONAL STRUCTURE IN SOLUTION OF THE SODIUM CHANNEL AGONIST/ANTAGONIST DELTA-CONOTOXIN TXVIA 1BHA ; ; THREE-DIMENSIONAL STRUCTURE OF (1-71) BACTERIOOPSIN SOLUBILIZED IN METHANOL-CHLOROFORM AND SDS MICELLES DETERMINED BY 15N-1H HETERONUCLEAR NMR SPECTROSCOPY 1BHB ; ; Three-dimensional structure of (1-71) bacterioopsin solubilized in methanol-chloroform and SDS micelles determined by 15N-1H heteronuclear NMR spectroscopy 1BVQ ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF 4-HYDROXYBENZOYL COA THIOESTERASE FROM PSEUDOMONAS SP. STRAIN CBS-3. 2WBL ; 2.9 ; Three-dimensional structure of a binary ROP-PRONE complex 1HCC ; ; THREE-DIMENSIONAL STRUCTURE OF A COMPLEMENT CONTROL PROTEIN MODULE IN SOLUTION 1D2Z ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF A COMPLEX BETWEEN THE DEATH DOMAINS OF PELLE AND TUBE 1LDL ; ; THREE-DIMENSIONAL STRUCTURE OF A CYSTEINE-RICH REPEAT FROM THE LOW-DENSITY LIPOPROTEIN RECEPTOR 4FAB ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF A FLUORESCEIN-FAB COMPLEX CRYSTALLIZED IN 2-METHYL-2,4-PENTANEDIOL 7MS2 ; 2.04 ; Three-dimensional structure of a GH3 Beta-glucosidase from Clostridium thermocellum in complex with glycerol 1HMH ; 2.6 ; THREE-DIMENSIONAL STRUCTURE OF A HAMMERHEAD RIBOZYME 1JHL ; 2.4 ; THREE-DIMENSIONAL STRUCTURE OF A HETEROCLITIC ANTIGEN-ANTIBODY CROSS-REACTION COMPLEX 1IPD ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF A HIGHLY THERMOSTABLE ENZYME, 3-ISOPROPYLMALATE DEHYDROGENASE OF THERMUS THERMOPHILUS AT 2.2 ANGSTROMS RESOLUTION 1AQK ; 1.84 ; THREE-DIMENSIONAL STRUCTURE OF A HUMAN FAB WITH HIGH AFFINITY FOR TETANUS TOXOID 1MCO ; 3.2 ; THREE-DIMENSIONAL STRUCTURE OF A HUMAN IMMUNOGLOBULIN WITH A HINGE DELETION 1MCW ; 3.5 ; THREE-DIMENSIONAL STRUCTURE OF A HYBRID LIGHT CHAIN DIMER. PROTEIN ENGINEERING OF A BINDING CAVITY 1I3V ; 2.03 ; THREE-DIMENSIONAL STRUCTURE OF A LAMA VHH DOMAIN UNLIGANDED 2MCG ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF A LIGHT CHAIN DIMER CRYSTALLIZED IN WATER. CONFORMATIONAL FLEXIBILITY OF A MOLECULE IN TWO CRYSTAL FORMS 3MCG ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF A LIGHT CHAIN DIMER CRYSTALLIZED IN WATER. CONFORMATIONAL FLEXIBILITY OF A MOLECULE IN TWO CRYSTAL FORMS 1I3U ; 1.95 ; THREE-DIMENSIONAL STRUCTURE OF A LLAMA VHH DOMAIN COMPLEXED WITH THE DYE RR1 1SJX ; 2.2 ; Three-Dimensional Structure of a Llama VHH Domain OE7 binding the cell wall protein Malf1 1SJV ; 1.94 ; Three-Dimensional Structure of a Llama VHH Domain Swapping 1DQ7 ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF A NEUROTOXIN FROM RED SCORPION (BUTHUS TAMULUS) AT 2.2A RESOLUTION. 1DPY ; 2.45 ; THREE-DIMENSIONAL STRUCTURE OF A NOVEL PHOSPHOLIPASE A2 FROM INDIAN COMMON KRAIT AT 2.45 A RESOLUTION 3GSH ; 1.8 ; Three-dimensional structure of a post translational modified barley LTP1 1HPT ; 2.3 ; THREE-DIMENSIONAL STRUCTURE OF A RECOMBINANT VARIANT OF HUMAN PANCREATIC SECRETORY TRYPSIN INHIBITOR (KAZAL TYPE) 1TA0 ; 2.1 ; Three-dimensional structure of a RNA-polymerase II binding protein with associated ligand. 1T9Z ; 2.3 ; Three-dimensional structure of a RNA-polymerase II binding protein. 1P4B ; 2.35 ; Three-Dimensional Structure Of a Single Chain Fv Fragment Complexed With The peptide GCN4(7P-14P). 1SIV ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF A SIV PROTEASE(SLASH)INHIBITOR COMPLEX. IMPLICATIONS FOR THE DESIGN OF HIV-1 AND HIV-2 PROTEASE INHIBITORS 1GGT ; 2.65 ; THREE-DIMENSIONAL STRUCTURE OF A TRANSGLUTAMINASE: HUMAN BLOOD COAGULATION FACTOR XIII 2KZH ; ; Three-dimensional structure of a truncated phosphoribosylanthranilate isomerase (residues 255-384) from Escherichia coli 4UZU ; 1.9 ; Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus alpha-amylase at 1.9 A resolution 1APS ; ; THREE-DIMENSIONAL STRUCTURE OF ACYLPHOSPHATASE. REFINEMENT AND STRUCTURE ANALYSIS 6HY3 ; 1.3 ; Three-dimensional structure of AgaC from Zobellia galactanivorans 7ZPF ; 2.54 ; Three-dimensional structure of AIP56, a short-trip single chain AB toxin from Photobacterium damselae subsp. piscicida. 1M2C ; ; THREE-DIMENSIONAL STRUCTURE OF ALPHA-CONOTOXIN MII, NMR, 14 STRUCTURES 1DBA ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF AN ANTI-STEROID FAB' AND PROGESTERONE-FAB' COMPLEX 1DBB ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF AN ANTI-STEROID FAB' AND PROGESTERONE-FAB' COMPLEX 1JVK ; 1.94 ; THREE-DIMENSIONAL STRUCTURE OF AN IMMUNOGLOBULIN LIGHT CHAIN DIMER ACTING AS A LETHAL AMYLOID PRECURSOR 6Z2T ; 1.34 ; Three-dimensional structure of an influenza hemagglutinin LAH protein in its post-fusion conformation 1H8S ; 2.4 ; Three-dimensional structure of anti-ampicillin single chain Fv fragment complexed with the hapten. 1H8N ; 1.87 ; Three-dimensional structure of anti-ampicillin single chain Fv fragment from phage-displayed murine antibody libraries 1H8O ; 2.75 ; Three-dimensional structure of anti-ampicillin single chain Fv fragment. 1CIX ; ; THREE-DIMENSIONAL STRUCTURE OF ANTIMICROBIAL PEPTIDE TACHYSTATIN A ISOLATED FROM HORSESHOE CRAB 2HVP ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF ASPARTYL PROTEASE FROM HUMAN IMMUNODEFICIENCY VIRUS HIV-1 2A8E ; 2.5 ; Three-dimensional structure of Bacillus subtilis Q45498 putative protein at resolution 2.5A. Northeast Structural Genomics Consortium target SR204. 1BRL ; 2.4 ; THREE-DIMENSIONAL STRUCTURE OF BACTERIAL LUCIFERASE FROM VIBRIO HARVEYI AT 2.4 ANGSTROMS RESOLUTION 1FIW ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF BETA-ACROSIN FROM RAM SPERMATOZOA 1BOM ; ; THREE-DIMENSIONAL STRUCTURE OF BOMBYXIN-II, AN INSULIN-RELATED BRAIN-SECRETORY PEPTIDE OF THE SILKMOTH BOMBYX MORI: COMPARISON WITH INSULIN AND RELAXIN 1BON ; ; THREE-DIMENSIONAL STRUCTURE OF BOMBYXIN-II, AN INSULIN-RELATED BRAIN-SECRETORY PEPTIDE OF THE SILKMOTH BOMBYX MORI: COMPARISON WITH INSULIN AND RELAXIN 1BUC ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF BUTYRYL-COA DEHYDROGENASE FROM MEGASPHAERA ELSDENII 2MPX ; ; Three-dimensional structure of CAP-GLY DOMAIN ASSEMBLED ON MICROTUBULES DETERMINED BY MAS NMR SPECTROSCOPY 4CAT ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF CATALASE FROM PENICILLIUM VITALE AT 2.0 ANGSTROMS RESOLUTION 3CBH ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF CELLOBIOHYDROLASE FROM TRICHODERMA REESEI 2CHY ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF CHEY, THE RESPONSE REGULATOR OF BACTERIAL CHEMOTAXIS 2GMT ; 1.8 ; THREE-DIMENSIONAL STRUCTURE OF CHYMOTRYPSIN INACTIVATED WITH (2S) N-ACETYL-L-ALANYL-L-PHENYLALANYL-CHLOROETHYL KETONE: IMPLICATIONS FOR THE MECHANISM OF INACTIVATION OF SERINE PROTEASES BY CHLOROKETONES 1GSS ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF CLASS PI GLUTATHIONE S-TRANSFERASE FROM HUMAN PLACENTA IN COMPLEX WITH S-HEXYLGLUTATHIONE AT 2.8 ANGSTROMS RESOLUTION 1JHP ; 2.2 ; Three-dimensional Structure of CobT in Complex with 5-methoxybenzimidazole 1JHM ; 2.2 ; Three-dimensional Structure of CobT in Complex with 5-methylbenzimidazole 1JHU ; 2.0 ; Three-dimensional Structure of CobT in Complex with p-cresol 1JHV ; 2.0 ; Three-dimensional Structure of CobT in Complex with p-cresol and Nicotinate 1JHX ; 2.0 ; Three-dimensional Structure of CobT in Complex with Phenol 1JHY ; 2.0 ; Three-dimensional Structure of CobT in Complex with Phenol and Nicotinate 1JHR ; 2.0 ; Three-dimensional Structure of CobT in Complex with Reaction Products of 2-hydroxypurine and NaMN 1JHQ ; 2.0 ; Three-dimensional Structure of CobT in Complex with Reaction Products of 5-methoxybenzimidazole and NaMN 1JHO ; 2.0 ; Three-dimensional Structure of CobT in Complex with the Reaction Products of 5-methylbenzimidazole and NaMN 1SRD ; 2.0 ; Three-dimensional structure of CU,ZN-superoxide dismutase from spinach at 2.0 Angstroms resolution 1YMC ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF CYANOMET-SULFMYOGLOBIN C 2N8E ; ; Three-dimensional structure of cyclic PVIIA 3ANA ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF D(GGGATCCC) IN THE CRYSTALLINE STATE 1CF2 ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM THE HYPERTHERMOPHILIC ARCHAEON METHANOTHERMUS FERVIDUS 4CAU ; 7.0 ; THREE-DIMENSIONAL STRUCTURE OF DENGUE VIRUS SEROTYPE 1 COMPLEXED WITH 2 HMAB 14C10 FAB 3J05 ; 7.0 ; Three-dimensional structure of Dengue virus serotype 1 complexed with HMAb 14c10 Fab 1HMC ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF DIMERIC HUMAN RECOMBINANT MACROPHAGE COLONY STIMULATING FACTOR 1YF2 ; 2.4 ; Three-dimensional structure of DNA sequence specificity (S) subunit of a type I restriction-modification enzyme and its functional implications 1DIH ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF E. COLI DIHYDRODIPICOLINATE REDUCTASE 1CLC ; 1.9 ; THREE-DIMENSIONAL STRUCTURE OF ENDOGLUCANASE D AT 1.9 ANGSTROMS RESOLUTION 1SRX ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF ESCHERICHIA COLI THIOREDOXIN-S2 TO 2.8 ANGSTROMS RESOLUTION 1RN1 ; 1.84 ; THREE-DIMENSIONAL STRUCTURE OF GLN 25-RIBONUCLEASE T1 AT 1.84 ANGSTROMS RESOLUTION: STRUCTURAL VARIATIONS AT THE BASE RECOGNITION AND CATALYTIC SITES 1AL8 ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF GLYCOLATE OXIDASE WITH BOUND ACTIVE-SITE INHIBITORS 3RY5 ; 2.3 ; Three-dimensional structure of glycosylated fcgammariia (high-responder polymorphism) 2FGF ; 1.77 ; THREE-DIMENSIONAL STRUCTURE OF HUMAN BASIC FIBROBLAST GROWTH FACTOR, A STRUCTURAL HOMOLOG OF INTERLEUKIN 1BETA 8OO8 ; 1.4 ; Three-Dimensional Structure of Human Carbonic Anhydrase II in Complex with a Covalent Inhibitor 1EFV ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF HUMAN ELECTRON TRANSFER FLAVOPROTEIN TO 2.1 A RESOLUTION 2KG4 ; ; Three-dimensional structure of human Gadd45alpha in solution by NMR 1BQT ; ; THREE-DIMENSIONAL STRUCTURE OF HUMAN INSULIN-LIKE GROWTH FACTOR-I (IGF-I) DETERMINED BY 1H-NMR AND DISTANCE GEOMETRY, 6 STRUCTURES 2M5V ; ; Three-dimensional structure of human NLRP10/PYNOD pyrin domain 1NNA ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF INFLUENZA A N9 NEURAMINIDASE AND ITS COMPLEX WITH THE INHIBITOR 2-DEOXY 2,3-DEHYDRO-N-ACETYL NEURAMINIC ACID 1NNB ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF INFLUENZA A N9 NEURAMINIDASE AND ITS COMPLEX WITH THE INHIBITOR 2-DEOXY 2,3-DEHYDRO-N-ACETYL NEURAMINIC ACID 1IL8 ; ; THREE-DIMENSIONAL STRUCTURE OF INTERLEUKIN 8 IN SOLUTION 2IL8 ; ; THREE-DIMENSIONAL STRUCTURE OF INTERLEUKIN 8 IN SOLUTION 7ADH ; 3.2 ; THREE-DIMENSIONAL STRUCTURE OF ISONICOTINIMIDYLATED LIVER ALCOHOL DEHYDROGENASE 1RW2 ; ; Three-dimensional structure of Ku80 CTD 5K50 ; 2.26 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei bound to NAD+ and L-allo-threonine refined to 2.23 angstroms 5K4V ; 2.2 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei bound to NAD+ refined to 2.2 angstroms 5K4Q ; 2.3 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei bound to NAD+ refined to 2.3 angstroms 5K4W ; 1.72 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei bound to NADH and L-threonine refined to 1.72 angstroms 5K4Y ; 1.77 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei refined to 1.77 angstroms 5K4T ; 2.1 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei refined to 2.1 angstroms 5K4U ; 1.9 ; Three-dimensional structure of L-threonine 3-dehydrogenase from Trypanosoma brucei showing different active site loop conformations between dimer subunits, refined to 1.9 angstroms 3AX4 ; 2.613 ; Three-dimensional structure of lectin from Dioclea violacea and comparative vasorelaxant effects with Dioclea rostrata 1BOU ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF LIGAB 1LPF ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF LIPOAMIDE DEHYDROGENASE FROM PSEUDOMONAS FLUORESCENS AT 2.8 ANGSTROMS RESOLUTION. ANALYSIS OF REDOX AND THERMOSTABILITY PROPERTIES 6FAB ; 1.9 ; THREE-DIMENSIONAL STRUCTURE OF MURINE ANTI-P-AZOPHENYLARSONATE FAB 36-71. 1. X-RAY CRYSTALLOGRAPHY, SITE-DIRECTED MUTAGENESIS, AND MODELING OF THE COMPLEX WITH HAPTEN 3GXV ; 2.2 ; Three-dimensional structure of N-terminal domain of DnaB Helicase from Helicobacter pylori and its interactions with primase 1AMO ; 2.6 ; THREE-DIMENSIONAL STRUCTURE OF NADPH-CYTOCHROME P450 REDUCTASE: PROTOTYPE FOR FMN-AND FAD-CONTAINING ENZYMES 1H2R ; 1.4 ; THREE-DIMENSIONAL STRUCTURE OF NI-FE HYDROGENASE FROM DESULFIVIBRIO VULGARIS MIYAZAKI F IN THE REDUCED FORM AT 1.4 A RESOLUTION 4BWT ; 1.76 ; Three-dimensional structure of Paracoccus pantotrophus pseudoazurin at pH 6.5 1FIY ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF PHOSPHOENOLPYRUVATE CARBOXYLASE FROM ESCHERICHIA COLI AT 2.8 A RESOLUTION 1PTA ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF PHOSPHOTRIESTERASE: AN ENZYME CAPABLE OF DETOXIFYING ORGANOPHOSPHATE NERVE AGENTS 1C5A ; ; THREE-DIMENSIONAL STRUCTURE OF PORCINE C5ADES*ARG FROM 1H NUCLEAR MAGNETIC RESONANCE DATA 1NSA ; 2.3 ; THREE-DIMENSIONAL STRUCTURE OF PORCINE PROCARBOXYPEPTIDASE B: A STRUCTURAL BASIS OF ITS INACTIVITY 1BZO ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF PROKARYOTIC CU,ZN SUPEROXIDE DISMUTASE FROM P.LEIOGNATHI, SOLVED BY X-RAY CRYSTALLOGRAPHY. 3PE5 ; 2.381 ; Three-dimensional Structure of protein A7VV38_9CLOT from Clostridium leptum DSM 753, Northeast Structural Genomics Consortium Target QlR103 3P51 ; 2.056 ; Three-dimensional structure of protein Q2Y8N9_NITMU from nitrosospira multiformis, Northeast structural genomics consortium target NMR118 1BCT ; ; THREE-DIMENSIONAL STRUCTURE OF PROTEOLYTIC FRAGMENT 163-231 OF BACTERIOOPSIN DETERMINED FROM NUCLEAR MAGNETIC RESONANCE DATA IN SOLUTION 2MRB ; ; THREE-DIMENSIONAL STRUCTURE OF RABBIT LIVER CD-7 METALLOTHIONEIN-2A IN AQUEOUS SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE 1MRB ; ; THREE-DIMENSIONAL STRUCTURE OF RABBIT LIVER CD7 METALLOTHIONEIN-2A IN AQUEOUS SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE 1RPA ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF RAT ACID PHOSPHATASE IN COMPLEX WITH L(+) TARTRATE 1RAL ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF RAT LIVER 3ALPHA-HYDROXYSTEROID(SLASH)DIHYDRODIOL DEHYDROGENASE: A MEMBER OF THE ALDO-KETO REDUCTASE SUPERFAMILY 1RLA ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF RAT LIVER ARGINASE, THE BINUCLEAR MANGANESE METALLOENZYME OF THE UREA CYCLE 1CSG ; 2.7 ; Three-dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor 1HIG ; 3.5 ; THREE-DIMENSIONAL STRUCTURE OF RECOMBINANT HUMAN INTERFERON-GAMMA. 2HMB ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF RECOMBINANT HUMAN MUSCLE FATTY ACID-BINDING PROTEIN 1REC ; 1.9 ; THREE-DIMENSIONAL STRUCTURE OF RECOVERIN, A CALCIUM SENSOR IN VISION 2RNT ; 1.8 ; THREE-DIMENSIONAL STRUCTURE OF RIBONUCLEASE T1 COMPLEXED WITH GUANYLYL-2(PRIME),5(PRIME)-GUANOSINE AT 1.8 ANGSTROMS RESOLUTION 1B2M ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF RIBONULCEASE T1 COMPLEXED WITH AN ISOSTERIC PHOSPHONATE ANALOGUE OF GPU: ALTERNATE SUBSTRATE BINDING MODES AND CATALYSIS. 1SAX ; 2.8 ; Three-dimensional structure of s.aureus methicillin-resistance regulating transcriptional repressor meci in complex with 25-bp ds-DNA 1OKR ; 2.4 ; Three-dimensional structure of S.aureus methicillin-resistance regulating transcriptional repressor MecI. 1BTC ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF SOYBEAN BETA-AMYLASE DETERMINED AT 3.0 ANGSTROMS RESOLUTION: PRELIMINARY CHAIN TRACING OF THE COMPLEX WITH ALPHA-CYCLODEXTRIN 1BBI ; ; THREE-DIMENSIONAL STRUCTURE OF SOYBEAN TRYPSIN(SLASH)CHYMOTRYPSIN BOWMAN-BIRK INHIBITOR IN SOLUTION 2BBI ; ; THREE-DIMENSIONAL STRUCTURE OF SOYBEAN TRYPSIN(SLASH)CHYMOTRYPSIN BOWMAN-BIRK INHIBITOR IN SOLUTION 1TDT ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF TETRAHYDRODIPICOLINATE-N-SUCCINYLTRANSFERASE 1KAP ; 1.64 ; THREE-DIMENSIONAL STRUCTURE OF THE ALKALINE PROTEASE OF PSEUDOMONAS AERUGINOSA: A TWO-DOMAIN PROTEIN WITH A CALCIUM BINDING PARALLEL BETA ROLL MOTIF 1APO ; ; THREE-DIMENSIONAL STRUCTURE OF THE APO FORM OF THE N-TERMINAL EGF-LIKE MODULE OF BLOOD COAGULATION FACTOR X AS DETERMINED BY NMR SPECTROSCOPY AND SIMULATED FOLDING 3HSC ; 1.93 ; THREE-DIMENSIONAL STRUCTURE OF THE ATPASE FRAGMENT OF A 70K HEAT-SHOCK COGNATE PROTEIN 2POL ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE BETA SUBUNIT OF ESCHERICHIA COLI DNA POLYMERASE III HOLOENZYME: A SLIDING DNA CLAMP 1PII ; 2.0 ; THREE-DIMENSIONAL STRUCTURE OF THE BIFUNCTIONAL ENZYME PHOSPHORIBOSYLANTHRANILATE ISOMERASE: INDOLEGLYCEROLPHOSPHATE SYNTHASE FROM ESCHERICHIA COLI REFINED AT 2.0 ANGSTROMS RESOLUTION 1BNC ; 2.4 ; THREE-DIMENSIONAL STRUCTURE OF THE BIOTIN CARBOXYLASE SUBUNIT OF ACETYL-COA CARBOXYLASE 2MLK ; ; Three-dimensional structure of the C-terminal DNA-binding domain of RstA protein from Klebsiella pneumoniae 4ORS ; 1.4 ; Three-dimensional structure of the C65A mutant of Human lipocalin-type Prostaglandin D Synthase apo-form 4ORU ; 1.55 ; Three-dimensional structure of the C65A mutant of Human lipocalin-type Prostaglandin D Synthase holo-form second space group 4ORW ; 1.664 ; Three-dimensional structure of the C65A-K59A double mutant of Human lipocalin-type Prostaglandin D Synthase apo-form 4ORY ; 1.8 ; Three-dimensional structure of the C65A-K59A double mutant of Human lipocalin-type Prostaglandin D Synthase holo, second crystal form 4ORX ; 1.6 ; Three-dimensional structure of the C65A-K59A double mutant of Human lipocalin-type Prostaglandin D Synthase holo-form 4OS3 ; 1.4 ; Three-dimensional structure of the C65A-W112F double mutant of Human lipocalin-type Prostaglandin D Synthase apo-form 4OS0 ; 1.75 ; Three-dimensional structure of the C65A-W54F double mutant of Human lipocalin-type Prostaglandin D Synthase apo-form 4OS8 ; 1.69 ; Three-dimensional structure of the C65A-W54F-W112F triple mutant of Human lipocalin-type Prostaglandin D Synthase apo-form 1RH8 ; ; Three-dimensional structure of the calcium-free Piccolo C2A-domain 1UBH ; 1.35 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBJ ; 1.35 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBK ; 1.18 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBL ; 1.2 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBM ; 1.4 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBO ; 1.35 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBR ; 1.34 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBT ; 1.34 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1UBU ; 1.35 ; Three-dimensional Structure of The Carbon Monoxide Complex of [NiFe]hydrogenase From Desulufovibrio vulgaris Miyazaki F 1ACA ; ; THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX BETWEEN ACYL-COENZYME A BINDING PROTEIN AND PALMITOYL-COENZYME A 1TGS ; 1.8 ; THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX BETWEEN PANCREATIC SECRETORY INHIBITOR (KAZAL TYPE) AND TRYPSINOGEN AT 1.8 ANGSTROMS RESOLUTION. STRUCTURE SOLUTION, CRYSTALLOGRAPHIC REFINEMENT AND PRELIMINARY STRUCTURAL INTERPRETATION 1FPT ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF THE COMPLEX BETWEEN THE FAB FRAGMENT OF AN NEUTRALIZING ANTIBODY FOR TYPE 1 POLIOVIRUS AND ITS VIRAL EPITOPE 1CGI ; 2.3 ; THREE-DIMENSIONAL STRUCTURE OF THE COMPLEXES BETWEEN BOVINE CHYMOTRYPSINOGEN*A AND TWO RECOMBINANT VARIANTS OF HUMAN PANCREATIC SECRETORY TRYPSIN INHIBITOR (KAZAL-TYPE) 1CGJ ; 2.3 ; THREE-DIMENSIONAL STRUCTURE OF THE COMPLEXES BETWEEN BOVINE CHYMOTRYPSINOGEN*A AND TWO RECOMBINANT VARIANTS OF HUMAN PANCREATIC SECRETORY TRYPSIN INHIBITOR (KAZAL-TYPE) 1KIL ; 2.3 ; Three-dimensional structure of the complexin/SNARE complex 2LAM ; ; Three-dimensional structure of the cyclotide Cter M 1AJA ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE D153G MUTANT OF E. COLI ALKALINE PHOSPHATASE: A MUTANT WITH WEAKER MAGNESIUM BINDING AND INCREASED CATALYTIC ACTIVITY 1AJB ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE D153G MUTANT OF E. COLI ALKALINE PHOSPHATASE: A MUTANT WITH WEAKER MAGNESIUM BINDING AND INCREASED CATALYTIC ACTIVITY 1AJC ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE D153G MUTANT OF E. COLI ALKALINE PHOSPHATASE: A MUTANT WITH WEAKER MAGNESIUM BINDING AND INCREASED CATALYTIC ACTIVITY 1AJD ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE D153G MUTANT OF E. COLI ALKALINE PHOSPHATASE: A MUTANT WITH WEAKER MAGNESIUM BINDING AND INCREASED CATALYTIC ACTIVITY 4GVW ; 2.113 ; Three-dimensional structure of the de novo designed serine hydrolase 2bfq_3, Northeast Structural Genomics Consortium (NESG) Target OR248 1EZM ; 1.5 ; THREE-DIMENSIONAL STRUCTURE OF THE ELASTASE OF PSEUDOMONAS AERUGINOSA AT 1.5 ANGSTROMS RESOLUTION 1F3G ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF THE ESCHERICHIA COLI PHOSPHOCARRIER PROTEIN III GLC 4N8C ; 1.6 ; Three-dimensional structure of the extracellular domain of Matrix protein 2 of influenza A virus 1GLV ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF THE GLUTATHIONE SYNTHETASE FROM ESCHERICHIA COLI B AT 2.0 ANGSTROMS RESOLUTION 2BW3 ; 2.0 ; Three-dimensional structure of the Hermes DNA transposase 1L9M ; 2.1 ; Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions change structure for activation 1L9N ; 2.1 ; Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions change structure for activation 2HX0 ; 1.55 ; Three-dimensional structure of the hypothetical protein from Salmonella cholerae-suis (aka Salmonella enterica) at the resolution 1.55 A. Northeast Structural Genomics target ScR59. 1LEP ; 3.5 ; THREE-DIMENSIONAL STRUCTURE OF THE IMMUNODOMINANT HEAT-SHOCK PROTEIN CHAPERONIN-10 OF MYCOBACTERIUM LEPRAE 5M85 ; 2.1 ; Three-dimensional structure of the intermediate state of GAF3 from Slr1393 of Synechocystis sp. PCC6803 4BWU ; 1.76 ; Three-dimensional structure of the K109A mutant of Paracoccus pantotrophus pseudoazurin at pH 5.5 1LPE ; 2.25 ; THREE-DIMENSIONAL STRUCTURE OF THE LDL RECEPTOR-BINDING DOMAIN OF HUMAN APOLIPOPROTEIN E 1LAB ; ; THREE-DIMENSIONAL STRUCTURE OF THE LIPOYL DOMAIN FROM BACILLUS STEAROTHERMOPHILUS PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1LAC ; ; THREE-DIMENSIONAL STRUCTURE OF THE LIPOYL DOMAIN FROM BACILLUS STEAROTHERMOPHILUS PYRUVATE DEHYDROGENASE MULTIENZYME COMPLEX 1CEK ; ; THREE-DIMENSIONAL STRUCTURE OF THE MEMBRANE-EMBEDDED M2 CHANNEL-LINING SEGMENT FROM THE NICOTINIC ACETYLCHOLINE RECEPTOR BY SOLID-STATE NMR SPECTROSCOPY 1FTP ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF THE MUSCLE FATTY-ACID-BINDING PROTEIN ISOLATED FROM THE DESERT LOCUST, SCHISTOCERCA GREGARIA 4BXV ; 1.76 ; Three-dimensional structure of the mutant K109A of Paracoccus pantotrophus pseudoazurin at pH 7.0 2L6A ; ; Three-dimensional structure of the N-terminal effector PYRIN domain of NLRP12 1NN2 ; 2.2 ; THREE-DIMENSIONAL STRUCTURE OF THE NEURAMINIDASE OF INFLUENZA VIRUS A(SLASH)TOKYO(SLASH)3(SLASH)67 AT 2.2 ANGSTROMS RESOLUTION 1ATX ; ; THREE-DIMENSIONAL STRUCTURE OF THE NEUROTOXIN ATX IA FROM ANEMONIA SULCATA IN AQUEOUS SOLUTION DETERMINED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 1WUH ; 1.24 ; Three-Dimensional Structure Of The Ni-A State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 1WUJ ; 1.4 ; Three-Dimensional Structure Of The Ni-B State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 2WC1 ; 2.17 ; Three-dimensional Structure of the Nitrogen Fixation Flavodoxin (NifF) from Rhodobacter capsulatus at 2.2 A 4KY3 ; 2.964 ; Three-dimensional Structure of the orthorhombic crystal of computationally designed insertion domain , Northeast Structural Genomics Consortium (NESG) Target OR327 1EQ8 ; ; THREE-DIMENSIONAL STRUCTURE OF THE PENTAMERIC HELICAL BUNDLE OF THE ACETYLCHOLINE RECEPTOR M2 TRANSMEMBRANE SEGMENT 7QAL ; ; Three-dimensional structure of the PGAM5 C12L mutant TMD 7QAO ; ; Three-dimensional structure of the PGAM5 C12S mutant TMD 7QAP ; ; Three-dimensional structure of the PGAM5 G17L mutant TMD 7QAM ; ; Three-dimensional structure of the PGAM5 WT TMD 2QGU ; 1.5 ; Three-dimensional structure of the phospholipid-binding protein from Ralstonia solanacearum Q8XV73_RALSQ in complex with a phospholipid at the resolution 1.53 A. Northeast Structural Genomics Consortium target RsR89 5M82 ; 1.86 ; Three-dimensional structure of the photoproduct state of GAF3 from Slr1393 of Synechocystis sp. PCC6803 1LSG ; 2.4 ; THREE-DIMENSIONAL STRUCTURE OF THE PLATELET INTEGRIN RECOGNITION SEGMENT OF THE FIBRINOGEN GAMMA CHAIN OBTAINED BY CARRIER PROTEIN-DRIVEN CRYSTALLIZATION 4FDB ; 1.8 ; Three-dimensional structure of the protein prib from ralstonia solanacearum at the resolution 1.8a. northeast structural genomics consortium target rsr213c 3EN2 ; 2.3 ; Three-dimensional structure of the protein priB from Ralstonia solanacearum at the resolution 2.3A. Northeast Structural Genomics Consortium target RsR213C. 3CNW ; 2.48 ; Three-dimensional structure of the protein XoxI (Q81AY6) from Bacillus cereus. Northeast Structural Genomics Consortium target BcR196. 1EVI ; 2.5 ; THREE-DIMENSIONAL STRUCTURE OF THE PURPLE INTERMEDIATE OF PORCINE KIDNEY D-AMINO ACID OXIDASE 3OTL ; 1.901 ; Three-dimensional Structure of the putative uncharacterized protein from Rhizobium leguminosarum at the resolution 1.9A, Northeast Structural Genomics Consortium Target RlR261 1H0M ; 3.0 ; Three-dimensional structure of the quorum sensing protein TraR bound to its autoinducer and to its target DNA 1DRS ; ; THREE-DIMENSIONAL STRUCTURE OF THE RGD-CONTAINING NEUROTOXIN HOMOLOGUE, DENDROASPIN 1K5W ; ; THREE-DIMENSIONAL STRUCTURE OF THE SYNAPTOTAGMIN 1 C2B-DOMAIN: SYNAPTOTAGMIN 1 AS A PHOSPHOLIPID BINDING MACHINE 1AVD ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF THE TETRAGONAL CRYSTAL FORM OF EGG-WHITE AVIDIN IN ITS FUNCTIONAL COMPLEX WITH BIOTIN AT 2.7 ANGSTROMS RESOLUTION 2GOF ; ; Three-dimensional structure of the trans-membrane domain of Vpu from HIV-1 in aligned phospholipid bicelles 2GOH ; ; Three-dimensional Structure of the Trans-membrane Domain of Vpu from HIV-1 in Aligned Phospholipid Bicelles 2JUI ; ; Three-Dimensional Structure of the two Peptides that Constitute the Two-Peptide Bacteriocin Plantaracin EF 2RLW ; ; Three-Dimensional Structure of the two Peptides that Constitute the Two-Peptide Bacteriocin Plantaracin EF 1DPM ; 2.1 ; THREE-DIMENSIONAL STRUCTURE OF THE ZINC-CONTAINING PHOSPHOTRIESTERASE WITH BOUND SUBSTRATE ANALOG DIETHYL 4-METHYLBENZYLPHOSPHONATE 1EZ2 ; 1.9 ; THREE-DIMENSIONAL STRUCTURE OF THE ZINC-CONTAINING PHOSPHOTRIESTERASE WITH BOUND SUBSTRATE ANALOG DIISOPROPYLMETHYL PHOSPHONATE. 1EYW ; 1.9 ; THREE-DIMENSIONAL STRUCTURE OF THE ZINC-CONTAINING PHOSPHOTRIESTERASE WITH BOUND SUBSTRATE ANALOG TRIETHYLPHOSPHATE 1CTX ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF THE-LONG-NEUROTOXIN FROM COBRA VENOM 1TMF ; 3.5 ; THREE-DIMENSIONAL STRUCTURE OF THEILER MURINE ENCEPHALOMYELITIS VIRUS (BEAN STRAIN) 1TME ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF THEILER VIRUS 1TPT ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF THYMIDINE PHOSPHORYLASE FROM ESCHERICHIA COLI AT 2.8 ANGSTROMS RESOLUTION 4KYZ ; 2.492 ; Three-dimensional structure of triclinic form of de novo design insertion domain, Northeast Structural Genomics Consortium (NESG) Target OR327 1FAI ; 2.7 ; THREE-DIMENSIONAL STRUCTURE OF TWO CRYSTAL FORMS OF FAB R19.9, FROM A MONOCLONAL ANTI-ARSONATE ANTIBODY 2F19 ; 2.8 ; THREE-DIMENSIONAL STRUCTURE OF TWO CRYSTAL FORMS OF FAB R19.9, FROM A MONOCLONAL ANTI-ARSONATE ANTIBODY 1XSO ; 1.49 ; THREE-DIMENSIONAL STRUCTURE OF XENOPUS LAEVIS CU,ZN SUPEROXIDE DISMUTASE B DETERMINED BY X-RAY CRYSTALLOGRAPHY AT 1.5 ANGSTROMS RESOLUTION 1R9G ; 2.5 ; Three-dimensional Structure of YaaE from Bacillus subtilis 1VTQ ; 3.0 ; THREE-DIMENSIONAL STRUCTURE OF YEAST T-RNA-ASP. I. STRUCTURE DETERMINATION 1GSQ ; 2.4 ; THREE-DIMENSIONAL STRUCTURE, CATALYTIC PROPERTIES AND EVOLUTION OF A SIGMA CLASS GLUTATHIONE TRANSFERASE FROM SQUID, A PROGENITOR OF THE LENS-CRYSTALLINS OF CEPHALOPODS 1AGP ; 2.3 ; THREE-DIMENSIONAL STRUCTURES AND PROPERTIES OF A TRANSFORMING AND A NONTRANSFORMING GLY-12 MUTANT OF P21-H-RAS 821P ; 1.5 ; THREE-DIMENSIONAL STRUCTURES AND PROPERTIES OF A TRANSFORMING AND A NONTRANSFORMING GLYCINE-12 MUTANT OF P21H-RAS 6DUL ; ; Three-Dimensional Structures for mastoparano-L 6DUU ; ; Three-Dimensional Structures for mastoparano-MO 1BAR ; 2.7 ; THREE-DIMENSIONAL STRUCTURES OF ACIDIC AND BASIC FIBROBLAST GROWTH FACTORS 1BAS ; 1.9 ; THREE-DIMENSIONAL STRUCTURES OF ACIDIC AND BASIC FIBROBLAST GROWTH FACTORS 2AVI ; 3.0 ; THREE-DIMENSIONAL STRUCTURES OF AVIDIN AND THE AVIDIN-BIOTIN COMPLEX 6CTG ; ; Three-Dimensional Structures of Cm-p1 1LOA ; 2.2 ; THREE-DIMENSIONAL STRUCTURES OF COMPLEXES OF LATHYRUS OCHRUS ISOLECTIN I WITH GLUCOSE AND MANNOSE: FINE SPECIFICITY OF THE MONOSACCHARIDE-BINDING SITE 1LOB ; 2.0 ; THREE-DIMENSIONAL STRUCTURES OF COMPLEXES OF LATHYRUS OCHRUS ISOLECTIN I WITH GLUCOSE AND MANNOSE: FINE SPECIFICITY OF THE MONOSACCHARIDE-BINDING SITE 1RMU ; 3.0 ; THREE-DIMENSIONAL STRUCTURES OF DRUG-RESISTANT MUTANTS OF HUMAN RHINOVIRUS 14 2RMU ; 3.0 ; THREE-DIMENSIONAL STRUCTURES OF DRUG-RESISTANT MUTANTS OF HUMAN RHINOVIRUS 14 1AL7 ; 2.6 ; THREE-DIMENSIONAL STRUCTURES OF GLYCOLATE OXIDASE WITH BOUND ACTIVE-SITE INHIBITORS 221P ; 2.3 ; THREE-DIMENSIONAL STRUCTURES OF H-RAS P21 MUTANTS: MOLECULAR BASIS FOR THEIR INABILITY TO FUNCTION AS SIGNAL SWITCH MOLECULES 421P ; 2.2 ; THREE-DIMENSIONAL STRUCTURES OF H-RAS P21 MUTANTS: MOLECULAR BASIS FOR THEIR INABILITY TO FUNCTION AS SIGNAL SWITCH MOLECULES 521P ; 2.6 ; THREE-DIMENSIONAL STRUCTURES OF H-RAS P21 MUTANTS: MOLECULAR BASIS FOR THEIR INABILITY TO FUNCTION AS SIGNAL SWITCH MOLECULES 621P ; 2.4 ; THREE-DIMENSIONAL STRUCTURES OF H-RAS P21 MUTANTS: MOLECULAR BASIS FOR THEIR INABILITY TO FUNCTION AS SIGNAL SWITCH MOLECULES 721P ; 2.0 ; THREE-DIMENSIONAL STRUCTURES OF H-RAS P21 MUTANTS: MOLECULAR BASIS FOR THEIR INABILITY TO FUNCTION AS SIGNAL SWITCH MOLECULES 1LIH ; 2.2 ; THREE-DIMENSIONAL STRUCTURES OF THE LIGAND-BINDING DOMAIN OF THE BACTERIAL ASPARTATE RECEPTOR WITH AND WITHOUT A LIGAND 2LIG ; 2.0 ; THREE-DIMENSIONAL STRUCTURES OF THE LIGAND-BINDING DOMAIN OF THE BACTERIAL ASPARTATE RECEPTOR WITH AND WITHOUT A LIGAND 1LST ; 1.8 ; THREE-DIMENSIONAL STRUCTURES OF THE PERIPLASMIC LYSINE-, ARGININE-, ORNITHINE-BINDING PROTEIN WITH AND WITHOUT A LIGAND 2LAO ; 1.9 ; THREE-DIMENSIONAL STRUCTURES OF THE PERIPLASMIC LYSINE-, ARGININE-, ORNITHINE-BINDING PROTEIN WITH AND WITHOUT A LIGAND 1AZH ; ; THREE-DIMENSIONAL STRUCTURES OF THREE ENGINEERED CELLULOSE-BINDING DOMAINS OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI, NMR, 14 STRUCTURES 1AZJ ; ; THREE-DIMENSIONAL STRUCTURES OF THREE ENGINEERED CELLULOSE-BINDING DOMAINS OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI, NMR, 18 STRUCTURES 1AZK ; ; THREE-DIMENSIONAL STRUCTURES OF THREE ENGINEERED CELLULOSE-BINDING DOMAINS OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI, NMR, 19 STRUCTURES 1AZ6 ; ; THREE-DIMENSIONAL STRUCTURES OF THREE ENGINEERED CELLULOSE-BINDING DOMAINS OF CELLOBIOHYDROLASE I FROM TRICHODERMA REESEI, NMR, 23 STRUCTURES 1HDX ; 2.5 ; THREE-DIMENSIONAL STRUCTURES OF THREE HUMAN ALCOHOL DEHYDROGENASE VARIANTS: CORRELATIONS WITH THEIR FUNCTIONAL DIFFERENCES 1HDY ; 2.5 ; THREE-DIMENSIONAL STRUCTURES OF THREE HUMAN ALCOHOL DEHYDROGENASE VARIANTS: CORRELATIONS WITH THEIR FUNCTIONAL DIFFERENCES 1HDZ ; 2.5 ; THREE-DIMENSIONAL STRUCTURES OF THREE HUMAN ALCOHOL DEHYDROGENASE VARIANTS: CORRELATIONS WITH THEIR FUNCTIONAL DIFFERENCES 5FJI ; 1.95 ; Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. Family GH3 beta-D-glucosidases 5FJJ ; 1.95 ; Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. Family GH3 beta-D-glucosidases 6D2H ; ; Three-Dimensional Structures of [Phe3]Cm-p1 analogs 8PSC ; ; Three-layered basket-type G-quadruplex from a G-rich sequence with five G-runs 8PSB ; ; Three-layered parallel G-quadruplex with snapback loop from a G-rich sequence with five G-runs 6ZRR ; 4.0 ; three-protofilament amyloid structure of S20G variant of human amylin (IAPP - Islet Amyloid Polypeptide) 7NWD ; ; Three-quartet c-kit2 G-quadruplex stabilized by a pyrene conjugate 2LUM ; ; Three-State Ensemble obtained from eNOEs of the Third Immunoglobulin Binding Domain of Protein G (GB3) 4ORR ; 1.4 ; Threedimensional structure of the C65A mutant of Human lipocalin-type Prostaglandin D Synthase olo-form 1ATR ; 2.34 ; THREONINE 204 OF THE CHAPERONE PROTEIN HSC70 INFLUENCES THE STRUCTURE OF THE ACTIVE SITE BUT IS NOT ESSENTIAL FOR ATP HYDROLYSIS 1ATS ; 2.43 ; THREONINE 204 OF THE CHAPERONE PROTEIN HSC70 INFLUENCES THE STRUCTURE OF THE ACTIVE SITE BUT IS NOT ESSENTIAL FOR ATP HYDROLYSIS 1TDJ ; 2.8 ; THREONINE DEAMINASE (BIOSYNTHETIC) FROM E. COLI 6NMX ; 1.971 ; Threonine synthase from Bacillus subtilis ATCC 6633 with PLP and APPA 6CGQ ; 2.019 ; Threonine synthase from Bacillus subtilis ATCC 6633 with PLP and PLP-Ala 6RP2 ; 1.35 ; Threonine to Cysteine (T225C) variant of E coli hydrogenase-1 6L2Q ; 2.3 ; Threonyl-tRNA synthetase from Salmonella enterica in complex with an inhibitor 7WM7 ; 2.4 ; Threonyl-tRNA synthetase from Salmonella enterica in complex with an inhibitor 7WMF ; 2.1 ; Threonyl-tRNA synthetase from Salmonella enterica in complex with an inhibitor 7WMI ; 2.0 ; Threonyl-tRNA synthetase from Salmonella enterica in complex with an inhibitor 6L2P ; 2.3 ; Threonyl-tRNA synthetase from Salmonella enterica in the apo form 4LQV ; 1.54 ; Thrirty minutes iron loaded frog M ferritin 1Z71 ; 1.8 ; thrombin and P2 pyridine N-oxide inhibitor complex structure 1A61 ; 2.2 ; THROMBIN COMPLEXED WITH A BETA-MIMETIC THIAZOLE-CONTAINING INHIBITOR 1UCY ; 2.2 ; THROMBIN COMPLEXED WITH FIBRINOPEPTIDE A ALPHA (RESIDUES 7-19). THREE COMPLEXES, ONE WITH EPSILON-THROMBIN AND TWO WITH ALPHA-THROMBIN 1A46 ; 2.12 ; THROMBIN COMPLEXED WITH HIRUGEN AND A BETA-STRAND MIMETIC INHIBITOR 5AHG ; 1.24 ; Thrombin in complex with ((4-chlorophenyl)sulfamoyl))diemethylamine 4UFG ; 1.65 ; Thrombin in complex with (2R)-2-(benzylsulfonylamino)-N-((1S)-2-((4- carbamimidoylphenyl)methylamino)-1-methyl-2-oxo-ethyl)-N-methyl-3- phenyl-propanamide ethane 4UFE ; 1.593 ; Thrombin in complex with (2R)-2-(benzylsulfonylamino)-N-(2-((4- carbamimidoylphenyl)methylamino)-2-oxo-butyl)-3-phenyl-propanamide 4UFF ; 1.55 ; Thrombin in complex with (2R)-2-(benzylsulfonylamino)-N-(2-((4- carbamimidoylphenyl)methylamino)-2-oxo-ethyl)-N-methyl-3-phenyl- propanamide 5AFZ ; 1.53 ; Thrombin in complex with (2R)-2-(benzylsulfonylamino)-N-(2-((4- carbamimidoylphenyl)methylamino)-2-oxo-propyl)-3-phenyl-propanamide 4YES ; 1.5 ; Thrombin in complex with (S)-(4-chloro-2-((1-(5-methyl-1H-pyrrole-2-carbonyl)pyrrolidine-2-carboxamido)methyl)phenyl)methanaminium 5LPD ; 1.5 ; Thrombin in complex with (S)-1-((R)-2-amino-3-cyclohexylpropanoyl)-N-(2-(aminomethyl)-5-chlorobenzyl) pyrrolidine-2-carboxamide 5JZY ; 1.27 ; Thrombin in complex with (S)-1-((R)-2-amino-3-cyclohexylpropanoyl)-N-(4-carbamimidoylbenzyl)pyrrolidine-2-carboxamide 5LCE ; 1.39 ; Thrombin in complex with (S)-1-((R)-2-amino-3-cyclohexylpropanoyl)-N-(5-chloro-2-(hydroxymethyl)benzy l)pyrrolidine-2-carboxamide 5JFD ; 1.46 ; Thrombin in complex with (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((benzylsulfonyl)-D-arginyl)pyrrolidine-2-carboxamide 6T89 ; 2.0 ; Thrombin in complex with (S)-N-(tert-butyl)-4-(3-(3-carbamimidoylphenyl)-2-((2',4'-dimethoxy-[1,1'-biphenyl])-3-sulfonamido)propanoyl)piperazine-1-carboxamide (MI-498) 4UDW ; 1.16 ; Thrombin in complex with 1-(2R)-2-amino-3-phenyl-propanoyl-N-(2, 5dichlorophenyl)methylpyrrolidine-2-carboxamide 4UE7 ; 1.129 ; Thrombin in complex with 1-amidinopiperidine 6Y02 ; 1.48 ; Thrombin in complex with 13k 6YSJ ; 1.45 ; Thrombin in complex with 2-amino-1-(4-bromophenyl)ethan-1-one (j10) 6YMP ; 1.42 ; Thrombin in complex with 3-((5-(tert-butyl)isoxazol-3-yl)methyl)oxetan-3-amine (j54) 4E7R ; 2.25 ; Thrombin in complex with 3-amidinophenylalanine inhibitor 5AFY ; 1.12 ; Thrombin in complex with 3-chloro-benzamide 4UFD ; 1.429 ; Thrombin in complex with 4-(((1-((2S)-1-((2R)-2-(benzylsulfonylamino)- 3-phenyl-propanoyl)pyrrolidin-2-yl)-1-oxo-ethyl)amino)methyl) benzamidine 6YSX ; 1.48 ; Thrombin in complex with 4-amino-N-(5-methylisoxazol-3-yl)benzenesulfonamide (j80) 6YN3 ; 1.49 ; Thrombin in complex with 4-hydroxybenzamide (j89) 5AF9 ; 1.18 ; Thrombin in complex with 4-Methoxy-N-(2-pyridinyl)benzamide 4UD9 ; 1.124 ; Thrombin in complex with 5-chlorothiophene-2-carboxamide 6YQV ; 1.45 ; Thrombin in complex with 5-chlorothiophene-2-sulfonamide (j94) 6TDT ; 1.53 ; Thrombin in Complex with a D-DiPhe-Pro-p-pyridine derivative 6T3Q ; 1.33 ; Thrombin in Complex with a D-Phe-Pro-2-aminopyridine derivative 6T54 ; 1.57 ; Thrombin in Complex with a D-Phe-Pro-2-bromothiophene Derivative 6HSX ; 1.56 ; Thrombin in Complex with a D-Phe-Pro-diaminopyridine derivative 6T52 ; 1.45 ; Thrombin in Complex with a D-Phe-Pro-imidazole derivative 6T57 ; 1.57 ; Thrombin in Complex with a D-Phe-Pro-N-amidinopiperidine Derivative 6T4A ; 1.31 ; Thrombin in Complex with a D-Phe-Pro-p-aminopyridine derivative 6T53 ; 1.35 ; Thrombin in Complex with a D-Phe-Pro-p-benzylamine derivative 6T3M ; 1.38 ; Thrombin in Complex with a D-Phe-Pro-p-phenol derivative 1ZRB ; 1.9 ; Thrombin in complex with an azafluorenyl inhibitor 23b 1ZGV ; 2.2 ; Thrombin in complex with an oxazolopyridine inhibitor 2 1ZGI ; 2.2 ; thrombin in complex with an oxazolopyridine inhibitor 21 4UEH ; 1.16 ; Thrombin in complex with benzamidine 3PO1 ; 1.65 ; Thrombin in complex with Benzothiazole Guanidine 6T56 ; 1.31 ; Thrombin in Complex with Benzylamine 7AC9 ; 1.393 ; Thrombin in complex with D-arginine (j77) 6ZGO ; 1.79 ; Thrombin in complex with D-Phe-Pro-2-chlorofuran derivative (13l) 6YHJ ; 1.44 ; Thrombin in complex with D-Phe-Pro-2-chlorothiophen derivative (16e) 6YB6 ; 1.33 ; Thrombin in complex with D-Phe-Pro-3-chloro-1,3-dihydroxybenzylamide derivative (13c) 6YHG ; 1.33 ; Thrombin in complex with D-Phe-Pro-m-methoxybenzylamide derivative (16a) 6Y9H ; 1.48 ; Thrombin in complex with D-Phe-Pro-m-Trifluoromethylbenzylamide derivative (phe2) 6T8A ; 1.62 ; Thrombin in complex with diphenyl ((4-carbamimidoylphenyl)((S)-1-((R)-3-cyclohexyl 2-((phenylmethyl)sulfonamido)propanoyl)pyrrolidine-2-carboxamido)methyl)phosphonate (MI-492) 6I51 ; 1.4 ; Thrombin in complex with fragment J02 2BDY ; 1.61 ; thrombin in complex with inhibitor 2GDE ; 2.0 ; Thrombin in complex with inhibitor 2PKS ; 2.5 ; Thrombin in complex with inhibitor 2ZC9 ; 1.58 ; Thrombin in complex with Inhibitor 4BAH ; 1.94 ; Thrombin in complex with inhibitor 4BAK ; 1.94 ; Thrombin in complex with inhibitor 4BAM ; 1.88 ; Thrombin in complex with inhibitor 4BAN ; 1.87 ; Thrombin in complex with inhibitor 4BAO ; 1.87 ; Thrombin in complex with inhibitor 4BAQ ; 1.89 ; Thrombin in complex with inhibitor 6T55 ; 1.39 ; Thrombin in Complex with Methylbenzylamine 6GBW ; 1.45 ; Thrombin in complex with MI2100 ((S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((benzylsulfonyl)-L-arginyl)pyrrolidine-2-carboxamide) 6ROT ; 1.339 ; Thrombin in complex with MI2105 1RIW ; 2.04 ; Thrombin in complex with natural product inhibitor Oscillarin 1NT1 ; 2.0 ; thrombin in complex with selective macrocyclic inhibitor 1NM6 ; 1.8 ; thrombin in complex with selective macrocyclic inhibitor at 1.8A 2ZGB ; 1.6 ; Thrombin Inhibition 2ZGX ; 1.8 ; Thrombin Inhibition 2ZHQ ; 1.96 ; Thrombin Inhibition 2ZI2 ; 1.65 ; Thrombin Inhibition 2ZIQ ; 1.65 ; Thrombin Inhibition 2ZNK ; 1.8 ; Thrombin Inhibition 3D49 ; 1.5 ; Thrombin Inhibition 3F68 ; 1.75 ; Thrombin Inhibition 3P17 ; 1.43 ; Thrombin Inhibition by Pyridin Derivatives 3QTO ; 1.52 ; Thrombin Inhibition by Pyridin Derivatives 3QTV ; 1.63 ; Thrombin Inhibition by Pyridin Derivatives 3QWC ; 1.75 ; Thrombin Inhibition by Pyridin Derivatives 3QX5 ; 1.35 ; Thrombin Inhibition by Pyridin Derivatives 3EQ0 ; 1.53 ; Thrombin Inhibitor 5A2M ; 1.4 ; Thrombin Inhibitor 1G30 ; 2.0 ; THROMBIN INHIBITOR COMPLEX 1G32 ; 1.9 ; THROMBIN INHIBITOR COMPLEX 1KTS ; 2.4 ; Thrombin Inhibitor Complex 1KTT ; 2.1 ; Thrombin inhibitor complex 1YPE ; 1.81 ; Thrombin Inhibitor Complex 1YPG ; 1.8 ; Thrombin Inhibitor Complex 1YPJ ; 1.78 ; Thrombin Inhibitor Complex 1YPK ; 1.78 ; Thrombin Inhibitor Complex 1AY6 ; 1.8 ; THROMBIN INHIBITOR FROM THEONALLA, CYCLOTHEANAMIDE-BASED MACROCYCLIC TRIPEPTIDE MOTIF 1AVG ; 2.6 ; THROMBIN INHIBITOR FROM TRIATOMA PALLIDIPENNIS 1BA8 ; 1.8 ; THROMBIN INHIBITOR WITH A RIGID TRIPEPTIDYL ALDEHYDES 2C8W ; 1.96 ; thrombin inhibitors 2C8X ; 2.17 ; thrombin inhibitors 2C8Y ; 2.2 ; thrombin inhibitors 2C8Z ; 2.14 ; thrombin inhibitors 2C90 ; 2.25 ; thrombin inhibitors 2C93 ; 2.2 ; thrombin inhibitors 1BB0 ; 2.1 ; THROMBIN INHIBITORS WITH RIGID TRIPEPTIDYL ALDEHYDES 1CA8 ; 2.1 ; Thrombin inhibitors with rigid tripeptidyl aldehydes 2ZFP ; 2.25 ; Thrombin Inibition 5MJT ; 1.4 ; Thrombin Mutant A190S in complex with (S) -1 - ((R) -2-amino-3,3-diphenylpropanoyl) -N- (3-chlorobenzyl) pyrrolidine-2-carboxamide 5MLS ; 1.62 ; Thrombin Mutant A190S in complex with (S)-1-(D-phenylalanyl)-N-(3-chlorobenzyl)pyrrolidine-2-carboxamide 5MM6 ; 1.29 ; Thrombin Mutant A190S in complex with (S)-1-(D-phenylalanyl)-N-(4-carbamimidoylbenzyl)pyrrolidine-2-carboxamide 2V3H ; 1.79 ; Thrombin with 3-cycle no F 2V3O ; 1.79 ; Thrombin with 3-cycle with F 2ODY ; 2.35 ; Thrombin-bound boophilin displays a functional and accessible reactive-site loop 1EGT ; ; THROMBIN-BOUND STRUCTURE OF AN EGF SUBDOMAIN FROM HUMAN THROMBOMODULIN DETERMINED BY TRANSFERRED NUCLEAR OVERHAUSER EFFECTS 2UUF ; 1.26 ; Thrombin-hirugen binary complex at 1.26A resolution 2UUK ; 1.39 ; Thrombin-hirugen-gw420128 ternary complex at 1.39A resolution 2UUJ ; 1.32 ; Thrombin-hirugen-gw473178 ternary complex at 1.32A resolution 1MUE ; 2.0 ; Thrombin-Hirugen-L405,426 1MU8 ; 2.0 ; thrombin-hirugen_l-378,650 5DO4 ; 1.859 ; Thrombin-RNA aptamer complex 1VIT ; 3.2 ; THROMBIN:HIRUDIN 51-65 COMPLEX 3BF6 ; 2.5 ; Thrombin:suramin complex 7F9F ; 1.411 ; Thrombocorticin 7F9G ; 1.331 ; Thrombocorticin in complex with Ca2+ and fucose 7FBL ; 1.419 ; Thrombocorticin in complex with Ca2+ and mannose 7F9J ; 1.1 ; Thrombocorticin Q25K in complex with Ca2+ 7Z0Y ; 2.95 ; THSC20.HVTR04 Fab bound to SARS-CoV-2 Receptor Binding Domain 7Z0X ; 1.8 ; THSC20.HVTR26 Fab bound to SARS-CoV-2 Receptor Binding Domain 7YNM ; 2.9 ; ThT-bound alpha-synuclein fibrils conformation 1 7YNN ; 2.9 ; ThT-bound alpha-synuclein fibrils conformation 2 7PP7 ; 2.05 ; Thunberia alata 16:0-ACP desaturase 2LBZ ; ; Thurincin H 7MSK ; 2.06 ; ThuS glycosin S-glycosyltransferase 7UID ; 2.0 ; Thyclotides peptide nucleic acid in complex with DNA 2J9R ; 2.7 ; Thymidine kinase from B. anthracis in complex with dT. 2JA1 ; 2.8 ; Thymidine kinase from B. cereus with TTP bound as phosphate donor. 3VTK ; 3.0 ; THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE 1 IN COMPLEX WITH ADP AND 5-IODO-DEOXYURIDINE-MONOPHOSPHATE 2VTK ; 2.8 ; THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE 1 IN COMPLEX WITH ADP AND DEOXYTHYMIDINE 1VTK ; 2.75 ; THYMIDINE KINASE FROM HERPES SIMPLEX VIRUS TYPE 1 IN COMPLEX WITH ADP AND DEOXYTHYMIDINE-MONOPHOSPHATE 2QQE ; 1.9 ; Thymidine Kinase from Thermotoga Maritima in complex with Thymidine 2QQ0 ; 1.5 ; Thymidine Kinase from Thermotoga Maritima in complex with thymidine + AppNHp 1E2P ; 2.5 ; Thymidine kinase, DHBT 4EAF ; 1.55 ; Thymidine phosphorylase from E.coli 4EAD ; 1.5 ; Thymidine phosphorylase from E.coli with 3'-azido-2'-fluoro-dideoxyuridine 4LHM ; 1.52 ; Thymidine phosphorylase from E.coli with 3'-azido-3'-deoxythymidine 4GFD ; 1.8 ; Thymidylate kinase (TMK) from S. Aureus in complex with TK-666 1NJB ; 2.74 ; THYMIDYLATE SYNTHASE 1TSD ; 1.95 ; THYMIDYLATE SYNTHASE COMPLEX WITH 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) AND FOLATE ANALOG 1843U89 1TLC ; 2.1 ; THYMIDYLATE SYNTHASE COMPLEXED WITH DGMP AND FOLATE ANALOG 1843U89 1VZA ; 2.5 ; THYMIDYLATE SYNTHASE E60D MUTANT BINARY COMPLEX WITH 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1RTS ; 3.3 ; THYMIDYLATE SYNTHASE FROM RAT IN TERNARY COMPLEX WITH DUMP AND TOMUDEX 2TSR ; 2.6 ; THYMIDYLATE SYNTHASE FROM RAT IN TERNARY COMPLEX WITH DUMP AND TOMUDEX 4DQ1 ; 2.71 ; Thymidylate synthase from Staphylococcus aureus. 1BO8 ; 2.4 ; THYMIDYLATE SYNTHASE R178T MUTANT 1BPJ ; 2.4 ; THYMIDYLATE SYNTHASE R178T, R179T DOUBLE MUTANT 1TSV ; 2.9 ; THYMIDYLATE SYNTHASE R179A MUTANT 1TSW ; 2.5 ; THYMIDYLATE SYNTHASE R179A MUTANT 1TSX ; 2.5 ; THYMIDYLATE SYNTHASE R179E MUTANT 1TSY ; 2.2 ; THYMIDYLATE SYNTHASE R179K MUTANT 1TSZ ; 2.75 ; THYMIDYLATE SYNTHASE R179K MUTANT 1BO7 ; 2.4 ; THYMIDYLATE SYNTHASE R179T MUTANT 1BP0 ; 2.4 ; THYMIDYLATE SYNTHASE R23I MUTANT 1BP6 ; 2.4 ; THYMIDYLATE SYNTHASE R23I, R179T DOUBLE MUTANT 1TLS ; 2.6 ; THYMIDYLATE SYNTHASE TERNARY COMPLEX WITH FDUMP AND METHYLENETETRAHYDROFOLATE 1TSN ; 2.2 ; THYMIDYLATE SYNTHASE TERNARY COMPLEX WITH FDUMP AND METHYLENETETRAHYDROFOLATE 1NJE ; 2.3 ; THYMIDYLATE SYNTHASE WITH 2'-DEOXYCYTIDINE 5'-MONOPHOSPHATE (DCMP) 1NJA ; 2.5 ; THYMIDYLATE SYNTHASE, MUTATION, N229C WITH 2'-DEOXYCYTIDINE 5'-MONOPHOSPHATE (DCMP) 1NJC ; 2.5 ; THYMIDYLATE SYNTHASE, MUTATION, N229D WITH 2'-DEOXYCYTIDINE 5'-MONOPHOSPHATE (DCMP) 1NJD ; 2.2 ; THYMIDYLATE SYNTHASE, MUTATION, N229D WITH 2'-DEOXYURIDINE 5'-MONOPHOSPHATE (DUMP) 1H5R ; 1.9 ; Thymidylyltransferase complexed with Thimidine and Glucose-1-phospate 1H5T ; 1.9 ; Thymidylyltransferase complexed with Thymidylyldiphosphate-glucose 1H5S ; 2.3 ; Thymidylyltransferase complexed with TMP 1IIM ; 2.1 ; thymidylyltransferase complexed with TTP 1IIN ; 2.1 ; thymidylyltransferase complexed with UDP-glucose 1NJX ; 1.65 ; THYMINE-GUANINE MISMATCH AT THE POLYMERASE ACTIVE SITE 1NJY ; 2.0 ; THYMINE-THYMINE MISMATCH AT THE POLYMERASE ACTIVE SITE 1HJ0 ; ; Thymosin beta9 3M9E ; 2.406 ; Thyroid hormone beta DNA binding domain homodimer with inverted palindrome TRE 1NAV ; 2.5 ; Thyroid Receptor Alpha in complex with an agonist selective for Thyroid Receptor Beta1 2PIN ; 2.3 ; Thyroid receptor beta in complex with inhibitor 1NAX ; 2.7 ; Thyroid receptor beta1 in complex with a beta-selective ligand 1FTT ; ; THYROID TRANSCRIPTION FACTOR 1 HOMEODOMAIN (RATTUS NORVEGICUS) 2CEO ; 2.8 ; thyroxine-binding globulin complex with thyroxine 1XZX ; 2.5 ; Thyroxine-Thyroid Hormone Receptor Interactions 1Y0X ; 3.1 ; Thyroxine-Thyroid Hormone Receptor Interactions 7NDZ ; 2.7 ; ThyX reconstituted with N5-carbinolamine flavin 7NDW ; 2.0 ; ThyX-FADH2 soaked with 20 mM Formaldehyde 6N4J ; 1.95 ; Ti(III)citrate-reduced, nucleotide-free form of the nitrogenase Fe-protein from A. vinelandii 5DYH ; 2.682 ; Ti(IV) bound human serum transferrin 5ITH ; 2.31 ; TIA-1 RRM2 recognition of target oligonucleotide 8CGV ; 1.66 ; Tiamulin bound to the 50S subunit 4E6Z ; 2.1501 ; Tic22 from Plasmodium falciparum 5ALC ; 1.7 ; Ticagrelor antidote candidate Fab 72 in complex with ticagrelor 5ALB ; 2.16 ; Ticagrelor antidote candidate MEDI2452 in complex with ticagrelor 2M1X ; ; TICAM-1 TIR domain structure 2M1W ; ; TICAM-2 TIR domain 7PK4 ; 1.92 ; Tick salivary cystatin Ricistatin in complex with cathepsin V 7NE8 ; ; Tick salivary protein BSAP1 8ECH ; 2.05 ; Tick-borne encephalitis virus capsid protein NLS bound to host importin alpha 2 7Z51 ; 3.3 ; Tick-borne encephalitis virus Kuutsalo-14 7X89 ; ; Tid1 1FVR ; 2.2 ; TIE2 KINASE DOMAIN 2GY5 ; 2.9 ; Tie2 Ligand-Binding Domain Crystal Structure 5KHP ; 2.65 ; Tightening the Recognition of Tetravalent Zr and Th Complexes by the Siderophore-Binding Mammalian Protein Siderocalin for Theranostic Applications 5KID ; 2.15 ; Tightening the Recognition of Tetravalent Zr and Th Complexes by the Siderophore-Binding Mammalian Protein Siderocalin for Theranostic Applications 8PSQ ; 2.65 ; Tilapia Lake Virus polymerase in cRNA pre-initiation state mode A (core only) 8PT7 ; 2.8 ; Tilapia Lake Virus polymerase in cRNA pre-initiation state mode A (core-endo only) 8PSS ; 2.83 ; Tilapia Lake Virus polymerase in cRNA pre-initiation state mode B (core-endo only) 8PSX ; 2.96 ; Tilapia Lake Virus polymerase in vRNA elongation state (transcriptase conformation) 8PSZ ; 2.42 ; Tilapia Lake Virus polymerase in vRNA elongation state with additional mode B promoter (transcriptase conformation) 8PSO ; 2.4 ; Tilapia Lake Virus polymerase in vRNA initiation state (core only) 8PT6 ; 3.03 ; Tilapia Lake Virus polymerase in vRNA initiation state (replicase conformation) 8PSN ; 2.73 ; Tilapia Lake Virus polymerase in vRNA initiation state (transcriptase conformation) 8PSU ; 3.18 ; Tilapia Lake Virus polymerase in vRNA pre-initiation state mode A (core only) 8PTJ ; 2.86 ; Tilapia Lake Virus polymerase in vRNA pre-initiation state mode B (close core | partial replicase conformation) 8PTH ; 2.73 ; Tilapia Lake Virus polymerase in vRNA pre-initiation state mode B (open core | partial replicase conformation) 8PT2 ; 2.59 ; Tilapia Lake Virus polymerase in vRNA pre-initiation state mode B (transcriptase conformation) 8QZ8 ; 3.13 ; Tilapia Lake Virus polymerase in vRNA pre-termination state (transcriptase conformation) 8IXW ; 1.8 ; Tilapia lake virus S8 segment 3J8J ; 12.0 ; Tilted state of actin, T1 3J8K ; 12.0 ; Tilted state of actin, T2 2OR8 ; 2.5 ; Tim-1 2OR7 ; 1.5 ; Tim-2 3BI9 ; 2.95 ; Tim-4 3BIB ; 2.5 ; Tim-4 in complex with phosphatidylserine 3BIA ; 2.2 ; Tim-4 in complex with sodium potassium tartrate 3CJH ; 2.6 ; Tim8-Tim13 complex 4WL9 ; 1.6 ; Time Resolved Serial Femtosecond Crystallography Captures High Resolution Intermediates of PYP 4WLA ; 1.6 ; Time Resolved Serial Femtosecond Crystallography Captures High Resolution Intermediates of PYP 6QHU ; 1.73 ; Time resolved structural analysis of the full turnover of an enzyme - 100 ms 6QHV ; 1.715 ; Time resolved structural analysis of the full turnover of an enzyme - 100 ms 6QHY ; 1.698 ; Time resolved structural analysis of the full turnover of an enzyme - 100 ms 6QHQ ; 1.735 ; Time resolved structural analysis of the full turnover of an enzyme - 1128 ms 6QI1 ; 1.9 ; Time resolved structural analysis of the full turnover of an enzyme - 12312 ms 6QI2 ; 1.73 ; Time resolved structural analysis of the full turnover of an enzyme - 13536 ms 6QHP ; 1.8 ; Time resolved structural analysis of the full turnover of an enzyme - 2256 ms covalent intermediate 1 6QI3 ; 1.739 ; Time resolved structural analysis of the full turnover of an enzyme - 27072 ms 6QHT ; 1.73 ; Time resolved structural analysis of the full turnover of an enzyme - 376 ms 6QHW ; 1.718 ; Time resolved structural analysis of the full turnover of an enzyme - 4512 ms 6QHS ; 1.733 ; Time resolved structural analysis of the full turnover of an enzyme - 564 ms 6QHX ; 1.85 ; Time resolved structural analysis of the full turnover of an enzyme - 6156 ms 6QHZ ; 1.799 ; Time resolved structural analysis of the full turnover of an enzyme - 6788 ms 6QI0 ; 1.733 ; Time resolved structural analysis of the full turnover of an enzyme - 9024 ms 3P4Z ; 1.6 ; Time-dependent and Protein-directed In Situ Growth of Gold Nanoparticles in a Single Crystal of Lysozyme 3P64 ; 1.3 ; Time-dependent and Protein-directed In Situ Growth of Gold Nanoparticles in a Single Crystal of Lysozyme 3P65 ; 2.1 ; Time-dependent and Protein-directed In Situ Growth of Gold Nanoparticles in a Single Crystal of Lysozyme 3P66 ; 1.36 ; Time-dependent and Protein-directed In Situ Growth of Gold Nanoparticles in a Single Crystal of Lysozyme 3P68 ; 1.6 ; Time-dependent and Protein-directed In Situ Growth of Gold Nanoparticles in a Single Crystal of Lysozyme 2GVE ; 2.2 ; Time-of-Flight Neutron Diffraction Structure of D-Xylose Isomerase 8GBT ; 2.8 ; Time-resolve SFX structure of a photoproduct of carbon monoxide complex of bovine cytochrome c oxidase 1GTK ; 1.66 ; Time-resolved and static-ensemble structural chemistry of hydroxymethylbilane synthase 8G34 ; 3.2 ; Time-resolved cryo-EM study of the 70S recycling by the HflX:1st intermediate 8G31 ; 3.2 ; Time-resolved cryo-EM study of the 70S recycling by the HflX:2nd Intermediate 8G38 ; 3.2 ; Time-resolved cryo-EM study of the 70S recycling by the HflX:3rd Intermediate 8G2U ; 3.0 ; Time-resolved cryo-EM study of the 70S recycling by the HflX:control-apo-70S at 900ms 3WVG ; 2.25 ; Time-Resolved Crystal Structure of HindIII with 0sec soaking 3WVK ; 2.0 ; Time-Resolved Crystal Structure of HindIII with 230sec soaking 3WVH ; 2.54 ; Time-Resolved Crystal Structure of HindIII with 25sec soaking 3WVI ; 2.55 ; Time-Resolved Crystal Structure of HindIII with 40 sec soaking 3WVP ; 2.3 ; Time-Resolved Crystal Structure of HindIII with 60sec soaking 7E6Y ; 2.5 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: 1 microsecond structure 7E71 ; 2.5 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: 1 ms structure 7E70 ; 2.5 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: 250 microsecond structure 7E6X ; 2.5 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: 4 ms structure 7E6Z ; 2.5 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: 50 microsecond structure 7C86 ; 2.3 ; Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin: Dark state structure 7VGU ; 2.1 ; Time-resolved serial femtosecond crystallography structure of light-driven chloride ion-pumping rhodopsin, NM-R3 : structure obtained 1 msec after photoexcitation with bromide ion 7VGT ; 2.1 ; Time-resolved serial femtosecond crystallography structure of light-driven chloride ion-pumping rhodopsin, NM-R3: resting state structure with bromide ion 5Y5K ; 2.1 ; Time-resolved SFX structure of cytochrome P450nor : 20 ms after photo-irradiation of caged NO in the absence of NADH (NO-bound state), light data 5Y5I ; 2.1 ; Time-resolved SFX structure of cytochrome P450nor: 20 ms after photo-irradiation of caged NO in the presence of NADH (NO-bound state), light data 5Y5L ; 2.1 ; Time-resolved SFX structure of cytochrome P450nor: dark-2 data in the absence of NADH (resting state) 5Y5J ; 2.0 ; Time-resolved SFX structure of cytochrome P450nor: dark-2 data in the presence of NADH (resting state) 8OY9 ; 2.24 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (1 microsecond pump-probe delay) 8OY5 ; 2.27 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (1 nanosecond pump-probe delay) 8OYA ; 2.18 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (10 microsecond pump probe delay) 8OY7 ; 2.36 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (10 nanosecond pump-probe delay) 8OYC ; 2.5 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (100 microsecond timpeoint) 8OY6 ; 2.35 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (3 nanosecond pump-probe delay) 8OY3 ; 2.16 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (3 picosecond pump-probe delay) 8OYB ; 2.25 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (30 microsecond pump-probe delay) 8OY8 ; 2.39 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (30 nanosecond timepoint) 8OY4 ; 2.35 ; Time-resolved SFX structure of the class II photolyase complexed with a thymine dimer (300 ps pump-probe delay) 6NKN ; 2.5 ; Time-resolved SFX structure of the PR intermediate of cytochrome c oxidase at room temperature 8TDP ; 1.85 ; Time-resolved SFX-XFEL crystal structure of CYP121 bound with cYY reacted with peracetic acid for 200 milliseconds 6PJ4 ; 2.3 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJ5 ; 2.4 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJ7 ; 2.3 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJ8 ; 2.4 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJ9 ; 2.5 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJA ; 2.6 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJP ; 2.45 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJQ ; 2.5 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJR ; 2.4 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 6PJU ; 2.5 ; Time-resolved structural snapshot of proteolysis by GlpG inside the membrane 8B21 ; 2.59 ; Time-resolved structure of K+-dependent Na+-PPase from Thermotoga maritima 0-60-seconds post reaction initiation with Na+ 8B22 ; 3.98 ; Time-resolved structure of K+-dependent Na+-PPase from Thermotoga maritima 300-seconds post reaction initiation with Na+ 8B24 ; 4.53 ; Time-resolved structure of K+-dependent Na+-PPase from Thermotoga maritima 3600-seconds post reaction initiation with Na+ 8B23 ; 3.84 ; Time-resolved structure of K+-dependent Na+-PPase from Thermotoga maritima 600-seconds post reaction initiation with Na+ 7UHR ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 Before Reaction (Dark-Set) 7UHM ; 2.7 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Cleaved Moxalactam (150 ms Snapshot) 7UHP ; 2.6 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Cleaved Moxalactam (2000 ms Snapshot) 7UHN ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Cleaved Moxalactam (300 ms Snapshot) 7UHQ ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Cleaved Moxalactam (4000 ms Snapshot) 7UHO ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Cleaved Moxalactam (500 ms Snapshot) 7UHL ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Non-Hydrolyzed Moxalactam (100 ms Snapshot) 7UHH ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Non-Hydrolyzed Moxalactam (20 ms snapshot) 7UHI ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Non-Hydrolyzed Moxalactam (40 ms Snapshot) 7UHJ ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Non-Hydrolyzed Moxalactam (60 ms Snapshot) 7UHK ; 2.2 ; Time-Resolved Structure of Metallo Beta-Lactamase L1 in a Complex with Non-Hydrolyzed Moxalactam (80 ms Snapshot) 3AMO ; 2.1 ; Time-resolved X-ray Crystal Structure Analysis of Enzymatic Reaction of Copper Amine Oxidase from Arthrobacter globiformis 6TAZ ; ; Timeless couples G quadruplex detection with processing by DDX11 during DNA replication 8PWR ; ; TINA-conjugated antiparallel DNA triplex 3SPK ; 1.24 ; Tipranavir in Complex with a Human Immunodeficiency Virus Type 1 Protease Variant 3UB2 ; 2.4 ; TIR domain of Mal/TIRAP 7X5K ; 3.8 ; Tir-dsDNA complex, the initial binding state 7X5L ; 3.51 ; Tir-dsDNA complex, the initial binding state 7X5M ; 3.42 ; Tir-dsDNA complex, the initial binding state 7QQK ; 3.8 ; TIR-SAVED effector bound to cA3 2P1M ; 1.8 ; TIR1-ASK1 complex structure 5T7Q ; ; TIRAP phosphoinositide-binding motif 1A21 ; 2.35 ; TISSUE FACTOR (TF) FROM RABBIT 8BXR ; 2.7 ; Titin FnIII-domain I109-I111 (I/A4-A/A6) from the MIR region 8BW6 ; 1.95 ; Titin FnIII-domain I110 (I/A6) from the MIR region 8BVO ; 2.55 ; Titin I110-I111 FnIII tandem from the MIR region (I/A5-I/A6) 3LCY ; 2.5 ; Titin Ig tandem domains A164-A165 6YGN ; 2.4 ; Titin kinase and its flanking domains 1BPV ; ; TITIN MODULE A71 FROM HUMAN CARDIAC MUSCLE, NMR, 50 STRUCTURES 1NCT ; ; TITIN MODULE M5, N-TERMINALLY EXTENDED, NMR 1NCU ; ; Titin Module M5, N-terminally Extended, NMR 7NIP ; ; titin N2A unique sequence (UN2A) core 1TIU ; ; TITIN, IG REPEAT 27, NMR, 24 STRUCTURES 1TIT ; ; TITIN, IG REPEAT 27, NMR, MINIMIZED AVERAGE STRUCTURE 7AHS ; 2.05 ; titin-N2A Ig81-Ig83 1TYX ; 1.8 ; TITLE OF TAILSPIKE-PROTEIN 8TA5 ; 2.76 ; Title: Cryo-EM structure of the human CLC-2 chloride channel transmembrane domain with asymmetric C-terminal 1NPI ; 1.16 ; Tityus Serrulatus Neurotoxin (Ts1) at atomic resolution 5XER ; ; TK9 NMR structure in DPC micelle 5XES ; ; TK9 NMR structure in SDS micelle 7W6G ; 2.1 ; TKS-L190G mutant from Cannabis sativa in complex with lauroyl-CoA 4P6H ; 4.08 ; Tl+-bound inward-facing state (bound conformation) of the glutamate transporter homologue GltPh 4K4P ; 2.31 ; TL-3 inhibited Trp6Ala HIV Protease 4K4R ; 1.8 ; TL-3 inhibited Trp6Ala HIV Protease with 1-bromo-2-napthoic acid bound in exosite 4K4Q ; 1.8 ; TL-3 inhibited Trp6Ala HIV Protease with 3-bromo-2,6-dimethoxybenzoic acid bound in flap site 5GLV ; 1.8 ; Tl-gal 5GLZ ; 2.0 ; Tl-gal with Glucose 5GLW ; 2.0 ; Tl-gal with LacNAc 5GM0 ; 1.7 ; Tl-gal with lactose 5GLT ; 2.0 ; Tl-gal with LNT 5GLU ; 2.1 ; Tl-gal with SiaLac 5O0Y ; 2.86 ; TLK2 kinase domain from human 7YTP ; 2.77 ; TLR7 in complex with an inhibitor 1U6K ; 1.55 ; TLS refinement of the structure of Se-methionine labelled Coenzyme f420-dependent methylenetetrahydromethanopterin dehydrogenase (MTD) from Methanopyrus kandleri 8CHE ; 1.49 ; TLT-1 binding Fab of the bispecific antibody HMB-001 in complex with the TLT-1 stalk peptide 3N0C ; 2.3 ; TM0449 mutant crystal grown by hanging drop method 3N0B ; 2.3 ; TM0449 mutant crystals grown in loops/micromounts 3IH4 ; 2.3 ; TM1030 crystallized at 277K 3IH3 ; 2.35 ; TM1030 crystallized at 310K 3IH2 ; 2.3 ; TM1030 crystallized at 323K 4Q4H ; 2.527 ; TM287/288 in its apo state 1MV4 ; ; TM9A251-284: A Peptide Model of the C-Terminus of a Rat Striated Alpha Tropomyosin 3T2A ; 2.1 ; TMAO-grown cubic insulin (porcine) 3T25 ; 1.7 ; TMAO-grown orthorhombic trypsin (bovine) 3T29 ; 1.75 ; TMAO-grown trigonal trypsin (bovine) 3T28 ; 2.8 ; TMAO-grown trypsin (bovine)-previously unreported tetragonal crystal form 5MMD ; 1.75 ; TMB-1. Structural insights into TMB-1 and the role of residue 119 and 228 in substrate and inhibitor binding 2GPL ; 2.81 ; TMC-95 based biphenyl-ether macrocycles: specific proteasome inhibitors 7XJA ; 3.5 ; TMD masked refine map of human ClC-2 8F9K ; 3.4 ; TMEM106B doublet filaments extracted from MSTD neurodegenerative human brain 7QVC ; 2.64 ; TMEM106B filaments with Fold I from Alzheimer's disease (case 1) 7QVF ; 3.64 ; TMEM106B filaments with Fold I-d from Multiple system atrophy (case 18) 7QWG ; 3.38 ; TMEM106B filaments with Fold IIa from Multiple system atrophy (case 19) 7QWL ; 3.47 ; TMEM106B filaments with Fold IIb from Multiple system atrophy (case 19) 7QWM ; 2.76 ; TMEM106B filaments with Fold III from Multiple system atrophy (case 17) 8OTE ; 3.6 ; TMEM106B Fold I-d filament from Guam ALS/PDC 8OTD ; 2.6 ; TMEM106B Fold1-s filament from Guam ALS/PDC 7TMC ; 3.25 ; TMEM106B singlet filament extracted from MSTD neurodegenerative human brain 7U16 ; 2.7 ; TMEM106B(120-254) protofilament from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type A (all cases combined). 7U11 ; 3.2 ; TMEM106B(120-254) protofilament from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type A (case 1) 7U10 ; 3.0 ; TMEM106B(120-254) protofilament from progressive supranuclear palsy (PSP) case 2 7U12 ; 3.5 ; TMEM106B(120-254) singlet amyloid fibril from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type A (case 2) 7U13 ; 2.9 ; TMEM106B(120-254) singlet amyloid fibril from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type A (case 4) 7U15 ; 3.0 ; TMEM106B(120-254) singlet amyloid fibril from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type B case 2 (case 7). 7U14 ; 4.5 ; TMEM106B(120-254) singlet amyloid fibril from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type C (case 8) 7U18 ; 2.7 ; TMEM106B(120-254) T185S protofilament from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type A (all cases combined). 7U17 ; 3.0 ; TMEM106B(120-254) T185S singlet amyloid fibril from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) type B case 2 (case 7). 4WIT ; 3.4 ; TMEM16 lipid scramblase in crystal form 2 8SUN ; 3.12 ; TMEM16F 1PBC 8SUR ; 3.1 ; TMEM16F bound with Niclosamide 8TAG ; 3.2 ; TMEM16F, with Calcium and PIP2, no inhibitor 8TAL ; 3.2 ; TMEM16F, with Calcium and PIP2, no inhibitor, Cl1 8TAI ; 3.1 ; TMEM16F, with Calcium and PIP2, no inhibitor, Cl2 8C6I ; 3.5 ; TMEM2 ectodomain 7P5H ; 2.3 ; TmHydABC- D2 map 7P91 ; 2.8 ; TmHydABC- T. maritima bifurcating hydrogenase with bridge domain closed 7P92 ; 2.7 ; TmHydABC- T. maritima bifurcating hydrogenase with bridge domain up 7P8N ; 2.8 ; TmHydABC- T. maritima hydrogenase with bridge closed 4XWA ; 1.89 ; TMK from S.aureus in complex with the Piperidinyl Thymine class inhibitor with a C5 ethyl-amine 4QGG ; 1.62 ; TMK in complex with compound 46, 2-(3-CHLOROPHENOXY)-3-FLUORO-4-{(1R)-3-METHYL-1-[(3S)-3-(5-METHYL-2,4-DIOXO-3,4-DIHYDROPYRIMIDIN-1(2H)-YL)PIPERIDIN-1-YL]BUTYL}BENZOIC ACID 5GSN ; 2.203 ; Tmm in complex with methimazole 6UI5 ; 2.4 ; Tmn9 in complex with cofactor FAD 4XZ6 ; 2.2 ; TmoX in complex with TMAO 8V1F ; 2.19 ; TMPRSS2 complexed with the noncovalent inhibitor 6-amidino-2-napthol 3IYQ ; 13.0 ; tmRNA-SmpB: a journey to the center of the bacterial ribosome 3IYR ; 13.0 ; tmRNA-SmpB: a journey to the center of the bacterial ribosome 1EI7 ; 2.45 ; TMV COAT PROTEIN REFINED FROM THE 4-LAYER AGGREGATE 1TMZ ; ; TMZIP: A CHIMERIC PEPTIDE MODEL OF THE N-TERMINUS OF ALPHA TROPOMYOSIN, NMR, 15 STRUCTURES 5CY1 ; 3.4 ; Tn3 resolvase - site III complex crystal form I 5CY2 ; 4.0 ; Tn3 resolvase - site III complex crystal form II 4DM0 ; 2.5 ; TN5 transposase: 20MER OUTSIDE END 2 MN complex 7LNG ; 2.2 ; TNA modification at 3' end of RNA primer complex with guanosine dinucleotide ligand G(5')ppp(5')G 5VU6 ; 3.0 ; TNA polymerase binary complex with primer/template duplex 5VU5 ; 2.8 ; TNA polymerase, apo 5VU8 ; 3.2 ; TNA polymerase, closed ternary complex 7RSU ; 2.1 ; TNA polymerase, n+2 product 5VU7 ; 2.72 ; TNA polymerase, open ternary complex 5VU9 ; 2.05 ; TNA polymerase, translocated product 6I0Y ; 3.2 ; TnaC-stalled ribosome complex with the titin I27 domain folding close to the ribosomal exit tunnel 2F14 ; 1.71 ; Tne Crystal Structure of the Human Carbonic Anhydrase II in Complex with a Fluorescent Inhibitor 2E7A ; 1.8 ; TNF Receptor Subtype One-selective TNF Mutant with Antagonistic Activity 2ZPX ; 2.83 ; TNF Receptor Subtype One-selective TNF Mutant with Antagonistic Activity; R1antTNF-T8 5WUX ; 2.9 ; TNFalpha-certolizumab Fab 2ZJC ; 2.5 ; TNFR1 selectve TNF mutant; R1-6 5H07 ; 2.586 ; TNIP2-Ub complex, C2 form 8BD4 ; 3.44 ; TniQ-capped Tns-ATP-dsDNA complex 7POX ; 2.5 ; TNKS2 in complex with OM-1700, treated with H2O2 7MGK ; 3.1 ; TNNI3K complexed with 1-(3,5-dichloro-4-((6-(methylamino)pyrimidin-4-yl)oxy)phenyl)-3-(3-(trifluoromethyl)phenyl)urea 6B5J ; 2.97 ; TNNI3K complexed with a 4,6-diaminopyrimidine 4YFI ; 2.7 ; TNNI3K complexed with inhibitor 1 4YFF ; 3.07 ; TNNI3K complexed with inhibitor 2 7MGJ ; 2.95 ; TNNI3K complexed with N-methyl-4-(4-(3-(3-(trifluoromethyl) phenyl) ureido) phenoxy)picolinamide 4R22 ; 2.6 ; TnrA-DNA complex 1F1Z ; 2.4 ; TNSA, a catalytic component of the TN7 transposition system 7SVV ; 3.54 ; TnsBctd-TnsC complex 7SVU ; 3.5 ; TnsBctd-TnsC-TniQ complex 5IKH ; 2.1 ; Tobacco 5-epi-aristolochene synthase M4 mutant with (-)-premnaspirodiene 5ILJ ; 2.05 ; Tobacco 5-epi-aristolochene synthase with BIS-TRIS buffer molecule 5ILY ; 2.45 ; Tobacco 5-epi-aristolochene synthase with BIS-TRIS buffer molecule and diphosphate (PPi) 5ILZ ; 1.92 ; Tobacco 5-epi-aristolochene synthase with BIS-TRIS propane (BTP) buffer molecule 5ILH ; 2.1 ; Tobacco 5-epi-aristolochene synthase with CAPSO buffer molecule and Ca2+ ions 5ILI ; 1.9 ; Tobacco 5-epi-aristolochene synthase with CAPSO buffer molecule and Mg2+ ions 5IK0 ; 2.2 ; Tobacco 5-epi-aristolochene synthase with FPP 5IK6 ; 2.3 ; Tobacco 5-epi-aristolochene synthase with germacrene A and PPi 5ILD ; 2.12 ; Tobacco 5-epi-aristolochene synthase with MES buffer molecule and Mg2+ ions 5IL8 ; 2.3 ; Tobacco 5-epi-aristolochene synthase with MOPSO buffer molecule and Ca2+ ions 5IL3 ; 1.85 ; Tobacco 5-epi-aristolochene synthase with MOPSO buffer molecule and Mg2+ ions 5ILK ; 2.35 ; Tobacco 5-epi-aristolochene synthase with partial density from MOPSO or BIS-TRIS buffer molecule in the active site 5IKA ; 2.45 ; Tobacco 5-epi-aristolochene synthase with PPi 5IM1 ; 1.88 ; Tobacco 5-epi-aristolochene synthase without buffer molecule in the active site 5IK9 ; 2.23 ; Tobacco 5-epi-aristolochene with farnesyl monophosphate 8QMG ; 2.3 ; Tobacco lectin Nictaba in apo state including I and Eu SAD datasets. 8AD2 ; 2.0 ; Tobacco lectin Nictaba in complex with triacetylchitotriose 6I5A ; 2.3 ; Tobacco Mosaic Virus 6R7M ; 1.92 ; Tobacco Mosaic Virus (TMV) 1C8N ; 2.25 ; TOBACCO NECROSIS VIRUS 6Z38 ; 2.9 ; TodX deltaS2S3 mutant monoaromatic hydrocarbon channel 6Z37 ; 3.05 ; TodX monoaromatic hydrocarbon channel deltaS2 mutant 2OF3 ; 1.9 ; TOG domain structure from C.elegans Zyg9 5VJC ; 2.0 ; TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation 4U3J ; 2.81 ; TOG2:alpha/beta-tubulin complex 1IYQ ; 2.1 ; Toho-1 beta-Lactamase In Complex With Benzylpenicillin 1IYO ; 1.8 ; Toho-1 beta-Lactamase In Complex With Cefotaxime 1IYP ; 2.0 ; Toho-1 beta-Lactamase In Complex With Cephalothin 6U58 ; 1.89 ; Toho1 Beta Lactamase Glu166Gln Mutant 6U58 ; 1.9 ; Toho1 Beta Lactamase Glu166Gln Mutant 5KMW ; 1.1 ; TOHO1 Beta lactamase mutant E166A/R274N/R276N -benzyl penicillin complex 1L64 ; 1.9 ; TOLERANCE OF T4 LYSOZYME TO MULTIPLE XAA (RIGHT ARROW) ALA SUBSTITUTIONS: A POLYALANINE ALPHA-HELIX CONTAINING TEN CONSECUTIVE ALANINES 1L65 ; 1.7 ; TOLERANCE OF T4 LYSOZYME TO MULTIPLE XAA (RIGHT ARROW) ALA SUBSTITUTIONS: A POLYALANINE ALPHA-HELIX CONTAINING TEN CONSECUTIVE ALANINES 1L66 ; 1.7 ; TOLERANCE OF T4 LYSOZYME TO MULTIPLE XAA (RIGHT ARROW) ALA SUBSTITUTIONS: A POLYALANINE ALPHA-HELIX CONTAINING TEN CONSECUTIVE ALANINES 1L67 ; 1.9 ; TOLERANCE OF T4 LYSOZYME TO MULTIPLE XAA (RIGHT ARROW) ALA SUBSTITUTIONS: A POLYALANINE ALPHA-HELIX CONTAINING TEN CONSECUTIVE ALANINES 1L68 ; 1.7 ; TOLERANCE OF T4 LYSOZYME TO MULTIPLE XAA (RIGHT ARROW) ALA SUBSTITUTIONS: A POLYALANINE ALPHA-HELIX CONTAINING TEN CONSECUTIVE ALANINES 1L76 ; 1.9 ; TOLERANCE OF T4 LYSOZYME TO PROLINE SUBSTITUTIONS WITHIN THE LONG INTERDOMAIN ALPHA-HELIX ILLUSTRATES THE ADAPTABILITY OF PROTEINS TO POTENTIALLY DESTABILIZING LESIONS 7WV3 ; 2.26 ; Toll-like receptor3 linear cluster 3RMK ; 1.95 ; Toluene 4 monooxygenase H with 4-bromophenol 3Q3M ; 1.748 ; Toluene 4 monooxygenase HD Complex with Inhibitor 4-Bromobenzoate 3Q2A ; 1.99 ; Toluene 4 monooxygenase HD complex with inhibitor p-aminobenzoate 3Q14 ; 1.75 ; Toluene 4 monooxygenase HD Complex with p-cresol 3Q3N ; 1.84 ; Toluene 4 monooxygenase HD complex with p-nitrophenol 3Q3O ; 1.95 ; Toluene 4 monooxygenase HD complex with phenol 3RI7 ; 2.1 ; Toluene 4 monooxygenase HD Mutant G103L 5TDU ; 1.742 ; Toluene 4-monooxygenase (T4moHD) bound to product after turnover in crystal 3GE8 ; 2.19 ; Toluene 4-monooxygenase HD T201A diferric, resting state complex 5TDS ; 1.719 ; Toluene bound in the resting active site of toluene 4-monooxygenase (T4moH) 4EMI ; 1.806 ; Toluene dioxygenase reductase in reduced state in complex with NAD+ 1G10 ; ; TOLUENE-4-MONOOXYGENASE CATALYTIC EFFECTOR PROTEIN NMR STRUCTURE 1G11 ; ; TOLUENE-4-MONOOXYGENASE CATALYTIC EFFECTOR PROTEIN NMR STRUCTURE 7VC4 ; 3.74 ; Tom complex with Tom22 and Tom20 subunits 7VBY ; 2.54 ; Tom core complex with Tom20 and Tom22 subunits. 2N2N ; ; Tom1 negatively modulates binding of Tollip to phosphatidylinositol 3-phosphate via a coupled folding and binding mechanism 2N31 ; ; Tom1 negatively modulates binding of Tollip to phosphatidylinositol 3-phosphate via a coupled folding and binding mechanism 7VC9 ; 13.0 ; Tom20 subunits 5D8N ; 2.15 ; Tomato leucine aminopeptidase mutant - K354E 5IP1 ; 2.703 ; Tomato spotted wilt tospovirus nucleocapsid protein 5IP3 ; 3.0 ; Tomato spotted wilt tospovirus nucleocapsid protein-ssDNA complex 5IP2 ; 3.3 ; Tomato spotted wilt tospovirus nucleocapsid protein-ssRNA complex 4CYL ; 22.2 ; Tomographic subvolume average of EFF-1 fusogen on extracellular vesicles 3L18 ; 1.78 ; Ton1285, an Intracellular Protease from Thermococcus onnurineus NA1 1IMH ; 2.86 ; TonEBP/DNA COMPLEX 8PHQ ; 2.69 ; Top cap of the Borrelia bacteriophage BB1 procapsid, fivefold-symmetrized outer shell 7Z46 ; 3.4 ; Top part (C5) of bacteriophage SU10 capsid 8IXL ; 3.5 ; top segment of the bacteriophage M13 mini variant 8JWW ; 3.5 ; top segment of the bacteriophage M13 mini variant 8F4X ; 3.01 ; Top-down design of protein architectures with reinforcement learning 8F53 ; 2.93 ; Top-down design of protein architectures with reinforcement learning 8F54 ; 2.5 ; Top-down design of protein architectures with reinforcement learning 7FAO ; 1.43 ; Top7 surface mutant K42A Q43A K46A K57S K58S, and I68R 1A36 ; 2.8 ; TOPOISOMERASE I/DNA COMPLEX 1BJT ; 2.5 ; TOPOISOMERASE II RESIDUES 409-1201 3L4J ; 2.48 ; Topoisomerase II-DNA cleavage complex, apo 3L4K ; 2.98 ; Topoisomerase II-DNA cleavage complex, metal-bound 4GFH ; 4.408 ; Topoisomerase II-DNA-AMPPNP complex 2RGR ; 3.0 ; Topoisomerase IIA bound to G-segment DNA 4KQV ; 2.38 ; Topoisomerase iv atp binding domain of francisella tularensis in complex with a small molecule inhibitor 1BGW ; 2.7 ; TOPOISOMERASE RESIDUES 410-1202, 2HKJ ; 2.0 ; Topoisomerase VI-B bound to radicicol 1Z5B ; 2.0 ; Topoisomerase VI-B, ADP AlF4- bound dimer form 1Z5C ; 2.2 ; Topoisomerase VI-B, ADP Pi bound dimer form 1Z5A ; 2.2 ; Topoisomerase VI-B, ADP-bound dimer form 1Z59 ; 2.1 ; Topoisomerase VI-B, ADP-bound monomer form 6ZIH ; 28.7 ; Topological model of p2 virion baseplate in activated conformation 6ZJJ ; 22.0 ; Topological model of p2 virion baseplate in resting conformation 6ZIG ; 42.2 ; Topological model of the p2 virion baseplate in activated conformation (closed Tal trimer) 6TG6 ; 1.3 ; Toprim domain of RNase M5 6Z2B ; 2.138 ; Toprim domain of RNase M5 bound with two Mg2+ ions 1AVQ ; 2.4 ; TOROIDAL STRUCTURE OF LAMBDA EXONUCLEASE DETERMINED AT 2.4 ANGSTROMS 2J4F ; 2.8 ; Torpedo acetylcholinesterase - Hg heavy-atom derivative 2J3Q ; 2.8 ; Torpedo acetylcholinesterase complexed with fluorophore thioflavin T 6G4M ; 2.63 ; Torpedo californica acetylcholinesterase bound to uncharged hybrid reactivator 1 6G4N ; 2.9 ; Torpedo californica acetylcholinesterase bound to uncharged hybrid reactivator 2 2VQ6 ; 2.71 ; Torpedo californica acetylcholinesterase complexed with 2-PAM 2CMF ; 2.5 ; Torpedo californica acetylcholinesterase complexed with alkylene- linked bis-tacrine dimer (5 carbon linker) 2CKM ; 2.15 ; Torpedo californica acetylcholinesterase complexed with alkylene- linked bis-tacrine dimer (7 carbon linker) 1E3Q ; 2.85 ; TORPEDO CALIFORNICA ACETYLCHOLINESTERASE COMPLEXED WITH BW284C51 7B8E ; 2.23 ; Torpedo californica acetylcholinesterase complexed with Ca+2 7B38 ; 1.85 ; Torpedo californica acetylcholinesterase complexed with Mg+2 7B2W ; 2.65 ; Torpedo californica acetylcholinesterase complexed with UO2 2C58 ; 2.3 ; Torpedo californica acetylcholinesterase in complex with 20mM acetylthiocholine 2C5G ; 1.95 ; Torpedo californica acetylcholinesterase in complex with 20mM thiocholine 2C4H ; 2.15 ; Torpedo californica acetylcholinesterase in complex with 500mM acetylthiocholine 4TVK ; 2.3 ; TORPEDO CALIFORNICA ACETYLCHOLINESTERASE IN COMPLEX WITH A CHLOROTACRINE-JUGLONE HYBRID INHIBITOR 5NUU ; 2.5 ; Torpedo californica acetylcholinesterase in complex with a chlorotacrine-tryptophan hybrid inhibitor 2VJA ; 2.3 ; Torpedo Californica Acetylcholinesterase In Complex With A Non Hydrolysable Substrate Analogue, 4-Oxo-N,N,N- Trimethylpentanaminium - Orthorhombic space group - Dataset A at 100K 2VJC ; 2.3 ; Torpedo Californica Acetylcholinesterase In Complex With A Non Hydrolysable Substrate Analogue, 4-Oxo-N,N,N- Trimethylpentanaminium - Orthorhombic space group - Dataset A at 150K 2VJD ; 2.3 ; Torpedo Californica Acetylcholinesterase In Complex With A Non Hydrolysable Substrate Analogue, 4-Oxo-N,N,N- Trimethylpentanaminium - Orthorhombic space group - Dataset C at 150K 2VJB ; 2.39 ; Torpedo Californica Acetylcholinesterase In Complex With A Non Hydrolysable Substrate Analogue, 4-Oxo-N,N,N- Trimethylpentanaminium - Orthorhombic space group - Dataset D at 100K 2C5F ; 2.6 ; Torpedo californica acetylcholinesterase in complex with a non hydrolysable substrate analogue, 4-oxo-N,N,N-trimethylpentanaminium 5NAU ; 2.25 ; Torpedo californica acetylcholinesterase in complex with a non-chiral donepezil-like compound 20 5NAP ; 2.17 ; Torpedo californica acetylcholinesterase in complex with a non-chiral donepezil-like inhibitor 17 4W63 ; 2.8 ; TORPEDO CALIFORNICA ACETYLCHOLINESTERASE IN COMPLEX WITH A TACRINE-BENZOFURAN HYBRID INHIBITOR 4X3C ; 2.6 ; TORPEDO CALIFORNICA ACETYLCHOLINESTERASE IN COMPLEX WITH A TACRINE-NICOTINAMIDE HYBRID INHIBITOR 2XI4 ; 2.3 ; Torpedo californica Acetylcholinesterase in Complex with Aflatoxin B1 (Orthorhombic Space Group) 1SOM ; 2.2 ; TORPEDO CALIFORNICA ACETYLCHOLINESTERASE INHIBITED BY NERVE AGENT GD (SOMAN). 3ZV7 ; 2.26 ; Torpedo californica Acetylcholinesterase Inhibition by Bisnorcymserine 6EZG ; 2.2 ; Torpedo californica AChE in complex with indolic multi-target directed ligand 6EZH ; 2.6 ; Torpedo californica AChE in complex with indolic multi-target directed ligand 1TOS ; ; TORPEDO CALIFORNICA ACHR RECEPTOR [ALA76] ANALOGUE COMPLEXED WITH THE ANTI-ACETYLCHOLINE MAB6 MONOCLONAL ANTIBODY 7QL6 ; 3.23 ; Torpedo muscle-type nicotinic acetylcholine receptor - carbamylcholine-bound conformation 7QL5 ; 2.5 ; Torpedo muscle-type nicotinic acetylcholine receptor - nicotine-bound conformation 7QKO ; 2.9 ; Torpedo muscle-type nicotinic acetylcholine receptor - Resting conformation 5J1S ; 1.399 ; TorsinA-LULL1 complex, H. sapiens, bound to VHH-BS2 5J1T ; 1.402 ; TorsinAdeltaE-LULL1 complex, H. sapiens, bound to VHH-BS2 5FVA ; 3.7 ; Toscana Virus Nucleocapsid Protein 1B3A ; 1.6 ; TOTAL CHEMICAL SYNTHESIS AND HIGH-RESOLUTION CRYSTAL STRUCTURE OF THE POTENT ANTI-HIV PROTEIN AOP-RANTES 5CY0 ; 1.93 ; Total Chemical Synthesis, Covalent Structure Verification, and X-ray Structure of Bioactive Ts3 Toxin by Racemic Protein Crystallography 5HKG ; 1.5 ; Total chemical synthesis, refolding and crystallographic structure of a fully active immunophilin: calstabin 2 (FKBP12.6). 1L36 ; 1.7 ; TOWARD A SIMPLIFICATION OF THE PROTEIN FOLDING PROBLEM: A STABILIZING POLYALANINE ALPHA-HELIX ENGINEERED IN T4 LYSOZYME 1SDE ; 1.15 ; Toward Better Antibiotics: Crystal Structure Of D-Ala-D-Ala Peptidase inhibited by a novel bicyclic phosphate inhibitor 1SCW ; 1.13 ; TOWARD BETTER ANTIBIOTICS: CRYSTAL STRUCTURE OF R61 DD-PEPTIDASE INHIBITED BY A NOVEL MONOCYCLIC PHOSPHATE INHIBITOR 1G7N ; 1.5 ; Toward changing specificity: adipocyte lipid binding protein mutant, apo form 1G74 ; 1.7 ; Toward changing specificity: adipocyte lipid binding protein mutant, oleic acid bound form 1GAR ; 1.96 ; TOWARDS STRUCTURE-BASED DRUG DESIGN: CRYSTAL STRUCTURE OF A MULTISUBSTRATE ADDUCT COMPLEX OF GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE AT 1.96 ANGSTROMS RESOLUTION 1OX4 ; 2.5 ; TOWARDS UNDERSTANDING THE MECHANISM OF THE COMPLEX CYCLIZATION REACTION CATALYZED BY IMIDAZOLE GLYCEROPHOSPHATE SYNTHASE 1OX5 ; 2.5 ; TOWARDS UNDERSTANDING THE MECHANISM OF THE COMPLEX CYCLIZATION REACTION CATALYZED BY IMIDAZOLE GLYCEROPHOSPHATE SYNTHASE 1OX6 ; 2.4 ; TOWARDS UNDERSTANDING THE MECHANISM OF THE COMPLEX CYCLIZATION REACTION CATALYZED BY IMIDAZOLE GLYCEROPHOSPHATE SYNTHASE 8HGJ ; 4.82 ; Toxascaris leonina galectin (Tl-gal) and Human T-cell immunoglobulin mucin-3 (Tim3) complex 2QIL ; 2.07 ; TOXIC SHOCK SYNDROME TOXIN-1 AT 2.07 A RESOLUTION 2TSS ; 2.05 ; TOXIC SHOCK SYNDROME TOXIN-1 FROM STAPHYLOCOCCUS AUREUS: ORTHORHOMBICC222(1) CRYSTAL FORM 3TSS ; 1.9 ; TOXIC SHOCK SYNDROME TOXIN-1 TETRAMUTANT, P2(1) CRYSTAL FORM 5TSS ; 2.9 ; TOXIC SHOCK SYNDROME TOXIN-1: ORTHORHOMBIC P222(1) CRYSTAL FORM 4TSS ; 2.75 ; TOXIC SHOCK SYNDROME TOXIN-1: TETRAGONAL P4(1)2(1)2 CRYSTAL FORM 1FGB ; 2.4 ; TOXIN 7VD7 ; 1.43 ; Toxin - Antitoxin complex from Salmonella enterica serovar Typhimurium 6L7E ; 3.2 ; Toxin Complex TcdA1-TcdB1-TccC2 3GNU ; 1.9 ; Toxin fold as basis for microbial attack and plant defense 3GNZ ; 1.35 ; Toxin fold for microbial attack and plant defense 7NNA ; 1.901 ; Toxin Import Through the Antibiotic Efflux Channel TolC 7EWI ; 1.93 ; Toxin protein from Staphylococcus aureus 5IMT ; 2.7001 ; Toxin receptor complex 5SV2 ; 1.31 ; Toxin VapC21 from Mycobacterium tuberculosis 7BY2 ; 2.6 ; Toxin-antitoxin complex from Klebsiella pneumoniae 7BY3 ; 2.0 ; Toxin-antitoxin complex from klebsiella pneumoniae 7BYE ; 2.3 ; Toxin-antitoxin complex from klebsiella pneumoniae 7EWJ ; 2.0 ; Toxin-antitoxin complex from Staphylococcus aureus 5YRZ ; 2.304 ; Toxin-Antitoxin complex from Streptococcus pneumoniae 6F8S ; 2.5 ; Toxin-Antitoxin complex GraTA 6AF3 ; 2.803 ; Toxin-Antitoxin module from Streptococcus pneumoniae 6AF4 ; 2.65 ; Toxin-Antitoxin module from Streptococcus pneumoniae 2QNW ; 1.9 ; Toxoplasma gondii apicoplast-targeted acyl carrier protein 1SOV ; 1.9 ; Toxoplasma gondii bradyzoite-specific LDH (LDH2) apo form 5W8R ; 2.2 ; Toxoplasma Gondii CDPK1 in complex with inhibitor 3CIB-PPI 5W9E ; 2.44 ; Toxoplasma Gondii CDPK1 in complex with inhibitor GXJ-186 5W80 ; 2.0 ; Toxoplasma Gondii CDPK1 in complex with inhibitor GXJ-237 5W9R ; 2.7 ; Toxoplasma Gondii CDPK1 in complex with inhibitor LJQ138 5W91 ; 2.4 ; Toxoplasma Gondii CDPK1 in complex with inhibitor LZH118 7FGX ; 2.05 ; Toxoplasma gondii dihydrofolate reductase thymidylate synthase (TgDHFR-TS) complexed with P39, NADPH and dUMP 7FGY ; 2.67 ; Toxoplasma gondii dihydrofolate reductase thymidylate synthase (TgDHFR-TS) complexed with P40, NADPH and dUMP 7FGW ; 2.15 ; Toxoplasma gondii dihydrofolate reductase thymidylate synthase (TgDHFR-TS) complexed with pyrimethamine, NADPH and dUMP 4XLL ; 2.08 ; Toxoplasma gondii DJ-1, oxidized 4O1M ; 2.0 ; Toxoplasma gondii Enoyl acyl carrier protein reductase 1FSG ; 1.05 ; TOXOPLASMA GONDII HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE COMPLEXED WITH 9-DEAZAGUANINE, ALPHA-D-5-PHOSPHORIBOSYL-1-PYROPHOSPHATE (PRPP) AND TWO MG2+ IONS 1QK3 ; 1.65 ; TOXOPLASMA GONDII HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE GMP COMPLEX 1QK4 ; 1.9 ; TOXOPLASMA GONDII HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE IMP COMPLEX 1QK5 ; 1.6 ; TOXOPLASMA GONDII HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE WITH XMP, PYROPHOSPHATE AND TWO MG2+ IONS 6DUE ; 2.6 ; Toxoplasma gondii MyoA, a Class-XIV myosin, in the pre-powerstroke state 4KH6 ; 2.4 ; Toxoplasma gondii NTPDase1 C258S/C268S E493G crystallized with Mg and AMPNP 4KH5 ; 3.0 ; Toxoplasma gondii NTPDase1 C258S/C268S in complex with Mg and AMPNP 4KH4 ; 3.0 ; Toxoplasma gondii NTPDase1 C258S/C268S in complex with Mg and AMPPNP 7F9P ; 1.57 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L95 and azetidine 7VC1 ; 1.892 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L95 and L-proline in space group P21 7F9R ; 1.83 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L95, L-Proline and Febrifugine 7VC2 ; 2.096 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L96 and L-proline in space group P21 7F9Q ; 2.796 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L97 and Febrifugine 7F9T ; 1.489 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L97 and Halofuginone 7VC3 ; 1.973 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor L97 and L-proline at 1.97 A resolution 7F9S ; 1.861 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor T35 and Febrifugine (FF) 7VC5 ; 1.612 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor T35 and Febrifugine (FF) at 1.61 A resolution 7F9U ; 2.8 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor T35 and Halofuginone 7F9V ; 1.816 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with inhibitor T35 and Halofuginone 7V8K ; 2.47 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in Complex with L-Proline 7V8J ; 2.519 ; Toxoplasma gondii Prolyl-tRNA Synthetase (TgPRS) in complex with the reaction intermediates proline-adenylate (Pro-AMP) and pyrophosphate 7Q4A ; 2.31 ; Toxoplasma gondii PRP4K kinase domain (L715F) bound to altiratinib 6N1S ; 3.0 ; Toxoplasma gondii TS-DHFR in complex with selective inhibitor 29 6N1T ; 3.5 ; Toxoplasma gondii TS-DHFR in complex with selective inhibitor 3 2F4Z ; 2.11 ; Toxoplasma gondii ubiquitin conjugating enzyme TgTwinScan_2721- E2 domain 8B4B ; 1.75 ; ToxR bacterial transcriptional regulator bound to 19 bp ompU promoter DNA 8B4C ; 2.07 ; ToxR bacterial transcriptional regulator bound to 20 bp toxT promoter DNA 8B4E ; 3.25 ; ToxR bacterial transcriptional regulator bound to 25 bp toxT promoter DNA 8B4D ; 2.64 ; ToxR bacterial transcriptional regulator bound to 40 bp toxT promoter DNA 1O75 ; 1.95 ; Tp47, the 47-Kilodalton Lipoprotein of Treponema pallidum 5A7L ; 2.103 ; TP901-1 CI NTD (res 1-80) 8HKA ; 1.02 ; TPA bound-form of Periplasmic terephthalate binding protein (TBP) from Ideonella sakaiensis 8HKB ; 1.4 ; TPA bound-form of Periplasmic terephthalate binding protein (TBP) from Ideonella sakaiensis mutant K184D 8FZ7 ; 2.88 ; TpeA bound closed MthK-A88F mutant in nanodisc 5BKJ ; 3.5 ; TPeA-bound closed MthK channel in nanodisc 8BAD ; 1.81 ; Tpp80Aa1 2C0L ; 2.3 ; TPR DOMAIN OF HUMAN PEX5P IN COMPLEX WITH HUMAN MSCP2 2E2E ; 2.05 ; TPR domain of NrfG mediates the complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia Coli O157:H7 7NAZ ; 1.6 ; TPR-rich domain of EccA3 from M. smegmatis 3UQ3 ; 2.6 ; TPR2AB-domain:pHSP90-complex of yeast Sti1 3UPV ; 1.6 ; TPR2B-domain:pHsp70-complex of yeast Sti1 4MAL ; 2.05 ; TPR3 of FimV from P. aeruginosa (PAO1) 4MBQ ; 2.006 ; TPR3 of FimV from P. aeruginosa (PAO1) 6JBR ; 2.03 ; Tps1/UDP/T6P complex 8CX6 ; ; TPX2 Minimal Active Domain on Microtubules 6VPJ ; 2.1 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 C247V + C319V double mutant dephosphorylated, and in complex with AMP-PNP 6VPI ; 2.0 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 C247V + D256N + C319V triple mutant disulfide homodimer in complex with AMP-PNP 6XKA ; 2.65 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 dephosphorylated, and CoAlated on C290 6VPG ; 2.64 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 in complex with AMP-PNP 6VPH ; 2.14 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 modified with cacodylate and in complex with AMP-PNP 6VPL ; 1.86 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 with C290 disulfide bonded to compound 7-80, and in complex with AMP-PNP 6VPM ; 1.58 ; TPX2 residues 7-20 fused to Aurora A residues 116-389 with C290 disulfide bonded to compound 8-34, and in complex with AMP-PNP 3KND ; 2.151 ; TPX2:importin-alpha complex 6BJC ; 3.3 ; TPX2_mini decorated GMPCPP-microtubule 1MA6 ; ; TPY4 Tachyplesin I tyrosine mutant in the presence of dodecylphosphocholine micelles (300 mM) 1NQ0 ; 2.4 ; TR Receptor Mutations Conferring Hormone Resistance and Reduced Corepressor Release Exhibit Decreased Stability in the Nterminal LBD 1NQ1 ; 2.9 ; TR Receptor Mutations Conferring Hormone Resistance and Reduced Corepressor Release Exhibit Decreased Stability in the Nterminal LBD 3D57 ; 2.2 ; TR Variant D355R 7YD7 ; 2.25 ; TR-SFX MmCPDII-DNA complex: 1 ns snapshot. Includes 1 ns, dark, and extrapolated structure factors 7YEE ; 2.15 ; TR-SFX MmCPDII-DNA complex: 10 ns snapshot. Includes 10 ns, dark, and extrapolated structure factors. Collected at SwissFEL 7YEI ; 2.7 ; TR-SFX MmCPDII-DNA complex: 10 ns time-point collected in SACLA. Includes 10 ns, dark, and extrapolated structure factors 7YEJ ; 2.55 ; TR-SFX MmCPDII-DNA complex: 100 ns time-point collected in SACLA. Includes 100 ns, dark, and extrapolated structure factors 7YCM ; 2.0 ; TR-SFX MmCPDII-DNA complex: 100 ps snapshot. Includes 100ps, dark, and extrapolated structure factors 7YD8 ; 2.15 ; TR-SFX MmCPDII-DNA complex: 2 ns snapshot. Includes 2 ns, dark, and extrapolated structure factors 7YEM ; 2.6 ; TR-SFX MmCPDII-DNA complex: 200 us time-point collected in SACLA. Includes 200 us, dark, and extrapolated structure factors 7YEL ; 2.5 ; TR-SFX MmCPDII-DNA complex: 25 us time-point collected in SACLA. Includes 25 us, dark, and extrapolated structure factors 7YCP ; 2.08 ; TR-SFX MmCPDII-DNA complex: 250 ps snapshot. Includes 250 ps, dark, and extrapolated structure factors 7YEB ; 2.2 ; TR-SFX MmCPDII-DNA complex: 3.35 ns snapshot. Includes 3.35 ns, dark, and extrapolated structure factors 7YCR ; 2.15 ; TR-SFX MmCPDII-DNA complex: 450 ps snapshot. Includes 450ps, dark, and extrapolated structure factors 7YEK ; 2.4 ; TR-SFX MmCPDII-DNA complex: 500 ns time-point collected in SACLA. Includes 500 ns, dark, and extrapolated structure factors 7YEC ; 2.2 ; TR-SFX MmCPDII-DNA complex: 6 ns snapshot. Includes 6 ns, dark, and extrapolated structure factors 7YD6 ; 2.15 ; TR-SFX MmCPDII-DNA complex: 650 ps snapshot. Includes 650ps, dark, and extrapolated structure factors 7YDZ ; 2.23 ; TR-SFX MmCPDII-DNA complex: dark state as collected in SACLA 6RNJ ; 2.6 ; TR-SMX closed state structure (0-5ms) of bacteriorhodopsin 6RPH ; 2.6 ; TR-SMX open state structure (10-15ms) of bacteriorhodopsin 1VGE ; 2.0 ; TR1.9 FAB FRAGMENT OF A HUMAN IGG1 KAPPA AUTOANTIBODY 7VVY ; 3.1 ; TRA module of NuA4 6IG9 ; 4.6 ; Tra1 subunit from Saccharomyces cerevisiae SAGA complex 4ICY ; 2.4 ; Tracing the Evolution of Angucyclinone Monooxygenases: Structural Determinants for C-12b Hydroxylation and Substrate Inhibition in PgaE 3CUV ; 1.93 ; Tracking structure activity relationships of glycogen phosphorylase inhibitors: synthesis, kinetic and crystallographic evaluation of analogues of N-(-D-glucopyranosyl)-N'-oxamides 5WIP ; 2.62 ; TraE protein in complex with 2-(2-furyl)isonicotinic acid 5WII ; 2.79 ; TraE protein in complex with 2-Chloroisonicotinic Acid 5WIC ; 2.55 ; TraE protein in complex with 2-Furoic Acid (FOA) 5WIO ; 2.52 ; TraE protein in complex with 4-(1H-pyrrol-1-yl)pyridine-2-carboxylic acid 4M4E ; 2.6 ; TRAF domain of human TRAF4 5H10 ; 3.205 ; TRAF1-TANk complex 5YC1 ; 2.506 ; TRAF4_GPIb complex 1LB4 ; 2.4 ; TRAF6 apo structure 1LB6 ; 1.8 ; TRAF6-CD40 Complex 1LB5 ; 2.4 ; TRAF6-RANK Complex 2L8B ; ; TraI (381-569) 8A1B ; 1.7 ; TraI trans-esterase domain from pKM101 (apo) 8A1C ; 2.1 ; TraI trans-esterase domain from pKM101 (DNA bound) 3X3F ; 2.1 ; TRAIL-R2 Extracellular Region Complexed to a Fab fragment from Human Agonist Antibody KMTR2 3Q3U ; 1.85 ; Trametes cervina lignin peroxidase 6G1T ; 1.93 ; TraN, a repressor of an Enterococcus conjugative type IV secretion system 6NMB ; 2.3 ; Tranexamic Acid is an Active Site Inhibitor of Urokinase Plasminogen Activator 2M10 ; ; trans form of a photoswitchable PDZ domain crosslinked with an azobenzene derivative 6D53 ; ; Trans form of HemolysinII c-terminal domain 7QLJ ; 1.02 ; Trans structure of rsKiiro Illuminated at 290 K 2H3T ; ; trans-(4-aminomethyl)phenylazobenzoic acid-aPP bound to DPC micelles 7E05 ; 1.88 ; Trans-3/4-proline-hydroxylase H11 apo structure 8H7T ; 1.88 ; Trans-3/4-proline-hydroxylase H11 apo structure 7E01 ; 1.72 ; Trans-3/4-proline-hydroxylase H11 in the sixth reaction state 7E09 ; 2.38 ; Trans-3/4-proline-hydroxylase H11 with 3-hydroxyl-proline 8H85 ; 2.38 ; Trans-3/4-proline-hydroxylase H11 with 3-hydroxyl-proline 7E08 ; 1.84 ; Trans-3/4-proline-hydroxylase H11 with 4-Hydroxyl-proline 8H81 ; 1.84 ; Trans-3/4-proline-hydroxylase H11 with 4-Hydroxyl-proline 7E06 ; 1.97 ; Trans-3/4-proline-hydroxylase H11 with AKG 8H7V ; 1.97 ; Trans-3/4-proline-hydroxylase H11 with AKG 7E07 ; 2.14 ; Trans-3/4-proline-hydroxylase H11 with AKG and L-proline 8H7Y ; 2.14 ; Trans-3/4-proline-hydroxylase H11 with AKG and L-proline 7DZZ ; 1.95 ; Trans-3/4-proline-hydroxylase H11-stateV 6LUF ; 3.45 ; Trans-acting mutant Y290A of the central AAA+ domain of the flagellar regulatory protein FlrC 3RGI ; 1.51 ; Trans-acting transferase from Disorazole synthase 6APF ; 1.63 ; Trans-acting transferase from Disorazole synthase complexed with Citrate. 3SBM ; 1.35 ; Trans-acting transferase from Disorazole synthase in complex with Acetate 6APK ; 2.5 ; Trans-acting transferase from Disorazole synthase solved by serial femtosecond XFEL crystallography 6APG ; 2.0 ; Trans-acting transferase from Disorazole synthase with malonate 1BE6 ; 2.15 ; TRANS-CINNAMOYL-SUBTILISIN IN ANHYDROUS ACETONITRILE 1BE8 ; 2.2 ; TRANS-CINNAMOYL-SUBTILISIN IN WATER 4BX6 ; 1.595 ; trans-divalent streptavidin 4BX7 ; 2.26 ; trans-divalent streptavidin bound to biotin-4-fluorescein 4CPH ; 1.64 ; trans-divalent streptavidin with love-hate ligand 4 7E00 ; 1.92 ; Trans-proline-hydroxylase H11 with Succinic and L-proline in the fourth reaction state. 8WMQ ; 3.3 ; trans-Zeatin bound state of Arabidopsis AZG1 at pH5.5 8IRO ; 2.7 ; trans-Zeatin bound state of Arabidopsis AZG1 at pH7.4 7NMI ; 2.1 ; Transactivation domain of p53 in complex with S100P, using annexin A2 as crystallization chaperone 4RZ6 ; 1.802 ; Transaldolase B E96Q F178Y from E.coli 4RZ5 ; 1.8 ; Transaldolase B E96Q from E.coli 3R8R ; 1.9 ; Transaldolase from Bacillus subtilis 3R5E ; 2.1 ; TRANSALDOLASE from Corynebacterium glutamicum 3S1U ; 1.9 ; Transaldolase from Thermoplasma acidophilum in complex with D-erythrose 4-phosphate 3S1V ; 1.8 ; Transaldolase from Thermoplasma acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 3S1X ; 1.65 ; Transaldolase from Thermoplasma acidophilum in complex with D-sedoheptulose 7-phosphate Schiff-base intermediate 6YS0 ; 1.7 ; Transaldolase variant D211A from T. acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 4XZ9 ; 1.8 ; Transaldolase variant E60Q/F132Y from T. acidophilum in complex with DHA Schiff base and G3P 3S1W ; 1.8 ; Transaldolase variant Lys86Ala from Thermoplasma acidophilum in complex with glycerol and citrate 6YRM ; 1.7 ; Transaldolase variant T30A from T. acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 6YRE ; 1.96 ; Transaldolase variant T30C/D211C from T. acidophilum 6YRH ; 1.8 ; Transaldolase variant T30C/D211C from T. acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 6YRT ; 1.65 ; Transaldolase variant T30D from T. acidophilum in complex with D-fructose 6-phosphate Schiff-base intermediate 3S0C ; 1.78 ; Transaldolase wt of Thermoplasma acidophilum 6S54 ; 2.21 ; Transaminase from Pseudomonas fluorescens 7P3T ; 1.6 ; Transaminase of gamma-proteobacterium 7QX0 ; 3.5 ; Transaminase Structure of Plurienzyme (Tr2E2) in complex with PLP 5GHG ; 2.0 ; Transaminase W58L with SMBA 6SSG ; 1.47 ; Transaminase with DCS bound 5GHF ; 2.0 ; Transaminase with L-ala 6SSF ; 1.48 ; Transaminase with LCS bound 6SSD ; 1.18 ; Transaminase with PLP bound 6SSE ; 1.56 ; Transaminase with PMP bound 1ON9 ; 2.0 ; Transcarboxylase 12S crystal structure: hexamer assembly and substrate binding to a multienzyme core (with hydrolyzed methylmalonyl-coenzyme a bound) 1ON3 ; 1.9 ; Transcarboxylase 12S crystal structure: hexamer assembly and substrate binding to a multienzyme core (with methylmalonyl-coenzyme a and methylmalonic acid bound) 7KUF ; 2.6 ; Transcription activation subcomplex with WhiB7 bound to SigmaAr4-RNAP Beta flap tip chimera and DNA 2JEU ; 2.8 ; Transcription activator structure reveals redox control of a replication initiation reaction 2JEX ; 2.35 ; Transcription activator structure reveals redox control of a replication initiation reaction 7UBM ; 3.13 ; Transcription antitermination complex: ""pre-engaged"" Qlambda-loading complex 7UBN ; 3.36 ; Transcription antitermination complex: NusA-containing ""engaged"" Qlambda-loading complex 6P1B ; 1.942 ; Transcription antitermination factor Q21 6P1A ; 2.837 ; Transcription antitermination factor Q21 in complex with Q21-binding-element DNA 6P1C ; 2.005 ; Transcription antitermination factor Q21, SeMet-derivative 7UBL ; 2.177 ; Transcription antitermination factor Qlambda in complex with Q-lambda-binding-element DNA 7UBJ ; 1.46 ; Transcription antitermination factor Qlambda, type-I crystal 7UBK ; 1.97 ; Transcription antitermination factor Qlambda, type-II crystal 4Y5U ; 2.708 ; Transcription factor 1WTU ; ; TRANSCRIPTION FACTOR 1, NMR, MINIMIZED AVERAGE STRUCTURE 1CI6 ; 2.6 ; TRANSCRIPTION FACTOR ATF4-C/EBP BETA BZIP HETERODIMER 7Q4N ; 3.2 ; transcription factor CDX2 bound to hydroxymethylated DNA 6UCI ; 2.09 ; Transcription factor DeltaFosB bZIP domain self-assembly, oxidized form 6UCL ; 2.207 ; Transcription factor deltaFosB bZIP domain self-assembly, type-I crystal 6UCM ; 2.424 ; Transcription factor DeltaFosB bZIP domain self-assembly, type-II crystal 6GYR ; 3.1 ; Transcription factor dimerization activates the p300 acetyltransferase 6GYT ; 2.5 ; Transcription factor dimerization activates the p300 acetyltransferase 5VPA ; 2.83 ; Transcription factor FosB/JunD bZIP domain 7UCD ; 3.21 ; Transcription factor FosB/JunD bZIP domain covalently modified with the cysteine-targeting alpha-haloketone compound Z2159931480 5VPE ; 2.053 ; Transcription factor FosB/JunD bZIP domain in complex with cognate DNA, type-I crystal 5VPF ; 2.694 ; Transcription factor FosB/JunD bZIP domain in complex with cognate DNA, type-II crystal 5VPB ; 2.691 ; Transcription factor FosB/JunD bZIP domain in its oxidized form, type-I crystal 5VPC ; 2.498 ; Transcription factor FosB/JunD bZIP domain in its oxidized form, type-II crystal 5VPD ; 2.79 ; Transcription factor FosB/JunD bZIP domain in its oxidized form, type-III crystal 7UCC ; 1.94 ; Transcription factor FosB/JunD bZIP domain in the reduced form 5EMQ ; 2.3 ; Transcription factor GRDBD and GRE complex 5EMP ; 2.3 ; Transcription factor GRDBD and mmGRE complex 5EMC ; 2.3 ; Transcription factor GRDBD and smGRE complex 2HGH ; ; Transcription Factor IIIA zinc fingers 4-6 bound to 5S rRNA 55mer (NMR structure) 8ILW ; 2.712 ; Transcription factor LMX1a homeobox domain in complex with Pitx3 promoter 8IK5 ; 1.989 ; Transcription factor LMX1a homeobox domain in complex with Wnt1 promoter 7Z5K ; 2.28 ; Transcription factor MYF5 bound to non-symmetrical site 7Z5I ; 3.0 ; Transcription factor MYF5 bound to symmetrical site 1BOR ; ; TRANSCRIPTION FACTOR PML, A PROTO-ONCOPROTEIN, NMR, 1 REPRESENTATIVE STRUCTURE AT PH 7.5, 30 C, IN THE PRESENCE OF ZINC 6LFF ; 1.79 ; transcription factor SATB1 CUTr1 domain in complex with a phosphorothioate DNA 1BG1 ; 2.25 ; TRANSCRIPTION FACTOR STAT3B/DNA COMPLEX 5M4S ; 2.38 ; Transcription factor TFIIA as a single chain protein 2XDN ; 2.2 ; Transcription factor TtgR H67A mutant 4Y5W ; 3.104 ; Transcription factor-DNA complex 5D39 ; 3.2 ; Transcription factor-DNA complex 8IKE ; 2.6 ; Transcription factors LMX1a mutant-R199A homeobox domain complex with Wnt1 promoter 5FZ5 ; 8.8 ; Transcription initiation complex structures elucidate DNA opening (CC) 5FYW ; 4.35 ; Transcription initiation complex structures elucidate DNA opening (OC) 7ADE ; 4.2 ; Transcription termination complex IVa 6Z9P ; 3.9 ; Transcription termination intermediate complex 1 7ADB ; 4.4 ; Transcription termination intermediate complex 1 delta NusG 6Z9Q ; 5.7 ; Transcription termination intermediate complex 2 6Z9R ; 4.1 ; Transcription termination intermediate complex 3 7ADC ; 4.0 ; Transcription termination intermediate complex 3 delta NusG 6Z9S ; 4.4 ; Transcription termination intermediate complex 4 6Z9T ; 4.1 ; Transcription termination intermediate complex 5 7ADD ; 4.3 ; Transcription termination intermediate complex IIIa 8C7U ; 3.15 ; Transcriptional pleiotropic repressor CodY from Enterococcus faecalis in complex with Leu and a 30-bp DNA fragment encompassing two overlapping binding sites 8C7S ; 3.05 ; Transcriptional pleiotropic repressor CodY from Staphylococcus aureus in complex with Ile, GTP, and a 30-bp DNA fragment encompassing two overlapping binding sites 7Y19 ; 2.39 ; Transcriptional regulator BrpR 5YSZ ; 1.631 ; transcriptional regulator CelR-cellobiose complex 7QZ7 ; 2.3 ; Transcriptional regulator LmrR with bound daunomycin and with Trp-67 and Trp-96 replaced by 5,6,7-trifluoroTrp 7QZ6 ; 2.15 ; Transcriptional regulator LmrR with bound daunomycin and with Trp-67 and Trp-96 replaced by 5-fluoroTrp 7QZ8 ; 2.3 ; Transcriptional regulator LmrR with bound daunomycin and with Trp-67 and Trp-96 replaced by the unnatural amino acid 5,6-difluoroTrp 6FUU ; 1.75 ; Transcriptional regulator LmrR with bound heme 7QZ9 ; 2.31 ; Transcriptional regulator LmrR with Trp-67 and Trp-96 replaced by the unnatural amino acid 5,6-difluoroTrp 7QZ5 ; 1.8 ; Transcriptional regulator LmrR with Trp-67 and Trp-96 replaced by the unnatural amino acid 5-fluoroTrp 2IA0 ; 2.37 ; Transcriptional Regulatory Protein PF0864 From Pyrococcus Furiosus a Member of the ASNC Family (PF0864) 5MQQ ; 2.093 ; Transcriptional repressor AmtR of corynebacterium glutamicum 2CPG ; 1.6 ; TRANSCRIPTIONAL REPRESSOR COPG 1EA4 ; 2.95 ; TRANSCRIPTIONAL REPRESSOR COPG/22bp dsDNA COMPLEX 1B01 ; 2.56 ; TRANSCRIPTIONAL REPRESSOR COPG/DNA COMPLEX 6HNX ; 1.7 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM35133 6HNZ ; 1.7 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM41231 6HO0 ; 1.9 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM41325 6HO1 ; 2.0 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM41974 6HO2 ; 1.9 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM43138 6HO3 ; 2.4 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM43265 6HO4 ; 1.6 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44693 6HO5 ; 2.3 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44719 6HO6 ; 1.9 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44725 6HO7 ; 2.5 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44814 6HO8 ; 1.98 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44815 6HO9 ; 1.8 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44825 6HOA ; 1.5 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44830 6HOB ; 1.8 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44831 6HOC ; 2.5 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44847 6HOD ; 1.7 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44848 6HOE ; 1.9 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44850 6HOF ; 1.8 ; TRANSCRIPTIONAL REPRESSOR ETHR FROM MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH BDM44852 6C9T ; 2.07 ; Transcriptional repressor, CouR 6C2S ; 2.85 ; Transcriptional repressor, CouR, bound to a 23-mer DNA duplex 6C28 ; 2.09 ; Transcriptional repressor, CouR, bound to p-coumaroyl-CoA 1MF6 ; ; Transducin gamma subunit, C-terminal domain 60-71, rhodopsin-bound state: Ensemble of 15 models determined by TrNOE spectroscopy 1SYB ; 1.8 ; TRANSFER OF A BETA-TURN STRUCTURE TO A NEW PROTEIN CONTEXT 2Z9Q ; 11.7 ; Transfer RNA in the hybrid P/E state 7ED0 ; 1.65 ; Transferase from Mycobacterium tuberculosis 7ED1 ; 1.65 ; Transferase from Mycobacterium tuberculosis 7ED2 ; 1.65 ; Transferase from Mycobacterium tuberculosis 5XHP ; 2.8 ; Transferase with ligands 2D4J ; 1.16 ; Transformed monoclinic crystal of hen egg-white lysozyme from a heavy water solution 1KS6 ; ; Transforming Growth Factor Beta type II receptor ligand binding domain 1PLO ; ; TRANSFORMING GROWTH FACTOR-BETA TYPE II RECEPTOR EXTRACELLULAR DOMAIN 1MIL ; 2.7 ; TRANSFORMING PROTEIN 3S3J ; 2.25 ; Transglutaminase 2 in complex with a novel inhibitor 3S3P ; 2.5 ; Transglutaminase 2 in complex with a novel inhibitor 3S3S ; 2.301 ; Transglutaminase 2 in complex with a novel inhibitor 6A8P ; 2.537 ; Transglutaminase 2 mutant G224V in complex with GTP 2Q3Z ; 2.0 ; Transglutaminase 2 undergoes large conformational change upon activation 8OXW ; 1.7 ; Transglutaminase 3 in complex with DH patient-derived Fab DH63-B02 8OXX ; 2.5 ; Transglutaminase 3 in complex with inhibitor Z-don and DH patient-derived Fab DH63-B02 8OXY ; 2.0 ; Transglutaminase 3 without calcium in complex with DH patient-derived Fab DH63-B02 8OXV ; 1.8 ; Transglutaminase 3 zymogen in complex with DH patient-derived Fab DH63-B02 7C9J ; 2.1 ; Transglutaminase from Geobacillus stearothermophilus (without C-terminal extension) 6KZB ; 3.55 ; Transglutaminase2 complexed with calcium 4PYG ; 2.8 ; Transglutaminase2 complexed with GTP 1U2G ; 2.2 ; transhydrogenase (dI.ADPr)2(dIII.NADPH)1 asymmetric complex 2MQS ; ; Transient Collagen Triple Helix Binding to a Key Metalloproteinase in Invasion and Development: Spin Labels to Structure 7ZJD ; 2.94 ; Transient receptor potential cation channel subfamily V member 2,Enhanced green fluorescent protein 7ZJI ; 3.4 ; Transient receptor potential cation channel subfamily V member 2,Enhanced green fluorescent protein 6GTD ; 4.24 ; Transient state structure of CRISPR-Cpf1 (Cas12a) I2 conformation 6GTE ; 4.07 ; Transient state structure of CRISPR-Cpf1 (Cas12a) I3 conformation 6GTF ; 3.63 ; Transient state structure of CRISPR-Cpf1 (Cas12a) I5 conformation 6WYM ; 2.0 ; Transition metal inhibition and structural refinement of the M. tuberculosis esterase, Rv0045c 6WYN ; 1.81 ; Transition metal inhibition and structural refinement of the M. tuberculosis esterase, Rv0045c 1U6R ; 1.65 ; Transition state analog complex of muscle creatine kinase (R134K) mutant 1AMN ; 2.8 ; TRANSITION STATE ANALOG: ACETYLCHOLINESTERASE COMPLEXED WITH M-(N,N,N-TRIMETHYLAMMONIO)TRIFLUOROACETOPHENONE 8BOS ; 2.1 ; Transition state analogue complex of small G protein and its GAP effector 2HF7 ; 1.6 ; Transition State Analogue of AphA class B Acid Phosphatase/Phosphotransferase (Aluminium Fluoride Complex) 1L7N ; 1.8 ; TRANSITION STATE ANALOGUE OF PHOSPHOSERINE PHOSPHATASE (ALUMINUM FLUORIDE COMPLEX) 7QTM ; 2.25 ; Transition state analogue of small G protein in complex with relevant GAP 1RLT ; 2.2 ; Transition State Analogue of ybiV from E. coli K12 5U99 ; 2.4 ; Transition state analysis of adenosine triphosphate phosphoribosyltransferase 2NGR ; 1.9 ; TRANSITION STATE COMPLEX FOR GTP HYDROLYSIS BY CDC42: COMPARISONS OF THE HIGH RESOLUTION STRUCTURES FOR CDC42 BOUND TO THE ACTIVE AND CATALYTICALLY COMPROMISED FORMS OF THE CDC42-GAP. 4DZ6 ; 2.2 ; Transition state mimic of nucleoside-diphosphate kinase from borrelia burgdorferi with bound vanadate and adp 7W94 ; 3.4 ; Transition state of SARS-CoV-2 Delta variant spike protein 1M5O ; 2.2 ; Transition State Stabilization by a Catalytic RNA 1M5P ; 2.6 ; Transition State Stabilization by a Catalytic RNA 1M5V ; 2.4 ; Transition State Stabilization by a Catalytic RNA 1P50 ; 2.8 ; Transition state structure of an Arginine Kinase mutant 1BG0 ; 1.86 ; TRANSITION STATE STRUCTURE OF ARGININE KINASE 1M15 ; 1.2 ; Transition state structure of arginine kinase 6GTC ; 3.91 ; Transition state structure of Cpf1(Cas12a) I1 conformation 6GTG ; 3.27 ; Transition state structure of Cpf1(Cas12a) I4 conformation 2VR4 ; 1.8 ; Transition-state mimicry in mannoside hydrolysis: characterisation of twenty six inhibitors and insight into binding from linear free energy relationships and 3-D structure 3DWU ; 12.6 ; Transition-state model conformation of the switch I region fitted into the cryo-EM map of the eEF2.80S.AlF4.GDP complex 1CTT ; 2.2 ; TRANSITION-STATE SELECTIVITY FOR A SINGLE OH GROUP DURING CATALYSIS BY CYTIDINE DEAMINASE 1CTU ; 2.3 ; TRANSITION-STATE SELECTIVITY FOR A SINGLE OH GROUP DURING CATALYSIS BY CYTIDINE DEAMINASE 6VWT ; 3.03 ; Transitional unit cell 1 of adenine riboswitch aptamer crystal phase transition upon ligand binding 6VWV ; 3.0 ; Transitional unit cell 2 of adenine riboswitch aptamer crystal phase transition upon ligand binding 1GPU ; 1.86 ; Transketolase complex with reaction intermediate 2R8P ; 1.65 ; Transketolase from E. coli in complex with substrate D-fructose-6-phosphate 2R8O ; 1.47 ; Transketolase from E. coli in complex with substrate D-xylulose-5-phosphate 1QGD ; 1.9 ; TRANSKETOLASE FROM ESCHERICHIA COLI 1R9J ; 2.22 ; Transketolase from Leishmania mexicana 8QMF ; 2.1 ; Transketolase from Vibrio vulnificus in complex with thiamin pyrophosphate 8B0X ; 1.55 ; Translating 70S ribosome in the unrotated state (P and E, tRNAs) 1TIG ; 2.0 ; TRANSLATION INITIATION FACTOR 3 C-TERMINAL DOMAIN 1TIF ; 1.8 ; TRANSLATION INITIATION FACTOR 3 N-TERMINAL DOMAIN 5M80 ; 2.12 ; Translation initiation factor 4E in complex with (RP)-iPr-m7GppSpG mRNA 5' cap analog 5M7X ; 1.68 ; Translation initiation factor 4E in complex with (RP)-m2(7,2'O)GppSepG mRNA 5' cap analog (beta-Se-ARCA D1) 5M83 ; 1.86 ; Translation initiation factor 4E in complex with (RP)-m2(7,2'O)GppSpA mRNA 5' cap analog 5M7V ; 1.74 ; Translation initiation factor 4E in complex with (RP)-m2(7,2'O)GppSpG mRNA 5' cap analog (beta-S-ARCA D1) 5M81 ; 1.9 ; Translation initiation factor 4E in complex with (SP)-iPr-m7GppSpG mRNA 5' cap analog 5M7Z ; 1.689 ; Translation initiation factor 4E in complex with (SP)-m2(7,2'O)GppSepG mRNA 5' cap analog (beta-Se-ARCA D2) 5M84 ; 1.85 ; Translation initiation factor 4E in complex with (SP)-m2(7,2'O)GppSpA mRNA 5' cap analog 5M7W ; 1.97 ; Translation initiation factor 4E in complex with (SP)-m2(7,2'O)GppSpG mRNA 5' cap analog (beta-S-ARCA D2) 6YLT ; 2.67 ; Translation initiation factor 4E in complex with 3-MeBn7GpppG mRNA 5' cap analog 6YLV ; 2.66006 ; Translation initiation factor 4E in complex with 4-Cl-Bn7GpppG mRNA 5' cap analog 6GKK ; 1.858 ; Translation initiation factor 4E in complex with beta-phosphorothioate trinucleotide mRNA 5' cap diastereomer 1 (m7GppSpApG D1) 6GKL ; 2.2 ; Translation initiation factor 4E in complex with beta-phosphorothioate trinucleotide mRNA 5' cap diastereomer 2 (m7GppSpApG D2) 6YLR ; 2.19545 ; Translation initiation factor 4E in complex with bn7GpppG mRNA 5' cap analog 5J5Y ; 1.75 ; Translation initiation factor 4E in complex with m2(7,2'O)GppCCl2ppG mRNA 5' cap analog 5OSX ; 1.92 ; Translation initiation factor 4E in complex with m7G(5'S)ppp(5'S)G mRNA 5' cap analog 5J5O ; 1.867 ; Translation initiation factor 4E in complex with m7GppppG mRNA 5' cap analog 6GKJ ; 2.068 ; Translation initiation factor 4E in complex with trinucleotide mRNA 5' cap (m7GpppApG) 7N4D ; 2.45 ; Translation initiation factor eif-5a family protein from Naegleria fowleri ATCC 30863 1AP8 ; ; TRANSLATION INITIATION FACTOR EIF4E IN COMPLEX WITH M7GDP, NMR, 20 STRUCTURES 4TMW ; 1.55 ; Translation initiation factor eIF5B (517-858) from C. thermophilum, bound to GTP and Sodium 4TMZ ; 2.28 ; Translation initiation factor eIF5B (517-858) from C. thermophilum, bound to GTPgammaS and potassium 4TMV ; 1.53 ; Translation initiation factor eIF5B (517-858) from C. thermophilum, bound to GTPgammaS and Sodium 4TMT ; 1.58 ; Translation initiation factor eIF5B (517-858) mutant D533A from C. thermophilum, bound to GTPgammaS 4TMX ; 1.5 ; Translation initiation factor eIF5B (517-858) mutant D533N from C. thermophilum, bound to GTP and sodium 4TN1 ; 2.75 ; Translation initiation factor eIF5B (517-858) mutant D533R from C. thermophilum, bound to GTPgammaS 2IFE ; ; TRANSLATION INITIATION FACTOR IF3 FROM ESCHERICHIA COLI RIBOSOME BINDING DOMAIN (RESIDUES 84-180) 2EFG ; 2.6 ; TRANSLATIONAL ELONGATION FACTOR G COMPLEXED WITH GDP 1H6Q ; ; Translationally Controlled Tumor-associated Protein p23fyp from Schizosaccharomyces pombe 1H7Y ; ; Translationally Controlled Tumor-associated Protein p23fyp from Schizosaccharomyces pombe 8CF5 ; 2.71 ; Translocation intermediate 1 (TI-1) of 80S S. cerevisiae ribosome with ligands and eEF2 in the presence of sordarin 8CKU ; 3.11 ; Translocation intermediate 1 (TI-1*) of 80S S. cerevisiae ribosome with ligands and eEF2 in the absence of sordarin 8CDR ; 2.04 ; Translocation intermediate 2 (TI-2) of 80S S. cerevisiae ribosome with ligands and eEF2 in the presence of sordarin 8CG8 ; 2.57 ; Translocation intermediate 3 (TI-3) of 80S S. cerevisiae ribosome with ligands and eEF2 in the presence of sordarin 8CEH ; 2.05 ; Translocation intermediate 4 (TI-4) of 80S S. cerevisiae ribosome with ligands and eEF2 in the presence of sordarin 8CMJ ; 3.79 ; Translocation intermediate 4 (TI-4*) of 80S S. cerevisiae ribosome with eEF2 in the absence of sordarin 8CIV ; 2.47 ; Translocation intermediate 5 (TI-5) of 80S S. cerevisiae ribosome with ligands and eEF2 in the presence of sordarin 2GV3 ; ; Translocation of a tRNA with an extended anticodon through the ribosome 1UYN ; 2.6 ; Translocator domain of autotransporter NalP from Neisseria meningitidis 1UYO ; 3.2 ; Translocator domain of autotransporter NalP from Neisseria meningitidis 4UC3 ; 2.5 ; Translocator protein 18 kDa (TSPO) from Rhodobacter sphaeroides wild type 8C2H ; 2.64 ; Transmembrane domain of active state homomeric GluA1 AMPA receptor in tandem with TARP gamma 3 2NA7 ; ; Transmembrane domain of human Fas/CD95 death receptor 2NA6 ; ; Transmembrane domain of mouse Fas/CD95 death receptor 8C2I ; 2.7 ; Transmembrane domain of resting state homomeric GluA1 AMPA receptor in complex with TARP gamma 3 8C1S ; 3.0 ; Transmembrane domain of resting state homomeric GluA2 F231A mutant AMPA receptor in complex with TARP gamma 2 7ASY ; ; Transmembrane helix of tumor necrosis factor alpha in trifluorethanol 7ATB ; ; Transmembrane helix of tumor necrosis factor alpha in trifluorethanol, AGALLL mutant 7AT7 ; ; Transmembrane helix of tumor necrosis factor alpha in trifluorethanol, S34P mutant 5TOD ; 2.96 ; Transmembrane protein 24 SMP domain 2NR1 ; ; TRANSMEMBRANE SEGMENT 2 OF NMDA RECEPTOR NR1, NMR, 10 STRUCTURES 2NA8 ; ; Transmembrane Structure of the Cytokine Receptor Common Subunit beta 2NA9 ; ; Transmembrane Structure of the P441A Mutant of the Cytokine Receptor Common Subunit beta 7K7A ; ; Transmembrane structure of TNFR1 2MAE ; ; Transmembrane-cytosolic part of Trop2 explored by NMR and Molecular Dynamics 6L95 ; ; transmembrane-domain of Bax 2Y26 ; 2.7 ; Transmission defective mutant of Grapevine Fanleaf virus 4ZTK ; 2.104 ; Transpeptidase domain of FtsI4 D,D-transpeptidase from Legionella pneumophila. 4DX5 ; 1.9 ; Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop 4DX6 ; 2.9 ; Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop 4DX7 ; 2.253 ; Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop 2P13 ; 1.65 ; Transporter associated domain CorC_HlyC from Nitrosomonas europaea 4C0O ; 2.557 ; Transportin 3 in complex with phosphorylated ASF/SF2 4C0Q ; 3.42 ; Transportin 3 in complex with Ran(Q69L)GTP 8CMK ; 2.945 ; Transportin-3 TNPO3 in complex with RSY region of CIRBP 3K9J ; 1.903 ; Transposase domain of Metnase 3K9K ; 2.55 ; Transposase domain of Metnase 1B7E ; 2.9 ; TRANSPOSASE INHIBITOR 1TC3 ; 2.45 ; TRANSPOSASE TC3A1-65 FROM CAENORHABDITIS ELEGANS 2ROY ; 2.2 ; TRANSTHYRETIN (ALSO CALLED PREALBUMIN) COMPLEX WITH 3',5'-DINITRO-N-ACETYL-L-THYRONINE 2ROX ; 2.0 ; TRANSTHYRETIN (ALSO CALLED PREALBUMIN) COMPLEX WITH THYROXINE (T4) 1BZ8 ; 2.0 ; TRANSTHYRETIN (DEL VAL122) 1TFP ; 2.9 ; TRANSTHYRETIN (FORMERLY KNOWN AS PREALBUMIN) 5AL8 ; 1.5 ; Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites: daidzein-7-O- glucuronide 5AKV ; 1.52 ; Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites: genistein-7-O- glucuronide 5AKS ; 1.25 ; Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites: resveratrol-3-O- glucuronide 5AL0 ; 1.388 ; Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites: resveratrol-3-O-sulfate 5AKT ; 1.35 ; Transthyretin binding heterogeneity and anti-amyloidogenic activity of natural polyphenols and their metabolites: resveratrol-4'-O- glucuronide 1TYR ; 1.8 ; TRANSTHYRETIN COMPLEX WITH RETINOIC ACID 7Q9L ; 1.45 ; Transthyretin complexed with (E)-4-(2-(naphthalen-1-yl)vinyl)benzene-1,2-diol 7Q9N ; 1.45 ; Transthyretin complexed with (E)-4-(2-(naphthalen-2-yl)vinyl)benzene-1,2-diol 8AWW ; 1.6 ; Transthyretin conjugated with a tafamidis derivative 3P3R ; 1.25 ; Transthyretin in complex with (3,4-dihydroxy-5-nitrophenyl)(2-fluorophenyl)methanone 3IMR ; 1.7 ; Transthyretin in complex with (E)-2,6-dibromo-4-(2,6-dichlorostyryl)phenol 3IMW ; 1.31 ; Transthyretin in complex with (E)-2,6-dibromo-4-(2,6-dimethoxystyryl)aniline 4L1T ; 1.16 ; Transthyretin in complex with (E)-3-(dimethylamino)-5-(4-hydroxy-3,5-dimethylstyryl)benzoic acid 3IMU ; 1.4 ; Transthyretin in complex with (E)-4-(3-aminostyryl)-2,6-dibromoaniline 3IMV ; 1.47 ; Transthyretin in complex with (E)-4-(4-aminostyryl)-2,6-dibromoaniline 3IMT ; 1.4 ; Transthyretin in complex with (E)-4-(4-aminostyryl)-2,6-dibromophenol 6U0Q ; 1.75 ; Transthyretin in complex with (E)-5,5'-(ethene-1,2-diyl)bis(1,1-dihydroxy-3-oxo-1,3-dihydrobenzo[c][1,2]oxaborol-1-uide) 4HJU ; 1.35 ; Transthyretin in complex with (E)-N-(3-(4-hydroxy-3,5-dimethylstyryl)phenyl)acrylamide 3IMS ; 1.4 ; Transthyretin in complex with 2,6-dibromo-4-(2,6-dichlorophenethyl)phenol 6EOY ; 1.38 ; Transthyretin in complex with 4-(1,3-Benzothiazol-2-yl)-2-methylaniline 6EP1 ; 1.3 ; Transthyretin in complex with 5-(4-nitrophenylazo)-3-iodosalicylic acid 3HJ0 ; 1.34 ; Transthyretin in complex with a covalent small molecule kinetic stabilizer 4KY2 ; 1.13 ; Transthyretin in complex with the fluorescent folding sensor (E)-7-hydroxy-3-(4-hydroxy-3,5-dimethylstyryl)-4-methyl-2H-chromen-2-one 5DEJ ; 1.37 ; Transthyretin natural mutant A19D 3TFB ; 2.033 ; Transthyretin natural mutant A25T 1FH2 ; 1.8 ; TRANSTHYRETIN STABILITY AS A KEY FACTOR IN AMYLOIDOGENESIS 1FHN ; 1.75 ; TRANSTHYRETIN STABILITY AS A KEY FACTOR IN AMYLOIDOGENESIS 1F86 ; 1.1 ; TRANSTHYRETIN THR119MET PROTEIN STABILISATION 1U21 ; 1.69 ; transthyretin with tethered inhibitor on one monomer. 2GPZ ; 2.5 ; Transthyretin-like protein from Salmonella dublin 1TTR ; 1.9 ; TRANSTHYRETIN-V/122/I CARDIOMYOPATHIC MUTANT 6SDZ ; 2.97 ; transthyritin derived amyloid fibril from patient with hereditary V30M ATTR amyloidosis 3MDR ; 2.0 ; Tranylcypromine complex of Cytochrome P450 46A1 2XFO ; 2.1 ; tranylcypromine-inhibited human monoamine oxidase B Ile199Ala mutant in complex with 2-(2-benzofuranyl)-2-imidazoline 2XCG ; 1.9 ; Tranylcypromine-inhibited human monoamine oxidase B in complex with 2- (2-benzofuranyl)-2-imidazoline 5F5R ; 1.85 ; TRAP1N-ADPNP 2EXS ; 2.0 ; TRAP3 (engineered TRAP) 2EXT ; 1.8 ; TRAP4 (engineered TRAP) 7B6Z ; 5.5 ; TRAPPC11 subunit (1-716) 7YH2 ; 1.91 ; TRAPPC3 from Thorarchaeota AB25 7YH3 ; 1.7 ; TRAPPC3 from Thorarchaeota SMTZ1-45 7B6X ; 3.6 ; TRAPPCore from the MiniTRAPPIII complex 7B70 ; 4.0 ; TRAPPCore plus C8 (355-596) and C11 (1-718) from MiniTRAPPIII 1Y6W ; 2.4 ; Trapped intermediate of calmodulin 5IMW ; 2.89 ; Trapped Toxin 5IMY ; 2.4 ; Trapped Toxin 3KU4 ; 2.099 ; Trapping of an oxocarbenium ion intermediate in UP crystals 3KUK ; 2.783 ; Trapping of an oxocarbenium ion intermediate in UP crystals 3KVR ; 2.6 ; Trapping of an oxocarbenium ion intermediate in UP crystals 3KVV ; 1.8 ; Trapping of an oxocarbenium ion intermediate in UP crystals 3KVY ; 2.3 ; Trapping of an oxocarbenium ion intermediate in UP crystals 2Y3E ; 1.449 ; Traptavidin, apo-form 2Y3F ; 1.493 ; Traptavidin, biotin bound form 4HKZ ; 2.08 ; Trastuzumab Fab complexed with Protein L and Protein A fragments 6BI2 ; 1.801 ; Trastuzumab Fab D185A (Light Chain) Mutant Biotin Conjugation. 6BHZ ; 1.75 ; Trastuzumab Fab D185A (Light Chain) Mutant. 6BI0 ; 2.057 ; Trastuzumab Fab N158A, D185A, K190A (Light Chain) Triple Mutant. 6B9Z ; 1.82 ; Trastuzumab Fab v3 6B9Y ; 2.14 ; Trastuzumab Fab v3 in complex with 5-phenyl meditope variant 6BAE ; 2.14 ; Trastuzumab Fab v3 in complex with CQFDLSTRRLKC 6BAH ; 1.9 ; Trastuzumab Fab v3 with 5-diphenyl meditope variant 7E9U ; 2.1 ; Trehalase of Arabidopsis thaliana 7E9X ; 1.88 ; Trehalase of Arabidopsis thaliana acid mutant -D380A 7EAW ; 1.8 ; Trehalase of Arabidopsis thaliana acid mutant -D380A trehalose complex 4XXH ; 2.4 ; TREHALOSE REPRESSOR FROM ESCHERICHIA COLI 8UQV ; 3.6 ; Trehalose Synthase (TreS) of Mycobacterium tuberculosis in complex with 6-TreAz compound 5X7U ; 2.501 ; Trehalose synthase from Thermobaculum terrenum 6ZJ7 ; 2.15 ; Trehalose transferase (TreT) from Thermoproteus uzoniensis soaked with Mg 6ZN1 ; 1.75 ; Trehalose transferase bound to alpha-D-glucopyranosyl-beta-galactopyranose from Thermoproteus uzoniensis 6ZJH ; 2.1 ; Trehalose transferase from Thermoproteus uzoniensis soaked with trehalose 1UQT ; 2.0 ; Trehalose-6-phosphate from E. coli bound with UDP-2-fluoro glucose. 1UQU ; 2.0 ; Trehalose-6-phosphate from E. coli bound with UDP-glucose. 5LQD ; 1.95 ; Trehalose-6-phosphate synthase, GDP-glucose-dependent OtsA 1GZ5 ; 2.43 ; Trehalose-6-phosphate synthase. OtsA 6XA5 ; 1.03 ; Trehalose-bound structure of Marinomonas primoryensis PA14 carbohydrate-binding domain 4H2C ; 1.7 ; Trehalulose synthase MutB R284C mutant 6YMQ ; 3.07 ; TREM2 extracellular domain (19-131) in complex with single-chain variable 4 (scFv-4) 6YYE ; 3.36 ; TREM2 extracellular domain (19-131) in complex with single-chain variable fragment (scFv-2) 6Y6C ; 2.26 ; TREM2 extracellular domain (19-174) in complex with single-chain variable fragment (scFv-4) 1H97 ; 1.17 ; Trematode hemoglobin from Paramphistomum epiclitum 2Y3C ; 1.4 ; Treponema denticola variable protein 1 8DHV ; 1.6 ; Treponema lecithinolyticum beta-glucuronidase 8E72 ; 1.95 ; Treponema lecithinolyticum beta-glucuronidase in complex with a ciprofloxacin-glucuronide conjugate 8DHW ; 1.75 ; Treponema lecithinolyticum beta-glucuronidase in complex with a UNC4917-glucuronide conjugate 8X7A ; 2.56 ; Treprostinil bound Prostacyclin Receptor G protein complex 3MXI ; 2.55 ; TREX1 3' Exonuclease D18N Familial Chilblain Lupus Mutant 3MXM ; 1.75 ; TREX1 3' Exonuclease V201D Aicardi-Goutieres Syndrome Mutant 7U8Y ; 2.22 ; TREX1 Structural Studies Capture Small Molecule Inhibition and Implicate Novel DNA Dynamics 4YNQ ; 2.8 ; TREX1-dsDNA complex 5UBP ; 2.3 ; TREX2 M-region 7WKD ; 3.01 ; TRH-TRHR G protein complex 6EQO ; 2.7 ; Tri-functional propionyl-CoA synthase of Erythrobacter sp. NAP1 with bound NADP+ and phosphomethylphosphonic acid adenylate ester 1GWG ; 2.01 ; Tri-iodide derivative of apoferritin 1GWD ; 1.77 ; Tri-iodide derivative of hen egg-white lysozyme 1GW9 ; 1.55 ; Tri-iodide derivative of Xylose Isomerase from Streptomyces Rubiginosus 1R1N ; 1.74 ; Tri-nuclear oxo-iron clusters in the ferric binding protein from N. gonorrhoeae 2LHW ; ; Tri-O-GalNAc glycosylated Mucin sequence based on MUC2 Mucin glycoprotein tandem repeat 6VEJ ; 4.5 ; TriABC transporter from Pseudomonas aeruginosa 1ETH ; 2.8 ; TRIACYLGLYCEROL LIPASE/COLIPASE COMPLEX 7JXO ; 2.81 ; Triangular trimer of beta-hairpins derived from Abeta17-36 with an F20Cha mutation 4M0R ; 1.96 ; Trianthranilate-like analogue bound to anthranilate phosphoribosyltransferase (AnPRT; TrpD). 4AXM ; 2.8 ; TRIAZINE CATHEPSIN INHIBITOR COMPLEX 4L9X ; 1.85 ; Triazine hydrolase from Arthobacter aurescens modified for maximum expression in E.coli 4LH8 ; 1.8 ; Triazine hydrolase from Arthobacter aurescens modified for maximum expression in E.coli 6VXY ; 1.398 ; Triazole bridged SFTI1 inhibitor in complex with beta-trypsin 7M16 ; 1.42 ; Triazole-based BET family bromodomain inhibitor bound to BRD4(D1) 4P7E ; 2.4 ; Triazolopyridine compounds as selective JAK1 inhibitors: from hit identification to GLPG0634 2YIX ; 2.3 ; Triazolopyridine Inhibitors of p38 2YIW ; 2.0 ; triazolopyridine inhibitors of p38 kinase 2YIS ; 2.0 ; triazolopyridine inhibitors of p38 kinase. 4AQC ; 1.9 ; Triazolopyridine-based Inhibitor of Janus Kinase 2 5NJH ; 2.394 ; Triazolopyrimidines stabilize microtubules by binding to the vinca inhibitor site of tubulin 2Y0J ; 2.43 ; Triazoloquinazolines as a novel class of phosphodiesterase 10A (PDE10A) inhibitors, part 2, Lead-optimisation. 6DC0 ; 2.8 ; Tribbles (TRIB1) pseudokinase fused to CCAAT-enhancer binding protein (C/EBPalpha) degron 7UPM ; 2.7 ; Tribbles (TRIB2) pseudokinase bound to nanobody Nb4.103 7ZE1 ; 3.2 ; Tribolium castaneum hexamerin 2 6KRE ; 4.45 ; TRiC at 0.05 mM ADP-AlFx, Conformation 2, 0.05-C2 6KRD ; 4.38 ; TRiC at 0.05 mM ADP-AlFx, Conformation 4, 0.05-C4 6KS7 ; 4.62 ; TRiC at 0.1 mM ADP-AlFx, Conformation 1, 0.1-C1 6KS8 ; 4.69 ; TRiC at 0.1 mM ADP-AlFx, Conformation 4, 0.1-C4 6KS6 ; 2.99 ; TRiC at 0.2 mM ADP-AlFx, Conformation 1, 0.2-C1 2Q0M ; 1.7 ; Tricarbonylmanganese(I)-lysozyme complex : a structurally characterized organometallic protein 5JBK ; 2.593 ; Trichoderma harzianum GH1 beta-glucosidase ThBgl1 5JBO ; 1.97 ; Trichoderma harzianum GH1 beta-glucosidase ThBgl2 7NDE ; 1.45 ; Trichoderma parareesei PL7A beta-glucuronan lyase 7NYT ; 1.09 ; Trichoderma reesei Cel7A E212Q mutant in complex with lactose. 7OC8 ; 1.6 ; Trichoderma reesei Cel7A E212Q mutant in complex with pNPL 4PSE ; 1.71 ; Trichoderma reesei cutinase in complex with a C11Y4 phosphonate inhibitor 7WAC ; 2.91 ; Trichodesmium erythraeum cyanophycin synthetase 1 (TeCphA1) 7WAD ; 2.96 ; Trichodesmium erythraeum cyanophycin synthetase 1 (TeCphA1) with ATPgammaS 7WAF ; 2.52 ; Trichodesmium erythraeum cyanophycin synthetase 1 (TeCphA1) with ATPgammaS and 4x(beta-Asp-Arg) 7WAE ; 2.64 ; Trichodesmium erythraeum cyanophycin synthetase 1 (TeCphA1) with ATPgammaS, 4x(beta-Asp-Arg), and aspartate 6G7Q ; 1.2 ; Trichodesmium Tery_3377 (IdiA) (FutA) in complex with iron and citrate ligands. 6G7N ; 1.1 ; Trichodesmium Tery_3377 (IdiA) (FutA) with iron and alanine ligand. 6G7P ; 1.5 ; Trichodesmium Tery_3377 (IdiA) (FutA) with iron and water ligands. 1JFA ; 2.5 ; Trichodiene Synthase from Fusarium Sporotrichioides 1JFG ; 2.5 ; TRICHODIENE SYNTHASE FROM FUSARIUM SPOROTRICHIOIDES COMPLEXED WITH DIPHOSPHATE 2Q9Z ; 2.95 ; Trichodiene synthase: Complex with inorganic pyrophosphate resulting from the reaction with 2-fluorofarnesyl diphosphate 2Q9Y ; 2.85 ; Trichodiene synthase: Complex with Mg, inorganic pyrophosphate, and benzyl triethyl ammonium cation 4U5Z ; 2.1 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 4U62 ; 1.55 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 in complex with 3'-sialyllactose 4U61 ; 1.65 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 in complex with 6'-sialyllactose 4U60 ; 1.5 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 in complex with GM1 oligosaccharide 6HKU ; 1.98 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 in complex with sialylated precision glycooligomers 6HKV ; 1.75 ; Trichodysplasia spinulosa-associated polyomavirus (TSPyV) VP1 in complex with sialylated precision glycooligomers 4UUN ; 1.78 ; Trichomonas vaginalis lactate dehydrogenase in complex with NADH 5A1T ; 1.97 ; Trichomonas vaginalis lactate dehydrogenase in complex with NADH and oxamate 8OI7 ; 1.85 ; Trichomonas vaginalis riboside hydrolase 8OIC ; 2.8 ; Trichomonas vaginalis riboside hydrolase (His-tagged) 8OI9 ; 1.95 ; Trichomonas vaginalis riboside hydrolase in complex with 5-methyluridine 8OIA ; 2.3 ; Trichomonas vaginalis riboside hydrolase in complex with D-ribose 8OIB ; 2.44 ; Trichomonas vaginalis riboside hydrolase in complex with glycerol 4RCX ; 1.75 ; Trichomonas vaginalis triosephosphate isomerase TVAG_497370 gene (Ile-45 variant) loop 3 deletion protein 5OI9 ; 2.09 ; Trichoplax adhaerens STIL N-terminal domain 1M24 ; 0.9 ; Trichotoxin_A50E, An Ion Channel-Forming Polypeptide 3SBN ; 0.9 ; trichovirin I-4A in polar environment at 0.9 Angstroem 6V4M ; 1.599 ; Trichuris suis BCL-2 2F4G ; 1.654 ; Triclinic cross-linked lysozyme soaked in bromoethanol 1M 2F30 ; 1.65 ; Triclinic cross-linked Lysozyme soaked with 4.5M urea 2F4A ; 1.95 ; Triclinic cross-linked lysozyme soaked with thiourea 1.5M 6E6A ; 1.95 ; Triclinic crystal form of IncA G144A point mutant 1ZK3 ; 2.2 ; Triclinic crystal structure of the apo-form of R-specific alcohol dehydrogenase (mutant G37D) from Lactobacillus brevis 7YZ8 ; 2.5 ; Triclinic crystal structure of YTHDF1 YTH domain (544AVV546 mutant) 3PVN ; 1.98 ; Triclinic form of Human C-Reactive Protein in complex with Zinc 1MS4 ; 2.21 ; Triclinic form of Trypanosoma cruzi trans-sialidase 1MS8 ; 2.0 ; Triclinic form of Trypanosoma cruzi trans-sialidase, in complex with 3-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA) 1MS9 ; 1.58 ; Triclinic form of Trypanosoma cruzi trans-sialidase, in complex with lactose 1MS5 ; 2.0 ; Triclinic form of Trypanosoma cruzi trans-sialidase, soaked with N-acetylneuraminyl-a-2,3-thio-galactoside (NA-S-Gal) 2F2N ; 1.603 ; Triclinic hen egg lysozyme cross-linked by glutaraldehyde 1V7S ; 1.14 ; Triclinic hen lysozyme crystallized at 313K from a D2O solution 4YEO ; 0.98 ; Triclinic HEWL co-crystallised with cisplatin, studied at a data collection temperature of 150K - new refinement 7AVF ; 1.0 ; Triclinic hydrogenated hen egg-white lysozyme at 100 K (control) 6D6G ; 2.0 ; Triclinic lysozyme (295 K) in the presence of 47% MPD 6D6E ; 2.0 ; Triclinic lysozyme (295 K) in the presence of 47% xylose 6D6H ; 2.00006 ; Triclinic lysozyme cryocooled to 100 K with 47% MPD as cryoprotectant 6D6F ; 2.0 ; Triclinic lysozyme cryocooled to 100 K with 47% xylose as cryoprotectant 1V7T ; 1.13 ; Triclinic lysozyme with low solvent content obtained by phase transition 4OFM ; 2.64 ; Triclinic NaGST1 3BGY ; 1.65 ; Triclinic structure of Mimivirus Capping Enzyme Triphosphatase at 1.65 A 8G9Q ; 1.4 ; Tricomplex of Compound-1, KRAS G12C, and CypA 8G9P ; 1.5 ; Tricomplex of RMC-4998, KRAS G12C, and CypA 8TBG ; 1.2 ; Tricomplex of RMC-7977, HRAS WT, and CypA 8TBJ ; 1.45 ; Tricomplex of RMC-7977, KRAS G12A, and CypA 8TBK ; 1.26 ; Tricomplex of RMC-7977, KRAS G12C, and CypA 8TBL ; 1.88 ; Tricomplex of RMC-7977, KRAS G12D, and CypA 8TBH ; 1.5 ; Tricomplex of RMC-7977, KRAS G12R, and CypA 8TBN ; 1.46 ; Tricomplex of RMC-7977, KRAS G12S, and CypA 8TBM ; 1.57 ; Tricomplex of RMC-7977, KRAS G12V, and CypA 8TBF ; 1.5 ; Tricomplex of RMC-7977, KRAS WT, and CypA 8TBI ; 1.59 ; Tricomplex of RMC-7977, NRAS WT, and CypA 1N6E ; 2.6 ; tricorn protease in complex with a tridecapeptide chloromethyl ketone derivative 1N6D ; 2.8 ; Tricorn protease in complex with tetrapeptide chloromethyl ketone derivative 1N6F ; 2.7 ; tricorn protease in complex with Z-Phe-diketo-Arg-Glu-Phe 7ZWJ ; ; Triculamin: an Unusual Lasso Peptide with Potent Anti-mycobacterial Activity 6IAR ; 1.84 ; Tricyclic indazoles a novel class of selective estrogen receptor degrader antagonists 2YJW ; 1.61 ; Tricyclic series of Hsp90 inhibitors 2YJX ; 1.83 ; Tricyclic series of Hsp90 inhibitors 2YK2 ; 1.74 ; Tricyclic series of Hsp90 inhibitors 2YK9 ; 1.32 ; Tricyclic series of Hsp90 inhibitors 2YKB ; 1.93 ; Tricyclic series of Hsp90 inhibitors 2YKC ; 1.67 ; Tricyclic series of Hsp90 inhibitors 2YKE ; 1.43 ; Tricyclic series of Hsp90 inhibitors 2YKI ; 1.67 ; Tricyclic series of Hsp90 inhibitors 2YKJ ; 1.46 ; Tricyclic series of Hsp90 inhibitors 1TVS ; ; TRIFLUOROETHANOL STABILIZES A HELIX-TURN-HELIX MOTIF IN EQUINE INFECTIOUS-ANEMIA-VIRUS TRANS-ACTIVATOR PROTEIN 1T11 ; 2.5 ; Trigger Factor 1W26 ; 2.7 ; Trigger Factor in Complex with the Ribosome forms a Molecular Cradle for Nascent Proteins 1W2B ; 3.5 ; Trigger Factor ribosome binding domain in complex with 50S 5ELI ; 3.0977 ; Triggering receptor expressed on myeloid cells 2 1U27 ; 2.3 ; Triglycine variant of the ARNO Pleckstrin Homology Domain in complex with Ins(1,3,4,5)P4 1U29 ; 1.8 ; Triglycine variant of the ARNO Pleckstrin Homology Domain in complex with Ins(1,4,5)P3 1U2B ; 1.8 ; Triglycine variant of the Grp1 Pleckstrin Homology Domain unliganded 1DO2 ; 4.0 ; TRIGONAL CRYSTAL FORM OF HEAT SHOCK LOCUS U (HSLU) FROM ESCHERICHIA COLI 5D7B ; 3.2 ; Trigonal Crystal Structure of an acetylester hydrolase from Corynebacterium glutamicum 6QI6 ; 2.0 ; Trigonal form of WT recombinant bovine beta-lactoglobulin 5N8X ; 2.4 ; Trigonal structure of mutant V173I of 3D polymerase from Foot-and-Mouth Disease Virus 6MMV ; 4.71 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* Extracellular Domain in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMT ; 7.46 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '1-Knuckle' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMU ; 5.3 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Asymmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMW ; 6.2 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 6MMS ; 5.38 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the '2-Knuckle-Symmetric' conformation, in complex with glycine and glutamate, in the presence of 1 millimolar EDTA, and at pH 7.4 6MMX ; 6.99 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2A* in the 'Extended' conformation, in complex with glycine and glutamate, in the presence of 1 micromolar zinc chloride, and at pH 7.4 5UOW ; 4.5 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2B in complex with glycine, glutamate, MK-801 and a GluN2B-specific Fab, at pH 6.5 5UP2 ; 6.0 ; Triheteromeric NMDA receptor GluN1/GluN2A/GluN2B in complex with glycine, glutamate, Ro 25-6981, MK-801 and a GluN2B-specific Fab, at pH 6.5 1GWA ; 1.85 ; Triiodide derivative of porcine pancreas elastase 7XV2 ; 2.75 ; TRIM E3 ubiquitin ligase 7XYZ ; 4.62 ; TRIM E3 ubiquitin ligase 7XZ0 ; 3.28 ; TRIM E3 ubiquitin ligase 7XZ1 ; 5.2 ; TRIM E3 ubiquitin ligase 7XZ2 ; 3.5 ; TRIM E3 ubiquitin ligase 7XYY ; 7.1 ; TRIM E3 ubiquitin ligase WT 5VA4 ; 2.306 ; TRIM-Cyclophilin A B-box 2 and coiled-coil chimera 5OLM ; 1.95 ; TRIM21 5VZV ; 1.812 ; TRIM23 RING domain 5VZW ; 2.278 ; TRIM23 RING domain in complex with UbcH5-Ub 5EYA ; 2.4 ; TRIM25 RING domain in complex with Ubc13-Ub conjugate 7O0B ; 2.13 ; TRIM3 Filamin domain 5FEY ; 2.23 ; TRIM32 RING 5F7T ; 2.292 ; TRIM5 B-box2 and coiled-coil chimera 5IEA ; 3.258 ; TRIM5 B-box2 and coiled-coil chimera 7W0Q ; 1.1 ; TRIM7 in complex with C-terminal peptide of 2C 7W0S ; 1.4 ; TRIM7 in complex with C-terminal peptide of 2C 7W0T ; 1.57 ; TRIM7 in complex with C-terminal peptide of 2C 7X6Z ; 1.43 ; TRIM7 in complex with C-terminal peptide of NSP12 7X6Y ; 1.39 ; TRIM7 in complex with C-terminal peptide of NSP5 7X70 ; 1.25 ; TRIM7 in complex with C-terminal peptide of NSP8 8A5L ; 1.622 ; TRIM7 PRYSPRY in complex with a 2BC peptide TIEALFQ 8A8X ; 2.37 ; TRIM7 PRYSPRY in complex with a MNV1-NS3 peptide HDDFGLQ 8A5M ; 2.918 ; TRIM7 PRYSPRY in complex with a MNV1-NS6 peptide LEALEFQ 4DGC ; 2.65 ; TRIMCyp cyclophilin domain from Macaca mulatta: cyclosporin A complex 4DGD ; 1.4 ; TRIMCyp cyclophilin domain from Macaca mulatta: H70C mutant 4DGE ; 2.2 ; TRIMCyp cyclophilin domain from Macaca mulatta: H70C mutant, HIV-1 CA(O-loop) complex 4DGA ; 1.9 ; TRIMCyp cyclophilin domain from Macaca mulatta: HIV-1 CA(O-loop) complex 4DGB ; 1.702 ; TRIMCyp cyclophilin domain from Macaca mulatta: HIV-2 CA cyclophilin-binding loop complex 8F3E ; 3.09 ; Trimer of aminoglycoside efflux pump AcrD 7XS0 ; 2.59 ; Trimer structure of HtrA from Helicobacter pylori bound with a tripeptide 7TA3 ; 2.5 ; Trimer-to-Monomer Disruption of Tumor Necrosis Factor-alpha (TNF-alpha) by alpha-peptide-3 7TA6 ; 2.67 ; Trimer-to-Monomer Disruption of Tumor Necrosis Factor-alpha (TNF-alpha) by unnatural alpha/beta-peptide-1 5Z25 ; 1.7 ; Trimeric Alpha-Helix-Inserted Circular Permutant of Cytochrome c555 8OSY ; 1.89 ; Trimeric catalytic domain of the E. coli Dihydrolipoamide Acetyltransferase (E2) of the pyruvate dehydrogenase complex 7DOU ; 3.0 ; Trimeric cement protein structure of Helicobacter pylori bacteriophage KHP40 2EI4 ; 2.1 ; Trimeric complex of archaerhodopsin-2 4YPC ; 1.44 ; Trimeric crystal structure of vimentin coil1B fragment 4YV3 ; 2.0 ; Trimeric crystal structure of vimentin coil1B fragment 1YVS ; 2.2 ; Trimeric domain swapped barnase 7NG9 ; 3.3 ; Trimeric efflux pump Klebsiella TolC 7NG8 ; 3.2 ; Trimeric efflux pump Klebsiella TolC in complex with KlebC 1RFO ; ; Trimeric Foldon of the T4 phagehead fibritin 3F4Z ; 2.1 ; Trimeric helix bundle formed by an alpha/beta-peptide derivative of the HIV gp41 CHR domain 8DEL ; 2.56 ; Trimeric Heme-Free Cytochrome Variant ApoCyt-TriCyt3 1HIW ; 2.3 ; TRIMERIC HIV-1 MATRIX PROTEIN 7LEZ ; 4.15 ; Trimeric human Arginase 1 in complex with mAb1 - 2 hArg:2 mAb1 complex 7LEX ; 3.6 ; Trimeric human Arginase 1 in complex with mAb1 - 2 hArg:3 mAb1 complex 7LF0 ; 3.68 ; Trimeric human Arginase 1 in complex with mAb2 7LF1 ; 4.04 ; Trimeric human Arginase 1 in complex with mAb3 7LF2 ; 3.72 ; Trimeric human Arginase 1 in complex with mAb4 7LEY ; 3.05 ; Trimeric human Arginase 1 in complex with mAb5 5ONU ; 2.22 ; Trimeric OmpU structure 6VPV ; 2.7 ; Trimeric Photosystem I from the High-Light Tolerant Cyanobacteria Cyanobacterium Aponinum 7NTC ; 3.6 ; Trimeric SARS-CoV-2 spike ectodomain bound to P008_056 Fab 7NT9 ; 3.36 ; Trimeric SARS-CoV-2 spike ectodomain in complex with biliverdin (closed conformation) 7NTA ; 3.5 ; Trimeric SARS-CoV-2 spike ectodomain in complex with biliverdin (one RBD erect) 1RTM ; 1.8 ; TRIMERIC STRUCTURE OF A C-TYPE MANNOSE-BINDING PROTEIN 6AHG ; 2.83 ; Trimeric structure of concanavalin A from Canavalia ensiformis 6JJJ ; 2.792 ; Trimeric structure of Kupffer cell C-type lectin receptor Clec4f 3KQG ; 2.3 ; Trimeric Structure of Langerin 5NXR ; 2.7 ; Trimeric structure of Omp-Pst1, the major porin from Providencia stuartii 1WCR ; ; Trimeric Structure of the Enzyme IIA from Escherichia coli Phosphotransferase System Specific for N,N'-Diacetylchitobiose 5Z81 ; 2.334 ; Trimeric structure of Vibrio cholerae Heat Shock Protein 15 at 2.3 Angstrom resolution 1CE0 ; 2.4 ; TRIMERIZATION SPECIFICITY IN HIV-1 GP41: ANALYSIS WITH A GCN4 LEUCINE ZIPPER MODEL 5H21 ; 1.591 ; Trimethoxy-ring inhibitor in complex with the first bromodomain of BRD4 1TMO ; 2.5 ; TRIMETHYLAMINE N-OXIDE REDUCTASE FROM SHEWANELLA MASSILIA 7ZEZ ; ; Trimolecular complex Cyp33-RRMdelta alpha : MLL1-PHD3 : H3K4me3 6M05 ; ; Trimolecular G-quadruplex 7V6V ; ; trimolecular G-quadruplexes consists of a hairpin motif and two short chains 7PEU ; 7.2 ; Trinucleosome of the 4x177 nucleosome array containing H1 7PF0 ; 11.0 ; Trinucleosome of the 4x177 nucleosome array containing H1 7PFA ; 9.7 ; Trinucleosome of the 4x197 nucleosome array containing H1 7PFT ; 9.8 ; Trinucleosome of the 4x207 nucleosome array containing H1 8TIM ; 2.5 ; TRIOSE PHOSPHATE ISOMERASE 1YDV ; 2.2 ; TRIOSEPHOSPHATE ISOMERASE (TIM) 1BTM ; 2.8 ; TRIOSEPHOSPHATE ISOMERASE (TIM) COMPLEXED WITH 2-PHOSPHOGLYCOLIC ACID 6UP1 ; 1.83 ; Triosephosphate isomerase deficiency: Effect of F240L mutation on enzyme structure 6UP5 ; 1.92 ; Triosephosphate isomerase deficiency: Effect of F240L mutation on enzyme structure 6UP8 ; 2.0 ; Triosephosphate isomerase deficiency: Effect of F240L mutation on enzyme structure 6UPF ; 1.65 ; Triosephosphate isomerase deficiency: Effect of F240L mutation on enzyme structure 1TPW ; 1.9 ; TRIOSEPHOSPHATE ISOMERASE DRINKS WATER TO KEEP HEALTHY 1SW0 ; 1.71 ; Triosephosphate isomerase from Gallus gallus, loop 6 hinge mutant K174L, T175W 1SW7 ; 2.22 ; Triosephosphate isomerase from Gallus gallus, loop 6 mutant K174N, T175S, A176S 1SW3 ; 2.03 ; Triosephosphate isomerase from Gallus gallus, loop 6 mutant T175V 6R8H ; 1.9 ; Triosephosphate isomerase from liver fluke (Fasciola hepatica). 1W0M ; 2.5 ; Triosephosphate isomerase from Thermoproteus tenax 1NEY ; 1.2 ; Triosephosphate Isomerase in Complex with DHAP 1NF0 ; 1.6 ; Triosephosphate Isomerase in Complex with DHAP 6BVE ; 1.78 ; Triosephosphate isomerase of Synechocystis in complex with 2-Phosphoglycolic acid 1B9B ; 2.85 ; TRIOSEPHOSPHATE ISOMERASE OF THERMOTOGA MARITIMA 1AW2 ; 2.65 ; TRIOSEPHOSPHATE ISOMERASE OF VIBRIO MARINUS 1AW1 ; 2.7 ; TRIOSEPHOSPHATE ISOMERASE OF VIBRIO MARINUS COMPLEXED WITH 2-PHOSPHOGLYCOLATE 6JOX ; 1.803 ; triosephosphate isomerase-scylla paramamosain 5VWN ; 1.74 ; Triosephosphate isomerases deletion loop 3 from Trichomonas vaginalis 4HP7 ; 1.09 ; Trioxacarcin D517 as a product of guanine robbery from d(AACCGGTT) 4EQF ; 3.0 ; Trip8b-1a#206-567 interacting with the carboxy-terminal seven residues of HCN2 7NS8 ; 2.3 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius 7NSD ; 2.19 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius in complex with ATP and calcium 7OA2 ; 2.7 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius in complex with pyrophosphate 7NSA ; 1.95 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius in complex with pyrophosphate and calcium 7NS9 ; 1.75 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius in complex with triphosphate and calcium 7NSF ; 2.0 ; Triphosphate tunnel metalloenzyme from Sulfolobus acidocaldarius in complex with triphosphate and magnesium 4KHT ; 2.817 ; Triple helix bundle of GP41 complexed with fab 8066 3G5N ; 2.5 ; Triple ligand occupancy crystal structure of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole 7LWW ; 3.0 ; Triple mutant (K417N-E484K-N501Y) SARS-CoV-2 spike protein in the 1-RBD-up conformation (S-GSAS-D614G-K417N-E484K-N501Y) 8CSA ; 3.84 ; Triple mutant (K417N-E484K-N501Y) SARS-CoV-2 spike protein in the 3-RBD-Down conformation (S-GSAS-D614G-K417N-E484K-N501Y) 2ATB ; 1.6 ; Triple mutant 8D9D10V of scorpion toxin LQH-alpha-IT 3CFO ; 2.6 ; Triple Mutant APO structure 4J4Y ; 2.45 ; Triple mutant GraVN 4J4S ; 2.442 ; Triple mutant SFTAVN 4F59 ; 1.71 ; Triple mutant Src SH2 domain 4F5A ; 1.8 ; Triple mutant Src SH2 domain bound to phosphate ion 4F5B ; 1.57 ; Triple mutant Src SH2 domain bound to phosphotyrosine 1TP0 ; 2.2 ; Triple mutation in interleukin 1 beta cavity:replacement of phenylalanines with tryptophan. 3AI6 ; 1.1 ; Triple-helical structure of (D-Pro-D-Pro-Gly)9 at 1.1 A resolution 1E40 ; 2.2 ; Tris/maltotriose complex of chimaeric amylase from B. amyloliquefaciens and B. licheniformis at 2.2A 8H8I ; 2.03 ; Triterpenoid saponin acetyltransferase, AmAT7-3 6XIX ; 2.1 ; Triuret Hydrolase (TrtA) from Herbaspirillum sp. BH-1 6XJ4 ; 1.78 ; Triuret Hydrolase (TrtA) from Herbaspirillum sp. BH-1 C162S bound with biuret 6XJE ; 1.45 ; Triuret Hydrolase (TrtA) from Herbaspirillum sp. BH-1 C162S bound with triuret 1NQB ; 2.0 ; TRIVALENT ANTIBODY FRAGMENT 2D39 ; 1.9 ; Trivalent Recognition Unit of Innate Immunity System; Crystal Structure of human M-ficolin Fibrinogen-like Domain 6PMA ; 2.53 ; TRK-A IN COMPLEX WITH LIGAND 6PME ; 3.0 ; TRK-A IN COMPLEX WITH LIGAND 6NPT ; 2.19 ; TRK-A IN COMPLEX WITH LIGAND 1 6PL4 ; 2.06 ; TRK-A IN COMPLEX WITH LIGAND 1 6PL2 ; 2.59 ; TRK-A IN COMPLEX WITH LIGAND 1a 6PMB ; 2.81 ; TRK-A IN COMPLEX WITH LIGAND 1a 6PMC ; 2.19 ; TRK-A IN COMPLEX WITH LIGAND 1a 6PL1 ; 2.03 ; TRK-A IN COMPLEX WITH LIGAND 1B 6PL3 ; 3.0 ; TRK-A IN COMPLEX WITH LIGAND 2a 6NSS ; 1.97 ; TRK-A IN COMPLEX WITH LIGAND 6 6NSP ; 2.31 ; TRK-A IN COMPLEX WITH LIGAND 9 7N3T ; 1.84 ; TrkA ECD complex with designed miniprotein ligand 5KMM ; 2.12 ; TrkA JM-kinase with 1-(2-methyl-4-phenyl-pyrimidin-5-yl)-3-(1-naphthyl)urea 5KMO ; 2.67 ; TrkA JM-kinase with 1-(2-methyl-4-phenyl-pyrimidin-5-yl)-3-(2-pyridyl)urea 5KMN ; 2.14 ; TrkA JM-kinase with 1-(2-methyl-4-phenyl-pyrimidin-5-yl)-3-[[2-(trifluoromethyl)phenyl]methyl]urea 5KML ; 2.01 ; TrkA JM-kinase with 1-(5-methyl-3-phenyl-1,2-oxazol-4-yl)-3-[[2-(trifluoromethyl)phenyl]methyl]urea 5KMI ; 1.87 ; TrkA JM-kinase with 1-(9{H}-fluoren-9-yl)-3-(2-methyl-4-phenyl-pyrimidin-5-yl)urea 5KMK ; 2.24 ; TrkA JM-kinase with 2-fluoro-{N}-[2-(4-fluorophenyl)-6-methyl-3-pyridyl]-4-(trifluoromethyl)benzamide 5KMJ ; 2.04 ; TrkA JM-kinase with {N}-(2-pyridylmethyl)-2-[2-(2-thienyl)indol-1-yl]acetamide 2N90 ; ; TrkA transmembrane domain NMR structure in DPC micelles 5I8A ; 2.33 ; TrkA with (6~{R})-3-methylsulfanyl-6-phenyl-1-(1~{H}-pyrazol-3-yl)-6,7-dihydro-5~{H}-thieno[3,4-c]pyridin-4-one 7SSC ; 1.8 ; TRL345 lineage ancestor I8 Fab bound to an HCMV gB-derived peptide 7NZI ; 3.1 ; TrmB complex with SAH 7NYB ; 2.5 ; TrmB complex with SAM 1V2X ; 1.5 ; TrmH 2L9X ; ; Trn- peptide of the two-component bacteriocin Thuricin CD 2LA0 ; ; Trn- peptide of the two-component bacteriocin Thuricin CD 8FCI ; 1.752 ; tRNA (N1G37) Methyltransferase (TrmD) of Mycobacterium avium complexed with S-Adenosyl homocysteine 6E3A ; 1.4 ; tRNA 2'-phosphotransferase 6EDE ; 1.553 ; tRNA 2'-phosphotransferase 8TG3 ; 1.47 ; tRNA 2'-phosphotransferase (Tpt1) from Aeropyrum pernix in complex with ADP-ribose-1"" -phosphate 8TG4 ; 1.37 ; tRNA 2'-phosphotransferase (Tpt1) from Aeropyrum pernix in complex with ADP-ribose-2""-phosphate and 2'-OH RNA 8TG6 ; 1.6 ; tRNA 2'-phosphotransferase (Tpt1) from Aeropyrum pernix in complex with sulfate anions 8TFI ; 1.97 ; tRNA 2'-phosphotransferase (Tpt1) from Pyrococcus horikoshii 8TFX ; 1.7 ; tRNA 2'-phosphotransferase (Tpt1) from Pyrococcus horikoshii in complex with 2',5'-ADP 8TFZ ; 2.06 ; tRNA 2'-phosphotransferase (Tpt1) from Pyrococcus horikoshii in complex with NAD 8TFY ; 1.54 ; tRNA 2'-phosphotransferase (Tpt1) from Pyrococcus horikoshii in complex with NADP 2POT ; 1.8 ; tRNA guanine transglycosylase (TGT) E235Q mutant in complex with guanine 5LPS ; 1.27 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex (space group C2) with 6-amino-2-(methylamino)-4-(2-((2R,3R,4S,5R,6S)-3,4,5,6-tetramethoxytetrahydro-2H-pyran-2-yl)ethyl)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5LPP ; 1.99 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex (space group C2) with 6-amino-4-(2-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)ethyl)-2-(methylamino)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5LPT ; 2.36 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex (space group P21) with 6-amino-2-(methylamino)-4-(2-((2R,3R,4S,5R,6S)-3,4,5,6-tetramethoxytetrahydro-2H-pyran-2-yl)ethyl)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5LPQ ; 2.52 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex (space group P21) with 6-amino-4-(2-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)ethyl)-2-(methylamino)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5JT7 ; 1.7 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 1-(2-((2-morpholinoethyl)amino)-1H-benzo[d]imidazol-6-yl)guanidine 5J9O ; 1.41 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 1-(2-(methylamino)-1H-benzo[d]imidazol-6-yl)guanidine 5JT6 ; 1.54 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 2-((2-morpholinoethyl)amino)-1H-benzo[d]imidazole-5-carbohydrazide 5JT5 ; 1.21 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 2-((2-morpholinoethyl)amino)-1H-benzo[d]imidazole-5-carboxamide 5J9N ; 1.64 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 2-(methylamino)-1H-benzo[d]imidazole-5-carbohydrazide 5J9M ; 1.33 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 2-(methylamino)-1H-benzo[d]imidazole-5-carboxamide 6FMN ; 1.36 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-((((2R,3S,4R,5R)-3,4-dihydroxy-5-methoxytetrahydrofuran-2-yl)methyl)amino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5JSW ; 1.22 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-((((3a'R,6'R,6a'R)-2,2,2',2'-tetramethyldihydro-3a'H-spiro[[1,3]dioxolane-4,4'-furo[3,4-d][1,3]dioxol]-6'-yl)methyl)amino)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5JSV ; 1.17 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-((((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methyl)amino)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 6FPU ; 1.36 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-((((3aS,5aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl)amino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5LPO ; 1.42 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-(methylamino)-4-(2-((2R,3R,4R,5R)-3,4,5-trimethoxytetrahydrofuran-2-yl)ethyl)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 5I07 ; 1.89 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with 6-Amino-4-(2-phenylethyl)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5I02 ; 1.25 ; tRNA guanine transglycosylase (TGT) in co-crystallized complex with 6-amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5I00 ; 1.49 ; tRNA guanine transglycosylase (TGT) in co-crystallized complex with 6-amino-4-{2-[(cyclopentylmethyl)amino]ethyl}-2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5JGO ; 1.37 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with allyl (2-(methylamino)-8-oxo-7,8-dihydro-1H-imidazo[4,5-g]quinazolin-6-yl)carbamate 5JGM ; 1.38 ; tRNA guanine Transglycosylase (TGT) in co-crystallized complex with ethyl (2-(methylamino)-8-oxo-7,8-dihydro-1H-imidazo[4,5-g]quinazolin-6-yl)carbamate 5EGR ; 1.55 ; tRNA guanine transglycosylase (TGT) in complex with an Immucillin derivative 4LEQ ; 1.405 ; tRNA guanine transglycosylase (TGT) in complex with Furanoside-Based lin-Benzoguanine 1 4LBU ; 1.17 ; tRNA guanine transglycosylase (TGT) in complex with Furanoside-Based lin-Benzoguanine 2 4KWO ; 1.32 ; tRNA guanine transglycosylase (TGT) in complex with Furanoside-Based lin-Benzoguanine 3 5I09 ; 1.44 ; tRNA guanine transglycosylase (TGT) in soaked complex with Furanoside-Based lin-Benzoguanine 3 6YGZ ; 1.86 ; tRNA Guanine Transglycosylase (TGT) labelled with 5-fluoro-tryptophan in co-crystallized complex with 6-Amino-4-(2-phenylethyl)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 2Z1V ; 1.55 ; tRNA guanine transglycosylase E235Q mutant apo structure, pH 8.5 2PWV ; 1.7 ; tRNA guanine transglycosylase E235Q mutant in complex with preQ0 2Z1X ; 1.63 ; tRNA guanine transglycosylase E235Q mutant in complex with preQ1 6H7C ; 1.681 ; tRNA guanine transglycosylase H333A mutant apo structure 4L56 ; 1.7 ; tRNA guanine transglycosylase H333D mutant apo structure 4GI4 ; 1.97 ; tRNA Guanine Transglycosylase in complex with disubstituted lin-benzoguanine inhibitor 4GIY ; 1.75 ; tRNA Guanine Transglycosylase in complex with disubstituted lin-benzoguanine inhibitor 4GKT ; 1.53 ; tRNA Guanine Transglycosylase in complex with disubstituted lin-benzoguanine inhibitor 2PWU ; 1.77 ; tRNA guanine transglycosylase in complex with guanine 4GH1 ; 1.45 ; tRNA Guanine Transglycosylase in complex with morpholine substituted lin-benzohypoxanthine inhibitor 4GH3 ; 2.06 ; tRNA Guanine Transglycosylase in complex with phenethyl substituted lin-benzohypoxanthine inhibitor 4GG9 ; 1.48 ; tRNA Guanine Transglycosylase in complex with thiophene-substituted lin-benzohypoxanthine inhibitor 2Z1W ; 1.63 ; tRNA guanine transglycosylase TGT E235Q mutant in complex with BDI (2-BUTYL-5,6-DIHYDRO-1H-IMIDAZO[4,5-D]PYRIDAZINE-4,7-DIONE) 3BL3 ; 2.25 ; tRNA guanine transglycosylase V233G mutant apo structure 3BLD ; 1.19 ; tRNA guanine transglycosylase V233G mutant preQ1 complex structure 6N0T ; 2.511 ; tRNA ligase 6N0V ; 2.502 ; tRNA ligase 8AFJ ; 1.6 ; tRNA modifying enzyme MiaE soaked in Na-dithionite in a glovebox and flash-cooled using a miniature-airlock 1FCW ; 17.0 ; TRNA POSITIONS DURING THE ELONGATION CYCLE 3WFO ; 3.4 ; tRNA processing enzyme (apo form 1) 3WFP ; 4.005 ; tRNA processing enzyme (apo form 2) 3WFQ ; 3.619 ; tRNA processing enzyme complex 1 3WFR ; 3.501 ; tRNA processing enzyme complex 2 3WFS ; 3.311 ; tRNA processing enzyme complex 3 8Q70 ; 1.85 ; tRNA pseudouridine synthase A homodimer 7UQ6 ; 2.951 ; tRNA T-box antiterminator fusion, construct #4 4V5M ; 7.8 ; tRNA tranlocation on the 70S ribosome: the pre-translocational translocation intermediate TI(PRE) 6GZ3 ; 3.6 ; tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis, Translocation-intermediate-POST-1 (TI-POST-1) 6GZ4 ; 3.6 ; tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis, Translocation-intermediate-POST-2 (TI-POST-2) 6GZ5 ; 3.5 ; tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis, Translocation-intermediate-POST-3 (TI-POST-3) 4V5N ; 7.6 ; tRNA translocation on the 70S ribosome: the post- translocational translocation intermediate TI(POST) 3B0P ; 1.7 ; tRNA-dihydrouridine synthase from Thermus thermophilus 3B0V ; 3.51 ; tRNA-dihydrouridine synthase from Thermus thermophilus in complex with tRNA 3B0U ; 1.948 ; tRNA-dihydrouridine synthase from Thermus thermophilus in complex with tRNA fragment 1PUD ; 1.85 ; TRNA-GUANINE TRANSGLYCOSYLASE 1WKD ; 2.6 ; TRNA-GUANINE TRANSGLYCOSYLASE 1WKE ; 2.2 ; TRNA-GUANINE TRANSGLYCOSYLASE 1WKF ; 2.2 ; TRNA-GUANINE TRANSGLYCOSYLASE 4PUN ; 1.25 ; tRNA-Guanine Transglycosylase (TGT) Apo-Structure pH 7.8 6YRY ; 1.82 ; tRNA-Guanine Transglycosylase (TGT) H333A mutant crystallised at pH 5.5 6Z0D ; 1.65 ; tRNA-Guanine Transglycosylase (TGT) H333F mutant crystallised at pH 5.5 6YIQ ; 1.58 ; tRNA-Guanine Transglycosylase (TGT) in co-crystallized complex (P2) with 6-amino-2-(methylamino)-4-phenethyl-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YGV ; 1.63 ; tRNA-Guanine Transglycosylase (TGT) in co-crystallized complex with (E)-N-ethyl-4-oxo-4-phenylbut-2-enamide 6YGS ; 1.4 ; tRNA-guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-(methylamino)-4-(4-(trifluoromethyl)phenethyl)-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YH3 ; 1.49 ; tRNA-Guanine Transglycosylase (TGT) in co-crystallized complex with 6-amino-2-(methylamino)-4-phenethyl-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YGR ; 1.7 ; tRNA-guanine Transglycosylase (TGT) in co-crystallized complex with 6-Amino-4-(2-phenylethyl)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5I06 ; 1.36 ; tRNA-guanine Transglycosylase (TGT) in co-crystallized complex with 6-Amino-4-[2-(4-methoxyphenyl)ethyl]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 5I03 ; 1.73 ; tRNA-guanine Transglycosylase (TGT) in co-crystallized complex with 6-Amino-4-[2-(4-methylphenyl)ethyl]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 2Z7K ; 1.28 ; tRNA-Guanine transglycosylase (TGT) in complex with 2-Amino-lin-Benzoguanine 4Q4Q ; 1.41 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 2-[(Thiophen-2-ylmethyl)amino]-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q4R ; 1.448 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 2-{[2-(Morpholin-4-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q4P ; 1.539 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 2-{[2-(PIPERIDIN-1-YL)ETHYL]AMINO}-3,5-DIHYDRO-8H-IMIDAZO[4,5-G]QUINAZOLIN-8-ONE 4Q8W ; 1.14 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 4-[2-({6-Amino-8-oxo-1H,7H,8H-imidazo[4,5-g]quinazolin-2-yl}amino)ethyl]benzoic acid 4Q8V ; 1.396 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 4-[2-({6-Amino-8-oxo-1H,7H,8H-imidazo[4,5-g]quinazolin-2-yl}amino)ethyl]benzonitrile 4PUK ; 1.49 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-2-(methylamino)-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 3C2Y ; 1.78 ; tRNA-Guanine Transglycosylase (TGT) in complex with 6-Amino-2-methyl-1,7-dihydro-imidazo[4,5-g]quinazolin-8-one 4Q8T ; 1.4 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-2-[(2-phenylethyl)amino]-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q4S ; 1.249 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-2-[(thiophen-2-ylmethyl)amino]-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4PUJ ; 1.42 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-2-{[2-(morpholin-4-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q4O ; 1.35 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-2-{[2-(piperidin-1-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 5JXQ ; 1.2 ; TRNA-GUANINE TRANSGLYCOSYLASE (TGT) IN COMPLEX WITH 6-AMINO-2-{[4-(2-HYDROXYETHYL)PHENETHYL]AMINO}-1,7-DIHYDRO-8H-IMIDAZO[4,5-g]QUINAZOLIN-8-ONE 1Y5V ; 1.58 ; tRNA-Guanine Transglycosylase (TGT) in complex with 6-Amino-4-(2-phenylethyl)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 4Q4M ; 1.621 ; tRNA-Guanine Transglycosylase (TGT) in Complex with 6-Amino-4-phenyl-1,2-dihydro-1,3,5-triazin-2-one 1Y5X ; 2.1 ; tRNA-guanine Transglycosylase (TGT) in complex with 6-Amino-4-[2-(4-methoxyphenyl)ethyl]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 1Y5W ; 1.58 ; tRNA-guanine Transglycosylase (TGT) in complex with 6-Amino-4-[2-(4-methylphenyl)ethyl]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 4Q8U ; 1.31 ; tRNA-Guanine Transglycosylase (TGT) in Complex with Methyl 4-[2-({6-amino-8-oxo-1H,7H,8H-imidazo[4,5-g]quinazolin-2-yl}amino)ethyl]benzoate 6YH2 ; 1.19 ; tRNA-guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YYZ ; 1.21 ; tRNA-Guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-amino-2-(methylamino)-4-(2-((2R,3R,4R,5R)-3,4,5-trimethoxytetrahydrofuran-2-yl)ethyl)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YGX ; 1.35 ; tRNA-guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-amino-2-(methylamino)-4-(2-((2R,3R,4S,5R,6S)-3,4,5,6-tetramethoxytetrahydro-2H-pyran-2-yl)ethyl)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 6YH1 ; 1.55 ; tRNA-guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-amino-2-(methylamino)-4-(4-(trifluoromethyl)phenethyl)-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YHD ; 1.25 ; tRNA-guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-amino-4-(2-((2R,3S,4R,5R)-3,4-dihydroxy-5-methoxytetrahydrofuran-2-yl)ethyl)-2-(methylamino)-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 6YHE ; 1.54 ; tRNA-Guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-amino-4-(2-((3aR,4R,6R,6aR)-6-methoxy-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)ethyl)-2-(methylamino)-1H-imidazo[4,5-g]quinazolin-8(7H)-one 6YGY ; 1.52 ; tRNA-Guanine Transglycosylase (TGT) labeled with 5-fluorotryptophan in co-crystallized complex with 6-Amino-4-[2-(4-methylphenyl)ethyl]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 4PUL ; 1.654 ; tRNA-Guanine Transglycosylase (TGT) Mutant D102N in Complex with 6-Amino-2-(methylamino)-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4PUM ; 1.93 ; tRNA-Guanine Transglycosylase (TGT) Mutant D156N in Complex with 6-Amino-2-(methylamino)-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 2NQZ ; 1.46 ; Trna-guanine transglycosylase (TGT) mutant in complex with 7-deaza-7-aminomethyl-guanine 4Q8N ; 1.449 ; tRNA-Guanine Transglycosylase (TGT) Mutant V262C Apo Structure 4Q8Q ; 1.721 ; tRNA-Guanine Transglycosylase (TGT) Mutant V262C in Complex with 6-Amino-2-{[2-(morpholin-4-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q8P ; 1.45 ; tRNA-Guanine Transglycosylase (TGT) Mutant V262D in Complex with 6-Amino-2-{[2-(morpholin-4-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 4Q8M ; 1.241 ; tRNA-Guanine Transglycosylase (TGT) Mutant V262T Apo Structure 4Q8O ; 1.887 ; tRNA-Guanine Transglycosylase (TGT) Mutant V262T in Complex with 6-Amino-2-{[2-(morpholin-4-yl)ethyl]amino}-1H,7H,8H-imidazo[4,5-g]quinazolin-8-one 3UVI ; 1.55 ; tRNA-guanine transglycosylase C158S C281S W326E E339Q mutant 7A3V ; 1.7 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with 3-hydroxysulfolane 7A4X ; 2.05 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with dimethyl sulfoxide 7A9E ; 1.76 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with ethyl methyl sulfone 7A0B ; 1.77 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with rac-trans-3,4-dihydroxysulfolane 7A6D ; 1.59 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with rac-trans-4,4-difluorocyclopentane-1,2-diol 7A3X ; 1.85 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with sulfolane 7A4K ; 1.68 ; tRNA-guanine transglycosylase C158S/C281S/Y330C/H333A mutant in complex with tetramethylene sulfoxide 4FR1 ; 1.74 ; tRNA-Guanine Transglycosylase cocrystallized with alkine-substituted lin-benzoguanine ligand 4FR6 ; 1.59 ; tRNA-Guanine Transglycosylase cocrystallized with pyridyl-alkine-substituted lin-benzoguanine ligand 3UNT ; 1.801 ; tRNA-guanine transglycosylase E339Q mutant 4DY1 ; 2.045 ; tRNA-guanine transglycosylase F92C C158S C281S mutant 7APL ; 1.99 ; tRNA-guanine transglycosylase G87C mutant spin-labeled with MTSL 7APM ; 1.66 ; tRNA-guanine transglycosylase H319C mutant spin-labeled with MTSL. 3GC5 ; 1.4 ; tRNA-guanine transglycosylase in complex with 6-amino-4-(2-aminoethyl)-2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 3EOU ; 1.93 ; tRNA-guanine transglycosylase in complex with 6-amino-4-(2-hydroxyethyl)-2-(methylamino)-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 3EOS ; 1.78 ; tRNA-guanine transglycosylase in complex with 6-amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 3GE7 ; 1.5 ; tRNA-guanine transglycosylase in complex with 6-amino-4-{2-[(cyclopentylmethyl)amino]ethyl}-2-(methylamino)-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 4FPS ; 1.45 ; tRNA-Guanine Transglycosylase in complex with adamantyl-substituted lin-benzoguanine ligand 3GC4 ; 1.8 ; tRNA-guanine transglycosylase in complex with inhibitor 3S1G ; 1.82 ; tRNA-Guanine Transglycosylase in complex with lin-Benzohypoxanthine Inhibitor 3SM0 ; 1.57 ; tRNA-Guanine Transglycosylase in complex with lin-Benzohypoxanthine Inhibitor 3TLL ; 1.37 ; tRNA-Guanine Transglycosylase in complex with N-Ethyl-lin-benzoguanine Inhibitor 3RR4 ; 1.68 ; tRNA-Guanine Transglycosylase in complex with N-Methyl-lin-Benzoguanine Inhibitor 4FSA ; 1.62 ; tRNA-Guanine Transglycosylase soaked with pyridyl-alkine-substituted lin-benzoguanine ligand 4GD0 ; 1.29 ; tRNA-guanine transglycosylase Y106F, C158V mutant 4H7Z ; 1.68 ; tRNA-guanine transglycosylase Y106F, C158V mutant in complex with guanine 4E2V ; 1.18 ; tRNA-guanine transglycosylase Y106F, C158V mutant in complex with preQ1 4HVX ; 1.82 ; tRNA-guanine transglycosylase Y106F, C158V mutant in complex with queuine 4H6E ; 1.42 ; tRNA-guanine transglycosylase Y106F, C158V, V233G mutant apo structure 4GCX ; 1.42 ; tRNA-guanine transglycosylase Y106F, C158V, V233G mutant in complex with preQ1 4HQV ; 1.66 ; tRNA-guanine transglycosylase Y106F, C158V, V233G mutant in complex with queuine 4HSH ; 1.56 ; tRNA-guanine transglycosylase Y106F, V233G mutant in complex with queuine 4JBR ; 2.92 ; tRNA-guanine transglycosylase Y330C mutant as covalently linked dimer in space group P6(5)22 4HTB ; 1.9 ; tRNA-guanine transglycosylase Y330C mutant in space group C2 2QZR ; 1.95 ; tRNA-Guanine Transglycosylase(TGT) in Complex with 6-amino-2-[(1-naphthylmethyl)amino]-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one 4IPP ; 1.33 ; tRNA-guanine-transglycosylase (TGT) mutant V262D APO-Structure 2NSO ; 1.6 ; Trna-gunanine-transglycosylase (TGT) mutant Y106F, C158V, A232S, V233G- APO-Structure 7SAM ; 4.3 ; tRNA-like Structure from Brome Mosaic Virus 7SC6 ; 5.51 ; tRNA-like Structure from Brome Mosaic Virus Bound to Tyrosyl-tRNA Synthetase from Phaseolus vulgaris. Conformation: Bound State 1. 7SCQ ; 6.0 ; tRNA-like Structure from Brome Mosaic Virus Bound to Tyrosyl-tRNA Synthetase from Phaseolus vulgaris. Conformation: Bound State 2. 4WBZ ; 3.3 ; tRNA-processing enzyme (apo form 2) 4WBY ; 1.5 ; tRNA-processing enzyme (apo form I) 4WC4 ; 3.501 ; tRNA-processing enzyme complex 2 4WC0 ; 3.1 ; tRNA-processing enzyme with ATP 2K4C ; ; tRNAPhe-based homology model for tRNAVal refined against base N-H RDCs in two media and SAXS data 2V6W ; 1.8 ; tRNASer acceptor stem: Conformation and hydration of a microhelix in a crystal structure at 1.8 Angstrom resolution 2QM9 ; 2.31 ; Troglitazone Bound to Fatty Acid Binding Protein 4 1AE1 ; 2.4 ; TROPINONE REDUCTASE-I COMPLEX WITH NADP 2AE1 ; 2.3 ; TROPINONE REDUCTASE-II 2AE2 ; 1.9 ; TROPINONE REDUCTASE-II COMPLEXED WITH NADP+ AND PSEUDOTROPINE 1IPE ; 2.5 ; TROPINONE REDUCTASE-II COMPLEXED WITH NADPH 1IPF ; 2.5 ; TROPINONE REDUCTASE-II COMPLEXED WITH NADPH AND TROPINONE 2TMA ; 15.0 ; TROPOMYOSIN CRYSTAL STRUCTURE AND MUSCLE REGULATION. APPENDIX. CONSTRUCTION OF AN ATOMIC MODEL FOR TROPOMYOSIN AND IMPLICATIONS FOR INTERACTIONS WITH ACTIN 6KLQ ; 7.7 ; Tropomyosin of cardiac thin filament in high-calcium state 6KLP ; 6.6 ; Tropomyosin of cardiac thin filament in low-calcium state 8TEQ ; 2.84 ; Tropomyosin-receptor kinase fused gene protein (TRK-fused gene protein; TFG) Low Complexity Domain (residues 237-327) G269V mutant, amyloid fiber 8TER ; 2.59 ; Tropomyosin-receptor kinase fused gene protein (TRK-fused gene protein; TFG) Low Complexity Domain (residues 237-327) P285L mutant, amyloid fiber 1NCX ; 1.8 ; TROPONIN C 1NCZ ; 1.8 ; TROPONIN C 6KLU ; 12.0 ; Troponin of cardiac thin filament in high-calcium state 6KLT ; 12.0 ; Troponin of cardiac thin filament in low-calcium state 1NCY ; 2.1 ; TROPONIN-C, COMPLEX WITH MANGANESE 1OUT ; 2.3 ; TROUT HEMOGLOBIN I 1JHG ; 1.3 ; TRP REPRESSOR MUTANT V58I 1WAP ; 1.8 ; TRP RNA-BINDING ATTENUATION PROTEIN IN COMPLEX WITH L-TRYPTOPHAN 4B27 ; 2.72 ; Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer 1BEU ; 1.9 ; TRP SYNTHASE (D60N-IPP-SER) WITH K+ 3ZJH ; 1.7 ; Trp(60)B9Ala mutation of M.acetivorans protoglobin in complex with cyanide 8TTI ; 1.98 ; Trp-6-Halogenase BorH complexed with FAD and Trp 5EB2 ; 2.709 ; Trp-bound YfiR 2M7D ; ; Trp-cage 16b P12W: a Hyperstable Miniprotein 3UC7 ; 1.1 ; Trp-cage cyclo-TC1 - monoclinic crystal form 3UC8 ; 1.33 ; Trp-cage cyclo-TC1 - tetragonal crystal form 6D37 ; ; Trp-cage tr16b R16Nva : Elimination of pH Dependent Interactions 5DW0 ; 2.01 ; TrpB from Pyrococcus furiosus with L-serine bound as the external aldimine 4QYS ; 1.939 ; TrpB2 enzymes 1JCM ; 2.1 ; TRPC STABILITY MUTANT CONTAINING AN ENGINEERED DISULPHIDE BRIDGE AND IN COMPLEX WITH A CDRP-RELATED SUBSTRATE 7B1G ; 3.6 ; TRPC4 in complex with Calmodulin 7B0S ; 3.6 ; TRPC4 in complex with inhibitor GFB-8438 7B05 ; 3.8 ; TRPC4 in complex with inhibitor GFB-8749 7B16 ; 3.15 ; TRPC4 in complex with inhibitor GFB-9289 7B0J ; 2.85 ; TRPC4 in LMNG detergent 6AYF ; 3.62 ; TRPML3/ML-SA1 complex at pH 7.4 6BO5 ; 3.6 ; TRPV2 ion channel in partially closed state 7ZJH ; 3.39 ; TRPV2-C16+Pro-2 6H7I ; ; Trpzip2 structure in presence of exogenous haloprotectant molecule. 6H7Q ; ; Trpzip2 structure in presence of exogenous haloprotectant molecule. 7A5L ; 2.1 ; tructure of DYRK1A in complex with compound 24 8OGH ; 1.6 ; Truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis with butylacetylphosphonate (BAP) bound 7A9H ; 1.849 ; Truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Mycobacterium tuberculosis 7A9G ; 1.9 ; Truncated 1-deoxy-D-xylulose 5-phosphate synthase (DXS) from Mycobacterium tuberculosis with intermediate 2-acetyl-thiamine diphosphate 7T6G ; ; Truncated Ac-AIP-2 2K32 ; ; Truncated AcrA from Campylobacter jejuni for glycosylation studies 5XNR ; 2.3 ; Truncated AlyQ with CBM32 and alginate lyase domains 5I14 ; 1.745 ; Truncated and mutated T4 lysozyme 6QUC ; 2.3 ; Truncated beta-galactosidase III from Bifidobacterium bifidum 6QUB ; 1.95 ; Truncated beta-galactosidase III from Bifidobacterium bifidum in complex with galactose 6H8E ; 2.35 ; Truncated derivative of the C-terminal domain of the TssA component of the type VI secretion system from Burkholderia cenocepacia 2MG9 ; ; Truncated EGF-A 6QJB ; ; Truncated Evasin-3 (tEv3 17-56) 6RGV ; 2.0 ; Truncated FljB phase 2 flagellin 3PG8 ; 2.0 ; Truncated form of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Thermotoga maritima 6XYC ; 1.85 ; Truncated form of carbohydrate esterase from gut microbiota 1QF8 ; 1.74 ; TRUNCATED FORM OF CASEIN KINASE II BETA SUBUNIT (2-182) FROM HOMO SAPIENS 8FKL ; 1.48 ; Truncated form of the catalytic domain of Streptococcus mutans GtfB 4WW0 ; 2.96 ; Truncated FtsH from A. aeolicus 4Z8X ; 3.25 ; Truncated FtsH from A. aeolicus 6GCO ; 3.323 ; Truncated FtsH from A. aeolicus in P312 6GCN ; 2.949 ; Truncated FtsH from A. aeolicus in R32 1MNE ; 2.7 ; TRUNCATED HEAD OF MYOSIN FROM DICTYOSTELIUM DISCOIDEUM COMPLEXED WITH MG-PYROPHOSPHATE 1MND ; 2.6 ; TRUNCATED HEAD OF MYOSIN FROM DICTYOSTELIUM DISCOIDEUM COMPLEXED WITH MGADP-ALF4 1MMD ; 2.0 ; TRUNCATED HEAD OF MYOSIN FROM DICTYOSTELIUM DISCOIDEUM COMPLEXED WITH MGADP-BEF3 5KDK ; 2.002 ; Truncated hemolysin A from P. mirabilis at 2.0 Angstroms resolution crystallized in a high salt condition 5KEH ; 1.551 ; Truncated hemolysin A from P. mirabilis at 2.0 Angstroms resolution crystallized in a high salt condition 5KF3 ; 2.2 ; Truncated hemolysin A from P. mirabilis Y134A at 2.2 Angstroms resolution 5SZ8 ; 1.83 ; Truncated hemolysin A Q125A/Y134A from P. mirabilis at 1.8 Angstroms resolution crystallized in a high salt condition 5KKD ; 2.13 ; Truncated hemolysin A Y134A from P. mirabilis at 2.1 Angstroms resolution crystallized in a high salt condition 5W4X ; 2.65 ; Truncated hUGDH 3PFF ; 2.3 ; Truncated human atp-citrate lyase with ADP and tartrate bound 3MWD ; 2.1 ; Truncated Human ATP-Citrate Lyase with Citrate Bound 3MWE ; 2.2 ; Truncated Human ATP-Citrate Lyase with Tartrate Bound 1QNK ; ; TRUNCATED HUMAN GROB[5-73], NMR, 20 STRUCTURES 6QI8 ; 3.75 ; Truncated human R2TP complex, structure 3 (ADP-filled) 6QI9 ; 4.63 ; Truncated human R2TP complex, structure 4 (ADP-empty) 4YM4 ; 3.12 ; Truncated Human TIFA in complex with its Thr9 phosphorylated N-terminal peptide 1-15 2MP3 ; ; Truncated L126Z-sod1 in DPC micelle 3U6W ; 2.21 ; Truncated M. tuberculosis LeuA (1-425) complexed with KIV 4NOA ; 1.25 ; Truncated minor pilin PilE from Pseudomonas aeruginosa 5GOE ; 1.801 ; Truncated mitofusin-1, GDP-bound 5GOF ; 1.604 ; Truncated mitofusin-1, GTP-bound 5GO4 ; 2.202 ; Truncated mitofusin-1, nucleotide-free 5GOM ; 2.802 ; Truncated mitofusin-1, transition-like state 2QUY ; 1.7 ; Truncated mutant ASN175ALA of penicillin v acylase from bacillus sphaericus 5Z8B ; 2.91 ; Truncated N-acetylglucosaminyl transferase KfiA from E. coli K5 strain apo form 6RP3 ; 1.81 ; Truncated Norcoclaurine synthase with reaction intermediate mimic 1DZO ; 1.63 ; Truncated PAK pilin from Pseudomonas aeruginosa 5CLL ; 2.45 ; Truncated Ran wild type in complex with GDP-BeF and RanBD1 1JMY ; 2.6 ; Truncated Recombinant Human Bile Salt Stimulated Lipase 2B44 ; 1.83 ; Truncated S. aureus LytM, P 32 2 1 crystal form 2B0P ; 1.5 ; truncated S. aureus LytM, P212121 crystal form 2B13 ; 1.55 ; Truncated S. aureus LytM, P41 crystal form 2YM0 ; 3.0 ; Truncated SipD from Salmonella typhimurium 3RK2 ; 2.2 ; Truncated SNARE complex 3RK3 ; 3.5 ; Truncated SNARE complex with complexin 3RL0 ; 3.8 ; Truncated SNARE complex with complexin (P1) 6B7T ; 1.91 ; Truncated strand 10-less green fluorescent protein 6B7R ; 1.73 ; Truncated strand 11-less green fluorescent protein 4CZ5 ; 1.02 ; Truncated tetramerization domain of zebrafish p53 (crystal form I) 4CZ6 ; 1.53 ; Truncated tetramerization domain of zebrafish p53 (crystal form II) 4CZ7 ; 1.1 ; Truncated tetramerization domain of zebrafish p53 (crystal form III) 6TS2 ; 5.74 ; Truncated version of Chaetomium thermophilum UDP-Glucose Glucosyl Transferase (UGGT) lacking domain TRXL2 (417-650). 4RNW ; 1.552 ; Truncated version of the G303 Circular Permutation of Old Yellow Enzyme 7X5P ; 3.4 ; Truncated VhChiP (1-19aa) in complex with doxycycline 5E3V ; 2.72 ; Truncated X-ray crystal structure of Adenylosuccinate Lyase from Salmonella typhimurium 5H8C ; 2.29 ; Truncated XPD 2WEV ; 2.3 ; Truncation and Optimisation of Peptide Inhibitors of CDK2, Cyclin A Through Structure Guided Design 2WFY ; 2.53 ; Truncation and Optimisation of Peptide Inhibitors of CDK2, Cyclin A Through Structure Guided Design 2WHB ; 2.9 ; Truncation and Optimisation of Peptide Inhibitors of CDK2, Cyclin A Through Structure Guided Design 2X1N ; 2.75 ; Truncation and Optimisation of Peptide Inhibitors of CDK2, Cyclin A Through Structure Guided Design 7O43 ; 3.4 ; TrwK/VirB4unbound dimer complex from R388 type IV secretion system determined by cryo-EM. 7O42 ; 4.1 ; TrwK/VirB4unbound trimer of dimers complex (with Hcp1) from the R388 type IV secretion system determined by cryo-EM. 6NEZ ; 2.2 ; Trypanosoma brucei - BDF5, Tb427tmp.01.5000 A, solved with PF-CBP1 5K29 ; 2.1 ; Trypanosoma brucei bromodomain BDF5 (Tb427tmp.01.5000) 6Q2A ; 2.6 ; Trypanosoma brucei CLK1 kinase domain in complex with a covalent aminobenzimidazole inhibitor AB1 2W7T ; 2.1 ; Trypanosoma brucei CTPS - glutaminase domain with bound acivicin 6DFT ; 3.5 ; Trypanosoma brucei deoxyhypusine synthase 3RG9 ; 2.0 ; Trypanosoma brucei dihydrofolate reductase (TbDHFR) in complex with WR99210 3QFX ; 2.2 ; Trypanosoma brucei dihydrofolate reductase pyrimethamine complex 6F5D ; 3.2 ; Trypanosoma brucei F1-ATPase 7ZGJ ; 3.58 ; Trypanosoma brucei gambiense ISG65 in complex with human complement component C3 7ZGK ; 3.59 ; Trypanosoma brucei gambiense ISG65 in complex with human complement component C3b 2WYO ; 3.15 ; Trypanosoma brucei glutathione synthetase 4X0J ; 1.85 ; Trypanosoma brucei haptoglobin-haemoglobin receptor 6APS ; 1.762 ; Trypanosoma brucei hypoxanthine guanine phosphoribosyltransferase in complex with [(2-((Guanine-9H-yl)methyl)propane-1,3 diyl)bis(oxy)]bis(methylene))diphosphonic acid 6APV ; 1.993 ; Trypanosoma brucei hypoxanthine guanine phosphoribosyltransferase in complex with [(2-{[2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)ethyl][(E)-2-phosphonoethenyl]amino}ethoxy)methyl]phosphonic acid 6APT ; 1.795 ; Trypanosoma brucei hypoxanthine guanine phosphoribosyltransferase in complex with {[(2S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)propane-1,2-diyl]bis(oxyethane-2,1-diyl)}bis(phosphonic acid) 8C51 ; 2.4 ; Trypanosoma brucei IMP dehydrogenase (cyto) crystallized in High Five cells revealing native ligands ATP, GDP and phosphate. Diffraction data collection at 100 K in cellulo 8C53 ; 2.3 ; Trypanosoma brucei IMP dehydrogenase (ori) crystallized in High Five cells reveals native ligands ATP, GDP and phosphate. Diffraction data collection at 100 K in cellulo; CrystFEL processing 8CGY ; 3.0 ; Trypanosoma brucei IMP dehydrogenase (ori) crystallized in High Five cells reveals native ligands ATP, GDP and phosphate. Diffraction data collection at 100 K in cellulo; XDS processing 8RD2 ; 2.69 ; Trypanosoma brucei Invariant Surface Glycoprotein 75 (ISG75) 7PI6 ; 2.6 ; Trypanosoma brucei ISG65 bound to human complement C3d 5NFH ; 2.8 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with a quinazolinone inhibitor 4EG8 ; 2.596 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with compound Chem 89 5TQU ; 2.6 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 4ZT5 ; 2.35 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (2S)-N-(3,5-dichlorobenzyl)-N'-(1H-imidazo[4,5-b]pyridin-2-yl)-2-methylpropane-1,3-diamine (Chem 1655) 5J58 ; 2.8 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 1856) 5J59 ; 2.4 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 1893) 6MES ; 2.9 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 1907) 5V49 ; 2.3 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 1917) 6CML ; 2.7 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 2093) 5J5A ; 2.7 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor (Chem 70786556) 4MWB ; 2.313 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-(3-{[(2,5-dichlorothiophen-3-yl)methyl]amino}propyl)-3-thiophen-3-ylurea (Chem 1509) 4MWC ; 2.649 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-(3-{[(2-methyl-1-benzothiophen-3-yl)methyl]amino}propyl)-3-thiophen-3-ylurea (Chem 1540) 4MW6 ; 2.558 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-(3-{[2-(benzyloxy)-5-chloro-3-(prop-2-en-1-yl)benzyl]amino}propyl)-3-thiophen-3-ylurea (Chem 1476) 4MW2 ; 2.3 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-(3-{[5-chloro-2-hydroxy-3-(prop-2-en-1-yl)benzyl]amino}propyl)-3-thiophen-3-ylurea (Chem 1472) 4MWE ; 2.45 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-(3-{[5-chloro-3-(prop-2-en-1-yl)-2-(prop-2-en-1-yloxy)benzyl]amino}propyl)-3-thiophen-3-ylurea (Chem 1475) 4MW0 ; 2.201 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3,5-dichlorobenzyl)amino]propyl}-3-(2-hydroxyphenyl)urea (Chem 1392) 4MVY ; 2.314 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3,5-dichlorobenzyl)amino]propyl}-3-(3-hydroxyphenyl)urea (Chem 1387) 4MVX ; 2.55 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3,5-dichlorobenzyl)amino]propyl}-3-phenylurea (Chem 1356) 4MVW ; 2.901 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3,5-dichlorobenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1433) 4MWD ; 2.253 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3,5-dichlorobenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1433) and ATP analog AMPPCP 4MW5 ; 2.347 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3-chloro-5-methoxybenzyl)amino]propyl}-3-phenylurea (Chem 1415) 4MW1 ; 2.494 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3-chloro-5-methoxybenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1444) 4MW9 ; 2.65 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(3-ethynylbenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1478) 4MW7 ; 2.75 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(5-chloro-2-ethoxy-3-iodobenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1469) 4MW4 ; 2.5 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor 1-{3-[(5-chloro-2-hydroxy-3-iodobenzyl)amino]propyl}-3-thiophen-3-ylurea (Chem 1473) 4EG4 ; 3.151 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor Chem 1289 4EG5 ; 3.1 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor Chem 1312 4EGA ; 2.698 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor Chem 1320 4EG6 ; 2.901 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor Chem 1325 4EG7 ; 2.747 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor Chem 1331 4ZT2 ; 2.7 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor N-(3,5-dichlorobenzyl)-N'-(1H-imidazo[4,5-b]pyridin-2-yl)propane-1,3-diamine (Chem 1575) 4ZT3 ; 2.8 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor N-(3,5-dichlorobenzyl)-N'-(5-fluoro-1H-imidazo[4,5-b]pyridin-2-yl)propane-1,3-diamine (Chem 1614) 4ZT7 ; 2.4 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor N-[(4R)-6,8-dichloro-1,2,3,4-tetrahydroquinolin-4-yl]-N'-(5-fluoro-3H-imidazo[4,5-b]pyridin-2-yl)propane-1,3-diamine (Chem 1717) 4ZT6 ; 2.25 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitor N-[(4R)-6,8-dichloro-3,4-dihydro-2H-chromen-4-yl]-N'-(5-fluoro-1H-imidazo[4,5-b]pyridin-2-yl)propane-1,3-diamine (Chem 1709) 4ZT4 ; 2.3 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with inhibitorN-(3,5-dichlorobenzyl)-2,2-difluoro-N'-(1H-imidazo[4,5-b]pyridin-2-yl)propane-1,3-diamine (Chem 1708) 4EG3 ; 2.94 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with product methionyl-adenylate 4EG1 ; 2.9 ; Trypanosoma brucei methionyl-tRNA synthetase in complex with substrate Methionine 8AP6 ; 3.2 ; Trypanosoma brucei mitochondrial F1Fo ATP synthase dimer 7AOI ; 3.5 ; Trypanosoma brucei mitochondrial ribosome large subunit assembly intermediate 5MMC ; ; Trypanosoma brucei Pex14 N-terminal domain 6DNZ ; 2.384 ; Trypanosoma brucei PRMT1 enzyme-prozyme heterotetrameric complex with AdoHcy 4HWY ; 2.1 ; Trypanosoma brucei procathepsin B solved from 40 fs free-electron laser pulse data by serial femtosecond X-ray crystallography 4N4Z ; 3.3 ; Trypanosoma brucei procathepsin B structure solved by Serial Microcrystallography using synchrotron radiation 5K6A ; 1.7 ; Trypanosoma brucei Pteridine reductase 1 (PTR1) in complex with compound 1 8OF2 ; 1.48 ; Trypanosoma brucei pteridine reductase 1 (TbPTR1) in complex with 2,4,6 triamminopyrimidine (TAP) 6TBX ; 1.3 ; Trypanosoma brucei PTR1 (TbPTR1) in complex with a tricyclic-based inhibitor 6RX5 ; 1.42 ; Trypanosoma brucei PTR1 (TbPTR1) in complex with inhibitor 1 (NMT-C0003) 6RX0 ; 1.2 ; Trypanosoma brucei PTR1 (TbPTR1) in complex with inhibitor 3 (NMT-C0013) 6RX6 ; 1.11 ; Trypanosoma brucei PTR1 (TbPTR1) in complex with inhibitor 4 (NMT-C0026) 7OPJ ; 1.34 ; Trypanosoma brucei PTR1 (TbPTR1) in complex with pyrimethamine 5JDI ; 1.38 ; Trypanosoma brucei PTR1 in complex with cofactor and inhibitor NMT-H024 (compound 2) 6HNC ; 1.5 ; Trypanosoma brucei PTR1 in complex with cycloguanil 4WCD ; 1.68 ; Trypanosoma brucei PTR1 in complex with inhibitor 10 6GCK ; 2.14 ; Trypanosoma brucei PTR1 in complex with inhibitor 1e (F206) 6GCQ ; 1.58 ; Trypanosoma brucei PTR1 in complex with inhibitor 2b (F192) 6GCP ; 1.52 ; Trypanosoma brucei PTR1 in complex with inhibitor 2d (F186) 6GDO ; 1.78 ; Trypanosoma brucei PTR1 in complex with inhibitor 2g (F240) 6GEX ; 1.78 ; Trypanosoma brucei PTR1 in complex with inhibitor 2h (F246) 6GCL ; 1.95 ; Trypanosoma brucei PTR1 in complex with inhibitor 3a (F020) 6GD4 ; 1.42 ; Trypanosoma brucei PTR1 in complex with inhibitor 4c (F188) 6GEY ; 1.56 ; Trypanosoma brucei PTR1 in complex with inhibitor 4g (F125) 6GD0 ; 1.74 ; Trypanosoma brucei PTR1 in complex with inhibitor 4g (F133) 6GDP ; 1.52 ; Trypanosoma brucei PTR1 in complex with inhibitor 4l (F162) 4WCF ; 1.93 ; Trypanosoma brucei PTR1 in complex with inhibitor 9 5IZC ; 1.92 ; Trypanosoma brucei PTR1 in complex with inhibitor F032 5JCJ ; 1.76 ; Trypanosoma brucei PTR1 in complex with inhibitor NMT-H037 (compound 7) 5JDC ; 1.78 ; Trypanosoma brucei PTR1 in complex with inhibitor NP-13 (Hesperetin) 5JCX ; 1.43 ; Trypanosoma brucei PTR1 in complex with inhibitor NP-29 2YHI ; 1.8 ; Trypanosoma brucei PTR1 in complex with inhibitor WH16 2YHU ; 2.01 ; Trypanosoma brucei PTR1 in complex with inhibitor WHF30 6HNR ; 1.58 ; Trypanosoma brucei PTR1 in complex with the triazine inhibitor 1 (F217) 6HOW ; 1.92 ; Trypanosoma brucei PTR1 in complex with the triazine inhibitor 2a (F219). 3LSQ ; 2.1 ; Trypanosoma brucei seryl-tRNA synthetase 6RLU ; 1.88 ; Trypanosoma brucei Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)cytidine 6RLV ; 1.9 ; Trypanosoma brucei Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-sulfamoyl)N3-methyluridine 6RLT ; 1.84 ; Trypanosoma brucei Seryl-tRNA Synthetase in Complex with 5'-O-(N-(L-seryl)-Sulfamoyl)uridine 3LSS ; 1.95 ; Trypanosoma brucei seryl-tRNA synthetase in complex with ATP 6SOY ; 2.75 ; Trypanosoma brucei transferrin receptor in complex with human transferrin 2WP5 ; 2.8 ; Trypanosoma brucei trypanothione reductase in complex with 3,4- dihydroquinazoline inhibitor (DDD00065414) 2WP6 ; 2.5 ; Trypanosoma brucei trypanothione reductase in complex with 3,4- dihydroquinazoline inhibitor (DDD00071494) 2WPC ; 2.1 ; Trypanosoma brucei trypanothione reductase in complex with 3,4- dihydroquinazoline inhibitor (DDD00073357) 2WPE ; 2.1 ; Trypanosoma brucei trypanothione reductase in complex with 3,4- dihydroquinazoline inhibitor (DDD00073359) 2WPF ; 1.9 ; Trypanosoma brucei trypanothione reductase in complex with 3,4- dihydroquinazoline inhibitor (DDD00085762) 2WOV ; 2.5 ; Trypanosoma brucei trypanothione reductase with bound NADP. 2WOW ; 2.2 ; Trypanosoma brucei trypanothione reductase with NADP and trypanothione bound 1GY8 ; 2.0 ; Trypanosoma brucei UDP-galactose 4' epimerase 2CNB ; 2.7 ; Trypanosoma brucei UDP-galactose-4-epimerase in ternary complex with NAD and the substrate analogue UDP-4-deoxy-4-fluoro-alpha-D-galactose 6SU1 ; 3.0 ; Trypanosoma congolense pyruvate kinase in complex with citrate and glycerol 6SU2 ; 3.0 ; Trypanosoma congolense pyruvate kinase in complex with citrate and glycerol 6NIM ; 1.78 ; Trypanosoma cruzi - BDF2, TcCLB.506553.20, solved with bromosporine 3IRM ; 2.1 ; Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate Synthase COMPLEXED WITH Cycloguanil 3IRN ; 2.6 ; Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate Synthase COMPLEXED WITH NADPH AND Cycloguanil 3IRO ; 2.8 ; Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate Synthase complexed with NADPH and Q-8 antifolate 3INV ; 2.37 ; Trypanosoma cruzi Dihydrofolate Reductase-Thymidylate Synthase COMPLEXED WITH NADPH, dUMP AND C-448 ANTIFOLATE 6O7Z ; 2.7 ; Trypanosoma cruzi EIF4E5 translation initiation factor in complex with cap-1 6O7Y ; 2.2 ; Trypanosoma cruzi EIF4E5 translation initiation factor in complex with cap-4 6O80 ; 2.1 ; Trypanosoma cruzi EIF4E5 translation initiation factor in complex with m7GTP 1YHK ; 2.1 ; Trypanosoma cruzi farnesyl diphosphate synthase 6SFA ; 1.9 ; Trypanosoma cruzi farnesyl diphosphate synthase apo structure with Mn ions 6SE2 ; 1.45 ; Trypanosoma cruzi farnesyl diphosphate synthase apo structure with zinc ions 3ICZ ; 2.15 ; Trypanosoma cruzi farnesyl diphosphate synthase homodimer in complex with 1-(2,2-Bis-phosphono-ethyl)-3-butyl-pyridinium and isopentenyl pyrophosphate 3ID0 ; 2.81 ; Trypanosoma cruzi farnesyl diphosphate synthase homodimer in complex with 3-Fluoro-1-(2-hydroxy-2,2-bisphosphono-ethyl)pyridinium 3ICN ; 2.4 ; Trypanosoma cruzi farnesyl diphosphate synthase homodimer in complex with isopentenyl pyrophosphate and 3-Fluoro-1-(2-hydroxy-2,2-bis-phosphono-ethyl)-pyridinium 3ICM ; 2.2 ; Trypanosoma cruzi farnesyl diphosphate synthase homodimer in complex with isopentenyl pyrophosphate, Mg2+ and 1-(2-Hydroxy-2,2-bis-phosphono-ethyl)-3-phenyl-pyridinium 3ICK ; 2.4 ; Trypanosoma cruzi farnesyl diphosphate synthase homodimer in complex with minodronate and isopentenyl disphosphate 6SDO ; 1.68 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with 3np 6SDQ ; 1.68 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with fragment 2m5n 6SDP ; 1.45 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with fragment 4np 6SF8 ; 1.62 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with fragment j51 6SF9 ; 1.59 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with fragment j71 6SDN ; 1.51 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with fragment j82 6T7N ; 1.9 ; Trypanosoma cruzi farnesyl diphosphate synthase in complex with IPP and Mn 2Q2R ; 2.1 ; Trypanosoma cruzi glucokinase in complex with beta-D-glucose and ADP 6D24 ; 3.35 ; Trypanosoma cruzi Glucose-6-P Dehydrogenase in complex with G6P 5AQ1 ; 2.65 ; Trypanosoma cruzi Glucose-6-phosphate Dehydrogenase in complex with G6P and NADPH 1JVW ; 1.7 ; TRYPANOSOMA CRUZI MACROPHAGE INFECTIVITY POTENTIATOR (TCMIP) 6W2N ; 1.88 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC009) 6W49 ; 1.7 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC010) 6W29 ; 2.14 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC013) 6W56 ; 1.9 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC062) 6W59 ; 1.95 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC063) 6W57 ; 1.78 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC069) 6W53 ; 2.1 ; Trypanosoma cruzi Malic Enzyme in complex with inhibitor (MEC070) 3DWC ; 2.1 ; Trypanosoma Cruzi Metallocarboxypeptidase 1 7MK0 ; 3.5 ; Trypanosoma cruzi Nucleoside Diphosphate Kinase 1 form a quinary multihexameric structure 6HJF ; 1.7 ; Trypanosoma cruzi proline racemase in complex with inhibitor BrOxoPA 6HJE ; 2.0 ; Trypanosoma cruzi proline racemase in complex with inhibitor NG-P27 6HJG ; 1.9 ; Trypanosoma cruzi proline racemase in complex with inhibitor OxoPA 2AH2 ; 1.6 ; Trypanosoma cruzi trans-sialidase in complex with 2,3-difluorosialic acid (covalent intermediate) 1S0J ; 1.65 ; Trypanosoma cruzi trans-sialidase in complex with MuNANA (Michaelis complex) 1S0I ; 1.6 ; Trypanosoma cruzi trans-sialidase in complex with sialyl-lactose (Michaelis complex) 3PJQ ; 2.1 ; Trypanosoma cruzi trans-sialidase-like inactive isoform (including the natural mutation Tyr342His) in complex with lactose 1TCD ; 1.83 ; TRYPANOSOMA CRUZI TRIOSEPHOSPHATE ISOMERASE 1AOG ; 2.3 ; TRYPANOSOMA CRUZI TRYPANOTHIONE REDUCTASE (OXIDIZED FORM) 1MZ5 ; 2.2 ; Trypanosoma rangeli sialidase 1N1S ; 1.64 ; Trypanosoma rangeli sialidase 2A75 ; 1.95 ; Trypanosoma rangeli Sialidase In Complex With 2,3- Difluorosialic Acid (Covalent Intermediate) 2FHR ; 2.2 ; Trypanosoma Rangeli Sialidase In Complex With 2,3- Difluorosialic Acid (Covalent Intermediate) 2AGS ; 1.7 ; Trypanosoma rangeli Sialidase in Complex with 2-Keto-3-deoxy-D-glycero-D-galacto-2,3-difluoro-nononic acid (2,3-difluoro-KDN) 1N1V ; 2.1 ; Trypanosoma rangeli sialidase in complex with DANA 1N1T ; 1.6 ; Trypanosoma rangeli sialidase in complex with DANA at 1.6 A 1N1Y ; 2.8 ; Trypanosoma rangeli sialidase in complex with sialic acid 1MZ6 ; 2.9 ; Trypanosoma rangeli sialidase in complex with the inhibitor DANA 5KAP ; 2.95 ; Trypanosome brucei Hypoxanthine-guanine phosphoribosyltranferase in complex with a 9-(4-(phosphonobutil)hypoxanthine 5K51 ; 2.956 ; Trypanosome brucei Hypoxanthine-guanine phosphoribosyltranferase in complex with a 9-[5-(phosphonoheptyl]hypoxanthine 5JSQ ; 1.503 ; Trypanosome brucei Hypoxanthine-guanine phosphoribosyltranferase in complex with a 9-[7-(phosphonoheptyl]guanine 5JV5 ; 2.73 ; Trypanosome brucei Hypoxanthine-guanine phosphoribosyltranferase in complex with Guanosine 5' monophosphate 5KAM ; 2.481 ; Trypanosome brucei Hypoxanthine-guanine phosphoribosyltranferase in complex with Inosine 5' monophosphate 5SMJ ; 1.65 ; Trypanothione reductase 6T98 ; 3.0 ; Trypanothione Reductase from Leishmania infantum in complex with 9a 6T95 ; 2.5 ; Trypanothione Reductase from Leismania infantum in complex with 4a 6I7N ; 3.3 ; Trypanothione Reductase from Leismania infantum in complex with TRL156 6T97 ; 2.8 ; Trypanothione Reductase from Leismania infantum in complex with TRL190 2WOI ; 2.1 ; Trypanothione reductase from Trypanosoma brucei 7NVP ; 2.153 ; Trypanothione reductase from Trypanosoma brucei in complex with N-{4-methoxy-3-[(4-methoxyphenyl)sulfamoyl]phenyl}-5-nitrothiophene-2-carboxamide 6RB5 ; 1.977 ; Trypanothione reductase in complex with 4-(((3-(8-(2-((1R,2S,5R)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl)ethyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-3-yl)propyl)(methyl)amino)methyl)-4-hydroxypiperidine-1-carboximidamide 5EBK ; 3.51 ; Trypanothione reductase in complex with 6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine 2VOB ; 2.3 ; TRYPANOTHIONE SYNTHETASE 2VPM ; 2.8 ; Trypanothione synthetase 4B6M ; 1.59 ; Trypansoma brucei tubulin binding cofactor B CAP-Gly domain 1O73 ; 2.28 ; Tryparedoxin from Trypanosoma brucei 6GXG ; 1.6 ; Tryparedoxin from Trypanosoma brucei in complex with CFT 6GXY ; 1.8 ; Tryparedoxin from Trypanosoma brucei in complex with CFT 1I5G ; 1.4 ; TRYPAREDOXIN II COMPLEXED WITH GLUTATHIONYLSPERMIDINE 1OC8 ; 1.5 ; TRYPAREDOXIN II FROM C.FASCICULATA SOLVED BY MR 1OC9 ; 2.35 ; TRYPAREDOXIN II FROM C.FASCICULATA solved by MR 1O6J ; 2.35 ; Tryparedoxin II from C.fasciculata solved by sulphur phasing 1O81 ; 1.5 ; Tryparedoxin II from C.fasciculata solved by sulphur phasing 4LLR ; 2.8 ; Tryparedoxin peroxidase (TXNPX) from trypanosoma cruzi in the reduced state 1E2Y ; 3.2 ; Tryparedoxin peroxidase from Crithidia fasciculata 1QK8 ; 1.4 ; TRYPAREDOXIN-I FROM CRITHIDIA FASCICULATA 7Z25 ; 1.35 ; TRYPSIN (BOVINE) COMPLEXED WITH compound 12 7Z2I ; 1.09 ; TRYPSIN (BOVINE) COMPLEXED WITH compound 4 2BLW ; 1.2 ; Trypsin after a high dose X-ray ""Burn"" 1PQ7 ; 0.8 ; Trypsin at 0.8 A, pH5 / borax 1PQ8 ; 1.0 ; Trypsin at pH 4 at atomic resolution 1PQ5 ; 0.85 ; Trypsin at pH 5, 0.85 A 2BLV ; 1.2 ; Trypsin before a high dose x-ray ""burn"" 5JYI ; 1.914 ; Trypsin bound with succinic acid at 1.9A 2PLX ; 1.56 ; Trypsin complexed to a synthetic peptide from Veronica hederifolia 6BVH ; 1.927 ; Trypsin complexed with a modified sunflower trypsin inhibitor, SFTI-TCTR(N12,N14) 1PPZ ; 1.23 ; Trypsin complexes at atomic and ultra-high resolution 6SWV ; 1.432 ; Trypsin fast data collection 1XVO ; 0.84 ; Trypsin from Fusarium oxysporum at pH 6 1XVM ; 1.1 ; Trypsin from Fusarium oxysporum- room temperature to atomic resolution 2A32 ; 1.5 ; Trypsin in complex with benzene boronic acid 2A31 ; 1.25 ; Trypsin in complex with borate 7PH1 ; 1.18 ; Trypsin in complex with BPTI mutant (2S)-2-amino-4-monofluorobutanoic acid 3NKK ; 1.12 ; Trypsin in complex with fluorine containing fragment 3NK8 ; 1.15 ; Trypsin in complex with fluorine-containing fragment 3M35 ; 2.2 ; Trypsin in complex with the inhibitor 1-[3-(aminomethyl)phenyl]-N-[3-fluoro-2'-(methylsulfonyl)biphenyl-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423) 4Y0Y ; 1.25 ; Trypsin in complex with with BPTI 4Y11 ; 1.3 ; Trypsin in complex with with BPTI mutant (2S)-2-amino-4,4,4-trifluorobutanoic acid 4Y10 ; 1.37 ; Trypsin in complex with with BPTI mutant (2S)-2-amino-4,4-difluorobutanoic acid 4Y0Z ; 1.37 ; Trypsin in complex with with BPTI mutant AMINOBUTYRIC ACID 1TIH ; ; TRYPSIN INHIBITOR (T1) FROM NICOTIANA ALATA 1G36 ; 1.9 ; TRYPSIN INHIBITOR COMPLEX 1OYQ ; 1.9 ; TRYPSIN INHIBITOR COMPLEX 1Y3U ; 1.8 ; TRYPSIN INHIBITOR COMPLEX 1Y3V ; 1.6 ; Trypsin Inhibitor Complex 1Y3W ; 1.8 ; TRYPSIN INHIBITOR COMPLEX 1Y3X ; 1.7 ; TRYPSIN INHIBITOR COMPLEX 1Y3Y ; 1.75 ; TRYPSIN INHIBITOR COMPLEX 1YP9 ; 2.1 ; Trypsin Inhibitor Complex 1EB2 ; 2.0 ; Trypsin inhibitor complex (BPO) 1AVU ; 2.3 ; TRYPSIN INHIBITOR FROM SOYBEAN (STI) 6YIS ; 1.19 ; Trypsin inhibitor in complex with bovine trypsin 6YIT ; 1.25 ; Trypsin inhibitor in complex with bovine trypsin 6YIU ; 1.36 ; Trypsin inhibitor in complex with bovine trypsin 6YIV ; 0.95 ; Trypsin inhibitor in complex with bovine trypsin 6YIW ; 0.97 ; Trypsin inhibitor in complex with bovine trypsin 6YIX ; 1.31 ; Trypsin inhibitor in complex with bovine trypsin 6YIY ; 1.11 ; Trypsin inhibitor in complex with bovine trypsin 6YZA ; 1.3 ; Trypsin inhibitor in complex with bovine trypsin 6YZC ; 1.42 ; Trypsin inhibitor in complex with bovine trypsin 6ZFJ ; 1.0 ; Trypsin inhibitor in complex with bovine trypsin 6ZFK ; 1.1 ; Trypsin inhibitor in complex with bovine trypsin 1V2W ; 1.75 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSAI)bT.B4 1V2T ; 1.9 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSFI.Glu)bT.B4 1V2R ; 1.7 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSRI)bT.B4 1V2Q ; 2.3 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSWI)bT.B4 1V2P ; 1.92 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSYI)bT.A4 1V2O ; 1.62 ; Trypsin inhibitor in complex with bovine trypsin variant X(SSYI)bT.B4 5LH4 ; 1.37 ; Trypsin inhibitors for the treatment of pancreatitis - cpd 1 5LGO ; 1.12 ; Trypsin inhibitors for the treatment of pancreatitis - cpd 15 5LH8 ; 1.54 ; Trypsin inhibitors for the treatment of pancreatitis - cpd 8 1YYY ; 2.1 ; Trypsin inhibitors with rigid tripeptidyl aldehydes 1ZZZ ; 1.9 ; Trypsin inhibitors with rigid tripeptidyl aldehydes 6DWR ; 1.319 ; Trypsin serine protease modified with the protease inhibitor cyanobenzylsulfonylfluoride 1UTJ ; 1.83 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTK ; 1.53 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTL ; 1.7 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTM ; 1.5 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTN ; 1.15 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTO ; 1.15 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTP ; 1.3 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1UTQ ; 1.15 ; Trypsin specificity as elucidated by LIE calculations, X-ray structures and association constant measurements 1AQ7 ; 2.2 ; TRYPSIN WITH INHIBITOR AERUGINOSIN 98-B 1PQA ; 1.23 ; Trypsin with PMSF at atomic resolution 1XUK ; 1.8 ; TRYPSIN-BABIM-SULFATE, PH 5.9 1XUF ; 1.9 ; TRYPSIN-BABIM-ZN+2, PH 8.2 1XUG ; 1.5 ; TRYPSIN-BABIM-ZN+2, PH 8.2 6ACG ; 5.4 ; Trypsin-cleaved and low pH-treated SARS-CoV spike glycoprotein and ACE2 complex, ACE2-bound conformation 1 6ACJ ; 4.2 ; Trypsin-cleaved and low pH-treated SARS-CoV spike glycoprotein and ACE2 complex, ACE2-bound conformation 2 6ACK ; 4.5 ; Trypsin-cleaved and low pH-treated SARS-CoV spike glycoprotein and ACE2 complex, ACE2-bound conformation 3 6ACD ; 3.9 ; Trypsin-cleaved and low pH-treated SARS-CoV spike glycoprotein and ACE2 complex, ACE2-free conformation with one RBD in up conformation 6ACC ; 3.6 ; Trypsin-cleaved and low pH-treated SARS-CoV spike glycoprotein and ACE2 complex, ACE2-free conformation with three RBD in down conformation 7DX0 ; 3.2 ; Trypsin-digested S protein of SARS-CoV-2 7DX7 ; 3.4 ; Trypsin-digested S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 1 (1 up RBD and 1 PD bound) 7DX8 ; 2.9 ; Trypsin-digested S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 2 (2 up RBD and 2 PD bound) 7DX9 ; 3.6 ; Trypsin-digested S protein of SARS-CoV-2 bound with PD of ACE2 in the conformation 3 (3 up RBD and 2 PD bound) 7DX2 ; 3.3 ; Trypsin-digested S protein of SARS-CoV-2 D614G mutant 1XUI ; 1.5 ; TRYPSIN-KETO-BABIM, ZN+2-FREE, PH 8.2 1XUH ; 2.2 ; TRYPSIN-KETO-BABIM-CO+2, PH 8.2 1XUJ ; 1.92 ; TRYPSIN-KETO-BABIM-ZN+2, PH 8.2 2HCJ ; 2.12 ; Trypsin-modified Elongation Factor Tu in complex with tetracycline 2HDN ; 2.8 ; Trypsin-modified Elongation Factor Tu in complex with tetracycline at 2.8 Angstrom resolution 1YKT ; 1.7 ; Trypsin/Bpti complex mutant 1YLC ; 1.7 ; Trypsin/BPTI complex mutant 1YLD ; 1.7 ; Trypsin/BPTI complex mutant 1TX6 ; 2.2 ; trypsin:BBI complex 3TGK ; 1.7 ; TRYPSINOGEN MUTANT D194N AND DELETION OF ILE 16-VAL 17 COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) 5F03 ; 1.94 ; TRYPTASE B2 IN COMPLEX WITH 5-(3-Aminomethyl-phenoxymethyl)-3-[3-(2-chloro-pyridin-3-ylethynyl)-phenyl]-oxazolidin-2-one; compound with trifluoro-acetic acid 5L01 ; 1.9 ; Tryptophan 5-hydroxylase in complex with inhibitor (3~{S})-8-[2-azanyl-6-[(1~{R})-1-(4-chloranyl-2-phenyl-phenyl)-2,2,2-tris(fluoranyl)ethoxy]pyrimidin-4-yl]-2,8-diazaspiro[4.5]decane-3-carboxylic acid 5W1B ; 2.0 ; Tryptophan indole-lyase 5W19 ; 2.1 ; Tryptophan indole-lyase complex with oxindolyl-L-alanine 6HTO ; 1.45 ; Tryptophan lyase 'empty state' 6ELF ; 1.832 ; Tryptophan Repressor TrpR from E.coli variant M42F T44L T81I S88Y with Indole-3-acetic acid as ligand 6ELG ; 1.38 ; Tryptophan Repressor TrpR from E.coli variant M42F T44L T81I S88Y with Indole-3-acetonitrile 6ELB ; 1.437 ; Tryptophan Repressor TrpR from E.coli variant M42F T44L T81M N87G S88Y with Indole-3-acetic acid as ligand 6EJZ ; 1.9 ; Tryptophan Repressor TrpR from E.coli variant S88Y with Indole-3-acetic acid as ligand 6ENI ; 1.1 ; Tryptophan Repressor TrpR from E.coli variant T44L S88Y with Indole-3-acetic acid as ligand 6ENN ; 1.17 ; Tryptophan Repressor TrpR from E.coli variant T44L T81M N87G S88Y with Indole-3-acetic acid as ligand 6EKP ; 1.46 ; Tryptophan Repressor TrpR from E.coli variant T44L T81M S88Y with Indole-3-acetic acid as ligand 6EJW ; 1.99 ; Tryptophan Repressor TrpR from E.coli wildtype with Indole-3-acetic acid as ligand 6F7F ; 2.128 ; Tryptophan Repressor TrpR from E.coli with 3-Indolepropionic acid 6FAL ; 1.2 ; Tryptophan Repressor TrpR from E.coli with 3-Indolepropionic acid as ligand 6F9K ; 1.399 ; Tryptophan Repressor TrpR from E.coli with 5-methyl-L-tryptophan as ligand 6F7G ; 1.656 ; Tryptophan Repressor TrpR from E.coli with 5-Methyltryptamine 2XDI ; ; Tryptophan repressor with L75F mutation in its apo form (no L- tryptophan bound) 1BKS ; 2.2 ; TRYPTOPHAN SYNTHASE (E.C.4.2.1.20) FROM SALMONELLA TYPHIMURIUM 1TTP ; 2.3 ; TRYPTOPHAN SYNTHASE (E.C.4.2.1.20) IN THE PRESENCE OF CESIUM, ROOM TEMPERATURE 1TTQ ; 2.0 ; TRYPTOPHAN SYNTHASE (E.C.4.2.1.20) IN THE PRESENCE OF POTASSIUM AT ROOM TEMPERATURE 1UBS ; 1.9 ; TRYPTOPHAN SYNTHASE (E.C.4.2.1.20) WITH A MUTATION OF LYS 87->THR IN THE B SUBUNIT AND IN THE PRESENCE OF LIGAND L-SERINE 2CLO ; 1.5 ; Tryptophan Synthase (external aldimine state) in complex with (naphthalene-2'-sulfonyl)-2-amino-1-ethylphosphate (F19) 2CLL ; 1.6 ; Tryptophan Synthase (external aldimine state) in complex with N-(4'- trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9) 2CLM ; 1.51 ; Tryptophan Synthase (external aldimine state) in complex with N-(4'- trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) 8B03 ; 2.22 ; TRYPTOPHAN SYNTHASE - Cryo-trapping by the spitrobot crystal plunger after 0 sec 8B05 ; 2.1 ; TRYPTOPHAN SYNTHASE - Cryo-trapping by the spitrobot crystal plunger after 20 sec 8B06 ; 2.49 ; TRYPTOPHAN SYNTHASE - Cryo-trapping by the spitrobot crystal plunger after 25 sec 8B08 ; 2.5 ; TRYPTOPHAN SYNTHASE - Cryo-trapping by the spitrobot crystal plunger after 30 sec 5IXJ ; 1.54 ; Tryptophan Synthase beta-subunit from Pyrococcus furiosus with L-threonine non-covalently bound in the active site 5DW3 ; 1.74 ; Tryptophan Synthase beta-subunit from Pyrococcus furiosus with product L-tryptophan non-covalently bound in the active site 2RH9 ; 1.7 ; Tryptophan synthase complexed with IGP, internal aldimine, pH 9.0 2RHG ; 2.0 ; Tryptophan synthase complexed with IGP, pH 7.0, internal aldimine 5BW6 ; 1.82 ; Tryptophan Synthase from Salmonella typhimurium in complex with a single molecule of 2-({[4-(trifluoromethoxy)phenyl]carbonyl}amino)ethyl dihydrogen phosphate (F6) in the alpha-site. 4ZQC ; 1.54 ; Tryptophan Synthase from Salmonella typhimurium in complex with two molecules of N-(4'-trifluoromethoxybenzoyl)-2-amino-1-ethylphosphate (F6F) inhibitor in the alpha-site and a single F6F molecule in the beta-site at 1.54 Angstrom resolution. 2CLH ; 1.7 ; Tryptophan Synthase in complex with (naphthalene-2'-sulfonyl)-2-amino- 1-ethylphosphate (F19) 4HN4 ; 1.64 ; Tryptophan synthase in complex with alpha aminoacrylate E(A-A) form and the F9 inhibitor in the alpha site 2CLK ; 1.5 ; Tryptophan Synthase in complex with D-glyceraldehyde 3-phosphate (G3P) 2J9X ; 1.9 ; Tryptophan Synthase in complex with GP, alpha-D,L-glycerol-phosphate, Cs, pH6.5 - alpha aminoacrylate form - (GP)E(A-A) 6VNT ; 1.25 ; Tryptophan synthase in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the alpha-site, aminoacrylate at the beta site, and sodium ion at the metal coordination site at 1.25 Angstrom resolution 2CLI ; 1.7 ; Tryptophan Synthase in complex with N-(4'- trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9) 2CLF ; 1.7 ; Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzoyl)-2- amino-1-ethylphosphate (F6) - highF6 complex 2CLE ; 1.5 ; Tryptophan Synthase in complex with N-(4'-trifluoromethoxybenzoyl)-2- amino-1-ethylphosphate (F6) - lowF6 complex 3PR2 ; 1.85 ; Tryptophan synthase indoline quinonoid structure with F9 inhibitor in alpha site 6X0C ; 1.45 ; Tryptophan Synthase mutant beta-Q114A in complex with Cesium ion at the metal coordination site and aminoacrylate and benzimidazole at the enzyme beta site 6VFD ; 1.7 ; Tryptophan synthase mutant Q114A in complex with cesium ion at the metal coordination site and 2-aminophenol quinonoid at the enzyme beta site 6C73 ; 1.65 ; Tryptophan synthase Q114A mutant (internal aldimine state) in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) with cesium ion bound in the metal coordination site 6D0V ; 1.64 ; Tryptophan synthase Q114A mutant in complex with inhibitor N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the alpha-site, aminoacrylate at the beta site, and cesium ion at the metal coordination site 6O1H ; 1.64 ; Tryptophan synthase Q114A mutant in complex with N-(4'-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethylphosphate (F9F) at the enzyme alpha-site, cesium ion at the metal coordination site, and 2-aminophenol quinonoid at the enzyme beta site 2J9Y ; 1.8 ; Tryptophan Synthase Q114N mutant in complex with Compound II 3THA ; 2.37 ; Tryptophan synthase subunit alpha from Campylobacter jejuni. 6QKY ; 2.54 ; Tryptophan synthase subunit alpha from Streptococcus pneumoniae with 3D domain swap in the core of TIM barrel 2J9Z ; 1.8 ; Tryptophan Synthase T110 mutant complex 6DFU ; 2.05 ; Tryptophan--tRNA ligase from Haemophilus influenzae. 8TTK ; 1.98 ; Tryptophan-6-halogenase BorH apo structure 8TTJ ; 1.98 ; Tryptophan-6-halogenase BorH complexed with 6-chlorotryptophan 1AX4 ; 2.1 ; TRYPTOPHANASE FROM PROTEUS VULGARIS 3HV0 ; 2.42 ; Tryptophanyl-tRNA synthetase from Cryptosporidium parvum 3FOC ; 2.09 ; Tryptophanyl-tRNA synthetase from Giardia lamblia 3I05 ; 2.8 ; Tryptophanyl-tRNA synthetase from Trypanosoma brucei 3HZR ; 3.0 ; Tryptophanyl-tRNA synthetase homolog from Entamoeba histolytica 3PRH ; 2.8 ; tryptophanyl-tRNA synthetase Val144Pro mutant from B. subtilis 2LO7 ; ; Ts16 NMR solution structure 6Z81 ; 2.31 ; TsaBD bound to the inhibitor 6S84 ; 2.89 ; TsaBDE complex from Thermotoga maritima 3FZJ ; 7.1 ; TsaR low resolution crystal structure, tetragonal form 7A0M ; 2.32 ; TSC1 N-terminal domain 4M5E ; 1.49 ; Tse3 structure 7PHX ; 1.8 ; Tsetse thrombin inhibitor in complex with human alpha-thrombin - acid-stable sulfotyrosine analogue 6TKG ; 1.35 ; Tsetse thrombin inhibitor in complex with human alpha-thrombin - orthorhombic form at 12keV 6TKH ; 1.9 ; Tsetse thrombin inhibitor in complex with human alpha-thrombin - orthorhombic form at 7keV 6TKI ; 1.8 ; Tsetse thrombin inhibitor in complex with human alpha-thrombin - tetragonal form at 12.7keV 6TKJ ; 2.81 ; Tsetse thrombin inhibitor in complex with human alpha-thrombin - tetragonal form at 7keV 1S1Q ; 2.0 ; TSG101(UEV) domain in complex with Ubiquitin 6QTC ; ; tSH2 domain of transcription elongation factor Spt6 complexed with tyrosine phosphorylated CTD 7XW6 ; 2.78 ; TSHR-Gs-M22 antibody-ML109 complex 7XW7 ; 5.5 ; TSHR-K1-70 complex 7XW5 ; 2.96 ; TSHR-thyroid stimulating hormone-Gs-ML109 complex 8QFZ ; 1.65 ; TSLP-Bicycle complex 6NNW ; 1.7 ; Tsn15 in complex with substrate intermediate 6AEO ; 2.3 ; TssL periplasmic domain 8PZ3 ; 3.15 ; TssM - A USP-like DUB from B. pseudomallei (193-430) 8Q00 ; 1.62 ; TssM-Ub-PA complex - A USP-like DUB from B. pseudomallei (193-430) reacted with Ub-PA 1TLY ; 3.01 ; Tsx structure 1TLW ; 3.1 ; Tsx structure complexed with thymidine 1TLZ ; 3.1 ; Tsx structure complexed with uridine 3IQB ; 2.1 ; Tt I75F/L144F H-NOX 3QZ8 ; 1.999 ; TT-4 ternary complex of Dpo4 1ZFH ; 2.51 ; TTA Duplex B-DNA 4BTJ ; 2.16 ; TTBK1 in complex with ATP 4BTK ; 2.0 ; TTBK1 in complex with inhibitor 4BTM ; 2.54 ; TTBK1 in complex with inhibitor 7QHW ; 2.8 ; TTBK1 kinase domain in complex with inhibitor 29 6U0K ; 1.744 ; TTBK2 kinase domain in complex with Compound 1 1ZFF ; 0.94 ; TTC Duplex B-DNA 3GX2 ; 2.9 ; TteSAM-I riboswitch variant A94GU34C bound to sinefungin 6LCK ; 2.85 ; TtGalA, alpha-galactosidase from Thermus thermophilus in complex with p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) 6LCL ; 3.2 ; TtGalA, alpha-galactosidase from Thermus thermophilus in complex with stachyose 6LCJ ; 2.5 ; TtGalA, alpha-galactosidase from Thermus thermopilus in apo form 7KD8 ; 1.71 ; TtgR C137I I141W M167L F168Y mutant in complex with resveratrol 2UXP ; 2.7 ; TtgR in complex Chloramphenicol 2UXU ; 2.3 ; TtgR in complex with Naringenin 2UXH ; 2.4 ; TtgR in complex with Quercetin 7K1C ; 1.9 ; TtgR in complex with resveratrol 2UXO ; 2.7 ; TtgR in complex with Tetracycline 7K1A ; 1.75 ; TtgR quadruple mutant (C137I I141W M167L F168Y) 7V4Y ; 2.4 ; TTHA1264/TTHA1265 complex 3AYT ; 1.95 ; TTHB071 protein from Thermus thermophilus HB8 3AYV ; 1.85 ; TTHB071 protein from Thermus thermophilus HB8 soaking with ZnCl2 7XDU ; 2.6 ; TtherAmDH-NAD+ 6B4W ; 2.9 ; TTK in Complex with Inhibitor 5NA0 ; 2.9 ; TTK kinase domain in complex with a PEG-linked pyrimido-indolizine 5N9S ; 2.3 ; TTK kinase domain in complex with BAY 1161909 5NAD ; 2.8 ; TTK kinase domain in complex with BAY 1217389 5N7V ; 2.52 ; TTK kinase domain in complex with MPI-0479605 5N84 ; 2.3 ; TTK kinase domain in complex with Mps-BAY2b 5N87 ; 2.29 ; TTK kinase domain in complex with NTRC 0066-0 5N93 ; 2.1 ; TTK kinase domain in complex with TC-Mps1-12 6VZU ; 1.98 ; TTLL6 bound to alpha-elongation analog 6VZT ; 2.18 ; TTLL6 bound to ATP 6VZV ; 2.33 ; TTLL6 bound to gamma-elongation analog 6VZW ; 2.5 ; TTLL6 bound to the initiation analog 7OXG ; 2.0 ; ttSlyD FKBP domain with M8A pseudo-wild-type S2 peptide 7OXJ ; 1.85 ; ttSlyD with M8A pseudo-wild-type S2 peptide 7OXH ; 1.7 ; ttSlyD with pseudo-wild-type S2 peptide 7OXI ; 2.6 ; ttSlyD with W4A pseudo-wild-type S2 peptide 7OXK ; 2.8 ; ttSlyD with W4K pseudo-wild-type S2 peptide 5MKQ ; 2.79 ; TtuA enzyme containing a [4Fe-4S] 8Q29 ; 1.5 ; TtX122A - A domain of unknown function from the Teredinibacter turnerae protein TERTU_3803 8Q2A ; 2.2 ; TtX122B - A domain of unknown function from the Teredinibacter turnerae protein TERTU_2913 8Q1V ; 1.4 ; TtX183A - A c-type cytochrome domain from the Teredinibacter turnerae protein TERTU_2913 8Q1W ; 1.8 ; TtX183B - A c-type cytochrome domain from the Teredinibacter turnerae protein TERTU_2913 6QVF ; 1.44 ; TT_C0855 competence pilin from Thermus thermophilus HB27 8AFQ ; 3.3 ; Tube assembly of Atg18-PR72AA 8AFW ; 3.8 ; Tube assembly of Atg18-WT 4AUP ; 1.9 ; Tuber borchii Phospholipase A2 4ASO ; 7.0 ; TubR bound to 24 bp of tubC from Bacillus thuringiensis serovar israelensis pBtoxis 4ASS ; 7.0 ; TubR bound to tubC - 26 bp - from Bacillus thuringiensis serovar israelensis pBtoxis 4ASN ; 3.5 ; TubR from Bacillus megaterium pBM400 8CLC ; 2.7 ; Tubulin (T2R-TTL) complex 8B7A ; 2.25 ; Tubulin - maytansinoid - 4 complex 8B7B ; 2.25 ; Tubulin - maytansinoid - 6 complex 5OV7 ; 2.402 ; tubulin - rigosertib complex 4H6Z ; 2.701 ; Tubulin acetyltransferase 4PK2 ; 1.35 ; tubulin acetyltransferase complex with bisubstrate analog 4PK3 ; 1.347 ; tubulin acetyltransferase complex with bisubstrate analog 4H6U ; 2.4482 ; Tubulin acetyltransferase mutant 1TUB ; 3.7 ; TUBULIN ALPHA-BETA DIMER, ELECTRON DIFFRACTION 5AJ8 ; 2.2 ; Tubulin Binding Cofactor C from Leishmania major 5NQU ; 1.8 ; Tubulin Darpin cryo structure 5NQT ; 2.15 ; Tubulin Darpin room-temperature structure determined by serial millisecond crystallography 5NM5 ; 2.05 ; Tubulin Darpin room-temperature structure in complex with Colchicine determined by serial millisecond crystallography 6WVR ; 2.9 ; Tubulin dimers from a 13-protofilament, Taxol stabilized microtubule 4YLR ; 2.55 ; Tubulin Glutamylase 4YLS ; 2.6 ; Tubulin Glutamylase 7YSO ; 3.6 ; Tubulin heterodimer structure of GDP-1 state in solution 7YSP ; 3.9 ; Tubulin heterodimer structure of GDP-2 state in solution 7YSN ; 3.5 ; Tubulin heterodimer structure of GMPCPP state in solution 6U0H ; 4.3 ; Tubulin lattice of the ciliary doublet microtubule from Tetrahymena thermophila 5M8D ; 2.25 ; Tubulin MTD265-R1 complex 6LSM ; 2.751 ; Tubulin Polymerization Inhibitors 3TIG ; 2.5 ; Tubulin tyrosine ligase 3TII ; 2.5 ; Tubulin tyrosine ligase 3TIN ; 2.9 ; Tubulin tyrosine ligase 7Z2N ; 2.17 ; Tubulin-18-complex 6GJ4 ; 2.4 ; Tubulin-6j complex 6Y6D ; 2.2 ; Tubulin-7-Aminonoscapine complex 5OSK ; 2.11 ; Tubulin-7j complex 3HKC ; 3.8 ; Tubulin-ABT751: RB3 stathmin-like domain complex 6SES ; 2.0 ; Tubulin-B2 complex 8BDE ; 1.902 ; Tubulin-baccatin III complex 4O2A ; 2.5 ; Tubulin-BAL27862 complex 5EYL ; 2.41 ; TUBULIN-BINDING DARPIN 5M7E ; 2.046 ; Tubulin-BKM120 complex 4O2B ; 2.3 ; Tubulin-Colchicine complex 3DU7 ; 4.1 ; Tubulin-colchicine-phomopsin A: Stathmin-like domain complex 3E22 ; 3.8 ; Tubulin-colchicine-soblidotin: Stathmin-like domain complex 3UT5 ; 2.73 ; Tubulin-Colchicine-Ustiloxin: Stathmin-like domain complex 1Z2B ; 4.1 ; Tubulin-colchicine-vinblastine: stathmin-like domain complex 1SA0 ; 3.58 ; TUBULIN-COLCHICINE: STATHMIN-LIKE DOMAIN COMPLEX 5LYJ ; 2.397 ; Tubulin-Combretastatin A4 complex 6F7C ; 2.002 ; TUBULIN-Compound 12 complex 6GX7 ; 3.19 ; Tubulin-CopN-alphaRep complex 8A0L ; 1.9981 ; Tubulin-CW1-complex 6QTN ; 1.9 ; Tubulin-cyclostreptin complex 5EYP ; 1.9 ; TUBULIN-DARPIN COMPLEX 8CL9 ; 2.5 ; Tubulin-DARPin D1 complex 5MF4 ; 2.3 ; Tubulin-Dictyostatin complex 5LXT ; 1.9 ; Tubulin-Discodermolide complex 6FJM ; 2.1 ; tubulin-Disorazole Z complex 5JH7 ; 2.25 ; Tubulin-Eribulin complex 6FJF ; 2.402 ; Tubulin-FcMaytansine complex 6S9E ; 2.25 ; Tubulin-GDP.AlF complex 6GZE ; 2.49 ; Tubulin-GDP.BeF complex 6TDE ; 2.286 ; Tubulin-inhibitor complex 6TH4 ; 2.121 ; Tubulin-inhibitor complex 6GF3 ; 2.4 ; Tubulin-Jerantinine B acetate complex 5LXS ; 2.2 ; Tubulin-KS-1-199-32 complex 4O4H ; 2.1 ; Tubulin-Laulimalide complex 4O4I ; 2.4 ; Tubulin-Laulimalide-Epothilone A complex 4TV8 ; 2.103 ; Tubulin-Maytansine complex 8B7C ; 1.9 ; Tubulin-maytansinoid-12 complex 5SB8 ; 2.3 ; Tubulin-maytansinoid-3-complex 5SB9 ; 2.5 ; Tubulin-maytansinoid-4a-complex 5SBA ; 2.25 ; Tubulin-maytansinoid-4b-complex 5SBB ; 2.25 ; Tubulin-maytansinoid-4c-complex 5SBC ; 2.32 ; Tubulin-maytansinoid-5a-complex 5SBD ; 2.25 ; Tubulin-maytansinoid-5b-complex 5SBE ; 2.75 ; Tubulin-maytansinoid-5c-complex 5IYZ ; 1.8 ; Tubulin-MMAE complex 5J2U ; 2.5 ; Tubulin-MMAF complex 5NFZ ; 2.1 ; TUBULIN-MTC complex 5NG1 ; 2.2 ; TUBULIN-MTC-zampanolide complex 5M7G ; 2.248 ; Tubulin-MTD147 complex 5M8G ; 2.147 ; Tubulin-MTD265 complex 7Z2P ; 2.0 ; Tubulin-nocodazole complex 7AU5 ; 2.2 ; Tubulin-noscapine-analogue-14e complex 3N2K ; 4.0 ; TUBULIN-NSC 613862: RB3 Stathmin-like domain complex 3N2G ; 4.0 ; TUBULIN-NSC 613863: RB3 Stathmin-like domain complex 7ZX2 ; 2.5 ; Tubulin-Pelophen B complex 4O4J ; 2.2 ; Tubulin-Peloruside A complex 4O4L ; 2.2 ; Tubulin-Peloruside A-Epothilone A complex 5LA6 ; 2.1 ; Tubulin-pironetin complex 4TV9 ; 2.0 ; Tubulin-PM060184 complex 1SA1 ; 4.2 ; Tubulin-podophyllotoxin: stathmin-like domain complex 8C0F ; 2.1005 ; Tubulin-PTC596 complex 6XER ; 2.5 ; Tubulin-RB3_SLD in complex with colchicine 7TTD ; 2.27 ; Tubulin-RB3_SLD in complex with compound 12e 7TTE ; 2.7 ; Tubulin-RB3_SLD in complex with compound 12j 7TTF ; 2.1 ; Tubulin-RB3_SLD in complex with compound 12k 6XES ; 2.32 ; Tubulin-RB3_SLD in complex with compound 40a 6XET ; 2.6 ; Tubulin-RB3_SLD in complex with compound 60c 6O5N ; 3.003 ; Tubulin-RB3_SLD-TTL in complex with compound 10ab 6O5M ; 2.3 ; Tubulin-RB3_SLD-TTL in complex with compound 10bb 6D88 ; 2.853 ; Tubulin-RB3_SLD-TTL in complex with compound 13f 6X1C ; 2.9 ; Tubulin-RB3_SLD-TTL in complex with compound 5j 7LZ7 ; 2.8 ; Tubulin-RB3_SLD-TTL in complex with compound 5k 6X1E ; 2.9 ; Tubulin-RB3_SLD-TTL in complex with compound 5l 6X1F ; 2.7 ; Tubulin-RB3_SLD-TTL in complex with compound 5m 7LZ8 ; 2.92 ; Tubulin-RB3_SLD-TTL in complex with compound 5t 6O61 ; 2.599 ; Tubulin-RB3_SLD-TTL in complex with compound ABI-231 6PC4 ; 2.602 ; Tubulin-RB3_SLD-TTL in complex with compound ABI-274 6NNG ; 2.397 ; Tubulin-RB3_SLD-TTL in complex with compound DJ95 6BR1 ; 2.304 ; Tubulin-RB3_SLD-TTL in complex with heterocyclic pyrimidine compound 4a 6BRF ; 2.5 ; Tubulin-RB3_SLD-TTL in complex with heterocyclic pyrimidine compound 4b 6BRY ; 2.7 ; Tubulin-RB3_SLD-TTL in complex with heterocyclic pyrimidine compound 6a 6BS2 ; 2.65 ; Tubulin-RB3_SLD-TTL in complex with heterocyclic pyrimidine compound 8b 8DIQ ; 2.395 ; Tubulin-RB3_SLD-TTL in complex with SB226 4TUY ; 2.1 ; Tubulin-Rhizoxin complex 6FII ; 2.405 ; Tubulin-Spongistatin complex 6HX8 ; 2.402 ; Tubulin-STX3451 complex 3HKE ; 3.6 ; Tubulin-T138067: RB3 stathmin-like domain complex 8BDF ; 1.95 ; Tubulin-taxane-2a complex 8BDG ; 2.35 ; Tubulin-taxane-2b complex 6QQN ; 2.301 ; Tubulin-TH588 complex 3HKD ; 3.7 ; Tubulin-TN16 : RB3 stathmin-like domain complex 5SB6 ; 2.3 ; Tubulin-todalam-10-complex 5SB7 ; 2.1 ; Tubulin-todalam-18-complex 5SB3 ; 2.2 ; Tubulin-todalam-4-complex 5SB4 ; 2.5 ; Tubulin-todalam-8-complex 5SB5 ; 2.31 ; Tubulin-todalam-9-complex 7Z7D ; 2.0 ; Tubulin-Todalam-Vinblastine-complex 6FKL ; 2.098 ; Tubulin-TUB015 complex 6FKJ ; 2.148 ; Tubulin-TUB075 complex 5JVD ; 2.393 ; Tubulin-TUB092 complex 5J2T ; 2.2 ; Tubulin-vinblastine complex 4EB6 ; 3.47 ; Tubulin-Vinblastine: Stathmin-like complex 8JJC ; 2.76 ; Tubulin-Y62 5S62 ; 2.75 ; Tubulin-Z100642432-complex 5S55 ; 2.3 ; Tubulin-Z106307058-complex 5S5U ; 2.5 ; Tubulin-Z1124201124-complex 5S5G ; 2.69 ; Tubulin-Z1129283193-complex 5S5J ; 2.25 ; Tubulin-Z1148747945-complex 5S4R ; 2.35 ; Tubulin-Z117233350-complex 5S51 ; 2.4 ; Tubulin-Z1251207602-complex 5S59 ; 2.6 ; Tubulin-Z1324080698-complex 5S53 ; 2.75 ; Tubulin-Z1349163663-complex 5S65 ; 2.25 ; Tubulin-Z1354416068-complex 5S4W ; 2.8 ; Tubulin-Z1416571195-complex 5S5A ; 2.35 ; Tubulin-Z1449748885-complex 5S5L ; 2.25 ; Tubulin-Z1492796719-complex 5S5E ; 2.67 ; Tubulin-Z1515654336-complex 5S5N ; 2.9 ; Tubulin-Z165170770-complex 5S5S ; 2.36 ; Tubulin-Z166605480-complex 5S4L ; 2.3 ; Tubulin-Z1891773393-complex 5S67 ; 2.1 ; Tubulin-Z1896597864-complex 5S5T ; 2.53 ; Tubulin-Z198194394-complex 5S5H ; 2.5 ; Tubulin-Z2074076908-complex 5S4M ; 2.15 ; Tubulin-Z2142244288-complex 5S63 ; 2.6 ; Tubulin-Z2241115980-complex 5S4S ; 2.35 ; Tubulin-Z240297434-complex 5S5K ; 2.41 ; Tubulin-Z2472938267-complex 5S5Y ; 2.26 ; Tubulin-Z26781952-complex 5S4P ; 2.29 ; Tubulin-Z275165822-complex 5S5O ; 2.3 ; Tubulin-Z27682767-complex 5S60 ; 2.3 ; Tubulin-Z27695365-complex 5S4Z ; 2.1 ; Tubulin-Z28290384-complex 5S56 ; 2.25 ; Tubulin-Z2856434783-complex 5S54 ; 2.4 ; Tubulin-Z2856434816-complex 5S58 ; 2.3 ; Tubulin-Z2856434826-complex 5S4Y ; 2.3 ; Tubulin-Z2856434857-complex 5S57 ; 2.45 ; Tubulin-Z2856434883-complex 5S4X ; 2.53 ; Tubulin-Z2856434917-complex 5S66 ; 2.1 ; Tubulin-Z2856434929-complex 5S5Z ; 2.55 ; Tubulin-Z2856434944-complex 5S4N ; 2.53 ; Tubulin-Z285782452-complex 5S64 ; 2.75 ; Tubulin-Z28870646-complex 5S5I ; 2.49 ; Tubulin-Z295848548-complex 5S4U ; 2.39 ; Tubulin-Z30620520-complex 5S5V ; 2.7 ; Tubulin-Z32386228-complex 5S5D ; 1.9 ; Tubulin-Z32400357-complex 5S4T ; 2.27 ; Tubulin-Z328695024-complex 5S5R ; 2.3 ; Tubulin-Z33452106-complex 5S5Q ; 2.05 ; Tubulin-Z396380540-complex 5S4Q ; 2.59 ; Tubulin-Z422344882-complex 5S5C ; 2.4 ; Tubulin-Z44592329-complex 5S5M ; 2.7 ; Tubulin-Z45527714-complex 5S5X ; 2.32 ; Tubulin-Z45705015-complex 5S4O ; 2.3 ; Tubulin-Z48847594-complex 5S52 ; 2.83 ; Tubulin-Z50145861-complex 5S5P ; 2.79 ; Tubulin-Z53825177-complex 5S5W ; 2.35 ; Tubulin-Z53860899-complex 5S4V ; 2.3 ; Tubulin-Z57040482-complex 5S50 ; 3.1 ; Tubulin-Z57299526-complex 5S61 ; 1.95 ; Tubulin-Z57472297-complex 5S5F ; 2.24 ; Tubulin-Z87615031-complex 5S5B ; 2.3 ; Tubulin-Z906021418-complex 8A9T ; 2.304 ; Tubulin-[1,2]oxazoloisoindole-1 complex 8A9Z ; 2.294 ; Tubulin-[1,2]oxazoloisoindole-2e complex 3HKB ; 3.65 ; Tubulin: RB3 Stathmin-like domain complex 3RYC ; 2.1 ; Tubulin: RB3 stathmin-like domain complex 6GVM ; 3.5 ; Tubulin:F3II DARPin complex 6GWC ; 2.6 ; Tubulin:iE5 alphaRep complex 6GWD ; 3.2 ; Tubulin:iiH5 alphaRep complex 1FFX ; 3.95 ; TUBULIN:STATHMIN-LIKE DOMAIN COMPLEX 4F61 ; 4.17 ; Tubulin:Stathmin-like domain complex 4F6R ; 2.64 ; Tubulin:Stathmin-like domain complex 6GVN ; 2.69 ; Tubulin:TM-3 DARPin complex 7W2P ; 1.15 ; Tudor domain of SMN in complex with a small molecule 7W30 ; 1.8 ; Tudor domain of SMN in complex with a small molecule 6V9T ; 2.154 ; Tudor domain of TDRD3 in complex with a small molecule 8JTN ; 1.8 ; Tudor domain of TDRD3 in complex with a small molecule 6UPT ; 1.96 ; Tudor Domain of Tumor suppressor p53BP1 with MFP-2706 6VA5 ; 1.28 ; Tudor Domain of Tumor suppressor p53BP1 with MFP-4184 8F0W ; 1.52 ; Tudor Domain of Tumor suppressor p53BP1 with MFP-5956 8EOM ; 1.7 ; TUDOR DOMAIN OF TUMOR SUPPRESSOR P53BP1 WITH MFP-5973 6VIP ; 1.36 ; TUDOR DOMAIN OF TUMOR SUPPRESSOR P53BP1 WITH MFP-6008 4RG2 ; 1.5 ; Tudor Domain of Tumor suppressor p53BP1 with small molecule ligand 6B57 ; 1.93 ; tudor in complex with ligand 8IYS ; 2.95 ; TUG891-bound FFAR4 in complex with Gq 1KYJ ; ; Tumor Associated Mucin Motif from CD43 protein 1A8M ; 2.3 ; TUMOR NECROSIS FACTOR ALPHA, R31D MUTANT 8HZ2 ; 2.6 ; Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) N-terminal Domain 1D9S ; ; TUMOR SUPPRESSOR P15(INK4B) STRUCTURE BY COMPARATIVE MODELING AND NMR DATA 1TUP ; 2.2 ; TUMOR SUPPRESSOR P53 COMPLEXED WITH DNA 8DS7 ; 1.88 ; Tumor-activated antibody derivatives targeting CTLA4 5MY5 ; 1.4 ; Tungstate binding protein - TupA - from Desulfovibrio alaskensis G20 1H9R ; 1.9 ; Tungstate bound complex Dimop domain of ModE from E.coli 1E3P ; 2.5 ; tungstate derivative of Streptomyces antibioticus PNPase/GPSI enzyme 1V0R ; 1.7 ; Tungstate-inhibited phospholipase D from Streptomyces sp. strain PMF 1H0H ; 1.8 ; Tungsten containing Formate Dehydrogenase from Desulfovibrio Gigas 5T5I ; 1.9 ; TUNGSTEN-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE FROM METHANOTHERMOBACTER WOLFEII, ORTHORHOMBIC FORM AT 1.9 A 5T61 ; 2.55 ; TUNGSTEN-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE FROM METHANOTHERMOBACTER WOLFEII, TRICLINIC FORM AT 2.55 A 5T5M ; 2.5 ; TUNGSTEN-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE FROM METHANOTHERMOBACTER WOLFEII, TRIGONAL FORM AT 2.5 A. 1E18 ; 2.0 ; TUNGSTEN-SUSBSTITUTED DMSO REDUCTASE FROM RHODOBACTER CAPSULATUS 7ERR ; 2.26 ; Tunnel-redesigned O2-tolerant CO dehydrogenase for removal of CO in real flue gas (Aerobic ChCODH2 A559W mutant) 7XDN ; 1.8 ; Tunnel-redesigned O2-tolerant CO dehydrogenase for removal of CO in real flue gas (ChCODH2 A559H mutant in anaerobic condition) 7XDP ; 1.84 ; Tunnel-redesigned O2-tolerant CO dehydrogenase for removal of CO in real flue gas (ChCODH2 A559S mutant in anaerobic condition) 2Y02 ; 2.6 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND AGONIST CARMOTEROL 2Y03 ; 2.85 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND AGONIST ISOPRENALINE 2YCW ; 3.0 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND ANTAGONIST CARAZOLOL 2YCX ; 3.25 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND ANTAGONIST CYANOPINDOLOL 2YCY ; 3.15 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND ANTAGONIST CYANOPINDOLOL 2YCZ ; 3.65 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND ANTAGONIST IODOCYANOPINDOLOL 4AMI ; 3.2 ; Turkey beta1 adrenergic receptor with stabilising mutations and bound biased agonist bucindolol 4AMJ ; 2.3 ; Turkey beta1 adrenergic receptor with stabilising mutations and bound biased agonist carvedilol 2VT4 ; 2.7 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND CYANOPINDOLOL 2Y01 ; 2.6 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND PARTIAL AGONIST DOBUTAMINE (CRYSTAL DOB102) 2Y00 ; 2.5 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND PARTIAL AGONIST DOBUTAMINE (CRYSTAL DOB92) 2Y04 ; 3.05 ; TURKEY BETA1 ADRENERGIC RECEPTOR WITH STABILISING MUTATIONS AND BOUND PARTIAL AGONIST SALBUTAMOL 1JEF ; 1.77 ; TURKEY LYSOZYME COMPLEX WITH (GLCNAC)3 1N0A ; ; Turn stability in beta-hairpin peptides: 3:5 type I G1 bulge turns 6L4V ; 1.35 ; Turning an asparaginyl endopeptidase into a peptide ligase 6L4W ; 1.66 ; Turning an asparaginyl endopeptidase into a peptide ligase 6L4X ; 2.644 ; Turning an asparaginyl endopeptidase into a peptide ligase 6L4Y ; 1.5 ; Turning an asparaginyl endopeptidase into a peptide ligase 6LKO ; 2.0 ; Turning an asparaginyl endopeptidase into a peptide ligase 1AUY ; 3.0 ; TURNIP YELLOW MOSAIC VIRUS 5LW5 ; 1.649 ; TURNIP YELLOW MOSAIC VIRUS PROTEASE/DEUBIQUITINASE DOMAIN, DELTAC5 MUTANT 5LWA ; 1.653 ; TURNIP YELLOW MOSAIC VIRUS PROTEASE/DEUBIQUITINASE DOMAIN, I847A MUTANT 4A5U ; 2.0 ; Turnip yellow mosaic virus proteinase and Escherichia coli 30S ribosomal S15 7ULN ; 1.53 ; Turnip yellows virus N-terminal readthrough domain 6LXO ; 1.89 ; TvCyP2 in apo form 1 6LXP ; 2.35 ; TvCyP2 in apo form 2 6LXQ ; 1.85 ; TvCyP2 in apo form 3 6LXR ; 2.56 ; TvCyP2 in apo form 4 4Q5B ; 1.8 ; TvNiR in complex with sulfite, high dose data set 4Q4U ; 1.62 ; TvNiR in complex with sulfite, low dose data set 4Q5C ; 1.62 ; TvNiR in complex with sulfite, middle dose data set 7LWY ; 4.0 ; TVV viral capsid protein 7M12 ; 4.0 ; TVV2 capsid protein 6WKU ; 1.76 ; Twelve Chloride Ions Drive Assembly of Human alpha345 Collagen IV NC1 domain 6MPX ; 1.9 ; Twelve chloride ions induce formation and stabilize the NC1 hexamer of collagen IV assembled from transition state trimers 1XC0 ; ; Twenty Lowest Energy Structures of Pa4 by Solution NMR 6B8G ; 1.13 ; Twice-Contracted Human Heavy-Chain Ferritin Crystal-Hydrogel Hybrid 7SK0 ; 3.33 ; TWIK1 in MSP1D1 lipid nanodisc at pH 7.4 7SK1 ; 3.43 ; TWIK1 in MSP1E3D1 Lipid Nanodisc at pH 5.5 4YNG ; 2.28 ; Twinned pyruvate kinase from E. coli in the T-state 3GPD ; 3.5 ; TWINNING IN CRYSTALS OF HUMAN SKELETAL MUSCLE D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE 5NYZ ; 2.5 ; Twist and induce: Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80 dUTPase. D95E mutant from dUTPase 80alpha phage. 5NZ2 ; 2.85 ; Twist and induce: Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80 dUTPase. D95E mutant from dUTPase 80alpha phage. 7QDU ; 5.14 ; Twist-corrected RNA origami 5-helix Tile A 7ARY ; 8.5 ; Twist-Tower_twist-corrected-variant 8OSB ; 2.9 ; TWIST1-TCF4-ALX4 complex on specific DNA 1KEO ; 2.2 ; TWISTS AND TURNS OF THE CD-MPR: LIGAND-BOUND VERSUS LIGAND-FREE RECEPTOR 7ARV ; 7.4 ; TwistTower_native-twist 1WIU ; ; TWITCHIN IMMUNOGLOBULIN SUPERFAMILY DOMAIN (IGSF MODULE) (IG 18'), NMR, 30 STRUCTURES 1WIT ; ; TWITCHIN IMMUNOGLOBULIN SUPERFAMILY DOMAIN (IGSF MODULE) (IG 18'), NMR, MINIMIZED AVERAGE STRUCTURE 1KOB ; 2.3 ; TWITCHIN KINASE FRAGMENT (APLYSIA), AUTOREGULATED PROTEIN KINASE DOMAIN 1KOA ; 3.3 ; TWITCHIN KINASE FRAGMENT (C.ELEGANS), AUTOREGULATED PROTEIN KINASE AND IMMUNOGLOBULIN DOMAINS 3UTO ; 2.4 ; Twitchin kinase region from C.elegans (Fn31-NL-kin-CRD-Ig26) 5EAO ; 2.988 ; Two active site divalent ion in the crystal structure of the hammerhead ribozyme bound to a transition state analog-Mg2+ 5EAQ ; 3.201 ; Two active site divalent ion in the crystal structure of the hammerhead ribozyme bound to a transition state analog-Mn2+ 5E54 ; 2.3 ; Two apo structures of the adenine riboswitch aptamer domain determined using an X-ray free electron laser 1PRL ; ; TWO BINDING ORIENTATIONS FOR PEPTIDES TO SRC SH3 DOMAIN: DEVELOPMENT OF A GENERAL MODEL FOR SH3-LIGAND INTERACTIONS 1PRM ; ; TWO BINDING ORIENTATIONS FOR PEPTIDES TO SRC SH3 DOMAIN: DEVELOPMENT OF A GENERAL MODEL FOR SH3-LIGAND INTERACTIONS 1RLP ; ; TWO BINDING ORIENTATIONS FOR PEPTIDES TO SRC SH3 DOMAIN: DEVELOPMENT OF A GENERAL MODEL FOR SH3-LIGAND INTERACTIONS 1RLQ ; ; TWO BINDING ORIENTATIONS FOR PEPTIDES TO SRC SH3 DOMAIN: DEVELOPMENT OF A GENERAL MODEL FOR SH3-LIGAND INTERACTIONS 8AAD ; 2.04 ; Two carbons pendant pyridine derivative of the natural alkaloid Berberine as Human Telomeric G-quadruplex Binder 3FGR ; 1.8 ; Two chain form of the 66.3 kDa protein at 1.8 Angstroem 3FGT ; 2.4 ; Two chain form of the 66.3 kDa protein from mouse lacking the linker peptide 1ZZ2 ; 2.0 ; Two Classes of p38alpha MAP Kinase Inhibitors Having a Common Diphenylether Core but Exhibiting Divergent Binding Modes 1TRH ; 2.1 ; TWO CONFORMATIONAL STATES OF CANDIDA RUGOSA LIPASE 7A54 ; 2.7 ; Two copies of the catalytic domain of NanA sialidase from Streptococcus pneumoniae juxtaposed in the P212121 space group, in complex with DANA 7A5X ; 1.94 ; Two copies of the catalytic domain of NanA sialidase from Streptococcus pneumoniae juxtaposed in the P212121 space group, in complex with DANA derivatized with a PEG linker on the glycerol group. 1MOL ; 1.7 ; TWO CRYSTAL STRUCTURES OF A POTENTLY SWEET PROTEIN: NATURAL MONELLIN AT 2.75 ANGSTROMS RESOLUTION AND SINGLE-CHAIN MONELLIN AT 1.7 ANGSTROMS RESOLUTION 1PGB ; 1.92 ; TWO CRYSTAL STRUCTURES OF THE B1 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCCOCAL PROTEIN G AND COMPARISON WITH NMR 1PGA ; 2.07 ; TWO CRYSTAL STRUCTURES OF THE B1 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G AND COMPARISON WITH NMR 1H9M ; 1.65 ; Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. PEG-grown form with molybdate bound 1H9J ; 1.8 ; Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. Phosphate-grown form with molybdate and phosphate bound 1H9K ; 1.8 ; Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. Phosphate-grown form with tungstate and phosphate bound 4KBF ; 1.9 ; two different open conformations of the helicase core of the RNA helicase Hera 4QEI ; 2.875 ; Two distinct conformational states of GlyRS captured in crystal lattice 1STG ; 1.7 ; TWO DISTINCTLY DIFFERENT METAL BINDING MODES ARE SEEN IN X-RAY CRYSTAL STRUCTURES OF STAPHYLOCOCCAL NUCLEASE-COBALT(II)-NUCLEOTIDE COMPLEXES 1STH ; 1.85 ; TWO DISTINCTLY DIFFERENT METAL BINDING MODES ARE SEEN IN X-RAY CRYSTAL STRUCTURES OF STAPHYLOCOCCAL NUCLEASE-COBALT(II)-NUCLEOTIDE COMPLEXES 5DH8 ; 3.297 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction- G12A mutant in Zn2+ 5DH6 ; 2.784 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction-G12A mutant in Mg2+ 5DH7 ; 3.064 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction-G12A mutant in Mn2+ 5DQK ; 2.707 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction-WT ribozyme in Mg2+ 5DI2 ; 2.989 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction-WT ribozyme in Mn2+ at high pH 5DI4 ; 2.948 ; Two divalent metal ions and conformational changes play roles in the hammerhead ribozyme cleavage reaction-WT ribozyme in Mn2+ at low pH 3F9K ; 3.2 ; Two domain fragment of HIV-2 integrase in complex with LEDGF IBD 2VY6 ; 1.95 ; Two domains from the C-terminal region of influenza A virus polymerase PB2 subunit 1QR4 ; 2.55 ; TWO FIBRONECTIN TYPE-III DOMAIN SEGMENT FROM CHICKEN TENASCIN 1IFM ; 3.3 ; TWO FORMS OF PF1 INOVIRUS: X-RAY DIFFRACTION STUDIES ON A STRUCTURAL PHASE TRANSITION AND A CALCULATED LIBRATION NORMAL MODE OF THE ASYMMETRIC UNIT 1IFN ; 4.0 ; TWO FORMS OF PF1 INOVIRUS: X-RAY DIFFRACTION STUDIES ON A STRUCTURAL PHASE TRANSITION AND A CALCULATED LIBRATION NORMAL MODE OF THE ASYMMETRIC UNIT 6ILA ; 2.69 ; Two Glycerol complexed Crystal structure of fructuronate-tagaturonate epimerase UxaE from Cohnella laeviribosi 3JBH ; 20.0 ; TWO HEAVY MEROMYOSIN INTERACTING-HEADS MOTIFS FLEXIBLE DOCKED INTO TARANTULA THICK FILAMENT 3D-MAP ALLOWS IN DEPTH STUDY OF INTRA- AND INTERMOLECULAR INTERACTIONS 2F55 ; 3.3 ; Two hepatitis c virus ns3 helicase domains complexed with the same strand of dna 1MX7 ; ; Two homologous rat cellular retinol-binding proteins differ in local structure and flexibility 1MX8 ; ; Two homologous rat cellular retinol-binding proteins differ in local structure and flexibility 1FOS ; 3.05 ; TWO HUMAN C-FOS:C-JUN:DNA COMPLEXES 5XJV ; 1.69 ; Two intermediate states of conformation switch in dual specificity phosphatase 13a 2WZA ; 2.082 ; Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain 6A4E ; 2.45 ; Two linked uridine bound Oligoribonuclease (ORN) from Colwellia psychrerythraea strain 34H 5A2F ; 1.86 ; Two membrane distal IgSF domains of CD166 4LQJ ; 1.2 ; Two minutes iron loaded frog M ferritin 6I9T ; 1.2 ; Two minutes iron loaded Rana Catesbeiana H' ferritin variant H54N 7YLB ; 2.41 ; Two monobodies recognizing the conserved epitopes of SARS-CoV-2 N antigen applicable to the broad COVID-19 diagnosis 6XJD ; 6.8 ; Two mouse cGAS catalytic domain binding to human assembled nucleosome 6GK3 ; 3.975 ; Two protofilament beta-2-microglobulin amyloid fibril 1NQ2 ; 2.4 ; Two RTH Mutants with Impaired Hormone Binding 1NUO ; 3.1 ; Two RTH Mutants with Impaired Hormone Binding 1NR0 ; 1.7 ; Two Seven-Bladed Beta-Propeller Domains Revealed By The Structure Of A C. elegans Homologue Of Yeast Actin Interacting Protein 1 (AIP1). 6ZT1 ; 2.01 ; Two states of a de novo hexameric coiled coil assembly CC-Type2-(LaIdGe)4 1PHK ; 2.2 ; TWO STRUCTURES OF THE CATALYTIC DOMAIN OF PHOSPHORYLASE, KINASE: AN ACTIVE PROTEIN KINASE COMPLEXED WITH NUCLEOTIDE, SUBSTRATE-ANALOGUE AND PRODUCT 3TO1 ; 2.6 ; Two surfaces on Rtt106 mediate histone binding and chaperone activity 5KWQ ; 2.8 ; Two Tandem RRM Domains of FBP-Interacting Repressor (FIR), also Known as PUF60 5KW6 ; 1.91 ; Two Tandem RRM Domains of PUF60 Bound to an AdML Pre-mRNA 3' Splice Site Analogue with a Modified Binding-Site Nucleic Acid Base 5FF1 ; 1.97 ; Two way mode of binding of antithyroid drug methimazole to mammalian heme peroxidases: Structure of the complex of lactoperoxidase with methimazole at 1.97 Angstrom resolution 1HIP ; 2.0 ; TWO-ANGSTROM CRYSTAL STRUCTURE OF OXIDIZED CHROMATIUM HIGH POTENTIAL IRON PROTEIN 2UXZ ; 1.75 ; Two-Carbon-Elongated HIV-1 Protease Inhibitors with a Tertiary- Alcohol-Containing Transition-State Mimic 2UY0 ; 1.76 ; Two-Carbon-Elongated HIV-1 Protease Inhibitors with a Tertiary- Alcohol-Containing Transition-State Mimic 8QOX ; 11.2 ; Two-component assembly of SlaA and SlaB S-layer proteins of Sulfolobus acidocaldarius 6X1I ; 4.32 ; Two-Component D3 Assembly Constructed by Fusing Symmetric Oligomers to Coiled Coils 1JE8 ; 2.12 ; Two-Component response regulator NarL/DNA Complex: DNA Bending Found in a High Affinity Site 1E6K ; 2.0 ; Two-component signal transduction system D12A mutant of CheY 1E6L ; 1.9 ; Two-component signal transduction system D13A mutant of CheY 1E6M ; 1.7 ; TWO-COMPONENT SIGNAL TRANSDUCTION SYSTEM D57A MUTANT OF CHEY 6LKG ; 1.948 ; two-component system protein mediate signal transduction 6LKH ; 2.534 ; Two-component system protein mediate signal transduction 6LKI ; 1.781 ; Two-component system protein mediate signal transduction 6LKJ ; 2.004 ; Two-component system protein mediate signal transduction 6LKK ; 1.502 ; Two-component system protein mediate signal transduction 6LKL ; 2.213 ; Two-component system protein mediate signal transduction 1NOR ; ; TWO-DIMENSIONAL 1H-NMR STUDY OF THE SPATIAL STRUCTURE OF NEUROTOXIN II FROM NAJA OXIANA 3KW8 ; 2.29 ; Two-domain laccase from Streptomyces coelicolor at 2.3 A resolution 4GYB ; 2.4 ; Two-domain laccase from streptomyces lividans at 2.4 A resolution AC1709 4N8U ; 2.4 ; Two-Domain Laccase from Streptomyces viridochromogenes at 2.4 A resolution AC629 2N70 ; ; Two-fold symmetric structure of the 18-60 construct of S31N M2 from Influenza A in lipid bilayers 6HSY ; 2.53 ; Two-phospholipid-bound crystal structure of the substrate-binding protein Ttg2D from Pseudomonas aeruginosa 6V1Q ; 3.11 ; Two-pore channel 3 6ZRQ ; 3.9 ; two-protofilament amyloid structure of S20G variant of human amylin (IAPP - islet amyloid polypeptide) 6GH0 ; ; Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure 3LB1 ; 1.76 ; Two-site competitive inhibition in dehaloperoxidase-hemoglobin 3LB2 ; 1.06 ; Two-site competitive inhibition in dehaloperoxidase-hemoglobin 3LB3 ; 1.85 ; Two-site competitive inhibition in dehaloperoxidase-hemoglobin 3LB4 ; 1.56 ; Two-site competitive inhibition in dehaloperoxidase-hemoglobin 6BY5 ; ; Two-State 14-mer UUCG Tetraloop calculated from Exact NOEs (State one: Conformers 1-5, State Two: Conformers 6-10) 7QCX ; ; Two-state liquid NMR Structure of a PDZ2 Domain from hPTP1E, apo form 7QCY ; ; Two-state liquid NMR Structure of a PDZ2 Domain from hPTP1E, complexed with RA-GEF2 peptide 7SA5 ; ; Two-state solution NMR structure of Apo Pin1 7SUQ ; ; Two-state solution NMR structure of Pin1 bound to peptide FFpSPR 7SUR ; ; Two-state solution NMR structure of Pin1 bound to peptide pCDC25c 6QS4 ; 4.2 ; Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. 7XBJ ; 2.08 ; Txp40, an insecticidal toxin protein from Xenorhabdus nematophila 8UXR ; ; TxVIIB,U-superfamily conotoxin 4OL8 ; 3.1 ; Ty3 reverse transcriptase bound to DNA/RNA 4GJ3 ; 2.5 ; Tyk2 (JH1) in complex with 2,6-dichloro-4-cyano-N-[2-({[(1R,2R)-2-fluorocyclopropyl]carbonyl}amino)pyridin-4-yl]benzamide 4GII ; 2.31 ; Tyk2 (JH1) in complex with 2,6-dichloro-4-cyano-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide 4GJ2 ; 2.4 ; Tyk2 (JH1) in complex with 2,6-dichloro-N-[2-({[(1R,2R)-2-fluorocyclopropyl]carbonyl}amino)pyridin-4-yl]benzamide 4GIH ; 2.0 ; Tyk2 (JH1) in complex with 2,6-DICHLORO-N-{2-[(CYCLOPROPYLCARBONYL)AMINO]PYRIDIN-4-YL}BENZAMIDE 4GVJ ; 2.03 ; Tyk2 (JH1) in complex with adenosine di-phosphate 8TB6 ; 1.96 ; TYK2 JH2 bound to Compound14 8TB5 ; 2.32 ; TYK2 JH2 bound to Compound7 4GFO ; 2.3 ; TYK2 kinase (JH1 domain) with 2,6-DICHLORO-N-(2-OXO-2,5-DIHYDROPYRIDIN-4-YL)BENZAMIDE 6DBM ; 2.368 ; Tyk2 with compound 23 6DBK ; 2.0 ; Tyk2 with compound 8 7VG8 ; 2.04 ; TYLCV Rep-DNA 6B11 ; 1.99 ; TylHI in complex with native substrate 23-deoxy-5-O-mycaminosyl-tylonolide (23-DMTL) 1I5R ; 1.6 ; TYPE 1 17-BETA HYDROXYSTEROID DEHYDROGENASE EM1745 COMPLEX 1EQU ; 3.0 ; TYPE 1 17-BETA HYDROXYSTEROID DEHYDROGENASE EQUILIN COMPLEXED WITH NADP+ 2VMJ ; 2.5 ; Type 1 Copper-Binding Loop of Nitrite Reductase mutant: 130- CAPEGMVPWHVVSGM-144 to 130-CTPHPFM-136 1IGR ; 2.6 ; Type 1 Insulin-like growth factor receptor (DOMAINS 1-3) 6NT2 ; 2.48 ; type 1 PRMT in complex with the inhibitor GSK3368715 1A41 ; 2.3 ; TYPE 1-TOPOISOMERASE CATALYTIC FRAGMENT FROM VACCINIA VIRUS 7V47 ; 2.8 ; Type 1A alpha-synuclein fibril seeded by cerebrospinal fluid from a preclinical Parkinson's disease patient 7NCA ; 3.47 ; Type 1A alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 2 7NCH ; 3.84 ; Type 1B alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 1 7XO3 ; 2.6 ; Type 1C alpha-synuclein fibril seeded by cerebrospinal fluid from a mid-to-late stage (mid-PD-4) Parkinson's disease patient 7V48 ; 3.0 ; Type 1D alpha-synuclein fibril seeded by cerebrospinal fluid from a postmortal Parkinson's disease patient 4N02 ; 1.4 ; Type 2 IDI from S. pneumoniae 3I57 ; 1.8 ; Type 2 repeat of the mucus binding protein MUB from Lactobacillus reuteri 1CQQ ; 1.85 ; TYPE 2 RHINOVIRUS 3C PROTEASE WITH AG7088 INHIBITOR 7NCG ; 3.43 ; Type 2A alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 2 7NCJ ; 4.23 ; Type 2AB alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 1 7NCI ; 3.55 ; Type 2B alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 1 7NCK ; 3.18 ; Type 3 alpha-synuclein filament seeded in vitro by filaments purified from Multiple Systems Atrophy Case 5 8AXK ; 4.05 ; Type 3 secretion system export apparatus core, inner rod and needle of Shigella flexneri 7V49 ; 3.4 ; Type 4 alpha-synuclein fibril seeded by cerebrospinal fluid from a postmortal Parkinson's disease patient 6WIN ; 2.05 ; Type 6 secretion amidase effector 2 (Tae2) 1YUG ; ; TYPE ALPHA TRANSFORMING GROWTH FACTOR, NMR, 15 MODELS AFTER ECEPP/3 ENERGY MINIMIZATION 1YUF ; ; TYPE ALPHA TRANSFORMING GROWTH FACTOR, NMR, 16 MODELS WITHOUT ENERGY MINIMIZATION 8AZS ; 2.9 ; Type I amyloid-beta 42 filaments from high-spin supernatants of aqueous extracts from Alzheimer's disease brains | ABeta42 8SEJ ; 3.17 ; Type I beta-amyloid 42 Filaments from Down syndrome 7Q4B ; 2.5 ; Type I beta-amyloid 42 Filaments from Human Brain 6NXD ; 1.9 ; TYPE I L-ASPARAGINASE FROM ESCHERICHIA COLI IN COMPLEX WITH CITRATE AT PH 4 8G7W ; 3.4 ; Type I modPKS reducing region 2PNG ; ; Type I rat fatty acid synthase acyl carrier protein (ACP) domain 8D3Q ; 3.9 ; Type I-C Cas4-Cas1-Cas2 complex bound to a PAM/NoPAM prespacer 8D3L ; 3.49 ; Type I-C Cas4-Cas1-Cas2 complex bound to a PAM/PAM prespacer 8D3M ; 3.41 ; Type I-C Cas4-Cas1-Cas2 complex bound to a PAM/Processed prespacer 8D3P ; 4.26 ; Type I-C Cas4-Cas1-Cas2 complex bound to half-site integration intermediate (HSI) 8DEX ; 2.7 ; type I-C Cascade 8DFO ; 3.1 ; type I-C Cascade bound to AcrIC4 8DFS ; 3.0 ; type I-C Cascade bound to AcrIF2 8DFA ; 2.8 ; type I-C Cascade bound to ssDNA target 7VEH ; 2.95 ; Type I-F Anti-CRISPR protein AcrIF13 6VQX ; 3.15 ; Type I-F CRISPR-Csy complex with its inhibitor AcrF6 6VQW ; 3.42 ; Type I-F CRISPR-Csy complex with its inhibitor AcrF8 6VQV ; 2.57 ; Type I-F CRISPR-Csy complex with its inhibitor AcrF9 1UQR ; 1.7 ; Type II 3-dehydroquinate dehydratase (DHQase) from Actinobacillus pleuropneumoniae 8AZT ; 3.7 ; Type II amyloid-beta 42 filaments from high-spin supernatants of aqueous extracts from Alzheimer's disease brains | ABeta42 4UWM ; 1.9 ; Type II Baeyer-Villiger monooxygenase.The oxygenating constituent of 3,6-diketocamphane monooxygenase from CAM plasmid of Pseudomonas putida in complex with FMN. 5AEC ; 1.93 ; Type II Baeyer-Villiger monooxygenase.The oxygenating constituent of 3,6-diketocamphane monooxygenase from CAM plasmid of Pseudomonas putida in complex with FMN. 7Q4M ; 2.8 ; Type II beta-amyloid 42 Filaments from Human Brain 4E6Y ; 2.5 ; Type II citrate synthase from Vibrio vulnificus. 2Y3N ; 1.9 ; Type II cohesin-dockerin domain from Bacteroides cellolosolvens 5UXO ; 2.35 ; Type II DAH7PS from Pseudomonas aeruginosa 5UXM ; 1.54 ; Type II DAH7PS from Pseudomonas aeruginosa with Trp bound 5UXN ; 2.2 ; Type II DAH7PS from Pseudomonas aeruginosa with Tyr bound 4YBJ ; 2.61 ; Type II Dasatinib Analog Crystallized with c-Src Kinase 1GQO ; 2.1 ; Type II Dehydroquinase from Bacillus subtilis 2C4W ; 1.55 ; Type II Dehydroquinase from H. pylori in complex with AH9095 1H0R ; 2.1 ; Type II Dehydroquinase from Mycobacterium tuberculosis complexed with 2,3-anhydro-quinic acid 3N59 ; 2.52 ; Type II dehydroquinase from Mycobacterium Tuberculosis complexed with 3-dehydroshikimate 3N8K ; 2.25 ; Type II dehydroquinase from Mycobacterium tuberculosis complexed with citrazinic acid 2BT4 ; 1.7 ; Type II Dehydroquinase inhibitor complex 2CJF ; 1.95 ; TYPE II DEHYDROQUINASE INHIBITOR COMPLEX 6LL8 ; 1.3 ; Type II inorganic pyrophosphatase (PPase) from the psychrophilic bacterium Shewanella sp. AS-11, Mg-PNP form 6LL7 ; 2.2 ; Type II inorganic pyrophosphatase (PPase) from the psychrophilic bacterium Shewanella sp. AS-11, Mn-activated form 5W68 ; 3.3 ; Type II secretin from Enteropathogenic Escherichia coli - GspD 8CO1 ; 2.56 ; Type II Secretion System 5HPZ ; 1.96 ; type II water soluble Chl binding proteins 2MSI ; 1.9 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 3MSI ; 1.43 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 4MSI ; 1.6 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 5MSI ; 1.6 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 6MSI ; 1.65 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 7MSI ; 1.7 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 1EKL ; 1.65 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 E35K 2JIA ; 1.6 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 K61I 1B7I ; 1.65 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 K61R 6AME ; 2.1 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 M21A 2AME ; 2.0 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 N14Q 8AME ; 1.9 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 N14SA16H 8MSI ; 2.6 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 N14SQ44T 2MSJ ; 1.9 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 N46S 3AME ; 2.3 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 Q9TQ44T 1B7K ; 2.5 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 R47H 9AME ; 1.8 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 S42G 7AME ; 1.7 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T15A 2SPG ; 1.75 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T15S 1MSJ ; 2.3 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T15V 4AME ; 2.05 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T18A 9MSI ; 2.6 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T18N 1JAB ; 1.65 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 T18S 1B7J ; 1.65 ; TYPE III ANTIFREEZE PROTEIN ISOFORM HPLC 12 V20A 1UCS ; 0.62 ; Type III Antifreeze Protein RD1 from an Antarctic Eel Pout 3BEX ; 1.51 ; Type III pantothenate kinase from Thermotoga maritima complexed with pantothenate 3BF1 ; 2.3 ; Type III pantothenate kinase from Thermotoga maritima complexed with pantothenate and ADP 3BF3 ; 1.63 ; Type III pantothenate kinase from Thermotoga maritima complexed with product phosphopantothenate 3WD7 ; 2.35 ; Type III polyketide synthase 1K3E ; 2.8 ; Type III secretion chaperone CesT 1K3S ; 1.9 ; Type III Secretion Chaperone SigE 6IFY ; 3.8 ; Type III-A Csm complex, Cryo-EM structure of Csm-CTR1 6IG0 ; 3.37 ; Type III-A Csm complex, Cryo-EM structure of Csm-CTR1, ATP bound 6IFZ ; 3.58 ; Type III-A Csm complex, Cryo-EM structure of Csm-CTR2-ssDNA complex 6IFR ; 3.4 ; Type III-A Csm complex, Cryo-EM structure of Csm-NTR, ATP bound 6S6B ; 2.75 ; Type III-B Cmr-beta Cryo-EM structure of the Apo state 8SEK ; 3.5 ; Type IIIa beta-amyloid 40 Filaments from Down syndrome 8SEL ; 3.8 ; Type IIIb beta-amyloid 40 Filaments from Down Syndrome 8EPX ; 3.15 ; Type IIS Restriction Endonuclease PaqCI, DNA bound 8EM1 ; 2.5 ; Type IIS Restriction Endonuclease PaqCI, DNA Unbound 6SZ9 ; 3.7 ; Type IV Coupling Complex (T4CC) from L. pneumophila. 6NJY ; 1.76 ; Type IV CRISPR associated RNA endonuclease Cas6 - apo form 3URJ ; 1.9 ; Type IV native endothiapepsin 8TUM ; 3.6 ; Type IV pilus from Pseudomonas PAO1 strain 8TUW ; 7.9 ; Type IV pilus from Pseudomonas PAO1 strain 2VY3 ; 2.8 ; Type IV secretion system effector protein BepA 2VZA ; 3.05 ; Type IV secretion system effector protein BepA 2JK8 ; 2.8 ; Type IV secretion system effector protein BepA complexed with a pyrophosphate moiety 7JHY ; 3.9 ; Type IV-B CRISPR Complex 5G2F ; 1.85 ; Type IV-like competence pilin TTHA1222 from Thermus thermophilus 5G25 ; 2.3 ; Type IV-like pilin TTHA1218 from Thermus thermophilus 5G23 ; 1.85 ; Type IV-like pilin TTHA1219 from Thermus thermophilus 5G24 ; 2.3 ; Type IV-like pilin TTHA1219 from Thermus thermophilus 8CP6 ; 2.45 ; Type six secretion system exported effector 5 (Tse5) 6HS7 ; 4.6 ; Type VI membrane complex 8H8C ; 3.36 ; Type VI secretion system effector RhsP in its post-autoproteolysis and dimeric form 8H8A ; 3.25 ; Type VI secretion system effector RhsP in its post-autoproteolysis and monomeric form 8H8B ; 3.16 ; Type VI secretion system effector RhsP in its pre-autoproteolysis and monomeric form 6IXH ; 4.0 ; Type VI secretion system membrane core complex 1ITB ; 2.5 ; TYPE-1 INTERLEUKIN-1 RECEPTOR COMPLEXED WITH INTERLEUKIN-1 BETA 3PXL ; 1.2 ; Type-2 Cu-depleted fungus laccase from Trametes hirsuta 3V9C ; 2.0 ; Type-2 Cu-depleted fungus laccase from Trametes hirsuta at low dose of ionization radiation 1A65 ; 2.23 ; TYPE-2 CU-DEPLETED LACCASE FROM COPRINUS CINEREUS 1HFU ; 1.68 ; TYPE-2 CU-DEPLETED LACCASE FROM COPRINUS CINEREUS at 1.68 A resolution 7X9U ; ; Type-II KH motif of human mitochondrial RbfA 8CE7 ; 2.7 ; Type1 alpha-synuclein filament assembled in vitro by wild-type and mutant (7 residues insertion) protein 8CEB ; 2.8 ; Type2 alpha-synuclein filament assembled in vitro by wild-type and mutant (7 residues insertion) protein 8OTH ; 3.4 ; TypeII tau filament from Kii ALS/PDC 3WD8 ; 2.463 ; TypeIII polyketide synthases 1SGY ; 1.8 ; TYR 18 VARIANT OF TURKEY OVOMUCOID INHIBITOR THIRD DOMAIN COMPLEXED WITH STREPTOMYCES GRISEUS PROTEINASE B AT PH 6.5 1UWB ; 3.2 ; TYR 181 CYS HIV-1 RT/8-CL TIBO 1BQN ; 3.3 ; TYR 188 LEU HIV-1 RT/HBY 097 3ZJI ; 1.5 ; Tyr(61)B10Ala mutation of M.acetivorans protoglobin in complex with cyanide 2CSM ; 2.8 ; TYR-BOUND T-STATE OF YEAST CHORISMATE MUTASE 1C72 ; 2.8 ; TYR115, GLN165 AND TRP209 CONTRIBUTE TO THE 1,2-EPOXY-3-(P-NITROPHENOXY)PROPANE CONJUGATING ACTIVITIES OF GLUTATHIONE S-TRANSFERASE CGSTM1-1 3HZL ; 1.55 ; Tyr258Phe mutant of NikD, an unusual amino acid oxidase essential for nikkomycin biosynthesis: open form at 1.55A resolution 1AP5 ; 2.2 ; TYR34->PHE MUTANT OF HUMAN MITOCHONDRIAL MANGANESE SUPEROXIDE DISMUTASE 1AP6 ; 1.9 ; TYR34->PHE MUTANT OF HUMAN MITOCHONDRIAL MANGANESE SUPEROXIDE DISMUTASE 1L7R ; 1.64 ; Tyr44Phe Mutant of Bacterial Cocaine Esterase cocE 3ZS2 ; 1.97 ; TyrB25,NMePheB26,LysB28,ProB29-insulin analogue crystal structure 5ZRE ; 2.5 ; Tyrosinase from Burkholderia thailandensis (BtTYR) at high pH condition 5ZRD ; 2.3 ; Tyrosinase from Burkholderia thailandensis (BtTYR) at low pH condition 8B74 ; 1.965 ; Tyrosinase from halophilic bacterium Hahella sp. CCB MM4 3LKT ; 1.65 ; Tyrosine 447 of Protocatechuate 3,4-Dioxygenase Controls Efficient Progress Through Catalysis 3LXV ; 1.9 ; Tyrosine 447 of Protocatechuate 3,4-Dioxygenase Controls Efficient Progress Through Catalysis 3LMX ; 2.2 ; Tyrosine 447 of Protocatechuate 34,-Dioxygenase Controls Efficient Progress Through Catalysis 3TAT ; 3.5 ; TYROSINE AMINOTRANSFERASE FROM E. COLI 2O6Y ; 1.5 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides 2O78 ; 1.9 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides (His89Phe variant) complexed with cinnamic acid 2O7E ; 1.75 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides (His89Phe variant), bound to 2-aminoindan-2-phosphonic acid 2O7F ; 2.0 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides (His89Phe variant), complexed with coumaric acid 2O7D ; 1.9 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides, complexed with caffeate 2O7B ; 1.6 ; Tyrosine ammonia-lyase from Rhodobacter sphaeroides, complexed with coumarate 1TOH ; 2.3 ; TYROSINE HYDROXYLASE CATALYTIC AND TETRAMERIZATION DOMAINS FROM RAT 2TOH ; 2.3 ; TYROSINE HYDROXYLASE CATALYTIC AND TETRAMERIZATION DOMAINS FROM RAT 4UEU ; 2.95 ; Tyrosine kinase AS - a common ancestor of Src and Abl 4CSV ; 2.05 ; Tyrosine kinase AS - a common ancestor of Src and Abl bound to Gleevec 1M14 ; 2.6 ; Tyrosine Kinase Domain from Epidermal Growth Factor Receptor 2YCT ; 2.25 ; Tyrosine phenol-lyase from Citrobacter freundii in complex with pyridine N-oxide and the quinonoid intermediate formed with L-alanine 2TPL ; 2.5 ; TYROSINE PHENOL-LYASE FROM CITROBACTER INTERMEDIUS COMPLEX WITH 3-(4'-HYDROXYPHENYL)PROPIONIC ACID, PYRIDOXAL-5'-PHOSPHATE AND CS+ ION 1C7G ; 2.1 ; TYROSINE PHENOL-LYASE FROM ERWINIA HERBICOLA 7FJK ; 1.3 ; Tyrosine phenol-lyase from pantoea agglomerans 2SHP ; 2.0 ; TYROSINE PHOSPHATASE SHP-2 1BF5 ; 2.9 ; TYROSINE PHOSPHORYLATED STAT-1/DNA COMPLEX 2ACU ; 1.76 ; TYROSINE-48 IS THE PROTON DONOR AND HISTIDINE-110 DIRECTS SUBSTRATE STEREOCHEMICAL SELECTIVITY IN THE REDUCTION REACTION OF HUMAN ALDOSE REDUCTASE: ENZYME KINETICS AND THE CRYSTAL STRUCTURE OF THE Y48H MUTANT ENZYME 6PDJ ; 1.81 ; Tyrosine-protein kinase LCK bound to Compound 11 1X8X ; 2.0 ; Tyrosyl t-RNA Synthetase from E.coli Complexed with Tyrosine 6WN2 ; 1.78 ; Tyrosyl t-RNA Synthetase Mutant from E.coli Complexed with sulfotyrosine 2JAN ; 2.9 ; TYROSYL-TRNA SYNTHETASE FROM MYCOBACTERIUM TUBERCULOSIS IN UNLIGANDED STATE 1H3F ; 2.0 ; Tyrosyl-tRNA synthetase from Thermus thermophilus complexed with tyrosinol 1H3E ; 2.9 ; Tyrosyl-tRNA synthetase from Thermus thermophilus complexed with wild-type tRNAtyr(GUA) and with ATP and tyrosinol 6YS9 ; 1.64 ; T_926 truncate of ChlH from Thermosynechococcus elongatus at 1.64 A resolution 6M4T ; 1.55 ; U shaped head to head four-way junction in d(TTCTGCTGCTGAA) sequence 6M5J ; 1.65 ; U shaped head to head four-way junction in d(TTCTGCTGCTGAA/TTCTGCAGCTGAA) sequence 6OQP ; ; U-AITx-Ate1 2KR4 ; ; U-box domain of the E3 Ubiquitin Ligase E4B 4JAB ; 2.23 ; U/G Wobble Base Pair in a RNA Duplex 4PKD ; 2.5 ; U1-70k in complex with U1 snRNA stem-loops 1 and U1-A RRM in complex with stem-loop 2 2VY4 ; ; U11-48K CHHC ZN-FINGER DOMAIN 2VY5 ; ; U11-48K CHHC Zn-finger protein domain 1URN ; 1.92 ; U1A MUTANT/RNA COMPLEX + GLYCEROL 1NU4 ; 1.8 ; U1A RNA binding domain at 1.8 angstrom resolution reveals a pre-organized C-terminal helix 1OIA ; 2.4 ; U1A rnp domain 1-95 1DRZ ; 2.3 ; U1A SPLICEOSOMAL PROTEIN/HEPATITIS DELTA VIRUS GENOMIC RIBOZYME COMPLEX 1AUD ; ; U1A-UTRRNA, NMR, 31 STRUCTURES 7Q4P ; 2.15 ; U2 snRNP after ATP-dependent remodelling 2LK3 ; ; U2/U6 Helix I 7SN6 ; 1.8 ; U2AF65 UHM BOUND TO SF3B155 ULM5 6SCY ; 2.81 ; U34-tRNA thiolase NcsA from Methanococcus maripaludis with its [4Fe-4S] cluster 1QOI ; 2.0 ; U4/U6 snRNP-specific cyclophilin SnuCyp-20 8XJO ; 3.11 ; U46619 bound Thromboxane A2 receptor-Gq Protein Complex 4HK2 ; 1.4 ; U7Ub25.2540 4HJK ; 1.784 ; U7Ub7 Disulfide variant 1NC0 ; ; U80G U6 Intramolecular Stem-Loop RNA from Saccharomyces cerevisiae 6ZHS ; 2.35 ; Uba1 bound to two E2 (Ubc13) molecules 7ZH9 ; 1.72 ; Uba1 in complex with ATP 5L6H ; 2.3 ; Uba1 in complex with Ub-ABPA3 covalent adduct 5L6I ; 2.76 ; Uba1 in complex with Ub-MLN4924 covalent adduct 5L6J ; 2.68 ; Uba1 in complex with Ub-MLN7243 covalent adduct 6ZHT ; 2.3 ; Uba1-Ubc13 disulfide mediated complex 4Y1L ; 2.7 ; Ubc9 Homodimer The Missing Link in Poly-SUMO Chain Formation 5TUT ; 2.604 ; UbcH5a-Ub isopeptide conjugate 3A33 ; 2.2 ; UbcH5b~Ubiquitin Conjugate 3UGB ; 2.35 ; UbcH5c~Ubiquitin Conjugate 6N13 ; ; UbcH7-Ub Complex with R0RBR Parkin and phosphoubiquitin 8WWX ; ; Ube1L acts akin to a mitt, that mediates UbcH8 binding and orchestrates ""E1-E2"" interaction 6D4P ; 2.11 ; Ube2D1 in complex with ubiquitin variant Ubv.D1.1 6D68 ; 2.36 ; Ube2G1 in complex with ubiquitin variant Ubv.G1.1 5NGZ ; 2.4 ; Ube2T in complex with fragment EM04 6D6I ; 2.551 ; Ube2V1 in complex with ubiquitin variant Ubv.V1.1 and Ube2N/Ubc13 8EPT ; ; UBE3A isoform 2 AZUL domain 8ENP ; ; UBE3A isoform 3 AZUL 5O75 ; 1.483 ; Ube4B U-box domain 6H6N ; 2.12 ; UbiJ-SCP2 Ubiquinone synthesis protein 6H6O ; 1.7 ; UbiJ-SCP2 Ubiquinone synthesis protein 6H6P ; 2.5 ; UbiJ-SCP2 Ubiquinone synthesis protein 7CUW ; 2.63 ; Ubiquinol Binding Site of Cytochrome bo3 from Escherichia coli 6NXK ; 2.2 ; Ubiquitin binding variants 6NXL ; 2.803 ; Ubiquitin binding variants 1QCQ ; 2.7 ; UBIQUITIN CONJUGATING ENZYME 4DS2 ; 2.63 ; Ubiquitin conjugating enzyme (putative) from Trypanosoma cruzi 2UCZ ; 2.93 ; UBIQUITIN CONJUGATING ENZYME (UBC7) FROM SACCHAROMYCES CEREVISIAE 2AAK ; 2.4 ; UBIQUITIN CONJUGATING ENZYME FROM ARABIDOPSIS THALIANA 1JBB ; 2.0 ; Ubiquitin Conjugating Enzyme, Ubc13 2ZCC ; 1.4 ; Ubiquitin crystallized under high pressure 3KPA ; 2.2 ; Ubiquitin fold modifier conjugating enzyme from Leishmania major (probable) 6E2B ; 1.45 ; Ubiquitin in complex with Pt(2-phenilpyridine)(PPh3) 7B5S ; 3.6 ; Ubiquitin ligation to F-box protein substrates by SCF-RBR E3-E3 super-assembly: CUL1-RBX1-ARIH1 Ariadne. Transition State 1 7B5R ; 3.8 ; Ubiquitin ligation to F-box protein substrates by SCF-RBR E3-E3 super-assembly: CUL1-RBX1-SKP1-SKP2-CKSHS1-Cyclin A-CDK2-p27 7B5M ; 3.91 ; Ubiquitin ligation to F-box protein substrates by SCF-RBR E3-E3 super-assembly: CUL1-RBX1-SKP1-SKP2-CKSHS1-p27~Ub~ARIH1. Transition State 2 7B5L ; 3.8 ; Ubiquitin ligation to F-box protein substrates by SCF-RBR E3-E3 super-assembly: NEDD8-CUL1-RBX1-SKP1-SKP2-CKSHS1-Cyclin A-CDK2-p27-UBE2L3~Ub~ARIH1. Transition State 1 7B5N ; 3.6 ; Ubiquitin ligation to F-box protein substrates by SCF-RBR E3-E3 super-assembly: NEDD8-CUL1-RBX1-UBE2L3~Ub~ARIH1. 8R5H ; 3.44 ; Ubiquitin ligation to neosubstrate by a cullin-RING E3 ligase & Cdc34: NEDD8-CUL2-RBX1-ELOB/C-VHL-MZ1 with trapped UBE2R2~donor UB-BRD4 BD2 8Q7R ; 3.71 ; Ubiquitin ligation to substrate by a cullin-RING E3 ligase & Cdc34: NEDD8-CUL2-RBX1-ELOB/C-FEM1C with trapped UBE2R2~donor UB-Sil1 peptide 6TTU ; 3.7 ; Ubiquitin Ligation to substrate by a cullin-RING E3 ligase at 3.7A resolution: NEDD8-CUL1-RBX1 N98R-SKP1-monomeric b-TRCP1dD-IkBa-UB~UBE2D2 1D3Z ; ; UBIQUITIN NMR STRUCTURE 1Q5W ; ; Ubiquitin Recognition by Npl4 Zinc-Fingers 5OK6 ; 1.3 ; Ubiquitin specific protease 11 USP11 - peptide F complex 6C16 ; 3.27 ; Ubiquitin variant (UbV.Fbl10.1) bound to a human Skp1-Fbl11 fragment complex. 6BVA ; 2.66 ; Ubiquitin Variant (UbV.Fl10.1) bound to a human Skp1-Fbl10 fragment complex. 6BYH ; 2.61 ; Ubiquitin Variant (UbV.Fl11.1) bound to a human Skp1-Fbl11 fragment complex. 6DGF ; 2.34 ; Ubiquitin Variant bound to USP2 8SVG ; 1.21 ; Ubiquitin variant i53 in complex with 53BP1 Tudor domain 8SVH ; 1.16 ; Ubiquitin variant i53 mutant L67R bound to 53BP1 Tudor Domain 8SVJ ; 1.5 ; Ubiquitin variant i53: mutant VHH with 53BP1 Tudor domain 8SVI ; 1.15 ; Ubiquitin variant i53:Mutant L67H with 53BP1 Tudor domain 8T2D ; 1.751 ; Ubiquitin variant i53:Mutant T12Y.T14E.L67R with 53BP1 Tudor domain 6NJG ; 2.35 ; Ubiquitin Variant in Complex with Ubiquitin Interacting Motif 7MYF ; 3.0 ; Ubiquitin variant UbV.k.1 in complex with Ube2k 7MYH ; 2.394 ; Ubiquitin variant UbV.k.2 in complex with Ube2k 1YLA ; 2.4 ; Ubiquitin-conjugating enzyme E2-25 kDa (Huntington interacting protein 2) 2O25 ; 2.6 ; Ubiquitin-Conjugating Enzyme E2-25 kDa Complexed With SUMO-1-Conjugating Enzyme UBC9 2QGX ; 2.56 ; Ubiquitin-conjugating enzyme E2Q 1ZDN ; 1.93 ; Ubiquitin-conjugating enzyme E2S 1YH2 ; 2.0 ; Ubiquitin-Conjugating Enzyme HSPC150 7BOL ; 1.797 ; ubiquitin-conjugating enzyme, Ube2D2 3OQC ; 2.6 ; Ubiquitin-fold modifier 1 Specific Protease, UfSP2 2LGY ; ; Ubiquitin-like domain from HOIL-1 2FAZ ; 2.0 ; Ubiquitin-Like Domain of Human Nuclear Zinc Finger Protein NP95 4ICV ; 1.45 ; Ubiquitin-like domain of human tubulin folding cofactor E - crystal form B 4ICU ; 2.4 ; Ubiquitin-like domain of human tubulin folding cofactor E - crystal from A 7Y39 ; 1.88 ; Ubiquitin-like domain of human ZFAND1 4KV2 ; 1.88 ; Ubiquitin-like domain of the mycobacterium tuberculosis type VII secretion system protein ECCD1 4KV3 ; 2.2 ; Ubiquitin-like domain of the Mycobacterium tuberculosis type VII secretion system protein EccD1 as maltose-binding protein fusion 2M17 ; ; ubiquitin-like domain-containing C-terminal domain phosphatase (UBLCP1) 2BPS ; 2.7 ; Ubiquitin-like protein YukD of Bacillus subtilis 4ZAV ; 1.4 ; UbiX in complex with a covalent adduct between dimethylallyl monophosphate and reduced FMN 6XQC ; ; UbKEKS 5DTC ; 1.7 ; UBL Structure 4ZBJ ; 2.248 ; UBN1 peptide bound to H3.3/H4/Asf1 7YRB ; 1.51 ; UBR box of human UBR6 5O6S ; 2.9 ; UbV.B4R, a dimeric ubiquitin variant binding to BIRC4 RING 1H8C ; ; UBX domain from human faf1 8F36 ; ; Ubx Homeodomain NMR solution structure 2MX2 ; ; UBX-L domain of VCIP135 4QHK ; 3.487 ; UCA (unbound) from CH103 Lineage 5IBT ; 2.4 ; UCA Fab (unbound) from 6515 Lineage 5W6C ; 1.634 ; UCA Fab (unbound) from 6649 Lineage 4HK0 ; 2.497 ; UCA Fab (unbound) from CH65-CH67 Lineage 8EK6 ; 1.954 ; UCA Y35N (unbound) Fab from CH65-CH67 lineage 4UEM ; 2.82 ; UCH-L5 in complex with the RPN13 DEUBAD domain 4UF6 ; 3.69 ; UCH-L5 in complex with ubiquitin-propargyl bound to an activating fragment of INO80G 4UEL ; 2.3 ; UCH-L5 in complex with ubiquitin-propargyl bound to the RPN13 DEUBAD domain 6QML ; 2.1 ; UCHL3 in complex with synthetic, K27-linked diubiquitin 1EN2 ; 1.4 ; UDA TETRASACCHARIDE COMPLEX. CRYSTAL STRUCTURE OF URTICA DIOICA AGGLUTININ, A SUPERANTIGEN PRESENTED BY MHC MOLECULES OF CLASS I AND CLASS II 1ENM ; 1.9 ; UDA TRISACCHARIDE COMPLEX. CRYSTAL STRUCTURE OF URTICA DIOICA AGGLUTININ, A SUPERANTIGEN PRESENTED BY MHC MOLECULES OF CLASS I AND CLASS II 1EIS ; 1.66 ; UDA UNCOMPLEXED FORM. CRYSTAL STRUCTURE OF URTICA DIOICA AGGLUTININ, A SUPERANTIGEN PRESENTED BY MHC MOLECULES OF CLASS I AND CLASS II 5ZE7 ; 1.99 ; UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - apo form 5ZER ; 2.39 ; UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - BH2 complex form 5ZES ; 2.03 ; UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP complex 5ZFK ; 1.75 ; UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP-BH2 complex 1LXA ; 2.6 ; UDP N-ACETYLGLUCOSAMINE ACYLTRANSFERASE 3UHM ; 1.26 ; UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase in complex with inhibitor 2BI7 ; 2.0 ; udp-galactopyranose mutase from Klebsiella pneumoniae oxidised FAD 2BI8 ; 2.35 ; udp-galactopyranose mutase from Klebsiella pneumoniae with reduced FAD 1V0J ; 2.25 ; Udp-galactopyranose mutase from Mycobacterium tuberculosis 1KVQ ; 2.15 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 1KVR ; 1.9 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 1KVS ; 2.15 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 1KVT ; 2.15 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 1KVU ; 1.9 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 2UDP ; 1.8 ; UDP-GALACTOSE 4-EPIMERASE COMPLEXED WITH UDP-PHENOL 1XEL ; 1.8 ; UDP-GALACTOSE 4-EPIMERASE FROM ESCHERICHIA COLI 1NAI ; 2.0 ; UDP-GALACTOSE 4-EPIMERASE FROM ESCHERICHIA COLI, OXIDIZED 1NAH ; 1.8 ; UDP-GALACTOSE 4-EPIMERASE FROM ESCHERICHIA COLI, REDUCED 1A9Z ; 1.9 ; UDP-GALACTOSE 4-EPIMERASE MUTANT S124A/Y149F COMPLEXED WITH UDP-GALACTOSE 1A9Y ; 1.8 ; UDP-GALACTOSE 4-EPIMERASE MUTANT S124A/Y149F COMPLEXED WITH UDP-GLUCOSE 6MW8 ; 1.756 ; UDP-galactose:glucoside-Skp1 alpha-D-galactosyltransferase with bound UDP and Manganese 6MW5 ; 2.1 ; UDP-galactose:glucoside-Skp1 alpha-D-galactosyltransferase with bound UDP and Platinum 6WJB ; 2.1 ; UDP-GlcNAc C4-epimerase from Pseudomonas protegens in complex with NAD and UDP-GlcNAc 6WJA ; 2.094 ; UDP-GlcNAc C4-epimerase mutant S121A/Y146F from Pseudomonas protegens in complex with UDP-GalNAc 6WJ9 ; 2.11 ; UDP-GlcNAc C4-epimerase mutant S121A/Y146F from Pseudomonas protegens in complex with UDP-GlcNAc 5N2J ; 4.4 ; UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum (closed form) 5MZO ; 3.48 ; UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum (open conformation) 5NV4 ; 2.78 ; UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum double mutant D611C:G1050C 5MU1 ; 3.48 ; UDP-Glucose Glycoprotein Glucosyltransferase from Chaetomium thermophilum soaked with K2PtI6 6IKX ; 2.2 ; UDP-glucose pyrophosphorylase from acinetobacter baumanii 6IKZ ; 2.33 ; UDP-glucose pyrophosphorylase from acinetobacter baumanii 4M28 ; 3.0 ; UDP-Glucose Pyrophosphorylase from Leishmania major in complex with UTP analog dUpCpp 6K8D ; 2.94 ; UDP-glucose pyrophosphorylase with UPG from Acinetobacter Baumanii 7CJX ; 1.98641 ; UDP-glucuronosyltransferase 2B15 C-terminal domain-L446S 7YAN ; 2.5 ; UDP-glucuronosyltransferase2B17 C-terminal domain 1QGS ; 2.0 ; UDP-MAGNESIUM COMPLEX OF SPSA FROM BACILLUS SUBTILIS 1QGQ ; 1.5 ; UDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS 7BVJ ; 2.15 ; UDP-N-acetylglucosamine 3-dehydrogenase GnnA from Acidithiobacillus ferrooxidans (P21) 7BVK ; 2.7 ; UDP-N-acetylglucosamine 3-dehydrogenase GnnA from Acidithiobacillus ferrooxidans (P212121) 3PVZ ; 2.1 ; UDP-N-acetylglucosamine 4,6-dehydratase from Vibrio fischeri 6DNT ; 1.66 ; UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with UDP-N-acetylmuramic acid 3R0S ; 2.3 ; UDP-N-acetylglucosamine acyltransferase from Campylobacter jejuni 6CAU ; 2.5 ; UDP-N-acetylmuramate--alanine ligase from Acinetobacter baumannii AB5075-UW with AMPPNP 1E0D ; 2.4 ; UDP-N-Acetylmuramoyl-L-Alanine:D-Glutamate Ligase 1EEH ; 1.9 ; UDP-N-ACETYLMURAMOYL-L-ALANINE:D-GLUTAMATE LIGASE 1UAG ; 1.95 ; UDP-N-ACETYLMURAMOYL-L-ALANINE:D-GLUTAMATE LIGASE 2UAG ; 1.7 ; UDP-N-ACETYLMURAMOYL-L-ALANINE:D-GLUTAMATE LIGASE 3UAG ; 1.77 ; UDP-N-ACETYLMURAMOYL-L-ALANINE:D-GLUTAMATE LIGASE 4UAG ; 1.66 ; UDP-N-ACETYLMURAMOYL-L-ALANINE:D-GLUTAMATE LIGASE 6ZMZ ; 1.9 ; UDPG-bound Trehalose transferase from Thermoproteus uzoniensis 8BZR ; 1.781 ; UFC1-UFM1 conjugate 1ZC1 ; ; Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites 8QFC ; 3.2 ; UFL1 E3 ligase bound 60S ribosome 8QFD ; 2.2 ; UFL1 E3 ligase bound 60S ribosome 8C0D ; 2.564 ; UFL1/DDRGK1 bound to UFC1 1AFX ; ; UGAA EUKARYOTIC RIBOSOMAL RNA TETRALOOP, NMR, 13 STRUCTURES 8AIM ; 2.6 ; Ugi-2 SAUNG complex 2FUZ ; 1.8 ; UGL hexagonal crystal structure without glycine and DTT molecules 2FV0 ; 1.91 ; UGL_D88N/dGlcA-Glc-Rha-Glc 2FV1 ; 1.73 ; UGL_D88N/dGlcA-GlcNAc 7W10 ; 2.15 ; UGT74AN2 7W09 ; 1.95 ; UGT74AN2, Plant Steroid Glycosyltransferase 3ND3 ; 1.37 ; Uhelix 16-mer dsRNA 8V59 ; 1.12 ; UIC-1 mutant - UIC-1-B5I 8V56 ; 0.98 ; UIC-1 mutant - UIC-1-B5W 8V5X ; 1.12 ; UIC-1 mutant - UIC-1-L6A 8V61 ; 1.13 ; UIC-1 mutant - UIC-1-L6I 8V5Z ; 0.84 ; UIC-1 mutant - UIC-1-L6M 8V5W ; 1.07 ; UIC-1 mutant UIC-1-B5T 7LWS ; 3.22 ; UK (B.1.1.7) SARS-CoV-2 S-GSAS-D614G variant spike protein in the 3-RBD-down conformation 7LWT ; 3.19 ; UK (B.1.1.7) SARS-CoV-2 spike protein variant (S-GSAS-B.1.1.7) in the 1-RBD-up conformation 7LWU ; 3.22 ; UK (B.1.1.7) SARS-CoV-2 spike protein variant (S-GSAS-B.1.1.7) in the 1-RBD-up conformation 7LWV ; 3.12 ; UK (B.1.1.7) SARS-CoV-2 spike protein variant (S-GSAS-B.1.1.7) in the 1-RBD-up conformation 6FU8 ; 3.2 ; uL23 beta hairpin loop deletion of E.coli ribosome 7NDT ; 2.999 ; UL40:01 TCR in complex with HLA-E with a non-natural amino acid 2NA1 ; ; ULD complex 8CD8 ; 1.65 ; Ulilysin - C269A with AEBSF complex 2J83 ; 2.0 ; Ulilysin metalloprotease in complex with batimastat. 6MNH ; 1.73 ; ULK1 Unc-51 like autophagy activating kinase in complex with inhibitor BTC 4WZX ; 1.3859 ; ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins 8JLO ; 3.52 ; Ulotaront(SEP-363856)-bound hTAAR1-Gs protein complex 8JLK ; 3.22 ; Ulotaront(SEP-363856)-bound mTAAR1-Gs protein complex 8JSP ; 3.65 ; Ulotaront(SEP-363856)-bound Serotonin 1A (5-HT1A) receptor-Gi complex 2PLP ; ; Ultra high resolution backbone conformation of protein GB1 from residual dipolar couplings alone 5U3A ; 0.95 ; Ultra High Resolution Crystal Structure of Human Pancreatic Alpha Amylase 1M40 ; 0.85 ; ULTRA HIGH RESOLUTION CRYSTAL STRUCTURE OF TEM-1 5IBN ; 0.94 ; Ultra high resolution crystal structure of the apo- form of second bromodomain of BRD2. 4C64 ; 1.32 ; ULTRA HIGH RESOLUTION DICKERSON-DREW DODECAMER B-DNA 4C63 ; 1.32 ; ULTRA HIGH RESOLUTION DICKERSON-DREW DODECAMER B-DNA WITH 5- METHYLCYSTOSINE MODIFICATION 4C5X ; 1.3 ; Ultra High Resolution Dickerson-Drew dodecamer B-DNA with 5-Hydroxymethyl-cytosine Modification 1G6X ; 0.86 ; ULTRA HIGH RESOLUTION STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) MUTANT WITH ALTERED BINDING LOOP SEQUENCE 4U9H ; 0.89 ; Ultra High Resolution Structure Of The Ni-R State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 7P4R ; 0.85 ; Ultra High Resolution X-ray Structure of Orthorhombic Bovine Pancreatic Ribonuclease at 100K 4TLJ ; 1.17 ; Ultra-high resolution crystal structure of caprine Beta-lactoglobulin 5IG6 ; 0.91 ; Ultra-high resolution crystal structure of second bromodomain of BRD2 in complex with inhibitor 6B3 6SP6 ; 1.1 ; Ultra-high Resolution Crystal Structure of the CTX-M-15 Extended-Spectrum beta-Lactamase in Complex with Taniborbactam (VNRX-5133) 4FC1 ; 1.1 ; Ultra-high resolution neutron structure of crambin at room-temperature 3P4J ; 0.55 ; Ultra-high resolution structure of d(CGCGCG)2 Z-DNA 5D8V ; 0.48 ; Ultra-high resolution structure of high-potential iron-sulfur protein 1IUA ; 0.8 ; Ultra-high resolution structure of HiPIP from Thermochromatium tepidum 2B97 ; 0.75 ; Ultra-high resolution structure of hydrophobin HFBII 3W5H ; 0.78 ; Ultra-high resolution structure of NADH-cytochrome b5 reductase 2PYA ; 0.86 ; Ultra-high resolution structure of P. abyssi rubredoxin W4L/R5S/A44S 1YK4 ; 0.69 ; Ultra-high resolution structure of Pyrococcus abyssi rubredoxin W4L/R5S 1WUI ; 1.04 ; Ultra-High resolution Structure Of The Ni-A State Of [Nife]Hydrogenase From Desulufovibrio Vulgaris Miyazaki F 2HS1 ; 0.84 ; Ultra-high resolution X-ray crystal structure of HIV-1 protease V32I mutant with TMC114 (darunavir) inhibitor 4BVN ; 2.1 ; Ultra-thermostable beta1-adrenoceptor with cyanopindolol bound 5CN4 ; 1.8 ; Ultrafast dynamics in myoglobin: -0.1 ps time delay 5CN5 ; 1.8 ; Ultrafast dynamics in myoglobin: 0 ps time delay 5CN6 ; 1.8 ; Ultrafast dynamics in myoglobin: 0.1 ps time delay 5CN7 ; 1.8 ; Ultrafast dynamics in myoglobin: 0.2 ps time delay 5CN8 ; 1.8 ; Ultrafast dynamics in myoglobin: 0.3 ps time delay 5CN9 ; 1.8 ; Ultrafast dynamics in myoglobin: 0.4 ps time delay 5CNB ; 1.8 ; Ultrafast dynamics in myoglobin: 0.5 ps time delay 5CNC ; 1.8 ; Ultrafast dynamics in myoglobin: 0.6 ps time delay 5CNE ; 1.8 ; Ultrafast dynamics in myoglobin: 10 ps time delay 5CNG ; 1.8 ; ultrafast dynamics in myoglobin: 150 ps time delay 5CND ; 1.8 ; Ultrafast dynamics in myoglobin: 3 ps time delay 5CNF ; 1.8 ; Ultrafast dynamics in myoglobin: 50 ps time delay 5CMV ; 1.8 ; Ultrafast dynamics in myoglobin: dark-state, CO-ligated structure 6ZHW ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 1 ps structure 6ZI6 ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 20 ps structure 6ZI5 ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 300 ps (a) structure 6ZI9 ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 300 ps (b) structure 6ZI4 ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 5 ps (a) structure 6ZID ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 5 ps (b) structure 6ZIA ; 2.8 ; Ultrafast Structural Response to Charge Redistribution Within a Photosynthetic Reaction Centre - 8 us structure 1D8G ; 0.74 ; ULTRAHIGH RESOLUTION CRYSTAL STRUCTURE OF B-DNA DECAMER D(CCAGTACTGG) 5WGI ; 1.05 ; Ultrahigh resolution crystal structure of Danio rerio histone deacetylase 6 catalytic domain 2 in complex with TSA 2OFZ ; 1.17 ; Ultrahigh Resolution Crystal Structure of RNA Binding Domain of SARS Nucleopcapsid (N Protein) at 1.1 Angstrom Resolution in Monoclinic Form. 1R6J ; 0.73 ; Ultrahigh resolution Crystal Structure of syntenin PDZ2 1N9B ; 0.9 ; Ultrahigh resolution structure of a class A beta-lactamase: On the mechanism and specificity of the extended-spectrum SHV-2 enzyme 5XSG ; 0.73 ; Ultrahigh resolution structure of FUS (37-42) SYSGYS determined by MicroED 5VLE ; 0.85 ; Ultrahigh Resolution X-Ray Crystal Structure of Ruthenocene Conjugated Penicilloate and Penilloate Products in Complex with CTX-M-14 E166A Beta-Lactamase 6LK1 ; 0.9 ; Ultrahigh resolution X-ray structure of Ferredoxin I from C. reinhardtii 5JZQ ; 0.78 ; Ultrahigh-resolution centrosymmetric crystal structure of Z-DNA reveals massive presence of multiple conformations 4HIG ; 0.75 ; Ultrahigh-resolution crystal structure of Z-DNA in complex with Mn2+ ion. 4HIF ; 0.85 ; Ultrahigh-resolution crystal structure of Z-DNA in complex with Zn2+ ions 7E3K ; 3.9 ; Ultrapotent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants 7E3L ; 3.6 ; Ultrapotent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants 7WS4 ; 3.7 ; Ultrapotent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants 1HG4 ; 2.4 ; Ultraspiracle ligand binding domain from Drosophila melanogaster 1X9R ; 1.9 ; Umecyanin from Horse Raddish- Crystal Structure of the oxidised form 1X9U ; 1.8 ; Umecyanin from Horse Raddish- Crystal Structure of the reduced form 2BRI ; 3.0 ; UMP KINASE FROM PYROCOCCUS FURIOSUS COMPLEXED WITH ITS SUBSTRATE ANALOG AMPPNP 2BMU ; 2.55 ; UMP KINASE FROM PYROCOCCUS FURIOSUS COMPLEXED WITH ITS SUBSTRATE UMP AND ITS SUBSTRATE ANALOG AMPPNP 2BRX ; 2.4 ; UMP KINASE FROM PYROCOCCUS FURIOSUS WITHOUT LIGANDS 1UKE ; 2.2 ; UMP/CMP KINASE FROM SLIME MOLD 2UKD ; 2.2 ; UMP/CMP KINASE FROM SLIME MOLD COMPLEXED WITH ADP, CMP 3UKD ; 1.9 ; UMP/CMP KINASE FROM SLIME MOLD COMPLEXED WITH ADP, CMP, AND ALF3 4UKD ; 2.0 ; UMP/CMP KINASE FROM SLIME MOLD COMPLEXED WITH ADP, UDP, BERYLLIUM FLUORIDE 4A4R ; ; UNAC Tetraloops: To What Extent Can They Mimic GNRA Tetraloops 4A4S ; ; UNAC Tetraloops: To What Extent Can They Mimic GNRA Tetraloops 4A4T ; ; UNAC Tetraloops: To What Extent Can They Mimic GNRA Tetraloops 4A4U ; ; UNAC Tetraloops: To What Extent Can They Mimic GNRA Tetraloops 4F0M ; 2.25 ; UNACTIVATED RUBISCO with MAGNESIUM AND A WATER MOLECULE BOUND 4F0K ; 2.05 ; UNACTIVATED RUBISCO with MAGNESIUM AND CARBON DIOXIDE BOUND 4F0H ; 1.96 ; UNACTIVATED RUBISCO with OXYGEN BOUND 3S7V ; 2.55 ; Unassembled KI Polyomavirus VP1 Pentamer 1VPN ; 2.0 ; UNASSEMBLED POLYOMAVIRUS VP1 PENTAMER 1UNA ; 2.8 ; UNASSEMBLED VIRUS COAT PROTEIN DIMER, BACTERIOPHAGE RNA-BINDING DIMER 3S7X ; 2.9 ; Unassembled Washington University Polyomavirus VP1 Pentamer R198K Mutant 7NX2 ; 1.47 ; Unbound antigen-binding fragment (FAb) 324 6UJ0 ; 2.15 ; Unbound BACE2 mutant structure 8EEI ; 1.78 ; Unbound C. ammoniagenes monoamine oxidase (MAO) 1PJU ; 2.15 ; Unbound form of Tomato Inhibitor-II 2IWA ; 1.6 ; Unbound glutaminyl cyclotransferase from Carica papaya. 3E5Q ; 3.2 ; Unbound Oxidised CprK 7ZJ5 ; 4.55 ; Unbound state of a brocolli-pepper aptamer FRET tile. 7S5B ; 1.5 ; Unbound State of a De novo designed Protein Binder to the Human Interleukin-7 Receptor 1O8P ; 2.0 ; Unbound structure of CsCBM6-3 from Clostridium stercorarium 3NOW ; 2.992 ; UNC-45 from Drosophila melanogaster 6FDY ; 1.7 ; Unc-51-Like Kinase 3 (ULK3) In Complex With Bosutinib 6FDZ ; 2.55 ; Unc-51-Like Kinase 3 (ULK3) In Complex With Momelotinib 4HCI ; 1.63 ; Uncharacterized Cupredoxin-like Domain Protein Cupredoxin_1 from Bacillus anthracis 4HCG ; 1.847 ; Uncharacterized Cupredoxin-like Domain Protein Cupredoxin_1 with Zinc bound from Bacillus anthracis 3KK4 ; 1.95 ; uncharacterized protein BP1543 from Bordetella pertussis Tohama I 2O5H ; 1.9 ; Uncharacterized Protein Conserved in Bacteria, COG3792 from Neisseria meningitidis 3IJD ; 2.0 ; Uncharacterized protein Cthe_2304 from Clostridium thermocellum binds two copies of 5-methyl-5,6,7,8-tetrahydrofolic acid 3KFW ; 2.5 ; Uncharacterized protein Rv0674 from Mycobacterium tuberculosis 8P49 ; 2.79 ; Uncharacterized Q8U0N8 protein from Pyrococcus furiosus 6ZGE ; 2.6 ; Uncleavable Spike Protein of SARS-CoV-2 in Closed Conformation 1ATU ; 2.7 ; UNCLEAVED ALPHA-1-ANTITRYPSIN 5JSA ; 6.308 ; Uncleaved prefusion optimized gp140 trimer with an engineered 10-residue HR1 turn bound to broadly neutralizing antibodies 8ANC195 and PGT128 5JS9 ; 6.918 ; Uncleaved prefusion optimized gp140 trimer with an engineered 8-residue HR1 turn bound to broadly neutralizing antibodies 8ANC195 and PGT128 6M2J ; 2.2 ; Uncommon structural features of rabbit MHC class I (RLA-A1) complexed with rabbit haemorrhagic disease virus (RHDV) derived peptide, VP60-1 6M2K ; 2.59 ; Uncommon structural features of rabbit MHC class I (RLA-A1) complexed with rabbit haemorrhagic disease virus (RHDV) derived peptide, VP60-10 6M24 ; 2.29 ; Uncommon structural features of rabbit MHC class I (RLA-A1) complexed with rabbit haemorrhagic disease virus (RHDV) derived peptide, VP60-2 1J6Z ; 1.54 ; UNCOMPLEXED ACTIN 2HMP ; 1.899 ; Uncomplexed actin cleaved with protease ECP32 1JK6 ; 2.4 ; UNCOMPLEXED DES 1-6 BOVINE NEUROPHYSIN 1AMH ; 2.5 ; UNCOMPLEXED RAT TRYPSIN MUTANT WITH ASP 189 REPLACED WITH SER (D189S) 1R56 ; 2.3 ; UNCOMPLEXED URATE OXIDASE FROM ASPERGILLUS FLAVUS 5O99 ; 0.871 ; Unconventional SH3 domain from the postsynaptic density scaffold protein Shank3 1VLZ ; 2.05 ; UNCOUPLED PHOSPHORYLATION AND ACTIVATION IN BACTERIAL CHEMOTAXIS: THE 2.1 ANGSTROM STRUCTURE OF A THREONINE TO ISOLEUCINE MUTANT AT POSITION 87 OF CHEY 4IMK ; 2.202 ; Uncrossed Fab binding to human Angiopoietin 2 8T1J ; 2.7 ; Uncrosslinked nNOS-CaM oxygenase homodimer 6U7J ; 2.2 ; Uncultured Clostridium sp. Beta-glucuronidase 1YHH ; 1.5 ; Uncyclized precursor structure of S65A Y66S G67A GFP variant 1YHI ; 1.9 ; Uncyclized precursor structure of S65A Y66S R96A GFP variant 1YHG ; 2.5 ; Uncyclized precursor structure of S65G Y66S V68G GFP variant 8TNM ; 1.1 ; UNC_079 from Chroma generative model 8TNO ; 2.36 ; UNC_239 from Chroma generative model 4WWZ ; 1.8 ; UndA complexed with 2,3-dodecenoic acid 4WX0 ; 1.7 ; UndA complexed with beta-hydroxydodecanoic acid 4WWJ ; 1.9 ; UndA, an oxygen-activating, non-heme iron dependent desaturase/decarboxylase 6QVM ; 2.5 ; Undecaheme cytochrome from S-layer of Carboxydothermus ferrireducens 7SJA ; 3.8 ; Undecorated 13pf E254N microtubule from recombinant human tubulin 7SJ7 ; 3.8 ; Undecorated 13pf wildtype microtubule from recombinant human tubulin 6DPV ; 3.3 ; Undecorated GDP microtubule 6DPU ; 3.1 ; Undecorated GMPCPP microtubule 6DPW ; 3.5 ; Undecorated GTPgammaS microtubule 4D4G ; 2.25 ; Understanding bi-specificity of A-domains 4D4H ; 2.019 ; Understanding bi-specificity of A-domains 4D4I ; 2.0 ; Understanding bi-specificity of A-domains 4D56 ; 2.1 ; Understanding bi-specificity of A-domains 4D57 ; 2.0 ; Understanding bi-specificity of A-domains 4WZC ; 1.842 ; Understanding Extradiol Dioxygenase Mechanism in NAD+ Biosynthesis by Viewing Catalytic Intermediates - 2,3-cis-4,5-trans ACMS bound to I142A mutant HAO 4L2N ; 1.74 ; Understanding Extradiol Dioxygenase Mechanism in NAD+ Biosynthesis by Viewing Catalytic Intermediates - ligand-free structure 2WHJ ; 1.78 ; Understanding how diverse mannanases recognise heterogeneous substrates 2WHL ; 1.4 ; Understanding how diverse mannanases recognise heterogeneous substrates 7VEG ; 1.385 ; Understanding NH-pi interaction between Gln and Phe 1SPQ ; 2.16 ; Understanding protein lids: Structural analysis of active hinge mutants in triosephosphate isomerase 1SQ7 ; 2.85 ; Understanding protein lids: Structural analysis of active hinge mutants in triosephosphate isomerase 1SSD ; 2.9 ; Understanding protein lids: Structural analysis of active hinge mutants in triosephosphate isomerase 1SSG ; 2.9 ; Understanding protein lids: Structural analysis of active hinge mutants in triosephosphate isomerase 1SU5 ; 2.7 ; Understanding protein lids: Structural analysis of active hinge mutants in triosephosphate isomerase 1U72 ; 1.9 ; Understanding the Role of Leu22 Variants in Methotrexate Resistance: Comparison of Wild-type and Leu22Arg Variant Mouse and Human Dihydrfolate Reductase Ternary Crystal Complexes with Methotrexate and NADPH 1U70 ; 2.5 ; Understanding the Role of Leu22 Variants in Methotrexate Resistance: Comparison of Wild-type and Leu22Arg Variant Mouse and Human Dihydrofolate Reductase 1U71 ; 2.2 ; Understanding the Role of Leu22 Variants in Methotrexate Resistance: Comparison of Wild-type and Leu22Arg Variant Mouse and Human Dihydrofolate Reductase Ternary Crystal Complexes with Methotrexate and NADPH 5N7B ; 1.7 ; Understanding the singular conformational landscape of the Tn antigens: Sulfur-for- oxygen substitution in the glycosidic linkage provides new insights into molecular recognition by an antibody 6DM8 ; 2.7 ; Understanding the Species Selectivity of Myeloid cell leukemia-1 (Mcl-1) inhibitors 3DT0 ; 2.4 ; Understanding Thrombin Inhibition 3DUX ; 1.6 ; Understanding Thrombin Inhibition 6KFH ; 3.6 ; Undocked hemichannel of an N-terminal deletion mutant of INX-6 in a nanodisc 6KFF ; 3.8 ; Undocked INX-6 hemichannel in a nanodisc 6KFG ; 3.8 ; Undocked INX-6 hemichannel in detergent 8FAF ; 1.85 ; Unedited Octopus bimaculoides Synaptotagmin 1 C2A at room temperature 1JKX ; 1.6 ; Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase 7QHR ; 1.4 ; Unexpected imidazole coordination to dirhodium tetraacetate complex in a protein environment: insights from X-ray crystallography and quantum chemistry 1QAU ; 1.25 ; UNEXPECTED MODES OF PDZ DOMAIN SCAFFOLDING REVEALED BY STRUCTURE OF NNOS-SYNTROPHIN COMPLEX 1QAV ; 1.9 ; Unexpected Modes of PDZ Domain Scaffolding Revealed by Structure of NNOS-Syntrophin Complex 1CA3 ; 2.3 ; UNEXPECTED PH-DEPENDENT CONFORMATION OF HIS-64, THE PROTON SHUTTLE OF CARBONIC ANHYDRASE II. 1HCA ; 2.3 ; UNEXPECTED PH-DEPENDENT CONFORMATION OF HIS-64, THE PROTON SHUTTLE OF CARBONIC ANHYDRASE II. 4UOI ; 3.49 ; Unexpected structure for the N-terminal domain of Hepatitis C virus envelope glycoprotein E1 2Y4A ; 2.7 ; Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein 2Y55 ; 2.6 ; Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein 2Y59 ; 2.5 ; Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein 3ZVT ; 3.1 ; Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein 3ZVW ; 2.0 ; Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin binding protein 3J63 ; 3.8 ; Unified assembly mechanism of ASC-dependent inflammasomes 4IRG ; 1.7 ; Uninhibited DNA-binding domain of the Ets transcription factor ERG 5ILV ; 1.8 ; Uninhibited ETV5 2OXU ; 1.24 ; Uninhibited form of human MMP-12 1V0S ; 1.75 ; Uninhibited form of Phospholipase D from Streptomyces sp. strain PMF 2OY4 ; 1.7 ; Uninhibited human MMP-8 5COX ; 3.0 ; UNINHIBITED MOUSE CYCLOOXYGENASE-2 (PROSTAGLANDIN SYNTHASE-2) 2DDC ; 1.55 ; Unique behavior of a histidine responsible for an engineered green-to-red photoconversion process 2DDD ; 1.55 ; Unique behavior of a histidine responsible for an engineered green-to-red photoconversion process 1BTP ; 2.2 ; UNIQUE BINDING OF A NOVEL SYNTHETIC INHIBITOR, N-[3-[4-[4-(AMIDINOPHENOXY)-CARBONYL]PHENYL]-2-METHYL-2-PROPENOYL]-N-ALLYLGLYCINE METHANESULFONATE TO BOVINE TRYPSIN, REVEALED BY THE CRYSTAL STRUCTURE OF THE COMPLEX 3SGJ ; 2.2 ; Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgIII and antibodies lacking core fucose 3SGK ; 2.4 ; Unique carbohydrate/carbohydrate interactions are required for high affinity binding of FcgIII and antibodies lacking core fucose 5X8Z ; 1.5 ; Unique Choloylglycine Hydrolase(CGH) member from Shewanella loihica PV-4 5X9I ; 1.5 ; Unique Choloylglycine Hydrolase(CGH) member Mutant (C1S) from Shewanella loihica PV-4 4R2X ; 0.93 ; Unique conformation of uridine and asymmetry of the hexameric molecule revealed in the high-resolution structures of Shewanella oneidensis uridine phosphorylase in the free form and in complex with uridine 6GAZ ; 3.1 ; Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 28S ribosomal subunit. 6GB2 ; 3.2 ; Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 39S ribosomal subunit. 6GAW ; 3.2 ; Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the complete 55S ribosome. 3EK5 ; 2.56 ; Unique GTP-binding Pocket and Allostery of UMP Kinase from a Gram-Negative Phytopathogen Bacterium 3EK6 ; 2.34 ; Unique GTP-binding Pocket and Allostery of UMP Kinase from a Gram-Negative Phytopathogen Bacterium 2W1Q ; 1.6 ; Unique ligand binding specificity for a family 32 Carbohydrate- Binding Module from the Mu toxin produced by Clostridium perfringens 2W1S ; 1.45 ; Unique ligand binding specificity of a family 32 Carbohydrate-Binding Module from the Mu toxin produced by Clostridium perfringens 7V4F ; 1.98 ; Unique non-heme hydroxylase in biosynthesis of nucleoside antibiotic pathway uncover mechanism of reaction 7V4M ; 1.9 ; Unique non-heme hydroxylase in biosynthesis of nucleoside antibiotic pathway uncover mechanism of reaction 7V4N ; 2.2 ; Unique non-heme hydroxylase in biosynthesis of nucleoside antibiotic pathway uncover mechanism of reaction 7V4O ; 1.65 ; Unique non-heme hydroxylase in biosynthesis of nucleoside antibiotic pathway uncover mechanism of reaction 7V4P ; 1.95 ; Unique non-heme hydroxylase in biosynthesis of nucleoside antibiotic pathway uncover mechanism of reaction 5YCQ ; 2.503 ; Unique Specificity-Enhancing Factor for the AAA+ Lon Protease 2LED ; ; Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from intron of N-myc gene 2LEE ; ; Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from intron of N-myc gene 1N7K ; 2.0 ; Unique tetrameric structure of deoxyribose phosphate aldolase from Aeropyrum pernix 7QOI ; 3.62 ; Unique vertex of the phicrAss001 virion 7QOH ; 3.32 ; Unique vertex of the phicrAss001 virion with C5 symmetry imposed 8PP5 ; 2.0 ; Unitary crystal structure of positively supercharged ferritin variant Ftn(pos)-m1 (Mg Formate condition) 6H6U ; 2.0 ; Unitary crystal structure of the positively supercharged variant Ftn(pos) from human heavy chain ferritin (PEG 400 condition) 2N5P ; ; Universal base control oligonucleotide structure 2N5O ; ; Universal Base oligonucleotide structure 4TVA ; 2.597 ; Universal Pathway for Post-Transfer Editing Reactions: Insight from Crystal structure of TthPheRS with Puromycine 6JW2 ; 3.03 ; Universal RVD R* accommodates 5hmC via water-mediated interactions 6JW1 ; 2.49 ; Universal RVD R* accommodates 5mC via water-mediated interactions 6JW0 ; 2.2 ; Universal RVD R* accommodates cytosine via water-mediated interactions 7JI4 ; 2.3 ; Universal stress protein (USP) domain of KdpD histidine kinase in complex with second messenger c-di-AMP 2JAX ; 3.22 ; Universal Stress Protein Rv2623 from Mycobaterium Tuberculosis 3HGM ; 1.9 ; Universal Stress Protein TeaD from the TRAP transporter TeaABC of Halomonas elongata 3S3T ; 1.9 ; Universal stress protein UspA from Lactobacillus plantarum 1T3U ; 2.5 ; Unknown conserved bacterial protein from Pseudomonas aeruginosa PAO1 4M7Z ; 2.75 ; Unliganded 1 crystal structure of S25-26 Fab 4M93 ; 2.09 ; Unliganded 2 crystal structure of S25-26 Fab 4MA1 ; 2.32 ; Unliganded 3 crystal structure of S25-26 Fab 6O18 ; 2.55 ; Unliganded alpha-L-fucosidase AlfC from Lactobacillus casei 3NEN ; 2.4 ; Unliganded aspartyl-tRNA synthetase from thermococcus kodakarensis 2RIT ; 1.43 ; Unliganded B-specific-1,3-galactosyltransferase (GTB) 2RIZ ; 1.45 ; Unliganded B-specific-1,3-galactosyltransferase G176R mutant (ABBB) 1MNU ; 2.5 ; UNLIGANDED BACTERICIDAL ANTIBODY AGAINST NEISSERIA MENINGITIDIS 1DLU ; 2.25 ; UNLIGANDED BIOSYNTHETIC THIOLASE FROM ZOOGLOEA RAMIGERA 4MJ1 ; 2.0 ; unliganded BK Polyomavirus VP1 pentamer 1FEC ; 1.7 ; UNLIGANDED CRITHIDIA FASCICULATA TRYPANOTHIONE REDUCTASE AT 1.7 ANGSTROM RESOLUTION 1FEB ; 2.0 ; UNLIGANDED CRITHIDIA FASCICULATA TRYPANOTHIONE REDUCTASE AT 2.0 ANGSTROM RESOLUTION 1FEA ; 2.2 ; UNLIGANDED CRITHIDIA FASCICULATA TRYPANOTHIONE REDUCTASE AT 2.2 ANGSTROM RESOLUTION 4QV2 ; 1.68 ; Unliganded crystal structure of Feline Norovirus P Domain co-crystallized with HBGA A-trisaccharide 4QVJ ; 2.26 ; Unliganded crystal structure of Feline Norovirus P Domain co-crystallized with N-acetylneuraminic acid 4QVA ; 2.18 ; Unliganded crystal structure of Feline Norovirus P Domain co-crystallized with N-glycolylneuraminic acid 4LEX ; 2.02 ; Unliganded crystal structure of mAb7 4OPV ; 1.85 ; Unliganded crystal structure of P domain from norovirus strain Farmington Hills 2004 co-crystallized with HBGA type Lea 6TN1 ; 0.98 ; Unliganded Crystal Structure of Recombinant GBA 2IQ5 ; 1.9 ; Unliganded Crystal Structure of the Uridine Phosphorylase from Salmonella Typhimurium at 1.90 A Resolution 4IEO ; 1.55 ; unliganded Cysteine Dioxygenase at pH 4.0 in the presence of Cys 4IEP ; 1.45 ; unliganded Cysteine Dioxygenase at pH 4.5 in the presence of Cys 4IEQ ; 1.396 ; unliganded Cysteine Dioxygenase at pH 5.0 in the presence of Cys 4IEZ ; 1.39 ; unliganded Cysteine Dioxygenase at pH 8.0 4PIX ; 1.35 ; Unliganded Cysteine Dioxygenase C93A variant at pH 6.2 3SPB ; 2.3 ; Unliganded E. Cloacae MurA 4EII ; 1.95 ; Unliganded E. cloacae R91K MurA 3V5V ; 2.7 ; UNLIGANDED E.CLOACAE C115D MURA 7L6U ; 3.3 ; Unliganded ELIC in POPC-only nanodiscs at 3.3-Angstrom resolution 6V0B ; 4.1 ; Unliganded ELIC in POPC-only nanodiscs. 7L6Q ; 2.5 ; Unliganded ELIC in styrene-maleic-acid nanodiscs at 2.5-Angstrom resolution 8SU0 ; 1.99 ; Unliganded F96H epi-Isozizaene Synthase 4ODW ; 2.72 ; Unliganded Fab structure of lipid A-specific antibody A6 4ODU ; 2.29 ; Unliganded Fab structure of lipid A-specific antibody S1-15 4ODS ; 1.94 ; Unliganded Fab structure of lipid A-specific antibody S55-3 3T0V ; 1.451 ; Unliganded fluorogen activating protein M8VL 5IO5 ; 2.85 ; Unliganded form of bovine beta-lactoglobulin, ambient pressure 7YLZ ; 2.72 ; Unliganded form of hydroxyamidotransferase TsnB9 5BUQ ; 1.98 ; Unliganded Form of O-succinylbenzoate Coenzyme A Synthetase (MenE) from Bacillus Subtilis, Solved at 1.98 Angstroms 3P2W ; 1.66 ; Unliganded form of Polo-like kinase I Polo-box domain 5N1I ; 2.4 ; unliganded form of the Mycobacterium tuberculosis repressor EthR2 1D5I ; 2.0 ; UNLIGANDED GERMLINE PRECURSOR OF AN OXY-COPE CATALYTIC ANTIBODY 1NYL ; 2.6 ; Unliganded glutaminyl-tRNA synthetase 2AUD ; 2.1 ; Unliganded HincII 6TVE ; 1.05 ; Unliganded human CD73 (5'-nucleotidase) in the open state 6E8Y ; 1.85 ; Unliganded Human Glycerol 3-Phosphate Dehydrogenase 5T2Q ; 1.9 ; Unliganded Human HVEM at 1.9A in P 1 21 1 5T2R ; 2.1 ; Unliganded Human HVEM at 2.1A in P 21 21 21 6PHH ; 2.4 ; Unliganded human transmission blocking antibody 2544 1D5B ; 2.8 ; UNLIGANDED MATURE OXY-COPE CATALYTIC ANTIBODY 3BY1 ; 2.69 ; Unliganded Norvalk Virus P domain 4IEX ; 2.15 ; unliganded room-temp Cysteine Dioxygenase at pH 6.2 6C5I ; 1.89 ; Unliganded S25-5 Fab 1AZ5 ; 2.0 ; UNLIGANDED SIV PROTEASE STRUCTURE IN AN ""OPEN"" CONFORMATION 1TOE ; 2.0 ; Unliganded structure of Hexamutant + A293D mutant of E. coli aspartate aminotransferase 5NSM ; 2.4 ; unliganded Structure of Leucyl aminopeptidase from Trypanosoma brucei 7C1X ; 2.38943 ; Unliganded structure of Pseudouridine kinase (PUKI) from Arabidopsis thaliana 7VTD ; 2.15055 ; Unliganded structure of Pseudouridine kinase (PUKI) from Escherichia coli strain B 3V93 ; 2.0 ; unliganded structure of TcrPDEC1 catalytic domain 6QVS ; 1.6 ; Unliganded structure of the human wild type Beta-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal1) 5EAV ; 1.6 ; Unliganded structure of the ornithine aminotransferase from Toxoplasma gondii 5QTC ; 1.645 ; Unliganded T. brucei FPPS 5QTD ; 1.642 ; Unliganded T. brucei FPPS 8C7T ; 2.21 ; Unliganded transcriptional pleiotropic repressor CodY from Enterococcus faecalis 8C7O ; 2.05 ; Unliganded transcriptional pleiotropic repressor CodY from Staphylococcus aureus 4C0P ; 2.95 ; Unliganded Transportin 3 3AQD ; 3.2 ; Unliganded TRAP 3U69 ; 1.55 ; Unliganded wild-type human thrombin 5I33 ; 2.2 ; Unligated adenylosuccinate synthetase from Cryptococcus neoformans 1HKH ; 1.73 ; unligated gamma lactamase from an Aureobacterium species 5H4I ; 2.004 ; Unlinked NS2B-NS3 Protease from Zika Virus in complex with a compound fragment 1DQ2 ; 2.05 ; Unlocked metal-free concanavalin A 7L1W ; 1.71 ; Unlocking the structural features for the exo-xylobiosidase activity of an unusual GH11 member identified in a compost-derived consortium 7L1Z ; 2.05 ; Unlocking the structural features for the exo-xylobiosidase activity of an unusual GH11 member identified in a compost-derived consortium - NT-truncated form 7L1Y ; 1.2 ; Unlocking the structural features for the exo-xylobiosidase activity of an unusual GH11 member identified in a compost-derived consortium-xylobiose complex 1ON7 ; 2.7 ; Unmethylated form of C-phycocyanin from Themosynechococcus vulcanus at 2.7A 7SFR ; 2.6 ; Unmethylated Mtb Ribosome 50S with SEQ-9 2LBL ; ; Unmodified Glycyl-tRNA(UCC) anticodon stem-loop from Bacillus subtilis 2ATL ; 2.8 ; Unmodified Insertion Ternary Complex 2AU0 ; 2.7 ; Unmodified preinsertion binary complex 6O3M ; 3.97 ; Unmodified tRNA(Pro) bound to Thermus thermophilus 70S (cognate) 6OSI ; 4.14 ; Unmodified tRNA(Pro) bound to Thermus thermophilus 70S (near cognate) 1JBA ; ; UNMYRISTOYLATED GCAP-2 WITH THREE CALCIUM IONS BOUND 3TX0 ; 2.26 ; Unphosphorylated Bacillus cereus phosphopentomutase in a P212121 crystal form 8TUC ; 1.5 ; Unphosphorylated CaMKK2 in complex with CC-8977 6TLC ; 2.9 ; Unphosphorylated human STAT3 in complex with MS3-6 monobody 2MMH ; ; Unphosphorylated Mengovirus Leader Protein: NMR Studies of the Phosphorylation of the Mengovirus Leader Protein Reveal Stabilization of Intermolecular Domain Interactions 2Z7L ; 2.41 ; Unphosphorylated Mitogen Activated Protein Kinase ERK2 in Complex with (4-{[5-Carbamoyl-4-(3-Methylanilino)Pyrimidin 2-Yl]Amino}Phenyl)Acetic Acid 3CWG ; 3.05 ; Unphosphorylated mouse STAT3 core fragment 6IFH ; 1.8 ; Unphosphorylated Spo0F from Paenisporosarcina sp. TG-14 4E68 ; 2.585 ; Unphosphorylated STAT3B core protein binding to dsDNA 2G0R ; 1.95 ; Unphotolyzed CO-bound L29F Myoglobin 2G0S ; 1.9 ; Unphotolyzed CO-bound L29F Myoglobin, crystal 2 2PUS ; 2.4 ; Unprecedented activation mechanism of a non-canonical RNA-dependent RNA polymerase 1TLF ; 2.6 ; UNPRECEDENTED QUATERNARY STRUCTURE OF E. COLI LAC REPRESSOR CORE TETRAMER: IMPLICATIONS FOR DNA LOOPING 4B21 ; 1.45 ; Unprecedented sculpting of DNA at abasic sites by DNA glycosylase homolog Mag2 4B22 ; 1.9 ; Unprecedented sculpting of DNA at abasic sites by DNA glycosylase homolog Mag2 4B23 ; 2.0 ; Unprecedented sculpting of DNA at abasic sites by DNA glycosylase homolog Mag2 4B24 ; 2.3 ; Unprecedented sculpting of DNA at abasic sites by DNA glycosylase homolog Mag2 1PYQ ; 1.9 ; Unprocessed Aspartate Decarboxylase Mutant, with Alanine inserted at position 24 1PT0 ; 2.0 ; Unprocessed Pyruvoyl Dependent Aspartate Decarboxylase with an Alanine insertion at position 26 1PT1 ; 1.9 ; Unprocessed Pyruvoyl Dependent Aspartate Decarboxylase with Histidine 11 Mutated to Alanine 4IJO ; 1.9 ; Unraveling hidden allosteric regulatory sites in structurally homologues metalloproteases 5FKQ ; 1.71 ; Unraveling the first step of xyloglucan degradation by the soil saprophyte Cellvibrio japonicus through the functional and structural characterization of a potent GH74 endo-xyloglucanase 5FKR ; 2.28 ; Unraveling the first step of xyloglucan degradation by the soil saprophyte Cellvibrio japonicus through the functional and structural characterization of a potent GH74 endo-xyloglucanase 5FKS ; 1.99 ; Unraveling the first step of xyloglucan degradation by the soil saprophyte Cellvibrio japonicus through the functional and structural characterization of a potent GH74 endo-xyloglucanase 5FKT ; 1.52 ; Unraveling the first step of xyloglucan degradation by the soil saprophyte Cellvibrio japonicus through the functional and structural characterization of a potent GH74 endo-xyloglucanase 6H9W ; 1.35 ; Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens 6H9Y ; 1.31 ; Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens 6HA0 ; 1.85 ; Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens 3INK ; 2.5 ; UNRAVELING THE STRUCTURE OF INTERLEUKIN-2: REPLY 7WUO ; 3.19 ; Unravelling structure of riboflavin synthase for designing of potential anti-bacterial drug 4USK ; 1.76 ; Unravelling the B. pseudomallei heptokinase WcbL: from Structure to Drug Discovery. 4CU6 ; 2.7 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CU7 ; 2.2 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CU8 ; 2.5 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CU9 ; 1.83 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CUA ; 1.54 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CUB ; 2.1 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA 4CUC ; 2.2 ; Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae beta-galactosidase, BgaA. 3KSE ; 1.71 ; Unreduced cathepsin L in complex with stefin A 3KFQ ; 1.99 ; Unreduced cathepsin V in complex with stefin A 3K3R ; 3.2 ; Unrefined crystal structure of a LexA-DNA complex 2AHF ; 1.52 ; Unsaturated glucuronyl hydrolase mutant D88N 2AHG ; 1.9 ; Unsaturated glucuronyl hydrolase mutant D88N with dGlcA-GalNAc 2D5J ; 1.6 ; Unsaturated Glucuronyl Hydrolase Triggers Hydration of Vinyl Ether Group but not of Glycosidic Bond 8OT1 ; 2.59 ; unseeded Abeta(1-40) amyloid fibril (morphology i) 8OT3 ; 2.73 ; unseeded Abeta(1-40) amyloid fibril (morphology ii) 7ZCL ; 1.95 ; Unspecific peroxygenase from Collariella virescens 7O1X ; 1.6 ; Unspecific peroxygenase from Hypoxylon sp. EC38 in complex with 1-phenylimidazole 7O2D ; 2.68 ; Unspecific peroxygenase from Hypoxylon sp. EC38 in complex with 2-(N-morpholino) ethanesulfonic acid (MES) 7O1R ; 1.3 ; Unspecific peroxygenase from Hypoxylon sp. EC38 in complex with imidazole 7O1Z ; 1.8 ; Unspecific peroxygenase from Hypoxylon sp. EC38 in complex with S-1,2-propanediol 7O2G ; 2.1 ; Unspecific peroxygenase from Hypoxylon sp. EC38 in complex with styrene 7ZBP ; 1.45 ; Unspecific peroxygenase from Marasmius rotula 7PI0 ; 2.43 ; Unstacked compact Dunaliella PSII 7PNK ; 3.61 ; Unstacked compact Dunaliella PSII 7PI5 ; 2.78 ; Unstacked stretched Dunaliella PSII 5MM3 ; 2.1 ; Unstructured MamC magnetite-binding protein located between two helices. 6MGF ; 2.982 ; untagged, wild-type LptB in complex with ADP 2MAB ; ; Untangling the Solution Structure of C-Terminal Domain of Aciniform Spidroin 1L1V ; ; UNUSUAL ACTD/DNA_TA COMPLEX STRUCTURE 1VTD ; 2.8 ; UNUSUAL HELICAL PACKING IN CRYSTALS OF DNA BEARING A MUTATION HOT SPOT 5OYA ; 1.8 ; Unusual posttranslational modifications revealed in crystal structures of diatom Rubisco. 7C28 ; 2.4 ; Unusual quaternary structure of a homodimeric synergistic toxin from mamba snake venom 7BEB ; 1.32 ; Unusual structural features in the adduct of dirhodium tetraacetate with lysozyme (4) 7BEC ; 1.74 ; Unusual structural features in the adduct of dirhodium tetraacetate with lysozyme (5) 1PCL ; 2.2 ; UNUSUAL STRUCTURAL FEATURES IN THE PARALLEL BETA-HELIX IN PECTATE LYASES 2V7N ; 1.92 ; Unusual twinning in crystals of the CitS binding antibody Fab fragment f3p4 3ZQ4 ; 3.0 ; Unusual, dual endo- and exo-nuclease activity in the degradosome explained by crystal structure analysis of RNase J1 5G26 ; 2.42 ; Unveiling the Mechanism Behind the in-meso Crystallization of Membrane Proteins 2N5M ; ; Unveiling the structural determinants of KIAA0323 binding preference for NEDD8 2N7K ; ; Unveiling the structural determinants of KIAA0323 binding preference for NEDD8 4DJ2 ; 2.75 ; Unwinding the Differences of the Mammalian PERIOD Clock Proteins from Crystal Structure to Cellular Function 4DJ3 ; 2.5 ; Unwinding the Differences of the Mammalian PERIOD Clock Proteins from Crystal Structure to Cellular Function 1L3K ; 1.1 ; UP1, THE TWO RNA-RECOGNITION MOTIF DOMAIN OF HNRNP A1 1UP1 ; 1.9 ; UP1, THE TWO RNA-RECOGNITION MOTIF DOMAIN OF HNRNP A1 5ZAJ ; 1.65 ; uPA-31F 5ZAE ; 1.73 ; uPA-6F-HMA 5ZA8 ; 1.9 ; uPA-BB2-27F 5ZAF ; 1.65 ; uPA-BB2-28F 5ZAH ; 2.98 ; uPA-BB2-30F 5ZA9 ; 1.62 ; uPA-BB2-50F 5ZAG ; 1.95 ; uPA-BB2-94F 5ZA7 ; 1.7 ; uPA-HMA 6AG2 ; 1.77 ; uPA-HMA 5ZC5 ; 1.9 ; uPA-NU-09F 6XYU ; 2.51 ; Update of AChE from Drosophila Melanogaster complex with tacrine derivative 9-(3-iodobenzylamino)-1,2,3,4-tetrahydroacridine 6XYY ; 2.7 ; Update of ACHE FROM DROSOPHILA MELANOGASTER COMPLEX WITH TACRINE DERIVATIVE 9-(3-PHENYLMETHYLAMINO)-1,2,3,4-TETRAHYDROACRIDINE 6XYS ; 2.46 ; Update of native acetylcholinesterase from Drosophila Melanogaster 2ZUP ; 3.7 ; Updated crystal structure of DsbB-DsbA complex from E. coli 7RVA ; 1.89 ; Updated Crystal Structure of Replication Initiator Protein REPE54. 2XZP ; 2.72 ; Upf1 helicase 2XZO ; 2.395 ; Upf1 helicase - RNA complex 2XZL ; 2.4 ; Upf1-RNA complex 8EGR ; 3.58 ; Upper tail structure of Staphylococcus phage Andhra 8B71 ; 3.8 ; Upright KimA dimer with bound c-di-AMP from B. subtilis 1BD4 ; 2.2 ; UPRT-URACIL COMPLEX 4LZB ; 2.03 ; Uracil binding pocket in Vaccinia virus uracil DNA glycosylase 1Q3F ; 1.9 ; Uracil DNA glycosylase bound to a cationic 1-aza-2'-deoxyribose-containing DNA 1FLZ ; 2.3 ; URACIL DNA GLYCOSYLASE WITH UAAP 2VWJ ; 2.78 ; Uracil Recognition in Archaeal DNA Polymerases Captured by X-ray Crystallography. 2VWK ; 2.6 ; Uracil Recognition in Archaeal DNA Polymerases Captured by X-ray Crystallography. V93Q polymerase variant 1LAU ; 1.8 ; URACIL-DNA GLYCOSYLASE 1EMJ ; 2.0 ; URACIL-DNA GLYCOSYLASE BOUND TO DNA CONTAINING A 4'-THIO-2'DEOXYURIDINE ANALOG PRODUCT 1UGI ; 1.55 ; URACIL-DNA GLYCOSYLASE INHIBITOR PROTEIN 4OP6 ; 1.65 ; Urate OXIDASE + 8-AZAXANTHINE UNDER 40 BARS OXYGEN 3BK8 ; 1.6 ; Urate oxidase aza-xanthine complex in cyanide 7Q09 ; 2.19 ; URATE OXIDASE AZA-XANTHINE COMPLEX UNDER 1500 BAR OF ARGON 7PUF ; 1.86 ; urate oxidase azaxanthine complex under 600 bar (60 MPa) of argon 4PR8 ; 1.16 ; URATE OXIDASE AZIDE URIC ACID TERNARY complex 4OQC ; 1.3 ; Urate OXIDASE CO-CRYSTALLIZED WITH AZIDE 4POE ; 1.07 ; Urate oxidase co-crystallized with uric acid and azide 3F2M ; 1.8 ; Urate oxidase complexed with 8-azaxanthine at 150 MPa 2ZKA ; 1.61 ; Urate oxidase complexed with 8-azaxanthine under 1.0 MPa oxygen pressure 2ZKB ; 1.61 ; Urate oxidase complexed with 8-azaxanthine under 2.5 MPa oxygen pressure 3CKS ; 1.7 ; Urate oxidase complexed with 8-azaxanthine under 4.0 MPa oxygen pressure 3LD4 ; 1.35 ; Urate oxidase complexed with 8-nitro xanthine 3LBG ; 1.5 ; Urate oxidase complexed with 8-thio xanthine 3L9G ; 1.75 ; Urate oxidase complexed with uric acid and chloride 3BJP ; 1.8 ; Urate oxidase cyanide uric acid ternary complex 4PUV ; 1.3 ; URATE OXIDASE DI-AZIDE complex 1WS2 ; 2.7 ; urate oxidase from aspergillus flavus complexed with 5,6-diaminouracil 1WRR ; 1.64 ; Urate oxidase from aspergillus flavus complexed with 5-amino 6-nitro uracil 1XXJ ; 2.8 ; Urate oxidase from aspergillus flavus complexed with 5-amino 6-nitro uracil 2FXL ; 1.76 ; Urate oxidase from aspergillus flavus complexed with allantoin 1XT4 ; 2.01 ; Urate Oxidase From Aspergillus Flavus Complexed With Guanine 1XY3 ; 3.2 ; Urate oxidase from aspergillus flavus complexed with guanine 1R51 ; 1.75 ; URATE OXIDASE FROM ASPERGILLUS FLAVUS COMPLEXED WITH ITS INHIBITOR 8-AZAXANTHIN 3CKU ; 1.7 ; Urate oxidase from aspergillus flavus complexed with its inhibitor 8-azaxanthin and chloride 2IBA ; 1.5 ; Urate oxidase from Aspergillus flavus complexed with its inhibitor 8-azaxanthine 1R4S ; 1.8 ; URATE OXIDASE FROM ASPERGILLUS FLAVUS COMPLEXED WITH ITS INHIBITOR 9-METHYL URIC ACID 1R4U ; 1.65 ; URATE OXIDASE FROM ASPERGILLUS FLAVUS COMPLEXED WITH ITS INHIBITOR OXONIC ACID 1WS3 ; 3.2 ; Urate oxidase from aspergillus flavus complexed with uracil 3L8W ; 1.0 ; Urate oxidase from aspergillus flavus complexed with xanthin 7F2V ; 1.6 ; Urate oxidase from Thermobispora bispora in apo form 4OP9 ; 1.58 ; Urate OXIDASE IN COMPLEX WITH 8-AZAXANTHINE 2PES ; 1.6 ; Urate Oxidase in complex with tris-dipicolinate Lutetium 3PK5 ; 1.75 ; Urate oxidase under 0.1 MPa / 1 bar pressure of xenon 3PKF ; 1.65 ; Urate oxidase under 0.2 MPa / 2 bars pressure of equimolar mixture of xenon and nitrous oxide 3PK6 ; 1.8 ; Urate oxidase under 0.2 MPa / 2 bars pressure of xenon 3PLE ; 1.6 ; urate oxidase under 0.5 MPa / 5 bars pressure of equimolar mixture xenon : nitrous oxide 3PK8 ; 1.65 ; Urate oxidase under 0.5 MPa / 5 bars pressure of nitrous oxide 3PKK ; 1.733 ; Urate oxidase under 0.5 MPa / 5 bars pressure of xenon 3PKL ; 1.749 ; Urate oxidase under 0.8 MPa / 8 bars pressure of xenon 3PKU ; 1.75 ; Urate oxidase under 1 MPa / 10 bars pressure of nitrous oxide 3PLG ; 1.601 ; urate oxidase under 1.0 MPa / 10 bars pressure of equimolar mixture xenon : nitrous oxide 3PJK ; 1.701 ; Urate oxidase under 1.0 MPa / 10 bars pressure of xenon 3PLH ; 1.8 ; urate oxidase under 1.5 MPa / 15 bars pressure of equimolar mixture xenon : nitrous oxide 3PKS ; 1.75 ; Urate oxidase under 1.5 MPa / 15 bars pressure of nitrous oxide 3PKH ; 1.71 ; Urate oxidase under 1.5 MPa / 15 bars pressure of xenon 3PLI ; 1.68 ; Urate oxidase under 1.8 MPa / 18 bars pressure of equimolar mixture xenon : nitrous oxide 6IA1 ; 2.36 ; urate oxidase under 120 bar of argon 6RGM ; 1.5 ; urate oxidase under 130 bar of krypton 3PKT ; 1.75 ; Urate oxidase under 2 MPa / 20 bars pressure of nitrous oxide 3PKG ; 1.602 ; Urate oxidase under 2 MPa / 20 bars pressure of xenon 3PLM ; 1.621 ; Urate oxidase under 2.0 MPa / 20 bars pressure of equimolar mixture xenon : nitrous oxide 2ICQ ; 1.75 ; urate oxidase under 2.0 MPa pressure of nitrous oxide 2IC0 ; 1.78 ; Urate oxidase under 2.0 MPa pressure of xenon 6IA9 ; 1.8 ; urate oxidase under 2000 bar (220 MPa) of argon 6IA3 ; 1.69 ; urate oxidase under 220 bar (22 MPa) of argon 3PLJ ; 1.732 ; Urate oxidase under 3.0 MPa / 30 bars pressure of equimolar mixture xenon : nitrous oxide 3PK3 ; 1.65 ; urate oxidase under 3.0 MPa / 30 bars pressure of nitrous oxide 3PK4 ; 1.85 ; Urate oxidase under 3.2 MPa / 32 bars pressure of xenon 6I9X ; 1.6 ; urate oxidase under 35 bar of argon 6I9Z ; 1.6 ; urate oxidase under 65 bar of argon 6IC1 ; 1.1 ; urate oxidase under 90 bar of krypton 7P0C ; 2.15 ; URATE OXIDASE WITH 8-AZAXANTHINE UNDER 210 MPA PRESSURE 7P0D ; 2.4 ; URATE OXIDASE WITH 8-AZAXANTHINE UNDER 310 MPA PRESSURE 7P0G ; 1.9 ; URATE OXIDASE WITH 8-AZAXANTHINE UNDER AMBIENT PRESSURE 3P9F ; 1.7 ; Urate oxidase-azaxanthine-azide ternary complex 4FSK ; 1.98 ; Urate oxidase-azide complex in anaerobic conditions 7PWN ; 1.64 ; URATE OXYDASE AZA-XANTHINE COMPLEX AT 1000 BARS (100 MPa) OF ARGON 1JZR ; 2.9 ; Ure2p in complex with glutathione 1K0B ; 2.5 ; Ure2p in Complex with Glutathione 1K0D ; 2.2 ; Ure2p in Complex with Glutathione 1K0A ; 2.5 ; Ure2p in Complex with S-hexylglutathione 1K0C ; 2.5 ; Ure2p in complex with S-p-nitrobenzylglutathione 5O00 ; 2.03 ; Ure2p5 from Phanerochaete chrysosporium cocrystallized with 1-(S-glutathionyl)-2,4-dinitrobenzene. 8CJ1 ; 2.564 ; Urea-based foldamer inhibitor c3u_3 chimera in complex with ASF1 histone chaperone 8CJ2 ; 2.127 ; Urea-based foldamer inhibitor c3u_5 chimera in complex with ASF1 histone chaperone 8CJ3 ; 3.0 ; Urea-based foldamer inhibitor c3u_7 chimera in complex with ASF1 histone chaperone 6ZUF ; 1.798 ; Urea-based Foldamer Inhibitor chimera C2 in complex with ASF1 Histone chaperone 6KNL ; 2.32 ; Uridine and triphosphate-bound UGPase from acinetobacter baumannii 7VTE ; 2.15297 ; uridine bound structure of Pseudouridine kinase (PUKI) from Escherichia coli strain B 1K3F ; 2.5 ; Uridine Phosphorylase from E. coli, Refined in the Monoclinic Crystal Lattice 1RYZ ; 2.9 ; Uridine Phosphorylase from Salmonella typhimurium. Crystal Structure at 2.9 A Resolution 2JUC ; ; URN1 FF domain yeast 6T85 ; 1.1 ; Urocanate reductase in complex with ADP 6T86 ; 2.56 ; Urocanate reductase in complex with FAD 6T88 ; 1.4 ; Urocanate reductase in complex with imidazole propionate 6T87 ; 1.56 ; Urocanate reductase in complex with urocanate 3GW0 ; 2.0 ; UROD mutant G318R 3GVQ ; 2.1 ; UROD single-chain dimer 1F92 ; 2.6 ; UROKINASE PLASMINOGEN ACTIVATOR B CHAIN-UKI-1D COMPLEX 1EJN ; 1.8 ; UROKINASE PLASMINOGEN ACTIVATOR B-CHAIN INHIBITOR COMPLEX 1F5L ; 2.1 ; UROKINASE PLASMINOGEN ACTIVATOR B-CHAIN-AMILORIDE COMPLEX 1F5K ; 1.8 ; UROKINASE PLASMINOGEN ACTIVATOR B-CHAIN-BENZAMIDINE COMPLEX 2R2W ; 2.01 ; Urokinase plasminogen activator B-chain-GPPE complex 1SC8 ; 2.4 ; Urokinase Plasminogen Activator B-Chain-J435 Complex 1VJA ; 2.0 ; Urokinase Plasminogen Activator B-Chain-JT463 Complex 1VJ9 ; 2.4 ; Urokinase Plasminogen Activator B-Chain-JT464 Complex 1W0Z ; 1.9 ; Urokinase type plasminogen activator 1W10 ; 2.0 ; Urokinase type plasminogen activator 1W11 ; 2.0 ; UROKINASE TYPE PLASMINOGEN ACTIVATOR 1W12 ; 2.4 ; UROKINASE TYPE PLASMINOGEN ACTIVATOR 1W13 ; 2.0 ; UROKINASE TYPE PLASMINOGEN ACTIVATOR 1W14 ; 2.2 ; UROKINASE TYPE PLASMINOGEN ACTIVATOR 2VNT ; 2.2 ; UROKINASE-TYPE PLASMINOGEN ACTIVATOR INHIBITOR COMPLEX WITH A 1-(7- SULPHOAMIDOISOQUINOLINYL)GUANIDINE 8I58 ; 3.09 ; Uroporphyrin I (UPI)-bound CfbA 8I57 ; 2.81 ; Uroporphyrin III (UPIII)-bound CfbA 1URO ; 1.8 ; UROPORPHYRINOGEN DECARBOXYLASE 2Q6Z ; 2.0 ; Uroporphyrinogen Decarboxylase G168R single mutant apo-enzyme 2Q71 ; 1.9 ; Uroporphyrinogen Decarboxylase G168R single mutant enzyme in complex with coproporphyrinogen-III 1R3Q ; 1.7 ; Uroporphyrinogen Decarboxylase in complex with coproporphyrinogen-I 1R3Y ; 1.755 ; Uroporphyrinogen Decarboxylase in complex with coproporphyrinogen-III 1R3V ; 1.9 ; Uroporphyrinogen Decarboxylase single mutant D86E in complex with coproporphyrinogen-I 1R3S ; 1.65 ; Uroporphyrinogen Decarboxylase single mutant D86G in complex with coproporphyrinogen-I 1R3T ; 1.7 ; Uroporphyrinogen Decarboxylase single mutant D86G in complex with coproporphyrinogen-III 1R3R ; 1.85 ; Uroporphyrinogen Decarboxylase with mutation D86N 1R3W ; 1.7 ; Uroporphyrinogen Decarboxylase Y164F mutant in complex with coproporphyrinogen-III 3D8N ; 1.9 ; Uroporphyrinogen III Synthase-Uroporphyringen III Complex 5WB2 ; 3.5 ; US28 bound to engineered chemokine CX3CL1.35 and nanobodies 3D8W ; 1.7 ; Use of a carbonic Anhydrase II, IX Active-site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 1SWY ; 1.06 ; Use of a Halide Binding Site to Bypass the 1000-atom Limit to Ab initio Structure Determination 1SX2 ; 1.06 ; Use of a Halide Binding Site to Bypass the 1000-atom Limit to Structure Determination by Direct Methods 1SWZ ; 1.06 ; Use of an ion-binding site to bypass the 1000-atom limit to ab initio structure determination by direct methods 1SX7 ; 1.06 ; Use of an ion-binding site to bypass the 1000-atom limit to ab initio structure determination by direct methods 1D1U ; 2.3 ; USE OF AN N-TERMINAL FRAGMENT FROM MOLONEY MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE TO FACILITATE CRYSTALLIZATION AND ANALYSIS OF A PSEUDO-16-MER DNA MOLECULE CONTAINING G-A MISPAIRS 3D9Z ; 1.65 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DAZ ; 1.6 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DBU ; 1.7 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DC3 ; 1.7 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DC9 ; 1.6 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DCC ; 1.6 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DCS ; 1.8 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DCW ; 1.5 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 3DD0 ; 1.48 ; Use of Carbonic Anhydrase II, IX Active-Site Mimic, for the Purpose of Screening Inhibitors for Possible Anti-Cancer Properties 4H1P ; 2.3 ; Use of Europium for SAD Phasing at the Cu K alpha wavelength 1BP4 ; 2.2 ; USE OF PAPAIN AS A MODEL FOR THE STRUCTURE-BASED DESIGN OF CATHEPSIN K INHIBITORS. CRYSTAL STRUCTURES OF TWO PAPAIN INHIBITOR COMPLEXES DEMONSTRATE BINDING TO S'-SUBSITES. 1BQI ; 2.5 ; USE OF PAPAIN AS A MODEL FOR THE STRUCTURE-BASED DESIGN OF CATHEPSIN K INHIBITORS. CRYSTAL STRUCTURES OF TWO PAPAIN INHIBITOR COMPLEXES DEMONSTRATE BINDING TO S'-SUBSITES. 2ETI ; ; USE OF RESTRAINED MOLECULAR DYNAMICS IN WATER TO DETERMINE THREE-DIMENSIONAL PROTEIN STRUCTURE: PREDICTION OF THE THREE-DIMENSIONAL STRUCTURE OF ECBALLIUM ELATERIUM TRYPSIN INHIBITOR II 1T8A ; 2.0 ; USE OF SEQUENCE DUPLICATION TO ENGINEER A LIGAND-TRIGGERED LONG-DISTANCE MOLECULAR SWITCH IN T4 Lysozyme 1T97 ; 2.7 ; Use of sequence duplication to engineer a ligand-triggered long-distance molecular switch in T4 Lysozyme 3O7O ; 2.41 ; Use of synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima 1NTP ; 1.8 ; USE OF THE NEUTRON DIFFRACTION H/D EXCHANGE TECHNIQUE TO DETERMINE THE CONFORMATIONAL DYNAMICS OF TRYPSIN 4ZN8 ; 3.0 ; Using molecular dynamics simulations to predict domain swapping of computationally designed protein variants 3LJA ; 2.75 ; Using Soft X-Rays for a Detailed Picture of Divalent Metal Binding in the Nucleosome 5WHW ; 1.71 ; Using sound pulses to solve the crystal harvesting bottleneck 5WJG ; 1.5 ; Using sound pulses to solve the crystal harvesting bottleneck 5WJH ; 1.63 ; Using sound pulses to solve the crystal harvesting bottleneck 7ZH4 ; 2.49 ; USP1 bound to ML323 and ubiquitin conjugated to FANCD2 (focused refinement) 7ZH3 ; 2.5 ; USP1 bound to ubiquitin conjugated to FANCD2 (focused refinement) 6IIL ; 2.2 ; USP14 catalytic domain bind to IU1-47 6LVS ; 2.73 ; USP14 catalytic domain mutant C114S 6IIK ; 1.97 ; USP14 catalytic domain with IU1 6IIM ; 2.21 ; USP14 catalytic domain with IU1-206 6IIN ; 2.53 ; USP14 catalytic domain with IU1-248 6GH9 ; 2.09 ; USP15 catalytic domain in complex with small molecule 6GHA ; 1.98 ; USP15 catalytic domain structure 7R2G ; 1.98 ; USP15 D1D2 in catalytically-competent state bound to mitoxantrone stack (isoform 2) 2HD5 ; 1.85 ; USP2 in complex with ubiquitin 3MTN ; 2.7 ; Usp21 in complex with a ubiquitin-based, USP21-specific inhibitor 6H4J ; 3.07 ; Usp25 catalytic domain 6H4I ; 3.22 ; Usp28 catalytic domain apo 6H4H ; 3.5 ; Usp28 catalytic domain variant E593D in complex with UbPA 7W3R ; 1.92 ; USP34 catalytic domain 7W3U ; 3.13 ; USP34 catalytic domain in complex with UbPA 5CVM ; 1.9 ; USP46~ubiquitin BEA covalent complex 6M1K ; 2.255 ; USP7 in complex with a novel inhibitor 5WHC ; 2.548 ; USP7 in complex with Cpd2 (4-(3-(1-methylpiperidin-4-yl)-1,2,4-oxadiazol-5-yl)phenol) 5UQV ; 2.84 ; USP7 in complex with GNE6640 (4-(2-amino-4-ethyl-5-(1H-indazol-5-yl)pyridin-3-yl)phenol) 5UQX ; 2.23 ; USP7 in complex with GNE6776 (6'-amino-4'-ethyl-5'-(4-hydroxyphenyl)-N-methyl-[3,3'-bipyridine]-6-carboxamide) 6VN4 ; 2.69 ; USP7 IN COMPLEX WITH LIGAND COMPOUND 1 6VN6 ; 2.99 ; USP7 IN COMPLEX WITH LIGAND COMPOUND 14 6VN2 ; 2.93 ; USP7 IN COMPLEX WITH LIGAND COMPOUND 18 6VN3 ; 2.73 ; USP7 IN COMPLEX WITH LIGAND COMPOUND 23 6VN5 ; 2.9 ; USP7 IN COMPLEX WITH LIGAND COMPOUND 7 5JTJ ; 3.321 ; USP7CD-CTP in complex with Ubiquitin 5JTV ; 3.312 ; USP7CD-UBL45 in complex with Ubiquitin 1KP6 ; 1.8 ; USTILAGO MAYDIS KILLER TOXIN KP6 ALPHA-SUBUNIT 5MM4 ; 4.5 ; Ustilago maydis kinesin-5 motor domain in the AMPPNP state bound to microtubules 5MM7 ; 5.1 ; Ustilago maydis kinesin-5 motor domain with N-terminal extension in the AMPPNP state bound to microtubules 3ZPX ; 1.99 ; USTILAGO MAYDIS LIPASE UM03410, SHORT FORM WITHOUT FLAP 1RTU ; 1.8 ; USTILAGO SPHAEROGENA RIBONUCLEASE U2 8B51 ; 1.84 ; Usutu virus methyltransferase domain in complex with sinefungin 8B52 ; 2.22 ; Usutu virus methyltransferase domain in complex with sinefungin 1UTR ; ; UTEROGLOBIN-PCB COMPLEX (REDUCED FORM) 4FNJ ; 1.95 ; Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and structure determination of a CUG RNA helix 7EJ3 ; 1.6 ; UTP cyclohydrolase 6KNJ ; 3.2 ; UTP-bound UGPase from acinetobacter baumannii 7PF1 ; 2.1 ; UVC treated Human apoferritin 3C0S ; 1.8 ; UVDE 3 metals 3C0Q ; 2.74 ; UVDE E175A 3BZJ ; 2.3 ; UVDE K229L 3C0L ; 3.15 ; UVDE K229R 3BZG ; 1.91 ; UVDE pH4.4 1D2M ; 1.9 ; UVRB PROTEIN OF THERMUS THERMOPHILUS HB8; A NUCLEOTIDE EXCISION REPAIR ENZYME 6YHZ ; ; UvrD helicase RNA polymerase interactions are governed by UvrDs carboxy terminal Tudor domain. 6YI2 ; ; UvrD helicase RNA polymerase interactions are governed by UvrDs carboxy terminal Tudor domain. 3Q5T ; 2.005 ; V beta/V beta homodimerization-based pre-TCR model suggested by TCR beta crystal structures 3Q5Y ; 1.9 ; V beta/V beta homodimerization-based pre-TCR model suggested by TCR beta crystal structures 1AVZ ; 3.0 ; V-1 NEF PROTEIN IN COMPLEX WITH WILD TYPE FYN SH3 DOMAIN 1B88 ; 2.5 ; V-ALPHA 2.6 MOUSE T CELL RECEPTOR (TCR) DOMAIN 7TMR ; 3.5 ; V-ATPase from Saccharomyces cerevisiae, State 1 7TMS ; 3.8 ; V-ATPase from Saccharomyces cerevisiae, State 2 7TMT ; 3.8 ; V-ATPase from Saccharomyces cerevisiae, State 3 8EA3 ; 3.7 ; V-K CAST Transpososome from Scytonema hofmanni, major configuration 8EA4 ; 3.0 ; V-K CAST Transpososome from Scytonema hofmanni, minor configuration 4BE5 ; 2.46 ; V. cholera biofilm scaffolding protein RbmA 4BE6 ; 2.05 ; V. cholera biofilm scaffolding protein RbmA 4BEI ; 2.6 ; V. cholera biofilm scaffolding protein RbmA in complex with 18-crown- 6 6WLU ; 5.7 ; V. cholerae glycine riboswitch with glycine models, 5.7 Angstrom resolution 8FUK ; 3.36 ; V. cholerae TniQ-Cascade complex with Type III-B crRNA 6PIG ; 3.5 ; V. cholerae TniQ-Cascade complex, closed conformation 6PIF ; 3.4 ; V. cholerae TniQ-Cascade complex, open conformation 6LY8 ; 3.5 ; V/A-ATPase from Thermus thermophilus, the soluble domain, including V1, d, two EG stalks, and N-terminal domain of a-subunit. 5Y5Y ; 4.7 ; V/A-type ATPase/synthase from Thermus thermophilus, peripheral domain, rotational state 1 5Y5X ; 5.0 ; V/A-type ATPase/synthase from Thermus thermophilus, rotational state 1 5Y5Z ; 6.7 ; V/A-type ATPase/synthase from Thermus thermophilus, rotational state 2 5Y60 ; 7.5 ; V/A-type ATPase/synthase from Thermus thermophilus, rotational state 3. 7TMO ; 3.3 ; V1 complex lacking subunit C from Saccharomyces cerevisiae, State 1 7TMP ; 3.3 ; V1 complex lacking subunit C from Saccharomyces cerevisiae, State 2 7TMQ ; 3.3 ; V1 complex lacking subunit C from Saccharomyces cerevisiae, State 3 8JFB ; 2.65 ; V1/S quadruple mutant Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 4 (B21588), NADPH and dUMP 8JFC ; 2.3 ; V1/S quadruple mutant Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 6 (B21591), NADPH and dUMP 8JFD ; 2.3 ; V1/S quadruple mutant Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with compound 8 (B21594), NADPH and dUMP 4AHM ; 1.96 ; V113I - Angiogenin mutants and amyotrophic lateral sclerosis - a biochemical and biological analysis 5A6I ; 1.86 ; V122I Transthyretin structure in complex with Tolcalpone 5X8K ; 1.67 ; V158T mutant of thermus thermophilus HB8 thymidylate kinase 6CX4 ; 3.081 ; V180A Mutant of Yeast PCNA 5KJ6 ; 1.14 ; V197I Horse liver alcohol dehydrogenase complexed with NAD+ and pentafluorobenzyl alcohol 7VAR ; 2.9 ; V1EG domain of V/A-ATPase from Thermus thermophilus at low ATP concentration, state1-1 7VAS ; 3.0 ; V1EG domain of V/A-ATPase from Thermus thermophilus at low ATP concentration, state1-2 7VAW ; 2.7 ; V1EG domain of V/A-ATPase from Thermus thermophilus at saturated ATP-gamma-S condition, state1-1 7VAY ; 3.3 ; V1EG domain of V/A-ATPase from Thermus thermophilus at saturated ATP-gamma-S condition, state2 7VB0 ; 3.6 ; V1EG domain of V/A-ATPase from Thermus thermophilus at saturated ATP-gamma-S condition, state3 7VAT ; 3.2 ; V1EG of V/A-ATPase from Thermus thermophilus at low ATP concentration, state2-1 7VAU ; 3.3 ; V1EG of V/A-ATPase from Thermus thermophilus at low ATP concentration, state2-2 7VAV ; 2.8 ; V1EG of V/A-ATPase from Thermus thermophilus at low ATP concentration, state3 7VAX ; 2.9 ; V1EG of V/A-ATPase from Thermus thermophilus at saturated ATP-gamma-S condition, state1-2 7VAL ; 3.1 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state1-1 7VAM ; 3.2 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state1-2 7VAN ; 3.0 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state2-1 7VAO ; 3.4 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state2-2 7VAP ; 3.0 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state2-2 7VAQ ; 3.6 ; V1EG of V/A-ATPase from Thermus thermophilus, high ATP, state3-2 7VAI ; 3.1 ; V1EG of V/A-ATPase from Thermus thermophilus, state1-1 4NFS ; 1.1 ; V203A horse liver alcohol dehydrogenase E complexed with NAD and 2,2,2-trifluoroethanol 4NG5 ; 1.1 ; V203A horse liver alcohol dehydrogenase E complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol 4NFH ; 1.2 ; V207A Horse Liver Alcohol Dehydrogenase E complexed with NAD and 2,3,4,5,6-pentafluorobenzyl alcohol 5KJC ; 1.2 ; V222I horse liver alcohol dehydrogenase complexed with NAD+ and pentafluorobenzyl alcohol 5KJF ; 1.2 ; V222I horse liver alcohol dehydrogenase complexed with NAD+ and trifluoroethanol 2JJR ; 2.3 ; V232K, N236D-trichosanthin 6MG3 ; 2.05 ; V285A Mutant of the C-terminal bZIP domain of human C/EBPbeta with 16bp Methylated Oligonucleotide Containing Consensus Recognition Sequence 8U8Q ; 2.7 ; V290N/S292F Streptomyces coelicolor Laccase 6CSD ; 2.391 ; V308E mutant of cytochrome P450 2D6 complexed with prinomastat 6CSB ; 2.394 ; V308E mutant of cytochrome P450 2D6 complexed with thioridazine 6TXW ; 1.153 ; V30G Transthyretin structure in complex with Tolcalpone 3KGS ; 1.8 ; V30M mutant human transthyretin (TTR) (apoV30M) pH 7.5 3NES ; 1.75 ; V30M mutant human transthyretin (TTR) complexed with GC-1 (V30M:GC-1) 3NEX ; 1.7 ; V30M mutant human transthyretin (TTR) complexed with GC-24 (V30M:GC-24) 3KGT ; 1.95 ; V30M mutant human transthyretin (TTR) complexed with genistein (V30M:GEN) pH 7.5 4LUU ; 1.95 ; V329A Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate and benzyl triethyl ammonium cation 1ACD ; 2.7 ; V32D/F57H MUTANT OF MURINE ADIPOCYTE LIPID BINDING PROTEIN 3PNV ; 1.95 ; V369M mutant of Glutamyl-tRNA synthetase from Mycobacterium tuberculosis 7MNH ; 1.24 ; V59W mutant of Dehaloperoxidase A from Amphitrite ornata treated with Fluoride 5J57 ; 1.7 ; V5E1-RTA complex 1M6M ; 1.8 ; V68N MET MYOGLOBIN 1MNO ; 1.95 ; V68N MYOGLOBIN OXY FORM 1M6C ; 1.9 ; V68N MYOGLOBIN WITH CO 3BQJ ; 2.7 ; VA387 polypeptide 5XDI ; ; Vaccatide: Antifungal Glutamine-rich 8C-Hevein-like Peptide, vH1 8DTO ; 3.57 ; Vaccine elicited Antibody MU89 bound to CH848.D949.10.17_N133D_N138T.DS.SOSIP.664 HIV-1 Env trimer 8DY6 ; 4.32 ; Vaccine elicited Antibody MU89+S27Y bound to CH848.D949.10.17_N133D_N138T.DS.SOSIP.664 HIV-1 Env trimer 6CDP ; 2.456 ; Vaccine-elicited HIV-1 neutralizing antibody vFP20.01 in complex with HIV-1 fusion peptide residue 512-519 8G4M ; 2.95 ; Vaccine-elicited human antibody 2C06 in complex with HIV-1 envelope trimer BG505 DS-SOSIP 8G4T ; 2.81 ; Vaccine-elicited human antibody 2C09 in complex with HIV-1 envelope trimer BG505 DS-SOSIP 6WX2 ; 2.39 ; Vaccine-elicited mouse FP-targeting neutralizing antibody vFP16.02 with F60P mutation on light chain in complex with HIV fusion peptide (residue 512-519) 6WWC ; 2.563 ; Vaccine-elicited mouse FP-targeting neutralizing antibody vFP16.02 with S48K mutation in light chain in complex with HIV fusion peptide (residue 512-519) 6X78 ; 2.359 ; Vaccine-elicited mouse FP-targeting neutralizing antibody vFP48.03 in complex with HIV fusion peptide (residue 512-519) 6X7W ; 1.7 ; Vaccine-elicited mouse FP-targeting neutralizing antibody vFP49.02 in complex with HIV fusion peptide (residue 512-519) 6PDR ; 1.555 ; Vaccine-elicited murine FP-targeting antibody vFP25.18 in complex with HIV fusion peptide (residue 512-519) 6P8D ; 2.102 ; Vaccine-elicited murine FP-targeting antibody vFP6.01 in complex with HIV fusion peptide (residue 512-519) 6PDS ; 1.893 ; Vaccine-elicited NHP FP-targeting antibody 0PV-a.04 in complex with HIV fusion peptide (residue 512-519) 6PDU ; 1.953 ; Vaccine-elicited NHP FP-targeting antibody 13N024-a.01 in complex with HIV fusion peptide (residue 512-519) 6PEF ; 2.004 ; Vaccine-elicited NHP FP-targeting antibody DF2F-a.01 in complex with HIV fusion peptide (residue 512-519) 6PEC ; 1.746 ; Vaccine-elicited NHP FP-targeting antibody DF2F-e.01 in complex with HIV fusion peptide (residue 512-519) 6MQS ; 2.997 ; Vaccine-elicited NHP FP-targeting HIV neutralizing antibody A12V163-a.01 in complex with HIV fusion peptide (residue 512-519) 6MQE ; 2.459 ; Vaccine-elicited NHP FP-targeting HIV neutralizing antibody DFPH-a.15 in complex with HIV fusion peptide (residue 512-519) 6MQR ; 2.45 ; Vaccine-elicited NHP FP-targeting neutralizing antibody 0PV-a.01 in complex with FP (residue 512-519) 6N16 ; 2.302 ; Vaccine-elicited NHP FP-targeting neutralizing antibody 0PV-b.01 in complex with HIV fusion peptide (residue 512-519) 6MQC ; 1.99 ; Vaccine-elicited NHP FP-targeting neutralizing antibody 0PV-c.01 in complex with FP (residue 512-519) 6P60 ; 2.498 ; Vaccine-elicited NHP FP-targeting neutralizing antibody A12V163-a.02 in complex with HIV fusion peptide (residue 512-519) 6MQM ; 3.484 ; Vaccine-elicited NHP FP-targeting neutralizing antibody DF1W-a.01 in complex with HIV fusion peptide (residue 512-519) 6P7H ; 1.782 ; Vaccine-elicited NHP FP-targeting neutralizing antibody DF2F-b.04 in complex with HIV fusion peptide (residue 512-519) 8AG3 ; 3.47 ; Vaccinia C16 N-terminal domains 8AG4 ; 2.46 ; Vaccinia C16 protein bound to Ku70/Ku80 8AG5 ; 3.47 ; Vaccinia C16 protein bound to Ku70/Ku80 4E9O ; 1.42 ; Vaccinia D8L ectodomain structure 8INI ; 1.75 ; vaccinia H2 protein without the transmembrane region 4U6H ; 3.1 ; Vaccinia L1/M12B9-Fab complex 1B42 ; 2.2 ; VACCINIA METHYLTRANSFERASE VP39 COMPLEXED WITH M1ADE AND S-ADENOSYLHOMOCYSTEINE 1BKY ; 2.0 ; VACCINIA METHYLTRANSFERASE VP39 COMPLEXED WITH M1CYT AND S-ADENOSYLHOMOCYSTEINE 3MAG ; 1.8 ; VACCINIA METHYLTRANSFERASE VP39 COMPLEXED WITH M3ADE AND S-ADENOSYLHOMOCYSTEINE 3MCT ; 2.0 ; VACCINIA METHYLTRANSFERASE VP39 COMPLEXED WITH M3CYT AND S-ADENOSYLHOMOCYSTEINE 1AV6 ; 2.8 ; VACCINIA METHYLTRANSFERASE VP39 COMPLEXED WITH M7G CAPPED RNA HEXAMER AND S-ADENOSYLHOMOCYSTEINE 1EAM ; 2.0 ; VACCINIA METHYLTRANSFERASE VP39 MUTANT (EC: 2.7.7.19) 4DCG ; 1.8 ; VACCINIA METHYLTRANSFERASE VP39 MUTANT D182A COMPLEXED WITH M7G AND S-ADENOSYLHOMOCYSTEINE 1EQA ; 2.2 ; VACCINIA METHYLTRANSFERASE VP39 MUTANT E233Q COMPLEXED WITH M7G AND S-ADENOSYLHOMOCYSTEINE 2VTY ; 2.1 ; Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain swapped dimer 4CKB ; 2.8 ; Vaccinia virus capping enzyme complexed with GTP and SAH 4CKC ; 2.9 ; Vaccinia virus capping enzyme complexed with SAH (monoclinic form) 4CKE ; 2.9 ; Vaccinia virus capping enzyme complexed with SAH in P1 form 5JKT ; 2.49 ; vaccinia virus D4 P173G mutant /A20(1-50) 5JKS ; 2.79 ; vaccinia virus D4 R167A mutant /A20(1-50) 4YIG ; 2.7 ; vaccinia virus D4/A20(1-50) in complex with dsDNA containing an abasic site and free uracyl 5JKR ; 2.6 ; vaccinia virus D4/A20(1-50)w43a mutant 4ETQ ; 2.1 ; Vaccinia virus D8L IMV envelope protein in complex with Fab of murine IgG2a LA5 8APM ; 6.6 ; Vaccinia virus DNA helicase D5 residues 323-785 hexamer with bound DNA processed in C1 8APL ; 4.1 ; Vaccinia virus DNA helicase D5 residues 323-785 hexamer with bound DNA processed in C6 7PHY ; 2.3 ; Vaccinia virus E2 4D2L ; 2.903 ; Vaccinia Virus F1L bound to Bak BH3 4D2M ; 2.1 ; Vaccinia Virus F1L bound to Bim BH3 4YGM ; 1.85 ; Vaccinia virus his-D4/A20(1-50) in complex with uracil 8WT5 ; ; Vaccinia Virus J5 ectodomain 8P4K ; 3.8 ; Vaccinia Virus palisade layer A10 trimer 7NUF ; 2.0004 ; Vaccinia virus protein 018 in complex with STAT1 1VP3 ; 1.9 ; VACCINIA VIRUS PROTEIN VP39 IN COMPLEX WITH S-ADENOSYLHOMOCYSTEINE 1VTP ; ; VACUOLAR TARGETING PEPTIDE FROM NA-PROPI 8ADN ; 2.77 ; Vairimorpha necatrix 20S proteasome from spores 4P53 ; 2.1 ; ValA (2-epi-5-epi-valiolone synthase) from Streptomyces hygroscopicus subsp. jinggangensis 5008 with NAD+ and Zn2+ bound 3J40 ; 4.5 ; Validated Near-Atomic Resolution Structure of Bacteriophage Epsilon15 Derived from Cryo-EM and Modeling 2JW2 ; ; Validation of inter-helical orientation of the steril-alpha-motif of human deleted in liver cancer 2 by residual dipolar couplings 6W46 ; 1.25 ; Valine-Containing Collagen Peptide 3T5T ; 1.7 ; Vall from streptomyces hygroscopicus in apo form 3T7D ; 1.7 ; Vall from streptomyces hygroscopicus in complex with trehalose 8SHI ; 2.90002 ; Valpha3S1 Vbeta13S1 HLA C 0602 VRSRRCLRL 1HS7 ; ; VAM3P N-TERMINAL DOMAIN SOLUTION STRUCTURE 2VX8 ; 2.2 ; Vamp7 longin domain Hrb peptide complex 1YP6 ; 1.8 ; Van der Waals Interactions Dominate Hydrophobic Association in a Protein Binding Site Occluded From Solvent Water 1YP7 ; 2.0 ; Van der Waals Interactions Dominate Hydrophobic Association in a Protein Binding Site Occluded From Solvent Water 2P7E ; 2.05 ; Vanadate at the Active Site of a Small Ribozyme Suggests a Role for Water in Transition-State Stabilization 7QWI ; 2.15 ; Vanadate complex of the vanadium-dependent bromoperoxidase from Corallina pilulifera 6MHZ ; 4.1 ; Vanadate trapped Cryo-EM Structure of E.coli LptB2FG Transporter 7L0H ; 2.1 ; Vanadate-bound PTP1B T177G 7L0M ; 2.0 ; Vanadate-bound YopH G352T 8PMJ ; 2.81 ; Vanadate-trapped BSEP in nanodiscs 1QHB ; 2.3 ; VANADIUM BROMOPEROXIDASE FROM RED ALGA CORALLINA OFFICINALIS 7AIZ ; 1.05 ; Vanadium nitrogenase VFe protein, high CO state 4C3W ; 1.28 ; Vanadium(IV)-Picolinate Complexed with Lysozyme 7QYY ; 1.999 ; Vanadium-dependent bromoperoxidase from Corallina pilulifera in complex with chloride 6DYL ; 1.691 ; Vanadyl-bound structure of the engineered cyt b562 variant, CH3Y* 6DYH ; 1.83 ; Vanadyl-bound structure of the engineered cyt cb562 variant, CH3Y 1AA5 ; 0.89 ; VANCOMYCIN 8G82 ; 1.2 ; Vancomycin bound to D-Ala-D-Ser 2DLN ; 2.3 ; VANCOMYCIN RESISTANCE: STRUCTURE OF D-ALANINE:D-ALANINE LIGASE AT 2.3 ANGSTROMS RESOLUTION 5X1K ; 2.15 ; Vanillate/3-O-methylgallate O-demethylase, LigM, 3-O-methylgallate complex form 5X1M ; 1.9 ; Vanillate/3-O-methylgallate O-demethylase, LigM, protocatechuate-tetrahydrofolate complex form 5X1N ; 2.0 ; Vanillate/3-O-methylgallate O-demethylase, LigM, protocatechuate-tetrahydrofolate complex form 5X1I ; 1.9 ; Vanillate/3-O-methylgallate O-demethylase, LigM, substrate free form 5X1L ; 1.9 ; Vanillate/3-O-methylgallate O-demethylase, LigM, tetrahydrofolate complex form 5X1J ; 1.9 ; Vanillate/3-O-methylgallate O-demethylase, LigM, vanillate complex form 7SLX ; 2.35 ; Vanin-1 complexed with Compound 11 7SLY ; 2.17 ; Vanin-1 complexed with Compound 27 7SLV ; 2.13 ; Vanin-1 complexed with Compound 3 6LG2 ; 1.6 ; VanR bound to Vanillate 8DX0 ; 1.45 ; VanSC CA domain 6A6A ; 2.26 ; VanYB in complex with D-Alanine 5ZHW ; 2.18 ; VanYB in complex with D-Alanine-D-Alanine 5X3T ; 2.65 ; VapBC from Mycobacterium tuberculosis 8BRI ; 3.9 ; VaPomAB MSP1D1 nanodisc 7Z12 ; 3.0 ; VAR2 complex with PAM1.4 7FAS ; 3.6 ; VAR2CSA 3D7 ectodomain core region 7Z1H ; 3.12 ; VAR2CSA APO 7B52 ; 3.8 ; VAR2CSA full ectodomain 7B54 ; 3.1 ; VAR2CSA full ectodomain in present of plCS, DBL1-DBL4 8BBY ; 2.9 ; VarB H/L (SLPL/SLPH) complex from C. difficile SlpA (R20291 strain) 5AIN ; 2.3 ; Varenicline Interactions at the 5HT3 Receptor Ligand Binding Site are Revealed by 5HTBP 109D ; 2.0 ; VARIABILITY IN DNA MINOR GROOVE WIDTH RECOGNISED BY LIGAND BINDING: THE CRYSTAL STRUCTURE OF A BIS-BENZIMIDAZOLE COMPOUND BOUND TO THE DNA DUPLEX D(CGCGAATTCGCG)2 1TVD ; 1.9 ; VARIABLE DOMAIN OF T CELL RECEPTOR DELTA CHAIN 3IY4 ; 11.7 ; Variable domains of the computer generated model (WAM) of Fab 15 fitted into the cryoEM reconstruction of the virus-Fab 15 complex 3IY2 ; 18.0 ; Variable domains of the computer generated model (WAM) of Fab 6 fitted into the cryoEM reconstruction of the virus-Fab 6 complex 3IY3 ; 11.1 ; Variable domains of the computer generated model (WAM) of Fab 8 fitted into the cryoEM reconstruction of the virus-Fab 8 complex 3IY6 ; 12.0 ; Variable domains of the computer generated model (WAM) of Fab E fitted into the cryoEM reconstruction of the virus-Fab E complex 3IY7 ; 14.0 ; Variable domains of the computer generated model (WAM) of Fab F fitted into the cryoEM reconstruction of the virus-Fab F complex 3IY5 ; 18.0 ; Variable domains of the mouse Fab (1AIF) fitted into the cryoEM reconstruction of the virus-Fab 16 complex 3IY1 ; 18.0 ; Variable domains of the WAM of Fab B fitted into the cryoEM reconstruction of the virus-Fab B complex 3IY0 ; 12.5 ; Variable domains of the x-ray structure of Fab 14 fitted into the cryoEM reconstruction of the virus-Fab 14 complex 6GHG ; 1.88 ; Variable heavy - variable light domain and Fab-arm CrossMabs with charged residue exchanges 4BLF ; 20.0 ; Variable internal flexibility characterizes the helical capsid formed by Agrobacterium VirE2 protein on single-stranded DNA. 1F6L ; 2.8 ; VARIABLE LIGHT CHAIN DIMER OF ANTI-FERRITIN ANTIBODY 3TWI ; 2.55 ; Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores 1YJG ; 2.22 ; Variable Small Protein 1 of Borrelia turicatae (VspA or Vsp1) 2GA0 ; 2.7 ; Variable Small Protein 1 of Borrelia turicatae (VspA or Vsp1) 2PXD ; 2.0 ; Variant 1 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXP ; 2.5 ; Variant 13 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXQ ; 2.5 ; Variant 14 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXT ; 2.5 ; Variant 15 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXU ; 2.5 ; Variant 16 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXB ; 2.5 ; Variant 2 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXE ; 2.0 ; Variant 4 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXF ; 2.0 ; Variant 5 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXV ; 2.0 ; Variant 6 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXK ; 2.5 ; Variant 8 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 2PXL ; 2.5 ; Variant 9 of Ribonucleoprotein Core of the E. Coli Signal Recognition Particle 6E6U ; 1.55 ; Variant C89S of Dieckmann cyclase, NcmC 7Q1H ; 1.31 ; Variant D312N of Orotidine 5'-monophosphate decarboxylase-domain of human UMPS in complex with the substrate OMP at 1.31 Angstrom resolution 6HLM ; 1.8 ; Variant G129D of NuoEF from Aquifex aeolicus bound to NAD+ 6HLJ ; 2.1 ; Variant G129S of NuoEF from Aquifex aeolicus - oxidized from 7P56 ; 1.735 ; Variant Surface Glycoprotein 2 (VSG2, MiTat1.2, VSG221) Bound to Calcium 7P5D ; 1.42 ; Variant Surface Glycoprotein 3 (VSG3, MiTat1.3, VSG224) mutant (serine 317 and 319 to alanine) 7P5A ; 1.95 ; Variant Surface Glycoprotein 3 (VSG3, MiTat1.3, VSG224) mutant (serine 317 to alanine), single O-linked glycosylated at Ser319 7P5B ; 1.13 ; Variant Surface Glycoprotein 3 (VSG3, MiTat1.3, VSG224) mutant (serine 319 to alanine), single O-linked glycosylated at Ser317 7P59 ; 1.27 ; Variant Surface Glycoprotein 3 (VSG3, MiTat1.3, VSG224) with two O-linked post-translational modifications 8OK5 ; 1.27 ; Variant Surface Glycoprotein VSG11 monomer with iodine 8OK6 ; 1.75 ; Variant Surface Glycoprotein VSG11 two monomers 8OK4 ; 1.23 ; Variant Surface Glycoprotein VSG11wt-Oil 8ONH ; 2.59 ; Variant Surface Glycoprotein VSG11wt-Oil 8B3E ; 1.26 ; Variant Surface Glycoprotein VSG397 8OK7 ; 1.74 ; Variant Surface Glycoprotein VSG558 NTD 8OK8 ; 3.22 ; Variant Surface Glycoprotein VSG615 6Z7A ; 1.21 ; Variant Surface Glycoprotein VSGsur 6Z7B ; 1.86 ; Variant Surface Glycoprotein VSGsur bound to suramin 6Z7C ; 1.64 ; Variant Surface Glycoprotein VSGsur mutant H122A 6Z7D ; 1.75 ; Variant Surface Glycoprotein VSGsur mutant H122A soaked in 0.77 mM Suramin. 6Z7E ; 1.663 ; Variant Surface Glycoprotein VSGsur mutant H122A soaked in 7.7 mM suramin 6Z79 ; 1.92 ; Variant Surface Glycoprotein VSGsur, I3C (""Magic Triangle"") derivative used for phasing of the structure and subsequently as a model for molecular replacement of native, mutants, and drug soaks. 6TXD ; 2.0 ; Variant W229D/F290W-12 of the last common ancestor of Gram-negative bacteria beta-lactamase class A (GNCA4) 6TWW ; 1.38 ; Variant W229D/F290W-19 of the last common ancestor of Gram-negative bacteria beta-lactamase class A (GNCA4) 6TY6 ; 1.8 ; Variant W229D/F290W-2 of the last common ancestor of Gram-negative bacteria beta-lactamase class A (GNCA4) bound to 5(6)-nitrobenzotriazole (TS-analog) 1AET ; 2.1 ; VARIATION IN THE STRENGTH OF A CH TO O HYDROGEN BOND IN AN ARTIFICIAL PROTEIN CAVITY (1-METHYLIMIDAZOLE) 1AC4 ; 2.1 ; VARIATION IN THE STRENGTH OF A CH TO O HYDROGEN BOND IN AN ARTIFICIAL PROTEIN CAVITY (2,3,4-TRIMETHYL-1,3-THIAZOLE) 1AEQ ; 2.1 ; VARIATION IN THE STRENGTH OF A CH TO O HYDROGEN BOND IN AN ARTIFICIAL PROTEIN CAVITY (2-ETHYLIMIDAZOLE) 1AC8 ; 2.1 ; VARIATION IN THE STRENGTH OF A CH TO O HYDROGEN BOND IN AN ARTIFICIAL PROTEIN CAVITY (3,4,5-TRIMETHYLTHIAZOLE) 1XQM ; 2.1 ; Variations on the GFP chromophore scaffold: A fragmented 5-membered heterocycle revealed in the 2.1A crystal structure of a non-fluorescent chromoprotein 7PAB ; 2.1 ; Varicella zoster Orf24-Orf27 nuclear egress complex 7BW6 ; 3.7 ; Varicella-zoster virus capsid 5BPK ; 1.49 ; Varying binding modes of inhibitors and structural differences in the binding pockets of different gamma-glutamyltranspeptidases 7VRV ; 4.2 ; VAS5 Spike (1 RBD up) 7VRW ; 3.6 ; VAS5 Spike (3 RBD down) 1BJ1 ; 2.4 ; VASCULAR ENDOTHELIAL GROWTH FACTOR IN COMPLEX WITH A NEUTRALIZING ANTIBODY 4WPB ; 3.11 ; Vascular endothelial growth factor in complex with alpha/beta-VEGF-1 1CZ8 ; 2.4 ; VASCULAR ENDOTHELIAL GROWTH FACTOR IN COMPLEX WITH AN AFFINITY MATURED ANTIBODY 1QTY ; 2.7 ; VASCULAR ENDOTHELIAL GROWTH FACTOR IN COMPLEX WITH DOMAIN 2 OF THE FLT-1 RECEPTOR 2VPF ; 1.93 ; VASCULAR ENDOTHELIAL GROWTH FACTOR REFINED TO 1.93 ANGSTROMS RESOLUTION 8JBN ; 1.99 ; Vascular endothelial protein tyrosine phosphatase in complex with Cpd-1 8JBY ; 1.99 ; Vascular endothelial protein tyrosine phosphatase in complex with Cpd-2 7MIT ; 3.4 ; Vascular KATP channel: Kir6.1 SUR2B propeller-like conformation 1 7MJP ; 4.2 ; Vascular KATP channel: Kir6.1 SUR2B propeller-like conformation 2 7MJO ; 4.0 ; Vascular KATP channel: Kir6.1 SUR2B quatrefoil-like conformation 1 7MJQ ; 4.2 ; Vascular KATP channel: Kir6.1 SUR2B quatrefoil-like conformation 2 7PKZ ; 9.8 ; Vault structure in committed conformation 7PKR ; 3.8 ; Vault structure in primmed conformation 6NF1 ; 2.6 ; Vav1 inhibited by an allosteric inhibitor: Vav1 inhibitors block GEF activity 6NFA ; 2.7 ; Vav1 inhibited by an allosteric inhibitor: Vav1 inhibitors block GEF activity 5EB3 ; 2.4 ; VB6-bound protein 3SHG ; 1.5 ; VBHT Fic protein from BARTONELLA SCHOENBUCHENSIS in complex with VBHA antitoxin 3ZC7 ; 2.1 ; VbhT Fic protein from Bartonella schoenbuchensis in complex with VbhA antitoxin and ATP 3ZCB ; 1.94 ; VbhT Fic protein from Bartonella schoenbuchensis in complex with VbhA antitoxin mutant E24G and ATP 8BSA ; 1.9 ; Vc1313-LBD bound to D-arginine 8BSB ; 1.9 ; Vc1313-LBD bound to D-lysine 4JIV ; 1.903 ; VCA0105 PAAR-repeat protein from Vibrio cholerae in complex with a VgrG-like beta-helix that is based on a fragment of T4 gp5 1VSC ; 1.9 ; VCAM-1 6YJB ; 1.55 ; VcaM4I restriction endonuclease 5hmC-ssDNA complex 6YMG ; 3.14 ; VcaM4I restriction endonuclease in complex with 5mC-modified dsDNA 6YEX ; 1.5 ; VcaM4I restriction endonuclease in the absence of DNA 6YKF ; 1.48 ; VcaM4I restriction endonuclease in the presence of 5mC-modified ssDNA 8BDO ; 2.8 ; VCB in complex with compound 21 8BDN ; 2.76 ; VCB in complex with compound 23 8BDM ; 2.021 ; VCB in complex with compound 26 8BDL ; 2.295 ; VCB in complex with compound 27 8BDJ ; 2.02 ; VCB in complex with compound 30 8BDI ; 2.108 ; VCB in complex with compound 32 2XFD ; 1.19 ; vCBM60 in complex with cellobiose 2XFE ; 1.82 ; vCBM60 in complex with galactobiose 7UFI ; 3.4 ; VchTnsC AAA+ ATPase with DNA, single heptamer 7UFM ; 3.9 ; VchTnsC AAA+ with DNA (double heptamer) 7V5H ; 1.7 ; VcOrn native structure with N terminal tag 5VC7 ; 3.9 ; VCP like ATPase from T. acidophilum (VAT) - conformation 1 5VCA ; 4.8 ; VCP like ATPase from T. acidophilum (VAT)-Substrate bound conformation 5KIU ; 2.2 ; VCP-interacting membrane protein (VIMP) 4K1C ; 2.3 ; VCX1 Calcium/Proton Exchanger 7TCV ; 2.604 ; VDAC K12E mutant 5OW7 ; 2.1 ; VDR complex 7OXU ; 2.39 ; VDR complex - calcitroic acid 7OY4 ; 2.0 ; VDR complex of a side-chain hydroxylated derivatives of lithocholic acid 7OXZ ; 2.2 ; VDR complex with a side-chain hydroxylated derivative of lithocholic acid 7ZFG ; 2.62 ; VDR complex with aromatic D-ring analog 7ZFX ; 2.6 ; VDR complex with Aromatic-D-Ring Analog 7BNS ; 2.7 ; VDR complex with BXL-62 7BNU ; 2.4 ; VDR complex with BXL-62 7BO6 ; 2.86 ; VDR complex with LCA derivative 8CK5 ; 2.1 ; VDR LBD complex with 25-nitro derivative of 1,25D3 3VRT ; 2.4 ; VDR ligand binding domain in complex with 2-Mehylidene-19,25,26,27-tetranor-1alpha,24-dihydroxyvitaminD3 3VRU ; 2.0 ; VDR ligand binding domain in complex with 2-Methylidene-19,24-dinor-1alpha,25-dihydroxy vitaminD3 3VRV ; 1.9 ; VDR ligand binding domain in complex with 2-Methylidene-26,27-dimethyl-19,24-dinor-1alpha,25-dihydroxyvitamin D3 3VRW ; 2.4 ; VDR ligand binding domain in complex with 22S-Butyl-2-methylidene-26,27-dimethyl-19,24-dinor-1alpha,25-dihydroxyvitamin D3 6T2M ; 3.0 ; VDR-ZK168281 complex 2OMQ ; 2.0 ; VEALYL peptide derived from human insulin chain B, residues 12-17 6SMS ; 1.47 ; Vegetative Insecticidal Protein 1 (Vip1Ac1) from Bacillus thuringiensis 1FLT ; 1.7 ; VEGF IN COMPLEX WITH DOMAIN 2 OF THE FLT-1 RECEPTOR 6ZCD ; 1.8 ; VEGF-A 13:107 crystallized with 1C bicyclic peptide 6Z3F ; 2.1 ; VEGF-A 13:107 crystallized with 2C bicyclic peptide 6Z13 ; 1.8 ; VEGF-A 13:107 crystallized with 3C bicyclic peptide 6ZBR ; 1.6 ; VEGF-A 13:107 crystallized with 4C bicyclic peptide 3V2A ; 3.204 ; VEGFR-2/VEGF-A COMPLEX STRUCTURE 3V6B ; 3.205 ; VEGFR-2/VEGF-E complex structure 1YWN ; 1.71 ; Vegfr2 in complex with a novel 4-amino-furo[2,3-d]pyrimidine 2WKL ; 2.7 ; Velaglucerase alfa 7ZQA ; 3.6 ; VelcroVax tandem HBcAg with SUMO-Affimer inserted at MIR (T=3* VLP) 7ZQ8 ; 2.9 ; VelcroVax tandem HBcAg with SUMO-Affimer inserted at MIR (T=4 VLP) 5EZQ ; 1.66 ; Venezuelan Equine Encephalitis Virus (VEEV) Nonstructural protein 2 (nsP2) Cysteine Protease 5EZS ; 2.16 ; Venezuelan Equine Encephalitis Virus (VEEV) Nonstructural Protein 2 (nsP2) Cysteine Protease Inhibited by E64d 8T8N ; 2.32 ; Venezuelan Equine Encephalitis Virus (VEEV) Nonstructural Protein 2 (nsP2) Cysteine Protease Inhibited with CA074 8EEV ; 3.6 ; Venezuelan equine encephalitis virus-like particle in complex with Fab SKT-20 8EEU ; 3.5 ; Venezuelan equine encephalitis virus-like particle in complex with Fab SKT05 6SM0 ; 1.91 ; Venus 66 p-Azido-L-Phenylalanin (azF) variant, dark grown 4V25 ; 2.6 ; VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and induces context- dependent cytostasis in cancer cells 4V26 ; 2.49 ; VER-246608, a novel pan-isoform ATP competitive inhibitor of pyruvate dehydrogenase kinase, disrupts Warburg metabolism and induces context- dependent cytostasis in cancer cells 1B7L ; 1.8 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7M ; 2.2 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7N ; 1.8 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7O ; 1.8 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7P ; 2.0 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7Q ; 2.0 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7R ; 1.8 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 1B7S ; 2.0 ; VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES 7PXG ; 2.73 ; Verruculogen-bound Drosophila Slo channel 7CC3 ; 1.72 ; Versatile cis-prenyltransferase MM_0014 from Methanosarcina mazei (crystal type: co-FG) 7CAV ; 1.91 ; Versatile cis-prenyltransferase MM_0014 from Methanosarcina mazei (crystal type: co-FG+DMAPP) 7CAR ; 1.98 ; Versatile cis-prenyltransferase MM_0014 from Methanosarcina mazei (crystal type: free+IPP) 7CAS ; 2.28 ; Versatile cis-prenyltransferase MM_0014 from Methanosarcina mazei (crystal type: free+PPi) 7CAQ ; 1.69 ; Versatile cis-prenyltransferase MM_0014 from Methanosarcina mazei (crystal type: substrate-free) 1YFN ; 1.8 ; Versatile modes of peptide recognition by the AAA+ adaptor protein SspB- the crystal structure of a SspB-RseA complex 5XMZ ; 1.85 ; Verticillium effector PevD1 5AOT ; 1.02 ; Very high resolution structure of a novel carbohydrate binding module from Ruminococcus flavefaciens FD-1 endoglucanase Cel5A 1VSR ; 1.8 ; VERY SHORT PATCH REPAIR (VSR) ENDONUCLEASE FROM ESCHERICHIA COLI 1ODG ; 2.8 ; Very-short-patch DNA repair endonuclease bound to its reaction product site 1QNX ; 1.9 ; Ves v 5, an allergen from Vespula vulgaris venom 5UK4 ; 3.204 ; VESICULAR STOMATITS VIRUS N PROTEIN IN COMPLEX WITH INHIBITORY NANOBODY 1307 4OWR ; 3.15 ; Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair Rae1-Nup98 6FI2 ; 1.22 ; VexL: A periplasmic depolymerase provides new insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides 7T5O ; 3.39 ; VFLIP Spike Trimer with GAR03 8GAS ; 4.04 ; vFP48.02 Fab in complex with BG505 DS-SOSIP Env trimer 8G85 ; 3.99 ; vFP52.02 Fab in complex with BG505 DS-SOSIP Env trimer 5Z5W ; ; VFR12 in complex with LPS micelles 5WRX ; ; VG13P structure in LPS 2N9M ; ; VG16KRKP solution structure in C.neoformans live cells (conformation 2) 7NHL ; 3.1 ; VgaA-LC, an antibiotic resistance ABCF, in complex with 70S ribosome from Staphylococcus aureus 7NHN ; 2.9 ; VgaL, an antibiotic resistance ABCF, in complex with 70S ribosome from Listeria monocytogenes 5Z2Q ; 2.74 ; Vgll1-TEAD4 core complex 5VOS ; 1.42 ; VGSNKGAIIGL from Amyloid Beta determined by MicroED 1VHP ; ; VH-P8, NMR 5WKZ ; 1.85 ; VH1-69 germline antibody predicted from CR6261 5WL2 ; 2.0 ; VH1-69 germline antibody with CDR H3 sequence of CR9114 7TJC ; 1.35 ; VHH Chl-B2 in complex with Chloramphenicol 6U12 ; 1.56 ; VHH R303 C33A/C102A in complex withthe LRR domain of InlB 6U14 ; 1.3 ; VHH R303 C33A/C102A in complex withthe LRR domain of InlB 7QCQ ; 1.7 ; VHH Z70 in interaction with PHF6 Tau peptide 8OPI ; 1.83 ; VHH Z70 mutant 1 in interaction with PHF6 Tau peptide 8OP0 ; 1.54 ; VHH Z70 mutant 20 in interaction with PHF6 Tau peptide 8PII ; 2.35 ; VHH Z70 mutant 3 in interaction with PHF6 Tau peptide 4POU ; 1.75 ; VHH-metal in Complex with RNase A 7CJB ; 2.8 ; VHL recognizes hydroxyproline in RIPK1 8QJS ; 3.191 ; VHL/Elongin B/Elongin C complex with compound 155 3G2W ; 2.4 ; VHS Domain of human GGA1 complexed with a DXXLL hinge peptide 1UJJ ; 2.6 ; VHS domain of human GGA1 complexed with C-terminal peptide from BACE 1UJK ; 1.9 ; VHS domain of human GGA1 complexed with C-terminal phosphopeptide from BACE 1JWG ; 2.0 ; VHS Domain of human GGA1 complexed with cation-independent M6PR C-terminal Peptide 3G2S ; 1.7 ; VHS Domain of human GGA1 complexed with SorLA C-terminal Peptide 3G2T ; 2.0 ; VHS Domain of human GGA1 complexed with SorLA C-terminal Phosphopeptide 3G2U ; 2.301 ; VHS Domain of human GGA1 complexed with Sotilin C-terminal Peptide 3G2V ; 2.1 ; VHS Domain of human GGA1 complexed with Sotilin C-terminal Phosphopeptide 1ELK ; 1.5 ; VHS domain of TOM1 protein from H. sapiens 1MT7 ; 1.9 ; Viability of a drug-resistant HIV-1 protease mutant: structural insights for better antiviral therapy 1MT8 ; 2.15 ; Viability of a drug-resistant HIV-1 protease mutant: structural insights for better antiviral therapy 1MT9 ; 2.0 ; Viability of a drug-resistant HIV-1 protease mutant: structural insights for better antiviral therapy 1MTB ; 2.5 ; Viability of a drug-resistant HIV-1 protease mutant: structural insights for better antiviral therapy 1N49 ; 2.2 ; Viability of a Drug-Resistant HIV-1 Protease Variant: Structural Insights for Better Anti-Viral Therapy 7NPD ; 2.6 ; Vibiro cholerae ParA2 7DAG ; 4.37 ; Vibrio cholera aldehyde-alcohol dehrogenase 7R5A ; 2.95 ; Vibrio cholera ParD2:ParE2 antitoxin:toxin complex 2XWX ; 1.8 ; Vibrio cholerae colonization factor GbpA crystal structure 4GX7 ; 2.85 ; Vibrio Cholerae Cytolysin Beta-Prism Domain With Methyl-Alpha-Mannose Bound 3GSM ; 2.4 ; Vibrio cholerae family 3 glycoside hydrolase (NagZ) bound to N-Valeryl-PUGNAc 2OXN ; 1.7 ; Vibrio cholerae family 3 glycoside hydrolase (NagZ) in complex with PUGNAc 8CC3 ; 1.128 ; Vibrio cholerae GbpA (LPMO domain) 8CC5 ; 1.62 ; Vibrio cholerae GbpA (LPMO domain) 2PBX ; 2.2 ; Vibrio cholerae HapR 6PWJ ; 2.7 ; Vibrio cholerae LapD S helix-GGDEF-EAL (apo) 6PWK ; 2.61 ; Vibrio cholerae LapD S helix-GGDEF-EAL (bound to c-di-GMP) 6KSG ; 1.9 ; Vibrio cholerae Methionine Aminopeptidase in holo form 1KIT ; 2.3 ; VIBRIO CHOLERAE NEURAMINIDASE 6EKS ; 1.87 ; Vibrio cholerae neuraminidase complexed with oseltamivir carboxylate 6EKU ; 1.75 ; Vibrio cholerae neuraminidase complexed with zanamivir 4XCK ; 2.37 ; Vibrio cholerae O395 Ribokinase complexed with ADP, Ribose and Cesium ion. 4XDA ; 1.75 ; Vibrio cholerae O395 Ribokinase complexed with Ribose, ADP and Sodium ion. 4X8F ; 3.4 ; Vibrio cholerae O395 Ribokinase in apo form 6N6C ; 1.619 ; Vibrio cholerae Oligoribonuclease bound to pAA 6N6D ; 1.534 ; Vibrio cholerae Oligoribonuclease bound to pAG 6N6G ; 2.018 ; Vibrio cholerae Oligoribonuclease bound to pCG 6N6H ; 1.757 ; Vibrio cholerae Oligoribonuclease bound to pCpU 6N6E ; 1.578 ; Vibrio cholerae Oligoribonuclease bound to pGA 6N6F ; 1.735 ; Vibrio cholerae Oligoribonuclease bound to pGC 6N6A ; 1.5 ; Vibrio cholerae Oligoribonuclease bound to pGG 7NPE ; 3.2 ; Vibrio cholerae ParA2-ADP 7NPF ; 4.5 ; Vibrio cholerae ParA2-ATPyS-DNA filament 7B22 ; 3.08 ; Vibrio cholerae ParD2 Antitoxin 5G50 ; 2.3 ; Vibrio cholerae scaffolding protein RbmA in complex with magnesium. 1W0O ; 1.9 ; Vibrio cholerae sialidase 1W0P ; 1.6 ; Vibrio cholerae sialidase with alpha-2,6-sialyllactose 3KLN ; 3.078 ; Vibrio cholerae VpsT 3KLO ; 2.802 ; Vibrio cholerae VpsT bound to c-di-GMP 3GS6 ; 2.3 ; Vibrio Cholerea family 3 glycoside hydrolase (NagZ)in complex with N-butyryl-PUGNAc 8GM3 ; 1.727 ; Vibrio harveyi Holo HphA 7Q6I ; 3.6 ; Vibrio maritimus FtsA 1-396 ATP and FtsN 1-29, bent tetramers in double filament arrangement 7Q6F ; 3.31 ; Vibrio maritimus FtsA 1-396 ATP, double filament 5KEV ; 2.7 ; Vibrio parahaemolyticus VtrA/VtrC complex 8DML ; 2.08 ; Vibrio parahaemolyticus VtrA/VtrC complex bound to the bile salt chenodeoxycholate 5KEW ; 2.103 ; Vibrio parahaemolyticus VtrA/VtrC complex bound to the bile salt taurodeoxycholate 4XNR ; 2.21 ; Vibrio Vulnificus Adenine Riboswitch Aptamer Domain, Synthesized by Position-selective Labeling of RNA (PLOR), in Complex with Adenine 4TZY ; 2.57 ; Vibrio vulnificus Adenine Riboswitch Variant, grown in both Sr2+ and Mg2+ 4TZX ; 2.01 ; Vibrio Vulnificus Adenine Riboswitch variant, grown in Mg2+ 6I1Y ; 3.4 ; Vibrio vulnificus EpsD 7O0I ; 8.3 ; Vibrio vulnificus stressosome 7DHD ; 1.71 ; Vibrio vulnificus Wzb 7DHE ; 2.79 ; Vibrio vulnificus Wzb in complex with benzylphosphonate 7DHF ; 1.211 ; Vibrio vulnificus Wzb in complex with benzylphosphonate 7PBK ; 2.8 ; Vibriophage phiVC8 family A DNA polymerase (DpoZ), two conformations: thumb-exo open and thumb-exo closed 7UV1 ; ; Vicilin Ana o 1.0101 leader sequence residues 20-75 7CG2 ; 2.001 ; Vigna radiata Epoxide hydrolase mutant 7CG6 ; 2.0 ; Vigna radiata Epoxide hydrolase mutant M263Q 6X89 ; 3.9 ; Vigna radiata mitochondrial complex I* 8E73 ; 3.2 ; Vigna radiata supercomplex I+III2 (full bridge) 2L3X ; ; villin head piece domain of human ABLIM2 5I1O ; 1.348 ; Villin headpiece subdomain with a Gln26 to ACPC substitution 5I1N ; 1.3 ; Villin headpiece subdomain with a Gln26 to beta-3-homoglutamine substitution 5I1S ; 1.12 ; Villin headpiece subdomain with a Lys30 to APC substitution 5I1P ; 1.4 ; Villin headpiece subdomain with a Lys30 to beta-3-homolysine substitution 6Y6J ; 1.5 ; VIM-2 in Complex with Biapenem Imine and Enamine Hydrolysis Products 5K48 ; 1.744 ; VIM-2 Metallo Beta Lactamase in complex with 3-(mercaptomethyl)-[1,1'-biphenyl]-4-carboxylic acid 5N4S ; 1.2 ; VIM-2 metallo-beta-lactamase in complex with ((S)-3-mercapto-2-methylpropanoyl)-D-tryptophan (Compound 3) 5N4T ; 1.16 ; VIM-2 metallo-beta-lactamase in complex with ((S)-3-mercapto-2-methylpropanoyl)-L-tryptophan (Compound 4) 5Y6D ; 2.1 ; VIM-2 metallo-beta-lactamase in complex with (R)-2-(4-fluorophenyl)-2-((S)-3-mercapto-2-methylpropanamido)acetic acid (compound 11) 5Y6E ; 1.8 ; VIM-2 metallo-beta-lactamase in complex with (R)-2-(4-hydroxyphenyl)-2-((S)-3-mercapto-2-methylpropanamido)acetic acid (compound 12) 5LCH ; 1.94 ; VIM-2 metallo-beta-lactamase in complex with (S)-1-allyl-2-(3-methoxyphenyl)-3-oxoisoindoline-4-carboxylic acid (compound 42) 5LE1 ; 1.4 ; VIM-2 metallo-beta-lactamase in complex with 2-(2-chloro-6-fluorobenzyl)-3-oxoisoindoline-4-carboxylic acid (compound 16) 5LM6 ; 1.17 ; VIM-2 metallo-beta-lactamase in complex with 2-(3-fluoro-4-hydroxyphenyl)-3-oxoisoindoline-4-carboxylic acid (compound 35) 5LCA ; 1.93 ; VIM-2 metallo-beta-lactamase in complex with 3-oxo-2-(3-(trifluoromethyl)phenyl)isoindoline-4-carboxylic acid (compound 17) 5LCF ; 1.86 ; VIM-2 metallo-beta-lactamase in complex with 3-oxo-2-phenylisoindoline-4-carboxylic acid (compound 30) 8R5U ; 1.56 ; VIM-2 metallo-beta-lactamase in complex with benzebisheterocycle compound 14 1KO2 ; 2.2 ; VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa with an oxidized Cys (cysteinesulfonic) 1KO3 ; 1.91 ; VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa with Cys221 reduced 5ACW ; 1.8 ; VIM-2-1, Discovery of novel inhibitor scaffolds against the metallo- beta-lactamase VIM-2 by SPR based fragment screening 5ACX ; 1.8 ; VIM-2-2, Discovery of novel inhibitor scaffolds against the metallo- beta-lactamase VIM-2 by SPR based fragment screening 5ACU ; 2.1 ; VIM-2-NAT, Discovery of novel inhibitor scaffolds against the metallo- beta-lactamase VIM-2 by SPR based fragment screening 5ACV ; 1.963 ; VIM-2-OX, Discovery of novel inhibitor scaffolds against the metallo- beta-lactamase VIM-2 by SPR based fragment screening 4UWS ; 1.66 ; VIM-26-PEG. Leu224 in VIM-26 from Klebsiella pneumoniae has implications for drug binding. 5NHZ ; 1.85 ; VIM-2_10b. Metallo-beta-Lactamase Inhibitors by Bioisosteric Replacement: Preparation, Activity and Binding 5NI0 ; 1.673 ; VIM-2_10c. Metallo-beta-Lactamase Inhibitors by Bioisosteric Replacement: Preparation, Activity and Binding 6TM9 ; 1.07 ; VIM-2_1cc-. Triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-beta-lactamases 6TMC ; 1.4 ; VIM-2_1dh-Triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-beta-lactamases 6TMB ; 1.5 ; VIM-2_1di-Triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-beta-lactamases 6TMA ; 1.5 ; VIM-2_1dj- Triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-beta-lactamases 5MM9 ; 1.55 ; VIM-2_2b. Metallo-beta-Lactamase Inhibitors by Bioisosteric Replacement: Preparation, Activity and Binding 2Y8A ; 2.33 ; VIM-7 with Oxidised. Structural and computational investigations of VIM-7: Insights into the substrate specificity of VIM metallo-beta- lactamases 2Y8B ; 1.7 ; VIM-7 with Oxidised. Structural and computational investigations of VIM-7: Insights into the substrate specificity of VIM metallo-beta- lactamases 8RVE ; 7.2 ; Vimentin intermediate filament 8CLE ; 3.2 ; Vinblastine bound to tubulin (T2R-TTL) complex 1T01 ; 2.06 ; Vinculin complexed with the VBS1 helix from talin 1ZVZ ; 1.8 ; Vinculin Head (0-258) in Complex with the Talin Rod Residue 820-844 1ZW3 ; 3.3 ; Vinculin Head (0-258) in Complex with the Talin Rod residues 1630-1652 1ZW2 ; 2.1 ; Vinculin Head (0-258) in Complex with the Talin Rod residues 2345-2369 1U6H ; 2.38 ; Vinculin head (0-258) in complex with the talin vinculin binding site 2 (849-879) 3ZDL ; 2.3 ; Vinculin head (1-258) in complex with a RIAM fragment 1XWJ ; 2.6 ; Vinculin head (1-258) in complex with the talin vinculin binding site 3 (1945-1969) 6BFI ; 2.3 ; Vinculin homolog in a sponge (phylum Porifera) reveals vertebrate-like cell adhesions involved in early multicellular evolution 7CNN ; 2.5 ; vinorelbine in complex with tubulin 3OZ3 ; 1.57 ; Vinyl Carbocyclic LNA 6ALN ; 1.8 ; VioC L-arginine hydroxylase bound to Fe(II), 3S-hydroxy-L-arginine, and 2OG 6ALP ; 1.99 ; VioC L-arginine hydroxylase bound to Fe(II), 3S-hydroxy-L-arginine, and succinate 6ALM ; 1.6 ; VioC L-arginine hydroxylase bound to Fe(II), L-arginine, and 2-OXO-GLUTARIC ACID 6ALO ; 1.79 ; VioC L-arginine hydroxylase bound to Fe(II), L-arginine, and a peroxysuccinate intermediate 6ALQ ; 1.67 ; VioC L-arginine hydroxylase bound to Fe(II), L-arginine, and succinate 6ALR ; 1.55 ; VioC L-arginine hydroxylase bound to the vanadyl ion, L-arginine, and succinate 3BMZ ; 1.21 ; Violacein biosynthetic enzyme VioE 2FQA ; ; Violacin A 6TFJ ; 2.9 ; Vip3Aa protoxin structure 6TFK ; 2.9 ; Vip3Aa toxin structure 6V1V ; 3.189 ; VIP3B (VIP3B_2160) adapted for crystallization 6YRF ; 3.9 ; Vip3Bc1 tetramer 6YRG ; 4.8 ; Vip3Bc1 tetramer in processed, activated state 7NTX ; 4.75 ; Vip3Bc1 tetramer in processed, activated state 7MJR ; 3.22 ; Vip4Da2 toxin structure 5MYU ; 4.0 ; VipA-N2/VipB contracted sheath of type VI secretion system 1AOK ; 2.0 ; VIPOXIN COMPLEX 1JLT ; 1.4 ; Vipoxin Complex 3EB8 ; 2.4 ; VirA 4FMB ; 3.2 ; VirA-Rab1 complex structure 1OHR ; 2.1 ; VIRACEPT (R) (NELFINAVIR MESYLATE, AG1343): A POTENT ORALLY BIOAVAILABLE INHIBITOR OF HIV-1 PROTEASE 7TVL ; 0.89 ; Viral AMG chitosanase V-Csn, apo structure 7TVM ; 1.35 ; Viral AMG chitosanase V-Csn, apo structure, crystal form 2 7TVN ; 1.2 ; Viral AMG chitosanase V-Csn, D148N mutant 7TVO ; 1.15 ; Viral AMG chitosanase V-Csn, E157Q mutant 7TVP ; 1.3 ; Viral AMG chitosanase V-Csn, E157Q mutant, chitotriose complex 1TD0 ; 1.95 ; Viral capsid protein SHP at pH 5.5 1MKF ; 2.1 ; VIRAL CHEMOKINE BINDING PROTEIN M3 FROM MURINE GAMMAHERPESVIRUS 68 2NYZ ; 2.6 ; Viral Chemokine Binding Protein M3 From Murine Gammaherpesvirus68 In Complex With The C- Chemokine XCL1 2NZ1 ; 2.5 ; Viral Chemokine Binding Protein M3 From Murine Gammaherpesvirus68 In Complex With The CC-Chemokine CCL2/MCP-1 1ML0 ; 2.8 ; VIRAL CHEMOKINE BINDING PROTEIN M3 FROM MURINE GAMMAHERPESVIRUS68 IN COMPLEX WITH THE P8A VARIANT OF CC-CHEMOKINE MCP-1 4ZKQ ; 1.898 ; Viral chemokine binding protein R17 encoded by rodent gammaherpesvirus Peru ( RHVP) 5ND1 ; 3.7 ; Viral evolution results in multiple, surface-allocated enzymatic activities in a fungal double-stranded RNA virus 6JIM ; 2.0 ; Viral helicase protein 7E6K ; 1.6 ; Viral protease 8ADB ; 1.73 ; Viral tegument-like DUBs 8ADC ; 1.7 ; Viral tegument-like DUBs 8ADD ; 1.9 ; Viral tegument-like DUBs 6KNA ; ; Viral Ubiquitin from Autographa californica Nucleo Polyhedrosis Virus 7AED ; 1.753 ; VirB8 domain of PrgL from Enterococcus faecalis pCF10 8AHQ ; 2.1 ; VirD/holo-ACP5b of Streptomyces virginiae complex 6TUI ; 10.47 ; Virion of empty GTA particle 7NS2 ; 3.63 ; Virion of Leishmania RNA virus 1 6TBA ; 4.54 ; Virion of native gene transfer agent (GTA) particle 6VR4 ; 3.5 ; Virion-packaged DNA-dependent RNA polymerase of crAss-like phage phi14:2 3VFE ; 1.88 ; Virtual Screening and X-Ray Crystallography for Human Kallikrein 6 Inhibitors with an Amidinothiophene P1 Group 7AJR ; 1.75 ; Virtual screening approach leading to the identification of a novel and tractable series of Pseudomonas aeruginosa elastase inhibitors 8DIB ; 2.17 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DIC ; 2.09 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DID ; 1.95 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DIE ; 1.9 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DIF ; 1.98 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DIG ; 2.45 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DIH ; 2.12 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 8DII ; 2.59 ; Virtual screening for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors 7B1Z ; 1.71 ; Virulence-associated protein VapB from the intracellular pathogen Rhodococcus equi 5AEO ; 1.8 ; Virulence-associated protein VapG from the intracellular pathogen Rhodococcus equi 8OKR ; 2.86 ; virus enhancing amyloid fibril formed by CKFKFQF 2XGK ; 4.2 ; Virus like particle of L172W mutant of Minute Virus of Mice - the immunosuppressive strain 3J7M ; 3.8 ; Virus model of brome mosaic virus (first half data set) 3J7N ; 3.8 ; Virus model of brome mosaic virus (second half data set) 8OPE ; 3.09 ; Virus-like Particle based on PVY coat protein with dC40 deletion with helical architecture encapsidating ssRNA 8OPD ; 3.5 ; Virus-like Particle based on PVY coat protein with dC40 deletion with stacked-ring architecture 8OPF ; 2.83 ; Virus-like Particle based on PVY coat protein with dC60 deletion with RNA-free helical architecture 8OPG ; 3.2 ; Virus-like Particle based on PVY coat protein with dC79 deletion with RNA-free helical architecture 8OPC ; 2.99 ; Virus-like Particle based on PVY coat protein with helical architecture encapsidating ssRNA 8OPB ; 3.58 ; Virus-like Particle based on PVY coat protein with RNA-free helical architecture 8OPA ; 3.34 ; Virus-like Particle based on PVY coat protein with stacked-ring architecture 8OPL ; 2.41 ; Virus-like Particle based on PVY coat protein with T43C and D136C mutation with helical architecture encapsidating ssRNA 6YF7 ; 3.4 ; Virus-like particle of bacteriophage AC 6YF9 ; 3.196 ; Virus-like particle of bacteriophage AVE002 6YFA ; 3.3 ; Virus-like particle of bacteriophage AVE015 6YFB ; 3.59 ; Virus-like particle of bacteriophage AVE016 6YFC ; 3.246 ; Virus-like particle of bacteriophage AVE019 6YFH ; 3.893 ; Virus-like particle of bacteriophage EMS014 6YFJ ; 3.233 ; Virus-like particle of bacteriophage ESE001 6YFK ; 3.7 ; Virus-like particle of bacteriophage ESE007 6YFL ; 3.3 ; Virus-like particle of bacteriophage ESE020 6YFM ; 2.762 ; Virus-like particle of bacteriophage ESE021 6YFN ; 3.189 ; Virus-like particle of bacteriophage ESE058 6YFP ; 3.1 ; Virus-like particle of bacteriophage GQ-112 6YFO ; 3.484 ; Virus-like particle of bacteriophage GQ-907 6YFQ ; 3.8 ; Virus-like particle of bacteriophage NT-214 6YFR ; 2.6 ; Virus-like particle of bacteriophage NT-391 6YFS ; 3.498 ; Virus-like particle of bacteriophage PQ-465 6YFD ; 3.3 ; Virus-like particle of Beihai levi-like virus 14 6YFE ; 3.794 ; Virus-like particle of Beihai levi-like virus 19 6YFF ; 3.089 ; Virus-like particle of Beihai levi-like virus 21 6YFG ; 3.897 ; Virus-like particle of Beihai levi-like virus 32 6YFT ; 3.5 ; Virus-like particle of Wenzhou levi-like virus 1 6YFU ; 4.018 ; Virus-like particle of Wenzhou levi-like virus 4 6HXZ ; 4.1 ; Virus-like Particles based on Potato Virus Y 6QGM ; 2.75 ; VirX1 apo structure 4Y1W ; 1.4 ; Vis toxin, an ADP-ribosyltransferase from Vibrio Splendidus 1OKH ; 1.75 ; Viscotoxin A3 from Viscum album L. 8HJE ; 2.85 ; Vismodegib binds to the catalytical domain of human Ubiquitin-Specific Protease 28 1JEK ; 1.5 ; Visna TM CORE STRUCTURE 3HPG ; 3.28 ; Visna virus integrase (residues 1-219) in complex with LEDGF IBD: examples of open integrase dimer-dimer interfaces 4ZRG ; 2.7 ; Visual arrestin mutant - R175E 2XMJ ; 1.08 ; Visualising the Metal-binding Versatility of Copper Trafficking Sites: Atx1 side-to-side (aerobic) 2XMK ; 1.35 ; Visualising the Metal-binding Versatility of Copper Trafficking Sites: Atx1 side-to-side (anaerobic) 2XMM ; 1.65 ; Visualising the Metal-binding Versatility of Copper Trafficking Sites: H61Y Atx1 side-to-side 5ABB ; 8.0 ; Visualization of a polytopic membrane protein during SecY-mediated membrane insertion 2TMV ; 2.9 ; VISUALIZATION OF PROTEIN-NUCLEIC ACID INTERACTIONS IN A VIRUS. REFINED STRUCTURE OF INTACT TOBACCO MOSAIC VIRUS AT 2.9 ANGSTROMS RESOLUTION BY X-RAY FIBER DIFFRACTION 4V7B ; 6.8 ; Visualization of two tRNAs trapped in transit during EF-G-mediated translocation 1NKN ; 2.5 ; VISUALIZING AN UNSTABLE COILED COIL: THE CRYSTAL STRUCTURE OF AN N-TERMINAL SEGMENT OF THE SCALLOP MYOSIN ROD 3O8B ; 1.95 ; Visualizing ATP-dependent RNA Translocation by the NS3 Helicase from HCV 3O8C ; 2.0 ; Visualizing ATP-dependent RNA Translocation by the NS3 Helicase from HCV 3O8D ; 2.05 ; Visualizing ATP-dependent RNA Translocation by the NS3 Helicase from HCV 3O8R ; 2.304 ; Visualizing ATP-dependent RNA Translocation by the NS3 Helicase from HCV 3ZPZ ; 8.9 ; Visualizing GroEL-ES in the Act of Encapsulating a Non-Native Substrate Protein 3ZQ0 ; 9.2 ; Visualizing GroEL-ES in the Act of Encapsulating a Non-Native Substrate Protein 3ZQ1 ; 15.9 ; Visualizing GroEL-ES in the Act of Encapsulating a Non-Native Substrate Protein 3PN7 ; 2.25 ; Visualizing new hinges and a potential major source of compliance in the lever arm of myosin 8BLW ; 3.22 ; Vitamin B12 transporter BtuB1 with lipoprotein BtuG1 from B. theta 6FOD ; 2.5 ; Vitamin D nuclear receptor complex 1 6FO9 ; 2.701 ; Vitamin D nuclear receptor complex 2 6FO7 ; 2.59 ; Vitamin D nuclear receptor complex 3 6FO8 ; 2.3 ; Vitamin D nuclear receptor complex 4 5OW9 ; 2.403 ; Vitamin D receptor complex 5OWD ; 2.151 ; Vitamin D receptor complex 6FOB ; 2.75 ; Vitamin D receptor complex 5 8CKC ; 2.1 ; Vitamin D receptor complex with 25-amine derivative of 1,25D3 3VJS ; 1.93 ; Vitamin D receptor complex with a carborane compound 3VJT ; 2.0 ; Vitamin D receptor complex with a carborane compound 4Q0A ; 1.9 ; Vitamin D Receptor complex with lithocholic acid 7VQP ; 1.94 ; Vitamin D receptor complexed with a lithocholic acid derivative 5XZF ; 2.1 ; Vitamin D receptor with a synthetic ligand ADRO1 5XZH ; 2.0 ; Vitamin D receptor with a synthetic ligand ADRO2 7C7V ; 2.0 ; Vitamin D3 receptor/lithochoric acid derivative complex 7C7W ; 1.9 ; Vitamin D3 receptor/lithochoric acid derivative complex 6WVI ; 2.4 ; VKOR-like from Takifugu rubripes 2B2X ; 2.2 ; VLA1 RdeltaH I-domain complexed with a quadruple mutant of the AQC2 Fab 6ECB ; 1.7 ; Vlm2 thioesterase domain wild type structure 1 6ECC ; 1.8 ; Vlm2 thioesterase domain wild type structure 2 6ECE ; 2.0 ; Vlm2 thioesterase domain with genetically encoded 2,3-diaminopropionic acid bound with a dodecadepsipeptide, space group H3 6ECF ; 2.5 ; Vlm2 thioesterase domain with genetically encoded 2,3-diaminopropionic acid bound with a dodecadepsipeptide, space group P1 6ECD ; 1.9 ; Vlm2 thioesterase domain with genetically encoded 2,3-diaminopropionic acid bound with a tetradepsipeptide 8TGJ ; 3.5 ; VMAT1 dimer in unbound form and with reserpine 8TGH ; 3.5 ; VMAT1 dimer with amphetamine and reserpine 8TGI ; 3.4 ; VMAT1 dimer with dopamine and reserpine 8TGK ; 3.7 ; VMAT1 dimer with histamine and reserpine 8TGG ; 3.6 ; VMAT1 dimer with MPP+ and reserpine 8TGL ; 3.4 ; VMAT1 dimer with norepinephrine and reserpine 8TGM ; 3.5 ; VMAT1 dimer with reserpine 8TGN ; 3.3 ; VMAT1 dimer with serotonin and reserpine 5WHG ; 2.7 ; Vms1 mitochondrial localization core 1NK2 ; ; VND/NK-2 HOMEODOMAIN/DNA COMPLEX, NMR, 20 STRUCTURES 1NK3 ; ; VND/NK-2 HOMEODOMAIN/DNA COMPLEX, NMR, MINIMIZED AVERAGE STRUCTURE 1VND ; ; VND/NK-2 PROTEIN (HOMEODOMAIN), NMR 5UZ7 ; 4.1 ; Volta phase plate cryo-electron microscopy structure of a calcitonin receptor-heterotrimeric Gs protein complex 3EB4 ; 2.0 ; Voltage-dependent K+ channel beta subunit (I211R) in complex with cortisone 3EB3 ; 2.0 ; Voltage-dependent K+ channel beta subunit (W121A) in complex with cortisone 3EAU ; 1.82 ; Voltage-dependent K+ channel beta subunit in complex with cortisone 8F1D ; 2.94 ; Voltage-gated potassium channel Kv3.1 apo 8F1C ; 2.92 ; Voltage-gated potassium channel Kv3.1 with novel positive modulator (9M)-9-{5-chloro-6-[(3,3-dimethyl-2,3-dihydro-1-benzofuran-4-yl)oxy]-4-methylpyridin-3-yl}-2-methyl-7,9-dihydro-8H-purin-8-one (compound 4) 3WKV ; 3.453 ; Voltage-gated proton channel: VSOP/Hv1 chimeric channel 4JPZ ; 3.02 ; Voltage-gated sodium channel 1.2 C-terminal domain in complex with FGF13U and Ca2+/calmodulin 4OVN ; 2.8 ; Voltage-gated Sodium Channel 1.5 (Nav1.5) C-terminal domain in complex with Calmodulin poised for activation 4JQ0 ; 3.84 ; Voltage-gated sodium channel 1.5 C-terminal domain in complex with FGF12B and Ca2+/calmodulin 4L1D ; 2.5 ; Voltage-gated sodium channel beta3 subunit Ig domain 7DTD ; 3.3 ; Voltage-gated sodium channel Nav1.1 and beta4 6MUE ; 1.9 ; Voltage-gated sodium channel NaV1.4 IQ domain in complex with Ca2+/Calmodulin 6MUD ; 2.69 ; Voltage-gated sodium channel NaV1.5 C-terminal domain in complex with Ca2+/Calmodulin 6LQA ; 3.3 ; voltage-gated sodium channel Nav1.5 with quinidine 7DTC ; 3.3 ; voltage-gated sodium channel Nav1.5-E1784K 8XMN ; 3.37 ; Voltage-gated sodium channel Nav1.7 variant M2 8XMO ; 3.39 ; Voltage-gated sodium channel Nav1.7 variant M4 8XMM ; 2.89 ; Voltage-gated sodium channel Nav1.7 variant M9 1VGF ; 2.6 ; volvatoxin A2 (diamond crystal form) 1PP0 ; 1.42 ; volvatoxin A2 in monoclinic crystal 4BKS ; 2.2 ; von Hippel Lindau protein:ElonginB:ElonginC complex, in complex with (2S,4R)-1-ethanoyl-N-[[4-(1,3-oxazol-5-yl)phenyl]methyl]-4-oxidanyl-pyrrolidine-2-carboxamide 4BKT ; 2.35 ; von Hippel Lindau protein:ElonginB:ElonginC complex, in complex with (2S,4R)-N-methyl-1-[2-(3-methyl-1,2-oxazol-5-yl)ethanoyl]-4-oxidanyl-pyrrolidine-2-carboxamide 4AJY ; 1.73 ; von Hippel-Lindau protein-ElonginB-ElonginC complex, bound to Hif1- alpha peptide 7F49 ; 2.09 ; von Willebrand factor (VWF) A1 domain with BT-100 aptamer RNA 3ZQK ; 1.7 ; Von Willebrand Factor A2 domain with calcium 4FX5 ; 1.73 ; von Willebrand factor type A from Catenulispora acidiphila 3MDT ; 2.3 ; Voriconazole complex of Cytochrome P450 46A1 3ZMO ; 1.8 ; VP16, a capsid protein of bacteriophage P23-77 (VP16-type-1) 3ZN4 ; 1.26 ; VP16, a capsid protein of bacteriophage P23-77 (VP16-type-2) 3ZN5 ; 2.36 ; VP16, a capsid protein of bacteriophage P23-77 (VP16-virus-derived) 3ZN6 ; 1.53 ; VP16-VP17 complex, a complex of the two major capsid proteins of bacteriophage P23-77 3ZMN ; 2.26 ; VP17, a capsid protein of bacteriophage P23-77 7Z5E ; 3.32 ; VP2-only capsid of MVM D263A mutant 7Z5F ; 3.22 ; VP2-only capsid of MVM D263A mutant 7Z5D ; 3.42 ; VP2-only capsid of wt MVM prototype strain p 3GZT ; 3.8 ; VP7 recoated rotavirus DLP 3GZU ; 3.8 ; VP7 recoated rotavirus DLP 5VX4 ; 1.55 ; VP8* of a G2P[4] Human Rotavirus 5VX5 ; 1.285 ; VP8* of a G2P[4] Human Rotavirus in complex with LNFP1 6PCU ; 2.4 ; VP8* of a G2P[4] human rotavirus in complex with scFv antibody 9 5VX8 ; 2.0 ; VP8* of P[6] Human Rotavirus RV3 5VX9 ; 1.822 ; VP8* of P[6] Human Rotavirus RV3 in complex with LNFP1 6DI7 ; 2.3 ; Vps1 GTPase-BSE fusion complexed with GDP 6DJQ ; 3.1 ; Vps1 GTPase-BSE fusion complexed with GDP.AlF4- 6DEF ; 2.26 ; Vps1 GTPase-BSE fusion complexed with GMPPCP 7U8T ; 3.0 ; Vps13 adaptor binding domain in complex with Mcp1 PxP motif peptide 7BLO ; 9.5 ; VPS26 dimer region of metazoan membrane-assembled retromer:SNX3 complex modelled with human proteins 7BLQ ; 9.2 ; Vps26 dimer region of the fungal membrane-assembled retromer:Grd19 complex. 7BLP ; 9.5 ; Vps35/Vps29 arch of fungal membrane-assembled retromer:Grd19 complex 7BLR ; 9.3 ; Vps35/Vps29 arch of fungal membrane-assembled retromer:Vps5 (SNX-BAR) complex. 7BLN ; 8.9 ; VPS35/VPS29 arch of metazoan membrane-assembled retromer:SNX3 complex modelled with human proteins 2CAY ; 1.9 ; Vps36 N-terminal PH domain 8E22 ; ; VPS37A_21-148 6NDY ; 3.6 ; Vps4 with Cyclic Peptide Bound in the Central Pore 6OO2 ; 4.4 ; Vps4 with Cyclic Peptide Bound in the Central Pore 5UIE ; 5.7 ; Vps4-Vta1 complex 2JQ9 ; ; VPS4A MIT-CHMP1A complex 2JQH ; ; VPS4B MIT 2JQK ; ; VPS4B MIT-CHMP2B Complex 6AP1 ; 3.2 ; Vps4p-Vta1p complex with peptide binding to the central pore of Vps4p 6BMF ; 3.2 ; Vps4p-Vta1p complex with peptide binding to the central pore of Vps4p 3N1E ; 1.702 ; Vps54 C-terminal domain 5V5C ; 1.25 ; VQIINK, Structure of the amyloid-spine from microtubule associated protein tau Repeat 2 3Q9G ; 2.05 ; VQIVY segment from Alzheimer's tau displayed on 42-membered macrocycle scaffold 6UGL ; 2.03 ; VqmA bound to DPO 6V8X ; 3.0 ; VRC01 Bound BG505 F14 HIV-1 SOSIP Envelope Trimer Structure 6V8Z ; 2.9 ; VRC03 and 10-1074 Bound BG505 F14 HIV-1 SOSIP Envelope Trimer Structure 8F7Z ; 2.7 ; VRC34.01_mm28 bound to fusion peptide 4QBN ; 1.85 ; VRR_NUC domain 4QBO ; 1.3 ; VRR_NUC domain 4QBL ; 2.0 ; VRR_NUC domain protein 7UQ2 ; 2.0 ; Vs.4 from T4 phage in complex with cGAMP 7P57 ; 1.961 ; VSG2 mutant structure lacking the calcium binding pocket 5OYL ; 2.25 ; VSV G CR2 5OY9 ; 3.6 ; VSV G CR3 6TIT ; 2.07 ; VSV G_440 5UKB ; 5.473 ; VSV N PROTEIN IN COMPLEX WITH INHIBITORY NANOBODY 1004 6BJY ; 3.46 ; VSV Nucleocapsid with Polyamide Bound 2V8S ; 2.22 ; VTI1B HABC DOMAIN - EPSINR ENTH DOMAIN COMPLEX 8JXW ; 3.01 ; VUF6884-bound H4R/Gi complex 1PP6 ; 3.2 ; VVA2 (STRIP CRYSTAL FORM) 1VCY ; 2.6 ; VVA2 isoform 4R0W ; 1.5 ; Vvtgvta, an amyloid forming segment from alpha synuclein, residues 70-76 7WPR ; 4.39 ; VWF D'D3 dimer complexed with D1D2 at 4.39 angstron resolution(VWF tube) 8D3D ; 3.2 ; VWF tubule derived from dimeric D1-A1 8D3C ; 3.1 ; VWF tubule derived from monomeric D1-A1 7ZWH ; 3.2 ; VWF Tubules of D1D2 and D'D3A1 domains 7PMV ; 3.7 ; VWF Tubules of D1D2D'D3 domains 7PNF ; 4.35 ; VWF Tubules of D1D2D'D3 domains 4ZOG ; 2.3 ; VX-680/MK-0457 binds to human ABL1 also in inactive DFG conformations. 7R3C ; 2.4 ; VX-inhibited acetylcholinesterase in complex with 2-((hydroxyimino)methyl)-1-(5-(4-methyl-3-nitrobenzamido)pentyl)pyridinium 8CM5 ; 2.15 ; W-formate dehydrogenase C872A from Desulfovibrio vulgaris 8CM4 ; 2.3 ; W-formate dehydrogenase C872A from Desulfovibrio vulgaris - exposed to oxygen 8CM6 ; 1.416 ; W-formate dehydrogenase C872A from Desulfovibrio vulgaris - with Formamide 8BQL ; 1.906 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Co-crystallized with Formate and Reoxidized by exposure to air for 12 min 7Z5O ; 1.527 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Dithionite reduced form 6SDV ; 1.9 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Formate reduced form 6SDR ; 2.1 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Oxidized form 8BQG ; 1.946 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Soaking with Formate 1 min 8BQH ; 1.61 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Soaking with Formate 1.5 min 8BQK ; 1.587 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Soaking with Formate 22 min 8BQI ; 2.356 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Soaking with Formate 3 min 8BQJ ; 2.107 ; W-formate dehydrogenase from Desulfovibrio vulgaris - Soaking with Formate 5 min 8CM7 ; 2.117 ; W-formate dehydrogenase M405A from Desulfovibrio vulgaris 1Q55 ; 30.0 ; W-shaped trans interactions of cadherins model based on fitting C-cadherin (1L3W) to 3D map of desmosomes obtained by electron tomography 3BNF ; 1.7 ; W. succinogenes NrfA Sulfite Complex 3BNG ; 1.5 ; W. succinogenes NrfA Y218F 3BNH ; 1.75 ; W. succinogenes NrfA Y218F Nitrite Complex 3BNJ ; 1.3 ; W. succinogenes NrfA Y218F Sulfite Complex 6VVW ; 2.1 ; W0 fused 4-OT wild type symmetric trimer 2H6G ; 1.85 ; W102T Protein Farnesyltransferase Mutant Complexed with a Geranylgeranylated DDPTASACVLS Peptide Product at 1.85A Resolution 2H6I ; 3.0 ; W102T/Y365F Protein Farnesyltransferase Double Mutant Complexed with a Geranylgeranylated DDPTASACVLS Peptide Product at 3.0A 4H6K ; 1.55 ; W116I mutant of OYE1 3RND ; 1.4 ; W116I-OYE1 complexed with 2-(Hydroxymethyl)-cyclopent-2-enone 4GWE ; 1.45 ; W116L-OYE1 complexed with (R)-carvone 3A6H ; 2.0 ; W154A mutant creatininase 3A6G ; 2.0 ; W154F mutant creatininase 3A6E ; 2.0 ; W174F mutant creatininase, type I 3A6F ; 1.78 ; W174F mutant creatininase, Type II 6AXU ; 1.822 ; W203Y Epi-isozizaene synthase 1MP4 ; 2.2 ; W224H VARIANT OF S. ENTERICA RmlA 4DZ5 ; 1.7 ; W227F active site mutant of AKR1C3 5ACQ ; 1.7 ; W228A-Investigation of the impact from residues W228 and Y233 in the metallo-beta-lactamase GIM-1 5ACP ; 1.98 ; W228R-Investigation of the impact from residues W228 and Y233 in the metallo-beta-lactamase GIM-1 5ACT ; 1.81 ; W228S-Investigation of the impact from residues W228 and Y233 in the metallo-beta-lactamase GIM-1 5ACR ; 1.9 ; W228Y-Investigation of the impact from residues W228 and Y233 in the metallo-beta-lactamase GIM-1 5FQI ; 1.4 ; W229D and F290W mutant of the last common ancestor of Gram-negative bacteria (GNCA4) beta-lactamase class A 5FQK ; 1.767 ; W229D and F290W mutant of the last common ancestor of Gram-negative bacteria (GNCA4) beta-lactamase class A bound to 5(6)-nitrobenzotriazole (TS-analog) 5FQJ ; 2.271 ; W229D mutant of the last common ancestor of Gram-negative bacteria (GNCA) beta-lactamase bound to 5(6)-nitrobenzotriazole (TS-analog) 4UHU ; 1.305 ; W229D mutant of the last common ancestor of Gram-negative bacteria (GNCA) beta-lactamase class A 5LQI ; 1.92 ; W288A mutant of GlxA from Streptomyces lividans: apo form 5LXZ ; 1.49 ; W288A mutant of GlxA from Streptomyces lividans: Cu-bound form 1PZY ; 2.3 ; W314A-BETA1,4-GALACTOSYLTRANSFERASE-I COMPLEXED WITH ALPHA-LACTALBUMIN IN THE PRESENCE OF N-ACETYLGLUCOSAMINE, UDP AND MANGANESE 7SG0 ; 3.0 ; W316 TCR in complex with HLA-DQ2-omega1 4LZC ; 2.457 ; W325F Epi-isozizaene synthase: Complex with Mg, inorganic pyrophosphate 3VYA ; 2.4 ; W32Y mutant of FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) 3F99 ; 1.65 ; W354F Yersinia enterocolitica PTPase apo form 3F9B ; 1.42 ; W354F Yersinia enterocolitica PTPase complexed with divanadate 3F9A ; 1.69 ; W354F Yersinia enterocolitica PTPase complexed with tungstate 7EBM ; 1.9 ; W363A mutant of Chitin-specific solute binding protein from Vibrio harveyi in complex with chitobiose. 6LZW ; 1.9 ; W513A mutant of chitin-specific solute binding protein from Vibrio harveyi co-crystalized with chitobiose. 1DX9 ; 2.05 ; W57A Apoflavodoxin from Anabaena 2V5V ; 1.88 ; W57E Flavodoxin from Anabaena 1OBO ; 1.2 ; W57L flavodoxin from Anabaena 6TZP ; 1.72 ; W96F Oxalate Decarboxylase (B. subtilis) 6UFI ; 1.72 ; W96Y Oxalate Decarboxylase (Bacillus subtilis) 6DFL ; 2.396 ; WaaP in complex with acyl carrier protein 7RLK ; 2.69 ; Wallaby TTR 8SJ5 ; 3.1 ; Walnut Tree Phytocystatin 6OFA ; ; Wasabi Receptor Toxin 1RHA ; 1.8 ; WATER DEPENDENT DOMAIN MOTION AND FLEXIBILITY IN RIBONUCLEASE A AND THE INVARIANT FEATURES IN ITS HYDRATION SHELL. AN X-RAY STUDY OF TWO LOW HUMIDITY CRYSTAL FORMS OF THE ENZYME 1RHB ; 1.5 ; WATER DEPENDENT DOMAIN MOTION AND FLEXIBILITY IN RIBONUCLEASE A AND THE INVARIANT FEATURES IN ITS HYDRATION SHELL. AN X-RAY STUDY OF TWO LOW HUMIDITY CRYSTAL FORMS OF THE ENZYME 4V0I ; 2.54 ; Water Network Determines Selectivity for a Series of Pyrimidone Indoline Amide PI3KBeta Inhibitors over PI3K-Delta 2EYB ; ; Water refined solution structure of crambin in ACETONE/WATER 2EYD ; ; Water refined solution structure of crambin in dpc micelles 2L4K ; ; Water refined solution structure of the human Grb7-SH2 domain in complex with the 10 amino acid peptide pY1139 1CRN ; 1.5 ; WATER STRUCTURE OF A HYDROPHOBIC PROTEIN AT ATOMIC RESOLUTION. PENTAGON RINGS OF WATER MOLECULES IN CRYSTALS OF CRAMBIN 2J45 ; 1.14 ; Water structure of T. Aquaticus Ffh NG Domain At 1.1A Resolution 2J46 ; 1.14 ; Water structure of T. Aquaticus Ffh NG Domain At 1.1A Resolution 5GW6 ; 1.97 ; Water-Bridge Mediates Recognition of mRNA Cap in eIF4E 5ER0 ; 2.406 ; Water-forming NADH oxidase from Lactobacillus brevis (LbNOX) 5VN0 ; 2.001 ; Water-forming NADH oxidase from Lactobacillus brevis (LbNOX) bound to NADH. 1X1U ; 2.3 ; Water-mediate interaction at aprotein-protein interface 1X1W ; 2.1 ; Water-mediate interaction at aprotein-protein interface 1X1X ; 2.3 ; Water-mediate interaction at aprotein-protein interface 1X1Y ; 1.9 ; Water-mediate interaction at aprotein-protein interface 1TYS ; 1.8 ; WATER-MEDIATED SUBSTRATE(SLASH)PRODUCT DISCRIMINATION: THE PRODUCT COMPLEX OF THYMIDYLATE SYNTHASE AT 1.83 ANGSTROMS 6S2Z ; 2.5 ; Water-soluble Chlorophyll Protein (WSCP) from Brassica oleracea var. Botrytis with Chlorophyll-b 6GIW ; 2.8 ; Water-soluble Chlorophyll Protein (WSCP) from Lepidium virginicum (Mutation L91P) with Chlorophyll-a 6GIX ; 2.8 ; Water-soluble Chlorophyll Protein (WSCP) from Lepidium virginicum (Mutation L91P) with Chlorophyll-b 6S2Y ; 2.3 ; Water-soluble Chlorophyll Protein (WSCP) from Lepidium virginicum with Chlorophyll-b 3ND4 ; 1.524 ; Watson-Crick 16-mer dsRNA 6CHJ ; 2.428 ; Wax ester synthase/diacylglycerol acyltransferase from Marinobacter aquaeolei VT8 7NXG ; 1.95 ; Wax synthase 1 from Acinetobacter baylyi (AbWSD1) co-crystallized with myristic acid 8CSD ; 1.95 ; WbbB D232C Kdo adduct 8CSF ; 2.4 ; WbbB D232C-Kdo adduct + alpha-Rha(1,3)GlcNAc ternary complex 8CSB ; 2.25 ; WbbB D232N in complex with CMP-beta-Kdo 8CSC ; 1.9 ; WbbB D232N-Kdo adduct 8CSE ; 2.3 ; WbbB in complex with alpha-Rha-(1-3)-beta-GlcNAc acceptor 6U4B ; 2.1 ; WbbM bifunctional glycosytransferase apo structure 3NUB ; 1.9 ; WbpE, an Aminotransferase from Pseudomonas aeruginosa Involved in O-antigen Assembly in Complex with Product as the External Aldimine 3NU7 ; 1.95 ; WbpE, an Aminotransferase from Pseudomonas aeruginosa Involved in O-antigen Assembly in Complex with the Cofactor PMP 3NU8 ; 1.5 ; WbpE, an Aminotransferase from Pseudomonas aeruginosa Involved in O-antigen Assembly in Complex with the Internal Aldimine 4USM ; 1.82 ; WcbL complex with glycerol bound to sugar site 8OK1 ; 1.38 ; WD repeat containing protein 5 (WDR5)- N225A mutant 8OKF ; 1.85 ; WD repeat containing protein 5 (WDR5)- PER2 peptide 8E9F ; 1.55 ; WD repeat-containing protein 5 complexed with 4-(7-((1H-imidazol-1-yl)methyl)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1-oxo-3,4-dihydroisoquinolin-2(1H)-yl)-6-ethyl-N-methylquinoline-8-carboxamide (compound 10) 6UFX ; 2.015 ; WD repeat-containing protein 5 complexed with N-[(3,5-dimethoxyphenyl)methyl]-4'-fluoro-5-{[(2E)-2-imino-3-methyl-2,3-dihydro-1H-imidazol-1-yl]methyl}-2'-methyl[1,1'-biphenyl]-3-carboxamide (compound 13) 6N31 ; 2.6 ; WD repeats of human WDR12 5IGO ; 1.6 ; WD40 domain of Arabidopsis thaliana E3 Ubiquitin Ligase COP1 in complex with peptide from Trib1 5GVA ; 1.851 ; WD40 domain of human AND-1 5HQG ; 2.0 ; WD40 domain of Human E3 Ubiquitin Ligase COP1 (RFWD2) 5IGQ ; 3.9 ; WD40 domain of Human E3 Ubiquitin Ligase COP1 (RFWD2) bound to peptide from Trib1 1GXR ; 1.65 ; WD40 Region of Human Groucho/TLE1 5CVN ; 3.36 ; WDR48 (2-580):USP46~ubiquitin ternary complex 5CVL ; 3.0 ; WDR48 (UAF-1), residues 2-580 5CVO ; 3.885 ; WDR48:USP46~ubiquitin ternary complex 2CNX ; 2.1 ; WDR5 and Histone H3 Lysine 4 dimethyl complex at 2.1 angstrom 2CO0 ; 2.25 ; WDR5 and unmodified Histone H3 complex at 2.25 Angstrom 7U9Y ; 1.9 ; WDR5 bound to 2-(3,5-dimethoxybenzyl)-7-((2-methyl-1H-imidazol-1-yl)methyl)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-3,4-dihydroisoquinolin-1(2H)-one 5VFC ; 1.64 ; WDR5 bound to inhibitor MM-589 8F93 ; 2.3 ; WDR5 covalently modified at Y228 by (R)-2-SF 6DY7 ; 1.9 ; WDR5 in complex with a WIN site inhibitor 6DYA ; 2.56 ; WDR5 in complex with a WIN site inhibitor 2XL3 ; 2.7 ; WDR5 IN COMPLEX WITH AN RBBP5 PEPTIDE AND HISTONE H3 PEPTIDE 2XL2 ; 2.4 ; WDR5 IN COMPLEX WITH AN RBBP5 PEPTIDE RECRUITED TO NOVEL SITE 2O9K ; 1.9 ; WDR5 in Complex with Dimethylated H3K4 Peptide 8HMX ; 1.7 ; WDR5 in complex with histone H3Q5his peptide 4O45 ; 1.87 ; WDR5 in complex with influenza NS1 C-terminal tail 5SXM ; 2.0 ; WDR5 in complex with MLL Win motif peptidomimetic 2H9N ; 2.0 ; WDR5 in complex with monomethylated H3K4 peptide 6UHY ; 1.26 ; WDR5 in complex with Myc site fragment inhibitor 6UHZ ; 1.258 ; WDR5 in complex with Myc site fragment inhibitor 2H9P ; 1.91 ; WDR5 in complex with trimethylated H3K4 peptide 2H9M ; 1.9 ; WDR5 in complex with unmodified H3K4 peptide 2H9L ; 1.75 ; WDR5delta23 6PG8 ; 1.67 ; WDR5delta23 bound to (2-(3-phenylpropyl)-1H-imidazol-4-yl)methanol 6PG3 ; 2.04 ; WDR5delta23 bound to (2-butyl-1H-imidazol-4-yl)methanol 6PG6 ; 1.68 ; WDR5delta23 bound to N-(4-(5-(hydroxymethyl)-1H-imidazol-2-yl)butyl)acetamide 6PG9 ; 1.75 ; WDR5delta23 bound to N-(4-(5-(hydroxymethyl)-1H-imidazol-2-yl)butyl)benzamide 6PG7 ; 2.45 ; WDR5delta32 bound to (2-(3-methoxy-3-phenylpropyl)-1H-imidazol-4-yl)methanol 6PG4 ; 1.6 ; WDR5delta32 bound to (2-methyl-1H-imidazol-4-yl)methanol 6PG5 ; 1.99 ; WDR5delta32 bound to benzyl (4-(5-(hydroxymethyl)-1H-imidazol-2-yl)butyl)carbamate 6PGE ; 1.76 ; WDR5delta32 bound to ethyl 3-(4-(hydroxymethyl)-1H-imidazol-2-yl)propanoate 6PGA ; 2.45 ; WDR5delta32 bound to methyl (4-(4-(hydroxymethyl)-1H-imidazol-2-yl)butyl)carbamate 6PGC ; 1.81 ; WDR5delta32 bound to methyl benzyl(4-(4-(hydroxymethyl)-1H-imidazol-2-yl)butyl)carbamate 6PGF ; 1.54 ; WDR5delta32 bound to N-(4-(4-(hydroxymethyl)-1H-imidazol-2-yl)butyl)acrylamide 6PGB ; 1.73 ; WDR5delta32 bound to N-(4-(5-(hydroxymethyl)-1H-imidazol-2-yl)butyl)-2-phenylacetamide 6PGD ; 1.5 ; WDR5delta32 bound to peptidomimetic 8QD7 ; 1.85 ; Wdyg1p from W. dermatitidis catalyzes polyketide shortening in the biosynthesis of DHN-melanin 8QD9 ; 1.95 ; Wdyg1p in complex with 1,3,6,8-Tetrahydroxynaphthalene 8QD8 ; 1.65 ; Wdyg1p in complex with 1,3-Dihydroxynaphthalene 8QDA ; 1.85 ; Wdyg1p Ser256DHA (PMSF) 8QDB ; 1.85 ; Wdyg1p Ser256DHA (PSF) 4WDI ; 2.313 ; Weak TCR binding to an unstable insulin epitope drives type 1 diabetes 4Z76 ; 1.88 ; Weak TCR binding to an unstable insulin epitope drives type 1 diabetes 4Z77 ; 1.85 ; Weak TCR binding to an unstable insulin epitope drives type 1 diabetes 4Z78 ; 2.304 ; Weak TCR binding to an unstable insulin epitope drives type 1 diabetes 3CQE ; 2.5 ; Wee1 kinase complex with inhibitor PD074291 3CR0 ; 2.3 ; Wee1 kinase complex with inhibitor PD259_809 2IN6 ; 1.9 ; Wee1 kinase complex with inhibitor PD311839 3BIZ ; 2.2 ; Wee1 kinase complex with inhibitor PD331618 3BI6 ; 2.2 ; Wee1 kinase complex with inhibitor PD352396 2IO6 ; 2.2 ; Wee1 kinase complexed with inhibitor PD330961 4M9C ; 2.1 ; WeeI from Acinetobacter baumannii AYE 5IQT ; 2.4 ; WelO5 bound to Fe(II), Cl, 2-oxoglutarate, and 12-epifischerindole U 5IQS ; 2.0 ; WelO5 bound to Fe(II), Cl, and 2-oxoglutarate 5IQV ; 2.4 ; WelO5 bound to Fe, Cl, 2-oxoglutarate, 12-epifischerindole U, and nitric oxide 5IQU ; 2.51 ; WelO5 G166D variant bound to Fe(II), 2-oxoglutarate, and 12-epifischerindole U 5J4R ; 1.65 ; WELO5 SMALL MOLECULE HALOGENASE WITH NI(II) AND 2-OXOGLUTARATE 5T22 ; 1.75 ; WELO5 SMALL MOLECULE HALOGENASE WITH NI(II) AND 2-OXOGLUTARATE P 21 CRYSTAL FORM 5TRQ ; 1.3 ; WELO5 SMALL MOLECULE HALOGENASE WITH NI(II) AND SUCCINATE 8ACV ; 2.26 ; WelO5* bound to Zn(II), Cl, and 2-oxoglutarate 8AUT ; 2.685 ; WelO5* L221A bound to Zn(II), Cl, 2-oxoglutarate, and 12-epi-hapalindole C 3ELD ; 1.9 ; Wesselsbron methyltransferase in complex with Sinefungin 3ELY ; 2.4 ; Wesselsbron virus Methyltransferase in complex with AdoHcy 3ELU ; 2.0 ; Wesselsbron virus Methyltransferase in complex with AdoMet 3EMB ; 2.3 ; Wesselsbron virus Methyltransferase in complex with AdoMet and 7MeGpppG 3ELW ; 1.9 ; Wesselsbron virus Methyltransferase in complex with AdoMet and GpppG 3EMD ; 2.0 ; Wesselsbron virus Methyltransferase in complex with Sinefungin and 7MeGpppA 3E90 ; 2.45 ; West Nile vi rus NS2B-NS3protease in complexed with inhibitor Naph-KKR-H 1ZTX ; 2.5 ; West Nile Virus Envelope Protein DIII in complex with neutralizing E16 antibody Fab 3IYW ; 13.7 ; West Nile virus in complex with Fab fragments of MAb CR4354 (fitted coordinates of envelope proteins and Fab fragments of one icosahedral ASU) 4O6D ; 2.5936 ; West Nile Virus Non-structural protein 1 (NS1) Form 1 crystal 4TPL ; 2.9 ; West Nile Virus Non-structural protein 1 (NS1) Form 1 crystal 4O6C ; 2.7508 ; West Nile Virus Non-structural protein 1 (NS1) Form 2 crystal 4OIE ; 1.85 ; West Nile Virus Non-structural Protein NS1 4OII ; 3.0 ; West Nile Virus NS1 in complex with neutralizing 22NS1 antibody Fab 2YOL ; 3.2 ; West Nile Virus NS2B-NS3 protease in complex with 3,4- dichlorophenylacetyl-Lys-Lys-GCMA 2FP7 ; 1.68 ; West Nile Virus NS2B/NS3protease in complex with Bz-Nle-Lys-Arg-Arg-H 6MAA ; 1.394 ; WFIKKN2 Follistatin Domain 6L0O ; 1.21 ; WH domain of human MCM8 5X1G ; 4.5 ; WHAMM's Microtubule binding motif 8IP9 ; 3.0 ; Wheat 40S ribosome in complex with a tRNAi 8IPB ; 3.4 ; Wheat 80S ribosome pausing on AUG-Stop with cycloheximide 8IP8 ; 2.9 ; Wheat 80S ribosome stalled on AUG-Stop boron dependently 8IPA ; 3.4 ; Wheat 80S ribosome stalled on AUG-Stop boron dependently with cycloheximide 6GER ; 2.00005 ; Wheat b-amylase, a clinically relevant food allergen 7KIK ; 1.73 ; Wheat dwarf virus Rep domain circular permutation complexed with a single-stranded DNA 10-mer comprising the cleavage site and Mn2+ 6WE0 ; 1.8 ; Wheat dwarf virus Rep domain complexed with a single-stranded DNA 10-mer comprising the cleavage site 6WE1 ; 2.612 ; Wheat dwarf virus Rep domain complexed with a single-stranded DNA 8-mer comprising the cleavage site 8CYF ; 2.44 ; WhiB3 bound to SigmaAr4-RNAP Beta flap tip chimera and DNA 8D5V ; 1.8 ; WhiB6 bound to the SigmaAr4-RNAP Beta flap tip chimera 7Z05 ; 2.33 ; White Bream virus N7-Methyltransferase 7Z2J ; 1.657 ; White Bream virus N7-Methyltransferase 1A75 ; 1.9 ; WHITING PARVALBUMIN 2DHR ; 3.9 ; Whole cytosolic region of ATP-dependent metalloprotease FtsH (G399L) 4EIW ; 3.9 ; Whole cytosolic region of atp-dependent metalloprotease FtsH (G399L) 6IZR ; 4.7 ; Whole structure of a 15-stranded ParM filament from Clostridium botulinum 1DG1 ; 2.5 ; WHOLE, UNMODIFIED, EF-TU(ELONGATION FACTOR TU). 8OO1 ; 3.7 ; Wide inward-open liganded UraA in complex with a conformation-selective synthetic nanobody 8OMZ ; 3.5 ; Wide inward-open unliganded UraA in complex with a conformation-selective synthetic nanobody 1TW7 ; 1.3 ; Wide Open 1.3A Structure of a Multi-drug Resistant HIV-1 Protease Represents a Novel Drug Target 2YGN ; 1.85 ; WIF domain of human Wnt inhibitory factor 1 in complex with 1,2- dipalmitoylphosphatidylcholine 2YGP ; 2.222 ; WIF domain-EGF-like domain 1 Met77Trp of human Wnt inhibitory factor 1 in complex with 1,2-dipalmitoylphosphatidylcholine 2YGO ; 1.85 ; WIF domain-EGF-like domain 1 of human Wnt inhibitory factor 1 in complex with 1,2-dipalmitoylphosphatidylcholine 2YGQ ; 3.951 ; WIF domain-epidermal growth factor (EGF)-like domains 1-3 of human Wnt inhibitory factor 1 in complex with 1,2- dipalmitoylphosphatidylcholine 7OUR ; 1.95 ; Wilavidin apo form (P1 form) 7OUQ ; 2.63 ; wilavidin biotin complex 6UN8 ; 1.65 ; Wild type ANT bound to neomycin 8FII ; 2.94 ; Wild type APOBEC3A in complex with TT(FdZ)-hairpin inhibitor (crystal form 1) 8FIJ ; 2.799 ; Wild type APOBEC3A in complex with TT(FdZ)-hairpin inhibitor (crystal form 2) 8ADE ; 2.78 ; Wild type ATTR amyloid fibril from senile systemic amyloidosis 3WRT ; 2.9 ; Wild type beta-lactamase DERIVED FROM CHROMOHALOBACTER SP.560 7ONP ; 1.408 ; Wild type carbonic anhydrase II with bound IrCp* complex to generate an artificial transfer hydrogenase (ATHase) 3QR2 ; 2.3 ; Wild type CD147 Ig0 domain 1QK2 ; 2.0 ; WILD TYPE CEL6A WITH A NON-HYDROLYSABLE CELLOTETRAOSE 8SKM ; 2.2 ; Wild type chlorogenic acid esterase from Lactobacillus helveticus 2QKE ; 2.7 ; Wild Type Crystal Structure of Full Length Circadian Clock Protein KaiB from Thermosynechococcus elongatus BP-1 6U4S ; 2.49 ; wild type cysteine dioxygenase 5JX3 ; 2.3 ; Wild type D4 in orthorhombic space group 1MWD ; 1.8 ; WILD TYPE DEOXY MYOGLOBIN 3M08 ; 2.014 ; Wild Type Dihydrofolate Reductase from Staphylococcus aureus with inhibitor RAB1 4TS3 ; 2.3 ; Wild type E. Coli purine nucleoside phosphorylase with 2 FMC molecules in active sites 7UKV ; 2.4 ; Wild type EGFR in complex with Lazertinib (YH25448) 6VHN ; 2.4 ; Wild type EGFR in complex with LN2057 6VH4 ; 2.8 ; Wild type EGFR in complex with LN2380 6VHP ; 3.6 ; Wild type EGFR in complex with LN2899 1QKU ; 3.2 ; WILD TYPE ESTROGEN NUCLEAR RECEPTOR LIGAND BINDING DOMAIN COMPLEXED WITH ESTRADIOL 4U0U ; 2.98 ; Wild type eukaryotic fic domain containing protein with ADP 4Q7D ; 2.35 ; Wild type Fc (wtFc) 4FM4 ; 2.384 ; Wild Type Fe-type Nitrile Hydratase from Comamonas testosteroni Ni1 6OZX ; 1.851 ; Wild type GapR crystal structure 1 from C. crescentus 6OZY ; 2.014 ; Wild type GapR crystal structure 2 from C. crescentus 1BDT ; 2.5 ; WILD TYPE GENE-REGULATING PROTEIN ARC/DNA COMPLEX 7VFQ ; 1.55 ; Wild type GltA from Bifidobacterium infantis JCM 1222 complexed with lacto-N-tetraose 2GAW ; 2.2 ; WILD TYPE GLYCOSYLASPARAGINASE FROM FLAVOBACTERIUM MENINGOSEPTICUM 5EXB ; 1.81 ; Wild type green fluorescent protein DendFP (Dendronephthya sp.) 8ATD ; 3.1 ; Wild type hexamer oxalyl-CoA synthetase (OCS) 2FDE ; 2.7 ; Wild type HIV protease bound with GW0385 3NU3 ; 1.02 ; Wild Type HIV-1 Protease with Antiviral Drug Amprenavir 3OXC ; 1.16 ; Wild Type HIV-1 Protease with Antiviral Drug Saquinavir 3DK1 ; 1.07 ; Wild Type HIV-1 Protease with potent Antiviral inhibitor GRL-0105A 3DJK ; 1.0 ; Wild Type HIV-1 Protease with potent Antiviral inhibitor GRL-0255A 2Z4O ; 1.6 ; Wild Type HIV-1 Protease with potent Antiviral inhibitor GRL-98065 1IKW ; 3.0 ; Wild Type HIV-1 Reverse Transcriptase in Complex with Efavirenz 5FA6 ; 2.3 ; wild type human CYPOR 2QD3 ; 2.2 ; Wild type human ferrochelatase crystallized with ammonium sulfate 2QD4 ; 2.0 ; Wild type human ferrochelatase crystallized with MnCl2 3MNG ; 1.45 ; wild type human PrxV with DTT bound as a competitive inhibitor 5N6O ; 2.59 ; Wild type human Rac1-GDP 6DZV ; 4.2 ; Wild type human serotonin transporter in complex with 15B8 Fab bound to ibogaine in occluded conformation 1E98 ; 1.9 ; Wild type human thymidylate kinase complexed with AZTMP and ADP 3NEE ; 1.55 ; Wild type human transthyretin (TTR) complexed with GC-1 (TTRwt:GC-1) 3NEO ; 2.0 ; Wild type human transthyretin (TTR) complexed with GC-24 (TTRwt:GC-24) 3KGU ; 1.85 ; Wild type human transthyretin (TTR) complexed with genistein (TTRwt:GEN) pH 7.5 4MRB ; 1.27 ; Wild Type Human Transthyretin pH 7.5 5E5P ; 2.65 ; Wild type I-SmaMI in the space group of C121 6SM1 ; 1.55 ; Wild type immunoglobulin light chain (WT-1) 1MDN ; 1.98 ; WILD TYPE MYOGLOBIN WITH CO 1MWC ; 1.7 ; WILD TYPE MYOGLOBIN WITH CO 7ENP ; 3.4 ; wild type of O type Foot-and-mouth disease virus 7XZF ; 1.3 ; Wild type of the N-terminal domain of fucoidan lyase FdlA 8AFF ; 2.87 ; Wild type oxalyl-CoA synthetase Pcs60p 8F2H ; 4.2 ; Wild type P53 dimer structure from human cancer cells 8QM1 ; 1.91 ; wild type Pa.FabF in complex cerulenin 1OTB ; 1.1 ; WILD TYPE PHOTOACTIVE YELLOW PROTEIN, P63 AT 295K 2D01 ; 1.34 ; Wild Type Photoactive Yellow Protein, P65 Form 1LJL ; 2.01 ; Wild Type pI258 S. aureus arsenate reductase 4DPD ; 2.5 ; WILD TYPE PLASMODIUM FALCIPARUM DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE (PfDHFR-TS), DHF COMPLEX, NADP+, dUMP 7CTY ; 2.8 ; Wild type plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS), fragment 263, NADP+, dUMP 8GU5 ; 2.02 ; Wild type poly(ethylene terephthalate) hydrolase 5URD ; 1.9 ; wild type rat CYPOR bound with NADP+ - oxidized form 5URE ; 2.3 ; Wild type rat CYPOR bound with NADP+ - reduced form 2V2I ; 2.0 ; Wild type recombinant horse spleen apoferritin cocrystallized with haemin in acidic conditions 2V2J ; 2.22 ; Wild type recombinant horse spleen apoferritin cocrystallized with haemin in basic conditions 1NIK ; 4.1 ; Wild Type RNA Polymerase II 4MA9 ; 1.82 ; Wild type Salmonella Alkyl Hydroperoxide Reductase C in its substrate-ready conformation 3ZXB ; 2.55 ; Wild type single insulin-like growth factor binding domain protein (SIBD-1) from Cupiennius salei 2B5G ; 1.7 ; Wild Type SSAT- 1.7A structure 1Y4H ; 1.93 ; Wild type staphopain-staphostatin complex 6C3M ; 1.5 ; Wild type structure of SiRHP 6C3X ; 1.542 ; Wild type structure of SiRHP 6C3Y ; 1.542 ; Wild type structure of SiRHP 4S0W ; 2.117 ; Wild type T4 lysozyme structure 5TC9 ; 1.6 ; Wild type TrCel7A catalytic domain in a closed state 1W7S ; 1.85 ; Wild-Type Aequorea victoria Green Fluorescent Protein 2AYI ; 3.7 ; Wild-type AmpT from Thermus thermophilus 1CAY ; 2.1 ; WILD-TYPE AND E106Q MUTANT CARBONIC ANHYDRASE COMPLEXED WITH ACETATE 1CAZ ; 1.9 ; WILD-TYPE AND E106Q MUTANT CARBONIC ANHYDRASE COMPLEXED WITH ACETATE 6KJB ; 2.06 ; wild-type apo-form E. coli ATCase holoenzyme with an unusual open conformation of R167 5CRI ; 1.63 ; Wild-type Bacillus subtilis lipase A with 0% [BMIM][Cl] 5CT5 ; 1.747 ; Wild-type Bacillus subtilis lipase A with 10% [BMIM][Cl] 5CT6 ; 1.902 ; Wild-type Bacillus subtilis lipase A with 20% [BMIM][Cl] 5CT4 ; 1.49 ; Wild-type Bacillus subtilis lipase A with 5% [BMIM][Cl] 8I55 ; 1.99 ; Wild-type CfbA at 1.99 angstrom resolution 1CXI ; 2.2 ; WILD-TYPE CGTASE FROM BACILLUS CIRCULANS STRAIN 251 AT 120 K AND PH 7.55 6VUE ; 2.28 ; wild-type choline TMA lyase in complex with 1-methyl-1,2,3,6-tetrahydropyridin-3-ol 6ND3 ; 2.364 ; wild-type choline TMA lyase in complex with betaine aldehyde 5FAU ; 1.9 ; wild-type choline TMA lyase in complex with choline 3ZO8 ; 1.59 ; Wild-type chorismate mutase of Bacillus subtilis at 1.6 A resolution 3RY1 ; 1.03 ; Wild-type core streptavidin at atomic resolution 3RY2 ; 0.95 ; Wild-type core streptavidin-biotin complex at atomic resolution 6M7F ; 3.051 ; Wild-type Cucumene Synthase 4F5M ; 1.65 ; Wild-Type E. coli Aspartate Aminotransferase: A Template For The Interconversion of Substrate Specificity and Activity To Tyrosine Aminotransferase By The JANUS Algorithm. 6NJ0 ; 1.83 ; Wild-type E. coli MenE with bound m phenylether-linked analogue of OSB-AMS 5CCC ; 1.5 ; wild-type E.coli dihydrofolate reductase complexed with 5,10-dideazatetrahydrofolate and oxidized nicotinamide adenine dinucleotide phosphate 7KJF ; 1.4 ; Wild-type epi-isozizaene synthase: complex with 3 Mg2+ and neridronate 7KJ8 ; 1.9 ; Wild-type epi-isozizaene synthase: complex with 3 Mg2+ and pamidronate 7KJ9 ; 2.2 ; Wild-type epi-isozizaene synthase: complex with 3 Mg2+ and risedronate 7S1H ; 2.35 ; Wild-type Escherichia coli ribosome with antibiotic linezolid 7S1J ; 2.47 ; Wild-type Escherichia coli ribosome with antibiotic radezolid 7S1G ; 2.48 ; wild-type Escherichia coli stalled ribosome with antibiotic linezolid 7S1I ; 2.48 ; Wild-type Escherichia coli stalled ribosome with antibiotic radezolid 2LTB ; ; Wild-type FAS1-4 7Z2X ; 1.5 ; Wild-type ferulic acid esterase from Lactobacillus buchneri 7Z2U ; 1.9 ; Wild-type ferulic acid esterase from Lactobacillus buchneri in complex with ferulate 2AII ; 1.54 ; wild-type Formylglycine generating enzyme reacted with iodoacetamide 4XYH ; 2.3 ; Wild-type full length Mis16 in Schizosaccharomyces japonicus 6NKE ; 1.72 ; Wild-type GGGPS from Thermoplasma volcanium 8B8E ; 1.55 ; Wild-type GH11 from Blastobotrys mokoenaii 5IZD ; 2.05 ; Wild-type glyceraldehyde dehydrogenase from Thermoplasma acidophilum in complex with NADP 1XZ2 ; 1.9 ; wild-type hemoglobin deoxy no-salt 3TM3 ; 1.75 ; Wild-type hemoglobin from Vitreoscilla stercoraria 7OG8 ; 1.4 ; Wild-type Hfq protein from Neisseria meningitidis 6C8X ; 1.613 ; Wild-type HIV-1 protease in complex with a phenylboronic acid (P2') analog of darunavir 6O48 ; 1.46 ; Wild-type HIV-1 protease in complex with a substrate analog CA-p2 6DJ1 ; 1.26 ; Wild-type HIV-1 protease in complex with Lopinavir 2HB3 ; 1.35 ; Wild-type HIV-1 Protease in complex with potent inhibitor GRL06579 6DIF ; 1.2 ; Wild-type HIV-1 protease in complex with tipranavir 3S45 ; 1.51 ; wild-type HIV-2 protease with antiviral drug amprenavir 1G39 ; 1.22 ; WILD-TYPE HNF-1ALPHA DIMERIZATION DOMAIN 4MPM ; 1.74 ; Wild-type human neuroglobin 4X9Y ; 1.07 ; Wild-Type Human Pancreatic Alpha-Amylase at True Atomic Resolution (1.07 A) 1D1S ; 2.5 ; WILD-TYPE HUMAN SIGMA (CLASS IV) ALCOHOL DEHYDROGENASE 5CRD ; 2.08 ; Wild-type human skeletal calsequestrin 4GD7 ; 2.29 ; Wild-Type Human Thymidylate Synthase with bound Purpurogallin 7M1N ; 2.06 ; Wild-type Hydrogenobacter thermophilus ferredoxin 1 2VSS ; 2.22 ; Wild-type Hydroxycinnamoyl-CoA hydratase lyase in complex with acetyl- CoA and vanillin 6BCE ; 1.75 ; Wild-type I-LtrI bound to cognate substrate (pre-cleavage complex) 6BCI ; 2.28 ; Wild-type I-LtrI bound to non-cognate C4 substrate (pre-cleavage complex) 6BDA ; 1.88 ; Wild-type I-OnuI bound to A3G substrate (post-cleavage complex) 4H52 ; 1.803 ; Wild-type influenza N2 neuraminidase covalent complex with 3-fluoro-Neu5Ac 5UK9 ; 1.887 ; Wild-type K-Ras(GCP) pH 6.5 5UFE ; 2.302 ; Wild-type K-Ras(GNP)/R11.1.6 complex 6DVI ; 2.3 ; Wild-type Lactate Monooxygenase from Mycobacterium smegmatis 1ZRS ; 1.5 ; wild-type LD-carboxypeptidase 3ZXD ; 3.3 ; wild-type lysenin 4NSY ; 1.1 ; Wild-type lysobacter enzymogenes lysc endoproteinase covalently inhibited by TLCK 6U9Y ; 1.8 ; Wild-type MthK pore in 11 mM K+ 6U9T ; 1.55 ; Wild-type MthK pore in 50 mM K+ 6U9Z ; 1.954 ; Wild-type MthK pore in 6 mM K+ 6U9P ; 1.65 ; Wild-type MthK pore in ~150 mM K+ 8FRR ; 1.27 ; Wild-type myocilin olfactomedin domain 6P63 ; 2.4 ; Wild-type NIS synthetase DesD bound to AMP and substrate analog cadaverine 5UHV ; 1.672 ; wild-type NRas bound to GppNHp 3VGS ; 2.3 ; Wild-type nucleoside diphosphate kinase derived from Halomonas sp. 593 3VGT ; 2.7 ; Wild-type nucleoside diphosphate kinase derived from Halomonas sp. 593 6HL2 ; 1.95 ; wild-type NuoEF from Aquifex aeolicus - oxidized form 6HL3 ; 2.04 ; wild-type NuoEF from Aquifex aeolicus - oxidized form bound to NAD+ 6HL4 ; 2.06 ; wild-type NuoEF from Aquifex aeolicus - reduced form 6HLI ; 2.38 ; wild-type NuoEF from Aquifex aeolicus - reduced form bound to NAD+ 6HLA ; 1.9 ; wild-type NuoEF from Aquifex aeolicus - reduced form bound to NADH 6SAQ ; 2.02 ; wild-type NuoEF from Aquifex aeolicus bound to NADH-OH 3WJX ; 1.23 ; Wild-type orotidine 5'-monophosphate decarboxylase from M. thermoautotrophicus complexed with 6-amino-UMP 3WJW ; 1.59 ; Wild-type orotidine 5'-monophosphate decarboxylase from M. thermoautotrophicus complexed with 6-methyl-UMP 3WK1 ; 1.6 ; Wild-type orotidine 5'-monophosphate decarboxylase from M. thermoautotrophicus complexed with orotidine 5'-monophosphate ethyl ester 3WK0 ; 1.41 ; Wild-type orotidine 5'-monophosphate decarboxylase from M. thermoautotrophicus complexed with orotidine 5'-monophosphate methyl ester 5K5B ; 1.35 ; Wild-type PAS-GAF fragment from Deinococcus radiodurans BphP 5L8M ; 2.1 ; Wild-type PAS-GAF fragment from Deinococcus radiodurans Bphp collected at LCLS 5LBR ; 2.2 ; Wild-type PAS-GAF fragment from Deinococcus radiodurans Bphp collected at SACLA 1QG0 ; 2.5 ; WILD-TYPE PEA FNR 1NZU ; 2.0 ; Wild-type penicillin-binding protein 5 from E. coli modified by beta-mercaptoethanol 3P62 ; 1.4 ; Wild-type pentaerythritol tetranitrate reductase containing a C-terminal 8-histidine tag 4PVE ; 1.5 ; Wild-type Phl p 4.0202, a glucose dehydrogenase 3UM8 ; 2.6 ; Wild-type Plasmodium falciparum DHFR-TS complexed with cycloguanil and NADPH 7CTZ ; 2.65 ; Wild-type plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with fragment 148, NADPH, and dUMP 7CTW ; 2.51 ; Wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with fragment 820, NADPH, dUMP 7F3Y ; 2.252 ; Wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with methotrexate (MTX), NADPH and dUMP 3DGA ; 2.7 ; Wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with RJF01302, NADPH, and dUMP 1J3I ; 2.33 ; Wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) complexed with WR99210, NADPH, and dUMP 1BYO ; 2.0 ; WILD-TYPE PLASTOCYANIN FROM SILENE 6IQC ; 1.49 ; Wild-type Programmed Cell Death 5 protein from Sulfolobus solfataricus 7LBH ; 1.15 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-1) at 274K, PHENIX-refined 7L9Q ; 1.149 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-1) at 274K, Refmac5-refined 7LBI ; 1.2 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-2) at 274K, PHENIX-refined 7L9S ; 1.2 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-2) at 274K, Refmac5-refined 7LCX ; 1.2 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-3) at 274K, Phenix-refined 7L9W ; 1.199 ; Wild-type Pseudomonas fluorescens isocyanide hydratase (WT-3) at 274K, Refmac5-refined 3TGI ; 1.8 ; WILD-TYPE RAT ANIONIC TRYPSIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) 1DUK ; 2.13 ; WILD-TYPE RECOMBINANT SPERM WHALE METAQUOMYOGLOBIN 7WQK ; 2.15 ; wild-type SARS-CoV-2 main protease in complex with MG-132 6O9Q ; 1.9 ; Wild-type SaSQS1 6O9P ; 2.1 ; Wild-type SaSQS1 Complexed with Ibandronate 8FDJ ; 1.75 ; Wild-Type Sperm Whale Myoglobin in Complex with Nitrosobenzene 5IKS ; 1.87 ; Wild-type sperm whale myoglobin with a Fe-phenyl moiety 5VZN ; 1.7 ; Wild-type sperm whale myoglobin with nitric oxide 5UT7 ; 1.85 ; Wild-type sperm whale myoglobin with nitrite 2W9G ; 1.95 ; Wild-type Staphylococcus aureus DHFR in complex with NADPH and trimethoprim 2W9H ; 1.48 ; Wild-type Staphylococcus aureus DHFR in complex with trimethoprim 6M9B ; 1.548 ; Wild-type streptavidin in complex with biotin solved by native SAD with data collected at 6 keV 4CPE ; 1.06 ; Wild-type streptavidin in complex with love-hate ligand 1 (LH1) 4CPF ; 1.14 ; Wild-type streptavidin in complex with love-hate ligand 3 (LH3) 2V8N ; 3.6 ; Wild-type Structure of Lactose Permease 5U4F ; 1.5 ; Wild-type Transthyretin in complex with 1,1'-(1E)-(1,2-Ethenediyl)bis[2-chloro-4-boronic acid]benzene 5U4G ; 1.8 ; Wild-type Transthyretin in complex with 2-Boronic Acid-1-[(1E)-2-(3-boronic acid)ethenyl]-4-chlorobenzene 5U4E ; 1.45 ; Wild-type Transthyretin in complex with 3-[(1E)-2-(2-Chloro-4-boronic acid)ethenyl]benzoic Acid 5U4D ; 1.55 ; Wild-type Transthyretin in complex with 3-[(1E)-2-(2-Chloro-4-hydroxyphenyl)ethenyl]benzoic Acid 5U4C ; 1.7 ; Wild-type Transthyretin in complex with 3-[(1E)-2-(4-Boronic acid)ethenyl]benzoic Acid 5U4B ; 1.448 ; Wild-type Transthyretin in complex with 3-[(1E)-2-(4-Hydroxyphenyl)ethenyl]benzoic Acid 5U4A ; 1.9 ; Wild-type Transthyretin in complex with 5-[(1E)-2-(2-Chloro-4-boronic acid)ethenyl]-1,3-benzenediol 5U49 ; 2.22 ; Wild-type Transthyretin in complex with 5-[(1E)-2-(2-Chloro-4-hydroxyphenyl)ethenyl]-1,3-benzenediol 5U48 ; 1.5 ; Wild-type Transthyretin in complex with 5-[(1E)-2-(4-Boronic acid)ethenyl]-1,3-benzenediol 1AY9 ; 3.0 ; WILD-TYPE UMUD' FROM E. COLI 1SSP ; 1.9 ; WILD-TYPE URACIL-DNA GLYCOSYLASE BOUND TO URACIL-CONTAINING DNA 7R9F ; 2.89 ; Wild-type yeast Pseudouridine Synthase, PUS1, bound to 5-Fluorouracil RNA 6GH7 ; 1.08 ; WILDTYPE CORE-STREPTAVIDIN WITH a conjugated BIOTINYLATED PYRROLIDINE 7NLV ; 1.29 ; WILDTYPE CORE-STREPTAVIDIN WITH a conjugated BIOTINYLATED PYRROLIDINE II 1MK5 ; 1.4 ; Wildtype Core-Streptavidin with Biotin at 1.4A. 6KEU ; 1.99 ; Wildtype E53, a microbial HSL esterase 2DG3 ; 1.7 ; Wildtype FK506-binding protein complexed with Rapamycin 6HN3 ; 1.01 ; wildtype form (apo) of human GPX4 with Se-Cys46 6DTX ; 3.327 ; Wildtype HIV-1 Reverse Transcriptase in complex with JLJ 578 7PRX ; 2.2 ; wildtype ligand binding domain of the glucocorticoid receptor complexed with velsecorat and a PGC1a coactivator fragment 8G65 ; 1.45 ; Wildtype PTP1b in complex with DES4799 8G67 ; 1.53 ; Wildtype PTP1b in complex with DES4884 8G68 ; 1.82 ; Wildtype PTP1b in complex with DES5742 8G69 ; 1.53 ; Wildtype PTP1b in complex with DES5743 8G6A ; 1.62 ; Wildtype PTP1b in complex with DES6016 8FHI ; 3.25 ; Wildtype rabbit TRPV5 in nanodiscs in complex with oleoyl coenzyme A, Open stated 8FHH ; 3.09 ; Wildtype rabbit TRPV5 in nanodiscs in the presence of oleoyl coenzyme A, Closed stated 8TF2 ; 2.57 ; Wildtype rabbit TRPV5 into nanodiscs in Apo state 8TF3 ; 2.94 ; Wildtype rabbit TRPV5 into nanodiscs in complex with econazole 8TF4 ; 2.86 ; Wildtype rabbit TRPV5 into nanodiscs in the presence of PI(4,5)P2 and econazole 8FFQ ; 2.65 ; Wildtype rabbit TRPV5 into nanodiscs in the presence of PI(4,5)P2 and ruthenium red 8FFL ; 3.47 ; Wildtype rat TRPV2 in nanodiscs bound to RR 8FFM ; 2.9 ; Wildtype rat TRPV2 in nanodiscs bound to RR and 2-APB 1M01 ; 2.1 ; Wildtype Streptomyces plicatus beta-hexosaminidase in complex with product (GlcNAc) 1WBJ ; 1.5 ; wildtype tryptophan synthase complexed with glycerol phosphate 7QCC ; ; Williams-Beuren syndrome related methyltransferase WBSCR27 in apo-form 7QCB ; ; Williams-Beuren syndrome related methyltransferase WBSCR27 in complex with SAH 1WKT ; ; WILLIOPSIS MRAKII KILLER TOXIN, NMR SOLUTION STRUCTURE 4R2S ; 2.489 ; Wilms Tumor Protein (WT1) Q369P zinc fingers in complex with methylated DNA 5KL6 ; 1.641 ; Wilms Tumor Protein (WT1) Q369R ZnF2-4 in complex with DNA 4R2R ; 2.089 ; Wilms Tumor Protein (WT1) zinc fingers in complex with carboxylated DNA 4R2Q ; 1.54 ; Wilms Tumor Protein (WT1) zinc fingers in complex with formylated DNA 4R2P ; 1.788 ; Wilms Tumor Protein (WT1) zinc fingers in complex with hydroxymethylated DNA 4R2E ; 1.84 ; Wilms Tumor Protein (WT1) zinc fingers in complex with methylated DNA 5KL2 ; 1.692 ; Wilms Tumor Protein (WT1) ZnF2-4 in complex with DNA 5KL5 ; 2.289 ; Wilms Tumor Protein (WT1) ZnF2-4 Q369H in complex with carboxylated DNA 5KL3 ; 1.449 ; Wilms Tumor Protein (WT1) ZnF2-4 Q369H in complex with DNA 5KL4 ; 1.783 ; Wilms Tumor Protein (WT1) ZnF2-4 Q369H in complex with formylated DNA 5KL7 ; 1.579 ; Wilms Tumor Protein (WT1) ZnF2-4Q369R in complex with carboxylated DNA 1F9K ; 3.0 ; WINGED BEAN ACIDIC LECTIN COMPLEXED WITH METHYL-ALPHA-D-GALACTOSE 1FAY ; 3.3 ; WINGED BEAN ACIDIC LECTIN COMPLEXED WITH METHYL-ALPHA-D-GALACTOSE (MONOCLINIC FORM) 1WBA ; 1.8 ; WINGED BEAN ALBUMIN 1 1WBL ; 2.5 ; WINGED BEAN LECTIN COMPLEXED WITH METHYL-ALPHA-D-GALACTOSE 1WBF ; 2.3 ; WINGED BEAN LECTIN, SACCHARIDE FREE FORM 6S2D ; ; Winter flounder 1 in SDS micelles 6RYQ ; ; Winter flounder 1a in SDS micelles 6RY9 ; ; Winter flounder 1a-1 in SDS micelles 6RZ1 ; ; Winter flounder 3 in SDS micelles 6RZC ; ; Winter flounder 4 in SDS micelles 1WFA ; 1.7 ; WINTER FLOUNDER ANTIFREEZE PROTEIN ISOFORM HPLC6 AT 4 DEGREES C 1WFB ; 1.5 ; WINTER FLOUNDER ANTIFREEZE PROTEIN ISOFORM HPLC6 AT-180 DEGREES C 5KXB ; 2.33 ; Wisteria floribunda lectin in complex with GalNAc 5KXE ; 2.09 ; Wisteria floribunda lectin in complex with GalNAc(beta1-4)GlcNAc (LacdiNAc) at pH 4.2 5KXD ; 1.95 ; Wisteria floribunda lectin in complex with GalNAc(beta1-4)GlcNAc (LacdiNAc) at pH 6.5 5KXC ; 1.8 ; Wisteria floribunda lectin in complex with GalNAc(beta1-4)GlcNAc (LacdiNAc) at pH 8.5. 4Q2A ; 3.5 ; WNK1: A chloride sensor via autophosphorylation 6L8M ; ; WNT DNA promoter mutant G-quadruplex 5FWS ; 1.9 ; Wnt modulator Kremen crystal form I at 1.90A 5FWT ; 2.1 ; Wnt modulator Kremen crystal form I at 2.10A 5FWU ; 2.8 ; Wnt modulator Kremen crystal form II at 2.8A 5FWV ; 3.2 ; Wnt modulator Kremen crystal form III at 3.2A 5FWW ; 3.5 ; Wnt modulator Kremen in complex with DKK1 (CRD2) and LRP6 (PE3PE4) 6AHY ; 2.8 ; Wnt signaling complex 6GBI ; 1.25 ; Wnt signalling 7E4K ; 2.69 ; WNV envelope protein 5NXT ; 1.379 ; Wobble base paired RNA double helix 8F0N ; 2.85 ; Wobble Beetroot (A16U-U38G) dimer bound to DFHO 6SYH ; 1.5 ; Wolinella succinogenes L-asparaginase mutant V23Q,K24T in P 22121 6RUE ; 1.65 ; Wolinella succinogenes L-asparaginase mutant V23Q,K24T with L-Asp 6RUF ; 2.0 ; Wolinella succinogenes L-asparaginase mutant V23Q,K24T with L-Glu 6RUD ; 1.7 ; WOLINELLA SUCCINOGENES L-ASPARAGINASE P1 5K45 ; 1.63 ; Wolinella succinogenes L-asparaginase P121 + L-Glutamic acid 5K3O ; 1.696 ; Wolinella succinogenes L-asparaginase P121 and L-Aspartic acid 5K4G ; 1.6 ; Wolinella succinogenes L-asparaginase S121 + L-aspartic acid, open conformation 5K4H ; 2.0 ; Wolinella succinogenes L-asparaginase S121 + L-Glutamic acid 4RKM ; 2.2 ; Wolinella succinogenes octaheme sulfite reductase MccA, form I 4RKN ; 2.1 ; Wolinella succinogenes octaheme sulfite reductase MccA, form II 7TUL ; 6.5 ; Woodchuck hepatitis small surface protein without cytosolic and antigenic loops 6X1O ; 2.094 ; WOR5 from Pyrococcus furiosus, as crystallized 6X6U ; 1.944 ; WOR5 from Pyrococcus furiosus, taurine-bound 3B6K ; 1.99 ; WrbA from Escherichia coli, Benzoquinone complex 3B6J ; 2.05 ; WrbA from Escherichia coli, NADH complex 3B6I ; 1.66 ; WrbA from Escherichia coli, native structure 3B6M ; 1.85 ; WrbA from Escherichia coli, second crystal form 5F12 ; 1.5 ; WrbA in complex with FMN under crystallization conditions of WrbA-FMN-BQ structure (4YQE) 2FBT ; 2.05 ; WRN exonuclease 2FBY ; 2.0 ; WRN exonuclease, Eu complex 2FBX ; 2.2 ; WRN exonuclease, Mg complex 2FBV ; 2.4 ; WRN exonuclease, Mn complex 2FC0 ; 2.0 ; WRN exonuclease, Mn dGMP complex 2LKG ; ; WSA major conformation 2LKH ; ; WSA minor conformation 1F62 ; ; WSTF-PHD 7LKF ; 2.9 ; WT Chicken Scap L1-L7 / Fab 4G10 complex focused refinement 5UE9 ; 2.72 ; WT DHODB with orotate bound 5F5Y ; 2.196 ; WT Drosophila Melanogaster Cycle PAS-B with Bound Ethylene Glycol 6NBS ; 1.9 ; WT ERK2 with compound 2507-8 7PZN ; 3.2 ; wt HBc capsid like particles in complex with inhibitory peptide SLLGRM and Triton X-100 6HTX ; 2.66 ; WT Hepatitis B core protein capsid 6W6T ; 1.84 ; WT HIV-1 Protease in Complex with Phosphonated UMass6 (PU6) 6W6Q ; 2.1 ; WT HTLV-1 Protease in Complex with Darunavir (DRV) 6W6S ; 2.29 ; WT HTLV-1 Protease in Complex with Phosphonated UMass6 (PU6) 6W6R ; 2.05 ; WT HTLV-1 Protease in Complex with UMass6 (UM6) 1YFH ; 3.01 ; wt Human O6-Alkylguanine-DNA Alkyltransferase Bound To DNA Containing an Alkylated Cytosine 6B8O ; 2.2 ; WT Ig-like V Domain with Phosphatidylserine 2W2N ; 2.3 ; WT PCSK9-deltaC bound to EGF-A H306Y mutant of LDLR 2W2M ; 2.4 ; WT PCSK9-DELTAC BOUND TO WT EGF-A OF LDLR 6X32 ; 3.8 ; Wt pig RyR1 in complex with apoCaM, EGTA condition (class 1 and 2, closed) 6X33 ; 4.2 ; Wt pig RyR1 in complex with apoCaM, EGTA condition (class 3, open) 4WB4 ; 2.03 ; wt SA11 NSP4_CCD 7A90 ; 3.185 ; WT STING in complex with 3',3'-c-di[2'FdAM(PS)] 6E02 ; 1.76 ; WT swMb-MeNO 7E7S ; 3.3 ; WT transporter state1 8RF0 ; 3.4 ; WT-CGS sample in nanodisc 5N2W ; 2.68 ; WT-Parkin and pUB complex 8TUS ; 2.6 ; WU Polyomavirus LTA NLS bound to importin alpha 2 6RYI ; 2.691 ; WUS-HD bound to G-Box DNA 6RYL ; 2.63 ; WUS-HD bound to TAAT DNA 6RYD ; 1.575 ; WUS-HD bound to TGAA DNA 2MPT ; ; WW3 domain of Nedd4L in complex with its HECT domain PY motif 2OP7 ; ; WW4 6MIW ; 2.0 ; WWE domain of human HUWE1 6J1X ; 2.3 ; WWP1 close conformation 6J1Z ; 2.7 ; WWP2 semi-open conformation 7NHS ; 2.3 ; Wzc K540M C8 7NII ; 2.88 ; Wzc-K540M MgADP C1 7NIH ; 2.6 ; Wzc-K540M MgADP C8 7NIB ; 3.51 ; Wzc-K540M-4YE C1 7NI2 ; 2.89 ; Wzc-K540M-4YE C8 2YNK ; 2.64 ; Wzi, an Outer Membrane Protein Involved in Group 1 Capsule Assembly in Escherichia coli, is a Carbohydrate Binding Beta-Barrel 5NBZ ; 9.0 ; Wzz dodecamer fitted by MDFF to the Wzz experimental map from cryo-EM 2RAO ; 2.0 ; X ray crystal structure of rabbit hemoglobin (oxy form) at 2.0 angstrom resolution 2W0H ; 3.0 ; X ray structure of Leishmania infantum Trypanothione reductase in complex with antimony and NADPH 2IT4 ; 2.0 ; X ray structure of the complex between Carbonic Anhydrase I and the phosphonate antiviral drug foscarnet 3FFP ; 1.81 ; X ray structure of the complex between carbonic anhydrase II and LC inhibitors 5UXS ; 1.421 ; X ray structure of the periplasmic ligand binding protein YfeA from Yersinia pestis 4ARH ; 2.3 ; X ray structure of the periplasmic zinc binding protein ZinT from Salmonella enterica 2Y6J ; 1.7 ; X-2 engineered mutated CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 2Y6H ; 1.08 ; X-2 L110F CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 8G5A ; 3.3 ; X-31 hemagglutinin in complex with FL-1061 Fab 7ZJ7 ; 3.95 ; X-31 Hemagglutinin Precursor HA0 at pH 4.8 7ZJ6 ; 2.6 ; X-31 Hemagglutinin Precursor HA0 at pH 7.5 7ZJ8 ; 3.1 ; X-31 Hemagglutinin Precursor HA0 at pH 7.5 after reneutralization 1IBH ; 2.0 ; X-RAY 3D STRUCTURE OF P.LEIOGNATHI CU,ZN SOD MUTANT M41I 1IBD ; 2.0 ; X-RAY 3D STRUCTURE OF P.LEIOGNATHI CU,ZN SOD MUTANT V29A 1IBF ; 2.2 ; X-RAY 3D STRUCTURE OF P.LEIOGNATHI CU,ZN SOD MUTANT V29G 1IBB ; 2.1 ; X-RAY 3D STRUCTURE OF P.LEIOGNATHI CU,ZN SOD MUTANT W83F 1IB5 ; 2.45 ; X-RAY 3D STRUCTURE OF P.LEIOGNATHI CU,ZN SOD MUTANT W83Y 2YZ7 ; 2.19 ; X-ray analyses of 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis 5PEP ; 2.34 ; X-RAY ANALYSES OF ASPARTIC PROTEASES. II. THREE-DIMENSIONAL STRUCTURE OF THE HEXAGONAL CRYSTAL FORM OF PORCINE PEPSIN AT 2.3 ANGSTROMS RESOLUTION 4CMS ; 2.2 ; X-RAY ANALYSES OF ASPARTIC PROTEINASES IV. STRUCTURE AND REFINEMENT AT 2.2 ANGSTROMS RESOLUTION OF BOVINE CHYMOSIN 1ENT ; 1.9 ; X-RAY ANALYSES OF ASPARTIC PROTEINASES. THE THREE-DIMENSIONAL STRUCTURE AT 2.1 ANGSTROMS RESOLUTION OF ENDOTHIAPEPSIN 1MPP ; 2.0 ; X-RAY ANALYSES OF ASPARTIC PROTEINASES. V. STRUCTURE AND REFINEMENT AT 2.0 ANGSTROMS RESOLUTION OF THE ASPARTIC PROTEINASE FROM MUCOR PUSILLUS 2ER7 ; 1.6 ; X-RAY ANALYSES OF ASPARTIC PROTEINASES.III. THREE-DIMENSIONAL STRUCTURE OF ENDOTHIAPEPSIN COMPLEXED WITH A TRANSITION-STATE ISOSTERE INHIBITOR OF RENIN AT 1.6 ANGSTROMS RESOLUTION 1VE8 ; 1.65 ; X-Ray analyses of oligonucleotides containing 5-formylcytosine, suggesting a structural reason for codon-anticodon recognition of mitochondrial tRNA-Met; Part 1, d(CGCGAATT(f5C)GCG) 1BBS ; 2.8 ; X-RAY ANALYSES OF PEPTIDE INHIBITOR COMPLEXES DEFINE THE STRUCTURAL BASIS OF SPECIFICITY FOR HUMAN AND MOUSE RENINS 1PPT ; 1.37 ; X-RAY ANALYSIS (1.4-ANGSTROMS RESOLUTION) OF AVIAN PANCREATIC POLYPEPTIDE. SMALL GLOBULAR PROTEIN HORMONE 1J8G ; 0.61 ; X-ray Analysis of a RNA Tetraplex r(uggggu)4 at Ultra-High Resolution 2BB2 ; 2.1 ; X-RAY ANALYSIS OF BETA B2-CRYSTALLIN AND EVOLUTION OF OLIGOMERIC LENS PROTEINS 3AJ9 ; 1.1 ; X-ray analysis of Crystal of Proteinase K Obtained from D2O Solution Using PEG 8000 3AJ8 ; 1.1 ; X-ray analysis of Crystal of Proteinase K Obtained from H2O Solution Using PEG 8000 5RNT ; 3.2 ; X-RAY ANALYSIS OF CUBIC CRYSTALS OF THE COMPLEX FORMED BETWEEN RIBONUCLEASE T1 AND GUANOSINE-3',5'-BISPHOSPHATE 8XIA ; 1.9 ; X-RAY ANALYSIS OF D-XYLOSE ISOMERASE AT 1.9 ANGSTROMS: NATIVE ENZYME IN COMPLEX WITH SUBSTRATE AND WITH A MECHANISM-DESIGNED INACTIVATOR 9XIA ; 1.9 ; X-RAY ANALYSIS OF D-XYLOSE ISOMERASE AT 1.9 ANGSTROMS: NATIVE ENZYME IN COMPLEX WITH SUBSTRATE AND WITH A MECHANISM-DESIGNED INACTIVATOR 1GCN ; 3.0 ; X-RAY ANALYSIS OF GLUCAGON AND ITS RELATIONSHIP TO RECEPTOR BINDING 3PHV ; 2.7 ; X-RAY ANALYSIS OF HIV-1 PROTEINASE AT 2.7 ANGSTROMS RESOLUTION CONFIRMS STRUCTURAL HOMOLOGY AMONG RETROVIRAL ENZYMES 3AGG ; 1.6 ; X-ray analysis of lysozyme in the absence of Arg 3AGH ; 1.49 ; X-ray analysis of lysozyme in the presence of 200 mM Arg 1RZA ; 1.9 ; X-RAY ANALYSIS OF METAL SUBSTITUTED HUMAN CARBONIC ANHYDRASE II DERIVATIVES 1RZB ; 1.8 ; X-RAY ANALYSIS OF METAL SUBSTITUTED HUMAN CARBONIC ANHYDRASE II DERIVATIVES 1RZC ; 1.9 ; X-RAY ANALYSIS OF METAL SUBSTITUTED HUMAN CARBONIC ANHYDRASE II DERIVATIVES 1RZD ; 1.9 ; X-RAY ANALYSIS OF METAL SUBSTITUTED HUMAN CARBONIC ANHYDRASE II DERIVATIVES 1RZE ; 1.9 ; X-RAY ANALYSIS OF METAL SUBSTITUTED HUMAN CARBONIC ANHYDRASE II DERIVATIVES 6INS ; 2.0 ; X-RAY ANALYSIS OF THE SINGLE CHAIN B29-A1 PEPTIDE-LINKED INSULIN MOLECULE. A COMPLETELY INACTIVE ANALOGUE 285D ; 2.5 ; X-RAY AND SOLUTION STUDIES OF DNA OLIGOMERS AND IMPLICATIONS FOR THE STRUCTURAL BASIS OF A-TRACT-DEPENDENT CURVATURE 286D ; 2.5 ; X-RAY AND SOLUTION STUDIES OF DNA OLIGOMERS AND IMPLICATIONS FOR THE STRUCTURAL BASIS OF A-TRACT-DEPENDENT CURVATURE 287D ; 2.2 ; X-RAY AND SOLUTION STUDIES OF DNA OLIGOMERS AND IMPLICATIONS FOR THE STRUCTURAL BASIS OF A-TRACT-DEPENDENT CURVATURE 297D ; 2.5 ; X-RAY AND SOLUTION STUDIES OF DNA OLIGOMERS AND IMPLICATIONS FOR THE STRUCTURAL BASIS OF A-TRACT-DEPENDENT CURVATURE 5OVR ; 2.15 ; X-Ray Characterization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors 5OVX ; 2.1 ; X-Ray Characterization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors 5OW1 ; 2.05 ; X-Ray Characterization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors 3BYM ; 2.0 ; X-ray co-crystal structure aminobenzimidazole triazine 1 bound to Lck 3BYO ; 2.0 ; X-Ray co-crystal structure of 2-amino-6-phenylpyrimido[5',4':5,6]pyrimido[1,2-a]benzimidazol-5(6H)-one 25 bound to Lck 6UDT ; 1.5 ; X-ray co-crystal structure of compound 10 bound to human Mcl-1 6UDI ; 1.94 ; X-ray co-crystal structure of compound 20 with Mcl-1 8G8X ; 1.97 ; X-ray co-crystal structure of compound 27 in with complex JAK2 6UDV ; 1.35 ; X-ray co-crystal structure of compound 3 bound to human Mcl-1 6UDY ; 1.7 ; X-ray co-crystal structure of compound 5 with Mcl-1 6UDX ; 1.7 ; X-ray co-crystal structure of compound 7 with Mcl-1 6UDU ; 1.75 ; X-ray co-crystal structure of compound 8 bound to human Mcl-1 3F7Z ; 2.4 ; X-ray Co-Crystal Structure of Glycogen Synthase Kinase 3beta in Complex with an Inhibitor 5BPA ; 1.79 ; X-RAY Co-structure of MMP-13 with 4-[({5-[2-(ethoxycarbonyl)-1H-indol-5-yl]-1-methyl-1H-pyrazol-3-yl}formamido)methyl]benzoate 5BOY ; 2.03 ; X-RAY Co-structure of MMP-13 with ethyl 5-(1-methyl-1H-imidazol-5-yl)-1H-indole-2-Carboxylate 5BOT ; 1.85 ; X-RAY Co-structure of MMP-13 with ethyl 5-carbamoyl-1H-indole-2-carboxylate 4YMQ ; 2.0 ; X-ray co-structure of nuclear receptor ROR-GAMMAT + SRC2 peptide with a benzothiadiazole dioxide inverse agonist 5VQK ; 3.1 ; X-ray co-structure of nuclear receptor ROR-gammat Ligand Binding Domain with a inverse agonist and SRC2 peptide 5VQL ; 2.7 ; X-ray co-structure of nuclear receptor ROR-gammat Ligand Binding Domain with a inverse agonist and SRC2 peptide 5VB7 ; 2.335 ; X-ray co-structure of nuclear receptor ROR-gammat Ligand Binding Domain with an agonist and SRC2 peptide 5VB5 ; 2.226 ; X-ray co-structure of nuclear receptor ROR-gammat Ligand Binding Domain with an inverse agonist and SRC2 peptide 5VB6 ; 2.041 ; X-ray co-structure of nuclear receptor ROR-gammat Ligand Binding Domain with an inverse agonist and SRC2 peptide 5WNE ; 2.6 ; X-RAY CO-STRUCTURE OF RHO-ASSOCIATED PROTEIN KINASE (ROCK1) WITH A HIGHLY SELECTIVE INHIBITOR 5WNF ; 2.45 ; X-RAY CO-STRUCTURE OF RHO-ASSOCIATED PROTEIN KINASE (ROCK1) WITH A HIGHLY SELECTIVE INHIBITOR 5WNG ; 2.9 ; X-RAY CO-STRUCTURE OF RHO-ASSOCIATED PROTEIN KINASE (ROCK1) WITH A HIGHLY SELECTIVE INHIBITOR 5WNH ; 3.1 ; X-RAY CO-STRUCTURE OF RHO-ASSOCIATED PROTEIN KINASE (ROCK1) WITH A HIGHLY SELECTIVE INHIBITOR 3NCZ ; 3.0 ; X-Ray Co-structure of Rho-Associated Protein Kinase (ROCK1) with a potent 2H-isoquinolin-1-one inhibitor 7KKU ; 2.02 ; X-ray Counterpart to Neutron Structure of Oxidized Human MnSOD 7KLB ; 2.16 ; X-ray Counterpart to Neutron Structure of Reduced Human MnSOD 3ABG ; 2.3 ; X-ray Crystal Analysis of Bilirubin Oxidase from Myrothecium verrucaria at 2.3 angstrom Resolution using a Twin Crystal 6N1D ; 3.2 ; X-ray Crystal complex showing Spontaneous Ribosomal Translocation of mRNA and tRNAs into a Chimeric Hybrid State 7EHX ; 1.8 ; X-ray crystal strcture of F46C/L49C sperm whale myoglobin with an intramolecular disulfide bond 4YG2 ; 3.7 ; X-ray crystal structur of Escherichia coli RNA polymerase sigma70 holoenzyme 3WXA ; 2.36 ; X-ray crystal structural analysis of the complex between ALG-2 and Sec31A peptide 2DC7 ; 1.94 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA042 complex 2DC8 ; 1.94 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA059 complex 2DC6 ; 2.3 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA073 complex 2DC9 ; 1.94 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA074Me complex 2DCA ; 2.11 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA075 complex 2DCB ; 1.94 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA076 complex 2DCC ; 1.93 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA077 complex 2DCD ; 2.5 ; X-ray crystal structure analysis of bovine spleen cathepsin B-CA078 complex 1QQY ; 1.85 ; X-RAY CRYSTAL STRUCTURE ANALYSIS OF CANINE MILK LYSOZYME (APO-TYPE) 1EL1 ; 1.9 ; X-RAY CRYSTAL STRUCTURE ANALYSIS OF CANINE MILK LYSOZYME (HOLO-TYPE) 5E4P ; 1.792 ; X-ray Crystal Structure Analysis of Magnetically Oriented Microcrystals of Lysozyme at 1.8 angstrom Resolution 2CWI ; 1.941 ; X-ray crystal structure analysis of recombinant wild-type canine milk lysozyme (apo-type) 2QFK ; 1.62 ; X-ray Crystal Structure Analysis of the Binding Site in the Ferric and Oxyferrous Forms of the Recombinant Heme Dehaloperoxidase Cloned from Amphitrite ornata 2QFN ; 1.62 ; X-ray Crystal Structure Analysis of the Binding Site in the Ferric and Oxyferrous Forms of the Recombinant Heme Dehaloperoxidase Cloned from Amphitrite ornata 1GNP ; 2.7 ; X-RAY CRYSTAL STRUCTURE ANALYSIS OF THE CATALYTIC DOMAIN OF THE ONCOGENE PRODUCT P21H-RAS COMPLEXED WITH CAGED GTP AND MANT DGPPNHP 1GNQ ; 2.5 ; X-RAY CRYSTAL STRUCTURE ANALYSIS OF THE CATALYTIC DOMAIN OF THE ONCOGENE PRODUCT P21H-RAS COMPLEXED WITH CAGED GTP AND MANT DGPPNHP 1GNR ; 1.85 ; X-RAY CRYSTAL STRUCTURE ANALYSIS OF THE CATALYTIC DOMAIN OF THE ONCOGENE PRODUCT P21H-RAS COMPLEXED WITH CAGED GTP AND MANT DGPPNHP 1GEB ; 2.03 ; X-RAY CRYSTAL STRUCTURE AND CATALYTIC PROPERTIES OF THR252ILE MUTANT OF CYTOCHROME P450CAM 4EME ; 2.6 ; X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase 5CR5 ; 1.61 ; X-RAY CRYSTAL STRUCTURE AT 1.61A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A BIPHENYL PYRROLIDINE ETHER COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5X ; 1.65 ; X-RAY CRYSTAL STRUCTURE AT 1.65A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A THIAZOLE COMPOUND AND PMP COFACTOR. 5BWX ; 1.703 ; X-RAY CRYSTAL STRUCTURE AT 1.70A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A 4-CHLORO-2-FLUORO SUBSTITUTED PYRAZOLOPYRIMIDINONE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5Y ; 1.81 ; X-RAY CRYSTAL STRUCTURE AT 1.81A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH AN ARYL ACETATE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5BWW ; 1.82 ; X-RAY CRYSTAL STRUCTURE AT 1.82A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A PYRROLIDINE AMIDE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5BWV ; 1.86 ; X-RAY CRYSTAL STRUCTURE AT 1.86A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A PYRAZOLOPYRIMIDINONE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5V ; 1.94 ; X-RAY CRYSTAL STRUCTURE AT 1.94A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A THIENOPYRIMIDINE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5S ; 2.06 ; X-RAY CRYSTAL STRUCTURE AT 2.06A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A BENZISOXAZOLE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I60 ; 2.12 ; X-RAY CRYSTAL STRUCTURE AT 2.12A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A BIARL AMIDE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5BWU ; 2.17 ; X-RAY CRYSTAL STRUCTURE AT 2.17A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A TRIAZOLOPYRIMIDINONE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5BWR ; 2.2 ; X-RAY CRYSTAL STRUCTURE AT 2.20A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A PYRAZOLOPYRIMIDINONE FRAGMENT AND AN INTERNAL ALDIMINE LINKED PLP. 5BWT ; 2.2 ; X-RAY CRYSTAL STRUCTURE AT 2.20A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A PYRAZOLOPYRIMIDINONE FRAGMENT AND AN INTERNAL ALDIMINE LINKED PLP. 5I5T ; 2.31 ; X-RAY CRYSTAL STRUCTURE AT 2.31A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A TETRAHYDROQUINOLINE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5W ; 2.4 ; X-RAY CRYSTAL STRUCTURE AT 2.40A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A BIARYL AMIDE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 5I5U ; 2.404 ; X-RAY CRYSTAL STRUCTURE AT 2.40A RESOLUTION OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A TETRAHYDRONAPHTHALENYL COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR. 1EQB ; 2.7 ; X-RAY CRYSTAL STRUCTURE AT 2.7 ANGSTROMS RESOLUTION OF TERNARY COMPLEX BETWEEN THE Y65F MUTANT OF E-COLI SERINE HYDROXYMETHYLTRANSFERASE, GLYCINE AND 5-FORMYL TETRAHYDROFOLATE 1LOE ; 1.9 ; X-RAY CRYSTAL STRUCTURE DETERMINATION AND REFINEMENT AT 1.9 ANGSTROMS RESOLUTION OF ISOLECTIN I FROM THE SEEDS OF LATHYRUS OCHRUS 3KYU ; 1.1 ; X-ray crystal structure determination of fully perdeuterated rubredoxin at 100K 1EM1 ; 2.13 ; X-RAY CRYSTAL STRUCTURE FOR HUMAN MANGANESE SUPEROXIDE DISMUTASE, Q143A 5U6V ; 1.775 ; X-ray crystal structure of 1,2,3-triazolobenzodiazepine in complex with BRD2(D2) 3MDL ; 2.2 ; X-ray crystal structure of 1-arachidonoyl glycerol bound to the cyclooxygenase channel of cyclooxygenase-2 3OLU ; 2.35 ; X-ray crystal structure of 1-arachidonoyl glycerol bound to the cyclooxygenase channel of R513H murine COX-2 4ZN6 ; 2.05 ; X-ray Crystal Structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) from Acinetobacter baumannii 8K14 ; 1.28 ; X-ray crystal structure of 18a in BRD4(1) 4N71 ; 2.984 ; X-Ray Crystal Structure of 2-amino-1-hydroxyethylphosphonate-bound PhnZ 4U3W ; 1.9501 ; X-ray crystal structure of 2-aminomuconate 6-semialdehyde dehydrogenase from Burkholderia cenocepacia 2OFU ; 2.0 ; x-ray crystal structure of 2-aminopyrimidine carbamate 43 bound to Lck 4DH0 ; 2.1 ; X-ray Crystal Structure of 28-O-Methylrapamycin complexed with FKBP12: Is the Cyclohexyl Moiety Part of the Effector Domain of Rapamycin? 6IE0 ; 2.976 ; X-ray crystal structure of 2R,3R-butanediol dehydrogenase from Bacillus subtilis 4JGA ; 2.1 ; X-ray crystal structure of 3-oxoacyl-[acyl-carrier-protein] synthase 2 from Rickettsia rickettsii 8EKF ; 1.9 ; X-ray crystal structure of 311R Fab in complex with the PfCSP peptide NPNA-3 1LO8 ; 1.8 ; X-ray crystal structure of 4-hydroxybenzoyl CoA thioesterase complexed with 4-hydroxybenzyl CoA 1LO9 ; 2.8 ; X-ray crystal structure of 4-hydroxybenzoyl CoA thioesterase mutant D17N complexed with 4-hydroxybenzoyl CoA 2C5B ; 2.5 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya complexed with 2'deoxy-5'deoxy-fluoroadenosine. 2C5H ; 2.7 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya complexed with 2'deoxy-adenosine 2V7V ; 1.94 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from streptomyces cattleya complexed with 5'-fluorodeoxyadenosine 2CC2 ; 2.0 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya complexed with 5'deoxyadenosine 2C4T ; 2.3 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya complexed with an inhibitor, an analogue of S- adenosyl methionine 2CBX ; 2.0 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase from Streptomyces cattleya complexed with beta-D-erythrofuranosyl- adenosine 2V7X ; 1.96 ; X-RAY CRYSTAL STRUCTURE OF 5'-FLUORODEOXYADENOSINE SYNTHASE S158A mutant FROM STREPTOMYCES CATTLEYA COMPLEXED WITH the PRODUCTS, FDA and Met 2V7W ; 1.9 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase s158g mutant complexed with 5'-fluorodeoxyadenosin 2V7T ; 2.15 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase s158g mutant complexed with s-adenosyl-l-homocysteine and chloride ion 2V7U ; 2.0 ; X-ray crystal structure of 5'-fluorodeoxyadenosine synthase s158g mutant complexed with s-adenosylmethionine and chloride ion 4PFZ ; 1.8 ; X-ray Crystal Structure of 5-carboxymethyl-2-hydroxymuconate delta-isomerase from Mycobacterium smegmatis 5B8F ; 1.45 ; X-ray Crystal Structure of a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase from Pseudomonas aeruginosa 4O5O ; 1.4 ; X-ray Crystal Structure of a 3-hydroxyacyl-CoA dehydrogenase from Brucella suis 4JQP ; 1.65 ; X-ray crystal structure of a 4-hydroxythreonine-4-phosphate dehydrogenase from Burkholderia phymatum 5BNT ; 2.1 ; X-ray Crystal Structure of a Aspartate-semialdehyde dehydrogenase bound to NADP from Pseudomonas aeruginosa 6P71 ; 2.92 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrBI promoter 5VO8 ; 3.3 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter 6OY5 ; 3.1 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter at 3 min 6OY6 ; 3.096 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter at 5 min 6OY7 ; 3.04 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter at 7 min 6OVY ; 2.999 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter variant -1C 6OVR ; 2.843 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter variant -1G 6OW3 ; 2.766 ; X-ray crystal structure of a bacterial reiterative transcription complex of pyrG promoter variant -1T 1YIW ; 1.39 ; X-ray Crystal Structure of a Chemically Synthesized Ubiquitin 2FCQ ; 3.3 ; X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group 1YJ1 ; 1.3 ; X-ray Crystal Structure of a Chemically Synthesized [D-Gln35]Ubiquitin 2FCM ; 2.2 ; X-ray Crystal Structure of a Chemically Synthesized [D-Gln35]Ubiquitin with a Cubic Space Group 2FCN ; 2.2 ; X-ray Crystal Structure of a Chemically Synthesized [D-Val35]Ubiquitin with a Cubic Space Group 2FCS ; 1.8 ; X-ray Crystal Structure of a Chemically Synthesized [L-Gln35]Ubiquitin with a Cubic Space Group 2JH2 ; 2.5 ; X-ray crystal structure of a cohesin-like module from Clostridium perfringens 1S6B ; 1.6 ; X-ray Crystal Structure of a Complex Formed Between Two Homologous Isoforms of Phospholipase A2 from Naja naja sagittifera: Principle of Molecular Association and Inactivation 5BXW ; 2.15 ; X-ray crystal structure of a continuously hydrogen bonded 14mer DNA lattice. 5BZ7 ; 2.03 ; X-ray crystal structure of a continuously hydrogen bonded 14mer DNA lattice. 5BZ9 ; 2.1 ; X-ray crystal structure of a continuously hydrogen bonded 14mer DNA lattice. 5BZY ; 2.4 ; X-ray crystal structure of a continuously hydrogen bonded 14mer DNA lattice. 2ZOP ; 2.1 ; X-ray crystal structure of a CRISPR-associated Cmr5 family protein from Thermus thermophilus HB8 7LIB ; 1.1 ; X-ray crystal structure of a cyclic peptide containing beta-2-microglobulin (63-69) and a gamma-methylornithine turn unit 7JRH ; 1.32 ; X-ray crystal structure of a cyclic peptide containing medin(19-25) and medin(31-37) 4TM5 ; 1.603 ; X-ray crystal structure of a D-amino acid aminotransferase from Burkholderia thailandensis E264 bound to the co-factor pyridoxal phosphate 3KEV ; 1.3 ; X-ray crystal structure of a DCUN1 domain-containing protein from Galdieria sulfuraria 8A3J ; 2.1 ; X-ray crystal structure of a de novo designed antiparallel coiled-coil heterotetramer with 3 heptad repeats, apCC-Tet*3-A2B2 8A3I ; 1.42 ; X-ray crystal structure of a de novo designed antiparallel coiled-coil homotetramer with 3 heptad repeats, apCC-Tet*3 8A3G ; 0.96 ; X-ray crystal structure of a de novo designed antiparallel coiled-coil homotetramer with 4 heptad repeats, apCC-Tet* 8BCS ; 2.1 ; X-ray crystal structure of a de novo designed helix-loop-helix homodimer in an anti arrangement, CC-HP1.0 8A3K ; 2.0 ; X-ray crystal structure of a de novo designed single-chain antiparallel 4-helix coiled-coil bundle, sc-apCC-4 8BCT ; 1.7 ; X-ray crystal structure of a de novo selected helix-loop-helix heterodimer in a syn arrangement, 26alpha/26beta 4HFJ ; 2.0 ; X-ray Crystal Structure of a Double Bond Reductase from Nicotiana tabacum 5DC2 ; 2.182 ; X-RAY CRYSTAL STRUCTURE OF A ENZYMATICALLY DEGRADED BIAPENEM-ADDUCT OF L,D-TRANSPEPTIDASE 2 FROM MYCOBACTERIUM TUBERCULOSIS 5KVR ; 1.36 ; X-Ray Crystal Structure of a Fragment (1-75) of a Transcriptional Regulator PdhR from Escherichia coli CFT073 4K9D ; 2.1 ; X-ray crystal structure of a Glyceraldehyde 3-phosphate dehydrogenase from Brugia malayi bound to the co-factor NAD 4K0J ; 3.0 ; X-ray crystal structure of a heavy metal efflux pump, crystal form I 4K0E ; 3.713 ; X-ray crystal structure of a heavy metal efflux pump, crystal form II 3P4G ; 1.7 ; X-ray crystal structure of a hyperactive, Ca2+-dependent, beta-helical antifreeze protein from an Antarctic bacterium 4DZ4 ; 1.7 ; X-ray crystal structure of a hypothetical Agmatinase from Burkholderia thailandensis 4GK6 ; 1.65 ; X-ray crystal structure of a hypothetical deoxyuridine 5-triphosphate nucleotidohydrolase from Mycobacterium abscessus 3ZRS ; 3.05 ; X-ray crystal structure of a KirBac potassium channel highlights a mechanism of channel opening at the bundle-crossing gate. 5TJR ; 2.95 ; X-ray Crystal structure of a methylmalonate semialdehyde dehydrogenase from Pseudomonas sp. AAC 3CO3 ; 2.16 ; X-Ray Crystal Structure of a Monofunctional Platinum-DNA Adduct, cis-{Pt(NH3)2(pyridine)}2+ Bound to Deoxyguanosine in a Dodecamer Duplex 3Q69 ; 2.4 ; X-ray crystal structure of a MucBP domain of the protein LBA1460 from Lactobacillus acidophilus, Northeast structural genomics consortium target LaR80A 8JJM ; 1.8 ; X-ray crystal structure of a multifunctional enzyme (Amy63) from Vibrio alginolyticus 63 1Z3L ; 1.8 ; X-Ray Crystal Structure of a Mutant Ribonuclease S (F8Anb) 1Z3P ; 2.0 ; X-Ray crystal structure of a mutant Ribonuclease S (M13Nva) 4HFM ; 1.9 ; X-ray Crystal Structure of a NADP(H)-bound Double Bond Reductase from Nicotiana tabacum 4WSO ; 2.05 ; X-ray crystal structure of a nicotinate nucleotide adenylyltransferase from Burkholderia thailandensis bound to NAD 1UWW ; 1.4 ; X-ray crystal structure of a non-crystalline cellulose specific carbohydrate-binding module: CBM28. 5T79 ; 1.86 ; X-Ray Crystal Structure of a Novel Aldo-keto Reductases for the Biocatalytic Conversion of 3-hydroxybutanal to 1,3-butanediol 3UE7 ; 1.08 ; X-ray crystal structure of a novel topological analogue of crambin 5ONG ; 2.797 ; X-Ray crystal structure of a nucleosome core particle with its DNA site-specifically crosslinked to the histone octamer 5ONW ; 2.8 ; X-Ray crystal structure of a nucleosome core particle with its DNA site-specifically crosslinked to the histone octamer and the two H2A/H2B dimers crosslinked via H2A N38C 1RIN ; 2.6 ; X-RAY CRYSTAL STRUCTURE OF A PEA LECTIN-TRIMANNOSIDE COMPLEX AT 2.6 ANGSTROMS RESOLUTION 4GL8 ; 2.2 ; X-ray crystal structure of a periplasmic oligopeptide-binding protein/Oligopeptide ABC transporter(OppAIV) from Borrelia burgdorferi 2NYV ; 2.103 ; X-ray crystal structure of a phosphoglycolate phosphatase from Aquifex aeolicus 3L0E ; 2.3 ; X-ray crystal structure of a Potent Liver X Receptor Modulator 4K6F ; 1.5 ; X-ray crystal structure of a putative Acetoacetyl-CoA reductase from Burkholderia cenocepacia bound to the co-factor NADP 4K6C ; 1.85 ; X-ray crystal structure of a putative Acetoacyl-CoA reductase from Burkholderia cenocepacia 4WJB ; 1.95 ; X-ray crystal structure of a putative amidohydrolase/peptidase from Burkholderia cenocepacia 4X00 ; 1.38 ; X-ray crystal structure of a putative aryl esterase from Burkholderia cenocepacia 4IV5 ; 2.1 ; X-ray crystal structure of a putative aspartate carbamoyltransferase from Trypanosoma cruzi 4PBC ; 1.8 ; X-ray crystal structure of a putative D-amino acid aminotransferase from Burkholderia cenocepacia 4Y0E ; 1.9 ; X-ray Crystal Structure of a putative dioxygenase from Mycobacterium abscessus 4OSE ; 2.4 ; X-ray Crystal Structure of a Putative Hydrolase from Rickettsia typhi 4JG9 ; 2.425 ; X-ray Crystal Structure of a Putative Lipoprotein from Bacillus anthracis 4O5H ; 2.0 ; X-ray crystal structure of a putative phenylacetaldehyde dehydrogenase from Burkholderia cenocepacia 4GD5 ; 1.7 ; X-ray Crystal Structure of a Putative Phosphate ABC Transporter Substrate-Binding Protein with Bound Phosphate from Clostridium perfringens 4F82 ; 1.85 ; X-ray crystal structure of a putative thioredoxin reductase from Burkholderia cenocepacia 4LC3 ; 1.6 ; X-ray crystal structure of a putative UDP-4-amino-4-deoxy-l-arabinose--oxoglutarate aminotransferase from Burkholderia cenocepacia 5DLC ; 2.65 ; X-ray Crystal Structure of a Pyridoxine 5-prime-phosphate synthase from Pseudomonas aeruginosa 4MSO ; 1.4 ; X-ray crystal structure of a serine hydroxymethyl transferase in apo form from Burkholderia cenocepacia 4N0W ; 1.65 ; X-ray crystal structure of a serine hydroxymethyltransferase from Burkholderia cenocepacia with covalently attached pyridoxal phosphate 4J5U ; 1.7 ; X-ray crystal structure of a serine hydroxymethyltransferase with covalently bound PLP from Rickettsia rickettsii str. Sheila Smith 3ND0 ; 3.2 ; X-ray crystal structure of a slow cyanobacterial Cl-/H+ antiporter 5DCC ; 2.451 ; X-RAY CRYSTAL STRUCTURE OF a TEBIPENEM ADDUCT OF L,D TRANSPEPTIDASE 2 FROM MYCOBACTERIUM TUBERCULOSIS 4HFN ; 2.1 ; X-ray Crystal Structure of a Ternary Complex of Double Bond Reductase from Nicotiana tabacum 5F0V ; 1.8 ; X-ray crystal structure of a thiolase from Escherichia coli at 1.8 A resolution 5F38 ; 1.9 ; X-ray crystal structure of a thiolase from Escherichia coli at 1.8 A resolution 3EUT ; 2.0 ; X-ray crystal structure of a type III pentaketide synthase from Neurospora crassa 3KDZ ; 2.2 ; X-ray crystal structure of a tyrosine aminomutase mutant construct with bound ligand 5LSV ; 1.1 ; X-ray crystal structure of AA13 LPMO 5T7J ; 1.65 ; X-ray crystal structure of AA13 LPMO 5T7K ; 1.3 ; X-ray crystal structure of AA13 LPMO 5T7N ; 1.6 ; X-ray crystal structure of AA13 LPMO 5J5I ; 2.326 ; X-Ray Crystal Structure of Acetylcholine Binding Protein (AChBP) in Complex with 4-(2-amino-6-{bis[(pyridin-2-yl)methyl]amino}pyrimidin-4-yl)phenol 5J5G ; 2.036 ; X-Ray Crystal Structure of Acetylcholine Binding Protein (AChBP) in Complex with 6-(4-methoxyphenyl)-N4,N4-bis[(pyridin-2-yl)methyl]pyrimidine-2,4-diamine 5J5F ; 2.04 ; X-Ray Crystal Structure of Acetylcholine Binding Protein (AChBP) in Complex with N4,N4-bis[(pyridin-2-yl)methyl]-6-(thiophen-3-yl)pyrimidine-2,4-diamine 2RDD ; 3.5 ; X-ray crystal structure of AcrB in complex with a novel transmembrane helix. 8CUP ; 1.54 ; X-ray crystal structure of ADC-33 in complex with sulfonamidoboronic acid 6d 8CUQ ; 1.55 ; X-ray crystal structure of ADC-33 in complex with sulfonamidoboronic acid 6e 4NSL ; 3.0 ; X-ray Crystal structure of Adenylosuccinate Lyase from Salmonella typhimurium 8DTS ; 0.75 ; X-ray crystal structure of AFSSFN from chaperone DNAJB8. 8DQ3 ; 1.67 ; X-ray crystal structure of Aggregatibacter actinomycetemcomitans dimanganese(II) class Id ribonucleotide reductase beta subunit 5FR3 ; 1.935 ; X-ray crystal structure of aggregation-resistant protective antigen of Bacillus anthracis (mutant S559L T576E) 1T9K ; 2.6 ; X-ray crystal structure of aIF-2B alpha subunit-related translation initiation factor [Thermotoga maritima] 4X8Q ; 1.729 ; X-ray crystal structure of AlkD2 from Streptococcus mutans 5I5C ; 1.3 ; X-ray crystal structure of allo-Thr31-ShK 4F0U ; 2.5 ; X-Ray Crystal Structure of Allophycocyanin from Synechococcus elongatus PCC 7942 5XNE ; 1.501 ; X-ray Crystal Structure of alpha-acetolactate decarboxylase from Bacillus subtilis strain 168 1TZF ; 2.1 ; X-ray Crystal Structure of alpha-D-glucose-1-phosphate cytidylyltransferase from Salmonella typhi 4E1G ; 2.1 ; X-ray crystal structure of alpha-linolenic acid bound to the cyclooxygenase channel of cyclooxygenase-2 3F7L ; 0.99 ; X-ray Crystal Structure of Alvinella pompejana Cu,Zn Superoxide Dismutase 1SUJ ; 2.38 ; X-ray crystal structure of ambystoma tigrinum cone arrestin 1CLI ; 2.5 ; X-RAY CRYSTAL STRUCTURE OF AMINOIMIDAZOLE RIBONUCLEOTIDE SYNTHETASE (PURM), FROM THE E. COLI PURINE BIOSYNTHETIC PATHWAY, AT 2.5 A RESOLUTION 5EZV ; 2.99 ; X-ray crystal structure of AMP-activated protein kinase alpha-2/alpha-1 RIM chimaera (alpha-2(1-347)/alpha-1(349-401)/alpha-2(397-end) beta-1 gamma-1) co-crystallized with C2 (5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid) 2ZJ9 ; 1.7 ; X-ray crystal structure of AmpC beta-Lactamase (AmpC(D)) from an Escherichia coli with a Tripeptide Deletion (Gly286 Ser287 Asp288) on the H10 Helix 1KE4 ; 1.72 ; X-ray crystal structure of AmpC beta-lactamase from E. coli 1L2S ; 1.94 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with a DOCK-predicted non-covalent inhibitor 4JXS ; 1.9 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with a non-covalent inhibitor 3-[(4-CARBOXYBENZYL)SULFAMOYL]THIOPHENE-2-CARBOXYLIC ACID (compound 4) 4JXV ; 1.76 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with a non-covalent inhibitor 3-{[2-(4-CARBOXYPHENYL)ETHYL]SULFAMOYL}THIOPHENE-2-CARBOXYLIC ACID (compound 5) 4JXW ; 2.3 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with a non-covalent inhibitor 3-{[3-(4-CARBOXYPHENYL)PROPYL]SULFAMOYL}THIOPHENE-2-CARBOXYLIC ACID (compound 6) 1KDS ; 2.15 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with the inhibitor 3-nitrophenylboronic acid 1KE3 ; 2.15 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with the inhibitor 4,4'-biphenyldiboronic acid 1KE0 ; 2.3 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with the inhibitor 4-(carboxyvin-2-yl)phenylboronic acid 1KDW ; 2.28 ; X-ray crystal structure of AmpC beta-lactamase from E. coli in complex with the inhibitor 4-carboxyphenylboronic acid 6DPX ; 1.9 ; X-ray crystal structure of AmpC beta-lactamase with inhibitor 6DPY ; 1.91 ; X-ray crystal structure of AmpC beta-lactamase with inhibitor 6DPZ ; 1.5 ; X-ray crystal structure of AmpC beta-lactamase with inhibitor 6DPT ; 1.79 ; X-ray crystal structure of AmpC beta-lactamase with nanomolar inhibitor 1L0E ; 1.9 ; X-ray Crystal Structure of AmpC K67Q Mutant beta-Lactamase 1L0F ; 1.66 ; X-ray Crystal Structure of AmpC N152H Mutant beta-Lactamase 1L0D ; 1.53 ; X-ray Crystal Structure of AmpC S64D Mutant beta-Lactamase 1L0G ; 1.5 ; X-ray Crystal Structure of AmpC S64G Mutant beta-Lactamase 1KVL ; 1.53 ; X-ray Crystal Structure of AmpC S64G Mutant beta-Lactamase in Complex with Substrate and Product Forms of Cephalothin 1KVM ; 2.06 ; X-ray Crystal Structure of AmpC WT beta-Lactamase in Complex with Covalently Bound Cephalothin 1LL5 ; 1.8 ; X-ray crystal structure of AmpC WT beta-lactamase in complex with covalently bound imipenem 5NKW ; 1.48 ; X-ray crystal structure of an AA9 LPMO 3F7K ; 1.35 ; X-ray Crystal Structure of an Alvinella pompejana Cu,Zn Superoxide Dismutase- Hydrogen Peroxide Complex 4WHX ; 2.05 ; X-ray Crystal Structure of an Amino Acid Aminotransferase from Burkholderia pseudomallei Bound to the Co-factor Pyridoxal Phosphate 4TVI ; 2.1 ; X-ray crystal structure of an aminotransferase from Brucella abortus bound to the co-factor PLP 3NCY ; 3.2 ; X-ray crystal structure of an arginine agmatine antiporter (AdiC) in complex with a Fab fragment 2ZFC ; 1.5 ; X-ray crystal structure of an engineered N-terminal HIV-1 GP41 trimer with enhanced stability and potency 4IV6 ; 2.0 ; X-ray crystal structure of an isovaleryl-CoA dehydrogenase from Mycobacterium smegmatis 4K73 ; 1.65 ; X-ray crystal structure of an L,D-transpeptidase from Mycobacterium tuberculosis H37Rv 5N04 ; 1.76 ; X-ray crystal structure of an LPMO 5N05 ; 1.58 ; X-ray crystal structure of an LPMO 4XIN ; 1.5 ; X-ray Crystal Structure of an LpqH orthologue from Mycobacterium avium 4PCA ; 1.5 ; X-ray crystal structure of an O-methyltransferase from Anaplasma phagocytophilum bound to SAH and Manganese 4OA5 ; 2.3 ; X-ray crystal structure of an O-methyltransferase from Anaplasma phagocytophilum bound to SAH solved by iodide SAD phasing 4PCL ; 1.85 ; X-ray crystal structure of an O-methyltransferase from Anaplasma phagocytophilum bound to SAM and a Manganese ion. 4U2Z ; 2.26 ; X-ray crystal structure of an Sco GlgEI-V279S/1,2,2-trifluromaltose complex 3GN8 ; 2.5 ; X-ray Crystal Structure of AncGR2 in Complex with Dexamethasone 5BRX ; 2.05 ; X-ray crystal structure of Aplysia californica (Ac-AChBP) in complex with 2-pyridyl azatricyclo[3.3.1.13,7]decane; 2-pyridylazaadamantane; 2-Aza (TI-8480) 5BW2 ; 2.27 ; X-ray crystal structure of Aplysia californica acetylcholine binding protein (Ac-AChBP) Y55W in complex with 2-Pyridin-3-yl-1-aza-bicyclo[2.2.2]octane; 2-(3-pyridyl)quinuclidine; 2-PQ (TI-4699) 5UY1 ; 1.35 ; X-ray crystal structure of apo Halotag 4F40 ; 1.6 ; X-ray crystal structure of Apo prostaglandin f synthase from Leishmania major Friedlin 1Z91 ; 2.5 ; x-ray crystal structure of apo-OhrRC15S in reduced form: MarR family protein 3P76 ; 1.93 ; X-ray crystal structure of Aquifex aeolicus LpxC complexed SCH1379777 2G5W ; 2.576 ; X-ray crystal structure of Arabidopsis thaliana 12-oxophytodienoate reductase isoform 3 (AtOPR3) in complex with 8-iso prostaglandin A1 and its cofactor, flavin mononucleotide. 3TZI ; 2.15 ; X-ray crystal structure of arachidonic acid bound in the cyclooxygenase channel of G533V murine COX-2 3KRK ; 2.4 ; X-ray crystal structure of arachidonic acid bound in the cyclooxygenase channel of L531F murine COX-2 3HS5 ; 2.1 ; X-ray crystal structure of arachidonic acid bound to the cyclooxygenase channel of cyclooxygenase-2 3OLT ; 2.45 ; X-ray crystal structure of arachidonic acid bound to the cyclooxygenase channel of R513H murine COX-2 4JIN ; 2.095 ; X-ray crystal structure of Archaeoglobus fulgidus Rio1 bound to (2E)-N-benzyl-2-cyano-3-(pyridine-4-yl)acrylamide (WP1086) 3N2O ; 2.3 ; X-ray crystal structure of arginine decarboxylase complexed with Arginine from Vibrio vulnificus 2E4O ; 2.2 ; X-ray Crystal Structure of Aristolochene Synthase from Aspergillus terreus and the Evolution of Templates for the Cyclization of Farnesyl Diphosphate 7A8Y ; 1.75 ; X-ray crystal structure of Aspartate alpha-decarboxylase in complex with D-Serine 1Y4Y ; 2.0 ; X-ray crystal structure of Bacillus stearothermophilus Histidine phosphocarrier protein (Hpr) 1Y51 ; 1.65 ; X-ray crystal structure of Bacillus stearothermophilus Histidine phosphocarrier protein (Hpr) F29W mutant 1Y50 ; 2.0 ; X-ray crystal structure of Bacillus stearothermophilus Histidine phosphocarrier protein (Hpr) F29W mutant domain_swapped dimer 8DFK ; 3.2 ; X-ray crystal structure of Bacillus subtilis ComEA 6CGM ; 2.0 ; X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit (nucleotide free) 6CGN ; 2.26 ; X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit dAMP-bound (pH 7) 6CGL ; 3.2 ; X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit dAMP-bound as-isolated (pH 4) 6MV9 ; 2.95 ; X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit with TTP and ADP 6MT9 ; 2.5 ; X-ray crystal structure of Bacillus subtilis ribonucleotide reductase NrdE alpha subunit with TTP, ATP, and ADP 6PRH ; 2.08 ; X-ray Crystal Structure of Bacillus subtilis RicA 6PRK ; 3.2 ; X-ray Crystal Structure of Bacillus subtilis RicA in complex with RicF 6P70 ; 3.052 ; X-ray crystal structure of bacterial RNA polymerase and pyrBI promoter complex 5VOI ; 2.8 ; X-ray crystal structure of bacterial RNA polymerase and pyrG promoter complex 1YLF ; 2.5 ; X-ray crystal structure of BC1842 protein from Bacillus cereus, a member of the Rrf2 family of putative transcription regulators. 1TXR ; 2.0 ; X-ray crystal structure of bestatin bound to AAP 2OHK ; 2.2 ; X-ray crystal structure of beta secretase complexed with 1-amino-isoquinoline 2OHL ; 2.65 ; X-ray crystal structure of beta secretase complexed with 2-aminoquinoline 2OHN ; 2.15 ; X-ray crystal structure of beta secretase complexed with 4-(4-fluorobenzyl)piperidine 2VA6 ; 2.5 ; X-ray crystal structure of beta secretase complexed with compound 24 2VA7 ; 2.2 ; X-ray crystal structure of beta secretase complexed with compound 27 2OHP ; 2.25 ; X-ray crystal structure of beta secretase complexed with compound 3 2OHQ ; 2.1 ; X-ray crystal structure of beta secretase complexed with compound 4 2OF0 ; 2.25 ; X-ray crystal structure of beta secretase complexed with compound 5 2OHR ; 2.25 ; X-ray crystal structure of beta secretase complexed with compound 6a 2OHS ; 2.45 ; X-ray crystal structure of beta secretase complexed with compound 6b 2OHT ; 2.3 ; X-ray crystal structure of beta secretase complexed with compound 7 2OHU ; 2.35 ; X-ray crystal structure of beta secretase complexed with compound 8b 2VA5 ; 2.75 ; X-ray crystal structure of beta secretase complexed with compound 8c 2OHM ; 2.7 ; X-ray crystal structure of beta secretase complexed with N~3~-benzylpyridine-2,3-diamine 1QDQ ; 2.18 ; X-RAY CRYSTAL STRUCTURE OF BOVINE CATHEPSIN B-CA074 COMPLEX 2Z2F ; 1.5 ; X-ray Crystal Structure of Bovine Stomach Lysozyme 6IXD ; 1.0 ; X-ray crystal structure of bPI-11 hiv-1 protease complex 4J1P ; 1.08 ; X-ray crystal structure of bromodomain 2 of human brd2 in complex with rvx208 to 1.08 A resolution 4J3I ; 1.24 ; X-ray crystal structure of bromodomain complex to 1.24 A resolution 5ERC ; 2.05 ; X-ray crystal structure of BRPF1 PZP domain 2P6P ; 1.88 ; X-ray crystal structure of C-C bond-forming dTDP-D-Olivose-transferase UrdGT2 6PW7 ; 1.89 ; X-ray crystal structure of C. elegans STIM EF-SAM domain 4PL2 ; 2.2 ; X-ray crystal structure of C118A RlmN from Escherichia coli 5HR7 ; 2.4 ; X-ray crystal structure of C118A RlmN from Escherichia coli with cross-linked in vitro transcribed tRNA 4PL1 ; 2.58 ; X-ray crystal structure of C118A RlmN from Escherichia coli with S-adenosylmethionine 5HR6 ; 2.88 ; X-ray crystal structure of C118A RlmN with cross-linked tRNA purified from Escherichia coli 1W6N ; 1.65 ; X-RAY CRYSTAL STRUCTURE OF C2S HUMAN GALECTIN-1 1W6M ; 2.3 ; X-RAY CRYSTAL STRUCTURE OF C2S HUMAN GALECTIN-1 COMPLEXED WITH GALACTOSE 1W6O ; 1.9 ; X-RAY CRYSTAL STRUCTURE OF C2S HUMAN GALECTIN-1 COMPLEXED WITH LACTOSE 1W6P ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF C2S HUMAN GALECTIN-1 COMPLEXED WITH N- Acetyl-LACTOSAMINE 1C3D ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF C3D: A C3 FRAGMENT AND LIGAND FOR COMPLEMENT RECEPTOR 2 4X5U ; 2.3 ; X-ray crystal structure of CagL at pH 4.2 1MYP ; 3.0 ; X-RAY CRYSTAL STRUCTURE OF CANINE MYELOPEROXIDASE AT 3 ANGSTROMS RESOLUTION 6RPS ; 2.79 ; X-ray crystal structure of carbonic anhydrase XII complexed with a theranostic monoclonal antibody fragment 6SHR ; 1.745 ; X-RAY CRYSTAL STRUCTURE OF CELL-FREE PROTEIN SYNTHESIS (CFPS) PRODUCED SDF1-A 4WUM ; 1.77 ; X-ray crystal structure of Chalcone Synthase from Freesia hybrida 2FD7 ; 1.75 ; X-ray Crystal Structure of Chemically Synthesized Crambin 2FD9 ; 1.6 ; X-ray Crystal Structure of Chemically Synthesized Crambin-{alpha}carboxamide 6LFH ; 1.46 ; X-ray crystal structure of chemically synthesized human lysozyme 4ZXE ; 1.4 ; X-ray crystal structure of chitosan-binding module 1 derived from chitosanase/glucanase from Paenibacillus sp. IK-5. 4ZZ5 ; 1.29 ; X-ray crystal structure of chitosan-binding module 2 derived from chitosanase/glucanase from Paenibacillus sp. IK-5 4ZZ8 ; 1.65 ; X-ray crystal structure of chitosan-binding module 2 in complex with chitotriose derived from chitosanase/glucanase from Paenibacillus sp. IK-5 4M1H ; 1.695 ; X-ray crystal structure of Chlamydia trachomatis apo NrdB 4M1I ; 1.8 ; X-ray crystal structure of Chlamydia trachomatis Mn(II)Fe(II)-NrdB 6UXU ; 1.962 ; X-ray Crystal Structure of Chlorothalonil Dehalogenase: Analyzing the Catalytic Mechanism of Hydrolytic Dehalogenation 6UJ6 ; 2.68 ; X-ray Crystal Structure of Chromium-transferrin with Synergistic Anion Malonate 4XGH ; 2.1 ; X-ray Crystal Structure of Citrate Synthase from Burkholderia thailandensis 4N6W ; 1.85 ; X-Ray Crystal Structure of Citrate-bound PhnZ 6VWQ ; 1.5 ; X-ray crystal structure of clavaminate synthase with vanadyl, succinate, and deoxyproclavaminic acid 4XWI ; 1.92 ; X-ray Crystal structure of CMP-KDO Synthase from Pseudomonas aeruginosa 1FQR ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF COBALT-BOUND F93I/F95M/W97V CARBONIC ANHYDRASE (CAII) VARIANT 1FSQ ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF COBALT-BOUND F93S/F95L/W97M CARBONIC ANHYDRASE (CAII) VARIANT 3G1E ; 1.83 ; X-ray crystal structure of coil 1A of human vimentin 1HBJ ; 2.5 ; X-ray Crystal structure of complex between Torpedo californica AChE and a reversible inhibitor, 4-Amino-5-fluoro-2-methyl-3-(3-trifluoroacetylbenzylthiomethyl)quinoline 3PA5 ; 1.7 ; X-ray crystal structure of compound 1 bound to human CHK1 kinase domain 3U9N ; 1.85 ; X-ray crystal structure of compound 1 bound to human CHK1 kinase domain 3OT8 ; 1.6455 ; X-ray crystal structure of compound 17r bound to human Chk1 kinase domain 4JIK ; 1.9 ; X-RAY Crystal structure of compound 22a (R)-2-(4-chlorophenyl)-8-(piperidin-3-ylamino)imidazo[1,2-c]pyrimidine-5-carboxamide bound to human chk1 kinase domain 3OT3 ; 1.44 ; X-ray crystal structure of compound 22k bound to human Chk1 kinase domain 3PA4 ; 1.59 ; X-ray crystal structure of compound 2a bound to human CHK1 kinase domain 4HYH ; 1.7 ; X-RAY Crystal structure of compound 39 bound to human chk1 kinase domain 4HYI ; 1.399 ; X-RAY Crystal structure of compound 40 bound to human chk1 kinase domain 3PA3 ; 1.4 ; X-ray crystal structure of compound 70 bound to human CHK1 kinase domain 1XSV ; 1.7 ; X-ray crystal structure of conserved hypothetical UPF0122 protein SAV1236 from Staphylococcus aureus subsp. aureus Mu50 1FR4 ; 1.6 ; X-RAY CRYSTAL STRUCTURE OF COPPER-BOUND F93I/F95M/W97V CARBONIC ANHYDRASE (CAII) VARIANT 1FSR ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF COPPER-BOUND F93S/F95L/W97M CARBONIC ANHYDRASE (CAII) VARIANT 4FIW ; 1.5011 ; X-ray crystal structure of Corynebacterium glutamicum Nrdh-redoxin at 1.5A 6IQH ; 2.999 ; X-ray crystal structure of covalent-bonded complex of Fc and peptide 5EVJ ; 2.4 ; X-ray crystal structure of CrArsM, an arsenic (III) S-adenosylmethionine methyltransferase from Chlamydomonas reinhardtii 1SCD ; 2.3 ; X-RAY CRYSTAL STRUCTURE OF CROSS-LINKED SUBTILISM CARLSBERG IN WATER VS. ACETONITRILE 3AAI ; 2.1 ; X-ray crystal structure of CsoR from Thermus thermophilus HB8 6M5B ; 1.501 ; X-ray crystal structure of cyclic-PIP and DNA complex in a reverse binding orientation 1M9C ; 2.0 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) M-type Complex. 1M9E ; 1.72 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) M-type H87A Complex. 1M9F ; 1.73 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) M-type H87A,A88M Complex. 1M9X ; 1.7 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) M-type H87A,A88M,G89A Complex. 1M9Y ; 1.9 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) M-type H87A,G89A Complex. 1M9D ; 1.9 ; X-ray crystal structure of Cyclophilin A/HIV-1 CA N-terminal domain (1-146) O-type chimera Complex. 4WPD ; 2.001 ; X-ray Crystal Structure of CYP119 complexed with 4-(4-flourophenyl)-1H-imidazole 4TUV ; 2.501 ; X-ray crystal structure of CYP119 from Sulfolobus acidocaldarius, complexed with 4-(4-chlorophenyl)imidazole 8FKB ; 1.42 ; X-ray crystal structure of CYP124A1 from Mycobacterium Marinum bound to Farnesol 8GDI ; 1.81 ; X-ray crystal structure of CYP124A1 from Mycobacterium Marinum in complex with 7-ketocholesterol 8FJO ; 1.69 ; X-ray crystal structure of CYP124A1 from Mycobacterium Marinum in complex with farnesyl acetate 4TRI ; 2.0 ; X-ray crystal structure of CYP142A2 from Mycobacterium smegmatis, complexed with cholesterol sulfate. 7SMZ ; 2.04 ; X-ray crystal structure of CYP142A3 from Mycobacterium Marinum in complex with 4-cholesten-3-one 1EUP ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF CYTOCHROME P450ERYF WITH ANDROSTENDIONE BOUND 8IHW ; 1.7 ; X-ray crystal structure of D43R mutant of endo-1,4-beta glucanase from Eisenia fetida 6OGV ; 1.57 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P30) in apo state 6OGS ; 1.27 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P30) in complex with GRL-001 6OGQ ; 1.41 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P30) in complex with GRL-003 6OGR ; 1.28 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P30) in complex with GRL-142 6OGT ; 1.21 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P51) in complex with GRL-001 6OGL ; 1.21 ; X-ray crystal structure of darunavir-resistant HIV-1 protease (P51) in complex with GRL-003 6MK9 ; 1.7 ; X-ray crystal structure of darunavir-resistant-P51 HIV-1 protease in complex with GRL-121 6MKL ; 1.7 ; X-ray crystal structure of darunavir-resistant-P51 HIV-1 protease in complex with GRL-142 2GQG ; 2.4 ; X-ray Crystal Structure of Dasatinib (BMS-354825) Bound to Activated ABL Kinase Domain 1S2Z ; 1.75 ; X-ray crystal structure of Desulfovibrio vulgaris Rubrerythrin with displacement of iron by zinc at the diiron Site 1S30 ; 2.05 ; X-ray crystal structure of Desulfovibrio vulgaris Rubrerythrin with displacement of iron by zinc at the diiron Site 1QYB ; 1.75 ; X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures 4F3Y ; 2.1 ; X-Ray Crystal Structure of Dihydrodipicolinate reductase from Burkholderia thailandensis 2BDX ; 2.3 ; X-ray Crystal Structure of dihydromicrocystin-LA bound to Protein Phosphatase-1 3HS7 ; 2.65 ; X-ray crystal structure of docosahexaenoic acid bound to the cyclooxygenase channel of cyclooxygenase-2 3Q6C ; 2.6 ; X-ray crystal structure of duf2500 (pf10694) from klebsiella pneumoniae, northeast structural genomics consortium target kpr96 3LPV ; 1.77 ; X-ray crystal structure of duplex DNA containing a cisplatin 1,2-d(GpG) intrastrand cross-link 4M1F ; 2.0 ; X-ray crystal structure of E. coli apo NrdF 1P3W ; 2.1 ; X-ray crystal structure of E. coli IscS 4K4D ; 2.17 ; X-ray crystal structure of E. coli YbdB complexed with 2,4-dihydroxyphenacyl-CoA 4K4C ; 1.85 ; X-ray crystal structure of E. coli YbdB complexed with phenacyl-CoA 4K49 ; 1.89 ; X-ray crystal structure of E. coli YdiI complexed with 2,4-dihydroxyphenacyl CoA 4K4A ; 1.89 ; X-ray crystal structure of E. coli YdiI complexed with phenacyl-CoA 4K4B ; 1.9 ; X-ray crystal structure of E. coli YdiI complexed with undeca-2-one-CoA 7D3Z ; 1.65 ; X-ray crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH4.5 7D49 ; 1.651 ; X-ray crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH4.5 7D4L ; 1.6 ; X-ray crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH7.0 7D4X ; 1.599 ; X-ray crystal Structure of E.coli Dihydrofolate Reductase complexed with folate and NADP+ at pH7.0 1DYT ; 1.75 ; X-ray crystal structure of ECP (RNase 3) at 1.75 A 3HS6 ; 2.4 ; X-ray crystal structure of eicosapentaenoic acid bound to the cyclooxygenase channel of cyclooxygenase-2 2V00 ; 1.55 ; X-ray crystal structure of endothiapepsin complexed with compound 1 5FVN ; 1.45 ; X-ray crystal structure of Enterobacter cloacae OmpE36 porin. 1EIA ; 2.7 ; X-RAY CRYSTAL STRUCTURE OF EQUINE INFECTIOUS ANEMIA VIRUS (EIAV) CAPSID PROTEIN P26 2EIA ; 2.7 ; X-RAY CRYSTAL STRUCTURE OF EQUINE INFECTIOUS ANEMIA VIRUS (EIAV) CAPSID PROTEIN P26 6AQ5 ; 2.194 ; X-ray crystal structure of Erythrina crista-galli lectin in complex with epilactose 6AQ6 ; 1.903 ; X-ray crystal structure of Erythrina crista-galli lectin in complex with N-acetyllactosamine 6BYU ; 3.6 ; X-ray crystal structure of Escherichia coli RNA polymerase (RpoB-H526Y) and ppApp complex 5W1T ; 4.5 ; X-ray crystal structure of Escherichia coli RNA polymerase and DksA complex 5VSW ; 4.295 ; X-ray crystal structure of Escherichia coli RNA polymerase and DksA/ppGpp complex 5W1S ; 3.805 ; X-ray crystal structure of Escherichia coli RNA polymerase and TraR complex 4JK2 ; 4.201 ; X-ray crystal structure of Escherichia coli sigma70 holoenzyme in complex with guanosine pentaphosphate (pppGpp) 4JK1 ; 3.9 ; X-ray crystal structure of Escherichia coli sigma70 holoenzyme in complex with Guanosine tetraphosphate (ppGpp) 5FD7 ; 2.4 ; X-ray Crystal Structure of ESCRT-III Snf7 core domain (conformation A) 5FD9 ; 1.6 ; X-ray Crystal Structure of ESCRT-III Snf7 core domain (conformation B) 5U0L ; 2.285 ; X-ray crystal structure of fatty aldehyde dehydrogenase enzymes from Marinobacter aquaeolei VT8 complexed with a substrate 6IQG ; 2.998 ; X-ray crystal structure of Fc and peptide complex 4HVQ ; 2.81 ; X-ray crystal structure of FECU reconstituted 3-hydroxyanthranilate-3,4-dioxygenase from cupriavidus metallidurans 2FAL ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF FERRIC APLYSIA LIMACINA MYOGLOBIN IN DIFFERENT LIGANDED STATES 2FAM ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF FERRIC APLYSIA LIMACINA MYOGLOBIN IN DIFFERENT LIGANDED STATES 8DQ4 ; 2.35 ; X-ray crystal structure of Flavobacterium johnsoniae dimanganese(II) class Id ribonucleotide reductase beta subunit K71R variant 8DQ5 ; 2.1 ; X-ray crystal structure of Flavobacterium johnsoniae dimanganese(II) class Id ribonucleotide reductase T191I variant 6CWO ; 1.87 ; X-ray crystal structure of Flavobacterium johnsoniae dimanganese(II) ribonucleotide reductase beta subunit (aerobic) 6CWP ; 1.92 ; X-ray crystal structure of Flavobacterium johnsoniae dimanganese(II) ribonucleotide reductase beta subunit (anaerobic) 6CWQ ; 1.9 ; X-ray crystal structure of Flavobacterium johnsoniae dimanganese(II) ribonucleotide reductase beta subunit (as-isolated) 3BNK ; 2.05 ; X-ray crystal structure of Flavoredoxin from Methanosarcina acetivorans 8SNZ ; 2.17 ; X-ray Crystal Structure of FMN-bound long-chain flavodoxin from Rhodopseudomonas palustris 1GMD ; 2.2 ; X-ray crystal structure of gamma-chymotrypsin in hexane 4GHK ; 2.25 ; X-ray Crystal Structure of Gamma-glutamyl phosphate reductase from Burkholderia thailandensis 7US5 ; 2.1 ; X-ray crystal structure of GDP-D-glycero-D-manno-heptose 4,6-Dehydratase from Campylobacter jejuni 8DSS ; 3.05 ; X-ray crystal structure of Geobacillus stearothermophilus ComEA 4LGV ; 2.3 ; X-ray crystal structure of Glucose-6-phosphate 1-dehydrogenase from Mycobacterium avium 3DLA ; 2.35 ; X-ray crystal structure of glutamine-dependent NAD+ synthetase from Mycobacterium tuberculosis bound to NaAD+ and DON 7TOL ; 2.03 ; X-ray crystal structure of glycerol dibiphytanyl glycerol tetraether - macrocyclic archaeol synthase (GDGT-MAS) from Methanocaldococcus jannaschii with archaeal lipid, 5'deoxyadenosine, and methionine bound 7TOM ; 1.85 ; X-ray crystal structure of glycerol dibiphytanyl glycerol tetraether - macrocyclic archaeol synthase (GDGT-MAS) from Methanocaldococcus jannaschii with bacterial lipid substrate analog, 5'deoxyadenosine, and methionine bound 5HLP ; 2.45 ; X-RAY CRYSTAL STRUCTURE OF GSK3B IN COMPLEX WITH BRD3937 5HLN ; 3.1 ; X-RAY CRYSTAL STRUCTURE OF GSK3B IN COMPLEX WITH CHIR99021 6RQU ; 1.393 ; X-ray crystal structure of H/D exchanged (H/D) small monoclinic unit cell CA IX SV. 5VNP ; 2.23 ; X-ray crystal structure of Halotag bound to the P1 benzoxadiazole fluorogenic ligand 5UXZ ; 1.92 ; X-ray crystal structure of Halotag bound to the P9 benzothiadiazole fluorogenic ligand 8FNR ; 1.4 ; X-ray crystal structure of Hansschlegelia quercus lanmodulin (LanM) with dysprosium (III) bound at pH 7 8DQ2 ; 1.8 ; X-ray crystal structure of Hansschlegelia quercus lanmodulin (LanM) with lanthanum (III) bound at pH 7 1DLY ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF HEMOGLOBIN FROM THE GREEN UNICELLULAR ALGA CHLAMYDOMONAS EUGAMETOS 2D3U ; 2.0 ; X-ray crystal structure of hepatitis C virus RNA dependent RNA polymerase in complex with non-nucleoside analogue inhibitor 2D3Z ; 1.8 ; X-ray crystal structure of hepatitis C virus RNA-dependent RNA polymerase in complex with non-nucleoside analogue inhibitor 2D41 ; 2.1 ; X-ray crystal structure of hepatitis C virus RNA-dependent RNA polymerase in complex with non-nucleoside inhibitor 4A7D ; 1.497 ; X-ray crystal structure of HEWL flash-cooled at high pressure 6OXH ; 1.92 ; X-ray crystal structure of His-tagged Y140F FtmOx1 bound to Fe(II) and 2-oxoglutarate 2FXE ; 1.8 ; X-ray crystal structure of HIV-1 protease CRM mutant complexed with atazanavir (BMS-232632) 2FXD ; 1.6 ; X-ray crystal structure of HIV-1 protease IRM mutant complexed with atazanavir (BMS-232632) 2FGV ; 1.5 ; X-ray crystal structure of HIV-1 Protease T80N variant in complex with the inhibitor saquinavir used to explore the role of invariant Thr80 in HIV-1 protease structure, function, and viral infectivity. 2FGU ; 2.0 ; X-ray crystal structure of HIV-1 Protease T80S variant in complex with the inhibitor saquinavir used to explore the role of invariant Thr80 in HIV-1 protease structure, function, and viral infectivity. 4QGI ; 1.896 ; X-ray crystal structure of HIV-1 protease variant G48T/L89M in complex with Saquinavir 7TV2 ; 1.98 ; X-ray crystal structure of HIV-2 CA protein CTD 2SEB ; 2.5 ; X-RAY CRYSTAL STRUCTURE OF HLA-DR4 COMPLEXED WITH A PEPTIDE FROM HUMAN COLLAGEN II 1D5X ; 2.45 ; X-RAY CRYSTAL STRUCTURE OF HLA-DR4 COMPLEXED WITH DIPEPTIDE MIMETIC AND SEB 1D5M ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF HLA-DR4 COMPLEXED WITH PEPTIDE AND SEB 1D5Z ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF HLA-DR4 COMPLEXED WITH PEPTIDOMIMETIC AND SEB 1H15 ; 3.1 ; X-ray crystal structure of HLA-DRA1*0101/DRB5*0101 complexed with a peptide from Epstein Barr Virus DNA polymerase 3I1I ; 2.44 ; X-ray crystal structure of homoserine O-acetyltransferase from Bacillus anthracis 2VF2 ; 2.35 ; X-ray crystal structure of HsaD from Mycobacterium tuberculosis 1H8I ; 1.75 ; X-ray crystal structure of human alpha-thrombin with a tripeptide phosphonate inhibitor. 3AOX ; 1.75 ; X-ray crystal structure of human anaplastic lymphoma kinase in complex with CH5424802 5DW1 ; 1.55 ; X-ray crystal structure of human BRD2(BD2) in complex with RVX297 to 1.55 A resolution 5DW2 ; 1.12 ; X-ray crystal structure of human BRD4(BD1) in complex with RVX297 to 1.12 A resolution 7MLS ; 1.26 ; X-ray crystal structure of human BRD4(D1) in complex with 2-(2,5-dibromophenoxy)-6-[4-methyl-1-(piperidin-4-yl)-1H-1,2,3-triazol-5-yl]pyridine (compound 23) 7MLQ ; 1.32 ; X-ray crystal structure of human BRD4(D1) in complex with 2-(4-{5-[6-(2,5-dibromophenoxy)pyridin-2-yl]-4-methyl-1H-1,2,3-triazol-1-yl}piperidin-1-yl)-N,N-dimethylethan-1-amine (compound 26) 7MLR ; 1.2 ; X-ray crystal structure of human BRD4(D1) in complex with 2-(4-{5-[6-(3,5-dimethylphenoxy)pyridin-2-yl]-4-methyl-1H-1,2,3-triazol-1- yl}piperidin-1-yl)-N,N-dimethylethan-1-amine (DW34) 6Y74 ; 1.53 ; X-ray crystal structure of human carbonic anhydrase IX catalytic domain. 1KCW ; 3.0 ; X-RAY CRYSTAL STRUCTURE OF HUMAN CERULOPLASMIN AT 3.0 ANGSTROMS 4KM5 ; 2.499 ; X-ray crystal structure of human cyclic GMP-AMP synthase (cGAS) 3K9X ; 1.9 ; X-ray crystal structure of human fxa in complex with (S)-N-((2-METHYLBENZOFURAN-5-YLAMINO)(2-OXO-1-(2-OXO-2- (PYRROLIDIN-1-YL)ETHYL)AZEPAN-3- YLAMINO)METHYLENE)NICOTINAMIDE 3SW2 ; 2.42 ; X-ray crystal structure of human FXA in complex with 6-chloro-N-((3S)-2-oxo-1-(2-oxo-2-((5S)-8-oxo-5,6-dihydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(2H,4H,8H)-yl)ethyl)piperidin-3-yl)naphthalene-2-sulfonamide 1GZW ; 1.7 ; X-RAY CRYSTAL STRUCTURE OF HUMAN GALECTIN-1 1N45 ; 1.5 ; X-RAY CRYSTAL STRUCTURE OF HUMAN HEME OXYGENASE-1 (HO-1) IN COMPLEX WITH ITS SUBSTRATE HEME 3TGM ; 2.85 ; X-Ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(1H-imidazol-1-yl)-4,4-diphenyl-2 butanone 3K4F ; 2.17 ; X-Ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 4-Phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone 3HOK ; 2.19 ; X-ray Crystal Structure of Human Heme Oxygenase-1 with (2R, 4S)-2-[2-(4-Chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4[((5-trifluoromethylpyridin-2-yl)thio)methyl]-1,3-dioxolane: A Novel, Inducible Binding Mode 4E3C ; 3.98 ; X-ray crystal structure of human IKK2 in an active conformation 3DRX ; 3.11 ; X-ray crystal structure of human KCTD5 protein crystallized in high-salt buffer 3DRY ; 3.3 ; X-ray crystal structure of human KCTD5 protein crystallized in low-salt buffer 2PQK ; 2.0 ; X-ray crystal structure of human Mcl-1 in complex with Bim BH3 5HNE ; 2.04 ; X-RAY CRYSTAL STRUCTURE OF HUMAN MITOCHONDRIAL BRANCHED CHAIN AMINOTRANSFERASE (BCATM) COMPLEXED WITH A 2-ARYL BENZIMIDAZOLE COMPOUND AND AN INTERNAL ALDIMINE LINKED PLP COFACTOR 2A1H ; 1.8 ; X-ray crystal structure of human mitochondrial branched chain aminotransferase (BCATm) complexed with gabapentin 4IFP ; 1.9948 ; X-ray Crystal Structure of Human NLRP1 CARD Domain 3BC5 ; 2.27 ; X-ray crystal structure of human ppar gamma with 2-(5-(3-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)benzyl)-2-phenyl-2h-1,2,3-triazol-4-yl)acetic acid 2RNF ; 2.4 ; X-RAY CRYSTAL STRUCTURE OF HUMAN RIBONUCLEASE 4 IN COMPLEX WITH D(UP) 3L6B ; 1.5 ; X-ray crystal structure of human serine racemase in complex with malonate a potent inhibitor 3QYB ; 3.5 ; X-ray Crystal Structure of Human TBC1D4 (AS160) RabGAP domain 4U6A ; 2.37 ; X-ray crystal structure of human TNKS in complex with a small molecule inhibitor 4UUH ; 2.52 ; X-ray crystal structure of human TNKS in complex with a small molecule inhibitor 4UW1 ; 3.37 ; X-ray crystal structure of human TNKS in complex with a small molecule inhibitor 3U2I ; 1.7 ; X-ray crystal structure of human Transthyretin at room temperature 1YRC ; 1.4 ; X-ray Crystal Structure of hydrogenated Cytochrome P450cam 4ECP ; 1.8 ; X-ray crystal structure of Inorganic Pyrophosphate PPA from Mycobacterium leprae 1J2F ; 2.3 ; X-ray crystal structure of IRF-3 and its functional implications 6MDH ; 1.37 ; X-ray crystal structure of ISG15 from Myotis davidii 4O5M ; 2.2 ; X-ray Crystal Structure of Isovaleryl-CoA Dehydrogenase from Brucella suis 3MJ2 ; 1.9 ; X-ray crystal structure of ITK complexed with inhibitor BMS-509744 3MJ1 ; 1.72 ; X-ray crystal structure of ITK complexed with inhibitor RO5191614 3MIY ; 1.67 ; X-ray crystal structure of ITK complexed with sunitinib 8TXY ; 2.1 ; X-ray crystal structure of JRD-SIK1/2i-3 bound to a MARK2-SIK2 chimera 1Y71 ; 1.95 ; X-ray crystal structure of kinase-associated protein B from Bacillus cereus 5D7H ; 2.49 ; X-RAY CRYSTAL STRUCTURE OF L,D TRANSPEPTIDASE 2 FROM MYCOBACTERIUM TUBERCULOSIS 3SMV ; 1.38 ; X-ray Crystal Structure of L-Azetidine-2-Carboxylate Hydrolase 3E7U ; 1.35 ; X-ray Crystal Structure of L-Plectasin 2FON ; 2.74 ; X-ray crystal structure of LeACX1, an acyl-CoA oxidase from Lycopersicon esculentum (tomato) 4UAX ; 1.78 ; X-ray crystal structure of ligand free CYP142A2 from Mycobacterium smegmatis 3TX1 ; 2.69 ; X-ray crystal structure of Listeria monocytogenes EGD-e UDP-N-acetylenolpyruvylglucosamine reductase (MurB) 2O3Z ; 2.25 ; X-ray crystal structure of LpxC complexed with 3-heptyloxybenzoate 7NIM ; 1.45 ; X-ray crystal structure of LsAA9A - cinnamon extract soak 7NIN ; 1.4 ; X-ray crystal structure of LsAA9A - CinnamtanninB1 soak 6RS6 ; 1.6 ; X-ray crystal structure of LsAA9B 6RS7 ; 1.6 ; X-ray crystal structure of LsAA9B (deglycosylated form) 6RS8 ; 1.58 ; X-ray crystal structure of LsAA9B (transition metals soak) 6RS9 ; 1.4 ; X-ray crystal structure of LsAA9B (xylotetraose soak) 1P8D ; 2.8 ; X-Ray Crystal Structure of LXR Ligand Binding Domain with 24(S),25-epoxycholesterol 4ZRU ; 1.9 ; X-ray crystal structure of Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) in complex with 3-[2-[(2S)-pyrrolidin-2-yl]ethynyl]pyridine (TI-5180) 5BP0 ; 2.4 ; X-ray crystal structure of Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) in complex with 5-Fluoronicotine (TI-4650) 4ZJT ; 1.85 ; X-ray crystal structure of Lymnaea stagnalis acetylcholine binding protein (LsAChBP) in complex with 2-Thiophenylmethylene Anabaseine (2TAB) 2I04 ; 2.15 ; X-ray crystal structure of MAGI-1 PDZ1 bound to the C-terminal peptide of HPV18 E6 5I4A ; 1.949 ; X-ray crystal structure of Marinitoga piezophila Argonaute in complex with 5' OH guide RNA 5UX0 ; 3.197 ; X-ray crystal structure of Marinitoga piezophila Argonaute in complex with 5' OH guide RNA and target DNA 3LA5 ; 1.7 ; X-ray crystal structure of mc6 RNA Riboswitch bound to azacytosine 5HLQ ; 1.5 ; X-ray crystal structure of met F43H/H64A sperm whale myoglobin 5HLU ; 1.5 ; X-ray crystal structure of met F43H/H64A sperm whale myoglobin in complex with nitric oxide 5HLX ; 1.5 ; X-ray crystal structure of met F43H/H64A sperm whale myoglobin in complex with nitrite 5B84 ; 1.61 ; X-ray crystal structure of met I107Y sperm whale myoglobin 5YZF ; 1.77 ; X-ray crystal structure of met K42C sperm whale myoglobin 6O5C ; 3.1 ; X-ray crystal structure of metal-dependent transcriptional regulator MtsR 1FQN ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF METAL-FREE F93I/F95M/W97V CARBONIC ANHYDRASE (CAII) VARIANT 1FSN ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF METAL-FREE F93S/F95L/W97M CARBONIC ANHYDRASE (CAII) VARIANT 8FNS ; 1.01 ; X-ray crystal structure of Methylorubrum extorquens AM1 lanmodulin (LanM) with neodymium (III) bound at pH 7 1XJC ; 2.1 ; X-ray crystal structure of MobB protein homolog from Bacillus stearothermophilus 4OVE ; 2.64 ; X-ray Crystal Structure of Mouse Netrin-1 6XIG ; 1.59 ; X-ray crystal structure of MqnE from Pedobacter heparinus 6XI9 ; 2.14 ; X-ray crystal structure of MqnE from Pedobacter heparinus in complex with aminofutalosine and methionine 2GAK ; 2.0 ; X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) 2GAM ; 2.7 ; X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L) in complex with Galb1,3GalNAc 3DVD ; 1.6 ; X-ray crystal structure of mutant N62D of human Carbonic Anhydrase II 3DVC ; 1.6 ; X-ray crystal structure of mutant N62T of human Carbonic Anhydrase II 3DVB ; 1.7 ; X-ray crystal structure of mutant N62V human Carbonic Anhydrase II 2GP6 ; 2.4 ; X-ray crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase II (mtKasB) 1M1M ; 2.7 ; X-RAY CRYSTAL STRUCTURE OF MYCOBACTERIUM TUBERCULOSIS BETA-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III (MTFABH) 1XXO ; 1.8 ; X-ray crystal structure of mycobacterium tuberculosis pyridoxine 5'-phosphate oxidase at 1.8 a resolution 1Y30 ; 2.2 ; X-ray crystal structure of mycobacterium tuberculosis pyridoxine 5'-phosphate oxidase complexed with flavin mononucleotide at 2.2 a resolution 2AQ6 ; 1.7 ; X-ray crystal structure of mycobacterium tuberculosis pyridoxine 5'-phosphate oxidase complexed with pyridoxal 5'-phosphate at 1.7 a resolution 5LKY ; 1.7 ; X-ray crystal structure of N-acetylneuraminic acid lyase in complex with pyruvate, with the phenylalanine at position 190 replaced with the non-canonical amino acid dihydroxypropylcysteine. 8IHX ; 1.6 ; X-ray crystal structure of N372D mutant of endo-1,4-beta glucanase from Eisenia fetida 3JSX ; 2.45 ; X-ray Crystal structure of NAD(P)H: Quinone Oxidoreductase-1 (NQO1) bound to the coumarin-based inhibitor AS1 6DAW ; 2.1 ; X-ray crystal structure of NapI L-arginine desaturase bound to Fe(II), L-arginine, and acetate 6BXI ; 2.2 ; X-ray crystal structure of NDR1 kinase domain 1EPU ; 2.4 ; X-RAY crystal structure of neuronal SEC1 from squid 2GK1 ; 3.25 ; X-ray crystal structure of NGT-bound HexA 4AB0 ; 1.636 ; X-ray crystal structure of Nicotiana alata defensin NaD1 4XBM ; 3.2 ; X-ray crystal structure of Notch ligand Delta-like 1 3QMO ; 3.0 ; X-ray crystal structure of NS-398 bound to the cyclooxygenase channel of cyclooxygenase-2 4WXP ; 2.08 ; X-ray crystal structure of NS3 Helicase from HCV with a bound fragment inhibitor at 2.08 A resolution 4WXR ; 2.42 ; X-ray crystal structure of NS3 Helicase from HCV with a bound inhibitor at 2.42 A resolution 8CWP ; 1.8 ; X-ray crystal structure of NTHi Protein D bound to a putative glycerol moiety 4KAM ; 2.0 ; X-ray crystal structure of O-acetylhomoserine sulfhydrylase MetC from Mycobacterium marinum ATCC BAA-535 / M 4OA8 ; 2.15 ; X-ray crystal structure of O-methyltransferase from Anaplasma phagocytophilum in apo form 4K0W ; 1.2 ; X-ray crystal structure of OXA-23 A220 duplication clinical variant 4K0X ; 1.61 ; X-ray Crystal Structure of OXA-23 from Acinetobacter baumannii 7RPF ; 1.9 ; X-ray crystal structure of OXA-24/40 in complex with doripenem 7RPE ; 1.53 ; X-ray crystal structure of OXA-24/40 in complex with ertapenem 8CUM ; 1.49 ; X-ray crystal structure of OXA-24/40 in complex with sulfonamidoboronic acid 6d 8CUO ; 1.47 ; X-ray crystal structure of OXA-24/40 in complex with sulfonamidoboronic acid 6e 7RPG ; 1.62 ; X-ray crystal structure of OXA-24/40 K84D in complex with cefotaxime 7RPC ; 2.58 ; X-ray crystal structure of OXA-24/40 K84D in complex with ertapenem 7RP8 ; 2.28 ; X-ray crystal structure of OXA-24/40 K84D in complex with imipenem 7RPA ; 2.27 ; X-ray crystal structure of OXA-24/40 K84D in complex with meropenem 7RPD ; 1.95 ; X-ray crystal structure of OXA-24/40 V130D in complex with ertapenem 7RP9 ; 1.94 ; X-ray crystal structure of OXA-24/40 V130D in complex with imipenem 7RPB ; 1.97 ; X-ray crystal structure of OXA-24/40 V130D in complex with meropenem 2HHF ; 1.8 ; X-ray crystal structure of oxidized human mitochondrial branched chain aminotransferase (hBCATm) 1FHH ; 1.5 ; X-RAY CRYSTAL STRUCTURE OF OXIDIZED RUBREDOXIN 3LQC ; 2.349 ; X-ray crystal structure of oxidized XRCC1 bound to DNA pol beta Palm thumb domain 4P9A ; 2.1999 ; X-ray Crystal Structure of PA protein from Influenza strain H7N9 3QH0 ; 2.1 ; X-ray crystal structure of palmitic acid bound to the cyclooxygenase channel of cyclooxygenase-2 3VOL ; 2.399 ; X-ray Crystal Structure of PAS-HAMP Aer2 in the CN-bound Form 4BG2 ; 2.13 ; X-ray Crystal Structure of PatF from Prochloron didemni 1Y1O ; 2.2 ; X-ray crystal Structure of Penicillin-binding protein-related factor A from Bacillus stearothermophilus 4EA7 ; 1.0 ; X-ray crystal structure of PerB from Caulobacter crescentus in complex with CoA and GDP-perosamine at 1.0 Angstrom resolution 4EA8 ; 1.0 ; X-ray crystal structure of PerB from Caulobacter crescentus in complex with coenzyme A and GDP-N-acetylperosamine at 1 Angstrom resolution 6RQW ; 1.488 ; X-ray crystal structure of perdeuterated (D) small monoclinic unit cell CA IX SV. 1YRD ; 1.7 ; X-ray crystal structure of PERDEUTERATED Cytochrome P450cam 7PSY ; 0.9 ; X-ray crystal structure of perdeuterated LecB lectin in complex with perdeuterated fucose 5GGY ; 2.5 ; X-ray crystal structure of Periplasmic Desferal binding protein FhuD from Vibrio cholerae 2WL8 ; 2.05 ; X-ray crystal structure of Pex19p 6EA1 ; 1.815 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6da) and catalytic zinc ion 6EA2 ; 1.35 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6h) and catalytic zinc ion 6EAA ; 1.65 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6i) and catalytic zinc ion 6EAB ; 1.85 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6j) and catalytic zinc ion 6EE3 ; 1.82 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6k) and catalytic zinc ion 6EE4 ; 1.58 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6m) and catalytic zinc ion 6EE6 ; 1.5 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6o) and catalytic zinc ion 6EED ; 1.5 ; X-ray crystal structure of Pf-M1 in complex with inhibitor (6p) and catalytic zinc ion 6EEE ; 2.3 ; X-ray crystal structure of Pf-M17 in complex with inhibitor (6k) and regulatory zinc ion 6EE2 ; 2.1 ; X-ray crystal structure of Pf-M17 in complex with inhibitor 6i and regulatory zinc ion 3Q43 ; 1.8 ; X-ray crystal structure of PfA-M1 bound to bestatin derivative 15 3Q44 ; 1.8 ; X-ray crystal structure of PfA-M1 bound to Bestatin derivative 16 4ZX3 ; 2.0 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 10b 4ZX4 ; 1.9 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 10o 4ZX5 ; 1.95 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 10q 4ZX6 ; 2.05 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 10s 4ZW3 ; 1.8 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 9b 4ZW5 ; 1.8 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 9f 4ZW7 ; 1.95 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 9m 4ZW6 ; 1.9 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 9q 4ZW8 ; 2.0 ; X-ray crystal structure of PfA-M1 in complex with hydroxamic acid-based inhibitor 9r 4ZX9 ; 2.6 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 10b 4ZY2 ; 2.1 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 10o 4ZY0 ; 2.2 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 10q 4ZY1 ; 2.5 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 10r 4ZYQ ; 2.6 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 10s 4ZX8 ; 2.7 ; X-ray crystal structure of PfA-M17 in complex with hydroxamic acid-based inhibitor 9b 6D0Y ; 2.676 ; X-ray Crystal Structure of PGC-1beta C-terminus bound to the CBP80-CBP20 Cap Binding Complex 2BDV ; 2.2 ; X-Ray Crystal Structure of Phage-related Protein BB2244 from Bordetella bronchiseptica. Northeast Structural Genomics Consortium Target BoR24. 5J1D ; 1.9 ; X-ray crystal structure of Phosphate binding protein (PBP) from Stenotrophomonas maltophilia 3UW2 ; 1.95 ; X-ray Crystal Structure of Phosphoglucomutase/phosphomannomutase family protein (BTH_I1489)from Burkholderia thailandensis 5BT8 ; 2.3 ; X-ray Crystal Structure of phosphoglycerate kinase from Acinetobacter baumannii 2ZOH ; 1.25 ; X-ray Crystal Structure of Photoactive Yellow Protein, Wild type, at 295K 4H0M ; 2.2 ; X-Ray Crystal Structure of Phycocyanin from Synechococcus elongatus sp. PCC 7942 4F0T ; 2.25 ; X-Ray Crystal Structure of Phycocyanin from Synechocystis sp. PCC 6803 1T9M ; 1.9 ; X-ray crystal structure of phzG from pseudomonas aeruginosa 1TY9 ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF PHZG FROM PSEUDOMONAS FLUORESCENS 2BL9 ; 1.9 ; X-ray crystal structure of Plasmodium vivax dihydrofolate reductase in complex with pyrimethamine and its derivative 2BLB ; 3.0 ; X-ray crystal structure of Plasmodium vivax dihydrofolate reductase in complex with pyrimethamine and its derivative 4F4F ; 1.9 ; X-Ray crystal structure of PLP bound Threonine synthase from Brucella melitensis 4F88 ; 3.3 ; X-ray Crystal Structure of PlyC 4F87 ; 1.4 ; X-ray Crystal Structure of PlyCB 7KWW ; 1.8 ; X-ray Crystal Structure of PlyCB Mutant K59H 7KWY ; 1.7 ; X-ray Crystal Structure of PlyCB Mutant R66K 7KWT ; 1.79 ; X-ray Crystal Structure of PlyCB Mutant Y28H 3FT9 ; 2.05 ; X-ray Crystal structure of pollen allergen - Phl p 3 2PO4 ; 2.0 ; X-ray crystal structure of polymerase domain of the bacteriophage N4 virion RNA polymerase 4A7E ; 1.856 ; X-ray crystal structure of porcine insulin flash-cooled at high pressure 8ADF ; 2.13 ; X-ray crystal structure of PPAR gamma ligand binding domain in complex with CZ39 8C0C ; 2.2 ; X-ray crystal structure of PPAR gamma ligand binding domain in complex with CZ46 5TTO ; 2.246 ; X-ray crystal structure of PPARgamma in complex with SR1643 5F9B ; 2.25 ; X-ray crystal structure of PPARgamma in the complex with caulophyllogenin 7E2O ; 3.2 ; X-ray Crystal structure of PPARgamma R288H mutant. 4G5D ; 1.8 ; X-ray crystal structure of Prostaglandin f synthase from Leishmania major Friedlin bound to NADPH 1ZBM ; 2.3 ; X-Ray Crystal Structure of Protein AF1704 from Archaeoglobus fulgidus. Northeast Structural Genomics Consortium Target GR62A. 2NYS ; 2.7 ; X-ray Crystal Structure of Protein AGR_C_3712 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR88. 2HQV ; 2.0 ; X-ray Crystal Structure of Protein AGR_C_4470 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR92. 2AXO ; 1.8 ; X-Ray Crystal Structure of Protein AGR_C_4864 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR35. 2O8S ; 2.4 ; X-ray Crystal Structure of Protein AGR_C_984 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR120. 1ZCE ; 1.3 ; X-Ray Crystal Structure of Protein Atu2648 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR33. 2AP6 ; 2.5 ; X-Ray Crystal Structure of Protein Atu4242 from Agrobacterium tumefaciens. Northeast Strucutral Genomics Consortium Target AtR43. 2AEG ; 2.3 ; X-Ray Crystal Structure of Protein Atu5096 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR63. 2HZB ; 2.8 ; X-Ray Crystal Structure of Protein BH3568 from Bacillus halodurans. Northeast Structural Genomics Consortium BhR60. 1ZBO ; 2.6 ; X-Ray Crystal Structure of Protein BPP1347 from Bordetella parapertussis. Northeast Structural Genomics Consortium Target BoR27. 2AXP ; 2.5 ; X-Ray Crystal Structure of Protein BSU20280 from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR256. 2F20 ; 2.1 ; X-ray Crystal Structure of Protein BT_1218 from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR8. 2O0P ; 1.9 ; X-ray Crystal Structure of Protein CC0527 (V27M / L66M double mutant) from Caulobacter crescentus. Northeast Structural Genomics Consortium Target CcR55. 2O0Q ; 1.8 ; X-ray Crystal Structure of Protein CC0527 from Caulobacter crescentus. Northeast Structural Genomics Consortium Target CcR55 2NVP ; 2.2 ; X-Ray Crystal Structure of Protein CPF_0428 from Clostridium perfringens. Northeast Structural Genomics Consortium Target CpR63. 2ID1 ; 3.0 ; X-Ray Crystal Structure of Protein CV0518 from Chromobacterium violaceum, Northeast Structural Genomics Consortium Target CvR5. 1Z94 ; 2.1 ; X-Ray Crystal Structure of Protein CV1439 from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvR12. 2O3I ; 2.3 ; X-ray Crystal Structure of Protein CV_3147 from Chromobacterium violaceum. Northeast Structural Genomics Consortium Target CvR68. 2HRX ; 1.9 ; X-Ray Crystal Structure of Protein DIP2367 from Corynebacterium diphtheriae. Northeast Structural Genomics Consortium Target CdR13. 2GSL ; 2.6 ; X-Ray Crystal Structure of Protein FN1578 from Fusobacterium nucleatum. Northeast Structural Genomics Consortium Target NR1. 2B6E ; 1.9 ; X-Ray Crystal Structure of Protein HI1161 from Haemophilus influenzae. Northeast Structural Genomics Consortium Target IR63. 3Q63 ; 2.0 ; X-ray crystal structure of protein MLL2253 from Mesorhizobium loti, Northeast Structural Genomics Consortium Target MlR404. 3Q64 ; 1.5 ; X-ray crystal structure of protein mll3774 from Mesorhizobium loti, Northeast Structural Genomics Consortium Target MlR405. 1XUV ; 2.1 ; X-Ray Crystal Structure of Protein MM0500 from Methanosarcina mazei. Northeast Structural Genomics Consortium Target MaR10. 1XFS ; 1.7 ; X-Ray Crystal Structure of Protein NE0264 from Nitrosomonas europaea. Northeast Structural Genomics Consortium Target NeR5. 2IMJ ; 1.5 ; X-ray Crystal Structure of Protein PFL_3262 from Pseudomonas fluorescens. Northeast Structural Genomics Consortium Target PlR14. 2BCD ; 2.1 ; X-ray crystal structure of Protein Phosphatase-1 with the marine toxin motuporin bound 2EVE ; 1.6 ; X-Ray Crystal Structure of Protein PSPTO5229 from Pseudomonas syringae. Northeast Structural Genomics Consortium Target PsR62 2EW0 ; 1.4 ; X-ray Crystal Structure of Protein Q6FF54 from Acinetobacter sp. ADP1. Northeast Structural Genomics Consortium Target AsR1. 1ZN6 ; 1.8 ; X-ray Crystal Structure of Protein Q7WLM8 from Bordetella bronchiseptica. Northeast Structural Genomics Consortium Target BoR19. 1ZXO ; 3.2 ; X-ray Crystal Structure of Protein Q8A1P1 from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR25. 2AFC ; 2.5 ; X-Ray Crystal Structure of Protein Q8A8B0 from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR9. 1ZQ7 ; 2.11 ; X-Ray Crystal Structure of Protein Q8PZK8 from Methanosarcina mazei. Northeast Structural Genomics Consortium Target MaR9. 1ZNP ; 2.5 ; X-Ray Crystal Structure of Protein Q8U9W0 from Agrobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR55. 2FFM ; 2.51 ; X-Ray Crystal Structure of Protein SAV1430 from Staphylococcus aureus. Northeast Structural Genomics Consortium Target ZR18. 1YUD ; 2.7 ; X-ray Crystal Structure of Protein SO0799 from Shewanella oneidensis. Northeast Structural Genomics Consortium Target SoR12. 1ZEE ; 2.31 ; X-Ray Crystal Structure of Protein SO4414 from Shewanella oneidensis. Northeast Structural Genomics Consortium Target SoR52. 2IBO ; 2.8 ; X-ray Crystal Structure of Protein SP2199 from Streptococcus pneumoniae. Northeast Structural Genomics Consortium Target SpR31 1PG6 ; 1.7 ; X-Ray Crystal Structure of Protein SPYM3_0169 from Streptococcus pyogenes. Northeast Structural Genomics Consortium Target DR2. 3OBH ; 1.891 ; X-ray crystal structure of protein SP_0782 (7-79) from Streptococcus pneumoniae. Northeast Structural Genomics Consortium Target SpR104 2AJ2 ; 3.21 ; X-Ray Crystal Structure of Protein VC0467 from Vibrio cholerae. Northeast Structural Genomics Consortium Target VcR8. 1ZBP ; 2.4 ; X-Ray Crystal Structure of Protein VPA1032 from Vibrio parahaemolyticus. Northeast Structural Genomics Consortium Target VpR44 1NXZ ; 2.0 ; X-Ray Crystal Structure of Protein yggj_haein of Haemophilus influenzae. Northeast Structural Genomics Consortium Target IR73. 2H4O ; 2.8 ; X-ray Crystal Structure of Protein yonK from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR415 2DLB ; 1.2 ; X-ray Crystal Structure of Protein yopT from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR412 2I2L ; 2.8 ; X-ray Crystal Structure of Protein yopX from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR411. 2IM8 ; 2.0 ; X-Ray Crystal Structure of Protein yppE from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR213. 2NWA ; 2.7 ; X-ray Crystal Structure of Protein ytmB from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR466 2GSV ; 1.9 ; X-Ray Crystal Structure of Protein YvfG from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR478. 2O14 ; 2.1 ; X-Ray Crystal Structure of Protein YXIM_BACsu from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR595 2GXF ; 3.1 ; X-Ray Crystal Structure of Protein YybH from Bacillus subtilis. Northeast Structural Genomics Consortium Target SR506. 6RQQ ; 1.276 ; X-ray crystal structure of protiated (H) large monoclinic unit cell CA IX SV. 6RQN ; 1.777 ; X-ray crystal structure of protiated (H) small monoclinic unit cell CA IX SV. 5WV4 ; 1.8 ; X-ray Crystal Structure of Pseudoazurin Met16Gly variant 5YSG ; 2.0 ; X-ray Crystal Structure of Pseudoazurin Met16Gly Variant, Reduced Form. 8HM9 ; 1.36 ; X-ray Crystal Structure of Pseudoazurin Met16His Variant at pH 4.0 6IFP ; 1.0 ; X-ray Crystal Structure of Pseudoazurin Met16Ile Variant 6AKN ; 1.19 ; X-ray Crystal Structure of Pseudoazurin Met16Leu Variant 5Y23 ; 1.4 ; X-ray crystal structure of Pseudoazurin Met16Phe variant 5XMO ; 1.19 ; X-ray crystal structure of Pseudoazurin Met16Phe/Thr36Lys variant 5Z0X ; 1.46 ; X-ray Crystal Structure of Pseudoazurin Met16Tyr Variant 5ZTD ; 1.05 ; X-ray Crystal Structure of Pseudoazurin Met16Val Variant 5YW3 ; 1.19 ; X-ray Crystal Structure of Pseudoazurin Thr36Lys Variant 7BK8 ; 1.74 ; X-ray crystal structure of Pseudomonas aeruginosa MagC 1XHD ; 1.9 ; X-ray crystal structure of putative acetyltransferase, product of BC4754 gene [Bacillus cereus] 1XR4 ; 2.37 ; X-ray crystal structure of putative citrate lyase alpha chain/citrate-ACP transferase [Salmonella typhimurium] 1SFX ; 1.55 ; X-ray crystal structure of putative HTH transcription regulator from Archaeoglobus fulgidus 2Q3F ; 2.1 ; X-ray crystal structure of putative human Ras-related GTP binding D in complex with GMPPNP 1Q77 ; 2.7 ; X-ray crystal structure of putative Universal Stress Protein from Aquifex aeolicus 6PLN ; 2.6 ; X-ray crystal structure of Pyrococcus furiosus general transcription factor TFE-alpha 6XJF ; 3.2 ; X-ray crystal structure of Pyrococcus furiosus general transcription factor TFE-alpha (SeMet labeled protein) 3P8B ; 1.8 ; X-ray crystal structure of Pyrococcus furiosus transcription elongation factor Spt4/5 8IHY ; 1.6 ; X-ray crystal structure of Q387E mutant of endo-1,4-beta glucanase from Eisenia fetida 1W6Q ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF R111H HUMAN GALECTIN-1 1ES9 ; 1.3 ; X-RAY CRYSTAL STRUCTURE OF R22K MUTANT OF THE MAMMALIAN BRAIN PLATELET-ACTIVATING FACTOR ACETYLHYDROLASES (PAF-AH) 2AHB ; 2.0 ; X-ray crystal structure of R46A,R161A mutant of Mycobacterium tuberculosis FabH 4OIJ ; 2.0 ; X-ray crystal structure of racemic non-glycosylated chemokine Ser-CCL1 3E7R ; 1.0 ; X-ray Crystal Structure of Racemic Plectasin 5O5O ; 3.404 ; X-ray crystal structure of RapZ from Escherichia coli (P32 space group) 5O5Q ; 3.25 ; X-ray crystal structure of RapZ from Escherichia coli (P3221 space group) 3L6C ; 2.2 ; X-ray crystal structure of rat serine racemase in complex with malonate a potent inhibitor 1MUQ ; 2.3 ; X-ray Crystal Structure of Rattlesnake Venom Complexed With Thiodigalactoside 3C1D ; 1.8 ; X-ray crystal structure of RecX 1FHM ; 1.5 ; X-RAY CRYSTAL STRUCTURE OF REDUCED RUBREDOXIN 3K75 ; 2.95 ; X-ray crystal structure of reduced XRCC1 bound to DNA pol beta catalytic domain 1PVO ; 3.0 ; X-ray crystal structure of Rho transcription termination factor in complex with ssRNA substrate and ANPPNP 5D6U ; 1.52 ; X-ray crystal structure of ribonuclease A determined for the real space D/H contrast method 5TOY ; 1.3 ; X-Ray Crystal Structure of Ruthenocene Conjugated Penicilloate and Penilloate Products in Complex with CTX-M-14 E166A Beta-Lactamase 6VNU ; 1.47 ; X-ray Crystal Structure of Ruthenocenyl-7-Aminocephalosporanic Acid Covalent Acyl-Enzyme Complex with CTX-M-14 E166A Beta-Lactamase 5UJO ; 1.35 ; X-Ray Crystal Structure of Ruthenocenyl-7-Aminodesacetoxycephalosporanic Acid Covalent Acyl-Enyzme Complex with CTX-M-14 E166A Beta-Lactamase 2A15 ; 1.68 ; X-ray Crystal Structure of RV0760 from Mycobacterium Tuberculosis at 1.68 Angstrom Resolution 2Z76 ; 1.82 ; X-ray crystal structure of RV0760c from Mycobacterium tuberculosis at 1.82 Angstrom resolution 2Z7A ; 2.1 ; X-ray crystal structure of RV0760c from Mycobacterium tuberculosis at 2.10 Angstrom resolution 2Z77 ; 2.03 ; X-ray crystal structure of RV0760c from Mycobacterium tuberculosis in complex with estradiol-17beta-hemisuccinate 5AF3 ; 1.78 ; X-RAY CRYSTAL STRUCTURE OF RV2018 FROM MYCOBACTERIUM TUBERCULOSIS 4XAH ; 2.5 ; X-ray crystal structure of S. cerevisiae Cgi121 2OGA ; 2.05 ; X-ray crystal structure of S. venezuelae DesV in complex with ketimine intermediate 4HVR ; 2.7 ; X-ray crystal structure of salicylic acid bound 3-hydroxyanthranilate-3,4-dioxygenase from cupriavidus metallidurans 8EZC ; 1.6 ; X-ray crystal structure of salmonella typhimurium Tryptophan synthase internal aldimine 8EYS ; 2.2 ; X-ray crystal structure of salmonella typhimurium Tryptophan synthase internal aldimine at pH 5.0 2I0L ; 2.31 ; X-ray crystal structure of Sap97 PDZ2 bound to the C-terminal peptide of HPV18 E6. 2I0I ; 2.8 ; X-ray crystal structure of Sap97 PDZ3 bound to the C-terminal peptide of HPV18 E6 4ZY9 ; 1.2 ; X-ray crystal structure of selenomethionine-labelled V110M mutant of chitosan-binding module 1 derived from chitosanase/glucanase from Paenibacillus sp. IK-5 5CUF ; 3.5 ; X-ray crystal structure of SeMet human Sestrin2 4OTL ; 2.0 ; X-ray Crystal Structure of Serine Hydroxymethyl Transferase from Burkholderia cenocepacia bound to PLP and Glycine 4OT8 ; 2.0 ; X-ray Crystal Structure of Serine Hydroxymethyl Transferase from Burkholderia cenocepacia bound to PLP and Serine 7Z1P ; 1.82 ; X-ray crystal structure of SLPYL1-E151D mutant 7Z1R ; 1.601 ; X-ray crystal structure of SLPYL1-E151D mutant ABA complex 7Z1Q ; 1.683 ; X-ray crystal structure of SLPYL1-E151D mutant with NIO molecules 7Z1S ; 1.65 ; X-ray crystal structure of SLPYL1-NIO complex 6NTT ; 2.4 ; X-ray Crystal Structure of Soybean Trypsin Inhibitor (Kunitz) Complexed with 1,5-Disulfonyl Naphthalene 7XC9 ; 1.9 ; X-ray crystal structure of sperm whale myoglobin F46C mutant 7XCQ ; 1.6 ; X-ray crystal structure of sperm whale myoglobin H64D mutant 7XCF ; 1.7 ; X-ray crystal structure of sperm whale myoglobin T67C mutant 5CNP ; 2.38 ; X-ray crystal structure of Spermidine n1-acetyltransferase from Vibrio cholerae. 7B5A ; 1.97 ; X-ray crystal structure of Sporosarcina pasteurii urease inhibited by Ag(PEt3)2NO3 determined at 1.97 Angstroms 7B59 ; 1.63 ; X-ray crystal structure of Sporosarcina pasteurii urease inhibited by Ag(PEt3)Br determined at 1.63 Angstroms 7B58 ; 1.72 ; X-ray crystal structure of Sporosarcina pasteurii urease inhibited by Ag(PEt3)Cl determined at 1.72 Angstroms 7P7O ; 1.87 ; X-RAY CRYSTAL STRUCTURE OF SPOROSARCINA PASTEURII UREASE INHIBITED BY THE GOLD(I)-DIPHOSPHINE COMPOUND Au(PEt3)2Cl DETERMINED AT 1.87 ANGSTROMS 7P7N ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF SPOROSARCINA PASTEURII UREASE INHIBITED BY THE GOLD(I)-PHOSPHINE COMPOUND Au(PEt3)I DETERMINED AT 1.80 ANGSTROMS 1LRZ ; 2.1 ; x-ray crystal structure of staphylococcus aureus femA 4C13 ; 1.9 ; x-ray crystal structure of Staphylococcus aureus MurE with UDP-MurNAc- Ala-Glu-Lys 4C12 ; 1.8 ; X-ray Crystal Structure of Staphylococcus aureus MurE with UDP-MurNAc- Ala-Glu-Lys and ADP 4YV6 ; 2.053 ; X-ray crystal structure of Streptococcus dysgalactiae SHP pheromone receptor Rgg2 4YV9 ; 1.95 ; X-ray crystal structure of Streptococcus dysgalactiae SHP pheromone receptor Rgg2 4N83 ; 2.65 ; X-ray crystal structure of Streptococcus sanguinis dimanganese(II)-NrdF 4N82 ; 1.88 ; X-ray crystal structure of Streptococcus sanguinis NrdIox 8FLO ; 1.71 ; X-ray crystal structure of substrate free CYP124A1 from Mycobacterium Marinum 7TLO ; 1.55 ; X-ray crystal structure of substrate free cytochrome P450 CYP142A3 from Mycobacterium Marinum 4WWM ; 2.2 ; X-ray crystal structure of Sulfolobus solfataricus Urm1 4YET ; 1.75 ; X-ray crystal structure of superoxide dismutase from Babesia bovis solved by Sulfur SAD 3QMX ; 1.822 ; X-ray crystal structure of Synechocystis sp. PCC 6803 Glutaredoxin A 6M3D ; 1.6 ; X-ray crystal structure of tandemly connected engrailed homeodomains (EHD) with R53A mutations and DNA complex 1VPD ; 1.65 ; X-Ray Crystal Structure of Tartronate Semialdehyde Reductase [Salmonella Typhimurium LT2] 1RRV ; 2.0 ; X-ray crystal structure of TDP-vancosaminyltransferase GtfD as a complex with TDP and the natural substrate, desvancosaminyl vancomycin. 8U8M ; 2.7 ; X-ray crystal structure of TEBP-1 MCD2 homodimer 8U8L ; 2.2 ; X-ray crystal structure of TEBP-2 MCD3 with ds DNA 1ERQ ; 1.9 ; X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-1-ACETAMIDO-2-(3-CARBOXY-2-HYDROXYPHENYL)ETHYL BORONIC ACID 1ERM ; 1.7 ; X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-1-ACETAMIDO-2-(3-CARBOXYPHENYL)ETHANE BORONIC ACID 1ERO ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-2-PHENYLACETAMIDO-2-(3-CARBOXYPHENYL)ETHYL BORONIC ACID 8ER1 ; 1.9 ; X-ray crystal structure of Tet(X6) 8ER0 ; 2.2 ; X-ray crystal structure of Tet(X6) bound to anhydrotetracycline 5TKV ; 2.7 ; X-RAY CRYSTAL STRUCTURE OF THE ""CLOSED"" CONFORMATION OF CTP-INHIBITED E. COLI CYTIDINE TRIPHOSPHATE (CTP) SYNTHETASE 4FNE ; 2.78 ; X-ray Crystal structure of the Ancestral 3-keto steroid receptor - DOC complex 4FN9 ; 3.0 ; X-ray Crystal structure of the Ancestral 3-keto steroid receptor - Progesterone complex 4E2J ; 2.5 ; X-Ray Crystal Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with mometasone furoate and TIF-2 coactivator fragment 5UFS ; 2.118 ; X-Ray Crystal Structure of the Ancestral Glucocorticoid Receptor 2 ligand binding domain in complex with triamcinolone acetonide and SHP coregulator fragment 1ZXV ; 2.67 ; X-Ray Crystal Structure of the Anthrax Lethal Factor Bound to a Small Molecule Inhibitor, BI-MFM3, 3-{5-[5-(4-Chloro-phenyl)-furan-2-ylmethylene]-4-oxo-2-thioxo-thiazolidin-3-yl}-propionic acid. 2ANL ; 3.3 ; X-ray crystal structure of the aspartic protease plasmepsin 4 from the malarial parasite plasmodium malariae bound to an allophenylnorstatine based inhibitor 5TUP ; 2.602 ; X-ray Crystal Structure of the Aspergillus fumigatus Sliding Clamp 3NCT ; 2.2 ; X-ray crystal structure of the bacterial conjugation factor PsiB, a negative regulator of reca 8VCW ; 1.35 ; X-Ray Crystal Structure of the biotin synthase from B. obeum 8VDW ; 1.807 ; X-Ray Crystal Structure of the biotin synthase from V. parvula 6PRY ; 1.55 ; X-ray crystal structure of the blue-light absorbing state of PixJ from Thermosynechococcus elongatus by serial femtosecond crystallographic analysis 6VSX ; 2.0 ; X-ray crystal structure of the C-terminal domain of Bacillus subtilis RNA polymerase binding helicase HelD 1UU6 ; 1.4 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMICOLA GRISEA CEL12A IN COMPLEX WITH A SOAKED CELLOPENTAOSE 1W2U ; 1.52 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMICOLA GRISEA CEL12A IN COMPLEX WITH A SOAKED THIO CELLOTETRAOSE 1UU4 ; 1.49 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMICOLA GRISEA CEL12A IN COMPLEX WITH CELLOBIOSE 1UU5 ; 1.67 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF HUMICOLA GRISEA CEL12A SOAKED WITH CELLOTETRAOSE 2CKS ; 1.6 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF THERMOBIFIDA FUSCA ENDOGLUCANASE CEL5A (E5) 2CKR ; 1.77 ; X-RAY CRYSTAL STRUCTURE OF THE CATALYTIC DOMAIN OF THERMOBIFIDA FUSCA ENDOGLUCANASE CEL5A (E5) E355Q IN COMPLEX WITH CELLOTETRAOSE 3C7I ; 1.7 ; X-RAY crystal structure of the complex between the grb2-sh2 domain and a flexible ligand, FPTVN. 1PPF ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF THE COMPLEX OF HUMAN LEUKOCYTE ELASTASE (PMN ELASTASE) AND THE THIRD DOMAIN OF THE TURKEY OVOMUCOID INHIBITOR 1L4Z ; 2.8 ; X-RAY CRYSTAL STRUCTURE OF THE COMPLEX OF MICROPLASMINOGEN WITH ALPHA DOMAIN OF STREPTOKINASE IN THE PRESENCE CADMIUM IONS 8AY9 ; 2.281 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1(V112L, T135L,F137I, T153I, V168A)-ABA-HAB1 TERNARY COMPLEX 8AY7 ; 2.131 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1(V112L, T135L,F137I, T153I, V168A)-iSB7-HAB1 TERNARY COMPLEX 8AY8 ; 1.78 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1(V112L, T135L,F137I, T153I, V168A)-iSB9-HAB1 TERNARY COMPLEX 8AY6 ; 1.84 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1(V112L, T135L,F137I, T153I, V168A)-SB-HAB1 TERNARY COMPLEX 8AYA ; 1.742 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1-A10-HAB1 TERNARY COMPLEX 7AVW ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1-iSB07-HAB1 TERNARY COMPLEX 8AY3 ; 1.9 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1-iSB9-HAB1 TERNARY COMPLEX 6ZUC ; 2.37 ; X-RAY CRYSTAL STRUCTURE OF THE CsPYL1-Lig1-HAB1 TERNARY COMPLEX 2PA8 ; 1.76 ; X-Ray Crystal Structure of the D/L Subcomplex of the Sulfolobus Solfataricus RNA polymerase 1BU5 ; 1.83 ; X-RAY CRYSTAL STRUCTURE OF THE DESULFOVIBRIO VULGARIS (HILDENBOROUGH) APOFLAVODOXIN-RIBOFLAVIN COMPLEX 4X1J ; 2.5 ; X-ray crystal structure of the dimeric BMP antagonist NBL1 3PC7 ; 1.65 ; X-ray crystal structure of the DNA ligase III-alpha BRCT domain. 1IL0 ; 2.2 ; X-RAY CRYSTAL STRUCTURE OF THE E170Q MUTANT OF HUMAN L-3-HYDROXYACYL-COA DEHYDROGENASE 3K6B ; 2.8 ; X-ray crystal structure of the E2 domain of APL-1 from C. elegans, in complex with sucrose octasulfate (SOS) 3K66 ; 2.7 ; X-ray crystal structure of the E2 domain of C. elegans APL-1 6M4M ; 1.7 ; X-ray crystal structure of the E249Q mutan of alpha-amylase I and maltohexaose complex from Eisenia fetida 6M4L ; 1.6 ; X-ray crystal structure of the E249Q mutant of alpha-amylase I from Eisenia fetida 6OIU ; 2.2 ; X-ray crystal structure of the ectodomain of the Toxoplasma gondii ME49 Aminopeptidase N (TGME49_224350) 2VTF ; 1.79 ; X-ray crystal structure of the Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae E173Q mutant reveals a TIM barrel catalytic domain and two ancillary domains 3N75 ; 2.0 ; X-ray Crystal Structure of the Escherichia coli Inducible Lysine Decarboxylase LdcI 4KN4 ; 3.965 ; X-ray crystal structure of the Escherichia coli RNA polymerase in complex with Benzoxazinorifamycin-2b 4KN7 ; 3.686 ; X-ray crystal structure of the Escherichia coli RNA polymerase in complex with Benzoxazinorifamycin-2c 4KMU ; 3.85 ; X-ray crystal structure of the Escherichia coli RNA polymerase in complex with Rifampin 3IWQ ; 1.84 ; X-ray crystal structure of the extended-spectrum AmpC E219K mutant beta-lactamase at 1.84 Angstrom resolution 3IXB ; 1.63 ; X-ray crystal structure of the extended-spectrum AmpC E219K mutant beta-lactamase complexed with benzo(b)thiophene-2-boronic acid (BZB) at 1.63 Angstrom resolution 3IWI ; 1.64 ; X-ray crystal structure of the extended-spectrum AmpC omega loop insertion (H210AAA) mutant beta-lactamase at 1.64 Angstrom resolution 3IXG ; 2.14 ; X-ray crystal structure of the extended-spectrum AmpC T70I mutant beta-lactamase with and without benzo(b)thiophene-2-boronic acid bound at 2.14 Angstrom resolution 3IXD ; 2.64 ; X-ray crystal structure of the extended-spectrum AmpC V298E mutant beta-lactamase at 2.64 Angstrom resolution 3IWO ; 1.9 ; X-ray crystal structure of the extended-spectrum AmpC Y221G mutant beta-lactamase at 1.90 Angstrom resolution 3IXH ; 2.3 ; X-ray crystal structure of the extended-spectrum AmpC Y221G mutant beta-lactamase in complex with cefotaxime at 2.3 Angstrom resolution 3L3H ; 2.7 ; X-ray crystal structure of the F6A mutant of influenza A acid polymerase epitope PA224 bound to murine H2-Db MHC 3GK8 ; 2.0 ; X-ray crystal structure of the Fab from MAb 14, mouse antibody against Canine Parvovirus 1MBI ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF THE FERRIC SPERM WHALE MYOGLOBIN: IMIDAZOLE COMPLEX AT 2.0 ANGSTROMS RESOLUTION 1SWM ; 1.8 ; X-RAY CRYSTAL STRUCTURE OF THE FERRIC SPERM WHALE MYOGLOBIN: IMIDAZOLE COMPLEX AT 2.0 ANGSTROMS RESOLUTION 6S6Y ; 3.1 ; X-ray crystal structure of the formyltransferase/hydrolase complex (FhcABCD) from Methylorubrum extorquens in complex with methylofuran 2HUW ; 1.9 ; X-ray crystal structure of the Grb2 SH2 domain complexed to a constrained and cyclopropane-derived ligand 4EAB ; 1.35 ; X-ray crystal structure of the H141A mutant of GDP-perosamine N-acetyl transferase from Caulobacter crescentus in complex with CoA and GDP-perosamine 4EAA ; 1.45 ; X-ray crystal structure of the H141N mutant of perosamine N-acetyltransferase from Caulobacter crescentus in complex with CoA and GDP-perosamine 3PC8 ; 2.31 ; X-ray crystal structure of the heterodimeric complex of XRCC1 and DNA ligase III-alpha BRCT domains. 3E9W ; 2.05 ; X-Ray Crystal Structure of the hexamer DCACACG:Crystal grown in the presence of cobalt(III)hexammine Chloride. 4PHV ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF THE HIV PROTEASE COMPLEX WITH L-700,417, AN INHIBITOR WITH PSEUDO C2 SYMMETRY 1F3H ; 2.58 ; X-RAY CRYSTAL STRUCTURE OF THE HUMAN ANTI-APOPTOTIC PROTEIN SURVIVIN 6EQU ; 1.65 ; X-Ray crystal structure of the human carbonic anhydrase II adduct with a membrane-impermeant inhibitor 1HLC ; 2.9 ; X-RAY CRYSTAL STRUCTURE OF THE HUMAN DIMERIC S-LAC LECTIN, L-14-II, IN COMPLEX WITH LACTOSE AT 2.9 ANGSTROMS RESOLUTION 1A3K ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF THE HUMAN GALECTIN-3 CARBOHYDRATE RECOGNITION DOMAIN (CRD) AT 2.1 ANGSTROM RESOLUTION 3KDF ; 1.975 ; X-ray Crystal Structure of the Human Replication Protein A Complex from Wheat Germ Cell Free Expression 1U7P ; 1.9 ; X-ray Crystal Structure of the Hypothetical Phosphotyrosine Phosphatase MDP-1 of the Haloacid Dehalogenase Superfamily 1K3Z ; 2.5 ; X-ray crystal structure of the IkBb/NF-kB p65 homodimer complex 2VKL ; 1.65 ; X-ray crystal structure of the intracellular Chorismate mutase from Mycobactrerium Tuberculosis in complex with malate 4PIJ ; 1.5 ; X-ray crystal structure of the K11S/K63S double mutant of ubiquitin 4PIH ; 1.5 ; X-ray crystal structure of the K33S mutant of ubiquitin 1P1Z ; 3.26 ; X-RAY CRYSTAL STRUCTURE OF THE LECTIN-LIKE NATURAL KILLER CELL RECEPTOR LY-49C BOUND TO ITS MHC CLASS I LIGAND H-2Kb 4LX5 ; 2.13 ; X-ray crystal structure of the M6"" riboswitch aptamer bound to pyrimido[4,5-d]pyrimidine-2,4-diamine (PPDA) 4LX6 ; 2.15 ; X-ray crystal structure of the M6C"" riboswitch aptamer bound to 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-one (PPAO) 2H6L ; 2.0 ; X-Ray Crystal Structure of the Metal-containing Protein AF0104 from Archaeoglobus fulgidus. Northeast Structural Genomics Consortium Target GR103. 1LVK ; 1.9 ; X-RAY CRYSTAL STRUCTURE OF THE MG (DOT) 2'(3')-O-(N-METHYLANTHRANILOYL) NUCLEOTIDE BOUND TO DICTYOSTELIUM DISCOIDEUM MYOSIN MOTOR DOMAIN 3JR2 ; 1.8 ; X-ray crystal structure of the Mg-bound 3-keto-L-gulonate-6-phosphate decarboxylase from Vibrio cholerae O1 biovar El Tor str. N16961 6XBO ; 1.8 ; X-ray crystal structure of the mouse CMP-Sialic acid transporter in complex with 5-methyl CMP 6OH4 ; 3.38 ; X-ray crystal structure of the mouse CMP-sialic acid transporter in complex with CMP, by hanging drop vapor diffusion 6OH2 ; 2.58 ; X-ray crystal structure of the mouse CMP-sialic acid transporter in complex with CMP, by lipidic cubic phase 6OH3 ; 2.75 ; X-ray crystal structure of the mouse CMP-sialic acid transporter in complex with CMP-sialic acid, by lipidic cubic phase 6H24 ; 1.53 ; X-Ray Crystal Structure of the MSBI1.176 WH1 Domain, a Replication Protein Isolated from a Multiple Sclerosis Patient 6RO1 ; 3.07 ; X-ray crystal structure of the MTR4 NVL complex 6L27 ; 0.77 ; X-ray crystal structure of the mutant green fluorescent protein 3DRZ ; 1.9 ; X-ray crystal structure of the N-terminal BTB domain of human KCTD5 protein 8FRT ; 1.8 ; X-ray crystal structure of the N-terminal region from HCMV US11 binding to HLA-A*02:01 3Q23 ; 1.8 ; X-ray crystal structure of the N4 mini-VRNAP and P2_7a promoter transcription initiation complex with GMPCPP and Manganese: sustrate complex II 3Q22 ; 2.11 ; X-ray crystal structure of the N4 mini-VRNAP and P2_7a promoter transcription initiation complex with GTP and Magnesium: substrate complex I 3Q24 ; 1.81 ; X-ray crystal structure of the N4 mini-VRNAP and P2_7a promoter transcription initiation complex with pppGpG and pyrophosphate: product complex 3C2P ; 2.0 ; X-ray crystal structure of the N4 mini-vRNAP P1 promoter complex 3C3L ; 2.4 ; X-ray crystal structure of the N4 mini-vRNAP P2 promoter complex 3C46 ; 2.0 ; X-ray crystal structure of the N4 mini-vRNAP P2_7a promoter complex soaked with MgCl2 1MIO ; 3.0 ; X-RAY CRYSTAL STRUCTURE OF THE NITROGENASE MOLYBDENUM-IRON PROTEIN FROM CLOSTRIDIUM PASTEURIANUM AT 3.0 ANGSTROMS RESOLUTION 3R8A ; 2.41 ; X-ray crystal structure of the nuclear hormone receptor PPAR-gamma in a complex with a compound with dual PPAR gamma agonism and Angiotensin II Type I receptor antagonism activity 2Q8S ; 2.3 ; X-ray Crystal structure of the nuclear hormone receptor PPAR-gamma in a complex with a PPAR gamma/alpha dual agonist 3IA6 ; 2.31 ; X-ray Crystal structure of the nuclear hormone receptor PPAR-gamma in a complex with a PPAR gamma/alpha dual agonist 4X2U ; 1.5 ; X-ray crystal structure of the orally available aminopeptidase inhibitor, Tosedostat, bound to the M1 Alanyl Aminopeptidase from P. falciparum 4X2T ; 2.729 ; X-ray crystal structure of the orally available aminopeptidase inhibitor, Tosedostat, bound to the M17 Leucyl Aminopeptidase from P. falciparum 4OM9 ; 2.3 ; X-Ray Crystal Structure of the passenger domain of Plasmid encoded toxin, an Autrotansporter Enterotoxin from enteroaggregative Escherichia coli (EAEC) 1CVJ ; 2.6 ; X-RAY CRYSTAL STRUCTURE OF THE POLY(A)-BINDING PROTEIN IN COMPLEX WITH POLYADENYLATE RNA 5U5L ; 2.55 ; X-ray Crystal Structure of the PPARgamma Ligand Binding Domain in Complex with Rivoglitazone 1AAP ; 1.5 ; X-RAY CRYSTAL STRUCTURE OF THE PROTEASE INHIBITOR DOMAIN OF ALZHEIMER'S AMYLOID BETA-PROTEIN PRECURSOR 3Q6A ; 1.8 ; X-ray crystal structure of the protein SSP2350 from Staphylococcus saprophyticus, Northeast structural genomics consortium target SyR116 3RK0 ; 2.4 ; X-ray crystal Structure of the putative N-type ATP pyrophosphatase (PF0828) in complex with AMP from Pyrococcus furiosus, Northeast Structural Genomics Consortium Target PfR23 3RJZ ; 2.3 ; X-ray crystal structure of the putative n-type atp pyrophosphatase from pyrococcus furiosus, the northeast structural genomics target pfr23 3OJI ; 1.84 ; X-ray crystal structure of the Py13 -pyrabactin complex 3NJ1 ; 1.948 ; X-ray crystal structure of the PYL2(V114I)-pyrabactin A complex 3NJ0 ; 1.89 ; X-ray crystal structure of the PYL2-pyrabactin A complex 4LA7 ; 1.98 ; X-ray crystal structure of the PYL2-quinabactin-Hab1 ternary complex 3NJO ; 2.473 ; X-ray crystal structure of the Pyr1-pyrabactin A complex 6QSQ ; 2.0 ; X-ray crystal structure of the R336L Vibrio alkaline phosphatase variant. 5O5S ; 1.17 ; X-ray crystal structure of the RapZ C-terminal domain from Escherichia coli 3C0C ; 1.7 ; X-ray Crystal Structure of the Rat Endophilin A2 SH3 Domain 1PV4 ; 3.0 ; X-ray crystal structure of the Rho transcription termination factor in complex with single stranded DNA 1IU5 ; 1.5 ; X-ray Crystal Structure of the rubredoxin mutant from Pyrococcus Furiosus 4LY2 ; 2.1 ; X-ray crystal structure of the ruthenium complex [Ru(phen)2(dppz)]2+ bound to d(TCGGTACCGA) 3QF8 ; 1.73 ; X-ray crystal structure of the ruthenium complex [Ru(tap)2(dppz)]2+ bound to d(TCGGCGCCGA) at medium resolution 3QRN ; 1.1 ; X-ray crystal structure of the ruthenium complex [Ru(tap)2(dppz)]2+ bound to d(TCGGCGCCGA)at high resolution 3UYB ; 1.5 ; X-ray crystal structure of the ruthenium complex [Ru(tap)2(dppz)]2+ bound to d(TCGGTACCGA) 4M3I ; 2.1 ; X-ray crystal structure of the ruthenium complex [Ru(TAP)2(dppz-{Me2})]2+ bound to d(CCGGTACCGG) 4M3V ; 2.05 ; X-ray crystal structure of the ruthenium complex [Ru(Tap)2(dppz-{Me2})]2+ bound to d(TCGGTACCGA) 4OXP ; 2.1 ; X-ray crystal structure of the S1 and 5'-sensor domains of RNase E from Caulobacter crescentus 1Q2W ; 1.86 ; X-Ray Crystal Structure of the SARS Coronavirus Main Protease 3BGF ; 3.0 ; X-ray crystal structure of the SARS coronavirus spike receptor binding domain in complex with F26G19 Fab 7LKE ; 2.69 ; X-ray crystal structure of the SARS-CoV-2 main protease in space group C2 7LKD ; 2.01 ; X-ray crystal structure of the SARS-CoV-2 main protease in space group P21. 7LBN ; 1.76 ; X-ray crystal structure of the SARS-CoV-2 main protease with Calpain I Inhibitor 3PC6 ; 1.9 ; X-ray crystal structure of the second XRCC1 BRCT domain. 6Q57 ; 2.72 ; X-ray crystal structure of the tetrahydrofolate riboswitch aptamer bound to 5-deazatetrahydropterin 3Q0A ; 2.69 ; X-ray crystal structure of the transcription initiation complex of the N4 mini-vRNAP with P2 promoter: Mismatch complex 4E1S ; 1.855 ; X-ray crystal structure of the transmembrane beta-domain from intimin from EHEC strain O157:H7 4E1T ; 2.263 ; X-ray crystal structure of the transmembrane beta-domain from invasin from Yersinia pseudotuberculosis 1V8Z ; 2.21 ; X-ray crystal structure of the Tryptophan Synthase b2 Subunit from Hyperthermophile, Pyrococcus furiosus 2AZU ; 1.9 ; X-RAY CRYSTAL STRUCTURE OF THE TWO SITE-SPECIFIC MUTANTS HIS35*GLN AND HIS35*LEU OF AZURIN FROM PSEUDOMONAS AERUGINOSA 3AZU ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF THE TWO SITE-SPECIFIC MUTANTS HIS35GLN AND HIS35LEU OF AZURIN FROM PSEUDOMONAS AERUGINOSA 3RRU ; 3.0 ; X-ray crystal structure of the VHS domain of human TOM1-like protein, Northeast Structural Genomics Consortium Target HR3050E 3NYU ; 1.501 ; X-ray crystal structure of the Wbpe (WlbE) aminotransferase from pseudomonas aeruginosa as the PLP internal aldimine adduct with lysine 185 3NYT ; 1.301 ; X-ray crystal structure of the WlbE (WpbE) aminotransferase from pseudomonas aeruginosa, mutation K185A, in complex with the PLP external aldimine adduct with UDP-3-amino-2-N-acetyl-glucuronic acid, at 1.3 angstrom resolution 6OFU ; 1.75 ; X-ray crystal structure of the YdjI aldolase from Escherichia coli K12 4QJF ; 2.312 ; X-ray crystal structure of Thermocuccus kodakarensis RNA polymerase Rpp4/Rpo7 (RpoF/RpoE) complex 8EMB ; 3.06 ; X-ray crystal structure of Thermosynechococcus elongatus Si3 domain of RNA polymerase RpoC2 subunit 4HYN ; 2.5 ; X-ray crystal structure of Thermotoga maritima FliY 4WXT ; 1.2 ; X-ray crystal structure of thioredoxin from Mycobacterium avium 1YPL ; 1.85 ; X-ray crystal structure of thrombin inhibited by synthetic cyanopeptide analogue RA-1008 1YPM ; 1.85 ; X-ray crystal structure of thrombin inhibited by synthetic cyanopeptide analogue RA-1014 8VPO ; 1.66 ; X-Ray Crystal Structure of TigE from Paramaledivibacter caminithermalis 1NF2 ; 2.2 ; X-ray crystal structure of TM0651 from Thermotoga maritima 6NPB ; 1.73 ; X-ray crystal structure of TmpA, 2-trimethylaminoethylphosphonate hydroxylase, with Fe and 2OG 6NPD ; 1.78 ; X-ray crystal structure of TmpA, 2-trimethylaminoethylphosphonate hydroxylase, with Fe, 2OG, and (R)-1-hydroxy-2-trimethylaminoethylphosphonate 6NPC ; 1.7 ; X-ray crystal structure of TmpA, 2-trimethylaminoethylphosphonate hydroxylase, with Fe, 2OG, and 2-trimethylaminoethylphosphonate 6NPA ; 1.73 ; X-ray crystal structure of TmpB, (R)-1-hydroxy-2-trimethylaminoethylphosphonate oxygenase, with (R)-1-hydroxy-2-trimethylaminoethylphosphonate 2RDB ; 2.1 ; X-ray Crystal Structure of Toluene/o-Xylene Monooxygenase Hydroxylase I100W Mutant 3N1X ; 2.4 ; X-ray Crystal Structure of Toluene/o-Xylene Monooxygenase Hydroxylase T201C Mutant 3N1Y ; 2.1 ; X-ray Crystal Structure of Toluene/o-Xylene Monooxygenase Hydroxylase T201G Mutant 3N1Z ; 2.9 ; X-ray Crystal Structure of Toluene/o-Xylene Monooxygenase Hydroxylase T201S Mutant 3N20 ; 1.9 ; X-ray Crystal Structure of Toluene/o-Xylene Monooxygenase Hydroxylase T201V Mutant 3QFI ; 2.71 ; X-ray crystal structure of transcriptional regulator (EF0465) from Enterococcus faecalis, Northeast Structural Genomics Consortium Target EfR190 3FM5 ; 2.0 ; X-ray crystal structure of transcriptional regulator (MarR family) from Rhodococcus sp. RHA1 3L82 ; 2.4 ; X-ray Crystal structure of TRF1 and Fbx4 complex 6V3T ; 2.84 ; X-Ray Crystal Structure of Tribolium castaneum Arylalkylamine N-acyltransferase in Complex with Acetyl-CoA 1DLW ; 1.54 ; X-RAY CRYSTAL STRUCTURE OF TRUNCATED HEMOGLOBIN FROM P.CAUDATUM. 7STA ; 2.5 ; X-ray Crystal Structure of Truncated Human Chemokine CCL19 (7-70) 5E0K ; 2.76 ; X-ray crystal structure of tryptophan synthase complex from Pyrococcus furiosus at 2.76 A 2OHY ; 2.5 ; X-ray Crystal Structure of Tyrosine Aminomutase from streptomyces globisporus 3KDY ; 2.2 ; X-ray crystal structure of tyrosine aminomutase mutant construct 8SXY ; 1.8 ; X-ray crystal structure of UDP- 2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27 in complex with its product UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid at pH 5 8SY0 ; 2.1 ; X-ray crystal structure of UDP- 2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27 in complex with its product UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid at pH 9 8SXV ; 2.3 ; X-ray crystal structure of UDP- 2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, apo form, pH 9 8SXW ; 1.8 ; X-ray crystal structure of UDP- 2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N mutation, apo structure at pH 6 8SYE ; 1.9 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid and UDP at pH 6 8SYH ; 2.0 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid and UDP at pH 8 8SYA ; 2.3 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid and UDP at pH 9 8SYD ; 2.2 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid and UDP-N-acetylglucosamine at pH 6 8SYB ; 2.2 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid and UDP-N-acetylglucosamine at pH 9 8SY9 ; 2.2 ; X-ray crystal structure of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid-2-epimerase from Thermus thermophilus strain HB27, D98N variant in the presence of UDP-2,3-diacetamido-2,3-dideoxy-glucuronic acid, UDP-N-acetylglucosamine and UDP at pH 7 1RNF ; 2.1 ; X-RAY CRYSTAL STRUCTURE OF UNLIGANDED HUMAN RIBONUCLEASE 4 8W47 ; 1.4 ; X-ray crystal structure of V30M-TTR in complex with isorhapontigenin 8W44 ; 1.399 ; X-ray crystal structure of V30M-TTR in complex with oxyresveratrol 8W43 ; 1.302 ; X-ray crystal structure of V30M-TTR in complex with piceatannol 8W45 ; 1.1 ; X-ray crystal structure of V30M-TTR in complex with pinostilbene 8W46 ; 1.35 ; X-ray crystal structure of V30M-TTR in complex with pterostilbene 8W42 ; 1.45 ; X-ray crystal structure of V30M-TTR in complex with resveratrol 8GRZ ; 2.0 ; X-ray crystal structure of V71C human neuroglobin mutant 7E4J ; 1.63 ; X-ray crystal structure of VapB12 antitoxin from mycobacterium tuberculosis in space group P41. 6T26 ; 2.265 ; X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine 6MP9 ; 1.89 ; X-ray crystal structure of VioC bound to Fe(II), 2-oxo-5-guanidinopentanoic acid, and succinate 6DAZ ; 1.94 ; X-ray crystal structure of VioC bound to Fe(II), 3S-hydroxy-L-homoarginine, and succinate 6MP8 ; 1.89 ; X-ray crystal structure of VioC bound to Fe(II), D-arginine, and 2-oxoglutarate 6DAX ; 1.7 ; X-ray crystal structure of VioC bound to Fe(II), L-homoarginine, and 2-oxoglutarate 6DB2 ; 1.7 ; X-ray crystal structure of VioC bound to vanadyl ion, L-homoarginine, and succinate 7N7H ; 1.42 ; X-ray crystal structure of Viperin-like enzyme from Nematostella vectensis 7N7I ; 3.19 ; X-ray crystal structure of Viperin-like enzyme from Trichoderma virens 7F1X ; 3.0 ; X-ray crystal structure of visual arrestin complexed with inositol 1,4,5-triphosphate 7F1W ; 3.097 ; X-ray crystal structure of visual arrestin complexed with inositol hexaphosphate 2AJ9 ; 2.5 ; X-ray crystal structure of W42A,R161A double mutant of Mycobacterium tuberculosis beta-ketoacyl-ACP synthase III 6M4K ; 1.3 ; X-ray crystal structure of wild type alpha-amylase I from Eisenia fetida 6MCR ; 1.48 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-001 6OYR ; 1.54 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-002 6MCS ; 1.52 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-003 6OYD ; 1.46 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-004 5CON ; 1.8 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-015 5COK ; 1.801 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-0476 6OGP ; 1.53 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-063 6D0E ; 1.95 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-084-13 5COO ; 1.8 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-085 6UWB ; 1.95 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-08513 6UWC ; 1.95 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-08613 6D0D ; 1.85 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-087-13 5V4Y ; 1.9 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-09510 5COP ; 2.0 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-097 5TYR ; 1.8 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-121 5TYS ; 2.007 ; X-ray crystal structure of wild type HIV-1 protease in complex with GRL-142 3VOX ; 3.1 ; X-ray Crystal Structure of Wild Type HrtR in the Apo Form 3VOK ; 2.0 ; X-ray Crystal Structure of Wild Type HrtR in the Apo Form with the Target DNA. 3VP5 ; 1.9 ; X-ray Crystal Structure of Wild Type HrtR in the Holo Form 3FE0 ; 1.5 ; X-ray crystal structure of wild type human lysozyme in D2O 1XI0 ; 2.0 ; X-ray crystal structure of wild-type Xerocomus chrysenteron lectin XCL 3U52 ; 1.95 ; X-ray Crystal Structure of Xenon-Pressurized Phenol Hydroxylase from Pseudomonas sp. OX1 3WUD ; 1.68 ; X-ray crystal structure of Xenopus laevis galectin-Ib 3WUC ; 1.6 ; X-ray crystal structure of Xenopus laevis galectin-Va 1X99 ; 1.4 ; X-ray crystal structure of Xerocomus chrysenteron lectin XCL at 1.4 Angstroms resolution, mutated at Q46M, V54M, L58M 3K77 ; 2.597 ; X-ray crystal structure of XRCC1 6OXJ ; 1.55 ; X-ray crystal structure of Y140F FtmOx1 bound to Fe(II) 7F4Z ; 1.8 ; X-ray crystal structure of Y149A mutated Hsp72-NBD in complex with ADP 7F50 ; 1.703 ; X-ray crystal structure of Y149A mutated Hsp72-NBD in complex with AMPPnP 1D8I ; 2.05 ; X-RAY CRYSTAL STRUCTURE OF YEAST RNA TRIPHOSPHATASE IN COMPLEX WITH A SULFATE ION. 1D8H ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF YEAST RNA TRIPHOSPHATASE IN COMPLEX WITH SULFATE AND MANGANESE IONS. 1S3J ; 2.25 ; X-ray crystal structure of YusO protein from Bacillus subtilis 1FQM ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF ZINC-BOUND F93I/F95M/W97V CARBONIC ANHYDRASE (CAII) VARIANT 1FR7 ; 1.5 ; X-RAY CRYSTAL STRUCTURE OF ZINC-BOUND F93S/F95L/W97M CARBONIC ANHYDRASE (CAII) VARIANT 1FQL ; 2.0 ; X-RAY CRYSTAL STRUCTURE OF ZINC-BOUND F95M/W97V CARBONIC ANHYDRASE (CAII) VARIANT 1ZHV ; 1.5 ; X-ray Crystal Structure Protein Atu0741 from Agobacterium tumefaciens. Northeast Structural Genomics Consortium Target AtR8. 2G2X ; 2.3 ; X-Ray Crystal Structure Protein Q88CH6 from Pseudomonas putida. Northeast Structural Genomics Consortium Target PpR72. 1SQS ; 1.5 ; X-Ray Crystal Structure Protein SP1951 of Streptococcus pneumoniae. Northeast Structural Genomics Consortium Target SpR27. 3PFH ; 1.792 ; X-Ray crystal structure the N,N-dimethyltransferase TylM1 from Streptomyces fradiae in complex with SAH and dTDP-Quip3N 3PFG ; 1.349 ; X-Ray crystal structure the N,N-dimethyltransferase TylM1 from Streptomyces fradiae in complex with SAM and dTDP-phenol 1ILS ; 2.2 ; X-RAY CRYSTAL STRUCTURE THE TWO SITE-SPECIFIC MUTANTS ILE7SER AND PHE110SER OF AZURIN FROM PSEUDOMONAS AERUGINOSA 1ILU ; 2.3 ; X-RAY CRYSTAL STRUCTURE THE TWO SITE-SPECIFIC MUTANTS ILE7SER AND PHE110SER OF AZURIN FROM PSEUDOMONAS AERUGINOSA 486D ; 7.5 ; X-RAY CRYSTAL STRUCTURES OF 70S RIBOSOME FUNCTIONAL COMPLEXES 3AYI ; 1.25 ; X-ray crystal structures of L-phenylalanine oxidase (deaminating and decaboxylating) from Pseudomonas sp. P501. Structures of the enzyme-ligand complex and catalytic mechanism 3AYJ ; 1.1 ; X-ray crystal structures of L-phenylalanine oxidase (deaminating and decaboxylating) from Pseudomonas sp. P501. Structures of the enzyme-ligand complex and catalytic mechanism 3AYL ; 1.25 ; X-ray crystal structures of L-phenylalanine oxidase (deaminating and decaboxylating) from Pseudomonas sp. P501. Structures of the enzyme-ligand complex and catalytic mechanism 1YCH ; 2.8 ; X-ray Crystal Structures of Moorella thermoacetica FprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductase 349D ; 1.9 ; X-RAY CRYSTAL STRUCTURES OF THE DECAMER DGACCGCGGTC: HIGH SALT CONCENTRATION 348D ; 1.7 ; X-RAY CRYSTAL STRUCTURES OF THE DECAMER DGACCGCGGTC: LOW SALT CONCENTRATION 351D ; 1.64 ; X-RAY CRYSTAL STRUCTURES OF THE HEXAMER DCACGCG: CRYSTALS GROWN IN THE PRESENCE OF RUTHENIUM (II) HEXAMMINE CHLORIDE 1CAA ; 1.8 ; X-RAY CRYSTAL STRUCTURES OF THE OXIDIZED AND REDUCED FORMS OF THE RUBREDOXIN FROM THE MARINE HYPERTHERMOPHILIC ARCHAEBACTERIUM PYROCOCCUS FURIOSUS 1CAD ; 1.8 ; X-RAY CRYSTAL STRUCTURES OF THE OXIDIZED AND REDUCED FORMS OF THE RUBREDOXIN FROM THE MARINE HYPERTHERMOPHILIC ARCHAEBACTERIUM PYROCOCCUS FURIOSUS 1IOF ; 2.2 ; X-RAY CRYSTALLINE STRUCTURES OF PYRROLIDONE CARBOXYL PEPTIDASE FROM A HYPERTHERMOPHILE, PYROCOCCUS FURIOSUS, AND ITS CYS-FREE MUTANT 1IOI ; 2.7 ; x-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, pyrococcus furiosus, and its cys-free mutant 1K0Y ; 1.87 ; X-ray Crystallographic Analyses of Symmetrical Allosteric Effectors of Hemoglobin. Compounds Designed to Link Primary and Secondary Binding Sites 1Q7R ; 1.9 ; X-ray crystallographic analysis of a predicted amidotransferase from B. stearothermophilus at 1.9 A resolution 3U3H ; 0.97 ; X-Ray Crystallographic Analysis of D-Xylose Isomerase-Catalyzed Isomerization of (R)-Glyceraldehyde 1EED ; 2.0 ; X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors 3L2M ; 1.97 ; X-ray Crystallographic Analysis of Pig Pancreatic Alpha-Amylase with Alpha-cyclodextrin 3L2L ; 2.11 ; X-ray Crystallographic Analysis of Pig Pancreatic Alpha-Amylase with Limit Dextrin and Oligosaccharide 1TRP ; 2.4 ; X-RAY CRYSTALLOGRAPHIC AND CALORIMERIC STUDIES OF THE EFFECTS OF THE MUTATION TRP 59 TYR IN RIBONUCLEASE T1 1TRQ ; 2.3 ; X-RAY CRYSTALLOGRAPHIC AND CALORIMERIC STUDIES OF THE EFFECTS OF THE MUTATION TRP 59 TYR IN RIBONUCLEASE T1 2PRQ ; 2.15 ; X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica 1A3I ; 1.97 ; X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY) 1A3J ; 1.6 ; X-RAY CRYSTALLOGRAPHIC DETERMINATION OF A COLLAGEN-LIKE PEPTIDE WITH THE REPEATING SEQUENCE (PRO-PRO-GLY) 1BLL ; 2.4 ; X-RAY CRYSTALLOGRAPHIC DETERMINATION OF THE STRUCTURE OF BOVINE LENS LEUCINE AMINOPEPTIDASE COMPLEXED WITH AMASTATIN: FORMULATION OF A CATALYTIC MECHANISM FEATURING A GEM-DIOLATE TRANSITION STATE 3CPA ; 2.0 ; X-RAY CRYSTALLOGRAPHIC INVESTIGATION OF SUBSTRATE BINDING TO CARBOXYPEPTIDASE A AT SUBZERO TEMPERATURE 5CXP ; 1.77 ; X-ray crystallographic protein structure of the glycoside hydrolase family 30 subfamily 8 xylanase, Xyn30A, from Clostridium acetobutylicum 3ZHW ; 2.22 ; X-ray Crystallographic Structural Characteristics of Arabidopsis Hemoglobin I and their Functional Implications 3NHF ; 2.0 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHJ ; 2.33 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHK ; 1.96 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHL ; 1.57 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHP ; 1.7 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHR ; 1.8 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHS ; 1.78 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHU ; 1.9 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHW ; 1.65 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3NHY ; 1.9 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 3O2N ; 1.6 ; X-ray Crystallographic Structure Activity Relationship (SAR) of Casimiroin and its Analogs Bound to Human Quinone Reductase 2 7N02 ; 2.35 ; X-ray crystallographic structure model of Lactococcus lactis prolidase mutant D36S 6XMR ; 1.7 ; X-ray crystallographic structure model of Lactococcus lactis prolidase mutant H38S 7K3U ; 2.7 ; X-ray crystallographic structure model of Lactococcus lactis prolidase mutant R293S 7AYV ; 1.79 ; X-ray crystallographic structure of (6-4)photolyase from Drosophila melanogaster at cryogenic temperature 7AZT ; 2.27 ; X-ray crystallographic structure of (6-4)photolyase from Drosophila melanogaster at room temperature 8GJC ; 1.431 ; X-ray crystallographic structure of a beta-hairpin peptide derived from Abeta 17-35. (ORN)LVFFAED(ORN)GAI(N-Me-Ile)GLM 8GJD ; 2.03 ; X-ray crystallographic structure of a beta-hairpin peptide derived from Abeta 17-36. (ORN)LVFFAED(ORN)AII(N-Me-Gly)LMV 7RTZ ; 2.1 ; X-ray crystallographic structure of a beta-hairpin peptide derived from amyloid beta 14-40 6WXM ; 2.3 ; X-ray crystallographic structure of a beta-hairpin peptide derived from amyloid beta 16-36 5W4I ; 2.026 ; X-ray crystallographic structure of a beta-hairpin peptide mimic derived from Abeta 16-36. Rigaku data set. (ORN)KLV(MEA)FAE(ORN)AIIGLMV. 5W4H ; 1.718 ; X-ray crystallographic structure of a beta-hairpin peptide mimic derived from Abeta 16-36. Synchrotron data set. (ORN)KLV(MEA)FAE(ORN)AIIGLMV. 5W4J ; 2.08 ; X-ray crystallographic structure of a beta-hairpin peptide mimic. (ORN)KLV(MEA)FAE(ORN)AIIGLMV. 1W5R ; 1.45 ; X-ray crystallographic structure of a C70Q Mycobacterium smegmatis N- arylamine Acetyltransferase 7HVP ; 2.4 ; X-RAY CRYSTALLOGRAPHIC STRUCTURE OF A COMPLEX BETWEEN A SYNTHETIC PROTEASE OF HUMAN IMMUNODEFICIENCY VIRUS 1 AND A SUBSTRATE-BASED HYDROXYETHYLAMINE INHIBITOR 1BCD ; 1.9 ; X-RAY CRYSTALLOGRAPHIC STRUCTURE OF A COMPLEX BETWEEN HUMAN CARBONIC ANHYDRASE II AND A NEW TOPICAL INHIBITOR, TRIFLUOROMETHANE SULPHONAMIDE 5SUU ; 2.032 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17-36. X-ray diffractometer data set. (ORN)CVFFCED(ORN)AII(SAR)L(ORN)V. 6DR6 ; 2.608 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36 containing the F20Cha point mutation 6DR5 ; 2.079 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36 containing the I31Chg point mutation 6DR4 ; 2.105 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36 containing the I31V point mutation 5SUR ; 1.801 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36. Synchrotron data set. (ORN)CVF(MEA)CED(ORN)AIIGL(ORN)V. 5SUT ; 1.902 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36. Synchrotron data set. (ORN)CVFFCED(ORN)AII(SAR)L(ORN)V. 5SUS ; 2.349 ; X-ray crystallographic structure of a covalent trimer derived from A-beta 17_36. X-ray diffractometer data set. (ORN)CVF(MEA)CED(ORN)AIIGL(ORN)V. 5VF1 ; 2.1 ; X-ray Crystallographic Structure of a Giant Double-Walled Peptide Nanotube Formed by a Macrocyclic Beta-Sheet Containing ABeta16-22 5IEI ; 2.8 ; X-ray crystallographic structure of a high affinity IGF2 antagonist (Domain11 AB5 RHH) based on human IGF2R domain 11 1POP ; 2.1 ; X-RAY CRYSTALLOGRAPHIC STRUCTURE OF A PAPAIN-LEUPEPTIN COMPLEX 3LT5 ; 2.3 ; X-ray Crystallographic structure of a Pseudomonas Aeruginosa Azoreductase in complex with balsalazide 2V9C ; 2.18 ; X-ray Crystallographic Structure of a Pseudomonas aeruginosa Azoreductase in Complex with Methyl Red. 3KEG ; 2.1 ; X-ray Crystallographic Structure of a Y131F mutant of Pseudomonas Aeruginosa Azoreductase in complex with Methyl RED 5HOX ; 1.9 ; X-ray crystallographic structure of an A-beta 17_36 beta-hairpin. Synchrotron data set. (LVFFAEDCGSNKCAII(SAR)LMV). 5HOY ; 2.295 ; X-ray crystallographic structure of an A-beta 17_36 beta-hairpin. X-ray diffractometer data set. (LVFFAEDCGSNKCAII(SAR)LMV). 5HOW ; 2.295 ; X-ray crystallographic structure of an Abeta 17-36 beta-hairpin. LV(PHI)FAEDCGSNKCAII(SAR)L(ORN)V 4AQF ; 3.1 ; X-ray crystallographic structure of Crimean-congo haemorrhagic fever virus nucleoprotein 4AQG ; 2.8 ; X-ray crystallographic structure of Crimean-congo haemorrhagic fever virus nucleoprotein 1YLZ ; 1.35 ; X-ray crystallographic structure of CTX-M-14 beta-lactamase complexed with ceftazidime-like boronic acid 1YM1 ; 1.12 ; X-ray crystallographic structure of CTX-M-9 beta-lactamase complexed with a boronic acid inhibitor (SM2) 1YLY ; 1.25 ; X-ray crystallographic structure of CTX-M-9 beta-lactamase complexed with ceftazidime-like boronic acid 1YMS ; 1.6 ; X-ray crystallographic structure of CTX-M-9 beta-lactamase complexed with nafcinin-like boronic acid inhibitor 1YMX ; 1.7 ; X-ray crystallographic structure of CTX-M-9 beta-lactamase covalently linked to cefoxitin 3HRE ; 1.45 ; X-ray crystallographic structure of CTX-M-9 S70G 3HUO ; 1.5 ; X-ray crystallographic structure of CTX-M-9 S70G in complex with benzylpenicillin 3HVF ; 1.5 ; X-ray crystallographic structure of CTX-M-9 S70G in complex with hydrolyzed benzylpenicillin 2Y4D ; 2.0 ; X-ray crystallographic structure of E. coli apo-EfeB 2Y4F ; 2.7 ; X-ray crystallographic structure of E. coli heme-EfeB 7QCF ; 3.0 ; X-ray crystallographic structure of E. coli K-12 glycyl-tRNA synthetase alpha subunit (glyQ) 2Y4E ; 2.3 ; X-ray crystallographic structure of E. coli ppix-EfeB 4A02 ; 0.95 ; X-ray crystallographic structure of EfCBM33A 6NWD ; 2.0 ; X-ray Crystallographic structure of Gloeobacter rhodopsin 5F3K ; 1.82 ; X-Ray Crystallographic Structure of hTrap1 N-terminal Domain-apo 3I98 ; 1.85 ; X-ray crystallographic structure of Inorganic Pyrophosphatase at 298K from archaeon Thermococcus thioreducens 6Z4U ; 1.95 ; X-ray Crystallographic Structure of Orf9b from SARS-CoV-2 1F38 ; 2.4 ; X-RAY CRYSTALLOGRAPHIC STRUCTURE OF PRECORRIN 8W DECARBOXYLASE, THE PRODUCT OF GENE MT0146 IN THE METHANOBACTERIUM THERMOAUTOTROPHICUM GENOME 1W4T ; 1.95 ; X-ray crystallographic structure of Pseudomonas aeruginosa arylamine N-acetyltransferase 7JNO ; 1.95 ; X-ray crystallographic structure of the NS3 helicase domain from Tick-borne encephalitis virus 4AR5 ; 1.0 ; X-ray crystallographic structure of the oxidised form perdeuterated Pyrococcus furiosus rubredoxin in D2O at 295K (in quartz capillary) to 1.00 Angstrom resolution. 2VF1 ; 3.4 ; X-ray crystallographic structure of the picobirnavirus capsid 4AR6 ; 0.92 ; X-ray crystallographic structure of the reduced form perdeuterated Pyrococcus furiosus rubredoxin at 295 K (in quartz capillary) to 0.92 Angstroms resolution. 1LIE ; 1.6 ; X-RAY CRYSTALLOGRAPHIC STRUCTURES OF ADIPOCYTE LIPID BINDING PROTEIN COMPLEXED WITH PALMITATE AND HEXADECANESULFONIC ACID. PROPERTIES OF CAVITY BINDING SITES 1LIC ; 1.6 ; X-RAY CRYSTALLOGRAPHIC STRUCTURES OF ADIPOCYTE LIPID BINDING PROTEIN COMPLEXED WITH PALMITATE AND HEXADECANESULFONIC ACID. PROPERTIES OF CAVITY BINDING SITES. 1XYA ; 1.81 ; X-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSIS 1XYB ; 1.96 ; X-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSIS 1XYC ; 2.19 ; X-RAY CRYSTALLOGRAPHIC STRUCTURES OF D-XYLOSE ISOMERASE-SUBSTRATE COMPLEXES POSITION THE SUBSTRATE AND PROVIDE EVIDENCE FOR METAL MOVEMENT DURING CATALYSIS 2RAR ; 1.52 ; X-ray Crystallographic Structures Show Conservation of a Trigonal-Bipyramidal Intermediate in a Phosphoryl-transfer Superfamily. 2RAV ; 1.07 ; X-ray Crystallographic Structures Show Conservation of a Trigonal-Bipyramidal Intermediate in a Phosphoryl-transfer Superfamily. 2RB5 ; 1.03 ; X-ray Crystallographic Structures Show Conservation of a Trigonal-Bipyramidal Intermediate in a Phosphoryl-transfer Superfamily. 2RBK ; 1.0 ; X-ray Crystallographic Structures Show Conservation of a Trigonal-Bipyramidal Intermediate in a Phosphoryl-transfer Superfamily. 1HTE ; 2.8 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF A SERIES OF PENICILLIN-DERIVED ASYMMETRIC INHIBITORS OF HIV-1 PROTEASE 1HTF ; 2.2 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF A SERIES OF PENICILLIN-DERIVED ASYMMETRIC INHIBITORS OF HIV-1 PROTEASE 1HTG ; 2.0 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF A SERIES OF PENICILLIN-DERIVED ASYMMETRIC INHIBITORS OF HIV-1 PROTEASE 1CJR ; 2.3 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF DENATURATION IN RIBONUCLEASE S 1CNG ; 1.9 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF ENGINEERED HYDROGEN BOND NETWORKS IN A PROTEIN-ZINC BINDING SITE 1CNH ; 2.05 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF ENGINEERED HYDROGEN BOND NETWORKS IN A PROTEIN-ZINC BINDING SITE 1CNI ; 1.8 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF ENGINEERED HYDROGEN BOND NETWORKS IN A PROTEIN-ZINC BINDING SITE 1CNJ ; 1.8 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF ENGINEERED HYDROGEN BOND NETWORKS IN A PROTEIN-ZINC BINDING SITE 1CNK ; 2.15 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF ENGINEERED HYDROGEN BOND NETWORKS IN A PROTEIN-ZINC BINDING SITE 1IGP ; 2.2 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF RECOMBINANT INORGANIC PYROPHOSPHATASE FROM ESCHERICHIA COLI 1MBS ; 2.5 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF SEAL MYOGLOBIN. THE MOLECULE AT 2.5 ANGSTROMS RESOLUTION 1KUV ; 2.0 ; X-ray Crystallographic Studies of Serotonin N-acetyltransferase Catalysis and Inhibition 1KUX ; 1.8 ; X-ray Crystallographic Studies of Serotonin N-acetyltransferase Catalysis and Inhibition 1KUY ; 2.4 ; X-ray Crystallographic Studies of Serotonin N-acetyltransferase Catalysis and Inhibition 1CJQ ; 3.0 ; X-RAY CRYSTALLOGRAPHIC STUDIES OF THE DENATURATION OF THE DENATURATION OF RIBONUCLEASE S. 1MPJ ; 2.3 ; X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL 2TCI ; 1.8 ; X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL 3MTH ; 1.9 ; X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL 3FX6 ; 1.851 ; X-RAY crystallographic studies on the complex of carboxypeptidase A with the inhibitor using alpha-nitro ketone as the zinc-binding group 1AVS ; 1.75 ; X-RAY CRYSTALLOGRAPHIC STUDY OF CALCIUM-SATURATED N-TERMINAL DOMAIN OF TROPONIN C 7NW3 ; 3.20001 ; X-ray crystallographic study of PIYDIN, which contains the truncation determinants of binding PI and N, bound to RoAb13, a CCR5 antibody 1ARS ; 1.8 ; X-RAY CRYSTALLOGRAPHIC STUDY OF PYRIDOXAL 5'-PHOSPHATE-TYPE ASPARTATE AMINOTRANSFERASES FROM ESCHERICHIA COLI IN OPEN AND CLOSED FORM 1ART ; 1.8 ; X-RAY CRYSTALLOGRAPHIC STUDY OF PYRIDOXAL 5'-PHOSPHATE-TYPE ASPARTATE AMINOTRANSFERASES FROM ESCHERICHIA COLI IN OPEN AND CLOSED FORM 1AMQ ; 2.2 ; X-RAY CRYSTALLOGRAPHIC STUDY OF PYRIDOXAMINE 5'-PHOSPHATE-TYPE ASPARTATE AMINOTRANSFERASES FROM ESCHERICHIA COLI IN THREE FORMS 1AMR ; 2.1 ; X-RAY CRYSTALLOGRAPHIC STUDY OF PYRIDOXAMINE 5'-PHOSPHATE-TYPE ASPARTATE AMINOTRANSFERASES FROM ESCHERICHIA COLI IN THREE FORMS 1AMS ; 2.7 ; X-RAY CRYSTALLOGRAPHIC STUDY OF PYRIDOXAMINE 5'-PHOSPHATE-TYPE ASPARTATE AMINOTRANSFERASES FROM ESCHERICHIA COLI IN THREE FORMS 4ZNG ; 2.25 ; X-ray crystallography of recombinant Lactococcus lactis prolidase 9LYZ ; 2.5 ; X-RAY CRYSTALLOGRAPHY OF THE BINDING OF THE BACTERIAL CELL WALL TRISACCHARIDE NAM-NAG-NAM TO LYSOZYME 1SLA ; 2.45 ; X-RAY CRYSTALLOGRAPHY REVEALS CROSSLINKING OF MAMMALIAN LECTIN (GALECTIN-1) BY BIANTENNARY COMPLEX TYPE SACCHARIDES 1SLB ; 2.3 ; X-RAY CRYSTALLOGRAPHY REVEALS CROSSLINKING OF MAMMALIAN LECTIN (GALECTIN-1) BY BIANTENNARY COMPLEX TYPE SACCHARIDES 1SLC ; 2.15 ; X-RAY CRYSTALLOGRAPHY REVEALS CROSSLINKING OF MAMMALIAN LECTIN (GALECTIN-1) BY BIANTENNARY COMPLEX TYPE SACCHARIDES 5VXQ ; 1.002 ; X-Ray crystallography structure of the parallel stranded duplex formed by 5-rA5-dA-rA5 7NJZ ; 3.2 ; X-ray crystallography study of RoAb13 which binds to PIYDIN, a part of the CCR5 N terminal domain 2MC2 ; ; X-ray crystallography-solution NMR hybrid structure of mouse RyR2 domain A 1ZET ; 2.3 ; X-ray data do not support hoogsteen base-pairing during replication by human polymerase iota 5ZC1 ; 2.30271 ; X-ray diffraction analysis of the CsStefin-1 5NGB ; 2.9 ; X-Ray Diffraction Crystal Structure of the murine PI3K p110delta in complex with a pan inhibitor 5VTP ; 2.8 ; X-ray diffraction data of DNA Polymerase Eta (RAD30) of Saccharomyces cerevisiae with a single magnesium bound in absence of DNA and incoming dNTP 4R6C ; 1.7 ; X-ray diffraction in temporally and spatially resolved biomolecular science: the X-ray crystal structure of hen egg white lysozyme cocrystallized with Ta6Br12 and then a crystal soaked in K2PtBr6 6ZI8 ; 2.3 ; X-ray diffraction structure of bovine insulin at 2.3 A resolution 2I6Z ; 1.9 ; X-ray diffraction studies of adducts between anticancer platinum drugs and hen egg white lysozyme 3UM4 ; 2.82 ; X-ray Diffraction Studies of Ring Crystals obtained for d(CACGCG).d(CGCGTG): Stage (i) Hexagonal plates 3ULM ; 3.01 ; X-ray Diffraction Studies of Ring Crystals obtained for d(CACGCG).d(CGCGTG): Stage (ii) Hexagonal plates with spots 3ULN ; 2.72 ; X-ray Diffraction Studies of Ring Crystals obtained for d(CACGCG).d(CGCGTG): Stage (iii) Hexagonal plates with intense spots and a depression 3ULO ; 3.24 ; X-ray Diffraction Studies of Ring Crystals obtained for d(CACGCG).d(CGCGTG): Stage (iv) Hexagonal rings 1PYP ; 3.0 ; X-RAY DIFFRACTION STUDY OF INORGANIC PYROPHOSPHATASE FROM BAKER,S YEAST AT THE 3 ANGSTROMS RESOLUTION (RUSSIAN) 5EJX ; 1.5 ; X-ray Free Electron Laser Structure of Cytochrome C Peroxidase 5MAP ; 1.49 ; X-ray generated oxyferrous complex of DtpA from Streptomyces lividans 5MJH ; 1.45 ; X-ray generated oxyferrous/water mixed complex of DtpA from Streptomyces lividans 2UXK ; 2.31 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 10 in the charge-separated state 2UXM ; 2.7 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 10 in the charge-separated state, 2nd dataset 2UXJ ; 2.25 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 10 in the neutral state 2UXL ; 2.88 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 10 in the neutral state, 2nd dataset 2UWS ; 2.9 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 6.5 in the charge-separated state 2UWT ; 2.5 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 6.5 in the charge-separated state 2nd dataset 2UWV ; 2.13 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 6.5 in the charge-separated state, 3rd dataset 2UWW ; 2.05 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 6.5 in the neutral state 2UWU ; 2.04 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 6.5 in the neutral state, 2nd dataset 2J8D ; 2.07 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 8 in the charge-separated state 2J8C ; 1.87 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 8 in the neutral state 2UX5 ; 2.21 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 9 in the charge-separated state 2UX4 ; 2.51 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 9 in the charge-separated state, 2nd dataset 2UX3 ; 2.5 ; X-ray high resolution structure of the photosynthetic reaction center from Rb. sphaeroides at pH 9 in the neutral state 3RDH ; 2.39 ; X-ray induced covalent inhibition of 14-3-3 1H5M ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (0-100% dose) 1H5D ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (0-11% dose) 1H5C ; 1.62 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (100-200% dose) 1H5E ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (11-22% dose) 1H5F ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (22-33% dose) 1H5G ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (33-44% dose) 1H5H ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (44-56% dose) 1H5I ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (56-67% dose) 1H5J ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (67-78% dose) 1H5K ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (78-89% dose) 1H5L ; 1.6 ; X-ray induced reduction of horseradish peroxidase C1A Compound III (89-100% dose) 2YAF ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (12. 5-25.0 percent dose) 2YAH ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (25. 0-37.5 percent dose) 2YAM ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (37. 5-50.0 percent dose) 2YAO ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (50. 0-62.5 percent dose) 2YAP ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (62. 5-75.0 percent dose) 2YAQ ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (75. 0-87.5 percent dose) 2YAR ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27 (87. 5-100.0 percent dose) 2YAE ; 1.8 ; X-ray induced reduction of laccase from Thermus thermophilus HB27(0.0- 12.5 percent dose) 3LR9 ; 1.55 ; X-ray photogenerated ferrous horse heart myoglobin, nitrite adduct 4ALC ; 1.49 ; X-Ray photoreduction of Polysaccharide monooxigenase CBM33 4ALQ ; 1.48 ; X-Ray photoreduction of Polysaccharide monooxygenase CBM33 4ALR ; 1.49 ; X-Ray photoreduction of Polysaccharide monooxygenase CBM33 4ALS ; 1.47 ; X-Ray photoreduction of Polysaccharide monooxygenase CBM33 4ALT ; 1.49 ; X-Ray photoreduction of Polysaccharide monooxygenase CBM33 6SR5 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 102 fs time delay 6SR4 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 112 fs time delay 6SR1 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 35 fs time delay 6SR2 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 37 fs time delay 6SR3 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: 62 fs time delay 6SR0 ; 2.3 ; X-ray pump X-ray probe on lysozyme.Gd nanocrystals: single colour reference data 6SRP ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: 100 fs time delay 6SRQ ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: 18 fs time delay 6SRK ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: 35 fs time delay 6SRL ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: 54 fs time delay 6SRO ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: 76 fs time delay 6SRJ ; 2.3 ; X-ray pump X-ray probe on thaumatin nanocrystals: single pulse reference data 7LLP ; 1.13 ; X-ray radiation damage series on Lysozyme at 277K, crystal structure, dataset 1 7LN8 ; 1.52 ; X-ray radiation damage series on Lysozyme at 277K, crystal structure, dataset 3 7LPM ; 1.1 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, crystal 2 7LN9 ; 1.13 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, dataset 1 7LOQ ; 1.3 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, dataset 2 7LP6 ; 1.13 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, dataset 2 (merged) 7LOR ; 1.52 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, dataset 3 7LPL ; 1.14 ; X-ray radiation damage series on Lysozyme at 277K, multi-conformer model, dataset 3 (merged) 7LTD ; 0.9 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 1 7LTI ; 0.91 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 2 7LTV ; 0.95 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 3 7LU0 ; 1.01 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 4 7LU1 ; 1.06 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 5 7LU2 ; 1.11 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 6 7LU3 ; 1.16 ; X-ray radiation damage series on Proteinase K at 100K, crystal structure, dataset 7 7LN7 ; 1.02 ; X-ray radiation damage series on Proteinase K at 277K, crystal structure, dataset 1 7LPT ; 1.43 ; X-ray radiation damage series on Proteinase K at 277K, crystal structure, dataset 4 7LPU ; 1.02 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 1 7LPV ; 1.1 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 2 7LQA ; 1.02 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 2 (merged) 7LQ8 ; 1.3 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 3 7LQB ; 1.02 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 3 (merged) 7LQ9 ; 1.43 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 4 7LQC ; 1.02 ; X-ray radiation damage series on Proteinase K at 277K, multi-conformer model, dataset 4 (merged) 7LFG ; 1.22 ; X-ray radiation damage series on Thaumatin at 277K, crystal structure, dataset 1 7LJV ; 1.48 ; X-ray radiation damage series on Thaumatin at 277K, crystal structure, dataset 4 7LJW ; 1.22 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 1 7LJZ ; 1.29 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 2 7LNB ; 1.22 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 2 (merged) 7LK5 ; 1.38 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 3 7LNC ; 1.22 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 3 (merged) 7LK6 ; 1.48 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 4 7LND ; 1.22 ; X-ray radiation damage series on Thaumatin at 277K, multi-conformer model, dataset 4 (merged) 3TMV ; 1.9 ; X-Ray Radiation Damage to HEWL Crystals soaked in 100mM Sodium Nitrate (Dose=0.12MGy) 3TMX ; 1.9 ; X-Ray Radiation Damage to HEWL Crystals soaked in 100mM Sodium Nitrate (Dose=1.9MGy) 3TMU ; 1.9 ; X-Ray Radiation Damage to HEWL Crystals soaked in 100mM Sodium Nitrate (Undosed) 3TMW ; 1.9 ; X-Ray Radiation Damage to HEWL Crystals soaked in 100mM Sodium Nitrate (Undosed) 6QRR ; 1.096 ; X-ray radiation dose series on xylose isomerase - 0.13 MGy 6QRS ; 1.17 ; X-ray radiation dose series on xylose isomerase - 0.13 MGy 6QRT ; 1.17 ; X-ray radiation dose series on xylose isomerase - 1.38 MGy 6QRU ; 1.17 ; X-ray radiation dose series on xylose isomerase - 2.01 MGy 6QRV ; 1.17 ; X-ray radiation dose series on xylose isomerase - 2.63 MGy 6QRW ; 1.17 ; X-ray radiation dose series on xylose isomerase - 3.25 MGy 6QRX ; 1.17 ; X-ray radiation dose series on xylose isomerase - 3.88 MGy 6QRY ; 1.17 ; X-ray radiation dose series on xylose isomerase - merged data 6NSZ ; 2.2 ; X-ray reduced Catalase 3 from N.Crassa (0.526 MGy) 6NSW ; 2.099 ; X-ray reduced Catalase 3 From N.Crassa in Cpd I state (0.135 MGy) 6NSY ; 2.2 ; X-ray reduced Catalase 3 From N.Crassa in Cpd I state (0.263 MGy) 2J57 ; 2.25 ; X-ray reduced Paraccocus denitrificans methylamine dehydrogenase N- quinol in complex with amicyanin. 2J56 ; 2.1 ; X-ray reduced Paraccocus denitrificans methylamine dehydrogenase N- semiquinone in complex with amicyanin. 2J55 ; 2.15 ; X-ray reduced Paraccocus denitrificans methylamine dehydrogenase O- quinone in complex with amicyanin. 1QNY ; 1.8 ; X-ray refinement of D2O soaked crystal of concanavalin A 2OQA ; 1.4 ; X-ray Sequence and Crystal Structure of Luffaculin 1, a Novel Type 1 Ribosome-inactivating Protein 6IYH ; 1.7 ; X-ray sequence and high resolution crystal structure of Persian sturgeon methemoglobin 6IYI ; 2.2 ; X-ray sequence and high resolution crystal structure of Starry sturgeon methemoglobin 1QI9 ; 2.05 ; X-RAY SIRAS STRUCTURE DETERMINATION OF A VANADIUM-DEPENDENT HALOPEROXIDASE FROM ASCOPHYLLUM NODOSUM AT 2.0 A RESOLUTION 5YRS ; 1.76 ; X-ray Snapshot of HIV-1 Protease in Action: Observation of Tetrahedral Intermediate and Its SIHB with Catalytic Aspartate 4JXC ; 1.5 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters 4JY8 ; 2.901 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters 4JY9 ; 1.6 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters 4JYD ; 1.71 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters. 4JYE ; 1.65 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters. 4JYF ; 1.45 ; X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters. 3MEZ ; 1.94 ; X-ray structural analysis of a mannose specific lectin from dutch crocus (crocus vernus) 1WQY ; 2.0 ; X-RAY structural analysis of B-DNA decamer D(CCATTAATGG)2 crystal grown in D2O solution 2ALV ; 1.9 ; X-ray structural analysis of SARS coronavirus 3CL proteinase in complex with designed anti-viral inhibitors 4OVZ ; 2.5 ; X-Ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-Like Proteases 4OW0 ; 2.1 ; X-Ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-Like Proteases 1LH1 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 1LH2 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 1LH3 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 1LH5 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 1LH6 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 1LH7 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH1 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH2 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH3 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH5 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH6 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 2LH7 ; 2.0 ; X-RAY STRUCTURAL INVESTIGATION OF LEGHEMOGLOBIN. VI. STRUCTURE OF ACETATE-FERRILEGHEMOGLOBIN AT A RESOLUTION OF 2.0 ANGSTROMS (RUSSIAN) 3EUQ ; 2.1 ; X-ray structural of a type III pentaketide synthase from Neurospora crassa 4YPT ; 2.6009 ; X-ray structural of three tandemly linked domains of nsp3 from murine hepatitis virus at 2.60 Angstroms resolution 3PY9 ; 2.2 ; X-ray structural studies of the entire extra-cellular region of the Ser/Thr kinase PrkC from Staphylococcus aureus 3OVM ; 2.09 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3OWH ; 2.28 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3OWX ; 1.85 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3OX1 ; 2.0 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3OX2 ; 2.41 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3OX3 ; 1.8 ; X-ray Structural study of quinone reductase II inhibition by compounds with micromolar to nanomolar range IC50 values 3L77 ; 1.55 ; X-ray structure alcohol dehydrogenase from archaeon Thermococcus sibiricus complexed with 5-hydroxy-NADP 2BE4 ; 2.1 ; X-RAY STRUCTURE AN EF-HAND PROTEIN FROM DANIO RERIO Dr.36843 7EO3 ; 1.141 ; X-ray structure analysis of beita-1,3-glucanase 1AR4 ; 1.9 ; X-RAY STRUCTURE ANALYSIS OF THE CAMBIALISTIC SUPEROXIDE DISMUTASE FROM PROPIONIBACTERIUM SHERMANII ACTIVE WITH FE OR MN 1IDS ; 2.0 ; X-RAY STRUCTURE ANALYSIS OF THE IRON-DEPENDENT SUPEROXIDE DISMUTASE FROM MYCOBACTERIUM TUBERCULOSIS AT 2.0 ANGSTROMS RESOLUTIONS REVEALS NOVEL DIMER-DIMER INTERACTIONS 1JRQ ; 2.15 ; X-ray Structure Analysis of the Role of the Conserved Tyrosine-369 in Active Site of E. coli Amine Oxidase 7EO6 ; 1.9 ; X-ray structure analysis of xylanase 4XQ4 ; 1.25 ; X-ray structure analysis of xylanase - N44D 4XQW ; 1.5 ; X-ray structure analysis of xylanase-N44E with MES at pH6.0 4XQD ; 1.5 ; X-ray structure analysis of xylanase-WT at pH4.0 4UCI ; 2.21 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UCJ ; 3.26 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UCK ; 2.66 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UCL ; 2.8 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UCY ; 2.83 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UCZ ; 2.99 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 4UD0 ; 3.2 ; X-ray structure and activities of an essential Mononegavirales L- protein domain 1PDY ; 2.4 ; X-RAY STRUCTURE AND CATALYTIC MECHANISM OF LOBSTER ENOLASE 1PDZ ; 2.2 ; X-RAY STRUCTURE AND CATALYTIC MECHANISM OF LOBSTER ENOLASE 5AKQ ; 2.6 ; X-ray structure and mutagenesis studies of the N-isopropylammelide isopropylaminohydrolase, AtzC 1MBC ; 1.5 ; X-RAY STRUCTURE AND REFINEMENT OF CARBON-MONOXY (FE II)-MYOGLOBIN AT 1.5 ANGSTROMS RESOLUTION 1TGX ; 1.55 ; X-RAY STRUCTURE AT 1.55 A OF TOXIN GAMMA, A CARDIOTOXIN FROM NAJA NIGRICOLLIS VENOM. CRYSTAL PACKING REVEALS A MODEL FOR INSERTION INTO MEMBRANES 2IPH ; 1.75 ; X-ray Structure at 1.75 A Resolution of a Norovirus Protease Linked to an Active Site Directed Peptide Inhibitor 3CGR ; 2.1 ; X-ray structure containing the pseudouridylated U2 snRNA and intron branch site consensus sequences 3CGS ; 1.65 ; X-ray structure containing the pseudouridylated U2 snRNA and mammalian intron branch site consensus sequences 1TLK ; 2.8 ; X-RAY STRUCTURE DETERMINATION OF TELOKIN, THE C-TERMINAL DOMAIN OF MYOSIN LIGHT CHAIN KINASE, AT 2.8 ANGSTROMS RESOLUTION 6GKQ ; 2.3 ; X-ray structure determined from ex vivo Charcot-Leyden crystal 6GKS ; 1.38 ; X-ray structure determined from recombinant Charcot-Leyden crystal 3I3R ; 2.35 ; X-ray structure dihydrofolate reductase/thymidylate synthase from babesia bovis at 2.35A resolution 4A25 ; 2.0 ; X-ray structure Dps from Kineococcus radiotolerans in complex with Mn (II) ions. 4ZU7 ; 2.3 ; X-ray structure if the QdtA 3,4-ketoisomerase from Thermoanaerobacterium thermosaccharolyticum, double mutant Y17R/R97H, in complex with TDP 1XBF ; 2.0 ; X-RAY STRUCTURE NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET CAR10 FROM C. ACETOBUTYLICUM 6XVX ; 1.4 ; X-ray structure obtained upon reaction of dirhodium tetraacetate with RNase A (high resolution) 6XW0 ; 1.8 ; X-ray structure obtained upon reaction of dirhodium tetraacetate with RNase A (low resolution) 1YV7 ; 1.9 ; X-ray structure of (C87S,des103-104) onconase 2C82 ; 1.9 ; X-Ray Structure Of 1-Deoxy-D-xylulose 5-phosphate Reductoisomerase, DXR, Rv2870c, From Mycobacterium tuberculosis 2Y1D ; 2.05 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with a 3,4- dichlorophenyl-substituted fosmidomycin analogue and manganese. 2Y1F ; 1.96 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with a 3,4- dichlorophenyl-substituted fosmidomycin analogue, manganese and NADPH. 2Y1G ; 1.95 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with a 3,4- dichlorophenyl-substituted FR900098 analogue and manganese. 2JCV ; 2.2 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with fosmidomycin and NADPH 4AIC ; 2.05 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with fosmidomycin, manganese and NADPH 2JD2 ; 2.15 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with manganese 2JD1 ; 2.0 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with manganese and NADPH 2Y1C ; 1.9 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with manganese. 2Y1E ; 1.65 ; X-ray structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with manganese. 5AI3 ; 1.02 ; X-ray structure of 113Cd-substituted Perdeuterated Pyrococcus furiosus rubredoxin to 1.02A resolution at 295K in a quartz capillary 2XH8 ; 2.08 ; X-ray structure of 119-141 ZnuA deletion mutant from Salmonella enterica. 2AZN ; 2.7 ; X-RAY Structure of 2,5-diamino-6-ribosylamino-4(3h)-pyrimidinone 5-phosphate reductase 5SXU ; 3.1 ; X-ray structure of 2-bromoethanol bound to a pentameric ligand gated ion channel (ELIC) in a desensitized state 5SXV ; 3.4 ; X-ray structure of 2-bromoethanol bound to a pentameric ligand gated ion channel (ELIC) in a resting state 5L1W ; 2.06 ; X-ray Structure of 2-Mercaptoethanol modified M81C mutant of Cytochrome P450 PntM with pentalenolactone F 8KC6 ; 1.2 ; X-ray structure of 3-alpha-(Or 20-beta)-hydroxysteroid dehydrogenase 1LO7 ; 1.5 ; X-ray structure of 4-Hydroxybenzoyl CoA Thioesterase complexed with 4-hydroxyphenacyl CoA 1B4E ; 2.0 ; X-ray structure of 5-aminolevulinic acid dehydratase complexed with the inhibitor levulinic acid 1PGJ ; 2.82 ; X-RAY STRUCTURE OF 6-PHOSPHOGLUCONATE DEHYDROGENASE FROM THE PROTOZOAN PARASITE T. BRUCEI 2QEF ; 1.6 ; X-ray structure of 7-deaza-dG and Z3dU modified duplex CGCGAATXCZCG 3MVW ; 1.79 ; X-ray structure of a ""NikA+Iron complex"" hybrid, NikA/1 1LOG ; 2.1 ; X-RAY STRUCTURE OF A (ALPHA-MAN(1-3)BETA-MAN(1-4)GLCNAC)-LECTIN COMPLEX AT 2.1 ANGSTROMS RESOLUTION 5O5K ; 3.4 ; X-ray structure of a bacterial adenylyl cyclase soluble domain 5O5L ; 2.7 ; X-ray structure of a bacterial adenylyl cyclase soluble domain, solved at cryogenic temperature 1YAI ; 1.9 ; X-RAY STRUCTURE OF A BACTERIAL COPPER,ZINC SUPEROXIDE DISMUTASE 1DDZ ; 2.2 ; X-RAY STRUCTURE OF A BETA-CARBONIC ANHYDRASE FROM THE RED ALGA, PORPHYRIDIUM PURPUREUM R-1 1LOF ; 2.3 ; X-RAY STRUCTURE OF A BIANTENNARY OCTASACCHARIDE-LECTIN COMPLEX AT 2.3 ANGSTROMS RESOLUTION 1HAU ; 1.9 ; X-RAY STRUCTURE OF A BLUE COPPER NITRITE REDUCTASE AT HIGH PH AND IN COPPER FREE FORM AT 1.9 A RESOLUTION 1HAW ; 1.9 ; X-RAY STRUCTURE OF A BLUE COPPER NITRITE REDUCTASE AT HIGH PH AND IN COPPER FREE FORM AT 1.9 A RESOLUTION 3RAR ; 2.19 ; X-ray structure of a bound phosphonate transition state analog and enantioselectivity of Candida rugosa lipase toward chiral carboxylic acids 3NDJ ; 1.5 ; X-ray Structure of a C-3'-Methyltransferase in Complex with S-Adenosyl-L-Homocysteine and Sugar Product 3NDI ; 1.5 ; X-ray Structure of a C-3'-Methyltransferase in Complex with S-adenosylmethionine and dTMP 2P4A ; 1.9 ; X-ray structure of a camelid affinity matured single-domain vhh antibody fragment in complex with RNASE A 6X0A ; 2.9 ; X-ray structure of a chimeric ParDE toxin-antitoxin complex from Mesorhizobium opportunistum 3RH1 ; 2.1 ; X-ray Structure of a cis-proline (P114) to alanine variant of Ribonuclease A 1QUF ; 2.25 ; X-RAY STRUCTURE OF A COMPLEX NADP+-FERREDOXIN:NADP+ REDUCTASE FROM THE CYANOBACTERIUM ANABAENA PCC 7119 AT 2.25 ANGSTROMS 6E0D ; 2.24 ; X-ray structure of a complex of thaumatin with xylene cyanol 2VT0 ; 2.15 ; X-ray structure of a conjugate with conduritol-beta-epoxide of acid-beta-glucosidase overexpressed in cultured plant cells 1JMT ; 2.2 ; X-ray Structure of a Core U2AF65/U2AF35 Heterodimer 7L33 ; 1.45 ; X-ray Structure of a Cu-Bound De Novo Designed Peptide Trimer 1Z9P ; 1.5 ; X-Ray structure of a Cu-Zn superoxide dismutase from Haemophilus ducreyi 1Z9N ; 1.5 ; X-Ray structure of a Cu-Zn superoxide dismutase from Haemophilus ducreyi with haem bound at the dimer interface 1FQ5 ; 2.4 ; X-ray structure of a cyclic statine inhibitor PD-129,541 bound to yeast proteinase A 5HSV ; 1.5 ; X-Ray structure of a CypA-Alisporivir complex at 1.5 angstrom resolution 2BDU ; 2.35 ; X-Ray Structure of a Cytosolic 5'-Nucleotidase III from Mus Musculus MM.158936 2W4J ; 1.3 ; X-ray structure of a DAP-Kinase 2-277 2W4K ; 1.9 ; X-ray structure of a DAP-Kinase 2-302 2X0G ; 2.2 ; X-RAY STRUCTURE OF A DAP-KINASE CALMODULIN COMPLEX 2BH9 ; 2.5 ; X-RAY STRUCTURE OF A DELETION VARIANT OF HUMAN GLUCOSE 6-PHOSPHATE DEHYDROGENASE COMPLEXED WITH STRUCTURAL AND COENZYME NADP 4OXW ; 1.73 ; X-ray structure of a designed CISK-PX domain 7T2Y ; 1.34 ; X-ray structure of a designed cold unfolding four helix bundle 183D ; 1.6 ; X-RAY STRUCTURE OF A DNA DECAMER CONTAINING 7, 8-DIHYDRO-8-OXOGUANINE 2OKS ; 1.65 ; X-ray Structure of a DNA Repair Substrate Containing an Alkyl Interstrand Crosslink at 1.65 Resolution 7D75 ; 2.5 ; X-ray structure of a domain-swapped dimer of Monellin with YEDKG loop-1 mutant 7VWW ; 2.7 ; X-ray structure of a domain-swapped poly-glutamine Monellin mutant 4NDD ; 2.9 ; X-ray structure of a double mutant of calexcitin - a neuronal calcium-signalling protein 6M3Z ; 3.11 ; X-ray structure of a Drosophila dopamine transporter with NET-like mutations (D121G/S426M/F471L) in milnacipran bound form 6M47 ; 3.252 ; X-ray structure of a Drosophila dopamine transporter with NET-like mutations (D121G/S426M/F471L) in tramadol bound form 6M38 ; 3.001 ; X-ray structure of a Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) in S-duloxetine bound form 8J4H ; 2.01 ; X-ray structure of a ferric ion-binding protein A (FbpA) from Vibrio metschnikovii in complex with Danshensu (DSS) 8J4J ; 2.15 ; X-ray structure of a ferric ion-binding protein A (FbpA) from Vibrio metschnikovii in complex with ferric ion 6M2R ; 2.802 ; X-ray structure of a functional Drosophila dopamine transporter in L-norepinephrine bound form 3VKH ; 3.8 ; X-ray structure of a functional full-length dynein motor domain 7DA8 ; 2.4 ; X-ray structure of a GB1:T2Q/D46K mutant 5KGP ; 1.8 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum in complex with chitosan 5KGJ ; 1.9 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum in complex with galactosamine 5KF8 ; 1.9 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum in complex with glucosamine 5KF9 ; 1.49 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum in complex with N-acetylglucosamine 5KF1 ; 2.0 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum, apo form, pH 5 5KF2 ; 1.9 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum, apo form, pH 8 5KGA ; 1.9 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum, mutant D287N, in complex with N-acetylglucosamine 5KGH ; 1.8 ; X-ray structure of a glucosamine N-Acetyltransferase from Clostridium acetobutylicum, mutant Y297F 5AOO ; 2.1 ; X-ray structure of a human Kobuvirus: Aichi virus A (AiV) 2GNX ; 2.45 ; X-ray structure of a hypothetical protein from Mouse Mm.209172 1ZLA ; 2.9 ; X-ray Structure of a Kaposi's sarcoma herpesvirus LANA peptide bound to the nucleosomal core 3M9V ; 2.05 ; X-ray Structure of a KijD3 in Complex with dTDP 4KCF ; 2.098 ; X-ray Structure of a KijD3 in Complex with FMN and dTDP-3-amino-2,3,6-trideoxy-4-keto-3-methyl-D-glucose 8I4D ; 1.06 ; X-ray structure of a L-rhamnose-alpha-1,4-D-glucuronate lyase from Fusarium oxysporum 12S, L-Rha complex at 100K 5HCH ; 2.9 ; X-ray structure of a lectin-bound DNA duplex containing an unnatural phenanthrenyl pair 2A33 ; 1.95 ; X-Ray Structure of a Lysine Decarboxylase-Like Protein from Arabidopsis Thaliana Gene AT2G37210 1YDH ; 2.152 ; X-ray structure of a lysine decarboxylase-like protein from arabidopsis thaliana gene at5g11950 1KU9 ; 2.8 ; X-ray Structure of a Methanococcus jannaschii DNA-Binding Protein: Implications for Antibiotic Resistance in Staphylococcus aureus 7QJJ ; 4.6 ; X-Ray Structure of a Mn2+ soak of EleNRMT in complex with two Nanobodies at 4.6A 6XSJ ; 1.4 ; X-ray structure of a monoclinic form of alpha amylase from Aspergillus at 1.4 A resolution 1LYS ; 1.72 ; X-RAY STRUCTURE OF A MONOCLINIC FORM OF HEN EGG-WHITE LYSOZYME CRYSTALLIZED AT 313K. COMPARISON OF TWO INDEPENDENT MOLECULES 1CWA ; 2.1 ; X-RAY STRUCTURE OF A MONOMERIC CYCLOPHILIN A-CYCLOSPORIN A CRYSTAL COMPLEX AT 2.1 ANGSTROMS RESOLUTION 7NIT ; 2.89 ; X-ray structure of a multidomain BbgIII from Bifidobacterium bifidum 4NDC ; 2.0 ; X-ray structure of a mutant (T188D) of calexcitin - a neuronal calcium-signalling protein 4NDB ; 2.0 ; X-ray structure of a mutant (T61D) of calexcitin - a neuronal calcium-signalling protein 5YFK ; 1.8 ; X-ray structure of a mutant form C232S of Clostridium perfringens sortase B 2GH8 ; 3.2 ; X-ray structure of a native calicivirus 1PVB ; 1.75 ; X-RAY STRUCTURE OF A NEW CRYSTAL FORM OF PIKE 4.10 PARVALBUMIN 5LFG ; 1.94 ; X-ray structure of a new fully ligated carbomonoxy form of Trematomus newnesi hemoglobin (Hb1TnCO). 2V2T ; 3.05 ; X-ray structure of a NF-kB p50-RelB-DNA complex 3DO7 ; 3.05 ; X-ray structure of a NF-kB p52/RelB/DNA complex 6GKT ; 2.1 ; X-ray structure of a non-autocrystallizing galectin-10 variant, Gal10-Tyr69Glu 3LTD ; 2.8 ; X-ray structure of a non-biological ATP binding protein determined at 2.8 A by multi-wavelength anomalous dispersion 3LTC ; 2.0 ; X-ray structure of a non-biological ATP binding protein determined in the presence of 10 mM ATP at 2.0 A by multi-wavelength anomalous dispersion 3LTB ; 2.6 ; X-ray structure of a non-biological ATP binding protein determined in the presence of 10 mM ATP at 2.6 A after 3 weeks of incubation 1G4K ; 2.0 ; X-ray Structure of a Novel Matrix Metalloproteinase Inhibitor Complexed to Stromelysin 2BMM ; 2.48 ; X-ray structure of a novel thermostable hemoglobin from the actinobacterium Thermobifida fusca 7EUA ; 2.43 ; X-ray structure of a P93A Monellin mutant 2VL0 ; 3.3 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) 6HJX ; 2.5 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) 7'C pore mutant (L238C) in complex with nanobody 72 6HJY ; 2.78 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) Delta8 truncation mutant in complex with nanobody 72 6HK0 ; 3.45 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) F16'S pore mutant (F247S) with alternate M4 conformation. 4A98 ; 3.61 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with bromoflurazepam 3ZKR ; 3.649 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with bromoform 4TWF ; 3.901 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with bromomemantine 5LID ; 4.5 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with bromopromazine 5LG3 ; 3.567 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with chlorpromazine 2YOE ; 3.9 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with GABA and flurazepam 4TWD ; 3.2 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with memantine 4A97 ; 3.343 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) in complex with zopiclone 4TWH ; 3.6 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) mutant F16'S 3UQ4 ; 3.5 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) mutant F247L (F16L) 3UQ5 ; 4.2 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) mutant L240A F247L (L9A F16L) in the presence of 10 mM cysteamine 3UQ7 ; 3.8 ; X-ray structure of a pentameric ligand gated ion channel from Erwinia chrysanthemi (ELIC) mutant L240S F247L (L9S F16L) in presence of 10 mM cysteamine 4BD0 ; 1.207 ; X-ray structure of a perdeuterated Toho-1 R274N R276N double mutant Beta-lactamase in complex with a fully deuterated boronic acid (BZB) 4D73 ; 1.8 ; X-ray structure of a peroxiredoxin 4BWC ; 1.89 ; X-ray structure of a phospholiapse B like protein 1 from bovine kidneys 1APA ; 2.3 ; X-RAY STRUCTURE OF A POKEWEED ANTIVIRAL PROTEIN, CODED BY A NEW GENOMIC CLONE, AT 0.23 NM RESOLUTION. A MODEL STRUCTURE PROVIDES A SUITABLE ELECTROSTATIC FIELD FOR SUBSTRATE BINDING. 2Q98 ; 2.7 ; X-ray structure of a prolactin antagonist 3CGQ ; 2.55 ; X-ray structure of a pseudouridine-containing yeast spliceosomal U2 snRNA-intron branch site duplex 3CGP ; 1.57 ; X-ray structure of a pseudouridine-containing yeast spliceosomal U2 snRNA-intron branch site duplex bound to iodide ions 2ACA ; 2.25 ; X-ray structure of a putative adenylate cyclase Q87NV8 from Vibrio parahaemolyticus at the 2.25 A resolution. Northeast Structural Genomics Target VpR19. 1XRI ; 3.3 ; X-ray structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana gene AT1G05000 4Q9D ; 2.2 ; X-ray structure of a putative thiamin diphosphate-dependent enzyme isolated from Mycobacterium smegmatis 5UPR ; 2.0 ; X-ray structure of a putative triosephosphate isomerase from Toxoplasma gondii ME49 1XCB ; 2.9 ; X-ray Structure of a Rex-Family Repressor/NADH Complex from Thermus Aquaticus 6NAG ; 2.683 ; X-ray structure of a secreted C11 cysteine protease from Bacteroides thetaiotaomicron ""iotapain 6N9J ; 2.17 ; X-ray structure of a secreted C11 cysteine protease from Bacteroides thetaiotaomicron in complex with an irreversible peptide inhibitor 7N2H ; 1.102 ; X-Ray structure of a sequence variant of a repeat segment of the yeast prion New1p 6V33 ; 2.03 ; X-ray structure of a sugar N-formyltransferase from Pseudomonas congelans 6V2T ; 1.9 ; X-ray structure of a sugar N-formyltransferase from Shewanella sp FDAARGOS_354 6XSV ; 1.65 ; X-ray structure of a tetragonal crystal form of alpha amylase from Aspergillus oryzae (Tala-Amylase) at 1.65 A resolution 1QM7 ; 2.1 ; X-ray structure of a three-fingered chimeric protein, stability of a structural scaffold 6HK5 ; 2.042 ; X-ray structure of a truncated mutant of the metallochaperone CooJ with a high-affinity nickel-binding site 1BU2 ; 3.0 ; X-RAY STRUCTURE OF A VIRAL CYCLIN FROM HERPESVIRUS SAIMIRI 1ORQ ; 3.2 ; X-ray structure of a voltage-dependent potassium channel in complex with an Fab 1WOE ; 1.5 ; X-ray structure of a Z-DNA hexamer d(CGCGCG) 5O94 ; 1.9 ; X-ray structure of a zinc binding GB1 mutant 5OFS ; 1.1 ; X-ray structure of a zinc binding GB1 mutant 4ZQ9 ; 2.6 ; X-ray structure of AAV-2 OBD bound to AAVS1 site 3:1 4ZO0 ; 2.3 ; X-ray Structure of AAV-2 Origin Binding Domain 5BYG ; 2.5 ; X-ray structure of AAV2 OBD-AAVS1 complex 2:1 3ELH ; 2.4 ; X-ray structure of Acanthamoeba ployphaga mimivirus nucleoside diphosphate kinase complexed with dUDP 2B8Q ; 2.5 ; X-ray structure of Acanthamoeba ployphaga mimivirus nucleoside diphosphate kinase complexed with TDP 3EIC ; 2.3 ; X-ray structure of Acanthamoeba ployphaga mimivirus nucleoside diphosphate kinase complexed with UDP 1ESW ; 1.9 ; X-RAY STRUCTURE OF ACARBOSE BOUND TO AMYLOMALTASE FROM THERMUS AQUATICUS. IMPLICATIONS FOR THE SYNTHESIS OF LARGE CYCLIC GLUCANS 1I9B ; 2.7 ; X-RAY STRUCTURE OF ACETYLCHOLINE BINDING PROTEIN (ACHBP) 1UX2 ; 2.2 ; X-ray structure of acetylcholine binding protein (AChBP) 5Y2Q ; 2.363 ; X-ray structure of acetylcholine binding protein (AChBP) complexed with a small molecule 4QAC ; 2.1 ; X-RAY STRUCTURE OF ACETYLCHOLINE BINDING PROTEIN (ACHBP) IN COMPLEX WITH 4-(4-methylpiperidin-1-yl)-6-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine 4QAB ; 2.984 ; X-RAY STRUCTURE of ACETYLCHOLINE BINDING PROTEIN (ACHBP) IN COMPLEX WITH 4-(MORPHOLIN-4-YL)-6-[4-(TRIFLUOROMETHYL)PHENYL]PYRIMIDIN-2-AMINE 5J5H ; 2.7 ; X-RAY STRUCTURE OF ACETYLCHOLINE BINDING PROTEIN (ACHBP) IN COMPLEX WITH 6-(2-methoxyphenyl)-N4,N4-bis[(pyridin-2-yl)methyl]pyrimidine-2,4-diamine 4QAA ; 2.7 ; X-RAY STRUCTURE OF ACETYLCHOLINE BINDING PROTEIN (ACHBP) IN COMPLEX WITH 6-(4-Methoxyphenyl)-N4-octylpyrimidine-2,4-diamine 1UV6 ; 2.5 ; X-ray structure of acetylcholine binding protein (AChBP) in complex with carbamylcholine 1UW6 ; 2.2 ; X-ray structure of acetylcholine binding protein (AChBP) in complex with nicotine 4FRR ; 2.2 ; X-ray structure of Acetylcholine binding protein from Aplysia californica in presence of 3-((S)-azetidin-2-ylmethoxy)-5-((1S,2R)-2-(2-methoxyethyl)cyclopropyl)pyridine 7NDP ; 2.0 ; X-ray structure of acetylcholine-binding protein (AChBP) in complex with FL001856. 7NDV ; 1.7 ; X-ray structure of acetylcholine-binding protein (AChBP) in complex with FL001888. 2XWD ; 2.66 ; X-RAY STRUCTURE OF ACID-BETA-GLUCOSIDASE WITH 5N,6O-(N'-(N-OCTYL)IMINO)NOJIRIMYCIN IN THE ACTIVE SITE 2XWE ; 2.31 ; X-RAY STRUCTURE OF ACID-BETA-GLUCOSIDASE WITH 5N,6S-(N'-(N-OCTYL)IMINO)-6-THIONOJIRIMYCIN IN THE ACTIVE SITE 2WCG ; 2.3 ; X-ray structure of acid-beta-glucosidase with N-octyl(cyclic guanidine)-nojirimycin in the active site 1OZ6 ; 2.6 ; X-ray structure of acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) with a potent platelet aggregation inhibitory activity 3B4V ; 2.48 ; X-Ray structure of Activin in complex with FSTL3 2EIS ; 2.1 ; X-ray structure of acyl-CoA hydrolase-like protein, TT1379, from Thermus thermophilus HB8 5TID ; 1.2 ; X-ray structure of acyl-CoA thioesterase I, TesA, mutant M141L/Y145K/L146K at pH 5 in complex with octanoic acid 5TIE ; 1.15 ; x-ray structure of acyl-CoA thioesterase I, TesA, mutant M141L/Y145K/L146K at pH 7.5 in complex with octanoic acid 5TIF ; 0.97 ; x-ray structure of acyl-CoA thioesterase I, TesA, triple mutant M141L/Y145K/L146K in complex with octanoic acid 2A3L ; 3.34 ; X-Ray Structure of Adenosine 5'-Monophosphate Deaminase from Arabidopsis Thaliana in Complex with Coformycin 5'-Phosphate 2DFP ; 2.3 ; X-RAY STRUCTURE OF AGED DI-ISOPROPYL-PHOSPHORO-FLUORIDATE (DFP) BOUND TO ACETYLCHOLINESTERASE 1Y1P ; 1.6 ; X-ray structure of aldehyde reductase with NADPH 4XNK ; 2.8 ; X-ray structure of AlgE1 4XNL ; 2.9 ; X-ray structure of AlgE2 1ZEB ; 1.9 ; X-ray structure of alkaline phosphatase from human placenta in complex with 5'-AMP 3BI3 ; 1.9 ; X-ray structure of AlkB protein bound to dsDNA containing 1meA/A with cofactors 6VWU ; 3.4 ; X-ray structure of ALKS 4230, a fusion of circularly permuted human Interleukin-2 and Interleukin-2 Receptor alpha 3JSR ; 1.8 ; X-Ray structure of All0216 protein from Nostoc sp. PCC 7120 at the resolution 1.8A. Northeast Structural Genomics Consortium target NsR236 1ZVC ; 1.79 ; X-ray structure of allene oxide cyclase from arabidopsis thaliana AT3G25760 1Z8K ; 1.712 ; X-ray structure of allene oxide cyclase from Arabidopsis thaliana at3g25770 3IFN ; 1.5 ; X-ray structure of amyloid beta peptide:antibody (Abeta1-40:12A11) complex 3IFO ; 2.15 ; X-ray structure of amyloid beta peptide:antibody (Abeta1-7:10D5) complex 3IFL ; 1.5 ; X-ray structure of amyloid beta peptide:antibody (Abeta1-7:12A11) complex 3IFP ; 2.95 ; X-ray structure of amyloid beta peptide:antibody (Abeta1-7:12B4) complex 4L0A ; 1.7 ; X-ray structure of an all LNA quadruplex 2AJA ; 2.8 ; X-Ray structure of an ankyrin repeat family protein Q5ZSV0 from Legionella pneumophila. Northeast Structural Genomics Consortium target LgR21. 1KG8 ; 2.0 ; X-ray structure of an early-M intermediate of bacteriorhodopsin 1XVK ; 1.26 ; X-ray structure of an Echinomycin-(GCGTACGC)2 complex 4CTD ; 3.2 ; X-ray structure of an engineered OmpG loop6-deletion 7K1R ; 2.4 ; X-ray Structure of an Enterobacter GH43 Beta-Xylosidase: EcXyl43 F507A mutant 6MZO ; 1.653 ; X-ray Structure of an Inactive Zymogen C11 Protease from Parabacteroides distasonis 3GKV ; 1.4 ; X-ray structure of an intermediate along the oxidation pathway of Trematomus bernacchii hemoglobin 3VKG ; 2.81 ; X-ray structure of an MTBD truncation mutant of dynein motor domain 5ZM0 ; 1.6 ; X-ray structure of animal-like Cryptochrome from Chlamydomonas reinhardtii 6FN2 ; 2.3 ; X-ray structure of animal-like Cryptochrome from Chlamydomonas reinhardtii 6FN3 ; 1.9 ; X-ray structure of animal-like Cryptochrome from Chlamydomonas reinhardtii 5W7I ; 2.105 ; X-ray structure of ankyrin repeat domain of DHHC17 in complex with Snap25b peptide 1YCN ; 2.51 ; X-RAY STRUCTURE OF ANNEXIN FROM ARABIDOPSIS THALIANA GENE AT1G35720 6I5E ; 2.6 ; X-ray structure of apo human soluble Epoxide Hydrolase C-terminal Domain (hsEH CTD) 5L8X ; 1.85 ; X-RAY STRUCTURE OF APO METHANOCALDOCOCCUS JANNASCHII METHYLTRANSFERASE SUBUNIT A AT 1.85 ANGSTROM 7QJI ; 4.1 ; X-Ray Structure of apo-EleNRMT in complex with two Nanobodies at 4.1A 2BGK ; 1.6 ; X-Ray structure of apo-Secoisolariciresinol Dehydrogenase 3WAF ; 1.8 ; X-ray structure of apo-TtFbpA, a ferric ion-binding protein from thermus thermophilus HB8 7W3W ; 1.858 ; X-ray structure of apo-VmFbpA, a ferric ion-binding protein from Vibrio metschnikovii 2XRY ; 1.5 ; X-ray structure of archaeal class II CPD photolyase from Methanosarcina mazei 2XRZ ; 2.2 ; X-ray structure of archaeal class II CPD photolyase from Methanosarcina mazei in complex with intact CPD-lesion 7BD7 ; 1.5 ; X-ray structure of Arsenoplatin-1-encapsulated horse spleen ferritin 2BEB ; 2.81 ; X-ray structure of Asn to Thr mutant of Winged Bean Chymotrypsin inhibitor 6ENV ; 1.82 ; X-ray structure of Au2phen-encapsulated horse spleen apoferritin 5IX6 ; 1.85 ; X-ray structure of Auoxo3-encapsulated horse spleen apoferritin 6ENW ; 2.6 ; X-ray structure of Auoxo4-encapsulated horse spleen apoferritin 8B7L ; 1.24 ; X-ray structure of Auranofin-horse spleen ferritin 8B7O ; 1.17 ; X-ray structure of Auranofin-human H-chain ferritin 7CFL ; 1.56 ; X-ray structure of autolysin Acd24020 catalytic domain from Clostridium difficile 2ZDZ ; 2.0 ; X-ray structure of Bace-1 in complex with compound 3.b.10 2ZE1 ; 2.2 ; X-ray structure of Bace-1 in complex with compound 6g 6DHC ; 2.85 ; X-ray structure of BACE1 in complex with a bicyclic isoxazoline carboxamide as the P3 ligand 3A9S ; 1.6 ; X-ray Structure of Bacillus pallidus D-Arabinose Isomerase Complex with Glycerol 3A9T ; 2.61 ; X-ray Structure of Bacillus pallidus D-Arabinose Isomerase Complex with L-Fucitol 1O82 ; 1.46 ; X-RAY STRUCTURE OF BACTERIOCIN AS-48 AT PH 4.5. SULPHATE BOUND FORM 5VGT ; 1.776 ; X-ray structure of bacteriophage Sf6 tail adaptor protein gp7 3NS0 ; 1.78 ; X-ray structure of bacteriorhodopsin 1AP9 ; 2.35 ; X-RAY STRUCTURE OF BACTERIORHODOPSIN FROM MICROCRYSTALS GROWN IN LIPIDIC CUBIC PHASES 1QHJ ; 1.9 ; X-RAY STRUCTURE OF BACTERIORHODOPSIN GROWN IN LIPIDIC CUBIC PHASES 1MAZ ; 2.2 ; X-RAY STRUCTURE OF BCL-XL, AN INHIBITOR OF PROGRAMMED CELL DEATH 3IPS ; 2.26 ; X-ray structure of benzisoxazole synthetic agonist bound to the LXR-alpha 3IPU ; 2.4 ; X-ray structure of benzisoxazole urea synthetic agonist bound to the LXR-alpha 1KRH ; 1.5 ; X-ray Structure of Benzoate Dioxygenase Reductase 3SL9 ; 2.2 ; X-ray structure of Beta catenin in complex with Bcl9 2C0H ; 1.6 ; X-ray structure of beta-mannanase from blue mussel Mytilus edulis 4XL5 ; 2.0 ; X-ray structure of bGFP-A / EGFP complex 4XVP ; 3.4 ; X-ray structure of bGFP-C / EGFP complex 1BIK ; 2.5 ; X-RAY STRUCTURE OF BIKUNIN FROM THE HUMAN INTER-ALPHA-INHIBITOR COMPLEX 2BGL ; 2.8 ; X-Ray structure of binary-Secoisolariciresinol Dehydrogenase 2C1Q ; 2.1 ; X-ray structure of biotin binding protein from chicken 2C1S ; 1.75 ; X-ray structure of biotin binding protein from chicken 2FXU ; 1.35 ; X-ray Structure of Bistramide A- Actin Complex at 1.35 A resolution. 1WBE ; 1.36 ; X-ray structure of bovine GLTP 6FF5 ; 1.74 ; X-ray structure of bovine heart cytochrome c at high ionic strength 3CR4 ; 2.15 ; X-ray structure of bovine Pnt,Ca(2+)-S100B 3CR5 ; 1.85 ; X-ray structure of bovine Pnt-Zn(2+),Ca(2+)-S100B 3GK1 ; 2.1 ; X-ray structure of bovine SBi132,Ca(2+)-S100B 3GK2 ; 1.984 ; X-ray structure of bovine SBi279,Ca(2+)-S100B 3GK4 ; 1.9 ; X-ray structure of bovine SBi523,Ca(2+)-S100B 3LK0 ; 2.04 ; X-ray structure of bovine SC0067,Ca(2+)-S100B 3LK1 ; 1.79 ; X-ray structure of bovine SC0322,Ca(2+)-S100B 3LLE ; 1.85 ; X-ray structure of bovine SC0322,Ca(2+)-S100B 1R5D ; 2.5 ; X-ray structure of bovine seminal ribonuclease swapping dimer from a new crystal form 3IQQ ; 2.01 ; X-ray structure of bovine TRTK12-Ca(2+)-S100B 3CR2 ; 1.88 ; X-ray structure of bovine Zn(2+),Ca(2+)-S100B 6M9X ; 1.81 ; X-ray Structure of Branchiostoma floridae fluorescent protein lanFP10A 6MAS ; 1.3 ; X-ray Structure of Branchiostoma floridae fluorescent protein lanFP10G 6M9Y ; 1.35 ; X-ray Structure of Branchiostoma floridae fluorescent protein lanFP6A 6M9Z ; 1.2 ; X-ray Structure of Branchiostoma floridae fluorescent protein lanFP6G 4N27 ; 2.73 ; X-ray structure of Brucella abortus RicA 5W71 ; 2.1 ; X-ray structure of BtrR from Bacillus circulans in the presence of the 2-DOS external aldimine 3ZCL ; 1.4 ; X-ray Structure of c-Met kinase in complex with inhibitor (S)-3-(1-(1H-pyrrolo(2,3-b)pyridin-3-yl)ethyl)-N-isopropyl-(1,2,4)triazolo(4,3- b)pyridazin-6-amine 3ZC5 ; 2.2 ; X-ray Structure of c-Met kinase in complex with inhibitor (S)-6-(1-(6- (1-methyl-1H-pyrazol-4-yl)-(1,2,4)triazolo(4,3-b)pyridazin-3-yl)ethyl) quinoline. 3ZBX ; 2.2 ; X-ray Structure of c-Met kinase in complex with inhibitor 6-((6-(4- fluorophenyl)-(1,2,4)triazolo(4,3-b)(1,2,4)triazin-3-yl)methyl) quinoline. 2RFN ; 2.5 ; x-ray structure of c-Met with inhibitor. 3CCN ; 1.9 ; X-ray structure of c-Met with triazolopyridazine inhibitor. 3CD8 ; 2.0 ; X-ray Structure of c-Met with triazolopyridazine Inhibitor. 6TJU ; 1.8 ; X-ray structure of C-terminal domain of human T-cell lymphotropic virus type 1 (HTLV-1) 6UHJ ; 1.5 ; X-ray Structure of C148 mGFP 1LJU ; 1.4 ; X-RAY STRUCTURE OF C15A ARSENATE REDUCTASE FROM PI258 COMPLEXED WITH ARSENITE 4XYN ; 2.55 ; X-ray structure of Ca(2+)-S100B with human RAGE-derived W61 peptide 5D7F ; 1.3 ; X-ray structure of Ca(2+)-S100B with human RAGE-derived W72 peptide 4UPG ; 2.1 ; X-ray structure of calcium-free human sorcin 1QX2 ; 1.44 ; X-ray Structure of Calcium-loaded Calbindomodulin (A Calbindin D9k Re-engineered to Undergo a Conformational Opening) at 1.44 A Resolution 2CCM ; 1.8 ; X-ray structure of Calexcitin from Loligo pealeii at 1.8A 4IAI ; 1.55 ; X-ray Structure of cAMP dependent protein kinase A in complex with high Ca2+ concentration, ADP and phosphorylated peptide pSP20 4IAC ; 2.15 ; X-RAY structure of cAMP dependent protein kinase A in complex with HIGH MG2+ concentration, AMP-PCP AND pseudo-substrate peptide SP20 4IB0 ; 1.87 ; X-ray Structure of cAMP dependent protein kinase A in complex with high Na+ concentration, ADP and phosphorylated peptide pSP20 3GUU ; 2.1 ; X-ray structure of Candida Antarctica lipase A 2VEO ; 2.2 ; X-ray structure of Candida antarctica lipase A in its closed state. 8AEH ; 3.0 ; X-ray structure of Canis familiaris Odorant Binding Protein 1 8AEI ; 1.74 ; X-ray structure of Canis familiaris Odorant Binding Protein 2 bound to citronellal 8AEJ ; 1.84 ; X-ray structure of Canis familiaris Odorant Binding Protein 3 bound to menthone 8EGI ; 2.3 ; X-ray structure of carbonmonoxy hemoglobin in complex with VZHE039-NO 4ESA ; 1.45 ; X-ray structure of carbonmonoxy hemoglobin of Eleginops maclovinus 5GMO ; 2.304 ; X-ray structure of carbonyl reductase SsCR 5MIJ ; 1.49 ; X-ray structure of carboplatin-encapsulated horse spleen apoferritin 5MIK ; 1.96 ; X-ray structure of carboplatin-encapsulated horse spleen apoferritin (rotating anode data) 4IKM ; 2.4606 ; X-ray structure of CARD8 CARD domain 8P89 ; 3.187 ; X-ray structure of cardiotoxic light chain H3 in complex to neutralizing nanobody B5 8P88 ; 2.022 ; X-ray structure of cardiotoxic light chain H3 in complex to neutralizing nanobody C4 5WQW ; 1.76 ; X-ray structure of catalytic domain of autolysin from Clostridium perfringens 4KRU ; 1.37 ; X-ray structure of catalytic domain of endolysin from clostridium perfringens phage phiSM101 3KW9 ; 1.8 ; X-ray structure of Cathepsin K covalently bound to a triazine ligand 3WW1 ; 1.95 ; X-ray structure of Cellulomonas parahominis L-ribose isomerase with L-ribose 2Q57 ; 2.0 ; X-ray structure of Cerulean GFP: A tryptophan-based chromophore useful for fluorescence lifetime imaging 2YJ0 ; 2.4 ; X-ray structure of chemically engineered Mycobacterium tuberculosis Dodecin 2F6L ; 1.7 ; X-ray structure of Chorismate Mutase from Mycobacterium Tuberculosis 5ERJ ; 1.45 ; X-ray structure of cisplatin-encapsulated horse spleen apoferritin 7M14 ; 2.1 ; x-ray structure of cj1430 in the presence of GDP, a GDP-D-glycero-4-keto-D-lyxo-heptose-3,5-epimerase from campylobacter jejuni 6VWR ; 1.5 ; X-ray structure of clavaminate synthase with vanadyl, succinate, and deoxyguanidinoproclavaminic acid 6FYO ; 2.32 ; X-RAY STRUCTURE OF CLK1-KD(148-484)/Cpd-2 AT 2.32A 6FYI ; 2.6 ; X-ray Structure of CLK2-KD(130-496)/TG003 at 2.6A 6FYL ; 1.95 ; X-ray structure of CLK2-KD(136-496)/CX-4945 at 1.95A 6FYK ; 2.39 ; X-Ray structure of CLK2-KD(136-496)/Indazole1 at 2.39A 6FYR ; 1.42 ; X-RAY STRUCTURE OF CLK3-KD(GP-[275-632], NON-PHOS.)/Cpd-2 AT 1.42A 6FYP ; 2.29 ; X-RAY STRUCTURE OF CLK3-KD(GP-[275-632], NON-PHOS.)/CX-4945 AT 2.29A 6FYV ; 2.46 ; X-RAY STRUCTURE OF CLK4-KD(146-480)/CX-4945 AT 2.46A 7T31 ; 2.3 ; X-ray Structure of Clostridiodies difficile PilW 1XX6 ; 2.0 ; X-ray structure of Clostridium acetobutylicum thymidine kinase with ADP. Northeast Structural Genomics Target CAR26. 8GSX ; 2.86 ; X-ray structure of Clostridium perfringens pili protein B collagen-binding domains 8GSY ; 1.55 ; X-ray structure of Clostridium perfringens pili protein B N-terminal domain 5XCC ; 2.48 ; X-ray structure of Clostridium perfringens pili protein CppA 5B23 ; 2.2 ; X-ray Structure of Clostridium Perfringens Sortase B 7D6T ; 1.68 ; X-ray structure of Clostridium perfringens sortase C with the C-terminal cell wall sorting motif. 7F5I ; 1.65 ; X-ray structure of Clostridium perfringens-specific amidase endolysin 5JOM ; 1.9 ; X-ray structure of CO-bound sperm whale myoglobin using a fixed target crystallography chip 4ML3 ; 3.15 ; X-ray structure of ComE D58A REC domain from Streptococcus pneumoniae 4MLD ; 2.88 ; X-ray structure of ComE D58E REC domain from Streptococcus pneumoniae 2OJU ; 2.4 ; X-ray structure of complex of human cyclophilin J with cyclosporin A 6Q9W ; 1.55 ; X-ray structure of compound 15 bound to HdmX: Structural states of Hdm2 and HdmX: X-ray elucidation of adaptations and binding interactions for different chemical compound classes 8SLB ; 2.04 ; X-ray structure of CorA N-terminal domain in complex with conformation-specific synthetic antibody C12 2BFU ; 4.0 ; X-ray structure of CPMV top component 4GV5 ; 1.7 ; X-ray structure of crotamine, a cell-penetrating peptide from the Brazilian snake Crotalus durissus terrificus 1YLW ; 1.74 ; X-ray structure of CTX-M-16 beta-lactamase 2WNO ; 2.3 ; X-ray Structure of CUB_C domain from TSG-6 1RTE ; 2.0 ; X-ray Structure of Cyanide Derivative of Truncated Hemoglobin N (trHbN) from Mycobacterium Tuberculosis 3X2Q ; 2.0 ; X-ray structure of cyanide-bound bovine heart cytochrome c oxidase in the fully oxidized state at 2.0 angstrom resolution 6A37 ; 2.204 ; X-ray structure of cyclohexanone monooxygenase from Acinetobacter calcoaceticus 2WV2 ; 2.7 ; X-ray structure of CYP51 from the human pathogen Trypanosoma brucei in complex with fluconazole 2WX2 ; 2.27 ; X-RAY STRUCTURE OF CYP51 FROM THE HUMAN PATHOGEN TRYPANOSOMA CRUZI IN COMPLEX WITH FLUCONAZOLE 2X2N ; 2.6 ; X-ray structure of cyp51 from trypanosoma brucei in complex with posaconazole in two different conformations 2WUZ ; 2.35 ; X-ray structure of CYP51 from Trypanosoma cruzi in complex with fluconazole in alternative conformation 7PCJ ; 1.91 ; X-ray structure of CypA-C52AK125C/CsA/aromatic foldamer complex 2ATF ; 1.75 ; X-RAY STRUCTURE OF cysteine dioxygenase type I FROM MUS MUSCULUS MM.241056 3ETQ ; 1.9 ; X-ray structure of cysteine-free fragment of mHCN2 C-terminal region from amino acids 443-630 including C508N, C584S, and C601S mutations 5L1Q ; 2.03 ; X-ray Structure of Cytochrome P450 PntM with Dihydropentalenolactone F 5L1P ; 2.28 ; X-ray Structure of Cytochrome P450 PntM with Pentalenolactone 5L1O ; 2.03 ; X-ray Structure of Cytochrome P450 PntM with Pentalenolactone F 2EXR ; 1.702 ; X-Ray Structure of Cytokinin Oxidase/Dehydrogenase (CKX) From Arabidopsis Thaliana AT5G21482 4Z0H ; 2.3 ; X-ray structure of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase (GapC1) complexed with NAD 3DCK ; 1.8 ; X-ray structure of D25N chemical analogue of HIV-1 protease complexed with ketomethylene isostere inhibitor 7FCU ; 1.42 ; X-ray structure of D2O-solvent lysozyme 6R0K ; 1.15 ; X-ray structure of Danio rerio histone deacetylase 6 (HDAC6) CD2 in complex with a inhibitor SS208 6TCY ; 1.6 ; X-ray structure of Danio rerio histone deacetylase 6 (HDAC6) CD2 in complex with a inhibitor SS555 8BJK ; 1.35 ; X-ray structure of Danio rerio histone deacetylase 6 (HDAC6) CD2 in complex with an inhibitor CPD11352 6ZW1 ; 1.13 ; X-ray structure of Danio rerio histone deacetylase 6 (HDAC6) CD2 in complex with an inhibitor SW101 3U1V ; 2.797 ; X-ray Structure of De Novo design cysteine esterase FR29, Northeast Structural Genomics Consortium Target OR52 1T3H ; 2.5 ; X-ray Structure of Dephospho-CoA Kinase from E. coli Norteast Structural Genomics Consortium Target ER57 1KTJ ; 2.15 ; X-ray Structure Of Der P 2, The Major House Dust Mite Allergen 4FM5 ; 2.81 ; X-ray structure of des-methylflurbiprofen bound to murine COX-2 1NFV ; 1.95 ; X-ray structure of Desulfovibrio desulfuricans bacterioferritin: the diiron centre in different catalytic states (as-isolated structure) 1XLU ; 2.198 ; X-Ray Structure Of Di-Isopropyl-Phosphoro-Fluoridate (Dfp) Inhibited Butyrylcholinesterase after Aging 1FQ8 ; 2.8 ; X-RAY STRUCTURE OF DIFLUOROSTATINE INHIBITOR CP81,198 BOUND TO SACCHAROPEPSIN 3MTK ; 2.24 ; X-Ray Structure of Diguanylate cyclase/phosphodiesterase from Caldicellulosiruptor saccharolyticus, Northeast Structural Genomics Consortium Target ClR27C 7PVK ; 2.4 ; X-ray structure of dimeric PorX (T272A mutant), in complex with pGpG. 6GXJ ; 1.43 ; X-ray structure of DiRu-1-encapsulated Apoferritin 3UQZ ; 2.7 ; X-ray structure of DNA processing protein A (DprA) from Streptococcus pneumoniae 5XCB ; 2.14 ; X-ray structure of domains D1 and D2 of Clostridium perfringens pili protein CppA 4M48 ; 2.955 ; X-ray structure of dopamine transporter elucidates antidepressant mechanism 2IY4 ; 2.31 ; X-ray structure of Dps from Listeria monocytogenes 1UVH ; 2.8 ; X-ray structure of Dps from Mycobacterium smegmatis 2C41 ; 1.81 ; X-ray structure of Dps from Thermosynechococcus elongatus 2VXX ; 2.4 ; X-ray structure of DpsA from Thermosynechococcus elongatus 5B16 ; 3.2 ; X-ray structure of DROSHA in complex with the C-terminal tail of DGCR8. 4XPA ; 2.95 ; X-ray structure of Drosophila dopamine transporter bound to 3,4dichlorophenethylamine 4XP5 ; 3.3 ; X-ray structure of Drosophila dopamine transporter bound to cocaine analogue-RTI55 4XP1 ; 2.89 ; X-ray structure of Drosophila dopamine transporter bound to neurotransmitter dopamine 4XP9 ; 2.8 ; X-ray structure of Drosophila dopamine transporter bound to psychostimulant D-amphetamine 4XP6 ; 3.1 ; X-ray structure of Drosophila dopamine transporter bound to psychostimulant methamphetamine 4XP4 ; 2.8 ; X-ray structure of Drosophila dopamine transporter in complex with cocaine 4XNU ; 2.98 ; X-ray structure of Drosophila dopamine transporter in complex with nisoxetine 4XNX ; 3.0 ; X-ray structure of Drosophila dopamine transporter in complex with reboxetine 6M0Z ; 2.88 ; X-ray structure of Drosophila dopamine transporter with NET-like mutations (D121G/S426M/F471L) in L-norepinephrine bound form 4XPH ; 2.9 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) bound to 3,4dichlorophenethylamine 4XPG ; 3.21 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) bound to beta-CFT or Win35428 4XPB ; 3.05 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) bound to cocaine 4XPF ; 3.273 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) bound to RTI-55 6M0F ; 3.3 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations (D121G/S426M) in substrate-free form 4XPT ; 3.36 ; X-ray structure of Drosophila dopamine transporter with subsiteB mutations D121G/S426M and EL2 deletion of 162-201 in complex with substrate analogue 3,4 dichlorophen ethylamine 1SQH ; 2.0 ; X-RAY STRUCTURE OF DROSOPHILA MALONOGASTER PROTEIN Q9VR51 NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET FR87. 1T3B ; 2.5 ; X-ray Structure of DsbC from Haemophilus influenzae 3BIE ; 1.68 ; X-ray structure of E coli AlkB bound to dsDNA containing 1meA/T with Mn and 2KG 3BKZ ; 1.65 ; X-ray structure of E coli AlkB crosslinked to dsDNA in the active site 4CCL ; 2.596 ; X-Ray structure of E. coli ycfD 3ZHO ; 1.2 ; X-ray structure of E.coli Wrba in complex with FMN at 1.2 A resolution 2JI2 ; 1.7 ; X-ray structure of E114A mutant of superoxide reductase from Desulfoarculus baarsii in the native, reduced form 3BEL ; 2.3 ; X-ray structure of EGFR in complex with oxime inhibitor 1OY1 ; 2.95 ; X-Ray Structure Of ElbB From E. Coli. Northeast Structural Genomics Research Consortium (Nesg) Target Er105 4KRT ; 1.92 ; X-ray structure of endolysin from clostridium perfringens phage phiSM101 2Y0G ; 1.5 ; X-ray structure of Enhanced Green Fluorescent Protein (EGFP) 5YCV ; 1.851 ; X-Ray Structure of Enoyl-Acyl Carrier Protein Reductase from Bacillus Anthracis (Apo form) 5YCX ; 1.701 ; X-Ray Structure of Enoyl-Acyl Carrier Protein Reductase from Bacillus Anthracis with c-terminal His tag (Apo form) 5YCR ; 1.96 ; X-Ray Structure of Enoyl-Acyl Carrier Protein Reductase from Bacillus Anthracis with NAD+ 2QIO ; 2.44 ; X-Ray Structure of Enoyl-Acyl Carrier Protein Reductase from Bacillus Anthracis with Triclosan 5YCS ; 1.95 ; X-Ray Structure of Enoyl-Acyl Carrier Protein Reductase from Bacillus Anthracis with triclosan 8WL7 ; 1.74 ; X-ray structure of Enterobacter cloacae allose-binding protein in complex with D-allose 8WLB ; 1.71 ; X-ray structure of Enterobacter cloacae allose-binding protein in complex with D-psicose 8WL9 ; 1.93 ; X-ray structure of Enterobacter cloacae allose-binding protein in complex with D-ribose 8WL5 ; 1.87 ; X-ray structure of Enterobacter cloacae allose-binding protein in free form 6PNW ; 2.0 ; X-RAY STRUCTURE OF ERABUTOXIN C, A DIMERIC NEUROTOXIN 1XQC ; 2.05 ; X-ray structure of ERalpha LBD bound to a tetrahydroisoquinoline SERM ligand at 2.05A resolution 1XB7 ; 2.5 ; X-ray structure of ERRalpha LBD in complex with a PGC-1alpha peptide at 2.5A resolution 6XG5 ; 1.9 ; X-ray structure of Escherichia coli dihydrofolate reductase in complex with trimethoprim 6XG4 ; 2.1 ; X-ray structure of Escherichia coli dihydrofolate reductase L28R mutant in complex with trimethoprim 1DFI ; 2.09 ; X-RAY STRUCTURE OF ESCHERICHIA COLI ENOYL REDUCTASE WITH BOUND NAD 1DFG ; 2.5 ; X-RAY STRUCTURE OF ESCHERICHIA COLI ENOYL REDUCTASE WITH BOUND NAD AND BENZO-DIAZABORINE 1DFH ; 2.2 ; X-RAY STRUCTURE OF ESCHERICHIA COLI ENOYL REDUCTASE WITH BOUND NAD AND THIENO-DIAZABORINE 1DNL ; 1.8 ; X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5'-PHOSPHATE OXIDASE COMPLEXED WITH FMN AT 1.8 ANGSTROM RESOLUTION 1G76 ; 2.2 ; X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5'-PHOSPHATE OXIDASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE AT 2.0 A RESOLUTION 1G78 ; 2.2 ; X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5'-PHOSPHATE OXIDASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE AT 2.0 A RESOLUTION 1G79 ; 2.0 ; X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5'-PHOSPHATE OXIDASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE AT 2.0 A RESOLUTION 1WV4 ; 2.6 ; X-ray Structure of Escherichia coli pyridoxine 5'-phosphate oxidase in tetragonal crystal form 1G77 ; 2.1 ; X-RAY STRUCTURE OF ESCHERICHIA COLI PYRIDOXINE 5`-PHOSPHATE OXIDASE COMPLEXED WITH PYRIDOXAL 5'-PHOSPHATE AT 2.0 A RESOLUTION 3NXN ; 1.8 ; X-ray structure of ester chemical analogue 'covalent dimer' [Ile50,O-Ile50']HIV-1 protease complexed with KVS-1 inhibitor 3NXE ; 1.61 ; X-ray structure of ester chemical analogue 'covalent dimer' [Ile50,O-Ile50']HIV-1 protease complexed with MVT-101 inhibitor 3NYG ; 1.45 ; X-ray structure of ester chemical analogue [O-Gly51,O-Gly51']HIV-1 protease complexed with MVT-101 inhibitor 3NWX ; 1.9 ; X-ray structure of ester chemical analogue [O-Ile50,O-Ile50']HIV-1 protease complexed with KVS-1 inhibitor 3NWQ ; 1.5 ; X-ray structure of ester chemical analogue [O-Ile50,O-Ile50']HIV-1 protease complexed with MVT-101 2P7G ; 2.1 ; X-ray Structure of Estrogen Related Receptor g in complex with Bisphenol A. 5YBD ; 2.769 ; X-ray structure of ETS domain of Ergp55 in complex with E74DNA 5L1S ; 2.08 ; X-ray Structure of F232L mutant of Cytochrome P450 PntM with pentalenolactone F 5ZZF ; 1.6 ; X-ray structure of F43Y/H64D sperm whale myoglobin 5ZZG ; 1.8 ; X-ray structure of F43Y/H64D sperm whale myoglobin in complex with TCP 7QTY ; 1.69 ; X-ray structure of FAD domain of NqrF of Klebsiella pneumoniae 7QU0 ; 1.62 ; X-ray structure of FAD domain of NqrF of Klebsiella pneumoniae 7QU3 ; 1.6 ; X-ray structure of FAD domain of NqrF of Pseudomonas aeruginosa 7QU5 ; 1.25 ; X-ray structure of FAD domain of NqrF of Pseudomonas aeruginosa 1ZW5 ; 2.3 ; X-ray structure of Farnesyl diphosphate synthase protein 2VIM ; 1.38 ; X-ray structure of Fasciola hepatica thioredoxin 6P5Q ; 1.86 ; X-ray structure of Fe(II)-soaked UndA bound to lauric acid 4MXK ; 1.52 ; X-ray structure of Fe(II)-ZnPIXFeBMb1 3WAE ; 1.7 ; X-ray structure of Fe(III)-bicarbonates-ttfbpa, a ferric ion-binding protein from thermus thermophilus HB8 2BGV ; 1.9 ; X-ray structure of ferric cytochrome c-550 from Paracoccus versutus 5B85 ; 1.85 ; X-ray structure of ferric F138Y sperm whale myoglobin 6DCE ; 1.56 ; X-ray structure of FIP200 claw domain 3SLA ; 2.5 ; X-ray structure of first four repeats of human beta-catenin 6YHH ; 1.7 ; X-ray Structure of Flavobacterium johnsoniae chitobiase (FjGH20) 6PNY ; 1.65 ; X-ray Structure of Flpp3 4P5P ; 1.54 ; X-ray structure of Francisella tularensis Rapid Encystment Protein 24 KDa (REP24), gene product of FTN_0841 3MMH ; 1.25 ; X-ray structure of free methionine-R-sulfoxide reductase from neisseria meningitidis in complex with its substrate 1HM6 ; 1.8 ; X-RAY STRUCTURE OF FULL-LENGTH ANNEXIN 1 4CBV ; 3.39 ; X-ray structure of full-length ComE from Streptococcus pneumoniae. 4OPH ; 3.158 ; X-ray structure of full-length H6N6 NS1 3SNG ; 2.16 ; X-ray structure of fully glycosylated bifunctional nuclease TBN1 from Solanum lycopersicum (Tomato) 8B4W ; 1.6 ; X-ray structure of furin (PCSK3) in complex with 1H-isoindol-3-amine 8B4V ; 1.6 ; X-ray structure of furin (PCSK3) in complex with benzamidine 8OYH ; 1.8 ; X-ray structure of furin (PCSK3) in complex with Guanidinomethyl-Phac-Can-Tle-Can-6-(aminomethyl)-3-amino-isoindol 8B4X ; 1.6 ; X-ray structure of furin (PCSK3) in complex with Guanidinomethyl-Phac-R-Tle-K-6-(aminomethyl)-3-amino-isoindol 7LCU ; 1.24 ; X-ray structure of Furin bound to BOS-318, a small molecule inhibitor 6YD3 ; 2.0 ; X-ray structure of furin in complex with the canavanine derived inhibitor 4-guanidinomethyl-phenylacetyl-Canavanine-Tle-Arg-Amba 6YD2 ; 1.8 ; X-ray structure of furin in complex with the canavanine-based inhibitor 4-aminomethyl-phenylacetyl-canavanine-Tle-Arg-Amba 6YD7 ; 1.8 ; X-ray structure of furin in complex with the canavanine-based inhibitor 4-guanidinomethyl-phenylacetyl-Arg-Tle-Canavanine-Amba 6YD4 ; 1.7 ; X-ray structure of furin in complex with the canavanine-based inhibitor 4-guanidinomethyl-phenylacetyl-Canavanine-Tle-Canavanine-Amba 6HZD ; 1.9 ; X-ray structure of furin in complex with the cyclic inhibitor c[glutaryl-Arg-Arg-Arg-Lys]-Arg-4-Amba 6HZB ; 1.9 ; X-ray structure of furin in complex with the cyclic inhibitor c[glutaryl-Arg-Arg-Lys]-Lys-4-Amba 6HZC ; 1.9 ; X-ray structure of furin in complex with the cyclic inhibitor c[glutaryl-BVK-Lys-Arg-Arg-Tle-Lys]-4-Amba 6HZA ; 1.9 ; X-ray structure of furin in complex with the cyclic peptide c[glutaryl-Arg-Arg-Lys]-Arg-4-Amba 6HLD ; 2.1 ; X-ray structure of furin in complex with the cyclic peptide c[succinyl-Phe-2-Nal-(Arg)3-Lys]-Lys-4-Amba 6HLB ; 2.0 ; X-ray structure of furin in complex with the cyclic peptide c[succinyl-Phe-2-Nal-(Arg)4-Lys]-Arg-4-Amba 7QY0 ; 1.54 ; X-ray structure of furin in complex with the dichlorophenylpyridine-based inhibitor 1 7QY2 ; 1.55 ; X-ray structure of furin in complex with the dichlorophenylpyridine-based inhibitor 2 7QXY ; 1.478 ; X-ray structure of furin in complex with the dichlorophenylpyridine-based inhibitor 3 7QY1 ; 1.45 ; X-ray structure of furin in complex with the dichlorophenylpyridine-based inhibitor 4 7QXZ ; 1.8 ; X-ray structure of furin in complex with the dichlorophenylpyridine-based inhibitor 5 7O1U ; 1.7 ; X-ray structure of furin in complex with the guanylhydrazone-based inhibitor 1 (BEV241) 7O1Y ; 1.7 ; X-ray structure of furin in complex with the guanylhydrazone-based inhibitor 2 (mi307) soaked at 0.25 M NaCl 7O1W ; 1.8 ; X-ray structure of furin in complex with the guanylhydrazone-based inhibitor 2 (mi307) soaked at 1 M NaCl 7O20 ; 1.8 ; X-ray structure of furin in complex with the guanylhydrazone-based inhibitor 3 (mi300) 7O22 ; 1.8 ; X-ray structure of furin in complex with the guanylhydrazone-based inhibitor 4 (mi359) 5JMO ; 1.998 ; X-ray structure of furin in complex with the inhibitory antibody Nb14 6HLE ; 1.994 ; X-ray structure of furin in complex with the P6-P2-cyclized peptide H-Lys-Arg-Arg-Tle-Lys-4-Amba 2RA0 ; 2.3 ; X-ray Structure of FXa in complex with 7-fluoroindazole 1L7J ; 1.9 ; X-ray structure of galactose mutarotase from Lactococcus lactis (apo) 1L7K ; 1.95 ; x-ray structure of galactose mutarotase from Lactococcus lactis complexed with galactose 1Z84 ; 1.83 ; X-ray structure of galt-like protein from arabidopsis thaliana at5g18200 1ZWJ ; 2.3 ; X-ray structure of galt-like protein from arabidopsis thaliana AT5G18200 4EA9 ; 0.9 ; X-ray structure of GDP-perosamine N-acetyltransferase in complex with transition state analog at 0.9 Angstrom resolution 6CBO ; 1.6 ; X-ray structure of GenB1 from micromonospora echinospora in complex with neamine and PLP (as the external aldimine) 2GCU ; 1.477 ; X-Ray Structure of Gene Product from Arabidopsis Thaliana At1g53580 1XMT ; 1.15 ; X-ray structure of gene product from arabidopsis thaliana at1g77540 1XFI ; 1.7 ; X-ray structure of gene product from Arabidopsis thaliana At2g17340 1XYG ; 2.19 ; X-RAY STRUCTURE OF GENE PRODUCT FROM ARABIDOPSIS THALIANA AT2G19940 1VM0 ; 1.8 ; X-RAY STRUCTURE OF GENE PRODUCT FROM ARABIDOPSIS THALIANA AT2G34160 1Z90 ; 1.86 ; X-ray structure of gene product from arabidopsis thaliana at3g03250, a putative UDP-glucose pyrophosphorylase 2F2G ; 2.1 ; X-Ray Structure of Gene Product From Arabidopsis Thaliana AT3G16990 1Y0Z ; 2.4 ; X-ray structure of gene product from Arabidopsis thaliana At3g21360 1VK5 ; 1.604 ; X-ray Structure of Gene Product from Arabidopsis Thaliana At3g22680 1YDW ; 2.488 ; X-RAY STRUCTURE OF GENE PRODUCT FROM ARABIDOPSIS THALIANA AT4G09670 1XQ6 ; 1.8 ; X-ray Structure of Gene Product from Arabidopsis Thaliana At5g02240 1VK0 ; 2.1 ; X-ray Structure of Gene Product from Arabidopsis Thaliana At5g06450 1VKP ; 1.53 ; X-RAY STRUCTURE OF GENE PRODUCT FROM ARABIDOPSIS THALIANA AT5G08170, AGMATINE IMINOHYDROLASE 1XY7 ; 1.8 ; X-RAY STRUCTURE OF GENE PRODUCT FROM ARABIDOPSIS THALIANA AT5G48480 1ZTP ; 2.5 ; X-ray structure of gene product from homo sapiens Hs.433573 2AB1 ; 2.59 ; X-Ray Structure of Gene Product from Homo Sapiens HS.95870 3GB3 ; 1.75 ; X-ray structure of genetically encoded photosensitizer KillerRed in native form 1IHC ; 1.9 ; X-ray Structure of Gephyrin N-terminal Domain 4UAP ; 2.0 ; X-ray structure of GH31 CBM32-2 bound to GalNAc 6HPP ; 3.2 ; X-ray structure of GLIC in complex with propionate 1LAA ; 1.77 ; X-RAY STRUCTURE OF GLU 53 HUMAN LYSOZYME 3GA5 ; 1.87 ; X-ray structure of glucose/galactose receptor from Salmonella typhimurium in complex with (2R)-glyceryl-beta-D-galactopyranoside 4CKQ ; 1.4 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum 4UQA ; 1.52 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum 4UQD ; 1.25 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum at 1.25 A resolution 4UQE ; 1.28 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum at 1.28 A resolution 4UQC ; 1.3 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum at 1.30 A resolution 4UQB ; 1.68 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum at 1.68 A resolution 4UQ9 ; 1.77 ; X-ray structure of glucuronoxylan-xylanohydrolase (Xyn30A) from Clostridium thermocellum at 1.77 A resolution 1OKT ; 1.9 ; X-ray Structure of Glutathione S-Transferase from the Malarial Parasite Plasmodium falciparum 1FQ6 ; 2.7 ; X-RAY STRUCTURE OF GLYCOL INHIBITOR PD-133,450 BOUND TO SACCHAROPEPSIN 1XM8 ; 1.74 ; X-RAY STRUCTURE OF GLYOXALASE II FROM ARABIDOPSIS THALIANA GENE AT2G31350 1TIY ; 2.5 ; X-RAY STRUCTURE OF GUANINE DEAMINASE FROM BACILLUS SUBTILIS NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET SR160 3IPQ ; 2.0 ; X-ray structure of GW3965 synthetic agonist bound to the LXR-alpha 5GY7 ; 1.43 ; X-Ray structure of H243I mutant of UDP-Galactose 4-epimerase from E.coli:evidence for existence of open and closed active site during catalysis. 7FCW ; 1.43 ; X-ray structure of H2O-solvent lysozyme 3F5T ; 2.7 ; X-ray Structure of H5N1 NS1 6O01 ; 3.0 ; X-ray structure of H5N1-NS1 R38A K41A G71E mutant 4OPA ; 2.7 ; X-ray structure of H6N6-NS1 delta(80-84) mutant 6NRL ; 3.2 ; X-ray structure of H6N6-NS1 delta(80-84) R38A K41A E71G mutant 6OQE ; 3.899 ; X-ray structure of H6N6-NS1 delta(80-84) R38A K41A mutant 7N63 ; 1.4 ; X-ray structure of HCAN_0200, an aminotransferase from Helicobacter canadensis in complex with its external aldimine 7NUS ; 1.45 ; X-RAY STRUCTURE OF HDM2/CMR19 AT 1.45A: Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors 4YVM ; 2.791 ; X-ray structure of Helicobacter pylori CagL-K74 7BDZ ; 1.94 ; X-ray structure of Hen Egg White Lysozyme with dirhodium tetraacetate (1) 7BE0 ; 1.62 ; X-ray structure of Hen Egg White Lysozyme with dirhodium tetraacetate (2) 7BE1 ; 1.4 ; X-ray structure of Hen Egg White Lysozyme with dirhodium tetraacetate (3) 7BE2 ; 1.65 ; X-ray structure of Hen Egg White Lysozyme with dirhodium tetraacetate (6) 2ZYP ; 1.18 ; X-ray structure of hen egg-white lysozyme with poly(allyl amine) 1WTM ; 1.33 ; X-ray structure of HEW Lysozyme Orthorhombic Crystal formed in the Earth's magnetic field 8C39 ; 1.2 ; X-ray structure of HEWL upon reaction with a Ruthenium(II)-arene Complexed with Glycosylated Carbene Ligands (5) 3GV2 ; 7.0 ; X-ray Structure of Hexameric HIV-1 CA 3H47 ; 1.9 ; X-ray Structure of Hexameric HIV-1 CA 3H4E ; 2.704 ; X-ray Structure of Hexameric HIV-1 CA 3MGE ; 1.9 ; X-ray Structure of Hexameric HIV-1 CA 7FBN ; 1.44 ; X-ray structure of high-strength hydrogel-grown FABP3 crystal soaked in 50% DMF solution containing dibutylhydroxytoluene (BHT) 7EUW ; 1.55 ; X-ray structure of high-strength hydrogel-grown FABP3 crystal soaked in 50% DMSO solution containing 4-[2-[1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl]phenoxy] (HA174) 7FBM ; 1.0 ; X-ray structure of high-strength hydrogel-grown FABP3 crystal soaked in 50% DMSO solution containing dibutylhydroxytoluene (BHT) 7EUV ; 1.28 ; X-ray structure of high-strength hydrogel-grown FABP3 crystal soaked in 50% DMSO solution containing Flurbiprofen 7FCG ; 1.19 ; X-ray structure of high-strength hydrogel-grown FABP3 crystal soaked in 50% DMSO solution containing Indometacin 3DCR ; 1.4 ; X-ray structure of HIV-1 protease and hydrated form of ketomethylene isostere inhibitor 3DOX ; 2.0 ; X-ray structure of HIV-1 protease in situ product complex 7WFC ; 2.6 ; X-ray structure of HKU1-PLP2(Cys109Ser) catalytic mutant in complex with free ubiquitin 6FOH ; 1.56 ; X-ray structure of homo sapiens Fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1) at 1.56A resolution. 6FOG ; 1.94 ; X-ray structure of homo sapiens Fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1) in complex with inhibitor oxalate at 1.94A resolution. 1SAW ; 2.2 ; X-ray structure of homo sapiens protein FLJ36880 5ERK ; 2.0 ; X-ray structure of horse spleen apoferritin (control) 5IFO ; 3.2 ; X-ray structure of HSA-Myr-KP1019 7Q1Y ; 4.4 ; X-ray structure of human A2ML1 3BTX ; 2.0 ; X-ray structure of human ABH2 bound to dsDNA through active site cross-linking 3BUC ; 2.59 ; X-ray structure of human ABH2 bound to dsDNA with Mn(II) and 2KG 8DT7 ; 2.207 ; X-ray structure of human acetylcholinesterase in complex with oxime MMB4 (hAChE-MMB4) 8DT2 ; 2.803 ; X-ray structure of human acetylcholinesterase inhibited by paraoxon (POX-hAChE) 8DT4 ; 2.8 ; X-ray structure of human acetylcholinesterase ternary complex with paraoxon and oxime MMB4 (POX-hAChE-MMB4) 8DT5 ; 2.6 ; X-ray structure of human acetylcholinesterase ternary complex with paraoxon and oxime RS170B (POX-hAChE-RS170B) 1Y7V ; 2.4 ; X-ray structure of human acid-beta-glucosidase covalently bound to conduritol B epoxide 2GLQ ; 1.6 ; X-ray structure of human alkaline phosphatase in complex with strontium 4NEF ; 2.75 ; X-ray structure of human Aquaporin 2 6QF5 ; 3.7 ; X-Ray structure of human Aquaporin 2 crystallized on a silicon chip 3E6V ; 1.72 ; X-ray structure of human arginase I-D183N mutant: the complex with ABH 3E6K ; 2.1 ; X-ray structure of Human Arginase I: the mutant D183A in complex with ABH 4XII ; 2.7 ; X-ray structure of human butyrylcholinesterase in complex with N-((1-(2,3-dihydro-1H-inden-2-yl)piperidin-3-yl)methyl)-8-hydroxy-N-(2-methoxyethyl)-5-nitroquinoline-7-carboxamide 2XQJ ; 2.4 ; X-ray Structure of human butyrylcholinesterase inhibited by pure enantiomer VX-(R) 2XQK ; 2.4 ; X-ray Structure of human butyrylcholinesterase inhibited by pure enantiomer VX-(S) 2XQI ; 2.6 ; X-ray Structure of human butyrylcholinesterase inhibited by racemic CVX 2XQG ; 2.3 ; X-ray Structure of human butyrylcholinesterase inhibited by racemic VR 2XQF ; 2.1 ; X-ray Structure of human butyrylcholinesterase inhibited by racemic VX 2H61 ; 1.9 ; X-ray structure of human Ca2+-loaded S100B 3DA2 ; 2.05 ; X-ray structure of human carbonic anhydrase 13 in complex with inhibitor 6VUA ; 1.5 ; X-ray structure of human CD38 catalytic domain with 2'-Cl-araNAD+ 2EUF ; 3.0 ; X-ray structure of human CDK6-Vcyclin in complex with the inhibitor PD0332991 2F2C ; 2.8 ; X-ray structure of human CDK6-Vcyclinwith the inhibitor aminopurvalanol 3N7O ; 1.8 ; X-ray structure of human chymase in complex with small molecule inhibitor. 1IW2 ; 1.9 ; X-ray structure of Human Complement Protein C8gamma at pH=7.O 2OVA ; 1.5 ; X-ray structure of Human Complement Protein C8gamma Y83W Mutant 2OK3 ; 2.0 ; X-ray structure of human cyclophilin J at 2.0 angstrom 3IPX ; 2.0 ; X-Ray structure of Human Deoxycytidine Kinase in complex with ADP and an inhibitor 3IPY ; 2.54 ; X-Ray structure of Human Deoxycytidine Kinase in complex with an inhibitor 6ZR7 ; 1.85 ; X-ray structure of human Dscam Ig7-Ig9 4OMC ; 2.3 ; X-ray structure of human furin in complex with the competitive inhibitor meta-guanidinomethyl-Phac-RVR-Amba 4RYD ; 2.15 ; X-ray structure of human furin in complex with the competitive inhibitor para-guanidinomethyl-Phac-R-Tle-R-Amba 4OMD ; 2.7 ; X-ray structure of human furin in complex with the competitive inhibitor Phac-RVR-Amba 5M1R ; 1.64 ; X-ray structure of human G166D PGK-1 mutant 6L68 ; 1.92 ; X-ray structure of human galectin-10 in complex with D-allose 6L6C ; 1.77 ; X-ray structure of human galectin-10 in complex with D-arabinose 6L67 ; 1.97 ; X-ray structure of human galectin-10 in complex with D-galactose 6L64 ; 2.08 ; X-ray structure of human galectin-10 in complex with D-glucose 6L6A ; 1.81 ; X-ray structure of human galectin-10 in complex with D-mannose 6L6D ; 1.93 ; X-ray structure of human galectin-10 in complex with D-N-acetylgalactosamine 6L6B ; 1.802 ; X-ray structure of human galectin-10 in complex with L-fucose 1QYM ; 2.8 ; X-ray structure of human gankyrin 1QKI ; 3.0 ; X-RAY STRUCTURE OF HUMAN GLUCOSE 6-PHOSPHATE DEHYDROGENASE (VARIANT CANTON R459L) COMPLEXED WITH STRUCTURAL NADP+ 2BHL ; 2.9 ; X-RAY STRUCTURE OF HUMAN GLUCOSE-6-PHOSPHATE DEHYDROGENASE (DELETION VARIANT) COMPLEXED WITH GLUCOSE-6-PHOSPHATE 6FE5 ; 1.52 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) - the E424M inactive mutant, in complex with a inhibitor JHU 2249 6EZ9 ; 1.61 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) - the E424M inactive mutant, in complex with a inhibitor JHU3372 6SKH ; 1.58 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) - the E424M inactive mutant, in complex with a inhibitor sulfamide inhibitor GluAsp 6SGP ; 1.58 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) - the E424M inactive mutant, in complex with a sulfamide inhibitor GluGlu 4W9Y ; 1.64 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a glutamyl sulfamide inhibitor CJC47 5D29 ; 1.8 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a hydroxamate inhibitor JHU241 5ELY ; 1.81 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a hydroxamate inhibitor JHU242 6F5L ; 1.63 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor JHU2379 6ETY ; 1.68 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor JHU3371 6RBC ; 1.77 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor KB1157 6H7Y ; 1.81 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor RNA 1-79-1 6HKJ ; 2.09 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor RNA 2-19-1 6HKZ ; 2.09 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor RNA 2-49-1 6H7Z ; 2.0 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a inhibitor RNA 2-65-1 4LQG ; 1.77 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor CTT1056 4P4B ; 1.93 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor CTT54 4P45 ; 1.87 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor JRB-4-73 4P44 ; 1.75 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor JRB-4-81 4P4D ; 1.65 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor MP1C 4P4E ; 1.67 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor MP1D 4P4F ; 1.86 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor NC-2-40 4P4I ; 1.87 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor T33 4P4J ; 1.66 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a phosphoramidate inhibitor T33D 3BHX ; 1.6 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a transition state analog of Asp-Glu 3BI0 ; 1.67 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a transition state analog of Glu-Glu 3BI1 ; 1.5 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a transition state analog of methotrexate-Glu 5O5T ; 1.43 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a urea based inhibitor PSMA 1007 5O5R ; 1.65 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a urea based inhibitor PSMA 1023 5O5U ; 1.53 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with a urea based inhibitor PSMA 1027 8BOW ; 1.58 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with an inhibitor 617 8BO8 ; 1.55 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with an inhibitor P17 8BOL ; 1.55 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with an inhibitor P18 6RTI ; 2.2 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with aptamer A9g 4JZ0 ; 1.83 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with CTT1055 4JYW ; 1.73 ; X-ray structure of human glutamate carboxypeptidase II (GCPII) in complex with CTT1057 5OF0 ; 1.48 ; X-ray structure of human glutamate carboxypeptidase II (GCPII), the E424M inactive mutant, in complex with a inhibitor CFBzOG 6S1X ; 1.76 ; X-ray structure of human glutamate carboxypeptidase II (GCPII)-E424M inactive mutant, in complex with a inhibitor KB1160 3SJE ; 1.7 ; X-ray structure of human glutamate carboxypeptidase II (the E424A inactive mutant) in complex with N-acetyl-aspartyl-aminononanoic acid 3SJX ; 1.66 ; X-ray structure of human glutamate carboxypeptidase II (the E424A inactive mutant) in complex with N-acetyl-aspartyl-methionine 3SJF ; 1.65 ; X-ray structure of human glutamate carboxypeptidase II in complex with a urea-based inhibitor (A25) 4OME ; 1.79 ; X-ray structure of human glutamate carboxypeptidase II in complex with DCCBL, a urea based inhibitor with distal carborane moiety 8A5N ; 1.52 ; X-ray structure of human H-chain ferritin treated with SDS 5N27 ; 1.74 ; X-ray structure of human heavy chain ferritin (apo form) 5N26 ; 2.05 ; X-ray structure of human heavy chain ferritin in complex with cisplatin 6FTV ; 1.58 ; X-ray structure of human heavy chain ferritin in complex with NAMI A 4DMB ; 1.9 ; X-ray structure of human hepatitus C virus NS5A-transactivated protein 2 at the resolution 1.9A, Northeast Structural Genomics Consortium (NESG) Target HR6723 6TAN ; 1.16 ; X-RAY STRUCTURE OF HUMAN K-RAS G12C IN COMPLEX WITH COVALENT ISOQUINOLINONE INHIBITOR (COMPOUND 17) 6TAM ; 1.64 ; X-RAY STRUCTURE OF HUMAN K-RAS G12C IN COMPLEX WITH COVALENT ISOQUINOLINONE INHIBITOR (COMPOUND 3) 6SBV ; 2.6 ; X-ray Structure of Human LDH-A with an Allosteric Inhibitor (Compound 7) 6SBU ; 2.91 ; X-ray Structure of Human LDHA with an Allosteric Inhibitor (Compound 3) 2A2C ; 1.65 ; x-ray structure of human N-acetyl galactosamine kinase complexed with Mg-ADP and N-acetyl galactosamine 1-phosphate 2A2D ; 2.2 ; X-ray structure of human n-acetyl galactosamine kinase complexed with Mn-AMPPNP and n-acetyl glactosamine 8AHY ; 1.7 ; X-ray structure of human NCS-1 bound to Ric-8A 8ALH ; 1.86 ; X-ray structure of human NCS-1 bound to Ric-8A 8ALM ; 1.85402 ; X-ray structure of human NCS-1 bound to Ric-8A 1UCN ; 2.0 ; X-ray structure of human nucleoside diphosphate kinase A complexed with ADP at 2 A resolution 1QNT ; 1.9 ; X-ray structure of human O6alkylguanine-DNA alkyltransferase 3MK4 ; 2.42 ; X-Ray structure of human PEX3 in complex with a PEX19 derived peptide 2AMY ; 2.09 ; X-Ray Structure of Human Phosphomannomutase 2 (PMM2) 1TVG ; 1.6 ; X-ray structure of human PP25 gene product, HSPC034. Northeast Structural Genomics Target HR1958. 8HUQ ; 1.65 ; X-ray structure of human PPAR alpha ligand binding domain-elafibranor-SRC1 coactivator peptide co-crystals obtained by soaking 8HUK ; 2.981 ; X-ray structure of human PPAR alpha ligand binding domain-lanifibranor-SRC1 coactivator peptide co-crystals obtained by soaking 8HUN ; 2.01 ; X-ray structure of human PPAR alpha ligand binding domain-seladelpar co-crystals obtained by cross-seeding 7WGL ; 2.091 ; X-ray structure of human PPAR delta ligand binding domain-bezafibrate co-crystals obtained by co-crystallization 8HUL ; 2.461 ; X-ray structure of human PPAR delta ligand binding domain-lanifibranor co-crystals obtained by co-crystallization 7WGN ; 1.813 ; X-ray structure of human PPAR delta ligand binding domain-pemafibrate co-crystals obtained by co-crystallization 8HUO ; 2.671 ; X-ray structure of human PPAR delta ligand binding domain-seladelpar co-crystals obtained by co-crystallization 7WGO ; 2.36 ; X-ray structure of human PPAR gamma ligand binding domain-bezafibrate co-rystals obtained by co-crystallization 7WGP ; 2.53 ; X-ray structure of human PPAR gamma ligand binding domain-fenofibric acid co-crystals obtained by co-crystallization 8HUM ; 2.29 ; X-ray structure of human PPAR gamma ligand binding domain-lanifibranor-SRC1 coactivator peptide co-crystals obtained by co-crystallization 7WGQ ; 2.43 ; X-ray structure of human PPAR gamma ligand binding domain-pemafibrate co-crystals obtained by co-crystallization 8HUP ; 2.36 ; X-ray structure of human PPAR gamma ligand binding domain-seladelpar-SRC1 coactivator peptide co-crystals obtained by co-crystallization 6KB5 ; 1.95 ; X-ray structure of human PPARalpha ligand binding domain-5,8,11,14-eicosatetraynoic Acid (ETYA) co-crystals obtained by delipidation and cross-seeding 6KB0 ; 1.35 ; X-ray structure of human PPARalpha ligand binding domain-5,8,11,14-eicosatetraynoic acid (ETYA) co-crystals obtained by soaking 6LX9 ; 1.4 ; X-ray structure of human PPARalpha ligand binding domain-arachidonic acid co-crystals obtained by delipidation and cross-seeding 7BPZ ; 2.43 ; X-ray structure of human PPARalpha ligand binding domain-bezafibrate-SRC1 coactivator peptide co-crystals obtained by soaking 6LX5 ; 1.87 ; X-ray structure of human PPARalpha ligand binding domain-ciprofibrate co-crystals obtained by delipidation and co-crystallization 7BPY ; 2.09 ; X-ray structure of human PPARalpha ligand binding domain-clofibric acid-SRC1 coactivator peptide co-crystals obtained by delipidation and co-crystallization 6LXA ; 1.23 ; X-ray structure of human PPARalpha ligand binding domain-eicosapentaenoic acid (EPA) co-crystals obtained by delipidation and cross-seeding 7BQ4 ; 1.62 ; X-ray structure of human PPARalpha ligand binding domain-eicosapentaenoic acid (EPA)-SRC1 coactivator peptide co-crystals obtained by delipidation and co-crystallization 6LX4 ; 2.13 ; X-ray structure of human PPARalpha ligand binding domain-fenofibric acid co-crystals obtained by delipidation and co-crystallization 7BQ0 ; 1.771 ; X-ray structure of human PPARalpha ligand binding domain-fenofibric acid-SRC1 coactivator peptide co-crystals obtained by delipidation and co-crystallization 6KB8 ; 1.47 ; X-ray structure of human PPARalpha ligand binding domain-GW7647 co-crystals obtained by cross-seeding 6KB3 ; 1.45 ; X-ray structure of human PPARalpha ligand binding domain-GW7647 co-crystals obtained by delipidation and cross-seeding 6KAY ; 1.735 ; X-ray structure of human PPARalpha ligand binding domain-GW7647 co-crystals obtained by soaking 7BQ3 ; 1.98 ; X-ray structure of human PPARalpha ligand binding domain-GW7647-SRC1 coactivator peptide co-crystals obtained by delipidation and co-crystallization 6L37 ; 2.91 ; X-ray structure of human PPARalpha ligand binding domain-GW9662-ciprofibrate co-crystals obtained by delipidation and co-crystallization 6KYP ; 2.86 ; X-ray structure of human PPARalpha ligand binding domain-GW9662-clofibric acid co-crystals obtained by delipidation and co-crystallization 6L36 ; 3.301 ; X-ray structure of human PPARalpha ligand binding domain-GW9662-fenofibric acid co-crystals obtained by delipidation and co-crystallization 6L38 ; 2.761 ; X-ray structure of human PPARalpha ligand binding domain-GW9662-gemfibrozil co-crystals obtained by delipidation and co-crystallization 6KAX ; 1.23 ; X-ray structure of human PPARalpha ligand binding domain-intrinsic fatty acid (E. coli origin) co-crystals obtained by cross-seeding 7BQ1 ; 1.521 ; X-ray structure of human PPARalpha ligand binding domain-intrinsic fatty acid (E. coli origin)-SRC1 coactivator peptide co-crystals obtained by co-crystallization 6LX8 ; 1.54 ; X-ray structure of human PPARalpha ligand binding domain-oleic acid co-crystals obtained by delipidation and cross-seeding 6LX6 ; 1.3 ; X-ray structure of human PPARalpha ligand binding domain-palmitic acid co-crystals obtained by delipidation and cross-seeding 6KB9 ; 1.55 ; X-ray structure of human PPARalpha ligand binding domain-pemafibrate co-crystals obtained by cross-seeding 6KB4 ; 1.42 ; X-ray structure of human PPARalpha ligand binding domain-pemafibrate co-crystals obtained by delipidation and cross-seeding 6KAZ ; 1.48 ; X-ray structure of human PPARalpha ligand binding domain-pemafibrate co-crystals obtained by soaking 7BQ2 ; 1.52 ; X-ray structure of human PPARalpha ligand binding domain-pemafibrate-SRC1 coactivator peptide co-crystals obtained by soaking 6LXC ; 2.03 ; X-ray structure of human PPARalpha ligand binding domain-saroglitazar co-crystals obtained by delipidation and cross-seeding 6LXB ; 2.36 ; X-ray structure of human PPARalpha ligand binding domain-saroglitazar co-crystals obtained by soaking 6LX7 ; 1.41 ; X-ray structure of human PPARalpha ligand binding domain-stearic acid co-crystals obtained by delipidation and cross-seeding 6KB6 ; 1.431 ; X-ray structure of human PPARalpha ligand binding domain-tetradecylthioacetic acid (TTA) co-crystals obtained by delipidation and cross-seeding 6KB1 ; 1.25 ; X-ray structure of human PPARalpha ligand binding domain-tetradecylthioacetic acid (TTA) co-crystals obtained by soaking 6KBA ; 1.82 ; X-ray structure of human PPARalpha ligand binding domain-Wy14643 co-crystals obtained by co-crystallization 6KB7 ; 2.14 ; X-ray structure of human PPARalpha ligand binding domain-Wy14643 co-crystals obtained by delipidation and cross-seeding 6KB2 ; 1.95 ; X-ray structure of human PPARalpha ligand binding domain-Wy14643 co-crystals obtained by soaking 7E0A ; 1.771 ; X-ray structure of human PPARgamma ligand binding domain-saroglitazar co-crystals obtained by co-crystallization 1SU3 ; 2.2 ; X-ray structure of human proMMP-1: New insights into collagenase action 3E16 ; 1.6 ; X-ray structure of human prostasin in complex with Benzoxazole warhead peptidomimic, lysine in P3 7BFZ ; 1.73 ; X-ray structure of human prostate-specific membrane antigen(PSMA) in complex with a inhibitor Glu-490 5CYJ ; 1.79 ; X-ray structure of human RBPMS 5DET ; 1.95 ; X-ray structure of human RBPMS in complex with the RNA 5E7W ; 0.9519 ; X-ray Structure of Human Recombinant 2Zn insulin at 0.92 Angstrom 5HMS ; 2.8 ; X-ray structure of human recombinant 5-aminolaevulinic acid dehydratase (hrALAD). 6RLX ; 1.5 ; X-RAY STRUCTURE OF HUMAN RELAXIN AT 1.5 ANGSTROMS. COMPARISON TO INSULIN AND IMPLICATIONS FOR RECEPTOR BINDING DETERMINANTS 6VE5 ; 2.0 ; X-ray structure of human REV7 in complex with Shieldin3 (residues 41-74) 1Z7X ; 1.95 ; X-ray structure of human ribonuclease inhibitor complexed with ribonuclease I 6QF4 ; 2.495 ; X-Ray structure of human Serine/Threonine Kinase 17B (STK17B) aka DRAK2 in complex with ADP obtained by on-chip soaking 4S1Y ; 3.16 ; X-ray structure of human serum albumin complexed with cisplatin 1AGN ; 3.0 ; X-RAY STRUCTURE OF HUMAN SIGMA ALCOHOL DEHYDROGENASE 6I5G ; 2.0 ; X-ray structure of human soluble Epoxide Hydrolase C-terminal Domain (hsEH CTD)in complex with 15d-PGJ2 4AYZ ; 3.5 ; X-ray Structure of human SOUL 1B8Y ; 2.0 ; X-RAY STRUCTURE OF HUMAN STROMELYSIN CATALYTIC DOMAIN COMPLEXED WITH NON-PEPTIDE INHIBITORS: IMPLICATIONS FOR INHIBITOR SELECTIVITY 1CAQ ; 1.8 ; X-RAY STRUCTURE OF HUMAN STROMELYSIN CATALYTIC DOMAIN COMPLEXES WITH NON-PEPTIDE INHIBITORS: IMPLICATION FOR INHIBITOR SELECTIVITY 1CIZ ; 1.64 ; X-RAY STRUCTURE OF HUMAN STROMELYSIN CATALYTIC DOMAIN COMPLEXES WITH NON-PEPTIDE INHIBITORS: IMPLICATION FOR INHIBITOR SELECTIVITY 2J3N ; 2.8 ; X-ray structure of human thioredoxin reductase 1 3BS9 ; 1.95 ; X-ray structure of human TIA-1 RRM2 2BJN ; 1.7 ; X-ray Structure of human TPC6 4PVL ; 1.851 ; X-ray structure of human transthyretin (TTR) at room temperature to 1.9A resolution 3EEC ; 3.0 ; X-ray structure of human ubiquitin Cd(II) adduct 3EHV ; 1.81 ; X-ray structure of human ubiquitin Zn(II) adduct 3EFU ; 1.84 ; X-ray structure of human ubiquitin-Hg(II) adduct 1FGJ ; 2.8 ; X-RAY STRUCTURE OF HYDROXYLAMINE OXIDOREDUCTASE 2ECE ; 2.0 ; X-ray structure of hypothetical selenium-binding protein from Sulfolobus tokodaii, ST0059 1XMB ; 2.0 ; X-ray structure of IAA-aminoacid hydrolase from Arabidopsis thaliana gene AT5G56660 3AKM ; 1.9 ; X-ray structure of iFABP from human and rat with bound fluorescent fatty acid analogue 3AKN ; 1.6 ; X-ray structure of iFABP from human and rat with bound fluorescent fatty acid analogue 3FAT ; 1.9 ; X-ray structure of iGluR4 flip ligand-binding core (S1S2) in complex with (S)-AMPA at 1.90A resolution 3FAS ; 1.4 ; X-ray structure of iGluR4 flip ligand-binding core (S1S2) in complex with (S)-glutamate at 1.40A resolution 3GBA ; 1.35 ; X-ray structure of iGluR5 ligand-binding core (S1S2) in complex with dysiherbaine at 1.35A resolution 3GBB ; 2.1 ; X-ray structure of iGluR5 ligand-binding core (S1S2) in complex with MSVIII-19 at 2.10A resolution 2F1D ; 3.0 ; X-Ray Structure of imidazoleglycerol-phosphate dehydratase 2GX9 ; 2.1 ; X-ray structure of influenza virus NS1 effector domain 1FQ7 ; 2.8 ; X-RAY STRUCTURE OF INHIBITOR CP-72,647 BOUND TO SACCHAROPEPSIN 7RKD ; 1.25 ; X-Ray structure of Insulin Analog GLULISINE 5VIZ ; 1.7 ; X-Ray structure of Insulin Glargine 7OGS ; 2.37 ; X-ray Structure of Interferon Regulatory Factor 4 DNA binding domain bound to an interferon-stimulated response element 7OOT ; 2.25 ; X-ray Structure of Interferon Regulatory Factor 4 DNA binding domain bound to an interferon-stimulated response element 7O56 ; 2.6 ; X-ray Structure of Interferon Regulatory Factor 4 DNA binding domain bound to an interferon-stimulated response element solved by Phosphorus and Sulphur SAD methods 5BVI ; 2.6 ; X-ray Structure of Interferon Regulatory Factor 4 IAD Domain 1ILT ; 2.0 ; X-RAY STRUCTURE OF INTERLEUKIN-1 RECEPTOR ANTAGONIST AT 2.0 ANGSTROMS RESOLUTION 4FFK ; 1.76 ; X-ray structure of iron superoxide dismutase from Acidilobus saccharovorans 3ODV ; 0.95 ; X-ray structure of kaliotoxin by racemic protein crystallography 5K8B ; 2.15 ; X-ray structure of KdnA, 8-amino-3,8-dideoxy-alpha-D-manno-octulosonate transaminase, from Shewanella oneidensis in the presence of the external aldimine with PLP and glutamate 5K8C ; 1.85 ; X-ray structure of KdnB, 3-deoxy-alpha-D-manno-octulosonate 8-oxidase, from Shewanella oneidensis 3NC9 ; 2.4 ; X-ray structure of ketohexokinase complexed with an indazole compound 3NBW ; 2.341 ; X-ray structure of ketohexokinase in complex with a pyrazole compound 3Q92 ; 2.8 ; X-ray Structure of ketohexokinase in complex with a pyrimidopyrimidine analog 1 3QA2 ; 2.519 ; X-ray Structure of ketohexokinase in complex with a pyrimidopyrimidine analog 2 3QAI ; 2.7 ; X-ray Structure of ketohexokinase in complex with a pyrimidopyrimidine analog 3 3NCA ; 2.602 ; X-ray structure of ketohexokinase in complex with a thieno pyridinol compound 3NBV ; 2.3 ; X-ray Structure of Ketohexokinase in complex with AMP-PNP and fructose 3RO4 ; 2.6 ; X-ray Structure of Ketohexokinase in complex with an indazole compound derivative 3NC2 ; 2.5 ; X-ray structure of ketohexokinase with a quinazoline 6GQE ; 2.15 ; X-ray structure of KH1-2 domain of IMP3 1LW5 ; 2.05 ; X-ray structure of L-Threonine Aldolase (low-specificity) in complex with glycine 1LW4 ; 1.9 ; X-ray structure of L-Threonine Aldolase (low-specificity) in complex with L-allo-threonine 6H07 ; 1.482 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase 6HLF ; 1.55 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant - K32A 6Y1C ; 1.41 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant D54F 6Y1B ; 1.4 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant K32A_Q126K 6Y10 ; 1.22 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant Q126H 6Y0Z ; 1.21 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant Q126K 7A2B ; 1.399 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant Q207D 6Y0S ; 1.44 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant T102E 6Y15 ; 1.8 ; X-ray structure of Lactobacillus brevis alcohol dehydrogenase mutant T102E_Q126K 7P36 ; 1.14 ; X-ray structure of Lactobacillus kefir alcohol dehydrogenase (wild type) 7P7Y ; 1.25 ; X-ray structure of Lactobacillus kefir alcohol dehydrogenase mutant Q126K 1IF2 ; 2.0 ; X-RAY STRUCTURE OF LEISHMANIA MEXICANA TRIOSEPHOSPHATE ISOMERASE COMPLEXED WITH IPP 2B6P ; 2.4 ; X-ray structure of lens Aquaporin-0 (AQP0) (lens MIP) in an open pore state 6NLE ; 2.615 ; X-ray structure of LeuT with V269 deletion 7KC3 ; 1.8 ; X-ray structure of Lfa-1 I domain collected at 273 K 7KC5 ; 1.86 ; X-ray structure of Lfa-1 I domain in complex with BMS-68852 collected at 273 K 7KC6 ; 1.85 ; X-ray structure of Lfa-1 I domain in complex with Lovastatin collected at 273 K 1XUO ; 1.8 ; X-ray structure of LFA-1 I-domain bound to a 1,4-diazepane-2,5-dione inhibitor at 1.8A resolution 4IXD ; 1.8 ; X-ray structure of lfa-1 i-domain in complex with ibe-667 at 1.8a resolution 1XDD ; 2.2 ; X-ray structure of LFA-1 I-domain in complex with LFA703 at 2.2A resolution 1XDG ; 2.1 ; X-ray structure of LFA-1 I-domain in complex with LFA878 at 2.1A resolution 3OWQ ; 2.606 ; X-Ray Structure of Lin1025 protein from Listeria innocua, Northeast Structural Genomics Consortium Target LkR164 6A12 ; 2.145 ; X-ray structure of lipase from Geobacillus thermoleovorans 5ACF ; 1.8 ; X-ray Structure of LPMO 5ACG ; 1.91 ; X-ray Structure of LPMO 5ACH ; 1.28 ; X-ray Structure of LPMO 5ACI ; 1.75 ; X-ray Structure of LPMO 5ACJ ; 1.7 ; X-ray Structure of LPMO 6YDC ; 2.0 ; X-ray structure of LPMO 6YDE ; 2.2 ; X-ray structure of LPMO 6YDG ; 1.9 ; X-ray structure of LPMO 7PXK ; 1.4 ; X-ray structure of LPMO at 1.39x10^5 Gy 7PXM ; 1.3 ; X-ray structure of LPMO at 1.45x10^6 Gy 7PXL ; 1.35 ; X-ray structure of LPMO at 3.6x10^5 Gy 7PXJ ; 1.75 ; X-ray structure of LPMO at 5.99x10^4 Gy 7PXN ; 1.65 ; X-ray structure of LPMO at 6.65x10^6 Gy 7PXI ; 1.63 ; X-ray structure of LPMO at 7.88x10^3 Gy 6YDD ; 2.8 ; X-ray structure of LPMO. 6YDF ; 2.12 ; X-ray structure of LPMO. 4XJF ; 1.8 ; X-ray structure of Lysozyme B1 4XJG ; 1.8 ; X-ray structure of Lysozyme B2 8OM8 ; 1.08 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(empp)2] (Structure A) 8OMS ; 1.1 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(empp)2] (Structure B) 8OMT ; 1.097 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(empp)2] (Structure C) 8AJ4 ; 1.22 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(malt)2] (Structure A') 8AJ3 ; 1.13 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(malt)2] (Structure A) 8AJ5 ; 1.31 ; X-ray structure of lysozyme obtained upon reaction with [VIVO(malt)2] (Structure B) 4XJB ; 1.8 ; X-ray structure of Lysozyme1 4XJD ; 1.801 ; X-ray structure of Lysozyme2 4XJH ; 2.0 ; X-ray structure of LysozymeS1 4XJI ; 2.0 ; X-ray structure of LysozymeS2 6G0Y ; 2.42 ; X-ray structure of M-21 protein complex 1YV4 ; 1.51 ; X-ray structure of M23L onconase at 100K 1YV6 ; 1.78 ; X-ray structure of M23L onconase at 298K 5L1T ; 2.082 ; X-ray Structure of M77S mutant of Cytochrome P450 PntM with pentalenolactone F 5L1U ; 2.074 ; X-ray Structure of M81A mutant of Cytochrome P450 PntM with pentalenolactone F 5L1V ; 2.12 ; X-ray Structure of M81C mutant of Cytochrome P450 PntM with pentalenolactone F 5COR ; 2.548 ; X-RAY STRUCTURE OF MACROPHAGE INFLAMMATORY PROTEIN-1 ALPHA (CCL3) N-TERMINAL-SWITCH POLYMER 5D65 ; 3.1 ; X-RAY STRUCTURE OF MACROPHAGE INFLAMMATORY PROTEIN-1 ALPHA (CCL3) WITH HEPARIN COMPLEX 2X6G ; 2.18 ; X-ray Structure of Macrophage Inflammatory Protein-1 alpha (D27A) 2X69 ; 2.65 ; X-ray Structure of Macrophage Inflammatory Protein-1 alpha polymer 2X6L ; 2.602 ; X-ray Structure of Macrophage Inflammatory Protein-1 beta 6IXY ; 2.72 ; X-ray structure of major pilin from C. perfringens SM101 1D2F ; 2.5 ; X-RAY STRUCTURE OF MALY FROM ESCHERICHIA COLI: A PYRIDOXAL-5'-PHOSPHATE-DEPENDENT ENZYME ACTING AS A MODULATOR IN MAL GENE EXPRESSION 6TD9 ; 1.96 ; X-ray structure of mature PA1624 from Pseudomonas aeruginosa PAO1 2YFA ; 1.8 ; X-ray structure of McpS ligand binding domain in complex with malate 2YFB ; 1.9 ; X-ray structure of McpS ligand binding domain in complex with succinate 7AD0 ; 2.07 ; X-ray structure of Mdm2 with modified p53 peptide 2ZAH ; 2.81 ; X-ray structure of Melon necrotic spot virus 8BK2 ; 2.41 ; X-ray structure of meningococcal factor H binding protein variant 2 in complex with a specific and bactericidal human monoclonal antibody 1B1 6BI8 ; 2.291 ; X-ray structure of MERS coronavirus papain-like protease in complex with human ISG15 4RSP ; 1.62 ; X-ray structure of MERS-CoV nsp5 protease bound with a designed inhibitor 4YLU ; 2.1 ; X-ray structure of MERS-CoV nsp5 protease bound with a non-covalent inhibitor 1IK4 ; 2.0 ; X-ray Structure of Methylglyoxal Synthase from E. coli Complexed with Phosphoglycolohydroxamic Acid 4U8D ; 2.3 ; X-ray structure of Mg-bound human sorcin 5WFI ; 1.851 ; X-ray structure of MHV PLP2 (Cys1716Ser) catalytic mutant in complex with free ubiquitin 3L9H ; 2.0 ; X-ray structure of mitotic kinesin-5 (KSP, KIF11, Eg5)in complex with the hexahydro-2H-pyrano[3,2-c]quinoline EMD 534085 7JU8 ; 2.0 ; X-ray structure of MMP-13 in Complex with 4-(1,2,3-thiadiazol-4-yl)pyridine 8Q0R ; 1.55 ; X-ray structure of MNEI mutant Mut9 (E23A, C41A, Y65R, S76Y) 1Q6W ; 2.81 ; X-Ray structure of Monoamine oxidase regulatory protein from Archaeoglobus fulgius 135L ; 1.3 ; X-RAY STRUCTURE OF MONOCLINIC TURKEY EGG LYSOZYME AT 1.3 ANGSTROMS RESOLUTION 6MGH ; 1.95 ; X-ray structure of monomeric near-infrared fluorescent protein miRFP670nano 3HJD ; 1.65 ; X-ray structure of monomeric variant of HNP1 4X51 ; 2.05 ; X-ray structure of mouse interleukin-10 mutant - S1_E8del, C149Y 2G0A ; 2.35 ; X-ray structure of mouse pyrimidine 5'-nucleotidase type 1 with lead(II) bound in active site 2G07 ; 2.3 ; X-ray structure of mouse pyrimidine 5'-nucleotidase type 1, phospho-enzyme intermediate analog with Beryllium fluoride 2G09 ; 2.1 ; X-ray structure of mouse pyrimidine 5'-nucleotidase type 1, product complex 2G08 ; 2.35 ; X-ray structure of mouse pyrimidine 5'-nucleotidase type 1, product-transition complex analog with Aluminum fluoride 2G06 ; 2.25 ; X-ray structure of mouse pyrimidine 5'-nucleotidase type 1, with bound magnesium(II) 3TSR ; 2.1999 ; X-ray structure of mouse ribonuclease inhibitor complexed with mouse ribonuclease 1 6TN9 ; 2.6 ; X-RAY STRUCTURE OF MPS1 IN COMPLEX WITH COMPOUND 16 6TNB ; 2.65 ; X-RAY STRUCTURE OF MPS1 IN COMPLEX WITH COMPOUND 41 6TNC ; 2.3 ; X-RAY STRUCTURE OF MPS1 IN COMPLEX WITH COMPOUND 46 6TND ; 2.58 ; X-RAY STRUCTURE OF MPS1 IN COMPLEX WITH COMPOUND 79 1LXN ; 2.3 ; X-RAY STRUCTURE OF MTH1187 NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET TT272 6SBI ; 2.7 ; X-ray structure of murine Fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1) in complex with inhibitor oxalate 6SBJ ; 2.22 ; X-ray structure of mus musculus Fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1) apo-form uuncomplexed 1FF4 ; 1.5 ; X-RAY STRUCTURE OF MUSCARINIC TOXIN 2 AT 1.5 ANGSTROM RESOLUTION 2JCY ; 2.35 ; X-ray structure of mutant 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis 2JCX ; 2.1 ; X-ray structure of mutant 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with fosmidomycin and NADPH 2JD0 ; 2.3 ; X-ray structure of mutant 1-deoxy-D-xylulose 5-phosphate reductoisomerase, DXR, Rv2870c, from Mycobacterium tuberculosis, in complex with NADPH 2ZKN ; 1.86 ; X-ray structure of mutant galectin-1/lactose complex 4DJ4 ; 2.35 ; X-ray structure of mutant N211D of bifunctional nuclease TBN1 from Solanum lycopersicum (Tomato) 6ZT6 ; 2.3 ; X-ray structure of mutated arabinofuranosidase 6ZT7 ; 1.85 ; X-ray structure of mutated arabinofuranosidase 6ZT8 ; 2.8 ; X-ray structure of mutated arabinofuranosidase 6ZT9 ; 2.0 ; X-ray structure of mutated arabinofuranosidase 6ZTA ; 3.1 ; X-ray structure of mutated arabinofuranosidase 2XC3 ; 1.5 ; X-ray structure of Mycobacterium tuberculosis cyp125 bound to the reverse type I inhibitor 2WM4 ; 2.11 ; X-ray structure of Mycobacterium tuberculosis cytochrome P450 CYP124 in complex with phytanic acid 2X5W ; 1.58 ; X-ray structure of Mycobacterium tuberculosis cytochrome P450 CYP125 in complex with substrate cholest-4-en-3-one 2YIZ ; 1.7 ; X-ray structure of Mycobacterium tuberculosis Dodecin 2UZZ ; 3.2 ; X-ray structure of N-methyl-L-tryptophan oxidase (MTOX) 8ACW ; 3.4 ; X-ray structure of Na+-NQR from Vibrio cholerae at 3.4 A resolution 8ACY ; 3.5 ; X-ray structure of Na+-NQR from Vibrio cholerae at 3.5 A resolution 8AD0 ; 3.11 ; X-ray structure of Na+-NQR from Vibrio cholerae in different conformation at 3.1 A 1ZZE ; 1.8 ; X-ray Structure of NADPH-dependent Carbonyl Reductase from Sporobolomyces salmonicolor 5YBC ; 2.5 ; X-ray structure of native ETS-domain domain of Ergp55 1M22 ; 1.4 ; X-ray structure of native peptide amidase from Stenotrophomonas maltophilia at 1.4 A 2E3W ; 1.05 ; X-ray structure of native RNase A 4J8X ; 2.87 ; X-ray structure of NCP145 with bound chlorido(eta-6-p-cymene)(N-fluorophenyl-2-pyridinecarbothioamide)ruthenium(II) 4J8V ; 2.58 ; X-ray structure of NCP145 with bound chlorido(eta-6-p-cymene)(N-phenyl-2-pyridinecarbothioamide)ruthenium(II) 4J8W ; 2.41 ; X-ray structure of NCP145 with chlorido(eta-6-p-cymene)(N-fluorophenyl-2-pyridinecarbothioamide)osmium(II) 4J8U ; 2.38 ; X-ray structure of NCP145 with chlorido(eta-6-p-cymene)(N-phenyl-2-pyridinecarbothioamide)osmium(II) 6A7K ; 1.9 ; X-ray structure of NdhS from T. elongatus 6CBL ; 1.6 ; x-ray structure of NeoB from Streptomyces fradiae in complex with neamine as an external aldimine 6CBN ; 1.35 ; x-ray structure of NeoB from streptomyces fradiae in complex with PLP and neomycin (as the external aldimine) at pH 7.5 6CBM ; 1.65 ; x-ray structure of NeoB from streptomyces fradiae in complex with PLP and neomycin (as the external aldimine) at pH 9 6CBK ; 1.75 ; X-ray structure of NeoB from Streptomyces fradiae in complex with PMP 5IJR ; 1.52 ; X-ray structure of neuropilin-1 b1 domain complexed with Arg-1 ligand. 5IYY ; 1.6 ; X-ray structure of neuropilin-1 b1 domain complexed with Arg-4 ligand. 5J1X ; 2.1 ; X-ray structure of neuropilin-1 b1 domain complexed with Arg-5 ligand. 5JHK ; 1.8 ; X-ray structure of neuropilin-1 b1 domain complexed with Arg-6 ligand. 5JGQ ; 1.6 ; X-ray structure of neuropilin-1 b1 domain complexed with Arg-7 ligand. 5JGI ; 1.38 ; X-ray structure of neuropilin-1 b1 domain complexed with M45 compound 7T5C ; 1.5 ; X-ray structure of Neurospora crassa Polysaccharide Monooxygenase 9D (NcLPMO9D) at low pH 2UU8 ; 0.94 ; X-ray structure of Ni, Ca concanavalin A at Ultra-high resolution (0. 94A) 4AAZ ; 1.4 ; X-ray structure of Nicotiana alata Defensin 1 NaD1 4IXO ; 2.2 ; X-ray structure of NifS-like protein from Rickettsia africae ESF-5 7A0C ; 1.9 ; X-ray structure of NikA from Escherichia coli in complex with Fe-6-Me2-BPMCN 5L8D ; 1.8 ; X-ray structure of NikA from Escherichia coli in complex with Ru(bis(pyrzol-1-yl)acetate scorpionate)(CO)2Cl 4DCX ; 2.0 ; X-ray structure of NikA in complex with Fe(1R,2R)-N,N'-Bis(2-pyridylmethyl)-N,N'-dicarboxymethyl-1,2-cyclohexanediamine 4DCY ; 2.0 ; X-ray structure of NikA in complex with Fe(1S,2S)-N,N-kappa-Bis(2-pyridylmethyl)-N-carboxymethyl-N-kappa-methyl-1,2-cyclohexanediamine 4I9D ; 1.7 ; X-ray structure of NikA in complex with Fe-N,N'-Bis(2-pyridylmethyl)-N-carboxymethyl-N'-methyl 3MZ9 ; 1.8 ; X-ray structure of NikA in complex with HBED 4I8C ; 2.503 ; X-ray structure of NikA in complex with Ni-(L-His)2 3MZB ; 1.7 ; X-ray structure of NikA in complex with the doubly hydroxylated iron complex, 1-O2 1JFB ; 1.0 ; X-ray structure of nitric oxide reductase (cytochrome P450nor) in the ferric resting state at atomic resolution 1JFC ; 1.05 ; X-ray structure of nitric oxide reductase (cytochrome P450nor) in the ferrous CO state at atomic resolution 1NUE ; 2.0 ; X-RAY STRUCTURE OF NM23 HUMAN NUCLEOSIDE DIPHOSPHATE KINASE B COMPLEXED WITH GDP AT 2 ANGSTROMS RESOLUTION 2VQ5 ; 2.09 ; X-ray structure of Norcoclaurine synthase from Thalictrum flavum in complex with dopamine and hydroxybenzaldehyde 1XSR ; 2.8 ; X-Ray structure of Northeast Structural Genomics Consortium target SfR7 1TZA ; 2.4 ; X-ray structure of Northeast Structural Genomics Consortium target SoR45 1TO0 ; 2.5 ; X-ray structure of Northeast Structural Genomics target protein sr145 from Bacillus subtilis 1TTZ ; 2.11 ; X-ray structure of Northeast Structural Genomics target protein XcR50 from X. campestris 1YDM ; 2.5 ; X-Ray structure of Northeast Structural Genomics target SR44 2AJL ; 2.5 ; X-ray Structure of Novel Biaryl-Based Dipeptidyl peptidase IV inhibitor 8AD4 ; 1.5 ; X-ray structure of NqrF(129-408)of Vibrio cholerae in complex with NADH 8AD3 ; 1.55 ; X-ray structure of NqrF(129-408)of Vibrio cholerae variant F406A 8AD5 ; 1.65 ; X-ray structure of NqrF(129-408)of Vibrio cholerae variant F406A 3KWG ; 2.21 ; X-ray structure of NS1 effector domain W187A mutant 3KWI ; 2.21 ; X-ray structure of NS1 effector domain W187Y mutant 6G3T ; 2.53 ; X-ray structure of NSD3-PWWP1 6G2E ; 1.85 ; X-ray structure of NSD3-PWWP1 in complex with compound 13 6G2F ; 1.74 ; X-ray structure of NSD3-PWWP1 in complex with compound 16 6G24 ; 2.1 ; X-ray structure of NSD3-PWWP1 in complex with compound 3 6G25 ; 1.432 ; X-ray structure of NSD3-PWWP1 in complex with compound 4 6G27 ; 1.65 ; X-ray structure of NSD3-PWWP1 in complex with compound 5 6G29 ; 1.7 ; X-ray structure of NSD3-PWWP1 in complex with compound 6 6G2B ; 1.61 ; X-ray structure of NSD3-PWWP1 in complex with compound 8 6G2C ; 1.76 ; X-ray structure of NSD3-PWWP1 in complex with compound 9 6G2O ; 1.81 ; X-ray structure of NSD3-PWWP1 in complex with compound BI-9321 5VB3 ; 1.95 ; X-ray structure of nuclear receptor ROR-gammat Ligand Binding Domain + SRC2 peptide 1NDK ; 2.2 ; X-RAY STRUCTURE OF NUCLEOSIDE DIPHOSPHATE KINASE 1NDC ; 2.0 ; X-RAY STRUCTURE OF NUCLEOSIDE DIPHOSPHATE KINASE COMPLEXED WITH DTDP AND MG2+ AT 2 A RESOLUTION 1KCX ; 2.12 ; X-ray structure of NYSGRC target T-45 1SJA ; 2.3 ; X-ray structure of o-Succinylbenzoate Synthase complexed with N-acetylmethionine 1SJC ; 2.1 ; x-ray structure of o-succinylbenzoate synthase complexed with N-succinyl methionine 1SJD ; 1.87 ; x-ray structure of o-succinylbenzoate synthase complexed with n-succinyl phenylglycine 1SJB ; 2.2 ; X-ray structure of o-succinylbenzoate synthase complexed with o-succinylbenzoic acid 4OC0 ; 1.85 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with CCIBzL, a urea-based inhibitor N~2~-[(1-carboxycyclopropyl)carbamoyl]-N~6~-(4-iodobenzoyl)-L-lysine 4OC2 ; 1.65 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with CEIBzL, a urea-based inhibitor N~2~-{[(1S)-1-carboxybut-3-yn-1-yl]carbamoyl}-N~6~-(4-iodobenzoyl)-L-lysine 4OC3 ; 1.79 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with CFIBzL, a urea-based inhibitor N~2~-{[(1S)-1-carboxy-2-(furan-2-yl)ethyl]carbamoyl}-N~6~-(4-iodobenzoyl)-L-lysine 4OC5 ; 1.7 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with CHIBzL, a urea-based inhibitor N~2~-{[(S)-carboxy(4-hydroxyphenyl)methyl]carbamoyl}-N~6~-(4-iodobenzoyl)-L-lysine 4OC1 ; 1.75 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with COIBzL, a urea-based inhibitor (2S)-2-[({(1S)-1-carboxy-2-[(2S)-oxiran-2-yl]ethyl}carbamoyl)amino]-6-[(4-iodobenzoyl)amino]hexanoic acid 4OC4 ; 1.66 ; X-ray structure of of human glutamate carboxypeptidase II (GCPII) in a complex with CPIBzL, a urea-based inhibitor N~2~-{[(1S)-1-carboxy-2-(pyridin-4-yl)ethyl]carbamoyl}-N~6~-(4-iodobenzoyl)-L-lysine 3NGG ; 1.33 ; X-ray Structure of Omwaprin 3GRF ; 2.0 ; X-ray Structure of Ornithine Transcarbamoylase from Giardia lamblia 2JI9 ; 2.2 ; X-ray structure of Oxalyl-CoA decarboxylase in complex with 3-deaza- ThDP 2JI6 ; 2.06 ; X-ray structure of Oxalyl-CoA decarboxylase in complex with 3-deaza- ThDP and oxalyl-CoA 2JIB ; 2.2 ; X-ray structure of Oxalyl-CoA decarboxylase in complex with coenzyme- A 2JI8 ; 2.15 ; X-ray structure of Oxalyl-CoA decarboxylase in complex with Formyl- CoA 2JI7 ; 1.82 ; X-ray structure of Oxalyl-CoA decarboxylase with covalent reaction intermediate 1JFV ; 2.0 ; X-Ray Structure of oxidised C10S, C15A arsenate reductase from pI258 3K20 ; 2.5 ; X-ray structure of oxidoreductase from corynebacterium diphtheriae,hexagonal crystal form. northeast structural genomics consortium target cdr100d 3K1Y ; 2.5 ; X-ray structure of oxidoreductase from corynebacterium diphtheriae. orthorombic crystal form, northeast structural genomics consortium target cdr100d 3KKJ ; 2.5 ; X-ray structure of P. syringae q888a4 Oxidoreductase at resolution 2.5A, Northeast Structural Genomics Consortium target PsR10 3ZSH ; 2.05 ; X-ray structure of p38alpha bound to SCIO-469 3ZSG ; 1.89 ; X-ray structure of p38alpha bound to TAK-715 3ZSI ; 2.4 ; X-ray structure of p38alpha bound to VX-745 4ETR ; 2.25 ; X-ray structure of PA2169 from Pseudomonas aeruginosa 5H20 ; 2.5 ; X-ray structure of PadR-like Transcription factor from bacteroid fragilis 6BWL ; 1.45 ; X-ray structure of Pal from Bacillus thuringiensis 3X2L ; 0.83 ; X-ray structure of PcCel45A apo form at 95K. 3X2J ; 1.301 ; X-ray structure of PcCel45A D114N apo form at 95K. 3X2K ; 1.182 ; X-ray structure of PcCel45A D114N with cellopentaose at 95K. 5KJO ; 1.47 ; X-ray structure of PcCel45A expressed in Aspergillus nidullans 5KJQ ; 1.704 ; X-ray structure of PcCel45A in complex with cellobiose expressed in Aspergillus nidullans 3X2G ; 1.0 ; X-ray structure of PcCel45A N92D apo form at 100K 3X2I ; 1.6 ; X-ray structure of PcCel45A N92D apo form at 298K. 3X2H ; 0.99 ; X-ray structure of PcCel45A N92D with cellopentaose at 95K. 3X2M ; 0.64 ; X-ray structure of PcCel45A with cellopentaose at 0.64 angstrom resolution. 3IBJ ; 3.02 ; X-ray structure of PDE2A 8BPY ; 3.3 ; X-RAY STRUCTURE OF PDE9A IN COMPLEX WITH Inhibitor 13A 1X8M ; 2.6 ; X-ray structure of pectin degrading enzyme 5-keto 4-deoxyuronate isomerase from Escherichia coli 6NOZ ; 1.95 ; X-ray structure of PEDV papain-like protease 2 7MC9 ; 3.099 ; X-RAY STRUCTURE OF PEDV PAPAIN-LIKE PROTEASE 2 bound to UB-PA 6BWC ; 2.7 ; X-ray structure of Pen from Bacillus thuringiensis 3P05 ; 2.5 ; X-ray structure of pentameric HIV-1 CA 3P0A ; 5.954 ; X-ray structure of pentameric HIV-1 CA 1ZY1 ; 3.0 ; X-ray structure of peptide deformylase from Arabidopsis thaliana (AtPDF1A) in complex with Met-Ala-Ser 1ZXZ ; 2.8 ; X-ray structure of peptide deformylase from Arabidopsis thaliana (AtPDF1A); crystals grown in PEG-5000 MME as precipitant 1ZY0 ; 2.9 ; X-ray structure of peptide deformylase from Arabidopsis thaliana (AtPDF1A); crystals grown in PEG-6000 1W74 ; 2.6 ; X-ray structure of peptidyl-prolyl cis-trans isomerase A, PpiA, Rv0009, from Mycobacterium tuberculosis. 4XNI ; 2.8 ; X-ray structure of PepTst1 4XNJ ; 2.3 ; X-ray structure of PepTst2 4XWR ; 1.1 ; X-ray structure of perdeuterated Cholesterol Oxidase from Streptomyces SA-COO 3KGG ; 2.1 ; X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): Perdeuteration of proteins for neutron diffraction 5VNR ; 1.631 ; X-ray structure of perdeuterated T4 lysozyme cysteine-free pseudo-wild type at cryogenic temperature 5CLX ; 1.28 ; X-ray structure of perdeuterated TTR mutant - S52P at 1.28A resolution 5CM1 ; 1.22 ; X-ray structure of perdeuterated TTR mutant - T119M at 1.22A 5CNH ; 1.42 ; X-ray structure of perdeuterated wild-type TTR at 1.42A resolution 2WGJ ; 2.0 ; X-ray Structure of PF-02341066 bound to the kinase domain of c-Met 3ZXZ ; 1.8 ; X-ray Structure of PF-04217903 bound to the kinase domain of c-Met 1RTW ; 2.35 ; X-ray Structure of PF1337, a TenA Homologue from Pyrococcus furiosus. Northeast Structural Genomics Research Consortium (Nesg) Target PFR34 2WKM ; 2.2 ; X-ray Structure of PHA-00665752 bound to the kinase domain of c-Met 2Q5L ; 1.85 ; X-ray structure of phenylpyruvate decarboxylase in complex with 2-(1-hydroxyethyl)-3-deaza-ThDP 2Q5J ; 3.2 ; X-ray structure of phenylpyruvate decarboxylase in complex with 3-deaza-ThDP 2Q5Q ; 1.9 ; X-ray structure of phenylpyruvate decarboxylase in complex with 3-deaza-ThDP and 5-phenyl-2-oxo-valeric acid 2Q5O ; 2.15 ; X-ray structure of phenylpyruvate decarboxylase in complex with 3-deaza-ThDP and phenylpyruvate 5Y2U ; 1.98 ; X-ray structure of Phosphoglycerate Mutase 1(PGAM1) complexed with a small molecule 5P2P ; 2.4 ; X-RAY STRUCTURE OF PHOSPHOLIPASE A2 COMPLEXED WITH A SUBSTRATE-DERIVED INHIBITOR 7ABM ; 3.004 ; X-ray structure of phosphorylated Barrier-to-autointegration factor (BAF) 1P6B ; 1.9 ; X-ray structure of phosphotriesterase, triple mutant H254G/H257W/L303T 3GL4 ; 2.15 ; X-ray structure of photobleached killerred 8H2U ; 3.4 ; X-ray Structure of photosystem I-LHCI super complex from Chlamydomonas reinhardtii. 3OSJ ; 2.3 ; X-Ray Structure of Phycobilisome LCM core-membrane linker polypeptide (fragment 254-400) from Synechocystis sp. PCC 6803, Northeast Structural Genomics Consortium Target SgR209C 3OHW ; 2.7 ; X-Ray Structure of Phycobilisome LCM core-membrane linker polypeptide (fragment 721-860) from Synechocystis sp. PCC 6803, Northeast Structural Genomics Consortium Target SgR209E 8B4N ; 1.6 ; X-ray structure of phycoerythrin from Porphyridium cruentum 4G11 ; 3.4 ; X-ray structure of PI3K-gamma bound to a 4-(morpholin-4-yl)- (6-oxo-1,6-dihydropyrimidin-2-yl)amide inhibitor 5G2N ; 2.68 ; X-ray structure of PI3Kinase Gamma in complex with Copanlisib 4XW6 ; 1.9 ; X-ray structure of PKAc with ADP, free phosphate ion, CP20, magnesium ions 4XW4 ; 1.82 ; X-ray structure of PKAc with AMPPNP, SP20, calcium ions 4XW5 ; 1.95 ; X-ray structure of PKAc with ATP, CP20, calcium ions 2CW3 ; 2.5 ; X-ray structure of PmSOD2, superoxide dismutase from Perkinsus marinus 6OW2 ; 1.7 ; X-ray Structure of Polypeptide Deformylase 4EOX ; 1.783 ; X-ray Structure of Polypeptide Deformylase Bound to a Acylprolinamide inhibitor 6OW7 ; 1.45 ; X-ray Structure of Polypeptide Deformylase with a Piperazic Acid 6QJ5 ; 2.0 ; X-ray structure of PPARgamma LBD with the ligand NV1380 6C8V ; 3.2 ; X-ray structure of PqqE from Methylobacterium extorquens 4LUB ; 2.1 ; X-ray structure of prephenate dehydratase from Streptococcus mutans 7NR4 ; 2.03 ; X-RAY STRUCTURE OF PRMT6 IN COMPLEX WITH indazole type inhibitor 3ICL ; 2.0 ; X-Ray Structure of Protein (EAL/GGDEF domain protein) from M.capsulatus, Northeast Structural Genomics Consortium Target McR174C 2A13 ; 1.32 ; X-ray structure of protein from Arabidopsis thaliana AT1G79260 3EMM ; 1.358 ; X-ray structure of protein from Arabidopsis thaliana AT1G79260 with Bound Heme 2APJ ; 1.6 ; X-Ray Structure of Protein from Arabidopsis Thaliana AT4G34215 at 1.6 Angstrom Resolution 1ZXU ; 1.7 ; X-ray structure of protein from arabidopsis thaliana AT5G01750 2A3Q ; 2.32 ; X-Ray Structure of Protein from Mus Musculus MM.29898 5ZN2 ; 1.2 ; X-ray structure of protein kinase ck2 alpha subunit H148A mutant 5ZN5 ; 1.7 ; X-ray structure of protein kinase ck2 alpha subunit H148A mutant 5ZN4 ; 1.651 ; X-ray structure of protein kinase ck2 alpha subunit H148N mutant 5ZN3 ; 1.5 ; X-ray structure of protein kinase ck2 alpha subunit H148S mutant 5ZN1 ; 1.05 ; X-ray structure of protein kinase ck2 alpha subunit in D2O 3H5C ; 3.26 ; X-Ray Structure of Protein Z-Protein Z Inhibitor Complex 6QF1 ; 1.737 ; X-Ray structure of Proteinase K crystallized on a silicon chip 4F8P ; 2.05 ; X-ray structure of PsaA from Yersinia pestis, in complex with galactose 4F8L ; 1.5 ; X-ray structure of PsaA from Yersinia pestis, in complex with galactose and AEBSF 4F8N ; 2.501 ; X-ray structure of PsaA from Yersinia pestis, in complex with galactose and phosphate choline 4F8O ; 1.9 ; X-ray structure of PsaA from Yersinia pestis, in complex with lactose and AEBSF 1ZA0 ; 2.0 ; X-ray structure of putative acyl-ACP desaturase DesA2 from Mycobacterium tuberculosis H37Rv 2EWO ; 2.9 ; X-ray structure of putative agmatine deiminase Q8DW17, Northeast Structural Genomics target SmR6. 1YVI ; 2.0 ; X-RAY STRUCTURE OF PUTATIVE HISTIDINE-CONTAINING PHOSPHOTRANSFER PROTEIN FROM RICE, AK104879 1XW8 ; 2.0 ; X-ray structure of putative lactam utilization protein YBGL. Northeast Structural Genomics Consortium target ET90. 1XQ1 ; 2.1 ; X-RAY STRUCTURE OF PUTATIVE TROPINONE REDUCATSE FROM ARABIDOPSIS THALIANA GENE AT1G07440 4TMD ; 2.0 ; X-ray structure of Putative uncharacterized protein (Rv0999 ortholog) from Mycobacterium smegmatis 1QYI ; 2.5 ; X-RAY STRUCTURE OF Q8NW41 NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ZR25. 3FRK ; 2.15 ; X-ray structure of QdtB from T. thermosaccharolyticum in complex with a PLP:TDP-3-aminoquinovose aldimine 4CBS ; 2.3 ; X-ray structure of quintuple mutant of human alanine glyoxylate aminotransferase, AGXT_RHEAM 4Z7P ; 1.2 ; X-ray structure of racemic ShK Q16K toxin 3E8Z ; 2.0 ; X-ray structure of rat arginase I-N130A mutant: the unliganded complex 3E9B ; 2.15 ; X-ray structure of rat arginase I-T135A mutant: the complex with BEC 3E8Q ; 2.9 ; X-ray structure of rat arginase I-T135A: the unliganded complex 5W70 ; 2.1 ; X-ray Structure of RbmB from Streptomyces ribosidificus 7RTI ; 2.05 ; X-ray structure of RBPJ-L3MBTL3(dT62)-DNA complex 5EYB ; 2.7 ; X-ray Structure of Reb1-Ter Complex 4NEU ; 2.57 ; X-ray structure of Receptor Interacting Protein 1 (RIP1)kinase domain with a 1-aminoisoquinoline inhibitor 1JF8 ; 1.12 ; X-ray structure of reduced C10S, C15A arsenate reductase from pI258 6AA2 ; 2.3 ; X-ray structure of ReQy1 (oxidized form) 6AA6 ; 2.39 ; X-ray structure of ReQy1 (reduced form) 3RF9 ; 2.2 ; X-ray structure of RlmN from Escherichia coli 3RFA ; 2.05 ; X-ray structure of RlmN from Escherichia coli in complex with S-adenosylmethionine 4RBZ ; 1.18 ; X-ray structure of RNA containing adenosine phosphorodithioate 4RC0 ; 1.13 ; X-ray structure of RNA containing guanosine phosphorodithioate 2CKZ ; 3.2 ; X-ray structure of RNA polymerase III subcomplex C17-C25. 8C3B ; 1.24 ; X-ray structure of RNase A upon reaction with a Ruthenium(II)-arene Complexed with Glycosylated Carbene Ligands (5) 5F5F ; 3.0 ; X-ray structure of Roquin ROQ domain in complex with a Selex-derived hexa-loop RNA motif 6TQB ; 1.6 ; X-ray structure of Roquin ROQ domain in complex with a UCP3 CDE1 SL RNA motif 6TQA ; 2.4 ; X-ray structure of Roquin ROQ domain in complex with a UCP3 CDE2 SL RNA motif 5F5H ; 2.23 ; X-ray structure of Roquin ROQ domain in complex with Ox40 hexa-loop RNA motif 5AJC ; 1.7 ; X-ray structure of RSL lectin in complex with sialyl lewis X tetrasaccharide 8A2M ; 1.57 ; X-ray structure of Ru(bpy)3]2+ complex (Ru1)-encapsulated human heavy chain ferritin 3JXQ ; 1.45 ; X-Ray structure of r[CGCG(5-fluoro)CG]2 3JXR ; 1.25 ; X-Ray structure of r[CGCG(5-fluoro)CG]2 2OGE ; 2.05 ; x-ray structure of S. venezuelae DesV in its internal aldimine form 4FGR ; 2.597 ; X-Ray Structure of SAICAR Synthetase (PurC) from Streptococcus pneumoniae complexed with ADP and Mg2+ 4FE2 ; 2.288 ; X-Ray Structure of SAICAR Synthetase (PurC) from Streptococcus pneumoniae complexed with AIR, ADP, Asp and Mg2+ 7RC1 ; 1.63 ; X-ray Structure of SARS-CoV main protease covalently modified by compound GRL-0686 6WNP ; 1.443 ; X-ray Structure of SARS-CoV-2 main protease bound to Boceprevir at 1.45 A 6XR3 ; 1.45 ; X-ray Structure of SARS-CoV-2 main protease bound to GRL-024-20 at 1.45 A 7RBZ ; 1.65 ; X-ray Structure of SARS-CoV-2 main protease covalently modified by compound GRL-017-20 7RC0 ; 1.65 ; X-ray Structure of SARS-CoV-2 main protease covalently modified by compound GRL-091-20 7NT4 ; 2.68 ; X-ray structure of SCoV2-PLpro in complex with small molecule inhibitor 6G3P ; 2.8 ; X-ray structure of seleno-methionine labelled NSD3-PWWP1 1YBM ; 2.096 ; X-ray structure of selenomethionyl gene product from Arabidopsis thaliana at5g02240 in space group P21212 1NPD ; 2.3 ; X-RAY STRUCTURE OF SHIKIMATE DEHYDROGENASE COMPLEXED WITH NAD+ FROM E.COLI (YDIB) NORTHEAST STRUCTURAL GENOMICS RESEARCH CONSORTIUM (NESG) TARGET ER24 7O2B ; 2.03 ; X-RAY STRUCTURE OF SMYD3 in complex with benzodiazepine-type inhibitor 6 7O2A ; 1.57 ; X-RAY STRUCTURE OF SMYD3 IN COMPLEX WITH benzodiazepine-type inhibitor compound 15 7O2C ; 1.52 ; X-RAY STRUCTURE OF SMYD3 IN COMPLEX WITH the benzodiazepine-based probe BAY-6035 7OKT ; 1.95 ; X-ray structure of soluble EPCR in C2221 space group 7OKS ; 1.95 ; X-ray structure of soluble EPCR in P212121 space group 7OKU ; 1.95 ; X-ray structure of soluble EPCR in P3121 space group 6IXZ ; 1.98 ; X-ray structure of sortase C from Clostridium perfringens SM101 1MBD ; 1.4 ; X-ray structure of sperm whale deoxymoglobin refined at 1.4A resolution 5ZEO ; 1.77 ; X-ray structure of sperm whale V21C/V66C/F46S myoglobin mutant with an intramolecular disulfide bond 1XJ5 ; 2.7 ; X-RAY STRUCTURE OF SPERMIDINE SYNTHASE FROM ARABIDOPSIS THALIANA GENE AT1G23820 2F5I ; 2.3 ; X-ray structure of spermidine/spermine N1-acetyltransferase (SAT) from Homo sapiens 7LIP ; 1.48 ; X-ray structure of SPOP MATH domain (D140G) 7LIN ; 1.44 ; X-ray structure of SPOP MATH domain (D140G) in complex with a 53BP1 peptide 7LIQ ; 1.98 ; X-ray structure of SPOP MATH domain (S119A) 7LIO ; 3.01 ; X-ray structure of SPOP MATH domain (S119D) in complex with a 53BP1 peptide 1WAK ; 1.73 ; X-ray structure of SRPK1 6H0R ; 1.73 ; X-ray structure of SRS2 fragment of Rgs4 3' UTR 7BFK ; 1.89 ; X-ray structure of SS-RNase-2 7BFL ; 2.88 ; X-ray structure of SS-RNase-2 des116-120 7Y5Y ; 1.85 ; X-ray Structure of Stay-Green (SGR) from Anaerolineae bacterium. 2RFS ; 2.2 ; X-ray structure of SU11274 bound to c-Met 2BCO ; 2.33 ; X-ray structure of succinylglutamate desuccinalase from Vibrio Parahaemolyticus (RIMD 2210633) at the resolution 2.3 A, Northeast Structural Genomics Target Vpr14 1MZG ; 2.0 ; X-Ray Structure of SufE from E.coli Northeast Structural Genomics (NESG) Consortium Target ER30 6L9B ; 1.95 ; X-ray structure of synthetic GB1 domain with mutations K10(DVA), T11A 6L9D ; 1.73 ; X-ray structure of synthetic GB1 domain with mutations K10(DVA), T11S 6LJI ; 1.843 ; X-ray structure of synthetic GB1 domain with mutations K10(DVA), T11V 6L91 ; 1.842 ; X-ray structure of synthetic GB1 domain with the mutation K10(DVA). 2NUI ; 1.1 ; X-ray Structure of synthetic [D83A]RNase A 2BBH ; 1.85 ; X-ray structure of T.maritima CorA soluble domain 6HIL ; 2.3 ; X-ray structure of TEAD1(Y421H mutant) complexed with YAP(wildtype): Molecular and structural characterization of a TEAD mutation at the origin of Sveinsson's chorioretinal atrophy 6GE3 ; 1.85 ; X-ray structure of TEAD4 (wildtype) complexed with YAP (wildtype): The role of residual flexibility and water molecules in the adaptation of a bound intrinsically disordered protein to mutations at a binding interface 6GE6 ; 1.8 ; X-ray structure of TEAD4(E263A+Y429F mutant) complexed with YAP(wildtype): The role of residual flexibility and water molecules in the adaptation of a bound intrinsically disordered protein to mutations at a binding interface 6HIK ; 1.65 ; X-ray structure of TEAD4(Y429H) mutant) complexed with YAP (wildtype): Molecular and structural characterization of a TEAD mutation at the origin of Sveinsson's chorioretinal atrophy 2BGM ; 2.0 ; X-Ray structure of ternary-Secoisolariciresinol Dehydrogenase 3MVZ ; 1.7 ; X-ray structure of the (hydro)peroxo intermediate NikA/1-Int"", after monohydroxylation of the iron complex 5L4H ; 3.3 ; X-ray structure of the 2-22' locally-closed mutant of GLIC in complex with 5-(2-BROMO-ETHYL)-5-ETHYL-PYRIMIDINE-2,4,6-TRIONE (brominated barbiturate) 5L47 ; 3.3 ; X-ray structure of the 2-22' locally-closed mutant of GLIC in complex with cyanoselenobarbital (seleniated barbiturate) 5MUO ; 3.19 ; X-ray structure of the 2-22' locally-closed mutant of GLIC in complex with propofol 5L4E ; 3.5 ; X-ray structure of the 2-22' locally-closed mutant of GLIC in complex with thiopental 4ZU4 ; 1.7 ; X-ray structure of the 3,4-ketoisomerase domain of FdtD from Shewanella denitrificans 4YFV ; 1.89 ; X-ray structure of the 4-N-formyltransferase VioF from Providencia alcalifaciens O30 1WV5 ; 2.3 ; X-ray structure of the A-decamer GCGTATACGC with a single 2'-o-butyl thymine in place of T6, Mg-form 1WV6 ; 2.55 ; X-ray structure of the A-decamer GCGTATACGC with a single 2'-O-butyl thymine in place of T6, Sr-form 4MXF ; 2.25 ; X-ray structure of the adduct between bovine pancreatic ribonuclease and Auoxo6, a dinuclear gold(III) complex with -dioxo bridges linking the two metal centers 4L55 ; 1.65 ; X-ray structure of the adduct between bovine pancreatic ribonuclease and AziRu 4LFP ; 1.72 ; X-ray structure of the adduct between hen egg white lysozyme and a homoleptic gold(I) complex with the saccharynate ligand 4LGK ; 1.96 ; X-ray structure of the adduct between hen egg white lysozyme and Au2Phen, a dinuclear gold(III) complex with -dioxo bridges linking the two metal centers 4QY9 ; 2.05 ; X-ray structure of the adduct between hen egg white lysozyme and Auoxo3, a cytotoxic gold(III) compound 4LFX ; 2.1 ; X-ray structure of the adduct between hen egg white lysozyme and Auoxo6, a dinuclear gold(III) complex with -dioxo bridges linking the two metal centers 4J1B ; 1.66 ; X-ray structure of the adduct between hen egg white lysozyme and AziRu (black crystal) 4J1A ; 1.79 ; X-ray structure of the adduct between hen egg white lysozyme and AziRu (green crystal) 4MR1 ; 1.99 ; X-ray structure of the adduct between hen egg white lysozyme and cis-diamminediiodoplatinum(II) 5FCP ; 1.55 ; X-RAY STRUCTURE OF THE ADDUCT BETWEEN HEN EGG WHITE LYSOZYME AND CISPLATIN AT LONG INCUBATION TIMES 5F9U ; 1.85 ; X-RAY STRUCTURE OF THE ADDUCT BETWEEN HEN EGG WHITE LYSOZYME AND CISPLATIN UPON 24 HOURS OF INCUBATION AT 20 DEGREES 5F9X ; 1.94 ; X-RAY STRUCTURE OF THE ADDUCT BETWEEN HEN EGG WHITE LYSOZYME AND CISPLATIN UPON 24 HOURS OF INCUBATION AT 55 DEGREES 5L4R ; 1.45 ; X-ray structure of the adduct between thaumatin and cisplatin 4QH3 ; 2.0 ; X-ray structure of the adduct formed between bovine pancreatic ribonuclease and trans-dimethylamine methylamine dichlorido platinum(II) 4OT4 ; 1.85 ; X-ray Structure of the Adduct formed between cisplatin and Ribonuclease A 4NY5 ; 1.85 ; X-ray structure of the adduct formed between hen egg white lysozyme and NAMI-A 4QGZ ; 2.51 ; X-ray structure of the adduct formed between hen egg white lysozyme and trans-dimethylamine methylamine dichlorido platinum(II) 4Z3M ; 2.15 ; X-ray structure of the adduct formed in the reaction between lysozyme and a platinum(II) Complex with S,O Bidentate Ligands (9b) 4Z41 ; 1.89 ; X-ray structure of the adduct formed in the reaction between lysozyme and a platinum(II) Compound with a S,O Bidentate Ligand (9a=Chloro-(1-(3'-hydroxy)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)-(dimethylsulfoxide-S)-platinum(II)) 5E5E ; 1.98 ; X-ray structure of the adduct formed in the reaction between RNase A and a neutral organometallic derivative [Pt(pbi)(Me)(DMSO)], pbi=2-(2'-pyridil)benzimidazole (compound 3) 5JVX ; 1.7 ; X-ray structure of the adduct formed in the reaction between thaumatin and a gold carbene compound 8CE2 ; 1.24 ; X-ray structure of the adduct formed upon reaction of a B-DNA double helical dodecamer with dirhodium tetraacetate 7QWH ; 1.573 ; X-ray structure of the adduct formed upon reaction of a vanadium hydroxyquinoline complex with RNase A 6GOK ; 2.65 ; X-ray structure of the adduct formed upon reaction of bovine pancreatic ribonuclease with a Pd(II) complex bearing N,N-pyridylbenzimidazole derivative with an alkylated sulphonate side chain 8OO4 ; 1.99 ; X-ray structure of the adduct formed upon reaction of cisplatin with human angiogenin after 1 month soaking 8OO3 ; 1.76 ; X-ray structure of the adduct formed upon reaction of cisplatin with human angiogenin after 5 days soaking 5OLE ; 1.78 ; X-ray structure of the adduct formed upon reaction of hen egg white lysozyme with a tetranuclear Pt-thiosemicarbazone compound 6GOB ; 1.96 ; X-ray structure of the adduct formed upon reaction of lysozyme with a Pd(II) complex bearing N,N-pyridylbenzimidazole derivative with an alkylated sulphonate side chain 6GOI ; 1.99 ; X-ray structure of the adduct formed upon reaction of lysozyme with a Pd(II) complex bearing N,N-pyridylbenzimidazole derivative with an alkylated triphenylphosphonium cation 6GOH ; 2.43 ; X-ray structure of the adduct formed upon reaction of lysozyme with a Pt(II) complex bearing N,N-pyridylbenzimidazole derivative with an alkylated sulphonate side chain 6GOJ ; 2.25 ; X-ray structure of the adduct formed upon reaction of lysozyme with a Pt(II) complex bearing N,N-pyridylbenzimidazole derivative with an alkylated triphenylphosphonium cation 8PFT ; 1.304 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K2[Ru2(D-p-FPhF)(CO3)3] in condition A 8PFX ; 1.03 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K2[Ru2(D-p-FPhF)(CO3)3] in condition B 8PFW ; 1.12 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K2[Ru2(DAniF)(CO3)3] in condition A 8PFY ; 1.19 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K2[Ru2(DAniF)(CO3)3] in condition B 8PH6 ; 1.07 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K2[Ru2(DPhF)(CO3)3] in condition B 8PFU ; 1.18 ; X-ray structure of the adduct formed upon reaction of Lysozyme with K3[Ru2(CO3)4] in condition A 5OB6 ; 1.88 ; X-ray structure of the adduct formed upon reaction of lysozyme with the compound fac-[RuII(CO)3Cl2(N3-IM), IM=imidazole 5OB7 ; 2.1 ; X-ray structure of the adduct formed upon reaction of lysozyme with the compound fac-[RuII(CO)3Cl2(N3-IM), IM=imidazole (crystal 2) 5OB9 ; 2.38 ; X-ray structure of the adduct formed upon reaction of lysozyme with the compound fac-[RuII(CO)3Cl2(N3-MIM), MIM=methyl-imidazole (crystals grown using ethylene glycol 5OB8 ; 1.85 ; X-ray structure of the adduct formed upon reaction of lysozyme with the compound fac-[RuII(CO)3Cl2(N3-MIM), MIM=methyl-imidazole (crystals grown using NaCl) 8BPJ ; 1.38 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(D-p-FPhF)(O2CCH3)3] (Structure 1) 8BPU ; 1.81 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(D-p-FPhF)(O2CCH3)3] (Structure 2) 8BPH ; 1.07 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(D-p-FPhF)(O2CCH3)3] (Structure 3) 8BQM ; 1.17 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(D-p-FPhF)(O2CCH3)3] (Structure 4) 8PFV ; 1.46 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(DAniF)(O2CCH3)3] in condition A 8PH7 ; 1.406 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(DPhF)(O2CCH3)3] in condition A 8PH8 ; 1.29 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(DPhF)2(O2CCH3)2] in condition A 8PH5 ; 1.29 ; X-ray structure of the adduct formed upon reaction of Lysozyme with [Ru2Cl(DPhF)2(O2CCH3)2] in condition B 7NPM ; 1.86 ; X-ray structure of the adduct formed upon reaction of oxaliplatin with human angiogenin 7PNH ; 1.22 ; X-ray structure of the adduct formed upon reaction of Pt(II) complex 2c with lysozyme 7PNI ; 2.13 ; X-ray structure of the adduct formed upon reaction of Pt(II) complex 2c with ribonuclease A 5OLD ; 1.78 ; X-ray structure of the adduct formed upon reaction of ribonuclease A with a tetranuclear Pt-thiosemicarbazone compound 5OBC ; 2.07 ; X-ray structure of the adduct formed upon reaction of ribonuclease A with the compound fac-[RuII(CO)3Cl2(N3-IM), IM=imidazole 5OBE ; 1.82 ; X-ray structure of the adduct formed upon reaction of ribonuclease A with the compound fac-[RuII(CO)3Cl2(N3-MBI), MBI=methyl-benzimidazole 5OBD ; 1.98 ; X-ray structure of the adduct formed upon reaction of ribonuclease A with the compound fac-[RuII(CO)3Cl2(N3-MIM), MIM=methyl-imidazole 8BOY ; 1.33 ; X-ray structure of the adduct formed upon reaction of the five-coordinate Pt(II) complex, 1-Me,Me, with HEWL at pH 4.0 8BOV ; 1.25 ; X-ray structure of the adduct formed upon reaction of the five-coordinate Pt(II) complex, 1-Me,Me, with HEWL at pH 7.5 7R1P ; 1.42 ; X-ray structure of the adduct formed upon reaction of the gold(I) N-heterocyclic carbene complex Au1 with RNase A 7R1Q ; 1.1 ; X-ray structure of the adduct formed upon reaction of the gold(I) N-heterocyclic carbene complex Au2 with lysozyme 6ZS8 ; 2.153 ; X-ray structure of the adduct formed upon treating lysozyme with an aged solution of arsenoplatin-1 7QQ1 ; 1.48 ; X-ray structure of the adduct obtained upon reaction of [cis-Rh2(OCOCH3)2(OCOCF3)2] with HEWL 7QPW ; 1.15 ; X-ray structure of the adduct obtained upon reaction of [cis-Rh2(OCOCH3)2(OCOCF3)2] with RNase A (1) 7QQ0 ; 1.32 ; X-ray structure of the adduct obtained upon reaction of [cis-Rh2(OCOCH3)2(OCOCF3)2] with RNase A (2) 7QPY ; 1.42 ; X-ray structure of the adduct obtained upon reaction of [cis-Rh2(OCOCH3)2(OCOCF3)2] with RNase A (3) 7QPZ ; 1.45 ; X-ray structure of the adduct obtained upon reaction of [cis-Rh2(OCOCH3)2(OCOCF3)2] with RNase A (4) 7Z6J ; 1.53 ; X-ray structure of the adduct obtained upon reaction of [Rh2(OCOCH3)(OCOCF3)3] with HEWL 7Z6D ; 1.45 ; X-ray structure of the adduct obtained upon reaction of [Rh2(OCOCH3)(OCOCF3)3] with RNase A (1) 7Z6G ; 1.71 ; X-ray structure of the adduct obtained upon reaction of [Rh2(OCOCH3)(OCOCF3)3] with RNase A (2) 7P8R ; 1.27 ; X-ray structure of the adduct of a vanadium picolinate complex with RNase A at pH 5.1 2BRJ ; 1.5 ; X-ray structure of the Allene Oxide Cyclase from Arabidopsis thaliana 4RDA ; 2.497 ; X-RAY STRUCTURE OF THE AMYLOID PRECURSOR PROTEIN-LIKE PROTEIN 1 (APLP1) E2 DOMAIN IN COMPLEX WITH A HEPARIN DODECASACCHARIDE 4F8H ; 2.99 ; X-ray Structure of the Anesthetic Ketamine Bound to the GLIC Pentameric Ligand-gated Ion Channel 3NXA ; 2.1 ; X-ray structure of the apo form of human S100A16 4RD9 ; 2.6 ; X-RAY STRUCTURE OF THE APO FORM OF THE AMYLOID PRECURSOR PROTEIN-LIKE PROTEIN 1 (APLP1) E2 DOMAIN 6GYG ; 1.98 ; X-ray structure of the apo form of the establishement gene regulator Reg576 of the G+ plasmid p576 3C02 ; 2.05 ; X-ray structure of the aquaglyceroporin from Plasmodium falciparum 2HU9 ; 1.78 ; X-ray structure of the Archaeoglobus fulgidus CopZ N-terminal Domain 4GVR ; 1.52 ; X-ray structure of the Archaeoglobus fulgidus methenyl-tetrahydromethanopterin cyclohydrolase 4GVS ; 1.75 ; X-ray structure of the Archaeoglobus fulgidus methenyl-tetrahydromethanopterin cyclohydrolase in complex with N5-formyl-tetrahydromethanopterin 4GVQ ; 1.3 ; X-ray structure of the Archaeoglobus fulgidus methenyl-tetrahydromethanopterin cyclohydrolase in complex with tetrahydromethanpterin 4G1U ; 3.008 ; X-ray structure of the bacterial heme transporter HmuUV from Yersinia pestis 3BKV ; 2.6 ; X-ray structure of the bacteriophage phiKZ lytic transglycosylase, gp144, in complex with chitotetraose, (NAG)4 1BRR ; 2.9 ; X-RAY STRUCTURE OF THE BACTERIORHODOPSIN TRIMER/LIPID COMPLEX 2BMB ; 2.3 ; X-ray structure of the bifunctional 6-hydroxymethyl-7,8- dihydroxypterin pyrophosphokinase dihydropteroate synthase from Saccharomyces cerevisiae 3ZED ; 2.2 ; X-ray structure of the birnavirus VP1-VP3 complex 4Z46 ; 1.85 ; X-ray structure of the bis-platinum lysozyme adduct formed in the reaction between the protein and the two drugs Cisplatin and Oxaliplatin 4ZEE ; 1.95 ; X-ray structure of the bis-platinum lysozyme adduct formed in the reaction between the protein and the two drugs Cisplatin and Oxaliplatin (preparation 2) 2ING ; 3.6 ; X-ray Structure of the BRCA1 BRCT mutant M1775K 4E32 ; 1.5 ; X-ray Structure of the C-3'-Methyltransferase TcaB9 in Complex with S-Adenosyl-L-Homocysteine and dTDP-Sugar Substrate 4E33 ; 1.6 ; X-ray Structure of the C-3'-Methyltransferase TcaB9 in Complex with S-Adenosyl-L-Homocysteine and Reduced dTDP-Sugar Substrate 3GGL ; 3.0 ; X-Ray Structure of the C-terminal domain (277-440) of Putative chitobiase from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR324A. 6OE2 ; 3.0 ; X-Ray Structure of the C-terminal domain (277-440) of Putative chitobiase from Bacteroides thetaiotaomicron. Northeast Structural Genomics Consortium Target BtR324A. Re-refinement of 3GGL with correct metal Mn replacing Zn. New metal confirmed with PIXE analysis of original sample. 5IP4 ; 1.81 ; X-RAY STRUCTURE OF THE C-TERMINAL DOMAIN OF HUMAN DOUBLECORTIN 6T7O ; 1.60004 ; X-ray structure of the C-terminal domain of S. aureus Hibernating Promoting Factor (CTD-SaHPF) 3RID ; 2.18 ; X-ray structure of the C-terminal swapped dimer of P114A variant of Ribonuclease A 1EUV ; 1.6 ; X-RAY STRUCTURE OF THE C-TERMINAL ULP1 PROTEASE DOMAIN IN COMPLEX WITH SMT3, THE YEAST ORTHOLOG OF SUMO. 5T64 ; 1.7 ; X-ray structure of the C3-methyltransferase KijD1 from Actinomadura kijaniata in complex with TDP and SAH 4L2C ; 1.66 ; X-ray structure of the C57R mutant of the iron superoxide dismutase from Pseudoalteromonas haloplanktis (crystal form I) 4L2A ; 2.06 ; X-ray structure of the C57R mutant of the iron superoxide dismutase from Pseudoalteromonas haloplanktis (crystal form II) 4L2B ; 1.97 ; X-ray structure of the C57S mutant of the iron superoxide dismutase from Pseudoalteromonas haloplanktis 1P5V ; 1.7 ; X-ray structure of the Caf1M:Caf1 chaperone:subunit preassembly complex 1AR5 ; 1.6 ; X-RAY STRUCTURE OF THE CAMBIALISTIC SUPEROXIDE DISMUTASE FROM PROPIONIBACTERIUM SHERMANII ACTIVE WITH FE OR MN 4IHB ; 2.044 ; X-RAY STRUCTURE OF THE canonical C2A DOMAIN FROM HUMAN DYSFERLIN 4IRL ; 1.47 ; X-ray structure of the CARD domain of zebrafish GBP-NLRP1 like protein 4QKZ ; 1.2 ; X-ray structure of the catalytic domain of MMP-8 with the inhibitor ML115 4USO ; 1.95 ; X-ray structure of the CCL2 lectin in complex with sialyl lewis X 8BAW ; 1.471 ; X-ray structure of the CeuE Homologue from Geobacillus stearothermophilus - 5-LICAM siderophore analogue complex. 8B7X ; 1.42 ; X-ray structure of the CeuE Homologue from Geobacillus stearothermophilus - apo form. 8BAX ; 1.38 ; X-ray structure of the CeuE Homologue from Geobacillus stearothermophilus - azotochelin complex. 8BJ9 ; 2.069 ; X-ray structure of the CeuE Homologue from Parageobacillus thermoglucosidasius - 5LICAM complex. 8BNW ; 2.133 ; X-ray structure of the CeuE Homologue from Parageobacillus thermoglucosidasius - apo form 8BF6 ; 1.969 ; X-ray structure of the CeuE Homologue from Parageobacillus thermoglucosidasius - azotochelin complex 2J2Z ; 2.3 ; X-Ray Structure of the Chaperone PapD in complex with the Pilus terminator subunit PapH at 2.3 Angstrom resolution 6VO8 ; 2.4 ; X-ray structure of the Cj1427 in the presence of NADH and GDP-D-glycero-D-mannoheptose, an essential NAD-dependent dehydrogenase from Campylobacter jejuni 1KD8 ; 1.9 ; X-RAY STRUCTURE OF THE COILED COIL GCN4 ACID BASE HETERODIMER ACID-d12Ia16V BASE-d12La16L 1KDD ; 2.14 ; X-ray structure of the coiled coil GCN4 ACID BASE HETERODIMER ACID-d12La16I BASE-d12La16L 1KD9 ; 2.1 ; X-RAY STRUCTURE OF THE COILED COIL GCN4 ACID BASE HETERODIMER ACID-d12La16L BASE-d12La16L 5JMG ; 1.85 ; X-ray structure of the complex between bovine pancreatic ribonuclease and pentachlorocarbonyliridate(III) (4 days of soaking) 5JML ; 2.29 ; X-ray structure of the complex between bovine pancreatic ribonuclease and penthachlorocarbonyliridate(III) (2 months of soaking) 1HG1 ; 1.8 ; X-ray structure of the complex between Erwinia chrysanthemi L-asparaginase and D-aspartate 1HFW ; 1.8 ; X-ray structure of the complex between Erwinia chrysanthemi L-asparaginase and L-Glutamate 1HG0 ; 1.9 ; X-ray structure of the complex between Erwinia chrysanthemi L-asparaginase and succinic acid 4NIJ ; 1.86 ; X-ray structure of the complex between hen egg white lysozyme and pentachlorocarbonyliridate(III) (30 days) 4NHQ ; 1.92 ; X-ray structure of the complex between hen egg white lysozyme and pentachlorocarbonyliridate(III) (5 days) 4NHT ; 1.65 ; X-ray structure of the complex between hen egg white lysozyme and pentachlorocarbonyliridate(III) (6 days) 4NHS ; 1.99 ; X-ray structure of the complex between hen egg white lysozyme and pentachlorocarbonyliridate(III) (9 days) 4N9R ; 1.55 ; X-ray structure of the complex between hen egg white lysozyme and pentacholrocarbonyliridate(III) (1 day) 5CMX ; 2.98 ; X-ray structure of the complex between human alpha thrombin and a duplex/quadruplex 31-mer DNA aptamer 3QLP ; 2.14 ; X-ray structure of the complex between human alpha thrombin and a modified thrombin binding aptamer (mTBA) 7ZKL ; 3.18 ; X-ray structure of the complex between human alpha thrombin and a pseudo-cyclic thrombin binding aptamer (TBA-NNp/DDp) - Crystal form alpha 7ZKM ; 2.0 ; X-ray structure of the complex between human alpha thrombin and a pseudo-cyclic thrombin binding aptamer (TBA-NNp/DDp) - Crystal form beta 7ZKO ; 2.5 ; X-ray structure of the complex between human alpha thrombin and a pseudo-cyclic thrombin binding aptamer (TBA-NNp/DDp) - Crystal form delta 7ZKN ; 3.03 ; X-ray structure of the complex between human alpha thrombin and a pseudo-cyclic thrombin binding aptamer (TBA-NNp/DDp) - Crystal form gamma 6Z8W ; 1.73 ; X-ray structure of the complex between human alpha thrombin and a thrombin binding aptamer variant (TBA-3G), which contains 1-beta-D-glucopyranosyl residue in the side chain of Thy3 at N3. 6Z8V ; 1.58 ; X-ray structure of the complex between human alpha thrombin and a thrombin binding aptamer variant (TBA-3L), which contains 1-beta-D-lactopyranosyl residue in the side chain of Thy3 at N3. 6Z8X ; 2.53 ; X-ray structure of the complex between human alpha thrombin and a thrombin binding aptamer variant (TBA-3Leu), which contains leucyl amide in the side chain of Thy3 at N3. 6EVV ; 2.5 ; X-ray structure of the complex between human alpha thrombin and NU172, a duplex/quadruplex 26-mer DNA aptamer, in the presence of potassium ions. 6GN7 ; 2.8 ; X-ray structure of the complex between human alpha thrombin and NU172, a duplex/quadruplex 26-mer DNA aptamer, in the presence of sodium ions. 8BW5 ; 2.8 ; X-ray structure of the complex between human alpha thrombin and the duplex/quadruplex aptamer M08s-1_41mer 4DII ; 2.05 ; X-ray structure of the complex between human alpha thrombin and thrombin binding aptamer in the presence of potassium ions 4DIH ; 1.8 ; X-ray structure of the complex between human alpha thrombin and thrombin binding aptamer in the presence of sodium ions 7NTU ; 3.1 ; X-ray structure of the complex between human alpha thrombin and two duplex/quadruplex aptamers: NU172 and HD22_27mer 6EO6 ; 1.69 ; X-ray structure of the complex between human alpha-thrombin and modified 15-mer DNA aptamer containing 5-(3-(2-(1H-indol-3-yl)acetamide-N-yl)-1-propen-1-yl)-2'-deoxyuridine residue 6EO7 ; 2.24 ; X-ray structure of the complex between human alpha-thrombin and modified 15-mer DNA aptamer containing 5-(3-(acetamide-N-yl)-1-propen-1-yl)-2'-deoxyuridine residue 4LZ1 ; 1.65 ; X-ray structure of the complex between human thrombin and the TBA deletion mutant lacking thymine 12 nucleobase 4LZ4 ; 2.56 ; X-ray structure of the complex between human thrombin and the TBA deletion mutant lacking thymine 3 nucleobase 5E9R ; 2.25 ; X-ray structure of the complex between lysozyme and the compound fac, cis-[RuII(CO)3Cl2(N3-MBI), MBI=N-methyl-benzimidazole 5E5F ; 1.68 ; X-ray structure of the complex between RNase A and compound 4-PF6 ([(PPh3)Au(mi-pbi)Pt(Me)(DMSO)][PF6]), the heterobimetallic derivative obtained in the reaction between the organometallic compound [Pt(pbi)(Me)(DMSO)], pbi=2-(2'-pyridil)benzimidazole (compound 3) and the gold(I) compound [Au(Ph3P)][PF6] 4C56 ; 2.9 ; X-ray structure of the complex between staphylococcal enterotoxin B, T cell receptor and major histocompatibility complex class II 4NHP ; 1.42 ; X-ray structure of the complex between the hen egg white lysozyme and pentachlorocarbonyliridate (III) (4 days) 4KAC ; 2.223 ; X-Ray Structure of the complex HaloTag2 with HALTS. Northeast Structural Genomics Consortium (NESG) Target OR150. 1R5C ; 2.1 ; X-ray structure of the complex of Bovine seminal ribonuclease swapping dimer with d(CpA) 4KAJ ; 1.948 ; X-Ray Structure of the complex of Haloalkane dehalogenase HaloTag7 with HALTS, Northeast Structural Genomics Consortium (NESG) Target OR151 1BHX ; 2.3 ; X-RAY STRUCTURE OF THE COMPLEX OF HUMAN ALPHA THROMBIN WITH THE INHIBITOR SDZ 229-357 3E0J ; 3.0 ; X-ray structure of the complex of regulatory subunits of human DNA polymerase delta 5OLN ; 1.88 ; X-Ray Structure of the Complex Pyrimidine-nucleoside phosphorylase from Bacillus subtilis at 1.88 A 5EP8 ; 2.66 ; X-Ray Structure of the Complex Pyrimidine-nucleoside phosphorylase from Bacillus subtilis with Sulfate Ion 4IP0 ; 1.294 ; X-Ray Structure of the Complex Uridine Phosphorylase from Vibrio cholerae with Phosphate Ion at 1.29 A Resolution 4H1T ; 1.924 ; X-RAY Structure of the Complex VchUPh with Phosphate ion at 1.92A Resolution. 8CKP ; 3.31 ; X-ray structure of the crystallization-prone form of subfamily III haloalkane dehalogenase DhmeA from Haloferax mediterranei 4AS8 ; 1.02 ; X-ray structure of the cyan fluorescent protein Cerulean cryoprotected with ethylene glycol 4AR7 ; 1.23 ; X-ray structure of the cyan fluorescent protein mTurquoise 2YE0 ; 1.47 ; X-ray structure of the cyan fluorescent protein mTurquoise (K206A mutant) 4B5Y ; 1.45 ; X-ray structure of the cyan fluorescent protein mTurquoise-GL (K206A mutant) in space group C222(1) 3ZTF ; 1.31 ; X-ray Structure of the Cyan Fluorescent Protein mTurquoise2 (K206A mutant) 2YDZ ; 1.59 ; X-ray structure of the cyan fluorescent protein SCFP3A (K206A mutant) 2YE1 ; 1.63 ; X-ray structure of the cyan fluorescent proteinmTurquoise-GL (K206A mutant) 4J20 ; 1.3 ; X-ray structure of the cytochrome c-554 from chlorobaculum tepidum 1COT ; 1.7 ; X-RAY STRUCTURE OF THE CYTOCHROME C2 ISOLATED FROM PARACOCCUS DENITRIFICANS REFINED TO 1.7 ANGSTROMS RESOLUTION 1L9J ; 3.25 ; X-Ray Structure of the Cytochrome-c(2)-Photosynthetic Reaction Center Electron Transfer Complex from Rhodobacter sphaeroides in Type I Co-Crystals 1L9B ; 2.4 ; X-Ray Structure of the Cytochrome-c(2)-Photosynthetic Reaction Center Electron Transfer Complex from Rhodobacter sphaeroides in Type II Co-Crystals 4R5F ; 1.9 ; X-ray structure of the D199K mutant of the cysteine desulfurase IscS from A. fulgidus 6THV ; 1.1 ; X-ray structure of the Danio rerio histone deacetylase 6 (HDAC6; catalytic domain 2) in complex with Tubastatin A 4LOA ; 1.819 ; X-ray structure of the de-novo design amidase at the resolution 1.8A, Northeast Structural Genomics Consortium (NESG) Target OR398 7ZIZ ; 1.5 ; X-ray structure of the dead variant haloalkane dehalogenase HaloTag7-D106A bound to a pentanol tetramethylrhodamine ligand (TMR-Hy5) 2G7R ; 2.7 ; X-ray structure of the death domain of the human mucosa associated lymphoid tissue lymphoma translocation protein 1 8AEZ ; 2.574 ; X-ray structure of the deglycosylated receptor binding domain of Env glycoprotein of Simian Foamy virus 8E6H ; 2.39 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter A47W mutant in an occluded, manganese-bound state 8E6L ; 3.12 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter D296A mutant in an inward-open, manganese-bound state 8E6N ; 2.4 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter G223W mutant in an outward-open, manganese-bound state 8E6I ; 2.52 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter M230A mutant in an inward-open, manganese-bound state 8E6M ; 2.48 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter WT in an inward-open, cadmium-bound state 8E5S ; 2.38 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter WT in an occluded state 8E60 ; 2.38 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter WT in an occluded, manganese-bound state 8E5V ; 2.36 ; X-ray structure of the Deinococcus radiodurans Nramp/MntH divalent transition metal transporter WTsoak in an occluded state 1NF6 ; 2.35 ; X-ray structure of the Desulfovibrio desulfuricans bacterioferritin: the diiron site in different catalytic states (""cycled"" structure: reduced in solution and allowed to reoxidise before crystallisation) 1NF4 ; 2.05 ; X-Ray Structure of the Desulfovibrio desulfuricans bacterioferritin: the diiron site in different states (reduced structure) 3MVY ; 2.5 ; X-ray structure of the diatomic oxo-intermediate NikA/1-Int', prior hydroxylation 1OI2 ; 1.75 ; X-ray structure of the dihydroxyacetone kinase from Escherichia coli 1OI3 ; 2.0 ; X-ray structure of the dihydroxyacetone kinase from Escherichia coli 4USP ; 2.25 ; X-ray structure of the dimeric CCL2 lectin in native form 2YIU ; 2.7 ; X-ray structure of the dimeric cytochrome BC1 complex from the soil bacterium paracoccus denitrificans at 2.7 angstrom resolution 2W6A ; 1.4 ; X-ray Structure of the Dimeric GIT1 Coiled-Coil Domain 1QRI ; 2.6 ; X-RAY STRUCTURE OF THE DNA-ECO RI ENDONUCLEASE COMPLEXES WITH AN E144D MUTATION AT 2.7 A 1QRH ; 2.5 ; X-RAY STRUCTURE OF THE DNA-ECO RI ENDONUCLEASE COMPLEXES WITH AN R145K MUTATION AT 2.7 A 1ERI ; 2.5 ; X-RAY STRUCTURE OF THE DNA-ECO RI ENDONUCLEASE-DNA RECOGNITION COMPLEX: THE RECOGNITION NETWORK AND THE INTEGRATION OF RECOGNITION AND CLEAVAGE 3MW0 ; 2.3 ; X-ray structure of the doubly hydroxylated iron complex-NikA species, NikA1/O2 3UMH ; 2.0 ; X-ray structure of the E2 domain of the human amyloid precursor protein (APP) in complex with cadmium 3UMK ; 2.6 ; X-ray structure of the E2 domain of the human amyloid precursor protein (APP) in complex with copper 3UMI ; 2.4 ; X-ray structure of the E2 domain of the human amyloid precursor protein (APP) in complex with zinc 4E2Y ; 1.8 ; X-ray Structure of the E224Q mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and Sugar Product 1LOV ; 1.55 ; X-ray structure of the E58A mutant of Ribonuclease T1 complexed with 3'-guanosine monophosphate 5W7J ; 2.202 ; X-ray structure of the E89A variant of ankyrin repeat domain of DHHC17 in complex with Snap25b peptide 5ZF0 ; 4.2 ; X-ray Structure of the Electron Transfer Complex between Ferredoxin and Photosystem I 6RJI ; 1.48 ; X-ray structure of the elongation factor P of S. aureus 6TN6 ; 1.45 ; X-ray structure of the endo-beta-1,4-mannanase from Thermotoga petrophila 2W0C ; 7.0 ; X-ray structure of the entire lipid-containing bacteriophage PM2 1EHY ; 2.1 ; X-ray structure of the epoxide hydrolase from agrobacterium radiobacter ad1 5MVM ; 3.1 ; X-ray structure of the F14'A -N15'A double mutant of GLIC in complex with propofol 5MUR ; 3.1 ; X-ray structure of the F14'A mutant of GLIC in complex with propofol 6D9G ; 2.3 ; X-ray Structure of the FAB Fragment of 15B8, a Murine Monoclonal Antibody Specific for the Human Serotonin Transporter 5I66 ; 1.624 ; X-ray structure of the Fab fragment of 8B6, a murine monoclonal antibody specific for the human serotonin transporter 5DMG ; 2.5 ; X-RAY STRUCTURE OF THE FAB FRAGMENT OF THE ANTI TAU ANTIBODY RB86 IN COMPLEX WITH THE PHOSPHORYLATED TAU PEPTIDE (416-430) 5UIK ; 2.2 ; X-ray structure of the FdtF formyltransferase from salmonella enteric O60 in complex with TDP-Fuc3N and folinic acid 5UIM ; 2.2 ; X-ray structure of the FdtF N-formyltransferase from salmonella enteric O60 in complex with folinic acid and TDP-Qui3N 5UIJ ; 1.9 ; X-ray structure of The FdtF N-formyltransferase from Salmonella enteric O60 in complex with TDP 5UIL ; 2.2 ; X-ray structure of the FdtF N-formyltransferase from Salmonella enterica O60 in complex with TDP-Fuc3N and tetrahydrofolate 4L2D ; 2.07 ; X-ray structure of the Fe(II) form of the iron superoxide dismutase from Pseudoalteromonas haloplanktis 3IIX ; 1.25 ; X-ray structure of the FeFe-hydrogenase maturase HydE from T. maritima in complex with methionine and 5'deoxyadenosine 3IIZ ; 1.62 ; X-ray structure of the FeFe-hydrogenase maturase HydE from T. maritima in complex with S-adenosyl-L-methionine 4RTB ; 2.79 ; X-ray structure of the FeFe-hydrogenase maturase HydG from Carboxydothermus hydrogenoformans 6MEZ ; 1.74 ; X-ray structure of the Fenna-Matthews-Olsen antenna complex from Prosthecochloris aestuarii 6RRA ; 1.4 ; X-RAY STRUCTURE OF THE FERREDOXIN-NADP REDUCTASE FROM BRUCELLA OVIS IN COMPLEX WITH NADP 2BGJ ; 2.1 ; X-Ray Structure of the Ferredoxin-NADP(H) Reductase from Rhodobacter capsulatus at 2.1 Angstroms 2BGI ; 1.68 ; X-Ray Structure of the Ferredoxin-NADP(H) Reductase from Rhodobacter capsulatus complexed with three molecules of the detergent n-heptyl- beta-D-thioglucoside at 1.7 Angstroms 2VNI ; 2.24 ; X-RAY STRUCTURE OF THE FERREDOXIN-NADP(H) REDUCTASE FROM RHODOBACTER CAPSULATUS IN COMPLEX WITH 2P-AMP AT 2.37 ANGSTROMS RESOLUTION 2VNJ ; 2.13 ; X-RAY STRUCTURE OF THE FERREDOXIN-NADP(H) REDUCTASE FROM RHODOBACTER CAPSULATUS IN COMPLEX WITH NADP. FORM I AT 2.13 ANGSTROMS RESOLUTION 2VNH ; 2.27 ; X-RAY STRUCTURE OF THE FERREDOXIN-NADP(H) REDUCTASE FROM RHODOBACTER CAPSULATUS IN COMPLEX WITH NADP. FORM II AT 2.27 ANGSTROMS RESOLUTION 2VNK ; 1.93 ; X-RAY STRUCTURE OF THE FERREDOXIN-NADP(H) REDUCTASE FROM RHODOBACTER CAPSULATUS IN COMPLEX WITH NADP. FORM III AT 1.93 ANGSTROMS RESOLUTION 1QUE ; 1.8 ; X-RAY STRUCTURE OF THE FERREDOXIN:NADP+ REDUCTASE FROM THE CYANOBACTERIUM ANABAENA PCC 7119 AT 1.8 ANGSTROMS 1QUN ; 2.8 ; X-RAY STRUCTURE OF THE FIMC-FIMH CHAPERONE ADHESIN COMPLEX FROM UROPATHOGENIC E.COLI 3ZHH ; 2.85 ; X-ray structure of the full-length beta-lactamase from M.tuberculosis 5JMR ; 2.27 ; X-ray structure of the furin inhibitory antibody Nb14 3DCD ; 1.9 ; X-ray structure of the galactose mutarotase related enzyme Q5FKD7 from Lactobacillus acidophilus at the resolution 1.9A. Northeast Structural Genomics consortium target LaR33. 2ZTA ; 1.8 ; X-RAY STRUCTURE OF THE GCN4 LEUCINE ZIPPER, A TWO-STRANDED, PARALLEL COILED COIL 8EWU ; 1.45 ; X-ray structure of the GDP-6-deoxy-4-keto-D-lyxo-heptose-4-reductase from Campylobacter jejuni HS:15 2BH1 ; 2.4 ; X-ray structure of the general secretion pathway complex of the N- terminal domain of EpsE and the cytosolic domain of EpsL of Vibrio cholerae 2P2A ; 2.26 ; X-ray structure of the GluR2 ligand binding core (S1S2J) in complex with 2-Bn-tet-AMPA at 2.26A resolution 1M5B ; 1.85 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH 2-Me-Tet-AMPA AT 1.85 A RESOLUTION. 1M5E ; 1.46 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH ACPA AT 1.46 A RESOLUTION 1M5C ; 1.65 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J) IN COMPLEX WITH Br-HIBO AT 1.65 A RESOLUTION 1M5F ; 1.95 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J-Y702F) IN COMPLEX WITH ACPA AT 1.95 A RESOLUTION 1M5D ; 1.73 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND BINDING CORE (S1S2J-Y702F) IN COMPLEX WITH Br-HIBO AT 1.73 A RESOLUTION 1NNK ; 1.85 ; X-ray structure of the GluR2 ligand-binding core (S1S2J) in complex with (S)-ATPA at 1.85 A resolution. Crystallization with zinc ions. 1NNP ; 1.9 ; X-ray structure of the GluR2 ligand-binding core (S1S2J) in complex with (S)-ATPA at 1.9 A resolution. Crystallization without zinc ions. 1SYH ; 1.8 ; X-RAY STRUCTURE OF THE GLUR2 LIGAND-BINDING CORE (S1S2J) IN COMPLEX WITH (S)-CPW399 AT 1.85 A RESOLUTION. 1MQD ; 1.46 ; X-ray structure of the GluR2 ligand-binding core (S1S2J) in complex with (S)-Des-Me-AMPA at 1.46 A resolution. Crystallization in the presence of lithium sulfate. 1MS7 ; 1.97 ; X-ray structure of the GluR2 ligand-binding core (S1S2J) in complex with (S)-Des-Me-AMPA at 1.97 A resolution, Crystallization in the presence of zinc acetate 2AIX ; 2.17 ; X-ray structure of the GLUR2 ligand-binding core (S1S2J) in complex with (s)-thio-atpa at 2.2 a resolution. 1N0T ; 2.1 ; X-ray structure of the GluR2 ligand-binding core (S1S2J) in complex with the antagonist (S)-ATPO at 2.1 A resolution. 1S50 ; 1.65 ; X-ray structure of the GluR6 ligand binding core (S1S2A) in complex with glutamate at 1.65 A resolution 3DA1 ; 2.7 ; X-Ray structure of the glycerol-3-phosphate dehydrogenase from Bacillus halodurans complexed with FAD. Northeast Structural Genomics Consortium target BhR167. 6SEX ; 1.78 ; X-ray structure of the gold/lysozyme adduct formed upon 21h exposure of protein crystals to compound 1 6SEU ; 1.95 ; X-ray structure of the gold/lysozyme adduct formed upon 21h exposure of protein crystals to compound 2 6SEZ ; 2.22 ; X-ray structure of the gold/lysozyme adduct formed upon 24h exposure of protein crystals to compound 1 6SEW ; 2.12 ; X-ray structure of the gold/lysozyme adduct formed upon 24h exposure of protein crystals to compound 2 6SET ; 1.9 ; X-ray structure of the gold/lysozyme adduct formed upon 3 days exposure of protein crystals to compound 1 4V5T ; 3.0 ; X-ray structure of the Grapevine Fanleaf virus 4E2W ; 1.5 ; X-ray Structure of the H181N mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and Sugar Product 4E30 ; 1.5 ; X-ray Structure of the H181N/E224Q double mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and dTDP 4E2Z ; 1.41 ; X-ray Structure of the H225N mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and Sugar Product 5NJY ; 2.95 ; X-ray structure of the H235Q mutant of GLIC 5MZT ; 2.65 ; X-ray structure of the H235Q mutant of GLIC in complex with bromoform 5MZR ; 2.65 ; X-ray structure of the H235Q mutant of GLIC in complex with propofol 5OMX ; 2.32 ; X-ray Structure of the H2A-N38C Nucleosome Core Particle 1LOW ; 1.9 ; X-ray structure of the H40A mutant of Ribonuclease T1 complexed with 3'-guanosine monophosphate 1LOY ; 1.55 ; X-ray structure of the H40A/E58A mutant of Ribonuclease T1 complexed with 3'-guanosine monophosphate 1FLC ; 3.2 ; X-RAY STRUCTURE OF THE HAEMAGGLUTININ-ESTERASE-FUSION GLYCOPROTEIN OF INFLUENZA C VIRUS 1ZO8 ; 1.9 ; X-ray Structure of the haloalcohol dehalogenase HheC of Agrobacterium radiobacter AD1 in complex with (S)-para-nitrostyrene oxide, with a water molecule in the halide-binding site 7ZIV ; 1.4 ; X-ray structure of the haloalkane dehalogenase dead variant HaloTag7-D106A bound to a chloroalkane tetramethylrhodamine fluorophore ligand (CA-TMR) 7ZIX ; 2.39 ; X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a butylmethanesulfonamide tetramethylrhodamine ligand (TMR-S4) 7ZIW ; 1.99 ; X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a butyltrifluoromethanesulfonamide tetramethylrhodamine ligand (TMR-T4) 7ZJ0 ; 1.5 ; X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a pentylmethanesulfonamide tetramethylrhodamine ligand (TMR-S5) 7ZIY ; 1.7 ; X-ray structure of the haloalkane dehalogenase HaloTag7 bound to a pentyltrifluoromethanesulfonamide tetramethylrhodamine ligand (TMR-T5) 8B6N ; 2.3 ; X-ray structure of the haloalkane dehalogenase HaloTag7 circular permutated at positions 141-156 (cpHaloTagDelta) 8B6O ; 2.0 ; X-ray structure of the haloalkane dehalogenase HaloTag7 circular permutated at positions 141-156 (cpHaloTagDelta) fused to M13 8B6P ; 1.1 ; X-ray structure of the haloalkane dehalogenase HaloTag7 circular permutated at positions 154-156 (cpHaloTag7_154-156) 8B6S ; 1.8 ; X-ray structure of the haloalkane dehalogenase HaloTag7 fusion to the green fluorescent protein GFP (ChemoG1) labeled with a chloroalkane tetramethylrhodamine fluorophore substrate 8B6R ; 1.5 ; X-ray structure of the haloalkane dehalogenase HaloTag7 labeled with a chloroalkane Cyanine3 fluorophore substrate 6Y7B ; 3.1 ; X-ray structure of the Haloalkane dehalogenase HaloTag7 labeled with a chloroalkane-carbopyronine fluorophore substrate 6Y7A ; 1.4 ; X-ray structure of the Haloalkane dehalogenase HaloTag7 labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate 8B6Q ; 2.6 ; X-ray structure of the haloalkane dehalogenase HaloTag7 with an insertion of Calmodulin-M13 fusion at position 154-156 that mimic the structure of CaProLa, an calcium gated protein labeling technology 7PCW ; 2.3 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-M175W LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZVU ; 1.4 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-P174L LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZVV ; 1.4 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-P174W LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZVW ; 1.6 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-Q165H LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZVX ; 1.4 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-Q165H-P174L LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZVY ; 1.4 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-Q165H-P174R LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 7PCX ; 1.4 ; X-RAY STRUCTURE OF THE HALOALKANE DEHALOGENASE HALOTAG7-Q165W LABELED WITH A CHLOROALKANE-TETRAMETHYLRHODAMINE FLUOROPHORE SUBSTRATE 6ZCC ; 1.52 ; X-ray structure of the Haloalkane dehalogenase HOB (HaloTag7-based Oligonucleotide Binder) labeled with a chloroalkane-tetramethylrhodamine fluorophore substrate 6GW5 ; 2.52 ; X-ray structure of the Helicobacter pylori SabA adhesin domain 2VZW ; 2.3 ; X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis 7TBP ; 2.151 ; X-ray structure of the HIV-1 myristoylated matrix protein 1KO7 ; 1.95 ; X-ray structure of the HPr kinase/phosphatase from Staphylococcus xylosus at 1.95 A resolution 4L3B ; 6.5 ; X-ray structure of the HRV2 A particle uncoating intermediate 3TN9 ; 3.0 ; X-ray structure of the HRV2 empty capsid (B-particle) 7WC3 ; 1.5 ; X-ray structure of the human adipocyte fatty acid-binding protein complexed with the fluorescent probe HA728 1TJT ; 2.19 ; X-ray structure of the human alpha-actinin isoform 3 at 2.2A resolution 1H8D ; 1.4 ; X-ray structure of the human alpha-thrombin complex with a tripeptide phosphonate inhibitor. 5KXI ; 3.941 ; X-ray structure of the human Alpha4Beta2 nicotinic receptor 7FC4 ; 1.5 ; X-ray structure of the human heart fatty acid-binding protein complexed with S-Ibuprofen 7FDX ; 0.95 ; X-ray structure of the human heart fatty acid-binding protein complexed with the fluorescent probe 8-Anilino-1-naphthalenesulfonic acid (ANS) 7EGO ; 1.21 ; X-ray structure of the human heart fatty acid-binding protein complexed with the fluorescent probe HA527 1I2T ; 1.04 ; X-RAY STRUCTURE OF THE HUMAN HYPERPLASTIC DISCS PROTEIN: AN ORTHOLOG OF THE C-TERMINAL DOMAIN OF POLY(A)-BINDING PROTEIN 6I3V ; 1.98 ; x-ray structure of the human mitochondrial PRELID1 in complex with TRIAP1 6I4Y ; 2.91 ; X-ray structure of the human mitochondrial PRELID3b-TRIAP1 complex 3E8N ; 2.5 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) complexed with a potent inhibitor RDEA119 and MgATP 3EQI ; 1.9 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a binary complex with ADP and MG2P 3EQD ; 2.1 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a binary complex with ATP-GS and MG2P 3EQF ; 2.7 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a binary complex with K252A and MG2P 1S9J ; 2.4 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP 2P55 ; 2.8 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP 3DY7 ; 2.7 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP 3EQB ; 2.62 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a complex with ligand and MgATP 3EQC ; 1.8 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a ternary complex with compound 1, ATP-GS AND MG2P 3EQG ; 2.5 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a ternary complex with PD, ADP AND MG2P 3EQH ; 2.0 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in a ternary complex with U0126, ADP and MG2P 3VVH ; 2.0 ; X-ray structure of the human mitogen-activated protein kinase kinase 1 (MEK1) in complex with an inhibitor and MgATP 1S9I ; 3.2 ; X-ray structure of the human mitogen-activated protein kinase kinase 2 (MEK2)in a complex with ligand and MgATP 4UT2 ; 1.96 ; X-ray structure of the human PP1 gamma catalytic subunit treated with ascorbate 4UT3 ; 2.19 ; X-ray structure of the human PP1 gamma catalytic subunit treated with hydrogen peroxide 6QD5 ; 2.398 ; X-ray Structure of the Human Urea Channel SLC14A1/UT1 8OVP ; 1.7 ; X-ray structure of the iAspSnFR in complex with L-aspartate 8B6T ; 2.0 ; X-ray structure of the interface optimized haloalkane dehalogenase HaloTag7 fusion to the green fluorescent protein GFP (ChemoG5-TMR) labeled with a chloroalkane tetramethylrhodamine fluorophore substrate 7D6P ; 2.38 ; X-ray structure of the intermolecular complex of Clostridium perfringens sortase C with the C-terminal cell wall sorting signal motif. 3LIO ; 1.5 ; X-ray structure of the iron superoxide dismutase from pseudoalteromonas haloplanktis (crystal form I) 3LJ9 ; 2.1 ; X-ray structure of the iron superoxide dismutase from pseudoalteromonas haloplanktis in complex with sodium azide 2JI3 ; 1.95 ; X-ray structure of the iron-peroxide intermediate of superoxide reductase (E114A mutant) from Desulfoarculus baarsii 4YIP ; 2.15 ; X-ray structure of the iron/manganese cambialistic superoxide dismutase from Streptococcus mutans 4YIO ; 1.6 ; X-ray structure of the iron/manganese cambialistic superoxide dismutase from Streptococcus thermophilus 3NYS ; 1.45 ; X-ray structure of the K185A mutant of WbpE (WlbE) from pseudomonas aeruginosa in complex with PLP at 1.45 angstrom resolution 6YMH ; 2.417 ; X-ray structure of the K72I, Y129F, R133L, H199A quadruple mutant of PNP-oxidase from E. coli in complex with PLP 6YLZ ; 1.558 ; X-ray structure of the K72I,Y129F,R133L, H199A quadruple mutant of PNP-oxidase from E. coli 5T6B ; 2.0 ; X-ray structure of the KijD1 C3-methyltransfeerase, converted to monomeric form 5T67 ; 1.6 ; x-ray structure of the KijD1 C3-methyltransferase from Actinomadura kijaniata in complex with SAH and dTDP-sugar product 1ORS ; 1.9 ; X-ray structure of the KvAP potassium channel voltage sensor in complex with an Fab 7MFO ; 1.7 ; X-ray structure of the L136 Aminotransferase from Acanthamoeba polyphaga mimivirus in the presence of TDP and PMP 3ILN ; 1.95 ; X-ray structure of the laminarinase from Rhodothermus marinus 6GEB ; 3.19 ; X-ray structure of the Legionella pneumophila ATPase DotB 2YAU ; 3.5 ; X-ray structure of the Leishmania infantum tryopanothione reductase in complex with auranofin 4D47 ; 2.77 ; X-ray structure of the levansucrase from Erwinia amylovora 6FRW ; 1.52 ; X-ray structure of the levansucrase from Erwinia tasmaniensis 6RV5 ; 1.58 ; X-ray structure of the levansucrase from Erwinia tasmaniensis in complex with levanbiose 3FL3 ; 1.6 ; X-ray structure of the ligand free non covalent swapped form of the A19P/Q28L/K31C/S32C mutant of bovine pancreatic ribonuclease 3PD9 ; 2.1 ; X-ray structure of the ligand-binding core of GluA2 in complex with (R)-5-HPCA at 2.1 A resolution 3PD8 ; 2.476 ; X-ray structure of the ligand-binding core of GluA2 in complex with (S)-7-HPCA at 2.5 A resolution 6L93 ; 4.47 ; X-ray structure of the ligand-free human TRPV1 ankyrin repeat domain 3T50 ; 1.64 ; X-ray structure of the LOV domain from the LOV-HK sensory protein from Brucella abortus (dark state). 4OOO ; 2.15 ; X-ray structure of the lysozyme derivative of tetrakis(acetato)chlorido diruthenium(II,III) complex 7QVD ; 1.7 ; X-ray structure of the lytic transglycosylase SltB2 from Pseudomonas aeruginosa 2BH4 ; 1.55 ; X-ray structure of the M100K variant of ferric cyt c-550 from Paracoccus versutus determined at 100 K. 2BH5 ; 1.95 ; X-ray structure of the M100K variant of ferric cyt c-550 from Paracoccus versutus determined at 295 K. 5MZQ ; 2.8 ; X-ray structure of the M205W mutant of GLIC in complex with bromoform 5MVN ; 3.49 ; X-ray structure of the M205W mutant of GLIC in complex with propofol 5M4V ; 1.06 ; X-ray structure of the mambaquaretin-1, a selective antagonist of the vasopressin type 2 receptor 5A08 ; 2.21 ; X-ray structure of the mannosyltransferase Ktr4p from S. cerevisiae 5A07 ; 1.9 ; X-ray structure of the mannosyltransferase Ktr4p from S. cerevisiae in complex with GDP 3EPV ; 1.742 ; X-ray Structure of the Metal-sensor CnrX in both the Apo- and Copper-bound Forms 8SJJ ; 1.781 ; X-ray structure of the metastable SEPT14-SEPT7 heterodimeric coiled coil 3KUN ; 1.26 ; X-ray structure of the metcyano form of dehaloperoxidase from amphitrite ornata: evidence for photoreductive lysis of iron-cyanide bond 3KUO ; 1.26 ; X-ray structure of the metcyano form of dehaloperoxidase from amphitrite ornata: evidence for photoreductive lysis of iron-cyanide bond 5LAA ; 3.0 ; X-RAY STRUCTURE OF THE METHYLTRANSFERASE SUBUNIT A FROM METHANOTHERMUS FERVIDUS IN COMPLEX WITH COBALAMIN 8DS5 ; 1.926 ; X-ray structure of the MK5890 Fab - CD27 antibody-antigen complex 5F99 ; 2.63 ; X-ray Structure of the MMTV-A Nucleosome Core Particle 6XRV ; 1.43 ; X-ray structure of the monoclinic crystal form at 1.43 A resolution of lipase from Thermomyces (Humicola) lanuginosa at 173 K 6XS3 ; 2.48 ; X-ray structure of the monoclinic crystal form at 2.48 A resolution of lipase from Thermomyces (Humicola) lanuginosa at 298 K 4CBR ; 2.3 ; X-ray structure of the more stable human AGXT triple mutant (AGXT_HEM) 4PIR ; 3.5 ; X-ray structure of the mouse serotonin 5-HT3 receptor 6KCR ; 3.5 ; X-ray structure of the MtlR-HPr complex from Escherichia coli 3LQE ; 2.0 ; X-Ray Structure of the Murine Norovirus (MNV)-1 Capsid Protein Protruding (P) Domain 3KPF ; 2.9 ; X-ray structure of the mutant Lys300Met of polyamine oxidase from Zea mays 3L1R ; 3.2 ; X-ray structure of the mutant lys300met of polyamine oxidase from zea mays in complex with spermidine 3KU9 ; 3.2 ; X-ray structure of the mutant lys300met of polyamine oxidase from zea mays in complex with spermine 4YPJ ; 2.5 ; X-ray Structure of The Mutant of Glycoside Hydrolase 2C86 ; 3.0 ; x-ray structure of the N and C-terminal domain of coronavirus nucleocapsid protein. 7L7Z ; 1.55 ; x-ray structure of the N-acetyltransferase Pcryo_0637 from psychrobacter cryohalolentis in the presence of coenzyme A and UDP-di-N-acetyl-bacillosamine 7L7Y ; 1.3 ; x-ray structure of the N-acetyltransferase Pcryo_0637 from psychrobacter cryohalolentis in the presence of UDP and acetyl-conezyme A 4XD0 ; 1.8 ; X-ray structure of the N-formyltransferase QdtF from Providencia alcalifaciens 4XCZ ; 1.5 ; X-ray structure of the N-formyltransferase QdtF from Providencia alcalifaciens in complex with TDP-Qui3n and N5-THF 4XD1 ; 1.5 ; X-ray structure of the N-formyltransferase QdtF from Providencia alcalifaciens, W305A mutant, in the presence of TDP-Qui3N and N5-THF 2BQQ ; 2.2 ; X-ray Structure of the N-terminal Domain of Human Doublecortin 5IN7 ; 2.48 ; X-RAY STRUCTURE OF THE N-TERMINAL DOMAIN OF HUMAN DOUBLECORTIN 5IO9 ; 1.3 ; X-RAY STRUCTURE OF THE N-TERMINAL DOMAIN OF HUMAN DOUBLECORTIN 5IOI ; 2.4 ; X-RAY STRUCTURE OF THE N-TERMINAL DOMAIN OF HUMAN DOUBLECORTIN 5IKC ; 2.06 ; X-RAY STRUCTURE OF THE N-TERMINAL DOMAIN OF HUMAN DOUBLECORTIN in complex with FAB 4UYR ; 0.89 ; X-ray structure of the N-terminal domain of the flocculin Flo11 from Saccharomyces cerevisiae 4UYS ; 1.05 ; X-ray structure of the N-terminal domain of the flocculin Flo11 from Saccharomyces cerevisiae 4UYT ; 1.03 ; X-ray structure of the N-terminal domain of the flocculin Flo11 from Saccharomyces cerevisiae 2XJQ ; 1.35 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae 2XJS ; 1.3 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae in complex with calcium and a1,2-mannobiose 2XJT ; 1.2 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae in complex with calcium and Man5(D1) 2XJR ; 1.25 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae in complex with calcium and Man5(D2-D3) 2XJP ; 0.95 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae in complex with calcium and mannose 2XJV ; 1.74 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae with mutation D201T in complex with calcium and glucose 2XJU ; 1.7 ; X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae with mutation S227A in complex with calcium and a1,2-mannobiose 1G6G ; 1.6 ; X-RAY STRUCTURE OF THE N-TERMINAL FHA DOMAIN FROM S. CEREVISIAE RAD53P IN COMPLEX WITH A PHOSPHOTHREONINE PEPTIDE AT 1.6 A RESOLUTION 1U2H ; 0.96 ; X-ray Structure of the N-terminally truncated human APEP-1 2J8A ; 3.0 ; X-ray structure of the N-terminus RRM domain of Set1 6EMX ; 3.2 ; X-ray structure of the N15'C mutant of GLIC in complex with bromoform 5NKJ ; 3.74 ; X-ray structure of the N239C mutant of GLIC 8V4G ; 2.0 ; X-ray structure of the NADP-dependent reductase from Campylobacter jejuni responsible for the synthesis of CDP-glucitol in the presence of CDP and NADP 8V4H ; 2.2 ; X-ray structure of the NADP-dependent reductase from Campylobacter jejuni responsible for the synthesis of CDP-glucitol in the presence of CDP-glucitol 8SKP ; 1.3 ; X-ray structure of the NDM-4 beta-lactamase from Klebsiella pneumonia in complex with 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid 8SKO ; 1.3 ; X-ray structure of the NDM-4 beta-lactamase from Klebsiella pneumonia with L-Captopril bound 8SK2 ; 1.3 ; X-ray structure of the NDM-4 beta-lactamase from Klebsiella pneumonia, apo form 1L4A ; 2.95 ; X-RAY STRUCTURE OF THE NEURONAL COMPLEXIN/SNARE COMPLEX FROM THE SQUID LOLIGO PEALEI 3FL1 ; 1.9 ; X-ray structure of the non covalent swapped form of the A19P/Q28L/K31C/S32C mutant of bovine pancreatic ribonuclease in complex with 2'-DEOXYCYTIDINE-2'-DEOXYGUANOSINE-3',5'-MONOPHOSPHATE 3FL0 ; 1.94 ; X-ray structure of the non covalent swapped form of the Q28L/K31C/S32C mutant of bovine pancreatic ribonuclease in complex with 2'-DEOXYCYTIDINE-2'-DEOXYGUANOSINE-3',5'-MONOPHOSPHATE 3FKZ ; 1.99 ; X-ray structure of the non covalent swapped form of the S16G/T17N/A19P/A20S/K31C/S32C mutant of bovine pancreatic ribonuclease 3PTF ; 2.7 ; X-ray structure of the non-covalent complex between UbcH5A and Ubiquitin 1EQZ ; 2.5 ; X-RAY STRUCTURE OF THE NUCLEOSOME CORE PARTICLE AT 2.5 A RESOLUTION 1KX3 ; 2.0 ; X-Ray Structure of the Nucleosome Core Particle, NCP146, at 2.0 A Resolution 1KX4 ; 2.6 ; X-Ray Structure of the Nucleosome Core Particle, NCP146b, at 2.6 A Resolution 1KX5 ; 1.94 ; X-Ray Structure of the Nucleosome Core Particle, NCP147, at 1.9 A Resolution 4OKI ; 1.5 ; X-ray structure of the nucleotide-binding subdomain of the enoylreductase domain of PpsC from Mycobacterium tuberculosis 2G1Z ; 3.11 ; X-ray structure of the oligonucleotide sequence d(AAATTT) 1KV6 ; 2.7 ; X-ray structure of the orphan nuclear receptor ERR3 ligand-binding domain in the constitutively active conformation 1K4W ; 1.9 ; X-ray structure of the orphan nuclear receptor ROR beta ligand-binding domain in the active conformation 6I29 ; 2.1 ; X-ray structure of the p53-MDM2 inhibitor NMI801 bound to HDM2 at 2.1A resolution 7L7X ; 1.3 ; X-ray structure of the Pcryo_0638 aminotransferase from Psychrobacter cryohalolentis 3EHZ ; 3.1 ; X-ray structure of the pentameric ligand gated ion channel of Gloebacter violaceus (GLIC) in a presumptive open conformation 7ZJR ; 2.50312 ; X-ray structure of the periplasmic region of PilJ from P. aeruginosa 3K63 ; 2.494 ; X-ray structure of the PF04200 domain from Q9PRA0_UREPA protein of Ureaplasma parvum. NESG target UuR17a. 5BJY ; 1.6 ; x-ray structure of the PglF 4,5-dehydratase from campylobacter jejuni, variant M405Y, in complex with UDP 5BJW ; 1.6 ; X-ray structure of the PglF 4,6-dehydratase from campylobacter jejuni, T595S variant, in complex with UDP 5BJX ; 1.6 ; X-ray structure of the PglF 4,6-dehydratase from campylobacter jejuni, variant T395V, in complex with UDP 5BJU ; 2.0 ; X-ray structure of the PglF dehydratase from Campylobacter jejuni in complex with UDP and NAD(H) 5BJV ; 1.8 ; X-ray structure of the PglF UDP-N-acetylglucosamine 4,6-dehydratase from Campylobacterjejuni, D396N/K397A variant in complex with UDP-N-acrtylglucosamine 7S00 ; 3.3 ; X-ray structure of the phage AR9 non-virion RNA polymerase core 7S01 ; 3.4 ; X-ray structure of the phage AR9 non-virion RNA polymerase holoenzyme in complex with a forked oligonucleotide containing the P077 promoter 7OBE ; 3.0 ; X-ray structure of the phosphatase PAPP5 from Arabidopsis thaliana 6AE9 ; 1.47 ; X-ray structure of the photosystem II phosphatase PBCP 6EQW ; 1.994 ; X-ray structure of the proprotein convertase furin bound with the competitive inhibitor 4-aminomethyl-phenylacetyl-Arg-Val-Arg-Amba 6EQX ; 1.994 ; X-ray structure of the proprotein convertase furin bound with the competitive inhibitor Arg-Arg-Arg-Val-Arg-Amba 6EQV ; 1.895 ; X-ray structure of the proprotein convertase furin bound with the competitive inhibitor Phac-Cit-Val-Arg-Amba 2QGG ; 2.4 ; X-Ray structure of the protein Q6F7I0 from Acinetobacter calcoaceticus AmMS 248. Northeast Structural Genomics Consortium target AsR73. 2RD1 ; 2.3 ; X-Ray structure of the protein Q7CQI7. Northeast Structural Genomics Consortium target StR87A 3E29 ; 2.4 ; X-Ray structure of the protein Q7WE92_BORBR from thioesterase superfamily. Northeast Structural Genomics Consortium Target BoR214A. 2RB6 ; 2.5 ; X-Ray structure of the protein Q8EI81. Northeast Structural Genomics Consortium target SoR78A 2P6Y ; 1.63 ; X-ray structure of the protein Q9KM02_VIBCH from Vibrio cholerae at the resolution 1.63 A. Northeast Structural Genomics Consortium target VcR80. 4OOT ; 1.8 ; X-ray structure of the protein-gold adduct formed upon reaction of Aubipic with hen egg white lysozyme 6KOB ; 3.6 ; X-ray Structure of the proton-pumping cytochrome aa3-600 menaquinol oxidase from Bacillus subtilis 6KOE ; 3.75 ; X-ray Structure of the proton-pumping cytochrome aa3-600 menaquinol oxidase from Bacillus subtilis 6KOC ; 3.8 ; X-ray Structure of the proton-pumping cytochrome aa3-600 menaquinol oxidase from Bacillus subtilis complexed with 3-iodo-N-oxo-2-heptyl-4-hydroxyquinoline 7L81 ; 1.3 ; x-ray structure of the psychrobacter cryohalolentis N-acetyltransferase Pcryo_0637 in the presence of coenzyme A and 7L82 ; 1.4 ; x-ray structure of the psychrobacter cryohalolentis Pcryo_0637 N-acetyltransferase in the presene of its reaction tetrahedral intermediate 3E5Z ; 2.01 ; X-Ray structure of the putative gluconolactonase in protein family PF08450. Northeast Structural Genomics Consortium target DrR130. 1WYZ ; 2.5 ; X-Ray structure of the putative methyltransferase from Bacteroides thetaiotaomicron VPI-5482 at the resolution 2.5 A. Norteast Structural Genomics Consortium target Btr28 1ZKD ; 2.1 ; X-Ray structure of the putative protein Q6N1P6 from Rhodopseudomonas palustris at the resolution 2.1 A , Northeast Structural Genomics Consortium target RpR58 2OBK ; 2.7 ; X-Ray structure of the putative Se binding protein from Pseudomonas fluorescens. Northeast Structural Genomics Consortium target PlR6. 3C37 ; 1.7 ; X-ray structure of the putative Zn-dependent peptidase Q74D82 at the resolution 1.7 A. Northeast Structural Genomics Consortium target GsR143A 2RA2 ; 1.9 ; X-Ray structure of the Q7CPV8 protein from Salmonella typhimurium at the resolution 1.9 A. Northeast Structural Genomics Consortium target StR88A 6VLO ; 2.05 ; X-ray Structure of the R141 Sugar 4,6-dehydratase from Acanthamoeba polyphaga Minivirus 1T6M ; 2.107 ; X-ray Structure of the R70D PI-PLC enzyme: Insight into the role of calcium and surrounding amino acids on active site geometry and catalysis. 6Y1X ; 1.95 ; X-ray structure of the radical SAM protein NifB, a key nitrogenase maturating enzyme 8AIC ; 2.8 ; X-ray structure of the receptor binding domain of Env glycoprotein of Simian Foamy virus 3MVX ; 1.7 ; X-ray structure of the reduced NikA/1 hybrid, NikA/1-Red 3K9R ; 1.96 ; X-ray structure of the Rhodanese-like domain of the Alr3790 protein from Anabaena sp. Northeast Structural Genomics Consortium Target NsR437c. 6XOK ; 1.3 ; X-ray structure of the rhombohedral form of the lipase from Thermomyces lanuginosa at 1.3 A resolution 1XLY ; 1.95 ; X-RAY STRUCTURE OF THE RNA-BINDING PROTEIN SHE2p 1UOC ; 2.3 ; X-ray structure of the RNase domain of the yeast Pop2 protein 4QI0 ; 1.94 ; X-ray structure of the ROQ domain from murine Roquin-1 4QI2 ; 3.0 ; X-ray structure of the ROQ domain from murine Roquin-1 in complex with a 23-mer Tnf-CDE RNA 5AJB ; 1.8 ; X-ray structure of the RSL lectin in complex with Lewis X tetrasaccahride 6CU1 ; 3.0 ; X-ray structure of the S. typhimurium YrlA effector-binding module 6AWN ; 3.62 ; X-ray structure of the S439T human serotonin transporter complexed with paroxetine at the central site 2RKN ; 1.6 ; X-ray structure of the self-defense and signaling protein DIR1 from Arabidopsis taliana 4E3Y ; 0.95 ; X-ray structure of the Serratia marcescens endonuclease at 0.95 A resolution 8OVN ; 2.6 ; X-ray structure of the SF-iGluSnFR-S72A 8OVO ; 1.7 ; X-ray structure of the SF-iGluSnFR-S72A in complex with L-aspartate 8Q0S ; 1.19 ; X-ray structure of the single chain monellin derivative MNEI 1OIV ; 1.98 ; X-ray structure of the small G protein Rab11a in complex with GDP 1OIX ; 1.7 ; X-ray structure of the small G protein Rab11a in complex with GDP and Pi 1OIW ; 2.05 ; X-ray structure of the small G protein Rab11a in complex with GTPgammaS 6ZFW ; 1.58 ; X-ray structure of the soluble N-terminal domain of T. cruzi PEX-14 2XBK ; 1.95 ; X-ray structure of the substrate-bound cytochrome P450 PimD - a polyene macrolide antibiotic pimaricin epoxidase 2X9P ; 2.1 ; X-ray structure of the substrate-free cytochrome P450 PimD - a polyene macrolide antibiotic pimaricin epoxidase 5L1R ; 2.0 ; X-ray Structure of the Substrate-free Cytochrome P450 PntM 2WM5 ; 1.5 ; X-ray structure of the substrate-free Mycobacterium tuberculosis cytochrome P450 CYP124 2XN8 ; 1.64 ; X-RAY STRUCTURE OF THE SUBSTRATE-FREE MYCOBACTERIUM TUBERCULOSIS CYTOCHROME P450 CYP125 2X5L ; 1.48 ; X-RAY STRUCTURE OF THE SUBSTRATE-FREE MYCOBACTERIUM TUBERCULOSIS CYTOCHROME P450 CYP125, ALTERNATIVE CRYSTAL FORM 1S2O ; 1.4 ; X-Ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp. PCC6803 at 1.40 A resolution 1TJ3 ; 2.8 ; X-Ray structure of the Sucrose-Phosphatase (SPP) from Synechocystis sp. PCC6803 in a closed conformation 1U2S ; 2.5 ; X-Ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp. PCC6803 in complex with glucose 1TJ4 ; 2.7 ; X-Ray structure of the Sucrose-Phosphatase (SPP) from Synechocystis sp. PCC6803 in complex with sucrose 1TJ5 ; 2.2 ; X-Ray structure of the Sucrose-Phosphatase (SPP) from Synechocystis sp. PCC6803 in complex with sucrose and phosphate 1U2T ; 2.9 ; X-Ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp. PCC6803 in complex with sucrose6P 2B1R ; 2.2 ; X-ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp.PCC6803 in complex with cellobiose 2D2V ; 2.5 ; X-ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp.PCC6803 in complex with maltose 2B1Q ; 2.2 ; X-ray structure of the sucrose-phosphatase (SPP) from Synechocystis sp.PCC6803 in complex with trehalose 5BSZ ; 2.0 ; X-ray structure of the sugar N-methyltransferase KedS8 from Streptoalloteichus sp ATCC 53650 1P5U ; 1.99 ; X-ray structure of the ternary Caf1M:Caf1:Caf1 chaperone:subunit:subunit complex 1MVK ; 2.5 ; X-ray structure of the tetrameric mutant of the B1 domain of streptococcal protein G 5EY3 ; 1.905 ; X-ray structure of the thymidine phosphorylase from Salmonella typhimurium in complex with cytidine and sulphate 4YEK ; 2.55 ; X-ray structure of the thymidine phosphorylase from Salmonella typhimurium in complex with thymidine 4YYY ; 2.43 ; X-ray structure of the thymidine phosphorylase from Salmonella typhimurium in complex with uridine 6HTK ; 2.0 ; X-ray structure of the tryptophan lyase NosL in complex with (R)-(+)-indoline-2-carboxylate 6HTM ; 1.7 ; X-ray structure of the tryptophan lyase NosL in complex with bound tryptamin 4R33 ; 1.78 ; X-ray structure of the tryptophan lyase NosL with Tryptophan and S-adenosyl-L-homocysteine bound 4R34 ; 1.8 ; X-ray structure of the tryptophan lyase NosL with Tryptophan, 5'-deoxyadenosine and methionine bound 5I6Z ; 4.53 ; X-ray structure of the ts2 human serotonin transporter 5I74 ; 3.395 ; X-ray structure of the ts3 human serotonin transporter complexed with Br-citalopram at the central site 6AWP ; 3.8 ; X-ray structure of the ts3 human serotonin transporter complexed with fluvoxamine at the central site 5I6X ; 3.14 ; X-ray structure of the ts3 human serotonin transporter complexed with paroxetine at the central site 5I73 ; 3.24 ; X-ray structure of the ts3 human serotonin transporter complexed with s-citalopram at the central and allosteric sites 5I71 ; 3.15 ; X-ray structure of the ts3 human serotonin transporter complexed with s-citalopram at the central site 5I75 ; 3.49 ; X-ray structure of the ts3 human serotonin transporter complexed with s-citalopram at the central site and Br-citalopram at the allosteric site 6AWO ; 3.534 ; X-ray structure of the ts3 human serotonin transporter complexed with sertraline at the central site 4XR5 ; 2.05 ; X-ray structure of the unliganded thymidine phosphorylase from Salmonella typhimurium at 2.05 A resolution 2QDK ; 1.62 ; X-ray structure of the unliganded uridine phosphorylase from Salmonella typhimurium at 1.62A resolution 2OXF ; 1.76 ; X-ray structure of the unliganded uridine phosphorylase from Salmonella typhimurium in homodimeric form at 1.76A resolution 3DPS ; 1.8 ; X-ray structure of the unliganded uridine phosphorylase from salmonella typhimurium in homodimeric form at 1.8A 6EYP ; 1.22 ; X-ray structure of the unliganded uridine phosphorylase from Vibrio cholerae at 1.22A 4NY1 ; 1.7 ; X-ray structure of the unliganded uridine phosphorylase from Yersinia pseudotuberculosis at 1.7 A resolution 4I2V ; 2.121 ; X-ray structure of the unliganded uridine phosphorylase from Yersinia pseudotuberculosis at 2.12A resolution 3C74 ; 2.38 ; X-ray structure of the uridine phosphorylase from salmonella typhimurium in complex with 2,2'-anhydrouridine at 2.38a resolution 4E1V ; 2.15 ; X-RAY Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with 5-Fluorouracil at 2.15 A Resolution 3DDO ; 1.5 ; X-RAY Structure of the Uridine Phosphorylase from Salmonella Typhimurium in Complex with by Phosphate Ion at 1.5A Resolution 2PGA ; 1.74 ; X-ray Structure of the Uridine Phosphorylase From SALMONELLA TYPHIMURIUM in Complex with Inhibitor and Phosphate and Potassium Ion at 1.74 A Resolution 4OGK ; 2.4 ; X-ray structure of the uridine phosphorylase from Salmonella typhimurium in complex with thymidine at 2.40 A resolution 7TXP ; 1.45 ; X-ray structure of the VioB N-acetyltransferase from Acinetobacter baumannii in complex with TDP-4-amino-4,6-dideoxy-D-glucose 7TXQ ; 1.65 ; x-ray structure of the VioB N-acetyltransferase from Acinetobacter baumannii in the present of TDP and Acetyl-CoenzymeA 7TXS ; 1.25 ; X-ray structure of the VioB N-aetyltransferase from Acinetobacter baumannii in the presence of a reaction intermediate 4YFY ; 1.9 ; X-ray structure of the Viof N-formyltransferase from Providencia alcalifaciens O30 in complex with THF and TDP-Qui4N 5UIN ; 2.2 ; X-ray structure of the W305A variant of the FdtF N-formyltransferase from salmonella enteric O60 8CUK ; 2.22 ; X-ray Structure of the WD40 domain of HOPS subunit Vps11 from Yeast 5TPU ; 2.0 ; x-ray structure of the WlaRB TDP-quinovose 3,4-ketoisomerase from campylobacter jejuni 5U21 ; 1.6 ; X-ray structure of the WlaRF aminotransferase from Campylobacter jejuni, K184A mutant in complex with TDP-Qui3N 5U23 ; 1.45 ; X-ray structure of the WlaRG aminotransferase from Campylobacter jejuni in complex with TDP-Qui3N 5U20 ; 1.5 ; X-ray structure of the WlaRG aminotransferase from Campylobacter jejuni, internal PLP-aldimine 5U24 ; 1.7 ; X-ray structure of the WlaRG aminotransferase from campylobacter jejuni, K184A mutant in complex with TDP-Fuc3N 5U1Z ; 1.6 ; X-ray structure of the WlarG aminotransferase, apo form, from Campylobacter jejune 2GIN ; 1.8 ; X-ray structure of the wt allene oxide cyclase 2 from arabidopsis thaliana 4E2X ; 1.4 ; X-ray Structure of the Y222F mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and dTDP 1SYI ; 2.1 ; X-RAY STRUCTURE OF THE Y702F MUTANT OF THE GLUR2 LIGAND-BINDING CORE (S1S2J) IN COMPLEX WITH (S)-CPW399 AT 2.1 A RESOLUTION. 1XHY ; 1.85 ; X-ray structure of the Y702F mutant of the GluR2 ligand-binding core (S1S2J) in complex with kainate at 1.85 A resolution 4E31 ; 1.75 ; X-ray Structure of the Y76F mutant of TcaB9, a C-3'-Methyltransferase, in Complex with S-Adenosyl-L-Homocysteine and Sugar Product 6GEF ; 2.75 ; X-ray structure of the Yersinia pseudotuberculosis ATPase DotB 2YMA ; 2.545 ; X-ray structure of the Yos9 dimerization domain 6Y4E ; 1.02 ; X-ray structure of the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH 6Y4F ; 1.75 ; X-ray structure of the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH 3CIW ; 1.35 ; X-RAY structure of the [FeFe]-hydrogenase maturase HydE from thermotoga maritima 3CIX ; 1.7 ; X-RAY structure of the [FeFe]-hydrogenase maturase HydE from thermotoga maritima in complex with thiocyanate 8P84 ; 1.5 ; X-ray structure of Thermoanaerobacterales bacterium monoamine oxidase 6UT3 ; 2.95 ; X-ray structure of Thermococcus gammatolerans McrB AAA+ domain hexamer in P21 symmetry 6QF2 ; 1.733 ; X-Ray structure of Thermolysin crystallized on a silicon chip 6QF3 ; 1.521 ; X-Ray structure of Thermolysin soaked with sodium aspartate on a silicon chip 6Y3D ; 1.8 ; X-ray structure of thermophilic C-phycocyanin from Galdiera phlegrea 7WGT ; 2.75 ; X-ray structure of thermostabilized Drosophila dopamine transporter with GABA transporter1-like substitutions in the binding site, in complex with NO711. 7WLW ; 2.9 ; X-ray structure of thermostabilized Drosophila dopamine transporter with GABA transporter1-like substitutions in the binding site, in complex with SKF89976a 7WGD ; 3.2 ; X-ray structure of thermostabilized Drosophila dopamine transporter with GABA transporter1-like substitutions in the binding site, in substrate-free form. 1XKR ; 1.75 ; X-ray Structure of Thermotoga maritima CheC 7WRR ; 2.01 ; X-ray structure of Thermus thermophilus HB8 transketorase in complex with TPP and MES 2E6K ; 2.09 ; X-ray structure of Thermus thermopilus HB8 TT0505 2BEI ; 1.842 ; X-ray structure of thialysine n-acetyltransferase (SSAT2) from homo sapiens 8GQL ; 2.3 ; X-ray structure of Thiolase from Pseudomonas aeruginosa PAO1 8GQN ; 2.7 ; X-ray structure of thiolase with CoA 1RCU ; 2.5 ; X-RAY STRUCTURE OF TM1055 NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET VT76 5CEG ; 1.59 ; X-ray structure of toxin/anti-toxin complex from Mesorhizobium opportunistum 1G7R ; 2.2 ; X-RAY STRUCTURE OF TRANSLATION INITIATION FACTOR IF2/EIF5B 1G7S ; 2.0 ; X-RAY STRUCTURE OF TRANSLATION INITIATION FACTOR IF2/EIF5B COMPLEXED WITH GDP 1G7T ; 2.0 ; X-RAY STRUCTURE OF TRANSLATION INITIATION FACTOR IF2/EIF5B COMPLEXED WITH GDPNP 5L7O ; 3.6 ; X-ray structure of Triatoma virus empty capsid 8A2L ; 2.301 ; X-ray structure of TRIL-encapsulated human heavy chain ferritin 8A58 ; 2.25 ; X-ray structure of TRIM21 RING E3 ligase in complex with E2 enzyme Ube2W 1UX8 ; 2.15 ; X-ray structure of truncated oxygen-avid haemoglobin from Bacillus subtilis 7QRC ; 2.18 ; X-ray structure of Trypanosoma cruzi PEX14 in complex with a PEX5-PEX14 PPI inhibitor 2TPR ; 2.4 ; X-RAY STRUCTURE OF TRYPANOTHIONE REDUCTASE FROM CRITHIDIA FASCICULATA AT 2.4 ANGSTROMS RESOLUTION 6ER5 ; 3.37 ; X-ray structure of Trypanothione Reductase from Leishmania infantum in complex with 2-(diethylamino)ethyl 4-((3-(4-nitrophenyl)-3-oxopropyl)amino)benzoate 2E6X ; 2.0 ; X-ray structure of TT1592 from Thermus thermophilus HB8 5CLY ; 1.23 ; X-ray structure of TTR mutant - S52P at 1.23A resolution 5CLZ ; 1.22 ; X-ray structure of TTR mutant - T119M at 1.22A resolution 1LZY ; 1.55 ; X-RAY STRUCTURE OF TURKEY EGG LYSOZYME COMPLEX WITH DI-N-ACETYLCHITOBIOSE. RECOGNITION AND BINDING OF ALPHA-ANOMERIC FORM 6YPT ; 3.663 ; X-ray structure of Turnip Yellow Mosaic Virus PRO/DUB in complex with Ubiquitin 1LCO ; 2.9 ; X-RAY STRUCTURE OF TWO COMPLEXES OF THE Y143F FLAVOCYTOCHROME B2 MUTANT CRYSTALLIZED IN THE PRESENCE OF LACTATE OR PHENYL-LACTATE 1LDC ; 2.9 ; X-RAY STRUCTURE OF TWO COMPLEXES OF THE Y143F FLAVOCYTOCHROME B2 MUTANT CRYSTALLIZED IN THE PRESENCE OF LACTATE OR PHENYL-LACTATE 5HYO ; 2.104 ; X-Ray Structure of Unbound Porcine Epidemic Diarrhea Virus 3CLpro 4OF4 ; 1.4 ; X-ray structure of unliganded uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 A resolution 3FWP ; 1.86 ; X-ray structure of uridine nucleoside phosphorylease from Salmonella typhimurium complexed with phosphate and its inhibitor 2,2'-anhydrouridine at 1.86 A resolution 4R2W ; 1.6 ; X-ray structure of uridine phosphorylase from Shewanella oneidensis MR-1 in complex with uridine at 1.6 A resolution 4OEH ; 1.91 ; X-ray Structure of Uridine Phosphorylase from Vibrio cholerae Complexed with Uracil at 1.91 A Resolution 5LOK ; 1.109 ; X-ray structure of uridine phosphorylase from Vibrio cholerae in complex with cytidine and cytosine at 1.11 A resolution 5LHV ; 1.288 ; X-ray structure of uridine phosphorylase from Vibrio cholerae in complex with uridine and sulfate ion at 1.29 A resolution 5M2T ; 1.03 ; X-ray structure of uridine phosphorylase from Vibrio cholerae in complex with uridine at 1.03 A resolution 4JP5 ; 2.27 ; X-ray structure of uridine phosphorylase from Yersinia pseudotuberculosis in unliganded state at 2.27 A resolution 4G8J ; 2.119 ; X-ray Structure of Uridine Phosphorylease from Vibrio cholerae Complexed with Thymidine at 2.12 A Resolution 3C8P ; 1.25 ; X-ray structure of Viscotoxin A1 from Viscum album L. 2V9B ; 1.05 ; X-ray structure of viscotoxin B2 from Viscum album 5BUV ; 1.75 ; X-ray structure of WbcA from Yersinia enterocolitica 7BED ; 1.26 ; X-ray structure of WDR5 bound to the WDR5 win motif peptide 4ESG ; 1.7 ; X-ray structure of WDR5-MLL1 Win motif peptide binary complex 4ERQ ; 1.906 ; X-ray structure of WDR5-MLL2 Win motif peptide binary complex 4ERY ; 1.3 ; X-ray structure of WDR5-MLL3 Win motif peptide binary complex 4ERZ ; 1.75 ; X-ray structure of WDR5-MLL4 Win motif peptide binary complex 4EWR ; 1.503 ; X-ray structure of WDR5-SETd1a Win motif peptide binary complex 4ES0 ; 1.817 ; X-ray structure of WDR5-SETd1b Win motif peptide binary complex 7BCY ; 1.5 ; X-ray structure of WDR5delta24 bound to the Kaposi's sarcoma herpesvirus LANA win motif peptide 1WGT ; 1.9 ; X-RAY STRUCTURE OF WHEAT GERM AGGLUTININ ISOLECTIN 3 7RTE ; 2.06 ; X-ray structure of wild type RBPJ-L3MBTL3-DNA complex 5TIC ; 1.65 ; X-ray structure of wild-type E. coli Acyl-CoA thioesterase I at pH 5 2JI1 ; 1.7 ; X-ray structure of wild-type superoxide reductase from Desulfoarculus baarsii 5CN3 ; 1.3 ; X-ray structure of wild-type TTR at 1.30A resolution 5TPV ; 2.14 ; X-ray structure of WlaRA (TDP-fucose-3,4-ketoisomerase) from Campylobacter jejuni 3CAK ; 1.83 ; X-ray structure of WT PTE with ethyl phosphate 1MW7 ; 2.0 ; X-RAY STRUCTURE OF Y162_HELPY NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET PR6 1XQB ; 2.85 ; X-Ray Structure Of YaeB from Haemophilus influenzae. Northeast Structural Genomics Research Consortium (NESGC)target IR47. 1SC0 ; 1.7 ; X-ray Structure of YB61_HAEIN Northeast Structural Genomics Consortium Target IR63 1NS5 ; 1.68 ; X-RAY STRUCTURE OF YBEA FROM E.COLI. NORTHEAST STRUCTURAL GENOMICS RESEARCH CONSORTIUM (NESG) TARGET ER45 1LXJ ; 1.8 ; X-RAY STRUCTURE OF YBL001c NORTHEAST STRUCTURAL GENOMICS (NESG) CONSORTIUM TARGET YTYst72 1SDJ ; 2.3 ; X-RAY STRUCTURE OF YDDE_ECOLI NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ET25. 1SBK ; 2.0 ; X-RAY STRUCTURE OF YDII_ECOLI NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ER29. 7MI1 ; 4.5 ; X-ray structure of yeast dynein motor domain in the presence of a pyrazolo-pyrimidinone-based compound (compound 20) 4G1V ; 2.098 ; X-ray structure of yeast flavohemoglobin 4G1B ; 3.0 ; X-ray structure of yeast flavohemoglobin in complex with econazole 1QGX ; 1.6 ; X-RAY STRUCTURE OF YEAST HAL2P 1OYZ ; 2.1 ; X-RAY STRUCTURE OF YIBA_ECOLI NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET ET31. 1NKV ; 2.9 ; X-RAY STRUCTURE OF YJHP FROM E.COLI NORTHEAST STRUCTURAL GENOMICS RESEARCH CONSORTIUM (NESG) TARGET ER13 4BBP ; 2.15 ; X-ray structure of zinc bound ZnuA in complex with RDS51 4AW8 ; 2.0 ; X-ray structure of ZinT from Salmonella enterica in complex with zinc ion and PEG 4MXL ; 1.5 ; X-ray structure of ZnPFeBMb1 2XY4 ; 1.71 ; X-RAY STRUCTURE OF ZNUA-WT FROM SALMONELLA ENTERICA 1T7H ; 1.13 ; X-ray structure of [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide 7WRT ; 2.25 ; X-ray structure ofThermus thermophilus HB8 transketorase demonstrate in complex with TPP and D-erythrose-4-phosphate 7AAT ; 1.9 ; X-RAY STRUCTURE REFINEMENT AND COMPARISON OF THREE FORMS OF MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE 8AAT ; 2.3 ; X-RAY STRUCTURE REFINEMENT AND COMPARISON OF THREE FORMS OF MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE 9AAT ; 2.2 ; X-RAY STRUCTURE REFINEMENT AND COMPARISON OF THREE FORMS OF MITOCHONDRIAL ASPARTATE AMINOTRANSFERASE 4X46 ; 2.2 ; X-RAY structure thymidine phosphorylase from Salmonella typhimurium complex with SO4 at 2.19 A 6RCA ; 1.345 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with 2.2'-anhydrouridine at 1.34 A 4K6O ; 1.17 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with 6-methyluracil at 1.17 A resolution 4U2K ; 2.13 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with anticancer compound at 2.13 A resolution 5EFO ; 1.63 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with cytidine and cytosine at 1.63A. 5EPU ; 1.06 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with cytosine at 1.06A. 4LZW ; 1.29 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with thymidine at 1.29 A resolution 4OGL ; 1.249 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with thymine at 1.25 A resolution 5MIW ; 1.28 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with uracil at 1.28 A. 5C80 ; 2.243 ; X-ray structure uridine phosphorylase from Vibrio cholerae in complex with uridine at 2.24 A resolution 1NXH ; 2.8 ; X-RAY STRUCTURE: NORTHEAST STRUCTURAL GENOMICS CONSORTIUM TARGET TT87 1ASO ; 2.2 ; X-RAY STRUCTURES AND MECHANISTIC IMPLICATIONS OF THREE FUNCTIONAL DERIVATIVES OF ASCORBATE OXIDASE FROM ZUCCHINI: REDUCED-, PEROXIDE-, AND AZIDE-FORMS 1ASP ; 2.59 ; X-RAY STRUCTURES AND MECHANISTIC IMPLICATIONS OF THREE FUNCTIONAL DERIVATIVES OF ASCORBATE OXIDASE FROM ZUCCHINI: REDUCED-, PEROXIDE-, AND AZIDE-FORMS 1ASQ ; 2.32 ; X-RAY STRUCTURES AND MECHANISTIC IMPLICATIONS OF THREE FUNCTIONAL DERIVATIVES OF ASCORBATE OXIDASE FROM ZUCCHINI: REDUCED-, PEROXIDE-, AND AZIDE-FORMS 1URG ; 1.8 ; X-ray structures from the maltose-maltodextrin binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius 3A9R ; 1.77 ; X-ray Structures of Bacillus pallidus D-Arabinose IsomeraseComplex with (4R)-2-METHYLPENTANE-2,4-DIOL 3WW4 ; 1.95 ; X-ray structures of Cellulomonas parahominis L-ribose isomerase with L-allose 3WW2 ; 2.0 ; X-ray structures of Cellulomonas parahominis L-ribose isomerase with L-psicose 3WW3 ; 1.9 ; X-ray structures of Cellulomonas parahominis L-ribose isomerase with no ligand 1FGV ; 1.9 ; X-RAY STRUCTURES OF FRAGMENTS FROM BINDING AND NONBINDING VERSIONS OF A HUMANIZED ANTI-CD18 ANTIBODY: STRUCTURAL INDICATIONS OF THE KEY ROLE OF VH RESIDUES 59 TO 65 2FGW ; 3.0 ; X-RAY STRUCTURES OF FRAGMENTS FROM BINDING AND NONBINDING VERSIONS OF A HUMANIZED ANTI-CD18 ANTIBODY: STRUCTURAL INDICATIONS OF THE KEY ROLE OF VH RESIDUES 59 TO 65 3LL9 ; 2.148 ; X-ray structures of isopentenyl phosphate kinase 1YCG ; 2.8 ; X-ray Structures of Moorella thermoacetica FprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductase 4A6V ; 1.46 ; X-ray structures of oxazole hydroxamate EcMetAp-Mn complexes 4A6W ; 1.46 ; X-ray structures of oxazole hydroxamate EcMetAp-Mn complexes 1CCP ; 2.2 ; X-RAY STRUCTURES OF RECOMBINANT YEAST CYTOCHROME C PEROXIDASE AND THREE HEME-CLEFT MUTANTS PREPARED BY SITE-DIRECTED MUTAGENESIS 2CCP ; 2.2 ; X-RAY STRUCTURES OF RECOMBINANT YEAST CYTOCHROME C PEROXIDASE AND THREE HEME-CLEFT MUTANTS PREPARED BY SITE-DIRECTED MUTAGENESIS 3CCP ; 2.2 ; X-RAY STRUCTURES OF RECOMBINANT YEAST CYTOCHROME C PEROXIDASE AND THREE HEME-CLEFT MUTANTS PREPARED BY SITE-DIRECTED MUTAGENESIS 4CCP ; 2.2 ; X-RAY STRUCTURES OF RECOMBINANT YEAST CYTOCHROME C PEROXIDASE AND THREE HEME-CLEFT MUTANTS PREPARED BY SITE-DIRECTED MUTAGENESIS 3CZW ; 1.4 ; X-ray structures of the (GUGGUCUGAUGAGGCC) RNA duplex 3D0M ; 2.0 ; X-ray structures of the (GUGGUCUGAUGAGGCC) RNA duplex 1FVC ; 2.2 ; X-RAY STRUCTURES OF THE ANTIGEN-BINDING DOMAINS FROM THREE VARIANTS OF HUMANIZED ANTI-P185-HER2 ANTIBODY 4D5 AND COMPARISON WITH MOLECULAR MODELING 1FVD ; 2.5 ; X-RAY STRUCTURES OF THE ANTIGEN-BINDING DOMAINS FROM THREE VARIANTS OF HUMANIZED ANTI-P185-HER2 ANTIBODY 4D5 AND COMPARISON WITH MOLECULAR MODELING 1FVE ; 2.7 ; X-RAY STRUCTURES OF THE ANTIGEN-BINDING DOMAINS FROM THREE VARIANTS OF HUMANIZED ANTI-P185-HER2 ANTIBODY 4D5 AND COMPARISON WITH MOLECULAR MODELING 194D ; 2.3 ; X-RAY STRUCTURES OF THE B-DNA DODECAMER D(CGCGTTAACGCG) WITH AN INVERTED CENTRAL TETRANUCLEOTIDE AND ITS NETROPSIN COMPLEX 195D ; 2.3 ; X-RAY STRUCTURES OF THE B-DNA DODECAMER D(CGCGTTAACGCG) WITH AN INVERTED CENTRAL TETRANUCLEOTIDE AND ITS NETROPSIN COMPLEX 1URS ; 1.45 ; X-ray structures of the maltose-maltodextrin binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius 1URD ; 1.53 ; X-ray structures of the maltose-maltodextrin binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins 1MMA ; 2.1 ; X-RAY STRUCTURES OF THE MGADP, MGATPGAMMAS, AND MGAMPPNP COMPLEXES OF THE DICTYOSTELIUM DISCOIDEUM MYOSIN MOTOR DOMAIN 1MMG ; 2.1 ; X-RAY STRUCTURES OF THE MGADP, MGATPGAMMAS, AND MGAMPPNP COMPLEXES OF THE DICTYOSTELIUM DISCOIDEUM MYOSIN MOTOR DOMAIN 1MMN ; 2.1 ; X-RAY STRUCTURES OF THE MGADP, MGATPGAMMAS, AND MGAMPPNP COMPLEXES OF THE DICTYOSTELIUM DISCOIDEUM MYOSIN MOTOR DOMAIN 2ER0 ; 3.0 ; X-RAY STUDIES OF ASPARTIC PROTEINASE-STATINE INHIBITOR COMPLEXES 2ER9 ; 2.2 ; X-RAY STUDIES OF ASPARTIC PROTEINASE-STATINE INHIBITOR COMPLEXES. 7Z6O ; 3.7 ; X-Ray studies of Ku70/80 reveal the binding site for IP6 2AZD ; 2.16 ; X-Ray studies on Maltodextrin Phosphorylase (MalP) Complexes: recognition of substrates and CATALYTIC mechanism of phosphorylase family 2AV6 ; 2.01 ; X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family 2AW3 ; 2.2 ; X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family 2ASV ; 1.95 ; X-Ray studies on protein complexes: Enzymatic catalysis in Crystals of E. coli Maltodextrin Phosphorylase (MalP) 4L8U ; 2.01 ; X-ray study of human serum albumin complexed with 9 amino camptothecin 4LA0 ; 2.4 ; X-ray study of human serum albumin complexed with bicalutamide 4L9K ; 2.4 ; X-ray study of human serum albumin complexed with camptothecin 4LB9 ; 2.7 ; X-ray study of human serum albumin complexed with etoposide 1N5U ; 1.9 ; X-RAY STUDY OF HUMAN SERUM ALBUMIN COMPLEXED WITH HEME 4LB2 ; 2.8 ; X-ray study of human serum albumin complexed with idarubicin 4L9Q ; 2.7 ; X-ray study of human serum albumin complexed with teniposide 1UOR ; 2.8 ; X-RAY STUDY OF RECOMBINANT HUMAN SERUM ALBUMIN. PHASES DETERMINED BY MOLECULAR REPLACEMENT METHOD, USING LOW RESOLUTION STRUCTURE MODEL OF TETRAGONAL FORM OF HUMAN SERUM ALBUMIN 1RSB ; 2.17 ; X-ray study of the DNA oligomer d(ATATAT) in P65 space group 3WHO ; 1.85 ; X-ray-Crystallographic Structure of an RNase Po1 Exhibiting Anti-tumor Activity 4OT7 ; 1.8 ; X-structure of a variant of NCR from zymomonas mobilis 4A3U ; 1.7 ; X-structure of the old yellow enzyme homologue from zymomonas mobilis (NCR) 1G9J ; 1.9 ; X-TAL STRUCTURE OF THE MUTANT E44Q OF THE CELLULASE CEL48F IN COMPLEX WITH A THIOOLIGOSACCHARIDE 8Q6P ; 3.53 ; X. laevis CMG dimer bound to dimeric DONSON - MCM ATPase 8Q6O ; 3.14 ; X. laevis CMG dimer bound to dimeric DONSON - without ATPase 7NQB ; 2.01 ; X.ray structure of the oxaliplatin/beta-lactoglobulin adduct 4GPG ; 1.979 ; X/N joint refinement of Achromobacter Lyticus Protease I free form at pD8.0 4GPG ; 1.895 ; X/N joint refinement of Achromobacter Lyticus Protease I free form at pD8.0 3VXF ; 2.752 ; X/N Joint refinement of Human alpha-thrombin-Bivalirudin complex PD5 3VXF ; 1.602 ; X/N Joint refinement of Human alpha-thrombin-Bivalirudin complex PD5 1X11 ; 2.5 ; X11 PTB DOMAIN 1AQC ; 2.3 ; X11 PTB DOMAIN-10MER PEPTIDE COMPLEX 7RPY ; 1.67 ; X25-2 domain of Sca5 from Ruminococcus bromii 3Q6D ; 1.97 ; Xaa-Pro dipeptidase from Bacillus anthracis. 5GIQ ; 1.8 ; Xaa-Pro peptidase from Deinococcus radiodurans, Zinc bound 5UB7 ; 2.48 ; XAC2383 from Xanthomonas citri bound to ATP 5UB3 ; 1.9 ; XAC2383 from Xanthomonas citri bound to chloride ion 5UB4 ; 2.09 ; XAC2383 from Xanthomonas citri bound to phosphate 5UB6 ; 2.2 ; XAC2383 from Xanthomonas citri bound to pyrophosphate 2MWZ ; ; Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G G X O tetrad 1N5X ; 2.8 ; Xanthine Dehydrogenase from Bovine Milk with Inhibitor TEI-6720 Bound 6Q62 ; 1.5 ; Xanthomonas albilineans Dihydropteroate synthase in complex with (indole-2-carboxylic acid) and (6-chloroguanine) 6DAY ; 1.65 ; Xanthomonas albilineans Dihydropteroate synthase with 4-aminobenzoic acid at 1.65 A 5IO2 ; 1.2 ; Xanthomonas campestris Peroxiredoxin Q - C48S mutant 5IPH ; 1.3 ; Xanthomonas campestris Peroxiredoxin Q - C84S mutant 5IIZ ; 1.05 ; Xanthomonas campestris Peroxiredoxin Q - Structure F0 5IM9 ; 1.1 ; Xanthomonas campestris Peroxiredoxin Q - Structure F1 5IMA ; 1.04 ; Xanthomonas campestris Peroxiredoxin Q - Structure F2 5IMC ; 1.05 ; Xanthomonas campestris Peroxiredoxin Q - Structure F3 5IMD ; 1.16 ; Xanthomonas campestris Peroxiredoxin Q - Structure F4 5IMF ; 1.04 ; Xanthomonas campestris Peroxiredoxin Q - Structure F5 5IMV ; 1.05 ; Xanthomonas campestris Peroxiredoxin Q - Structure F6 5IMZ ; 1.1 ; Xanthomonas campestris Peroxiredoxin Q - Structure F7 5INY ; 1.04 ; Xanthomonas campestris Peroxiredoxin Q - Structure F8 5IO0 ; 1.3 ; Xanthomonas campestris Peroxiredoxin Q - Structure F9 5IOW ; 1.35 ; Xanthomonas campestris Peroxiredoxin Q - Structure FFcumene (Hyperoxidized by cumene hydroperoxide) 5IPG ; 1.35 ; Xanthomonas campestris Peroxiredoxin Q - Structure FFT-butyl (Hyperoxodized by t-butyl hydroperoxide) 5IOX ; 1.3 ; Xanthomonas campestris Peroxiredoxin Q - Structure LUss 2VSY ; 2.1 ; Xanthomonas campestris putative OGT (XCC0866), apostructure 2JLB ; 2.5 ; Xanthomonas campestris putative OGT (XCC0866), complex with UDP- GlcNAc phosphonate analogue 6NNT ; 1.45 ; Xanthomonas citri Dephospho-PGM in complex with glucose-1,6-bisphosphate 6NNN ; 1.35 ; Xanthomonas citri Dephospho-PGM in complex with glucose-1-phosphate 6NNP ; 1.5 ; Xanthomonas citri Dephospho-PGM in complex with glucose-6-phosphate 6NOL ; 1.73 ; Xanthomonas citri Dephospho-PGM in complex with mannose-1-phosphate 6NPX ; 1.42 ; Xanthomonas citri Dephospho-PGM in complex with mannose-6-phosphate 6NQH ; 1.45 ; Xanthomonas citri Dephospho-PGM in complex with xylose-1-phosphate 6WQI ; 2.0 ; Xanthomonas citri Methionyl-tRNA synthetase (apo) 6WQ6 ; 1.7 ; Xanthomonas citri Methionyl-tRNA synthetase in complex with methionine 6WQT ; 1.65 ; Xanthomonas citri Methionyl-tRNA synthetase in complex with REP3123 6WQS ; 2.0 ; Xanthomonas citri Methionyl-tRNA synthetase in complex with REP8839 6NN1 ; 1.5 ; Xanthomonas citri PGM Apo-Dephospho 6NQE ; 1.85 ; Xanthomonas citri PGM Apo-Dephospho at room temperature 6NN2 ; 1.44 ; Xanthomonas citri PGM Apo-Phospho 6NQF ; 1.9 ; Xanthomonas citri PGM Apo-Phospho at room temperature 6NQG ; 2.05 ; Xanthomonas citri Phospho-PGM in complex with glucopyranosyl-1-methyl-phosphonic acid at room temperature 6NNU ; 1.46 ; Xanthomonas citri Phospho-PGM in complex with glucose-1,6-phosphate 6NNO ; 1.57 ; Xanthomonas citri Phospho-PGM in complex with glucose-1-phosphate 6NNS ; 1.45 ; Xanthomonas citri Phospho-PGM in complex with glucose-6-phosphate 6NOQ ; 1.61 ; Xanthomonas citri Phospho-PGM in complex with mannose-1-phosphate 6NP8 ; 1.41 ; Xanthomonas citri Phospho-PGM in complex with mannose-6-phosphate 2OIX ; 1.8 ; Xanthomonas XopD C470A Mutant 4NAG ; 0.81 ; Xanthomonins I III are a New Class of Lasso Peptides Featuringa Seven-Membered Macrolactam Ring 6GY6 ; 4.0 ; XaxAB pore complex from Xenorhabdus nematophila 8PQ2 ; 3.85 ; XBB 1.0 RBD bound to P4J15 (Local) 8WRL ; 3.36 ; XBB.1.5 RBD in complex with ACE2 8XE9 ; 3.3 ; XBB.1.5 RBD in complex with BD55-1205 8WRM ; 4.34 ; XBB.1.5 spike protein in complex with ACE2 8WTD ; 3.06 ; XBB.1.5.10 RBD in complex with ACE2 8WRO ; 3.9 ; XBB.1.5.10 spike protein in complex with ACE2 8WTJ ; 4.64 ; XBB.1.5.70 spike protein in complex with ACE2 1K8L ; ; XBY6: An analog of CK14 containing 6 dithiophosphate groups 3DSG ; 2.09 ; XC1028 from Xanthomonas campestris Adopts a PilZ Domain-like Structure Yet with Trivial c-di-GMP Binding Activity 8IGZ ; 3.11 ; Xcc NAMPT Quadruple mutant 7YQO ; 1.79 ; Xcc Nicotinamide Phosphoribosyltransferase 7YQP ; 2.088 ; Xcc Nicotinamide Phosphoribosyltransferase 6Y1W ; 1.6 ; Xcc4156, a flavin-dependent halogenase from Xanthomonas campestris 5R4X ; 1.4 ; XChem fragment screen -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF THE HUMAN ATAD2 in complex with N13413a 5R4V ; 1.29 ; XChem fragment screen -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF THE HUMAN ATAD2 in complex with N13475a 5R4W ; 1.47 ; XChem fragment screen -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF THE HUMAN ATAD2 in complex with N13501a 5R4Z ; 1.46 ; XChem fragment screen -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF THE HUMAN ATAD2 in complex with N13605a 5R4Y ; 1.84 ; XChem fragment screen -- CRYSTAL STRUCTURE OF THE BROMODOMAIN OF THE HUMAN ATAD2 in complex with N13612a 5S7C ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000274c 5S7M ; 1.32 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000275d 5S7B ; 1.32 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000329d 5S7X ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000376d 5S85 ; 1.33 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000884c 5S7J ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM000893d 5S7O ; 1.43 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM007391c 5S79 ; 1.5 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010910a 5S75 ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010913a 5S7H ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010914a 5S76 ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010916a 5S7R ; 1.46 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010918a 5S7N ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010920a 5S7S ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010921a 5S7D ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010923a 5S7T ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010926a 5S7I ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010928a 5S7E ; 1.32 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010930a 5S7Y ; 1.37 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010933a 5S78 ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010934a 5S7F ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010935a 5S7K ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010936a 5S7P ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010937a 5S7U ; 1.59 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010938a 5S7V ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010942a 5S7L ; 1.36 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010943a 5S7Q ; 1.53 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010944a 5S80 ; 1.67 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010946a 5S81 ; 1.43 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010947a 5S83 ; 1.33 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010948a 5S84 ; 1.35 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010949a 5S86 ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010952a 5S87 ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010953a 5S88 ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010954a 5S9K ; 1.35 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010955a 5S89 ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010957a 5S8B ; 1.64 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with FM010960a 5S7W ; 1.33 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with HM000007h 5S8A ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with NU074484b 5S7Z ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with NU074488b 5S7A ; 1.3 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with PK012456b 5S82 ; 1.71 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with XS035128c 5S77 ; 1.31 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with XS035133b 5S7G ; 1.78 ; XChem group deposition -- Crystal Structure of human ACVR1 in complex with XS035844b 5R68 ; 1.64 ; XChem group deposition -- Crystal Structure of human YEATS4 in complex with FM000199e 5R69 ; 1.83 ; XChem group deposition -- Crystal Structure of human YEATS4 in complex with XS038644e 5S8N ; 1.23 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with E07179c (space group C2) 5S8P ; 1.41 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with E07179c (space group P212121) 5S8L ; 1.23 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with E11289c (space group C2) 5S8Q ; 1.5 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with FMO3D000185a (space group P212121) 5S8C ; 1.25 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00322e (space group C2) 5S8E ; 1.24 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00531b (space group C2) 5S8D ; 1.26 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00539e (space group C2) 5S8F ; 1.18 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00572d (space group C2) 5S8G ; 1.19 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00804d (space group C2) 5S8H ; 1.29 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N00964e (space group C2) 5S8I ; 1.3 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N01186d (space group C2) 5S8J ; 1.21 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N01207d (space group C2) 5S8K ; 1.24 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N01225c (space group C2) 5S8O ; 1.67 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N01460c (space group P212121) 5S8M ; 1.2 ; XChem group deposition -- Crystal Structure of the second bromodomain of pleckstrin homology domain interacting protein (PHIP) in complex with N11511a (space group C2) 2XGS ; 2.39 ; XcOGT in complex with C-UDP 2XGO ; 2.6 ; XcOGT in complex with UDP-S-GlcNAc 5MP2 ; 2.9 ; XcpQN012 in complex with VHH04 2XKH ; 2.31 ; Xe derivative of C.lacteus mini-Hb Leu86Ala mutant 4UTH ; 1.25 ; XenA - oxidized - Y183F variant 5LNI ; 1.133 ; XenA - oxidized - Y183F variant in complex with 7-hydroxycoumarin 4UTJ ; 1.07 ; XenA - oxidized - Y183F variant in complex with 8-hydroxycoumarin 4UTI ; 1.099 ; XenA - oxidized - Y183F variant in complex with coumarin 3N19 ; 1.75 ; XenA - reduced 4UTK ; 1.44 ; XenA - reduced - Y183F variant 5LNJ ; 1.16 ; XenA - reduced - Y183F variant in complex with 7-hydroxycoumarin 4UTM ; 1.09 ; XenA - Reduced - Y183F variant in complex with 8-hydroxycoumarin 4UTL ; 1.229 ; XenA - reduced - Y183F variant in complex with coumarin 3N14 ; 1.9 ; XenA - W358A 5CPM ; 1.5 ; XenA from Pseudomonas putida in complex with NADPH4. 8AUG ; 1.35 ; XenA Y183F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUF ; 1.35 ; XenA Y183F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxopentanoate 5N6Q ; 2.2 ; Xenobiotic reductase A (XenA) from Pseudomonas putida in complex with 2-phenylacrylic acid 3L65 ; 1.2 ; Xenobiotic Reductase A - C25A Mutant 3L66 ; 1.28 ; Xenobiotic Reductase A - C25A Variant with Coumarin 3L67 ; 1.8 ; Xenobiotic reductase A - C25S variant 3L68 ; 1.75 ; Xenobiotic Reductase A - C25S variant with coumarin 3L5M ; 1.1 ; Xenobiotic reductase A - coumarin bound 3L5L ; 1.03 ; Xenobiotic Reductase A - oxidized 8AU8 ; 1.58 ; Xenobiotic reductase A from P. putida in complex with ethyl (Z)-2-(hydroxyimino)-3-oxopentanoate 8AU9 ; 1.5 ; Xenobiotic reductase A from Pseudomonas putida in complex with 2-methoxyethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8A8I ; 1.88 ; Xenobiotic reductase A from Pseudomonas putida in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 2H8Z ; 1.42 ; Xenobiotic Reductase A in complex with 8-Hydroxycoumarin 2H90 ; 1.42 ; Xenobiotic reductase A in complex with coumarin 8AUI ; 1.54 ; Xenobiotic reductase A Y27F variant in complex with 2-methoxyethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 8AUH ; 1.35 ; Xenobiotic reductase A Y27F variant in complex with ethyl (Z)-2-(hydroxyimino)-3-oxobutanoate 2H8X ; 1.5 ; Xenobiotic Reductase A-oxidized 1E9V ; 1.79 ; XENON BOUND IN HYDROPHOBIC CHANNEL OF HYBRID CLUSTER PROTEIN FROM DESULFOVIBRIO VULGARIS 1UYU ; 2.0 ; Xenon COMPLEX OF wildtype P450CAM FROM PSEUDOMONAS PUTIDA 1VAU ; 1.5 ; Xenon derivative of hen egg-white lysozyme 6QII ; 2.28 ; Xenon derivatization of the F420-reducing [NiFe] hydrogenase complex from Methanosarcina barkeri 5NSW ; 2.5 ; Xenon for tunnelling analysis of the efflux pump component OprN. 4L78 ; 2.18 ; Xenon Trapping and Statistical Coupling Analysis Uncover Regions Important for Structure and Function of Multidomain Protein StPurL 2Z8Y ; 2.51 ; Xenon-bound structure of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase(CODH/ACS) from Moorella thermoacetica 7TSJ ; 2.1 ; Xenon-bound structure of carbon monoxide dehydrogenase (CODH) from Desulfovibrio vulgaris 6L9X ; 2.9 ; Xenons in frog EPDR1 1L6O ; 2.2 ; XENOPUS DISHEVELLED PDZ DOMAIN 4WN0 ; 2.2 ; Xenopus laevis embryonic epidermal lectin in complex with glycerol phosphate 2KR2 ; ; Xenopus laevis malectin complexed with maltose (Glcalpha1-4Glc) 2K46 ; ; Xenopus laevis malectin complexed with nigerose (Glcalpha1-3Glc) 1YCQ ; 2.3 ; XENOPUS LAEVIS MDM2 BOUND TO THE TRANSACTIVATION DOMAIN OF HUMAN P53 6U11 ; 2.7 ; Xenopus laevis N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) (C46S C219S C453S C480S C486S) with CTD mostly flexible 6VG1 ; 2.0 ; xenopus protocadherin 8.1 EC1-6 4C9V ; 2.7 ; Xenopus RNF43 ectodomain in complex with Xenopus RSPO2 Fu1-Fu2 4C8V ; 2.2 ; Xenopus RSPO2 Fu1-Fu2 crystal form I 4C8W ; 3.1 ; Xenopus RSPO2 Fu1-Fu2 crystal form II 1OE4 ; 2.0 ; Xenopus SMUG1, an anti-mutator uracil-DNA Glycosylase 1OE5 ; 2.3 ; Xenopus SMUG1, an anti-mutator uracil-DNA Glycosylase 1OE6 ; 2.65 ; Xenopus SMUG1, an anti-mutator uracil-DNA Glycosylase 6BBJ ; 3.8 ; Xenopus Tropicalis TRPV4 4C8T ; 2.4 ; Xenopus ZNRF3 ectodomain crystal form I 4C8U ; 3.01 ; Xenopus ZNRF3 ectodomain crystal form II 4C9R ; 2.1 ; Xenopus ZNRF3 ectodomain in complex with Xenopus RSPO2 Fu1-Fu2 crystal form I 4C9U ; 3.0 ; Xenopus ZNRF3 ectodomain in complex with Xenopus RSPO2 Fu1-Fu2 crystal form II 1LP9 ; 2.0 ; Xenoreactive complex AHIII 12.2 TCR bound to p1049/HLA-A2.1 6YEY ; 3.7 ; Xenorhabdus nematophila XptA1 in complex with porcine mucosa heparin 7Q6G ; 2.8 ; Xenorhabdus poinarii FtsA 1-396 ADP 6PS7 ; 1.85 ; XFEL A2aR structure by ligand exchange from LUF5843 to ZM241385. 6PRZ ; 2.8 ; XFEL beta2 AR structure by ligand exchange from Alprenolol to Alprenolol. 6PS0 ; 3.4 ; XFEL beta2 AR structure by ligand exchange from Alprenolol to Carazolol. 6PS1 ; 3.2 ; XFEL beta2 AR structure by ligand exchange from Alprenolol to Timolol. 6PS2 ; 2.4 ; XFEL beta2 AR structure by ligand exchange from Timolol to Alprenolol. 6PS3 ; 2.5 ; XFEL beta2 AR structure by ligand exchange from Timolol to Carvedilol. 6PS4 ; 2.6 ; XFEL beta2 AR structure by ligand exchange from Timolol to ICI-118551. 6PS5 ; 2.9 ; XFEL beta2 AR structure by ligand exchange from Timolol to Propranolol. 6PS6 ; 2.7 ; XFEL beta2 AR structure by ligand exchange from Timolol to Timolol. 6CH7 ; 3.8 ; XFEL crystal structure of a natively-glycosylated BG505 SOSIP.664 HIV-1 Envelope Trimer in complex with the broadly-neutralizing antibodies BG18 and 35O22 7BIU ; 1.06 ; XFEL crystal structure of cytochrome c peroxidase compound II 6ME4 ; 3.2 ; XFEL crystal structure of human melatonin receptor MT1 in complex with 2-iodomelatonin 6ME3 ; 2.9 ; XFEL crystal structure of human melatonin receptor MT1 in complex with 2-phenylmelatonin 6ME5 ; 3.2 ; XFEL crystal structure of human melatonin receptor MT1 in complex with agomelatine 6ME2 ; 2.8 ; XFEL crystal structure of human melatonin receptor MT1 in complex with ramelteon 6ME7 ; 3.2 ; XFEL crystal structure of human melatonin receptor MT2 (H208A) in complex with 2-phenylmelatonin 6ME8 ; 3.1 ; XFEL crystal structure of human melatonin receptor MT2 (N86D) in complex with 2-phenylmelatonin 6ME6 ; 2.8 ; XFEL crystal structure of human melatonin receptor MT2 in complex with 2-phenylmelatonin 6ME9 ; 3.3 ; XFEL crystal structure of human melatonin receptor MT2 in complex with ramelteon 7BI1 ; 1.5 ; XFEL crystal structure of soybean ascorbate peroxidase compound II 6RZ5 ; 2.53 ; XFEL crystal structure of the human cysteinyl leukotriene receptor 1 in complex with zafirlukast 7YXA ; 2.2 ; XFEL crystal structure of the human sphingosine 1 phosphate receptor 5 in complex with ONO-5430608 7M8W ; 2.61 ; XFEL crystal structure of the prostaglandin D2 receptor CRTH2 in complex with 15R-methyl-PGD2 6PS8 ; 3.3 ; XFEL MT1R structure by ligand exchange from agomelatine to 2-phenylmelatonin. 7SUC ; 1.9 ; XFEL Serial Crystallography Reveals the Room Temperature Structure of Methyl-Coenzyme M Reductase 7BH4 ; 1.55 ; XFEL structure of apo CTX-M-15 after mixing for 0.7 sec with ertapenem using a piezoelectric injector (PolyPico) 8EBI ; 2.7 ; XFEL structure of beta lactamase microcrystals mixed with sulbactam solution for 15ms 7Z3E ; 2.0 ; XFEL structure of Class Ib ribonucleotide reductase dimanganese(II) NrdF in complex with hydroquinone NrdI from Bacillus cereus 7Z3D ; 2.0 ; XFEL structure of Class Ib ribonucleotide reductase dimanganese(II) NrdF in complex with oxidized NrdI from Bacillus cereus 7BH3 ; 1.6 ; XFEL structure of CTX-M-15 resting state 6JLK ; 2.15 ; XFEL structure of cyanobacterial photosystem II (1F state, dataset1) 6JLN ; 2.4 ; XFEL structure of cyanobacterial photosystem II (1F state, dataset2) 6JLL ; 2.15 ; XFEL structure of cyanobacterial photosystem II (2F state, dataset1) 6JLO ; 2.4 ; XFEL structure of cyanobacterial photosystem II (2F state, dataset2) 6JLP ; 2.5 ; XFEL structure of cyanobacterial photosystem II (3F state, dataset2) 6JLJ ; 2.15 ; XFEL structure of cyanobacterial photosystem II (dark state, dataset1) 6JLM ; 2.35 ; XFEL structure of cyanobacterial photosystem II (dark state, dataset2) 8IR8 ; 2.25 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 1-microsecond delay 8IR6 ; 2.2 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 20-nanosecond delay 8IRA ; 2.2 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 200-microsecond delay 8IR7 ; 2.25 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 200-nanosecond delay 8IR9 ; 2.2 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 30-microsecond delay 8IRB ; 2.3 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 5-millisecond delay 8IRC ; 2.25 ; XFEL structure of cyanobacterial photosystem II following one flash (1F) with a 5-millisecond delay (Single conformation) 8IRF ; 2.25 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 1-microsecond delay 8IRD ; 2.3 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 20-nanosecond delay 8IRH ; 2.25 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 200-microsecond delay 8IRE ; 2.25 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 200-nanosecond delay 8IRG ; 2.3 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 30-microsecond delay 8IRI ; 2.25 ; XFEL structure of cyanobacterial photosystem II following two flashes (2F) with a 5-millisecond delay 8IR5 ; 2.15 ; XFEL structure of cyanobacterial photosystem II under dark conditions 6OIV ; 3.06 ; XFEL structure of Escherichia coli dGTPase 5DM9 ; 2.3 ; XFEL structure of hen egg-white lysozyme solved using a droplet injector at SACLA 5UNF ; 2.8 ; XFEL structure of human angiotensin II type 2 receptor (Monoclinic form) in complex with compound 1 (N-benzyl-N-(2-ethyl-4-oxo-3-{[2'-(2H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]) 5UNG ; 2.8 ; XFEL structure of human angiotensin II type 2 receptor (Orthorhombic form) in complex with compound 1 (N-benzyl-N-(2-ethyl-4-oxo-3-{[2'-(2H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl] methyl}-3,4-dihydroquinazolin-6-yl)thiophene-2-carboxamide) 4YAY ; 2.9 ; XFEL structure of human Angiotensin Receptor 5TTC ; 1.4 ; XFEL structure of influenza A M2 wild type TM domain at high pH in the lipidic cubic phase at room temperature 5UM1 ; 1.451 ; XFEL structure of influenza A M2 wild type TM domain at intermediate pH in the lipidic cubic phase at room temperature 5JOO ; 1.413 ; XFEL structure of influenza A M2 wild type TM domain at low pH in the lipidic cubic phase at room temperature 8GCV ; 2.2 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals 8EC4 ; 2.35 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 240ms 8GCS ; 2.62 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 3 ms 8EBR ; 2.8 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 30ms 8GCT ; 2.75 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 6 ms 8GCX ; 3.2 ; XFEL structure of Mycobacterium tuberculosis beta lactamase microcrystals mixed with sulbactam for 700 ms 6L18 ; 1.9 ; XFEL structure of T4dCH D179N mutant complex with natively expressed dTMP 7BH5 ; 1.55 ; XFEL structure of the ertapenem-derived CTX-M-15 acylenzyme after mixing for 2 sec using a piezoelectric injector (PolyPico) 4RWD ; 2.7 ; XFEL structure of the human delta opioid receptor in complex with a bifunctional peptide 5OQ9 ; 1.51 ; XFEL structure of the off state of a reversibly photoswitching fluorescent protein determined using the droplet on demand injection method 5OQA ; 1.53 ; XFEL structure of the off state of a reversibly photoswitching fluorescent protein determined using the GDVN injection method 5OQE ; 1.91 ; XFEL structure of the on state of a reversibly photoswitching fluorescent protein determined using the droplet injection method 5OOZ ; 1.92 ; XFEL structure of the on state of a reversibly photoswitching fluorescent protein determined using the grease injection method 6YD0 ; 1.95 ; XFEL structure of the Soluble methane monooxygenase hydroxylase and regulatory subunit complex, from Methylosinus trichosporium OB3b, diferric state 6YDI ; 1.95 ; XFEL structure of the Soluble methane monooxygenase hydroxylase and regulatory subunit complex, from Methylosinus trichosporium OB3b, diferrous state 6YDU ; 1.95 ; XFEL structure of the Soluble methane monooxygenase hydroxylase and regulatory subunit complex, from Methylosinus trichosporium OB3b, reoxidized diferric state, 10s O2 exposure. 6YY3 ; 2.0 ; XFEL structure of the Soluble methane monooxygenase hydroxylase and regulatory subunit complex, from Methylosinus trichosporium OB3b, t=0 diferrous state prior to oxygen activation 7V26 ; 3.85 ; XG005-bound SARS-CoV-2 S 6GZF ; 2.614 ; Xi Class GST from Natrialba magadii 5LVU ; 2.6 ; XiaF (apo) from Streptomyces sp. 5LVW ; 2.9 ; XiaF (FADH2) from Streptomyces sp. 5MR6 ; 2.4 ; XiaF from Streptomyces sp. in complex with FADH2 and Glycerol 2JK7 ; 2.82 ; XIAP BIR3 bound to a Smac Mimetic 5OQW ; 2.31 ; XIAP in complex with small molecule 4EC4 ; 3.3 ; XIAP-BIR3 in complex with a potent divalent Smac mimetic 7PO6 ; 1.77 ; Xist (m6A)UCG tetraloop RNA bound to the YTH domain of YTHDC1 3W03 ; 8.492 ; XLF-XRCC4 complex 4HKQ ; 3.04 ; XMRV reverse transcriptase in complex with RNA/DNA hybrid 6KK8 ; 2.349 ; XN joint refinement of manganese catalase from Thermus Thermophilus HB27 6KK8 ; 1.37 ; XN joint refinement of manganese catalase from Thermus Thermophilus HB27 1FRE ; ; XNF7 BBOX, DEVELOPMENTAL PROTEIN, PH 7.5, 30 C, WITH ZINC, NMR, 1 STRUCTURE 8EBX ; 3.6 ; XPA repositioning Core7 of TFIIH relative to XPC-DNA lesion (AP) 8EBT ; 3.9 ; XPA repositioning Core7 of TFIIH relative to XPC-DNA lesion (Cy5) 7SG1 ; 3.1 ; XPA5 TCR in complex with HLA-DQ2-alpha1 7SG2 ; 3.1 ; XPA5 TCR in complex with HLA-DQ2-omega1 6P4W ; 2.956 ; XPB helicase in a complex with truncated Bax1 from Sulfurisphaera tokodaii at 2.96 Angstrom resolution 7NVV ; 2.9 ; XPB-containing part of TFIIH in a post-translocated state (with ADP-BeF3) 8EBY ; 3.6 ; XPC release from Core7-XPA-DNA (AP) 8EBU ; 3.3 ; XPC release from Core7-XPA-DNA (Cy5) 5H8W ; 2.2 ; XPD mechanism 3CRW ; 4.0 ; XPD_APO 3CRV ; 2.0 ; XPD_Helicase 2BHN ; 3.2 ; XPF from Aeropyrum pernix 2BGW ; 2.8 ; XPF from Aeropyrum pernix, complex with DNA 6SXA ; 3.6 ; XPF-ERCC1 Cryo-EM Structure, Apo-form 6SXB ; 7.9 ; XPF-ERCC1 Cryo-EM Structure, DNA-Bound form 1NUL ; 1.8 ; XPRTASE FROM E. COLI 1A97 ; 2.6 ; XPRTASE FROM E. COLI COMPLEXED WITH GMP 1A98 ; 2.25 ; XPRTASE FROM E. COLI COMPLEXED WITH GMP 1A95 ; 2.0 ; XPRTASE FROM E. COLI COMPLEXED WITH MG:CPRPP AND GUANINE 1A96 ; 2.0 ; XPRTASE FROM E. COLI WITH BOUND CPRPP AND XANTHINE 2XO0 ; 1.7 ; xpt-pbuX C74U Riboswitch from B. subtilis bound to 24-diamino-1,3,5- triazine identified by virtual screening 2XNW ; 1.5 ; XPT-PBUX C74U RIBOSWITCH FROM B. SUBTILIS BOUND TO A TRIAZOLO- TRIAZOLE-DIAMINE LIGAND IDENTIFIED BY VIRTUAL SCREENING 2XNZ ; 1.59 ; xpt-pbuX C74U Riboswitch from B. subtilis bound to acetoguanamine identified by virtual screening 2XO1 ; 1.6 ; xpt-pbuX C74U Riboswitch from B. subtilis bound to N6-methyladenine 8TQE ; 3.1 ; XptA2 wild type 8TV0 ; 3.1 ; XptA2 wild type 3KYW ; 1.1 ; Xray crystal structure determination of H-labeled perdeuterated rubredoxin at 295K 5ENA ; 1.35 ; Xray crystal structure of isotope-labeled human insulin 2F32 ; 1.8 ; Xray crystal structure of lysozyme mutant L20/R63A liganded to ethylguanidinium 2F47 ; 1.7 ; Xray crystal structure of T4 lysozyme mutant L20/R63A liganded to methylguanidinium 8CUL ; 2.01 ; Xray ray crystal structure of OXA-24/40 in complex with CR167 2DRJ ; 2.25 ; Xray structure of alpha-2,3/8-sialyltransferase CstII F91Y mutant 2ACO ; 1.8 ; Xray structure of Blc dimer in complex with vaccenic acid 6FK0 ; 2.9 ; Xray structure of domain-swapped cystatin E dimer 2JEE ; 2.8 ; Xray structure of E. coli YiiU 2VE8 ; 1.4 ; Xray structure of FtsK gamma domain (P. aeruginosa) 2GON ; 1.9 ; Xray Structure of Gag133-278 2GOL ; 2.2 ; Xray Structure of Gag278 6HJI ; 2.8 ; Xray structure of GLIC in complex with crotonate 6HJ3 ; 2.7 ; Xray structure of GLIC in complex with fumarate 6HJA ; 2.7 ; Xray structure of GLIC in complex with glutarate 6HJB ; 3.0 ; Xray structure of GLIC in complex with malonate 6HJZ ; 2.5 ; Xray structure of GLIC in complex with succinate 1JYU ; 2.75 ; Xray Structure of Grb2 SH2 Domain 1JYQ ; 2.0 ; Xray Structure of Grb2 SH2 Domain Complexed with a Highly Affine Phospho Peptide 1JYR ; 1.55 ; Xray Structure of Grb2 SH2 Domain Complexed with a Phosphorylated Peptide 5LC2 ; 1.8 ; Xray structure of human FAM3C ILEI monomer 5MIM ; 1.9 ; Xray structure of human furin bound with the 2,5-dideoxystreptamine derived small molecule inhibitor 1n 2VE9 ; 1.9 ; Xray structure of KOPS bound gamma domain of FtsK (P. aeruginosa) 5LC4 ; 1.84 ; Xray structure of mouse FAM3C ILEI dimer 5LC3 ; 2.0 ; Xray structure of mouse FAM3C ILEI monomer 7CXD ; 1.71 ; Xray structure of rat Galectin-3 CRD in complex with TD-139 belonging to P121 space group 3E8Y ; 1.1 ; Xray structure of scorpion toxin BmBKTx1 3QVG ; 2.26 ; XRCC1 bound to DNA ligase 7M3P ; 2.00002 ; Xrcc4-Spc110p(164-207) fusion 3F6W ; 1.85 ; XRE-family like protein from Pseudomonas syringae pv. tomato str. DC3000 6U7V ; 1.42 ; xRRM structure of spPof8 4NOV ; 1.33 ; Xsa43E, a GH43 family enzyme from Butyrivibrio proteoclasticus 1G9G ; 1.9 ; XTAL-STRUCTURE OF THE FREE NATIVE CELLULASE CEL48F 2W87 ; 1.6 ; Xyl-CBM35 in complex with glucuronic acid containing disaccharide. 1DYO ; 2.1 ; Xylan-Binding Domain from CBM 22, formally x6b domain 1GNY ; 1.63 ; xylan-binding module CBM15 1E0V ; 1.7 ; Xylanase 10A from Sreptomyces lividans. cellobiosyl-enzyme intermediate at 1.7 A 1E0W ; 1.2 ; Xylanase 10A from Sreptomyces lividans. native structure at 1.2 angstrom resolution 1E0X ; 1.65 ; XYLANASE 10A FROM SREPTOMYCES LIVIDANS. XYLOBIOSYL-ENZYME INTERMEDIATE AT 1.65 A 3WP3 ; 1.98 ; Xylanase 11C from Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) 3RI8 ; 2.0 ; Xylanase C from Aspergillus kawachii D37N mutant 3RI9 ; 2.0 ; Xylanase C from Aspergillus kawachii F131W mutant 1BG4 ; 1.75 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM 1B30 ; 2.25 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH 1,2-(4-DEOXY-BETA-L-THREO-HEX-4-ENOPYRANOSYLURONIC ACID)-BETA-1,4-XYLOTRIOSE) 1B3W ; 2.6 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH XYLOBIOSE 1B3Z ; 2.3 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH XYLOPENTAOSE 1B3V ; 2.4 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH XYLOSE 1B3Y ; 2.45 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH XYLOTETRAOSE 1B3X ; 2.2 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, COMPLEX WITH XYLOTRIOSE 1B31 ; 1.75 ; XYLANASE FROM PENICILLIUM SIMPLICISSIMUM, NATIVE WITH PEG200 AS CRYOPROTECTANT 3LGR ; 1.64 ; Xylanase II from Trichoderma reesei cocrystallized with tris-dipicolinate europium 2DFB ; 1.11 ; Xylanase II from Tricoderma reesei at 100K 2DFC ; 1.19 ; Xylanase II from Tricoderma reesei at 293K 6KJL ; 2.45 ; Xylanase J from Bacillus sp. strain 41M-1 6KKA ; 2.36 ; Xylanase J mutant from Bacillus sp. 41M-1 7CPK ; 1.6 ; Xylanase R from Bacillus sp. TAR-1 7CPL ; 1.52 ; Xylanase R from Bacillus sp. TAR-1 1HIZ ; 2.4 ; Xylanase T6 (Xt6) from Bacillus Stearothermophilus 4PRW ; 1.8 ; Xylanase T6 (XT6) from Geobacillus Stearothermophilus in complex with xylohexaose 1V0K ; 1.03 ; Xylanase Xyn10A from Streptomyces lividans in complex with xylobio-deoxynojirimycin at pH 5.8 1V0M ; 1.07 ; Xylanase Xyn10a from Streptomyces lividans in complex with xylobio-deoxynojirimycin at pH 7.5 1V0L ; 0.98 ; Xylanase Xyn10A from Streptomyces lividans in complex with xylobio-isofagomine at pH 5.8 1V0N ; 1.1 ; Xylanase Xyn10a from Streptomyces lividans in complex with xylobio-isofagomine at pH 7.5 1OD8 ; 1.05 ; Xylanase Xyn10A from Streptomyces lividans in complex with xylobio-isofagomine lactam 1UQZ ; 1.55 ; Xylanase Xyn10B mutant (E262S) from Cellvibrio mixtus in complex with 4-O-methyl glucuronic acid 1UR2 ; 1.6 ; Xylanase Xyn10B mutant (E262S) from Cellvibrio mixtus in complex with arabinofuranose alpha 1,3 linked to xylotriose 1UR1 ; 1.43 ; Xylanase Xyn10B mutant (E262S) from Cellvibrio mixtus in complex with arabinofuranose alpha-1,3 linked to xylobiose 1UQY ; 1.72 ; Xylanase Xyn10B mutant (E262S) from Cellvibrio mixtus in complex with xylopentaose 1US2 ; 1.85 ; Xylanase10C (mutant E385A) from Cellvibrio japonicus in complex with xylopentaose 5XSS ; 2.093 ; XylFII molecule 5XSJ ; 2.202 ; XylFII-LytSN complex 5XSD ; 2.5 ; XylFII-LytSN complex mutant - D103A 7Y9P ; 2.8 ; Xylitol dehydrogenase S96C/S99C/Y102C mutant(thermostabilized form) from Pichia stipitis 4BJ0 ; 1.0 ; Xyloglucan binding module (CBM4-2 X2-L110F) in complex with branched xyloses 1UMZ ; 1.8 ; Xyloglucan endotransglycosylase in complex with the xyloglucan nonasaccharide XLLG. 1UN1 ; 2.1 ; Xyloglucan endotransglycosylase native structure. 6SDU ; 2.2 ; Xyloglucanase domain of NopAA, a type three effector from Sinorhizobium fredii in complex with cellobiose 5K8E ; 1.93 ; Xylooligosaccharide oxidase from Myceliophthora thermophila C1 5L6F ; 1.8 ; Xylooligosaccharide oxidase from Myceliophthora thermophila C1 in complex with Xylobiose 5L6G ; 1.79 ; Xylooligosaccharide oxidase from Myceliophthora thermophila C1 in complex with Xylose 2Y64 ; 1.4 ; Xylopentaose binding mutated (X-2 L110F) CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 2Y6L ; 1.28 ; Xylopentaose binding X-2 engineered mutated CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 6N98 ; 1.55 ; Xylose isomerase 1F1 variant from Streptomyces sp. F-1 6N99 ; 2.8 ; Xylose isomerase 2F1 variant from Streptomyces sp. F-1 1A0D ; 3.0 ; XYLOSE ISOMERASE FROM BACILLUS STEAROTHERMOPHILUS 6INT ; 1.942 ; xylose isomerase from Paenibacillus sp. R4 1A0C ; 2.5 ; XYLOSE ISOMERASE FROM THERMOANAEROBACTERIUM THERMOSULFURIGENES 1A0E ; 2.7 ; XYLOSE ISOMERASE FROM THERMOTOGA NEAPOLITANA 1BXC ; 2.3 ; XYLOSE ISOMERASE FROM THERMUS CALDOPHILUS 1BXB ; 2.2 ; XYLOSE ISOMERASE FROM THERMUS THERMOPHILUS 7NJG ; 1.9 ; Xylose isomerase grown inside HARE serial crystallography chip 8AW8 ; 1.63 ; Xylose Isomerase in 70% relative humidity environment 8AW9 ; 1.62 ; Xylose Isomerase in 75% relative humidity environment 8AWF ; 1.61 ; Xylose Isomerase in 80% relative humidity environment 8AWC ; 1.75 ; Xylose Isomerase in 85% relative humidity environment 8AWB ; 2.3 ; Xylose Isomerase in 90% relative humidity environment 8AWD ; 1.85 ; Xylose Isomerase in 95% relative humidity environment 8AWE ; 1.7 ; Xylose Isomerase in 99% relative humidity environment 1S5M ; 0.98 ; Xylose Isomerase in Substrate and Inhibitor Michaelis States: Atomic Resolution Studies of a Metal-Mediated Hydride Shift 1S5N ; 0.95 ; Xylose Isomerase in Substrate and Inhibitor Michaelis States: Atomic Resolution Studies of a Metal-Mediated Hydride Shift 5HMQ ; 2.371 ; xylose isomerase-like TIM barrel/4-hydroxyphenylpyruvate dioxygenase fusion protein 6DRU ; 2.7 ; Xylosidase from Aspergillus niger 2Y6K ; 1.36 ; Xylotetraose bound to X-2 engineered mutated CBM4-2 Carbohydrate Binding Module from a Thermostable Rhodothermus marinus Xylanase 6GUA ; 1.95 ; Xylulose 5-phosphate phosphoketolase from Lactococcus lactis 4YCZ ; 4.1 ; Y-COMPLEX HUB (NUP85-NUP120-NUP145C-SEC13 COMPLEX) FROM M. THERMOPHILA (A.K.A. T. HETEROTHALLICA) 4F50 ; 2.215 ; Y-family DNA polymerase chimera Dbh-Dbh-Dpo4 4NLG ; 2.4 ; Y-family DNA polymerase chimera Dbh-Dpo4(243-245)-Dbh 4F4Y ; 2.338 ; Y-family DNA polymerase chimera Dbh-Dpo4-Dbh 4F4W ; 1.898 ; Y-family DNA polymerase chimera Dbh-Dpo4-Dpo4 #1 4F4X ; 2.049 ; Y-family DNA polymerase chimera Dbh-Dpo4-Dpo4 #2 4F4Z ; 2.305 ; Y-family DNA polymerase chimera Dpo4-Dpo4-Dbh 2W8L ; 3.0 ; Y-family DNA polymerase Dpo4 bypassing N2-naphthyl-guanine adduct in anti orientation 2W8K ; 3.1 ; Y-family DNA polymerase Dpo4 bypassing N2-naphthyl-guanine adduct in syn orientation 1N48 ; 2.2 ; Y-family DNA polymerase Dpo4 in complex with DNA containing abasic lesion 1N56 ; 2.4 ; Y-family DNA polymerase Dpo4 in complex with DNA containing abasic lesion 4DCB ; 2.033 ; Y. pestis Plasminogen Activator Pla in Complex with Human Plasminogen Activation Loop Peptide ALP11 6QNE ; 1.8 ; Y102G mutated sulfur oxygenase reductase from Acidianus ambivalens 1R67 ; 1.77 ; Y104A MUTANT OF E.COLI IPP ISOMERASE 1X83 ; 1.8 ; Y104F IPP isomerase reacted with (S)-bromohydrine of IPP 2G74 ; 1.96 ; Y104F mutant of type 1 isopentenylpyrophosphate-dimethylallylpyrophosphate isomerase 2G73 ; 1.97 ; Y104F mutant type 1 IPP isomerase complex with EIPP 1OZM ; 1.95 ; Y106F mutant of Z. mobilis TGT 6XTK ; 1.7 ; Y114C Transthyretin structure in complex with Tolcalpone 4RRJ ; 1.86 ; Y115A mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Ser3AA 4RRK ; 1.86 ; Y115A mutant of N-terminal editing domain of threonyl-tRNA synthetase from Aeropyrum pernix with L-Thr3AA 2AV8 ; 2.46 ; Y122F MUTANT OF RIBONUCLEOTIDE REDUCTASE FROM ESCHERICHIA COLI 1FTC ; 2.35 ; Y13C MUTANT OF AZOTOBACTER VINELANDII FDI 3LGU ; 2.46 ; Y162A mutant of the DegS-deltaPDZ protease 3LGT ; 2.68 ; Y162A/H198P double mutant of DegS-deltaPDZ protease 5X98 ; 1.76 ; Y162F mutant of thermus thermophilus HB8 thymidylate kinase 1MP5 ; 2.75 ; Y177F VARIANT OF S. ENTERICA RmlA 6T6O ; 1.4 ; Y201W mutant of the orange carotenoid protein from Synechocystis at pH 4.6 6T6M ; 1.49 ; Y201W mutant of the orange carotenoid protein from Synechocystis at pH 5.5 6T6K ; 1.37 ; Y201W mutant of the orange carotenoid protein from Synechocystis at pH 6.5 5FAY ; 1.901 ; Y208F mutant of choline TMA-lyase 4JEX ; 1.43 ; Y21K mutant of N-acetylornithine aminotransferase complexed with L-canaline 8U8S ; 2.63 ; Y229F/S292F Streptomyces coelicolor Laccase 8U8T ; 2.9 ; Y229F/V290N Streptomyces coelicolor Laccase 8U8R ; 2.86 ; Y229F/V290N/S292F Streptomyces coelicolor Laccase 5ACS ; 1.459 ; Y233A-Investigation of the impact from residues W228 and Y233 in the metallo-beta-lactamase GIM-1 3NJF ; 2.47 ; Y26F mutant of SO1698 protein, an aspartic peptidase from Shewanella oneidensis 6UOL ; 1.936 ; Y271G DNA polymerase beta substrate complex with a templating cytosine and incoming rGTP 6UOK ; 2.55 ; Y271G DNA polymerase beta substrate complex with templating cytosine and incoming r8-oxo-GTP 6UOM ; 2.05 ; Y271G DNA polymerase beta ternary complex with templating adenine and incoming r8-oxo-GTP 4WR3 ; 1.9 ; Y274F alanine racemase from E. coli 4XBJ ; 2.25 ; Y274F alanine racemase from E. coli inhibited by l-ala-p 2PS7 ; 2.35 ; Y295F trichodiene synthase 2PS8 ; 2.67 ; Y295F Trichodiene Synthase: Complex With Mg and Pyrophosphate 3TM9 ; 1.72 ; Y29A mutant of Vitreoscilla stercoraria hemoglobin 1YJ4 ; 2.3 ; Y305F Trichodiene Synthase 1YYQ ; 2.1 ; Y305F Trichodiene Synthase complexed with pyrophosphate 1YYR ; 2.5 ; Y305F Trichodiene Synthase: Complex With Mg, Pyrophosphate, and (4R)-7-azabisabolene 1YYS ; 2.75 ; Y305F Trichodiene Synthase: Complex With Mg, Pyrophosphate, and (4S)-7-azabisabolene 5VWA ; 1.8 ; Y316F mutant of corn root ferredoxin:NADP+ reductase 5VWB ; 1.8 ; Y316F mutant of corn root ferredoxin:NADP+ reductase in alternate space group 1U0C ; 2.5 ; Y33C Mutant of Homing endonuclease I-CreI 1U0D ; 2.9 ; Y33H Mutant of Homing endonuclease I-CreI 8OLH ; 1.23 ; Y345F Variant of Dye Type Peroxidase Aa (DtpAa) from Streptomyces lividans 8OLP ; 1.27 ; Y345F/F347Y Variant of Dye Type Peroxidase Aa (DtpAa) from Streptomyces lividans 8OMC ; 1.5 ; Y345F/F347Y/Y389F Variant of Dye Type Peroxidase Aa (DtpAa) from Streptomyces lividans 3P84 ; 1.1 ; Y351A mutant of pentaerythritol tetranitrate reductase containing a bound acetate molecule 3P8I ; 1.19 ; Y351F mutant of pentaerythritol tetranitrate reductase containing a bound acetate molecule 3P8J ; 1.0 ; Y351S mutant of pentaerythritol tetranitrate reductase containing a bound acetate molecule 2H6H ; 1.8 ; Y365F Protein Farnesyltransferase Mutant Complexed with a Farnesylated DDPTASACVLS Peptide Product at 1.8A 2BER ; 1.8 ; Y370G Active Site Mutant of the Sialidase from Micromonospora viridifaciens in complex with beta-Neu5Ac (sialic acid). 2MMK ; ; Y41 and T47 phosphorylation of the Mengovirus Leader Protein: NMR Studies of the Phosphorylation of the Mengovirus Leader Protein Reveal Stabilization of Intermolecular Domain Interactions 8D2Y ; 1.22 ; Y430F mutant of D-ornithine/D-lysine decarboxylase 5O10 ; 1.36 ; Y48H mutant of human cytochrome c 3T6L ; 1.3 ; Y54F mutant of core streptavidin 5I21 ; 1.55 ; Y55W Hfq from Pseudomonas aeruginosa 3VHO ; 1.93 ; Y61-gg insertion mutant of Tm-Cellulase 12A 3VHN ; 2.5 ; Y61G mutant of Cellulase 12A from thermotoga maritima 1Z1Q ; 1.5 ; Y66L Variant of Enhanced Green Fluorescent Protein with 374-nm Absorbing Chromophore 1Z1P ; 2.0 ; Y66L variant of Enhanced Green Fluorescent Protein with 412-nm Absorbing Chromophore 5DY9 ; 1.6 ; Y68T Hfq from Methanococcus jannaschii in complex with AMP 2YCN ; 2.04 ; Y71F mutant of tyrosine phenol-lyase from Citrobacter freundii in complex with quinonoid intermediate formed with 3-fluoro-L-tyrosine 5GV4 ; 2.09 ; Y74COX MUTANT OF PLASMODIUM FALCIPARUM TRIOSEPHOSPHATE ISOMERASE 5GZP ; 2.03 ; Y74COX MUTANT OF PLASMODIUM FALCIPARUM TRIOSEPHOSPHATE ISOMERASE 4MSW ; 2.06 ; Y78 ester mutant of KcsA in high K+ 1T2H ; 1.0 ; Y81W mutant of RNase Sa from Streptomyces aureofaciens 6SE5 ; 2.21 ; Y830A mutant from Mycoplasma genitalium P110 adhesin 3KKK ; 2.08 ; Y92C catalytic residue mutant of Phosphoglycerate Mutase from Plasmodium falciparum 5X8V ; 1.66 ; Y92H mutant of thermus thermophilus HB8 thymidylate kinase 1OBV ; 2.1 ; Y94F flavodoxin from Anabaena 2FTO ; 2.0 ; Y94F mutant of thymidylate synthase bound to thymidine-5'-phosphate and 10-propargyl-5,8-dideazafolid acid 3GU2 ; 2.0 ; Y97L/G100-/E101- mutant in organophosphorus hydrolase 3GU1 ; 2.0 ; Y97W mutant in organophosphorus hydrolase from Deinococcus radiodurans 1F4P ; 1.3 ; Y98W FLAVODOXIN MUTANT 1.5A (D. VULGARIS) 5XAL ; 1.84 ; Y99F mutant of Thermus thermophilus HB8 thymidylate kinase 6JIE ; 1.75 ; YaeO bound to Magnesium from Vibrio cholerae O395 1IN0 ; 2.14 ; YAJQ PROTEIN (HI1034) 2LTW ; ; YAP WW1 in complex with a Smad7 derived peptide 2L4J ; ; Yap ww2 2LTV ; ; YAP WW2 in complex with a Smad7 derived peptide 6IM5 ; 1.701 ; YAP-binding domain of human TEAD1 1JMQ ; ; YAP65 (L30K mutant) WW domain in Complex with GTPPPPYTVG peptide 1K9R ; ; YAP65 WW domain complexed to Acetyl-PLPPY 1K9Q ; ; YAP65 WW domain complexed to N-(n-octyl)-GPPPY-NH2 1K5R ; ; YAP65 WW domain S24-Amino-Ethylsulfanyl-Acetic Acid mutant 8EAV ; 5.7 ; YAR027W and YAR028W in complex with c subunits from yeast VO complex 6EK7 ; 1.8 ; YaxA from Yersinia enterocolitica 6EL1 ; 6.1 ; YaxAB pore complex 6EK8 ; 4.0 ; YaxB from Yersinia enterocolitica 1YTT ; 1.8 ; YB SUBSTITUTED SUBTILISIN FRAGMENT OF MANNOSE BINDING PROTEIN-A (SUB-MBP-A), MAD STRUCTURE AT 110K 2PZH ; 1.7 ; YbgC thioesterase (Hp0496) from Helicobacter pylori 6BA8 ; 1.9 ; YbtT - Type II thioesterase from Yersiniabactin NRPS/PKS biosynthetic pathway 6BA9 ; 1.4 ; YbtT - Type II thioesterase from Yersiniabactin NRPS/PKS biosynthetic pathway- S89A mutant 4WGF ; 2.34021 ; YcaC from Pseudomonas aeruginosa with hexane-2,5-diol and covalent acrylamide 4WH0 ; 2.563 ; YcaC from Pseudomonas aeruginosa with S-mercaptocysteine active site cysteine 4Q86 ; 2.25 ; YcaO with AMP Bound 4Q85 ; 3.29 ; YcaO with Non-hydrolyzable ATP (AMPCPP) Bound 7U58 ; 3.1 ; YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis 7CPJ ; 3.3 ; ycbZ-stalled 70S ribosome 1M65 ; 1.57 ; YCDX PROTEIN 1PB0 ; 1.95 ; YCDX PROTEIN IN AUTOINHIBITED STATE 1M68 ; 2.3 ; YCDX PROTEIN, TRINUCLEAR ZINC SITE 5OJ5 ; 1.08 ; YCF48 bound to D1 peptide 5OJP ; 1.86 ; YCF48 bound to D1 peptide 5OJR ; 1.96 ; YCF48 bound to D1 peptide 5OJ3 ; 2.982 ; YCF48 from Cyanidioschyzon merolae 2GYQ ; 1.4 ; YcfI, a putative structural protein from Rhodopseudomonas palustris. 1JAL ; 2.4 ; YCHF PROTEIN (HI0393) 6NZ4 ; 1.92 ; YcjX-GDP (type I) 6NZ6 ; 1.95 ; YcjX-GDP (type II) 6NZ5 ; 2.233 ; YcjX-GDPCP 4QZ4 ; 3.0 ; yCP beta5-A49S mutant in complex with the epoxyketone inhibitor ONX 0914 4QUY ; 2.8 ; yCP beta5-A49S-mutant 4QVW ; 3.0 ; yCP beta5-A49S-mutant in complex with bortezomib 4QWI ; 2.6 ; yCP beta5-A49S-mutant in complex with carfilzomib 4QZ6 ; 2.9 ; yCP beta5-A49T-A50V double mutant in complex with the epoxyketone inhibitor ONX 0914 4QV0 ; 3.1 ; yCP beta5-A49T-A50V-double mutant 4QW0 ; 2.9 ; yCP beta5-A49T-A50V-double mutant in complex with bortezomib 4QWK ; 2.8 ; yCP beta5-A49T-A50V-double mutant in complex with carfilzomib 4QUX ; 3.0 ; yCP beta5-A49T-mutant 4QVY ; 2.51 ; yCP beta5-A49T-mutant in complex with bortezomib 4QWJ ; 2.9 ; yCP beta5-A49T-mutant in complex with carfilzomib 4QZ5 ; 2.8 ; yCP beta5-A49T-mutant in complex with ONX 0914 4QV6 ; 2.8 ; yCP beta5-A49V mutant 4QVV ; 2.8 ; yCP beta5-A49V mutant in complex with bortezomib 4QWG ; 2.6 ; yCP beta5-A49V mutant in complex with carfilzomib 4QZ3 ; 2.8 ; yCP beta5-A49V mutant in complex with the epoxyketone inhibitor ONX 0914 4QV7 ; 2.6 ; yCP beta5-A50V mutant 4QW1 ; 2.9 ; yCP beta5-A50V mutant in complex with bortezomib 4QWL ; 2.6 ; yCP beta5-A50V mutant in complex with carfilzomib 4QZ7 ; 2.8 ; yCP beta5-A50V mutant in complex with the epoxyketone inhibitor ONX 0914 4QV8 ; 2.9 ; yCP beta5-C52F mutant 4QWU ; 3.0 ; yCP beta5-C52F mutant in complex with bortezomib 4QWR ; 2.9 ; yCP beta5-C52F mutant in complex with carfilzomib 4R00 ; 2.8 ; yCP beta5-C52F mutant in complex with Omuralide 4QZW ; 3.0 ; yCP beta5-C52F mutant in complex with the epoxyketone inhibitor ONX 0914 4QV9 ; 2.6 ; yCP beta5-C63F mutant 4QW3 ; 2.9 ; yCP beta5-C63F mutant in complex with bortezomib 4QWS ; 3.0 ; yCP beta5-C63F mutant in complex with carfilzomib 4QZX ; 2.6 ; yCP beta5-C63F mutant in complex with the epoxyketone inhibitor ONX 0914 4QV1 ; 2.5 ; yCP beta5-M45A mutant 4QVM ; 2.8 ; yCP beta5-M45A mutant in complex with bortezomib 4QW5 ; 3.0 ; yCP beta5-M45A mutant in complex with carfilzomib 4QXJ ; 2.8 ; yCP beta5-M45A mutant in complex with the epoxyketone inhibitor ONX 0914 4QV5 ; 2.7 ; yCP beta5-M45I mutant 4QVQ ; 2.6 ; yCP beta5-M45I mutant in complex with bortezomib 4QWF ; 3.0 ; yCP beta5-M45I mutant in complex with carfilzomib 4QZ2 ; 2.7 ; yCP beta5-M45I mutant in complex with the epoxyketone inhibitor ONX 0914 4QV4 ; 2.7 ; yCP beta5-M45T mutant 4QVP ; 2.3 ; yCP beta5-M45T mutant in complex with bortezomib 4QW7 ; 2.7 ; yCP beta5-M45T mutant in complex with carfilzomib 4QZ1 ; 3.0 ; yCP beta5-M45T mutant in complex with the epoxyketone inhibitor ONX 0914 4QV3 ; 3.0 ; yCP beta5-M45V mutant 4QVN ; 2.9 ; yCP beta5-M45V mutant in complex with bortezomib 4QW6 ; 2.9 ; yCP beta5-M45V mutant in complex with carfilzomib 4QZ0 ; 3.0 ; yCP beta5-M45V mutant in complex with the epoxyketone inhibitor ONX 0914 4QBY ; 3.0 ; yCP in complex with BOC-ALA-ALA-ALA-CHO 4QVL ; 2.8 ; yCP in complex with bortezomib 4R02 ; 2.5 ; yCP in complex with BSc4999 (alpha-Keto Phenylamide) 4QW4 ; 2.8 ; yCP in complex with carfilzomib 4NNN ; 2.5 ; yCP in complex with MG132 4QZZ ; 2.9 ; yCP in complex with Omuralide 4QWX ; 2.9 ; yCP in complex with the epoxyketone inhibitor ONX 0914 4QLS ; 2.8 ; yCP in complex with tripeptidic epoxyketone inhibitor 11 4QLV ; 2.9 ; yCP in complex with tripeptidic epoxyketone inhibitor 17 4QLT ; 2.8 ; yCP in complex with tripeptidic epoxyketone inhibitor 2 (PR924) 4QLQ ; 2.4 ; yCP in complex with tripeptidic epoxyketone inhibitor 8 4QLU ; 2.8 ; yCP in complex with tripeptidic epoxyketone inhibitor 9 4NO1 ; 2.5 ; yCP in complex with Z-Leu-Leu-Leu-B(OH)2 4NO9 ; 2.9 ; yCP in complex with Z-Leu-Leu-Leu-epoxyketone 4NNW ; 2.6 ; yCP in complex with Z-Leu-Leu-Leu-ketoaldehyde 4NO8 ; 2.7 ; yCP in complex with Z-Leu-Leu-Leu-ketoamide 4NO6 ; 3.0 ; yCP in complex with Z-Leu-Leu-Leu-vinylsulfone 4QLM ; 2.721 ; ydao riboswitch binding to c-di-AMP 8C7K ; ; YdaS from E. coli O157:H7 cryptic prophage CP-933P 8CO2 ; 1.63881 ; YdaS N-terminal domain from prophage CP-933P in E. coli O157:H7 8BT1 ; 2.39788 ; YdaT transcription regulator (CII functional analog) 1NE8 ; 2.1 ; YDCE protein from Bacillus subtilis 1OG6 ; 2.8 ; ydhF, an aldo-keto reductase from E.coli complexed with NADPH 6LNA ; 1.701 ; YdiU complex with AMPNPP and Mn2+ 7CNM ; 2.44 ; YDX in complex with tubulin 1CK2 ; ; YEAST (SACCHAROMYCES CEREVISIAE) RIBOSOMAL PROTEIN L30 5CZ4 ; 2.3 ; Yeast 20S proteasome at 2.3 A resolution 5FGI ; 2.9 ; Yeast 20S proteasome beta1-T1A beta2-T1A double mutant in complex with Carfilzomib 5CZ5 ; 2.8 ; Yeast 20S proteasome beta1-T1A mutant in complex with Carfilzomib 5BXL ; 2.8 ; Yeast 20S proteasome beta2-G170A mutant 5BXN ; 2.8 ; Yeast 20S proteasome beta2-G170A mutant in complex with Bortezomib 6HWC ; 2.8 ; Yeast 20S proteasome beta2-G45A mutant 6HWD ; 2.8 ; Yeast 20S proteasome beta2-G45A mutant in complex with bortezomib 6HWE ; 2.3 ; Yeast 20S proteasome beta2-G45A mutant in complex with carfilzomib 6HWF ; 2.5 ; Yeast 20S proteasome beta2-G45A mutant in complex with ONX 0914 4YA4 ; 2.9 ; Yeast 20S proteasome beta2-H114D mutant 4YA9 ; 2.7 ; Yeast 20S proteasome beta2-H114D mutant in complex with Ac-LAD-ep 4YA7 ; 2.7 ; Yeast 20S proteasome beta2-H114D mutant in complex with Ac-LAE-ep 4Y6A ; 2.6 ; Yeast 20S proteasome beta2-H114D mutant in complex with Ac-PAD-ep 4YA5 ; 2.5 ; Yeast 20S proteasome beta2-H114D mutant in complex with Ac-PAE-ep 4Y8R ; 2.7 ; Yeast 20S proteasome beta2-H116D mutant 4Y8S ; 2.7 ; Yeast 20S proteasome beta2-H116D mutant in complex with Ac-LAE-ep 4Y8U ; 2.9 ; Yeast 20S proteasome beta2-H116D mutant in complex with Ac-PAD-ep 4Y8T ; 2.7 ; Yeast 20S proteasome beta2-H116D mutant in complex with Ac-PAE-ep 4Y9Y ; 2.8 ; Yeast 20S proteasome beta2-H116E mutant 4Y9Z ; 2.8 ; Yeast 20S proteasome beta2-H116E mutant in complex with Ac-LAE-ep 4YA0 ; 2.8 ; Yeast 20S proteasome beta2-H116E mutant in complex with Ac-PAE-ep 4YA1 ; 2.9 ; Yeast 20S proteasome beta2-H116N mutant 4YA2 ; 2.7 ; Yeast 20S proteasome beta2-H116N mutant in complex with Ac-LAE-ep 4YA3 ; 2.7 ; Yeast 20S proteasome beta2-H116N mutant in complex with Ac-PAE-ep 5FG9 ; 2.6 ; Yeast 20S proteasome beta2-T(-2)V mutant 5FG7 ; 2.7 ; Yeast 20S proteasome beta2-T1A mutant 5CZA ; 2.5 ; Yeast 20S proteasome beta5-D166N mutant 5D0S ; 2.5 ; Yeast 20S proteasome beta5-D166N mutant in complex with Carfilzomib 5D0T ; 2.6 ; Yeast 20S proteasome beta5-D166N mutant in complex with MG132 5CZ9 ; 2.9 ; Yeast 20S proteasome beta5-D17N mutant in complex with Carfilzomib; Propeptide expressed in trans 5CGF ; 2.8 ; Yeast 20S proteasome beta5-G48C mutant 5CGG ; 2.9 ; Yeast 20S proteasome beta5-G48C mutant in complex with alpha-chloroacetamide 1 5CGH ; 2.5 ; Yeast 20S proteasome beta5-G48C mutant in complex with alpha-chloroacetamide 5 5CGI ; 2.8 ; Yeast 20S proteasome beta5-G48C mutant in complex with ONX 0914 5FGF ; 2.6 ; Yeast 20S proteasome beta5-H(-2)A-T1A-K81R triple mutant in complex with Carfilzomib 5FGD ; 2.8 ; Yeast 20S proteasome beta5-H(-2)L-T1A double mutant in complex with Carfilzomib 5FGE ; 2.6 ; Yeast 20S proteasome beta5-H(-2)T-T1A double mutant in complex with Carfilzomib 5FGA ; 2.7 ; Yeast 20S proteasome beta5-K33A mutant (propeptide expressed in trans) 5FHS ; 2.7 ; Yeast 20S proteasome beta5-K33A mutant (propeptide expressed in trans) in complex with Carfilzomib 5FGH ; 2.8 ; Yeast 20S proteasome beta5-K33A mutant (propeptide expressed in trans) in complex with MG132 5CZ8 ; 2.8 ; Yeast 20S proteasome beta5-L(-49)S-K33A mutant in complex with Carfilzomib 5FGG ; 2.7 ; Yeast 20S proteasome beta5-L(-49S)_D17N double mutant in complex with Carfilzomib 5CZ7 ; 2.5 ; Yeast 20S proteasome beta5-T1A beta5-K81R double mutant in complex with Bortezomib, propeptide expressed in cis 5CZ6 ; 2.7 ; Yeast 20S proteasome beta5-T1A mutant in complex with Syringolin A, propeptide expressed in trans 5D0V ; 2.9 ; Yeast 20S proteasome beta5-T1C mutant in complex with Carfilzomib 5D0W ; 2.8 ; Yeast 20S proteasome beta5-T1S mutant 5D0X ; 2.6 ; Yeast 20S proteasome beta5-T1S mutant in complex with Bortezomib 5D0Z ; 2.9 ; Yeast 20S proteasome beta5-T1S mutant in complex with Carfilzomib 4Y8M ; 2.8 ; Yeast 20S proteasome beta7-delta7_Cter mutant 4Y8N ; 2.6 ; Yeast 20S proteasome beta7-delta7_Cter mutant in complex with Ac-PAE-ep 4Y8O ; 2.7 ; Yeast 20S proteasome beta7-delta7_Cter mutant in complex with Ac-PAF-ep 4Y8P ; 2.8 ; Yeast 20S proteasome beta7-delta7_Cter mutant in complex with Ac-PAL-ep 4Y8Q ; 2.6 ; Yeast 20S proteasome beta7-delta7_Cter mutant in complex with Ac-PAY-ep 6HW3 ; 2.6 ; Yeast 20S proteasome in complex with 13 6HW4 ; 2.9 ; Yeast 20S proteasome in complex with 16 6HW5 ; 2.9 ; Yeast 20S proteasome in complex with 18 6HW6 ; 2.7 ; Yeast 20S proteasome in complex with 20 6HW7 ; 2.7 ; Yeast 20S proteasome in complex with 29 6HW8 ; 2.8 ; Yeast 20S proteasome in complex with 39 6HVX ; 2.8 ; Yeast 20S proteasome in complex with 4 6HW9 ; 2.8 ; Yeast 20S proteasome in complex with 41b 6HWA ; 2.8 ; Yeast 20S proteasome in complex with 43 6HWB ; 2.6 ; Yeast 20S proteasome in complex with 44b 6HVY ; 2.7 ; Yeast 20S proteasome in complex with 5 (7- and 6-membered ring) 6HW0 ; 2.8 ; Yeast 20S proteasome in complex with 7 5BOU ; 2.6 ; Yeast 20S proteasome in complex with a beta1 / beta2 specific non-peptidic sulfonamide Ligand 8OHZ ; 2.65 ; Yeast 20S proteasome in complex with a photoswitchable cepafungin derivative (transCep1) 8OI1 ; 2.95 ; Yeast 20S proteasome in complex with a photoswitchable cepafungin derivative (transCep4) 4Y8L ; 2.4 ; Yeast 20S proteasome in complex with Ac-APLL-ep 4Y7Y ; 2.4 ; Yeast 20S proteasome in complex with Ac-LAA-ep 4Y78 ; 2.8 ; Yeast 20S proteasome in complex with Ac-LAD-ep 4Y7W ; 2.5 ; Yeast 20S proteasome in complex with Ac-LAE-ep 4Y77 ; 2.5 ; Yeast 20S proteasome in complex with Ac-LAF-ep 4Y80 ; 2.5 ; Yeast 20S proteasome in complex with Ac-LAI-ep 4Y74 ; 2.7 ; Yeast 20S proteasome in complex with Ac-LAL-ep 4Y70 ; 2.4 ; Yeast 20S proteasome in complex with Ac-LAV-ep 4Y82 ; 2.8 ; Yeast 20S proteasome in complex with Ac-LAY-ep 4Y8J ; 2.7 ; Yeast 20S proteasome in complex with Ac-LLL-ep 4Y7X ; 2.6 ; Yeast 20S proteasome in complex with Ac-PAA-ep 4Y69 ; 2.9 ; Yeast 20S proteasome in complex with Ac-PAD-ep 4Y6V ; 2.8 ; Yeast 20S proteasome in complex with Ac-PAE-ep 4Y75 ; 2.8 ; Yeast 20S proteasome in complex with Ac-PAF-ep 4Y6Z ; 2.7 ; Yeast 20S proteasome in complex with Ac-PAL-ep 4Y81 ; 2.8 ; Yeast 20S proteasome in complex with Ac-PAY-ep 4Y8I ; 2.6 ; Yeast 20S proteasome in complex with Ac-PLL-ep 5DKI ; 2.8 ; Yeast 20S proteasome in complex with alkyne-PI 8BW1 ; 3.25 ; Yeast 20S proteasome in complex with an engineered fellutamide derivative (C14QAL) 4Z1L ; 3.0 ; Yeast 20S proteasome in complex with belactosin C derivative 3 5NIF ; 3.0 ; Yeast 20S proteasome in complex with Blm-pep activator 6G7F ; 2.7 ; Yeast 20S proteasome in complex with Cystargolide B 6G8M ; 2.7 ; Yeast 20S proteasome in complex with Cystargolide B Derivative 1 6G8N ; 3.0 ; Yeast 20S proteasome in complex with Cystargolide B Derivative 2 5L52 ; 2.7 ; Yeast 20S proteasome in complex with epoxyketone inhibitor 14 5L54 ; 2.8 ; Yeast 20S proteasome in complex with epoxyketone inhibitor 16 5L55 ; 2.9 ; Yeast 20S proteasome in complex with epoxyketone inhibitor 18 6ZOU ; 2.9 ; Yeast 20S proteasome in complex with glidobactin-like natural product HB333 6ZP6 ; 2.8 ; Yeast 20S proteasome in complex with glidobactin-like natural product HB334 6ZP8 ; 3.0 ; Yeast 20S proteasome in complex with glidobactin-like natural product HB335 4Y8K ; 2.6 ; Yeast 20S proteasome in complex with H-APLL-ep 6GOP ; 2.9 ; Yeast 20S Proteasome in complex with Homosalinosporamide A 4Q1S ; 2.6 ; Yeast 20S proteasome in Complex with Kendomycin 5AHJ ; 2.8 ; Yeast 20S proteasome in complex with Macyranone A 4Y84 ; 2.7 ; Yeast 20S proteasome in complex with N3-A(4,4-F2P)nLL-ep 4Y8H ; 2.5 ; Yeast 20S proteasome in complex with N3-APAL-ep 4Y8G ; 2.6 ; Yeast 20S proteasome in complex with N3-APnLL-ep 5DKJ ; 2.8 ; Yeast 20S proteasome in complex with octreotide-PI 3UN8 ; 2.7 ; Yeast 20S proteasome in complex with PR-957 (epoxide) 3UN4 ; 3.4 ; Yeast 20S proteasome in complex with PR-957 (morpholine) 4X6Z ; 2.7 ; Yeast 20S proteasome in complex with PR-VI modulator 4RUR ; 2.5 ; Yeast 20S proteasome in complex with the alkaloid indolo-phakellin (4) 4J70 ; 2.8 ; Yeast 20S proteasome in complex with the belactosin derivative 3e 7O2L ; 3.0 ; Yeast 20S proteasome in complex with the covalently bound inhibitor b-lactone (2R,3S)-3-isopropyl-4-oxo-2-oxetane-carboxylate (IOC) 4JSU ; 2.9 ; Yeast 20S proteasome in complex with the dimerized linear mimetic of TMC-95A - yCP:3a 4JT0 ; 3.1 ; Yeast 20S proteasome in complex with the dimerized linear mimetic of TMC-95A - yCP:4a 4JSQ ; 2.8 ; Yeast 20S proteasome in complex with the dimerized linear mimetic of TMC-95A - yCP:4e 5JHS ; 3.0 ; Yeast 20S proteasome in complex with the peptidic epoxyketone inhibitor 15 5JHR ; 2.9 ; Yeast 20S proteasome in complex with the peptidic epoxyketone inhibitor 27 6H39 ; 2.5 ; Yeast 20S proteasome in complex with the peptidic non-covalent binding inhibitor RTS-V5 4GK7 ; 2.8 ; yeast 20S proteasome in complex with the Syringolin-Glidobactin chimera 4INR ; 2.7 ; Yeast 20S proteasome in complex with the vinyl sulfone LU102 4INU ; 3.1 ; Yeast 20S proteasome in complex with the vinyl sulfone LU112 4INT ; 2.9 ; Yeast 20S proteasome in complex with the vinyl sulfone LU122 4LQI ; 2.7 ; Yeast 20S Proteasome in complex with Vibralactone 3WXR ; 3.15 ; Yeast 20S proteasome with a mutation of alpha7 subunit 6HTB ; 2.7 ; Yeast 20S proteasome with human beta2c (S171G) 6HTR ; 2.6 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 13 6HUB ; 2.9 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 16 6HUC ; 3.0 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 18 6HUQ ; 3.0 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 20 6HUU ; 2.8 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 29 6HUV ; 3.1 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 39 6HTD ; 3.0 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 4 6HTP ; 3.0 ; Yeast 20S proteasome with human beta2c (S171G) in complex with 7 6HTC ; 2.8 ; Yeast 20S proteasome with human beta2c (S171G) in complex with ONX 0914 6HV3 ; 2.7 ; Yeast 20S proteasome with human beta2i (1-53) 6HVA ; 2.9 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 13 6HVR ; 2.7 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 16 6HVS ; 3.1 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 18 6HVT ; 2.9 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 20 6HVU ; 2.9 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 29 6HVV ; 2.7 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 39 6HV5 ; 3.0 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 4 6HVW ; 3.0 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 43 6HV7 ; 3.4 ; Yeast 20S proteasome with human beta2i (1-53) in complex with 7 6HV4 ; 3.0 ; Yeast 20S proteasome with human beta2i (1-53) in complex with ONX 0914 5L5W ; 2.8 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) 5L5Z ; 2.7 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with bortezomib 5L5Y ; 2.7 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with carfilzomib 5L62 ; 2.8 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 16 5L63 ; 2.7 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 17 5L64 ; 2.7 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 18 5L5X ; 2.9 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with ONX 0914 5L60 ; 2.7 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (97-111; 118-133) in complex with PR-924 5L61 ; 2.8 ; Yeast 20S proteasome with human beta5c (1-138) and human beta6 (99-132) in complex with epoxyketone inhibitor 14 5L5B ; 2.8 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) 5L5F ; 2.5 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with bortezomib 5L5E ; 2.9 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with carfilzomib 5L5Q ; 2.8 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone 18 5L5J ; 2.9 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 14 5L5O ; 2.6 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 16 5L5P ; 2.8 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 17 5L5I ; 2.9 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 9 5L5D ; 2.8 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with ONX 0914 5L5H ; 2.6 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with PR-924 5M2B ; 2.7 ; Yeast 20S proteasome with human beta5i (1-138) and human beta6 (97-111; 118-133) in complex with thiazole based inhibitor Ro19 5L5A ; 2.4 ; Yeast 20S proteasome with human beta5i (1-138; R57T) 5LTT ; 2.7 ; Yeast 20S proteasome with human beta5i (1-138; R57T)in complex with PR-924 5L5T ; 2.9 ; Yeast 20S proteasome with human beta5i (1-138; V31M) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 16 5L5U ; 2.6 ; Yeast 20S proteasome with human beta5i (1-138; V31M) and human beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 17 5L5S ; 2.6 ; Yeast 20S proteasome with human beta5i (1-138; V31M) and human beta6 (97-111; 118-133) in complex with PR-924 5L5R ; 2.9 ; Yeast 20S proteasome with human beta5i (1-138;V31M) and human beta6 (97-111; 118-133) 5L66 ; 2.8 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with bortezomib 5L65 ; 2.9 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with carfilzomib 5L68 ; 2.8 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 14 5L69 ; 2.7 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 16 5L6A ; 2.8 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 17 5L6C ; 2.6 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with epoxyketone inhibitor 18 5L6B ; 2.6 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with ONX 0914 5L67 ; 2.6 ; Yeast 20S proteasome with mouse beta5i (1-138) and mouse beta6 (97-111; 118-133) in complex with PR-924 3BDM ; 2.7 ; yeast 20S proteasome:glidobactin A-complex 2ZCY ; 2.9 ; yeast 20S proteasome:syringolin A-complex 6EF0 ; 4.43 ; Yeast 26S proteasome bound to ubiquitinated substrate (1D* motor state) 6EF3 ; 4.17 ; Yeast 26S proteasome bound to ubiquitinated substrate (4D motor state) 6EF1 ; 4.73 ; Yeast 26S proteasome bound to ubiquitinated substrate (5D motor state) 6EF2 ; 4.27 ; Yeast 26S proteasome bound to ubiquitinated substrate (5T motor state) 8I7J ; 4.6 ; Yeast 40S-eIF4B - partially open conformation of the 40S head 1EB3 ; 1.75 ; YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE 4,7-DIOXOSEBACIC ACID COMPLEX 1W31 ; 1.9 ; YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE 5-HYDROXYLAEVULINIC ACID COMPLEX 1QNV ; 2.5 ; yeast 5-aminolaevulinic acid dehydratase Lead (Pb) complex 1OHL ; 1.6 ; YEAST 5-AMINOLAEVULINIC ACID DEHYDRATASE PUTATIVE CYCLIC REACTION INTERMEDIATE COMPLEX 5GAK ; 3.88 ; Yeast 60S ribosomal subunit with A-site tRNA, P-site tRNA and eIF-5A 7B7D ; 3.3 ; Yeast 80S ribosome bound to eEF3 and A/A- and P/P-tRNAs 7TOO ; 2.7 ; Yeast 80S ribosome bound with the ALS/FTD-associated dipeptide repeat protein GR20 7TOP ; 2.4 ; Yeast 80S ribosome bound with the ALS/FTD-associated dipeptide repeat protein PR20 6TNU ; 3.1 ; Yeast 80S ribosome in complex with eIF5A and decoding A-site and P-site tRNAs. 8BQD ; 3.9 ; Yeast 80S ribosome in complex with Map1 (conformation 1) 8BQX ; 3.8 ; Yeast 80S ribosome in complex with Map1 (conformation 2) 6TB3 ; 2.8 ; yeast 80S ribosome in complex with the Not5 subunit of the CCR4-NOT complex 6SNT ; 2.8 ; Yeast 80S ribosome stalled on SDD1 mRNA. 4V7R ; 4.0 ; Yeast 80S ribosome. 8BN3 ; 2.4 ; Yeast 80S, ES7s delta, eIF5A, Stm1 containing 1PI6 ; 2.5 ; YEAST ACTIN INTERACTING PROTEIN 1 (Aip1), ORTHORHOMBIC CRYSTAL FORM 1PGU ; 2.3 ; YEAST ACTIN INTERACTING PROTEIN 1 (AIP1), Se-Met PROTEIN, MONOCLINIC CRYSTAL FORM 5LQW ; 5.8 ; yeast activated spliceosome 2BKW ; 2.57 ; Yeast alanine:glyoxylate aminotransferase YFL030w 4W6Z ; 2.4 ; YEAST ALCOHOL DEHYDROGENASE I, SACCHAROMYCES CEREVISIAE FERMENTATIVE ENZYME 5ENV ; 3.0 ; YEAST ALCOHOL DEHYDROGENASE WITH BOUND COENZYME 6HLS ; 3.21 ; Yeast apo RNA polymerase I* 1BS2 ; 2.75 ; YEAST ARGINYL-TRNA SYNTHETASE 4EO5 ; 2.35 ; Yeast Asf1 bound to H3/H4G94P mutant 7TJU ; 3.3 ; Yeast ATP synthase F1 region State 1-3binding beta_tight open without exogenous ATP 7TJS ; 3.2 ; Yeast ATP synthase F1 region State 1-3catalytic beta_tight closed without exogenous ATP 7TJT ; 3.2 ; Yeast ATP synthase F1 region State 1-3catalytic beta_tight open without exogenous ATP 7TJX ; 4.0 ; Yeast ATP synthase F1 region State 1binding(a-d) with 10 mM ATP 7TJV ; 3.6 ; Yeast ATP synthase F1 region State 1catalytic(a) with 10 mM ATP 7TJW ; 4.0 ; Yeast ATP synthase F1 region State 1catalytic(e-h) with 10 mM ATP 8F29 ; 4.0 ; Yeast ATP synthase in conformation-1 at pH 6 8F39 ; 3.5 ; Yeast ATP synthase in conformation-2, at pH 6 8FKJ ; 4.2 ; Yeast ATP Synthase in conformation-3, at pH 6 7TK2 ; 6.5 ; Yeast ATP synthase State 1binding(a) with 10 mM ATP backbone model 7TK3 ; 6.3 ; Yeast ATP synthase State 1binding(b) with 10 mM ATP backbone model 7TK4 ; 7.0 ; Yeast ATP synthase State 1binding(c) with 10 mM ATP backbone model 7TK5 ; 7.8 ; Yeast ATP synthase State 1binding(d) with 10 mM ATP backbone model 7TK6 ; 6.5 ; Yeast ATP synthase State 1catalytic(a) with 10 mM ATP backbone model 7TJY ; 3.8 ; Yeast ATP synthase State 1catalytic(a) without exogenous ATP backbone model 7TK7 ; 6.7 ; Yeast ATP synthase State 1catalytic(b) with 10 mM ATP backbone model 7TJZ ; 4.4 ; Yeast ATP synthase State 1catalytic(b) without exogenous ATP backbone model 7TK8 ; 4.7 ; Yeast ATP synthase State 1catalytic(c) with 10 mM ATP backbone model 7TK0 ; 4.4 ; Yeast ATP synthase State 1catalytic(c) without exogenous ATP backbone model 7TK9 ; 6.0 ; Yeast ATP synthase State 1catalytic(d) with 10 mM ATP backbone model 7TK1 ; 7.1 ; Yeast ATP synthase State 1catalytic(d) without exogenous ATP backbone model 7TKA ; 7.1 ; Yeast ATP synthase State 1catalytic(e) with 10 mM ATP backbone model 7TKB ; 6.3 ; Yeast ATP synthase State 1catalytic(f) with 10 mM ATP backbone model 7TKC ; 5.8 ; Yeast ATP synthase State 1catalytic(g) with 10 mM ATP backbone model 7TKD ; 7.7 ; Yeast ATP synthase State 1catalytic(h) with 10 mM ATP backbone model 7TKE ; 7.1 ; Yeast ATP synthase State 2binding(a) with 10 mM ATP backbone model 7TKF ; 7.1 ; Yeast ATP synthase State 2binding(b) with 10 mM ATP backbone model 7TKG ; 4.5 ; Yeast ATP synthase State 2catalytic(a) with 10 mM ATP backbone model 7TKH ; 4.4 ; Yeast ATP synthase State 2catalytic(b) with 10 mM ATP backbone model 7TKI ; 7.1 ; Yeast ATP synthase State 2catalytic(c) with 10 mM ATP backbone model 7TKJ ; 7.5 ; Yeast ATP synthase State 2catalytic(d) with 10 mM ATP backbone model 7TKK ; 7.3 ; Yeast ATP synthase State 2catalytic(e) with 10 mM ATP backbone model 7TKL ; 6.4 ; Yeast ATP synthase State 3binding(a) with 10 mM ATP backbone model 7TKM ; 4.5 ; Yeast ATP synthase State 3binding(b) with 10 mM ATP backbone model 7TKN ; 7.1 ; Yeast ATP synthase State 3binding(c) with 10 mM ATP backbone model 7TKO ; 4.8 ; Yeast ATP synthase State 3catalytic(a) with 10 mM ATP backbone model 7TKP ; 4.6 ; Yeast ATP synthase State 3catalytic(b) with 10 mM ATP backbone model 7TKQ ; 4.5 ; Yeast ATP synthase State 3catalytic(c) with 10 mM ATP backbone model 7TKR ; 6.5 ; Yeast ATP synthase State 3catalytic(d) with 10 mM ATP backbone model 7TKS ; 7.5 ; Yeast ATP synthase State 3catalytic(e) with 10 mM ATP backbone model 8FL8 ; 4.2 ; Yeast ATP Synthase structure in presence of MgATP 1ZUK ; 1.9 ; Yeast BBC1 Sh3 domain complexed with a peptide from Las17 1WDX ; 2.5 ; Yeast BBC1 SH3 domain, triclinic crystal form 2YNN ; 1.782 ; yeast betaprime COP 1-304 with KTKTN motif 2YNO ; 1.8 ; yeast betaprime COP 1-304H6 2YNP ; 2.962 ; yeast betaprime COP 1-604 with KTKTN motif 7B9V ; 2.8 ; Yeast C complex spliceosome at 2.8 Angstrom resolution with Prp18/Slu7 bound 4CSM ; 2.8 ; YEAST CHORISMATE MUTASE + TYR + ENDOOXABICYCLIC INHIBITOR 5CSM ; 2.0 ; YEAST CHORISMATE MUTASE, T226S MUTANT, COMPLEX WITH TRP 8E5T ; 4.0 ; Yeast co-transcriptional Noc1-Noc2 RNP assembly checkpoint intermediate 1QPV ; 3.0 ; YEAST COFILIN 1CFY ; 2.3 ; YEAST COFILIN, MONOCLINIC CRYSTAL FORM 1COF ; 2.3 ; YEAST COFILIN, ORTHORHOMBIC CRYSTAL FORM 6VEN ; 3.37 ; Yeast COMPASS in complex with a ubiquitinated nucleosome 1TLB ; 2.4 ; Yeast coproporphyrinogen oxidase 7DBG ; 2.06 ; Yeast CRM1e (apo) in complex with Ran-RanBP1 6NUW ; 4.25 ; Yeast Ctf19 complex 7RMO ; 7.0 ; Yeast CTP Synthase (Ura7) Bundle bound to Products at low pH 7RMK ; 6.6 ; Yeast CTP Synthase (Ura7) Bundle bound to substrates at low pH 7RMC ; 3.5 ; Yeast CTP Synthase (Ura7) filament bound to CTP at low pH 7RMV ; 6.7 ; Yeast CTP Synthase (Ura7) H360R Filament bound to Substrates 7RNL ; 3.7 ; Yeast CTP Synthase (Ura7) H360R Filament bound to Substrates 7RNR ; 3.3 ; Yeast CTP Synthase (Ura8) Bundle Bound to Substrates at Low pH 7RL0 ; 2.8 ; Yeast CTP Synthase (URA8) Filament bound to ATP/UTP at low pH 7RL5 ; 3.8 ; Yeast CTP Synthase (URA8) filament bound to CTP at low pH 7RKH ; 2.8 ; Yeast CTP Synthase (URA8) tetramer bound to ATP/UTP at neutral pH 1YSO ; 1.73 ; YEAST CU, ZN SUPEROXIDE DISMUTASE WITH THE REDUCED BRIDGE BROKEN 3TDI ; 2.3 ; yeast Cul1WHB-Dcn1P acetylated Ubc12N complex 1KB9 ; 2.3 ; YEAST CYTOCHROME BC1 COMPLEX 1KYO ; 2.97 ; YEAST CYTOCHROME BC1 COMPLEX WITH BOUND SUBSTRATE CYTOCHROME C 2IBZ ; 2.3 ; Yeast Cytochrome BC1 Complex with Stigmatellin 6SUY ; 1.75 ; Yeast cytochrome c in complex with an octa-anionic calix[4]arene 6P41 ; 2.9 ; Yeast cytochrome c peroxidase (W191Y:L232E) in complex with iso-1 cytochrome c 6P42 ; 2.905 ; Yeast cytochrome c peroxidase (W191Y:L232H) in complex with iso-1 cytochrome c 6P43 ; 1.913 ; Yeast cytochrome c peroxidase in complex with iso-1 cytochrome c (Y48K) 8QCF ; 2.55 ; yeast cytoplasmic exosome-Ski2 complex degrading a RNA substrate 1RB7 ; 2.1 ; Yeast cytosine deaminase crystal form p212121 with sodium acetate. 2O3K ; 2.3 ; Yeast Cytosine Deaminase D92E Triple Mutant bound to transition state analogue HPY 1YSD ; 1.9 ; Yeast Cytosine Deaminase Double Mutant 1YSB ; 1.7 ; Yeast Cytosine Deaminase Triple Mutant 6DK9 ; 2.6 ; Yeast Ddi2 Cyanamide Hydratase 6DKA ; 2.901 ; Yeast Ddi2 Cyanamide Hydratase 6DKD ; 3.0 ; Yeast Ddi2 Cyanamide Hydratase 6DKC ; 2.9 ; Yeast Ddi2 Cyanamide Hydratase, T157V mutant, apo structure 6JCN ; 1.998 ; Yeast dehydrodolichyl diphosphate synthase complex subunit NUS1 5FK0 ; 3.0 ; Yeast delta-COP-I mu-homology domain 5FJW ; 2.8 ; Yeast delta-COP-I mu-homology domain complexed with Dsl1 WxWx(MSE) peptide 5FJZ ; 1.9 ; Yeast delta-COP-I mu-homology domain complexed with Dsl1 WxWxV peptide 5FJX ; 2.45 ; Yeast delta-COP-I mu-homology domain complexed with Gcs1 WxxF peptide 2QIY ; 1.69 ; yeast Deubiquitinase Ubp3 and Bre5 cofactor complex 7AUK ; 2.0 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with 5-InsP7 7AUL ; 1.85 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with 5-InsP7 in presence of Mg 7AUM ; 2.07 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with 5-PCF2Am-InsP5 7AUR ; 1.65 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with AMP-PNP 7AUQ ; 2.25 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with Ap5A and Ca2+ 7AUI ; 1.98 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with InsP6 7AUS ; 1.75 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with P15 7AUO ; 2.65 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with PA-InsP8 7AUP ; 1.85 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with PCP-InsP7 7AUN ; 1.95 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 in complex with PCP-InsP8 7AUJ ; 2.1 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 mutation E80Q in complex with 1-InsP7 7AUT ; 1.6 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1 mutation K63A 7AUU ; 2.45 ; Yeast Diphosphoinositol Polyphosphate Phosphohydrolase DDP1-nose mutant in complex with InsP6 7EJ7 ; 3.41 ; Yeast Dmc1 post-synaptic complex 7EJ6 ; 3.21 ; Yeast Dmc1 presynaptic complex 4B08 ; 2.67 ; Yeast DNA polymerase alpha, Selenomethionine protein 1JIH ; 2.25 ; Yeast DNA Polymerase ETA 3OHB ; 2.0 ; Yeast DNA polymerase eta extending from an 8-oxoG lesion 2XGP ; 2.7 ; Yeast DNA polymerase eta in complex with C8-2-acetylaminofluorene containing DNA 3OHA ; 2.0 ; Yeast DNA polymerase eta inserting dCTP opposite an 8oxoG lesion 1OIS ; 1.9 ; YEAST DNA TOPOISOMERASE I, N-TERMINAL FRAGMENT 7MI6 ; 3.9 ; Yeast dynein motor domain in the presence of a pyrazolo-pyrimidinone-based compound, Model 1 1G7C ; 2.05 ; YEAST EEF1A:EEF1BA IN COMPLEX WITH GDPNP 1ONE ; 1.8 ; YEAST ENOLASE COMPLEXED WITH AN EQUILIBRIUM MIXTURE OF 2'-PHOSPHOGLYCEATE AND PHOSPHOENOLPYRUVATE 4ZDB ; 2.14 ; Yeast enoyl-CoA isomerase (ScECI2) complexed with acetoacetyl-CoA 4ZDC ; 2.13 ; Yeast enoyl-CoA isomerase complexed with octanoyl-CoA 3ONK ; 2.09 ; yeast Ent3_ENTH domain 3ONL ; 2.2 ; yeast Ent3_ENTH-Vti1p_Habc complex structure 3FKS ; 3.587 ; Yeast F1 ATPase in the absence of bound nucleotides 2GA5 ; ; yeast frataxin 7Q51 ; 2.22 ; yeast Gid10 bound to a Phe/N-peptide 7QQY ; 1.26 ; yeast Gid10 bound to Art2 Pro/N-degron 7VGW ; 2.8 ; Yeast gid10 with Pro-peptide 7JTZ ; 2.07 ; Yeast Glo3 GAP domain 1M0T ; 2.3 ; Yeast Glutathione Synthase 1M0W ; 1.8 ; Yeast Glutathione Synthase Bound to gamma-glutamyl-cysteine, AMP-PNP and 2 Magnesium Ions 3NCH ; 2.88 ; Yeast Glycogen Synthase (Gsy2p) Basal State Conformation 6OH9 ; 1.75 ; Yeast Guanine Deaminase 6OHA ; 2.21 ; Yeast Guanine Deaminase 2B7C ; 1.8 ; Yeast guanine nucleotide exchange factor eEF1Balpha K205A mutant in complex with eEF1A 2B7B ; 2.6 ; Yeast guanine nucleotide exchange factor eEF1Balpha K205A mutant in complex with eEF1A and GDP 1UST ; ; YEAST HISTONE H1 GLOBULAR DOMAIN I, HHO1P GI, SOLUTION NMR STRUCTURES 1USS ; ; YEAST HISTONE H1 GLOBULAR DOMAIN II, HHO1P GII, SOLUTION NMR STRUCTURES 6NSX ; 2.0 ; Yeast Hsh155 Ligand bound to Human Tat-SF1 Motif 5WBW ; 2.6 ; Yeast Hsp104 fragment 1-360 1ZW9 ; 1.9 ; Yeast HSP82 in complex with the Novel HSP90 Inhibitor 8-(6-Bromo-benzo[1,3]dioxol-5-ylsulfanyl)-9-(3-isopropylamino-propyl)-adenine 2FXS ; 2.0 ; Yeast HSP82 in complex with the novel HSP90 Inhibitor Radamide 1ZWH ; 1.65 ; Yeast Hsp82 in complex with the novel Hsp90 inhibitor Radester amine 3C11 ; 1.6 ; Yeast Hsp82 N-terminal domain-Geldanamycin complex: effects of mutants 98-99 KS-AA 3C0E ; 1.9 ; Yeast Hsp82 N-terminal domain: effects of mutants 98-99 KS-AA 2WEP ; 2.0 ; Yeast Hsp90 N-terminal domain LI-IV mutant with ADP 2WEQ ; 2.2 ; Yeast Hsp90 N-terminal domain LI-IV mutant with Geldanamycin 2WER ; 1.6 ; Yeast Hsp90 N-terminal domain LI-IV mutant with Radicicol 1FUU ; 2.5 ; YEAST INITIATION FACTOR 4A 1QVA ; 2.5 ; YEAST INITIATION FACTOR 4A N-TERMINAL DOMAIN 1YFG ; 3.0 ; YEAST INITIATOR TRNA 2IK2 ; 1.8 ; Yeast inorganic pyrophosphatase variant D115E with magnesium and phosphate 2IK4 ; 1.8 ; Yeast inorganic pyrophosphatase variant D117E with magnesium and phosphate 2IK6 ; 1.8 ; Yeast inorganic pyrophosphatase variant D120E with magnesium and phosphate 2IK7 ; 1.9 ; Yeast inorganic pyrophosphatase variant D120N with magnesium and phosphate 2IK9 ; 1.5 ; Yeast inorganic pyrophosphatase variant D152E with magnesium and phosphate 2IK0 ; 1.7 ; Yeast inorganic pyrophosphatase variant E48D with magnesium and phosphate 2IK1 ; 1.7 ; Yeast inorganic pyrophosphatase variant Y93F with magnesium and phosphate 2IHP ; 1.5 ; Yeast inorganic pyrophosphatase with magnesium and phosphate 3BLX ; 2.7 ; Yeast Isocitrate Dehydrogenase (Apo Form) 3BLW ; 4.3 ; Yeast Isocitrate Dehydrogenase with Citrate and AMP Bound in the Regulatory Subunits 3BLV ; 3.2 ; Yeast Isocitrate Dehydrogenase with Citrate Bound in the Regulatory Subunits 1EE5 ; 2.4 ; YEAST KARYOPHERIN (IMPORTIN) ALPHA IN A COMPLEX WITH A NUCLEOPLASMIN NLS PEPTIDE 7SXO ; 3.3 ; Yeast Lon (PIM1) with endogenous substrate 1MNM ; 2.25 ; YEAST MATALPHA2/MCM1/DNA TERNARY TRANSCRIPTION COMPLEX CRYSTAL STRUCTURE 5W3H ; 4.0 ; Yeast microtubule stabilized with epothilone 5W3J ; 4.0 ; Yeast microtubule stabilized with Taxol assembled from mutated tubulin 1HR6 ; 2.5 ; Yeast Mitochondrial Processing Peptidase 1HR7 ; 2.55 ; Yeast Mitochondrial Processing Peptidase beta-E73Q Mutant 1HR8 ; 2.7 ; Yeast Mitochondrial Processing Peptidase beta-E73Q Mutant Complexed with Cytochrome C Oxidase IV Signal Peptide 1HR9 ; 3.01 ; Yeast Mitochondrial Processing Peptidase beta-E73Q Mutant Complexed with Malate Dehydrogenase Signal Peptide 6F4A ; 3.55 ; Yeast mitochondrial RNA degradosome complex mtEXO 8D8J ; 3.8 ; Yeast mitochondrial small subunit assembly intermediate (State 1) 8D8K ; 3.13 ; Yeast mitochondrial small subunit assembly intermediate (State 2) 8D8L ; 2.6 ; Yeast mitochondrial small subunit assembly intermediate (State 3) 1VA7 ; 2.9 ; Yeast Myo3 SH3 domain, triclinic crystal form 1YP5 ; 1.68 ; Yeast Myo5 SH3 domain, tetragonal crystal form 3W6X ; 2.299 ; Yeast N-acetyltransferase Mpr1 in complex with CHOP 3W6S ; 1.9 ; yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism 2LCS ; ; Yeast Nbp2p SH3 domain in complex with a peptide from Ste20p 4CV5 ; 3.807 ; yeast NOT1 CN9BD-CAF40 complex 4BY6 ; 2.797 ; Yeast Not1-Not2-Not5 complex 6JWI ; 2.55 ; Yeast Npl4 in complex with Lys48-linked diubiquitin 6JWH ; 1.72 ; Yeast Npl4 zinc finger, MPN and CTD domains 6C0F ; 3.7 ; Yeast nucleolar pre-60S ribosomal subunit (state 2) 6CB1 ; 4.6 ; Yeast nucleolar pre-60S ribosomal subunit (state 3) 1TK1 ; 1.9 ; YEAST OXYGEN-DEPENDENT COPROPORPHYRINOGEN OXIDASE 1TKL ; 2.0 ; Yeast Oxygen-Dependent Coproporphyrinogen Oxidase 2V1R ; 2.1 ; Yeast Pex13 SH3 domain complexed with a peptide from Pex14 at 2.1 A resolution 8U0X ; 1.86 ; Yeast Pex6 N1(1-184) Domain 1QHF ; 1.7 ; YEAST PHOSPHOGLYCERATE MUTASE-3PG COMPLEX STRUCTURE TO 1.7 A 3C66 ; 2.6 ; Yeast poly(A) polymerase in complex with Fip1 residues 80-105 4ECH ; 2.4 ; Yeast Polyamine Oxidase FMS1, H67Q Mutant 4GDP ; 1.9998 ; Yeast polyamine oxidase FMS1, N195A mutant 1K0K ; 2.35 ; Yeast Profilin, Cubic Crystal Form 6J2X ; 3.8 ; Yeast proteasome in resting state (C1-a) 6J2N ; 7.5 ; yeast proteasome in substrate-processing state (C3-b) 6J2C ; 7.0 ; Yeast proteasome in translocation competent state (C3-a) 6J2Q ; 3.8 ; Yeast proteasome in Ub-accepted state (C1-b) 6J30 ; 4.5 ; yeast proteasome in Ub-engaged state (C2) 5WVK ; 4.2 ; Yeast proteasome-ADP-AlFx 4YHW ; 3.25 ; Yeast Prp3 (296-469) in complex with fragment of U4/U6 di-snRNA 4YHU ; 2.7 ; Yeast Prp3 C-terminal fragment 296-469 4YHV ; 2.0 ; Yeast Prp3 C-terminal fragment 325-469 5AX7 ; 2.46 ; yeast pyruvyltransferase Pvg1p 3LDA ; 2.5 ; Yeast Rad51 H352Y Filament Interface Mutant 4A3T ; 2.1 ; yeast regulatory particle proteasome assembly chaperone Hsm3 4A3V ; 3.8 ; yeast regulatory particle proteasome assembly chaperone Hsm3 in complex with Rpt1 C-terminal fragment 8KG6 ; 3.07 ; Yeast replisome in state I 8KG8 ; 4.23 ; Yeast replisome in state II 8KG9 ; 4.52 ; Yeast replisome in state III 8W7S ; 7.39 ; Yeast replisome in state IV 8W7M ; 4.12 ; Yeast replisome in state V 1CN7 ; ; Yeast ribosomal protein L30 5M3F ; 3.8 ; Yeast RNA polymerase I elongation complex at 3.8A 6HKO ; 3.42 ; Yeast RNA polymerase I elongation complex bound to nucleotide analog GMPCPP 6HLR ; 3.18 ; Yeast RNA polymerase I elongation complex bound to nucleotide analog GMPCPP (core focused) 6H67 ; 3.6 ; Yeast RNA polymerase I elongation complex stalled by cyclobutane pyrimidine dimer (CPD) 6H68 ; 4.6 ; Yeast RNA polymerase I elongation complex stalled by cyclobutane pyrimidine dimer (CPD) with fully-ordered A49 6HLQ ; 3.18 ; Yeast RNA polymerase I* elongation complex bound to nucleotide analog GMPCPP 7O4J ; 2.9 ; Yeast RNA polymerase II transcription pre-initiation complex (consensus) 7O73 ; 3.4 ; Yeast RNA polymerase II transcription pre-initiation complex with closed distorted promoter DNA 7O72 ; 3.4 ; Yeast RNA polymerase II transcription pre-initiation complex with closed promoter DNA 8CEN ; 3.0 ; Yeast RNA polymerase II transcription pre-initiation complex with core Mediator 8CEO ; 3.6 ; Yeast RNA polymerase II transcription pre-initiation complex with core Mediator and the +1 nucleosome 7O4I ; 3.2 ; Yeast RNA polymerase II transcription pre-initiation complex with initial transcription bubble 7O75 ; 3.2 ; Yeast RNA polymerase II transcription pre-initiation complex with open promoter DNA 7ZS9 ; 3.1 ; Yeast RNA polymerase II transcription pre-initiation complex with the +1 nucleosome (complex A) 7ZSA ; 4.0 ; Yeast RNA polymerase II transcription pre-initiation complex with the +1 nucleosome and NTP (complex B) 7ZSB ; 6.6 ; Yeast RNA polymerase II transcription pre-initiation complex with the +1 nucleosome and NTP, complex C 6CNF ; 4.5 ; Yeast RNA polymerase III elongation complex 6CNB ; 4.1 ; Yeast RNA polymerase III initial transcribing complex 6CND ; 4.8 ; Yeast RNA polymerase III natural open complex (nOC) 6CNC ; 4.1 ; Yeast RNA polymerase III open complex 1A1D ; ; YEAST RNA POLYMERASE SUBUNIT RPB8, NMR, MINIMIZED AVERAGE STRUCTURE, ALPHA CARBONS ONLY 3H3V ; 4.0 ; Yeast RNAP II containing poly(A)-signal sequence in the active site 6I52 ; 4.7 ; Yeast RPA bound to ssDNA 8AGW ; 2.6 ; Yeast RQC complex in state D 8AGU ; 2.7 ; Yeast RQC complex in state E 8AGT ; 2.6 ; Yeast RQC complex in state F 8AAF ; 2.5 ; Yeast RQC complex in state G 8AGV ; 2.6 ; Yeast RQC complex in state H 8AGX ; 2.4 ; Yeast RQC complex in state with the RING domain of Ltn1 in the IN position 8AGZ ; 2.6 ; Yeast RQC complex in state with the RING domain of Ltn1 in the OUT position 2WP8 ; 3.0 ; yeast rrp44 nuclease 5BV3 ; 2.25 ; Yeast Scavenger Decapping Enzyme in complex with m7GDP 7EA5 ; 3.3 ; Yeast Set2 bound to a nucleosome containing oncohistone mutations 2VKN ; 2.05 ; YEAST SHO1 SH3 DOMAIN COMPLEXED WITH A PEPTIDE FROM PBS2 4RSI ; 2.9 ; Yeast Smc2-Smc4 hinge domain with extended coiled coils 6OD2 ; 2.435 ; Yeast Spc42 C-terminal Antiparallel Coiled-Coil 6OEI ; 2.58 ; Yeast Spc42 N-terminal coiled-coil fused to PDB: 3K2N 6OEC ; 2.514 ; Yeast Spc42 Trimeric Coiled-Coil Amino Acids 181-211 fused to PDB: 3H5I 5VKY ; 2.3 ; Yeast Tda2 (YER071C) - a dynein light chain family member that works independently of the dynein motor complex and microtubules. 1YTF ; 2.5 ; YEAST TFIIA/TBP/DNA COMPLEX 7O4K ; 3.6 ; Yeast TFIIH in the contracted state within the pre-initiation complex 7O4L ; 3.4 ; Yeast TFIIH in the expanded state within the pre-initiation complex 6XI8 ; 3.64 ; Yeast TFIIK (Kin28/Ccl1/Tfb3) Complex 6UTL ; 2.6 ; Yeast Thiol Specific antoxidant 2 with C171S mutation and catalytic cysteine alkylated with iodoacetamide 7APX ; 3.4 ; yeast THO-Sub2 complex 7AQO ; 4.5 ; yeast THO-Sub2 complex dimer 2TMK ; 2.4 ; YEAST THYMIDYLATE KINASE COMPLEXED WITH 3'-AZIDO-3'-DEOXYTHYMIDINE MONOPHOSPHATE (AZT-MP) 1TMK ; 2.1 ; YEAST THYMIDYLATE KINASE COMPLEXED WITH THYMIDINE MONOPHOSPHATE (DTMP) 3QK9 ; 3.1 ; Yeast Tim44 C-terminal domain complexed with Cymal-3 7YLY ; 3.05 ; yeast TRiC-plp2 complex at S5 closed TRiC state 7YLX ; 3.2 ; yeast TRiC-plp2-actin complex at S4 closed TRiC state 7YLU ; 4.55 ; yeast TRiC-plp2-substrate complex at S1 TRiC-NPP state 7YLV ; 3.91 ; yeast TRiC-plp2-substrate complex at S2 ATP binding state 7YLW ; 3.39 ; yeast TRiC-plp2-tubulin complex at S3 closed TRiC state 1I45 ; 1.8 ; YEAST TRIOSEPHOSPHATE ISOMERASE (MUTANT) 5W3F ; 3.7 ; Yeast tubulin polymerized with GTP in vitro 2LKR ; ; Yeast U2/U6 complex 6ZHU ; 3.18 ; Yeast Uba1 in complex with Ubc3 and ATP 6ZQH ; 2.032 ; Yeast Uba1 in complex with ubiquitin 5I1M ; 7.0 ; Yeast V-ATPase average of densities, a subunit segment 5VOX ; 6.8 ; Yeast V-ATPase in complex with Legionella pneumophila effector SidK (rotational state 1) 5VOY ; 7.9 ; Yeast V-ATPase in complex with Legionella pneumophila effector SidK (rotational state 2) 5VOZ ; 7.6 ; Yeast V-ATPase in complex with Legionella pneumophila effector SidK (rotational state 3) 3J9T ; 6.9 ; Yeast V-ATPase state 1 3J9U ; 7.6 ; Yeast V-ATPase state 2 3J9V ; 8.3 ; Yeast V-ATPase state 3 6HH0 ; ; Yeast V-ATPase transmembrane helix 7 NMR structure in DPC micelles 6C6L ; 3.5 ; Yeast Vacuolar ATPase Vo in lipid nanodisc 6R84 ; 3.6 ; Yeast Vms1 (Q295L)-60S ribosomal subunit complex (pre-state with Arb1) 6R87 ; 3.4 ; Yeast Vms1 (Q295L)-60S ribosomal subunit complex (pre-state without Arb1) 6R86 ; 3.4 ; Yeast Vms1-60S ribosomal subunit complex (post-state) 8EAS ; 2.6 ; Yeast VO in complex with Vma12-22p 8EAU ; 3.1 ; Yeast VO in complex with Vma21p 8EAT ; 3.1 ; Yeast VO missing subunits a, e, and f in complex with Vma12-22p 6PE4 ; 3.1 ; Yeast Vo motor in complex with 1 VopQ molecule 6PE5 ; 3.2 ; Yeast Vo motor in complex with 2 VopQ molecules 5JPE ; 2.611 ; Yeast-specific serine/threonine protein phosphatase (PPZ1) of Candida albicans 5VNB ; 2.4 ; YEATS in complex with histone H3 4Y0W ; 2.5 ; YeaZ from Pseudomonas aeruginosa 2LQV ; ; YebF 6KZ4 ; 3.0 ; YebT domain 5-7 6KZ3 ; 3.1 ; YebT domain1-4 8J4C ; 3.34 ; YeeE(TsuA)-YeeD(TsuB) complex for thiosulfate uptake 8K1R ; 2.6 ; YeeE(TsuA)-YeeD(TsuB) complex for thiosulfate uptake 2JQM ; ; Yellow Fever Envelope Protein Domain III NMR Structure (S288-K398) 5FFM ; 2.6 ; Yellow fever virus helicase 2JAD ; 2.7 ; Yellow fluorescent protein - glutaredoxin fusion protein 5G36 ; 2.6 ; Yellow form of Halorhodopsin from Halobacterium salinarum in a new rhombohedral crystal form 1CLV ; 2.0 ; YELLOW MEAL WORM ALPHA-AMYLASE IN COMPLEX WITH THE AMARANTH ALPHA-AMYLASE INHIBITOR 5KIS ; 2.4 ; YenB/RHS2 complex 4ARV ; 1.67 ; Yersinia kristensenii phytase apo form 5JQ9 ; 2.101 ; Yersinia pestis DHPS with pterine-sulfa conjugate Compound 16 5G2O ; 1.9 ; Yersinia pestis FabV variant T276A 5JAQ ; 1.9 ; Yersinia pestis FabV variant T276C 5JAI ; 1.9 ; Yersinia pestis FabV variant T276G 5JAM ; 2.0 ; Yersinia pestis FabV variant T276V 2X4M ; 2.55 ; Yersinia Pestis Plasminogen Activator Pla 2X55 ; 1.85 ; Yersinia Pestis Plasminogen Activator Pla (Native) 2X56 ; 2.3 ; Yersinia Pestis Plasminogen Activator Pla (Native) 1PA9 ; 2.0 ; Yersinia Protein-Tyrosine Phosphatase complexed with pNCS (Yop51,Pasteurella X,Ptpase,Yop51delta162) (Catalytic Domain, Residues 163-468) Mutant With Cys 235 Replaced By Arg (C235r) 2WWO ; 2.4 ; Yersinia pseudotuberculosis Superoxide Dismutase C 2WWN ; 2.6 ; Yersinia pseudotuberculosis Superoxide Dismutase C with bound Azide 1YTW ; 2.4 ; YERSINIA PTPASE COMPLEXED WITH TUNGSTATE 1XXV ; 2.5 ; Yersinia YopH (residues 163-468) binds phosphonodifluoromethyl-Phe containing hexapeptide at two sites 1XXP ; 3.0 ; Yersinia YopH (residues 163-468) C403S binds phosphotyrosyl peptide at two sites 6EJP ; 2.48 ; Yersinia YscU C-terminal fragment in complex with a synthetic compound 6C4L ; 2.0 ; Yersinopine dehydrogenase (YpODH) - Apo 6C4M ; 1.94 ; Yersinopine dehydrogenase (YpODH) - NADP+ bound 8G01 ; 3.4 ; YES Complex - E. coli MraY, Protein E ID21, E. coli SlyD 8G02 ; 3.5 ; YES Complex - E. coli MraY, Protein E PhiX174, E. coli SlyD 2HDA ; 1.9 ; Yes SH3 domain 5MTJ ; 1.949 ; Yes1-SH2 in complex with monobody Mb(Yes_1) 2JV6 ; ; YF ED3 Protein NMR Structure 4HL6 ; 2.12 ; YfdE from Escherichia coli 5UYW ; 1.954 ; YfeA ancillary sites that co-load with site 2 5UYV ; 1.691 ; YfeA ancillary sites that do not co-load with site 2 5UY4 ; 1.915 ; YfeA from M9 minimal media supplemented with iron - Fe wavelength 5UY5 ; 2.144 ; YfeA from M9 minimal media supplemented with iron - Mn wavelength 5UY0 ; 1.709 ; YfeA from M9 minimal media supplemented with iron - Zn wavelength 5UYB ; 1.95 ; YfeA from M9 minimal media supplemented with manganese - Fe wavelength 5UYC ; 1.959 ; YfeA from M9 minimal media supplemented with manganese - Mn wavelength 5UYA ; 1.719 ; YfeA from M9 minimal media supplemented with manganese - Zn wavelength 5UYE ; 2.088 ; YfeA from M9 minimal media supplemented with zinc - Fe wavelength 5UYF ; 2.057 ; YfeA from M9 minimal media supplemented with zinc - Mn wavelength 5UYD ; 1.927 ; YfeA from M9 minimal media supplemented with zinc - Zn wavelength 5UXU ; 1.839 ; YfeA from Yersinia pestis treated with EDTA during purification and crystallization 7ME1 ; 2.05 ; YfeA oligomer crystal 1, form 1 7ME2 ; 1.85 ; YfeA oligomer crystal 2, form 2 7ME3 ; 2.25 ; YfeA oligomer crystal 3, form 2 5UYH ; 1.99 ; YfeA with metal bound to site 2 - Mn wavelength 5UYG ; 1.859 ; YfeA with metal bound to site 2 - Zn wavelength 1RW1 ; 1.02 ; YFFB (PA3664) PROTEIN 5Y61 ; 2.99 ; YfiB-YfiR complexed with GMP 5Y62 ; 3.0 ; YfiR complexed with GMP 4YN9 ; 2.45 ; YfiR mutant-C110S 1RXQ ; 1.7 ; YfiT from Bacillus subtilis is a probable metal-dependent hydrolase with an unusual four-helix bundle topology 8GPU ; 2.79 ; YFV_E_YD6Fab_prefusion 8GPT ; 3.07 ; YFV_E_YD6scFv_postfusion 8GPX ; 3.8 ; YFV_E_YD73Fab_postfusion 1NRK ; 2.8 ; YGFZ PROTEIN 7UKA ; 2.2 ; YgiC from Escherichia coli K-12 in complex with ADP 4WQ5 ; 2.33 ; YgjD(V85E)-YeaZ heterodimer in complex with ATP 6K6L ; 1.77 ; YGL082W-catalytic domain 6U77 ; 2.85 ; yGsy2p in complex with small molecule 1JOP ; 2.6 ; YHCH protein (HI0227) 1S4C ; 2.2 ; YHCH PROTEIN (HI0227) COPPER COMPLEX 4P0E ; 2.3 ; YhdE E33A (p212121 space group) 4P0U ; 2.36 ; YhdE E33A p4 space group 2OEE ; 1.96 ; yheA from Bacillus subtilis 8UIW ; 2.77 ; yjdF riboswitch from R. gauvreauii in complex with chelerythrine bound to Fab BL3-6 S97N 8UTA ; 3.05 ; yjdF riboswitch from R. gauvreauii in complex with proflavine bound to Fab BL3-6 S97N 7UK7 ; 1.95 ; YjfC from Escherichia coli K-12 in complex with ADP, Mg2+ and SO4 1NIJ ; 2.0 ; YJIA PROTEIN 1E0N ; ; YJQ8WW domain from Saccharomyces cerevisae 4A1I ; 1.76 ; ykud from B.subtilis 4A1K ; 1.75 ; Ykud L,D-transpeptidase 4A1J ; 2.2 ; Ykud L,D-transpeptidase from B.subtilis 7RTR ; 2.6 ; YLQ-SG3 TCR in complex with SARS-CoV-2 Spike-derived peptide S269-277 (YLQPRTFLL) presented by HLA-A*02:01 1T0I ; 2.0 ; YLR011wp, a Saccharomyces cerevisiae NA(D)PH-dependent FMN reductase 2K5S ; ; YmoA 6ZYD ; 3.0 ; YnaI 6ZYE ; 4.1 ; YnaI in an open-like conformation 5ONJ ; 1.7 ; YnDL in Complex with 5 amino acid (PGA) complex 5ONL ; 1.7 ; YNDL-apo (Zinc-free) 1OEE ; 2.1 ; YodA from Escherichia coli crystallised with cadmium ions 1OEJ ; 1.81 ; YodA from Escherichia coli crystallised with no added ions 1OEK ; 2.4 ; YodA from Escherichia coli crystallised with zinc ions 7BWF ; 1.7 ; YoeB-YefM complex from Staphylococcus aureus 6N90 ; 1.755 ; YoeB/ParE toxin from Agrobacterium tumefaciens 3GCZ ; 1.7 ; Yokose virus Methyltransferase in complex with AdoMet 6DR1 ; 2.5 ; YopH PTP1B Chimera 2 PTPase 6DR7 ; 1.849 ; YopH PTP1B WPD loop Chimera 2 PTPase bound to vanadate 4ZI4 ; 1.121 ; YopH W354H Yersinia enterocolitica PTPase bond with Divanadate glycerol ester in the active site 4Z6B ; 1.2 ; YopH W354H Yersinia enterocolitica PTPase in the apo form 4YAA ; 1.05 ; YopH W354Y Yersinia enterocolitica PTPase apo form 4ZN5 ; 1.12 ; YopH W354Y Yersinia enterocolitica PTPase bond with Divanadate glycerol ester in the active site 4OW2 ; 3.2 ; YopM from Yersinia enterocolitica WA-314 4CIL ; 1.5 ; YopM-InlB: Hybrid leucine-rich repeat protein 8BRF ; 2.74 ; YopQ apo from Yersinia enterocolitica 7PTK ; 5.18 ; Young conformer of a 6-helix bundle of RNA with clasp 2GU3 ; 1.74 ; YpmB protein from Bacillus subtilis 2L1S ; ; Yp_001336205.1 6A8Y ; ; YR26_SDS 6XGQ ; 3.8 ; YSD1 bacteriophage capsid 6XGR ; 3.5 ; YSD1 major tail protein 6XGP ; 2.6 ; YSD1_17 major capsid protein 7QIU ; 1.877 ; YsgA 23s RNA methyltransferase from Bacillus subtilis 2GH4 ; 1.9 ; YteR/D143N/dGalA-Rha 6DIY ; 0.9 ; YTFGQ segment from Human Immunoglobulin Light-Chain Variable Domain, Residues 96-100, assembled as an amyloid fibril 6WE8 ; 1.18 ; YTH domain of human YTHDC1 6WE9 ; 1.59 ; YTH domain of human YTHDC1 with 11mer ssDNA Containing N6mA 6WEA ; 1.8 ; YTH domain of human YTHDC1 with a 10mer Oligo Containing N6mA 7L4Y ; 1.79 ; YTH Domain of Human YTHDC1 with dsDNA Comprising Single N6mA joined by Two Six-bp DNA Duplexes in P212121 Crystal 7L4X ; 1.79 ; YTH Domain of Human YTHDC1 with dsDNA Comprising Single N6mA joined by two six-bp DNA duplexes in P3221 Crystal 5EIM ; 1.54 ; YTH domain-containing protein mmi1 and RNA complex 8EV3 ; 3.0 ; Ytm1 associated 60S nascent ribosome (-Fkbp39) State 1B 8EUP ; 3.1 ; Ytm1 associated 60S nascent ribosome State 1A 8ETH ; 3.8 ; Ytm1 associated 60S nascent ribosome State 1B 8EUY ; 3.0 ; Ytm1 associated nascent 60S ribosome (-fkbp39) State 1A 8ESR ; 3.2 ; Ytm1 associated nascent 60S ribosome (-fkbp39) State 2 8EUI ; 3.1 ; Ytm1 associated nascent 60S ribosome (-fkbp39) State 3 8ESQ ; 2.8 ; Ytm1 associated nascent 60S ribosome State 2 8EUG ; 2.8 ; Ytm1 associated nascent 60S ribosome State 3 6SBS ; 2.801 ; YtrA from Sulfolobus acidocaldarius, a GntR-family transcription factor 4X1D ; 2.8 ; Ytterbium-bound human serum transferrin 2OPA ; 2.4 ; YwhB binary complex with 2-Fluoro-p-hydroxycinnamate 4KK4 ; 1.8 ; YwlE arginine phosphatase - C7S mutant with phosphorylated active site serine 4KK3 ; 1.7 ; YwlE arginine phosphatase - wildtype 4PIC ; 1.4 ; YwlE arginine phosphatase from Geobacillus stearothermophilus 7ZCC ; 1.848 ; yxBC from Bacillus subtilis in complex with Mn and N-oxalylglycine (NOG) 6CQG ; 1.932 ; YycF Effector Domain Structure without DNA bound 6EB7 ; 1.58 ; YycF homologue (SP1227) Receiver Domain Activated by BeF3 4OCB ; 0.75 ; Z-DNA dodecamer d(CGCGCGCGCGCG)2 at 0.75 A resolution solved by P-SAD 313D ; 1.68 ; Z-DNA HEXAMER WITH 5' OVERHANGS THAT FORM A REVERSE HOOGSTEEN BASE PAIR 312D ; 1.8 ; Z-DNA HEXAMER WITH 5' OVERHANGS THAT FORM A REVERSE WATSON-CRICK BASE PAIR 314D ; 1.9 ; Z-DNA HEXAMER WITH 5' OVERHANGS THAT FORM A REVERSE WOBBLE BASE PAIR 7JY2 ; 1.5 ; Z-DNA joint X-ray/Neutron 7JY2 ; 1.0 ; Z-DNA joint X-ray/Neutron 6XPN ; 2.26 ; Z-loop Deletion Mutant of AztC from Paracoccus denitrificans 6ZWC ; 2.04 ; Z-SBTub2 photoswitch bound to tubulin-DARPin D1 complex 7Z02 ; 2.36 ; Z-SBTub2M photoswitch bound to tubulin-DARPin D1 complex 6ZWB ; 1.747 ; Z-SBTub3 photoswitch bound to tubulin-DARPin D1 complex 7Z01 ; 1.82 ; Z-SBTubA4 photoswitch bound to tubulin-DARPin D1 complex 8CLA ; 2.0 ; Z-SBTubA4 photoswitch bound to tubulin-DARPin D1 complex 8CLF ; 2.7 ; Z-SolQ2Br bound to tubulin (T2R-TTL) complex 5TS8 ; 1.45 ; Z. MAYS CK2 KINASE ALPHA SUBUNIT IN COMPLEX WITH THE ATP-COMPETITIVE INHIBITOR 5,6-DIBROMOBENZOTRIAZOLE 2OKO ; 1.5 ; Z. mobilis tRNA guanine transglycosylase E235Q mutant apo-structure at pH 5.5 1NL7 ; 1.903 ; Z. ramigera biosynthetic thiolase, acetylated enzyme complexed with CoA at pH 9.5 3MPB ; 1.91 ; Z5688 from E. coli O157:H7 bound to fructose 7YPZ ; 2.15 ; Zafirlukast in complex with CRM1-Ran-RanBP1 4XZ0 ; 2.0 ; ZAP-70-tSH2:compound-A complex 4XZ1 ; 2.8 ; ZAP-70-tSH2:Compound-B adduct 2MMV ; ; ZapA mutant dimer from Geobacillus stearothermophilus 5FO3 ; 2.9 ; ZapC cell division regulator from E. coli 6ML2 ; 1.874 ; ZBTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 1) 6ML3 ; 1.683 ; ZBTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 2) 6ML6 ; 1.54 ; ZBTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 4 with a CpA 5mC Modification) 6ML7 ; 1.75 ; ZBTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 4 with a CpG 5mC Modification) 6ML5 ; 1.65 ; ZBTB24 Zinc Fingers 4-8 with 19+1mer DNA Oligonucleotide (Sequence 4) 7N5T ; 2.9 ; ZBTB7A Zinc Finger Domain Bound to -200 Site of Fetal Globin Promoter (Oligo 5) 7N5S ; 2.86 ; ZBTB7A Zinc Finger Domain Bound to -200 Site of Fetal Globin Promoter (Oligo 6) 8E3E ; 2.99 ; ZBTB7A Zinc Finger Domain Bound to DNA Duplex Containing CAST sequence (#10) 8E3D ; 2.62 ; ZBTB7A Zinc Finger Domain Bound to DNA Duplex Containing CAST sequence (#11) 7N5V ; 3.08 ; ZBTB7A Zinc Finger Domain Bound to DNA Duplex Containing GGACCC (Oligo 20) 7N5U ; 2.86 ; ZBTB7A Zinc Finger Domain Bound to DNA Duplex Containing GGACCC (Oligo 21) 7N5W ; 2.24 ; ZBTB7A Zinc Finger Domain Bound to DNA Duplex Containing GGACCC (Oligo 23) 6SJD ; 3.29 ; ZC3H12B-ribonuclease domain bound to RNA 8CLU ; 1.8 ; Zearalenone lactonase from Rhodococcus erythropolis in complex with zearalactamenone 8CLO ; 1.4 ; Zearalenone lactonase from Streptomyces coelicoflavus 8CLP ; 1.92 ; Zearalenone lactonase from Streptomyces coelicoflavus mutant H286Y 8CLN ; 2.5 ; Zearalenone lactonase from Streptomyces coelicoflavus, SeMet derivative for SAD phasing 8CLT ; 1.46 ; Zearalenone lactonase of Rhodococcus erythropolis 8CLV ; 2.54 ; Zearalenone lactonase of Rhodococcus erythropolis in complex with hydrolyzed zearalenone 8CLQ ; 1.53 ; Zearalenone lactonase of Streptomyces coelicoflavus mutant H286Y in complex with hydrolyzed zearalenone 4BJ8 ; 2.4 ; Zebavidin 5JFT ; 2.28 ; Zebra Fish Caspase-3 6B82 ; 3.03 ; Zebra Fish CYP-450 17A1 Mutant Abiraterone Complex 4R1Z ; 3.3 ; Zebra fish cytochrome P450 17A1 with Abiraterone 4R20 ; 2.86 ; Zebra fish cytochrome P450 17A2 with Abiraterone 4R21 ; 2.7 ; Zebra fish cytochrome P450 17A2 with Progesterone 3N3E ; 1.75 ; Zebrafish AlphaA crystallin 6MZP ; 2.1 ; Zebrafish betaglycan orphan domain structure from orthorhombic crystal form 6MZN ; 2.38 ; Zebrafish betaglycan orphan domain structure from tetragonal crystal form 7JL7 ; 2.05 ; Zebrafish Caspase N213T 4HED ; 1.62 ; Zebrafish chemokine CXL1 7MQY ; 2.46 ; Zebrafish CNTN4 APLP2 complex 7MRS ; 2.93 ; Zebrafish CNTN4 APPb complex 7MRO ; 1.87 ; Zebrafish CNTN4 FN1-FN3 domains 3UIW ; 2.601 ; Zebrafish Grx2 (APO) 3PIV ; 2.086 ; Zebrafish interferon 1 3PIW ; 1.492 ; Zebrafish interferon 2 8D2U ; 3.3 ; Zebrafish MFSD2A isoform B in inward open ligand 1A conformation 8D2V ; 4.1 ; Zebrafish MFSD2A isoform B in inward open ligand 1B conformation 8D2W ; 3.4 ; Zebrafish MFSD2A isoform B in inward open ligand 2B conformation 8D2X ; 3.4 ; Zebrafish MFSD2A isoform B in inward open ligand 3C conformation 8D2S ; 2.9 ; Zebrafish MFSD2A isoform B in inward open ligand bound conformation 8D2T ; 3.4 ; Zebrafish MFSD2A isoform B in inward open ligand-free conformation 6PKI ; 2.293 ; Zebrafish N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) catalytic domain (C56S C230S) in complex with N-acetyl-alpha-D-glucosamine (alpha-GlcNAc) and mannose 6-phosphate (M6P) 6PKG ; 2.8 ; Zebrafish N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) catalytic domain auto-inhibited by pro-peptide 6PKH ; 1.6 ; Zebrafish N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (NAGPA) catalytic domain auto-inhibited by pro-peptide 7AMK ; 2.2 ; Zebrafish RET Cadherin Like Domains 1 to 4. 7FCL ; 3.04 ; Zebrafish SIGIRR TIR domain 7FCJ ; 1.88 ; Zebrafish SIGIRR TIR domain mutant - C299S 6ENX ; 1.95 ; Zebrafish Sirt5 in complex with stalled bicyclic intermediate of inhibitory compound 10 6EO0 ; 2.4 ; Zebrafish Sirt5 in complex with stalled peptidylimidate and bicyclic intermediate of inhibitory compound 29 6C08 ; 3.17 ; Zebrafish SLC38A9 with arginine bound in the cytosol open state 8GYN ; 1.38 ; zebrafish TIPE1 strucutre in complex with PE 6D14 ; 2.5 ; Zebrafish TRAP1 bound to AMPPNP and calcium in the asymmetric closed state 5GVI ; 1.87 ; Zebrafish USP30 in complex with Lys6-linked diubiquitin 4C84 ; 1.6 ; zebrafish ZNRF3 ectodomain crystal form I 4C85 ; 2.5 ; zebrafish ZNRF3 ectodomain crystal form II 1M0E ; 2.5 ; ZEBULARINE: A NOVEL DNA METHYLATION INHIBITOR THAT FORMS A COVALENT COMPLEX WITH DNA METHYLTRANSFERASE 3WZL ; 2.6 ; ZEN lactonase 3WZM ; 2.48 ; ZEN lactonase mutant complex 2UZG ; ; Zf-UBP domain of VDU1 4M9V ; 0.969 ; Zfp57 mutant (E182Q) in complex with 5-carboxylcytosine DNA 4U6B ; 2.3 ; Zg3597, a family 117 glycoside hydrolase, produced by the marine bacterium Zobellia galactanivorans 4U6D ; 1.7 ; Zg3615, a family 117 glycoside hydrolase in complex with beta-3,6-anhydro-L-galactose 6JRC ; 1.65 ; ZHD complex with hydrolyzed alpha-ZOL 6JRD ; 1.65 ; ZHD complex with hydrolyzed beta-ZOL 5C81 ; 1.8 ; ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 12min 5C8X ; 1.8 ; ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 20min 5C7Y ; 1.75 ; ZHD-Intermediate complex after ZHD crystal soaking in ZEN for 9min 5C8Z ; 1.6 ; ZHD-ZGR complex after ZHD crystal soaking in ZEN for 30min 6JR2 ; 1.65 ; ZHD/H242A complex with aZOL 6JR5 ; 2.08 ; ZHD/H242A complex with bZOL 6JQZ ; 2.09 ; ZHD/H242A complex with ZEN 6JRB ; 1.8 ; ZHD/W183F complex with bZOL 6JRA ; 1.8 ; ZHD/W183F complex with hydrolyzed aZOL 6JR9 ; 1.72 ; ZHD/W183F complex with ZEN 1JK2 ; 1.65 ; Zif268 D20A mutant bound to the GCT DNA site 1JK1 ; 1.9 ; Zif268 D20A Mutant Bound to WT DNA Site 1AAY ; 1.6 ; ZIF268 ZINC FINGER-DNA COMPLEX 1A1L ; 2.3 ; ZIF268 ZINC FINGER-DNA COMPLEX (GCAC SITE) 5W41 ; 2.2 ; Zika MR766 NLS in complex with Importin alpha subunit-1 5MFX ; 1.598 ; Zika NS3 helicase:RNA complex 6LD1 ; 1.4 ; Zika NS5 polymerase domain 6LD2 ; 1.4 ; Zika NS5 polymerase domain 6LD3 ; 2.3 ; Zika NS5 polymerase domain 6LD4 ; 1.5 ; Zika NS5 polymerase domain 6LD5 ; 1.94 ; Zika NS5 polymerase domain 5KVD ; 1.65 ; Zika specific antibody, ZV-2, bound to ZIKA envelope DIII 5KVE ; 1.7 ; Zika specific antibody, ZV-48, bound to ZIKA envelope DIII 5KVF ; 1.4 ; Zika specific antibody, ZV-64, bound to ZIKA envelope DIII 5KVG ; 1.4 ; Zika specific antibody, ZV-67, bound to ZIKA envelope DIII 7T17 ; 5.26 ; Zika Virus asymmetric unit bound with IgM antibody DH1017 Fab fragment 6C44 ; ; Zika virus capsid protein 5GZR ; 9.4 ; Zika virus E protein complexed with a neutralizing antibody Z23-Fab 7BPK ; 3.1 ; Zika virus envelope protein mutant bound to mAb 8DV6 ; 3.38 ; Zika virus envelope protein structure in complex with a potent Human mAb 5Y6N ; 1.571 ; Zika virus helicase in complex with ADP 5Y6M ; 2.002 ; Zika virus helicase in complex with ADP-AlF3 5K6K ; 1.89 ; Zika virus non-structural protein 1 (NS1) 5IY3 ; 2.2 ; Zika Virus Non-structural Protein NS1 5GXJ ; 2.6 ; Zika Virus NS2B-NS3 protease 7VXX ; 1.9 ; Zika virus NS2B/NS3 protease bZipro(C143S) in complex with 4-amino benzamidine 7VXY ; 1.901 ; Zika virus NS2B/NS3 protease bZipro(C143S) in complex with D-RKOR 5GJC ; 2.204 ; Zika virus NS3 helicase in complex with ATP 5GJB ; 1.702 ; Zika virus NS3 helicase in complex with ssRNA 7LYG ; 3.804 ; Zika virus RNA promoter stem-loop A with tRNA-scaffold 8Y9V ; 1.9 ; ZIKV NS2B/NS3 protease 7V2Z ; 2.10102 ; ZIKV NS3helicase in complex with ssRNA and ATP-Mn2+ 7BQ5 ; 2.99 ; ZIKV sE bound to mAb Z6 7YAR ; 5.9 ; ZIKV_Fab_G9E 5TRE ; 15.6 ; Zinc and the Iron Donor Frataxin Regulate Oligomerization of the Scaffold Protein to Form New Fe-S Cluster Assembly Centers 5LFY ; ; Zinc bound dimer of the fragment of human amyloid-beta peptide with Alzheimer's disease pathogenic Taiwanese mutation D7H 7BEZ ; 1.981 ; Zinc bound domain 3 of carbonic anhydrase from marine diatom Thalassiosira weissflogii 4AO7 ; 1.85 ; Zinc bound structure of a novel cold-adapted esterase from an Arctic intertidal metagenomic library 3TA7 ; 1.48 ; Zinc bound structure of an archaeal member of the LigD 3'-phosphoesterase DNA repair enzyme family 1BSK ; 3.0 ; ZINC DEFORMYLASE INHIBITOR COMPLEX FROM E.COLI 5YLN ; 2.189 ; Zinc dependent alcohol dehydrogenase 2 from Streptococcus pneumonia - apo form 1BNL ; 2.9 ; ZINC DEPENDENT DIMERS OBSERVED IN CRYSTALS OF HUMAN ENDOSTATIN 6UCP ; ; Zinc finger 2 from the transcription factor Sp1 DNA binding domain 7KZH ; 2.49 ; Zinc finger antiviral protein (ZAP) central domain 7TGQ ; 2.0 ; Zinc finger antiviral protein (ZAP) central domain bound to ADP-ribose 6A3Z ; ; Zinc finger domain from the HRD1 Protein 5YZ9 ; ; zinc finger domain of METTL3-METTL14 N6-methyladenosine methyltransferase 6IR0 ; ; Zinc finger domain of the human DTX protein 6BLW ; 1.835 ; Zinc finger Domain of WT1(+KTS form) with M342R Mutation and 17+1mer Oligonucleotide with Triplet GGT 6B0P ; 2.077 ; Zinc finger Domain of WT1(-KTS form) with 12+1mer Oligonucleotide with 3' Triplet GGT 6B0O ; 1.552 ; Zinc finger Domain of WT1(-KTS form) with 12+1mer Oligonucleotide with 3' Triplet TGT 6B0Q ; 2.794 ; Zinc finger Domain of WT1(-KTS form) with 13+1mer Oligonucleotide with 3' Triplet TGT 6B0R ; 1.818 ; Zinc finger Domain of WT1(-KTS form) with M342R Mutation and 14+1mer Oligonucleotide with 3' Triplet TGG 5VC9 ; 2.1 ; Zinc finger of human CXXC4 in complex with CpG DNA 5W9S ; 2.1 ; Zinc finger of human CXXC5 in complex with CpG DNA 6L99 ; ; Zinc finger of RING finger protein 144A 6ASD ; 1.85 ; Zinc finger region of human TET1 in complex with CpG DNA 4Z3C ; 1.57 ; Zinc finger region of human TET3 in complex with CpG DNA 5W9Q ; 1.8 ; Zinc finger region of MBD1 in complex with CpG DNA 4PZI ; 2.15 ; Zinc finger region of MLL2 in complex with CpG DNA 1ZAA ; 2.1 ; ZINC FINGER-DNA RECOGNITION: CRYSTAL STRUCTURE OF A ZIF268-DNA COMPLEX AT 2.1 ANGSTROMS 1Y0J ; ; Zinc fingers as protein recognition motifs: structural basis for the GATA-1/Friend of GATA interaction 4O64 ; 2.13 ; Zinc fingers of KDM2B 6S34 ; 1.35 ; Zinc free, dimeric human insulin determined to 1.35 Angstrom resolution 2MGT ; ; Zinc induced dimer of the metal binding domain 1-16 of human amyloid beta-peptide with Alzheimer's disease pathogenic English mutation H6R 2EIN ; 2.7 ; Zinc ion binding structure of bovine heart cytochrome C oxidase in the fully oxidized state 2EIM ; 2.6 ; Zinc ion binding structure of bovine heart cytochrome C oxidase in the fully reduced state 2L9Z ; ; Zinc knuckle in PRDM4 6YA1 ; 1.48 ; Zinc metalloprotease ProA 6YZE ; 2.18 ; Zinc metalloprotease ProA from native source 1G12 ; 1.6 ; ZINC PEPTIDASE FROM GRIFOLA FRONDOSA 1GE5 ; 2.0 ; ZINC PEPTIDASE FROM GRIFOLA FRONDOSA 1GE6 ; 2.2 ; ZINC PEPTIDASE FROM GRIFOLA FRONDOSA 1GE7 ; 2.0 ; ZINC PEPTIDASE FROM GRIFOLA FRONDOSA 1KUH ; 1.6 ; ZINC PROTEASE FROM STREPTOMYCES CAESPITOSUS 2WGQ ; 2.5 ; Zinc substituted E Coli Copper Amine Oxidase, a model for the precursor for 2,4,5-trihydroxyphenylalaninequinone formation 4N7L ; 2.85 ; Zinc Substituted Reaction Center M(L214H) Variant of Rhodobacter sphaeroides 4N7K ; 2.85 ; Zinc Substituted Reaction Center of the Rhodobacter sphaeroides 2L1O ; ; Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys2His2 zinc finger induces structural rearrangements of typical DNA base determinant positions 4MTD ; 2.5 ; Zinc Uptake Regulator Complexed With Zinc AND DNA 4MTE ; 2.5 ; Zinc Uptake Regulator Complexed with Zinc and DNA 6R2U ; 2.49 ; Zinc-alpha2-Glycoprotein with a Fluorescent Dansyl C 11 Fatty Acid 1HVN ; ; ZINC-AND SEQUENCE-DEPENDENT BINDING TO NUCLEIC ACIDS BY THE N-TERMINAL ZINC FINGER DOMAIN OF THE HIV-1 NUCLEOCAPSID PROTEIN: NMR STRUCTURE OF THE COMPLEX WITH THE PSI-SITE ANALOG, D/ACGCC 1HVO ; ; ZINC-AND SEQUENCE-DEPENDENT BINDING TO NUCLEIC ACIDS BY THE N-TERMINAL ZINC FINGER DOMAIN OF THE HIV-1 NUCLEOCAPSID PROTEIN: NMR STRUCTURE OF THE COMPLEX WITH THE PSI-SITE ANALOG, D/ACGCC 2FU6 ; 2.05 ; Zinc-beta-lactamase l1 from stenotrophomonas maltophilia (apo form) 2FU7 ; 1.85 ; Zinc-beta-lactamase L1 from stenotrophomonas maltophilia (Cu-substituted form) 2FU8 ; 1.8 ; Zinc-beta-lactamase L1 from stenotrophomonas maltophilia (d-captopril complex) 2FU9 ; 1.8 ; Zinc-beta-lactamase L1 from stenotrophomonas maltophilia (mp2 inhibitor complex) 2FM6 ; 1.75 ; Zinc-beta-lactamase L1 from stenotrophomonas maltophilia (native form) 1ZE9 ; ; Zinc-binding domain of Alzheimer's disease amyloid beta-peptide complexed with a zinc (II) cation 2BP4 ; ; Zinc-binding domain of Alzheimer's disease amyloid beta-peptide in TFE-water (80-20) solution 1ZE7 ; ; Zinc-binding domain of Alzheimer's disease amyloid beta-peptide in water solution at pH 6.5 5UGK ; ; Zinc-Binding Structure of a Catalytic Amyloid from Solid-State NMR Spectroscopy 3BKF ; 1.9 ; Zinc-bound C-terminal Domain of NikR 2XGW ; 2.1 ; ZINC-BOUND CRYSTAL STRUCTURE OF STREPTOCOCCUS PYOGENES DPR 3EII ; 2.25 ; Zinc-bound glycoside hydrolase 61 E from Thielavia terrestris 5FD6 ; 2.48 ; zinc-bound manganese uptake regulator 4O8X ; 1.991 ; Zinc-bound Rpn11 in complex with Rpn8 3ENR ; 2.4 ; ZINC-CALCIUM CONCANAVALIN A AT PH 6.15 3W52 ; 1.76 ; Zinc-dependent bifunctional nuclease 1D8E ; 3.0 ; Zinc-depleted FTase complexed with K-RAS4B peptide substrate and FPP analog. 2K0C ; ; Zinc-finger 2 of Nup153 6L1W ; 2.194 ; Zinc-finger Antiviral Protein (ZAP) bound to RNA 8FIL ; 2.01 ; Zinc-free APOBEC3A (inactive E72A mutant) in complex with TTC-hairpin DNA substrate 5HX4 ; 1.92 ; Zinc-Free APOBEC3F Catalytic Domain Crystal Structure 1ZKB ; 2.2 ; Zinc-free Engineered maltose binding protein 4O8Y ; 1.95 ; Zinc-free Rpn11 in complex with Rpn8 4FXO ; 2.85 ; Zinc-mediated allosteric inhibiton of caspase-6 6QWO ; 2.0 ; Zinc-reconstituted ODP from T. maritima 3KM1 ; 2.0 ; ZINC-Reconstituted TOMATO CHLOROPLAST SUPEROXIDE DISMUTASE 4RH4 ; 1.6 ; Zinc-substituted pseudoazurin solved by S/Zn-SAD phasing 2QL0 ; ; Zinc-substituted Rubredoxin from Desulfovibrio Vulgaris 6PBE ; 3.78 ; ZINC17988990-bound TRPV5 in nanodiscs 6PBF ; 4.2 ; ZINC9155420-bound TRPV5 in nanodiscs 3HT2 ; 2.0 ; Zink containing polyketide cyclase RemF from Streptomyces resistomycificus 2N8M ; ; Zipcode-binding-protein-1 KH3(DD)KH4 domains in complex with the KH4 RNA target 2N8L ; ; Zipcode-binding-protein-1 KH3KH4(DD) domains in complex with the KH3 RNA target 2LV4 ; ; ZirS C-terminal Domain 8H92 ; 2.6 ; Ziziphus jujuba adenylyl cyclase 8INH ; 2.5 ; ZjOGT3, flavonoid 7,4'-di-O-glycosyltransferase 7QAJ ; 2.1 ; ZK002 with Anti-angiogenic and Anti-inflamamtory Properties 5KDJ ; 2.15 ; ZmpB metallopeptidase from Clostridium perfringens 5KDN ; 1.66 ; ZmpB metallopeptidase from Clostridium perfringens 5KDU ; 2.0 ; ZmpB metallopeptidase in complex with a2,6-Sialyl T-antigen 5KDS ; 1.6 ; ZmpB metallopeptidase in complex with an O-glycopeptide (a2,6-sialylated core-3 pentapeptide). 3KJI ; 2.13 ; Zn and ADP bound state of CooC1 1OEZ ; 2.15 ; Zn His46Arg mutant of Human Cu, Zn Superoxide Dismutase 2YAV ; 1.701 ; ZN INHIBITED SULFUR OXYGENASE REDUCTASE 2BHB ; 2.41 ; Zn substituted E. coli Aminopeptidase P 2BH3 ; 2.4 ; Zn substituted E. coli Aminopeptidase P in complex with product 1XB8 ; 2.0 ; Zn substituted form of D62C/K74C double mutant of Pseudomonas Aeruginosa Azurin 6GW8 ; ; Zn(II) form of shortened metallothionein from Pseudomonas fluorescens Q2-87 (residues 1-52) 8DRF ; 1.7 ; Zn(II)-bound B2 dimer (H60/H100/H104) 8DRL ; 1.65 ; Zn(II)-bound B2 dimer (H60/H100/H104) formed in Cu(II)//Zn(II) (M1 // M2) condition 8DRM ; 1.55 ; Zn(II)-bound B2 dimer (H60/H100/H104) formed in Zn(II)//Cu(II) (M1 // M2) condition 6LUY ; 1.2 ; Zn- Carbonic Anhydrase II pH 11.0 0 atm CO2 6LUZ ; 1.2 ; Zn- Carbonic Anhydrase II pH 11.0 20 atm CO2 6LUW ; 1.2 ; Zn- Carbonic Anhydrase II pH 7.8 0 atm CO2 6LUX ; 1.2 ; Zn- Carbonic Anhydrase II pH 7.8 20 atm CO2 1T7Z ; 3.0 ; Zn-alpha-2-glycoprotein; baculo-ZAG no PEG, no glycerol 1T7V ; 1.95 ; Zn-alpha-2-glycoprotein; baculo-ZAG PEG 200 1T7Y ; 2.8 ; Zn-alpha-2-glycoprotein; baculo-ZAG PEG 200, no glycerol 1T80 ; 2.1 ; Zn-alpha-2-glycoprotein; CHO-ZAG PEG 200 1T7W ; 2.7 ; Zn-alpha-2-glycoprotein; CHO-ZAG PEG 400 1T7X ; 3.1 ; Zn-alpha-2-glycoprotein; refolded CHO-ZAG PEG 400 1E67 ; 2.14 ; Zn-Azurin from Pseudomonas aeruginosa 2MJC ; ; Zn-binding domain of eukaryotic translation initiation factor 3, subunit G 1Q7L ; 1.4 ; Zn-binding domain of the T347G mutant of human aminoacylase-I 7BF0 ; 1.6 ; Zn-bound domain 3 of CDCA1 in complex with carbon dioxide 2Y3D ; 2.3 ; Zn-bound form of Cupriavidus metallidurans CH34 CnrXs 4MTR ; 1.83 ; Zn-bound GloA2 3KJH ; 1.9 ; Zn-bound state of CooC1 5WPN ; 1.57 ; Zn-bound Structure of Chaetopterus variopedatus Ferritin 8SJG ; 2.39 ; Zn-Bound Structure of Computationally Designed Homotrimer Tet4 8SJH ; 1.6 ; Zn-Bound Structure of Computationally Designed Homotrimer TP1 7Y2E ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 120 K 7Y2F ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 140 K 7Y2G ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 160 K 7Y2H ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 180 K 7Y2I ; 1.4 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 200 K 7Y2C ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA after UV at 90 K 7Y2A ; 1.2 ; Zn-Carbonic Anhydrase II complexed with 3NPA before UV at 90 K 6DJA ; 2.48 ; ZN-DEPENDENT 5/B/6 METALLO-BETA-LACTAMASE FROM BACILLUS CEREUS 1HI9 ; 2.4 ; Zn-dependent D-aminopeptidase DppA from Bacillus subtilis, a self-compartmentalizing protease. 1BC2 ; 1.9 ; ZN-DEPENDENT METALLO-BETA-LACTAMASE FROM BACILLUS CEREUS 7Q02 ; 1.45 ; Zn-free structure of lipocalin-like Milk protein, inspired from Diploptera punctata, expressed in Saccharomyces cerevisiae 3SBA ; 2.75 ; Zn-mediated Hexamer of T4 Lysozyme R76H/R80H by Synthetic Symmetrization 3SEW ; 1.55 ; Zn-mediated Polymer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization (Form I) 3SEY ; 1.85 ; Zn-mediated Polymer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization (Form II) 3SEU ; 1.85 ; Zn-mediated Polymer of Maltose-binding Protein A216H/K220H by Synthetic Symmetrization (Form III) 3SER ; 2.35 ; Zn-mediated Polymer of Maltose-binding Protein K26H/K30H by Synthetic Symmetrization 6OWJ ; 1.94 ; Zn-mediated polymerization of human SFPQ 3SEV ; 3.05 ; Zn-mediated Trimer of Maltose-binding Protein E310H/K314H by Synthetic Symmetrization 3SB5 ; 2.46 ; Zn-mediated Trimer of T4 Lysozyme R125C/E128C by Synthetic Symmetrization 6RUW ; 1.35 ; Zn-substituted alpha-Keggin bound to Proteinase K solved by MR 3SXK ; 1.63 ; Zn2+-bound FCD domain of TM0439, a putative transcriptional regulator 3IUI ; 2.3 ; Zn2+-bound form of Pseudomonas stutzeri L-rhamnose isomerase 5K8P ; 2.2 ; Zn2+/Tetrahedral intermediate-bound R289A 5-nitroanthranilate aminohydrolase 6WMI ; 2.75 ; ZNF410 zinc fingers 1-5 with 17 mer blunt DNA Oligonucleotide 8SSS ; 2.3 ; ZnFs 1-7 of CCCTC-binding factor (CTCF) Complexed with 23mer 8SST ; 2.19 ; ZnFs 1-7 of CCCTC-binding factor (CTCF) K365T Mutant Complexed with 23mer 8SSU ; 2.89 ; ZnFs 3-11 of CCCTC-binding factor (CTCF) Complexed with 19mer DNA 8SSR ; 3.14 ; ZnFs 3-11 of CCCTC-binding factor (CTCF) Complexed with 35mer DNA 35-20 8SSQ ; 3.12 ; ZnFs 3-11 of CCCTC-binding factor (CTCF) Complexed with 35mer DNA 35-4 1W7V ; 2.0 ; ZnMg substituted aminopeptidase P from E. coli 1WBQ ; 2.3 ; ZnMg substituted aminopeptidase P from E. coli 4Q2Q ; 1.45 ; ZO1 PDZ3 in Complex with a Phage-Derived Peptide 2KXS ; ; ZO1 ZU5 domain in complex with GRINL1A peptide 2KXR ; ; ZO1 ZU5 domain MC/AA mutation 7LCL ; 2.295 ; Zoogloea ramigera biosynthetic thiolase Q183Y mutant 7LD2 ; 2.8 ; Zoogloea ramigera biosynthetic thiolase Q183Y mutant, RbCl soak 7LDC ; 2.5 ; Zoogloea ramigera biosynthetic thiolase Q183Y/Y218E mutant 7LDT ; 2.6 ; Zoogloea ramigera biosynthetic thiolase Q183Y/Y218E mutant, RbCl soak 7LDU ; 2.85 ; Zoogloea ramigera biosynthetic thiolase Q183Y/Y218E/delH221 mutant 7LDV ; 2.9 ; Zoogloea ramigera biosynthetic thiolase Q183Y/Y218E/delH221/S227K mutant 7LDW ; 2.5 ; Zoogloea ramigera biosynthetic thiolase Q183Y/Y218E/delH221/S227K/G248T mutant 7LBZ ; 2.6 ; Zoogloea ramigera biosynthetic thiolase Y218E mutant 7LCA ; 2.0 ; Zoogloea ramigera biosynthetic thiolase Y218E/delH221 mutant 8T9X ; 2.0 ; Zophobas morio black wasting virus strain NJ2-molitor virion structure 8TA7 ; 2.7 ; Zophobas morio black wasting virus strain OR-molitor empty capsid structure 8TJE ; 3.4 ; Zophobas morio black wasting virus strain OR-molitor virion structure 8T9E ; 2.9 ; Zophobas morio black wasting virus strain UT-morio empty capsid structure 8T9C ; 2.7 ; Zophobas morio black wasting virus strain UT-morio virion structure 6FN1 ; 3.58 ; Zosuquidar and UIC2 Fab complex of human-mouse chimeric ABCB1 (ABCB1HM) 3D4C ; 2.9 ; ZP-N domain of mammalian sperm receptor ZP3 (crystal form I) 3D4G ; 2.3 ; ZP-N domain of mammalian sperm receptor ZP3 (crystal form II) 5OSQ ; 2.05 ; ZP-N domain of mammalian sperm receptor ZP3 (crystal form II, processed in P21221) 3EF7 ; 3.1 ; ZP-N domain of mammalian sperm receptor ZP3 (crystal form III) 6GNL ; 1.23 ; Zr(IV)-substituted Keggin directly binding to the side chain of Hen Egg-White Lysozyme (HEWL) 6HYB ; 1.964 ; Zr(IV)-substituted Wells-Dawson binding to Hen Egg-White Lysozyme (HEWL) 5Y8R ; 2.3 ; ZsYellow at pH 3.5 5Y8Q ; 2.9 ; ZsYellow at pH 8.0 6QPK ; 1.36 ; Zt-KP6-1: an effector from Zymoseptoria tritici 3H11 ; 1.9 ; Zymogen caspase-8:c-FLIPL protease domain complex 4O3T ; 2.99 ; Zymogen HGF-beta/MET with Zymogen Activator Peptide ZAP.14 4O3U ; 3.04 ; Zymogen HGF-beta/MET with Zymogen Activator Peptide ZAP2.3 3LQ0 ; 1.45 ; Zymogen structure of crayfish astacin metallopeptidase 2LT5 ; ; Zymogen-FLG of the onconase 5TMA ; 1.67 ; Zymomonas mobilis pyruvate decarboxylase mutant PDC-2.3 1TOT ; ; ZZ Domain of CBP- a Novel Fold for a Protein Interaction Module 8CS2 ; 6.0 ; [(1AP)G/TC] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 6ZND ; 2.35 ; [1,2,4]Triazolo[1,5-a]pyrimidine Phosphodiesterase 2 Inhibitors 6ZQZ ; 1.88 ; [1,2,4]Triazolo[1,5-a]pyrimidine Phosphodiesterase 2 Inhibitors 6QES ; ; [1-40]Gga-AvBD11 8DAH ; 5.47 ; [20 bp edge] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 5MKO ; 2.65 ; [2Fe-2S] cluster containing TtuA in complex with AMP. 1JQ4 ; ; [2Fe-2S] Domain of Methane Monooxygenase Reductase from Methylococcus capsulatus (Bath) 1E0Z ; ; [2Fe-2S]-Ferredoxin from Halobacterium salinarum 1E10 ; ; [2Fe-2S]-Ferredoxin from Halobacterium salinarum 5FFI ; 2.17 ; [2Fe:2S] ferredoxin FeSII from Azotobacter vinelandii 7SPL ; 6.09 ; [2T3] Self-assembling 3D DNA triangle with three inter-junction base pairs containing the L1 junction and a zero-linked center strand 7U3R ; 6.27 ; [2T7+10] Self-assembling tensegrity triangle with two turns of DNA and the sticky end attachment of a one-turn linker per axis, with R3 symmetry 8CYN ; 9.45 ; [2T7+20bp Linker] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle with 20 bp Sticky-End Linker 7U3S ; 9.5 ; [2T7+21] Self-assembling tensegrity triangle with two turns of DNA and the sticky end addition of a two-turn linker per axis with R3 symmetry 8CYM ; 7.76 ; [2T7+9bp Linker] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle with 9 bp Sticky-End Linker 8D93 ; 2.96 ; [2T7] Self-assembling tensegrity triangle with R3 symmetry at 2.96 A resolution, update and junction cut for entry 3GBI 7LL7 ; ; [2]Catenane From MccJ25 Variant G12C G21C 1OCI ; ; [3.2.0]bcANA:DNA 7U3P ; 6.06 ; [3T7] Self-assembling tensegrity triangle with three turns of DNA per axis with R3 symmetry 5T56 ; ; [3]catenane from MccJ25 G12R/I13C/G21C lasso peptide 8EJY ; 2.47 ; [4+2] Aza-Cyclase F293A variant 8EJZ ; 1.7 ; [4+2] Aza-Cyclase Y293F variant 6QET ; ; [41-82]Gga-AvBD11 8CP4 ; 3.19 ; [4Fe-4S] cluster containing LarE in complex with AMP 6Z93 ; 1.505 ; [4Fe-4S]-dependent thiouracil desulfidase TudS (DUF523Vcz) 6Z96 ; 1.327 ; [4Fe-4S]-dependent thiouracil desulfidase TudS (DUF523Vcz) soaked with 4-thiouracil (12.65 keV, 7.125 keV (Fe-SAD) and 6.5 keV (S-SAD) data) 6ZW9 ; 1.759 ; [4Fe-4S]-dependent thiouracil desulfidase TudS (DUF523Vcz) soaked with 4-thiouracil (S-SAD data) 6Z92 ; 2.067 ; [4Fe-4S]-dependent thiouracil desulfidase TudS (DUF523Vcz) solved by Fe-SAD phasing 6Z94 ; 1.759 ; [4Fe-4S]-dependent thiouracil desulfidase TudS (DUF523Vcz)(S-SAD data) 7B0C ; 3.0 ; [4Fe-4S]-NsrR complexed to 23-bp HmpA1 operator fragment 7U3Q ; 9.32 ; [4T7] Self-assembling tensegrity triangle with four turns of DNA per axis with R3 symmetry 8DAG ; 6.16 ; [8 bp center] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 7U3O ; 3.31 ; [a2T7] Self-assembling asymmetric tensegrity triangle with P1 symmetry 8DCJ ; 3.33 ; [A:T] Self-Assembled 3D DNA Rhombohedral Tensegrity Triangle 2M1P ; ; [Aba5,14]BTD-2 8D31 ; 7.45 ; [AG/TC] Self-Assembled 3D DNA Cubic Tensegrity Triangle with 24 bp Arm Length 8CS4 ; 6.03 ; [AGC/GTC] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 8CS6 ; 6.76 ; [AGG/CTC] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 1FVN ; ; [ALA31, AIB32]-NEUROPEPTIDE Y 1ICY ; ; [ALA31,PRO32]-PNPY BOUND TO DPC MICELLES 2M78 ; ; [Asp11]RTD-1 2M79 ; ; [Asp2,11]RTD-1 2M77 ; ; [Asp2]RTD-1 7SGB ; 5.2 ; [C-C] DNA mismatch in a self-assembling rhombohedral lattice at pH 5.5 7SGA ; 3.15 ; [C-S] DNA mismatch in a self-assembling rhombohedral lattice 7SDG ; 3.63 ; [C:Ag+:C] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE2 ; 4.03 ; [C:Ag+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDF ; 3.46 ; [C:Ag+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDS ; 3.7 ; [C:Ag+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDN ; 4.32 ; [C:Ag+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 8DX6 ; 5.34 ; [C:Hg2+/Ag+:C--pH 5.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DX5 ; 5.9 ; [C:Hg2+/Ag+:C--pH 5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DX9 ; 4.55 ; [C:Hg2+/Ag+:C--pH 6.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DX7 ; 4.92 ; [C:Hg2+/Ag+:C--pH 6] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DX1 ; 4.79 ; [C:Hg2+/Ag+:C--pH 7 MOPS] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution in MOPS 8DXC ; 5.04 ; [C:Hg2+/Ag+:C--pH 7.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DXA ; 4.21 ; [C:Hg2+/Ag+:C--pH 7] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DXD ; 4.28 ; [C:Hg2+/Ag+:C--pH 8] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 8DXF ; 4.29 ; [C:Hg2+/Ag+:C--pH 9] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SD7 ; 3.68 ; [C:Hg2+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDY ; 4.45 ; [C:Hg2+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 8CS3 ; 5.14 ; [CAG/TCG] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 8CS7 ; 6.67 ; [CCG/CCG] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 1BZV ; ; [D-ALAB26]-DES(B27-B30)-INSULIN-B26-AMIDE A SUPERPOTENT SINGLE-REPLACEMENT INSULIN ANALOGUE, NMR, MINIMIZED AVERAGE STRUCTURE 8HR3 ; ; [D-Cys5,Asp7,Val8,D-Lys16]-STp(5-17) 8HR4 ; ; [D-Cys5,D-Lys16]-STp(5-17) 3B7T ; 2.3 ; [E296Q]LTA4H in complex with Arg-Ala-Arg substrate 3B7S ; 1.465 ; [E296Q]LTA4H in complex with RSR substrate 7U3T ; 4.69 ; [F223] Self-assembling tensegrity triangle with two turns, two turns and three turns of DNA per axis by extension with P1 symmetry 7U3V ; 5.14 ; [F224] Self-assembling tensegrity triangle with two turns, two turns and four turns of DNA per axis by extension with P1 symmetry 7U3X ; 5.68 ; [F233] Self-assembling tensegrity triangle with two turns, three turns and three turns of DNA per axis by extension with P1 symmetry 7U41 ; 7.24 ; [F234] Self-assembling tensegrity triangle with two turns, three turns and four turns of DNA per axis by extension with P1 symmetry 7U3Z ; 7.55 ; [F244] Self-assembling tensegrity triangle with two turns, four turns and four turns of DNA per axis by extension with P1 symmetry 7U42 ; 7.71 ; [F334] Self-assembling tensegrity triangle with three turns, three turns and four turns of DNA per axis by extension with P1 symmetry 7U44 ; 8.46 ; [F344] Self-assembling tensegrity triangle with three turns, four turns and four turns of DNA per axis by extension with P1 symmetry 6GLY ; 2.09 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant C299A 6GLZ ; 2.02 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant C299D 5LA3 ; 2.29 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E279A 6GM0 ; 2.11 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E279Q 6GM1 ; 2.05 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E282A 6GM2 ; 2.76 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E282D 6GM8 ; 1.96 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant E282Q 6GM3 ; 2.22 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant R286A 6GM4 ; 1.97 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant S319A 8CJY ; 1.6 ; [FeFe]-hydrogenase CpI from Clostridium pasteurianum, variant S357T 6GM5 ; 1.45 ; [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii,variant E141A 6GM6 ; 1.61 ; [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii,variant E141Q 6GM7 ; 2.14 ; [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii,variant E144A 6YF4 ; 1.77 ; [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI), variant E279D 7QHF ; 1.63 ; [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI), variant G302S 7O1P ; 2.58 ; [FeFe]-hydrogenase maturase HydE from T. Maritima (C-ter stretch absent) 8QMN ; 1.48 ; [FeFe]-hydrogenase maturase HydE from T. maritima - dialysis experiment - empty structure 4R0V ; 2.29 ; [FeFe]-hydrogenase Oxygen Inactivation is Initiated by the Modification and Degradation of the H cluster 2Fe Subcluster 6YKB ; 1.55 ; [Fe]-hydrogenase from Methanolacinia paynteri in complex with GMP at 1.55-A resolution 6YK9 ; 1.7 ; [Fe]-hydrogenase from Methanolacinia paynteri with bound guanylylpyridinol at 1.7-A resolution 1FY3 ; 1.89 ; [G175Q]HBP, A mutant of human heparin binding protein (CAP37) 8CS1 ; 4.56 ; [GA/CT] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 8DAP ; 6.47 ; [GA/TC] Self-Assembled 3D DNA Tensegrity Triangle with 24 bp Arm Length forming a Trigonal Hexagon 8CS5 ; 6.52 ; [GGA/CTC] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 8CS8 ; 6.0 ; [High G:C, High Vapor Diffusion] Self-Assembled 3D DNA Hexagonal Tensegrity Triangle 1TZ4 ; ; [hPP19-23]-pNPY bound to DPC Micelles 7RIJ ; 1.3 ; [I11G]hyen D 7RII ; 1.22 ; [I11L]hyen D crystal structure 7SDO ; 3.62 ; [iU:Ag+:C] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 8EG4 ; 4.18 ; [iU:Ag+:iU] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDU ; 4.33 ; [iU:Ag+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDT ; 4.0 ; [iU:Ag+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE4 ; 4.65 ; [iU:Hg2+:C] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE5 ; 4.05 ; [iU:Hg2+:iU] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE1 ; 4.19 ; [iU:Hg2+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDZ ; 4.51 ; [iU:Hg2+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE0 ; 3.93 ; [iU:Hg2+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SE3 ; 3.76 ; [iU:Hg2+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7U3U ; 4.46 ; [L223] Self-assembling tensegrity triangle with two turns, two turns and three turns of DNA per axis by linker addition with P1 symmetry 7U3W ; 6.33 ; [L224] Self-assembling tensegrity triangle with two turns, two turns and four turns of DNA per axis by linker addition with P1 symmetry 7U3Y ; 6.06 ; [L233] Self-assembling tensegrity triangle with two turns, three turns and three turns of DNA per axis by linker addition with P1 symmetry 7U40 ; 7.55 ; [L244] Self-assembling tensegrity triangle with two turns, four turns and four turns of DNA per axis by linker addition with P1 symmetry 7U43 ; 7.55 ; [L334] Self-assembling tensegrity triangle with three turns, three turns and four turns of DNA per axis by extension and linker addition with P1 symmetry 7U45 ; 8.05 ; [L344] Self-assembling tensegrity triangle with three turns, four turns and four turns of DNA per axis by extension and linker addition with P1 symmetry 4ONK ; 1.9 ; [Leu-5]-Enkephalin mutant - YVVFL 4OLR ; 1.1 ; [Leu-5]-Enkephalin mutant - YVVFV 7SG9 ; 3.81 ; [mC-mC] DNA mismatch in a self-assembling rhombohedral lattice at pH 5.5 7SDJ ; 4.0 ; [mC:Ag+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDK ; 3.86 ; [mC:Ag+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDQ ; 4.3 ; [mC:Ag+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 1E3D ; 1.8 ; [NiFe] Hydrogenase from Desulfovibrio desulfuricans ATCC 27774 5IJA ; 1.82 ; [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis 5XVC ; 2.05 ; [NiFe]-hydrogenase (Hyb-type) from Citrobacter sp. S-77 in a ferricyanide-oxidized condition 5XVD ; 1.57 ; [NiFe]-hydrogenase (Hyb-type) from Citrobacter sp. S-77 in an air-oxidized condition 5XVB ; 1.84 ; [NiFe]-hydrogenase (Hyb-type) from Citrobacter sp. S-77 in an H2-reduced condition 1TZ5 ; ; [pNPY19-23]-hPP bound to DPC Micelles 1P1P ; ; [PRO7,13] AA-CONOTOXIN PIVA, NMR, 12 STRUCTURES 1FY1 ; 2.5 ; [R23S,F25E]HBP, A MUTANT OF HUMAN HEPARIN BINDING PROTEIN (CAP37) 4E1U ; 0.92 ; [Ru(bpy)2 dppz]2+ bound to DNA 6HWG ; 1.74 ; [Ru(phen)2(dppz-11-CN)]2+ bound to d(TCGGCGCCGA)2 6G8S ; 1.66 ; [Ru(TAP)2(11,12-CN2-dppz)]2+ bound to d(CCGGACCCGG/CCGGGTCCGG)2 6R6D ; 1.838 ; [Ru(TAP)2(11,12-CN2-dppz)]2+ bound to d(TCGGCGCCGA)2 5NBE ; 1.51 ; [Ru(TAP)2(dppz-11-CN)]2+ bound to d(TCGGCGCCGA)2 4X18 ; 1.05 ; [Ru(TAP)2(dppz-11-Me)]2+ bound to d(TCGGCGCCGA) 7SDH ; 4.05 ; [S:Ag+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDL ; 4.37 ; [S:Ag+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 2BC8 ; ; [Sec2,3,8,12]-ImI 7SG8 ; 3.71 ; [T-T] DNA mismatch in a self-assembling rhombohedral lattice 7SM5 ; 4.84 ; [T:Ag+/Ag+:T--pH 11] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7TFX ; 4.99 ; [T:Ag+/Hg2+:T--(pH11-pH7; 120s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 120s 7TG9 ; 4.69 ; [T:Ag+/Hg2+:T--(pH11-pH7; 300s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 with Ag+ and Hg2+ for 300s 7TFY ; 4.71 ; [T:Ag+/Hg2+:T--(pH11-pH7; 300s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 300s 7TG6 ; 4.82 ; [T:Ag+/Hg2+:T--(pH11-pH7; 30s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 with Ag+ and Hg2+ for 30s 7TFU ; 4.55 ; [T:Ag+/Hg2+:T--(pH11-pH7; 30s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 30s 7TG4 ; 5.21 ; [T:Ag+/Hg2+:T--(pH11-pH7; 5s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 with Ag+ and Hg2+ for 5s 7TFT ; 4.42 ; [T:Ag+/Hg2+:T--(pH11-pH7; 5s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 5s 7TG7 ; 3.94 ; [T:Ag+/Hg2+:T--(pH11-pH7; 60s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 with Ag+ and Hg2+ for 60s 7TFV ; 4.23 ; [T:Ag+/Hg2+:T--(pH11-pH7; 60s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 60s 7TFW ; 3.92 ; [T:Ag+/Hg2+:T--(pH11-pH7; 60s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 60s 7TG8 ; 5.46 ; [T:Ag+/Hg2+:T--(pH11-pH7; 90s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 with Ag+ and Hg2+ for 90s 7TGD ; 5.25 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 300s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 with Ag+ and Hg2+ for 300s 7TG3 ; 4.59 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 300s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 for 300s 7TGA ; 6.61 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 30s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 with Ag+ and Hg2+ for 30s 7TG0 ; 6.05 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 30s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 for 30s 7TFZ ; 6.13 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 5s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 for 5s 7TGB ; 5.36 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 60s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 with Ag+ and Hg2+ for 60s 7TG1 ; 4.85 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 60s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 for 60s 7TGC ; 5.19 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 90s in metals)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 with Ag+ and Hg2+ for 90s 7TG2 ; 4.37 ; [T:Ag+/Hg2+:T--(pH8.5-pH11; 90s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 8.5 and soaked in pH 11 for 90s 7SDV ; 4.19 ; [T:Ag+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SLF ; 4.83 ; [T:Ag+:T--pH 10.5] Metal-mediated DNA base pair in tensegrity triangle 7SLE ; 4.39 ; [T:Ag+:T--pH 10] Metal-mediated DNA base pair in tensegrity triangle 7SLG ; 5.1 ; [T:Ag+:T--pH 11] Metal-mediated DNA base pair in tensegrity triangle 7SLB ; 4.31 ; [T:Ag+:T--pH 8.5] Metal-mediated DNA base pair in tensegrity triangle 7SLD ; 4.13 ; [T:Ag+:T--pH 9.5] Metal-mediated DNA base pair in tensegrity triangle 7SLC ; 4.02 ; [T:Ag+:T--pH 9] Metal-mediated DNA base pair in tensegrity triangle 8E4E ; 4.19 ; [T:Ag+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 8DXW ; 4.52 ; [T:Au+:T--(pH11-pH7; 15s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 15s 8DXY ; 4.87 ; [T:Au+:T--(pH11-pH7; 180s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 180s 8DXZ ; 4.71 ; [T:Au+:T--(pH11-pH7; 420s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 420s 8DXX ; 4.07 ; [T:Au+:T--(pH11-pH7; 45s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 45s 8DXV ; 4.59 ; [T:Au+:T--(pH11-pH7; 5s)] Metal-mediated DNA base pair in tensegrity triangle grown at pH 11 and soaked in pH 7 for 5s 7UK0 ; 4.36 ; [T:Au+:T--pH 11 w/ HgCl2] Metal-mediated DNA base pair in tensegrity triangle 7UL8 ; 4.22 ; [T:Au+:T--pH 11] Metal-mediated DNA base pair in tensegrity triangle 7UJZ ; 3.94 ; [T:Cd2+/Hg2+:T--pH 11] Metal-mediated DNA base pair in tensegrity triangle 7SM4 ; 4.01 ; [T:Hg2+/Ag+:T--pH 10.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM3 ; 3.74 ; [T:Hg2+/Ag+:T--pH 10] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM2 ; 3.92 ; [T:Hg2+/Ag+:T--pH 9.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM0 ; 4.18 ; [T:Hg2+/Hg2+:T--pH 8.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM1 ; 3.81 ; [T:Hg2+/Hg2+:T--pH 9] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SDW ; 4.2 ; [T:Hg2+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7TI3 ; 4.79 ; [T:Hg2+:T--pH 11] Metal-mediated DNA base pair in tensegrity triangle 7SD6 ; 3.53 ; [T:Hg2+:T] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SDI ; 3.58 ; [T:Hg2+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SMB ; 4.63 ; [U:Ag+/Ag+:U--pH 11] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SDM ; 4.01 ; [U:Ag+:S] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SLN ; 4.02 ; [U:Ag+:U--pH 10.5] Metal-mediated DNA base pair in tensegrity triangle 7SLM ; 4.3 ; [U:Ag+:U--pH 10] Metal-mediated DNA base pair in tensegrity triangle 7SLO ; 4.12 ; [U:Ag+:U--pH 11] Metal-mediated DNA base pair in tensegrity triangle 7SLJ ; 4.16 ; [U:Ag+:U--pH 8.5] Metal-mediated DNA base pair in tensegrity triangle 7SLL ; 3.73 ; [U:Ag+:U--pH 9.5] Metal-mediated DNA base pair in tensegrity triangle 7SLK ; 4.01 ; [U:Ag+:U--pH 9] Metal-mediated DNA base pair in tensegrity triangle 8E4D ; 4.19 ; [U:Ag+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SMA ; 3.64 ; [U:Hg2+/Ag+:U--pH 10.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM9 ; 3.24 ; [U:Hg2+/Ag+:U--pH 10] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM8 ; 3.62 ; [U:Hg2+/Ag+:U--pH 9.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM7 ; 3.9 ; [U:Hg2+/Ag+:U--pH 9] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SM6 ; 3.8 ; [U:Hg2+/Hg2+:U--pH 8.5] Metal-mediated DNA base pair in tensegrity triangle in Ag+ and Hg2+ solution 7SDX ; 3.89 ; [U:Hg2+:mC] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice 7SD8 ; 2.94 ; [U:Hg2+:U] Metal-mediated DNA base pair in a self-assembling rhombohedral lattice